Amplitude Analysis of the $B^\pm \to \varphi K^*(892)^\pm$ Decay

B. Aubert, D. Boutigny, Y. Karyotakis, J. P. Lees, V. Poireau, X. Prudent, V. Tisserand, A. Zghiche, J. Garra Tico, E. Grauges, L. Lopez, A. Palano, G. Eigen, B. Stugu, L. Sun, G. S. Abrams, M. Battaglia, N. D. Brown, J. Button-Shafer, R. N. Cahn, Y. Groysman, R. G. Jacobsen, J. A. Kadyk, L. T. Kerth, G. Kolominsky, G. Kukartsev, D. Lopes Pegna, G. Lynch, L. M. Mir, T. J. Orimoto, M. T. Roman, K. Tackmann, A. W. Zelenski, P. del Amo Sanchez, C. M. Hawkes, A. T. Watson, T. Held, H. Koch, B. Lewandowski, M. Pelaiuse, T. Schroeder, M. Steinke, D. Walker, D. J. Asgeirsson, T. Cuhadar-Donszelmann, B. G. Fulsom, C. Hearty, T. S. Mattisson, J. A. McKenna, A. Khan, M. Saleem, L. Teodorescu, E. Blinov, A. D. Buka, V. P. Druzinin, V. B. Golubev, A. P. Omuchin, I. S. Serednyakov, Yu. I. Skovpen, E. P. Solodov, K. Yu. Todyshiev, M. Bondioli, S. Curry, I. Eschrich, D. Kirkby, A. J. Lankford, P. Lund, M. Mandelkern, E. C. Martin, D. P. Stoker, S. Abachi, C. Buchanan, S. D. Foulkes, J. W. Gary, F. Liu, O. Long, B. C. Shen, L. Zhang, H. P. Paar, S. Rahatlou, V. Sharma, J. W. Berryhill, Campagnari, A. Cunha, B. Dahmes, M. Hong, D. Kovalskyi, J. D. Richman, T. W. Beck, A. M. Eisner, C. J. Flacco, C. A. Heusch, J. Kroseberg, W. S. Lockman, T. Schalk, B. A. Schumm, A. Seiden, D. C. Williams, M. G. Wilson, L. O. Winstrom, E. Chen, C. H. Cheng, F. Fang, D. G. Hitlin, I. Narsky, T. Piatenko, F. C. Porter, R. Andreae, G. Mancinelli, B. T. Meadows, K. Mishra, D. S. Sokoloff, F. Blanc, P. Bloom, S. Chen, W. T. Ford, J. F. Hirschauer, A. Kreisel, M. Nagel, U. Nauenberg, A. Olivias, J. G. Smith, K. A. Ulmer, S. R. Wagner, J. Zhang, A. M. Gabareen, A. Soffer, W. H. Toki, R. J. Wilson, F. Winklmeier, Q. Zeng, D. D. Altenburg, E. Feltesse, A. Hauke, H. Jasper, J. Merkel, A. Petzold, B. Spaan, K. Wacker, T. Brandt, V. Kloze, M. J. Kobel, H. M. Lacker, W. F. Mader, R. Nagowski, J. Schubert, K. R. Schubert, R. Schierz, J. E. Sundermann, A. Volk, D. Bernard, G. R. Bonneau, E. Latour, V. Lombardo, Ch. Thiebaux, Merderi, J. Clark, W. Grall, F. Muheim, S. Playfer, A. I. Robertson, Y. Xie, M. Andreotti, D. Bettini, C. Bozzi, R. Calabrese, A. Cecchi, G. Cibinetto, P. Franchini, E. Lupp, M. Negrini, A. Petrella, L. Piemontese, E. Prencipe, V. Santoro, F. Anulli, R. Baldini-Ferroli, A. Calcaterra, R. de Sangro, G. Finocchiaro, S. Pacetti, P. Patte, I. M. Peruzzi, M. Piccolo, M. Rama, A. Zallo, A. Buzzo, R. Conti, M. Lo Vetere, M. M. Macri, R. M. Monge, S. Passaggio, C. Patrignani, E. Robutti, A. Santroni, S. Tosi, K. S. Chisangauzvith, M. Morii, J. Wu, R. S. Dubitzky, J. Marks, S. Schenk, U. Uwer, D. J. Baird, D. B. Dauncey, R. L. Flack, J. A. Nash, M. B. Nikolic, P. Panduro Vazquez, M. Tibbetts, X. Chai, M. J. Charles, U. Mallik, N. T. Meyer, V. Ziegler, J. Cochran, H. B. Crawford, L. Dong, V. Eyges, W. T. Meyer, M. Prill, E. I. Rosenberg, A. E. Rubin, Y. Y. Gao, D. A. V. Gritsan, Z. J. Guo, C. K. Lai, A. G. Deniz, M. Fritsch, G. Schott, N. Arnaud, J. Béqueilleux, M. Davier, G. Grosdidier, A. Höcker, V. Lepeltier, F. Le Diberder, A. M. Lutz, S. Pruvot, S. Rodier, P. Roudeau, M. H. Schune, J. Serrano, V. Sordini, A. Stocchi, W. F. Wang, G. Wormser, D. J. Lange, D. M. Wright, I. Bingham, C. A. Chavez, I. J. Forster, J. R. Fry, E. Gabathuler, R. Gamet, D. E. Hutchcroft, D. J. Payne, K. C. Schofield, C. Tomarrais, A. J. Bevan, K. A. George, D. I. Diodovico, W. Menges, R. Sacco, G. Cowan, H. U. Flaecher, D. A. Hopkins, S. Parameswaran, F. Salvatorte, A. C. Wren, D. N. Brown, C. L. Davis, J. Allison, N. R. Barlow, J. R. Barlow, Y. M. Chia, C. L. Edgar, G. D. Lafferty, T. J. West, J. I. Yi, J. Anderson, C. Chen, J. A. Jawahery, D. A. Roberts, G. Simi, J. M. Tuggle, G. Blaylock, C. Dallapiccola, S. S. Hertzbach, X. Li, T. B. Moore, E. Salvati, S. Sarem, R. Cowan, D. Dujmic, P. H. Fisher, K. Koenke, G. Sciolli, S. J. Sekula, M. Spitsnagel, F. Taylor, R. K. Yamamoto, M. Zhao, Y. Zheng, S. E. McAlpin, P. M. Patel, S. H. Robertson, A. Lazzaro, P. Falombo, J. M. Bauer, L. Cremaldi, V. Eschenburg, R. Godang, R. Kroeger, D. A. Sanders, D. J. Summers, H. W. Zhao, S. Brunet, D. Côté, M. Sinard, P. Taras, F. B. Vianu, H. Nicholson, G. De Nardo, F. Fabozzi, L. Lista, D. Monorchio, C. Scarca,
