Original Article / Оригинални рад

Vanja Opačić-Galić¹, Dorde Veljović², Jelena Nešković¹, Vesna Milošević¹, Veljko Ilić¹

Efficiency of calcium hydroxide removal techniques from simulated internal resorptions – in vitro study

Ефикасност техника уклањања калцијум хидроксида из симулираних интерних ресорпција – in vitro студија

¹University of Belgrade, School of Dental Medicine, Department of Restorative Dentistry and Endodontics, Belgrade Serbia; ²University of Belgrade, Faculty of Technology and Metallurgy, Department of Inorganic Chemical Technology, Belgrade, Serbia

Received: July 14, 2020
Revised: February 28, 2021
Accepted: April 5, 2021
Online First: May 6, 2021
DOI: https://doi.org/10.2298/SARH200714029O

Accepted papers are articles in press that have gone through due peer review process and have been accepted for publication by the Editorial Board of the *Serbian Archives of Medicine*. They have not yet been copy-edited and/or formatted in the publication house style, and the text may be changed before the final publication.

Although accepted papers do not yet have all the accompanying bibliographic details available, they can already be cited using the year of online publication and the DOI, as follows: the author’s last name and initial of the first name, article title, journal title, online first publication month and year, and the DOI; e.g.: Petrović P, Jovanović J. The title of the article. Srp Arh Celok Lek. Online First, February 2017.

When the final article is assigned to volumes/issues of the journal, the Article in Press version will be removed and the final version will appear in the associated published volumes/issues of the journal. The date the article was made available online first will be carried over.

*Correspondence to:
Vanja OPAČIĆ-GALIĆ
Clinic of Oral and Dental Diseases, School of Dental Medicine, University of Belgrade, Rankeova 4, 11000 Belgrade, Serbia
E-mail: vanja.opacic@stomf.bg.ac.rs
Efficiency of calcium hydroxide removal techniques from simulated internal resorptions – *in vitro* study

Effikasnost техника уклањања калцијум хидроксида из симулираних интерних ресорпција – *in vitro* студија

SUMMARY

Introduction/Objective Calcium hydroxide (CH) is the medicament of choice in endodontic treatment of internal root resorptions. The aim of the study was to compare the effectiveness of three different techniques for CH removal from simulated internal root resorptions.

Methods Twenty-nine extracted single-root teeth were prepared using NiTi rotary files of BioRaCe system (40/.04) following irrigation. A round diamond drill was used in the making of a symmetrical standardized internal resorptions 6mm from the apex. Three techniques for CH removal from internal resorptions were tested: modified conventional syringe irrigation (CSI), passive ultrasonic irrigation (PUI), XP-endo Finisher (XP). Resorptive cavities and apical thirds were observed under a stereomicroscope (X45) and scored (from 1 to 5), while representative samples were analysed by SEM. Obtained results were statistically processed by Kruskal-Wallis and Mann-Whitney U-test, \((p < 0.05)\).

Results The most efficient system was PUI, with 66.7% of samples rated 1 and 33.3% rated 2. The next one was XP-endo Finisher, and the least efficient was CSI with 33.3% of samples rated 1 (resorptive defect without medicament). There was a statistically significant difference between the PUI and CSI systems \((p < 0.05)\), while there was no difference between the PUI and XP systems.

Conclusion No system completely removed the CH from the simulated internal root resorption cavities. PUI was the most effective system for removing CH. The combination of techniques provides better performance in removing CH paste residues from the canal walls.

Keywords: Internal root resorption; irrigation; ultrasound; XP-endo Finisher

САЖЕТАК

Увод/Циљ Калцијум-хидроксид (CH) јесте медикамент избора у ендодонтском лечењу интерних ресорпција. Циљ овог рада је био да се проverи ефикасност три различите технике уклањања CH из симулираних интерних ресорпција.

