Study on the Degradation Effect of Plant-Derived Active Ingredients on Organophosphorus Pesticides

Jun Sun* Tongxin Zhang
Shandong Rengjian Biotechnical Co. Ltd, Jinan, Shandong, 250200, China

Abstract
In order to explore new ways and methods for the degradation of organophosphorus pesticides, the degradation effects of plant-derived active ingredients on three organophosphorus pesticides were studied. Rhubarb, Pittosporum bark, Hibiscus bark, and Chinese gall in 9:4:3:2 parts were mixed by mass, ground and soaked in water, and the concentration changes of organic phosphorus pesticide before and after the test were compared through GC-MS quantitative detection method and rapid pesticide residue measurement method to clarify its degradation effect on organophosphorus pesticides. The results showed that the degradation rates of chlorpyrifos and para-thion were 93.2% and 92.9% respectively in the extract within 2 minutes; the degradation rate of dichlorvos was 66.67% in the extract within 17 hours, and the degradation rate of chlorpyrifos was 48.69% within 11 hours. This study shows that the extracts of rhubarb, sea tongs bark, hibiscus bark, and gallnut have significant degradation effects on chlorpyrifos, para-thion, dichlorvos and other organophosphorus pesticides.

Keywords
organophosphorus pesticide; plant-Derived active ingredients; pesticide degradation; chinese medicine agriculture; soil remediation

植物源活性成分对有机磷农药的降解效果研究

孙军* 张同心
山东礽健生物科技有限公司, 中国·山东 济南 250200

摘 要
为探索有机磷农药降解的新途径和方法,研究植物源活性成分对 3 种有机磷农药的降解效果。以大黄、海桐皮、木槿皮、五倍子按 9:4:3:2 质量份数混合,粉碎并以水浸泡,以 GC-MS 定量检测法、农残速测法,通过比较试验前后有机磷农药浓度变化,明确其对有机磷农药的降解效果。结果表明,2 min 内浸提液对毒死蜱、对硫磷 2 种有机磷农药降解率分别达到 93.2%、92.9%；浸提液 17 h 内对敌敌畏降解率为 66.67%, 11 h 内对毒死蜱降解率为 48.69%。本研究表明,大黄、海桐皮、木槿皮、五倍子浸提液对毒死蜱、对硫磷、敌敌畏等有机磷农药有显著降解效果。

关键词
有机磷农药; 植物源活性成分; 农药降解; 中医农业; 土壤修复

1 引言

化学农药作为重要的农业生产资料,在遏制病虫草害,降低农业生产损失中发挥了重要作用。然而,长期过量、不合理施用化学农药也给人类生产、生活及生态环境造成严重影响,由此造成的农产品质量安全、耕地质量下降、农业面源污染、恶性疾病骤增及环境激素问题等引起高度关注 [8-9]。有机磷农药应用广泛,尤其是在杀虫剂领域,占杀虫剂总量的 70%以上 [9]。农田中施用的农药利用率为 38.8% [9],绝
组方和多年应用实践为基础，筛选研发出对有机磷农药有快速、高效降解效果的植物原活性成分，经室内检测和田间验证，效果显著，实现现代农业与传统中医的跨界融合，为探索应用中医理念推动“生产、生活、生态”和谐发展提供了良好的技术路径和基础数据支撑，有重要的科研和应用价值。

2 材料与方法

2.1 植物源活性成分制备

（1）将大黄 180 g, 海桐皮 80 g, 木槿皮 60 g, 五倍子 40 g 等中药原材料混合粉碎，200 目过筛。

（2）将粉末置于不锈钢容器中，加水 2000 g, 加热至 100℃，持续 30 min。

（3）在充分接触空气的条件下，自然降温冷却（不低于 5℃），静置 48 h。

（4）将药液滤出，用 5000 g 清水（水温为室温即可）稀释备用。

2.2 降解效果检测

气相色谱—质谱联用分析法（GC-MS 法） 2018 年 3 月 10 日, 在山东省农科院农业质量标准与检测技术研究所实验室, 用安捷伦 7890A 气相色谱—质谱联用分析法定量检测植物源成分对有机磷农药（毒死蜱、对硫磷）的快速降解效果 [13-15]。

