Mortality and life expectancy of people with alcohol use disorder in Denmark, Finland and Sweden

Westman J, Wahlbeck K, Laursen TM, Gissler M, Nordentoft M, Häggren J, Arffman M, Ösby U. Mortality and life expectancy of people with alcohol use disorder in Denmark, Finland and Sweden.

Objective: To analyse mortality and life expectancy in people with alcohol use disorder in Denmark, Finland and Sweden.

Method: A population-based register study including all patients admitted to hospital diagnosed with alcohol use disorder (1 158 486 person-years) from 1987 to 2006 in Denmark, Finland and Sweden.

Results: Life expectancy was 24–28 years shorter in people with alcohol use disorder than in the general population. From 1987 to 2006, the difference in life expectancy between patients with alcohol use disorder and the general population increased in men (Denmark, 1.8 years; Finland, 2.6 years; Sweden, 1.0 years); in women, the difference in life expectancy increased in Denmark (0.3 years) but decreased in Finland (−0.8 years) and Sweden (−1.8 years). People with alcohol use disorder had higher mortality from all causes of death (mortality rate ratio, 3.0–5.2), all diseases and medical conditions (2.3–4.8), and suicide (9.3–35.9).

Conclusion: People hospitalized with alcohol use disorder have an average life expectancy of 47–53 years (men) and 50–58 years (women) and die 24–28 years earlier than people in the general population.

Significant outcomes

- People with alcohol use disorder have 24–28 years shorter life expectancy than the general population in the Nordic countries.
- Alcohol use disorder is a major public health problem that causes many years of lost life, even in countries with restrictive alcohol consumption policies.

Limitations

- A major limitation of the present study was the inclusion only of patients with alcohol use disorder from inpatient care, which may have caused selection bias of patients with the most severe health problems.
- The study was register-based and lacked clinical data about treatment and adherence.
- Alcohol consumption per capita was determined from aggregate data and not from alcohol exposure for individuals.
Introduction

Alcohol use disorder (AUD) is a major cause of morbidity and mortality (1). People with AUD have among the highest all-cause mortality of all people who receive treatment for mental disorders (2, 3). A meta-analysis that included 81 observational studies from many countries showed that people with AUD have three-fold higher mortality in men and four-fold higher mortality in women than the general population (4). In all people who have AUD, mortality is relatively higher in women, younger people and people in treatment for addiction (4). However, comprehensive mortality data over time of patients with AUD are not available from Nordic countries.

Increased alcohol consumption is associated with increased disease burden, accidents, and social problems (4, 5). In response to these effects, alcohol policies were created in Nordic countries (Sweden, Norway, Denmark, Finland and Iceland) to promote a decrease in alcohol consumption and restrict alcohol availability. The governments of all Nordic countries except Denmark have a monopoly of alcohol retail. However, after joining the European Union in 1995, Finland and Sweden shifted from a highly restrictive to a more liberal alcohol policy. The price of alcohol was reduced by tax reduction on alcoholic beverages in Denmark and Finland, abolition of quantitative quotas on alcoholic beverages in Sweden and Finland, and more generous opening hours of alcohol retailers in Sweden. These changes made alcohol more accessible to the public in these countries since 2003. The alcohol control policies of the countries were associated with total alcohol consumption (6, 7); Sweden has the most restrictive, and Denmark has the least restrictive alcohol policies. Frequency of heavy alcohol drinkers and alcohol-related problems are often assumed to depend on the level of alcohol consumption in the general population (7–9).

The reliable nationwide health care registers in Denmark, Finland and Sweden provide a unique opportunity to study mortality in people diagnosed with AUD.

Aims of the study

The purpose of this study was to evaluate mortality and life expectancy in people who had AUD in Denmark, Finland and Sweden between 1987 and 2006.

