How genetically engineered systems are helping to define, and in some cases redefine, the neurobiological basis of sleep and wake

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation	Fuller, Patrick M, Akihiro Yamanaka, and Michael Lazarus. 2015. “How genetically engineered systems are helping to define, and in some cases redefine, the neurobiological basis of sleep and wake.” Temperature: Multidisciplinary Biomedical Journal 2 (3): 406-417. doi:10.1080/23328940.2015.1075095. http://dx.doi.org/10.1080/23328940.2015.1075095.
Published Version	doi:10.1080/23328940.2015.1075095
Citable link	http://nrs.harvard.edu/urn-3:HUL.InstRepos:27320353
Terms of Use	This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
How genetically engineered systems are helping to define, and in some cases redefine, the neurobiological basis of sleep and wake

Patrick M Fuller1,*, Akihiro Yamanaka2,*, and Michael Lazarus3,*

1Department of Neurology; Beth Israel Deaconess Medical Center; Division of Sleep Medicine; Harvard Medical School; Boston, MA USA; 2Department of Neuroscience II; Research Institute of Environmental Medicine; Nagoya University; Nagoya, Aichi, Japan; 3International Institute for Integrative Sleep Medicine; University of Tsukuba; Tsukuba, Ibaraki, Japan

Keywords: adeno-associated virus, optogenetics, DREADD, RNA interference, sleep-wake regulation

Abbreviations: AAV, adeno-associated viruses; GluClβ, C. elegans glutamate- and ivermectin (IVM)-gated chloride channel subunits α and β; DOX, doxycycline; DREADD, designer receptors exclusively activated by designer drugs; EEG, electroencephalogram; MCH, melanin-concentrating hormone; NREM, non-rapid eye movement sleep; PG, Prostaglandin; REM, rapid eye movement sleep; RNAi, RNA interference; tTA, tetracycline-responsive transcription factor.

The advent of genetically engineered systems, including transgenic animals and recombinant viral vectors, has facilitated a more detailed understanding of the molecular and cellular substrates regulating brain function. In this review we highlight some of the most recent molecular biology and genetic technologies in the experimental “systems neurosciences,” many of which are rapidly becoming a methodological standard, and focus in particular on those tools and techniques that permit the reversible and cell-type specific manipulation of neurons in behaving animals. These newer techniques encompass a wide range of approaches including conditional deletion of genes based on Cre/loxP technology, gene silencing using RNA interference, cell-type specific mapping or ablation and reversible manipulation (silencing and activation) of neurons in vivo. Combining these approaches with viral vector delivery systems, in particular adeno-associated viruses (AAV), has extended, in some instances greatly, the utility of these tools. For example, the spatially- and/or temporally-restricted transduction of specific neuronal cell populations is now routinely achieved using the combination of Cre-driver mice and stereotaxic-based delivery of AAV expressing Cre-dependent cassettes. We predict that the experimental application of these tools, including creative combinatorial approaches and the development of even newer reagents, will prove necessary for a complete understanding of the neuronal circuits subserving most neurobiological functions, including the regulation of sleep and wake.

Introduction

Three decades ago Francis Crick envisioned technologies that would permit the inactivation of specified neuronal populations, in turn enabling scientists to determine how “function follows structure” (of the brain). To this end, one of the more enduring mysteries in the neurosciences is the brain mechanisms and substrates (i.e., key circuit nodes, their transmitters and their targets) that regulate sleep – a highly conserved and vital biological process. Over the last 2 decades, researchers have developed a wide range of molecular and electrophysiological techniques and tools for probing and perturbing neural circuitry, including the circuitry that regulates sleep and wake in mammals. And while these tools and techniques have provided significant insight into the molecular and neurotransmitter systems used by the brain to regulate sleep and wake (cf. section ‘Neuronal mechanisms of sleep-wake regulation’), many of these approaches have non-trivial limitations, in particular with respect to data interpretation. For example, pharmacologic approaches such as receptor antagonists and protein inhibitors are often limited by low solubility, poor blood-brain-barrier permeability or other “off-target” side effects. Global knockout approaches have limited temporal and spatial resolution and can be confounded by ontogenetic issues. Even acute lesion approaches (including so-called “cell-specific” lesions) can produce collateral damage to adjacent brain structures that may, in turn, produce effects that are epiphenomenal to the lesion itself. Fortunately the emergence of newer conditional genomic models is helping to overcome many of these

© Patrick M Fuller, Akihiro Yamanaka, and Michael Lazarus
*Correspondence to: Patrick M Fuller; Email: pfuller@bidmc.harvard.edu; Akihiro Yamanaka; Email: yamank@riem.nagoya-u.ac.jp; Michael Lazarus; Email: lazarus.michael.kag.tsukuba.ac.jp
Submitted: 05/22/2015; Revised: 07/13/2015; Accepted: 07/15/2015
http://dx.doi.org/10.1080/23328940.2015.1075095

This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been asserted.
recordings are performed using a cable-based system wherein the activity of cortical neurons in behaving animals, in most basic sleep research laboratories these EEG (electroencephalogram) signals, stainless steel screws are implanted epidurally over the frontal cortical and parietal areas of one hemisphere. In addition, electromyogram (EMG) activity is monitored by stainless steel, teflon-coated wires placed bilaterally within the trapezius muscles. (B) wakefulness (i) is characterized by low to moderate voltage EEG and the occurrence of EMG activity, whereas NREM sleep (ii) is identified by the appearance of large, slow brain waves with a rhythm below 0.5–4 Hz (orange frequencies in the fast Fourier transform, FFT, of the EEG) and REM sleep (iii), exhibits a shift back to a rapid low-voltage EEG and the appearance of brain waves in the theta range, i.e., 6–10 Hz (blue frequencies in FFT of the EEG).

