Ciliary transport regulates PDGF-AA/ signaling via elevated mammalian target of rapamycin signaling and diminished PP2A activity

Nicole L. Umberger, Emory University
Tamara Caspary, Emory University

Journal Title: Molecular Biology of the Cell
Volume: Volume 26, Number 2
Publisher: American Society for Cell Biology | 2015-01-15, Pages 350-358
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.1091/mbc.E14-05-0952
Permanent URL: https://pid.emory.edu/ark:/25593/pmq5s

Final published version: http://dx.doi.org/10.1091/mbc.E14-05-0952

Copyright information:
© 2015 Umberger and Caspary. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (http://creativecommons.org/licenses/by-nc-sa/3.0/), which permits distribution of derivative works, making multiple copies, distribution, public display, and publicly performance, provided the original work is properly cited. This license requires copyright and license notices be kept intact, credit be given to copyright holder and/or author, derivative works be licensed under the same terms or compatible terms as the original work. This license prohibits exercising rights for commercial purposes.
Ciliary transport regulates PDGF-AA/αα signaling via elevated mammalian target of rapamycin signaling and diminished PP2A activity

Nicole L. Umbergera,b and Tamara Casparyb
aGenetics and Molecular Biology Graduate Programs and bDepartment of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322

ABSTRACT Primary cilia are built and maintained by intraflagellar transport (IFT), whereby the two IFT complexes, IFTA and IFTB, carry cargo via kinesin and dynein motors for anterograde and retrograde transport, respectively. Many signaling pathways, including platelet-derived growth factor (PDGF)-AA/αα, are linked to primary cilia. Active PDGF-AA/αα signaling results in phosphorylation of Akt at two residues: P-AktT308 and P-AktS473, and previous work showed decreased P-AktS473 in response to PDGF-AA upon anterograde transport disruption. In this study, we investigated PDGF-AA/αα signaling via P-AktT308 and P-AktS473 in distinct ciliary transport mutants. We found increased Akt phosphorylation in the absence of PDGF-AA stimulation, which we show is due to impaired dephosphorylation resulting from diminished PP2A activity toward P-AktT308. Anterograde transport mutants display low platelet-derived growth factor receptor (PDGFRα) levels, whereas retrograde mutants exhibit normal PDGFRα levels. Despite this, neither shows an increase in P-AktS473 or P-AktT308 upon PDGF-AA stimulation. Because mammalian target of rapamycin complex 1 (mTORC1) signaling is increased in ciliary transport mutant cells and mTOR signaling inhibits PDGFRα levels, we demonstrate that inhibition of mTORC1 rescues PDGFRα levels as well as PDGF-AA–dependent phosphorylation of AktS473 and AktT308 in ciliary transport mutant MEFs. Taken together, our data indicate that the regulation of mTORC1 signaling and PP2A activity by ciliary transport plays key roles in PDGF-AA/αα signaling.

INTRODUCTION Primary cilia, the microtubule-based projections found on the eukaryotic cell surface, are linked to a number of signaling pathways (Goetz and Anderson, 2010). Primary cilia are built and maintained by intraflagellar transport (IFT), whereby the two IFT complexes, IFTA and IFTB, carry cargo via kinesin and dynein motors for anterograde and retrograde transport, respectively. Many signaling pathways, including platelet-derived growth factor (PDGF)-AA/αα, are linked to primary cilia. Active PDGF-AA/αα signaling results in phosphorylation of Akt at two residues: P-AktT308 and P-AktS473, and previous work showed decreased P-AktS473 in response to PDGF-AA upon anterograde transport disruption. In this study, we investigated PDGF-AA/αα signaling via P-AktT308 and P-AktS473 in distinct ciliary transport mutants. We found increased Akt phosphorylation in the absence of PDGF-AA stimulation, which we show is due to impaired dephosphorylation resulting from diminished PP2A activity toward P-AktT308. Anterograde transport mutants display low platelet-derived growth factor receptor (PDGFRα) levels, whereas retrograde mutants exhibit normal PDGFRα levels. Despite this, neither shows an increase in P-AktS473 or P-AktT308 upon PDGF-AA stimulation. Because mammalian target of rapamycin complex 1 (mTORC1) signaling is increased in ciliary transport mutant cells and mTOR signaling inhibits PDGFRα levels, we demonstrate that inhibition of mTORC1 rescues PDGFRα levels as well as PDGF-AA–dependent phosphorylation of AktS473 and AktT308 in ciliary transport mutant MEFs. Taken together, our data indicate that the regulation of mTORC1 signaling and PP2A activity by ciliary transport plays key roles in PDGF-AA/αα signaling.

© 2015 Umberger and Caspary. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

“ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society for Cell Biology. for anterograde and retrograde transport, respectively. Many signaling pathways, including Sonic hedgehog (Shh), Wnt, PDGF, and mammalian target of rapamycin complex 1 (mTORC1), are linked to primary cilia, because mutations in IFTA, IFTB, kinesins, or dyneins alter the signaling response (Huangfu et al., 2003; Schneider et al., 2005; Corbit et al., 2008; Boehlke et al., 2010). The relationship between IFT and signaling can be complex; for example, Shh response is reduced in IFTB, dynein, and kinesin mutants, but elevated in IFTA mutants (Huangfu et al., 2003; May et al., 2005; Tran et al., 2008).

Altering IFT leads to distinct changes in ciliary structure, depending on which IFT or motor protein function is disrupted. For example, primary cilia do not form when anterograde transport is abolished via loss of IFTB or kinesin components. In contrast, cilia become swollen when either IFTA or dynein components are lost, preventing retrograde IFT (Goetz and Anderson, 2010). Several other classes of proteins play roles in trafficking and ciliary structure, including the small GTPase, ADP-ribosylation factor-like 13B (ARL13B; Larkins et al., 2011). Loss of ARL13B disrupts the microtubule structure of...
primary cilia and the localization and distribution of proteins within cilia (Caspary et al., 2007; Larkins et al., 2011).

Distinct signaling pathways require cilia for their activity. The best characterized of these is Shh signal transduction, which does not occur in the absence of cilia; dynamic ciliary movement of the Shh receptor and other pathway components is necessary to elicit an Shh response (Corbit et al., 2005; Haycraft et al., 2005; May et al., 2005; Rohatgi et al., 2007). The relationship between PDGF signaling and cilia is less understood. PDGF-AA acts through PDGFRα homodimers to activate downstream targets, including Akt kinase. PDGFRα is up-regulated and enriched in primary cilia in growth-arrested fibroblasts (Schneider et al., 2005), and PDGFR-AA/αα signaling is critical to induce G0 cells into the cell cycle (Stiles et al., 1979; Pledger et al., 1981; Greenberg and Ziff, 1983). Moreover, PDGF-AA cannot signal in fibroblasts lacking cilia, suggesting ciliary localization of the receptor may be critical to its function. However, cells lacking cilia display decreased PDGFRα protein levels, which could also explain the lowered signaling (Schneider et al., 2005, 2010).

