Reexamining the Classification of Theobroma cacao L. Using Molecular Markers

Antonio Figueira¹, Jules Janick², Morris Levy³, and Peter Goldsbrough
Department of Horticulture, West Lafayette, IN 47907-1165

Abstract. Genetic similarities among eight Theobroma and two Herrania species, including 29 genotypes of T. cacao, were estimated by rDNA polymorphism. A phenogram based on these genetic similarities significantly separated two clusters: one cluster included all Herrania and Theobroma species, except T. cacao, while the second contained 28 of 29 T. cacao genotypes. There was no clear distinction between Herrania and Theobroma species. Separation of 29 T. cacao genotypes, representing all races and various origins, had no congruency with the conventional classification into three horticultural races: Criollo, Forastero, and Trinitario. Genetic similarities in T. cacao, estimated with RAPD markers, indicated continuous variation among the generally similar but heterogeneous genotypes. The wild genotypes formed an outgroup distinct from the cultivated genotypes, a distinction supported by the rDNA data. The phenograms constructed from RAPD and rDNA data were not similar within the wild and cultivated cacao subsets.

The genus Theobroma consists of small understory trees of the lowland neotropical rainforest from the Amazon basin through southern Mexico (Purseglove, 1968). Cuatrecasas (1964) recognized 22 species and divided the genus into six sections, based on mode of germination, branching pattern, and flower morphology. Interspecific crosses can produce viable hybrids and certain species are graft compatible (Addison and Tavares, 1951). Most species have a restricted geographical distribution, with the Andes establishing a major separation between species (Baker et al., 1953).

The genus Herrania has a similar geographic distribution, with only one species occurring in Central America and the other 16 limited to South America (Schultes, 1958). Herrania species are morphologically similar to Theobroma, being distinguished by the unbranched orthotropic growth, palmately compound leaves, very long petal laminae, and nonconvoluted cotyledons (Baker et al., 1953). Until the revision of Schultes (1958), Herrania was considered a section of Theobroma (Cuatrecasas, 1964). The chromosome number for both genera is 2n = 20 (Muñoz Ortega, 1948).

Theobroma cacao (cacao) is the only species of major economic importance, because its oil-rich seed is the unique source of cocoa solids and cocoa butter. Cacao was domesticated in pre-Colombian times by Meso-American natives (Bergmann, 1969). Cuatrecasas (1964) postulated that a natural cacao population once extended from the Guyana-Amazon region through southern Mexico and ultimately developed into two forms separated by the Panama isthmus. Cheesman (1944) proposed the headwaters of the Amazon basin region as the center of diversity for cacao. Isozyme studies by Lanaud (1987) have confirmed that populations found in this region exhibit the greatest genetic diversity, and contain the majority of known isozyme alleles.

Various attempts have been made to categorize cacao genotypes into three horticultural races (i.e., Criollo, Forastero, and Trinitario) based on morphological descriptors and geographic origin (Engels, 1981; Enriquez and Soria, 1967). Criollo and Forastero races have distinct historical and commercial features, and have been considered as subspecies (Cuatrecasas, 1964). Domesticated in Meso-America, the Criollo race is characterized by having pods that are red or yellow when ripe, deeply furrowed, warty, and with a pointed end and a thin husk. Criollo seeds are plump with white or pale violet cotyledons, and have superior flavor. Historically, all nonCriollo cacaos were considered to be Forastero, but the latter name is currently used to describe cacao types that have nonpigmented pods, with thick, hard pod husks, and flat, dark purple seeds. Forastero can be subdivided into Upper Amazonian [wild or semi-wild cacaos as described by Pound (1938)] and Lower Amazonian, characterized by a rather uniform pod type called Amelonado (nonpigmented, smooth, melon-shaped pods with a blunt end). Lower Amazonian cacaos now constitute the most prevalent cultivated type worldwide, grown notably in West Africa and Brazil. These types grow wild in the Guianas and the eastern Brazilian Amazon, and may have been partially domesticated by pre-Colombian Amazonian natives for their aromatic pulp (Barrau, 1979). Cacaos with red pods have not been found in the Amazon region, and pod color remains the unique characteristic that discriminates Amazonian and other populations (B.G.D. Bartley, unpublished).

Trinitario is considered to be either an intermediate type between Criollo and Forastero (Lockwood and Gyamfi, 1979) or a group of hybrids that display characteristics that include the total range of variation (Cheesman, 1944). Trinitario types have not been found under wild conditions. Because Criollos and Forastero types are so heterogeneous, the resulting hybrids might not be distinct from the parental populations, making Trinitarios impossible to define except by geographical origin (B.G.D. Bartley, unpublished). Consequently, the race classification system based on pod and seed characters is, at best, imprecise.

