Dramatic enhancement of the detection limits of bioassays via ultrafast deposition of polydopamine

Junwei Li¹, Madison A. Baird², Michael A. Davis³, Wanyi Tai¹, Larry S. Zweifel²,⁵, Kristina M. Adams Waldorf⁴,⁶,⁷,⁸, Michael Gale Jr³,⁷, Lakshmi Rajagopal⁴,⁷,⁹,¹⁰, Robert H. Pierce¹¹ and Xiaohu Gao¹²,¹³*

The ability to detect biomarkers with ultrahigh sensitivity radically transformed biology and disease diagnosis. However, owing to incompatibilities with infrastructure in current biological and medical laboratories, recent innovations in analytical technology have not yet been adopted broadly. Here, we report a simple, universal ‘add-on’ technology (dubbed EASE) that converts the ordinary sensitivities of common bioassays to extraordinary ones, and that can be directly plugged into the routine practices of current research and clinical laboratories. The assay relies on the bioconjugation capabilities and ultrafast and localized deposition of polydopamine at the target site, which permit a large number of reporter molecules to be captured and lead to detection-sensitivity enhancements exceeding three orders of magnitude. The application of EASE in the enzyme-linked-immunosorbent-assay-based detection of the HIV antigen in blood from patients leads to a sensitivity lower than 3 fg ml⁻¹. We also show that EASE allows for the direct visualization, in tissues, of the Zika virus and of low-abundance biomarkers related to neurological diseases and cancer immunotherapy.

As recent advances in medicine rapidly unravel the genomic and proteomic signatures of disease development, progression and response to therapy, sensitive and quantitative analysis of disease biomarkers (such as DNA, RNA and proteins) has become increasingly important in the era of precision medicine, in which diagnostic and therapeutic decisions are tailored towards individual patients. In parallel, to address the challenge in sensitive and multiplexed biomarker analysis, a large variety of intricately designed imaging and detection technologies have also been developed in the past decade¹⁻¹¹. These enabling technologies—often leveraging on the unique properties of colloidal nanostructures (such as quantum dots, magnetic nanoparticles and plasmonic nanoparticles) and precisely engineered sensor devices (for example, nanowire sensors, cantilevers and microfluidic channels)—are so sensitive that their detection limits are commonly seen at the single-molecule level, and low-abundance targets such as circulating oligonucleotides, proteins, viruses and cells can be enumerated with polymerase chain reaction (PCR)-like sensitivity¹²⁻¹⁸. Despite these remarkable achievements in biotechnology laboratories, broad adoption of these technological innovations by biology and clinical laboratories has been limited, and consequently so has their impact¹⁹. This is a result of multiple factors, including complex protocols, the need for specialized reagents and equipment, and most importantly the requirement of different infrastructures, a disconnect that not only elevates the upfront cost but also reduces persistent output and cross-laboratory cross-platform consistency.

Here we present a universal ‘add-on’ technology that can be plugged into virtually all common biodetection and bioimaging techniques to enhance their sensitivities by approximately three orders of magnitude. This enhancement is achieved by combining horseradish peroxidase (HRP), one of the most popular reporter enzymes in biology, with polydopamine (PDA), arguably the most versatile coating material in surface treatment. Previously, a simple dip-coating protocol has been demonstrated for spontaneous formation of a thin self-adherent PDA film onto a wide range of surfaces²⁰. Interestingly, we found that when dopamine is used in place of the typical HRP substrates, its polymerization rate is increased over 300-fold. In addition, PDA is well known for its outstanding reactivity to the amine, sulfhydryl and phenol groups in proteins²¹, enabling site-specific deposition in the vicinity of HRP and subsequent sensitive detection based on adsorption or fluorescence (Fig. 1a). It is worth mentioning that although we discovered the remarkable performance of HRP-PDA combination in biotechnology, a similar mechanism has been used in nature for perhaps thousands of years. For example, it has been found that invertebrates take advantage of oxidase-catalysed rapid melanin deposition to treat mechanical injuries and isolate foreign organisms such as parasites²²,²³. The chemical reaction is very similar to HRP-catalysed PDA deposition.

Results

Enzyme-accelerated ultrafast PDA deposition. To quantify the effect of HRP on PDA polymerization rate, the enzyme-accelerated
Next, we characterized whether the EASE process can be confined to the vicinity of HRP molecules (Fig. 1d), a key factor determining the scope of downstream applications. If PDA molecules quickly diffuse away from HRP, the EASE technology will only be useful for improving the enzyme-linked immunosorbent assay (ELISA) by measuring chromogens in solution. If the PDA molecules are confined near HRP, the EASE technology will be broadly applicable to various bioassays beyond ELISA, such as immunohistochemistry (IHC), immunofluorescence (IF), fluorescence in situ hybridization (FISH) and immunoblotting, because the spatial information is preserved. To probe it, HRP was immobilized inside a circle on a nitrocellulose membrane, which was also blocked with bovine serum albumin (BSA). Note that BSA, as a standard blocking agent that helps reduce non-specific binding, serves an additional function here. It also provides reactive chemical groups as the PDA deposition anchor sites. As shown in Fig. 1e, when the membrane was exposed to the dopamine/H$_2$O$_2$ solution, essentially no PDA was found on the membrane with BSA only (free of background). In contrast, when HRP is present on the membrane, PDA development becomes clearly visible because HRP not only catalyses the PDA polymerization, but also, as a natural protein molecule, serves as the PDA deposition anchor point. For the membrane incubated with HRP and blocked with BSA, PDA deposition is significantly enhanced due to the high-density reactive sites on the membrane (provided by the BSA molecules) that quickly capture PDA molecules before they diffuse away from the surface. More importantly, the colour development is completely confined inside the HRP spot, demonstrating retention of the spatial resolution that makes EASE suited for the aforementioned immuno and hybridization assays.

Figure 1 | HRP-accelerated dopamine polymerization and deposition.

a. Schematic of the EASE technology. Dopamine (colourless) slowly oxidizes in the presence of air (with O$_2$ as the oxidant) and produces brown-black polydopamine. This polymerization process can be sped up by approximately 300-fold under HRP catalysis (with H$_2$O$_2$ as the oxidant).

b. Visual observation of dopamine polymerization under conventional and HRP catalysed conditions at various time points.

c. Extinction measured at 700 nm for the samples shown in b. EASE produces the same optical extinction (700 nm) in 48 s compared with 4 h under conventional conditions.

d. HRP-catalysed PDA deposition on solid supports. When protein density on the solid support is low (for example, when only HRP is present), the majority of the PDA molecules diffuse away. For solid supports (such as a flat surface and membrane) with high protein density (for example, in cells and surfaces blocked with protein molecules for reduced non-specific binding), rapid and localized deposition of PDA occurs due to the reactivity of PDA to nearby amines (as it is rich in proteins), leading to formation of a dark spot.

e. Images showing membranes immunolabeled with BSA alone, HRP alone or HRP/BSA before and after exposure to dopamine. Scale bar, 5 mm.

