Levels of Cytokines and Immune Activation Markers in Plasma in Human Immunodeficiency Virus Infection: Quality Control Procedures

NAJIB AZIZ,1* PARUNAG NISHANIAN, 1 AND JOHN L. FAHEY 1,2

Departments of Medicine2 and Microbiology and Immunology, 1 Center for Interdisciplinary Research in Immunology and Disease, Jonsson Comprehensive Cancer Center and UCLA AIDS Institute, UCLA School of Medicine, Los Angeles, California 90095-1747

Received 15 May 1998/Returned for modification 8 July 1998/Accepted 28 July 1998

Procedures for quality control (QC) in a laboratory that concentrates on cytokine and soluble marker measurements in biological fluids are outlined. Intra-assay, interassay, and interlaboratory experiences are presented. Plasma and serum β2-microglobulin (β2M) and neopterin test data are presented in greatest detail, along with substantial tumor necrosis factor alpha (TNF-α), gamma interferon, soluble interleukin-2 receptor-α (sIL-2Rα), sTNF-RI, IL-4, and IL-6 data. Recommended QC procedures for cytokine and soluble-marker testing include replicate testing of two or more reference samples provided by the kit manufacturer, replicate testing of in-house frozen reference QC samples that represent normal and abnormal analyte contents, restesting 15 to 20% of randomly selected samples, and comparing normal reference ranges each year. Also, eight cytokines and soluble markers were evaluated in human immunodeficiency virus (HIV)-seronegative and HIV-seropositive individuals stratified on the basis of CD4 T-cell numbers. Levels of some but not all cytokines in serum increased in HIV infection. There was a tendency for cytokines to increase with more advanced disease, defined by reduced CD4 T-cell numbers. Cytokine changes did not relate closely to CD4 level, indicating that seropositive individuals stratified on the basis of CD4 T-cell numbers. Levels of some but not all cytokines in serum increased in HIV infection. There was a tendency for cytokines to increase with more advanced disease, defined by reduced CD4 T-cell numbers. Cytokine changes did not relate closely to CD4 level, indicating that...

Cytokine levels and changes in biological fluids are now recognized as potential and useful markers of ongoing clinical disorders, indicating their stage and severity and disease prognosis (1, 10, 13, 42). Initial evidence of immune activation in human immunodeficiency virus (HIV) infection included increases in several phenotypic antigens on circulating lymphocytes as well as increases in levels of soluble products of cytokine activity in plasma (2, 3, 15, 38, 39, 43, 47). β2-microglobulin (β2M) increases were reported early in the characterization of AIDS (21, 35) but were not perceived as related to disease course until several years later (11). β2M represents the activity of several cytokines throughout the body (19, 20) and is a relatively nonspecific marker of immune activation. Neopterin, on the other hand, which is induced by gamma interferon (IFN-γ) activation of monocytes, was found at elevated levels in HIV infection and was related to prognosis (11, 23, 28, 48).

The measurement of the levels of cytokines and/or soluble markers of immune activation can provide reliable information regarding the disease diagnosis, disease stage, prognosis, and the evaluation of therapy. However, difficulties and inaccuracy have been reported, and a number of factors have been shown to affect the validity and the quality of such measurements (5, 17, 29, 30, 46, 49). Immunoassays are the most widely used technique for these measurements, although pitfalls and limitations are known (24, 36, 37). Differences in levels of measured analytes for identical samples in the range of 10- to 100-fold have been reported (26, 31, 32). Thus, a number of studies, including international collaborative studies organized by the World Health Organization for standardization of cytokine measurements, have been conducted (4, 7, 16, 31–33, 40). Variations in results have been shown to be due at least in part to differences in the standards used in the assays (16, 26, 30–33, 40) or in sample collection, processing, and storage (9, 27, 41, 45).

