Supporting Information: “Development and Validation of a DFT Based Force Field for a Hydrated Homoalanine Poly-peptide”

Ying Yuan,¹ Zhonghua Ma,¹ and Feng Wang¹,*

¹Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, 72701, USA
1. fitting of dispersion parameters

Dispersion parameters were fitted to Grimme’s D3 dispersion forces using three types of fragments as described in the text. The three types of fragments are summarized in Figure S1. When creating these fragments, the covalent bonds were cut. These fragments are thus radicals and won’t be appropriate for a symmetry adapted perturbation theory (SAPT) based fitting. However, the use of radicals won’t lead to problems with empirical D3 based fitting.

![Figure S1. Fragments used for D3 calculations. (a) N terminus, (b) Ala, (c) C terminus.](image)

As described in the text, the SRD dispersion is used to eliminate the divergent behavior at short range. The van der Waals (vdW) radii used for SRD is shown in Table S1. Figure S1 provides a comparison of the SRD dispersion with the popular Tang-Tonnies dispersion. The SRD offers stronger damping in the short-range and also lead to smaller root mean square difference (RMSD) of the fit.

Table S1. The vdW radius for each atom type of Ala.

Type	Rvdw (Bohr)	hybridization
C1	3.22	sp3
C2	3.22	sp3
C3	3.34	sp2
C4	3.22	sp3
C5	3.22	sp3
C6	3.34	sp2
N1	3.18	sp3
N2	3.18	sp2
O1	3.09	sp2
O2	3.09	sp2
Figure S2. A comparison of dispersion curves modeled with the SRD and Tang-Tonnies damping. The undamped form is also shown for comparison. The undamped dispersion used for this figure is -1847 kcal/mol at 1 Å. The sum of van der Waals radii of the two atoms are 3.41 Å. The dispersion energy at 3.41 Å was damped by 1% for Tang-Tonnies and 4% for SRD damping compared to the undamped form.

2. force field parameters

In summary, there are a total of 455 parameters for the AFM2020 zwitterionic alanine model. 74 of these are intermolecular parameters, 381 of these are intramolecular parameters. Out of the intramolecular parameters, 87 of these are torsional parameters with each torsional term having at least three parameters.

2.1 all force field parameters for the hydrated Ala$_7$.

Type	Partial-charge(e)
H1	0.15681
H2	0.40227
H3	0.55263
H4	0.14652
O1	-0.52345
O2	-0.69732
C1	-0.12120
C2	-0.47844
C3	0.44795
C4	0.00385
C5	0.26460
C6	0.67818
N1	-1.22751
N2	-0.47713
nonbonded parameters

ENERGY EXPRESSION:

\[\text{EXP}=A \exp(-B \cdot r) \]

\[\text{SRD}=C_6/(r^6+R_0^6) \]

\[\text{POW}=A/r^{12} \]

Ala-Ala repulsion and dispersion parameters
atom1

H₄
H₄
H₄
H₄
H₄
H₄
H₄
H₄
H₄
H₁
H₁
H₁
H₁

C₂	O₂	EXP	6757.217	3.500	
C₂	O₁	EXP	1766.806	3.400	
C₂	C₃	EXP	3768.702	3.300	
C₂	N₂	EXP	10473.568	3.500	
C₂	N₁	EXP	11770.635	3.500	
C₃	O₂	EXP	6893.693	3.419	
C₃	O₁	EXP	399.259	2.416	
C₃	C₂	EXP	4314.027	3.300	
C₃	C₃	EXP	2251.230	3.500	
C₃	C₄	EXP	8283.029	3.500	
C₃	C₅	EXP	1492.781	3.500	
C₃	N₂	EXP	11770.635	3.500	
C₃	N₁	EXP	10473.568	3.500	
C₃	N₂	EXP	369.527	3.085	
C₄	O₂	EXP	197.956	3.536	
C₄	O₁	EXP	9281.277	4.100	
C₄	C₂	EXP	5355.539	3.500	
C₄	C₃	EXP	12035.240	3.500	
C₄	O₁	EXP	1051.128	3.600	
C₄	C₆	EXP	27773.501	3.600	
C₄	C₁	EXP	31471.540	3.700	
C₄	C₂	EXP	186737.415	3.600	
C₄	C₃	EXP	20668.664	3.500	
C₄	C₅	EXP	51155.421	3.600	
C₄	N₁	EXP	197705.286	3.600	
C₅	O₂	EXP	411853.138	3.600	
C₅	O₁	EXP	29105.048	3.600	
C₅	C₂	EXP	1051.128	3.600	
C₅	C₃	EXP	27773.501	3.600	
C₅	C₄	EXP	31471.540	3.700	
C₅	C₅	EXP	186737.415	3.600	
C₅	N₂	EXP	20668.664	3.500	
C₅	N₁	EXP	51155.421	3.600	
C₅	N₁	EXP	20668.664	3.500	
C₅	N₂	EXP	411853.138	3.600	
C₅	N₃	EXP	29105.048	3.600	
C₅	N₄	EXP	1051.128	3.600	
C₅	N₅	EXP	27773.501	3.600	
C₅	N₆	EXP	31471.540	3.700	
C₅	N₇	EXP	186737.415	3.600	
C₅	N₈	EXP	20668.664	3.500	
C₅	N₉	EXP	51155.421	3.600	
C₅	N₁₀	EXP	20668.664	3.500	
Ala-water repulsion and dispersion parameters

