A Perron-Frobenius theory for block matrices associated to a multiplex network

Miguel Romance, Luis Solá, Julio Flores, Esther García, Alejandro García del Amo and Regino Criado

Departamento de Matemática Aplicada, CC. e Ing. de los Materiales y Tec. Electrónica, URJC
Center for Biomedical Technology (CTB), UPM

Abstract

The uniqueness of the Perron vector of a nonnegative block matrix associated to a multiplex network is discussed. The conclusions come from the relationships between the irreducibility of some nonnegative block matrix associated to a multiplex network and the irreducibility of the corresponding matrices to each layer as well as the irreducibility of the adjacency matrix of the projection network. In addition the computation of that Perron vector in terms of the Perron vectors of the blocks is also addressed. Finally we present the precise relations that allow to express the Perron eigenvector of the multiplex network in terms of the Perron eigenvectors of its layers.

1 Introduction and notation

Very recently some relevant aspects in the theory of multiplex networks have been considered with the help of an adequate matrix or tensor representation of the networks, particularly some related to the analysis of the eigenvalues and the eigenvectors of a matrix [2, 3, 4, 21, 22, 25].

This analysis typically includes the study of the existence and uniqueness of a positive and normalized eigenvector (Perron vector), whose existence is guaranteed if the corresponding matrix is irreducible (by using the classical Perron-Frobenius theorem). As for the spectral properties, it is possible to relate the irreducibility of such a matrix with the irreducibility in each layer and the irreducibility in the corresponding matrix of the projection network [3, 22].

Some of these considerations are properly addressed with the help of the Perron vector of the block matrix which represents the multiplex structure.

The main goal of this paper is twofold. Firstly we show the uniqueness of the Perron eigenvector of the nonnegative block matrix associated
to a multiplex network when the matrices of the layers and the matrix of connections between layers (or influence matrix) have some properties. Secondly we show how the Perron vector of the multiplex network relates to the lower-dimension Perron vectors of the layers and the Perron vector of the influence matrix in a precise way. Remarkably this relationship is shown to be non linear; thus it becomes evident that the information framed in a multiplex network goes beyond a simple linear combination of the information provided by the layers.

The paper is divided in four sections. The first and second sections contain the notation employed and some background as well as a detailed description of the matrix products used along. The third section is entirely devoted to justifying the existence and uniqueness of the Perron eigenvector of the multiplex structure while the fourth section presents the precise (non linear) relations that allow to express the Perron eigenvector of a multiplex network in terms of the Perron eigenvectors of its layers. The computations of this section are collected in a final appendix.

In the rest of the paper a multiplex network is a set \(\mathcal{M} = \{S_1, \cdots, S_m\} \) \((m \in \mathbb{N})\) of (directed or undirected, weighted or unweighted) complex networks \(S_\ell = (X, E_\ell)\) (each of them called a layer or state of the multiplex network) that share the set of nodes \(X = \{1, \cdots, n\}\). The adjacency matrix of each layer \(S_\ell\) will be denoted by \(A_\ell = (a_{ij}(\ell)) \in \mathbb{R}^{n \times n}\).

In many situations, if we consider a multiplex network \(\mathcal{M}\) of \(m \in \mathbb{N}\) layers \(\{S_1, \cdots, S_m\}\), we also take an influence matrix \(0 \leq W = (w_{ij}) \in \mathbb{R}^{m \times m}\), where \(w_{ij}\) measures the influence of the layer \(S_i\) in the layer \(S_j\). Note that if we consider a random walker in a multiplex network, then each \(w_{ij}\) can be understood as the probability of the walker jumping from layer \(S_i\) to layer \(S_j\) (i.e. \(W\) is the transition matrix between the states of the multiplex network in the stochastic process given by a multiplex random walker) and therefore \(W\) is a row stochastic matrix. Hence in the rest of the paper, we will always assume that the influence matrices \(W\) are row stochastic.

Given a multiplex network \(\mathcal{M}\) several (monoplex) networks that give valuable information about \(\mathcal{M}\) can be associated to it. A first example of these (monoplex) networks is the unweighted projection network \(\text{proj}(\mathcal{M}) = (X, E)\), where \(X\) is the same set of nodes of the layers of \(\mathcal{M}\) and

\[
E = \left(\bigcup_{\ell=1}^{m} E_\ell \right).
\]

It is clear that if \(A = (a_{ij}) \in \mathbb{R}^{n \times n}\) is the adjacency matrix of \(\text{proj}(\mathcal{M})\), then

\[
a_{ij} = \begin{cases}
1 & \text{if } a_{ij}(\ell) = 1 \text{ for some } 1 \leq \ell \leq m \\
0 & \text{otherwise}.
\end{cases}
\]

A first approach to the concept of multiplex networks could suggest that these new objects are actually (monolayer) networks with some (modular)
structure in the mesoscale. It is clear that a (monolayer) network \(\tilde{\mathcal{M}} \) can be associated to \(\mathcal{M} \) as follows: \(\tilde{\mathcal{M}} = (\tilde{X}, \tilde{E}) \), where \(\tilde{X} \) is the disjoint union of all the nodes of \(S_1, \cdots, S_m \), i.e.

\[
\tilde{X} = \bigcup_{1 \leq i \leq m} X_i = \{(i, k) | i = 1, \ldots, n, k = 1, \ldots, m\}
\]

and \(\tilde{E} \) is given by

\[
\tilde{E} = \{(i, k), (j, k)) | (i, j) \in E_k, 1 \leq k \leq m\} \cup \{(i, k), (i, l)) | i \in X, 1 \leq k \neq l \leq m\}.
\]

Note that \(\tilde{\mathcal{M}} \) is a (monolayer) network with \(n \cdot m \) nodes whose adjacency matrix can be written as the block matrix

\[
\tilde{A} = \begin{pmatrix}
A_1 & I_n & \cdots & I_n \\
I_n & A_2 & \cdots & I_n \\
\vdots & \vdots & \ddots & \vdots \\
I_n & I_n & \cdots & A_m
\end{pmatrix} \in \mathbb{R}^{nm \times nm}.
\]

It is important to remark that the behaviours of \(\mathcal{M} \) and \(\tilde{\mathcal{M}} \) are related but they are different since a single node of \(\mathcal{M} \) belonging to several layers corresponds to \(m \) different nodes in \(\tilde{\mathcal{M}} \). Hence the properties and behaviours of corresponding (monolayer) network \(\tilde{\mathcal{M}} \) could be understood as a kind of non-linear quotient of the properties of the a multilayer \(\mathcal{M} \).

Other examples of (monoplex) networks associated to a multiplex network \(\mathcal{M} \) that give valuable information about the properties of \(\mathcal{M} \) come from the study of several structural and dynamical properties of \(\mathcal{M} \). In this paper we will consider the associated monoplex networks coming from the study of the eigenvector centrality of multiplex networks [22] and from random walkers in multiplex networks [3].

If we want to extend the concept of eigenvector centrality to multiplex network, in [22] the concept of global heterogeneous centrality of a multiplex network \(\mathcal{M} \) with influence matrix \(W \) is introduced from the Perron vector of the block matrix

\[
\mathbb{B}_0 = \begin{pmatrix}
w_{11}A_1^T & w_{21}A_2^T & \cdots & w_{m1}A_m^T \\
w_{12}A_1^T & w_{22}A_2^T & \cdots & w_{m2}A_m^T \\
\vdots & \vdots & \ddots & \vdots \\
w_{1m}A_1^T & w_{2m}A_2^T & \cdots & w_{mm}A_m^T
\end{pmatrix} \in \mathbb{R}^{nm \times nm},
\]

where \(A_\ell^T \) is the transpose of the adjacency matrix of layer \(S_\ell \). Note that this kind of block matrix also appears if we consider some random walkers in multiplex networks. In this case, the distribution of the stationary state
of the random walker is given from the Perron vector of the block matrix

$$B_1 = \left(\begin{array}{cccc}
w_{11}L_1^t & w_{21}L_2^t & \cdots & w_{m1}L_m^t \\
w_{12}L_1^t & w_{22}L_2^t & \cdots & w_{m2}L_m^t \\
\vdots & \vdots & \ddots & \vdots \\
w_{1m}L_1^t & w_{2m}L_2^t & \cdots & w_{mm}L_m^t
dotscdotscdotscdots
\end{array} \right) \in \mathbb{R}^{nm \times nm},$$

where L_ℓ^t is the transpose of the row normalization of the adjacency matrix of layer S_ℓ, i.e. if $L_\ell = (L_{ij}(\ell))$, then for each $1 \leq i, j \leq n$

$$L_{ij}(\ell) = \frac{a_{ij}(\ell)}{\sum_k a_{ik}(\ell)}.$$

Note that each L_ℓ is row stochastic and therefore L_ℓ^t is column stochastic.

Similarly, in [3] a general framework for random walkers in multiplex networks is introduced and the distribution of the stationary states of these random walkers are given from the Perron vector of some block matrices. In particular, if we consider random walkers with no cost in the transition between states, the distribution of the stationary state is given in terms of the Perron vector of

$$B_2 = \left(\begin{array}{cccc}
w_{11}L_1^t & w_{21}L_1^t & \cdots & w_{m1}L_m^t \\
w_{12}L_2^t & w_{22}L_2^t & \cdots & w_{m2}L_m^t \\
\vdots & \vdots & \ddots & \vdots \\
w_{1m}L_m^t & w_{2m}L_m^t & \cdots & w_{mm}L_m^t
dotscdotscdotscdots
\end{array} \right) \in \mathbb{R}^{nm \times nm},$$

while if we consider random walkers with cost in the transition between states, the distribution of the stationary state is given in terms of the Perron vector of

$$B_3 = \left(\begin{array}{cccc}
w_{11}I_n & w_{21}I_n & \cdots & w_{m1}I_n \\
w_{12}I_n & w_{22}I_n & \cdots & w_{m2}I_n \\
\vdots & \vdots & \ddots & \vdots \\
w_{1m}I_n & w_{2m}I_n & \cdots & w_{mm}I_n
dotscdotscdotscdots
\end{array} \right) \in \mathbb{R}^{nm \times nm},$$

As we will see in section 3, it can be proven that, under some hypotheses, if the adjacency matrix of the projection network is irreducible, then these matrices are also irreducible and hence the corresponding random walkers have a unique stationary state.

This kind of arguments can be also applied to the supra-Laplacian \mathcal{L} of a multiplex ([6] and [25]) since we have the splitting

$$\mathcal{L} = \mathcal{L}^m + \mathcal{L}^I,$$
where \mathcal{L}^m stands for the supra-Laplacian of the independent layers and \mathcal{L}^I for the interlayer supra-Laplacian. The first one is just the direct sum of the intralayer Laplacians,

$$
\mathcal{L}^L = \begin{pmatrix}
L_1 & 0 & \cdots & 0 \\
0 & L_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & L_m
\end{pmatrix},
$$

while the interlayer supra-Laplacian may be expressed as the Kronecker (or tensorial) product (see section 2) of the interlayer Laplacian and the $n \times n$ identity matrix I,

$$
\mathcal{L}^I = \mathcal{L}^I \otimes I.
$$

2 Block Hadamard and Block Khatri-Rao Products

In addition to the conventional matrix product, there are some other matrix products which will be used throughout this paper.

