Data Article

From selected multi-sensory dimensions to positive word of mouth: Data on what really drives generation Z consumers to be attached to quick service restaurants in Bloemfontein, South Africa?

Eugine Tafadzwa Maziriri\textsuperscript{a,*}, Tarisai Fritz Rukuni\textsuperscript{a}, Tinashe Chuchu\textsuperscript{b}

\textsuperscript{a} Department of Business Management, University of the Free State, Bloemfontein, South Africa
\textsuperscript{b} Department of Marketing Management, University of Pretoria, Pretoria, South Africa

\textbf{A R T I C L E   I N F O}

\textbf{Article history:}
Received 22 June 2020
Revised 29 August 2020
Accepted 31 August 2020
Available online 7 September 2020

\textbf{Keywords:}
Multi-sensory dimensions
Consumer attitudes
Restaurant patronage intention
Food purchase decision
Food consumption satisfaction
Restaurant attachment
Repurchase intention
Positive word of mouth

\textbf{A B S T R A C T}

This article presents raw inferential statistical data that determined the how selected multi-sensory dimensions such as sight, sound and smell would influence consumer attitudes towards quick-service restaurants, restaurant patronage intention, food purchase decision, food consumption satisfaction, restaurant attachment, repurchase intention and positive word of mouth in South African quick-service restaurants. To test the conceptual model an online questionnaire was used to collect data from Generation Z restaurant consumers within the metropolitan area of Bloemfontein, South Africa. The data were analysed using a quantitative approach. Reliability and validity were confirmed. The data was presented using Structural Equation modeling (SEM) using the Smart PLS program. The analysis of the SEM path shows estimates of the interconnectivity of the major constructs in the data. The findings from this dataset show that sight, sound and smell had on consumer attitudes towards quick-service restaurants and restaurant patronage intention. In addition, consumer attitudes towards quick-service restaurants and restaurant patronage intention had a positive influence.

* Corresponding author.
E-mail address: maziririet@ufs.ac.za (E.T. Maziriri).
Social media: \textsuperscript{\textregistered} (E.T. Maziriri)

https://doi.org/10.1016/j.dib.2020.106279
2352-3409/© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
on food purchase decisions. Food purchase decisions positively and significantly influenced food consumption satisfaction. Additionally, food consumption satisfaction positively and significantly influenced restaurant attachment, repurchase intention and positive word of mouth. Furthermore, restaurant attachment had a positive influence on repurchase intention and repurchase intention had a positive influence on positive word of mouth. Moreover, surprisingly, restaurant attachment had a negative and an insignificant influence on positive word of mouth.

© 2020 The Authors. Published by Elsevier Inc.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

### Specifications Table

| Subject | Business and Marketing |
|---------|------------------------|
| Specific subject area | Consumer behaviour, retailing, restaurant consumption behaviour |
| Type of data | Tables and figures |
| How data were acquired | Data was gathered significantly through the dissemination of online questionnaires to Generation Z consumers within the Bloemfontein Metropolitan region |
| Data format | Raw, analysed, descriptive and statistical data |
| Parameters for data collection | To qualify for inclusion in the sample the participants had to be Generation Z restaurant consumers within the Bloemfontein metropolitan area. |
| Description of data collection | An online questionnaire was used to collect data from 381 Generation Z restaurant consumers within the metropolitan area of Bloemfontein. The questionnaire is provided as a supplementary file. |
| Data source location | University of the Free State, Bloemfontein, South Africa. |
| Data accessibility | Data is included in this article |

### Value of the Data

- The data helps explain how multi-sensory dimensions such as sight, sound and smell would influence consumer attitudes towards quick-service restaurants, restaurant patronage intention, food purchase decision, food consumption satisfaction, restaurant attachment, repurchase intention and positive word of mouth in South African and African quick-service restaurants as a whole.
- The data can be used to enlighten restaurant and marketing managers on the importance of multi-sensory dimensions, as well as how they can be beneficial to enhancement of consumer attitudes towards and consumer behavioural intentions.
- The data can be used as a springboard for further discourse on how restaurant and marketing managers could enhance positive word of mouth in quick-service restaurants.
- Data presented in this data article provides retail strategies which might be utilised to win market share.
- The data does not involve any control variables but further research could consider using any one of the constructs of this study as control variables.

