A peer-reviewed version of this preprint was published in PeerJ on 6 April 2017.

View the peer-reviewed version (peerj.com/articles/3145), which is the preferred citable publication unless you specifically need to cite this preprint.

Ishengoma E, Agaba M, Cavener DR. 2017. Evolutionary analysis of vision genes identifies potential drivers of visual differences between giraffe and okapi. PeerJ 5:e3145 https://doi.org/10.7717/peerj.3145
Evolutionary analysis of vision genes identifies potential drivers of visual differences between giraffe and okapi

Edson Ishengoma Corresp., 1, 2, Morris Agaba 1, Douglas R Cavener 3

1 The School of Life Sciences and Bio-Engineering, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
2 Mkwawa University of College of Education, University of Dar-es-Salaam, Iringa, Tanzania
3 Department of Biology and the Huck Institute of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States

Corresponding Author: Edson Ishengoma
Email address: ishengomae@nm-aist.ac.tz

Background. The capacity of species to respond and perceive visual signal is integral to their evolutionary success. Giraffe is closely related to okapi, but the two species have broad range of phenotypic differences including their visual capacities. Vision studies rank giraffe’s visual acuity higher than all other artiodactyls despite sharing similar vision ecological determinants with most of them. To what extent giraffe unique visual capacity and its difference with okapi is reflected by changes in their vision genes is not understood.

Methods. The recent availability of giraffe and okapi genome provided opportunity to identify giraffe and okapi vision genes. Multiple strategies were employed to identify thirty-six candidate mammalian vision genes in giraffe and okapi genomes. Quantification of selection pressure was performed by a combination of branch-site test of positive selection and clade models of selection divergence through comparing giraffe and okapi vision genes and their corresponding orthologous sequences from other mammals obtained from public gene banks.

Results. Signatures of selection was identified in key genes that could potentially underlie giraffe and okapi visual adaptations. Importantly, some genes that contribute to optical transparency of the eye and those that are critical in light signaling pathway were found to show signatures of adaptive evolution or selection divergence. Comparison between giraffe and other ruminants identifies significant selection divergence in CRYAA and OPN1LW in giraffe. Significant selection divergence was identified in SAG while positive selection was detected in LUM when okapi is compared with ruminants and other mammals. Sequence analysis of OPN1LW showed that at least one of the sites known to affect spectral sensitivity of the red pigment is uniquely divergent between giraffe and other ruminants.

Discussion. By taking a systemic approach to gene function in vision, the results provide the first molecular clues associated with giraffe and okapi vision adaptation. At least some of the genes that exhibit signature of selection may reflect adaptive response to differences in giraffe and okapi habitat. Moreover, requirement for long distance vision associated with predation likely played an important role in the adaptive pressure on giraffe vision genes.
Evolutionary analysis of vision genes identifies potential drivers of visual differences between giraffe and okapi

Edson Ishengoma¹,², Morris Agaba¹, Douglas R. Cavener³

¹School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Sciences and Technology, Arusha, Tanzania
²Mkwawa University College of Education, University of Dar es Salaam
³Department of Biology and the Huck Institute of Life Sciences, Pennsylvania State University, USA

Corresponding author
Edson Ishengoma
edson.ishengoma@muce.ac.tz
ishengomae@nm-aist.ac.tz
Abstract

Background. The capacity of species to respond and perceive visual signal is integral to their evolutionary success. Giraffe is closely related to okapi, but the two species have broad range of phenotypic differences including their visual capacities. Vision studies rank giraffe’s visual acuity higher than all other artiodactyls despite sharing similar vision ecological determinants with most of them. To what extent giraffe unique visual capacity and its difference with okapi is reflected by changes in their vision genes is not understood.

Methods. The recent availability of giraffe and okapi genome provided opportunity to identify giraffe and okapi vision genes. Multiple strategies were employed to identify thirty-six candidate mammalian vision genes in giraffe and okapi genomes. Quantification of selection pressure was performed by a combination of branch-site test of positive selection and clade models of selection divergence through comparing giraffe and okapi vision genes and their corresponding orthologous sequences from other mammals obtained from public gene banks.

Results. Signatures of selection was identified in key genes that could potentially underlie giraffe and okapi visual adaptations. Importantly, some genes that contribute to optical transparency of the eye and those that are critical in light signaling pathway were found to show signatures of adaptive evolution or selection divergence. Comparison between giraffe and other ruminants identifies significant selection divergence in CRYAA and OPN1LW in giraffe. Significant selection divergence was identified in SAG while positive selection was detected in LUM when okapi is compared with ruminants and other mammals. Sequence analysis of OPN1LW showed that at least one of the sites known to affect spectral sensitivity of the red pigment is uniquely divergent between giraffe and other ruminants.
Discussion. By taking a systemic approach to gene function in vision, the results provide the first molecular clues associated with giraffe and okapi vision adaptation. At least some of the genes that exhibit signature of selection may reflect adaptive response to differences in giraffe and okapi habitat. Moreover, requirement for long distance vision associated with predation likely played an important role in the adaptive pressure on giraffe vision genes.

Introduction

Visual cognition is critical to health, survival and evolutionary success of terrestrial vertebrates. In mammals visual cognition manifests itself into several sub-responses arising from light signal processing: visual acuity which is the capacity for the eye to resolve closely spaced objects, contrast sensitivity, motion perception, depth perception which is the three dimensional view of the object, and color discrimination (Osorio & Vorobyev 2005; Kohn, 2007; Heesy & Hall, 2010). These visual elements are inextricably linked to species evolutionary success in terms of their competitiveness at food acquisition, predator avoidance, suitable mate recognition, intra-specific communication and finding suitable habitat. Vision and ecological studies appear to show that considerable distinction in vision perceptiveness exists between giraffe and other artiodactyls including its close relative, the okapi. Giraffes have excellent aerial vision reinforced by their long necks, which is uniquely the highest among ruminants and predominantly rely on vision communication relative to other senses (Young & Isbell, 1991; Mitchell et al., 2013; VanderWaal et al., 2013; Veilleux & Kirk, 2014). By contrast, okapi have poor eyesight adapted to low-light environment and depend heavily on their smell and hearing acuities to exploit the environment (Lindsey, Green & Bennett, 1999; Greive & Iwago, 2003). Giraffe better visual acuity measured at 25–27 cycles per degree than okapi could be a function of their respective ecology, since giraffe inhabit the light illuminated Savannah habitat while okapi are specifically restricted to low-light environment in the deep forests of
Congos. However, the basis of giraffe's uniquely excellent vision even among other artiodactyls sharing the same environment remains enigmatic.

