Reduced order modeling of nonlinear microstructures through Proper Orthogonal Decomposition

G. Gobat1, A. Opreni1, S. Fresca2, A. Manzoni2, and A. Frangi1

1Dept. of Civil and Environmental Engineering, Politecnico di Milano, P.za Leonardo da Vinci 32, 20133 Milano, Italy
2MOX - Dept. of Mathematics, Politecnico di Milano, P.za Leonardo da Vinci 32, 20133 Milano, Italy

Abstract

We apply the Proper Orthogonal Decomposition (POD) method for the efficient simulation of several scenarios undergone by Micro-Electro-Mechanical-Systems, involving nonlinearities of geometric and electrostatic nature. The former type of nonlinearity, associated to the large displacements of the devices, leads to polynomial terms up to cubic order that are reduced through exact projection onto a low-dimensional subspace spanned by the Proper Orthogonal Modes (POMs). On the contrary, electrostatic nonlinearities are modeled resorting to precomputed manifolds in terms of the amplitudes of the electrically active POMs. We extensively test the reliability of the assumed linear trial space in challenging applications focusing on resonators, micromirrors and arches also displaying internal resonances. We discuss several options to generate the matrix of snapshots using both classical time marching schemes and more advanced Harmonic Balance (HB) approaches. Furthermore, we propose a comparison between the periodic orbits computed with POD and the invariant manifold approximated with Direct Parametrization approaches, further stressing the reliability of the technique and its remarkable predictive capabilities, e.g., in terms of estimation of the frequency response function of selected output quantities of interest.

1 Introduction

Although model order reduction methods for structures experiencing large-amplitude vibrations with geometric nonlinearities have been investigated for a long time [1, 2, 3, 4], they have been only recently applied to the analysis of Micro-Electro-Mechanical Systems (MEMS), a class of devices with profound and increasing impact in the consumer and automotive market [5, 6]. MEMS structures are generally actuated near resonance and are subjected to relatively large transformations. These effects are strongly enhanced by the fact that MEMS are monolithic devices often packaged in near-vacuum, thus limiting dissipation to negligible levels. As a consequence, they show highly nonlinear dynamical features that are rarely observed at the macro scale, ranging from jump phenomena [7], to bifurcations of solutions [8] (e.g. bistability [9]), internal resonances and saturation effects [10, 11, 12, 13], self-induced parametric amplification [14] and frequency combs [15, 16]. Furthermore, the nonlinear properties of MEMS can be tailored to yield performance that would not be accessible operating in the linear regime [17]. Accurate and predictive modeling needs to account for all these aspects.
However, relying on Full Order Models (FOMs) for the numerical simulation of the structural behavior of MEMS poses severe computational challenges that have been only partially solved so far. Generally, one is interested primarily in the steady-state periodic response of MEMS as a function of the actuation intensity and frequency, i.e., the so-called Frequency Response Function (FRF) of selected output quantities of interest like, e.g., the maximum midspan deflection of a beam, or the rotation amplitude of a micromirror. Moreover, the actuation can be electrostatic, piezoelectric, or magnetic, according to the considered applications, hence introducing additional sources of nonlinearity. Finally, because of the large quality factors involved, ultimately leading to long transients, time marching schemes are hardly computationally affordable. Recent advancements on the topic have enabled FOMs simulations within reasonable computational times \cite{18, 19}. Geometrical and inertial nonlinearities can be modeled using Harmonic Balance (HB) approaches or shooting techniques, which directly compute the periodic response. However, these approaches entail huge computational costs when applied to large Finite Element Method (FEM) models of MEMS. This motivates the interest in developing rapid and reliable Reduced Order Models (ROMs) that ensure a fast and accurate estimation of the FRF of structures within time spans that are compatible with industrial design requirements.

A large family of ROMs, which we can refer to as linear ROMs, gathers Galerkin projections onto low-dimensional linear subspaces. One of the simplest options is to use a selection of linear eigenmodes and resort to procedures like the STiffness Evaluation Procedure (STEP), first introduced in \cite{20} to compute coupling coefficients. However, as recently highlighted in \cite{21, 22}, its application to 3D FEM models is critical since it is mandatory to explicitly include all the coupled high frequency (e.g. axial, lateral contraction) linear modes which are usually difficult to identify and costly to compute. This issue has been overcome by the Implicit Condensation (IC) approach, which has been successfully applied to MEMS only recently \cite{5, 6, 23, 24}. In this case, a small subset of linear eigenmodes, known as master modes, is defined to span a stress manifold that statically condenses all the contributions of high frequency modes. However, when inertia nonlinearities play a major role or the frequencies of the slave modes are not well separated from the master ones, the method fails. Another linear ROM relies on Proper Orthogonal Decomposition (POD) \cite{2, 25, 26}, which this contribution focuses on. In this case, basis functions are computed in a data-driven manner, performing the singular value decomposition of a matrix of FOM solutions computed over time, and for suitably sampled parameter values; thanks to SVD, the most relevant contributions to explain the solution variability across the time span and the parameter space are selected, resorting to an energy measure. Later, a Galerkin projection onto the POD subspace allows us to generate a low-dimensional ROM, which we refer to as POD-Galerkin ROM. In this contribution, we show how this approach can overcome the limitations shown by other linear methods.

An alternative to linear ROMs is provided by a different class of methods, which we can refer to as nonlinear ROMs. Among them, a further classification can be proposed with respect to the assumptions used in their derivation. Modal Derivatives and the related Quadratic Manifold approach \cite{27, 28, 29, 30} try to define spaces of nonlinear basis functions with the key idea of taking into account the amplitude dependence of mode shapes and eigenfrequencies. However, these functions are assumed to be velocity independent, ultimately introducing model limitations similar to the IC approach.

On the other hand, truly nonlinear reduction methods start by defining a nonlinear relationship between the original coordinates and those of the reduced dynamics, hence providing
a more accurate treatment of the nonlinear trajectories and faster convergence with fewer master modes. This class of methods resorts to the concept of Nonlinear Normal Mode (NNM), whose study began with the pioneering work by Rosenberg [31]. In his work, the NNM was defined as a synchronous vibration of the system. This concept has been later generalized by the notion of invariant manifold [32, 33, 34, 35] and spectral submanifold [36, 37]. While the numerical computation of NNMs for large-scale FEM models has been tackled, e.g., in [38], the generation of ROMs based on the concept of NNM has been addressed so far for small systems with few degrees of freedom (dofs) and only in very recent contributions [39, 40] the technique has been applied to complex structures involving inertia and geometrical nonlinearities. However, its extension to multiphysics (e.g. electromechanics) has not been addressed yet, and poses severe computational challenges.

Early applications of POD [41, 2, 42] to elastic structures with distributed nonlinearities have put in evidence its optimality in the sense that it minimizes the average distance between the original signal and its reduced linear representation. Indeed, the linear nature of a POD-Galerkin approach can be considered as an advantage since few manipulations are needed to construct the ROM. Nevertheless, it also represents a drawback, because a single, global linear subspace might not be able in principle to describe the nonlinear invariant manifolds [43] which characterize mechanical structures. While applications of POD to MEMS [44, 45] have been so far mainly limited to linear mechanics, beam theory and optimization problems, in this contribution we focus on the application of POD to highly nonlinear problems, showing its accuracy and computational efficiency. In particular, different sources of nonlinearities are considered, dealing with large rotations, internal resonances (i.e. nonlinear coupling) and electrostatic forcing. The POD-Galerkin ROM is validated against FOM solutions, and its generalization capabilities over the space of parameters are assessed. In particular, the ROM dynamics is solved by resorting to numerical continuation and bifurcation analysis tools, which give an insight onto the underlying dynamics – being this latter usually difficult to access in the FOM case because of the high computational cost required. The POD-Galerkin ROM solution is also studied from the perspective of invariant manifold theory. In particular, we compare the periodic orbits obtained from the POD-Galerkin ROM and the invariant manifold approximated with the Direct Parametrization (DP) approach [40] applied to the corresponding FEM system, providing a detailed analysis unprecedented for large Finite Element Models.

The structure of the paper is as follows. After a short description of the POD-Galerkin framework in Section 2, we focus on a series of applications to MEMS modeled with the FEM, ranging from simple beam resonators to complex micromirrors and to arches displaying internal resonances, which put a strain on known techniques for geometrical nonlinearities. In the examples, we discuss the physical rationale behind the POD modeling capabilities, resorting to comparisons with the results from Direct Parametrization. We finally show that the POD-Galerkin ROM yields great promise also on coupled multiphysics applications where few or no alternatives are available.