Akt is fully activated via phosphorylation of T308 (P-AktT308) and S473 phosphorylation (P-AktS473). Dephosphorylation of P-AktT308 is mediated by the phosphatase PP2A. PP2A regulates the activity of a variety of additional substrates and is negatively regulated by the mammalian target of rapamycin complex 1 (mTORC1) (Andjelkovic et al., 1996; Zhao et al., 2003; Vereschagina et al., 2008; Boehler et al., 2010; McBride et al., 2010; Jackson and Pallas, 2012). Interestingly, the activities of both Akt and mTORC1 are linked to cilia (Schneider et al., 2005, 2010; Boehler et al., 2010; Clement et al., 2013). Here, using mouse embryonic fibroblasts (MEFs) deficient for distinct aspects of ciliary transport, we investigate the role of ciliary transport in PDGFR-AA/αα signaling along with the mechanistic connections to PP2A activity and mTORC1 signaling. Our data highlight the intricate connections among signaling pathways as they relate to cilia, emphasizing the role of the primary cilium as a signaling hub.

RESULTS

Abnormal response to PDGF-AA signaling in ciliary transport mutant MEFs

PDGF-AA/αα stimulation induces activation of Akt through phosphorylation on two residues, T308 and S473 (Bellacosa et al., 1998). Previous work has shown that PDGF-AA stimulation fails to increase P-AktS473 in Ift88oppk MEFs carrying a hypomorphic mutation in the IFTB component (Schneider et al., 2005, 2010). To investigate the role of additional ciliary transport proteins in PDGFR-AA/αα signaling, including phosphorylation of both T308 and S473 residues, we derived control and mutant MEFs from mouse embryos carrying the following alleles of genes encoding ciliary proteins important for transport: Ift172wim and Ift172wim, an IFTB component involved in anterograde trafficking; Ift122oppk, an IFTA component involved in retrograde trafficking; and Arl13boppk, a small, ciliary GTPase (Huangfu et al., 2003; Caspary et al., 2007; Friedland-Little et al., 2011; Qin et al., 2011). Ift172wim and Ift172wim represent null and hypomorphic alleles, respectively, in an IFTB complex protein, so Ift172wim MEFs lack cilia, while Ift172wim MEFs have truncated cilia; Ift122oppk MEFs have disrupted retrograde transport and display swollen or bulbous cilia; and Arl13boppk MEFs have short cilia with an abnormal ultrastructure and mislocalized ciliary proteins. With the exception of Ift172wim MEFs, which cannot form cilia, the other MEFs can be induced to form cilia through serum starvation. We grew control, Ift172wim, Ift172wim, Ift122oppk, and Arl13boppk MEFs in serum-supplemented media until confluent, serum starved them for 48 h, stimulated them with PDGF-AA ligand, and then harvested the cells.

We first examined PDGFRα levels in serum-starved control, Ift172wim, Ift122oppk, and Arl13boppk MEFs. Similar to the published results in Ift88oppk MEFs, we found low PDGFRα levels in Ift172wim MEFs, suggesting the phenotype is shared when IFTB components are disrupted (Figure 1). However, PDGFRα levels in Ift122oppk and Arl13boppk MEFs are similar to control MEFs (Figure 1 and Supplemental Figure S1). We assessed phosphorylation of PDGFRα on Y742 (P-PDGFRαY742), which occurs upon PDGFRα binding to PDGFRα and initiates signaling (Yu et al., 1991, 1994). In the absence of PDGF-AA stimulation, we found a slight elevation in basal levels of P-PDGFRαY742 in Arl13boppk and Ift122oppk MEFs compared with control MEFs, indicating inappropriate activation of PDGFRα in the absence of PDGF-AA ligand (Figure 1 and Supplemental Figure S1). In response to PDGF-AA stimulation, we found PDGFRαY742 levels increased in control, Arl13boppk, and Ift122oppk MEFs, while there was no P-PDGFRαY742 in Ift172wim MEFs (Figure 1 and Supplemental Figure S1). Thus PDGFRα levels and response to PDGF-AA stimulation are disrupted in Ift172wim anterograde mutants. In Arl13boppk and Ift122oppk mutants, despite the slightly elevated basal P-PDGFRαY742, the increase in P-PDGFRαY742 upon PDGFRα stimulation indicates PDGFRα, when present, could be activated.

To measure downstream pathway activation, we analyzed both P-AktT308 and P-AktS473 levels in serum-starved control, Ift172wim, Ift122oppk, and Arl13boppk MEFs. We saw increased P-AktT308 in all ciliary transport mutant MEFs compared with control MEFs, while P-AktS473 was detectable only in Ift172wim and Ift122oppk MEFs (Figure 1 and Supplemental Figure S1). On PDGF-AA stimulation, we saw increased levels of P-AktT308 and P-AktS473 in control and Arl13boppk MEFs; however, there was no further increase in P-AktT308 or P-AktS473 levels upon PDGF-AA stimulation in Ift172wim or Ift122oppk MEFs (Figure 1 and Supplemental Figure S1). These data indicate that control and Arl13boppk MEFs respond to PDGF-AA by increasing phosphorylation of Akt, whereas Ift172wim and Ift122oppk MEFs do not. The insensitivity of P-AktT308 or P-AktS473 levels to PDGF-AA stimulation in Ift172wim and Ift122oppk MEFs is especially striking, because the mutations affected PDGFRα distinctly, pointing to PDGFRα-independent influences on either the phosphorylation or dephosphorylation of Akt.

P-AktT308 is increased in ciliary transport mutant MEFs

Because Akt phosphorylation is stimulated through phosphoinositide 3-kinase (PI3K) signaling, we wanted to determine whether the increased P-AktT308 levels were PI3K-dependent by treating the
ciliary transport mutant MEFs with the PI3K inhibitor LY294002 (Andjelkovic et al., 1996). We could not detect P-AktT308 in LY294002-treated control, Ift172wim, Ift122sopb, or Arl13b^nns MEFs, confirming the T308 phosphorylation we saw was PI3K dependent (Figure 2, A and E). Notably, P-AktT308 remained elevated in Ift172wim MEFs after LY294002 treatment (Figure 2, A and E). This could be due either to a PI3K-independent pathway phosphorylating P-AktT308 or to a lack of P-AktT308 dephosphorylation.

