A Review of Pyrene Bioremediation Using *Mycobacterium* Strains in a Different Matrix

Mohammad Qutob 1, Mohd Rafatullah 1,* , Syahidah Akmal Muhammad 1,* , Abeer M. Alosaimi 2, Hajer S. Alorfi 3 and Mahmoud A. Hussein 3,4

1 Division of Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; mohammadisamqutob@student.usm.my
2 Department of Chemistry, Faculty of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; a.alosaimi@tu.edu.sa
3 Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; halorf@kau.edu.sa (H.S.); maabdo@kau.edu.sa (M.A.H.)
4 Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
* Correspondence: mrafatullah@usm.my (M.R.); syahidah.muhammad@usm.my (S.A.M.); Tel.: +60-46532111 (M.R.); Fax: +60-4656375 (M.R.)

Abstract: Polycyclic aromatic hydrocarbons are compounds with 2 or more benzene rings, and 16 of them have been classified as priority pollutants. Among them, pyrene has been found in higher concentrations than recommended, posing a threat to the ecosystem. Many bacterial strains have been identified as pyrene degraders. Most of them belong to Gram-positive strains such as *Mycobacterium* sp. and *Rhodococcus* sp. These strains were enriched and isolated from several sites contaminated with petroleum products, such as fuel stations. The bioremediation of pyrene via *Mycobacterium* strains is the main objective of this review. The scattered data on the degradation efficiency, formation of pyrene metabolites, bio-toxicity of pyrene and its metabolites, and proposed degradation pathways were collected in this work. The study revealed that most of the *Mycobacterium* strains were capable of degrading pyrene efficiently. The main metabolites of pyrene were 4,5-dihydroxy pyrene, phenanthrene-4,5-dicarboxylic, phthalic acid, and pyrene-4,5-dihydridol. Some metabolites showed positive results for the Ames mutagenicity prediction test, such as 1,2-phenanthrenedicarboxylic acid, 1-hydroxyppyrone, 4,5-dihydropyrene, 4-phenanthrene-carboxylic acid, 3,4-dihydroxyphenanthrene, monohydroxy pyrene, and 9,10-phenanthrenequinone. However, 4-phenanthrol showed positive results for experimental and prediction tests. This study may contribute to enhancing the bioremediation of pyrene in a different matrix.

Keywords: pyrene; toxicity; pathways; mycobacterium; metabolites; biodegradation

1. Introduction

The demand for water and energy is increasing, putting additional strain on water and environmental resources. Water scarcity has been identified as a socioeconomic and environmental problem that challenges the world in the twenty-first century, affecting approximately four billion people worldwide at least one month per year [1–3]. The continuous release of harmful chemicals such as persistent organic pollutants (POPs) is considered one of the most threatening environmental problems, as mentioned in the Stockholm convention, 2004, Basel convention, 1989, the Rotterdam convention, 1998, Barcelona resolution, 1995, 8 Aarhus Protocol, 1998, and the Arctic environmental protection strategy, 1991 [4]. According to the listed protocols and conventions, harmful chemicals should be eliminated, or their production decreased. POPs are a group of toxic chemicals that stay in the environment long-term and resist natural degradation. There...
are two major sources of POPs, (i) natural sources, including forest fires, volcanic eruptions, and biogenic sources (microbial metabolites, plants, and algae), and (ii) anthropogenic sources, including incomplete combustion (oil, wood, petroleum, and coal), synthetic fertilizers, pesticides formulations, and industrial process [5]. POPs groups include personal care products, polychlorinated compounds, dibenzo-p-dioxins and dibenzofurans, and polycyclic aromatic hydrocarbons (PAHs) [6]. The increasing discharge of POPs into the environment leads to them bioaccumulating and becoming biomagnified until they reach a specific concentration leading to bio-toxicity. POPs can cross boundaries, move freely away from their original sources, and be absorbed by soil particles; they are volatile in the atmosphere, can run off into water bodies, enter into the food chain, be uptaken by plants, or leach into groundwater. PAHs are compounds that contain two or more benzene rings. The United States Environmental Protection Agency (USEPA) classified 16 PAHs as priority pollutants due to their low solubility, non-polarity, hydrophobicity, high boiling point, high melting point, corrosion resistance, conductivity, heat resistance, light-sensitive, bioaccumulation, biomagnification, and bio-toxicity [7,8]. Many adverse effects of PAHs have been reported on human health, aquatic organisms, and wildlife, such as genetic mutation, endocrine disruption, cardiovascular disorders, hypertension, immune system suppression, and birth defects. In this work, pyrene was the main target pollutant and was detected at higher concentrations than the standard values or maximum contaminant levels [9]. According to the United States Environmental Protection Agency (USEPA), the standard values of pyrene for human health for the consumption of water and organism is 20 μg/L, while for human health for the consumption of water is only 30 μg/L [10]. Many biological, physical, and chemical treatment techniques have been used to eliminate pyrene from different mediums. The advanced oxidation process is one of the most efficient treatment methods capable of oxidizing pyrene [11]. However, advanced oxidation processes need to inject a large number of chemicals to complete mineralization, which increases the treatment costs and the discharge of chemicals into the environment [12]. Bioremediation approaches have gained attention due to their advantages, such as being cost-effective and environmentally friendly. Biological treatment is a biological process that uses target pollutants as a source of energy and carbon to degrade, mineralize, transform, and detoxify the target pollutant in a specific medium. Bioremediation can use indigenous biological agents (biostimulation) or external biological agents (bioaugmentation) and can be applied either in situ or ex situ based on many factors such as, (i) type of pollutants, (ii) cost of treatment, (iii) geological site, (iv) pollutants’ concentration, and (v) depth of pollution. The most popular treatment techniques use in situ natural attenuation, bio-sluiping, bioventing, disparaging, and phytoremediation. Many ex situ techniques are used to treat many pollutants, including POPs, such as landfarming, bioreactor, windrow, and biopile windrow [13]. Quintella et al. [14] applied a strengths, weaknesses, opportunities, and threats (SWOT) analysis for the study of bioremediation technologies. They revealed that most of the studies have been conducted in the United States of America and China, and the most common biological agents used were bacteria, enzymes, fungi, algae, plants, and protozoa, with percentages of 57%, 19%, 13%, 6%, 4%, and 1%, respectively. Water, soil, and sludge were the most common degradation matrixes that were treated, with percentages of 53%, 36%, and 11%, respectively. They reported that the target pollutants that were degraded via biological agents the most were oil, metals, organic waste, polymers, food, and cellulose, and their percentages were 38%, 21%, 21%, 10%, and 5%, respectively. Recently, the degradation of pyrene via isolation of bacterial strains has increased. Mycobacterium strains and Rhodococcus strains were the most dominant bacterial species used for PAHs degradation; these strains were enriched and isolated from different sites contaminated with petroleum products, such as fuel stations [15,16]. Figure 1 represents the number of documents by year and the percentage of each type of document found using keywords (oxidation of pyrene by bacteria) through the Scopus database. In 1995, the number of studies related to the biodegradation of pyrene for each type of document was
5, while in 2021, the number of studies was 55, which means that this topic has been gaining researchers’ attention. More than 94% of these studies were articles, 2.3%, 2.0%, 0.6%, 0.5%, 0.5, and 2.0% were reviews, conference papers, notes, book chapters, short surveys, and errata, respectively. In this review, the main objective is to collect and organize the scattered information related to the studies that investigated the degradation of pyrene by *Mycobacterium* strains. The major topics that are investigated in this review are degradation efficiency, pyrene metabolites, bio-toxicity, and the proposed degradation pathways.

Figure 1. (A) represents the number of documents by year, and (B) the percentage for each type of document when using keywords (oxidation of pyrene by bacteria) on the Scopus database.

2. Degradation of Pyrene by *Mycobacterium* sp.

Several bacterial strains have been isolated to use pyrene as a sole carbon and energy source; most of them are Gram-positive, such as *Mycobacterium* and *Rhodococcus* [17,18]. *Mycobacteria* are catalase-positive, non-motile, non-spore-forming, rod-shaped bacteria (0.2–0.6 mm wide and 1.0–10 mm long). The colony morphology of *Mycobacteria* varies, with some species growing as rough or smooth colonies. Colony color ranges from white to orange or pink [19]. It has been reported that the first isolation of a bacterial strain to mineralize pyrene was in 1988 [20]. *Mycobacterium* was the most dominant strain to mineralize pyrene [21]. The successful mineralization of pyrene by *Mycobacterium* strains refers to their ability to produce several functional enzymes capable of metabolizing high molecular weight polycyclic aromatic hydrocarbons, such as pyrene. Dioxygenase is a complex, multi-component enzymatic system containing iron sulfur-containing terminal oxygenase, reductase, and ferredoxin [22]. It has been reported that hydroxylation is the initial biochemical step in the pyrene degradation process. It introduces a couple of oxygen atoms into aromatic pyrene rings [23]. The complete mineralization of pyrene occurs through different enzymatic reactions such as dioxygenase, dihyrogendiol, dehydrogenase, ring cleavage dioxygenase, epoxide hydrolase, alcohol dehydrogenase, acet-aldehyde dehydrogenation, and decarboxylation [24]. Figure 2 illustrates the biodegradation of pyrene by *Mycobacterium*.
Figure 2. Illustrated the biodegradation of pyrene by Mycobacterium.

Many functional genes have been identified in the Mycobacterium strains, such as NidA, NidB, NidAB, NidA3B3, PhdA, PhdB, PdoA, PdoB, and PdoAB. Among Mycobacterium strains, the vanbaalenii PYR-1 strain has many functional genes capable of degrading pyrene and its metabolites. Table 1 includes some of the enzymes produced by different Mycobacterium strains during pyrene degradation. Miller et al. [25] identified NidB and NidA genes that are responsible for producing dioxygenase enzyme when Mycobacterium sp. JLS is used to catabolize pyrene. Zeng et al. [26] reported that the PdoAB gene is responsible for encoding a dioxygenase capable of oxidizing pyrene. Costa et al. [27] observed that PhdA and PhdB are the main genes of the dioxygenase enzyme in the Mycobacterium fortuitum strain.

Table 1. Summary of the functional genes for each Mycobacterium strain.

Strain	Functional Genes	Reference
Mycobacterium sp.	NidA, NidA3	[15]
Mycobacterium sp. 6PY1	PdoB2, PdoA1, PdoA2	[24]
Mycobacterium sp. JLS	NidB and NidA	[25]
Mycobacterium sp. MCS	NidA and NidB	
Mycobacterium sp. NJS-P	PdoAB	[26]
Mycobacterium sp. S65	PdoAB	
Mycobacterium fortuitum	PhdA and PhdB	[27]
Mycobacterium sp. PO1 and PO2	NidA, PhdA, and NidA3	[28]
Mycobacterium sp. AP1-PYR	NidAB and PdoA2B2	[29]
Mycobacterium sp. MHP-1	NidAB	[30]
Mycobacterium sp. RJII-135	NahAc, BphA1, OrtolC1C2	[31]
Mycobacterium sp. KMS	PdoF	
Mycobacterium vanbaalenii PYR-1	NidB, NidA, NidB2, PhdF, PhdG, NidD, PhdJ, PhtAb, PhtAc, PhtAd, PhtB, NidA3, NidB3	[32]
Mycobacterium gilvum PYR-GCK	AraC	
Mycobacterium sp. gilvum PYR10	NidAB and NidA3B3	[33]
Mycobacterium sp. Pallens PYR15	NidAB and NidA3B3	
In this review article, more than 40 studies related to pyrene degradation via *Mycobacterium* strains or consortium culture were collected. In general, *Mycobacterium* strains showed high degradation efficiency, most of them 80–100%. There are numerous *Mycobacterium* strains that can degrade pyrene. The phylogenetic tree of *Mycobacterium* strains is depicted in Figure 3. The *Mycobacterium* sequences were collected using the NCBI gene bank (Home Nucleotide—www.ncbi.nlm.nih.gov (accessed on 30 December 2021)). The sequences were assembled, aligned, and analyzed with MEGA software version 11.0.

