A novel MSMB-related microprotein in the postovulatory egg coats of marsupials

Stephen Frankenberg*, Jane Fenelon, Bonnie Dopheide, Geoff Shaw and Marilyn B Renfree

Abstract

Background: Early marsupial conceptuses differ markedly from those of eutherian mammals, especially during cleavage and early blastocyst stages of development. Additionally, in marsupials the zona pellucida is surrounded by two acellular layers, the mucoid coat and shell, which are formed from secretions from the reproductive tract.

Results: We report the identification of a novel postovulatory coat component in marsupials, which we call uterine secreted microprotein (USM). USM belongs to a family of disulfide-rich microproteins of unconfirmed function that is found throughout deuterostomes and in some protostomes, and includes \(\beta \)-microseminoprotein (MSMB) and prostate-associated microseminoprotein (MSMP). We describe the evolution of this family in detail, including USM-related sequences in other vertebrates. The orthologue of \(\text{USM} \) in the tammar wallaby, \(\text{USM}1 \), is expressed by the endometrium with a dynamic temporal profile, possibly under the control of progesterone.

Conclusions: USM appears to have evolved in a mammalian ancestor specifically as a component of the postovulatory coats. By analogy with the known properties of MSMB, it may have roles in regulating sperm motility/survival or in the immune system. However, its C-terminal domain is greatly truncated compared with MSMB, suggesting a divergent function.

Background

Marsupial conceptuses are surrounded by three extracellular investments (reviewed [1]). The innermost layer, the zona pellucida, is deposited during oogenesis and occurs in all mammals. After ovulation and fertilisation, it becomes surrounded by a thick, translucent layer mucoid coat that is deposited during passage through the oviduct and traps non-fertilising sperm. By the time the conceptus arrives in the uterus, the mucoid coat has become surrounded by a thin, dense, shell coat derived mainly from secretions in the utero-tubal junction and the uterus [2-4]. During the period we define as "preliminary blastocyst expansion", the mucoid coat narrows as it becomes compressed between the expanding zona pellucida and the outer shell coat. During "secondary expansion", the shell coat itself expands from an initial diameter of about 200-300 \(\mu \)m up to \(~17\) mm, increasing its volume dramatically from 0.001 \(\text{mm}^3 \) to > 0.250 \(\text{mm}^3 \) [5]. The shell coat finally ruptures approximately two-thirds of the way through pregnancy, or 3-8 days before birth [6], under the influence of proteases secreted by the endometrium [7], after which attachment occurs.

A previous study [2] made substantial progress in identifying components of the postovulatory coats of the brushtail possum (Trichosurus vulpecula) and the stripe-faced dunnart (Sminthopsis macroura). The authors isolated individual protein components by electrophoresis and sequenced their N-terminal regions. The short sequences obtained (12-15 residues) for twelve excised protein bands (seven from possum and five from dunnart) could not initially be identified due to insufficient bioinformatic resources for these species at the time. Since that study, one band was identified as similar to \(\tau \)-crystallin/enolase 1 and termed CP4 (coat protein 4) [8].

Genomes have now been sequenced from two marsupials - the South American grey short-tailed opossum (Monodelphis domestica) [9], and more recently the Australian tammar wallaby (Macropus eugenii) (in press). With these new resources at hand, we re-examined the published protein sequences of Casey et al. [2] and identified one of them from the brushtail possum. We show that the gene encoding this protein, which we...
call uterine secreted microprotein (USM) is a parologue of MSMB (β-microsemionoprotein; also called PSP94, β-inhibin and IgBF). MSMB is a disulfide-rich, low molecular weight protein that is a major component of seminal fluid and is strongly expressed in the prostate gland as well as in other tissues, especially of the reproductive system and in mucosal membranes. Its specific function is not known, but it may have roles in inhibition of sperm motility [10,11], suppression of immune response against allogeneic sperm [12], toxin defence [13,14], pituitary-gonadal axis signalling [15-17] and suppression of prostate tumorigenesis [18-22]. Very little is known of MSMP, which is similar to MSMB but more highly conserved among species, apart from its expression in a prostate cancer cell line [23]. USM is similar to both MSMB and MSMP in its conserved sequence of disulfide bond-forming cysteine residues, but most of the region homologous to the C-terminal domain of MSMB is absent. In this study, we examine the evolution of USM/MSMB/MSMP-related microproteins in vertebrates. We discuss how, as a component of the marsupial postovulatory coats, USM could provide important clues for elucidating the roles of MSMB and other related proteins, with possible applications in prostate cancer, immunity and fertility control.

Results & Discussion
Identification of postovulatory coat proteins
Protein sequences from Casey et al [2] were used to search GenBank databases using the tBLASTn algorithm with low-stringency search parameters. The alignments of sequences from Casey et al [2] with an expressed sequence tag [GenBank accession EG617409] derived from the reproductive tract of the brushtail possum is shown in Figure 1. The major sequence from Band 5 (14 kDa) matched closely the translated possum EST, while minor sequences from Bands 3 (22 kDa), 4 (17 kDa) and 5 also showed identity. We named this protein uterine secreted microprotein (USM).

The translated sequence of the possum EST was used to identify exons in the tammar wallaby (Macropus eugenii) whole genome shotgun (WGS) database, which revealed an apparent four-exon structure with an open reading frame spanning Exons 2-4 (Figure 2). A second, more divergent homologue was also identified bioinformatically. We refer to these genes respectively as tammar USM1 and USM2. Conserved exons in the opossum genome were identified as a homologue of USM.

