O Labdano Ácido Ent-3-Acetóxi-Labda-8(17),13-Dieno-15-Óico Reduz Pressão Arterial Em Ratos Hipertensos

Janaina A. Simplicio, Marília R. Simão, Sergio R. Ambrosio, Carlos R. Tirapelli
Programa de Pós-Graduação em Farmacologia – Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP; Núcleo de Pesquisa em Ciências e Tecnologia – Universidade de Franca (UNIFRAN), Franca, SP; Departamento de Enfermagem Psiquiátrica e Ciências Humanas – Laboratório de Farmacologia – Escola de Enfermagem de Ribeirão Preto (USP), Ribeirão Preto, SP – Brasil

Resumo

Fundamento: Diterpenos do tipo labdano induzem uma queda da pressão arterial por meio do relaxamento do músculo liso vascular; todavia, não há estudos que descrevam os efeitos de labdanos em ratos hipertensos.

Objetivo: O presente estudo foi desenvolvido para investigar as ações cardiovasculares do labdano ácido ent-3-acetóxi-labda-8(17),13-dieno-15-óico (labda-15-óico) na hipertensão renal dois rins-1 clipe (2R-1C).

Métodos: Foram feitos experimentos de reatividade vascular em anéis aórticos isolados de ratos machos 2R -1C e normotensos (2R). A medição de Nitrato/Nitrito (NOx) foi feita nas aortas por meio de ensaio colorimétrico. As medidas de pressão arterial foram feitas em ratos conscientes.

Resultados: O ácido labda-15-óico (0,1 - 300 µmol/l) e a forscolina (0,1 nmol/l - 1 µmol/l) relaxaram as aortas com endotélio intacto e as aortas sem endotélio dos ratos 2R-1C e 2R. O labda-15-óico mostrou-se mais eficaz na indução do relaxamento em aortas com endotélio intacto de 2R pré-contraídas com fenilefrina em comparação às aortas sem endotélio. A forscolina mostrou-se mais potente do que o ácido labda-15-óico na indução do relaxamento vascular nas artérias tanto de ratos 2R-1C quanto de ratos 2R. O aumento dos níveis de NOx induzido pelo ácido labda-15-óico foi menor nas artérias de ratos 2R-1C em comparação a ratos 2R. A administração intravenosa de ácido labda-15-óico (0,3-3 mg/kg) ou forscolina (0,1-1 mg/kg) induziu hipertensão em ratos 2R-1C e 2R conscientes.

Conclusão: Os presentes resultados mostram que o labda-15-óico induz relaxamento vascular e hipotensão em ratos hipertensos. (Arq Bras Cardiol. 2016; 106(6):481-490)

Palavras-chave: Labdano; Relaxamento Vascular; Diterpenos; Forscolina; Hipertensão Renovascular.

Abstract

Background: Labdane-type diterpenes induce lower blood pressure via relaxation of vascular smooth muscle; however, there are no studies describing the effects of labdanes in hypertensive rats.

Objective: The present study was designed to investigate the cardiovascular actions of the labdane-type diterpene ent-3-acetoxy-labda-8(17), 13-dien-15-oic acid (labda-15-oic acid) in two-kidney 1 clip (2K-1C) renal hypertension.

Methods: Vascular reactivity experiments were performed in aortic rings isolated from 2K-1C and normotensive (2K) male Wistar rats. Nitrate/nitrite (NOx) measurement was performed in aortas by colorimetric assay. Blood pressure measurements were performed in conscious rats.

Results: Labda-15-oic acid (0.1-300 µmol/l) and forscolin (0.1 nmol/l - 1 µmol/l) relaxed endothelium-intact and endothelium-denuded aortas from both 2K-1C and 2K rats. Labda-15-oic acid was more effective at inducing relaxation in endothelium-intact aortas from 2K pre-contracted with phenylephrine when compared to the endothelium-denuded ones. Forskolin was more potent than labda-15-oic acid at inducing vascular relaxation in arteries from both 2K and 2K-1C rats. Labda-15-oic acid-induced increase in NOx levels was lower in arteries from 2K-1C rats when compared to 2K rats. Intravenous administration of labda-15-oic acid (0.3-3 mg/kg) or forscolin (0.1-1 mg/kg) induced hypotension in conscious 2K-1C and 2K rats.

Conclusion: The present findings show that labda-15-oic acid induces vascular relaxation and hypotension in hypertensive rats. (Arq Bras Cardiol. 2016; 106(6):481-490)

Keywords: Labdane; Vascular Relaxation; Diterpene; Forskolin; Renovascular Hypertension.

Correspondência: Carlos Renato Tirapelli • Universidade de São Paulo – Escola de Enfermagem de Ribeirão Preto – Avenida Bandeirantes 3900, EEP 14040-902, Ribeirão Preto, SP – Brasil
E-mail: critirapelli@EEP.usp.br, crtililo@hotmail.com
Artigo recebido em 21/10/15, revisado em 28/10/15, aceito em 23/02/16

DOI: 10.5935/abc.20160058
Introdução

O tratamento de hipertensão arterial com produtos derivados de plantas é bem descrito na literatura. Um grande número de plantas medicinais com atividade anti-hipertensiva foi quimicamente investigado e diterpenos são apontados como seus principais constituintes. Por isso, muitos estudos focam nas propriedades cardiovasculares desses compostos. Por exemplo o diterpeno forscolina do tipo labdano (7 beta-acetoxy-8, 13-epóxi-1 alfa, beta, 9 alfa-tri-hidróxi-labd-14-eno-11-um) diminui a pressão arterial por meio de um mecanismo que envolve o relaxamento do músculo liso vascular. No vasculatura, a forscolina ativa a enzima adenilil ciclase, que por sua vez aumenta a produção de AMPc e a ativação da proteína cinase dependente de AMPc (PKA). A extrusão de cálcio da membrana plasmática e hiperpolarização do músculo liso vascular são mecanismos também relacionados às ações vasculares da forscolina. Em humanos, a administração intravenosa de forscolina diminuiu a resistência vascular e reduziu a pressão arterial diastólica (PADI).