Material and methods

Study populations

National health registers from Denmark, Finland and Sweden were used to follow the entire population, approximately 20 million people, aged 15 years or above, in these three countries and identify all people who were admitted to hospital because of AUD as the primary or secondary diagnosis during 20 years (January 1, 1987 to December 31, 2006). Data about patients were retrieved from the national hospital discharge registers in each country. In Denmark, the data about patients were retrieved from the Psychiatric Care Register and the Hospital Discharge Register for medical care. In Finland and Sweden, the Hospital Discharge Registers, which contained information about medical and psychiatric care, were used. The hospital register information was linked to the national registers about causes of death in each country to retrieve data about date and cause of death. Data about alcohol consumption per capita were collected from an international database (6). Follow-up started on the day of first hospital admission for AUD. Each person was followed from the day of first hospital admission until death or the end of a 5-year period to estimate time trends with a sufficient number of deaths; therefore, a person could be counted in more than one time period if readmitted during a different period. For analysis of time trends, the 20-year observation period was divided into 5-year periods: 1987–1991, 1992–1996, 1997–2001 and 2002–2006. Ethical approval was obtained from the regional ethics committee in Gothenburg. The data-keeping authorities from each country gave permission to use health register data in this study.

Definitions

The diagnosis of AUD (mental and behavioural disorders due to alcohol use) was defined according to the World Health Organization classification system (International Classification of Diseases [ICD]): ICD-8, codes 291, 303; ICD-9, codes 291, 303, 305A; ICD-10, codes F10.0 to F10.9 (10–12). Causes of death were defined according to the classification as (1) all-cause mortality (ICD-8, codes 001 to E999; ICD-9, codes 001 to E999; ICD-10, codes A00 to Y98); (2) death from diseases and medical conditions (ICD-8, codes 001 to 796; ICD-9, codes 001 to 799; ICD-
10, codes A00 to R99); (3) suicide (ICD-8, codes E950 to E959; ICD-9, codes E950 to E959; ICD-10, codes X60 to 84); and (4) external causes of death other than suicide (ICD-8, codes E800 to E999, excluding codes E950 to E959; ICD-9, codes E800 to E999, excluding codes E950 to E959; ICD-10, codes V01 to Y98, excluding codes X60 to 84) (10–12).

Alcohol consumption was defined as the national average of registered amount of alcohol consumed (litres of pure alcohol) per capita aged ≥15 years during a calendar year. The aggregate indicator from taxation data included consumption for the entire population based on production, import, export and sales (6).

Statistical analysis

The study population for each country was stratified into 5 age groups (15–29 years; 30–44 years; 45–59 years; 60–74 years; ≥75 years), and frequency of mortality was calculated for each group. Person-years and number of deaths were determined for each age group and 5-year period. Standardized mortality per 100 000 person-years was calculated for each country and standardized using Nordic population data for the year 2000 (13). Mortality rate ratios were calculated by taking standardized mortality rate in people with AUD divided by standardized mortality rate in general population. We calculated life expectancy for people with AUD aged ≥15 years, stratified by sex, using Wiesler method with 1-year age stratification (14). Life expectancy for each of the 5-year periods was determined. Population life expectancy data for each country, calculated and published by the World Health Organization (6), were used for population comparisons. The difference in life expectancy between people with AUD and the general population increased for men but decreased for women during the entire study (Table 2).

Age

In all three countries, mortality rate ratios in people with AUD were higher in young age groups. In Denmark, mortality rate ratios increased during the entire study in men and women for most age groups, especially ages 30–59 years (Table 3). In Finland, mortality rate ratios increased during the entire study period in men and women aged 30–44 years. In Sweden, mortality rate ratios increased during the entire study period in men aged 30–74 years and women aged 45–74 years (Table 3).

Cause of death

In all three countries, people with AUD had higher mortality from all causes of death (Figs 5 and 6), all diseases and medical conditions, and suicide.
Table 1. Alcohol use disorder and associated mortality in Denmark, Finland and Sweden from 1987 to 2006

