Mohamed Elouafi

On formulae for the determinant of symmetric pentadiagonal Toeplitz matrices

Abstract We show that the characteristic polynomial of a symmetric pentadiagonal Toeplitz matrix is the product of two polynomials given explicitly in terms of the Chebyshev polynomials.

Mathematics Subject Classification 15B05 · 65F40 · 33C45

1 Introduction

We consider here the problem of finding the determinant of the $m \times m$ symmetric pentadiagonal Toeplitz matrix

$$P_m = P_m(a, b, c) = \begin{pmatrix} a & b & c & 0 & \cdots & 0 \\ b & a & b & \cdots & \vdots \\ c & b & a & \cdots & 0 \\ 0 & \cdots & \cdots & \cdots & b & c \\ \vdots & \cdots & c & b & a & b \\ 0 & \cdots & 0 & c & b & a \end{pmatrix}.$$

This class of matrices arises naturally in many applications, such as signal processing, trigonometric moment problems, integral equations and elliptic partial differential equations with boundary conditions [9]. Computing the determinant of the matrix P_m have intrigued the researchers for decades. If $c = 0$, then P_m is reduced to a tridiagonal matrix and there exists a closed form of $\det(P_m)$ from which the eigenvalues of the matrix are explicitly given. It is becoming a challenge to find similar formulae for the general case and so far, little is known about the eigenvalues of P_m [1, 2, 5, 8]. In [5, 7], $\det(P_m)$ is explicitly computed using the kernel of the Chebyshev polynomials $\{T_n\}$, $\{U_n\}$, $\{V_n\}$ and $\{W_n\}$ [11] and, as a consequence, the eigenvalues

M. Elouafi (✉)
Classes Préparatoires aux Grandes Ecoles d’Ingénieurs, Lycée Moulay Alhassan, Tangier, Morocco
E-mail: med3elouafi@gmail.com
of the matrix \(P_m \) are localized by means of explicitly given rational functions. The formulae are simplified to give \(\det(P_m) \) as polynomials of the parameters \(a, b, c \) [6].

In the new formula presented here, \(\det(P_m) \) is given as the product of two polynomials given in a standard form. Here is our main result:

Theorem 1.1 We have

\[
\det(P_{2n+1}) = 2 \left(\sum_{k=0}^{n+1} \gamma_{n,k} c^{n+1-k} b^k T_k \left(\frac{a + 2c}{2b} \right) \right) \left(\sum_{k=0}^{n+1} \gamma_{n,k} c^{n+1-k} b^{k-1} U_{k-1} \left(\frac{a + 2c}{2b} \right) \right),
\]

and

\[
\det(P_{2n}) = \left(\sum_{k=0}^{n} \mu_{n,k} c^{n-k} b^k V_k \left(\frac{a + 2c}{2b} \right) \right) \left(\sum_{k=0}^{n} \mu_{n,k} c^{n-k} b^k W_k \left(\frac{a + 2c}{2b} \right) \right),
\]

where

\[
\gamma_{n,k} = (-1)^k \left(\frac{n + 1 + k}{n + 1 - k} \right), \quad \mu_{n,k} = (-1)^k \left(\frac{n + 1 + k}{n - k} \right).
\]

2 Proof of the main result

Since \(\det(P_m(a, b, c)) = \det(P_m \left(\frac{a}{c}, \frac{b}{c}, 1 \right)) \), then we can assume for simplicity that \(c = 1 \). We denote by \(\zeta_j, \frac{1}{\zeta_j}, j = 1, 2, \) the roots of the polynomial \(g(x) = x^3 + bx^3 + ax^2 + bx + 1 \) assumed pairwise distinct and different of \(\pm 1 \).

Recall that the Chebyshev polynomials \(\{T_n\}, \{U_n\}, \{V_n\} \) and \(\{W_n\} \) are orthogonal polynomials over \((-1, 1)\) with respect to the weight \(\frac{1}{\sqrt{1-x^2}}, \sqrt{1-x^2}, \frac{1}{\sqrt{1+x^2}}, \) and \(\frac{1}{\sqrt{1+x^2}} \), respectively, and we have for \(\zeta \in \mathbb{C}^* \)