2 Formulation

Let us consider the framework of structures subjected to large transformations and small strains. This is the operating range of most microsystems since they are often actuated at
resonance and large aspect ratios allow reaching large displacements within the linear elastic range of the material. In this framework, the Saint Venant-Kirchhoff constitutive model [46] is the most appropriate choice, and is given by

$$ S = A : E, $$

(1)

where S is the second Piola-Kirchhoff strain tensor, A the fourth-order elasticity tensor and E the Green-Lagrangian Strain tensor:

$$ E = \frac{1}{2} (\nabla d + \nabla^T d + \nabla^T d \cdot \nabla d) ; $$

(2)

here we denote by d the displacement field and by $\nabla (\cdot)$ the (material) gradient defined with respect to the reference configuration. The weak form of the linear momentum conservation law is:

$$ \int_{\Omega_0} \rho_0 \ddot{d} \cdot w \, d\Omega_0 + \int_{\Omega_0} P[d] : \nabla^T w \, d\Omega_0 = $$

$$ \int_{\Omega_0} \rho_0 F \cdot w \, d\Omega_0 + \int_{S_T} f \cdot w \, dS, \quad \forall w \in H^1_0(\Omega_0), $$

(3)

where the integrals are expressed in the reference configuration Ω_0 and \square denotes the time derivative. Here ρ_0 denotes the initial density, $P[d] = (1 + \nabla d) \cdot S$ the first Piola-Kirchhoff stress tensor, F the body forces per unit mass, f the surface tractions prescribed on the surface S_T and w the test velocity selected in $H^1_0(\Omega_0)$, i.e. the space of functions with finite energy that vanish on the portion $S_U \subset \partial \Omega_0$ where Dirichlet boundary conditions are prescribed. In our applications we assume that vanishing displacements are enforced on S_U. Within the present context, it is worth stressing that eq.(3) exactly accounts for geometric (elastic and inertia) nonlinearities, e.g., large rotations or nonlinear mode coupling.

The spatial discretization of eq.(3), e.g. by means of finite elements, also including a Rayleigh model damping term, yields to a system of coupled nonlinear differential equations of the following form:

$$ M \ddot{D} + C \dot{D} + K D + G(D, D) + H(D, D, D) = F(D, \beta, \omega, t), \quad t \in (0, T) $$

(4)

where the vector $D \in \mathbb{R}^n$ collects all unknown displacement nodal values, $M \in \mathbb{R}^{n \times n}$ is the mass matrix, $C = \omega_0/QM$ the Rayleigh model mass proportional damping matrix – considering a reference eigenfrequency ω_0 and a quality factor Q – and $F \in \mathbb{R}^n$ the nodal force vector which depends on the actuation intensity parameters β, the angular frequency of the actuation ω and in general also on D, e.g. in electromechanical applications. The internal force vector has been exactly decomposed in linear, quadratic, and cubic power terms of the displacement: $K \in \mathbb{R}^{n \times n}$ is the stiffness matrix related to the linearized system, while $G \in \mathbb{R}^n$ and $H \in \mathbb{R}^n$ are vectors given by monomials of second and third order, respectively. We stress that the components of these vectors can be expressed using an indicial notation

$$ G_i = \sum_{j,k=1}^{n} G_{ijk} D_j D_k, \quad H_i = \sum_{j,k,l=1}^{n} H_{ijkl} D_j D_k D_l, \quad i = 1, \ldots, n. $$

Equation (4) represents our high-fidelity, FOM which depends on the input parameters ω, β. The FOM can be solved in different ways and in the present work we consider two
alternatives: a time marching scheme, i.e. a nonlinear Newmark algorithm, and an HB solver as developed in [19]. It should be recalled that in resonating MEMS an important output of interest is the FRF in which a selected quantity, like the midspan deflection of a beam or the rotation of a micromirror, is plotted versus \(\omega \) for different \(\beta \). Indeed, the focus is on frequency stability for the following main reason: resonators operate close to a reference frequency where the behavior should be predictable. For instance, in micromirrors the stability of the motion is required to guarantee the performance during the line scanning process and predicting correctly the hardening and softening behavior is of paramount importance. As a consequence we are interested in the steady state response of the device. This is the direct output of HB approaches which express the solution as the sum of Fourier series. However, HB solvers are not standard in commercial codes and might not be easily accessible. Moreover, their cost rapidly increases with the size of the Fourier basis thus requiring dedicated computing facilities. On the contrary, time marching schemes are always available, but transients before reaching the steady state condition are often prohibitively long due to the large quality factors of MEMS. As a consequence the choice of the solver is in general a trade-off which strongly depends on the application at hand. Several examples are commented in Section 3 where details on the simulation settings are provided.

2.1 Reduced order modeling through POD

The first step in the construction of a POD-Galerkin ROM requires to generate a matrix \(X \in \mathbb{R}^{n \times m} \), whose \(m \) columns collect snapshots of the FOM solutions, obtained for different values of the parameters \(\omega, \beta \). If the FOM is solved by means of an HB approach, the snapshots for a given frequency are taken at regular intervals over one single period of the steady state response by reconstructing the displacement field starting from the Fourier coefficients. Otherwise, if time marching schemes are employed, several alternatives are indeed available according to whether snapshots are taken in a condition close to the steady state or not. The influence of these choices is extensively investigated in Section 3.

Next, the Singular Value Decomposition (SVD) of the matrix \(X \) is computed,

\[
X = U \Sigma V^T
\]

where the columns of the orthonormal matrix \(U \in \mathbb{R}^{m \times m} \) are the left singular vectors, often called Proper Orthogonal Modes (POMs) in the literature [2, 25, 26]; the columns of the orthonormal matrix \(V \in \mathbb{R}^{n \times n} \) are the right singular vectors. The diagonal elements of \(\Sigma \in \mathbb{R}^{m \times n} \) are the singular values of the matrix \(X \) and are conventionally ordered from the largest to the smallest. In particular, the rank of \(X \) is equal to the number of nonzero singular values, and the optimal rank-\(p \) approximation \(\tilde{X} \) of \(X \), in a least squares sense, is given by the rank-\(p \) SVD truncation

\[
\tilde{X} = \sum_{i=1}^{p} \sigma_i U_i V_i^T
\]

in which \(\sigma_i \) is the \(i \)-th singular value contained in the diagonal of \(\Sigma \), \(U_i \) is the \(i \)-th column of \(U \) and \(V_i \) is the \(i \)-th column of \(V \). See, e.g., [25] for further details. The SVD of \(X \) provides important insight into the energy distribution of the snapshots where the energy of
X is defined via the Frobenius norm:

\[
\varepsilon(X) = \|X\|_F^2 = \sum_{i=1}^{n} \sum_{j=1}^{m} x_{ij}^2 = \min(m,n) \sum_{k=1}^{\min(m,n)} \sigma_k^2.
\]

The POD approach selects the first \(p \) most energetic POMs to build the POD-Galerkin ROM approximation:

\[
D \approx \sum_{i=1}^{p} Q_i U_i
\]

where \(Q_i \) are the ROM generalized coordinates. Hence, the POD-Galerkin approximation of \(D \) in (5) is given by a linear combination of POD modes, and the resulting trial subspace is optimal in the sense that it captures the highest possible energy content among all possible linear subspaces for any prescribed dimension \(p \). Furthermore, the error in the snapshots approximation is related to the sum of the square of the singular values associated to the nonretained modes [25].

Once the linear trial POD subspace has been obtained, projecting the FOM (4) onto the POD subspace yields the structural dynamics geometric POD-Galerkin ROM, under the form of a \(p \)-dimensional nonlinear ODE system, whose solution provides the dynamics of the generalized coordinates:

\[
M_{POD} \ddot{Q} + C_{POD} \dot{Q} + K_{POD} Q + G_{POD}(Q, Q) + H_{POD}(Q, Q, Q) = F_{POD}(Q, \beta, \omega, t), \quad t \in (0, T)
\]

where

- \(M_{POD} = U^T M U \), \(C_{POD} = U^T C U \), \(K_{POD} = U^T K U \),
- \(F_{POD} = U^T F \), \(G_{POD} = g_{ijk} Q_j Q_k \), \(H_{POD} = h_{ijkl} Q_j Q_k Q_l \),

with \(M_{POD}, C_{POD}, K_{POD} \in \mathbb{R}^{p \times p} \). The computation of the vectors \(G_{POD} \) and \(H_{POD} \) entails \(O(p^3) \) and \(O(p^4) \) terms, respectively. Note that the coefficients \(g_{ijk} \) and \(h_{ijkl} \) can be pre-computed, and that the reduced problem can be assembled efficiently thanks to its polynomial nature, thus avoiding the use of hyper-reduction techniques such as the (discrete) empirical interpolation method [47, 48, 49].

