Effect of Colistin, Fosfomycin and Meropenem/Vaborbactam on Carbapenem-Resistant *Enterobacterales* in Egypt: A Cross-Sectional Study

Raghdaa Shrief¹, Amira H El-Ashry ², Rasha Mahmoud³, Rasha El-Mahdy ²

¹Medical Microbiology and Immunology Department, Faculty of Medicine, Damietta University, Damietta, Egypt; ²Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt; ³Internal Medicine Department, Nephrology and Dialysis Unit, Mansoura University, Mansoura, Egypt

Correspondence: Rasha El-Mahdy, Medical Microbiology and Immunology, Mansoura Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt, Tel +20 10 0532 9819, Email rashaamr@mans.edu.eg

Purpose: The increasing multi-drug carbapenem resistance among *Enterobacterales* are a severe health problem limiting therapeutic options and worsen the prognosis. This study characterizes carbapenemase genes and integrons among uropathogenic carbapenem resistant *Enterobacterales* (CRE) isolates recovered from Mansoura University Hospitals and evaluates the effect of colistin, fosfomycin and meropenem-vaborbactam on these isolates.

Patients and Methods: A total of 200 *Enterobacterales* isolates were collected from patients with urinary tract infections. Antimicrobial susceptibility testing was performed by the disc diffusion method. Colistin susceptibility was tested using the broth microdilution method and fosfomycin and meropenem/vaborbactam susceptibility were tested by MIC Test Strips. Carbapenem resistant isolates were screened for carbapenemase activity phenotypically using the modified carbapenem inactivation method and EDTA-modified carbapenem inactivation method and genotypically by multiplex PCR. Integrons class 1 and 2 and *fosA* gene were assayed by PCR. Data were statistically analyzed using the Statistical Package for Social Sciences (SPSS) version 16. The Chi-square or Fisher’s exact test was used to compare groups, as appropriate.

Results: Ninety-two *Enterobacterales* isolates were resistant to meropenem (46%); 52 *E. coli* and 40 *K. pneumoniae* strains. All CRE isolates were multi-drug resistant (MDR). Sensitivity of CRE isolates to colistin, fosfomycin and meropenem-vaborbactam were 67.4%, 82.6% and 58.7%, respectively. Carbapenemase genes were detected by multiplex PCR in 69.6% of CRE isolates (*Carbapenemase producing Enterobacterales* (CPE) mainly *blaNDM* (37%)). CPE isolates were significantly more resistant to meropenem/vaborbactam than non-CPE isolates; 51.6% vs 17.8%, respectively (P = 0.003) especially *blaNDM* carrying isolates (70.6%). Class 1 integrons and *fosA* gene were detected in 91.3% and 11.9% of CRE isolates, respectively.

Conclusion: This study revealed that about half of the uropathogenic *Enterobacterales* isolates were MDR CRE. Carbapenemase gene *blaNDM* was the main gene among CRE isolates. Meropenem/vaborbactam sensitivity was significantly higher on non-CPE than CPE isolates and limited by the predominance of *blaNDM*.

Keywords: *Enterobacterales*, carbapenemases, carbapenem-resistant *Enterobacterales*, colistin, fosfomycin, meropenem-vaborbactam

Introduction

The increasing Carbapenem-resistant *Enterobacterales* (CRE) isolates are a severe threat worldwide due to the poor prognosis and limited therapeutic options.¹⁻³ The production of carbapenemases such as *Klebsiella pneumoniae* carbapenemase (KPC), Metallo- β-lactamases (MBLs) and oxacillinases (OXA) enzymes mainly cause carbapenem resistance. Moreover, the deficiency in the outer-membrane protein expression plays a minor role in carbapenem resistance.⁴

Integrons are mobile genetic elements that mediate the intracellular movement of antibiotic resistance genes. Class 1 integrons facilitate the spread of antibiotic resistance genes in *Enterobacterales*, reducing the spectrum of therapeutic options.⁵
CRE strains are usually resistant to many antibiotics, increasing the need for reusing old antibiotics such as colistin and fosfomycin and new drug combinations for treatment. These combinations use the old β-lactam drug with a new β-lactamase inhibitor effective on carbapenemases such as meropenem-vaborbactam (M/V) and ceftazidime-avibactam (C/A).

Colistin (polymyxin E) is an old antibiotic effective on most Enterobacterales species. It binds to the lipid A, disrupting the outer cell membrane and causing leakage of cytoplasmic contents and bacterial death. Colistin has been used as the last line of treatment for infections caused by CRE, yet the resistance limits its use. Loading doses colistin and colistin methanesulfonate, an inactive prodrug of colistin, are associated with favorable outcomes in infections caused by Gram-negative pathogens only when carbapenems cannot be used and with a close monitoring of the renal functions. The combining of the loading dose colistin and meropenem is associated with a better survival rate and can be a promising therapeutic strategy for treating carbapenems resistant infections.

Fosfomycin is a broad-spectrum bactericidal antibiotic that interferes with synthesizing Gram-negative and some Gram-positive bacterial cell walls. It is the first line of treatment for uncomplicated urinary tract infections (UTIs). Fosfomycin resistance is caused by many enzymes that inactivate fosfomycin, including metalloenzymes (fosA type); however, there is limited data about fosfomycin resistance in Africa, including Egypt.

A drug combination formed of meropenem paired with vaborbactam, a boronic acid β-lactamase inhibitor with a broad spectrum of carbapenemases inhibition, has been used to treat all types of CRE infections caused mainly by KPC-producing strains. Compared to the older drug combinations, this combination is a highly effective and safe therapy for severe infections in critically ill patients.

The objective of this study was to characterize the carbapenemase genes, and integrons among the uropathogenic CRE isolates recovered from Mansoura University Hospitals (MUHs) and to evaluate the effect of colistin, fosfomycin and meropenem-vaborbactam on CRE isolates. To our knowledge, this is the first study evaluating the effectiveness of meropenem-vaborbactam on uropathogenic CRE isolates in Egypt.

Materials and Methods
This cross-sectional study assessed the efficacy of colistin, fosfomycin and meropenem-vaborbactam on the uropathogenic CRE isolates recovered from MUHs.

Bacterial Isolates
Two hundred Enterobacterales strains were isolated from the urine of patients with UTIs attending MUHs from September 2021 to March 2022. Each patient underwent a clinical examination after taking a medical history to diagnose the UTI.

Isolation and Identification of the Enterobacterales Isolates
The urine samples were collected from adult patients with UTIs under complete aseptic conditions and cultured on cystine lactose electrolyte deficient agar (CLED) (Oxoid Ltd., England) to detect different Enterobacterales species.

