Weighted Alignment Matrices for Statistical Machine Translation

Yang Liu, Tian Xia, Xinyan Xiao, and Qun Liu
Institute of Computing Technology,
Chinese Academy of Sciences
{yliu, xiatian, xiaoxinyan, liuqun}@ict.ac.cn
Word Alignment

- economy
- 's
- China
- of
- development
- the

zhongguo de jingji fazhan
Alignment Consistency

Och and Ney (2004)

consistent
Alignment Consistency

economy	's	China	of	development	the
zhongguo	de	jingji	fazhan		

Och and Ney (2004) inconsistent
Extracting Phrase Pairs from 1-best Alignments

Och and Ney (2004)

Zhongguo de jingji ||| China’s economy
Zhongguo de jingji ||| of China’s economy
Extracting Phrase Pairs from N-best Alignments

Venugopal et al., (2008)
This Work

- We propose *weighted alignment matrix*, a compact representation of multiple word alignments.
- We design a new method for extracting phrase pairs from weighted alignment matrices.
Compact Representation

from 1-best tree to packed forest (Mi et al., 2008)

from 1-best segmentation to lattice (Dyer et al., 2008)

from 1-best alignment to what?
Neo: What is the Matrix?

Morpheus: The Matrix is officially called weighted alignment matrix, which stores link probabilities to indicate how well two words are aligned.

	zhongguo	de	jingji	fazhan
economy	0.0	0.0	1.0	0.0
's	0.0	0.4	0.4	0.0
China	1.0	0.0	0.0	0.0
of	0.0	0.6	0.0	0.4
development	0.0	0.0	0.0	1.0
the	0.0	0.0	0.0	0.0
Estimating Link Probabilities from N-best List

economy	de	jingji	fazhan
‘s China	●	●	●
of			
development			
the			

economy	de	jingji	fazhan
‘s China	●	●	●
of			
development			
the			

economy	de	jingji	fazhan
‘s China	●	●	●
of			
development			
the			

economy	de	jingji	fazhan
‘s China	●	●	●
of			
development			
the			

zhongguo	de	jingji	fazhan
0.6			

zhongguo	de	jingji	fazhan
0.4			

zhongguo	de	jingji	fazhan
0.0	0.0	1.0	0.0
0.0	0.4	0.4	0.0
1.0	0.0	0.0	0.4
0.0	0.6	0.0	0.4
0.0	0.0	0.0	1.0
0.0	0.0	0.0	0.0
Alignment Probability

There are $2^{(2*1)}=4$ possible alignments

- $(1-0.3) \times (1-0.6)=0.28$
- $0.3 \times (1-0.6)=0.12$
- $(1-0.3) \times 0.6=0.42$
- $0.3 \times 0.6=0.18$
Collecting Fractional Count

Suppose we extract a phrase pair “zhongguo de ||| of China” from the example;

There are $2^{(4*6)}=16,777,216$ possible alignments;

How many alignments from which this phrase pair can be extracted?

What is the sum of probabilities of such alignments?
Inside Probability

1. There must be at least one word inside one phase aligned to a word inside the other phrase

\[
1.0 - (1.0 - 1.0) \times (1.0 - 0) \times (1.0 - 0) \times (1.0 - 0.6) = 1.0
\]

no words inside are aligned
Outside Probability

	zhongguo	de	jingji	fazhan
economy	0.0	0.0	1.0	0.0
's	0.0	0.4	0.4	0.0
China	1.0	0.0	0.0	0.0
of	0.0	0.6	0.0	0.4
the	0.0	0.0	0.0	1.0

2. No words inside one phrase can be aligned to a word outside the other phrase

\[(1.0-0.4) \times (1.0-0.4) = 0.36\]

no words outside are aligned
Fractional Count

	zhongguo	de	jingji	fazhan
economy	0.0	0.0	1.0	0.0
's	0.0	0.4	0.4	0.0
China	1.0	0.0	0.0	0.0
of	0.0	0.6	0.0	0.4
the	0.0	0.0	0.0	1.0

