Multi-wave, breather and interaction solutions to (3+1) dimensional Vakhnenko–Parkes equation arising at propagation of high-frequency waves in a relaxing medium

Yeşim Sağlam Özkan a, Aly R. Seadawy b and Emrullah Yaşar a

aDepartment of Mathematics, Faculty of Arts and Science, Bursa Uludag University, Bursa, Turkey; bFaculty of Science, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia

ABSTRACT
In this study, based on the Hirota bilinear form, the exact analytic solutions of the (3+1) dimensional Vakhnenko–Parkes equation with various physical properties were constructed with the help of the Maple package program and symbolic computation. These solutions are the type of multi-waves, breather wave, lump–kink, lump–periodic solutions and interaction solutions (between lump and hyperbolic wave solutions). The constructed solutions have expanded and enriched the solution forms of this new model existing in the literature. By means of Maple package program, 3D and 2D graphs were drawn for the special choices of the parameters in the solutions, and the physical structures of the solutions obtained in this way were also observed. The solutions obtained can be used in the explanation of physical phenomena occurring in the propagation of high-frequency waves in a relaxing medium.

1. Introduction
The nonlinear evolution equations (NLEEs) model physical phenomena that occur in many areas of science include plasma physics, solid-state physics, materials science, fluid mechanics, oceanology, signal processing, system identification, mechanics, optical fibres, geochemistry, biology, data mining, artificial intelligence and telecommunications.

In order to better understand the physical phenomena modelled by such equations, or in other words, to look at the physical characteristics of the studied problem from a more accurate point and to reveal its possible applications, it is very important to obtain exact analytic solutions.

Exact or numerical solutions of NLEEs can be obtained using developed methods, computers and various computer programs that can perform long and tedious operations faster. Some of the methods developed in the past years are the modified direct algebraic method [1], Lie symmetry method [2–8], the Hirota method [9], Painlevé method [10], the variational iteration algorithm-II [11], the extended direct algebraic method [12–14], the integral equation method [15], the extended (G′/G) -expansion method [16, 17], the Sinh–Gordon function method [18], the extended auxiliary equation method [19, 20], the F-expansion method [21] and so on [22–26].

The Vakhnenko equation was described in 1992 [27] as
\[\frac{\partial}{\partial x} \left(\frac{\partial}{\partial t} + u \frac{\partial}{\partial x} \right) u + u = 0 \] (1)
occurs in modelling the propagation of high-frequency waves in a relaxing medium [28]. Here u is the dimensionless pressure which is the function of the spatial variable x and temporal variable t. In 1998, Equation (1) has been converted to Vakhnenko–Parkes (VP) equation which is given by
\[uu_{xt} - u_x u_{xt} + u^3 u_t = 0 \] (2)
by Vakhnenko and Parkes [29]. In 2017, the n-loop soliton solutions for (2+1)-dimensional Vakhnenko equation were calculated in [30]. In 2018, the modified form of Equation (2) was introduced by Wazwaz [31] using the meaning of the modified KdV equation. This form can be given as
\[uu_{xt} - u_x u_{xt} + u^3 u_t = 0 \] (3)
and is called as modified Vakhnenko–Parkes (mVP) equation. It has been shown by Wazwaz that the equation is completely integrable and multiple soliton solutions are obtained. The studies on the VP equation in recent years are quite remarkable [32–34].

CONTACT Emrullah Yaşar emrullah.yasar@gmail.com Department of Mathematics, Faculty of Arts and Science, Bursa Uludag University, Bursa 16059, Turkey

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
In this work, we focus our attention on the (3+1) dimensional integrable Vakhnenko–Parkes (VP) equation and present multi-wave, breather-wave solutions and some interaction solutions using symbolic computation. This equation has a Hirota bilinear form

\[\text{Equation (4)} \text{models high-frequency wave perturbations in relaxing high-rate active barotropic media and involves} x, y (\text{spatial variables}) \text{and} t (\text{temporal variable}). \text{The} (3+1) \text{- dimensional VP equation that emerges in the work of Wazwaz} [47, 48] \text{is given as follows:} \]

\[\begin{bmatrix} \frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z} \end{bmatrix} \left(\frac{\partial}{\partial t} + \mathbf{u} \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z} \right) \right) u + u = 0 \quad (5) \]

Upon using the transformation

\[\begin{align*}
 x &= T_1 + \int_{-\infty}^{X} U(T_1, T_2, T_3, X') \, dX' + x_0, \\
y &= T_2 + \int_{-\infty}^{X} U(T_1, T_2, T_3, X') \, dX' + y_0, \\
z &= T_3 + \int_{-\infty}^{X} U(T_1, T_2, T_3, X') \, dX' + z_0, \\
t &= X,
\end{align*} \quad (6) \]

where \(u(x, y, z, t) = U(T_1, T_2, T_3, X) \) and \(W(T_1, T_2, T_3, X) = \int_{-\infty}^{X} U(T_1, T_2, T_3, X') \, dX' \) or, equivalently,

\[W_X = U. \quad (7) \]

From (6) it follows that

\[\begin{align*}
 \frac{\partial}{\partial X} &= \frac{\partial}{\partial t} + \mathbf{u} \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z} \right), \\
 \frac{\partial}{\partial T_1} &= \frac{\partial}{\partial x} + W_{T_1} \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z} \right), \\
 \frac{\partial}{\partial T_2} &= \frac{\partial}{\partial y} + W_{T_2} \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z} \right), \\
 \frac{\partial}{\partial T_3} &= \frac{\partial}{\partial z} + W_{T_3} \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z} \right).
\end{align*} \]

From Equations (5) and (6), we obtain

\[U_{X T_1} + U_{X T_2} + U_{X T_3} + \phi U = 0 \quad (8) \]

where

\[\phi(T_1, T_2, T_3, X) = 1 + W_{T_1} + W_{T_2} + W_{T_3}. \quad (9) \]

Substituting (7) and (9) into (8) yields

\[W_{X X T_1} + W_{X X T_2} + W_{X X T_3} + W_X W_{T_1} + W_X W_{T_2} + \]

\[W_X W_{T_3} + W_X = 0. \quad (10) \]

Equation (10) can be written in bilinear form [35]:

\[(D_X^3 D_{T_1} + D_X^3 D_{T_2} + D_X^3 D_{T_3} + D_X^3) f \cdot f = 0. \quad (11) \]

where

\[W = 6 (\ln f)_X. \quad (12) \]

Here \(D_{ij} = x, y, z, t, \) are the bilinear differential operators and \(f = f(x, y, z, t) \) are real functions [49]:

\[D_x^n D_y^n D_z^n D_t^n h_1 \cdot h_2 = \left(\frac{\partial}{\partial t} - \frac{\partial}{\partial t'} \right)^n \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial x'} \right)^n \]