Number	Institution and Affiliation
22	Universität Dortmund, Institut für Physik, D-44221 Dortmund, Germany
23	Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
24	Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, F-91128 Palaiseau, France
25	University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
26	Università di Ferrara, Dipartimento di Fisica e INFN, I-44100 Ferrara, Italy
27	Laboratori Nazionali di Frascati dell’INFN, I-00044 Frascati, Italy
28	Università di Genova, Dipartimento di Fisica e INFN, I-16146 Genova, Italy
29	Harvard University, Cambridge, Massachusetts 02138, USA
30	Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
31	Imperial College London, London, SW7 2AZ, United Kingdom
32	University of Iowa, Iowa City, Iowa 52242, USA
33	Iowa State University, Ames, Iowa 50011-3160, USA
34	Johns Hopkins University, Baltimore, Maryland 21218, USA
35	Universität Karlsruhe, Institut für Experimentelle Kernphysik, D-76128 Karlsruhe, Germany
36	Laboratoire de l’Accélérateur Linéaire, IN2P3/CNRS et Université Paris-Sud 11, Centre Scientifique d’Orsay, B. P. 34, F-91898 ORSAY Cedex, France
37	Lawrence Livermore National Laboratory, Livermore, California 94550, USA
38	University of Liverpool, Liverpool L69 7ZE, United Kingdom
39	Queen Mary, University of London, E1 4NS, United Kingdom
40	University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
41	University of Louisville, Louisville, Kentucky 40292, USA
42	University of Manchester, Manchester M13 9PL, United Kingdom
43	University of Maryland, College Park, Maryland 20742, USA
44	University of Massachusetts, Amherst, Massachusetts 01003, USA
45	Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
46	McGill University, Montréal, Québec, Canada H3A 2T8
47	Università di Milano, Dipartimento di Fisica e INFN, I-20133 Milano, Italy
48	University of Mississippi, University, Mississippi 38677, USA
49	Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7
50	Mount Holyoke College, South Hadley, Massachusetts 01075, USA
51	Università di Napoli Federico II, Dipartimento di Scienze Fisiche e INFN, I-80126, Napoli, Italy
52	NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
53	University of Notre Dame, Notre Dame, Indiana 46556, USA
54	Ohio State University, Columbus, Ohio 43210, USA
55	University of Oregon, Eugene, Oregon 97403, USA
56	Università di Padova, Dipartimento di Fisica e INFN, I-35131 Padova, Italy
57	Laboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS, Université Pierre et Marie Curie-Paris6, Université Denis Diderot-Paris7, F-75252 Paris, France
58	University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
59	Università di Perugia, Dipartimento di Fisica e INFN, I-06100 Perugia, Italy
60	Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy
61	Prairie View A&M University, Prairie View, Texas 77446, USA
62	Princeton University, Princeton, New Jersey 08544, USA
63	Università di Roma La Sapienza, Dipartimento di Fisica e INFN, I-00185 Roma, Italy
64	Universität Rostock, D-18051 Rostock, Germany
65	Rutherford Appleton Laboratory, Didcot, Didcot, Oxon, OX11 0QX, United Kingdom
66	DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
67	University of South Carolina, Columbia, South Carolina 29208, USA
68	Stanford Linear Accelerator Center, Stanford, California 94309, USA
69	Stanford University, Stanford, California 94305-4060, USA
70	State University of New York, Albany, New York 12222, USA
71	University of Tennessee, Knoxville, Tennessee 37996, USA
72	University of Texas at Austin, Austin, Texas 78712, USA
73	University of Texas at Dallas, Richardson, Texas 75083, USA
74	Università del Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
75	Università di Trieste, Dipartimento di Fisica e INFN, I-34127 Trieste, Italy
76	IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
77	University of Victoria, Victoria, British Columbia, Canada V8W 3P6
78	Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
79	University of Wisconsin, Madison, Wisconsin 53706, USA
80	Yale University, New Haven, Connecticut 06511, USA

