Quasiparticle parameterization of meanfields, Galilei invariance and universal conserving response functions

K. Morawetz1,2,3

1Münster University of Applied Sciences, Stegerwaldstrasse 39, 48565 Steinfurt, Germany
2International Institute of Physics (IIP), Av. Odilon Gomes de Lima 1722, 59078-400 Natal, Brazil and
3Max-Planck-Institute for the Physics of Complex Systems, 01187 Dresden, Germany

The general possible form of meanfield parameterization in a running frame in terms of current, energy and density functionals are examined under the restrictions of Galilean invariance. It is found that only two density-dependent parameters remain which are usually condensed in a position-dependent effective mass and the selfenergy formed by current and mass. The position-dependent mass induces a position-dependent local current which is identified for different nonlinear frames. In a second step the response to an external perturbation and relaxation towards a local equilibrium is investigated. The response function is found to be universal in the sense that the actual parameterization of the local equilibrium does not matter and is eliminated from the theory due to the conservation laws. The explicit form of the response with respect to density, momentum and energy is derived. The compressibility sum rule as well as the sum rule by first and third-order frequency moments are proved analytically to be fulfilled simultaneously. The results are presented for Bose- or Fermi systems in one- two and three dimensions.

PACS numbers: 05.30.-d,05.60.Gg,51.70.+f,24.10.Cn,71.10.w

I. INTRODUCTION

Density functional theories have turned out to be very successful in describing highly correlated systems. The strict proof shows that for calculating the ground state it is sufficient to have a density-dependent functional. This is based on the existence of a variational principle and a functional to extremize. For excitations and in nonequilibrium it is not obvious to find such a density functional since an extremal principle which would lead to only one density-dependent functional are not available before the time evolution of the density is known. Therefore parameterizations of the meanfield in terms of observables like density, momentum and energy are commonly met in the literature. Let us inspect first how this is implemented in nuclear and solid state physics.

In nuclear physics there have been widely used density-dependent parameterizations of contact interactions originally introduced by Skyrme to fit experimental binding properties. One can consider such density-dependent two-particle potentials as arising from three-particle interactions. As extensions the effective mean field has been described by current and energy-dependent terms with the help of which the time-dependent Hartree-Fock theories have been simplified. The current contributions break explicitly the time-invariance and an effective mass appears. This velocity dependence of the Skyrme forces simulates finite-range effects.

The crucial theoretical tool is the response function which provides as poles the collective excitations. Sometimes such collective excitations are described by collective variables and the response function is deduced by density variations of Skyrme-type potentials obeying frequency-weighted sum rules. This line of treatments starts from time-dependent Hartree-Fock equations to derive the response by a time-reversal broken Skyrme interaction.

As a result the response has been used successfully to describe collective excitations like giant resonances also in multicomponent systems. In fact the velocity dependence of the quasiparticle mean field induces the appearance of multipole forces and when treated in random phase approximation (RPA) produces multiple pairing forces. An unwanted byproduct is the violation of Galilean invariance which has to be reintroduced by symmetry restoring forces and which shows a better agreement with the data on scissor modes in nuclei. A renormalized quasi-particle RPA has been developed which cures spurious states and which has been successfully applied to describe low-lying multipole vibrations. The removal of spurious center-of-the-mass motions is one of the most studied consequences of broken symmetries in nuclear matter.

The breaking of Galilean invariance for electrons in a solid can be restored by the construction of quasiparticles completing the Bloch theorem. The expansion of the crystal Bloch Hamiltonian around the band extrema leads to an effective quasiparticle energy which contains besides the parabolic band also velocity-dependent terms leading to the entrainment effect, where the momentum of a condensate is a linear combination of its own current and those of the other condensates. The consequence is that the mass current does not agree with the mean momentum but two different masses appear. Therefore neutral excitations due to correlations can carry momentum but no current.

The Galilean invariance imposes severe restrictions on the theory and has been applied to plasmon frequency and Drude weight and in doped graphene where a strong renormalization effect has been reported. In the Landau Fermi liquid theory the demand on Galilean invariance leads to complicated restrictions.
on the energy functional, which has been rather seldom used explicitly, e.g. for transport phenomena in superconductivity. It has been reported that the effect of velocity dependence described in Skyrme forces and which agrees with the experimental values cannot be reproduced when the particle-hole interaction is restricted to its Landau form. Therefore here we will use a parameterization of the quasiparticle energy in terms of current and kinetic energy which completes the Galilean invariance and contains the momentum-dependent terms explicitly. There has been investigations of interacting Bose systems breaking the Galilean invariance due to the coupling with dispersion-less modes. However with an appropriate quasiparticle picture the Galilean invariance should be possible to restore.

All the above considerations require a density-dependent effective mass. Such position-dependent masses have gained a great attention in semiconductor literature. Its concept has been criticized on the basis of the Bargmann theorem that Newton relative principle requires the mass to be a constant and forbids a coherent superposition of states of different masses. Later it was refused by showing that this theorem does not apply to the band dependence of the effective mass. In fact it was shown rigorously that the instantaneous Galilean invariance is in agreement with the concept of position-dependent masses induced by the band structure or by boundary conditions on the wave function due to abrupt heterojunctions. This problem has lead to a deep foundation of quantum mechanics in terms of the Galilean group.

The connection between Schroedinger equation based on deformed canonical commutation relations, a curved space and a position-dependent effective mass has been shown in. The resulting non-commutativity of the mass with the momentum operator can be circumvented with the concept of non-additive spatial displacements in the Hilbert space. The actual form of the correct effective Hamiltonian is subject to severe boundary conditions of Galilean invariance, hermiticity and probabilistic wave function. Exactly solvable effective-mass Schroedinger equations have demonstrated the usefulness of the position-dependent mass concept. Even scattering of particles with position-dependent masses has been successfully described.

With respect to these effective density-dependent Hamiltonians it is desirable to have a theoretical treatment for the response function to an external scalar perturbation. This response function determines the two-particle correlation function as Fourier transform of the structure function and therefore any one- and two-particle observables including the optical response. It is therefore the preferred theoretical object to learn about the interacting system. The position-dependent mass and the density dependence will create complications compared to the normal many-body treatment. As we will see this can be treated but with more involved local currents and response function from which will be shown to complete even higher order-sum rules.

The major line of improvement beyond the simple random phase approximation (RPA) goes via the construction of local fields which describe the modification of the restoring force due to the correlation of particles. Such local fields screen the full effect of interaction at short distances. There exists a large literature to construct such local fields starting with the pioneering work of Hubbard. A deficiency of the simple local field factors showing negative pair correlation functions has been repaired by Singwi et. al using exchange-correlations which leads to a local field factor in terms of the structure function. Since the latter itself is expressed by the response function a selfconsistency loop is required. This approximation has been used and compared with molecular dynamical simulations and further improved invoking the third-order frequency sum rule by Pathak and Vashista. This describes the motion of particles inside the correlation hole. The quantum versions have been discussed and the difference between correlated and uncorrelated occupation numbers show up in the difference of the corresponding kinetic energies leading to further improvements which are expressed by the virial theorem in density derivatives of the pair correlation function. Density variations has been used as an alternative to construct expressions for the local fields. A numerical discussion of the Singwi, Tosi, Land and Sjölander local field corrections can be found for plasma systems in which shows appreciable deviations from the simple RPA results.

The third-order frequency sum rule plays an important rule in a variety of applications. It was used to locate the collective mode in small metal particles and to calculate the optical dipole response in metal clusters. Such conserving calculations have been performed for small metal clusters based on Bethe-Salpeter expansion schemes. It has been derived for electronic multilayers and was used for bilayer charged Bose liquids. The third-order frequency sum rule is especially important for low-dimensional layered structures like the two-layered electron gas.

The hydrodynamic limit of the dynamical structure factor has been computed in early times to access shear and bulk viscosity of ionized matter. Of special interest is also the compressibility sum rule. One can construct local fields directly from this sum rule. A bad surprise was the discovery that the compressibility and the third-order sum rule cannot be completed simultaneously by one static local field since it violates the theorem of Ferrell, \(d^2E_0/e^2 \leq 0 \). Therefore the focus was on the construction of dynamical local fields. Unfortunately even the dynamic quantum version of the Singwi-Tosi-Land-Sjölander local field cannot fulfill the compressibility sum rule. The reason is that a single degree of freedom like the selfenergy cannot provide this demand and in a former paper it was shown that one can fulfill both sum rules by introducing two degrees of freedom.
is impossible with static local field corrections60,79 the inclusion of the effective mass besides the selfenergy allows to adapt these two quantities to complete both sum rules. The prize to be paid is that the first-order frequency sum rule leads to the effective mass instead of the bare mass as the theory demands if one starts from a basic Hamiltonian. One can form such an effective quasiparticle picture by the knowledge of the structure factor at small distances from experiments or simulations52,54,85.

Different schemes can be used to obtain an effective Hamiltonian characterized by density-dependent mass, current and energy. As we will show in the appendix, the correct sum rules appear then with the effective quasiparticle mass. There are two boundaries we demand on the theory. First to complete the frequency as well as compressibility sum rules of the response function. Second to find the same current from kinetic equations and from the sum rule of the response function. That the latter demand turns out to be nontrivial is a fact mostly overlooked since one usually does not work in running frames. This reveals the underlying conflict between Galilei invariance and sum rules met by different approximations.

Various phenomenological schemes for parameterizing the response function to complete the sum rules exist in the literature56–88. This ranges from variational62, to approximative parameterizations of the kinetic equations85 up to recurrence relations89,91. Various requirements on the possible forms can be extracted from different limiting laws, for an overview see92.

The other line of improvements includes collisional correlations in the response93–97 mostly in relaxation time approximation and imposes conservation laws88,98–101. The extensions of this dielectric function first published by Mermin91 has been applied to stopping power problems102. The trick is to consider the relaxation not towards a global equilibrium but to a local equilibrium. The latter one is specified by the demand of conservation laws. We will show that in this way a universal response function appears which is independent of the local equilibrium. We restrict here to a one-component system though the generalization to multi-component systems is straightforward102,103 and considered in different approaches104–109 where some pitfalls have to be observed106.

Other improvements rely on numerical studies of Monte Carlo104,105,109,110, or molecular dynamical simulations52,89 or molecular dynamical simulations52,89. Solving the equation for the two-time Green function108 provides an alternative way to sum higher order correlations109. Here we use the method to linearize the kinetic equation which creates higher-order correlations in the response than used in the kinetic equation itself. Due to the variation of internal lines, already the linearization of the meanfield kinetic equation leads to RPA (GW) approximation. The Boltzmann equation due to the Born diagram leads to a linear response which includes high order vortex corrections fulfilling sum rules consistently111,112. The systematic perturbative expansion of correlation functions provides in principle the dynamical local fields111 which are of interest for the conductivity in the long wavelength limit81 and for the response in strongly disordered electron systems113. However the simultaneous fulfillment of frequency and compressibility sum rules remains a problem. Alternative approaches use specific techniques useful for specific lower-dimensional systems like the response in fraction-quantum-Hall systems114. Here we formulate all expressions in $D = 1, 2, 3$ dimensions such that any of the above mentioned systems in nuclear, solid state and plasma physics can be treated.

A. Overview about the paper

The paper consist of five parts where first the notion of density-dependent Hamiltonians is discussed which can be understood as created by Skyrme forces or as parameterization of meanfields. This is performed first in the quasi-classical picture in order to provide a feeling for the complexity of the demand of Galilean invariance. The density-dependent parameters like effective mass, current and selfenergy are inducing position-dependent currents. Therefore different frames are specified and discussed which serve as benchmarks for the further treatment. The general response later is formulated for any frame. The first chapter ends with the expected form of compressibility. In the second chapter the kinetic equation for meanfields with density-dependent effective Hamiltonians are discussed and the nontrivial transformations between position-dependent frames are presented. This allows to identify the corresponding nonlinear currents created by the position-dependent effective forces. This quasi-classical treatment is extended to a quantum kinetic treatment allowing the complete nonlocal structure of the kinetic terms. A special attention is paid to the backflows arising from the interaction of particles with the surrounding. In chapter IV the response function is derived as linearization of the appropriate kinetic equation around a local equilibrium. The actual form of the latter one turns out to be irrelevant for the response function since the conservation laws determine the form of response function. The explicit transformation rules for the response function to change the nonlinear frames are derived. In chapter 5 the analytical form of the response function is presented within the most convenient mixed frame. The local field corrections are a physical way to represent the extension of the response function from standard RPA expressions. The static and the large frequency expansion of the latter one provides the compressibility and frequency-weighted sum rules. With the help of the explicit commutator relations in appendix A it is shown that the response function derived here completes the compressibility and third-order frequency sum rule simultaneously. Explicit expansion formulas are provided in appendix B for one, two, and three dimensions. In chapter 6 a summary and outlook can be found.
II. QUASIPARTICLE PICTURE AND PARAMETERIZATION OF MEANFIELD

A. Building quantities and Galilean transformation

We want to construct a quasiparticle picture, i.e. a meanfield, which describes Galilean-invariant excitations and which leads to a consistent response function in the sense that the conservation laws are obeyed. We will consider a general form which one can derive from microscopic theories and will see that boundary conditions of mass current and Galilei invariance will restrict such forms considerably.

In general we have three building quantities, the density of particle, the momentum density or mass current and the kinetic energy density,

\[n(q,t) = \sum_p f(p,q,t) \]
\[J(q,t) = \sum_p pf(p,q,t) \]
\[E_K(q,t) = \sum_p \frac{p^2}{2m_0} f(p,q,t) \]

with the bare mass \(m_0 \) in terms of the Wigner function

\[f(p,q,t) = \langle p + \frac{1}{2}q | \hat{\rho} | p - \frac{1}{2}q \rangle. \]

(2)

For our purpose the difference between Wigner function and quasiparticle distribution does not play any role.\(^{15}\)

Since we will derive all formulas for one, two and three dimensional systems (D=1,2,3) we understand

\[\sum_p = \int \frac{d^Dp}{(2\pi\hbar)^D} \]

(3)

and in equilibrium the distribution \(f \) is the Fermi-or Bose function for Fermi-or Bose systems correspondingly.

Under Galilean-transform \(r' = r + vt \) with velocity \(v = u/m \) and \(p' = p + u \) these quantities should transform as

\[n' = n \]
\[J' = J + nu \]
\[E_K' = E + \frac{u^2}{2m_0} n + \frac{u \cdot J}{m_0} \]

(4)

such that the only two possible Galilean-invariant forms read

\[(p - \frac{J}{n})^2, \quad I_2 = 2m_0E_K - \frac{J^2}{n}. \]

(5)

Any expression has to be build up from these two ingredients.

