Experimental test of nonlocal causality

Martin Ringbauer,1,2* Christina Giarmatzi,1,2 Rafael Chaves,3,4,5 Fabio Costa,1 Andrew G. White,1,2 Alessandro Fedrizzi1,2,6

Explaining observations in terms of causes and effects is central to empirical science. However, correlations between entangled quantum particles seem to defy such an explanation. This implies that some of the fundamental assumptions of causal explanations have to give way. We consider a relaxation of one of these assumptions, Bell’s local causality, by allowing outcome dependence: a direct causal influence between the outcomes of measurements of remote parties. We use interventional data from a photonic experiment to bound the strength of this causal influence in a two-party Bell scenario, and observational data from a Bell-type inequality test for the considered models. Our results demonstrate the incompatibility of quantum mechanics with a broad class of nonlocal causal models, which includes Bell-local models as a special case. Recovering a classical causal picture of quantum correlations thus requires an even more radical modification of our classical notion of cause and effect.

INTRODUCTION

Four decades after Freedman and Clauser (1) performed the first Bell’s inequality test (2), a series of loophole-free experiments (3–5) have now conclusively shown that the predictions of quantum mechanics are at odds with local realism. Scientific realism posits that physical systems have real, objective properties—independent of whether we observe them or not—that determine the outcomes of measurements performed on the system. The idea of locality—or more precisely local causality—is that causal influences cannot propagate faster than the speed of light. On the basis of local causality, and the assumption that measurement settings can be chosen freely, Bell derived an inequality that must be respected by any set of correlations that can be explained in terms of, possibly hidden, common causes (see Fig. 1A) but is violated by observed quantum correlations. Consequently, a new area of research has emerged, exploring to what extent the various underlying assumptions have to be relaxed to recover a causal explanation of quantum correlations (6–14).

A natural framework for this research program, and the study of Bell’s theorem, is the theory of causal modeling (11, 12), which aims to explain correlations in terms of cause-and-effect relations between events (15, 16). Discovering these relations from empirical data is difficult in general (17–20); however, within classical physics, such an explanation should always exist because the properties of a classical system, even if not measured, can always be assumed to have well-defined values. Causal reasoning is at the heart of empirical science and builds upon the most fundamental understanding of causality—that if a variable acts as the cause for another one, actively intervening on the first should cause changes in the second. More recently, causal modeling has attracted considerable interest in foundational physics, particularly for the study of stronger-than-classical correlations (12, 21–28), dynamical causal order (29), and indefinite causal structures (29, 30), and their role as computational resource (31–34).

Phrasing Bell’s theorem in the language of causal models provides a clear picture of the underlying assumptions and allows for a unified and quantitative approach to relaxations of these assumptions (11, 12). For example, quantum correlations can be explained by causal models when relaxing Bell’s local causality assumption, which is commonly referred to as quantum nonlocality. Here, we test nonlocal causal models, which relax local causality by abandoning causal outcome independence and allowing for a causal influence from one measurement outcome to the other (see Fig. 1B). First, we consider the simplest case that reveals such correlations, the Clauser-Horne-Shimony-Holt (CHSH) scenario (35), where two parties, Alice and Bob, can each measure one of two dichotomic observables. Using controlled interventions, we find the potential causal influence insufficiently strong to explain the observed CHSH violation. In the second experiment, we go beyond the CHSH scenario and violate a Bell-type inequality, which involves three measurement settings for each party and is satisfied even for arbitrarily strong causal influences from one outcome to the other (11). In contrast to the interventional method, which requires detailed knowledge of the physical system under consideration, the latter method is device-independent. Our results highlight the incompatibility of quantum correlations not only with the well-known Bell-local causal models but also with nonlocal causal models, where one measurement outcome may have a direct causal influence on the other.

