On the existence of global solutions for T^3-Gowdy spacetimes with stringy matter

Makoto Narita

Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, 14476 Golm, Germany
and
Advanced Research Institute for Science and Engineering, Astrophysics Group, Waseda University, Shinjuku, Tokyo 169-8555, Japan

E-mail: maknar@aei-potsdam.mpg.de and narita@gravity.phys.waseda.ac.jp

Received 13 July 2002
Published 21 November 2002
Online at stacks.iop.org/CQG/19/6279

Abstract

We show a global existence theorem for the Einstein-matter equations of T^3-Gowdy symmetric spacetimes with stringy matter. The areal time coordinate is used. It is shown that this spacetime has a crushing singularity into the past. From these results we can show that the spacetime is foliated by compact hypersurfaces of constant mean curvature.

PACS numbers: 0203J, 0420D, 0420E, 9880H

1. Introduction

The singularity theorem states that generic spacetimes have a singularity (spacetimes with incomplete geodesics). If the singularity can be seen, i.e., there exists a naked singularity, the predictability is violated. Thus, the strong cosmic censorship conjecture proposed by Penrose is the most important (and an unsolved) problem in classical general relativity. Roughly speaking, the conjecture states that naked singularities should not evolve from regular initial data. However, this statement remains elusive. Then, a sharp formulation that seems provable is given as follows:

Conjecture 1 [AL99, CD, KN, ME], Let M be a partial Cauchy surface and Φ_i are matter fields on M. Then for generic datasets (M, h, k, Φ_i), where h and k are the first and second fundamental forms of M, the maximal Cauchy development of (M, h, k, Φ_i) is equal to the maximal extension of (M, h, k, Φ_i).

To answer this problem we must prove (1) a global existence theorem for the Einstein-matter equations with a suitable time coordinate and (2) inextendibility of the maximal Cauchy development of initial data. This paper is mainly related to problem (1). It is very difficult
to answer the conjecture in general by using present mathematical techniques. Then, it is necessary to make some simplifications, which are symmetry assumptions or restriction on initial data.

For the case of small initial data without symmetry assumptions, partial results for this problem are provided by the Christodoulou–Klainerman theorem which states that any asymptotically flat initial dataset which is sufficiently close to the trivial one has a complete maximal future development \([CK, KN]\). Recently, Andersson and Moncrief have shown that for a vacuum dataset which is sufficiently close to the data in a spatially compact (local) open Friedmann–Robertson–Walker spacetime, the maximal Cauchy development is causally geodesically complete in the expanding direction \([AL99]\) (see also \([R02]\)).

For the case of large initial data with symmetry assumptions, some results have been obtained. (Hereafter, models we consider are restricted to spatially compact spacetimes.) The first result for inhomogeneous cosmological spacetimes was proved by Moncrief \([M81]\). He proved a global existence theorem for \(T^3\)-Gowdy spacetimes (which are vacuum spacetimes with \(U(1) \times U(1)\) symmetry and whose spatial topology is \(T^3\)) in the areal coordinate (defined in section 2). This result has been generalized to the case with non-vanishing twist \([BCIM]\) or with Vlasov matter \([AH]\). A result on global existence in the areal time has also been obtained for hyperbolic symmetric spacetimes with Vlasov matter \([ARR]\).

Although the areal time coordinate is a well-chosen one in the sense that it is geometrically defined, this coordinate choice strongly depends on spacetime symmetry. The most attractive (and independent of spacetime symmetry) time coordinate is the constant mean curvature (CMC) one. CMC foliations can avoid a crushing singularity which is one where there is a foliation on a neighbourhood of the singularity whose mean curvature tends uniformly to infinity as the singularity approaches \([ES]\). It was shown from Hawking’s singularity theorem that the crushing singularity is either a true singularity or a boundary of maximal Cauchy development, i.e., a Cauchy horizon. Thus, the existence of CMC foliations is closely related to conjecture 1. Indeed, it has been conjectured as follows:

\textbf{Conjecture 2} \([ME]\). \textit{Every maximally extended, globally hyperbolic spacetime can be foliated by CMC hypersurfaces.}

A global existence theorem in the CMC time coordinate for \(T^3\)-Gowdy spacetimes was proved in \([IM]\). Recently, this result has been generalized to the case of local \(U(1) \times U(1)\) symmetric spacetimes with Vlasov or wave-map matter \([R97, H02b]\). Results on global existence in the CMC time have been shown for hyperbolic symmetric spacetimes with Maxwell field or Vlasov matter \([H02a, ARR]\).