Методе Двадесет девет једнокоренних зуба је обрађено применом NiTi ротационог инструмената BioRaCe (40/.04), уз иригацију. Коренови су потом засечен динамичким диском на латералним странама и делом подељени на две половине. Округлим дијамантским сврдлом су симетрично направљене стандардизоване интерне ресорпције на бим од апекса. Коренске половине су затим састављене, а лентулом је унет медикамент CH. Тестиране су три технике за уклањање CH из интерних ресорпција: модификована конвенционална иригација шприцем (CSI), пасивна ултразвучна иригација (PUI), XP-endо Finisher (XP). Ресортивни кавитети и апексне тромбине су посматране под стереомикроскопом (X45) и бодоване системом од 1 до 5, а репрезентативни узорци анализирани користећи SEM. Добијени резултати су статистички обрађени Краскал–Волисовим и Ман–Витијевим U-тестом, \((p < 0.05)\).

Резултати Најефикаснији систем био је PUI, са 66,7% узораака оцењених оценима 1 а 33,3% оценима 2. Следећи је био XP-endо Finisher, а најмање ефикасан био је CSI са 33,3% узораака са оценима 1 (ресортивни дефект без медикамента). Статистички значајна разлика постоји између PUI и CSI система \((p < 0.05)\), док не постоји између PUI и XP система.

Закључак Ниједан систем није у потпуности уклонио медикамент из симулираних интерних ресорпција. Комбинацијом техника обезбеђује се бољи учинак у уклањању заосталог медикамента са зидова канала.

Кључне речи: интерна ресорпција корена; иригација; ултразвук; XP-endо Finisher
INTRODUCTION

Internal root resorption is a pathological process originating from pulp tissue that, as it spreads peripherally, causes the loss of hard dental tissues [1]. This process was described for the first time in 1830 [2]. It is most often caused by a trauma or inflammatory process [2, 3]. In most cases, this is an asymptomatic process and is accidentally detected by radiograph on which it is presented as sharply limited and symmetrical round radiopacity corresponding to the widening of the root canal. If there is no perforation and communication with periodontium, endodontic therapy (biopulpectomy) is indicated [4]. The application of medicament is mandatory, as canal instrumentation and irrigation are not enough to remove granulation tissue and resorptive cells on its periphery [5]. Also, if necrotization and infection of the pulp tissue occur, mechanical instrumentation alone is insufficient for bacteria elimination from irregular spaces of the root canal.

Calcium hydroxide is the medication of choice in endodontic treatment of internal resorption due to its antibacterial, therapeutic, regenerative and biocompatible properties and has a beneficial effect on mineralization processes [6]. Dissociated hydroxyl ions interfere with the integrity of the bacterial membrane, disrupting the flow of nutrients and destroying phospholipids from unsaturated fatty acids [7].

The CH must be completely removed from the root canal walls prior to the obturation in order not to compromise the penetration of the sealer into the dentinal tubules and to affect the binding and physical properties of the sealer, e.g., eugenol based or MTA [7, 8, 9].

One of the most described techniques for calcium hydroxide removal is conventional syringe irrigation (CSI) [10]. Many authors point out the inefficiency of this technique [7, 9, 11, 12]. Due to the perceived shortcomings, like the lack of medication on the walls, numerous other techniques and instruments have been developed to clean root canals more efficiently. Some of these are: passive ultrasonic irrigation, XP-endo Finisher, Canal Brush, Rins Endo system, laser-activated irrigation (PIPS), sonic and ultrasonic irrigation activation, Endo Vac system, Self adjusting files (SAF) [4, 5, 9, 13, 14, 15].

Passive ultrasonic irrigation (PUI) is based on the transfer of sound energy to the irrigant. The 25–30 kHz frequency activates the irrigant and creates cavitation bubbles.
Sound waves and/or energy-released cavitation increase the penetration of irrigants into irregular spaces [12]. The XP-endo Finisher (FKG Dentaire, La-Chaux-de Fonds, Switzerland) is a NiTi nontapered instrument (size 25). At room temperature it is straight (martensite phase), and at body temperature it changes its shape into a unique spoon shape (austenite phase) with a length of 10 mm from the top and a depth of 1.5 mm, due to its molecular memory [15]. It is designed for final cleaning and irrigation, especially for ampoule dilated and irregular canals [9].

