A Calcificação no Arco Aórtico na Radiografia de Tórax de Rotina está Forte e Independentemente Associada ao Padrão Não-Dipper de Pressão Arterial

Adem Adar,1 Orhan Onalan,1 Fahri Cakan,1 Ertan Akbay,1 Ekrem Karakaya1
Karabük University Faculty of Medicine – Cardiology,1 Karabük – Turquia

Resumo

Fundamento: A pressão arterial não-dipper é uma das causas mais importantes de lesão de órgão-alvo da hipertensão e de eventos cardiovasculares futuros. Atualmente, não há uma ferramenta prática para prever o padrão não-dipper de pressão arterial.

Objetivos: O objetivo deste estudo foi investigar a relação entre a calcificação no arco aórtico detectada no raio de tórax e o padrão não-dipper de pressão arterial.

Métodos: Todos os pacientes encaminhados para monitorização ambulatorial da pressão arterial foram abordados para participação no estudo. A pressão arterial não-dipper foi definida como a redução de ≤10% da pressão arterial sistólica noturna quando comparada com os valores diários. A calcificação no arco aórtico foi avaliada através de radiografia do tórax e a concordância interobservador foi analisada utilizando a estatística kappa. Análises de regressão logística univariada e multivariada foram realizadas para avaliar a associação entre a calcificação no arco aórtico e o padrão NDBP. Valores de p bicaudais < 0,05 foram considerados estatisticamente significativos.

Resultados: Ao todo, 406 pacientes (idade mediana: 51,3) foram incluídos. Desses, 261 (64%) apresentavam padrão não-dipper de pressão arterial. De modo geral, a prevalência de calcificação no arco aórtico foi de 230 (57%). O grupo não-dipper apresentou prevalência significativamente maior de calcificação no arco aórtico (70% vs. 33%, p < 0,0001) em relação ao grupo dipper. A presença de calcificação no arco aórtico foi um preditor forte e independente de padrão não-dipper de pressão arterial (OR = 3,919; IC: 95% 2,39-6,42) em análise multivariada.

Conclusões: A presença de calcificação no arco aórtico em raio-x de tórax simples está forte e independentemente associada à presença de padrão não-dipper de pressão arterial. (Arq Bras Cardiol. 2020; 114(1):109-117)

Palavras-chave: Aorta Torácica/fisiopatologia; Calcificação; Calcinose; Cardiomiopatias; Hipertensão/diagnóstico por imagem; Função Ventricular Esquerda; Anti-Hipertensivos/uso terapêutico; Monitoração Ambulatorial da Pressão Arterial; Frequência Cardíaca.

Abstract

Background: Non-dipper blood pressure (NDBP) is one of the important causes of hypertension-related target organ damage and future cardiovascular events. Currently, there is no practical tool to predict NDBP pattern.

Objectives: The aim of this study was to investigate the relationship between aortic arch calcification (AAC) on chest radiography and NDBP pattern.

Methods: All patients referred for ambulatory BP monitoring test were approached for the study participation. NDBP was defined as the reduction of ≤10% in nighttime systolic BP as compared to the daytime values. AAC was evaluated with chest radiography and inter-observer agreement was analyzed by using kappa statistics. Univariate and multivariate logistic regression analysis was conducted to assess the association of AAC and NDBP pattern. A 2-tailed p-value <0.05 was considered statistically significant.

Results: A total of 406 patients (median age: 51.3) were included. Of these, 261(64%) had NDBP pattern. Overall, the prevalence of AAC was 230 (57%). Non-dipper group had significantly higher prevalence of AAC (70% vs. 33%, p<0.0001) as compared to the dipper group. Presence of AAC was a strong and independent predictor of NDBP pattern (OR = 3.919; 95%CI 2.39 to 6.42) in multivariate analysis.

Conclusions: Presence of AAC on plain chest radiography is strongly and independently associated with the presence of NDBP pattern. (Arq Bras Cardiol. 2020; 114(1):109-117)

Keywords: Thoracic, Aorta/physiopathology; Calcification; Calcinosis; Cardiomyopathies; Hypertension/imaging diagnosis; Ventricular Function,Left; Antihypertensive Agents/therapeutic use;Blood Pressure Monitoring Ambulatory; Heart Rate.

