A comprehensive database of active and potentially-active continental faults in Chile at 1:25,000 scale

Valentina Maldonado1,2, Martin Contreras1 & Daniel Melnick1,2 ✉

In seismically-active regions, mapping active and potentially-active faults is the first step to assess seismic hazards and site selection for paleoseismic studies that will estimate recurrence rates. Here, we present a comprehensive database of active and potentially-active continental faults in Chile based on existing studies and new mapping at 1:25,000 scale using geologic and geomorphic criteria and digital elevation models derived from TanDEM-X and LiDAR data. The database includes 958 fault strands grouped into 17 fault systems and classified based on activity (81 proved, 589 probable, 288 possible). The database is a contribution to the world compilation of active faults with applications among others in seismic hazard assessments, territorial planning, paleoseismology, geodynamics, landscape evolution processes, geothermal exploration, and in the study of feedbacks between continental deformation and the plate-boundary seismic cycle along subduction zones.

Background & Summary

Despite the fact that geologists have been mapping active faults for more than a century1,2, the unexpected rupture of unknown or unmapped faults during recent large-magnitude earthquakes emphasizes our limited knowledge of the location and seismic potential of tectonically-active continental structures. During the past decade, at least five moment magnitude (Mw) > 6 earthquakes have ruptures unknown continental faults. The 2010 Pichilemu, 2010 Darfield, 2011 Christchurch, 2016 Kaikoura, and 2019 Ridgecrest events involved ruptures on either completely concealed faults or unmapped fault strands3–7. These earthquakes highlight the need to identify and map active faults at detail scales as a first step in the assessment of seismic hazards associated with continental faults. In addition to environmental and seismic hazards, land-use and territorial planning, and civil protection emergency management, mapping active continental faults and classifying them into fault systems is important for different disciplines in earth sciences. These include: the evaluation of coastline migration and erosion; the exploration and exploitation of groundwater, geothermal, and other energy resources; the study of landscape evolution and the underlying erosive and tectonic mechanisms; and the search for feedback mechanisms between the seismic cycle of plate-boundary faults and continental deformation along subduction zones.

Active fault databases have been used for a broad range of applications in earth sciences. The primary application has been the assessment of seismic hazards8, which involves interpreting surface fault traces in terms of 3D seismic sources at depth9–11. Further applications have been, for example, assessing anthropogenic factors in triggered and induced seismicity12 such as stress changes to the crust caused by hydroelectric reservoirs, underground gas storage, groundwater pumping, or fracking13,14. Many geothermal fields occur in tectonically-active regions and maps of active faults have been used both for exploration and selection of drilling sites15,16 as well as for reservoir modelling during exploitation17,18. Active fault databases have been also used in studies of volcanotectonic interactions and structural control on volcanism in rifts19 and arcs20, in the interpretation of present-day stress indicators21,22 as well as to infer sources of pre-instrumental earthquakes23 and the response of groundwater to near and farfield earthquakes24. Analyses of the rupture mechanism, propagation and kinematics of many recent earthquakes and earthquake sequences have relied on databases of active faults derived from geomorphic and geologic data to interpret subsurface observations and develop conceptual models25,26.
Since the advent of modern instrumental seismology, earthquakes in Chile have accounted for >20% of the seismic moment release on Earth. The earthquakes accounted for in this estimate occurred along the megathrust fault that limits the Nazca and South American plates. However, the South American continental plate, as most upper-plates along subduction zones, includes numerous active faults, some associated with Mₚ > 6 earthquakes. Interestingly, the historical record of such continental earthquakes in Chile is relatively small, including only seven instrumentally-recorded events of Mₚ between 6 and 7 (Refs. 4,27–29). Out of these, only two (2001 Aysén and 2007 Aysén) occurred on mapped faults; another two were directly associated with larger earthquakes on the underlying plate-boundary megathrust (2010 Pichilemu and 2014 Pisagua) but occurred on unmapped faults. Only a few paleoseismic trenching studies have been carried out along four Chilean continental faults finding robust evidence for Mw > 6 paleoearthquakes30,31. It is however expected that the activity of further faults will be verified during forthcoming paleoseismic mapping and trenching endeavours. Recurrence periods of continental earthquakes estimated from paleoseismic and seismological studies are in the range of thousands of years (an order of magnitude larger than recurrence periods of megathrust earthquakes); nevertheless, considering the incipient knowledge of Chilean continental faults and their widespread spatial distribution, the seismic hazards posed by such structures should not be underestimated.