Note that, for example,

$$
\mathcal{B}_1 = \begin{pmatrix}
 \begin{array}{c|c|c}
 w_{11}L_1^1 & \cdots & w_{m1}L_{m1}^1 \\
 \vdots & \ddots & \vdots \\
w_{1m}L_1^1 & \cdots & w_{mm}L_{m1}^1
\end{array} \\
\begin{array}{c|c|c}
 w_{11}L_1^m & \cdots & w_{m1}L_{m1}^m \\
 \vdots & \ddots & \vdots \\
w_{1m}L_1^m & \cdots & w_{mm}L_{m1}^m
\end{array}
\end{pmatrix},
$$

is the Hadamard product of

$$
\begin{pmatrix}
 w_{11}1_n & \cdots & w_{m1}1_n \\
 \vdots & \ddots & \vdots \\
w_{1m}1_n & \cdots & w_{mm}1_n
\end{pmatrix}
$$

and

$$
\begin{pmatrix}
 L_1^1 & \cdots & L_{m1}^1 \\
 \vdots & \ddots & \vdots \\
 L_1^m & \cdots & L_{m1}^m
\end{pmatrix},
$$

where 1_n the matrix $n \times n$ whose components are all equal to one, or the generalized Khatri-Rao product of

$$
\begin{pmatrix}
 w_{11} & \cdots & w_{m1} \\
 \vdots & \ddots & \vdots \\
w_{1m} & \cdots & w_{mm}
\end{pmatrix}
$$

and

$$
\begin{pmatrix}
 L_1^1 & \cdots & L_{m1} \\
 \vdots & \ddots & \vdots \\
 L_1^m & \cdots & L_{m1}
\end{pmatrix}.
$$

This section provides a brief survey on such definitions and basic properties without proofs. Throughout this section we refer to some standard references of matrix theory for details.
Let us consider two matrices \(A \) and \(B \) of \(m \times n \) and \(p \times q \) orders respectively. Let us suppose that \(A = [A_{ij}] \) is partitioned with \(A_{ij} \) of order \(m_i \times n_j \) (\(i \)th block submatrix of \(A \)) and let \(B = [B_{kl}] \) be partitioned with \(B_{kl} \) of order \(p_k \times q_l \) (\(k \)th block submatrix of \(B \)). Denote by \(m = \sum_{i=1}^{t} m_i \), \(n = \sum_{j=1}^{d} n_j \), \(p = \sum_{k=1}^{u} p_k \), and \(q = \sum_{l=1}^{v} q_l \). For simplicity, we say that \(A \) and \(B \) are compatible partitioned if \(A = [A_{ij}]_{i,j=1}^{t} \) and \(B = [B_{kl}]_{k,l=1}^{u} \) are square matrices of order \(m \times m \) and partitioned, respectively, with \(A_{ij} \) and \(B_{kl} \) of order \(m_i \times m_j \) (\(m = \sum_{i=1}^{t} m_i = \sum_{j=1}^{t} m_j \)).

Let \(A \otimes B, A \circ B, A \Theta B, \) and \(A * B \) be the Kronecker, Hadamard, Tracy-Singh, and Khatri-Rao products, respectively, of \(A \) and \(B \). All the definitions of the mentioned four matrix products can be found in [13], [14] as follows:

(i) **Kronecker product**

The Kronecker product of matrices is also called the tensor product, or direct product of matrices. This product is applicable to any two matrices. We refer to [8] for a complete discussion.

Let \(A = (a_{ij}) \in \mathbb{R}^{m \times n} \) and \(B = (b_{ij}) \in \mathbb{R}^{p \times q} \). The Kronecker product of \(A \) and \(B \) is defined as

\[
A \otimes B = (a_{ij}B)_{ij} = \begin{pmatrix}
a_{11}B & a_{12}B & \cdots & a_{1n}B \\
a_{21}B & a_{22}B & \cdots & a_{2n}B \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1}B & a_{m2}B & \cdots & a_{mn}B
\end{pmatrix} \in \mathbb{R}^{mp \times nq}.
\]

(ii) **Hadamard product**

The Hadamard product (elementwise multiplication), also referred to as the Schur product, arises in a wide variety of mathematical applications such as covariance matrices for independent zero mean random vectors and characteristic functions in probability theory. The reader is referred to [8], [27], [23] for more details about it.

Let \(A = (a_{ij}) \), \(B = (b_{ij}) \in \mathbb{R}^{m \times n} \). The Hadamard product of \(A \) and \(B \) is defined as

\[
A \circ B = (a_{ij}b_{ij})_{ij} = \begin{pmatrix}
a_{11}b_{11} & a_{12}b_{12} & \cdots & a_{1n}b_{1n} \\
a_{21}b_{21} & a_{22}b_{22} & \cdots & a_{2n}b_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1}b_{m1} & a_{m2}b_{m2} & \cdots & a_{mn}b_{mn}
\end{pmatrix} \in \mathbb{R}^{m \times n}.
\]
(iii) **Tracy-Singh product**

\[A \Theta B = [A_{ij} \Theta B]_{ij} = [(A_{ij} \otimes B_{kl})]_{ij}, \]

where \(A = [A_{ij}] \) and \(B = [B_{kl}] \) are partitioned matrices of order \(m \times n \) and \(p \times q \), respectively, \(A_{ij} \) is of order \(m_i \times n_j \), \(B_{kl} \) of order \(p_k \times q_l \), \(A_{ij} \Theta B \) of order \(m_i p_k \times n_j q_l \) \((m = \sum_{i=1}^{t} m_i, n = \sum_{j=1}^{d} n_j, p = \sum_{k=1}^{u} p_k, q = \sum_{l=1}^{v} q_l) \), and \(A \Theta B \) of order \(mp \times nq \).

In order to avoid confusion we use parentheses for ordinary matrices, whose entries are numbers, multiplied as usual, and square brackets for cores (core matrices), whose entries are blocks.

(iv) **Generalized Khatri-Rao product**

\[A \ast B = [A_{ij} \otimes B_{ij}]_{ij}, \]

where \(A = [A_{ij}] \) and \(B = [B_{ij}] \) are partitioned matrices of order \(m \times n \) and \(p \times q \), respectively, \(A_{ij} \) is of order \(m_i \times n_j \), \(B_{ij} \) of order \(p_i \times q_j \), \(A_{ij} \otimes B_{ij} \) of order \(m_ip_i \times n_j q_j \) \((m = \sum_{i=1}^{t} m_i, n = \sum_{j=1}^{d} n_j, p = \sum_{i=1}^{t} p_i, q = \sum_{j=1}^{d} q_j) \), and \(A \ast B \) of order \(M \times N \) \((M = \sum_{i=1}^{t} m_i p_i, N = \sum_{j=1}^{d} n_j q_j) \).

Note that the generalized Khatri-Rao product is defined based on a particular matrix partitioning, i.e., different matrix partitionings will lead to different results. Note also that the Kronecker product, the Hadamard product and the Khatri-Rao product \([10], [20]\) are all special cases of the generalized Khatri-Rao product based on different matrix partitionings.

Recall that given two matrices \(A \) and \(B \) with the same number of columns, \(m \), and denoting their columns by \(a_i \) and \(b_i \), respectively, the (column-wise) **Khatri-Rao product** is defined as \(A \ast B = [a_1 \otimes b_1, a_2 \otimes b_2, \cdots, a_m \otimes b_m] \) (we refer to \([10], [27]\) or \([15]\) for details). Note that the Khatri-Rao product can be constructed by selecting columns from the Kronecker product. To show this, define the Kronecker selection matrix \(S_m = I_m \ast I_m \) and verify \(A \ast B = (A \otimes B)S_m \), where \(I_m \) is the identity matrix in \(\mathbb{R}^{m \times m} \).

Additionally, \([13]\) shows that the generalized Khatri-Rao product can be viewed as a generalized Hadamard product and the Tracy-Singh product as a generalized Kronecker product, as follows:

1. for a nonpartitioned matrix \(A \), their \(A \Theta B \) is \(A \otimes B \);
2. for nonpartitioned matrices \(A \) and \(B \) of order \(m \times n \), their \(A \ast B \) is \(A \circ B \).
The Khatri-Rao and Tracy-Singh products are related by the following relation [13], [14]:

\[A \ast B = Z_1^T (A \Theta B) Z_2, \]

where \(A = [A_{ij}] \) is partitioned with \(A_{ij} \) of order \(m_i \times n_j \) and \(B = [B_{kl}] \) is partitioned with \(B_{kl} \) of order \(p_k \times q_l \) \((m = \sum_{i=1}^t m_i, n = \sum_{j=1}^s n_j, p = \sum_{k=1}^u p_k, q = \sum_{l=1}^v q_l) \), \(Z_1 \) is an \(mp \times r \) \((r = \sum_{i=1}^t m_ip_i) \) matrix of zeros and ones, and \(Z_2 \) is an \(nq \times s \) \((s = \sum_{j=1}^v n_jq_j) \) matrix of zeros and ones such that \(Z_1^T Z_1 = I_r, Z_1^T Z_2 = I_s \) \((I_r \text{ and } I_s \text{ are } r \times r \text{ and } s \times s \text{ identity matrices, resp.}) \).

In particular, if \(m = n \) and \(p = q \), then there exists a \(mp \times r \) \((r = \sum_{i=1}^t m_ip_i) \) matrix \(Z \) such that \(Z^T Z = I_r \) \((I_r \text{ is an } r \times r \text{ identity matrix}) \) and \(A \ast B = Z^T (A \Theta B) Z \). Here

\[Z = \begin{bmatrix}
Z_1 & \cdots & Z_t
\end{bmatrix}, \]

where each \(Z_i = [0_{i_1} \cdots 0_{i_{i-1}} I_{m_ip_i} 0_{i_{i+1}} \cdots 0_{i_t}]^T \) is a real matrix of zeros and ones, and \(0_{ik} \) is a \(m_ip_i \times m_ip_k \) zero matrix for any \(k \neq i \). Note also that \(Z_i^T Z_i = I \) and

\[Z_i^T (A_{ij} \Theta B) Z_j = Z_i^T (A_{ij} \otimes B_{kl})_{kl} Z_j = A_{ij} \otimes B_{ij}, \quad i, j = 1, 2, \cdots, t. \]

The generalized Khatri-Rao product was also used, e.g., in [26].

