ON $G(A)_Q$ OF RINGS OF FINITE REPRESENTATION TYPE

TONY J. PUTHENPURAKAL

Abstract. Let (A, m) be an excellent Henselian Cohen-Macaulay local ring of finite representation type. If the AR-quiver of A is known then by a result of Auslander and Reiten one can explicitly compute $G(A)$ the Grothendieck group of finitely generated A-modules. If the AR-quiver is not known then in this paper we give estimates of $G(A)_Q = G(A) \otimes \mathbb{Q}$ when $k = A/m$ is perfect. As an application we prove that if A is an excellent equi-characteristic Henselian Gornstein local ring of positive even dimension with char $A/m \neq 2, 3, 5$ (and A/m perfect) then $G(A)_Q \cong \mathbb{Q}$.

1. introduction

Let (A, m) be a Henselian Noetherian local ring. Then it is well-known that the category of finitely generated A-modules satisfy the Krull-Schmidt property, i.e., every finitely generated A-module is uniquely a direct sum of indecomposable A-modules (with local endomorphism rings). Now assume that A is Cohen-Macaulay. Then we say A is of finite (Cohen-Macaulay) representation type if A has only finitely many indecomposable maximal Cohen-Macaulay A-modules upto isomorphism. To study (not necessarily commutative) Artin algebra’s Auslander and Reiten introduced the theory of almost-split sequences. These are now called AR-sequences. Later Auslander and Reiten extended the theory of AR-sequences to the case of commutative Henselian isolated singularities. Good references for this topic are [9] and [6]. Let CM(A) denote the full subcategory of maximal Cohen-Macaulay (= MCM) A-modules.

Remark 1.1. Note we can define Grothendieck group of any extension closed subcategory S of mod(A) the category of all finitely generated A-modules, we denote it by $G(S)$. By [9, 13.2] the natural map $G(\text{CM}(A)) \to G(\text{mod}(A))$ is an isomorphism. Throughout this section we work with $G(\text{CM}(A))$ and by abuse of notation denote it by $G(A)$.

Let A be a Henselian Cohen-Macaulay local of finite representation type. Set \mathcal{I}_A to be the set of all indecomposable MCM A-modules upto isomorphism. If W is a subset of \mathcal{I}_A then set add(W) be the set consisting of finite direct sums of elements of W. Also let $\mathcal{AR}(A)$ denote the set of all AR-sequences in A upto isomorphism. Let $F(A)$ be the free abelian group generated on add(\mathcal{I}_A). Let $\mathcal{AR}_0(A)$ be the subgroup of $F(A)$ generated by

$$\{X_1 - X_2 + X_3 \mid \text{there is a sequence } 0 \to X_1 \to X_2 \to X_3 \to 0 \text{ in } \mathcal{AR}(A)\}.$$
Theorem 1.2. \(\xi \) is an isomorphism.

Theorem 1.2 does not give us any estimates on \(G(A) \). If \(H \) is an abelian group then we set \(H_Q = H \otimes \mathbb{Q} \) and if \(f : H \to L \) is a homomorphism of abelian groups then we set \(f_Q \) to be map from \(H_Q \to L_Q \) induced by \(f \).

It is well-known that direct limits commutes with tensor products, see [7, Theorem A1, p. 270]. So we have an isomorphism

\[
\xi_Q : \lim_{E \in \mathcal{C}_k} G(A^E)_Q \to G(T)_Q.
\]

Our next result essentially an observation.

Proposition 1.3. Let \(F \in \mathcal{C}_k \) be any. Then the map

\[
(\eta_F)_Q : G(A^F)_Q \to \lim_{E \in \mathcal{C}_k} G(A^E)_Q
\]

is an injection. In particular we have an injection from \(G(A)_Q \) to \(G(T)_Q \).

