A Privacy-Preserving Solution for Proximity Tracing Avoiding Identifier Exchanging

Francesco Buccafurri*, Vincenzo De Angelis* and Cecilia Labrini*

*University of Reggio Calabria
Via Graziella, Loc. Feo di Vito Reggio Calabria, Italy 89123
Email: {buca, vincenzo.deangelis, cecilia.labrini}@unirc.it

Abstract—Digital contact tracing is one of the actions useful, in combination with other measures, to manage an epidemic diffusion of an infectious disease in an after-lock-down phase. This is a very timely issue, due to the pandemic of COVID-19 we are unfortunately living. Apps for contact tracing aim to detect proximity of users and to evaluate the related risk in terms of possible contagious. Existing approaches leverage BLE or GPS, or their combination, even though the prevailing approach is BLE-based and relies on a decentralized model requiring the mutual exchange of ephemeral identifiers among users' smartphones. Unfortunately, a number of security and privacy concerns exist in this kind of solutions, mainly due to the exchange of identifiers, while GPS-based solutions (inherently centralized) may suffer from threats concerning massive surveillance. In this paper, we propose a solution leveraging GPS to detect proximity, and BLE only to improve accuracy, with no exchange of identifiers. Unlike related existing solutions, no complex cryptographic mechanism is adopted, while ensuring that the server does not learn anything about locations of users.

Keywords—Digital contact tracing; Pandemic; COVID-19; Health informatics.

I. INTRODUCTION

The epidemic diffusion of an infectious disease can be contrasted by adopting various actions, suitably combined with each other, like tests, pharmacological treatments, quarantine, contact tracing. The latter consists in identifying contacts makes a person potentially infected and how long the contagious window is, strictly depends on the type of infection. The pandemic of COVID-2019 we are leaving in this period is characterized by high contagiousness mainly due to asymptomatic and pre-symptomatic infections, during a large temporal window (at least 14 days) [1]. Therefore, traditional contact tracing based on human intelligence activities to identify contacts is not sufficient if not supported by digital solutions able to capture even short (numerous) contacts occurred during the activities of the daily life [2]. For this reason, there is nowadays a great attention towards digital contact tracing that many countries in the world are adopting through mobile apps to better manage the after-lock-down phase.

Bluetooth Low Energy (BLE) [3] on board of smartphones is the technology used to implement decentralized protocols, in which users in BLE action range exchange pseudonym identities and store them together with some information useful to evaluate the risk of the occurred contacts in terms of possible contagious. The DP-3T based solutions [4], [5] fall in the above category and certainly represent the prevailing current approach, recognized as the approach that best protects citizens’ privacy.

However, DP-3T is not immune from threats to privacy and to the integrity of the protocol, also due to some technological issues related to its BLE-based implementation [6], [7], [8].

On the other hand, centralized solutions are often based on GPS. The basic way to implement a GPS-based solution requires that the user’s absolute position is periodically transmitted to a server (under the control of the government), which is then able to maintain the graph of contacts, possibly in form of pseudonyms. One of the advantages of the centralized model is that identities are not exchanged among users, and this disarms a number of issues arising from the possible misbehaviour of users. However, as recently stated by EU [9], GPS-based solutions introduce intolerable risks threatening fundamental rights of people, if implemented as above, in the general case that the server cannot be assumed fully trusted and positions of user are stored or potentially inferred.

Anyway, more sophisticated approaches relying on GPS exist, which, thanks to multi party computation and other complex cryptographic mechanisms, are able to effectively contrast the issues arising from non-trusted servers [10], [11]. However, these solutions are not scalable [12], due to the computational overhead required by cryptographic protocols.

In this paper, we propose a solution, called Zero Ephemeral Exchanging Privacy Preserving Proximity Tracing (ZE2-P3T, for short), relying on GPS to detect proximity, and on BLE only to improve accuracy. Our solution overcomes the most security and privacy issues of the DP-3T approach, basically because the exchange of identifiers is not enabled. Interestingly, unlike related existing solutions, to ensure that the server does not learn anything about locations of users, no complex cryptographic mechanism is adopted, making our solution feasible also for a large number of users.

The structure of this paper is the following. In Section II, the related literature is analysed. Section III describes
the state-of-the-art decentralized protocol DP-3T and the
motivation of our study. In Section IV, we present ZE2-
P3T, a new solution which does not require the exchange of
identifiers between users. ZE2-PT3 uses a protocol called
PNP, described in Section V, to improve the accuracy of
the GPS localization. The security analysis is discussed in
Section VI. Finally, in Section VII, we draw our conclusions.

II. RELATED WORK

To counter and slow down the spread of the COVID-19
infection, researchers are investing their energies to propose
digital solutions for tracking contacts that preserve privacy
and that comply with current regulations.