In our early work with the assessment of neopterin and β2M concentrations in plasma and in subsequent testing of cytokines and the products of cytokine activity, we have had large numbers of samples available to test but limited funds. As a consequence, we looked for a means to conserve costly reagents but, at the same time, to ensure consistency and accuracy of testing. Initial testing showed good agreement between duplicate samples. Thus, we chose to do single determinations rather than duplicates but also to randomly retest approximately 15% of samples. This approach had the advantage of providing representative duplicate measurements and a check on comparability between analytic runs. As an additional quality control (QC) procedure, we established a method of preparing a large number of frozen aliquots from sizable pools of plasma or serum, one each representing normal levels and abnormally elevated levels of the cytokines and soluble markers of activation. Aliquots of these reference standards were required to be included in each analysis of cytokines or activation markers. Upon repeated testing, we were able to establish the validity of runs and the comparability of reagents and technical performance. These QC procedures are now routinely used for testing neopterin, β2M, soluble tumor necrosis factor receptors I and II (sTNFRI and -RII), soluble interleukin 2 receptor-alpha (sIL-2Rα), soluble CD8 antigen, the...
cytokines TNF-α, IFN-γ, IL-1, IL-2, IL-4, IL-6, IL-10, and IL-12, and chemokines.

Manufacturers of commercial kits for the measurement of these analytes provide data characterizing their performance with samples of their own selection. However, each laboratory has its own performance characteristics. In our present report, the same QC samples were used for all assays. We report here on the procedures used and on the coefficient of variation (CV) obtained in control populations and at different stages of HIV infection. In addition, intra-assay, interassay, and interlaboratory variabilities are reported.

(These data were presented in part at the 3rd International Symposium on Clinical Immunology in San Francisco, Calif., 20 to 23 July 1995.)

MATERIALS AND METHODS

Samples. Serum and plasma samples were obtained from healthy volunteers from the University of California, Los Angeles (UCLA) community and from HIV-seronegative and HIV-seropositive subjects participating in the Multicenter AIDS Cohort Study (MACS) of the National Institute on AIDS, who were recruited and monitored at UCLA at approximately 6-month intervals from 1984 (25). Blood was collected by venipuncture into 15-ml sterile Vacutainers (Becton Dickinson) containing heparin as an anticoagulant for plasma samples and without anticoagulant for serum samples. Serum and plasma samples were separated and stored at −70°C for subsequent batch testing of cytokine and soluble immune activation markers.

The general reference (normal) samples were obtained from male and female subjects enrolled in the Multicenter AIDS Cohort Study (MACS) of the National Institute on AIDS, who were recruited and monitored at UCLA at approximately 6-month intervals from 1984 (25). Blood was collected by venipuncture into 15-ml sterile Vacutainers (Becton Dickinson) containing heparin as an anticoagulant for plasma samples and without anticoagulant for serum samples. Serum and plasma samples were separated and stored at −70°C for subsequent batch testing of cytokine and soluble immune activation markers.

The general reference (normal) samples were obtained from male and female subjects enrolled in the Multicenter AIDS Cohort Study (MACS) of the National Institute on AIDS, who were recruited and monitored at UCLA at approximately 6-month intervals from 1984 (25). Blood was collected by venipuncture into 15-ml sterile Vacutainers (Becton Dickinson) containing heparin as an anticoagulant for plasma samples and without anticoagulant for serum samples. Serum and plasma samples were separated and stored at −70°C for subsequent batch testing of cytokine and soluble immune activation markers.

The general reference (normal) samples were obtained from male and female subjects enrolled in the Multicenter AIDS Cohort Study (MACS) of the National Institute on AIDS, who were recruited and monitored at UCLA at approximately 6-month intervals from 1984 (25). Blood was collected by venipuncture into 15-ml sterile Vacutainers (Becton Dickinson) containing heparin as an anticoagulant for plasma samples and without anticoagulant for serum samples. Serum and plasma samples were separated and stored at −70°C for subsequent batch testing of cytokine and soluble immune activation markers.

The general reference (normal) samples were obtained from male and female subjects enrolled in the Multicenter AIDS Cohort Study (MACS) of the National Institute on AIDS, who were recruited and monitored at UCLA at approximately 6-month intervals from 1984 (25). Blood was collected by venipuncture into 15-ml sterile Vacutainers (Becton Dickinson) containing heparin as an anticoagulant for plasma samples and without anticoagulant for serum samples. Serum and plasma samples were separated and stored at −70°C for subsequent batch testing of cytokine and soluble immune activation markers.