Study period	Denmark				Finland				Sweden			
	1987–1991	1992–1996	1997–2001	2002–2006	1987–1991	1992–1996	1997–2001	2002–2006	1987–1991	1992–1996	1997–2001	2002–2006
Men												
People with AUD												
No. of people	32 368	29 818	31 646	39 163	27 846	32 232	41 748	40 489	51 411	49 097	43 715	46 840
No. of deaths	4866	5042	5041	6997	3229	3465	5355	5458	7338	6705	5497	6313
Person-years	84 192	76 142	75 011	93 981	63 452	67 223	95 952	90 994	143 990	134 416	114 017	119 116
Mortality per 100 000 person-years	5780	6622	6720	7445	5092	5154	5811	5998	5096	4888	4821	5300
Standardized mortality per 100 000 person-years	7591	8142	7838	7720	6327	6476	6196	6067	5955	5459	5245	5119
General population												
Standardized mortality per 100 000 person-years	1888	1867	1704	1576	1977	2011	2045	2009	1660	1524	1413	1294
Women												
People with AUD												
No. of people	13 542	13 168	14 188	17 658	5428	7446	12 235	12 999	14 366	14 978	16 939	19 926
No. of deaths	1673	1827	1804	2579	435	523	976	1128	1305	1331	1327	1585
Person-years	36 070	33 484	35 090	43 735	12 086	14 844	28 136	29 502	39 488	39 879	43 150	49 649
Mortality per 100 000 person-years	4638	5460	5141	5897	3596	3523	3469	3824	3305	3338	3075	3192
Standardized mortality per 100 000 person-years	5379	5764	5249	5746	4614	4381	4152	4134	4352	4040	3788	3779
General population												
Standardized mortality per 100 000 person-years	1223	1242	1164	1097	1162	1197	1190	1142	1046	979	934	891

AUD, alcohol use disorder.
than people in the general population (Table 3). In Denmark, mortality rate ratios in people with AUD increased from 1987 to 2006 from all diseases and medical conditions; mortality rate ratio from suicide was increased only in women during 2002 to 2006 (Table 3). In Finland, mortality rate ratios from all causes of death decreased during the entire study in both men and women; mortality rate ratios from all diseases and medical conditions were unchanged during the entire study for men and women, and mortality rate ratios from suicide increased in women but not men (Table 3). In Sweden, mortality rate ratios from all causes of death increased in men but was unchanged in women during the entire study; mortality rate ratio from suicide increased in both men and women (Table 3).

Alcohol consumption

During the entire study, registered alcohol consumption per capita was highest in Denmark and lowest in Sweden (Fig. 7). In Denmark, registered alcohol consumption per capita decreased slightly

![Fig. 1. Alcohol Use Disorder (AUD) and associated mortality in Denmark, Finland and Sweden from 1987 to 2006. Standardized mortality per 100 000 person-years. Men.](image1)

![Fig. 2. Alcohol use disorder (AUD) and associated mortality in Denmark, Finland and Sweden from 1987 to 2006. Standardized mortality per 100 000 person-years. Women.](image2)

Table 2. Life expectancy of people with alcohol use disorder and people in the general population in Denmark, Finland and Sweden from 1987 to 2006

Life expectancy (years)	Denmark	Finland	Sweden
1987–1991	46.6	50.3	50.3
1992–1996	46.1	50.1	49.3
1997–2001	46.7	50.7	49.3
2002–2006	47.5	51.4	51.4

Men

Life expectancy (years)	People with AUD	General population
1987–1991	46.6	72.3
1992–1996	46.1	72.3
1997–2001	46.7	72.3
2002–2006	47.5	72.3

Women

Life expectancy (years)	People with AUD	General population
1987–1991	49.8	77.9
1992–1996	49.5	77.9
1997–2001	51.4	77.9
2002–2006	52.7	77.9

† Difference: life expectancy in general population minus life expectancy in people with AUD.
after the year 2002. In Finland, registered alcohol consumption per capita peaked in the time period 2002–2006 in connection with an alcohol tax reduction. In Sweden, registered alcohol consumption per capita decreased slightly in the 90s and increased thereafter.

Discussion

Main findings

In this study, our main finding was a 24- to 28-year shorter life expectancy in people with AUD compared with the general population. Mortality associated with AUD was sex-dependent; men with AUD in all three countries had over time an increased difference in life expectancy, but women with AUD in Finland and Sweden (not Denmark) had a decreased difference in life expectancy. The changes in mortality and life expectancy during the study were most negative in Denmark and least negative in Sweden.

Strengths and limitations

A major strength of this study was the comparison of life expectancy and mortality in all people who had AUD diagnosed in three Nordic countries with different alcohol policies and patterns of alcohol consumption. The availability of nationwide health registers enabled us to follow the entire study population. The large population size (all people treated for AUD from three countries) provided highly reliable data. Much time and effort was invested in quality assurance of statistical analytical techniques, which made the data comparable between the different countries.