The aim of the study was to test the effectiveness of three different techniques for calcium hydroxide removal from simulated internal root resorptions.

The null hypothesis is that there is no statistically significant difference in the efficiency of calcium hydroxide removal from simulated internal resorption between the CSI, PUI and XP-endo Finisher systems.

METHODS

This study used 29 single-rooted, single-canal, extracted teeth. Research was approved by the Institutional Ethics Committee (No. 36/2, 25.02.2020). Round diamond burr with water cooling was used to prepare access cavities and instrument K# 15 was used for checking canal patency. Working length, 1 mm shorter than the apex of the root, was defined. All canals were prepared with BioRaCe (FKG Dentaire, Switzerland) system with apical preparation of 40/.04, with obligatory irrigation of 2% NaOCl after each instrument. Final irrigation consisted of 5 ml of 2% NaOCl and 5 ml of 10% citric acid for a period of 1 min and 5 ml of saline. Samples were imprinted into a silicone impression material (Elite HD + putti, Zhermack, Italy) in an Eppendorf tube (Eppendorf AG, Hamburg, Germany). On the approximate root surfaces longitudinal grooves were made using a diamond disc with water cooling. The roots were cut in half with a chisel and a hammer and a round drill (0.08 mm deep and 0.16 mm in diameter) was used in the making of standardized internal resorptions 6 mm coronary from the root apex. Root halves were reassembled with a dental adhesive (OptiBond Solo Plus, Kerr, USA) and returned to silicone molds, and then all canals were filled with an aqueous suspension of calcium hydroxide (except negative controls) and closed.
with temporary filling Citodur hard (DoriDent - Dr. Hirschberg, Austria). Samples were incubated in a humid environment at 37° C for seven days. After 7 days, the teeth were randomly divided into three groups (n = 9), and a single tooth was used for positive and negative controls. The positive control tooth was filled with calcium hydroxide, which was not removed, and the negative control sample was not filled with medication.

Group I: **Conventional syringe irrigation (modified)** (CSI) – medicament was removed from the canal with hand instruments K # 15 to # 40 (master apical file - MAF) with a syringe and an open tip needle irrigation 27G (Sinomedic, China). Total irrigation consisted of 5ml 2% NaOCl for a period of 1 min.

Group II: **Passive ultrasound irrigation (PUI)** – ultrasound apparatus was used (PB-323, W&H Dentalwerk Bürmoos, Austria) - ultrasonic endodontic instrument was placed in a canal, 1mm shorter from the working length, without contact with the canal walls. The irrigation was performed in three series of 20 seconds each. Fresh irrigant was added after each cycle. Total irrigant amount consisted of 5ml 2% NaOCl for a period of 1 min.

Group III: **XP-endo Finisher (XP)** – the instrument is placed in a canal, 1mm shorter from the working length, using X-smart endo motor (Dentsply Sirona, Ballaigues, Switzerland) with a rotation of 800 rpm and a torque of 1 Ncm. Gentle brush strokes (up and down) were performed with the instrument for 1 min with constant irrigation, for a total of 5 ml of 2% NaOCl for a period of 1 min.

Finally, all groups were irrigated with 5 ml of 10% citric acid for 1 min. Irrigation of all samples was completed with 5 ml of saline.

The teeth were halved again, and internal root resorptions and apical thirds were observed on a stereomicroscope (Boeco BSZ-405, Germany) with an integrated digital camera, at 45X magnification. ScopeImage 9.0 computer software (Telescope, Austria) was used to display the images. Representative samples of each group were analysed by scanning electron microscope (SEM) (Tescan FE-SEM Mira 3 XMU, Tescan a.s., Brno, Czech Republic) operated at 20 keV. The samples were coated with atomic gold layer using a sputter coater (Polaron SC503, Fisons Instruments, Ipswich, UK).
Medication removal efficacy was evaluated according to the methodology of Faria et al. and Topcoglu et al. [13, 16] with 5 grades.