Note that the choice of matter models is serious. For some matter models (Vlasov matter, Maxwell field and wave map), there are global existence theorems as above. In contrast, a global non-existence result has been obtained for the Einstein-dust system \([IR]\). Therefore, it would be worth investigating global existence problems for several matter models, in particular, systems of nonlinear and fundamental field equations.

The purpose of the present paper is the generalization of the results above, that is, to show global existence theorems for the \(T^3\)-Gowdy symmetric spacetimes with stringy matter fields. From the unified theoretical point of view, there are many reasons to believe that the distinction between fundamental field (i.e., gravitational and matter fields) interactions is impossible in asymptotic regions (e.g., near singularities) of spacetimes and the most consistent theory along these lines is superstring/M-theory. Therefore, the matter fields we will consider are Maxwell–dilaton–axion fields which arise naturally from low-energy effective superstring theory \([ON]\). This system is nonlinear even if the background spacetime is flat since there is a dilaton coupling. One of the main results of this paper is a global existence theorem for such
systems in the areal time coordinate (theorem 1) and another of them is one in the CMC time coordinate (theorem 2).

In section 2, we will review T^3-Gowdy symmetric spacetimes in the Einstein–Maxwell–dilaton–axion (EMDA) system and derive the Einstein-matter equations. In section 3, we show a global existence theorem for the system in the areal time coordinate, in section 4, we show a global existence theorem for the system in the CMC time coordinate and in section 5, we discuss the inextendibility of the spacetime.

2. T^3-Gowdy symmetric spacetimes in the Einstein–Maxwell–dilaton–axion system

The action of the EMDA theory [STW] is

$$S = S_G + S_M,$$

$$S_G = \int d^4 x \sqrt{-g} \left[-(4)R \right],$$

$$S_M := \int d^4 x \sqrt{-g} \left[e^{-2a_M \phi} F^2 + 2(\nabla \phi)^2 + \frac{1}{3} e^{-4a_A \phi} H^2 \right] = \int d^4 x \mathcal{L}_M,$$

where g is the determinant of a four-dimensional spacetime metric g_{ab}, $(4) R$ is the Ricci scalar for g_{ab}, F is the Maxwell field, ϕ is the dilaton field, $H = dB \equiv -\frac{1}{2} e^{4\phi} \ast dx$ is the three-index antisymmetric tensor field dual to the axion field κ, and a_M and a_A are coupling constants. For simplicity, the Chern–Simon term is neglected. Varying the action (1) with respect to the functions, we get the Einstein-matter equations.

The metric of Gowdy symmetric spacetimes [GR] is given by

$$ds^2 = e^{\lambda(t, \theta)/2} t^{-1/2} (-dt^2 + d\theta^2) + R(t, \theta)[e^{-Z(t, \theta)}(dy + X(t, \theta) dz)^2 + e^{Z(t, \theta)} dz^2].$$

Gowdy symmetric spacetimes have two twist-free spacelike Killing vectors $\partial/\partial y$ and $\partial/\partial z$. Properties of the metric (4) depend on whether ∇R is timelike, spacelike or null. When the metric (4) describes a cosmological model, i.e., ∇R is globally timelike and the spatial topology is T^3 (periodic in θ), one can take the function $R(t, \theta) = t$ without loss of generality by Gowdy’s corner theorem if the spacetime is vacuum [GR, M81]. This fact can be seen from the Einstein equation,

$$G_{tt} - G_{\theta\theta} = \dot{R} - R'' = 0,$$

where dot and prime denote t and θ derivatives, respectively. In the EMDA system, equation (5) is not satisfied generically. However, in the case where the Maxwell field strength $F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu$ has only the following components [MP]

$$F_{ty} = \dot{\omega}(t, \theta), \quad F_{t\theta} = \omega(t, \theta), \quad F_{tz} = \dot{\chi}(t, \theta), \quad F_{t\theta} = \chi(t, \theta),$$

and $\phi = \phi(t, \theta)$ and $\kappa = \kappa(t, \theta)$, equation (5) is satisfied. As in the T^3-vacuum case, one can take the function $R(t, \theta) = t$ without loss of generality. In this gauge choice, the spacetimes have spacelike singularities at $t = 0$. We call this gauge the areal time coordinate since R is proportional to the geometric area function of the orbit of the isometry group.