Let \(A \) and \(B \) be matrices respectively expressed as \(r \times t \) and \(t \times u \) block matrices

\[
A = \begin{pmatrix}
A_{11} & A_{12} & \cdots & A_{1t} \\
A_{21} & A_{22} & \cdots & A_{2t} \\
\vdots & \vdots & \ddots & \vdots \\
A_{r1} & A_{r2} & \cdots & A_{rt}
\end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix}
B_{11} & B_{12} & \cdots & B_{1u} \\
B_{21} & B_{22} & \cdots & B_{2u} \\
\vdots & \vdots & \ddots & \vdots \\
B_{t1} & B_{t2} & \cdots & B_{tu}
\end{pmatrix},
\]

where each \(A_{ij} \) \((i = 1, 2, \cdots, r \text{ and } j = 1, 2, \cdots, t) \) is an \(m \times p \) matrix, and each \(B_{ij} \) \((i = 1, 2, \cdots, t \text{ and } j = 1, 2, \cdots, u) \) is a \(n \times q \) matrix. In [24] the strong Kronecker product is defined for two matrices \(A \) and \(B \) of dimensions \(r \times t \) and \(t \times u \) respectively as the matrix:

\[
C = \begin{pmatrix}
C_{11} & C_{12} & \cdots & C_{1u} \\
C_{21} & C_{22} & \cdots & C_{2u} \\
\vdots & \vdots & \ddots & \vdots \\
C_{r1} & C_{r2} & \cdots & C_{ru}
\end{pmatrix},
\]

8
where each

\[C_{ij} = A_{i1} \otimes B_{1j} + A_{i2} \otimes B_{2j} + \cdots + A_{it} \otimes B_{tj}, \]

is an \(mn \times pq \) matrix. It is important to note that the operation is fully determined only after the parameters \(r, t, \) and \(u \) are fixed. Generally, the partitioning of the matrices will be clear from the context, and then we call \(C \) the strong Kronecker product of \(A \) and \(B \), denoted by \(A \circledast B \). The strong Kronecker product, developed in [24], supports the analysis of certain orthogonal matrix multiplication problems. The strong Kronecker product is considered a powerful matrix multiplication tool for Hadamard and other orthogonal matrices from combinatorial theory [12]. In [19] the strong Kronecker product is shown to be a matrix multiplication in a permuted space. Similarly, if \(m = n \) and \(p = q \), the strong Hadamard product \(A \circledast B \) of \(A \) and \(B \) is defined in [1] as

\[
A \circledast B = \begin{pmatrix}
D_{11} & D_{12} & \cdots & D_{1u} \\
D_{21} & D_{22} & \cdots & D_{2u} \\
\vdots & \vdots & \ddots & \vdots \\
D_{r1} & D_{r2} & \cdots & D_{ru}
\end{pmatrix},
\]

where each

\[D_{ij} = A_{i1} \circ B_{1j} + A_{i2} \circ B_{2j} + \cdots + A_{it} \circ B_{tj}, \]

is an \(m \times p \) matrix.

Let \(A = (A_{ij}) \) and \(B = (B_{ij}) \) be \(p \times p \) block matrices in which each block is an \(n \times n \) matrix. In [9] a block Hadamard product \(A \square B \) is defined by \(A \square B := (A_{ij}B_{ij}) \), where \(A_{ij}B_{ij} \) denotes the usual matrix product of \(A_{ij} \) and \(B_{ij} \).

There are other definitions of partitioned matrix products, see for instance [7] where a generalized Kronecker product for block matrices is defined.

3 Irreducibility and uniqueness of Block Perron Vectors through properties of the blocks

In this section we will discuss irreducibility of the block matrices that appear in our different descriptions of multiplex networks. Let us start by introducing some notation.
3.1 Products of block matrices

In the sequel we will consider block matrices consisting of \(m^2\) blocks of dimensions \(n \times n\) with real nonnegative coefficients:

\[
P = \begin{pmatrix}
P_{11} & P_{12} & \cdots & P_{1m} \\
P_{21} & P_{22} & \cdots & P_{2m} \\
\vdots & \vdots & \ddots & \vdots \\
P_{m1} & P_{m2} & \cdots & P_{mm}
\end{pmatrix}, \quad P_{ij} \in \mathbb{R}^{n \times n}.
\]

The set of all such matrices will be denoted by \(M_{nm,n}^+(\mathbb{R})\), or simply \(M_{nm,n}^+\).

For two such block matrices \(P\) and \(P'\), let us consider the strong Hadamard product defined above:

\[(P \odot P')_{ij} = \sum_{k=1}^{m} P_{ik} \odot P'_{kj},\]

where \(P_{ik} \odot P'_{kj}\) denotes the Hadamard product (i.e. the componentwise product) of the blocks \(P_{ik}\) and \(P'_{kj}\).

For a given a sequence of \(n \times n\) matrices \(\begin{pmatrix} A_1, \ldots, A_m \end{pmatrix}\) we can consider the diagonal block matrix \(A\) matrix defined by:

\[
A = \begin{pmatrix}
A_1 & 0 & \cdots & 0 \\
0 & A_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & A_m
\end{pmatrix}
\]

We will denote by \(I_n\) the \(n \times n\) identity matrix, and by \(1_n\) the matrix \(n \times n\) whose components are all equal to one. Then the identity element of the product \(\odot\) is \(1_n\), that is, the diagonal block matrix given by the sequence \((1_n, \ldots, 1_n)\).

Let us denote by \(R_2\) the Boolean algebra with two elements \(\{0, 1\}\), on which we have two operations, namely:

\[
\begin{array}{ccc}
+ & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 1
\end{array}
\] \quad \begin{array}{ccc}
\cdot & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 1
\end{array}
\]

Then, for every nonnegative matrix \(P \in M_{nm,n}^+\) we may define its booleanization \(\beta(P)\) as the \(nm\) block matrix with coefficients in \(R_2\) given by:

\[(\beta(P)_{ij})_{kr} = \begin{cases}
1 & \text{if } (P_{ij})_{kr} \neq 0 \\
0 & \text{if } (P_{ij})_{kr} = 0
\end{cases}\]

for all \(i, j = 1, \ldots, m, \ k, r = 1, \ldots, n.\)
Notice that the map \(\beta : M_{nm,n}^+ \rightarrow M_{nm,n}(R_2) \) preserves, by definition, sums, and the usual, Hadamard and strong Hadamard products; notice also that the irreducibility of a nonnegative matrix, which is the main topic of this section, depends only on its booleanization, which can be thought of as a matrix-representation of the graph defined by the matrix.

A partial order can be defined in \(M_{nm,n}(R_2) \) as \(B \leq B' \) if and only if there exists \(B'' \in M_{nm,n}(R_2) \) such that \(B + B'' = B' \). It becomes obvious that, if \(P \in M_{nm,n}^+ \) is irreducible, then any other matrix \(P' \in M_{nm,n}^+ \) satisfying \(\beta(P) \leq \beta(P') \) must be irreducible as well.

Finally we note that for every block matrix \(P \in M_{nm,n}^+ \) a new block matrix \(\hat{P} \in M_{nm,m}^+ \) can be defined by reordering the coefficients as follows:

\[
(\hat{P}_{kr})_{ij} = (P_{ij})_{kr}, \quad i, j = 1, \ldots, n, \quad k, r = 1, \ldots, m
\]

This new matrix is formed by \(n^2 \) blocks of dimension \(m \times m \).

3.2 Block matrices for multiplex networks

In order to model multiplex networks as they appear in nature, scientists have introduced several types of special block matrices. Generally speaking, they are all constructed upon the following data:

- A set of \(m \) nonnegative \(n \times n \) matrices \(\{A_1, \ldots, A_m\} \), each \(A_i \) is the the adjacency matrix of the \(i \)-layer belonging to the multiplex network. In this context the matrix \(\overline{A} := \frac{1}{m} \sum_{i=1}^m A_i \), whose associated graph is the projection network of the complex network under study, is considered.

- Two \(nm \times nm \) nonnegative block matrices, encoding the interrelation between layers:

\[
W = \begin{pmatrix}
W_{11} & W_{12} & \cdots & W_{1m} \\
W_{21} & W_{22} & \cdots & W_{2m} \\
\vdots & \vdots & \ddots & \vdots \\
W_{m1} & W_{m2} & \cdots & W_{mm}
\end{pmatrix}, \quad V = \begin{pmatrix}
V_{11} & V_{12} & \cdots & V_{1m} \\
V_{21} & V_{22} & \cdots & V_{2m} \\
\vdots & \vdots & \ddots & \vdots \\
V_{m1} & V_{m2} & \cdots & V_{mm}
\end{pmatrix}
\]

We may think of \(W \) as the matrix encoding interrelations between layers (influence matrix), whereas \(V \) represents interrelations between layers arising from the set of all the specific influences that a node in a layer has over a node in another (not necessarily different) layer.

Then, upon this data, we consider the matrices:

\(\mathbb{B} = \mathbb{A} \odot W + V \) and \(\mathbb{B}' = W \odot \mathbb{A} + V \).

Notice that both \(\mathbb{B} \) and \(\mathbb{B}' \) have their own eigenvector centrality.

Two particular cases of the previous general scheme have a clear interest.
1. The term V is identically zero. Then we have two block matrices

$$B_1 = A \circ W \text{ and } B'_1 = W \circ A$$

(this is the situation when modelling random walkers with no cost for the state transition).

2. The term W is equal to 1, so that our two block matrices are equal:

$$B_2 = A \circ 1 + V = A + V = 1 \circ A + V = B'_2.$$

Typically in this case one would ask V to satisfy the following property:

$$V_{ij} \text{ diagonal, for all } i, j$$

In other words, the property (\star) is satisfied whenever $\hat{V} = B$ being $B = (B_1, \ldots, B_n)$ a sequence of $m \times m$ nonnegative matrices.

Each matrix B_k represent the way in which one may switch between layers, while staying at node j (this is the situation when modelling random walkers with no cost for the state transition).

In search of irreducibility conditions we will work on this general scheme; this is the content of the next subsection.

3.3 Irreducibility conditions

As announced the rest of the section is devoted to describing irreducibility conditions of the matrices described above. Since we are going to discuss irreducibility through is graph-theoretical counterpart –strong connectedness– we need to introduce first some notation.

Given a multiplex network determined by one of the matrices B (or B') described above, we will write $i \rightarrow_k j$ when the node i is linked to the node j in layer k, i.e. when the coefficient $(A_k)_{ij}$ is different from zero. We will now consider a new monoplex network with nodes $\tilde{X} = \{(i,k) | i = 1, \ldots, n, \ k = 1, \ldots, m\}$ and write $(i,k) \rightarrow (j,\ell)$ when the coefficient in the position ij of the block $k\ell$ of B (or B') is different from zero. In other words, we consider the weighted graph (\tilde{X}, \tilde{B}) (or (\tilde{X}, \tilde{B}')) supported on the monolayer network $\tilde{\mathcal{M}}$.

In the case 1, we will start by analyzing the case in which the projected network is strongly connected, that is, in which $\overline{\mathcal{A}}$ is irreducible. Fortunately, in this case, even if W is positive, very simple examples show that B_1 and B'_1 are not necessarily irreducible. However we may state that there exists a unique Perron vector for them.

Theorem 3.1. With the same notation as above, assume that $\overline{\mathcal{A}}$ is irreducible and W is positive. Then B_1 and B'_1 have a unique Perron vector.
Proof. We will present the proof of the uniqueness for B_1, being the proof for B'_1 analogous.

Note that the matrix B_1 may have rows completely equal to zero, preventing it from being irreducible. If W is strictly positive, this happens precisely if there exists a sink in the graph of one of the layers. In order to deal with this situation, we consider a permutation matrix P that reorders the rows of B_1 so that all the rows equal to zero appear in the first positions. Then the product $P \cdot B_1 \cdot P^t$ takes the form:

$$P \cdot B_1 \cdot P^t = \begin{pmatrix}
0 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & 0 & \cdots & 0 \\
* & \cdots & * & & & \\
\vdots & \ddots & \vdots & \ddots & \ddots & \vdots \\
* & \cdots & * & & & R
\end{pmatrix}$$

and it suffices to show that R is an irreducible matrix, because in this case the algebraic multiplicities of the spectral radius of B_1 as an eigenvalue of B_1 equals its multiplicity as an eigenvalue for R, which is equal to one.

In order to check the irreducibility of R note first that, by the positivity of W:

$$(i \xrightarrow{k} j) \iff ((i, k) \rightarrow (j, k)) \iff ((i, k) \rightarrow (j, \ell)) \text{ for all } \ell = 1, \ldots, m$$

(3.2)

Considering then the weighted subgraph of (\tilde{X}, B_1) associated to R, and denoting by \tilde{X}_R its set of nodes, that is:

$$\tilde{X}_R = \{(i, k) \mid i \xrightarrow{k} j \text{ for some } j\},$$

it suffices to show that (\tilde{X}_R, R) is strongly connected.

