Carbon deposition by oak forests and willow communities

A Gorobets¹, A Milenin¹ and B Terekhov²

¹ Department of Forestry, Forest Inventory and Forestry Device, Federal State Budget Educational Institution of Higher Education “Voronezh State University of Forestry and Technologies named after G.F. Morozov”, 8 Timiryazev street, Voronezh 394087, Russian Federation
² Department of the Forestry Committee of the Kursk Region for Shchigrov Forestry, Forestry Committee of Kursk Region, 39 Dzerzhinskogo street, city Shchigry 306530, Kursk region, Russian Federation

¹E-mail: grb@inbox.ru

Abstract. The peculiarities of carbon deposition in stands of oak quiver (Quercus robur L.), as well as in communities of shrub and tree life forms (Salix cinerea L., S. triandra L., S. viminalis L., S. purpurea L., S. fragilis L., S. alba L.). In the oak groves, the largest deposition of carbon is recorded in the fresh pine forest of Shipov, a forest of a late-blossoming species of oak tree, of natural origin at the age of 181 - 386.3 tons·ha⁻¹. In forest oak cultures, the total mass of carbon concentrated in the tree stage has increased from 15.28 to 121.70 tons·ha⁻¹ over the period from 19 to 76 years. High biological productivity of willow communities promotes effective performance of carbon-depositing function. The maximum amount of deposited carbon (31.7 tons·ha⁻¹ for a 5-year life span) is noted in the communities of S. viminalis of sprouts originating in the shrub biomorph. Of all the studied biological species, the maximum phytomass increment is greatest, and accordingly the largest amount of carbon in the growth (5.62 tons·ha⁻¹·year⁻¹) occurs in S. viminalis when it grows in shrubby form.

1. Introduction

Since carbon is necessary to maintain any form of life, any interference in the circulation of this element affects the number and variety of living organisms that can exist on Earth. If current trends continue, the total concentration of CO₂ and other greenhouse gases in the atmosphere will be equivalent to doubling the CO₂ content possibly by 2030, which may lead to an increase in global mean temperatures in a larger amount than has ever happened in human history. As a result of doubling the concentration of CO₂, an average temperature increase of about 1.5-4.5 °C is possible, and the warming should be more significant in the high latitudes of the northern hemisphere in winter than in the equator [1-3]. In this regard, the monitoring of carbon deposition in forest ecosystems as one of the most significant sites of its long-term conservation is of global importance.

Forests of the central black-earth region of the European part of Russia, growing in the steppe and forest-steppe regions, perform extremely important ecological functions: gas regulation, climate regulation, water protection, soil protection, meliorative, biotagging, etc. The purpose of our studies is to assess the impact of hardwood species on deposition of carbon. In this paper, the features of carbon deposition in the stands of Quercus robur L., grown in mountain and bayra conditions, artificial and natural, early and late phenological species, as well as in communities of shrub and tree life forms (Salix cinerea L., S. triandra L., S. viminalis L., S. purpurea L., S. fragilis L., S. alba L.). In Quercus
robur there are two phenological forms: early - leaves bloom in the third decade of April; late - the leaves bloom in early May.

Oak is a long-living tree species, characterized by a high degree of intraspecies diversity and polymorphism. Long-term studies have shown that numerous intraspecific taxonomic categories with certain bioecological properties are formed within the natural range of the oak of the petiolate under the influence of various ecological conditions (climatic, edapho-orographic). OCTR oaks are characterized by a large intraspecific diversity. They are located in two climatic zones in the steppe and forest-steppe, they are distinguished by soil ecotypes: subordinate, cretaceous, solonetnic, they are represented by floodplain, bayar and upland ecotypes, phenological varieties early and late blooming, winter-leafed [4-6]. Willow cenoses grow mainly in river floodplains (which is associated with their high demand for moisture), differ in comparison with oak, rapid growth, but much shorter life expectancy [7].

