Chemical and Isotopic Compositions of Hydrothermal Fluids at Snail, Archaean, Pika, and Urashima Sites in the Southern Mariana Trough

Tomohiro Toki, Jun-ichiro Ishibashi, Takuroh Noguchi, Miki Tawata, Urumu Tsunogai, Toshiro Yamanaka, and Kentaro Nakamura

Abstract
Hydrothermal fluids were collected from five hydrothermal fields around the Southern Mariana Trough backarc spreading center for chemical and isotopic analyses. Yamanaka site was interpreted as inactive, so we present results from Snail, Archaean, Pika and Urashima sites. The slightly low pH and negative alkalinity suggests a little bit input of magmatic volatiles, supported by high CO₂ concentrations. Consequently low pH would lead to the hydrothermal fluids rich in Fe compared to the MOR hydrothermal fluids.

Keywords
Backarc spreading center • Geochemistry • Hydrothermal fluid • Iron TAIGA • Magmatic volatile • Southern Mariana

45.1 Introduction
The southern part of the Mariana Trough is an active backarc spreading center that had propagated southward (Fig. 45.1a) (Fryer 1995). Several hydrothermal fields have been mapped around 12°50’N in an alignment perpendicular to the spreading axis (Fig. 45.1b) (Wheat et al. 2003; Ishibashi et al. 2004; Utsumi et al. 2004; Kakegawa et al. 2008; Nakamura et al. 2013). This area is far from continents and large islands, so terrestrial organic matter is absent, and the primary production in surface seawater is poor. On the seafloor, sinking organic matter is very sparse, but flourishing ecosystems are sustained around hydrothermal fields despite high temperatures and pressures (Deming and Baross 1993; Takai and Horikoshi 1999; Kelley et al. 2002). Ecosystems utilizing Fe for energy have been extensively documented, especially around low-temperature hydrothermal vents (e.g., Boyd and Scott 2001; Edwards 2004; Edwards et al. 2003, 2005).
Fig. 45.1 (a) A topographic map showing the Izu-Bonin-Mariana trench/arc/back-arc system on the eastern edge of the Philippine Sea plate. A box denotes the area of Fig. 45.1b. (b) A topographic map around 12°50′N. The stars represent the positions of hydrothermal fields in this study. S, Y, A, P, and U denote the initial letter of Snail, Yamanaka, Archaean, Pika, and Urashima sites, respectively.
45.2 Geological Setting

In the Mariana Trough, the Pacific plate subducts beneath the Philippine Sea plate, and the shape of the trough is convex to the east as a result of backarc spreading (Fig. 45.1a). Spreading activity started between 5 and 10 Ma (Hussong and Uyeda 1981; Karig 1971; Bibee et al. 1980; Eguchi 1984; Yamazaki and Stern 1997), and the northern part of the Mariana Trough represents the early stage of rifting of a backarc basin (Yamazaki et al. 1993). The central part of the Mariana Trough, from 16° to 20°N, represents the early stage of backarc basin spreading, and the volcanic arc and backarc are clearly distinguishable (e.g., Hart et al. 1972; Hawkins 1977; Fryer et al. 1981; Natland and Tarney 1981). The backarc is very close to the volcanic arc south of 16°N, and the spreading center of the backarc is ambiguous south of 12.5°N (Hawkins 1977; Smoot 1990). The hydrothermal fields in this study are located around 13°N. Five hydrothermal systems have been discovered around 13°N, which are aligned perpendicular to the axis (Fig. 45.1b). The Snail and Yamanaka sites are on the spreading axis, and the Archaean, Urashima, and Pika sites are off the axis. Around the area, hydrothermal activities have been documented in the TOTO caldera (Gamo et al. 2004), Forecast vent field (Johnson et al. 1993), and Alice Springs field (Craig et al. 1987; Gamo 1993; Gamo et al. 1997a). Descriptions of these hydrothermal systems are found in the InterRidge Vents Database (Beaulieu 2013).

