Nuclear function of Alus

Chen Wang and Sui Huang*

Department of Cell and Molecular Biology; Northwestern University; Feinberg School of Medicine; Chicago, IL USA

Keywords: alus, transposable elements, gene expression regulation, genome function, evolution

Introduction

Transposable elements (TE) spread and extend genomes of various species through insertion and amplification. They are believed to play critical roles in the remodeling and controlling of genome function in response to environmental pressures and in speciation. Approximately 44% of the human genome is composed of TE (http://genome.ucsc.edu), some of which remain active at an estimated rate of 1 insertion per 10–100 live births. Over 60 years ago, Barbara McClintock discovered transposition and proposed that TE modifies and controls maize gene expression. Not till recently has the breadth of the significance of TEs in genome function come into focus. Increasing numbers of studies have explored various aspects of TE elements. These studies are well reviewed by several groups. This review focuses on the Alu family, which is a member of the small interspersed elements (SINEs), a group of RNA-mediated retrotransposable elements.

Alus are transposable elements belonging to the short interspersed element family. They occupy over 10% of human genome and have been spreading through genomes over the past 65 million years. In the past, they were considered junk DNA with little function that took up genome volumes. Today, Alus and other transposable elements emerge to be key players in cellular function, including genomic activities, gene expression regulations, and evolution. Here we summarize the current understanding of Alu function in genome and gene expression regulation in human cell nuclei.

Alus are transposable elements belonging to the short interspersed element family. They occupy over 10% of human genome and have been spreading through genomes over the past 65 million years. In the past, they were considered junk DNA with little function that took up genome volumes. Today, Alus and other transposable elements emerge to be key players in cellular function, including genomic activities, gene expression regulations, and evolution. Here we summarize the current understanding of Alu function in genome and gene expression regulation in human cell nuclei.

The Function of Non-Transcribed Genomic Alus

Active Alu transposition and amplification diversify genomes and cause diseases

Alus are believed to have retrotransposed with much higher frequency at earlier stages of primate evolution, with the rate of transposition declining from 1 per live birth then to about 1 in 20 live births today. Given the current large human population, the number of collective insertions remains to be highly significant. Over time, these insertions, together with recombination, truncations, amplifications, and mutations, allow Alus to assimilate and to co-evolve with the human genome.

Alu transposition is determined by the sequences of the Alus and their ability to interact with SRP9/14 to form unique RNPs. Transposition capable free Alus are transcribed by RNA pol III. As the older Alus continue to change over time due to mutations, losing consensus sequences required for the transposition, the current insertion events are primarily attributed to the mobility of younger Alus. It is essential for the transposition capable Alu RNAs to bind SRP9/14 proteins, which form the pre-requisite intermediates prior to the reverse transcription for transpositions.

The resulting retrotransposition generally create new insertions, most of which are deleterious to genome function. Thus, cellular mechanisms are in place to control the expression of mobile Alus. Regulation takes place both at transcription and post-transcriptional levels. At the transcriptional level, most mobile Alus remain silent through epigenetic silencing mechanisms including methylation at Cpgs within Alus and histone modifications. The transcripational silencing explains why only very few Alu genes (~150) are transcribed, many of which are not transposition competent. At the post-transcriptional level, MOV10 RNA helicase function is found to restrict transposition of Alus and other TEs through binding and targeting them to stress granules, preventing the replication and thus the insertion of TEs.

Alu insertions, while can be beneficial, are mostly disruptive, leading to lethality or diseases, accounting for approximately 0.4% of all human diseases. Over a long period of time, the slow adaptation of Alus in the genome is believed to be an engine that drives the primate evolution. The insertion, recombination, and amplification, leading to the spreading and expansion of Alus and other TEs across the genome help develop diversity and complexity along with the genome evolution, which might

*Correspondence to: Sui Huang; Email: s-huang2@northwestern.edu
Submitted: 11/05/2013; Revised: 01/20/2014; Accepted: 01/27/2014; Published Online: 02/04/2014
http://dx.doi.org/10.4161/nucl.28005

www.landesbioscience.com Nucleus 131

©2014 Landes Bioscience. Do not distribute.
contribute to the rise of human. For example, Alu mediated RNA editing is shown to be critical for cognitive and behavioral function and defects in RNA editing predisposes people to neurodegenerative diseases. As the inverted Alu embedded in pre/mRNA are substrates for editing and the level of editing is substantially increased in human vs. mice, the editing in Alu may have direct roles in the advanced neuronal development in human. Additionally, genomic sequencing and mapping among human populations demonstrate that Alu and Alu related polymorphisms contribute greatly to the diversity among humans.