Urinary tract infection was diagnosed if the patient suffered from symptoms and signs of UTI; fever (>38.0°C), suprapubic tenderness, costovertebral angle pain or tenderness, urinary urgency, urinary frequency or dysuria and confirmed when the bacterial colony count was ≥10^5 CFU/mL.

The isolates were identified by Gram staining and the standard biochemical tests; methyl red test, Voges-Proskauer test, citrate utilization test, oxidase test, Kligler iron agar, lysine iron agar and motility indole ornithine test. The isolates identification was confirmed by API 20E (BioMérieux, Marcy l’Étoile, France).

Detection of CRE
Carbapenem-resistant Enterobacterales (CRE) isolates are defined as any isolate that has imipenem/or meropenem MIC values of ≥ 4 μg/mL. All Enterobacterales isolates (No = 200) were tested for meropenem susceptibility by the disc diffusion and broth microdilution methods according to the Clinical Laboratory Standards Institute (CLSI) guidelines M100 and M07, respectively. Interpretative criteria for meropenem were susceptible ≤1 mg/l, intermediate 2 mg/l and resistant ≥4 mg/l.
Antimicrobial Susceptibility Testing

Antimicrobial susceptibility testing of CRE isolates was performed by the disc diffusion method for several antibiotics, including aztreonam (30 μg), amikacin (30 μg), cefuroxime (30 μg), cefazidime (30 μg), cefotixin (30 μg), piperacillin/tazobactam (100/10 μg), ciprofloxacin (5 μg), nitrofurantoin (300 μg) and trimethoprim/sulfamethoxazole (1.25/23.7 μg).

Colistin susceptibility testing was carried out using the broth microdilution method with cation-adjusted Mueller Hinton broth (Oxoid) as a culture medium and colistin sulfate powder (Acros Organics BVBA, Geel, Belgium). The test was interpreted using EUCAST cut-offs as MIC ≤ 2 μg/mL susceptible and >2 μg/mL resistant.

Fosfomycin susceptibility was tested using the disc diffusion method with fosfomycin 200 μg disc containing glucose-6-phosphate (G6P) (Liofilchem, Roseto Degli Abruzzi, Italy) on Mueller Hinton agar and interpreted using CLSI guidelines, where ≥16 mm was sensitive, 13–15 mm intermediate and ≤12 mm resistant. In addition, fosfomycin sensitivity was carried out using Fosfomycin MIC Test Strip (Liofilchem) containing fosfomycin and G6P and interpreted according to breakpoints set by the CLSI; ≤64 μg/mL as susceptible and ≥256 μg/mL as resistant for E. coli.

Meropenem/vaborbactam susceptibility was tested by the disc diffusion method using meropenem/vaborbactam disc (20μg-10μg) (MAST Laboratories Ltd., Bootle, Merseyside, UK) and the MIC Test Strip (MTS™ Meropenem-vaborbactam, Liofilchem). The susceptibility was interpreted using CLSI guidelines for Enterobacterales as susceptible ≥18 mm, intermediate 15–17 mm and resistant ≤14 mm using the disc diffusion method and susceptible ≤4/8 mg/L, intermediate 8/8 mg/l and resistant ≥16/8 mg/l for the MIC Test Strip method.

Quality control testing was performed using Escherichia coli ATCC 25922 and NCTC 13353 and Klebsiella pneumoniae ATCC 700603 and ATCC BAA-1705 as reference strains to ensure the proper test conditions.

Phenotypic and Genotypic Detection of Carbapenemase Producing Enterobacterales

Phenotypic detection of carbapenemase producers was performed by the modified carbapenem inactivation method (mCIM) and EDTA-modified carbapenem inactivation method (eCIM) according to CLSI guidelines to distinguish metallo-carbapenemase from serine-carbapenemase.

DNA was extracted from CRE isolates using the Gene JET genomic DNA purification kit (Thermo Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s instructions. DNA was then stored at −20°C.

All CRE isolates were screened for carbapenemase genes; blaIMP, blavIM, blaOXA-48, blaNDM and blaKPC, as previously described. Carbenapenem genes were detected using two multiplex PCR reactions; one for blaIMP and blavIM and the second for detecting blaOXA-48, blaNDM and blaKPC. The thermal cycling steps involved initial denaturation of 10 min at 94°C and 36 cycles of 30s at 94°C, 40s at 52°C, and 50s at 72°C, with 5 min for the final extension. The gel electrophoresis using 2% agarose was used to detect blaIMP, blavIM, blaOXA-48, blaNDM and blaKPC amplicons; 232, 390, 438, 621 and 798 bp, respectively. Sequences of primers used to amplify the five carbapenemase genes are shown in Table 1.

Detection of Class 1 and 2 Integrons by Duplex PCR Among CRE Isolates

As previously reported, Integrons class 1 and 2 were detected using the genomic DNA by duplex PCR yielding 160 and 789 bp amplicons, respectively (Table 1).

Detection of fosA Gene by PCR Among CRE Isolates

The plasmid was extracted from fosfomycin-resistant CRE isolates using Gene JET Plasmid Miniprep Kit (Thermo Scientific). The purified plasmid was used to detect the fosA gene by PCR using the primers listed in Table 1.

Statistical Analysis

Data were statistically analyzed using the Statistical Package for Social Sciences (SPSS) version 16 (SPSS Inc, Chicago, IL, USA). Qualitative data were expressed as numbers and percentages. The Chi-square or Fisher’s exact test was used to compare groups, as appropriate. Results with p < 0.05 were considered statistically significant.
The present study was conducted on 200 Enterobacterales strains (121 E. coli, 78 Klebsiella pneumoniae, 1 Enterobacter cloacae) isolated from urine of adult patients over 7 months. The patients were 61.5% female (123/200) and 38.5% male (77/200).

Enterobacterales strains were recovered from patients with UTI and confirmed by traditional biochemical reactions and API 20E. Meropenem susceptibility testing using the broth microdilution method according to CLSI guidelines (susceptible ≤1 mg/l and resistant ≥4 mg/l) revealed 92 CRE isolates (46% of Enterobacterales isolates); 52 E. coli and 40 K. pneumoniae strains.

Using the disc diffusion method, all the isolates were resistant to cefuroxime and ceftazidime. About 24%, 15.2% and 8.7% of CRE isolates were sensitive to amikacin, nitrofurantoin and cefoxitin, respectively and only 6.5% of the isolates were sensitive to aztreonam, ciprofloxacin and trimethoprim/sulfamethoxazole (Table 2). Out of 200 Enterobacterales isolates, 105 isolates (52.5%) were MDR including all the CRE isolates.