Isozyme markers have been used in an attempt to validate the conventional classification, but limited polymorphism does not allow discrimination between cacao types (Lanaud, 1987). The development of molecular genetic markers such as restriction fragment length polymorphisms (RFLPs) and random amplified polymorphic DNAs (RAPDs) has made it possible to evaluate phylogenetic relationships more efficiently (Figueira et al., 1992; Lerceteau et al., 1992; Wilde et al., 1992). The objectives of this study were 1) to use molecular markers to examine phylogenetic relationships among various Theobroma and Herrania species based on RFLPs of ribosomal RNA genes (rDNAs) and 2) to determine if the organization of genetic diver-
sity among a broad geographic sample of *Theobroma cacao* genotypes examined with rDNA polymorphisms and RAPDs was congruent with the traditional separation of *T. cacao* into the horticultural races Criollo, Forastero, and Trinitario.

Materials and Methods

Plant material. Thirty-eight accessions of *Theobroma* and *Herrania*, including 30 genotypes of *T. cacao* representing various populations and origins, were collected at the International Cocoa Germplasm repository, Centro Agronómico Tropical de Investigacion y Ensenanza, Turrialba, Costa Rica. The origin and description of genotypes are given in Tables 1 and 2 and Fig. 1.

DNA extraction method. Young leaves from each accession were brought into the laboratory, washed in distilled water, blotted dry, and frozen in liquid nitrogen. The frozen leaves were kept in dry ice, transported to the United States, and stored at −70°C for up to 6 months. DNA was extracted from frozen leaves using the method described by Figueira et al. (1992). Final DNA concentrations were measured spectrophotometrically.

DNA hybridization experiments. DNA samples (0.5 µg) were digested for 4 h with 20 units of *DraI*, *EcoRV*, *EcoRI*, (Promega Corp., Madison, Wis.), or *BamHI* (New England Biolabs, Beverly, Mass.). The digested DNAs were separated on a 0.7% agarose gel using a voltage gradient of 2 V/cm in TAE buffer (40 mM Tris-base, 5 mM sodium acetate, 1 mM EDTA, pH 7.9). DNA was transferred to a nitrocellulose membrane (Schleicher & Schuell, Keene, N.H.) according to Southern (1975). The hybridization probe was pBG35, a plasmid containing a flax rDNA repeat (Goldsbrough and Cullis, 1981), and was labelled with 32P-dCTP by random priming using a Decaprime kit (Ambion, Austin, Texas). The hybridization conditions were as described by Goldsbrough et al. (1990).

Random amplified polymorphic DNAs. Amplification reactions were performed as described by Williams et al. (1990) with minor modifications. The total reaction volume was 25 µlitters, containing 10 mM Tris-HCl (pH 8.8), 50 mM KCl, 1.5 mM MgCl₂, 0.1% Triton X-100, 100 µM dATP, dCTP, dGTP, dTTP, 0.2 µM primers, 25 ng genomic DNA, and 1.5 units *Taq* DNA polymerase (Promega Corp., Madison, Wis.). The primers used in this study were from Operon (Alameda, Calif.), Kits B and C, with the following sequences: B01, GTTTCGCTCC; B03, CATCCCCCTG; B04, GGACTGGAGT; B05, TGGCGCCCTTC; B07, GGTGACCGAG; B08, GTCCACACGG; B10, CTGCTGGGAC; B11, GTAGACCGCT; B12, CTTTGACGCA; B13, TITCCTCCCGCT; B15, GGGGTTGTTG; B16, TTTGCCCGGA; B17, AGGGAACGAG; B18, CCAACACGT; C02, GTGAAGCGCT; C04, CCACATCTAC; C05, GATGACCGCC; C06, GAACGGACTC; C08, TGGACCGGTG; C09, CCTCACCGTCC; and C13, AAGCCTCGTC. Amplification was conducted in a Cetus DNA thermalcycler (Perkin-Elmer, Norwalk, Conn.) for 45 cycles of 1 min at 94°C, 1 min at 37°C, and 1 min at 72°C, followed by a final incubation at 72°C for 7 min, using the most rapid transition time between temperatures. Products were analyzed on 1.4% agarose gels run at 6.4 V/cm in TAE buffer.