Technical advances have often precipitated quantum leaps in our understanding of neurobiological processes. For example, Hans Berger’s discovery in 1929 that electrical potentials recorded from the human scalp took the form of sinusoidal waves, the frequency of which was directly related to the level of wakefulness of the subject, led to rapid advances in our understanding of sleep-wake regulation, in both animals and humans alike. To this day the electroencephalogram (EEG), in conjunction with the electromyogram (i.e., electrical activity produced by skeletal muscles), represents the data “backbone” of nearly every experimental and clinical assessment that seeks to correlate behavior and physiology with the activity of cortical neurons in behaving animals, including humans. In most basic sleep research laboratories these EEG recordings are performed using a cable-based system wherein acquired data is subjected off-line to pattern and spectrum analysis (e.g. fast Fourier transform) to determine the vigilance state of the subject under recording (Fig. 1).1,2,3 Over the years, and on the basis of EEG interpretation, several models of sleep-wake regulation, both circuit- and humoral-based, have been proposed (Fig. 2).

Humoral mechanisms of sleep-wake regulation

The neural and cellular basis of sleep need or, alternatively, “sleep drive” remains unresolved, but has been conceptualized as a homeostatic pressure that builds during the waking period and is dissipated by sleep.
fever) disrupt, rather than promote, sleep. On the other hand, smaller increases in plasma concentrations of proinflammatory cytokines, such as occurs during the circadian cycle, can increase NREM sleep and cortical slow wave intensity. By contrast, rodents treated with proinflammatory cytokines exhibit an enhancement of NREM sleep and a decrease in rapid eye movement (REM) sleep. Although cytokine production is inevitably accompanied by the secretion of PGs, the increase of NREM sleep during an infection is independent of PGs, a surprising fact considering: 1) the fever response is completely dependent on PGE2 type EP3 receptor signaling and 2) PGs have been implicated in the regulation of sleep. How and why immune signaling molecules and other hypnogenic substances modulate sleep remain incompletely understood and are currently areas of active investigation.

Circuit mechanisms of sleep-wake regulation

Experimental work by Economo, Ranson, Moruzzi and Magoun, and others in the early and mid 20th century produced findings that inspired circuit-based theories of sleep and wake and, to a certain degree, overshadowed the then prevailing humoral theory of sleep. To date, several “circuit models” have been proposed, each informed by data of varying quality and quantity (for review, see). One model, for example, proposes that slow wave sleep is generated by adenosine-driven inhibition of acetylcholine release from cholinergic neurons in the basal forebrain (BF), although several studies has shown that cholinergic BF neurons are not essential for sleep induction. Another contemporary circuit model posits a flip-flop switching mechanism involving mutually inhibitory interactions between sleep-promoting neurons in the ventrolateral preoptic area (VLPO) and wake-promoting neurons in the hypothalamus (i.e., histaminergic tuberomamillary nucleus (TMN), and brainstem (i.e., noradrenergic locus coeruleus (LC), serotonergic dorsal raphe nucleus (DR), and cholinergic laterodorsal tegmental nucleus (LDT)). The flip-flop switch between the VLPO and hypothalamus and brainstem is stabilized by orexin/hypocretin (OX/Hcrt) inputs. Adenosine is known to act as an endogenous somnogen and promotes sleep via inhibitory A1 receptors (A1) in the basal forebrain, VLPO and TMN and excitatory A2A receptors (A2A) in the nucleus accumbens (NAc) and VLPO. Other Abbreviations: Ach, acetylcholine; 5-HT, serotonin, NE, norepinephrine.

![Circuit basis of sleep-wake regulation](image)

Figure 2. Circuit basis of sleep-wake regulation. Model 1 (shown in panel a): Adenosine inhibits the release of acetylcholine from basal forebrain (BF) cholinergic neurons to produce slow-wave sleep. Model 2 (shown in panels b-d): a flip-flop switching mechanism involving mutually inhibitory interactions between sleep-promoting neurons in the ventrolateral preoptic area (VLPO) and wake-promoting neurons in the hypothalamus (i.e., histaminergic tuberomamillary nucleus (TMN), and brainstem (i.e., noradrenergic locus coeruleus (LC), serotonergic dorsal raphe nucleus (DR), and cholinergic laterodorsal tegmental nucleus (LDT)). The flip-flop switch between the VLPO and hypothalamus and brainstem is stabilized by orexin/hypocretin (OX/Hcrt) inputs. Adenosine is known to act as an endogenous somnogen and promotes sleep via inhibitory A1 receptors (A1) in the basal forebrain, VLPO and TMN and excitatory A2A receptors (A2A) in the nucleus accumbens (NAc) and VLPO. Other Abbreviations: Ach, acetylcholine; 5-HT, serotonin, NE, norepinephrine.
Molecular biology and genetic technologies in sleep research

