SwordNet: Chinese Character Font Style Recognition Network

XUDONG LI, JINGYI WANG, HAIYANG ZHANG, YONGKE HUANG, AND HUIHUI HUANG
College of Software, Nankai University, Tianjin 300071, China
Corresponding author: JingYi Wang (e-mail: wangjing1@mail.nankai.edu.cn).

This research was supported in part by National Science and Technology Major Project, China (Grant No. 2018YFB0204304, 2021YFB0300104), the Tianjin Natural Science Foundation (Grant No. 16JCYBJC15800) and the Fundamental Research Funds Nankai University (Grant No. 21a2085588) for the Central Universities.

ABSTRACT Chinese characters have been created into many font styles in the long history, such as official script, running script, regular script and other standard computer font styles. Some famous calligraphers such as Ouyang Xun and Yan Zhenqing have produced many beautiful calligraphic works. Being able to detect and recognize these font styles quickly and accurately has many important applications in different use cases. In this paper, we present a sword-like model based on convolutional neural network with a sword structure to recognize font styles for Chinese characters. This model includes 15 convolutional layers. For each layer, we gradually increase the number of convolutional kernels to better extract the classification features of the input image. We use 4 downsampling layers in the model. For each downsampling operation, the length and width of the image become half of their original values while the number of channels gradually increases, leading to a sword-like shape. As a result, we name our model as SwordNet. We also created a Chinese font dataset called Nankai Chinese Font Style dataset, and made it available on Github. Using the above dataset, we compared the accuracy of our model with six other state-of-the-art network models. The experiments showed that SwordNet can achieve an average recognition accuracy of 99.03% in multiple experiments, while the other six models can only achieve accuracy up to 94.91%. We concluded that SwordNet can perform better in font style recognition than other models.

INDEX TERMS Chinese character, Convolution neural network, Font style recognition, Skip connection

I. INTRODUCTION

During the long history of Chinese characters, a diverse set of font styles have been developed, such as Cursive Script, Clerical Script, and Small Seal Script. In addition to the evolution of strokes, Chinese characters have developed various font styles under the writing of calligraphers. There are more than 6000 types of Chinese characters, and there are great differences between different font styles of the same Chinese character. Font style recognition is essentially a classification task, but one of the difficulties lies in how to annotate font styles, especially those related to ancient Chinese characters. Typically, professional knowledge of written Chinese characters is required to distinguish font styles.

The font style that can recognize Chinese characters is of great significance to text-related work such as text recognition, artistic font style design, and handwriting identification [1]. For readability and aesthetics considerations, multiple font styles are used when formatting articles. For example, chapter titles and body text usually use different font styles [2]. Certain amount of information can be revealed by identifying different font styles in the article. There are many illegal and criminal cases where the criminal tried to mimic the victim’s handwriting. For such cases, we usually need to call in human experts to make the judgement on whether the handwriting is from a particular person or whether it was faked by a criminal. This not only consumes time and money, but also inevitably leads to errors for some cases. If the handwriting could be automatically identified by a neural network model, it will not only save costs, but also improve the accuracy of recognition. It is thus important to design and build neural network models which can provide high accuracy.

To classify the font style of a Chinese character in an image, one first needs to extract features from that image and then the features are used to train the model or for classification. At a high level, there are two approaches to extract features [3]–[5]. The first is a machine learning approach with manual
involvement in extracting features, and the second is a deep learning approach without manual involvement in extracting features. Manual participation in feature extraction requires a lot of ad-hoc experiments to identify the most effective features for classification, with many of them are artificially constructed. Speeded up robust features (SURF) [6] and scale invariant feature transform (SIFT) [7] are two such examples. As we all know, the selection of the features has a great impact on recognition accuracy. As a result, this method has poor generalizability. On the other hand, deep learning methods have much better generalizability: the model automatically extracts the features and it does not require human involvement in the feature extraction process.

Due to the advantage of automatical and more robust feature extraction in the deep learning approach, we also decided to use that approach in SwordNet, based on convolutional neural network (CNN). Given an image containing a Chinese character, SwordNet can recognize the font style of Chinese characters in the image end-to-end without complicated data pre-processing or human intervention. To test the generalizability of SwordNet, we collected 10 common font styles and 6 ancient Chinese calligraphic works including Shuowen Xiaozhuan, with a total of 18 different font styles. The experimental results showed that the recognition accuracy of our proposed model can be as high as 99.03%.

The structure of our proposed model SwordNet resembles a sword, including a convolutional layer containing 15 layers of convolution kernel size 3×3, using Global Average Pooling downsampling, and adding 3 skip connections to enhance the generalization ability of the model.