Outros diterpenos do tipo labdano, como labdano ácido 8(17), 12E, 14-labda trien-18-óico e labd-8(17)-en-15-óico também foram descritos como induzidores do relaxamento vascular e da hipotensão em ratos normotensos. Descrevemos recentemente que o labdano ácido 7-3-acetoxi-labda-8(17), 13-dien-15-óico (labdano-15-óico) induz relaxamento vascular por meio do bloqueio do influxo de Ca²⁺, ativação da via do óxido nítrico endotelial (NO)-GMPC e abertura dos canais para K⁺. A administração intravenosa de labdano-15-óico induziu diminuição na pressão arterial em ratos normotensos; essa resposta foi parcialmente atenuada pelo L-NAME, sugerindo a participação do NO nesta resposta. É importante notar que doses mais baixas de ácido labdano-15-óico (0,3-3 mg/kg) foram necessárias para induzir hipotensão em comparação com outros labdanos previamente testados, como ácido 8(17), 12E, 14-labdatrien-18-óico (5-30 mg/kg) e ácido labd-8(17)-eno-15-óico (1-10 mg/kg). Com base nesses resultados iniciais com ácido labdano-15-óico, temos a hipótese de que este composto induziria relaxamento vascular e hipotensão em ratos hipertensos. No presente estudo, procuramos avaliar as ações cardiovasculares do ácido labdano-15-óico em animais hipertensos.

Métodos

Isolamento do ácido labdano-15-óico

O isolamento do ácido labdano-15-óico foi feito como previamente descrito. Em gramas de óleo-resina foram cromatografados sobre gel de sílica 60 H (Merck, art. 7736), usando cromatografia líquida sob vácuo (CLV) com quantidades cada vez maiores de acetato de etilo (EtOAc) em n-hexano como eluente. Esse procedimento resultou em seis frações (2000 ml cada), chamadas de F1 (34,7 g; n-hexano), F2 (13,5 g; 20% EtOAc), F3 (11,4 g; 40% EtOAc), F4 (9,7 g; 60% EtOAc), F5 (7,6 g; 80% EtOAc) e F6 (17,8 g; EtOAc) após evaporação do solvente. A fração F4 foi inicialmente cromatografada via CLV sobre gel de sílica 60 H (Merck, art. 7736) conforme descrito acima, para criar frações adicionais (F4.1 a F4.5). O ácido labdano-15-óico (1132,0 mg) foi obtido do F4.3 por meio de cromatografia de média pressão (flash) com uso de gel de sílica 60 (Merck, art. 9385), isocérico n-hexano: EtOAc:CHCl₃ (5:2:3) como fase móvel, e quociente de vazão de 5 ml/min. A pureza do (-)-ácido acetoxipácico (98%) foi estimada por cromatografia líquida de alta eficiência, análise por espectrometria de massa e dados espectrais de ressonância magnética nuclear de hidrogênio-1 e carbono-13.

Hipertensão renovascular

A hipertensão renovascular foi induzida em ratos conforme previamente descrito. Ratos Wistar macho com peso entre 180 e 200 gramas (35 dias de vida) foram anestesiados com tribromoetanol (250 mg/kg, i.p.) e após uma laparotomia mediana, um clipe de prata com diâmetro interno de 0,2 mm foi colocado em volta da artéria renal esquerda. Ratos normotensos 2 rins (2R) foram submetidos apenas a laparotomia. A pressão arterial sistólica (PAS) foi medida antes e depois de seis semanas da laparotomia mediana em animais não anestesiados, por meio de plethysmografia de cauda; os ratos considerados hipertensos foram aqueles cuja PAS estava acima de 160 mmHg. Seis semanas após a cirurgia, os ratos foram sacrificados e as aortas torácicas foram isoladas. Um total de 26 ratos 2R e 28 ratos 2R-1C foram usados neste presente estudo. Todos os protocolos foram aprovados pelo Comitê de Ética Animal do Campus de Ribeirão Preto – Universidade de São Paulo (#09.1.1007.53.0).

Preparação do anel vascular

A aorta torácica foi removida rapidamente, tecidos conectivos aderentes foram removidos, e a aorta foi cortada em anéis (5-6 mm de comprimento). Dois ganchos de aço inoxidável foram passados através do lúmen de cada anel. Um gancho foi conectado a um transdutor de força isométrica (TRI201; Panlab, Espanha) para medir a tensão nos vasos. Os anéis foram colocados em câmara para órgão isolado contendo 5 ml de solução de Krebs, gaseificada com 95% O₂ / 5% CO₂ e mantida a 37°C. A composição da solução Krebs era (mmol/l): NaCl, 118,0; KCl, 4,7; KH₂PO₄, 1,2; MgSO₄, 1,2; NaHCO₃, 15,0; Glicose, 5,5; CaCl₂, 2,5. Os anéis foram esticados até chegarem à tensão basal de 1,5 g, o que foi determinado por experimentos de relação comprimento-tensão; foram então deixadas por 60 min para se equilibrarem. Durante esse tempo, o fluido do banho foi trocado a cada 15-20 min. Em alguns anéis, o endotélio foi removido mecanicamente, enrolando cuidadosamente o lúmen do vaso num fio metálico. A integridade endotelial foi avaliada qualitativamente pelo grau de relaxamento causado pela ácetilcolina (1 µmol/l), na presença de uma contração mantida por adenosina (2 µmol/l) e mantida a 37°C. A pressão arterial sistólica (PAS) foi medida antes e depois de seis semanas da laparotomia mediana em animais não anestesiados, por meio de plethysmografia de cauda; os ratos considerados hipertensos foram aqueles cuja PAS estava acima de 160 mmHg. Seis semanas após a cirurgia, os ratos foram sacrificados e as aortas torácicas foram isoladas. Um total de 26 ratos 2R e 28 ratos 2R-1C foram usados neste presente estudo. Todos os protocolos foram aprovados pelo Comitê de Ética Animal do Campus de Ribeirão Preto – Universidade de São Paulo (#09.1.1007.53.0).
Efeito do ácido labda-15-óico em anéis de aorta contraídos com fenilefrina ou KCI

Uma tensão constante foi induzida por fenilefrina (concentrações de 0,1 µmol/l para anéis com endotélio intacto e 0,03 µmol/l para anéis sem endotélio foram usados para induzir contrações de magnitude similar). O ácido labda-15-óico foi então adicionado de forma gradual (0,1 - 300 µmol/l). O efeito do ácido labda-15-óico na contração sustentada induzida por KCI (30 mmol/l) em anéis com endotélio intacto ou sem endotélio também foi examinado. Para comparação, o efeito da forscolina (0,1 mmol/l - 1 µmol/l) nas contrações induzidas por fenilefrina e KCl em anéis com endotélio intacto e anéis sem endotélio foi avaliado.

