Whole-Exome Sequencing Application for Genetic Diagnosis of Kidney Diseases: A Study from Southwest of Iran

Mina Zamani,1,2 Tahereh Seifi,1,2 Sahar Sedighzadeh,1,2 Samira Negahdari,2 Jawaher Zeighami,2 Alireza Sedaghat,2,3 Tahereh Yadegari,2 Alihossein Saberi,2,4 Mohammad Hamid,5,6 Gholamreza Shariati,2,4 and Hamid Galehdari1,2

KIDNEY360 2: 873–877, 2021. doi: https://doi.org/10.34067/KID.0006902020

Introduction
The kidneys have important and vital functions and provide maintenance of overall body health. Many kidney diseases are caused by single gene defects. Kidney disease is categorized in a heterogeneous group of disorders affecting the kidney, both in structure and function. The end stage of kidney disease is known as kidney failure. Kidney disease is divided into two forms: AKI and CKD (1). Among kidney diseases, polycystic kidney disease (PKD; also known as polycystic kidney syndrome) is revealed to have a genetic background (2). PKD is characterized by the presence of cysts in kidneys. The development and growth of cysts causes abnormalities in the renal tubules. PKD is a clinically and genetically heterogeneous disease (2,3). Clinical characteristics of autosomal dominant and recessive forms of PKD are variable in their penetrance. A range from neonatal death to incidence in old age was reported for PKD (2,4). Disease causing variants in three genes including PKD1, PKD2, and PKDHI can cause PKD. The pathogenic variations in the PKD1 and PKD2 genes can cause an autosomal dominant (ADPKD) pattern of inheritance. The pathogenic variations in PKDHI can cause an autosomal recessive (ARPKD) pattern of inheritance (2). There are more than 500 monogenic causes of CKD (5) and numerous genes are listed in next-generation sequencing (NGS) panels for PKD, including ALG9, ANK56, ATP6V0A4, BICC1, GANAB, GLI3, HNF1B, INVS, LRP5, MUC1, NOTCH2, NPHP3, OFD1, PKD1, PKD2, PKHD1, SEC61A1, TMEM231, TSC1, TSC2, UMOD, and ZNF423, etc. (2). For classification, pre-prognosis, monitoring and treatment, and identification of the etiology of the disease is necessary. It helps us understand the scenario of the disorder’s causes and select the best approach for drug treatment (6). NGS is a powerful technique that enables rapid and cost-effective parallel sequencing of large panels of genes or whole-exome sequences. However, the targeted panel sequencing approach related to the Whole-Exome Sequencing (WES) is confirmed to provide deep coverage of specific sequences, but WES can provide an opportunity for novel variation detection (7–9). Regarding the polygenic entity of kidney diseases, which means many genes are involved in the pathogenesis of disease, for example, for FSGS, pathogenic variants in more than 20 podocyte-specific genes, such as NPHSI, NPHS2, WT-1, LAMB2, CD2AP, TRPC6, ACTN4, and INVF, were announced (10). In fact, conventional Sanger sequencing may be very time consuming and expensive, so using NGS would be helpful. In our study, we identified probable pathogenic variations associated with CKD using WES.

Materials and Methods

Patient Reports
In total, 22 enrolled patients and their parents were recruited from Southwest Iran, with demographic information shown in Table 1. All patients were referred to the Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz, Iran between 2017 and 2020. Genetic counseling for all patients was conducted by genetic specialists from the laboratory. This research study was approved by the Ahvaz Jundishapur University of Medical Sciences. For the studies, informed consent was obtained from all of the families. All of the experiments were conducted in accordance with the relevant guidelines and regulations.

DNA Extraction
First, 10 ml of peripheral blood was withdrawn from each of the enrolled patients and their parents, and collected in EDTA tubes. Genomic DNA was extracted using the standard salting out protocol. The quality and quantity of the extracted DNA samples were checked by gel electrophoresis and NanoDrop.

