Perceived Fear of COVID-19 and its Associated Factors Among Nepalese Older Adults in Eastern Nepal: Findings From a Cross-Sectional Study

Uday Yadav (unyadav1@gmail.com)
Forum for Health Research and Development
https://orcid.org/0000-0002-6626-1604

Om Prakash Yadav
MOHP

Devendra Raj Singh
Asian College for Advance Studies

Saruna Ghimire
Miami University

Binod Rayamajhee
UNSW: University of New South Wales

Sabuj Kanti Mistry
BRAC University

Lal Bahadur Rawal
CQUniversity: Central Queensland University

ARM Mehrab Ali
ARCED Foundation

Man Kumar Tamang
CRPIN

Suresh Mehta
MoHP

Research

Keywords: COVID-19, fear, older adults, Nepal

DOI: https://doi.org/10.21203/rs.3.rs-125117/v1

License: ☕️ ▼ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background

Coronavirus disease 2019 (COVID-19) has impacted all age groups, but older adults may have greater distress given their increased risk for severe illness and mortality. In Nepal, most stories of older adults are untold – both in pre-COVID-19 and the COVID-19 era. In this study, we aimed to assess the perceived fear of COVID-19, and associated factors, among older adults in eastern Nepal.

Methods

A cross-sectional study was conducted between July and September 2020 among 847 older adults (≥60 years) residing in three districts of eastern Nepal. Perceived fear of COVID-19 was measured using the seven-item Fear of COVID-19 Scale (FCV-19S). In order to examine the factors associated with the COVID-19 fear, a generalized estimating equation, adjusting the sampling design was used. STATA 15 and JASP 0.13.1 were used for data analyses.

Results

The mean score of the FCV-19S was 18.1±5.2, and a sizeable proportion of participants, ranging between 12%-34%, agreed to the seven items of the fear scale. Increasing age, Dalit ethnicity remoteness to the health facility, and being concerned or overwhelmed with the COVID-19 were associated with greater fear of COVID-19. Surprisingly, pre-existing health conditions were inversely associated with fear of COVID-19.

Conclusion

Greater fear of the COVID-19 pandemic among the older population suggests that during unprecedented times such as the current pandemic, the psychological needs of most vulnerable groups should be prioritized. Fear among the most vulnerable groups could be reduced with the flow of adequate genuine information as well as better preparedness and psychosocial interventions.

Background

As of 29 September 2020, there were over 33 million confirmed cases and over one million deaths from novel coronavirus disease-2019 (COVID-19) (1). By the same date, Nepal reported 76,258 confirmed cases and 491 death from COVID-19 (2). The ongoing COVID-19 pandemic has been the center of focus globally and covered extensively in local and international news outlets. Much of the global and regional focus has been on disease prevention of transmission and therapeutics, which are undoubtedly pressing public health needs during a pandemic. However, one understudied, nevertheless not a less important aspect of COVID-19, is its mental health impact in the general population and, more importantly, among high-risk groups.
The floating information related to COVID-19 rapid transmission, swamping infection rates, and mortality globally has led to the development of stress, anxiety, and fear among the population at the ground level. Over 100 countries worldwide (3), including Nepal [a south-Asian country between India and China], imposed partial and complete lockdown to curb the transmission of the virus. Consequently, social isolation, coupled with economic loss, may have serious impacts on the mental health of individuals (4). Life has been disrupted in most parts of the world, and the anxiety is common among people to accept the increasing cruelty of COVID-19 and to become accustomed to the new norm of life. Although most people seem to be physically, mentally, socio-economically impacted by the COVID-19 pandemic, the impact may be greater for certain groups such as the older population who are at an elevated risk of severe illness and mortality (5); the fatality rate for those over 80 years of age is five times the global average (6). COVID-19 may have disrupted everyday life, jeopardized the needs and rights of older people around the world, and exposed the deep-rooted ageism. Given the increased risk of infection and mortality, it is obvious that older adults are more vulnerable to fear and worry due to the current unprecedented pandemic condition. Fear may affect older people's feeling, mood, or behavior, which may impact their ability to function physically, socially and cognitively each day (7, 8). Specifically, in Nepal, most stories of older adults are untold in both pre-COVID-19 as well as COVID-19 era.

