Supplemental information

Hypercompact CRISPR–Cas12j2 (CasΦ) enables genome editing, gene activation, and epigenome editing in plants

Shishi Liu, Simon Sretenovic, Tingting Fan, Yanhao Cheng, Gen Li, Aileen Qi, Xu Tang, Yang Xu, Weijun Guo, Zhaohui Zhong, Yao He, Yanling Liang, Qin Qin Han, Xuelian Zheng, Xiaofeng Gu, Yiping Qi, and Yong Zhang
Hypercompact CRISPR-Cas12j2 (CasΦ) enables genome editing, gene activation, and epigenome editing in plants

Shishi Liu¹, Simon Sretenovic², Tingting Fan¹, Yanhao Cheng², Gen Li², Aileen Qi², Xu Tang¹, Yang Xu¹, Weijun Guo³, Zhaohui Zhong¹, Yao He¹, Yanling Liang¹, Qinqin Han¹, Xuelian Zheng¹, Xiaofeng Gu³, Yiping Qi², Yong Zhang¹

¹Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China; ²Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742, USA; ³Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; ⁴Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850.

These authors contributed equally to this work.

*Corresponding authors
Yong Zhang, Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Room 216, Main Building, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, P.R. China; Email: zhangyong916@uestc.edu.cn
Yiping Qi, Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA; Email: Yiping@umd.edu
SUPPLEMENTAL INFORMATION

- Supplemental Materials and Methods.
- Supplemental Table 1. Oligos and gBlocks used in this study.
- Supplemental Table 2. T-DNA constructs used in this study.
- Supplemental Table 3. Target genes and protospacer sequences in this study.
- Supplemental Figure 1. Assessment of a CRISPR-Cas12j2 system for genome editing in rice cells with TSN PAMs.
- Supplemental Figure 2. Assessment of Cas12j2 for genome editing in tomato cells.
- Supplemental Figure 3. Genome editing profiles by Cas12j2 in rice and tomato.
- Supplemental Figure 4. Deletion size analysis of Cas12j2 in rice and tomato.
- Supplemental Figure 5. Improved genome editing efficiency with Cas12j2 variants.
- Supplemental Figure 6. nCas12j2 based genome editing in stable T0 rice lines.
- Supplemental Figure 7. Cas12j2 based genome editing in poplar T0 lines.
- Supplemental Figure 8. nCas12j2 based genome editing in T0 transgene rice tissue and protoplasts sourced from the same tissue.
- Supplemental Figure 9. Cas12j2 based gene activation in rice cells.
Supplemental Materials and Methods

Vector construction

Maize codon optimized (z) zCas12j2 in attL1-attR5 Gateway compatible entry clone pYPCas12j2 (Addgene # 189780) was prepared using two synthetic DNA fragments (IDT gBlocks), Cas12j2-gBk1 and Cas12j2-gBk2 (Supplemental Table 1). Based on the synthesized Cas12j2-gBk1 and PCR amplified pYPC230 (Addgene # 86210) backbone with primers 230_BB_F and 230_BB_R (Supplemental Table 1), NEBuilder® HiFi DNA Assembly kit was used. Second round of cloning was needed to introduce Cas12j2-gBk2 into pYPQ230-Cas12j2-gBk1 with restriction digestion and ligation cloning using SphI-HF (NEB, catalog # R3182*) and SpeI-HF (NEB, catalog # R3133*) and T4 ligase (NEB, catalog # M0202*). The DNA sequence of zCas12j2 in pYPQCas12j2 vector was confirmed with Sanger sequencing with primers Attl1-APB-F, Cas12j2-Seq1, Cas12j2-Seq2, Cas12j2-Seq3, Nos-term-R2 (Supplemental Table 1). pYPQ141-ZmUBI-RZ-Cas12j2 (Addgene #189781) sgRNA attL5-attL2 Gateway compatible entry clone was prepared by restriction digestion of pYPQ141-ZmUbi-RZ-Lb (Addgene #86197) and Cas12j2-crRNA-gBk (Supplemental Table 1) synthetic DNA fragment (IDT, gBlock) with BamHI-HF (NEB, catalog #R3136*) and EcoRI-HF (NEB, catalog # R3101*) followed by ligation. Golden Gate compatible vectors pYPQ131-RZ-Cas12j2 (Addgene # 189782), pYPQ132-RZ-Cas12j2 (Addgene # 189783), pYPQ133-RZ-Cas12j2 (Addgene # 189784), and pYPQ134-RZ-Cas12j2 (Addgene # 189785) were prepared by restriction digestion and ligation cloning of PCR amplicons and pYPQ131-STU-Lb (Addgene # 138096), pYPQ132-STU-Lb (Addgene # 138099), pYPQ133-STU-Lb (Addgene # 138102), and pYPQ134-STU-Lb (Addgene # 138105), respectively, with BsaI-HFv2 (NEB, catalog # R3733*). PCR amplicons were prepared from pYPQ141-ZmUbi-RZ-Cas12j2 vector using primers pYPQ131-F-STU-Cas12j2 and pYPQ131-R-STU (Supplemental Table 1) in case of pYPQ131-RZ-Cas12j2, pYPQ132-F-STU-Cas12j2 and pYPQ132-R-STU in case of pYPQ132-RZ-Cas12j2, pYPQ133-F-STU-Cas12j2 and pYPQ133-R-STU in case of pYPQ133-RZ-Cas12j2, and pYPQ134-F-STU-Cas12j2 and pYPQ134-R-STU in case of pYPQ134-RZ-Cas12j2.

T-DNA vectors with pLR prefix (Supplemental Table 2) for CRISPR-Cas12j2 mediated editing were prepared using Gateway LR assembly reactions based on the protocols described previously (Lowder et al., 2015). Briefly, forward and reverse primers (Supplemental Table 1) were phosphorylated with T4 polynucleotide kinase (NEB, catalog #M0201*), annealed, and ligated with T4 DNA ligase (NEB, catalog #M0202*) into BsmBI (ThermoFisher scientific, catalog #ER045*) restriction digested pYPQ141-ZmUBI-RZ-12j2 sgRNA entry clones. In case of multiplexing four target sites, phosphorylated and annealed oligos were each ligated into BsmBI digested pYPQ131-RZ-Cas12j2 to pYPQ134-RZ-Cas12j2. While pYPQ141-ZmUBI-RZ-12j2 can be directly used in Gateway LR reaction, four target sites in vectors pYPQ131-RZ-Cas12j2 to pYPQ134-RZ-Cas12j2 need to be introduced using Golden gate reaction with BsaI-HFv2 and T4 ligase into pYPQ144-ZmUbi-pT (Addgene
vector. Individual Gateway LR reactions each consisted of an assembled attL5-attL2 sgRNA entry clone, the attL1-attR5 Cas12j2 entry clone, and the attR1-attR2 destination vector pYPQ203 (Addgene # 86207) containing a ZmUbi1 promoter for Cas12j2 expression in case of rice. The attR1-attR2 destination vector pYPQ202 (Addgene # 86198) containing a AtUBQ10 promoter for Cas12j2 expression was used in case of poplar and pCGS710 containing 2x35S promoter was used for Cas12j2 expression in case of tomato. gRNAs were in all cases expressed with a ZmUbi1 promoter. Both sgRNA and Cas12j2 entry clone recombination regions were confirmed by Sanger sequencing. Final T-DNA vectors were confirmed by restriction digestion with EcoRI-HF (NEB, catalog # R3101*).

pGEL637 (Addgene # 189832) with vCas12j2 was prepared from 2 overlapping PCR amplicons and assembled into the HindIII and XmaI digested T-DNA vector pGEL635 using Gibson assembly. To prepare pGEL638 (Addgene # 189831) with nCas12j2, 5 mutations (E159A, S160A, S164A, D167A, E168A) were introduced into Cas12j2 with mutagenesis PCR. nCas12j2 was introduced into the HindIII and XmaI digested T-DNA vector pGEL635 (Addgene # 189829) using Gibson assembly. To prepare the vector for gene activation pGEL636 (Addgene # 189830), the activator 6 TAL_VP128, which was a gift from Li lab (Li et al., 2017), was PCR amplified. Afterwards, the PCR amplified 6TAL_VP128 activator was introduced in the HindIII and XmaI digested T-DNA vector pGEL635 using Gibson assembly. To prepare the vector for methylation pGEL639 (Addgene # 189833), the rice codon optimized Dnmt3A and Dnmt3L catalytic domains were synthesized and cloned in pMOD_A using Golden Gate assembly to construct vector pLSS514. The mature crRNA repeat was synthesized by overlapping extension PCR, then assembled into the vector containing pOsUbi1-HH-ccdb-HDV-AtNOS-T using Gibson assembly to construct entry vector pLSS551. The entry vector pLSS514, pLSS551 and pMOD_C0000a were assembled into the T-DNA backbone vector pTRANS_210d (Addgene Plasmid #91109) using Golden Gate assembly to generate the DNA methylation vector pGEL639.

The target genes and protospacer sequences used in this study are summarized in Supplemental Table 3.

Plants transformation

The Japonica cultivar *Nipponbare* rice was used in this study. Transgenic rice lines were prepared using *Agrobacterium*-mediated transformation which was conducted as published previously (Zhong et al., 2019). Succinctly, the rice calli were induced from seeds which grew on N6-D medium for 7 days at 32°C under light. The T-DNA vectors were transformed into *Agrobacterium tumefaciens* strain EHA105. Each transformed *Agrobacterium* EHA105 was cultured at 28°C and re-suspended in AAM-AS medium (OD600 = 0.1) containing 100 mM acetosyringone. After co-cultivation with the *Agrobacterium* for 3 days, the calli were washed with sterile water and transferred to N6-S medium containing 400 mg/l timentin and 50 mg/l hygromycin and incubated for 2 weeks. Resistant calli were transferred to REIII medium with 400 mg/l timentin and 50 mg/l hygromycin to obtain regenerated plants.
For rice protoplast transformation, the rice seedlings were grown for 11 days in the dark at 28 °C. The leaves were cut to about 1.0 mm long strips and transferred into the enzyme solution followed by vacuum-infiltration for 30 minutes. Afterwards, strips in enzyme solution were incubated at 70-80 rpm for 6-8 hours at 25°C in dark. Each digestion mixture was filtered using a 40 μm cell strainer. The protoplasts were centrifuged at 100 g for 5 min. Supernatant was removed and the protoplasts were re-suspended in W5 solution. Then, the W5 solution was decanted, and protoplasts were re-suspended at 2×10^6 ml^-1 in MMG solution. 30 μg of T-DNA plasmid and MMG were added to make up 30 μl, and then transformed into 200 μl protoplasts (4×10^5 protoplasts). The mixture was incubated in the same volume PEG solution for 30 min. The transfection mixture was diluted with 1 ml W5 solution and centrifuged at 250 g for 5 min to remove the supernatant. The protoplasts were then gently resuspended with the W5 solution in each well of a 12-well tissue culture plate. Protoplast cells were collected for genome editing analysis after 48 hours or 72 hours incubation at 32°C in dark.