We make the following contributions in this paper.

1) We propose SwordNet, a new model for end-to-end Chinese font style recognition.
2) We release a new large-scale dataset, Nankai Chinese Font Style dataset, with 18 Chinese font styles covering standard printing font styles and works of ancient Chinese calligraphers, each font style contains about 1000 images.
3) We evaluated our model together with six other state-of-the-art models and demonstrated that SwordNet can indeed achieve higher accuracy than others.

The remainder of this paper is organized as follows. Section II presents related work. In Section III, we describe the font dataset used in this paper. The detailed SwordNet model is presented in Section IV and Section V shows the experimental results. Then, we conclude the paper.

II. RELATED RESEARCH

Before deep learning was invented, people had started to use machine learning for font style recognition. However, they typically required a manual feature selection process. This manual feature selection process was usually done in an ad-hoc fashion and the features picked were less robust, limiting the generalizability of a model. Zhu et al. [8] used multi-channel Gabor filter to extract t-texture features to recognize font styles. Ding et al. [9] first did wavelet transformation to extract the wavelet features and then used Box-Cox transformation and Linear Discriminant Analysis (LDA) to get the style features. Finally Modified Quadrac Distance Function (MQDF) was used for classification. Tao et al. [10] proposed the Sparse Discriminative Information Preservation (SDIP) and introduced the Local Binary Patterns (LBP) [11] descriptor to estimate the geometric structure of Chinese characters. They demonstrated that their scheme is much faster than schemes based on using wavelet features, and the best average recognition rate they achieved on 25 Chinese font style categories can be as high as 93.0%. Bennon [12] used Support Vector Machine (SVM) to recognize font styles for handwritten English. They first extracted Harris corner points from handwritten English character images, and then used LBP for classification which uses both local and global features. They achieved recognition accuracy rates up to 98.22%. Guo [13] proposed the Linear Discriminant Analysis Cauchy Estimator (LDACE) algorithm, which combines linear discriminant analysis and Cauchy estimator theory to extract the font style characteristics of Chinese characters. Experiments showed that LDACE achieves recognition accuracy of about 98% for 12 font data sets.

While the above methods were designed for font style recognition of independent Chinese characters, there exist some character symbols, such as Arabic, which are written using a large number of coherent strokes. This makes the segmentation task much more challenging. To handle this problem, Slimane et al. [14] proposed the sliding window based approach in which a sliding window was used to move over the image, removing the need of character segmentation. Extracted features were then used for predication using the Gaussian Mixture Model (GMM) for font style classification. As we can see from these approaches, all of them have to perform complex preprocessing of the image, in order to derive the classification features and there is no guarantee that features derived from a particular dataset would work equically well for other or future datasets.

With recent developments in deep learning, convolutional neural networks have shown superior performance in feature extraction and greatly surpass machine learning algorithms in some cases [15], [16]. Wang et al. [4] used a patch based CNN model [17] to extract feature vectors of Chinese character images and they achieved 97.53% recognition accuracy. Tao et al. [3] treated Chinese character font style recognition as a sequence of classification problems. They combined a two-dimensional Long Short Term Memory Model (2DLSTM) with principal components to obtain the stroke trajectories of Chinese characters. The evaluation showed that their approach can achieve recognition rates as high as 97.77%, while also demonstrating greater flexibility and robustness. In Lee and Ding [18], they used autoencoders which extract features during the training process accordingly to the loss function such as mean square error. They compared their method with traditional machine learning methods such as K-NN and demonstrated that their approach can deliver better
recognition performance (with a recognition accuracy of 98.5% vs. 84.9%). In [19], Tang made the observation that the skeleton information of Chinese characters could be an important classification index. They proposed Skeleton Kernel, which uses a long and narrow rectangular sliding window to extract skeleton features. For VGG19 [20] network, they showed that the recognition accuracy can be improved by about 10% with Skeleton Kernel. In Style and Content Supervision (SCS) network [21], it stacked two separate fully connected layer branches. These two branches are used to extract the font style feature and content feature of Chinese characters respectively. Then these two features are mixed using a bilinear model and fed into a softmax layer for classification. Experimental results showed that SCS achieved recognition accuracy of 88.06% on a Chinese dataset containing 91 fonts. Deep learning based approaches not only remove the need of complex pre-processing steps, but also the manual feature construction process. Instead, the models can automatically learn the features based on the training dataset, ensuring that the most appropriate features are used.

Given the advantage of deep learning based approach for this problem, we also looked into leveraging neural networks in this work. Compared to other deep learning approaches, SwordNet is the first to use skip connection and Global Average Pooling (GAP), to improve the robustness of the model. Experiment results show that SwordNet can not only achieve better recognition accuracy on datasets with different sizes than existing deep learning approaches but also recognize written English characters.