The Senior Citizen Act of Nepal defines individuals aged 60 years and older as senior citizens or older adults (9). The average life expectancy at birth in Nepal has increased from 49.6 years in 1981 to 70.6 years in 2016 (10), resulting in a burgeoning population of older adults. According to recent estimates for 2019, there were 2.67 million older adults in Nepal, representing 8.6% of the total population (11). The growth rate for the older population is 3.5% per year, which is greater than the national average of 1.35% (12).

There is scarce data on fear and its predictors among older adults in south Asian countries, mainly from a resource-limited country like Nepal. To the best of our knowledge, this is the first study ever been conducted to assess fear of COVID-19 and associated factors among the older adults at the community settings in Nepal amid the COVID-19 pandemic. Hence, the objective of this study is to assess the perceived fear of COVID-19, and associated factors, among Nepali older adults.

Methods

A cross-sectional study was conducted between July and September 2020, among the older adults (≥ 60 years) residing in three districts (Morang, Pachthar, and Terathum) of Province 1 in eastern Nepal. The sample size of 847 was calculated considering the following parameters: unknown prevalence = 50%, CI = 95.0%, sampling error = 5.0%, design effect = 2, and non-response rate = 5.0%. Multi-stage cluster sampling recruited the study participants. In the first stage, three districts from Province 1 were selected purposively. Then, one urban and one rural municipality in each districts were selected randomly. Subsequently, from each municipality, three wards (lowest administrative units in Nepal) were randomly selected. In the final step, a proportionate simple random sampling technique was used to recruit participants from each ward. Representatives from the municipalities provided the list of eligible older
adults in the selected wards. Eligibility criteria included age ≥ 60 years, Nepali nationals with a minimum of one year of residence in the community. The exclusion criteria included residing in nursing care, and mental conditions (clinically proved schizophrenia, bipolar mood disorder), a hearing disability, or unable to communicate.

Data collection and study variables

Data were collected by semi-structured interviews using a validated survey questionnaire (13). Surveyors were 12 trained health care providers working for the government of Nepal in the selected districts. Prior to data collection, surveyors were trained through the Zoom meeting facilitated by five authors (UNY, OPY, DRS, SKM, SM). Surveyors were trained on study tools, participant recruitment, ethical aspects, and data collection techniques. Surveyors visited the households and collected the data using the KoBo Toolbox mobile app (14).

Dependent variable measurement

COVID-19 related fear was the primary outcome, which was measured using the seven-item Fear of COVID-19 Scale (FCV-19S) developed and validated by Ahorus et al. among the general Iranian population (13). Participants' agreement/disagreement with the seven items was assessed using a five-point Likert-scale (ranging from 1= "strongly disagree," 3= "neither agree nor disagree," and 5= "strongly agree"). Hence, the cumulative score ranged from 7 to 35, where the higher the scores, the greater the fear of COVID-19.

The internal consistency reliability of the scale among Nepali older adults was acceptable (Cronbach's $\alpha = 0.86$, McDonald's $\omega = 0.88$ and Guttmann's $\lambda = 0.90$). Confirmatory factor analysis (CFA) was conducted to validate the scale among the older participants where the standardized root mean square residual (SRMR) close to 0.06, and the Goodness of Fit Index (GFI), Normed Fit Index (NFI) and Comparative Fit Index (CFI) close to 0.90 were considered to be acceptable (15). In the CFA, the scale indices were well fit and within the acceptable limit [$\chi^2 (14, N = 843) = 345.82, \ p < 0.01; \ SRMR = 0.062; \ GFI = 0.884; \ NFI = 0.917; \ IFI = 0.920; \ CFI = 0.920$].

Independent variable measurement

Independent variables included age group, gender, marital status, family type, ethnicity, education, occupation, urban/rural residence, walking distance to the nearest health facility, any pre-existing chronic health problems, any current medications, financial hardships with health care access, need of additional care from family members/caregivers, social security allowance, source of COVID-19 information, and feeling overwhelmed and concerned because of COVID-19 pandemic. These co-variates definition and measurements are described in our previous work (16, 17). For the variable "sources of COVID-19 information", in multiple response questions, we asked participants to list their source of information for COVID-19. Participants were also asked "How overwhelmed are you feeling in this corona pandemic (Yes/no/not sure) and How concerned are you because of this coronavirus pandemic (Not at all/Somewhat concerned/Very concerned)".
The English version of the tool was first translated to Nepali and then back-translated to English by three researchers to ensure the contents' consistency. Piloting of the tool among a small sample (n = 10) of older adults helped to refine the final version by considering the remarks from the older population. Following piloting, minor editorial issues were resolved, such as "COVID-19" was replaced with the term coronavirus throughout, and the question that aimed to capture proximity to the health facility was clarified by specifying "walking distance to the nearest health facility."

