6.6% efficient antimony selenide solar cells using grain structure control and an organic contact layer

Oliver S. Hutter⁎,†, Laurie J. Phillips†, Ken Durose, Jonathan D. Major

Stephenson Institute for Renewable Energy, Department of Physics, University of Liverpool, L69 7ZF Liverpool, UK

ARTICLE INFO

Keywords:
Antimony selenide
Sb2Se3
Photovoltaics
Solar cells
Thin film
Organic

ABSTRACT

We report a high efficiency antimony selenide (Sb2Se3) photovoltaic device structure using a new multi-step close space sublimation deposition process incorporating a Sb2Se3 seed layer; key to achieving higher efficiency devices via close space sublimation. Utilizing a glass/FTO/TIO2/Sb2Se3|PCDTBT|Au structure, a peak efficiency of 6.6% was achieved, which is comparable to the current record devices for this material. Crucially, this device avoids toxic lead in the hole transport material, and cadmium in the window layer. Moreover, the addition of the PCDTBT back contact both maintains peak efficiency of 6.6%, and improves the uniformity of performance, increasing the average efficiency from 4.3% to 6.1%.

1. Introduction

Antimony selenide (Sb2Se3) is emerging as one of the most exciting new photovoltaic (PV) absorber materials, combining abundant, low toxicity constituents with rapidly improving efficiencies [1,2]. A near-direct bandgap of ~1.2 eV and high absorption coefficient over much of the visible spectrum [2] means that it has the potential to outperform absorbers such as CdTe [3,4]. Its crystal structure comprises 1D (Sb4Se6)n ribbons [5,6] and thus the grains are terminated by van der Waals interactions rather than dangling covalent bonds, offering grain boundaries which are potentially benign [1,7,8]. This is evidenced by a large directional variability in hole mobilities [9]. Ribbons oriented perpendicular to the substrate should therefore offer improved charge transport and reduced recombination [9].

The first reported power conversion efficiency (PCE) of a functional Sb2Se3 PV device was 3.2% by Choi et al. in 2014, doubling to 6.5% for a CdS/Sb2Se3|PbS quantum dot device, the current record, by 2017 [10,11]. However, whilst further device efficiency improvements are of course required, it is also of importance to produce non-toxic device structures, in order not to undermine the use of a non-toxic absorber layer. As an example, CdS is a highly toxic source of cadmium [12], and thus should be avoided if possible. Sb2Se3 is commonly reported to have a low carrier concentration [1,13], hence recent literature reports using a PIN device structure, partnering the quasi-intrinsic absorber with n-type electron and p-type hole extraction layers to enhance charge extraction [10]. Recent work by our group was the first to demonstrate the efficacy of close space sublimation (CSS) as a deposition route for Sb2Se3 for photovoltaics [3]. CSS is highly promising for Sb2Se3 as it yields large grains with preferred orientation, and importantly the ability to control the grain structure.

In this work we report on improved Sb2Se3 cell performance to world leading levels via a two-stage CSS deposition to generate a compact “seed” layer prior to the deposition of large Sb2Se3 grains. Furthermore, a significant improvement in uniformity was achieved by including a hole transport material (HTM). A TiO2 layer was employed as the electron extraction layer while poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT) was selected as the optional HTM due to the position of its ionization potential and electron affinity at 5.4 and 3.6 eV respectively [14]. Photo-oxidation is known to generate sub-bandgap states close in energy to the valence band of Sb2Se3 and therefore allow efficient hole extraction [15,16]. The LUMO is also high enough to block the transfer of minority carriers (electrons) from the Sb2Se3 to Au and thereby reduce recombination at the back-contact (Fig. S1) [14].

2. Materials and methods

FTO-coated glass substrates (TEC10, NSG Ltd.) were spin coated with 0.15 M and 0.3 M titanium isopropoxide in ethanol at 3000 rpm for 30 s, and dried after each deposition at 120°C for 30 min and cooled rapidly to create compact titania layers [17]. The Sb2Se3 layers were grown via...
CSS in a novel two step process. First a compact seed layer was grown for 5 mins at 0.05 mbar, with a source temperature of 350°C, followed by annealing for 10 mins in 260 mbar N₂. Secondly, a 30 min growth step was carried out at a source temperature of 450°C and pressure of 13 mbar to produce a more compact and orientated grain structure, similar to previous work on CdTe [18]. The substrate was then cooled rapidly with N₂. Where included, PCDTBT was spin-cast in air at 6000 rpm for 60 s from a 4 mg/mL solution in chloroform. Cells were fabricated. SEM images were taken using a JEOL 7001 FEGSEM, X-Ray Diffraction (XRD) was carried out using a Rigaku Smartlab and AFM measurements were carried out using a Veeco diInnova AFM in tapping mode. UV/Vis spectra were recorded using a Shimadzu Spectrophotometer and an integrating sphere.

