Mycobacterium caprae Infection in Captive Borneo Elephant, Japan

Shiomi Yoshida, Satomi Suga, Satoshi Ishikawa, Yasuhiko Mukai, Kazunari Tsuyuguchi, Yoshikazu Inoue, Taro Yamamoto, Takayuki Wada

In 2016, disseminated tuberculosis caused by Mycobacterium caprae was diagnosed in a captive Borneo elephant in Japan. The bacterium was initially identified from clinical isolates. An isolate collected during a relapse showed isoniazid monoresistance and a codon 315 katG mutation.

Elephants are susceptible to infection by some members of the Mycobacterium tuberculosis complex (MTBC) (1). The MTBC comprises several genetically homogeneous species that have a wide range of hosts and can cause tuberculosis in humans and in animals. Infection in elephants is presumed to originate from human caretakers who have tuberculosis; however, transmission between elephants or from other animals is also possible (2–4).

Phylogenetic events during the divergence of MTBC species are represented within the genomes of MTBC species (5). Whole-genome sequencing has shown that single-nucleotide polymorphism (SNP) microevolution occurs in MTBC strains in the host.

We describe mycobacterial infection in an elephant that was caused by a relatively uncommon species of MTBC. M. caprae infection, a species of the MTBC, was diagnosed in a captive Borneo elephant (Elephas maximus borneensis) that was brought directly from Borneo island after being orphaned.

The Study

In February 2016, an 17-year-old female Borneo elephant in the Fukuyama Zoo (Fukuyama, Japan) had low-grade fever (99.9°F), anorexia, progressive weight loss, and cough with sputum. The elephant had been housed alone in a facility with a roofed room and an open-air enclosure and had no contact with other animals. She was seropositive by Chembio DPP VetTB Assay for Elephants (Chembio Diagnostic Systems, Inc., Medford, NY, USA), which detects antibodies to CFP10/ESAT-6 and MPB83 antigens (6,7).

Submitted specimens to the National Hospital Organization Kinki-chuo Chest Medical Center (Sakai, Japan) were sputum, feces, urine, and vaginal discharge recovered from the floor. Acid-fast bacilli were visualized on Ziehl-Neelsen staining performed according to standard methods (8). Isolates with smooth to greasy, domed, non-chromogenic colonies were recovered from all submitted samples using both 7H11 agar and MGIT broth (Becton Dickinson, Fukushima, Japan) and identified as MTBC using loop-mediated isothermal amplification (Eiken Chemical, Tokyo, Japan) and TaqMan PCR (Roche Diagnostics, Tokyo, Japan) (9).

A single colony was sequenced using MiSeq (Illmina, Inc., Tokyo, Japan). Raw reads were trimmed by base quality and were mapped to the M. tuberculosis reference genome, H37Rv (GenBank accession no. CP003248). The initial isolate, EPDC01, was characterized by the presence and absence of genomic regions of difference, the mutation (G to A) of oxyR (10) and M. caprae–specific SNPs in lpa (10) (Table 1, https://wwwnc.cdc.gov/EID/article/24/10/18-0018-T1.htm). These results unexpectedly suggested that the causative agent of tuberculosis in this elephant was M. caprae. The regions of difference analysis suggested that EPDC01 belonged to the Allgäu type of M. caprae found in red deer (Cervus elaphus) (11). However, when we used kSNP3 (12), a kmer-based method, to compare SNPs from the entire genome of EPDC01 to previously published Allgäu and Lechtal types of M. caprae and other MTBC species, the results showed this isolate was not closely related to either Allgäu or Lechtal types (Figure; online Technical Appendix Figure, https://wwwnc.cdc.gov/EID/article/24/10/18-0018-Techapp1.pdf) (13).

The isolate was susceptible to isoniazid, rifampin, ethambutol, and levofloxacin according to the broth microdilution method (BrothMIC MTB-1; Kyokuto Pharmaceutical, Inc, Tokyo, Japan). It also was susceptible to pyrazinamide using Bactec MGIT 960 PZA kit (Becton Dickinson).