Exon 1 of tammar USM1 was determined by 5’ RACE and differed from that of the brushtail possum EST. In the opossum genome, Exons 2-4 of the brushtail possum EST map to Chromosome 1 whereas the “first exon” maps to Chromosome 8, immediately upstream of the third exon of another gene, WASHI. To resolve this discrepancy and to characterise fully the genomic locus of tammar USM1, we isolated and sequenced a tammar genomic BAC clone containing the gene. In a single assembled 89.8-kb contig of BAC sequence [GenBank accession JN251945], no sequence matching the “first exon” of the brushtail possum EST was present in the 17.1 kb upstream of Exon 2, however Exon 1 as identified by 5’ RACE was located upstream of Exon 2, as expected. USM2 was located downstream of USM1 in the BAC sequence and in the same orientation. USM2 also contains exons homologous to Exons 1-4 (Figure 3). We conclude that the “first exon” of the brushtail possum EST represents an anomaly or an artefact of cDNA library construction. Downstream of USM2 and in the same orientation as USM1 and USM2 in the BAC sequence, we identified the first 8 exons of ELP3 (Figure 3), which also flanks USM in the opossum genome. This confirmed that opossum USM is orthologous to the tammar USM1/USM2 cluster. However, unlike in the tammar, no duplicate of USM was found at this locus in the opossum.
A signal peptide cleavage site was predicted at the same position in all three species (Figure 2 and additional file 1: Protein_alignment.pdf), strongly indicative of a secretory protein and consistent with a role in the extracellular postovulatory coats. In the brushtail possum, the predicted cleavage site also immediately precedes the major sequence from band 5 (compare Figure 1 and additional file 1: Protein_alignment.pdf), which was obtained by N-terminal sequencing.

In eutherian sequence databases, the highest translated sequence identity with the USM genes was found in orthologues of MSMB and another related gene, MSMP (also called PSMP). USM is not an orthologue of either of these genes, however, as other genes corresponding respectively to orthologues of MSMB and MSMP were identified in both tammar and opossum genomes. Thus USM is a novel mammalian gene that is absent in the eutherian lineage.

The four-exon structure of marsupial USM genes is similar to that of MSMB, including a predicted translation initiation codon in the three 3′-most nucleotides of Exon 1 (Figure 4). USM and MSMB both differ from MSMP, which is comprised of only three coding exons, homologous to USM/MSMB Exons 2-4. Thus for ease of comparison, the exons of MSMP are hereafter referred to according to their homology with USM/MSMB exons. The full coding region and splicing structure of tammar USM1 was confirmed by RT-PCR followed by cloning and sequencing (not shown).

The USM/MSMB/MSMP gene family

To examine the evolution of the MSMB/MSMP/USM gene family, we performed low stringency tBLASTn searches of GenBank databases and identified numerous homologues in vertebrate genomes as well as in those of lower deuterostomes, including Ciona spp. (Urochordata), Branchistoma lanceolatum (Cephalochordata) and Strongylocentrotus purpuratus (Echinodermata), and of protostomes, including those recently reported in the phyla Mollusca and Rotifera [24]. (See additional file 2: Sequence_sources.pdf for sources of all sequences used in this study.) Most of the identified genes were previously unreported. Alignment of a large number of translated sequences (not shown) suggested a complex pattern of evolution with rapid sequence changes and gene duplication events. As previously reported [23], MSMP showed the strongest conservation among vertebrates. Because of the large number of amino acid substitutions, the phylogenetic relationship between family
members from distantly related species was not readily resolved by standard bootstrapping methods, with the exception of MSMP-like genes (not shown). Nevertheless, three broad sub-families appeared to be represented among vertebrates: MSMP-like, MSMB-like and USM-like (see additional file 3: Tree.pdf). Published cDNA sequences from the Habu snake (Trimeresurus flavoviridis) [26] are similar to the lizard USMH genes. Like the lizard and zebrafish USMH genes, the snake genes are more similar to each other (not shown), suggesting that they also represent a lineage-specific expansion in copy number. These genes encode small serum proteins, SSP1-5, which appear to encode small serum proteins, SSP1-5, which appear to

Conserved synteny among MSMB/MSMP/USM family members
To clarify the relationships among MSMB/MSMP/USM family members, we examined their conservation of synteny with flanking genes. We focussed particularly on MSMB-like and USM-like genes as they showed the most sequence variability. The most informative syntenic groups are summarised in Figure 5.

In the opossum genome, USM flanks ARID5A while 14 tandem copies of MSMB flank FAM21C and ANUBL1. In the chicken, 3 tandem copies of MSMB also flank FAM21C and ANUBL1, which are located near ARID5B (a paralogue of ARID5A) on chromosome 6, whereas no MSMB/USM-like gene is located near ARID5A on chromosome 22. By contrast, USM-like genes lie close to ARID5A in the lizard genome and arid5a in the zebrafish genome. This suggests that the same duplication event that generated ARID5A and ARID5B also generated USM-like and MSMB-like genes, respectively. This duplication event can be traced to prior to the divergence of the teleost fish lineage (which has also undergone its own genome duplication event [25]) and is associated with the generation of other paralogous pairs (ANTRX1/ANTRXL and others not shown) that varyably cluster with ARID5A/ARID5B in vertebrate genomes (Figure 5). Both of these paralogous syntenic groups variably contain a homologue of PPYR1, with some lineages (such as lizard and zebrafish) containing a homologue in both syntenic groups.

USM homologues in other vertebrates
The presence of paralogous syntenic clusters conserved throughout vertebrates allowed orthologues of USM to be clearly identified. Among non-mammalian tetrapods, the most similar sequence to USM found was from the genome of the green anole lizard (Anolis carolinensis). Multiple copies of USM-related genes in the lizard flank ARID5A, as does opossum USM and a cluster of three USM-like genes in the zebrafish genome (Figure 5). These genes appear to be orthologous with respect to their origin, thus we refer to the lizard genes as USMH1 to -7 (USM homologue 1 to 7) and the zebrafish genes as usmh1 to -3 (USM homologue 1 to 3). They may not have equivalent function to USM, however, as the lizard and zebrafish genes have retained a complete Exon 4 encoding the C-terminal domain, in contrast to marsupial USM genes in which the open reading frame encoding this domain is greatly truncated. They also have four coding exons (Figure 4), which is supported by transcript evidence (see additional file 2: Sequence_sources.pdf). Published cDNA sequences from the Habu snake (Trimeresurus flavoviridis) [26] are similar to the lizard USMH genes. Like the lizard and zebrafish USMH genes, the snake genes are more similar to each other (not shown), suggesting that they also represent a lineage-specific expansion in copy number. These genes encode small serum proteins, SSP1-5, which appear to

	Exon 1	Exon 2	Exon 3	Exon 4
mouse Msmb				
mouse Msmtp				
tammar USM1				
lizard USMH1				
zebrafish usmh1				

Figure 4 Comparison of exon structure of selected USM/MSMB/MSMP family members. Regions encoding the signal peptide and N- and C-terminal domains are indicated. Filled boxes represent coding regions. Numbers represent nucleotide lengths.
have a role in protection against the snake’s own venom rather than in reproduction [13,14]. USMH-like sequences were also found in cDNAs derived from mixed tissues of the channel catfish (*Ictalurus punctatus*). According to the NCBI UniGene EST expression profiles, zebrafish usmh transcripts are found largely in the reproductive tract and consist mostly of usmh2 and usmh3 transcripts. Although it is possible that USMH proteins in other vertebrates also contribute to postovulatory coats, this appears unlikely due to their apparent additional expression in non-reproductive tract tissues. Furthermore, no specifically USM-like sequences were identified in the two sequenced avian genomes, chicken (*Gallus gallus*) and zebra finch (*Taeniopygia guttata*), in which conservation of postovulatory coat proteins might be expected. Thus it appears that a USMH gene evolved a novel role in the postovulatory coats of a common mammalian ancestor.