While the above methods demonstrated good recognition results, none of them makes their datasets publicly available. This results in two problems. Firstly, without access to their dataset, it becomes challenging to reproduce their results. Secondly, we don’t have a representative dataset that includes a large number of categories with different font styles. One of the larger Chinese character datasets is HCL2000 [22] is a handwritten Chinese dataset consisting of 3755 first-level simplified Chinese characters. It was written by 1,000 participants in different ages and occupations, with various education backgrounds. THU-HCD [23] is another dataset published by a group from Tsinghua University. Similar as HCL2000, THU-HCD also only contains the first-level simplified Chinese character samples. However, the dataset is much larger and is divided into 10 subsets based on how well the handwriting samples were organized. It also has more participants: about 2000 people contributed to this dataset. While the above two datasets were primarily used for offline handwritten Chinese characters recognition, CASIA-HWDB [24] has been used for both offline and online handwritten Chinese characters recognition. Besides, the offline handwritten Chinese characters are further divided into independent characters or texts. CASIA-HWDB is more often used for Chinese character recognition.

In contrast, our dataset, Nankai Chinese Font Style (NCFS) dataset, contains both handwriting and standard printing. Furthermore, the Chinese characters in each font style include not only the first-level simplified Chinese characters, but also some rare characters and ancient Chinese characters that cannot be represented by Unicode encoding.

III. NANKAI CHINESE FONT STYLE DATASET

In this section, we described the details of our dataset: Nankai Chinese Font Style (NCFS) dataset [25]. It contains three parts.

1) Ancient Chinese calligraphic characters: we selected six calligraphic works, written by five authors in different styles. The text is an essay named “Thousand Characters Classic”. It is a popular enlightenment reading written by Zhou Xingsi in ancient China about one thousand years ago and has been translated into other languages, such as English and French. The selected six calligraphic works were written by the following authors: Han Lishu, Liu Gongquan, Mi Fu in running script, Ouyang Xun, and Yan Zhenqing (on the Duobao Tower Stele and the Qin Li Stele). The calligraphic works were first scanned and then segmented so that each image contains only a single character. Next, each image is denoised and binarized. Fig. 1 shows some of these characters, written by Mi Fu and Ouyang Xun.

2) Standard computer font characters: we selected 10 common True Type Font (TTF) fonts and used them to generate the characters for the same essay: “Thousand Characters Classic”. TTF is the font standard used by the Windows operating system. Fig. 2 shows the selected fonts. SimHei, SimKai, and SimLi are commonly used in daily life while CAIYUN, HUPO, STK, and YTK add certain artistic features. XC, XK, and XS are font styles with some unique Chinese features. Considering some rare characters that cannot be displayed, for each TTF font, we generated 987 character images. Fig. 3 shows some of the images contained in YTK and HUPO fonts in the converted NCFS dataset.

3) Ancient Chinese Symbols: for the last part, we got some ancient Chinese glyph symbols that are not defined by Unicode from the Zhonghua Book Company Song Ti 15 Plane font library. Specifically, this font

\[1\] http://www.ancientbooks.cn/
library includes two types of symbols: “Ancient Characters” and ‘Shuo Wen Xiao Zhuan’. Some examples are shown in Fig. 4.

We store each image using the PNG format. The images in each category are randomly split into the training set and the test set in the ratio of 8:2. Table 1 provides a summary for the NCFS dataset: it contains a total of 18 font styles, and the number of images contained in the training set and test set for each font style is also shown.

IV. METHOD DESCRIPTION

A. PROPOSED ARCHITECTURE

Fig. 5 shows the structure of SwordNet, which has a shape like a sword. It includes 15 convolutional layers, each with a convolutional kernel size of 3×3. The stride parameter is 2, and the padding parameter is “same”. Stacking more convolutional layers can achieve better accuracy. But as the number of layers increases, the feature values extracted from

Table 1. Nankai Chinese Font Style Dataset
Font Name

Han Lishu
Liu Gongquan
Mi Fu’s Running Script
Ouyang Xun
Yan Zhenqing’s Duobao Tower Stele
Yan Zhenqing’s Qin Li Stele
CAIYUN
SimHei
HUPO
SimKai
SimLi
STK
XC
XK
XS
YTK
Ancient Chinese Characters
Shuo Wen Xiao Zhuan
each layer will be distributed in the saturation interval of the activation function, and then the gradient disappears. To handle the above issue, we used Batch Normalization (BN) [26] for each convolutional layer to accelerate the convergence and improve the accuracy of the network. The BN-layer can make the feature values satisfy the distribution law with mean 0 and variance 1. As a result, the activation function becomes more sensitive to the eigenvalues and produces a larger gradient, to accelerate convergence.

