A COUNTEREXAMPLE TO THE ARAKELYAN CONJECTURE

A. EREMENKO

Abstract. A “self–similar” example is constructed that shows that a conjecture of N. U. Arakelyan on the order of decrease of deficiencies of an entire function of finite order is not true.

1. Introduction

Let \(f \) be an entire function and \(\delta(a, f) \) denotes the Nevanlinna deficiency of \(f \) at the point \(a \in \mathbb{C} \). Standard references are [8, 9]. (No knowledge of Nevanlinna theory is necessary to understand this paper. We really deal with a problem of potential theory.) Since \(\delta(a, f) \geq 0 \) and the deficiency relation of Nevanlinna states that

\[
\sum_{a \in \mathbb{C}} \delta(a, f) \leq 2,
\]

it follows that the set of deficient values, that is, \(\{a : \delta(a, f) > 0\} \), is at most countable. We denote the sequence of deficiencies by \(\{\delta_n\} \). In 1966 Arakelyan [2] (see also [8] or [7]) constructed the first example of an entire function of finite order having infinitely many deficient values. In this example the deficiencies satisfy

\[
\sum_{n=1}^{\infty} \frac{1}{\log(1/\delta_n)} < \infty,
\]

(1.1)

and he conjectured that (1.1) is true for every entire function of finite order. Another method of constructing such examples was proposed in [3], but the function in [3] also satisfies (1.1).

For meromorphic functions of finite order Weitsman [11] proved

\[
\sum_{n=1}^{\infty} \delta_n^{1/3} < \infty,
\]

(1.2)

and this is known to be best possible [9, 4]. The only known improvement of (1.2) for entire functions is due to Lewis and Wu [10]:

\[
\sum_{n=1}^{\infty} \delta_n^{1/3-\epsilon_0} < \infty,
\]

(1.3)

\[\delta_n\] denotes the \(n \)-th deficiency of \(f \).
where ϵ_0 is an absolute constant. In fact, the value $\epsilon_0 = 2^{-264}$ is given in [10].

In this note we will give a construction that produces an entire function of finite order having infinitely many deficiencies δ_n with the property

$$\delta_n \geq c^{-n},$$

where $c > 1$ is a constant. Thus Arakelyan’s conjecture (1.1) fails.

Of course a substantial gap still remains between the theorem of Lewis and Wu and our example. It is natural to ask whether

$$\sum_{n=1}^{\infty} \frac{1}{\log^{1+\epsilon}(1/\delta_n)} < \infty$$

is true with arbitrary $\epsilon > 0$ for entire functions of finite order.

It is more or less well known that the problem of estimating deficiencies for entire functions of finite order is equivalent to a problem of potential theory. Namely, the following statements are equivalent:

A. Given any $\rho > 1/2$ and a sequence of complex numbers a_n, there exists an entire function f of order ρ with the property $\delta(a_n, f) \geq c\delta_n$ with some constant $c > 0$.

B. There exist a bounded subharmonic function u in the annulus $A = \{z : 1 < |z| < 2\}$ and disjoint open sets $E_n \subset A$, $1 \leq n < \infty$ with the following properties:

(i) Each E_n is a union of some components of the set $\{z \in A : u(z) < 0\}$;
(ii) for every $r \in [1, 2]$ $\int_{\{\theta : re^{i\theta} \in E_n\}} u(re^{i\theta}) d\theta \leq -\delta_n$.

We indicate briefly how to prove the equivalence. To prove $A \rightarrow B$ we take a sequence of Pólya peaks [9, p. 101] r_k for $\log M(r, f)$ and consider the sequence of subharmonic functions

$$u_k(z) = \frac{\log |f(r_kz)|}{\log M(r_k, f)}, \quad |z| < 2.$$

This sequence is precompact in an appropriate topology and we may take a subsequence that converges to a subharmonic function u. If f has deficient values then u satisfies (i) and (ii). See [1, 6] for details.

To prove $B \rightarrow A$ we apply the construction from [3] that involves an extension of u to a subharmonic function in C with the property of self-similarity: $u(2z) = ku(z)$, $k = \text{const} > 0$, approximation of u by the logarithm of modulus of an entire function g and performing a quasi-conformal modification on the function g that produces the entire function f satisfying A. It is also plausible that Arakelyan’s original method could be applied directly as soon as a subharmonic function with the properties (i) and (ii) is constructed.

Remark. The above-mentioned paper of Lewis and Wu contains also the solution of a problem of Littlewood on the upper estimate of mean spherical derivative of a polynomial. The connection between the two problems seems somewhat obscure. An example that gives a lower estimate in the Littlewood’s problem was constructed in [5] using some self-similar sets arising in the iteration theory of polynomials. It is interesting that the example we are going to construct now also has the property
of self-similarity. Instead of iteration of a polynomial here the crucial role is played by a semigroup of Möbius transformations of the plane.