PP2Ac localizes to the basal body of MEFs

PP2A, a serine-threonine phosphatase, regulates the activity of Akt by dephosphorylating Akt on T308 and localizes to the flagella of Chlamydomonas reinhardtii (Yang et al., 2000). PP2A also localizes to the centrosome of mammalian cells (Horn et al., 2007; Flegg et al., 2010). The localization of PP2A relative to vertebrate cilia is unknown, so we first sought to determine the localization of PP2A relative to the cilium in serum-starved, control MEFs. To do so, we costained control MEFs with γ-tubulin and Arl13b and with an antibody for the catalytic subunit of PP2A (PP2Ac), and found PP2Ac localized to the basal body (Figure 2, B and C). Because P-AktS473 and AktT308 also localize to the basal body of ciliated cells (Zhu et al., 2009; Schneider et al., 2010), we examined P-AktT308 localization relative to cilia and found P-AktT308 localized to a single centriole of the basal body of control MEFs (Supplemental Figure S2). Notably, we saw no change in PP2Ac or P-AktT308 localization at the basal body when we examined serum-starved ciliary transport mutant MEFs (Figure 2B and Supplemental Figure S1). Thus PP2Ac and its substrate, P-AktT308, localize to the basal body of ciliated control and ciliary transport mutant MEFs.

FIGURE 2: P-AktT308 is increased in ciliary transport mutant MEFs and the P-AktT308 phosphatase component PP2A localizes to the basal body. (A) Serum-starved control and ciliary transport mutant MEFs were lysed and processed for Western blot analysis of P-AktT308 under the indicated experimental conditions (no serum, +LY294002, +OA, and +OA +LY294002). Note the presence of P-AktT308 in Ift172wim MEFs during LY294002 treatment. Lanes shown are rearranged from a single gel. (B) Serum-starved control and ciliary transport mutant MEFs were immunolabeled for the catalytic subunit of PP2A PP2Ac (green) and for the basal body using γ-tubulin (red). (C) Serum-starved control MEFs were immunolabeled for the catalytic subunit of PP2A PP2Ac (green), for the basal body using γ-tubulin (red), and for cilia using Arl13b (red and blue). (D) Serum-starved control and Ift172wim MEFs were treated with a PP2A agonist, FTY720, and then lysed and processed for Western blot analysis of P-AktT308. FTY720 agonizes PP2A activity by inhibiting the PP2A inhibitor I2PP2A/SET1. Note the absence of P-AktT308 in Ift172wim MEFs. (E) Average densitometry values of P-AktT308 in control and ciliary transport mutant MEFs under the different experimental conditions. Error bars show SD (n = 3). Ciliary transport mutants were compared with their respective control littermates, under the same treatments, for statistical analyses (n = 3; *, p < 0.05; **, p < 0.01).
PP2A activity toward P-AktT308 is disrupted in Ift172wim mutant MEFs

To determine whether the loss of P-AktT308 seen in control, Ift172wmc, Ift122wmb, and Arl13bvnn MEFs after LY294002 treatment is PP2A dependent, we pharmacologically inhibited PP2A. Okadaic acid (OA) is a PP2A inhibitor, and treatment with OA increases P-AktT308 in a variety of cell lines in vitro (Cohen et al., 1989; Edelstein and Rockwell, 2012; Li et al., 2013). If PP2A is responsible for the loss of P-AktT308, then treatment with LY294002 and OA should lead to increased P-AktT308. We performed our analysis in the presence of OA alone or in the presence of both OA and LY294002. Under either treatment, we detected P-AktT308 in control, Ift172wvm, Ift122wmc, Ift122wmb, and Arl13bvnn MEFs (Figure 2, A and E), indicating that disruption of PP2A activity can lead to increased P-AktT308 levels, even in the absence of PI3K signaling.

The observations that P-AktT308 is increased in the absence of serum but lost during PI3K inhibition indicate that dephosphorylation of P-AktT308 is disrupted but still functional in Ift172wmc, Ift122opb, and Arl13bvnn MEFs. The observation that P-AktT308 is increased in Ift172wvm MEFs even during PI3K inhibition suggests that dephosphorylation of P-AktT308 is more severely impaired compared with the other ciliary transport mutants. Additionally, there may be aberrant signaling through other PI3K-independent pathways in the ciliary transport mutant MEFs that could contribute to the increased P-AktT308. However, as PP2A is localized to the basal body of ciliated MEFs, we propose that disruption of ciliary transport affects PP2A activity toward P-AktT308.

PP2A activity is regulated by endogenous inhibitors, such as I2PP2A/SET, which localizes to primary cilium in human retinal pigment epithelial cells (Li et al., 1996; Wang and Brautigan, 2008; Saddoughi et al., 2013). To directly test whether loss of PP2A activity is responsible for the persistence of P-AktT308 in Ift172wvm MEFs, we treated the cells with FTY720, the inhibitor of I2PP2A/SET, which thereby functioned as a PP2A agonist. We found P-AktT308 levels in Ift172wvm MEFs with FTY720 treatment were equivalent to those in control MEFs, indicating that the defect in Ift172wvm MEFs is due to lack of PP2A activity (Figure 2D). Taken together, our data argue that lack of anterograde transport, as in Ift172wvm MEFs, results in an absence of PP2A activity, whereas diminished anterograde transport, as in the Ift172wmb MEFs, or abnormal transport, as in the Ift122opb and Arl13bvnn MEFs, leads to decreased PP2A activity (Figure 2E).

Additionally, we examined Dync2h1th MEFs, which carry a null allele of the retrograde dynein motor. Dync2h1th MEFs do not survive in serum-free conditions, requiring us to grow the cells in 0.5% serum, which introduces confounding signaling (Ocbina and Anderson, 2008; Ocbina et al., 2011; Supplemental Figure S3A). Nevertheless, P-AktT308 was absent following PI3K inhibition (LY294002) and present following PP2A inhibition (OA) (Supplemental Figure S3A). We investigated the Dync2h1th MEFs in all subsequent assays and found the results were consistent with results from Ift122opb, the other mutant that primarily affects retrograde transport (Supplemental Figure S2). Because Ift122opb cells grow in the absence of sera, we focused on them.

Total PP2A activity is similar in control and ciliary transport mutant MEFs

PP2A has dozens of substrates that belong to a variety of pathways (Andjelkovic et al., 1996; Janssens and Goris, 2001; Vereshchagina et al., 2008; Basu, 2011). To determine whether overall PP2A activity is altered in the ciliary transport mutant MEFs, we used two distinct assays: 1) a commercially available PP2A activity assay; and 2) Western blot analysis of the inactive, unmethylated PP2A pool.