Experimentos de pressão arterial

Experimentos de pressão arterial foram feitos conforme previamente descrito. Um dia antes dos experimentos, os ratos foram anestesiados com tribromoetanol (250 mg/kg, i.p.), e um cateter (um segmento de 4 cm de PE-10 ligado termicamente a um segmento de 13 cm de PE-50) (Clay Adams, Parsippany, NJ, EUA) foi inserido na aorta abdominal através da artéria femoral para registro de pressão arterial e frequência cardíaca. Um segundo cateter foi implantado na veia jugular para administração intravenosa de medicamentos. Ambos os cateteres foram implantados subcutaneamente e exteriorizados no dorso do animal. Durante o experimento, ratos movendo-se livremente foram mantidos em gaiolas individuais, e a pressão arterial média (PAM) foi registrada por um amplificador HP-7754A (Hewlett Packard, EUA) conectado a uma placa de aquisição de sinal (MP-100, BIOPAC, USA) e processada por um computador. O ácido labda-15-óico (0,3-3 mg/kg) ou a forscolina (0,1-1 mg/kg) foram administrados via injeção de bolus intravenosa de medicamentos. Ambos os cateteres foram implantados subcutaneamente e exteriorizados no dorso do animal. Durante o experimento, ratos movendo-se livremente foram mantidos em gaiolas individuais, e a pressão arterial média (PAM) foi registrada por um amplificador HP-7754A (Hewlett Packard, EUA) conectado a uma placa de aquisição de sinal (MP-100, BIOPAC, USA) e processada por um computador. O ácido labda-15-óico (0,3-3 mg/kg) ou a forscolina (0,1-1 mg/kg) foram administrados via injeção de bolus intravenosa. Tanto o ácido labda-15-óico (0,3-3 mg/kg) quanto a forscolina (0,1-1 mg/kg) foram administrados em diferentes animais. Os resultados de pressão arterial foram calculados com base na média da PAM obtida no platô da resposta.

Medida dos níveis de Nitrato/Nitrito (NOx)

Níveis de NOx foram medidos em sobrenadantes de homogenatos da aorta com endotélio intacto de ratos 2R-1C e 2R. Os anéis foram pré-contraídos com fenilefrina (0,1 µmol/l) e então expostos ao ácido labda-15-óico (300 µmol/l). O sobrenadante foi centrifugado usando filtros de ultra-centrifugação (#UFC5010BK Amicon Ultra-0.5 mL 10 kDa, Millipore, Billerica, MA, EUA). O nitrato foi medido colorimetricamente seguindo instruções do kit comercializado (#780,001, Cayman Chemical, Ann Arbor, MI, EUA). Os resultados foram normalizados pela concentração de proteína e estão expressos como nmol/mg de proteína. A concentração proteica de todos os experimentos foram determinadas com ensaio de reagente de proteína (Bio-Rad Laboratories, Hercules, CA, EUA).

Drogas

O ácido labda-15-óico foi preparado como solução estoque em dimetil sulfoxídeo (DMSO). As demais drogas foram dissolvidos em água destilada. A concentração do banho de DMSO não excedeu 0,5%, o que não influencia no tônus basal das preparações nem na contração e relaxamento mediado pelo agonista. Para os experimentos in vivo, o ácido labda-15-óico foi diluído em DMSO 10% e depois em salina. A concentração de DMSO na solução final não influencia nos parâmetros cardiovascularas basais, conforme previamente observado.

Análise estatística

Os resultados foram expressos como a media ± erro padrão da média (EPM). Os dados seguiram uma distribuição normal. A análise estatística feita foi por ANOVA de uma via, o teste t de Student pareado. Comparações post-hoc foram feitas após a análise ANOVA, pelo teste Newman-Keuls de comparação múltipla, conforme indicado no texto e nas tabelas. Para todas as análises, valores p abaixo de 0,05 foram considerados significativos. A análise estatística foi conduzida por meio do programa Graph Pad Prism 3.0 (GraphPad Software Inc., San Diego, CA, EUA).

Resultados

Valores de pressão arterial em ratos 2R-1C e 2R

PAM, PAD e PAS aumentaram significativamente em ratos 2R-1C em comparação com ratos 2R (Tabela 1).

Ação vasorelaxante do ácido labda-15-óico em anéis aórticos de ratos 2R-1C e 2R

O ácido labda-15-óico (Figura 1) reduziu as contrações sustentadas induzidas por fenilefrina e KCl em aortas com endotélio intacto e aortas sem endotélio tanto de ratos 2R-1C quanto de ratos 2R (Figura 2). Os valores de E_{max} (porcentagem de relaxamento) para o efeito relaxante do

Tabela 1 – Valores de pressão arterial (mmHg) em ratos 2R e 2R-1C

	2R	2R-1C
Basal		
PAM	104,3 ± 2,0	105,7 ± 1,1
PAD	92,5 ± 1,8	96,3 ± 1,1
PAS	127,9 ± 2,6	124,6 ± 1,9
Após 6 semanas	100,9 ± 1,6	161,3 ± 10,4^
	89,8 ± 1,3	138,4 ± 11,6^
	123,2 ± 2,9	207,0 ± 9,2^