Many solutions decide upon for a BLE-based approach.
Several solutions opt for a decentralized approach [6] to
guarantee high privacy properties. Among the decentralized
models, the emerging protocol is certainly Decentralized
Privacy-Preserving Proximity Tracing (DP-3T) [4]. This
protocol is based on ephemeral pseudonyms (called EphIDs)
sent via Bluetooth Low Energy (BLE) which are registered
by nearby users. We will see more carefully this model
in the next section. Google and Apple announced a joint
effort for a new Bluetooth protocol that preserves privacy
to support Exposure Notification [5]. Avitabile et al. [6]
unveiled Pronto-C2, a decentralized tracking system that is
based on BLE and appears to be more resistant than DP-3T
against mass surveillance attacks. CAUDHT is a decentral-
ized system based on Distributed Hash Tables [13]. To solve
the problem of scalability, the TCN (Temporary Contact
Numbers) protocol [14] switches from purely random TCNs
to TCNs generated deterministically from some seed data.
The price it pays for greater scalability is a reduction in
terms of privacy.

Other solutions choose a centralized approach [6] such
as NTK [15] and ROBERT [16] which have been developed
inside the Pan-European Privacy-Preserving Proximity Trac-
ing (PEPP-PT) [17]. Just like DP-3T, NTK and ROBERT
are based on ephemeral pseudonyms sent via BLE that are
registered by nearby users, with the difference that the secret
keys for calculating EphIDs are created and managed by a
back-end server and not from the user’s phone [18]. The
Altuwaiyan et al. model, called EPIC, [19] is always based
on Bluetooth technology, and offers a fine-grained human-
to-human contact tracing scheme with hybrid wireless and
localization technology. EPIC introduces a matching method
which uses homomorphic encryption to match common
wireless devices between the infected and the other users.
However, the system can suffer from serious privacy losses
and above all, it has scalability problems [12]. TraceTogether
was the first centralized BLE-based solution [20]. This sys-
tem manages to trace the COVID-19 transmission graph in
the population that installed the app. Besides BLE, also GPS
technology can be used for digital contact tracing. Berke et
al. [11] propose a GPS-based solution that takes advantage
from the partitioning of fine-grained GPS positions and
private set intersection that allows the system to detect when
a user approached positive patients. Reichert et al. [10] offer
a solution on how to make contact tracking centralized based
on GPS data to preserve user privacy. The system uses
a central party (HA) and applies multi-party computation
(MPC) to achieve privacy. However, these solutions are not
scalable [12], due to the computational overhead required
by the adopted cryptographic protocols (i.e., MPC).

Our solution starts from the above reference framework,
with the aim to overcome the privacy issues of decentralized
solutions, on the one hand, and the scalability problems
of centralized (absolute-position based) approaches, on the
other hand. Our approach is centralized and is based on
privacy-preserving absolute position detection. The position
is obtained by using GPS, in combination with BLE and
the Earth magnetic field for the indoor environments. This
choice is supported by results available in the literature
like [21], which presents a system able to guarantee a
maximum positioning error of less than 10 cm in an internal
environment.

III. BACKGROUND AND MOTIVATIONS

As mentioned in the previous section, the DP-3T protocol
[4] represents at moment the prevailing approach, especially
in the European Union. Despite the fact that DP-3T, similarly
to TCN [14], suffers from some serious drawbacks concern-
ing users’ privacy, it is the reference approach because is the
state-of-the-art implementation of the decentralized model,
which is preferred to the centralized model. It is then impor-
tant to describe in detail how DP-3T solutions work. The basic
idea is to install an app on each smartphone and to use
BLE to interact with other nearby smartphones to register the
contacts. Therefore, the actors of the DP-3T system are: the
users in possession of a communication device; the back-end
server, which acts exclusively as a communication platform
and does not perform any processing; the health authority,
which is responsible for informing patients of the positive
test results and allows uploads from phones to the back-
dend. The app broadcasts an ephemeral pseudo-random ID
that represents the user and also records pseudo-random IDs
observed by smartphones in the immediate proximity. If a
user finds out that she/he is positive for COVID-19, then,
after obtaining the approval of the health authority, may
upload some anonymous data from her/his smartphone to a
central server. The DP-3T model provides two decentralized
proximity tracing designs: the first, called Low-cost, is a
lightweight system at the cost of limited tracing of infected
patients, the second, denoted as Unlinkable, offers extra
privacy properties with a small increase in bandwidth. The
first solution reveals minimal information to the back-end
server. Each smartphone generates an initial random daily
key SK_t for the current day t and, every day rotates the
secret day key SK_t by calculating $SK_t = H(SK_{t-1})$.