For the phosphatase activity assay, PP2A was immunoprecipitated from the cell lysates and its activity monitored on a specific phosphopeptide substrate (K-R-p-T-I-R-R; Saddoughi et al., 2013). While our control showed reduced PP2A activity by inhibition with OA in control and ciliary transport mutant lysates (Figure 3A), we found no difference in PP2A activity toward the phosphopeptide in any of the ciliary transport mutant MEFs compared with control MEFs. For the second assay, we monitored the methylation state of PP2Ac. Active PP2Ac is methylated, so unmethylated PP2Ac represents inactive PP2A (Turowski et al., 1995; Jackson and Pallas, 2012). We measured both total and unmethylated PP2Ac expression by Western blotting and found no differences in the level of total or unmethylated PP2Ac expression in control, Ift172wvm, Ift122opb, or Arl13bvnn MEFs (Figure 3B). These data indicate that ciliary transport does not alter overall PP2A activity and suggest that a subset of PP2A activity is affected.

mTORC1 pathway activity is increased in ciliary transport mutant MEFs

mTORC1 signaling and PP2A negatively regulate one another, and loss of cilia can result in increased mTORC1 signaling (Ballou et al., 1988; Peterson et al., 1999; Petritsch et al., 2000; Boehlke et al., 2010; Li et al., 2013). Thus we wanted to determine whether mTORC1 signaling is increased in the ciliary transport mutant MEFs. We assayed mTORC1 pathway activity by monitoring phosphorylation of the mTORC1 subunit, mTOR (P-mTORS2448), and mTORC1’s substrate, p70 S6K (P-p70 S6KS240) through Western analysis. mTOR is the core component of mTORC1 and is phosphorylated on S2448 (P-mTORS2448) via Akt signaling (Inoki et al., 2002). Active mTORC1 phosphorylates p70 S6K (P-p70 S6KS240; Ballou, 1988; Jeno, 1988; Ferrari et al., 1991; Burnett et al., 1998; Isotani et al., 1999). Notably, P-p70 S6KS240 is a PP2A substrate (Ballou et al., 1988). We found elevated expression of P-mTORS2448 and of P-p70 S6KS240 in Ift172wvm, Ift172wmb, and Ift122opb, and Arl13bvnn MEFs compared with control MEFs, indicating mTORC1 signaling is up-regulated when ciliary transport is disrupted (Figure 4A).

Rapamycin treatment restores PDGFR\textalpha levels and response to PDGF-AA stimulation

mTORC1 signaling can also inhibit PDGFR\textalpha levels, thereby decreasing PDGF-AA/\alpha signaling (Zhang et al., 2003, 2007). To test whether the aberrant PDGF-AA response in Ift172wvm MEFs was the result of increased mTORC1 inhibiting PDGFR\textalpha levels, we treated the cells with the mTORC1 inhibitor rapamycin and examined PDGFR\textalpha expression and PDGF-AA response. We first showed that rapamycin is able to inhibit mTORC1 signaling, with or without PDGF-AA, in wild-type and ciliary transport mutant MEFs (Supplemental Figure S4D). Despite an absence of cilia (Supplemental Figure S4C), we found total PDGFR\textalpha expression levels, by Western blotting, were restored by rapamycin in Ift172wvm MEFs (Figure 4C; compare with Figure 1 and Supplemental Figure S1). While PDGFR\textalpha is localized to the cilia of serum-starved wild-type MEFs, we did not see distinct regions of PDGFR\textalpha staining in Ift172wvm MEFs, with or without rapamycin (Supplemental Figure S4). We also saw induction of P-PDGFR\textalpha (p-PDGFR\textalpha) in Ift172wvm MEFs and of P-Dynamin (P-Dyn) expression upon PDGF-AA stimulation, indicating that limited PDGFR\textalpha levels could explain the low PDGF-AA/\alpha response of IFT mutants (Figure 4C; compare with Figure 1).

The increased basal P-AktT308 in rapamycin-treated control MEFs highlights the feedback among mTORC1 signaling, PP2A activity, and PDGF-AA/\alpha signaling. P-AktT308 levels reflect the
that P-AktT308 levels were unchanged in repeating this treatment regimen in tested whether the feedback equilibrium depends on IFT172 by antibody concentration increased (Figure 4, D and E). We next reports showed that rapamycin can induce Akt phosphorylation via loss of mTORC1's inhibition of PP2A) (Rodrik-vation of Akt via PDGF-AA/αα signaling and downstream signaling and can increase PP2A signaling by investigating two phosphoryla-
tion sites known to activate Akt in the con-
text of distinct ciliary transport mutations. Consistent with previous data, we found low levels of P-AktT308 when anterograde trans-
port is disrupted (Schneider et al., 2005, 2010). Moreover, we found that when either anterograde or retrograde ciliary transport is disrupted, both P-AktT308 and P-AktS473 levels are insensitive to PDGF-AA stimulation. Through pharmacological manipulation, we found that the aberrant P-AktT308 results from problems with its dephosphory-
lation due to decreased PP2A activity, indic-
ating that ciliary transport regulates a subset of PP2A activity. Defects in ciliary transport are linked to increased mTORC1 signaling, which is also known to inhibit both PP2A activity and PDGFRx protein levels. By inhibiting mTORC1 signaling, we restored PDGFRx protein levels in cells lacking cilia and rescued the PDGF-AA ligand response in cells deficient in ciliary trans-
port. Thus our work reveals that ciliary trans-
port regulates PDGF-AA/αα signaling through elevated mTOR signaling and diminished PP2A activity.

PDGFRx is up-regulated and enriched in primary cilia in growth-arrested fibroblasts (Lih et al., 1996; Schneider et al., 2005), and PDGF-AA/αα signaling is critical to induce G0 cells into the cell cycle (Stiles et al., 1979; Pledger et al., 1981; Greenberg and Ziff, 1983). Because PDGF-AA/αα response is restored in rapamycin-treated MEFs lacking cilia (Ift172wim), this implies that PDGFRx, although normally localized to cilia in vitro, need not be there to function. Such a model posits that cilia provide a site for efficient PDGF-AA/αα signaling and that functional ciliary transport helps fine-tune PDGF-
ne. By inhibiting mTORC1 signaling, we re-
stored PDGFRx protein levels in cells lack-
ing cilia and rescued the PDGF-AA ligand response in cells deficient in ciliary trans-
port. Thus our work reveals that ciliary trans-
port regulates PDGF-AA/αα signaling through elevated mTOR signaling and diminished PP2A activity.