### 1. Data Description

Raw data was collected on generation Z consumers’ behaviour regarding quick-service restaurants. The data files comprise of two supplementary files, namely the dataset in Excel (file 1) and the questionnaire in MS Word (file 2). The processed data is then presented through four tables and two figures. First, the researchers, drafted a conceptual model (Fig 1) which served
as a guide to test the data in a statistical manner. Table 1 presents the sample profile showing demographic data of the participants. Measurement accuracy assessment data is described in Table 2, presenting the Cronbach’s alpha value, composite reliability, average variance extracted (AVE) and factor loadings. Fig 2 describes the structural model which depicts the research constructs post-analysis. Table 3 provides the model fit summary while Table 4 depicts the outcomes of structural equation model analysis where proposed hypotheses, path coefficients (β) and p-values are presented.
Table 1
Sample profile.

| Characteristics                          | Frequency | %  |
|------------------------------------------|-----------|----|
| **Age**                                  |           |    |
| 18 years old                             | 28        | 7.4|
| 19 years old                             | 32        | 8.4|
| 20 years old                             | 14        | 3.7|
| 21 years old                             | 193       | 50.8|
| 22 years old                             | 43        | 11.3|
| 23 years old                             | 40        | 10.5|
| 24 years old                             | 21        | 5.5|
| 25 years old                             | 9         | 2.4|
| **Total**                                | 380       | 100|
| **Gender**                               |           |    |
| Male                                     | 212       | 55.8|
| Female                                   | 161       | 42.4|
| Prefer not to say                        | 7         | 1.8|
| **Total**                                | 380       | 100|
| **Year of study**                        |           |    |
| 1st year                                 | 93        | 24.5|
| 2nd year                                 | 110       | 28.9|
| 3rd year                                 | 85        | 22.4|
| Post graduate study                      | 92        | 24.2|
| **Total**                                | 380       | 100|
| **Allowance usually received per month** |           |    |
| Less than R500                           | 35        | 9.2|
| R501 – R1000                             | 90        | 23.7|
| R1001-R1500                              | 46        | 12.1|
| R1501-R2000                              | 135       | 35.5|
| More than R2000                          | 74        | 19.5|
| **Total**                                | 380       | 100|
| **How often do you eat from quick-service restaurants** | | |
| Everyday                                 | 2         | 0.5|
| A few times a week                       | 61        | 16.1|
| A few times a month                      | 116       | 30.5|
| Once in a while                          | 201       | 52.9|
| **Total**                                | 380       | 100|

2. Experimental Design, Materials and Methods

The data presented was based on a quantitative approach. A descriptive research design was adopted to obtain the opinions of consumers concerning the multi-sensory dimensions, consumer attitudes towards and consumers behavioural intentions. An online survey method was considered an appropriate data collection method because it allows for the collection of standardised data that permits the researcher to produce information for answering the how, who, what and when questions regarding the subject matter. Generation Z student consumers within the Bloemfontein metropolitan area. To test the data, the researchers proposed the model whereby sound, sight and smell were the predictor variables. Consumer attitudes towards quick-service restaurants, restaurant patronage intention, food purchase decision, food consumption satisfaction, were the mediating variables. Moreover, restaurant attachment, repurchase intention and positive word of mouth were the outcome variables. The researchers had to propose a model to test the validity of the proposed model as well as to determine if the data, which has been collected in the field, fits well with the proposed conceptual model.