236
where H is a cryptographic hash function. Each smartphone uses the secret key SK_i during the day t to locally generate a list of ephemeral identifiers ($EphID$s) that change frequently (every epoch with length l). Therefore, at the beginning of each day t, each smartphone generates locally a list of $n = (24 \cdot 60)/l$ new $EphID$s to be transmitted during the day t. Given the secret day key SK_t, each device calculates $EphID_i||...||EphID_n = PRG(PRF(SK_t, broadcastkey))$, where PRG is a stream cipher, PRF is a pseudo-random function, and broadcast key is a fixed and public string. The $EphID$s are transmitted in random order and each $EphID$ is transmitted for l minutes. The $EphID$s are broadcasted via BLE announcements. These $EphID$s are then locally stored (together with the corresponding proximity, the duration, and an approximate indication of the time) by the other nearby smartphones.

Each smartphone stores the SK keys it has generated in the last 14 days and the same happens for all the data and the $EphID$s observed and generated. A user who tested positive, only after obtaining authorization from the health authority, may send to the back-end the key SK_t and the day t corresponding to the first day on which it was considered contagious. The back-end collects the pairs (SK_t, t) of the infected patients and periodically sends them to all the other smartphones in the system. Given the key SK_t, everyone can calculate all the ephemeral identifiers $EphID$s used by the infected patient starting from the corresponding day t.

The second solution (i.e., Unlinkable) offers better privacy properties at the cost of a greater volume of downloads and storage space required by the smartphone. The ephemeral identifiers of positive individuals are hashed and stored in a Cuckoo filter [22], which is distributed to the users of the system. The smartphone draws a random 32-byte per-epoch seed ($seed_i$) and generates the ephemeral identifier $EphID$ for each epoch i: $EphID_i = TRUNCATE_{128}(H(seed_i))$, where H is a cryptographic hash function, and $TRUNCATE_{128}$ truncates the output to 128 bits. Smartphones store the seeds corresponding to all past epochs in the last 14 days. For each observed $EphID$, the smartphone stores the hashed string $H(EphID) || i$, the proximity, the duration, and an approximate indication of the time. Unlike the previous solution, when a user tested positive, she/he can choose the set of epochs I for which she/he wants to reveal her/his identifiers. After making this decision, the smartphone loads the set of pairs (i, $seed_i$). Periodically, the back-end creates a new Cuckoo filter F and, for each pair (i, $seed_i$) loaded by an infected user, inserts $H(T_{128}(H(seed_i)) || i)$ into the Cuckoo filter F and sends this filter to all the smartphones in the system. Each smartphone uses this filter to determine whether the user has been in contact with an infected person.

DP-3T suffers from several attacks (which will be described in detail in Section VI) that can compromise user privacy and potentially lead to undetectable mass surveillance attacks [6]. This problem is the consideration from which we start as the motivation of our paper. In fact, our paper tries to offer a new declination of the centralized model overcoming the security and privacy drawbacks of DP-3T, without introducing risks usually associated with centralized digital contact tracing at feasible computational cost for the server.

IV. THE ZERO EPHEMERAL EXCHANGING-PRIVACY-PRESERVING-PROXIMITY SOLUTION

In this section, we describe ZE2-P3T, which is the solution we propose for proximity tracing not relying on the exchange of ephemeral identifiers like the state-of-the-art solutions.

We refer to a large geographic area A representing, for example, a country. In our model, A contains several microcells c_i such that: 1) They cover all the area A and 2) If the distance between two users U_x and U_y is less than a threshold parameter d, it exists a microcell which contains both U_x and U_y.

Microcells are squares of side $2d$ organized as in Fig. 1. Therein, we use different colours to better highlight the different microcells (13 in total). It easy to see that a user is always, simultaneously, in two different microcells and that two users positioned closest than the distance d each other have a microcell in common. For example, in the figure, the user U_x is in the blue and green microcells while the user U_y is in the red and green microcells.

With each microcell c_i, we associate a point C_i called centroid corresponding to the centre of the square. The set of all the centroids is public and each user, through the combination of GPS and magnetic position systems [21], for indoor positions, is able to identify the centroids associated with the two microcells where the user is located. The exact utilization of magnetic positioning is out of the scope of this paper, even though the state-of-the-art technologies can be directly used for our purpose. From now on, for simplicity, we refer only to the GPS signal.
Our solution requires the collaboration of a telephone service provider TSP which, periodically, sends a random R_P to all the users in a fixed area P, called cell, according to the coverage range of the antennas. Each cell contains several microcells. For each cell P, a different R_P is sent by TSP and it is important that each microcell is entirely contained in a cell P so that two users in the same microcell receive always the same random R_P at the same time. We assume that this service is provided by a unique TSP (to avoid complex coordination of multiple TSP in overlapping cells) and that the roaming mechanism can be enabled to ensure the maximum coverage.

As explained below, R_P is used to avoid dictionary-based attacks in order to locate the position of the user.

To guarantee the privacy, each user U_x, with a certain frequency, generates a random R_x which is a pseudonym identifier valid until a new random is generated. However, when R_x expires, it is stored for some time by U_x.