45.2.1 Snail Site

Snail site is on the spreading axis (12°57.214′N, 143°37.147′E, depth: 2,860 m) (Fig. 45.1b), where hydrothermal fluids as hot as 248 °C were observed in 2003 (Wheat et al. 2003). However, most of the seafloor around the site is covered by snails exposed to low-temperature fluid around 100 °C, and covered by a yellow microbial mat and shimmering fluid below 100 °C (Wheat et al. 2003). The microbial mat may be composed of iron hydroxide and associated with Fe-oxidizing bacteria (Kato et al. 2010). In 2004 and 2010, the Benthic Multicoring System (BMS) penetrated several meters below the seafloor, and basalt was recovered (Urabe et al. 2004). In 2012, an ROV investigation found that hydrothermal fluid of 45 °C was discharging from the casing pipe that was placed in the BMS drilling hole in 2004 (NT12-24 Cruise Report).

45.2.2 Yamanaka Site

Yamanaka site is on a mound about 30 m high on the spreading axis (12°57.6′N, 143°36.7′E, depth: 2,830 m), 1 km northwest of Snail (Fig. 45.1b). Observations have documented many sea anemones and dead chimneys as well as shimmering fluid below 20 °C seeping from the rocky seafloor (Kakegawa et al. 2008). Magnetic mapping in 2009 showed strong magnetization here, suggesting that hydrothermal alteration is weak (Fujii et al. 2013). Based on these facts, Yamanaka has been considered to be past its peak of hydrothermal activity (Yoshikawa et al. 2012).

45.2.3 Archaean Site

Archaean site is on a sulfide mound ~100 m high that is 2 km from the spreading axis (12°56.35′N, 143°38.0′E, depth: 2,990 m) (Fig. 45.1b). The ROV ROPOS, during cruise TN167A in 2004, documented black smokers venting fluid at temperatures up to 343 °C (Ishibashi et al. 2004). The BMS drilling campaign in 2010 recovered basalt and andesite from the base of the mound (Nakamura et al., Appendix 3-A1).

45.2.4 Pika Site

Pika site is on a 75 m-high knoll, with two peaks 5 km from the spreading axis (12°55.1′N, 143°38.9′E, depth: 2,830 m) (Fig. 45.1b). The manned submersible Shinkai 6500, during
subsample was measured for NH₄⁺ distributed into 15- and 30-mL plastic bottles. The 15-mL et al. Chap.17), suggesting demagnetization by hydrothermal fluids. The microbial mat is probably composed of iron hydroxide like that at Snail.

45.2.5 Urashima Site

Urashima site is on a mound several meters high 500 m north of Pika (12°55.30′N, 143°38.89′E, depth 2,922 m) (Fig. 45.1b), and several gray smokers venting hydrothermal fluids as hot as 280 °C were documented by Shinkai 6500 during cruise YK10-10 in 2010 (Nakamura et al. 2013). A strong negative magnetic anomaly was observed by the autonomous underwater vehicle (AUV) Urashima in 2009 (Seama et al. Chap. 17), suggesting demagnetization by hydrothermal alteration (Rona 1978; Tivey and Johnson 2002). The site includes black dead chimneys, red-brown shimmering chimneys, and areas of yellow microbial mat exposed to low-temperature hydrothermal fluids. The microbial mat is probably composed of iron hydroxide like that at Snail.

45.3 Materials and Methods

45.3.1 Sampling Methods

Hydrothermal fluids were collected during YK03-09 (October, 2009), TN167A (March, 2004), YK05-09 (July, 2005), YK10-10 (August, 2010), YK10-13 (October, 2010), and NT12-24 (September, 2012) (Suppl. 45.1a and 45.1b) using the ROCS and the WHATS (Tsunogai et al. 2003; Saegusa et al. 2006). The WHATS is multi-bottle gastight sampling system, which avoids degassing and contamination by tightly closing the valves of sample bottles in situ. During sampling, the bottle inlet was held as close as possible to the hydrothermal vent, but in typical operation the inlet sometimes drops off the vent and draws in seawater. With allowance for a small degree of seawater admixture, the sample represents the average composition of hydrothermal fluid during the sampling period. The fluid temperature was recorded during sampling. The samples were collected with two bottles at each vent, one for gas analyses and the other for fluid analyses.

The sample for fluid analyses was first subsampled into two 5-mL vials for measurement of pH, alkalinity, and H₂S concentration. The remaining fluid was then filtered using a 0.45-μm pore-size disk filter attached to a plastic syringe and distributed into 15- and 30-mL plastic bottles. The 15-mL subsample was measured for NH₄⁺ and Si concentrations on board, and Cl⁻ and SO₄²⁻ concentrations on land. The 30-mL subsample was combined with 300 μL of 3N HNO₃ on board the tender ship and then measured for major and minor elements on shore.