However, Alu insertions and non-allelic homologous recombination between Alus cause chromosome instability or cause disruptions of gene structures and functions, leading to diseases in surviving individuals. For example, neurofibromatosis, a genetic disorder associated with childhood neurological tumors, is caused by changes in neurofibromatosis gene, NF1. Analyses of patient genomes show that insertions of as much as 14 Alus and other TE elements are responsible for the disease causing changes in splicing patterns of the gene, rendering it dysfunctional. Through this mechanism, Alus are responsible for a large number of diseases. Interestingly, not all genes are equally targeted by Alu insertions and recombination. Some are found to be preferred hot spots for these events, such as LDLR gene for hypercholesterolemia, BRAC1 and BRCA2 for breast cancer, and so on.

Being a large part of the genome, Alus in cis directly contribute to gene expression regulations

The idea that TEs control and regulate gene expression was first suggested by Barbara McClintock in the studies of maize genome. Since then, it is increasingly realized that TEs are the binding sites for various transcription factors and regulators. In humans, 39.4% of all transcription start sites are located within TEs. The large proportion of these sites is derived from ancient inserts that have been adapted through exaptation over a long period time co-evolving with the transcriptional regulators. Some of these elements (living fossils) are found conserved in distant species tracing back over 400 million years. Alus as a class of newer TEs (65 million years) have also been shown to create many transcription start sites. They are the binding sites for a dozen of transcription factors including SP1, PITX2, LUN1, etc., and many of these sites are associated with early developmental genes. More recently methylation and deamination of CpGs (C→G) in Alus are found to create functional binding sites for p53, myc, ANRIL, and PAX-6. These findings demonstrate that the epatation of Alus in the genome may allow for higher primate specific regulations of critical gene expressions. It would not be surprising for future analyses to implicate Alus in more transcription factor binding events.

Alus, as with other TEs, are frequently hot spots for recombination and DNA damage

The large number of copies in the genome and the transposable nature of Alus repeats provide enormous opportunities for recombination events that induce non-allelic homologous recombination among chromosomes, resulting alteration of the human genome. These events can take place at various stages of organismal development and at different physiological environments. They can be observed in germ lines, in somatic cells, and in cells under environmental stresses. For example, a focused analysis of Alu Y insertions found significant increases in recombination rate within 2 kb of the Alu among several human populations. However, not all of the events share the same efficiency. The longer of the homolog sequences in a combinatorial pair corresponds to more efficient recombination. Alu mediated recombination is one of the major cause for genome instability and chromosome translocation, underlining various diseases and malignancy. Closely related to recombination, Alus are (as with other TEs) sites prone to DNA damage. Alus are recently found enriched in chromosome common fragile sites, which tend to break, although they are part of normal chromosome structure and play an important function in sister chromatid exchange and other recombinatory functions. Another recent study shows that the majority of early replicating fragile sites in human cells are sites containing repetitive TEs, being one of them. These sites are also sensitive to damage during environmental stresses and under oncogenic pressures. Together these observations indicate that Alus (as with other TEs) play important roles in the dynamics of DNA breakage and recombination, which are part of essential genome function during development and tissues specific responses to environmental stresses. However, when they are not well controlled, the induced genome instability serves as basis for diseases, such as malignancy.

Transcribed Alu

Alus are primarily transcribed by RNA pol II and pol III. The majority of Pol II transcribed Alus are present in introns and the remaining ones are in the untranslated regions of mRNAs. Alus are rarely associated with exons. Increasingly, pre-mRNA associated Alus are found to play important roles in regulating gene expression at pre/mRNA levels. Pol III transcribes free or core unembedded Alus of about 280 bps. Much less is known regarding the function of these Alus. Additional to be the precursor of retrotransposon, they also play critical roles in cellular functions.

Alus embedded in pre/mRNA

Exonization mediated by Alus in introns can significantly influence the function of the translated proteins. Exonization is a process, in which a normally non-exon element in the intron is spliced into an exon of mRNA either in cis (within the same transcript) or in trans (between different transcripts). Alu is present in over 50% of introns and consensus Alu contains 23 potential splice sites, 19 of which are in the minor strand, consistent with the observation that 85% Alu exons come from antisense Alu elements. The abundance of Alu in introns makes it a leading force of new exon formation, contributing to 64% of new exons. Although 585 Alu exons were annotated previously, an additional 1318 cryptic exons originated from Alus have recently been identified.