The general reference (normal) samples were obtained from male and female subjects enrolled in the Multicenter AIDS Cohort Study (MACS) of the National Institute on AIDS, who were recruited and monitored at UCLA at approximately 6-month intervals from 1984 (25). Blood was collected by venipuncture into 15-ml sterile Vacutainers (Becton Dickinson) containing heparin as an anticoagulant for plasma samples and without anticoagulant for serum samples. Serum and plasma samples were separated and stored at −70°C for subsequent batch testing of cytokine and soluble immune activation markers.

Intra-assay variability. Intra-assay variability was evaluated with 10 replicates of two different QC plasma samples in the same run. Intra-assay variabilities of β2M, neopterin, sIL-2R, sTNF-R, TNF-α, and IFN-γ are presented in Table 1. CVs of soluble markers are under 7.5%, except for TNF-α and IFN-γ (Table 1). Similar results were found when two or more QC samples were tested in three different wells during routine assays (data not shown). Common criteria for acceptable performance cited by a clinical laboratory improvement amendment (14) in other quantitative plasma immunology tests are the target values plus or minus 3 standard deviations, but we use 2 standard deviations in our laboratory.

Interassay variability. Aliquots of the two in-house QC samples were included on each assay day. The CV of serial assays for β2M, neopterin, sIL-2R, sTNF-R, TNF-α, and IFN-γ are listed in Table 2. The CV was less than 15% for all markers except TNF-α and IFN-γ in normal control samples. Similar data are seen in repeat testing of four plasma activation markers in 15 to 20% of patient samples on a subsequent assay day (Table 3). Actual data for serial testing of the in-house QC samples for neopterin and sTNF-R tests over an 18-month period are presented graphically in Fig. 1.
Normal population values tested in different years. Volunteer healthy donors, men and women from 24 to 65 years of age, from the UCLA community are tested as normal reference controls every year. The values obtained in three recent years were assembled and compared (Table 4). Because the reference populations were not identical from year to year, we did not expect to obtain identical values. These data provide reference ranges with which to judge the changes in reagents and technical staff performance from year to year.

Interlaboratory variation: external proficiency testing for quality assurance. From 1989 to 1992, four laboratories participated in a QC program for two soluble activation markers (β2M and neopterin). The same kits and analytic reagent lots were used in each laboratory (Pharmacia AB, Uppsala, Sweden, supplied the β2M assay kits used for this study). The test samples were shipped frozen in dry ice overnight to each participating laboratory. The results are presented in Fig. 2. Agreement was better after the third sample. There was generally good agreement between laboratories for β2M measurements with relatively low CVs. The range of CVs for normal-level neopterin QC samples was 9 to 70% (Fig. 2D), and the range of CVs for elevated neopterin levels was 3 to 64% (Fig. 2C). Laboratory 2 reported lower levels of neopterin than the other laboratories on most dates. This laboratory was the only one using round-bottom tubes and may have been less successful in the washing step of the neopterin test.

Cytokine and immune activation markers in plasma in HIV infection. The plasma samples from 56 HIV-seropositive and 15 HIV-seronegative subjects from the MACS population were measured for levels of 10 cytokines and soluble markers. When the HIV-positive individuals were stratified by CD4 levels (Fig. 3), progressive increases in the levels of IFN-γ, TNF-α, IL-6, sIL-2R, sTNF-RII, β2M, and neopterin were generally seen. IL-4 levels, in contrast, tended to be reduced ($P < 0.05$). Preliminary results indicated that levels of TNF-β, IL-1β, and sTNF-RI were not significantly different between HIV-negative and HIV-positive sera. There were substantial spreads of the cytokine and soluble marker levels in each CD4 category (Fig. 3). This is consistent with data indicating that the levels of immune activation markers in plasma provide different information than CD4 T-cell levels on the pathogenic mechanisms in HIV infection (11, 12).

DISCUSSION

The procedures recommended for intralaboratory quality control of cytokine and soluble marker testing in biological fluids are outlined in Table 5.