Exome Sequencing
WES was applied for the patients by Macrogen Co., Korea. Samples were subject to Exome enrichment with the SureSelect v6, followed by sequencing using the Illumina HiSeq 2000 genome analyzer platform.
American College of Medical Genetics (ACMG) classification etc., the variants are disease causing and pathogenic. In addition, the variants were not present in our homemade exome database and the public SNP databases, including dbSNP, ExAC, and GnomAD. Due to the proximity of the pseudogenes to the PKD1 gene, it has always been difficult to identify the pathogenic variants in PKD1 (11,12). Several assays indicated that WES is a proper technique that can be used in a relatively short time and at a low cost to identify single-gene disease and genetic heterogeneity complaints in patients with ADPKD, in comparison with standard diagnostics on the basis of Sanger sequencing and multiplex ligation-dependent probe amplification assays (13,14). Multiplex ligation-dependent probe amplification is clinically suggested only for patients whose disease-causing variants have not been determined through NGS investigation (15). Ranjizad et al. (16) used targeted NGS for detecting novel pathogenic variants in Iranian families with ADPKD and demonstrated NGS can significantly reduce the cost and time for the simultaneous sequence analysis of PKD1 and PKD2. Mallawaarachchi et al. (11) analyzed 28 unique pedigrees with ADPKD and reported that WGS is able to overcome technical challenges created by pseudogenes proximal to PKD1. However, PKD1 is inherently difficult to sequence using WES (13). The clinical genetic diagnosis of ADPKD significantly affects the quality of patients’ lives and renal transplantation, in which the presence of a familial pathogenic variant in a transplant phenotypically normal donor is screened. Also, in patients with an identified family pathogenic variant, we can prevent transmission to children via current prenatal diagnostic techniques (17,18). At the result of in-silico analysis, we found eight disease-causing variants, including four reported pathogenic single nucleotide variants (rs137852949, rs398124503, rs745770404, and CM100562) and three novel probable disease-causing variants in PKHD1 gene. These variants were not present in our exome database and had no homozygotes with low allele frequency, or were not found in the public SNP databases, including ExAC and GenomAD. Efforts to prevent severe ARPKD complications from the embryonic development period have led to several approaches, including second-trimester sonography and molecular genetic analysis for prenatal diagnosis (19). Because of the large size of PKHD1, genetic heterogeneity, and broad phenotypic of cystic and PKDs, WES is an efficient approach for pre- and postnatal diagnosis of ARPKD (20,21). Obeidova et al. (22) used NGS for clinical analysis of ARPKD in 24 families, and reported that NGS of the PKHD1 gene is a very convenient procedure, with high precision for molecular diagnosis in patients with very similar clinical symptoms to ARPKD. We found one disease-causing deletion (rs751527253) in the NPHS1 gene. The in-silico analysis using MutationTaster and ACMG classification showed this variant is disease causing and pathogenic. Early diagnosis of nephronophthisis 3 is dependent on clinical and imaging findings, because of the similarity of symptoms in patients with renal problems, the exact diagnosis of these patients through NGS is important (23,24). In this study we detected some potentially pathogenic variants via in-silico analysis using MutationTaster, ACMG classification, etc. in CD2AP, NPHS1, and COL4A4 genes in patients with different clinical symptoms of kidney disease. Bekheirnia et al. analyzed WES in 62 patients with
Table 2. *In-silico* pathogenicity evaluation of the variant

