Cloud model inversions of strong chromospheric absorption lines using principal component analysis

E. Dineva*1,2 | M. Verma1 | S.J. González Manrique3 | P. Schwartz3 | C. Denker1

1 Leibniz-Institut für Astrophysik Potsdam (AIP), Potsdam, Germany
2 Universität Potsdam, Institut für Physik und Astronomie, Potsdam, Germany
3 Slovak Academy of Sciences, Astronomical Institute, Tatranská, Lomnica, Slovak Republic

Correspondence
*Email: edineva@aip.de

Present Address
Ekaterina Dineva, Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany

Abstract
High-resolution spectroscopy of strong chromospheric absorption lines delivers nowadays several millions of spectra per observing day, when using fast scanning devices to cover large regions on the solar surface. Therefore, fast and robust inversion schemes are needed to explore the large data volume. Cloud Model (CM) inversions of the chromospheric Hα line are commonly employed to investigate various solar features including filaments, prominences, surges, jets, mottles, and (macro-)spicules. The choice of the CM was governed by its intuitive description of complex chromospheric structures as clouds suspended above the solar surface by magnetic fields. This study is based on observations of active region NOAA 11126 in Hα, which were obtained 2010 November 18 – 23 with the echelle spectrograph of the Vacuum Tower Telescope (VTT) at the Observatorio del Teide, Spain. Principal Component Analysis (PCA) reduces the dimensionality of spectra and conditions noise-stripped spectra for CM inversions. Modeled Hα intensity and contrast profiles as well as CM parameters are collected in a database, which facilitates efficient processing of the observed spectra. Physical maps are computed representing the line-core and continuum intensity, absolute contrast, equivalent width, and Doppler velocities, among others. Noise-free spectra expedite the analysis of bisectors. The data processing is evaluated in the context of “big data”, in particular with respect to automatic classification of spectra.

KEYWORDS:
Sun: activity — Sun: atmosphere — Sun: chromosphere — methods: data analysis — techniques: spectroscopic — astronomical databases: miscellaneous

1 INTRODUCTION

Principal Component Analysis (PCA, as an introductory manual to PCA see, e.g., Jolliffe, 2002) is a statistical technique to identify patterns in large multidimensional datasets. The rapid progress in technology provoked the need to cope with large data volumes driven by the fast acquisition of high-resolution data (Denker et al., 2018; Zhang & Zhao, 2015). In turn, this demands fast analytic tools, which produce sensible results. In this context, PCA is a convenient tool for dimensionality reduction, noise-stripping, and highlighting data patterns, thus providing insight revealing spectral signatures and information such as line-wing and line-core emissions, line asymmetries, and multi-lobed spectra.

In astrophysics, PCA was applied to calibration, analysis, and classification of stellar, galactic, and interstellar spectra (Brunt & Heyer, 2013), where it is often prerequisite for other machine learning techniques (Kuntzer, Tewes, & Courbin, 2016). This approach uses the fact that certain physical properties of a source result in absorption spectra of similar shape.
Thus, the classification problem simplifies to recognizing patterns in the spectral profile’s shape.

Rees, Lopez Ariste, Thatcher, & Semel (2000) presented PCA as a faster solution for spectral inversions as compared to the most commonly used trial-and-error methods based on non-linear least-squares fitting. Instead of computationally intense matching of every model profile to the observed one, they take advantage of PCA’s pattern recognition potential. PCA is favored as a method for dimensionality reduction and an alternative to, for example, Fourier decomposition. The authors evaluate the compatibility of PCA with respect to various complex models of photospheric and chromospheric line formation.

In particular, Rees et al. (2000) discussed applications of PCA to the strong chromospheric absorption line Hα $\lambda 6562.8$ Å and to spectropolarimetric observations of the photospheric Fe I $\lambda 5250.3$ Å line. This work with data of the Advanced Stokes Polarimeter (ASP, Elmore et al., 1992) at the Dunn Solar Telescope (DST), Sunspot, New Mexico was expanded by Socas-Navarro, Lopez Ariste, & Lites (2001) who observed the pair of commonly used Fe I lines at $\lambda 6302$ Å. The question is raised whether it is possible to construct an adequate synthetic database (Lopez Ariste, 2001), which will not lose its accurate physical foundation by using PCA compression. The Fast Analysis Technique for the Inversion of Magnetic Atmospheres (FATIMA, Socas-Navarro et al., 2001) is an answer to this challenge and implements a fast yet reliable inversion algorithm.

The benefits of PCA for high-resolution spectroscopy, and specifically for noise reduction, are discussed in Chae et al. (2013). New instrumentation specifications and data reduction methods implementing PCA compression are put forward for the Fast Imaging Solar Spectrograph (FISS) installed at the 1.6-meter Goode Solar Telescope (GST, Goode, Denker, Didkovsky, Kuhn, & Wang, 2003) at Big Bear Solar Observatory (BBSO).

Noise-free spectra potentially enhance the robustness and precision of spectral inversion techniques. In its classical form, the Cloud Model (CM) of Beckers (1964), is an attempt to distinguish and evaluate physical properties of dynamic chromospheric fine-structure in comparison with the undisturbed quiet-Sun background. The initial plasma parameters are assumed to be constant throughout the observed absorption feature, even though refined CMs drop this limitation. Tziotziou (2007) provided a comprehensive summary, including examples, of the CM and its modifications, and discussed their implications for inversion techniques.

Observations in the Balmer Hα line reveal an abundance of information about the fine structure of the solar chromosphere. The diagnostic power of Hα spectroscopy results from the large span of the core-to-wing formation height. The wings are formed with photons arising from the photosphere, while the line-core originates in the chromosphere. This provides a tomographic view across several scale heights in the solar atmosphere. As an example, Kuckein, Verma, & Denker (2016) studied the dynamical evolution and physical properties of a giant filament and compared them to smaller analogues. They used high-resolution echelle spectra in two different wavelength ranges (Hα and Na I D2 $\lambda 5890$ Å). Counter-streaming flows were detected in the filament structure based on velocities derived with CM inversions and Doppler shifts from least-squares parabola fitting of the line cores.

CM inversions of Hα contrast profiles were presented by González Manrique, Bello González, & Denker (2017) who used least-squares minimization (Markwardt, 2009) to infer the CM parameters. Their study focused on a small-scale arch filament system (AFS) in an emerging flux region (EFR). The observed region on the Sun contained two micro-pores with sizes slightly larger than one second of arc. In summary, CM inversion is a versatile tool investigating chromospheric activity from the arcsecond-scale flux emergence to large-scale filaments encircling the Sun.