2.2 Solution of the Reduced Order Model

One of the greatest benefits of generating a POD-Galerkin ROM as the one in eq.(6) is the possibility to compute directly periodic solutions and trace the full FRF, with both stable and unstable branches, by resorting to continuation codes either based on HB techniques or collocation approaches. Some well-known packages, suitable for small scale problems, are available in the literature. One of the most relevant examples is **Auto07p** [50], a package that uses collocation methods in **FORTRAN** to perform numerical continuation and bifurcation analysis. Among other tools we can mention **Manlab**, a **Matlab** package that uses HB method and Asymptotic Numerical Method [51, 52]; **Nvlib** that also exploits HB methods [53]; **COCO** that implements collocation methods and algorithms for bifurcation detection [54]. Another excellent package able to perform the continuation of ODEs is **BifurcationKit** [55], an emerging toolkit for Julia language that provides continuation methods for ODEs and PDEs. These
packages usually provide the ability to distinguish between stable and unstable branches, locate bifurcation points and follow alternative branches of the solution. We highlight that the same versatility is difficult to achieve with a FOM. Indeed, even if a HB formulation with continuation has been recently proposed in [18, 19] for large scale problems, computing times are not compatible with their application at the design or prototyping levels.

In this work, we compute solutions with Manlab, which has an impressive capability to perform accurate bifurcation analysis and to exploit the Asymptotic Expansion Method [56] by ensuring a good balance between computational time and accuracy, provided that the problem can be re-written in quadratic form.

2.3 POMs and reconstruction vectors in NNM

An important feature of an effective ROM is the capability to identify an invariant subspace for the system dynamics, i.e. trajectories initiated along the subspace remain within the subspace itself in the full order solution. In linear systems each mode defines an invariant plane in the phase space, hence linear projection methods as the modal decomposition provide an excellent tool for generating ROMs. On the other hand, in presence of geometric nonlinearities, invariance of modal subspaces is not guaranteed as underlined in past works, for instance by Amabili and Touzé [43] and Haller [57]. Indeed, the invariant manifold tangent at the origin to a given modal subspace is a curved hypersurface that requires nonlinear projection methods. In this framework, the parametrization method initially formulated by Haro and De la Lave [58, 59, 60] was recently applied to large scale finite element systems of mechanical structures [39, 40, 61] thanks to the Direct Parametrization approach. The fundamental idea of this class of methods is to parametrize the dynamics of the system along the invariant manifold associated to one of its eigenfunctions. This requires the introduction of a nonlinear change of coordinates between nodal displacements and the parametrization coordinates. Using the formulation proposed in [39], the nonlinear coordinates change for a single master-mode reduction in an undamped mechanical system is expressed as:

\[
D = \phi_m R + \hat{a} R^2 + \hat{b} S^2 + \hat{c} R^3 + \hat{u} RS^2 + O(|R, S|^4),
\]

where \(\phi_m\) denotes the eigenmode associated to the master mode. Here \(\hat{a}, \hat{b}, \hat{c},\) and \(\hat{u}\) are higher order reconstruction vectors used to map the parametrization coordinates \(R\) and \(S\) to the physical displacement \(D\). The reconstruction vectors in eq. (7) apply a correction with respect to a simple modal decomposition approach by accounting for the coupling between master and slave modes. As shown by Buza [57], the projection of the eigenfunctions of the system along quadratic reconstruction vectors provides a solid framework to identify the modes that better describe the curvature of the invariant manifold. This last result is the natural extension of what remarked by Amabili and Touzé [43] where the trial space identified by POD was interpreted as the best linear approximation of the nonlinear normal mode. The consequence is that, in order to properly build a ROM relying on methods such as POD, one needs to introduce also bases that allow a correct approximation of the manifold curvature. This is highlighted in the results section, where qualitative changes in the predicted structural response are obtained by adding PODs with apparent negligible energy contribution, however showing a high curvature related to the invariant manifold of the system. This effect can also be observed in their shape, which resembles that of the reconstruction vectors provided by the DP.
3 Purely mechanical applications

Four mechanical benchmark cases are here proposed to discuss the accuracy of POD-Galerkin ROMs: a doubly clamped beam, two micromirrors and a shallow arch. In all cases, FEM meshes are made of wedge quadratic elements ("extruded" isoparametric elements with 15 nodes). For each example we report in A the computation time required by the FOM, the offline and the online stages of the ROM.

3.1 Doubly clamped beam

Let us consider a doubly clamped beam of length \(L = 1000 \mu m \) with a rectangular cross-section of dimensions \(10 \mu m \times 24 \mu m \), as depicted in Fig.1.

![Doubly clamped beam](image)

Figure 1: Geometry and mesh of the doubly clamped beam, front view and cross-section

This academic example simulates realistic MEMS resonators like those analysed in [6]. A rather coarse mesh with 2607 nodes has been employed. Indeed, this example is used to discuss extensively the features of the ROM and every result is compared with reference FOM solutions that are affordable only with relatively coarse meshes. The beam is made of isotropic polysilicon [62], with density \(\rho = 2330 \text{Kg/m}^3 \), Young modulus \(E = 167 \text{GPa} \) and Poisson coefficient \(\nu = 0.22 \). We select a fixed quality factor \(Q = 50 \). The device vibrates according to its first bending mode at \(f_0 = 87141 \text{Hz} \). The first five eigenfrequencies are reported in Table 1.

Eigenmode	1	2	3	4	5
Frequency	87.141	208.45	240.03	470.10	572.18

Table 1: Doubly clamped beam: eigenfrequencies

The external excitation is provided by a body load proportional to the first eigenmode \(F = M\phi_1 \beta \cos(\omega t) \) with \(\beta \) load multiplier.

The training data can be generated with different methods and a variable number of snapshots. Since we aim at modeling the steady-state response of the system, HB solutions are the ideal candidates to generate representative data. In a first application, we consider a training dataset computed with HB and \(\beta = 5 \mu N \) and consisting of a total of 500 snapshots generated from one period of 10 frequency samples along the FRF, represented by the violet circle markers in Figure 4c.

First, we address the convergence with respect to the number of POMs retained in the subspace. The POD method usually adopts the relative energy as a convergence measure to select the space dimension. The relative energy content of each POM is depicted in Figure 2a. It is worth stressing that the first POM represents 99.995 % of the energy and the second POM contains only 0.0035 % of the energy. To test the convergence of the ROM, we consider seven different subspaces with 1,2,3,4,6,8 and 10 POMs, respectively. The resulting ROMs
Figure 2: Doubly clamped beam: convergence with respect to the number of POMs retained in the ROM. Figure a): relative energy content of POMs. Figure b): FRF computed with each ROM subspace considered. Figures c) and d): enlarged views of the resonance peak and the internal resonance interaction region, respectively.

are tested on $\beta = 0.5 \, \mu N$ (i.e. the same forcing level seen during the training stage) and $\beta = 0.75 \, \mu N$. The resulting FRFs are plotted in Figure 2b. We notice that trial spaces with less than 3 POMs are inadequate to describe the dynamics, while richer spaces provide a very good accuracy. It should be remarked also that increasing the number of POMs a mild 1:5 internal resonance is evidenced, as predicted by the high-fidelity FOM (see Figure 4d).

Next, keeping 6 POMs in the trial space, a choice that guarantees a good balance between efficiency and accuracy, the ROM is tested on different forcing levels $\beta = 0.25, 0.375, 0.45, 0.5, 0.625, 0.75 \, \mu N$.

The results are reported in Figure 3, always compared to the solutions of the HB-FOM. The two families of simulations are almost exactly superimposed, hence proving the high predictive capability of POD, well beyond the training range. Also the correct evolution of the unstable branch is reproduced, from mildly to strongly hardening at increasing actuation levels.

Nevertheless, HB solutions might not be accessible in general (e.g. in commercial codes), or might be too costly to generate. In these cases time-marching methods are the only option available to generate snapshots. To highlight the possible differences with HB-FOM solutions in this simple and small example, we consider four datasets computed with time marching methods and $\beta = 0.5 \mu N$: 1) 1242 snapshots generated from a response close to the steady state (SS) at 2 different frequencies; 2) 6210 snapshots generated from a response close to SS at 10 different frequencies (including the ones of set 1); 3) 12420 snapshots generated from a response close to SS at 20 different frequencies (including the ones of set 2); 4) 1000 snapshots generated from a fully transient (TR) response at one single frequency.