We should mention another important choice for the Maxwell field. In [WIB], it was taken that ω and χ are zero but one of the other components of the Maxwell field is non-zero. This spacetime is called ‘magnetic Gowdy spacetime’ and concerns the complementary case to ours.

In this coordinate, we obtain the Einstein-matter equations as follows:

$$\dot{\lambda} - t[Z^2 + Z'^2 + e^{-2Z} (X^2 + X'^2)] = 4tT_{tt},$$

where T_{tt} is the energy-momentum tensor.
where

\[T_{\mu\nu} = (\phi^2 + \phi'^2) + \frac{1}{4} e^{-4\phi} (\kappa^2 + \kappa'^2) + \frac{1}{2} e^{-2\omega \phi} [e^{-Z} \{(X\omega - \dot{\chi})^2 + (X\omega' - \chi')^2\} + e^2 (\dot{\omega}^2 + \omega'^2)] \]

\[= T_{\mu\nu}, \quad (7) \]

\[\lambda^2 - 2t[ZZ' + e^{-2Z}XX'] = 8tT_{\mu\nu}, \quad (8) \]

where

\[T_{\mu\nu} = \phi\phi' + \frac{1}{4} e^{-4\phi} \kappa\kappa' + \frac{1}{2} e^{-2\omega \phi} [e^{-Z}(X\omega - \dot{\chi})(X\omega' - \chi') + e^2 \dot{\omega}\omega'], \quad (9) \]

\[t^2 \ddot{Z} + t \dot{Z} - t^2 Z'' + t^2 e^{-2Z} (X^2 - X'^2) - 2t e^{-2\omega \phi} [e^{-Z} \{(X\omega - \dot{\chi})^2 - (X\omega' - \chi')^2\} + e^2 (\dot{\omega}^2 - \omega'^2)] = 0, \quad (10) \]

\[t^2 \ddot{X} + t \dot{X} - t^2 X'' - 2t^2 (X\dot{Z} - X'Z') - 4t e^{-2\omega \phi} [e^2 (\dot{\omega}^2 - \omega'^2)X - (\dot{\omega}\dot{\chi} - \omega'\chi')] = 0, \quad (11) \]

\[t^2 \ddot{\phi} + t \dot{\phi} - t^2 \phi'' = \frac{aM}{2} e^{-4\phi} (\dot{\kappa}^2 - \kappa'^2) + aM t e^{-2\omega \phi} [e^{-Z} \{(X\omega - \dot{\chi})^2 - (X\omega' - \chi')^2\} + e^2 (\dot{\omega}^2 - \omega'^2)] = 0, \quad (12) \]

\[t^2 \ddot{k} + k \dot{k} - t^2 k'' + 4aM t^2 (\dot{\phi}\phi' - \dot{\phi}k') = 0, \quad (13) \]

\[\ddot{\chi} - \chi'' - (Z + 2aM\phi)\dot{\chi} + (Z' + 2aM\phi')\chi' + (2X\dot{Z} - \dot{X})\omega - (2XZ' - X')\omega' \]

\[+ e^{-2Z} X[\ddot{X}(X\omega - \dot{\chi}) + X'(X\omega' - \chi')] = 0, \quad (14) \]

\[\ddot{\omega} - \omega'' + (\dot{Z} - 2aM\phi)\dot{\omega} - (Z' - 2aM\phi')\omega' + e^{-2Z} [\ddot{X}(X\omega - \dot{\chi}) + X'(X\omega' - \chi')] = 0, \quad (15) \]

where \(T^{\mu\nu} := \frac{1}{2\sqrt{-g}} g^{\mu\nu} T_{\nu\mu} \) is the energy–momentum tensor. Hereafter, we call the above system the \(T^3 \)-Gowdy symmetric EMDA system.

Note that the metric function \(\lambda \) is decoupled with other functions. The function appears only in the Hamiltonian and momentum constraints (6) and (8). Then, we can calculate the metric function \(\lambda \) by evaluating the integral of \(\lambda' \) from \(-\pi\) to \(-\pi\) after obtaining other functions from the evolution equations (10)–(15).

3. Global existence theorem in the areal coordinate

For simplicity, we will assume that the initial data are \(C^\infty \) on \(T^3 \). In this circumstance, we can show the following global existence theorem.

Theorem 1. Let \((M, g, \phi, \kappa, A)\) be the maximal globally hyperbolic development of the initial data for the \(T^3 \)-Gowdy symmetric EMDA system. Then, \(M \) can be foliated by areal coordinate with \(t \in (0, \infty) \).