2. The example

Consider the semigroup Γ generated by $z \mapsto z \pm 1$ and $z \mapsto z/2$. We have

$$\Gamma = \{ \gamma_{n,k} : n = 0, 1, 2, \ldots; k = 0, \pm 1, \pm 2, \ldots \},$$

where $\gamma_{n,k}(z) = 2^{-n}(z + k)$.

Denote by $S_{0,0}^+$ the square

$$S_{0,0}^+ = \{ z : |\Re z| \leq \frac{4}{10}, |\Im z - 1| \leq \frac{4}{10} \}$$

and set $S_{n,k}^+ = \gamma_{n,k}(S_{0,0}^+)$. It is easy to see that the squares $S_{n,k}^+$ are disjoint.

Consider the domain $D_0 = \{ z : 0 < \Im z < 4/3 \} \setminus \bigcup_{n,k} S_{n,k}^+$. The boundary ∂D_0 consists of the real axis, boundaries of some squares, and the horizontal line $l_0 = \{ z : \Im z = 4/3 \} \subset D_0$. The domain D_0 is Γ-invariant and the transformation $z \mapsto z/2$ maps D_0 onto

$$D_1 = \{ z : 0 < \Im z < 2/3 \} \setminus \bigcup_{n,k} S_{n,k}^+ \subset D_0.$$

The boundary of D_1 consists of the real axis, boundaries of some squares, and the horizontal line $l_1 = \{ z : \Im z = 2/3 \} \subset D_0$.

Let u be the harmonic function in D_0 that solves the Dirichlet problem

$$u(z) = 1, \quad z \in l_0,$$

$$u(z) = 0, \quad z \in \partial D_0 \setminus l_0.$$

This Dirichlet problem has a unique solution. So we conclude from translation invariance that

$$u(z + 1) = u(z), \quad z \in D_0. \quad (2.6)$$

It follows that the function u has a positive minimum $M^{-1} < 1$ on the line $l_1 \subset D_0$. Comparing $u(z)$ and $u(2z)$ on ∂D_1 and using the maximum principle, we conclude that $u(2z) \leq Mu(z)$, $z \in D_1$, which is equivalent to

$$u(z) \leq Mu(z/2), \quad z \in D_0. \quad (2.7)$$

It follows from (2.6) and (2.7) that

$$u(\gamma_{n,k}(z)) \geq M^{-n}u(z), \quad z \in D_0. \quad (2.8)$$

Now we are going to extend u to the strip

$$S^+ = \{ z : 0 < \Im z < 4/3 \},$$

that is, to define u in the squares. We start by defining u in $S_{0,0}^+$. The normal derivative (in the direction of the outward normal to the boundary of the square) of u has positive infimum on $\partial S_{0,0}^+$; it tends to $+\infty$ as we approach a corner of the
square. Denote by $G > 0$ the Green function for $S^+_{0,0}$ with the pole at the point $i = \sqrt{-1}$. It is clear that the normal derivative of G on the boundary of the square is bounded (it tends to zero as we approach a corner). Set
\[u(z) = -tG(z), \quad z \in S^+_{0,0}, \]
where $t > 0$. If t is small enough we obtain a subharmonic extension of u into $S^+_{0,0}$, because the jump of the normal derivative will be positive as we cross the boundary of the square from inside. Fix such t, and extend u to the remaining squares by the formula
\[u(\gamma_{n,k}(z)) = M^{-n}u(z), \quad z \in S^+_{0,0}. \]

It follows from (2.8) that the normal derivative always has a positive jump as we cross the boundary of $S^+_{n,k}$, so the extended function is subharmonic in S^+.

Now consider the smaller squares $\{ z : |\Re z| \leq \frac{1}{2}, |\Im z - 1| \leq \frac{2}{3} \} \subset S^+_{0,0}$, and extend u to the remaining squares by the formula
\[u(z) = -\beta M^{-n}, \quad z \in K^+_{n,k}, \]
for some $\beta > 0$ and all n and k.

Now we are going to extend u to the strip $S = S^+ \cup S^-$ where
\[S^- = \{ z : -\frac{3}{4} < \Re z < 0 \}. \]

To do this we repeat the above construction starting with the square $S^+_0 = \{ z : |\Re z - \frac{1}{2}| \leq \frac{3}{20}, |\Im z + 1| \leq \frac{7}{20} \}$ and using the same semigroup Γ. We obtain the squares $K^-_{n,k} = \gamma_{n,k}(K^-_{0,0})$ and $K^-_{n,k} = \gamma_{n,k}(K^-_{0,0})$, where
\[K^-_{0,0} = \{ z : |\Re z - \frac{1}{2}| \leq \frac{2}{3}, |\Im z + 1| \leq \frac{7}{3} \}, \]
and the function u_1 subharmonic in S^- that satisfies the inequality similar to (2.10):
\[u_1(z) = -\beta_1 M^{-n}, \quad z \in K^-_{n,k}, \]
with some $\beta_1 > 0$ and $M_1 > 1$.