Statistical analyses

Mean (SD) and frequency (%) are used to depict participants' characteristics. Independent t-tests and ANOVA evaluated the mean differences in the FCV-19S score by participants' characteristics. The bar graph shows the participants' agreement with the seven items of FCV-19S. In order to examine the factors associated with the COVID 19 fear, a generalized estimating equation, adjusting the sampling design was used. The variables with p < 0.1 in the bivariate analyses were included in the final multivariate model. STATA 15 and JASP 0.13.1 were used for data analyses.

Results

Table 1 describes participants' characteristics overall as well as in bivariate association with COVID-19 fear. Among 843 participants, 45% were aged 60–69 years, 49% were female, 76% were married, and 87% lived in joint families. Similarly, the majority of them had no formal education (68%), had pre-existing conditions (64%) or under any medications (51%), and had financial hardships to access health care (55%) (Table 1).

Table 1: Participants characteristics and COVID-19 fear using bivariate analysis
	Frequency	%	COVID-19 fear score	Mean	SD	P
				Mean	SD	
Total	843	100.0		18.1	5.2	
Age (Years)				Mean	SD	P
60-69	383	45.4		16.7	3.6	
70-79	315	37.4		19.1	6.1	<0.001
80-89	123	14.6		19.5	5.9	
≥90	22	2.6		20.5	5.1	
Gender				Mean	SD	P
Female	412	48.9		18.2	5.3	0.782
Male	431	51.1		18.1	5.1	
Marital status				Mean	SD	P
Married	639	75.8		17.8	5.3	
Without partner	204	24.2		19.0	5.0	0.005
Family type				Mean	SD	P
Nuclear	111	13.2		18.2	4.1	0.908
Joint/extended	732	86.8		18.1	5.4	
Ethnicity				Mean	SD	P
Brahmins/Chhetris	266	31.6		18.8	5.4	
Dalits	50	5.9		19.9	5.3	
Madhesi	132	15.7		15.7	3.0	<0.001
Indigenous	276	32.7		19.0	6.0	
Others	119	14.1		16.2	3.1	
Education				Mean	SD	P
Uneducated	577	68.4		17.8	5.1	
Educated	266	31.6		18.8	5.4	0.011
Occupation				Mean	SD	P
Retired	51	6.0		17.4	3.7	
Agriculture	400	47.4		19.4	5.9	
Category	N	Mean	Standard Deviation	P-value		
--------------------------------	-----	------	--------------------	---------		
Business						
Housewife	223	26.5	17.0	4.3		
Wages based labors	39	4.6	17.4	4.1		
Others	96	11.4	15.9	3.6		
Residence						
Rural	370	43.9	18.6	6.0		
Urban	473	56.1	17.7	4.4		
Walking distance to the nearest health facility						
<30 mins	272	32.3	16.0	4.8		
30-60 mins	372	44.1	18.2	4.7		
>60 mins	199	23.6	19.7	6.1		
Pre-existing health conditions						
No	301	35.7	19.4	6.4		
Yes	542	64.3	17.4	4.2		
Current medications use						
No	409	48.5	18.6	5.9		
Yes	433	51.4	17.6	4.4		
Financial hardships with health care						
No/not sure	379	45.0	18.7	6.5		
Yes	464	55.0	17.5	3.8		
Need additional care from family						
No	320	38.0	17.1	4.7		
Yes	523	62.0	18.7	5.4		
Receiving social security allowance						
No	409	48.5	17.1	4.6		
Yes	434	51.5	19.0	5.6		
Source of information of COVID-19*						
Family/relatives	732	85.8	18.2	5.0		