Alu-mediated exonization takes place primarily through two mechanisms. The potential or cryptic splice sites in the Alu consensus sequences form pseudosplice sites. Specific mutations possibly over multiple steps turn Alu pseudosplice sites into bonafide sites. In analyses of 13 primate individuals, Singer et
al., mapped out the stepwise mutagenesis over millions of years that generated an alternative 5’ exon in the human tumor necrosis factor receptor gene.70 Additionally, insertion of inverted Alu allows for a stretch of Us incorporating into pre-mRNA, together with desirable mutations, making it into a functional splice site for exon generation. Therefore, mutations over time contribute to the conversion of pseudosplice sites within Alus into functional ones. A-I editing of Alu containing RNA is another mechanism that facilitates Alu exonization.64,71,72 Lev-Maor et al. found that the second A of the AA upstream of exon 8 of nuclear preamin recognition factor is edited from A-I, effectively turning AA into AG and making it a splice site. The editing is mediated through the formation of a double strand RNA stem loop of this Alu with an added 30 bp upstream. Incidentally, the new exon also contains TAG, a premature stop codon that is corrected also by editing A into G, 30 bp upstream. Incidentally, the new exon also contains TAG, a premature stop codon that is corrected also by editing A into G, forming harmless TGG. The newly formed exon is alternatively spliced in a tissue-specific manner.72 This is an intriguing example forming harmless TGG. The newly formed exon is alternatively spliced in a tissue-specific manner.72 This is an intriguing example

Alu

The results demonstrate that hnRNP C plays a key role in protecting mechanism is to restrict access to the Alu cryptic splice sites by splicing factors.67 For general splicing, U2AF65 binds exonal signals to initiate the recruitment of splicosomes.75 A recent study shows that hnRNP C competes with U2AF65 for splice sites by splicing factors.67 In the absence of hnRNPC, U2AF65 binding to Alu exonal signal significantly increases, directly corresponding to the significant increases of Alu mediated exonization globally. The results demonstrate that hnRNPC plays a key role in minimizing Alu exon inclusion under normal circumstance by blocking the access of U2AF65 to cryptic splice sites.67

Over time, the adapted Alu initiated exonization survives66 and directly contributes to the complexity of human genome function. For example, ADAR, an RNA editing enzyme, has 4 alternative spliced forms in human cells. One of which derives from the inclusion of an Alu-initiated exonization, leading to 40 extra amino acids in the protein. This inclusion has since been adapted as a part of isoforms of the deaminase and is highly expressed in neuronal tissues.76 Mattick and Mehler72 proposed that the adaptation of Alus through selection could contribute to the higher order of cognitive function in humans. The Alus could be the critical element that sets human apart from other primates.8,47

Alu at the 3′ UTR is a critical regulatory element for mRNA metabolism. While majority of the intragenic Alus are in the introns, approximately 5% of mRNA contains Alus and 82% of them locate at the 3′ UTR.77 Alus elements at 3′ UTR have been shown to regulate mRNA functions through several mechanisms, including RNA editing, nuclear retention, polyadenylation, RNA stability, miRNA function, and translational regulation in the cytoplasm. As this review focuses on the Alu function in the nucleus, we will discuss mostly their roles in the nuclear retention of mRNA, editing, and polyadenylation.

Alu at the 3′ UTR are found to regulate the nuclear retention of mRNA. mCAT2, a cation transporter protein, encodes two isoforms through the use of two promoters. The short form is transported into the cytoplasm and is translated at steady-state. The longer form of the mRNA is predominantly retained in the nucleus.74 It is only released into cytoplasm under stresses, such as viral infection and IFN gamma responses. The nuclear retained RNA is primarily enriched in the par splice bodies. The 3′ UTR contains 3 reverse and 1 forward Alu elements. Their presence is essential for nuclear retention.79 The forward repetitive element is a substrate for editing and is hyper-edited. It is believed that the editing of these repetitive elements helps explain the nuclear retention of these RNA. Subsequently, Chen et al. find that inverted Alu at 3′ UTR is responsible for editing and nuclear retention using ectopically expressed reporter constructs.79 However, it is not entirely clear whether editing alone can explains the nuclear retention of the inverted Alu containing mRNA. Two more recent studies show that an endogenous mRNA or a reporter mRNA with edited inverted Alus at the 3′ UTR exports to the cytoplasm rather than being retained in the nucleus.80,81 These findings suggest that editing may not be the key to nuclear retention of at least some mRNA with inverted Alu in 3′ UTR. In ES cells without detectable par splice bodies, mRNAs with extensive editing at the 3′ UTR with inverted Alus, are effectively transported into the cytoplasm.82 A recent study begins to shed light regarding the export of mRNA with inverted Alus containing 3′ UTR. Elbarbary et al.83 demonstrate that binding of inverted Alus at 3′ UTR with STAU1 proteins (dsRNA-binding protein Staufen1) inhibits the nuclear retention of these RNA, thus promoting the export of the mRNA.83 These findings together suggest that the nuclear retention of mRNA with Alus at 3′ UTR could be the results of the regulated balance between exporting forces (binding to STAU1, etc.) and retention power (editing, and other yet to be revealed functions).