Valores são medias ± EPM de n = 12 animais para cada grupo. *Comparado com valores basais respectivos (p < 0,05, teste t de Student pareado). PAM: pressão arterial média; PAD: pressão arterial diastólica; PAS: pressão arterial sistólica.
ácido labda-15-óico em anéis com endotélio intacto e anéis sem endotélio, pré-contraiados com fenilefrina não mostraram diferenças significativas nas aortas dos ratos 2R-1C e 2R (Tabela 2). Todavia, diferenças foram encontradas nos valores de pD$_2$ para o ácido labda-15-óico em anéis com endotélio intacto e sem endotélio, pré-contraiados com fenilefrina em aortas de ratos 2R, mas não em ratos 2R-1C. Em artérias pré-contraiadas com KCl, não houve diferença entre os valores de E$_{max}$ e os valores de pD$_2$ para o ácido labda-15-óico em anéis com endotélio intacto e sem endotélio em ratos 2R-1C nem 2R (Tabela 2). Os valores de E$_{max}$ e de pD$_2$ para o ácido labda-15-óico nos anéis pré-contraiados com KCl não se mostraram diferentes daqueles encontrados em anéis pré-contraiados com fenilefrina para ratos 2R-1C nem 2R.

A forscolina reduziu as contrações sustentadas induzidas por fenilefrina e KCl em aortas com endotélio intacto e sem endotélio de ratos 2R-1C e 2R (Figura 3). Os valores de E$_{max}$ para o efeito relaxante de forscolina em anéis com endotélio intacto e sem endotélio, pré-contraiados com fenilefrina não se mostraram significativamente diferentes em aortas de ratos 2R-1C e 2R (Tabela 2). Todavia, diferenças foram encontradas em valores de pD$_2$ para forscolina em anéis com endotélio intacto e sem endotélio, pré-contraiados com fenilefrina em aortas de ratos 2R-1C e 2R. As artérias pré-contraiadas com KCl, não mostraram diferença entre os valores de E$_{max}$ ou de pD$_2$ para forscolina em anéis com endotélio intacto e sem endotélio de ratos 2R-1C e 2R (Tabela 2).

Os valores de pD$_2$ para fenilefrina em anéis com endotélio intacto e sem endotélio, pré-contraiados com fenilefrina, mas não com KCl, se mostraram significativamente diferentes daqueles encontrados para ácido labda-15-óico em ratos 2R-1C e 2R. Os valores de pD$_2$ para forscolina em anéis com endotélio intacto e sem endotélio, pré-contraiados com fenilefrina ou KCl mostraram-se significativamente diferentes daqueles encontrados para o ácido labda-15-óico em ratos 2R-1C e 2R (Tabela 2).

Experimentos de pressão arterial

A figura 4 mostra traçados representativos do efeito do ácido labda-15-óico e da forscolina na pressão arterial de ratos 2R-1C e 2R. A variação máxima da PAM induzida pelo ácido labda-15-óico e pela forscolina na pressão em ratos 2R-1C e 2R conscientes está demonstrada na Figura 5. A administração em bolus de ácido labda-15-óico ou forscolina causou uma diminuição na PAM em ratos 2R-1C e 2R conscientes. Os valores da PAM retornaram a níveis basais após a injeção de ácido labda-15-óico. Por outro lado, valores da PAM não retornaram a níveis basais após a administração de forscolina a 1 mg/kg (Figura 5). O ácido labda-15-óico induziu uma queda mais pronunciada na pressão arterial em 2R em comparação a 2R-1C. Por outro lado, a forscolina mostrou-se mais eficiente na indução de uma diminuição da PAM em ratos 2R-1C, em comparação com ratos 2R (Figura 5). Valores da pressão arterial antes e depois da administração da droga estão descritos na Tabela 3.

Medida dos níveis de NOx

A figura 6 mostra que níveis basais de NOx em aortas de ratos 2R-1C são menores do que aqueles encontrados nas aortas de ratos 2R. O ácido labda-15-óico induziu uma formação de nitrato em aortas com endotélio intacto de ratos 2R-1C e 2R. A formação de nitrato induzida pelo ácido labda-15-óico mostrou-se menor em artérias de ratos 2R-1C, em comparação a ratos 2R (Figura 6).

Discussão

As presentes conclusões indicam que o ácido labda-15-óico mostrou-se mais efetivo na indução do relaxamento vascular, em ratos 2R, em aortas com endotélio intacto pré-contraiados com fenilefrina, em comparação com aortas sem endotélio. Esse resultado está de acordo com descobertas anteriores de nosso laboratório, que mostram que o relaxamento induzido pelo ácido labda-15-óico é parcialmente dependente da via do óxido nítrico endotelial (NO)-GMPc. Por outro lado, valores da PAM não diminuíram na PAM em ratos 2R-1C e 2R conscientes. A variação máxima da PAM induzida pelo ácido labda-15-óico e da forscolina na pressão arterial de ratos 2R-1C e 2R conscientes está demonstrada na Figura 5. A administração em bolus de ácido labda-15-óico ou forscolina causou uma queda mais pronunciada na pressão arterial em 2R em comparação a 2R-1C. Por outro lado, a forscolina mostrou-se mais eficiente na indução de uma diminuição da PAM em ratos 2R-1C, em comparação com ratos 2R (Figura 5). Valores da pressão arterial antes e depois da administração da droga estão descritos na Tabela 3.