Adaptive evolution on vision can operate at three levels namely, at organ level, cellular and biochemical level. At the level of the organ, mammals have evolved specialized organ, the eye, to transmit and focus incident light on a photosensitive retina which convert the visual image into neural signals for onward transmission to the image processing optic centers in the brain via the optic nerve. The complex interaction of species and their environment with respect to the visual tasks they perform has resulted in different eye sight specialization among mammals. Broadly, mammals have evolved differential spatial positioning of the eyes relative to the head which enables either to use a single eye to focus on a single point (monocular vision) or use both eyes for the same purpose (binocular vision) (Pettigrew, 1986). Variations in the gross morphology of the eyes can also be found in closely related species. Giraffes, for example, have fairly round eye orbits which provide an increased binocular field of vision and depth perception while okapi orbits are more elongated laterally which could be advantageous in their peripheral vision (Lindsey, Green & Bennett, 1999).

Transmission of light to the neurosensory retina and transduction of light signal into neural information for eventual transmission to the brain is primarily accomplished by specialized tissue and cell types of the eye (Jeon, Strettoi & Masland, 1998; Sivak, Andison & Pardue, 1999; Purves, Augustine & Fitzpatrick, 2003; Cepko, 2014). Transparent cornea and lens combine to transmit and refract light towards the retina. The photoreceptors (rods and cones) detect light and pass it as electrochemical signal to the bipolar and horizontal cells. Bipolar and horizontal cells relay the signals from photoreceptors to amacrine and ganglion cells via synaptic contacts. Various species have different tissue-level and cellular adaptations to optimize for their vision requirements. Specific patterning of collagen fibrils and proteoglycans across the cornea stroma determines differences in corneal light transparency, refractive power and ability to filter out ultraviolet (UV) light among vertebrate species (Winkler et al. 2015). The eye lens is composed of various crystallins proteins which determine its
transparency and refractive power. The refractive index of the lens is associated with its shape and both parameters were shown to vary between species depending on their visual requirements (Pierscionek & Augusteyn 1993). Moreover, visual acuity tends to be higher in mammals with smaller relative cornea and lens sizes (Veilleux & Kirk, 2014). In the retina, between species variations in the number and relative distributions of rods and cones allow for variations in polychromatic vision and nocturnal or diurnal habits of mammalian species (Wikler & Rakic, 1990; Peichl, 2005; Perry & Pickrell, 2010). Also, topographic heterogeneity in ganglion cell density in the retinas of different species may provide differential capacities in transferring information to the brain. This is expected to contribute to variations in visual acuity in mammals. As demonstrated by anatomical and behavioral measurements of variation in visual performances in various species, species with higher ganglion cell density generally have increased visual acuity than species with lower ganglion cell density (Rolls & Cower, 1970; Pettigrew et al, 1988; Collin & Pettigrew, 1989; Coimbra et al., 2013).

Many biochemical processes involving several genes have roles in vision, the most widely studied process being the molecular genetic basis of the light signaling mediated by the light pigments, interacting proteins and other proteins downstream the signaling pathway. Photopigment rhodopsin, located on rod cells disk membranes, specifically mediate vision in the dark and its signaling desensitization requires direct interaction of phosphorylated rhodopsin with arrestin (Vishnivetskiy et al., 2007). Color vision is primarily mediated by cone cells through photopsins comprising of short-, middle- and long-wavelength sensitive opsins. Comparison of extant and ancestral vision genes reveals episodes of nucleotide substitutions that critically impact on spectral tuning of short- and long- wavelength light pigment to vary and coincide with fundamental differences in green-red color detection among mammals (Yokoyama & Radlwimmer, 1998; Yokoyama, 2002; Horth, 2007). The “five-site rule” proposed by Yokoyama & Radlwimmer (1998) which generally applies across mammals predicts that allelic variations at critical functional sites (i.e. sites 180, 197, 277, 285 and 308) of the long-wavelength sensitive opsin determines species-specific spectral sensitivity in the red range of the visible spectrum. More recently, it has been
shown that variations in specific allelic combination among some of the five sites of long-wavelength sensitive opsin could confer adaptive significance on ecologically relevant traits. For example, it has been observed that the amino acids variation at three of the five sites, that is sites 180, 277 and 285, influence the ability of some primates to distinguish different wavelengths in the red color range important for seeing the ripe fruit (Matsumoto et al., 2014).

For such an evolutionarily important trait as vision, genes associated with vision processes will often be subject to purifying selection and therefore are expected to be conserved over evolutionary timescales (Lamb, 2011). However, we recently published giraffe genome and detected few of its coding genes associated with vision to show signatures of adaptation (Agaba et al., 2016). These genes included Peripherin-2 (PRPH2) and Cytochrome P450 family 27 (CYP27B1). PRPH2 encodes a protein integral to rods and cones and mutations in this genes cause various forms of retininis pigmentosa, pattern dystrophies and macular degenerations (Keen & Inglehearn, 1996). CYP27B1 codes for an enzyme that hydroxylate Vitamin D to modulate normal calcium and phosphorus homeostasis required for proper development and maintenance of bones. Recently, additional CYP27B1 functions in relation to vision have been proposed. These include participating in pathways that counteract inflammation, angiogenesis, oxidative stress, and fibrosis that confer protection for various retinopathies such as age-related macular degenerations in mice and humans (Parekh et al., 2007; von Lintig et al., 2010; Morrison et al., 2011).

In order to elucidate on the evolutionary processes underlying disparity in giraffe and okapi vision, we take advantage of the availability of giraffe and okapi genomes to analyze thirty-six (36) candidate ‘visual’ genes through comparison with those of closely related species. The objectives are first to identify genes exhibiting signatures of adaptive evolution and/or divergent selection and secondly to relate sequence changes in giraffe and okapi vision proteins to possible change in visual functions.

Materials and Methods

Identification of candidate genes
To obtain vision genes multiple strategies were utilized to identify proteins with direct or probable roles in vision. The initial step involved downloading cattle protein sequences from ENSEMBL (Flicek et al. 2012) and screening for proteins annotated with gene ontology terms “phototransduction” (GO: 0007601), and “visual perception” (GO: 0007602). The corresponding cattle nucleotide sequences for cattle vision protein queries were also obtained from ENSEMBL. We used PANTHER (Mi et al., 2013) to screen for proteins functionally annotated with GO vision terms. Since GO annotation is a computational functional assignment, the reliability of gene function in vision was checked by a careful literature curation. Searches for the literature proof of gene involvement in vision was performed based upon at least one of the following criteria: (i) the presence of Ocular/Cortical Visual Impairement-associated mutations in human orthologue; (ii) expression in the eye since genes expressed in a given organ at high levels are likely vital in the development and function of that organ and, (iii) interaction with known visual genes and loss of vision in knockout or sporadic mutant mice. Only genes with at least two references linking to a role in vision were selected. Orthologous mapping of cattle vision proteins to giraffe and okapi genomes identified 36 genes which were used for further analysis (Supplemental File 1).

