Convexifying Market Clearing of SoC-Dependent Bids From Merchant Storage Participants

Cong Chen, Student Member, IEEE, and Lang Tong, Fellow, IEEE

Abstract—State-of-charge (SoC) dependent bidding allows merchant storage participants to incorporate SoC-dependent operation and opportunity costs in a bid-based market clearing process. However, such a bid results in a non-convex cost function in the multi-interval economic dispatch and market clearing, limiting its implementation in practice. We show that a simple restriction on the bidding format removes the non-convexity, making the multi-interval dispatch of SoC-dependent bids a standard convex piece-wise linear program.

Index Terms—Multi-interval economic dispatch, SoC dependent bid, convexification.

I. INTRODUCTION

Recent proposals [1] have allowed merchant storage participants in the wholesale electricity market to submit state-of-charge (SoC) dependent offers and bids to capture more accurately the operation and opportunity costs of the energy storage [2], [3], [4]. With such bids, an economic dispatch program tends to schedule the battery SoC within a range favorable to the battery’s health and the storage’s ability to capture future opportunities under uncertainty.

However, a multi-interval economic dispatch with SoC-dependent bids involves integer variables [5], making the market clearing process computationally expensive for practical implementations. The nonconvexity of SoC-dependent bids also brings pricing challenges and the need for out-of-the-market uplift payments.

In this paper, we propose a simple restriction to the SoC-dependent bidding, referred to as the equal decremental-cost ratio (EDCR) condition, that transforms the nonconvex economic dispatch optimization into a convex piece-wise linear program compatible with the standard market clearing process. A procedure to produce bids satisfying the EDCR condition from the true bid-in cost functions is also proposed.

II. SOC-DEPENDENT BID AND DISPATCH MODELS

A. Storage and SoC-Dependent Cost Models

We assume the standard imperfect storage model. In the scheduling interval t, let e_t be the storage SoC, g^C_e the charging power, and g^D_e the discharging power, respectively. The storage SoC evolves according to

$$e_{t+1} = e_t + g^C_t/\eta^C - g^D_t/\eta^D, \quad g^C_t, g^D_t = 0,$$

where $\eta^C, \eta^D \in (0, 1]$ are charging/discharging efficiencies.

A standard piecewise-linear SoC-dependent bid model [1] is illustrated in Fig. 1 (left). Without loss of generality, we partition the SoC axis into K consecutive segments. Within each segment $E_k := [E_k, E_{k+1}]$, a pair of bid-in marginal cost/benefit parameters (c^C_k, c^D_k) is defined. The marginal discharging (bid-in) costs (to the grid) $b^D(e_t; c^D_k, E)$ and marginal charging (bid-in) benefits (from the grid) $b^C(e_t; c^C_k, E)$ are functions of battery SoC e_t. In particular, using the indicator function $\mathbb{1}$,

$$b^C(e_t; c^C_k, E) := \sum_{k=1}^K c^C_k \mathbb{1}_{\{e_t \in E_k\}},$$

$$b^D(e_t; c^D_k, E) := \sum_{k=1}^K c^D_k \mathbb{1}_{\{e_t \in E_k\}},$$

with $c^C := (c^C_k), c^D := (c^D_k)$ and $E := (E_k)$ as parameters.

For the longevity of the battery and the ability to capture profit opportunities, it is more costly to discharge when the SoC is low, and the benefit of charging is small when the SoC is high. Therefore, typical bid-in discharge costs (c^D_k) and charging benefits (c^C_k) are monotonically decreasing. Furthermore, the storage participant is willing to discharge only if the selling price is higher than the buying price. Hence, the storage participant’s willingness to sell by discharge (adjusted to the discharging efficiency) must be higher than its willingness to purchase (adjusted to the charging efficiency), i.e., $c^D_k/\eta^D > c^C_k/\eta^C$. Together, SoC-dependent bids and offers satisfy the following.

Assumption 1: The SoC-dependent cost/benefit parameters (c^C_k, c^D_k) satisfy the following monotonicity conditions

$$\mathbb{1}_{\{s \in E_k\}} \equiv 1 \text{ when } s \in E_k.$$
∀k = 1, . . . , K − 1:
\[
\begin{aligned}
c_k^C &\geq c_{k+1}^C \\
c_k^D &\geq c_{k+1}^D
\end{aligned}
\text{ and } c_k^C / \eta_k^C < \eta_k^D / \eta_k^D.
\]

B. Cost Function of SoC-Dependent Bids

SoC-dependent bids and offers induce SoC-dependent scheduling costs involving the (ex ante) SoC \(e_t \) in scheduling stage \(t \) before the dispatch and the (ex post) SoC \(e_{t+1} \) after the dispatch that may be in a different SoC partitioned segment. Specifically, the stage cost \(f(g^C, g^D; e_t) \) in interval \(t \) is given by
\[
f(g^C_t, g^D_t; e_t) := f^D(e_t, g^D_t) - f^C(e_t, g^C_t),
\]
where \(f^D \) is the discharging cost and \(f^C \) is the charging benefit. In particular, for every \(e_t \in \mathcal{E}_m \) and \(e_{t+1} \in \mathcal{E}_n \),
\[
f^C(e_t, g^C_t) := \sum_{i=1}^{m} \Delta c_k^C \eta_k^C (E_{k+1} - e_t),
\]
\[
f^D(e_t, g^D_t) := \sum_{i=1}^{m} \eta_k^D \Delta c_k^D (E_k - e_t),
\]
with \(\Delta c_k^C := c_k^C - c_{k+1}^C \) and \(\Delta c_k^D := c_k^D - c_{k+1}^D \).