Discussão

As presentes conclusões indicam que o ácido labda-15-óico mostrou-se mais efetivo na indução do relaxamento vascular, em ratos 2R, em aortas com endotélio intacto pré-contraiados com fenilefrina, em comparação com aortas sem endotélio. Esse resultado está de acordo com descobertas anteriores de nosso laboratório, que mostram que o relaxamento induzido pelo ácido labda-15-óico é parcialmente dependente da via do óxido nítrico endotelial (NO)-GMPc. Por outro lado, valores da PAM não diminuíram na PAM em ratos 2R-1C e 2R conscientes. A variação máxima da PAM induzida pelo ácido labda-15-óico e da forscolina na pressão arterial de ratos 2R-1C e 2R conscientes está demonstrada na Figura 5. A administração em bolus de ácido labda-15-óico ou forscolina causou uma queda mais pronunciada na pressão arterial em 2R em comparação a 2R-1C. Por outro lado, a forscolina mostrou-se mais eficiente na indução de uma diminuição da PAM em ratos 2R-1C, em comparação com ratos 2R (Figura 5). Valores da pressão arterial antes e depois da administração da droga estão descritos na Tabela 3.
Figura 2 – Respostas de relaxamento induzidas pelo ácido labda-15-óico em anéis aórticos de ratos. O relaxamento induzido pelo labdano foi estudado em anéis aórticos com endotélio intacto (E+) e sem endotélio (E-) de ratos, contraídos com fenilefrina (0,1 μmol/l) ou KCl (30 mmol/l). Tensão constante foi induzida pela fenilefrina ou pelo KCl e, então, o ácido labda-15-óico (0,1-300 μmol/l) foi adicionado cumulativamente.

Tabela 2 – Valores de E_{max} (% relaxamento) e pD_2 para ácido labda-15-óico e forscolina em aortas com endotélio intacto (E+) e sem endotélio (E-) de ratos 2R e 2R-1C

Agente pré-contrátil	2R	2R-1C		
	E+ (E_{max})	E- (E_{max})	E+ (E_{max})	E- (E_{max})
Ácido labda-15-óico				
Fenilefrina	93,7 ± 6,8 (7)	79,2 ± 1,8 (6)	99,0 ± 7,4 (7)	88,8 ± 6,6 (6)
KCl	96,4 ± 4,4 (7)	83,6 ± 6,6 (6)	103,9 ± 3,8 (7)	87,3 ± 7,4 (8)
Forscolina				
Fenilefrina	110,7 ± 5,3 (7)*	104,0 ± 5,62* (6)	118,8 ± 5,2 (6)*	107,7 ± 8,0 (6)*
KCl	92,6 ± 3,9 (6)	87,8 ± 3,9 (5)	105,9 ± 3,3 (6)	93,2 ± 7,1 (6)
	$E_+ (pD_2)$	$E_- (pD_2)$	$E_+ (pD_2)$	$E_- (pD_2)$
Ácido labda-15-óico				
Fenilefrina	4,8 ± 0,06 (7)	4,1 ± 0,04 (6)*	4,8 ± 0,11 (7)	4,9 ± 0,08(6)
KCl	4,6 ± 0,08 (7)	4,3 ± 0,06 (6)	4,8 ± 0,10 (7)	4,5 ± 0,08 (8)
Forscolina	7,5 ± 0,21 (7)*	6,9 ± 0,17 (6)**	8,0 ± 0,10 (6)*	7,3 ± 0,14 (6)**
KCl	7,0 ± 0,16 (6)*	7,0 ± 0,15 (5)*	7,3 ± 0,20 (6)*	7,0 ± 0,12 (6)*

Números entre parênteses indicam o número de preparações isoladas. Valores são medias ± EPM. * Comparado com ácido labda-15-óico em aortas pré-contraiadas com fenilefrina de ratos 2R e 2R-1C. \(^a \) Comparado com o grupo respectivo em aortas E+ de ratos 2R e 2R-1C. \(^b \) Comparado com ácido labda-15-óico em aortas pré-contraiadas com fenilefrina ou KCl de ratos 2R e 2R-1C (p<0,05, ANOVA seguido de teste Newman-Keuls de comparação múltipla).
O labda-15-óico reduz pressão arterial

Figura 3 – Respostas de relaxamento induzidas por forscolina em anéis aórticos de ratos. O relaxamento foi induzido pelo labdano foi estudado em anéis aórticos com endotélio intacto (E+) e sem endotélio (E-) de ratos, contraídos com fenilefrina (0,1 μmol/l) ou KCl (30 mmol/l). Tensão constante foi induzida pela fenilefrina ou KCl e, então, forscolina (0,1 nmol/l - 1 μmol/l) foi adicionada cumulativamente. PAM: pressão arterial média.

induzida pelo ácido labda-15-óico, nas artérias de 2R-1C foi mais baixa do que aquela encontrada nas artérias de ratos 2R. Também é importante notar que encontramos menor conteúdo de NOx basal nas artérias de 2R-1C em comparação a artérias de ratos 2R, corroborando ainda mais observações anteriores que mostram disponibilidade reduzida de NO basal em hipertensão renovascular.22-24

A ativação de canais para K⁺ leva a hiperpolarização de células do músculo liso vascular, diminuição da atividade dos canais para Ca²⁺ dependentes de voltagem e vasodilatação.25 A ativação dos canais para K⁺ dependentes de voltagem e sensíveis ao ATP, assim como de canais para K⁺ ativados por Ca²⁺ de alta e baixa condutância, tiveram participação na resposta vasorelaxante induzida pelo ácido labda-15-óico.23 Está bem estabelecido que a vasodilação dependente do endotélio e a hiperpolarização das células do músculo liso mostram-se comprometidas em segmentos aórticos de ratos hipertensivos 2R-1C.26 A função anormal dos canais para K⁺ ativados por Ca²⁺ de alta condutância, e dos canais para K⁺ sensíveis ao ATP presentes no músculo liso vascular tem uma participação no relaxamento comprometido das aortas dos ratos 2R-1C.27,28 e também pode contribuir para a redução da vasodilação dependente do endotélio induzida pelo ácido labda-15-óico nas aortas de ratos 2R-1C.

No presente estudo não foram encontradas diferenças na ação inibitória demonstrada pelo ácido labda-15-óico nas artérias pré-contrastadas com KCl em ratos 2R e 2R-1C. A contração induzida por KCl no músculo liso é mediada pela despolarização da membrana celular e aumento do influxo de Ca²⁺ através dos canais para Ca²⁺ operados por voltagem.29,30 Dessa forma, podemos sugerir que o ácido labda-15-óico bloqueia o influxo de Ca²⁺ extracelular por meio de interferência com canais operados por voltagem em ratos 2R e 2R-1C.