For each of the two microcells c_i where U_x is located, she/he recovers the position of the centroid C_i, of c_i and the pair (ρ_x, θ_x) which represents the polar coordinates of the position of U_x respect to C_i. Since the GPS accuracy is not sufficient for our purpose, when U_x comes in contact with another user, they exchange, through BLE, their polar coordinates and, according to the position negotiation protocol described in Section V, they adjust such coordinates with the purpose to minimize the error of the mutual distance. At the end of this protocol, U_x obtains the correct pair (ρ_x, θ_x). Note that no pseudo-identifier of U_x is exchanged in the negotiation protocol. Unlike classic BLE-based solutions, BLE is used only to improve the accuracy of GPS. Moreover, another advantage of integrating BLE in our solution is the following. In traditional GPS based solutions, when two users are close but separated by an obstacle, for example a wall, the server is not aware about this and registers a contact even if it does not happen. By using BLE, the presence of the obstacle attenuates the signal and the contact is not captured by the smartphone.

At this point, for the duration of the contact, U_x sends, with frequency $\frac{1}{\tau}$, to a server S (under the control of the health authority) the following information: $(h(C_i || R_P), R_x, \rho_x, \theta_x)$, where h denotes a secure cryptographic hash function, R_P is the current random sent by TSP to U_x, R_x is the current random generated by U_x, and (ρ_x, θ_x) are the adjusted polar coordinates of the position of U_x respect to the centroid C_i.

If a user is located in the overlapping area between two adjacent cells, she/he receives two randoms from TSP. In this case, for each random and for each microcell, the user sends a tuple, defined as above, to S (i.e., she/he sends 4 tuples in total).

Clearly, TSP or other entities must not be able to intercept the messages toward S. Therefore, the communication is encrypted by using the public key of S.

Note that S is not able to recover the exact position of U_x through the relative coordinates (ρ_x, θ_x) because it cannot reverse the hash function in order to obtain the centroid C_i, thanks to the inclusion of the $salt$ R_P. Indeed, without the random R_P, S can perform a dictionary-based attack by testing all the possible centroids, whose number is always feasible for a brute-force attack.

Now, S builds the tuple $(h(C_i || R_P), R_x, \rho_x, \theta_x, \tau_k)$, where $\tau_k = [t_k, t_k+1]$ denotes the k-th time-slot in which the information of U arrives. We use a time-slot mechanism (instead of the absolute time) since two users simultaneously in the same microcell might not be perfectly synchronized to send their tuples. However, the time-slots have not to be too large to avoid two users which enter in the microcell in different moments are be treated as they are in microcell simultaneously. We assume that $\tau = t_{k+1} - t_k$ for each k. In words, the size of the time-slot is a constant value and coincides with the inverse of the frequency with which the users send their information to S.

In a later moment, S searches all the tuples with values $(h(C_i || R_P), R_y, \rho_y, \theta_y, \tau_k)$ i.e., all the tuples sent by (possible) other users in the same microcell in the same time-slot. Then, it computes, through the (adjusted) polar coordinates, the distance d_{xy} between the users.

For each of these tuples, S searches by using (R_x, R_y) as key, an entry in the contact database with values $(R_x, R_y, n_{xy}, D_{xy}, r_{xy})$ where n_{xy} denotes the number of time-slots in which U_x and U_y came into contact with random R_x, R_y respectively, D_{xy} is the set of distances between them (for each the time-slot) and r_{xy} is the partial risk level computed as function of D_{xy} and n_{xy}. These entries are called contact bursts since represent sequences, not necessarily consecutive, of contacts between two users.
If the contact burst between R_x and R_y exists: (1) n_{xy} is increased by one, (2) d_{xy} is added to D, and (3) $r_{xy} = f(D_{xy}, n_{xy})$ is recomputed. Otherwise (i.e., the contact burst does not exist), the entry $(R_x, R_y, n_{xy}, D_{xy}, r_{xy})$ is created with: (1) $n_{xy} = 1$, (2) D_{xy} containing only d_{xy}, and (3) $r_{xy} = f(D_{xy}, n_{xy})$.

We do not focus on the function for the computation of the partial risk level since it depends on several medical factors. We can say that the function increases as the number of time-slot n (i.e., the time interval in which two users came into contact) increases and it decreases as the distances between users increase. We just remark that all the information typically used to evaluate the risk in digital contact tracing solutions are available also in our model.

When a user U_z tested positive for the infection in a health facility HF, she/he may choose to send her/his randoms to S. In order to avoid fake positive reports, we rely on a 1024 bits RSA blind signature scheme. As discussed in Section VI, blind signature also avoids that, even though S colludes with HF, it is not able to link all the randoms of U_z to her/his real identity. The procedure is the following. First, U_z generates a random A of 1024-256= 768 bits and obtains $M = A||h(A)$ where $h(A)$ is the application of a cryptographic hash function with digests of 256 bits (e.g., SHA-256). At this point, U_z contacts HF to obtain the RSA blind signature on M. Let denote by Q the message with blind signature. U_z unblinds Q and obtains the signature of HF $\sigma(M)$ of M. Finally, U_z sends to S $\sigma(M)$ and all the randoms R_z she/he generated. S verifies the signature and checks that $M = A||h(A)$. To avoid replay attacks, S burns the random M, so that it cannot be used anymore. If the signature is valid, S searches all the contact bursts including any of the randoms R_z as first or second component. For each of these entries, S sends in broadcast a pair containing the other random (i.e., the random generated by a user which came into contact with U_z) and the partial risk level.

