On the number of edges of a graph and its complement

Jamel Dammak
Department of Mathematics, Faculty of Sciences of Sfax, Sfax, Tunisia
Gerard Lopez
Institut de Mathématiques de Luminy, CNRS-UPR 9016, Marseille, France, and
Hamza Si Kaddour
Institut Camille Jordan, CNRS UMR 5208, Université Claude Bernard Lyon 1,
Univ Lyon, Villeurbanne, France

Abstract
Let $G = (V, E)$ be a graph. The complement of G is the graph $\overline{G} := (V, [V]^2 \setminus E)$ where $[V]^2$ is the set of pairs (x, y) of distinct elements of V. If K is a subset of V, the restriction of G to K is the graph $G|_K := (K, [K]^2 \cap E)$. We prove that if $G = (V, E)$ is a graph and v is an integer, $2 \leq v \leq n - 2$, then there is a k-element subset K of V such that $e(\overline{G|_K}) \neq e(G|_K)$, moreover the condition $k \leq v - 2$ is optimal. We also study the case $e(\overline{G|_K}) \neq e(G|_K)(\mod \ p)$ where p is a prime number. Following a question from M.Pouzet, we show this: Let $G = (V, E)$ be a graph with v vertices. If $e(G) \neq e(\overline{G})$ (resp. $e(G) = e(\overline{G})$) then there is an increasing family $(H_n)_{2 \leq n \leq 3} \cup \cup (H_n)_{2 \leq n \leq 2}$ of n-element subsets H_n of V such that $e(G\mid_{H_n}) \neq e(\overline{G\mid_{H_n}})$ for all n. Similarly if $e(G) \neq e(\overline{G}) \mod \ p$ where p is a prime number, $p > v - 2$, then there is an increasing family $(H_n)_{2 \leq n \leq 3}$ of n-element subsets H_n of V such that $e(G\mid_{H_n}) \neq e(\overline{G\mid_{H_n}})(\mod \ p)$ for all integer $n \in \{2, 3, \ldots, v\}$.

Keywords Set, Matrix, Graph, Edge, Prime number

Paper type Original Article

1. Introduction
Our notations and terminology follow [2]. A graph is an ordered pair $G := (V, E)$ (or $(V(G), E(G)))$, where E is a subset of $[V]^2$, the set of pairs (x, y) of distinct elements of V. Elements of V are the vertices of G and elements of E are its edges. An edge (x, y) is also noted by xy. The cardinality $|V|$ of V is called the order of G. Two distinct vertices x and y are adjacent if $xy \in E(G)$, otherwise x and y are non-adjacent. We denote by $e(G) := |E(G)|$ the number of edges of G. The degree of a vertex x of G, denoted by $d_G(x)$, is the number of edges which contain x. The graph G is δ-regular (or regular) if $d_G(x) = \delta$ for all $x \in V$,

JEL Classification — 05C50, 05C60

© Jamel Dammak, Gerard Lopez and Hamza Si Kaddour. Published in the Arab Journal of Mathematical Sciences. Published by Emerald Publishing Limited. This article is published under the Creative Commons Attribution (CC BY 4.0) license. Anyone may reproduce, distribute, translate and create derivative works of this article (for both commercial and non-commercial purposes), subject to full attribution to the original publication and authors. The full terms of this license may be seen at http://creativecommons.org/licenses/by/4.0/legalcode

The publisher wishes to inform readers that the article “On the number of edges of a graph and its complement” was originally published by the previous publisher of the Arab Journal of Mathematical Sciences and the pagination of this article has been subsequently changed. There has been no change to the content of the article. This change was necessary for the journal to transition from the previous publisher to the new one. The publisher sincerely apologises for any inconvenience caused. To access and cite this article, please use Dammak, J., Lopez, G., Kaddour, H. S. (2019), “On the number of edges of a graph and its complement”, Arab Journal of Mathematical Sciences, Vol. 27 No. 1, pp. 15-19. The original publication date for this paper was 29/05/2019.
δ is called the degree of the regular graph \(G \). The complement of \(G \) is the graph \(\overline{G} := (V, [V]^2 \setminus E) \). If \(K \) is a subset of \(V \), the restriction of \(G \) to \(K \), also called the induced subgraph of \(G \) on \(K \), is the graph \(G[K] := (K, [K]^2 \cap E) \). For instance, given a set \(V \), \((V, \emptyset)\) is the empty graph on \(V \) whereas \((V, \{xy : x \neq y \in V\})\) is the complete graph.