An apparent orthologue of USM is also present in the genome of the platypus (*Ornithorhynchus anatinus*), based on sequence similarity of Exons 1-3 and proximity to an orthologue of Flj10081, which also flanks Arid5a on mouse chromosome 1 (Figure 5). However platypus

Exon 4 could not be identified either manually or using gene prediction software, thus it could not be determined whether it encodes the same C-terminal truncation as marsupial USM. Our failure to detect Exon 4 argues that it probably has a truncated open reading frame and therefore platypus USM is likely to be functionally equivalent to marsupial USM rather than other vertebrate USMH genes.

MSMB paralogues in birds and marsupials

Our phylogenetic analysis of avian MSMB homologues revealed three distinct but previously unrecognised paralogous groups. The three chicken paralogues, which we term avian MSMB1, MSMB2 and MSMB3, flank each other on chromosome 6. Thus unlike in New World monkeys [27], in which multiple copies of MSMB appear to have arisen independently, avian MSMB paralogues are apparently conserved. Furthermore, each avian MSMB paralogue shows high conservation in its translated sequence with its respective orthologues. Previously characterised sequences from chicken and ostrich (*Struthio camelus*) designated as MSMB [15,28] correspond to MSMB1, while the gene currently

Figure 5 Regions of conserved synteny among vertebrate genomes. Only some genes, whose position within a syntenic group is informative, are shown. Thus a small number of intervening genes lie between some genes that are depicted as directly flanking for simplicity. Larger intergenic distances are depicted by parallel diagonal lines. Key genes mentioned in the text are highlighted in colour.
annotated as MSMB by the NCBI “Gene” database http://www.ncbi.nlm.nih.gov/gene?term=msmb%20gallus corresponds to MSMB2. A partial transcript of MSMB3 from chicken [GenBank accession DT655693] is annotated as being derived from reproductive tract (“testis, ovary and oviduct”), while a full transcript from duck (Anas platyrhynchos) [GenBank accession HO188240] was derived from a screen for genes expressed in the epithelium of the magnum (part of the reproductive tract) and correlated with high egg hatchability [29].

Avian MSMB1-3 genes differ markedly from each other in their degree of conservation. Translated sequence identities of the MSMB paralogues of zebra finch (order Passeriformes) were compared with their respective orthologues from Anseriformes (duck) and/or Galliformes (chicken, duck and turkey), the latter two orders forming a monophyletic clade [30]. Conservation is notably higher among MSMB3 orthologues (81-82% amino acid identity) compared with MSMB1 (54-60%) and MSMB2 (53-56%) (see additional file 4: avian_MSMBs.pdf for table of sequence identities and similarities). The pattern was similar when comparing within Galliformes (chicken versus turkey): 83% amino acid identity for MSMB1, 89% for MSMB2 and 98% for MSMB3. Mouse Msmb is more similar to avian MSMB2 (32-36% amino acid identity) than either MSMB1 (25-28%) or MSMB3 (23-25%). These data suggest that avian MSMB3 has acquired a novel, specialised role in birds distinct from that of other vertebrate MSMB homologues. Considering the tissue source of the only two known transcripts, this role is likely to be related to reproduction. Ostrich MSMB1 was originally identified in the pituitary gland [15], supportive of a previously proposed role in the pituitary-gonadal axis [17,19,20], in the pituitary gland [15], supportive of a previously

Between chicken and zebra finch, and of marsupial MSMB1 between opossum and tammar. No marsupial homologues other than MSMB1 showed significant bootstrap values between tammar and opossum, whereas homologues from the same species tended to cluster together within the phylogenetic tree, indicative of lineage-specific duplication events.

MSMB-like genes in protostomes

Protostomal MSMB-like genes were identified mostly from the phylum Mollusca, including bivalves, gastropods and cephalopods, with one sequence from Rotifera. Additional identified transcript sequences were from a cDNA library derived from floral bulbs of Lewis’ monkeyflower (Mimulus lewisii), a flowering plant. These are assumed to have arisen from contamination of the floral buds by a terrestrial gastropod (a slug or a snail) (H.D. Bradshaw, pers. comm.).

Phylogenetic analysis of all the protostomal MSMB-like translated sequences did not entirely reflect the species’ taxonomic relationship (Figure 7), suggesting that not all the sequences are orthologous to each other. Most notably, the similarity between a sequence from a cephalopod, Euprymna scolopes, and the “Mimulus
lewisii" (presumed terrestrial gastropod) sequence is stronger (100% bootstrap) than between any other sequence pairs, including between congeneric species (92% for Loligo spp.; 25% for Mytilus spp.). This suggests that the former sequences represent a gene that is subject to more evolutionary constraints, similarly to MSMP in vertebrates. Indeed, the sequences from Euprymna scolopes and “Mimus lewisii” appear to share some features that are highly conserved in vertebrate MSMPs, such as a serine-alanine motif near the C-terminus (not shown). Thus it is possible that these two sequences represent distant orthologues of MSMP.

The California sea hare (Aplysia californica; Gastropoda) is the only mollusc currently with a WGS sequencing project. The sea hare MSMB-like sequence is located on the same genomic scaffold (Scaffold 217 of genome build Broad 2.0/aplCal1) as a member of the KLHL (Kelch-like) gene family. KLHL genes also respectively occupy the syntenic groups that include MSMB or USM/USMH in vertebrates (not shown). Together these data suggest a divergence between the MSMP and USM/MSMB lineages in a bilaterian common ancestor.