Reversed Alus with two stretches of A rich sequences embedded in coding genes can also be potential polyadenylation signals. A single point mutation turning As to AATAAA, a conserved polyadenylation signal, can induce premature termination of transcription and generates truncated proteins. While this can be harmful, it is also a way to generate tolerated diversity.17 Analyses of human genome indicates that some of the genes use Alus as polyadenylation sites84,85 and among them, some of which distinguish human transcripts from other primates,86 suggesting a role of these adapted Alus polyadenylation sites in human evolution.

Alus at the 3′ UTR can also serve as targets for miRNA regulations. There is a significant number of miRNAs with sequences that are complementary to Alus.87-89 A primate specific gene cluster in chromosome 19 is found to encode miRNAs that
target the most conserved part of sense Alus. The majority of the 3′ UTR-located Alus carries potential target sites for at least 53 miRNAs.

Transcribed free Alu by pol III

Although there are more than a million copies of Alu spread in the human genome, very few are transcribed independently. Most of transcribed Alus are those embedded in pre-mRNA and transcribed by RNA polymerase II. RNA pol III is responsible for transcribing free Alu (~280 bps), which contains an internal promoter for class two pol III transcription. As Alus are ubiquitous throughout coding sequence, RT-PCR is not representative of free Alu transcription. Over the past few years, the genome-wide ChIP for pol III transcription machinery from three groups mapped the active Alu transcribing loci in genomes of several human cell lines, revealing for the first time the specific Alus that are transcribed. Over the past few years, the genome-wide ChIP for pol III transcription machinery from three groups mapped the active Alu transcribing loci in genomes of several human cell lines, revealing for the first time the specific Alus that are transcribed. More than 150 loci are found to be active in various cells. While many loci are overlapping among different cell lines, some are unique to specific cell lines. The majority of pol III associated loci are those of older families including Alu S and Alu J and most of these transcripts lack sequences required for retrotransposition, suggesting that these are not the main source of active retrotransposition.

What then is the function of the non-transposable Alu RNA? Heat shock and translation inhibitors have been shown to activate the transcription of free Alus. The similar elevation was also found during viral infection. The transcription enhancement is highly regulated and the levels of Alu RNA return to the basal level upon relief from the stresses. The increases in the free Alu RNA upon stresses directly correspond to the inhibition of RNA pol II transcription in the nucleus. The mechanistic studies show that Alu RNA directly binds RNA pol II as tested both in vitro and in vivo, suggesting that Alu RNA integrates into the transcriptional complex, disrupting the interaction between pol II and promoter DNA and blocking transcriptional initiation. Additionally, elevated levels of free Alus may contribute to cellular senescence. Transcription of Alu in reverse orientation can also act as a cis natural antisense transcripts (NAT). The NATs regulate gene expression at both transcriptional and post-transcriptional levels. Transcription at opposite orientations on the same DNA template slows down progression of polymerases possibly to avoid collision. At the post-transcriptional levels, NATs can act through antisense RNA or small RNA interference mechanisms. Recently, studies of a retinoic acid responsive and pol III transcribed DR2 Alus show that the small RNAs derived from dicer processed DR2 Alus play critical role in the degradation of stem cell specific RNAs during cellular differentiation.

Cytoplasmic free Alu RNAs have multi-facet functions. Alus are found to regulate translation of mRNA, in which Alu RNAs form RNP with SRP protein, SRP9/14. The resulting Alu RNP's inhibit double strand RNA-dependent protein kinase (PKR), leading to translational stimulation. The free Alu RNAs are found to help prevent miRNA targeting to targets that are within Alus at the 3′ UTR, possibly by blocking access to the targets, thus reducing miRNA regulatory function to the specific RNAs. Furthermore, free Alu pairing with 3′ UTR Alus in trans can activate mRNA decay. These findings demonstrate that Alus have multiple and unique functions in human cells. As the human genome contains a large number of Alu genes, we will probably see more cellular functions to be assigned to Alu RNAs and perhaps they are critical in making us human.