For tomato protoplast transformation, the Micro Tom Tomato cultivar was used. The tomato protoplast transformation was performed according to a recent publication (Randall et al., 2021). Briefly, the tomatoes were grown at 25°C (12 h light/12 h dark). 10-14-day-old cotyledons were isolated by cutting the petiole where it meets the leaf and incubated in the enzyme solution at 28°C in the dark for 8-10 hours. Then, the digested cells were filtered by a 75-μm Nylon cell strainer wetted by W5 solution and centrifuged for 10 min at 200 g. The supernatant was pipetted off and cells were resuspended by 0.55M sucrose. After centrifugation at 200 g for 30 min, a band of protoplasts was visible at the interface, which were transferred to new 10 mL tubes and washed with 10 mL W5 buffer twice. The cells were resuspended in MMG and adjusted the final concentration to 5 × 10^5/mL. 20 μL (1000 ng/μL) plasmid DNA, 200 μL protoplasts and 220 μL of filter sterilized 40% PEG solution were mixed gently in a 2 mL round tube. After 20 min incubation at room temperature, the reactions were stopped by adding 900 μL W5 buffer. Protoplasts were collected by centrifugation and transferred into 12-well culture plates. Plates were incubated at 30°C in the dark for 60 h.

For poplar stable transformation, Populus alba x tremula clone 717-1B4 was used as previously described (Leple et al., 1992). Transformed shoots were selected by regenerating on media containing 20 mg/l hygromycin. Regenerated shoots of 1-2 cm-long were transferred to rooting media containing 20 mg/l hygromycin. The rooted plants were used for further genotyping. Tissue culture plants were propagated in 23 °C with 24h of light condition.

NGS sequencing and data analysis

Next-generation sequencing (NGS) of PCR amplicons was used for the detection and quantification of mutations at target sites. For rice, genomic DNA was extracted from protoplasts and stable lines using the CTAB method (Stewart and Via, 1993). Target sites were amplified with barcoded primers according to our previously published protocols(Zhong et al., 2019). The PCR products were gel-purified, and then sequenced by Novogene (Tianjin,
China) with NovaSeq 6000-PE150 sequencing strategy. The data were analyzed with CRISPRMatch software (You et al., 2018).

For tomato, the method was performed according to a recent publication (Randall et al., 2021). Transformed tomato protoplasts were directly mixed with dilution buffer for PCR amplification of the target sites using the Phire Plant Direct PCR Kit (Thermo Fisher, USA). PCR products were pooled together for next-generation sequencing (Genewiz, USA).

For poplar, leaf samples were mixed with dilution buffer (ThermoFisher) by following the manufacturer’s manuals and two rounds of Hi-Tom PCR (Liu et al., 2019) were preceded using Phire Plant Direct PCR Master Mix (ThermoFisher). PCR products were pooled together for next-generation sequencing (Genewiz, USA).

RNA extraction and qPCR analysis

1 μg of leaf or 8 × 10^5 protoplasts of rice were used for RNA extraction. Total RNA extraction and DNA removal were achieved using Steady Pure Plant RNA Extraction Kit (AG21019, ACCURATE BIOLOGY) according to the manufacturer’s instructions. Then, 400 ng of total RNA was used for cDNA synthesis using HiScript III RT SuperMix for qPCR Kit (R323-01, Vazyme). The qPCR analysis was performed using the ChamQ Universal SYBR qPCR Master Mix (Q711-02, Vazyme) coupled with the Real-Time PCR Detection System (QTOWER3G, Analytikjena) to detect transcript expression levels. OsActin was used as the endogenous control genes for rice. Fold changes were calculated by the 2^−ΔΔCt method. All primers used in this study are listed in Supplemental Table 1.

BS-PCR for methylation analysis

The Japonica cultivar Nipponbare rice were used. Genomic DNA was extracted from the rice protoplast by the CTAB method. Bisulfite treatment was conducted by using the EpiTect Bisulfite Kit (59104; QIANGEN) according to the manufacturer’s instructions. Bisulfite-treated DNA was then used to amplify the target regions using barcoded primers listed in Supplemental Table 1. PCR products were pooled together and purified by agarose gel electrophoresis. Then PCR amplicons were sequenced by Novogene (Tianjin, China) with NovaSeq 6000-PE250 sequencing strategy. The sequencing results were analyzed with Bismark software (Krueger and Andrews, 2011) and the methylation percentages of each cytosine site were calculated.

References

Krueger, F., and Andrews, S.R. (2011). Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27, 1571-1572.
Leple, J.C., Brasileiro, A.C., Michel, M.F., Delmotte, F., and Jouanin, L. (1992). Transgenic poplars: expression of chimeric genes using four different constructs. Plant Cell Rep 11, 137-141.

Li, Z., Zhang, D., Xiong, X., Yan, B., Xie, W., Sheen, J., and Li, J.F. (2017). A potent Cas9-derived gene activator for plant and mammalian cells. Nat Plants 3, 930-936.

Liu, Q., Wang, C., Jiao, X., Zhang, H., Song, L., Li, Y., Gao, C., and Wang, K. (2019). HiTOM: a platform for high-throughput tracking of mutations induced by CRISPR/Cas systems. Sci China Life Sci 62, 1-7.

Lowder, L.G., Zhang, D., Baltes, N.J., Paul, J.W., 3rd, Tang, X., Zheng, X., Voytas, D.F., Hsieh, T.F., Zhang, Y., and Qi, Y. (2015). A CRISPR/Cas9 Toolbox for Multiplexed Plant Genome Editing and Transcriptional Regulation. Plant Physiol 169, 971-985.

Randall, L.B., Sretenovic, S., Wu, Y., Yin, D., Zhang, T., Van Eck, J., and Qi, Y. (2021). Genome- and transcriptome-wide off-target analyses of an improved cytosine base editor. Plant Physiol.

Stewart, C.N., Jr., and Via, L.E. (1993). A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques 14, 748-750.

You, Q., Zhong, Z., Ren, Q., Hassan, F., Zhang, Y., and Zhang, T. (2018). CRISPRMatch: An Automatic Calculation and Visualization Tool for High-throughput CRISPR Genome-editing Data Analysis. Int J Biol Sci 14, 858-862.

Zhong, Z., Sretenovic, S., Ren, Q., Yang, L., Bao, Y., Qi, C., Yuan, M., He, Y., Liu, S., Liu, X., et al. (2019). Improving Plant Genome Editing with High-Fidelity xCas9 and Non-canonical PAM-Targeting Cas9-NG. Mol Plant 12, 1027-1036.
Supplemental Table 1. Oligos and gBlocks used in this study