Signal enhancement (EASE) process is compared to the reaction conditions in the conventional dip-coating polymerization procedure where HRP is not present and O$_2$ is the oxidant. As shown in Fig. 1b, the dopamine solution slowly changes colour from colourless to light grey over a period of four hours, indicating slow PDA formation. In contrast, when HRP and H$_2$O$_2$ of low concentration (the typical reaction condition for HRP-catalysed substrate conversion) were added, the dopamine solution of the same concentration instantly turns to brown-black, showing a significantly increased PDA polymerization rate. Quantitative comparison of the reaction kinetics was plotted by measuring the solution light extinction at 700 nm where dopamine has negligible absorption compared to PDA (Supplementary Fig. 1). Under the dip-coating reaction condition, PDA slowly builds up and is not near completion after 4 h of reaction time, whereas under the EASE condition, the PDA solution reaches the same level of light extinction in 48 secs (and plateaus within 1 h), indicating an approximately 300-fold increase in polymerization rate (Fig. 1c).

EASE for immunohistochemistry and immunofluorescence. The EASE technology was first applied to IHC and IF, robust technologies capable of interrogating gene expressions in single cells and resolving the heterogeneity issues of complex tissue samples, with well-preserved cell and tissue morphology. IHC and IF work well for high-abundance target molecules, but lack the sensitivity to detect antigens of low abundance$^{22-23}$, particularly in clinical tissue specimens where autofluorescence can be overwhelmingly high. To test the suitability of EASE, two model antigens that represent targets in different cell compartments, lamin A (nuclear envelope) and HSP-90 (cytoplasm), were stained in formalin-fixed HeLa cells (Fig. 2a). The conventional two-step staining procedure was carried out by incubating cells with the primary antibody (1° Ab) and secondary antibody–HRP (2° Ab–HRP) sequentially, except that dopamine was used as the HRP substrate. Owing to the chromogenic feature of PDA, the staining can be directly visualized. As shown in Fig. 2b and Supplementary Fig. 3, the staining patterns for both antigens are the same as those obtained with conventional IHC (using 3,3’-diaminobenzidine (DAB) as the substrate) and IF (using quantum dot (QD)-labelled secondary antibody) (Supplementary Fig. 4), demonstrating the staining specificity and confirming the confined PDA deposition on the microscopic scale. The specificity is further confirmed by a series of control experiments where either one of the key agents (1° Ab and 2° Ab–HRP) is missing or a mismatched 1° Ab–2° Ab pair is used (Fig. 2c,d and Supplementary Fig. 5). It is also worth mentioning that the PDA chromogens are highly stable after cell staining. As shown in the same group of cells in Fig. 2e and Supplementary Fig. 6, no obvious signal decay was detected after four months, allowing samples to be reexamined after a long storage period.

To probe the sensitivity enhancement of EASE, fluorescence probes were brought into the assay after PDA deposition, taking advantage of the remarkable reactivity of PDA to any fluorophores with primary amine and the convenience of quantifying fluorescence signals24. Pegylated QDs with terminal amines were used as the fluorophore (because of their photostability) so that fluorescence...
The intensity could be accurately measured26,27. As shown in Fig. 3a, the fluorescent staining pattern matches that of PDA, confirming that QD-NH\textsubscript{2} immobilization is confined to the PDA network. Localized PDA deposition (dark brown) indicates the spatial and abundance information of the target. Bright-field imaging of IHC-EASE stained cells with different magnifications showing cytoplasmic and nuclear staining of HSP90 and lamin A, respectively. Scale bars, 50 \(\mu \)m. Bright-field imaging of IHC-EASE staining showing the specificity of IHC-EASE compared with negative controls. Mismatched anti-mouse (M)-HRP, absence of 2nd Ab-HRP or dopamine produces negligible signals. Scale bars, 100 \(\mu \)m. Quantitative measurements of the staining intensities of samples shown in c. Statistical analysis of cells in four random fields of view shows significant differences between the experiment and control groups. ***\(P < 0.001 \) by two-tailed t-test, error bars indicate s.d.

To evaluate the sensitivity quantitatively, staining was first performed on HSP-90. Unlike ELISA assays where target molecules can be easily immobilized at various densities, engineering cells with a variety of precisely controlled antigen expression levels is extremely difficult. Instead, we reduced the concentration of the 1st Ab in a serial fashion to bring down the signal intensity. As shown in Fig. 3d and Supplementary Fig. 8, at a 1st Ab concentration of 88 pM, IF-EASE achieves the same signal strength compared to conventional IF using 11 nM 1st Ab, yielding a 125-fold reduction in 1st Ab concentration. This not only indirectly demonstrates the enhancement in imaging sensitivity, but also shows the possibility of reducing the cost of expensive biological agents such as antibodies. The signal enhancement is a result of amplifying a limited number of target molecules (as well as bound HRP) to a polymer network.
that captures a large number of QDs. Indeed, when we applied four tumour biomarkers (HSP90, lamin A, Ki-67 and Cox-4) covering various intracellular locations, a 1:25,000 dilution of the primary antibodies (typical IF dilution factor $\approx 1:100$) produced bright and specific staining similar to those from conventional IF assay using high concentration of 1° Ab (Fig. 3e,f). In contrast, without EASE, 1:25,000 dilutions of the primary antibodies did not produce detectable signals.

Next, to directly evaluate IF-EASE in imaging low-abundance targets, we silenced the expression of GAPDH in HeLa cells using RNA interference (RNAi)-mediated gene knockdown. As shown in Supplementary Fig. 9, 36 h post RNAi, the characteristic cytoplasmic

Figure 3 | IF-EASE cell staining. a, IHC-EASE labelled cells further labelled with QD-PEG-NH$_2$ (NH$_2$-QDs). Fluorescence imaging of HSP90 shows consistent staining pattern after QD adsorption (compared with the bright-field images before QD labelling). Scale bars, 50 μm. b,c, Verification of staining specificity by comparing the experiment group with various controls (antibody and/or dopamine is missing). Scale bar, 50 μm. The intensity differences between the experiment and controls are highly significant. ***$P < 0.001$ by two-tailed t-test. Error bars, s.d. over four different images. d, Quantitative evaluation of IF staining intensity with or without EASE. Signal intensity obtained using IF-EASE at 88 pM 1° Ab is roughly the same as the intensity obtained with conventional IF at 11 nM 1° Ab. Error bars, s.d. over four different images. e, Fluorescence imaging of four targets (HSP90, lamin A, Ki-67 and Cox-4) stained with or without EASE at a 1° Ab dilution of 1:25,000. Scale bar, 50 μm. f, Quantitative measurements of the cell fluorescence intensity shown in e. The differences are statistically significant. ***$P < 0.001$ by two-tailed t-test. Error bars, s.d. over four different images.
distribution of GAPDH can be clearly visualized using IF-EASE, and it is only barely detectable using IF alone. Similarly, at 60 h post RNAi, trace amount of GAPDH can still be detected using IF-EASE, but not with IF alone. This result clearly shows the power of EASE in detected low-abundance targets in cells.

