Contributions of spontaneous phase slippage to linear and non-linear conduction near the Peierls transition in thin samples of o-TaS₃

V. Ya. Pokrovskii and S. V. Zaitsev–Zotov

Institute of Radioengineering and Electronics of Russian Academy of Sciences, Mokhovaya 11, 103907 Moscow, Russia,
e-mail: pok@mail.cplire.ru

In the Peierls state very thin samples of TaS₃ (cross-section area ∼ 10⁻³ μm²) are found to demonstrate smearing of the I-V curves near the threshold field. With approaching the Peierls transition temperature, T_P, the smearing evolves into smooth growth of conductance from zero voltage interpreted by us as the contribution of fluctuations to the non-linear conductance. We identify independently the fluctuation contribution to the linear conductance near T_P. Both linear and non-linear contributions depend on temperature with close activation energies ∼ (2—4)×10³ K and apparently reveal the same process. We reject creep of the continuous charge-density waves (CDWs) as the origin of this effect and show that it is spontaneous phase slippage that results in creep of the CDW. A model is proposed accounting for both the linear and non-linear parts of the fluctuation conduction up to T_P.

I. INTRODUCTION

Though the Peierls transition in quasi 1-dimensional conductors was discovered more than 30 years ago, its mechanism and the role of fluctuations still remain an unsettled problem [1,3]. The fluctuations in quasi 1-dimensional compounds below T_P are seen from various studies including transport properties, such as the large width of the Peierls transition [1,3] in comparison with that expected from the BCS-type onset of the gap, the smeared edge of the Peierls gap revealed through the optical investigations [1], the appearance of spontaneous current noise, which is associated with thermally initiated phase slip (PS) developing several kelvins below T_P [2].

A decrease of the cross-section area s of the samples results in growth of the fluctuations. For example, in the samples of o-TaS₃ with s ∼ 10⁻² μm² and below, the Peierls transition is smeared out and substantially shifted down to lower temperatures [3]. Conductance hysteresis in such thin samples is absent within decades of kelvins below T_P; in this temperature range spontaneous PS is observed, and the conductivity strongly deviates from the Arrhenius law [3]. Another fluctuation effect known as threshold rounding consists in smearing out of the onset of the non-linear current at the threshold field E_T [3,4]. This effect is found in NbSe₃. The rounding increases both with increasing T and decreasing thickness t of the crystals; in the thinnest crystals the growth of conductivity starts from zero field. In [3,4] phase slippage has been discussed as a possible basis of the rounding, but the authors did not find enough arguments in favor of this explanation. Another interpretation was found to be more reasonable [3,4]: the rounding was attributed to the thermally–assisted creep of charge–density waves (CDWs) in the framework of the weak-pinning model [2]. This approach implies that in very thin samples the pinning energy of the phase-correlation volume becomes comparable with kT, and activated creep of the continuous CDW within the correlation lengths L_{2π} is possible. Estimates for NbSe₃ based on the mean-field BCS dependence for Δ(T), showed that thermal depinning of the CDW is probable. This interpretation, however, is rather dubious for TaS₃, where the mean-field approach fails near T_P: in highly anisotropic compounds such as TaS₃ and K₀.₃MoO₃, the onset of the gap near T_P does not follow the BCS dependence [10,11], and the pseudogap does not vanish tens of kelvins above T_P [2,3].

In the present paper the threshold rounding in thin samples of TaS₃ is reported. Independently we observe a fluctuation contribution to the linear conductivity. It is shown that creep of the continuous CDW cannot account for the threshold rounding in TaS₃. Alternatively, we show that spontaneous PS observed near T_P results in local creep of the CDW and contributes to the linear and non-linear conductivity, in agreement with our experiment. The result is generalized for large samples. We discuss the mechanism of the Peierls transition in the light of the PS – induced creep.