This work is motivated by past and recent observations with the echelle spectrograph of the 0.7-meter Vacuum Tower Telescope (VTT, von der Lühe, 1998) at the Observatorio del Teide, Tenerife, Spain. Many observing campaigns over the past decade produced spatio-spectral data cubes containing strong chromospheric absorption lines and a variety of solar features. In the era of “big data”, our goal is to uniformly process these data and use them for database research (Denker et al., 2019), extracting information using machine learning for feature identification and spectral classification.

The various steps of data processing and analysis provide the structure for organizing our investigation. In Sect. 2, we discuss the observational settings and the standard data reduction procedures, i.e., (pre)processing of the spatio-spectral data cube, determining the quiet-Sun profile from observations, computing the contrast profiles, and assessing the effects of the center-to-limb variation (CLV) on the Hα contrast profiles. Fundamentals of CM inversions are summarized in Sect. 3, which leads to the implementation of the inversion schemes in Sect. 4. We determine an optimized database of contrast profiles for CM inversions and introduce PCA for noise-stripping. Section 5 presents physical maps determined from spectral line fitting and CM inversions, discusses them in the context of previous investigation (Verma et al., 2012), and identifies systematic error sources, which may adversely affect the inversion results. In Sect. 6, our findings are placed in the context of previously published research, and we provide an outlook addressing spectral classification and database research.
OBSERVATIONS

The high-resolution spectra were obtained during the time period 2010 November 18 – 23 with the VTT echelle spectrograph. An infrared grating with a 51.6° blaze angle and 200 grooves mm\(^{-1}\) was installed at the spectrograph. The spectra were recorded in the 12th order. Each spectrum consists of 2004 wavelength points, and with a dispersion of 6.0 mA pixel\(^{-1}\), it covers a wavelength range of 12.0 Å from 6559 to 6571 Å. This spectral range includes two prominent absorption lines, i.e., H\(\alpha\) and Fe I \(\lambda 6569.2\) Å.

The H\(\alpha\) spectra were recorded with a pco.4000 CCD camera. The full-format detector has 4008 \(\times\) 2672 pixels with a size of 9 \(\mu m \times 9\) \(\mu m\). The spectra are digitized as 14-bit integers after applying 2\(\times\)2-pixel binning. The resulting size of the spectra is 2004 \(\times\) 1168 pixels after some additional cropping in the spatial dimension. The image scale of the spectrograph is 8.99\("\) mm\(^{-1}\), and the step size for scanning a region-of-interest (ROI) in 244 steps is 0.32\("\), which yields a field-of-view (FOV) of 78\("\) \(\times\) 189\("\). Using a slit width of 80 \(\mu m\) requires an exposure time of 300 ms for an appropriate utilization of the detector’s full-well capacity. Ultimately, a cadence of 12 min can be achieved with this setup.

The decay of active region NOAA 11126 during the time period 2010 November 18 – 23 was already studied by Verma et al. (2012) using Local Correlation Tracking (LCT) and spectral analysis. Echelle spectra were selected from this dataset, which were observed at 10:23 UT on 2010 November 18, to develop, fine-tune, and evaluate our data processing pipeline. The observations targeted a sunspot group at heliographic coordinates (S32.6\(^\circ\), E5.5\(^\circ\)), where the cosine of the heliocentric angle is \(\mu = 0.81\). In the top and bottom panels of Fig. 1, maps of slit-reconstructed quasi-continuum and line-core intensity were compiled, respectively. The decaying active region was accompanied by a filament, partially visible in the lower-right corner of the H\(\alpha\) line-core intensity map. The variety of features covered by the observations makes this dataset an ideal choice for testing and evaluating all parts of the data processing pipeline.

2.1 Dispersion and spectrograph profile

The raw data of the VTT echelle spectrograph undergo standard data reduction steps including dark and flat-field corrections. Flat-field frames are captured while the pointing of the telescope is changing randomly around disk center. A few hundred dark and flat-field frames are averaged to minimize noise, and in the case of flat-field frames to reduce the impact of contrast features, which are still present in individual frames.

Preprocessing the echelle spectra involves continuum calibration and correction, extraction of basic line properties, computing and calibrating the quiet-Sun profile, and conversion from intensity to contrast profiles. These steps are crucial to standardize the subsequent data processing and to facilitate a robust computation of physical maps and CM inversions.

Hair lines at the edges of the spectrum are used to correct the rotation of the spectrum. Position and width of the hair lines are determined with Gaussian fits. The resulting curves are smoothed before computing a linear fit and thus the rotation of the spectrum. The hair lines are removed from the spectrum by dividing by the respective Gaussian. Spectrograph tilt shears the individual spectra. Determining line-core position and width of (preferably) telluric lines with Gaussian fits allows us to shift the individual spectra by linear interpolation, thus effectively removing the spectrograph tilt. Division of the individual spectral profiles by the average spectral profile of the average flat-field frame yields the gain table, which is applied to all science spectra.

The wings of the H\(\alpha\) line reach to about H\(\alpha\) \(\pm\) 30 Å but only \(\pm\) 6 Å are covered by the observed spectra. Depending on the level of solar activity, i.e., the presence of strong chromospheric Doppler signals, this wavelength range can be further reduced. A range of \(\pm\) 3.8 Å was deemed reasonable for an ROI containing small sunspots, pores, and an active region filament. Starting point to determine the spectral dispersion is...
the average flat-field spectrum, which is a good representation of the average quiet-Sun profile $I_{qS,0}(\lambda)$ at disk center. A rough estimate can be gauged from the position of the spectral lines that were already used in the correction of the spectrograph tilt. This is further refined by comparison with an atlas spectrum of a Fourier transform spectrometer (Wallace, Hinkle, & Livingston, 1998). The linear correlation between atlas and observed spectrum is calculated while adjusting the initial estimate for the dispersion in small steps. The highest correlation yields an improved value for the dispersion.

Broad-band interference filters were used instead of the pre-disperser masks to avoid overlapping spectral orders. Thus, the full length of the slit can be exploited to record spectral scans. Therefore, the task is to correct the spectra for the combined spectrograph and interference filter profiles. The ratio of observed and atlas spectra is first smoothed with a Gaussian kernel and secondly, the envelope is computed to eliminate large variations. Further iterative boxcar smoothing produces an even correction curve that matches the observed quiet-Sun spectrum at disk center to the atlas spectrum.

