The effect of milrinone on mortality in adult patients who underwent CABG surgery: A systematic review of randomized clinical trials with a meta-analysis and trial sequential analysis

CURRENT STATUS: UNDER REVIEW

BMC Cardiovascular Disorders • BMC Series

Yu-shan Ren
Lunan Pharmaceutical Group Co.,Ltd.

Lan-fang Li
Lunan Pharmaceutical Group Co.,Ltd.

Tao Peng
Lunan Pharmaceutical Group Co.,Ltd.

Yu-jun Tan
Lunan Pharmaceutical Group Co.,Ltd.

Ying Sun
Lunan Pharmaceutical Group Co.,Ltd.

Guo-liang Cheng
Lunan Pharmaceutical Group Co.,Ltd.

Gui-min Zhang
Lunan Pharmaceutical Group Co.,Ltd.

Jie Li
Lunan Pharmaceutical Group Co.,Ltd.

Corresponding Author
lijie5767@126.com

ORCID: https://orcid.org/0000-0002-4194-4986

DOI:
10.21203/rs.2.15406/v3

SUBJECT AREAS
Cardiac & Cardiovascular Systems

KEYWORDS
Milrinone; meta-analysis; mortality; postoperative outcomes
Abstract

Background: As an inodilator, milrinone is commonly used for patients who undergo coronary artery bypass graft (CABG) surgery because of its effectiveness in decreasing the cardiac index and mitral regurgitation. The aim of this study was to perform a systematic meta-analysis of existing studies from the past 20 years to evaluate the impact of milrinone on mortality in patients who undergo CABG surgery.

Methods: We performed a systematic literature search on the application of milrinone in patients who underwent CABG surgery in studies published between 1997 and 2017 in BioMed Central, PubMed, EMBASE, and the Cochrane Central Register. The included studies evaluated milrinone groups compared to groups receiving either placebo or standard treatment and further compared the systemic administration.

Results: The network meta-analysis included 723 patients from 16 randomized clinical trials. Overall, there was no significant difference in mortality between the milrinone group and the placebo/standard care group when patients underwent CABG surgery. In addition, 9 trials (with 440 randomized patients), 4 trials (with 212 randomized patients), and 10 trials (with 470 randomized patients) reported that the occurrence of myocardial infarction (MI), myocardial ischemia, and arrhythmia was lower in the milrinone group than in the placebo/standard care group. Between the milrinone treatment and placebo/standard care groups, the occurrence of myocardial infarction, myocardial ischemia, and arrhythmia was significantly different. However, the occurrence of stroke and renal failure, the duration of inotropic support (h), the need for an intra-aortic balloon pump (IABP), and mechanical ventilation (h) between these two groups showed no differences.

Conclusions: Based on the current results, compared with placebo, milrinone might be unable to decrease mortality in adult CABG surgical patients but can significantly ameliorate the occurrence of MI, myocardial ischemia, and arrhythmia. These results provide evidence for the further clinical application of milrinone and of therapeutic strategies for CABG surgery. However, along with milrinone application in clinical use, sufficient data from randomized clinical trials need to be collected, and the potential benefits and adverse effects should be analyzed and reevaluated.
Background
In 2017, the World Health Organization (WHO) reported that nearly 17.7 million people die of cardiovascular diseases (CVDs) every year, accounting for 31 % of all global deaths. Coronary artery disease (CAD) refers to the class of diseases of vascular stenosis or obstruction caused by coronary artery atherosclerotic lesions, resulting in myocardial ischemia, hypoxia or necrosis and including stable and unstable angina, myocardial infarction (MI), and sudden cardiac death\(^2\). Furthermore, CAD can cause serious complications due to multiple risk factors, such as a heart attack, damaged heart muscle, and an irregular heartbeat, and can result in sudden death.\(^3-5\) At present, coronary artery bypass grafting (CABG) surgery is the primary strategy for CAD treatment.\(^6-10\) CABG surgery is a surgical procedure in which vascular access between the root of the ascending aorta and the distal end of the lesion site is established to make blood bypass the coronary artery lesion site, flow to the distal end of the coronary artery stenosis or obstruction, and reach the ischemic myocardium, thus improving coronary perfusion and increasing myocardial oxygen supply.\(^11-13\) Although CABG surgery has been reported to be associated with low costs, superior outcomes, and particularly short-term mortality,\(^14-17\) multiple complications, such as MI, myocardial ischemia, arrhythmia, stroke, and acute renal failure (ARF), are impossible to ignore and are still concerning to researchers and clinical doctors.\(^8, 18-21\) To minimize the occurrence of postoperative complications, pre- and/or postoperative medicinal applications, such as phosphodiesterase (PDE) III inhibitors, have been the primary strategies to date.\(^22-24\)

By reducing the inactivation of cyclic adenosine phosphate (cAMP) in cardiomyocytes, PDE III inhibitors enhance myocardial contractility and produce positive inotrophic effects;\(^25, 26\) a higher concentration of cAMP results in contractility, increasing myocardial tissue and the vasodilatory effect on vascular smooth muscle.\(^27, 28\) Milrinone, a PDE III inhibitor, is primarily used after open-heart surgery because it can avoid cardiopulmonary bypass,\(^29\) enhance cardiac contractility,\(^30\) prevent vasospasm,\(^31\) and ameliorate low output syndrome (LOS).\(^32\) However, recent studies have
demonstrated that the efficacy and safety profile of milrinone remains controversial, although it has been implemented in several guidelines.33, 34 In some studies on cardiac surgeries, a tendency for an increased mortality rate and incidence of arrhythmia has been found in milrinone groups compared with control groups.35, 36 However, another study evaluating milrinone for acute heart failure treatment revealed that milrinone might be safe and effective.37 All contradictory outcomes resulted from the limited number of included patients35 and the lack of key methodological criteria38 not based on previously published protocols.36 No studies have assessed the incidence of postoperative complications.

To avoid bias results from any unclear risk of bias that were included, our objective was to conduct a systematic review and meta-analysis of existing randomized controlled trials (RCTs) and to assess mortality between milrinone-treated patients and patients receiving placebo/standard care. The incidence of postoperative complications, such as MI, myocardial ischemia, arrhythmia, stroke, and AKI, was estimated simultaneously.

Methods

Search strategy

The search strategy aimed to include any RCTs conducted among adult patients who underwent CABG surgery and were treated with milrinone and in which these patients were compared to those treated only with placebo/standard care. A pertinent study search was independently conducted in BioMed Central, PubMed, Embase, and the Cochrane Central Register (all searches updated in November 2017) by 3 trained investigators [Lan-fang Li, Guo-liang Cheng, and Ying Sun]. No language restrictions were imposed, and non-English-language articles were translated before analysis.

