Supporting Information:

Infrared Multiple Photon Dissociation Spectroscopy Confirms Reversible Water Activation in Mn\(^+\)(H\(_2\)O)\(_n\), n ≤ 8

Jakob Heller, Ethan M. Cunningham, Christian van der Linde, Milan Ončák, * Martin K. Beyer *

Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria

Corresponding authors: milan.oncak@uibk.ac.at; martin.beyer@uibk.ac.at

Contents

Experimental Details .. 2
Computational Data ... 7
Calculated Structures and IR Spectra ... 13
References ... 29
Experimental Details

All experimental measurements were performed on a modified 4.7 Tesla Bruker/Spectrospin FT-ICR CMS47X mass spectrometer1–5 equipped with a Bruker infinity cell6 and laser vaporisation source.7,8 Briefly, a frequency-doubled Litron Nano S 60-30 Nd:YAG laser (532 nm, 5 mJ/pulse, 30 Hz) is focussed onto a rotating solid disc of manganese producing a plasma. This plasma is then entrained into a pulse of the desired gas mixture (H\textsubscript{2}O in helium) produced \textit{via} a homebuilt piezoelectric valve. The ensuing pulse is cooled \textit{via} supersonic jet expansion into the source chamber. The gas pulse traverses through a skimmer (forming the molecular beam), and ions are guided \textit{via} an electrostatic lens set-up into the center of the ICR cell. Ions are then stored and mass-selected within the 4.7 T magnetic field9 under ultra-high vacuum conditions (ca. 5 x 10−10 mbar). The ICR cell is surrounded by a copper jacket, whereby the temperature of the cell can be controlled and cooled to ca. 87 K \textit{via} liquid nitrogen,10,11 minimising the effects of black body infrared radiative dissociation (BIRD).12–17 In each case \textit{either} the measurements were recorded at room temperature, or cooling of the ICR cell \textit{via} liquid nitrogen was employed.

On the opposite side of the magnet, the output radiation of a tunable IR OPO laser system (EKSPLA NT277/273-XIR) is aligned into the cell through a CaF\textsubscript{2} window.18 Absorption of infrared photons, leading to photodissociation events are measured \textit{via} mass spectroscopy.19 Monitoring the precursor and fragment abundance channels as a function of wavenumber yields the infrared spectrum of the complex of interest. Infrared spectra were recorded in i) the 2250–4000 cm−1 wavelength region, probing in the O–H symmetric and asymmetric stretching region, and ii) the 1450–1950 cm−1 region, probing the water bend and Mn–H stretch. Specific details on the laser setup can be found in previous publications.18,20 Infrared spectra of size-selected clusters was recorded \textit{via} action spectroscopy, reaction 1:
\[
\text{Mn}^+(\text{H}_2\text{O})_n + m \ h\nu \rightarrow \text{Mn}^+(\text{H}_2\text{O})_{n-x} + x(\text{H}_2\text{O})
\] (1)

Typical irradiation times are between 0.2–20.0 s at 1000 Hz repetition rate. The normalized IRMPD Yield is calculated from the precursor ion and BIRD-corrected fragment ion intensities along with considerations given to the laser power. First, ion intensities are normalized so that the precursor ion intensity is 100%. In the next step, the fragment intensities are BIRD corrected by subtracting the fragment intensities form a control experiment without laser irradiation, but identical residence time in the ICR cell. IRMPD yields are then calculated as \((\text{sum over BIRD corrected fragment intensities})/(\text{sum over BIRD corrected fragment intensities and precursor intensity})/(\text{laser power})\) and re-normalized for graphical display so that the maximum IRMPD yield in the spectrum is 100%.

The laser power is measured after every mass spectrum to account for small fluctuations. The laser power drops in the range 3500 – 3520 cm\(^{-1}\). Due to the complex kinetics of the IRMPD process, this may lead to small artifacts in the IRMPD yield at these wavelengths even after power correction.

In conjunction with the IRMPD measurements, BIRD experiments were also performed on the \(\text{Mn}^+(\text{H}_2\text{O})_8\) complex. Figure S1a shows a typical mass spectrum recorded during an experimental run, presenting \(\text{Mn}^+(\text{H}_2\text{O})_n\) clusters, \(n = 4–15\). Figure S1a-e presents a sequence of mass spectra used to record the IRMPD spectrum presented in Figure 1b in the main article. First, the \(\text{Mn}^+(\text{H}_2\text{O})_8\) complex is mass-selected (Figure S1b), and is heated by room temperature black-body radiation from the ICR cell walls for 20 s (Figure S1c). The \([\text{Mn}_4(\text{H}_2\text{O})_4]^+\) complex is mass-selected (Figure S1d) and subject to IR radiation at 3680 cm\(^{-1}\), leading to water loss, Figure S1e. To construct the IRMPD spectrum in Figure 1b, the whole process is repeated, changing the irradiation wavenumber in Figure S1e. A series of mass spectra like the
one in Figure 1e, measured with the irradiation wavenumber changed sequentially, is obtained to generate IRMPD spectra.

In addition to using BIRD to dissociate the Mn\(^+\)(H\(_2\)O)\(_8\) complex, IR radiation from the OPO laser system was also employed. The IRMPD spectrum of Mn\(^+\)(H\(_2\)O)\(_8\), Figure 1c, shows a strong broad band at ca. 3200 cm\(^{-1}\). This band was used to photodissociate the Mn\(^+\)(H\(_2\)O)\(_8\) complex, forming [Mn\(_4\)(H\(_2\)O)\(_4\)]\(^+\). The IRMPD spectrum shown in Figure 1e was generated as follows: the mass-selected Mn\(^+\)(H\(_2\)O)\(_8\) complex was irradiated for 3.0 s with IR light at 3200 cm\(^{-1}\), leading to loss of 4 H\(_2\)O. The resulting [Mn\(_4\)(H\(_2\)O)\(_4\)]\(^+\) complex was mass-selected and subject to IR radiation for 0.3 s, generating the IRMPD spectrum in Figure 1e.
Figure S1: Representative mass spectra outlining the experimental procedure used to construct BIRD+IRMPD spectra. (a) mass spectrum obtained from the ion source, (b) mass-selected Mn\(^+(H_2O)_8\) cluster, (c) mass distribution after 20 s irradiation with black-body infrared radiation, (d) mass-selected Mn\(^+(H_2O)_4\) cluster, and (e) mass spectrum recorded after irradiation with infrared light at 3680 cm\(^{-1}\) for 0.3 s. Arrows indicate that mass spectra, a–e, were measured sequentially.
Table S1: Irradiation times and temperatures used in the experiment.

