Graded Holonomic D-modules on Monomial Curves

Eivind Eriksen

September 22, 2018

Abstract In this paper, we study the holonomic D-modules when D is the ring of k-linear differential operators on $A = k[\Gamma]$, the coordinate ring of an affine monomial curve over the complex numbers $k = \mathbb{C}$. In particular, we consider the graded case, and classify the simple graded D-modules and compute their extensions. The classification over the first Weyl algebra $D = A_1(k)$ is obtained as a special case.

Keywords Rings of differential operators · D-modules · Representation theory

Mathematics Subject Classification (2000) 13N10 · 14F10

Introduction

Let $\Gamma \subseteq \mathbb{N}_0$ be a numerical semigroup, generated by positive integers a_1, \ldots, a_r without common factors, such that $H = \mathbb{N}_0 \setminus \Gamma$ is a finite set. We consider its semigroup algebra $A = k[\Gamma]$ over the field $k = \mathbb{C}$ of complex numbers. Since $X = \text{Spec}(A)$ is the affine monomial curve $X = \{(t^{a_1}, t^{a_2}, \ldots, t^{a_r}) : t \in k\} \subseteq \mathbb{A}^r_k$, we call A a monomial curve.

We described the ring $D = \text{Diff}(A)$ of differential operators on a monomial curve $A = k[\Gamma]$ in Eriksen [8], using the graded structure. For any degree w, there is a homogeneous differential operator P_w of minimal order in D_w, given by

$$P_w = t^w \prod_{\gamma \in \Omega(w)} (E - \gamma)$$

where $E = t\partial$ is the Euler derivation, and $\Omega(w) = \{\gamma \in \Gamma : \gamma + w \notin \Gamma\}$. Moreover, E together with $\{P_w : |w| \in \{a_1, \ldots, a_r\} \text{ or } |w| \in H\}$ is a set of homogeneous generators for D, and $D_w = P_w \cdot k[E]$. We also showed that the associated graded ring $\text{gr} D$ is the finitely generated semigroup algebra $\text{gr} D = k[\Gamma'] \subseteq k[t, \xi]$, with

$$\Gamma' = \{(m, n) \in \mathbb{N}_0^2 : n \geq \sigma(m - n)\} \subseteq \mathbb{N}_0^2$$

BI Norwegian Business School, Department of Economics, N-0442 Oslo, Norway
E-mail: eivind.eriksen@bi.no
where we write $\sigma(w)$ for the cardinality of $\Omega(w)$, which satisfies $\sigma(w) = d(P_w)$.

In this paper, we use these results to study the holonomic D-modules on a monomial curve. Note that $\text{gr} D$ is a positively graded k-algebra via the Bernstein filtration, but it is not generated by homogeneous elements of degree one. We use the results of Shukla [11] to prove that for any good filtration of M, there is a period $m \geq 1$ and polynomials $P_0, \ldots, P_{m-1} \in \mathbb{Q}[t]$ such that $\dim_k (M_{nm+r}) = P_r(n)$ for $0 \leq r < m$ and for all sufficiently large integers n. Moreover, the polynomials

$$P_r(t) = \frac{e}{dt} t^d + \text{terms of lower degree}$$

all have the same leading term. We define $d(M) = d$ and $e(M) = e$ to be the dimension and multiplicity of M, and prove the Bernstein inequality $d(M) \geq 1$.

We define a D-module to be holonomic if $d(M) = 1$, and use the properties of dimension and multiplicity to study holonomic D-modules, generalizing the standard results; see Coutinho [2]. In particular, we show that a D-module is holonomic if and only if it has finite length; this means that we can study the length category of holonomic D-modules via its simple modules and their extensions. The simplest example of a monomial curve is $A = k[t]$, with the first Weyl algebra $D = A_1(k)$ as its ring of differential operators. The simple modules over the first Weyl algebra were classified in Block [1], and form a very large set. We therefore restrict our attention to the graded case.

The simple graded modules over the graded ring D are the simple objects in the length category grHol_D of graded holonomic D-modules. We classify the simple graded D-modules, up to graded isomorphisms and twists:

Theorem If $A = k[t]$ is a monomial curve, then the simple graded left modules over the ring D of differential operators on A, up to graded isomorphisms and twists, are

$$\{M_0\} \cup \{M_\alpha : \alpha \in J^*\} \cup \{M_\infty\}$$

where $J^* = \{\alpha \in k : 0 \leq \text{Re}(\alpha) < 1, \alpha \neq 0\}$. Moreover, we have that $M_0 = A$ and that $M_\alpha = D/D \cdot (E - \alpha)$ for all $\alpha \in J^*$.

Any ring of differential operators on a monomial curve is Morita equivalent to the first Weyl algebra $A_1(k)$, which is itself the ring of differential operators on the monomial curve $A = k[t]$. We obtain the following special case:

Corollary The simple graded left modules over the first Weyl algebra $D = A_1(k)$, up to graded isomorphisms and twists, are given by $M_0 = D/D\partial$, $M_\infty = D/Dt$, and $M_\alpha = D/D(D - \alpha)$ for all $\alpha \in J^*$.