2. The governing equation

The complexity of explaining and interpreting phenomena such as the propagation of waves, optical fibres and biological systems with (1+1) dimensional systems revealed that higher dimensional systems should be defined. A (2+1)-dimensional VP equation which is formally derived by Victor et al. [46] following the demand for higher dimensional integrable systems. Equation (4) models high-frequency wave perturbations in relaxing high-rate active barotropic media and

\[\frac{\partial}{\partial t} + \mathbf{u} \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z} \right) u + u = 0 \quad (4) \]
\[
\times \left(\frac{\partial}{\partial y} - \frac{\partial}{\partial y'} \right) \left(\frac{\partial}{\partial z} - \frac{\partial}{\partial z'} \right) ^{l} x_{1} (x, y, z, t) - h_{2} (x', y', z', t') |_{x=x', y=y', z=z', t=t'}
\]

where \(x', y', z' \) and \(t' \) are the formal variables, \(m, n, s \) and \(l \) are the non-negative integers, \(h_{1} \) depends on \(x, y, z, t \) and \(h_{2} \) depends on \(x', y', z', t' \). Taking into account the Equation (11), the following equation is obtained:

\[
f (f_{xxt1} + f_{xxt2} + f_{xxt3}) - f_{xx} (f_{t1} + f_{t2} + f_{t3})
\]

\[
+ 3 f_{xx} f_{xt1} + f_{xt2} + f_{xt3})
\]

\[
- 3 f_{xx} f_{xt1} + f_{xt2} + f_{xt3} + f_{x} - f_{xx}^{2} = 0 \quad (13)
\]

In [35], the Painlevé analysis to prove the complete integrability to Equation (5) is applied and multiple soliton solutions via using the simplified Hirota’s method are derived.

3. Multi-waves solution

Suppose that the solution of Equation (13) is given as [50–53]

\[
f = b_{0} \cosh (n_{1}) + b_{1} \cos (n_{2}) + b_{2} \cosh (n_{3}), \quad (14)
\]

where \(\eta_{i} = w_{1} T_{1} + p_{1} T_{2} + r_{1} T_{3} + s_{1} X + q_{i} i = 1, 2, 3 \), are parameters to be obtained with calculations. Imposing Equation (14) into Equation (13), a set of algebraic equations for \(w_{1}, p_{1}, r_{1}, s_{1}, q_{i}, b_{0}, b_{1}, b_{2} \) are obtained. The obtained system of algebraic equations can be solved by using an auxiliary computer program (Maple). As a result, we have obtained many distinct variants of the constraint equations leading to a reduction in the number of parameters encountered in the equation system.

Set 1.

\[
\begin{align*}
\rho_{0} = 0, \rho_{1} = b_{1} = \sqrt{-3 s_{3}^{2} + s_{2}^{2}}, \quad \rho_{2} = -\frac{s_{3}^{2} r_{2} + s_{2} w_{2} - s_{3} + s_{2} s_{2} + r_{2} s_{2}^{2}}{s_{3}^{2} + s_{2}^{2}}, \\
\rho_{3} = -\frac{s_{3}^{2} w_{3} + s_{2} s_{3}^{2} + s_{3} + s_{2} s_{3}^{2} + r_{3} s_{2}^{2} w_{3}}{s_{3}^{2} + s_{2}^{2}}
\end{align*}
\]

(15)

where \(w_{2}, w_{3}, s_{2}, s_{3}, r_{2}, r_{3} \) and \(b_{2} \) are arbitrary constants.

Plugging (15) into (14) with the help of (12), we get

\[
W = 6 s_{2} s_{3} \left[-\frac{-3 s_{3}^{2} + s_{2}^{2}}{3 s_{2}^{2} - s_{3}^{2}} \times \sin \left(w_{2} T_{1} - \frac{(s_{3}^{2} + s_{2}^{2}) (r_{2} + w_{2}) - s_{2}}{s_{3}^{2} + s_{2}^{2}} \right) + r_{2} T_{3} + s_{2} X + q_{2} \right] + \sinh \left(w_{3} T_{1} - \frac{(s_{3}^{2} + s_{2}^{2}) (r_{3} + w_{3}) + s_{3}}{s_{3}^{2} + s_{2}^{2}} \right)
\]

\[
+ \frac{r_{3} T_{3} + s_{3} X + q_{3}}{} \times \sqrt{-\frac{-3 s_{3}^{2} + s_{2}^{2}}{3 s_{2}^{2} - s_{3}^{2}} \times \cos \left(w_{2} T_{1} - \frac{(s_{3}^{2} + s_{2}^{2}) (r_{2} + w_{2}) - s_{2}}{s_{3}^{2} + s_{2}^{2}} \right) + r_{2} T_{3} + s_{2} X + q_{2}} \right] + \frac{r_{3} T_{3} + s_{3} X + q_{3}}{2} \right) \right]^{-1}.
\]

(16)

Clearly, from (6), (7), (12) and (16), the multi-wave solutions for Equation (5) are

\[
\begin{align*}
T &= T_{1} + W + x_{0}, \\
y &= T_{2} + W + y_{0}, \\
z &= T_{3} + W + z_{0}, \\
t &= X, \\
u(x, y, z, t) &= W_{x},
\end{align*}
\]

(17)

Setting \(t, x_{0}, y_{0}, z_{0} \) and parameters as follows:

\[
\begin{align*}
t &= 1, \quad q_{1} = 3, \quad q_{2} = 5, \quad q_{3} = 5, \quad r_{2} = 1, \quad r_{3} = 2, \\
s_{2} &= 1, \quad s_{1} = 1, \quad w_{2} = 1, \quad w_{3} = 4, \quad x_{0} = y_{0} = z_{0} = 0, \\
T_{3} &= 0,
\end{align*}
\]

(18)

the solution (17) can be visualized in Figure 1.

Set 2.

\[
\begin{align*}
b_{0} &= \sqrt{\frac{-s_{1}^{2} - 3 s_{2}^{2}}{s_{2}^{2} + 3 s_{1}^{2}}}, \quad b_{1} = 0, \\
p_{1} &= \frac{-s_{1}^{2} r_{1} + s_{1}^{2} w_{1} + s_{1} - r_{1} - s_{3}^{2} - w_{1} s_{3}^{2}}{s_{2}^{2} + s_{1}^{2}}, \\
p_{3} &= \frac{-s_{1}^{2} w_{3} + s_{1}^{2} r_{3} - s_{3} - s_{3}^{2} r_{3} - s_{3}^{2} w_{3}}{s_{2}^{2} + s_{1}^{2}},
\end{align*}
\]

(19)

where \(w_{1}, w_{3}, s_{1}, s_{3}, and r_{1} \) are arbitrary constants. By substituting (19) into (14) with (12), we have

\[
W = 6 \left[-\frac{-s_{1}^{2} - 3 s_{2}^{2}}{s_{2}^{2} + 3 s_{1}^{2}} \times \sinh \left(w_{1} T_{1} - \frac{(s_{1}^{2} - s_{2}^{2}) (r_{1} + w_{1}) + s_{1}}{s_{2}^{2} + s_{1}^{2}} \right) + \frac{r_{1} T_{3} + s_{1} X + q_{1}}{2} \right] + \sinh \left(w_{3} T_{1} - \frac{(s_{1}^{2} - s_{2}^{2}) (w_{3} + r_{3}) - s_{3}}{s_{2}^{2} + s_{1}^{2}} \right) + \frac{r_{3} T_{3} + s_{3} X + q_{3}}{2} \right) \right]^{-1},
\]

(16)
Clearly, from (6), (7), (12) and (20), the multi-wave solutions for Equation (5) are

\[
\begin{align*}
 x &= T_1 + W + x_0, \\
 y &= T_2 + W + y_0, \\
 z &= T_3 + W + z_0, \\
 t &= X, \\
 u(x, y, z, t) &= W_X.
\end{align*}
\]