Correspondência: Adem Adar • Karabük University Faculty of Medicine – Cardiology, 78050, Karabük – Turquia
E-mail: dadaradem@gmail.com
Artigo recebido em 19/08/2018, revisado em 28/02/2019, aceito em 20/03/2019
Introdução

A hipertensão (HT) é a doença cardiovascular mais comum e é a principal causa de morbimortalidade cardiovascular. A pressão arterial (PA) segue um padrão circadiano, com queda noturna de 10% ou mais, se comparada com a PA diurna. A PA não-dipper (PADV) é definida como a ausência de descenso noturno normal da PA na comparação com as medições diurnas. O padrão PADV está associado à gravidade da doença, hipertrofia ventricular esquerda (HVE), proteinúria, formas secundárias de HT e resistência à insulina. Várias formas de hipertensão, dentre elas o padrão PADV, só podem ser detectadas através da monitorização ambulatorial da pressão arterial (MAPA). Além disso, a MAPA tem demonstrado uma estreita relação com a calcificação vascular. Entretanto, a utilização da MAPA em populações não-selecionadas não é prática e, atualmente, não existe uma ferramenta prática para prever o padrão PADV.

O padrão PADV vem demonstrando estar estreitamente relacionado com a rigidez arterial. A calcificação vascular desempenha um papel importante para o desenvolvimento de doença arterial coronária, doença cerebrovascular e vascular periférica. A calcificação no arco aórtico (AA) tem demonstrado uma estreita relação com a rigidez arterial. Do mesmo modo, a calcificação no arco aórtico (AA) tem demonstrado uma estreita relação com a rigidez arterial. Assim sendo, nossa hipótese é a de que a calcificação no AA detectada no raio-x de tórax poderá prever o padrão PADV.

Métodos

População do estudo

Todos os pacientes que foram encaminhados para o exame da MAPA foram abordados para participação no estudo. A indicação para o exame da MAPA foi deixado a critério do médico. Os seguintes critérios de inclusão foram aplicados: 1) Idade ≥ 18 anos; 2) Taxa de medida de pressão arterial válida de >85% durante o exame da MAPA. Trabalhadores noturnos, pacientes com dias-x de tórax inadequados, gravidez e suspeita de gravidez, histórico de doença valvar cardíaca moderada a grave, malignidade, cirurgia cardíaca ou torácica, doença arterial coronária, doença cerebrovascular e vascular periférica foram excluídos do estudo. Radiografias do tórax posterior/anterior e ecocardiografia transtorácica foram realizadas em todos os pacientes. Os seguintes eletrocardiogramas foram submetidos a uma avaliação global, incluindo a documentação do histórico médico, exame físico e medições das variáveis laboratoriais. O índice de massa corporal foi calculado como peso em quilos, dividido pela altura em metros quadrados. O diabetes foi definido como indivíduos tratados com insulina ou antidiabéticos orais. A hipertensão e a hiperlipidemia foram definidas como o uso de drogas anti-hipertensivas ou medicamentos para reduzir níveis de lipídio, respectivamente. O Comitê de Ética Institucional aprovou o protocolo do estudo. Os pacientes foram divididos em dois grupos de acordo com o padrão circadiano da PA: grupos não-dipper e dipper.

A monitorização ambulatorial da pressão arterial

Os exames da MAPA podem ser realizados usando um dispositivo de monitoramento Mobil-O-Graph (M-o-G; IEM, Alemanha). A primeira hora foi eliminada da análise. As leituras de PA foram obtidas automaticamente em intervalos de 30 minutos e foram incluídas na análise se >85% das aferições fossem válidas. Os valores da pressão arterial diurnas, noturnas e de 24h, e o percentual de queda da PA sistólica noturna versus a diurna foram registrados. As definições padrão de horas diurnas (07h às 23h) e noturnas (23h às 07h) foram modificadas, apropriadamente, com base no feedback dos pacientes. O padrão PADV foi definido como a redução de ≤ 10% na PA sistólica noturna em relação à PA sistólica diurna.

Avaliação da calcificação no AA

Todos os pacientes foram submetidos a raio-x do tórax realizados em projeção posteroanterior (PA). A radiografia padrão ao tórax com projeção PA (40 cm×40 cm; Curix HT 1.000G Plus, Agfa, Mortsel, Bélgica) foi obtida com o paciente de pé (Thoramat, Siemens, Erlangen, Alemanha). A distância do paciente foco foi de 150 cm. Utilizou-se um controle automático de exposição com tubo fixo de 117 kV. Foi observada a presença de calcificação no botão aórtico. A calcificação no AA foi graduada como se segue: Grau 0, sem calcificação visível; Grau 1, pequenos pontos de calcificação; Grau 2, uma ou mais áreas de calcificação espessa, e Grau 3, calcificação circular no botão aórtico (Figura 1). Ao todo, 100 radiografias do tórax foram selecionadas aleatoriamente para avaliação da calcificação no AA e analisadas independentemente por dois cardiologistas, alheios ao resultado dos dados da MAPA do paciente, a fim de verificar a confiabilidade do diagnóstico de calcificação no AA. Os valores de Kappa foram detectados como 0,812 e p < 0,001.