The Krull-Schmidt Theorem holds in grHol_D since it is a length category. In Eriksen [9], we describe a constructive method for finding the indecomposable objects in grHol_D when the simple objects and their extensions are given. We have therefore computed the extensions of the simple graded D-modules:

Proposition If D is the ring of differential operators on a monomial curve, then the extensions of M_β by M_α in grHol_D are given by

$$\text{Ext}^1_D(M_\alpha, M_\beta) = \begin{cases} k^\times \cong k, & (\alpha, \beta) = (0, \infty), (\infty, 0) \\ k^\times \cong k, & \alpha = \beta \in J^* \\ 0, & \text{otherwise} \end{cases}$$

for all simple graded D-modules M_α, M_β with $\alpha, \beta \in J^* \cup \{0, \infty\}$.
For example, when \(D = A_1(k) \) is the first Weyl algebra, the proposition shows that \(\text{Ext}^1_{D_1}(M_{\infty}, M_0)_0 = k\xi \cong k \) for a non-split graded extension \(\xi \). We represent \(\xi \) by the graded extension

\[
0 \to D_t/D\partial t \to D/D\partial t \to D/Dt \to 0
\]

where \(D/Dt = M_{\infty} \) and \(D/D\partial t \cong M_0[-1] \). Hence \(M = D/D\partial t \) is the unique indecomposable graded holonomic \(D \)-module of length two with composition series \(M \supseteq M_0[-1] \supseteq 0 \) and simple factors \(M_{\infty} \) and \(M_0[-1] \).

It turns out that this example can be generalized. In fact, we use the results of this paper to classify all graded holonomic \(D \)-modules in Eriksen [4], where we prove the following result:

Theorem Let \(D = A_1(k) \) be the first Weyl algebra. The indecomposable \(D \)-modules in \(\text{grHol}_D \) are, up to graded isomorphisms and twists, given by

\[
M(\alpha, n) = D/D (E - \alpha)^n, \quad M(\beta, n) = D/D w(\beta, n)
\]

where \(n \geq 1, \alpha \in J^* = \{ \alpha \in k : 0 \leq \text{Re}(\alpha) < 1, \alpha \neq 0 \}, \beta \in \{0, \infty\}, \) and \(w(\beta, n) \) is the alternating word on \(n \) letters in \(t \) and \(\partial \), ending with \(\partial \) if \(\beta = 0 \), and ending in \(t \) if \(\beta = \infty \).

We remark that the assumption that \(k = \mathbb{C} \) is one of convenience; the results would hold over any algebraically closed field \(k \) of characteristic 0, and the methods would be applicable if \(k \) is any field of characteristic 0.

1 Differential operators on affine monomial curves

Let \(\Gamma \subseteq \mathbb{N}_0 \) be a numerical semigroup, and let \(\{a_1, a_2, \ldots, a_r\} \) be a minimal set of generators of \(\Gamma \). Without loss of generality, we may assume that these generators are without common factors, such that \(H = \mathbb{N}_0 \setminus \Gamma \) is a finite set. We consider the semigroup algebra \(A = k[\Gamma] \cong k[t^{a_1}, t^{a_2}, \ldots, t^{a_r}] \subseteq k[t] \) over the field \(k = \mathbb{C} \) of complex numbers, and the algebra \(D = \text{Diff}(A) \) of \(k \)-linear differential operators on \(A \). Notice that \(A = k[\Gamma] \) is the coordinate ring of an affine monomial curve \(X \subseteq \mathbb{A}^r \). By abuse of language, we shall call \(A = k[\Gamma] \) a monomial curve.

We notice that \(A = k[\Gamma] \) is a positively graded ring. Let \(S = \{t^n : n \in \Gamma\} \subseteq A \) be the multiplicatively closed subset consisting of the homogeneous elements in \(A \), and consider the graded localization \(A \subseteq S^{-1}A = k[t, t^{-1}] = T \). By general localization results for rings of differential operators, there is a localization

\[
D = \text{Diff}(A) \to S^{-1}D = S^{-1}A \otimes_A D = k[t, t^{-1}] \otimes_A D = \text{Diff}(T)
\]

and we may identify \(D \) with the subring \(\{P \in \text{Diff}(T) : P(A) \subseteq A \} \subseteq \text{Diff}(T) \); see for instance Smith, Stafford [12].

Let us write \(B = k[t] \) for the normalization of \(A \), and \(\text{Diff}(B) \) for its algebra of \(k \)-linear differential operators. We remark that \(B \) is itself the coordinate ring of an affine monomial curve, the affine line \(\mathbb{A}^1 \), and that \(\text{Diff}(B) = A_1(k) = k[t, \partial] \) is the first Weyl algebra, generated by \(t \) and \(\partial = d/dt \) and with relation \([\partial, t] = 1 \). In particular, it follows that

\[
\text{Diff}(T) \cong k[t, t^{-1}] \otimes_{k[t]} A_1(k) \cong k[t, t^{-1}]/(\partial)
\]
There is a grading on \(\text{Diff}(T) \) induced by the grading on \(T \), such that \(P \in \text{Diff}(T) \) is homogeneous of degree \(w \) if and only if \(P(T_i) \subseteq T_{i+w} \) for all integers \(i \). In concrete terms, \(t^n \partial^m \in \text{Diff}(T) \) is homogeneous of degree \(n-m \). Moreover, \(D = \text{Diff}(A) \) is the graded subalgebra

\[
D = \{ P \in \text{Diff}(T) : P(A) \subseteq A \} \subseteq k[t, t^{-1}][\partial]
\]

We write \(D = \bigoplus_w D_w \), where \(D_w \) is the linear subspace of differential operators of degree \(w \).