Colistin susceptibility was tested using the broth microdilution method where sensitive CRE isolates had MIC ≤ 2 μg/mL. About 67.4% of CRE isolates were sensitive to colistin (Table 2) and the colistin MIC range was 0.25–64 μg/mL.

Testing the fosfomycin susceptibility of CRE isolates using the disc diffusion method and MIC Test Strip showed that 82.6% of the isolates were sensitive to fosfomycin (Table 2), where the fosfomycin MIC range was 0.125–256 μg/mL (Figure 1).

Meropenem/vaborbactam susceptibility was evaluated by the disc diffusion method according to CLSI guidelines; 58.7% of the CRE isolates were inhibited by meropenem/vaborbactam (Table 2). Using the MIC Test Strip, the range of meropenem/vaborbactam MIC was 0.032–256 μg/mL (Figure 1).

Screening of carbapenemase genes; bla_{IMP}, bla_{VIM}, bla_{OXA-48}, bla_{NDM} and bla_{KPC} by two multiplex PCR revealed that 69.6% of the isolates had carbapenemase genes (Carbapenemase producing Enterobacterales (CPE)) mainly bla_{NDM} (37%) followed by bla_{OXA-48} and bla_{KPC} (13% each). Four (4.4%) and two (2.2%) CRE isolates carried bla_{NDM} plus bla_{OXA-48} and bla_{KPC} plus bla_{OXA-48}, respectively. Carbapenemase genes bla_{IMP} and bla_{VIM} were not detected in any of the CRE isolates. Twenty-eight (30.4%) CRE isolates were non-CPE isolates (Table 3). The sensitivity and specificity of

Table 1 Primers’ Sequences and Amplicons’ Size Used in PCR for Carbapenemase, Integrons and fosA Genes Detection

Gene	Primer Sequence (5′-3′)	Amplicon (bp)	Reference
bla_{IMP}	GGAATAGAGTGGCTTAAYTCTC GGT'TAAAYAAAACACCCACC	232	24
bla_{VIM}	GATGGTGTGGTGGCACA CATGAATGGCAGCATGAC	390	24
bla_{OXA-48}	GGCAGTTAAGGATGAACAC CATCAAGTTCAACCAACCC	438	24
bla_{NDM}	GGT'TGGCAGTGCTGGTTTC CGGAAATGGCTACATGAC	621	24
bla_{KPC}	GTTTCTAGTTGCTTGTTGTTG CGGAATGGCATTGAGC	798	24
Integron class 1	CAGTGACATAAGCCTGTTCC CCGAGGCGATAGCTGA	160	25
Integron class 2	CACGGGATATGGCACAAGAAGGT GTAGCAAACGAGTGACGAAATG	789	25
fosA	ATCTGTGGCTGCTGCTGCTG ATGCGCCGATAGGCTTCT	271	26

Note: Y = C or T.
Abbreviation: bp, base pair.

Results

The present study was conducted on 200 Enterobacterales strains (121 E. coli, 78 Klebsiella pneumoniae, 1 Enterobacter cloacae) isolated from urine of adult patients over 7 months. The patients were 61.5% female (123/200) and 38.5% male (77/200).

Enterobacterales strains were recovered from patients with UTI and confirmed by traditional biochemical reactions and API 20E. Meropenem susceptibility testing using the broth microdilution method according to CLSI guidelines (susceptible ≤1 mg/l and resistant ≥4 mg/l) revealed 92 CRE isolates (46% of Enterobacterales isolates); 52 E. coli and 40 K. pneumoniae strains.

Using the disc diffusion method, all the isolates were resistant to cefuroxime and ceftazidime. About 24%, 15.2% and 8.7% of CRE isolates were sensitive to amikacin, nitrofurantoin and cefoxitin, respectively and only 6.5% of the isolates were sensitive to aztreonam, ciprofloxacin and trimethoprim/sulfamethoxazole (Table 2). Out of 200 Enterobacterales isolates, 105 isolates (52.5%) were MDR including all the CRE isolates.

Colistin susceptibility was tested using the broth microdilution method where sensitive CRE isolates had MIC ≤ 2 μg/mL. About 67.4% of CRE isolates were sensitive to colistin (Table 2) and the colistin MIC range was 0.25–64 μg/mL.

Testing the fosfomycin susceptibility of CRE isolates using the disc diffusion method and MIC Test Strip showed that 82.6% of the isolates were sensitive to fosfomycin (Table 2), where the fosfomycin MIC range was 0.125–256 μg/mL (Figure 1).

Meropenem/vaborbactam susceptibility was evaluated by the disc diffusion method according to CLSI guidelines; 58.7% of the CRE isolates were inhibited by meropenem/vaborbactam (Table 2). Using the MIC Test Strip, the range of meropenem/vaborbactam MIC was 0.032–256 μg/mL (Figure 1).

Screening of carbapenemase genes; bla_{IMP}, bla_{VIM}, bla_{OXA-48}, bla_{NDM} and bla_{KPC} by two multiplex PCR revealed that 69.6% of the isolates had carbapenemase genes (Carbapenemase producing Enterobacterales (CPE)) mainly bla_{NDM} (37%) followed by bla_{OXA-48} and bla_{KPC} (13% each). Four (4.4%) and two (2.2%) CRE isolates carried bla_{NDM} plus bla_{OXA-48} and bla_{KPC} plus bla_{OXA-48}, respectively. Carbapenemase genes bla_{IMP} and bla_{VIM} were not detected in any of the CRE isolates. Twenty-eight (30.4%) CRE isolates were non-CPE isolates (Table 3). The sensitivity and specificity of
the combined mCIM and eCIM for detection of carbapenemase activity among CPE isolates were 92% and 96.2%, respectively. The eCIM could not detect carbapenemase activity in 3 CPE isolates carrying both \textit{bla}_{NDM} plus \textit{bla}_{OXA-48} (Table 4).

Carbapenemase-producing \textit{Enterobacterales} (CPE) isolates were significantly more resistant to meropenem/vaborbactam compared to non-CPE isolates; 51.6% vs 17.8%, respectively (P = 0.003). This resistance was higher among the isolates carrying \textit{bla}_{NDM} (70.6%) than other carbapenemase genes. There was no significant difference in the resistance pattern of all other tested antibiotics between the CPE and non-CPE isolates (p ≥ 0.05, Tables 3 and 5).