Let then $(i, k), (i', k')$ be two nodes of this subgraph. Since $(i, k) \in \tilde{X}_R$, there exist $j_1 \in \{1, \ldots, n\}$ such that

$$(i, k) \rightarrow (j_1, \ell) \text{ for all } \ell.$$

Moreover, by hypothesis on A, we know that there exist two sequences of indices $(j_1, \ldots, j_r = i')$, $j_p \in \{1, \ldots, n\}$, and $(k_2, \ldots, k_r), k_p \in \{1, \ldots, m\}$, such that:

$$j_1 \xrightarrow{k_2} j_2 \xrightarrow{k_3} \cdots \xrightarrow{k_r} j_r = i',$$

and so $(j_p, k_{p+1}) \rightarrow (j_{p+1}, \ell)$ for all ℓ. Summing up, we have a sequence of edges linking (i, k) to (i', k'):

$$(i, k) \rightarrow (j_1, k_2) \rightarrow (j_2, k_3) \rightarrow \cdots \rightarrow (j_{r-1}, k_r) \rightarrow (i', k').$$

\square
Remark 3.3. Note that, denoting by $1_{nm} \in M_{nm,n}$ the matrix whose coefficients are all ones, the proof holds for every nonnegative block matrix W satisfying $\beta(W) \geq \beta(A \odot 1_{nm})$ (or $\beta(W) \geq \beta(1_{nm} \odot A)$, when we are dealing with B'_1).

The next corollary is an immediate consequence of the previous proof:

Corollary 3.4. With the same notation as above, assume that \overline{A} is irreducible and that W is strictly positive. Assume moreover that each layer A_k of the network has no sinks (respectively, no sources). Then B_1 (resp. B'_1) is irreducible.

Let us consider now the case 2. Here we will infer the irreducibility of $B_2 = B'_2$ from properties of (A_1, \ldots, A_m) and (B_1, \ldots, B_n).

Proposition 3.5. With the same notation as above, assume that one of the following properties holds:

(i) \overline{A} and every B_i are irreducible.

(ii) Every A_k and \overline{B} are irreducible.

Then B_2 is irreducible.

Proof. As usual, we will discuss the proof in terms of the subjacent networks. In the first case, given two pairs $(i, k), (i', k') \in \overline{X}$, the irreducibility of \overline{A} provides a sequence of edges:

$$i = j_0 \xrightarrow{k_1} j_1 \xrightarrow{k_2} \cdots \xrightarrow{k_r} j_r = i'.$$

That is, we have links

$$(i = j_0, k_1) \rightarrow (j_1, k_1), \quad (j_1, k_2) \rightarrow (j_2, k_2), \quad \ldots, \quad (j_{r-1}, k_r) \rightarrow (i' = j_r, k_r).$$

Denote $k_0 := k$, $k_{r+1} := k'$. Then, the irreducibility of the B_i’s provides sequences of edges joining (j_p, k_p) with (j_p, k_{p+1}) for all $p = 0, \ldots, r$. Joining all these sequence conveniently, we have a sequence of edges joining (i, k) and (i', k'). The irreducibility of B_2 under the second set of hypotheses is analogous.

Remark 3.6. As we may see in this Proposition, in this second setup, the links within layers and between layers play a symmetric role. In this way, every theorem about B_2 written in terms of A and B will always have a symmetric counterpart.
4 Computation of Block Perron Vectors in terms of low-dimensional vectors

Our approach is based on the Perron complementation method for finding the Perron eigenvector of a nonnegative irreducible matrix $A_{m \times m}$ with spectral radius ρ, see [17]. This method consists of uncoupling A into smaller matrices whose Perron eigenvectors are coupled together in order to recover the Perron eigenvector of A and it is described in Appendix [A]. The Perron eigenvector $\pi = \left(\begin{array}{c} \pi_1 \\ \pi_2 \\ \vdots \\ \pi_k \end{array} \right) > 0$ of each of B_1, B_2, B_3 is of the form

$$\pi = \left(\begin{array}{c} \xi_1 p_1 \\ \xi_2 p_2 \\ \vdots \\ \xi_k p_k \end{array} \right)$$

> 0 where each p_i is the Perron eigenvector of the Perron complement P_{ii}, and will be calculated for all the three cases, and the normalizing scalars or coupling factors ξ_i turn to be the ith-components of the Perron eigenvector of W^t.

Our only assumption is that W is row-stochastic and that no ith-row of W equals the ith-vector of the canonical basis e_i of \mathbb{R}^m (this means that all layers have influence at least on some other layer).

Block matrix of type B_1: The obtention of the Perron eigenvector π of B_1 follows from combining the p_i's with the coupling factor, which is the Perron eigenvector of W^t. Remember that

$$B_1 = \left(\begin{array}{ccc} w_{11} L_1^t & w_{21} L_2^t & \cdots & w_{m1} L_m^t \\ w_{12} L_1^t & w_{22} L_2^t & \cdots & w_{m2} L_m^t \\ \vdots & \vdots & \ddots & \vdots \\ w_{1m} L_1^t & w_{2m} L_2^t & \cdots & w_{mm} L_m^t \end{array} \right) \in \mathbb{R}^{nm \times nm}.$$

Let us calculate the Perron eigenvector p_1 of the Perron complement P_{11}.

First calculate $\left(\begin{array}{c} Q_2 \\ \vdots \\ Q_m \end{array} \right)$, which is an eigenvector associated to 1 of the matrix

$$A_1^{p_1} = w_{11} L + \tilde{W}_{11}^{(1)} - w_{11} L \tilde{W}_{11}^{(1)} + \left(\begin{array}{c} w_{12} L_2^t \\ \vdots \\ w_{1m} L_m^t \end{array} \right) (w_{21} L_2^t \cdots w_{m1} L_m^t)$$

15
where \(L = \begin{pmatrix} L_1 & \cdots & 0 \\ 0 & L_1 & \cdots \\ \vdots & \vdots & \ddots \\ 0 & \cdots & L_1 \end{pmatrix} \) and \(\tilde{W}_1^{(1)} = \begin{pmatrix} w_{22} L_2^t \\ w_{23} L_3^t \\ \vdots \\ w_{2m} L_m^t \\ w_{11} L_1^t \end{pmatrix} \).

Once the \(Q_i's \) are obtained use
\[
\begin{pmatrix} w_{12} L_1^t \\ w_{13} L_1^t \\ \vdots \\ w_{1m} L_1^t \end{pmatrix} p_1 = \left(I - \begin{pmatrix} w_{22} L_2^t & \cdots & w_{m2} L_m^t \\ w_{23} L_3^t & \cdots & w_{m3} L_m^t \\ \vdots & \ddots & \vdots \\ w_{2m} L_m^t & \cdots & w_{mm} L_m^t \end{pmatrix} \right) \begin{pmatrix} Q_2 \\ Q_3 \\ \vdots \\ Q_m \end{pmatrix}
\]
to get \(L_1^t p_1 \) (remember that some of the \(w_{ii} \neq 0 \)), and then the equality
\[
p_1 = w_{11} L_1^t p_1 + (w_{21} L_2^t \cdots w_{m1} L_m^t) \begin{pmatrix} Q_2 \\ Q_3 \\ \vdots \\ Q_m \end{pmatrix}
\]
to recover \(p_1 \).

The remaining \(p_i's \) are analogously calculated.

Block matrix of type \(B_2 \): The obtention of the Perron eigenvector \(\pi \) of \(B_2 \) follows from combining the \(p_i's \) with the coupling factor, which is the Perron eigenvector of \(W' \). Remember that
\[
B_2 = \begin{pmatrix} w_{11} L_1^t & w_{21} L_1^t & \cdots & w_{m1} L_1^t \\ w_{12} L_2^t & w_{22} L_2^t & \cdots & w_{m2} L_2^t \\ \vdots & \vdots & \ddots & \vdots \\ w_{1m} L_m^t & w_{2m} L_m^t & \cdots & w_{mm} L_m^t \end{pmatrix} \in \mathbb{R}^{nm \times nm}.
\]

Let us calculate the Perron eigenvector \(p_1 \) of the Perron complement \(P_{11} \).

First calculate \(\begin{pmatrix} Q_2 \\ Q_3 \\ \vdots \\ Q_m \end{pmatrix} \), which is an eigenvector associated to 1 of the matrix
\[
A_2 p_1 = w_{11} L + \tilde{W}_1^{(2)} - w_{11} \tilde{W}_1^{(2)} L + \begin{pmatrix} w_{12} L_2^t \\ w_{13} L_3^t \\ \vdots \\ w_{1m} L_m^t \end{pmatrix} (w_{21} L_1^t, \ldots, w_{m1} L_1^t)
\]
where \(L = \begin{pmatrix} L_1 & \cdots & 0 \\ 0 & L_1 & \cdots \\ \vdots & \vdots & \ddots \\ 0 & \cdots & L_1 \end{pmatrix} \) and \(\tilde{W}_1^{(2)} = \begin{pmatrix} w_{22} L_2^t \\ w_{23} L_3^t \\ \vdots \\ w_{2m} L_m^t \\ w_{11} L_1^t \end{pmatrix} \).
Once the Q'_is are obtained,

\[p_1 = (w_{21}L_1, \ldots, w_{m1}L_1) \begin{pmatrix} Q_2 \\ Q_3 \\ \vdots \\ Q_m \end{pmatrix}. \]

The remaining p'_is are analogously obtained.

Block matrix of type B_3: The obtention of the Perron eigenvector π of B_3 follows from combining the p'_is with the coupling factor, which is the Perron eigenvector of W^t. Remember that

\[B_3 = \begin{pmatrix} w_{11}L^t_1 & w_{21}Id & \cdots & w_{m1}Id \\ w_{12}Id & w_{22}L^t_2 & \cdots & w_{m2}Id \\ \vdots & \vdots & \ddots & \vdots \\ w_{1m}Id & w_{2m}Id & \cdots & w_{mm}L^t_m \end{pmatrix} \in \mathbb{R}^{nm \times nm}. \]

The calculation of the Perron eigenvector p_1 of the Perron complement P_{11} can be done as follows: calculate

\[\begin{pmatrix} Q_2 \\ Q_3 \\ \vdots \\ Q_m \end{pmatrix}, \]

which is an eigenvector associated to 1 of the matrix

\[A_3^{p_1} = w_{11}L + \tilde{W}^{(3)}_{11} - w_{11}L\tilde{W}^{(3)}_{11} + \begin{pmatrix} w_{12}Id \\ w_{13}Id \\ \vdots \\ w_{1m}Id \end{pmatrix}(w_{21}Id \ldots w_{m1}Id) \]

where

\[L = \begin{pmatrix} L^t_1 & \cdots & 0 \\ 0 & L^t_2 & \cdots \\ \vdots & \vdots & \ddots \\ 0 & \cdots & L^t_m \end{pmatrix} \quad \text{and} \quad \tilde{W}^{(3)}_{11} = \begin{pmatrix} w_{22}L^t_2 & w_{23}Id & \cdots & w_{m2}Id \\ w_{23}Id & w_{33}L^t_3 & \cdots & w_{m3}Id \\ \vdots & \vdots & \ddots & \vdots \\ w_{2m}Id & w_{3m}Id & \cdots & w_{mm}L^t_m \end{pmatrix}. \]

Once the Q'_is are obtained use

\[\begin{pmatrix} w_{12}Id \\ w_{13}Id \\ \vdots \\ w_{1m}Id \end{pmatrix} p_1 = \left(\begin{pmatrix} w_{22}L^t_2 & w_{23}Id & \cdots & w_{m2}Id \\ w_{23}Id & \cdots & \cdots & w_{m2}L^t_m \\ \vdots & \vdots & \ddots & \vdots \\ w_{2m}Id & w_{3m}Id & \cdots & w_{mm}L^t_m \end{pmatrix} \right) \begin{pmatrix} Q_2 \\ Q_3 \\ \vdots \\ Q_m \end{pmatrix} \]

\[\text{to recover } p_1 \text{ (remember that some } w_{ij} \neq 0). \]

The remaining p'_is are analogously calculated.
4.1 Particular case of two layers \((m = 2)\)

We will show that the eigenvectors associated to the principal eigenvalue 1 can be computed in terms of the eigenvectors associated to 1 of certain matrices related to \(L^t_1, L^t_2\) and the elements of \(W\). The only assumption on \(W\) is that it is row-stochastic. The details of the calculations will be shown in \([A]\).