Based on these results, we gave an explicit description of the algebra \(D \) of differential operators on an affine monomial curve in Eriksen [8]: For any degree \(w \in \mathbb{Z} \), we have that \(D_w = P_w \cdot k[E] \), where \(E = t \partial \) is the Euler derivation of degree zero, and \(P_w \) is the homogeneous differential operator of degree \(w \) given by

\[
P_w = t^w \prod_{\gamma \in D(w)} (E - \gamma)
\]

determined by the set \(D(w) = \{ \gamma \in \Gamma : \gamma + w \notin \Gamma \} \). In particular, we proved the following result:

Theorem 1 If \(A = k[\Gamma] \) is a monomial curve, then the \(k \)-algebra \(D \) of differential operators on \(A \) is generated by the Euler derivation \(E \) and the differential operators \(P_w \) for all degrees \(w \) such that \(|w| \in \{a_1, a_2, \ldots, a_r\} \) or \(|w| \in H \).

The following structural results on the algebra \(D \) of differential operators on \(A \) is a consequence of the work of Smith, Stafford [12]:

Theorem 2 If \(A = k[\Gamma] \) is a monomial curve, then the ring \(D \) of differential operators on \(A \) is Morita equivalent with the first Weyl algebra \(\text{Diff}(B) = A_1(k) \), and \(D \) has the following properties:

1. \(D \) is a simple Noetherian ring
2. \(A \) is a simple left \(D \)-module
3. \(D \) has Krull dimension 1 and Gelfand-Kirillov dimension 2
4. \(D \) is a hereditary ring

Proof Since the normalization of \(X = \text{Spec}(A) \) is the affine line \(\text{Spec}(B) = \mathbb{A}^1 \), and the normalization map \(\mathbb{A}^1 \to X \) is injective, it follows from Proposition 3.3, Theorem 3.4, Theorem 3.7 and Proposition 4.2 in Smith, Stafford [12] that \(D \) is Morita equivalent with the Weyl algebra \(A_1(k) \), that \(D \) is a simple ring, and that \(A \) is a simple left \(D \)-module. The rest follows from the fact that the properties are preserved under Morita equivalence, and hold for \(A_1(k) \). □

Let \(D^p \subseteq D \) be the set of differential operators in \(D \) of order at most \(p \). We call \(\{D^p\} \) the order filtration of \(D \), and consider the associated graded ring

\[
gr D = \bigoplus_{p \geq 0} D^p / D^{p-1}
\]

It is well-known that \(gr D \) is a commutative ring, and that \(gr \text{Diff}(B) = k[t, \xi] \), where \(\xi \) is the image of \(\partial \). In Eriksen [8], we proved that, for \(\Gamma \neq \mathbb{N}_0 \), the ring \(gr D = k[\Gamma^*] \subseteq k[t, \xi] \) is a semigroup algebra with minimal set of generators

\[
\{ t^{\sigma(-w)} \xi^{\sigma(w)} : |w| \in \{a_1, \ldots, a_r\} \text{ or } |w| \in H \} \cup \{t\xi\}
\]
In the proof, we use the fact that P_w has leading term $t^{w+\sigma(w)}\partial^{\sigma(w)}$, where $\sigma(w)$ is the cardinality of $\Omega(w)$, and that $\sigma(-w) = \sigma(w)+w$ for all integers w. In particular, $\text{gr } D = k[F']$ is a finitely generated k-algebra of Krull dimension two, and $\mathbb{N}_0^2 \setminus F'$ is a finite set.

Let us write $D^p_w = D^p \cap D_w \subseteq D$ for the linear subspace of differential operators of degree w and order at most p in D, and define

$$B^n = \bigoplus_{2p+w \leq n} D^p_w$$

for all integers n. Then $\{B^n\}$ is a filtration of D, which we call the Bernstein filtration. Note that any differential operator $P \in B^n$ is of the form

$$P = \sum_{i+j \leq n} c_{ij} t^i \partial^j$$

Clearly, the associated graded ring $\oplus_n B^n/B^{n-1}$ is naturally isomorphic to $\text{gr } D$. Moreover, since $\text{gr } D \subseteq k[t, \xi]$, it follows that $B^0 = k$, that $B^n = 0$ for $n < 0$, and that $\dim_k B^n$ is finite for all integers n.

2 Holonomic D-modules on monomial curves

Let M be a left D-module. A filtration of M is a chain $M_0 \subseteq M_1 \subseteq \ldots$ of k-linear subspaces of M such that $\cup_n M_n = M$ and $B^m \cdot M_n \subseteq M_{n+m}$ for all integers $m, n \geq 0$. By convention, we let $M_n = 0$ for $n < 0$. We say that the filtration is good if the associated graded module $\text{gr } M = \oplus_n M_n/M_{n-1}$ is a finitely generated module over $\text{gr } D$.