(Dated: May 12, 2007)
We perform an amplitude analysis of $B^\pm \to \varphi(1020)K^+(892)^\pm$ decay with a sample of about 384 million $B\bar{B}$ pairs recorded with the \textit{BaBar} detector. Overall, twelve parameters are measured, including the fractions of longitudinal f_L and parity-odd transverse f_T amplitudes, branching fraction, strong phases, and six parameters sensitive to CP-violation. We use the dependence on the $K\pi$ invariant mass of the interference between the $J^P = 1^-$ and 0^+ $K\pi$ components to resolve the discrete ambiguity in the determination of the strong and weak phases. Our measurements of $f_L = 0.49 \pm 0.05 \pm 0.03$, $f_T = 0.21 \pm 0.05 \pm 0.02$, and the strong phases point to the presence of a substantial helicity-plus-amplitude from a presently unknown source.

PACS numbers: 13.25.Hw, 13.88.+e, 11.30.Er

The polarization anomaly in vector-vector charmless hadronic B-meson decays \[1,2,3,4,5,6,7\] motivates a revision in our understanding of the effective flavor-changing $b \to s$ quark transition in B-meson decays. Explanations of this anomaly led to development of models either with physics beyond the standard model \[8\], new weak dynamics \[9\], or strong dynamics \[10\].

A vector-vector B-meson decay, such as $B \to \varphi K^*$, is characterized by three complex helicity amplitudes $A_{1\lambda}$ which correspond to helicity states $\lambda = -1, 0, +1$ of the vector mesons. The A_{10} amplitude is expected to dominate $\[11\]$ due to the $(V-A)$ nature of the weak interactions and helicity conservation in the strong interactions. Experimental results suggest that A_{1+1} and A_{1-1} comprise about 50% of the total decay amplitude in $B \to \varphi K^*$ \[1,2\]. Recently, the \textit{BaBar} experiment extended the study of the $B^0 \to \varphi K^{0\text{y}}$ decay to resolve the discrete ambiguity between the A_{1+1} and A_{1-1} amplitudes \[3\].

We now investigate the polarization puzzle with a full amplitude analysis of the $B^\pm \to \varphi K^+(892)^\pm$ decay. In this paper, we report twelve independent parameters for the three B^+ and three B^- decay amplitudes, six of which are presented for the first time. Moreover, we use the dependence on the $K\pi$ invariant mass of the interference between the $J^P = 1^-$ and 0^+ $(\pi\pi)^\pm$ components \[3,12,13\] to resolve the discrete ambiguity between the A_{1+1} and A_{1-1} helicity amplitudes.