Block matrix of type \(B_1, m = 2\):

\[
B_1 = \begin{pmatrix}
 w_{11} L_1^t & w_{21} L_2^t \\
 w_{12} L_1^t & w_{22} L_2^t
\end{pmatrix},
\]

where \(L^t_1\) is the transpose of the row normalization of the adjacency matrix of layer \(S_1\).

(a) If both \(w_{11} \neq 1\) and \(w_{22} \neq 1\) then if \(\begin{pmatrix} \pi_1 \\ \pi_2 \end{pmatrix}\) is an eigenvector associated to the eigenvalue 1, we get that \(\pi_1\) and \(\pi_2\) are eigenvectors associated to 1 to the column stochastic matrices

\[
A_1^1 = \left(w_{11} L_1^t + w_{22} L_2^t + (1 - w_{11} - w_{22}) L_1^t L_2^t \right), \quad \text{and} \quad A_1^2 = \left(w_{11} L_1^t + w_{22} L_2^t + (1 - w_{11} - w_{22}) L_1^t L_2^t \right).
\]

(b) If \(w_{11} = 1\) then \(w_{12} = 0\) and if the vector \(\begin{pmatrix} \pi_1 \\ \pi_2 \end{pmatrix}\) is associated to the eigenvalue 1 then we have one of the three following situations:

(b.1) \(0 < w_{22} < 1\): the eigenvectors associated to 1 of \(B_1\) have the form \(\begin{pmatrix} \pi_1 \\ 0 \end{pmatrix}\) where \(\pi_1\) is an eigenvector of \(L_1^t\) associated to 1.

(b.2) \(w_{22} = 0\): the eigenvectors associated to \(B_1\) have the form \(\begin{pmatrix} \pi_1 \\ 0 \end{pmatrix}\) where \(\pi_1\) is an eigenvector of \(L_1^t\) associated to 1.

(b.3) \(w_{22} = 1\): the eigenvectors of \(B_1\) associated to 1 have the form \(\begin{pmatrix} \pi_1 \\ \pi_2 \end{pmatrix}\) where \(\pi_1\) is an eigenvector of \(L_1^t\) associated to 1 and \(\pi_2\) an eigenvector of \(L_2^t\) associated to 1.

(c) If \(w_{22} = 1\) then, arguing as in case (b) either \(w_{11} = 1\) and we are again in the situation of (b.3) or the eigenvector of \(B_1\) associated to 1 are of the form \(\begin{pmatrix} 0 \\ \pi_2 \end{pmatrix}\) where \(\pi_2\) is an eigenvector of \(L_2^t\) associated to 1.

Block matrix of type \(B_2, m = 2\):

\[
B_2 = \begin{pmatrix}
 w_{11} L_1^t & w_{21} L_2^t \\
 w_{12} L_1^t & w_{22} L_2^t
\end{pmatrix},
\]

where \(L^t_1\) is the transpose of the row normalization of the adjacency matrix of layer \(S_1\).
(a) If both $w_{11} \neq 1$ and $w_{22} \neq 1$ then if \(\left(\begin{array}{c} \pi_1 \\ \pi_2 \end{array} \right) \) is an eigenvector associated to the eigenvalue 1 and defining $\pi_{1\text{aux}}^1 = (I - w_{11}L_1^t)^{-1}(I - w_{22}L_2^t)^{-1}L_2^t\pi_1$ and $\pi_{2\text{aux}}^1 = (I - w_{22}L_2^t)^{-1}(I - w_{11}L_1^t)^{-1}L_1^t\pi_2$, we get that $\pi_{1\text{aux}}^1$ and $\pi_{2\text{aux}}^1$ are eigenvectors associated to 1 of the column stochastic matrices

\[
A_{\pi_1^1} = \left(w_{11}L_1^t + w_{22}L_2^t - w_{11}w_{22}L_2^tL_1^t + w_{12}w_{21}L_1^t \right), \quad \text{and} \quad A_{\pi_2^1} = \left(w_{11}L_1^t + w_{22}L_2^t - w_{11}w_{22}L_1^tL_2^t + w_{12}w_{21}L_1^tL_2^t \right).
\]

After computing $\pi_{1\text{aux}}^1$ and $\pi_{2\text{aux}}^1$,

\[
\left\{ \begin{array}{l}
\pi_1 = w_{12}w_{21}L_1^t\pi_{1\text{aux}}^1, \\
\pi_2 = w_{12}w_{21}L_2^t\pi_{2\text{aux}}^1.
\end{array} \right.
\]

(b) $(w_{11} = 1)$ and (c) $(w_{22} = 1)$ give the same results as for matrices of type B_1.

Block matrix of type B_3, $m = 2$:

\[
B_2 = \left(\begin{array}{cc}
w_{11}L_1^t & w_{21}L_2^t \\
w_{12}L_2 & w_{22}L_2^t
\end{array} \right),
\]

where L_ℓ^t is the transpose of the row normalization of the adjacency matrix of layer S_ℓ.

(a) If both $w_{11} \neq 1$ and $w_{22} \neq 1$ then if \(\left(\begin{array}{c} \pi_1 \\ \pi_2 \end{array} \right) \) is an eigenvector associated to the eigenvalue 1, we get that π_1 and π_2 are eigenvectors associated to 1 to the column stochastic matrices

\[
A_{\pi_1^2} = \left(w_{11}L_1^t + w_{22}L_2^t - w_{11}w_{22}L_2^tL_1^t + w_{12}w_{21}I_2 \right), \quad \text{and} \quad A_{\pi_2^2} = \left(w_{11}L_1^t + w_{22}L_2^t - w_{11}w_{22}L_1^tL_2^t + w_{12}w_{21}I_2 \right).
\]

(b) $(w_{11} = 1)$ and (c) $(w_{22} = 1)$ give the same results as for matrices of type B_1.

References

[1] H. Civciv, R. Turkmen, On new version of strong Hadamard exponential function, Selâœuk J. Appl. Math. 9 (2008), no. 1, 11-21.

[2] M. De Domenico, A. Solè-Ribalta, E. Cozzo, M. Kivelä, Y. Moreno, M.A. Porter, S. Gómez and A. Arenas, Mathematical Formulation of Multi-Layer Networks, Phys. Rev. X 3, 041022 (2013).

[3] M. De Domenico, A. Solè-Ribalta, S. Gómez and A. Arenas, Random Walks on Multiplex Networks, arXiv:1306.0519 (2013).
[4] M. De Domenico, A. Solé-Ribalta, S. Gómez and A. Arenas,
Navigability of interconnected networks under random failures, PNAS 111 (2014) 8351.

[5] E. Estrada, J. Gómez-Gardeñes, Communicability reveals a transition to coordinated behavior in multiplex networks, Phys. Rev. E 89 (2014) 042819.

[6] S. Gómez, A. Díaz-Guilera, J. Gómez-Gardeñes, J. Pérez-Vicente, Y. Moreno and A. Arenas, Diffusion Dynamics on Multiplex Networks, Phys. Rev. Lett. 110 (2013) 028701.

[7] M. Günther, L. Klotz, Schur’s theorem for a block Hadamard product, Linear Algebra Appl. 437 (2012), no. 3, 948-956.

[8] R. Horn and C.A. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991.

[9] R.A. Horn, R. Mathias, Y. Nakamura, Inequalities for unitarily invariant norms and bilinear matrix products, Linear and Multilinear Algebra 30 (1991), no. 4, 303A–314.

[10] C.G. Khatri, C.R. Rao, Solutions to some functional equations and their applications to characterization of probability distributions, Sankhya 30 (1968) 167A–180.

[11] A.N. Langville and C.D. Meyer, Google’s PageRank and Beyond: The Science of Search Engine Ranks, Princeton Univ. Press, Princeton (2006).

[12] W.D. Launey, J. Seberry, The strong Kronecker product, Journal of Combinatorial Theory, Series A 66 (1994), no. 2, 192-213.

[13] S. Liu, Matrix results on the Khatri-Rao and Tracy-Singh products, Linear Algebra and Its Applications 289 (1999), no. 1A–3, 267A–277.

[14] S. Liu, Several inequalities involving Khatri-Rao products of positive semidefinite matrices, Linear Algebra and Its Applications 354 (2002), no. 1A–3, 175A–186.

[15] S. Liu, G. Trenkler, Hadamard, khatri-rao, kronecker and other matrix products, International Journal of Information and System Sciences 4 (2008), no. 1, pp. 160A–177.

[16] L. Ljung, T. Söderström, Theory and Practice of Recursive Identification, MIT Press, 1982.

[17] C.D. Meyer, Uncoupling the Perron eigenvector problem, Lin. Alg. Appl., 114 (1989), 69–94.
[18] C.D. Meyer, *Matrix Analysis and applied linear algebra*, SIAM, Philadelphia, 2000.

[19] N.P. Pitsianis, *Some Properties of the Strong Kronecker Product*, International Conference on Computational Engineering Science Â’98, Atlanta, GA, in Â“Modeling and Simulation Based EngineeringÂ”, Volume I, 433-438, Editors S. N. Alturi and P. E. OÂ’ Donoghue, Tech Science Press, 1998.

[20] C.R Rao, *Estimation of heteroscedastic variances in linear models*, J. Amer. Statist. Assoc. 65 (1970) 161Â–172.

[21] R. J. Sánchez García, E. Cozzo, Y. Moreno, *Dimensionality reduction and spectral properties of multilayer networks*, Phys.Rev.E 89, 052815.

[22] L. Solá, M. Romance, R. Criado, J. Flores, A. García del Amo and S. Boccaletti, *Eigenvector centrality of nodes in multiplex networks*, Chaos 23 (2013) 033131

[23] J.F. Schott, *Matrix Analysis for Statistics*, 2nd edition, Wiley, Hoboken, New Jersey, 2005.

[24] J. Seberry, X-M. Zhang, *Some orthogonal matrices constructed by strong Kronecker product multiplication*, Austral. J. Combin.7 (1993) 213-224.

[25] A. Solè-Ribalta, M. De Domenico, N.E. Kouvaris, A. Diaz-Guilera, S. Gómez and A. Arenas, *Spectral properties of the laplacian of multiplex networks*, Phys.Rev.E 88 (2013) 032807.

[26] L. Xu, P. Stoica, J. Li, *A block-diagonal growth curve model*, Digital Signal Processing 16 (2006), no. 6, 902-912.