Convolution and Pooling are both linear calculation processes. In order to introduce nonlinear factors, an activation function layer needs to be added after the BN-layer. There are many commonly used activation functions in deep convolutional neural networks, such as the Sigmoid activation function. It maps the input to between 0 and 1. The disadvantage of the Sigmoid activation function is that the larger the input value, the smaller the gradient value. In this case, it is easy for the gradient to disappear in the deep network. Rectified Linear Unit (ReLU) is also a commonly used activation function. The ReLU activation function maps inputs less than 0 to 0, and inputs greater than or equal to 0 to the input value itself. When the network model reversely updates the parameters, a lot of derivation operations are required. The ReLU activation function is adopted by many models because of its convenience in derivation [5], [27], [28]. We use the ReLU activation function after BN-layer in SwordNet.

In order to simplify the model and increase the computational speed, we use the MaxPooling layer in SwordNet. The function of the MaxPooling layer is to downsample the image. We set the MaxPooling layer after the 2nd, 5th, 10th, and 14th ReLU activation function layers, and the sampling step is set to 2. Therefore, after each MaxPooling layer, the length and width of the image become half of the original. The number of channels of the image increases with the number of convolution kernels. During the whole convolution process, the length and width of the image gradually decrease and the number of channels gradually increases. The whole structure looks like a sword, leading to the name for our neural network: SwordNet.

B. SKIP CONNECTION

The ResNet model [29] and SH Tsang’s research 2 showed that adding skip connection to a convolutional neural network has the effect of updating the model layers. The skip connection changes the distribution of the model parameters, making them more uniform, improving model accuracy. Therefore, we were inspired to add three skip connections to SwordNet, as shown by the solid black connection line in Fig. 5. These three skip connections add the output of the 3rd, 8th and 12th layers as additional input for the next three layers.

C. GLOBAL AVERAGE POOLING

The convolution operation extracts the features of the image, and the fully connected layer is used for classification. The fully connected layer receives the flattened feature values as input, resulting in processing of a large number of parameters. To handle this challenge, Lin et al. [30] proposed Global Average Pooling (GAP), which takes the average value of each feature value into the softmax layer, to reduce the number of parameters in the fully connected layer. We used GAP in the penultimate layer of SwordNet, as shown in the purple box in Fig. 5. SwordNet also used Dropout, which aims to randomly deactivate some neurons to reduce overfitting. Table 2 shows the structure of each layer of SwordNet and the shape of the output image, where Conv_Block is a convolution block, which is composed of convolution layer, batch normalization and ReLU activation function layer.

2Review: U-Net+ResNet–The Importance of Long & Short Skip Connections (Biomedical Image Segmentation). Visit the web page at https://medium.com/datadriveninvestor/review-u-net-resnet-the-importance-of-long-short-skip-connections-biomedical-image-ccbf8061ff43
The number of epochs used in training also impacts the model accuracy. Too many epochs can easily cause overfitting, and too few epochs can easily make the training parameters less than optimal. In the experiment, we trained the model for 30 epochs, which showed a good balance. The batch_size is set to 16: 16 images are processed as one batch simultaneously. If the input data used for training form a certain order or a certain pattern, it is easy to fall into the local optimum when calculating the gradient in the training process. This results in poor generalization of the model. To avoid the image order on the training results, we randomly took out one batch_size of images at a time.

Small batch stochastic gradient descent (SGD) is used as the optimization function, and the initial learning rate is set to 0.1. To speed up the training process and obtain better results, a learning rate scheduler is used to automatically adjust the size of the learning rate according to the current fitting effect and loss of the model. The categorical_crossentropy loss function is used to evaluate the gap between the predicted output, and the true values of the model during the training process, and the parameters are updated based on this gap during back propagation. The categorical_crossentropy loss function is defined as follows:

$$loss = -\frac{1}{n} \sum_{i} y_i \ln \hat{y}_i.$$ (1)

In (1), y denotes the actual label, \hat{y} denotes the predicted output, and n denotes the total number of samples.

V. EXPERIMENTS

A. EXPERIMENTAL DETAILS

The data used for training are RGB images of 96×96 pixels. We used 96 pixels because 96×96 pixels is sufficient to clearly distinguish the different Chinese characters and many other studies [31]–[33] also used this size. Our model can process images with different sizes. We set the number of channels to 3 because these are RGB images.