Statistical analysis. Ribosomal DNA restriction fragments and RAPD products were scored visually for presence or absence. Variation among genotypes was evaluated from pairwise comparisons of the proportion of shared fragments among samples, i.e., two times the number of shared fragments divided by the total number of fragments. This method was equivalent to calculating

Genus	Section	Species	Races	Genotypes
Herrania		*H. albiflora* Goudot	Central American	BS 2; MEX 2; R 48; R 52; SGU 3
Theobroma	Andropetalum	*T. mammosum* Cuatr. & León	South American	SC 5
	Glossopetalum	*T. simiarum* Dann. Smith		
		T. angustifolium Mocino & Sessé	Forastero	Amazonian
		T. grandiflorum (Willd. & Spreng.) Schum.	Upper	APA 4; CSUL 7;
	Oreanthes	---		IMC 67; PA 121;
	Rhytidocarpus	*T. bicolor* Humb. & Bonpl.		P 7; RB 29; SCA 6
	Telmatocarpus	*T. microcarpum* Mart.	Lower	BE 4; MA 13; SIAL 70;
	Theobroma	*T. cacao* L.		SIAL 325; SIC 6

1Species unknown, based on identification label of CATIE, Turrialba, Costa Rica.
2Horticultural classification based on Cheesman (1944) and Toxopeus (1987). Used in RAPD analysis only.
Results

\textit{rDNA RFLP analysis.} DNA from each of 29 \textit{Theobroma cacao} genotypes, seven related \textit{Theobroma} species, and two \textit{Herrania} species was digested with four restriction enzymes (\textit{EcoRV}, \textit{EcoRI}, \textit{DraI}, and \textit{BamHI}). Hybridization with a flax rDNA probe produced a total of 46 fragments. In \textit{EcoRV} digests, the length of the hybridized fragment ranged from 10.6 to 12.3 Kb for \textit{T. cacao} and 11.5 to 13.5 Kb in the related species (Table 3). These fragments probably represented the full length rDNA repeat (Jorgensen and Cluster, 1988). A \textit{DraI} fragment of 5.0 Kb hybridized in all \textit{cacao} genotypes (Fig. 2). In some genotypes, this was the only fragment that hybridized, and therefore \textit{DraI} must digest the rDNA repeat of \(=10\) Kb to produce two fragments of similar size. Smaller \textit{DraI} fragments of between 3.5 and 4.2 Kb were detected in genotypes that also contained smaller rDNA repeats. \textit{BamHI} digests revealed additional small variations in the size of the rDNA repeat, not detected with \textit{DraI} and \textit{EcoRV} (Table 3).

Overall, five size classes of rDNA repeat (\textit{EcoRV} fragments of 12.3 Kb = A; 11.6 Kb = B; 11.0 Kb = C; 10.6 Kb = D; 10.5 Kb = E) were identified in \textit{T. cacao}. The estimated rDNA repeat length should be the same for all restriction enzymes used for any genotype. The discrepancy in sizes resulted from either failure to detect small fragments or error in estimating the size of the restriction fragments. The largest rDNA repeat (A) was the predominant class size in \textit{T. cacao}, and was present in all but one genotype (BE 4). There were variants of this major repeat, which might represent a small insertion (RB 29) or deletion (IMC 67, BS 52).