A major limitation of this study was the inclusion of patients from inpatient care only, which may have caused selection bias towards AUD patients with the most severe health problems. Patients with AUD who had only outpatient care were not included. The study was register-based and lacked clinical data about the type of treatment and adherence. In addition to disease prevalence in the population, patterns of hospitalization data including clinical diagnoses may be affected by other factors that were not analysed, such as changes in the number of hospital beds available, changes in hospital remuneration policies, and differences in clinical indications for hospital treatment. A common shortcoming in register studies is that they rarely can provide satisfactory answers on why the mortality is high or whether its decrease is due to policy changes, improved care or merely administrative decisions (15), although they can hint at the answer and provide directions (15, 16).

Another study limitation was that alcohol consumption per capita was determined from aggregate data and not from alcohol exposure for individuals. However, the World Health Organization data used in this study were supported by similar results from population surveys in Denmark, Finland and Sweden (17–19). In the aggregate data, neither age- nor sex-specific alcohol consumption data were available. The results based on aggregated data were exploratory and may not be used to draw definitive causative conclusions. In addition, data about illegal alcohol production and individual cross-border import were not included in the national statistics (6) and could not be evaluated in this study.

Life expectancy and mortality

The difference in life expectancy between people with AUD and the general population during the study increased in men in all three countries,
Table 3. Mortality rate ratio for people with alcohol use disorder compared with people in the general population in Denmark, Finland and Sweden from 1987 to 2006

Mortality rate ratio*	Denmark	Finland	Sweden									
Study period	1987–1991	1992–1996	1997–2001	2002–2006	1987–1991	1992–1996	1997–2001	2002–2006	1987–1991	1992–1996	1997–2001	2002–2006
Men												
Age (years)												
15–29	9.5	9.1	8.7	7.5	15.1	21.7	18.8	16.8	9.6	11.5	9.2	10.3
30–44	14.2	16.4	19.6	19.3	12.7	13.5	17.6	20.7	14.7	15.5	18.5	18.7
45–59	8.8	11.1	11.6	13.1	6.9	7.0	6.6	6.7	8.4	9.4	10.3	11.4
60–74	5.0	5.3	5.8	6.3	3.1	3.3	3.3	3.6	4.2	4.3	4.6	5.3
≥75	2.0	2.2	2.2	2.4	1.5	1.8	1.3	1.3	2.0	2.0	2.0	2.1
Cause of death												
All causes	4.0	4.4	4.6	4.9	3.2	3.2	3.0	3.0	3.5	3.6	3.7	4.0
All diseases and medical conditions†	3.7	4.0	4.2	4.6	2.3	2.3	2.3	2.3	3.1	3.1	3.2	3.4
Suicide	11.3	11.6	13.2	10.7	12.0	13.3	12.9	12.3	9.7	9.3	12.6	12.3
Other external causes‡	8.6	9.3	9.5	11.5	12.3	13.5	10.0	11.0	10.2	11.4	11.0	12.0
Women												
Age (years)												
15–29	19.2	11.0	7.8	11.7	32.4	41.4	37.0	26.3	18.2	16.7	12.4	12.3
30–44	21.7	24.3	24.7	28.4	23.9	25.9	26.1	30.9	19.5	18.6	19.7	19.2
45–59	10.2	13.0	13.3	15.6	13.9	12.9	10.1	10.7	10.8	11.8	12.3	11.9
60–74	5.6	6.1	5.8	6.9	4.9	4.7	5.5	6.4	5.9	6.3	6.5	7.4
≥75	2.0	1.9	1.9	2.4	1.5	1.5	1.5	1.4	2.2	2.1	2.0	2.1
Cause of death												
All causes	4.4	4.6	4.5	5.2	4.0	3.7	3.5	3.6	4.2	4.1	4.1	4.2
All diseases and medical conditions†	3.7	4.1	4.0	4.8	3.0	2.6	2.6	2.8	3.6	3.6	3.5	3.6
Suicide	21.4	22.4	20.4	24.9	22.0	35.5	35.9	27.3	15.9	23.5	26.8	28.5
Other external causes‡	13.5	13.4	13.1	15.0	23.8	20.2	16.9	16.3	17.2	15.1	15.5	15.6

*Mortality rate ratio: Standardized mortality rate in people with AUD divided by standardized mortality rate in general population.
†Excludes suicides and other external causes.
‡Other external causes exclude suicides.
decreased in women in Finland and Sweden, and was unchanged in women in Denmark (Table 2). However, the number of women hospitalized because of AUD increased during the study in all three countries (Table 1), consistent with documented increase in alcohol consumption in women (13). In addition, there has been a decrease in the perceived stigma associated with seeking treatment for AUD (20, 21). Therefore, diagnosis and treatment of AUD may be more common in women currently than 20 years ago. Nevertheless, only 1 in 3 people with AUD seek treatment (21).