As indicated, the combinatorial application of transgenic mice and viral vector delivery systems in systems-level neuroscience research has become increasingly common. Indeed, the power of this experimental approach is undeniable. And while a variety of viral vector systems have been harnessed for experimental purposes, we would highlight work using adeno-associated viruses (AAV) as these have enabled scientists to address long-standing questions in neurobiology. AAV are single-stranded DNA-containing paroviruses of 57 serotypes classified in 7 species that are currently not known to cause disease. Recombinant AAV vectors are replication deficient and AAV-delivered transgenes (typically no larger than 5 kb) mostly persist as highly stable, actively transcribed episomes enabling long-lasting gene expression in non-dividing cells. Although isolation of an AAV serotype 2 clone facilitated development of stable vectors for transgenic and therapeutic gene delivery, the level of gene expression in cells infected with AAV2 is generally low. As tissue specificity and affinity is determined by proteins that are present in the virus capsid (protein shell or viral envelope), successful attempts to pseudotype and engineer capsids have resulted in a great variety of AAV serotypes suitable for the infection of neurons in a wide range of animal species. For example, researchers can take advantage of AAV serotype variability to infect interdigitating populations of neurons in mice or deliver transgenes to brains of vertebrates (e.g. zebra finches) that cannot be genetically modified by reproductive technologies. Due to this great versatility, it is no surprise that AAV has become one of the most widely used biological tools of today’s neuroscience.

Conditional gene manipulations based on Cre/loxP technology and focal RNA interference

Transgenic animals with constitutive gene disruptions have provided important insights into the in vivo roles of various genes (and their gene products) in sleep-wake regulation. Interpretation of experimental data generated using constitutive gene disruption does, however, warrant caution given several limiting features of these animals, including: (i) approximately 15% of knockouts are developmentally lethal and so studies employing these mice are restricted to embryonic development, making it virtually impossible to relate the function of the deleted gene to sleep-wake; (ii) ontogenetic complications that result in abnormal development of other systems or compensatory alterations (e.g. levels of neurotransmitters or their receptors), which may contribute to the development of a phenotype that is epiphenomenal to the knockout itself; and (iii) constitutive knockout animals are limited in the ability to inform the localization of individual brain areas or neurons involved in sleep-wake regulation.

On the other hand, Cre or Flp recombinase mediated DNA recombination in genetically engineered mice, i.e., conditional knockouts, has proven a powerful approach for evaluating the role of genes, including “sleep genes”, in a spatially and temporally restricted manner. Cre recombination was originally discovered in the P1 bacteriophage as part of the virus’ life cycle. The Cre enzyme recombines a pair of short target sequences called the lox sites, a mechanism which the P1 phage uses to circularize and facilitate replication of its genomic DNA during reproduction. Flp recombination is analogous to the Cre/lox system but involves recombination of DNA sequences...
flanked by FRT (short for “flippase recognition target”) sites derived from baker’s yeast (Saccharomyces cerevisiae). For one reason or another, the Cre/lox recombination strategy has been the preferred recombination approach for the vast majority of transgenic manipulations in mice and other organisms. And it is the orientation and location of the loxP sequences that determine whether Cre catalyzes a deletion, inversion, or chromosomal translocation of DNA sequences (Fig. 3). By genetic targeting of Cre (or Flp) to discrete populations of neurons and crossing the mice harboring these transgenes with mice bearing loxP (or FRT) modified alleles, it is possible to modulate these genes in a neuron-specific fashion. Alternatively, AAV expressing either Cre or Flp can be stereotaxically-injected into specific nuclei in the brains of mice bearing loxP- or FRT-modified alleles to restrict gene expression to the site of AAV injection. The utility of this technical approach was elegantly illustrated in 2 recent studies. In the first study, Lazarus and colleagues employed, in combination, conditional A2A receptor knockout mice and stereotaxic-based microinjections of Cre-expressing AAV into the nucleus accumbens to show that A2A receptors in the nucleus accumbens promote sleep. In the second study, Anaclet and colleagues placed microinjection of AAV-Cre into the parafacial zone of conditional vesicular GABA transporter mice to show that GABAergic neurons of the medullary parafacial zone are required for normal amounts of slow-wave-sleep.

Also in the landmark Lazarus et al. paper on the arousal-promoting effect of caffeine, the authors pioneered the use of RNA interference (RNAi) to silence focaly the expression of A2A receptors in the brain of rats and show that depletion of A2A receptors in the shell of the nucleus accumbens is sufficient to abolish the arousal effect of caffeine (Fig. 4). RNAi is a system within living cells that helps regulate which genes are active and also the magnitude of their activity. This gene regulation process also includes the interaction of small interfering RNA with mRNA to prevent mRNA from producing a protein. The RNAi can be applied in any animal model and by using local infection with AAV carrying short-hairpin RNA, focal RNAi can be produced in live animals in an efficient and cost-effective manner. Moreover, and in contrast to Cre/loxP conditional knockout models, rats or even more phylogenetically advanced organisms, such as non-human primates, which can provide a better approximation of human brain responses, can be used as experimental model systems. Many labs have also developed lines of mice with loxP-flanked sequences that disrupt expression of genes (“transcriptional disruptors”), effectively extending the utility of conditional knockouts by addressing some of their limitations. In their basal state, transcriptional disruptor mice typically demonstrate a phenotype identical to that of constitutive knockout mice; after exposure to Cre recombinase the loxP-flanked blocking sequence is removed and gene expression (and, typically, the phenotype) is normalized. Transcriptional disrupter mice are particularly useful in situations where the gene(s) of interest are more widely and diffusely expressed in the brain. In other words, gene re-expression can be targeted to discrete sites, which in turn greatly facilitates functional analysis. Focal gene reactivation using transcriptional disruptor mice also offers other potential advantages over traditional conditional knockout mice including: the ability to 1) perform a relatively quick anatomic survey for gene function in various brain regions across the neuraxis, and 2) normalize gene expression only in sites with a latent genetic capacity to express the gene of interest, i.e., eutopic expression. As an excellent experimental example of the gene “reactivation” approach, Scammell and colleagues placed focal injections of