We search now for the quasiparticle energy excitation in terms of the building quantities \(^{14}\)

\[\epsilon_p(J,E_K) = A(n)p^2 + B(n)\frac{p \cdot J(n)}{n} + C\frac{E_K(n)}{n} + \epsilon_0(n). \]

(6)

Since we consider later the linear response it is sufficient to have the linear terms where the density-dependent coefficients \(A, B, C \) have to be determined such that the Galilean transform \(^{4}\) is respected. Further demands will be the conservation laws and that the corresponding response function should obey sum rules. We want to see how much freedom remains for these general coefficients if conservation laws and sum rules and Galilean invariance is completed simultaneously. The density functional in the usual sense is represented by \(\epsilon_0[n] \).

B. Momentum versus mass current

The question is now how to construct a quasiparticle energy which is convenient enough to work out a consistent response function. In fact, the appropriate quasiparticle energy as argument of the distributions turns out to be nontrivial in equilibrium.

A simple guess \(f_p = f(\epsilon_p) \) that the local quasiparticle distribution is a function of the quasiparticle energy \(^{6}\) leads immediately to a contradiction. In fact, the mean momentum from \(^{6}\) would read

\[J = \sum_p pf(\epsilon_p) = -J \frac{B}{2A} \]

(7)

which would result into \(B = -2A \). This is in contradiction to the far reaching demand that the momentum density should be equal to the current multiplied with the flux mass \(m(n) \)

\[J = m \sum_p \partial \epsilon_p \frac{f(\epsilon_p)}{\epsilon_p} = m(2A + B)J \]

(8)

which would result into

\[A = \frac{1}{2m^*} = \frac{1}{2} \left(\frac{1}{m} - B \right). \]

(9)

The only way out of this dilemma between \(^{6}\) and \(^{8}\) is to modify the actual quasiparticle energy \(^{9}\) needed in defining the local equilibrium towards the local-frame quasiparticle energy

\[\tilde{\epsilon}_p = \epsilon_p - \frac{m^*}{m}J^2 = -\frac{(p - \frac{J}{n})^2}{2m^*} - \frac{J^2B^2m^*}{2n^2} + C\frac{E_K}{n} + \epsilon_0 \]

(10)

and to chose

\[f_p = f(\tilde{\epsilon}_p). \]

(11)

Then we have the desired agreement

\[J = \sum_p pf_p = m \sum_p \partial \tilde{\epsilon}_p f_p \]

(12)
and further \(\sum p F_p = 0 \). In this way the position-dependent coefficient \(A = 1/2m^* \) of the quadratic momentum term is the effective mass. The coefficient \(B \) of the linear momentum term turns out to be the difference of the inverse effective and flux masses.

It is remarkable that the quasiparticle energy in the lab frame (10) cannot be the argument of the equilibrium distribution function. Instead we have to have as argument the quasiparticle energy in the rest frame (10).

C. Galilean invariance

The foregoing consideration is equivalent to the correct Galilean transformation provided we determine the coefficient \(C \) suitably. In order to complete the Galilean invariance (11) we have to have for the transformed distribution function \(f_p' = f_{p-u} \) since no other possibility completes all three transformations (4) simultaneously. This translates with (11) into the demand

\[
\tilde{\epsilon}_p(J', E') = \epsilon_{p-u}(J, E).
\]

With (10) and (5) one derives from (13) now

\[
C \equiv m^*B^2 = B \left(\frac{m^*}{m} - 1 \right) = \left(\frac{1}{m} - \frac{1}{m^*} \right)^2 m^* \tag{14}
\]

and the quasiparticle energy (5) becomes

\[
\epsilon_p = \frac{p^2}{2m} - B \left(\frac{p - \frac{J}{n}}{n} \right)^2 + \frac{m_0B^2}{n} \frac{E_K}{n} + B \frac{J^2}{n} + \epsilon_0
\]

\[
= \frac{1}{2m^*} \left(p + m^* \frac{B}{n} \right)^2 + \Sigma(n) \tag{15}
\]

with

\[
\Sigma = \frac{m^*B^2}{2n} \left(2m_0E_K - \frac{J^2}{n} \right) + \epsilon_0. \tag{16}
\]

The local-frame quasiparticle energy (10) reads therefore

\[
\tilde{\epsilon}_p = \frac{1}{2m^*} \left(p - \frac{J}{n} \right)^2 + \Sigma. \tag{17}
\]

We can obtain different frames from the local frame by a suitable momentum shift

\[
\mathcal{E} = \tilde{\epsilon}_{p-u}. \tag{18}
\]

Let us summarize that with two yet undetermined density-dependent constants, the flux mass \(m \) and \(B \), or alternatively \(m \) and \(m^* \), or \(m^* \) and \(\Sigma \), we can find a local quasiparticle distribution (11) such that the Galilei transformation (4) is completed and the mean momentum equals the mass current (12). One notes that the free mass \(m_0 \) does not appear anymore in the momentum-dependent terms. This is the reason why in the sum rules the effective mass appears and not the bare mass of the basic Hamiltonian as shown in appendix A.

D. Local versus lab frame

The notion of local-frame quasiparticle energy becomes justified if we calculate the mean energies. The mean local-frame quasiparticle reads

\[
\bar{E}_{qp} = \sum_p \tilde{\epsilon}_p f(\tilde{\epsilon}_p)
\]

\[
= \frac{m_0}{m} \left(\frac{m^*}{m} + 2 \frac{m}{m^*} - 2 \right) \left(E_K - \frac{J^2}{2nm_0} \right) + n\epsilon_0 \tag{19}
\]

and is Galilean invariant \(\bar{E}'_{qp} = \bar{E}_{qp} \) which shows that we are in the frame of moving quasiparticle. The mean lab-frame quasiparticle energy otherwise reads

\[
\bar{E}_{qp} = \sum_p \epsilon_p f(\epsilon_p)
\]

\[
= \frac{m_0}{m} \left(\frac{m^*}{m} + 2 \frac{m}{m^*} - 2 \right) E_K + B \frac{J^2}{n} + n\epsilon_0 \tag{20}
\]

which Galilei-transform as

\[
\bar{E}_{qp}' - \bar{E}_{qp} = \frac{m_0m^*}{m^2} \left(\frac{u^2}{2m_0} + \frac{u \cdot J}{m_0} \right). \tag{21}
\]

We could reach that this mean quasiparticle energy Galilei-transforms as the kinetic energy (4) by fixing \(m^*m_0 = m^2 \) but is not used here in this paper.

The local quasiparticle energies in different frames Galilei-transform itself as

\[
\epsilon'_p = \epsilon + Bu \cdot p + B^2m^* \left(\frac{u^2}{2n} + \frac{J \cdot u}{n} \right)
\]

\[
\tilde{\epsilon}'_p = \tilde{\epsilon}_{p-u} = \tilde{\epsilon}_p - \frac{u \cdot p}{m^*} + \frac{1}{m^*} \left(\frac{u^2}{2} + \frac{J \cdot u}{n} \right) \tag{22}
\]

which shows that the local excitations cannot be Galilei-invariant due to the position-dependent effective mass.

The difference between the two local quasiparticle energies in the lab and local frame read

\[
\epsilon_p - \tilde{\epsilon}_p = \frac{p \cdot J}{nm} + \frac{J^2}{2n^2m} \left(m^* - 2 \right). \tag{23}
\]
The mean momentum and kinetic energy in the lab-frame picture become

\[\sum_p p f(e_p) = \left(1 - \frac{m^*}{m}\right) J \]

\[\sum_p \frac{p^2}{2m_0} f(e_p) = E_K - \frac{m^*}{m} \left(2 - \frac{m^*}{m}\right) \frac{J^2}{2nm_0} \quad (24) \]

and one sees the difference to the expressions in the local frame \(\Pi \).

E. Mixed frame with quadratic dispersion

Both the local and lab frame quasiparticle energies can be written into a quadratic dispersion by different momentums shifts

\[e_p = \epsilon_{p-m^*} + \frac{p^2}{2m^*} + \Sigma \]

with the selfenergy \(\Pi \). It is most convenient to work in this mixed frame when it comes to linear response. Therefore we will try to formulate the kinetic equation next in this mixed frame and will provide transformation rules for the response function to reach other frames.

Redefining the nonequilibrium distribution function

\[f_p(r, t) = f_p + \frac{J}{\Sigma}(r, t) \]

we can express the observables \(\Pi \) by

\[n(r, t) = \sum_p f_p \]

\[J(r, t) = \sum_p p f_p = \sum_p \left(p + \frac{J}{\Sigma} \right) f_p \]

\[E_K(r, t) = \sum_p \frac{p^2}{2m_0} f_p + \frac{J^2}{2nm_0} \]

which means

\[\sum_p p f_p = 0 \]

\[\sum_p \frac{p^2}{2m_0} f_p = E_K - \frac{J^2}{2nm_0} = \frac{I_2}{2m_0} \quad (28) \]

in difference to \(24 \) and \(\Pi \).

F. Compressibility in equilibrium

From the explicit expression for the density \(27 \) we can see directly how the compressibility of the system should look like. The compressibility for noninteracting systems reads

\[n^2 K_0 = - \sum_p \partial_{\epsilon_p} \sum_p f_p(1 \mp f_p) \]

with the inverse temperature \(\beta = 1/k_B T \) and the upper sign for Fermions and lower sign for Bosons. The compressibility for the interacting system we can calculate directly

\[n^2 K = \partial_{\mu} n = \beta \sum_p f_p(1 \mp f_p) \left[1 - \partial_n \left(\frac{p^2}{2m^*} + \Sigma \right) \partial_{\mu} n \right] \]

\[= \frac{K_0}{1 - \frac{\beta}{2} \frac{\partial \ln m^*}{\partial \ln n} + n^2 \partial_n \Sigma K_0} \quad (30) \]

Here we have used a partial integration

\[- \beta \sum_p p^2 f_p(1 \mp f_p) = m^* \sum_p \partial_p f_p = -nDm^* \quad (31) \]

valid for any dimension \(D = 1, 2, 3 \).

The form of compressibility \(30 \) should also be the result of the compressibility sum rule for the density response function \(\kappa_n \) which describes the induced density change due to an external potential

\[\delta n = \kappa_n \delta V^{\text{ext}} = \kappa_n V_\omega \delta n^{\text{ext}}. \]

(32)

The polarization in turn describes the induced density variation in terms of the induced potential

\[\delta n = \Pi \delta V^{\text{ind}} \] (33)

which itself is the sum of the external potential and the effective interaction potential \((V_\omega + \xi_0) \delta n \) such that one gets

\[\delta n = \Pi[(V_\omega + \xi_0) \delta n + V_\omega \delta n^{\text{ext}}] \]

\[= \frac{\Pi}{1 - (V_\omega + \xi_0(\omega) \Pi) V_\omega \delta n^{\text{ext}}} = \kappa_n V_\omega \delta n^{\text{ext}} \] (34)

which provides the relation between the response and the polarization function. The local field \(\xi_0(\omega) \) describes the shielding of the interaction at short distances by particle correlations.

Denoting the total local density by \(\delta^{\text{loc}} = \delta n + \delta n^{\text{ext}} \) we can write alternatively

\[\delta n = \Pi(V_\omega \delta n^{\text{loc}} + \xi_0(\omega) \delta n) \]

\[= \frac{\Pi}{1 - \xi_0(\omega) \Pi} V_\omega \delta n^{\text{loc}} = \kappa_n V_\omega \delta n^{\text{loc}} \] (35)

which defines the screened response function \(\kappa_n^s \).

The dielectric function \(\varepsilon \) relates the local densities to the external ones \(\delta n^{\text{ext}} = \varepsilon \delta n^{\text{loc}} \) as it is customary in electrodynamics relating the displacement field to the electric field. Therefore we can write the induced density change in terms of the external one as

\[\frac{\delta n}{\delta n^{\text{ext}}} = \kappa_n V_\omega = \frac{1}{\varepsilon} - 1 \] (36)

from which one has \(\varepsilon = 1 - V_\omega \kappa_n^s \). The ratio of the induced density change to the local density change reads

\[\frac{\delta n}{\delta n^{\text{loc}}} = \kappa_n^s V_\omega = 1 - \varepsilon. \] (37)
The compressibility sum rule states now that
\[n^2 K = \lim_{q \to 0} \frac{1}{V_q} \text{Re} \left[\epsilon(q, 0) - 1 \right] = -\lim_{q \to 0} \frac{\Pi(q, 0)}{1 + n^2 \xi_0 \lim_{q \to 0} \xi_q(0)} \]
\[= -\frac{K_0}{1 + n^2 K_0 \lim_{q \to 0} \xi_q(0)} \]
(38)

where (29) has been used. Comparing with (30) the static local field should obey
\[\lim_{q \to 0} \xi_q(0) = \partial_n \Sigma - \frac{D}{2n^2 K_0} \frac{\partial \ln m^*}{\partial \ln n}. \]
(39)

This has to be fulfilled by the response function if the compressibility sum rule is obeyed.

Using the Kramers-Kronig relation we can write for (38) alternatively
\[n^2 K = \lim_{q \to 0} \frac{1}{V_q} \text{Re} \left[\epsilon(q, 0) - 1 \right] = -\lim_{q \to 0} \frac{2}{\pi V_q} \int_0^\infty \frac{d\omega}{\omega} \text{Im} \epsilon(q, \omega) \]
\[= \lim_{q \to 0} \frac{2}{\pi} \int_0^\infty \frac{d\omega}{\omega} \frac{\Pi(q, \omega)}{1 - \xi_q(0) \Pi(q, \omega)} \]
(40)

which illustrate the notion sum rule. We will prove that this sum rule is obeyed by the response function in chapter [35].

III. KINETIC THEORY

A. Quasi-classical kinetic equation

1. Local-frame kinetic equation

The excitation of the system is described by the effective quasiparticle energy \(\tilde{\epsilon}(p, q, t) \) in the local frame [10]. The idea is that the deviation of the distribution function from the global equilibrium one \(f_0(\tilde{\epsilon}) \) is realized by a local equilibrium one \(f^{l.e.}(\tilde{\epsilon}) \) such that we have
\[\delta f = f - f_0 = f - f^{l.e.} + f^{l.e.} - f_0 = \delta f^{l.e.} + \frac{\partial f}{\partial \tilde{\epsilon}} \delta \tilde{\epsilon} \]
(41)

where for \(f_0 \) and \(f^{l.e.} \) the Fermi/Bose distribution serves as the equilibrium distribution.