\[
\begin{align*}
T_n \left(\frac{1}{2} \left(\zeta + \frac{1}{\zeta} \right) \right) &= \frac{1}{2} \left(\zeta^n + \zeta^{-n} \right), \quad U_n \left(\frac{1}{2} \left(\zeta + \frac{1}{\zeta} \right) \right) = \frac{\zeta^{n+1} - \zeta^{-n-1}}{\zeta - \zeta^{-1}}, \\
V_n \left(\frac{1}{2} \left(\zeta + \frac{1}{\zeta} \right) \right) &= \frac{\zeta^{n+1/2} + \zeta^{-n-1/2}}{\zeta^{1/2} + \zeta^{-1/2}}, \quad W_n \left(\frac{1}{2} \left(\zeta + \frac{1}{\zeta} \right) \right) = \frac{\zeta^{n+1/2} - \zeta^{-n-1/2}}{\zeta^{1/2} - \zeta^{-1/2}}.
\end{align*}
\]

We shall use the following formula for \(\det(P_m) \):

Lemma 2.1 For \(J \subset \{1, 2\} \), let \(I_J(k) = \begin{cases} 1 & \text{if } k \in J \\ -1 & \text{if } k \notin J \end{cases} \) and

\[
\omega_J = \prod_{k=1}^{2} \gamma_{kJ(k)}, \quad \gamma_J = \prod_{1 \leq j < k \leq 2} \left(\zeta_j I_j(k) - \zeta_k I_k(j) \right).
\]

We have

\[
\det(P_m) = \frac{1}{d^2 \prod_{k=1}^{2} (\zeta_k - \zeta_k^{-1})} \left(\sum_{J} (-1)^{|J|} \gamma_J \omega_{J} \right)^{\frac{m+1}{2}},
\]

where \(d = \left(\zeta_2 + \frac{1}{\zeta_2} - \zeta_1 - \frac{1}{\zeta_1} \right) \).

Proof See [4].

Let us put \(\alpha = \zeta_1 \zeta_2, \beta = \zeta_1 \zeta_2^{-1} \) and \(u = \frac{1}{2} (\alpha + \alpha^{-1}), v = \frac{1}{2} (\beta + \beta^{-1}) \). We have by the Vieta’ formulae:

\[
u + v = \frac{1}{2} (\alpha + \alpha^{-1} + \beta + \beta^{-1}) = \frac{a}{2} - 1.
\]
and

\[uv = \frac{1}{4}(\xi_1^2 + \xi_1^{-2} + \xi_2^2 + \xi_2^{-2}) \]

\[= \frac{1}{4}((\xi_1 + \xi_1^{-1} + \xi_2 + \xi_2^{-1})^2 - 2(2 + \alpha + \alpha^{-1} + \beta + \beta^{-1})) \]

\[= \frac{b^2}{4} - \frac{a}{2}. \]

This implies that \((u + 1)(v + 1) = \left(\frac{b}{2}\right)^2\).

Lemma 2.2 We have

\[
\text{det}(P_m) = \frac{U_{m+1}^2 \left(\sqrt{\frac{1+u}{2}}\right) - U_{m+1}^2 \left(\sqrt{\frac{1+v}{2}}\right)}{2(u-v)}. \tag{F1}
\]

Proof Using the notations from Lemma 2.1, we obtain

\[
\sum_J \gamma_I \omega_j^{m+1} = (\xi_2 - \xi_1)\alpha \frac{m+1}{2} + (\xi_2^{-1} - \xi_1^{-1})\beta \frac{m+1}{2} + (\xi_2^{-1} - \xi_1^{-1})\alpha^{-\frac{m+1}{2}} + (\xi_2 - \xi_1^{-1})\beta^{-\frac{m+1}{2}}
\]

\[= (\xi_2 - \xi_1) \left(\alpha \frac{m+1}{2} - \alpha^{-\frac{m+1}{2}}\right) + (\xi_2^{-1} - \xi_1^{-1}) \left(\beta \frac{m+1}{2} - \beta^{-\frac{m+1}{2}}\right). \]