Setting \(t, x_0, y_0, z_0 \) and parameters as follows:

\[
T_3 = 0, \quad t = 1, \quad q_1 = 2, q_3 = 3, \quad r_1 = 2, r_3 = 1, \\
s_1 = 1, s_3 = 4, \quad w_1 = 0.2, w_3 = 1.9, \\
x_0 = y_0 = z_0 = 0,
\]

the solution (21) can be visualized in Figure 1.

\[
\begin{align*}
 b_0 &= \sqrt{-\frac{s_1^2 - 3 s_2^2}{s_2^2 + 3 s_1^2}s_3 b_1 s_1^{-1}}, \quad b_2 = 0, \\
 p_1 &= -\frac{s_1^2 r_1 + s_1^2 w_1 + s_1 + w_1 s_2^2 + r_1 s_2^2}{s_2^2 + s_1^2}, \\
 p_2 &= -\frac{w_2 s_1^2 + r_2 s_1^2 + s_2^2 w_2 + s_2^2 r_2 - s_2}{s_2^2 + s_1^2},
\end{align*}
\]

\[(23) \]

where \(w_1, w_2, s_1, s_2, r_1 \) and \(r_2 \) are arbitrary constants. By substituting (23) into (14) with (12), we have

\[
W = 6 \sqrt{-\frac{s_1^2 - 3 s_2^2}{s_2^2 + 3 s_1^2}s_2} \]

\[
\times \sinh \left(w_1 T_1 - \frac{(s_2^2 + s_1^2) (w_2 + w_2) - s_2}{s_2^2 + s_1^2} \right) + r_3 T_3 + s_3 X + q_3 \right) \right]^{-1}
\]

Clearly, from (6), (7), (12) and (24), the multi-wave solutions for Equation (5) are

\[
\begin{align*}
 x &= T_1 + W + x_0, \\
 y &= T_2 + W + y_0, \\
 z &= T_3 + W + z_0, \\
 t &= X, \\
 u(x, y, z, t) &= W_X.
\end{align*}
\]

\[(25) \]
Setting t, x_0, y_0, z_0 and parameters as follows:

$$T_3 = 0, \quad t = 1, \quad q_1 = 1, \quad q_2 = 0.5, \quad r_1 = 0.2, \quad r_2 = 2,$$
$$s_1 = 3, \quad s_2 = 4, \quad w_1 = 3, \quad w_2 = 1.5,$$
$$x_0 = y_0 = z_0 = 0,$$

(26)

the solution (25) can be visualized in Figure 2.

Set 4.

$$
\begin{align*}
&b_1 = 0, \quad p_1 = -\frac{4s_3}{4s_3} r_1 + 1 + 4s_3 w_1
\end{align*}
$$

(27)

where $w_1, w_3, s_3, r_1 \text{ and } r_3$ are arbitrary constants. By substituting (27) into (14) with (12), we have

$$W = 6 \left[b_0 \sinh \left(w_1 T_1 - \frac{4s_3 r_1 + 1 + 4s_3 w_1}{4s_3} T_2 \right) \right.$$
$$+ r_1 T_3 + s_3 X + q_1) s_3$$
$$+ b_2 \sinh \left(w_3 T_1 - \frac{4s_3 w_3 + 4s_3 r_3 + 1}{4s_3} T_2 \right)$$
$$+ r_3 T_3 + s_3 X + q_3) s_3$$
$$\times \left[b_0 \cosh \left(w_1 T_1 - \frac{4s_3 r_1 + 1 + 4s_3 w_1}{4s_3} T_2 \right) \right.$$
$$+ r_1 T_3 + s_3 X + q_1)$$
$$+ b_2 \cosh \left(w_3 T_1 - \frac{4s_3 w_3 + 4s_3 r_3 + 1}{4s_3} T_2 \right)$$
$$+ r_3 T_3 + s_3 X + q_3) \right]^{-1}
$$

(28)

Clearly, from (6), (7), (12) and (32), the multi-wave solutions for Equation (5) are

$$\begin{align*}
&x = T_1 + W + x_0,
&y = T_2 + W + y_0,
&z = T_3 + W + z_0,
&t = X,
&u(x, y, z, t) = W_X
\end{align*}
$$

(29)

Setting t, x_0, y_0, z_0 and parameters as follows:

$$T_3 = 0, \quad t = 1, \quad b_0 = 3, \quad b_2 = 1, \quad q_1 = 1, \quad q_3 = 0.6,$$
$$r_1 = 1, \quad r_3 = 1, \quad s_1 = 1, \quad w_1 = 4.5, \quad w_3 = 0.2,$$
$$x_0 = y_0 = z_0 = 0,$$

(30)

the solution (29) can be visualized in Figure 2.

Set 5.

$$\begin{align*}
&b_1 = 0, \quad p_1 = -\frac{4s_3 r_1 - 1 + 4s_3 w_1}{4s_3}, \\
&p_3 = -\frac{4s_3 w_3 + 4s_3 r_3 + 1}{4s_3}, \quad s_1 = -s_3,
\end{align*}
$$

(31)

where $w_1, w_3, s_3, r_1 \text{ and } r_3$ are arbitrary constants. By substituting (31) into (14) with (12), we have

$$W = 6 \left[b_0 \sinh \left(-w_1 T_1 + \frac{(4s_3 r_1 - 1 + 4s_3 w_1)}{4s_3} T_2 \right) \right.$$
$$- r_1 T_3 + s_3 X - q_1) s_3$$
$$+ b_2 \sinh \left(w_3 T_1 - \frac{(4s_3 w_3 + 4s_3 r_3 + 1)}{4s_3} T_2 \right)$$
$$+ r_3 T_3 + s_3 X + q_3) s_3$$
$$\times \left[b_0 \cosh \left(-w_1 T_1 + \frac{(4s_3 r_1 - 1 + 4s_3 w_1)}{4s_3} T_2 \right) \right.$$
$$- r_1 T_3 + s_3 X - q_1)$$
$$+ b_2 \cosh \left(w_3 T_1 - \frac{(4s_3 w_3 + 4s_3 r_3 + 1)}{4s_3} T_2 \right)$$
$$+ r_3 T_3 + s_3 X + q_3) \right]^{-1}\right]
$$

Clearly, from (6), (7), (12) and (32), the multi-wave solutions for Equation (5) are

$$\begin{align*}
&x = T_1 + W + x_0, \\
y = T_2 + W + y_0, \\
z = T_3 + W + z_0, \\
t = X, \\
u(x, y, z, t) = W_X
\end{align*}
$$

(32)

Setting t, x_0, y_0, z_0 and parameters as follows:

$$T_3 = 0, \quad t = 1, \quad b_0 = 3, \quad b_2 = 1, \quad q_1 = 1, \quad q_3 = 0.6,$$
$$r_1 = 1, \quad r_3 = 1, \quad s_1 = 1, \quad w_1 = 4.5, \quad w_3 = -4,$$
$$x_0 = y_0 = z_0 = 0,$$

(33)

the solution (32) can be visualized in Figure 3.