Cluster	OH Region	Temperature / K	Irradiation time / s
\(\text{Mn}^+(\text{H}_2\text{O})_4\)	Stretch	87	0.2
	Bend	298	0.3
\(\text{Mn}^+(\text{H}_2\text{O})_8\)	Stretch	87	0.2
	Bend	298	1.0
\(\text{Mn}^+(\text{H}_2\text{O})_4 \leftrightarrow \text{Mn}^+(\text{H}_2\text{O})_8\)	Stretch	87	3.0 @3200 cm\(^{-1}\)/0.3
	Bend	298	20.0/0.3
			20.0/10.0

Figure S2. a) Experimental IRMPD spectrum of \(\text{Mn}^+(\text{H}_2\text{O})_4\) recorded at \(\approx 298\) K. b) Experimental IRMPD spectrum of \(\text{Mn}^+(\text{H}_2\text{O})_4\) recorded, and mass-selected, after \(\text{Mn}^+(\text{H}_2\text{O})_8\) was subject to 20.0 s of blackbody-infrared-radiative dissociation (BIRD), at \(\approx 298\) K. c) Experimental IRMPD spectrum of \(\text{Mn}^+(\text{H}_2\text{O})_8\) recorded at \(\approx 298\) K. In d–f), simulated infrared spectra were modelled at the BHandHLYP/aug-cc-pVDZ level with a scaling factor of 0.96.
Computational Data

Figure S3. Interpolation between septet and quintet Mn\(^{2+}\)(H\(_2\)O\(_2\))\(_2\) minima optimized at the CCSD/aug-cc-pVDZ level at different computational levels using the aug-cc-pVDZ basis set. State average of one quintet and one septet state was used for multi-reference calculations.

Table S2 - Relative stability of Mn\(^{2+}\)(H\(_2\)O\(_2\))\(_2\) in septet spin multiplicity compared to the quintet analogue (in kJ mol\(^{-1}\)), negative values indicate that the ion in septet spin multiplicity is more stable. The structures were optimized in both spin multiplicities at the respective level using the aug-cc-pVDZ basis set, energies include zero-point correction. For the CCSD(T) value, the CCSD zero-point correction was used.

Method	ΔE
B3P86	4.7
B3LYP	21.6
BHandHLYP	-7.1
BMK	14.3
CAM-B3LYP	27.1
M06	57.3
M06L	33.3
M11	-0.9
MN15	32.2
O3LYP	15.3
ωB97XD	29.2
CCSD	-35.1
CCSD(T)	-28.7
Table S3 – Relative energies of Mn\(^{+}(H_{2}O)_{2}\) and HMnOH\(^{+}(H_{2}O)\) isomers as optimized at different levels of theory using the aug-cc-pVDZ basis set (in kJ mol\(^{-1}\)). See Figure S4 for the respective isomers.

Isomer	CCSD	BHandHLYP	B3LYP	M11
\(^{7}\)Ila	0.0	0.0	0.0	0.0
\(^{7}\)Ilb	25.1	22.5	19.3	23.3
\(^{5}\)Iic	35.1	7.1	-21.6	0.9
\(^{5}\)Ild	81.4	61.7	52.8	74.1
\(^{5}\)Ile	134.7	120.7	41.7	82.2

Figure S4. Selected low-energy structures of Mn\(^{+}(H_{2}O)_{2}\) and HMnOH\(^{+}(H_{2}O)\).

Figure S5. IR spectra of selected Mn\(^{+}(H_{2}O)_{n}\) clusters, \(n = 2–4\), in the O–H stretching region using various methods along with the aug-cc-pVDZ basis set. Scaling factors of 0.92, 0.96, and 0.95 were used for BHandHLYP, B3LYP, and CCSD, respectively.
Figure S6. IR spectra of selected Mn$^\text{7+}$(H$_2$O)$_n$ clusters, $n = 2$–4, in the H$_2$O scissoring region using various methods along with the aug-cc-pVDZ basis set. Scaling factors of 0.96, 1.00 and 0.98 were used for BHandHLYP, B3LYP and CCSD, respectively.
Figure S7. Calculated IR spectra of six selected Mn\(^{\text{II}}\)(H\(_2\)O\(_8\)) isomers at the BHandHLYP/aug-cc-pVDZ level of theory.

Table S4 – Position (in cm\(^{-1}\)) and intensity (in km mol\(^{-1}\), in parenthesis) of the Mn–H vibration for the most stable HMnOH\(^{\text{II}}\)(H\(_2\)O)\(_n\), \(n = 1–3\), isomers. The frequencies are unscaled. The aug-cc-pVDZ basis set was used.

method	\(^5\)lc	\(^5\)lle	\(^5\)lll	\(^5\)llle
CCSD	1466 (49.0)	1598 (17.4)	1701 (7.1)	–
BHandHLYP	1444 (127.9)	1519 (40.6)	1638 (4.2)	1610 (4.2)
B3LYP	1722 (6.5)	1759 (3.5)	1792 (32.2)	1769 (52.7)
B3P86	1768 (3.9)	1798 (4.6)	1828 (39.0)	1808 (59.9)
BMK	1662 (16.7)	1751 (4.1)	1827 (36.2)	1806 (65.2)
CAM-B3LYP	1704 (14.7)	1763 (3.0)	1812 (24.8)	1790 (43.1)
M06	1696 (13.9)	1754 (4.7)	1777 (12.0)	1754 (25.5)
M06L	1773 (4.3)	1780 (5.0)	1811 (36.0)	1791 (55.4)
M11	1610 (21.0)	1690 (5.1)	1767 (16.9)	1742 (29.4)
MN15	1723 (3.2)	1777 (3.5)	1830 (32.8)	1797 (49.1)
O3LYP	1698 (5.0)	1723 (2.2)	1742 (26.2)	1717 (41.5)
\(\omega\)B97XD	1764 (4.3)	1808 (6.3)	1829 (39.4)	1807 (62.9)
Table S5 – Mn-H bond length (in Å) for the most stable HMnOH*(H2O)n, n = 0–3, isomers. The aug-cc-pVDZ basis set was used.

method	5lc	5lIe	5llI	5lVe
CCSD	1.639	1.609	1.599	1.601
BHandHLYP	1.643	1.618	1.604	1.608
B3LYP	1.578	1.574	1.577	1.581
B3P86	1.564	1.562	1.568	1.571
BMK	1.589	1.580	1.581	1.586
CAM-B3LYP	1.575	1.568	1.572	1.575
M06	1.597	1.590	1.596	1.599
M06L	1.584	1.582	1.589	1.593
M11	1.585	1.572	1.573	1.577
MN15	1.564	1.560	1.563	1.569
O3LYP	1.580	1.577	1.581	1.585
ωB97XD	1.569	1.566	1.572	1.576

Table S6 – Position (in cm⁻¹) and intensity (in km mol⁻¹, in parenthesis) of several vibrations in HMnOH*(H₂O). The frequencies are unscaled. The aug-cc-pVDZ basis set was used.