Remark that

\[
\frac{(\xi_2 - \xi_1)}{(\xi_2^{-1} - \xi_1)} = \frac{\xi_2 \xi_1^{-1} - 1}{\xi_1 \xi_2^{-1} - 1}
\]

\[= \frac{\beta^{-1} - 1}{\alpha^{-1} - 1}
\]

\[= \frac{\alpha}{\alpha - 1} \times \frac{\beta - 1}{\beta}.
\]

and hence

\[
\sum_J \gamma_I \omega_j^{m+1} = (\xi_2^{-1} - \xi_1) \left[\left(\frac{\xi_2 - \xi_1}{\xi_2^{-1} - \xi_1}\right) \left(\alpha \frac{m+1}{2} - \alpha^{-\frac{m+1}{2}}\right) + \left(\beta \frac{m+1}{2} - \beta^{-\frac{m+1}{2}}\right)\right]
\]

\[= (\xi_2^{-1} - \xi_1) \left[\frac{\alpha}{\alpha - 1} \times \frac{\beta - 1}{\beta} \left(\alpha \frac{m+1}{2} - \alpha^{-\frac{m+1}{2}}\right) + \left(\beta \frac{m+1}{2} - \beta^{-\frac{m+1}{2}}\right)\right]
\]

\[= \left(\frac{\xi_2^{-1} - \xi_1}{\beta - 1}\right) \left(\frac{\alpha \frac{m+1}{2} - \alpha^{-\frac{m+1}{2}}}{\alpha - 1} + \frac{\beta \frac{m+1}{2} - \beta^{-\frac{m+1}{2}}}{\beta - 1}\right).
\]

On the other hand

\[
\frac{\alpha \frac{m+1}{2} - \alpha^{-\frac{m+1}{2}}}{\alpha - 1} = \frac{\alpha^{1/2} - \alpha^{-1/2}}{\alpha^{1/2} - \alpha^{-1/2}}
\]

\[= U_{m+1} \left(\frac{1}{2} \left(\alpha^{1/2} + \alpha^{-1/2}\right)\right)
\]

\[= U_{m+1} \left(\sqrt{\frac{1+u}{2}}\right).
\]

Similarly, we obtain that

\[
\frac{\beta \frac{m+1}{2} - \beta^{-\frac{m+1}{2}}}{\beta - 1} = U_{m+1} \left(\sqrt{\frac{1+u}{2}}\right).
\]
Consequently
\[\sum_j \gamma_j \omega_j^{m+1} = \frac{(\xi_2^{-1} - \xi_1) (\beta - 1)}{\beta} \left(U_{m+1}\left(\sqrt{\frac{1+u}{2}}\right) + U_{m+1}\left(\sqrt{\frac{1+v}{2}}\right) \right). \]

By the same method, we get
\[\sum_j (-1)^{|j|} \gamma_j \omega_j^{m+1} = \frac{(\xi_2^{-1} - \xi_1) (\beta - 1)}{\beta} \left(U_{m+1}\left(\sqrt{\frac{1+u}{2}}\right) - U_{m+1}\left(\sqrt{\frac{1+v}{2}}\right) \right). \]

Finally
\[
\det (P_m (a, b, 1)) = \frac{1}{d^2} \prod_{k=1}^{2} \left(\xi_k - \xi_k^{-1} \right) \left(\sum_j (-1)^{|j|} \gamma_j \omega_j^{m+1} \right) \times \left(\sum_j \gamma_j \omega_j^{m+1} \right) \\
= C \left(U_{m+1}^2\left(\sqrt{\frac{1+u}{2}}\right) - U_{m+1}^2\left(\sqrt{\frac{1+v}{2}}\right) \right),
\]
where
\[
C = \frac{(\xi_2^{-1} - \xi_1)^2 (\beta - 1)^2}{\beta^2 d^2 \prod_{k=1}^{2} \left(\xi_k - \xi_k^{-1} \right)}.
\]

A straightforward computation (using the Maple software for example) shows that
\[
C = \frac{1}{2 (u - v)},
\]
and this completes the proof of the Lemma.

\[\square \]

Remark 2.3 We have \(u + v + 2 = \frac{a}{2} + 1 \) and \((u + 1) \ (v + 1) = \left(\frac{b}{2} \right)^2 \). Then, \(u + 1 \) and \(v + 1 \) are the zeros of the second-order equation \(x^2 - \left(\frac{a}{2} + 1 \right) x + \left(\frac{b}{2} \right)^2 = 0 \). This gives for example
\[
u + 1 = \frac{1}{2} \left(\frac{a}{2} + 1 - \sqrt{\left(\frac{a}{2} + 1 \right)^2 - b^2} \right),
\]
and
\[
u + 1 = \frac{1}{2} \left(\frac{a}{2} + 1 + \sqrt{\left(\frac{a}{2} + 1 \right)^2 - b^2} \right).
\]