2.2 Preprocessing of spatio-spectral data

Preprocessing of the spatio-spectral data cube included so far dark correction, intensity calibration by means of the gain table, spectrum rotation, and removal of the spectrograph tilt. The “pseudo”-continuum is derived for the blue and red wings, taking into account that the Hα line is too broad to determine the actual continuum intensity. Thus, two small wavelength ranges are selected in the wings, which are free of any solar or telluric line. The two pseudo-continuum positions make it possible to remove an intensity gradient from the spectra. Furthermore, the spectra are normalized such that the local continuum refers to unity. This step also includes a correction for variations of the sky brightness. The normalization coefficients are kept in a two-dimensional map of the continuum intensity. Henceforth, we can determine from the minimum of the Hα line the line-core intensity and position, i.e., a proxy line-core Doppler velocity with an accuracy given by the wavelength sampling.

2.3 Quiet-Sun profile and stray light correction

In general, science data are not taken at disk center, i.e., the previously determined quiet-Sun profile is not applicable due to the CLV of spectral line profiles. Thus, quiet-Sun regions have to be identified in the FOV for computing an average quiet-Sun profile suitable for the specific location on the solar disk. The requirements are that continuum intensity is between the 30th and 90th percentile, and the proxy line-core Doppler velocity is between the 20th and 80th percentile. This ensures that sunspots, pores, bright points, faculae, filigree, dark mottles, any type of filament, and high-velocity features are excluded from computing the average quiet-Sun profile. The Doppler shift of individual profiles is corrected before taking the average. This procedure was tested by us using several other datasets, and the underlying assumptions are reasonable for a wide variety scenes on the solar surface. The percentiles have to be adjusted if bright/dark intensity or high-velocity features dominate the FOV.

David (1961) tabulated the CLV of quiet-Sun Hα spectra for seven values of μ. In principle, the profile for $\mu = 0.8$ can be used for the present data. However, an interpolation step was added in the data processing pipeline to generalize this approach for datasets that do not match the tabulated μ values. The interpolated quiet-Sun profile was used to match continuum and line-core intensity of the observed profile. In addition, the width of both profiles were matched. This corresponds to an approximate correction of the spectrograph modulation transfer function and of the instrument’s stray light contribution. The choice of a proper background profile is crucial in the subsequent CM inversions. In preparation for CM inversion, the contrast profiles were computed according to

$$C(\lambda) = \frac{I(\lambda) - I_{qS}(\lambda)}{I_{qS}(\lambda)},$$

where $I(\lambda)$ and $I_{qS}(\lambda)$ are the observed and quiet-Sun intensity profiles, respectively. Finally, two-dimensional maps of physical properties are (re)computed including continuum intensity, line-core intensity, equivalent width, absolute contrast, and a proxy for the Doppler velocity.

The \texttt{sTools} software library (Kuckein et al., 2017) was originally developed for the data pipeline of the GREGOR Fabry-Pérot Interferometer (GFPI, Denker, Balthasar, Höfmann, Bello González, & Völker, 2010; Puschmann et al., 2012) and the High-resolution Fast Imager (HiFI, Denker et al., 2018). Nowadays, almost all solar software development at AIP is integrated into this software library, including reduction and analysis of VTT echelle spectra.

2.4 Center-to-limb variation of quiet-Sun profiles

The CLV of quiet-Sun Hα profiles is a central issue for CM inversions. The CLV can be derived either from observations or from radiation hydrodynamic models and radiative transfer calculations, e.g., many codes and models are available for cool-stars atmosphere synthesis such as the simple FAL-C model (Vernazza, Avrett, & Loeser, 1981) or the state-of-the-art BIFROST numerical simulations (Gudiksen et al., 2011).
FIGURE 2 Center-to-limb variation of Hα absorption profiles in the spectral range Hα ± 3.8 Å. Colors correspond to the seven positions from disk-center (red) to near the limb (black), where the cosine of the heliocentric angle is \(\mu = 1.0, 0.8, 0.6, 0.436, 0.312, 0.28, \) and 0.141.

In this study, we use the Hα background irradiation from observations based on the work of David (1961). These profiles were obtained in years 1958 – 1959 together with higher hydrogen Balmer lines Hβ – Hδ with the Göttingen Solar Tower (ten Bruggencate & Voigt, 1958) equipped with the 8-meter Littrow spectrograph (von Alvensleben, 1957). The Hα profiles are tabulated on a non-equidistant grid of 55 wavelengths points in a range of 0 – 30 Å relative to the line center.

The profiles are tabulated in Table 1 of David (1961) for seven heliocentric angles. The cosines of these seven angles are \(\mu = 1.0, 0.8, 0.6, 0.436, 0.312, 0.28, \) and 0.141. The CLV of the inner part of the Hα line profile is given in Fig. 2, where the deepest profile in red corresponds to disk-center observations. The CLV clearly affects line-core intensity and the shape of the line wings. According to various studies the line core is formed at approximately 1700 km above the solar surface (Leenaarts, Carlsson, & Rouppe van der Voort, 2012; Vernazza et al., 1981; White & Wilson, 1966). There is neither a sharp boundary nor an exact height because of the dynamic nature of the chromosphere and magnetic activity. In principle, radiative transfer in the chromosphere is by nature three-dimensional.

3 CLOUD MODEL INVERSIONS

The classic CM was proposed by Beckers (1964) as a convenient tool for determining the physical properties of cloud-like structures of absorbing material suspended by the magnetic field above the solar surface. Albeit highly simplified, this model is still commonly used and delivers physical insight into dynamic processes in the solar chromosphere. The CM is based on the following important assumptions, i.e., the plasma cloud is located above and is fully separated from the chromospheric forest (Chae, 2014; Tziotziou, 2007), the plasma parameters are constant along the LOS, and the incident irradiation originating from underneath the cloud has the same properties as the radiation from the surrounding undisturbed atmosphere. The last condition highlights the importance of selecting a suitable quiet-Sun background profile (cf., Bostanci & Al Erdoğan, 2010). Finally, the four parameters defining the radiative transfer and line formation in the CM are the optical thickness \(\tau_0 \), Doppler velocity of the cloud \(v_D \), Doppler width \(\Delta \lambda_D \) of the absorption profile, and source function \(S \).