We use a sample of 383.6 \pm 4.2 million $\Upsilon(4S) \to B\bar{B}$ events collected with the \textit{BaBar} detector \[14\] at the PEP-II e^+e^- asymmetric-energy storage rings. The e^+e^- center-of-mass energy \sqrt{s} is equal to 10.58 GeV. Momenta of charged particles are measured in a tracking system consisting of a silicon vertex tracker with five double-sided layers and a 40-layer drift chamber, both within the 1.5-T magnetic field of a solenoid. Identification of charged particles is provided by measurements of the energy loss in the tracking devices and by a ring-imaging Cherenkov detector. Photons are detected by a CsI(Tl) electromagnetic calorimeter.

The $B^\pm \to \varphi(1020)K^{\pm}$ candidates are analyzed with two $(\pi\pi)^\pm$ final states, $K_S^0\pi^\pm$ and $K^{\pm}\pi^0$. The neutral pseudoscalar mesons are reconstructed in the final states $K_S^0 \to \pi^+\pi^-$ and $\pi^0 \to \gamma\gamma$. We define the helicity angle θ_i as the angle between the direction of the K or K^* meson from $K^* \to K\pi(\theta_1)$ or $\varphi \to K^+K^-(\theta_2)$ and the direction opposite the B in the K^* or φ rest frame, and Φ as the angle between the decay planes of the two systems \[5\]. The differential decay width has four complex amplitudes $A_{J\lambda}$ which describe two spin states of the $K\pi$ system ($J = 1$ or 0) and the three helicity states of the $J = 1$ state ($\lambda = 0$ or ± 1):

$$\frac{d\Gamma}{dH_1 dH_2 d\Phi} \propto \sum A_{J\lambda} Y_J^\lambda(H_1, \Phi) Y_1^{-\lambda}(-H_2, 0) \Bigg|_1^2,$$

where $H_i = \cos \theta_i$ and Y_J^λ are the spherical harmonics with $J = 1$ for $K^*(892)$ and $J = 0$ for $(K\pi)_0^\pm$. We parameterize the amplitudes as $A_{1\pm1} = (A_{1\parallel} \pm A_{1\perp})/\sqrt{2}$.

We identify B meson candidates using two kinematic variables: $m_{\text{ES}} = \left[(s/2 + \mathbf{p}_T \cdot \mathbf{p}_B)^2/E_B^2 - P_B^2\right]^{1/2}$ and $\Delta E = (E_T E_B - \mathbf{p}_T \cdot \mathbf{p}_B - s/2)/\sqrt{s}$, where (E_B, \mathbf{p}_B) is the four-momentum of the B candidate, and (E_T, \mathbf{p}_T) is the e^+e^- initial state four-momentum, both in the laboratory frame. We require $m_{\text{ES}} > 5.25$ GeV and $|\Delta E| < 0.1$ GeV. The requirements on the invariant masses are $0.75 < m_{K\pi} < 1.05$ GeV, $0.99 < m_{K\pi} < 1.05$ GeV, $|m_{\pi\gamma} - m_{K^0}| < 12$ MeV, and $120 < m_{\pi\gamma} < 150$ MeV for the $K^+\varphi$, $K_S^0\varphi$, and π^0, respectively. For the K_S^0 candidates, we also require the cosine of the angle between the flight direction from the interaction point and momentum direction to be greater than 0.995 and the measured proper decay time greater than five times its uncertainty.

To reject the dominant $e^+e^- \to$ quark-antiquark background, we use the angle θ_T between the B-candidate thrust axis and that of the rest of the event, and a Fisher discriminant F_1 \[15\]. Both variables are calculated in the center-of-mass frame. The discriminant combines the polar angles of the B-momentum vector and the B-candidate thrust axis with respect to the beam axis, and two moments of the energy flow around the B-candidate thrust axis \[15\].

To reduce combinatorial background with low-momentum π^0 candidates, we require $H_1 < 0.6$. When more than one candidate is reconstructed, which happens in 7% of events with K_S^0 and 17% with π^0, we select the one whose χ^2 of the charged-track vertex fit combined with χ^2 of the invariant mass consistency of the K_S^0 or π^0 candidate, is the lowest. We define the b-quark fla-
vor sign \(Q \) to be opposite to the charge of the \(B \) meson candidate.