Complete equi-characteristic Gorenstein local rings of finite representation type (with \(\text{char } A/m \neq 2, 3, 5 \)) are precisely the ADE-singularities, see [8, 9.8]. Furthermore in this case their AR-quiver is known and so their Grothendieck groups have been computed, see [9, 13.10]. As an easy consequence to our results we show that

Corollary 1.4. Let \((A, \mathfrak{m}) \) be an excellent equi-characteristic Henselian Gorenstein local ring of finite representation type. Assume \(k \) is perfect. Then

1. If \(\dim A \) is positive and even then \(G(A)_Q \cong \mathbb{Q} \).
ON \(G(A)_Q \) OF RINGS OF FINITE REPRESENTATION TYPE

(2) If \(\dim A \) is odd then \(\dim_Q G(A)_Q \leq 3 \).

In fact in (1) we have \(G(A)_Q \cong G(\hat{T})_Q \). In section five we give an example which shows that in (2); \(G(A)_Q \) can be a proper subspace of \(G(\hat{T})_Q \). The same example shows that we cannot in general compare torsion of \(G(A) \) with torsion of \(G(\hat{T}) \).

We now describe in brief the contents of this paper. In section two we discuss some preliminaries on AR-sequences that we need. In section three we describe our construction. In section four we prove Theorem 1.2 Proposition 1.3 and Corollary 1.4. Finally in section five we discuss an example which shows that torsion does not behave well with our construction.

Convention: Throughout this paper all rings are commutative Noetherian and all modules (unless stated otherwise) are finitely generated.

2. Some preliminaries on Auslander-Reiten sequences

In this section we discuss some preliminaries on Auslander-Reiten (AR) sequences that we need. The reference for this section is [9, Chapter 2]. Let \((A, m)\) be a Henselian Cohen-Macaulay local ring.

2.1. Let \(M \in \text{CM}(A) \) be indecomposable. We define a set of short exact sequences in \(\text{CM}(A) \) as follows:

\[S(M) = \{ s : 0 \to N_s \to E_s \to M \to 0 \mid N_s \text{ is indecomposable and } s \text{ is non-split} \} \]

If \(M \) is non-free then \(S(M) \) is non-empty, [9, 2.2]. Define a partial order \(\succ \) on \(S(M) \) as follows. Let \(s, t \in S(M) \). Then we say \(s \succ t \) if there is \(f \in \text{Hom}_A(N_s, N_t) \) such that \(\text{Ext}^1_A(M, f)(s) = t \). This is equivalent to the existence of a commutative diagram:

\[
\begin{array}{cccccc}
0 & \to & N_s & \to & E_s & \to & M & \to & 0 \\
& \downarrow f & & \downarrow j & & \downarrow j & & \downarrow j & \\
0 & \to & N_t & \to & E_t & \to & M & \to & 0
\end{array}
\]

where \(j \) is the identity map. We write \(s \sim t \) if \(f \) is an isomorphism.

2.2. We have the following properties of \(\succ \) on \(S(M) \):

(1) If \(s \succ t \) and \(t \succ l \) then \(s \succ l \); (obvious).

(2) If \(s \succ t \) and \(t \succ s \) then \(s \sim t \); see [9, 2.4].

(3) If \(s, t \in S(M) \) then there exists \(u \in S(M) \) such that \(s \succ u \) and \(t \succ u \); see [9, 2.6].

By (2.2) it follows that if there is a minimal element in \(S(M) \) then it is a minimal element in \(S(M) \) (up to isomorphism).

Definition 2.3. An AR-sequence ending at \(M \) is the unique minimal element of \(S(M) \) (if it exists).

For a more concrete description of AR-sequences see [9, 2.9].

2.4. The following two results are basic. The first is [9, 3.4].

Theorem 2.5. Let \((A, m)\) be a Henselian Cohen-Macaulay local ring. Let \(M \in \text{CM}(A) \) be non-free and indecomposable. The following two conditions are equivalent:

(i) \(M \) is locally free on the punctured spectrum of \(A \).
There exists an AR-sequence ending at M.

The second result is [1] (when A is complete), [9] 4.22] (when A has a canonical module) and [4], Corollary 2] (in general).

Theorem 2.6. Let (A, \mathfrak{m}) be a Henselian Cohen-Macaulay local ring. If A is of finite representation type then A is an isolated singularity.