The term \(\frac{U_{m+1}^2\left(\sqrt{\frac{1+u}{2}}\right) - U_{m+1}^2\left(\sqrt{\frac{1+v}{2}}\right)}{2(u-v)} \) is a symmetric polynomial of \(u + 1 \) and \(v + 1 \) and, consequently, it can be expressed in terms of the elementary symmetric polynomials \(u + 1 + v + 1 = \frac{a}{2} + 1 \) and \((u + 1) \ (v + 1) = \left(\frac{b}{2} \right)^2 \). For this, we distinguish two cases:

Case 1: \(m = 2n + 1 \). Using the following expression of \(U_{2n+2} (x) \)[3]:
\[
U_{2n+2} (x) = \sum_{k=0}^{n+1} (-1)^k \binom{2n + 2 - k}{k} (2x)^{2n+2-2k} \\
= (-1)^{n+1} \sum_{k=0}^{n+1} \gamma_{n,k} (2x)^{2k}, \quad \gamma_{n,k} = (-1)^k \binom{n + 1 + k}{n + 1 - k},
\]

\[\square \] Springer
we obtain
\[U_{2n+2} \left(\sqrt{\frac{1 + u}{2}} \right) + U_{2n+2} \left(\sqrt{\frac{1 + v}{2}} \right) = (-1)^{n+1} \sum_{k=0}^{n+1} \gamma_{n,k} 2^k \left((1 + u)^k + (1 + v)^k \right), \]
\[U_{2n+2} \left(\sqrt{\frac{1 + u}{2}} \right) - U_{2n+2} \left(\sqrt{\frac{1 + v}{2}} \right) = (-1)^{n+1} \sum_{k=1}^{n+1} \gamma_{n,k} 2^k \left((1 + u)^k - (1 + v)^k \right). \]

On the other hand, we have for \(x, y \):
\[x^{2k} + y^{2k} = (xy)^k \left(\left(\frac{x}{y} \right)^k + \left(\frac{x}{y} \right)^{-k} \right) = 2 (xy)^k T_k \left(\frac{x}{2y} + \frac{y}{2x} \right), \]
and for \(k \geq 1 \)
\[x^{2k} - y^{2k} = (xy)^k \left(\left(\frac{x}{y} \right)^k - \left(\frac{x}{y} \right)^{-k} \right) = (x^2 - y^2)(xy)^{k-1} U_{k-1} \left(\frac{x}{2y} + \frac{y}{2x} \right). \]

Applying those formulae for \(x = \sqrt{1 + u} \) and \(y = \sqrt{1 + v} \) where
\[xy = \frac{b}{2}, \quad x^2 - y^2 = u - v, \]
and
\[\frac{x}{2y} + \frac{y}{2x} = \frac{x^2 + y^2}{2xy} = \frac{2 + u + v}{b} = \frac{a + 2}{2b}, \]
gives
\[(1 + u)^k + (1 + v)^k = 2 \left(\frac{b}{2} \right)^k T_k \left(\frac{a + 2}{2b} \right), \]
and for \(k \geq 1 \):
\[(1 + u)^k - (1 + v)^k = (u - v) \left(\frac{b}{2} \right)^{k-1} U_{k-1} \left(\frac{a + 2}{2b} \right). \]

Case 2: \(m = 2n \). We have [3]:
\[U_{2n+1} (x) = \sum_{k=0}^{n} (-1)^k \binom{2n + 1 - k}{k} (2x)^{2n+1-2k} \]
\[= (-1)^n \sum_{k=0}^{n} \mu_{n,k} (2x)^{2k+1}, \quad \mu_{n,k} = (-1)^k \binom{n + 1 + k}{n - k}, \]
and thus
\[
U_{2n+1} \left(\frac{\sqrt{1+u}}{2} \right) + U_{2n+1} \left(\frac{\sqrt{1+v}}{2} \right) = (-1)^n \sum_{k=0}^{n} \mu_{n,k} 2^{k+1/2} \left((1+u)^{k+1/2} + (1+v)^{k+1/2}\right),
\]

\[
U_{2n+1} \left(\frac{\sqrt{1+u}}{2} \right) - U_{2n+1} \left(\frac{\sqrt{1+v}}{2} \right) = (-1)^n \sum_{k=1}^{n} \mu_{n,k} 2^{k+1/2} \left((1+u)^{k+1/2} - (1+v)^{k+1/2}\right).
\]