II. EXPERIMENTAL TECHNIQUE AND RESULTS

Thin samples of TaS₃ were placed on sapphire substrates. We used vacuum-deposited indium contacts [4]. The cross-section area of the samples was estimated from the values of the room-temperature resistance (3×10⁻⁴ Ωcm) and the visible contact separation [4]. Similar results are observed on 5 samples from high-quality batches. Most of the data reported here are obtained on the representative sample with the dimensions L = 4.5 μm, s = 0.3 × 10⁻³ μm².
The dependencies of conduction σ on temperature and voltage V are presented in Figs. 1 and 2, respectively. One can see (Fig. 1) that the Peierls transition is smeared out in comparison with the transitions in usual-sized samples (shown with a dotted line), in agreement with Ref. [5]. Deviation from the Arrhenius law is observed tens of kelvins below T_P (indicated by an arrow), the latter being considerably shifted downwards in comparison with $T_P = 220$ K observed in thick samples. The activation dependence $\sigma \propto \exp(-\Delta/T)$ with $\Delta = 800$ K extrapolated from the low temperatures is shown by the broken line; we denote the corresponding conductivity as σ_{Δ}. We shall consider the temperature and sample-size dependence of the Peierls gap, Δ, to be insignificant, which is supported by the results of Refs. [3,9,13]. Then, the difference $\delta \sigma \equiv \sigma - \sigma_{\Delta}$ can be considered as the fluctuation contribution to the conductivity. The Arrhenius plot $\delta \sigma$ vs. $1/T$ is shown in Fig. 1. The dependence is close to a straight line up to $T \approx T_P$; the activation energy W being about 2400 K, is well above Δ. For samples with higher cross-section areas we obtained somewhat larger activation energies, up to $W \approx (5-7) \times 10^3$ K for the normal-sized samples, as it was reported earlier [14,15].

Turning to the σ vs. V dependences (Fig. 2) we note that the onset of the non-linear conduction is smeared, the threshold rounding being clearly seen above $T = 120$ K. The scale of the voltages applied corresponds to large fields, above 1 kV/cm. At lower temperatures (about 120 K) the onset of the non-linear conduction is relatively sharp, and we can estimate the threshold for collective conduction as $V_T \approx 0.2$ V ($E_T \approx 400$ V/cm), in accordance with the size effect [16]. We shall assume that at higher temperatures the value of E_T is approx-imately the same. Thus, the non-linear conduction for $V < 0.2$ V will be referred to as subthreshold non-linear conduction, while at V well above 0.2 V collective conduction is expected. Below we shall see that this division is not unphysical.

One can see (Fig. 2) that the rounding progresses with approaching T_P. At high temperatures ($T > 170$ K) it is impossible to define a voltage range of linear conduction: the non-linearity starts from zero voltage. Fig. 3 shows the non-linear conductance, $\sigma_{nl} \equiv \sigma(V) - \sigma(0)$, at fixed values $V < V_T$ as a function of T, together with $\delta \sigma(T)$. Evidently, $\delta \sigma(T)$ and $\sigma_{nl}(T)$ behave in similar ways up to $T \approx 175$ K, while at higher temperatures σ_{nl} deviates downwards. One can conclude that the excess conductivity, $\delta \sigma$, and the threshold rounding have a common underlying mechanism at least at the lower temperatures. The possibility of coupling of the non-linear conduction below E_T with an enhancement of low-field conductivity was also noticed in Ref. [17] for thin samples of NbSe$_3$.

The scaling observed resembles that between the linear and non-linear conduction above V_T known for different CDW conductors, including TaS$_3$ [17]. Our samples also demonstrate such a scaling: the inset to Fig. 3 shows the dependence $\sigma(T)$ together with $\sigma_{nl}(T)$ at fixed $V > V_T$. In agreement with earlier observations, both values depend on temperature in a similar way, with the activation energy $\sim \Delta$. It is clear that the scaling be-

![Figure 1](image1.png)

Fig. 1. Temperature dependence of the low-field resistance for the representative sample measured at $V = 20$ mV ($T < 178$ K) and at $V = 10$ mV ($T > 178$ K). The broken line, σ_{Δ}, shows the extrapolation of the low-temperature conductivity $\sigma_{\Delta} \propto \exp(\Delta/T)$, $\Delta = 800$ K. The dotted line is normalized to a low temperature $\sigma(T)$ curve for a typical thick pure sample.