Eleven out of the 16 fosfomycin-resistant CRE isolates (68.75%, 11.9% of CRE isolates) carried \textit{fosA} gene; 66.7% (4/6) and 70% (7/10) of fosfomycin-resistant \textit{E. coli} and \textit{K. pneumoniae} isolates, respectively. \textit{FosA} gene was more common among CPE than non-CPE isolates; 15.6% vs 3.6%, respectively (Table 5).

Integron class 1 was detected in 91.3% of the CRE isolates by duplex PCR, mostly among \textit{E. coli} isolates, while integron class 2 was not detected in any of the CRE isolates. Integron class 1 was more common among non-CPE than CPE isolates; 100% vs 87.5%, respectively (Table 5).

Discussion

Carbapenem-resistant \textit{Enterobacterales} are a global health concern associated with patients’ morbidity and mortality. These strains have become an alarming issue due to limited therapeutic options that enforce the reuse of some old therapy and the development of new therapeutic alternatives.

The present study involved 200 \textit{Enterobacterales} isolates from adult patients with UTIs attending MUHs over seven months. According to meropenem susceptibility testing, ninety-two isolates (46%) were CRE strains; \textit{E. coli} (52, 56.5%) and \textit{K. pneumoniae} (40, 43.5%). Similar to these results, Kotb et al also stated that 47.9% of 2306 \textit{Enterobacterales} isolates were carbapenem-resistant, and the prevalence of CRE varied with different clinical samples.

The prevalence of CRE varies in Egypt from 34.1% to 66.08%.

Table 2 Antimicrobial Susceptibility Pattern of the Uropathogenic CRE Strains

	\textit{CR \textit{E. coli}} (No = 52)	\textit{CR \textit{K. pneumoniae}} (No = 40)	\textit{CRE Isolates} (No = 92)			
	S	R	S	R	S	R
Aztreonam	4 (7.7)	48 (92.3)	2 (5)	38 (95)	6 (6.5)	86 (93.5)
Piperacillin/tazobactam	0 (0)	52 (100)	4 (10)	36 (90)	4 (4.3)	88 (95.7)
Amikacin	14 (27)	38 (73)	8 (20)	32 (80)	22 (23.9)	70 (76.1)
Ciprofloxacin	0 (0)	52 (100)	6 (15)	34 (85)	6 (6.5)	86 (93.5)
Nitrofurantoin	12 (23)	40 (77)	2 (5)	38 (95)	14 (15.2)	78 (84.8)
Cefuroxime	0 (0)	52 (100)	0 (0)	40 (100)	0 (0)	92 (100)
Ceftazidime	0 (0)	52 (100)	0 (0)	40 (100)	0 (0)	92 (100)
Cefoxitin	6 (11.5)	46 (77)	2 (5)	38 (95)	8 (8.7)	84 (91.3)
Trimethoprim/	2 (3.8)	50 (96.2)	4 (10)	36 (90)	6 (6.5)	86 (93.5)
sulfamethoxazole						
Colistin	30 (57.7)	22 (42.3)	32 (80)	8 (20)	62 (67.4)	30 (32.6)
Fosfomycin	46 (88.5)	6 (11.5)	30 (75)	10 (25)	76 (82.6)	16 (17.4)
Meropenem/vaborbactam	30 (57.7)	22 (42.3)	24 (60)	16 (40)	54 (58.7)	38 (41.3)

Abbreviations: CR, carbapenem resistant; CRE, carbapenem-resistant \textit{Enterobacterales}; S, sensitive, R, resistant.
Enterobacterales are a significant health issue as half of the Enterobacterales isolates were resistant to carbapenem in some hospitals. This resistance level is higher than other Arab, African, Asian, European and American countries.\(^{31,32}\)

Antimicrobial susceptibility testing of CRE isolates showed a high resistance pattern to most tested antibiotics with no sensitivity to cefuroxime and ceftazidime. These data are comparable to the data previously reported in India\(^{33}\) and the USA.\(^{34–36}\)

Of 200 Enterobacterales isolates, 105 isolates (52.5%) were MDR, including all CRE strains acquiring non-susceptibility to at least one agent in three or more antimicrobial categories.\(^{37}\) Similar results were also reported from Ethiopia,\(^{31}\) Egypt\(^{38}\) and Saudi Arabia,\(^{39}\) while, a higher percentage of MDR was reported in other studies\(^{30,40–42}\) and a lower percentage was documented in some Arab countries\(^{43}\) and USA.\(^{44}\) The high prevalence of MDR in Egypt emphasizes the importance of implementing effective infection control strategies and antibiotic stewardship programs, in addition to the education of healthcare workers for early surveillance and preventive measures of MDR isolates to control their spread.

Integron class 1 was detected in 91.3% of our CRE isolates. Multi-drug resistance is strongly associated with integrons, especially class 1, which is widely distributed among resistant Gram-negative bacteria. In this study, all

Figure 1. Meropenem/vaborbactam and fosfomycin susceptibility testing using the MIC Test Strip according to CLSI guidelines. (A) Meropenem/vaborbactam susceptible strain (MIC = 0.032 µg/mL), (B) meropenem/vaborbactam resistant strain (MIC > 256 µg/mL), (C) fosfomycin susceptible strain (MIC = 0.25 µg/mL) and (D) fosfomycin resistant strain (MIC > 256 µg/mL).
Table 4 Performance of the Modified Carbapenem Inactivation Method (mCIM) and EDTA-Modified Carbapenem Inactivation Method (eCIM) in Screening of Carbapenemase Activity of Carbapenem Resistant Isolates

Bacterial Species (No)	Non-CPE	Genes	Integron Class 1					
	No of CRE strains	blaNDM	blaOXA-48	blaKPC	blaNDM and blaOXA-48	blaNDM and blaOXA-48	Total	
E. coli (52)	28 (30.4%)	16	18	12	4	2	0	50
K. pneumoniae (40)	12	16	0	8	2	2	34	
Total (92)	34 (37%)	12 (13%)	12 (13%)	4 (4.4%)	2 (2.2%)	84 (91.3%)		
Meropenem/vaborbactam sensitivity	23 (82.1%)	10 (29.4%)	6 (50%)	12 (100%)	2 (50%)	1 (50%)	50 (59.5%)	

Abbreviation: Non-CPE, non-carbapenemase producing Enterobacterales.

Table 3 Detection of Carbapenemase and Integrons Genes by PCR and the Sensitivity of CRE Isolates to Meropenem/Vaborbactam

Bacterial Species (No)	Non-CPE	Genes	Integron Class 1				
	No of CRE strains	blaNDM	blaOXA-48	blaKPC	blaNDM and blaOXA-48	blaNDM and blaOXA-48	Total
E. coli (52)	28	34	12	12	4	2	92
K. pneumoniae (40)	0	34	12	12	4	2	64
Total (92)	N/A	34	1	0	1	0	36

Abbreviations: CRE, carbapenem-resistant Enterobacterales; Non-CPE, non-carbapenemase producing Enterobacterales; N/A, not applicable.