Proof of theorem 1. The local existence and uniqueness of smooth solutions of the partial differential equation system (10)–(15) follows from standard results for the hyperbolic system [AS, CBG, FR, HL]. Then, it is sufficient to verify that for any globally hyperbolic subset of the \((t, \theta)\) cylinder on which they exist as a solution to (10)–(15), the functions \((Z, X, \phi, \kappa, \chi, \omega)\)
and their first and second derivatives are uniformly bounded [MA]. To do this, we will use the light cone estimate [AH, BCIM, M81, M97].

Let us now define the quadratic forms \(G \) and \(H \) by

\[
G := \frac{1}{2} t [Z^2 + Z' + e^{-2Z}(X^2 + X') + 2 e^{-2\omega \phi} \{ e^{-Z} [X \omega - \chi] + (X \omega' - \chi') \} + e^2 (\omega^2 + \omega')^2] + 2 t (\phi^2 + \phi')^2 + \frac{1}{2} e^{4\omega \phi} t (k^2 + k')^2,
\]

(16)

and

\[
H := t [Z Z' + e^{-2Z} X X'] + 4 e^{-2\omega \phi} \{ e^{-Z} [X \omega - \chi] + (X \omega' - \chi') + e^Z \omega \omega' \} + 4 t \phi \phi' + t e^{4\omega \phi} k k'.
\]

(17)

Deriving \(G \) and \(H \) with respect to \(t \) and \(\theta \) and using the evolution equations (10)–(15), after a long calculation, we have the following inequalities:

\[
\sqrt{2} \partial_t (G + H) = \frac{1}{2} [Z^2 + Z' + e^{-2Z} (-X^2 + X')] + 2 \left[-\phi^2 + \phi'^2 + \frac{1}{4} e^{4\omega \phi} (-k^2 + k')^2 \right]
\]

:= \(J \leq \frac{1}{t} G \)

(18)

and

\[
\sqrt{2} \partial_t (G - H) = \frac{1}{2} [Z^2 + Z' + e^{-2Z} (-X^2 + X')] + 2 \left[-\phi^2 + \phi'^2 + \frac{1}{4} e^{4\omega \phi} (-k^2 + k')^2 \right]
\]

:= \(L \leq \frac{1}{t} G \)

(19)

where \(\partial_t := \frac{1}{\sqrt{2}} (\partial_t + \partial_s) \) and \(\partial_s := \frac{1}{\sqrt{2}} (\partial_t - \partial_s) \).

At first, let us consider the future (expanding) direction. Integrating these equations (18) and (19) along null paths starting at \((\hat{\theta}, \hat{t})\) and ending at the initial \(t_0\)-surface (i.e., from the future into the past) and adding them, we have

\[
G(\hat{\theta}, \hat{t}) = G(\hat{\theta} + t_0 - \hat{t}, t_0) + G(\hat{\theta} - t_0 + \hat{t}, t_0) + H(\hat{\theta} + t_0 - \hat{t}, t_0) - H(\hat{\theta} - t_0 + \hat{t}, t_0)
\]

\[
+ \int_{t_0}^{\hat{t}} [J (\hat{\theta} + s - \hat{t}, s) + L (\hat{\theta} - s + \hat{t}, s)] \, ds.
\]

(20)

Next, we take supremums over all values of \(\theta \) on the both sides of equation (20). Then, we have

\[
\sup_{\theta} G(\theta, \hat{t}) \leq 2 \sup_{\theta} G(\theta, t_0) + 2 \sup_{\theta} H(\theta, t_0) + \int_{t_0}^{\hat{t}} \frac{1}{s} \sup_{\theta} G(\theta, s) \, ds,
\]

(21)

where we used estimates (18) and (19). We can apply the following lemma to (21).

Lemma 1 [Gronwall’s lemma [HL]]. Suppose that \(\phi(t), a(t), b(t) \geq 0 \). If

\[
\phi(t) \leq a(t) + \int_{t_0}^{t} b(s) \phi(s) \, ds,
\]

then,

\[
\phi(t) \leq a(t) \exp \left(\int_{t_0}^{t} b(s) \, ds \right).
\]

By lemma 1, we get the following inequality:

\[
\sup_{\theta} G(\theta, \hat{t}) \leq 2 [\sup_{\theta} G(\theta, t_0) + \sup_{\theta} H(\theta, t_0)] \exp \left(\int_{t_0}^{\hat{t}} \frac{1}{s} \, ds \right).
\]

