1 Introduction

Search for anomalous phenomena at high energies is usually performed in terms of a convenient kind of statistical moments, the information about the presence of those phenomena being encoded in appropriate sort of the scaling indices. Quite often, the one-dimensional cases are considered and usually three types of the analysis are applied there, namely, the horizontal (H), vertical (V), and the mixed (HV) ones. However, there is still missed a systematic approach to higher dimensions as well as a deeper rooted physical theory or at least a more or less reliable dynamical model for the scaling indices characterizing those phenomena.

Let us add that in the cases considered in the present contribution, the appearance of the non-statistical, anomalous fluctuations, induces the need to take into account the non-continuous statistical distributions.

In principle, the notion “anomalous” means (special, see below) “non-statistical” while “statistical” denotes “pure Poissonian”.

When investigating the presence and properties of the anomalous phenomena in high energy physics, the factorial moments of rank q are usually applied, their normalization being such that for the pure Poissonian distribution they are equal to unity (for q = 1, 2, 3, ...). This means that their deviation of unity (at least for some values of the rank q) signifies the presence of the non-statistical behavior in the corresponding data.

In the present contribution a sample of E events is investigated, the counting index of the events being denoted by e, i.e. e = 1, 2, 3, ..., E. The number of (charged) particles observed in a given region of the phase-space under consideration is denoted by n. In what follows also the factorial multinomial, \(\mathcal{F} \),
introduced by
\[F = F(n; q) \equiv n(n - 1) \ldots (n - q + 1) , \] (1)
is applied.

2 One-dimensional case

We assume that the dependence of the multiplicity distribution of (charged, produced) secondaries on one variable (say, the pseudorapidity \(\eta \) of every particle under consideration) is known from the observed collisions.

Let the multiplicity data be known in a pseudorapidity window \(\Delta \eta \), and, eventually, this window be partitioned into \(M \) equal size bins, \(\delta \eta, \delta \eta = (\Delta \eta) / M \); the index counting the bins is denoted by \(m \), i.e. \(m = 1, 2, 3, \ldots, M \). It is understood that the number of particles in every elementary cell specified by two numbers, namely, \((me) \), i.e. \(n_{me} \), is deduced from the experimental output.

Usually it is said that the anomalous phenomenon (intermittency) is present if the experimental data exhibit (with increasing number of bins, \(M \)) a linear dependence between the logarithm of the factorial moments and logarithm of the number of bins, \(M \), i.e., if the factorial moments reveal a singularity of the form \(M^{a_q} \), \(a_q \) being non-vanishing quantities; they are called slopes or scaling indices\(^3\). It is worthwhile to introduce also the following notations: to emphasize the Individual, Independent averaging of the expression entering the numerator or denominator of the corresponding moment,

\[
I_m \equiv \frac{1}{M} \sum_{m=1}^{M} , \quad I_e \equiv \frac{1}{E} \sum_{e=1}^{E} ,
\]

and, to emphasize the averaging over Both, the numerator as well as the denominator,

\[
B_m \equiv \frac{1}{M} \sum_{m=1}^{M} , \quad B_e \equiv \frac{1}{E} \sum_{e=1}^{E} .
\]

Now, application of the horizontal type of the analysis means that the factorial moments in the \((me) \)-th cell \([F(q; M)]^{(H)}_{me} \), in the \(e \)-th event \([F(q; M)]^{(H)}_{e} \), and in the whole sample \([F(q; M)]^{(H)} \), are introduced, respectively, by

\[
[F(q; M)]^{(H)}_{me} = \frac{F(n = n_{me}; q)}{[I_m; n_{me}]^q} \quad (2)
\]
and

\[[F(q; M)]_{me}^{(H)} = \frac{I_m[F(q; M)]_{me}^{(H)}}{[I_m' n_{me}']^q}, \tag{3} \]

\[[F(q; M)]_{me}^{(V)} = \frac{F(n = n_{me}; q)}{[I_e n_{me}']^q}, \tag{6} \]

\[[F(q; M)]_{me}^{(HV)} = \frac{F(n = n_{me}; q)}{[I_e n_{me}']^q}. \tag{10} \]

where \(F \) is given by Eq. (1). In this case the scaling properties are investigated by means of the relation,

\[[F(q; M)]^{(H)} \propto f_q^{(H)} M^{a_q^{(H)}}. \tag{5} \]