Some characteristics of strong chromospheric absorption lines are easier to discover in contrast profiles \(C(\lambda) \) (Eqn. 1). Note that the contrast profile is defined independently of the CM, which is a useful property in noise-stripping of spectral profiles using PCA. The CM provides a relationship between the contrast profile and the four free fit parameters:

\[
C(\lambda) = \frac{S}{q_S(\lambda)} - 1 \left(1 - \exp[-\tau(\lambda)] \right) \quad \text{with} \quad \tau(\lambda) = \tau_0 \exp \left(-\frac{(\lambda - \lambda_D)^2}{\Delta \lambda_D^2} \right) \quad \text{Eqn. 2}
\]

The LOS velocity \(v_D \) of the cloud can be derived, once \(\lambda_D \) is known, according to

\[
v_D = c \frac{\lambda_D - \lambda_0}{\lambda_0}, \quad \text{Eqn. 4}
\]

where \(\lambda_0 \) is the central wavelength of the strong chromospheric absorption line and \(c \) the speed of light in vacuum. In summary, the absorption profiles deliver information about light-matter interactions in the solar plasma. As Eqns. 1 – 4 demonstrate, the contrast profile formulation represents a simplified version of the radiative transfer equation, taking into account the aforementioned model simplifications. These equations are contrived in terms of the observed intensity \(I(\lambda) \) of the dynamic cloud-like feature and the undisturbed quiet-Sun background reference frame \(I_{QS}(\lambda) \). A simple CM inversion approach is non-linear least-squares fitting, for example, with the MPFIT software package (Markwardt, 2009), where the quiet-Sun background profile is handed to the fitting routine in a structure as private data (see e.g., González Manrique et al., 2017). However, the iterative nature of the algorithm and the tendency to get lost in local extrema render this procedure inefficient. The resulting computation times may be acceptable for individual datasets but not for bulk processing of billions of spectral profiles.
Creating the Cloud Model database

2019−2018

IMPLEMENTATION

4 IMPLEMENTATION

4.1 Creating the Cloud Model database

Starting point for creating the CM database is the desired wavelength range ($H\alpha \pm 3.8$ Å) and the quiet-Sun profile that matches the cosine of the heliocentric angle of the observations ($\mu = 0.81$ in the present case) as described at the beginning of Sect. 2 and in Sect 2.4. In addition, a coarser spectral sampling reduces significantly the computation time. In most cases, a sampling of 10 mÅ pixel$^{-1}$ is sufficient. Consequently, observations at different locations on the solar surface or with other observing parameters require a different CM database.

The four CM parameters were sampled on an equidistant grid in the following intervals: (1) $\tau_0 \in [0.1, 3.0]$ with an increment $\delta \tau_0 = 0.1$, (2) $v_D \in [-40.0, +40.0]$ km s$^{-1}$ with an increment $\delta v_D = 4.0$ km s$^{-1}$, (3) $\Delta \lambda_D \in [0.2, 1.0]$ Å with an increment $\delta \Delta \lambda_D = 0.04$ Å, and (4) $S \in [0.01, 0.3]$ with an increment $\delta S = 0.01$. This selection of the CM parameters is in agreement with many other CM studies. The upper limits of the parameter space may already border at the upper limit for physically reasonable values, with the exception of the Doppler velocity.

Initially, both contrast and intensity profiles are computed for all possible combinations of CM parameters, thus producing a large set of 2×396900 profiles. Not all combinations are plausible or carry enough significance, and their presence will only obstruct fast data processing and upcoming CM inversions. The goal is to optimize the database with the help of PCA. The first ten eigenvectors were derived with PCA for all contrast profiles contained in the database. The PCA was carried out on the sum-of-squares (SSQ) and the cross-products matrix. Each contrast profile was restored using the projections of the profiles onto the first ten principal components. The SSQ was computed for the difference of the restored contrast profiles and those in the database. Only 80% of the profiles with lowest deviation were kept. The linear correlation serves as a second selection criterion, which discards profiles, where the correlation coefficient is below 0.8. The reduced database is again subjected to PCA and another optimization cycle. This time with limits of 80% for the SSQ deviations and 0.95 for the linear correlation. The thresholds for the linear correlation coefficients were validated by visual inspection of the large number of fitted contrast profiles. The remaining 2 × 253038 contrast and intensity profiles form the final version of the database. The first 10 eigenvectors representing the contrast profiles of the optimized CM database are kept for CM inversions and noise-stripping.

Figure 3 summarizes the optimized database in form of two-dimensional histograms, where each profile contributes with 761 spectral points across the depicted wavelength range. The color scale from black over dark to light orange indicates the frequency of occurrence from high to low. The majority of profiles contained in the database stays close to the quiet-Sun background profile (red-white dashed curve in the left panel of Fig. 3). The distribution of the intensity profiles shows that the database contains narrow as well as broader profiles. Since the Doppler velocities are equally distributed around zero, the superposition of red- and blue-shifted profiles will yield a symmetric two-dimensional histogram.

FIGURE 3 Bulk density distributions of $H\alpha$ intensity (left) and contrast (right) profiles, which summarize the optimized CM database. The two-dimensional histograms display the diversity of shapes and features that the CM can reproduce. The red-white dashed curves refer to quiet-Sun intensity and average contrast profiles, respectively.
Any profile that is not contained within the black-orange area cannot be derived with CM inversions. In principle, a wider range of Doppler velocities enlarges the black-orange area. However, the extra contrast and intensity profiles are inevitably related to eruptive events. In any case, moustache profiles with enhanced line-wing emission or profiles with emission cores are outside the reach of CM inversions. Evidently, if the quiet-Sun profile is too broad, narrower observed profiles cannot be fitted. More importantly, a strong bias will be introduced in all four CM parameters.

The distribution of contrast profiles in the right panel of Fig. 3 is more complex and dominated by W-shaped profiles. As the quiet-Sun contrast profile will be identical to zero, only the average contrast profile is plotted as a red-white dashed curve. Positive contrasts are rare and only occur near the central wavelength. They typically result from asymmetric contrast profiles with moderate red- and blue-shifts (below ±10 km s\(^-1\)).

Figure 4 shows two-dimensional histograms of the six possible projections of the four-dimensional CM parameter space, which make it possible to evaluate the iterative optimization of the database. The frequency of occurrence is given by rainbow colors, where red and violet indicate high and low number densities, respectively. Sparser regions in the CM parameter space are characterized by high velocities and large optical thickness and by low Doppler width and large optical thickness. The relationship between Doppler width and velocity is more complex and characterized by ridges with high number density. The source function shows only a weak dependence of the number density with the remaining three CM parameters. In general, profiles with a Doppler width \(\Delta \lambda_\text{D} < 0.4\) Å and with an optical thickness above \(\tau_0 > 2.0\) are rare.