*P-values for the significance of differences between groups.
The mean score of the FCV-19S was 18.1 ± 5.2 (Table 1). Participants' reported agreement on the seven items of FCV-19S is shown in Fig. 1, whereby 34.6%, 24.1%, 14.3%, 28.0%, 31.6%, 12.2%, and 14.0% participants agreed being afraid, uncomfortable, clamminess, fearful of losing life, being nervous or anxious, and experienced sleeplessness and palpitation due to COVID-19, respectively (Fig. 1). Mean differences in fear of COVID-19 were noted by age category, marital status, ethnicity, education, occupation, residence, distance to the nearest health facility, pre-existing health conditions, medications use, financial hardships with health care, needing additional care from family, receiving social security allowance, and being concerned or overwhelmed with the COVID-19 pandemic (Table 1).

Factors associated with the fear of COVID-19 among Nepali older adults

Table 2 presents factors associated with the fear of COVID-19 among study participants. Increasing age, Dalit ethnicity, remoteness to the health facility, and being concerned or overwhelmed with the COVID-19 pandemic were associated with greater fear of COVID-19. Surprisingly, pre-existing health conditions were inversely related to fear of COVID-19.

Table 2: Factors associated with the fear of COVID-19 among Nepali older adults (N=843)
Age (Years)	¹Coeff	Std. Err.	P-value	95% CI	
				Lower	Upper
60-69	Ref.				
70-79	1.75	0.98	0.102	-0.41	3.92
80-89	2.65	1.01	0.024	0.43	4.88
>90	3.69	1.51	0.032	0.38	7.01
Marital status					
Married	Ref.				
Without partner	0.62	0.36	0.116	-0.18	1.42
Ethnicity					
Brahmins/Chhetris	Ref.				
Dalits	1.43	0.32	0.001	0.72	2.14
Madhesi	-1.24	0.82	0.161	-3.05	0.57
Indigenous	-0.09	0.57	0.874	-1.35	1.16
Others	-2.16	1.54	0.190	-5.55	1.24
Education					
Uneducated	Ref.				
Educated	0.05	0.34	0.893	-0.71	0.80
Occupation					
Retired	Ref.				
Agriculture	1.12	0.69	0.134	-0.41	2.65
Business	0.87	1.25	0.503	-1.89	3.63
Housewife	0.07	0.83	0.933	-1.76	1.91
Wages based labours	1.23	1.12	0.294	-1.23	3.69
Others	-0.16	1.09	0.884	-2.56	2.23
Residence					
Rural					
Urban	-2.35	1.71	0.196	-6.12	1.41
Walking distance to the nearest health facility	Ref.				
---	------				
<30 mins					
30-60 mins	0.72	0.27	0.023	0.12	1.33
>60 mins	1.65	0.45	0.004	0.65	2.65
Pre-existing health conditions					
No					
Yes	-1.94	0.83	0.039	-3.76	-0.12
Current medications use					
No					
Yes	-0.19	0.68	0.780	-1.68	1.30
Financial hardships with health care					
No/not sure					
Yes	-0.26	0.88	0.776	-2.19	1.68
Need additional care from family					
No					
Yes	0.77	0.72	0.306	-0.81	2.34
Receiving social security allowance					
No					
Yes	-0.10	0.49	0.850	-1.18	0.99
Source of information of COVID (Ref.=No)					
TV/Radio	1.46	0.73	0.070	-0.14	3.06
Health workers	0.63	0.47	0.202	-0.39	1.66
Others	-3.56	1.32	0.021	-6.46	-0.66
Concerned about COVID-19 pandemic					
Not at all					
Somewhat concerned	2.95	0.70	0.001	1.42	4.48
Very concerned	6.02	0.51	<0.001	4.91	7.13
Feeling overwhelmed with the COVID-19 pandemic					
No/not sure					
Compared to the youngest age group, there was a gradual increase in the fear coefficient with the age categories suggesting that the oldest participants were the most fearful. Notably, the coefficient was not statistically significant for the age group 70–79. Compared to Brahmins/Chhetris, the Dalits ethnic group had a higher fear level (Coef.:1.43; 95%CI: 0.72 to 2.14). Likewise, a dose-response relationship was observed between perceived COVID-19 fear and the proximity or remoteness to the nearest health facility, measured in terms of approximate walking time to the facility; those at the most remoteness (> 60 min walking time) had the highest fear coefficient (Coef. 1.65; 95%CI: 0.65 to 2.65) compared to those at the proximity (< 30 min walking time). Older adults with pre-existing health conditions were less fearful of COVID-19 than those without any conditions (Coef.: -1.94; 95%CI: -3.76 to -0.12). Moreover, those who were concerned about COVID-19 [(somewhat concerned coef.: 2.95; 95%CI: 1.42 to 4.48) and (very concerned coef.: 6.02; 95%CI: 4.91 to 7.13)] were more fearful than those who weren’t concerned at all. Likewise, participants overwhelmed with the COVID-19 pandemic were more fearful than their counterparts (Coef.: 1.88; 95%CI: 0.53 to 3.23).

