KDM7 is a dual demethylase for histone H3 Lys 9 and Lys 27 and functions in brain development

Yu-ichi Tsukada,1,2,3 Tohru Ishitani,4 and Keiichi I. Nakayama1,2,5

1Division of Cell Biology, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan; 2CREST, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan; 3PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan; 4Division of Cell Regulation Systems, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan

Methylation of histone H3 Lys 9 and Lys 27 (H3K9 and H3K27) is associated with transcriptional silencing. Here we show that KDM7, a JmjC-domain-containing protein, catalyzes demethylation of both mono- or dimethylated H3K9 and H3K27. Inhibition of KDM7 orthologs in zebrafish resulted in developmental brain defects. KDM7 interacts with the follistatin gene locus, and KDM7 depletion in mammalian neuronal cells suppressed follistatin gene transcription in association with increased levels of dimethylated H3K9 and H3K27. Our findings identify KDM7 as a dual demethylase for H3K9 and H3K27 that functions as an eraser of silencing marks on chromatin during brain development.

Supplemental material is available at http://www.genesdev.org.

Received September 16, 2009; revised version accepted December 31, 2009.

Histone methylation status defines the epigenetic program of a cell by determining chromatin structure and thereby regulating DNA-dependent processes such as transcription [Strahl and Allis 2000; Lachner et al. 2003; Margueron et al. 2005; Martin and Zhang 2005]. Histone methylation has also been linked to regulation of neuronal function [Iwase et al. 2007]. The recent discovery of histone demethylases revealed that histone methylation is a more dynamic process than previously recognized, and that most identified demethylases show a strict substrate specificity limited to a single methylation site [Bannister et al. 2002; Shi et al. 2004; Klose et al. 2006a; Lan et al. 2008]. A number of histone demethylases contain a JmjC domain, and a subfamily of JmjC domain-containing proteins [comprising KIAA1718, PHF8, and PHF2] is evolutionarily conserved from Caenorhabditis elegans to humans and is characterized by the presence of a PHD-type zinc finger motif in addition to the JmjC domain [Supplemental Fig. S1A]. Whereas the human genes for PHF8 and PHF2 are associated with X-linked mental retardation and hereditary sensory neuropathy type I, respectively [Hasenpusch-Theil et al. 1999; Laumonnier et al. 2005; Abidi et al. 2007; Koivisto et al. 2007], little is known about KIAA1718. Bioinformatic analysis of the JmjC domains of KIAA1718, PHF8, and PHF2 indicated that predicted Fe(II)- and α-ketoglutarate (α-KG)-binding sites are conserved, with the exception of the former in PHF2, and that they share extensive similarity with the JmjC domain of JHDM1/KDM2 (Supplemental Fig. S1B). Conservation of residues within the putative cofactor-binding sites of KIAA1718 suggested that this protein might possess histone demethylase activity, and therefore might also contribute to transcriptional regulation of genes in the nervous system.

Results and Discussion

KIAA1718 possesses histone demethylase activity

To examine whether KIAA1718 indeed possesses histone demethylase activity, we generated the mouse protein tagged with the Flag epitope at its C terminus in insect cells [Fig. 1A], and incubated the recombinant protein with histone substrates labeled with 3H at various characterized methyl-lysine or methyl-arginine sites by corresponding histone methyltransferases (HMTs). Histone demethylase activity was monitored by measurement of the release of the labeled demethylation product, formaldehyde. Substantial release of labeled formaldehyde was observed in the reaction mixture containing histone H3 labeled on Lys 9 [H3K9] by G9a, but not in those containing histone substrates modified by other HMTs [Fig. 1B]. Consistent with the notion that the observed enzymatic activity was intrinsic to KIAA1718, formaldehyde release from G9a-labeled H3 was dependent on KIAA1718 concentration [Fig. 1C]. To ascertain whether the demethylation mediated by KIAA1718 is oxidative in nature, with Fe(II) and α-KG as cofactors, we examined whether the enzymatic activity of KIAA1718 is dependent on these cofactors. The release of formaldehyde mediated by KIAA1718 was indeed found to require both Fe(II) and α-KG [Fig. 1D]. Ascorbate was also required for the enzymatic activity, presumably as a result of its ability to regenerate Fe(II) from Fe(III). To verify further that the observed enzymatic activity is attributable to a genuine demethylase, we generated recombinant forms of KIAA1718 that either lack the JmjC or PHD domains or contain a mutation [H282A] in the Fe(II)-binding site in insect cells [Fig. 1E]. Analysis of similar amounts of the mutant proteins for histone demethylase activity revealed that deletion of the JmjC domain or mutation of His282 abolished the activity of KIAA1718, whereas the PHD domain appeared to be dispensable for such activity [Fig. 1E,F]. Together, these results showed that KIAA1718 is a histone demethylase capable of removing methyl groups from H3K9. Given that histone demethylase activity is the first function attributed to KIAA1718, we named this protein KDM7 on the basis of the previously described nomenclature [Allis et al. 2007].
KDM7 is a dual demethylase for dimethylated and monomethylated H3K9 (H3K9me2/me1) and H3K27me2/me1