Now we are going to construct the appropriate kinetic equation. From the foregoing consideration we have to obtain \(f^{l.e.}(\tilde{\epsilon}) \) as the local equilibrium solution of the kinetic equation which means
\[\partial_p \tilde{\epsilon} \partial_t f^{l.e.} - \partial_\tilde{\epsilon} \partial_t f^{l.e.} = 0. \]
(42)

Therefore we can write a general local-frame linearized kinetic equation as
\[\frac{d}{dt} \delta f + \partial_p \tilde{\epsilon} \partial_t \delta f - \partial_\tilde{\epsilon} \delta \tilde{\epsilon} \partial_p f_0 = \delta \Phi^{\text{Gal}} \partial_p f_0 \]
(43)

with a possible time-dependent backflow force \(\Phi^{\text{Gal}} \) from which we know at the moment only that it vanishes in equilibrium. It will be specified later. The reason for this force is the position-dependent mass and current which induce a backflow force and an entrainment which we name together Galilean force.

The deviation of the quasiparticle energy from the equilibrium value should be understood as deviation of the local equilibrium one in the sense that it can be expressed in terms of the energy functional of the Landau theory \(\delta \tilde{\epsilon} = \sum_{p'} f_{p'} \delta f_{p'} \). From now on we will understand all observables \(\phi = n, c, J, E, ... \) as local equilibrium ones and the deviation from it denoted as \(\delta \phi \).

Observing that \(\partial_p \tilde{\epsilon} = (\mathbf{p} - \frac{\mathbf{p}^2}{2m})/m^* \) it is not difficult to see that from (43) follows
\[\frac{d}{dt} \delta n = -\sum_p \partial_p \delta \Phi^{\text{Gal}} f_0. \]
(44)

Assuming \(\Phi^{\text{Gal}} \) momentum-independent we see that the density excitation is a constant in time which is in agreement with the above notion of local-frame. In the local frame \(\tilde{\epsilon} \) we are local to the excitation and do not see a current.

The customary density balance reads
\[\delta n + \partial_t \delta J^n = 0 \]
(45)

where the particle current \(J^n \) should have an appropriate relation to the mass current \(J = \sum_i J_i \). In order to obtain this balance we have to go to an appropriate frame such that the corresponding distribution function and quasiparticle energies are changed according to
\[f_p(r, t) = F_p(R, t) \]
\[\tilde{\epsilon}_p(r, t) = \tilde{\epsilon}_p(R, t) \]
(46)

with the new coordinates \(R = r + \int_0^t v_i dt \) and \(P = p + Q \). The relocation of the center-of-mass coordinate is given by the velocity \(v_i \). The accompanying momentum shift \(Q \) has to be chosen adequately since it describes the local excitation and formally the Fourier transformation of the difference coordinates.

There is an important difference whether we first transform and linearize then or the other way around. The difference is obviously a term \(\sim \delta Q \). Transforming first and then linearizing, the current balance reads
\[\sum_p p \delta F_p = \sum_p p \delta f_{p-Q} \]
\[= \sum_p \left[(\delta f)_{p-Q} \right] - \partial_p f_{p-Q} \delta Q_p \]
\[= \sum_p (p + Q) \delta f_p + \sum_p f_p \delta Q = \delta J + Q \delta n + n \delta Q \]
(47)

which agrees with
\[\sum_p p \delta F_p = \delta \sum_p F_p = \delta (J + nQ) = \delta J + Q \delta n + n \delta Q. \]
(48)
Otherwise, if one first linearizes and then transforms, one obtains
\[\sum_p p \delta F_p = \sum_p (p \delta f)_{p-Q} = \sum_p (p + Q) \delta f_p = \delta J + Q \delta n \]
(49)
and we see that \(\delta Q \) is absent compared to (47). This term describes just the induced backflow force when transformed to another frame.

In the following we will choose the procedure as first to linearize and then transform. This has the advantage that all transformation obey a group property which can be handled conveniently. With transforming (10) after linearization, the observables (11) calculated with \(\delta F_p = (\delta f)_{p-Q} \) are denoted with a tilde and we have \((J_q = q \cdot J, Q = qQ) \)
\[
\begin{pmatrix}
\delta \tilde{n} \\
\delta \tilde{J}_q \\
\delta \tilde{E}_K
\end{pmatrix} = \mathcal{D}_Q
\begin{pmatrix}
\delta n \\
\delta J_q \\
\delta E_K
\end{pmatrix}
\]
(50)
with the matrix
\[
\mathcal{D}_Q = \begin{pmatrix}
1 & 0 & 0 \\
\frac{q^2 Q}{2m} & 1 & 0 \\
\frac{q^2 Q}{2m} & \frac{Q}{m} & 1
\end{pmatrix}
\]
(51)
obeying the group properties \(\mathcal{D}_a \mathcal{D}_b = \mathcal{D}_{a+b} \) and \(\mathcal{D}_Q^{-1} = \mathcal{D}_{-Q} \). The other way to first transform and then linearize would destroy these convenient properties.

In fact in the kinetic equation the difference in these two procedures vanishes as one can see by inspecting different choices from the kinetic equation (45). If we first transform and then linearize we get
\[
\partial_t \delta F + (\partial_p E + \mathbf{v}) \cdot \partial_\mathbf{R} \delta F - \partial_\mathbf{R} \delta \mathbf{E} \cdot \partial_\mathbf{P} F_0 \\
= (\delta \Phi_l - \delta Q_l + \partial_p E (\partial_\mathbf{R} \delta Q_l - \partial_\mathbf{R} \delta Q_l)) \cdot \partial_\mathbf{P} F_0.
\]
(52)
One sees that besides the drift term modified by the velocity \(\mathbf{v} \), the momentum shift results into extra forces written on the right hand side. The latter ones can be simplified observing that
\[
\partial_p E (\partial_\mathbf{R} \delta Q_l - \partial_\mathbf{R} \delta Q_l) \cdot \partial_\mathbf{P} F_0 \\
= -\partial_p E \left[(\partial_\mathbf{P} F_0 \times (\nabla \times \delta \mathbf{Q})) \right] \\
= -(\partial_p E \times \partial_\mathbf{P} F_0) (\nabla \times \delta \mathbf{Q}) = 0
\]
(53)
where we use the fact that the equilibrium distribution is \(F_0 = F(\mathbf{E}) \). One sees that the extra terms arising if we first transform and then linearize cancel out except the \(\delta \mathbf{Q} \) term which we will absorb in the backflow force since it is obviously a force established by the time dependence of the shift current \(\delta \mathbf{Q} \).

In the following we consider every time the procedure to first linearize and then transform and the final kinetic equation (52) reads
\[
\partial_t \delta F + (\partial_p E + \mathbf{v}) \cdot \partial_\mathbf{R} \delta F - \partial_\mathbf{R} \delta \mathbf{E} \cdot \partial_\mathbf{P} F_0 \\
= \left(\delta \Phi^{\text{Gal}} - \delta Q \right) \cdot \partial_\mathbf{P} F_0
\]
(54)
where we understand \(\partial_\mathbf{R} \delta F = (\partial_\mathbf{R} \delta f)_{p-Q} \) and similar for \(\mathbf{E} \). It should be noted that the difference between these two pictures cancel out in the kinetic equation (55) as we have seen in (53).

So far we have transformed the kinetic equation in an equivalent manner. This means we are still in the local frame as (43). We can change the frame by taking into account the appropriate force on the quasiparticles. This is achieved by the transformation
\[
\partial_\mathbf{R} \delta \mathbf{E} = (\partial_\mathbf{R} \delta \mathbf{e})_{p-Q} \rightarrow \partial_\mathbf{R} \delta (\mathbf{e}_{p-Q}).
\]
(55)
The first equality expresses what we understood by the transformation so far. With the second replacement we change actually the picture to the corresponding frame.

In general frame the density balance from (54) with (55) takes the form
\[
\delta \dot{n} + \mathbf{v} \cdot \partial_\mathbf{R} \delta n - \left(\frac{n}{m^*} \partial_\mathbf{R} \delta Q \right) = -\sum_p \partial_p \delta \Phi^{\text{Gal}} F_0
\]
(56)
since \(\delta \mathbf{Q} \) is independent of \(p \). The term in the bracket on the left side appears only since we linearize first and transform then as outlined above.

In order to obtain the customary density balance (45) we choose
\[
\mathbf{v} = -Q \partial_\mathbf{E} \left(\frac{n}{m^*} \right)
\]
(57)
and obtain from (56) exactly the density balance (45) with the particle current
\[
\mathbf{J} = -\frac{n}{m^*} \mathbf{Q}.
\]
(58)

The backflow force on the right side of (56) will lead to a contribution if it is dependent on the momentum. We assume that the appropriate frame is the one where the time dependence of the momentum shift cancels this backflow force on the right side of (57). Otherwise we will get an additional frequency dependence and a renormalization of the current response. This possibility we investigate later in a separate chapter as unbalanced backflow.

It is instructive to rewrite (52) explicitly as
\[
\partial_t \delta F + \partial_p E \cdot \partial_\mathbf{R} \delta F - \partial_\mathbf{R} \delta \mathbf{E} \cdot \partial_\mathbf{P} F_0 \\
= \left\{ \partial_t \delta (\Phi^{\text{Gal}} - m^* \mathbf{v} - \mathbf{Q}) \right\} \cdot \partial_\mathbf{P} F_0
\]
(59)
The right hand side is zero if the backflow force compensates the terms which is customary in standard derivations of kinetic equations. Let us discuss the different frames now.
2. Standard quasiparticle equation

First we choose
\[Q = -\frac{m^*}{m} \frac{J}{n} \]
(60)
such that the standard quasiparticle kinetic equation appears with the quasiparticle energy \(\tilde{\epsilon} = \epsilon_{p+m^*} - \frac{1}{2} \frac{q^2}{\epsilon} \) and the velocity of quasiparticles become according to \(\frac{58}{57} \) and \(\frac{57}{58} \)
\[v_{\text{lab}} = \partial_n \ln \left(\frac{n}{m^*} \right) \frac{J}{m^*}, \quad \frac{J^n}{m^*} = \frac{J}{m}. \]
(61)

Let us remark that \(\frac{60}{61} \) is only one of many possible choices to obey the necessary kinetic equation \(\frac{62}{63} \). The only additional boundary is that the balance \(\frac{63}{64} \) is resulting which translates into these compensation. Among these choices there is also a possible frame where the Galilean forces on the right side of \(\frac{65}{66} \) show a form of Bernoulli potential which is appropriate when one considers superfluidity.

3. Quasiparticle equation in mixed frame with quadratic dispersion

Most conveniently we will work in a picture where the quasiparticle energy reads \(\tilde{\epsilon}_p = \epsilon_p = p^2/2m^* + \Sigma \) and shows a quadratic dispersion \(\frac{25}{25} \). One sees from \(\frac{46}{47} \) that this is possible if we choose
\[\frac{Q}{Q} = \frac{J}{n}. \]
(62)
The corresponding particle current \(\frac{15}{16} \) and the velocity of quasiparticles become according to \(\frac{58}{57} \) and \(\frac{57}{58} \)
\[v_{\text{mix}} = \partial_n \ln \left(\frac{n}{m^*} \right) \frac{J}{m^*}, \quad \frac{J^n}{m^*} = \frac{J}{m}. \]
(63)
This form of mean current for a position dependent mass will also be proven from the sum rules by quantum commutators in appendix \(\frac{A32}{A32} \).

The kinetic equation reads with \(\delta \epsilon_p = \delta \epsilon_{p+m^*} = \delta \epsilon_{p+m^*} \) and \(F = f \)
\[\partial_t \delta f + \left(v + \frac{P}{m^*} \right) \partial_R \delta f - \partial_R \delta f \partial_R f_0 = \left(\delta \frac{\Phi_{\text{Gal}}}{n} - \delta Q \right) \partial_P f_0. \]
(64)
The right hand side vanishes if we chose again balanced backflows \(\delta \Phi_{\text{Gal}} = \delta Q \).

Please note that in the lab frame the flux mass \(m \) connects obviously the mass current with the particle current \(\frac{61}{62} \). In the mixed frame it is the quasiparticle mass \(m^* \) which connects both currents \(\frac{63}{64} \). Consequently these masses will determine the corresponding first order frequency sum rule as it is shown in appendix \(\frac{A4}{A4} \)

B. Nonlocal and quantum calculation

Now we extend the calculation towards the inhomogeneous case such that the \(q \)-dependence has to be taken into account. We combine it with the quantum calculation since in this way the inhomogeneous and quantum response is described with the same formalism.

We start from the kinetic equation for the one-particle density operator in the quasiparticle picture
\[\dot{\hat{F}} + i [\hat{\tilde{\epsilon}} + \hat{V}_\text{ext}, \hat{F}] = \hat{I} \]
(65)
where \(\epsilon = (p + \frac{1}{2} q [p - \frac{1}{2} q]) \) is the quantum expectation value of \(\frac{17}{17} \) and the collision side \(\hat{I} \) vanishes when integrated over the three moments of \(1 \). The external potential \(V_\text{ext} \) creates a perturbation and excitation which we will calculate later.

The quasiparticle energy operator or meanfield can be represented in general as a Skyrme type of potential
\[\tilde{\epsilon} = -\nabla \hat{A}_x \nabla - \frac{1}{2t} (\hat{B}_{\frac{x}{p}} \cdot \nabla + \nabla \cdot \hat{B}_{\frac{x}{p}}) + \tilde{A}^2 p^2 + C \frac{E_K}{n} + \epsilon_0(n_q) \]
(66)
in analogy to the quasi-classical limit \(\frac{69}{69} \). We have
\[\tilde{\epsilon} = (p + \frac{1}{2} q [p - \frac{1}{2} q]) = p^2 (\tilde{A}_q + \tilde{A}_q) - p \cdot (\tilde{B}_q + q \tilde{A}_q) + C \frac{E_K}{n} + \epsilon_0(n_q) \]
\[= p^2 \tilde{A}_q + \tilde{B}_q \cdot p + C \frac{E_K}{n} + \epsilon_0(n_q). \]
(67)
Here a simple renaming of \(q \)-dependent constants is used such that the same form as in the homogeneous case \(\frac{9}{9} \) appears. The difference is now that all constants are \(q \)-dependent which leads to convolutions
\[J(q, \omega) = n_q \tilde{Q}_q = \sum_k n_q \tilde{Q}_{q-k} \]
(68)
as Fourier transform of the spatial and time-dependent values
\[J(R, t) = n(R, t) \tilde{Q}(R, t). \]
(69)
The quasiparticle energy and the effective mass are understood as spatial-dependent quantities due to the density dependence in the sense
\[m^*(R) = \sum_q e^{iq \cdot R} m^*(n_q). \]
(70)
The same arguments concerning the Galilean invariance as in the quasi-classical limit, eq. \(\frac{9}{9} \) and \(\frac{15}{15} \), apply now resulting into
\[A_q = \frac{1}{2m^*} \left| \frac{1}{q} \right; \quad B_q = \frac{1}{m} - \frac{1}{m^*}. \]
(71)
and analogously for the local-frame quasiparticle energy $\tilde{\epsilon}$ of (10). The balance equation for the density follows directly from the trace of (63) as

$$
\dot{n}_q = i \sum_{pq} \left((p + \frac{\tilde{q}}{2}) \epsilon q - \frac{\tilde{q}}{2} - (p + q + \frac{\tilde{q}}{2}) \epsilon p - \frac{\tilde{q}}{2} \right) F(p, q).
$$

(72)

The part $\tilde{\epsilon}$ of the Hamiltonian (A13) which contributes to the commutator

$$
\langle p_1 | p A p + \frac{1}{2} (p B + B p) | p_2 \rangle = p_1 p_2 A p_{1-p_2} + \frac{p_1 + p_2}{2} B p_{1-p_2}
$$

(73)

is responsible for the density balance

$$
\dot{n}_q = i \left(2 \epsilon A_q + B_q \right) \epsilon n = 0
$$

(74)

with $p = (p_1 + p_2)/2$ and $q = p_2 - p_1$.