![Figure 4](image_url)

Figure 4. The arousal effects of caffeine are abolished in rats with site-specific deletion of A2A receptors (A2AR) in the shell of the nucleus accumbens (NAc). To identify the neurons on which caffeine acts to produce arousal, A2A receptors were focally depleted by bilateral injections of adeno-associated virus carrying short-hairpin RNA for the A2A receptor into the core (dashed green line in the left panel) or shell (dashed red line in the right panel) of the NAc of rats. Typical hypnograms that show changes in wakefulness and in rapid eye movement (REM) and non-REM (NREM) sleep after administration of caffeine at a dose of 15 mg/kg indicate that rats with a shell, but not a core, knockdown of the A2A receptors showed a strongly attenuated caffeine arousal. Green and red areas in the hypnograms represent wakefulness after caffeine administration that correspond to the depletion of A2A receptors in the respective core and shell of the NAc.

410 Volume 2 Issue 3
AAV containing Cre into discrete brain regions of mice with re-activatable orexin-2 receptors. In doing so, they found that normal expression and function of orexin-2 receptors, and hence orexin signaling, in the posterior hypothalamus, including the tuberomammillary nucleus, plays an essential role in the wake-promoting effects of orexins.64

Conditional tracing of long axonal pathways and lesioning of neuronal cell populations

In addition to loxP-modified mice, investigators have also taken advantage of the large number of transgenic Cre-expressing mice available for use in a wide range of experiments, including the anterograde tracing of neural projections from cell-type specific neuronal populations. For example, Gautron and colleagues developed an AAV vector that encodes a humanized Renilla green fluorescent protein (hrGFP) whose expression is transcriptionally silenced by a neo cassette flanked by loxP sites.65 This vector construct, which results in hrGFP protein expression only in neurons with Cre recombinase activity, was used in combination with leptin receptor-Cre mice to define the efferent projections of leptin-responsive neurons in the hypothalamus. In another example of this approach, stereotaxic microinjections of conditional hrGFP-AAV into the nucleus accumbens of mice in which Cre expression is driven by the promoter of the A2A receptor gene66 were used to trace axonal projections of A2A receptor-positive neurons known to participate in sleep-wake regulation.

With little modifications, the same approach can readily be adapted for the lesioning of cell-type specific neuronal populations. Toward this end we (Fuller and Lazarus) developed an AAV-based system for the transgenic expression of the highly cell-toxic fragment A of the diphtheria toxin (DTA-AAV). The original diphtheria toxin, an exotoxin secreted by Corynebacterium diphtheriae, is a single polypeptide consisting of 2 fragments A and B. Binding of fragment B to the cell surface allows fragment A to penetrate the host cell and act as a potent RNA translational inhibitor. In combination with mice expressing Cre under the control of the vesicular glutamate transporter 2, this transcriptionally silenced DTA-AAV was recently used by Saper and colleagues to demonstrate that glutamatergic neurons within the external lateral and lateral crescent subdivisions of the lateral pontine parabrachial nucleus critically contribute to hypercapnia-induced arousal.49

As an alternative to using loxP-flanked neo cassettes as transcriptional stop sequences, transgenes are now commonly cloned into AAV plasmids in a double floxed inverted (FLEX) or double inverted orientation (DIO). Within the FLEX or DIO orientation, transgenes are cloned in reverse orientation, so that a nonsense transcript is produced until the transgene is exposed to Cre recombinase, which flips the gene into the sense orientation. The advantage to FLEX/DIO cassette is that it confers great selectivity, without transcriptional “leakage” in cells that lack Cre expression. We have, for example, recently generated a FLEX version of our DTA-AAV as well as adopted this system for all of our AAV-based genetically engineered receptor-channel systems (compare ‘Reversible in vivo silencing and activation of neurons in freely behaving animals’).

Reversible in vivo silencing and activation of neurons in freely behaving animals

Significant research efforts have recently been directed at developing genetic-molecular tools to achieve reversible and cell-type specific in vivo silencing of neurons in awake, behaving animals. The obvious goal in developing these tools is to help establish a causal relationship between the activity of specific neurons (or neuronal populations) and behavioral and physiological outcomes. While several genetic tools have been developed for this purpose, including conditional blockade of neurotransmitter release and suppression of neuronal excitability, each method has distinct advantages as well as limitations. One tool that has been developed for acute and reversible in vivo silencing or activation of neurons is optogenetics technologies.67 It would not be an exaggeration to state that optogenetics has ushered in a new era of neurobiology.68 Simply put, an optically-driven “switch” can be placed into specific neurons of a living animal by the local microinjection of viral vectors expressing an opsin [e.g. excitatory channelrhodopsin-2 (ChR2), as shown in Fig. 5] in a Cre-dependent configuration. Alternatively, the opsin