Discussion

This study assessed the perceived fear of COVID-19 and factors associated with the fear among Nepali older adults. The increasing problem of COVID-19 worldwide has led to increasing levels of stress, anxiety, and fear, in particularly among the older populations. Nepali older adults experienced different levels of COVID-19 fear on the seven items of the fear scale developed by Ahoruset al. (13). A sizable proportion of participants reported an agreement (ranging between 12%-34%) on the seven items of FCV-19S. Although the literature on fear of COVID-19 among the older population lacks from Nepal, experts opine that COVID-19 has heavily affected the mental health of older adults across the globe as they are more susceptible to fear and anxiety problems during the pandemic (18, 19). Our findings aligned with the recently published evidence that reported fear, psychosocial effects, and uncertainty due to COVID-19 (20, 21). The ongoing fear among the general Nepali population is also corroborated by the media reports of residents protesting against the building of quarantine centers near their community settlement, evicting health workers from their rented units, non-attendance at the funerals, entry blockades to outsiders into their local areas, demonstrations and protests against the insufficient government’s responses and so on. All these acts reveal the degree of fear perpetrated on the social fabric of Nepal. Moreover, the infodemics and misinformation spreading from fake and unauthorized news portals, and also from social media might have created additional fear among the general population (22).

Fear can be explained by a myriad of predictor variables. Increasing age, Dalit ethnicity, remoteness to the health facility, and being concerned or overwhelmed with the COVID-19 pandemic were associated with greater fear of COVID-19. The increasing fear of COVID-19 with increasing age was expected for two reasons. First, the impact of COVID-19, in terms of the hospitalizations, ICU admissions, and fatality rate, is highest among those ≥ 85 years of age (23). Notably, chronic disease or multimorbidity increases with
age (24), which is one of the factors that make older people more vulnerable to the cruelty of COVID-19. Relatedly but surprisingly, our participants with prevalent chronic conditions perceived lesser fear than those without such conditions. This could be because people with pre-existing conditions have already navigated health services, and thus they know where and how to access health care. Additionally, they may also have received reliable information about COVID-19 and its prevention from their healthcare provider. Another possible explanation could be that those with chronic conditions have already developed resilience to dealing with major disease conditions which may have helped to develop perceived confidence to managing COVID-19, should they be infected. Furthermore, motivation and support from family members are important in chronic disease management in Nepal (25). Thus our participants with pre-existing conditions may have benefited from their social support, which may have made them feel safer and consequently lessen the fear. However, we suggest the need for further study to explore the reasons. Despite the unexpected finding, we still believe that the increased risk of severe outcomes and death is one reason to increase the fear among older ages. Second, low health literacy among older adults in Nepal, specifically the oldest age groups (26), may avert their ability to access, analyze, and appraise the information on COVID-19. Furthermore, a metaanalysis on aging and the misinformation effect found that older adults above the age of 65 are more vulnerable to misinformation (27). Misinformation could aggravate fear and increase the sense of helplessness (28). Misinformation and ageism have prevailed during the current pandemic, and reports of older adults perceiving that COVID-19 had periled their existence (29) is an example that emphasizes the negative mental health impact of COVID-19 among the most vulnerable group. Such misinformation and ageism may make older adults very concerned and overwhelmed about the pandemic, which eventually can accumulate stress, fear, panic, and depression (30). As COVID-19 rapidly spreads around the world, adverse mental health effect among the older population is a global health issue. Subsyndromal mental health consequences have spiked among the older population due to isolation and loneliness (31). So, we should pay more attention to the old-age population who need more care and psychological support during the pandemic (32, 33).