Gene	Phenotype (OMIM)	Variation	Mutation Taster	PredictSNP1	PredictSNP2	Proven (cutoff = -2.5)	ACMG classification	GnomAD	GME	Stability (1-Mutantv2.0)	PolyPhen Mutation assessor
PKD1	Polycystic kidney disease 1	p.A3874P>66	Disease causing	—	—	—	Pathogenic	Not found	Not found	—	—
PKD1	Polycystic kidney disease 1	p.Q965>C p.c.1657>C>T CM020486	Disease causing	—	—	—	—	Not found	—	—	—
PKD1	Polycystic kidney disease 1 with or without hepatic disease	p.T9004>C	Polymorphism	65% benign	89% benign	Neutral	Uncertain significance	Not found	Not found	Decrease (RI=0)	Benign Medium
PKD1	Polycystic kidney disease 1 with or without hepatic disease	p.R496>C, C.1466>C>T CM032309 rs137852949	Disease causing hom=0	—	—	—	Pathogenic	0 hom	Not found	—	—
PKD1	Polycystic kidney disease 1 with or without hepatic disease	p.W365>G	Disease causing	—	—	—	—	Not found	—	—	—
PKD1	Polycystic kidney disease 1 with or without hepatic disease	p.R496>C CM032309 rs137852949	Disease causing hom=0	—	68% benign	—	—	Not found	—	—	—
PKD1	Polycystic kidney disease 1 with or without hepatic disease	p.H459>Q	Polymorphism	83% benign	89% benign	Deleterious	Uncertain significance	Not found	Not found	Decrease (RI=4)	Benign Neutral
PKD1	Polycystic kidney disease 1 with or without hepatic disease	p.R328>G c.982>C>T rs98124503 CM032306 CM100565	Disease causing hom=0	—	—	—	Pathogenic	0 hom	Not found	—	—
PKD1	Polycystic kidney disease 1 with or without hepatic disease	p.R760>H	Disease causing	—	—	—	—	Not found	—	—	—
PKD1	Polycystic kidney disease 1 with or without hepatic disease	p.R328>G c.982>C>T rs98124503 CM032306 CM100565	Disease causing hom=0	—	—	—	—	Not found	—	—	—
PKD1	Polycystic kidney disease 1 with or without hepatic disease	c.1377>T	Polymorphism	74% benign	82% deleterious	Neutral	Pathogenic	0 hom	0 hom	Decrease (RI=4)	Probably damaging Low
PKD1	Polycystic kidney disease 1 with or without hepatic disease	c.1377>T	Polymorphism	74% benign	82% deleterious	Neutral	Pathogenic	0 hom	0 hom	Decrease (RI=4)	Probably damaging Low
NPHP3	Meckel syndrome type 7 renal-pancreatic-pancreatic dysplasia Nephropathia	c.2694>3,2694>1del	Disease causing	—	—	—	Pathogenic	0 hom	Not found	—	—
NPHP3	Nephronophthisis	c.663>T>G	Disease causing	—	—	—	—	Not found	—	—	—
NPHP1	Nephronophthisis	c.585_586insA	Disease causing	—	—	—	—	—	—	—	—
COL4A4	Alport syndrome	p.T1668A>16 c.3679>G>C	Disease causing	—	—	—	Pathogenic	Not found	Not found	—	—
DCDC2	Nephronophthisis	c.663>T>G	Disease causing	—	—	—	—	Not found	—	—	—
OMIM, Online Mendelian Inheritance in Man; ACMG, American College of Medical Genetics; SNP, single nucleotide polymorphism; Hom, number of homozygotes; RI, the value of reliability index.											
congenital anomalies of the kidney and urinary tract. Nearly 5% of individuals with congenital anomalies of the kidney and urinary tract have pathogenic single-nucleotide variants in known key genes that can be uncovered by WES. In addition, 7% of these patients have pathogenic copy number variations that were extracted from WES data (25). Some reports also showed the potential of WES to find novel kidney disease–causing variants (26,27). We applied WES for patients with kidney disease from Southwest Iran populations and were able to detect pathogenic variations in 68% of the enrolled patients, although the disease-causing variants were not determined in 32% of patients. We confirmed that WES is a very advantageous procedure for identifying genes and mutations in kidney disease, and can accurately detect novel genes and variants; consequently, WES is emerging as a preferred diagnostic tool for hereditary disorders, including kidney disease.

Disclosures
All authors have nothing to disclose.

Funding
None.

Author Contributions
H. Galehdari, G. Shariati, and M. Zamani conceptualized the study; S. Negahdari, S. Sedighzadeh, T. Seifi, M. Zamani, and J. Zeighami were responsible for formal analysis; S. Sedighzadeh, T. Seifi, T. Yadegari, M. Zamani were responsible for the investigation; M. Zamani and J. Zeighami were responsible for the methodology; H. Galehdari, M. Hamid, A. Saberi, A. Sedaghat, and G. Shariati provided supervision; and S. Negahdari, S. Sedighzadeh, T. Seifi, and M. Zamani wrote the original draft.