In the literature there is a significant amount of work on the carbon-depleting function of tree species [8-21]. Many works [4, 5, 9, 16, 19, 20, 22-25] are devoted to the study of carbon-assisting functions of oak forests, but the high level of intraspecies polymorphism of this breed was not always taken into account. Studies of the carbon deposition function of stands of willow cenoses are extremely rare [22], but they prove that, in comparison with oak forests, willow cenoses under optimal conditions of their growth perform it more effectively. This fact is natural, since the value of carbon deposition is directly proportional to the annual productivity of phytomass.

The purpose of this study is to estimate carbon deposition by plant communities that differ significantly in growth energy and longevity — oak and willow cenoses.

2. Methods and characteristics of research objects

To estimate the productivity of the stands, originally by conventional methods [26], a stock of stemwood was established. The carbon deposition was estimated by the methods of [12, 27, 28-31], consistent with the carbon sequestration assessment methodology approved by the Intergovernmental Panel on Climate Change. The essence of the methodology is reduced to the recalculation of the timber stock from cubic meters per ton (based on the density of wood) and the calculation (based on the age-dependent conversion coefficients) of the carbon deposition for the following pools: tree level; dead wood (dead and fallen); the lower tiers of the forest; fallen leaves; organic matter of the soil.

Investigations of the oak forests in the Voronezh region were carried out in the Spy Forest in the forest type (TL) fresh Snytyva oak forest (SDS), dry sedge and very dry saline oak forest, in the plantations of the early (E) and late (L) oak. In dry oaken forests of the steppe zone of the Voronezh region, TL is a bayrachnaya shrub oak (DBCT). In the educational and experimental forestry VGLTU of the Voronezh Forestry University, in the Pravoberezhny and Zhivotinovsky District Forestries, in Vorontsovsky, Krasniy, and in the Kalacheevsky Forestry (Table 1).

The study of forest-typological cultures was carried out in conditions of a fresh ovine drift of the Voronezh Forestry University. In the Kursk region, the age range of oak tree cultures was studied in the interval from 19 to 76 years (Table 2).

Researches of cenoses of willow were made in the floodplain of the Don River in the territory of the Voronezh Region (Table 3). Representatives of the genus Salix in the area of research are represented by plants of shrubby, dendritic and mixed biomorphs. The greatest energy of growth is found in mixed biomorphs under optimal conditions when growing in the form of shrubs.

All objects of research are located in Russia (Voronezh and Kursk regions). Geographical coordinates. Spy Forest 50.67° north latitude, 40.34° east longitude. Forestry of the Voronezh Forestry University 51.72° north latitude, 39.21° east longitude. Kalacheevsky Forestry - 50.41° north latitude, 40.94° east longitude. Forestry typological oak cultures in the Kursk region are 51.53° north latitude, 36.51° east longitude. Willow cenosis in the floodplain of the Don River 51.41° north latitude, 39.02° east longitude.
3. Results and discussion

In the oak forests of the Voronezh region, the largest deposition of carbon (Table 4) is recorded in the fresh pine forest of Shipov, the forest of a late-blossoming species of oak tree, of natural origin at the age of 181 - 386.3 tons·ha⁻¹, which is 88.9 tons·ha⁻¹ (23%) more than, in the plantation of the early-breaking variety of oak tree. In the dry snytevo-sedge oak grove of carbon-bearing origin, the largest carbon deposition is recorded in the plantation with the participation of the early-breaking varieties of oak stems of 316.7 C t / ha, which is 37.0 tons·ha⁻¹ (23%) larger than in the plantation of a late-opening species of oak leaf. In conditions of very dry oak forests on salt soils, the difference in deposition of carbon in plantations with the participation of a late-blossoming and early-opening species of oak leaves is insignificant and amounts to only 2 tons·ha⁻¹ (0.9%). In the Voronezh upland oak grove, natural copulation, TFC - C₃, the largest carbon deposition is recorded in the plantation with the participation of the early-opening species of oak, 298.7 tons·ha⁻¹, which is 52.8 tons·ha⁻¹ (18%) more than in the late spreading plantation varieties of oak tree.

Table 1. Taxation characteristics of the oak groves of the Voronezh Region.