1 = Clean internal resorption with only a few drug particles.

2 = Several small agglomerates of medication.

3 = Multiple medication agglomerates covering less than 50% of the internal resorption area.

4 = More than 50% of internal resorption is covered with medication.

5 = Internal resorption is completely filled with medication.

Evaluation was performed by 3 objective observers. Obtained values were statistically processed in Kruskal-Wallis and Mann-Whitney tests. A value (p < 0.05) was considered significant.

RESULTS

Results are shown in Table 1 and Figures 1–3.

Results of this study indicate that after passive ultrasonic irrigation, 66.7% of the samples were graded 1 and 33.3% of the samples 2. After the conventional drug removal technique to MAF files with permanent irrigation, 33.3% of the samples were graded 4, and 22.2% of the samples 5. 11.1% of the samples were graded 2, and 33.3% of the samples 1. For XP-endo Finisher, 33.3% of samples had a grade of 1, while other grades had 22.2% each. A statistically significant difference was observed between the conventional drug removal technique and other irrigation techniques (p < 0.05). There was no statistically significant difference between PUI and XP (p > 0.05).
DISCUSSION

No technique has completely removed the CH paste from artificial internal root resorption, which is in agreement with the findings of numerous researchers [4, 5, 9, 13]. Also, the null hypothesis was rejected because PUI was the most effective system for removing CH from resorptive cavities as well as apical thirds. PUI and XP removed the medication much more efficiently than CSI, with no statistical difference between them.

Many studies have been published on the topic of CH removal from the root canal system after inter-session medication. Some of them have tested different irrigants [8, 12, 17, 18] and others different irrigation systems [9, 10, 11, 13, 14, 19]. All highlight the great problem of completely removing the medication from the walls, especially from the apical third. Some authors [11] point out that 27% of the canal surface remains covered with CH, while our earlier studies indicate that in some cases only 48% of the root canal surface is cleared of CH [20].

Internal resorption therapy is a real challenge and one of the least successful endodontic procedures. Problems occur in almost every stage of endodontic treatment: during diagnosis, removal of the entire pulp content, profuse bleeding of the granulation tissue, possible root perforation, and preparation and obturation is difficult of the canal due to irregular canal anatomy [9, 21].

The use of calcium hydroxide is essential in the endodontic treatment of internal resorptions, as it promotes control and elimination of infection. It affects the processes of repair, remineralization and has antibacterial effects on the remaining microorganisms. Numerous studies indicate a failure to completely remove the drug from the dilated portions of the root canal or resorptive lacunae. [4, 5, 9, 13]. Today, it is known that residual CH interferes with hermetic, three-dimensional obturation and weakens it. The residual CH disturbs the binding mechanisms of different types of sealers and in the long run increases the apical leakage between the canal walls and the sealer [8]. This is especially represented with zinc-oxide eugenol-based sealers, where the newly formed calcium eugenolate alters its physical properties [8, 9]. Residual CH also affects the penetration of epoxy resin-based sealer, more so than calcium silicate-based sealer [8]. Also, there is no agreement as to whether the cleansing effect is affected by the type of vehicle in CH paste (distilled water,
propylene glycol, oil etc.) [6, 14, 22]. Chou et al. [11] point out as a problem the viscosity of CH pastes with cellulose carriers with respect to the aqueous suspension, as well as the possibility that partial conversion of calcium hydroxide to calcium carbonate has occurred over time due to the reaction with carbon dioxide.