3. A Construction

In this section we describe a construction that is essential to us. This was constructed in [8].

3.1. Let (A, \mathfrak{m}) be a Henselian local ring with perfect residue field k. Let \overline{k} be the algebraic closure of k. Let $C_k = \{E \mid E$ is a finite extension of k, and $E \subseteq \overline{k}\}$.

Order C_k with the inclusion as partial order. Note that C_k is a directed set, for if $E, F \in C_k$ then the composite field $EF \in C_k$ and clearly $EF \supseteq E$ and $EF \supseteq F$.

Theorem 3.2. [8, 4.2] (with hypotheses as in 3.1) There exists a direct system of local rings $\{(A_E, \mathfrak{m}_E) \mid E \in C_k\}$ such that

1. A_E is a finite flat extension with $\mathfrak{m}_E = \mathfrak{m}_E$. Furthermore $A_E/\mathfrak{m}_E \cong E$ over k.
2. A_E is Henselian.
3. For any $F, E \in C_k$ with $F \subseteq E$ the maps in the direct system $\theta_{E}^{F}: A_F \rightarrow A_E$ is flat and local with $\mathfrak{m}_F A_E = \mathfrak{m}_E$.

The ring $T = \lim_{E \in C_k} A_E$ will have nice properties.

3.3. Construction-C.1: For every $E \in C_k$ we construct a ring A_E as follows.

As k is perfect, E is a separable extension of k. So by primitive element theorem $E = k(\alpha_E)$ for some $\alpha_E \in E$. Let

$$p_E(X) = p_{E, \alpha_E}(X) = \text{Irr}(\alpha_E, k),$$

be the unique monic minimal polynomial of α_E over k. Let $f_E(X) = f_{E, \alpha_E}(X)$ be a monic polynomial in $A[X]$ such that $f_E(X) = p_E(X)$. Set

$$A_E = \frac{A[X]}{(f_E(X))}.$$

Our construction of course depends on choice of α_E and the choice of $f_E(X)$. We will simply fix one choice of α_E and $f_E(X)$.

Remark 3.4. If A contains a field isomorphic to k then we can choose $A_E = A \otimes_k E$. However note that in general, even if A contains a field, it need not contain a field isomorphic to k.

3.5. Construction-C.2: Let $k \subseteq F \subseteq E$ be a tower of fields. In [8] 4.5] we constructed a ring homomorphism $\theta_{E}^{F}: A_F \rightarrow A_E$ such that the following holds:

Proposition 3.6. [8, 4.6] (with hypotheses as in 3.5)

1. θ_{E}^{F} is a homomorphism of A-algebra’s.
2. θ_{E}^{F} is a local map and $\mathfrak{m}_E A_E = \mathfrak{m}_E$.
(iii) A^E is a flat A^F-module (via θ^E_F).
(iv) If $k \subseteq F \subseteq E \subseteq L$ is a tower of fields then we have a commutative diagram

\[
\begin{array}{ccc}
A^F & \xrightarrow{\theta^F_E} & A^L \\
\downarrow{\theta^F_E} & & \downarrow{\theta^E_L} \\
A^E & \xrightarrow{\theta^E_L} & A^L
\end{array}
\]

3.7. Construction-C.3: By (3.6) we have a directed system of rings $\{A^E\}_{E \in C_k}$. Set

\[T = \varprojlim_{E \in C_k} A^E,\]

and let $\theta_E: E \to T$ be the maps such that for any $F \subseteq E$ in C_k we have $\theta_E \circ \theta^E_F = \theta_F$.

For $F \in C_k$ set

\[C_F = \{E \mid E \text{ is a finite extension of } F\}.

Then clearly C_F is cofinal in C_k. Thus we have

\[T = \varprojlim_{E \in C_F} A^E.

We have the following properties of T.