The lineages, gene sequence alignments and gene trees
Other mammalian taxa were selected on the basis of availability of sequences for the candidate vision genes in the refseq dataset of GENBANK (Benson et al., 2013) or ENSEMBL. Sequences with questionable protein coding quality status based upon having incomplete coding sequence or presence of internal stop codons were removed. The sequences for giraffe and okapi candidate vision genes were obtained by performing TBLASTN search using cattle proteins against giraffe and okapi genome sequences that were generated as part the giraffe genome project (Supplemental File 2). Also through TBLASTN searches with cattle vision proteins queries, orthologous nucleotide sequences for all 36 vision genes for the target species were downloaded from NCBI RefSeq mRA or non-redundant nucleotide database. In case of existence of multiple isoforms for a single gene, the isoform with length similar or closest to giraffe and okapi sequences was selected. This is in recognition of the fact that
isoforms with similar length are likely evolutionarily conserved with similar function among species (Villanueva-Cañas, Laurie & Alba, 2013). The final list of species, ENSEMBL identity for cattle sequences, RefSeq accession numbers for sequences/isoforms obtained from NCBI and corresponding length for each coding sequence are provided in Supplemental File 3.

The coding DNA sequences for each gene were translated to the corresponding protein sequence and sequences with internal termination codons were discarded. The protein sequences were then aligned using MUSCLE release 3.8 (Edgar, 2004), subsequently the protein sequence alignment was then used a guide for the production of coding sequence alignment for each gene. This procedure was implemented using RevTrans (Wernersson & Pedersen, 2003). Phylogenetic trees for each gene were constructed using the HKY85 substitution model of nucleotide evolution and maximum likelihood framework implemented in PhyML Version 3.0 (Guindon & Gascuel, 2003) and bootstrapping with 100 replicates was performed to be certain of the robustness of the resulting phylogenies.

Estimation of the average rates of non-synonymous and synonymous substitutions

In order to examine if overall rates of evolution in vision genes contributed to divergence in vision capabilities between giraffe and okapi, the rates of non-synonymous substitutions per non-synonymous sites (dN) and synonymous substitutions per synonymous sites (dS) were estimated for each branch of the tree using the free ratio model of the codeml program in the PAML package (Yang, 2013). The free-ratio model independently estimates dN, dS and dN/dS for each branch by assuming that every branch in a tree has a different evolutionary parameter. This is not an explicit statistical test for selection but the key parameters obtained may provide the first line of evidence in terms of relative strength of selection among species.

Identification of genes and amino acid residues under positive selection

To determine adaptive evolution on giraffe and okapi vision genes, signatures of positive selection acting across giraffe and okapi lineages against the background of broad range of mammals was independently assessed for each vision gene. The
branch-site test for positive selection was used to identify genes showing signatures of adaptive evolution. The test applies codon models of evolution using normalized nonsynonymous to synonymous substitution rate ratio (\(\omega\) or dN/dS) by assuming that adaptive evolution is a rare event during evolution of species and only few sites along the proteins will be affected by positive selection (Zhang, Nielsen & Yang, 2005). As such, it is required to hypothesize *apriori* a branch expected to have evolved under positive selection termed as “foreground”. The likelihood scores of branch-site alternative and null models based on dN/dS as implemented in CODEML in the PAML package were compared using the likelihood ratio test (LRT). Significant case of positive selection was only assumed if LRT yielded \(p < 0.05\) using the chi-squared distribution at one degree of freedom. For genes that were identified to be under significant positive selection, amino acid residues in the protein sequences were identified that were predicted by Bayes empirical Bayes (BEB) approach to belong to the codon class of positive selection on the foreground lineages (Yang, Wong & Nielsen, 2005).

Clade models analyses of selection divergence

It has been recently observed that phenotypic adaptive evolution in vision can also be contributed by divergent selection in orthologous proteins of ecologically divergent species (Weadick & Chang, 2012; Schott et al., 2014). To explore whether giraffe and okapi differences in vision could be partly explained by divergent selection on their vision proteins, the two species were independently compared with other ruminants by applying PAML’s Clade Model C (CmC) (Bielawski & Yang, 2004). CmC partitions different branches within the phylogeny as “background” and “foreground” as well as existence of three site categories, two of which experience uniform selection across the entire phylogeny (either purifying selection \((0 < \omega_0 < 1)\) or neutral evolution \((\omega_1 = 1)\)) while the third is allowed to vary between background \((\omega_2 > 0)\) and foreground \((\omega_3 > 0)\) branches. The recently developed M2a_rel (Weadick & Chang, 2012) serves as a useful null model for the CmC. In this analysis, since the cornea, lens and retina are central optical systems in animal vision, only genes that contribute to the structural properties of cornea and lens and those that are known to play critical role in the light signaling function were investigated. Twenty (20) proteins were identified in our total
vision gene list: Cyclic Nucleotide Gated Channel Alpha 2 (CNGA2), Cyclic Nucleotide Gated Channel Alpha 4 (CNGA4), Crystallin Alpha A (CRYAA), Guanine nucleotide-binding protein G(t) subunit alpha-1 (GNAT1), Guanine nucleotide-binding protein G(t) subunit alpha-2 (GNAT2), Guanine nucleotide-binding protein subunit beta-1 (GNB1), Guanine nucleotide-binding protein G(t) subunit gamma-T1 (GNGT1), Guanylate Cyclase Activator 1A (GUCA1A), Guanylate Cyclase Activator 1B (GUCA1B), Lumican (LUM), Long-wave-sensitive opsin-1 (OPN1LW), Short-wave-sensitive opsin-1 (OPN1SW), Phosphodiesterase subunit delta (PDE6D), Phospholipase C beta 4 (PLCB4), Retinol dehydrogenase 11 (RDH11), Retinol dehydrogenase 12 (RDH12), RPE-retinal G protein-coupled receptor (RGR), Rhodopsin (RHO), Retinal Pigment Epithelium-Specific Protein 65kDa (RPE65) and S-antigen (SAG). In the genes which showed significant selection divergence, potential significance of selection divergence was assessed by examining sites which had significant Bayes posterior probability (> 0.75) in the divergent site class between giraffe or okapi and other ruminants. We assessed these sites for possible functional consequences based on literature review of functional studies.