To define the substrate and modification state specificity of KDM7, we included core histones as substrates in demethylation reaction mixtures and examined the modification status of individual methylation sites by immunoblot analysis with a series of methylation-specific antibodies. Wild-type KDM7 mediated a marked decrease in the methylation level of both H3K9me2 and H3K27me2, without affecting that of other histone methylation sites (Fig. 2A; Supplemental Fig. S2A). In addition, KDM7 efficiently removed methyl groups from H3K9me2 and H3K27me2 in core histones, but not from those in mono- or oligonucleosomes (Supplemental Fig. S2B,C). These results suggested that KDM7 prefers core histones rather than mono- or oligonucleosomes as substrates, and explain why demethylase activity was not detected with trimethylated H3K9 (H3K9me3) or H3K27me3 peptides. A low level of demethylation activity was also apparent with an H3K36me2 peptide, but no demethylation of H3K36me1 or H3K36me3 was detected (Fig. 2D). The decrease in mass corresponding to a methyl group was not detected in reaction mixtures containing other methylated histone peptides (Supplemental Fig. S3).

Together, these data suggested that KDM7 is an authentic histone demethylase with the ability to mediate the direct removal of methyl groups from H3K9me2/me1 and H3K27me2/me1.

Zebrafish KDM7 orthologs possess histone demethylase activity for H3K9/K27 and are expressed predominantly in the brain

To explore the biological function of KDM7 in vivo, we characterized the KDM7 orthologs in zebrafish—LOC321248 and LOC558416, hereafter designated drKDM7a and drKDM7b, respectively (Supplemental Fig. S1A)—both of which were also found to manifest histone demethylase activity toward H3K9me2 and
H3K27me2 in core histones (Supplemental Fig. S4A). We first examined the expression patterns of kdm7a and kdm7b during development by in situ hybridization. Transcripts corresponding to kdm7a and kdm7b were detected as early as the post-somitogenesis stage at 24 h post-fertilization (hpf) in the brain and tail bud (Fig. 3A,B), whereas no signals were observed in embryos at 6 or 12 hpf (data not shown). The expression of both kdm7 genes became prominent in the tectum, hindbrain, fin bud, and gill at 48 hpf (Fig. 3A,B). Corresponding sense probes did not yield any signals at these various stages of development (Supplemental Fig. S4B), indicating that the signals attributed to kdm7 transcripts were specific.

Zebrafish KDM7 orthologs are required for tectum development

Given that both kdm7 genes are expressed predominantly in the brain, we examined whether drKDM7 might function in brain development. To examine this possibility, we inhibited the function of drKDM7 with the use of two splicing-blocking antisense morpholino oligonucleotides (MOs) that independently target kdm7a or kdm7b. We also studied the stable transgenic line Tg(HuC:Kaede), which expresses the fluorescent protein Kaede in neurons under the control of the vertebrate neuron-specific promoter of the HuC gene, in order to visualize neurons (Sato et al. 2006). The level of mature mRNAs derived from the two kdm7 genes was reduced specifically in embryos injected with the corresponding MO, but not in those injected with a control MO (Supplemental Fig. S5A). At 48 hpf, embryos that had been subjected to simultaneous injection of both kdm7 MOs at the one-cell stage manifested a curly tail and marked decrease in size of the tectum (Fig. 3C,D), consistent with the observed expression of kdm7 in the brain and tail bud. Importantly, the reduction in tectum size was accompanied by the loss of neurons from this region, although neurons in the spinal cord and other regions of the brain were unaffected (Fig. 3D; Supplemental Fig. S5B,C). In contrast, injection of MOs specific for each kdm7 gene alone elicited only marginal effects compared with those of the control MO, a finding likely attributable to functional redundancy of the two kdm7 genes. The persistence at 72 hpf of the phenotypes of the embryos injected with both Kdm7 MOs eliminates the possibility that they were attributable to developmental delay (Fig. 3C; Supplemental Fig. S5B,C). Embryos that had been subjected to simultaneous injection of another set of MOs that independently target kdm7a and kdm7b also manifested phenotypes (Supplemental Fig. S6) similar to those observed with the original set (Fig. 3C,D), suggesting that the phenotypes were the specific consequence of depletion of kdm7 transcripts. Coinjection of a validated MO for p53 (Robu et al. 2007) with either of the two independent sets of MOs for kdm7 did not affect the phenotypes induced by MO-mediated depletion of kdm7 transcripts (Supplemental Fig. S7), eliminating the possibility that the phenotypes were the result of p53 activation. Given that the phenotypes were not attributable to cell death (Supplemental Fig. S8), drKDM7 might regulate the proliferation or differentiation of neurons.
the other hand, ectopic overexpression of a fragment of drKDM7a comprising amino acids 1–480 (which manifested demethylase activity similar to that of the full-length protein) achieved by mRNA injection at the one-cell stage resulted in severe developmental defects in zebrafish embryos (Supplemental Fig. S9), suggesting that spatially and temporally regulated expression of drKDM7 is necessary for proper development. Together, these results thus indicated that KDM7 plays an important role in brain development.