The infected elephant initially weighed 2,400 kg; isoniazid (4.5–7 mg/kg), pyrazinamide (31–33 mg/kg),...
and levofloxacin (11 mg/kg) were administered rectally, once a day. When weighing on a scale was not possible, the elephant’s weight was estimated using the chest girth method. After 1 month of treatment, the vaginal discharge disappeared, and the elephant’s sputum culture became negative after 2 months. After 6 months, the multidrug treatment was interrupted for 3 weeks because of severe gastrointestinal disturbance and hepatic dysfunction. Rectal administration of isoniazid and pyrazinamide was resumed for an additional 3 months after recovery from adverse effects. Follow-up trunk wash samples were culture negative, but \(M. \) \textit{caprae} was isolated from a sputum sample collected from the chin in February 2017. This new isolate was resistant to isoniazid. The drug regimen was then changed to oral rifampin (10 mg/kg) and rectal ethambutol (30 mg/kg), levofloxacin (10 mg/kg), and pyrazinamide (30 mg/kg). Under the modified treatment, the recurrence symptoms disappeared, and the routine sputum cultures became negative.

We also sequenced the recurrent isoniazid-resistant isolate (EPDC02) using a MiSeq and detected a mutation in \(katG \) where Ser-315 was replaced by Thr (S315T). No mutations were detected in other representative drug resistance–related genes, such as \(rpoB \) (rifampin); \(rrr \), \(gidB \), and \(rpsL \) (streptomycin); \(embABC \) (ethambutol); \(pncAC \) (pyrazinamide); and \(gyrAB \) (quinolone). The pairwise distance between the initial and relapse isolates (EPDC01 and EPDC02) involved at least 7 single-nucleotide variants found in coding regions (Table 2).

For serologic monitoring of treatment, we tested archived serum samples collected before and during treatment using the DPP assay. Although a sample in November 2003 was reactive on CFP10/ESAT-6 but not on MPB83, at the time of culture-based tuberculosis diagnosis (February 2016), the reaction to CFP10/ESAT-6 was more intense, and the complete band of MPB83 appeared. The intensity to 2 test lines gradually decreased during the initial treatment (September 2016) and disease recrudescence (February 2017). The modified 18-month course of treatment is scheduled to end in October 2018.

Employees at the zoo were assessed for tuberculosis based on symptoms, radiographs, and serology using the QuantiFERON-TB Gold test (QIAGEN, Tokyo, Japan); none had active tuberculosis. Clinical examination, culture, PCR, and tuberculin skin test were used to evaluate as many primates and hoofstock as possible in the collection, and no tuberculosis-positive animals were identified.

Conclusions

A better understanding of tuberculosis in elephants is crucial to improve medical management and reduce risk of transmission to other animals and humans. During the initial treatment of the elephant reported here, treatment was interrupted for 3 weeks because of adverse effects. Reducing the dose of isoniazid was the probable cause of the acquired isoniazid resistance. When treating tuberculosis in elephants, the benefits and adverse effects should be...
Table 2. Single nucleotide polymorphism differences between isolates EPDC01 and EPDC02 from a captive Borneo elephant with Mycobacterium caprae infection, Japan, 2016*

Genomic position	Gene	Mutation	Amino acid change	Description of function
1,338,135	Rv1194c	G → frameshift	Gin127 → frameshift	Unknown
1,445,272	Rv1290A	C → T	Ala72 → Val	Unknown
2,155,168	katG	C → T	Ser315 → Asn	Catalase; isoniazid resistance
2,577,556	Rv2306A	G → A	Gly150 → Glu	Unknown
3,200,585	Rv2891	T → G	Leu107 → Arg	Unknown
3,777,062	Rv3365c	C → A	Gly147 → Val	Unknown
4,298,329	pks2	G → A	Pro426 → Leu	Lipid metabolism
4,345,372	Rv3869	G → C	Ala112 → Pro	Unknown

*Excluded paralogue genes, which are the descendants of an ancestral gene and underwent a duplication event.