![Figure 3. Phylogenetic tree for *Mycobacterium* strains that have been used for pyrene degradation.](image)

Wanapaisan et al. [28] used a consortium culture containing five bacterial strains (Mycobacterium sp. PO1, PO2, Bacillus sp. FW1, Ochrobactrum sp. PW1, and Novosphingobium pentaromativorans PY1). The result showed that 100 mg/L of pyrene was completely eliminated within 6 days of incubation. In addition, the Mycobacterium sp. NJS-1 strain was used to mineralize pyrene on metal-modified montmorillonite. This study revealed that around 93.6% of 15 mg/L of pyrene was degraded within 3 days at neutral pH conditions, and the degradation rate was first-order kinetics 0.62 k/d [34]. Additionally, Zhang et al. [35] applied a consortium of bacterial strains (Micrococcus sp. PHE9 and Mycobacterium sp. NJS-P) to decompose pyrene. About 58% of 100 mg/L of pyrene was removed after 18 days of incubation, and the degradation rate was 3.24 mg/L × day. Sun et al. [36] isolated the Mycobacterium sp. WY10 strain to oxidize 50 mg/L of pyrene in a mineral salt medium. Around 3 × 10⁸ CFU/mL was inoculated, and the degradation was 83% after 72 h of treatment. Xiaoning Li et al. [37] examined the Mycobacterium sp. NJS-1 strain to treat and remove high molecular weight polycyclic aromatic hydrocarbons, such as pyrene. The author used a mineral medium, and around 1.6 × 10⁷ CFU/mL was inoculated to degrade 200 mg/L of pyrene; the degradation was 90% of pyrene in the presence of humic acid, while about 10.5% was in the absence of humic acid within 7 days of incubation. The Mycobacterium gilvum CP13 strain was isolated for oxidizing pyrene in a mineral salt medium at alkaline conditions. The bacteria were inoculated at an optical density of 600 nm = 0.5, and 95% of 50 mg/L of pyrene was oxidized after 7 days of degradation treatment [38]. Furthermore, Chen et al. [39] applied biotechnology to treat agricultural and industrial soils contaminated with 16 priority polycyclic aromatic hydrocarbons, including pyrene. The Mycobacterium strain was capable of removing 85% of 100 mg/kg of pyrene during 35 days of treatment in both soils. Also, Terzaghi et al. [40] examined the Mycobacterium gilvum VM552 strain to degrade pyrene suspended on the leaf surface of holm oak (Quercus ilex). The results indicated that after 2 weeks of treatment, the removal was only 17%. Chen et al. [15] attempted to stimulate a microbial degradation approach for soil-containing pyrene. In this study, the active bacterial strains were identified; among them, Mycobacterium strains were the most dominant, and the degradation was 80% of 60 mg/kg within 35 days; the experiment was conducted at pH 8. Sarma and Pakshirajan [41] isolated the Mycobacterium frederiksbergense strain to mineralize pyrene using a batch shake flask reactor. After 200 h of incubation, the pyrene was totally eliminated at neutral pH conditions. Moreover, Peng et al. [17] reported that approximately 81% of 50 mg/kg of soil-containing pyrene was oxidized after 60 days of bioremediation under acidic conditions using the Mycobacterium strain. They pointed out that the NidA gene in Mycobacterium was responsible for generating the dioxygenase enzyme. In addition, the Mycobacterium vanbaalenii PYR-I strain was used in a phosphate-based mineral medium, and 25 µM of pyrene was completely oxidized after 24 h of treatment [18]. Table 2 provides a summary of the studies that used Mycobacterium strains to degrade pyrene in a different medium, pH, optical density, degradation efficiency, incubation time, and initial concentration.
Table 2. Summary of the studies that used *Mycobacterium* strains to treat pyrene in a different medium.

Strains	Accession No./or Reference No.	Biodegradation Matrix	Degradation %	Incubation Time	pH	Temperature (°C)	Concentration of Pyrene	OD₆₀₀/Number of Cells	References
Mycobacterium strains	*	Pyrene-containing soil	80	35 days	Around 8	25	60 mg/kg	Ranging from 8.9 × 10^9 to 1.9 × 10^10 copies/g	[15]
Myco66F/Myco600R	FN690762 and FN690936	Pyrene-spiked soils	81	60 days	5.84	25	50 mg/kg	*	[17]
Mycobacterium vanbaalenii PYR-1	NR_074572.1	Phosphate-based minimal medium	100	24 h	*	*	25 μM	OD₆₀₀ = 1.0	[18]
Mycobacterium sp. KR2	*	Mineral salts medium	60	8 days	7	20	0.5 mg/mL	OD₆₀₀ = 0.5–0.6	[21]
Mycobacterium sp. PO1 and PO2									
Novosphingobium pentaromativorans PO1	(NZ_BLTG00000000.1)	Carbon-free mineral medium (CFMM) culture	100	6 days	*	30	100 mg/L	10⁸ CFU/mL	[28]
3-Ochrobactrum sp. PW1	(NZ_BLTH00000000.1)								
4-Bacillus sp. FW1									
Mycobacterium sp. NJS-1	AB548662	Metal-modified montmorillonite	93.6	3 days	7	28	15 mg/L	1.6 × 10⁸ CFU/mL	[34]
Micrococcus sp. PHE9		Biofilms extracellular polymeric substances-extracted bacteria	58	18 days	*	28	100 mg/L	1.6 × 10⁸ CFU/mL	[35]
Mycobacterium sp. NJS-P	AB548663								
Mycobacterium sp. WY10	NZ_CP018043.1	Mineral salts medium	83	72 h	*	28	50 mg/L	OD₆₀₀ = 1.0	[36]
Mycobacterium sp. NJS-1	AB548662.1	Mineral medium	90	7 days	Acidic condition	28	200 mg/L	1.6 × 10⁵ CFU/mL	[37]
Mycobacterium gilvum CP13	KF378755	Mineral salts medium	95	7 days	Alkaline environment	35	50 mg/L	OD₆₀₀ = 0.5	[38]
2-*Mycobacterium* sp. denovo930873	*	Agricultural soil	80	35 days	*	25	100 mg/kg	*	[39]
Mycobacterium gilvum VM552	ATCC 43909	Pyrene present on the leaf surface of holm oak (*Quercus ilex*)	17	2 weeks	*	23±2	*	10⁴ cells/g	[40]
Mycobacterium frederiksborgense	Taxonomy ID: 117567	Batch shake flask experiments	100	200 h	7	28	1000 mg/L	*	[41]
Taxonomy ID/Strain Name	Description	Time (Days)	Results	References					
-------------------------	-------------	-------------	---------	------------					
Mycobacterium frederiksenbergense	Slurry phase and surfactant-aided systems	100	6 days	7	28	400 mg/L	*	[42]	
Mycobacterium sp. flavedens	Mineral salts medium	38.8	2 weeks	Natural and 4	24	50 µg/ml	2.2 × 10⁷ cells/mL	[43]	
Mycobacterium sp. AP1	Pyrene-mineral salts medium	Decreased from 180 to 50 µg/mL around 72	6 days	*	25	180 µg/ml	*	[44]	
Mycobacterium sp. A1-PYR	PYR in liquid medium	33	7 days	*	30	10 mg/L	OD₆₀₀ = 1.0	[45]	
Selenastrum capricornutum	Soil extract (SE) medium	100	14 days	7	*	10 mg/L	1.0 × 10⁷ CFU/mL	[46]	
Mycobacterium sp. A1-PYR	Pyrene-mineral salts medium	50	7 days	*	30	10 mg/L	OD₆₀₀ = 1.0	[47]	
Mycobacterium gilvum	VM0442	AF544636.1							
Mycobacterium gilvum	VM0552	AF544635							
Mycobacterium gilvum	VM0504	AF544634							
Mycobacterium gilvum	VM0505	AF544633							
Mycobacterium chlorophenolicus	PCP-1	X79094							
Mycobacterium petroleiphilum	GCK	UEGS0100001.1							
Mycobacterium sp. PYR	GCK	AY694989							
Mycobacterium sp. PYR	GCK	AY694989							

*OD₆₀₀ refers to Optical Density at 600 nm.
Strain	Accession Number
2-Mycobacterium gilvum VM0883	AF544637.1
3-Mycobacterium gilvum VM0442	AF544636.1
4-Mycobacterium gilvum VM0852	AF544635
5-Mycobacterium gilvum iVM0504	AF544634
6-Mycobacterium gilvum VM0505	AF544633
7-Mycobacterium sp. BB1	X81891
8-Mycobacterium sp. HE5	AJ012738
9-Mycobacterium mucogenicum	AY457073.1
1-Mycobacterium sp. JLS	AF387804
2-Mycobacterium monacense B9-21-178	AF107039.2
3-Mycobacterium vaccae VM0588	AF544639.1
4-Mycobacterium vaccae VM0587	AF544638.1
5-Mycobacterium sp. KMS	AY083217
6-Mycobacterium sp. MCS	AF387803.1
7-Mycobacterium doricum DSM 44339	AF547917.1
8-Mycobacterium doricum AF264700.1	
9-Mycobacterium duvalii NR_026073.1	
10-Mycobacterium duvalii CIP 104539	AF547918.1

Minimal basal salts medium

Strain	Accession Number	Time	CFU/mL					
Mycobacterium sp. RJGII-135	AY216464.1	50	4–8 h	*	0.5 μg/mL	*	[49]	
Mycobacterium sp. AB180481	Carbon-free minimal	50	7 days	9	30	Final	3.9 × 10^6 CFU/mL	[30]
Strain	Medium	Concentration at 0.1% [w/v]						
------------------------	---	-----------------------------						
1-Mycobacterium sp. gilvum PYR10	* Minimal media containing pyrene	100 mg/L						
2- Mycobacterium sp. palens PYR15	*							
1-Mycobacterium	* Bio-electrokinetic remediation	120.2 ± 1.76 mg/kg						
2-Aeromicrobium	* Soil placed into culture dishes	54.3 ± 1.7						
3-Arenimonas	* Saline alkaline soils	54.3 ± 1.7						
4-Bacillus	* Mineral salts medium by LBL bio-microcapsules	54.3 ± 1.7						
5-Hydrogenophaga	* Pyrene-basal salts medium	54.3 ± 1.7						
6-Azoarcus	* Soil pH 6.6	54.3 ± 1.7						
7-Luteimonas	* Soil pH 8.75	54.3 ± 1.7						
Mycobacterium sp. B2	* Saline alkaline soils	54.3 ± 1.7						
Mycobacterium gilvum CP13	* Mineral salts medium by LBL bio-microcapsules	54.3 ± 1.7						
Mycobacterium gilvum IPF	* Mineral salts medium	54.3 ± 1.7						
Mycobacterium frederikshergense	* Slurry phase system	54.3 ± 1.7						
Mycobacterium gilvum VM552	* Aqueous medium	54.3 ± 1.7						
Mycobacterium gilvum CP13	* Aqueous solution + modified peanut hull powder	54.3 ± 1.7						
1-Mycobacterium barrassi	* Aqueous solution + sediments	54.3 ± 1.7						
2-Dyella ginsengisoli	*	54.3 ± 1.7						
3-Rhodococcus equi	*	54.3 ± 1.7						
4- Bacillus pumilus	*	54.3 ± 1.7						
5-Bacillus weihenstephanensis	*	54.3 ± 1.7						
6-Labrys sp.	*	54.3 ± 1.7						
Mycobacterium strains (AB548662) for NJS-1	* Liquid culture minimal	54.3 ± 1.7						
Fermentation	2022, 8, 260							

| (NJS-1 and NJS-P) and (AB548663) for (NJS-P) and NJS-P, respectively. |

1-Mycobacterium fortuitum	2- Bacillus cereus	3-Microbacterium sp.	4- Gordonia polisoprenivorans	5-Microbacteriaceae bacterium
U92089.1 Pyrene-containing soil	96.3 70 days 7 30 962.7 mg/kg 2.0 × 10^8 CFU/g	60 96 h 30 1 mg/L 1.0 × 10^7 CFU/mL	11.5 30 days 26 0.20 nmol/mL	96.27 mg/kg 2.0 × 10^8 CFU/g

Mycobacterium sp. PYR-1	Mycobacterium sp. S65	Mycobacterium sp. API	Mycobacterium sp. KMS	Mycobacterium gilvum PYR-GCK	Mycobacterium sp. PYR-1	Mycobacterium sp. API	Mycobacterium sp. *	MYCOBACTERIUM gilvum PCNR1	MYCOBACTERIUM gilvum PCNR1	MYCOBACTERIUM gilvum PCNR1
Experimental Microcosms	Mineral salts medium	Mineral medium	Microcosm system	Mineral salt medium	Aqueous pyrene solution	Marine medium	Mineral salts solution,	NCBI Taxonomy ID	NCBI Taxonomy ID	NCBI Taxonomy ID
74 mixture of PAHs including pyrene	6 days	24	1.0 M	OD545 = 2.95	24	1.0 × 10^7 CFU/mL	*	26	0.20 nmol/mL	*
916.7 μg/400 μl	4.5 × 10^7 cells/mL	1.0 × 10^7 CFU/mL	2.0 × 10^7 CFU/mL	200 mg/L	2.0 × 10^7 CFU/mL	200 mg/L	2.0 × 10^7 CFU/mL	250 μg/mL	250 μg/mL	250 μg/mL