Study Selection

References retrieved using the literature searches and databases were screened. When potentially pertinent studies were found, complete articles were retrieved. The inclusion criteria were as follows: patients randomly allocated according to treatment, groups receiving milrinone compared with groups receiving placebo/standard care with no restrictions in terms of dose or time of administration,
CABG surgery performed in adult patients, and information provided on primary outcomes (endpoint). The exclusion criteria were as follows: lack of outcome (mortality) data, duplicate publications, animal experimental studies, articles published as abstracts only, and pediatric populations. Three investigators independently assessed compliance with the selection criteria and selected studies for the final analysis; divergences were resolved by consensus, and if issues persisted, the reference was evaluated by 4 investigators independently.

Data extraction and study characteristics

The following details were independently extracted from the retrieved studies by 4 trained investigators: number of patients, surgical type, clinical setting, milrinone dosage, treatment duration, follow-up, mortality, and operative complications (such as MI, myocardial ischemia, arrhythmia, stroke, and AKI). The primary endpoint of the current analysis was mortality. Additionally, MI (per author definition), acute renal failure (per author definition), myocardial ischemia, arrhythmia, stroke, AKI, mechanical ventilation, lengths of intensive care unit and hospital stay were the secondary endpoints.

Quality assessment

The included trials were assessed according to the Cochrane Collaboration methods to evaluate the risk of bias and the internal validity by 3 independent reviewers.

Data analysis and synthesis

RevMan (Review Manager, version 5.2, Nordic Cochrane Center, Cochrane Collaboration, Copenhagen, 2012) and Stata (Stata Statistical Software: release 13, StataCorp LP, College Station, Texas) were utilized to analyze data extracted from the selected articles. A Q-test was applied to measure the statistical heterogeneity, and \(I^2 \) was used as a quantitative measure of the degree of heterogeneity. The date of mortality was estimated to compute the individual and pooled relative risk (RR) with a 95 % confidence interval (CI) by means of the Mantel-Haenszel method. The presence of heterogeneity across trials was also evaluated, with \(I^2 < 25 \% \) indicating no significant heterogeneity when the fixed-effects model was used. In contrast, in the case of moderate or substantial heterogeneity (\(I^2 > 25 \% \)),
a random-effects model was used. Funnel plots were used to explore the small-study risk of bias by analytic appraisal based on Peters’ regression asymmetry test. Meta-regression analyses were performed to investigate sample size, mean number of grafts, mean number of arterial grafts, mean pump time, mean AoXclamp time, mean preop LVEF, preop drugs, postop inotropes, preop shock/MI, and postop IABP as potential causes for heterogeneity.

The Cochrane Collaboration principals and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines complied with the standards for the current study. Two-tailed levels of 0.05 and 0.1 were set as the limit for the statistical significance of the hypothesis and heterogeneity analyses, respectively. The p values were not revised throughout the assessment.

Results
A total of 1,463 articles were identified and screened. After the exclusion of 1,301 articles due to irrelevant titles or abstracts, 162 full-text studies were eligible and assessed according to the selection criteria (Figure 1). Of these, the most common reasons for exclusion were as follows: valid data could not be obtained by the authors (87 studies), milrinone was compared with other drugs (17 studies), pediatric populations were used (11 studies), studies were nonrandomized controlled trials (9 studies), crossover studies (5 studies), studies published as abstracts only (4 studies), studies used mechanical devices as controls (4 studies), studies used inhaled milrinone (3 studies), studies used randomization of brain-dead organ donors (3 studies), studies were animal studies (2 studies), and studies used healthy volunteers (1 study). Ultimately, sixteen randomized clinical trials were assessed in compliance with the inclusion criteria (Table 1). 32, 39-52

Study characteristics
The total number of patients in the 16 included trials was 698, who underwent CABG surgery (346 treated with placebo/standard care and 352 treated with milrinone) (Table 2 and Table 3). In five of these studies, off-pump CABG surgery was performed 32, 42, 46, 47, 50, and on-pump CABG surgery was performed in 11 studies. 39-45, 48, 49, 51, 52 As the result showed, the mortality of on-pump CABG between milrinone treatment and placebo/standard care groups, the occurrence was [5/139 (3.59 %) vs. 4/146 (2.74 %), odds ratio (OR) = 1.17 (0.37-3.72), p value = 0.649, l-squared = 0.0%]. In
contrast, off pump GABG was [6/216 (2.78 %) vs. 5/205 (2.44 %), odds ratio (OR) = 1.00 (0.14–7.30),
p value = 1.00, I-squared = 0.0%]. The overall odds ratio (OR) = 1.12 (0.41–3.06), p value = 0.869, I-
squared = 0.0%. All these results showed that the mortality occurrences were no significantly
difference between on-pump and off-pump CABG surgery. The modes of administration included bolus
administration (39-43, 45, 48, 49) and continuous infusion (40-42, 44-60), which was preceded in 7 studies
by an initial bolus (40-42, 45, 48, 49) in which the dose of the bolus varied from 30 to 75 μg/kg, and the
dose of the continuous infusion varied from 0.25 to 0.75 μg/kg/min. The quality of the current results
was variable. Although 3 RCTs were considered high quality, there were a large number of studies
lacking important details needed for evaluating the risk of selection, performance, attrition, or
detection biases (Figure 2).

Quantitative data synthesis

The overall analysis demonstrated that the mortality rate was not higher in patients receiving
milrinone than in patients receiving placebo/standard care [11/352 (3.13 %): mortality in the
milrinone treatment group 9/346 (2.60 %) versus mortality in the control group, RR = 1.18 (0.53–
2.62), p value = 0.69, p for heterogeneity = 0.91, I^2 = 0 %] (Figure 3).

Sensitivity analysis and funnel plot inspection confirmed the overall robustness of the present findings
and the lack of evidence of small-study bias, respectively (Figure 5A).