The sampling points and plots of the time marching datasets are reported in Figures 4a, 4b and 4c. The corresponding ROMs with 6 POMs are displayed in Figure 4d. We notice that all the solutions are almost exactly superposed and the localized 1:5 internal resonance is the only portion of the FRFs where minor differences can be appreciated (Figure 4f). In particular, the capability of the technique to predict steady state solutions starting from fully transient data (case 4) is impressive and very promising for MEMS applications where large quality factors generally prevent time marching schemes from reaching steady state conditions within reasonable time frames.
Figure 4: Doubly clamped beam. Comparison between training with time-marching or HB snapshots. Figure a): time histories of the midspan displacement corresponding to the snapshots set collected close to Steady State (SS). The frequency is swept upwards and the data are collected after a fixed number of time steps. The time histories are simulated sequentially and jumps denote a change of the forcing frequency. Figure b): time history of the midspan displacement corresponding to the snapshot set collected in a transient (TR) case. Figure c): sampling frequencies of the datasets HB, SS and TR. The SS datasets differ due to the number of frequencies sampled. Figure d) presents the FRFs computed with the ROMs. Figure e) and f): close-up of the resonance peak and of the internal resonance region.
Figure 5: Doubly clamped beam. Comparison between the POD subspace bases and DP. Figure a) shows the parametrization up to cubic order and the third eigenmode. Figure b): first three POMs. Figure c): invariant manifold computed with DP (green surface) and orbits computed with POD (black lines). The manifold is defined in the phase space composed by the first eigenmode displacement and velocity and the fourth eigenmode displacement.

3.1.1 Connection with modal methods and DP

As put in evidence in Figure 3, a major improvement comes from the inclusion of the third POM. The first three POMs are represented in Figure 5b. The difference between the trial spaces with 2 and 3 POMs is not easy to appreciate through a direct application of the energy criterion. From a physical perspective, the first two POMs closely resemble the first and the second symmetric bending modes, while the third POM is related to high frequency
axial/contraction modes.

In linear methods based on modal subspaces, see e.g. [21, 22], it is now acknowledged that this type of modes must be imperatively included in the selected subspace to guarantee convergence, but they are difficult to identify a priori. These modes indeed provide an important correction to the stress field that cures the over-hardening typical of linear techniques. The automatic identification of such a contribution can be considered as a major benefit of the POD over modal techniques.

Considering now the parametrization methods discussed in Section 2.3, the reconstruction vectors of eq.(7) are plotted in Figure 5a. We start noticing the striking analogy between the first eigenmode ϕ_1, the quadratic displacement-dependent term \hat{a}, the cubic displacement-dependent term \hat{c} and the first three POMs.

Next, in Figure 5 the manifold of the DP is compared with orbits computed through POD by considering the phase space composed by the projection of the displacement and velocity on the first eigenmode and the projection of the displacement on the fourth eigenmode. The ROM solution lies almost perfectly on the approximated manifold, thus showing that the subspace computed with data-driven methods converges to the one computed with asymptotic expansions.

3.2 Micromirrors

Scanning micromirrors are witnessing explosive growth in recent years due to successful applications ranging from pico projectors for Augmented Reality (AR) lenses [63], to 3D scanners for Light Detection and Ranging (LiDAR) application. In this section we address two micromirrors with different nonlinear behavior. These devices are intrinsically nonlinear due to inertia effects associated with large rotations, and they present a frequency-amplitude dependence which might be either hardening or softening according to the specific layout. The correct quantitative prediction of nonlinear effects is a tough benchmark for any FOM or ROM. Recently, the authors have developed a large scale HB approach in [19] for the analysis of piezo mirrors which is here utilized as FOM to generate snapshots. It is worth stressing that classical ROM techniques like the Implicit Condensation [5] and Modal Derivatives [27] fail to provide the required accuracy.

3.2.1 Micromirror 1

An optical image of the first micromirror, fabricated by STMicroelectronics [19, 64], is presented in Figure 6a. The top view is reported in Figure 6b. The reference FOM is built considering only half of the structure to exploit symmetry as illustrated in Figure 6c. The central circular reflecting surface is directly attached to the substrate with two short torsional beams (springs), while the rotation of the mirror is induced by trapezoidal beams which are connected to the mirror through folded compliant springs. The beams are actuated by piezopatches, i.e. PZT layers with a thickness of 2 μm appearing in Figure 6b as light brown areas. The mirror disk has a diameter of 3000 μm and the lower surface has been reinforced with a curvilinear support in order to minimize the dynamic deformation of the mirror itself.

The mirror is made of single crystal silicon with [100] orientation [65] and the first five eigenfrequencies are reported in Table 2.

The quality factor is set to $Q = 100$. In our investigation, for the sake of simplicity,
Figure 6: Micromirror 1. Figure a): photo of the real device. Figure b): top view of the layout. Piezoelectric patches are in light brown and the numbers characterize the actuation scheme [19, 64]. Figure c): first torsional mode. The eigenmode consists of a rotation of the micromirror plate as shown by the color-map of the displacement magnitude.

Eigenmode	1	2	3	4	5
Frequency [kHz]	2.258	7.238	23.378	23.426	56.046

Table 2: Micromirror 1: eigenfrequencies

we replace the piezoelectric actuation with a body force proportional to the first eigenmode $F(t) = M\phi_1 \beta \cos(\omega t)$ with β load multiplier. The FEM model in this benchmark contains a total of 15341 nodes.

In the training stage, in which the FOM has been solved with an HB approach, 5000 snapshots have been generated from frequency samples uniformly distributed over the FRF setting $\beta = 0.3 \mu N$. Even if a POD-Galerkin ROM with 1 or 2 POMs collects more than 99.99% of the energy content (see Figure 7a), the trial space should contain at least the first 6 POMs to achieve convergence. Nevertheless the ROM with 6 POMs displays a small resonance effect close to $\omega = 0.0142$ that is eliminated by using 8 POMs. This can be appreciated from Figure 7b where several FRFs have been computed with an increasing number of POMs.

For the subsequent analyses, a trial space with 8 POMs is retained. Different levels of the forcing have been tested as illustrated in Figure 8 showing that an excellent agreement is achieved together with a remarkable predictive capability. Only few curves are validated against the corresponding FOM solution because of the prohibitive computational cost entailed by the HB-FOM model.

Similarly to the doubly clamped beam, some remarks concerning the POD subspace are worth stressing. The first 3 POMs are depicted in Figure 9. From a physical point of view, the first POM corresponds to the linear torsional eigenmode, while the second one corresponds to a contraction of the mirror plate that applies a correction to the linearized torsion. Indeed a linearized rotation, when extended to large angles, induces a non physical stretch of the structure. The higher order POMs correspond to the membrane and axial deformation of the
Figure 7: Micromirror 1: convergence of the ROM. Figure a): energy of each POM. Figure b): FRF for the ROMs including an increasing number of POM. The POD is tested on the training set. The ROM simulations progressively converge to the correct FOM solution. With 6 POMs a small resonance effect occurs close to $\omega = 0.0142 \text{[rad/\mu s]}$ that is eliminated by further increasing the number of POMs.

deformable springs and beams.

Considering the parametrization of the DP, in Figure 9a we also plot the reconstruction vectors of eq.(7). Apart from the obvious correspondence between the linearized mode and the first POM, we notice a strong correspondence between $\hat{\mathbf{a}}$ and the second POM and between $\hat{\mathbf{c}}$ and a combination of the third and the fourth POMs.

Finally, Figure 9c presents the solution manifold in a phase space composed by the projection of the displacement and velocity on the first eigenmode and of the displacement on the second eigenmode. The manifold obtained with the DP (continuous green surface) and the orbits obtained through the POD-Galerkin ROM are nearly superimposed as remarked

15
Figure 8: Micromirror 1: FRFs computed with the ROMs with 10 POMs compared with the FOM solution. The red continuous lines represent the ROM solutions computed in conditions different from the training data, the blue one marks the training condition curve. The cross markers represent the FOM solutions also in the previous example. The strong connections between the POD and the DP emerge hence as a distinctive feature of the POD approach.

3.2.2 Micromirror 2

The second mirror addressed, also fabricated by ST Microelectronics, is illustrated in Figure 10. In this case the mirror is suspended to a gimbal rather than being directly attached to the substrate with torsional springs. As a consequence, its nonlinear behavior turns softening.

The frequency of the torsional mode is 29271 Hz and the quality factor has been set to $Q = 1000$. The first 5 eigenfrequencies are listed in Table 3. Also in this application, we replace the piezoelectric actuation method with a body force proportional to the third eigenmode $F(t) = M\phi_3\beta \cos(\omega t)$ with β load multiplier.