Our first result is Theorem 1.1, we prove that: given a graph \(G = (V, E) \) and \(k \) be an integer, \(2 \leq k \leq v - 2 \), we cannot have \(e(G[K]) = e(G[K]) \) for all \(k \)-element subsets \(K \) of \(V \), moreover the condition \(k \leq v - 2 \) is optimal, indeed for \(k = v - 1 \) a counterexample is given by (2) of Theorem 1.1.

Theorem 1.1. Let \(G = (V, E) \) be a graph of order \(v \).

1. If \(v \geq 4 \), then for each integer \(k \) with \(2 \leq k \leq v - 2 \), there is a \(k \)-element subset \(K \) of \(V \) such that \(e(G[K]) \neq e(G[K]) \).
2. If \(G \) is regular with degree \(\frac{v - 1}{2} \) then \(e(G) = e(G) \) and \(e(G - x) = e(G - x) \) for all vertex \(x \).
3. Let \(p \) be a prime number with \(p \geq 3 \) such that \(2d_G(x) \equiv v - 1 \pmod{p} \) for all \(x \in V \). Then \(e(G) \equiv e(G)(\pmod{p}) \) and \(e(G - x) \equiv e(G - x)(\pmod{p}) \) for all vertex \(x \).

Our second result is Theorem 1.2. Given a graph \(G = (V, E) \), \(p \) a prime number, and \(k \) an integer, \(2 \leq k \leq v - 2 \), under some conditions on \(k \), we cannot have \(e(G[K]) \equiv e(G[K]) \pmod{p} \) for all \(k \)-element subsets \(K \) of \(V \).

Theorem 1.2. Let \(G = (V, E) \) be a graph with \(v \geq 4 \) vertices and let \(p \) be a prime number. Let \(k \) be an integer, \(2 \leq k \leq v - 2 \).

1. If \((p = 2 \text{ and } k \equiv 2(\text{mod } 4)) \) or \((p \geq 3 \text{ and } k \equiv 0, 1(\text{mod } p)) \), then there is a \(k \)-element subset \(K \) of \(V \) such that \(e(G[K]) \neq e(G[K]) \pmod{p} \).
2. If \(p \geq 3 \) and \(k \equiv 0(\text{mod } p) \) then there is a \(k \)-element subset \(K \) of \(V \) such that \(e(G[K]) \neq e(G[K]) \pmod{p} \) if and only if \(G \) is neither the complete graph nor the empty graph.

Our third result is Theorem 1.3. It is related to a question that M. Pouzet asked us about the existence, in a graph \(G = (V, E) \), of an increasing family \((H_n)_n\) of \(n \)-element subsets \(H_n \) of \(V \) such that \(e(G[H_n]) \neq e(G[H_n]) \).

Theorem 1.3. Let \(G = (V, E) \) be a graph of \(v \) vertices with \(v \geq 3 \).

1. If \(e(G) \neq e(G) \) then there is a vertex \(x \) such that \(e(G - x) \neq e(G - x) \).
2. If \(e(G) \neq e(G) \) then there is an increasing family \((H_n)_{n \leq v} \) of \(n \)-element subsets \(H_n \) of \(V \) such that \(e(G[H_n]) \neq e(G[H_n]) \) for all integer \(n \in \{2, 3, \ldots, v\} \).
3. If \(e(G) = e(G) \) and \(v \geq 4 \) then there is an increasing family \((H_n)_{n \leq v - 2} \) of \(n \)-element subsets \(H_n \) of \(V \) such that \(e(G[H_n]) \neq e(G[H_n]) \) for all integer \(n \in \{2, 3, \ldots, v - 2\} \).
4. Let \(p \) be a prime number, \(p > v - 2 \). If \(e(G) \neq e(G)(\text{mod } p) \) then there is an increasing family \((H_n)_{n \leq v} \) of \(n \)-element subsets \(H_n \) of \(V \) such that \(e(G[H_n]) \neq e(G[H_n])(\text{mod } p) \) for all integer \(n \in \{2, 3, \ldots, v\} \).

2. Incidence matrices

We consider the matrix \(W_{tk} \) defined as follows: Let \(V \) be a finite set, with \(v \) elements. Given non-negative integers \(t, k \), let \(W_{tk} \) be the \(\binom{v}{t} \) by \(\binom{v}{k} \) matrix of 0’s and 1’s, the rows of which
are indexed by the t-element subsets T of V, the columns are indexed by the k-element subsets K of V, and where the entry $W_{k}(T,K)$ is 1 if $T \subseteq K$ and is 0 otherwise. The matrix transpose of W_{tk} is denoted W_{kt}.