The sample bottle for gas analyses was processed as soon as possible (Konno et al. 2006); the fluid in the bottle was transferred to a 300-mL evacuated glass container, then acidified with amidosulfuric acid to convert all dissolved carbonate species to CO₂ in the headspace of the container. The fluid was treated with sufficient HgCl₂ to thoroughly convert H₂S to HgS in the vacuum line. The gas phase was transferred to a 50-mL evacuated stainless steel container for gas analyses on shore, and then the residual fluid in the container was filtered for measurement of major elements on shore.

45.3.2 Analysis

The pH was measured by electrode with a precision of ±0.02 (Gieskes et al. 1991). The calibration was done using buffers of pH 4.01 and pH 6.86 once a day before the measurements. Alkalinity was measured by HCl titration, which endpoint was determined by the Gran’s plot, with a precision of ±2 % (Gieskes et al. 1991). The concentration of H₂S was measured by colorimetry using methylene blue with a precision of ±10 %. Ammonia concentration was measured by colorimetry using phenol blue with a precision of ±8 %. The Si concentration was determined by colorimetry using molybdate blue with a precision of ±1 %. Chlorinity was analyzed by the Mohr method with a precision of ±1 %. The SO₄²⁻ concentration was determined by ion chromatography with a precision of ±4 %. Major and minor elements (Na, Ca, Mg, Sr, Ba, Mn, Fe, Si, B, and Li) were analyzed by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The K concentration was analyzed by atomic absorption spectrometry. The Na concentration was also calculated independently on the basis of charge balance.

Gas concentrations of O₂, N₂, CO₂, H₂, and He were measured by using gas chromatography with a thermal conductivity detector. CH₄ concentration and its stable carbon isotope ratio were determined with a continuous-flow isotope ratio mass spectrometer (CF-irMS) (Tsunogai et al. 2000). The hydrogen isotope ratio (D/H) of CH₄ was analyzed by using a CF-irMS with a precision of ±10 %. The hydrogen isotope ratio of H₂ was analyzed by using a CF-irMS with a precision of ±4 % (Komatsu et al. 2011). Helium isotope ratios (³He/⁴He) were measured by using noble gas mass spectrometry with a precision of ±2 % (Sano et al. 2006). The ratio of ⁴He to ²⁰Ne was determined by using quadrupole mass spectrometry with a precision of ±10 % (Sano et al. 2006). Dissolved organic matter was measured with a Shimadzu TOC-5000 total organic carbon analyzer with a high-temperature catalytic method.
45.4 Results

The analytical results for hydrothermal fluids from the five sites are shown in Suppl. 45.1a for fluid chemistry and Suppl. 45.1b for gas chemistry, together with the maximum and average temperatures recorded during sampling.

45.4.1 Calculation of End-Member Compositions

Graphs of the concentrations of each chemical component relative to Mg concentration are shown in Fig. 45.2. Under the assumption that pure hydrothermal fluid is free of Mg, its chemical composition was calculated as the y-axis intercept of linear relationship among data plots (Von Damm 1995). The Yamanaka site yielded only low-temperature hydrothermal fluids with compositions that could not be distinguished from that of seawater, and this site is not discussed further. End-member concentrations of the hydrothermal fluids in the remaining four sites are listed in Table 45.1 for aqueous components and Table 45.2 for volatile components, and discussed below.

The end-member carbon isotopic composition of methane, δ¹³C(CH₄), was estimated as the intercept of the y-axis on a graph of δ¹³C(CH₄) against the reciprocal of CH₄ concentration, as shown in Fig. 45.3 (Keeling 1961). Estimates of this type are based on the assumption that the background concentration is negligible. In the case of methane, background CH₄ in seawater is several nM, whereas CH₄ in hydrothermal fluid is several hundred μM, a difference of five orders of magnitude.

However, because the background CO₂ concentration is substantial in seawater (2 mM) compared to hydrothermal fluid (several tens mM), we relied on a method used in atmospheric chemistry to evaluate end-member δ¹³C(CO₂) (Miller and Tans 2003). As illustrated in Fig. 45.4, a product that CO₂ concentration multiplies δ¹³C(CO₂) is plotted to CO₂ concentration, when the slope can be taken as δ¹³C (CO₂) of the source.