Predicted tertiary structure of marsupial USM

Almost all USM/MSMB/MSMP family members share a conserved pattern of ten disulfide-forming cysteine residues, whereas marsupial USM has only eight cysteine residues due to a truncated reading frame in Exon 4 (Figure 8a). The disulfide bond pairings of cysteine residues has been partially determined [15] and then later refined [33,34]. A recent crystallographic analysis of human MSMB [35] showed that the N-terminal domain consists of six β-strands (β1-6) arranged in a Greek key motif, while the C-terminal domain consists of four β-strands (β7-10). Three disulfide bonds (6 cysteine residues) give rigidity within the N-terminal domain and one disulfide bond (2 cysteine residues) gives rigidity within the C-terminal domain. A fifth, single disulfide bond between C37 and C73 links the N-terminal and C-terminal domains. In marsupial USM, the cysteine residue homologous to C37 (= C40 in tammar secreted USM1) is conserved, despite the absence of C73. However, an additional cysteine residue (= C59 in the USM1) appears to form a disulfide bond.

Frankenberg et al. BMC Evolutionary Biology 2011, 11:373
http://www.biomedcentral.com/1471-2148/11/373

Page 7 of 13
tammar secreted protein) is present within the short, six-residue C-terminal domain of all marsupial USM orthologues. Modelling of the tammar USM1 tertiary structure showed that this cysteine residue would lie very close to C37 and substitute for the missing C73 (Figure 8b).

The crystal structure of MSMB also revealed a mechanism for dimerisation, whereby the β1 and β10 strands of one molecule lie end-to-end to form a straight edge which lies antiparallel and in contact with the β1 and β10 strands of a second molecule [35]. The involvement of both β1 (N-terminal domain) and β10 (C-terminal domain) strands suggests that dimerisation cannot occur in USM, which lacks sequence homologous to β10. This might be integral to a divergent role for USM compared with MSMB and USMH. However, the molecular masses of bands 3-5 in the original protein gel of [2] (Figure 1), which each contained USM sequence, were estimated by the authors as 22, 17 and 14 kDa, respectively. Bands 3 and 5 are thus approximately three- and two-fold, respectively, the predicted molecular mass of monomeric secreted USM (7 kDa). It thus remains possible that USM can form multimers despite its C-terminal truncation. It is noteworthy that the immunoglobulin-binding property of MSMB may depend on dissociation of dimers to monomers in response to reducing conditions or low pH [35,36].

The precise role of USM in the marsupial postovulatory coats is an intriguing question considering the various roles that have been proposed for MSMB. While MSMB was first identified almost three decades ago as a component of human seminal plasma with FSH-inhibiting activity [16], there has been a recent resurgence in interest due to a demonstrated genetic link with prostate cancer susceptibility [37-40]. Perhaps more relevant to the present context, MSMB has been shown to inhibit sperm binding and the acrosome reaction [11,41], suggestive of a possible role in blocking polyspermy in marsupials.

Expression of USM, MSMB and MSMP in tammar tissues
To elucidate distinctions in the roles of USM, MSMB and MSMP in the tammar, RT-PCR was performed on a variety of tissues (Figure 9). USM1 expression was detected solely within endometrium and not in other tissues, including oviduct. This is consistent with a highly specific role for USM1 as a component of the postovulatory coats. MSMB expression was detected in both pituitary gland and testis, while MSMP expression was restricted to testis only. Expression of USM2 was not detected in the tissues tested.

Expression of USM1 was examined by quantitative RT-PCR during gestation (Figure 10). Transcript levels were moderate-to-high during pre-diapause (days 0-7 after birth of previous young), diapause, and early post-diapause (until day 17-18 after blastocyst reactivation by removal of pouch young (RPY)). Levels were higher during diapause than pre-diapause and the earliest post-diapause stages, although these differences were not significant. By contrast, the second peak at around d10-15 RPY was significantly higher than d4-d6 RPY and d20-25 RPY. After d15 RPY there was a rapid reduction in USM1 transcript levels, which coincides with shell breakdown at around d18-19 RPY [7].

The dynamic temporal expression pattern of USM1 during gestation suggests that it may be at least partly regulated by progesterone - indeed we identified a progesterone receptor binding site within the first intron

![Figure 9](URL)
Figure 9 RT-PCR expression of tammar USM1, MSMB1 and MSMP in various tissues. USM1 expression was detected more strongly in endometrium but not in any other tissues, consistent with a specific role in the postovulatory coats. MSMB1 and MSMP were both expressed in testis, while MSMB1 was also expressed in the pituitary gland, consistent with a possible role in the pituitary-gonadal axis.

![Figure 10](URL)
Figure 10 Quantitative RT-PCR analysis of USM1 expression in endometrium during tammar development. Pre-diapause stages are indicated by the age of the pouch young (PY) arising from the previous pregnancy, with blastocysts entering diapause when PY are around day 8 (d8). Post-diapause stages are indicated by the days after removal of pouch young (RPY) to initiate blastocyst reactivation. USM1 shows dynamic changes in expression during the pregnant oestrus cycle. The large reduction in expression to basal levels after d17 RPY correlates approximately with the period of shell breakdown (d18-19 RPY) as indicated.
that was conserved in both tammar and opossum (not shown). In the tammar, progesterone receptors are highest at around d5 RPY, together with oestrogen receptors, coinciding with the progesterone and oestrogen pulses that occur at this time [42]. Interestingly this is exactly when USM1 is at its lowest level before increasing again. USM1 expression is also low after d20 of pregnancy (Figure 10), at the time when progesterone concentrations in the corpus luteum [43], in the peripheral circulation [44], and in the utero-ovarian circulation [45] are highest, but progesterone receptor levels are very low [42]. Thus, USM1 expression appears to follow the profile of progesterone receptor levels rather than of progesterone.