A fundamental result, due to D.H. Gottlieb [4], and independently W. Kantor [5], is this:

Theorem 2.1 (D.H. Gottlieb [4], W. Kantor [5]). For $t \leq \min(k,v-k)$, W_{tk} has full row rank over the field \mathbb{Q} of rational numbers.

It is clear that $t \leq \min(k,v-k)$ implies $\binom{v}{t} \leq \binom{v}{k}$ then, from Theorem 2.1, we have the following result.

Corollary 2.2. For $t \leq \min(k,v-k)$, the rank of W_{tk} over the field \mathbb{Q} of rational numbers is $\binom{v}{t}$ and thus $\text{Ker}(W_{tk}) = \{0\}$.

Corollary 2.2 and the following theorem are important tools in the proof of our main results. In fact, Theorem 2.3 has made to establish a version modulo a prime of Kelly’s combinatorial lemma [6]; it also allows to obtain a version modulo a prime of the particular results. In fact, Theorem 2.3 has made to establish a version modulo a prime of Pouzet’s combinatorial lemma [7].

Let n, p be positive integers, the decomposition of $n = \sum_{i=0}^{n(p)} n_{i} p^{i}$ in the basis p is also denoted by $[n_{0}, n_{1}, \ldots, n_{n(p)}]_{p}$ where $n_{n(p)} \neq 0$ if and only if $n \neq 0$.

Theorem 2.3 [1]. Let p be a prime number. Let v, t and k be non-negative integers, $k = [k_{0}, k_{1}, \ldots, k_{k(p)}]_{p}$, $t = [t_{0}, t_{1}, \ldots, t_{t(p)}]_{p}$, $t \leq \min(k,v-k)$. We have:

1. $k_{j} = t_{j}$ for all $j < t(p)$ and $k_{t(p)} \geq t_{t(p)}$ if and only if $\text{Ker}(W_{tk}) = \{0\}$ (mod p).
2. $t = t_{t(p)} p^{t(p)}$ and $k = \sum_{i=0}^{t(p)} k_{i} p^{i}$ if and only if $d\text{Ker}(W_{tk}) = 1$ (mod p) and $\{1, 1, \ldots, 1\}$ is a basis of $\text{Ker}(W_{tk})$.

The notation $a \mid b$ (resp. $a \nmid b$) means a divide b (resp. a not divide b).

Theorem 2.4 (Lucas’ Theorem [3]). Let p be a prime number, t, k be positive integers, $t \leq k$, $t = [t_{0}, t_{1}, \ldots, t_{t(p)}]_{p}$ and $k = [k_{0}, k_{1}, \ldots, k_{k(p)}]_{p}$. Then

$$\binom{k}{t} = \prod_{i=0}^{t(p)} \binom{k_{i}}{t_{i}} (\text{mod } p), \text{ where } \binom{k_{i}}{t_{i}} = 0 \text{ if } t_{i} > k_{i}.$$

The following result is a consequence of Lucas’ theorem.

Corollary 2.5 ([1]). Let p be a prime number, t, k be positive integers, $t \leq k$, $t = [t_{0}, t_{1}, \ldots, t_{t(p)}]_{p}$ and $k = [k_{0}, k_{1}, \ldots, k_{k(p)}]_{p}$. Then:

$$p \binom{k}{t} \text{ if and only if there is } i \in \{0, 1, \ldots, t(p)\} \text{ such that } t_{i} > k_{i}.$$

3. Proofs of main results

Let $G = (V,E)$ be a graph of order v. Let $T_{1}, T_{2}, \ldots, T_{\binom{v}{2}}$ be an enumeration of the 2-element subsets of V, let $K_{1}, K_{2}, \ldots, K_{\binom{v}{k}}$ be an enumeration of the k-element subsets of V.

Let w_{G} be the row matrix $(g_{1}, g_{2}, \ldots, g_{\binom{v}{k}})$ where $g_{i} = 1$ if T_{i} is an edge of G, 0 otherwise.

We have $w_{G} W_{2k} = (e(G_{1}K_{1}), e(G_{1}K_{2}), \ldots, e(G_{1}K_{\binom{v}{k}}))$.
Note that \(w_G = (\overline{g_1}, \overline{g_2}, \ldots, \overline{g_i}) \) with \(\overline{g_i} = 0 \) if \(T_i \) is an edge of \(G \), 1 otherwise. We have \(w_G W_{2k} = (e(\overline{G},K_1), e(\overline{G},K_2), \ldots, e(\overline{G},K_k)) \).