References
1. Hildebrandt F: Genetic kidney diseases. Lancet 375: 1287–1295, 2010 https://doi.org/10.1016/S0140-6736(10)60236-X
2. Halvorson CR, Bremmer MS, Jacobs SC: Polycystic kidney disease: Inheritance, pathophysiology, prognosis, and treatment. Int J Nephrol Renovasc Dis 3: 69–83, 2010
3. Rossetti S, Harris PC: Genotype-phenotype correlations in autosomal dominant and autosomal recessive polycystic kidney disease. J Am Soc Nephrol 18: 1374–1380, 2007 https://doi.org/10.1681/ASN.2007010125
4. Santos SF, Francisco T, Cordeiro AI, Lopes MJ: Beyond polycystic kidney disease. BMJ Case Rep 2017: bcr2017220766, 2017 https://doi.org/10.1136/bcr-2017-220766
5. Connaughton DM, Kennedy C, Shril S, Mann N, Murray SL, Williams PA, Conlon E, Nakayama M, van der Ven AT, Ityel H, Kause F, Kolvenbach CM, Dai R, Vivante A, Braun DA, Schneider R, Kitzler TM, Moloney B, Moran CP, Smyth JS, Kennedy A, Benson K, Stapleton C, Denton M, Magee W, O’Sheaghdha CM, Plant WD, Griffin MD, Avan A, Sweeney C, Mane SM, Lifton RP, Griffin B, Leavey S, Casserly L, de Freitas DG, Holian J, Dorman A, Doyle B, Lavin PJ, Little MA, Conlon PJ, Hildebrandt F: Monogenic causes of chronic kidney disease in adults. Kidney Int 95: 914–928, 2019 https://doi.org/10.1016/j.kint.2018.10.031
6. Joyce E, Glasner P, Ranganathan S, Szweitecka-Urban A: Tubulointerstitial nephritis: Diagnosis, treatment, and monitoring. Pediatr Nephrol 32: 577–587, 2017 https://doi.org/10.1007/s00467-016-3394-5
7. Trujillano D, Bullich G, Osowski S, Ballarin J, Torra R, Estivill X, Ars E: Diagnosis of autosomal dominant polycystic kidney disease using efficient PKD1 and PKD2 targeted next-generation sequencing. Mol Genet Genomic Med 2: 412–421, 2014 https://doi.org/10.1002/mmg3.82
8. Aslam N, Singh A, Cortese C, Riegert-Johnson DL: A novel variant in FNI1 in a family with fibronectin glomerulopathy. Hum Genom Var 6: 11, 2019 https://doi.org/10.1080/41439-019-0042-1
9. Warr A, Robert C, Hume D, Archibald A, Deeb N, Watson M: Exome sequencing: Current and future perspectives. G3 (Bethesda) 5: 1543–1550, 2015 https://doi.org/10.1534/g3.115.018564

Figure 1. | The contribution of the genes harboring the presented kidney disease–causing variants. Most of the enrolled patients had pathogenic variants in the PKHD1 gene.
1. Chen VM, Liapis H: Focal segmental glomerulosclerosis: Molecular genetics and targeted therapies. *BMC Nephrol* 16: 101, 2015 https://doi.org/10.1186/s12882-015-0090-9

2. Mallawaarachchi AC, Hort Y, Cowley MJ, McCabe MJ, Minoche A, Dinger ME, Shine J, Furlong TJ: Whole-genome sequencing overcomes pseudogene homology to diagnose autosomal dominant polycystic kidney disease. *Eur J Hum Genet* 24: 1584–1590, 2016 https://doi.org/10.1038/ejhg.2016.48

3. Ali H, Al-Mulla F, Hussain N, Naim M, Asbeutah AM, AlSahow A, Al-Mulla F, Hussain N, Naim M, Zayed M, Al-Mulla F, Kehinde EO, Seeman T, Elisakova V, Reiterova J, Puchmajerova A, Afzal S, Albalawi AM, Abdu-Samad F, Iqbal M: Exon sequencing of PKD1 gene in an Iranian patient with autosomal-dominant polycystic kidney disease. *Iran Biomed* 18: 143–150, 2014

4. Ali H, Al-Mulla F, Hussain N, Naim M, Asbeutah AM, Al-Mulla F, Hussain N, Naim M, Zayed M, Al-Mulla F, Kehinde EO, Seeman T, Elisakova V, Reiterova J, Puchmajerova A, Afzal S, Albalawi AM, Abdu-Samad F, Iqbal M: Exon sequencing of PKD1 gene in an Iranian patient with autosomal-dominant polycystic kidney disease. *Am J Nephrol* 41: 4141, 2019 https://doi.org/10.1186/s12881-019-04071-2

5. Kinoshita M, Higashiyama R, Koga D, Fukui T, Gondo N, Oka T, Kawahara K, Rigo K, Hague T, Tatsuki K, Sudo K, Takenishi M, Horie S, Natarah A: Technical evaluation: Identification of pathogenic mutations in PKD1 and PKD2 in patients with autosomal dominant polycystic kidney disease by next-generation sequencing and use of a comprehensive new classification system. *PLoS One* 11: e0166288, 2016 https://doi.org/10.1371/journal.pone.0166288

6. Ranjard F, Aghdami N, Tava A, Mohseni M, Moghadasis R, Basiri A: Identification of three novel frameshift mutations in the PKD1 gene in Iranian families with autosomal dominant polycystic kidney disease using efficient targeted next-generation sequencing. *Kidney Blood Press Res* 43: 471–478, 2018