We recall that there is a good filtration of M if and only if M is a finitely generated D-module. Moreover, if $\{M_n\}$ and $\{M'_n\}$ are two good filtrations of M, then there is an integer N such that

$$M_{n-N} \subseteq M'_n \subseteq M_{n+N}$$

for all integers n. This is a standard result; see for instance Chapter 1 in Björk [1].

We fix a good filtration $\{M_n\}$ of a left D-module M, and remark that $\dim_k M_n$ is finite for all integers $n \geq 0$. In fact, we have that $(\text{gr } M)_n = M_n/M_{n-1}$ is finitely generated over $B_0 = k$, since $\text{gr } M$ is a finitely generated module over $\text{gr } D$, and $\text{gr } D$ is positively graded with $(\text{gr } D)_0 = B_0 = k$. The Hilbert function of $\text{gr } M$ is the function $H(\text{gr } M, -)$ given by

$$H(\text{gr } M, n) = \dim_k (M_n/M_{n-1}) = \dim_k M_n - \dim_k M_{n-1}$$

and $H^1(\text{gr } M, n) = \dim_k M_n$ is the first iterated Hilbert function of $\text{gr } M$.

Proposition 3 Let M be a non-zero, finitely generated left D-module and let $\{M_n\}$ be a good filtration of M. Then there is a positive integer $m \geq 1$ and polynomials $P_r(t) \in \mathbb{Q}[t]$ for $0 \leq r < m$, such that $\dim_k (M_{nm+r}) = P_r(n)$ for all sufficiently large integers n. Moreover, we have that

$$P_r(t) = \frac{e}{d!} t^d + \text{terms of lower degree}$$

for $0 \leq r < d$, where d is the Krull dimension of $\text{gr } M$, and $e > 0$ is a positive integer.
Proof To simplify notation, we write $R = \text{gr } D$, and $N = \text{gr } M$. We consider the Hilbert series $H_N(t) = \sum_n H(N,n) \cdot t^n$ of N in $\mathbb{Z}[t]$, which can be written as a rational function

$$H_N(t) = \frac{Q(t)}{(1 - t)^d}$$

where $Q(t) \in \mathbb{Z}[t]$ with $Q(1) > 0$, and $d \geq 1$ is a positive integer. This follows from Proposition 4.4.1 and the following remarks in Bruns, Herzog [3], since there is a homogeneous system of parameters for N of common degree $l > 0$. Let

$$m = \min\{l \geq 1 : H_N(t) \cdot (1 - t)^d \in \mathbb{Z}[t]\}$$

and let $a(t) = H_N(t) \cdot (1 - t)^d \in \mathbb{Z}[t]$. Then $a(1) > 0$, and by Proposition 2.3 and Remark 2.4 in Campbell et al. [4], it follows that there are polynomials $p_r(t) \in \mathbb{Q}[t]$ for $0 \leq r < m$ such that $\deg p_r(t) \leq d - 1$ and $p_r(n) = H(N,nm + r)$ for all n large enough. Furthermore, since $a(1) > 0$, it follows that $p_r(t)$ has degree $d - 1$ for at least one integer r with $0 \leq r < m$. Let us write $a_r(t)$ for the polynomial

$$a_r(t) = \sum_{n \geq 0} a_{nm + r} \cdot t^n$$

in $\mathbb{Z}[t]$, where the coefficients a_i for $i \geq 0$ are given by $a(t) = \sum a_it^i$. We obtain polynomials $a_0(t), \ldots, a_{m - 1}(t) \in \mathbb{Z}[t]$ with $a(1) = a_0(1) + \cdots + a_{m - 1}(1)$. Furthermore, the polynomial $p_r(t)$ has the form

$$p_r(t) = \frac{a_r(1)}{(d - 1)!} t^d + \text{terms of lower degree}$$

for $0 \leq r < m$, where $a_r(1) \geq 0$ for all r. To compute the first iterated Hilbert function, we choose a positive integer n_0 such that $H(N,nm + r) = p_r(n)$ for $n > n_0$ and $0 \leq r < m$. If we let $C_r = H(N,nm + r + 1) + \cdots + H(N,nm + m - 1)$, then we have, for $n > n_0$, that

$$H^2(N,nm + r) = \sum_{s=0}^{m-1} \sum_{t=0}^{n} H(N,tm + s) - C_r$$

$$= \sum_{s=0}^{m-1} \sum_{t=n_0+1}^{n} p_s(t) - C_r + H^2(N,n_0 m + m - 1)$$

$$= \sum_{s=0}^{m-1} \sum_{t=n_0+1}^{n} \frac{a_s(1)}{(d - 1)!} t^d + \text{terms of lower degree}$$

$$= \sum_{t=n_0+1}^{n} \frac{a(1)}{(d - 1)!} t^d + \text{terms of lower degree}$$

since C_r and $H^1(N,n_0 m + m - 1)$ are constants. Hence, there are polynomials $P_r(t) \in \mathbb{Q}[t]$ for $0 \leq r < m$ of the form