We use an unbinned, extended maximum-likelihood fit \[1,2\] to extract the event yields \(n_j^k \) and the parameters of the probability density function (PDF) \(P_j^k \). The index \(j \) represents three event categories used in our data model: the signal \(B^\pm \to \varphi(K\pi)^\pm \) (\(j = 1 \)), a possible background from \(B^\pm \to f_0(980)K^{\pm\mp} \) (\(j = 2 \)), and combinatorial background (\(j = 3 \)). The superscript \(k \) corresponds to the value of \(Q = \pm \) and allows for a CP-violating difference between the \(B^+ \) and \(B^- \) decay amplitudes (\(A \) and \(A^\mp \)). In the signal category, the yield and asymmetry of the \(B^\pm \to \varphi K^{*}(892)^\pm \) mode, \(n_{\text{sig}} \) and \(A_{CP} \), and those of the \(B^\pm \to \varphi(K\pi)_0^{\mp\mp} \) mode are parameterized by applying the fraction of \(\varphi K^{*}(892)^\pm \) yield, \(\mu^k \), to \(n_1^k \). Hence, \(n_{\text{sig}} = n_1^++ n_1^- \) and \(\mu^k = A_{CP} (n_1^+ \times \mu^+ - n_1^- \times \mu^-)/n_{\text{sig}} \), and the \(\varphi(K\pi)_0^{\mp\mp} \) yield is \(n_1^+ 	imes (1 + \mu^+) + n_1^- \times (1 - \mu^-) \).

The likelihood \(L_i \) for each candidate \(i \) is defined as \(L_i = \sum_{j,k} n_j^k P_j^k(\mathbf{x}_i; \mu^k, \zeta, \xi) \), where the PDF is formed based on the following set of observables \(\mathbf{x}_i = \{H_1, H_2, \Phi, m_{K\pi}, m_{K\pi}, \Delta E, m_{ES}, \mathcal{F}, Q\} \) and the dependence on \(\mu^k \) and polarization parameters \(\zeta \) is relevant only for the signal PDF \(P_1^k \). The remaining PDF parameters \(\xi \) are left free to vary in the fit for the combinatorial background and are fixed to the values extracted from Monte Carlo (MC) simulation \[17\] and calibration \(B \to D\pi \) decays for event categories \(j = 1 \) and \(2 \).

The helicity part of the signal PDF is the ideal angular distribution from Eq. \[1\], multiplied by an empirical acceptance function \(G(H_1, H_2, \Phi) \equiv G_1(H_1) \times G_2(H_2) \).

Here, the amplitudes \(A_{J\lambda} \) are expressed in terms of the polarization parameters \(\zeta \equiv \{f_L, f_\perp, \phi_\parallel, \phi_\perp, \delta_0, A_{CP}^{ES}, A_{CP}^F, \Delta\phi_\parallel, \Delta\phi_\perp, \Delta\delta_0\} \) defined in Table \[1\].

CP-violating differences are incorporated via the replacements in Eq. \[1\] for \(B^+ \) decays: \(f_L \to f_L \times (1 + A_{CP}^{ES} \times Q) \), \(f_\perp \to f_\perp \times (1 + A_{CP}^F \times Q) \), \(\phi_\parallel \to (\phi_\parallel + \Delta \phi_\parallel \times Q) \), \(\phi_\perp \to (\phi_\perp + \pi/2 + (\Delta\phi_\perp + \pi/2) \times Q) \), and \(\delta_0 \to (\delta_0 + \Delta\delta_0 \times Q) \).

A relativistic spin-\(J \) Breit–Wigner amplitude parameterization is used for the resonance masses \[3,16\] and the \((K\pi)_0^{\mp\mp} \) amplitude is parameterized with the LASS function \[12\]. The latter includes the \(K_0(1430)^\mp \) resonance together with a nonresonant component. The interference between the \(J = 0 \) and 1 \((K\pi)^\pm \) contributions is modeled with the three terms \(2\Re(\lambda_1 A_0^{\lambda_1}) \) in Eq. \[1\] with the four-dimensional angular and \(m_{K\pi} \) parameterization and with dependence on \(\mu^k \) and \(\zeta \).