Dependent on the choice of frames, see (10) or (25), one obtains remembering $A = 1/2m^*$ the balance

local – frame, $\delta \tilde{\epsilon}_p$, $B_q = -2 A_q * J_q / n$;

$$
\dot{n}_q = 0
$$

lab – frame, $\delta \epsilon_p$, $B_q = J_q / n \star \left(\frac{1}{m_q} - \frac{1}{m_q^*} \right)$;

$$
\dot{n}_q + i q \left(J_q \star \frac{1}{m_q^*} \right) = 0
$$

mixed – frame, $\delta \epsilon_p = \delta \epsilon_{p+J/n} = \delta \epsilon_{p-m*Bj/n}$, $B_q = 0$:

$$
\dot{n}_q + i q \left(J_q \star \frac{1}{m_q^*} \right) = 0
$$

(75)

in agreement with the quasi-classical ones. Again we note that different masses connect the mass current with the particle current in different frames.

C. Quasiparticle excitation

Now we consider the excitation due to the external perturbation V^{ext} and linearize the quasiparticle energy according to

$$
\mathcal{E} = \mathcal{E}_0 \delta q + \delta \mathcal{E}
$$

(76)

with the equilibrium part corresponding to the chosen frame (10), (24) or (25) and the general excitation

$$
\delta \mathcal{E} = \left(V_0 + V_2 \frac{p^2}{m_0} + V_3 p \cdot J + V_5 E_K + V_6 J^2 \right) \delta n
$$

$$
+ V_1 p \cdot J + V_2 \delta E_K + V_7 J \cdot \delta J.
$$

(77)

Some parameters are the same for all frames

$$
V_0 = \frac{d\mathcal{E}_0}{dn}; V_2 = C = \frac{m_0 m^*}{n} \left(\frac{1}{m} - \frac{1}{m^*} \right)^2; V_3 = \frac{dV_1}{dn}
$$

$$
V_4 = m_0 \frac{d}{dn} \frac{1}{m^*}; V_5 = \frac{dV_2}{dn}; V_6 = \frac{dV_7}{2dn}
$$

(78)

and two are frame-specific

local, $\delta \mathcal{E} = \delta \tilde{\epsilon}_p$, $Q = 0$:

$$
V_1 = - \frac{1}{n m^*}; V_7 = \frac{1}{n m^2} - \frac{V_2}{nm_0}
$$

lab, $\delta \mathcal{E} = \delta \epsilon_p$, $Q = - \frac{n}{nm}$:

$$
V_1 = \frac{1}{nm} - \frac{1}{nm^*}; V_7 = 0
$$

mixed, $\delta \mathcal{E} = \delta \epsilon_p = \delta \epsilon_{p+J/n} = \delta \epsilon_{p-m*Bj/n}$, $Q = - \frac{J}{n}$:

$$
V_1 = 0; V_7 = - \frac{V_2}{nm_0}.
$$

(79)

Now we check under which restrictions the excitation itself is Galilean invariant $\delta \epsilon = \delta \epsilon'$.

Straightforward calculation of (77) with the help of (4) shows that

$$
\delta \epsilon' - \delta \epsilon = \left[a^2 \left(\frac{V_4}{m_0^2} + nV_4 + \frac{V_5}{2m_0} \cdot 2n \right) \right] \delta n
$$

$$
+ p \cdot u \left(V_1 + \frac{V_4}{m_0} + nV_3 \right) + u \cdot J \left(V_3 + \frac{V_5}{m_0} + 2nV_6 + V_7 \right) \delta n
$$

$$
+ \left(V_1 + \frac{V_2}{m_0} + nV_7 \right) u \cdot \delta J
$$

(80)

and with (78)

$$
\delta \epsilon' - \delta \epsilon = \delta \left(\frac{1}{2} a^2 (d_2 + nd_1) + p \cdot ud_2 + u \cdot Jd_1 \right)
$$

(81)

with the values of $d_1 = V_4 + \frac{V_5}{m_0} + nV_7$ and $d_2 = nV_1 + \frac{1}{m^*}$ given in table I. We see that only in the local frame the excitation is Galilean invariant. In the mixed or lab frame we could have Galilean-invariance of the excitations if the masses nm^* and m would be density-independent, i.e. position-independent. Therefore the density-dependent mass destroys the Galilean-invariance of excitations though the mean observables remain of course Galilean invariant as we have discussed in chapter II.

We can express the necessary shift (78) and frame velocity (77) for the corresponding frames in order to obtain the balance (75) also in terms of the parameter (78). Observing that

$$
\partial_p \delta \mathcal{E} = \left(\frac{p}{m_0} V_4 + JV_3 \right) \delta n + V_1 \delta J
$$

(82)

Frame	d_1	d_2	$d_2 + nd_1$
local	0	0	0
lab	m^*/m^2	$1/m^*$	m^*/nm^2
mixed	0	0	1/m*

TABLE I: The parameter for the Galilean-invariance breaking terms of the quasiparticle excitations in different frames.
we can repeat the integration of \(\text{54} \) to obtain the balance \(\text{55} \) but now obtaining

\[
\mathbf{J}^n = -\frac{n}{m^*} \mathbf{Q} = \left(\frac{1}{m^*} + nV_1 \right) \mathbf{J}
\]

\[
v = \partial_n \ln \left(\frac{n}{m^*} \right) \mathbf{J}^n. \tag{83}
\]

We see that \(V_1 \) determines the actual choice of the frames.

D. Backflows

The reason for the different occurring Galilei forces on the right side of \(\text{54} \) or specifically \(\text{59} \) or \(\text{64} \) and their compensations are the backflow. This backflow can be understood as dragged particles by a moving quasiparticle \(\text{16} \) which means that it will be frame-dependent. If one adds a quasiparticle to the system in general frame it carries a group velocity \(\partial_p \mathcal{E} = v_p \). The total particle current we had from \(\text{54} \)

\[
\delta \mathbf{J}^n = \sum_p \partial_p \mathcal{E} \delta F + \sum_p \partial_p \delta \mathcal{E} F_p + v \delta n = \delta \mathbf{J}_{QP} + \delta \mathbf{J}_c^p + \delta \mathbf{J}_c^v. \tag{84}
\]

The last term describes the dragging of particles due to the frame velocity \(v \) and reads explicitly \(\text{53} \)

\[
\delta J^v = J^v \delta \ln \left(\frac{n}{m^*} \right). \tag{85}
\]

The first two terms in \(\text{84} \) represent just the deviation from local equilibrium since we can write

\[
\delta \mathbf{J}_{QP} + \delta \mathbf{J}_c^p = \sum_p \partial_p \mathcal{E} \delta F - \sum_p \delta \mathcal{E} \partial_p F
\]

\[
= \sum_p v_p \delta F - \sum_p v^c \delta F
\]

\[
= \sum_p \partial_p \mathcal{E} \left(\delta F - \partial_E F \delta \mathcal{E} \right) = \sum_p \partial_p \mathcal{E} \delta F^{1.e.}. \tag{86}
\]

where the drag velocity \(v^c \) is given as in the Fermi-liquid theory with \(\delta \mathcal{E} = \sum_{p'} f_{pp'} \delta F_{p'} \) such that

\[
\sum_p \delta \mathcal{E} \partial_p F = \sum_p \partial_p \mathcal{E} \partial_E F \delta \mathcal{E} = \sum_{pp'} f_{pp'} \partial_p \mathcal{E} \partial_E F_p \delta F_{p'}
\]

\[
= \sum_{p'} \delta F_{p'} \sum_{pp'} f_{pp'} \partial_E \mathcal{E} \delta F_{p'} \equiv \sum_{p'} \delta F_{p'} v^c_{p'}. \tag{87}
\]

One sees from \(\text{86} \) that the group velocity \(v_p \) is changed by the drag velocity \(v^c \) which describes the flow of the other quasiparticles around. We can consider this as the backflow since it arises from the interaction of moving quasiparticles with the surrounding media.

Therefore we call the first part of the particle current \(\text{84} \) the quasiparticle current. With the quasiparticle energy in a general frame \(\text{18} \) it takes the form

\[
\delta \mathbf{J}_{QP}^n = \frac{n}{m^*} \delta \left(\frac{\mathbf{J}^n}{n} \right). \tag{88}
\]

The second part we call backflow current which reads with \(\text{53} \)

\[
\delta \mathbf{J}_c^p = \frac{n}{m^*} \delta \left(\frac{m^* \mathbf{J}^n - \mathbf{J}}{n} \right) = \frac{n}{m^*} \delta (m^* V_1 \mathbf{J}). \tag{89}
\]

We see that the parameter \(V_1 \) determines the backflow current and is given as the difference between the mass current of quasiparticles \(m^* \mathbf{J}^n \) and the momentum current \(\mathbf{J} \).

The thorough treatment of backflows in metals can be found in \(\text{17} \). When collisional correlations are considered the correct balance of backflows require the extended quasiparticle picture \(\text{113} \). The backflow is intimately connected with the effect of collisional-drag \(\text{110} \) which induces a drag current from one layer to another \(\text{120} \). The phonon-assisted drag is important for thermal transport in nanostructures \(\text{121,122} \). In two-dimensional electron gases it was found that the backflow effect is dominant over three-body correlations for ground-state properties \(\text{123,124} \).

IV. RESPONSE FUNCTIONS

A. Local equilibrium

Next we consider the density, momentum and energy response functions due to an external perturbation \(\delta V^{ext} \). Therefore the kinetic equation is linearized with respect to the quasiparticle excitation and the density, current and energy response function are calculated from a conserving kinetic equation with the same quasiparticle excitation.

The conserving relaxation time approximation means that we approximate the collision side of the kinetic equation \(\text{65} \) by a relaxation towards a local equilibrium in the sense of \(\text{11} \),

\[
\dot{\mathbf{F}} + i \hat{\mathcal{E}} + \dot{\mathcal{V}}^{ext} \mathbf{F} = \frac{\mathcal{F}^{1.e.} - \mathbf{F}}{\tau}. \tag{90}
\]

The local equilibrium will be specified such that all three conservation laws \(\text{11} \) are obeyed. We choose for the local equilibrium distribution a (Fermi/Bose) function \(F_0 \) with three suitable parameters like e.g. mean current, temperature and chemical potential

\[
F^{1.e.}(\mathbf{p}, r, t) = F_0 \left(\frac{\varepsilon_0 (\mathbf{p} - \mathbf{Q}(r, t)) - \mu(r, t)}{T(r, t)} \right), \tag{91}
\]

or alternatively the mass, selfenergy and current

\[
F^{1.e.}(\mathbf{p}, r, t) = F_0 \left(\frac{(\mathbf{p} - \mathbf{Q}(r, t))^2}{m^* r(r, t) T} + \frac{\Sigma(r, t) - \mu}{T} \right), \tag{92}
\]
or any other set of three parameters. The actual choice does not play a role since it vanishes from the theory as we will see now.

B. Local equilibrium parameter from conservation laws

The deviation of the local equilibrium distribution from equilibrium reads

$$\langle p + q/2 | F^{l.e.} - F_0 | p - q/2 \rangle = \frac{F_0(p + q/2) - F_0(p - q/2)}{\mathcal{E}(p + q/2) - \mathcal{E}(p - q/2)} \delta_{l.e.}$$

(93)

where the deviation of the quasiparticle energy from the local equilibrium is dependent on the moments $\delta_{l.e.} = \delta_{l.e.}(1, p \cdot q, p^2/2m_0)$. If one uses the mean momentum, chemical potential and temperature as a set of observables one has e.q.

$$\delta e^{l.e.} = \left(\frac{1}{p^2/2m_0} \right)^T \left(\begin{array}{c} \frac{\partial^2 \mathcal{E}}{\partial m_0^2} \mu - \frac{\partial^2 \mathcal{E}}{\partial m^2} \\ - \frac{\partial \mathcal{E}}{\partial m} \end{array} \right) \delta \mu$$

(94)

or if one uses mass, current and selfenergy one gets

$$\delta e^{l.e.} = \left(\frac{1}{p^2/2m_0} \right)^T \left(\begin{array}{c} \frac{\partial^2 \mathcal{E}}{\partial m_0^2} \mu - \frac{\partial^2 \mathcal{E}}{\partial m^2} \\ - \frac{\partial \mathcal{E}}{\partial m} \end{array} \right) \delta \Sigma$$

(95)

where we use $Q = Q(q)$. In general one can specify the deviation of the local quasiparticle energy by

$$\delta e^{l.e.} = - \left(\frac{1}{p^2/2m_0} \right)^T \mathcal{A} \left(\begin{array}{c} \delta_{l.e.}^{1.e.} \\ \delta_{l.e.}^{2.e.} \end{array} \right)$$

(96)

where the matrix \mathcal{A} is characteristic for the chosen local equilibrium parameter $\delta_{l.e.}$. The actual form of \mathcal{A} and therefore the form of local equilibrium specification is not needed since it will be eliminated from the theory by conservation laws as follows.