Summary

Alu, although relatively young in the evolution history (65 million years), is the most successful transposable element in
the human genome, occupying over 10% of the genome. They function in two forms, as genomic elements or as transcribed RNA (Fig. 1). *Alu*-mediated transposition, DNA damage, mutations, and recombination directly contribute to the complexity and instability of the genome. *Alu*, as with other TEs play key roles in gene expression at the transcriptional level. They are frequently the transcription start sites and transcription factor binding sites. These sites appear to co-evolve with transcription and replication machineries over time to allow for specific regulations, which could be critical for speciation. When embedded in pre/mRNA, *Alu* regulates the diversity of mRNA through editing and exonization and influence the stability and translatability of the mRNAs. Furthermore, free *Alu* RNAs regulate genome functions from pol II transcription and retrotransposition to antisense regulation of gene expression under normal and stressed conditions. Altogether, these highly diverse functions of *Alu* mediate genetic drift, increase complexity of the genome function, and are likely to play critical roles in human evolution.

Disclosure of Potential Conflicts of Interest

No potential conflict of interest was disclosed.

Acknowledgments

We are grateful to the critical read of Dr Barry Feldman, and the work is supported by grants from NIH (2R01GM07855-05).

References

1. Rebollo R, Hortaz B, Hubert B, Vieira C. Jumping genes and epigenetics: Towards new species. Gene 2010; 451:1-7; PMID:20102733; http://dx.doi.org/10.1016/j.gene.2010.01.003
2. Cordaux R, Hedges DJ, Herke SW, Batzer MA. Estimating the retrotransposition rate of human *Alu* elements. Genes Dev 2006; 20:134-7; PMID:16522357; http://dx.doi.org/10.1101/gad.149473.106
3. Kazazian HH Jr. An estimated frequency of endogenous insertion mutations in humans. Nat Genet 1999; 22:130; PMID:10369250; http://dx.doi.org/10.1038/ng.1314
4. McClintock B. Chromosome organization and genetic expression. Cold Spring Harb Symp Quant Biol 1951; 16:13-47; PMID:14942727; http://dx.doi.org/10.1101/SQB.1951.016.001.004
5. Rubin CM, Houck CM, Deininger PL. Evolutionary analyses of repetitive DNA sequences. Methods Enzymol 1993; 224:213-32; PMID:8264388; http://dx.doi.org/10.1016/0076-6879(93)24017-O
6. Poucican SL, Kugel JF, Goodrich JA. Genomic genes: SINE RNA regulates mRNA processing. Curr Opin Genet Dev 2010; 20:149-55; PMID:20374373; http://dx.doi.org/10.1016/j.gde.2010.10.004
7. Schmitz J. SINEs as driving forces for genome evolution. Genome Dyn 2012; 7:92-107; PMID:22759815; http://dx.doi.org/10.1007/978-3-73198
8. Barzer MA, Schmid CW, Deininger PL. Evolutionary analyses of repetitive DNA sequences. Methods Enzymol 1993; 224:213-32; PMID:8264388; http://dx.doi.org/10.1016/0076-6879(93)24017-O
9. Bennehart P. Active human retrotransposons: variation and disease. Curr Opin Genet Dev 2005; 79:299-338; PMID:16106031; http://dx.doi.org/10.1016/j.gde.2005.02.003
10. Batzer MA, Schmid CW, Deininger PL. Evolutionary analyses of repetitive DNA sequences. Methods Enzymol 1993; 224:213-32; PMID:8264388; http://dx.doi.org/10.1016/0076-6879(93)24017-O
11. Benett EA, Teacher H, Mills RE, Schmidt S, Moran JV, Weeksneider O, Devine SE. Active *Alu* retrotransposons in the human genome. Genome Res 2008; 18:1875-83; PMID:18836035; http://dx.doi.org/10.1101/gr.081737.108
12. Rebollo R, Romanish MT, Mager DL. Transposable elements: an abundant and natural source of regulatory sequences for host genes. Annu Rev Genet 2012; 46:21-42; PMID:2290582; http://dx.doi.org/10.1146/annurev-genet-110711-154621