Eigenmode	1	2	3	4	5
Frequency	11.080	18.533	29.271	41.667	68.848

Table 3: Micromirror 2: eigenfrequencies

This benchmark, which looks rather similar to the previous one, turns into a tough challenge for simulation approaches, mainly because the torsional mode is not the lowest-frequency one (it is the third) and is not well separated from the other modes. Indeed, in this case even the DP technique requires a high order expansion and the quadratic formulation in [40] fails. The POD, on the contrary, performs indistinctively well. The training stage is performed
Figure 9: Micromirror 1: comparison between the POD subspace bases and DP. Figure a): parametrization up to cubic order and the second eigenmode. Figure b): first three POMs. Figure c): invariant manifold computed with DP (green surface) and orbits computed with POD (black lines). The manifold is defined in the phase space composed by the first eigenmode displacement and velocity and the second eigenmode displacement considering $\beta = 2.5 \, \mu N$ and generating a total of 2000 snapshots. The distribution of the frequency samples on the FRF computed with the HB-POM is presented in Figure 11a, while Figure 11b collects the associated POMs. Testing different ROMs built with an increasing
number of bases we obtain the results displayed in Figure 11c. The convergence of the subspace is consistent with the increasing number of POMs, and this can be appreciated from the enlarged views in Figures 11d and 11e.

A good balance between subspace dimension and accuracy is given by the subspace spanned by 10 POMs on which we perform a more extensive testing stage varying, as usual, the force multiplier $\beta = 1, 1.5, 2, 2.5, 3 \mu N$. The results plotted in Figure 12 show again the highly predictive capability of the POD-Galerkin ROM.

3.3 Shallow arch with internal resonance

In recent years several occurrences of complex nonlinear phenomena have been documented experimentally in MEMS, mainly due to their large quality factors Q. Internal resonances (IRs) play an important role in triggering more complex motions and facilitate energy transfer between modes. Often IRs are strongly linked to the stability of the associated periodic response and quasi-periodic regimes might arise as a consequence of Neimark-Sacker (NS) bifurcations [66]. The numerical prediction of such phenomena requires an accurate stability analysis which cannot be performed at a reasonable cost using FOMs, while can be much more conveniently run on small ROMs using dedicated continuation tools, as discussed in Section 2.2.

For these reasons we include among our benchmarks a shallow double-arch with a constant radius of curvature. The layout, inspired by the one proposed for a bistable structure in [67], has been suitably designed so as to trigger a 1:2 IR. The arch geometry and mesh are illustrated in Figure 13. The mesh considered consists of quadratic wedge elements and contains 1971 nodes.

The device is made of polycrystalline silicon with density $\rho = 2330 \text{kg/m}^3$ and a linear elastic Saint-Venant Kirchhoff constitutive model is assumed, with Young modulus E =
Figure 11: Micromirror 2: convergence of the ROM. Figure a): points of the FOM FRF utilized in the training phase to generate the snapshots. Figure b): energy content of each POM. Figure c): FRFs resulting from each ROM built with a increasing number of POMs. The POD is tested on the training set and on a second higher forcing level.

167000 MPa and Poisson coefficient $\nu = 0.22$ [68]. The first six eigenfrequencies of the modelled structure are reported in Table 4.

Eigenmode	1	2	3	4	5	6
Frequency [kHz]	434.16	525.97	603.91	667.59	756.95	863.67

Table 4: First six eigenfrequencies of the MEMS arch
Figure 12: Micromirror 2: FRFs computed with the ROMs and 8 POMs compared with the FOM solution. The red continuous lines denote the test ROM solutions, while the blue one refers to the training data. The cross markers represent the FOM solutions.

Figure 13: Shallow arch. Figure a): 3D view of the FEM model. Figure b): front view and main dimensions. $B = 20 \mu m$, $H = 5 \mu m$, $L = 530 \mu m$, rise=$13.4 \mu m$, $s = 10 \mu m$.

The quality factor has been set to $Q = 500$ and the actuation is provided by a body force proportional to the first eigenmode $F(t) = M \phi_1 \beta \cos(\omega t)$ with β load multiplier.

In order to further stress the versatility of the POD-Galerkin ROM, we opt for time marching methods to simulate the FOM and generate the training dataset. Moreover, snapshots have been collected during the transient phase, far from steady-state conditions, according to the following strategy. The forcing level has been fixed to $\beta = 0.2 \mu N$ and a sequence of four frequencies have been analyzed with a Newmark implicit solver in a downward sweep. For each frequency, 100 cycles are simulated and a total of 20000 snapshots are collected. Initial conditions for the global analysis are homogeneous and the final state computed for each frequency yields the initial conditions for the next one. It is worth stressing that, given the Q value at hand, after 100 cycles the system is still fully in a transient phase. The frequency
Figure 14: Convergence of the hyper ROM on the MEMS arch. Figure a): energy content of each POM. Figure b): frequency points sampled with time marching methods on the FEM model compared with the FOM FRF achieved with HB method. The solution are far from the Steady State regime and thus depart from the HB solution. Figure c): Time history of each frequency value. Figure d: FRFs resulting from each ROM built with a increasing number of POMs. The POD is tested on the training set and on a second higher forcing level.

points and the time series of the mid-span deflection of the arch are collected in Figures 14b and 14c, respectively. The maximum amplitudes, denoted by yellow triangles in Figure 14b,
are indeed quite far from the steady state solutions predicted by the HB FEM.

Figure 15: Shallow arch: FRFs computed with the ROM (8 POMs) compared with the FOM solutions. The red continuous lines are ROM solutions computed in the test phase, the blue one marking the training curve. The crosses denote the FOM solutions, while the star markers indicate the bifurcation points. The green and purple stars stand for Saddle-Node and Neimark-Sacker bifurcation points, respectively.

The SVD computed on the snapshot matrix yields the energy distribution of Figure 14a. Also in this case, although it appears that the energy is almost totally focused in the first two POMs, the convergence analysis presented in Figure 14d shows that at least 4 POMs are required and a good convergence is achieved starting with 6 POMs. In the following, we will consider a trial space collecting the first 8 POMs.

The chosen ROM is now tested considering different forcing levels and the corresponding FRFs are plotted in Figure 15, together with the HB-FOM solutions. The model correctly reproduces the complex pattern of the 1:2 IR, as demonstrated by the shape of the frequency response displaying the two characteristic peaks. As recalled, a key feature of the ROM is the possibility to apply the bifurcation analysis tools discussed in Section 2.2 which yield the results of Figure 15. Two different classes of bifurcation points can be identified: saddle-node bifurcations, that split the FRF between unstable and stable branches, and Neimark-Sacker bifurcations that separate stable periodic and quasi-periodic regions. Quasi-periodicity is a dynamic condition where the external excitation frequency of the system is paired with an incommensurate smaller frequency that modulates the amplitude of the response (see [66] for further details). For a given FRF, in the region within the two Neimark-Sacker bifurcations only quasi-periodic, and eventually almost chaotic, solutions [66] are physically meaningful. This challenging benchmark shows that an excellent quality of the ROM can be achieved even with a fast training phase based on fully transient data.
4 Electromechanical coupled problems

While previous benchmarks have addressed purely mechanical problems with geometrical nonlinearities, the interest in generating an optimal linear trial space goes beyond these applications. In MEMS applications, multiple sources of additional nonlinearities come from the actuation mechanism and the most typical example is provided by electrostatic forces that depend in an intrinsically nonlinear manner on the displacement field.

In most contributions addressing both geometric and electrostatic effects (see e.g. [69, 70] for clamped-clamped beams) analytical approaches or simplified structural theories are utilized, although their application to real MEMS often leads to results that are only qualitatively correct or need careful device-dependent calibration. General numerical approaches are needed as MEMS might have complicated features that can be hardly reduced to simple models. However, a coupled electromechanical FOM able to simulate complex 3D structures is not a standard tool even for the most advanced commercial codes and generating snapshots of the FOM solution often comes with a computational cost that may be unsuitable for practical applications.

Most importantly, a major difficulty of the POD is associated with the evaluation of the vector of nonlinear nodal electrostatic forces (EF). Popular data-driven algorithms like the Discrete Empirical Interpolation Method (DEIM) [71, 72] provide an optimal reconstruction of the full nonlinear vector starting from a collection of snapshots of the nonlinear forces. However, the DEIM is based on the assumption that few selected entries of the vector can be computed at a low cost independently of the others, while in electromechanical problems, the generation of the nonlinear vector of nodal forces has only a marginal cost with respect to the solution phase of the electrical sub-problem, be it solved with iterative integral equation approaches or with FE techniques. The development of a fast algorithm to circumvent this obstacle is still an open issue.

On the contrary, a simplified way to account for EFs through POD-based models can be done by exploiting the same approach successfully applied with the implicit condensation method in [6].

