Abstract—Anycast routing is an area of studies that has been attracting interest of several researchers in recent years. Most anycast studies conducted in the past relied on coarse measurement data, mainly due to the lack of infrastructure where it is possible to test and collect data at same time. In this paper we present Tangled, an anycast test environment where researchers can run experiments and better understand the impacts of their proposals on a global infrastructure connected to the Internet.

Index Terms—Anycast, Testbed, Anycast Networks, Network Measurement, BGP Routing

I. INTRODUCTION

IP anycast consists in announcing different copies of a service in the Internet using the same IP address, and trusting the Internet routing (e.g. BGP [1]) to forward and distribute traffic between service copies.

Initially proposed in 1993, IP anycast was originally used to help clients find the best application server in the Internet [2]. Since then, IP anycast has been widely employed for load balancing [3] [4] [5], in the DNS infrastructure [6] [7] [8], and CDN cloud providers [9] [10] [11] [12], and, more recently, it has also been studied and deployed for DDoS mitigation [13] [14] [15] [16] [17]. Today, anycast is used to support hundreds of services across the Internet [18] [19].

Although there is a large literature on IP anycast, carrying out real-world experiments with IP anycast is not an easy task. Typically, and understandably, operators do not allow for running tests on production networks and servers; and deploying a meaningfully large anycast network, consisting of various copies of a service widely and reasonably distributed across the Internet is beyond reach for most researchers. Building an IP anycast network is not a technically challenging task per se (in fact, there are many references and guidelines on how to do it [20] [21] [22]). However, the major roadblocks are the cost and time involved in the process of building a proper anycast network following the same practices of the industry, and retrieving trusted data from that network.

Based on experiences of our previous work in IP anycast, we argue that a testbed deployed in the wild is the most feasible and technically accurate way to run experiments. Testbeds are usually built on a collaborative way, where industry and academia together support research that benefit the Internet operations. Compared to other approaches and methodologies, such as using third-party datasets for research, testbeds commonly allow for changes in metrics, which enables the study of a given subject under different conditions.

In this paper, we introduce TANGLED, a world-wide, collaborative open-access IP anycast testbed. TANGLED ultimately aims to support research on anycast by academia and industry by making the deployment of anycast-related experiments viable to the overall community of network research and operation. Our testbed consists of various copies (a.k.a. anycast instances or anycast sites) distributed around the globe and co-located under different ASes, as well as a set of tools to: (i) provide a programmable anycast traffic engineering interface, able to control each individual anycast site visibility; (ii) map the distribution of traffic from clients to the anycast sites using millions of vantage points; and (iii) measure and analyze result data from experiments. This paper presents the infrastructure of TANGLED as of September 2020. We are constantly looking for opportunities to expand our testbed by establishing new partnerships and collaborations, as well as the deployment of new nodes.

The remainder of this paper is organized as follows. In section II we describe our testbed technical details on connectivity and infrastructure. In section III we show all preprogrammed testbed traffic engineering features available. In section IV we explain our data collection process and provided data format. In section V we state some experience we learn for running this testbed. In section VI we compare TANGLED with other infrastructures able to develop anycast research.
II. THE TANGLED TESTBED

Configuring and deploying an anycast network is a process that involves a constant maintenance. Upstreams and IXPs change policies and infrastructure from time to time. However, TANGLED active measurement infrastructure allows to identify BGP routing configurations mistakes or relevant infrastructure changes made by ISP or IXPs where we have presence. This capability provide us a more trustable anycast testbed environment.

TANGLED consists of thirteen sites, most of these deployed through partnership with universities and academical networks, registrars, and transit providers. Some of our anycast sites are deployed within cloud commercial networks, with the goal to increase the coverage of our anycast network to regions where we currently have no partners. In the case of an anycast network for research purposes, we generally believe that the more sites the better, mainly if these sites are located within different ASes; more sites in different networks increase, for example, the possibilities of combinations for experiments and observation of routing dynamics. Therefore, we believe that cooperation is a key factor to keep the TANGLED testbed growing and with a meaningful number of relevant sites.

A. Historical Context

TANGLED was conceived in 2016, during a BGP hackathon organized by CAIDA/UCSD [23]. In that event, while developing their BGP project, the team “Anycast-1”, with members from the University of Twente (UT) among others, discovered misconfigurations within the Peering [24] BGP testbed. That situation helped us understand the challenges on building an anycast network, and it was the main motivation for the UT researchers to start planning their own testbed infrastructure. The first release of the TANGLED testbed was publicly presented in 2016, at RIPE73 [25].