Results

Positive selection pressure within the visual genes of giraffe and okapi

Based on average rates of evolution as determined by dN, dS and dN/dS parameters as estimated by the free-ratio model, no significant differences of the three evolutionary parameters were observed between giraffe and okapi (Supplemental File 4). In both species, overall dN, dS and dN/dS were lower than 0.005, 0.05 and 0.1, respectively, suggesting that vision genes have generally evolved under strong purifying selection as expected. Since positive selection tend to be episodic by affecting few amino acid sites along particular lineage, the widely used branch-site models are robust means of discovering cases of positives selection in a gene for given species. Previously, we used the branch-site test in a genome-wide screen and detected positive selection in PRPH2 and CYP27B1 in the giraffe lineage. We have also used the branch-site test
here to further examine whether some okapi vision genes are also associated with adaptive evolution. The results show *LUM* as a candidate for positive selection among the 36 vision genes in the okapi lineage (Figure 1). Substitution analysis shows that the majority of sites (> 80%) are conserved between okapi, other ungulates and cetaceans (Figure 1B). In fact, positive selection in okapi's *LUM* is predicted to occur at a single codon site, GCG, at position 36 which encodes Alanine. The corresponding codon position in giraffe is AGA while in other species is AGG both of which encode Arginine. Clearly, the common ancestor of okapi and giraffe must have had Arginine at this LUM site. The peculiar observation is that R36A substitution seems to have required at least two substitutions in the lineage leading to okapi. Also, positive selection at this site is associated with strong BEB posterior probability (0.94) (Figure 1A).

Divergent selection pressure has shaped the evolution of giraffe and okapi important vision genes

We also examined among twenty genes critical to light transmission and light signaling pathway which genes exhibit signature of divergent selection. After setting giraffe and okapi as foreground lineages against the background of other ruminant species significant results were obtained for three genes: *SAG*, in okapi, and *CRYAA* and *OPN1LW*, in the giraffe lineage (Table 1). *SAG* binds to photoactivated and phosphorylated rhodopsin which desensitize the receptor and regulates the signaling process; the mutation in the gene causes congenital stationery night blindness and other retinal diseases (Kuhn, et al., 1984; Fuchs et al., 1995; Nakazawa et al., 1998).

CRYAA is a structural protein in the lens that provides its structural integrity and contributes to the transparency and refractive index of the lens; mutations in the gene result into congenital cataract disorders (Litt et al., 1998; Horwitz, 2003; Nagaraj et al., 2012). *OPN1LW* is induced by light photons to change its conformation following isomerization of its 11-*cis*-retinal into all-*trans*-retinal triggering phototransduction cascade. In humans, the maximum sensitivity of *OPN1LW* is at 560 nm of the light spectrum which makes it more sensitive to the red color than any other opsin. Defects in the gene have been found to affect color blindness (Nathans et al., 1986; Nathans et al., 1993).
In all three significant cases, vast majority of the sites (about 95%) were under strong purifying selection in both foreground and background lineages to keep their functional integrity while the proportion of divergent site classes were about 5%. The proportions of neutrally evolving sites were negligible. Notably, divergently evolving sites were under stronger purifying selection in the foreground lineages in the two genes, \textit{SAG} and \textit{CRYAA}, than in the background lineages. However, in divergent site class for \textit{OPN1LW}, giraffe as a foreground lineage showed a remarkable case of rate acceleration ($\omega = 339.6$) compared with other ruminant lineages. Because it is theoretically possible for novel functions to be associated with selection divergence in orthologous genes we next identified sites predicted to have high (> 0.75) posterior probability score as determined by PAML's Bayesian computation. According to the five-sites rule, substitutions involving Serine (S), Alanine (A), Tyrosine (Y), Histidine (H), Phenylalanine (F) and Threonine at five key sites (i.e. sites 180, 197, 277, 285 and 308 of the mature opsin encoded by \textit{OPN1LW}) have been observed to exert cumulative change in spectral shifts. In particular, the S180A, H197Y, Y277F, T285A and A308S substitutions modulate absorption spectrum by decreasing 7, 28, 7, 15 and 16 nm from the maximum wavelength in an additive manner, respectively, while the reverse substitutions increases it by the same measures (Yokoyama & Radlwimmer, 1999). Significant posterior probability scores were found in \textit{OPN1LW} at two sites, 180 and 233, the sites which are observed to be uniquely variant between giraffe and other ruminants (Figure 2). Except for A180S substitution, the residues at remaining critical sites of \textit{OPN1LW} are identical between giraffe and other ruminants which apparently suggest that optimal detection in the red color range could be different between giraffe and other ruminants. The second giraffe specific substitution (T233S) occurs at another spectrally important site within the red pigment, where the A233S substitution has been observed to shift the wavelength by 1 nm (Winderickx et al., 1992). However, we do not think that this substitution is functionally consequential in terms of spectral tuning for color sensitivity between giraffe and other ruminants as both Serine and Threonine are hydroxyl-bearing amino acids (Merbs & Nathans, 1993).
To gain further insight into the functional significance of giraffe's OPN1LW selection divergence, we phylogenetically examined the long-wavelength sensitive opsin across broad range of mammals for possible functional convergence associated with the five critical sites. It can be observed that the entire OPN1LW gene tree is faithfully concordant with species phylogeny (Figure 3A). However, the resultant tree using only codons corresponding to sites 180, 197, 277, 285 and 308 of OPN1LW reveals interesting positional shifts and clustering. Apparently, giraffe is observed to cluster within an artificial clade together with pinnipeds, bats and some primates (Figure 3B). The overrepresented allele at the five sites is Serine, Histidine, Tyrosine, Threonine and Alanine (henceforth denoted here as SHYTA) for sites 180, 197, 277, 285 and 308, respectively, in this clade. The giraffe SHYTA allele is observed in common with some old-world monkeys, walrus and vesper bats. The similarity of SHYTA allelic combination may reflect species-specific evolutionary pressure resulting in functional convergence among evolutionarily distant species in color discrimination in the red range of the visible spectrum.

Discussion

The development of distinct attributes between species for a given trait is very complex and likely involves multiple genes. Vision is a typical trait that requires modulated actions of many genes, some of which with tissue- and/or cell-type restricted functions (Siegert et al., 2012). The involvement of many genes suggests that the evolutionary divergence of complex traits that require coordinated functions of multiple tissue/cell types constituting a complex organ, such as the eye, cannot be fully explained by a single gene or a single tissue. In this study, we examined several genes specific to different tissues of the eye that are involved in different aspects of vision function to determine general and specific factors underlying giraffe excellent vision and its disparity in vision with okapi.

Our approach of studying many genes with diverse functions in vision afforded us the opportunity to identify several genes that potentially underlie visual adaptations in
giraffe and okapi as well as providing insight into the extent of the action of natural selection on vision phenotype. In both species, we discovered positive selection and significant selection divergence in genes with predominant roles in corneal, lens and retinal functions suggesting that the focal point of selection on vision phenotype may not be limited to a single optical unit. Rather, the interplay of different functional elements in vision appears to be mirrored by the operation of natural selection on functionally diverse vision genes, possibly to adjust species' vision to their particular ecological settings.