Method	Mn-H	H₂O scissoring	OH stretch		
CCSD	1598 (17.4)	1674 (109.6)	3769 (189.5)	3858 (238.4)	3876 (273.7)
BHandHLYP	1519 (40.6)	1696 (125.9)	3876 (227.0)	3959 (274.0)	4001 (312.5)
B3LYP	1759 (3.5)	1637 (107.5)	3726 (216.0)	3811 (279.1)	3812 (263.9)
B3P86	1798 (4.6)	1637 (108.2)	3757 (221.0)	3843 (313.5)	3845 (235.4)
BMK	1751 (4.1)	1653 (124.8)	3815 (245.1)	3898 (288.6)	3938 (341.0)
CAM-B3LYP	1763 (3.0)	1637 (120.3)	3752 (230.6)	3833 (272.7)	3860 (320.1)

Figure S8. Selected low-energy structures of Mn⁺(H₂O)₄ and HMnOH⁺(H₂O)₃. Relative energies in kJ mol⁻¹ were evaluated at the CCSD(T)/aug-cc-pVDZ//BHandHLYP/aug-cc-pVDZ level of theory.
Figure S9. Selected low-energy structures of Mn\(^+\)(H\(_2\)O\(_8\)) and HMnOH\(^+\)(H\(_2\)O\(_7\)). Relative energies in kJ mol\(^{-1}\) were evaluated at the CCSD(T)/aug-cc-pVDZ//BHandHLYP/aug-cc-pVDZ level of theory.

Figure S10. Interpolation between \(5\text{IVh}\) and \(7\text{IVc}\) minima optimized at the BHandHLYP/aug-cc-pVDZ level and single-point recalculated at the CCSD(T)/aug-cc-pVDZ level. Calculated points are shown as crosses, splines are included to guide the eye.
Calculated Structures and IR Spectra

Cartesian coordinates (in Å) of structures optimized at the BHandHLYP/aug-cc-pVDZ level along with zero-point corrected energies (in a.u.)

Structure	E (a.u.)	Mn (Å)	O (Å)	H (Å)
7IIa	-1303.560921	0.000000	0.746126	0.000000
		1.523974	-0.827323	0.000000
		-1.500634	-0.905893	0.000000
		-2.016449	-1.161965	0.766977
		1.373818	-1.773738	0.000000
		2.472361	-0.689762	0.000000

Structure	E (a.u.)	Mn (Å)	O (Å)	H (Å)
5IIb	-1379.940160	-0.008482	-0.365981	-0.000002
		-1.775979	-0.563327	-0.000087
		2.241391	-1.395456	0.000050
		0.431783	1.707654	0.000081
		2.017654	-0.199271	-0.000012
		0.236621	-1.951862	0.000093
		2.613825	0.954878	0.000039
		2.544109	0.691861	0.000045
		-0.032782	2.575950	-0.000195
		-1.387460	1.808934	0.000086

Structure	E (a.u.)	Mn (Å)	O (Å)	H (Å)
5IIIb	-1456.369339	-1.477640	-0.794265	1.366107
		-1.029356	0.008690	-0.677134
		-0.215311	1.793396	0.371788
		0.867980	-1.047527	-0.435071
		3.206628	0.031840	0.283348
		2.357691	-0.867572	1.735091
		0.963845	-1.521319	1.718368
		-0.137918	1.866040	1.321190
		-0.030949	2.673864	-0.002155
		1.722989	-0.645671	-1.80534
		3.786911	-0.346526	0.940490
		3.763444	0.537757	-0.384678
H 1.070690 -1.799728 -0.988798

7IVc
E = -1456.366345
O 0.004253 1.732777 0.758682
Mn -0.000589 0.009299 -0.672864
O -2.306575 -0.263760 -0.142287
H 0.003613 2.660712 0.528877
H -0.776301 -1.766333 1.399978
H 0.773768 -1.765573 1.400408
H -2.854550 0.406201 0.267178
H -2.838712 -0.647485 -0.839913

O 2.305343 -0.267492 -0.143149
H 2.836656 -0.657036 -0.838166
H 2.853965 0.405541 0.260350

5IVd
E = -1456.367513
O 2.098955 0.071238 0.000471
Mn 0.493322 -1.397725 -0.000067
O -0.774430 0.306399 -0.000064
H 3.041461 -0.084366 0.000502
H -0.452078 1.212677 -0.000840
H -1.752105 0.309248 -0.000241
H 1.016107 3.154626 -0.762040
H 1.014926 3.154762 0.761862
H 1.934939 1.025599 -0.000082
O -3.992605 0.206887 -0.756355

5IVe
E = -1456.352768
O -1.828309 -0.080628 -0.597301
Mn -0.957302 2.579151 -0.000082
O -0.094161 -0.084366 0.000050
H -0.452078 1.212677 -0.000840
H -1.752105 0.309248 -0.000241
H 1.016107 3.154626 -0.762040
H 1.014926 3.154762 0.761862
H 1.934939 1.025599 -0.000082
O -3.992605 0.206887 -0.756355

7IVd
E = -1456.35713
O 2.099855 0.071238 0.000471
Mn 0.957302 2.579151 -0.000082
O -0.774430 0.306399 -0.000064
H 3.041461 -0.084366 0.000502
H -0.452078 1.212677 -0.000840
H -1.752105 0.309248 -0.000241
H 1.016107 3.154626 -0.762040
H 1.014926 3.154762 0.761862
H 1.934939 1.025599 -0.000082
O -3.992605 0.206887 -0.756355

5IVf
E = -1456.364577
O 1.821515 -0.850601 -0.000037
Mn 0.000032 -0.000991 -0.000035
O -1.821477 0.850601 -0.000051
H 2.693478 -0.394536 0.000036
H -2.693528 0.394325 0.000008
H -1.972213 1.793881 -0.000864
H -4.674448 -0.551166 0.768564

5IVg
E = -1456.362308
Mn 0.826976 -0.270552 0.00134
O -0.952326 -1.400432 -0.001756
H 2.817113 0.359330 -0.001108
H -0.593154 1.416628 -0.000887
H -0.409225 2.353266 -0.002285
H -1.550084 1.294453 -0.000156
H 3.375379 0.277640 -0.776891
H 3.377325 0.282054 0.773724
H -1.018252 -2.352287 -0.001411
H -1.841090 -1.019772 -0.001135
O -3.163356 0.279641 0.000460
H -3.737502 0.343732 -0.762152
H -3.737243 0.343378 0.763293