Helium in hydrothermal gases is a mixture of mantle, crust, and seawater contributions. Because ^2⁰Ne is negligible in rock, helium isotope ratios can be corrected for seawater admixture using ^3²He/^2⁰Ne ratios, as shown in Fig. 45.5 (Craig et al. 1978).

45.4.2 End-Member Concentrations of Dissolved Constituents

Maximum fluid temperatures were as follows: Snail, 116 °C; Archæan, 343 °C; Pika, 330 °C; Urashima, 280 °C (Table 45.1).

The lowest pH ranged from 2.8 to 3.5, and only at Snail was it greater than 3. Except for Snail, these values are lower than that of hydrothermal fluids in mid-ocean ridges ranging about 3–3.5 on average (Von Damm 1995).

The end-members for all sites have negative alkalinity; −0.94 for Snail, −1.41 for Archæan, −1.14 for Pika, and −1.44 for Urashima. These data suggests that these hydrothermal fluids have substantial strong acidity compared with hydrothermal fluid in the mid-ocean ridge setting, where the fluid is rather neutralized during high temperature fluid-rock interactions. This view is supported by relatively low pH in Southern Mariana Trough hydrothermal fluids.

The Si concentrations were measured by colorimetry on board and by ICP-AES on land, and both end-member concentrations were consistent with each other. Values lay in a narrow range between 16.4 and 17.0 mM except for Snail, where the Si concentration was greater than 18 mM.

The end-member Cl⁻ concentrations deviated from that of seawater (550 mM) at all sites. At Archæan, the Cl⁻ end-member in 2004 (466 mM) had a higher concentration than those in 2005 and 2010 (407 mM). At Pika, high-Cl⁻ fluids (603 mM) were consistently reported after its discovery in 2003, but a low-Cl⁻ fluid (460 mM) was recovered in 2010 (Table 45.1). Such Cl⁻ deviations from that of seawater have been reported in many hydrothermal systems in the world, which are thought to be due to phase separation beneath the seafloor (Von Damm 1995). Especially, higher-Cl⁻ and lower-Cl⁻ fluids than that of seawater have been sampled, like those at Pika, suggesting that active phase separation beneath the seafloor has occurred there, as mentioned in many hydrothermal systems in the world (Von Damm 1995). A positive Cl⁻ deviation from that of seawater, like those at Urashima, can be due to input of HCl derived from magmatic volatiles, as mentioned at DESMOS hydrothermal field in Manus Basin (Gamo et al. 1997b). In that case, the hydrothermal fluids also have extremely low pH and an excess of SO₄²⁻ (Gamo et al. 1997b), and we found that hydrothermal fluids from Urashima site have an end-member pH slightly lower than 3 as mentioned above (Table 45.1).

The Na concentration was independently calculated by charge balance as well as measured by ICP-AES. The calculated values were more clearly linear relative to Mg concentrations than the measured values. Although the errors of the calculated concentrations are larger than those of the measured concentrations, we took the calculated values as those of the preferred end-members. The end-member value for Snail was close to that of seawater (460 mM). The end-member Na concentration for Archæan (345 mM) was lower than that of seawater. At Pika, the end-member value in 2003 and 2005 was higher than that of seawater, although sample D1219 W-4, taken in 2010, had a lower value than seawater (Table 45.1). For Urashima, the
Fig. 45.2 A plot of each chemical component vs. Mg concentration in the hydrothermal fluid for each site in the Southern Mariana Trough in this study.
Fig. 45.2 (continued)
end-member Na concentration (515 mM) was higher than that of seawater.

For Ca concentrations, the end-members for all four sites had higher values than that of seawater (10 mM). At Archaean, the end-member Ca concentration for 2004 was higher than the one for 2005 and 2010, which is similar to our finding for Cl/C0 concentrations.

For K concentrations, end-member values for all sites fell into a narrow range (31.3–32.8 mM), and the values for Pika and Archaean were significantly higher than those for Snail and Urashima.

For Fe concentrations, the end-members for all four sites had higher concentrations than that of seawater (<1 nM). The end-member value was 0.64 mM for Snail, 2.55 mM for Archaean in 2003–2005, 3.00 mM for Archaean in 2010, 7.38 mM for Pika, and 6.37 mM for Urashima (Table 45.1). The end-member Fe concentration at Snail site is as low or lower when compared to those in the
hydrothermal fluids in EPR21°N (0.2–2.4 mM; Von Damm et al. 2002), but otherwise those in the Southern Mariana Trough appear higher as compared with those in EPR21°N. Fe leaches from rocks at low pH attributed to an input of magmatic volatiles (Mottl et al. 1979; Hajash and Chandler 1982; Seyfried and Janecky 1985; Seewald and Seyfried 1990). The cause of Fe enrichment in Pika, Urashima, and Archaean sites would be low pH coming from an input of magmatic volatiles.

