Arabic Diacritization with Recurrent Neural Networks

Yonatan Belinkov, James Glass
MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
{belinkov,glass}@mit.edu

1. Overview
- Arabic, Hebrew, and similar languages are typically written without diacritics.
- Diacritization is important for core tasks like speech recognition and morphological analysis.
- Previous work relied on external resources (e.g., morphological analyzers)

2. Diacritization

Problem Definition
- Given a training text with diacritics, learn a model that will predict diacritics in a test text without diacritics.

Ambiguity
- Arabic words are highly ambiguous without diacritics:

Word	Class
Eita	unknown
Eita	he taught
Eita	knowledge (def noun)
EitaK	flag (inf def gen)

Arabic Diacritics

3. Approach

Diacritization as sequence classification
- Map character sequence to label sequence \(\{w_1, \ldots, w_T\} \rightarrow \{l_1, \ldots, l_T\} \)
- A label can be 0, 1, or more diacritics

RNN Architecture

Output layer

Hidden layers

Input layer

4. Experiments

Data
- Diacritized texts extracted from the Arabic Treebank
- Diacritic combinations treated as separate label

Results
- LSTM outperforms simple feed-forward networks
- Bidirectional LSTM is better than unidirectional
- Deeper models are better than shallow ones
- LSTM better at case endings (long dependencies)

Model	All Test	End Test	# params
Feed-forward	11.76	22.90	6K
Feed-forward (large)	11.55	23.40	90K
LSTM	6.98	10.36	838K
B-LSTM	6.16	9.85	518K
2-layer B-LSTM	5.77	9.18	916K
3-layer B-LSTM	5.08	8.14	1,498K

Diacritic error rates (DERs) on the Test set, all diacritics and only at word ending.

Error Analysis
- Most errors from confusing short vowels
- Qualitative analysis shows how LSTM captures long-distance dependencies like case endings

Model	Diacritization
LSTM	9.18
Feed-forward	11.55
B-LSTM	6.16

5. Implementation Details

- Stack previous and future letter vectors in a context window
- Linear projection after input layer learns new representation
- Cross-entropy objective, optimized with SGD
- Hyper-parameters tuned on the development set
- Implemented with Current (Weninger et al. 2015)

6. Future Work

- Experiment with other languages, genres, and dialects
- Incorporate diacritizer in a speech recognizer
- Replace external tools like MADA (Al Hanai and Glass 2014)

References

- Belinkov et al. 2013. Speech recognition with deep recurrent neural networks. ICASSP.
- Weninger et al. 2015. Introducing CURRENNT. JMLR.
- Al Hanai and Glass. 2014. Lexical Modeling for Arabic ASR. INTERSPEECH.