\begin{table}[h]
\centering
\caption{Brief description of cacao clones (End, 1991; Engels, 1981; Enriquez and Soria, 1967; Lockwood and Gyamfi, 1979; Pound, 1938, 1943; Soria, 1970).}
\begin{tabular}{|l|l|l|l|l|}
\hline
\textbf{Genotype} & \textbf{Place of origin} & \textbf{Pedigree} & \textbf{Color} & \\
\hline
APA 4 & Guaviare river, Colombia & Origin uncertain & Green & Purple \\
BE 4 & Belem, Amazon, Brazil & Budwood, semi-wild plantings, unknown origin & Green & Purple \\
BS 2 & Buenos Aires, Honduras & Origin uncertain & Green & White \\
Catongo & Uruucua, Bahia, Brazil & Seedling from albino mutant from Bahia, Brazil & Green & White \\
CC 71 & Turrialba, Costa Rica & Selection from Criollo x Amazonian Matina population & Green & Purple \\
CSUL 1 & Jurua River, Acre, Brazil & Seedling from wild trees & Green & Purple \\
DR 1 & Djati Roengo, Indonesia & Selection from Java Criollo with Forastero & Red & White \\
EET 59 & Los Rios, Ecuador & “Nacional” selection from farm at San Javier & Green & Purple \\
EET 62 & Los Rios, Ecuador & Selection from Trinitario x “Nacional” at Porvenir & Green & Purple \\
ICS 29 & River State, Trinidad & Selection from Trinitarios with Nicaraguan Criollo & Green & NA \\
ICS 39 & River State, Trinidad & Selection from Trinitarios with Nicaraguan Criollo & Green & Purple \\
ICS 135 & Trinidad & Selection from progeny of ICS 6 (Trinitario) x SCA 6 & Green & Purple \\
IMC 67 & Iquitos, Peru & Selection from wild tree & Green & Purple \\
MA 13 & Manaus, Amazon, Brazil & Budwood, semi-wild variable planting, unknown origin & Green & Purple \\
MEX 2 & West Coast of Mexico & Unknown, but probably Forastero collected at Izapas & NA & NA \\
PA 121 & Parinari, Peru & Seedling collected at Maraõn river, above Parinari & Green & Purple \\
P 7 & Iquitos, Peru & Budwood from tree probably from Nanay river & Green & Purple \\
R 48 & Chiapas, Mexico & Selection on Criollo population & Green/red & White \\
R 52 & Chiapas, Mexico & Selection on Criollo population & Green & NA \\
RB 29 & Rio Branco, Acre, Brazil & Budwood from wild trees & Green & Purple \\
SC 5 & Palmitra, Colombia & Origin uncertain & Red & White \\
SCA 6 & Contamana, Peru & Seedling from wild tree at Ucayali river & Green & Purple \\
SGU 3 & Brilantes, Guatemala & Selection from Matina (Amazon) x Criollo & Green & Purple \\
SIAL 70 & Jussari, Bahia, Brazil & Selection on cultivated cacao & Green & Purple \\
SIAL 325 & Bueraurema, Bahia, Brazil & Selection on cultivated cacao & Green & Purple \\
SIC 6 & Uruucua, Bahia, Brazil & Selection on cultivated cacao & Green & Purple \\
SNK 12 & N’Koenvobe, Cameroon & Selection from African Trinitarios population & Red & Purple \\
TSH 792 & Trinidad & Selection OP progeny of TSA 644 (SCA 6 x IMC 67) & Red & Purple \\
UF 296 & Limon, Costa Rica & Selection from Trinitarios and “Nacional” population & Red & Purple \\
UF 613 & Limon, Costa Rica & Selection from Trinitarios and “Nacional” population & Red & Purple \\
\hline
\end{tabular}
\end{table}

4Information not available to authors.
The second cluster, which included only \textit{T. cacao} genotypes, is a generally homogeneous group with several genotypes with no statistical differences. Extensive confidence interval overlap in this cluster indicated no meaningful further subdivision.

\textbf{RAPD analysis.} To further analyze the organization of genetic diversity in \textit{Theobroma cacao}, DNA polymorphisms were identified with RAPDs. From the original 33 primers tested (primers B1 through B20 and C1 through C13 from Operon), 23 produced reproducible amplified DNA fragments and were used in this study. A total of 128 fragments were scored for presence or absence. With the 30 genotypes the primers produced an average of 5.7 \pm 0.5 fragments per genotype ranging from 1 (primer B05) to 11 (primer B07) fragments. Of the 128 fragments scored, \approx 80\% were polymorphic.

Genetic similarity of \textit{Theobroma} and \textit{Herrania} based on RAPD RFLPs. The average similarity among all \textit{Theobroma} and \textit{Herrania} species was 68\%, ranging from 25\% to 100\%. Considering only \textit{T. cacao}, similarity averaged 88\%, ranging from 61\% to 100\%. The average similarity between \textit{Herrania} and \textit{T. cacao} was 39\%, less than the 60\% between \textit{Herrania} and all the other \textit{Theobroma} species (Table 4). The average similarity between \textit{T. cacao} and the other \textit{Theobroma} species was 46\%, ranging from 34\% (\textit{T. bicolor}) to 53\% (\textit{T. mammosum}).

Bootstrap analysis divided the phenogram into two significantly different clusters. One cluster included all \textit{Herrania} and all \textit{Theobroma} species except \textit{T. cacao}, and a second cluster included all \textit{T. cacao} genotypes, except RB 29 (Fig. 3). In the \textit{Theobroma-Herrania} cluster, \textit{T. mammosum} and \textit{T. subincanum} were not different from each other; all other species were significantly different. The extensive 95\% confidence interval overlap in this cluster indicated that further statistical separation among this heterogeneous group of species was not possible. It is noteworthy that no clear distinction was observed between \textit{Theobroma} and \textit{Herrania}. There is a superficial subdivision in the \textit{Theobroma-Herrania} cluster (Fig. 3). Subset 1 includes \textit{T. bicolor} (section \textit{Rhytidocarpus}), \textit{T. microcarpum} (section \textit{Telmatocarpus}), and \textit{H. colombia}. The second subset contains \textit{T. mammosum} (section \textit{Andropetalum}), \textit{T. subincanum}, \textit{T. grandiflorum}, \textit{T. angustifolium}, and \textit{T. simiarum} (section \textit{Glossopetalum}), and the \textit{T. cacao} genotype RB 29 and \textit{H. albiflora}.