Theorem 3.8. [See (3.4.8)] (with hypotheses as in 3.7)

(i) T is a Noetherian ring.
(ii) T is a flat A-module.
(iii) T is a flat A^F-module for any $F \in C_k$.
(iv) The map θ_E is injective for any $E \in C_k$.
(v) By (iv) we may write $T = \bigcup_{E \in C_k} A^E$. Set $m_T = \bigcup_{E \in C_k} m^E$. Then m_T is the unique maximal ideal of T.
(vi) $mT = m^T$.
(vii) $T/m^T \cong \bar{k}$.
(viii) T is a Henselian ring.

The following result is definitely known to experts. We give a proof for the convenience of the reader.

Lemma 3.9. If A is excellent then

(1) A^E is excellent for all $E \in C_k$.
(2) $T = \varprojlim_{E \in C_k} A^E$ is excellent.

Proof. (1) We have $A^E = A[X]/(f_E(X))$. So A^E is excellent.
(2) In the directed system $\{A^E\}_{E \in C_k}$ each map $A^F \to A^E$ (when $F \subseteq E$) is etale. So by a result of [3] 5.3 it follows that T is excellent.

The significance of T is that certain crucial properties descend to a finite extension E of k, see (3.4.9).

Lemma 3.10. (with hypotheses as above)

(1) Let M be a T-module. Then there exists $E \in C_k$ and an A^E-module N such that $M = N \otimes_{A^E} T$.
(2) Let N_1, N_2 be A^E-modules for some $E \in C_k$. Suppose there is a T-linear map $f: N_1 \otimes_{A^E} T \to N_2 \otimes_{A^E} T$. Then there exists $K \in C_k$ with $K \supset E$ and an A^K-linear map $g: N_1 \otimes_{A^E} A^K \to N_2 \otimes_{A^E} A^K$ such that $f = g \otimes T$. Furthermore if f is an isomorphism then so is g.
We now relate finite representation property of our construction.

Lemma 3.11. Assume A is Cohen-Macaulay, excellent and of finite representation type. Then

1. A^E is Cohen-Macaulay of finite representation type for each $E \in \mathcal{C}_k$.
2. $T = \lim_{E \in \mathcal{C}_k} A^E$ is Cohen-Macaulay of finite representation type.
3. \hat{T}, the m^T completion of T, is Cohen-Macaulay of finite representation type.
4. If A is Gorenstein then A^E is Gorenstein for each $E \in \mathcal{C}_k$. Furthermore T, \hat{T} are Gorenstein.

Proof. We first note that as $mA^E = m^E$. So A^E is Cohen-Macaulay, see [7, Corollary, p. 181]. Furthermore if A is Gorenstein then so is A^E, see [7, 23.4]. Similarly as $mT = m^T$ we get T is Cohen-Macaulay (and is Gorenstein if A is). So \hat{T} is also Cohen-Macaulay (and is Gorenstein if T is).

For (1), (2) see [8, 10.7]. For (3) use [3.10] and [8, 10.10].

The following results on comparing AR-sequences is crucial for us.

Lemma 3.12. Let the setup be as in Lemma 3.11. Let M^T be an indecomposable MCM T-module and let $\delta^T: 0 \to N^T \to L^T \to M^T \to 0$ be an AR-sequence ending at M^T. By [7,10] there exists $E \in \mathcal{C}_k$ and MCM Modules A^E-modules M^E, N^E, L^E such that

1. $M^E \otimes_{A^E} T = M^T, N^E \otimes_{A^E} T = N^T$ and $L^E \otimes_{A^E} T = L^T$.
2. A short exact sequence, $\delta^E: 0 \to N^E \to L^E \to M^E \to 0$, of A^E-modules such that $\delta^E \otimes T = \delta^T$.

Then

(a) δ^E is the AR-sequence in A^E ending at M^E.
(b) If $E \subseteq F$ then $\delta^F = \delta^E \otimes_{A^E} A^F$ is the AR-sequence in A^F ending at $M^F = M^E \otimes_{A^E} A^F$.

Proof. (a) As N^T, M^T are indecomposable we get N^E, M^E are indecomposable. Let β be an AR-sequence in A^E ending at M^E. Then $\delta^E > \beta$. So $\delta^T = \delta^E \otimes T > \beta \otimes T$. But δ^T is the AR-sequence ending at M^T. So $\beta \otimes T > \delta^T$. Therefore $\delta^E \otimes T \sim \beta \otimes T$ (see [2.2](2)). As T is a faithfully flat A^E-algebra we get that $\delta^E \sim \beta$. The result follows.