Exames laboratoriais

Amostras de sangue venoso foram coletadas de cada participante em condições de jejum. A glicemia de jejum, o colesterol total, o colesterol lipoproteína de alta densidade, o colesterol lipoproteína de baixa densidade, triglicerídeos e a creatininina foram medidos através de métodos laboratoriais padrão. A taxa de filtração glomerular (TFG) foi estimada usando a equação creatininina CKD-EPI.

Exame ecocardiográfico

Todos os pacientes foram examinados na posição decúbito lateral esquerda usando um sistema disponível comercialmente (Vivid 4 GE Medical System, Horten, Noruega) com um transdutor de matriz faseada a 3.5-MHz. Os parâmetros convencionais Modo-M e Modo-B foram medidos de acordo com as recomendações da Sociedade Americana de Ecocardiografia. Os diâmetros diastólico (DDFVE) e sistólico final do ventrículo esquerdo (DSFVE), e a espessura da parede posterior (EPP) e septo intraventricular (eSIV) foram medidos. A fração de ejeção ventricular esquerda foi medida usando o método Teichholz. A massa ventricular esquerda (MVE) foi calculada pela equação de Devereux: $MVE = 0.8 \times \left(1,04 \times \left(DDFVE + eSIV + EPP \times 3 \times \frac{DDFVE}{3} \right)\right) + 0,6$. Com base na espessura relativa da parede (2 x EPP/DDFVE) e na presença ou ausência de calcificação, a HVE foi dividida em graus de 0 a 3.
de HVE, vários tipos de padrões geométricos do VE foram definidos (geometria normal, HVE concêntrica, HVE excêntrica, e remodelamento concêntrico).

Análise estatística

Variáveis contínuas foram expressas como média (desvio padrão) ou mediana (intervalo interquartil (IIR)), e variáveis categóricas como números (percentuais). As distribuições de variáveis contínuas entre os grupos de estudo foram testadas usando o teste Kolmogorov–Smirnov. Os dados normalmente distribuídos foram comparados usando o t-teste de amostras independentes e os dados com distribuição não normal foram comparados usando o teste U de Mann-Whitney. Os dados categóricos foram comparados usando o teste qui-quadrado ou o teste exato de Fisher, quando necessário.

Análises de regressão logística uni e multivariadas foram conduzidas para avaliar a associação de calcificação no AA e o padrão PADV. Na análise de regressão multivariada (método Enter), o tamanho do efeito foi ajustado para variáveis com nível de significância na análise univariada de < 0,1. Foram estimadas as razões de chance ajustadas (ORa) com os intervalos de confiança de 95%. Valores bicaudais de p < 0,05 foram considerados estatisticamente significativos. Todas as análises estatísticas foram feitas com o programa IBM SPSS Statistics for Windows, Versão 21.0 (IBM Corp., Armonk, NY, EUA).

Resultados

Ao todo, 406 pacientes (idade média: 51 anos; 58% mulheres) foram incluídos. Duzentos e sessenta (64%) apresentavam padrão PADV e foram classificados como “grupo não dipper”. Os 145 pacientes restantes (36%) que apresentavam padrão dipper de PA foram classificados como “grupo dipper”. Em relação ao grupo dipper, o grupo não dipper era formado por indivíduos mais idosos (p < 0,001), com maior IMVE (p = 0,007), prevalência de HVE (p = 0,013), prevalência de hipertensão (p = 0,049) e níveis séricos mais elevados de triglicerídeos (p = 0,013). A TFG foi significativamente mais baixa no grupo não dipper (p < 0,0001). Os grupos foram semelhantes no que diz respeito às outras características basais, apresentadas na Tabela 1.

Não houve diferenças nos valores da PAD diurna, a PAS de 24 horas e a PAD de 24 horas entre os grupos não dipper e dipper. Entretanto, a PAS diurna foi mais baixa nos grupos não-dipper (p = 0,012). Além disso, os valores da PAS noite (p < 0,0001) e da PAD noite (p < 0,0001) foram significativamente mais altos no grupo não-dipper (Tabela 2).

A prevalência de calcificação no AA foi de 57% na nossa população de estudo. O grupo não-dipper apresentou prevalência significativamente mais elevada de calcificação no AA (grau ≥ 1) na radiografia de tórax (p < 0,0001), quando comparado com o grupo dipper (Tabela 3).

A idade, o índice de massa corporal, o sexo feminino, a hipertensão, a TFG, o IMVE, a presença de HVE, o padrão geométrico do VE de hiperтроfia concêntrica e a calcificação no AA foram associados à presença do padrão PADV na análise de regressão logística univariada com um valor de p menor que 0,1 (Tabela 4). Desses, a idade, o índice de massa corporal, o sexo feminino, a hipertensão, a TFG, o IMVE, a presença de HVE e a calcificação do AA foram incluídos no modelo de regressão multivariada. Na análise de regressão multivariada, a presença de calcificação no AA na radiografia do tórax (OR 3,919; IC 95% 2,392-6,421) foi o único preditor independente de padrão PADV (Tabela 5).