In the following years, we expanded our community network around the testbed, deploying anycast sites around the world. Several researches were carried out along the years using the TANGLED network: anycast catchment studies [26] and the tool called VERFPLoETER [27]; and several anti-DDoS studies from [14], [15] were carried out using our testbed. Moreover, the TANGLED testbed is actively being used in the projects SAND [28] and PaDDoS [29].

B. Addressing Infrastructure

TANGLED has its own AS (1149), and prefixes (145.100.118.0/23 and 2001:610:900::/40) provided by SURFnet – the Dutch NREN. Prefixes are RPKI signed and properly described on RIRs databases, increasing security of our routing environment and preventing the prefixes misuse. Multiple distinct experiments can be configured and executed at the same time in TANGLED by using smaller prefixes; for example announcing two /24 prefixes instead of our original /23 one, or even a fraction of the IPv6 address space.

C. Connectivity

TANGLED has one master site used to consolidate data, and twelve anycast sites deployed in Asia (1 site), Europe (5), South America (2), North America (3), and in Oceania (1), as depicted in Figure 1. Four sites are connected to IXPs, meaning that these sites have richer connectivity (i.e. more visibility across the Internet): both sites in Brazil (São Paulo and Porto Alegre) are directly connected to the Brazilian Internet Exchange Point (IX.br); the sites in London and Paris have access to LINX and FranceIX, respectively. Table I details our transit providers and IXP connections. Some of our anycast sites share the same upstream provider, while others peer with various commercial and academic networks.

Since site connectivity have a direct relationship with the anycast catchment [30], BGP might prefer to forward traffic to a more distant site but with better connectivity. This variety of connectivity provides valuable study cases for the testbed. Figure 2 shows the Hurricane Eletric looking glass view of AS1149.

Since our goal is to create tailored experiments for anycast, we also have implemented tools for controlling and measuring systems. These tools are described in the next sections.

III. TRAFFIC ENGINEERING ON TANGLED

IP anycast relies on BGP for the routing of users’ traffic to the available anycast sites; in this context, the optimal...
situation is typically defined as users being routed to the topologically nearest anycast site. One of the challenges for anycast operators is not having complete control on catchment because of the complexity and limitations of BGP routing. However, BGP does have mechanisms to express routing preferences, ultimately influencing routing decision processes. For example, one can prioritize some paths over others. In TANGLED, we support two methods of BGP engineering: AS-path manipulation and community strings.

AS-path manipulation lies in making changes in the BGP path attribute. AS-path attribute is used to implements loop avoidance in BGP. An AS-path carries a list of all ASes from the current site, back to the route originator, providing a rough distance estimation metric measured in number of AS hops. The AS-path manipulation can be done by: (1) **prepend**ing, decreasing the preference of a routing path by inflating its number of hops; (2) **poisoning**, indicating ASes to oppose a given path; or (3) **reverse prepending**, by inflating all but one paths.

Community String is a label optionally informed with the prefix announcement, which is interpreted by the BGP neighbor and translated into an internal AS routing policy. Communities are widely supported by ISPs to delegate some of the BGP routing control to their customers. Although community labels are not standardized, some conventions do exist; for example, well-known communities map labels to routing policies such as black-holing and no-export [31]. Communities can be propagated to all the neighbors of a BGP router, or can target a particular AS. Selective communities are those that allow a specific routing policy to be applied only to one individual selected AS. Table II summarizes the BGP communities available in TANGLED.

We classify the available community strings in TANGLED in the following routing policies:

- **Prepend**: send an inflated AS-Path to a neighbor
- **noPrepend**: do not send prefix information to IXPs or private peering
- **noExport**: do not propagate this announcement beyond the neighboring AS
- **noClient**: do not send this prefix to ISP customers
- **Selective Prepend**: ask to upstream/IXP to prepend our prefix when sending to a specific AS neighbor
- **Selective Advertise**: send prefix only to a specific AS; or, send to all but a specific AS

Table II shows that there is no homogeneity among TANGLED’s transit providers in terms of BGP community coverage. Such differences among ISPs is not considered an actual problem; it is rather a reflection of the freedom that ISPs have on defining how to support their respective clients.

A. Inter-domain Routing Programming

To simplify the routing management across the anycast sites in TANGLED, we developed an open-source tool named tangled-cli. Built on top of ExaBGP [32], one can use tangled-cli’s interface to manage anycast site individually:

- perform regular BGP prefix site announcements
- withdraw the BGP prefix from any site
- performing AS-path prepending
- announce a specific community string to a neighbor
- get the configuration of all active anycast sites
- get the status of all BGP peers

Listing 1 shows examples of BGP routing configuration from the tangled-cli. The first command line configures a prefix announcement using the IPv6 prefix 2001:610:9000::/40 from the anycast site fr-par-anycast. In the second command line, we configure 20 path prepending on the IPv4 prefix 145.100.118.0/23 for the anycast site br-poa-anycast.