1-Sphingomonas	2-Mycobacterium	3-Rhodococcus	4-Paracoccus	5- Pseudomonas

[* Data unavailable].
3. Identification of Pyrene Metabolites Degraded by *Mycobacterium* sp. and Their Biotoxicity

The specific aim of the remediation is to achieve complete mineralization or convert the target pollutant into harmless products. Metabolites (by-products, also called intermediate products) are products that are partially degraded and are generated during and after the treatment process. Some metabolites could be more toxic to public health and the environment than the original pollutant. It has been illustrated that the risk of the pollutant’s metabolites is like an iceberg. The pollutants themselves are just the tip of the iceberg, while the metabolites’ products represent the majority of the iceberg, which is hidden underwater. The researchers monitor the metabolites for many reasons: (i) to examine the effectiveness of the treatment approach, (ii) to detect any ecotoxic by-products after the end of treatment operation, and (iii) to build an oxidation pathway based on detected by-products. Many metabolites have been detected during and after the remediation process. The studies that investigated the degradation of pyrene via the *Mycobacterium* strains detected many metabolites. For example, Seo et al. [70] pointed out that phenanthrene-4,5-dicarboxylic acid and naphthalene-1,2-dicarboxylic acid were the major intermediate products when *Mycobacterium aramativorans* strain JS19b1 was applied for pyrene degradation. Sun et al. [36] observed many metabolites produced by *Mycobacterium* sp. WY10 during pyrene degradation, such as cis-pyrene dihydrodiol, cis-pyrene-4,5-dihydrondiol, dihydroxy pyrene, methylated-phenantherene-4,5-dicarboxylic acid, 4-phenanthrene-4-carboxylic acid, phenanthrene-4,5-dicarboxylic acid, and phenanthrene-4-carboxylic acid. In addition, the *Mycobacterium* sp. flavescus PYR-1 strain was used for pyrene degradation. The major by-products were 4,5-dihydroxy-4,5-4,5-dihydropyrene, 4-phenanthonic, phthalic acid, and 4,5-phenanthrenedioic acid [43]. *Mycobacterium* sp. AP1 grew with pyrene as a sole carbon and energy source. The identified metabolites were trans- or cis-4,5-dihydroxy-4,5-4,5-dihydropyrene, phenanthrene-4,5-dicarboxylic acid, phenanthrene-4-carboxylic acid, and 6,6-dihydroxy-2,2-biphenyl dicarboxylic acid [44]. Additionally, Zhong et al. [45] mentioned that the by-products of pyrene were dihydroxy phenanthrene, monohydroxy pyrene, dihydroxy pyrene, 4-phenanthrene-carboxylic acid, and 4-phenanthonic when *Mycobacterium* sp. A1-PYR was applied. Rehmann et al. [21] used *Mycobacterium* sp. KR2 to remove pyrene. After 8 days of incubation, the metabolites were cis-4,5-pyrene dihydrodiol, 4,5-phenanthrene dicarboxylic acid, 1-hydroxy-2-naphthoic acid, 2-carboxybenzaldehyde, phthalic acid, and protocatechuic acid. Also, pyrene cis-4,5-dihydrondiol and dihydroxy pyrene were the main metabolites produced after 24 h of incubation of *Mycobacterium vanbaalenii* PYR-1 [18]. Furthermore, Luo et al. [46] used synergistic microbes (*Selenastrum capricornutum* and *Mycobacterium* sp. A1-PYR) to oxidize pyrene, and the metabolites were dihydroxy pyrene, 1-hydroxyxpyrene, 4-phenanthrol, 4-phenanthrene-carboxylic acid, hydroxyphenyl acetic acid, phenylacetic acid, salicylic acid, and benzoic acid. Kim et al. [71] observed 1,2-dicarboxynaphthalene, phenanthrene and pyrene-diols, and cis-4-(1-hydroxynaphth-2-yl)-2-oxobut-3-enoic acid. Liang et al. [72] detected pyrene-4,5-dione, cis-4,5-pyrene-dihydrodiol, phenanthrene-4,5-dicarboxylic acid, and 4-phenanthonic acid as a metabolite when *Mycobacterium* sp. strain KMS was applied. Moreover, Zhong et al. [47] examined a bacterial culture (*Mycobacterium* sp. A1-PYR and *Sphingomonas* sp. PheB4) for pyrene decomposition. The metabolites in this system were monohydroxy pyrene, pyrene diol, and dihydroxy pyrene. Xiaoqing Li et al. [37] used *Mycobacterium* sp. NJS-1 to oxidize pyrene in the presence of and without humic acid. The by-product in the absence of humic acid was phenanthrene 3,4-diol, while 1,2-dimethoxy pyrene was detected in the presence of humic acid. In addition, Wu et al. [38] studied the metabolites of *Mycobacterium gilvum* CP13 when pyrene was used as a sole carbon and energy source. The major metabolites were 4-phenanthrene carboxylic acid, 4-phenanthrenol, 1-naphthol, and phthalic acid. Also, phthalic acid, naphtha-
lere-1,8-dicarboxylic acid, diphenic acid, 6,6’-dihydroxy-2,2’-biphenyl dicarboxylic acid, Z-9-carboxymethylenefluorene-1-carboxylic acid, and phenanthrene-4,5-dicarboxylic acid were detected by [48]. Many metabolites were detected by [49] when the *Mycobacterium* sp. strain RJGII-135 was isolated to degrade pyrene. The metabolites were 4,5-phenanthrene dicarboxylic acid, 4-phenanthrene-carboxylic acid, and 4,5-pyrene-dihydrodiol. In conclusion, according to these studies, phenanthrene-4,5-dicarboxylic acid, dihydroxy pyrene, phenanthrene-4-carboxylic acid, phthalic acid, and pyrene-4,5-dihydrodiol were the most frequent metabolites that were detected when *Mycobacterium* sp. strains were used for pyrene degradation. Table 3 represents the metabolites of several organisms, such as plants, algae, earthworms, bacteria, and fungi, that have been utilized to remove pyrene from different mediums.

Table 3. Summary of the metabolites of pyrene from many species used for pyrene oxidation.

Scheme	Metabolites	References
Lecieria adecarboxylate PS4040	1,2-phenanthrenedicarboxylic acid 2-carboxybenzaldehyde *Ortho*-phthalic acid 1-hydroxypyrene	[73]
Fire Phoenix plant (*Festuca* spp.) mediated microbial	Phthalic acid dehydroxylated pyrene 1-hydroxypyrene 1-hydroxy-2-naphthoic acid Salicylic acid Benzoic acid	[74]
Coriolopsis byrsina strain APC5	Pyruvic acid Benzoic acid Benzoic acid 2-hydroxy pentyl ester *Phenanthrene* diisopropylester 4,5 dihydroxy pyrene	[75]
Fusant bacterial strain F14 fusion between *Sphingomonas* sp. GY28 and *Pseudomonas* sp. GP3A	4,5-dihydroxy pyrene	[76]
Hortaea sp. B15	Phthalic acid 1-Hydroxy-2-naphthoic acid	[77]
Pseudomonas sp. strain Jpyr-1	Phthalate 3,4-dihydropyridol Phthalate 1-hydroxy-2-naphthalene carboxylic acid 4-phenanthrene-carboxylic acid	[78]
Shewanella sp. ISTPL2	4,5-dihydroxy pyrene 2-carboxybenzalpyruvate Phthalic acid Salicylic acid	[79]
Pseudomonas sp. ISTPY2	Pyrene 4,5-Dihydroxy pyren. 1,2-dihydroxynaphthalene 2,3-dihydroxybenzoate Phthalate Catechol	[80]
Pseudomonas sp. ISTPY2	Phthalate 4,5-dioxygenase Aldehyde dehydrogenase	[81]
Pseudomonas sp. JPN2	4,5-dihydroxy-4,5-dihydropyrene 4-phenanthrol 1-hydroxy-2-naphthoic acid Phthalate	[82]
Pseudomonas putida G7.	1-hydroxy pyrene Phthalic acid Benzoic acid Silylated derivatives	[83]
Candida tropicalis MTCC 184	*Menthyl salicylate* (methyl ester of salicylic acid)	[84]
Pseudomonas aeruginosa strain RS1	*Phenanthrene* 4,5 dicarboxylate 4-oxa-Pyrene-5-one	[85]
Organism	Metabolites	
--------------------------	---	
Achromobacter xylosidans PY4 strain	Dihydroxypyrene, 4-Phenantronic acid, 4,5-Dihydroxypthalate, 2,2-Dicarboxy-6,6-dihydroxybiphenyl, 4-Phenantronic acid, 3,4-Dihydroxyphenanthrene	
Enterobacter sp. MM087 (KT933254)	1-methoxyl-2-H-benzo[h]chromene-2-carboxylic acid, 9,10-phenanthrenequinone, 1-methoxyl-trans-2-carboxybenzalpyruvate, Dibutylphthalate	
Pseudomonas aeruginosa RS1	Maphthalene, 1-methylnaphthalene.	
Acinetobacter baumannii BJ5	Benzyl benzoate, Butyl octyl phthalate, Phenol –2,4-bis(1,1-dimethylethyl), Phenol, 2,4-di-tet-butyl-Ethyl benzoate, n-Propyl acetate	
Sphingomonas sp. YT1005	4-phenanthrenol, Protocatechuic acid, Phthalic acid, 1-hydroxy-2-naphthoic acid, 2-methylnaphthalene, 2-hydroxy-2-H-benzo[h]chromene-2-carboxylic acid, Dihydroxyphenanthrene, cis-4,5-pyrene dihydrodiol, Salicylic acid, trans-2-carboxybenzalpyruvate	
Earthworm Eisenia fetida	Pyrene-4,5-dione, Phenanthrene-4-carboxylic acid, Phenanthrene-4,5-dicarboxylic acid, Phenanthrene-4-carboxylic acid, Protocatechuic acid	
Klebsiella sp. LZ6	4,5-dihydro-phenanthrene, Dibenzo-p-dioxin, 4-hydroxycinnamate acid	

It should be noted that phthalic acid, 1-hydroxypyrene, 1-hydroxy-2-naphthoic acid, 4,5-dihydroxy pyrene, phenanthrene 4,5 dicarboxylate, and pyrene-4,5-dihydrodiol are the most frequent metabolites in the last table. It has been observed that the metabolites of *Mycobacterium* sp. strains and the species mentioned in Table 3 share 4,5-dihydroxy pyrene, phenanthrene-4,5-dicarboxylate, phthalic acid, and pyrene-4,5-dihydrodiol as the most frequent metabolites. That may be attributed to the enzymes that are shared between them, which in turn, leads to shared degradation pathways of pyrene.

The mass consumption of petroleum products and increase in their demand around the world leads to an increase in the opportunity for pyrene leakage into the environment and increases the opportunity for exposure to pyrene by organisms and humans. Frequent and long-term exposure to pyrene leads to bioaccumulation and biomagnification in the organism cell, which increases the possibility of carcinogenicity and mutagenicity. Many studies have mentioned the negative impacts of pyrene and its metabolites on animals and humans. The toxicity evaluation of pyrene metabolites is important to increase system efficiency. The toxicity assessment of pyrene and its metabolites was carried out using the United States Environmental Protection Agency’s software, called Toxicity Estimation Software Tool (TEST) version 5.1. This software is capable of apply-
ing mathematical models to predict pollutant toxicity based on Quantitative Structure-Activity Relationship (QSAR) methodology. The data were introduced by inputting the name of each by-product. The lethal concentration of 50% (LC50) (96 h) in fathead minnow and Ames mutagenicity were the considered toxicity for pyrene metabolites using *Mycobacterium* strain and other biological agents, represented in Table 4. Some metabolites showed positive results for the Ames mutagenicity prediction test, such as 1,2-phenanthrenedicarboxylic acid, 1-hydroxypyrene, 4,5-dihydropyrene, 4-phenanthrene-carboxylic acid, 3,4-Dihydroxyphenanthrene, Monohydroxy pyrene, and 9,10-phenanthrenequinone. However, 4-phenanthrol showed positive results for experimental and prediction tests.
Table 4. Summary of the results of LC₅₀ (96 h) fathead minnow and the Ames mutagenicity test for the main pyrene metabolites after treatment by using Mycobacterium strain and other biological agents.