![Figure 2](image2.png)

Fig. 2. Voltage dependencies of the conductivity (I/V) at $T = 209.3$, 203.4, 197.4, 191.4, 184.5, 176.8, 171.2, 165.9, 160.1, 154.6, 149.3, 144.3, 139.1, 133.6, 128.8, 123.9, 118.9 K. The broken line shows an example of the fit of $\sigma_{nl}(E)$ by Eq. (5), where $E_T = 480$ V/cm, $\sigma_l = \sigma - \sigma_{\Delta}$ (see text).
between $\sigma_{nl}(T) \ (V < V_T)$ and $\delta \sigma(T)$ is quite different, as the slopes of the curves correspond to much higher activation energies, $W \gg \Delta$.

III. DISCUSSION

The large values of E_T result from the small transversal dimensions of the samples, in accordance with the size effect observed in TaS$_3$ [21]. As both transversal dimensions of our TaS$_3$ samples are of the same order of magnitude [1], we expect the pinning to be 1-dimensional, rather than 2-dimensional, as in the thin samples of NbSe$_3$ [12,13]. Following the explanations of rounding in NbSe$_3$ [13], we could assume that the pinning energies of phase–correlation volumes in TaS$_3$ nanosamples are small enough to enable thermal depinning of phase–coherent volumes.

The lowest-energy local depinning of the CDW results in a phase gain by the value $\sim 2\pi$ over the phase-correlation length [20]. Such a deformation will cause a CDW stress, resulting in a local variation of resistance by percents for our samples [21]. Meanwhile, metastable states cannot exist in such thin samples in the vicinity of T_P: the hysteresis loop develops only below 140 K in the representative sample (in usual-sized pure samples the hysteresis develops $5 - 7$ K below T_P [22]). So, any deformation immediately relaxes via a PS act, i.e. a plastic deformation of the CDW. The PS act is followed, sequentially, by local creep of the CDW [21]. This results in a phase perturbation of the same order of magnitude as the initial elementary act of creep [21], and so PS is to be taken into account. Below we discuss in detail the conditions for the spontaneous PS [13,23] and its effects on the conductivity.

Remarkable is that the activation energy for the fluctuations is nearly independent of the field applied while it is below E_T: the slopes of the excess linear conductivity and of the non–linear conductivity at $V = 160$ mV (which is quite close to $V_T \sim 200$ mV) are close, while the activation energy for the creep should run to zero at $E \to E_T$ [24]. So the process initiating the fluctuation conduction is other than creep of the CDW. At the same time, at low temperatures ($\lesssim 130$ K) the non–linear conductivity becomes distinguishable only close to E_T, i.e. reveals itself as the threshold rounding. So E_T is a characteristic field for the fluctuation conductivity, and the latter is in a way coupled to the CDW creep. This apparent contradiction is removed by the the following consideration.

Evidently, the mechanism initiating the conductivity is the PS: the high activation energy is typical for PS in TaS$_3$ [12], and its independence of E at $T > 120$ K was reported in Ref. [23]. At the same time according to Ref. [21] each PS act is followed by temporary creep (rearrangement) of the CDW in the vicinity of the point where the PS occurred. In the presence of an external electric field the creep prevails in the direction defined by the field and provides a mechanism of the CDW conduction below E_T. At $E \to E_T$ the CDW phase-correlation length diverges [20], so E_T is expected to be the critical point for the conduction. A hypothesis that phase slippage (in particular, edge dislocations) could facilitate CDW creep was also remarked in Ref. [7].