$$P_r(t) = \frac{e}{d!} t^d + \text{terms of lower degree}$$

such that $H^2(nm + r) = P_r(n)$ for all $n > n_0$, where d is the Krull dimension of N and $e = a(1) > 0$ is a positive integer. \qed
We remark that \(d \) and \(e \) in Proposition 3 are independent of the chosen good filtration \(\{ M_n \} \) of \(M \). We define the dimension of \(M \) to be \(d(M) = d \) and the multiplicity of \(M \) to be \(e(M) = e \) for any finitely generated left \(D \)-module \(M \neq 0 \). These invariants have the following properties: If \(0 \to M' \to M \to M'' \to 0 \) is a short exact sequence of \(D \)-modules, then \(d(M) = \max\{d(M'), d(M'')\} \). If moreover \(d(M') = d(M) = d(M'') \), then \(e(M) = e(M') + e(M'') \). This follows from the fact that a good filtration of \(M \) induces good filtrations of \(M' \) and \(M'' \).

Proposition 4 (Bernstein’s inequality) For any finitely generated left \(D \)-module \(M \neq 0 \), we have \(d(M) \geq 1 \).

Proof From Theorem 2, it follows that \(D \) is a simple ring, and the algebra homomorphism \(D \to \text{End}_k(M) \) is therefore injective. This implies that \(M \) cannot be finite dimensional over \(k \), hence \(d(M) \geq 1 \).

We say that a finitely generated left \(D \)-module \(M \) is holonomic if \(M \neq 0 \) and \(d(M) = 1 \). By convention, \(M = 0 \) is also considered to be holonomic. If \(M \) is holonomic, then it has finite length. In fact, if \(M' \subseteq M \) is a non-zero submodule of \(M \), then \(M' \) is holonomic and \(e(M') < e(M) \) if \(M' \neq M \). Hence the length of \(M \) is at most \(e(M) \).

Proposition 5 Let \(M \) be a finitely generated left \(D \)-module. Then the following conditions are equivalent:

1. \(M \) is holonomic
2. \(M \) has finite length
3. \(M \) is cyclic and not isomorphic to \(D \)

Proof If \(M \) is holonomic, then it has finite length by the comment above. If \(M \) has finite length, then \(M \) is cyclic by Theorem 1.8.18 in Björk [1], since \(D \) is a simple ring by Theorem 2. Moreover, \(M \) is not isomorphic to \(D \) since \(d(M) = 1 \) and \(d(D) = 2 \). In fact, the Bernstein filtration is a good filtration of \(D \), and we have

\[
\dim_k B^n = 1 + 2 + \cdots + (n+1) - s = \frac{(n+1)(n+2)}{2} - s = \frac{1}{2}n^2 + \text{ terms of lower degree}
\]

for \(n \) sufficiently large, where \(\text{gr} D = k[I'] \subseteq k[t, \xi] \) and \(s \) is the cardinality of \(\mathbb{N}^2 \setminus I' \). Finally, we show that if \(M \) is cyclic and not isomorphic to \(D \), then it is holonomic. In this case, we may assume that \(M = D/I \) with \(I \neq 0 \), and there is a non-zero element \(P \in I \) and a principal left ideal \(J = D \cdot P \subseteq I \). The short exact sequence

\[
0 \to D \xrightarrow{P} D \to D/J \to 0
\]

shows that \(d(D/J) = 1 \). In fact, if \(d(D/J) = 2 \), then \(e(D) = 1 \) and \(e(D/J) = 0 \), which is a contradiction since \(e(D) = 1 \) from the computation above. The short exact sequence \(0 \to I/J \to D/J \to D/I \to 0 \) gives that \(d(M) = d(D/I) \leq d(D/J) = 1 \), and this implies that \(M \) is holonomic. \(\square \)
3 Graded holonomic D-modules

Let \(D \) be the algebra of differential operators on a monomial curve \(A = k[G] \), with the \(\mathbb{Z} \)-grading \(D = \oplus_w D_w \) described in Section 1, and consider the category \(\text{grMod}_D \) of \(\mathbb{Z} \)-graded left \(D \)-modules. An object of \(\text{grMod}_D \) is a left \(D \)-module \(M \) with a grading
\[
M = \oplus_w M_w
\]
such that \(D_w \cdot M_w \subseteq M_{w+w} \), and a morphism \(\phi : M \to N \) in \(\text{grMod}_D \) is a \(D \)-module homomorphism which is homogeneous of degree zero, such that \(\phi(M_w) \subseteq N_w \). For any graded \(D \)-module \(M \) in \(\text{grMod}_D \) and any integer \(n \), we denote by \(M[n] \) the \(n \)th twisted \(D \)-module of \(M \), with grading given by \(M[n]_i = M_{n+i} \).

We wish to study and classify the graded holonomic \(D \)-modules, up to graded isomorphisms in \(\text{grMod}_D \) and twists. The full subcategory \(\text{grHol}_D \subseteq \text{grMod}_D \) of graded holonomic \(D \)-modules consists of graded \(D \)-modules \(M \) of finite length, with composition series
\[
M = M_0 \supseteq M_1 \supseteq \cdots \supseteq M_{n-1} \supseteq M_n = 0
\]
in \(\text{grMod}_D \) of length \(n \leq e(M) \); see Proposition [5]. We are interested in the simple objects in \(\text{grMod}_D \), since these are the simple factors \(M_i/M_{i+1} \) in the composition series.

