Virtual model of an induction motor with rotor eccentricity

A Yu Prudnikov, V V Bonnet and A Yu Loginov

Irkutsk State Agricultural University named after A.A. Ezhevsky, Molodezhny settlement, Irkutsk distrikt, Irkutsk region, 664038, Russia

E-mail: a.prudnicov@mail.ru

Abstract. A squirrel-cage induction motor is the most common motor used to drive working machines in various technological processes, including in the agricultural sector. A sufficiently large resource is laid in them by the manufacturer, but in practice the engine serves much less, due to various factors, including imperfection of diagnostic systems. Failure analysis showed that one of the common causes of failure is increased bearing wear. An increase in the rotor eccentricity is the main diagnostic parameter of this malfunction, for the detection of which a diagnostic method was developed that allows using the indirect indicator, the rotor speed, to evaluate the technical condition of the engine bearings. To identify the dependence of diagnostic parameters on the technical condition, a virtual model of an asynchronous motor with rotor eccentricity was built. The model is implemented using a package of applied mathematical programs and allows you to simulate the operation of an induction motor in various modes, such as starting, idling, steady state with the ability to change the nature of the load. As a result, we obtained the dependences of the angular velocity of rotation of the rotor, stator current, and torque on the shaft versus time for various technical conditions of the engine.

1. Introduction

The widespread use of squirrel-cage induction motors in both industry and agriculture is due to their low cost and reliability of use. The effective use of these engines in agriculture is hindered by an aggressive environment and their unsustainable operation, as evidenced by the results of studies cited in the authors [1-6]. As practice shows, one of the most common mechanical failures is the eccentricity of the rotor caused by bearing wear [7-13].

A promising area of research is the diagnosis of engines in transient modes of operation, since this process proceeds briefly, but has high information content. Despite the fact that a lot of work has been devoted to the study of transient processes in induction motors, the start-up mode is a poorly studied process [14-17].

To identify diagnostic parameters and the nature of their dependence on the eccentricity value, it is necessary to obtain a system of equations of the electromechanical equilibrium of an induction motor taking into account malfunctions [18, 19].

Changes in the mechanical parameters of an induction motor, including the air gap, can be estimated using appropriate algorithms that allow analysis of the signals available for measurement without interfering with the process. Such signals are the voltage and current of the stator, as well as the frequency of rotation of the rotor of the motor [20, 21]. In mathematical modeling of electromechanical processes in an induction motor in transient modes of operation, the calculation model of a two-phase generalized electric machine is most often used, this is due to the complexity of mathematical
expressions describing this process [22, 23]. For an induction motor, the calculation model consists of a cylindrical stator and a rotor with two layers of concentric windings. The system of equations of electromechanical equilibrium taking into account the eccentricity is written in the form [24]:

\[
U_{1f,nom} \cdot \frac{e}{2 \delta_0 \, k_{c1} \, k_{c2}} = R_s \cdot i_s + \frac{U_{1f,nom}}{l_{1f,nom}} + \frac{2U_{1f,nom}}{l_{1f,nom}(\omega_1 + \omega_e)} \cdot \left(L_s \cdot \frac{di_s}{dt} + 2M \cdot \frac{di_r}{dt} \right),
\]

\[
0 = R_r \cdot i_r + \frac{U_{1f,nom}}{l_{1f,nom}} + \frac{2U_{1f,nom}}{l_{1f,nom}(\omega_1 + \omega_e)} \cdot \left(L_r \cdot \frac{di_r}{dt} + 2M \cdot \frac{di_s}{dt} \right),
\]

\[
J \cdot \frac{d\omega}{dt} = 2M \cdot i_s \cdot i_r \cdot \sin[(\omega_1 + \omega_e) - \omega] \cdot t - M_c
\]

where is \(U_{1f,nom} \) - the nominal phase voltage; \(I_{1f,nom} \) - rated phase current; \(R_s, R_r \) - active stator and rotor resistances, respectively; \(i_s, i_r \) - current in the stator and rotor windings, respectively; \(M \) - is the nominal electromagnetic moment; \(M_c \) - active moment; \(J \cdot \omega \) - angular momentum; \(L_s, L_r \) - intrinsic inductance of the stator and rotor windings respectively.