Acknowledgments

We thank the Fukuyama municipal administrative office, staff veterinarians, animal health and animal care staff, and employees of the Fukuyama Zoo for their participation. We also thank the Infection Control Team staff of National Hospital Organization Kinki-chuo Chest Medical Center for conducting the ventilation assessment.

This work was supported in part by MEXT/JSPS KAKENHI (grant nos. JP16K09120 and JP15H05263), and by the Cooperation Research Program of the Wildlife Research Center, Kyoto University (2017-A-20).

About the Author

Ms. Yoshida is a microbiology researcher involved in the Clinical Research Center, National Hospital Organization Kinki-chuo Chest Medical Center, and the Graduate School of Biomedical Sciences, Nagasaki University in Japan. Her research interests include the examination of mycobacterial agents, including those from elephants with tuberculosis.

References

1. Murphree R, Warkentin JV, Dunn JR, Schaaffner W, Jones TF. Elephant-to-human transmission of tuberculosis, 2009. Emerg Infect Dis. 2011;17:366–71. http://dx.doi.org/10.3201/eid1703.101668
2. Chandranaik BM, Shivashankar BP, Umashankar KS, Nandini P, Giridhar P, Byregowda SM, et al. Mycobacterium tuberculosis infection in free-roaming wild Asian elephant. Emerg Infect Dis. 2017;23:555–6. http://dx.doi.org/10.3201/eid2303.161439
3. Obanda V, Poghon J, Yongo M, Mulei I, Ngotho M, Waititu K, et al. First reported case of fatal tuberculosis in a wild African elephant with past human–wildlife contact. Epidemiol Infect. 2013;141:1476–80. http://dx.doi.org/10.1017/S0950268813000022
4. Zachariah A, Pandiyam J, Madhavilatha GK, Mundayoor S, Chandramohan B, Sajesh PK, et al. Mycobacterium tuberculosis in wild Asian elephants, southern India. Emerg Infect Dis. 2017;23:504–6. http://dx.doi.org/10.3201/eid2303.161741
5. Gagneux S, DeRiemer K, Van T, Kato-Maeda M, de Jong BC, Narayanan S, et al. Variable host-pathogen compatibility in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2006;103:2869–73. http://dx.doi.org/10.1073/pnas.0511240103
6. Lyashchenko KP, Greenwald R, Esfandiari J, Mikota S, Miller M, Moller T, et al. Field application of serodiagnostics to identify elephants with tuberculosis prior to case confirmation by culture. Clin Vaccine Immunol. 2012;19:1269–75. http://dx.doi.org/10.1128/CI.00163-12
7. Greenwald R, Lyashchenko O, Esfandiari J, Miller M, Mikota S, Olsen JH, et al. Highly accurate antibody assays for early and rapid detection of tuberculosis in African and Asian elephants. Clin Vaccine Immunol. 2009;16:605–12. http://dx.doi.org/10.1128/CVI.00384-09
8. Clinical and Laboratory Standards Institute. Susceptibility testing of mycobacteria, nocardiae, and other aerobic actinomycetes; approved standard (M24–A2). Wayne (PA): The Institute; 2011.
9. Nagai K, Horita N, Yamamoto M, Tsukahara T, Nagakura H, Tashiro K, et al. Diagnostic test accuracy of loop-mediated isothermal amplification assay for Mycobacterium tuberculosis: systematic review and meta-analysis. Sci Rep. 2016;6:39090. http://dx.doi.org/10.1038/srep39090
10. Reddington K, O’Grady J, Dorai-Raj S, Niemann S, van Soolingen D, Barry T. A novel multiplex real-time PCR for the identification of mycobacteria associated with zoonotic...
11. Domogalla J, Prodinger WM, Blum H, Krebs S, Gellert S, Müller M, et al. Region of difference 4 in alpine *Mycobacterium caprae* isolates indicates three variants. J Clin Microbiol. 2013;51:1381–8. http://dx.doi.org/10.1128/JCM.02966-12