The \textit{vertical} type of the analysis is specified by the following form of the factorial moments,

\[[F(q; M)]_{me}^{(V)} = \frac{F(n = n_{me}; q)}{[I_e n_{me}']^q}. \tag{6} \]

and

\[[F(q; M)]_{me}^{(HV)} = \frac{F(n = n_{me}; q)}{[I_e n_{me}']^q}. \tag{10} \]

where \(F \) is still given by (1). Now, the scaling property is formulated in the following way,

\[[F(q; M)]^{(V)} \propto f_q^{(V)} M^{a_s^{(V)}}. \tag{9} \]

The \textit{mixed} type of the analysis is characterized by the following expressions,

\[[F(q; M)]_{me}^{(HV)} = \frac{F(n = n_{me}; q)}{[I_m' I_e n_{me}']^q} \tag{10} \]

and

\[[F(q; M)]_{me}^{(HV)} = \frac{F(n = n_{me}; q)}{[I_m' I_e n_{me}']^q}. \tag{11} \]

We conclude this section by the observation that the expressions

\[B_e I_m, \quad B_m I_e, \quad I_m I_e \]

represent, respectively, a shorthand notation of the three types of the analysis mentioned above. It is perhaps worth to mention that in case of the silicon (at 14.6 A GeV/c) colliding with the emulsion nuclei (the BNL data), those three types of the analysis lead\(^4\) to similar values of the slopes (scaling indices) \(a_q \), with \(q = 2, 3, 4, 5 \).
3 Two-dimensional case

Let us investigate the presence of non-statistical fluctuations in the (charged) multiplicity distributions depending on two variables (like, e.g., the pseudo-rapidity and azimuthal angle). We present shortly the way which allows to formulate the relations appropriate to this case.

First of all, we introduce the partitioning of the windows where both quantities mentioned above were measured. The corresponding bins are counted by the indices m_1 and m_2 where

$$1 \leq m_1 \leq M_1 \quad \text{and} \quad 1 \leq m_2 \leq M_2.$$

The number of charged particles, n, observed in the (m_1, m_2, e)-th elementary cell is denoted by

$$n = n_{m_1, m_2, e}.$$ \hspace{1cm} (12)

In this case the following notation is useful,

$$I_{m_1} \equiv I_1, \quad I_{m_2} \equiv I_2; \quad B_{m_1} \equiv B_1, \quad B_{m_2} \equiv B_2,$$

and I_e, B_e represent the same averaging as in the preceding Section.

There are seven non-trivial types of the analysis; they can be represented in the following form,

- $[\text{2dim; 1}] : B_e B_2 I_1,$
- $[\text{2dim; 2}] : B_e B_1 I_2,$
- $[\text{2dim; 3}] : B_2 B_1 I_e,$
- $[\text{2dim; 4}] : B_1 I_2 I_1,$
- $[\text{2dim; 5}] : B_1 I_1 I_2,$
- $[\text{2dim; 6}] : B_1 I_1 I_2,$
- $[\text{2dim; 7}] : I_1 I_2 I_1.$ \hspace{1cm} (13)

For instance, in the first case, $[\text{2dim; 1]},$

$$F_{m_1, m_2, e}(q) = \frac{\mathcal{F}(n; q)}{|I_1 n|^q},$$

$$F_{m_2, e}(q) = I_1 F_{m_1, m_2, e}(q) = \frac{I_1 \mathcal{F}(n; q)}{|I_1 n|^q},$$

$$F(q) = B_e B_2 \frac{I_1 \mathcal{F}(n; q)}{|I_1 n|^q} \propto f_q(M_1 M_2)^{\alpha_q}$$

where the multiplicity n of the elementary cells is given by Eq. (12).
4 Three-dimensional case

If the question is to be answered whether the non-statistical fluctuations are present in multiplicity data depending simultaneously on three variables (like e.g. the pseudorapidity, azimuthal angle and transverse momentum), first of all the number of (charged) particles in every elementary cell should be specified. To this end, the windows in all three variables are partitioned thereby involving the relations, \(1 \leq m_j \leq M_j\), with \(j = 1, 2, 3\). In this case, the multiplicity \(n\) of the elementary cell is specified by

\[
n = n_{m_1, m_2, m_3, e}.
\]