The second cluster, which included only \textit{T. cacao} genotypes, is a generally homogeneous group with several genotypes with no statistical differences. Extensive confidence interval overlap in this cluster indicated no meaningful further subdivision.

\textbf{RAPD analysis.} To further analyze the organization of genetic diversity in \textit{Theobroma cacao}, DNA polymorphisms were identified with RAPDs. From the original 33 primers tested (primers B1 through B20 and C1 through C13 from Operon), 23 produced reproducible amplified DNA fragments and were used in this study. A total of 128 fragments were scored for presence or absence. With the 30 genotypes the primers produced an average of 5.7 \pm 0.5 fragments per genotype ranging from 1 (primer B05) to 11 (primer B07) fragments. Of the 128 fragments scored, \approx 80\% were polymorphic.

Genetic similarity in \textit{Theobroma cacao} based on RAPD. The average similarity among all the cacao samples is 81\%, ranging from 61\% to 96\%. All genotypes analyzed in the present study were significantly different from each other (Fig. 4). The bootstrap analysis indicated essentially continuous variation among the generally similar but heterogeneous genotypes (Fig. 4). In the continuum, a few genotypes could be statistically separated in terms of degrees of similarity. For example, SNK 12 and DR 1 were significantly more similar to one another than to any other genotype, except for R 52. The most meaningful separation revealed by bootstrap analysis was between a subset of the Upper Amazonian genotypes (CSUL 7, SCA 6, RB 29, P 7, and IMC 67), which differ either marginally ($P < 0.10$) or significantly ($P < 0.05$) from all others examined, apart from PA 121, SGU 3, and BE 4. The variability found in this subset, containing genotypes collected in the wild, was significantly higher than among most other...
The phenogram constructed from RAPD data was arbitrarily subdivided into six subsets. Each subset groups together some genotypes consistent with the conventional classification of cacao (Fig. 4). Subset A includes all but one of the Upper Amazonian genotypes examined. PA 121, a genotype normally considered Upper Amazonian, is not present in subset A. Conversely, BE 4 and SGU 3, genotypes not typically considered to be of Upper Amazonian origin, are included. The great genetic diversity of subset A supports the hypothesis that the center of origin of cacao is located in the headwaters of the Amazon basin. Subset B also includes genotypes of diverse origin, primarily those believed to be of Ecuadorian and/or Trinitario background, e.g., UF 296 and EET 59. MEX 2 has an unknown origin and BS 2 may have some Criollo background. Subset C includes most of the genotypes considered to be Trinitarios, except for UF 296 and the hybrid TSH 792. Subset D is comprised mainly of genotypes considered to be Criollo (R 52, DR 1, ICS 29, and R 48) and/or red podded genotypes (SNK 12, DR 1, ICS 29, and R 48). However, another Criollo (BS 2) and other genotypes with red pods (UF 296, TSH 792, UF 613, and SC 5) are placed in other subsets. Subset E contains the Lower Amazonian Forastero selections from naturalized populations occurring in Bahia, Brazil. The origin of APA 4 is uncertain. Subset F contains genotypes with no obvious relationships.

Discussion

Considerable DNA sequence diversity could be detected in the ribosomal RNA genes of *Theobroma cacao* and related species. At least five classes of rDNA repeat length variants were detected in cacao. The two largest rDNA repeat variants (Table 3) were present in 96% and 52% of the cacao genotypes tested. Other rDNA length variants were detected in cacao genotypes that originated in the Upper Amazon region (PA 121, P 7, and SCA 6). Laurent et al. (1993) evaluated 192 cacao genotypes and observed 15 rDNA repeat variants, but only two rDNA repeats accounted for 80% of the genotypes analyzed.

The analysis of only one genotype for each of the cacao-related species limited the phylogenetic assessments of species in genera. However, the genetic similarity observed between *Herrania* and *T. cacao* (39%) was only slightly less than between *T. cacao* and the other *Theobroma* species (46%) (Table 4). Additionally, the genetic similarity between *Herrania* species and *Theobroma* species (60%) was higher than between the two *Herrania* species (54%). These results suggest that *Herrania* and *Theobroma* may not be distinct genera. This conclusion is supported by the compatibility and seed viability found in crosses between *Herrania* species and *Theobroma*, including *T. cacao* (Addison and Tavares, 1951). However, further molecular investigations using more genotypes from *Herrania* and *Theobroma* species are required before proposing a formal systematic reorganization.