3. Results and discussion

3.1. Sb₂Se₃ seed layer

Fig. 1a shows a top-down SEM image of the initial low-temperature seed layer. The seed layer is compact, yielding a high density of nucleation points for the second stage of growth, similar to work on CdTe [19]. The seed layer also serves to prevent shorting pathways between large CSS grains of the final layers, which although not ideal for carrier transport is preferred to ribbons parallel to the substrate [1,7,10]. It also indicates that the Sb₂Se₃ seed layer is likely consumed during the second growth stage. As the seed layer has a continuous slab like morphology which is very morphologically distinct to the full Sb₂Se₃ film, a large difference in absorption coefficient would be expected. Anisotropic optical absorption properties with ribbon orientation are also predicted for Sb₂Se₃ [22,23]. The Sb₂Se₃ film XRD pattern (Fig. 1c) shows a preferred crystal structure orientation, confirmed by the lack of a significant (120) peak around 17°, but a strong (211) peak at 28.4°. This indicates that the 1D ribbons are mostly tilted on the substrate, which although not ideal for carrier transport is preferred to ribbons parallel to the substrate (120) [1,7,10]. The largest peak in the XRD pattern comes from the FTO glass [20], as both the titania and seed layers are very thin compared to the X-ray penetration depth. Single stage CSS-deposited Sb₂Se₃ films typically have pinholes leading to a lower fill factor [31]. The combination of these properties mean that the seed layer is thus a key feature for achieving higher efficiency Sb₂Se₃ devices via CSS, and has improved the device performance by over 1% absolute compared to similar control devices without this seed layer, as explained in Section 3.3. The seed layer in isolation as a sole absorber material did not produce a working device due to a very thin absorber thickness creating a high number of shunting pathways.

3.2. Complete Sb₂Se₃ layer

Fig. 2a shows an SEM image of the complete Sb₂Se₃ layer after both stages of CSS growth. This two-stage approach generates large columnar Sb₂Se₃ grains of ~2 µm diameter. These grains are packed tighter, more uniformly orientated and thereby minimize pinholes within the Sb₂Se₃ film compared to a film without the seed layer (Fig. S2). The device cross-sectional SEM image (Fig. 2c) shows that the Sb₂Se₃ grain height (~1.5 µm) is sufficient to span the full thickness of the device and connect the TiO₂ and the PCDTBT layers without lateral grain boundaries that could impede charge transport. EDX analysis confirmed the composition as being stoichiometric Sb₂Se₃ within experimental error (Fig. S3) while optical transmission measurements show a bandgap of ~1.2 eV and high absorption (Fig. 2b), similar to previously reported values [1,2,8,21]. A difference in band gap and absorption coefficient is observed between the seed and final layers, indicating that the seed layer is likely consumed during the second growth stage. As the seed layer has a continuous slab like morphology which is very morphologically distinct to the full Sb₂Se₃ film, a large difference in absorption coefficient would be expected. Anisotropic optical absorption properties with ribbon orientation are also predicted for Sb₂Se₃ [22,23]. The Sb₂Se₃ film XRD pattern (Fig. 2c) shows a preferred crystal structure orientation, confirmed by the lack of a significant (120) peak around 17°, but strong (211) and (221) peaks at 28.4° and 31.4° respectively. This indicates the 1D ribbons are mostly predominantly inclined with respect to the substrate, which is beneficial for carrier transport [1,7,10]. It also indicates that the Sb₂Se₃ seed layer may be acting a templating layer for vertical ribbon growth, although the (211) peak is more intense in the final film compared to the

Fig. 1. Sb₂Se₃ seed layer characteristics: (a) Top-down SEM image, (b) Absorption coefficient and Tauc plot (inset), (c) AFM cross section, (d) XRD pattern.
seed layer. Bilayer thin film structures for other photovoltaic materials have been investigated previously and are established for materials such as CdTe [24,25], although not for Sb$_2$Se$_3$.