PDGFRx is up-regulated and enriched in primary cilia in growth-arrested fibroblasts (Lih et al., 1996; Schneider et al., 2005), and PDGF-AA/αα signaling is critical to induce G0 cells into the cell cycle (Stiles et al., 1979; Pledger et al., 1981; Greenberg and Ziff, 1983). Because PDGF-AA/αα response is restored in rapamycin-treated MEFs lacking cilia (Ift172wim), this implies that PDGFRx, although normally localized to cilia in vitro, need not be there to function. Such a model posits that cilia provide a site for efficient PDGF-AA/αα signaling and that functional ciliary transport helps fine-tune PDGF-
ne. By inhibiting mTORC1 signaling, we re-
stored PDGFRx protein levels in cells lack-
ing cilia and rescued the PDGF-AA ligand response in cells deficient in ciliary trans-
port. Thus our work reveals that ciliary trans-
port regulates PDGF-AA/αα signaling through elevated mTOR signaling and diminished PP2A activity.

FIGURE 3: PP2A phosphatase activity and levels of total and unmethylated PP2A are unchanged in ciliary transport mutant MEFs. (A) PP2A activity was measured in control and ciliary transport mutant MEFs. Bars show the average of three independent experiments. Error bars show SD (n = 3; *, p < 0.05; **, p < 0.01). (B) Serum-starved control and ciliary transport mutant MEFs were lysed and processed for Western blot analysis of total and unmethylated PP2Ac levels. Lanes shown are rearranged from a single gel. Bar graphs show average densitometry values of unmethylated and total PP2Ac of control and ciliary transport mutant MEFs (n = 3).

relative activities of PDGF-AA/αα-induced phosphorylation of Akt and of PP2A-mediated dephosphorylation of Akt. Previous reports showed that rapamycin can induce Akt phosphorylation via loss of mTORC1 signaling increases PDGFRα protein expression and downstream signaling) and can increase PP2A about the feedback equilibrium depends on IFT172 by repeating this treatment regimen in Ift172 mutant MEFs. We next tested whether the feedback equilibrium depends on IFT172 by repeating this treatment regimen in Ift172 mutant MEFs. We found that P-AktT308 levels were unchanged in Ift172 mutant MEFs in contrast to control MEFs (Figure 4, D and E). Together these data argue that the role of mTORC1 signaling in regulating the phosphoryla-
A/αα signaling. Consistent with this, the other ciliary transport mutants also showed restoration of PDGF-AA/αα response (measured by increased P-Akt levels) upon rapamycin treatment, suggesting the lack of response in the ciliary transport mutants is due to ele-
vated mTOR signaling.

Our finding of abnormally elevated P-AktT308 levels in MEFs with aberrant ciliary transport indicates disrupted PP2A activity toward P-AktT308, with the most severe defects in MEFs deficient for antero-
grade transport (Ift172wim). Indeed, in the presence of the PI3K in-
hibitor LY294002, the anterograde mutants show P-AktT308 levels consistent with complete inhibition of PP2A activity; however, these cells lack cilia, making it impossible to distinguish whether the lack of cilia or the absence of anterograde traffic underlies the diminished PP2A activity. In the remaining ciliary transport mutant MEFs, PP2A is active, albeit less efficient than in control. In fact, Ift172wim, Ift122sopb, Arl13bfln, and Dyn2hfl MEFs required PI3K inhibition for T308 to be completely dephosphorylated as in control MEFs.
Our data show that total PP2A activity is not changed, suggesting that the effects on P-Akt\(\text{T308}\) levels are due to misregulation of a specific pool of PP2A. We cannot pinpoint an exact mechanism for this—perhaps PP2A activity is affected only in specific subcellular compartments or perhaps only specific holozyme combinations of PP2A are affected. Several ciliary transport proteins, including Arl13b, can function outside the cilium, so perhaps they regulate PP2A activation in such a specific location (Robert et al., 2007; Sedmak and Wolfrum, 2010; Delaval et al., 2011; Barral et al., 2012; Casalou et al., 2014). Nonetheless, if only a subset of PP2A activity is decreased, it would explain why P-Akt\(\text{T308}\) is increased but total in vitro PP2A activity is not altered in the ciliary transport mutant MEFs. Given that PP2Ac and P-Akt\(\text{T308}\) are both localized at the base of cilia, we examined their signal intensity in the ciliary transport mutants but were unable to see any changes. This could be due to the changes being below the level of detection, which seems unlikely, because we could observe the differences by Western blotting. Alternatively, PP2A and Akt are both constantly trafficked around the cell, so their activity state need not be linked to their physical presence at the ciliary base. Our data suggest ciliary transport regulates PP2A activity and the Akt substrate’s presence at the ciliary base facilitates Akt regulation.

There are several possibilities to explain how ciliary transport regulates PP2A activity, but our present work does not address whether this is via a direct or an indirect mechanism. One direct model would be that PP2A subunits or the assembled holoenzyme may require ciliary transport for activation, either by being physically brought into the cilium for activation or by an activator being transported into the cilium. Our observation that PP2Ac remained at the basal body in all ciliary transport mutant MEFs suggests the entire holoenzyme is not transported into the cilium. Alternatively, it is possible that an inhibitor of PP2A activity is regulated by ciliary transport. The rescue of P-Akt\(\text{T308}\) dephosphorylation in Ift172\(\text{wim}\) MEFs upon treatment with FTY720 is consistent with this possibility, because FTY720 inhibits an endogenous inhibitor of PP2A, I2PP2A/SET (Li et al., 1996; Saddoughi et al., 2013). I2PP2A/SET localizes to cilia in at least one cell type, suggesting that ciliary transport controls the kinetics of I2PP2A/SET inhibition of PP2A,
thereby regulating a subset of PP2A activity, which can lead to indirect misregulation of the pathways PP2A regulates. The LY294002 sensitivity of Ift172sopb MEFs compared with the insensitivity of Ift172wim MEFs would be consistent with such a model, because it suggests that the kinetics of ciliary transport are critical in regulating PP2A activity.

The feed-forward and feedback loops between mTORC1, PDGF-AA/αα, and PP2A highlight the intricate connections between these pathways and provide the scaffold upon which more indirect models can be built. It is worth noting that the pharmacological approaches we used shift the finely tuned balance among mTOR, PP2A, and PDGF-AA/αα, but do not completely reset all the pathways in the context of the others. Thus our data raise but cannot answer the question of whether the primary defect in the ciliary transport mutants is the increase in mTORC1 signaling or the diminished PP2A activity. Indeed, we observed increased basal P-PDGFRα, a PP2A substrate (Ballou et al., 1988; Hahn et al., 2010). Thus, diminished PP2A activity can explain the increased mTORC1 signaling and the aberrant P-Akt levels we see in ciliary transport mutant MEFs.