The subanalysis of different postoperative outcomes (Figure 4, Table 4) showed a statistically
significant effect of milrinone on reducing the occurrence of MI [5/219 (2.28 %) in the milrinone
treatment group versus 25/221 (11.31 %) in the control group, RR = 0.23 (0.10–0.54), p value =
0.0008, p for heterogeneity = 0.35, I^2 = 9 %, with 9 studies included], myocardial ischemia [12/106
(11.32 %) in the milrinone treatment group vs. 41/106 (36.68 %) in the control group, RR = 0.29
(0.16–0.52), p value <0.0001, p for heterogeneity = 0.55, I^2 = 0 %, with 3 studies included], and
arrhythmia [16/234 (6.84 %) in the milrinone treatment group vs. 31/236 (13.14 %) in the control
group, RR = 0.53 (0.31–0.91), p value= 0.02, p for heterogeneity = 0.55, I^2 = 0 %, with 10 studies
included].
Another subanalysis showed a difference in the risk of stroke [2/86 (2.33 %) in the milrinone treatment group vs. 0/86 (0 %) in the control group, RR = 3.00 (0.32–27.88), p value = 0.33, p for heterogeneity = 1.00, I² = 0 %, with 3 studies included] and renal failure [9/151 (5.96 %) in the milrinone treatment group vs. 8/151 (5.30 %) in the control group, RR = 1.25 (0.45–2.81), p for effect = 0.80, p for heterogeneity = 0.64, I² = 0 %, with 5 studies included]. Sensitivity analysis and funnel plot inspection confirmed the overall robustness of the present findings and the lack of evidence of small-study bias, respectively (Figure 5B).

Meta-Regression

Meta-regression was used to analyze potential causes for heterogeneity on one-year mortality. The results showed that there were not statistically significant for sample size, mean number of grafts, mean pump time, mean AoXclamp time, mean preop LVEF, postop inotropes, preop shock/MI, and postop IABP (Table 5 and 6). All these parameters were not associated with mortality.

Discussion

In this study, we conducted a systematic meta-analysis of all existing, enrolled and randomized studies comparing milrinone treatment to placebo/standard care in patients who underwent CABG surgery. The results showed that compared with placebo treatment, milrinone treatment did not contribute to mortality. Although milrinone failed to reduce mortality, the risk of postoperative complications, such as MI, myocardial ischemia, and arrhythmia, was significantly decreased when patients underwent CABG surgery.

Approximately 110 million people are affected by CAD, which resulted in 8.9 million deaths in 2015. CAD is considered the most common cause of death globally because of its high mortality risk (15.9 %). From 1980 to 2010, the number of cases and the risk of death from CAD for a given age both declined, especially in developed countries. Some well-determined risk factors, including high blood pressure, smoking, diabetes, obesity, family history, and excessive alcohol, were controlled. Approximately half of the cases result from genetics among all these factors. Obesity and smoking are associated approximately 20 % and 36 % of cases, respectively. The typical
Pathophysiological characteristic of CAD is limited blood flow to the heart, which may result in ischemia and long-term oxygen deficiencies in heart muscle, leading to cell death and, ultimately, causing myocardial infarction (MI). In addition, transient ischemia resulting from coronary artery stenosis may lead to ventricular arrhythmia, devolve into a dangerous heart rhythm, and lead to death, which is known as ventricular fibrillation. Although a Cochrane review in 2015 suggested that combining preventive strategies such as persisting appropriate physical exercise, maintaining a healthy diet, treating hypertension, reducing cholesterol and quitting smoking could effectively prevent the risk of CAD, there was insufficient evidence to prove an impact on mortality or actual cardiovascular events. Until now, the most effective treatment options for moderate to severe CAD have been medications (such as statins, nitroglycerin, calcium channel blockers, and/or beta-blockers and aspirin) and surgery (such as CABG surgery). CABG surgery is performed to treat coronary artery disease (CAD) by using a grafted vein to establish vascular access between the root of the ascending aorta and the distal end of the lesion site so that blood can bypass the coronary artery lesion site and reach the ischemic myocardium, thus improving coronary perfusion and increasing myocardial oxygen supply, which is also called myocardial revascularization. Numerous studies have demonstrated that CABG surgery is associated with low mortality (in both the short term and the long term) as well as cognitive and renal function benefits. However, multiple complications (including MI, myocardial ischemia, arrhythmia, stroke, and kidney failure) are common postoperative syndromes. Surgery, combined with medication pre- and/or postoperatively, such as inotropic agents, which can increase myocardial contractility that results, in most cases, in increasing intracellular cAMP levels, can effectively avoid or ameliorate these unwanted outcomes. Increased cAMP subsequently stimulates adenylate cyclase and inhibits PDE III simultaneously. Despite (or because of) their effectiveness, inotropic agents face various substantial limitations, such as acute myocardial β-adrenergic receptor desensitization, limiting the function for post-bypass cardiac failure; additional observational data suggest that inotropic agents
contribute to worse clinical outcomes due to the high incidence of renal dysfunction and death ratio.84-87

PDE III inhibitors such as milrinone provide an alternative option to inotropic support83 because they have not only positive inotropic effects but also vasodilatory effects.82,88 The preemptive use of milrinone has been beneficial for renal tubular injury84. Unlike dobutamine, milrinone does not increase heart rate or myocardial oxygen consumption,89 and some studies have reported that milrinone can significantly reduce the risk of postoperative myocardial ischemia and infarction in patients undergoing CABG surgery.45 However, one of the current controversies or unknown questions in terms of milrinone application is whether the drug is associated with mortality. A recent meta-analysis by Zangrillo A et al.35 showed that compared with control agents, milrinone had a tendency to increase mortality and the incidence of arrhythmia in patients who underwent cardiac surgery [13/249 (5.2 %) in milrinone vs. 6/269 (2.2 %) in the control arm, OR = 2.67 (1.05–6.79), \(p \) for effect = 0.04, \(p \) for heterogeneity = 0.23, \(I^2 = 25 \% \)]. However, in their study, 13 trials were included that involved different control agents (3 with levsimendan, 2 with nesiritide, 7 with placebo, and 1 with nothing). These factors may have induced a bias risk. For instance, a subanalysis with placebo or nothing as a control demonstrated no difference in the risk of mortality [4/165 (2.4 %) with milrinone vs. 3/164 (1.8 %) in the control arm, OR = 1.27 (0.28–5.84), \(p \) for effect = 0.76, \(p \) for heterogeneity = 0.45, \(I^2 = 0 \% \), 329 patients and 8 studies included]. In addition, an updated meta-analysis (35) showed that neither the overall nor the subgroup (adult patients) mortality in the milrinone-treated group was significantly different from that in the control group (mortality, 2.2 % vs. 2.1 %, \(p = 0.70 \) overall, 3 % vs. 2.4 %, \(p = 0.70 \) in adult patients). However, the sensitivity analysis with a low risk of bias showed a trend, but not statistical significance, toward an increase in mortality with milrinone [8/153 (5.2 %) in the milrinone arm vs. 2/152 (1.3 %) in the control arm, RR = 2.71 (0.82–9), \(p \) for effect = 0.10]. Furthermore, the most recent studies published in 201590 and 201691 demonstrated that there were no differences in mortality in patients administered milrinone compared to the control
groups. All these reasons may induce a bias risk.