（1）配置 1 µg/mL 的毒死蜱、对硫磷混合标样。

（2）取 1 mL 标样置于 20 mL 尖头玻璃试管，再加入 1 mL 植物源活性成分溶液，旋涡振荡 1 min。

（3）加入 5 mL 乙腈、1 g NaCl，旋涡振荡 1 min。

（4）用 300 r/min 离心 2 min，取出置于试管架。

（5）取 1 mL 离心后的上清溶液置于玻璃试管，在 40℃水浴锅内微吹（至吹干），加入 2 mL 丙酮定容。

（6）上机（安捷伦 7890A）检测，进样量 2 µL。设 3 个重复。

农药快速检验法 以韭菜、茼蒿为试验对象，用 NC-800 型 6 通道智能农药快速检验仪检测植物源成分对有机磷类农药（敌敌畏、毒死蜱）的降解效果。

（1）韭菜—敌敌畏

试验条件：2018 年 5 月 6 日，在山东省聊城市莘县柿子园镇郑庄出口茼蒿基地开展试验，该基地种植茼蒿 2.67 hm²，生长期 45 天，株高 30~50 cm，畦东西向，长 80 m，宽 5 m，茼蒿东西行纵向种植。按计划于 5 月 10 日采收，因飞防误喷，毒死蜱超标 16 倍，要求采取紧急救治。5 月 9 日夜间开展试验，实时气温 16~18℃，无风；16~17 h 后检测。试验过程：

① 5 月 6 日下午 15 时－16 时选择韭菜地块 20 m²，用 775 mg/L 敌敌畏 2000 mL 均匀喷洒韭菜植株及行间地面；

② 随机选择其中 10 m² 做试验处理，立即用植物源活性成分加常温清水稀释 4 倍，取 400 mL 均匀喷洒韭菜植株及行间地面；另 10 m² 做对照 I；

③ 以相邻地块同样种植条件、不喷施敌敌畏和植物源活性成分的韭菜地块为对照 II；

④ 5 月 7 日上午 9 时至 10 时，用 5 点混合取样法，在试验处理区、对照 I 区、对照 II 区，各采集韭菜样品 1 kg，装入塑料封口袋；11 时，用速测法检测韭菜样品敌敌畏残留情况。设 2 个重复。

（2）茼蒿—毒死蜱

试验条件：2018 年 5 月 9 日，在山东省聊城市莘县柿子园镇郑庄出口茼蒿基地开展试验，该基地种植茼蒿 2.67 hm²，生长期 45 天，株高 30~50 cm，畦东西向，长 25 m，宽 2 m，韭菜南北行横向种植；5 月 6 日开展试验，实时气温 22~25℃，风力 2~3 级；16~17 h 后采样检测。

试验过程：

① 5 月 6 日下午 15 时－16 时选择韭菜地块 20 m²，用 775 mg/L 敌敌畏 2000 mL 均匀喷酒韭菜植株及行间地面；

（3）以相邻地块同样种植条件、不喷施敌敌畏和植物源活性成分的韭菜地块为对照 I；

① 5 月 7 日上午 9 时至 10 时，用 5 点混合取样法，在试验处理区、对照 I 区、对照 II 区，各采集韭菜样品 1 kg，装入塑料封口袋；11 时，用速测法检测韭菜样品敌敌畏残留情况。设 2 个重复。

试验过程：

（3）以相邻地块同样种植条件、不喷施敌敌畏和植物源活性成分的韭菜地块为对照 I；

② 5 月 9 日晚上 22 时用植物源活性成分加常温清水稀释 4 倍，取 1000 mL 均匀喷酒试验小区茼蒿植株；

③ 以每小区西侧相邻区段为对照；

④ 5 月 10 日 8 时，用 5 点混合取样法，在试验处理区、对照区，各采集茼蒿（中上部）样品 500 g，装入塑料封口袋；9 时，用速测法检测茼蒿样品毒死蜱残留情况。