The local equilibrium is determined by the requirement that the expectation values for density, momentum and energy are the same as the expectation values performed with the complete distribution F. From the kinetic equation we see that the conservation laws for density, momentum and energy are fulfilled if the corresponding expectation value of the collision side vanishes

$$\sum_p \phi(F - F^{l.e.}) = 0.$$

(97)

Performing the momentum integrals in (93) with the help of (93) and (90) we have for the density, momentum and energy deviation

$$\delta \chi = \left(\begin{array}{c} \delta n \\ \delta J_q \end{array} \right) = -\mathcal{G}(0) \mathcal{A} \left(\begin{array}{c} \delta_{l.e.}^{1.e.} \\ \delta_{l.e.}^{2.e.} \end{array} \right)$$

(99)

where $J_q = q \cdot J$. The appearing correlation functions are of the form

$$g_\phi(\omega) = \sum_p \phi \frac{F_0(p + q/2) - F_0(p - q/2)}{\mathcal{E}(p + q/2) - \mathcal{E}(p - q/2) - \omega - i0}$$

(100)

and are condensed in matrix notation

$$\mathcal{G}(\omega) = \left(\begin{array}{cc} g_1 & g_{pq} \\ g_{pq}^* & g_{oo} \end{array} \right)$$

(101)

with $\Delta F_0 = F_0(p + q/2) - F_0(p - q/2)$ and analogously for \mathcal{E}. The standard RPA Lindhard expression is just $g_1(\omega)$. Here \otimes stands for the dyadic product.

Frequently we will use the distribution function F_p in different frames which translates into modified observables. Therefore the general form of (99) in an arbitrary frame F_p reads

$$D_Q \left(\begin{array}{c} \delta n \\ \delta J_q \end{array} \right) = -\mathcal{G}(0) \mathcal{A} \left(\begin{array}{c} \delta_{l.e.}^{1.e.} \\ \delta_{l.e.}^{2.e.} \end{array} \right)$$

(102)

and the correlation matrix are calculated with F and \mathcal{E} in the general frame according to (46). We will continue with this general case and show up to what extent the final response function becomes independent of the frame such that we can choose the most convenient mixed frame with quadratic dispersion later.

By inverting (102) we can eliminate the deviations from local quasiparticle energies $\delta_{l.e.}^{1.e., 2.e., 3.e.}$ in the balances of the kinetic equation as we will perform now.

C. Linear response from kinetic equation

We linearize the kinetic equation with the help of the general form of excitations and work in the general frame which gives

$$\delta F = \frac{\Delta F}{\Delta \mathcal{E} - \omega - i0} \left(\delta V^{ext} + \delta \mathcal{E} \right)$$

$$+ x \frac{\Delta F}{\Delta \mathcal{E} - \omega - i0} \left(\frac{\Delta F}{\Delta \mathcal{E} - \omega - i0} \right) \delta_{l.e.} + \omega \mathcal{F}(Q - \Phi^{Gal}) \partial q F_p$$

(103)
with
\[x = \frac{1}{i\tau \omega}, \quad \bar{\omega} = \omega - q \cdot v + \frac{i}{\tau}. \] (104)

The last term of (103) comes from the the δQ term in (54) if not compensated. For the sake of completeness we keep this form though in the appropriate frame it is compensated by the backflow force Φ^{Gal}.

By integrating (103) over the moments $1, p, p^2/m_0$ and using (96) we get with the notation (99)

\[D_Q \delta \chi = \sum_p \left(\frac{1}{p^2/m_0} \right) \frac{\Delta F}{\Delta \epsilon - \omega - i0} (\delta\nu^{\text{ext}} + \delta\epsilon) \]
\[- \tau \sum_p \left(\frac{1}{p^2/m_0} \right) (\Delta F - \Delta \epsilon) \left(\frac{1}{p^2/m_0} \right) A \left(\frac{\delta \epsilon_c}{\delta \epsilon_c} \right) \]
\[+ \omega \sum_p \left(\frac{1}{p^2/m_0} \right) \delta(1 - \Phi^{\text{Gal}}) \partial_p F_p. \] (105)

Rewriting (77) in matrix notation
\[\delta \epsilon = \left(\frac{1}{p^2/m_0} \right) ^T \bar{\nu} \delta \chi \] (106)

with the interaction matrix
\[\bar{\nu} = \begin{pmatrix} V_0 + V_0 J_q/q^2 + V_0 E_X & V_7 J_q/q^2 & V_2 \\ V_3 J_q/q^2 & V_1/q^2 & 0 \\ V_4 & 0 & 0 \end{pmatrix} \] (107)

and inverting (102) to eliminate A in (106), the equation for the deviations $\delta \chi$ becomes
\[\kappa^{-1} \delta \chi = \left[(\bar{\nu}^{-1} (1 + x) - \bar{\nu}_0^{-1} x) D_Q - \bar{\nu} \right] \delta \chi = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} \delta\nu^{\text{ext}}, \] (108)

The inversion of the matrices in (108) yields the response tensor κ. We see that the actual form of the deviation of observables from local equilibrium has dropped out of the theory due to the demand of energy conservation (102).

The occurring interaction matrix $\bar{\nu}$ is given by (107) with an additional part added in the left upper corner if one considers situations of unbalanced backflow forces. This comes from the time derivative of the right hand side of (54). Let us parameterize $\partial_q(\Phi^{\text{Gal}}) \partial_p F \rightarrow -i \omega q \partial_q F (\frac{\delta J_q}{q} + \frac{\delta J_q}{q^2} \delta n)$ with $b(n) = \partial_n a(n)$ which results into
\[V_0 \rightarrow V_0 + \omega \left(\frac{a \delta J_q}{q^2} + \frac{b \delta J_q}{q^2} \right) \delta n. \] (109)

In case that these terms occur such that $\delta \Phi^{\text{Gal}}$ does not cancel δQ we will discuss the consequences in the next paragraph.

From (108) we see how a Q-transformation is changing the response tensor and how it looks like in different frames. If we want to express the correlation matrix in $f(\hat{\epsilon})$ according to the local frame, we can reabsorb this transformation into the correlation matrix \mathcal{G} like
\[\mathcal{G} = D_{-Q}\mathcal{G}(p, F_p, p)D_{-Q}^T = \mathcal{G}(p - Q, F_p, p - Q) \]
\[= \mathcal{G}(p, f_p, p) \]
\[= \sum_p \left(\frac{1}{p^2/m_0} \right) \frac{\Delta f_p}{m^* - q \cdot m^* - \omega - i0} \left(\frac{1}{p^2/m_0} \right)^T \] (110)

where we used
\[D_Q \left(\frac{1}{p^2/m_0} \right) = \left(\frac{1}{(p + Q)^2/m_0} \right). \] (111)

The equation for the deviations (108) can be multiplied with D_Q^T from the left to yield
\[\left\{ (1 + x)\mathcal{G}^{-1} - x\mathcal{G}_0^{-1} - D_Q^T V \right\} \delta \chi \]
\[= D_Q^T \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \delta\nu^{\text{ext}} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \delta\nu^{\text{ext}} \] (112)

and the response tensor (108) gets the structure
\[\kappa^{-1} = \mathcal{P}^{-1} - D_Q^T \mathcal{V} \] (113)

where the polarization tensor describes the response without meanfield \mathcal{V}
\[\mathcal{P}^{-1}(\omega) = (1 + x)\mathcal{G}(\omega)^{-1} - x\mathcal{G}(0)^{-1} \] (114)

and is obviously frame-independent. On contrast, the interaction matrix is multiplied by D_Q^T according to the desired frame.

Summarizing we have seen that the parameters $\delta \epsilon_c$ of the local equilibrium distribution have been eliminated from the response function with the help of the conservation laws. This is remarkable since it shows that the response function is independent of the choice of the local equilibrium parameters and entirely determined by the conservation laws which justifies to call it universal.

D. Renormalization by un-compensated backflow forces

In case that we work in a frame where the backflow force on the right hand side of (54) is not compensated we obtain an additional frequency part (109) in the interaction matrix (107). Besides the trivial shift $\omega b J_q/q^2$ in V_0 there appears an additional part of the current response $\delta J_q/\delta n$ with the for-factor $a = a\omega/q^2$. The latter
one leads to a renormalization of the response tensor as follows. We write
\[
\kappa^{-1} - \left(\begin{array}{ccc}
\delta f_1 & 0 & 0 \\
0 & \delta f_2 & 0 \\
0 & 0 & \delta f_3 \\
\end{array} \right) \delta \chi = \left(\begin{array}{c}
1 \\
0 \\
0 \\
\end{array} \right) \delta V^{\text{ext}} \tag{115}
\]
which means by multiplying with \(\kappa\)
\[
\left[1 - \kappa \left(\begin{array}{ccc}
\delta f_1 & 0 & 0 \\
0 & \delta f_2 & 0 \\
0 & 0 & \delta f_3 \\
\end{array} \right) \right] \delta \chi = \left(\begin{array}{ccc}
1 - \hat{\alpha} \kappa_{11} & 0 & 0 \\
0 & 1 - \hat{\alpha} \kappa_{21} & 0 \\
0 & 0 & 1 - \hat{\alpha} \kappa_{31} \\
\end{array} \right) \delta \chi
\]
and finally
\[
\delta \chi = \frac{1}{1 - a_q \omega} \left(\begin{array}{c}
\kappa_{11} \\
\kappa_{21} \\
\kappa_{31} \\
\end{array} \right) \delta V^{\text{ext}}. \tag{116}
\]
We see that an additional renormalization of the response tensor appears by an expression given in terms of the current response \(\kappa_{21}\).

V. RESULTS FOR THE RESPONSE FUNCTION

A. Explicit forms of correlation functions

Let us inspect the different correlation function as they appear in \(\text{[100]}\). In general frame we have
\[
\Delta \mathcal{E}_{p+q} - \mathcal{E}_{p-q} = \frac{pq}{m^*} + O; \quad O = -\frac{J_q}{nm^*} - \frac{\tau q^2 Q^2}{m^*} \tag{118}
\]
with \(Q = qQ\). In fact the various correlation functions can be reduced to only three different ones given by moments of \(\phi = 1, p^2, p^4\) in \(\text{[100]}\). One has with \(\tilde{\omega} = \omega - q \cdot v + i/\tau\)
\[
g_{pq} = m^* \sum_p \Delta F - (O - \tilde{\omega}) m^* \sum_p \frac{\Delta F}{pq/m^*} + O - \tilde{\omega} \\
g_{pq'q''} = \frac{1}{2} \sum_p p^2 \Delta F + \frac{\tilde{\omega} - O}{2} \sum_p p^2 \frac{\Delta F}{pq/m^*} + O - \tilde{\omega} \\
= q \sum_p p F + m^* (\tilde{\omega} - O) g_{pq},
\]
\[
g_{[pq]^2} = (m^*)^2 \sum_p \left(\frac{pq}{m^*} - O + \tilde{\omega} \right) \Delta F + (m^*)^2 (O - \tilde{\omega}) g_{11} \\
= -nm^* O + m^* (\tilde{\omega} - O) g_{pq}. \tag{119}
\]
The needed moments of \((p^2/2m_0)^n\) can be easily obtained by an appropriate scaling of the above expressions with \((m^*/m_0)^n\). We see that the \(Q\) transformation appearing in \(O\) can be absorbed in the frequency shift except for \(g_{pq}\) where it appears explicitly. This renders the response formulas somewhat involved and in-transparent. We restrict ourself therefore from now on to the mixed frame with quadratic dispersion \(\text{[25]}\) which provides \(Q = -J_q/nq^2\) due to \(\text{[22]}\) and conveniently \(O = 0\). Therefore the correlation functions are to be calculated with \(F_p = f(e_p)\) leading to \(\text{[27]}\) and \(\text{[28]}\).

B. Explicit form of response function in mixed frame with quadratic dispersion

The polarization matrix is symmetric and has the following terms \([\tilde{\omega} = \omega - q \cdot v + i/\tau] = \Omega + i/\tau\)
\[
P_{12} = m^* \Omega P_{11}; \quad P_{13} = P_h P_{11}; \quad P_{23} = P_h P_{12}; \\
P_{22} = (m^*)^2 \Omega^2 P_{11} - m^* nq^2; \\
P_{33} = P_{11} P_{12}^2 + (i/\tau - 1) \frac{g_{h} g_{pq}(0) - g_{1}(0)g_{pq}(0)}{2m_0} g_{h} - i\tau g_{1} (\tilde{\omega}); \\
P_{11} = \frac{g_{h}(\tilde{\omega})}{{1 - \frac{1}{\tau [1 - g_{h} + 2m_0 P_h g_{h} - \frac{4m_0}{m^*} m_0 g_{1} (\tilde{\omega})}]}}; \\
P_h = \frac{1}{2m_0} g_{h}(0) g_{h} - i\tau g_{1} (\tilde{\omega}). \tag{120}
\]

with the auxiliary quantities
\[
g_{h} = g_{pq}(\tilde{\omega})^2 - g_{pq}(\tilde{\omega}) g_{1}(\tilde{\omega}) \\
g_{s} = g_{pq}(\tilde{\omega})^2 - g_{pq}(\tilde{\omega}) g_{1}(\tilde{\omega}) \\
g_{t} = g_{pq}(\tilde{\omega})^2 - g_{pq}(\tilde{\omega}) g_{1}(\tilde{\omega}). \tag{121}
\]

These results are the main result of the chapter and represent the universal response function in the sense that the actual form of the local equilibrium has dropped out of the theory provided the conservation laws are enforced.

Let us compare now to known special cases. We have included momentum, energy and density conservation \(\Pi^{\text{m,k,E}} = P_{11}\). The inclusion of momentum conservation leads to the same local field correction irrespective whether one has only density or also energy conservation considered\(\text{[100]}\).
\[
\frac{1}{\Pi^{\text{m,k,E}}(\omega)} - \frac{1}{\Pi^{\text{m,E}}(\omega)} = \frac{1}{\Pi^{\text{m,k}}(\omega)} - \frac{1}{\Pi^{\text{m}}(\omega)} = \frac{i/\tau m^*}{\frac{\omega - \tilde{\omega}}{mq^2}}. \tag{122}
\]
If we would have considered only density conservation the Mermin-Das polarization reads\(\text{[33,34]}\)
\[
\Pi^{\text{n}} = \frac{g_{1}(\tilde{\omega})}{1 + x - \frac{2g_{1}(\tilde{\omega})}{g_{1}(0)}} = \frac{g_{1}(\tilde{\omega})}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{2g_{1}(\tilde{\omega})}{g_{1}(0)}}}}}. \tag{123}
\]
with \(\text{[104]}\).
It was found that the low frequency limit of the polarization including all three conservation laws approaches the Mermin-Das (density) formula while the high frequency limit falls with ω^{-3} compared to ω^{-3} for Mermin-Das polarization. The long wave length expansion of the expression including momentum conservations shows an excellent agreement with the complete expression for both the high and low frequency limit. The corrections of order q^2 drop out and it is effectively of the order q^4.