2.1. Assessment of the goodness of fit (GoF)

Overall, R² for consumer attitudes, restaurant patronage intention, food purchase decision, food consumption satisfaction, restaurant attachment, repurchase intention and positive word of mouth in Fig. 2 indicate that the research model explains 65.6%, 81.5%, 59.3%, 55.8%, 71.9%,
Table 2
Measurement accuracy assessment.

| Research constructs                          | PLS code item | Scale item Mean | Cronbach’s alpha value | Composite reliability | Average variance extracted (AVE) | Factor loadings |
|----------------------------------------------|---------------|-----------------|------------------------|-----------------------|----------------------------------|----------------|
| Sound                                        | SO1           | 3.868           | 0.777                  | 0.958                 | 0.965                            | 0.754          |
|                                              | SO2           | 3.958           | 0.717                  |                       |                                  | 0.789          |
|                                              | SO3           | 3.974           | 0.757                  |                       |                                  | 0.782          |
|                                              | SO4           | 3.932           | 0.729                  |                       |                                  | 0.808          |
|                                              | SO5           | 3.871           | 0.796                  |                       |                                  | 0.857          |
|                                              | SO6           | 3.892           | 0.730                  |                       |                                  | 0.945          |
|                                              | SO7           | 3.892           | 0.727                  |                       |                                  | 0.948          |
|                                              | SO8           | 3.887           | 0.722                  |                       |                                  | 0.948          |
|                                              | SO9           | 3.895           | 0.721                  |                       |                                  | 0.944          |
| Sight                                        | ST1           | 4.074           | 0.757                  | 0.912                 | 0.928                            | 0.618          |
|                                              | ST2           | 4.026           | 0.684                  |                       |                                  | 0.795          |
|                                              | ST3           | 3.989           | 0.736                  |                       |                                  | 0.749          |
|                                              | ST4           | 4.034           | 0.726                  |                       |                                  | 0.810          |
|                                              | ST5           | 3.963           | 0.746                  |                       |                                  | 0.775          |
|                                              | ST6           | 3.866           | 0.798                  |                       |                                  | 0.768          |
|                                              | ST7           | 3.982           | 0.720                  |                       |                                  | 0.806          |
|                                              | ST8           | 4.037           | 0.717                  |                       |                                  | 0.778          |
| Smell                                        | SM1           | 4.047           | 0.702                  | 0.801                 | 0.883                            | 0.716          |
|                                              | SM2           | 3.892           | 0.762                  |                       |                                  | 0.871          |
|                                              | SM3           | 3.868           | 0.784                  |                       |                                  | 0.863          |
| Consumer attitudes                           | CTA1          | 4.000           | 0.740                  | 0.797                 | 0.880                            | 0.710          |
|                                              | CTA2          | 4.000           | 0.764                  |                       |                                  | 0.842          |
|                                              | CTA3          | 4.082           | 0.715                  |                       |                                  | 0.840          |
| Food Purchase decision                       | FPD1          | 3.937           | 0.730                  | 0.962                 | 0.971                            | 0.872          |
|                                              | FPD2          | 3.874           | 0.791                  |                       |                                  | 0.827          |
|                                              | FPD3          | 3.895           | 0.732                  |                       |                                  | 0.907          |
|                                              | FPD4          | 3.889           | 0.728                  |                       |                                  | 0.976          |
|                                              | FPD5          | 3.897           | 0.724                  |                       |                                  | 0.977          |
| Restaurant patronage intention              | RPI1          | 3.868           | 0.777                  | 0.835                 | 0.901                            | 0.752          |
|                                              | RPI2          | 3.961           | 0.719                  |                       |                                  | 0.875          |
|                                              | RPI3          | 3.974           | 0.707                  |                       |                                  | 0.872          |
| Food Consumption satisfaction               | FCS1          | 3.897           | 0.720                  | 0.849                 | 0.892                            | 0.625          |
|                                              | FCS2          | 4.079           | 0.757                  |                       |                                  | 0.730          |
|                                              | FCS3          | 4.032           | 0.684                  |                       |                                  | 0.851          |
|                                              | FCS4          | 3.995           | 0.736                  |                       |                                  | 0.829          |
|                                              | FCS5          | 4.029           | 0.723                  |                       |                                  | 0.736          |
| Restaurant attachment                       | RA1           | 3.963           | 0.750                  | 0.875                 | 0.906                            | 0.616          |
|                                              | RA2           | 3.868           | 0.800                  |                       |                                  | 0.769          |
|                                              | RA3           | 3.987           | 0.720                  |                       |                                  | 0.837          |
|                                              | RA4           | 4.034           | 0.716                  |                       |                                  | 0.817          |
|                                              | RA5           | 4.050           | 0.703                  |                       |                                  | 0.801          |
|                                              | RA6           | 3.895           | 0.764                  |                       |                                  | 0.798          |
| Repurchase intention                        | RI1           | 3.871           | 0.786                  | 0.830                 | 0.887                            | 0.662          |
|                                              | RI2           | 3.995           | 0.740                  |                       |                                  | 0.805          |
|                                              | RI3           | 4.003           | 0.766                  |                       |                                  | 0.831          |
|                                              | RI4           | 4.092           | 0.714                  |                       |                                  | 0.803          |
| Positive word of mouth                      | PWM1          | 3.895           | 0.725                  | 0.853                 | 0.900                            | 0.694          |
|                                              | PWM2          | 3.897           | 0.724                  |                       |                                  | 0.856          |
|                                              | PWM3          | 4.076           | 0.759                  |                       |                                  | 0.847          |
|                                              | PWM4          | 4.045           | 0.689                  |                       |                                  | 0.830          |