The obtained mathematical expressions allow us to simulate the operation of an induction motor at various values of the rotor eccentricity. As a result of the calculations, it is possible to obtain functional dependences of the angular velocity of rotation of the rotor, stator current, and torque on the shaft as a function of time \(\omega(t), i(t), M(t) \).

2. Materials and methods

To check the theoretical premises for diagnosing the rotor eccentricity of an induction motor by changing the oscillations of the rotor speed and the decay time of these oscillations, a virtual model of the asynchronous motor was created. It was performed in a fixed orthogonal coordinate system (expressions 1-3), using the Matlab + Simulink software package [24, 25], which takes into account the eccentricity for the spatial harmonic of induction with serial number \(i = 1 \) rotating in the direction of the fundamental harmonic figure 1.

The model consists of the main blocks:

1. The «\(\Omega \)» unit sets the frequency of rotation of the fundamental harmonic of the voltage applied to the three-phase stator windings of the induction motor. Functional blocks «\(Fcn - Fcn2 \)» define a symmetric system of three-phase voltage supplied to the stator windings (voltage \(V_{ag}, V_{bg}, V_{cg} \) [25].

2. The «\(\Omega \)» block sets the frequency of rotation of the spatial harmonic of the electromotive force with serial number \(i = 1 \), rotating in the direction of the fundamental harmonic due to the eccentricity of the rotor of the induction motor. Functional blocks «\(Fcn3 - Fcn5 \)» define a symmetric system of three-phase electromotive force arising in the stator windings of an induction motor in the presence of an eccentricity of its rotor [27].

3. The block of the subsystem «Subsystem» defines a virtual model of an asynchronous motor in a fixed orthogonal coordinate system [28]. The computational blocks of the Subsystem model perform the following functions:

- transformation of a three-phase motionless coordinate system (a, b, c) into a motionless two-phase coordinate system (q, d). The transition to a two-phase coordinate system allows us to eliminate the dependence of the mutual inductances of the windings of the induction motor on the angle of rotation of the rotor, i.e. eliminate the variability of the corresponding coefficients in a virtual calculation model;
- allows you to calculate: the component of the flux linkage of the stator and rotor along the axes (q, d), as well as the current component;
- calculate the electromagnetic torque of the engine and the ratio of the angular velocity of rotation of the rotor to the angular velocity of rotation of the fundamental harmonic of the stator field;
sets the load diagram on the rotor shaft of the induction motor.

4. The «Total Harmonic Distortion» unit measures the total harmonics coefficient (THD) of the stator phase current. THD is defined as the rms value of all harmonics of the current divided by the rms value of the fundamental current frequency of 50 Hz.

5. The «Fourier» block performs a Fourier analysis of the signal equal to the current value for one period of the fundamental frequency [27]. For the considered virtual model, the block is programmed in such a way as to calculate the amplitude of the fundamental frequency of the input signal in the same units (amperes) as the input signal corresponding to the stator phase current.

6. The «Power Spectral Density» spectrum analyzer is used to view the signal spectral density equal to the current value (Simulink Extras / Additional Sinks / Power Spectral Density).

The described mathematical model of an asynchronous motor with rotor eccentricity performed using the Matlab + Simulink software package allows you to simulate its operation in various modes, such as starting, idling, steady state with the ability to change the nature of the load.

3. Results of the study, their discussion
The simulation was carried out for a 2.2 kW engine with a nominal rotor speed of 1460 rpm; the results are shown in figure 2.

As a result, we obtained the dependences of the rotational speed of the induction motor rotor as a function of time for various values of the eccentricity of its rotor figure 2 and the dependences of the change in the electromagnetic moment on time for the values of eccentricity of 0 and 60%.

![Virtual model of an asynchronous motor with rotor eccentricity.](image)
Figure 2. The dependence of the rotor speed on time at the rotor eccentricity of 0, 20, 40, 60 % in idle mode.