Research initiatives on active faults in Chile have so far only focused on specific faults or fault systems, and no unified and official database of active and potentially-active faults at national scale has been yet published. A regional assessment of neotectonic structures was first presented in the year 2000 including the first map of active faults and folds in Chile at 1:4,000,000 scale, as part of the World Map of Active Faults32; maps of this database were included in review papers addressing Quaternary deformation processes in South America33,34 and the neotectonics of Chile35. Subsequently, the South American Risk Project36, promoted by the Global Earthquake Model (GEM) project, incorporated those faults into a global database37. Recently, Santibañez et al.38 produced the first map of faults in Chile38 by compiling published studies including the 1:1,000,000 scale map of the Chilean Geological Survey39, and discussing the relation between regional tectonics, the recent instrumental crustal earthquakes, and mayor long-lived fault systems (active at >10⁷ yr timescales).

Here, we present the CHilean Database of Active Faults (CHAF), a unified database of continental faults in Chile, within the South American continental plate (Figs. 1–3), which includes all the previous studies as well as newly-identified faults, using a common mapping scale and unified geomorphic criteria. We present basic statistics of fault and fault system geometrical characteristics, and a first-order estimate of maximum earthquake magnitudes using empirical relations. Our database is a contribution to the world compilation of active faults, with implications in various aspects of earth science research including geodynamics, volcanotectonics, paleo-seismology, seismotectonics, studies of future earthquakes, exploration and exploitation of geothermal resources, structural control on landslides and volcanism, landscape evolution models, and seismic hazard assessments.

Methods

Fault mapping. Remote sensing data including aerial photographs, satellite images, and more recently Digital Elevation Models (DEM) have allowed the identification of geomorphic features as well as the application of quantitative morphological analyses to map topographic attributes with applications on active tectonic and structural geology studies40–44. We applied classical techniques in tectonic geomorphology summarized in seminal textbooks45–47 for mapping newly-identified faults and remapping structures from previous studies at a uniform 1:25,000 scale. We rely on our past experience in mapping active faults in different tectonic environments using field observations and remote sensing data48–50, in addition to the criteria used in previous active fault databases51–53. We paid special attention to interpreting fault trace continuity using a uniform mapping scale based on the surface expression of faults, not the inferred seismogenic expression at depth. The latter needs to be interpreted on the base of particular assumptions, and is therefore beyond the scope of our database. Our database is based on direct surface evidences. For mapping, we used hillshade and slope maps created using QGIS v. 3.10 (www.qgis.org) from DEMs derived from TanDEM-X data (12 m resolution) available for almost the entire region and from airborne LiDAR data (1 m, 2.5 m, and 5 m resolution) available along stretches of the Coastal Cordillera and along specific fault systems. TanDEM-X DEMs were provided by the German Aerospace Center (DLR) under Science Proposals GEO10845, GEOL1209, GEOL1628, and GEOL0707 via the DLR science portal (https://tandemx-science.dlr.de/). LiDAR data was provided by Digimapas Chile and Forestal Arauco under collaboration agreements. Both datasets may be obtained from the authors on a reasonable request (see Usage Notes).

Data classification and analysis. The database described in this study contains a line vector and metadata associated with each fault. The fields included in the metadata are reported in detail in the Data Records section. Faults in the CHAF database are grouped into fault systems and classified in terms of their estimated activity.

Fault system classification. We define a fault system as the population of faults distributed in a particular region that bear similarities in strike, kinematics, length distribution, and age. Fault system names have been considered on the base of previous studies, when existing (Table 1). Fault systems may or may not have a specific fault linkage geometry. For example, faults grouped into the CCTF and EWTS systems are kinematically but not geometrically linked, whereas faults grouped into the LOFS and LOTF are geometrically and kinematically linked (Fig. 1). In general, faults strands grouped in a fault system have similar strikes (Fig. 1) and fault length distributions (Fig. 4c, d). The defined fault systems may or may not be related to a certain bedrock unit and should not be considered as tectonic provinces, which encompass larger temporal and spatial scales.