Table 5 Antibiotic Resistance Pattern and the Distribution of Integron and fosA Genes Among Carbapenemase Producing Enterobacterales (CPE) and Non-CPE Isolates

Antibiotic	Non-CPE Isolates (No = 28) No/%	CPE Isolates (No = 64) No/%	P value
Aztreonam	26 (92.8%)	60 (93.7%)	1
Piperacillin/tazobactam	28 (100%)	60 (93.7%)	0.31
Amikacin	24 (85.7%)	46 (71.9%)	0.15
Ciprofloxacin	26 (92.8%)	60 (93.7%)	1
Nitrofurantoin	24 (85.7%)	54 (84.4%)	1
Cefuroxime	28 (100%)	64 (100%)	NA
Ceftazidime	28 (100%)	64 (100%)	NA
Cefoxitin	26 (92.8%)	58 (90.6%)	1
Trimethoprim/sulfamethoxazole	28 (100%)	58 (90.6%)	0.17
Colistin	8 (28.6%)	22 (34.4%)	0.58
Fosfomycin	2 (7.1%)	14 (21.9%)	0.13
Meropenem/vaborbactam	5 (17.8%)	33 (51.6%)	0.003*
Integrons class I	28 (100%)	56 (87.5%)	0.10
fosA gene	1 (3.6%)	10 (15.6%)	0.16

Note: *P value is significant; < 0.0.
Abbreviation: CPE, carbapenemase producing Enterobacterales.
CRE isolates were MDR, and integron class 1 was detected among most of them, which might play a role in the spread of MDR among these isolates.25

In this study, 62 CRE isolates (67.4%) were sensitive to colistin adopting EUCAST cut-offs in agreement with other studies.8,14,36 Castanheira et al,35 Qamar et al45 and Maraki et al50 have recorded a higher colistin sensitivity; 83.3%, 84.1% and 87.5% among the CRE isolates, respectively. In contrast, in Turkey, a high colistin resistance (76.19%) has been reported owing to the only testing multi- and extensive drug-resistant Enterobacteriales and the high level of antibiotic consumption.7

Both colistin and fosfomycin are considered a salvage treatment for multi- and extensive drug-resistant carbapenem-resistant Enterobacteriales infections as they are associated with better prognosis.45 In our study, fosfomycin inhibited 82.6% of the CRE isolates. The fosA gene was detected in 11 of 16 resistant isolates (68.75%), consistent with other studies from Egypt16 and Pakistan.45

Similarly, several studies have reported the sensitivity of CRE isolates from different clinical samples to fosfomycin.16,17,46–48 Moreover, 74% of carbapenem-resistant Enterobacter species were sensitive to fosfomycin, and the fosA gene was detected in only 42% of the resistant isolates.49 On the contrary, a high fosfomycin resistance was detected among carbapenem-resistant K. pneumoniae9,50 and extensive drug-resistant CRE isolates (67.35%).7

Several mechanisms are associated with fosfomycin resistance that differs with the geographic locality and the studied bacteria. Plasmid-mediated fosA enzymes are the most common mechanism of resistance in Enterobacteriales.39

In the USA, the fosA gene was detected in 80% of carbapenem-resistant K. pneumoniae isolates,51 whereas in China, the fosA gene has been identified in only uropathogenic K. pneumoniae (26.7%)52 and has not been recognized in any fosfomycin-resistant isolates in other studies.50,53 Lastly, Mosime et al have reported that fosA enzymes are not a common cause of resistance amongst community-acquired urinary pathogens.54

In the current study, 69.6% of CRE isolates were CPE, mostly blaNDM producers (37%), followed by blaOXA-48 and blaKPC producers (13% each). About 4.4% and 2.2% of the CRE isolates carried blaNDM plus blaOXA-48 and blaKPC plus blaOXA-48, respectively, while 30.4% of CRE were non-CPE isolates. The sensitivity of the mCIM combined with the eCIM in the screening of carbapenemase activity was 92%.

In accordance, 75.8% of CRE isolates carried carbapenemase genes, yet, 50.9%, 10.2% and 9.5% of the isolates had blaKPC, blaOXA-48 like genes and blaNDM-1, respectively34 consistent with other studies.5,35 On the other hand, a lower prevalence of carbapenemase encoding genes was documented in 53.4% of CRE isolates, where blaKPC was the most frequent gene (94.2%).36

In Egypt, carbapenem resistance genes have been recognized in 45.3% of MDR CRE isolates.38 Another Egyptian study reported that carbapenemase gene prevalence among CRE isolates was 89.62% and similar to the current study, the most prevalent gene detected was blaNDM (68.88%).42 Furthermore, a high prevalence of blaNDM has also been documented among CRE isolates in Alexandria, Egypt (67.5%)55 and Greece (85%),9 which might be due to its presence on conjugative plasmids that facilitate its spread between bacteria.42

However, some Egyptian studies have reported that blaOXA-48 was the most common carbapenemase gene among CRE isolates28,30 similar to the studies from Turkey7 and Ethiopia.40 On the other hand, Khalil et al29 have stated that the most prevalent carbapenemase genes among CRE were blaKPC in Gharbia, Egypt. This difference in the most prevalent carbapenemase gene type might be due to the different detection methods and geographic regions.40

In the current study, meropenem/vaborbactam inhibited 58.7% of CRE isolates, and its sensitivity was significantly higher on non-CPE than CPE isolates; 82.2% vs 48.4%, respectively, with a low sensitivity on the isolates carrying blaNDM (29.4%) and a complete sensitivity on the isolates carrying blaKPC (100%).