Name	Sequence 5'-3'	Description
3945-HTS-F1	ATCACGGCAATCAATGCTACCGCGT	Forward primer of OsAA01_TTT for NGS
3945-HTS-R1	CAAAAGAGGCTGCTGTTATGTTGGA	Reverse primer of OsAA01_TTT for NGS
3945-HTS-F5	ACAGTGTCACTGCTGTGACTGGCATGT	Forward primer of OsAA01_TT for NGS
3945-HTS-R5	CAACTAGGCTAGCTGAGACACCTGC	Reverse primer of OsAA01_TT for NGS
3946-HTS-F1	GTCCGCTTCCTGCACCGCCACATACC	Forward primer of OsAA02_TTT for NGS
3946-HTS-R1	CTAGCTTAATGATGCGCCCTACACGA	Reverse primer of OsAA02_TTT for NGS
3946-HTS-F5	GTAGAGGCCACCCTAAGTTCCTCG	Forward primer of OsAA02_TT for NGS
3946-HTS-R5	CAAAAGAATGCCGCGCGACAGAAA	Reverse primer of OsAA02_TT for NGS
3947-HTS-F1	ACTTGGAAGATCCGTTCTCTACACGGCTT	Forward primer of OsAC01_TTT for NGS
3947-HTS-R1	CACCGGAGCCGGATGAGAGCAGAGGAG	Reverse primer of OsAC01_TTT for NGS
3947-HTS-F7	GTCCGCTTCCTACACCGCGTTGATC	Forward primer of OsAC01_TT for NGS
3947-HTS-R7	CACTACAGAGCGCGTTACACGTGACCAC	Reverse primer of OsAC01_TT for NGS
3948-HTS-F1	GTGAACCTGCTGCCAGCTGTGCTTGCT	Forward primer of OsAC02_TTT for NGS
3948-HTS-R1	TACAGGCCCAACCGACCAACATTGTC	Reverse primer of OsAC02_TTT for NGS
3948-HTS-F7	AGTCAATGCTTGGCATCGTGTCTAT	Forward primer of OsAC02_TT for NGS
3948-HTS-R7	CTATACGGGAGACCCGCGATACCTCC	Reverse primer of OsAC02_TT for NGS
3949-HTS-F1	TTAGGCTCGGCAACCGCGCCCTCATTG	Forward primer of OsAG01_TTT for NGS
3949-HTS-R1	CATTTTGCTGCGAAGACATGCCTG	Reverse primer of OsAG01_TTT for NGS
3949-HTS-F6	GTGGCCGTCGCGACACCGGCCCTCTTGG	Forward primer of OsAG01_TT for NGS
3949-HTS-R6	TATAATCGAAACACAAATTGCTGCAG	Reverse primer of OsAG01_TT for NGS
3950-HTS-F3	GATCAGCGATCAAATTTGAGCAGAGGAG	Forward primer of OsAG02_TTT for NGS
3950-HTS-R3	TATAATACATGCACTACAGCATCAGCTCGGCTC	Reverse primer of OsAG02_TT for NGS
3950-HTS-F5	GTAGAGCGAGATCGACTCCTACCTCCTG	Forward primer of OsAG02_TT for NGS
3950-HTS-R5	CGGAATTCTAAGCTTCCCTTGGAGCC	Reverse primer of OsAG02_TT for NGS
3951-HTS-F3	GTGAAGCGAGAGAGAGCTGCACTCCTG	Forward primer of OsCA01_TTT for NGS
3951-HTS-R3	CTATACGATGACTGTTAGTGCCAAAAC	Reverse primer of OsCA01_TTT for NGS
3951-HTS-F5	ACAGTGGAAGAAGCAGAGGAGAGCTGCG	Forward primer of OsCA01_TT for NGS
3951-HTS-R5	CAACTAGAGGGACTGATTAGTGCCCCAA	Reverse primer of OsCA01_TT for NGS
3952-HTS-F3	ACAGTGCGTGTATGTGGTATGGTGCGCC	Forward primer of OsCA02_TTT for NGS
3952-HTS-R3	GACGACGAGTGTACCTTGTGATACATC	Reverse primer of OsCA02_TTT for NGS
3952-HTS-F5	CGATGTGGTCTCTCAACTCTTTGGATG	Forward primer of OsCA02_TT for NGS
3952-HTS-R5	ACTGATTAGGTCATATAGCAGCGTGCG	Reverse primer of OsCA02_TT for NGS
3953-HTS-F3	CTATACGGATACATAATAACTTTAGAAGTC	Reverse primer of OsCC01_TTT for NGS
3953-HTS-R3	TTAGGCACATGTACCTTCTTCTCCG	Forward primer of OsCC01_TT for NGS
3953-HTS-R4	CTAGCTGGATACATAATAACTTTAGAAGTC	Reverse primer of OsCC01_TT for NGS
3954-HTS-R3	GATCGGCGCTCTGTTCTTCTGATCCATCACA	Forward primer of OsCC02_TTT for NGS
3954-HTS-R5	GACGACCTCAGCTCGTTGAGGAACACGCAGC	Reverse primer of OsCC02_TTT for NGS
3955-HTS-F3	GTAGAGGCCACACCTTGATAGTACCA	Forward primer of OsCG01_TTT for NGS
3955-HTS-R3	TAATCGCTCTTAGCATTCCCCATTAGC	Reverse primer of OsCG01_TTT for NGS
3955-HTS-F5	TGACCACATCCAAGGAGACTGACGT	Forward primer of OsCG01_TT for NGS
3955-HTS-R5	CCAACAGCATCCACAGGACGCTTCTC	Reverse primer of OsCG01_TT for NGS
3956-HTS-F3	ATACGCTTGAGGATTGGAAGGCA	Forward primer of OsCG02_TTT for NGS
3956-HTS-R3	CTATACGAGATGTCCTGCAATTGAG	Reverse primer of OsCG02_TTT for NGS
3956-HTS-R5	GTAGAGCATGATGACCTGCTTGGAGGT	Forward primer of OsCG02_TT for NGS
3956-HTS-R6	CGGAATACAGATGCTCTGCAATTGATAC	Reverse primer of OsCG02_TT for NGS
3956-HTS-F6	GTGGAAGAGGAGCTGCTTGGAGGAT	Forward primer of OsCG02_TT for NGS
3957-HTS-F3	GATCGACGACATTTTATGAGGCTGACTTAC	Forward primer of OsCA01_TTT for NGS
3957-HTS-R3	TATAATAGTAGGCTGCTTGGAGG	Reverse primer of OsCA01_TTT for NGS
3957-HTS-F5	GTAGAGGCTGAGCTGCTTGGAGG	Forward primer of OsCA01_TT for NGS
3957-HTS-R5	CAAAAGGCCAAGCATCGTTGCTCTGCTTAC	Reverse primer of OsCA01_TT for NGS
3958-HTS-F3	ACAGTGGAAGAAGCAGAGGAGAGCTGCG	Forward primer of OsGA02_TTT for NGS
3958-HTS-R3	GACGACGAGTGTACCTTGTGATACATC	Reverse primer of OsGA02_TTT for NGS
3958-HTS-F5	ACAGTGGAAGAAGCAGAGGAGAGCTGCG	Forward primer of OsGA02_TT for NGS
3958-HTS-R5 CAACTAggccgaagctactacgaaag Reverse primer of OsGA02_TT for NGS		
3959-HTS-F3 GTTTCGGGTTGACCATCTTTTGGGAC Forward primer of OsGC01_TTT for NGS		
3959-HTS-R3 TCCGCAGTCACTACAGGATCACC Reverse primer of OsGC01_TTT for NGS		
3959-HTS-F5 CGATGTCTCCTTACGGGCCACTTCTA Forward primer of OsGC01_TT for NGS		
3959-HTS-R5 ACTGATCCTAGTAGTGATAGAGGAAACCCAC Reverse primer of OsGC01_TT for NGS		
3960-HTS-F3 GTAGAGctgcaaggatcagttacctttagg Forward primer of OsGC02_TTT for NGS		
3960-HTS-R3 TAATCGcgcctttatcactcttgac Reverse primer of OsGC02_TTT for NGS		
3960-HTS-F5 CTTGTACTGCAAGACATTTCTGTAGCC Forward primer of OsGC02_TT for NGS		
3960-HTS-R5 ATTCCTGCCAAGCATGGTTACTGTTA Reverse primer of OsGC02_TT for NGS		
3961-HTS-F3 ATACAGGTTTACTCCAGTAGGAGAC Forward primer of OsGG01_TTT for NGS		
3961-HTS-R3 CTATAACCAAAATTAGGAAAGGGAC Reverse primer of OsGG01_TTT for NGS		
3961-HTS-F5 TGACCACAATCTTTAGCCAGGATC Forward primer of OsGG01_TT for NGS		
3961-HTS-R5 CCAACACGGTAAGCAACTGACCAA Reverse primer of OsGG01_TT for NGS		
3968-HTS-F5 TGACCACGATAAAGTTGAGCAAGAGGAG Forward primer of multiplex sites of OsTG02 for NGS		
3968-HTS-R5 CTATAACCGATGCGACTACATCGCCGTC Reverse primer of multiplex sites of OsTG02 for NGS		
3968-HTS-F17 CGATGTCAGGATCGACTCCTACCTCCTG Forward primer of multiplex sites of OsAG02 for NGS		
3968-HTS-R17 ACTGATCTAAGGTTCCCTTTGGAGGC Reverse primer of multiplex sites of OsAG02 for NGS		
3968-HTS-F22 GTTTGACATGGTACCTTCTTCTCCG Forward primer of multiplex sites of OsTC01 for NGS		
3968-HTS-R22 TAATCGGATACATATAAACTTAAGTTC Reverse primer of multiplex sites of OsTC01 for NGS		
3968-HTS-F23 CTTGTACCCATCTTTCTCTTCCG Forward primer of multiplex sites of OsCC01 for NGS		
3968-HTS-R23 ATTCCTGAATCAGGTCCATAC Reverse primer of multiplex sites of OsCC01 for NGS		
458-TTC-HTS-F3 TTAGGCAGAGGTAGGAAGGTTGAGGATTG Forward primer of OsGC05 for NGS		
458-TTC-HTS-R3	CATTTTcttacaaaaataaaactacca	Reverse primer of OsGC05 for NGS
458-TTC-HTS-F5	ACAGTGgacccactaatcacaacgtagtggc	Forward primer of OsCC06 for NGS
458-TTC-HTS-R5	TACAGGaatgttttgccctcagaacc	Reverse primer of OsCC06 for NGS
468-TTC-HTS-F13	CCGTCCCTTCGCAAGTGACAGCATCCA	Forward primer of OsCG05 for NGS
468-TTC-HTS-R13	CTATACcaagagatggtgaggcaat	Reverse primer of OsCG05 for NGS
468-TTC-HTS-F23	TCGAAAggctttctataacggaacac	Forward primer of OsTG04 for NGS
468-TTC-HTS-R23	GTGACGCCTGCCTTGATTTGCAACGAGCA	Reverse primer of OsTG04 for NGS
AA-Cas12j-F1	ATCACG tgtgcctcacaacacagcatatg	Forward primer of OsAA03 for NGS
AA-Cas12j-R1	CAACTAAAGGGTGCAAGCTAGTCTTTC	Reverse primer of OsAA03 for NGS
AT-Cas12j-F3	GGCTACGCAAGGAAGATGTTGATTTGTCG	Forward primer of OsAG03 for NGS
AT-Cas12j-R3	CCAACGctactcataacagaagctcctc	Reverse primer of OsAG03 for NGS
CA-Cas12j-F1	CCGTCCTAGGCAAGGCCATCTCCCTC	Forward primer of OsAT03 for NGS
CA-Cas12j-R1	CTATACAAGGACCTGCTAGTCTACC	Reverse primer of OsAT03 for NGS
CC-Cas12j-F3	CTCAGAGTCAGTAGGCGACAGATGGA	Forward primer of OsCA03 for NGS
CC-Cas12j-R3	CCTCAGGAGACATTAGCCTAGGAC	Reverse primer of OsCA03 for NGS
CG-Cas12j-F1	ACTGATcctgaggcttttatgtgct	Forward primer of OsCC03 for NGS
CG-Cas12j-R1	GTTTCGCCACTCAGGAACAGTTAAACC	Reverse primer of OsCC03 for NGS
CT-Cas12j-F3	TTAGGGCTCAAGTAGGCGACAGATGGA	Forward primer of OsCT03 for NGS
CT-Cas12j-R3	CATTTTGGCTCTCTACAAGGGCAAGGC	Reverse primer of OsCT03 for NGS
GA-Cas12j-F1	ACAGTGcccacattggcacattc	Forward primer of OsGA03 for NGS
GA-Cas12j-R1	TACAGGcacaagaaacaataacacagag	Reverse primer of OsGA03 for NGS
GG-Cas12j-F3	CGTACGcatgtgctcactgaaggg	Forward primer of OsGG03 for NGS
GG-Cas12j-R3	TCACTTCCTCTGATCAGCACCAGTCTCCA	Forward primer of OsGG03 for NGS
TA-Cas12j-F1	CAAAAAgatacgctcactgctgtgct	Forward primer of OsTA03 for NGS
TA-Cas12j-R1	CTTGTAttaaatgcaacatgaacataag	Reverse primer of OsTA03 for NGS
TG-Cas12j-F3	TTAGGGCTAAGTGACAGCTAGCTACC	Forward primer of OsTG03 for NGS
TG-Cas12j-R3	CATTTTCCGCAAATTTGAGCTCGTTTTAG	Reverse primer of OsTG03 for NGS
TT-Cas12j-F1	ACAGTGCCCAAAACACTACAACTGT	Forward primer of OsTT01 for NGS
TT-Cas12j-R1	TACAGGctgtgctgagcgaggg	Reverse primer of OsTT01 for NGS