Lemma 6 A graded left \(D \)-module \(M \) is a simple object in \(\text{grMod}_D \) if and only if it is simple considered as a left \(D \)-module.

Proof It is clear that if \(M \) is simple as a left \(D \)-module, then it is simple in \(\text{grMod}_D \). To prove the converse, assume that \(M \) is simple in \(\text{grMod}_D \). Then it follows from Theorem II.7.5 in Năstăescu, van Oystaeyen [10] that it is either simple or 1-critical considered as a left \(D \)-module. We claim that it cannot be 1-critical. In fact, we may choose a homogeneous element \(m \neq 0 \) of degree \(w \) in \(M \), and consider the short exact sequence
\[
0 \to I \to D(-w) \xrightarrow{m} M \to 0
\]
where \(D(-w) \) is a twist of \(D \) and \(I = \{ P \in D(-w) : P \cdot m = 0 \} \) is the annihilator of \(m \). Since \(I \neq 0 \), it follows from Proposition [5] that \(D/I \) is a holonomic \(D \)-module, and therefore of finite length. This implies that \(M \) is Artinian, of Krull dimension zero, and it is therefore not 1-critical. It follows that any simple object in \(\text{grMod}_D \) is simple considered as a left \(D \)-module.

The simple modules over the Weyl algebra \(A_1(k) \) were classified in Block [2]. We shall classify the simple objects in \(\text{grMod}_D \) by adapting Block’s results to the graded situation. For any graded left \(D \)-module \(M \), we define
\[
T_S(M) = \{ m \in M : sm = 0 \text{ for an element } s \in S \} \subseteq M
\]
It follows from the fact that \(S \) is an Ore set for \(D \) that \(T_S(M) \) is a left \(D \)-module. We say that \(M \) is an \(S \)-torsion module if \(T_S(M) = M \), and that it is an \(S \)-torsion free module if \(T_S(M) = 0 \). Notice that any simple left \(D \)-module is either an \(S \)-torsion module or an \(S \)-torsion free module, and that it is an \(S \)-torsion module if and only if \(S^{-1}M = 0 \).
There is a graded division algorithm in the ring Diff(T) in the following sense: For any homogeneous differential operators $P, Q \in \text{Diff}(T)$ with $Q \neq 0$, we have that

$$P = L \cdot Q + R$$

for unique homogeneous differential operators $L, R \in \text{Diff}(T)$, where the order $d(R) < d(Q)$. Therefore, any homogeneous left ideal $I \subset \text{Diff}(T)$ is principal. In fact, if $P \neq 0$ is an element in I with minimal order, then $I = \text{Diff}(T) \cdot P$. This implies that a graded left Diff(T)-module is simple considered as a Diff(T)-module if and only if it is a simple object in the category of graded left Diff(T)-modules, and we can talk about simple graded left Diff(T)-modules without ambiguity.

Proposition 7 The assignment $M \mapsto S^{-1}M$ defines a bijective correspondence

$$S^{-1} : \text{grSimp}_{D}[S\text{-torsion free}] \to \text{grSimp}_{\text{Diff}(T)}$$

from the set of isomorphism classes of simple graded left D-modules that are S-torsion free, and the set of isomorphism classes of simple graded left Diff(T)-modules.

Proof If M is a simple graded left D-module that is S-torsion free, then $S^{-1}M$ is a simple graded left Diff(T)-module, since S consists of homogeneous elements and localization is exact; see also Lemma 2.2.1 in Block 2. This defines the map S^{-1}, and that it is injective follows from the proof of Lemma 2.2.1 in Block 2. To show that S^{-1} is surjective, let us consider a graded simple left Diff(T)-module N. We choose a non-zero homogeneous element $n \in N$ of degree w, which gives a short exact sequence

$$0 \to I \to \text{Diff}(T)[-w] \to N \to 0$$

where $I = \{P \in \text{Diff}(T) : P \cdot n = 0\} = \text{ann}(n)$. Let $J \equiv I \cap D[-w] \subset D[-w]$. This is a non-zero homogeneous ideal in $D[-w]$, and $M = D[-w]/J \subset \text{Diff}(T)[-w]/I \cong N$ is a graded D-submodule. Since $J \neq 0$, M is a graded D-module of finite length by Proposition 5, hence it contains a graded simple left D-module K. Then it follows from Lemma 2.2.1 in Block 2 and its proof that $N \cong S^{-1}K$ since $K \subset M \subset N$. \qed

Next, we classify the simple graded left Diff(T)-modules, up to graded isomorphisms and twists. Any simple graded left Diff(T)-module N must be of the form $N \cong \text{Diff}(T)[-w]/I$, where $I = \text{Diff}(T) \cdot P$ is a homogeneous principal left ideal that is maximal. Hence, we must have that $P = t^{\omega}(E - \alpha)$ for $\alpha \in k$, and t^{ω} is a unit in Diff(T). We obtain the cases $\alpha = 0$, which gives the graded simple module

$$N_0 = \text{Diff}(T)/\text{Diff}(T) \cdot E = \text{Diff}(T)/\text{Diff}(T) \cdot \partial \cong T$$

and $\alpha \neq 0$, which gives the graded simple module

$$N_\alpha = \text{Diff}(T)/\text{Diff}(T) \cdot (E - \alpha)$$

It is not difficult to see that $N_\alpha \cong T[\alpha]$ if $\alpha \in \mathbb{Z}$, with isomorphism given by $1 \mapsto t^{\alpha}$. Similarly, we have that $N_\alpha \cong N_\beta[\alpha - \beta]$ when $\alpha - \beta \in \mathbb{Z}$, with isomorphism given by $1 \mapsto t^{\alpha - \beta}$.