5IVh
E = -1456.361415
Mn 0.000759 0.063342 -0.000189
O 0.018703 2.235667 -0.00068
O -0.018571 -2.111039 -0.00028
H 2.198044 -0.192867 0.000707
H -2.200768 -0.156110 0.000426
H -2.743419 0.130455 0.771715
H -2.742947 0.135535 -0.771089
H 0.024367 2.798414 -0.775282
H 0.024635 2.799601 0.774273
H 2.742806 -0.035013 0.772580
H 2.744464 -0.033335 -0.770360
H 0.749947 -2.680069 -0.001471
H -0.797179 -2.664956 -0.000660

5IVi
E = -1456.361189
O 2.189132 -1.240563 -0.369315
Mn 0.459655 -0.158682 0.204120
O -1.468230 0.082846 0.813652
O 1.894902 1.521885 -0.291766
H 3.010064 -0.798498 -0.586284
H 2.343406 -2.183337 -0.373206
H 1.809341 2.053385 -1.084327
H 2.240328 2.100553 0.389259
H -1.726581 0.046999 1.735131
H -2.283380 0.049018 0.268831
O -3.678825 -0.015859 -0.619111
H -4.144259 -0.804203 -0.888979
H -4.242115 0.724748 -0.831290

5IVj
E = -1456.361543
O 3.126926 0.000242 -0.000050
Mn 1.074686 0.000143 0.000017
O -0.905073 0.000005 0.000173
O -2.375082 -2.214299 -0.000493
S15

H 3.687307 0.777039 -0.008496
H -1.468462 -0.797912 -0.000030
H -1.468803 0.777649 0.000044
O 0.276190 2.213740 0.000195
H -2.768037 2.627922 -0.765012
H -2.767842 2.627001 0.766001

5IVk
E = -1456.348268
O 0.885378 -1.355818 -0.000201
Mn -0.858521 -0.336280 -0.000353
O 0.353926 1.378818 0.001662
O -2.314843 0.679144 -0.001201
O 2.983783 0.350662 -0.000610
H -0.065565 2.238991 0.001588
H 1.311244 1.463050 -0.000095
H -3.211571 0.356555 0.000537
H 0.977067 -2.306526 0.002188
H 1.757872 -0.924246 0.000539
H 3.557950 0.431668 0.761336
H 3.557823 0.429392 -0.762889
H -1.687745 -1.704330 0.008438

5IVl
E = -1456.356783
O -0.004780 1.922148 -0.142755
Mn 0.001958 -0.287186 0.458927
O 2.148192 -0.381031 -0.000122
O -1.497862 -1.277720 0.000125
O -2.786430 1.213958 0.000011
H -0.417773 0.288415 -0.486300
H 0.764085 1.303709 -0.061314
H 1.663497 3.452590 -0.492418
H 1.230977 3.95512 0.964846
H -2.671365 -0.144415 -0.419284
H -2.184567 0.69468 -1.877327
H -0.697656 -0.220616 0.622957
H -4.609879 0.505937 0.929323
H -4.592730 -1.009865 0.741210

5IVm
E = -1456.344540
O -0.446723 -1.354652 -0.086293
Mn 0.629924 0.410330 -0.036029
O -0.835000 1.452235 0.011852
O 2.344980 -0.691235 0.109945
O -2.831865 -0.512710 0.033810
O -0.775559 2.403845 0.001623
H 3.222110 -0.308064 0.086740
H 2.418113 -1.602605 0.393993
H -0.328584 2.151313 -0.599183
H -1.428754 -1.180947 -0.000238
H -3.626178 -0.702379 0.526272
H -2.651163 0.429012 0.089834
H 1.570779 1.705089 -0.152833

TS1
E = -1456.363170
O 2.677246 1.145571 0.000111
Mn 0.688450 -0.937897 -0.00058
O 0.002349 1.093801 -0.000122
O -1.497862 -1.277720 0.000125
O -2.786430 1.213958 0.000011
H 3.252394 1.230964 -0.759059
H 3.252265 1.230964 0.759374
H 0.679011 1.771972 -0.000068
H -0.886202 1.464821 -0.000091
H -3.282264 1.512824 0.761629
H -3.282322 1.512723 -0.761608
H -2.150861 -0.565600 0.000107
H -1.955712 -2.116076 0.000177

TS2
E = -1456.369392
O 3.105931 -0.030471 0.289145
H 0.338340 1.779355 1.261443
H 0.696188 -0.500380 0.874968
H 3.661074 0.524232 -0.255411
H 1.661126 -0.710801 -0.301710
H 0.796602 -1.067668 -0.586409
H 0.969759 -1.757476 -1.224592
H -1.066555 0.073509 -0.629485
O -1.394537 -0.845623 1.383903
H -0.937601 -1.643387 1.631722
H -2.230840 -0.842756 1.849808
O -0.051845 1.773213 0.387111
H -0.149777 2.683937 0.111599

TS3
E = -1456.364319
O 2.473049 0.086495 0.069146
H -0.220274 -0.044305 -0.735543
O -0.157473 1.722133 0.676841
H 0.418870 -1.540256 0.738271
H -2.246039 -0.271814 0.303029
H -2.394943 -0.860745 1.849198
H -3.067755 -0.203163 -0.173765
H -0.943790 1.944325 1.175310
H 0.298377 2.542385 0.492338
H 0.281588 -2.484908 0.684539
H 1.362936 -1.387732 0.846654
H 2.935309 0.671912 0.667689

S15
Element	X	Y	Z
Mn	-0.358247	-0.333416	-0.308974
O	0.700602	0.110158	1.497030
O	1.033881	-1.210016	-1.212982
O	-0.499034	-3.065615	0.814361
H	-2.030293	0.314976	0.680504
H	0.918318	-1.411922	-2.128710
Mn	-1.295944	-0.533846	-1.600155
O	0.700602	0.110158	1.497030
O	1.033881	-1.210016	-1.212982
O	-0.499034	-3.065615	0.814361
H	-2.030293	0.314976	0.680504
H	0.918318	-1.411922	-2.128710
O	1.449766	0.729041	1.438495
O	1.107940	2.053575	-0.369539
O	0.133801	2.211827	-1.564788
O	0.864874	2.940986	0.283156
H	-1.217987	-2.878225	1.169905
O	-1.899790	0.917047	1.418107
H	-2.908677	0.485522	0.289575
H	0.976956	-0.649709	2.005540
H	-1.295944	-0.533846	-1.600155
H	0.494441	-0.586718	-0.414611
O	0.932284	-2.601474	0.113728
O	-1.552627	-1.990956	-0.954063
H	0.243191	-0.113487	0.839527
H	0.451233	0.772891	-0.297147
H	-4.701286	1.358498	-1.007459
H	-5.247941	0.333953	-0.009209