Composition	TFC	Age, years	Medium: height, meters	diameter, centimeters	Stock, m³·ha⁻¹	Average increase in stock, m³·ha⁻¹·year⁻¹
Upland oak grove Thorns forest, natural seed	9QRS 1FR (L)	D₂ 181	35	60	604	3.34
Upland oak grove Thorns forest, natural shoots	8QRS 2FR (E)	D₂ 181	32	52	497	2.75
Upland oak forest of Thorns forest, a natural coppice, alkaline soils	9QRc1 FR (L)	D₁ 86	22	27	315	3.66
Upland oak forest of Thorns forest, a natural coppice, alkaline soils	6QRc3 FR (E)	D₁ 86	26	30	367	4.27
Voronezh upland oak grove, natural shoots	10QRc (L)	D₀ 91	17	28	232	2.55
Voronezh upland oak grove, natural shoots	10QRc (E)	D₀ 91	17	28	229	2.52
Voronezh upland oak grove, forest cultures	10QRS +Til (L)	D₂ 64	23	24	241	3.77
Voronezh riparian oak forest, a natural coppice	7QRS2Til 1Ap (E)	D₂ 64	22	22	155	2.42
Voronezh riparian oak forest, a natural coppice	4QRc5Fr1Pt (E)	D₃ 85	25	34	304	3.58
Voronezh-Kalacheevskiy bairachny Dubrava, a natural coppice	10QRc (L)	E₁ 50	21	19	243	4.86
Voronezh-Kalacheevskiy bairachny Dubrava, a natural coppice	8QRc1Pt1Til (E)	E₁ 50	15	21	145	2.90
Voronezh-Kalacheevskiy bairachny Dubrava, a natural coppice	10QRc (L)	E₂ 50	21	22	201	4.02
Voronezh-Kalacheevskiy bairachny Dubrava, a natural coppice	8QRc2Fr (E)	E₂ 50	18	18	247	4.94

Notes: TFC - type of forest conditions; Qrc - Quercus robur; Fr - Fraxinus excelsior; Til - Tilia cordata; Ap - Acer platanoides; Pt - Populus tremula; (L) a late-blooming variety; (E) - early-blooming variety. C - type of forest conditions on relatively rich soil; D - type of forest conditions on rich soil; E - type of forest conditions is rich on rich soil.
Table 2. Taxation characteristics of oak crops in the Kursk region.

Composition stand	TFC	Age, years	Medium:			
			height, meters	diameter, centimeters	Stock, m³·ha⁻¹	Average increase in stock, m³·ha⁻¹·year⁻¹
10 Qrc	E₂	19	6.5	5.3	39	2.05
10 Qrc	E₂	26	8.6	8.7	82	3.15
10 Qrc	E₂	37	10.9	10.9	129	3.49
10 Qrc	E₂	43	12.8	15.5	157	3.65
10 Qrc	E₂	55	15.4	17.2	211	3.84
10 Qrc	E₂	76	21.0	25.1	303	3.99

Table 3. Taxation characteristics communities of willow in the floodplain of the Don river.

The species and life form of the community edifier	TFC	Age, years	Medium:			
			height, meters	diameter, centimeters	Stock, m³·ha⁻¹	Average increase in stock, m³·ha⁻¹·year⁻¹
Willow shrub biomorph						
Salix cinerea (S)	D₅f	8	5.0	4.1	69.7	8.71
Willow mixed biomorph in shrub form						
Salix triandra (S)	C₄f	5	4.1	3.1	75	15.00
Salix viminalis (S)	D₄f	5	4.4	3.1	99	19.80
Salix purpurea (S)	B₂f	5	4.7	3.2	65	13.00
Willow mixed biomorphs in tree form						
Salix viminalis (T)	D₃f	15	6.7	6.9	105	7.00
Salix purpurea (T)	B₂f	15	6.2	5.8	46	3.07
Willows of tree-like biomorphs						
Salix fragilis (T)	D₂f	30	17	18	108	3.60
Salix alba (T)	D₃f	30	14	24	136	4.53

Notes. (S) - shrub life form; (T) - is a tree-like life form. D₅f - marshy growing conditions in the floodplain on rich soil; C₄f - wet growing conditions in the floodplain on relatively rich soil; D₄f - wet growing conditions in the floodplain on rich soil; B₂f - growing conditions in the floodplain on relatively poor soil; D₃f - wet growing conditions in the floodplain on rich soil; D₂f - fresh growing conditions in the floodplain on rich soil.