Fault traces have been assigned a type attribute based on four classes: (1) blind: faults that do not reach the surface as a break in the landscape, but may be associated with a fold or flexure; (2) covered: faults that are covered
Fault activity is classified as following. Active faults and folds are grouped in two categories: (1) Faults with proved activity (Proved faults), those associated with an historical earthquake or with robust published evidence of slip (either seismic or aseismic) during the Holocene; or (2) Faults with probable activity (Probable faults), those that exhibit direct geologic or geomorphic evidence of surface ruptures or deformation that allow to posit activity by undeformed young deposits; (3) inferred: faults whose surface expression is not clear and only estimated; and (4) observed: faults that have a clear surface expression at the 1:25,000 mapping scale.

Fig. 1 The CHAF database. Map of active and potentially-active faults colour-coded by fault system and shaded-relief topography from the SRTM30_plus dataset (http://topex.ucsd.edu/WWW_html/srtm30_plus.html). See Table 1 for Fault System names and basic statistics. Rose diagrams showing strike distributions for main fault systems (n = number of fault traces). Map made using QGIS 3.10 (www.qgis.org).
in the past 125,000 years. The age limit for *Probably active faults* is defined by the last interglacial period (Marine Isotope Stage 5e), when a distinct marine terrace was formed along most of the Pacific coastline\(^{52,62}\), which constitutes a suitable temporal geomorphic marker to observe fault offsets and classify fault activity. *Fault with possible activity (Possible faults)* integrate a third category, when geologic or geomorphic evidences of surface ruptures or deformation affecting the landscape allow to posit activity during the Quaternary period. For this latter case, deformed geomorphic markers include the fluvial network, pediment and alluvial surfaces, and glacial features.
Data records

The dataset presented here is stored in the Pangaea repository, in ESRI Shapefile, Google Earth kmz, and spreadsheet xlsx formats. The dataset contains 958 records organized in 36 fields. Each record describes a single fault strand, which is part of a fault and grouped into a fault system. The 36 fields of the database may be grouped into: Identification (fields 1 to 8); Geometry (fields 9 to 19); Activity (fields 20 to 28); Historical seismicity (fields 29 to 32); Notes and references (33 to 36). The CHAF database includes 118 references.
Identification.

1. **Fault trace id** (short name: F_id): Unique fault trace six-digit identifier, coded as “100101” (1/001/01: sector/fault/trace).
2. **Fault system** (short name: F_system): Mayor group of faults at regional scale.
3. **Fault name** (short name: F_name): Name of the main fault.
4. **Trace name** (short name: FT_name): Name of the fault trace or segment.
5. **Mapping data** (short name: map_data): Data used for fault mapping (TDX, LiDAR, Seismic reflection, microseismicity).
6. **Latitude** (short name: Lat): Latitude coordinate of the trace centre.
7. **Longitude** (short name: Lon): Longitude coordinate of the trace centre.
8. **Fault type** (short name: type): Interpreted fault (observed, inferred, covered, blind).

Geometry.

9. **Geometry class** (short name: geom): structure geometry (simple fault, segmented fault, fold).
10. **Strike** (short name: strike): Strike of the fault trace.
11. **Dip** (short name: dip): Dip of the fault trace.
12. **Dip direction** (short name: dipdir): Dip direction of the fault trace.
13. **Rake** (short name: rake): Rake of the main fault.
14. **Sense of movement** (short name: sense): Sense of movement of the main fault.
15. **Fault trace length** (short name: length_km): Along-strike length of the fault trace.
16. **Minimum depth** (short name: min_z_km): Minimum depth of the fault trace.
17. **Maximum depth** (short name: max_z_km): Maximum depth of the fault trace.
18. **Width** (short name: width_km): Down-dip width depth of the fault trace.
19. **Area** (short name: area_km2): Fault area in km².

Activity.

20. **Age of activity** (short name: age): This field includes four classes: Historic; Holocene; Late Quaternary (<125 ka); Quaternary.
21. **Activity class** (short name: activity): This field includes three classes: proved (based on paleoseismic trenching or historical activity); probable (based on geomorphic criteria and/or unequivocally aligned crustal microseismicity); possible (geomorphic criteria).
22. **Recent seismic activity** (short name: recent_act): Most-recent evidences of faulting and displacement.
23. **Faulting onset** (short name: onset): Estimated age for the onset of faulting.
24. **Throw rate** (short name: throw_rate): Vertical slip rate in mm/yr.
25. **Horizontal slip rate** (short name: h_slip_rate): Horizontal slip rate in mm/yr.
26. **Slip rate** (short name: slip_rate): Fault slip rate in mm/yr.