In the case of 1-dimensional pinning (which could be applied to our samples) and PS involving the whole cross-section area, we can estimate the current induced by the PS. For simplicity let us consider the initial state to be uniform, i.e. the shift of the chemical potential $\zeta =$const. Entering of a new period in the absence of external field is followed by CDW creep under the internal electric fields $E_{int} = d\zeta/dx$. The creep proceeds while the effect of E_{int} exceeds the effect of impurities, which we for simplicity describe by the average value, E_T. The resulting phase perturbation (Fig. 4) covers the length [21]

$$L_{2\pi} \approx 2\sqrt{\pi d\zeta/dq}/E_T,$$ \hfill (1)

where $d\zeta/dq$ characterizes the CDW elastic modulus, q being the in-chain component of the CDW wave vector. Note, that $L_{2\pi}$ appears to be of the order of the phase-correlation length [21,22]. Under an external electric field $E < E_T$ the creep proceeds asymmetrically with respect to the point of the PS nucleation giving the divergence of $L_{2\pi}$ at $E \to E_T$ [21]. The new period is distributed so that the $d\zeta/dx = E_T + E$ from one side of the maximum
remnant deformation and \(-(E_T - E)\) from the other side (Fig. 3). The resulting progress of the CDW (and of the coupled charge 2\(e\) per chain) in the direction defined by \(E\) could be estimated as \(\delta L = \frac{1}{3}(L_2 - L_1)\), where \(L_1\) and \(L_2\) are the lengths of the phase perturbations in the two directions (Fig. 3) [27]. With the condition that the areas under the triangles (Fig. 4) should be equal and correspond with the phase gain \(2\pi\) we obtain from simple calculations:
\[
\delta L(E) = \frac{1}{3} L_2, \quad \frac{E}{E_T} \sqrt{1 - \left(\frac{E}{E_T}\right)^2}.
\]
(2)

If the PS nucleation rate per unit length is \(\nu(T, E)\), then the resulting mean current is
\[
I_{PS} = 2\pi\nu\delta L
\]
(3)

per chain. As each PS act (fluctuator) affects the length \(\sim L_2\), \(L_2\nu\equiv f\) may be considered as a typical frequency of switching of independent fluctuators. The temperature dependence of the PS rate could be empirically presented as \(\exp(-W/T)\) [28], where \(W \sim (5 - 7) \times 10^3\) K [27]. So, Eqs. 2 and 3 give the dependence of the excess current both on \(T\) and \(E\). As \(E \rightarrow E_T\) an unphysical divergence of \(I_{PS}\) occurs, because in the model we have neglected the time of creep, \(\tau_{cr}\), following each PS act. With approaching \(E_T\), \(\tau_{cr}\) grows together with \(L_2\) (Fig. 3), and the PS frequency becomes dominated by \(1/\tau_{cr}\). At low temperatures when \(f\) is relatively small, \(I_{PS}\) becomes noticeable only for \(E\) close to \(E_T\): Eqs. 2 and 3 thus feature the threshold rounding. At higher \(T\) (and \(f\)) the area of validity of Eq. 3 shrinks down to smaller \(|E|\). In the limit of small \(|E|\) neglecting the dependence of \(\nu\) on \(E\) [28] we obtain:
\[
I_{PS} = \frac{2\pi f}{3} \left[\frac{E}{E_T} + \frac{1}{2} \left(\frac{E}{E_T}\right)^3\right] \equiv I_f + I_{nl}.
\]
(4)

Thus, spontaneous PS gives contributions both to linear \((I_f)\) and non-linear \((I_{nl})\) currents. Note that extrapolation of \(E\) to \(E_T\) gives a relation between \(I_{PS}\) and \(f\) that is very similar to that between the CDW current and the fundamental frequency. This is natural, because for \(E \rightarrow E_T\) each pair of electrons entering the CDW via a PS act creeps along the whole sample.