SLCC02-Cas12j-F3	GGCTACgcatcagcagcagccccacac	Forward primer of OsCC04 for NGS
SLCC02-Cas12j-R3	CCAACActccacagagaacagctag	Reverse primer of OsCC04 for NGS
SLCA05-Cas12j-F1	CCGTCTCTCGCAAGTAGCAGCATCCA	Forward primer of OsCA04 for NGS
SLCA05-Cas12j-R1	CTATAcaagagatggaatgtgagcaat	Reverse primer of OsCA04 for NGS
SLCA06-Cas12j-F3	CTCGACATGCCCATCTCCCTGTCTAC	Forward primer of OsCA05 for NGS
SLCA06-Cas12j-R3	GTCCGCGAATGCATGGACTAAGAGC	Reverse primer of OsCA05 for NGS
SLGA08-Cas12j-F1	ATCACGgtgtgcctctctaatccaggg	Forward primer of OsGA04 for NGS
SLGA08-Cas12j-R1	CAACTAGTGCCCTTTGATTGAAACAGCA	Reverse primer of OsGA04 for NGS
SLGG09-Cas12j-F3	TGCACCGCGTTGACAGGGGGAATTTGC	Forward primer of OsGG04 for NGS
SLGG09-Cas12j-R3	GTCCGCGCTACGTCTTACACTATGAAGC	Reverse primer of OsGG04 for NGS
SLGG10-Cas12j-F1	ACTTTGACTACACAGCTCCTTGGCCC	Forward primer of OsGG05 for NGS
SLGG10-Cas12j-R1	CACGATaggagaacagaagaaaagacaag	Reverse primer of OsGG05 for NGS
SLGC12-Cas12j-F3	CTCAGACTTATGTTCCGTTCCAATTC	Forward primer of OsGC04 for NGS
SLGC12-Cas12j-R3	GTCCGCGCTACGTCTTACACTATGATGAAGC	Reverse primer of OsGC04 for NGS
SLCT13-Cas12j-F1	ACTGATTTCGCAAGTAGCAGCATCCA	Forward primer of OsCT04 for NGS
SLCT13-Cas12j-R1	GTTTCGcaagagatggaatgtgagcaat	Reverse primer of OsCT04 for NGS
AG-Cas12j-F3	AGTTCCCTTACATACTTGTAAGACGTAGC	Forward primer of OsAG03 for NGS
AG-Cas12j-R3	CTTGTACAAATGGACACATCAACTACTGC	Reverse primer of OsAG03 for NGS
GT-Cas12j-F1	CATGGGctgtTATctgtTATCCATCTTGC	Forward primer of OsGT03 for NGS
GT-Cas12j-R1	GTCCGCGCGAGCAGCTCCTGACTACAGCA	Reverse primer of OsGT03 for NGS
SLGC01-Cas12j-F3	ACTTGATGGGGGAGGACGAGCGGCTGGTG	Forward primer of OsGC04 for NGS
SLGC01-Cas12j-R3	CACTCAGggccccgaatttctgcaag	Reverse primer of OsGC04 for NGS
SLCC04-Cas12j-F1	GGCTACAAGGAGCACCATTCCCTGCCCAT	Forward primer of OsCC05 for NGS
SLCC04-Cas12j-R1	TACAGCCAGCTACACACGGACGCCG	Reverse primer of OsCC05 for NGS
AG02-TT-F3	TTAGGCCCAGGATGACACTCTCTACCTTCCTG	Forward primer of OsAG02_TT for NGS
AG02-TT-R3	CTAGCTTCTAAGGTCTCCCTTTGAGACC	Reverse primer of OsAG02_TT for NGS
AG02-TTT-F1	ATACGCGAAAAATAAGCGAGGACGATAAAG	Forward primer of OsAG02_TTT for NGS
AG02-TTT-R1	CACTCACTCTCTCTCCAGTTAGCCAC	Reverse primer of OsAG02_TTT for NGS
AG02-TTT-F2	CGATGTCAAATAAGACGAGGACGATAAAG	Forward primer of OsAG02_TTT for NGS
AG02-TTT-R2	CATTTTCTCCCTCCACGTTTAGCCAC	Reverse primer of OsAG02_TTT for NGS
AG02-TTT-F3	TTAGGCCCAGGATGACACTCTCTACCTTCCTG	Forward primer of OsAG02_TTT for NGS
AG02-TTT-R3 CTAGCTCTCCTTTTCCAGTTATAGCCAC Reverse primer of OsAG02_TTT for NGS		
AG02-TTT-F4 GCCAATCAATAAAGACGGAGCATCAAAG Forward primer of OsAG02_TTT for NGS		
AG02-TTT-R4 TACAGCCTCTCCTTTCCAGTTATTAGCCAC Reverse primer of OsAG02_TTT for NGS		
AG02-TTT-F5 ACAGTGCAATAAGACGGACGTAACAG Forward primer of OsAG02_TTT for NGS		
AG02-TTT-R5 CACCGGCTCCTCCTTTCCAGTTATTAGCCAC Reverse primer of OsAG02_TTT for NGS		
AG04-TT-F3 TGACCAgtccctgttgatccagag Forward primer of OsAG04_TT for NGS		
AG03-TT-R3 CATTTTgcatctataagatcagctgtc Forward primer of OsAG04_TT for NGS		
AG05-TT-F1 ACTTGAatctgttcttcagcctgaag Forward primer of OsAG05_TT for NGS		
AG05-TT-R1 CACGATtgatgaagatgcgaccatttctg Reverse primer of OsAG05_TT for NGS		
AG06-TT-F3 CGTACGgagatgttgggcgatgttc Forward primer of OsAG06_TT for NGS		
AG06-TT-R3 TCATTCTgtcctgtgtaatcttggag Reverse primer of OsAG06_TT for NGS		
AG07-TT-F1 CAAAAAGgttggaagaaagagaatgtc Forward primer of OsAG07_TT for NGS		
AG07-TT-R1 CTTGTAgtctgtaaccaaaagctacatt Reverse primer of OsAG07_TT for NGS		
AG09-TT-F3 TAGCTTAgcgcctgttcctgcag Forward primer of OsAG09_TT for NGS		
AG09-TT-R3 CATTCTatcactgcaggaacgggc Reverse primer of OsAG09_TT for NGS		
AG04-TTT-F1 ACAGTGccatgcacactcagacac Forward primer of OsAG04_TTT for NGS		
AG04-TTT-R1 TACAGCcttgctcttcagcctgaag Reverse primer of OsAG04_TTT for NGS		
AG05-TTT-F3 GGCTACccatgctttttcatccctgag Forward primer of OsAG05_TTT for NGS		
AG05-TTT-R3 CCAACAattgctgactgatgacatgg Reverse primer of OsAG05_TTT for NGS		
AG06-TTT-F1 CCGTCCctgccctggtaaatttggagg Forward primer of OsAG06_TTT for NGS		
AG06-TTT-R1 CTATACgagatgttgggcattgttc Reverse primer of OsAG06_TTT for NGS		
AG07-TTT-R3 GTCCGCggcttcgacttctgcttgtg Reverse primer of OsAG07_TTT for NGS		
AG09-TTT-R3 ACAGTGatcgacggcagcaacaggtc Forward primer of OsAG09_TTT for NGS		
AG09-TTT-F2 ACTTTAatcgacggcagcaacaggtc Reverse primer of OsAG09_TTT for NGS		
AG09-TTT-R2 CACTCAatctgcaggaacgggc Forward primer of OsAG09_TTT for NGS		
AG09-TTT-F3 TAGCTTAatcgacggcagcaacaggtc Reverse primer of OsAG09_TTT for NGS		
GBSS1-HTS-F3 CATGGCAagcgcagagaaaaacacggg Forward primer of OsGBSS1-act for NGS		
GBSS1-HTS-R3 GTAGAGttctgtgctccctgttgct Reverse primer of OsGBSS1-act for NGS		
ER1-HTS-F1 TTAGGCaactgagatgcacatcagtgctg Forward primer of OsER1-act for NGS		
Gene	Forward Primer	Reverse Primer
----------	----------------	----------------
ER1-HTS-R1	CATTTTctactgtaagctacacttatgag	Reverse primer of OsER1 -act for NGS
NRT1.1-HTS-F3	ATGTCAttgctccaatctctgtgag	Forward primer of OsNRT1.1A -act for NGS
NRT1.1-HTS-R3	GTAGAGcttaagatgacaaagttatatc	Reverse primer of OsNRT1.1A -act for NGS
CHS-HTS-F1	TAAATCGagtcggctccgggtgagaaaacgg	Forward primer of OsCHS -act for NGS
CHS-HTS-R1	CAGGCGaagagagatccacttcagggag	Reverse primer of OsCHS -act for NGS
NRT1.1A-Act-F	GGACaaggttatctctagt	Forward primer of OsNRT1.1A active for T-DNA construct
NRT1.1A-Act-R	GGCCactaggatataaatctt	Reverse primer of OsNRT1.1A active for T-DNA construct
ER1-Act-F	GGACGCCTAGAGTTGGTAGGA	Forward primer of OsER1 active for T-DNA construct
ER1-Act-R	GGCTCCTCTACCAACTCTAGGC	Reverse primer of OsER1 active for T-DNA construct
CHS-Act-F	GGACgccacgagagcagaatcA	Forward primer of OsCHS active for T-DNA construct
CHS-Act-R	GGCTAgttggtcgcgttgc	Reverse primer of OsCHS active for T-DNA construct
GBSS1-Act-F	GGACcaccgcacggtgtGGc	Forward primer of OsGBSS1 active for T-DNA construct
GBSS1-Act-R	GGCCgCCaccgcgtggtg	Reverse primer of OsGBSS1 active for T-DNA construct
GBSS1-Methy-F1	GGTCTCCGGAGtctctgtattacagccggGCGGCGCATGGTCCCAAGCCTCC	Forward primer of OsGBSS1-crR01 methylation for T-DNA construct
GBSS1-Methy-R1	GGTCTCCcaggGGCCTCTGAGGGGCAATCGTGG	Reverse primer of OsGBSS1-crR01 methylation for T-DNA construct
GBSS1-Methy-F2	GGTCTCccctgattagacgtagtaaatGGCCGCATGGTCCAGCCCTC	Forward primer of OsGBSS1-crR02 methylation for T-DNA construct
GBSS1-Methy-R2	GGTCTCTcattcGTCCCTCCTGAGGGGCAATCGTGG	Reverse primer of OsGBSS1-crR02 methylation for T-DNA construct
Primer Name	Sequence	Description
-------------	---	---
GBSS1-Methy-F3	GGTCTCCgataaatgctgtgacctgcaGGCCGGCATGGTCCC AGCCTCC	Forward primer of OsGBSS1-crR03 methylation for T-DNA construct
GBSS1-Methy-R3	GGTCTCCGGCCtatttgcacaggcctaatttGTCCCCTCGTGAGGGGCAATCGTTGG	Reverse primer of OsGBSS1-crR03 methylation for T-DNA construct
GBSS1-Methy-R4	GGTCTCCGGCCtatttgcacaggcctaatttGTCCC	Reverse primer of OsGBSS1-crR04 methylation for T-DNA construct
OsER1-qF	CTGTAGCCACGGGATAATAACAC	Forward primer of OsER1 for qPCR
OsER1-qR	gccatagctgtgcacgcacagc	Reverse primer of OsER1 for qPCR
OsActin-qF	CCACTATGTTCCCTGGCATT	Forward primer of OsActin for qPCR
OsActin-qR	GTACTCAGCCTTGGCAATCC	Reverse primer of OsActin for qPCR
OsNRT1.1-qF	CCCACACCAAGCAATTCCAGG	Forward primer of OsNRT1.1A for qPCR
OsNRT1.1-qR	GTCTTCACCTCCCTCCACGTC	Reverse primer of OsNRT1.1A for qPCR
OsGBSS1-qF	ggctcgtgacagcgcgtcat	Forward primer of OsGBSS1 for qPCR
OsGBSS1-qR	GTCTCTGTGTTATGCAATTCGTTCC	Reverse primer of OsGBSS1 for qPCR
OsCHS-qF	gcgagcatggtgcagctc	Forward primer of OsCHS for qPCR
OsCHS-qR	tctctcctgctgctgctag	Reverse primer of OsCHS for qPCR
Cas12j-qF	ACCACCGAACCTTCAACCTCC	Forward primer of Cas12j2 for qPCR
Cas12j-qR	TTTCACTAGTGCTAACGGCGTAG	Reverse primer of Cas12j2 for qPCR
GBSS1-BS-F1	TTAGGCCTGGGTYYATGAGGTTTATTAT	Forward primer of OsGBSS1-R1 range of BS-PCR for NGS
GBSS1-BS-R1	CTAGCTCATTCTTACRTCTAATCAAACA	Reverse primer of OsGBSS1-R1 range of BS-PCR for NGS
GBSS1-BS-F2	GGCTACATTGTTTAGAYGGTAAGAATG	Forward primer of OsGBSS1-R2 range of BS-PCR for NGS
GBSS1-BS-R2	CGGAATACCTACCAACTAACAACCTCAACAG	Reverse primer of OsGBSS1-R2 range of BS-PCR for NGS
GBSS1-BS-F3	CTCAGAGAAAYAGYTGGAAGYAAAG	Forward primer of OsGBSS1-R3 range of BS-PCR for NGS
GBSS1-BS-R3	GTGAAATCCCCRRACRATATCAAC	Reverse primer of OsGBSS1-R3 range of BS-PCR for NGS