66.8% and 88.6% respectively, of the variance in the endogenous variables. The following formulae given by [1], the global GoF statistic for the research model was calculated using the equation:

\[
\text{Goodness of Fit} = \sqrt[2]{(\text{average of all AVEs values} \times \text{average of all } R^2)}
\]

\[
\sqrt[2]{0.701 \times 0.400} = 0.53
\]
Table 3
Model fit summary.

| Estimated Model   |            |
|-------------------|------------|
| SRMR              | 0.070      |
| d_ULS             | 1.727      |
| d_G1              | 0.941      |
| d_G2              | 0.783      |
| Chi-Square        | 1919.097   |
| NFI               | 0.851      |

Table 4
Outcomes of structural equation model analysis.

| Path                                                               | Hypothesis | Path coefficients (β) | T- Statistics | P-value | Decision               |
|--------------------------------------------------------------------|------------|------------------------|---------------|---------|------------------------|
| Sound -> Consumer attitudes towards quick-service restaurants     | H1(+)      | 0.110                  | 2.284         | 0.023   | Positive and significant |
| Sound -> Restaurant patronage intention                           | H2(+)      | 0.727                  | 22.212        | 0.000   | Positive and significant |
| Sight -> Consumer attitudes towards quick-service restaurants      | H3(+)      | 0.391                  | 7.379         | 0.000   | Positive and significant |
| Sight -> Restaurant patronage intention                            | H4 (+)     | 0.084                  | 2.148         | 0.032   | Positive and significant |
| Smell -> Consumer attitudes towards quick-service restaurants      | H5 (+)     | 0.381                  | 6.824         | 0.000   | Positive and significant |
| Smell -> Restaurant patronage intention                            | H6 (+)     | 0.146                  | 3.526         | 0.000   | Positive and significant |
| Consumer attitudes towards quick-service restaurants -> Food purchase decisions | H7 (+)     | 0.076                  | 1.618         | 0.106   | Positive and insignificant |
| Restaurant patronage intention -> Food purchase decisions          | H8 (+)     | 0.715                  | 15.425        | 0.000   | Positive and significant |
| Food purchase decisions, -> Food Consumption satisfaction          | H9 (+)     | 0.747                  | 24.861        | 0.000   | Positive and significant |
| Food Consumption satisfaction -> Restaurant attachment             | H10 (+)    | 0.848                  | 40.196        | 0.000   | Positive and significant |
| Food Consumption satisfaction -> Positive word of mouth             | H11 (+)    | 0.952                  | 21.966        | 0.000   | Positive and significant |
| Food Consumption satisfaction -> Repurchase intention              | H12 (+)    | 0.313                  | 4.687         | 0.000   | Positive and significant |
| Restaurant attachment -> Repurchase intention                      | H13(+)     | 0.535                  | 8.461         | 0.000   | Positive and significant |
| Repurchase intention -> Positive word of mouth                      | H14 (+)    | 0.082                  | 2.304         | 0.022   | Positive and significant |
| Restaurant attachment -> Positive word of mouth                     | H15 (+)    | −0.088                 | 1.736         | 0.083   | Negative and insignificant |