Discussão

O padrão não-dipper de PA é uma das causas mais importantes de lesão de órgão-alvo da hipertensão e de eventos cardíacos futuros.1,5,6 Neste estudo, a presença de calcificação no AA ao raio-x do tórax foi um preditor forte e independente do padrão PADV.
Tabela 1 – Características basais dos grupos de estudo

	Não-Dipper (n = 261)	Dipper (n = 145)	Valor de p
Idade (anos)	54 (13)	47 (14)	< 0,001
Peso (kg)	80 (13)	79 (13)	0,336
Altura (cm)	165 (8)	166 (9)	0,084
Área da superfície corpórea (m²)	1,90 ± 0,18	1,90 ± 0,18	0,864
Índice de massa corporal (kg/m²)	29 (5)	28 (4)	0,067
Sexo feminino (n, %)	160 (61,3)	76 (52,4)	0,061
Obesidade (n, %)	106 (40,6)	51 (35,2)	0,281
Hipertensão (n, %)	135 (51,7)	60 (41,4)	0,049
Diabetes (n, %)	59 (22,6)	25 (17,2)	0,201
Hiperlipidemia (n, %)	42 (16,1)	26 (17,9)	0,634
Tabagismo (n, %)	45 (17,2)	34 (23,4)	0,130
Inibidores da ECA (n, %)	71 (27,2)	33 (22,8)	0,326
Bloqueadores de receptores da angiotensina (n, %)	27 (10,3)	16 (11)	0,829
Bloqueadores dos canais de cálcio (n, %)	30 (11,5)	18 (12,4)	0,783
Betabloqueadores (n, %)	24 (9,2)	16 (11,0)	0,551
Diuréticos (n, %)	29 (11,1)	21 (14,5)	0,322
Creatinina (mg/dL)	0,80 (0,20)	0,8 (0,3)	0,910
Taxa de filtração glomerular (mL/min/1,73m²)	98 ± 13	103 ± 26	< 0,0001
Colesterol total (mg/dL)	190 ± 39,5	195 ± 39,3	0,200
Triglicerídeos (mg/dL)	190 (40)	172 (83)	0,013
Lipoproteína de baixa densidade (mg/dL)	112 ± 32	114 (33)	0,816
Lipoproteína de alta densidade (mg/dL)	47 (11)	46 (12)	0,528
Glicemia (mg/dL)	107 (31)	103 (30)	0,088
Diâmetro do átrio esquerdo (mm)	35 (4)	34 (4)	0,070
Fração de ejeção do ventrículo esquerdo (%)	65 ±6	64 (5)	0,437
Índice de massa ventricular esquerda (gr/m²)	93 (20)	87 (18)	0,007
Hipertrofia ventricular esquerda (n, %)	61 (23,4)	19 (13,1)	0,013
Geometria ventricular esquerda (n, %)			
Normal	49 (18,8%)	30 (20,7%)	0,640
Remodelação conólnítica	151 (57,9%)	96 (66,2%)	0,099
Hipertrofia excêntrica	19 (7,3%)	5 (3,4%)	0,117
Hipertrofia conólnítica	42 (16,1%)	14 (9,7%)	0,072

Variáveis contínuas são apresentadas como mediana (intervalo interquartil) ou média (desvio padrão); variáveis categóricas são apresentadas como número (percentual). ECA: enzima conversora da angiotensina.

O diagnóstico da hipertensão é geralmente baseado nas medidas diurnas da PA em consultório, e a pressão arterial noturna e a PADV são negligenciadas na prática clínica. Entretanto, a associação da pressão arterial noturna e da PADV com a lesão de órgão-alvo da hipertensão é mais robusta do que a hipertensão diurna.17-19 Os pacientes com padrão PADV apresentam alto risco de lesão de órgão-alvo, inclusive infarto do miocárdio, HVE, doença da artéria carótida, doença renal crônica e acidente vascular cerebral.17,18 No estudo Ohasama, a atenuação do descenso noturno da pressão arterial foi associada ao risco de morte cardiovascular.21 A cada 5% de redução na queda da pressão arterial noturna, o risco de mortalidade cardiovascular aumentava em 20%. Além disso, essa associação foi observada não apenas em indivíduos hipertensos, mas também em indivíduos normotensos.21 Adicionalmente, a morbimortalidade cardiovascular pode ser reduzida através da melhoria do controle da pressão arterial noturna,22 Desse modo, um tratamento eficaz da hipertensão também deve incluir o controle da pressão arterial noturna.Atualmente, a MAPA permanece o único método para diagnóstico das variações da PA noturna. Infelizmente, ela é uma ferramenta relativamente cara, inconveniente para...
Adar et al.
Calcificação da aorta e pressão arterial não-dipper