EASE for suspension microarrays. Suspension microarrays are highly multiplexed genotyping and phenotyping platforms used in molecular biology, drug screening and disease diagnosis. Compared to planar microarrays that are spatially addressable, suspension microarrays are often fabricated by doping microspheres with combinations of luminescent materials and are decoded with flow cytometers (for example, Luminex microbeads). To determine whether an unknown analyte is present or not, conventional methodologies such as direct or sandwich hybridization and immuno-recognition are applied. The suspension microarrays offer advantages such as faster binding kinetics, but their detection sensitivities are essentially the same as the planar counterparts.

To demonstrate the compatibility of EASE with suspension microarrays, fluorescent microspheres were coated with Abs (IgG) to detect a model target, biotinylated 2° Ab. Presence or absence of the analyte was detected with either streptavidin-QD conjugates (conventional sandwich method) or the EASE technology (streptavidin-HRP, PDA and QD-NH$_2$) (Fig. 4a). Before comparing their sensitivities, we first tested whether PDA deposition on the microsphere surface reduces the microsphere fluorescence (it would interfere with fluorescence barcodes if multiple colours were doped inside). PDA coating on a microsphere is easy to monitor since the solution quickly turns dark brown because of the chromogenic PDA (Fig. 4b), yet microscopy images revealed virtually no change of the microsphere fluorescence before and after the coating. Scale bars, 3 μm. (c) Representative fluorescence images of the microspheres and corresponding quantitative flow cytometry data showing strong QD signals only when both QD-PEG-NH$_2$ and dopamine are present (1 x 106 beads ml$^{-1}$, 12 nM 2° Ab-biotin). Scale bar, 3 μm. Error bars, s.d. over three replicates. (d) Quantitative evaluation of detection sensitivity enhancement by EASE. Representative single-bead fluorescence images and flow cytometry histograms (1 x 106 beads ml$^{-1}$) show that the detection sensitivity of the microsphere immunoassay is improved by more than 100-fold (from 12 pM to 1.2 fM). Scale bar, 3 μm.

![Figure 4](ultrasensitive suspension microarray enabled by EASE. a. Schematic showing signal enhancement by EASE. Fluorescent microspheres coated with Abs (IgG) capture 2° Ab-biotin (a model target) in solution. The target molecule is detected by the streptavidin (SA)-HRP complex, which catalyses PDA deposition followed by QD adsorption. b. Effect of PDA coating on microsphere fluorescence (1 x 103 beads ml$^{-1}$, 12 nM 2° Ab-biotin). The dark microsphere suspension shows successful PDA coating, while the microscopy images show no obvious fluorescence change before and after the coating. Scale bars, 5 μm. c. Representative fluorescence images of the microspheres and corresponding quantitative flow cytometry data showing strong QD signals only when both QD-PEG-NH$_2$ and dopamine are present (1 x 106 beads ml$^{-1}$, 12 nM 2° Ab-biotin). Scale bar, 3 μm. Error bars, s.d. over three replicates. d. Quantitative evaluation of detection sensitivity enhancement by EASE. Representative single-bead fluorescence images and flow cytometry histograms (1 x 106 beads ml$^{-1}$) show that the detection sensitivity of the microsphere immunoassay is improved by more than 100-fold (from 12 pM to 1.2 fM). Scale bar, 3 μm.)
microspheres using a fluorometer unambiguously confirmed the microscopy result (Supplementary Fig. 10). QDs were used as the fluorescent reporter because of their tunable fluorescence emission and the large Stokes shift (to avoid spectral overlap with the microsphere fluorescence)26,27. For QDs with various surface chemistries, only aminated QDs bound with the microspheres, showing their interaction is due to the chemical reactions between amines and PDA rather than physical adsorption (Fig. 4c and Supplementary Fig. 11)28. Next, we proceeded with the sensitivity comparison. Flow cytometry and fluorescence microscopy both revealed that the target IgG could be detected at a concentration of 1.2 pM using a conventional sandwich assay (with streptavidin-QD as the reporter), whereas addition of EASE pushed the detection limit down by two orders of magnitude (down to the fM range) (Fig. 4d).

To assess the specificity of this ultrasensitive detection assay, two control experiments were conducted. In the first experiment where the target molecule was missing, no significant signals were detected with or without the EASE process, confirming the antibody-antigen binding specificity (Supplementary Fig. 12). Second, we also evaluated the potential crosstalk in a dual-colour setup. Two types of microspheres were mixed together: green microspheres with mouse IgG on the surface, and yellow microspheres with rabbit IgG. When anti-rabbit IgG was added as the target, a strong fluorescence signal from the EASE assay was only detected on the yellow microspheres, free of crosstalk (Supplementary Fig. 13). This remarkable detection specificity lays the foundation for massive parallel screening applications when additional optical barcodes are used29.

EASE for ELISA and lateral flow strips. To demonstrate the versatility of EASE, it was further applied to ELISA and immuno strip tests, robust and popular biochemical assays. These assays using antibodies for molecular recognition and enzyme-catalysed chromogen development for target identification are easy to perform, and have broad applications in both research and clinical laboratories. On the other hand, their mediocre detection sensitivities are also well acknowledged30. Compared to the suspension assays discussed above, a technical feature of these assays is that they are performed on solid supports (flat surfaces or porous membranes), rendering the sample washing steps quick and easy (dip in and out of washing buffer, without the need of a centrifuge). This seemingly insignificant feature combined with the unique bioconjugation capability of PDA allows EASE to be carried over for more than one time31. For example, in the first round of amplification, HRP molecules bound to the target can catalyse localized deposition of PDA. The PDA layer can in turn capture a large number of HRP molecules that are capable of catalysing the conversion of chromogenic substrates (Fig. 5a).