From Eq. 4 we obtain
\[
\sigma_{nl} = \frac{1}{2} \sigma_l \frac{E^2}{E_T^2},
\]
(5)

where \(\sigma_l\) is the PS–induced part of the linear conductivity. At fixed \(E/E_T\) \((E < E_T)\) the fluctuation non-linear conductivity should have the same temperature dependence as the linear conductivity: both are dominated by \(f \propto \exp(-W/T)\) [Eq. 3]. Neglecting the dependence of \(E_T\) on \(T\) we come to the scaling between \(\delta\sigma\) and \(\sigma_{nl}\), as the one observed from Fig. 3. For a quantitative comparison of \(\delta\sigma\) and \(\sigma_{nl}\) note that \(d\sigma/d(E^2) = 2E_T^2\) is simply \(\sigma_l = \delta\sigma\) [Eq. 5]. To check this, we show the value \(\frac{d\sigma}{d(E^2)} = 2E_T^2\) in Fig. 4, where \(d\sigma/d(E^2)\) is determined from the best fit of \(\sigma(V)\) \((V \ll V_T)\) with parabolic dependencies and \(E_T\) is a fitting parameter. An example of the fit of \(\sigma(V)\) by Eq. 3 is shown in Fig. 3 with a broken line. For the representative sample we get \(E_T = 480\) V/cm. For different samples, the values obtained from the fit by Eq. 3 agree with the results of direct measurements, though they are somewhat larger [31].

Additional evidence of the correlation between the threshold field and non–linear fluctuation conduction is provided by the measurements of another sample with approximately the same length but larger cross-section area, \(s = 1.5 \times 10^{-3}\) \(\mu m^2\), and somewhat larger activation energy for \(\delta\sigma(T)\), \(W = 3400\) K. A similar treatment of \(\sigma_{nl}\) with the help of Eq. 4 gave us the dependence \(E_T(T)\). In addition, we were able to measure \(E_T(T)\) up to \(T = T_p\) and higher [13] directly, as the onset of sharp non–linear conduction. This was possible after subtracting the part of conductivity \(\propto E^2\) from each \(\sigma(V)\) curve [13]. The values of \(E_T\) determined both ways are presented in Fig. 3 as a function of temperature. Both dependences show mesoscopic-type irregular variations of \(E_T\) with temperature [22], though \(E_T\) obtained from Eq. 4 is about 5 times larger [31]. One can see correlation between the two dependences.

From Eq. 4 we obtain reasonable estimates of the frequencies of switching for the fluctuators. To observe distinct excess conductivity (at 140 K for the representative sample, Fig. 3), we should take \(f \sim 10^5\) Hz. This is only \(2-3\) orders of magnitude higher than we were able to see directly from the time domains of the fluctuations [12, 22], the latter being restricted by the electric scheme. Thus, both the values and the activation energy for the
linear and non-linear fluctuation currents are fairly described by the model proposed.

It is worth mentioning that the dependence of $[d^2V/dI^2]$ vs T below T_P presented in Ref. 5 fits the Arrhenius law fairly well with $W \approx 4500$ K, in agreement with the PS measurements at the contacts 30.

The lowering of W with the decrease of the sample’s cross-section area also finds natural explanation within the model proposed. In fact, a large threshold field corresponds to high inhomogeneous stress of the CDW in the thin samples 21:

$$<\zeta^2>^{1/2} = 2\sqrt{\pi E_T(d\zeta/dq)},$$

(6)

The stress lowers the barrier for the PS in certain points 23. The decrease of the sample cross-section area reveals itself in the growth of E_T, and thus results in the lowering of the activation energies for $\delta\sigma(T)$ and $\sigma_{nl}(T)$. Earlier we have explained in a similar way the broadening of the range of the fluctuations and of the Peierls transition along the temperature scale in the thin samples 23.