GBSS1-Methy-F3

GBSS1-Methy-R3

GBSS1-Methy-R4

OsER1-qF

OsER1-qR

OsActin-qF

OsActin-qR

OsNRT1.1-qF

OsNRT1.1-qR

OsGBSS1-qF

OsGBSS1-qR

OsCHS-qF

OsCHS-qR

Cas12j-qF

Cas12j-qR

GBSS1-BS-F1

GBSS1-BS-R1

GBSS1-BS-F2

GBSS1-BS-R2

GBSS1-BS-F3

GBSS1-BS-R3
Primer Set	Forward Primer	Reverse Primer				
Blc-CasF-F1	tctagctgtggttgtggtgtg	Forward primer of SIBlc_crR01 for NGS				
Blc-CasF-R1	gctgttacctattaaccttcca	Reverse primer of SIBlc_crR01 for NGS				
Blc-CasF-F2	cagggcaacagtgtgtgcttgga	Forward primer of SIBlc_crR02 for NGS				
Blc-CasF-R2	catgctagagaaaagttggaac	Reverse primer of SIBlc_crR02 for NGS				
Blc-CasF-F3	gaattggtgtgcttggagt	Forward primer of SIBlc_crR03 for NGS				
Blc-CasF-R3	ttcattatgtggcttggagt	Reverse primer of SIBlc_crR03 for NGS				
Blc-CasF-F4	gaacctgttattggcatgg	Forward primer of SIBlc_crR04 for NGS				
Blc-CasF-R4	ttggcaacaaatatgagcag	Reverse primer of SIBlc_crR04 for NGS				
SGR1-CasF-F1	ccagtaatattggaactccaag	Forward primer of SISGR_crR01 for NGS				
SGR1-CasF-R1	tccaaataaccttgccacct	Reverse primer of SISGR_crR01 for NGS				
SGR1-CasF-F2	agggtggcaaggttatttgga	Forward primer of SISGR_crR02 for NGS				
SGR1-CasF-R2	gagttgtttacgcaacctt	Reverse primer of SISGR_crR02 for NGS				
SGR1-CasF-F3	ttgcagttgcaaggttggta	Forward primer of SISGR_crR03 for NGS				
SGR1-CasF-R3	ttgggaagttcgaacgacat	Reverse primer of SISGR_crR03 for NGS				
SGR1-CasF-F4	atccagagttacaagaagct	Forward primer of SISGR_crR04 for NGS				
SGR1-CasF-R4	cttgttgatggtcaccatt	Reverse primer of SISGR_crR04 for NGS				
SAg07-CasF-F1	CTCATGACAAAAACCTTTC	Forward primer of SIAgo7_crR01 for NGS				
SAg07-CasF-R1	AAATCAGAAGGGGTGCAA	Reverse primer of SIAgo7_crR01 for NGS				
SAg07-CasF-F2	GAGCCCAACGGAGAAGTGTA	Forward primer of SIAgo7_crR02 for NGS				
SAg07-CasF-R2	CGTCAAGCTCTTGGTTTCCC	Reverse primer of SIAgo7_crR02 for NGS				
SAg07-CasF-F3	acatgcacccttggtatgta	Forward primer of SIAgo7_crR03 for NGS				
SAg07-CasF-R3	CTTCGATGGATAGGTGAAGAA	Reverse primer of SIAgo7_crR03 for NGS				
SAg07-CasF-F4	ACATCAGGCTCTTGTTTGC	Forward primer of SIAgo7_crR04 for NGS				
SAg07-CasF-R4	GCCCTTTCTTACCTGGTCT	Reverse primer of SIAgo7_crR04 for NGS				
SIALS-CasF-F1	TGAAAGGGAAGGTGTTACGG	Forward primer of SIALS_crR01 for NGS				
SIALS-CasF-R1	ATCATCCTCTTGGCACAATC	Reverse primer of SIALS_crR01 for NGS				
SIALS-CasF-F2	GGTTGTCTCTGTAAGGCATT	Forward primer of SIALS_crR02 for NGS				
SIALS-CasF-R2	AAGCTCAAGACACCATCAA	Reverse primer of SIALS_crR02 for NGS				
SIALS-CasF-F3	CGCTCACAATTCTTATGACC	Forward primer of SIALS_crR03 for NGS				
SIALS-CasF-R3	TCACAAACCTTCTGGGTTC	Reverse primer of SIALS_crR03 for NGS				
Sequence Name	Primers					
---------------	---------					
230_BB_F	TGGTTGACATTGACGGTGAT CAAGTATGGCCAGAGGTGT	Sanger sequencing primer for zCas12j2	Forward primer of SIALS_crR04 for NGS	Reverse primer of SIALS_crR04 for NGS	Forward primer for preparing pYPQCas12j2	Reverse primer for preparing pYPQCas12j2
230_BB_R	gaacatacgctctAGCACTAGTGCCGCGCCGCC	Sanger sequencing primer for zCas12j2	Reverse primer of SIALS_crR04 for NGS			
AttL1-APB-F	ttagagccatgGTGAAGGGCGAATTCCGGAGCC	Sanger sequencing primer for zCas12j2	Reverse primer of SIALS_crR04 for NGS			
Cas12j2-Seq1	ccaagtcttaagcgcggccccca	Sanger sequencing primer for zCas12j2	Sanger sequencing primer for zCas12j2			
Cas12j2-Seq2	GATGGGGTGTTGAAGAAGG	Sanger sequencing primer for zCas12j2	Sanger sequencing primer for zCas12j2			
Cas12j2-Seq3	CGCTTACAAACCGAGACTG	Sanger sequencing primer for zCas12j2	Sanger sequencing primer for zCas12j2			
Nos-term-R2	aatcatgcaagacggcaacagg	Sanger sequencing primer for zCas12j2	Sanger sequencing primer for zCas12j2			
pYPQ131-F-STU-Cas12j2	gccGGTCTCgtattcttgCTGATGAGTCCGTGAGGACGA	Forward primer for preparing pYPQ131-RZ-Cas12j2	Forward primer for preparing pYPQ131-RZ-Cas12j2			
pYPQ131-R-STU	tccGGTCTCcctagAAAAAGCACCCTCGGTGCCAAN	Reverse primer for preparing pYPQ131-RZ-Cas12j2	Reverse primer for preparing pYPQ131-RZ-Cas12j2			
pYPQ132-F-STU-Cas12j2	gccGGTCTCccatgtcttgCTGATGAGTCCGTGAGGACG	Forward primer for preparing pYPQ132-RZ-Cas12j2	Forward primer for preparing pYPQ132-RZ-Cas12j2			
pYPQ132-R-STU	tccGGTCTCgtccAAAACGGCCACCTCGGTGCCACTTT	Reverse primer for preparing pYPQ132-RZ-Cas12j2	Reverse primer for preparing pYPQ132-RZ-Cas12j2			
pYPQ133-F-STU-Cas12j2	gccGGTCTCagactcttgctgATGAGTCCGTGAGGACGA	Forward primer for preparing pYPQ133-RZ-Cas12j2	Forward primer for preparing pYPQ133-RZ-Cas12j2			
pYPQ133-R-STU	tccGGTCTCcctggAAAAAGCACCCTCGGTGCCAATTT	Reverse primer for preparing pYPQ133-RZ-Cas12j2	Reverse primer for preparing pYPQ133-RZ-Cas12j2			
pYPQ134-F-STU-Cas12j2	gccGGTCTCgccagcttggtgCTGATGAGTCCGTGAGGACG	Forward primer for preparing pYPQ134-RZ-Cas12j2	Forward primer for preparing pYPQ134-RZ-Cas12j2			
pYPQ134-R-STU	tccGGTCTCcaacaAAAAAGCACCCTCGGTGCCAATT	Reverse primer for preparing pYPQ134-RZ-Cas12j2	Reverse primer for preparing pYPQ134-RZ-Cas12j2			
Pt4CL1-Hitom-F5	ggagtgaagtacgggtgtgcTGAGATGATCTACACCTATGCTG	Hitom Primers for Pt4CL1 target sites in poplar	17			
Hitom Primers for Pt4CL1 target sites in poplar

Pt4CL1-Hitom-R5
gagttggatgctgatggTAGCTCTGCAGGGGTGGA

Hitom Primers for Pt4CL1 target sites in poplar

Pt4CL1-Hitom-F6
gagttggatgctgatggTCCACCTGTGATGATGTCAATTG

Hitom Primers for PtPDS target sites in poplar

PtPDS-Hitom-F4
gagttggatgctgatggAAAGATTTTCATCACCCTGCAACCAG

Hitom Primers for PtPDS target sites in poplar

PtPDS-Hitom-R4
gagttggatgctgatggAGAGTTGGTTCTGTATGG

Hitom Primers for PtPDS target sites in poplar

PtPDS-Hitom-F5
gagttggatgctgatggGAGTTGGTTCTGTATGG

Hitom Primers for PtPDS target sites in poplar

PtPDS-Hitom-R5
gagttggatgctgatggGGCAACACACAAGTTGCATACCAT

Hitom Primers for PtPDS target sites in poplar

PtPDS-Hitom-F6
gagttggatgctgatggGTGAATGCTGACTTGGCCAG

Hitom Primers for PtPDS target sites in poplar

PtPDS-Hitom-R6
gagttggatgctgatggTTGTGCATAAGCTGCTTACGCA

Hitom Primers for PtPDS target sites in poplar

PtMYB182-Hitom-F1
gagttggatgctgatggACGCTATGAGAAAACCTTGCTGC

Hitom Primers for PtMYB182 target sites in poplar

PtMYB182-Hitom-R1
gagttggatgctgatggTTCGATATTGCAAGGCGGAAT

Hitom Primers for PtMYB182 target sites in poplar

PtMYB182-Hitom-F2
gagttggatgctgatggACGCTATGAGAAAACCTTGCTGC

Hitom Primers for PtMYB182 target sites in poplar

PtMYB182-Hitom-R2
gagttggatgctgatggTTCGATATTGCAAGGCGGAAT

Hitom Primers for PtMYB182 target sites in poplar

PtMYB182-Hitom-F3
gagttggatgctgatggAGTTGGTTCTGTATGG

Hitom Primers for PtMYB182 target sites in poplar

PtMYB182-Hitom-R3
gagttggatgctgatggAGTTGGTTCTGTATGG

Hitom Primers for PtMYB182 target sites in poplar

Cas12j2-qPCR-F1
gagttggatgctgatggAGTTGGTTCTGTATGG

qPCR primers for Cas12j2

Cas12j2- qPCR-R1
gagttggatgctgatggAGTTGGTTCTGTATGG

qPCR primers for Cas12j2
Hi-TOM-F-1
ACACTCTTTCCCTACACGACGCTCTTCCGATCTgcttG
CGTtgaggtgagtacggtgtgc
HiTom barcoding primers

Hi-TOM-F-2
ACACTCTTTCCCTACACGACGCTCTTCCGATCTgcttG
TAGtggaggtgagtacggtgtgc
HiTom barcoding primers

Hi-TOM-F-3
ACACTCTTTCCCTACACGACGCTCTTCCGATCTgcttA
CGCtggagtgagtacggtgtgc
HiTom barcoding primers

Hi-TOM-F-4
ACACTCTTTCCCTACACGACGCTCTTCCGATCTgcttC
TCGtggagtgagtacggtgtgc
HiTom barcoding primers

Hi-TOM-F-5
ACACTCTTTCCCTACACGACGCTCTTCCGATCTgcttG
CTCtggagtgagtacggtgtgc
HiTom barcoding primers