Name	Code	No of faults	Mean strike	Number Proved faults	Number Probable faults	Number Possible faults	Fault System References*
Atacama	ATFS	75	72	29	34	12	**104,106**
Central Andean	CAFS	13	40	1	1	11	**105**
Cachet	CCFS	7	113	0	6	1	**106**
Caldera	CDFS	32	87	0	8	24	**107**
Central Coastal Forearc	CFFS	56	116	11	23	20	**108, This study**
Cordillera de la Sal	CGSF	9	23	0	0	9	**109**
East-West	EWFS	99	89	2	53	44	**110**
Exploradores	EXFS	5	134	0	0	5	**111**
Lanalhue	LAFS	25	134	0	20	5	**112, This study**
Lago Laja	LLFS	40	101	9	30	1	**113**
Liquine-Olquie	LOFS	380	53	2	354	23	**114,115**
Liquine-Olquie Transverse	LOTF	66	119	0	22	44	**116,117**
Los Vilos-Puerto Aldea	LVFS	29	105	0	2	27	This study
South-Central Coastal Forearc	SFFS	39	79	0	2	37	This study
Santa Maria	SMFS	21	66	1	20	0	**118,119**
Salar de Atacama	SdAF	10	74	0	10	0	**120**
Western Andean Thrust Front	WATF	48	97	25	1	22	**112,117, This study**
not assigned		5	29	1	1	3	

Table 1. Fault systems of the CHAF Database. *Key references of the Quaternary activity of the Fault System and definition of the fault system, for a complete reference list see the database and Supplementary File 1.
27. **Aseismic slip evidence** (short name: aseismic_slip): Evidences for aseismic slip from paleoseismic or geodetic data.

28. **Paleoseismic evidence** (short name: paleo_ev): Evidences of past earthquakes from paleoseismic data.

Historical seismicity.

29. **Associated seismicity** (short name: ass_seim): Related microseismicity or historical earthquakes.

30. **Maximum registered magnitude** (short name: Mmax_r): Maximum magnitude of an instrumentally-recorded earthquake in moment tensor magnitude scale.

31. **Maximum estimated magnitude** (short name: Mmax_e): Maximum magnitude of an estimated earthquake in moment tensor magnitude scale.

32. **Recurrence interval** (short name: rec_int): Earthquake recurrence interval of the maximum recorded or estimated magnitude.
Notes and references.

33. Notes (short name: notes): Notes and comments.

34. Trace source (short name: source): Source of the fault trace (ref: digitized from published study or studies; Unif: re-mapped based on a published study; Map: based on new geomorphic interpretations made in this study).

35. Source mapping scale (short name: map_scale): Scale of the source map, in case of a previously-mapped fault.

36. References (short name: refs): Published studies used as reference for mapping and/or metadata. A complete list of all the references used in the database is provided in the Supplementary File 1.

Statistical data analysis. We grouped fault traces of the CHAF database into 17 Fault Systems (Table 1). The comprehensive mapping scale of the database allows estimating first-order statistics of fault traces and fault systems that may be relevant and of interest to various different disciplines in Earth sciences. Empirical relations estimated from the surface rupture length and magnitude of historical earthquakes provide a first-order assessment of seismic hazard implications from the CHAF database (Fig. 4a). The distribution of fault length of the entire database (Fig. 4b) suggests that faults are self-similar until a length of ~60 km. Longer traces might require higher-resolution topography and/or mapping at a detailed scale for subdivision, or might reflect mature faults that have accumulated larger magnitudes of deformation resulting in higher geometrical connectivity.

Technical Validation

The CHAF database is difficult to validated by any designed experiment. The metadata of our database follows criteria established and validated by governmental institutions of different countries (i.e., USGS164, GNS165, AIST166, GEM167, and CCAF168). The most important validation procedure will be the occurrence of a forthcoming earthquake on a mapped and properly-classified fault. However, another validation procedure is the comparison with independently-made maps published in previous studies. All these references used in the compilation of the active fault database are included as “Codes” in the digital files, allowing to check the original publication and compare the fault traces. The complete list of references in the database is provided also separately in the Supplementary File 1. The original DEM data may be provided from the authors based on reasonable request, for any project that seeks an independent validation procedure.