RESULTS

Theoretical background

A causal structure underlying n jointly distributed discrete random variables $(X_1, ..., X_n)$ is represented by a directed acyclic graph, where the nodes (circles in Fig. 1) represent variables and the directed edges (arrows in Fig. 1) represent causal relations (13). Bell’s theorem, where two observers, Alice and Bob, perform local measurements on one
here and in the following, we adopt the usual convention that local causality is the combination of what we call causal parameter independence, but do not assume causal outcome independence, such that Alice’s measurement outcomes may have a direct causal influence on Bob’s outcomes (see Fig. 1B). The same arguments hold for the case where Bob’s outcome influences Alice’s outcome (with the A→B arrow reversed in Fig. 1B), or any linear combination of these cases, as discussed in detail in the Supplementary Materials. Because the causal model is formulated without any reference to a space-time structure, this influence may be sub-luminal, instantaneous, or even to the past, as long as it does not create any causal loop. In particular, it is consistent with a recent no-go theorem, which states that quantum correlations cannot be explained by any finite-speed influence (37).

The probability distributions compatible with this causal structure can be decomposed as

$$p(a, b|x, y) = \sum_\lambda p(a|x, \lambda)p(b|y, a, \lambda)p(\lambda)$$ \hspace{2cm} (2)

Intervenional method

The first experimental method we use to test this model relies on interventions, a core tool in causal discovery that allows for the identification and quantification of causal influences (11, 15, 38, 39). Formally, an intervention is the act of locally forcing a variable X_i to take on some value x'_i, denoted $do(x'_i)$. This removes all incoming arrows on X_i while keeping the causal dependencies between all other variables unperturbed (see A in Fig. 1C). In practice, performing such arrow-breaking interventions always requires some background knowledge of the system under consideration because the possible persistence of “confounding” common causes cannot be excluded from statistics alone. In our case, we shall assume that, for the purpose of the intervention, the local degrees of freedom behave according to quantum mechanics. Such assumptions are common in quantum steering scenarios and semi-device-independent quantum cryptography, where it is assumed that the devices of at least one of the laboratories can be trusted and work according to quantum mechanics.

In the CHSH scenario, passive observations alone are not enough to determine whether correlations between A and B are due to direct causation or a common cause Λ. However, an intervention on variable A would break the link between A and the (hypothetical) variable B. Thus, all remaining correlations between A and B must stem from direct causation. The maximal shift in the probability distribution of B upon intervention on A allows quantifying the strength of this causal link (11). To achieve this, we use the so-called average causal effect (ACE) (15, 38)

$$ACE_{A\rightarrow B} = \sup_{b,y,a'\neq a} \left| p(b|do(a), y) - p(b|do(a'), y) \right|$$ \hspace{2cm} (3)

which is a variant of the measure $C_{A\rightarrow B}$ used in the work of Chaves et al. (11). In contrast to the latter, $ACE_{A\rightarrow B}$ does not require knowledge of the hidden variable and is thus experimentally accessible. As we prove in detail in the Supplementary Materials, the average causal effect satisfies the same relation as $C_{A\rightarrow B}$ in the work of Chaves et al. (11), namely

$$ACE_{A\rightarrow B} \geq \max[0, (S_2 - 2)/2]$$ \hspace{2cm} (4)

where the maximum is taken over all eight symmetries of the CHSH quantity under relabeling of inputs, outputs, and parties (35). That is,
the average causal effect required for a causal explanation of a set of quantum correlations is directly proportional to the CHSH violation achieved by the correlations in question.

We experimentally implemented an intervention on a CHSH-Bell test using pairs of polarization-entangled photons, generated in the state \(\cos \gamma |HV \rangle + \sin \gamma |VH \rangle \). Here, \(H \) and \(V \) correspond to horizontal and vertical polarizations, respectively, and \(\gamma \) is the polarization angle of the pump beam, which continuously controls the degree of entanglement, as measured by the concurrence \(C = |\sin(2\gamma)| \).