![Fig. 1. Interassay variations in concentrations of neopterin (NPT) (A) and sTNF-RII (B) in normal (filled circles) and abnormal high (open circles) in-house QC preparations. Each point represents the mean value of triplicate testing.](image-url)
The procedures described here differ from those outlined by the manufacturers of reagents, in that duplicate testing was not conducted after initial experience indicated that a technologist with the reagents achieved CVs under 10% for intra-assay variability and under 10 to 15% for interassay variability, with the exception of TNF-α. The interassay variability was usually greater in the normal (lower) range, where the cytokine or soluble-marker concentrations were near the lower limit of the analyte detectability in plasma or serum and the precision of reference standard data is lower.

The procedures described here differ in some respects from those described in methodology manuals and reports. We recommend our procedures to laboratories which do many tests of this type with some frequency and with technicians of proven skill in this area. Doing duplicates (or triplicates) as well as the in-house reference sample aliquots and the manufacturer reference materials is important if testing is done infrequently. Graphic methods for assessing QC data are available (22).
External proficiency testing should facilitate the quality and comparability of laboratory performance. This proved to be important for measurements of CD4 T-cell levels in HIV-infected patients (6, 18). However, until external quality assurance (QA) proficiency testing programs are available for cytokine and soluble marker analyses, testing for clinical studies should be conducted in a single experienced laboratory with strong established internal QC procedures. It is recommended that each laboratory establish its own ranges for normal reference populations and test samples from patients with diseases characterized by abnormal levels of cytokines and/or soluble activation markers in order to be confident that abnormal levels can be detected in representative body fluids, usually plasma and serum.

While levels of cytokines in plasma may have some appeal (and are needed in a few research contexts), it is useful to remember that many cytokines cannot be accurately quantified in plasma or serum (17, 24, 36, 46, 49). Some of those that can be detected may show substantial variability because assays are at or near their limits of precise measurement. A variety of other factors could cause such effects. In contrast, measurement of the levels of immune activation markers and soluble products of cytokine activity in plasma may be preferable because they reflect the sum of lymphoid cells contributed from the entire body and are generally detectable by more precise quantitative assays.

TABLE 5. Recommended QC procedures

Step no.	Procedure(s)
1	Establish in-house reference samples that represent normal and abnormal values encountered clinically. Prepare a large number of aliquots of these reference samples for frozen storage. Include each of these reference samples in every assay.
2	Test intra-assay variability in each run.
3	If single tests (rather than duplicate tests) are used, repeat 15% of randomly selected samples on the next run to establish comparability of replicates and inter-assay variability.
4	Test reference (normal) populations each year and compare summaries of yearly results.
5	Test reference populations and test samples from patients with diseases characterized by abnormal levels of cytokines and/or soluble activation markers in order to be confident that abnormal levels can be detected in representative body fluids, usually plasma and serum.
Several points can be made about the changes in levels of cytokines and soluble markers of disease activation in plasma. Serial testing of individuals has revealed several characteristic and different patterns of cytokine and soluble marker changes in HIV disease progression (34, 44). A broad range of levels of cytokines and plasma markers of activation in plasma, representing cytokine activity throughout the body, were found in each of four major CD4 T-cell categories in HIV infection. This emphasizes the difference in disease course or activity as represented by the soluble products of activation versus the level of damage to the CD4 maintenance systems, as represented by the CD4 T-cell levels. Epidemiological studies have shown that these parameters provide different information and that combinations of the two types of measurement give more precise prognostic data than either alone (11, 12). There was no evidence of a shift from a Th1 to a Th2 pattern of cytokine expression with disease progression in these data. Viral load measurements in plasma have been shown to give good prognostic information. However, the CD4 plus cytokine–soluble-marker combinations may approximate viral load data in prognostic value (8, 12). Furthermore, in advanced disease, CD4 or activation marker levels may be prognostically superior to plasma HIV load measurements (8, 12).

Differences in results between laboratories may occur, and examples are documented here. Also, laboratories can vary in the quality of their day-to-day performance. This can be attributable to variations in reagents, to differences in technical proficiency, and to other factors. The need for proficiency testing programs is evident.