In this study, a round diamond burr was used to form simulated internal resorptions that were thus round, standardized, with the same amount of medication. In addition to the drill bit, artificial resorptions or grooves in the canal are often prepared with ultrasonic instruments or diamond discs [9, 13, 14, 15, 18]. However, internal resorption has an irregular and usually oval shape, so Da Silveira et al. [23] find it more similar to clinical conditions that the root canal interior is treated with 5% nitric acid in order to create simulated internal resorptions. Given that the efficacy of different methods of calcium hydroxide removal was investigated, artificial internal root resorption of the standardized form could not influence the evaluation of irrigation techniques, although they did not represent the complex physiological anatomy of the root canal. This is confirmed by other authors [4, 9, 18].

Different methods of quantifying calcium hydroxide residues have been described. Digital canal/resorption image analysis is most used [5, 9, 18], using non-parametric rating systems. However, Phillips [7] points out that there are concerns regarding two-dimensional quantification on uneven surfaces, so he proposes chemical microtitration techniques that use high pH calcium hydroxide. SEM analysis, helical CT and micro-CT are also commonly used, but the problem of accurate detection of residual CH with respect to root canal tissue has arisen [4, 7]. The scoring system used in this study has been used in many other studies [9, 13, 14, 16, 18]. Most of them used a 3 or 4 grade system. In this study, a 5-rating system was used to describe in more detail the amount of residual medicament on canal walls/resorption [16].

For this research, teeth with a simple canal system were used to examine the effectiveness of irrigation no matter how complicated and complex the canal system was. The crowns of the teeth have not been completely removed to provide room for irrigant storage. Despite all these extenuating circumstances for experimental purposes, no technique completely removed the medicament from the canal walls, which is also in agreement with other researchers [7, 24].
Passive ultrasonic irrigation has shown a high efficiency in removing the CH paste from internal root resorption, which is confirmed by the SEM findings where open dentinal tubules are observed. This is an effective way of removing CH from canal walls, other researchers point out [13, 14, 16, 18, 25]. Its effectiveness is reflected in the penetration of irrigants into all spaces, which is achieved by agitation of irrigants (acoustic waves and cavitation) [26]. With this technique it is important to constantly add new amounts of fresh irrigant (intermittent protocol), because the amount of residual CH is inversely proportional to the volume of used irrigant [24]. In our study, along with NaOCl, citric acid was also used, as it was found that only one irrigant was not sufficiently effective in removing the smear layer and / or calcium hydroxide [13]. This has been confirmed by previous research where PUI with both irrigants was very effective, with an average of 88% of the cleaned root canal walls [20]. Newer research underlines activating chelating irrigants (ultrasonically agitated) with PUI as very efficient [27, 28]. The combination of these two irrigants produces optimal results with the appropriate duration of irrigation as well as the amount of irrigants themselves [8, 13, 18, 29]. Irrigation lasted 60 sec per canal (3 × 20 sec), as agreed by Gokturk [14], although Phillips et al. points out that even 30 sec per canal is completely adequate time to remove CH [7].

The XP-endo Finisher is presented as a very flexible instrument that has a large amplitude of motion in the A-phase, which is 100 times larger than a "regular" instrument of the same size, so it is recommended for inaccessible canals (FKG Dentaire). Research indicates that it is very effective in removing smear layers and dentin debris [13]. However, it did not fully meet expectations in this research. The results were colorful. In some samples, the drug was completely removed from internal root resorption, which is confirmed by the SEM findings, and this is in agreement with the finding of Keskin et al. who state that XP-endo Finisher is superior to other techniques but not to PUI [5]. Its efficiency is the result of a change in shape with respect to body temperature, thus extending the cleaning effect by up to 6 mm in diameter. However, there are samples (22.2%) where internal resorption is filled with medication, even more than 50% of the resorptive lacuna. This finding is in agreement with the findings of Wigler et al. [9] who obtained similar results, and the efficiency of XP did not meet their expectations either. The aforementioned finding can be explained by the inappropriate amplitude of the movement of the instrument, which does not allow the penetration of the instrument into all areas of internal resorption, or the time of 1 min, recommended by the manufacturer, is insufficient in CH removal. Also, Haapasalo et al. [15]
point out that XP is much more efficient when used with intermittent irrigation protocol, thereby cumulatively increasing the effect of NaOCl. Continuous irrigation was used in this study. However, there is no statistically significant difference between XP and PUI systems, as found by other authors [5, 9, 14]. Conventional syringe irrigation has shown the worst results, which is in line with the findings of numerous researchers [11, 14, 15, 16]. The tip of the irrigation needle is positioned at least 1mm shorter than the working length, to prevent extrusion of the irrigation via the foramen apical. In this way, large amounts of CH remain on the canal walls in the apical third. Despite the modification of the CSI, by introducing successive files to the MAF, our results clearly showed the limitations of mechanical instruments in irregular canal spaces.