Another notable finding was the greater perceived fear among Dalits (low caste ethnic minority as per traditional hindu caste system) compared to the Brahmin/Chhetris. Notably, the Dalit ethnic group were historically considered “untouchables” until the recent past and are still disadvantaged in terms of opportunities. The role of social determinants of health and their linkage to poor health outcomes among minorities is well documented (34). Although the socio-economic and health inequalities between the upper caste group and Dalits have been existent historically, even in the pre-COVID era, nevertheless, the current pandemic, by disproportionately affecting marginalized communities (35), has led us to rethink and revisit the disparities by ethnicity. Unfortunately, the COVID-19 case or mortality counts by ethnicity is unavailable in Nepal, but the greater perceived fear among Dalit ethnic groups could be attributed to the relative disadvantages they may have in terms of access to health care and other resources.

The results of this study revealed that being distant from health facilities was positively associated with COVID-19 related fear. This is reasonable because most of the local health care facilities have halted their services due to fear of COVID-19 transmission (36), and older adults who reside farther away from the
health facility may think that it would be difficult to reach health facilities/centers for testing or COVID-19 related health care on time. On the same line, fear and uncertainty of the COVID-19 may have increased in the minds of older people as they are conscious of their effete immunity. Our study identified that the participants who were overwhelmed and concerned about the effect of the COVID-19 were more fearful than those who were indifferent to it. This is anticipated as fear of COVID-19 cripples when people become more concerned about its lethal outcomes, which triggers psychological distress (29). Mass media, including social media, also play a pivotal part in this regard as they are providing up to date information of this deadliest disease and making the people concerned about its negative outcomes (37). One of the ways forward could be increasing the conversation about mental health and dissemination of messages portraying self-care and coping strategies.

One of the strengths of this study is that it is the first of its kind to assess the level of COVID-19 related fear among older adults in Nepal. A limitation is that the study conducted in three districts of Nepal in Province 1, which limits the generalizability to other provinces and/or settings of Nepal. The cross-sectional study design doesn't suggest any causal relationship between fear and its correlates observed in this study. Additionally, we relied on the information provided by participants, where social-desirability bias could have occurred.

Conclusion

Despite the global burden of mental health, its importance has been relatively less recognized. The losses of the ongoing pandemic should not only be understood in terms of the loss of lives and economy, but the underlying psychosocial morbidities and their consequences, which may linger around even the pandemic is curbed, should be acknowledged. The greater fear of the COVID-19 pandemic among the older population suggests that during unprecedented times such as the current pandemic, due care of the psychological needs of most vulnerable groups needs to be taken. Thus, addressing the mental health needs of the most vulnerable group should be one of the priorities of pandemic management. Fear among the most vulnerable groups could be reduced with the flow of adequate genuine information as well as better preparedness and psychosocial interventions. Mobilizing the existing ones or setting up new mental health services is needed. Given the infodemics that heighten during the crisis, which may further aggravate the fear among the general public or among the most vulnerable groups, dissemination of appropriate information related to pandemic management as well as self-care and management of psychosocial health should be more frequent.

Abbreviations

CI: Confidence Interval

COVID-19: Novel coronavirus disease-2019

FCV-19S: Fear of COVID-19 Scale
OR: Odds Ratio

RMs: Rural Municipalities

Declarations

Availability of data and materials

Data are available from the first and the corresponding author.

Funding:

The authors received no financial support for the research or publication of this article.

Acknowledgements

We want to thank the local-level authorities of the government of Nepal for their support in helping us in collecting the information from participants. The work would not have been completed without the support of District health officers (Mr. Gyan Bahadur Basnet - Morang DHO, Mr. Yograj Ghimire - Terathum DHO and Mr. Naradmuni Subedi - Panchthar DHO) and health care workers (Sushma Giri, Hima Rai, Shivshankar Mandal, Renuka Shrestha, Sabina Chaudhary, Ranju Khadka, Ukisha Shrestha and Kalpana Ram). Moreover, we are indebted to all the participants of this study.