ACKNOWLEDGMENTS

We appreciate the support of the entire MACS with centers (and principal investigators) at The Johns Hopkins School of Public Health (Joseph B. Margolick and Alvaro Munoz), Howard Brown Health principal investigators) at The Johns Hopkins School of Public Health, and Janis Giorgi at UCLA. We wish to acknowledge the professional contributions of Bo Hofmann to specific aspects of this work (1991). Roger Detels has encouraged exceptional work at the laboratory of Janis Giorgi at UCLA. We also wish to acknowledge the statistical assistance of Joanie Chung, and the assistance of Deborah Mathieson in manuscript preparation. The many professional contributions of Bo Hofmann to specific aspects of this work were noteworthy. This work was supported by grants AI-35040, AI38858, and AI 36086.

REFERENCES

1. Aggarwal, B. B., and R. K. Puri. 1995. Common and uncommon features of cytokines and cytokine receptors: an overview, p. 3–24. In B. B. Aggarwal and R. K. Puri (ed.), Human cytokines: their role in disease and therapy. Blackwell Science, Cambridge, Mass.
2. Aukrust, P., N. B. Liabakk, F. Müller, E. Lien, T. Espesk, and S. S. Froland. 1994. Serum levels of tumor necrosis factor-alpha (TNF-α) and soluble TNF receptors in human immunodeficiency virus type 1 infection: correlations to clinical immunological and virological parameters. J. Infect. Dis. 169:420–424.
3. Bass, H. Z., P. Nishanian, W. D. Hardy, R. T. Mitsuay, E. Esmail, W. Cumberlend, and J. L. Fahey. 1992. Immune changes in HIV infection: significant correlations and differences in serum markers and lymphoid phenotypic antigens. Clin. Immunol. Immunopathol. 64:65–70.
4. Biemnen, J. L., Coulon, C. Doche, M. C. Gutowski, and G. Grau. 1993. Analytical performances of commercial ELISA kits for IL-2, IL-6 and TNFα. A WHO study. Eur. Cytokine Netw. 4:447–451.
5. Cannon, J. G., J. L. Nerad, D. P. Pusiakstai, and C. A. Dinarello. 1993. Measurement of cytokines. J. Appl. Physiol. 75:1897–1902.
6. Choi, S., S. W. Lagakos, R. T. Schooley, and P. A. Volberding. 1993. CD4 lymphocytes are an incomplete surrogate marker for clinical progression in persons with asymptomatic HIV infection taking zidovudine. Ann. Intern. Med. 119:74–80.
7. De Kossodo, S., V. Houba, E. G. Grau, and WHO Collaborative Study Group. 1995. Assaying tumor necrosis factor concentrations in human serum. A WHO international collaborative study. J. Immunol. Meth. 182:107–114.
8. de Wolf, F., I. Spijkerman, P. T. Schellekens, M. Langendam, C. Kuiken, M. Baarn, M. Roes, R. Cominio, F. Miedema, and J. Goudsmit. 1997. AIDS prognosis based on HIV-1 RNA, CD4+ T-cell count and function: markers with reciprocal predictive value over time after seroconversion. AIDS 11:1795–1806.
9. Esley, A. R., and J. Cohen. 1990. Optimal collection of blood samples for the measurement of tumor necrosis factor-alpha. Cytokine 2:353–356.
10. Fahey, J. L. 1998. Cytokines, plasma immune activation markers, and clinically relevant surrogate markers in human immunodeficiency virus infection. Clin. Diag. Lab. Immunol. 5:597–603.
11. Fahey, J. L., J. M. G. Taylor, R. Detels, B. Hofmann, R. Melmed, P. Nishanian, and J. V. Giorgi. 1991. The prognostic value of cellular and serological markers in infection with human immunodeficiency virus type 1. N. Engl. J. Med. 322:166–172.
12. Fahey, J. L., J. M. G. Taylor, B. Mannia, P. Nishanian, N. Aziz, J. V. Giorgi, and R. Detels. 1998. Prognostic significance of plasma markers of immune activation, HIV viral load and CD4 T-cell measurements. AIDS 12:1581–1590.
13. Fauci, A. S. 1996. Host factors and the pathogenesis of HIV-induced disease. Nature 384:529–534.