Set 6.

$$\begin{align*}
&b_0 = b_2, \quad b_1 = 0, \\
&p_1 = -\frac{2s_3 (r_3 + w_3 + p_3 + r_1 + w_1) + 1}{2s_3}, \quad s_1 = s_3,
\end{align*}
$$

(34)

where $w_1, w_2, s_1, s_2, p_3, r_1 \text{ and } r_2$ are arbitrary constants. By substituting (34) into (14) with (12), we have

$$W = 6 \left[\sinh \left(w_1 T_1 - \frac{(2s_3 (r_3 + w_3 + p_3 + r_1 + w_1) + 1)}{2s_3} T_2 \right) \right.$$
$$+ r_1 T_3 + s_3 X + q_1) s_3$$
$$\times \left[\cosh \left(w_1 T_1 - \frac{(2s_3 (r_3 + w_3 + p_3 + r_1 + w_1) + 1)}{2s_3} T_2 \right) \right.$$
$$+ r_1 T_3 + s_3 X + q_1)$$
$$+ r_1 T_3 + s_3 X + q_3) \right]^{-1}\right]
$$

Clearly, from (6), (7), (12) and (32), the multi-wave solutions for Equation (5) are

$$\begin{align*}
&x = T_1 + W + x_0, \\
y = T_2 + W + y_0, \\
z = T_3 + W + z_0, \\
t = X, \\
u(x, y, z, t) = W_X
\end{align*}
$$

(32)

Setting t, x_0, y_0, z_0 and parameters as follows:

$$T_3 = 0, \quad t = 1, \quad b_0 = 3, \quad b_2 = 1, \quad q_1 = 1, \quad q_3 = 0.6,$$
$$r_1 = 1, \quad r_3 = 1, \quad s_3 = 2, \quad w_1 = 1, \quad w_3 = -4,$$
$$x_0 = y_0 = z_0 = 0,$$

(33)

the solution (32) can be visualized in Figure 3.
Figure 2. The plots of (25) with the settings (26) and of (29) with the settings (30), respectively.

Figure 3. The plots of (32) with the settings (33) and of (36) with the settings (37), respectively.

Clearly, from (6), (7), (12) and (35), the multi-wave solutions for Equation (5) are

\[
\begin{aligned}
&x = T_1 + W + x_0, \\
y = T_2 + W + y_0, \\
z = T_3 + W + z_0, \\
t = X, \\
u(x,y,z,t) = W_f.
\end{aligned}
\]

Setting \(t, x_0, y_0, z_0 \) and parameters as follows:

\[
\begin{aligned}
T_3 &= 0, & t &= 1, & p_3 &= 3, & q_1 &= 1, & q_3 &= -5, \\
r_1 &= 2, & r_3 &= 1, & s_3 &= -2, & w_1 &= 3, & w_3 &= 2, \\
x_0 &= y_0 &= z_0 &= 0.
\end{aligned}
\]

the solution (36) can be visualized in Figure 3.

4. Breather wave solutions

Depending on the homoclinic breather approach [50, 51, 54, 55], suppose that

\[
f = \exp(-\eta_1) + v_1 \exp(\eta_1) + v_2 \cos(\eta_2),
\]

where \(\eta_i = w_i T_1 + p_i T_2 + r_i T_3 + s_i X + q_i, \ i = 1, 2 \) and \(v_1, v_2 \) are parameters to be determined. Plugging (38) into bilinear form given in (13) and equating the coefficients of \(\exp(-\eta_1), \exp(\eta_1), \cos(\eta_2) \), and \(\sin(\eta_2) \) to zero, we have numerous equations for the parameters. If the algebraic system is solved using Maple programming, the sets of coefficients are yielded as follows:

Set 1.

\[
\begin{aligned}
p_1 &= -\frac{w_1 s_1^2 + r_1 s_1 + s_1 + r_1 s_2^2 + w_1 s_2^2}{s_1^2 + s_2^2}, \\
p_2 &= -\frac{s_1^2 r_2 + s_1^2 w_2 - s_2 + s_1^2 r_2 + s_2^2 w_2}{s_1^2 + s_2^2}, \\
v_1 &= \frac{v_2^2 s_2^2 (s_1^2 - 3 s_2^2)}{4 s_1^2 (-s_2^2 + 3 s_1^2)},
\end{aligned}
\]

(39)
where \(w_{1,2}, s_{1,2}, r_{1,2} \) are real parameters. Inserting (39) into (38) with (12), we have

\[
W = 6 \frac{-s_1 e^{-A} - \frac{(s_1^2 - 3 s_2^2) s_2 v_2 e^{A}}{4 s_1 (3 s_1^2 - s_2^2)} - v_2 \sin (B) s_2}{e^{-A} + \frac{(s_1^2 - 3 s_2^2) s_2 v_2 e^{A}}{4 s_1 (3 s_1^2 - s_2^2)} + v_2 \cos (B)} \tag{40}
\]

where

\[
A = w_1 T_1 - \frac{(r_1 s_1^2 + w_1 s_1^2 + s_1 + w_1 s_2^2 + r_1 s_2^2) T_2}{s_1^2 + s_2^2}
+ r_1 T_3 + s_1 X + q_1
\]
\[
B = w_2 T_1 - \frac{(s_1^2 r_2 + s_1^2 w_2 - s_2 + s_2^2 r_2 + s_2^2 w_2) T_2}{s_1^2 + s_2^2}
+ r_2 T_3 + s_2 X + q_2.
\]

Clearly, from (6), (7), (12) and (40), the breather solution for Equation (5) is

\[
\begin{align*}
W &= 6 \frac{-\sqrt{3} s_2 e^{A} - v_2 \sin (B) s_2}{e^{A} + v_2 \cos (B)},
\end{align*}
\tag{47}
\]

where

\[
A = w_1 T_1 - \frac{(\sqrt{3} + 4 w_1 s_2 + 4 r_1 s_2) T_2}{4 s_2}
- r_1 T_3 - \sqrt{3} s_2 X - q_1
\]
\[
B = w_2 T_1 - \frac{(4 s_2 r_2 - 1 + 4 s_2 w_2) T_2}{4 s_2}
+ r_2 T_3 + s_2 X + q_2.
\]

Clearly, from (6), (7), (12) and (47), the breather solution for Equation (5) is

\[
\begin{align*}
W &= 6 \frac{-4 s_1 e^{-A} + v_1 s_2 e^{A} - v_2 \sin (B) s_1}{e^{-A} + v_1 e^{A} + v_2 \cos (B)},
\end{align*}
\tag{49}
\]

where

\[
A = w_1 T_1 + \frac{(i - 4 r_1 s_2 - 4 w_1 s_2) T_2}{4 s_2}
+ r_1 T_3 + i s_2 X + q_1
\]
\[
b_2 = \frac{4 s_2 r_2 - 1 + 4 s_2 w_2)}{4 s_2},
\]

\[
A = w_1 T_1 + \frac{(i - 4 r_1 s_2 - 4 w_1 s_2) T_2}{4 s_2}
+ r_1 T_3 + i s_2 X + q_1
\]
\[
B = w_2 T_1 - \frac{(4 s_2 r_2 - 1 + 4 s_2 w_2) T_2}{4 s_2}
+ r_2 T_3 + s_2 X + q_2.
\]

Clearly, from (6), (7), (12) and (44), the breather solution for Equation (5) is

\[
\begin{align*}
W &= 6 \frac{-4 s_1 e^{-A} + v_2^2 s_1 e^{A} - i 4 v_2 \sin (B) s_1}{4 e^{-A} + v_2^2 e^{A} + 4 v_2 \cos (B)}
\end{align*}
\tag{50}
\]

where

\[
A = w_1 T_1 + p_1 T_2 + r_1 T_3 + s_1 X + q_1
\]
To get lump with one kink soliton solution [39, 40, 56–58], the following transformation is used:

\[
B = w_2 T_1 - \frac{(i + 2 i r_1 s_1 + 2 i s_1 p_1 + 2 i w_1 s_1 + 2 s_1 w_2 + 2 s_1 r_2) T_2}{2 s_1} + r_2 T_3 + i s_1 X + q_2.
\]