The polarization P_{11} in different notations has been discussed and compared with the Mermin-Das dielectric function in and has been applied to stopping power problems in plasma and storage rings. The extension to multicomponent systems has lead to a prediction of a low-lying collective mode in nuclear matter.

It is also instructive to write the static limit of the response functions where one has to keep care of the density response function in the mixed frame via

$$\delta n = \frac{J}{n} + m^*(\omega - \mathbf{v} \cdot \mathbf{q})$$

As in the case of the Mermin-Das polarization function all effects of the relaxation time vanish in the static limit.

C. Density and energy response function

With the help of the results of the foregoing chapter from the current and energy response functions are related to the density response function in the mixed frame via

$$\frac{\delta J_\perp}{\delta n} = \frac{J_\perp}{n_m} + m^*(\omega - \mathbf{v} \cdot \mathbf{q})$$

Remembering the velocities we see that the current response can be rewritten as

$$-\omega \delta n + q\delta \left(\frac{J}{m^*} \right) = 0$$

where the expansion formulas of have been used.

Finally, let us remark that if we would use the renormalization with the expression for the local frame $a = 1/n$ we would obtain a vanishing density response $\delta n = 0$ in agreement with the notion of local frame.

D. Local field correction

The density-response function results into

$$\kappa_n = \frac{\delta n}{\delta \mathbf{J}_\perp} = \frac{P_{11}}{1 - (V_0 + \xi_\perp)P_{11}} = 1 - \frac{g_1(\omega)}{(V_0 + \xi_\perp - \xi_q^2)g_1(\omega)}$$

with the local field correction with respect to the polarization

$$\xi_q = \tilde{V}_0 - V_0 + \tilde{V}_4 P_h + \tilde{V}_2 J_{\perp \perp} + \tilde{V}_3 \frac{\partial E_K}{\partial n} + \tilde{V}_7 \frac{\partial E_K}{\partial n}$$

where and have been used.

Please note that there is a local field with respect to the RPA polarization $g_1(\omega)$ itself according to

$$\xi_q = \frac{1}{P_{11}} - \frac{1}{g_1(\omega)}$$

where the last equality valid for zero temperature. The static limit of the latter one is nonzero which is no contradiction since the long-wave length expansion is performed while the small-frequency limit is written in the first line. Obviously the limits of small Ω and q are not interchangeable as it is known already from RPA Lindhard form of the dielectric function.

If we chose a frame where the backflow force leads to an additional renormalization, it would give rise to an extra local field

$$\xi_q \rightarrow \xi_q - \frac{\omega}{q^2} \frac{\partial J_\perp}{\partial n}$$

This completes the form of the conserving response function obeying the three conservation laws.

E. Compressibility sum rule

For the compressibility sum rule we need to proof for the static local field factor $\lim_{q \to 0} \xi_q(\Omega = 0)$.

First we note that in the static limit from [120] follows $P_{11}(0) = g_1(0)$. Using the values for the mixed frame [79] in which we work, it is not difficult to find
\[\xi_q(0) = \frac{1}{2} \partial_n \left(\frac{m^*}{m} \right) \left[\frac{m^*}{2n} B^2 \left(g_2(0) - g_4(0) - g_1(0) \right) \right] \]
(133)
where we used the abbreviation for the selfenergy [116] and the Galilei-invariant form [5]. Using the relations in appendix [13] particularly (133) we see that for any dimension D the long wave expansion is
\[\frac{g_2(0)}{g_1(0)} = \frac{m^* D}{nK_0} + o(q^2) \]
\[\frac{g_2^2(0)}{g_1(0)} - g_4(0) = - \frac{(m^* D)^2}{K_0} + o(q^2) \]
(134)
and the relation from (132)
\[\partial_n I_2 = \frac{m^*}{2} \partial_n \left(\frac{m^*}{m} \right) \left[\frac{m^*}{2n} D^2 - (D + 2) I_2 \right] + \frac{m^* D}{nK_0} \]
(135)
holds. Introducing (134) and (135) into (133) we see that exactly (139) appears as
\[\lim_{q \to 0} \xi_q(0) = \partial_n \Sigma - \frac{D}{2n^2 K_0} \partial \ln m^* \cdot \partial \ln n. \]
(136)
This shows that the universal response function obeys the compressibility sum rule. Next we proof that the response function completes also the first and third-order frequency sum rule.

F. Frequency-weighted sum rules

The frequency-weighted sum rules can be easily read off from the fact that the response function is an analytical function in the upper half plane and falls off with large frequencies faster than $1/\omega^2$ such that the compact Kramers Kronig relation reads
\[\int d\omega' \frac{\kappa_n(\omega')}{\omega' - \omega - i0} = 0 \]
(137)
closing the contour of integration in the upper half plane. From this one has
\[\text{Re} \kappa_n(\omega) = \int d\omega' \frac{\text{Im} \kappa_n(\omega')}{\omega' - \omega - i0} = \frac{\langle \omega \rangle}{\omega^2} + \frac{\langle \omega^3 \rangle}{\omega^4} + \ldots \]
(138)
with the moments
\[\langle \omega^{2k+1} \rangle = \int d\omega \omega^{2k+1} \text{Im} \kappa_n(\omega). \]
(139)
The first moments are known
\[\langle \omega \rangle = \int \frac{d\omega}{\pi} \text{Im} \kappa_n(\omega) = \frac{nq^2}{m^*} \]
(140)
as shown in the appendix [A], Eq. [A28]. The mass m_0 appears if we start with the a Hamiltonian with quadratic dispersion and the bare mass. Here we have worked in the mixed or lab frame that the mass m^* and m should appear respectively. Indeed, from our response function (129) we obtain the large frequency limit with the help of the appendix [B] see also (113), for all frames
\[\langle \omega \rangle = nq^2 \left(1 - \frac{1}{m^*} + \frac{nV_1}{m} \right) \]
(141)
From the definition of the parameters (79) we see that for the mixed frame $V_1 = 0$ such that (140) is completed with m^* as it should. If we work in the lab frame we have $V_1 = \frac{1}{m^*} - \frac{m}{m_0}$ and the sum rule (140) is completed with m as stressed already earlier after (75).

The higher order sum rules can be obtained from the form of response function (129). Using the expansions of the polarization
\[\text{Re} P_{11}(\omega) = \frac{\langle \omega \rangle}{\omega^2} + \frac{\langle \omega^3 \rangle}{\omega^4} + \ldots \]
(142)
and the local field
\[\text{Re} \xi_q(\omega) + V_0 = a_0 + \frac{a_2}{\omega^2} + \frac{a_4}{\omega^4} + \ldots \]
(143)
the response function (129) becomes
\[\text{Re} \kappa_n(\omega) = P_{11} + \frac{a_0 \langle \omega \rangle^2}{\omega^4} + \ldots \]
(144)
We see that the large-frequency expansion of the polarization function and of the response function agree up to first-order frequency sum rule, $\langle \omega \rangle = \langle \omega \rangle_P$. The first deviation arise by the third-order frequency sum rule, i.e.
\[\langle \omega^3 \rangle = \langle \omega^3 \rangle_P + a_0 \langle \omega \rangle_P^2 \]
(145)
and is given by the zeroth order expansion a_0 of the local field (139). For the polarization we obtain with the help of (151)
\[\langle \omega^3 \rangle_P = \frac{3q^2}{(m^*)^3} \left(\frac{q^2}{D} I_2 + \frac{(q \cdot J)^2}{n} \right) + \frac{nq^6}{4} \]
(146)
and the zeroth order expansion of the local field
\[a_0 = \epsilon_0 + \frac{\partial_q V_2 I_2}{2m_0} + \frac{V_2 + V_1}{2m_0} \left(\frac{2}{D} + 1 \right) \frac{I_2}{n} + \frac{q^2}{4} \]
(147)
where we have used (128) and the fact that the form of the selfenergy (10) reads
\[\Sigma = \epsilon_0 + \frac{V_2 I_2}{2m_0} \]
(148)
As derived in appendix A Eq. (A38), we have obtained with (147) exactly the sum rule following from the quantum commutator relations. This completes the proof of frequency sum rules and shows that the presented response function obeys simultaneously the compressibility sum rule as well as the first two energy-weighted sum rules.

VI. SUMMARY

An effective density-dependent Hamiltonian is considered as it appears from Skyrme forces or meanfields. The Galilean invariance restricts the possibilities to an effective position-dependent mass and a density-dependent current and selfenergy. Relations between these quantities are derived which ensure the Galilean invariance of the theory. From kinetic theory the accompanying currents are identified which take specific forms for different nonlinear frames and show the effect of entrainment as the influence of the surrounding currents to the one considered. Backflow and entrainment are interrelated and are formulated in terms of the effective mass, current and selfenergy of the Hamiltonian. Quasi-classical and quantum expression are considered.

The excitation of such system shows some specific features due to the nonlinear density dependence which are described by the density, current and energy responses. Assuming a relaxation towards a local equilibrium the explicit form of these response functions are calculated. It turns out that the demand of conservation laws renders these response functions independent of the actual form of the local equilibrium and are therefore considered as universal. The transformation rule is derived which translates the response functions from one nonlocal frame to another frame.

As a satisfying feature the current response as well as frequency-weighted sum rules up to third order are shown to be in agreement with the above identified nonlinear and frame-dependent currents. The compressibility sum rule are proven to be completed simultaneously with the third-order frequency sum rule which solves a longstanding puzzle that it was considered impossible with a static local field correction. Here the two degrees of many-body freedom, effective mass and selfenergy are the crucial reason for this result. The explicit quantum commutators are calculated and shown how they establish the sum rules.

Explicit expansion formulas are given for the long wavelength and the high-frequency limits as well as the static limit. All treatments and explicit formulas are presented in terms of the \(D = 1, 2, 3 \) dimension parameter and are valid therefore for Bose/Fermi systems in all three dimensions. The here derived universal and consistent response function should be possible to use for a wide range of applications where the many-body effects are possible to recast into an effective mass, current, selfenergy and conserving relaxation time. Especially the density functional theories belong to this class as special case. Since the response is explicitly given for one, two and three dimensions it should be of interest to the physics of low dimensional materials especially their optical properties. The numerical demand does not exceed the one calculating the RPA Lindhard finite-temperature response function since the universal response function is expressed by correlation functions of moments of the RPA type.

Finally let us remark that the explicit forms of the sum rules in terms of the density-dependent mass, current and selfenergy allows to be compared with the ones from the standard two-body Hamiltonian with genuine two-body interactions. Such identification allows to deduce the effective mass, current and selfenergy which would be an alternative way to express many-body correlations by a simpler effective density-dependent one-particle Hamiltonian which was treated here. These identifications are quite straightforward but depend on the specific features and physics one wants to focus on. Therefore it has been not written down here in general. Instead the tools to perform such construction of effective Hamiltonians are presented which is hoped to be helpful in solid state as well as nuclear physics problems.

Acknowledgments

The encouragement by K. N. Pathak to open up this topic once more is especially thanked for. This work was supported by DFG project. The financial support by the Brazilian Ministry of Science and Technology is acknowledged.

Appendix A: Perturbation theory and frequency sum rules for 1,2,3 dimensions

The external potential \(\delta V^{\text{ext}}(r, t) \) induces a time-dependent change in the Hamilton operator

\[
\delta \hat{H}(t) = \int dr \delta n(r, t) \delta V^{\text{ext}}(r, t).
\]
(A1)

The variation of the density matrix operator \(\rho(t) = \hat{\rho} + \delta \hat{\rho}(t) \) can be found from the linearized van–Neumann equation as

\[
\delta \hat{\rho}(t) = -i \int_{-\infty}^{t} [\delta \hat{H}, \hat{\rho}_0] \, dt.
\]
(A2)

where it has been assumed that the perturbation is conserving symmetries of the equilibrium Hamiltonian \([\hat{H}_0, \delta \hat{\rho}] = 0 \).

The variation of the density expectation value \(\delta n = \int \delta n(r, t) \rho(r, t) \, dr dt \)
\[\mathbf{Tr} \delta \rho \hat{n} \] is consequently
\[\delta n(r, t) = -i \int_t^{-\infty} \int d\tau' \int d\mathbf{r}' V(r', t') \langle [\hat{n}(r, t), \hat{n}(r', t')] \rangle. \] (A3)

Since in equilibrium the commutator is only dependent on the difference of coordinates and times we can define
\[\langle [\hat{n}(r, t), \hat{n}(r', t')] \rangle = \int \frac{d\omega}{\pi} e^{-i\omega(t-t')} \sum_q e^{iq(r-r')} \text{Im} \kappa_n(q, \omega) \] (A4)

from which we obtain the Fourier transform of (A3) to
\[\delta n(q, \omega) = -V^{\text{ext}}(q, \omega) \int \frac{d\omega'}{\pi} \text{Im} \kappa_n(q, \omega') \] (A5)

identical with (32). To see the last identity in (A5) we write (137) explicitly
\[\int d\omega' \text{Re} \kappa_n(\omega') i \text{Im} \kappa_n(q, \omega') + i\pi \text{Re} \kappa_n(\omega) - \pi \text{Im} \kappa_n(\omega) = 0 \] (A6)

to deduce the Kramers-Kronig relations
\[\text{Re} \kappa_n(\omega) = -\int \frac{d\omega'}{\pi} \frac{\text{Im} \kappa_n(\omega')}{\omega' - \omega} \]
\[\text{Im} \kappa_n(\omega) = \frac{1}{\pi} \int \frac{d\omega'}{\pi} \frac{\text{Re} \kappa_n(\omega')}{\omega' - \omega} \] (A7)

which shows the second equality of (A5).