(22)
From equation (22), since \(\exp \left(\int_{t_0}^{t_1} \frac{1}{2} \, ds \right) \) is bounded, we get the desired bound on \(|Z|, |Z'|, |e^{-\varphi} \xi|, |e^{-\varphi} \eta|, |e^{-\varphi} \zeta| \), following equations:

\[
|e^{-\varphi} \xi - \zeta|, |e^{-\varphi} \eta - \eta'|, |e^{-\varphi} \zeta - \zeta'|, |\phi|, |\phi'|, |e^{2 \varphi} \kappa|, \quad \text{for all } t \in (t_0, \infty).
\]

Once we have bounds on the first derivatives of \(Z \) and \(\phi \), it follows that \(Z \) and \(\phi \) are bounded for all \(t \in (t_0, \infty) \) as well since

\[
u(t, x) = \nu(t_0, x) + \int_{t_0}^{t} \dot{\nu}(s, x) \, ds,
\]

where \(\nu(t, x) \) is a function. Then, we have bounds on \(\dot{X}, X', X\omega - \dot{\chi}, X\omega' - \dot{\chi}', \omega, \omega', \kappa \) and \(\kappa' \). Consequently, we obtain bounds on \(X, \omega \) and \(\kappa \) and furthermore, we have bounds on \(\dot{\chi} \) and \(\dot{\chi}' \). Finally, we have bounds on \(\chi \). Thus, it has shown the boundedness of the zeroth and first derivatives of all functions except for \(\lambda \).

Next, we must show bounds on the second derivatives of the functions. There is a well-known general fact that in order to ensure the continued existence of a solution of a system of semilinear wave equations, it is enough to bound the first derivative pointwise (see theorem 1.1 of chapter III and page 42 of [AS]). Our system is a special case of that. Then, we have boundedness of the higher derivatives.

The same argument can be applied into the past (contracting) direction. By the constraint equations (6) and (8), boundedness for the function \(\lambda \) is also shown. Indeed, we have the following equations:

\[
\dot{\lambda} = P \quad \text{and} \quad \dot{\lambda}' = Q.
\]

Since \(P \) and \(Q \) are bounded as we have already seen, \(\lambda \) and \(\lambda' \) are bounded. Then, we have shown that the first derivatives of \(\lambda \) must be bounded uniformly for all \(0 < t < \infty \).

Consequently, \(\lambda \) itself is also bounded. Concerning the second derivative of \(\lambda \), we can apply the argument of Alinhac [AS] again. Then, we have uniform \(C^2 \) bounds on all of the functions for all \(t \in (0, \infty) \).

Finally, we must demand that the function \(\lambda \) is compatible with the periodicity in \(\theta \). The following argument is similar to Moncrief’s one [M81]. This is true if \(\lambda(t, -\pi) = \lambda(t, \pi) \) over the interval of existence. Integrating equation (8) for the interval \(\theta \in [-\pi, \pi] \), we have a constraint

\[
\int_{-\pi}^{\pi} d\theta \left\{ [\dot{Z}^2 + e^{-2\varphi} \dot{X}^2] - 4\tau T_{s\theta} \right\} = 0.
\]

This constraint condition need only be imposed on the initial Cauchy surface since this integral is conservation on any time interval if all other functions satisfy the periodicity condition. This fact follows from the constraint equations (6) and (8):

\[
\frac{\partial}{\partial t} [\dot{Z}^2 + e^{-2\varphi} \dot{X}^2] - 4\tau T_{s\theta} = \frac{\partial}{\partial \theta} \left\{ \frac{1}{2} [\dot{Z}^2 + e^{-2\varphi}(X^2 + X'^2)] - 2\tau T_{s\theta} \right\}.
\]

Thus, we have completed the proof of theorem 1. □

4. Existence of constant mean curvature foliations

For vacuum \(T^3 \)-Gowdy spacetimes, it has been proved that conjecture 2 is valid [IM]. In that paper, the important idea is that one can apply the estimates for the functions in the areal time coordinate to show the existence of CMC foliations. Using the same argument with [IM], we can show a global existence theorem in the CMC time coordinate for the \(T^3 \)-Gowdy symmetric EMDA system.
For the Gowdy symmetric spacetime, the Einstein-matter equations imply that
\[-\text{tr} K(t) = e^{-\frac{\lambda}{2} t^2} \left[\frac{1}{4} \lambda + \frac{3}{4t} \right] = e^{-\frac{\lambda}{2} t^2} B_t,\]
where \(-\text{tr} K(t)\) is the mean curvature of a compact Cauchy surface \(S_t\) and
\[B_t := \frac{3}{4t} + \frac{l}{4} \left[Z^2 + Z'^2 + e^{-2Z} (X^2 + X'^2) \right] + t T_t.\]
(27)
From the positivity (see equation (7)) and bounds on the functions of the right-hand side of equation (27), we have the following estimate:
\[\inf_{h_t} \left(-\text{tr} K(t) \right) \geq C t^{-\frac{\lambda}{2}},\]
(28)
for some constant \(C\) and for all \(0 < t < t_0\). This means that the spacetime has a crushing singularity as \(t \to 0\) since the mean curvature goes to infinity uniformly [ME, M81].