4.2 Assessment of Principal Component Analyses

The choice of contrast profiles as input for PCA decomposition is motivated by the fact that division by the quiet-Sun background profile in Eqn. 1 significantly reduces undesirable signatures of telluric and photospheric spectral lines. By
default PCA is carried out on the covariance matrix. Less commonly used options include the correlation matrix and the SSQ and cross-products matrix. The performance of these three options was evaluated in a numerical experiment. Figure 5 is a visual representation of how much of the variance is explained by an increasing number of eigenvectors. Variance in this context refers to the diversity of contrast profiles, which is contained in the optimized CM database. This is plotted for the first ten eigenvectors, which clearly favors the SSQ option. Already the first SSQ eigenvector exceeds the variance of the other two options by more than 20 percentage points. The SSQ curve for the cumulative variance is always above the other two curves. All curves start to converge after including five eigenvectors and are virtually the same for ten or more eigenvectors.

The eigenvectors are typically arranged in descending order according to their ability to express the variance in the CM database. Motivated by the results displayed in Fig. 5, the first ten eigenvectors are sufficient to reconstruct profiles contained in the database. As a reference, the first six eigenvectors and their CLV are presented in Fig. 6. The first eigenvector has a distinct W-shape, whereas the other eigenvectors display an increasing number of maxima and minima. Thus, only the first six eigenvectors are depicted because the four left-out eigenvectors have the same pattern. The sign of the eigenvectors is not important so that the sign was switched whenever necessary for clarity.

In Sect. 2.4, emphasis was placed on the CLV of the quiet-Sun background profile, which prompted another numerical experiment. Four quiet-Sun background profiles ($\mu = 1.0, 0.6, 0.312, \text{and } 0.141$) were selected from the work of David (1961). Individual databases were derived for this selection, and four sets of eigenvectors were computed. The first six eigenvectors for the four different μ values are also shown in Fig. 6.

In general, the eigenvectors are zero outside the interval $[-3.0, +3.0]$ Å. The first set of eigenvectors resembles the average contrast profile in the right panel of Fig. 3. The major differences in Fig. 6a are related to the depth of the central local maximum and of the neighboring minima. This is not surprising because the core of the Hα line showed the largest variation from disk center to the limb (see Fig. 2). The asymmetric eigenvectors in Fig. 6b are virtually identical. They are mainly responsible for modifying the restored contrast profiles according to the Doppler shift. Notable changes among the eigenvectors appear in Fig. 6c, where the core contrast is affected and also the neighboring local maxima. The next asymmetric eigenvectors in Fig. 6d show a similar behavior as the second set of eigenvectors. In comparison with the first set of eigenvectors, the W-shaped eigenvectors in Fig. 6e exhibit positive and negative contrasts. In addition, the eigenvector closest to the limb is slightly broader. Finally, the asymmetric eigenvectors in Fig. 6f start to show a larger variation than their simpler counterparts. The variance of the contrast profiles that can be explained by the eigenvectors is given for each eigenvector and μ value. Close to the limb, already the first two eigenvectors explain 92.4% of the variance, whereas the second and third eigenvector become almost the same near disk center. The pattern established by the first six sets of eigenvectors continues, and the number of extreme values increases. In summary, the CLV of eigenvectors displays a significant variation, which will lead to noticeable errors in the CM inversions, if not taken properly into account.

4.3 Derivation of Cloud Model parameters

The last part of the data processing pipeline concerns the CM inversions. The CM database includes Hα intensity and contrast profiles as well as the corresponding CM parameters. If only the observed spectra serve as input, a first iteration of the Levenberg-Marquardt technique (Markwardt, 2009) is used to solve the least-squares problem (Sect. 3). The initial estimates for the CM parameters are $\tau_0 = 1.5, \Delta \lambda_D = 0.6$ Å, $S = 0.15$, and v_D is taken from line-core fitting. In addition, the CM parameters were restricted to the intervals $\tau_0 \in [0.1, 4.0], v_D \in [-50.0, +50.0]$ km s$^{-1}, \Delta \lambda_D \in [0.1, 1.5]$ Å, $S \in [0.01, 0.5]$. Fits were rejected if the CM parameters converged at the limits of the respective interval, if the linear correlation coefficient between observed and fitted contrast profile was $r < 0.95$, or if the rank-order correlation coefficient was $\rho < 0.4$. In the second iteration, the initial estimates are
improved assuming linear relationships between v_D and line-core Doppler velocities, $\Delta \lambda_D$ and the FWHM of the observed intensity profiles, and v_0 and the equivalent contrast of the contrast profile. The equivalent contrast is defined in analogy to the equivalent width of a spectral line, i.e., by computing the area under the contrast profile and expressing it as a rectangle with unit height and a width in Ångström. The estimate for the source function S is simply the median of the observed distribution. Good fits were identified again according to the criteria that were applied after the first iteration. In addition, the computations are relatively fast because the Levenberg-Marquardt fits are carried out only twice per contrast profile. All other computations are short compared to this part of the inversions.

The CM database and PCA decomposition are the ingredients for a further refinement of CM inversions. The entries in the CM database are sorted according to the equivalent contrast of the contrast profiles, and the ten coefficients for the PCA are added as additional entries into the database. The equivalent contrast robustly shrinks the range of contrast profiles in the CM database that corresponds to the observed profiles. Typically, 1000 profiles are selected, for which the ten best matches are identified with good convergence of the ten PCA coefficients. Conformity is based on the smallest SSQ, which does not favors strong outliers of the PCA coefficients. In principle, selecting the best match can be considered as rough CM inversion with an accuracy corresponding to the grid spacing of the CM database (see Sect. 4.1).

Since ten Levenberg-Marquardt fits are required per contrast profile to find the best match, this method is five times slower than the more simplistic approach mentioned above. However, the combination of CM database and PCA decomposition avoids getting trapped in local minima. All attempts to improve the inversion results, e.g., using CM parameters from a local neighborhood, produced “improvements” only at the level of numerical noise.

Compared to González Manrique et al. (2017), the current implementation of the CM inversions includes a refinement step that links spectral line to CM parameters. Furthermore, the CM database is organized according to the absolute contrast so that only a subset of the CM contrast profiles has to be compared to the observed ones. Finally, the current inversion scheme incorporates noise-stripping based on PCA.