To avoid these interference factors, we enrolled 16 trials with a randomized total of 698 patients undergoing CABG surgery (346 treated with placebo or standard care and 352 treated with milrinone); the results showed that there was no difference in mortality between the group receiving milrinone and the placebo/standard care group. Nevertheless, the subanalysis demonstrated that the occurrence of myocardial infarction, myocardial ischemia, and arrhythmia decreased significantly with milrinone treatment compared to the placebo or standard care group. However, the occurrence of stroke and renal failure, need for IABP, and duration of inotropic support (h) and mechanical ventilation (h) between these two groups showed no differences. Milrinone was introduced as an agent that causes reduced left and right heart-filling pressures due to its greater reduction in vascular resistance, and it has been used in the treatment of low cardiac output syndrome following cardiac surgery. In the meta-analysis of patients with myocardial infarction suffering from CABG surgery, milrinone was used at any dose and administration time. Mortality after milrinone treatment was not improved despite reductions in important cardiovascular (CV) endpoints. Although the results and conclusions were associated with those of other studies, there may be several reasons for the presented results. First, the association between bias risk and estimates of intervention effects was ignored. Second, the number of included patients was still far too small to draw any firm conclusions. Third, the indications for CABG surgery are relatively extensive. We did not classify the causes of CABG surgery in detail. Therefore, in future studies, additional trial details need to be considered. Although the evidence in the present study demonstrated that milrinone failed to show an advantage in mortality in adult CABG patients, it significantly reduced the occurrence of MI, myocardial ischemia, and arrhythmia compared to the placebo. All these findings may be helpful for the clinical application of milrinone and may provide therapeutic strategies for CABG surgery. Furthermore, along with clinical milrinone application, sufficient data from randomized clinical trials need to be collected, and the potential benefits or adverse effects should be analyzed and reevaluated.

Limitations

Our study has several limitations. First, the authors acknowledge that only 4 of the 16 studies
included in this meta-analysis were of high quality. Second, in the enrolled RCTs, the doses of milrinone were between 30 and 75 μg/kg (as an intravenous bolus) and between 0.5 and 0.75 μg/kg/min (as continuous infusion). This fact suggests that the current reference lacks generalizability of milrinone at doses beyond the range of 0.3 - 0.75 μg/kg/min. Third, our study on the incidence of myocardial ischemia, stroke, and renal failure was performed using a small number of studies and patients. Therefore, the current results are not conclusive due to the possibility of induced error. Finally, only one trial was evaluated with a 1-year follow-up, so deficits in the short follow-up could have potentially impacted our mortality analyses.

Conclusions
This meta-analysis suggests that, compared to placebo or standard care, milrinone neither significantly increases nor decreases the risk of dying in adult patients undergoing CABG surgery, but milrinone can efficiently ameliorate the incidence of postoperative complications, including MI, myocardial ischemia, and arrhythmia.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Availability of data and materials
All data and materials are available.

Competing interests
The authors declare that they have no competing interests.

Funding
This work was supported by grants from the Shandong Province Science and Technology Major Project (grant no. 2015ZDJQ05004) and National Science and Technology Support Program (grant no. 2012CB724001). The funders had no role in the study design, data collection and analysis, the decision to publish or the preparation of the manuscript.
Authors' contributions
YS R, GM Z, and J L designed the study. LF L, GL C, and Y S performed and collected the data. YJ T, TP, and GL C analyzed the data. YS R, GM Z, and J L wrote the manuscript. All authors approved the contents of the manuscript.

Acknowledgements
Not applicable

Abbreviations
AKI, Acute Kidney Injury; ARF, Acute Renal Failure; CABG, Coronary Artery Bypass Graft; CAD, Coronary Artery Disease; cAMP, cyclic Adenosine Phosphate; CVDs, Cardiovascular Diseases; LOS, Low Output Syndrome; MI, Myocardial Infarction; WHO, World Health Organization; PDE, Phosphodiesterase; RCTs, Randomized Controlled Trials; PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses.

References
1 Siscovick DS, Barringer TA, Fretts AM, et al. Omega-3 Polyunsaturated Fatty Acid (Fish Oil) Supplementation and the Prevention of Clinical Cardiovascular Disease: A Science Advisory From the American Heart Association. Circulation 2017;135:e867-e84.
2 Wong ND. Epidemiological studies of CHD and the evolution of preventive cardiology. Nat Rev Cardiol 2014;11:276-89.
3 Poirier P, Giles TD, Bray GA, et al. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation 2006;113:898-918.
4 Borghi C, Omboni S, Reggiardo G, et al. Efficacy of Zofenopril Compared With Placebo and Other Angiotensin-converting Enzyme Inhibitors in Patients With Acute Myocardial Infarction and Previous Cardiovascular Risk Factors: A Pooled Individual Data Analysis of 4 Randomized, Double-blind, Controlled, Prospective Studies. J Cardiovasc Pharmacol 2017;69:48-54.
5 Menendez ME, Memtsoudis SG, Opperer M, et al. A nationwide analysis of risk factors for in-hospital
myocardial infarction after total joint arthroplasty. Int Orthop 2015;39:777-86.

6 Braunwald E. Treatment of Left Main Coronary Artery Disease. N Engl J Med 2016;375:2284-5.

7 Bangalore S, Guo Y, Samadashvili Z, et al. Everolimus-eluting stents or bypass surgery for multivessel coronary disease. N Engl J Med 2015;372:1213-22.

8 Hausenloy DJ, Candilio L, Evans R, et al. Remote Ischemic Preconditioning and Outcomes of Cardiac Surgery. N Engl J Med 2015;373:1408-17.

9 Guo Y, Cao S, Hu S, et al. Effect of milrinone on short-term outcome of patients with myocardial dysfunction undergoing coronary artery bypass graft. Chin Heart J 2014; 26: 572-4.

10 Aldea GS, Bakaeen FG, Pal J, et al. The Society of Thoracic Surgeons Clinical Practice Guidelines on Arterial Conduits for Coronary Artery Bypass Grafting. Ann Thorac Surg 2016;101:801-09.

11 Shafarenko MS, Catapano J, Luo S, et al. Outcomes following coronary artery bypass grafting with microsurgery in paediatric patients. Interact Cardiovasc Thorac Surg 2018;27:27-33.

12 Amin S, Werner RS, Madsen PL, et al. Influence of external stenting on venous graft flow parameters in coronary artery bypass grafting: a randomized study. Interact Cardiovasc Thorac Surg 2018;26:926-31.

13 Gordon JB, Daniels LB, Kahn AM, et al. The Spectrum of Cardiovascular Lesions Requiring Intervention in Adults After Kawasaki Disease. JACC Cardiovasc Interv 2016;9:687-96.