[27] X. Zhang, *Matrix Analysis and Applications*, Tsinghua Univ. Press Springer, Beijing, 2004.
A Mathematical proof of the results of section 4

Perron complementation method for finding the Perron vector of a nonnegative irreducible matrix $A_{m \times m}$ with spectral radius ρ ([17]): This method consists of uncoupling A into smaller matrices whose Perron vectors are coupled together in order to recover the Perron vector of A. Let us briefly recall it:

Given a k-level partition

$$A = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1k} \\ A_{21} & A_{22} & \cdots & A_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ A_{k1} & A_{k2} & \cdots & A_{kk} \end{pmatrix}$$

where all the diagonal blocks A_{ii} are square, we consider the principal block submatrices A_i of A obtained by deleting the ith-row of blocks and the ith-column of blocks from A. We also consider

$$A_{is} = (A_{i1} A_{i2} \cdots A_{i,i-1} A_{i,i+1} \cdots A_{ik})$$

and

$$A_{si} = \begin{pmatrix} A_{i1} \\ \vdots \\ A_{i-1,i} \\ A_{i+1,i} \\ \vdots \\ A_{ki} \end{pmatrix}.$$

The Perron complement of A_{ii} in A is defined as the matrix

$$P_{ii} = A_{ii} + A_{is} (\rho I_d - A_i)^{-1} A_{si}.$$

The importance of the Perron complements stems from the fact that if A is nonnegative and irreducible with spectral radius ρ, then P_{ii} is also nonnegative and irreducible with spectral radius ρ. In addition, if $\pi = \begin{pmatrix} \pi_1 \\ \pi_2 \\ \vdots \\ \pi_k \end{pmatrix} > 0$ is the Perron vector of A, partitioned accordingly, then $P_{ii} \pi^i = \rho \pi^i$, that is, π^i is a positive eigenvector of P_{ii} associated to ρ ([17] Thm 2.1 and 2.2). Call $p_i \equiv \frac{\pi^i}{\|\pi^i\|_1}$, the Perron vector of P_{ii}. The normalizing scalar $\xi^i \equiv \|\pi^i\|_1$, or coupling factor, turns out to be the ith-component of the
Perron eigenvector \(\begin{pmatrix} \xi^1 \\ \xi^2 \\ \vdots \\ \xi^k \end{pmatrix} \) of the coupling matrix \(C \equiv (c_{ij}) \), where \(c_{ij} = \| A_{ij} p_j \|_1 \). Thus, the Perron vector \(\pi \) can be expressed as \(\pi = \begin{pmatrix} \xi^1 p_1 \\ \xi^2 p_2 \\ \vdots \\ \xi^k p_k \end{pmatrix} \).

Our immediate task is to identify the Perron complements for each of the three types of matrices considered and proceed accordingly. Each \(L_1 \) is row stochastic and therefore \(L_1^t \) is column stochastic; similarly \(W \) is row stochastic, hence each of the matrices \(B \) is column stochastic and its maximal eigenvalue is one.

It will be assumed that no \(i \)th-row of \(W \) equals the \(i \)th-vector of the canonical basis \(e_i \) of \(\mathbb{R}^m \) (this means that all layers have influence at least on some other layer).

As for the coupling matrix \(C \), since \(L_1^t \) are column stochastic, in each of the three cases we get that \(C = W^t \) and therefore the coupling factors correspond to the Perron eigenvector of \(W^t \).

Block matrix of type \(B_1 \): The obtention of the Perron vector \(\pi \) of \(B_1 \) follows from combining the \(p_i \)'s with the coupling factor, which is the Perron vector of \(W^t \).

\[
B_1 = \begin{pmatrix}
w_{11} L_1^t & w_{21} L_2^t & \cdots & w_{m1} L_m^t \\
\vdots & \vdots & \ddots & \vdots \\
1\, w_{1m} L_1^t & 2\, w_{2m} L_2^t & \cdots & m\, w_{mm} L_m^t
\end{pmatrix} \in \mathbb{R}^{nm \times nm}.
\]

Let us calculate the Perron vector \(p_1 \) of the Perron complement \(P_{11} \). It satisfies

\[
p_1 = w_{11} L_1^t p_1 + (w_{21} L_2^t \cdots w_{m1} L_m^t) \left(I_d - \begin{pmatrix}
w_{22} L_2^t & \cdots & w_{m2} L_m^t \\
\vdots & \ddots & \vdots \\
w_{2m} L_2^t & \cdots & w_{mm} L_m^t
\end{pmatrix} \right)^{-1} \begin{pmatrix} w_{12} L_1^t \\
\vdots \\
w_{1m} L_1^t \end{pmatrix} p_1
\]

Then

\[
\begin{pmatrix} w_{12} L_1^t \\
\vdots \\
w_{1m} L_1^t \end{pmatrix} p_1 = w_{11} L_1^t p_1 + (w_{21} L_2^t \cdots w_{m1} L_m^t) \left(L_1^t p_1 + \begin{pmatrix} w_{12} L_1^t \\
\vdots \\
w_{1m} L_1^t \end{pmatrix} \right) \begin{pmatrix} Q_2 \\
\vdots \\
Q_m \end{pmatrix}
\]

23
where the following change of variables is used

\[
\begin{pmatrix}
Q_2 \\
Q_3 \\
\vdots \\
Q_m \\
\end{pmatrix} = \left(I_d - \begin{pmatrix}
w_{22}L_2^t & \cdots & w_{m2}L_m^t \\
w_{23}L_2^t & \cdots & w_{m3}L_m^t \\
\vdots & \ddots & \vdots \\
w_{2m}L_2^t & \cdots & w_{mm}L_m^t \\
\end{pmatrix} \right)^{-1} \begin{pmatrix}
w_{12}L_1^t \\
w_{13}L_1^t \\
\vdots \\
w_{1m}L_1^t \\
\end{pmatrix} p_1.
\]

Equivalently

\[
\begin{pmatrix}
w_{12}L_1^t \\
w_{13}L_1^t \\
\vdots \\
w_{1m}L_1^t \\
\end{pmatrix} (w_{21}L_2^t \cdots w_{m1}L_m^t) \begin{pmatrix}
Q_2 \\
Q_3 \\
\vdots \\
Q_m \\
\end{pmatrix} = w_{11} \begin{pmatrix}
L_1^t & 0 & \cdots & 0 \\
0 & L_1^t & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & L_1^t \\
\end{pmatrix} \begin{pmatrix}
w_{12}L_1^t \\
w_{13}L_1^t \\
\vdots \\
w_{1m}L_1^t \\
\end{pmatrix} p_1 + \begin{pmatrix}
Q_2 \\
Q_3 \\
\vdots \\
Q_m \\
\end{pmatrix}.
\]

or

\[
\begin{pmatrix}
Q_2 \\
Q_3 \\
\vdots \\
Q_m \\
\end{pmatrix} = \left(I_d - \begin{pmatrix}
w_{22}L_2^t & \cdots & w_{m2}L_m^t \\
w_{23}L_2^t & \cdots & w_{m3}L_m^t \\
\vdots & \ddots & \vdots \\
w_{2m}L_2^t & \cdots & w_{mm}L_m^t \\
\end{pmatrix} \right) \begin{pmatrix}
Q_2 \\
Q_3 \\
\vdots \\
Q_m \\
\end{pmatrix} = w_{11} \begin{pmatrix}
L_1^t & 0 & \cdots & 0 \\
0 & L_1^t & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & L_1^t \\
\end{pmatrix} \begin{pmatrix}
w_{22}L_2^t & \cdots & w_{m2}L_m^t \\
w_{23}L_2^t & \cdots & w_{m3}L_m^t \\
\vdots & \ddots & \vdots \\
w_{2m}L_2^t & \cdots & w_{mm}L_m^t \\
\end{pmatrix} \begin{pmatrix}
Q_2 \\
Q_3 \\
\vdots \\
Q_m \\
\end{pmatrix} + \begin{pmatrix}
Q_2 \\
Q_3 \\
\vdots \\
Q_m \\
\end{pmatrix}.
\]

This is equivalent to

\[
A_1^{p_1} = w_{11}L + \tilde{W}_{11} - w_{11}L\tilde{W}_{11} + \begin{pmatrix}
w_{12}L_1^t \\
w_{13}L_1^t \\
\vdots \\
w_{1m}L_1^t \\
\end{pmatrix} (w_{21}L_2^t \cdots w_{m1}L_m^t)
\]

being an eigenvector associated to 1 of the matrix

\[
A_1^{p_1} = w_{11}L + \tilde{W}_{11} - w_{11}L\tilde{W}_{11} + \begin{pmatrix}
w_{12}L_1^t \\
w_{13}L_1^t \\
\vdots \\
w_{1m}L_1^t \\
\end{pmatrix} (w_{21}L_2^t \cdots w_{m1}L_m^t)
\]
where \(L = \begin{pmatrix} L_1^t & \cdots & 0 \\ 0 & L_1^t & \cdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & L_1^t \end{pmatrix} \) and \(\bar{W}_1^{(1)} = \begin{pmatrix} w_{22}L_2^t & \cdots & w_{m2}L_m^t \\ w_{23}L_3^t & \cdots & w_{m3}L_m^t \\ \vdots & \vdots & \vdots \\ w_{2m}L_m^t & \cdots & w_{mm}L_m^t \end{pmatrix} \).

Once the \(Q_i \)'s are obtained we use

\[
\begin{pmatrix} w_{12}L_1^t \\
\vdots \\
w_{1m}L_1^t \end{pmatrix} p_1 = \begin{pmatrix} \begin{pmatrix} I_d - \begin{pmatrix} w_{22}L_2^t & \cdots & w_{m2}L_m^t \\ w_{23}L_3^t & \cdots & w_{m3}L_m^t \\ \vdots & \vdots & \vdots \\ w_{2m}L_m^t & \cdots & w_{mm}L_m^t \end{pmatrix} \end{pmatrix} \begin{pmatrix} Q_2 \\
Q_3 \\
\vdots \\
Q_m \end{pmatrix} \end{pmatrix} \]

to get \(L_1^tp_1 \) (since some \(w_{1i} \neq 0 \)), and then the equality

\[
p_1 = w_{11}L_1^tp_1 + (w_{21}L_2^t \cdots w_{m1}L_m^t) \begin{pmatrix} Q_2 \\
Q_3 \\
\vdots \\
Q_m \end{pmatrix}
\]

to recover \(p_1 \).

The remaining \(p_i \)'s are analogously calculated.