An alternative model, that the increased mTORC1 signaling causes the decrease in PP2A activity, predicts that total PP2A activity would be lowered. Because total PP2A activity is not decreased in Ift172wim MEFs, where P-Akt T308 levels are elevated under multiple conditions, this model is less likely. Furthermore, experiments that manipulate ciliary transport or various PP2A subunits in vivo also indicate that other PP2A functions are spared in ciliary transport mutants. PP2A Caz−/− embryos die around embryonic day 6.5 (e6.5) and fail to form mesoderm, underscoring the essential role of PP2A early in development (Goiz et al., 1998). In contrast, Ift172wim, Ift172wmc, Ift122sopb, Arl13bΔcn, and Dyn2h1Δ embryos form mesoderm and survive through midgestation (Huangfu et al., 2003; Caspary et al., 2007; Occhina and Anderson, 2008; Friedland-Little et al., 2011; Qin et al., 2011).

The past decade has witnessed a flurry of research into the primary cilium as a fundamental signaling organelle. Indeed, mutations in many cilia-related genes lead to the human ciliopathies, which are linked to diverse signaling pathways. Our data show that ciliary transport plays a role in the relationship among these pathways. Rescue of the PDGF-AA response in cells lacking cilia raise the possibility that some pathways localized in cilia may be there for efficiency; perhaps the cilium provides highly regulated real estate that facilitates pathway transduction. The next steps will distinguish between direct and indirect mechanisms for the relationships among the signal transduction pathways linked to cilia and will address when the receptors can and do act.

MATERIALS AND METHODS

Cell culture

Primary cultures of control, Arl13bΔcn, Ift172wim, Ift172wmc, and Ift122sopb mouse embryonic fibroblasts were isolated from e11.5–e12.5 embryos and maintained in DMEM/F12 supplemented with 10% heat-inactivated fetal bovine serum and 1% penicillin/streptomycin (Corning, Manassas, VA: 10-092). Control MEFs were wild-type or heterozygous for Arl13bΔcn, Ift172wim, Ift172wmc, or Ift122sopb, and were paired with their respective ciliary transport mutant littermates for experiments. Primary Dyn2h1Δ and Ift172wmc MEFs were provided by Kathryn Anderson (Memorial Sloan Kettering Cancer Center) and Ift122sopb MEFs by Jonathan Eggenschwiler (University of Georgia). MEFs were grown until confluent on plates precoated with 0.1% gelatin and then serum starved for 48 h before lysis and processing for Western blot analysis. Ciliary transport mutant cells, except Ift172wmc, which lack cilia, were cultered to roughly similar percentages, just below 20%. Depending on the experiment, cells were treated at the following doses/times: 50 ng/ml PDGF-AA for 10 min (R&D Systems, Minneapolis, MN: 221-AA); 50 μM LY294002 for 1 h (Cell Signaling, Danvers, MA: 9901); 10 nM rapamycin for 24 h (MP Biomedicals, Santa Ana, California: 159346); 200 nM OA for 3 h (Cell Signaling: 5934); and FFT720 for 5 h (Sigma-Aldrich, St. Louis, MO: SML0700-5MG).

PP2A immunoprecipitation and phosphatase assay

The kit was purchased from Millipore (17-313). Experiments were performed following the manufacturer’s protocol with 500 μg protein lysate, with or without 1 μM OA (Cell Signaling: 5934) during the phosphopeptide incubation.

Immunofluorescence (IF)

MEFs were grown and prepared for IF as previously described (Larkins et al., 2011). Fluorescence was visualized on either an Olympus Fluoview 100 confocal iX81 inverted microscope, a Nikon Structured Illumination Microscope, or a Leica DM600B upright microscope. Images were processed using Fiji software (Schindelin et al., 2012).

SDS–PAGE and Western blot analysis

MEFs were rinsed with cold phosphate-buffered saline, scraped off the plate with a cell scraper, and lysed in 150 μl of RIPA buffer supplemented with protease and phosphatase inhibitors (Sigma-Aldrich: P5726; Roche: 1697498001 and 04906845001). For experiments examining demethylated PP2Ac, lysates were prepared as described below, along with an additional treatment to demethylate PP2Ac (Jackson and Pallas, 2012). MEF lysate was passed through a 25/0.25 gauge needle 10 times and spun down at 16,000 relative centrifugal force for 10 min at 4°C, after which the supernatant was transferred to a clean tube. Protein concentrations were determined with a BCA protein kit (Pierce, Rockford, IL; 23221) or by Coomassie blue staining. MEF lysates were mixed with loading buffer, separated by SDS–PAGE on 4–20% MiniPROTEAN TGX Precast Gels (456-1096EDU) with SDS running buffer, and transferred to Trans-Blot Turbo nitrocellulose membranes (Bio-Rad: 170-4059) using the Trans-Blot Turbo system (Bio-Rad: 170-4155). Membranes were blocked for 10 min at room temperature and incubated with primary antibodies in blocking buffer (Pierce: 37538) overnight at 4°C. Primary antibodies were detected using horseradish peroxidase–conjugated secondary antibodies (GE Healthcare Life Sciences, Pittsburgh, PA; NA934, and NA931) in 5% wt/vol nonfat milk in 0.1% Tris buffered saline with 0.1% Tween (TBST) at room temperature for 1 h and visualized with Amersham ECL Prime (GE Healthcare Life Sciences: RNPN2232). Within each experiment, samples are from the same blot, originally performed in duplicate or in triplicate, and edited to show one representative band for each experimental condition, with white dotted lines drawn between lanes for ease of viewing. Band intensities from two to three biological replicates per condition were measured with Fiji software and normalized to actin loading control before averaging (McLean and Bennett, 2013). Bar graphs show the average of two or three experimental bands (as indicated) normalized to actin, with error
bars showing SD. Data were analyzed using unpaired two-tailed t tests (Supplemental Table S1).

Antibodies

We used the following antibodies at the indicated dilutions for Western blotting (WB) or IF: from Cell Signaling, Akt (WB 1:1000, IF 1:200, #9272), P-Akt (WB 1:1000, IF 1:500, #8579F11), P-Akt (WB 1:2000, IF 1:500, #2965), mTOR (WB 1:2000, #2983), p-mTOR (WB 1:2000, #5536), P70 S6K (WB 1:2000, #2708), P-P70 S6K (WB 1:2000, #9208), S6 (WB 1:2000, #2127), and P-S6 (WB 1:2000, #2211). From BD Pharmingen (San Diego, CA), PDGF/IF (IF 1:200, #558774). From Santa Cruz Biotech (Dallas, TX), PDGF/IF (WB 1:1000). From Sigma-Aldrich, acetylated tubulin (IF 1:2500, #T6793), actin (WB 1:1000, #A5606), α- rabbit γ-tubulin (IF 1:1000, #T5192), α-mouse γ-tubulin (IF 1:1000, #T6557), and P-PDGFRα (WB 1:1000, #P8246). PP2Ac antibody was kindly provided by David Pallas (Emory University; WB 1:10,000, IF 1:200; BD Transduction Laboratories: 61055).