Alice and Bob test the CHSH inequality with two settings and two outcomes each. The measurements are chosen in the equatorial (linear polarization) plane of the Bloch sphere (see Fig. 2B). To test the (directional) link \(A \rightarrow B \), Bob was located in the causal future of Alice using a 2-m fiber delay before Bob’s measurement device. Recall that an intervention on Alice’s outcome \(A \) needs to break all relevant incoming causal arrows and deterministically set the value of the variable \(A \). Relying on the quantum description of the local degrees of freedom, these requirements are met by first projecting Alice’s photon onto a circular polarization states \(|R/S \rangle = (|H \rangle \pm i |V \rangle) / \sqrt{2} \) — which, within experimental precision, erases all relevant information for the CHSH test performed in the linear polarization plane — and then re-preparing it in eigenstates of Alice’s measurement PBS \(|H/V \rangle \) — which forces one of the two outcomes \(A = \pm 1 \). This corresponds to operations of the form \(|H/V \rangle \langle R/L | \), which are experimentally implemented using a quarter-wave plate at \(\pm 45^\circ \), followed by a polarizer directly before Alice’s measurement PBS. The measurement bases for Alice and Bob, as well as the setting of the intervention polarizer and quarter-wave plate, were chosen randomly using quantum random numbers from the Australian National University’s online quantum random number generator based on the work of Symul et al. (41). Single-photon clicks in the avalanche photodiodes for each outcome are registered with an AIT-TTM8000 time-tagging module with a temporal resolution of 82 ps. Outcome probabilities, used to estimate \(\text{ACE}_{A \rightarrow B} \), were computed from a total of 48,000 coincidence counts, and no more than one event was registered for each set of random choices for \(X, Y \), and the two elements of \(I \).

Figure 3 shows the observed average causal effect as a function of the CHSH values measured for a range of entangled states. All measured values are below \(\text{ACE}_{A \rightarrow B} = 0.02 \pm 0.02 \) and largely independent of the observed CHSH violation. Note that the quantity is bounded from below, which results in non-Gaussian statistics and makes the value unachievable in the presence of experimental imperfections and finite counting statistics. When taking this into account, all data lie within the 3\(\sigma \) noise due to Poissonian counting statistics (see the Supplementary Materials for details). All quoted uncertainties were obtained from Monte Carlo simulations of the Poissonian counting statistics and correspond to the 0.13th and 99.87th percentile, respectively (in the case of normally distributed variables, this would correspond to 3\(\sigma \) confidence regions). Within current experimental capabilities, we find that CHSH violations above a value of \(S_0 = 2.05 \pm 0.02 \) cannot be fully explained by means of a direct causal influence from one outcome to the other. That is, the potential causal influence between Alice’s and Bob’s measurement (green arrow in Fig. 1B) is not sufficiently strong.

Observational method

As we have demonstrated, interventions can be used to distinguish direct causation from common-cause correlations in the two-setting CHSH test, which is not possible with passive observation alone. However, this comes at the cost that the intervention relies on the quantum description of the degree of freedom responsible for the outcome \(A \) (in the case above, the polarization). The interventionist approach is thus necessarily device-dependent and cannot be used to test arbitrary hidden-variable models. We now show how moving beyond the CHSH scenario allows for a device-independent test of any model with an arbitrarily strong causal influence from one outcome to the other.

Consider the scenario where each of the two parties can choose to measure one of three different dichotomic observables. As shown in
the work of Chaves et al. (11), any correlations compatible with the model in Fig. 1B must now satisfy

\[S_3 = \langle E_{\text{ab}} \rangle - \langle E_{\text{a0}} \rangle - \langle E_{\text{e11}} \rangle + \langle E_{\text{e12}} \rangle - \langle E_{\text{e20}} \rangle + \langle E_{\text{e21}} \rangle \leq 4 \quad (5) \]

This inequality is symmetric under exchange of the parties and, as we show in the Supplementary Materials, satisfied by any model that contains communication of outcomes from Alice to Bob, Bob to Alice, or any mixture thereof. Crucially, this allows us to test the models in Fig. 1B in a device-independent fashion and without committing to any particular temporal ordering of A and B.