To probe the sensitivity and specificity of ELISA with or without EASE, a standard sandwich ELISA assay was established to detect mouse IgG (model target). Serial dilution of the target molecule resulted in gradients of colour development that can be easily visualized by naked eye (with the substrate being tetramethylbenzidine, TMB). As shown in Fig. 5b, without EASE, colour development in the ELISA assay is visible at a target concentration between 10-7 and 10-6 g ml-1; with EASE as an add-on step, the colour development becomes clearly visible at 10-12 g ml-1. This significantly improved limit of detection (LOD) was further quantified on a plate reader. The standard curve relating signal strength and target concentration is shown in Fig. 5c (left panel), with an expanded low-concentration range plotted in the right panel. The plate-reader readouts reveal the ELISA LODs (3 standard deviations from the background) were 85.3 fg ml-1 (with EASE) and 108 pg ml-1 (without EASE), a 1,266-fold improvement. The specificity of the ELISA assays was demonstrated by control experiments where the target molecule was missing (Supplementary Fig. 14) or high-concentration non-target analytes were introduced (Supplementary Fig. 15). The robustness of the EASE-aided ELISA was further demonstrated with another four disease biomarkers: HIV capsid antigen p24 (HIV p24), kallikrein 3 (KLK3), c-reactive protein (CRP) and vascular endothelial growth factor (VEGF). Their calculated values of LODs with ELISA-EASE are 2.87 fg ml-1, 0.31 pg ml-1, 0.24 pg ml-1 and 11.5 fg ml-1 (Fig. 5d and Supplementary Fig. 16), respectively, representing an average 1,217-fold improvement over the conventional ELISA (Fig. 5e).

Building on the remarkable sensitivity enhancement achieved on an ELISA plate, the HIV biomarker p24 was further tested using lateral flow strips (Supplementary Fig. 17), a simple and low-cost bioassay, with a similar detection mechanism to that of ELISA (conducted in porous membranes rather than on flat surfaces), but is better suited for point-of-care diagnosis32. As shown in Fig. 5f and Supplementary Fig. 18, the strip test detects p24 at a concentration of 10 ng ml-1 (spiked HIV p24 antigen in phosphate-buffered saline (PBS)) under conventional conditions (using DAB as the substrate), whereas EASE can improve it by at least 1,000 times (10 pg ml-1), enabling ultrasensitive detection of HIV antigens with the naked eye.

With the EASE platform validated in the above bioassays, we moved on to real biological problems that require much-improved detection sensitivity to resolve. We demonstrate the power of EASE assay in detection of four biologically significant low-abundance targets: HIV in blood, in situ protein detection in brain samples, Zika virus (ZIKV) imaging in the placenta, and programmed death-ligand 1 (PD-L1) in tumours. Early diagnosis of HIV using ELISA-EASE. Early diagnosis of HIV provides timely access to treatments, thus improving patient outcome and quality of life33. A study of ~16,000 patients on anti-retroviral treatment (ART) shows substantial numbers beginning ART later than recommended due to late diagnosis34. For adults, early knowledge of infection also leads to behavioural changes that can reduce 30% new infections per year35. For children and infants, earlier diagnosis is even more important. At this time, over 200,000 children acquire HIV worldwide every year, with most cases due to transmission to infants from their mothers during pregnancy, birth or breastfeeding. HIV progresses rapidly in infants—without treatment they can die within months—but early treatment by ART greatly improves outcomes. Large-scale programs (such as President’s Emergency Plan for AIDS Relief (PEPFAR)) have made ART available, but early diagnosis remains a barrier to treatment.

HIV can be detected in blood or plasma by (1) nucleic acid amplification tests (NAAT), (2) lab-based immunoassays (ELISA), or (3) rapid tests (that are similar to pregnancy tests). In general, NAAT is sensitive, but very expensive, and rapid testing is of low performance and cannot be used in infants (often showing false positives due to antibodies from the mother). For decades, ELISA has been the workhorse laboratory HIV test, and is the first test in the Centers for Disease Control and Prevention (CDC) testing algorithm. The sensitivity of ELISA, however, has been a major limitation (even for the most recent generation, detections are made around two weeks after infection). Pushing the detection to an earlier time is a major clinical need.

We used the ELISA assay to detect p24 antigen (the key protein that makes up most of the viral capsid) in real patient sera samples. Quantitative measurement of its presence in serum is highly valuable to blood screening, diagnosis of infection, and monitoring treatment responses36. As recommended by the CDC, HIV p24 antigen detection using ELISA offers a number of advantages such as reduced cost, fast assay times, and applicability in low-resource settings. On the other hand, it is commonly acknowledged that p24 ELISA is an insensitive assay with an LOD of approximately 10 pg ml-1, limiting its use to samples with high viral loads37.
Layering the EASE technology on top, however, can convert the ordinary detection sensitivity of ELISA to extraordinary, as shown in the above ELISA studies conducted in buffers.

To demonstrate its ability in clinical diagnosis, sera from 24 donors (obtained from SeraCare, Milford, Massachussetts, and Discovery Life Sciences, Los Osos, California) were assayed with

Figure 5 | ELISA and lateral flow strips with EASE. a, Schematic of the signal enhancement process. Following target detection, a layer of PDA is coated around the target molecule, which allows a large number of HRP to adsorb. These HRP molecules, in turn, catalyse the substrate (TMB) conversion at a significantly enhanced rate. b, Visual assessment of the detection sensitivity of ELISA-EASE using mouse IgG as a model target in comparison with conventional ELISA. Coloured solutions are visualized in ELISA-EASE wells at target concentrations as low as 10^{-13} g ml$^{-1}$, while the conventional assay only produces detectable colours at 10^{-8} to 10^{-9} g ml$^{-1}$ concentration range. c, Quantitative comparison using values obtained from a plate reader shows the assay response over the full target concentration range (left) and a zoomed-in range close to the LODs (right). Improvement of approximately three orders of magnitude is seen. Error bars, s.d. over three replicates. d, ELISA working curves for four targets (HIV p24, KLK3, CRP and VEGF) with or without EASE. Error bars, s.d. over three replicates. e, The average LOD improvement for all four targets is around 1,200-fold. f, Strip tests of HIV p24 with or without EASE. Positive signals (indicated by the red arrow) are observed at 10 ng ml$^{-1}$ and 10 pg ml$^{-1}$ for the EASE strips, but the conventional strips can only detect down to 10 ng ml$^{-1}$. Each strip represents three replicates.
either standard ELISA or ELISA-EASE. Among these samples, four were obtained from HIV-infected patients (PRB 946, PRB 949, PRB 953 and PRB 977) whose viral loads had been determined using PCR (data from SeraCare); in addition, 20 HIV-negative donors were included to exclude biased results due to nonspecific interactions (Supplementary Fig. 19). The analytical LOD was determined by spiking HIV p24 antigen of various concentrations into plasma. Results from 9 repeated runs performed on 9 consecutive days show a highly consistent value (Fig. 6a and Supplementary Fig. 20) of 2.84 fg ml−1 for ELISA-EASE, representing a 1,060-fold improvement over standard ELISA. Theoretical calculation indicates that this level of protein detection corresponds to samples contain approximately 56 copies ml−1 of RNA or 28 ml−1 viral particles45, on par with the sensitivity of PCR, which requires sophisticated instruments and a long assay time. Indeed, when ELISA-EASE was applied to the HIV-infected patient samples (multiple bleeds obtained on different dates), it was able to pick up the viral infection on average 10 days earlier (similarly to PCR) than the standard ELISA assay (Table 1, Fig. 1b and Supplementary Fig. 21). This remarkable sensitivity potentially can provide a precious time window for treating other time-sensitive infections (such as viral and bacterial infections) and diseases (such as heart diseases).