FIGURE 5. SwordNet structure diagram. The input image is in the format $96 \times 96 \times 3$ and passes through 15 convolutional blocks in sequence, each consisting of a convolutional layer, a BN layer, a ReLU activation function layer, and a MaxPooling layer. SwordNet also includes 3 skip connections, adding GAP at the end and SwordNet will output one of the predicted 18 font style types.

The structure of each layer of the SwordNet model and the size of the feature map. When the output shape is a triplet, it means that the output is a vector, where the elements represent the dimensions of the feature map. When output shape is a tuple, it means that the output map is a multi-dimensional matrix, where the first element represents the height of the feature map, the second element represents the width of the feature map, and the third element represents the number of channels of the feature map. When output shape is a triplet, it means that the output is a vector, where the elements represent the dimensions of the vector.

TABLE 2. The Structure of SwordNet Model

Layer Name	Layer	Output Shape	
Input	96 × 96 RGB image	(96,96,3)	
Conv_Block × 2	3 × 3 Conv2D, 64, BN, ReLU	(96,96,64)	
MaxPool	MaxPool2D, stride 2	(48,48,128)	
Conv_Block × 3	3 × 3 Conv2D, 128, BN, ReLU	(48,48,128)	
MaxPool	MaxPool2D, stride 2	(24,24,128)	
Conv_Block × 5	3 × 3 Conv2D, 256, BN, ReLU	(24,24,256)	
MaxPool	MaxPool2D, stride 2	(12,12,256)	
Conv_Block × 4	3 × 3 Conv2D, 512, BN, ReLU	(12,12,512)	
MaxPool	MaxPool2D, stride 2	(6,6,512)	
Conv_Block × 1	3 × 3 Conv2D, 1024, BN, ReLU	(6,6,1024)	
GAP	18 Softmax	18	
Dropout	0.5	(1024)	
Output	剑	18	Softmax
FIGURE 6. The loss variation of SwordNet on the training and test sets during the training process. The horizontal axis represents the number of epoches used for training. And a total of 30 epochs were iteratively trained; The vertical axis represents the loss. The red line segment represents the loss change on the training set, and the blue line segment represents the loss change on the test set.

FIGURE 7. The change of accuracy of SwordNet on the training and test sets during training. The horizontal axis represents the number of epoches used for training. And a total of 30 epochs were iteratively trained; The vertical axis represents the accuracy rate. The red line represents the change in accuracy on the training set, and the blue line represents the change in accuracy on the test set.

variation of the accuracy with epoch is shown in Fig. 7. It can be seen that the loss tends to converge from the 16th round and the highest recognition accuracy of 99.03% occurs.

After training, SwordNet is able to load the weight parameters for font style recognition. Input an image containing only one Chinese character, SwordNet could predict the font style of this Chinese character. Fig. 8 shows 6 examples, the Chinese characters in the images input to SwordNet are from left to right, from top to bottom, they belong to CAIYUN, HUPO, Ancient Chinese Characters, Shuo Wen Xiao Zhuan, Mi Fu’s Running Script, and Yan Zhenqing’s Duobao Tower Stele. “class” indicates the font style predicted by SwordNet, and “prob” indicates SwordNet predicts the probability that a character belongs to a certain font style. We can see that all 6 examples are correctly predicted.

During training, CNN use gradient descent to update the weight parameters of the network based on the loss between the predicted and true values, to obtain the most favorable features for classification. However, the features eventually extracted by CNN are often not interpretable, and these features are not as good as those extracted using traditional machine learning algorithms. To visualize the convolution process, an image containing a Chinese character is input, and Fig. 9 shows the input layer of SwordNet and the first 12 outputs of the middle 5 convolution layers. It can be seen that as the number of layers deepens, the features extracted by the CNN become more and more abstract, and the feature extracted from the 7th convolutional layer is no longer recognizable by human. The feature extracted from the 11th convolutional layer resemble pixel blocks, which are much different from the human predefined features and are not interpretable.

Using the same dataset NCFS, we compared the accuracy of our model with six other state-of-the-art network models. The number of parameters of each model and the recognition accuracy results on the test set are shown in Table 3. Under the same experimental conditions, SwordNet obtained the highest accuracy of 99.03%, followed by ResNet [29] with an accuracy of 94.91%. AlexNet [34], GoogleNet [35] and Vgg16Net [20] also obtained better recognition accuracy, and EfficientNet [36] had the lowest accuracy which was only 89.89%. The number of parameters of SwordNet is 16,186,322, which is less than one half of that of Vgg16Net and ResNet, but the accuracy is improved by about 4% compared with these two models. We concluded that SwordNet can perform better in font recognition than other models.