3 结果与分析

3.1 植物源活性成分对毒死蜱、对硫磷的降解效果

通过 SPSS 进行 T-test 分析，结果见表 1。以标样测试浓度为初始浓度（ck），毒死蜱、对硫磷标样溶液与植物源活性成分混合 2 min 后，毒死蜱降解率为 93.6%，对硫磷降解率为 92.9%，毒死蜱、对硫磷浓度明显下降 (P<0.01)，降解效果显著；对毒死蜱、对硫磷的降解效果相当，未达到差异显著水平 (t=2.347, P=0.079)。
表 1 植物源活性成分对毒死蜱、对硫磷的降解效果（室内）

种类	试验重复	浓度 / (µg/mL)	均值 / (µg/mL) ± 标准差	降解率 /%
标样	1	0.9635	0.9653 ± 0.0047A	
2	0.9706			
3	0.9618			
1	0.9983			
毒死蜱	2	0.9778	0.9692 ± 0.0032B	93.6
3	0.925			
1	0.1039			
对硫磷	2	0.1065	0.1031 ± 0.0039B	92.9
3	0.9988			

3.2 植物源活性成分对敌敌畏、毒死蜱的田间降解效果

由表 2 看出, 对照 II 韭菜样品为 1.01%, 对照韭菜样品为 19.00%, 试验处理韭菜样品为 6.11%, 结果表明植物源活性成分在田间自然条件下对其敌敌畏有显著的效果, 17 h 内降解率达到 66.67%。

表 2 植物源活性成分对敌敌畏的降解效果（田间）

种类	试验重复	抑制率 /%	均值 /%	降解率 /%
CKI	1	0.48	1.01	
	2	1.54		
CKII	1	20.41	19.00	
	2	17.59		
试验处理	1	11.89	6.11	66.67
	2	0.32		

由表 3 看出, 经紧急处理后, 菠萝上毒死蜱浓度显著降低, 10~11 h 后, 降解率超过 48.7%。

因 100% 为农药残留及仪器量程, 无法获取相对准确的数值, 虽无法进行准确的显著性检验分析, 但从数据分析来推测, 两者间应存在显著差异。

表 3 植物源活性成分对毒死蜱的降解效果（田间）

种类	试验重复	抑制率 /%	均值 /%	降解率 /%
试验处理	1	52.16	46.83	48.69
	2	46.41	46.83	
	3	41.92	41.92	
	1	73.77		
CK	2	100	91.26	
	3	100		

4 结论

本研究表明, 大黄、海桐皮、木槿皮、五倍子按照固定质量份数配比后获得的浸提液对毒死蜱、对硫磷、敌敌畏等有机磷农药有显著降解效果, 且降解速度极快, 尤其是在与有机磷农药充分混合的情况下, 2 min 内降解率超过 90%。

鉴于该植物源成分对有机磷农药的快速、显著的降解效果, 其在农田土壤修复、新鲜蔬菜农残消除、有机磷有毒化合物生产及泄漏应急处理、临床中毒抢救等方面有较为广阔的应用前景。

5 讨论

有机磷农药应用普遍, 随着害虫抗药性的增加, 施用量和频次不断增大, 对环境造成较大影响, 且对人体存在急性中毒危险[16]。农药生物降解技术是近年领域内全球技术研究的热点[17-18], 也从土壤、水体中分离筛选了对有机磷有明显酶促降解作用的专性、广谱性的微生物种类包括细菌、真菌、放线菌和藻类。其中对细菌研究最为深入[19], 如细菌中较具有代表性的假单胞菌属（Pseudomonas）, 对马拉硫磷、敌敌畏、甲拌磷、甲基对硫磷都有较好的降解效果。刘玉焕等[20]对甲胺磷降解真菌进行了详细研究, 王百慧等对微生物产生土壤酶降解农药的机理进行了较为完善的综述[21], 赵仁邦等[22]对草酸青霉 ZHJ6 降解甲胺磷的应用方法进行了研究。比亚酶是从土壤中筛选出微生物产生的发酵产物, 作为“863 计划”项目成果自 2012 年开始北京森根比亚生物科技有限公司独家生产, 用于民用, 其对敌敌畏、毒死蜱、马拉硫磷、倍硫磷、甲基对硫磷平均降解效果达到 70%, 并开发出“酶学性能改善的甲基对硫磷水解酶突变体及其应用”等多项专利技术[23]。