Metabolites	Fathead Minnow LC₅₀ (96 h)	Ames Mutagenicity	Prediction Result	
	Prediction Value:			
	Prediction Value:	Prediction Value:		
	Prediction Value:	Prediction Value:		
	~/log (mol/L)	(mg/L)	Log10 (mol/L)	
1,2-phenanthrenedicarboxylic acid	*	*	0.86	*
2-carboxybenzaldehyde	4.30	7.49	0.29	*
1-hydroxypyrene	5.45	0.77	0.76	*
Phthalic acid	3.69	34.15	0.14	Mutagenicity Negative
Benzoic acid	3.21	75.43	−0.05	Mutagenicity Negative
Salicylic acid	3.34	63.62	−0.08	Mutagenicity Negative
1-hydroxy-2-naphthoic acid	3.77	31.97	0.17	Mutagenicity Negative
Pyruvic acid	2.08	734.13	0.41	Mutagenicity Negative
4,5 dihydroxy pyrene	5.13	1.73	0.50	Mutagenicity Negative
4,5-dihydroxypyrene	6.33	9.50 × 10⁻²	0.98	*
n-Propyl acetate	3.06	89.38	0.19	Mutagenicity Negative
4-phenanthrene-carboxylic acid	4.52	6.65	0.71	*
Protocatechuic acid	3.73	28.53	0.30	Mutagenicity Negative
1,2-dihydroxynaphthalene	4.55	4.49	0.28	Mutagenicity Negative
2,3-dihydroxybenzoate	3.71	29.86	−0.04	Mutagenicity Negative
Dibenzo-p-dioxin	4.53	5.40	0.23	Mutagenicity Negative
Catechol	3.81	17.19	0.29	Mutagenicity Negative
4,5-dihydroxy-4,5-dihydroxypyrene	5.03	2.21	0.15	Mutagenicity Negative
4-phenanthrol	5.80	0.31	0.76	Mutagenicity Positive
Phenanthrene 4,5 dicarboxylate	*	*	0.22	Mutagenicity Negative
4-oxa-Pyrene-5-one	5.01	2.18	0.22	Mutagenicity Negative
4,5-Dihydroxypthalate	3.58	51.61	0.47	Mutagenicity Negative
3,4-Dihydroxyphenanthrene	6.05	0.19	0.60	Mutagenicity Positive
Monohydroxy pyrene	5.45	0.77	0.76	Mutagenicity Positive
9,10-phenanthrenequinone	4.30	10.47	0.52	Mutagenicity Negative
Dibutyl-phthalate	5.30	1.40	0.18	Mutagenicity Negative
Compound	Initial	Final	Mutagenicity	Notes
---	---------	--------	--------------	---------------------
Naphthalene	4.20	8.15	*	Mutagenicity Negative
1-methylnaphthalen	4.32	6.74	*	Mutagenicity Negative
Benzyl benzoate	4.86	2.92	0.05	Mutagenicity Negative
Butyl octyl phthalate	4.70	6.68	0.03	Mutagenicity Negative
Phenanthrene-4,5-dicarboxylic acid	*	*	0.22	Mutagenicity Negative
Naphthalene-1,2-dicarboxylic acid	3.93	25.69	0.10	Mutagenicity Negative

[* Data unavailable.]*
4. Proposed Biodegradation Pathways

Many bacterial strains have been applied to degrade pyrene in a different medium. Some bacterial strains share the same functional enzymes, which leads to the same degradation pathways, as shown in Table 5. Some genes in the *Mycobacterium* sp. strain produce enzymes capable of oxidizing pyrene. There are numerous advantages to determining the degradation pathway, including the ability to control the effectiveness of remediation systems, eliminating the influence of degradation on analytical results, and knowledge of degradation pathways for specific compounds can facilitate the assessment of environmental pollution with POPs based on the presence of degradation products. In addition, identifying the degradation pathway is useful for the future development of bioremediation [93, 94].

The following studies are examples of the degradation of pyrene by using the *Mycobacterium* sp. strain. Yuan et al. [29] proposed a detailed pyrene degradation pathway via *Mycobacterium* sp. strain A1-PYR. The first step of pyrene degradation was hydroxylation using *NidAB* and *PodA3B3*, leading to forming cis-4,5-dihydroxy-4,5-hydropyrene, then *PhdE* acting to convert cis-4,5-dihydroxy-4,5-hydropyrene into 4,5-dihydroxypyren, then phenanthrene-4,5-dicarboxylate via *PhdE*, further degradation leading to form phenanthrene-4-carboxylate. *PodA2B2* enzyme works to produce cis-3,4-phenanthrene-dihydrodiol-4-carboxylate, then *PhdE* acts to generate 3,4-dihydroxy-phenanthrene. More decomposition of 3,4-dihydroxy-phenanthrene via *PhdF* leading to form 2-hydroxy-2H-benzo[h]chromene-2-carboxylate then cis-4-(1'-hydroxy-naphth-2'-yl)-2' oxobut-3-enoate. *PhdG* leading to form 1-hydroxy-2-naphthaldehyde → 1-hydroxy-2-naphthoate, further degradation of 1-hydroxy-2-naphthoate leading to produce 2-cis-2'-carboxy-benzalpyruvate. Additionally, the *PhdI* enzyme converts 2-cis-2'-carboxy-benzalpyruvate into phthalate then the ring cleavage via *PhtC* results to form carboxylic acids compounds. The final metabolite step was that the small carboxylic acids enter the tricarboxylic acid cycle to produce energy, H₂O, and CO₂. In addition, Krivobok et al. [95] proposed the degradation pathway of pyrene by *Mycobacterium* sp. Strain-6 PY1. They observed that *PhdABCD, PhdE, PhdF, PhdG, PhdH, PhdI*, and *PhdK* enzymes were detected in the *Mycobacterium* sp. Strain-6 PY1. The degradation of pyrene started with the hydroxylation process of C4 and C5 positions to form pyrene cis-4,5-dihydrodiol then 4,5-dihydroxypyrene, further oxidation of 4,5-dihydroxypyrene generates 4,5-phenanthrenedioic → 4-phenanthrene acid → phenanthrene-3,4-diol → phenanthrene → cis-3,4-phenanthrene-dihydrodiol → 3,4-dihydroxy-phenanthrene → 2-hydroxy-2H-1-oxa-pyrene-2-carboxylic acid → 2-Hydroxy-2H-benzo[h]chromene-2-carboxylate → 1-Hydroxy-2-naphthaldehyde → trans-2'-carboxybenzal pyruvic acid → 2-2-Carboxybenzaldehyde → O-phthalic acid → tricarboxylic acid cycle. Wu et al. [38] studied the degradation of pyrene via *Mycobacterium gilvum* and the proposed the degradation pathway as the following: pyrene → 4-phenanthrenecarboxylic acid → 3,4-dihydroxy-phenanthrene → 2-Hydroxy-2H-benzo[h]chromene-2-carboxylate → 1-naphthol → phthalic acid. A simple degradation pathway of pyrene through *Mycobacterium* sp. is shown in Figure 4. The most common transformation metabolites that have been proposed to build degradation pathways are shown in Table 6, while Table 7 shows an example of pyrene degradation pathways via different microbial species.
Table 5. Summary of the main genes of *Mycobacterium* sp. strain that responsible in pyrene degradation and their functions.

Primers	Sequences	Probable Functions	References	
NidA3	Forward 5'-CTGTATGCGACGCAACTG-3'	Fluoranthene/pyrene ring-hydroxylating oxygenase, α subunit	[15]	
	Reverse 5'-GCAACCCTAGCGACCTCTT-3'			
NidA	Forward 5'-TTCCCGATACGAGGAGGATAC-3'	α Subunit pyrene dioxygenase	[17]	
	Reverse 5'-TCAGTTGATGAAACGCCCAAA-3'			
NidB2	Reverse 5'-CCTGATGCGACGACAATG-3'	Pyrene/phenanthrene ring-hydroxylating oxygenase, β subunit	[18]	
	Forward 5'-GCAACCCTAGCGACCTCTT-3'			
NidB3	Reverse 5'-GCCGAGCTGAAATCCGATCTTAGATCCAGAAATGACAG-3'	Fluoranthene/pyrene ring-hydroxylating oxygenase, β subunit		
PdoAB	Forward 5'-CTGTATGCTACTTGCGTGAAGA-3'	α Subunit pyrene dioxygenase	[26]	
	Reverse 5'-CCCGATCTCTCATCGGACACCCGCGGGAATG-3'			
PdoA1	Forward 5'-GGCATATGCAAACGGAACGACCC-3'	α Subunit pyrene dioxygenase		
	Reverse 5'-GGCATATGCTCAAACGACCAGCGGT-3'			
PdoA2B2	Forward 5'-GGCATATGCTACTTGCGTGAAGA-3'	α Subunit pyrene dioxygenase	[95]	
	Reverse 5'-CCCGATCTCTCATCGGACACCCGCGGGAATG-3'			
PdoB1	Forward 5'-GGCATATGAAACGCGGTCGGA-3'	Pyrene/phenanthrene ring-hydroxylating oxygenase, β subunit		
	Reverse 5'-GGCATATGCTACTTGCGTGAAGA-3'			
PdoA2B2	A2-Forward 5'-GGCATATGCTACTTGCGTGAAGA-3'	Catalysis of hydroxylation of HMW and LMW polyaromatic hydrocarbons including pyrene.		
	B2-Reverse 5'-CCCGATCTCTCATCGGACACCCGCGGGAATG-3'			
TolC1C2	Forward 5'-GCAACCCTAGCGACCTCTT-3'	Small subunits of toluene dioxygenase	[62]	
	Reverse 5'-TGTTAACCAGCACCAGCCTC-3'			
NahAc	Forward 5'-GCCAAAAGCGCAACTG-3'	Naphthalene dioxygenase		
	Reverse 5'-CGTTTACAGCACCAGCCTC-3'			
BphA1	Forward 5'-GCCGATCCCGAGATGGAAC-3'	Large subunit of biphenyl dioxygenase		
	Reverse 5'-CGTGGCTCGGAGATGGAAC-3'			
PdoB2	Forward 5'-GCCGATCCCGAGATGGAAC-3'	β Subunit dioxygenase	[63]	
	Reverse 5'-CGTGGCTCGGAGATGGAAC-3'			
PdoF	Forward 5'-GCCGACACTCTTCTGACCTAA-3'	Putative extradiol dioxygenase	[65]	
	Reverse 5'-TTGGGTAGTGGGGAATTC-3'			
PhdI	Forward 5'-TGACGAAATGATGGGCTC-3'	1-Hydroxy-2-naphthoate dioxygenase		
Reverse 5'-AGTCCGCTGTATTTCGTCG-3'	Forward 5'-ACATATGGCGCCTGATGCGACGACAATG-3'	NidAB	α Subunit pyrene dioxygenase	
---	---	---	---	
Reverse 5'-AAAACGAGATTCACATGACACAGCC-3'	Reverse 5'-TGCGATCCCAACTTTCAAGT-3'	NidB	β Subunit of arene dioxygenase	
Reverse 5'-GCAGGAGATATATGTCGACAGGC-3'	Forward 5'-GGACTACCTCGGCGATATGA-3'	AraC	Transcriptional regulatory protein, AraC family	
Reverse 5'-AGTGCCGTGTATTTCGTCG-3'	Reverse 5'-TTGAGACGTGCTCTCCATAG-3'	PdoA2	Phenanthrene ring-hydroxylating oxygenase, subunit [97]	
Reverse 5'-CAAGCTTTTAGATCCAGAATGACAGGTT-3'	Reverse 5'-AAAACTGCAGATTCACATGATCAGGGCGAGGTTGTGTCTATT-3'	NidA3B3	Fluoranthene/pyrene ring-hydroxylating oxygenase [98]	
Reverse 5'-TCGTCACCAACTTCAAGTC-3'	Reverse 5'-GCATTATGCGGCCGCAAGCTTTCATTCGTCTACGACTTC-3'	PhtAb	Oxygenase reductase component	
Reverse 5'-ACGCAGAACTCCACAAGCTC-3'	Reverse 5'-TTCCCCATCGTGTCGTATAG-3'	PhtB	Phthalate 3,4-dihydrodiol dehydrogenase [99]	
Reverse 5'-ACATATGGCGCCTGATGCGACGACACATG-3'	Reverse 5'-AGTGCCGTGTATTTCGTCG-3'	PhtAd	Oxygenase reductase component	
Reverse 5'-ATCGGATCTCTCTTTCAGAAGATGTTGTGGAGACTTAAAGCAGAATG-3'	Reverse 5'-ACAAGCTTTTAGATCCAGAATGACAGGTT-3'	PhtAc	Oxygenase ferredoxin component [100]	
Reverse 5'-ATCGGATCTCTCTTTCAGAAGATGTTGTGGAGACTTAAAGCAGAATG-3'	Reverse 5'-ACAAGCTTTTAGATCCAGAATGACAGGTT-3'	PhtJ	trans-2-Carboxylbenzalpyruvate hydratase-aldolase [101]	
Reverse 5'-ATCGGATCTCTCTTTCAGAAGATGTTGTGGAGACTTAAAGCAGAATG-3'	Reverse 5'-ACAAGCTTTTAGATCCAGAATGACAGGTT-3'	PhdA	Hydratase-aldolase [102]	
Reverse 5'-ACATATGGCGCCTGATGCGACGACAATG-3'	Reverse 5'-AGTGCCGTGTATTTCGTCG-3'	PhdB	α and β subunits of other ring-hydroxylating dioxygenases [103]	
Reverse 5'-ATCGGATCTCTCTTTCAGAAGATGTTGTGGAGACTTAAAGCAGAATG-3'	Reverse 5'-AGTGCCGTGTATTTCGTCG-3'	PhdJ	Catechol O-methyltransferase	
Reverse 5'-ACATATGGCGCCTGATGCGACGACAATG-3'	Reverse 5'-AGTGCCGTGTATTTCGTCG-3'	PhdA	Hydratase-aldolase	
Reverse 5'-ACATATGGCGCCTGATGCGACGACAATG-3'	Reverse 5'-AGTGCCGTGTATTTCGTCG-3'	PhdB	Catechol O-methyltransferase	