1. **Sum rules**

Inverting (A4) and applying the spatial average \(\int d(r_1 + r_2)/2V \) one gets
\[\text{Im} \kappa_n(q, \omega) = \frac{1}{2V} \int d\tau e^{i(\omega - \mathbf{q} \cdot \mathbf{v})\tau} \langle [\hat{n}(q, t), \hat{n}(q, 0)] \rangle \] (A8)

where we wrote the mean drift velocity \(\langle \mathbf{v} \rangle \) explicitly. From this expression it is easy to see that the frequency sum rules read
\[\int \frac{d\omega}{\pi} \omega^n \text{Im} \kappa_n(q, \omega) = \frac{1}{V} \int dt \int \frac{d\omega}{2\pi} e^{i\omega t} (\omega + \mathbf{q} \cdot \mathbf{v})^n \langle [\hat{n}(q, t), \hat{n}(q, 0)] \rangle. \] (A9)

The first three moments read explicitly
\[\int \frac{d\omega}{\pi} \omega \text{Im} \kappa_n(q, \omega) = \langle \omega \rangle \]
\[\int \frac{d\omega}{\pi} \omega^2 \text{Im} \kappa_n(q, \omega) = 2q \cdot \mathbf{v} \langle \omega \rangle \]
\[\int \frac{d\omega}{\pi} \omega^3 \text{Im} \kappa_n(q, \omega) = (\omega^3) + 3(q \cdot \mathbf{v})^2 \langle \omega \rangle \] (A10)

where \((1) = \langle \omega^2 \rangle = 0\). To calculate the sum rules we have by partial integration
\[\langle \omega^n \rangle = \frac{1}{V} \int dt \int \frac{d\omega}{2\pi} e^{i\omega t} \omega^n \langle [\hat{n}(q, t), \hat{n}(q, 0)] \rangle = \frac{1}{V} \langle [(i\partial_t)\hat{n}(q, t)] \rangle \rangle \rangle \] (A11)

The sum rules are therefore transformed to the problem of determining the corresponding commutators.

2. **Effective Hamiltonian**

We consider here only the mixed frame (25). The other frames can be written down similarly. Since the response is frame-independent in the sense that we know the transformation between the different forms (133) we choose the most convenient mixed frame with the effective quasiparticle energy \(A(R)r^2 + \Sigma(R) \) where \(A = 1/2m^* \) and \(\Sigma = \epsilon_0 + V_{2f}^2/2m_0 \). We consider this energy as represented by the effective Hamiltonian
\[\hat{H} = \mathbf{p} \hat{A} \mathbf{p} + \hat{\Sigma} \] (A12)

which has the matrix representation
\[H_{12} = \langle \mathbf{p}_1 | \hat{H} | \mathbf{p}_2 \rangle = \mathbf{p}_1 \cdot \mathbf{p}_2 A_{\mathbf{p}_1 - \mathbf{p}_2} + \Sigma_{\mathbf{p}_1 - \mathbf{p}_2} \] (A13)

in terms of the difference \(\mathbf{p} = (\mathbf{p}_1 - \mathbf{p}_2)/2 \) and center-of-the-mass momentum \(\mathbf{q} = \mathbf{p}_1 - \mathbf{p}_2 \). Here we have used the notation (70). We see that the term \(A_qq^2/4 \) should be absorbed in
\[\Sigma_q = \Sigma_q - A_qq^2/4 \] (A14)

in order to reproduce the quasiparticle energy.

In second quantization we represent the Hamiltonian (A12) by creation \(\hat{a}^\dagger \) and annihilation operators \(\hat{a} \)
\[\hat{H} = \sum_{\mathbf{p}} \hat{a}_{\mathbf{p}}^\dagger \hat{a}_{\mathbf{p}} (\mathbf{p} \cdot \mathbf{p} A_{\mathbf{p}_1 - \mathbf{p}_2} + \Sigma_{\mathbf{p}_1 - \mathbf{p}_2}) \] (A15)

The density matrix reads
\[\hat{f}_{\mathbf{p}, \mathbf{q}} = \hat{a}_{\mathbf{p} + \mathbf{q}/2}^\dagger \hat{a}_{\mathbf{p} - \mathbf{q}/2} \] (A16)

such that the thermal averaging provides the Wigner distribution function
\[f_{\mathbf{p}, \mathbf{q}} = \langle \hat{f}_{\mathbf{p}, \mathbf{q}} \rangle \] (A17)

and the density operator reads
\[\hat{n} = \sum_{\mathbf{p}} \hat{f}_{\mathbf{p}, \mathbf{q}}. \] (A18)
With the help of the standard commutator relations it is now easy to prove the following two commutator rules

rule 1 :
\[
\left[\sum_{pq} \tilde{f}_{p,q} \phi_p \tilde{A}_{q-\tilde{q}} \cdot \tilde{H} \right] = \sum_{pq} \tilde{f}_{p,q} \tilde{A}_{q-\tilde{q}}
\]
\[
\times \left\{ \tilde{A}_{q-\tilde{q}} \left(p^2 - \frac{\tilde{q}^2}{4} + \frac{\tilde{q} \cdot \tilde{q}}{2} \right) + \Sigma_{q-\tilde{q}} \right\} \left(\phi_{p-\tilde{q}} - \phi_{p+\tilde{q}} \right)
\]
\[
+ \tilde{A}_{q-\tilde{q}} \cdot \tilde{P} \left(\phi_{p-\tilde{q}} + \phi_{p+\tilde{q}} \right) \}
\]
(A19)

and

rule 2 :
\[
\tilde{f}_{p,q} \phi_{p,q} \cdot \tilde{n}_{q-\tilde{q}} = \tilde{f}_{p,q} \tilde{q} \left(\phi_{p-\tilde{q}} - \phi_{p+\tilde{q}} \right)
\]
(A20)

Applying repeatedly rule 1, \((A19)\), one finds the first three time derivatives of the density operator. The first one reads
\[
i\partial_t \tilde{n}_q = \left[\tilde{n}_q, \tilde{H} \right] = 2 \sum_{pq} \tilde{f}_{p,q} \tilde{P} \cdot \tilde{Q} \tilde{A}_{q-\tilde{q}}
\]
(A21)

and the thermal averaging agrees of course with the momentum-integrated quantum kinetic equation (Vlassov), Eq. \((A15)\), which reads in matrix representation
\[
i\tilde{f}_{p,q} = \sum_3 \left(H_{2,3} f_{p+q}, p, p, q, H_{3,1} \right).
\]
(A22)

Multiplying with \(\tilde{P} \) and integrating yields the balance for the current
\[
i\partial_t \tilde{Q} \cdot \tilde{J} = \sum_q \sum_p \tilde{f}_{p,q} \left\{ \left(q^2 - \tilde{q} \cdot \tilde{q} \right) \tilde{\Sigma}_q \right\}
\]
\[
+ \left[\tilde{A}_{q-\tilde{q}} \left(2(p \cdot \tilde{Q})^2 + (\tilde{q}^2 - q \cdot q) \right) \left(p^2 - \frac{\tilde{q}^2}{4} + \frac{\tilde{q} \cdot \tilde{q}}{2} \right) \right] \}
\]
(A23)

The second-order time derivative of the density operator reads
\[
(i\partial_t)^2 \tilde{n}_q = 2 \sum_{pq} \tilde{f}_{p,q} \tilde{A}_{q-\tilde{q}}
\]
\[
\times \left\{ \left[\tilde{A}_{q-\tilde{q}} \left(p^2 - \frac{\tilde{q}^2}{4} + \frac{\tilde{q} \cdot \tilde{q}}{2} \right) + \Sigma_{q-\tilde{q}} \right] \tilde{Q} \cdot \tilde{q}
\]
\[
+ 2p \cdot \tilde{Q} \tilde{Q} \tilde{A}_{q-\tilde{q}} \right\} + \sum_{pq} \tilde{f}_{p,q} \tilde{P} \cdot \tilde{Q} i\partial_t \tilde{A}_{q-\tilde{q}}
\]
(A24)

The third-order derivative takes the form
\[
(i\partial_t)^3 \tilde{n}_q = 4 \sum_{pq} \tilde{f}_{p,q} \tilde{A}_{q-\tilde{q}} \left\{ \tilde{A}_{q-\tilde{q}} \tilde{A}_{q-\tilde{q}} \left[\left(p^2 - \frac{\tilde{q}^2}{4} + \frac{\tilde{q} \cdot \tilde{q}}{2} \right) \right]
\]
\[
\times (p \cdot \tilde{q} - \tilde{q} \cdot \tilde{q}) + p \tilde{q} \tilde{q} \tilde{q} \tilde{q} + p \tilde{q} \tilde{q} \tilde{q} \tilde{q} \right) \]
\[
+ q \cdot p \left(\tilde{q} \cdot \tilde{q} \right) \left(p^2 - \frac{\tilde{q}^2}{4} - \frac{\tilde{q} \cdot \tilde{q}}{2} \right) \right]
\]
\[
+ 2p \cdot \tilde{Q} \tilde{Q} \tilde{Q} \tilde{Q} + q \cdot \tilde{q} \tilde{q} + q \cdot \tilde{q} \tilde{q} \tilde{q} \tilde{q}
\]
\[
+ 2p \cdot \tilde{q} \tilde{q} \tilde{q} \tilde{q} + p \tilde{q} \tilde{q} \tilde{q} \tilde{q} \right) \right] + \Sigma_{q-\tilde{q}} \tilde{A}_{q-\tilde{q}}
\]
\[
\times \left\{ p \cdot \tilde{q} \tilde{q} + q \cdot \tilde{q} \tilde{q} \tilde{q} \tilde{q} + q \cdot \tilde{q} \tilde{q} \tilde{q} \tilde{q} \right) \right] \}
\]
(A25)

These somewhat lengthy expressions have to be subject to rule 2 \((A20)\) in order to calculate the commutators \((A11)\). It can be tremendously simplified if we observe that the required parts for the commutator \((A11)\) are the ones proportional to the volume. Therefore we expand all quantities around the homogeneous equilibrium values
\[
f_{p,q} = f_{p,0} + qf_{p,q} - A_{q,0} + qf_{p,q} - A_{q,0}
\]
(A26)

Applying rule 2, \((A20)\), to the derivatives \((A21), (A24)\) and \((A25)\) we obtain for the commutators \((A11)\) convolution structures of the form
\[
\sum_{q} f_{p,q} a_{q,0} a_{q,0} = f_{p,0} a_{q,0} + qf_{p,0} a_{q,0} + qf_{p,0} a_{q,0} + qf_{p,0} a_{q,0}
\]
\[
= (V A_f + f_{p,0} a_{q,0} + qf_{p,0} a_{q,0}) \phi_q \]
(A27)

since \(q_{a,0} = V\) representing the volume. Higher order convolutions are analogously treated. Therefore only the lowest order expansion around the homogeneous values survives in the expressions \((A11)\) and therefore in the terms \((A21), (A24), (A25)\). Finally it translates into the limits \(q' = \tilde{q} = q = q_{a,0}\) in \((A21), (A24)\) and \((A25)\).

We obtain from \((A21)\) the first energy-weighted sum rule
\[
\langle \omega \rangle = \frac{1}{V} \langle [i\partial_t n_q, n_q] \rangle = 2q^2 A \sum_p f_{p,0} = 2nq^2 A = \frac{nq^2}{m^*}
\]
(A28)
This is the sum rule obeyed by the response function \[\langle \omega^2 \rangle = \frac{1}{V} \langle [i \partial_t]^2 n_q, n_q \rangle = 8q^2 A^2 \sum_p f_{p,0} \mathbf{q} \cdot \mathbf{p} + 2q^2 i \partial_t A \sum_p f_{p,0} = 2q^2 A^2 \mathbf{q} \cdot \mathbf{J} + 2nq^2 i \dot{A}. \] (A29)

All quantities are the homogeneous ones in equilibrium. Since we consider the linear response we have formally the time derivatives at \(t = 0 \) to first order in the deviations of equilibrium which are the values itself. This means

\[i \dot{A}|_{t=0} = \partial_n A i \partial_n |_{t=0} = 2 \partial_n A (\mathbf{q} \cdot \delta \mathbf{J})|_{t=0} + \mathbf{q} \cdot \mathbf{J} \delta A|_{t=0} \rightarrow 4A \partial_n A \mathbf{q} \cdot \mathbf{J}. \] (A30)

Taking into account that the mean velocity in mixed frame is just \[\mathbf{V} = \frac{2}{n} \mathbf{q} \cdot \mathbf{J} (A + n \partial_n A) \] we see that (A29) is exactly

\[\langle \omega^2 \rangle = 2 \langle w \rangle \mathbf{q} \cdot \mathbf{v} \] (A32)

which is the required form (A10). This proves the form of mean velocity \[\mathbf{v} \] also from the sum rules.

The third-order sum rule reads

\[\langle \omega^3 \rangle = \frac{1}{V} \langle [i \partial_t]^3 n_q, n_q \rangle = 24A^3 q^2 \sum_p f_{p,0} (\mathbf{q} \cdot \mathbf{p})^2 + 2q^2 A^3 \sum_p f_{p,0} \]

\[+ 24q^2 A i \dot{A} \sum_p f_{p,0} \mathbf{q} \cdot \mathbf{p} + 2q^2 i \dot{A} \sum_p f_{p,0} = 24A^3 q^2 \left(\frac{q^2}{D} I_2 + \frac{(\mathbf{q} \cdot \mathbf{J})^2}{n} \right) + 2nq^2 A^3 \]

\[+ 24q^2 A i \dot{A} \mathbf{q} \cdot \mathbf{J} + 2nq^2 i \dot{A}. \] (A33)

The first two terms are just the third order expansion of the polarization \(\langle w^3 \rangle_p \) according to (146). Therefore we still have to prove

\[\langle \omega^3 \rangle = \langle \omega^3 \rangle_p + 3 \langle \mathbf{q} \cdot \mathbf{v} \rangle^2 \langle w \rangle + a_0 \langle w \rangle^2 \] (A34)

in order to justify the form (A10) with (149). Using (A31) we see that we have to prove

\[a_0 \langle w \rangle^2 = 24q^2 A i \dot{A} \mathbf{q} \cdot \mathbf{J} + 2nq^2 i \dot{A} \]

\[- 24q^2 A (\mathbf{q} \cdot \mathbf{J})^2 \left[2A \partial_n A + n(\partial_n A)^2 \right]. \] (A35)

Since we multiply in the first term \(i \dot{A} \) already with \(\mathbf{q} \cdot \mathbf{J} \) we have to use from (A30) only the second term, otherwise we would get a quadratic response at \(t = 0 \).

The second derivatives of \(A \) requires some more care. We have from (A30)

\[i^2 \dot{A} = 2i \partial_t \left[\partial_n A (\mathbf{q} \cdot \delta \mathbf{J} + \mathbf{q} \cdot \mathbf{J} \delta A) \right]. \] (A36)

From all the appearing 6 explicit time-derivative terms only one remains as first order response since (A30) is already multiplied with \(\mathbf{q} \cdot \mathbf{J} \) in (A35),

\[i^2 \dot{A} = 2A \partial_n A i \partial_n \mathbf{q} \cdot \delta \mathbf{J} \]

\[= 4A \partial_n A \left\{ \sum_p f_{p,0} ((\mathbf{p} \cdot \mathbf{q})^2 + q^2 p^2) + 2q^2 n \delta \Sigma \right\} \] (A37)

where we used (A30) and linearized (A23). Observing with (A14) that \(\partial_n A \delta \Sigma = \partial_n A \partial_n \Sigma \delta n = \partial_n \Sigma \delta A \rightarrow \partial_n \Sigma A = \partial_n \Sigma A + Aq^2/4 \) we see that we obtain after cancellation of terms

\[a_0 = \partial_n \Sigma + \partial_n A \left[\frac{2}{D} + 1 \right] q^2 I_2 + \frac{(\mathbf{q} \cdot \mathbf{J})^2}{n} = \partial_n \Sigma + \partial_n A \partial_n I_2 \] (A38)

where we have used the identity (128). The expression (A38) is just the one we have obtained from the sum rule of the response function (147) which completes the proof.