Hi-TOM-F-6
ACACTCTTTCCCTACACGACGCTCTTCCGATCTgcttC
GACtggagtgagtacggtgtgc
HiTom barcoding primers

Hi-TOM-F-7
ACACTCTTTCCCTACACGACGCTCTTCCGATCTgcttA
GACtggagtgagtacggtgtgc
HiTom barcoding primers

Hi-TOM-F-8
ACACTCTTTCCCTACACGACGCTCTTCCGATCTgcttC
ATGtggagtgagtacggtgtgc
HiTom barcoding primers

Hi-TOM-F-9
ACACTCTTTCCCTACACGACGCTCTTCCGATCTgcttA
TACtggagtgagtacggtgtgc
HiTom barcoding primers

Hi-TOM-F-10
ACACTCTTTCCCTACACGACGCTCTTCCGATCTgcttC
ACAtggagtgagtacggtgtgc
HiTom barcoding primers

Hi-TOM-F-11
ACACTCTTTCCCTACACGACGCTCTTCCGATCTgcttA
TGtggagtgagtacggtgtgc
HiTom barcoding primers

Hi-TOM-F-12
ACACTCTTTCCCTACACGACGCTCTTCCGATCTgcttA
CTAtggagtgagtacggtgtgc
HiTom barcoding primers

Hi-TOM-R-A
ACACTGGAAGTTTCAGACGTGTGCTCTTCCGATCTcgtG
GTtgagttgagctgtgttg
HiTom barcoding primers

Hi-TOM-R-B
ACACTGGAAGTTTCAGACGTGTGCTCTTCCGATCTcgtG
AGtgaaggagttgagctgtgttg
HiTom barcoding primers

Hi-TOM-R-C
ACACTGGAAGTTTCAGACGTGTGCTCTTCCGATCTcgtG
GCtgaaggagttgagctgtgttg
HiTom barcoding primers
Hi-TOM-R-D	GACTGGAGTTTCAGACGTGTGCTCTTCCGATCTctgtCTCGtgtGC	HiTom barcoding primers
Hi-TOM-R-E	TCtgagtttgatgtctgattg	HiTom barcoding primers
Hi-TOM-R-F	TCtgagtttgatctgattg	HiTom barcoding primers
Hi-TOM-R-G	ACtgagtttgatctgattg	HiTom barcoding primers
Hi-TOM-R-H	TGtgagtttgatctgattg	HiTom barcoding primers
Cas12j2-gBK1	GAGATCGTCTTTCCGCTGAGTACGCTGGCTACGTT	First gBlock to prepare pYPQCas12j2
AGGGACCCAAACGCGCCTATACCGTTGGGCGTCGT
TAGGAATAGATGCGATATACAGAAAGGCTGCCCAGG
GTATATACCCGAGTGGCAGCGCGAGGCTGGGACTG
CGATATCACCTAAACCAGCAAGCGGTATACGTAGTG
CGGGATTGAGTCCTAAAAAAAATAAGAGAATGAGGA
GGTATTGGCGTCAGAGAAGGAGAAGGCCCAAGAT
GCACTCCTGTCAACCTGAGGATAGGCACGGGATTG
GTGCTCATTGACGTTAGGGCTTTTGAAGGACAGCA
CGGTGAGAGCTATTGGCCGGAAGAGACATTAGTCGT
AACGCCTTCTGATCTTCACTGGGCAACCTGATT
ATTGATGTGAGGGGGAACATAGTCACCTTTACTTATA
CTCTGGACGCATGCGGAACATACGCTCTAGCAGCTAG
TGCC
CTCTGGACGCATGCGGAACATACGCTCGCAAGTGG
ACCCTGAAAGGAAAGCAGACTAA
GGCCACACTGGAT
AAGTTGACAGCCACGCAAGCAGTCGGCTTTTGAAGGCC
ATAGACCTTGGGCAAACCAACTTGAAGTGCCGGG
ATCGACGGGTATCTCAGGAAATGTTGCACTTACG
TGCGAGCCCTCTCGATCGCTTTACCTCCCGATGAT
CTTCTAAAGCATCAGTGCCTACGCTCTTGGCTGG
GACCGGAACGAGGAACATCCTCGGCTCAGTGGT
TGAAGCCTTGGCCAGAGAGCAGAGCTTGGGTTA
GGGCACCTGGAGTGGGCTTTAAGAGACTGCCAGAA
CTCAATTGTGCTGTATTTTGGGCTTGATCCTAAGAG
ACTCCCTTGGGATAAAATGTCGTCGAATACTACCTTC
ATCTCCAGGCGCCCTGCTTAGTAACAGCGTTAGTCGC
GACCAAGTCTTTTTTCACCCCGCCCGAAAACAGG
GCGAAAAAGAAGCTCCGGTGGAAATGTTGCACTGAGGGA
GACCGCAACATGGGCACGCGCTTACAAACCGA
GACT
GTCAGTTGAAGGCAGAAATGGAAGACAGCAGCT

Second gBlock to prepare pYPQCas12j2

Cas12j2-gBK2
gBlock to prepare Cas12j2-crRNA-gBk

Cas12j2-crRNA-gBK

GGCGCCCGCTGGGCAACATCGTGCATGGCGACA
TGTTTGGTGTTACTTCTGCAGGATCCtcgttgCTGATG
AGTCCCGTGAGGACGAAACGAGTAAGCTCGTCCAAC
GATTGCCCTCACGAGGGGACgagacggagctcagtctgc
cgcggcgtctctGGCGCCGATGGTCCCAGCCTCCTGCTG
TGGGACggtaccggccgaattcgaccagcgttct
Construct	Backbone	Target gene	Purpose
pLR3945	pYPQ203	OsAA01	For Cas12j2 genome editing in rice
pLR3946	pYPQ203	OsAA02	For Cas12j2 genome editing in rice
pLR3947	pYPQ203	OsAC01	For Cas12j2 genome editing in rice
pLR3948	pYPQ203	OsAC02	For Cas12j2 genome editing in rice
pLR3949	pYPQ203	OsAG01	For Cas12j2 genome editing in rice
pLR3950	pYPQ203	OsAG02	For Cas12j2 genome editing in rice
pLR3951	pYPQ203	OsCA01	For Cas12j2 genome editing in rice
pLR3952	pYPQ203	OsCA02	For Cas12j2 genome editing in rice
pLR3953	pYPQ203	OsCC01	For Cas12j2 genome editing in rice
pLR3954	pYPQ203	OsCC02	For Cas12j2 genome editing in rice
pLR3955	pYPQ203	OsCG01	For Cas12j2 genome editing in rice
pLR3956	pYPQ203	OsCG02	For Cas12j2 genome editing in rice
pLR3957	pYPQ203	OsGA01	For Cas12j2 genome editing in rice
pLR3958	pYPQ203	OsGA02	For Cas12j2 genome editing in rice
pLR3959	pYPQ203	OsGC01	For Cas12j2 genome editing in rice
pLR3960	pYPQ203	OsGC02	For Cas12j2 genome editing in rice
pLR3961	pYPQ203	OsGG01	For Cas12j2 genome editing in rice
pLR3963	pYPQ203	OsTCA01	For Cas12j2 genome editing in rice
pLR3964	pYPQ203	OsTCA02	For Cas12j2 genome editing in rice
pLR3965	pYPQ203	OsTGA01	For Cas12j2 genome editing in rice
pLR3966	pYPQ203	OsTGC01	For Cas12j2 genome editing in rice
pLR3968	pYPQ203	OsCC01, OsAG02, OsTC01, OsTG02	For Cas12j2 genome editing in rice
pLR4365	pYPQ203	OsAA03	For Cas12j2 genome editing in rice
pLR4366	pYPQ203	OsAC03	For Cas12j2 genome editing in rice
pLR4367	pYPQ203	OsAG03	For Cas12j2 genome editing in rice
----------	---------	---------------	----------------------------------
pLR4368	pYPQ203	OsAT03	For Cas12j2 genome editing in rice
pLR4369	pYPQ203	OsCA03	For Cas12j2 genome editing in rice
pLR4370	pYPQ203	OsCC03	For Cas12j2 genome editing in rice
pLR4371	pYPQ203	OsCG03	For Cas12j2 genome editing in rice
pLR4372	pYPQ203	OsCT03	For Cas12j2 genome editing in rice
pLR4373	pYPQ203	OsCA03	For Cas12j2 genome editing in rice
pLR4374	pYPQ203	OsGC03	For Cas12j2 genome editing in rice
pLR4375	pYPQ203	OsGT03	For Cas12j2 genome editing in rice
pLR4376	pYPQ203	OsTA03	For Cas12j2 genome editing in rice
pLR4377	pYPQ203	OsTC03	For Cas12j2 genome editing in rice
pLR4378	pYPQ203	OsTG03	For Cas12j2 genome editing in rice
pLR4379	pYPQ203	OsTT01	For Cas12j2 genome editing in rice
pLR4380	pYPQ203	OsGC04	For Cas12j2 genome editing in rice
pLR4381	pYPQ203	OsCC04	For Cas12j2 genome editing in rice
pLR4382	pYPQ203	OsCA05	For Cas12j2 genome editing in rice
pLR4383	pYPQ203	OsGA04	For Cas12j2 genome editing in rice
pLR4384	pYPQ203	OsGA05	For Cas12j2 genome editing in rice
pLR4385	pYPQ203	OsGG04	For Cas12j2 genome editing in rice
pLR4386	pYPQ203	OsGG05	For Cas12j2 genome editing in rice
pLR4387	pYPQ203	OsCG04	For Cas12j2 genome editing in rice
pLR4388	pYPQ203	OsCT04	For Cas12j2 genome editing in rice
pLR4389	pYPQ203	OsTT02	For Cas12j2 genome editing in rice
pLR4390	pYPQ203	OsCT05	For Cas12j2 genome editing in rice
pLR4391	pYPQ203	OsTT03	For Cas12j2 genome editing in rice
pCasΦK_OsAG02-24bp	pGEL635	OsAG02	For Cas12j2 genome editing with 24bp spacer length in rice
---------------------	---------	--------	---
pCasΦK_OsAG02-22bp	pGEL635	OsAG02	For Cas12j2 genome editing with 22bp spacer length in rice
pCasΦK_OsAG02-20bp	pGEL635	OsAG02	For Cas12j2 genome editing with 20bp spacer length in rice
pCasΦK_OsAG02-18bp	pGEL635	OsAG02	For Cas12j2 genome editing with 18bp spacer length in rice
pCasΦK_OsAG02-16bp	pGEL635	OsAG02	For Cas12j2 genome editing with 16bp spacer length in rice
pCasΦK_OsAG02-14bp	pGEL635	OsAG02	For Cas12j2 genome editing with 14bp spacer length in rice
pLR4419	pYPQ203	OsAG02	For Cas12j2 genome editing with 2bp mismatch in rice
pLR4420	pYPQ203	OsAG02	For Cas12j2 genome editing with 2bp mismatch in rice
pLR4421	pYPQ203	OsAG02	For Cas12j2 genome editing with 2bp mismatch in rice
pLR4422	pYPQ203	OsAG02	For Cas12j2 genome editing with 2bp mismatch in rice
pLR4423	pYPQ203	OsAG02	For Cas12j2 genome editing with 2bp mismatch in rice
pLR4424	pYPQ203	OsAG02	For Cas12j2 genome editing with 2bp mismatch in rice
pLR4425	pYPQ203	OsAG02	For Cas12j2 genome editing with 2bp mismatch in rice
pLR4426	pYPQ203	OsAG02	For Cas12j2 genome editing with 2bp mismatch in rice
pLR4427	pYPQ203	OsAG02	For Cas12j2 genome editing with 2bp mismatch in rice
Construct	Vector	RNA ID	Function
------------------------------	--------	--------	---------------------------------------
pLR4428	pYPQ203	OsAG02	For Cas12j2 genome editing with 2bp mismatch in rice
pCasФK_OsGC05	pGEL635	OsGC05	For Cas12j2 genome editing in rice
pCasФK_OsCC06	pGEL635	OsCC06	For Cas12j2 genome editing in rice
pCasФK_OsGC06	pGEL635	OsGC06	For Cas12j2 genome editing in rice
pCasФK_OsTG04	pGEL635	OsTG04	For Cas12j2 genome editing in rice
pCasФK_OsCG05	pGEL635	OsCG05	For Cas12j2 genome editing in rice
pCasФK_OsGA05	pGEL635	OsGA05	For Cas12j2 genome editing in rice
pCasФK_OsCC17	pGEL635	OsCC17	For Cas12j2 genome editing in rice
pCasФK_OsCC21	pGEL635	OsCC21	For Cas12j2 genome editing in rice
pCasФK_OsAG04	pGEL635	OsAG04	For Cas12j2 genome editing in rice
pCasФK_OsAG05	pGEL635	OsAG05	For Cas12j2 genome editing in rice
pCasФK_OsAG06	pGEL635	OsAG06	For Cas12j2 genome editing in rice
pCasФK_OsAG07	pGEL635	OsAG07	For Cas12j2 genome editing in rice
pvCasФK_OsCC17	pGEL637	OsCC17	For vCas12j2 genome editing in rice
pvCasФK_OsCC21	pGEL637	OsCC21	For vCas12j2 genome editing in rice
pvCasФK_OsAG04	pGEL637	OsAG04	For vCas12j2 genome editing in rice
pvCasФK_OsAG05	pGEL637	OsAG05	For vCas12j2 genome editing in rice
pvCasФK_OsAG06	pGEL637	OsAG06	For vCas12j2 genome editing in rice
pvCasФK_OsAG07	pGEL637	OsAG07	For vCas12j2 genome editing in rice
pvCasФK_OsAG09	pGEL637	OsAG09	For vCas12j2 genome editing in rice
pnCasФK_OsCC17	pGEL638	OsCC17	For nCas12j2 genome editing in rice
pnCasФK_OsCC21	pGEL638	OsCC21	For nCas12j2 genome editing in rice
pnCasФK_OsAG04	pGEL638	OsAG04	For nCas12j2 genome editing in rice
pnCasФK_OsAG05	pGEL638	OsAG05	For nCas12j2 genome editing in rice
pnCasФK_OsAG06	pGEL638	OsAG06	For nCas12j2 genome editing in rice
pnCasФK_OsAG07	pGEL638	OsAG07	For nCas12j2 genome editing in rice
pCasΦK_OsAG09	pGEL638	OsAG09	For nCas12j2 genome editing in rice
----------------	----------	---------	-----------------------------------
pGEL635	pLSS424	None	For Cas12j2 based genome editing in rice
pGEL637	pGEL635	None	For vCas12j2 based genome editing in rice
pGEL638	pGEL635	None	For nCas12j2 based genome editing in rice
pGEL636	pLSS635	None	For Cas12j2 based gene activation backbone in rice
pCasΦA_OsER1	pGEL636	OsER1	For Cas12j2 based gene active in OsER1
pCasΦA_OsNRT1.1A	pGEL636	OsNRT1.1A	For Cas12j2 based gene active in OsNRT1.1A
pCasΦA_OsCHS	pGEL636	OsCHS	For Cas12j2 based gene active in OsCHS
pCasΦA_OsGBSS1	pGEL636	OsGBSS1	For Cas12j2 based gene active in OsGBSS1
pGEL639	pLSS550	None	For DNA methylation-based gene silencing backbone in rice
pCasΦM_OsGBSS1	pGEL639	OsGBSS1	For DNA methylation-based gene silencing in OsGBSS1
pLR4503	pYPQ202	Pt4CL1-crR1-4	For Cas12j2 genome editing in poplar
pLR4504	pYPQ202	PtPDS-crR1-4	For Cas12j2 genome editing in poplar
pLR4505	pYPQ202	PtMYB182-crR1-4	For Cas12j2 genome editing in poplar
pLR4506	pYPQ202	PtSVP-crR1-4	For Cas12j2 genome editing in poplar
pLR4507	pCGS710	SIALS-crR1, SIALS-crR2, SIALS-crR3, SIALS-crR4	For Cas12j2 genome editing in tomato
pLR4508	pCGS710	SIALS-crR1, SIALS-crR2, SIALS-crR3, SIALS-crR4	For Cas12j2 genome editing in tomato
pLR4509	pCGS710	SISGR1-crR1, SISGR1-crR2, SISGR1-crR3, SISGR1-crR4	For Cas12j2 genome editing in tomato
pLR4510	pCGS710	SIBlc-crR1, SIBlc-crR2, SIBlc-crR3, SIBlc-crR4	For Cas12j2 genome editing in tomato
Supplemental Table 3. Target genes and protospacer sequences in this study