A forscolina relaxou aortas com endotélio intacto e sem endotélio, pré-contrastadas com fenilefrina (mas não com KCl) mais do que o ácido labda-15-óico em ratos 2R e 2R-1C. Além disso, a forscolina mostrou-se mais potente do que o ácido labda-15-óico na indução de relaxamento vascular em artérias pré-contrastadas com fenilefrina ou KCl em ratos 2R-1C e 2R. Possíveis explicações para esses efeitos estão relacionadas à estrutura química dos labdanos e/ou de seus mecanismos de ação. Analisando a estrutura química do ácido labda-15-óico e da forscolina (Figura 1), observamos que apesar desses dois compostos serem classificados como diterpenos do tipo labdano, há notável presença de um grande número de grupos doadores de ligação de hidrogênio (grupo hidrofílico), ressaltando os radicais hidroxila em C-1, C-6 e C-9 esqueleto da forscolina.
em comparação com a estrutura química do ácido labda-15-óico, que contém apenas dois grupos hidrofílicos em C-3 e C-16. Além disso, também é possível observar que esses compostos naturais diferem uns dos outros em suas configurações invertidas dos carbonos C-5, C-9 e C-10. Estudos prévios mostraram que diferenças químicas nos diterpenos alteram suas propriedades cardiovasculares, e podem ser fonte da discrepância entre os efeitos do ácido labda-15-óico e da forscolina aqui descritos.

Labdanos exercem seus efeitos cardiovasculares agindo em vários locais, e por isso diversas vias intracelulares fazem o papel da mediação do relaxamento vascular induzido por esses compostos. O aumento nos níveis de AMPc, devido à ativação da adenilil ciclase e ativação subsequente de PKA é o principal mecanismo responsável pelo relaxamento vascular induzido pelo labdano forscolina. Entretanto, a forscolina também aumenta a produção endotelial de NO via ativação de eNOS. Por outro lado, os mecanismos responsáveis...
pela ação vasorelaxante do ácido labda-15-óico não estão relacionados com a ativação da adenilil ciclase e envolvem o bloqueio do influxo de \(\text{Ca}^{2+} \) extracelular, o aumento da produção endotelial de NO e a abertura dos canais para \(\text{K}^{+} \).13

As diferenças nos mecanismos responsáveis pela respostas vasculares desses dois labdanos também podem ser responsáveis pelas diferentes respostas cardiovasculares demonstradas pelo ácido labda-15-óico e pela forscolina.

Aprimoramentos no tratamento farmacológico da hipertensão contribuem para uma redução na incidência de doenças cardiovasculares.5,6,11,12 Recentemente, descrevemos que o ácido labda-15-óico induz relaxamento vascular e hipotensão em ratos normotensos.13 Considerando-se que o ácido labda-15-óico relaxou aortas nos ratos 2R-1C, levantamos a hipótese de que o labdano poderia exercer uma ação anti-hipertensiva in vivo. No presente estudo a administração intravenosa de ácido labda-15-óico induziu uma hipotensão de curta duração em ratos 2R e 2R-1C, demonstrando ainda mais que o ácido labda-15-óico exerce efeito anti-hipertensivo in vivo. O ácido labda-15-óico induziu uma redução menos pronunciada na pressão arterial em comparação à forscolina, fortalecendo a idéia de que diferenças químicas alteram a ação hipotensora demonstrada por diterpenos do tipo labdano. Também é importante notar que o ácido labda-15-óico causa hipotensão por meio da vasodilatação periférica, mediada em parte por NO, ao passo que os efeitos da forscolina são mediados principalmente pela ativação da adenilil ciclase e aumento nos níveis de AMPc.5-9 Essa observação é relevante já que, conforme mencionado anteriormente, a disfunção endotelial com prejuízo na vasodilatação dependente do endotélio e a redução da sinalização mediada pelo NO é característica da hipertensão.19-21 Essa característica do estado hipertensivo pode explicar, pelo menos em parte, o efeito reduzido do ácido labda-15-óico em comparação à forscolina.

Algumas limitações do presente estudo devem ser consideradas. O fato de o ácido labda-15-óico ter reduzido a pressão arterial em um modelo animal de hipertensão renovascular, não é garantia de que esse labdano também será efetivo em outros modelos animais de hipertensão ou na hipertensão humana. Outro ponto a ser considerado é que o