A study has stated that meropenem/vaborbactam inhibited 73.9% of CRE isolates with significant activity on blaKPC producing isolates (99.5%), limited activity on blaOXA-48 producing isolates and no activity on blaNDM-1 producing isolates. Meropenem/vaborbactam had a lower MIC50/90 with blaKPC than non blaKPC producing isolates due to the large number of MBLs and OXA-48 producing isolates.6 Meropenem-vaborbactam was 4-fold more active than meropenem alone and inhibited 84.2% of the CRE isolates.34
Similarly, several studies have documented meropenem-vaborbactam complete activity on bla_{KPC} producing CRE isolates regardless of the bla_{KPC} variant, limited activity on isolates producing bla_{OXA-48} and no activity on MBLs producing ones.^{35,36}

The low efficacy of meropenem/vaborbactam seen in our study compared to other studies might be due to the predominancy of bla_{NDM} then bla_{OXA-48} and bla_{KPC} producing CRE isolates. Vaborbactam strongly inhibits bla_{KPC} and has a good outcome when combined with different carbapenems. It does not inhibit MBLs producing isolates and has limited activity on isolates producing class D oxacillinases associated with resistance to carbapenems.³⁴ It has also been documented that meropenem-vaborbactam was active on non-bla_{KPC} producers other than bla_{NDM} and bla_{OXA-48}.³⁶

In the present study, meropenem/vaborbactam significantly inhibited non-CPE higher than CPE isolates. Other studies have similarly reported the whole activity of meropenem-vaborbactam on non-CPE isolates compared to other antibiotics.^{35,36,57} The therapeutic options of non-carbapenem producing CRE are challenging, and further studies are still needed. The effect of meropenem/vaborbactam on the isolates varies with the bacterial species and the different resistance mechanisms.⁵⁷

Clarifying the epidemiology of CRE isolates and their resistance mechanisms is mandatory to guide the clinicians on the appropriate therapeutic options for infections caused by these organisms to improve the clinical outcome. Surveillance of CRE, effective infection control measures and appropriate antibiotic stewardship are crucial approaches to reducing the spread of CRE. An antimicrobial restriction system could increase the appropriateness of prescribing antibiotics and decrease the expense for carbapenem.⁵⁸

Our work emphasizes the importance of meropenem/vaborbactam therapy with the favorable clinical outcome for all physicians, pharmacists, and healthcare professionals worldwide. Meropenem/vaborbactam is a promising therapeutic option for bla_{KPC}-producing uropathogenic isolates, yet its effect on non-bla_{KPC} CRE producers (MBLs and OXA-48-like enzymes producers) is limited and needs more optimization. To the best of our knowledge, this is the first study in Egypt that highlights the effect of meropenem/vaborbactam on uropathogenic CRE isolates. However, this study had some limitations such as the short study duration and limited molecular techniques due to financial constraints. More studies are needed on different clinical samples, pathogenic bacteria and patients’ groups.

Conclusions

In conclusion, this study revealed that about half of uropathogenic Enterobacterales were MDR CRE isolates and colistin and fosfomycin had an excellent therapeutic effect on these CRE isolates. The carbapenemase gene bla_{NDM} was the primary gene among CPE isolates, and meropenem/vaborbactam had an unsatisfactory therapeutic effect on CRE isolates due to the predominancy of bla_{NDM}.

Abbreviations

KPC, Klebsiella pneumoniae carbapenemases; OXA, oxacillinases; MDR, multi-drug resistant; UTIs, urinary tract infections; MUHs, Mansoura University Hospitals; CLED, cystine lactose electrolyte deficient agar; CLSI, Clinical Laboratory Standards Institute; EUCAST, European Committee on Antimicrobial Susceptibility Testing; G6P, glucose-6-phosphate; MIC, minimum inhibitory concentration; CPE, carbapenemase producing Enterobacterales.

Data Sharing Statement

On request.

Ethics Approval and Consent to Participate

This study was approved by Mansoura Faculty of Medicine ethical committee (R22.09.1813) and a signed informed consent was obtained from each patient. This study complies with the Declaration of Helsinki.

Author Contributions

All authors made a significant contribution to the work reported, whether that is in the conception, study design, execution, acquisition of data, analysis and interpretation, or in all these areas; took part in drafting, revising or critically
The authors report no conflicts of interest in this work.

Disclosure

The authors report no conflicts of interest in this work.

References

1. Bassetti M, Peghin M, Pecori D. The management of multidrug-resistant Enterobacteriaceae. Curr Opin Infect Dis. 2016;29:583–594. doi:10.1097/QCO.0000000000000314

2. Logan LK, Weinstein RA. The epidemiology of carbapenem-resistant Enterobacteriaceae: the impact and evolution of a global menace. J Infect Dis. 2017;215:S28–36. doi:10.1093/infdis/jsw282

3. Jean -S-S, Harnod D, Hsueh P-R. Global threat of carbapenem-resistant Gram-negative bacteria. Front Cell Infect Microbiol. 2022;12:823684. doi:10.3389/fcmem.2022.823684

4. Novelli A, Giacomo PD, Rossolini GM, Tumbarello M. Meropenem/vaborbactam: a next generation β-lactam β-lactamase inhibitor combination. Expert Rev Anti-Infect Ther. 2020;18(7):643–655. doi:10.1080/14787210.2020.1756775

5. Bagheri-Nesami M, Rafei A, Eslami G, et al. Assessment of extended-spectrum β-lactamases and integrons among Enterobacteriaceae in device-associated infections: multicenter study in north of Iran. Antimic Res Infect Control. 2016;5:52. doi:10.1186/s13756-016-0143-2

6. Pfüller MA, Huband MD, Mendes RE, Flamm RK, Castanheira M. In vitro activity of meropenem/vaborbactam and characterisation of carbapenem resistance mechanisms among carbapenem-resistant Enterobacteriaceae from the 2015 meropenem/vaborbactam surveillance programme. Int J Antimicrob Agents. 2018;52:144–150.

7. Süzük Yıldız S, Kaşkatepe B, Şinşek H, Sargüzel FM. High rate of colistin and fosfomycin resistance among carbapenemase-producing Enterobacteriaceae in Turkey. Acta Microbiol Immunol Hung. 2019;66(1):103–112. doi:10.1556/030.65.2018.042

8. Yamamoto M, Pop-Vicas AE. Treatment for infections with carbapenem-resistant Enterobacteriaceae: what options do we still have? Crit Care. 2014;18(3):229. doi:10.1186/1305-5179-18-229

9. Maruki S, Mavromanolaki VE, Moraitis P, et al. Ceftazidime-avibactam, meropenem-vaborbactam, and imipenem-relebactam in combination with aztreonam against multidrug-resistant, metallo-β-lactamase-producing Klebsiella pneumoniae. Eur J Clin Microbiol Infect Dis. 2021;40(8):1755–1759. doi:10.1007/s10096-021-04197-3

10. Katip W, Yoodoe J, Uitrakul S, Oberdorfer P. Efficacy of loading dose colistin versus carbapenems for treatment of extended spectrum beta-lactamase producing Enterobacteriaceae. Sci Rep. 2021;11(1):18. doi:10.1038/s41598-020-78098-4