ACKNOWLEDGMENTS

We thank Kathryn Anderson, Jonathan Eggenschwiler, and David Pallas for providing reagents; members of the Caspary lab for comments; and Cheryl Timms Straus for editing. This research project was supported with research funding from the Muscular Dystrophy Association (131071), National Institute of Neurological Disorders and Stroke (NINDS; R01 NS056380), and Emory Neuroscience NINDS Core Facilities (P30NS055077—Emory University Integrated Cellular Imaging Microscopy Core). N.L.U. was supported by an Emory PRISM Graduate Teaching Fellows in K–12 Education Fellowship (DGE0536941), an Emory Genetics and Molecular Biology Graduate Program Training Grant (T32GM088490), and an Emory Human Disease Genetics Training Fellowship (T32MH087977).

REFERENCES

Andjelkovic M, Jakubowicz T, Cron P, Ming XF, Han JW, Hemmings BA (1996). Activation and phosphorylation of a pleckstrin homology domain containing protein kinase (RAC-PK/PKB) promoted by serum and protein phosphatase inhibitors. Proc Natl Acad Sci USA 93, 5699–5704.

Ballou LM, Joné P, Thomas G (1988). Protein phosphatase 2A inactivates the mitogen-stimulated S6 kinase from Swiss mouse 3T3 cells. J Biol Chem 263, 1188–1194.

Barral DC, Garg S, Casalou C, Watts GMF, Sandoval JL, Ramalho JS, Hsu VW, Brenner MB (2012). Arf13b regulates endocytic recycling traffic. Proc Natl Acad Sci USA 109, 21354–21359.

Basu S (2011). PP2A in the regulation of cell motility and invasion. Curr Chem Genet 263, 1188–1194.

Bellacosa A, Chan TO, Ahmed NN, Datta K, Malstrom S, Stokoe D, McCormick F, Feng J, Tischis P (1998). Akt activation by growth factors is a multiple-step process: the role of the PH domain. Oncogene 17, 313–325.

Boehlke C, Kotis F, Patel V, Braeg S, Voelker H, Breit S, Beyar T, Janusch H, Hamann C, Gödel M, et al. (2010). Primary cilium regulate mTORC1 activity and cell size through Lkb1. Nat Cell Biol 12, 1311–1322.

Burnett PE, Barrow RK, Cohen NA, Snyder SH, Sabatini DM (1998). RAFT1 (WB 1:1000, #P8246). PP2Ac antibody was kindly provided by David Pallas (Emory University; WB 1:10,000, IF 1:200; BD Transduction Laboratories: 61055).

Caspary T, Larkins CE, Anderson KV (2007). The graded response to Sonic hedgehog depends on cilia architecture. Dev Cell 12, 767–778.

Clement DL, Mally S, Stock C, Lethan M, Satir P, Schwab A, Pedersen SF, Christensen ST (2013). PDGF/IF signaling in the primary cilium regulates NHE1-dependent fibroblast migration via coordinated differential activity of MEK1/2/ERK1/2-p90RSK and AKT signaling pathways. J Cell Sci 126, 953–965.

Cohen P, Klumpp S, Schelling DL (1989). An improved procedure for identifying and quantitating protein phosphatases in mammalian tissues. FEBs Lett 250, 596–600.

Corbit KC, Aanstad P, Singla V, Norman AR, Stainier DRY, Reiter JF (2005). Vertebrate Smoothened functions at the primary cilium. Nature 437, 1018–1021.

Corbit KC, Shyer AE, Dowdle WE, Gaudel J, Singla V, Chen M-H, Chuang P-T, Reiter JF (2008). Kif3a constrains beta-catenin-dependent Wnt signalling through dual ciliary and non-ciliary mechanisms. Nat Cell Biol 10, 178–186.

Delovets B, Bright A, Lawson ND, Dosey S (2011). The cilium protein IFT88 is required for spindle orientation in mitosis. Nat Cell Biol 13, 461–468.

Edelstein J, Rockwell P (2012). Okadaic acid induces Akt hyperphosphorylation and an oxidative stress-mediated cell death in serum starved SK-N-SH human neuroblastoma cells that are augmented by rapamycin. Neurosci Lett 531, 74–79.

Ferrari S, Bandi HR, Hofstengge J, Bussian BM, Thomas G (1991). Mitogen-activated 70K S6 kinase. Identification of in vitro 40 S ribosomal S6 phosphorylation sites. J Biol Chem 266, 22770–2277S.

Flegg CP, Sharma M, Medina-Palazon C, Jamieson C, Galea M, Brocardo MG, Mills K, Henderson BR (2010). Nuclear export and centrosome targeting of the protein phosphatase 2A subunit B56α: role of B56α in nuclear export of the catalytic subunit. J Biol Chem 285, 18144–18154.

Friedland-Littie ML, Hoffmann AD, Ocbina PJR, Peterson MA, Bosman JD, Chen Y, Cheng SY, Anderson KV, Moskowitz IP (2011). A novel murine allele of intraflagellar transport protein 25 causes a syndrome including VACTERL-like features with hydrocephalus. Hum Mol Genet 20, 3725–3737.

Goetz SC, Anderson KV (2010). The primary cilium: a signalling centre during vertebrate development. Nat Rev Genet 11, 331–344.

Götz J, Probst A, Ehler E, Hemmings B, Kues W (1998). Delayed embryonic lethality in mice lacking protein phosphatase 2A catalytic subunit Cα. Proc Natl Acad Sci USA 95, 12370–12375.

Greenberg ME, Ziff EB (1983). Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene. Nature 311, 433–438.

Hahn K, Miranda M, Francis VA, Vendrell J, Zorrano A, Teleana AA (2010). PP2A regulatory subunit PP2A-B′ counteracts S6K phosphorylation. Cell Metab 11, 438–444.

Haycraft CJ, Banizs B, Aydin-Son Y, Zhang Q, Michaud EJ, Yoder BK (2005). Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PloS Genet 1, e53.

Horn V, Thelu J, Garcia A, Albige-Aizo C, Block MR, Villiet J (2007). Functional interaction of Aurora-A and PP2A during mitosis. Mol Biol Cell 18, 1233–1241.

Ho AL, Vasudeva SD, Lae M, Saito T, Barbashina V, Antonescu CR, Ladanyi M, Schwartz GK (2012). PDGF receptor alpha is an alternative mediator of ramapycin-induced Akt activation: implications for combination targeted therapy of synovial sarcoma. Cancer Res 72, 4515–4525.