The figure shows that with an increase in the eccentricity of the rotor, the amplitude of the oscillations of the rotor speed increases, relative to the same amplitude of a technically sound engine. For example, with an eccentricity of 20%, the difference in the amplitudes of the rotor speed is 11 rpm, and with an eccentricity of 60%, 34 rpm.

The dependences of the change in the electromagnetic moment on time were also obtained for the eccentricity of the rotor figure 3. With an increase in the eccentricity of the rotor in the steady-state mode of operation, the moment increases and takes the form of a sinusoid with a variable amplitude.

Figure 3. Dependences of the change of the electromagnetic moment on time at the value of the eccentricity of 0 and 60 % in the idle mode.
Based on the data obtained as a result of the simulation, we obtained a linear dependence of the change in the amplitude of the oscillations of the rotor speed on the value of its eccentricity $\varepsilon = 1,772 \cdot \Delta A - 0,759$ with the reliability of the approximation $R^2 = 0,97$.

Verification of the virtual model was carried out in laboratory conditions, as well as in operating conditions in various technological processes in order to establish functional dependencies. As a result of experimental studies, it was found that the eccentricity of the rotor is directly proportional to the difference in the amplitudes of the change in the rotational speed during tests both under load and at idle with an approximation reliability of $R^2 \geq 0,83$, while diagnosing the engine under load allows more reliable results.

4. Conclusion
The developed virtual model of an asynchronous motor makes it possible to model and determine the technical condition of the bearings of the asynchronous motor with the difference in the amplitudes of the change in the rotor speed.

The developed mathematical model of an induction motor with rotor eccentricity based on the equations of electromechanical equilibrium of an induction motor is confirmed.

Using the approximation function, it is possible during operation, as well as after repair, to determine the eccentricity of the rotor, based on the difference in the amplitudes of the change in speed.

Increase in rotor eccentricity Change in stator current leads to an increase in stator current and electromagnetic moment, which in aggregate negatively affects the operation of an induction motor and reduces its service life.

References
[1] Kozhukhov V A and Strizhnev S A 2006 Review of technological failures of induction motors in agricultural production Vestnik of Krasnoyarsk State Agrarian University 11 199-202
[2] Vorobyev A E and Fatyanov S O 2017 Analysis of the causes of failures in the operation of induction motors in agriculture and industrial production Vestnik of the Council of Young Scientists of Ryazan State Agrotechnological University named after P A Kostychev 2(5) 169-74
[3] Khomutov S O 2015 System for maintaining the reliability of electric motors based on comprehensive diagnostics and efficient insulation restoration technology (Barnaul: Interregional Center for Electronic Educational Resources LLC)
[4] Sidelnikov L G and Afanasyev D O 2013 Overview of methods for monitoring the technical condition of induction motors during operation Vestnik of Perm National Research Polytechnik University Geology Oil and gas and mining 12(7) 127-37
[5] Baturina N Yu, Kalienko I V and Vorzhev V B 2015 Determination of parameters of a three-phase asynchronous engine by statistical processing of measurement pairs Modern trends in the development of science and technology 9-3 30-3
[6] Bonnet V V, Loginov A Yu, Prudnikov A Yu, Bonnet Y V and Bonnet M V 2020 Predicting the reliability of auxiliary equipment of heat sources IOP Conf. Ser.: Materials Science and Engineering 862 062036
[7] Safin N P, Prakt V A and Dmitrievsky V A 2017 Investigation of the effect of bearing failures on the efficiency of an induction motor Electrical Engineering 10 87-91
[8] Volnikov M I 2018 On the issue of timely non-stop diagnosis of electric motors The role of university science in solving problems of the agro-industrial complex All-Russian (national) scientific and practical conference dedicated to the 90th anniversary of G V Galdin (Penza: Publishing House Penzensky GAU) 2 14-7
[9] Magdanova K P 2017 Influence of rotor eccentricity on the energy characteristics of an asynchronous motor Nauka-Rastudent.ru 6 007
[10] Sidelnikov L G and Afanasyev D O 2013 Overview of methods for monitoring the technical condition of induction motors during operation Vestnik of Perm National Research Polytechnik
[11] Ivanov P Yu, Dulsky E Yu and Khudonogov A M 2016 Modern directions for the development of systems for monitoring the insulation status of asynchronous electric motors *Bulletin of Irkutsk State Technical University* **20-12(119)** 146-54