Authors Contributions

UNY, OPY, DRS, SS, BR, LBR, MKT and SKM conceived the study. OPY and DRS conducted the fieldwork. UNY, SG, BR, SKM and SM wrote the first version of this manuscript and all others provided significant inputs. UNY, SG, DRS and SM participated in the data analysis. All authors read and gave their approval to the final version of this manuscript submitted for publication.

Ethics approval and consent to participate

The study was approved by the Institutional Review Board of Nepal Health Research Council, Government of Nepal, Ministry of Health, Kathmandu. After detailed information, all study participants gave their written informed consent.

Consent for publication

Not applicable

Competing interests

The authors declared no potential conflicts of interest with respect to research, authorship, and publication of this article.
References

1. Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. The Lancet infectious diseases. 2020;20(5):533-4.

2. Ministry of Health and Population. Situation Report_COVID-19 #231 Kathmandu Nepal: Government of Nepal 2020 [Available from: https://heoc.mohp.gov.np/update-on-novel-corona-virus-covid-19/.

3. Dunford D, Dale B, Stylianou N, Lowther E, Ahmed M, Arenas IdlIT. Coronavirus: The world in lockdown in maps and charts. BBC News Services. 2020.

4. Wang C, Pan R, Wan X, Tan Y, Xu L, McIntyre RS, et al. A longitudinal study on the mental health of general population during the COVID-19 epidemic in China. Brain Behav Immun. 2020;87:40-8.

5. CDC Covid-Response Team. Severe Outcomes Among Patients with Coronavirus Disease 2019 (COVID-19) - United States, February 12-March 16, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(12):343-6.

6. World Health Organization. COVID-19 STRATEGY UPDATE. 2020.

7. Payette MC, Bélanger C, Léveillé V, Grenier S. Fall-Related Psychological Concerns and Anxiety among Community-Dwelling Older Adults: Systematic Review and Meta-Analysis. PloS one. 2016;11(4):e0152848.

8. Aburub AS, P Phillips S, Curcio C-L, Guerra RO, Auais M. Fear of falling in community-dwelling older adults diagnosed with cancer: A report from the International Mobility in Aging Study (IMIAS). Journal of Geriatric Oncology. 2020;11(4):603-9.

9. Nepal Law Commission. Senior citizen Act. Nepal Law Commission website. 2006.

10. WHO. Life expectancy and Healthy life expectancy Data by WHO region. https://appswhoint/gho/data/viewmainSDG2016LEXREGv?lang=en. 2018.

11. United Nations Department of Economic and Social Affairs PD. Profiles of Ageing 2019. https://populationunorg/ProfilesOfAgeing2019/indexhtml. 2019.

12. Central Bureau of Statistics. National Population and Housing Census 2011. Kathmandu, Nepal. 2012;33:34.0.

13. Ahorsu DK, Lin CY, Imani V, Saffari M, Griffiths MD, Pakpour AH. The Fear of COVID-19 Scale: Development and Initial Validation. Int J Ment Health Addict. 2020;1-9.

14. KoBoToolbox at the Harvard Humanitarian Initiative.Kobo Toolbox: Simple, Robust and Powerful tools for Data Collection. Cambridge, MA.2020 [Available from: https://www.kobotoolbox.org/.

15. Bentler PM, Yuan KH. Structural Equation Modeling with Small Samples: Test Statistics. Multivariate Behav Res. 1999;34(2):181-97.