SVIIIe

E = -1761.956073

Element	X	Y	Z
Mn	0.899417	-0.483129	-0.183938
O	0.797907	1.501366	0.781905
O	2.689898	0.653610	-1.84676
O	-0.113384	0.012808	-1.719592

SVIIIg

E = -1761.959040

Element	X	Y	Z
Mn	-0.999465	-1.333605	0.529355
O	0.119890	-0.059688	1.951071
Mn	0.494441	-0.586718	-0.414611
O	0.932284	-2.601474	0.113728
O	-1.552627	-1.990956	-0.954063
H	0.243191	-0.113487	0.839527
H	0.451233	0.772891	-0.297147
H	-4.701286	1.358498	-1.007459
H	-5.247941	0.333953	-0.009209

SVIIIf

E = -1761.957827

Element	X	Y	Z
Mn	2.332732	-2.48534	0.013011
O	0.743088	-0.75655	1.467344
Mn	1.473254	1.759822	-0.263984
O	0.639252	-1.863394	-1.089224
H	1.386983	1.055419	2.071708
H	-1.203150	2.394363	-0.333867
H	2.033858	2.506249	-0.462813
Element	X	Y	Z
---------	----	----	-----
H	0.547673	2.040375	-0.364780
H	1.357755	-1.591475	-2.279640
H	0.094789	-1.498708	-1.367935
H	0.133858	0.160497	1.785380
H	0.314295	-1.410436	1.659884
H	-1.531482	1.574820	2.858990
H	-1.457773	1.655679	1.315877
H	-1.466975	3.300818	-0.479286
H	-1.684238	1.855077	-0.993365
H	-1.978798	-2.676175	-1.457672
H	-1.849484	-1.879787	-0.139833
O	0.238177	0.697347	-2.066662
H	-3.106976	0.784002	-2.618618
H	-2.265604	-0.239541	-1.817471
O	-1.981397	1.656553	1.613899
H	-2.578551	-2.167539	2.153867
H	-2.076560	-0.734924	1.879633

5VIII

E = -1761.953598

Element	X	Y	Z
O	1.903665	-0.557737	0.888075
Mn	0.095042	-0.124315	0.625381
O	-1.847652	0.538491	0.643586
O	0.560802	1.585364	-0.465777
O	-0.452195	-1.466556	-0.970526
O	-1.931834	2.938760	-0.785212
O	3.084552	1.778636	0.000990
O	-3.228314	-1.787294	0.106363
H	1.894218	-2.606783	-1.049032
H	-2.070475	1.324633	0.127204
H	-2.515904	-0.147539	0.503293
H	2.147722	-0.939612	1.726614
H	-0.036021	2.284488	-0.733875
H	1.499230	1.876066	-0.461797
H	-1.255488	-1.980876	-0.893925
H	0.293107	-2.051890	-1.208226
H	-4.004760	-1.876455	-0.443702
H	-3.373457	-3.274161	0.847258
H	-2.146610	3.724717	-0.294763
H	-2.314635	3.055820	-1.652206
H	3.922862	1.873249	-0.440912
H	3.031369	0.888823	0.377325
H	2.242913	-1.974493	-0.481436
H	2.684340	-2.884641	-1.611161
H	-0.270846	-1.009923	1.916793

5VIIIj

E = -1761.952832

Element	X	Y	Z
Mn	-0.362854	0.254244	-0.992286
H	-2.798344	0.279035	-1.353871
O	0.096807	1.014430	0.868055
O	1.521996	0.747864	-1.542502
O	0.222206	-1.813899	-0.360854
H	0.442859	2.435890	-1.049902
H	-0.578224	-2.161866	0.097640
O	-2.065294	-2.163383	0.793902
H	-2.475116	-1.482495	0.362037
H	-2.733386	-2.821941	0.959121
O	-2.194160	0.202892	-0.620965
H	-0.682527	0.042758	-2.551717

7VIIIj

E = -1761.953392

Element	X	Y	Z
O	1.953395	-1.878646	0.334847
Mn	0.172176	-0.457513	0.689746
O	1.598463	0.976296	-0.011103
O	-1.425038	1.238479	-0.082906
O	-0.482597	-1.339186	-1.215837
O	-3.114448	-0.794655	-1.444269
O	4.168497	-0.238426	-0.288480
O	-3.506427	-0.109999	1.290290
H	-2.194412	1.076555	0.477720
H	-1.736487	1.037625	-0.968894
H	2.083709	-2.617176	0.926124
H	2.821640	-1.499804	0.150923
H	-1.429628	-1.342170	-1.428984
H	-0.083078	-2.136116	-1.555220
H	1.369601	1.911734	-0.156488
H	2.534156	0.830879	-0.161167
H -4.278572 0.127737 1.800838
H -2.943458 -0.620075 1.877409
H -3.527088 -0.750857 -0.575879
H -3.788996 -1.050431 -2.067947
H 4.597384 -0.302726 -1.140252
H 4.865185 -0.048841 0.337869
O 0.466592 3.341737 -0.393377
H 0.558542 4.241601 -0.093926
H -0.420787 3.050290 -0.178645

7VIIIm
E = -1761.954747
O -2.167641 -2.160891 0.956482
Mn -1.866996 -0.450763 -0.770700
O -2.189647 0.692937 1.111262
O 0.117170 -1.064391 -0.060484
O -0.680707 1.315047 -1.577604
O 0.024699 1.882106 1.996618
O 1.645837 2.475300 -0.307444
H 0.098808 1.761988 -1.218631
H -0.953034 1.768819 -2.371352
H -2.548465 -1.723942 1.718214
H -2.716235 -2.922328 0.774559
H -1.417957 1.160351 1.489723
H -2.930981 1.292221 1.162671
H 1.029171 -0.897557 -0.335195
O 0.098922 -1.803733 0.543192
H 2.184788 2.960203 -0.517523
H 2.187138 1.360746 -0.467551
H 0.685947 2.049999 1.330483
H 0.194034 2.423820 2.761443
O 0.703381 -0.359185 -0.826772
H 2.896981 -0.541020 -1.744055
H 3.447263 -0.730433 -0.322792
O 4.784399 -1.404726 0.568442
H 4.958302 -2.329920 0.731886
H 5.568279 -0.938553 0.848435