As for the odd case, we have for \(x, y\):

\[
x^{2k+1} + y^{2k+1} = (xy)^{k+1/2} \left(\left(\frac{x}{y} \right)^{k+1/2} + \left(\frac{x}{y} \right)^{-k-1/2} \right)
\]

\[
= (xy)^{k+1/2} \left(\left(\frac{x}{y} \right)^{1/2} + \left(\frac{x}{y} \right)^{-1/2} \right) V_k \left(\frac{x}{2y} + \frac{y}{2x} \right),
\]

and

\[
x^{2k+1} - y^{2k+1} = (xy)^{k+1/2} \left(\left(\frac{x}{y} \right)^{k+1/2} - \left(\frac{x}{y} \right)^{-k-1/2} \right)
\]

\[
= (xy)^{k+1/2} \left(\left(\frac{x}{y} \right)^{1/2} - \left(\frac{x}{y} \right)^{-1/2} \right) W_k \left(\frac{x}{2y} + \frac{y}{2x} \right).
\]

This implies

\[
(1+u)^{k+1/2} + (1+v)^{k+1/2} = \left(\sqrt{1+u} + \sqrt{1+v} \right) \left(\frac{b}{2} \right)^k V_k \left(\frac{a+2}{2b} \right).
\]

and

\[
(1+u)^{k+1/2} - (1+v)^{k+1/2} = \left(\sqrt{1+u} - \sqrt{1+v} \right) \left(\frac{b}{2} \right)^k W_k \left(\frac{a+2}{2b} \right).
\]

which completes the proof of Theorem 1.1.

3 Numerical computation of \(\text{det} (P_m)\)

In this section, we shall derive from the formulae (1) and (2) an efficient algorithm for computing \(\text{det} (P_m)\). We are lead to evaluate sums of the form

\[
S_N = \sum_{k=0}^{N} \alpha_k P_k (x)
\]

where \(x = \frac{a+2c}{2b}\), and \(\{P_r\}\) are polynomials that satisfy the three-term recurrence

\[
P_r (x) - 2x P_{r-1} (x) + P_{r-2} (x) = 0.
\]

Such sums can be computed efficiently through the following method described in [11]:

Equation (4) may be written in matrix notation as \(M p = q\), where \(M\) is the \((N+1) \times (N+1)\) matrix
\[
\begin{pmatrix}
1 & 0 & \cdots & 0 \\
-2x & 1 & \cdots & 0 \\
1 & -2x & 1 & \cdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & 1 & -2x & 1 \\
0 & 0 & 1 & -2x & 1
\end{pmatrix},
\]
\[
p = \begin{pmatrix}
P_0(x) \\
P_1(x) \\
\vdots \\
P_N(x)
\end{pmatrix}
\quad \text{and} \quad q = \begin{pmatrix}
P_0(x) \\
-2x P_0(x) + P_1(x) \\
0 \\
\vdots \\
0
\end{pmatrix}.
\]

Let
\[
y^T = (y_0, y_1, \ldots, y_N)
\]
be the row vector such that
\[
y^T M = u^T = (\alpha_0, \alpha_1, \ldots, \alpha_N).
\]
Thus, \(y_k \) are computed by putting \(y_{N+1} = y_{N+2} = 0 \) and performing the three-term recurrence
\[
y_k = 2xy_{k+1} - y_{k+2} + \alpha_k, \quad \text{for } k = N, \ldots, 0.
\]