To test inequality (5), Alice and Bob each perform measurements on their quantum system along one of three directions in the equatorial plane of the Bloch sphere. These measurements are implemented using the setup in Fig. 2, with the intervention elements I removed. The specific measurement settings are given in the Supplementary Materials. Figure 4 shows the observed violation of inequality (5) as a function of the parameter \(\gamma \) of the used quantum state. The theoretical maximal violation of the inequality is achieved using a maximally entangled state, corresponding to \(\gamma = 45^\circ \).

We observe a value of up to \(S_3 = 5.16 \pm 0.02 \), corresponding to a violation of Eq. 5 by more than 170 SDs. Complementary to the experimental result, which rules out outcome-dependent causal models in the CHSH scenario but requires additional assumptions about the underlying causal mechanisms, this result rules out outcome-dependent causal models without additional assumptions in any scenario with more than two settings. A direct causal influence from one outcome to the other can therefore not explain quantum correlations.

DISCUSSION

Previous work on causal explanations beyond local hidden-variable models focused on testing Leggett’s crypto-nonlocality (7, 42, 43), a class of models with a very specific choice of hidden variable that is unrelated to Bell’s local causality (44). In contrast, we make no assumptions on the form of the hidden variable and test all models compatible with the causal structure in Fig. 1B, which is a natural generalization of Bell-local models and contains them as a special case. Practically, our experiment relies on a fair-sampling assumption (see the Supplementary Materials). Causal models are formulated without any reference to space-time structure, and hence, space-like separation between A and B is not required. Our results demonstrate that a causal influence from one measurement outcome to the other, which may be subluminal, superluminal, or even instantaneous, cannot explain the observed correlations.

Our results could have applications in quantum cryptography scenarios where the secrecy of the measurement outcomes cannot be

Fig. 4. Observed values \(S_3 \) for a variety of quantum states of the form \(\cos(\gamma|HV|) + \sin(\gamma|VH|) \). The orange data points are observed using a fixed measurement scheme (optimal for the maximally entangled state \(\gamma = 45^\circ \)), with the dotted, orange line representing the corresponding theory prediction. The blue data points and blue dashed theory line correspond to the case where measurement settings were optimized for the prepared states (see the Supplementary Materials for details). The black line represents the bound of inequality (5); any point above this line cannot be explained causally by a model of the form in Fig. 1B. Error bars correspond to \(3\sigma \) statistical confidence intervals.

Fig. 5. Comparison of various constraints on the causal structure of Bell’s theorem. The causal links forbidden by the respective assumptions are shown in dashed green lines. Note that the statistical constraints implied by causal parameter independence are asymmetric in \(a \) and \(b \), and swapping them would result in a causal structure where the arrow between A and B is reversed. Our experimental test applies to both of these structures and any convex combination of them.
guaranteed. Consider a one-sided device-independent scenario where Alice’s laboratory is trusted, but an eavesdropper, Eve, may control Bob’s devices and the source of particles. In a standard quantum key distribution protocol, Alice and Bob would first attempt to violate the CHSH inequality to certify that they share entanglement. However, using the knowledge of Alice’s measurement outcomes, Eve could convincingly produce outcomes for Bob that simulate such a violation. Using an intervention on her measurement outcome, Alice can reveal such an attack as a nonzero value of Δ_{CHSH} (see Eq. 4). Alternatively, Alice and Bob could use inequality (5) to certify that they share entanglement because a violation of this inequality cannot be simulated by Eve using knowledge of Alice’s measurement outcomes.

It will be of considerable interest to further develop the causal modeling tools demonstrated here to test other classes of causal models, for example, allowing for retrocausal influences or relaxations of measurement independence (8–14, 45). Alternatively, one could completely abandon the classical notion of causality and pursue a novel framework of quantum causality (21, 24–27). It was recently shown that such a framework can be based on interventionist causation, which allows for causal discovery and recovers the classical causal modeling framework in the appropriate limit (46).