USM as a component of the marsupial postovulatory coats

The mucoid layer is deposited during passage through the oviduct whereas shell coat material is secreted from endometrial glands within the uterus and the uterotubal junction. The association of MSMB expression with mucosal epithelia [46] suggests that USM might contribute to the mucin layer, however, the brushtail possum protein bands isolated by Casey et al. [2] were derived from a mixed pool of coats from early cleavage through to late expansion conceptuses. Coats of the former would be expected to include more mucoid coat while the latter would include more shell coat. The much greater volume of shell coat surrounding late-expansion conceptuses [5] suggests that shell coat material would predominate in any mixed pool of samples. Indeed, expression in the endometrium but not the oviduct revealed by our RT-PCR data is consistent with contribution to the shell coat rather than the mucin layer, which forms first in the oviduct. Nevertheless, there may be some overlap in the components of both layers, with the physical differences between the shell and mucin coat due to a subset of components that are specific to one or the other. Immunolocalisation studies may clarify the relative contribution of USM to each layer.

Many of the known properties of MSMB provide clues as to possible role(s) of USM. In marsupials, intimate contact between conceptus and maternal tissues occurs only late in development, after shell breakdown approximately two-thirds of the way through pregnancy [47,48]. The binding of MSMB to immunoglobulins [12] suggests that USM, if it shares this property, may interact with the maternal immune system to modulate its action. The apparently synchronised down-regulation of tammar USM1 with shell breakdown suggests that the former may be a necessary step for subsequent successful implantation. Alternatively, USM1 down-regulation might facilitate shell-breakdown itself.

USM could also have an immune role in protection against pathogens within the uterus. We have identified a lysozyme as another component of the postovulatory coats (unpublished data) that may have a similar role in protection against bacteria. Such a role for USM would be consistent with the association of MSMB secretion in mucosal tissues [49]. In eutherians, degradation of mucin on the endometrial surface is associated with a window of receptivity to implantation (reviewed [50]). Thus it is possible that similar events, including down-regulation of USM expression, are associated with placental attachment after shell breakdown in marsupials.

Unlike MSMP, which is relatively well conserved, MSMB is characterised by a rapid rate of evolution. Mäkinen et al. [27] noted that among the multiple copies of MSMB in New World monkeys, the second intron is more highly conserved than the exons and there is no bias towards substitutions in the third nucleotide of codons, which normally preserve amino acid identity. Thus it is possible that rapid change in the primary structure of MSMB, excluding the signal peptide and the cysteine residues, is under positive selection. In another study [51], MSMB was identified in a screen for prostate-expressed genes in primates with a high ratio of nonsynonymous to synonymous substitution rate (d_\text{NS}/d_\text{S}) - a conservative measure of positive selection. USM is similarly highly divergent among the three marsupial species examined and, like MSMB, its divergence might be due to positive rather than neutral selection. It was previously proposed that MSMB prevents immune attack against allogeneic sperm [12]. A possible extension to this idea may be that the same mechanism also serves to reject heterospecific sperm, as MSMB has been shown to bind sperm and act as an inhibitor of sperm motility and the acrosome reaction [10,11,41]. Thus rapid evolution of USM (and MSMB) could be implicated in speciation events by preventing hybridisation with closely related species. A recent report [24] showed that male longfin inshore squid (Loligo pealeii) detect an MSMB-like protein, Loligo β-MSP, in the capsule of eggs laid on the sea floor. Loligo β-MSP triggers hostile behaviour in conspecific males towards other male squid, demonstrating a possible role in species recognition. It is not clear whether this reflects only a secondary role for Loligo β-MSP in the egg capsule, but the parallel with USM as a component of the marsupial conceptus coats is intriguing, although in marsupials internal fertilisation and development rules out any role for USM in mate selection by males. However, it remains possible that USM within the reproductive tract helps to ensure fertilisation by only con-specific sperm.

Some eutherians such as rabbit, horse and some carnivores (reviewed [52-54]) also possess various post-
ovulatory conceptus coats, such as a mucoid coat, neo-
 zona and gloiolemma (rabbit) or a capsule (horse). It is
 not known whether any components of marsupial and
 eutherian mucoid coats are homologous, but our thor-
 ough searches in both rabbit and horse genome data-
 bases suggest that no orthologues of USM are present.
 However, other components could be homologous. It
 also cannot be excluded that MSMB or MSMP have
 acquired an analogous role in the coats of some euther-
 ians by convergent evolution. It is noteworthy that
 MSMB expression has also been detected in human
 endometrium [55].

 Very few genes have been identified in marsupials that
 are absent in eutherian genomes [9]. The identification
 of USM is thus noteworthy and could be highly relevant
 to understanding the differences in modes of reproduc-
 tion between these two major mammalian groups. If
 USM homologues in non-mammalian vertebrates have a
 different role to marsupial USM, this would suggest that
 USM homologues in non-mammalian vertebrates have a
 tion between these two major mammalian groups. If
 understanding the differences in modes of reproduc-
 tion in mammals, but also the roles of MSMB and
 MSMP.

 Methods
 Animals and tissue sampling
 Tammar samples were collected from animals shot on
 Kangaroo Island, South Australia, or from captive ani-
mals from a colony maintained by the University of
 Melbourne. Tissues from adult tammars were frozen in
 liquid nitrogen. All tissues were collected under appro-
priate permits. Experiments were approved by the Uni-
 versity of Melbourne Animal Experimentation Ethics
 Committee and all animal handling and husbandry was
 in accordance with the National Health and Medical
 Research Council of Australia (2004) guidelines.

 RNA extraction and reverse transcription
 Total RNA was extracted using Tri Reagent (Ambion)
 and DNase-treated using DNA-free (Ambion). Reverse
 transcription was performed using the Transcriptor
 High Fidelity cDNA Synthesis Kit (Roche) with oligo-dT
 priming.

 RT-PCR
 The complete coding region of tammar USM1 cDNA
 was amplified using the primers 5'-GGGGCAC-GAATGGGTGTATAATC-3' and 5'-CCTGAGACACAGAGGACAGGACTG-3' (first
 PCR) and 5'-CAGACAAATCGAGGGGTCC-3' (nested
 PCR). The purified 5' RACE product was directly
 sequenced using the nested reverse primer.