It follows that
\[
S_N = u^T p = y^T M p = y^T q = y_0 P_0(x) + (P_1(x) - 2x P_0(x)) y_1.
\]
For \(P_k = T_k \) and \(P_k = \frac{1}{b} U_{k-1} \), with \(U_{-1} = 0 \), respectively, we obtain
\[
\sum_{k=0}^{n+1} y_{n,k} c^{n+1-k} b^k T_k (x) = y_0 - xy_1
\]
and
\[
\sum_{k=1}^{n+1} y_{n,k} c^{n+1-k} b^{k-1} U_{k-1} (x) = \frac{1}{b} y_1,
\]
where \(y_{n+2} = y_{n+3} = 0 \) and
\[
y_k = 2xy_{k+1} - y_{k+2} + y_{n,k} c^{n+1-k} b^k, \quad \text{for } k = n + 1, \ldots, 0.
\]
For \(P_k = V_k \) and \(P_k = W_k \), respectively, we obtain
\[
\sum_{k=0}^{n} \mu_{n,k} c^{n-k} b^k V_k (x) = y_0 - y_1
\]
and
\[
\sum_{k=0}^{n} \mu_{n,k} c^{n-k} b^k W_k (x) = y_0 + y_1,
\]
where \(y_{n+1} = y_{n+2} = 0 \) and
\[
y_k = 2xy_{k+1} - y_{k+2} + \mu_{n,k} c^{n-k} b^k, \quad \text{for } k = n, \ldots, 0.
\]
Here is the implementation of the algorithm in Maple (To accelerate the algorithm, the terms $\gamma_{n,k}a^{n+1-k}b^k$ and $\mu_{n,k}c^{n-k}b^k$ are computed recursively at the same time as y_k. Implementation details are omitted):

```maple
## Computing det(P_{2n+1})
##
detP1:=proc(n,a,b,c)
local i,j,r,s,x,k,t,z;
i := 0;
j := 0;
r := (-1)^n*b^n;
x:=(a+2*c)/b;
t:=2*n;
z:=-c/b;
for k from 0 to n+1 do
s:=i;
i:=r+x*i-j;  # i:=simplify(r+x*i-j); if the purpose
    # is to compute the characteristic
    # polynomial with variable a
j:=s;
r:=r*z*((t+2)*(t+1))/((t+k+2)*(k+1));
t:=t-2;
od;
return 2*j*(i-(j*x/2)/b;
    # return simplify(2*j*(i-(j*x/2)/b);
    # if the purpose is to compute the
    # characteristic polynomial with
    # variable a
end;

## Computing det(P_{2n})
##
detP2:=proc(n,a,b,c)
local i,j,r,s,x,k;
i := 0;
j := 0;
r := (-1)^n*b^n;
x:=(a+2*c)/b;
t:=2*n;
z:=-c/b;
for k from 0 to n do
s:=i;
i:=r+x*i-j;  # i:=simplify(r+x*i-j); if the purpose
    # is to compute the characteristic
    # polynomial with variable a
j:=s;
r:=r*z*((t+1)*(t+1))/((t+k+1)*(k+1));
t:=t-2;
od;
return i^2-j^2;  # return simplify(i^2-j^2);
    # if the purpose is to compute
    # the characteristic polynomial
    # with variable a
end;
```

One can easily check that the complexity of the algorithm is about $7N$, where N is the size of the matrix. Thus, the algorithm is the fastest among many other recently proposed (we exclude those based on the roots of certain polynomials which are approximative) [10]. Moreover, subject to minor modifications as explained in Algorithm 1, the algorithm is suitable for computing the characteristic polynomial of a symmetric
pentadiagonal Toeplitz matrix using computer algebra systems such as MAPLE, MATHEMATICA, MATLAB and MACSYMA.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Barrera, M.; Grudsky, S.M.: Asymptotics of eigenvalues for pentadiagonal symmetric Toeplitz matrices. Oper. Theory Adv. Appl. 259, 179–212 (2017)
2. Chu, M.T.; Diele, F.; Ragnion, S.: On the inverse problem of constructing symmetric pentadiagonal Toeplitz matrices from three largest eigenvalues. Inverse Probl. 21, 1879–1894 (2005)
3. Doman, B.G.S.: The Classical Orthogonal Polynomials. World Scientific Publishing Company, Singapore (2015)
4. Elouafi, M.: A widom like formula for some Toeplitz plus Hankel determinants. J. Math. Anal. Appl. 422(1), 240–249 (2015)
5. Elouafi, M.: An eigenvalue localization theorem for pentadiagonal symmetric Toeplitz matrices. Linear Algebra Appl. 435, 2986–2998 (2011)
6. Elouafi, M.: A note for an explicit formula for the determinant of pentadiagonal and heptadiagonal symmetric Toeplitz matrices. Appl. Math. Comput. 219(9), 4789–4791 (2013)
7. Elouafi, M.: On a relationship between Chebyshev polynomials and Toeplitz determinants. Appl. Math. Comput. 229(25), 27–33 (2014)
8. Fasino, D.: Spectral and structural properties of some pentadiagonal symmetric matrices. Calcolo 25, 301–310 (1988)
9. Grenander, U.; Szegö, G.: Toeplitz Forms and their Applications. Chelsea, New York (1984)
10. Jia, J.T.; Yang, B.T.; Li, S.M.: On a homogeneous recurrence relation for the determinants of general pentadiagonal Toeplitz matrices. Comput. Math. Appl. 71, 1036–1044 (2016)
11. Mason, J.C.; Handscomb, D.: Chebyshev Polynomials. Chapman & Hall, New York (2003)

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.