How well the phrase pair is consistent with word alignment distribution?

\[1.0 \times 0.36 = 0.36 \]
Extracting Phrase Pairs

	zhongguo	de	jingji	fazhan
economy	0.0	0.0	1.0	0.0
's	0.0	0.4	0.4	0.0
China	1.0	0.0	0.0	0.0
of	0.0	0.6	0.0	0.4
development	0.0	0.0	0.0	1.0
the	0.0	0.0	0.0	0.0
Extracting Phrase Pairs

length=1	economy	0.0	0.0	1.0	0.0
	‘s	0.0	0.4	0.4	0.0
China	1.0	0.0	0.0	0.0	0.0
of	0.0	0.6	0.0	0.0	0.4
development	0.0	0.0	0.0	1.0	
the	0.0	0.0	0.0	0.0	0.0

\[
0.6 \times 0 = 0
\]
Extracting Phrase Pairs

length=1

	zhongguo	de	jingji	fazhan
economy	0.0	0.0	1.0	0.0
‘s	0.0	0.4	0.4	0.0
China	1.0	0.0	0.0	0.0
of	0.0	0.6	0.0	0.4
development	0.0	0.0	0.0	1.0
the	0.0	0.0	0.0	0.0

\[1.0 \times 0.24 = 0.24 \]
Extracting Phrase Pairs

length=1

	zhongguo	de	jingji	fazhan
economy	0.0	0.0	1.0	0.0
's	0.0	0.4	0.4	0.0
China	1.0	0.0	0.0	0.0
of	0.0	0.6	0.0	0.4
development	0.0	0.0	0.0	1.0
the	0.0	0.0	0.0	0.0

\[
0.4 \times 0 = 0
\]
Extracting Phrase Pairs

length=2

	zhongguo	de	jingji	fazhan
economy	0.0	0.0	1.0	0.0
's	0.0	0.4	0.4	0.0
China	1.0	0.0	0.0	0.0
of	0.0	0.6	0.0	0.4
develop	0.0	0.0	0.0	1.0
the	0.0	0.0	0.0	0.0

\[0.6 \times 0 = 0\]
Extracting Phrase Pairs

length=2

	zhongguo	de	jingji	fazhan
china	1.0	0.6	0.0	0.0
of	0.0	0.0	0.0	0.4
the	0.0	0.0	0.0	0.0
economy	0.0	0.0	1.0	0.0
's	0.0	0.4	0.4	0.0

\[1.0 \times 0.36 = 0.36 \]
Extracting Phrase Pairs

length=2

	zhongguo	de	jingji	fazhan
economy	0.0	0.0	1.0	0.0
's	0.0	0.4	0.4	0.0
China	1.0	0.0	0.0	0.0
of	0.0	0.6	0.0	0.4
development	0.0	0.0	0.0	1.0
the	0.0	0.0	0.0	0.0

\(1.0 \times 0.24 = 0.24\)
Extracting Phrase Pairs

	zhongguo	de	jingji	fazhan
zhongguo	0.0	0.0	0.0	0.0
de	0.0	0.0	0.0	0.0
jingji	0.0	0.0	0.0	0.0
fazhan	0.0	0.0	0.0	0.0

length=2

	0.0	0.0	1.0	0.0
0.4	0.4	0.4	0.0	0.0

0.4 × 0 = 0
Extracting Phrase Pairs

Length = 3

	zhongguo	de	jingji	fazhan
economy	0.0	0.0	1.0	0.0
's	0.0	0.4	0.4	0.0
China	1.0	0.0	0.0	0.0
of	0.0	0.6	0.0	0.4
development	0.0	0.0	0.0	1.0
the	0.0	0.0	0.0	0.0

\[0.6 \times 0 = 0\]
Extracting Phrase Pairs

length=3

	zhongguo	de	jingji	fazhan
the	0.0	0.0	0.0	0.0
of	0.0	0.6	0.0	0.4
China	1.0	0.0	0.0	0.0
’s	0.0	0.4	0.4	0.0
economy	0.0	0.0	1.0	0.0