Vision plays a fundamental role in the survival of most animals. Giraffes are the longest-necked mammals which depend heavily on their eyesight to feed, communicate and avoid predators. Interestingly, Mitchell et al. (2013) observed that giraffe features associated with good vision seemed to be correlated with its long neck. In addition to our previous finding of positive selection on PRPH2 and CYP27B1, this study identifies selection divergence in CRYAA and OPN1LW between giraffe and other ruminants. Coordinated evolutionary changes on vision genes associated with skeletal physiology, lens transparency and color vision could provide insights into molecular basis of giraffe's long distant and acute vision. We compared giraffe's red opsin with other ruminants and observed changes that could provide giraffe with unique color-based tuning to match with spectral reflectance of the surrounding environment. The notable change is the A180S substitution at one of the five functionally significant sites of the red opsin, which confers giraffe with an SHYTA allele compared with an AHYTA allele observed in okapi and other ruminants. Based on the five-sites rule, this is expected to provide giraffe with at least 5 nm spectral-shift toward red when compared with other ruminants (Yokoyama & Radlwimmer, 1998; Yokoyama & Radlwimmer 1999; Matsumoto et al., 2014).

Adaptive significance for the OPN1LW difference between giraffe and other ruminants can only be speculated upon. Giraffes, just like all other wild ruminants, have lions as their most frequent predators (Bercovitch and Berry 2009; Periquet et al. 2012). However, giraffe height advantage to see lions from afar likely presents challenges in identifying camouflaged lions in the background of tall dry grass of the
semi-arid Savannah (Owen-Smith, 2008; Davidson et al., 2013). Perhaps the SHYTA genotype provides giraffes with enhanced ability to discriminate between dry savannah vegetation and lions. It is also notable to observe that the SHYTA genotype is possessed by other mammals including some bat species and some fruit-eating old-world primates which may signify convergent solution for similar or related problem. For fruit-eating primates, possessing SYT at three of the five spectrally important sites of OPN1LW is observed to be advantageous in helping identify ripe fruits at a distance (Matsumoto et al., 2014). The importance of red color vision in bats is not clear but some bat species including vespertilionid bats possess intact, functionally constrained OPN1LW gene that probably helps in hunting fruits or for other purposes (Wang et al., 2004).

Okapis, on the other hand, live in low-light environment and compared with other ruminants which live in the open environment of the Savannah, they are hidden from many predators such as lions. Our study showed that the genes LUM and SAG have undergone, respectively, positive selection and significant selection divergence in the okapi lineage. Recently, rod arrestin (SAG) was found to show strong evidence of signatures of convergent evolution in species adapted to dim-light vision (Shen et al., 2012). The evolutionary changes in a gene associated with corneal transparency (LUM) together with coordinated changes in a gene that is important in rod mediated vision (SAG) could confer okapi with complex mechanisms associated with requirement for low light vision and exploitation of the deep forest niche.

LUM is a low molecular weight leucine-rich proteoglycan with keratan sulfate side chain specifically expressed in the cornea as a regulator for organizing collagen fibers in the cornea (Blochberger et al., 1992; Meek & Knupp, 2015). Although functional studies to assess precise role of the site predicted to have been affected by positive selection are missing, it has been shown that LUM deficiency in mice leads to disruption in corneal transparency (Chakravarti et al., 1998). We speculate that positive selection in LUM is a result of okapi vision adaptation to maintain corneal transparency driven by their confinement in deep forests where ambient light levels are reduced. Alternatively, it's possible that positive selection in LUM could be linked
with okapi eye adaptations related to UV light transmission. Douglas & Jeffery (2014) shows okapis to possess a higher degree of UV transmission through their ocular media than closely related artiodactyls. What is particularly interesting to note is that mammals with a high degree of UV transmission have reduced visual acuity and more adapted to dim light vision (Douglas & Jeffery, 2014). This might point to the existence of evolutionary switch in a system of genes important for vision which simply work to adapt species to dim light environments and also expanding their spectral range to improve visual sensitivity.

Conclusions
Subset of genes known to play functional role in vision has been analyzed in order to identify if remarkable differences in vision between giraffe and okapi is associated with adaptive evolution. The finding that visual genes are highly conserved in their evolution signifies strong purifying selection in giraffe and okapi visual genes. However, putative evidence of significant positive selection and selection divergence is observed on some key vision genes in both giraffe and okapi. Signature of selection in genes functionally associated with important optical elements of the eye, such as the cornea, the lens and the retina, could be indicative of concerted, organ-level impact of natural selection in adjusting species' vision to their respective environment. This demonstrate the importance of system-level understand of molecular evolution associated with complex traits (Invergo et al., 2013). We believe that comparative evolutionary vision studies such as this could contribute to the understanding of the molecular genetic system underlying vision in mammals in general.
References

Agaba M, Ishengoma E, Miller WC, McGrath BC, Hudson CN, Bedoya Reina OC, Ratan A, Burhans R, Chikhi R, Medvedev P, Praul CA, Wu-Cavener L, Wood B, Robertson H, Penfold L, Cavener DR. 2016. Giraffe genome sequence reveals clues to its unique morphology and physiology. *Nature Communications* 7: 1–8. DOI: 10.1038/ncomms11519.

Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. 2013. GenBank. *Nucleic Acids Research* 41: D36–D42. DOI: 10.1093/nar/gks1195.

Bercovitch FB, Berry PSM. 2009. Ecological determinants of herd size in the Thornicroft’s giraffe of Zambia. *African Journal of Ecology* 48(4): 962–971. DOI: 10.1111/j.1365-2028.2009.01198.x.

Bielawski JP, Yang Z, 2004. A Maximum Likelihood Method for Detecting Functional Divergence at Individual Codon Sites, with Application to Gene Family Evolution. *Journal of Molecular Evolution* 59(1): 121–132.

Blochberger TC, Vergnes JP, Hempel J, Hassell JR. 1992. cDNA to Chick Lumican (Corneal Keratan Sulfate Proteoglycan) Reveals Homology to the Small Interstitial Proteoglycan Gene Family and Expression in Muscle and Intestine. *The Journal of Biological Chemistry* 267(1): 347–352.

Cepko C. 2014. Intrinsically different retinal progenitor cells produce specific types of progeny. *Nature Reviews Neuroscience* 15(9): 615–627. DOI: 10.1038/nrn3767.

Chakravarti S, Magnuson T, Lass JH, Jepsen KJ, LaMantia C, Carroll H. 1998. Lumican Regulates Collagen Fibril Assembly: Skin Fragility and Corneal Opacity in the Absence of Lumican. *The Journal of Cell Biology* 141(5): 1277–1286.

Coimbra JP, Hart NS, Collin SP, Manger PR. 2013. Scene From Above: Retinal Ganglion Cell Topography and Spatial Resolving Power in the Giraffe (*Giraffa camelopardalis*). *The Journal of Comparative Neurology* 521:2042–2057. DOI: 10.1002/cne.23271.