Arq Bras Cardiol. 2020; 114(1):109-117

Tabela 2 – Variáveis da pressão arterial ambulatorial dos grupos de estudo

	Não-Dipper (n = 261)	Dipper (n = 145)	Valor de p
PAS média diurna (mmHg)	124 (14)	127 (13)	0,012
PAD média diurna (mmHg)	77 (11)	79 (11)	0,407
PAS média noturna (mmHg)	122 (15)	108 (12)	<0,0001
PAD média noturna (mmHg)	74 (10)	67 (10)	<0,0001
PAS média de 24h (mmHg)	124 (14)	121 (12)	0,108
PAD média de 24h (mmHg)	76 (10)	75 (10)	0,127
Mudança na PAS (mmHg)	1.9 (7)	19 (5)	<0,0001
Mudança na PAD (mmHg)	4 (8)	14 (10)	<0,0001

Variáveis contínuas são apresentadas como mediana (intervalo interquartil) ou média (desvio padrão). PAS: pressão arterial sistólica; PAD: pressão arterial diastólica.

Tabela 3 – Graus de calcificação do arco aórtico nos grupos de estudo

	Não-Dipper (n = 261)	Dipper (n = 145)	Valor de p
Grau 0	79 (30,3)	97 (66,9)	< 0,0001
Grau 1	107 (41,0)	36 (24,8)	< 0,0001
Grau 2	62 (23,8)	11 (7,6)	< 0,0001
Grau 3	13 (5,0)	1 (0,7)	< 0,0001
Grau de calcificação do arco aórtico ≥ 1 (n, %)	182 (69,7)	48 (33,1)	< 0,0001
Grau de calcificação do arco aórtico ≥ 2 (n, %)	75 (28,7)	12 (8,3)	< 0,0001
Grau de calcificação do arco aórtico ≥ 3 (n, %)	13 (5,0)	1 (0,7)	0,023

uso rotineiro e não está amplamente disponível. Além disso, pode não ser prático realizar a MAPA em todo paciente hipertenso. Uma ferramenta prática e de baixo custo pode ajudar na filtragem de pacientes não selecionados para a MAPA. Consequentemente, neste estudo, nós demonstramos que a calcificação no AA na radiografia de tórax simples (uma ferramenta de baixo custo e amplamente disponível) tem forte capacidade preditiva para o padrão PADV.

Existem vários mecanismos possíveis que podem explicar a relação entre a calcificação no AA e o padrão PADV. Em primeiro lugar, a calcificação no AA mostrou uma forte correlação com a calcificação da glândula pineal, que pode reduzir a secreção de melatonina durante o sono. A melatonina desempenha um papel fundamental na regulação da pressão arterial noturna. A atividade do sistema nervoso autônomo está envolvido no controle da variação circadiana da PA e o equilíbrio simpático-vagal prejudicado, com aumento da atividade simpática nervosa e/ou redução da atividade vagal, tem sido documentado dentre os não dippers. A melatonina modifica o equilíbrio entre o sistema simpático e parassimpático em favor do sistema parassimpático. Ela também reduz a pressão arterial noturna através do seu efeito vasodilatador arterial direto. Da mesma forma, a melatonina exógena demonstrou reduzir a PA noturna. Assim, a redução da secreção de melatonina durante o período noturno pode prejudicar significativamente a queda da PA noturna. Em segundo lugar, a calcificação no AA está intimamente relacionada com a rigidez vascular e a perda de complacência arterial que, por sua vez, pode prejudicar a capacidade de relaxamento arterial. A queda noturna de PA prejudicada mostrou estar independentemente associada com a rigidez aórtica nos pacientes com HT noturna. Além disso, verificou-se que o aumento da rigidez arterial está mais associado à carga pressórica noturna do que à PA diurna. Em terceiro lugar, a relação entre a pressão arterial e as calcificações arteriais é provavelmente um fenômeno bidirecional. O aumento da carga pressórica pode facilitar a calcificação arterial e vice-versa. Os não dippers estão expostos à carga pressórica noturna anormal, que pode acelerar a calcificação e rigidez arterial. Em quarto lugar, os perfis clínicos subjacentes aos pacientes com queda de PA noturna prejudicada e calcificação arterial são semelhantes. Ambas as condições estão associadas com a idade, doenças renais, diabetes, apneia do sono, disfunção autônoma, hipertensão maligna e doença da artéria coronária. O padrão PADV está associado com a gravidade e com maior risco de eventos cardiovasculares subsequentes. Este risco pode ser reduzido através da melhoria dos padrões de dipping e dos níveis de PA noturna. Na prática clínica, muitos pacientes com níveis de PA diurna controlados não são encaminhados para avaliação dos níveis pressórics noturnos. Nossos resultados podem ajudar a melhorar a detecção do padrão PADV e da hipertensão noturna. O tratamento adequado desses pacientes através da mudança de fármacos anti-hipertensivos ou da administração dessas medicações à noite podem finalmente ajudar a melhorar o padrão dipping e os desfechos dos pacientes.
Tabela 4 – Análise univariada para o padrão pressórico não-dipper