Introducing the notation analogous to that one applied in the preceding cases, namely

\[
I_{m_j} = I_j \quad \text{and} \quad B_{m_j} = B_j \quad j = 1, 2, 3,
\]

we observe that in the present case the following fifteen possible types of the analysis can be introduced,

\[
\begin{align*}
[3\text{dim}; 1] : & \ B_e B_3 B_1 I_1, & \ [3\text{dim}; 3] : & \ B_e B_2 B_1 I_1, \\
[3\text{dim}; 2] : & \ B_e B_3 B_1 I_2, & \ [3\text{dim}; 4] : & \ B_e B_2 B_1 I_2, \\
[3\text{dim}; 5] : & \ B_e B_3 I_2 I_1, & \ [3\text{dim}; 8] : & \ B_e B_1 I_2 I_2, \\
[3\text{dim}; 6] : & \ B_e B_2 I_2 I_1, & \ [3\text{dim}; 9] : & \ B_e B_1 I_2 I_2, \\
[3\text{dim}; 7] : & \ B_e B_2 I_1 I_1, & \ [3\text{dim}; 10] : & \ B_e B_1 I_1 I_2, \\
[3\text{dim}; 11] : & \ B_e I_1 I_2 I_1, & \ [3\text{dim}; 13] : & \ B_e I_1 I_2 I_1, \\
[3\text{dim}; 12] : & \ B_e I_2 I_2 I_1, & \ [3\text{dim}; 14] : & \ B_e I_2 I_1 I_2, \\
[3\text{dim}; 15] : & \ I_e I_2 I_2 I_1.
\end{align*}
\]

In Eq. (16), the \(B_e\) and \(I_e\) have the same meaning as in the preceding Sections. For instance, the first type of the analysis mentioned in Eq. (16) involves the factorial moments in the \((m_1, m_2, m_3, e)\)-th cell,

\[
F_{m_1, m_2, m_3, e}(q) = \frac{\mathcal{F}(n; q)}{I_e n^q},
\]

as well as the full form of that moment together with the corresponding scaling condition,

\[
F(q) = B_e B_3 B_2 I_1 F_{m_1, m_2, m_3, e}(q) \propto f_q(M_1 M_2 M_3)^{a_q}
\]
where the multiplicity n is given by Eq. (15).

Let us add that every type of the analysis is characterized by its own set of the scaling indices a_q and the corresponding form of all kinds of the associated moments (like the frequency, correlation, dispersion, etc. moments); some more details in5.

5 Dispersion moments

It is well known that several multiplicity distributions observed in the past, were satisfactorily described by continuous statistical distributions inherent in different modelling ideas. And quite often the associated moments, especially the corresponding dispersion moments, represented a very apt tool which helped to discriminate between more and less appropriate models. Now, it can be expected that especially at higher energies (available today as well as in the future) the possible presence of the intermittency should be taken into account. In this case, application of the continuous distributions is already not sufficiently adequate, compare in particular e.g. Fig. 1 in6; that distribution, in6, representing one event, is induced by non-self-similar processes and clearly reveals scaling property7 (also other authors deal with the individual events, for instance8). Application of the corresponding associated statistical moments (like e.g. the appropriately introduced dispersion moments), might play again a decisive role in the procedure leading to the discern between the more or less reliable fractal model approaches. Moreover, the dispersion moments involve also a piece of information about the presence of the empty bins.

In particular, the first type of the analysis mentioned in the present paper, [1dim; 1], involves (let us call them “modified”) dispersion moments \tilde{D} defined by the following way

$$[\tilde{D}^q]_{me} = \left(\frac{n_{me}}{I_m' n_{m'e}} - 1 \right)^q \quad (19)$$

and $\tilde{D}^q = B_e I_m [\tilde{D}^q]_{me}$. On the other hand, the “standard” dispersion moments D are introduced by

$$[D^q]_{me} = (n_{me} - I_m n_{m'e})^q, \quad (20)$$

i.e. their relation with the modified \tilde{D}-dispersion moments acquires the form

$$[\tilde{D}^q]_{me} = \frac{1}{[I_m' n_{m'e}]^q} [D^q]_{me} \quad (21)$$

and

$$\tilde{D}^q = B_e I_m [D^q]_{me} / [I_m' n_{m'e}]^q = B_e I_m [\tilde{D}^q]_{me}. \quad (22)$$
Moreover, in the case [2dim; 1]:

\[
[D_q]_{m_1, m_2, e} = \left(\frac{n_{m_1, m_2, e}}{I_{m_1'} n_{m_1', m_2, e}} - 1 \right)^q, \quad \tilde{D}_q = B_e B_{m_2} I_{m_1} [D_q]_{m_1, m_2, e} ;
\]

