Cadmium Accumulation Risk in Vegetables and Rice in Southern China: Insights from Solid-Solution Partitioning and Plant Uptake Factor

Yang Yang,†,‡ Meie Wang,† Weiping Chen,*,† Yanling Li,†,‡ and Chi Peng†

†State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
‡University of Chinese Academy of Sciences, Beijing 100049, China

Supporting Information

ABSTRACT: Solid-solution partitioning coefficient (K_d) and plant uptake factor (PUF) largely determine the solubility and mobility of soil Cd to food crops. A four-year regional investigation was conducted in contaminated vegetable and paddy fields of southern China to quantify the variability in K_d and PUF. The distributions of K_d and PUF characterizing transfers of Cd from soil to vegetable and rice are probabilistic in nature. Dynamics in soil pH and soil Zn greatly affected the variations of K_d. In addition to soil pH, soil organic matter had a major influence on PUF variations in vegetables. Heavy leaching of soil Mn caused a higher Cd accumulation in rice grain. Dietary ingestion of 85.5% of the locally produced vegetable and rice would have adverse health risks, with rice consumption contributing 97.2% of the risk. A probabilistic risk analysis based on derived transfer function reveals the amorphous Mn oxide content exerts a major influence on Cd accumulation in rice in pH conditions below 5.5. Risk estimation and field experiments show that to limit the Cd concentration in rice grains, soil management strategies should include improving the pH and soil Mn concentration to around 6.0 and 345 mg kg⁻¹, respectively. Our work illustrates that re-establishing a balance in trace elements in soils’ labile pool provides an effective risk-based approach for safer crop practices.

KEYWORDS: solid-solution partitioning, plant uptake, rice, vegetable, cadmium

INTRODUCTION

Cadmium (Cd) is one of the most harmful and widespread contaminants in agricultural soil.1,2 Cd is readily taken up by crop plants and threatens human health through the food chain.3 Dietary food intake accounts for approximately 90% of the total Cd exposure,4 and vegetables and rice are the biggest contributors to Cd exposure in the general nonsmoking population.4–6 Long-term consumption of Cd-contaminated vegetables and rice is associated with osteoporosis, kidney disease, and cardiovascular disease.7,8 China produces and consumes more vegetables and rice than any other country in the world.9,10 About 13 million hectares of the cultivated land of China is reported to be contaminated by Cd.11 Therefore, an important and urgent task in China is to control the risks associated with Cd in crop plants.

Vegetable and rice plants take up Cd from its labile pool in soils.12,13 Solid-solution partitioning and plant uptake are important processes determining metal bioavailability, phytoavailability, and ecotoxicity.14–16 The solid-solution partitioning coefficient (K_d) is often used to estimate metal ion concentration or activity in soil and predict metal mobility as well as potential leaching losses.17,18 The potential transfer of trace metals from soil to plants is usually estimated by the dimensionless plant uptake factor (PUF) defined as the ratio of metal concentration in edible plant tissues to that in soil.19 Both K_d and PUF help normalize the differences caused by mineralogical and soil conditions, and thus standardize the risk assessment of trace metals in soil-crop systems.20,21 K_d and PUF are introduced in many studies to predict the potential risk of toxic metals in cropland soil,22 inform soil protection guideline,23 and assess the Cd intake risk.24 Simple generic values of K_d and PUF are widely used in risk assessment models such as the Contaminated Land Exposure Assessment Model in the U.K.,25 the Csoil Model in The Netherlands,26 and the Cadmium Accumulation Model in China.27 However, these two parameters are not constants but vary widely with different environmental factors.14,19 Significant variables contributing to the variability of K_d and PUF are soil pH, soil organic matter, cation exchange capacity, texture, Fe/Mn oxides, and crop plant species.28

Predictive K_d and PUF models factoring in soil pH have been developed in recent years.16,23 The limitation of these studies is that the transfer functions are not universal and cannot be generally used to accurately assess potential risk of Cd in agricultural systems. Lim et al.,18 Sauvé et al.,28 and Groenenberg et al.29 compared their derived models with experimental results and indicated that literature-derived functions underestimate the site-specific environmental factors. The processes of soil Cd accumulation and crop uptake are dynamic and complex,12,30 but K_d and PUF are seldom parametrized accordingly. In addition, most studies were conducted over only one year and were carried out on spike metals or potted experiments having a narrow range of soil...
compositions. The limited field data restrict the use of these K_d and PUF models in risk assessments. Many national environmental agencies recommend developing systematic methods to characterize K_d and PUF to determine site-specific risk and ultimately human exposure, but such detailed comprehensive studies are limited.

The prefecture of Youxian is a major regional crop producer in southern China (Figure S1 in the Supporting Information) and is known nationwide as a “Cd-tainted rice” region. On the basis of a four-year regional investigation and field trial in vegetable and paddy fields of this area, we aimed (1) to characterize K_d and PUF in probabilistic terms; (2) to identify the major factors influencing K_d and PUF; and (3) to provide recommendations toward a more risk-based perspective for the safer production of vegetables and rice.

Materials and Methods

Survey and Sampling. A total of 683 paired soil-crop sites were selected throughout the Youxian prefecture (113.32°E long., 27.01°N lat.), including 478 vegetable field sites and 205 paddy field sites. At each site, the types of crop cultivars and growth conditions were investigated and recorded. Five major consumed leafy-type vegetables in the study area were collected, comprising bokchoy ($Brassica rapa$ var. chinensis), Chinese cabbage ($Brassica pekinensis$. L.), mustard ($Brassica juncea$. L.), lettuce ($Lactuca sativa$. L.), and red cabbage ($Brassica campestris$ subsp. chinensis var. purpurea). Rice samples belonged to the late indica cultivars. Topsoil samples (0–20 cm) were collected from the site of each crop plant harvest. Detailed information on samplings is available in Table S1 in the Supporting Information (SI).