Variável	β	P value
Idade (ano)	0,037	< 0,0001
Área da superfície corporal (m²)	0,098	0,864
Índice de massa corporal (kg/m²)	0,049	0,029
Sexo feminino (%)	-0,363	0,082
Obesidade (%)	0,231	0,281
Hipertensão (%)	0,417	0,046
Diabetes mellitus (%)	0,338	0,202
Hiperlipidemia (%)	-0,130	0,635
Tabagismo (%)	-0,385	0,131
Medicações (%)		
Inibidores da ECA (n, %)	0,238	0,326
Bloqueadores de receptores da angiotensina (n, %)	-0,072	0,829
Bloqueadores dos canais de cálcio (n, %)	-0,087	0,783
Betabloqueadores (n, %)	-0,203	0,552
Diuréticos (n, %)	-0,304	0,323
Creatinina (mg/dL)	-0,241	0,512
Taxa de filtração glomerular (mL/min/1.73 m²)	-0,027	0,001
Colesterol total (mg/dL)	-0,003	0,200
Triglicerídeos (mg/dL)	-0,002	0,067
Lipoproteína de baixa densidade (mg/dL)	-0,002	0,608
Lipoproteína de alta densidade (mg/dL)	0,005	0,587
Glicemia (mg/dL)	0,005	0,219
Diâmetro do átrio esquerdo (mm)	0,040	0,144
Fração de ejeção do VE (%)	0,009	0,615
Índice de massa do VE (g/m²)	0,017	0,003
Hipertrofia ventricular esquerda (n, %)	0,704	0,014
Geometria do VE (n, %)		
Normal	-0,121	0,640
Remodelação concêntrica	-0,356	0,099
Hipertrofia excêntrica	0,788	0,125
Hipertrofia concêntrica	0,585	0,074
PAS média diurna (mmHg)	-0,015	0,052
PAD média diurna (mmHg)	-0,009	0,339
PAS média noturna (mmHg)	0,080	< 0,0001
PAD média noturna (mmHg)	0,071	< 0,0001
PAS média de 24h (mmHg)	0,016	0,050
PAD média de 24h (mmHg)	0,015	0,130
Calcificação no arco aórtico (%)		
Grau 0		
Grau 1	1,295	< 0,0001
Grau 2	1,935	< 0,0001
Grau 3	2,770	0,008
Calcificação no arco aórtico grau ≥ 1 (%)	1,538	< 0,0001
Calcificação no arco aórtico grau ≥ 2 (%)	1,497	< 0,0001

PAS: pressão arterial sistólica; PAD: pressão arterial diastólica; VE: ventrículo esquerdo; β: Coeficiente de regressão.
Tabela 5 – Análise multivariada do padrão não-dipper da PA

	β	OR	Inferior	Superior
Idade	0,015	1,015	0,988	1,043
Índice de massa corporal	0,037	1,038	0,989	1,090
Índice de massa ventricular esquerda	0,006	1,006	0,992	1,019
Hipertensão	0,059	1,061	0,664	1,696
Triglicerídeos	-0,003	0,997	0,995	1,000
Presença de calcificação do arco aórtico	1,366	3,919	2,392	6,421
Sexo	-0,444	0,641	0,405	1,016
Taxa de Filtração Glomerular	0,003	1,003	0,979	1,028

IC: indica intervalo de confiança; OR: razão de chances; β: coeficiente de regressão.

Tanto a calcificação no AA quanto a PADV estão associadas com várias lesões de órgão-alvo da hipertensão e eventos cardiovasculares em pacientes com hipertensão.1,5,6,38-40 Neste estudo, demonstrou-se uma forte associação entre a calcificação no AA e a PADV. Novos estudos são necessários para confirmar nossos achados e avaliar a associação potencial da calcificação no AA com outras subformas de hipertensão.

Limitações do estudo

Este estudo tem várias limitações. O pequeno tamanho da amostra é a principal limitação. Nossa definição de padrão PADV foi baseada em variações da PAS. Embora essa seja a definição mais comumente usada de PADV, os valores de PAD podem também ser usados para a avaliar a PADV. Nós não estudamos a atividade do sistema nervoso autônomo ou os parâmetros de rigidez vascular para explicar a potencial relação mecânica entre a calcificação no AA e a PADV. Finalmente, nós não estudamos a associação da calcificação no AA com eventos cardiovasculares.