Note that the model of thermal depinning of the phase-coherent volumes 14 gives a much stronger size dependence of the excess conductivity: the depinning energy is proportional to $s^{2/3}$ (Ref. 1). So, for the sample with $s = 1.5 \times 10^{-3}$ μm2 we should expect W to be about 7000 K (instead of 3400 K), and the excess conductivity should become negligible in the thick samples. Actually, we found no qualitative difference between the excess conductivity of the thick and thin samples. The activation energy for $\delta\sigma(T)$ in thick samples is $(5-7) \times 10^3$ K 14, in agreement with the activation energy found from the noise probing of the spontaneous PS 3. The threshold rounding is also noticeable in thick samples 4, though the study of the non-linear fluctuation conductivity is complicated because of its narrow temperature range and small E_T.

Note that the dependence $\delta\sigma(T)$ follows the activation law up to T_P, and even a little bit above it (Fig. 3), no feature being observed at T_P. So, the state a little bit above T_P could be considered as a CDW saturated with climbing dislocations rather than a single-electron state. The conduction of such a mixture is supplied by the processes of nucleation and motion of the domain boundaries, which exert high internal electric fields to the domains. The fact that the dependencies characterizing the non-linear conductivity deviate from the Arrhenius law at lower temperatures than $\delta\sigma(T)$ could be ascribed to the growth of E_T near T_P (Fig. 3); note also that with increasing T the model fails first at finite E, and then at $E \to 0$.

In conclusion, we have observed the fluctuation contribution to the conductivity of thin samples of α-TaS$_3$, which comprises linear and non-linear parts. We have shown that the spontaneous phase slippage observed in the CDW in the vicinity of T_P results to the excess conductivity whose temperature and electric-field dependences match our experimental observations.

The simple model proposed requires further development. In particular, the mechanism of PS nucleation and evolution should be considered in terms of nucleation and propagation of dislocation loops in the CDW 24. A possible contribution of glide of the dislocation lines to the current 23,24 also requires analysis. In the case of bulk (3D) samples the loops cover only part of the cross-section areas, so transversal interaction of the chains while the local creep proceeds should be considered. A special case is the ribbon-like (2D) samples evidently treated in Refs. 4,13. A dislocation loop degenerates into a pair of points interacting logarithmically. Then the system acquires the features of a 2D crystal exhibiting the Kosterlitz-Thouless transition 33. This approach can explain the lowering of T_P in thin crystals and gradual power-law dependences of σ_{nl} on T.

IV. ACKNOWLEDGMENTS

We are grateful to P. Monceau for help in the experiment, to Yu. I. Latyshev, Ya. S. Savitskaya, and V. V. Frolov for producing the samples, and to S.N. Artemenko and A.A. Sinchenko for fruitful discussions. This work was supported by the Russian Foundation for Basic Research (grants Nos. 98-02-16667, 99-02-17387), Jumelages 19 (RFBR, grant No. 98-02-22061), and MNTP “Physics of Solid State Nanostructures” (grant No. 97-1052).

[1] For a recent review see G. Gruner, Density Waves in Solids, (Addison-Wesley, Reading, Massachusetts, 1994).
[2] P. Monceau in: Electronic Properties of Inorganic Quasi-one-dimensional Conductors, Part 2, Ed. by P. Monceau. Dordrecht: D.Reidel Publ. Comp., 1985.
[3] M.E. Itkis, F.Ya. Nada' Pis'ma Zh. Eksp. Teor. Fiz. 39, 373 (1984) [JETP Lett. 39, 448 (1984)].
We note the simplifications of the model: we have neglected the inhomogeneity of $\xi(x)$ preceding the PS act, while actually a PS nucleates at the point of the highest CDW stress (maximum of Δ). Also, there might be a shift of the maximum of the remnant deformation (the summit of the triangle in Fig. 4) with respect to the point of the PS initiation. So the factor $1/3$ could be not exact.

[28] We do not reject the model Ref. [21], according to which the PS results from the nucleation of a dislocation loop of critical radius. However, this model does not give spontaneous PS in large pure samples and needs additional specifications to describe the loops in real samples. The simple one–barrier model looks good enough to describe empirically the PS dependence on T without deepening into its microscopics.