Fig. 10 shows the accuracy on testing set when we varied the number of epochs for training. SwordNet reached the highest accuracy with 16 epoches of training while for others, their accuracy kept improving, even with more than 20 epoches of training. Fig. 11 and Fig. 12 shows the loss on the training set and the test set for each model when varying the number of epoches used in training. Both figures show that SwordNet is able to reach the convergence with fewer epoches in training, requiring a shorter training time.

Model	Total_Params	Test_Accuracy	Ref.
EfficientNet	4,072,629	0.8989	[36]
ShuffleNet	1,288,234	0.9071	[37]
AlexNet	6,229,714	0.9097	[34]
GoogleNet	5,992,002	0.9392	[35]
Vgg16Net	28,387,154	0.9457	[20]
ResNet	23,598,034	0.9491	[29]
SwordNet	16,186,322	0.9903	Ours

SwordNet has the highest accuracy.
FIGURE 8. Input an image containing a Chinese character, and SwordNet predicts its font style. (a) is CAIYUN, (b) is HUPO, (c) is Ancient Chinese Characters, (d) is Shuo Wen Xiao Zhuan, (e) is Mi Fu’s Running Script, and (f) is Yan Zhenqing’s Duobao Tower Stele. All 6 examples are correctly predicted.

FIGURE 9. SwordNet intermediate convolutional layer feature map visualization. (a) is the output feature map of the first convolutional layer, (b) is the output feature map of the 5th convolutional layer, (c) is the output feature map of the 7th convolutional layer, (d) is the output feature map of the 11th convolutional layer, (e) is the output feature map of the 12th convolutional layer, and (f) is the output feature map of the 15th convolutional layer.
Xudong Li et al.: SwordNet: Chinese Character Font Style Recognition Network

C. INFLUENCE OF THE SIZE OF DATASETS ON FONT STYLE RECOGNITION ACCURACY

With more data used for training, a model can learn and construct more effective features for prediction. To evaluate the effect of dataset size on model effectiveness, we varied the dataset size used in training. Except for the size of the datasets, all the experimental conditions were the same as before. The experimental results are shown in Table 4. Dataset-1 represents the initial dataset, and each font style category contains about 1000 images. Dataset-0.7 represents that we only used 70% of the complete dataset for training and the same for other cases. We can see from the table that the recognition accuracy drops when the size of the dataset is reduced. When we only used half of the images for training, SwordNet can still achieve 98.34% recognition accuracy, which is less than 1% lower when we use the full dataset. When we use only 20% or 10% of the dataset for training, SwordNet can still achieve recognition accuracy of 95% and 92.9% respectively, comparable with what other models can achieve with the full dataset. With SwordNet, if we want to reduce the training time, we can reduce the dataset size by half while still achieving the recognition accuracy of 98%.

D. FONT STYLE RECOGNITION FOR OTHER LANGUAGES

In order to demonstrate the good applicability of SwordNet for other language scripts, we applied the proposed SwordNet to an English font dataset. The English font dataset is also obtained by converting TTF font files into png format images. Twenty one English font styles are selected, and each category contains 26 images of lowercase letters and 26 images of uppercase letters, i.e., each category contains 52 images containing only one letter. Each image is 96 × 96 pixels and the number of channels is 3 (RGB images). These 52 images were then randomly divided into a training set and a test set in the ratio of 8:2 for SwordNet training. The initial learning rate is set to 0.1, and the learning rate is automatically adjusted by the learning rate scheduler to speed up the training speed according to the learning effect of the model. The size of batch_size parameter is set

TABLE 4. Comparison of the Influence of Dataset Size on Font Style Recognition Accuracy

Dataset	Test_Accuracy
Dataset-1	0.9903
Dataset-0.7	0.9882
Dataset-0.5	0.9834
Dataset-0.2	0.9574
Dataset-0.1	0.9290

Dataset-1 represents the initial datasets, and each font style category contains about 1000 pictures. 0.7, 0.5, 0.2, and 0.1 represent 0.7, 0.5, 0.2, and 0.1 times the size of the initial datasets, respectively.
to 4 because this dataset only contains 52 images in total. A smaller batch_size for a small sample dataset allows the model to achieve a better recognition accuracy.

After 30 epochs of iterative learning, SwordNet achieved a recognition accuracy of 96.23%. Fig. 13 shows the recognition accuracy when we varied the number of epochs for training. We achieved the highest recognition accuracy of 0.9623 using 17 epochs in training. The entire training process takes 1 to 2 minutes. We demonstrated that SwordNet can not only recognize various font styles and font styles written by different calligraphers for Chinese characters, but also be applied to recognize font styles for other languages. Section V-C shows that if we can get a larger dataset for training, SwordNet can continue to improve the recognition performance.