The signal PDF for a given candidate \(i \) is a joint PDF for the helicity angles and resonance mass as discussed above, and the product of the PDFs for each of the remaining variables. The combinatorial background PDF is the product of the PDFs for independent variables and is found to describe well both the dominant quark-antiquark background and the background from random combinations of \(B \) tracks. The signal and background PDFs are illustrated in Figs. \[1\] and \[2\]. For illustration, the signal fraction is enhanced with a requirement on the signal-to-background probability ratio, calculated with the plotted variable excluded, that is at least 50% efficient for signal \(B^\pm \to \varphi(K\pi)^\pm \) events. We use a sum of Gaussian functions for the parameterization of the signal PDFs for \(\Delta E, m_{ES}, \) and \(\mathcal{F} \). For the combinatorial background, we use polynomials, except for \(m_{ES} \) and \(\mathcal{F} \) distributions which are parameterized by an empirical phase-space function and by Gaussian functions, respectively. Resonance production occurs in the background and is taken into account in the PDF.
TABLE I: Summary of results for the $B^\pm \to \varphi K^*(892)^\pm$ decay. The twelve primary results are presented for the two decay subchannels along with the combined results, where the branching fraction B is computed using the number of signal events n_{sig} and the total selection efficiency ε, which includes the daughter branching fractions $\bar{\mathcal{B}}$ and the reconstruction efficiency $\varepsilon_{\text{reco}}$ obtained from MC simulation. The definition of the six CP-violating parameters allows for differences between the B^+ and B^- decay amplitudes A and \bar{A} with superscript $Q = -$ and $+$, respectively. The systematic uncertainties are quoted last and are not included for the intermediate primary results in each subchannel. The dominant fit correlation coefficients (C) are presented, where we show correlations of δ_0 with $\phi_\parallel/\phi_\perp$ and of $\Delta \delta_0$ with $\Delta \phi_\parallel/\Delta \phi_\perp$.

parameter	definition	$K^*(892)^\pm \to K^0_S\pi^\pm$	$K^*(892)^\pm \to K^\pm\pi^0$	combined	C				
B	$\Gamma/\Gamma_{\text{total}}$	$(10.5 \pm 1.4) \times 10^{-6}$	$(11.6 \pm 1.5) \times 10^{-6}$	$(11.2 \pm 1.0 \pm 0.9) \times 10^{-6}$	-58%				
f_L	$	A_{10}	^2/	A_{1\perp}	^2$	0.51 ± 0.07	$0.46_{-0.09}^{+0.10}$	$0.49 \pm 0.05 \pm 0.03$	$+56\%$
f_{\perp}	$	A_{1\perp}	^2/	A_{1\parallel}	^2$	$0.22_{-0.08}^{+0.07}$	$0.21_{-0.08}^{+0.09}$	$0.21 \pm 0.05 \pm 0.02$	$+37\%$
$\phi_{\|} - \pi$	$\arg(A_{1\parallel}/A_{1\perp}) - \pi$	$-0.75_{-0.24}^{+0.28}$	-0.77 ± 0.35	$-0.67 \pm 0.20 \pm 0.07$	$+37\%$				
$\phi_{\perp} - \pi$	$\arg(A_{1\perp}/A_{1\parallel}) - \pi$	-0.15 ± 0.24	$-0.89_{-0.46}^{+0.40}$	$-0.45 \pm 0.20 \pm 0.03$	$+37\%$				
$\delta_0 - \pi$	$\arg(A_{0\parallel}/A_{0\perp}) - \pi$	-0.25 ± 0.24	$+0.11 \pm 0.31$	$-0.07 \pm 0.18 \pm 0.06$	$+37\%$				
A_{CP}	$(\Gamma^+ - \Gamma^-)/(\Gamma^+ + \Gamma^-)$	-0.09 ± 0.13	$+0.07 \pm 0.13$	$0.00 \pm 0.09 \pm 0.04$	-50%				
A_{SP}	$(f_L^+ - f_L^-)/(f_L^+ + f_L^-)$	$+0.24 \pm 0.15$	$+0.09 \pm 0.20$	$+0.17 \pm 0.11 \pm 0.02$	$+57\%$				
A_{SP}	$(f_\perp^+ - f_\perp^-)/(f_\perp^+ + f_\perp^-)$	$+0.12 \pm 0.31$	$+0.41_{-0.40}^{+0.54}$	$+0.22 \pm 0.24 \pm 0.08$	$+37\%$				
$\Delta \phi_{\|}$	$(\phi_{\|} - \phi_{\perp})/2$	$+0.02 \pm 0.28$	$+0.22 \pm 0.35$	$+0.07 \pm 0.20 \pm 0.05$	-58%				
$\Delta \phi_{\perp}$	$(\phi_{\|} - \phi_{\perp} - \pi)/2$	$+0.18 \pm 0.24$	$+0.48_{-0.40}^{+0.46}$	$+0.19 \pm 0.20 \pm 0.07$	$+37\%$				
$\Delta \delta_0$	$(\delta_{0\parallel} - \delta_{0\perp})/2$	$+0.13 \pm 0.24$	$+0.34 \pm 0.31$	$+0.20 \pm 0.18 \pm 0.03$	-58%				
n_{sig}	$102 \pm 13 \pm 6$	$117_{-16}^{+15} \pm 7$	$117_{-16}^{+15} \pm 7$	$117_{-16}^{+15} \pm 7$	$+37\%$				
ε	$(2.53 \pm 0.13)\%$	$(2.59 \pm 0.17)\%$	$(2.59 \pm 0.17)\%$	$(2.59 \pm 0.17)\%$	-58%				
$\varepsilon_{\text{reco}}$	$(22.3 \pm 1.2)\%$	$(16.0 \pm 1.0)\%$	$(16.0 \pm 1.0)\%$	$(16.0 \pm 1.0)\%$	-58%				