Additional research is needed to test these and other techniques in a complex root canal system.

CONCLUSION

The null hypothesis was not confirmed. No irrigation system completely removed calcium hydroxide from artificial internal root resorption. Passive ultrasound irrigation has shown the highest efficiency in cleaning medication from internal root resorption.

For complete clinical success, multiple medicament removal systems need to be combined.

Conflict of interest: None declared.
REFERENCES

1. Ne RF, Witherspoon DE, Gutmann JT. Tooth resorption. Quintessence Int 1999; 30(1):9-26. PMID:10323155

2. Arnold M. Reparative Endodontic Treatment of a Perforating Internal Inflammatory Root Resorption: A Case Report. J Endod 2020; 1-10 DOI:10.1016/j.joen.2020.09.022 PMID:33065177

3. Türker SA, Uzunoglu E, Sungur DD and Tek V. Fracture Resistance of Teeth with Simulated Perforating Internal Resorption Cavities Repaired with Different Calcium Silicate–based Cements and Backfilling Materials. J Endod 2018;44(5): 860-3 DOI:10.1016/j.joen.2018.01.019 PMID:29550008

4. Desai K, Chhabra N, Gyanani H, Gangaramani S, Gupta K. A comparative SEM evaluation of cleaning efficacy of Endo Finisher, Self Adjusting File and conventional irrigation regimen in simulated internal resorptive defects: in vitro study. Journal of Clinical and Diagnostic Research. 2018;12(1):22-6. DOI:10.7860/JCDR/2018/31275.11122

5. Keskin C, Sariyilmaz E, Sariyilmaz O. Efficacy of XP-endo Finisher file in removing calcium hydroxide from simulated internal resorption cavity. J Endod. 2017; 43(1): 126-130. DOI: 10.1016/j.joen.2016.09.009 PMID: 27939736

6. Zancan RF, Vivan RR, Ribeiro Milanda Lopes M, Weckwerth PH, Bombarda de Andrade F, Burgos Ponce J and Hungaro Duarte MA. Antimicrobial Activity and Physicochemical Properties of Calcium Hydroxide Pastes Used as Intracanal Medication. J Endod 2016; 42(12):1822-28 DOI:10.1016/j.joen.2016.08.017 PMID:27776884

7. Phillips M, McClanahan S, Bowles W. A titration model for evaluating calcium hydroxyde removal techniques. J Appl Oral Sci. 2015 Jan-Feb;23(1):94-100. DOI:10.1590/1678-775720140435. PMID:25760272

8. Uzunoglu–Özyürek E, Erdoğan O, Türker SA. Effect of Calcium Hydroxide Dressing on the Dentinal Tubule Penetration of 2 Different Root Canal Sealers: A Confocal Laser Scanning Microscopic Study. J Endod 2018; 44(6):1018-23 DOI:10.1016/j.joen.2018.02.016 PMID:29680722

9. Wigler R, Dvir R, Weisman A, Matalon S, Kfir A. Efficacy of XP-endo Finisher files in the removal of calcium hydroxide paste from artificial standardized grooves in the apical third of root canals. Int Endod J. 2017; 50(7): 700-5 PMID: 27272208 DOI: 10.1111/iej.12668.