This study showed that people with AUD had a four-fold greater risk of premature death than people in the general population, and people with AUD died on average 24–28 years earlier than people in the general population. Previous studies showed the mortality risk to be two- to six-fold greater in people with AUD (4, 22). In this study, people with AUD had a greater risk of death from all diseases and medical conditions, suicide, and other external causes of death, than people in the general population, consistent with findings from previous studies (2–4, 22, 23).

In men, the difference in mortality between patients with AUD and the general population increased more in Denmark and Finland than Sweden. These differences may be associated with the overall level of alcohol consumption, which is highest in Denmark and lowest in Sweden. The difference in mortality between people with AUD and the general population was smaller for both men and women in all study periods in Sweden than Denmark or Finland (Table 2). The number of deaths among women increased in all three countries during the study period, due to increasing numbers of women diagnosed with AUD in all countries, although standard mortality ratios did not increase. The alcohol control policies of the countries are associated with total alcohol consumption; Sweden had the most restrictive, and Denmark had the least restrictive alcohol policies. Other studies have shown that the negative effects of the increased availability of alcohol in Finland mainly occurred in people with AUD (24–27). For example, in Finland, deaths from liver disease increased by 30% and alcohol-related sudden deaths increased by 17% after changes in alcohol regulations in 2004 (27–29).

Clinical implications

Findings from the present study show that AUD in the Nordic countries is associated with substantially increased mortality, even though alcohol control policies are restrictive compared with other countries. What might be important to add to the general restrictive alcohol policies would be
selective efforts aimed at high alcohol consumers, to achieve preventive effects in terms of reducing the rate of high consumers converting to AUD. In this field, a wider focus is necessary including testing new preventive efforts, with the aim of reducing alcohol-related harm in people with AUD. In addition the somatic care of people with AUD should be substantially improved.

In summary, the present study of the entire populations of Denmark, Finland and Sweden showed that people hospitalized with AUD had an average life expectancy of 47–53 years for men and 50–58 years for women. People hospitalized with AUD had a 24- to 28-year shorter life expectancy than the general population. During the study, the difference in life expectancy between people with AUD and the general population increased in men but not in women. Mortality and life expectancy were associated with total alcohol consumption in the three countries. Furthermore, the comprehensive population data confirmed that AUD is a major public health problem that causes many years of lost life, also in countries with restrictive alcohol consumption policies.

Acknowledgement

This study was supported by a grant (no. 2008-0885) from the Swedish Council for Social and Working Life Research and a project grant (no. 20 120 263) from Stockholm County Council. The sponsors had no role in the design, conduct or reporting of the research. The statistical analyses were performed by TML, JH, MA at their institutions. The protocol can be obtained from jeannette.westman@ki.se.

Declarations of interest

Jeanette Westman, Kristian Wahbeck, Thomas Munk Laursen, Mika Gissler, Merete Nordentoft, Jonas Hällgren, Martti Arffman, and Urban Osby have no connections (direct or indirect) with the alcohol or pharmaceutical industries.