Each user U_i receives a set of pairs (R_i, r_i) and searches the subset of pairs \mathcal{P} where R_i coincides with any of his/her generated randoms R_k. If this subset is empty, U_i has not encountered any infected users. Otherwise, she/he came into contact one or more times with one or more users. Finally, the partial risk levels occurring in the pairs of \mathcal{P} are combined together through another function which returns the total risk level for the user U_i (also the definition of this function is outside the scope of this paper).

V. THE ZE2-P3T POSITION NEGOTIATION PROTOCOL

In this section, we present a protocol performed by the users to improve the accuracy of the coordinates captured through the GPS. This protocol involved pairs of users and is named PNP, which stands for position negotiation protocol. We say that a user is locked if she/he has executed PNP with another user, otherwise she/he is unlocked. Consider an unlocked user U_x which enters in the action range of BLE with a group G of other users. For each locked user U_y in G with polar coordinates (ρ_y, θ_y), U_x retrieves such coordinates through BLE. Since U_y is locked, (ρ_y, θ_y) are already adjusted. On the other hand, the polar coordinates of U_x, (ρ_x, θ_x), which are obtained through GPS, should be adjusted. To accomplish this, U_x computes the distance $d_{GPS} = \sqrt{\rho_x^2 + \rho_y^2 - 2\rho_x \rho_y \cos(\theta_x - \theta_y)}$ obtained by considering the non-adjusted coordinates of U_x. Then, U_x, as typically done on the basis of the signal power of BLE, computes again the distance with U_y. We denote by d_{BI} such a distance and assume it represents a more accurate estimate of d_{GPS} (at least accurate as the most approaches used at moment, being them based on BLE). Finally, among all (locked) users, U_x chooses one of the users U_k such that $|r| = |d_{GPS} - d_{BI}|$ is minimum, that is the user U_k minimizing the error of GPS w.r.t. BLE. If we denote by (ρ_k, θ_k) the coordinates of U_k, the new coordinates of U_x, (ρ_x', θ_x'), are obtained by moving the old coordinates by $|r|$ along the straight line passing between (ρ_k, θ_k) and (ρ_x, θ_x), so that the new distance between U_x and U_k is equal to d_{BI}, as depicted in Figure 3. After this process, U_x is locked.

If no locked user exists in the action range of BLE, for each (unlocked) user U_y, U_x computes d_{GPS}, d_{BI} and r, defined as above, and chooses a user U_k with minimum value $|r|$. This time, both U_x and U_k update their coordinates, by moving them by $|r|/2$ along the straight line passing between (ρ_k, θ_k) and (ρ_x, θ_x) so that the new distance between U_x and U_k is equal to d_{BI}. After this process, both U_x and U_k are locked.

Note that, as long as a user detects only another (locked or unlocked) user through BLE, our protocol works well. In fact, even if the adjusted coordinates are not necessarily correct, the distance between the two users is that measured through BLE, which is widely considered acceptable for the purpose of proximity tracing. If more users participate in PNP, we use a greedy approach in order to minimize the adjusting of the coordinates and to obtain the BLE distance at least with a user.

VI. SECURITY ANALYSIS

The claimed robustness of the decentralized solutions like DP-3T mainly relies on the fact that identities are pseudo-
random numbers that, as such, appear unlinkable to any observer. Unfortunately, this is true unless the seed from which these pseudo-randoms are generated is not known to the attacker. What makes the linkability of identifiers a concrete privacy threat is that ephemeral identifiers are not kept only by the legitimate owner, but are exchanged among all the users. As we will see in detail in the sequel of the section, the above possibility is realistic in both the designs of DP-3T (i.e., low-cost and unlinkable), under different attack models. We show that our solution is immune from this issue, just because no exchange of identifiers is enabled.

We analyse in detail the attacks on DP-3T known in the literature and show the above claim about our technique.

The involved actors of our security model are:

1. The users U which send, periodically, their randoms to the server S. If they find out to be infected, this information is reported to S.
2. The server S under the control of the health authority. It receives the randoms of the users and alerts them when a user communicates she/he is infected.
3. The telephone service provider TSP which sends a random R_P in a fixed cell with several microcells, in order to prevent the server S to identify the microcell where a user is located.
4. The health facility HF which performs the tests on the users to diagnose the disease and enables infected users, through the blind signature, to send their randoms to S.

The attacker can be a generic entity (for example, a user or a company). We assume that the health authority and TSP do not collude. Consider that, in a real-life scenario, a collusion of the health authority with TSP (a private company) would easily come to light.