Figure 6 | Early diagnosis of HIV in patient blood samples using ELISA-EASE.

a. LOD values (obtained in nine runs performed on different days) of ELISA with or without EASE for detection of HIV p24 spiked in plasma. The average LOD of ELISA with EASE is 2.84 fg ml−1, 1,060-fold lower than that of the standard ELISA. **b.** The first day (day 0 is the day of the first bleed) when HIV infection becomes detectable for the four sera samples. Positive detection is made within the first week for ELISA-EASE and PCR, whereas the conventional ELISA detects infection 2–3 weeks later when the viral load is high.

Table 1 | Viral load assessment using ELISA, ELISA-EASE and PCR in four HIV-infected patients’ plasma samples.

Patient ID	Phlebotomy day	EASE (pg ml−1)	Standard (pg ml−1)
PRB 946	0	0.006*	↓
4†	0.807	↓	
7	26.86	19.22	
11	39.7	50.63	
PRB 949	0	↓	
6†	0.029*	↓	
9	0.561	↓	
18	22.05	17.22*	
PRB 953	0†	0.043*	↓
3	1.32	↓	
7	23.36	16.01*	
10	39.99	50.97	
PRB 977	0†	0.009*	↓
10†	0.121	↓	
13	>100	>100*	
15	>100	>100	

Serial bleeds were collected from individual patients over a course of 18 days during the development of HIV infection (first bleed is day 0). ELISA-EASE detects HIV p24 as early as PCR does. The arrow indicates a value below the quantitation range. *First detectable date using ELISA. †First detectable day using PCR.

Direct imaging of ZIKV infection in the placenta using IF-EASE. Zika is a mosquito-borne flavivirus initially identified in the 1950s in monkeys. Its recent outbreak in Brazil has been correlated with cases of fetal microcephaly as well as Guillain-Barré, raising major global concerns. While there is now scientific consensus (including our own work48) that ZIKV indeed causes fetal brain injury, the mechanism of how it occurs is largely unknown. Quantitative PCR (qPCR) and deep sequencing are capable of identifying ZIKV in the placenta, but cannot elucidate the means by which ZIKV crosses the placental barrier due to their inability to track ZIKV through conventional immunohistologic analysis. The EASE technology enabled direct visualization of ZIKV-infected cells within the
placental chorionic villus core of pregnant nonhuman primates. As shown in Fig. 7a and Supplementary Fig. 23, the infected cells appear in the mesenchymal core in close proximity to the cytotrophoblast cell layer. The EASE technology opens a new avenue towards understanding fetal brain injury and microcephaly caused by ZIKV, and potentially preventing mother-to-child transmission.

PD-L1 imaging in patient tumour specimens using IF-EASE. PD-L1, also known as CD-274 or B7-H1, is a cell surface ligand that binds and triggers PD-1, a potent immune-inhibitory receptor on T cells. Monoclonal antibodies that block this interaction by binding to either PD-L1 or PD-1 have proven to be efficacious immune-oncology agents in a variety of tumour types. Immunohistochemical assays for detecting PD-L1+ cells within tumours have also been approved as companion diagnostic tests for patient selection in limited therapeutic indications, but broader application of anti-PDL1 IHC is limited by both biological and technical factors. PD-L1 expression varies broadly across a wide range and levels below the detection thresholds of current IHC assays still have biologic significance. Therefore, we set out to test whether EASE can be used to detect low-level PD-L1 signals while preserving good signal-to-noise ratios, an unmet clinical need for immunotherapy. Clinical formalin-fixed paraffin-embedded (FFPE) pancreatic tumour specimens with low PD-L1 expression were used to test the performance of IF-EASE against that of conventional IF. As shown in Fig. 7b and Supplementary Fig. 24, specific detection of PD-L1 is readily achieved with IF-EASE, whereas the signals detected by conventional IF technology are at extremely low levels. These exciting results address the clinical need of detecting low-abundance targets in FFPE tissues (which have a high autofluorescence background), proving the feasibility for future large-scale studies.

Discussion

Since the invention of a simple immersion procedure for slow coating of a PDA layer onto virtually any surface, this mussel-inspired surface chemistry has inspired scientists to explore a wide variety of applications such as sensing, tissue engineering and bioimaging. Similarly to the oxidase-catalysed rapid melanin deposition found in invertebrates, we found that HRP can speed up PDA polymerization by approximately 300-fold. More importantly, due to the excellent reactivity of PDA to primary amines, the polymer chains quickly crosslink with nearby biomolecules (rich in many reactive chemical groups including NH₂), forming a localized network for immobilization of a large number of reporter molecules and nanoparticles (as long as they have accessible amine groups) for signal enhancement while preserving the spatial information. This technology, dubbed EASE, has been studied in various contexts including immunohistochemistry and immunofluorescence for single-cell imaging, ELISA, lateral flow strips and suspension microarrays. Consistently, it improves bio-imaging and bio-detection sensitivity by at least 2–3 orders of magnitude regardless of the assay format. Most significantly, EASE achieves this remarkable sensitivity without changing the design of common assay formats, or requiring specialized equipment and reagents, in contrast to most ultrasensitive detection technologies invented in the past 10–20 years. Therefore, EASE can be directly incorporated into the current biological and clinical infrastructure for immediate impact.