We validate the grouping of individual mapped fault traces into fault systems by analysing the variation in fault strike (Fig. 1) and fault length (Fig. 4b–d). All the individual fault systems have similar length distributions, both for probable and possible faults (Fig. 4b).

The present first version of the CHAF database is intended to be the start of a long-term community-based project. To achieve this goal, we created the website www.fallasactivas.cl that includes a map server to visualize the fault traces, fault systems, and associated metadata. Satellite imagery and hillshade maps created from the DEMs used for mapping have been also included. The website contains a blog aimed at obtaining feedback from the community and to allow for the submission of relevant new data on mapped faults or newly-identified unmapped faults, to update the database.

Usage Notes

The LiDAR data used for mapping previously- and newly-identified faults was in part acquired from the company Digimapas Chile and in part donated by Forestal Arauco to the CYCLO project under a confidentiality agreement. The data may be obtained from the corresponding author based on a reasonable request and a Memorandum of Understanding (MoU); a draft MoU may be found in the Supplementary Materials. TanDEM-X DEMs may be obtained from the corresponding author based on a reasonable request and from the German Aerospace Center (DLR).

Received: 8 July 2020; Accepted: 2 December 2020; Published online: 20 January 2021

References

1. Willis, B. & Wood, H. A Fault Map of California. Science 59, 310–311 (1924).

2. Kerr, P. F. & Schenck, H. G. Active thrust-faults in San Benito County, California. Bulletin of the Geological Society of America 36, 463–494 (1925).

3. Hollingsworth, J., Ye, L. & Auouac, J. P. Dynamically triggered slip on a splay fault in the Mw 7.8, 2016 Kaikoura (New Zealand) earthquake. Geophysical Research Letters 44, 3517–3525 (2017).

4. Farias, M., Comte, D., Roecker, S., Carrizo, D. & Pardo, M. Crustal extensional faulting triggered by the 2010 Chilean earthquake: The Pichilemu Seismic Sequence. Tectonics 30, TC02011, https://doi.org/10.1029/2011TC002888 (2011).

5. Quigley, M. et al. Surface rupture during the 2010 Mw 7.1 Darfield (Canterbury) earthquake: Implications for fault rupture dynamics and seismic-hazard analysis. Geology 40, 55–58 (2012).

6. Barnhart, W. D., Hayes, G. P. & Gold, R. D. The July 2019 Ridgecrest, California Earthquake: Kinematics of Slip and Stressing in Cross-Fault Ruptures. Geophysical Research Letters 46, 11859–11867 (2019).

7. Beavan, J., Fielding, E., Mortagh, M., Samsonov, S. & Donnelly, N. Fault location and slip distribution of the 22 February 2011 Mw 6.2 Christchurch, New Zealand, earthquake from geodetic data. Seismological Research Letters 82, 789–799 (2011).

8. Morell, K. D. et al. Seismic hazard analyses from geologic and geomorphic data: Current and future challenges. Tectonics 39, e2018TC005365, https://doi.org/10.1029/2018TC005365 (2020).

9. Boncio, P., Lavecchia, G. & Pace, B. Defining a model of 3D seismicogenic sources for Seismic Hazard Assessment applications: the case of central Apennines (Italy). Journal of Seismology 8, 407–425 (2004).