| Tabela 3 – Valores de pressão arterial (mmHg) em ratos 2R e 2R-1C antes e depois da administração do medicamento (ácido labda-15-óico ou forscolina) e seus respectivos valores ∆PAM and %∆PAM |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| | PAM (mmHg) | | | |
| | Antes | Depois | ∆PAM | %∆PAM |
| **Ácido labda-15-óico 2R** | | | | |
| Veículo | 103,5 ± 6,7 (5) | 98,9 ± 7,0 | 4,6 ± 2,4 | 4,4 ± 2,3 |
| Ácido labda-15-óico (0,3 mg/kg) | 100,5 ± 5,5 (5) | 96,3 ± 8,4 | 4,2 ± 3,3 | 4,8 ± 3,8 |
| Ácido labda-15-óico (1 mg/kg) | 99,8 ± 6,2 (5) | 70,6 ± 15,6 | 29,2 ± 12,7 | 30,3 ± 13,6 |
| Ácido labda-15-óico (3 mg/kg) | 98,5 ± 6,4 (5) | 48,6 ± 12,4a | 49,9 ± 8,5b | 53,6 ± 10,9b |
| **Ácido labda-15-óico 2R-1C** | | | | |
| Veículo | 163,7 ± 15,2 (6) | 159,3 ± 16,2 | 4,4 ± 3,0 | 3,0 ± 2,3 |
| Ácido labda-15-óico (0,3 mg/kg) | 161,6 ± 15,8 (6) | 154,0 ± 16,5 | 7,6 ± 3,3 | 5,2 ± 2,5 |
| Ácido labda-15-óico (1 mg/kg) | 160,0 ± 15,6 (6) | 148,0 ± 15,7 | 12,0 ± 3,6 | 7,9 ± 2,7 |
| Ácido labda-15-óico (3 mg/kg) | 160,2 ± 15,8 (6) | 109,7 ±19,2b | 50,5 ± 9,9b | 33,8 ± 8,4b |
| **Forscolina 2R** | | | | |
| Veículo | 113,9 ± 3,0 (5) | 107,5 ± 4,3 | 6,4 ± 1,7 | 5,7 ± 1,5 |
| Forscolina (0,1 mg/kg) | 104,9 ± 4,5 (5) | 90,9 ± 5,2a | 14,0 ± 2,7 | 13,4 ± 2,8 |
| Forscolina (0,3 mg/kg) | 108,1 ± 5,0 (5) | 75,8 ± 10,8a | 32,3 ± 10,0b | 29,9 ± 9,6b |
| Forscolina (1 mg/kg) | 107,4 ± 4,0 (5) | 77,0 ± 3,1a | 30,4 ± 5,2a | 27,9 ± 3,8a |
| **Forscolina 2R-1C** | | | | |
| Veículo | 169,1 ± 12,8 (5) | 163,3 ± 15,1 | 5,8 ± 4,6 | 3,7 ± 2,5 |
| Forscolina (0,1 mg/kg) | 170,4 ± 16,6 (5) | 153,2 ± 12,9a | 17,2 ± 6,1 | 9,4 ± 3,1 |
| Forscolina (0,3 mg/kg) | 167,6 ± 16,3 (5) | 130,9 ± 12,4a | 36,7 ± 5,7a | 21,7 ± 2,5b |
| Forscolina (1 mg/kg) | 166,0 ± 16,9 (5) | 97,1 ± 16,0b | 68,9 ± 8,5b | 42,4 ± 6,2b |

Números entre parênteses indicam o número de animais. Valores são a media ± EPM. aDiferença significativa em comparação com a linha de base, antes da infusão da droga (p < 0,05, teste t de Student pareado). bComparado com veículo (p < 0,05, ANOVA seguido de teste Newman-Keuls de comparação múltipla). PAM: pressão arterial média.
Tirapelli et al.
O labda-15-óico reduz pressão arterial

Conclusões

Diterpenos provavelmente cumprem o pré-requisito farmacológico de uma classe de compostos, e podem ter uso terapêutico em doenças cardiovasculares. Usando uma combinação de abordagens in vivo e in vitro, a presente investigação mostra pela primeira vez que o ácido labda-15-óico induz relaxamento vascular em artérias de ratos hipertensos 2R-1C. Administração de labdano in vivo induziu uma queda na pressão arterial de ratos hipertensos. Os estudos experimentais iniciais sobre os efeitos cardiovasculares dos labdanos são importantes e necessários, considerando-se tal informação um pré-requisito para qualquer uso racional e seguro desses compostos no tratamento de hipertensão.

Agradecimentos

Agradecemos os Drs Evelin C. Carnio e Marcelo E. Batalhão pela medição de pressão arterial. Este trabalho foi financiado pela Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP - 2010/01009-3 and 2011/13630-7). J.A.S. é apoiado por uma bolsa de mestrado da CAPES.

Contribuição dos autores

Concepção e desenho da pesquisa: Simplicio JA, Tirapelli CR; Obtenção de dados: Simplicio JA, Simão MR; Análise e interpretação dos dados: Simplicio JA, Simão MR, Ambrosio SR, Tirapelli CR; Análise estatística: Simplicio JA; Obtenção de financiamento: Tirapelli CR; Redação do manuscrito: Simplicio JA; Revisão crítica do manuscrito quanto ao conteúdo intelectual importante: Ambrosio SR, Tirapelli CR.

Potencial conflito de interesse

Declaro não haver conflito de interesses pertinentes.

Fontes de financiamento

O presente estudo foi financiado pela FAPESP.

Vinculação acadêmica

Este estudo é vinculado ao programa de Pós-Graduação em Farmacologia – Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP).
Referências

1. Alonso A, Martínez-González MA. Olive oil consumption and reduced incidence of hypertension: the SUN study. Lipids. 2004;39(12):1233-8.

2. Herrera-Arellano A, Flores-Romero S, Chávez-Soto MA, Tortorelli J. Effectiveness and tolerability of a standardized extract from Hibiscus sabdariffa in patients with mild to moderate hypertension: a controlled and randomized clinical trial. Phytomedicine 2004; 11(5):375-82.

3. Herrera-Arellano A, Miranda-Sánchez J, Avila-Castro P, Herrera-Alvarez S, Jiménez-Ferrer JE, Zamilpa A, et al. Clinical effects produced by a standardized herbal medicinal product of Hibiscus sabdariffa on patients with hypertension. A randomized, double-blind, lisinopril-controlled clinical trial. Planta Med. 2007;73(1):6-12.

4. McKay DL, Diane L, Oliver Chen CY, Saltzman E, Blumberg JB. Hibiscus sabdariffa L. tea (tisane) lowers blood pressure in prehypertensive and mildly hypertensive adults. J Nutr. 2010;140(2):298-303.

5. Lindner E, Dohadwalla AN, Bhattacharya BK. Positive inotropic and blood pressure lowering activity of a diuretic derivative isolated from Coleus forskohli: Forskolin. Arzneimittelorschung. 1978;28(2):284-9.

6. Dubey MP, Srimal RC, Nityanand S, Dhawan BN. Pharmacological studies on coleonol, a hypotensive diterpene from Coleus forskohlii. J Ethnopharmacol. 1981;3(1):1-13.

7. Kramer W, Thormann J, Kindler M, Schlepper M. Effects of forskolin on left ventricular function in dilated cardiomyopathy. Arzneimittelorschung. 1987;37(3):364-7.

8. Schlepper M, Thormann J, Mitrovic V. Cardiovascular effects of forskolin and phosphodiesterase-III inhibitors. Basic Res Cardiol. 1989;84 Suppl 1:197-202.