C. The Multi-Interval Economic Dispatch

We consider a multi-interval dispatch model involving \(T \) intervals and \(M \) buses. In decision interval \(t \), let \(g^C_t \) and \(g^D_t \) be the charging and discharging decision variables, respectively, and let \(e_{ti} \) be the SoC of unit \(i \). With the single stage cost in (3), the T-interval operation cost of storage \(i \) is given by
\[
F_i(g^C; g^D_t; e_t) := \sum_{t=1}^{T} f_i(g^C_t, g^D_t, e_{ti}),
\]
where \(g^C_t, g^D_t \in \mathbb{R}^T \) denote the vector of charging and discharging power for storage \(i \) over \(T \)-interval, respectively.

For the interval \(t \), let \(d_{ti} \) be the demand at bus \(i \), and we define \(d[t] := (d_{t1}, \ldots, d_{tM}) \) as the demand vector for all buses. Let \(g^G_t := (g^G_{t1}, \ldots, g^G_{tM}) \) be the vector of bus generations. Similarly defined are \(g^C[t] \) and \(g^D[t] \) as the vector of charging and discharging power of the battery storage, respectively. For simplicity, we establish the dispatch model with one generator and one storage at each bus, which is extendable to general cases. Given the convex generator cost \(f^G_i(g^G_{ti}) \), the initial SoC \(e_{i1} = s_i \), and the load forecast \((d[t]) \) over the \(T \)-interval scheduling horizon, the economic dispatch minimizes the system operation costs is given by
\[
\min \{ (g^C_t, g^D_t, e_{ti}) \} \sum_{i=1}^{M} \left(F_i(g^C_t, g^D_t, e_{ti}) + \sum_{t=1}^{T} f_i^G(g^G_{ti}) \right)
\]
subject to \(\forall t \in \{1, \ldots, T\}, \forall i \in \{1, \ldots, M\} \)
\[
\mu[t] : S(g^G[t] + g^D[t] - g^C[t] - d[t]) = q
\]
3For simplicity, indexes and ramping costs for storage are ignored here.

III. CONVEXIFYING MARKET CLEARING

We now convexify the objective function and relax the bilinear equality constraints of the market clearing problem (5). Theorem 1 below gives a condition on the bid-in cost parameters that convexifies the objective function.

\[\frac{c_k^C - c_{k-1}^C}{c_k^D - c_{k-1}^D} = \eta_k^C \eta_k^D, \forall k,\]

3Storage index \(i \) is omitted in Theorem 1 and Section IV for simplicity.
under Assumption 1, the multi-interval storage operation cost in (4) is piecewise linear convex given by

$$F (g^c, g^d; s) = \max_{j \in \{1, \ldots, K\}} \left\{ \alpha_j(s) - c_j^c 1^T g^c + p_j^d 1^T g^d \right\}$$

with

$$\alpha_j(s) := \sum_{i=1}^{t-1} \frac{\Delta \phi_j(E_{t-1}^j - E_{t-1})}{\eta} - \frac{c_j^c (s - E_{t-1})}{\eta} + h(s) \quad \text{and} \quad h(s) := \sum_{i=1}^{K} \mathbb{1}_{\{s \in E_i\}} \left(\frac{\Delta \phi_j(E_{t-1}^j - E_{t-1})}{\eta} + \sum_{k=1}^{t-1} \frac{\Delta \phi_k(E_{t-1}^k - E_{t-1})}{\eta} \right).$$

See the proof in Appendix [6]. Note that if bid-in costs are derived from the value function of the stochastic storage optimization based on price forecasts as in [4], [5], the derived bids satisfy (6). The following lemma supports the exact relaxation of $g^c_0 g^d_0 = 0, \forall i, t$.

Lemma 1: Under Assumption 1 and EDCR condition, if the locational marginal prices (LMPs) from the relaxed economic dispatch are non-negative, the relaxation of the bilinear constraints $g^c_0 g^d_0 = 0, \forall i, t$ in (5) is exact. See the proof in Appendix [6]. The computation of LMP (after relaxing the bilinear constraint) is standard. Specifically, we define the LMP by $\pi_i := \lambda_i - \mathbf{S}_i ; i \in \mu$ for bus i and interval t with the optimal dual solutions of (5) after relaxing the bilinear equality constraints.

The non-negative assumption on LMP has been considered in [7], [8] for the exact relaxation of bilinear constraint in (5) for differentiable objective functions. Here we have a slight generalization for a convex piecewise linear objective function by deploying the subgradient method [9], p. 281. See the proof in Appendix [6].