14. Federal Register. 1992. Clinical laboratory improvement amendments of 1978: final rules and notice. Fed. Regist. 47:FR:7156–7243.
15. Fuchs, D. H., Jager, M. Popescu, G. Reinhbregger, E. R. Werner, M. P. Dierich, W. Kaboht, G. P. Tilt, and H. Wachter. 1990. Immune activation markers to predict AIDS and survival in HIV-1 seropositives. Immunol. Lett. 26:75–80.
16. Gaines-Das, R. E., and S. Poole. 1993. The international standard for interferon-leukin-6. Evaluation in an international collaborative study. J. Immunol. Methods 160:147–153.
17. Gearing, A. J. H., J. E. Cartwright, and M. Wadlow. 1991. Biological and immunological assays for cytokines, p. 339–355. In A. Thomson (ed.), The cytokine handbook. Academic Press, London, England.
18. Giorgi, J. V., H. L. Cheng, J. B. Margolick, K. D. Bauer, J. Ferbas, M. Wadwad, I. Schmid, L. E. Hultin, A. L. Jackson, L. Park, J. M. G. Taylor, and Multicenter AIDS Cohort Study Group. 1990. Quality control in the flow cytometric measurement of T-lymphocyte subsets: the multicenter AIDS cohort study experience. Clin. Immunol. Immunopathol. 55:173–186.
19. Hoekman, K., J. A. Van-Nieuwkoop, and R. Willemaz. 1985. The significance of β2-microglobulin in clinical medicine. Neth. J. Med. 29:551–557.
20. Hofmann, B., H. Bass, P. Nishanian, M. Faisal, R. A. Figlin, G. P. Sarna, and J. L. Fahey. 1992. Diferent lymphoid cell populations produce varied levels of neopterin, β2-microglobulin and soluble IL-2 receptor when stimulated with IL-2, interferon-gamma or tumor necrosis factor-alpha. Clin. Exp. Immunol. 88:548–554.
21. Hofmann, B., Y. X. Wang, W. G. Cunningham, R. Detels, M. Bozorgmehri, and J. L. Fahey. 1990. Serum β2-microglobulin levels increase in HIV infection: relation to seroconversion, CD4 T-cell fall and prognosis. AIDS 4:207–214.
22. Howariant, P. J., and J. H. Howariant. 1987. Laboratory quality assurance, p. 1–54. McGraw-Hill, New York, N.Y.
23. Howariant, C. J., J. R. Batchelor, D. Fuchs, A. Hausen, A. Lang, and D. Niederwieser. 1984. Immune response-associated production of neopterin: release from macrophages primarily under control of interferon-gamma. J. Exp. Med. 160:310–316.
24. Kapadia, S. G., G. Torre-Amione, and D. L. Mann. 1994. Pitfalls in measuring cytokines. Ann. Intern. Med. 121:149–150.
25. Kslawor, R. A., D. G. Ostrow, R. Detels, J. P. Phair, B. F. Polk, and C. R. Rinaldo, Jr. 1987. The multicenter AIDS cohort study: rationale, organization and selected characteristics of the participants. Am. J. Epidemiol. 126:310–318.
26. Ledur, A., C. Fitting, B. David, C. Hamberger, and J.-M. Cavaillon. 1995. Variable estimates of cytokine levels produced by commercial ELISA kits improved results using international cytokine standards. J. Immunol. Methods. 186:171–179.
27. Leroux-Roels, G., F. Offner, J. Philippe, and A. Vermeulen. 1988. Influence of blood-collecting systems on concentrations of tumor necrosis factor in serum and plasma. Clin. Chem. 34:2373–2374.
28. Melmed, R. N., J. M. G. Taylor, R. Detels, M. Bozorgmehri, and J. L. Fahey. 1989. Serum neopterin changes in HIV-1 infected subjects: indicator of significant pathology, CD4 T cell changes, and the development of AIDS. J. Acquired Immune Defic. Syndr. 2:70–76.
29. Mire-Sluis, A. R. 1993. Cytokines-protein structure and biological activity: a complex relationship with implication for biological assays and standardiza-...
32. Mire-Sluis, A. R., R. Gaines-Das, R. Thorpe, and Participants of the Collaborative Study. 1995. The international standard for granulocyte-macrophage colony stimulating factor (GM-CSF)—evaluation in an international collaborative study. J. Immunol. Methods 179:127–135.