We assume that the trial space defined from snapshots given by the mechanical simulations is sufficiently rich and able to represent the displacement field also for the fully coupled problem. This assumption is reasonable when the perturbation of the invariant manifold induced by the electrostatic couplings is moderate and will in general put an upper bound to the admissible EFs, i.e. on the bias voltages imposed on the electrodes. Since the electrostatic problem is quasi-static, the EFs depend only on the instantaneous values of the Q_i. This implies that, in a training stage, the \mathbf{F} vector in eq.(4) due to EFs can be computed with the FOM and projected on the POD subspace to generate \mathbf{F}_{POD} in eq.(6) for any given combination of the weights Q_i of the POMs. The manifold of the electrostatic forces is thus pre-computed only at discrete points in preselected admissible ranges and is later interpolated between knots when queried during the integration of the ROM. Moreover, many POMs (like the “axial” POM in Figure 5 or high frequency bending POMs) have negligible effects on the EFs and can be disregarded so that EFs will depend on p_e electrically active POMs, with $p_e \ll p$ typically.

As a benchmark problem, we focus on a clamped-clamped beam meshed with quadratic elements and a total of 10920 nodes. The dimensions of the beam are $L = 1000 \mu m$, $H = 10 \mu m$, $B = 24 \mu m$. An electrode is placed in front of the beam with a gap of $g = 5 \mu m$ and
the voltage bias $V_{DC} + V_{AC} \cos \omega t$ is imposed between the electrode and the beam (see Figure 16a). The quality factor has been set to $Q = 10929$. The FOM utilized for the electrostatic problem is a Boundary Element Code (BEM) based on integral equations accelerated with Fast Multipoles and a total of 71844 unknowns. The code resorts to an iterative solver and its use in a fully coupled solution would have a prohibitive cost.

The ROM is trained with mechanical HB-FEM simulations setting $Q=10929$ and applying a body load proportional to the first eigenmode $\mathbf{F}(t) = \mathbf{M}\phi_1 \beta \cos(\omega t)$ with $\beta = 0.0005$. A total of 1850 snapshots have been collected on 37 sample frequencies identified by circles on the FOM solution of Figure 16b. The first 6 mechanical POMs, used to build the ROM, are depicted in Figure 16c.

Consistently with the previous assumptions we can consider that only the first POM will contribute significantly to EFs (i.e. $p_e = 1$). Thus, a series of electrostatic analyses are run imposing displacement fields proportional to the first POM $\mathbf{D} \approx \mathbf{U}_1 Q_1$ covering a range of $1.1 \mu m$ for the midspan displacement over a gap of $5 \mu m$. The EFs are projected on the POMs yielding the equivalent forces expressed in μm. These forces are scaled by the applied potentials V_{DC} and V_{AC} and are modelled with a cubic polynomial as:

$$F_i^{\text{POD}}(Q_1, V_{DC}, V_{AC}, \omega, t) = (V_{DC}^2 \epsilon_0 + 2V_{DC}V_{AC} \epsilon_0 \cos(\omega t)) \left(\alpha^{(i)}_0 + \alpha^{(i)}_1 Q_1 + \alpha^{(i)}_2 Q_1^2 + \alpha^{(i)}_3 Q_1^3 \right)$$ (8)

where $\alpha^{(i)}_j$ are coefficients of order j associated to the force projected on the i-th POM and ϵ_0 is the vacuum permittivity. In the example considered we neglect the components proportional to V_{AC}^2 (since typically $V_{AC} \ll V_{DC}$, see e.g. [6, 23]). The coefficients for the first 6 POMs are collected in Table 5.

In order to provide a validation of the ROM proposed we resort to the commercial soft-
Table 5: Electromechanical problem: coefficients of the polynomial modeling eq.(8)

POM	1	2	3	4	5	6
$\alpha_0^{(i)}$	6.8638	-0.9609	3.2838	1.9965	0.2274	2.5945
$\alpha_1^{(i)}$	0.0469	-0.0039	2.86·10^{-5}	-3.31·10^{-5}	0.0021	0.099
$\alpha_2^{(i)}$	2·10^{-4}	-1·10^{-5}	-6·10^{-5}	1·10^{-5}	1·10^{-5}	3·10^{-4}
$\alpha_3^{(i)}$	1·10^{-6}	-7·10^{-8}	-5·10^{-7}	1·10^{-7}	5·10^{-8}	1·10^{-7}

Table 6: Electromechanical problem: comparison between the eigenfrequencies given by the FEM model and MEMS+

Eigenmode	1	2	3	4	5
FEM model [kHz]	87.087	208.244	239.880	469.792	571.281
MEMS+ [kHz]	86.971	208.085	239.755	472.008	571.302

We performed several simulations considering different combinations of V_{DC} and V_{AC} giving similar peak amplitudes: $V_{DC} = 1V$, $V_{AC} = 1V$; $V_{DC} = 20V$, $V_{AC} = 0.05V$; $V_{DC} = 40V$, $V_{AC} = 0.025V$; $V_{DC} = 60V$ and $V_{AC} = 0.0166V$.

The results are summarized in Figure 17a collecting plots of the midspan deflection versus the actuation frequency. The curves are normalized with respect to the mechanical eigenfrequency of the lowest eigenmode. The FRFs display a shift of the resonant frequency towards the left induced by the expected electrostatic negative stiffness effect. The enlarged views in Figure 17b, 17c and 17d focus on specific frequency ranges for an improved comparison between the two classes of results. Another relevant effect induced by EFs is given by a softening contribution that mitigates the hardening of the response for increasing V_{DC}. To better highlight this latter effect, in Figure 17e we superpose the various FRFs by filtering the mentioned shift and the static component of the displacement.

A very good agreement is achieved between the two simulation approaches concerning the shift and the overall nonlinearity evolution. However, as expected, for the largest values of V_{DC} a quantitative mismatch appears especially on the peak values. Indeed, as previously remarked, in the presence of large EFs the mechanical POMs might not guarantee an accurate representation of mechanical displacements. The fact that this disagreement occurs only at very large voltages unusual in MEMS application is however a strong validation of the proposed approach.

5 Conclusions

We have investigated various applications of POD-Galerkin ROMs for the sake of efficiently simulating MEMS devices. In particular, we have demonstrated how POD, despite being a linear reduction technique, can tackle very efficiently and accurately highly nonlinear features...
Figure 17: Electromechanical problem. Figure a): FRFs computed at four different voltage bias and comparison with the MEMS+ results. Figure b) c) d): enlarged views of the FRFs computed with the ROM. Figure e): FRFs superposed filtering the shift and showing the mitigation of the hardening effect.

common in MEMS applications: large rotations, and large geometrical transformations in general, internal resonances and electrostatic nonlinearities. Geometrical nonlinearities, leading to polynomial terms up to cubic order, have been reduced through an exact projection onto the subspace spanned by the POMs, while electrostatics has been modeled resorting to precomputed manifolds in terms of the amplitudes of the electrically active POMs.

We have tested extensively the reliability of the assumed linear trial space in challenging applications focusing on resonators, micromirrors and arches also displaying internal resonances. We have discussed several options to generate the matrix of snapshots using both
classical time marching schemes and more advanced Harmonic Balance approaches. It has been shown that the method is robust and that a POD-Galerkin ROM can be trained also with transient time simulations far from steady state conditions. This might indeed be the only viable option in many applications, considering the cost and complexity of HB methods and the large quality factors typical of MEMS that prevent reaching steady state conditions with time-marching schemes.

In order to provide a deeper insight into the POD approach, we have also shown the similarity of the POMs extracted with the reconstruction vectors of the DP approach that relies on the invariant manifold theory and verified that the trajectories predicted by the POD-Galerkin ROM perfectly lie on the manifolds of the DP. This result further strengthens the interpretation of the POMs as the best linear approximation of the Nonlinear Normal Modes in the least square sense [43].

Another relevant feature of a POD-Galerkin ROM is that it allows to apply continuation methods and stability analysis of the dynamic solution, usually infeasible in FOM analyses. This provides the possibility to compute directly periodic solutions, trace the full FRF with both stable and unstable branches, and locate bifurcation points by resorting to continuation codes available in the literature.

The whole set of challenging benchmarks developed seems to suggest a high potentiality, possibly so far underestimated, of the POD for this specific class of applications and stresses the reliability of the technique and its strong predictive ability.

References

[1] G. Rega, H. Troger, Dimension reduction of dynamical systems: methods, models, applications, Nonlinear Dynamics 41 (1) (2005) 1–15.

[2] G. Kerschen, J.-c. Golinval, A. F. Vakakis, L. A. Bergman, The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview, Nonlinear Dynamics 41 (1) (2005) 147–169.

[3] J. J. Hollkamp, R. W. Gordon, Reduced-order models for nonlinear response prediction: Implicit condensation and expansion, Journal of Sound and Vibration 318 (4-5) (2008) 1139–1153.

[4] M. P. Mignolet, A. Przekop, S. A. Rizzi, S. M. Spottwood, A review of indirect/non-intrusive reduced order modeling of nonlinear geometric structures, Journal of Sound and Vibration 332 (10) (2013) 2437–2460.