3.3. PV devices

In this work, the base device structure used for cell fabrication was: glass|FTO|TiO$_2$|Sb$_2$Se$_3$|Au. The peak JV performance of devices with and without a Sb$_2$Se$_3$ seed layer are shown in Fig. 3a, with average and peak values in Table S1. The peak device without a Sb$_2$Se$_3$ seed layer achieved a V_{oc}, J_{sc}, FF and PCE of 0.401 V, 28.34mAcm$^{-2}$, 43.8% and 4.96% respectively. The seed layer improves the peak device performance by over 1% absolute, from 4.96% without a seed layer, to 6.56% with a seed layer. The majority of this improvement arises through increased current density. Fig. 3b compares devices with a seed layer (denoted “Au”), to devices including PCDTBT and a seed layer: glass|FTO|TiO$_2$|Sb$_2$Se$_3$|PCDTBT|Au (denoted “P-Au”). Table 1 shows the average and peak parameters for these devices, whilst Fig. 3b shows the peak JV performance.

The seed layer produces a denser, more compact, film morphology in the Sb$_2$Se$_3$ films which leads to a large increase in PCE of over 1%. The addition of a PCDTBT contact layer only marginally increases the peak performance to 6.6%, but it drastically improves the average device characteristics (Table 1). The number of devices that failed due to a short circuit is also greatly reduced with PCDTBT. Individual pinhole free pixels are still possible without PCDTBT, and this explains why the peak JV performance to 6.6%, but it drastically improves the average device performance (Table 1). The number of devices that failed due to a short circuit is also greatly reduced with PCDTBT.

The seed layer improves the peak device performance by over 1% absolute, from 4.96% without a seed layer, to 6.56% with a seed layer. The majority of this improvement arises through increased current density. Fig. 3b compares devices with a seed layer (denoted “Au”), to devices including PCDTBT and a seed layer: glass|FTO|TiO$_2$|Sb$_2$Se$_3$|PCDTBT|Au (denoted “P-Au”). Table 1 shows the average and peak parameters for these devices, whilst Fig. 3b shows the peak JV performance.

The seed layer produces a denser, more compact, film morphology in the Sb$_2$Se$_3$ films which leads to a large increase in PCE of over 1%. The addition of a PCDTBT contact layer only marginally increases the peak performance to 6.6%, but it drastically improves the average device characteristics (Table 1). The number of devices that failed due to a short circuit is also greatly reduced with PCDTBT. Individual pinhole free pixels are still possible without PCDTBT, and this explains why the peak JV performance to 6.6%, but it drastically improves the average device performance (Table 1). The number of devices that failed due to a short circuit is also greatly reduced with PCDTBT.

The seed layer improves the peak device performance by over 1% absolute, from 4.96% without a seed layer, to 6.56% with a seed layer. The majority of this improvement arises through increased current density. Fig. 3b compares devices with a seed layer (denoted “Au”), to devices including PCDTBT and a seed layer: glass|FTO|TiO$_2$|Sb$_2$Se$_3$|PCDTBT|Au (denoted “P-Au”). Table 1 shows the average and peak parameters for these devices, whilst Fig. 3b shows the peak JV performance.

The seed layer improves the peak device performance by over 1% absolute, from 4.96% without a seed layer, to 6.56% with a seed layer. The majority of this improvement arises through increased current density. Fig. 3b compares devices with a seed layer (denoted “Au”), to devices including PCDTBT and a seed layer: glass|FTO|TiO$_2$|Sb$_2$Se$_3$|PCDTBT|Au (denoted “P-Au”). Table 1 shows the average and peak parameters for these devices, whilst Fig. 3b shows the peak JV performance.
shown, without requiring the toxic lead from the lead sulfide quantum dots and the toxic Cd from the CdS window layer [11]. Additionally, by redesigning the cell structure to incorporate a PCDTBT layer, uniformity of performance is vastly improved without any loss in peak performance.

Acknowledgements

This work was supported by EPSRC grants EP/N014057/1 and EP/M024768/1. We thank S. Mariotti for helpful discussions.

Conflict of interests

The authors declare no competing financial interest.

Table 1

Cell	V_{oc}/V	J_{sc}/mAcm$^{-2}$	FF/%	PCE/%
Peak “Au”	0.418	32.2	48.4	6.54
Average “Au”	0.36 ± 0.03	31.5 ± 0.9	37.3 ± 6.0	4.3 ± 1.2
Peak “P-Au”	0.419	32.2	48.5	6.56
Average “P-Au”	0.42 ± 0.01	29.9 ± 1.4	48.6 ± 2.2	6.1 ± 0.5

Fig. 3. (a) JV scans of Sb$_2$Se$_3$ devices with and without a seed layer, (b) JV scans of “Au” and “P-Au” Sb$_2$Se$_3$ devices (both with a seed layer), (c) EQE of “Au” and “P-Au” devices, (d) Depth-density profile from CV measurements of the “Au” device (circle denotes 0 V).

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.solmat.2018.09.004.