 Semi-quantitative RT-PCR on cDNA from adult tis-
 sues was performed using the following primers. USM1
 - 5'-GGGGCACGAATGGGTGTATAATC and CCTGAG-
 ACAGAGGACAGGACAGGACTG; USM2 - 5'-
 TGTTGGCGAAGAGGTCATTGCC-3' and TTCC
 TGAGAGGTACAGGTGTCAGTTATG; MSMB1 - 5'
 GATTGCTGTGCTCTCGTACTG-3' and AGGATTTTGTTGGGGTCTTCTTTATG; MSMP - 5'
 GGTAGTGGTCAATGGAG TTGCTGTTCG-3' and
 5'-ACTTCGGAGCCAGATTACC-3'; GAPDH - 5'
 CCTACTCCAAATGTATCGTTGTTG-3' and 5'
 GGTGGAACCTCTTTTT TGACTGG-3'. Amplification
 was performed using the following programme: 95°C for
 1 minute; 35 cycles of 95°C for 15 seconds, 60°C for 15
 seconds, 72°C for 30 seconds; 72°C for two minutes.

 Quantitative RT-PCR
 Quantitative RT-PCR (qRT-PCR) was performed using
 the Brilliant II SYBR Green qPCR Kit (Agilent Technol-
 ogies) and reactions run in triplicate on an Mx3000P
 thermal cycler (Stratagene). The quantities of tammar
 USM1 transcripts, using the primers 5'-GGGGCAC-GAATGGGTGTATAATC-3' and 5'-CCTGAGACACAGAGGACAGGACTG-3', were compared to the
 housekeeping gene β-ACTIN, using the primers 5'-
TTGCTGACAGGATGAGAGG-3' and 5'-AAAGC-CATG-CCAA1CTTCACTC-3'. Amplification was performed using the following program: 95°C for 15 minutes; 50 cycles of 95°C for 15 seconds, 60°C for 30 seconds (which included the plate read) and 72°C for 30 seconds. This was followed by 95°C for 1 minute and a dissociation curve of 55°C to 95°C, with a reading every 0.5°C over 30 seconds.

Plates were discarded if more than one of the negative control triplicates was contaminated. Individual samples of a triplicate were also discarded if they had irregular melting curves or if the coefficient of variation was greater than 0.05 for the triplicate. If more than one of the triplicates was irregular the sample was repeated or discarded. In addition, a calibrator sample (d4-5 PY stage) was normalised relative quantity value for each sample, which incorporated both the individual efficiencies of each primer set and the calibrator sample into the calculations [56]. This gave a normalised relative quantity value for each sample, which was then used for the subsequent analysis.

Statistical analyses were conducted using R (version 2.11.1) [57]. A Shapiro-Wilks test for normality was performed to check the assumption that the data had a normal distribution. Since the distribution of the relative expression values was skewed, the data were log transformed for analysis. Log transformed data was analysed by one-way ANOVA with multiple comparisons of means compared using Tukey contrasts. For all analyses a significance level of p < 0.05 was used. Data are presented as mean ± SEM after converting back to non-transformed normalised relative expression.

Bioinformatics
Sequence searches of Whole Genome Shotgun, Expressed Sequence Tag and Nucleotide databases were performed through the National Center for Biotechnology Information (NCBI) website [58] using BLAST and tBLASTn and modifying search parameters for stringency. Nucleotide and translated sequences were analysed using the MacVector sequence analysis software package. Protein molecular masses were predicted using MacVector’s Protein Analysis Toolbox. Signal peptide cleavage sites were identified using the SignalP 3.0 web-based software [59] with default parameters.

BAC identification and sequencing
A tammar BAC genomic library (MEB1) was screened by PCR using primers 5'-GGGGCAC-GAATGGGTGTTATTTC-3' and 5'-GGAAGAGTGAGGCGATGGTGGAG-3'. Illumina 454 sequencing was performed by the Australian Genome Research Facility. The longest assembled contig (89, 803 nucleotides) was submitted to GenBank [accession JN251945].

Phylogenetic analysis
Translated sequences were aligned using ClustalW [60] within the MacVector sequence analysis software package. The unrooted phylogenetic tree was produced using Phylip (version 3.69) software [61] and running sequentially the programs protdist, neighbor and drawtree with default parameters. The tree was displayed and edited using Adobe Illustrator.

Promoter analysis
Promoter analysis was performed by aligning tammar USM1 and opossum USM genomic sequences using Mulan online software http://mulan.dcode.org/ [62,63] in ‘TBA’ mode. Conserved candidate transcription factor binding sites were identified using multiTFF [63,64] from the Mulan website, selecting the TRANSFAC professional V10.2 TFBS database for vertebrates, and selecting the “optimised for function” option for matrix similarity.

Acknowledgements
We thank Scott Brownlees for assistance with animal handling and Brandon Menzies and Andrew Pask for helpful suggestions.
Authors' contributions
SF performed bioinformatical analyses, semiquantitative RT-PCR and cloning. JF performed quantitative RT-PCR. BD performed BAC library screening. SF, GS and MBR analysed data and prepared the manuscript. All authors read and approved the final manuscript.