10. Ishiyama, T., Sato, H., Abe, S., Kawasaki, S. & Kato, N. High-resolution 3D seismic reflection imaging across active faults and its impact on seismic hazard estimation in the Tokyo metropolitan area. Tectonophysics 689, 79–88 (2016).
11. Field, E. H. et al. Uniform California earthquake rupture forecast, version 2 (UCERF 2). Bulletin of the Seismological Society of America 99, 2053–2107 (2009).
12. Simpson, D. Triggered earthquakes. Annual Review of Earth and Planetary Sciences 14, 21–42 (1986).
13. Cucci, L., Currenti, G., Palano, M. & Tertulliani, A. The Dewatering of the Fucino Lake Did Not Promote the M7.1 1915 Fucino Earthquake: Insights From Numerical Simulations. Tectonics 37, 2633–2646, https://doi.org/10.1029/2017TC005490 (2018).
14. González, P. J., Tiamo, K. E., Palano, M., Cannavó, F. & Fernández, J. The 2011 Lorca earthquake: Slip distribution controlled by gravitational surface unloading. Nature Geoscience 5, 821–825, https://doi.org/10.1038/ngeo1610 (2012).
15. Trumpy, E. et al. Data integration and favourability maps for exploring geothermal systems in Sicily, southern Italy. Geothermics 56, 1–16 (2015).
16. Riedl, S., Ménich, D., Mielke, G., Njue, L. & Strecker, M. R. Continental riftting at magmatic centres: structural implications from Late Quaternary Menengai Caldera, central Kenya Rift. Journal of the Geological Society of London 177, 153–169 (2020).
17. Nortohlal, Y., I extracts. Computers & geosciences 33, 1008–1021 (2007).
18. Chambea, I., Buscarlet, E., Wallis, I. C., Sewell, S. & Wilmarth, M. Ngatamariki geothermal field, New Zealand: Geology, geophysics, chemistry and conceptual model. Geothermics 29, 266–280 (2016).
19. Gómez-Vasconcelos, M. G. et al. Crustal extension in the Tongariro graben, New Zealand: Insights into volcano-tectonic interactions and active deformation in a young continental rift. GSA Bulletin 129, 1085–1099 (2017).
20. Zhao, D., Santosh, M. & Yamada, A. Dissecting large earthquakes in Japan: Role of arc magma and fluids. Island Arc 19, 4–16 (2010).
21. Heidbach, O. et al. Global crustal stress pattern based on the World Stress Map database release 2008. Tectonophysics 482, 3–15 (2010).
22. Marucci, M. T. & Montone, P. Database of Italian present-day stress indicators. IPSI 1.4. Scientific data 7, 1–11 (2020).
23. Sbarra, P. et al. Inferring the depth of pre-instrumental earthquakes from macroseismic intensity data: a case-history from Northern Italy. Scientific Reports 9, 15583, https://doi.org/10.1038/s41598-019-51966-4 (2019).
24. Barberio, M. D. & Pinter, N. New observations in Central Italy of groundwater responses to the worldwide seismicity. Scientific Reports 10, 17850, https://doi.org/10.1038/s41598-020-74991-0 (2020).
25. Diederichs, A. et al. Unusual kinematics of the Papata fault (2016 Kaikōura earthquake) suggest anelastic rupture. Science Advances 5, eaax5703 (2019).
26. Goldberg, D. E. et al. Complex rupture of an immature fault zone: A simultaneous kinematic model of the 2019 Ridgecrest, CA earthquakes. Geophysical Research Letters 47, e2019GL086382 (2020).
27. Alvarado, P., Barrientos, S., Saez, M., Astroza, M. & Beck, S. Source study and tectonic implications of the historic 1958 Las Melosas crustal earthquake, Chile, compared to earthquake damage. Physics of the Earth and Planetary Interiors 175, 26–36, https://doi.org/10.1016/j.pepi.2008.03.015 (2009).
28. Legrand, D. et al. Source parameters of the M-w=6.3 Aroma crustal earthquake of July 24, 2001 (northern Chile), and its aftershock sequence. Journal of South American Earth Sciences 24, 58–68, https://doi.org/10.1016/j.jsames.2007.02.004 (2007).
29. Mora, C., Comte, D., Russo, R., Gallego, A. & Mocanu, V. Aysen seismic swarm (January 2007) in southern Chile: analysis using Joint Hypocenter Determination. Journal of Seismology 14, 683–691, https://doi.org/10.1007/s10950-010-9190-y (2010).
30. Cortes A, J. et al. Paleoseismology of the Mejillones Fault, northern Chile: Insights from cosmogenic Be-10 and optically stimulated luminescence determinations. Tectonics 31, https://doi.org/10.1029/2011tc002877 (2012).