KDM7 directly regulates transcription and H3K9me2 and H3K27me2 levels of the follistatin gene

Quantitative RT–PCR analysis revealed that Kdm7 mRNA was more abundant specifically in the cerebrum and cerebellum than in other mouse tissues, although low levels of Kdm7 expression were apparent in a wide spectrum of tissues in the mouse (Supplemental Fig. S10A). To investigate the molecular basis for the abnormal brain development in zebrafish embryos depleted of drKDM7, as well as the function of KDM7 in neurons, we examined the effect of KDM7 depletion in the identification of genes whose expression was affected by KDM7 depletion [Supplemental Fig. S10C]. One of these genes whose expression was markedly decreased by loss of KDM7 was that for follistatin, on which we initially focused, given that follistatin functions as an endogenous inhibitor of members of the transforming growth factor (TGF)-β superfamily, including activin, which plays an important role in brain development (Hemmati-Brivanlou et al. 1994; Lin et al. 2003; Zhu et al. 2008). We confirmed by quantitative RT–PCR analysis that the abundance of follistatin mRNA was decreased in Neuro2A cells depleted of KDM7 (Fig. 4C). Consistent with the results obtained with Neuro2A cells, depletion of KDM7 by RNAi in primary cultured mouse neurons also resulted in down-regulation of follistatin mRNA (Fig. 4D).

To determine whether the follistatin gene is a direct target of KDM7, we performed a series of chromatin immunoprecipitation (ChIP) experiments to examine its promoter and coding regions in Neuro2A cells (Fig. 4E). This analysis revealed the association of KDM7 with the follistatin gene, predominantly around the transcription start site (Fig. 4F). To investigate the consequences of this association, we analyzed H3K9me2 and H3K27me2 levels in the promoter and coding regions of the gene. Depletion of KDM7 resulted in an increase in both H3K9me2 and H3K27me2 levels around the transcription start site of the gene that appeared to correlate
with KDM7 occupancy [Fig. 4G]. Depletion of KDM7 by RNAi in Neuro2A cells did not markedly affect H3K9me3 levels of the follistatin gene [Supplemental Fig. S11A]. In contrast, depletion of KDM7 paradoxically increased H3K27me3 levels in the entire region of the gene [Supplemental Fig. S11B], although KDM7 showed no activity toward H3K27me3 in vitro. Given that the regions in which H3K27me3 levels were increased did not correlate with KDM7 occupancy, the observed changes in H3K27me3 levels were most likely an indirect effect of KDM7 depletion. These results suggested that the follistatin gene is a direct target of KDM7-mediated transcriptional activation.

We thus examined whether the zebrafish follistatin gene is dysregulated in kdm7 morphants with the use of in situ hybridization. Whereas control morphants showed expression of the follistatin gene in an anterior edge region of the tectum at 48 hpf, kdm7 morphants manifested a substantial decrease in such expression [Fig. 4H].

The down-regulation of follistatin gene expression in this particular region was sustained at 60 and 72 hpf [Supplemental Fig. S12A]. The corresponding sense probe did not yield any signals at the corresponding stages [Supplemental Fig. S12B]. These results thus suggested that KDM7 is recruited to specific regions of the genome, and there functions as an H3K9 and H3K27 demethylase in vivo. To investigate whether follistatin contributes to brain development in zebrafish, we inhibited the function of follistatin with the use of two independent MOs that target the follistatin gene. At 48 hpf, embryos that had been injected with either follistatin MO at the one-cell stage manifested a loss of neurons from the tectum region, although neurons in the spinal cord and other regions of the brain were unaffected [Supplemental Fig. S13]. Coinjection of the validated MO for p53 did not affect this phenotype [Fig. 4I; Supplemental Fig. S13C]. Together, these results indicated that KDM7 contributes to brain development at least in part through regulation of follistatin gene expression.