Lemma 8 Let $J = \{\alpha \in k : 0 \leq \Re(\alpha) < 1\}$. Then the set of simple graded Diff(T)-modules, up to graded isomorphisms and twists, are given by $\{N_\alpha : \alpha \in J\}$.

Proof We claim that if $\alpha - \beta \not\in \mathbb{Z}$, then $N_\alpha \not\cong N_\beta$ as left $\text{Diff}(T)$-modules. In light of the comments above, this is enough to prove the lemma, since J is a fundamental domain for k/\mathbb{Z}. To prove the claim, we consider the Weyl algebra $A_1(k)$ as a special case of $D = \text{Diff}(A)$ with $A = k[T]$ and $T = \mathbb{N}_0$. By Proposition 7 we have that $M_\alpha = A_1(k)/A_1(k) \cdot (E - \alpha)$ corresponds to $N_\alpha = S^{-1}M_\alpha$ under localization when $\alpha \not\in \mathbb{Z}$, and $M_0 = A_1(k)/A_1(k) \cdot \partial$ corresponds to N_0. By results of Dixmier on the Weyl algebra, we have that $M_\alpha \not\cong M_\beta$ when $\alpha - \beta \not\in \mathbb{Z}$; see Lemma 24 in Dixmier [6] and Proposition 4.4 in Dixmier [7], and this proves the claim. □

Let $A = k[T]$ be a monomial curve, let D be the ring of differential operators on A, and let $A_1(k)$ be the ring of differential operators on $B = k[t]$. Then D is Morita equivalent with the Weyl algebra $A_1(k)$, and by Section 3.14 of Smith, Stafford [12], the equivalence $\text{Mod}_D \rightarrow \text{Mod}_{A_1(k)}$ of module categories is given by $M \mapsto D(A,B) \otimes_D M$, where $D(A,B)$ is the $A_1(k)$-D bimodule

$$D(A,B) = \{ P \in \text{Diff}(T) : P(A) \subseteq B \} \subseteq \text{Diff}(T).$$

Notice that $D(A,B)$ is a graded $A_1(k)$-D bimodule, with $S^{-1}D(A,B) = \text{Diff}(T)$. Hence, there is an induced equivalence $F : \text{grMod}_D \rightarrow \text{grMod}_{A_1(k)}$ of categories of graded modules, and it commutes with localization:

$$\text{grMod}_D \xrightarrow{F} \text{grMod}_{A_1(k)}$$

We know that $\text{grSimp}_{\text{Diff}(T)}[\text{S-torsion free}] \cong \text{grSimp}_{\text{Diff}(T)}$, and we write M_α for the unique simple graded left D-module M such that $S^{-1}M = N_\alpha$ for $\alpha \in J$. In fact, it follows from the proof of Proposition 7 that M_α is the unique simple submodule of $D/D \cdot (E - \alpha)$ if $\alpha \neq 0$, and that M_0 is the unique simple submodule of $D/D \cdot \partial = A$. We claim that $M_0 = A$ if $\alpha = 0$, and that $M_\alpha = D/D \cdot (E - \alpha)$ if $\alpha \neq 0$. If $\alpha = 0$, this is clear since A is a simple left D-module. If $\alpha \neq 0$, then the claim follows from the following result, since simple modules are preserved by Morita equivalence:

Lemma 9 If $A = k[t]$, then $M_\alpha = D/D \cdot (E - \alpha)$ for all $\alpha \in J$ with $\alpha \neq 0$.

Proof It is sufficient, in light of the comments above, to show that $D/D \cdot (E - \alpha)$ is a simple module over $D = A_1(k)$. This follows from Lemma 24 in Dixmier [6]. □

Finally, we classify the simple graded D-modules that are S-torsion modules. We first consider the case $A = k[t]$, and the S'-torsion modules over the Weyl algebra $D = A_1(k)$, where $S' = k[t]^*$. In this case, it follows from Proposition 4.1 and Corollary 4.1 in Block [2] that the simple S'-torsion D-modules are given by

$$V(\beta) = D \otimes_{A_1} A/(t - \beta) \cong D/D \cdot (t - \beta)$$

for $\beta \in k$. Moreover, $V(\beta)$ is a graded left D-module, or an S-torsion module, if and only if $\beta = 0$. Hence, $V(0) = D/D \cdot t$ is the unique simple graded left module over the Weyl algebra $D = A_1(k)$ that is S-torsion.