(b) Note

$$
\delta^F \otimes_{A^F} T = (\delta^E \otimes_{A^E} A^F) \otimes_{A^F} T \cong \delta^T.
$$

The result follows from (a).

4. Proof of our main result [1.2]

In this section we prove our main result. We require several preparatory results to prove it. Throughout this section (A, m) is an excellent Cohen-Macaulay local ring of finite representation type with $k = A/m$ perfect. Fix an algebraic closure \bar{k} of k. Let

$$
\mathcal{C}_k = \{ E \mid E \text{ is a finite extension of } k, \text{ and } E \subseteq \bar{k} \}.
$$

For $E \in \mathcal{C}_k$ let A^E be as in [3.5]. If $k \subseteq F \subseteq E$ let $\theta^E_F: A^E \to A^F$ be as in [3.3].

As discussed above $\{ A^E \mid E \in \mathcal{C}_k \}$ forms a direct system of rings. As before set $T = \bigcup_{E \in \mathcal{C}_k} A^E$. By [3.11] we get that A^E has finite representation type for each $E \in \mathcal{C}_k$. Furthermore T and \hat{T} also have finite representation type.
4.1. Construction-K.1: Let \(k \subseteq F \subseteq E \). As \(A^E \) is a flat \(A^F \)-algebra we have an obvious map \(\eta_E^F : G(A^F) \to G(A^E) \) given by \(M \to M \otimes_{A^F} A^E \). After tensoring with \(\mathbb{Q} \) denote this map by \((\eta_E^F)_\mathbb{Q} \). It is clear that we have a direct system of abelian groups \(\{ G(A^E) \}_{E \in \mathcal{C}_k} \). So we have an abelian group \(\lim_{E \in \mathcal{C}_k} G(A^E) \) and natural maps \(\eta_E : G(A^E) \to \lim_{E \in \mathcal{C}_k} G(A^E) \).

Next we show

Lemma 4.2. Let \(k \subseteq F \subseteq E \). Then the map \((\eta_E^F)_\mathbb{Q} : G(A^F)_\mathbb{Q} \to G(A^E)_\mathbb{Q} \) is an inclusion of \(\mathbb{Q} \)-vector spaces.

Proof. We note that via \(\theta_E^F : A^F \to A^E \) we get that \(A^E \) is a finite free \(A^F \)-module, say of rank \(r \). It follows that any MCM \(A^E \)-module is also an MCM \(A^F \)-module. So we have the obvious map \(\phi : G(A^E) \to G(A^F) \).

Set \(\delta = (\phi \otimes \mathbb{Q}) \circ (\eta_E^F)_\mathbb{Q} \). Let \(M \) be a MCM \(A^F \)-module. Then note that \(\delta([M]) = r[M] \). So \(\delta \) is an isomorphism. In particular \((\eta_E^F)_\mathbb{Q} \) is an inclusion. \(\square \)

As an immediate consequence we get Proposition 4.3 which we restate for the convenience of the reader.

Corollary 4.3. Let \(F \in \mathcal{C}_k \) be any. The map \((\eta_F)_\mathbb{Q} : G(A^F)_\mathbb{Q} \to \lim_{E \in \mathcal{C}_k} G(A^E)_\mathbb{Q} \) is injective.

Proof. See Chapter III, Exercise 19 in [5]. \(\square \)

4.4. Construction-K.2: Let \(E \in \mathcal{C}_k \). As \(T \) is a flat \(A^F \)-algebra we have an obvious map \(\xi_E : G(A^E) \to G(T) \) given by \(M \to M \otimes_{A^E} T \). The maps \(\xi_E \) are compatible with \(\eta_E^F \) whenever \(k \subseteq F \subseteq E \). So we have a natural map

\[\xi : \lim_{E \in \mathcal{C}_k} G(A^E) \to G(T). \]

We restate Theorem 4.2 for the convenience of the reader.