Clearly, from (6), (7), (12) and (50), the breather solution for Equation (5) is

\[
\begin{align*}
x &= T_1 + W + x_0, \\
y &= T_2 + W + y_0, \\
z &= T_3 + W + z_0, \\
t &= X, \\
u(x, y, z, t) &= W_X.
\end{align*}
\]

(51)

5. Lump–kink solution

To get lump with one kink soliton solution [39, 40, 56–58], the following transformation is used:

\[
f = \eta_1^2 + \eta_2^2 + b_0 + e^{\eta_1},
\]

(52)

where \(\eta_1 = w_1 T_1 + w_2 T_2 + w_3 T_3 + w_4 X + w_5, \) \(\eta_2 = w_6 T_1 + w_7 T_2 + w_8 T_3 + w_9 X + w_10 \) and \(\eta_3 = k_1 T_1 + k_2 T_2 + k_3 T_3 + k_4 X + k_5. \) Inserting supposed transformation (52) into Equation (13), the following set of parameters is obtained:

\[
\begin{align*}
k_1 &= -\frac{1 + k_3}{k_4} k_3 + k_4, \\
w_2 &= -w_1 - w_3, \\
w_4 &= 0, \\
w_5 &= -w_6 - w_8, \\
w_9 &= 0
\end{align*}
\]

(53)

where \(k_{3,4}, w_{3,6,8} \) are arbitrary real constants. Plugging (53) into (52), we have

\[
W = 6 \frac{k_4 e^A}{(w_1 T_1 + (-w_1 - w_3) T_2 + w_3 T_3 + w_5)^2} \left((w_6 T_1 + (-w_6 - w_8) T_2 + w_8 T_3 + w_10)^2 \right) + w_1 + e^A
\]

(54)

where

\[
A = -\frac{(1 + k_2 k_4 + k_3 k_4) T_1}{k_4} + k_2 T_2 + k_3 T_3 + k_4 X + k_5.
\]

Clearly, from (6), (7), (12) and (54), the lump–kink solution for Equation (5) is

\[
\begin{align*}
x &= T_1 + W + x_0, \\
y &= T_2 + W + y_0, \\
z &= T_3 + W + z_0, \\
t &= X, \\
u(x, y, z, t) &= W_X.
\end{align*}
\]

(55)

Setting \(t, x_0, y_0, z_0 \) and parameters as follows:

\[
T_3 = 0, \quad X = 1, \quad k_2 = 2, \quad k_3 = 3, \quad k_4 = -5, \quad k_5 = 2, \quad w_1 = 3, \quad w_{10} = 1, \quad w_{11} = 1, \quad w_3 = 3, \quad w_5 = 1, \quad w_6 = 5, \quad w_8 = 2, \quad x_0 = y_0 = z_0 = 0,
\]

(56)

the solution (55) can be visualized in Figure 5.

6. Lump–periodic solution

The following transformation for lump–periodic solution given as [39, 40, 56, 59] is used:

\[
f = \eta_1^2 + \eta_2^2 + b_0 + b_1 \cos(\eta_3)
\]

(57)

where \(\eta_1 = w_1 T_1 + p_t T_2 + r_1 T_3 + s_1 X + q_{1i}, i = 1, 2, 3, \) and \(b_0, b_1 \) are real parameters to be set up. We obtained the following set of parameters by removing coefficients of independent variables and trigonometric functions after substituting (57) into Equation (13).
where $k, a, w_{1,3,6,8}$ are arbitrary real constants. Plugging (58) into (52), we have

$$W = 6 \left(2i(2i + q_1)s_2 + 2(B + q_2)s_2 \right. \left. \left(-3 - (q_1 + i q_2)^2s_2 \right) \frac{3}{2} \sin \left(\frac{\sqrt{3}}{3} \left(-3 - (q_1 + i q_2)^2s_2 \right) \right) \left((2i + q_1)^2 + (B + q_2)^2 + b_0 + b_1 \cos (A) \right) \right)^{-1}$$

where

$$A = w_3 T_1 - \left(2\sqrt{-3} (-q_1 + i q_2)^2 s_2 \left(r_3 + w_3 \right) - 3 b_1 \right) T_2
+ r_3 T_3 + 2\sqrt{-3} (-q_1 + i q_2)^2 s_2 X
+ q_3,$$

$$B = \frac{3T_2 b_1^2}{4s_2 (-q_1 + i q_2)^2 s_2} + s_2 X.$$

Clearly, from (6), (7), (12) and (59), the lump–periodic solution for Equation (5) as

$$\begin{cases}
\frac{\partial x}{\partial t} = T_1 + W + x_0, \\
\frac{\partial y}{\partial t} = T_2 + W + y_0, \\
\frac{\partial z}{\partial t} = T_3 + W + z_0, \\
\frac{\partial t}{\partial t} = X, \\
\frac{\partial u(x,y,z,t)}{\partial t} = W_X.
\end{cases}$$
where $k_{3,4}$, $w_{1,3,6,8}$ are arbitrary real constants. Plugging (64) into (52), we have

$$W = 6 \left(\frac{2iB_T + 2C_T - 2/3 \sin(A) \sqrt{3} \sqrt{(-q_1 + i q_2)^2 - s_2}}{b^2 + c^2 + b_0 + b_1 \cos(A)} \right)$$

(65)

where

$$A = w_3 T_1 - \frac{2 \sqrt{3} \sqrt{(-q_1 + i q_2)^2 - s_2} (r_3 + w_3 - b_1)}{3 \sqrt{3} \sqrt{(-q_1 + i q_2)^2 - s_2}} T_2 + r_3 T_3 + \frac{2 \sqrt{3} \sqrt{(-q_1 + i q_2)^2 - s_2}}{3 b_1} X + q_3$$

$$B = i w_2 T_1 + i p_2 T_2 + \frac{i \left(-4 (w_2 + p_2) s_2 (-q_1 + i q_2)^2 + 3 b_1^2 \right) T_3}{4 s_2 (-q_1 + i q_2)^2} + i s_2 X + q_1$$

$$C = w_2 T_1 + p_2 T_2 + \frac{(-4 (w_2 + p_2) s_2 (-q_1 + i q_2)^2 + 3 b_1^2) T_3}{4 s_2 (-q_1 + i q_2)^2} + s_2 X + q_2$$

Clearly, from (6), (7), (12) and (65), the lump–periodic solution for Equation (5) is

$$\begin{cases} x = T_1 + W + x_0, \\
y = T_2 + W + y_0, \\
z = T_3 + W + z_0, \\
t = X, \\
u(x, y, z, t) = W_x. \end{cases}$$

(66)

7. Interaction solutions between lump and hyperbolic wave solutions

In this part, we take into consideration $f(x, y, z, t)$ as a positive quadratic function including hyperbolic cosine function. Hence this function has the following form:

$$f = \eta_1^2 + \eta_2^2 + w_{11} + b_1 \cosh(\eta_3)$$

(67)

where $\eta_1 = w_1 T_1 + w_2 T_2 + w_3 T_3 + w_4 X + w_5$, $\eta_2 = w_6 T_1 + w_7 T_2 + w_8 T_3 + w_9 X + w_{10}$ and $\eta_3 = k_1 T_1 + k_2 T_2 + k_3 T_3 + k_4 X + k_5$. Again, inserting Equation (67) into Equation (13), the following relations between the parameters are obtained:

Set 1:

$$\begin{cases} k_1 = -\frac{2 \sqrt{3} (i w_5 + w_{10})^2 w_9 (k_3 + k_2) + 3 b_1}{6 \sqrt{1/3} (i w_5 + w_{10})^2 w_9}, \\
k_4 = 2 \sqrt{1/3} (i w_5 + w_{10})^2 w_9, w_1 = i w_6, w_2 = 0, \\
w_3 = -i \left(4 w_6 w_9 (i w_5 + w_{10})^2 + 3 b_1^2 \right) \frac{4 w_9 (i w_5 + w_{10})^2}{4 w_9 (i w_5 + w_{10})^2}, w_4 = i w_9, \\
w_7 = 0, w_8 = -\frac{4 w_6 w_9 (i w_5 + w_{10})^2 + 3 b_1^2}{4 w_9 (i w_5 + w_{10})^2}, \end{cases}$$

(68)

where $k_{3,4}$, $w_{1,3,6,8}$ are arbitrary real constants. Plugging (68) into (52), we have

$$W = 6 \left(\frac{2 \frac{i (A + w_5) w_9 + 2 (A + w_{10}) w_9}{(A + w_5)^2 + (A + w_{10})^2 + w_{11} + b_1 \cosh(B)}}{-2 \sinh(B) \sqrt{1/3 (i w_5 + w_{10})^2 w_9}} \right)$$

(69)

where

$$\begin{cases} A = w_6 T_1 - \frac{4 w_6 w_9 (i w_5 + w_{10})^2 + 3 b_1^2}{4 w_9 (i w_5 + w_{10})^2} T_3 + w_9 X, \\
B = \frac{1/2}{3 \sqrt{1/3 (i w_5 + w_{10})^2 w_9}} - \frac{k_2 T_2 - k_3 T_3 - 2 \sqrt{1/3 (i w_5 + w_{10})^2 w_9 X}}{b_1} \\
\end{cases}$$

Clearly, from (6), (7), (12) and (69), the solution for Equation (5) is

$$\begin{cases} x = T_1 + W + x_0, \\
y = T_2 + W + y_0, \\
z = T_3 + W + z_0, \\
t = X, \\
u(x, y, z, t) = W_x. \end{cases}$$

(70)

Set 2:

$$\begin{cases} k_1 = -\frac{2 \sqrt{1/3} (i w_5 + w_{10})^2 w_9 (k_3 + k_2) + 3 b_1}{6 \sqrt{1/3} (i w_5 + w_{10})^2 w_9}, \\
k_4 = 2 \sqrt{1/3} (i w_5 + w_{10})^2 w_9, w_1 = i w_6, \\
w_2 = -\frac{1/4 \left(4 (w_8 + w_9) (i w_5 + w_{10})^2 + 3 b_1^2 \right)}{w_9 (i w_5 + w_{10})^2}, \\
w_3 = i w_8, w_4 = i w_9, \\
w_7 = -\frac{4 (w_8 + w_9) (i w_5 + w_{10})^2 + 3 b_1^2}{4 w_9 (i w_5 + w_{10})^2}, \end{cases}$$

(71)

where $k_{3,4}$, $w_{1,3,6,8}$ are arbitrary real constants. Plugging (71) into (52), we have

$$W = 6 \left(\frac{2 \frac{i (A + w_5) w_9 + 2 (A + w_{10}) w_9}{(A + w_5)^2 + (A + w_{10})^2 + w_{11} + b_1 \cosh(B)}}{-2 \sinh(B) \sqrt{1/3 (i w_5 + w_{10})^2 w_9}} \right)$$

(72)

where

$$\begin{cases} A = w_6 T_1 - \frac{4 (w_8 + w_9) (i w_5 + w_{10})^2 + 3 b_1^2}{4 w_9 (i w_5 + w_{10})^2} T_2 + w_8 T_3 + w_9 X, \\
B = \frac{1/2}{3 \sqrt{1/3 (i w_5 + w_{10})^2 w_9}} - \frac{k_2 T_2 - k_3 T_3 - 2 \sqrt{1/3 (i w_5 + w_{10})^2 w_9 X}}{b_1} \\
\end{cases}$$

Clearly, from (6), (7), (12) and (69), the solution for Equation (5) is

$$\begin{cases} x = T_1 + W + x_0, \\
y = T_2 + W + y_0, \\
z = T_3 + W + z_0, \\
t = X, \\
u(x, y, z, t) = W_x. \end{cases}$$

(70)
where \(\kappa \), \(\eta \)

\[
-k_2 T_2 - k_3 T_3 - 2 \frac{\sqrt{-1/3 \ (i w_5 + w_{10})^2} w_9 X}{b_1} - k_5
\]

Clearly, from (6), (7), (12) and (72), the solution for Equation (5) is

\[
x = T_1 + W + x_0,
y = T_2 + W + y_0,
z = T_3 + W + z_0,
t = X,
u(x, y, z, t) = W_x.
\]

(73)

8. Lump–kink–periodic solution

For lump–kink–periodic solution [39, 40, 60, 61] which is the interaction among lump waves, triangular periodic waves and one-kink soliton, the following transformation is used:

\[
f = \eta_1^2 + \eta_2^2 + w_{11} + b_1 \exp(\eta_3) + b_2 \cos(\eta_4)
\]

(74)

where \(\eta_1 = w_1 T_1 + w_2 T_2 + w_3 T_3 + w_4 X + w_5 \), \(\eta_2 = w_6 T_1 + w_7 T_2 + w_8 T_3 + w_9 X + w_{10} \), \(\eta_3 = k_1 T_1 + k_2 T_2 + k_3 T_3 + k_4 X + k_5 \), \(\eta_4 = k_6 T_1 + k_7 T_2 + k_8 T_3 + k_9 X + k_{10} \) and \(b_1, b_2 \) are real parameters to be determined later.

The following set of parameters by removing coefficients of independent variables, exponential and trigonometric functions after substituting (74) into Equation (13) is obtained:

Set :

\[
\begin{align*}
k_1 &= -\frac{1 + k_2 k_4 + k_3 k_4}{k_5}, \quad k_6 = -k_7 - k_8, \quad k_9 = 0, \\
k_2 &= -w_1 - w_3, \quad k_4 = 0
\end{align*}
\]

(75)

where \(k_{3,4}, w_{1,3,6,8} \) are arbitrary real constants. Plugging (75) into (52), we have

\[
W = 6 \left[b_1 k_4 e^A - \frac{B^2 + C^2 + w_{11} + b_1 e^A}{b_2 \cos(-(-k_7 - k_8) T_1 - k_7 T_2 - k_8 T_3 - k_{10})} \right]
\]

(76)

where

\[
A = \frac{(1 + k_2 k_4 + k_3 k_4) T_1}{k_4} + k_2 T_2 + k_3 T_3 + k_4 X + k_5,
B = w_1 T_1 + (-w_1 - w_3) T_2 + w_3 T_3 + w_5,
C = w_6 T_1 + w_7 T_2 + (-w_7 - w_8) T_3 + w_{10}.
\]

Clearly, from (6), (7), (12) and (76), the solution for Equation (5) is

\[
x = T_1 + W + x_0,
y = T_2 + W + y_0,
z = T_3 + W + z_0,
t = X,
u(x, y, z, t) = W_x.
\]

(77)

Setting \(t, x_0, y_0, z_0 \) and parameters as follows:

\[
b_1 = 2, \quad b_2 = 1, \quad k_{10} = 2, \quad k_2 = -1, \quad k_3 = 3, \quad k_4 = -2,
\]

\[
k_5 = 1, \quad k_7 = 1, \quad k_8 = 1, \quad w_1 = 2, \quad w_{10} = 1, \quad w_{11} = 1,
\]

\[
w_3 = 2, \quad w_5 = 2, \quad w_6 = 1, \quad w_7 = 3, \quad X = 1, \quad T_3 = 0,
\]

\[
x_0 = y_0 = z_0 = 0
\]

(78)

the solution (77) can be visualized in Figure 6.