14 Laukkanen JA, Kunutsor SK, Niemela M, et al. All-cause mortality and major cardiovascular outcomes comparing percutaneous coronary angioplasty versus coronary artery bypass grafting in the treatment of unprotected left main stenosis: a meta-analysis of short-term and long-term randomised trials. Open Heart 2017;4:e000638.

15 Badheka AO, Panaich SS, Arora S, et al. Percutaneous Coronary Intervention: Relationship Between Procedural Volume and Outcomes. Curr Cardiol Rep 2016;18:39.

16 Hannan EL, Farrell LS, Walford G, et al. Utilization of radial artery access for percutaneous coronary intervention for ST-segment elevation myocardial infarction in New York. JACC Cardiovasc Interv 2014;7:276-83.

17 Hye RJ, Voeks JH, Malas MB, et al. Anesthetic type and risk of myocardial infarction after carotid
endarterectomy in the Carotid Revascularization Endarterectomy versus Stenting Trial (CREST). J Vasc Surg 2016;64:3-8 e1.

18 Yamanaka T, Kawai Y, Miyoshi T, et al. Remote ischemic preconditioning reduces contrast-induced acute kidney injury in patients with ST-elevation myocardial infarction: a randomized controlled trial. Int J Cardiol 2015;178:136-41.

19 Nishizawa K, Yano T, Tanno M, et al. Chronic Treatment With an Erythropoietin Receptor Ligand Prevents Chronic Kidney Disease-Induced Enlargement of Myocardial Infarct Size. Hypertension 2016;68:697-706.

20 Lee WC, Fang HY, Chen HC, et al. Anemia: A significant cardiovascular mortality risk after ST-segment elevation myocardial infarction complicated by the comorbidities of hypertension and kidney disease. PLoS One 2017;12:e0180165.

21 Hansen MK, Gammelager H, Jacobsen CJ, et al. Acute Kidney Injury and Long-term Risk of Cardiovascular Events After Cardiac Surgery: A Population-Based Cohort Study. J Cardiothorac Vasc Anesth 2015;29:617-25.

22 Nojiri T, Yamamoto K, Maeda H, et al. A Double-Blind Placebo-Controlled Study of the Effects of Olprinone, a Specific Phosphodiesterase III Inhibitor, for Preventing Postoperative Atrial Fibrillation in Patients Undergoing Pulmonary Resection for Lung Cancer. Chest 2015;148:1285-92.

23 Brown DG, Wilkerson EC, Love WE. A review of traditional and novel oral anticoagulant and antiplatelet therapy for dermatologists and dermatologic surgeons. J Am Acad Dermatol 2015;72:524-34.

24 Karibe H, Hayashi T, Narisawa A, et al. Clinical Characteristics and Outcome in Elderly Patients with Traumatic Brain Injury: For Establishment of Management Strategy. Neurol Med Chir (Tokyo) 2017;57:418-25.

25 Harrison SA, Chang ML, Beavo JA. Differential inhibition of cardiac cyclic nucleotide phosphodiesterase isozymes by cardiotonic drugs. Circulation 1986;73:III109-16.

26 Shipley JB, Tolman D, Hastillo A, et al. Milrinone: basic and clinical pharmacology and acute and chronic management. Am J Med Sci 1996;311:286-91.
27 Endoh M, Yamashita S, Taira N. Positive inotropic effect of amrinone in relation to cyclic nucleotide metabolism in the canine ventricular muscle. J Pharmacol Exp Ther 1982;221:775-83.
28 Endoh M, Yanagisawa T, Taira N, et al. Effects of new inotropic agents on cyclic nucleotide metabolism and calcium transients in canine ventricular muscle. Circulation 1986;73:III117-33.
29 Levy JH, Bailey JM, Deeb GM. Intravenous milrinone in cardiac surgery. Ann Thorac Surg 2002;73:325-30.
30 Chen EP, Bittner HB, Davis RD, Jr., Van Trigt P, 3rd. Milrinone improves pulmonary hemodynamics and right ventricular function in chronic pulmonary hypertension. Ann Thorac Surg 1997;63:814-21.
31 Kwak YL, Oh YJ, Shinn HK, et al. Haemodynamic effects of a milrinone infusion without a bolus in patients undergoing off-pump coronary artery bypass graft surgery. Anaesthesia 2004;59:324-31.
32 Lee JH, Oh YJ, Shim YH, et al. The effect of milrinone on the right ventricular function in patients with reduced right ventricular function undergoing off-pump coronary artery bypass graft surgery. J Korean Med Sci 2006;21:854-58.
33 McMurray JJ, Adamopoulos S, Anker SD, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 2012;14:803-69.
34 Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 2013;128:1810-52.
35 Zangrillo A, Biondi-Zoccai G, Ponschab M, et al. Milrinone and mortality in adult cardiac surgery: a meta-analysis. J Cardiothorac Vasc Anesth 2012;26:70-7.
36 Majure DT, Greco T, Greco M, et al. Meta-analysis of randomized trials of effect of milrinone on mortality in cardiac surgery: an update. J Cardiothorac Vasc Anesth 2013;27:220-9.
37 Tang X, Liu P, Li R, et al. Milrinone for the Treatment of Acute Heart Failure After Acute Myocardial Infarction: A Systematic Review and Meta-Analysis. Basic Clin Pharmacol Toxicol 2015;117:186-94.
38 Koperny M, Lesniak W, Jankowski M, et al. The Cochrane collaboration - the role in the evolution of
evidence-based medicine and development of cooperation in Poland. Przegl Epidemiol 2016;70:508-20.

39 Arbeus M, Axelsson B, Friberg O, et al. Milrinone increases flow in coronary artery bypass grafts after cardiopulmonary bypass: a prospective, randomized, double-blind, placebo-controlled study. J Cardiothorac Vasc Anesth 2009;23:48-53.

40 Couture P, Denault AY, Pellerin M, et al. Milrinone enhances systolic, but not diastolic function during coronary artery bypass grafting surgery. Can J Anaesth 2007;54:509-22.

41 Doolan LA, Jones EF, Kalman J, et al. A placebo-controlled trial verifying the efficacy of milrinone in weaning high-risk patients from cardiopulmonary bypass. J Cardiothorac Vasc Anesth 1997;11:37-41.

42 Hadadzadeh M, Hosseini SH, Mostafavi Pour Manshadi SM, et al. Effect of milrinone on short term outcome of patients with myocardial dysfunction undergoing off-pump coronary artery bypass graft: a randomized clinical trial. Acta Med Iran 2013;51:681-6.

43 Hamada Y, Kawachi K, Yamamoto T, Nakata T, Kashu Y, Sato M, Watanabe Y. Effects of single administration of a phosphodiesterase III inhibitor during cardiopulmonary bypass: comparison of milrinone and amrinone. Jpn Circ J 1999;63:605-609.