13. Huda A, Matriso-Ramires L, Jordan IK. Epigenetic histone modifications of human transposable elements: genome defense versus exaptation. Mob DNA 2010; 1:22; PMID:22266072; http://dx.doi.org/10.1016/j.mbdna.2010.03.003
14. Canella D, Praz V, Reina JH, Cousin P, Hernandez M, Careri D, Pinto MT, Kasper CK, Sommer SS. Natural mutagenesis of human genomes by endogenous retrotransposons. Cell 2010; 141:1253-61; PMID:20603065; http://dx.doi.org/10.1016/j.cell.2010.05.020
15. Huang CR, Schneider AM, Lu Y, Niranjan T, Shen P, Robinson MA, Steranka JP, Valle D, Covic CN, Wang T, et al. Mobile intersepersed repeats are major structural variants in the human genome. Cell 2010; 141:1171-82; PMID:20602999; http://dx.doi.org/10.1016/j.cell.2010.05.026
16. Valente L, Nishikura K. ADAR gene family and A-to-I RNA editing: diverse roles in posttranscriptional gene regulation. Prog Nucleic Acid Res Mol Biol 2005; 79:299-338; PMID:16096031; http://dx.doi.org/10.1016/j.pnan.2005.01.006
17. Jepson JEC, Reanen RA. Adenosine-to-inosine generic editing is required in the adult stage nervous system for coordinated behavior in Drosophila. J Biol Chem 2009; 284:31391-400; PMID:19759011; http://dx.doi.org/10.1074/jbc.M109.035048
18. Mattick JS, Meffler MF. RNA editing, DNA recording and the evolution of human cognition. Trends Neurosci 2008; 31:227-33; PMID:18395806; http://dx.doi.org/10.1016/j.tins.2008.02.003
19. Wimmer K, Callens T, Wernstedt A, Messiuen A. The NFI gene contains hotspots for L1 endonuclease-dependent de novo insertion. PLoS Genet 2011; 7:e1002371; PMID:22125493; http://dx.doi.org/10.1371/journal.pgen.1002371
20. Chae JJ, Park YB, Kim SH, Hong SS, Song GJ, Han KH, Namkoong Y, Kim HS, Lee CG. Two partial deletion mutations involving the same *Alu* sequence within intron 8 of the LDL receptor gene in Korean patients with familial hypercholesterolemia. Hum Genet 1997; 99:155-63; PMID:9049813; http://dx.doi.org/10.1007/s00439-00509331
41. McClintock B. The significance of responses of S wensen J, Hoffman M, Skolnick MH, Neuhausen R üdiger NS, Heinsvig EM, Hansen FA, Faergeman L ehrman MA, Goldstein JL, Russell DW, Brown ng0696-245
1987; 41:882-90; PMID:3404917; http://dx.doi.org/10.1038/nat
g706
44. Sorek R, Ast G, Graur D. Alu-containing exons are 46. Fank DC, Fuchs G, Rice human ret
alternatively spliced. Gene 2002; 22:1060-
7; PMID:12097542; http://dx.doi.org/10.1016/
pgen1.0603042103
55. Zarnack K, König T, Tajnik M, Martincorena I, Eustermann S, Stévant I, Reyes A, Anders S, Luscombe NM, Ule J. Direct competition between barNBP C and U2A6F6 protects the transcriptome from the exorization of Alu elements. Cell 2013; 152:453-66; PMID:23754342; http://dx.doi.org/10.1016/j.cell.2012.12.025
57. Shimizu T, Kielbasa SM, Patel PI. Recombination hot spots and human disease. Genome Res 1997; 7:773-86; PMID:9267802
58. Lehman MA, Goldstein JL, Russell DW, Brown MS. Duplication of seven exons in LDL receptor gene caused by Alu-Alu recombinantion in a subject with familial hypercholesterolemia. Cell 1987; 48:827-35; PMID:3815525; http://dx.doi.org/10.1016/0092-8674(87)90079-1
59. Frank F, Busch O, Hoffmann MM, Cybulla M, Kielbasa SM, Patel PI. Recombination hot spots and human disease. Genome Res 2012; 22:993-1005; PMID:22456607; http://dx.doi.org/10.1101/gr.134955.111
60. Durkin SG, Glover TW. Chromosome fragile sites. Ann Rev Genet 2007; 41:169-92; PMID:17600180; http://dx.doi.org/10.1146/annurev.genet.41.042007.165900
61. Glover TW, Stein CK. Induction of sister chromatid exchanges at common fragile sites. Am J Hum Genet 1987; 41:882-90; PMID:3674017
62. Barlow JH, Faryabi RB, Callen E, Wong N, Malewski C, Chou HT, Gutierrez-Cruz G, Sun HW, McKinnon P, Wright G, et al. Identification of early replicating sites that contribute to genome instability. Cell 2013; 152:620-32; PMID:23352430; http://dx.doi.org/10.1016/j.cell.2013.01.006