Appendix B: Expansion formulas

1. General relations

We provide here the expansion formulas for any dimension \(D = 1, 2, 3 \) and work in the mixed frame where the distribution is \(g(\epsilon_p) \) and the quasiparticle energy is \(\epsilon_p = p^2/2m^* + \Sigma \). First we observe that for any dimension we have with angular integration \(\text{d} \alpha \) by partial integration

\[\sum_p v^n \partial_{\epsilon} f = m^* \int_0^\infty \text{d} \alpha \int_0^\infty d\mu_D n^{n-2} \partial_{\epsilon} f. \] (B1)

Using the definition of the compressibility, \(\partial_{\epsilon} = n^2 K \partial_n \), and with the help of (B1) one has

\[\partial_n I_2 = \frac{m^* D}{nK} - (D+2) n^2 \partial_n \left(\frac{1}{m^*} \right) I_2 - nm^* D \partial_n \Sigma \] (B2)

which we use after introducing \(K_0 \) from (30) to derive (135).

Next we rewrite the correlation functions \(g_n \) of (100) as

\[g_n(\omega) = \sum_p v^n \frac{f(\mathbf{p} + \frac{\omega}{n}) - f(\mathbf{p} - \frac{\omega}{n})}{\frac{\omega^2}{m^*} - \omega - i0}. \] (B3)
It is convenient to introduce \(x = \mathbf{p} \cdot \mathbf{q} / q \) and \(k = m^* \omega / q \). Then in the integral of \(g_2 \) we write

\[
\frac{p^2}{x-k} = (p^2 - x^2) + x + k + \frac{k^2}{x-k}
\]

(B4)

to obtain

\[
g_2 = \Pi_2 + \left(\frac{m^* \omega}{q} \right)^2 g_0 - nm^*
\]

(B5)

with the convenient form

\[
\tilde{\Pi}_2 = \sum_p \left(\frac{p^2 - \mathbf{p} \cdot \mathbf{q}}{q} \right) \frac{f(p + \mathbf{q}) - f(p - \mathbf{q})}{m^* - \omega - i0}
\]

(B6)

which vanishes e.q. in 1D.

Similarly we can write for \(g_4 \)

\[
\frac{p^4}{x-k} = \left(\frac{p-x}{q} \right)^4 - x^3 - kx^2 + (2p^2 - k^2)x + k(2p^2 - k^2) + \frac{k^2(2p^2 - k^2)}{x-k}
\]

(B7)

The different occurring integrals over the angle \(x \) can be performed in any dimension \(D = 1, 2, 3 \) and we find

\[
\sum_p x^2f = \frac{1}{D} \sum_p p^2f, \quad \sum_p x^4f = \frac{3}{D(D+2)} \sum_p p^4f, \\
\sum_p x^6f = \frac{5}{4D^2 - D + 2} \sum_p p^6f.
\]

(B8)

With the help of (B8) one has

\[
g_4 = - \sum_p p^2f, \quad \sum_p x^2f = \frac{3}{D(D+2)} \sum_p p^4f,
\]

(B9)

2. Static long wave length expansion

In the static limit we have for (B5) and (B9)

\[
g_2(0) = \tilde{\Pi}_2(0) - nm^* \\
g_4(0) = \tilde{\Pi}_4(0) - nm^* \frac{q^2}{4} - \frac{1}{D} m^* I_2
\]

(B10)

For the long-wavelengths expansion we use again \(x = \mathbf{p} \cdot \mathbf{q} / q \) and find for the static argument of \(\Pi \)

\[
f(p + \mathbf{q}) - f(p - \mathbf{q}) = \partial_x f + \frac{q^2}{8m^*} \partial_x^2 f + \frac{q^2 x^2}{24(m^*)^2} \partial_x^4 f + o(q^4).
\]

(B11)

Using (B8) and repeatedly (B11) one gets

\[
\tilde{\Pi}_2(0) = -nm^*(D-1) + \frac{n^2q^2}{12} (D-1)K_0 + o(q^4) \\
\tilde{\Pi}_2(0) = -m^* \left(D - \frac{1}{D} \right) I_2 + o(q^2)
\]

(B12)

and for (B10) finally

\[
g_1(0) = -n^2K_0 + o(q^2) \\
g_2(0) = -nm^*D + o(q^2) \\
g_4(0) = -m^2(2 + D)I_2 + o(q^2).
\]

(B13)

3. Dynamic large wave length expansion

Expanding the denominator in \(g_n \) of (B3) or (100) and using (B11) as well as the fact that only even exponents of \(x \) count, one gets

\[
g_n(\omega) = - \sum_p \left(\frac{q^2 x^2}{m^* \omega} \partial_x f + \frac{q^4 x^4}{8(m^*)^2 \omega^2} \partial_x^2 f \\
+ \frac{q^4 x^4}{24(m^*)^3 \omega} \partial_x^4 f + \frac{q^4 x^4}{(m^*)^3 \omega^2} \partial_x f + o(q^6) \right)
\]

(B14)

and after using again (B8) and repeatedly (B11) for \(n \geq 2 \)

\[
g_n(\omega) = \frac{q^2}{m^* \omega^2} \frac{D + n}{D} I_n + \frac{3q^2}{(m^*)^3 \omega^2} \frac{D + n + 2}{D(D+2)} I_{n+2} \\
+ \frac{q^4}{8m^* \omega^2} \frac{(D+n-2)(D+n)n}{D(D+2)} I_{n-2} + o(q^6)
\]

(B15)

and

\[
g_0(\omega) = \frac{n q^2}{m^* \omega^2} + \frac{3q^4}{(m^*)^3 \omega^2} \frac{1}{D} I_2.
\]

(B16)

4. Dynamic large frequency expansion

The expansion with respect to large frequencies works similar as the expansion with respect to small wavelength with the difference that higher-order wavelength enters the corresponding terms. First we observe that the form \(p - xq \) with \(x = \mathbf{p} \cdot \mathbf{q} / q \) is invariant under transformation \(\mathbf{p} \rightarrow \mathbf{p} + q/2 \) and therefore \(p^2 - x^2 \) as well. This shows that we can expand in a geometric sum understood as difference of upper sign expressions minus lower ones

\[
\tilde{\Pi}_n = \frac{1}{\omega} \sum_p (p^2 - x^2)^{n/2} f_p \sum_p \left[1 + q \frac{x \pm q}{m \omega} + \ldots \right] \\
= \frac{q^2}{m \omega^2} \sum_p (p^2 - x^2)^{n/2} f_p \left[1 + \frac{3q^4}{4m^2 \omega^2} (1 + \frac{q^6}{4m^4 \omega^4}) \right. \\
+ \frac{q^2}{m^2 \omega^2} \left(3 + \frac{5q^4}{2m^2 \omega^2} \right) - 5q^4 \frac{q^4}{m^4 \omega^4} + o(\omega^{-8})
\]

(B17)
This expansion is different from the long-wavelength expansion of the foregoing section.

Abbreviating $y = 1/k = q/m\omega$ one obtains for the needed expansion order in ω

$$g_0(\omega) = \frac{q^2}{m\omega^2} \left[n \left(1 + \frac{q^2 y^2}{4} + \frac{q^4 y^4}{16}\right) + \frac{y^2 (6 + 5q^2y^2)}{2D} I_2
+ \frac{15q^4}{D(2 + D)} I_4 \right] + o(\omega^{-8})$$

$$g_2(\omega) = \frac{q^2}{4m\omega^2} \left[nq^2 \left(1 + \frac{q^2 y^2}{4}\right) + \frac{12(4 + D)y^2}{D(2 + D)} I_4
+ (4D + 8 + (D + 9)q^2y^2) \frac{I_2}{D} \right] + o(\omega^{-6})$$

$$g_4(\omega) = \frac{q^2}{m\omega^2} \left[\frac{q^2}{16} + \frac{4 + D}{2D} q^2 I_2 + \left(1 + \frac{4}{D}\right) I_4 \right] + o(\omega^{-4}).$$

(B18)

With the help of this expansion the polarization functions expand as

$$P_h = \left(\frac{2}{D} + 1\right) \frac{I_2}{2nm_0} + \frac{q^2}{8m_0} + o(\omega^{-2})$$

$$P_{33} = P_{11} P_h^2 = 0$$

$$+ \frac{q^2}{4nm_0^2m_0^2D^2} \left[nq^2 I_2 D + (n4 + D)D I_4 - (2 + D^2)I_2^2 \right] + o(\omega^{-4}).$$

(B19)

References:

1. T. H. R. Skyrme, Phil. Mag. 1, 1043 (1956).
2. T. H. R. Skyrme, Nucl. Phys. 9, 615 (1959).
3. H. S. Kühler, Nucl. Phys. A 258, 301 (1976).
4. K. Morawetz, Phys. Rev. C 63, 014609 (2000).
5. Y. Engel, D. Brink, K. Goeke, S. Krieger, and D. Vautherin, Nucl. Phys. A 249, 215 (1975).
6. C. García, J. Navarro, V. Nguyen, and L. Salcedo, Ann. Phys. (N.Y.) 214, 293 (1992).
7. E. Hernández, J. Navarro, A. Polls, and J. Ventura, Nucl. Phys. A 597, 1 (1996).
8. J. M. P. Gleissl, M. Brack, and P. Quentin, Ann. Phys. (NY) 197, 205 (1990).
9. F. L. Braghin, D. Vautherin, and A. Abada, Phys. Rev. C 52, 2504 (1995).
10. E. Hernández, J. Navarro, A. Polls, and J. Ventura, Nucl. Phys. A 597, 1 (1996).
11. K. Morawetz, M. Vogt, U. Fuhrmann, P. Lipavský, and V. Špicka, Phys. Rev. C 60, 054601 (1999).
12. K. Morawetz, R. Walke, and U. Fuhrmann, Phys. Rev. C 57, R 2813 (1998).
13. U. Fuhrmann, K. Morawetz, and R. Walke, Phys. Rev. C. 58, 1473 (1998).
14. F. Catara, E. G. Lanza, M. A. Nagarajan, and A. Vitturi, Nucl. Phys. A 624, 449 (1996).
15. F. Braghin, Phys. Lett. B 446, 1 (1999).
16. N. D. Dang, U. Garg, and S. Yamaji, eds., *Damping of IVDGDR - Fermi-liquid or Fermi-gas?*, vol. 23 of Riken Rev. (RIKEN, Hiroika, Saitama, 1999).
17. K. Morawetz, U. Fuhrmann, and R. Walke, Nucl. Phys. A 649, 348 (1999).
18. K. Morawetz, U. Fuhrmann, and R. Walke, in *Isospin Effects in Nuclei*, edited by B. A. Lie and U. Schroeder (World Scientific, Singapore, 2000), chap. 7, correct version: nucl-th/0001032.
19. O. Civitarese, A. Faessler, and M. C. Liccioni, Nucl. Phys. A 542, 221 (1992).
20. E. Guliev, A. A. Kuliev, P. von Neumann-Cosel, and A. Richter, Phys. Lett. B 532, 173 (2002).
21. A. A. Kuliev, A. Faessler, M. Grün, and V. Rodin, J. Phys. G: Nuel. Part. Phys. 30, 1253 (2004).
22. D. R. Bes and O. Civitarese, Phys. Rev. C 63, 044323 (2001).
23. G. L. Comer, Phys. Rev. D 69, 123009 (2004).
24. D. I. Pushkarov, Phys. Rep. 354, 411 (2001).
25. D. I. Pushkarov, Eur. Phys. J. B 29, 295 (2002).
26. S. H. Abedinpour, G. Vignale, A. Principi, M. Polini, W.-K. Tse, and A. H. MacDonald, Phys. Rev. B 84, 045429 (2011).
27. A. V. Chubukov and D. L. Maslov, Phys. Rev. B 81, 245102 (2010).
28. C. Nayak, K. Shtengel, D. Orgad, M. P. A. Fisher, and S. M. Girvin, Phys. Rev. B 64, 235113 (2001).
29. A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, *Methods of Quantum Field Theory in Statistical Physics* (Prentice Hall, New York, 1963).
30. T. Okabe, J. Phys. Soc. Japan 67, 2792 (1998).
31. T. Okabe, J. Phys. Soc. Japan 67, 4178 (1998).
32. T. Jujo, J. Phys. Soc. Japan 70, 1349 (2001).
33. G. Jackeli and J. Ranninger, Phys. Rev. B 64, 104513 (2001).
34. O. von Roos, Phys. Rev. B 27, 7547 (1983).
35. K. Kawamura and R. A. Brown, Phys. Rev. B 37, 3932 (1988).
36. Q.-G. Zhu and H. Kroemer, Phys. Rev. B 27, 3519 (1983).
37. J.-M. Lévy-Leblond, Phys. Rev. A 52, 1845 (1995).
38. J.-M. Lévy-Leblond, J. Math. Phys. 4, 776 (1963).
39. J.-M. Lévy-Leblond, Rivista d. Nuovo Cim. 4, 99 (1974).
40. C. Quesne and V. M. Tkachuk, J. Phys. A: Math. Gen. 37, 4267 (2004).
41. R. N. Costa Filho, M. P. Almeida, G. A. Farias, and J. S. Andrade, Phys. Rev. A 84, 050102 (2011).
42. I. M. Sokolov, Zh. Eksp. Teor. Fiz. 89, 556 (1985).
43. D. A. Kulikov, ISRN Mathem. Phys. 2012, 461452 (2011).
44. C. Pacheco-García, J. García-Ravelo, J. Morales, and J. J. P. na, Int. J. of Quant. Chem. 110, 2880 (2010).
45. G. Lévai and O. Özer, J. Math. Phys. 51, 092103 (2010).
46. A. Sinha, J. Phys. A: Math. Theor. 45, 185305 (2012).
47. N. Iwamoto, E. Krotscheck, and D. Pines, Phys. Rev. B 29, 3936 (1984).
48. L. V. Keldysh, D. A. Kirzhnitz, and A. A. Maradudin, *The dielectric function of condensed systems* (North-Holland, Amsterdam, 1989).