44 Hayashida N, Tomoeda H, Oda T, et al. Inhibitory effect of milrinone on cytokine production after cardiopulmonary bypass. Ann Thorac Surg 1999;68:1661-7.

45 Jebel M, Ghazinoor M, Mandegar MH, et al. Effect of milrinone on short-term outcome of patients with myocardial dysfunction undergoing coronary artery bypass graft: A randomized controlled trial. Cardiol J 2010;17:73-8.

46 Jo HR, Lee WK, Kim YH, et al. The effect of milrinone infusion on right ventricular function during coronary anastomosis and early outcomes in patients undergoing off-pump coronary artery bypass surgery. Korean J Anesthesiol 2010;59:92-8.

47 Kwak YL, Oh YJ, Kim SH, et al. Efficacy of pre-emptive milrinone in off-pump coronary artery bypass surgery: comparison between patients with a low and normal pre-graft cardiac index. Eur J Cardiothorac Surg 2004;26:687-93.

48 Mollhoff T, Loick HM, Van Aken H, et al. Milrinone modulates endotoxemia, systemic inflammation,
and subsequent acute phase response after cardiopulmonary bypass (CPB). Anesthesiology 1999;90:72-80.

49 Shi Y, Denault AY, Couture P, et al. Biventricular diastolic filling patterns after coronary artery bypass graft surgery. J Thorac Cardiovasc Surg 2006;131:1080-6.

50 Song JW, Jo YY, Jun NH, et al. The effect of milrinone on the intraoperative hemodynamics during off-pump coronary bypass surgery in patients with an elevated echocardiographic index of the ventricular filling pressure. Korean J Anesthesiol 2011;60:185-91.

51 Yamaguchi A, Tanaka M, Naito K, et al. The efficacy of intravenous milrinone in left ventricular restoration. Ann Thorac Cardiovasc Surg 2009;15:233-8.

52 Yamaura K, Okamoto H, Akiyoshi K, et al. Effect of low-dose milrinone on gastric intramucosal pH and systemic inflammation after hypothermic cardiopulmonary bypass. J Cardiothorac Vasc Anesth 2001;15:197-203.

53 Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016;388:1545-1602.

54 Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016;388:1459-544.

55 Moran AE, Forouzanfar MH, Roth GA, et al. Temporal trends in ischemic heart disease mortality in 21 world regions, 1980 to 2010: the Global Burden of Disease 2010 study. Circulation 2014;129:1483-92.

56 Moran AE, Forouzanfar MH, Roth GA, et al. The global burden of ischemic heart disease in 1990 and 2010: the Global Burden of Disease 2010 study. Circulation 2014;129:1493-501.

57 Aguilar-Palacio I, Malo S, Feja C, et al. Risk factors control for primary prevention of cardiovascular disease in men: Evidence from the Aragon Workers Health Study (AWHS). PLoS One 2018;13:e0193541.

58 Mehta PK, Wei J, Wenger NK. Ischemic heart disease in women: a focus on risk factors. Trends
59 Charlson FJ, Moran AE, Freedman G, et al. The contribution of major depression to the global burden of ischemic heart disease: a comparative risk assessment. BMC Med 2013;11:250.

60 Kivimaki M, Nyberg ST, Batty GD, et al. Job strain as a risk factor for coronary heart disease: a collaborative meta-analysis of individual participant data. Lancet 2012;380:1491-97.

61 Ambrose JA, Singh M. Pathophysiology of coronary artery disease leading to acute coronary syndromes. F1000Prime Rep 2015;7:08.

62 Fihn SD, Blankenship JC, Alexander KP, et al. 2014 ACC/AHA/AATS/PCNA/SCAI/STS focused update of the guideline for the diagnosis and management of patients with stable ischemic heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines, and the American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Thorac Cardiovasc Surg 2015;149:e5-23.

63 Anguita M, Comin J, Almenar L, et al. Comments on the ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012. A report of the Task Force of the Clinical Practice Guidelines Committee of the Spanish Society of Cardiology. Rev Esp Cardiol (Engl Ed) 2012;65:874-8.

64 McGill HC, Jr., McMahan CA, Gidding SS. Preventing heart disease in the 21st century: implications of the Pathobiological Determinants of Atherosclerosis in Youth (PDAY) study. Circulation 2008;117:1216-27.

65 McNeal CJ, Dajani T, Wilson D, et al. Hypercholesterolemia in youth: opportunities and obstacles to prevent premature atherosclerotic cardiovascular disease. Curr Atheroscler Rep 2010;12:20-8.

66 Naci H, Ioannidis JP. Comparative effectiveness of exercise and drug interventions on mortality outcomes: metaepidemiological study. BMJ 2013;347:f5577.

67 Kyu HH, Bachman VF, Alexander LT, et al. Physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events: systematic review and dose-response meta-analysis for the Global Burden of Disease Study 2013. BMJ 2016;354:i3857.

68 Thompson PD, Buchner D, Pina IL, et al. Exercise and physical activity in the prevention and
treatment of atherosclerotic cardiovascular disease: a statement from the Council on Clinical Cardiology (Subcommittee on Exercise, Rehabilitation, and Prevention) and the Council on Nutrition, Physical Activity, and Metabolism (Subcommittee on Physical Activity). Circulation 2003;107:3109-16.

69 Gutierrez J, Ramirez G, Rundek T, et al. Statin therapy in the prevention of recurrent cardiovascular events: a sex-based meta-analysis. Arch Intern Med 2012;172:909-19.

70 Ohman EM. CLINICAL PRACTICE. Chronic Stable Angina. N Engl J Med 2016;374:1167-76.

71 Sipahi I, Akay MH, Dagdelen S, et al. Coronary artery bypass grafting vs percutaneous coronary intervention and long-term mortality and morbidity in multivessel disease: meta-analysis of randomized clinical trials of the arterial grafting and stenting era. JAMA Intern Med 2014;174:223-230.

72 Stergiopoulos K, Boden WE, Hartigan P, et al. Percutaneous coronary intervention outcomes in patients with stable obstructive coronary artery disease and myocardial ischemia: a collaborative meta-analysis of contemporary randomized clinical trials. JAMA Intern Med 2014;174:232-40.

73 Braunwald E, Antman EM, Beasley JW, et al. ACC/AHA 2002 guideline update for the management of patients with unstable angina and non-ST-segment elevation myocardial infarction--summary article: a report of the American College of Cardiology/American Heart Association task force on practice guidelines (Committee on the Management of Patients With Unstable Angina). J Am Coll Cardiol 2002;40:1366-74.