12. Gardner SN, Slezak T, Hall BG. kSNP3.0: SNP detection and phylogenetic analysis of genomes without genome alignment or reference genome. Bioinformatics. 2015;31:2877–8. http://dx.doi.org/10.1093/bioinformatics/btv271

13. Broeckl S, Krebs S, Varadharajan A, Straubinger RK, Blum H, Buettner M. Investigation of intra-herd spread of *Mycobacterium caprae* in cattle by generation and use of a whole-genome sequence. Vet Res Commun. 2017;41:113–28. http://dx.doi.org/10.1007/s11259-017-9679-8

14. Oh P, Granich R, Scott J, Sun B, Joseph M, Stringfield C, et al. Human exposure following *Mycobacterium tuberculosis* infection of multiple animal species in a metropolitan zoo. Emerg Infect Dis. 2002;8:1290–3. http://dx.doi.org/10.3201/eid0811.020302

15. Simpson G, Zimmerman R, Shashkina E, Chen L, Richard M, Bradford CM, et al. *Mycobacterium tuberculosis* infection among Asian elephants in captivity. Emerg Infect Dis. 2017;23:513–6. http://dx.doi.org/10.3201/eid2303.160726

Address for correspondence: Shiomi Yoshida, Clinical Research Center, National Hospital Organization Kinki-chuo Chest Medical Center, 1180 Nagasone-cho, Kita-ku, Sakai-shi, Osaka, 591-8555, Japan; email: dustin@kch.hosp.go.jp

The Public Health Image Library (PHIL)

The Public Health Image Library (PHIL), Centers for Disease Control and Prevention, contains thousands of public health-related images, including high-resolution (print quality) photographs, illustrations, and videos. PHIL collections illustrate current events and articles, supply visual content for health promotion brochures, document the effects of disease, and enhance instructional media.

PHIL images, accessible to PC and Macintosh users, are in the public domain and available without charge.

Visit PHIL at: http://phil.cdc.gov/phil
Mycobacterium caprae Infection in Captive Borneo Elephant, Japan

Technical Appendix

Technical Appendix Figure. Phylogenetic tree of isolate EPDC01 from a captive Borneo elephant with *Mycobacterium caprae* infection, Japan, 2016, and 61 *Mycobacterium caprae* strains (Allgäu and Lechtal types) in Broeckl et al. (1). Short reads of *M. caprae* strains were assembled by CLC Genomics Workbench, version 9.5.1 (https://www.qiagenbioinformatics.com/solutions/functional-
genomics/?gclid=EAIaIQobChMlvvGL3L7T2wlVTSOBCh2FAAKtEAAYASAAEgKLWvD_BwE) before analysis. Core single nucleotide polymorphisms of all 13 strains, including reference *M. tuberculosis* complex strains (*M. bovis*: AF2122/97 [GenBank accession no. NC_002945.4], *M. oryxis*: 112400015 [NZ_APKD00000000.1], *M. pinnipedi*: BAA-688 [MWXB0000000.1], *M. microti*: strain 12 [CP010333.1], and *M. mungi*: BM22813 [NZ_LXTB00000000.1]) were determined and used for tree construction based on neighbor-joining by kSNP3 (2). Scale bar = nucleotide substitutions per site.

References

1. Broeckl S, Krebs S, Varadharajan A, Straubinger RK, Blum H, Buettner M. Investigation of intra-herd spread of *Mycobacterium caprae* in cattle by generation and use of a whole-genome sequence. Vet Res Commun. 2017;41:113–28. PubMed http://dx.doi.org/10.1007/s11259-017-9679-8

2. Gardner SN, Sleazak T, Hall BG. kSNP3.0: SNP detection and phylogenetic analysis of genomes without genome alignment or reference genome. Bioinformatics. 2015;31:2877–8. PubMed http://dx.doi.org/10.1093/bioinformatics/btv271