Theorem 4.5. \(\xi \) is an isomorphism.

The proof of Theorem 4.5 requires a few preliminaries.

4.6. Construction-K.3: We know that \(T \) is of finite representation type. Let \(\mathcal{I}_T = \{ M_1, \ldots, M_s \} \). By 3.10 we can choose \(F \in \mathcal{C}_k \) and indecomposable MCM \(A^F \)-modules \(M_1^F, \ldots, M_s^F \) with \(M_i = M_i^F \otimes_{A^F} T \) for \(i = 1, \ldots, s \). Set

\[\mathcal{I}_{A^E} = \{ M_1^F, \ldots, M_s^F \}. \]

Note \(\mathcal{I}_{A^E} \) can be a proper subset of \(\mathcal{I}_{A^F} \) the set of all indecomposable MCM \(A^F \)-modules. By 3.12 we may further assume (after possibly taking a finite extension of \(F \)) that there exists a finite subset \(\mathcal{R}_{A_E} \) of \(AR(A^E) \) such that \(\mathcal{R}_{A_E} \otimes_{A^E} T = AR(T) \).

Further note that \(\mathcal{R}_{A_F} \) need not equal \(AR(A^F) \).

Consider the set

\[\mathcal{C}_F = \{ E \mid E \text{ is a finite extension of } F, \text{ and } E \subseteq \overline{k} \}. \]

Then \(\mathcal{C}_F \) is co-final in \(\mathcal{C}_k \). Also for \(E \in \mathcal{C}_F \) we may choose \(\mathcal{I}_{A_E} = \mathcal{I}_{A^F} \otimes_{A^E} A^E \). Also set \(\mathcal{R}_{A_E} = \mathcal{R}_{A^F} \otimes_{A^E} A^E \).

Remark 4.7. It is obvious that the natural map \(G(A^E) \to G(T) \) is surjective for each \(E \in \mathcal{C}_F \). So \(\xi_E \) is surjective. So the map

\[\xi' : \lim_{E \in \mathcal{C}_F} G(A^E) \to G(T), \]

is surjective.
As \(\mathcal{C}_F \) is co-final in \(\mathcal{C}_k \) we get

\[
\lim_{E \in \mathcal{C}_F} G(A^E) = \lim_{E \in \mathcal{C}_k} G(A^E) \quad \text{and} \quad \xi' = \xi.
\]

So \(\xi \) is surjective.

To prove \(\xi \) is injective requires some more work.

4.8. Construction-K.4: Let \(E \in \mathcal{C}_F \). Let \(H(E) \) be the free abelian group generated on \(\text{add}(T_{A^E}) \). Let \(H_0(E) \) be the subgroup of \(H(E) \) generated by

\[
\{X_1 - X_2 + X_3 \mid \text{there is a sequence } 0 \to X_1 \to X_2 \to X_3 \to 0 \text{ in } \mathcal{R}_{A^E}\}.
\]

Set \(D(E) = H(E)/H_0(E) \). By our construction we have

1. If \(F \subseteq E_1 \subseteq E_2 \) then the map \(- \otimes_{A^{E_i}} A^{E_2} \) induces an isomorphism \(D(E_1) \to D(E_2) \).

2. Let \(E \in \mathcal{C}_F \). The map \(- \otimes_{A^E} T \) induces an isomorphism \(D(E) \to G(T) \).

3. We also have an obvious map \(D(E) \to G(A^E) \) for all \(E \in \mathcal{C}_F \).

We have a commutative diagram

\[
\begin{array}{ccc}
D(E) & \xrightarrow{\beta_E} & G(A^E) \\
\alpha_E \downarrow & & \downarrow \xi_E \\
G(T) & & \\
\end{array}
\]