The flexibility of this general technology has allowed us to go beyond technology development and tackle a number of real biological problems that cannot be solved (or, at least, are extremely difficult to solve) using conventional biosassays. We applied EASE to ELISA-based detection of HIV infection in patient blood samples. For comparison, the measurements were benchmarked against the gold-standard assays, standard ELISA and PCR. Our results show that the EASE-enabled ELISA outperforms the standard ELISA by >1,000-fold in sensitivity, which translates into the detection of 2–3 viruses per 100 μl of blood. This sensitivity is similar to that of PCR-based approaches that allow HIV detection 1–2 weeks earlier, but ELISA is faster and cheaper to perform, and compatible with point-of-care (POC) applications (as a costly thermocycler is not needed). Furthermore, EASE is a robust process that can be applied to a variety of real biological and clinical problems, such as brain biology, virus imaging in placenta, and PD-L1 imaging for immunotherapy. We envision that no (or only minor) developments are needed for in situ virus imaging in placenta, and PD-L1 imaging for immunotherapy. We envision that no (or only minor) developments are needed for broad technology adoption and application, such as early detection of viruses and bacteria without culture, counting disease biomarkers of low abundance, and monitoring treatment responses.

Methods

Preparation of dopamine solution for EASE. Dopamine hydrochloride powder (15 mg) was dissolved rapidly in tris buffer (10 mM, 3 ml) at pH 8.5, followed by quick addition of H₂O₂ (1M, 60 μl). The mixture solution was used fresh.

Polydopamine deposition. Small droplets of HRP (0.1 μg) in PBS buffer and/or BSA (15 μg) in PBS buffer were placed on nitrocellulose membrane and air-dried.
for 1 hour at room temperature. The membranes were further exposed to the EASE assay for 1 minute and washed with PBS for 30 seconds.

Cell culture and fixation. HELa cells were cultured in minimum essential medium (MEM) with 1-glutamine, 10% fetal bovine serum, and antibiotics (60 μg ml⁻¹ streptomycin and 60 U ml⁻¹ penicillin) in glass-bottom 24-well plates to 60–80% confluency. Before IF staining, cells were rinsed with 1× tran-suferred saline (TBS), fixed with 4% paraformaldehyde in TBS for 30 minutes, permeabilized with 0.2% DTT (dodecylthretilmylammmonium chloride) in TBS for 30 minutes followed by 0.25% Triton-X100/TBS for 5 minutes and washed 5 times with TBS (for 3 minutes each time). The fixed cells were stored in 1× PBS at 4 °C.

Cell imaging and signal analysis. An Olympus IX-71 inverted fluorescence microscope equipped with a true-colour charge-coupled device (QColor5, Olympus), an LSM 510 Meta confocal microscope (Zeiss) and a hyperspectral imaging camera (Nuance, 420–720 nm spectral range, CRi, now Advanced Molecular Vision) were used for cell imaging. Low-magnification images were obtained with a 20× objective (NA 0.75, Olympus) and high-magnification images with 40× and 100× oil-immersion objectives (NA 1.40, Olympus). A wide UV filter cube (340–420 nm pass excitation, 420 nm long-pass emission, Olympus) was used for imaging of all QD probes. All images were acquired with cells attached to the coverslip bottom of the well and immersed in PBS without anti-fading reagents. For quantitative comparisons, the same exposure time and gain were applied during imaging. Nuance image analysis software and ImageJ were used to identify regions of interest that included stained cells and excluded ‘blank’ cell-free areas. Average fluorescence intensity throughout all regions of interest within a single image was recorded. Identical analysis was performed on 4 images (containing ~40 cells per field of view) taken from different areas of the sample to obtain an overall average staining intensity and assess signal variation.

IHC/IF-EASE single-cell imaging. Before staining, the endogenous peroxidase activity of cells was quenched with 3% H₂O₂ solution. Cells were first blocked with 2% BSA/0.1% casein in 1× PBS for 30 minutes. Rabbit anti-lamin A IgG (L1293, Sigma–Aldrich) or anti-HSP90 IgG (SAB4300541, Sigma–Aldrich) diluted in PBS buffer containing 6% BSA was added to the cells. After 1 hour incubation, cells were washed 3 times (5 minutes each) with PBS containing 2% BSA, followed by another 1 hour incubation with goat anti-rabbit IgG (H+L) HRP 2° Ab (RA20939, ThermoFisher). Unbound antibodies were washed away with PBS with 2% BSA (5 min x 3), and fresh enzyme substrate (dopamine or DAB) was added to cells for 15 minutes incubation. The ideal staining result is a strong chromogen signal from interested target locations with low nonspecific signals in the background. To characterize the staining stability after storage, the stained cells were stored in 1× PBS at 4 °C, and washed with fresh PBS every 6 days. Images were captured every three weeks on the same cell subset with the same exposure and gain. For immunofluorescence imaging with QDs, after the PDA development step, amine-functionalized PEG-coated QDs (10 nm) were incubated with cells for 1 hour.

Preparation of antigen-coated fluorescent beads. IgG purified from mouse and rabbit serum were covalently linked to the surface of yellow and green fluorescent beads, via 2-step carboxylic group-mediated crosslinking between the carboxyl groups on the bead surface and the primary amines on the IgG. Briefly, fluorescent beads were first washed and suspended in MES buffer (pH 4.8) with 0.01% Tween-20 at 0.1 mM (~10⁶ beads ml⁻¹) and activated for 15 minutes following addition of 10 μl of 1× 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC) and 10 μl of N-hydroxysulfosuccinimid (sulfo-NHS). The activated beads were washed by centrifugation (5,000g, 2 min) twice using 50 mM borate buffer (pH 8.5) with 0.01% Tween-20 to remove excess crosslinkers and then incubated with IgG (2.5 mg ml⁻¹) in borate buffer with 0.01% Tween-20 for 6 hours. The resulting IgG-coated beads were washed 3 times to remove excess IgG, resuspended in PBS (with 0.5% BSA), and stored at 4 °C.