Collin SP, Pettigrew JD. 1989. Quantitative Comparison of the Limits on Visual Spatial Resolution Set by the Ganglion Cell Layer in Twelve Species of Reef Teleosts Ganglion Cell Layer in Twelve Species. *Brain, Behavior and Evolution* 34: 184–192.

Davidson Z, Valeix M, Van Kesteren F, Loveridge AJ, Hunt JE, Murindagomo F, Macdonald DW. 2013. Seasonal diet and prey preference of the African lion in a waterhole-driven semi-arid savanna. *PLoS One.* 8: e55182. DOI: 10.1371/journal.pone.0055182
Douglas RH, Jeffery G. 2014. The spectral transmission of ocular media suggests ultraviolet sensitivity is widespread among mammals. *Proceedings of Royal Society B* 281: 20132995. DOI: 10.1098/rspb.2013.2995.

Edgar RC, 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Research* 32(5): 1792–1797. DOI: 10.1093/nar/gkh340.

Flicek P, Ahmed I, Amode MR, Barrell D, Beal K, Brent S, Carvalho-Silva D, Clapham P, Coates G, Fairley S, Fitzgerald S, Gil L, García-Girón C, Gordon L, Hourlier T, Hunt S, Juettemann T, Kähäri AK, Keenan S, Komorowska M, Kulesha E, Longden I, Maurel T, McLaren WM, Muffato M, Nag R, Overduin B, Pignatelli M, Pritchard B, Pritchard E, Riat HS, Ritchie GR, Ruffier M, Schuster M, Sheppard D, Sobral D, Taylor K, Thomann A, Treovanion S, White S, Wilder SP, Aken BL, Birney E, Cunningham F, Dunham I, Harrow J, Herrero J, Hubbard TJ, Johnson N, Kinsella R, Parker A, Spudich G, Yates A, Zadissa A, Searle SM. 2012. Ensembl 2013. *Nucleic Acids Research* 41: D48–D55. DOI: 10.1093/nar/gks1236.

Fuchs S, Nakazawa M, Maw M, Tamai M, Oguchi Y, Gal A. 1995. A homozygous 1-base pair deletion in the arrestin gene is a frequent cause of Oguchi disease in Japanese. *Nature Genetics* 10: 360–362.

Greive BT, Iwago M. 2003. *Priceless: The Vanishing Beauty of A Fragile Planet*, Andrews McMeel Publishing.

Guindon S, Gascuel O. 2003. A Simple, Fast, and Accurate Method to Estimate Large Phylogenies by Maximum Likelihood To cite this version: *Systematic Biology* 52(5): 696–704. DOI: 10.1080/10635150390235520.

Heesy CP, Hall MI. 2010. The Nocturnal Bottleneck and the Evolution of Mammalian Vision. *Brain, Behavior and Evolution* 75 (3): 195–203. DOI:10.1159/000314278.

Horth L. 2007. Sensory genes and mate choice: Evidence that duplications, mutations, and adaptive evolution alter variation in mating cue genes and their receptors. *Genomics* 90: 159–175. DOI: 10.1016/j.ygeno.2007.03.021.

Horwitz J. 2003. Alpha-crystallin. *Experimental Eye Research* 76:145–153. DOI: 10.1016/S0014-4835(02)00278-6.

Invergo BM, Montanucci L, Laayouni H, Bertranpetit J. 2013. A system-level, molecular evolutionary analysis of mammalian phototransduction. *BMC Evolutionary Biology* 13:52. DOI: 10.1186/1471-2148-13-52.

Pettigrew JD, Dreher B, Hopkins CS, McCall MJ, Brown M. 1988. Peak Density and Distribution of Ganglion Cells in the Retinae of Microchiropteran Bats: Implications for Visual Acuity. *Brain, Behavior and Evolution* 32: 39–56.
Jeon C, Strettoi E, Masland RH. 1998. The Major Cell Populations of the Mouse Retina. *The Journal of Neuroscience* 18(21): 8936–8946.

Keen TJ, Inglehearn CF, 1996. Mutations and polymorphisms in the human peripherin-RDS gene and their involvement in inherited retinal degeneration. *Human Mutation* 8(4): 297–303.

Kohn A. 2007. Visual Adaptation: Physiology, Mechanisms, and Functional Benefits. *Journal of Neurophysiology* 97 (5): 3155–3164. DOI:10.1152/jn.00086.2007.

Kühn H, Hall SW, Wilden U. 1984. Light-induced binding of 48-kDa protein to photoreceptor membranes is highly enhanced by phosphorylation of rhodopsin. *FEBS Letters* 176(2): 473–478.

Lamb TD. 2011. Evolution of the Eye. *Scientific American* 305: 64–69. DOI: 10.1038/scientificamerican0711-64.

Lindsey SL, Green MN, Bennett CL. 1999. *The Okapi: Mysterious Animal of Congo-Zaire*, University of Texas Press.

Litt M, Kramer P, LaMorticella DM, Murphey W, Lovrien EW, Weleber RG. 1998. Autosomal dominant congenital cataract associated with a missense mutation in the human alpha crystallin gene CRYAA. *Human Molecular Genetics* 7(3): 471–474.

Massingham T, Goldman N. 2005. Detecting amino acid sites under positive selection and purifying selection. *Genetics* 169(3):1753-62. DOI: 10.1534/genetics.104.032144.

Matsumoto Y, Hiramatsu C, Matsushita Y, Ozawa N, Ashino R, Nakata M, Kasagi S, Di Fiore A, Schaffner CM, Aureli F, Melin AD, Kawamura S. 2014. Evolutionary renovation of L/M opsin polymorphism confers a fruit discrimination advantage to ateline New World monkeys. *Molecular Ecology*. 23(7):1799-1812. DOI: 10.1111/mec.12703

Meek KM, Knupp C. 2015. Progress in Retinal and Eye Research Corneal structure and transparency. *Progress in Retinal and Eye Research* 49: 1–16. DOI: 10.1016/j.preteyeres.2015.07.001.

Merbs SL, Nathans J. 1993. Role of Hydroxyl-bearing Amino Acids in Differentially Tuning the Absorption Spectra of the Human Red and Green Cone Pigments. *Photochemistry and Photobiology* 58(5): 706–710.

Mi H, Muruganujan A, Thomas PD. 2013. PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. *Nucleic Acids Research* 41: D377–D386. DOI: 10.1093/nar/gks1118.
Mitchell G, Roberts DG, van Sittert SJ, Skinner JD. 2013. Orbit orientation and eye morphometrics in giraffes (Giraffa camelopardalis). African Zoology 4: 333–339. DOI: 10.3377/004.048.0211.