(23)

and [3dim; 1]:

\[
[D_q]_{m_1, m_2, m_3, e} = \left(\frac{n_{m_1, m_2, m_3, e}}{I_{m_1'} n_{m_1', m_2, m_3, e}} - 1 \right)^q,
\]

\[
\tilde{D}_q = B_e B_{m_3} B_{m_2} I_{m_1} \left(\frac{n_{m_1, m_2, m_3, e}}{I_{m_1'} n_{m_1', m_2, m_3, e}} - 1 \right)^q.
\]

(24)

We note that the multifractal analysis (of the type [1dim; 1]) of data coming from the collisions of gold (at 10.6 A GeV/c) with emulsion nuclei leads to the conclusion that the lower rank dispersion moments (essentially of the form of Eq. (19)) reveal scaling property with sufficient accuracy.

Analogous procedure can be applied also in higher dimensional cases.

6 Conclusions

In the present contribution, investigating presence of the anomalous fluctuations, a natural and systematic extension of the one-dimensional approach to arbitrary, say, d-dimensional case is proposed; it involves

\[
\sum_{j=0}^{d} \left(\binom{d+1}{j} \right) = 2^{d+1} - 1
\]

non-trivial types of the analysis. The aim is to apply such a systematic approach to a same set of the data and to look for the regularities embedded in the scaling indices which belong to the same branch of the analyses. Hopefully, the regularities which would be observed there might lead at least to the construction of the corresponding model equations.

Especially, it is expected that a systematic application of the non-trivial types of the analysis to several samples of events will allow (i) to recognize which type of the analysis is the most suitable one for detecting the presence of the concrete type of the anomalous fluctuations, (ii) to introduce an appropriate categorization of the anomalous phenomena, (iii) to ascribe a concrete numerical value to the parameters which enter theoretical expressions applied to the description of the experimental data, and, eventually, (iv) to formulate a sufficiently reliable (and still missing) theory (or at least model) of the anomalous phenomena.
References

1. E.A. De Wolf, I.M. Dremin and W. Kittel, Phys. Rep. 270, 1 (1996).
2. M. Blažek, Int’l J. Mod. Phys. A 12, 839 (1997).
3. A. Bialas and R. Peschanski, Nucl. Phys. B 273, 703 (1986); Nucl. Phys. B 308, 857 (1988).
4. J. Vrláková and S. Vokál: Scaled factorial moment analysis of 28Si + Ag/Br interactions in emulsion detector. In: Proc. Conf. on the occasion of 30th anniversary of the foundation of Faculty of Electrical Engineering and Informatics, Technical University, Košice, 21-22 September 1999. Ed’s: B.Zagyi, M.Kovalakova, J.Ziman. TU Košice, 2000; p. 242.
5. M. Blažek, Czechosl. J. Phys. 50, 809 (2000).
6. T.H. Burnett et al. (JACEE Collaboration), Phys. Rev. Lett. 50, 2062 (1983).
7. M. Blažek: Anomalous fluctuations and partial coherency (preprint FUSAV-0900); to be published.
8. B. Ziaja: Intermittency in Individual Events. In: Proc. 7th International Workshop on Multiparticle Production “Correlations and Fluctuations”, Nijmegen, The Netherlands, 1996. Ed. by R.C. Hwa et al., World Sci., Singapore, 1997; p. 243;
 R.A. Janik and B. Ziaja: Improved intermittency analysis of single event data. In: Proc. 8th International Workshop on Multiparticle production “Correlations and Fluctuations ’98” (From QCD to Particle interferometry), Mátraháza, Hungary, 1998. Ed. by T. Csörgő et al., World Sci., Singapore, 1999; p. 506;
 T.A. Trainor: Event-by-event analysis and the central limit theorem (hep-ph/0001148).
9. P.L. Jain and G. Singh, Nucl. Phys. A 596, (700)1996.
10. M. Blažek: Correlations, Dispersions and Fractality in Collisions of 197Au with Emulsion Nuclei. In: Proceedings of the XXVIII-th Int’l Symposium on Multiparticle Dynamics. Delphi, Sept. 1998. Ed. by N.G. Antoniou et al., World Sci., Singapore, 2000; p. 263.