Suspension microarray with EASE. Biotinylated goat anti-mouse and goat anti-rabbit IgGs were detected by the antibody-coated green and yellow beads. PBS containing 0.5% BSA was used as incubation and blocking buffer throughout the experiment. All incubation steps were carried out at room temperature under gentle rotation. All washing steps were done by centrifuging down the microbeads at 3,000 g for 2 minutes. Each microbead type was resuspended in 100 μl PBS at a final concentration of 1×10⁶ beads ml⁻¹. The beads were first incubated in the blocking buffer for 30 minutes. Biotinylated anti-mouse or -rabbit IgGs were added to the bead solution, incubated for 30 minutes, washed 3 times with PBS (0.5% BSA), and resuspended in 100 μl buffer. Then HRP-streptavidin probes (1,300 dilution) were added to the bead solution, incubated for 30 minutes, washed 3 times with PBS (0.5% BSA), resuspended in 100 μl dopamine solution for EASE, followed by 15 min incubation. The microbeads were washed another 3 times in PBS-free PBS, and mixed with amine-functionalizedPEG-coated QDs (1 nm final concentration) for a 1 hour incubation. At the end of QD incubation, the beads were washed 5 times with distilled water and concentrated in 10 μl water for microscopy examination. Hyper-spectral imaging camera (Nuance, 420–720 nm spectral range, CRi, now Advanced Molecular Vision) and software were used to unmix and quantify fluorescence signal components. False-colour composite images were obtained by merging individual channels. For quantitative analysis, Nuance image analysis software was used to automatically identify regions of interest that included QD labelling. Identical analysis was performed on 5 images (containing at least 20 beads per field of view). High-throughput quantitative analysis was achieved on a LSR-II flow cytometer (BD Biosciences). For each sample, at least 5,000 beads were counted. The flow cytometry data was analysed with FlowJo 9.3.3 (TreeStar).

ELISA-EASE. Mouse IgG, HIV p24, KLK3, CRP and VEGF (commercial kits purchased from Abcam (ab151276) or R&D Systems (DHPP40; DKK300; DCP200; DCRP00)) were used as model targets for the ELISA experiments. 96-well plates coated with capture antibodies were first blocked with PBS containing 2% BSA. 200 μl samples with serial dilutions and control samples were added into different wells. The wells were covered with adhesive strips and incubated for 2 hours at room temperature, washed 4 times, incubated with Ab–HRP conjugates for 2 hours at room temperature, washed 4 times with PBS (6% BSA), incubated with dopamine solution for 15 minutes, washed 3 times with PBS, incubated with HRP (1 nM) in PBS for 1 hour, and washed 4 times with PBS (6% BSA). 200 μl of the substrate solution was added to each well and the reaction was quenched after 20 min incubation in dark. Absorbance at 450 nm (optical density) was measured using an Infinite M 200 plate reader (Tecan). The results were compared with those obtained with conventional ELISA assays.

Lateral flow test-EASE. The strip unit, BioDot ZX1010 (BioDot), is equipped with 4 frontline dispensers. Reagents (capture antibody) to be stripped were aspirated through the end of the frontline dispenser. The nitrocellulose membrane (Sartorius CN95) was placed on the stage of the stripper and secured, and then the frontline dispensers were adjusted to the appropriate position above the nitrocellulose membrane. The stripper was programmed to release the reagents at a rate of 1 μl min⁻¹. The membrane was placed in a forced air oven at 37 °C for 10 days before coming into desiccated environment. One big strip of membrane was placed on a backing card (DCN MIBA-020), and then the wick (GE Healthcare, CF5) was laid over the nitrocellulose membrane with a 2 mm overlap. The completed card was placed in the staging area of the guillotine strip cutter (Kinbio ZQ200), and cut into 4-mm-wide strips before being stored in Mylar bags that are sealed shut after including desiccant packs until use. The p24 was used as a model target for the lateral flow test. Capturing antibodies (HIV p24 antibody) were immobilized onto nitrocellulose membrane. The membrane was blocked with 0.5% tween-20/2% BSA in PBS for 30 minutes. The membrane was then exposed to HIV p24 sample solutions (10 min). After washing (3 times), the strips were treated with HIV p24 antibody–HRP conjugates for 30 minutes and washed another 3 times. DAB was used as the enzyme substrate for 10 min colour development.

RNA interference. GAPDH expression knockdown was done by transfecting siRNA targeting GAPDH into HeLa cells. Annotated siRNA with 3’T- overhang was purchased from IDT. The sense strand sequence is 5’-CAUACUCCUGGCUCUACUTT-3’. HeLa cells were grown in a 10 cm tissue culture (TC)-treated dish, trypsinized, and mixed in suspension with culture medium containing 1% transfection reagent (Dharmacon). The cells (500 μl suspension per well) were then seeded into a glass-bottom 24-well plate, and incubated for 36 or 60 hours. Following RNAi, the cells were processed for staining using IF-EASE. The primary antibody used was anti-GAPDH (rabbit, ab9545, Sigma–Aldrich).

Histology preparation of brain tissues for CRFR1 staining. Mice were deeply anesthetized with 50 mg kg⁻¹ of Beuthanasia-D and transcardially perfused with PBS, followed by 4% paraformaldehyde. Whole brain tissue was dissected, fixed overnight in 4% paraformaldehyde, and cryoprotected by soaking in a 30% sucrose solution for 48 hours. The brains were flash frozen in OCT and stored at −80 °C. The frozen brains were then cryosectioned to 30-μm-thick sections and stored in 1× PBS with 0.1% NaAz before immuno staining.

CRFR1 IF staining in brain sections. Coronal 30 μm sections were selected based on a reference atlas (Franklin and Paxinos) and analysed for protein expression. Primary antibody against CRFR1 (Novus Biologicals, cat. no. NSL778) was diluted 1:100. Cy3- and HRP-labelled secondary antibodies (donkey anti-rabbit, cat. no. NSL176) were diluted 1:100.
Jackson ImmunoResearch, and goat anti-rabbit) were diluted 1:250. Sections were incubated in 3% hydrogen peroxide 1x TBS buffer (10 min) to quench the intrinsic peroxide in tissue, washed with 1x TBS for 10 minutes, and blocked with 1x TBST (TBS + 0.3% Triton X100) with 3% donkey serum for 60 minutes. The blocked sections were stained with the primary antibody diluted in the blocking buffer overnight, washed three times in 1x TBS for 10 minutes, and incubated in Cy3- or HRP-conjugated secondary antibodies for 1 hour at room temperature. IF-EASE were applied as described above (amine-Cy3 was used as the reactive fluorophore). The sections were washed three more times in 1x TBS and mounted.

Immunostaining of ZIKV-infected placenta. Placental samples were collected from pregnant pigtail macaques (Macaca nemestrina) that were inoculated with ZIKV (strain FSS1925, Cambodia) or from a normal pregnancy. Formaldehyde-fixed sections of frozen placental chorionic villi were stained using both conventional IF and IF-EASE. The primary antibody (ZIKV E protein Clone ZV-13, Diamond lab) was diluted 1:200. Other reagents such as the labelled secondary antibodies as well as the staining protocol were the same as the ones described for the CRF1R experiments. Healthy control was used for studying the specificity of IF-EASE. Adjacent tissue slides were used for all staining conditions.