In the following, we show how our solution faces the attacks discussed in [6] for which the DP-3T solution is vulnerable plus some other relevant attacks.

We highlight that many attacks are due to the exchange of the ephemeral identifiers among the users through BLE. Our solution, no random is exchanged.

Paparazzi Attack [6]. The attack aims to trace infected users by linking their ephemeral identifiers. We assume the server is trusted. This attack works only with the Low-Cost design of DP-3T. First, the attacker installs several passive BLE devices through the territory in order to collect the ephemeral identifiers of other users located in proximity of such devices. Moreover, it records the time and the location where such identifiers are received and, possibly, other information about the users. When a user U_x results infected, she/he sends her/his secret key SK to the server S which, in turn, broadcasts it to all the users. Starting from SK, the attacker is able to generate all the ephemeral identifiers of U_x and to track her/him through the information (time, location, etc.) stored when U_x passed in proximity of the passive devices. Clearly, this attack does not work on the Unlinkable design of DP-3T since the infected user U_x sends the seeds to generate the ephemeral identifiers to the server S, but this latter does not broadcast such seeds to all users. Instead, S generates all the ephemeral identifiers of U_x and adds them to the Cuckoo filter, so that the attacker cannot link them. Similarly, also ZE2-P3T does not suffer from this kind of attack since the ephemeral identifiers, that are represented by the randoms generated by the users, are not exchanged, but are sent directly to the server. Since the server is trusted, the attack cannot be performed.

Orwell Attack [6]. The objective is the same as Paparazzi attack, but with the difference that the attacker colludes with the server S. Clearly, this time, also the Unlinkable design of DP-3T is vulnerable to the attack since the server S knows the seeds of the infected users and can easily link their ephemeral identifiers. We claim that, although, in principle, such an attack is possible in ZE2-P3T, it is definitely harder and less effective than in DP-3T. In fact, in order to know the randoms of users coming from a specific microcell, S needs to know the random R_P sent by TSP in that microcell. Since S does not collude with TSP, the only way to obtain R_P is to collaborate with a partner located in the cell whenever R_P is sent by TSP. To put on a larger scale tracking system, the attacker (colluding with the server) must have many partners spread throughout the territory and each one of them has to be registered with TSP to obtain R_P. Clearly, this is more onerous that to install passive BLE devices. Moreover, our solution includes in general a certain level of uncertainty, whenever more than one user belongs to a microcell simultaneously.

Brutus attack [6]. In this attack, the health facility HF and the server S collude to identify the mapping between pseudonymous and real identities of infected users. It is an exploit of the authorization mechanism with which infected users communicate their status to S. DP-3T (both the designs) proposes three different authorization mechanisms but they are, essentially, based on an authorization code released by HF. Clearly, HF knows the identity of the infected user and if it colludes with S, then it may provide to S the mapping between the real identity of a user and its authorization code. S can associate this identity with the ephemeral identifiers sent by the user. Both DP-3T designs are vulnerable to this attack. In ZE2-P3T, the authorization code is replaced by M which cannot be linked by HF to the message submitted by the user to obtain the signature, thanks to the blind signature mechanism. Thus, both HF and S cannot link M to the real identity of the user. In conclusion, ZE2-P3T is not vulnerable to Brutus attack.

Gossip attack [6]. The objective of this attack is to provide any evidence about an encounter with an infected user before the discovering of her/him positiveness to the infection. It can be view as a security flaw because is a misuse of the system for an unintended scope, potentially threatening privacy and exploitable for disputes. In both the designs of DP-3T, when the attacker captures the ephemeral identifiers of other
users, she/he could, for example, store them on blockchain and, successively, demonstrate to have encountered such users. In ZE2-P3T, this attack is not possible since users do not exchange any random.

Matteotti attack [6]. In this attack, the objective is to deceive a user by providing her/him a fake contact with a positive user. The result aimed by the attacker is to damage the victim enforcing her/him quarantine (or other consequent actions). It requires the collusion of the attacker with the server. Suppose U_v is the user victim of the attack. In the Unlinkable design of DP-3T, the attacker places the BLE passive devices in proximity of U_v and when this latter comes into contact with another user U_x, the passive devices capture the ephemeral identifiers of U_v and send them to the server. The server inserts such identifiers in the Cuckoo filter so that, when U_v checks the filter, she/he is wrongly alerted. Low Cost DP-3T is not vulnerable to this attack since the server is not able to generate the secret keys of the users starting from the collected ephemeral identifiers. Similarly to the Unlinkable DP-3T, in ZE2-P3T, the server can notify false information about the contacts at risk.

Another attack with the same objective as Matteotti attack is the following. No collusion with the server is required.