Targeted gene	Targeted site	Spacer sequence
LOC_Os03g52594	OsAA01_TTT	TCAGGTTCAGAATGCTGGTC
LOC_Os02g54120	OsAA01_TT	TCAGGTTCAGAATGCTGGTC
LOC_Os02g43194	OsAA02_TTT	CCGGTGAAAAGGACCTTTGTC
LOC_Os04g45720	OsAA02_TT	CCGGTGAAAAGGACCTTTGTC
LOC_Os01g02690	OsAC01_TTT	TGGGGCCTTGCAAGGTCACC
LOC_Os01g02420	OsAC01_TT	TGGGGCCTTGCAAGGTCACC
LOC_Os03g48170	OsAC02_TTT	GTCTCCCTGCAAAACCACGC
LOC_Os06g22970	OsAC02_TT	GTCTCCCTGCAAAACCACGC
LOC_Os11g01450	OsAG01_TTT	CCGGCAGCTAATAGGGATCT
LOC_Os12g01480	OsAG01_TT	CCGGCAGCTAATAGGGATCT
LOC_Os11g44430	OsAG02_TTT	GGGCATGGAGACAGGAGAGA
LOC_Os11g44260	OsAG02_TT	GGGCATGGAGACAGGAGAGA
LOC_Os07g10860	OsCA01_TTT	TACGTGGAACAATGACAGT
LOC_Os07g47284	OsCA01_TT	TACGTGGAACAATGACAGT
LOC_Os10g40824	OsCA02_TTT	ACCCTGTGTAATGGTCAGT
LOC_Os05g36070	OsCA02_TT	ACCCTGTGTAATGGTCAGT
LOC_Os02g49270	OsCC01_TTT	TCCTGAGGACAGAGCCCAT
LOC_Os09g37860	OsCC01_TT	TCCTGAGGACAGAGCCCAT
LOC_Os04g50120	OsCC02_TTT	TGATATCCGACACCAGGAT
LOC_Os02g46610	OsCC02_TT	TGATATCCGACACCAGGAT
LOC_Os06g18810	OsCG01_TTT	GATGATGACACTGGTACTAG
LOC_Os12g16490	OsCG01_TT	GATGATGACACTGGTACTAG
LOC_Os07g40404	OsCG02_TTT	GCACCATATGCTTGCTGATC
LOC_Os07g40790	OsCG02_TT	GCACCATATGCTTGCTGATC
LOC_Os04g0375400	OsGA01_TTT	TAATATGGAATCCACCGATT
LOC_Os12g12600	OsGA01_TT	TAATATTGGATCCACCGATT
LOC_Os07g0696000	OsGA02_TTT	GTATTTCTGAATTTTCATGCC
LOC_Os08g01020	OsGA02_TT	GTATTTCTGAATTTTCATGCC
LOC_Os11g20160	OsGC01_TTT	TTCACAATCTTTATAGTCACT
LOC_Os11g19880	OsGC01_TT	TTCACAATCTTTATAGTCACT
LOC_Os01g09810	OsGC02_TTT	TGAATGCTCCGGAGCGCTTA
LOC_Os03g52910	OsGC02_TT	TGAATGCTCCGGAGCGCTTA
LOC_Os01g23900	OsGG01_TTT	AGCATATGTTGTAACCTCA
LOC_Os12g24050	OsGG01_TT	AGCATATGTTGTAACCTCA
OsEPFL9	OsTCA01	atctgtgcaaaaggggtacC
OsROC5	OsTCA02	cacagccggaaggtaccctc
OsEPFL9	OsTGA01	agaaaggttATGGGCAATGC
OsROC5	OsTGC01	ttcttgcaatgccggtac
OsPDS	OsAA03	ATACCAAGCTCGGCAAAC
OsROC5	OsAC03	ATACACCGGCGTAGTACC
OsROC5	OsAG03	GTACTAGAGTGAGAGACC
OsEPFL9	OsAT03	GCATCCACTGGAGGCTGCT
OsROC5	OsCA03	GGGTCTCTCGTGACTACC
OsROC5	OsCC03	CTACGTCGATTGGCATGAA
OsPDS	OsCG03	GCCAGAGAAGGTGAGTGTTG
OsROC5	OsCT03	GAGGAGATCCTCTCCTCCA
OsPDS	OsGA03	CTGACATGTCGGGATAACA
OsROC5	OsGC03	CTAGGGAAGCCCATCTCCCT
OsPDS	OsGG03	GACGGAGTGACACTGAAATC
OsDEP1	OsGT03	GGCTTACAGCATGGCTGTC
OsPDS	OsTA03	TGACCAAGCATCTGCGAGATA
OsPDS	OsTC03	AGTGTCCTCCGTCGACC
OsROC5	OsTG03	CTGTCATCAGCAGAGGAC
OsGS3	OsTT01	CTCAACATGTTGTCGAGA
OsDEP1	OsGC04	CTCAAGGCTAGCGGCGCCCG
OsmiR528 OsCC04 aaactgaatctCCTgCTCCT		
OsROC5 OsCC05 GAGCTTGGATCTGCTCGG		
OsPDS OsCA04 AGACAAGAGTTTCACTCCCA		
OsGS3 OsCA05 CTCTTGCAGCATCTGGAGG		
OsEPFL9 OsGA04 TGGCCAATGCTTGCCCACA		
OsROC5 OsGG04 CTGGGCTCGGCGTCTCGAC		
OsPDS OsGG05 CAAATCGGAGGACCATGGCA		
OsDEP1 OsCT04 AGGAGGTGTCTACCAGCATTT		
OsROC5 OsCT05 GGAGTGAATCTTTGTTCTTT		
OsDEP1 OsTT02 CCAagaaagagaaggagcagc		
OsROC5 OsTT03 GCctctctctCCTgtgcttg		
LOC_Os02g49270 OsTC01 TCCTGAGGAGCAAGGAGCCAT		
LOC_Os11g44430 OsTG02 GGGCATGGAGACAGGAGACA		
OsPDS OsGC05 aaaaaccccttagatatacta		
OsDEP1 OsCC06 tcttctGGAAaaggaaaaaa		
OsROC5 OsGC06 CTTTTCCAGTGCTCTCGC		
OsEPFL9 OsTG04 aagaaggtATGGCCAATG		
OsPDS OsCG05 TCTTAAGGAAATAAGGAAAA		
OsDEP1 OsGA05 caagtgCTCACCAGATGCA		
LOC_Os11g44430 OsAG02_TTT-MM1 GGGCATGGAGACAGGAGATc		
LOC_Os11g44430 OsAG02_TTT-MM2 GGGCATGGAGACAGGAgCA		
LOC_Os11g44430 OsAG02_TTT-MM3 GGGCATGGAGACAGGAgG		
LOC_Os11g44430 OsAG02_TTT-MM4 GGGCATGGAGACACAGGACAg		
LOC_Os11g44430 OsAG02_TTT-MM5 GGGCATGGAGAGGaAGAGACA		
LOC_Os11g44430 OsAG02_TTT-MM6 GGGCATGGGtACAGGAGACA		
LOC_Os11g44430 OsAG02_TTT-MM7 GGGCAtAGACAGGAGACA		
LOC_Os11g44430 OsAG02_TTT-MM8 GGGCgcGGAGACAGGAGACA		
LOC_Os11g44430 OsAG02_TTT-MM9 GGttATGGAGACAGGAGACA		
LOC_Os11g44430 OsAG02_TTT-MM10 atGCATGGAGACAGGAGACA		
Location	Transposon Name	Sequence
-------------------	-----------------------	-----------
LOC_Os11g44260	OsAG02_TT-MM1	GGGCATGGAGACAGGAGACTc
LOC_Os11g44260	OsAG02_TT-MM2	GGGCATGGAGACAGGAGAtgCA
LOC_Os11g44260	OsAG02_TT-MM3	GGGCATGGAGACAGGAGAtcGACA
LOC_Os11g44260	OsAG02_TT-MM4	GGGCATGGAGACAGGAGAcaGAGACA
LOC_Os11g44260	OsAG02_TT-MM5	GGGCATGGAGGtgAGGAGACA
LOC_Os11g44260	OsAG02_TT-MM6	GGGCATGgcGAGACAGGAGACA
LOC_Os11g44260	OsAG02_TT-MM7	GGttATGGAGACAGGAGACA
LOC_Os11g44260	OsAG02_TT-MM10	atGCATGGAGACAGGAGACA
LOC_Os11g44430	OsAG02_TTT-22bp	GGGCATGGAGACAGGAGACATA
LOC_Os11g44430	OsAG02_TTT-20bp	GGGCATGGAGACAGGAGACA
LOC_Os11g44430	OsAG02_TTT-18bp	GGGCATGGAGACAGGAGA
LOC_Os11g44430	OsAG02_TTT-16bp	GGGCATGGAGACAGGAGA
LOC_Os11g44430	OsAG02_TTT-14bp	GGGCATGGAGACAG
LOC_Os11g44260	OsAG02_TT-24bp	GGGCATGGAGACAGGAGACATAAGc
LOC_Os11g44260	OsAG02_TT-22bp	GGGCATGGAGACAGGAGACATA
LOC_Os11g44260	OsAG02_TT-20bp	GGGCATGGAGACAGGAGACA
LOC_Os11g44260	OsAG02_TT-18bp	GGGCATGGAGACAGGAGA
LOC_Os11g44260	OsAG02_TT-16bp	GGGCATGGAGACAG
LOC_Os11g44260	OsAG02_TT-14bp	GGGCATGGAGACAG
LOC_Os04g01130	OsAG04	AATACCTTACCCAGGCTGCGT
LOC_Os08g03620	OsAG05	TTGATGGAGACCTGTTCT
LOC_Os02g04670	OsAG06	GAGCAGAAAATGCAGAATCA
LOC_Os03g32700	OsAG07	GTTCTCCCTCCCTAAAGGAG
LOC_Os08g41940	OsAG09	TAGTTGATCTTCATTGCTATT
LOC_Os02g44970	OsCC17 TT	ATCATGGCTGTCCATGAAAC
LOC_Os02g46610	OsCC21 TT	TGTATCCGCACCCGGAT
LOC_Os11g0545600	OsTG04	AATACCTTACCAGGCTGCGT
LOC_Os03g40840	OsTG05	TTGATGGAGACTTTCATT
LOC_Os08g29640	OsTG06	GAGCAGAAAATGCAGAATCA
LOC_Os04g31420	OsTG07	GTTCTCCTCCCTAAAGAAGG