Cosmological spacetimes imply that spatially compact, globally hyperbolic spacetimes satisfy the strong energy condition [BR]. Gerhardt has shown that in cosmological spacetimes, if there exists a foliation whose mean curvature tends uniformly to infinity, there is a CMC foliation with same property [GC]. Then, the past region of the initial hypersurface \(S_{t_0}\), \(D^- (S_{t_0})\), is covered by CMC hypersurfaces.

Next, we must show that \(D^+ (S_{t_0})\) can also be covered by CMC hypersurfaces. To do this, the following lemma is useful. Note that, from the previous argument, we have one initial CMC hypersurface \(\Sigma_{t_0}\) in \(D^- (S_{t_0})\).

Lemma 2. Suppose that \((D^+ (\Sigma_{t_0}), \gamma, \phi, \kappa, \chi)\) be a maximally extended, globally hyperbolic development of the initial data \(\Sigma_{t_0}\) of \(T^3\)-Gowdy symmetric spacetime in the EMDA system. Then, \((D^+ (\Sigma_{t_0}), \gamma, \phi, \kappa, \chi)\) admit a unique, monotonic CMC foliation \(i_\tau\) which covers \((D^+ (\Sigma_{t_0}), \gamma, \phi, \kappa, \chi)\).

Proof of lemma 2. The argument is very similar to one of the proofs of lemma 1 of [IM]. It is well known that there is a unique, monotonic, local CMC foliation of \((D^+ (\Sigma_{t_0}), \gamma, \phi, \kappa, \chi)\) defined near the initial hypersurface \(\Sigma_{t_0}\) [MT] and that the spacelike Killing fields must be tangent to CMC hypersurfaces [AL99].

First, we shall show that this foliation is uniformly spacelike. If \(\Sigma_t = i_\tau (T^3)\) is a CMC hypersurface in the local foliation, there is a smooth function \(h_t : S^1 \to R^+\) such that \(\Sigma_t\) is defined in the coordinates \((t, \theta, y, z)\) by \(t = h_t (\theta) \in [t_0, t_1]\) and \(h_t\) satisfies the following equation:
\[-\frac{d}{d\theta} \left[\frac{e^{\tau t} h_t h'_t}{(1 - (h'_t)^2)^{1/2}} \right] = e^{\tau t} h_t \left[(1 - (h'_t)^2)^{1/2} \left(\frac{1}{4} \lambda + \frac{3}{4t} \right) + \text{tr} K e^{\tau t} h_t \right] \bigg|_{t = h_t (\theta)},\]
(29)
where \(h'_t := \frac{d}{dt} h_t, \lambda = \lambda (h_t (\theta), \theta),\) and \(-\text{tr} K\) is the (constant) mean curvature of the embedded hypersurface. If \(|h'_t| < 1, \Sigma_t\) is spacelike since the induced metric \(\gamma_t\) on \(\Sigma_t\) is
\[\gamma_t = e^{\tau t} \left(1 - (h'_t)^2 \right) d\theta^2 + t [e^{-2Z (t, \theta)} (dy + X (t, \theta) dz)^2 + e^{2Z (t, \theta)} dz^2].\]
(30)
Integrating equation (29) from \(\theta_0\) to \(\theta_1\), we get
\[\int_{\theta = \theta_0}^{\theta = \theta_1} \frac{e^{\tau t} h_t h'_t}{(1 - (h'_t)^2)^{1/2}} \bigg|_{\theta = \theta_0}^{\theta = \theta_1} \leq \int_{\theta = \theta_0}^{\theta = \theta_1} d\theta \left[e^{\tau t} h_t \left[(1 - (h'_t)^2)^{1/2} B_t + |\text{tr} K| e^{\tau t} h_t \right] \right] \bigg|_{t = h_t (\theta)},\]
(31)
where θ_1 is arbitrary and we can choose that $h'_\tau(\theta_0) = 0$. From the boundedness of the right-hand side of equation (31) and the fact that $h_\tau(\theta) \in [t_0, t_1] \subset (0, \infty)$, we have that $\frac{h_\tau}{1 - (h'_\tau)^2}$ is bounded by a constant and then the estimate $|h'_\tau| < 1$ is obtained. Thus, the CMC hypersurfaces are uniformly spacelike.