where AVE represents the average of all AVE values for the research variables while \( R^2 \) represents the average of all \( R^2 \) values in the full path model. The calculated global GoF is 0.53, which exceeds the threshold of GoF > 0.36 suggested by [2]. Therefore, it can be concluded that the research model has a good overall fit.

2.2. The standardized root mean square residual (SRMR)

The SRMR is an index of the average of standardized residuals between the observed and the hypothesized covariance matrices [3]. The SRMR is a measure of estimated model fit. When \( SRMR = <0.08 \), then the study model has a good fit [4], with a lower SRMR being a better fit.
Table 3 shows the theoretical model's SRMR was 0.07, which revealed that the model had a good fit, whereas the Chi-Square was equal to 1919.097 and NFI equal to 0.851 was also measured, meeting the recommended threshold for NFI [5].

2.3. Path model

The PLS estimation path coefficients values as well as the item loadings for the research construct are shown in Fig. 2.

The Microsoft Excel spreadsheet worksheet was used to enter all data and draw conclusions from the data obtained. The Statistical Packages for Social Sciences (SPSS) and the Smart PLS software for structural equation modelling (SEM) technique were used to code data and to run the statistical analysis [6]. Moreover, Smart PLS supports both exploratory and confirmatory research; it is robust to deviations for multivariate normal distributions and is good for a small sample size [6].

3. Ethical considerations

This research acted in accordance with the ethical standards of academic research. Hence, an ethical clearance certificate (Ethical clearance number: UFS-HSD2020/0261/1805) was obtained from the University of the Free State General or Human Research Ethics Committee.

4. Academic, practical and policy implications of this data article

The present data article offers implications for academicians. The data describes, most notably the relationship between food consumption satisfaction and positive word of mouth. This data is represented by a path coefficient of ($\beta = 0.952$), a T-Statistic of 21.966 and a P value of 0.000. This discovery enhances the comprehension of retail marketing in terms of the food consumption. Policy makers and practitioners in the retail space stand to benefit from understanding factors associated with quick service restaurants.

Declaration of competing Interest

The authors declare that they have no known competing financial interests or personal relationships which have, or could be perceived to have, influenced the work reported in this article.

Acknowledgements

The authors of this data article express their sincere gratitude to the University of the Free State for funding the publication of this research work.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.dib.2020.106279.
References

[1] M. Tenenhaus, V.E. Vinzi, Y.M. Chatelin, C. Lauro, PLS path modeling, Comput. Stat. Data Anal. 48 (1) (2005) 159–205.
[2] M. Wetzels, G. Odekerken-Schröder, C. Van Oppen Using PLS path modeling for assessing hierarchical construct models: guidelines and empirical illustration MIS Q. (2009), pp. 177–195.
[3] F.F. Chen, Sensitivity of Goodness of Fit Indexes to Lack of Measurement Invariance, Struct. Equ. Model. 14 (2007) 464–504.
[4] L. Hu, P.M. Bentler, Fit Indices in Covariance Structure Modeling: sensitivity to Under parameterized Model Misspecification, Psychol. Methods 3 (1998) 424–453.
[5] T. Chininga, E. Rungani, N. Chiliya, T. Chuchu, Facebook Communication and Marketing Influence on Decision-Making and Choice of University Student Representatives: a Student’s Perspective, Rom. J. of Comm and Pub Rel 21 (2) (2019) 7–21 https://doi.org/10.21018/rjcpr.2019.2.274.
[6] E.T. Maziriri, N.W. Madinga, Data to model the prognosticators of luxury consumption: a partial least squares structural equation modeling approach (PLS-SEM), Data Br. (2018) https://doi.org/10.1016/j.dib.2018.10.032.