7. Pei Y, Obaji J, Dupuis P, Matson AD, Magistrani R, Dicks E, Parfrey P, Cramer B, Coto E, Torra R, Samiljan NL, Gibson R, Breuning M, Peters D, Kavine D: Unified criteria for ultrasonographic diagnosis of ADPKD. *J Am Soc Nephrol* 20: 205–212, 2009 https://doi.org/10.1681/ASN.2008050507

8. Harris PC, Rossetti S: Molecular diagnostics for autosomal dominant polycystic kidney disease. *Nat Rev Nephrol* 6: 197–206, 2010 https://doi.org/10.1038/nrneph.2010.18

9. Bergmann C: Early and severe polycystic kidney disease and related ciliopathies: An emerging field of interest. *Nephron* 141: 50–60, 2019 https://doi.org/10.1159/000493532

10. Guay-Woodford LM, Bissler JJ, Braun MC, Bockenhauer D, Cadnapaphornchai MA, Dell KM, Kerecuk L, Liebau MC, Alonso-Peclet MH, Shneider B, Emre S, Heller T, Kamath BM, Murray KF, Moise K, Eichenwald EF, Evans J, Keller RL, Wilkins-Haug L, Bergmann C, Gunay-Aygun M, Hooper SR, Hardy KK, Hartung EA, Streisand R, Perrone R, Moxey-Mims M: Consensus expert recommendations for the diagnosis and management of autosomal recessive polycystic kidney disease: Report of an international conference. *J Pediatr* 165: 611–617, 2014 https://doi.org/10.1016/j.jpeds.2014.06.015

11. Losekoot M, Haarloo C, Ruivenkamp C, White SJ, Breuning MH, Peters DJ: Analysis of missense variants in the PKHD1 gene in patients with autosomal recessive polycystic kidney disease (ARPKD). *Hum Genet* 118: 185–206, 2005 https://doi.org/10.1007/s00439-005-0027-7

12. Obeidova L, Seeman T, Elisakova V, Reiterova J, Puchmajerova A, Stekrova J: Molecular genetic analysis of PKHD1 by next-generation sequencing in Czech families with autosomal recessive polycystic kidney disease. *BMC Med Genet* 16: 116, 2015 https://doi.org/10.1186/s12881-015-0261-3

13. Kang HG, Lee HK, Ahn YH, Joung JG, Nam J, Kim NK, Ko JM, Cho MH, Shin JI, Kim J, Park HW, Park YS, Ha IS, Chung WY, Lee DY, Kim SY, Park RW, Cheong H: Targeted exome sequencing resolves alleles and the genetic heterogeneity in the genetic diagnosis of nephronophthisis-related ciliopathy. *Exp Mol Med* 48: e251, 2016 https://doi.org/10.1038/emm.2016.63

14. Srivastava S, Molinari E, Raman S, Sayer JA: Many genes—one disease? Genetics of nephronophthisis (NPHP) and NPHP-associated disorders. *Front Pediatr* 5: 287, 2018 https://doi.org/10.3389/fped.2017.00287

15. Belkheimia M, Belkheimia N, Bainbridge MN, Gu S, Coban Akdemir ZH, Gambin T, Janzen NK, Jhangiani SN, Muzny DM, Michael M, Brewer ED, Elenberg E, Kale AS, Riley AA, Swartz SJ, Scott DA, Yang Y, Sivaths PR, Wenderfer SE, Bodurtha J, Applegate CD, Velinov M, Myers A, Borovik L, Craigwen WJ, Hanchard NA, Rosenfeld JA, Lewis RA, Gonzalez ET, Gibbs RA, Belmont JW, Roth DR, Eng C, Braun MC, Lupski JR, Lamb DJ: Whole-exome sequencing in the molecular diagnosis of individuals with congenital anomalies of the kidney and urinary tract and identification of a new causative gene. *Genet Med* 19: 412–420, 2017 https://doi.org/10.1038/gim.2016.131

16. Hashmi JA, Safar RA, Afzal S, Albalawi AM, Abu-Samad F, Iqbal Z, Basit S: Whole exome sequencing identification of a novel insertion mutation in the phospholipase C c-1 gene in a family with steroid resistant inherited nephrotic syndrome. *Mol Med Rep* 18: 5095–5100, 2018 https://doi.org/10.3892/mmr.2018.9528

17. Geera AS, Kallish S, Hogan JJ: The impact of whole-exome sequencing on kidney disease ontology: The tip of the iceberg? *Am J Kidney Dis* 74: 281–283, 2019 https://doi.org/10.1053/j.ajkd.2019.03.413

Received: November 17, 2020 Accepted: March 10, 2021