7VIIIo
E = -1761.950529
O -1.958896 2.994714 -0.580825
Mn -0.710847 -0.590041 -0.446632
O -0.166414 -1.089749 1.605881
O 2.823074 -1.075261 -2.032364
O 2.501736 0.519719 0.141497
O 0.392133 1.435540 0.141522
O 3.066343 0.897250 -0.222209
H 1.330246 1.388271 -0.107845
H 0.460416 1.612679 0.183190
H -2.815583 0.515466 1.043755
H -2.487513 1.452933 -0.149840
H -1.006694 2.969053 -0.671177
H -2.291548 3.682614 -1.150728
H 3.343642 -1.471260 -2.726786
H 1.901710 -1.241572 -2.240228
H 0.690257 -0.778915 1.957490
H -0.376777 -1.930097 2.005368
H 3.760597 1.525646 -0.404167
H 3.122644 0.280869 -0.908252
O -2.256152 -2.321147 -0.117978
H -3.173003 -2.081451 -0.252591
H -2.129400 -3.155723 -0.567421
H 2.691601 0.290868 1.521194
O 2.117830 0.108536 2.275887
H 2.675124 0.007010 3.042560

5VIIIp
E = -1761.948660
O -2.063489 -1.374169 0.806629
Mn -0.318023 -0.285486 0.628028
O 0.264915 -1.401266 -1.117746
O 1.525749 1.173252 -0.262871
O 1.095123 0.882498 0.739718
O 0.242087 2.991343 -0.699432
O 2.857503 -1.205893 -1.512853
O -4.116014 -0.176447 -0.509025
O 3.965343 -0.024220 0.826124
H 1.943524 0.595446 1.070502
H -2.245001 -1.994182 1.507726
H -2.896402 -1.050457 0.425152
H 1.215907 -1.319743 -1.351999
H -0.022395 -2.273724 -1.371480
H -1.047483 1.991529 -0.535489
H -2.360725 1.080140 -0.716343
H 4.372146 -0.641213 1.431221
H 4.544596 0.734920 0.806818
H 3.324403 -0.757658 -0.799037
H 3.319973 -1.010271 -2.322650
H -4.828379 0.273692 -0.057220
H -4.513507 -0.585835 -1.276024
H 0.308762 3.887670 -0.383589
H 0.809236 2.435248 -0.140338
O -2.040031 1.001485 -1.538039
O 2.764258 -1.503912 0.032268
H 3.493577 1.225087 -0.039692
H 3.108888 -1.425502 1.172928
H 0.376863 -1.017796 2.356577
O -1.698464 1.766098 -1.305987
H 4.021639 1.636334 0.645489
H 3.850698 1.550134 -0.867491
O -3.048187 -1.408975 -0.670245
O 3.426550 -2.192166 -0.029246
H 0.451701 -1.106794 -1.487119
H 0.449025 -0.932487 -2.430053
H -1.519470 -1.521039 -0.543642
Mn 0.000183 -0.089442 -0.041242
O 1.517874 1.522676 -0.544584
O 1.481413 1.466144 -0.258687
O -1.480739 1.466911 -0.257742
O -3.905667 0.009665 -1.036355
O 0.001885 3.759415 0.551626
H 1.289598 2.358244 0.043185
H 2.412185 1.262926 -0.129387
O -1.345922 -2.962468 -0.182347
O -1.288259 2.359019 0.043561
Mn 0.000183 -0.089442 0.041242
O 1.517874 1.522676 0.544584
O 1.481413 1.466144 0.258687
O -1.480739 1.466911 0.257742
O -3.905667 0.009665 -1.036355
O 0.001885 3.759415 0.551626
O -2.391041 1.465354 -0.170500
Mn 0.749126 -0.021640 0.255555
O 0.620199 -1.740478 -0.127440
O 0.421045 1.175687 -1.407350
O -2.015243 -1.019531 1.518905
Mn 2.770388 1.493252 -0.032043
O 3.461966 -1.242467 0.386822
H 1.582968 -1.641650 -0.111040
H -2.293115 2.396292 -0.181960
O -3.021021 1.391855 0.735733
O 1.319888 1.439042 -1.162977
H 0.379611 1.072020 -2.355711
H -1.642986 -1.227494 2.389443
H -2.571862 -1.774724 1.283884
O -4.010470 -1.664664 -0.623657
Mn 3.781204 -1.568938 0.881768
O 3.228862 0.642699 -0.029394
O 3.438588 2.175758 -0.028955
O 0.463313 1.081617 1.491979
O 0.477830 0.847978 2.422400
H 1.354304 1.360262 1.239727
H 0.413075 -2.478410 0.457068
O -1.785270 -0.941281 -1.704074
H -1.577308 -1.837047 -1.976184
H -2.694407 -0.769188 -1.952697

S21
IR frequencies (in cm⁻¹, without shift) and intensities (KM/mole) for structures optimized at the BHandHLYP/aug-cc-pVDZ level

7IIa
30.7313 1.5476
87.9991 0.8598
236.9107 2.3411
276.1865 20.9571
304.3383 4.7
345.2992 225.8488
385.3786 226.5671
484.8917 14.853
491.3515 60.4095
1679.5964 125.2825
1689.8342 104.4727
3889.1754 180.4236
3982.5449 0.0
3983.862 432.272

7IIb
64.4194 0.4304
150.5894 17.4743
259.569 66.7381
284.6552 240.7681
287.456 104.8601
356.195 9.1429
425.3049 29.3894
677.675 16.1289
958.016 116.8184
1671.4813 110.3169
1712.0438 24.4526
3262.5427 1644.2576
3940.0512 1851.9349
3953.7438 432.272
4037.4487 172.1753

5IId
72.5571 0.5696
142.1434 17.5368
266.7639 235.5138
272.7132 91.5338
275.9713 61.8532
362.6967 14.853
469.074 8.3496
709.2875 14.1721
979.872 105.0031
1671.0543 118.7193
1707.7235 31.6763
3188.5029 189.9172
3939.3482 78.4426
3955.0165 162.7554
4037.4487 172.1753

7IIIa
73.8619 1.2155
85.5225 15.9741
260.9292 9.1429
264.1715 401.5665
326.3575 0.0
348.8574 15.2654
513.9258 8.953
518.7483 0.0
1672.7284 293.1942
1675.6326 0.0
3888.8677 0.0
3889.1754 180.4236
3982.5449 0.0
3983.862 432.272

5IIe
108.1392 8.1895
127.2444 1.6808
161.2034 14.1344
244.1491 95.7888
376.4654 316.9314
386.8627 4.0363
471.2303 21.3701
612.767 55.9616
648.012 95.7626
755.4344 60.3741
1518.7647 40.5962
1696.1539 125.873
3876.0383 226.9629
3958.9199 273.9858
4001.3882 312.5054