![Figure 5. Photostimulation of neurons in behaving animals: combining Cre-driver mice and stereotaxic-based delivery of adeno-associated virus (AAV) expressing Cre-dependent channelrhodopsin (ChR2). ChR2 are nonspecific cation channels, conducting H+, Na+, K+, and Ca2+ ions. ChR2 absorbs blue light with an absorption spectrum maximum at 480 nm resulting in the opening of a pore in the trans-membrane protein and depolarization of neurons by allowing for the flow of ions according to their electrochemical gradient.102,103 Other Abbreviations: Cre, Cre recombinase; EF1α, archaeal elongation factor 1 α; loxP, locus of X-over P1; lox2272, variant of loxP; pA, poly A tail; WRPE, woodchuck hepatitis virus posttranscriptional regulatory element.](image-url)
gene can be placed under a cell-type specific promoter, limiting expression to, for example, only orexin-producing cells. Transgenic mice have also been engineered to express opsins under various gene promoters. For example, Tsunematsu and colleagues generated transgenic mice in which halorhodopsin, which is an orange light-driven chloride pump whose photoactivation results in the inhibition/silencing of neurons, was exclusively expressed in orexin neurons. In these halorhodopsin-based experiments, the authors showed that silencing of orexin neurons induced NREM sleep, which confirmed a role for orexin neurons in the maintenance of wakefulness. It is also the case that optogenetic tools can be used to identify functional synaptic connectivity between specific neuronal populations, both in vivo and in brain slices. Originally coined "ChR2-assisted circuit mapping," or CRACM for short, this technique involves combining direct photostimulation of presynaptic ChR2-expressing axons/terminals with patch-clamp recordings of postsynaptic neurons. In this arrangement, specific inputs are activated to evoke neurotransmitter release and establish functional synaptic connectivity. This elegant technique was recently used by Arrigoni and colleagues to show that release of histamine from neurons of the tuberomammillary nucleus (TMN) can disinhibit the TMN and suppress (indirectly) the activity of sleep-active VLPO neurons to promote TMN neuronal firing, a finding that lends credence to the sleep-wake "flip-flop switch" hypothesis. Creative variants of this technique, including the combined application of CRACM and retrogradely transported microspheres, have enabled the mapping of circuits spanning 3 synaptically-coupled sites within the brain.

We next highlight 3 recently published (and related) studies in which optogenetic-based approaches were used to interrogate the neuronal circuitry subserving the regulation of REM and NREM sleep, with a particular emphasis on the role of lateral hypothalamic melanin-concentrating hormone (MCH) neurons. In the first, Adamatidis and colleagues used AAV to deliver Cre-dependent light-activated opsins (ChETA and halorhodopsin) within the lateral hypothalamus of mice expressing Cre recombinase under the pro-MCH promoter. In vivo activation and inhibition of these neurons revealed that these neurons are critical for maintenance of REM sleep, and that this links to GABA release onto TMN neurons by MCH neurons. The second study, by Shiromani and colleagues, also employed an AAV-based delivery approach, but instead used a MCH promoter system to drive expression of channelrhodopsin in MCH neurons of wildtype mice. Optogenetic stimulation of the ChR2-expressing MCH neurons during normal waking time reduced the length of waking bouts and increased both NREM and REM sleep. In the third, Tsunematsu and colleagues used a genetic approach that facilitated the temporal and spatial control of the expression of opsins and other transgenes. They employed a tetracycline-controlled transcriptional activation technique (Fig. 6), which is a method of inducible expression wherein transcription depends on the tetracycline-responsive transcription factor (tTA) and is turned off at the TetO promoter in the presence of the antibiotic tetracycline [or its derivative, doxycycline (DOX); "Tet-Off"]. Initially, Tsunematsu and colleagues expressed ChR2 (E128T/T159C) in MCH neurons by generating mice with 2 transgenes in which the first transgene provides pro-MCH promoter-driven expression of tTA and the second enables tTA-dependent expression of ChR2. Activation of MCH neurons in these mice increased time in REM sleep, whereas optogenetic inhibition, which was achieved through expression of tTA-dependent archaerhodopsinT, did not affect the amount of REM sleep. Additionally, mice with genetically ablated MCH neurons (Tet-Off-controlled expression of DTA) showed an increase in wake and a decrease in NREM sleep without affecting REM sleep amount. Taken the together, the results from these 3 optogenetic-based studies suggest that MCH neurons contributes to both NREM and REM sleep, possibly in a state- and time-of-day dependent manner.

It is worth noting that, despite its undeniable contribution to the experimental neurosciences, in vivo optogenetic tools are not without limiting features. These limitations include invasive

Figure 6. Inducible gene expression by using tetracycline-controlled transcriptional activation (Tet expression systems). Gene transcription is reversibly turned on or off in the presence of the antibiotic tetracycline (Tc) or doxycycline (DOX), a more stable tetracycline analog. In a Tet-Off system, tetracycline and its derivatives bind transactivator protein (tTA) and render it incapable of binding to the tetracycline response element (TRE) consisting of several TetO sequences and a minimal promoter, thereby preventing transcription of TRE-controlled genes. A Tet-On system works similarly, but the rTAA protein is capable of binding to the TRE operator, and hence initiating transcription of the transgene, only when bound by DOX. For most purposes, there is no inherent advantage of using the Tet-Off system over the Tet-On system, although there is no apparent literature example in which the Tet-Off system has been used to study the regulation and function of sleep.
ated neuronal silencing can be used to manipulate behavior. Here, Oishi and colleagues showed that DREADD-mediated inhibi-
tion of the medial prefrontal cortex (mPFC) prevented choc-
olate-induced cataplexy in orexin knock-out mice, a finding
that suggests a key role for the mPFC in positive emotions that trigger
cataplexy.