64 summer forest cultures of English oak created in the right-Bank forest WALL UGLTU largest carbon deposition is noted in the spreading involving posterizeimage varieties of oak 185.1 tons·ha⁻¹, which is 47.4 tons·ha⁻¹ (27%) more than in the imposition renovapurchase varieties of oak. In natural floodplain oak coppice of the Voronezh river, at the age of 85 years, the stock of carbon was 247.0 tons·ha⁻¹. In dry bairachniy Kalacheevskiy Dubrava largest carbon deposition is noted in the spreading involving posterizeimage varieties of oak 226.9 tons·ha⁻¹ representing a 70.7 tons·ha⁻¹ (31%) more than in the imposition renovapurchase varieties of oak. Fresh bairachniy Dubrava difference in the deposition of carbon in plantations with the participation of posterizeimage and renovapurchase varieties of oak-trees is insignificant, amounting to only 8.4 tons·ha⁻¹ (4 %).
In forest oak cultures in the Kursk region, the most active increase in stemwood stock (see Table 2) is recorded before the 26-year-old age of the stand. This circumstance is reflected in the dynamics of the mass of the wood layer. In all the considered age range, the majority of the live weight of the tree layer is in tree trunks (about 66%), a significant proportion is the mass of the root system and branches (13 and 14%), the proportion of leaf mass is relatively low (7%). The proportion of dry land in the total mass of stands is small (no more than 4%).

The maximum amount of carbon (Table 5) is concentrated in the phytomass of the stand; the fraction of carbon deposited in the dead (tree detritus) is from 0 to 4%. The total mass of carbon concentrated in the tree stage during the period from 19 years to 76 years of age increases from 15.28 to 121.70 tons·ha\(^{-1}\), which in this time interval averages 1.86 tons·ha\(^{-1}\) per year.

The high biological productivity of willow communities contributes to the effective implementation of carbon storage function because its value is directly proportional to the phytomass. On the carbon-depleting function affects the species belonging to plants. Willow mixed biomorphs differ from tree and shrub.

Composition/ Variety	Carbon, tons·ha\(^{-1}\)					
	Dre. in standing up	Pozemac pitomac with Bedding	Soils (0-30 cm)	Undergrowth	Near juice	Subtotal
Upland oak grove Thorns forest, natural seed, D\(_2\), 181 year						
9 Qrs 1Fr (L)	236.9	92.75	4.7	47.2	2.4	2.4
8 Qrs 2 Fr (E)	173.9	68.2	4.7	47.2	1.7	1.7
Upland oak grove Thorns forest, natural shoots, D\(_1\), 86 years						
9Qrc1 Fr (L)	151.8	73.0	4.7	47.2	1.5	1.5
6Qrc3 Fr (E)	176.4	84.8	4.7	47.2	1.8	1.8
Upland oak forest of Thorns forest, a natural coppice, alkaline soils D\(_0\), 91 year						
10Qrc (L)	111.6	53.6	4.7	47.2	1.1	1.1
10 Qrc (E)	110.2	53.0	4.7	47.2	1.1	1.1
Voronezh upland oak grove, natural shoots, C\(_2\), 85 years						
10 Qrc (L)	129.4	62.2	4.7	47.2	1.2	1.2
10 Qrc (E)	164.6	79.0	4.7	47.2	1.6	1.6
Voronezh upland oak grove, forest cultures, D\(_2\), 64 years						
10 Qrs +Til(L)	94.5	36.9	4.7	47.2	0.9	0.9
7Qrc2Til 1Ap (E)	60.9	23.7	4.7	47.2	0.6	0.6
Voronezh riparian oak forest, a natural coppice, D\(_3\)P, 85 years						
4 Qrc 5Fr1Pt (E)	130.3	62.5	4.7	47.2	1.3	1.3
Voronezh-Kalacheevskiy bairachny Dubrava, a natural coppice, E\(_1\), 50 years						
10 Qrc (L)	116.6	56.0	4.7	47.2	1.2	1.2
8 Qrc 1Pt1Til (E)	69.5	33.4	4.7	47.2	0.7	0.7
Voronezh-Kalacheevskiy bairachny Dubrava, a natural coppice, E\(_2\), 50 years						
10 Qrc (L)	96.6	46.3	4.7	47.2	1.0	1.0
8 Qrc 2Fr (E)	102.2	49.1	4.7	47.2	1.0	1.0
Table 5. Carbon stock in oak cultures of the Kursk region (stand composition 10 Qrc).