Conclusão

A presença de calcificação no AA na radiografia de tórax simples está forte e independentemente associada com a presença do padrão PADV. O uso rotineiro desta ferramenta simples e de baixo custo na prática clínica pode ter efeitos adicionais para a detecção e controle da PA noturna. Além disso, essa ferramenta pode auxiliar no uso mais preciso dos dispositivos da MAPA, o que pode reduzir o custo do atendimento à saúde.

Contribuição dos autores

Concepção e desenho da pesquisa, Análise estatística e Revisão crítica do manuscrito quanto ao conteúdo intelectual importante: Adar A, Onalan O; Obtenção de dados: Adar A, Cakan F, Akbay E, Karakaya E; Análise e interpretação dos dados: Adar A, Onalan O, Cakan F, Akbay E, Karakaya E; Redação do manuscrito: Adar A, Onalan O, Cakan F, Akbay E, Karakaya E.

Potencial conflito de interesses

Declaro não haver conflito de interesses pertinentes.

Fontes de financiamento

O presente estudo não teve fontes de financiamento externas.

Vinculação acadêmica

Não há vinculação deste estudo a programas de pós-graduação.

Aprovação ética e consentimento informado

Este estudo foi aprovado pelo Comitê de Ética do Abant Izzet Baysal University Clinical Research Ethics Comitee Approval sob o número de protocolo 2015/20. Todos os procedimentos envolvidos nesse estudo estão de acordo com a Declaração de Helsinki de 1975, atualizada em 2013. O consentimento informado foi obtido de todos os participantes incluídos no estudo.
1. Tigen K, Karaahmet T, Fotbolcu H, Curel E, Cevik C, Gececn C, et al. The influence of dipper and nondipper blood pressure patterns on left ventricular functions in hypertensive patients: a tissue Doppler study. Turk Kardiyol Dem Ars. 2009;37(2):101-6.

2. Della Mea P, Lupia M, Bandolin V, Guzzon S, Sonino N, Vettor R, et al. Adiponectin, insulin resistance, and left ventricular structure in dipper and nondipper essential hypertensive patients. Am J Hypertens. 2005;18(1):30-5.

3. Portulapi F, Montanari L, Massari M, Di Chiara V, Capanna M. Loss of nocturnal decline of blood pressure in hypertension due to chronic renal failure. Am J Hypertens. 1991;4(1 Pt 1):20-6.

4. Ozdemir E, Yildirimturk O, Cengiz B, Yurdakul S, Aytekin S. Evaluation of carotid intima-media thickness and aortic elasticity in patients with nondipper hypertension. Echocardiography. 2014;31(5):663-8.

5. Clement DL, De Buyzere ML, De Bacquer DA, De Leeuw PW, Duprez DA, Fagard RH, et al. Prognostic value of ambulatory blood-pressure recordings in patients with treated hypertension. N Engl J Med. 2003;348(24):2407-15.

6. Okubo T, Inai Y, Tuji I, Nagai K, Watanabe N, Minami N, et al. Prediction of mortality by ambulatory blood pressure monitoring versus screening blood pressure measurements: a pilot study in Ohasama. J Hypertens. 1997;15(4):357-64.

7. Sysseloudis D, Tsourinis C, Andrikou I, Mazaraki A, Thomopoulos C, Mihas C, et al. Association of nighttime hypertension with central arterial stiffness and urinary albumin excretion in dipper hypertensive subjects. Hypertens Res. 2011;34(1):120-5.

8. Jerrard-Dunne P, Mahmoud A, Feely J. Circadian blood pressure variation: relationship between dipper status and measures of arterial stiffness. J Hypertens. 2007;25(6):1213-9.

9. Ziemaj SJ, Melenovsky V, Kass DA. Mechanisms, pathophysiology, and therapy of arterial stiffness. Arterioscler Thromb Vasc Biol. 2005;25(5):932-43.

10. London GM, Machias SJ, Guerin AP, Pannier B. Arterial stiffness: pathophysiology and clinical impact. Clin Exp Hypertens. 2004;26(7-8):689-99.

11. Ozturk S, Baltaci D, Ayhan SS, Durmus I, Gedikli O, Soyturk M, et al. Assessment of the relationship between aortic pulse wave velocity and aortic arch calcification. Turk Kardiyol Dem Ars. 2012;40(11):683-9.

12. Sekikawa A, Shin C, Curby JD, Barinas-Mitchell E, Masaki K, El-Saied A, et al. Aortic stiffness and calcification in men in a population-based international study. Atherosclerosis. 2012;222(2):473-7.

13. Symeonidis G, Papanas N, Giannakis I, Mavridis G, Lakasas G, Kyriakidis G, et al. Gravity of aortic arch calcification as evaluated in adult Greek patients. Int Angiol. 2002;21(3):233-6.

14. Arangino S, Cagnacci A, Angiulli M, Macca MM, Longa G, Volpe A, et al. Effects of melatonin on vascular reactivity, catecholamine levels, and blood pressure in healthy men. Am J Cardiol. 1999;83(9):1417-7.