Block matrix of type \(B_2 \): The obtention of the Perron vector \(\pi \) of \(B_2 \) follows from combining the \(p_i \)'s with the coupling factor, which is the Perron vector of \(W^t \).

\[
B_2 = \begin{pmatrix} w_{11}L_1^t & w_{21}L_1^t & \cdots & w_{m1}L_1^t \\ w_{12}L_2^t & w_{22}L_2^t & \cdots & w_{m2}L_2^t \\ \vdots & \vdots & \ddots & \vdots \\ w_{1m}L_m^t & w_{2m}L_m^t & \cdots & w_{mm}L_m^t \end{pmatrix} \in \mathbb{R}^{nm \times nm}.
\]

Let us calculate the Perron vector \(p_1 \) of the Perron complement \(P_{11} \). It satisfies

\[
p_1 = w_{11}L_1^tp_1 + (w_{21}L_2^t \cdots w_{m1}L_m^t) \left(I_d - \begin{pmatrix} w_{22}L_2^t & \cdots & w_{m2}L_m^t \\ w_{23}L_3^t & \cdots & w_{m3}L_m^t \\ \vdots & \vdots & \vdots \\ w_{2m}L_m^t & \cdots & w_{mm}L_m^t \end{pmatrix} \right)^{-1} \begin{pmatrix} w_{12}L_2^t \\
w_{13}L_3^t \\
\vdots \\
w_{1m}L_m^t \end{pmatrix} p_1
\]

so \((I_d - w_{11}L_1^t) p_1 = (w_{21}L_2^t \cdots w_{m1}L_m^t) \left(I_d - \begin{pmatrix} w_{22}L_2^t & \cdots & w_{m2}L_m^t \\ w_{23}L_3^t & \cdots & w_{m3}L_m^t \\ \vdots & \vdots & \vdots \\ w_{2m}L_m^t & \cdots & w_{mm}L_m^t \end{pmatrix} \right)^{-1} \begin{pmatrix} w_{12}L_2^t \\
w_{13}L_3^t \\
\vdots \\
w_{1m}L_m^t \end{pmatrix} p_1\]
or, as $w_{11} \neq 1$,

$$p_1 = (I_d - w_{11}L_1^t)^{-1} (w_{21}L_1^t \ldots w_{m1}L_1^t) \left(I_d - \begin{pmatrix} w_{22}L_2^t & \cdots & w_{m2}L_2^t \\ w_{23}L_3^t & \cdots & w_{m3}L_3^t \\ \vdots & \ddots & \vdots \\ w_{2m}L_m^t & \cdots & w_{mm}L_m^t \end{pmatrix} \right)^{-1} \begin{pmatrix} w_{12}L_2^t \\ w_{13}L_3^t \\ \vdots \\ w_{1m}L_m^t \end{pmatrix} p_1.$$

Now, calling

$$\tilde{C} = I_d - \begin{pmatrix} (I_d - w_{11}L_1^t)^{-1} & 0 & \cdots & 0 \\ 0 & (I_d - w_{11}L_1^t)^{-1} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & (I_d - w_{11}L_1^t)^{-1} \end{pmatrix}$$

we get by matrix commutation

$$p_1 = (w_{21}L_1^t \ldots w_{m1}L_1^t) \tilde{C} \left(I_d - \begin{pmatrix} w_{22}L_2^t & \cdots & w_{m2}L_2^t \\ w_{23}L_3^t & \cdots & w_{m3}L_3^t \\ \vdots & \ddots & \vdots \\ w_{2m}L_m^t & \cdots & w_{mm}L_m^t \end{pmatrix} \right)^{-1} \begin{pmatrix} w_{12}L_2^t \\ w_{13}L_3^t \\ \vdots \\ w_{1m}L_m^t \end{pmatrix} p_1.$$

Multiply in both sides by

$$\begin{pmatrix} Q_2 \\ Q_3 \\ \vdots \\ Q_m \end{pmatrix} = \tilde{C} \left(I_d - \begin{pmatrix} w_{22}L_2^t & \cdots & w_{m2}L_2^t \\ w_{23}L_3^t & \cdots & w_{m3}L_3^t \\ \vdots & \ddots & \vdots \\ w_{2m}L_m^t & \cdots & w_{mm}L_m^t \end{pmatrix} \right)^{-1} \begin{pmatrix} w_{12}L_2^t \\ w_{13}L_3^t \\ \vdots \\ w_{1m}L_m^t \end{pmatrix} p_1$$

we get

that

$$\begin{pmatrix} Q_2 \\ Q_3 \\ \vdots \\ Q_m \end{pmatrix}$$

is an eigenvector associated to 1 of the matrix

$$A_2^{p_1} = w_{11}L + \tilde{W}_{11}^{(2)} - w_{11} \tilde{W}_{11}^{(2)} L + \begin{pmatrix} w_{12}L_2^t \\ w_{13}L_3^t \\ \vdots \\ w_{1m}L_m^t \end{pmatrix} (w_{21}L_1^t, \ldots, w_{m1}L_1^t)$$

where

$$L = \begin{pmatrix} L_1^t & \cdots & 0 \\ 0 & L_1^t & \cdots \\ \vdots & \ddots & \vdots \\ 0 & \cdots & L_1^t \end{pmatrix}$$

and

$$\tilde{W}_{11}^{(2)} = \begin{pmatrix} w_{22}L_2^t & \cdots & w_{m2}L_2^t \\ w_{23}L_3^t & \cdots & w_{m3}L_3^t \\ \vdots & \ddots & \vdots \\ w_{2m}L_m^t & \cdots & w_{mm}L_m^t \end{pmatrix}.$$
Once the Q'_i's are obtained we use

$$p_1 = (w_{21}L_1, \ldots, w_{m_1}L_1) \begin{pmatrix} Q_2 \\ Q_3 \\ \vdots \\ Q_m \end{pmatrix}$$

to get p_1. The remaining p'_i's are analogously obtained.

Block matrix of type B_3: The obtention of the Perron vector π of B_3 follows from combining the p'_i's with the coupling factor, which is the Perron vector of W^t.

$$B_3 = \begin{pmatrix} w_{11}L_1^t & w_{21}Id & \cdots & w_{m_1}Id \\ w_{12}Id & w_{22}L_2^t & \cdots & w_{m_2}Id \\ \vdots & \vdots & \ddots & \vdots \\ w_{1m}Id & w_{2m}Id & \cdots & w_{mm}L_m^t \end{pmatrix} \in \mathbb{R}^{nm \times nm}.$$

In this case the Perron vector p_1 of the Perron complement P_{11} satisfies

$$p_1 = w_{11}L_1^tp_1 + (w_{21}Id \ldots w_{m_1}Id) \left(Id - \begin{pmatrix} w_{22}L_2^t & w_{32}Id & \cdots & w_{m_2}Id \\ w_{23}Id & w_{33}Id & \cdots & w_{m_3}Id \\ \vdots & \vdots & \ddots & \vdots \\ w_{2m}Id & w_{3m}Id & \cdots & w_{mm}L_m^t \end{pmatrix} \right)^{-1} \begin{pmatrix} w_{12}Id \\ w_{13}Id \\ \vdots \\ w_{1m}Id \end{pmatrix} p_1$$

Then, multiplying in both sides by $\begin{pmatrix} w_{12}Id \\ w_{13}Id \\ \vdots \\ w_{1m}Id \end{pmatrix}$ and using the change of variables

$$\begin{pmatrix} Q_2 \\ Q_3 \\ \vdots \\ Q_m \end{pmatrix} = \left(Id - \begin{pmatrix} w_{22}L_2^t & w_{32}Id & \cdots & w_{m_2}Id \\ w_{23}Id & w_{33}Id & \cdots & w_{m_3}Id \\ \vdots & \vdots & \ddots & \vdots \\ w_{2m}Id & w_{3m}Id & \cdots & w_{mm}L_m^t \end{pmatrix} \right)^{-1} \begin{pmatrix} w_{12}Id \\ w_{13}Id \\ \vdots \\ w_{1m}Id \end{pmatrix} p_1$$

so

$$\begin{pmatrix} w_{12}Id \\ w_{13}Id \\ \vdots \\ w_{1m}Id \end{pmatrix} p_1 = w_{11} \begin{pmatrix} w_{12}Id \\ w_{13}Id \\ \vdots \\ w_{1m}Id \end{pmatrix} L_1^tp_1 + \begin{pmatrix} w_{12}Id \\ w_{13}Id \\ \vdots \\ w_{1m}Id \end{pmatrix} (w_{21}Id \ldots w_{m_1}Id) \begin{pmatrix} Q_2 \\ Q_3 \\ \vdots \\ Q_m \end{pmatrix}$$

or

$$\begin{pmatrix} w_{12}Id \\ w_{13}Id \\ \vdots \\ w_{1m}Id \end{pmatrix} p_1 = w_{11} \left(Id - \begin{pmatrix} L_1^t & 0 & \cdots & 0 \\ 0 & L_1^t & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & L_1^t \end{pmatrix} \right) \begin{pmatrix} w_{12}Id \\ w_{13}Id \\ \vdots \\ w_{1m}Id \end{pmatrix} L_1^tp_1 + \begin{pmatrix} w_{12}Id \\ w_{13}Id \\ \vdots \\ w_{1m}Id \end{pmatrix} (w_{21}Id \ldots w_{m_1}Id) \begin{pmatrix} Q_2 \\ Q_3 \\ \vdots \\ Q_m \end{pmatrix}$$
\[
\begin{pmatrix}
 w_{12} \text{Id} \\
 w_{13} \text{Id} \\
 \vdots \\
 w_{1m} \text{Id}
\end{pmatrix}
\begin{pmatrix}
 \text{Id} \\
 \text{Id} \\
 \vdots \\
 \text{Id}
\end{pmatrix}
\begin{pmatrix}
 w_{21} \text{Id} \ldots w_{m1} \text{Id}
\end{pmatrix}
\begin{pmatrix}
 Q_2 \\
 Q_3 \\
 \vdots \\
 Q_m
\end{pmatrix}.
\]
This is equivalent, by the change of variables above, to \(\begin{pmatrix}
 Q_2 \\
 Q_3 \\
 \vdots \\
 Q_m
\end{pmatrix} \) being an eigenvector associated to 1 of the matrix
\[
A_3^{p_1} = w_{11} L + \tilde{W}_1^{(3)} - w_{11} L \tilde{W}_1^{(3)} + \begin{pmatrix}
 w_{12} \text{Id} \\
 w_{13} \text{Id} \\
 \vdots \\
 w_{1m} \text{Id}
\end{pmatrix}
\begin{pmatrix}
 (w_{21} \text{Id} \ldots w_{m1} \text{Id})
\end{pmatrix}
\]
where \(L = \begin{pmatrix}
 L_1' & \ldots & 0 \\
 0 & L_1' & \ldots \\
 \vdots & \vdots & \cdots \\
 0 & \ldots & L_1'
\end{pmatrix} \) and \(\tilde{W}_1^{(3)} = \begin{pmatrix}
 w_{22} L_2' & w_{32} \text{Id} & \ldots & w_{m2} \text{Id} \\
 w_{23} \text{Id} & w_{33} L_3' & \ldots & w_{m3} \text{Id} \\
 \vdots & \vdots & \ddots & \vdots \\
 w_{2m} \text{Id} & w_{3m} \text{Id} & \ldots & w_{mm} L_m'
\end{pmatrix} \).

Once the \(Q_i' \)'s are obtained we use the change of variables above to recover \(p_1 \) (since some of the \(w_{1i} \neq 0 \)):
\[
\begin{pmatrix}
 w_{12} \text{Id} \\
 w_{13} \text{Id} \\
 \vdots \\
 w_{1m} \text{Id}
\end{pmatrix}
\begin{pmatrix}
 \text{Id}
\end{pmatrix}
= \begin{pmatrix}
 w_{11} L_1' & \ldots & 0 \\
 0 & w_{11} L_1' & \ldots \\
 \vdots & \vdots & \cdots \\
 0 & \ldots & w_{11} L_1'
\end{pmatrix}
\begin{pmatrix}
 Q_2 \\
 Q_3 \\
 \vdots \\
 Q_m
\end{pmatrix}.
\]

The remaining \(p_i' \)'s are analogously calculated.

A.1 Particular case of two layers \((m = 2)\)

We will show that the eigenvectors associated to the principal eigenvalue 1 can be computed in terms of the eigenvectors associated to 1 of certain matrices related to \(L_1' \), \(L_2' \) and the elements of \(W \). Instead of using the techniques of \[17\] we will do all the calculations directly. Moreover, we will deal with all possible cases of \(W \) under the only hypothesis that this matrix is row-stochastic.