We have directed system \(\{D(E)\}_{E \in \mathcal{C}_F} \) where the maps are induced as in [4.8.1] (which are isomorphisms). The maps \(\{\alpha_E\}_{E \in \mathcal{C}_F} \) is a map of directed systems. Also \(\{\beta_E\}_{E \in \mathcal{C}_F} \) and \(\{\xi_E\}_{E \in \mathcal{C}_F} \) are compatible with the obvious maps. So we have a commutative diagram

\[
\begin{array}{ccc}
\lim_{E \in \mathcal{C}_F} D(E) & \xrightarrow{\beta} & \lim_{E \in \mathcal{C}_F} G(A^E) \\
\alpha \downarrow & & \downarrow \xi_E \\
\lim_{E \in \mathcal{C}_F} G(T) & & \\
\end{array}
\]

Remark 4.9. Note \(\beta \) is an isomorphism. So \(\alpha \) is injective. Also \(\xi \) is surjective. To prove \(\xi \) is an isomorphism it suffices to show \(\alpha \) is surjective (and so \(\alpha \) is an isomorphism).

To prove \(\alpha \) is surjective we need the following:

Lemma 4.10. Let \(R \) be a commutative ring. Let \(\Lambda \) be a directed set. Let \(\{W_i\}_{i \in \Lambda} \) and \(\{V_i\}_{i \in \Lambda} \) be two directed system of \(R \)-modules with maps \(\alpha_i^j : W_i \to W_j \) and \(\beta_i^j : V_i \to V_j \) for all \(i < j \) in \(\Lambda \). We do not assume \(W_i \) or \(V_i \) are finitely generated \(R \)-modules. Suppose we have a map of direct systems \(\{\eta_i : W_i \to V_i\}_{i \in \Lambda} \). Further assume that for each \(i \in \Lambda \) and each \(v \in V_i \) there exists \(j > i \) and \(w \in W_j \) such that \(\eta_j(w) = \beta_i^j(v) \) (here \(j \) might possibly depend on \(v \)). Then the map

\[
\eta : \lim_{i \in \Lambda} W_i \to \lim_{i \in \Lambda} V_i \quad \text{is surjective.}
\]

Proof. Let us recall the construction of \(\lim_{i \in \Lambda} V_i \), see [5, Theorem(III, 10.1)]. Let \(F = \bigoplus_{i \in \Lambda} V_i \). Let \(N \) be the submodule of \(F \) generated by \(x - \beta_i^j(x) \) for all \(x \in V_i \), for all \(j > i \) (and for all \(i \)). Then \(\lim_{i \in \Lambda} V_i = F/N \). Similarly we can construct \(\lim_{i \in \Lambda} W_i \).
Let $\theta = \sum_{i=1}^r x_i \in \lim_{A \in \Lambda} V_i$ with $x_i \in V_i$. By our hypothesis for each i there exists $j_i > i$ and $y_{ji} \in W_{ji}$ with

$$\eta_{ji}(y_{ji}) = \beta_{ji}^i(x_i).$$

We note that

$$\eta\left(\sum_{i=1}^r y_{ji}\right) = \sum_{i=1}^r \beta_{ji}^i(x_i) = \theta.$$

So η is onto.

Proof of 4.5. By 4.2 and 4.5 we have an injection $\alpha : D(E) \to G(A^E)$ and maps of direct systems $\alpha_E : D(E) \to G(A^E) : E \in \mathcal{C}_F$. Let M be a MCM A^E-module. Then $M \otimes_A E T = \bigoplus_{i=1}^r M_i^{a_i}$ for some $a_i \geq 0$. Set $V = \bigoplus_{i=1}^r (M_i^{E})^{a_i}$. Then V is an MCM A^E-module and $V \otimes_A E T \cong M \otimes_A E T$ as E-modules. Then by Lemma 3.10 there exists $K \supseteq E$ such that $M \otimes_A E A^K \cong V \otimes_A E A^K$ as A^K-modules. We note that $V \otimes_A E A^K \in \text{add}(T_{A^K})$ and

$$\alpha_K(V \otimes_A E A^K) = M \otimes_A E A^K = \eta^E_K(M).$$

So our direct systems satisfy the hypotheses of Lemma 3.10. Thus α is surjective. □