Age, years	Tree stands	Wood detritus	Soil cover	Soils (0-30 cm)	Undergrowth	Underbrus	Total
19	15.28	0.55	0.07	47.2	2.19	1.37	66.66
26	33.43	0.27	0.01	47.2	0.32	0.25	81.48
37	52.80	0.27	0.00	47.2	0.00	0.18	100.45
43	62.70	1.37	0.01	47.2	0.13	0.07	111.48
55	82.50	3.02	0.02	47.2	0.20	0.16	133.1
76	121.70	2.20	0.01	47.2	0.00	0.02	171.13

Table 6. Carbon stock in the phytomass of willow cenoses for the period of vital activity, tons·ha⁻¹.

The species and life form of the community edifier	Age, years	Phytomass components:	Willow shrub biomorph	Willow mixed biomorph in shrub form	Willow mixed biomorphs in tree form	Willow of tree-like biomorphs
Salix cinerea (S)	8	trunk	14.0	15.1	19.8	21.0
Salix triandra (S)	5	roots	2.8	3.0	4.0	4.2
Salix viminalis (S)	5	branches	5.1	3.2	4.2	4.4
Salix purpurea (S)	5	leaves	5.3	2.7	3.6	0.9
Salix viminalis (T)	15	trunk	21.0	21.0	21.0	21.0
Salix purpurea (T)	15	roots	4.2	4.2	4.2	4.2
Salix fragilis (T)	15	branches	4.4	4.4	4.4	4.4
Salix alba (T)	15	leaves	0.9	0.9	0.9	0.9

Notes. (S) – (S) - shrub life form; (T) is a tree-like life form.

As can be seen from Tables 4-6, both in oak forests and willow cenoses, irrespective of their origin, the maximum proportion of carbon is concentrated in the long-term storage depot (phytomass of the stand, undergrowth, undergrowth without taking into account leaves and live soil cover) and no more than 20% - in the depot of one-year storage (living soil cover, as well as the leaf mass of the stand, undergrowth, undergrowth). Of all the depots of carbon, the main importance is the phytomass of the tree layer. In this case, the sheet mass is not taken into account, since in a short period of time the carbon concentrated in it passes into the soil. Taking into account the above, it is possible to compare the cenoses of different species composition by the amount of carbon deferred in the wood layer. When comparing communities of different ages, the objective indicator is the amount of carbon deferred in the annual increment of the phytomass of the tree layer.

At an early age, willow communities significantly exceed oak forests with respect to growth energy, in this connection, in the 19-year-old oak cultures, the minimum carbon stock in the annual increment of wood is also noted (Figure 1). The Salix fragilis stands at the age of 30 and the 15-year-old Salix purpurea stands in an annual increment have deposited approximately equal amounts of carbon (0.85 and 0.86 tons·ha⁻¹·year⁻¹, respectively). In oak groves of natural origin, the maximum amount of carbon in a year-old increment (2.05 tons·ha⁻¹·year⁻¹) was noted at the age of 86 at
vegetative origin. Throughout the considered time interval of the researched oak cultures an increase in the amount of carbon in the annual increment of wood was noted. Of all the studied biological species, the maximum phytomass increment is greatest, and accordingly the largest amount of carbon in the growth (5.62 tons·ha\(^{-1}\)·year\(^{-1}\)) occurs in *Salix viminalis* when it grows in shrubby form. All shrubbery willows accumulated carbon in a year's increment of more carbon than all oak forests.