74 Head SJ, da Costa BR, Beumer B, et al. Adverse events while awaiting myocardial revascularization: a systematic review and meta-analysis. Eur J Cardiothorac Surg 2017;52:206-17.

75 Gasz B. The influence of healthcare policy on the outcome parameters of myocardial revascularization procedures as opposed to geographical differences. Eur J Cardiothorac Surg 2018;54:196.

76 Byrne JG, Leacche M. Off-Pump CABG Surgery "No-Touch" Technique to Reduce Adverse Neurological Outcomes. J Am Coll Cardiol 2017;69:937-8.

77 Karkhanis R, Tam DY, Fremes SE. Management of patients with end-stage renal disease: coronary artery bypass graft surgery versus percutaneous coronary intervention. Curr Opin Cardiol 2018;33:546-50.
78 Ohno K, Kuno A, Murase H, et al. Diabetes increases the susceptibility to acute kidney injury after myocardial infarction through augmented activation of renal Toll-like receptors in rats. Am J Physiol Heart Circ Physiol 2017;313:H1130-42.

79 Movsesian M, Ahmad F, Hirsch E. Functions of PDE3 Isoforms in Cardiac Muscle. J Cardiovasc Dev Dis 2018;5.

80 Madeira M, Caetano F, Almeida I, et al. Inotropes and cardiorenal syndrome in acute heart failure - A retrospective comparative analysis. Rev Port Cardiol 2017;36:619-25.

81 Gao B, Qu Y, Sutherland W, et al. Decreased contractility and altered responses to inotropic agents in myocytes from tachypacing-induced heart failure canines. J Pharmacol Toxicol Methods 2018;93:98-107.

82 Parissis JT, Farmakis D, Nieminen M. Classical inotropes and new cardiac enhancers. Heart Fail Rev 2007;12:149-56.

83 Kikura M, Sato S. Effects of preemptive therapy with milrinone or amrinone on perioperative platelet function and haemostasis in patients undergoing coronary bypass grafting. Platelets 2003;14:277-82.

84 Heringlake M, Wernerus M, Grunefeld J, et al. The metabolic and renal effects of adrenaline and milrinone in patients with myocardial dysfunction after coronary artery bypass grafting. Crit Care 2007;11:R51.

85 Metra M, Eichhorn E, Abraham WT, et al. Effects of low-dose oral enoximone administration on mortality, morbidity, and exercise capacity in patients with advanced heart failure: the randomized, double-blind, placebo-controlled, parallel group ESSENTIAL trials. Eur Heart J 2009;30:3015-26.

86 Bayram M, De Luca L, Massie MB, et al. Reassessment of dobutamine, dopamine, and milrinone in the management of acute heart failure syndromes. Am J Cardiol 2005;96:47G-58G.

87 Mebazaa A, Parissis J, Porcher R, et al. Short-term survival by treatment among patients hospitalized with acute heart failure: the global ALARM-HF registry using propensity scoring methods. Intensive Care Med 2011;37:290-301.

88 Lee J, Kim WH, Ryu HG, et al. Stroke Volume Variation-Guided Versus Central Venous Pressure-
Guided Low Central Venous Pressure With Milrinone During Living Donor Hepatectomy: A Randomized Double-Blinded Clinical Trial. Anesth Analg 2017;125:423-30.

89 Movsesian M, Stehlik J, Vandeput F, et al. Phosphodiesterase inhibition in heart failure. Heart Fail Rev 2009;14:255-63.

90 Belletti A, Castro ML, Silvetti S, et al. The Effect of inotropes and vasopressors on mortality: a meta-analysis of randomized clinical trials. Br J Anaesth 2015;115:656-75.

91 Koster G, Bekema HJ, Wetterslev J, et al. Milrinone for cardiac dysfunction in critically ill adult patients: a systematic review of randomised clinical trials with meta-analysis and trial sequential analysis. Intensive Care Med 2016;42:1322-35.

Tables
Table 1. A Description of the Studies Included in the Meta-Analysis.
First Author	Journal	Year	Procedures	Control	Inclusion Criteria
Arbeus M	Journal of Cardiothoracic and Vascular Anesthesia	2009	Elective CABG	Placebo	Stable angina, LVEF (%) > 30 %, Sinus rhythm.
Couture P	Canadian Journal of Anaesthesia	2007	Elective CABG	Placebo	Ischemic heart disease, LV diastolic dysfunction.
Doolan LA	Journal of Cardiothoracic and Vascular Anesthesia	1997	Elective CABG and valvular surgery	Placebo	LVEF (%) ≤ 35 %, Mean PAP ≥ 20 mmHg.
Guo Yj	Chinese Heart Journal	2014	Elective CABG	Placebo	CABG surgery, LVEF (%) < 35 %,
Hadadzadeh M	Acta medica Iranica	2013	Elective CABG (off-pump)	Placebo	Severe myocardium dysfunction (LVEF (%) < 35 %)
Hamada Y	Japanese circulation journal	1999	Elective CABG and valvular surgery	Standard treatment	Unspecified
Hayashida N	Annals of Thoracic Surgery	1999	Elective CABG	Standard treatment	Isolated CABG surgery
Jebeli M	Cardiology Journal	2010	Elective CABG	Placebo	LVEF (%) < 35 %,
Jo HR	Korean Journal of Anesthesiology	2010	Elective CABG (off-pump)	Placebo	CABG surgery, Normal LV function.
Kwak YL	European journal of cardio-thoracic surgery	2004	Elective CABG (off-pump)	Placebo	Unspecified
Lee JH	Journal of Korean medical science	2006	Elective CABG (off-pump)	Placebo	RVEF (%) < 35 %,
Möllhoff T	Anesthesiology	1999	Elective CABG	Placebo	Elective CABG
Shi YF	Journal of Thoracic and Cardiovascular Surgery	2006	Elective CABG	Placebo	Elective CABG
Song JW	Korean Journal of Anesthesiology	2011	Elective CABG (off-pump)	Placebo	E/e’ value > 15
Yamaguchi A	Annals Of Thoracic And Cardiovascular Surgery	2009	Elective CABG and valvular surgery	Standard treatment	Elective CABG concomitant LVR, LV dysfunction (LVEF (%) < 30 %), LVESVI > 100 ml/m²
Yamaura K	Journal of Cardiothoracic and Vascular Anesthesia	2001	Elective CABG	Standard treatment	Cardiac Surgery