7IIIb
32.2178 0.0
84.9665 11.5522
85.5225 15.9741
260.9292 9.1429
264.1715 401.5665
326.3575 0.0
438.8574 15.2654
513.9258 8.953
518.7483 0.0
1672.7284 293.1942
1675.6326 0.0
3888.8677 0.0
3889.1754 180.4236
3982.5449 0.0
3983.862 432.272
374.2774	295.3887
377.5165	151.9465
377.8763	151.7147
469.8298	15.7541
469.9987	15.7772
495.4699	133.0868
1677.694	157.9717
1677.7737	157.7355
1678.8535	50.3446
3897.8261	83.9487
3897.8793	84.0586
3898.4833	7.7427
3995.5277	143.954
3995.8322	174.1667
3995.8998	175.0731
5IIIb	
39.9443	0.2566
137.7076	6.5883
138.6667	1.0098
186.3595	7.116
199.8761	22.2406
278.438	121.1408
351.2413	17.6098
353.5917	42.8807
389.0305	2.5379
397.9657	345.9156
441.6536	178.763
455.5254	116.4886
455.7145	40.8246

5IVa	
42.9684	7.521
45.1123	4.9006
94.2161	0.4003
122.5136	12.6196
186.3595	7.116
199.8761	22.2406
278.438	121.1408
351.2413	17.6098
353.5917	42.8807
389.0305	2.5379
397.9657	345.9156
441.6536	178.763
455.5254	116.4886
455.7145	40.8246

5IVb	
19.5168	3.0178
42.6985	1.336
69.557	1.3089
78.5286	0.3916
98.9587	1.6959
121.5735	6.0782
149.4596	11.4349
213.2874	8.5387
247.9119	29.9935
263.5666	22.7448
268.5113	192.3799
282.9537	28.0317
310.0129	168.2474
321.2488	60.7979
340.662	109.935
361.3521	14.209
374.4941	151.0492
460.8868	29.7108
477.1243	48.7172
617.9543	72.3425
881.2137	102.5294
1671.4088	135.491
1673.4047	118.7798
1677.6679	132.9661
1711.997	42.9563
3499.9625	113.5282
3904.6508	53.0451
3907.5688	39.7513
3946.2533	50.8363
3976.4224	128.7237
4005.4004	157.5912
4010.2682	153.7353
4044.3099	145.4817

7IVc	
54.0779	5.4163
64.9725	1.0025
74.8696	0.1122
80.0936	0.8656
98.9242	1.2561
152.5145	0.5326
176.223	1.778
x	y	x	y	x	y
184.1201	5.9933	198.6998	0.2392	248.8043	12.6683
255.1553	0.385	282.1176	194.8212	290.2213	2.7854
366.2371	0.2549	373.7828	218.3584	380.3769	35.2781
387.6279	152.2468	397.6579	207.6486	4011.8939	154.2561
4024.1055	147.0971	43.5677	1.8151	46.0031	0.8551
76.8039	7.9126	115.2282	0.6609	121.8842	0.9161
203.3622	129.171	216.0635	151.7201		
261.7982	33.7986	263.1669	0.0007	265.7518	59.9836
303.004	55.566	312.6232	16.5709	324.8286	28.2735
460.5175	22.186	464.4597	158.1741	601.1006	122.2547
630.1918	37.1428	733.7736	170.7535	750.6448	83.1769
882.8722	93.2025	1663.8138	125.3614	1679.1095	94.8195
1681.3577	85.8534	1714.1317	1.4444	3498.5837	1309.5113
3693.5433	453.2755	3833.0983	591.7939	3924.8967	31.2302
3952.0663	48.3787	3989.8578	188.0712	4014.1241	154.1246
4052.3723	148.634	51.7498	1.9164	76.2926	7.6453
92.2267	1.0046	109.2214	1.0926	168.6119	1.0583
174.7699	8.5842	224.3427	97.4097	231.9229	23.2782
282.0973	37.2427	302.036	1.0713	319.4474	22.9073
345.656	133.3019	356.7796	24.0056	374.9136	84.849
415.0821	152.1158	457.329	389.9039	497.9115	30.2685
539.1565	3.0702	591.7115	138.4476	664.015	79.3901
667.5775	92.554	757.4491	32.1734	1610.4642	4.1794
1671.3643	158.6301	1676.2725	142.3698	1686.9227	89.0073
3880.937	105.2335	3914.9822	178.0841	3920.0775	67.8628
4002.586	141.9144	4005.9328	249.0783	4021.6249	170.3057
4026.9378	167.4577	51.7498	1.9164	104.9497	2.4788
109.8402	2.6424	143.8706	2.6316	176.2974	8.5456
240.3235	11.2215	248.2196	6.1937	259.2606	20.2835
310.534	3.4907	351.1647	1.0521	370.4094	27.6365
386.8653	101.7293	395.05	352.2192	420.6617	2.9036
500.5231	159.1732	599.5056	58.292	609.5015	58.6038
644.7412	88.9177	709.2615	205.5215	749.2148	107.8348
765.3785	3.9502	807.5329	134.966		
Value 1	Value 2	Value 3			
--------	--------	--------			
1635.0347	156.1902	1669.5699			
1677.2874	71.1979	1710.8261			
3587.9117	840.1542	3836.9848			
3914.4335	49.6618	3983.3130			
5VIIIa	56.1836	2.8279			
82.6794	5.4571	87.9952			
106.2764	7.797	113.3035			
126.3205	0.6609	128.4093			
143.9006	1.8382	155.1619			
161.7271	4.6362	169.3527			
179.0415	48.1226	181.1201			
208.2822	32.1122	216.0418			
219.8302	8.4345	227.0355			
250.6329	30.9867	252.6946			
278.5071	96.6289	279.0589			
326.3223	14.6932	349.3986			
362.629	66.053	381.7001			
399.0197	7.3065	412.8615			
458.1746	28.1758	457.5497			
523.0303	95.9834	550.2326			
527.9529	72.4698	562.042			
560.842	75.8904	596.1288			
576.6586	66.3455	600.6034			
596.1288	39.2398	596.1288			
605.9842	162.9757	893.2001			
891.8891	108.5766	1584.9211			