PD-L1 immunostaining of pancreatic tumour specimens. The FFPE pancreatic tumour tissue specimens from two patients (SU-09-21157; SU-10-26808) were deparaffinized by washing the slides with xylene (7 min, 3 times), 100% ethanol (2 min, twice), 95% ethanol (2 min, twice), 70% ethanol (2 min, twice) and deionised water (2 min, twice). The sections were then incubated in 3% H2O2, in 1x TBS buffer (30 min) to quench the intrinsic peroxide. Antigen retrieval was performed by incubating the sections with the Trilogy antigen retrieval buffer under high pressure (15 min), cooling down (20 min), and washing with 1x TBS (5 min, 2 times). The sections were subsequently stained using both conventional IF and IF-EASE. The antibodies used are the same as described immediately above except the primary antibody was mouse anti-PD-L1 (1:150 dilution, Cell Signaling Technology, ref. 29122S). Adjacent tissue slides were used for all staining conditions.

Data availability. The authors declare that all data supporting the findings of this study are available within the paper and its Supplementary Information.

Received 21 October 2016; accepted 2 May 2017; published 5 June 2017

References
1. Howes, P. D., Chandraawati, R. & Stevens, M. M. Colloidal nanoparticles as advanced biological sensors. Science 346, 1247390 (2014).
2. Chan, W. C. & Nie, S. Quantum dot bioconjugates for ultrasmallscale nonisotopic detection. Science 281, 2016–2018 (1998).
3. Kelley, S. O. et al. Advancing the speed, sensitivity and accuracy of biomolecular detection using multi-length-scale engineering. Nat. Nanotechnol. 9, 969–980 (2014).
4. Nam, J.-M., Thaxton, C. S. & Mirkin, C. A. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301, 1884–1886 (2003).
5. Kosaka, P. M. et al. Detection of cancer biomarkers in serum using a hybrid mechanical and optoplasmic nanosensor. Nat. Nanotechnol. 9, 1047–1053 (2014).
6. Rodriguez-Lorenzo, L., de La Rica, R., Alvarez-Puebla, R. A., Liz-Marzan, L. M. & Stevens, M. M. Plasmic nanosensors with inverse sensitivity by means of enzyme-guided crystal growth. Nat. Mater. 11, 604–607 (2012).
7. He, L., Ozdemir, S. K., Zhu, J., Kim, W. & Yang, L. Detecting single viruses and nanoparticles using whispering gallery microlasers. Nat. Nanotechnol. 6, 428–432 (2011).
8. Thomas, R. K. et al. Sensitive mutation detection in heterogeneous cancer specimens by massively parallel picoliter reactor sequencing. Nat. Med. 12, 852–855 (2006).
9. Zheng, G., Patolsky, F., Cui, Y., Wang, W. U. & Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 23, 1194–1199 (2005).
10. Wu, G. et al. Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nat. Biotechnol. 19, 856–860 (2001).
11. Schallmeiner, E. et al. Sensitive protein detection via triple-binder proximity ligation assays. Nat. Methods 4, 135–137 (2007).
12. Watanabe, R. et al. Arrayed lipid bilayer chambers allow single-molecule analysis of membrane transporter activity. Nat. Commun. 5, 4519 (2014).
13. Ma, W. et al. Attomolar DNA detection with chiral nanorod assemblies. Nat. Commun. 4, 2689 (2013).
14. Huan, J. B., Devaraj, N. K., Hilderbrand, S. A., Lee, H. & Weissleder, R. Bioorthogonal chemistry amplies nanoparticle binding and enhances the sensitivity of cell detection. Nat. Nanotechnol. 5, 660–665 (2010).
15. Vollmer, F. & Arnold, S. Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nat. Methods 5, 591–598 (2008).
47. Weathington, J. M. & Cooke, B. M. Corticotropin-releasing factor receptor binding in the amygdala changes across puberty in a sex-specific manner. Endocrinol. 153, 5701–5705 (2012).
48. Waldorf, K. M. A. et al. Fetal brain lesions after subcutaneous inoculation of Zika virus in a pregnant nonhuman primate. Nat. Med. 22, 1256–1259 (2016).
49. Keir, M. E. et al. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 26, 677–704 (2008).
50. Brahmer, J. R. et al. Phase I study of single-agent anti–programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol. 28, 3167–3175 (2010).
51. Hamid, O. et al. Safety and tumor responses with lambrolizumab (anti–PD-1) in melanoma. New Engl. J. Med. 369, 134–144 (2013).
52. Garon, E. B. et al. Pembrolizumab for the treatment of non-small-cell lung cancer. New Engl. J. Med. 372, 2018–2028 (2015).
53. Rizvi, N. A. et al. Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol. 16, 257–265 (2015).
54. Nghiem, P. T. et al. PD-1 blockade with pembrolizumab in advanced Merkel-cell carcinoma. New Engl. J. Med. 374, 2542–2552 (2016).
55. Wang, X. et al. PD-L1 expression in human cancers and its association with clinical outcomes. Oncotarg. Ther. 9, 5025–5039 (2016).
56. Liu, Y., Ai, K. & Lu, L. Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 114, 5057–5115 (2014).
57. Li, J. et al. Stably doped conducting polymer nanoshells by surface initiated polymerization. Nano Lett. 15, 8217–8222 (2015).
58. Sanford, C. A. et al. A central amygdala CRF circuit facilitates learning about weak threats. Neuron 93, 164–178 (2017).
59. Zhao, H. et al. Structural basis of Zika virus-specific antibody protection. Cell 166, 1016–1027 (2016).

Acknowledgements
This work was supported in part by the NIH (R21CA192985, R01AI100989, AI083019, AI104002, and AI060389) and the Department of Bioengineering at the University of Washington. J.L. thanks the Howard Hughes Medical Institute for a student fellowship. We are also grateful to B. Lutz and D. Leon for help with the lateral flow test, and P. Zrazhevskiy for discussions on immunostaining.

Author contributions
J.L. and X.G. conceived the idea and designed the project. J.L. and W.T. performed the majority of the experiments, with help from M.A.B. and L.S.Z. for CRF imaging in the brain, from M.A.D., K.M.A.W., M.G. and L.R. for ZIKA imaging, and R.H.P. for PD-L1 imaging. All authors were involved in data analysis. J.L., L.S.Z., K.M.A.W., M.G., L.R., R.H.P. and X.G. wrote the paper.

Additional information
Supplementary information is available for this paper.
Reprints and permissions information is available at www.nature.com/reprints.
Correspondence and requests for materials should be addressed to X.G.
How to cite this article: Li, J. et al. Dramatic enhancement of the detection limits of bioassays via ultrafast deposition of polydopamine. Nat. Biomed. Eng. 1, 0082 (2017).
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Competing interests
The authors declare no competing financial interests.