![Figure 1. Annual carbon deposition in 1 hectare of communities depending on the species composition. Notes. (S) – (S) - shrub life form; (T) is a tree-like life form.](image)

Based on the studies carried out, the following conclusions and recommendations for production can be made. Carbon deposition in oak forests occurs at different rates and depends on their origin (natural or forest cultures), forest conditions, the age of the stand, the phenological species of the oak tree. To increase the carbon-assisting functions of oak forests, it is necessary to organize forest management, taking into account the silvicultural and ecological features of ecotypes and phenological varieties of the oak tree. The plantations of oak seedling of natural origin are the most productive stable and durable.
4. Summary

It is recommended to harvest acorns taking into account the phenological variety of oak. To measures aimed at increasing the carbon-assisting functions of the oak forests of the region, one should include: promoting natural renewal; the creation of forest cultures taking into account the ecological features of ecotypes and phenological varieties of oak tree; timely removal of dead trees by selective sanitary felling in mature stands and felling in young growth, middle-aged and growing stands, pest and disease control, littering of forests.

In comparison with oak forests, willow communities are less durable, by the age of ripeness they accumulate a much smaller amount of carbon in the phytomass, but when grown in shrubby form, annual accumulation of carbon in them is greater in comparison with oak forests. This does not indicate the expediency of growing instead of oak fast-growing species, in particular willows. Each breed occupies its ecological niche. The task of foresters within these niches is to create optimal conditions for the growth of plant-specific types specific for specific conditions. This will solve not only the economic task of growing wood, but will also promote more efficient carbon deposition.

References

[1] Matskovsky V, Dolgova E, Lomakin N, Matveev S 2016 Dendroclimatology and historical climatology of Voronezh region, European Russia, since 1790s International Journal of Climatology p 4896

[2] Matveev S M, Chendev Yu G, Lupo A R, Hubbart J A, Timashchuk D A 2016 Climatic Changes in the East-European Forest-Steppe and Effects on Scots Pine Productivity Pure and Applied Geophysics DOI 10.1007/s00024-016-1420-y

[3] Matveev S M, Chendev Yu G, Lupo A R, Hubbart J A, Timashchuk D A 2016 Climatic Changes in the East-European Forest-Steppe and Effects on Scots Pine Productivity Pure and Applied Geophysics DOI 10.1007/s00024-016-1420-y

[4] Karavanska N V 2005 Biodiversity and carbon flows in oak forests of the central forest-steppe: the author's abstract of the dissertation of the candidate of agricultural sciences: 03.00.16. Voronezh. State Forestry Academy, Voronezh [in Russian - Bioraznoobraziye i potoki ugleroda v dubravakh Tsentral'noy lesostepi: avtoreferat dissertatsii kandidata sel'skoye khozyaystvennykh nauk: 03.00.16. Voronezh. gosudarstvennaya lesotehnicheskaya akademiya, Voronezh] 20

[5] Milenin A I 2015 Dendroclimatic studies in the oak forests of the Voronezh Region Forest ecosystems in a changing climate: problems and prospects: Proceedings of the International Scientific and Technical Jubilee Conference, dedicated to the 100th anniversary of the Chair of Forestry, Forest Inventory and Forest Inventory. Voronezh [in Russian - Lesnyye ekosistemy v usloviyakh menyayushchegosya klimata: problemy i perspektivy: Materialy mezhdunarodnoby nauchno tekhnicheskoy yubileynoy konferentsii, posvyashchennoy 100-letiyu kafedry lesovodstva, lesnoy taksatsii i lesoustroystva. Voronezh] 228-31

[6] Rubtsov V V, Utkina I A 2016 Investigation of the phenological forms of an oak tree petiolate Forest Science [Lesovedeniye - in Russian] 6 466-75