In addition to prepending and community strings, tangled-cli has other functionalities to help manage the anycast sites, such as list prefix, remove BGP policy, and withdraw BGP prefix.

Table I: Tangled sites location and connectivity.

Site ID	Location	Transit Provider	IXP	Peers
au-syd	Sydney	Vultr (20473)	–	1
br-gru	São Paulo	Ampath(20080)	spo.IX.br	1892
br-poa	Porto Alegre	Leowin(262605) poa.IX.br	218	
dk-cop	Copenhagen	DK-Hostmaster (39839)	–	1
uk-lnd	London	Vultr (20473) Linx	–	1
fr-par	Paris	Vultr (20473) France-IX	–	1
jp-lnd	Tokyo	Wide (2500)	–	1
nl-ens	Enschede	UTwente (1133)	–	1
us-los	Los Angeles	USC (4)	–	1
us-mia	Miami	Ampath (20808)	–	1
us-was	Washington	Los Nettos (226)	–	1
nl-arn	Arnhem	SIDN (1140)	–	1

TABLE II: Traffic Engineering options on each site
Policy

Prepend
noPeer
noExport
noClient
Prepend
Selective Prepend
Selective Advertise

Listing 1: tangled-cli interface

| $ tangled-cli -6 -A -t fr-par -r 2001:610:9000::/40 |
| $ tangled-cli -4 -A -t br-poa -r 145.100.118.0/23 -P 20 |

IV. Data Measurement and Analysis

There are multiple ways to measure anycast networks towards studies of performance and behavior [19], [33]–[35]. In the case of TANGLED, we deployed VERFPLOETER [35], which we describe next.
A. Anycast Mapping Measurements

VERFPLOETER actively probes IP addresses within a hit list (vantage points–VP) using ICMP ECHO requests, to map clients of a distributed service which is configured with IP anycast. Figure 3 shows the catchment mapping extracted from VERFPLOETER. ICMP ECHO requests are sent by one or more servers called Pingers; these servers may be, for example, actual anycast sites or other multi-purpose servers.

The source IP address used in the ICMP ECHO messages is the address configured in the anycast service. Active VPs replying to the ICMP request, set the destination IP address of their respective ICMP REPLY messages to that of the anycast service. Therefore, anycast sites will receive ICMP REPLY messages without actually sending an ICMP ECHO request. The set of received replies by each site defines their respective anycast catchment.

Measurement Duration.

The duration of an entire measurement depends on how large is the IP hit list, and also how frequent the ICMP ECHO requests are sent out to their destinations as well as how many Pingers are actively probing. One could easily probe the entire set of valid /24 networks within the Internet in minutes—our estimations is of 30 minutes for a measurement with just one Pinger and 6,5 millions IP addresses in the hit list. However, we strongly take care of measurements that send large amounts of ICMP requests within a short period of time because they can be understood as an abusive behavior. As described in [36], actively probing hosts in the Internet should not generate traffic that is discernible from the traffic background noise.

Vantage Points.

The accuracy of measurements in VERFPLOETER strongly depends on the number and distribution of VPs, and also on how responsive they are. Examples of hit lists that can be used in VERFPLOETER are those built in [36] [37], or an Alexa’s top-sites listing. In addition, geolocation of VPs can be based on any geoIP database/source of choice.

Catchment and Traffic Load.

Since each VP in a hit list can be mapped to a /24 network, we can estimate the traffic load that each anycast site would receive in an actual operation. The accuracy of such an estimation, however, depends on how comprehensive the VPs hit list is. Moreover, if unknown, the distribution of traffic origins in such estimation would have to be uniform across all /24 networks.

Latency Measurements.

To enable latency measurements, VERFPLOETER inserts a timestamp on each outgoing ICMP ECHO request. When the ICMP REPLY is received at one of the anycast sites, the difference between the first timestamp and the receiving time is recorded. This time difference is a triangular round-trip-time, similar to that of RTT concept.

The IP TTL information is also collected. Sample measurement data is presented in Table III.

B. Data Analysis

To explore the data generated from the anycast measurements, we have developed tools to support that analyze. In particular, we are interested on analyzing the data produced by VERFPLOETER aiming to find the traffic distribution and catchment.

Each round of measurement probes more than 6 millions of networks and generates around 400MB uncompressed text data. Table III shows a summarized view of the measurement output. All data is exported in comma separated value (CSV) format so to be easily interchanged.