Morrison MA, Silveira AC, Huynh N, Jun G, Smith SE, Zacharaki F, Sato H, Loomis S, Andreoli MT, Adams SM, Radeke MJ, Jelcick AS, Yuan Y, Tsiloulis AN, Chatzoulis DZ, Silvestri G, Kotoula MG, Tsironi EE, Hollis BW, Chen R, Haider NB, Miller JW, Farrer LA, Hageman GS, Kim IK, Schaumberg DA, DeAngelis MM. 2011. Systems biology-based analysis implicates a novel role for vitamin D metabolism in the pathogenesis of age-related macular degeneration. Human Genomics 5(6): 538–568.

Nagaraj RH, Nahomi RB, Shanthakumar S, Linetsky M, Padmanabha S, Pasupuleti N, Wang B, Santhoshkumar P, Panda AK, Biswas A. 2012. Acetylation of α A-crystallin in the human lens: Effects on structure and chaperone function. Biochimica et Biophysica Acta 1822: 120–129. DOI: 10.1016/j.bbadis.2011.11.011.

Nakazawa M, Wada Y, Tamai M. 1998. Arrestin Gene Mutations in Autosomal Recessive Retinitis Pigmentosa. Archive of Ophthalmology 116: 498–501.

Nathans J, Maumenee IH, Zrenner E, Sadowski B, Sharpe LT, Lewis RA, Hansen E, Rosenberg T, Schwartztt M, Heckenlively JR, Traboulsi E, Klingaman R, Bech-Hansen NT, Laroche GR, Pagon RA, Murphey WH, Weleber RG. 1993. Genetic Heterogeneity among Blue-Cone Monochromats. American Journal of Human Genetics 53(5): 987–1000.

Nathans J, Piantanida TP, Eddy RL, Shows TB, Hogness DS. 1986. Molecular Genetics of Inherited Variation in Human Color Vision. Science 232(4747): 193–202.

Osorio D, Vorobyev M. 2005. Photoreceptor Spectral Sensitivities in Terrestrial Animals: Adaptations for Luminance and Colour Vision. Proceedings The Royal Society. Biological Sciences 272 (1574): 1745–1752. DOI:10.1098/rspb.2005.3156.

Owen-Smith N. 2008. Changing vulnerability to predation related to season and sex in an African ungulate assemblage. Oikos. 117(4): 602-610. DOI: 10.1111/j.0030-1299.2008.16309.x

Parekh N, Chappell RJ, Millen AE, Albert DM, Mares JA. 2007. Association Between Vitamin D and Age-Related Macular Degeneration in the Third National Health and Nutrition Examination Survey, 1988 Through 1994. Archives of Ophthalmology 125: 661–669. DOI: 10.1001/archopht.125.5.661
Peichl L. 2005. Diversity of mammalian photoreceptor properties: adaptations to habitat and lifestyle? The anatomical record. Part A, Discoveries in Molecular, Cellular, and Evolutionary Biology 287: 1001–1012. DOI: 10.1002/ar.a.20262.

Perry GH, Pickrell JK. 2010. A rod cell marker of nocturnal ancestry. Journal of Human Evolution 58(2): 207–210. DOI: 10.1016/j.jhevol.2009.09.007.

Périquet S, Todd-Jones L, Valeix M, Stapelkamp B, Elliot N, Wijers M, Pays O, Fortin D, Madzikanda H, Fritz H, Macdonald DW, Loveridge AJ. 2012. Influence of immediate predation risk by lions on the vigilance of prey of different body size. Behavioral Ecology. 23(5): 970-976. DOI: 10.1093/beheco/ars060.

Pettigrew JD. 1986. The evolution of binocular vision. In: Pettigrew JD, Sanderson KJ, Levick WR. eds. Visual Neuroscience. Cambridge University Press, Cambridge, UK. 208–222.

Pierscionek BK, Augusteyn RC. 1993. Species Variability In Optical Parameters Of the eye lens. Clinical and Experimental Optometry 76: 22–25.

Purves D, Augustine GJ, Fitzpatrick D. 2003. The Retina. In: Purves D et al., eds. Neuroscience. Sinauer Associates, Sunderland, MA.

Rolls ET, Cower A. 1970. Topography of the Retina and Striate Cortex and its Relationship to Visual Acuity in Rhesus Monkeys and Squirrel Monkeys. Experimental Brain Research 10: 298–310.

Schott RK, Refvik SP, Hauser FE, Lópe-Fernández H, Chang BS. 2014. Divergent positive selection in rhodopsin from lake and riverine cichlid fishes. Molecular Biology and Evolution 31(5): 1149–1165. DOI: 10.1093/molbev/msu064.

Shen YY, Lim BK, Liu HQ, Liu J, Irwin DM, Zhang YP. 2012. Multiple Episodes of Convergence in Genes of the Dim Light Vision Pathway in Bats. PloS One 7: e34564. DOI: 10.1371/journal.pone.0034564.

Siegert S, Cabuy E, Scherf BG, Kohler H, Panda S, Le YZ, Fehling HJ, Gaidatzis D, Stadler MB, Roska B. 2012. Transcriptional code and disease map for adult retinal cell types. Nature Neuroscience, 15(3): 487–495. DOI: 10.1038/nn.3032.

Sivak JG, Andison ME, Pardue MT. 1999. Vertebrate optical structure. In: Archer S et al., eds. Adaptive Mechanisms in the Ecology of Vision. Chapman and Hall, London, 73-94.

VanderWaal KL, Wang H, McCowan B, Fushing H, Isbell LA. 2013. Multilevel social organization and space use in reticulated giraffe (Giraffa camelopardalis). Behavioral Ecology 25 (1): 17-26. DOI: 10.1093/beheco/art061.

Veilleux CC, Kirk EC. 2014. Visual Acuity in Mammals: Effects of Eye Size and Ecology. Brain, Behavior and Evolution 25 (1): 17-26. DOI: 10.1159/000357830.
Villanueva-Cañas JL, Laurie S, Albà MM. 2013. Improving genome-wide scans of positive selection by using protein isoforms of similar length. *Genome Biology and Evolution*. 5:457-467. DOI: 10.1093/gbe/evt017.

Vishnivetskiy SA, Raman D, Wei J, Kennedy MJ, Hurley JB, Gurevich VV. 2007. Regulation of Arrestin Binding by Rhodopsin Phosphorylation Level. *The Journal of Biological Chemistry* 282(44): 32075–32083. DOI: 10.1074/jbc.M706057200.

von Lintig J, Kiser PD, Golczak M, Palczewski K. 2010. The biochemical and structural basis for trans-to-cis isomerization of retinoids in the chemistry of vision. *Trends in Biochemical Science* 35(7): 400–410. DOI: 10.1016/j.tibs.2010.01.005.