Missile attack. The objective of this attack is the same as the Matteotti attack. In this case, the attacker is a user who is positive to the disease. She/He can use a Bluetooth amplifier transmitter to send his/her ephemeral identifiers (like a missile) to other users even very distant from her/him and so, not at risk. However, when the server communicates the infected identifiers of the attacker, such users are wrongly alerted. The attack is based on the exchange of the ephemeral identifiers through Bluetooth, so both the designs of DP-3T are vulnerable. On the contrary, ZE2-P3T does not suffer from this attack since no identifier is exchanged through Bluetooth. Another possible attack is the following.

Fregoli attack. This attack aims to simulate fake contacts between users. The attacker can collect the ephemeral identifiers of the users and use them in place of his/her own. This is then an impersonation attack, as its name evokes, being Fregoli one of the major quick-change artists of the story. The result of the impersonation is that a user U_x keeps ephemeral identifiers of other users with which she/he never met. If any of them results infected, U_x is wrongly alerted as in the Matteotti attack. This attack is more effective when a Bluetooth amplifier is used. Again, this attack is possible in both the designs of DP-3T, but it is not possible in ZE2-P3T since no random is exchanged through Bluetooth.

Finally, we conclude the analysis by presenting another attack which, potentially, affects GPS-based approaches.

Battleship attack. In this attack, the server tries to identify the position of the users to track them. In both the designs of DP-3T, such an attack is not possible since no information about the position is sent to S. On the contrary, any standard GPS-based solution is affected by this problem. Therefore, it is important to check what happens for our protocol. In ZE2-P3T, the user sends the polar coordinates relative to a given centroid C_i. Therefore, the attack would succeed if the server is able to identify such centroid. The user sends $h(C_i || R_P)$ and, even if the total number of centroids is not huge, the presence of the random R_P makes dictionary-based attacks unfeasible. Since S and TSP do not collude, the only way for S would be to collaborate with a partner physically located in a microcell in order to obtain R_P. As explained in Orwell Attack, to put on a mass tracking system is infeasible.

We highlight that, although the attacks regard DP-3T, they also apply to other decentralized protocols [14], [23], [24] as the vulnerabilities are due to the exchange of identifiers.

Finally, we observe that, being our approach centralized, the intrinsic price we have to pay in terms of privacy is that, once an infected patient sends to the server her/him randoms used in the contagious window, the server links this randoms, learning some piece of pseudonym information about the user. We argue that as the match between real identities and pseudonyms is not possible even in case of collusion between HF and server (see Brutus attack above), this is not an actual threat to privacy, against the evident benefits given by our approach summarized in Table 4.

VII. CONCLUSIONS

The fight against the pandemic of COVID-19 requires a number of coordinated actions that governments should take promptly. Among these, digital contact tracing has an important role, especially during the after-lock-down phase, in which potential infected people should be rapidly identified and isolated. The main contribution of this paper is to show that a centralized approach, exploiting GPS, can provide a solution definitely more effective, in terms of security and privacy protection, than decentralized solutions based on DP-3T or similar protocols. Unlike other attempts occurring in the current literature, our solution does not rely on complex cryptographic mechanisms to avoid people position tracking, but only efficient cryptographic hashes and RSA blind signatures only for the reporting phase. As a future work, we plan to implement the solution also by detailing...

Attack	LC DP-3T	U DP-3T	ZE2-P3T
Paparazzi	✗	✓	✓
Orwell	✗	✗	✓
Brutus	✗	✗	✓
Gossip	✗	✗	✓
Matteotti	✓	✗	✗
Missile	✗	✗	✓
Fregoli	✗	✗	✓
Battleship	✓	✓	✓

Figure 4. Vulnerabilities of DP-3T and ZE2-P3T to the attacks. ✗ means vulnerable while ✓ means resistant. LC-DP-3T stands for Low Cost DP-3T and U DP-3T stands for unlinkable DP-3T.
with the combination of existing technologies based on the Earth magnetic field to improve the outdoor and indoor localization accuracy. Another direction of further extension of this paper regards a more accurate (tested) definition of the function estimating the contagious risk, which is a task inherently interdisciplinary outside of the scope of this paper, aimed to rapidly share this new approach with the scientific community, being the topic of high interest in the current days. Finally, we plan to address also the case of (indirect contacts), which are infections transmitted through common environments or commonly touched surfaces. This can be easily done in our model by suitably setting the lifetime of the randoms broadcasted by TSP. Indeed, over the lifetime of such randoms, the server can match even users occupying the same microphone in different moments. Observe that this is definitely impossible in decentralized BLE-based protocols, which are only able to capture direct contacts.

REFERENCES

[1] H.-Y. Cheng, S.-W. Jian, D.-P. Liu, T.-C. Ng, W.-T. Huang, and H.-H. Lin, “Contact tracing assessment of covid-19 transmission dynamics in taiwan and risk at different exposure periods before and after symptom onset,” JAMA Internal Medicine, 2020.

[2] L. Ferretti, C. Wymant, M. Kendall, L. Zhao, A. Nurtay, L. Abeler-Dörner, M. Parker, D. Bonsall, and C. Fraser, “Quantifying sars-cov-2 transmission suggests epidemic control with digital contact tracing,” Science, vol. 368, no. 6491, 2020.