The end-members of major elements had two concentrations for both Pika and Archaean and unique values for both Snail and Urashima (Table 45.1).

45.4.3 Distribution of Gas Components

Dissolved oxygen concentrations showed nonlinear relationships to Mg concentrations, so end-member concentrations were not computed (Fig. 45.2). We just explain the concentration for each Mg concentration (Suppl. 45.1b and Fig. 45.2). At Snail, samples contained Mg concentrations higher than 40 mM and had oxygen concentrations higher than that of seawater, ranging around 100–200 μM. At Archaean, samples had Mg concentrations lower than 40 mM and oxygen concentrations lower than 20 μM. The single sample from Pika contained 12 mM Mg and an oxygen concentration of 18 μM. Urashima yielded samples containing from 7 to 54 mM Mg, and oxygen was not detected in samples with less than 40 mM Mg.

Dissolved nitrogen was detected in all samples, but its concentrations showed nonlinear relationships to Mg concentrations (Fig. 45.2). At Snail, all samples contained Mg concentrations above 40 mM, and nitrogen concentrations were higher than that of seawater (500–1,000 μM). At Archaean, two samples had Mg concentrations around 10 and 30 mM, and the N2 concentration of the latter was higher than that of the former. The single sample from Pika had a Mg concentration of 12 mM and a N2 concentration of about 1 mM.

End-member dissolved CO2 concentrations were calculated for each site from their relation to Mg concentrations (data for Archaean did not fit a linear relation). The end-member values were all higher than that of seawater (2.4 mM). At Snail, although the majority of samples had values close to that of seawater, the end-member value, 78.8 mM, was highest among our sites. Although we did not calculate an end-member concentration for Archaean, the range of CO2 concentrations there was 6.4–32.6 mM. For Pika, samples taken in 2005 had an exceptionally high value (69.1 mM); whereas the end-member concentration for 2003, 2004, and 2010 samples was much lower (33.7 mM).

For Urashima, the end-member value was 23.2 mM. The reported range of CO2 concentrations in hydrothermal fluids from EPR are lower than 10 mM (Von Damm et al. 2002), and so the observed CO2 concentrations in hydrothermal fluids in the Southern Mariana Trough in this study are relatively higher than those in EPR. Such CO2 enrichments could be influenced by a little input of magmatic volatiles, as mentioned in hydrothermal systems related to arc systems (Sakai et al. 1990; Gamo 1993; Tsunogai et al. 1994; Gamo et al. 2006; Lupton et al. 2008).

The end-member value of CH4 for Snail was 29.6 μM, although the error was large because values for most samples were close to seawater values. For Archaean, the data were too scattered to calculate an end-member concentration, but sample D903 W-3, from a clear smoker vent with a maximum temperature of 117 °C, had the highest concentration of CH4 in this study, 115 μM. For Pika, the 2005 end-member concentration (29.9 μM) was higher than the end-member concentration for the other years (7.2 μM). The end-member value for Urashima was 10.8 μM.

Hydrogen concentrations were not linearly related to Mg concentrations, and we did not calculate H2 end-member concentrations. The maximum H2 concentrations were 549 μM at Snail, 466 μM at Archaean, 301 μM at Pika and 105 μM at Urashima.

Helium was not detected in Snail samples. For Archaean, the relation of He to Mg concentrations was not clearly linear, but the end-member concentration was calculated to be 2.1 μM. Although we have only one sample from Pika, the end-member value was 1.8 μM. For Urashima, given the helium concentration in seawater (2 nM), the relationship between He and Mg concentrations was smoothly linear, and the end-member value was 2.4 μM.

45.4.4 Isotopic Compositions of End-Members

The end-member δ13C(CO2) ranged from −2.3 to +0.1 ‰ (all values are relative to VPDB): −1.3 ‰ for Snail, −2.0 ‰ for Archaean, +0.1 ‰ for Pika, and −2.4 ‰ for Urashima (Table 45.2), which was the only value higher than that of seawater (0 ‰).