Block matrix of type \(\mathbb{B}_1, m = 2 \):
\[
\mathbb{B}_1 = \begin{pmatrix}
 w_{11} L_1' & w_{21} L_2' \\
 w_{12} L_1' & w_{22} L_2'
\end{pmatrix},
\]

28
where L^t_i is the transpose of the row normalization of the adjacency matrix of layer S_t.

(a) If both $w_{11} \neq 1$ and $w_{22} \neq 1$ then if $\begin{pmatrix} \pi_1 \\ \pi_2 \end{pmatrix}$ is an eigenvector associated to the eigenvalue 1, we have

$$\begin{cases} \pi_1 = w_{11}L^t_1\pi_1 + w_{21}L^t_2\pi_2, \\ \pi_2 = w_{12}L^t_1\pi_1 + w_{22}L^t_2\pi_2. \end{cases}$$

From here, taking into account that both $(I - w_{11}L^t_1)$ and $(I - w_{22}L^t_2)$ are invertible matrices, we get that $\pi_1 = w_{21}(I - w_{11}L^t_1)^{-1}L^t_2\pi_2$, and $\pi_2 = w_{12}(I - w_{22}L^t_2)^{-1}L^t_1\pi_1$. Substituting in the above equations we get

$$\begin{cases} \pi_1 = (w_{11}L^t_1 + w_{12}w_{21}L^t_2(I - w_{22}L^t_2)^{-1}L^t_1)\pi_1, \\ \pi_2 = (w_{22}L^t_2 + w_{12}w_{21}L^t_1(I - w_{11}L^t_1)^{-1}L^t_2)\pi_2. \end{cases}$$

Now multiplying the first equation by the matrix $(I - w_{22}L^t_2)$ on the left, and the second equation by the matrix $(I - w_{11}L^t_1)$ on the left we get

$$\begin{cases} \pi_1 = (w_{11}L^t_1 + w_{22}L^t_2 + (1 - w_{11} - w_{22})L^t_2L^t_1)\pi_1, \\ \pi_2 = (w_{11}L^t_1 + w_{22}L^t_2 + (1 - w_{11} - w_{22})L^t_1L^t_2)\pi_2, \end{cases}$$

i.e., π_1 and π_2 are eigenvectors associated to 1 to the column stochastic matrices

$$A^{t_1}_1 = (w_{11}L^t_1 + w_{22}L^t_2 + (1 - w_{11} - w_{22})L^t_2L^t_1), \quad \text{and} \quad A^{t_2}_1 = (w_{11}L^t_1 + w_{22}L^t_2 + (1 - w_{11} - w_{22})L^t_1L^t_2).$$

(b) If $w_{11} = 1$ then $w_{12} = 0$, in which case \mathbb{B}_1 is of the form,

$$\mathbb{B}_1 = \begin{pmatrix} L^t_1 \\ 0 \\ w_{21}L^t_2 \end{pmatrix},$$

and if the vector $\begin{pmatrix} \pi_1 \\ \pi_2 \end{pmatrix}$ is associated to the eigenvalue 1 then

$$\begin{cases} \pi_1 = L^t_1\pi_1 + w_{21}L^t_2\pi_2, \\ \pi_2 = w_{22}L^t_2\pi_2. \end{cases}$$

We have one of the three following situations:

(b.1) $0 < w_{22} < 1$: in this case $\pi_2 = 0$ since L^t_2 is column stochastic and cannot have nonzero eigenvectors with associated to an eigenvalue $1/w_{22} > 1$. Therefore the eigenvectors associated to 1 of \mathbb{B}_1 have the form $\begin{pmatrix} \pi_1 \\ 0 \end{pmatrix}$ where π_1 is an eigenvector of L^t_1 associated to 1.

(b.2) $w_{22} = 0$: in this case $w_{21} = 1$ and we have that the eigenvectors associated to \mathbb{B}_1 have the form $\begin{pmatrix} \pi_1 \\ 0 \end{pmatrix}$ where π_1 is an eigenvector of L^t_1 associated to 1.
(b.3) $w_{22} = 1$: in this case W is the identity (there is no influence of a layer into another layer) and the eigenvectors of B_1 associated to 1 have the form \(\begin{pmatrix} \pi_1 \\ \pi_2 \end{pmatrix} \) where π_1 is an eigenvector of L_1^t associated to 1 and π_2 an eigenvector of L_2^t associated to 1.

(c) If $w_{22} = 1$ then, arguing as in case (b) either $w_{11} = 1$ and we are again in the situation of (b.3) or the eigenvector of B_1 associated to 1 are of the form \(\begin{pmatrix} 0 \\ \pi_2 \end{pmatrix} \) where π_2 is an eigenvector of L_2^t associated to 1.

Block matrix of type B_2, $m = 2$:

\[
B_2 = \begin{pmatrix} w_{11}L_1^t & w_{21}L_1^t \\ w_{12}L_2^t & w_{22}L_2^t \end{pmatrix},
\]

where L_i^t is the transpose of the row normalization of the adjacency matrix of layer S_i.

(a) If both $w_{11} \neq 1$ and $w_{22} \neq 1$ then if \(\begin{pmatrix} \pi_1 \\ \pi_2 \end{pmatrix} \) is an eigenvector associated to the eigenvalue 1, we have

\[
\begin{align*}
\pi_1 &= w_{11}L_1^t \pi_1 + w_{21}L_1^t \pi_2, \\
\pi_2 &= w_{12}L_2^t \pi_1 + w_{22}L_2^t \pi_2.
\end{align*}
\]

From here, taking into account that both $(I - w_{11}L_1^t)$ and $(I - w_{22}L_2^t)$ are invertible matrices, we get that $\pi_1 = w_{21}(I - w_{11}L_1^t)^{-1}L_1^t \pi_2$, and $\pi_2 = w_{12}(I - w_{22}L_2^t)^{-1}L_2^t \pi_1$. Substituting in the above equations we get

\[
\begin{align*}
(I - w_{11}L_1^t) \pi_1 &= w_{12}w_{21}L_1^t(I - w_{22}L_2^t)^{-1}L_2^t \pi_1, \\
(I - w_{22}L_2^t) \pi_2 &= w_{12}w_{21}L_2^t(I - w_{11}L_1^t)^{-1}L_1^t \pi_2,
\end{align*}
\]

so using that L_1^t and $(I - w_{11}L_1^t)^{-1}$ commute and L_2^t and $(I - w_{22}L_2^t)^{-1}$ commute we have

\[
\begin{align*}
\pi_1 &= w_{12}w_{21}L_1^t(I - w_{11}L_1^t)^{-1}(I - w_{22}L_2^t)^{-1}L_2^t \pi_1, \\
\pi_2 &= w_{12}w_{21}L_2^t(I - w_{11}L_1^t)^{-1}(I - w_{22}L_2^t)^{-1}L_1^t \pi_2.
\end{align*}
\]

Let us define $\pi_1^{\text{aux}} = (I - w_{11}L_1^t)^{-1}(I - w_{22}L_2^t)^{-1}L_2^t \pi_1$ and $\pi_2^{\text{aux}} = (I - w_{22}L_2^t)^{-1}(I - w_{11}L_1^t)^{-1}L_1^t \pi_2$. By the equations (1)

\[
\begin{align*}
\pi_1 &= w_{12}w_{21}L_1^t \pi_1^{\text{aux}}, \\
\pi_2 &= w_{12}w_{21}L_2^t \pi_2^{\text{aux}},
\end{align*}
\]

and from (1) and (2)

\[
\begin{align*}
(I - w_{22}L_2^t)(I - w_{11}L_1^t) \pi_1^{\text{aux}} &= L_2^t \pi_1 = L_2^t w_{12}w_{21}L_1^t \pi_1^{\text{aux}}, \\
(I - w_{22}L_2^t)(I - w_{11}L_1^t) \pi_2^{\text{aux}} &= L_1^t \pi_2 = L_1^t w_{12}w_{21}L_2^t \pi_2^{\text{aux}},
\end{align*}
\]

30
Taking into account that both \(\pi_1 \) and \(\pi_2 \) are eigenvectors associated to 1 of the column stochastic matrices
\[
\mathcal{A}_{\pi_1} = (w_{11} L_1^I + w_{22} L_2^I - w_{11} w_{22} L_2^I L_1^I + w_{12} w_{21} L_1^I L_2^I),
\]
\[
\mathcal{A}_{\pi_2} = (w_{11} L_1^I + w_{22} L_2^I - w_{11} w_{22} L_1^I L_2^I + w_{12} w_{21} L_1^I L_2^I).
\]
After computing \(\pi_1 \) and \(\pi_2 \),
\[
\begin{aligned}
\pi_1 &= w_{12} w_{21} L_1^I \pi_1, \\
\pi_2 &= w_{12} w_{21} L_2^I \pi_2.
\end{aligned}
\]
(b) \(w_{11} = 1 \) and (c) \(w_{22} = 1 \) give the same results as for matrices of type \(\mathbb{E}_1 \).

Block matrix of type \(\mathbb{E}_2, m = 2 \):
\[
\mathbb{E}_2 = \begin{pmatrix} w_{11} L_1^I & w_{21} I_2 \\ w_{12} I_2 & w_{22} L_2^I \end{pmatrix},
\]
where \(L_1^I \) is the transpose of the row normalization of the adjacency matrix of layer \(S_\ell \).

(a) If both \(w_{11} \neq 1 \) and \(w_{22} \neq 1 \) then if \(\begin{pmatrix} \pi_1 \\ \pi_2 \end{pmatrix} \) is an eigenvector associated to the eigenvalue 1, we have
\[
\begin{aligned}
\pi_1 &= w_{11} L_1^I \pi_1 + w_{21} \pi_2, \\
\pi_2 &= w_{12} \pi_1 + w_{22} L_2^I \pi_2.
\end{aligned}
\]
Taking into account that both (\(I - w_{11} L_1^I \)) and (\(I - w_{22} L_2^I \)) are invertible matrices, we get that \(\pi_1 = w_{21} (I - w_{11} L_1^I)^{-1} \pi_2 \), and \(\pi_2 = w_{12} (I - w_{22} L_2^I)^{-1} \pi_1 \). Substituting in the above equations we get
\[
\begin{aligned}
(I - w_{11} L_1^I) \pi_1 &= w_{12} w_{21} (I - w_{22} L_2^I)^{-1} \pi_1, \\
(I - w_{22} L_2^I) \pi_2 &= w_{12} w_{21} (I - w_{11} L_1^I)^{-1} \pi_2,
\end{aligned}
\]
so multiplying in both sides by (\(I - w_{11} L_1^I \)) and (\(I - w_{22} L_2^I \)) respectively we have
\[
\begin{aligned}
w_{12} w_{21} \pi_1 &= (I - w_{22} L_2^I)(I - w_{11} L_1^I) \pi_1, \\
w_{12} w_{21} \pi_2 &= (I - w_{11} L_1^I)(I - w_{22} L_2^I) \pi_2.
\end{aligned}
\]
Therefore, \(\pi_1 \) and \(\pi_2 \) are eigenvectors associated to 1 to the column stochastic matrices
\[
\mathcal{A}_{\pi_1} = (w_{11} L_1^I + w_{22} L_2^I - w_{11} w_{22} L_2^I L_1^I + w_{12} w_{21} I_2),
\]
\[
\mathcal{A}_{\pi_2} = (w_{11} L_1^I + w_{22} L_2^I - w_{11} w_{22} L_1^I L_2^I + w_{12} w_{21} I_2).
\]
(b) \(w_{11} = 1 \) and (c) \(w_{22} = 1 \) give the same results as for matrices of type \(\mathbb{E}_1 \).