Site	Time Diff	Target IP	Anycast IP	TTL	CC	ASN
au-syd	97.191805	1.1.1.2	145.100.118.1	52	AU	13335
au-syd	102.285587	1.0.0.230	145.100.118.1	52	AU	13335
au-syd	140.469751	1.0.7.1	145.100.118.1	52	AU	56203
au-syd	116.260893	1.0.4.4	145.100.118.1	52	AU	56203

TABLE III: Anycast catchment measurement data provided by Verfploeter.

To help deal with such amount of data, we provide a tool to quickly parse data provided by VERFPLOETER output and present the catchment distribution. Listing 2 show an example. The listing shows an anycast service using 6 sites and the respective number of replies that each site handled during the measurement. The site us-los-anycast-01 has received 1,342,542 replies, which represent 37% of queries performed in the measurement. This means, that 37% of clients reach the mentioned site.

# sites	replies - percentual
us-los	1342542 - 37%
uk-ind	1123355 - 31%
us-mia	541846 - 15%
fr-par	473617 - 13%
au-syd	85475 - 2%
jp-hnd	321 - 0%

Listing 2: Quick Tangled data analysis overview
A commonly used method to analyze data is using Jupyter notebooks \(^3\) \(^4\).

In Figure 4, we inspect the time-to-live of all packets received in one measurement round, totaling 4.5 million vantage points answers. However, regular measurements can easily lead to big data problems, demanding to analyze a huge amount of data. To support this kind of investigation, we have written some codes able to upload measurement and use big data solutions, such as the Google BigQuery platform. One example of this is the round-trip-time analysis, shown on Figure 5. This figure show individual round-trip-time of million different vantage points, which site each one are choosing, and in which country this vantage point is located.

V. LESSONS LEARNED

While running TANGLED, we identified some challenges and learned some lesson related to running a testbed as a service. First, the Internet is dynamic and things breaks and get fixed without notification – After a year of operation, we noticed that our providers changed upstream and not properly announced our blocks to new provider, or our peer made mistakes changing routing policies and affecting our routing, or equipment replacement on our provider degrading our overall performance. Our first lesson learned is that we need to implemented a baseline checkup on all nodes first any measurement has been taken as part of our management process. Second, inter-domain routing has a slow convergence – when we use to define our inter-domain routing by software (SDN), the full time of BGP and forwarding plane of all routers on Internet is slow, around 10 minutes. Third, collaborative testbeds as TANGLED have some drawbacks. Since most of our anycast sites are deployed and maintained by hosting partners, in a best-effort fashion, we have observed some limitations related to the operation of the infrastructure itself, as well as to keep running long-term measurements. In general we register issues related to:

- lack of peering control: we are always submitted to our collaborator routing policy.
- packet loss due to uncontrollable and unforeseen networking issues as changes on quality of service policies of temporary rate limiting.
- unpredictable (temporary) unavailability of anycast sites
- storage and bandwidth capacity are not unlimited on local sites. Tests involving high volume need to be evaluated before (a.k.a. DDoS studies).

Limitation we registered mostly affected long term measurements. However, we have learned that carefully planning measurements circumvent problems such as temporary unavailability of anycast sites.

VI. RELATED WORK

Anycast research can be carried out by using simulators [3] [6], testbeds [8] [27] [17] or anycast networks in production [30] [38]. Anycast simulations are used in specific cases when you need to study site load and swarm and mobile catchment behaviors, usually in mobile and wireless networks [39]. Anycast testbeds are normally used to Internet-related CDNs, DNS, and DDoS studies [27] [17].

Three distinct testbeds have been used for anycast tests so far. The first one is Planetlab [40], a testbed for overlay networks used to develop [41] a global anycast solution. Other is Peering [24], a BGP testbed widely used in Internet’s BGP routing system research and for some anycast research [23] [42] [17]. The last one is TANGLED, a testbed specific for anycast research and test. Over several anycast studies are carried out by [25] [14] [15] [38] [43] [28] [29] [17].

Even though it is possible to built one’s own testbed even by renting capacity from some anycast or cloud provider; the whole anycast measurement setup for data collection still has to be built. In general the process of setting up, testing, and validating the whole testbed environment spend months. Instead of wasting time building one’s own testbed, now researches can easily run their own anycast experiments and focus on improving their ideas and results.

ACKNOWLEDGEMENT

This project have the support of SIDNLabs and NSNetLabs and is founded by DHS HSARPA Cyber Security Division via contract number HSHQDC-17-R-B0004-TTA.02-0006-I, Netherlands Organisation for scientific research NWO and CONCORDIA, the Cybersecurity Competence Network supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 830927.

\(^3\)https://github.com/joaoceron/verfploeter-ttl-investigation

\(^4\)https://github.com/LM Bertholdo/BQ-rtt