Received: 2 August 2011 Accepted: 30 December 2011
Published: 30 December 2011

References
1. Selwood L. Marsupial egg and embryo coats. Cells Tissues Organs 2000, 166(2):208-219.
2. Casey NP, Martinus R, Selwood L. Outer egg coats of the marsupial conceptus: secretion and protein composition. Mol Reprod Dev 2002, 62(2):181-194.
3. Roberts CT, Breed WG, Mayrhofer G. Origin of the oocyte shell membrane of a dasyurid marsupial: an immunohistochemical study. J Exp Zool 1994, 270(3):321-331.
4. Rentfree MB, Lewis AM. Cleavage in vivo and in vitro in the Marsupial Macropus eugenii. Reprod Fertil Dev 1996, 8(4):725-742.
5. Shaw G. The uterine environment in early pregnancy in the tammar wallaby. Reprod Fertil Dev 1996, 8(4):811-818.
6. Hughes RL. Morphological studies on implantation in marsupials. J Reprod Fertil 1974, 39(1):173-186.
7. Denker HW, Tyndale-Biscoe CH. Embryo implantation and proteinase activities in a marsupial (Macropus eugenii). Histochemical patterns of proteinases in various gestational stages. Cell Tissue Res 1986, 246(2):279-291.
8. Cui S, Selwood L. Cloning and expression of a novel CDN encoding shell coat protein, cp4, from the brushtail possum (Trichosurus vulpecula). Mol Reprod Dev 2003, 65(2):141-147.
9. Mikkelsten TS, Wakefield MJ, Alken B, Armenyta CT, Chang JL, Duke S, Garber M, Gentles AJ, Goodstadt L, Heger A, et al. Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences. Nature 2007, 447(7141):167-177.
10. Jeng H, Liu KM, Chang WC. Purification and characterization of reversible sperm motility inhibitors from porcine seminal plasma. Biochem Biophys Res Commun 1993, 191(2):435-440.
11. Chao CF, Chou ST, Jeng H, Chang WC. The porcine sperm motility inhibitor is identical to beta-microsemionoprotein and is a competitive inhibitor of Na+, K+-ATPase. Biochem Biophys Res Commun 1996, 218(2):623-628.
12. Maea N, Kamada M, Daitho T, Aono T, Futaki S, Liang ZG, Kode SS. Immunoglobulin binding factor in human seminal plasma: immunological function. Arch Androl 1993, 31(1):31-36.
13. Aoki N, Sakyma A, Kuroki K, Maeha N, Harada M, Deshimaru M, Terada S. Serotrinin, a CRISP family protein with binding affinity for small serum proteins (SSPs)-The PSP94 family proteins in a Japanese viper. Biochem Biophys Res Commun 2003, 305(2):330-334.
14. Lazure C, Villemure M, Gauthier D, Naude RJ, Mibikay M. Characterization of a polypeptide from human seminal plasma with inhibition (inhibition of FSH secretion)-like activity. FEBS Lett 1984, 165(1):11-15.
15. Thakur AN, Vaze AY, Dattatreayamurthy B, Sheth AR. Isolation & characterization of inhibin from human seminal plasma. Indian J Exp Biol 1981, 19(4):307-313.
16. Garde SV, Baner JS, U L, Finkelman MA, Krishan A, Welsham L, Ben-Josef E, Haddad M, Taylor JD, Porter AT, et al. Prostate secretory protein (PSP94) suppresses the growth of androgen-independent prostate cancer cell line (PC3) and xenografts by inducing apoptosis. Prostate 1999, 38(2):118-125.
17. Lokenhwa BL, Hurka SDL, Sheth AR, Block NL. Human prostatic inhibin suppresses tumor growth and inhibits clonogenic cell survival of a model prostatic adenocarcinoma, the Dunning R3327G rat tumor. Cancer Res 1993, 53(20):4855-4859.
18. Mundle SD, Sheth NA. Suppression of DNA synthesis and induction of apoptosis in rat prostate by human seminal plasma inhibin (HSP). Cell Biol Int 1993, 17(6):587-594.
19. Sheth NA, Tani TR, Mundle SD. Dual regulatory action of prostatic inhibitor (10.7 kDa) on DNA synthesis. Indian J Exp Biol 1992, 30(11):1024-1029.
20. Shukeir N, Arakelian A, Koshim S, Garde S, Rabbani SA. Prostate secretory protein PSP-94 decreases tumor growth and hypercalcemia of malignancy in a syngeneic in vivo model of prostate cancer. Cancer Res 2003, 63(9):2072-2078.
21. Valtonen-Andre C, Bajteli A, Hellsten R, Lilja H, Harkonen P, Lundwall A. A highly conserved protein secreted by the prostate cancer cell line PC-3 is expressed in benign and malignant prostate tissue. Biochem Biophys Res Commun 2007, 388(3):289-295.
22. Aoki N, Matsuho H, Deshimaru M, Terada S. Accelerated evolution of small serum proteins (SSPs)-The PSP94 family proteins in a Japanese viper. Gene 2002, 265(1):7-14.
23. Makinen M, Valtonen-Andre C, Lundwall A. New world, but not Old World, monkeys carry several genes encoding beta-microsemionoprotein. Eur J Biochem 1999, 264(2):407-414.
24. Warr G. A 12 kDa protein in chicken serum antagonizes cross-reactive with, but unrelated to, beta 2-microglobulin. Dev Comp Immunol 1990, 14(2):247-253.
25. Huang HL, Cheng YS, Huang CW, Huang MC, Hsu WH. A novel genetic marker of the ovomucoid gene associated with hatchability in Tsaiya ducks (Anas platyrhynchos). Anim Genetic 2011, no-no.
26. Hackett SJ, Kimball RT, Reddy S, Bowie RC, Braun EL, Braun MJ, Chojnowski JL, Cox WA, Han RL, Hanhman J, et al. A phylogenomic study of birds reveals their evolutionary history. Science 2008, 320(5884):1763-1766.
27. Gordon WL, Liu WK, Akiyama K, Tsuda R, Hara M, Schmid K, Ward DN. Beta-microsemionoprotein (beta-MSP) is not an inhibitor. Bioit Reprod 1987, 36(4):829-835.
28. Kohan S, Froyda B, Cederlund E, Fairwell T, Lerner R, Johansson J, Khan S, Ritzen M, Jornvall H, Cekan S, et al. Peptides of postulated inhibin activity. Lack of in vitro inhibin activity of a 94-residue peptide isolated from human seminal plasma, and of a synthetic replicate of its C-terminal 28-residue segment. FEBs Lett 1986, 199(2):242-248.
29. Ghisleri H, Teilm K, Johansson Y, Fernlund P, Drakenberg T. Solution structures of human and porcine beta-microsemionoprotein. J Mol Biol 2006, 362(3):502-515.
30. Wang J, Yu TA, Wu SH, Chang WC, Chen C. Disulfide pairings and secondary structure of porcine beta-microsemionoprotein. FEBs Lett 2003, 541(1-3):80-84.
31. Kumar A, Jagtap DD, Mahale SD, Kumar M. Crystal structure of prostate secretory protein PSP94 shows an edge-to-edge association of two monomers to form a homodimer. J Mol Biol 2010, 397(4):947-956.
32. Mori H, Kamada M, Maegawa Y, Yamamoto S, Aono T, Futaki S, Yano M, Kido K, Kode SS. Enzymatic activation of immunoglobulin binding factor in female reproductive tract. Biochem Biophys Res Commun 1998, 246(2):409-413.
33. Chang BL, Creamer SD, Winkl S, Isaccoo DS, Stevens VC, Sun J, Smith S, Puetz K, Romero LM, Willey KE, et al. Fine mapping association study and functional analysis implicates a SNP in MSMB at 10q11 as a causal variant for prostate cancer risk. Hum Mol Genet 2009, 18(7):1368-1375.
34. Eeles RA, Hate-Jarai Z, Giles G, Olama AA, Guy M, Jurgumah SK, Mulholland S, Leongamornlert DA, Edwards SM, Morrison J, et al. Multiple newly identified loci associated with prostate cancer susceptibility. Nat Genet 2008, 40(3):316-321.
35. Lou H, Yeager M, Li H, Boggess KJ, Hayes RB, Orr N, Yu K, Hutchinson A, Jacobs KB, Kraft P, et al. Fine mapping and functional analysis of a common variant in MSMB on chromosome 10q11.2 associated with prostate cancer susceptibility. Proc Natl Acad Sci USA 2009, 106(19):7933-7938.
40. Thomas G, Jacobs KB, Yeager M, Kraft P, Wacholder S, Orr N, Yu K, Chatterjee N, Welch R, Hutchinson A, et al: Multiple loci identified in a genome-wide association study of prostate cancer. Nat Genet 2008, 40(3):310-315.