11. Katip W, Uitrakul S, Oberdorfer P. Clinical efficacy and nephrotoxicity of the loading dose colistin for the treatment of carbapenem-resistant Acinetobacter baumannii infection in critically ill patients. Pharmaceuticals. 2021;14(1):31. doi:10.3390/pharmaceutics14010031

12. Katip W, Oberdorfer P, Kasatpibal N. Effectiveness and nephrotoxicity of loading dose colistin-meropenem versus loading dose colistin-imipenem in the treatment of carbapenem-resistant Acinetobacter baumannii infection. Pharmaceutics. 2022;14(6):1266. doi:10.3390/pharmaceutics14061266

13. Aghamali M, Sedighi M, Zahedi Bialvaei A, et al. Fosfomycin: mechanisms and the increasing prevalence of resistance. J Med Microbiol. 2019;68(1):11–25. doi:10.1099/jmm.0.008747

14. Okhoshi Y, Sato T, Suzuki Y, et al. Mechanism of reduced susceptibility to fosfomycin in Escherichia coli clinical isolates. Biomed Res Int. 2017;2017;5470241. doi:10.1155/2017/5470241

15. Garallah ET, Al-Jubori SS. Surveillance of murA and the plasmid-mediated fosfomycin resistance foxA gene in uropathogenic E. coli isolates from UTI patients. Gene Rep. 2020;21(7):100872. doi:10.1016/j.genrep.2020.100872

16. Mashaly G-S. Activity of fosfomycin in extended-spectrum beta-lactamases producing Klebsiella pneumoniae from hospital acquired urinary tract infections. Open J Med Microbiol. 2016;6:104–110. doi:10.4236/ojmm.2016.63014

17. Foad MF. Phenotypic detection and antimicrobial susceptibility profile of ESBL, AmpC and carbapenemase producing gram-negative isolates from outpatient clinic specimens. Int J Antimicrob Agent. 2016;5(1):740–752. doi:10.1016/j.ijantimicag.2015.02.015

18. Lee Y, Kim J, Trinh S. Meropenem-Vaborbactam (Vabomere™): another option for carbapenem-resistant Enterobacteriaceae. PT. 2019;44:110–113.

19. Tumbarello M, Raffaelli F, Cascio A, et al. Compassionate use of meropenem/vaborbactam for infections caused by KPC-producing Klebsiella pneumoniae: a multicentre study. JAC Antimicrob Resist. 2022;4(1):dlac022. doi:10.1093/jac/dlac022

20. Forteza Guillot M, Martin Cerezuela M, Ramirez P. New evidence in severe pneumonia: meropenem-vaborbactam. Rev Esp Quimioter. 2022;35(Suppl1):43–45. doi:10.37201/rev/s01.10.2022

21. Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing CLSI Supplement M100. 31st ed. Wayne, PA: CLSI; 2021.

22. Clinical and Laboratory Standards Institute (CLSI). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. 11th ed. Wayne, PA: CLSI; 2018.

23. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 12.0; 2022. Available from: http://www.eucast.org. Accessed October 21, 2022.

24. Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis. 2011;70(1):119–123. doi:10.1016/j.diagmicrobio.2010.12.002
25. Khosravi AD, Motahar M, Abbasi Montazeri E. The frequency of class1 and 2 integrons in Pseudomonas aeruginosa strains isolated from burn patients in a burn center of Ahvaz, Iran. PLoS One. 2017;12(8):e0183061. doi:10.1371/journal.pone.0183061

26. Li Y, Zheng B, Li Y, Zhu S, Xue F, Liu J. Antimicrobial susceptibility and molecular mechanisms of fosfomycin resistance in clinical Escherichia coli isolates in mainland China. PLoS One. 2015;10(8):e0135269. doi:10.1371/journal.pone.0135269

27. Korb S, Lyman M, Ismail G, et al. Epidemiology of carbapenem-resistant Enterobacteriaceae in Egyptian intensive care units using National Healthcare-associated infections surveillance data, 2011–2017. Antimicrob Resist Infect Control. 2020;9(1):1–9. doi:10.1186/s13756-019-0639-7

28. Raheel AS, Mohamed HA, Hessam WF, Abbadi SH, El Sayed AE. Detection of carbapenemase enzymes and genes among carbapenem-resistant Enterobacteriaceae isolates in Suez Canal University Hospitals in Ismailia, Egypt. Microbes and Infect Dis. 2020;1(1):24–33.

29. Khalil HS, Wahab MAAE. Risk factors, phenotypic and genotypic characterization of carbapenem resistant Enterobacteriaceae in Tanta University Hospitals. Int J Infect Res. 2016;12(2). doi:10.3396/ijic.v12i2.15905

30. Kamel NA, El-Tayeb WN, El-Ansary MR, Mansour MT, Aboshanab KM. Phenotypic screening and molecular characterization of carbapenemase-producing Gram-negative bacilli recovered from febrile neutropenic pediatric cancer patients in Egypt. PLoS One. 2018;13(8):e0202119. doi:10.1371/journal.pone.0202119

31. Bitew A, Tsige E. High prevalence of multidrug-resistant and extended-spectrum β-lactamase-producing Enterobacteriaceae: a cross-sectional study at Arsha advanced medical laboratory, Addis Ababa, Ethiopia. J Trop Med. 2020;2020:6167234.

32. El-Kholy A, El-Mahallawy HA, Elsharnouby N, Abdel Aziz M, Helmy AM, Korb R. Landscape of multidrug-resistant gram-negative infections in Egypt: survey and literature review. Infect Drug Resist. 2021;14:1905–1920. doi:10.2147/IDR.S298920

33. Shammugam P, Meenakshisundaram J, Jayaraman P. blaKPC gene detection in clinical isolates of carbapenem resistant Enterobacteriaceae in a tertiary care hospital. J Clin Diagn Res. 2013;7:2736–2738. doi:10.3760/jcdr.2013.7759.3747

34. Castanheira M, Huband MD, Mendes RE, Flamm RK. Meropenem-vaborbactam tested against contemporary Gram-negative isolates collected worldwide during 2014, including carbapenem-resistant, KPC producing, multidrug-resistant and extensively drug-resistant Enterobacteriaceae. Antimicrob Agents Chemother. 2017;61:e00567–17. doi:10.1128/AAC.00567-17

35. Castanheira M, Doyle TB, Kantro V, Mendes RE, Shortridge D. Meropenem-vaborbactam activity against carbapenem resistant Enterobacteriales isolates collected in U.S hospitals during 2016 to 2018. Antimicrob Agents Chemother. 2020;64(4):e01951–19. doi:10.1128/AAC.01951-19