The δ13C(CH4) values showed a nonlinear relationship to 1/CH4. For Snail, the δ13C(CH4) values in CH4-rich samples were around −5 ‰ and −25 ‰ for Snail, −10 ‰ and −50 ‰ for Archaean, around −5 ‰ for Pika, and −5 ‰ and −0 ‰ for Urashima.

The helium isotope ratios in source fluids, corrected for seawater admixture, were 8.1RA for Snail, 8.4RA for Archaean, 8.3RA for Pika, and 8.0RA for Urashima.
Table 45.1 End-member concentrations of aqueous components in the hydrothermal fluids for all the sites in the Southern Mariana Trough in this study

Site	T_{max}	pH_{min}	Alk. (meq)	∆Alk (meq)	Na (mM)	∆Na (mM)	Na (mM)	∆Na (mM)	K (mM)	∆K (mM)	Li (µM)	∆Li (µM)	Ca (mM)	∆Ca (mM)	Sr (µM)	∆Sr (µM)	Ba (µM)
Snail	116	3.52	–0.94	±0.04	454	±21	466	±91	31.3	±0.7	555	±22	29.9	±1.1	71.9	±4.0	N.D.
Archaean	343	2.94	–1.41	±0.03	32.8	±0.5	500	±8	20.6	±0.5	15.7	±0.3	76.6	±1.5	N.D.		
Pika	330	2.86	–1.14	±0.02	32.6	±0.3	644	±9	39.4	±0.5	122.8	±1.7	N.D.				
Urashima	280	2.85	–1.44	±0.03	447	±11	515	±56	31.7	±0.5	764	±28	35.2	±0.8	106.2	±6.3	N.D.

CB means the Na concentrations are calculated by charge balance
AES and Color means the Si concentration are measured by ICP-AES and colorimetry, respectively.

Table 45.2 End-member compositions of volatile components in the hydrothermal fluids for all the sites in the Southern Mariana Trough in this study

Site	T_{max}	H₂S (µM)	∆H₂S (µM)	O₂ (µM)	N₂ (µM)	CO₂ (mM)	∆CO₂ (mM)	CH₄ (µM)	∆CH₄ (µM)	H₂ (µM)
Snail	116	3.52	N.D.	N.D.	78.8	12.4	29.6	7.2	±0.2	N.D.
Archaean	343	2.94	N.D.	N.D.	33.7	69.1	29.9	10.8	±0.3	N.D.
Pika	330	2.86	N.D.	N.D.	69.1	69.1	29.9	10.8	±0.3	N.D.

N.D. not determined
Chemical and Isotopic Compositions of Hydrothermal Fluids at Snail, Archaean, Pika...

Mn (mM)	ΔMn (mM)	Fe (mM)	ΔFe (mM)	Cl (mM)	ΔCl (mM)	SO₄ (mM)	ΔSO₄ (mM)	Br (mM)	ΔBr (mM)	NO₃ (µM)	ΔNO₃ (µM)	NH₄ (mM)	ΔSi (mM)	Si (mM)	ΔSi (mM)	B (µM)	ΔB (µM)	AES	Color
2.08	±0.08	0.64	±0.02	588	±6	-1.71	±0.37	0.72	±0.10	-269	±53	N.D.	18.6	±0.8	18.7	±0.3	1,112	±37	
1.06	±0.02	0.64	±0.06	466	±3	-0.82	±0.04					N.D.	16.7	±0.3	16.7	±0.1	959	±34	
1.2	±0.02	3.00	±0.06	407	±2	-372	±5,609												
1.13	±0.01	7.38	±0.10		-1.57	±0.06	0.95	±0.02				N.D.	16.9	±0.2	16.4	±0.1			
603	±3			-992	±3,483														
460	±5			-1.5	±0.2														
2.22	±0.08	6.37	±0.13	629	±4	-3.02	±0.20	0.81	±0.02	-0.9	±0.3	N.D.	17.0	±0.4	16.5	±0.1	1,109	±45	

Chemical and Isotopic Compositions of Hydrothermal Fluids at Snail, Archaean, Pika...