References

[1] K. Zeng, D.-J. Xue, J. Tang, Antimony selenide thin-film solar cells, Semicond. Sci. Technol. 31 (2016) 63001.
[2] C. Chen, W. Li, Y. Zhou, C. Chen, M. Luo, X. Liu, K. Zeng, B. Yang, C. Zhang, J. Han, J. Tang, Optical properties of amorphous and polycrystalline Sb$_2$Se$_3$ thin films prepared by thermal evaporation, Appl. Phys. Lett. (2015) 43905.
[3] L.J. Phillips, C.N. Savory, O.S. Hutter, P.J. Yates, H. Shiel, S. Mariotti, L. Bower, M. Brønsted, K. Durose, D.O. Scanlon, J.D. Major, Current enhancement through a TiO$_2$ window layer for CSS-deposited Sb$_2$Se$_3$ solar cells, Submitt. IEEE J. Photovolt. (2018).
[4] S. Rühle, Tabulated values of the Shockley-Queisser limit for single junction solar cells, Sol. Energy 130 (2016) 199.
[5] M.R. Filip, C.E. Patrick, F. Giustino, GW quasiparticle band structures of stibnite, antimonelite, bismuthinite, and guanajuatite, Phys. Rev. B - Condens. Matter Mater. Phys. 87 (2013) 1.
[6] Y. Zhou, M. Leng, Z. Xia, J. Zhong, H. Song, X. Liu, B. Yang, J. Zhang, J. Chen, K. Zhou, J. Han, Y. Cheng, J. Tang, Solution-processed antimony selenide heterojunction solar cells, Adv. Energy Mater. 4 (2014) 4.
[7] Y. Zhou, L. Wang, S. Chen, S. Qin, X. Liu, J. Chen, D.-J. Xue, M. Luo, Y. Cao, Y. Cheng, E.H. Sargent, J. Tang, Thin-film Sb$_2$Se$_3$ photovoltaics with oriented one-dimensional ribbons and benign grain boundaries, Nat. Photonics 9 (2015) 409.
[8] W. Yang, J. Ahn, Y. Oh, J. Tan, H. Lee, J. Park, H.-C. Kwon, J. Kim, W. Jo, J. Kim, J. Moon, Adjusting the anisotropy of 1D Sb$_2$Se$_3$ nanostructures for highly efficient photoelectrochemical water splitting, Adv. Energy Mater. (2018) 1702888.
[9] C. Chen, D.C. Bobela, Y. Yang, S. Lu, K. Zeng, C. Ge, B. Yang, L. Gao, Y. Zhao, M.C. Beard, J. Tang, Characterization of basic physical properties of Sb$_2$Se$_3$ and its relevance for photovoltaics, Front. Optoelectron. 10 (2017) 18.
[10] Y.C. Choi, T.N. Mandal, W.S. Yang, Y.H. Lee, S.H. Im, Sb$_2$Se$_3$ -sensitized inorganic–organic heterojunction solar cells fabricated using a single-source precursor, Angew. Chem. (2014) 1329.

[11] C. Chen, L. Wang, L. Gao, D. Nam, D. Li, K. Li, Y. Zhao, C. Ge, H. Cheong, H. Liu, H. Song, J. Tang, 6.5% Certified efficiency Sb$_2$Se$_3$ solar cells using pbs colloidal quantum dot film as hole-transporting layer, ACS Energy Lett. 2 (2017) 2125.

[12] J.D. Major, R.E. Trehanne, L.J. Phillips, K. Durose, A. Low-cost Non-toxic, Post-growth activation step for CdTe solar cells, Nature 511 (2014) 334.

[13] M.A. Tumelero, R. Faccio, A.A. Pasa, Unraveling the native conduction of trichalcogenides and its ideal band alignment for new photovoltaic interfaces, J. Phys. Chem. C. 120 (2016) 1390–1399.

[14] S.K. Lee, J.M. Cho, Y. Goo, W.S. Shin, J.-C. Lee, W.-H. Lee, I.-N. Kang, H.-K. Shim, S.-J. Moon, Synthesis and characterization of a Thiazole[5,4-d]thiazole-based copolymer for high performance polymer solar cells, Chem. Commun. 47 (2011) 1791.

[15] C.H. Peters, I.T. Sachs-Quintana, W.R. Mateker, T. Heumueller, J. Rivnay, R. Noriega, Z.M. Beiley, E.T. Hoke, A. Salleo, M.D. McGehee, High efficiency polymer solar cells with long operating lifetimes, Adv. Mater. 24 (2012) 663.

[16] A. Tournebize, P.O. Bussière, P. Wong-Wah-Chung, S. Thérias, A. Rivaton, J.L. Gardette, S. Beaupré, M. Leclerc, Impact of UV–visible light on the morphological and photochemical behavior of a low-bandgap Poly(2,7-Carbazole) derivative for use in high-performance solar cells, Adv. Energy Mater. 3 (2013) 478.