atom1	atom2	Repulsion A(kcal/mol Å²)	Dispersion C6(kcal/(mol Å⁶))	R0(Å)	
HW O2	EXP	1083.973	3.314		
HW O1	EXP	1719.978	3.792		
HW C1	EXP	142404.189	5.137		
HW C2	EXP	2651.640	2.980		
HW N2	EXP	588.854	2.536		
HW N1	EXP	15304.476	3.322		
OW H3	EXP	1168.238	3.503		
OW H2	EXP	376.060	2.912		
OW H1	EXP	5015.246	3.674		
OW H4	EXP	2758.441	3.239		
OW N1	EXP	425637.178	4.323	-1038.686	1.984
OW N2	EXP	825262.448	4.493	-487.852	1.984
OW C5	EXP	3622219.890	5.363	-609.539	1.997
OW C4	EXP	2022922.681	5.081	-867.488	1.997
OW C3	EXP	84291.773	3.795	-438.930	2.035
OW C2	EXP	62333.711	3.494	-1124.531	1.997
OW C1	EXP	427188.493	4.894	-913.293	1.997
OW C6	EXP	296188.378	4.009	-586.588	2.035
OW O1	EXP	185032.327	4.199	-333.497	1.956
OW O2	EXP	548862.558	4.678	-306.997	1.956

bonded parameters:

Gromacs unit, can be used for Gromacs topology file directly.

Bonded parameters:
U=k/2*(r-r0)^2
r0(nm)
k([kJ/(mol nm^2)])

C6 O2	0.1271	476083.900072
C2 H1	0.1108	293563.217912
C4 H4	0.1103	285821.935088
C3 N2	0.1351	355163.2332
C4 N2	0.1446	251766.043248
C1 N2	0.1443	286362.197816
C3 O1	0.1248	568275.181656
C5 H4	0.1898	292236.187504
H3 N1	0.1839	386536.245464
C1 C2	0.1589	198699.78088
C3 C5	0.1444	160546.887368
C3 C4	0.148	157980.338088
H2 N2	0.1027	369963.7148
C2 C4	0.1519	195899.369432
C2 C5	0.1536	281958.7512
C6 C1	0.1482	145147.805072
C5 N1	0.1471	187137.818208
C1 H4	0.1184	287718.38748
Angles

\[U = k/2*(\theta - \theta_0)^2 \]

Atom 1	Atom 2	Atom 3	U	k (kJ/(mol rad^2))
C6	C1	N2	99.43	388.466744
C4	C2	H1	104.798	355.267624
C4	C3	O1	147.292	442.428344
C2	C4	C3	107.624	338.242928
C5	C3	O1	145.813	437.294944
C2	C5	N1	115.126	685.807808
H3	N1	H3	110.5	302.013672
C4	N2	H2	109.661	250.395664
C2	C4	H4	108.113	283.84256
H4	C5	N1	103.271	399.53016
C5	N1	H3	107.624	338.242928
O2	C6	O2	152.789	704.50192
C3	C5	N1	106.5	456.22336
C4	C3	N2	109.661	250.395664
C6	C1	H4	105.49	317.327112
H4	C1	N2	104.427	399.078288
C5	C3	N2	142.14	318.113704
C2	C5	H2	109.121	320.963008
C3	C5	H2	108.371	328.95026
C1	C2	H1	104.113	283.84256

Dihedral

\[U = A*(1+\cos(n*\phi - \delta)) \]