Recent experiments put strong constraints on realist interpretations of quantum mechanics, ruling out maximally epistemic (47) and local causal (3–5) models. Our results exclude a broad class of nonlocal causal models, thus contributing to a clearer picture of the status of reality and causality in quantum mechanics.

MATERIALS AND METHODS

Causal interpretation of local causality

Local causality captures the idea that there should be no causal influence from one side of the experiment to the spacelike separated other side. Formally, this is a constraint on the conditional probability distributions: $p(a|b,x,y) = p(a|x)$ and $p(b|a,x,y) = p(b|y)$. We would like to stress that local causality is not equivalent to signal locality, which follows from special relativity and imposes constraints on the observable probabilities only: $p(a,x,y) = p(a|x)$ and $p(b|x,y) = p(b|y)$. The natural generalization of signal locality to include the hidden variable is typically referred to as parameter independence or locality: $p(a|x,y) = p(a|x)\lambda$ and $p(b|x,y) = p(b|y)\lambda$ (36). Parameter independence, together with what is often referred to as outcome independence $p(a|b,x,y,\lambda) = p(a|x,y,\lambda)$ and $p(b|a,x,y,\lambda) = p(b|x,y,\lambda)$, then implies local causality.

Interpreted in the causal modeling framework, local causality implies that there is no causal link from Bob’s measurement setting Y or outcome B to Alice’s measurement outcome A, and similarly from Alice to Bob (compare Fig. 5). In the spirit of causal modeling, we would like to obtain the causal structure of Bell’s theorem directly from investigating these causal independencies. Specifically, causal outcome independence denotes the absence of a causal link between the measurement outcomes, and causal parameter independence denotes the absence of a causal link from each party’s setting to the other’s outcome. The latter condition still allows causal influence between measurement outcomes. Because no causal loop can exist, in a single causal model, this link must be either from A to B or from B to A. The most general correlations consistent with causal parameter independence are convex combinations of correlations consistent with either model.

As shown in Fig. 5, the causal models compatible with causal outcome independence are the same as for ordinary outcome independence. Causal parameter independence, on the other hand, imposes different constraints than “ordinary” parameter independence. The latter is defined as the conjunction of the statistical constraints for Alice and Bob. Either of these can be given a causal interpretation in terms of a causal model, which, when imposing the constraint for Alice, contains explicit links from X and A to B (compare Fig. 5), and similarly for Bob. However, the set of probability distributions that satisfy both constraints does not correspond to a causal model, unless outcome independence is assumed as well. In contrast, causal parameter independence is defined such that there are no causal links from X to B and Y to A, but a link between A and B (compare Fig. 5 for the case $A \rightarrow B$) is allowed. Because there are two possible directions for this link, causal parameter independence contains a set of constraints for each model, and the set of probability distributions compatible with it is the set of those compatible with either model.

Note that the joint assumption of causal parameter independence and causal outcome independence is equivalent to local causality and thus equivalent to the joint assumption of ordinary parameter independence and ordinary outcome independence. However, in contrast to the latter pair, our causal assumptions individually have clear causal interpretations.