[Data unavailable].
Figure 4. Proposed degradation pathway of pyrene by *Mycobacterium gilvum*.

Table 6. Summary of the most frequent transformation metabolites of pyrene.

Metabolite	MW	Molecular Formula
P1	90.12	C₆H₁₀O₂
P2	142.15	C₇H₁₀O₃
P3	142.11	C₇H₁₂O₄
P4	141.10	C₆H₁₂O₄
P5	250.29	C₁₄H₁₈O₄
P6	88.06	C₆H₈O₃
P7	166.13	C₆H₁₀O₄
P8	194.18	C₁₆H₁₀O₄
P9	122.12	C₇H₁₀O₂
P10	206.28	C₁₂H₁₈O₂
	MW	**Formula**
-----	----------	--------------
P11	190.19 C₁₃H₁₀O₃	
P12	150.13 C₈H₆O₃	
P13	110.11 C₆H₆O₂	
P14	154.12 C₇H₆O₄	
P15	154.12 C₇H₆O₄	
P16	232.23 C₁₃H₁₂O₄	
P17	198.13 C₈H₆O₆	
P18	220.18 C₁₁H₈O₅	
P19	138.12 C₇H₆O₃	
P20	122.12 C₇H₆O₂	
P21	170.25 C₁₃H₁₄	
P22	160.17 C₁₀H₈O₂	
P23	172.18 C₁₁H₈O₂	
P24	200.15 C₈H₆O₆	
P25	170.16 C₄H₁₀O₄	
P26	142.20 C₁₁H₁₀	
P27	220.18 C₁₁H₈O₅	
P28	178.23 C₁₁H₁₄O₂	
P29	128.17 C₁₀H₈	
P30	302.24 C₁₅H₁₆O₇	
P31	242.23 C₁₄H₁₀O₄	
P32	242.23 C₁₄H₁₀O₄	
P33	270.24 C₁₅H₁₅O₅	
P34	216.19 C₁₂H₈O₄	
P35	242.23 C₁₄H₁₀O₄	
P36	244.24 C₁₄H₁₂O₄	
P37	188.18 C₁₄H₁₂O₄	
P38	210.23 C₁₄H₁₀O₂	
P39	278.30 C₁₅H₁₅O₅	
P40	274.23 C₁₄H₁₀O₆	
Compound	MW	Structural Formula
----------	------	--------------------
P41	216.19	![Structure1](image)
P42	208.21	![Structure2](image)
P43	214.26	![Structure3](image)
P44	222.24	![Structure4](image)
P45	270.24	![Structure5](image)
P46	210.23	![Structure6](image)
P47	266.25	![Structure7](image)
P48	266.25	![Structure8](image)
P49	210.23	![Structure9](image)
P50	267.27	![Structure10](image)
P51	178.23	![Structure11](image)
P52	194.23	![Structure12](image)
P53	238.24	![Structure13](image)
P54	255.25	![Structure14](image)
P55	256.25	![Structure15](image)
P56	234.2	![Structure16](image)
P57	220.27	![Structure17](image)
P58	250.2	![Structure18](image)
P59	241.22	![Structure19](image)
P60	242.23	![Structure20](image)
P61	202	![Structure21](image)
P62	238.2	![Structure22](image)
P63	234.2	![Structure23](image)
P64	238.2	![Structure24](image)
P65	270.28	![Structure25](image)
Table 7. Proposed degradation pathways and the active genes during pyrene oxidation.

Organism	Active Enzyme/Gene	Proposed Pathways	References
Mycobacterium vanbaalenii PYR-1		(1) Pyrene → P64 → P56 → P58 → P66.	[18]
		(2) Pyrene → P62 → P63 → P48 → P44 → P55 → P46.	
		→ P36 → P23 → P37 → P18 → P12 → P7 → P24 → P15 → Crboxylic acid → Tricarboxylic acid cycle	
Mycobacterium vanbaalenii PYR-1	PhdE, PhdG, PhdI, NidA3, NidAB, NidD, PhtAa, PhtB, and PhtAc	Pyrene → P62 → P63 → P48 → P44 → P55 → P46 → P36 → P23 → P37 → P18 → P12 → P7 → P24 → P15 → Crboxylic acid → Tricarboxylic acid cycle	[22]
Mycobacterium vanbaalenii PYR-1	NidAB, PhdE, PhdC, PdoA2B2, PhdF, PhdG, NidD, PhtAa, PhtB, and PcaGH	Pyrene → P62 → P63 → P58 → P48 → P38 → P7 → P15 → Crboxylic acid → Tricarboxylic acid cycle	[24]
Coriopolis byrsina APC5		Pyrene → P57 → P62 → P63 → P51 → P5 → P72 → P73 → P6 → Tricarboxylic acid cyclic acid	
Mycobacterium spp. PO1 and PO2	NidA, PhdA, and NidA3	Pyrene → P62 → P63 → P48 → P44 → P55 → P46 → P60 → P7.	[28]
Mycobacterium sp. flavescens PYR-1		Pyrene → P62 → P63 → P48 → P44 → P53 → P46 → P16 → P36 → P23 → P37 → P18 → P12 → P17 or P24 → P15 → Crboxylic acid → Tricarboxylic acid cycle	[43]
Many bacterial strains including Mycobacterium		Pyrene → P62 → P63 → P56 → P58 → P58 → P66 → P36 → P23 → P37 → P18 → P12 → P17 or P24 → P15 → Crboxylic acid → Tricarboxylic acid cycle	[45]
Mycobacterium aromatovorans Strain JS19b1		Pyrene → P48 → P44 → P46 → P22 → P13 or P7.	[50]
Lecateria decarboxylata PS4040		Pyrene → P69 → P48 → P12 → P7 → P13.	[70]
Coriopolis byrsina strain APC5	laccase, LiP and MnP	Pyrene → P62 → P63 → P51 → P5 → P72 → P73 → P6 → Tricarboxylic acid cycle → CO_{2}.	[73]
Halophilic Hortaea sp. B15	Dioxygenase	Pyrene → P49 → P35 → P7 → Tricarboxylic acid cycle	[75]
Pseudomonas sp. ISTPY2		Pyrene → P63 → P68 → P48 → P44 → P55 → P46.	[80]
5. Future Perspectives and Challenges

The current techniques for the biodegradation of pyrene by *Mycobacterium* strains still need further investigation for future works.

1. A knowledge gap between pyrene oxidation at the field site compared to laboratory conditions needs to be addressed for each product seeking commercial success.

2. The degradation of pyrene by *Mycobacterium* strains generates many metabolites. Some of the metabolites and their bio-toxicity have been identified, while most of them need bio-toxicity assessment.

3. The main biodegradation drawback is the limitation of the bioavailability of the target pollutant. Therefore, it is highly recommended to add a biosurfactant to increase the bioavailability.

4. The literature revealed that the biodegradation of pyrene via consortium microbial gives a better result than a single strain. That is referred to diverse enzymes capable of oxidizing pyrene and its metabolites.

5. There are several studies that applied successful synergetic biodegradation systems for pyrene degradation, such as biofuel cells and coupling of the advanced oxidation process and biodegradation system.

6. Conclusions

This article attempted to provide a review of pyrene bioremediation using *Mycobacterium* strains in various biodegradation mediums. This study’s findings are summarized as follows:

- *Mycobacterium* strains are efficient biological agents to degrade pyrene, that is, referring to their ability to produce many functional enzymes able to metabolite pyrene and its transformation molecules.

- Phenanthrene-4,5-dicarboxylic acid, dihydroxy pyrene, phenanthrene-4-carboxylic acid, phthalic acid, and pyrene-4,5-dihydrodiol were the most frequent metabolites.
that were detected when *Mycobacterium* sp. strains were used for pyrene degradation.

- Some metabolites showed positive results for the Ames mutagenicity prediction test, such as 1,2-phenanthrenedicarboxylic acid, 1-hydroxypyrene, 4,5-dihydropyrene, 4-phenanthrene-carboxylic acid, 3,4-Dihydroxyphenanthrene, Monohydroxy pyrene, and 9,10-phenanthrenequinone. However, 4-phenanthrol showed positive results for experimental and prediction tests.

Author Contributions: Conceptualization, M.Q., S.A.M., and M.R.; writing—original draft preparation, M.Q.; writing—review and editing, S.A.M., A.M.A., H.S.A., M.A.H., and M.R.; supervision, S.A.M. and M.R.; funding acquisition, S.A.M. and M.R. All authors have read and agreed to the published version of the manuscript.

Funding: The authors would like to express their appreciation to the Ministry of Higher Education Malaysia for the Fundamental Research Grant Scheme with Project Code: FRGS/1/2019/STG07/USM/02/12

Institutional Review Board Statement: Not applicable

Informed Consent Statement: Not applicable

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to express their appreciation to the Ministry of Higher Education Malaysia for the Fundamental Research Grant Scheme with Project Code: FRGS/1/2019/STG07/USM/02/12.

Conflicts of Interest: The authors state no conflict of interest.

References

1. Mekonnen, M.M.; Hoekstra, A.Y. Sustainability: Four Billion People Facing Severe Water Scarcity. *Sci. Adv.* 2016, 2, e1500323. https://doi.org/10.1126/sciadv.1500323.

2. Qutob, M.; Rafatullah, M.; Qamar, M.; Alor, H.S.; Romaizan, A.N. Al; Hussein, M.A. A Review on Heterogeneous Oxidation of Acetaminophen Based on Micro and Nanoparticles Catalyzed by Di Ff Erent Activators. *Nanotechnol. Rev.* 2022, 11, 497–525. https://doi.org/10.1515/ntrev-2022-0030.

3. Degefu, D.M.; Weijun, H.; Zaiyi, L.; Liang, Y.; Zhengwei, H.; Min, A. Mapping Monthly Water Scarcity in Global Trans-boundary Basins at Country-Basin Mesh Based Spatial Resolution. *Sci. Rep.* 2018, 8, 1–10. https://doi.org/10.1038/s41598-018-20332-w.

4. Miraji, H.; Ripanda, A.; Moto, E. A Review on the Occurrences of Persistent Organic Pollutants in Corals, Sediments, Fish and Waters of the Western Indian Ocean. *Egypt. J. Aquat. Res.* 2021, 47, 373–379. https://doi.org/10.1016/j.ejar.2021.08.003.