IV. OPTIMAL EDCR APPROXIMATION

In constructing the SoC-dependent storage bids and offers in (2), the true marginal costs (or true marginal cost $\tilde{b}^c(e_1)$ and marginal benefit $\tilde{b}^d(e_1)$) may not satisfy the EDCR condition. The following optimization aims at finding the optimal approximation of $\tilde{b}^c(e_1)$ and $\tilde{b}^d(e_1)$ with the EDCR condition satisfied by parameters $\Theta = \{c^c, c^d, E\}$,

$$\text{minimize} \quad \theta; \Theta \quad \| \tilde{b}^c(\theta) - \tilde{b}^c(\cdot) \|_2 + \| \tilde{b}^d(\theta) - \tilde{b}^d(\cdot) \|_2.$$

The objective function measures the distance between the original true marginal cost and the approximation bids/offers, and θ is restricted in a set Θ satisfying Assumption 1 and the EDCR condition from Theorem 1. With N data samples (S_n, B_n^c, B_n^d) from the true marginal cost, the objective is

$$\frac{1}{N} \sum_{n=1}^{N} \left(\| \tilde{b}^c(S_n, \theta) - B_n^c \|^2 + \| \tilde{b}^d(S_n, \theta) - B_n^d \|^2 \right).$$

Optimization (8) for the optimal EDCR approximation is in general nonconvex. By fixing E while solving for (c^c, c^d), or fixing (c^c, c^d) while solving for E, we can iteratively approach the local optimal solution by solving a convex problem in each iteration.

V. EXAMPLE

Consider an ideal storage with the initial SoC at 15.5 MWh, $T = 2$ and the original nonconvex multi-interval storage cost shown in the top left of Fig 2. The axis labels use the notation $g = g^c_0 - g^d_0, t = 1, 2$, for storage’s net-producing power. The true SoC-dependent bids, $\tilde{b}^c(e_1)$ and $\tilde{b}^d(e_1)$, are shown in Fig. 2 (top right). From the EDCR approximation in (8) with even SoC partitions, we can approximate the true SoC-dependent bids and achieve the convex cost function shown in Fig. 2 (bottom left and top right). In this ideal storage which has $\eta^c = \eta^d = 1$, the EDCR condition in Theorem 1 decreased to a special case, $c^c_1 - c^c_L = c_1^d - c_L^d, \forall k$ (shown in top right of Fig. 2). The bottom right part of Fig. 2 illustrates the approximation error between the original SoC-dependent bids, $\tilde{b}^c(e_1)$ and $\tilde{b}^d(e_1)$, and the optimal EDCR approximation bids, $b_1^c(e_1)$ and $b_1^d(e_1)$. It is observed that, with more SoC partition segments, a smaller approximation error can be achieved.

VI. CONCLUSION

It’s essential to remove non-convexities for a large-scale deployment of storage. This paper convexifies the market clearing process by imposing a condition on the SoC-dependent bidding. We propose a sufficient condition—the equal decremental-cost ratio (EDCR) condition—to convexify the market clearing of multi-interval economic dispatch with SoC-dependent bids from merchant storage participants. And an optimal EDCR approximation method is proposed to compute the SoC-dependent bid from the true cost of storage.

REFERENCES

[1] “Energy storage enhancements revised straw proposal,” 2022. [Online]. Available: http://www.caiso.com/InitiativeDocuments/RevisedStrawProposal-EnergyStorageEnhancements.pdf

[2] S. Wang, J. Liu, H. Chen, R. Bo, and Y. Chen, “Modeling state transition and head-dependent efficiency curve for pumped storage hydro in look-ahead dispatch,” IEEE Trans. Power Syst., vol. 36, no. 6, pp. 5396–5407, Nov. 2021.

[3] M. Ecker et al., “Calendar and cycle life study of Li (NiMnCo) O$_{2}$-based 18650 lithium-ion batteries,” J. Power Sources, vol. 248, pp. 839–851, 2014.

[4] N. Zheng and B. Xu, “Impact of bidding and dispatch models over energy storage utilization in bulk power systems,” in Proc. REP Symp. Bulk Power Syst. Dyn. Control, Jul. 2022.

[5] N. Zheng, X. Qin, D. Wu, G. Murtaugh, and B. Xu, “Energy storage state-of-charge market model,” IEEE Trans. Energy Markets, Policy Regulation, doi: 10.1109/TEMPR.2023.3328135.

[6] C. Chen and L. Tong, “Convexifying market clearing of SOC-dependent bids from merchant storage participants,” 2022, arXiv:2209.02107.

[7] Z. Li, Q. Guo, H. Sun, and J. Wang, “Extended sufficient conditions for exact relaxation of the complementarity constraints in storage-concerned economic dispatch,” CSEE J. Power Energy Syst., vol. 4, no. 4, pp. 504–512, Dec. 2018.

[8] Y. Chen and R. Baldick, “Battery storage formulation and impact on day ahead security constrained unit commitment,” IEEE Trans. Power Syst., vol. 37, no. 5, pp. 3995–4005, Sep. 2022.

[9] R. T. Rockafellar, Convex Analysis, vol. 18. Princeton, NJ, USA: Princeton Univ. Press, 1970.