Wang D, Oakley T, Mower J, Shimmin LC, Yim S, Honeycutt RL, Tsao H, Li WH. 2004. Molecular evolution of bat color vision genes. *Molecular Biology and Evolution*. 21(2):295-302. DOI:10.1093/molbev/msh015.

Weadick CJ, Chang BSW. 2012. An Improved Likelihood Ratio Test for Detecting Site-Specific Functional Divergence among Clades of Protein-Coding Genes. *Molecular Biology and Evolution* 83:43–53. DOI: 10.1159/000357830.

Wernersson R, Pedersen AG. 2003. RevTrans : multiple alignment of coding DNA from aligned amino acid sequences. *Nucleic Acids Research* 31(13):3537–3539. DOI: 10.1093/nar/gkg609.

Wikler C, Neuroanatomy S, Haven N. 1990. Distribution of Photoreceptor Nocturnal Primates Subtypes in the Retina of Diurnal and Nocturnal Primates. *The Journal of Neuroscience* 10(10): 3390-3401.

Winderickx J, Lindsey DT, Sanocki E, Teller DY, Motulsky AG, Deeb SS. 1992. Polymorphism in red photopigment underlies variation in colour matching. *Nature* 356(6368): 431–433. DOI: 10.1038/356431a0.

Winkler M, Shoa G, Tran ST, Xie Y, Thomasy S, Raghunathan VK, Murphy C, Brown DJ, Jester JV. 2015. A Comparative Study of Vertebrate Corneal Structure : The Evolution of a Refractive Lens. *Investigative Ophthalmology & Visual Science* 56(4): 2764–2772. DOI: 10.1167/iovs.15-16584.

Yang, Z., 2013. User Guide PAML : Phylogenetic Analysis by Maximum Likelihood. Version 4.7.

Yang Z, Wong WSW, Nielsen R. 2005. Bayes empirical bayes inference of amino acid sites under positive selection. *Molecular Biology and Evolution* 22(4): 1107– 1118. DOI: 10.1093/molbev/msi097.

Yokoyama S. 2002. Molecular evolution of color vision in vertebrates. *Gene* 300: 69–78.
Yokoyama S, Radlwimmer FB. 1998. The “five-sites” rule and the evolution of red and green color vision in mammals. *Molecular Biology and Evolution* 15(5): 560–567.

Yokoyama S, Radlwimmer FB. 1999. The Molecular Genetics of Red and Green Color Vision in Mammals. *Genetics* 153(2): 919–932.

Young TP, Isbell LA. 1991. Sex Differences in Giraffe Feeding Ecology: Energetic and Social Constraints. *Ethology* 87: 79–89.

Zhang J, Nielsen R, Yang Z. 2005. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. *Molecular Biology and Evolution* 22(12): 2472–2479. DOI: 10.1093/molbev/msi237.

Figure 1. Positive selection in *Lumican* (*LUM*) is predicted to have occurred in okapi (adapted to deep-forest) when compared to other ruminants inhabiting light illuminated environment. (A) PhyML generated maximum likelihood *LUM* gene tree that was used in branch-site test for positive selection setting okapi as a foreground lineage. The numbers adjacent to the nodes are posterior probability bootstrap support. (B) LUM protein alignment showing positions at which okapi differ with species within ruminant, cetacean, equine and pig families. Conserved positions
are omitted from the alignment. The (*) indicate identical amino acid with okapi's residue used as reference. The codon predicted to have undergone positive selection is at position 36 which encodes a unique amino acid in okapi compared with other species in the alignment.

(A)

Oxap

- Giraffe
- Cow
- Yak
- Water buffalo
- American buffalo
- Sheep
- Tibetan antelope
- Guat
- Sperm whale
- Bajli
- Horse
- Pig

Key:

- **L:** Long
- **S:** Short
- **T:** Tall
- **D:** Diverse
- **P:** Pure
- **E:** Equal
- **R:** Rare
- **K:** Known
- **AL:** Apprentice
- **NR:** Non-Resident
- **S:** Slow
- **F:** Fast
- **M:** Male
- **G:** Great
- **T:** Total
- **NG:** Not Given
- **R:** Ready
- **G:** General
- **H:** High
- **I:** In
- **N:** None
Figure 2. Selection divergence in long-sensitive opsin pigment \((OPNILW)\) between giraffe and closely related shorter ruminant species. Giraffe's \(OPNILW\) sequences were found to be identical between NZOO and MA1 (Agaba et al., 2016) verifying that the identified substitutions are likely real. Substitution analysis shows seven variant sites (4, 8, 170, 171, 180, 233 and 236) which differ between giraffe and any ruminant species shown in the phylogeny. Variant sites 180 and 233 have Bayes posterior probability of 0.93 and 0.89 respectively. Of these two sites, site 180 is predicted to have \(\omega\) ratio > 1 by site-wise likelihood ratio analysis (Massingham & Goldman, 2005).
Figure 3. Evolutionary relationship in mammals as revealed by *OPNILW* gene using (A) its entire coding sequence and (B) using codons 180, 197, 277, 285, and 308 coding for the mature peptide region of the long wavelength sensitive opsin. For species whose sequences were obtained from public database Refseq or Genbank accession numbers for the respective sequences are shown. * Humans are polymorphic at residue 180 with Serine and Alanine as common amino acids.

A:
Table 1. Significant selection divergence in three vision genes between giraffe or okapi (Clade 1) against the background of ruminant species (Clade 0)

Gene	lnL	Site classes	lnL	Site classes									
	Giraffe		Okapi										
	M2a_rel	CmC	LRT	0	1	2	P-value	CmC	LRT	0	1	2	P-value
CRYAA	-936.5	-933.8	5.3	0	1	2	0.02	-935.1	2.8	0	1	2	0.09
	ω₀ = 0.0	ω₁ = 1	ω₁ = 1						ω₀ = 0.0	ω₁ = 1			
	Clade 0 = 1.4								Clade 0 = 1.2				
	Clade 1 = 0.0								Clade 1 = 0.0				
SAG	-2177.5	-2176.8	1.6	0	1	2	0.2	-2175.5	4.1	0	1	2	0.04
	ω₀ = 0.05	ω₁ = 1	ω₁ = 1						ω₀ = 0.08	ω₁ = 1			
	Clade 0 = 0.5								Clade 0 = 0.0				
	Clade 1 = 0.2								Clade 1 = 2.3				
OPN1LW	-1780.6	-1778.2	24.7	0	0.03	2	0.01	0.03	-1780.2	0.7	0	0.05	0.4
	ω₀ = 0.0	ω₁ = 1	ω₁ = 1						ω₀ = 0.0	ω₁ = 1			
	Clade 0 = 0.0								Clade 0 = 0.9				
	Clade 1 = 339.6								Clade 1 = 0.0				