63. Hancks DC, Young LS. Inactive human ret
transposons: variation and disease. Curr Opin Genet Dev 2012; 22:191-203; PMID:22406018; http://dx.doi.org/10.1016/j.gde.2012.02.006
64. Hader J, Strub K. Alu elements as regulators of gene expression. Nucleic Acids Res 2006; 34:5491-7; PMID:17029021; http://dx.doi.org/10.1093/nar/ gkl706
65. Sorek R, Graur D, Graur containing exons are alternatively spliced. Gene 2002; 22:1060-
7; PMID:12097542; http://dx.doi.org/10.1016/
pgen1.0603042103
66. Zhang XH, Chasin LA. Comparison of multiple vertebrate genomes reveals the birth and evolution of human exons. Proc Natl Acad Sci U S A 2006; 103:13427-32; PMID:16938811; http://dx.doi.org/10.1073/pnas.0603042103
67. Barlow JH, Faryabi RB, Callen E, Wong N, Malewski C, Chou HT, Gutierrez-Cruz G, Sun HW, McKinnon P, Wright G, et al. Identification of early replicating sites that contribute to genome instability. Cell 2013; 152:620-32; PMID:23352430; http://dx.doi.org/10.1016/j.cell.2013.01.006
68. Lev-Maoz G, Sorek R, Shomron N, Ast G. The birth of an alternatively spliced exon: 3′ splice-site selection in Alu exons. Science 2003; 300:1288-
91; PMID:12764196; http://dx.doi.org/10.1126/
sience.1082588
69. Sorek R, Lev-Maoz G, Reznik M, Dagan T, Belinsky F, Graur D, Ast G. Minimal conditions for exonization of intronic sequences: 3′ splice site formation in alu exons. Mol Cell 2004; 14:221-31; PMID:15095921; http://dx.doi.org/10.1016/j.sbi.2004.05.018
70. Singh SS, Manuell DN, Hehligans T, Brosius J. A model of gene inactivation from ‘junk’ to gene: curriculum vitae of a primate receptor isoframe. J Mol Biol 2004; 341:883-6; PMID:15352899; http://dx.doi.org/10.1016/j.jmb.2004.06.070
71. Hader J, Samuelsson T, Strub K. Useful ‘junk’: Alu RNAs in the human transcriptome. Cell Mol Life Sci 2007; 64:1793-800; PMID:17634554; http://dx.doi.org/10.1007/s00018-007-0704-2
72. Lev-Maoz G, Sorek R, Levanyan EV, Paz N, Eisenberg E, Ast G. RNA-editing-mediated exon evolution. Genome Biol 2007; 8:R29; PMID:17326827; http://dx.doi.org/10.1186/gb-2007-8-2-r29
73. Vorechovsky I. Transposable elements in disease-associated cryptic exons. Hum Genet 2010; 127:135-
54; PMID:19828373; http://dx.doi.org/10.1007/
s00439-009-0752-4
74. Sorek R. The birth of new exons: mechanisms and evolutionary consequences. RNA 2007; 13:1603-
8; PMID:17709368; http://dx.doi.org/10.1261/rna.682507
75. Warf MB, Diesel JV, van Hippi PH, Berglund JA. The protein factors MBRNL1 and U2A6F5 bind alternative RNA structures to regulate splicing. Proc Natl Acad Sci U S A 2009; 106:9203-8; PMID:19740548; http://dx.doi.org/10.1073/pnas.0900342106
76. Lin L, Shen S, Tye A, Cai JJ, Jiang P, Davidson BL, Xing Y. Diverse splicing patterns of exonerized Alu elements in human tissues. PLoS Genet 2008; 4(1):e1000225; PMID:18841251; http://dx.doi.org/10.1371/journal.pgen.1000225
77. Yulog IG, Yulog A, Fisher EM. The frequency and position of Alu repeats in cDNAs, as determined by database searching. Genomics 1995; 25:544-
8; PMID:7598041; http://dx.doi.org/10.1006/
gen.1995.1090
78. Prasanth KV, Prasanth SG, Xuan Z, hearn S, Freier SM, Bennett CF, Zhang MQ, Specter DL. Regulating gene expression through RNA nuclear retention. Cell 2005; 120:249-63; PMID:16239143; http://dx.doi.org/10.1016/j.cell.2005.08.033
79. Chen L-L, Carmichael GG. Gene regulation by SINES and insines: biological consequences of A-to-I editing of Alu element inverted repeats. Cell Cycle 2008; 7:1239-401; PMID:18948753; http://dx.doi.org/10.4161/cc.7.12.2097
80. ©2014 andes Bioscience. Do not distribute.
S malheiser NR, Torvik VI. A population-based study of Alu RNA expression and polyadenylation sites: A case of retroposon exaptation. Mol Biol Evol 2009; 26:327-34; PMID:18757892; http://dx.doi.org/10.1093/molbev/msn249