References

1. World Health Organization. Alcohol fact sheet. February 2011; Available from http://www.who.int/mediacentre/factsheets/fs349/en/index.html. Accessed October 4, 2013.
2. Høiby U, Kapur N, Weir R, Dunn G, Mortensen PB, Appleby L. Deaths from natural causes in people with mental illness: a cohort study. J Psychosom Res 2008;64:275–283.
3. Høiby U, Appleby L, Mortensen PB, Dunn G. Death by homicide, suicide, and other unnatural causes in people with mental illness: a population-based study. Lancet 2001;358:2110–2112.
4. Röbbecke M, Rehm J. Alcohol use disorders and mortality: a systematic review and meta-analysis. Addiction 2013;108:1562–1578.
5. Ljachimi SK, Cole KJ, Nusselder WJ et al. Health impacts of increasing alcohol prices in the European Union: a dynamic projection. Prev Med 2012;55:237–243.
6. World Health Organization. European Health for All Database (HFA-DB). Updated July 2013; Available from http://www.euro.who.int/en/data-and-evidence/databases/european-health-for-all-database-hfa-db. Accessed October 4, 2013.
7. Bruun K, Edward G, Lumio M et al. Alcohol control policies in public health perspective. New Brunswick, NJ: Helsinki: The Finnish Foundation for Alcohol Studies; Rutgers University Center of Alcohol Studies; 1975.
8. Sutton C. Swedish alcohol discourse. Constructions of a social problem. Uppsala: Uppsala University; 1998.
9. Österberg E, Karlsson T. Alcohol policies in EU Member States and Norway. A collection of country reports. Helsinki: Stakes, 2002.
10. World Health Organization. International classification of diseases, 8th edn (ICD-8). Geneva: World Health Organization; 1968.
11. World Health Organization. International classification of diseases, 9th edn (ICD-9). Geneva: World Health Organization; 1987.
12. World Health Organization. International classification of diseases, 10th edn (ICD-10). Geneva: World Health Organization; 1992.
13. NOMESCO. Health Statistics in the Nordic Countries. Copenhagen: 2009. Available from: http://nowbase.org/. Accessed October 4, 2013.
14. Verschuuren M, Gissler M, Kilpeläinen K et al. Public health indicators for the EU: the joint action for ECHIM (European Community Health Indicators & Monitoring). Arch Public Health 2013;71:12.
15. Munk-Jørgensen P, Okels N, Golberg D, Ruggeri M, Thorsnchkoft G. Fifty years’ development and future perspectives of psychiatric register research. Acta Psychiatr Scand 2014;130:87–98.
16. Allebeck P. The use of population based registers in psychiatric research. Acta Psychiatr Scand 2009;120:386–391.
17. Ramstedt M. Change and stability? Trends in alcohol consumption, harms and policy: Sweden 1990–2010. Nord Stud Alcohol Drugs 2010;27:409–423.
18. Bisberg C, Vintter-Larsen M, Thygerson LC, Johansen D, Grønbech MN. Alcohol consumption by middle-aged and elderly Danes from 1987 to 2003 [in Danish]. Ugeskr Laeger 2006;168:3317–3321.
19. Mäkelä P, Tierstedt C, Mortensen H. The Finnish drinking culture: change and continuity in the past 40 years. Drug Alcohol Rev 2012;31:831–840.
20. Pescosolido BA, Martin JK, Long JS, Medina TR, Phelan JC, Link BG. “A disease like any other”? A decade of change in public reactions to schizophrenia, depression, and alcohol dependence. Am J Psychiatry 2010;167:1321–1330.
21. Cunningham JA, Breslin FC. Only one in three people with alcohol abuse or dependence ever seek treatment. Addict Behav 2004;29:221–223.
22. Harris EC, Barraclough B. Excess mortality of mental disorder. Br J Psychiatry 1998;173:11–53.
23. Mortensen M, Wahlbeck K, Hallgren J et al. Excess mortality, causes of death and life expectancy in 270,770 patients with recent onset of mental disorders in Denmark, Finland and Sweden. PLoS One 2013;8:e55176.
24. Hertua K, Mäkelä P, Martikainen P. Changes in alcohol-related mortality and its socioeconomic differences after a large reduction in alcohol prices: a natural experiment based on register data. Am J Epidemiol 2008;168:1110–1118.
25. Hertua K, Mákelä P, Martikainen P. An evaluation of the impact of a large reduction in alcohol prices on alcohol-related and all-cause mortality: time series analysis of a population-based natural experiment. Int J Epidemiol 2011;40:441–454.

26. Mákelä P, Paljarvi T. Do consequences of a given pattern of drinking vary by socioeconomic status? A mortality and hospitalisation follow-up for alcohol-related causes of the Finnish Drinking Habits Surveys. J Epidemiol Community Health 2008;62:728–733.

27. Bloomfield K, Wicki M, Gustafsson NK, Mákelä P, Room R. Changes in alcohol-related problems after alcohol policy changes in Denmark, Finland, and Sweden. J Stud Alcohol Drugs 2010;71:32–40.

28. Koski A, Sirén R, Vuori E, Pokolainen K. Alcohol tax cuts and increase in alcohol-positive sudden deaths: a time-series intervention analysis. Addiction 2007;102:362–368.

29. STAKES. Yearbook of alcohol and drug statistics 2006. Helsinki, Finland: STAKES, 2006.