截止目前, 应用纯植物源成分降解有机磷农药及其它种类农药的研究文献鲜有见到。中医农业作为现代农业发展中一个全新理念, 对推动农业可持续发展有重要的意义[24]。中国传统医学中, 有较多应用中药解毒的配方和案例, 从菠萝、木瓜等水果中提取可食性蛋白酶研制出可降解蔬菜农药残留的洗涤剂, 对甲胺磷、氧化乐果、敌敌畏、毒死蜱等农药的降解率达到 90% 以上[25]; 不同浓度的茶树油及水溶性茶树油对喷施农药的豇豆进行浸泡、清洗处理, 结果表明, 0.8% 的水溶性茶油清除农药残留效果最优, 对三唑磷、马拉硫磷、毒死蜱农药清除率分别为 82.79%、94.54%、84.58%[26]。

尽管筛选出了多种降解农药的微生物种类和植物提取物, 但现有文献中看出, 这些研究成果尚未进行规模化应用。比亚酶作为当前最为稳定和有效的有机磷农药降解酶, 受原料、生产途径、产量和成本等因素的影响, 应用范围受

DOI: http://dx.doi.org/10.36956/rwae.v1i1.230
到限制。本研究采用的中药组方中的植物源成分来源较为广泛，且具有功能相当的替代种类，能够进行批量生产，成本低，经11年的大田应用证明，效果显著、稳定。本研究首次将中药解毒的原理和技术应用于化学农药降解方面，筛选出了能够高效降解有机磷农药的中药组方，并研究出较为系统的生产工艺、产品及配套应用技术，能够应用于农田污染土壤农药残留降解、农产品表面残留农药降解、水体环境消毒及有机磷类农药（厂）泄露紧急处理等领域。大田应用初步表明，本植物源成分对氨基甲酸酯类、磺酰脲类农药及除草剂有一定降解效果，尚需进行科学的试验证明。同时，该成分的作用机理亦需进一步深入研究。

参考文献
[1] 林正平. 黑龙江省农药面源污染现状及治理措施[J]. 农药科学与管理, 2017(12):9-10,14.
[2] 廖小贞, 陈笑海, 李志明等. 基于农户农药使用视角的耕地质量保护策略探讨[J]. 浙江农业科学,2017(04):673-676,678.
[3] 程燕, 谭丽超, 周军英等. 我国环境激素类农药优先名录筛选[J]. 世界科技研究与发展,2012(04):47-52.
[4] 胡旭, 李璐, 张钦发等. 环境激素类污染物对食品安全的影响分析[J]. 食品工业,2014(09):230-234.
[5] 王文丽, 谭丽超, 周军英等. 我国环境激素类农药优先名录筛选[J]. 农药科学与管理,2017(04):28-35.
[6] 闫万莉, 赵志辉. 我国有机磷农药的研究进展[J]. 内蒙古石油化工,2001(27):52-54.
[7] 杨光. 农业农村部: 国家农药利用率已达到38.8%[J]. 农药市场信息,2018(11):11-12.
[8] 滕瑞菊, 王雪梅, 王欢等. 有机磷农药的降解与代谢研究进展[J]. 甘肃科技,2016(04):46-50.
[9] Sun B, Zhang L X, Yang L Z, et al. Agricultural Non-Point Source Pollution in China: Causes and Mitigation Measures. AMIBIO,2012(04):370-379.
[10] 王圣惠, 张琛, 陶超. 有机磷农药微生物降解研究进展[J]. 生物技术,2006,16(3):95-97.