33. Mire-Sluis, A. R., R. Gaines-Das, R. Thorpe, and Participants of the Collaborative Study. 1997. Implications for the assay and biological activity of interleukin-8. J. Immunol. Methods 200:1–16.

34. Nishanian, P., J. M. G. Taylor, B. Manna, N. Aziz, S. Grosser, J. V. Giorgi, R. Detels, and J. L. Fahey. 1998. Accelerated changes (inflection points) in levels of serum immune activation markers and CD4+ and CD8+ T cells prior to AIDS onset. J. Acquired Immune Defic. Syndr. 18:162–170.

35. Osmond, D. H., S. Shiboski, P. Bacchetti, E. E. Winger, and A. R. Moss. 1991. Immune activation markers and AIDS prognosis. AIDS 5:505–511.

36. Pesce, A. J., and J. G. Michael. 1992. Artifacts and limitations of enzyme immunoassays. J. Immunol. Methods 150:111–119.

37. Pettyovka, N., L. Lyach, and N. N. Voitenok. 1995. Homologous ELISA for detection of oligomeric human TNF: properties of assay. J. Immunol. Methods 186:161–170.

38. Plaeger, S., H. Z. Bass, P. Nishanian, J. Thomas, N. Aziz, R. Detels, J. King, W. Cumberland, M. Kemeny, and J. L. Fahey. 1992. The prognostic significance of HIV infection of immune activation represented by cell surface antigen and plasma activation marker changes. Clin. Immunol. Immunopathol., in press.

39. Poli, G., and A. S. Fauci. 1995. Role of cytokines in the pathogenesis of human immunodeficiency virus infection, p. 421–450. In B. B. Aggarwal and R. K. Puri (ed.), Human cytokines: their role in disease and therapy. Blackwell Science, Cambridge, Mass.

40. Poole, S., and R. E. Gaines-Das. 1991. The international standards for IL-1α and IL-1β. Evaluation in an international collaborative study. J. Immunol. Methods 142:1–13.

41. Riches, P., R. Gooding, B. C. Millar, and A. W. Rowbottom. 1992. Influence of collection and separation of blood samples on plasma IL-1, IL-6 and TNF-α concentrations. J. Immunol. Methods 153:125–131.

42. Romagnani, S., G. Del Prete, R. Manetti, A. Ravina, F. Anunziato, M. De Carlo, M. Mazzetti, M. P. Piccinni, M. M. D’Ellios, P. Parronchi, Sampogno, and E. Maggi. 1994. Role of T_{H1}/T_{H2} cytokine in HIV infection. Immunol. Rev. 140:73–92.

43. Rubin, L. A., C. C. Kurman, M. E. Fitz, and B. Boutin. 1985. Soluble interleukin-2 receptors are released from activated human lymphoid cells in vitro. J. Immunol. 135:3172–3177.

44. Salazar-Gonzalez, J. F., O. Martinez-Maza, P. Nishanian, N. Aziz, L-P. Shen, S. Grosser, J. M. G. Taylor, R. Detels, and J. L. Fahey. Increased immune activation precedes the inflection point of CD4+ T cells and the increased serum viral load in HIV infection. J. Infect. Dis., in press.

45. Thavasu, P. W., S. Longhurst, S. P. Joel, M. L. Stevin, and F. R. Balkwill. 1992. Measuring cytokine levels in blood: importance of anticoagulants, processing and storage conditions. J. Immunol. Methods 153:115–124.

46. Thorpe, R., M. Wadhwa, C. R. Bird, and A. R. Mire-Sluis. 1992. Detection and measurement of cytokines. Blood Rev. 6:133–148.

47. Tsoukas, C. M., and N. F. Bernard. 1994. Markers predicting progression of human immunodeficiency virus-related disease. Clin. Microbiol. Rev. 7:14–28.

48. Wachter, H., D. Fuchs, A. Hauser, G. Reibnegger, and E. R. Werner. 1989. Neopterin as a marker for activation of cellular immunity: immunologic basis and clinical application. Adv. Clin. Chem. 27:81–141.

49. Whicher, J., and E. Ingham. 1990. Cytokine measurements in body fluids. Eur. Cytokine Netw. 1:239–243.