[7] Gorobets A I 2017 Willow cenoses in floodplains of the rivers of the Central forest-steppe Development of ideas G.F. Morozov in the transition to sustainable forest management: materials of the International Scientific and Technical Jubilee Conference on April 20-21, 2017, Federal State Budget Educational Institution of Higher Education «Voronezh State University of Forestry and Technologies named after G.F. Morozov» [Razvitiye idey G.F. Morozova pri perekhode k ustoychivomu lesoupravleniyu: materialy mezhdunarodnoby nauchno-tekhnicheskoy yubileynoy konферentsii 20-21 aprelia 2017, Federal'noye gosudarstvennoye byudzhetnoye obrazovatel'noye uchrezhdeniye vysshego obrazovaniya
[8] Alcántara V, Don A, Well R, Nieder R. 2017 Legacy of medieval ridge and furrow cultivation on soil organic carbon distribution and stocks in forests. *Catena* 154 85-94

[9] Błońska E, Kacprzyk M, Spólnik A. 2017 Effect of deadwood of different tree species in various stages of decomposition on biochemical soil properties and carbon storage *Ecological Research* 32/2 193-203

[10] Gandhi D S, Sundarapandian S. 2017 Large-scale carbon stock assessment of woody vegetation in tropical dry deciduous forest of sathanur reserve forest, eastern ghats, India *Environmental Monitoring and Assessment*. 2017 18/4 187

[11] Isaev A S et al. 1993 Estimation of carbon annual storage in phytomass of forest ecosystems in Russia *Forest Science* [Lesovedeniye - in Russian] 5 3-10

[12] Isaev A S et al. 1995 *Environmental Problems of Carbon Dioxide Sequestration through Afforestation and Reforestation in Russia* (Moscow: Tsentr ekologicheskoy politiki)

[13] Klesse S, Eitzold S, Frank D. 2016 Integrating tree-ring and inventory-based measurements of aboveground biomass growth: research opportunities and carbon cycle consequences from a large snow breakage event in the swiss alps *European Journal of Forest Research* 135/2 297-311

[14] Lourençato L F, Caldeira P P, Bernardes M C, Buch A C, Teixeira D C, Silva-Filho E V. 2017 Carbon accumulation rates recorded in the last 150 years in tropical high mountain peatlands of the atlantic rainforest, se - Brazil *The Science of the Total Environment* 579 439-46

[15] Macinnis-Ng C, Taylor D, Wyse S V, Webb T, Schwendenmann L. 2017 Sustained carbon uptake in a mixed age southern conifer forest *Trees Structure and Function* 31/3 p 967-80

[16] Martynenko S N. 2005 *Dendrochronological features of carbon deposition by oak plantations of the Central forest-steppe: the author's abstract of the dissertation of the candidate of agricultural sciences: 03.00.16. Voronezh. State Forestry Academy, Voronezh* [in Russian - Dendrochronologicheskiye osobennosti deponirovaniya ugleroda dubovymi nasazhdeniyami Tsentral'noy lesostepi: avtoreferat dissertatsii kandidata sel'skoye khozyaystvennykh nauk: 03.00.16. Voronezh. gosudarstvennaya lesotekhnicheskaya akademiya, Voronezh] 18

[17] Mathijssen P J H, Välimäki M, Kähkölä N, Tuovinen J P, Lohila A, Laurila T, Minkkinen K. 2017 Lateral expansion and carbon exchange of a boreal peatland in finland resulting in 7000 years of positive radiative forcing *Journal of Geophysical Research: Biogeosciences* 122/3 562-77

[18] Samuelson L J, Stokes T A, Ramirez M R, Lewis J C, Butnor J R, Johnsen K H, Anderson P H, Gonzalez-Benecke C A, Martin T A, Cropper W P. 2017 Ecosystem carbon density and allocation across a chronosequence of longleaf pine forests *Ecological Applications* 27/1 244-59