VI. CONCLUSION

In this paper, we propose SwordNet, a font style recognition model for Chinese characters with a sword structure. SwordNet consists of 15 convolutional layers with a kernel size of 3 \times 3. It further uses MaxPooling and Global Average Pooling to downsample, and adds 3 skip connections in the middle layer to enhance the generalization ability of the model. SwordNet obtained 99.03% accuracy on the 18 class NCFS dataset. The experimental results show that SwordNet achieved the highest recognition accuracy when compared with other six CNN models, such as ResNet, ShuffleNet, or GoogleNet. This paper also explores the effect of reducing the size of the dataset on the recognition accuracy of the model, and concludes that SwordNet can still obtain more than 98% accuracy when the size of the dataset is reduced to half of the initial size. The proposed model can recognize ancient Chinese font styles such as ancient Chinese characters and Shuo Wen Xiao Zhan, which would be useful for future studies related to Chinese ancient books. SwordNet has no limitation on the number of font styles and can be expanded to include new font styles in the future. It can also be trained using personal handwriting datasets for handwriting identification. Besides, SwordNet can also be used to recognize font styles for English and other languages, making it a general technique useful for font style recognition.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable comments, and also thank Dr. Xing Lin for his help in improving the writing of this paper. This research was supported in part by National Science and Technology Major Project, China (Grant No. 2018YFB0204304, 2021YFB0300104), the Tianjin Natural Science Foundation (Grant No. 16JCYBJC15800) and the Fundamental Research Funds Nankai University (Grant No. z1a2085588) for the Central Universities.

REFERENCES

[1] X. Bai, B. Shi, C. Zhang, X. Cai, and L. Qi, “Text/non-text image classification in the wild with convolutional neural networks,” Pattern Recognition, vol. 66, pp. 437–446, 2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0031320316303922

[2] N. Amara and S. Gazzah, “Une approche d’identification des fonts arabis,” Conférence Internationale Francophone Sur Lecrit Et Le Document, 2004.

[3] D. Tao, X. Lin, L. Jin, and X. Li, “Principal component 2-d long short-term memory for font recognition on single chinese characters,” IEEE Transactions on Cybernetics, vol. 46, no. 3, pp. 756–765, 20.

[4] Y. Wang, Z. Lian, Y. Tang, and J. Xiao, Font Recognition in Natural Images via Transfer Learning. Multimedia Modeling, 2018.

[5] Y. Chang, “Chinese font recognition based on convolutional neural network,” in Proceedings of the 2018 3rd International Conference on Automation, Mechanical Control and Computational Engineering (AMCCE 2018). Atlantis Press, 2018/05, pp. 562–566. [Online]. Available: https://doi.org/10.2991/amcce-18.2018.97

[6] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features (surf),” Computer Vision and Image Understanding, vol. 110, no. 3, pp. 346–359, 2008, similarity Matching in Computer Vision and Multimedia. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1077314207001555

[7] M. Moradi and P. Aboalmaesumi, “Medical image registration based on distinctive image features from scale-invariant (sift) key-points,” International Congress Series, vol. 1281, p. 1292, 2005, cARS 2005; Computer Assisted Radiology and Surgery; [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0031320316303922

[8] Y. Zhu, T. Tan, and Y. Wang, “Font recognition based on global texture analysis,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 10, pp. 1192–1200, 2001.

[9] X. Ding, L. Chen, and T. Wu, “Character independent font recognition on a single chinese character,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 2, pp. 195–204, 2007.

[10] D. Tao, L. Jin, S. Zhang, Z. Yang, and Y. Wang, “Sparse discriminative information preservation for chinese character font categorization,” Neurocomputing, vol. 129, pp. 159–167, 2014. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925231213009740

[11] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale and rotation invariant texture classification with local binary patterns,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 7, pp. 971–987, 2002.

[12] A. Bennour, “Automatic handwriting analysis for writer identification and verification,” in Proceedings of the 7th International Conference on Software Engineering and New Technologies, ser. ICSENET 2018. New York, NY, USA: Association for Computing Machinery, 2018. [Online]. Available: https://doi.org/10.1145/3330089.3330129

[13] Y. Guo, “Linear discriminant analysis cause estimator for single chinese character font recognition,” Journal of Physics: Conference Series, vol. 1069, p. 012177, aug 2018. [Online]. Available: https://doi.org/10.1088/1742-6596/1069/10/12177
Xudong Li et al.: SwordNet: Chinese Character Font Style Recognition Network

[14] F. Slimane, S. Kanoun, J. Hennebert, A. M. Alimi, and R. Ingold, “A study on font-family and font-size recognition applied to arabic word images at ultra-low resolution,” Pattern Recognition Letters, vol. 34, no. 2, pp. 209–218, 2013.