16. Yadav UN, Tamang MK, Paudel G, Kafle B, Mehta S, Chandra Sekaran V, et al. The time has come to eliminate the gaps in the under-recognized burden of elder mistreatment: A community-based, cross-sectional study from rural eastern Nepal. PloS one. 2018;13(6):e0198410.
17. Yadav UN, Thapa TB, Mistry SK, Pokhrel R, Harris MF. Socio-demographic characteristics, lifestyle factors, multi-morbid conditions and depressive symptoms among Nepalese older adults. BMC Psychiatry. 2020;20(1):261.
18. Banerjee D. The Impact of Covid-19 Pandemic on Elderly Mental Health. International Journal of Geriatric Psychiatry. 2020.
19. Wu B. Social isolation and loneliness among older adults in the context of COVID-19: a global challenge. Global Health Research and Policy. 2020;5(1):27.
20. Poudel K, Subedi P. Impact of COVID-19 pandemic on socioeconomic and mental health aspects in Nepal. Int J Soc Psychiatry. 2020;66(8):748-55.
21. Yadav UN, Rayamajhee B, Mistry SK, Parsekar SS, Mishra SK. A Syndemic Perspective on the Management of Non-communicable Diseases Amid the COVID-19 Pandemic in Low- and Middle-Income Countries. 2020;8(508).
22. Freckelton QI. COVID-19: Fear, quackery, false representations and the law: Int J Law Psychiatry. 2020 September-October;72:101611. doi: 10.1016/j.ijlp.2020.101611. Epub 2020 Jul 10.
23. Karagiannidis C, Mostert C, Hentschker C, Voshaar T, Malzahn J, Schillinger G, et al. Case characteristics, resource use, and outcomes of 10 021 patients with COVID-19 admitted to 920 German hospitals: an observational study. The Lancet Respiratory medicine. 2020;8(9):853-62.
24. Fabbri E, Zoli M, Gonzalez-Freire M, Salive ME, Studenski SA, Ferrucci L. Aging and Multimorbidity: New Tasks, Priorities, and Frontiers for Integrated Gerontological and Clinical Research. Journal of the American Medical Directors Association. 2015;16(8):640-7.
25. Yadav UN, Lloyd J, Hosseinzadeh H, Baral KP, Bhatta N, Harris MF. Self-management practice, associated factors and its relationship with health literacy and patient activation among multi-morbid COPD patients from rural Nepal. BMC Public Health. 2020;20(1):300.
26. Yadav UN, Lloyd J, Hosseinzadeh H, Baral KP, Bhatta N, Harris MF. Levels and determinants of health literacy and patient activation among multi-morbid COPD people in rural Nepal: Findings from a cross-sectional study. PLoS One. 2020;15(5):e0233488.
27. Wylie LE, Patihsis L, McCuller LL, Davis D, Brank EM, Loftus EF, et al. 2 Misinformation Effect in Older Versus Younger Adults. DFMP Toglia, The Elderly Eyewitness in Court. 2014:38-66.
28. Vahia VN, Shah AB. COVID-19 pandemic and mental health care of older adults in India. Int Psychogeriatr. 2020:1-3.
29. Dubey S, Biswas P, Ghosh R, Chatterjee S, Dubey MJ, Chatterjee S, et al. Psychosocial impact of COVID-19. Diabetes & metabolic syndrome. 2020;14(5):779-88.
30. Armitage R, Nellums LB. COVID-19 and the consequences of isolating the elderly. Lancet Public Health. 2020;5(5):e256.
31. Vahia IV, Blazer DG, Smith GS, Karp JF, Steffens DC, Forester BP, et al. COVID-19, Mental Health and Aging: A Need for New Knowledge to Bridge Science and Service. Am J Geriatr Psychiatry. 2020;28(7):695-7.
32. Meng H, Xu Y, Dai J, Zhang Y, Liu B, Yang H. Analyze the psychological impact of COVID-19 among the elderly population in China and make corresponding suggestions. Psychiatry Res. 2020;289:112983.

33. Mukhtar S. Psychosocial Impact of COVID-19 on Older Adults: A Cultural Geriatric Mental Health-Care Perspectives. Journal of Gerontological Social Work. 2020:1-3.

34. Office of Disease Prevention and Health Promotion. Social Determinants of Health Rockville, MD: U.S. Department of Health and Human Services; 2020 [Available from: https://www.healthypeople.gov/2020/topics-objectives/topic/social-determinants-of-health.

35. Kantamneni N. The impact of the COVID-19 pandemic on marginalized populations in the United States: A research agenda. Journal of vocational behavior. 2020;119:103439.

36. Singh DR, Sunuwar DR, Adhikari B, Szabo S, Padmadas SS. The perils of COVID-19 in Nepal: Implications for population health and nutritional status. Journal of global health. 2020;10(1):010378.

37. Bavel JJV, Baicker K, Boggio PS, Capraro V, Cichocka A, Cikara M, et al. Using social and behavioural science to support COVID-19 pandemic response. Nature Human Behaviour. 2020;4(5):460-71.

Figures

![Agree/Strongly agree (%)](image)

Figure 1

Participants agreement on the seven items of the COVID-19 fear scale