5. Gutierrez-Urbano, I.; Villen-Guzman, M.; Perez-Recuerda, R.; Rodriguez-Maroto, J.M. Removal of Polycyclic Aromatic Hydrocarbons (PAHs) in Conventional Drinking Water Treatment Processes. *J. Contam. Hydrol.* 2021, 243, 103888. https://doi.org/10.1016/j.jconhyd.2021.103888.

6. Dinç, B.; Çelebi, A.; Avaz, G.; Canli, O.; Güzel, B.; Eren, B.; Yetis, U. Spatial Distribution and Source Identification of Persistent Organic Pollutants in the Sediments of the Yeşilirmak River and Coastal Area in the Black Sea. *Mar. Pollut. Bull.* 2021, 172, 112884. https://doi.org/10.1016/j.marpolbul.2021.112884.

7. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. *IARC Monogr. Eval. Carcinog. Risks Hum.* 2010, 93, 9–38. https://doi.org/10.1136/jcp.48.7.691-a.

8. Hussain, K.; Hoque, R.R.; Balachandran, S.; Medhi, S.; Idris, M.G.; Rahman, M.; Hussain, F.L. Monitoring and Risk Analysis of PAHs in the Environment. In *Handbook of Environmental Materials Management*; Springer: New York, NY, USA, 2019; pp. 973–1007. https://doi.org/10.1007/978-3-319-73645-7_29.

9. Yang, Y.; Woodward, L.A.; Li, Q.X.; Wang, J. Concentrations, Source and Risk Assessment of Polycyclic Aromatic Hydrocarbons in Soils from Midway Atoll, North Pacific Ocean. *PLoS ONE* 2014, 9, e86441. https://doi.org/10.1371/journal.pone.0086441.

10. EPA. National Recommended Water Quality Criteria—Human Health Criteria Table. Available online: https://www.epa.gov/wqc/national-recommended-water-quality-criteria-human-health-criteria-table (accessed on 24 May 2022)

11. Nikolić, V.M.; Karić, S.D.; Nikolić, Ž.M.; Tošić, M.S.; Tasić, G.S.; Milovanovic, D.M.; Kaninski, M.P.M. Novel Photochemical Advanced Oxidation Process for the Removal of Polycyclic Aromatic Hydrocarbons from Polluted Concrete. *Chem. Eng. J.* 2017, 312, 99–105. https://doi.org/10.1016/j.cej.2016.11.117.
12. Oller, I.; Malato, S.; Sánchez-Pérez, J.A. Combination of Advanced Oxidation Processes and Biological Treatments for Wastewater Decontamination-A Review. *Sci. Total Environ.* 2011, 409, 4141–4166. https://doi.org/10.1016/j.scitotenv.2010.08.061.

13. Azubuike, C.C.; Chikere, C.B.; Okpokwasili, G.C. Bioremediation Techniques-Classification Based on Site of Application: Principles, Advantages, Limitations and Prospects. *World J. Microbiol. Biotechnol.* 2016, 32, 180. https://doi.org/10.1007/s11274-016-2137-x.

14. Quintella, C.M.; Mata, A.M.T.; Lima, L.C.P. Overview of Bioremediation with Technology Assessment and Emphasis on Fungal Bioremediation of Oil Contaminated Soils. *J. Environ. Manag.* 2019, 241, 156–166. https://doi.org/10.1016/j.jenvman.2019.04.019.

15. Chen, S.; Peng, J.; Duan, G. Enrichment of Functional Microbes and Genes during Pyrene Degradation in Two Different Soils. *J. Soils Sediments* 2016, 16, 417–426. https://doi.org/10.1007/s11368-015-1204-5.

16. Subashchandrabose, S.R.; Venkateswarlu, K.; Naidu, R.; Megharaj, M. Biodegradation of High-Molecular Weight PAHs by Rhodococcus Wratiaslvaiensis Strain 9: Overexpression of Amidoxygenase Induced by Pyrene and BaP. *Sci. Total Environ.* 2019, 651, 813–821. https://doi.org/10.1016/j.scitotenv.2018.09.192.

17. Peng, J.J.; Cai, C.; Qiao, M.; Li, H.; Zhu, Y.G. Dynamic Changes in Functional Gene Copy Numbers and Microbial Communities during Degradation of Pyrene in Soils. *Environ. Pollut.* 2010, 158, 2872–2879. https://doi.org/10.1016/j.envpol.2010.06.020.

18. Kim, S.J.; Kweon, O.; Jones, R.C.; Freeman, J.P.; Edmondson, R.D.; Cerniglia, C.E. Complete and Integrated Pyrene Degradation Pathway in Mycobacterium Vanbaalenii PYR-I Based on Systems Biology. *J. Bacteriol.* 2007, 189, 464–472. https://doi.org/10.1128/JB.01310-06.

19. Percival, S.L.; Williams, D.W. *Mycobacterium*, 2n ed.; Elsevier: Amsterdam, The Netherlands, 2013. https://doi.org/10.1016/B978-0-12-415846-7.00009-3.

20. Heitkamp, M.A.; Franklin, W.; Cerniglia, C.E. Microbial Metabolism of Polycyclic Aromatic Hydrocarbons: Isolation and Characterization of a Pyrene-Degrading Bacterium. *Appl. Environ. Microbiol.* 1988, 54, 2549–2555. https://doi.org/10.1128/AEM.54.10.2549-2555.1988.

21. Rehmann, K.; Noll, H.P.; Steinberg, C.E.W.; Ketturup, A.A. Pyrene Degradation by Mycobacterium Sp. Strain KR2. *Chemosphere* 1998, 36, 2977–2992. https://doi.org/10.1016/S0045-6535(97)10240-5.

22. Zada, S.; Zhou, H.; Xie, J.; Hu, Z.; Ali, S.; Sajjad, W.; Wang, H. Bacterial Degradation of Pyrene: Biochemical Reactions and Mechanisms. *Int. Biodeterior. Biodegrad.* 2021, 162, 105233. https://doi.org/10.1016/j.ibiod.2021.105233.

23. Haritash, A.K.; Kaushik, C.P. Biodegradation Aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A Review. *J. Hazard. Mater.* 2009, 169, 1–15. https://doi.org/10.1016/j.jhazmat.2009.03.137.

24. Elyamine, A.M.; Kan, J.; Meng, S.; Tao, P.; Wang, H.; Hu, Z. Aerobic and Anaerobic Bacterial and Fungal Degradation of Pyrene: Mechanism Pathway Including Biochemical Reaction and Catabolic Genes. *Int. J. Mol. Sci.* 2021, 22, 8202. https://doi.org/10.3390/ijms22158202.

25. Miller, C.D.; Hall, K.; Liang, Y.N.; Nieman, K.; Sorensen, D.; Issa, B.; Anderson, A.J.; Sims, R.C. Isolation and Characterization of Polycyclic Aromatic Hydrocarbon-Degrading Mycobacterium Isolates from Soil. *Microb. Ecol.* 2004, 48, 230–238. https://doi.org/10.1007/s00248-004-1044-5.

26. Zeng, J.; Zhu, Q.; Wu, Y.; Chen, H.; Lin, X. Characterization of a Polycyclic Aromatic Ring-Hydroxylation Dioxygenase from Mycobacterium Sp. NPS-1. *Chemosphere* 2017, 185, 67–74. https://doi.org/10.1016/j.chemosphere.2017.07.001.

27. Costa, K.C.; MoskateL, L.S.; Meirelles, L.A.; Newman, D.K. PhdA Catalyzes the First Step of Phenazine-1-Carboxylic Acid Degradation in Mycobacterium Fortuitum. *J. Bacteriol.* 2018, 200, 10. https://doi.org/10.1128/JB.00763-17.

28. Wanapaipai, P.; Laothamteep, N.; Vejarano, F.; Chakraborty, J.; Shintani, M.; Muangchinda, C.; Morita, T.; Suzuki-Minakuchi, C.; Ionue, K.; Nojiri, H.; et al. Synergistic Degradation of Pyrene by Five Culturable Bacteria in a Mangrove Sediment-Derived Bacterial Consortium. *J. Hazard. Mater.* 2018, 342, 561–570. https://doi.org/10.1016/j.jhazmat.2017.08.062.

29. Yuan, K.; Xie, X.; Wang, X.; Lin, L.; Yang, L.; Luan, T.; Chen, B. Transcriptional Response of Mycobacterium Sp. Strain A1-PYR to Multiple Polycyclic Aromatic Hydrocarbon Contaminations. *Environ. Pollut.* 2018, 243, 824–832. https://doi.org/10.1016/j.envpol.2018.09.001.

30. Habe, H.; Kanemitsu, M.; Nomura, M.; Takemura, T.; Iwata, K.; Nojiri, H.; Yamane, H.; Omori, T. Isolation and Characterization of an Alkaliphilic Bacterium Utilizing Pyrene as a Carbon Source. *J. Biosci. Bioeng.* 2004, 98, 306–308. https://doi.org/10.1263/jbb.98.306.

31. McLellan, S.L.; Warshavsky, D.; Shann, J.R. The Effect of Polycyclic Aromatic Hydrocarbons on the Degradation of Benzo[a]Pyrene by Mycobacterium Sp. Strain RJGII-Environ. Toxical. Chem. 2002, 21, 253–259. https://doi.org/10.1002/etc.562021205.

32. Churchill, P.F.; Morgan, A.C.; Kitchens, E. Characterization of a Pyrene-Degrading Mycobacterium Sp. Strain CH-2. *J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes* 2008, 43, 698–706. https://doi.org/10.1080/03601230802388801.

33. Kim, D.W.; Lee, K.; Lee, D.H.; Cha, C.J. Comparative Genomic Analysis of Pyrene-Degrading Mycobacterium Species: Genomic Islands and Ring-Hydroxylating Dioxygenases Involved in Pyrene Degradation. *J. Microbiol.* 2018, 56, 798–804. https://doi.org/10.1007/s12275-018-8372-0.
34. Wang, Z.; Sheng, H.; Xiang, L.; Bian, Y.; Herzberger, A.; Cheng, H.; Jiang, Q.; Jiang, X.; Wang, F. Different Performance of Pyrene Biodegradation on Metal-Modified Montmorillonite: Role of Surface Metal Ions from a Bioelectrochemical Perspective. Sci. Total Environ. 2022, 805, 150324. https://doi.org/10.1016/j.scitotenv.2021.150324.

35. Zhang, Y.; Wang, F.; Zhu, X.; Zeng, J.; Zhao, Q.; Jiang, X. Extracellular Polymeric Substances Govern the Development of Biofilm and Mass Transfer of Polycyclic Aromatic Hydrocarbons for Improved Biodegradation. Bioresour. Technol. 2015, 193, 274–280. https://doi.org/10.1016/j.biortech.2015.06.110.

36. Sun, S.; Wang, H.; Chen, Y.; Lou, J.; Wu, L.; Xu, J. Salicylate and Phthalate Pathways Contributed Differently on Phenanthrene and Pyrene Degradations in Mycobacterium sp. WY10. J. Hazard. Mater. 2019, 364, 509–518. https://doi.org/10.1016/j.jhazmat.2018.10.064.

37. Li, X.; Liu, H.; Yang, W.; Sheng, H.; Wang, F.; Harindintwali, J.D.; Herath, H.M.S.K.; Zhang, Y. Humic Acid Enhanced Pyrene Degradation by Mycobacterium Sp. NJS-1. Chemosphere 2021, 288, 132613. https://doi.org/10.1016/j.chemosphere.2021.132613.

38. Wu, F.; Guo, C.; Liu, S.; Liang, X.; Lu, G.; Dang, Z. Pyrene Degradation by Mycobacterium Gilvum: Metabolites and Proteins Involved. Water Air Soil Pollut. 2019, 230, 67. https://doi.org/10.1007/s11270-019-4115-z.

39. Chen, S.C.; Duan, G.L.; Ding, K.; Huang, F.Y.; Zhu, Y.G. DNA Stable-Isotope Probing Identifies Uncultivated Members of Pseudonocardia Associated with Biodegradation of Pyrene in Agricultural Soil. FEMS Microbiol. Ecol. 2018, 94, 1–10. https://doi.org/10.1093/femsme/fiy026.

40. Terzaghi, E.; Posada-Baquero, R.; Di Guardo, A.; Ortega-Calvo, J.J. Microbial Degradation of Pyrene in Holm Oak (Quercus ilex) Phyllosphere: Role of Particulate Matter in Regulating Bioaccessibility. Sci. Total Environ. 2021, 786, 147431. https://doi.org/10.1016/j.scitotenv.2021.147431.