FIGURE 6 Center-to-limb variations of the first six eigenvectors for a selection of four μ values. The color code corresponds to Fig. 2, and the μ values are given in the upper-left panel inside the eigenvectors. Note that in some cases the sign of the eigenvector was switched and the order of the eigenvectors was sometimes changed, which improves the legibility of display. The variance of the contrast profiles for the four μ values that can be explained by the eigenvectors is given in the lower-right corner of each panel.
\section{RESULTS}

The estimated noise level of the Hα intensity profiles is 7.5 × 10^{-3} of the quiet-Sun continuum intensity. Noise-stripping is performed by computing the coefficients for the eigenvectors using Singular Value Decomposition (SVD) to solve the set of simultaneous linear equations between the contrast profile on one side and the eigenvectors on the other side of the equation. The fitted contrast profiles are just the sum of the ten eigenvectors weighted by the coefficients. The Hα intensity profiles can be restored according to Eqn. 1 using the fitted contrast profile and the appropriate quiet-Sun background profile.

Since the observed quiet-Sun profile still contains noise and is contaminated by blends of telluric and solar spectral lines, either the quiet-Sun profile must be smoothed and filtered or one directly resorts to a suitable quiet-Sun background profile from David (1961). Thus, a noise-free spatio-spectral data cube is now available for CM inversions, besides the unaltered preprocessed data cube. Comparing the CM results of these two spatio-spectral data cubes enables estimates of systematic errors inherent to the data processing procedure.

Four sample intensity and contrast profiles are displayed in the left and right panels of Fig. 7, respectively. The observed intensity profiles still contain blends by telluric and photospheric spectral lines but their signatures are significantly reduced in the contrast profiles. Noise-stripping was based on the ten eigenvectors derived from the CM database and...
FIGURE 9 Two-dimensional maps of the inversion results for the four CM parameters based on the noise-stripped contrast profiles: source function S, Doppler width $\Delta \lambda_D$ of the absorption profile, optical thickness τ_0, and Doppler velocity of the cloud material v_D (from top-left to bottom-right). The FOV is the same as in Fig. 1. Note that the velocity of the cloud material v_D differs from those depicted in Fig. 8. Regions, where the CM is unsuitable and inversions fail, are reproduced in gray. The crosses indicate the locations of the profiles in Fig. 7.

with the appropriate quiet-Sun background interpolated profile for $\mu = 0.81$ according to David (1961). The noise-free Hα contrast profiles were the input of the CM inversions. The selection includes red- and blue-shifted as well as broad and narrow profiles. Direct comparison of the left and right panels of Fig. 7 clearly demonstrates why CM inversions based on contrast profiles are the better choice than intensity profiles. The reason is that the physics of the spectral line formation is encapsulated in the variation around the “mean”, i.e., the quiet-Sun background profile. Whereas the intensity profiles differ only minutely, i.e., differences in line width and shift are barely recognizable, the contrast profiles exhibit significant variations. After some training, even plain visual inspection of the contrast profiles reveals some of the underlying physics. In general, the fitted profiles are very well represented by the eigenvectors and simply restored using SVD. This is even partly true for contrast profiles, which do not adhere to the CM, because the linear combination of the eigenvectors covers a larger range of contrast profiles compared to those contained in the CM database.

Just with spectral line fitting much information can be extracted from the noise-free line profiles. For example, fitting the line core with a 2nd- or 4th-order polynomials yields the Doppler velocity reflecting plasma motions in the highest chromospheric layers. The strong telluric line contamination close to the Hα would have made this task challenging. Bisector analyses delivers information about lower layers. Counterposing line-core and bisector velocity fields in Fig. 8 exposes significant differences in the flow speeds and the fine structures in both atmospheric layers. Note that because of the complex formation of the Hα line, assigning specific heights in the atmosphere to the Doppler maps may be ill- advised. However, already a general trend of the height-dependent flow fields provides insight into the nature of chromospheric absorption features.
The results of the CM inversions are summarized in Fig. 9, which depicts two-dimensional maps of all four CM parameters based on the noise-stripped contrast profiles. High values of the source function S are encountered in the vicinity of the small pore in the middle of the bottom part of the FOV. This region also shows some of the strongest line-core Doppler velocities (see bottom panel of Fig. 8). In addition, the line profiles are broadened at this location as is evident in the map for the Doppler width $\Delta \lambda_D$. The strongest absorption features occur on the left side of the FOV, at the extended tips of superpenumbral filaments. Other strong absorption features are associated with the active-region filament in the bottom-right quadrant of the FOV. In general, the cloud velocities v_D have the same morphology as the two velocity measurements in Fig. 8. However, the range covered by the cloud velocities is more than two times larger.

The underlying assumption of the CM is that cool absorbing plasma is suspended by the magnetic field higher up in the solar atmosphere, i.e., regions with enhanced line-core and line-wing emission cannot be expressed by CM inversions. If Hα intensity profiles are close to the quiet-Sun profile of the background radiation, CM inversions are also not suitable. The regions are shown in light gray in Fig. 9 and cover about 71.4% of the observed FOV for the CM inversions based on the noise-stripped contrast profiles. In comparison, this fraction increases to 77.3% for CM inversions based on the observed contrast profiles. These fractions will, however, change depending on the observed scene on the Sun, i.e., with respect to the coverage of cloud-like features that contain cool, absorbing plasma.

Verma et al. (2012) followed the evolution of decaying active region NOAA 11126 over the course of five days, and only the data from the first day is discussed in the present work. The earlier study focused only on LOS velocity and line-core intensity observed in the chromospheric Hα line. In the Hα line-core map, a superpenumbral-like structure was noticed in one of the decaying spots, which is also clearly visible in the line-core map in bottom the panel of Fig. 1. Note that the FOV in Fig. 1 covers a larger area compared to Verma et al. (2012) and has a different orientation. The larger FOV makes it possible to examine the surroundings of the decaying spot. Several interesting features, which were not covered in the previous study, are now included, e.g., the long filament in bottom-right quadrant of Fig. 1 and the dark surge-like feature associated with the larger sunspot. The noise-striped spectra facilitated computing LOS velocity maps at various positions (bisectors) in the Hα line profile as shown in Fig. 8, which was not possible in the previous study and now gives access to the height dependence of chromospheric Doppler velocities. Inspecting the first map in the middle panel of Fig. 8 in Verma et al. (2012) and Fig. 8 of the present work reveals that the noise-striped spectra show more and finer details across a wide range of plasma LOS velocities. Note the different velocity ranges of ± 5 km s$^{-1}$ in Fig. 8 of Verma et al. (2012) and ± 8 km s$^{-1}$ in Fig. 8 of the present work. Furthermore, now all four CM parameters (Fig. 9) are at hand, which provide further means to explore plasma properties, which were not computed and discussed in Verma et al. (2012).