An important proof-of-concept study for sleep biology, the laboratory of Takeshi
Sakurai demonstrated that DREADD-driven changes in the activity of orexin
neurons can alter behavioral state. More specifically, Gq,DREADD excita-
tion of orexin neurons increased the amount of time spent in wakefulness,
whereas G,G,DREADD inhibition of orexin neurons promoted NREM sleep. In related work, Inu-
suka and colleagues activated orexin neurons, also using Gq-
DREADD, and observed increases in food and water consump-
tion as well as locomotor activity and metabolic rate, suggesting
that orexin neurons also contribute to the regulation of energy
homeostasis. More recently, Anacle and colleagues generated
and experimentally deployed Cre-dependent versions of the Gq
and Gi DREADD-AAV systems to establish necessity and suffi-
ciency of a node of GABAergic brainstem neurons in generating
slow-wave-sleep and cortical slow-wave-activity.

Newer generation DREADD systems are under development
with several examples appearing in the recent literature. For
example, a new Gi-coupled DREADD that uses the kappa-opi-
odoid receptor as a template (KORD) and is activated by the phar-
macologically inert ligand salvinorin B was recently described.
Co-expression of the KORD and the Gq-coupled M3-
DREADD within the same neuronal population permits the
sequential and bidirectional control of the target neuronal popu-
lation, and hence behavior.

Increasingly, the experimental framework in which both opto-
and chemo-genetic techniques are being applied involves concur-
rent electrophysio-logic and imaging techniques, such as tetrode
recording or deep-brain fiber-optic endomicroscopy, in
behaving mice. Such innovative combinatorial approaches per-
mit, for example, the simultaneous recording and perturbation of
genetically defined sets of neurons, even in regions of high cellular
heterogeneity. Hence the combined application of genetically
driven system with in vivo electrophysio-logic and/or imaging

Figure 7. In vivo chemogenetic inhibition or activation of neurons in behaving animals: combining
Cre-driver mice and stereotaxic-based delivery of adeno-associated virus (AAV) expressing Cre-depen-
dent “designer receptor exclusively activated by designer drugs” (DREADD). DREADD permit temporal
control of excitatory or inhibitory G-protein coupled receptor signaling in vivo by utilizing mutated
human muscarinic acetylcholine (ACh) receptors. These ACh receptors, excitatory hM3 and inhibi-
tory hM4, are unresponsive to their natural ligand acetylcholine, but can be activated by nanomolar
doses of the synthetic small-molecule clozapine N-oxide (CNO). Other Abbreviations: Cre, Cre recom-
binase; hsyn, human synapsin promoter; loxP, locus of X-over P1; lox2272, variant of lloxP; pA, poly A
tail; WRPE, woodchuck hepatitis virus posttranscriptional regulatory element.

instrumentation, the challenge of light penetration to larger brain
regions, scalability issues, lower throughput, artificial synchro-
nized patterns of activation/inhibition and limited direct evi-
dence that photo-evoked release of neuropeptides is possible.
And because of these limiting features, our labs and others have
begun exploring and developing alternative tools for achieving in
vivo, reversible silencing that also offers ease of implementation,
no cabling into the CNS and a ligand that can be delivered
peripherally or even in the drinking water. One such system was
first introduced in 2007 by Andersen and colleagues, and
involves the AAV-based delivery of 2 channel subunits (g and b)
that comprise a modified C. elegans glutamate- and ivermectin
(IVM)-gated chloride channel (GluCl). This heteromeric
channel prevents action potentials from firing by hyperpola-
rising the membrane in a ligand-dependent manner. In this
elegant proof-of-concept study, the authors showed that that
the GluCl channel can be stably expressed in vivo without
neurotoxicity, that this channel can be activated by (dose-
dependent) systemic administration of IVM in vivo (at dos-
ages that do not cause organismal toxicity), channel activation
is reversible in vivo and, finally, that the channel-IVM medi-
ated neuronal silencing can be used to manipulate behavior
in awake, behaving animals. In a more recent study in sleep
biology, the technique was instrumental in defining the neu-
ral substrates of emotion-driven cataplexy. Here, Oishi and
colleagues showed that the GluCl-IVM-mediated inhibi-
tion of the medial prefrontal cortex (mPFC) prevented choc-
olate-induced cataplexy in orexin knock-out mice, a finding
www.tandfonline.com Temperature 413
techniques will likely prove instrumental in elucidating the detailed circuit and synaptic basis of wake-sleep control."

Reversible neurotransmission blocking by the tetanus neurotoxin and tetracycline-controlled transcriptional activation

Tetanus neurotoxin cleaves the synaptic vesicle-associated membrane protein and thus blocks vesicle-mediated neurotransmission. Local reversible silencing of neurotransmission can be achieved by the injection of tTA-expressing AAV into transgenic mice with tetanus neurotoxin expression under the control of tTA. Such an approach has recently been used to genetically dissect the circuit-function relationships within the basal ganglia. In this study, an AAV-tTA/tetanus neurotoxin approach was used to evaluate the functional roles of the direct (striatonigral) and indirect (striatopallidal) pathways in learning behaviors. Here the authors exploited the fact that substance P and enkephalin are selectively expressed in the direct or indirect pathway, respectively, and thus, AAV-mediated expression of tTA under the control of the substance P or enkephalin promoter induced specific tetanus neurotoxin-blocking of the striatonigral or striatopallidal neurons. In doing so, this study revealed that dopamine/D2R action on the indirect pathway is important for aversive, but not reward-based, learning. This same approach may also prove useful in determining the extent to which the efferent pathways of the basal ganglia are required for the regulation of wakefulness.