REFERENCES AND NOTES

1. S. J. Freedman, J. F. Clauser, Experimental test of local hidden-variable theories. Phys. Rev. Lett. 28, 938–941 (1972).
2. J. S. Bell, On the Einstein–Podolsky–Rosen paradox. Physics 1, 195–290 (1964).
3. B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, R. Hanson, Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015).
4. L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, J. K. Crowell, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Venema, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellán, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, S. W. Nam, Strong loophole-free test of local realism. Phys. Rev. Lett. 115, 250402 (2015).
5. M. Giustina, M. A. M. Versteegh, S. Wengerowsky, J. Handsteiner, A. Hochrainer, K. Phelan, F. Steinlechner, J. Kofler, J.-Å. Larsson, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, J. Beyer, T. Gerrits, A. E. Lita, L. K. Shalm, S. W. Nam, T. Scheidl, R. Ursin, B. Wittmann, A. Zeilinger, Significant-loophole-free test of Bell’s theorem with entangled photons. Phys. Rev. Lett. 115, 250401 (2015).
6. C. H. Brans, Bell’s theorem does not eliminate fully causal hidden variables. Int. J. Theor. Phys. 27, 219–226 (1988).
7. C. Branciard, N. Brunner, N. Gisin, C. Kurtsiefer, A. Lamas-Linares, A. Ling, V. Scarani, Testing quantum correlations versus single-particle properties within Leggett's model and beyond. Nat. Phys. 4, 681–685 (2008).

8. M. J. W. Hall, Local deterministic model of singlet state correlations based on relaxing measurement independence. Phys. Rev. Lett. 105, 250404 (2010).

9. M. J. W. Hall, Relaxed Bell inequalities and Kochen-Specker theorems. Phys. Rev. A 84, 022102 (2011).

10. J. Barrett, N. Gisin, How much measurement independence is needed to demonstrate non-locality? Phys. Rev. Lett. 106, 100406 (2011).

11. R. Chaves, R. Kueng, J. B. Brask, D. Gross, Unifying framework for relaxations of the causal assumptions in Bell's theorem. Phys. Rev. Lett. 114, 140403 (2015).

12. C. J. Wood, R. W. Spekkens, The lesson of causal discovery algorithms for quantum correlations: Causal explanations of Bell-violation inequalities require fine-tuning. New J. Phys. 17, 033002 (2015).

13. D. Akitas, S. Tanzilli, A. Martin, G. Pütz, R. Thew, N. Gisin, Demonstration of quantum non-locality in the presence of measurement dependence. Phys. Rev. Lett. 114, 220404 (2015).

14. G. Pütz, N. Gisin, Measurement dependent locality. New J. Phys. 18, 055006 (2016).

15. J. Pearl, Causality (Cambridge Univ. Press, Cambridge, 2009).

16. D. Geiger, C. Meek, Quantifier elimination for statistical problems, Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence, Stockholm, Sweden, 30 to 31 July 1999, pp. 226–235.

17. J. Tian, J. Pearl, On the testable implications of causal models with hidden variables, Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence, Alberta, Canada, 1 to 4 August 2002, pp. 519–527.

18. R. Chaves, L. Luft, T. O. Maciel, D. Gross, D. Janzing, B. Schölkopf, Inferring latent structures via information inequalities, Proceedings of the 30th Conference on Uncertainty in Artificial Intelligence, Quebec, Canada, 23 to 27 July 2014, pp. 112–121.

19. J. M. Mooij, J. Peters, D. Janzing, J. Zscheischler, B. Schölkopf, Distinguishing cause from effect using observational data: Methods and benchmarks. J. Mach. Learn. Res. 17, 1–102 (2016).

20. R. Chaves, C. Majenz, D. Gross, Information-theoretic implications of quantum causal structures. Nat. Commun. 6, 7566 (2015).

21. T. Fritz, Beyond Bell's theorem: Correlation scenarios. New J. Phys. 14, 103001 (2012).

22. T. Fritz, Beyond Bell's theorem II: Scenarios with arbitrary causal structure. Commun. Math. Phys. 341, 391–434 (2016).

23. E. G. Cavalcanti, R. Lal, On modifications of Reichenbach’s principle of common cause in light of Bell’s theorem. J. Phys. A Math. Theor. 47, 424018 (2014).

24. J. Pienaar, C. Brukner, A graph-separation theorem for quantum causal models. New J. Phys. 17, 073020 (2015).

25. M. S. Lefever, R. W. Spekkens, Towards a formulation of quantum theory as a causally neutral theory of Bayesian inference. Phys. Rev. A 88, 052130 (2013).