31. Vargas, G. et al. Probing large intraplate earthquakes at the west flank of the Andes. Geology 42, 1083–1086, https://doi.org/10.1130/ g33741.1 (2014).
32. Lavenu, A. Maps and database of Quaternary faults in Bolivia and Chile. (USGS, 2000).
33. Costa, C. H. et al. An Overview of the Main Quaternary Deformation of South America. Revista de la Asociación Geológica Argentina 61, 461–479 (2006).
34. Costa, C. et al. Hazardous faults of South America; compilation and overview. Journal of South American Earth Sciences 104, 102837, https://doi.org/10.1016/j.jseaes.2020.102837 (2020).
35. Cembrano, J. et al. In The geology of Chile (eds T. Moreno & N. Gibbons) 231–261 (The Geological Society, 2007).
36. SARA. Research Topic 2 (RT2): Building a harmonised database of ‘hazardous’ crustal faults, https://sara.openquake.org/hazard_rt2 (2016).
37. GEM. Global Earthquake Model, https://blogs.openquake.org/hazard/global-active-fault-viewer (2020).
38. Santibáñez, I. et al. Fallas corticales en los Andes chilenos: limitaciones geológicas y potencial sísmico. Andean geology 46, 32–65 (2019).
39. Sernageomin. Mapa Geológico de Chile escala 1:1.000.000 versión digital. Servicio Nacional de Geología y Minería, Publicación Geológica Digital, No. 4 (Santiago, 2003).
40. DeLong, S. B., Hilliy, G. E., Rymer, M. I. & Prentice, C. Fault zone structure from topography: Signatures of en echelon fault slip at Mustang Ridge on the San Andreas fault, Monterey County, California. Tectonics 29, TC5003 (2010).
41. Ganas, A., Pavlides, S. & Karastathis, V. DEM-based morphometry of range-front escarpments in Attica, central Greece, and its relation to fault slip rates. Geomorphology 65, 301–319 (2005).
42. Jordan, G., Meiijninger, B., Van Hinsbergen, D., Meulenkamp, J. & Van Dijk, P. Extraction of morphotectonic features from DEMs: Development and applications for study areas in Hungary and NW Greece. International journal of applied earth observation and geoinformation 7, 163–182 (2005).
43. Chocarne, J., Dzhon, D. & Grundožu, N. Neotectonics in the eastern North Anatolian fault region (Turkey) advocates crustal extension: mapping from SAR ERS imagery and Digital Elevation Model. Journal of Structural Geology 21, 511–532 (1999).
44. Arrowsmith, J. R. & Zielke, O. Tectonic geomorphology of the San Andreas fault zone from high resolution topography: An example from the Cholame segment. Geomorphology 113, 70–81 (2009).
45. Burbank, D. W. & Anderson, R. S. Tectonic geomorphology. (John Wiley & Sons, 2011).
46. Keller, E. A. & Pinter, N. Active tectonics. Vol. 19 (Prentice Hall Upper Saddle River, NJ, 1996).
47. Bull, W. R. Tectonic geomorphology of mountains: a new approach to paleoseismology. (John Wiley & Sons, 2008).
48. Melnick, D., Charlet, F., Eichler, H. P. & De Batist, M. Incipient axial collapse of the Main Cordillera and strain partitioning gradient between the central and Patagonian Andes, Lago Laja, Chile. Tectonics 25, TC5004 (2006).
49. Melnick, D., Folguera, A. & Ramos, V. A. Structural control on arc volcanism: The Caviahue-Copahue complex, Central to Patagonian Andes transition (38°S). Journal of South American Earth Sciences 22, 66–88, https://doi.org/10.1016/j. jseaes.2006.08.008 (2006).
50. Melnick, D. et al. Steady rifting in northern Kenya inferred from deformed Holocene lake shorelines of the Suguta and Turkana basins. Earth and Planetary Science Letters 331–332, 335–346 (2012).
51. Melnick, D., Moreno, M., Motagh, M., Cisternas, M. & Wesson, R. L. Splay fault slip during the M W 8.8 2010 Maule Chile earthquake. Geology 40, 251–254 (2012).
52. Jara-Muñoz, J., Melnicz, D., Brill, D. & Strecker, M. R. Segmentation of the 2010 Maule Chile earthquake rupture from a joint analysis of uplifted marine terraces and seismic-cycle deformation patterns. Quaternary Science Reviews 113, 171–192, https://doi. org/10.1016/j.quascirev.2015.01.005 (2015).