The subdivision of *Theobroma* into sections based on morphological characters was loosely supported by rDNA polymorphisms. In the present study the *Theobroma-Herrania* cluster was subdivided into two arbitrary subsets. Subset 2 (Fig. 3) contained all genotypes from the section Glossopetalum and Andropetalum, considered to be the most primitive sections in *Theobroma* (Cuatrecasas, 1964). The section Andropetalum (*T. mammosum*) was initially considered to be in Glossopetalum by Bernoulli in 1869, but was separated by Cuatrecasas (1964). *Theobroma an-
This section separated into a distinct rDNA cluster in the present study. There was no clear relationship between the separation of genotypes of *T. cacao* based on rDNA polymorphism and the conventional classification of the species into three major “horticultural races” (Criollo, Forastero, and Trinitario). Laurent et al. (1993) identified a number of rDNA polymorphisms in *T. cacao*. While some rDNA units were associated predominantly with either Criollo or Forastero types, there was significant overlap and rDNA genotype could not be used as a sole criterion for classification. The level of genetic similarity in *T. cacao* based on rDNA polymorphism (88%, ranging from 61% to 100%) was similar to levels obtained using RAPD markers (81%, ranging from 61% to 96%). However, the phenograms constructed from the rDNA and RAPD data are not similar. This discrepancy may reflect the nature of the DNA sequences examined. The rRNA genes are present in tandem repeats localized at a small number of sites in the genome (Jorgensen and Cluster, 1988; Polans et al., 1986). In contrast, the DNA sequences that give rise to RAPD markers are considered to be distributed throughout the genome (Williams et al., 1993), and may provide a more representative view of differences between genomes.

Classification of cacao types based on 39 morphological descriptors (Engels, 1986) also failed to separate genotypes into the conventional horticultural races. Isozyme polymorphisms were similarly unable to distinguish between various cacao populations (Lanaud, 1987). In the isozyme analysis, Upper Amazonian Forastero genotypes expressed the entire range of variation, and there was overlap between Lower Amazonian Forasteros, Criollos, and Trinitarios. The RAPD data presented here indicate that the conventional classification has a superficial rationale. However, statistical analysis indicates that there is no rigorous distinction among the so-called Criollo, Forastero, and Trinitario genotypes. Lerceteau et al. (1992) also concluded that no well-defined associations of cacao groups could be obtained using RAPD markers. Recently, Wilde et al. (1992) concluded that *Theobroma cacao* clones (actually open-pollinated seedlings) could be classified reliably into the traditional *Theobroma* groups (races) using RAPD markers. However, no statistical analysis of genetic distance data was presented in support of their conclusion. A phenogram constructed from their data does not confirm their conclusions, because no clear separation of cacao groups is apparent (Fig. 5). Further analysis of a collection of Forastero types collected from three distinct regions indicates that RAPD polymorphisms can be useful in distinguishing between cacao genotypes (Russell et al., 1993).

Table 4. Average genetic similarity among *Theobroma* and *Herrania* species.

Spp.	*H. albilflora*	*H. sp.* (Colombia)	*T. bicolor*	*T. microcarpum*	*T. simiarum*	*T. angustifolium*	*T. grandiflorum*	*T. subincanum*	*T. mammosum*
Herrania sp.	54	100							
Theobroma									
bicolor	42	67	100						
microcarpum	71	63	77	100					
simiarum	56	48	36	50	100				
angustifolium	70	60	44	67	52	100			
grandiflorum	61	61	50	71	64	76	100		
subincanum	64	64	42	59	75	70	87	100	
mammosum	64	54	38	63	72	67	78	95	100
cacao	34	46	34	45	44	46	49	51	53