1.0 × 0 = 0
Extracting Phrase Pairs

	zhongguo	de	jingji	fazhan
the	0.0	0.0	0.0	0.0
of development	0.0	0.0	0.0	1.0
China	1.0	0.0	0.0	0.0
‘s	0.0	0.4	0.4	0.0
economy	0.0	0.0	1.0	0.0

length=3

$$1.0 \times 0.36 = 0.36$$
Extracting Phrase Pairs

length=3

	zhongguo	de	jingji	fazhan
economy	0.0	0.0	1.0	0.0
's	0.0	0.4	0.4	0.0
China	1.0	0.0	0.0	0.0
of	0.0	0.6	0.0	0.4
develop	ment			
the	0.0	0.0	0.0	1.0

1.0 \times 0 = 0
Absolute Threshold Pruning

zhongguo	de	jingji	fazhan	
economy	0.0	0.0	1.0	0.0
‘s	0.0	0.4	0.4	0.0
China	1.0	0.0	0.0	0.0
of	0.0	0.6	0.0	0.4
development	0.0	0.0	0.0	1.0
the	0.0	0.0	0.0	0.0

Candidate translations of “zhongguo de”:

- of China 0.36
- of China ‘s 0.36
- China ‘s 0.24
- China 0.24

$t=0.3$
Estimating a Lexicon

We need first to learn a lexicon by relative frequencies from the training corpus:

	zhongguo	de	jingji	fazhan
economy	0.0	0.0	1.0	0.0
's	0.0	0.4	0.4	0.0
China	1.0	0.0	0.0	0.0
of	0.0	0.6	0.0	0.4
develop	0.0	0.0	0.0	1.0
the	0.0	0.0	0.0	0.0

- count(zhongguo, China) = 1.0
- count(de, of) = 0.6
- count(de, NULL) = 0.24
- count(NULL, of) = 0.24
Calculating Lexical Weights

	zhongguo	de	jingji	fazhan
economy	0.0	0.0	1.0	0.0
‘s	0.0	0.4	0.4	0.0
China	1.0	0.0	0.0	0.0
of	0.0	0.6	0.0	0.4
development	0.0	0.0	0.0	1.0
the	0.0	0.0	0.0	0.0

the probability that “of” and “de” is aligned

\[(0.6 \times w(\text{of}|\text{de}) + 0.4 \times w(\text{of}|\text{NULL})) \times (1.0 \times w(\text{China}|\text{zhongguo}) + 0 \times w(\text{China}|\text{NULL}))\]

the probability that “China” is not aligned
Setup

- Training set: FBIS (6.9M+8.9M)
- Language model: 4-gram model trained on GIGAWORD Xinhua portion
- Development set: NIST 2002 Chinese-to-English
- Test set: NIST 2005 Chinese-to-English
- Metric: case-insensitive BLEU4
- Decoder: Moses (simple distance-based reordering)
N-best Lists Vs. Weighted Matrices

![Graph showing BLEU score vs. average extracting time (milliseconds/sentence pair) for different n-values.](image)
Comparison of Probability Estimation

method	intersection	complement	all			
	phrases	BLEU	phrases	BLEU	phrases	BLEU
10-best	4.58M	28.35	1.55M	12.32	6.13M	28.47
m(10)	4.58M	28.90	1.76M	13.21	6.34M	29.01
Conclusion and Future Work

- We propose a compact representation of multiple word alignments and show promising results on phrase-based systems.

Future directions

- Direct modeling of weighted matrices
- Algorithms for extracting rules with hierarchical structures
Please protect the Matrix, thanks!