[15] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception architecture for computer vision,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 2818–2826.

[16] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,” in Computer Vision – ECCV 2014, D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, Eds. Cham: Springer International Publishing, 2014, pp. 818–833.

[17] Z. Wang, J. Yang, H. Jin, E. Shechtman, A. Agarwal, J. Brandt, and T. S. Huang, “DeepFont: Identify your font from an image,” in Proceedings of the 23rd ACM International Conference on Multimedia, ser. MM ’15. New York, NY, USA: Association for Computing Machinery, 2015, p. 451–459. [Online]. Available: https://doi.org/10.1145/2733373.2806219

[18] C.-C. Lee and J.-J. Ding, “Automatic chinese handwriting verification algorithm using deep neural networks,” in 2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), 2019, pp. 1–2.

[19] W. Tang, Y. Su, X. Li, D. Zha, W. Jiang, N. Gao, and J. Xiang, “Cnn-based character recognition with skeleton feature,” in ICONIP, 2018.

[20] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” 2015.

[21] W. Tang, Y. Jiang, N. Gao, J. Xiang, Y. Su, and X. Li, “SCS: Style and Content Supervision Network for Character Recognition with Unseen Font Style,” vol. 12, 2019, pp. 20–31.

[22] H. Zhang, J. Guo, G. Chen, and C. Li, “Hel2000 – a large-scale handwritten chinese character database for handwritten character recognition,” in 2009 10th International Conference on Document Analysis and Recognition, 2009, pp. 286–290.

[23] Q. Fu, X. Ding, T. Li, and C. Liu, “An effective and practical classifier fusion strategy for improving handwritten character recognition.” USA: IEEE Computer Society, 2007.

[24] CASIA Online and Offline Chinese Handwriting Databases. Available: http://www.nlpr.ia.ac.cn/databases/handwriting/Home.html

[25] Nankai Chinese Font Style Dataset. Available: https://github.com/JingY1W/Nankai-Chinese-Font-Style-Dataset.git

[26] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift,” in Proceedings of the 32nd International Conference on Machine Learning - Volume 37, ser. ICML’15. JMLR.org, 2015, p. 448–456.

[27] S. Huang, Z. Zhong, L. Jin, S. Zhang, and H. Wang, “Dropregion of inception font network for high-performance font recognition,” Pattern Recognition, vol. 77, pp. 395–411, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0031320317304235

[28] L. G. Hafemann, R. Sabourin, and L. S. Oliveira, “Learning features for offline handwritten signature verification using deep convolutional neural networks,” Pattern Recognition, vol. 70, pp. 163–176, 2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0031320317302017

[29] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.

[30] M. Lin, Q. Chen, and S. Yan, “Network in network,” 2014.

[31] P. Melnyk, Z. You, and K. Li, “A high-performance cnn method for offline handwritten chinese character recognition and visualization,” Soft Computing, vol. 24, no. 11, p. 7977–7987, May 2019. [Online]. Available: http://dx.doi.org/10.1007/s00500-019-04083-3

[32] Q. Xu, X. Bai, and W. Liu, “Multiple comparative attention network for offline handwritten chinese character recognition,” in 2019 International Conference on Document Analysis and Recognition (ICDAR), 2019, pp. 595–600.

[33] X. Xiao, L. Jin, Y. Yang, W. Yang, J. Sun, and T. Chang, “Building fast and compact convolutional neural networks for offline handwritten chinese character recognition,” Pattern Recognition, vol. 72, pp. 72–81, 2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0031320317302558

[34] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6, p. 84råŠ90, May 2017. [Online]. Available: https://doi.org/10.1145/3065386

XUDONG LI received his B.S. degree from the department of computer and Systems Science, Nankai University, China, in 1997, and the Ph.D. degree from the College of Information Science and Technology, Nankai University, in 2003. He is now working in the College of Software, Nankai University. His research interests include software architecture, neural networks, operating system and distributed computing. He held a number of patents for his many innovations.

JINGYI WANG was born in Hebei Province, China, in 1996. She is currently pursuing the master’s degree in software engineering at the College of Software, Nankai University, Tianjin, China. Her main research interests are deep neural networks and text recognition.

YONGKE HUANG was born in Hebei Province, China, in 1998. He received his B.S. degree in software engineering from Nankai University in 2019. His main research interests are blockchain and distributed storage.
HUIHUI HUANG is a master student at the College of Software, Nankai University, Tianjin, China. His main research interest covers deep learning and Website Development.