36. Carvalhaes CG, Shortridge D, Sader HS, Castanheira M. Activity of Meropenem-vaborbactam against bacterial isolates causing pneumonia in patients in U.S. hospitals during 2014 to 2018. Antimicrob Agents Chemother. 2020;64(4):e02177–19. doi:10.1128/AAC.02177-19

37. Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268–281. doi:10.1111/j.1469-0691.2011.03570.x

38. El-Kholy AA, Girgis SA, Shetta MAF, Abdel-Hamid DH, Elmanakhly AR. Molecular characterization of multidrug-resistant Gram-negative pathogens in three tertiary hospitals in Cairo, Egypt. Eur J Clin Microbiol Infect Dis. 2020;39(5):987–992. doi:10.1007/s10096-020-03812-z

39. Alkofide H, Alhammad AM, Aliruwaili A, et al. Multidrug-resistant and extensively drug-resistant Enterobacteriaceae: prevalence, treatments, and outcomes-A retrospective cohort study. Infect Drug Resist. 2020;13:4653–4662.

40. Tekele SG, Teklu DS, Legese MH, et al. Multidrug-resistant and carbapenemase-producing Enterobacteriaceae in Addis Ababa, Ethiopia. Biomed Res Int. 2021;2021:9999638. doi:10.1155/2021/9999638

41. Bandyar A, Tantry B. ESBL activity, MDR, and carbapenem resistance among predominant Enterobacteriales isolated in 2019. Antibiotics. 2021;10(6):744. doi:10.3390/antibiotics10060744

42. Tawfick MM, Alishareef WA, Bendary HA, Elmahalawy H, Abdulall AK. The emergence of carbapenem resistance among carbapenem-resistant Enterobacteriales isolates from Egyptian cancer patients. Eur J Clin Microbiol Infect Dis. 2020;39(7):1251–1259. doi:10.1007/s10096-020-03839-2

43. Moghni R, Kanafani ZA, Tabaja HZ, Sharara SL, Awd LS, Kanji SS. Epidemiology of common resistant bacterial pathogens in the countries of the Arab League. Lancet Infect Dis. 2018;18(12):e379–e394. doi:10.1016/S1473-3099(18)30414-6

44. Gupta V, Ye G, Olesky M, Lawrence K, Murray J, Yu K. National prevalence estimates for resistant Enterobacteriaceae and Acinetobacter species in hospitalized patients in the United States. Int J Infect Dis. 2019;85:203–211.

45. Qamar S, Shaheen N, Shakoor S, Farooqi J, Jabeen K, Hasan R. Frequency of colistin and fosfomycin resistance in carbapenem-resistant Enterobacteriaceae from a tertiary care hospital in Karachi. Infect Drug Resist. 2017;10:231–236.

46. Alexander BT, Marschall J, Tibbetts RJ, Neuner EA, Dunne WM, Ritchie DJ. Treatment and clinical outcomes of urinary tract infections caused by KPC producing Enterobacteriaceae in a retrospective cohort. Clin Ther. 2012;34:1314–1323.

47. Pogue JM, Marchaim D, Abreu-Lanfranco O, et al. Fosfomycin activity versus carbapenem-resistant Enterobacteriaceae and vancomycin-resistant Enterococcus, Detroit, 2008–10. J Clin Microbiol. 2013;6:625–627.

48. Kaase M, Szabados F, Anders A, Gatermann SG. Fosfomycin susceptibility in carbapenem-resistant Enterobacteriaceae from Germany. J Clin Microbiol. 2014;52(6):1893–1897.

49. White BP, Stover KR, Barber KE, Galloway RC, Sullivan DC, King ST. Mechanisms of fosfomycin resistance in carbapenem-resistant Enterobacteriaceae. Int J Antimicrob Agents. 2017;50(5):690–692. doi:10.1016/j.ijantimicag

50. Liu P, Chen S, Wu ZY, Qi M, Li XY, Liu CX. Mechanisms of fosfomycin resistance in clinical isolates of carbapenem-resistant Klebsiella pneumoniae. J Glob Antimicrob Resist. 2020;22:238–243. doi:10.1016/j.jgar.2019.12.019

51. Elliott ZS, Barry KE, Cox HL, et al. The role of fosA in challenges with fosfomycin susceptibility testing of multispecies Klebsiella pneumoniae carbapenemase-producing clinical isolates. J Clin Microbiol. 2019;57(10):e00634–19. doi:10.1128/JCM.00634-19

52. Sun F, Chen S, Qiu X, et al. Antibacterial activity of fosfomycin against uropathogens. Chemother. 2014;60:157–161. doi:10.1159/000371734

53. Chen J, Wang D, Ding Y, Zhang L, Li X. Molecular epidemiology of plasmid-mediated fosfomycin resistance gene determinants in Klebsiella pneumoniae carbapenemase-producing Klebsiella pneumoniae isolates in China. Microb Drug Resist. 2019;25(2):251–257. doi:10.1089/mdr.2018.0137

54. Mosime LB, Newton-Foot M, Nel P. Fosfomycin resistance in community-acquired urinary pathogens from Western Cape, South Africa. S Afr J Infect Dis. 2022;37(1):a321. doi:10.4102/sajid.v37i1.321

55. Iman FEG, Marwa AM, Doaa YA. Phenotypic and genotypic methods for detection of metallo beta lactamases among carbapenem resistant Enterobacteriaceae clinical isolates in Alexandria Main University Hospital. Afr J Microbiol Res. 2016;10:32–40. doi:10.5897/AJMR2015.7821
56. Kinn PM, Chen DJ, Gihring TM, et al. *In vitro* evaluation of meropenem-vaborbactam against clinical CRE isolates at a tertiary care center with low KPC-mediated carbapenem resistance. *Diagn Microbiol Infect Dis*. 2019;93(3):258–260. doi:10.1016/j.diagmicrobio.2018.09.017

57. Castanheira M, Doyle TB, Deshpande LM, Mendes RE, Sader HS. Activity of ceftazidime/avibactam, meropenem/vaborbactam and imipenem/relebactam against carbapenemase-negative carbapenem-resistant *Enterobacterales* isolates from US hospitals. *Int J Antimicrob Agents*. 2021;58(5):106439. doi:10.1016/j.ijantimicag.2021.106439

58. Wanla W, Katip W, Supakul S, Apiwatmakorn P, Khamsarn S. Effects of an antimicrobial restriction system on appropriate carbapenem use in a hospital without infectious diseases consultation. *Int J Gen Med*. 2017;10:443–449. doi:10.2147/IJGM.S145133