[5] A. Frangi, G. Gobat, Reduced order modelling of the non-linear stiffness in mems resonators, International Journal of Non-Linear Mechanics 116 (2019) 211–218.

[6] V. Zega, G. Gattere, S. Koppaka, A. Alter, G. D. Vukasin, A. Frangi, T. W. Kenny, Numerical modelling of non-linearities in mems resonators, Journal of Microelectromechanical Systems 29 (6) (2020) 1443–1454.

[7] A. H. Nayfeh, D. T. Mook, P. Holmes, Nonlinear oscillations (1980).
[8] A. H. Nayfeh, B. Balachandran, Modal interactions in dynamical and structural systems (1989).

[9] S. Krylov, B. R. Ilic, S. Lulinsky, Bistability of curved microbeams actuated by fringing electrostatic fields, Nonlinear Dynamics 66 (3) (2011) 403–426.

[10] D. A. Czaplewski, S. Strachan, O. Shoshani, S. W. Shaw, D. López, Bifurcation diagram and dynamic response of a mems resonator with a 1: 3 internal resonance, Applied Physics Letters 114 (25) (2019) 254104.

[11] S. Houri, D. Hatanaka, M. Asano, R. Ohta, H. Yamaguchi, Limit cycles and bifurcations in a nonlinear mems resonator with a 1: 3 internal resonance, Applied Physics Letters 114 (10) (2019) 103103.

[12] C. Van der Avoort, R. Van der Hout, J. Bontemps, P. Steeneken, K. Le Phan, R. Fey, J. Hulshof, J. Van Beek, Amplitude saturation of mems resonators explained by autoparametric resonance, Journal of Micromechanics and Microengineering 20 (10) (2010) 105012.

[13] L. Ruzziconi, N. Jaber, L. Kosuru, M. L. Bellaredj, M. I. Younis, Two-to-one internal resonance in the higher-order modes of a mems beam: Experimental investigation and theoretical analysis via local stability theory, International Journal of Non-Linear Mechanics 129 (2021) 103664.

[14] S. H. Nitzan, P. Taheri-Tehrani, M. Defoort, S. Sonmezoglu, D. A. Horsley, Countering the effects of nonlinearity in rate-integrating gyroscopes, IEEE Sensors Journal 16 (10) (2016) 3556–3563.

[15] A. Ganesan, C. Do, A. Seshia, Phononic frequency comb via intrinsic three-wave mixing, Physical Review Letters 118 (3) (2017) 033903.

[16] A. Ganesan, C. Do, A. Seshia, Phononic frequency comb via three-mode parametric resonance, Applied Physics Letters 112 (2) (2018) 021906.

[17] L. Xiong, L. Tang, B. R. Mace, Internal resonance with commensurability induced by an auxiliary oscillator for broadband energy harvesting, Applied Physics Letters 108 (20) (2016) 203901.

[18] T. Detroux, L. Renson, L. Masset, G. Kerschen, The harmonic balance method for bifurcation analysis of large-scale nonlinear mechanical systems, Computer Methods in Applied Mechanics and Engineering 296 (2015) 18–38.

[19] A. Opreni, N. Boni, R. Carminati, A. Frangi, Analysis of the nonlinear response of piezomicromirrors with the harmonic balance method, in: Actuators, Vol. 10, MDPI, 2021, p. 21.

[20] A. A. Muravyov, S. A. Rizzi, Determination of nonlinear stiffness with application to random vibration of geometrically nonlinear structures, Computers & Structures 81 (15) (2003) 1513–1523.
[21] A. Givois, A. Grolet, O. Thomas, J.-F. Deü, On the frequency response computation of geometrically nonlinear flat structures using reduced-order finite element models, Nonlinear Dynamics 97 (2) (2019) 1747–1781.

[22] A. Vizzaccaro, A. Givois, P. Longobardi, Y. Shen, J.-F. Deü, L. Salles, C. Touzé, O. Thomas, Non-intrusive reduced order modelling for the dynamics of geometrically nonlinear flat structures using three-dimensional finite elements, Computational Mechanics 66 (6) (2020) 1293–1319.

[23] G. Gobat, V. Zega, P. Fedeli, L. Guerinoni, C. Touzé, A. Frangi, Reduced order modelling and experimental validation of a mems gyroscope test-structure exhibiting 1:2 internal resonance, Scientific Reports (2021 - in-press).

[24] E. Nicolaidou, T. L. Hill, S. A. Neild, Indirect reduced-order modelling: using nonlinear manifolds to conserve kinetic energy, Proceedings of the Royal Society A 476 (2243) (2020) 20200589.

[25] A. Quarteroni, A. Manzoni, F. Negri, Reduced basis methods for partial differential equations: an introduction, Vol. 92, Springer, 2015.

[26] K. Lu, Y. Jin, Y. Chen, Y. Yang, L. Hou, Z. Zhang, Z. Li, C. Fu, Review for order reduction based on proper orthogonal decomposition and outlooks of applications in mechanical systems, Mechanical Systems and Signal Processing 123 (2019) 264–297.

[27] O. Weeger, U. Wever, B. Simeon, On the use of modal derivatives for nonlinear model order reduction, International Journal for Numerical Methods in Engineering 108 (13) (2016) 1579–1602.

[28] S. Jain, P. Tiso, J. B. Rutzmoser, D. J. Rixen, A quadratic manifold for model order reduction of nonlinear structural dynamics, Computers & Structures 188 (2017) 80–94.

[29] J. B. Rutzmoser, D. J. Rixen, P. Tiso, S. Jain, Generalization of quadratic manifolds for reduced order modeling of nonlinear structural dynamics, Computers & Structures 192 (2017) 196–209.

[30] M. K. Mahdiabadi, P. Tiso, A. Brandt, D. J. Rixen, A non-intrusive model-order reduction of geometrically nonlinear structural dynamics using modal derivatives, Mechanical Systems and Signal Processing 147 (2021) 107126.

[31] R. M. Rosenberg, The normal modes of nonlinear n-degree-of-freedom systems (1962).

[32] S. Shaw, An invariant manifold approach to nonlinear normal modes of oscillation, Journal of Nonlinear Science 4 (1) (1994) 419–448.

[33] C. Touzé, O. Thomas, A. Chaigne, Hardening/softening behaviour in non-linear oscillations of structural systems using non-linear normal modes, Journal of Sound and Vibration 273 (1-2) (2004) 77–101.

[34] C. Touzé, M. Amabili, Nonlinear normal modes for damped geometrically nonlinear systems: Application to reduced-order modelling of harmonically forced structures, Journal of Sound and Vibration 298 (4-5) (2006) 958–981.
[35] C. Touzé, Normal form theory and nonlinear normal modes: theoretical settings and applications, in: Modal analysis of nonlinear mechanical systems, Springer, 2014, pp. 75–160.

[36] G. Haller, S. Ponsioen, Nonlinear normal modes and spectral submanifolds: existence, uniqueness and use in model reduction, Nonlinear Dynamics 86 (3) (2016) 1493–1534.

[37] S. Ponsioen, T. Pedergnana, G. Haller, Automated computation of autonomous spectral submanifolds for nonlinear modal analysis, Journal of Sound and Vibration 420 (2018) 269–295.

[38] L. Renson, G. Kerschen, B. Cochelin, Numerical computation of nonlinear normal modes in mechanical engineering, Journal of Sound and Vibration 364 (2016) 177–206.

[39] A. Vizzaccaro, Y. Shen, L. Salles, J. Blahoš, C. Touzé, Direct computation of nonlinear mapping via normal form for reduced-order models of finite element nonlinear structures, arXiv preprint arXiv:2009.12145 (2020).

[40] A. Opreni, A. Vizzaccaro, A. Frangì, C. Touzé, Model order reduction based on direct normal form: Application to large finite element mems structures featuring internal resonance, Nonlinear Dynamics (2021 - in press). doi:10.1007/s11071-021-06641-7.

[41] G. Kerschen, J.-C. Golinval, Physical interpretation of the proper orthogonal modes using the singular value decomposition, Journal of Sound and Vibration 249 (5) (2002) 849–865.

[42] R. Sampaio, C. Soize, Remarks on the efficiency of pod for model reduction in non-linear dynamics of continuous elastic systems, International Journal for Numerical Methods in Engineering 72 (1) (2007) 22–45.

[43] M. Amabili, C. Touzé, Reduced-order models for nonlinear vibrations of fluid-filled circular cylindrical shells: comparison of pod and asymptotic nonlinear normal modes methods, Journal of Fluids and Structures 23 (6) (2007) 885–903.