41. Sarma, S.J.; Pakshirajan, K. Surfactant Aided Biodegradation of Pyrene Using Immobilized Cells of Mycobacterium Frederiksbergense. Int. Biodeterior. Biodegrad. 2011, 65, 73–77. https://doi.org/10.1016/j.ibiod.2010.09.004.

42. Mahanty, B.; Pakshirajan, K.; Dasu, V.V. A Two Liquid Phase Partitioning Bioreactor System for the Biodegradation of Pyrene: Comparative Evaluation and Cost-Benefit Analysis. J. Chem. Technol. Biotechnol. 2010, 85, 349–355. https://doi.org/10.1002/jctb.2335.

43. Dean-Ross, D.; Cerniglia, C.E. Degradation of Pyrene by Mycobacterium Flavescentis. Appl. Microbiol. Biotechnol. 1996, 46, 307–312. https://doi.org/10.1007/s002530050822.

44. Vila, J.; López, Z.; Sabaté, J.; Minguillón, C.; Solanas, A.M.; Grifoll, M. Identification of a Novel Metabolite in the Degradation of Pyrene by Mycobacterium Sp. Strain A1P1: Actions of the Isolate on Two- and Three-Ring Polycyclic Aromatic Hydrocarbons. Appl. Environ. Microbiol. 2003, 67, 5497–5505. https://doi.org/10.1128/AEM.67.12.5497-5505.2001.

45. Zhong, Y.; Luan, T.; Zhou, H.; Lan, C.; Tam, N.F.Y. Metabolite Production in Degradation of Pyrene Alone or in a Mixture with Another Polycyclic Aromatic Hydrocarbon by Mycobacterium Sp. Environ. Toxicol. Chem. 2006, 25, 2853–2859. https://doi.org/10.1002/jctb.2011.

46. Luo, S.; Chen, B.; Lin, L.; Wang, X.; Tam, N.F.Y.; Luan, T. Pyrene Degradation Accelerated by Constructed Consortium of Bacterium and Microalga: Effects of Degradation Products on the Microalgal Growth. Environ. Sci. Technol. 2014, 48, 13917–13924. https://doi.org/10.1021/es50376j.

47. Zhong, Y.; Luan, T.; Lin, L.; Liu, H.; Tam, N.F.Y. Production of Metabolites in the Biodegradation of Phenanthrene, Fluoranthene and Pyrene by the Mixed Culture of Mycobacterium Sp. and Sphingomonas Sp. Biorears. Technol. 2011, 102, 2965–2972. https://doi.org/10.1016/j.biortech.2010.09.113.

48. Lease, C.W.M.; Bentham, R.H.; Gaskin, S.E.; Juhasz, A.L. Isolation and Identification of Pyrene Mineralizing Mycobacterium Sp. from Contaminated and Uncontaminated Sources. Appl. Environ. Soil Sci. 2011, 2011, 1–11. https://doi.org/10.1155/2011/409643.

49. Schneider, J.; Grosser, R.; Jayasimhulu, K.; Xue, W.; Warshawsky, D. Degradation of Pyrene, Benz[a]Anthracene, and Benzo[a]Pyrene by Mycobacterium Sp. Strain RGG1-135, Isolated from a Former Coal Gasification Site. Appl. Environ. Microbiol. 1996, 62, 13–19. https://doi.org/10.1128/aem.62.1.13-19.1996.

50. Fan, R.; Tian, H.; Wu, Q.; Yi, Y.; Yan, X.; Liu, B. Mechanism of Bio-Electrokinetic Remediation of Pyrene Contaminated Soil: Effects of an Electric Field on the Degradation Pathway and Microbial Metabolic Processes. J. Hazard. Mater. 2022, 422, 126959. https://doi.org/10.1016/j.jhazmat.2021.126959.

51. Lu, H.; Sun, J.; Zhu, L. The Role of Artificial Root Exudate Components in Facilitating the Degradation of Pyrene in Soil. Sci. Rep. 2017, 7, 1–10. https://doi.org/10.1038/s41598-017-07413-3.

52. Wang, S.; Li, X.; Liu, W.; Li, P.; Kong, L.; Ren, W.; Wu, H.; Tu, Y. Degradation of Pyrene by Immobilized Microorganisms in Saline-Alkaline Soil. J. Environ. Sci. 2012, 24, 1662–1669. https://doi.org/10.1016/S1001-0742(11)60963-7.

53. Deng, F.; Zhang, Z.; Yang, C.; Guo, C.; Lu, G.; Dang, Z. Pyrene Biodegradation with Layer-by-Layer Assembly Bio-Microcapsules. Ecotoxicol. Environ. Saf. 2017, 138, 9–15. https://doi.org/10.1016/j.ecosafe.2016.11.019.

54. Toyama, T.; Furukawa, T.; Maeda, N.; Inoue, D.; Sei, K.; Mori, K.; Kikuchi, S.; Ike, M. Accelerated Biodegradation of Pyrene and Benzo[a]Pyrene in the Phragmites Australis Rhizosphere by Bacteria-Root Exudate Interactions. Water Res. 2011, 45, 1629–1638. https://doi.org/10.1016/j.watres.2010.11.044.
55. Mahanty, B.; Pakshirajan, K.; Venkata Dasu, V. Biodegradation of Pyrene by Mycobacterium Frederiksbergense in a Two-Phase Partitioning Bioreactor System. Bioresour. Technol. 2008, 99, 2694–2698. https://doi.org/10.1016/j.biortech.2007.05.042.

56. Ortega-Calvo, J.J.; Gschwend, P.M. Influence of Low Oxygen Tensions and Sorption to Sediment Black Carbon on Biodegradation of Pyrene. Appl. Environ. Microbiol. 2010, 76, 4430–4437. https://doi.org/10.1128/AEM.00461-10.

57. Deng, F.; Liao, C.; Yang, C.; Guo, C.; Dang, Z. Enhanced Biodegradation of Pyrene by Immobilized Bacteria on Modified Biomass Materials. Int. Biodeterior. Biodegrad. 2016, 110, 46–52. https://doi.org/10.1016/j.ibiod.2016.02.016.

58. Chang, B.V.; Chang, I.T.; Yuan, S.Y. Biodegradation of Phenanthrene and Pyrene from Mangrove Sediment in Subtropical Taiwan. J. Environ. Sci. Health Part A Toxic/Hazardous Subst. Environ. Eng. 2008, 43, 233–238. https://doi.org/10.1080/10591298.2017.1398668.

59. Zeng, J.; Lin, X.; Zhang, J.; Li, X. Isolation of Polycyclic Aromatic Hydrocarbons (PAHs)-Degrading Mycobacterium Sp. and the Degradation in Soil. J. Hazard. Mater. 2010, 183, 718–723. https://doi.org/10.1016/j.jhazmat.2010.07.085.

60. Jacques, R.J.; Okeke, B.C.; Bento, F.M.; Teixeira, A.S.; Peralba, M.C.R.; Camargo, F.A.O. Microbial Consortium Bioaugmentation of a Polycyclic Aromatic Hydrocarbons Contaminated Soil. Bioresour. Technol. 2008, 99, 2637–2643. https://doi.org/10.1016/j.biortech.2007.04.047.

61. Cerniglia, C.E. Degradation Of A Mixture Of High-Molecular-Weight Polycyclic Aromatic Hydrocarbons By A Mycobacterium Strain Pyr- 1. J. Soil Contam. 1995, 4, 77–91. https://doi.org/10.1080/15320389509383482.

62. Sho, M.; Hamel, C.; Greer, C.W. Two Distinct Gene Clusters Encode Pyrene Degradation in Mycobacterium Sp. Strain S65. FEMS Microbiol. Ecol. 2004, 48, 209–220. https://doi.org/10.1111/j.1574-6941.2004.00111.x.

63. López, Z.; Vila, J.; Ortega-Calvo, J.J.; Grifoll, M. Simultaneous Biodegradation of Creosote-Polycyclic Aromatic Hydrocarbons by a Pyrene-Degrading Mycobacterium. Appl. Microbiol. Biotechnol. 2008, 78, 165–172. https://doi.org/10.1007/s00253-007-1284-2.

64. Child, R.; Miller, C.D.; Liang, Y.; Sims, R.C.; Anderson, A.J. Pyrene Mineralization by Mycobacterium Sp. Strain KMS in a Barley Rhizosphere. J. Environ. Qual. 2007, 36, 1260–1265. https://doi.org/10.2134/jeq2007.0008.

65. Badejo, A.C.; Badejo, A.O.; Shin, K.H.; Chai, Y.G. A Gene Expression Study of the Activities of Aromatic Ring-Cleavage Dioxygenases in Mycobacterium Gilmum PYR-GCK to Changes in Salinity and PH during Pyrene Degradation. PLoS ONE 2013, 8, e58066. https://doi.org/10.1371/journal.pone.0058066.

66. Ramirez, N.; Cutright, T.; Ju, L.K. Pyrene Biodegradation in Aqueous Solutions and Soil slurries by Mycobacterium PYR-1 and Enriched Consortium. Chemosphere 2001, 44, 1079–1086. https://doi.org/10.1016/S0045-6535(00)00475-6.

67. Vila, J.; Grifoll, M. Actions of Mycobacterium Sp. Strain AP1 on the Saturated- and Aromatic-Hydrocarbon Fractions of Fuel Oil in a Marine Medium. Appl. Environ. Microbiol. 2009, 75, 6232–6239. https://doi.org/10.1128/AEM.02726-08.

68. Jimenez, I.Y.; Bartha, R. Solvent-Augmented Mineralization of Pyrene by a Mycobacterium Sp. Appl. Environ. Microbiol. 1996, 62, 2311–2316. https://doi.org/10.1128/aeem.62.7.2311-2316.1996.

69. Guo, C.; Dang, Z.; Wong, Y.; Tam, N.F. Biodegradation Ability and Dioxygenase Genes of PAH-Degrading Sphingomonas and Mycobacterium Strains Isolated from Mangrove Sediments. Int. Biodeterior. Biodegrad. 2010, 64, 419–426. https://doi.org/10.1016/j.ibiod.2010.04.008.

70. Seo, J.S.; Keum, Y.S.; Kim, K.; Li, Q.X. Degradation of Pyrene by Mycobacterium Aromativorans Strain JS19b1. J. Appl. Biol. Chem. 2010, 53, 323–329. https://doi.org/10.3839/jkabc.2010.050.

71. Kim, Y.H.; Freeman, J.P.; Moody, J.D.; Engesser, K.H.; Cerniglia, C.E. Effects of PH on the Degradation of Phenanthrene and Pyrene by Mycobacterium Vanbaalenii PYR-1. Appl. Microbiol. Biotechnol. 2005, 67, 275–285. https://doi.org/10.1007/s00253-004-1796-y.

72. Liang, Y.; Gardner, D.R.; Miller, C.D.; Chen, D.; Anderson, A.J.; Weimer, B.C.; Sims, R.C. Study of Biochemical Pathways and Enzymes Involved in Pyrene Degradation by Mycobacterium Sp. Strain KMS. Appl. Environ. Microbiol. 2006, 72, 7821–7828. https://doi.org/10.1128/AEM.01274-06.

73. Sarma, P.M.; Duraja, P.; Deshpande, S.; Lal, B. Degradation of Pyrene by an Enteric Bacterium, Leclercia Adcarboxylata PS4040. Biodegradation 2010, 21, 59–69. https://doi.org/10.1007/s10532-009-9281-z.

74. Zheng, T.; Liu, R.; Chen, J.; Gu, X.; Wang, J.; Li, L.; Hou, L.; Li, N.; Wang, Y. Fire Phoenix Plant Mediated Microbial Degradation of Pyrene: Increased Expression of Functional Genes and Diminishing of Degraded Products. Chem. Eng. J. 2021, 407, 126343. https://doi.org/10.1016/j.cej.2020.126343.

75. Agrawal, N.; Shahi, S.K. Degradation of Polycyclic Aromatic Hydrocarbon (Pyrene) Using Novel Fungal Strain Coriolopsis Byrsina Spore APCS. Int. Biodeterior. Biodegrad. 2017, 122, 69–81. https://doi.org/10.1016/j.ibiod.2017.04.024.

76. Lu, J.; Guo, C.; Zhang, M.; Lu, G.; Dang, Z. Biodegradation of Single Pyrene and Mixtures of Pyrene by a Fusant Bacterial Strain F14. Int. Biodeterior. Biodegrad. 2014, 87, 75–80. https://doi.org/10.1016/j.ibiod.2013.11.004.