Abbreviations: CABG, coronary artery bypass grafting; LVEF, left ventricular ejection fraction; TEE, transesophageal echocardiography; PAP, pulmonary arterial pressure; AF, atrial fibrillation; MI, myocardial infarction; E/e’, the ratio of the early transmitral flow velocity to the early diastolic velocity of the mitral annulus; LVR, left ventricular restoration; LVESVI, left ventricular end-systolic volume index.
Author	Group	Patients	Age	Sex	Time of administration
Arbeus M	MIL	22	63 ± 10	20/2	After release of aortic clamp
	Ctrl	22	62 ± 9	17/5	
Couture P	MIL	25	67 ± 8	19/6	After anesthesia induction
	Ctrl	25	70 ± 7	19/6	
Doolan LA	MIL	15	65 ± 10.4	14/1	15 min before weaning from CPB
	Ctrl	15	67 ± 8.6	14/1	
Guo YJ	MIL	31	56 ± 6	21/10	After release of aortic clamp
	Ctrl	31	54 ± 6	20/11	
Hadadzadeh M	MIL	40	62 ± 10.7	31/9	After anesthesia induction
	Ctrl	40	63 ± 9.6	26/14	
Hamada Y	MIL	10	66.2 ± 8.1	6/4	After release of aortic clamp
	Ctrl	10	62.4 ± 6.5	6/4	
Hayashida N	MIL	12	63.3 ± 2.8	7/5	After anesthesia induction
	Ctrl	12	62.7 ± 2.8	9/3	
Jebeli M	MIL	35	56.9 ± 9.7	25/10	After release of aortic clamp
	Ctrl	35	58.2 ± 8.4	28/7	
Jo HR	MIL	20	67.0 ± 9.2	12/8	After sternotomy
	Ctrl	20	64.1 ± 9.9	11/9	
Kwak YL	MIL	29	61.5 ± 8.2	21/8	After IMA harvest
	Ctrl	33	60.4 ± 8.4	26/7	
Lee JH	MIL	24	63 ± 8	20/4	After sternotomy
	Ctrl	26	62 ± 8	20/6	
Möllhoff T	MIL	11	60 ± 8	Not specified	After anesthesia induction
	Ctrl	11	61 ± 6	Not specified	
Shi Y	MIL	25	Not specified	Not specified	After anesthesia induction
	Ctrl	24	Not specified	Not specified	
Song JW	MIL	31	67.2 ± 7.6	14/17	After harvesting the left internal mammary artery
	Ctrl	31	65.7 ± 7.9	21/10	
Yamaguchi A	MIL	14	64.1 ± 8	13/1	After induction of CPB
	Ctrl	14	65.2 ± 8.5	13/1	
Yamaura K	MIL	10	66 ± 6	7/3	After induction of CPB
	Ctrl	10	57 ± 16	6/4	
Table 3. Preoperative Ejection Fraction and Postoperative Causes of Death in the 2 Groups

First Author	Preoperative EF (MIL Group)	Preoperative EF (Ctrl Group)	No. of Death (Death/Total, MIL Group)	No. of Death (Death/Total, Ctrl Group)	Cause
Arbeus	59 ± 12	63 ± 9	1	22	
Couture	51 ± 15	50 ± 13	2	25	
Doolan	Not specified	Not specified	0	15	
Guo	35 ± 4	35 ± 5	1	31	
Hadadzadeh	29 ± 5.5	28.6 ± 5.6	1	40	
Hamada	Not specified	Not specified	0	20	
Hayashida	Not specified	Not specified	0	12	
Jebeli	31.8 ± 3.2	34.5 ± 1.4	0	35	
Jo	45 ± 14	51 ± 13	0	20	
Kwak	Not specified	Not specified	0	29	
Lee	50 ± 17	57 ± 8	0	24	
Möllhoff	Not specified	Not specified	0	11	
Shi	Not specified	Not specified	1	25	
Song	55.3 ± 15.3	51.5 ± 16.7	1	31	
Yamaguchi	64.1 ± 8	65.2 ± 8.5	0	14	
Yamaura	Not specified	Not specified	0	10	

Table 4. A Summary of the Global Effect of Different Outcomes.

Patients (Studies) Included	Milrinone: Events (%)	Control: Events (%)	RR	95 % CI	
Myocardial Infarction	440 (30)	5 (2.28 %)	25 (11.31 %)	0.23	0.10-0.54
Myocardial Ischemia	212 (53)	12 (11.32)	41 (36.68)	0.29	0.16-0.52
Arrhythmias	470 (47)	16 (6.84)	31 (13.14)	0.53	0.31-0.91
Stroke	172 (2)	2 (2.33)	0 (0)	3.00	0.32-27.88
Renal Failure	302 (17)	9 (5.96)	8 (5.30)	1.25	0.45-2.81

Table 5. The meta-regression analyses
Table 6. The meta-regression analyses of preop drugs

Preop drugs	Regression	P value
ACE inhibitors	y = -0.0713x + 1.3446	0.6860
Calcium channel inhibitors	y = -0.0396x + 1.1287	0.6836
Diuretics	y = -0.0066x + 0.0849	0.9734
Nitrates	y = 0.0997x - 0.6147	0.6246
β-receptor inhibitors	y = 0.0128x + 0.2710	0.8870

Figures
Figure 1

Flow diagram of the study selection.

Figure 2

(selection bias) | (ion bias) | (sonnel (performance bias)) | nt (detection bias) | (ion bias) | ias)
Study	Random sequence generation	Allocation concealment	Blinding of participants and performance	Blinding of outcome assessment	Incomplete outcome data (attrition)	Selective reporting (reporting bias)	Other bias
Yamashita A 2011	+	+	+	+	+	+	+
Song JW 2011	+	+	+	+	+	+	+
Shi Y 2006	+	+	+	+	+	+	+
Molhoff T 1999	?	?	?	?	?	?	?
Lee JH 2006	?	?	?	?	?	?	?
Kwak YL 2004	?	?	?	?	?	?	?
Jo HR 2010	?	?	?	?	?	?	?
Jebeli M 2010	?	?	?	?	?	?	?
Hayashida N 1999	+	+	+	+	+	+	+
Hamada Y 1999	+	+	+	+	+	+	+
Hadadzadeh M 2013	+	+	+	+	+	+	+
Guo YJ 2014	+	+	+	+	+	+	+
Doolan LA 1997	+	+	+	+	+	+	+
Couture P 2007	+	+	+	+	+	+	+
Arbeus M 2009	+	+	+	+	+	+	+
Figure 2

Risk of bias assessment. Review of authors’ judgments about each risk of bias domain for each included study. Red: high risk, green: low risk, yellow: unclear.

Figure 3

A forest plot of the risk of mortality. CI, confidence interval; df, degrees of freedom.
Figure 4

Forest plot of all-cause mortality in trials stratified by intervention.

Figure 5
Figure 5

A funnel plot of the risk of mortality. SE, standard error. A. B.

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.

PRISMA 2009 checklist-20190910.doc