The above argument holds for any $[t_0, t_1] \subset (0, \infty)$. Then, the local foliation i_τ can be extended to $t \to \infty$. Next, we shall show that the leaves Σ_r cannot approach the boundary at $t \to \infty$ without foliating a full neighbourhood of the boundary. Since $\theta \in [0, 2\pi)$ and $|h'_\tau| < 1$, we have

$$0 \leq \sup_{t_r(T^3)} - \inf_{t_r(T^3)} (t) \leq 2\pi.$$

Then, the hypersurface $i_\tau(T^3)$ cannot approach the boundary at $t \to \infty$ without foliating a full neighbourhood of the boundary. (See also the proof of theorem 6.2 of [ARR].) □

Lemma 2 states that future Cauchy development of the initial Cauchy surface is covered by CMC foliations. Combining the result from Gerhardt’s theorem, which states that past Cauchy development of the initial Cauchy surface is covered by CMC foliations, we have the following theorem which supports the validity of conjecture 2.

Theorem 2. The spacetime can be covered by hypersurfaces of CMC, $-\text{tr} K(t) \in (0, \infty)$.

5. Discussion

The remaining open question to prove the conjecture 1 is to prove the inextendibility of the spacetime. This can be divided into two questions. (1) Does the Kretschmann scalar of the spacetime blow-up tend to singularities? (2) Is the spacetime geodesic complete into the future?

For question (1), we have a very useful tool for analysing the nature of singularities, that is, the *Fuchsian algorithm* developed by Kichenassamy and Rendall [KR]. It has been shown that T^3-Gowdy spacetimes have an asymptotically velocity-terms dominated (AVTD) singularity in general in the sense that a family of solutions depends on the maximal number of arbitrary functions. Recently, this result has been generalized to the case of the Einstein-scalar system without symmetry assumptions [AR], of the EMDA system with Gowdy symmetry [NTM] and of the D-dimensional Einstein–dilaton–p-form system without symmetry assumptions [DHRW]. These spacetimes are inextendible beyond the singularity since the Kretschmann scalar blows up there. We can conclude the inextendibility in general if we can answer the following question: is there an open set of initial data on a regular Cauchy surface whose singularity is AVTD? For the last question, we only have a result for vacuum Gowdy spacetimes [CIM, RH]. We may extend the technique in their paper to our case.

Concerning question (2), Rein has obtained a related result for the Einstein–Vlasov system with hyperbolic symmetry [RG]. The spacetimes are shown to be causally geodesically complete in the future (expanding) direction if the data satisfy a certain size restriction.

If all of the above were proved, we would complete a proof of the strong cosmic censorship conjecture in the T^3-Gowdy symmetric EMDA system.

Acknowledgments

I would like to thank Lars Andersson, Håkan Andreasson, James Isenberg, Alan Rendall for useful discussion and Yoshio Tsutsumi for reading the manuscript and suggesting several improvements. I also want to thank anonymous referees for helpful comments.
References

[AS] Alinhac S 1995 Blowup for Nonlinear Hyperbolic Equations (Boston: Birkhäuser)

[AL99] Andersson L 1999 The global existence problem in general relativity Preprint gr-qc/9911032

[AR] Andersson L and Rendall A 2001 Quiescent cosmological singularities Commun. Math. Phys. 218 479–511

[AH] Andreassen H 1999 Global foliations of matter spacetimes with Gowdy symmetry Commun. Math. Phys. 206 337–65

[ARR] Andreasson H, Rein G and Rendall A D 2001 On the Einstein-Vlasov system with hyperbolic symmetry Preprint gr-qc/0110089

[BR] Bartnik R 1988 Remarks on cosmological spacetimes and constant mean curvature hypersurfaces Commun. Math. Phys. 117 615–24

[BCIM] Berger B K, Chruściel P T, Isenberg J and Moncrief V 1997 Global foliations of vacuum spacetimes with T^2 isometry Ann. Phys. 260 117–48