3.1 Proof of Theorem 1.1

(1) Assume that \(e(\overline{G},K) = e(G,K) \) for all \(k \)-element subsets \(K \) of \(V \), then \(w_G W_{2k} = w_G W_{2k} \).

By Corollary 2.2, \(\text{Ker}(t W_{tk}) = \{0\} \). Then \(w_G = w_G \), so \(G = \overline{G} \), which is impossible. So there is a \(k \)-element subset \(K \) of \(V \) such that \(e(\overline{G},K) \neq e(G,K) \).

(2) For \(x \in V \), \(d_G(x) + d_{\overline{G}}(x) = v - 1 \). Since \(d_G(x) = \frac{v-1}{2} \) then \(d_G(x) = d_{\overline{G}}(x) \). We have \(\sum_{x \in V} d_G(x) = 2e(G) \) and \(\sum_{x \in V} d_{\overline{G}}(x) = 2e(\overline{G}) \), then \(e(G) = e(\overline{G}) \). Now from \(e(G) = e(\overline{G} - x) + d_{\overline{G}}(x) \) and \(e(G) = e(G - x) + d_G(x) \), we deduce that \(e(\overline{G} - x) = e(G - x) \).

(3) For \(x \in V \), \(d_G(x) + d_{\overline{G}}(x) = v - 1 \). Since \(2d_G(x) \equiv v - 1 (mod \ p) \) then \(d_G(x) \equiv d_{\overline{G}}(x) \ (mod \ p) \). We conclude using similar arguments to those in item (2).

3.2 Proof of Theorem 1.2

We set \(t := 2 \). We recall the notation \(k = [k_0, k_1, \ldots, k_{\ell(p)}] \).

(1) Case 1, \(p = 2 \) and \(k \equiv 2 (mod \ 4) \).

We have \(k_0 = 0, k_1 = 1, t = 0, 1 \). Since \(k_0 = t_0 \) and \(k_1 \geq t_1 = t_{\ell(p)} \) then, by Theorem 2.3, \(\text{Ker}(t W_{tk}) = \{0\} \ (mod \ p) \).

Case 2, \(p \geq 3 \) and \(k \not\equiv 0, 1 (mod \ p) \).

We have \(k_0 \geq 2, t = t_0 = 2 \) since \(k_0 \geq 2 \geq t_{\ell(p)} \) then, by Theorem 2.3, \(\text{Ker}(t W_{tk}) = \{0\} \ (mod \ p) \).

In the two cases, \(\text{Ker}(t W_{tk}) = \{0\} \ (mod \ p) \). Assume that \(e(\overline{G},K) \equiv e(G,K) (mod \ p) \) for all \(k \)-element subsets \(K \) of \(V \). Then \(w_G W_{2k} = w_G W_{2k} \ (mod \ p) \). As \(\text{Ker}(t W_{tk}) = \{0\} \ (mod \ p) \), then \(w_G = w_G \ (mod \ p) \), so \(G = \overline{G} \), which is impossible. Then there is a \(k \)-element subset \(K \) of \(V \) such that \(e(\overline{G},K) \neq e(G,K) (mod \ p) \).

(2) If \(p \geq 3 \) then \(t = t_0 = 2 = t_{\ell(p)} \). Since \(k \equiv 0 (mod \ p) \) then \(k_0 = 0 \), and thus \(k = \sum_{i = 0}^{\ell(p)} 1 \). By Theorem 2.3, \(\{1, 1, \ldots, 1\} \) is a basis of \(\text{Ker}(t W_{tk}) \).

If \(G \) is the complete graph then \(e(G,K) = \binom{k}{2} \), \(e(\overline{G},K) = 0 \). Since \(t_0 = 2 > k_0 = 0 \) then, by Corollary 2.5, \(p | \binom{k}{2} \). So \(e(G,K) \equiv 0 \equiv e(\overline{G},K) (mod \ p) \). If \(G \) is the empty graph, then \(e(G,K) = 0 \equiv e(\overline{G},K) = \binom{k}{2} (mod \ p) \).

Conversely if \(G \) is neither the complete graph nor the empty graph, assume that \(e(\overline{G},K) \equiv e(G,K) (mod \ p) \) for all \(k \)-element subsets \(K \) of \(V \). Then \(w_G W_{2k} = w_G W_{2k} (mod \ p) \). So \(w_G - w_G = \lambda(1, 1, \ldots, 1) \ (mod \ p) \) with \(\lambda \in \{0, 1, -1\} \). As \(G \) is neither the complete graph nor the empty graph, there are \(i, j \) such that \(g_i = 0 \) and \(g_j = 1 \), so \(g_i - g_i = -1 \) and \(g_i - g_j = 1 \). Then \(\lambda \neq 1 \) and \(\lambda \neq -1 \). Thus \(\lambda = 0 \), and \(w_G = w_G (mod \ p) \), so \(G = \overline{G} \), which is impossible.