We observe a nonzero $B^\pm \to \varphi K^*(892)^\pm$ yield with significance, including systematic uncertainties, of more than 10σ. The significance is defined as the square root of the change in $2 \ln \mathcal{L}$ when the yield is constrained to zero in the likelihood \mathcal{L}. In Table I results of the fit are presented, where the combined results are obtained from the simultaneous fit to the two decay subchannels.

We repeat the fit by varying the fixed parameters in ξ within their uncertainties and obtain the associated systematic uncertainties. We allow for a flavor-dependent acceptance function and reconstruction efficiency in the study of asymmetries. The bias from the finite resolution of the angle measurements, the dilution due to the presence of fake combinations, or other imperfections in the signal PDF model are estimated with MC simulation.

The nonresonant $K^0\overline{K}^0$ contribution under the φ is accounted for with the $B^0 \to f_0 K^{*0}$ category. Its yield is consistent with zero. The $m_{\bar{K}}$ PDF shape in this category is varied from the observed value to the extrapolation from the neutral B-decay mode $\bar{\mathcal{B}}$ to estimate the systematic uncertainties. Additional systematic uncertainty originates from other potential B backgrounds, which we estimate can contribute at most a few events to the signal component. The systematic uncertainties in efficiencies are dominated by those in particle identification, track finding, and K^0_S and π^0 selection. Other systematic effects arise from event-selection criteria, φ and K^{*0} branching fractions, and the number of B mesons.

The yield of the $\varphi(K\pi)_{0/0}^{+/0}$ contribution is 57_{-13}^{+14} events with a statistical significance of 7.9σ, combining the $|A_{00}|^2$ term and the interference terms $2 \text{Re}(A_{1\alpha}A_{1\alpha}^*)$, which confirms the significant S-wave $K\pi$ contribution observed in the neutral B-decay mode $\overline{\mathcal{B}}$. The dependence of the interference on the $K\pi$ invariant mass $m_{K\pi}$ allows us to reject the other solution near $(2\pi - \phi_{||}, \pi - \phi_{\perp})$ relative to that in Table I with significance of 6.3σ, including systematic uncertainties.

The $(V - A)$ structure of the weak interactions, helicity conservation in strong interactions, and the s-quark spin flip suppression in the penguin decay diagram suggest $|A_{10}| \gg |A_{1+1}| \gg |A_{1-1}|$. This expectation disagrees with our observed value of f_L. We obtain the solution $\phi_{\|} \simeq \phi_{\perp}$ without discrete ambiguities, which is
consistent with the approximate decay amplitude hierarchy $|A_{10}| \approx |A_{1+1}| \gg |A_{1-1}|$.

We find that ϕ_\parallel and ϕ_\perp deviate from either π or zero by more than 3.1σ and 2.4σ, respectively, including systematic uncertainties. This indicates the presence of final-state interactions not accounted for in naive factorization. Our measurements of the six CP-violating parameters are consistent with zero and exclude a significant part of the physical region. We find no evidence of CP violation in this decay.