Remark 8.1: For all cases, it was checked with Maple that the solutions obtained provided the underlying equation.

9. Discussion part of results

The phenomena of interaction between a lump and kink soliton, interaction of lump with periodic waves, and interaction among a lump, periodic waves and one kink soliton for the \((3 + 1)\) dimensional integrable VP equation were generated as illustrative examples in Figures 1–6. In Section 3, the lump–periodic solutions are reported and different structures of periodic–lump waves are demonstrated in Figures 1 and 3. In Section 4, the homoclinic test function (38) is assumed as a solution to the bilinear equation. The solution obtained in
Section 5 consists of positive quadratic function and exponential function. The function f is taken as a combination of positive quadratic function and cosine function in Section 6 and hyperbolic cosine function in Section 7. It is assumed that the auxiliary function f includes positive quadratic, exponential and trigonometric functions in Section 8. The interaction among a lump, triangular periodic waves and one-kink soliton of (77) with the settings (78) is presented in Figure 6.

10. Conclusion

The $(3+1)$ dimensional integrable VP equation is studied by employing a direct method based on Hirota bilinear formulation. Some multi-wave, breather wave and lump-interaction solutions via the symbolic computation are obtained. To the best of our knowledge, the solutions obtained are all new. We believe that the results will benefit future research.

Disclosure statement

No potential conflict of interest was reported by the author(s).

ORCID

Yeşim Sağlam Özkan https://orcid.org/0000-0002-1364-5137
Aly R. Seadawy https://orcid.org/0000-0002-7412-4773
Emrullah Yaşar https://orcid.org/0000-0003-4732-5753

References

[1] Seadawy AR. Stability analysis solutions for nonlinear three-dimensional modified Korteweg–de Vries–Zakharov–Kuznetsov equation in a magnetized electron–positron plasma. Phys A Stat Mech Appl. 2016;455:44–51.

[2] Kumar D, Kumar S. Some new periodic solitary wave solutions of $(3+1)$-dimensional generalized shallow water wave equation by Lie symmetry approach. Computers Math Appl. 2019;78:857–877.

[3] Kumar S, Kumar D, Kharbanda H. Lie symmetry analysis, abundant exact solutions and dynamics of multisolitons to the $(2+1)$-dimensional KP-BBM equation. Pramana. 2021;95:1–19.

[4] Kumar S, Kumar A. Lie symmetry reductions and group invariant solutions of $(2+1)$-dimensional modified Verner web equation. Nonlinear Dyn. 2019;98:1891–1903.

[5] Kumar S, Kumar D, Kumar A. Lie symmetry analysis for obtaining the abundant exact solutions, optimal system and dynamics of solitons for a higher-dimensional Fokas equation. Chaos Solitons Fractals. 2021;142:110507.

[6] Kumar S, Kumar D. Lie symmetry analysis and dynamical structures of soliton solutions for the $(2+1)$-dimensional modified CBS equation. Int J Modern Phys B. 2020;34:2050221.

[7] Kumar S, Kumar D, Wazwaz AM. Group invariant solutions of $(3+1)$-dimensional generalized B-type Kadomtsev Petviashvili equation using optimal system of Lie subalgebra. Phys Scripta. 2019;94:065204.

[8] Kumar S, Rani S. Lie symmetry reductions and dynamics of solitary solutions of $(2+1)$-dimensional Pavlov equation. Pramana. 2020;94(1):1–12.

[9] Ma WX. Interaction solutions to Hirota–Satsuma–Ito equation in $(2+1)$-dimensions. Front Math China. 2019;14:619–629.

[10] Kaur L, Wazwaz AM. Painlevé analysis and invariant solutions of generalized fifth-order nonlinear integrable equation. Nonlinear Dyn. 2018;94:2469–2477.

[11] Ahmad H, Seadawy AR, Khan TA. Numerical solution of Korteweg–de Vries–Burgers equation by the modified variational iteration algorithm-II arising in shallow water waves. Physica Scripta. 2020;95:045210.

[12] Seadawy AR, Iqbal M. Propagation of the nonlinear damped Korteweg–de Vries equation in an unmagmnetized collisional dusty plasma via analytical mathematical methods. Math Methods Appl Sci. 2021;44:737–748.

[13] Cheemaa N, Seadawy AR, Chen S. More general families of exact solitary wave solutions of the nonlinear Schrödinger equation with their applications in nonlinear optics. The European Physical Journal Plus. 2018;133:547.

[14] Mirhosseini-Alizamini SM, Rezazadeh H, Esfami M, et al. New extended direct algebraic method for the Tzitzica type evolution equations arising in nonlinear optics. Comput Meth Differ Equ. 2020;8:28–53.

[15] Huang Y, Li XF. Exact and approximate solutions of convective-radiative fins with temperature-dependent thermal conductivity using integral equation method. Int J Heat Mass Transf. 2020;150:119303.

[16] Wang M, Li X, Zhang J. The (G'/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys Lett A. 2008;372:417–423.

[17] Fan K, Zhou C. Exact solutions of damped improved Boussinesq equations by extended $(G'/G$)-Expansion method. Complexity. 2020;2020:1–14.

[18] Yokus A, Durur H, Nofal TA, et al. Study on the applications of two analytical methods for the construction of travelling wave solutions of the modified equal width equation. Open Phys. 2020;18:1003–1010.

[19] Zayed EM, Shohib RM, Biswas A, et al. Optical solitons in fiber Bragg gratings with generalized anti-cubic nonlinearity by extended auxiliary equation. Chinese J Phys. 2020;65:613–628.

[20] Rizvi STR, Seadawy AR, Ali I, et al. Chip-free optical dromions for the presence of higher order spatio-temporal dispersions and absence of self-phase modulation in birefringent fibers. Modern Physics Letter B. 2020;34:2050399.

[21] Çelik N, Seadawy AR, Sağlam Özkan Y, et al. A model of solitary waves in a nonlinear elastic circular rod: abundant different type exact solutions and conservation laws. Chaos Solitons Fractals. 2021;143:110486.

[22] Hyder AA, Barakat MA. General improved Kudryashov method for exact solutions of nonlinear evolution equations in mathematical physics. Phys Scripta. 2020;95(4):045212.

[23] Jiang J, Feng Y, Li S. Improved fractional subequation method and exact solutions to fractional partial differential equations. J Function Spaces. 2020;2020:1–18.

[24] Xu Y, Zheng X, Xin J. New non-traveling wave solutions for $(3+1)$-dimensional variable coefficients Date–Jimbo–Kashiwara–Miwa equation. AIMS Math. 2021;6:2996–3008.