Atom 1	Atom 2	Atom 3	Atom 4	U	A (kJ/mol)	n
C2	C1	N2	C3	0	1.787072	3
C2	C1	N2	C3	0	1.979032	2
C2	C1	N2	C3	0	5.317864	1
C3	C4	N2	C3	0	1.313776	3
C3	C4	N2	C3	0	1.937912	2
C4	C3	N2	C3	0	1.280084	1
N2	C3	C5	N1	0	0.225936	3
N2	C3	C5	N1	180	3.631712	2
N2	C3	C5	N1	0	5.669320	1
N2	C3	C4	N2	180	0.774800	3
N2	C3	C4	N2	180	3.978984	2
N2	C3	C4	N2	0	3.438880	1
C4	C3	N2	C1	180	17.593720	2
C5	C3	N2	C4	180	16.003800	2
C4	C3	N2	C4	180	20.137592	2
C4	C3	N2	H2	180	7.928680	2
C5	C3	N2	H2	180	8.146248	2
O1	C3	N2	H2	180	18.786160	2
O1	C3	N2	C4	180	15.874592	2
O1	C3	N2	C4	180	15.568664	2
O1	C3	C4	H4	-11.018	1.121312	3
N2	C3	C4	C2	126.331	0.192464	3
C2	C4	N2	C3	44.428	2.694496	3
N2	C3	C5	C2	13.07	0.719648	3
C2	C1	N2	C3	47.316	2.606632	3
H1	C2	C4	C3	24.673	0.552288	3
H1	C2	C5	C3	23.642	0.443584	3
2.2 Ace-(Ala)$_n$-NMe parameters

Gas phase simulations were performed with Ace-(Ala)$_n$-NMe to avoid the unphysical attractions between charged termini. The atom types and parameters for Ace and NMe are borrowed from the original AFM2020 except that the charges on CH$_3$ were slightly adjusted to make Ace and NMe neutral. The adjusted charges and the atom types are summarized in Figure S2.

![Figure S3. Ace-Ala-NMe atom types and the adjusted charges on CH$_3$ groups.](image)

2.3 GROMACS input files for simulations

The gromacs input files for hydrated zwitterionic Ala$_7$ and for Ace-(Ala)$_7$-NMe in vacuum can be found at https://wanglab.uark.edu/models/Alanine.htm

3. Computation of J-coupling constants

The J-coupling constants were calculated with the Karplus equation2

\[J(\phi) = A \cos^2(\phi + \theta) + B \cos(\phi + \theta) + C \]

(S1)

where ϕ is the backbone dihedral angle. The coefficients A, B, C and offset angle θ are shown in Table
S2 along with the estimated errors σ_i used to calculate χ^2.

The following equation was used to calculate $^3J(H_N,C_\alpha)^3$

$$^3J_{H_N,C_\alpha} (\phi, \psi_{i-1}) = -0.23 \cos \phi - 0.20 \cos \psi_{i-1} + 0.07 \sin \phi + 0.08 \sin \psi_{i-1}$$

$$+ 0.07 \cos \phi \cos \psi_{i-1} + 0.12 \cos \phi \sin \psi_{i-1}$$

$$- 0.08 \sin \phi \cos \psi_{i-1} - 0.14 \sin \phi \sin \psi_{i-1} + 0.54$$ \hspace{1cm} (S2)

Table S2. Parameters for Karplus equations used in this work.$^{3-6}$

J-coupling	ϕ	A (Hz)	B (Hz)	C (Hz)	θ (°)	σ (Hz)
$^3J(H_N,H_\alpha)$	ϕ_i	7.09	-1.42	1.55	-60	0.70
$^3J(H_N,C')$	ϕ_i	4.29	-1.01	0.00	180	0.45
$^3J(H_\alpha,C')$	ϕ_i	3.72	-2.18	1.28	120	0.29
$^3J(H_N,C_\beta)$	ϕ_i	3.06	-0.74	0.13	60	0.30
$^1J(N,C_\alpha)$	ψ_i	1.70	-0.98	9.51	0	0.59
$^2J(N,C_\alpha)$	ψ_{i-1}	-0.66	-1.52	7.85	0	0.50
$^3J(H_N,C_\alpha)$	$\phi_{i,\psi_{i-1}}$				Eq. S2	0.10
4. J-coupling constants of each residue of Zwitterionic Ala$_3$ and Ala$_5$

Detailed analysis of the J-coupling constants for zwitterionic Ala$_3$ and Ala$_5$ at 300 K from simulations with the AFM2020 force field. Experimental numbers7 are also shown for convenience.

Table S3. J-coupling constants for Ala$_3$ and Ala$_5$ in water at 300 K calculated from simulations with and experiments.