15. Dauphinot V, Gosse P, Kossovsky MP, Schott AM, Rouch I, Pichot V, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2000;133(3):233-6.

16. Levey AS, Stevens LA, Sarnak MJ, Coresh J, Kusek JW, Beck-Gernsheim E, et al. A new equation to estimate glomerular filtration rate. Am J Kidney Dis. 2009;53(6):809-16.

17. Turgut AT, Sonmez I, Cakir BD, Kosar P, Kosar U. Pineal gland calcium deposition, lumbar intervertebral disc degeneration and abdominal aorta calcifying atherosclerosis correlate in low back pain patients: A cross-sectional observational CT study. Pathophysiology. 2008;15(1):31-9.

18. Pechanova O, Paulis L, Simko F. Peripheral and central effects of melatonin on blood pressure regulation. Int J Mol Sci. 2014;15(10):7190-32.

19. Ray CA. Melatonin attenuates the sympatho-adrenal response to orthostatic stress in humans. J Physiol. 2003;551(Pt 3):1043-8.

20. Shen A, Zheng D, Hu Z. [Associations of circadian blood pressure rhythm with autonomic nervous system and myocardial energy expenditure level in patients with primary hypertension]. Nan Fang Yi Ke Da Xue Xue Bao. 2014;34(5):713-7.

21. Daughnhoter V, Goupe P, Kossofsky MP, Schott AM, Rouch I, Pichot V, et al. Autonomic nervous system activity is independently associated with the risk of shift in the non-dipper blood pressure pattern. Hypertens Res. 2013;36(10):1032-7.

22. Dodd C, Breckling U, Derad I, Fehm H, Born J. Plasma epinephrine and norepinephrine concentrations of healthy humans associated with nighttime sleep and morning arousal. Hypertension. 1997;30(1 Pt 1):71-6.

23. Kario K, Schwartz JE, Pickering TG. Changes of nocturnal blood pressure dipping status in hypertensives by nighttime dosing of alpha-adrenergic blocker, doxazosin : results from the HALT study. Hypertension. 2000;35(5):787-94.

24. Kozioz M, Poliwczak A, Duchnowicz P, Koter-Michalak M, Sikora J, Bronczek M. Melatonin treatment improves blood pressure, lipid profile, and parameters of oxidative stress in patients with metabolic syndrome. J Pineal Res. 2011;50(3):261-6.

25. Mozdzian M, Mozdzian M, Chalubinski M, Wojdan K, Bronczek M. The effect of melatonin on circadian blood pressure in patients with type 2 diabetes and essential hypertension. Arch Med Sci. 2014;10(4):669-75.

26. Tsoi CW, Pencina KM, Massaro JM, Benjamin EJ, Levy D, Vasan RS, et al. Cross-sectional relations of arterial stiffness, pressure pulsatility, wave reflection, and arterial calcification. Arterioscler Thromb Vasc Biol. 2014;34(11):2495-500.

27. Kuzeytemiz M, Kayaoguc K, Yavuzer F, Ozturk MD, Yilmaz M, Aysal B, et al. The effect of non-dipper and dipper blood pressure patterns on aortic elasticity in patients with metabolic syndrome. Clin Exp Hypertens. 2013;35(8):632-6.
35. Rosa J, Strauch B, Petrak O, Pikus T, Holaj R, Zelinka T, et al. Relationship between clinical, 24-hour, average day-time and night-time blood pressure and measures of arterial stiffness in essential hypertension. Physiol Res. 2008;57(2):303-6.

36. Cagnacci A, Arangino S, Angiolucci M, Maschio E, Longu G, Melis GB. Potentially beneficial cardiovascular effects of melatonin administration in women. J Pineal Res. 1997;22(1):16-9.

37. Hojo Y, Noma S, Ohki T, Nakajima H, Satoh Y. Autonomic nervous system activity in essential hypertension: a comparison between dippers and non-dippers. J Hum Hypertens 1997;11(10):665-71.

38. Iribarren C, Sidney S, Sternfeld B, Browner WS. Calcification of the aortic arch: risk factors and association with coronary heart disease, stroke, and peripheral vascular disease. JAMA. 2000;283(21):2810-5.

39. Inoue T, Ogawa T, Ishida H, Ando Y, Nitta K. Aortic arch calcification evaluated on chest X-ray is a strong independent predictor of cardiovascular events in chronic hemodialysis patients. Heart Vessels. 2012;27(2):135-42.

40. Adar A, Onalan O, Cakan F, Keles H, Koldtuk U. Relationship between Aortic Arch Calcification, Detected by Chest X-Ray, and Renal Resistive Index in Patients with Hypertension. Med Princ Pract. 2019;28(2):133-40.