The limitations of CM inversions are addressed in Fig. 10. Some of the strongest contrasts are encountered in regions with Hz line-core brightenings (see upper-left panel of Fig. 10) or even in emission features, which are both not accessible by the CM inversions. The map of the linear correlation coefficient r indicates that the CM is not appropriate for quiet-Sun regions. This finding is seconded by the rank-order correlation coefficient ρ, which shows the same morphology but at much lower correlation values. Visual inspection of these two correlation maps led to the above definition of good fits between observed contrast profiles after noise-stripping and those derived from CM inversions. The goodness of the fits is given on a logarithmic scale as SSQ, i.e., the χ^2 statistics, which is over much of the FOV anti-correlated with the linear and rank-order correlation maps. In summary, judging the quality of the fits has always a subjective component, which however can be quantified facilitating the comparison of diverse datasets from different telescopes, instruments, and detectors.

Potential error sources of CM inversions include the determination of the quiet-Sun background profile (Bostanci & Al Erdoğan, 2010), photon and detector noise, and numerical precision of the fitting algorithm. The last error source can be neglected if the algorithm does not get trapped in the wrong local minimum, and the second error source is small compared to systematic errors. Beyond the choice of the background profile, the entire data calibration and processing pipeline plays an important role. In addition, mediocre seeing may scramble the spectral information, and spatial resolution dictates how much of the chromospheric fine structure is resolved.

The number of successful CM inversions differs significantly for the observed and noise-stripped contrast profiles (see above). Thus, the comparison was carried out only for the intersection of contrast profiles, i.e., 19.5% of the contrast profiles. Pearson’s linear correlation coefficient is very high, i.e., $\rho = 0.917$ for the optical thickness τ_0 and $\rho \approx 0.99$ for all other CM parameters. Spearman’s rank-order correlation coefficient of $r_s = 0.926$ is slightly higher for the optical thickness τ_0 but remains essentially the same for all other CM parameters. This indicates that the two methods capture broadly the physical parameters of the decaying active region NOAA 11126. The mean absolute difference is a quantitative indicator of the systematic error between two methods. It amounts to 0.005 for the source function S, to 0.024 Å for...
FIGURE 10 Two-dimensional maps illustrating the performance of the CM inversions based on the noise-stripped contrast profiles: equivalent contrast, Pearson’s linear correlation coefficient r, goodness of fit parameter χ^2, and Spearman’s rank-order correlation coefficient ρ (from top-left to bottom-right). Note that the goodness of fit parameter χ^2 is depicted on a logarithmic scale.

the Doppler width $\Delta\lambda_D$, to 0.103 for the optical thickness τ_0, and to 0.25 km s$^{-1}$ for the Doppler velocity v_D. The absolute mean differences are comparable to the increments that were used to create the CM database in Sect. 4.1. The mean relative absolute differences are 4.5%, 4.7%, 11.9%, and 18.0% for the source function S, Doppler width $\Delta\lambda_D$, optical thickness τ_0, and Doppler velocity v_D, respectively. The mean was taken after computing the relative absolute differences for individual data points, avoiding the division by the near-zero arithmetic mean of the Doppler velocity \bar{v}_D. In any case, relative differences are always biased when dividing by small values. In addition, mean value and standard deviation are given for the distributions of the four CM parameters, which serves as an orientation for interpreting errors, i.e., 0.194±0.088, 0.50±0.12 Å, 0.82±0.41, −0.64±5.52 km s$^{-1}$, respectively, whereby the standard deviation reflects the variation of the parameters and does not refer to any type of error estimate.

6 | SUMMARY AND CONCLUSIONS

The application of PCA and CM inversions for analyzing the strong chromospheric Hα line, as presented here, is not the first of its kind. A number of studies already demonstrated the robustness of these methods individually (e.g., Rees et al., 2000; Tziotziou, 2007). However, the intention of the present work was a comprehensive and careful description of the preparation of data obtained with the VTT echelle spectrograph: starting with basic calibrations, over preprocessing of spatio-spectral data cubes and application of PCA for noise-stripping and CM inversions, to finally science-ready data. One design principle of the data processing pipeline was minimal user interaction and robust operations covering the full variety of absorption features in the solar chromosphere. Admittedly, the CM inversions are computationally intense. However, already noise-stripping based on PCA and simple line fitting yield maps of physical parameters, which provide a quick-look overview of the dynamic solar atmosphere.
The migration of data observed in the past and more standardized and streamlined data in the future to data archives motivated this work. Indeed, the data processing pipeline was successfully tested on several VTT datasets. Verma, Denker, et al. (2019) presented high-resolution Hα spectroscopy of active region NOAA 12722, investigating the temporal evolution of a pore, whereas Verma, Matijevič, et al. (2019) use machine learning and statistical techniques to classify Hα spectra according to results of CM inversions. The collaborative research environment and GREGOR archive\(^1\) at AIP provides the solar physics community already with access to GFPI and HiFI data. The goal is to integrate AIP’s VTT echelle data to the same framework.

The thermal and dynamic properties of various solar features are reflected differently in the Hα line. For example, Verma et al. (2012) and Kuckein et al. (2016) demonstrate that Hα spectral scans are still a very useful tool to study the diversity of solar features from the evolution of sunspots to the stability of large-scale quiescent filaments. In an effort to utilize VTT spectra efficiently, the data processing pipeline was critically reviewed, which led to a redesign of the data processing and analysis software. Taking advantage of PCA’s ability to reduce the dimensionality of the CM database and of its capacity for noise-stripping, a CM inversion scheme was developed that utilizes only ten eigenvectors to reliably reproduce observed lines and robustly delivers the four CM parameters. In addition, various steps to calibrate spectral data, which are usually only mentioned in passing when presenting the results, are discussed in detail because their impact on the inversion result is significant. The impact of data (pre)processing on inversion results holds certainly true also for other spectral line inversion schemes. Furthermore, embedding the CLV of quiet-Sun Hα background profiles (David, 1961) facilitated the construction of an extensive database for modeled Hα intensity and contrast profiles. As a result, not only noise was efficiently removed but also the blends of telluric and solar spectral lines in the wings and core of the Hα line. Thus, computing bisectors becomes straightforward providing insight in the height dependence of chromospheric velocity fields.