[44] P. Tiso, D. J. Rixen, Reduction methods for mems nonlinear dynamic analysis, in: Nonlinear Modeling and Applications, Volume 2, Springer, 2011, pp. 53–65.

[45] J. S. Han, E. B. Rudnyi, J. G. Korvink, Efficient optimization of transient dynamic problems in mems devices using model order reduction, Journal of Micromechanics and Microengineering 15 (4) (2005) 822.

[46] L. E. Malvern, Introduction to the Mechanics of a Continuous Medium, no. Monograph, 1969.

[47] M. Barrault, Y. Maday, N. C. Nguyen, A. T. Patera, An ‘empirical interpolation’ method: Application to efficient reduced-basis discretization of partial differential equations, Comptes Rendus Mathématique de l’Académie des Sciences 339 (9) (2004) 667–672.

[48] S. Chaturantabut, D. C. Sorensen, Nonlinear model reduction via discrete empirical interpolation, SIAM Journal on Scientific Computing 32 (5) (2010) 2737–2764.
[49] Y. Maday, N. Nguyen, A. Patera, G. Pau, A general multipurpose interpolation pro-
cedure: The magic points, Communications on Pure and Applied Analysis 8 (2008) 383–404.

[50] E. J. Doedel, A. R. Champneys, F. Dercole, T. F. Fairgrieve, Y. A. Kuznetsov, B. Olde-
man, R. Paffenroth, B. Sandstede, X. Wang, C. Zhang, Auto-07p: Continuation and
bifurcation software for ordinary differential equations (2007).

[51] L. Guillot, B. Cochelin, C. Vergez, A taylor series-based continuation method for solutions
dynamics systems, Nonlinear Dynamics 98 (4) (2019) 2827–2845.

[52] L. Guillot, A. Lazarus, O. Thomas, C. Vergez, B. Cochelin, A purely frequency based
floquet-hill formulation for the efficient stability computation of periodic solutions of
ordinary differential systems, Journal of Computational Physics 416 (2020) 109477.

[53] M. Krack, J. Gross, Harmonic balance for nonlinear vibration problems, Vol. 1, Springer,
2019.

[54] H. Dankowicz, F. Schilder, Recipes for continuation, SIAM, 2013.

[55] R. Veltz, Bifurcationkit. jl, Ph.D. thesis, Inria Sophia-Antipolis (2020).

[56] B. Cochelin, C. Vergez, A high order purely frequency-based harmonic balance formu-
lation for continuation of periodic solutions, Journal of Sound and Vibration 324 (1-2)
(2009) 243–262.

[57] G. Buza, S. Jain, G. Haller, Using spectral submanifolds for optimal mode selection
in nonlinear model reduction, Proceedings of the Royal Society A 477 (2246) (2021)
20200725.

[58] A. Haro, R. de la Llave, A parameterization method for the computation of invariant tori
and their whiskers in quasi-periodic maps: numerical algorithms, Discrete & Continuous
Dynamical Systems-B 6 (6) (2006) 1261.

[59] A. Haro, R. de la Llave, A parameterization method for the computation of invariant
tori and their whiskers in quasi-periodic maps: rigorous results, Journal of Differential
Equations 228 (2) (2006) 530–579.

[60] A. Haro, M. Canadell, J.-L. Figueras, A. Luque, J.-M. Mondelo, The parameterization
method for invariant manifolds, Applied Mathematical Sciences 195 (2016).

[61] S. Jain, G. Haller, How to compute invariant manifolds and their reduced dynamics in
high-dimensional finite-element models?, arXiv preprint arXiv:2103.10264 (2021).

[62] A. Corigliano, B. De Masi, A. Frangi, C. Comi, A. Villa, M. Marchi, Mechanical charac-
terization of polysilicon through on-chip tensile tests, Journal of Microelectromechanical
Systems 13 (2) (2004) 200–219.

[63] Laser beam scanning, https://www.st.com/content/st_com/en/about/innovation---technology/laser-beam-scanning.html.
In this Appendix we discuss the computational performances of the FOM and of the offline-online stages of the ROM for the mechanical examples of Section 3. These data further stress the efficiency of the ROM and provide the trend of the achieved speed-up.

The comparison between the cost of the FOM and of the online stage of the ROM is reported in Table 7, while an analysis of the offline stage is reported in Table 8. All the simulations have been run on a workstation with AMD Ryzen 5 1600 Six-Core Processor 3.20 GHz with 64 GB RAM. For HB methods the computational time only includes the calculation
of the harmonic components and it does not account for the reconstruction of the time history over the period, while for time-marching methods the cost of all the steps of the time history is provided.

Application	FOM-m	\(T_{\text{FOM}} \) [10^6 s]	\(p \)	\(T_{\text{online}} \) [s]	\(T_{\text{FOM}}/T_{\text{online}} \)
C-C Beam	HB (9)	0.21	6	42	5023
C-C Beam	TM-SS (50)	1.35	6	42	32143
Micromirror 1	HB (5)	0.44	8	452	969
Micromirror 2	HB (7)	0.2	10	220	918
Arch	HB (9)	0.12	8	250	480
Arch	TM-SS (50)	9	8	250	36000

Table 7: Cost of the FOM and of the online stage of the ROM considering 1000 frequency instances for a fixed forcing level

In Table 7 the FOM-m column specifies the solution technique used for the full order model according to the conventions introduced in Section 3. Within brackets we provide the number of time steps in one period for time marching methods (TM) or the number of harmonic components for HB methods. \(T_{\text{FOM}} \) is the average computing time required to obtain a FOM solution for 1000 frequencies and a single forcing level, which is equivalent to a finely sampled FRF with continuation methods. The \(p \) column provides the number of POMs used in the reduction. \(T_{\text{online}} \) is the average time required to compute the ROM solution for 1000 frequencies and a single forcing level. The last column provides the speed-up defined in this case as the ration between \(T_{\text{FOM}} \) and \(T_{\text{online}} \). Indeed, when the offline cost is not an issue and one is mainly interested in the online phase, this is the most important performance indicator. One comment is worth stressing concerning the FOM solved with time marching methods. It appears that the time marching approach is not suitable for MEMS applications when the steady state regime is needed, as is the case herein. Indeed this is due to the large quality factors \(Q \) typical of MEMS. For the C-C beam and the arch resonator we consider that the steady state is reached after 6\(Q \) periods and, despite the fact that the \(Q \) factors considered are unrealistically small, the computing cost explodes.

Application	FOM-m	\#\(\omega \)	\(m \)	\(T_{\text{snap}} \) [s]	\(T_{\text{offline}} \) [s]	\(\frac{T_{\text{FOM}}}{T_{\text{online}}+T_{\text{offline}}} \)
C-C Beam	HB (9)	10	500	2110	2 301	90
C-C Beam	TM-SS (50)	2	1242	720	770	259
C-C Beam	TM-SS (50)	10	6210	3600	4014	52
C-C Beam	TM-SS (50)	20	12420	7200	8206	25
C-C Beam	TM-TR (100)	1	1000	90	137	1178
Micromirror 1	HB (5)	50	5000	3026	25526	16
Micromirror 2	HB (7)	40	2000	208	8538	23
Arch	TM (50)	4	20000	484	2214	48

Table 8: Analysis of the offline stage

In Table 8 we focus on the contrary on the offline stage and provide a second possible measure of speed-up. As before, the FOM-m column specifies the solution technique utilized.
for the full order model. \#\omega is the number of frequency instances used in the training and
m is the total number of snapshots used in the SVD (including both frequency and forcing
variations). The T_{snap} column provides the time required to compute the snapshots with
the FOM. T_{offline} is the sum of T_{snap}, of the time required to perform the SVD decomposition (package used ARPACK in FORTRAN) and of the cost of the projection onto the ROM subspace. Finally we report a second possible speed measure $T_{\text{FOM}}/(T_{\text{online}} + T_{\text{offline}})$ that includes also the impact of T_{offline}. The T_{FOM} and the T_{online} are the one in Table 7, HB method is considered in T_{FOM}. This alternative speed measure, shows that T_{offline} represents a significant part of the computational effort, nevertheless the ROM is still convenient. The time spent in the offline stage may overcome the gain achieved in the online stage when few parameter queries are simulated with the ROM. However in MEMS applications, considering all the features mentioned in this work (e.g high Q factor, large models, multiple parameters to span etc.) the computation gain is always much greater than 1.

Let us consider the C-C beam case where we compare the offline cost of four different
conditions: HB FOM, 5,10 and 20 frequency samples with snapshots taken close to steady state (SS, see Figure 4a) and one frequency with transient time series (TR, see Figure 4b) generated with TM methods. This highlights that TM methods represent an appealing alternative as a limited number of snapshots sampled in a fully transient state still allows to identify a proper subspace, as pointed out in Section 3.1.