J-coupling constants/Hz	Ala3	Ala5			
	AFM2020	Exp	AFM2020	Exp	
residue	type				
A2	3J(HN,H$_\alpha$) (ϕ_2)	5.87	5.68	5.84	5.59
	3J(HN,C') (ϕ_2)	1.04	1.13	1.05	1.13
	3J(HN,Cβ) (ψ_2)	2.02	2.39	2.03	2.30
	1J(N,C$_\alpha$) (ψ_2)	11.26	11.34	11.41	11.36
	3J(HN,H$_\alpha$) (ϕ_3)		6.02	5.74	
	3J(HN,C') (ϕ_3)	1.03	N/A		
	3J(HN,Cα) (ϕ_3)	1.65	1.86		
A3	3J(HN,Cβ) (ϕ_3)	1.97	2.24		
	1J(N,C$_\alpha$) (ϕ_3)	11.34	11.26		
	2J(N,C$_\alpha$) (ψ_2)	8.38	8.55		
	3J(HN,C$_\alpha$)(ϕ_3, ψ_2)	0.45	0.68		
	3J(HN,H$_\alpha$) (ϕ_4)	5.94	5.98		
	3J(HN,Cβ) (ϕ_4)	1.07	1.15		
	3J(HN,C') (ϕ_4)	1.64	1.89		
A4	3J(HN,Cβ) (ϕ_4)	1.97	2.14		
	1J(N,C$_\alpha$) (ψ_4)	10.82	11.25		
	2J(N,C$_\alpha$) (ψ_3)	8.38	8.40		
	3J(HN,C$_\alpha$)(ϕ_4, ψ_3)	0.46	0.69		

N/A: data are not available.
5. convergence of simulations

In this work, all the peptides in water were simulated for 1 µs at 300 K. To check the convergence, running average of χ^2 as a function of simulation time for two 500 ns trajectories are shown for Ala$_7$. (Figure S5) The results show that the properties of interest converge around 50 ns. Also shown is the relative free energy based on two separate 500 ns trajectories (Figure S6) for Ala$_7$. For the more important regions of the conformation space, the free energy converges well within 500 ns.

Figure S5. Running average of the χ^2 for two independent trajectories calculated from simulations of Ala$_7$ with AFM2020.

Figure S6. Relative free energies of Ala$_7$ calculated from two 500 ns simulation trajectories with AFM2020.
6. reference conformation and gradient data

A ref file is provided that contains conformation and gradient data for adaptive force matching. The file can be used by the CRYOFF code available from https://wanglab.uark.edu/CRYOFF.

This file can be used to refit the AFM2020. This is useful for further refinement of the potential with additional conformations in the training set.

Due to its large size, the file can be found at https://wanglab.uark.edu/models/Alanine.htm
References

(1) Anatole von Lilienfeld, O.; Tkatchenko, A. Two- and Three-Body Interatomic Dispersion Energy Contributions to Binding in Molecules and Solids. J. Chem. Phys. 2010, 132, 234109.

(2) Karplus, M. Vicinal Proton Coupling in Nuclear Magnetic Resonance. J. Am. Chem. Soc. 1963, 85, 2870-2871.

(3) Hennig, M.; Bermel, W.; Schwalbe, H.; Griesinger, C. Determination of ψ Torsion Angle Restraints from 3J(Cα,Cα) and 3J(Cα,HN) Coupling Constants in Proteins. J. Am. Chem. Soc. 2000, 122, 6268-6277.

(4) Hu, J.-S.; Bax, A. Determination of φ and χ1 Angles in Proteins from 13C−13C Three-Bond J Couplings Measured by Three-Dimensional Heteronuclear NMR. How Planar Is the Peptide Bond? J. Am. Chem. Soc. 1997, 119, 6360-6368.

(5) Wirmer, J.; Schwalbe, H. Angular Dependence of 3J(Ni,Cα) and 3J(Ni,Cα(i−1)) Coupling Constants Measured in J-modulated HSQCs. J. Biomol. NMR 2002, 23, 47-55.

(6) Ding, K.; Gronenborn, A. M. Protein Backbone 1H−13Cα and 15N−13Cα Residual Dipolar and J Couplings: New Constraints for NMR Structure Determination. J. Am. Chem. Soc. 2004, 126, 6232-6233.

(7) Graf, J.; Nguyen, P. H.; Stock, G.; Schwalbe, H. Structure and Dynamics of the Homologous Series of Alanine Peptides: A Joint Molecular Dynamics/NMR Study. J. Am. Chem. Soc. 2007, 129, 1179-1189.