[CD] Christodoulou D 1999 On the global initial value problem and the issue of singularities Class. Quantum Grav. 16 A23–35

[CK] Christodoulou D and Klainerman S 1993 The Global Nonlinear Stability of The Minkowski Space (Princeton: Princeton University Press)

[CIM] Chruściel P T, Isenberg J and Moncrief V 1990 Strong cosmic censorship in polarized Gowdy spacetimes Class. Quantum Grav. 7 1671–80

[CBG] Choquet-Bruhat Y and Geroch R 1969 Global aspects of the Cauchy problem in general relativity Commun. Math. Phys. 14 329–35

[BCIM2] Damour T, Henneaux M, Rendall A D and Weaver M 2002 Kasner-like behaviour for subcritical Einstein-matter systems Preprint gr-qc/0202069

[ES] Eardley D M and Smarr L 1979 Time functions in numerical relativity: marginally bound dust collapse Phys. Rev. D 19 2239–59

[FR] Friedrich H and Rendall A D 2000 The Cauchy problem for the Einstein equations Lect. Notes Phys. 540 127–224

[GC] Gerhardt C 1983 H-surfaces in Lorentzian manifolds Commun. Math. Phys. 89 523–53

[GR] Gowdy R 1974 Vacuum spacetimes and compact invariant hypersurfaces: topologies and boundary conditions Ann. Phys. 83 203–41

[H02a] Henkel O 2002 Global prescribed mean curvature foliations in cosmological spacetimes with matter Part I J. Math. Phys. 43 2439–65

[H02b] Henkel O 2002 Global prescribed mean curvature foliations in cosmological spacetimes with matter Part II J. Math. Phys. 43 2466–85

[HL] Hörmander L 1997 Lectures on Nonlinear Hyperbolic Differential Equations (Berlin: Springer)

[IM] Isenberg J and Moncrief V 1982 The existence of constant mean curvature foliations of Gowdy 3-torus spacetimes Commun. Math. Phys. 86 485–93

[IR] Isenberg J and Rendall A D 1998 Cosmological spacetimes not covered by a constant mean curvature slicing Class. Quantum Grav. 15 3679–88

[KR] Kichenassamy S and Rendall A D 1998 Analytic description of singularities in Gowdy spacetimes Class. Quantum Grav. 15 1339–55

[KN] Klainerman S and Nicolò F 1999 On local and global aspects of the Cauchy problem in general relativity Class. Quantum Grav. 16 R73–157

[MA] Majda A 1984 Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables (Berlin: Springer)

[MP] Mansfield P A 1989 Cosmological singularities in electrovacuum spacetimes with two-parameter spacelike isometry groups PhD Thesis, Yale University

[MT] Marsden J E and Tipler F J 1980 Maximal hypersurfaces and foliations of constant mean curvature in general relativity Phys. Rep. 66 109–39

[M81] Moncrief V 1981 Global properties of Gowdy spacetimes with $T^3 \times R$ topology Ann. Phys. 132 87–107

[M97] Moncrief V 1997 Spacetime singularities and cosmic censorship Proc. 14th Int. Conf. on General Relativity and Gravitation ed M Francaviglia, G Longhi, L Lusanna and E Sorace (Singapore: World Scientific) pp 259–76

[ME] Moncrief V and Eardley D M 1981 The global existence problem and cosmic censorship in general relativity Gen. Rel. Grav. 13 887–92

[NTM] Narita M, Torii T and Maeda K 2000 Asymptotic singular behaviour of Gowdy spacetimes in string theory Class. Quantum Grav. 17 4597–613

[ON] Ohta N 2002 Superstring Theory, Brane, M-theory (Tokyo: Springer)
[RG] Rein G 2002 On future geodesic completeness for the Einstein–Vlasov system with hyperbolic symmetry Preprint gr-qc/0203066

[R97] Rendall A D 1997 Existence of constant mean curvature foliations in spacetimes with two-dimensional local symmetry Commun. Math. Phys. 189 145–64

[R02] Rendall A D 2002 Theorems on existence and global dynamics for the Einstein equation Preprint gr-qc/0203012

[RH] Ringström H 2002 On Gowdy vacuum spacetimes Preprint gr-qc/0204044

[STW] Shapere A D, Trivedi S and Wilczek F 1991 Dual dilaton dyons Mod. Phys. Lett. A 6 2677–86

[WIB] Weaver M, Isenberg J and Berger B K 1998 Mixmaster behavior in inhomogeneous cosmological spacetimes Phys. Rev. Lett. 80 2984–7