88. Chen C, Ara T, Gautheret D. Using 3' UTR-located Alu repeats to identify human embryonic stem cells: functional role of a nuclear noncoding RNA. Mol Cell 2009; 35:467-78; PMID:19716791; http://dx.doi.org/10.1016/j.molcel.2009.06.027

89. Elbarbary RA, Li W, Tian B, Maquat LE. STAU1-LF, Wagner SD, Kugel JF, Goodrich JA. Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock. Mol Cell 2008; 29:499-509; PMID:18313387; http://dx.doi.org/10.1016/j.molcel.2007.12.013

90. Panning B, Smiley JR. Activation of RNA polymerase III transcription of human Alu repetitive elements by adenosine virus type 5: requirement for the Eib 58-kilodalton protein and the products of E4 open reading frames 3 and 6. Mol Cell Biol 1993; 13:3231-44; PMID:7684492

91. Panning B, Smiley JR. Activation of RNA polymerase III transcription of human Alu elements by herpes simplex virus. Virology 1994; 202:408-17; PMID:8009851; http://dx.doi.org/10.1016/0042-6822(94)90577-7

92. Mariner PD, Walters RD, Espinoza CA, Druling LF, Wagner SD, Kugel JF, Goodrich JA. Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock. Mol Cell 2008; 29:499-509; PMID:18313387; http://dx.doi.org/10.1016/j.molcel.2007.12.013

93. Yakovchuk P, Goodrich JA, Kugel JF. B2 RNA and Alu RNA repress transcription by disrupting contacts between RNA polymerase II and promoter DNA within assembled complexes. Proc Natl Acad Sci U S A 2009; 106:5569-74; PMID:19307572; http://dx.doi.org/10.1073/pnas.0810758106

94. Wang J, Geesman GJ, Hostikka SL, Aazullah M, Blackwell B, Lee E, Cook PJ, Pasaniuc B, Shariat G, Halperin E, et al. Inhibition of activated pericentromeric SINE/Alu repeat transcription in senescence human adult stem cells reinstates self-renewal. Cell Cycle 2011; 10:3016-30; PMID:21862875; http://dx.doi.org/10.4161/cc.10.17.17543

95. Conley AB, Miller WJ, Jordan IK. Human cis natural antisense transcripts initiated by transposable elements. Trends Genet 2008; 24:53-6; PMID:18192066; http://dx.doi.org/10.1016/j.tig.2007.11.008

96. Osato N, Suzuki Y, Ikeo K, Gojobori T. Natural antisense transcripts of humans and mice. Genetics 2007; 176:1299-306; PMID:17490975; http://dx.doi.org/10.1534/genetics.106.069484

97. Fire A. RNA-triggered gene silencing. Trends Genet 1999; 15:358-63; PMID:10461204; http://dx.doi.org/10.1016/S0168-9525(99)01018-1

98. Hu Q, Tanasa B, Trabucchi M, Li W, Zhang J, Olgi KA, Rose DW, Glass CK, Rosenfeld MG, DICER- and AGO3-dependent generation of retinoic acid-induced DR2 Alu RNAs regulates human stem cell proliferation. Nat Struct Mol Biol 2012; 19:1168-75; PMID:23064648; http://dx.doi.org/10.1038/nsmb.2400

99. Chu WM, Ballard R, Carpick BW, Williams BR, Schmid CW. Potential Alu function: regulation of the activity of double-stranded RNA-activated kinase PKR. Mol Cell Biol 1998; 18:56-68; PMID:9418853

100. Ruhrin CM, Kimura RH, Schmid CW. Selective stimulation of translational expression by Alu RNA. Nucleic Acids Res 2002; 30:3253-61; PMID:12136107; http://dx.doi.org/10.1093/nar/gkf419

101. Bovia F, Fornallaz M, Leffers H, Strub K. The SRP9/14 subunit of the signal recognition particle (SRP) is present in more than 20-fold excess over SRP in primate cells and exists primarily free but also in complex with small cytoplasmic Alu RNAs. Mol Biol Cell 1995; 6:671-84; PMID:7542942; http://dx.doi. org/10.1091/mcb.6.4.471

102. Chang DY, Hsu K, Maria RJ. Monomeric scAlu and nascent dimeric Alu RNAs induced by adenosine virus are assembled into SRP9/14-containing RNP complexes in HeLa cells. Nucleic Acids Res 1996; 24:4165-70; PMID:8932567; http://dx.doi.org/10.1093/nar/24.21.4165

103. Hoffman Y, Dahary D, Bublik DR, Oren M, Pilpel Y. The majority of endogenous microRNA targets within Alu elements avoid the microRNA machinery. Bioinformatics 2013; 29:894-902; PMID:23563127; http://dx.doi.org/10.1093/bioinformatics/btt044

104. Gong C, Maquat LE. "Alu"-strisous long ncRNAs and their role in shortening mRNA half-lives. Cell Cycle 2011; 10:1882-3; PMID:21487233; http://dx.doi.org/10.4161/cc.10.12.15589

105. Gong C, Maquat LE. LncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3' UTRs via Alu elements. Nature 2011; 470:284-8; PMID:21307942; http://dx.doi.org/10.1038/nature10970