Fig. 2. Detection of rDNA sequences in *Theobroma* and *Herrania* DNA digested with *Dra*I and hybridized with flax rDNA repeat. The positions of DNA size standards are shown on the left.
Lack of distinction between the conventional groupings of cacao based on molecular markers indicates that the classification proposed by Cheesman (1944) is inappropriate. The existence of a real Criollo group is arguable. Cheesman (1944) thought that Criollos were already rare, and Mora (1958) recognized that Criollos, once cultivated in Costa Rica, Nicaragua, and Mexico, had been either extinguished or hybridized with Amazonian introductions. Cuatrecasas (1964) considered Criollo and Forastero to be subspecies; Criollo was designated *Theobroma cacao* ssp. *cacao*, and subdivided into four botanic forms, while Forastero was designated *T. cacao* ssp. *sphaerocarpum*. However, traditional taxonomy tends to overclassify cultivated species (Harlan, 1992). Large morphological alterations may occur in the organs most valued by humans without any substantial change in the genetic background. Harlan and de Wit (1971) have proposed an informal classification for cultivated crops, where the principal separation is between cultivated and wild or spontaneous groups. This is the only separation supported by the rDNA and RAPD analyses for *T. cacao* (Table 5). Two arbitrary subsets were identified in the *T. cacao* cluster by rDNA polymorphism. Subset 1 included 13 of the 15 cultivated cacaos, which contained the B rDNA repeat unit (AB, ABC, and B), while subset 2 included 7 of 13 wild cacaos, which lacked the B repeat (A, AC, AD, and AE).

Similarly, subset A identified by RAPD polymorphism contained only noncultivated cacaos.

On the basis of our data, we conclude that the traditional horticultural races cannot be defined by molecular markers. However, on the basis of geographic origin and morphology, cultivated cacaos can be conveniently subdivided into Amazonian and Circumcaribbean “races” (Table 5) as proposed by B.G.D. Bartley (unpublished). The cultivated Amazonian cacaos are exclusively green-podded, typically with purple cotyledons, while the Circumcaribbean cacaos are often red-podded, with white to pale violet cotyledons. Further subdivisions in each race depend on geographical and commercial history. For example, the cultivated Amazonian “races” can be conveniently subdivided into “Cacao Comum da Bahia” from Brazil, “Cacao Nacional” from Ecuador, and “amelonado” from West Africa. Similarly, in the Circumcaribbean cultivated cacaos, there are “Trinitarios” from Trinidad, Central America, Cameroon, Java, and the Philippines. The subgroup of wild or spontaneous cacaos from the Upper Amazon can be also subdivided into various populations, according to location of collection. Unfortunately, a complete and rational analysis of wild populations of *T. cacao* may be preempted by the destruction of natural flora in the Amazon, caused by the encroachment of colonization.

Fig. 3. Phenogram generated using UPGMA clustering, demonstrating relationships among *Theobroma* and *Herrania* genotypes based on rDNA polymorphisms. Error bars denote 95% confidence interval of branch point based on bootstrap analysis.
Average Similarity (%)

Fig. 4. Cacao phenogram generated using UPGMA clustering demonstrating the relationships among genotypes based on RAPD analysis. Error bars denote 95% confidence interval of branch point based on bootstrap analysis.

Literature Cited

Addison, G.O. and R.M. Tavares. 1951. Observações sobre as espécies do gênero Theobroma que ocorrem na Amazônia. Bol. Téc. Inst. Agronomico Norte 25:3–20.

Baker, R.E.D., F.W. Cope, P.C. Holliday, B.G. Bartley, and J. Taylor. 1953. The Anglo-Colombian cacao collecting expedition. In: H. Toxopeus (ed.). Reprint archives cocoa research. vol. 1. Amer. Cocoa Res. Inst. Barrau, J. 1979. Sur l’origine du cacaoyer, Theobroma cacao Linne, Sterculiáceas. J. d’Agr. Trad. Bot. Applied 26(3–4):171–180.

Bergmann, J.F. 1969. The distribution of cacao cultivation in pre-columbian America. Ann. Assn. Amer. Geographer 59:85–96.

Cheesman, E.E. 1944. Notes on nomenclature, classification and possible relationships of cacao populations. Trop. Agr. 21(8):144–159.

Cuatrecasas, J. 1964. Cacao and its allies. A taxonomic revision on the genus Theobroma. Cont. Natl. Herb (USA) 35(6):379–614.

Efron, B. and G. Gong. 1983. A leisurely look at the bootstrap, the jackknife, and crossvalidation. Amer. Stat. 37:36–48.

End, M. 1991. The international cocoa germplasm database. Software. Dept. Botany and Horticulure, Univ. Reading, U.K.

Engels, J.M.M. 1981. Genetic resources of cacao: A catalogue of the CATIE collection. Tech. Bul. 7. Turrialba, Costa Rica.

Engels, J.M.M. 1986. The systematic description of cacao clones and its significance for taxonomy and plant breeding. PhD diss., Agr. Univ., Wageningen, The Netherlands.