The Tet-off system has also been widely used in combination with genetically engineered receptor-channel systems including opsins or DREADDs. One particularly useful application of the Tet-Off system is the generation of synthetic activity-dependent transgene traces in the brains of mice in which, for example, ChR2 or Gq-DREADD are expressed in a behavior-dependent manner through c-fos (a marker of neuronal activity) promoter-driven tTA expression. To this end, a Tet-tagged version of the excitatory DREADD was recently used to selectively map and reactivate neuronal ensembles in the preoptic hypothalamus that were activated by the α2 adrenergic receptor agonist dexmedetomidine. In doing so, the authors were able to demonstrate that dexmedetomidine-induced sedation is achieved, in part, through engagement of sleep-promoting hypothalamic circuitry.

Concluding remarks

It is the authors’ surmise that the experimental application of the tools described in this review, including creative combinatorial applications, will prove critical to the process of elaborating the spatial and temporal properties of the circuitry mediating the transition between sleep and waking states, as well as developing a unified model for the humoral and neural mechanisms governing sleep-wake regulation. We also feel that “systems-level” sleep research will be greatly informed by large-scale gene network studies that employ functional genomics approaches such as transcriptome, proteome, and metabolome analysis for identifying “new targets” that might form the basis for the development of additional conditional transgenics. Indeed, the methods described herein or elsewhere will not only make it possible to determine the detailed anatomic and molecular bases of sleep-wake regulation, but should also help to shed light on some of the greatest mysteries in systems somnology, including: “why do we sleep” and “what is the function of sleep?” Disrupted sleep, including its voluntary loss and sleep disorders, are linked to traffic and work-related accidents as well as significant social losses due to an increased prevalence of mood and other neuropsychiatric disorders. Insufficient sleep is also an established independent risk factor for cardiovascular and metabolic diseases, such as diabetes and obesity, and is linked with increased cancer risk. Thus, while sleep has been a perpetual topic of scientific inquiry that continues to attract many scientists, it is also an important field that will greatly benefit society through the development of strategies to remedy sleep disorders and associated diseases.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Funding

This work was supported by Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research (B) 24300129 (to M.L.) and 23300142 (to A.Y.); World Premier International Research Center Initiative (WPI) from the Ministry of Education, Culture, Sports, Science, and Technology (to M.L.); the National Institutes of Health (NS26837 to P.M.F.); and a grant from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan (Grant-in-Aid for Scientific Research on Innovative Areas “Mesoscopic Neurocircuitry”, 23115103, to A.Y.).

About the Authors

Patrick M Fuller is a principal investigator at Harvard Medical School and Beth Israel Deaconess Medical Center. The investigative focus of his laboratory is the cellular and synaptic basis by which the brain regulates sleep and wakeful consciousness. His experiments seek to link the activity of defined sets of neurons with neurobehavioral and electroencephalographic outcomes in behaving animals.
References

1. Kohoth S, Taguchi Y, Matsuno N, Wada M, Huang Z-L, Urade Y. Algorithm for sleep scoring in experimental animals based on fast Fourier transform power spectral analysis of the electroencephalogram. Sleep Biol Rhythms 2008; 6:163-71; http://dx.doi.org/10.10111/j.1479-8425.2008.00355.x

2. Tobler I, Deboer T, Fischer M. Sleep and Sleep Regulation in Normal and Prion Protein-Deficient Mice. J Neurosci 2011; 15:1225-35; PMID:21970361; http://dx.doi.org/10.1523/JNEUROSCI.1501-09.2010.06.005

3. Oishi Y, Takata Y, Urade Y, Lazarus M. Polygraphic recordings to measure sleep in mice. J Vis Exp 2015; in press.

4. Rosenbaum E. Warum müssen wir schlafen? : eine neue Theorie des Schlafes. Berlin. August Hirschwald, 1892.

5. Kubota K, Kumioi Ishimori and the first discovery of sleep-inducing substances in the brain. Neurosci Res 1989; 6:497-518; PMID:2677843; http://dx.doi.org/10.1016/0168-6247(89)90041-2

6. Ishimori K. True cause of sleep: a hypnogenic substance as evidenced in the brain of sleep-deprived animals. Tokyo Igakkaizasshi 1909; 25:429-57.

7. Legendre R, Paron H. Recherches sur le besoin de sommeil consécutif à une veille prolongée. Z. Allergen Physiol 1913; 14:235-62.

8. Itoue S, Honda K, Konmoto Y. Sleep as neuronal detoxification and restitution. Behav Brain Res 1995; 69:51-6; http://dx.doi.org/10.1016/0166-4328(95)00014-K

9. Urade Y, Hayashi O. Prostaglandin D2 and sleep/wake regulation. Sleep Med Rev 2011; 15:411-8; PMID:22024172; http://dx.doi.org/10.1016/j.smrv.2011.08.003

10. Ueno R, Ishikawa Y, Nakayama T, Hayashi O. Prostaglandin D2 induces sleep when microinjected into the preoptic area of conscious rats. Biochem Biophys Res Commun 1982; 109:576-82; PMID:690896; http://dx.doi.org/10.1016/0006-291X(82)91768-0

11. Urade Y, Lazarus M. Prostaglandin D2 regulation in the sleep of animals. In: Shaw PJ, Tafti M, Thorpy MJ, eds. The Role of Cytokines in Physiological Sleep Regulation, Ann NY Acad Sci 2001; 933:201-10; PMID:12000710; http://dx.doi.org/10.1111/j.1749-6632.2001.de5826.x

12. Krueger JM, Streeker RE, Thakkar M, Bjorkum AA, Greene RW, McCarley RW. Adenosine: a mediator of the sleep-influencing effects of prolonged wakefulness. Science 1997; 276:1263-8; PMID:9157887; http://dx.doi.org/10.1126/science.276.5316.1265