Extend u to $S = S^+ \cup S^-$ by setting $u(z) = u_1(z)$, $z \in S^-$ and $u(x) = 0$, $x \in \mathbb{R}$. The extended function u is continuous in S. We will prove that it is subharmonic in S.

Consider the strips $\Pi_n = \{ z : |\Im z| < \frac{4}{3}2^{-n} \}$. Define the functions v_n in the following way: $v_n(z) = u(z)$, $z \in S \setminus \Pi_n$; v_n are continuous in S and harmonic in Π_n. Then $v_n(x) > 0$, $x \in \mathbb{R}$, and it follows from the maximum principle (applied to $\Pi_n^+ = \{ z : 0 < \Re z < \frac{4}{3}2^{-n} \}$) that $v_n \geq u$ in S. We conclude that v_n are subharmonic because the sub-mean value property holds in every point of S. Furthermore, it is evident that $v_n \rightarrow u$ uniformly in S as $n \rightarrow \infty$, so u is subharmonic in S.

\[\text{ folks } \]
Denote \(K_n^+ = \bigcup_k K_{n,k}^+ \) and \(K_n^- = \bigcup_k K_{n,k}^- \) and remark that each vertical line \(\Re z = x_0 \) intersects \(K_n^+ \cup K_n^- \). Indeed the projection of \(K_n^+ \) onto the real axis is
\[
\bigcup_{k \in \mathbb{Z}} \{x : |x - 2^{-n}k| \leq \frac{2}{7} 2^{-n}\}
\]
and the projection of \(K_n^- \) is
\[
\bigcup_{k \in \mathbb{Z}} \{x : |x - 2^{-n}(k - \frac{1}{2})| \leq \frac{2}{7} 2^{-n}\}.
\]
It is clear that the union of these two sets is the whole real axis.

Now set \(E_n = \bigcup_k (S_{n,k}^+ \cup S_{n,k}^-) \) and \(K_n = K_n^+ \cup K_n^- \). Then each \(E_n \) is a union of some components of the set \(\{z \in S : u(z) < 0\} \) and for every vertical line \(l = \{z : \Re z = x_0\} \) the length of intersection \(l \cap K_n \) is at least \(b^{-n} \) for some \(b > 1 \).

So we have in view of (2.10) and (2.11):
\[
\int_{l \cap E_n} u(x_0 + iy) \, dy \leq \int_{l \cap K_n} u(x_0 + iy) \, dy \leq -c^{-n}
\]
with some constant \(c > 1 \).

It remains to make a change of variable \(z = \frac{4}{15} \log \zeta, \zeta \in Q = \{\zeta : 1 < |\zeta| < 2, |\arg \zeta| < \varepsilon\} \), and to extend the function \(u(z(\zeta)) \) (in any desired manner) from \(Q \) to a subharmonic function in the annulus \(\{1 < |\zeta| < 2\} \). The extended function will have the properties (i) and (ii) of \(A \) with \(\delta_n \geq c^{-n}, c > 1 \).

References

1. J. Anderson and A. Baernstein, *The size of the set on which a meromorphic function is large*, Proc. London Math. Soc. (3) **36** (1983), 518–539.
2. N. U. Arakelyan, *Entire functions of finite order with an infinite set of deficient values*, Doklady Akad. Nauk. SSSR **170** (1966), 999–1002; English transl. Soviet Math. Dokl. **7** (1966), 1303–1306.
3. A. Eremenko, *On the set of deficient values of entire function of finite order*, Ukrainian Math. J. **39** (1987), 225–228. (English translation)
4. A. Eremenko, *Inverse problem of value distribution theory for meromorphic functions of finite order*, Siberian Math. J. **27** (1987), 377–390. (English translation)
5. A. Eremenko, *Lower estimates in Littlewood’s conjecture on mean spherical derivative of a polynomial*, Proc. Amer. Math. Soc. **112** (1991), 713–715.
6. A. Eremenko and M. Sodin, *Distribution of values of meromorphic functions and meromorphic curves from the point of view of potential theory*, Algebra & Analysis **3** (1991), 131–164. (English translation)
7. W. J. H. Fuchs, *Théorie de l’approximation des fonctions d’une variable complexe*, Université de Montréal, 1968.
8. A. A. Goldberg and I. V. Ostrovskii, *Distribution of values of meromorphic functions*, Moscow, 1970. (Russian)
9. W. Hayman, *Meromorphic Functions*, Oxford University Press, 1964.
10. J. Lewis and Jang-Mei Wu, *On Conjectures of Arakelyan and Littlewood*, J. Analyse Math. **50** (1988), 259–283.
11. A. Weitsman, *A theorem on Nevanlinna deficiencies*, Acta Math. **128** (1972), 41–52.

Alexandre Eremenko, Department of Mathematics, Purdue University, West Lafayette, Indiana 47907 USA

E-mail address: eremenko@math.purdue.edu