Scientific Data | (2021) 8:20 | https://doi.org/10.1038/s41597-021-00802-4
89. David, C.
86. Cortés, A. J.
83. Cembrano, J., Schermer, E., Lavenu, A. & Sanhueza, A. Contrasting nature of deformation along an intra-arc shear zone, the
82. Cembrano, J. & Lara, L. The link between volcanism and tectonics in the southern volcanic zone of the Chilean Andes: A review.
80. Carrizo, D., González, G. & Dunai, T. Constricción neógena en la Cordillera de la Costa, norte de Chile: neotectónica y datación
79. Carrasco, S., Ruiz, J. A., Contreras-Reyes, E. & Ortega-Culaciati, F. Shallow intraplate seismicity related to the Illapel 2015 Mw 8.4
76. Bucchi, F. E. & Lara, L. E. & Gutiérrez, F. The Carrán–Los Venados volcanic field and its relationship with coeval and nearby polygenetic
74. Avilés, J., Vargas, G. & Ortega, C. Estratigrafía sísmica y evidencias submarinas de tectónica activa en la falla Puerto Aldea, Tongoy,
75. Barrientos, S. E. & Acevedo-Aránguiz, P. S. Seismological aspects of the 1988–1989 Lonquimay (Chile) volcanic eruption.
67. Álvarez, L. Geología del área Valparaíso-Viña del Mar.
68. Arancibia, G., Cembrano, J. & Lavenu, A. Transpresión dextral y partición de la deformación en la Zona de Falla Liquiñe-Ofqui,
66. Allmendinger, R. W. & González, G., Yu, J., Hoke, G. & Isacks, B. Trench-parallel shortening in the Northern Chilean Forearc:
64. Aguilera, F. P. (2007). Tectonophysics 336, 261–288 (2002).
63. Melnick, D., Maldonado, V. & Contreras, M. Database of active and potentially-active continental faults in Chile at 1:25,000 scale.
59. Styron, R., Taylor, M. & Okoronkwo, K. Database of active and potentially-active continental faults in Chile at 1:25,000 scale.
57. Veloza, G., Styron, R., Taylor, M. & Mora, A. Open-source archive of active faults for northwest South America. Eos Today 22, 4–10 (2012).
56. Georgieva, V. et al. Tectonic control on rock uplift, exhumation, and topography above an oceanic ridge collision: Southern Patagonian Andes (47°S). Chile. Tectonics 35, 1317–1341, https://doi.org/10.1002/2016TC004120 (2016).
55. Veloza, G., Styrón, R., Styrón, R., Taylor, M. & Mora, A. Open-source archive of active faults for northwest South America. Eos Today 22, 4–10 (2012).
54. Christophersen, A. et al. Development of the Global Earthquake Model's neotectonic fault database. Natural Hazards 79, 111–135 (2015).
53. Melnick, D. et al. Slip along the Sultanhan Fault in Central Anatolia from deformed Pleistocene shorelines of palaeo-lake Konya and implications for seismic hazards in low strain regions. Geophysical Journal International 209, 1431–1454 (2017).
52. Melnick, D. et al. Hidden Holocene Slip Along the Coastal El Yolki Fault in Central Chile and Its Possible Link With Megathrust Earthquakes. Journal of Geophysical Research: Solid Earth 124, 7280–7302, https://doi.org/10.1002/2018JB017188 (2019).
51. Yıldırım, C., Schildgen, T. F., Echtler, H., Melnick, D. & Strecke, M. R. Late Neogene and active orogenic uplift in the Central Pontides associated with the North Anatolian Fault: Implications for the northern margin of the Central Anatolian Plateau, Turkey. Tectonics 30, TC5005 (2011).
Acknowledgements
We acknowledge financial support from the Millennium Nucleus CYCLO (The Seismic Cycle Along Subduction Zones) funded by the Millennium Scientific Initiative (ICM) of the Chilean Government grant NC160025, Chilean National Fund for Development of Science and Technology (FONDECYT) grants 1181479 and 1190258, and the ANID PIA Anillo ACT192169. TanDEM-X DEMs were provided by the German Aerospace Center (DLR) under Science Proposals GEOL0845, GEOL1209, GEOL1628, and GEOL0707. We thank Digimapas and Arauco for providing LiDAR data.

Author contributions
Conceptualization, compilation of previous studies and mapping: V.M., D.M.; mapping of new faults, fault system classification and main text writing: D.M.; figures preparation: V.M., D.M.; database preparation: V.M., M.C., D.M.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41597-021-00802-4.

Correspondence and requests for materials should be addressed to D.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

The Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/ applies to the metadata files associated with this article.

© The Author(s) 2021