S25
Value 1	Value 2
212.3145	6.209
219.5235	6.8502
237.4034	40.3167
252.116	12.5469
260.6788	32.5974
273.6764	4.4652
279.449	81.459
288.3607	46.629
306.9081	11.5836
314.6349	17.6027
330.3155	17.0222
350.6962	7.0456
365.4091	34.5248
374.7828	204.9829
385.7183	8.8052
411.4814	14.4445
420.5612	75.7705
462.788	198.7232
487.4739	18.2222
506.5942	55.2512
543.9267	5.3379
583.2721	72.9249
607.6409	113.7286
648.4915	153.9599
665.3655	107.4823
710.0712	94.0263
740.9246	297.4551
762.5138	36.0303
827.3995	31.6383
875.9369	184.294
108.1373	1.5141
115.5768	3.934
127.8249	4.8666
149.5447	3.8025
151.526	4.1923
169.4226	6.0828
182.8688	2.6347
198.4364	125.787
266.0648	51.5012
215.5309	50.9608
237.572	13.8914
239.9132	34.8144
272.4414	46.2683
278.922	14.5741
292.0876	118.7396
302.2137	62.031
316.1474	24.5717
318.2483	17.7465
332.9461	17.0885
365.9241	51.8961
368.2267	62.1888
384.964	89.3352
396.9832	30.4865
430.8961	112.5027
434.8346	348.3364
468.3361	10.1053
487.3263	34.1793
530.9574	35.5362
541.6015	64.2345
567.863	15.7021
593.856	145.954
616.2489	18.0209
656.9221	259.4174
692.3595	32.9955
733.201	270.7121
737.8507	148.1251
761.2398	37.4377
838.6419	36.2401
873.2222	170.3138
893.1063	112.2466
937.7181	75.5455
1516.8739	12.5315
1642.4099	80.9084
1661.0224	98.1885
1674.0517	148.9232
1681.9538	135.211
1697.0587	68.365
1762.3612	53.4237
1726.4131	5.0126
1804.4875	332.5328
1847.1905	1030.9306
1872.5962	522.5168
1893.1992	891.9697
3687.6788	983.031
3754.6562	448.862
3926.448	101.559
3997.4647	194.926
4005.1914	48.3467
4009.0102 169.4377
4015.2688 108.7967
4018.9573 139.5471
4025.5714 183.5996
4034.4058 124.3278
4038.8560 195.6519

5VIIIg
19.1493 5.0972
29.7920 1.06
35.964 4.9159
41.7009 0.693
53.3881 2.1232
57.6729 0.4791
80.3761 0.8264
97.4741 7.5928
107.4439 1.7912
109.2036 0.6733
122.1422 1.1444
127.1349 6.5156
153.7851 1.1768
155.2860 68.8678
173.8331 4.8784
189.9604 71.7761
192.6165 26.332
202.8694 162.8109
214.3370 65.0791
218.8506 77.4018
230.6922 46.6529
263.7473 9.0374
270.2147 10.7719
277.5581 19.2261
302.6749 18.7495
316.0735 6.9734
328.6444 35.0115
349.8983 27.4359
377.6002 12.4494
388.0885 54.1246
398.1797 13.3936
444.0543 136.8775
456.6165 74.7829
523.0103 42.0591
608.1108 42.0591
620.7414 141.878
622.0042 66.4018
645.815 33.116
699.0647 226.8559
704.6638 155.2827
708.131 49.4275
811.6154 152.3909
816.6266 167.201
881.7702 47.4243
1670.1691 125.7279
1672.7373 18.1924
1678.2198 204.15
1682.1804 107.6207
1695.5989 62.6176
1697.0210 39.3709
1713.9447 16.3507
1721.3673 12.6427
3562.8917 965.8073
3628.1143 976.5264
3643.0297 344.9133
3720.9604 523.4102
3744.8127 231.8459
3814.2385 813.5149
3833.5044 228.8297
3851.3615 683.6023
3930.8797 10.5185
3957.1525 35.2266
4002.9724 100.7719
4009.14 195.7355
4016.8027 90.7186
4021.7775 147.0779
4032.1818 177.2857
4058.9382 129.7427

528
References

1. A. Akhgarnusch, W. K. Tang, H. Zhang, C.-K. Siu and M. K. Beyer, *Phys. Chem. Chem. Phys.*, 2016, **18**, 23528.
2. M. Allemann, H. Kellerhals and K. P. Wanczek, *Int. J. Mass Spectrom. Ion Process.*, 1983, **46**, 139.
3. C. Berg, T. Schindler, G. Niedner-Schatteburg and V. E. Bondybey, *J. Chem. Phys.*, 1995, **102**, 4870.
4. T. Schindler, C. Berg, G. Niedner-Schatteburg and V. E. Bondybey, *Chem. Phys.*, 1995, **201**, 491.
5. A. Akhgarnusch, R. F. Höckendorf and M. K. Beyer, *J. Phys. Chem. A*, 2015, **119**, 9978.
6. P. Caravatti and M. Allemann, *Org. Mass Spectrom.*, 1991, **26**, 514.
7. V. E. Bondybey and J. H. English, *J. Chem. Phys.*, 1981, **74**, 6978.
8. T. G. Dietz, M. A. Duncan, D. E. Powers and R. E. Smalley, *J. Chem. Phys.*, 1981, **74**, 6511.
9. A. G. Marshall, C. L. Hendrickson and G. S. Jackson, *Mass Spectrom. Rev.*, 1998, **17**, 1.
10. R. L. Wong, K. Paech and E. R. Williams, *Int. J. Mass Spectrom.*, 2004, **232**, 59.
11. O. P. Balaj, C. B. Berg, S. J. Reitmeier, V. E. Bondybey and M. K. Beyer, *Int. J. Mass Spectrom.*, 2009, **279**, 5.
12. D. Thölmann, D. S. Tonner and T. B. McMahon, *J. Phys. Chem.*, 1994, **98**, 2002.
13. R. C. Dunbar, *Mass Spectrom. Rev.*, 2004, **23**, 127.
14. T. Schindler, C. Berg, G. Niedner-Schatteburg and V. E. Bondybey, *Chem. Phys. Lett.*, 1996, **250**, 301.
15. P. D. Schnier, W. D. Price, R. A. Jockusch and E. R. Williams, *J. Am. Chem. Soc.*, 1996, **118**, 7178.
16. M. Sena and J. M. Riveros, *Rapid Commun. Mass Spectrom.*, 1994, **8**, 1031.
17. B. S. Fox, M. K. Beyer and V. E. Bondybey, *J. Phys. Chem. A*, 2001, **105**, 6386.
18. A. Herburger, C. van der Linde and M. K. Beyer, *Phys. Chem. Chem. Phys.*, 2017, **19**, 10786.
19. W. A. Donald, R. D. Leib, M. Demireva and E. R. Williams, *J. Am. Chem. Soc.*, 2011, **133**, 18940.
20. A. Herburger, M. Ončák, C.-K. Siu, E. G. Demissie, J. Heller, W. K. Tang and M. K. Beyer, *Chem. Eur. J.*, 2019, **25**, 10165.