9. Lincoln TM, Fisher-Simpson V. A comparison of the effects of forskolin and nitropusside on cyclic nucleotides and relaxation in the rat aorta. Eur J Pharmacol. 1984;101(1-2):17-27.

10. Den Hertog A, Pielkenrood J, Van den Akker JT. The effect of forskolin on smooth muscle cells of guinea-pig taenia caeci. Eur J Pharmacol. 1984;106(1):181-4.

11. de Oliveira AP, Furtado FF, da Silva MS, Tavares JF, Mafra RA, Araújo DA, et al. Calcium channel blockade as a target for the cardiovascular effects induced by the 8(17), 12E, 14-labdatrien-18-oic acid (labdane-302). Vascul Pharmacol. 2006;57(8):997-1004.

12. Lahloh S, de Barros Corneia CA, Vasconcelos dos Santos M, David JM, David JP, Duarte GP, et al. Mechanisms underlying the cardiovascular effects of a labdane diterpene isolated from Moldenhawera nutans in normotensive rats. Vascular Pharmacol. 2006;44(5):338-44.

13. Simplicio JA, Pernomian L, Simão MR, Carnicó EM, Batalhão ME, Ambrosio SR, et al. Mechanisms underlying the vascular and hypertensive actions of the labdane ent-3-acetoxy-labd-8(17),13-dien-15-oic acid. Eur J Pharmacol. 2014;726:66-66.

14. Souza AB, de Souza MG, Moreira MA, Moreira MR, Furtado NA, Martins CH, et al. Antimicrobial evaluation of diterpenes from Copaifera langsdorffii oleoresin against periodontal anaerobic bacteria. Molecules. 2011;16(11):9611-9.

15. StillWC, Kahn M, Mitra A. Rapid chromatographic technique for preparative separations with moderate resolution. J Org Chem. 1978;43(14):2923-5.

16. Callera GE, Varanda WA, Bendhack LM. Ca++ influx is increased in 2-kidney, 1-clip hypertensive rat aorta. Hypertension. 2001;38(3 Pt 2):592-6.

17. Hipólito UV, Rocha JT, Palazin NB, Rodrigues CJ, Crestani CC, Corbâ FM, et al. The semi-synthetic kaurane ent-16a-methoxykauran-19-oic acid induces vascular relaxation and hypotension in rats. Eur J Pharmacol. 2011;660(2-3):402-10.

18. Tirapelli CR, Legros E, Brochu I, Honoré JC, Lanchote VL, Uyemura SA, et al. Chronic ethanol intake modulates vascular levels of endothelin-1 receptor and enhances the pressor response to endothelin-1 in anaesthetized rats. Br J Pharmacol. 2008;154(5):971-81.

19. Puddu P, Puddu GM, Zaza F, Muscari A. Endothelial dysfunction in hypertension. Acta Cardiol. 2000;55(4):221-32.

20. Schiffrin EL. A critical review of the role of endothelial factors in the pathogenesis of hypertension. J Cardiovasc Pharmacol. 2001;38(Suppl 2):S3-6.

21. Taddei S, Salvietti A. Endothelial dysfunction in essential hypertension: clinical implications. J Hypertens. 2002;20(9):1671-4.

22. Heitzen T, Wenzel U, Hink U, Krolfner D, Skatchkov M, Stahl RA, et al. Increased NAD(P)H oxidase-mediated superoxide production in renovascular hypertension: evidence for an involvement of protein kinase C. Kidney Int. 1999;55(1):252-60.

23. Higashi Y, Sasaki S, Nakagawa K, Matsuura H, Oshima T, Chayama K. Endothelial function and oxidative stress in renovascular hypertension. N Engl J Med. 2002;346(25):1954-62.

24. Jung O, Schreiber JC, Geiger H, Pedrazzini T, Busse R, Brandes RP. gp91phox-containing NADPH oxidase mediates endothelial dysfunction in renovascular hypertension. Circulation. 2004;109(14):1795-801.

25. Nelson MT, Quayle JM. Physiological roles and properties of K+ channels in arterial smooth muscle. Am J Physiol. 1995;268(4 Pt 1):C799-C822.

26. Callera GE, Varanda WA, Bendhack LM. Impaired relaxation to Ach in 2K–1C hypertensive rat aortas involves changes in membrane hyperpolarization instead of an abnormal contribution of endothelial factors. Gen Pharmacol. 2000;34(6):379-89.

27. Callera GE, Yagi O, Tostes RC, Rossoni LV, Bendhack LM. Ca++-activated K+ channels underlying the impaired acetylcholine-induced vasodilation in 2K–1C hypertensive rats. J Pharmacol Exp Ther. 2004;393(3):1036-42.

28. Callera GE, Yeh E, Tostes RC, Capurso LC, Carvalho CR, Bendhack LM. Changes in the vascular beta-adrenoceptor-activated signalling pathway in 2K/1C hypertensive rats. Br J Pharmacol. 2004;141(7):1151-8.

29. Hudgin PM, Weiss GB. Differential effects of calcium removal upon vascular smooth muscle contraction induced by norepinephrine, histamine and potassium. J Pharmacol Exp Ther. 1968;159(1):91-7.

30. Somlyo AP, Somlyo AV. Signal transduction and regulation in smooth muscle. Nature. 1994;372(6503):231-6. Erratum in: Nature. 1994;372(6508):812.

31. Tirapelli CR, Ambrosio SR, Coutinho ST, De Oliveira DC, Da Costa FB, De Oliveira AM. Pharmacological comparison of the vasoconstrictor action displayed by kaurenoic acid and pimaradienoic acid. J Pharm Pharmacol. 2005;57(8):997-1004.

32. El Bardai S, Wibo M, Hamaide M.C, Lyoussi B, Quetin-Leclercq J, Morel N. Endothelial dysfunction in essential hypertension: clinical and physiological aspects. Eur J Pharmacol. 2011;649(1-3):95-105.

33. O labda-15-óico reduz pressão arterial

490