13. Porl-Ki-Hiakanen T, Streeker RE, Thakkar M, Bjorkum AA, Greene RW, McCarley RW. Adenosine: a mediator of the sleep-influencing effects of prolonged wakefulness. Science 1997; 276:1263-8; PMID:9157887; http://dx.doi.org/10.1126/science.276.5316.1265

14. Porl-Ki-Hiakanen T, Kalinchak AV. Adenosine, energy metabolism and sleep homeostasis. Sleep Med Rev 2011; 8:357-78; PMID:21970361; http://dx.doi.org/10.1016/j.smrv.2010.06.005

15. Garcia-Garcia F, Acosta-Pena E, Venere-Munoz A, Murillo-Rodriguez E. Sleep-inducing factors. CNS Neurol Drug Targets 2009; 8:235-44; PMID:19698305; http://dx.doi.org/10.2174/1389450097898921672

16. Garcia-Garcia F, Acosta-Pena E, Venere-Munoz A, Murillo-Rodriguez E. Sleep-inducing factors. CNS Neurol Drug Targets 2009; 8:235-44; PMID:19698305; http://dx.doi.org/10.2174/1389450097898921672

17. Huitron-Resendiz S, Kristensen MP, Sánchez-Alavez M, Clark SD, Grupke SL, Tyler C, Suzuki C, Nothacker HP, Covelli O, Criado JR, et al. Urotenin II Modulates Rapid Eye Movement Sleep through Activation of Brainstem Cholinergic Neurons. J Neurosci 2005; 25:4565-74; PMID:15944574; http://dx.doi.org/10.1523/JNEUROSCI.4910-04.2005

18. Saper CB, Romanovsky AA, Scammell TE. Neural circuitry engaged by prostaglandins during the sleeping-nonsleeping state switch. Nat Neurosci 2012; 15:1088-95; PMID:22857309; http://dx.doi.org/10.1038/nn.3159

19. Krueger JM, Obal F, Jr, Fang J, Kubota T, Taishi P. The Role of Cytokines in Physiological Sleep Regulation. Arch Neurol Psychiatry 1939; 69:1-3; PMID:1749-6632.2001.de5826.x

20. Krueger JM, Majde JA. Humoral Links between Sleep and the Immune System: Research Issues. Ann NY Acad Sci 2003; 992:29-20; PMID:12794042

21. Mullington JM, Hinzu Selch D, Pollmacher T. Mediators of inflammation and their interaction with sleep: relevance for chronic fatigue syndrome and related conditions. Ann NY Acad Sci 2001; 931:211-21; PMID:12000022; http://dx.doi.org/10.1111/j.1749-6632.2001.de5826.x

22. Mullington JM, Korb C, Herrmann DM, Orth A, Galanos C, Holsboer F, Pollmacher T. Dose-dependent effects of endotoxin on human sleep. Am J Physiol Regul Integr Comp Physiol 2000; 278:R497-55; PMID:10709783

23. Oishi Y, Yoshida K, Scammell TE, Urade Y, Lazarus M, Saper CB. The roles of prostaglandin E2 and D2 in lipopolysaccharide-mediated changes in sleep. Brain Behav Immun 2015; 47:172-7; PMID:25532785; http://dx.doi.org/10.1016/j.bbi.2014.11.019

24. Ushikuhi F, Segi E, Sugimoto Y, Murata T, Matsuo T, Kohayashi T, Hizaki H, Tubaki O, Kasuyama M, Ichikawa A, et al. Impaired febrile response in mice lacking the prostaglandin E receptor subtype EP3. Nature 1998; 395:281-24; PMID:9751056; http://dx.doi.org/10.1038/26233

25. Lazarus M, Yoshida K, Copparsi R, Bass CE, Mochizuki T, Lowell BB, Saper CB. EP3 prostaglandin receptors in the median preoptic nucleus are critical for fever responses. Nat Neurosci 2007; 10:1131-3; PMID:17676600; http://dx.doi.org/10.1038/nn1949

26. Wilkins RH, Brody IA. Endocannabinoids, Sleep: Med Sci Rev 2010; 68:1023-42; PMID:21172606; http://dx.doi.org/10.1016/j.fjotol).2010.11.032

27. Brown RE, Basheer R, McKenna JT, Streeker RE, McCarley RW. Control of Sleep and Wakefulness. Physiol Rev 2012; 92:1087-187; PMID:22814146; http://dx.doi.org/10.1152/physrev.00032.2011

28. Fuller PM, Goslee JJ, Saper CB. Neurobiology of the Sleep-Wake Cycle: Sleep Architecture, Circadian Regulation, and Regulatory Feedback. J Biol Rhythms 2006; 21:482-93; PMID:1717938; http://dx.doi.org/10.1177/0748734406294627

29. Jones BE. Activity, modulation and role of basal forebrain cholinergic neurons innervating the cerebral cortex. Prog Brain Res 2006; 145:157-69; PMID:14659014; http://dx.doi.org/10.1016/S0070-6123(03)54011-5

30. Blanco-Centurion C, Xu M, Murillo-Rodriguez E, Gerachscheklen D, Shiromani AM, Salin-Pascual RJ, Hof PR, Shiromani PJ. Adenosine and Sleep Homeostasis in the Central Forebrain. J Neurosci 2006; 26:8609-100; PMID:16858223; http://dx.doi.org/10.1523/JNEUROSCI.2181-06.2006