In summary, we have performed a full amplitude analysis and searched for CP-violation in the angular distribution of the $B^{\pm} \rightarrow \varphi K^{*\pm}$ decay. Our results are summarized in Table II and supersede our prior measurements in Ref. [1]. These results find substantial A_{1+1} amplitude in the $B^{\pm} \rightarrow \varphi K^{*\pm}$ decay and point to physics outside the standard model or new dynamics [8, 9, 10].

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BaBar. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), MEC (Spain), and PPARC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation.

* Deceased
† Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy
‡ Also with Università della Basilicata, Potenza, Italy
§ Also with Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
* Also with IPPP, Physics Department, Durham University, Durham DH1 3LE, United Kingdom
[1] BaBar Collaboration, B. Aubert et al., Phys. Rev. Lett. 91, 171802 (2003); 93, 231804 (2004).
[2] Belle Collaboration, K.-F. Chen et al., Phys. Rev. Lett. 91, 201801 (2003); 94, 221804 (2005).
[3] Belle Collaboration, J. Zhang et al., Phys. Rev. Lett. 95, 141801 (2005).
[4] BaBar Collaboration, B. Aubert et al., Phys. Rev. Lett. 97, 201801 (2006).
[5] BaBar Collaboration, B. Aubert et al., Phys. Rev. Lett. 98, 051801 (2007); arXiv:0705.0398 [hep-ex].
[6] A. V. Gritsan and J. G. Smith, “Polarization in B Decays” review in [2], J. Phys. G33, 833 (2006).
[7] Particle Data Group, W.-M. Yao et al., J. Phys. G33, 1 (2006).
[8] Y. Grossman, Int. J. Mod. Phys. A 19, 907 (2004); E. Alvarez et al., Phys. Rev. D 70, 115014 (2004); P. K. Das and K. C. Yang, Phys. Rev. D 71, 094002 (2005); C. H. Chen and C. Q. Geng, Phys. Rev. D 71, 115004 (2005); Y. D. Yang et al., Phys. Rev. D 72, 015009 (2005); K. C. Yang, Phys. Rev. D 72, 034009 (2005); S. Baek, Phys. Rev. D 72, 094008 (2005); C. S. Huang et al., Phys. Rev. D 73, 034026 (2006); C. H. Chen and H. Hatanaka, Phys. Rev. D 73, 075003 (2006); A. Faessler et al., Phys. Rev. D 75, 074029 (2007).
[9] A. L. Kagan, Phys. Lett. B 601, 151 (2004); H. n. Li and S. Mishima, Phys. Rev. D 71, 054025 (2005); C.-H. Chen et al., Phys. Rev. D 72, 054011 (2005); M. Beneke et al., Phys. Rev. Lett. 96, 141801 (2006), arXiv:hep-ph/0612290; C.-H. Chen and C.-Q. Geng, Phys. Rev. D 75, 054010 (2007).
[10] C. W. Bauer et al., Phys. Rev. D 70, 054015 (2004); P. Colangelo et al., Phys. Lett. B 597, 291 (2004); M. Ladisa et al., Phys. Rev. D 70, 114025 (2004); H. Y. Cheng et al., Phys. Rev. D 71, 014030 (2005).
[11] A. Ali et al., Z. Phys. C 1, 269 (1979); G. Valencia, Phys. Rev. D 39, 3339 (1989); G. Kramer and W. F. Palmer, Phys. Rev. D 45, 193 (1992); H.-Y. Cheng and K.-C. Yang, Phys. Lett. B 511, 40 (2001); C.-H. Chen et al., Phys. Rev. D 66, 054013 (2002); M. Suzuki, Phys. Rev. D 66, 054018 (2002); A. Datta and D. London, Int. J. Mod. Phys. A 19, 2505 (2004).
[12] LASS Collaboration, D. Aston et al., Nucl. Phys. B 296, 493 (1988); W. M. Dunwoodie, private communications.
[13] BaBar Collaboration, B. Aubert et al., Phys. Rev. D 71, 032005 (2005); Phys. Rev. D 72, 072003 (2005).
[14] BaBar Collaboration, B. Aubert et al., Nucl. Instrum. Methods A479, 1 (2002).
[15] BaBar Collaboration, B. Aubert et al., Phys. Rev. D 70, 032006 (2004).
[16] E791 Collaboration, E. M. Aitala et al., Phys. Rev. Lett. 86, 765 (2001).
[17] S. Agostinelli et al., Nucl. Instr. Meth. A 506, 250 (2003).