He (µM)	ΔHe (µM)	δ¹³C(CO₂) (‰VPDB)	Δδ¹³C(CO₂) (‰VPDB)	δ¹³C(CH₄) (‰VPDB)	ΔD(H₂) (‰VSMOW)	δD(CH₄) (‰VSMOW)	Δ³He/⁴He (RA)	Δ³He⁴He (RA)
N.D.	N.D.	-1.33	±0.10	N.D.	N.D.	N.D.	8.15	±0.09
2.10	-2.00	±0.61	N.D.	N.D.	N.D.	8.37	±0.03	

He (µM)	ΔHe (µM)	δ¹³C(CO₂) (‰VPDB)	Δδ¹³C(CO₂) (‰VPDB)	δ¹³C(CH₄) (‰VPDB)	ΔD(H₂) (‰VSMOW)	δD(CH₄) (‰VSMOW)	Δ³He/⁴He (RA)	Δ³He⁴He (RA)
1.83	±0.08	0.14	±0.06	N.D.	N.D.	N.D.	8.27	±0.10
2.40	±0.1	-2.36	±0.17	N.D.	N.D.	N.D.	8.09	±0.19
45.5 Summary

Hydrothermal fluids were sampled from several hydrothermal activities around the Southern Mariana backarc spreading center, and analyzed for chemical and isotopic compositions. The fluid chemistry around the Southern Mariana Trough would be influenced by a little input of magmatic volatiles, leading to low pH and high CO₂ concentrations, consequently the hydrothermal fluids are characterized by rich in Fe alongside of the MOR hydrothermal fluids.
Fig. 45.4 Relationship between CO₂ concentrations and isotopic index from all the sites in the Southern Mariana Trough in this study are plotted, where the index are calculated by multiplying δ¹³C(CO₂) by CO₂ concentrations.
Acknowledgments We thank the captains and crews of the Yokosuka and Natsushima and the commanders and operation teams of the Shinkai 6500 and Hyper-Dolphin for sampling. Constructive and helpful reviews by Dr. Shinsuke Kawagucci and Dr. Takezo Shibuya are gratefully acknowledged. This study was supported by the Grant-in-Aid for Scientific Research on Innovative Areas of the Ministry of Education, Culture, Science and Technology (MEXT) “TAIGA project (Trans-crustal Advection and In situ biogeochemical processes of Global sub-seafloor Aquifer),” and partly by International Research Hub Project for Climate Change and Coral Reef/Island Dynamics from the University of the Ryukyus.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

Alt JC (1988) Hydrothermal oxide and nontronite deposits on seamounts in the eastern Pacific. Mar Geol 81(1–4):227–239
Beaulieu SE (2013) InterRidge global database of active submarine hydrothermal vent fields, InterRidge
Bibee LD, Shor GG Jr, Lu RS (1980) Inter-arc spreading in the Mariana Trough. Mar Geol 35(1–3):183–197
Boyd TD, Scott SD (2001) Microbial and hydrothermal aspects of ferric oxyhydroxides and ferrosic hydroxides: the example of Franklin Seamount, Western Woodlark Basin, Papua New Guinea. Geochem Trans 2:45
Craig H, Lupton JE, Horibe Y (1978) A mantle helium component in circum-pacific volcanic gases: Hakone, the Marianas, and Mt. Lassen. In: Alexander EC, Ozima M (eds) Terrestrial rare gases. Japan Science Society Press, Tokyo, pp 3–16
Craig H, Horibe Y, Farley KA (1987) Hydrothermal vents in the Mariana Trough: results of the first Alvin dives. Eos Trans AGU 68(44):1531
Deming JW, Baross JA (1993) Deep-sea smokers: windows to a subsurface biosphere? Geochim Cosmochim Acta 57(14):3219–3230
Duhig NC, Davidson GJ, Stolz J (1992) Microbial involvement in the formation of Cambrian sea-floor silica-iron oxide deposits, Australia. Geology 20(6):511–514
Edwards KJ (2004) Formation and degradation of seafloor hydrothermal sulfide deposits. Geol Soc Am Spec Paper 379:83–96
Edwards KJ, McCollom TM, Konishi H, Buseck PR (2003) Seafloor bioalteration of sulfide minerals: results from in situ incubation studies. Geochim Cosmochim Acta 67(15):2843–2856
Edwards KJ et al (2011) Ultra-diffuse hydrothermal venting supports Fe-oxidizing bacteria and massive umber deposition at 5000 m off Hawaii. ISME J 5(11):1748–1758

Fig. 45.5 Relationship between ⁴He/²⁰Ne and ³He/⁴He in the hydrothermal fluids for all the sites in the Southern Mariana Trough in this study, together with the mixing line between mantle and seawater.