LOC_Os02g24720	OsTG09	TAGTTCATCTCATTGTCATT
OsER1	OsER1-act	GCCTAGAGTTGGTAGGA
OsNRT1.1A	OsNRT1.1A-act	aaggttatatccctagt
OsCHS	OsCHS-act	gccacgcgagccaactA
OsGBSS1	OsGBSS1-act	caccgcacgcgtggtGGc
OsGBSS1	OsGBSS1-crR01	aaattaggccgtgcaaat
OsGBSS1	OsGBSS1-crR02	tcctagcttattacgcc
OsGBSS1	OsGBSS1-crR03	cctgattagaggttaagaat
OsGBSS1	OsGBSS1-crR04	gataaatgtgtgatcctga
SIALS	SIALS-crR01	CTACCTCTGGTCCCCGGAGCT
SIALS	SIALS-crR02	TTAGGCTGATTTCCGAGTGC
SIALS	SIALS-crR03	CTCAAATCTTCCACCATTTC
SIALS	SIALS-crR04	CCTAATATGTGAAATTTGC
SISGR1	SISGR1-crR01	TTGAGCTTAGATGGAAACCAC
SISGR1	SISGR1-crR02	ATGGTTTGGAGATAGCCAA
SISGR1	SISGR1-crR03	ATGTCCATTGCCACATTAGT
SISGR1	SISGR1-crR04	ACCCCACCTACCCACCAGA
SIAgo7	SIAgo7-crR01	ATTTATATTAGTATTTGAT
SIAgo7	SIAgo7-crR02	AGAGCAAGTCTTTGTTTGT
SIAgo7	SIAgo7-crR03	TTGCCACCACAACAGATTCT
SIAgo7	SIAgo7-crR04	AAGGATCATTACAATATGA
SIBlc	SIBlc-crR01	ATATGGGCTAAACAATATGG
SIBlc	SIBlc-crR02	GCACAAGTGGAAGGACATCC
SIBlc	SIBlc-crR03	CAGTAATAACCAGGAGGTA
SIBlc	SIBlc-crR04	TAGATTAGAGATAATGACCA
Pt4CL1	Pt4CL1-crR01	GTATTCAAACAAGGAGCAGT
Pt4CL1	Pt4CL1-crR02	TCTCCATCTACCTGTAGGC
Pt4CL1	Pt4CL1-crR03	TTTGAGGATGATAAAATCTG
Gene	Primer Pair	Sequence
--------	--------------	---------------------------
Pt4CL1	Pt4CL1-crR04	ATCTCTGCATTCCTGACTAC
PtPDS	PtPDS-crR01	AACTTGAGCTGGCATAGTAA
PtPDS	PtPDS-crR02	TTGGTGGACAGGCTTATGTT
PtPDS	PtPDS-crR03	TCCGCGTCCAGCTAAACCAT
PtPDS	PtPDS-crR04	CATTGCAACCTATCATTGAT
PtSVP	PtSVP-crR01	CTGCAGCTAGAGAAGTCTCT
PtSVP	PtSVP-crR02	ATGGAAGAGAATGAGAGACT
PtSVP	PtSVP-crR03	CTTACTCAACCTGGAGCAGG
PtSVP	PtSVP-crR04	TCAAGATTTCTCGAGTGCAA
PtMYB182	PtMYB182-crR01	ATTATATTCAAACTCACGGT
PtMYB182	PtMYB182-crR02	CCAAGGAGAGCATGCAGCTT
PtMYB182	PtMYB182-crR03	AAGCTGAGCCTGCTGTCTCCT
PtMYB182	PtMYB182-crR04	GAGACAAGTTGCTGTGCAG
Supplemental Figure 1. Assessment of a CRISPR-Cas12j2 system for genome editing in rice cells with TSN PAM. Four TSN (TCN/TGN) PAM sites were tested by Cas12j2 in rice protoplasts. The editing efficiency was measured by NGS of PCR amplicons. The error bars denote standard deviations of three biological replicates.
Supplemental Figure 2. Assessment of Cas12j2 for genome editing in tomato cells.
Three multiplexed constructs were tested in tomato protoplasts, with each simultaneous
targeting four sites in SlAgo7 (A), SIALS (B), and SlBlc (C). The editing efficiency was
measured by NGS of PCR amplicons. The error bars denote standard deviations of three
biological replicates.
Supplemental Figure 3. Genome editing profiles by Cas12j2 in rice and tomato. Deletion positions were analyzed at three target sites in rice and one target site in tomato. The PAM sites are in red and the protospacer sequences are in blue. The error bars denote standard deviations of three biological replicates.
Supplemental Figure 4. Deletion size analysis of Cas12j2 in rice and tomato. Deletion sizes were analyzed at three target sites in rice and one target site in tomato. The PAM sites are in red and the protospacer sequences are in blue. The error bars denote standard deviations of three biological replicates.
Supplemental Figure 5. Improved genome editing efficiency with Cas12j2 variants. Genome editing efficiency of Cas12j2, vCas12j2 and nCas12j2 were compared at five target sites with VTTV PAMs. The efficiency was quantified by NGS of PCR amplicons. The error bars denote standard deviations of three biological replicates. Asterisks are used to denote statistical significance by student t test (*P < 0.05; **P < 0.01; ns means 'not significant').
Supplemental Figure 6. nCas12j2 based genome editing in stable T0 rice. (A-D) Genome editing efficiency at four target sites among individual T0 transgenic rice lines. (E) Relative Cas12j2 expression in four T0 rice lines quantified by qRT-PCR. For rice, genome editing efficiency was quantify by NGS of PCR amplicons.
Supplemental Figure 7. Cas12j2 based genome editing in T0 poplar lines. (A-D) Genome editing efficiency at sixteen target sites among individual T0 transgenic poplar lines (N.D means Not Detected). (E) Relative Cas12j2 expression in eight T0 poplar lines quantified by qRT-PCR. For poplar, genome editing efficiency was quantified by NGS of PCR amplicons.
Supplemental Figure 8. nCas12j2 based genome editing in T0 transgene rice tissue and protoplasts sourced from the same tissue. (A) Sanger sequencing-based genotyping of three CRISPR-Cas12j2 T0 lines targeting the AG17-TT site in rice. (B, C) Sanger sequencing-based genotyping of protoplasts sourced from the same tissue after 48 hours or 72 hours resting of the isolated protoplasts.
Supplemental Figure 9. Cas12j2 based gene activation in rice cell. (A) Pairing Cas12j2 with a 16 bp protospacer generated undetectable genome editing activity at the promoter target sites of two genes, OsCHS and OsGBSS1. (B) Transcriptional activation of OsCHS and OsGBSS1 by Cas12j2 based transcriptional activator. mRNA levels of target gene were measured by qRT-PCR. The error bars denote standard deviations of three biological replicates. Asterisks are used to denote statistical significance by student t test (*P < 0.05; **P < 0.01; ns means 'not significant').