Comprehensive databases and archives of the Hα spectral observations do not exist. Despite the importance of Hα spectroscopy, no space mission carried an Hα spectrograph so far but the Narrowband Filter Imager (NFI) on board the Japanese Hinode mission (Tsuneta et al., 2008) had some Doppler capabilities. However, the Solar Hα Imaging Spectrometer (SHIS) is considered for an upcoming Chinese space mission. Thus, making existing VTT Hα data more accessible fills a niche until new missions and instruments become available. The streamlined data pipeline for bulk processing and analysis of the Hα spectra is a first step. Over the years, a large volume of spatio-spectral data cubes was collected at the VTT. More recently, an improved observing scheme to capture spectra with a faster cadence was implemented at VTT (Denker et al., 2019). In the short period of one month more than a billion (10⁹) individual spectral Hα profiles were recorded. These data were accompanied by chromospheric Hβ spectra and spectra of a photospheric Cr I line, which has a large Landé factor so that magnetic field information can be glimpsed from intensity spectra. The data processing pipeline will be adapted to these two lines as well. In the next step, other chromospheric lines (e.g., Ca II H & K, Na I D₁ & D₂, and near-infrared Ca I I), which were also observed with the VTT in the past, will be made accessible, too.

ACKNOWLEDGMENTS

The Vacuum Tower Telescope at the Spanish Observatorio del Teide of the Instituto de Astrofísica de Canarias is operated by the German consortium of the Leibniz-Institut für Sonnenphysik in Freiburg, the Leibniz-Institut für Astrophysik Potsdam, and the Max-Planck-Institut für Sonnensystemforschung Göttingen. This study was supported by grant DE 787/5-1 of the Deutsche Forschungsgemeinschaft (DFG) and by the European Commission’s Horizon 2020 Program under grant agreements 824064 (ESCAPE – European Science Cluster of Astronomy & Particle physics ESFRI research infrastructures) and 824135 (SOLARNET – Integrating High Resolution Solar Physics). ED is grateful for the generous financial support from German Academic Exchange Service (DAAD) in form of a doctoral scholarship. SJGM and PS acknowledge the support of the project VEGA 2/0004/16. We would like to thank the referee who provided helpful comments and guidance, improving structure and contents of the manuscript.

\(^1\)gregor.aip.de
REFERENCES

Beckers, J. M. 1964. A Study of the Fine Structures in the Solar Chromosphere (Unpublished doctoral dissertation). Sacramento Peak Observatory, Air Force Cambridge Research Laboratories, Mass., USA.

Bostanci, Z. F., & Al Erdo˘gan, N. 2010, MNRAS, 81, 769.

Brunt, C. M., & Heyer, M. H. 2013, MNRAS, 433, 117-126.

Chae, J. 2014, ApJ, 780, 109.

Chae, J., Park, H.-M., Ahn, K. et al. 2013, SoPh, 288, 1-22.

David, K.-H. 1961, Z. Astrophys., 53, 37-67.

Denker, C., Balthasar, H., Hofmann, A., Bello González, N., & Volkmer, R. 2010, The GREGOR Fabry-Pérot Interferometer: A New Instrument for High-resolution Solar Observations. I. S. McLean, S. K. Ramsay, & H. Takami (Eds.), Ground-Based and Airborne Instrumentation for Astronomy III Vol. 7735, p. 77356M.

Denker, C., Verma, M., Balthasar, H., Inden, C. 2013, MNRAS, 433, 117-126.

Elmore, D. F., Lites, B. W., Tomczyk, S. et al. 1992, The Advanced Stokes Polarimeter – A New Instrument for Solar Magnetic Field Research. D. H. Goldstein & R. A. Chipman (Eds.), Polarization Analysis and Measurement Vol. 1746, p. 22-33.

González Manrique, S. J., Bello González, N., & Denker, C. 2017, A&A, 600, A38.

Goode, P. R., Denker, C., Didkovsky, L. I., Kuhn, J. R., & Wang, H. 2003, J. Korean Astron. Soc., 36, 125-133.

Gudiksen, B. V., Carlsson, M., Hansteen, V. H., Hayek, W., Leenaarts, J., & Martínez-Sykora, J. 2011, A&A, 531, A154.

How cite this article: E. Dineva, M. Verma, S.J. González Manrique, P. Schwartz and C. Denker (2019), Cloud model inversions of strong chromospheric absorption lines using principal component analysis, ASNA. .

How cite this article: E. Dineva, M. Verma, S.J. González Manrique, P. Schwartz and C. Denker (2019), Cloud model inversions of strong chromospheric absorption lines using principal component analysis, ASNA. .

Jolliffe, I. T. 2002, Principal Component Analysis. New York: Springer.

Kuckein, C., Denker, C., Verma, M., Balthasar, H., González Manrique, S. J., Louis, R. E., & Diercke, A. 2017, sTools – A Data Reduction Pipeline for the GREGOR Fabry-Pérot Interferometer and the High-resolution Fast Imager at the GREGOR Solar Telescope. S. Vargas Domínguez, A. G. Kosovichev, L. Harra, et al. (Eds.), Fine Structure and Dynamics of the Solar Atmosphere Vol. 327, p. 20-24.

Kuckein, C., Verma, M., & Denker, C. 2016, A&A, 589, A84.

Kuntz, T., Twes, M., & Courbin, F. 2014, A&A, 591, A54.

Leenaarts, J., Carlsson, M., & Rouppe van der Voort, L. 2012, ApJ, 749, 136.

Lopez Ariste, A. 2001, Inversion Codes based on Pattern Recognition. M. Sigwarth (Ed.), Advanced Solar Polarimetry – Theory, Observation, and Instrumentation Vol. 236, p. 521.

Markwardt, C. B. 2009, Non-linear Least-squares Fitting in IDL with MPFIT. D. A. Bohlender, D. Durand, & P. Dowler (Eds.), Astronomical Data Analysis Software and Systems XVIII Vol. 411, p. 251-254.

Puschmann, K. G., Denker, C., Kneer, F. et al. 2012, AN, 333, 880-893.

Rees, D. E., Lopez Ariste, A., Thatcher, J., & Semel, M. 2000, A&A, 355, 759-768.

Socas-Navarro, H., Lopez Ariste, A., & Lites, B. W. 2001, ApJ, 553, 949-954.

von Alvensleben, A. 1957, Z. Astrophys., 43, 63-84.

ten Bruggencate, P., & Voigt, H.-H. 1958, Veröffentlichungen der Universität-Sternwarte zu Göttingen, 122, 1-2.

Tsuneta, S., Ichimoto, K., Katsukawa, Y. et al. 2008, SoPh, 249, 167-196.

Tziotziou, K. 2007, Chromospheric Cloud-Model Inversion Techniques. P. Heinzel, I. Dorotovi ˇc, & R. J. Rutten (Eds.), The Physics of Chromospheric Plasmas Vol. 368, p. 217-237.

Zhang, Y., & Zhao, Y. 2015, Data Science Journal, 14, 11.