77. Al Farraj, D.A.; Hadibarata, T.; Yuniarto, A.; Syafuuddin, A.; Surtikanti, H.K.; Elshikh, M.S.; Al Khulaifi, M.M.; Al-Kufaidy, R. Characterization of Pyrene and Chrysene Degradation by Halophilic Hortaea Sp. B15. Bioprocess Biosyst. Eng. 2019, 42, 963–969. https://doi.org/10.1007/s00449-019-02996-8.

78. Ma, J.; Xu, L.; Jia, L. Characterization of Pyrene Degradation by Pseudomonas Sp. Strain Jpyr-1 Isolated from Active Sewage Sludge. Bioresour. Technol. 2013, 140, 15–21. https://doi.org/10.1016/j.biortech.2013.03.184.
79. Rathour, R.; Gupta, J.; Tyagi, B.; Kumari, T.; Thakur, I.S. Biodegradation of Pyrene in Soil Microcosm by Shewanella Sp. ISTPL2, a Psychrophilic, Alkalophilic and Halophilic Bacterium. *Bioresour. Technol. Rep.* 2018, 4, 129–136. https://doi.org/10.1016/j.biteb.2018.10.004.

80. Swati; Ghosh, P.; Thakur, I.S. Biodegradation of Pyrene by Pseudomonas Sp. ISTPY2 Isolated from Landfill Soil: Process Optimisation Using Box-Behnken Design Model. *Bioresour. Technol. Rep.* 2019, 8, 100329. https://doi.org/10.1016/j.biteb.2019.100329.

81. Swati; Kumari, M.; Ghosh, P.; Thakur, I.S. Evaluation of a Biosurfactant Producing Bacterial Strain Pseudomonas Sp. ISTPY2 for Efficient Pyrene Degradation and Landfill Soil Bioremediation through Soil Microcosm and Proteomic Studies. *Bioresour. Technol. Rep.* 2020, 12, 100607. https://doi.org/10.1016/j.biteb.2020.100607.

82. Jin, J.; Yao, J.; Zhang, Q.; Liu, J. Biodegradation of Pyrene by Pseudomonas Sp. JPN2 and Its Initial Degrading Mechanism Study by Combining the Catabolic NahAc Gene and Structure-Based Analyses. *Chemosphere* 2016, 164, 379–386. https://doi.org/10.1016/j.chemosphere.2016.08.113.

83. Fernández-López, C.; Posada-Baquero, R.; García, J.L.; Castilla-Alcantara, J.C.; Cantos, M.; Ortega-Calvo, J.J. Root-Mediated Bacterial Accessibility and Catabolism of Pyrene in Soil. *Sci. Total Environ.* 2021, 760, 143408. https://doi.org/10.1016/j.scitotenv.2020.143408.

84. Kashyap, N.; Moholkar, V.S. Intensification of Pyrene Degradation by Native Candida Tropicalis MTCC 184 with Sonication: Kinetic and Mechanistic Investigation. *Chem. Eng. Process. Process Intensif.* 2021, 164, 108415. https://doi.org/10.1016/j.cep.2021.108415.

85. Ghosh, I.; Jasmine, J.; Mukherji, S. Biodegradation of Pyrene by a Pseudomonas Aeruginosa Strain RS1 Isolated from Refinery Sludge. *Bioresour. Technol.* 2014, 166, 548–558. https://doi.org/10.1016/j.biortech.2014.05.074.

86. Nzila, A.; Ramirez, C.O.; Musa, M.M.; Sankara, S.; Basheer, C.; Li, Q.X. Pyrene Biodegradation and Proteomic Analysis in Achromobacter Xylosolani, PY4 Strain. *Int. Biodeterior. Biodegrad.* 2018, 130, 40–47. https://doi.org/10.1016/j.ibiod.2018.03.014.

87. Umur, Z.D.; Nor Azwady, A.A.; Zulkifli, S.Z.; Muskhalzai, M. Effective Phenanthrene and Pyrene Biodegradation Using Enterobacter Sp. MM087 (KT933254) Isolated from Used Engine Oil Contaminated Soil. *Egypt. J. Pet.* 2018, 27, 349–359. https://doi.org/10.1016/j.ejipe.2017.06.001.

88. Ghosh, I.; Mukherji, S. Substrate Interaction Effects during Pyrene Biodegradation by Pseudomonas Aeruginosa RS1. *J. Environ. Chem. Eng.* 2017, 5, 1791–1800. https://doi.org/10.1016/j.jece.2017.03.016.

89. Gupta, B.; Puri, S.; Thakur, I.S.; Kaur, J. Enhanced Pyrene Degradation by a Biosurfactant Producing Acinetobacter Baumannii BJ5: Growth Kinetics, Toxicity and Substrate Inhibition Studies. *Environ. Technol. Innov.* 2020, 19, 100804. https://doi.org/10.1016/j.eti.2020.100804.

90. Jiang, B.; Chen, Y.; Xing, Y.; Lian, L.; Shen, Y.; Zhang, B.; Zhang, H.; Sun, G.; Li, J.; Wang, X.; et al. Negative Correlations between Cultivable and Active-yet-Uncultivable Pyrene Degraders Explain the Postponed Bioaugmentation. *J. Hazard. Mater.* 2022, 423, 127189. https://doi.org/10.1016/j.jhazmat.2021.127189.

91. Yang, W.; Hadibarata, T.; Mahmoud, A.H.; Yuniarto, A. Biotransformation of Pyrene in Soil in the Presence of Earthworm Eisenia Fetida. *Environ. Technol. Innov.* 2018, 18, 100701. https://doi.org/10.1016/j.eti.2020.100701.

92. Li, X.; Zhang, X.; Li, L.; Lin, C.; Dong, W.; Shen, W.; Yong, X.; Jia, H.; Wu, X.; Zhou, J. Anaerobic Biodegradation of Pyrene by Klebsiella Sp. L26 and Its Proposed Metabolic Pathway. *Environ. Technol.* 2020, 41, 2130–2139. https://doi.org/10.1080/09593330.2018.1556348.

93. Giménez, B.N.; Conte, L.O.; Alfano, O.M.; Schenone, A.V. Paracetamol Removal by Photo-Fenton Processes at near-Neutral PH Using a Solar Simulator: Optimization by D-Optimal Experimental Design and Toxicity Evaluation. *J. Photochem. Photobiol. A Chem.* 2020, 397, 112584. https://doi.org/10.1016/j.jphotochem.2020.112584.

94. Dabrowska, D.; Kot-Wasik, A.; Namiesnik, J. Pathways and Analytical Tools in Degradation Studies of Organic Pollutants. *Crit. Rev. Anal. Chem.* 2005, 35, 155–176. https://doi.org/10.1080/10408340500207565.

95. Krivobok, S.; Kuony, S.; Meyer, C.; Louwagie, M.; Willson, J.C.; Jouanneau, Y. Identification of Pyrene-Induced Proteins in Mycobacterium Sp. Strain 6PY1: Evidence for Two Ring-Hydroxylation Oxygenases. *J. Bacteriol.* 2003, 185, 3828–3841. https://doi.org/10.1128/JB.185.13.3828-3841.2003.

96. Maruyama, T.; Ishikura, M.; Taki, H.; Shindo, K.; Kasai, H.; Haga, M.; Inomata, Y.; Misawa, N. Isolation and Characterization of O-Xylene Oxygenase Genes from Rhodococcus Opacus TKN14. *Appl. Environ. Microbiol.* 2005, 71, 7705–7715. https://doi.org/10.1128/AEM.71.12.7705-7715.2005.

97. Pagnout, C.; Frache, G.; Poupin, P.; Maunit, B.; Muller, J.F.; Férard, J.F. Isolation and Characterization of a Gene Cluster Involved in PAH Degradation in Mycobacterium Sp. Strain SNP11: Expression in Mycobacterium Smegmatis Mc2155. *Res. Microbiol.* 2007, 158, 175–186. https://doi.org/10.1016/j.resmic.2006.11.002.

98. Kim, S.J.; Kweon, O.; Freeman, J.P.; Jones, R.C.; Adjei, M.D.; Jhoo, J.W.; Edmondson, R.D.; Cerniglia, C.E. Molecular Cloning and Expression of Genes Encoding a Novel Dioxygenase Involved in Low- and High-Molecular-Weight Polycyclic Aromatic Hydrocarbon Degradation in Mycobacterium Vanbaalenii PYR-1. *Appl. Environ. Microbiol.* 2006, 72, 1045–1054. https://doi.org/10.1128/AEM.72.2.1045-1054.2006.
99. Adamou, J.E.; Heinrichs, J.H.; Erwin, A.L.; Walsh, W.; Gayle, T.; Dormitzer, M.; Dagan, R.; Brewah, Y.A.; Barren, P.; Lathigra, R.; et al. Identification and Characterization of a Novel Family of Pneumococcal Proteins That Are Protective against Sepsis. *Infect. Immun.* **2001**, *69*, 949–958. https://doi.org/10.1128/IAI.69.2.949-958.2001.

100. Wu, Y.; Xu, Y.; Zhou, N. A Newly Defined Dioxygenase System from Mycobacterium Vanbaalenii PYR-I Endowed with an Enhanced Activity of Dihydroxylation of High-Molecular-Weight Polyaromatic Hydrocarbons. *Front. Environ. Sci. Eng.* **2020**, *14*, 1–11. https://doi.org/10.1007/s11783-019-1193-5.

101. Levieux, J.A.; Medellin, B.; Johnson, W.H.; Erwin, K.; Li, W.; Johnson, I.A.; Zhang, Y.J.; Whitman, C.P. Structural Characterization of the Hydratase-Aldolases, NahE and PhdJ: Implications for the Specificity, Catalysis, and N-Acetylneuraminate Lyase Subgroup of the Aldolase Superfamily. *Biochemistry* **2018**, *57*, 3524–3536. https://doi.org/10.1021/acs.biochem.8b00532.

102. Kumari, S.; Regar, R.K.; Bajaj, A.; Ch, R.; Satyanarayana, G.N.V.; Mudiam, M.K.R.; Manickam, N. Simultaneous Biodegradation of Polyaromatic Hydrocarbons by a Sternotrophomonas Sp: Characterization of Nid Genes and Effect of Surfactants on Degradation. *Indian J. Microbiol.* **2017**, *57*, 60–67. https://doi.org/10.1007/s12088-016-0612-6.

103. Saito, A.; Iwabuchi, T.; Harayama, S. A Novel Phenanthrene Dioxygenase from Nocardoides Sp. Strain KP7: Expression in Escherichia Coli. *J. Bacteriol.* **2000**, *182*, 2134–2141. https://doi.org/10.1128/JB.182.8.2134-2141.2000.

104. Walter, U.; Beyer, M.; Klein, J.; Rehm, H. Appeal Microbiology Biote Nology Degradation of Pyrene by Rhodococcus Sp. UW1. *Power* **1991**, 671–676.

105. Sakshi; Singh, S.K.; Haritash, A.K. Catabolic Enzyme Activity and Kinetics of Pyrene Degradation by Novel Bacterial Strains Isolated from Contaminated Soil. *Environ. Technol. Innov.* **2021**, *23*, 101744. https://doi.org/10.1016/j.eti.2021.101744.

106. Zhou, H.; Zhang, S.; Xie, J.; Wei, H.; Hu, Z.; Wang, H. Pyrene Biodegradation and Its Potential Pathway Involving Roseobacter Clade Bacteria. *Int. Biodeterior. Biodegrad.* **2020**, *150*, 104961. https://doi.org/10.1016/j.ibiod.2020.104961.

107. Khanna, G.P.; Goyal, D.; Khanna, S. Pyrene Biodegradation by Bacillus Spp. Isolated from Coal Tar-Contaminated Soil. *Bioremediat. J.* **2011**, *15*, 12–25. https://doi.org/10.1080/10889868.2010.547998.

108. Vasconcelos, M.R.S.; Vieira, G.A.L.; Otero, J.V.R.; Bonugli-Santos, R.C.; Rodrigues, M.V.N.; Rehder, V.L.G.; Ferro, M.; Boaventura, S.; Bacci, M.; Sette, L.D. Pyrene Degradation by Marine- Derived Ascomycete: Process Optimization, Toxicity, and Metabolic Analyses. *Environ. Sci. Pollut. Res.* **2019**, *26*, 12412–12424. https://doi.org/10.1007/s11356-019-04518-2.