[12] Eltyshhev D K 2018 Multi-criteria analysis of solutions in intelligent systems for assessing and managing the state of power equipment *Informatics and control systems* **2(56)** 96-107

[13] Panov A N, Bodrov E E, Bodrova S I, Mikheeva V O and Lysenko A A 2018 Possibility of using an intelligent sensor to diagnose the state of an electric motor *Automated technologies and production* **1(17)** 14-7

[14] Khoroshev N I and Kazantsev V P 2015 Management Support of Electroengineering Equipment Servicing Based on the Actual Technical Condition *Automation and Remote Control* **76-6** 1058-69

[15] Eltyshhev D and Gnutova K 2018 Influence of fuzzy clustering on the accuracy of electrical equipment diagnostic models *Proc. the 6th Int. Conf. on Applied Innovations in IT* (March 2018 Koethenvol 6) ed E Siemens et al (Koethen: Hochschule Anhalt) 23-8

[16] Mugalimov R G, Mugalimova A R , Kalugin Yu A and Odintsov K E 2018 Methodology for diagnosing and identifying failures in windings of an induction motor in the mode of its operation *Electrical systems and complexes* **3(40)** 70-8

[17] Prudnikov A Yu, Bonnet V B and Loginov A Yu 2015 Mathematical model of an asynchronous motor with an eccentricity of a rotor *Vestnik of KrasGAU* **6(105)** 94-7

[18] Bonnet B V and Prudnikov A Yu 2017 Statistical estimation of parameters for changing the rotor speed of an induction motor *Vestnik of IrGSKHA* **80** 125-30

[19] Prudnikov A Yu, Bonnet V V, Logvinov A Yu and Potapov V V 2015 Experimental verification of the method for diagnosing the rotor eccentricity of an induction motor *Vestnik of KrasGAU* **11(110)** 73-7

[20] Prudnikov A Yu, Bonnet V V and Kuznetsov B F 2016 *Automated system for diagnosing eccentricity of the rotor of an induction motor* (certificate of state registration of the computer program 2016618129)

[21] Prudnikov A Yu, Bonnet V V and Loginov A Yu 2019 Automated system for processing diagnostic parameters of asynchronous motors for poultry house ventilation systems *IOP Conf. Ser.: Earth Environ. Sci.* **315** 032019

[22] Bonnet V V, Logvinov A Yu, Prudnikov A Yu, Bonnet Y V and Bonnet M V 2020 Method for determining the power of squirrel-cage induction motors *IOP Conf. Ser.: Earth Environ. Sci.* **421** 052009

[23] Prudnikov A Yu, Bonnet V V and Loginov A Yu 2020 Method of diagnostics of the rotor eccentricity of an induction motor *Journal of Physics: Conference Series* (ICMSIT-2020) **1515**

[24] Chernykh A G, Bonnet V V, Prudnikov A Yu and Potapov V V 2015 Algorithm for synthesis of the calculation model for the eccentricity of an asynchronous motor *Materials of the XInd Int. Scientific and Practical Conf. "Areas of scientific thought"* - 2015/2016 (Sheffield) 102–11

[25] Дьяконов В И 2004 *MATLAB 6/6.1/6.5 + Simulink 4/5. The basics of the application. Complete user guide* (Moscow: SOLON-Press) p 756

[26] Chernykh I V 2004 *Simulink environment for creating engineering applications* (Moscow: DIALOG-MIFI) p 496

[27] Chernykh I V 2008 *Modeling electrical devices in MATLAB, SimPowerSystems u Simulink* (St. Petersburg: Piter) p 288

[28] Lurye M S and Lurye O M 2006 *Application of the MATLAB program in the course of electrical engineering* (Krasnoyarsk: SibGTU) p 208