10. Lloyd A, Navarrete G, Marschesan MA, Clemet D. Removal of calcium hydroxide from Weine Type II systems using photon-induced photoacoustic streaming, passive ultrasonic and needle irrigation: a microcomputed tomography study. J Appl Oral Sci. 2016; 24(6): 543-8. PMID: 28076457 DOI: 10.1590/1678-775720160234

11. Chou K, George R, Walsh LJ. Effectiveness of different intracanal irrigation techniques in removing intracanal paste medicaments. Aust Endod J. 2014; 40; 21-5 DOI:10.1111/aej.12055 PMID 24330380

12. Generali L, Cavani F, Serena V, Pettenati C, Righ E and Bertold C. Effect of Different Irrigation Systems on Sealer Penetration into Dentinal Tubules. J Endod 2017; 43(4):652-6 DOI:10.1016/j.joen.2016.12.004 PMID:28342477

13. Topçuoğlu HS, Duzgun S, Ceyhanli KT, Akti A, Pala K, Kesim B. Efficacy of different irrigation techniques in the removal of calcium hydroxide from a simulated internal root resorption cavity. Int Endod J. 2015; 48: 309-16. PMID: 24860966 DOI: 10.1111/iej.12316

14. Gokturk H, Ozkocak I, Buyukgebiz F, Demir O. Effectiveness of various irrigation protocols for the removal of calcium hydroxide from artificial standardized grooves. J Appl Oral Sci. 2017; 25:290–8. DOI: 10.1590/1678-7757-2016-0414 PMID: 28678948

15. Bao P, Shen Y, Lin J, Haapasalo M. In vitro Efficacy of XP-endo Finisher with 2 Different Protocols on Biofilm Removal from Apical Root Canals. J Endod 2017; 43(2):321-5 PMID: 27939826 DOI: 10.1016/j.joen.2016.09.021

16. Faria G, Viola KS, Kuga MC, Garcia AJ, Daher VB, De Pasquali Leonardo MF, et al. Effect of rotary instrument associated with different irrigation techniques on removing calcium hydroxide dressing microscopy research and technique. 2014; 77:642–6. DOI: 10.1002/jemt.22382 PMID: 24844676

17. Yaylali IE, Kececi AD, Kaya BU. Ultrasonomically activated irrigation to remove calcium hydroxide from apical third of human root canal system: a systematic review of in vitro studies. J Endod. 2015; 41(10):1589–99. DOI: 10.1016/j.joen.2015.06.006 PMID: 26238527
18. Capar ID, Ozcan E, Arslan H, Ertas H, Aydinbelge HA. Effect of different final irrigation methods on the removal of calcium hydroxide from an artificial standardized groove in apical third of root canals. J Endod. 2014; 40(3):451–4. DOI: 10.1016/j.joen.2013.10.019 PMID: 24565670

19. Ma J, Shen Y, Yang Y, Gao Y, Wan P, Gan Y, et al. and Haapasalo M. In vitro study of calcium hydroxide removal from mandibular molar root canals. J Endod. 2015; 41(4):553–8. DOI: 10.1016/j.joen.2014.11.023 PMID: 25596727

20. Opačić Galić V, Stašić NJ. Efficacy of different irrigation techniques on calcium hydroxide removal from the root canal. Serbian Dental Journal 2018; 65(3):148-152 DOI: 10.2478/sdj-2018-0015

21. Kahler SL, Shetty S, Andreasen FM and Kahler B. The Effect of Long-term Dressing with Calcium Hydroxide on the Fracture Susceptibility of Teeth. J Endod. 2018; 44(3):464-9 DOI:10.1016/j.joen.2017.09.018

22. Sungur D, Aksel H and Purali N. Effect of a Low Surface Tension Vehicle on the Dentinal Tubule Penetration of Calcium Hydroxide and Triple Antibiotic Paste. J Endod. 2017; 43(3):452-5 DOI:10.1016/j.joen.2016.10.037 PMID:28131413