Methylation of H3K9 and H3K27 is linked to formation of tightly packed chromatin [heterochromatin] and transcriptional silencing [Martin and Zhang 2005]. We showed here that KDM7 is a histone demethylase that catalyzes demethylation at both H3K9 and H3K27. Among the JmjC domain-containing histone demethylases, only JHDM3/JMJD2 has been shown to act as a dual demethylase, targeting both H3K9 and H3K36 and functioning as a transcriptional repressor of the ASC2L gene, although the consequence of simultaneous methylation of these sites remains unclear [Tewari et al. 2006; Whetstine et al. 2006]. We therefore propose that KDM7 functions as an eraser of silencing marks on chromatin to unlock gene silencing. Consistent with this notion, we found that removal of methyl groups from H3K9 and H3K27 by KDM7 is associated with transcriptional activation of the follistatin gene. KDM7 belongs to the subfamily of JmjC domain-containing proteins composed of PHF2 and PHF8 in addition to KDM7. The expression of Phf2 is concentrated in the embryonic neural tube and...
root ganglia in mice, and mutation of human PHF8 causes inherited X-linked mental retardation [Hasenpusch-Theil et al. 1999; Laumonnier et al. 2005; Abidi et al. 2007; Koivisto et al. 2007]. Our results showed that KDM7 is expressed predominantly in the brain of fish and mice as well as in mammalian neuronal cells and is essential for development of the fish brain, suggesting that transcriptional regulation of the follistatin gene by KDM7 may be evolutionarily conserved. Functions in neuronal development based on their demethylase activity may thus be common to this class of JmjC domain-containing proteins.

Materials and methods

In vitro histone demethylase assays
We performed in vitro demethylation assays with the use of purified recombinant proteins and various forms of histone substrates. Demethylase activity was detected by measurement of formaldehyde release, immunoblot analysis with a series of methylation-specific antibodies (Supplemental Table S1), or matrix-assisted laser desorption ionization (MALDI)-time-of-flight (TOF) mass spectrometry, as detailed in the Supplemental Material.

In situ hybridization
Whole-mount zebrafish embryos were subjected to in situ hybridization under standard conditions with digoxigenin-labeled antisense RNA probes prepared from zebrafish kdm7a (XM_687822), kdm7b (XM_681621), or follistatin 1 [DQ317968] genes.

Other methods
Details of other procedures are provided in the Supplemental Material.

Acknowledgments
We thank B.D. Strahl for providing pCAL-SpSet2, National BioResource Project ZEBRAFISH for providing HuC:Kaede transgenic fish, and members of our laboratories for discussion. This work was supported in part by a grant from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

References
Abidi FE, Miano MG, Murray JC, Schwartz CE. 2007. A novel mutation in the PHF8 gene is associated with X-linked mental retardation with cleft lip/cleft palate. Clin Genet 72: 19–22.
Allis CD, Berger SL, Cote J, Dent S, Jenuwien T, Kouzarides T, Pillus L, Abidi FE, Miano MG, Murray JC, Schwartz CE. 2007. A novel mutation inherited X-linked mental retardation (Hasenpusch-Theil et al. 1999; Laumonnier et al. 2005; Abidi et al. 2007; Koivisto et al. 2007). Our results showed that KDM7 is expressed predominantly in the brain of fish and mice as well as in mammalian neuronal cells and is essential for development of the fish brain, suggesting that transcriptional regulation of the follistatin gene by KDM7 may be evolutionarily conserved. Functions in neuronal development based on their demethylase activity may thus be common to this class of JmjC domain-containing proteins.

Materials and methods

In vitro histone demethylase assays
We performed in vitro demethylation assays with the use of purified recombinant proteins and various forms of histone substrates. Demethylase activity was detected by measurement of formaldehyde release, immunoblot analysis with a series of methylation-specific antibodies (Supplemental Table S1), or matrix-assisted laser desorption ionization (MALDI)-time-of-flight (TOF) mass spectrometry, as detailed in the Supplemental Material.

In situ hybridization
Whole-mount zebrafish embryos were subjected to in situ hybridization under standard conditions with digoxigenin-labeled antisense RNA probes prepared from zebrafish kdm7a (XM_687822), kdm7b (XM_681621), or follistatin 1 [DQ317968] genes.

Other methods
Details of other procedures are provided in the Supplemental Material.