26. J. Henson, R. Lal, M. F. Pusey, Theory-independent limits on correlations from generalized Bayesian networks. New J. Phys. 16, 113043 (2014).

27. P. M. Näger, The causal problem of entanglement. Phys. Rev. Lett. 115, 230402 (2015).

28. C. Chiribella, G. M. D'Ariano, P. Perinotti, B. Valiron, Quantum computations without definite causal structure. Phys. Rev. A 88, 022318 (2013).

29. C. Chiribella, Perfect discrimination of no-signalling channels via quantum superposition of causal structures. Phys. Rev. A 86, 040301(R) (2012).

30. M. Araújo, F. Costa, C. Brukner, Computational advantage from quantum-controlled ordering of gates. Phys. Rev. Lett. 113, 250402 (2014).

31. L. M. Procopio, A. Moqanaki, M. Araújo, F. Costa, I. Alonso Calafell, E. G. Dowd, D. R. Hamel, L. A. Rozema, C. Brukner, P. Walther, Experimental superposition of orders of quantum gates. Nat. Commun. 6, 7913 (2015).

32. J. F. Clauser, M. A. Horne, A. Shimony, R. A. Holt, Proposed experiment to test local hidden-variables theories. Phys. Rev. Lett. 23, 880–884 (1969).

33. H. M. Wiseman, E. G. Cavalcanti, Causarum Investigatio and the two Bell's theorems of John Bell. arXiv:1503.06413 (2015).

34. L. M. Procopio, A. Moqanaki, M. Araújo, F. Costa, I. Alonso Calafell, E. G. Dowd, D. R. Hamel, L. A. Rozema, C. Brukner, P. Walther, Experimental superposition of orders of quantum gates. Nat. Commun. 6, 7913 (2015).

35. J. F. Clauser, M. A. Horne, A. Shimony, R. A. Holt, Proposed experiment to test local hidden-variables theories. Phys. Rev. Lett. 23, 880–884 (1969).

Acknowledgments: We thank C. Branciard, E. Cavalcanti, and H. Wiseman for helpful discussions. We also thank the team from the Austrian Institute of Technology for providing the time-tagging modules for this experiment. Funding: This work was supported, in part, by the Centre for Engineered Quantum Systems (CE110001013), the Centre for Quantum Computation and Communication Technology (CE110001027), and the Templeton World Charity Foundation (TWCF 0064/ AB38). R.C. acknowledges support from the Excellence Initiative of the German Federal and State Governments (grants ZUK 43 and ZUK 81), the U.S. Army Research Office under contracts W911NF-14-1-0098 and W911NF-14-1-0133 (Quantum Characterization, Verification, and Validation), the DFG (GR 4334 and SPP 1798), and the Brazilian ministries MEC and MCTIC. A.G.W. acknowledges support through a University of Queensland Vice-Chancellor’s Senior Research and Teaching Fellowship and A.F. through an Australian Research Council Discovery Early Career Award (DE130100240). Author contributions: M.R., R.C., and A.F. conceived the study. A.F., A.G.W., J. Wilms, Y. Disser, G. Alber, I. C. Percival, Local realism, detection efficiencies, and probability polytopes. Phys. Rev. A 78, 032116 (2008).

40. R. Chaves, J. B. Brask, Feasibility of loophole-free nonlocality tests with a single photon. Phys. Rev. A 84, 062110 (2011).

Citation: Ringbauer, C. Giarmatzi, R. Chaves, F. Costa, A. G. White, and A. Fedrizzi, Experimental test of nonlocal causality. Sci. Adv. 2, e1600162 (2016).
Experimental test of nonlocal causality
Martin Ringbauer, Christina Giarmatzi, Rafael Chaves, Fabio Costa, Andrew G. White and Alessandro Fedrizzi

Sci Adv 2 (8), e1600162.
DOI: 10.1126/sciadv.1600162