23. Da Silveira PF, Vizzotto MB, Montanger F, da Silveira HL, da Silveira HE. Development of a new in vitro methodology to simulate internal root resorption. J Endod. 2014; 40(1): 211-6. PMID: 24461406 DOI: 10.1016/j.joen.2013.07.007

24. Zorzin J, Wießner J, Wießner T, Lobbauer U, Petschelt A. Ebert J. Removal of Radioactively Marked Calcium Hydroxide from the Root Canal: Influence of Volume of Irrigation and Activation. J Endod 2016; 42(4): 637-640. DOI: 10.1016/j.joen.2016.01.005 PMID:26906245

25. Donnermeyer D, Wyrsch H, Bürklein S. Schöfer E. Removal of Calcium Hydroxide from Artificial Grooves in Straight Root Canals: Sonic Activation Using EDDY Versus Passive Ultrasonic Irrigation and XPendo Finisher. J Endod. 2019; 45(3):322-6 PMID:32721483 DOI: 10.1016/j.joen.2018.11.001

26. Keskin C, Keleș A, Sariyılmaz Ö. Efficacy of glycolic acid for the removal of calcium hydroxide from simulated internal resorption cavities. Clin Oral Investig 2021; Jan 3. PMID:33392806 DOI:10.1007/s00784-020-03753-z

27. Bittencourt Orłowski N, Ferreira Schimdt T, da Silveira Teixeira C, da Fonseca Roberti Garcia L, Menezes Savaris J, Tay FR, and Eduardo Antunes Bortoluzzi. Smear Layer Removal Using Passive Ultrasonic Irrigation and Different Concentrations of Sodium Hypochlorite. J Endod. 2020; 46(11):1738-42 PMID:32721483 DOI: 10.1016/j.joen.2020.07.020

28. De Lima Dias Junior LC, Fonseca de Castro, Dias Fernandes A, Reis Guerreiro MY, Silva E JNL, Melo da Silva Brandão J. Final endodontic irrigation with 70% ethanol enhanced calcium hydroxide removal from apical third. J Endod. 2021; 47(1):105-111 DOI: 10.1016/j.joen.2020.09.017

29. Olivi M, Raponi G, Palaia G, Berluttì F, Olivi G, Valentinì E et al. Disinfection of root canals with laser-activated irrigation: photoactivated disinfection, and combined laser techniques: An ex vivo preliminary study. Photobiomodul Photomed Laser Surg 2021; 39(1):62-69 PMID:33332214 DOI: 10.1089/photob.2020.4879
Figure 1a. Stereomicroscope image of filling of internal resorption cavity with Ca(OH)$_2$ after conventional syringe irrigation; Grade 5; magnification 45×
Figure 1b. SEM micrograph of resorptive lacuna completely filled with Ca(OH)$_2$
Figure 1c. SEM micrograph of dentin in apical third mainly covered with Ca(OH)$_2$ crystals
Figure 2a. Stereomicroscope image of an empty internal resorption cavity after passive ultrasonic irrigation; grade 1; magnification 45×
Figure 2b. SEM micrograph of empty resorptive lacuna
Figure 2c. SEM micrograph of open dentinal tubules in the apical third
Figure 3a. Stereomicroscope image of residual medication after irrigation with XP-endo Finisher; grade 2; magnification 45×
Figure 3b. SEM micrographs of open dentinal tubules in the apical third, in places covered with Ca(OH)$_2$
Table 1. Sample ratings, depending on irrigation technique

Group	n	1	2	3	4	5
Negative c.	1	1	0	0	0	0
Positive c.	1	0	0	0	0	1
PUI	9	6	3	0	0	0
CSI	9	3	1	0	3	2
XP	9	3	2	2	2	0

PUI – passive ultrasonic irrigation; CSI – conventional syringe irrigation; XP – XP-endo Finisher