We now give

Proof of 1.4. We have two direct systems $\{D(E)\} : E \in \mathcal{C}_F$ and $\{G(A^E)\} : E \in \mathcal{C}_F$ and maps of direct systems $\{\alpha_E : D(E) \to G(A^E) : E \in \mathcal{C}_F\}$. Let M be a MCM A^E-module. Then $M \otimes_A E T = \bigoplus_{i=1}^r M_i^{a_i}$ for some $a_i \geq 0$. Set $V = \bigoplus_{i=1}^r (M_i^{E})^{a_i}$. Then V is an MCM A^E-module and $V \otimes_A E T \cong M \otimes_A E T$ as E-modules. Then by Lemma 3.10 there exists $K \supseteq E$ such that $M \otimes_A E A^K \cong V \otimes_A E A^K$ as A^K-modules. We note that $V \otimes_A E A^K \in \text{add}(T_{A^K})$ and

$$\alpha_K(V \otimes_A E A^K) = M \otimes_A E A^K = \eta^E_K(M).$$

So our direct systems satisfy the hypotheses of Lemma 3.10. Thus α is surjective. □

We now give

Proof of 1.3. By 1.2 and 1.3 we have an injection $G(A) \to G(T)$ and $G(T) \cong G(\widehat{T})$. By [6, 10.17] \widehat{T} is an ADE-singularity. The Grothendieck groups of ADE-singularities have been computed, see [9, 13.10].

(2) We have

$$\dim_Q G(A) \leq \dim_Q G(\widehat{T}) \leq 3.$$

The result follows.

(1) We have

$$\dim_Q G(A) \leq \dim_Q G(\widehat{T}) = 1.$$

Also as A is an isolated singularity of dimension ≥ 2 we get that A is a domain. So we have an obvious surjective map $G(Q) \to \mathbb{Z}$ which maps M to $\text{rank}(M)$. It follows that $\dim_Q G(A) \geq 1$. The result follows. □

5. An example

We now give an example which proves two things:

(1) If $\dim A$ is odd then $G(A) \leq \text{can be proper subspace of } G(\widehat{T})$.

(2) In general we cannot compare torsion subgroups of $G(A)$ and $G(\widehat{T})$.

The example is $A = \mathbb{R}[x, y]/(x^2 + y^2)$. Note $\widehat{T} = \mathbb{C}[x, y]/(x^2 + y^2)$ is the A_1-singularity. By [9, p. 134] we get that $G(A) = \mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$. While $G(\widehat{T}) = \mathbb{Z}^2$, see [9, 13.10]. This proves both our assertions.
References

[1] M. Auslander, *Isolated singularities and existence of almost split sequences*, In: Proc. ICRA IV, Springer Lecture Notes in Math, vol. 1178, pp. 194–241 (1986)
[2] and I. Reiten, *Grothendieck groups of algebras and orders*, J. Pure Appl. Algebra 39 (1986), no. 1-2, 1–51
[3] S. Greco, *Two theorems on excellent rings*, Nagoya Math. J. 60 (1976), 139–149.
[4] C. Huneke and G. J. Leuschke, *Two theorems about maximal Cohen-Macaulay modules*, Math. Ann. 324 (2002), no. 2, 391–404.
[5] S. Lang, *Algebra*, Revised third edition. Graduate Texts in Mathematics, 211. Springer-Verlag, New York, 2002.
[6] G. J. Leuschke and R. Wiegand, *Cohen-Macaulay representations*, Mathematical Surveys and Monographs, 181. American Mathematical Society, Providence, RI, 2012.
[7] H. Matsumura, *Commutative ring theory*, second ed., Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1989.
[8] T. J. Puthenpurakal, *Examples of non-commutative crepant resolutions of Cohen Macaulay normal domains*, J. Algebra 485 (2017), 77–96.
[9] Y. Yoshino, *Cohen-Macaulay modules over Cohen-Macaulay rings*, London Mathematical Society Lecture Note Series, 146. Cambridge University Press, Cambridge, 1990.

Department of Mathematics, IIT Bombay, Powai, Mumbai 400 076

Email address: tputhen@math.iitb.ac.in