41. Anahi Franchi N, Molina RI, Tissera AD, Maldonado CA, Oehninger S, Coronel CE: beta-Microseminoprotein in human spermatozoa and its potential role in male fertility. Reproduction 2008, 136(2):157-166.

42. Rentfree MB, Blanden DR: Progesterone and oestrogen receptors in the female genital tract throughout pregnancy in tammar wallabies. J Reprod Fertil 2001, 119(1):121-128.

43. Rentfree MB, Green SW, Young IR: Growth of the corpus luteum and its progesterone content during pregnancy in the tammar wallaby, Macropus eugenii. J Reprod Fertil 1979, 57(1):131-136.

44. Hinds LA, Tyndale-Biscoe CH: Plasma progesterone levels in the pregnant and non-pregnant tammar, Macropus eugenii. J Endocrinol 1982, 93(1):99-107.

45. Towers PA, Shaw G, Rentfree MB: Urogenital vasculature and local steroid concentrations in the uterine branch of the ovarian vein of the female tammar wallaby (Macropus eugenii). J Reprod Fertil 1986, 78(1):37-47.

46. Ulvsback M, Spurr NK, Lundwall A: Assignment of the human gene for beta-microseminoprotein (MSMB) to chromosome 10 and demonstration of related genes in other vertebrates. Genomics 1991, 11(4):920-924.

47. Freyer C, Zeller U, Rentfree MB: Placental function in two distantly related marsupials. Placenta 2007, 28(2-3):249-257.

48. Freyer C, Zeller U, Rentfree MB: The marsupial placenta: a phylogenetic analysis. J Exp Zool A Comp Exp Biol 2003, 299(1):59-77.

49. Weber H, Andresson C, Murne A, Rannevik G, Lindstrom C, Lilja H, Fernlund P: Beta-microseminoprotein is not a prostate-specific protein. Its identification in mucous glands and secretions. Am J Pathol 1990, 137(3):593-603.

50. Thatniah A, Carson DD: Murcins and blastocyst attachment. Rev Endocr Metab Diab 2002, 3(2):87-96.

51. Clark NL, Swanson WJ: Pervasive adaptive evolution in primate seminal proteins. PLoS Genet 2005, 1(3):e35.

52. Denker HW: Structural dynamics and function of early embryonic coats. Cells Tissues Organs 2000, 166(2):180-207.

53. Betteridge KJ: The structure and function of the equine capsule in relation to embryo manipulation and transfer. Equine Veterinary Journal 1989, 21(58):92-100.

54. Rentfree MB: Implantation and placentation. In Reproduction in Mammals. Volume 2. Edited by: Austin CR, Short RV. Cambridge: Cambridge University Press; 1982:26-69.

55. Baijal-Gupta M, Clarke MW, Finkelman MA, McLachlin CM, Han VK: Prostatic secretory protein (PSP94) expression in human female reproductive tissues, breast and in endometrial cancer cell lines. J Endocrinol 2000, 162(2):425-433.

56. Hellmanns J, Mortier G, Paape AD, Speelman F, Vandesompele J: qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biology 2007, 8(2):1-14.

57. R Development Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing; 2010, 2.11.1 edn:.

58. National Center for Biotechnology Information. [http://www.ncbi.nlm.nih.gov/]

59. SignaIP 3.0 Server. [http://www.cbs.dtu.dk/services/SignalP/]

60. Larkin MA, Blackshields G, Börnig P, Redhead S, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, et al: Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23(21):2947-2948.

61. PHYLIP (Phylogeny Inference Package) version 3.6. [http://www.phylip.com/].

62. Oucheraenko I, Loots GG, Gardine BM, Hou M, Ma J, Hardison RC, Stubbs L, Miller W: Mulan: multiple-sequence local alignment and visualization for studying function and evolution. Genome Res 2005, 15(1):184-194.

63. Loots GG, Oucheraenko I: Mulan: multiple-sequence alignment to predict functional elements in genomic sequences. Methods Mol Biol 2007, 395:237-254.

64. Loots GG, Oucheraenko I: Dcode.org anthology of comparative genomic tools. Nucleic Acids Res 2005, 33 Web Server issue: W56-64.

65. Lambert C, Leonard N, De Bolle X, Despeuex E: ESyPred3D: Prediction of proteins 3D structures. Bioinformatics 2002, 18(9):1250-1256.

66. Jones CM, Broadbent J, Thomas PQ, Smith JC, Beddington RS: An anterior signalling centre in Xenopus revealed by the homeobox gene XHex. Curr Biol 1999, 9(17):946-954.

67. Jmol: an open-source Java viewer for chemical structures in 3D. [http://www.jmol.org/].
Author/s:
Frankenberg, S; Fenelon, J; Dopheide, B; Shaw, G; Renfree, MB

Title:
A novel MSMB-related microprotein in the postovulatory egg coats of marsupials

Date:
2011-12-30

Citation:
Frankenberg, S., Fenelon, J., Dopheide, B., Shaw, G. & Renfree, M. B. (2011). A novel MSMB-related microprotein in the postovulatory egg coats of marsupials. BMC EVOLUTIONARY BIOLOGY, 11 (1), https://doi.org/10.1186/1471-2148-11-373.

Persistent Link:
http://hdl.handle.net/11343/264170

File Description:
Published version

License:
CC BY