Acknowledgments
We thank B.D. Strahl for providing pCAL-SpSet2, National BioResource Project ZEBRAFISH for providing HuC:Kaede transgenic fish, and members of our laboratories for discussion. This work was supported in part by a grant from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

References
Abidi FE, Miano MG, Murray JC, Schwartz CE. 2007. A novel mutation in the PHF8 gene is associated with X-linked mental retardation with cleft lip/cleft palate. Clin Genet 72: 19–22.
Allis CD, Berger SL, Cote J, Dent S, Jenuwien T, Kouzarides T, Pillus L, Abidi FE, Miano MG, Murray JC, Schwartz CE. 2007. A novel mutation inherited X-linked mental retardation (Hasenpusch-Theil et al. 1999; Laumonnier et al. 2005; Abidi et al. 2007; Koivisto et al. 2007). Our results showed that KDM7 is expressed predominantly in the brain of fish and mice as well as in mammalian neuronal cells and is essential for development of the fish brain, suggesting that transcriptional regulation of the follistatin gene by KDM7 may be evolutionarily conserved. Functions in neuronal development based on their demethylase activity may thus be common to this class of JmjC domain-containing proteins.

Materials and methods

In vitro histone demethylase assays
We performed in vitro demethylation assays with the use of purified recombinant proteins and various forms of histone substrates. Demethylase activity was detected by measurement of formaldehyde release, immunoblot analysis with a series of methylation-specific antibodies (Supplemental Table S1), or matrix-assisted laser desorption ionization (MALDI)-time-of-flight (TOF) mass spectrometry, as detailed in the Supplemental Material.

In situ hybridization
Whole-mount zebrafish embryos were subjected to in situ hybridization under standard conditions with digoxigenin-labeled antisense RNA probes prepared from zebrafish kdm7a (XM_687822), kdm7b (XM_681621), or follistatin 1 [DQ317968] genes.

Other methods
Details of other procedures are provided in the Supplemental Material.

Acknowledgments
We thank B.D. Strahl for providing pCAL-SpSet2, National BioResource Project ZEBRAFISH for providing HuC:Kaede transgenic fish, and members of our laboratories for discussion. This work was supported in part by a grant from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

References
Abidi FE, Miano MG, Murray JC, Schwartz CE. 2007. A novel mutation in the PHF8 gene is associated with X-linked mental retardation with cleft lip/cleft palate. Clin Genet 72: 19–22.
Allis CD, Berger SL, Cote J, Dent S, Jenuwien T, Kouzarides T, Pillus L, Abidi FE, Miano MG, Murray JC, Schwartz CE. 2007. A novel mutation inherited X-linked mental retardation (Hasenpusch-Theil et al. 1999; Laumonnier et al. 2005; Abidi et al. 2007; Koivisto et al. 2007). Our results showed that KDM7 is expressed predominantly in the brain of fish and mice as well as in mammalian neuronal cells and is essential for development of the fish brain, suggesting that transcriptional regulation of the follistatin gene by KDM7 may be evolutionarily conserved. Functions in neuronal development based on their demethylase activity may thus be common to this class of JmjC domain-containing proteins.

Materials and methods

In vitro histone demethylase assays
We performed in vitro demethylation assays with the use of purified recombinant proteins and various forms of histone substrates. Demethylase activity was detected by measurement of formaldehyde release, immunoblot analysis with a series of methylation-specific antibodies (Supplemental Table S1), or matrix-assisted laser desorption ionization (MALDI)-time-of-flight (TOF) mass spectrometry, as detailed in the Supplemental Material.

In situ hybridization
Whole-mount zebrafish embryos were subjected to in situ hybridization under standard conditions with digoxigenin-labeled antisense RNA probes prepared from zebrafish kdm7a (XM_687822), kdm7b (XM_681621), or follistatin 1 [DQ317968] genes.

Other methods
Details of other procedures are provided in the Supplemental Material.

Acknowledgments
We thank B.D. Strahl for providing pCAL-SpSet2, National BioResource Project ZEBRAFISH for providing HuC:Kaede transgenic fish, and members of our laboratories for discussion. This work was supported in part by a grant from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.
KDM7 is a dual demethylase for histone H3 Lys 9 and Lys 27 and functions in brain development
Yu-ichi Tsukada, Tohru Ishitani and Keiichi I. Nakayama

Genes Dev. 2010, 24:
Access the most recent version at doi:10.1101/gad.1864410

Supplemental Material
http://genesdev.cshlp.org/content/suppl/2010/02/18/24.5.432.DC1

References
This article cites 24 articles, 5 of which can be accessed free at:
http://genesdev.cshlp.org/content/24/5/432.full.html#ref-list-1

License

Email Alerting Service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or [click here](#).