Enríquez, G.A. and J.V. Soria. 1967. Cacao cultivars register. IICA, Turrialba, Costa Rica.

Figueira, A., J. Janick, and P.B. Goldsbrough. 1992. Genome size and DNA polymorphism in Theobroma cacao. J. Amer. Soc. Hort. Sci. 117:673–677.

Goldsbrough, P.B. and C.A. Cullis. 1981. Characterization of the genes for ribosomal RNA in flax. Nucleic Acids Res. 9:1301–1309.

Goldsbrough, P.B., E.M. Hatch, B. Huang, W.G. Kosinski, W.E. Dyer, K.M. Herrmann, and S.C. Weller. 1990. Gene amplification in glyphosate tolerant tobacco cells. Plant Sci. 72:53–62.

Harlan, J.R. 1992. Crops and man. Amer. Soc. Agron. and Crop Sci. Soc. Amer., Madison, Wis.

Harlan, J.R. and J.M.J. de Wit. 1971. Toward a rational classification of cultivated plants. Taxon 20:509–517.

Jorgensen, R.A. and P.D. Cluster. 1988. Modes and tempos in the evolution of nuclear ribosomal DNA: new characters for evolutionary studies and new markers for genetic and population studies. Ann.
Fig. 5. Phenogram generated based on Nei’s estimate of similarity data presented by Wilde et al. (1992). F = Forastero; C = Criollo; T = Trinitario.

Table 5. Proposed classification of *Theobroma cacao*.

Group	Genotypes evaluated
Cultivated cacaos	
Amazonian	
Brazilian (comum da Bahia, amelonado)	SIAL 70; SIAL 325; SIC 6; Catongo
Costa Rican (Matina)	
Ecuadorian (Nacional)	EET 59; EET 62
Suriname amelonado	
West African amelonado	
Unknown	MA 13; APA 4
Circumcaribbean	
Trinidad (Trinitario)	ICS 29; ICS 39; ICS 135; TSH 792
Costa Rican (Trinitario)	
Mexican (Trinitario)	CC 71; UF 296; UF 613
Cameroon (African Trinitario)	
Indonesian (Java Criollo)	SNK 12
Wild cacaos	
Colombian	
Ecuadorian	
Peruvian	
Iquitos	IMC 67
Nanays	P 7
Ucayali	SCA 6
Parinari	PA 121
Brazilian	
Acre	CSUL 7; RB 29
variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. (USA) 76:5269–5273.
Nei, M., J. Stephens, and N. Saitou. 1985. Methods for computing the standard errors of branching points in an evolutionary tree and their application to molecular data from humans and apes. Mol. Biol. Evolution 2:66–85.
Polans, N.O., N.F. Weeden, and W.F. Thompson. 1986. Distribution, inheritance and linkage relationships of ribosomal DNA spacer length variants in pea. Theoretical Applied Genet. 72:289–295.
Pound, F.J. 1938. Cacao and witchbroom disease in South America. In: H. Toxopeus (ed.). Reprint archives cocoa research. vol. 1. Amer. Cocoa Res. Inst.
Pound, F.J. 1943. Cacao and witches’ broom disease (*Marasmius pernicious*). In: H. Toxopeus (ed.). Reprint archives cocoa research. vol. 1. Amer. Cocoa Res. Inst.
Purseglove, J.W. 1968. Tropical crops, Dicotyledons 2. Wiley, New York.
Russell, J.R., F. Hosein, E. Johnson, R. Waugh, and W. Powell. 1993. Genetic differentiation of cacao (*Theobroma cacao* L.) populations revealed by RAPD analysis. Mol. Ecol. 2:89–97.
Schultes, R.E. 1958. A synopsis of the genus *Herrania*. J. Arnold Arboretum 39:216–278.
Soria, J.V. 1970. The latest cocoa expeditions to the Amazon basin. Cacao 15:5–15.
Southern, E.M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98:503–517.
Toxopeus, H. 1987. Botany, types and populations, p. 11–37. In: G.A.R. Wood and R.A. Lass (eds.). Cocoa. Longman, London.
Wilde, J., R. Waugh, and W. Powell. 1992. Genetic fingerprinting of *Theobroma* clones using randomly amplified polymorphic DNA markers. Theoretical Applied Genet. 83:871–877.
Williams, J.G.K., A.R. Kubelik, K.J. Livak, J.A. Rafalski, and S.V. Tingey. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18:6531–6535.
Williams, J.G.K., J.A. Rafalski, and S.V. Tingey. 1992. Genetic analysis using RAPD markers. Meth. Enzymol. 218:704–740.