[17] S. Mariotti, O.S. Hutter, L.J. Phillips, P.J. Yates, B. Kundu, K. Durose, Stability and performance of CdPbI$_2$Br thin films and solar cell devices, ACS Appl. Mater. Interfaces 10 (2018) 3750.

[18] J.D. Major, Y.Y. Prosukraykov, K. Durose, G. Zoppi, I. Forbes, Control of grain size in sublimation-grown CdTe, and the improvement in performance of devices with systematically increased grain size, Sol. Energy Mater. Sol. Cells 94 (2010) 1107.

[19] J.D. Major, K. Durose, Early stage growth mechanisms of CdTe thin films deposited by close space sublimation for solar cells, Sol. Energy Mater. Sol. Cells 95 (2011) 816–820.

[20] S.-L. Chen, J. Tao, H.-J. Tao, Y.-Z. Shen, A.-C. Xu, F.-X. Cao, J.-J. Jiang, T. Wang, L. Pan, In situ synthesis of two-dimensional leaf-like Cu$_2$ZnSnS$_4$ plate arrays as a Pt-free counter electrode for efficient Dye-sensitized solar cells, Green. Chem. 18 (2016) 2793.

[21] L. Wang, M. Luo, S. Qin, X. Liu, J. Chen, B. Yang, M. Leng, D. Xue, Y. Zhou, L. Wang, M. Luo, S. Qin, X. Liu, J. Chen, B. Yang, Ambient CdCl$_2$ treatment on CdS buffer layer for improved performance of Sb$_2$Se$_3$ Thin film photovoltaics, Appl. Phys. Lett. (2015) 149502.

[22] Theodore C. Hobson, Oliver T. Veal, Ken Durose, Growth and Characterization of Sb$_2$Se$_3$ Single Crystals for Fundamental Studies, WCPEC-7 Conference Paper, 2018.

[23] R. Vadapoo, S. Krishnan, H. Yilmaz, C. Marin, Electronic structure of antimony selenide (Sb$_2$Se$_3$) from GW calculations, Phys. Status Solidi Basic Res. 248 (2011) 700.

[24] V. Krishnakumar, A. Barati, H.J. Schipper, A. Klein, W. Jaegermann, A possible way to reduce absorber layer thickness in thin film CdTe solar cells, Thin Solid Films. 535 (2013).

[25] J. Han, C. Spanheimer, G. Haindl, F. Fu, V. Krishnakumar, J. Schaffner, C. Fan, K. Zhao, A. Klein, W. Jaegermann, Optimized chemical bath deposited CdS layers for the improvement of CdTe solar cells, Sol. Energy Mater. Sol. Cells 95 (2011) 816–820.

[26] O.S. Hutter, L.J. Phillips, P. Yates, J.D. Major, K. Durose, CSS antimony selenide film morphology and high efficiency PV devices, WCPEC-7 Conference Paper, 2018.

[27] J.D. Major, L.J. Phillips, M. Al Turkestani, L. Bowen, T.J. Whittles, V.R. Sharanuk, K. Durose, P3HT as a pinhole blocking back contact for CdTe thin film solar cells, Sol. Energy Mater. Sol. Cells 172 (2017) 1.

[28] S-W. Baek, J. Nob, C.-H. Lee, B. Kim, M.-K. Seo, J.-Y. Lee, Plasmonic forward scattering effect in organic solar cells: a powerful optical engineering method, Sci. Rep. 3 (2013) 1726.

[29] C. Chen, Y. Zhao, S. Lu, K. Li, Y. Li, B. Yang, W. Chen, L. Wang, D. Li, H. Deng, F. Yi, J. Tang, Accelerated optimization of TiO$_2$/Sb$_2$Se$_3$ thin film solar cells by high-throughput combinatorial approach, Adv. Energy Mater. (2017) 1700866.

[30] L. Wang, D.-B. Li, K. Li, C. Chen, H.-X. Deng, L. Gao, Y. Zhao, F. Jiang, L. Li, F. Huang, Y. He, H. Song, G. Niu, J. Tang, Stable 6% efficient Sb$_2$Se$_3$ Solar Cells with a ZnO Buffer Layer, Nat. Energy 2 (2017) 17046.

[31] M. Luo, M. Leng, X. Liu, J. Chen, C. Chen, S. Qin, J. Tang, Thermal evaporation and characterization of superstrate CdS/Sb$_2$Se$_3$ solar cells, Appl. Phys. Lett. (2015) 173904.