Let D be the ring of differential operators on A when $A = k[T]$ is any monomial curve. Since D is Morita equivalent to the Weyl algebra and the property of being
S-torsion is preserved under Morita equivalence, there is a unique simple graded left D-module M_∞ that is S-torsion. Moreover, we have that

$$M_\infty = D(B, A) \otimes_{A_1(k)} V(0)$$

where $D(B, A) = \{ P \in \text{Diff}(T) : P(B) \subseteq A \} \subseteq \text{Diff}(T)$ by Section 3.14 in Smith, Stafford [12]. We summarize these results as follows:

Theorem 10 If $A = k[\Gamma]$ is a monomial curve, then the simple graded left modules over the ring D of differential operators on A, up to graded isomorphisms and twists, are given by

$$\{ M_0 \} \cup \{ M_\alpha : \alpha \in J^* \} \cup \{ M_\infty \}$$

where $J^* = \{ \alpha \in k : 0 \leq \text{Re}(\alpha) < 1, \alpha \neq 0 \}$. Moreover, we have that $M_0 = A$ and that $M_\alpha = D/D \cdot (E - \alpha)$ for all $\alpha \in J^*$.

Corollary 11 The simple graded left modules over the first Weyl algebra $D = A_1(k)$, up to graded isomorphisms and twists, are given by $M_0 = D/D \partial$, $M_\infty = D/Dt$, and $M_\alpha = D/D \cdot (E - \alpha)$ for all $\alpha \in J^*$.

Let M_α, M_β be simple graded D-modules in grHol_D, with $\alpha, \beta \in J \cup \{ \infty \}$. Their extensions in grHol_D are given by $\text{Ext}_D^1(M_\alpha, M_\beta)$.

Proposition 12 If D is the ring of differential operators on a monomial curve, then the extensions of M_β by M_α in grHol_D are given by

$$\text{Ext}_D^1(M_\alpha, M_\beta) = \begin{cases} k\xi \cong k, & (\alpha, \beta) = (0, \infty), (\infty, 0) \\ k\xi \cong k, & \alpha = \beta \in J^* \\ 0, & \text{otherwise} \end{cases}$$

for all simple graded D-modules M_α, M_β with $\alpha, \beta \in J^* \cup \{ 0, \infty \}$.

Proof By the comments above, we may assume that $D = A_1(k)$ is the Weyl algebra. We show the computation of the extensions in the case $\alpha = \infty$ and $\beta = 0$; all other cases can be done in a similar way. The D-module $M_\infty = D/Dt$ over the Weyl algebra $D = A_1(k)$ has the free resolution

$$0 \leftarrow M_\infty \leftarrow D \leftarrow D \leftarrow 0$$

When we apply $\text{Hom}_D(-, M_0)$ to this exact sequence, we obtain

$$\text{Hom}_D(D, M_0) \cong M_0 \xrightarrow{i} \text{Hom}_D(D, M_0) \cong M_0 \rightarrow 0$$

and $\text{Ext}_D^1(M_\infty, M_0) \cong M_0/tM_0 \cong A/tA = k[t]/(t) \cong k$, which is concentrated in degree zero. \[\square\]
References

1. Björk, J.E.: Rings of differential operators, *North-Holland Mathematical Library*, vol. 21. North-Holland Publishing Co., Amsterdam-New York (1979)

2. Block, R.E.: The irreducible representations of the Lie algebra \(\mathfrak{sl}(2) \) and of the Weyl algebra. *Adv. in Math.* 39(1), 69–110 (1981). URL https://doi.org/10.1016/0001-8708(81)90058-X

3. Bruns, W., Herzog, J.: Cohen-Macaulay rings, *Cambridge Studies in Advanced Mathematics*, vol. 39. Cambridge University Press, Cambridge (1993)

4. Campbell, H.E.A., Geramita, A.V., Hughes, I.P., Smith, G.G., Wehlau, D.L.: Some remarks on Hilbert functions of Veronese algebras. *Comm. Algebra* 28(3), 1487–1496 (2000). URL https://doi.org/10.1080/00927870008826908

5. Coutinho, S.C.: A primer of algebraic \(D \)-modules, *London Mathematical Society Student Texts*, vol. 33. Cambridge University Press, Cambridge (1995). URL https://doi.org/10.1017/CBO9780511623653

6. Dixmier, J.: Représentations irréductibles des algèbres de Lie nilpotentes. *An. Acad. Brasil. Ci.* 35, 491–519 (1963)

7. Dixmier, J.: Sur les algèbres de Weyl. II. *Bull. Sci. Math.* (2) 94, 289–301 (1970)

8. Eriksen, E.: Differential operators on monomial curves. *J. Algebra* 264(1), 186–198 (2003). URL https://doi.org/10.1016/S0021-8693(03)00144-3

9. Eriksen, E.: Iterated Extensions and Uniserial Length Categories. *ArXiv e-prints* (2018)

10. Năstăsescu, C., Van Oystaeyen, F.: Graded and filtered rings and modules, *Lecture Notes in Mathematics*, vol. 758. Springer, Berlin (1979)

11. Shukla, P.K.: On Hilbert functions of graded modules. *Math. Nachr.* 96, 301–309 (1980). URL https://doi.org/10.1002/mana.19800960123

12. Smith, S.P., Stafford, J.T.: Differential operators on an affine curve. *Proc. London Math. Soc.* (3) 56(2), 229–259 (1988). URL https://doi.org/10.1112/plms/s3-56.2.229