[3] C. Gomez, J. Oller, and J. Paradells, “Overview and evaluation of bluetooth low energy: An emerging low-power wireless technology,” Sensors, vol. 12, no. 9, pp. 11 734–11 753, 2012.

[4] C. Troncoso, M. Payer, J. Hubaux, M. Salathé, J. Larus, E. Bugnion, W. Lueks, T. Stadler, A. Pyrgelis, D. Antonioli et al., “Decentralized privacy-preserving proximity tracing, apr. 12, 2020. url: https://github.com/dp-3t/documents/raw/master,” DP3T White Paper.pdf.

[5] Apple and Google, “Apple and google’s exposure notification system,” 2020. [Online] url: https://www.apple.com/covid19/contacttracing

[6] G. Avitabile, V. Botta, V. Iovino, and I. Visconti, “Towards defeating mass surveillance and sars-cov-2: The pronto-e2 fully decentralized automatic contact tracing system,” Cryptology ePrint Archive, Report 2020/493, 2020. https://eprint.iacr.org, Tech. Rep., 2020.

[7] “Privacy and security risk evaluation of digital proximity tracing systems. the dp-3t project,” 2020. [Online] url: https://github.com/DP-3T/Security analysis/Privacy and Security Attacks on Digital Proximity Tracing Systems.pdf

[8] S. Vaudenay, “Centralized or decentralized?” 2020.

[9] E. eHealth Network, “Mobile applications to support contact tracing in the eu’s fight against covid-19 - common eu toolbox for member states,” versio 1.0, 15.04.2020.

[10] L. Reichert, S. Brack, and B. Scheuermann, “Privacy-preserving contact tracing of covid-19 patients,” Sourced from, 2020.

[11] A. Berke, M. Bakker, P. Vepakomma, R. Raskar, K. Larson, and A. Pentland, “Assessing disease exposure risk with location histories and protecting privacy: A cryptographic approach in response to a global pandemic,” arXiv preprint arXiv:2003.14412, 2020.

[12] A. B. Dar, A. H. Lone, S. Zahoor, A. A. Khan, and R. Naaz, “Applicability of mobile contact tracing in fighting pandemic (covid-19): Issues, challenges and solutions,” Cryptology ePrint Archive, Report 2020/484, 2020, url: https://eprint.iacr.org/2020/484.

[13] S. Brack, L. Reichert, and B. Scheuermann, “Decentralized contact tracing using a dht and blind signatures,” Last accessed: 01st May, 2020.

[14] “The TCN Protocol,” 2020. [Online] url: https://github.com/TCNCoalition/TCN

[15] P.-P. Team, “Pan-european privacy-preserving proximity tracing need-to-know system. overview of pepp-pt ntk,” 2020.

[16] C. Castelluccia, N. Bielova, A. Boutet, M. Cunche, C. Luardoux, D. Le Métayer, and V. Roca, “Robert: Robust and privacy-preserving proximity tracing,” 2020.

[17] P.-P. Team, “Pan-european privacy-preserving proximity tracing,” 2020. [Online]. url:https://www.pepp-pt.org/

[18] F. AISEC, “Pandemic contact tracing apps: Dp-3t, pepp-pt ntk, and robert from a privacy perspective,” 2020.

[19] T. Altuwaiyan, M. Hadian, and X. Liang, “Epic: Efficient privacy-preserving contact tracing for infection detection,” in 2018 IEEE International Conference on Communications (ICC). IEEE, 2018, pp. 1–6.

[20] D. K. H. Asghar, F. Farokhi and B. Rubinstein, “On the privacy of trace altogether, the singaporean covid-19 contact tracing mobile app, and recommendations for australia,” 2020. [Online] url:http://tiny.cc/pb3lm

[21] G. De Angelis, V. Pasku, A. De Angelis, M. Dionigi, M. Mongiardi, A. Moschitta, and P. Carbone, “An indoor ac magnetic positioning system,” IEEE Transactions on Instrumentation and Measurement, vol. 64, no. 5, pp. 1267–1275, 2014.

[22] B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher, “Cuckoo filter: Practically better than bloom,” in Proc. of the 10th ACM International Conference on emerging Networking Experiments and Technologies, 2014, pp. 75–88.

[23] P. Team, “Decentralized privacy-preserving proximity tracing,” 2020. [Online] url: https://pact.mit.edu/wp-content/uploads/2020/04/The-PACT-protocol-specification-0.1.pdf

[24] J. Chan, D. Foster, S. Gollakota, E. Horvitz, J. Jaeger, S. Kakade, T. Kohno, J. Langford, J. Larson, P. Sharma, S. Singamanall, J. Sunshine, and S. Tessaro, “Pact: Privacy sensitive protocols and mechanisms for mobile contact tracing,” 2020.