Huangfu D, Liu A, Rakeman AS, Murca NS (2003). Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426, 83–87.

Inoki K, Li Y, Zhu T, Wu J, Guan K-L (2002). TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4, 648–657.

Izotini S, Hara K, Tokunaga C, Inoue H, Avruch J, Yonezawa K (1999). Immunopurified mammalian target of rapamycin phosphorylates and activates p70 S6 kinase alpha in vitro. J Biol Chem 274, 34493–34498.

Jackson JB, Pallas DC (2012). Circumventing cellular control of PP2A by methylphosphorylation promotes formation in an Akt-dependent manner. Neoplasia 14, 585–599.

Janssens V, Goris J (2001). Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J 353, 417–439.

Jeno P (1988). Identification and characterization of a mitogen-activated S6 kinase. Proc Natl Acad Sci USA 85, 406–410.

Larkins CE, Avisles GGD, East MP, Kahn RA, Caspary T (2011). Arl13b regulates ciliogenesis and the dynamic localization of Shh signalling proteins. Mol Biol Cell 22, 4694–4703.

Li M, Makinje A, Damuni Z (1996). The myeloid leukemia-associated protein SET is a potent inhibitor of protein phosphatase 2A. J Biol Chem 271, 11059–11062.

Li Y, Wang X, Yue P, Tao H, Ramalingam SS, Oonokinco TK, Deng X, Wang Y, Fu H, Khuri FR, et al. (2013). Protein phosphatase 2A and
DNA-dependent protein kinase are involved in mediating rapamycin-induced Akt phosphorylation. J Biol Chem 288, 13215–13224.

Li HJ, Cohen SW, Wang C, Lin-Chao S (1996). The platelet-derived growth factor α-receptor is encoded by a growth-arrest-specific (gas) gene. Proc Natl Acad Sci USA 93, 4617–4622.

May SR, Ashique AM, Karlen M, Wang B, Shen Y, Zbarbali K, Reiter J, Ericson J, Peterson AS (2005). Loss of the retrogade motor for IFT disrupts localization of Smo to cilia and prevents the expression of both activator and repressor functions of Gli. Dev Biol 287, 378–389.

McBride SM, Perez DA, Polley MY, Vandenberg SR, Smith JS, Zheng S, Lamborn KR, Wiencke JK, Chang SM, Prados MD, et al. (2010). Activation of PI3K/mTOR pathway occurs in most adult low-grade gliomas and predicts patient survival. J Neurooncol 97, 33–40.

McLean AC, Bennett SAL (2013). A protocol for densitometric quantification of Western blots using Image J [weblog entry]. Neural Regeneration Research, Resources, University of Ottawa. Available at http://137.122.232.177/resources.html.

Ocbina PJR, Anderson K V (2008). Intraflagellar transport, cilia, and mammalian Hedgehog signaling: analysis in mouse embryonic fibroblasts. Dev Dyn 237, 2030–2038.

Ocbina PJR, Eggenschwiler JT, Moskowitz I, Anderson K V (2011). Complex interactions between genes controlling trafficking in primary cilia. Nat Genet 43, 547–553.

Peterson RT, Desai BN, Hardwick JS, Schreiber SL (1999). Protein kinase inhibition causes feedback-dependent biphasic regulation of Akt and lipid metabolism. Proc Natl Acad Sci USA 96, 4438–4442.

Petritsch C, Beug H, Balmain A, Oft M (2000). TGF-β expressions are increased in alpha PDGF receptor kinase insert domain abrogate receptor-associates growth factor-modulated proteins: constitutive synthesis by a transformed cell line. Proc Natl Acad Sci USA 78, 4358–4362.

Qiu H, Scherz PJ, Shah JV, Herron BJ, Chesbro AL, Qiu H, Scherz PJ, Shah JV, et al. (2008). THM1 negatively modulates mouse sonic hedgehog signal transduction and affects retrograde intraflagellar transport in cilia. Nat Genet 40, 403–410.

Turowski P, Fernandez a, Favre B, Lamb NJ, Hemmings Ba (1995). Differential methylation and altered expression of cytotoxic and nuclear forms of protein phosphatase 2A during cell cycle progression. J Cell Biol 129, 397–410.

Vereshchagina N, Ramel M-C, Bitoun E, Wilson C (2008). The protein phosphatase P2A-A’-subunit Widerborst is a negative regulator of cytoplasmic activated Akt and lipid metabolism in Drosophila. J Cell Sci 121, 3383–3392.

Wang W, Brautigan DL (2008). Phosphatase inhibitor 2 promotes acetylation of tubulin in the primary cilium of human retinal epithelial cells. BMC Cell Biol 9, 62.

Yang P, Fox L, Colbran RJ, Sale WS (2000). Protein phosphatases P1 and P2A are located in distinct positions in the Chlamydomonas flagellar axoneme. J Cell Sci 113, 91–102.

Yu JC, Gutkind JS, Mahadevan D, Li W, Meyers KA, Pierce HJ, Heidaran MA (1994). Biological function of PDGF-induced PI-3 kinase activity: its role in alpha PDGF receptor-mediated mitogenic signaling. J Cell Biol 127, 479–487.

Yu JC, Heidaran MA, Pierce HJ, Gutkind JS, Lombardi D, Ruggiero M, Aaronson SA (1991). Tyrosine mutations within the alpha platelet-derived growth factor receptor kinase insert domain abrogate receptor-associated phosphatidylinositol-3 kinase activity without affecting mitogenic or chemotactic signal transduction. Mol Cell Biol 11, 3780–3785.

Zhang H, Bajraszewski N, Wu E, Wang H, Moseman AP, Dabora SL, Griffin JD, Kwiatkowski DJ (2007). PDGF receptors are critical for PI3K/Akt activation and negatively regulated by mTOR. J Clin Invest 117, 730–738.

Zhang H, Cicchetti G, Onda H, Koon HB, Asican K, Bajraszewski N, Vazquez F, Carpenter CL, Kwiatkowski DJ (2003). Loss of Tsc1/Tsc2 activates mTOR and disrupts PI3K-Akt signaling through downregulation of PDGF. J Clin Investig 112, 1223–1233.

Zhang Z, LeRoy JL, Niu J, Hahn WC (2003). Human mammary epithelial cell transformation through the activation of phosphatidylinositol-3 kinase. Cancer Cell 3, 483–495.

Zhu D, Shi S, Wang H, Liao K (2009). Growth arrest induces primary-cilium formation and sensitizes IGF-1-receptor signaling during differentiation induction of 3T3-L1 preadipocytes. J Cell Sci 122, 2760–2768.