Then there is a \(k \)-element subset \(K \) of \(V \) such that \(e(\overline{G},K) \neq e(G,K) (mod \ p) \). □

3.3 Proof of Theorem 1.3

We need the following lemma.
Lemma 3.1. Let $G = (V, E)$ be a graph of order v and let p be a prime number, $p \geq 3$.

(1) Let k be an integer, $2 \leq k \leq v - 2$. If \(\binom{v-2}{k-2} e(G) \neq \binom{v-2}{k-2} e(\overline{G}) \mod p \) then there is a k-element subset K of V such that $e(G_{1,k}) \neq e(\overline{G}_{1,k}) \mod p$.

(2) If \(\binom{v-2}{k-2} e(G) \neq \binom{v-2}{k-2} e(\overline{G}) \mod p \) then there is $x \in V$ such that $e(G-x) \neq e(\overline{G}-x) \mod p$.

Proof. (1) It is an immediate consequence of the following formula

\[
\binom{v-2}{k-2} e(G) = \sum_{K \in \mathcal{P}(V), |K| = k} e(G_{1,K})
\]

(2) Follows from (1) by taking $k = v - 1$. \qed

Now we prove Theorem 1.3.

(1) Assume that $e(\overline{G} - x) = e(G - x)$ for all $x \in V$. From $e(G) = e(G - x) + d_G(x)$, we obtain $\sum_{x \in V} e(G) = \sum_{x \in V} e(G - x) + \sum_{x \in V} d_G(x)$. Since $\sum_{x \in V} d_G(x) = 2e(G)$ then $(v-2) e(G) = \sum_{x \in V} e(G - x)$. Similarly, $(v-2) e(\overline{G}) = \sum_{x \in V} e(\overline{G} - x)$. Then $e(G) = e(\overline{G})$.

(2) We make the proof by induction on v. We set $H_0 := V$. We assume that H_i is defined for all $0 \leq i \leq v$. Let us define H_{v+1}. As $e(G_{1,H_i}) \neq e(\overline{G}_{1,H_i})$ then by (1), there is $x \in H_i$ such that $e(G_{1,H_i} - x) \neq e(\overline{G}_{1,H_i} - x)$. We set $H_{v+1} := H_v \setminus \{x\}$. So $H_{v+1} \subset H_v$ and $e(G_{1,H_{v+1}}) \neq e(\overline{G}_{1,H_{v+1}})$.

(3) By applying (1) of Theorem 1.1 for the graph G and $k = v - 2$ we obtain $e(G - \{x\}) \neq e(\overline{G} - \{x\})$ if $v = 4$ we are done. If $v \geq 5$, then $v - 2 \geq 3$ and here we conclude using (2).

(4) By induction on v. Since $e(G) \neq e(\overline{G}) \mod p$ and $p > v - 2$ then $(v-2) e(G) \neq (v-2) e(\overline{G}) \mod p$. By (2) of Lemma 3.1, there is $x \in V$ such that $e(G-x) \neq e(\overline{G}-x) \mod p$. We conclude by using the induction hypothesis. \qed

References

[1] A. Ben Amira, J. Dammak, H. Si Kaddour, On a generalization of Kelly’s combinatorial lemma, Turk. J. Math. 36 (2014) 949–964.

[2] J.A. Bondy, Basic graph theory: paths and circuits, in: R.L. Graham, M. Grötschel, L. Lovász (Eds.), Handbook of Combinatorics, Vol. 1, North-Holland, 1995, pp. 3–110.

[3] N.J. Fine, Binomial coefficients modulo a prime, Amer. Math. Monthly 54 ((10) Part 1) (1947) 589–592.

[4] D.H. Gottlieb, A certain class of incidence matrices, Proc. Amer. Math. Soc. 17 (1966) 1233–1237.

[5] W.M. Kantor, On incidence matrices of finite projective and affine spaces, Math. Z. 124 (1972) 315–318.

[6] P.J. Kelly, A congruence theorem for trees, Pac. J. Math. 7 (1957) 961–968.

[7] M. Pouzet, Application d’une propriété combinatoire des parties d’un ensemble aux groupes et aux relations, Math. Z. 150 (1976) 117–134.

Corresponding author

Hamza Si Kaddour can be contacted at: sikaddour@univ-lyon1.fr

For instructions on how to order reprints of this article, please visit our website: www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com