[25] Seadawy AR, Cheemaa N. Improved perturbed nonlinear Schrodinger dynamical equation with type of Kerr

law nonlinearity with optical soliton solutions. Physica Scripta. 2020;95:065209.

[26] Sahoo SK, Ray SS, Abdou MA. New exact solutions for time-fractional Kupershmidt equation using improved (G'/G)-expansion and extended (G'/G)-expansion methods. Alexandria Eng J. 2020;59:3105–3110.

[27] Vakhnenko VA. Solitons in a nonlinear model medium. J Phys A Math Gen. 1992;25:4181.

[28] Vakhnenko VO. High-frequency soliton-like waves in a relaxing medium. J Math Phys. 1999;40:2011–2020.

[29] Vakhnenko VO, Parkes EJ. The two loop soliton solution of the Vakhnenko equation. Nonlinearity. 1998;11:1457.

[30] Li BQ, Ma YL, Mo LP, et al. The N-loop soliton solutions for $(2+1)$-dimensional Vakhnenko equation. Computers Math Appl. 2017;74:504–512.

[31] Wazwaz AM. The integrable Vakhnenko–Parkes (VP) and the modified Vakhnenko–Parkes (MVP) equations: multiple real and complex soliton solutions. Chinese J Phys. 2019;57:375–381.

[32] Li BQ. Loop-like kink breather and its transition phenomena for the Vakhnenko equation arising from high-frequency wave propagation in electromagnetic physics. Appl Math Lett. 2021;112:106822.

[33] Li BQ. New breather and multiple-wave soliton dynamics for generalized Vakhnenko–Parkes equation with variable coefficients. J Comput Nonlinear Dyn. 2021;16:091-006.

[34] Min Z, Yu-Lan M, Li BQ. Novel loop-like solitons for the generalized Vakhnenko equation. Chinese Phys B. 2013;22:030511.

[35] Wazwaz AM. Higher dimensional integrable Vakhnenko–Parkes equation: multiple soliton solutions. Int J Numer Meth Heat Fluid Flow. 2020;34:2064–2071.

[36] Gorshkov KA, Pelinovsky DE, Stepanyants Yu A. Normal and anomalous scattering, formation and decay of bound states of two-dimensional solitons described by the Kadomtsev–Petviashvili equation. JETP. 1993;104:2704–2720.

[37] Manakov SV, Zakharov VE. Two dimensional solitons of the Kadomtsev–Petviashvili equation and their interaction. Phys Lett A. 1977;63:205–206.

[38] Lu Z, Tian EM, Grimshaw R. Interaction of two lump solitons described by the Kadomtsev-Petviashvili I equation. Wave Motion. 2004;40:123–135.

[39] Ren B, Lin J, Lou ZM. A new nonlinear equation with lump-soliton, lump-periodic, and lump-periodic-soliton solutions. Hindawi. 2019;2019:4072754.

[40] Rizvi STR, Seadawy AR, Ashraf F, et al. Lump and interaction solutions of a geophysical Korteweg–de Vries equation. Results Phys. 2020;19:103661.

[41] Kofane TC, Fokou M, Mohamadou A, et al. Lump solutions and interaction phenomenon to the third-order nonlinear evolution equation. The European Phys J Plus. 2017;132:1–8.

[42] Ma WX. Lump solutions to the Kadomtsev–Petviashvili equation. Phys Lett A. 2015;379:1975–1978.

[43] Wazwaz AM. Solitary Waves Theory. Partial Differential Equations and Solitary Waves Theory. Berlin, Heidelberg: Springer; 2009. p. 479–502.

[44] Aslan I. Rational and multi-wave solutions to some nonlinear physical models. Rom J Phys. 2013;58:893–903.

[45] Ma H, Cheng Q, Deng A. Solitons, breathers, and lump solutions to the $(2+1)$-Dimensional generalized Calogero–Bogoyavlenskii–Schiff equation. Complexity. 2021;2021:1–10.

[46] Victor KK, Thomas BB, Kofane TC. On high-frequency soliton solutions to a $(2+1)$-dimensional nonlinear partial differential evolution equation. Chinese Phys Lett. 2008;25:425.

[47] Wazwaz AM. Gausssons: solitons of the $(2+1)$-dimensional and the $(3+1)$-dimensional logarithmic Boussinesq equations. Int J Numer Meth Heat Fluid Flow. 2016;26:1699–1709.

[48] Wazwaz AM. Two wave mode higher-order modified KdV equations. Int J Numer Meth Heat Fluid Flow. 2017;27:2223–2230.

[49] Hirota R. The direct method in soliton theory. Cambridge: Cambridge University Press; 2004.

[50] Lu D, Seadawy AR, Ahmed I. Peregrine-like rational solitons and their interaction with kink wave for the resonance nonlinear Schrödinger equation with Kerr law of nonlinearity. Modern Phys Lett B. 2019;33:1950292.

[51] Ahmed I, Seadawy AR, Lu D. The interaction of W-shaped rational solitons with kink wave for the nonlinear Schrödinger equation with anti-cubic nonlinearity. Modern Phys Lett B. 2020;34:2050122.

[52] El-Rashidy K, Seadawy AR. Kinky breathers, multi-peak and multi-wave soliton solutions for the nonlinear propagation of Kundu–Eckhaus dynamical model. Int J Modern Phys B. 2020;34:2050317.

[53] Ahmed I, Seadawy AR, Lu D. Kinky breathers, W-shaped and multi-peak solitons interaction in $(2+1)$-dimensional nonlinear Schrodinger equation with Kerr law of nonlinearity. The European Phys J Plus. 2019;134:1–10.

[54] Guo YF, Dai ZD, Li D. New exact periodic solitary-wave solution of MKdV equation. Commun Nonlinear Sci Numer Simul. 2009;14:3821–3824.

[55] Wang X, Geng XG. N-Soliton solution and soliton resonances for the $(2+1)$-Dimensional inhomogeneous gardner equation. Commun Theor Phys. 2017;68:155.

[56] Yusuf A, Tcherif F, Inc M. New interaction and combined multi-wave solutions for the Heisenberg ferromagnetic spin chain equation. Eur Phys J Plus. 2020;135:1–8.

[57] Manafian J, Mohammadi-Ivatloo B, Abapour M. Lump-type solutions and interaction phenomenon to the $(2+1)$-dimensional breaking soliton equation. Appl Math Comput. 2019;356:13–41.

[58] Ma YL, Wazwaz AM, Li BQ. A new $(3+1)$-dimensional Kadomtsev–Petviashvili equation and its integrability, multiple-solitons, breathers and lump waves. Math Computers Simul. 2021;187:505–519.

[59] Li BQ, Ma YL. Multiple-lump waves for a $(3+1)$-dimensional Boiti–Leon–Manna–Pempinelli equation arising from incompressible fluid. Computers Math Appl. 2018;76:204–214.

[60] Ma YL, Li BQ. Mixed lump and soliton solutions for a generalized $(3+1)$-dimensional Kadomtsev–Petviashvili equation. AIMS Math. 2020;5:1162–1176.

[61] Ma YL, Wazwaz AM, Li BQ. New extended Kadomtsev–Petviashvili equation: multiple soliton solutions, breather, lump and interaction solutions. Nonlinear Dyn. 2021;104:1581–1594.