[19] Sviridov D G. 2007 *Carbon deposition by oak plantations of the Central Chernozem Region: the author's abstract of the dissertation of the candidate of agricultural sciences: 03.00.16. Voronezh. State Forestry Academy, Voronezh* [in Russian - Deponirovaniye ugleroda dubovymi nasazhdeniyami Tsentral'nogo Chernozem'ya: avtoreferat dissertatsii kandidata sel'skoye khozyaystvennykh nauk: 03.00.16. Voronezh. gosudarstvennaya lesotekhnicheskaya akademiya, Voronezh] 18

[20] Tarankov V I, Sviridov D G. 2006 Carbon stocks and its annual flows in pine-oak plantings of the Voronezh Region *Forest. The science. Youth: a collection of scientific papers. Voronezh State Forestry Academy. Voronezh* [in Russian - Les. Nauka. Molodezh': sbornik nauchnykh trudov. Voronezhskaya gosudarstvennaya lesotekhnicheskaya akademiya. Voronezh] 179-83

[21] Wertebach T M, Hözel N, Kämpf I, Kamp J, Kleinebecker T, Kiehl K, Yurtseva A, Tupitsin S. 2017 Soil carbon sequestration due to post-soviet cropland abandonment: estimates from a large-scale soil organic carbon field inventory *Global Change Biology* 23/9 3729-41

[22] Gorobets A I, Tarankov V I, Sizykh V N. 2009 Comparative evaluation of the carbon-doping...
and oxygen-producing functions of oak and windmill *Bulletin of the Moscow State Forest University - Forest Bulletin* [Vestnik moskovskogo gosudarstvennogo universiteta lesa - lesnoy vestnik - in Russian] 3 43-7

[23] Romanovsky M G, Korovin V V, Shchekalev R V 2017 Biodegradation of humus *Izvestiya Vysshikh Uchebnikh Zavedenii. Forest Journal* [Izvestiya vysshikh uchebnikh zavedeni. Lesnoy zhurnal - in Russian] 4 187-96

[24] Terekhov V I 2007 Ecological and silvicultural foundations for increasing the carbon-depositing function of the oak groves of the Kursk Region: the author’s abstract of the dissertation of the candidate of agricultural sciences: 03.00.16. Voronezh. State Forestry Academy, Voronezh [in Russian - Ekologo-lesovodstvennye osnovy povysheniya uglерододепонирующих функций ольховых лесов Курской области: автореферат диссертации кандидата сельскохозяйственных наук: 03.00.16. Voronezh. gosudarstvennaya lesotekhnicheskaya akademiya, Voronezh] 20

[25] Zribi L, Khaldi A, Hanchi B, Gharbi F, Chaar H, Mouillot F 2016 Estimate of biomass and carbon pools in disturbed and undisturbed oak forests in Tunisia *Forest Systems* 25/2 e060

[26] Groshev B I, Sinitsyn S G, Moroz P I 1980 *Lesotaksatsionnyy reference book* - Moscow: Forest industry [in Russian - Lesotaksatsionnyy spravochnik – Moskva: Lesnaya promyshlennost’] 228

[27] Tarankov V I 2006 *Monitoring of forest ecosystems: a training manual* [in Russian - Monitoring lesnykh ekosistem: uchebnoye posobiye] 300

[28] Zamolodchikov D G, Zukert N V, Chestnykh O V 2011 Approaches to assessing carbon dead in forests of Russia *Forest science* [Lesovedeniye - in Russian] 5 61-71

[29] Zamolodchikov D G, Utkin A I, Korovin G N 1998 Determination of carbon stocks by the conversion-volume coefficients dependent on the age of the plantations *Forest Science* [Lesovedeniye - in Russian] 3 84-93

[30] Zamolodchikov D G 2012 *The system for estimating the carbon budget in forests* (Moscow: Center for Ecology and Productivity of Forests of the Russian Academy of Sciences) [in Russian - Sistema otsenki byudzhet a углерода в лесах. Moskva: Tsentr po problemam ekologii i produktivnosti lesov Rossiyskoy akademii nauk] 59

[31] Zribi L, Khaldi A, Hanchi B, Gharbi F, Chaar H, Mouillot F 2016 Estimate of biomass and carbon pools in disturbed and undisturbed oak forests in Tunisia *Forest Systems* 25/2 e060