The amount of crop residue returning to the soil was measured in the fields following each year’s harvest using the methods described in Wang et al. Meteorological data and agronomic information including farmland cultivation, management, irrigation, fertilization and the main agricultural inputs and outputs were recorded and are listed in Tables S2 and S3. The consumption ratios of the vegetables (26.4 ± 23.6 g DW d⁻¹) and rice (258 ± 78.7 g DW d⁻¹) in the study area were obtained using a standardized questionnaire survey ($n = 671$, Table S4) throughout the study area. The body weights of adults (58 ± 1.1 kg capita) were obtained from a health survey ($n = 3442$) conducted by the Youxian health agency (Table S4).

Chemical Analyses. Samples of soil, vegetable, and rice were prepared according to the procedure described in Wang et al. and Yang et al. The bulk density of soil was measured with the core cutter method. The soil pH and electrical conductivity were measured in 1:2.5 and 1:5 (w/v) soil and water suspension, respectively. The contents of soil organic matter ($K_2Cr_2O_7$–H_2SO_4, oil-bath-heating), clay (hydrometer method), cation exchange capacity (1 mol NH₄OAc buffered at pH 7.0), total C and N (dry combustion method), amorphous Fe, and Mn oxide ($\{\text{NH}_4\}_2\text{C}_2\text{O}_4$–$H_2\text{C}_2\text{O}_4$ extraction) were analyzed according to routine analytical methods of agricultural chemistry in soil. The solubility and speciation of Cd were determined using 1:2 (w/v) soil extracts with 10 M KNO₃ to eliminate the influences of other salts on the total ionic strength of the solution. The detailed procedure is described in Luo et al.

The crop samples were digested with concentrated HNO₃–HClO₄, whereas soil was digested with a mixture of HCl–HNO₃–HF–HClO₄ solution. Concentrations of Cd and Zn were determined by GFAAS (ZEEinit700, Analytik Jena, Germany). Concentration of Fe and Mn were determined by ICP-OES (DV4300, PerkinElmer, Norwalk, U.S.A.). Basic information on determined physicochemical properties in the vegetable and paddy fields included in this study is available in the Table S5.

Quality Assurance. Sample blanks and standard reference materials (GBW10014 for vegetables, GBW10045 for Hunan rice, and GBW07405 for soils) were included in every batch of the analyses. The recovery ratios of standards for Cd and Zn ranged from 82.4% to 110% and 108% to 112% for GBW10014, 93.1% to 108% and 83.8% to 121% for GBW10045, and 92.1% to 110%, and 83.7% to 118% for GBW07405, respectively.

Statistical Analyses. One way analysis of variance (ANOVA) was conducted to evaluate the differences in vegetable and paddy fields, in which significant effects were compared using the Turkey’s test ($p < 0.05$). Spearman correlation analysis (two-tailed) and stepwise multiple linear regression analysis were conducted using the Genstat 17.0. The uncertainty in the risk assessments was estimated using the Monte Carlo simulation method, obtained following 10 000 iterations using the Matlab 14.0a.

Results and Discussion

Characterization of K_d and PUF. As shown in Figure 1, K_d values ranged from 3.24 to 5,145 L kg⁻¹, with a geometric mean value of 35.5 L kg⁻¹. The range of K_d values was within the range reported by Sauvé et al. (0.44–192 000 L kg⁻¹), but comparatively narrower. K_d values in paddy fields (geometric mean $K_d = 29.5$ L kg⁻¹) were significantly lower than that in vegetables fields (geometric mean $K_d = 38.4$ L kg⁻¹), suggesting that Cd in solution phase is proportionately higher in paddy soils, thus increasing the accumulation risk for rice crops. The PUF value averaged 1.52 for rice fields, nearly 10 times that of vegetable fields (0.15) (Table S5). About 0.2% and 62% of vegetable and rice fields had PUF values above 1. These results demonstrate that Cd is effectively transferred from soil to rice grains.

Figure 1. Probability distribution of (a): K_d in vegetable and paddy fields; and (b) the PUF of vegetable and rice from the study area and other studies. K_d and PUF data are fitted by a log-normal distribution function. The K_d data in Nanjing and California from Chen et al. and Luo et al. The PUF data in China and U.S.A. from Chen et al. and Zhang et al.

5464 DOI: 10.1021/acs.jafc.7b01931 J. Agric. Food Chem. 2017, 65, 5463–5469
Although the use of representative K_d values range approximately over 3 orders of magnitude, and are lower than reported K_d values in Nanjing and California (Figure 1a), suggesting that fields in the studied region have generally poor Cd retention capacity. These results further illustrate the seriousness of the Cd contamination situation in the cropland soils of the Youxian prefecture.

The PUF values showed a 41-fold and 70-fold variation in vegetable and rice fields (Figure 1b), respectively. In comparison with the PUF values throughout the cropland soils of China and California, the PUF of rice fields in our study is much higher, while PUF of vegetable fields in this region is much smaller, suggesting a potential risk for rice cultivation in the study area. Correlation analyses showed a weak relationship between total Cd in soils and crop plants. Among uncontaminated soil (soil Cd < 0.3 mg kg$^{-1}$), 67.1% (102 of 152) of vegetable fields had low levels of PUF (lower than their averaged value, 0.15), and 62.2% (46 of 74) of paddy fields had low levels of PUF (lower than their averaged value, 1.52). These results indicate that soil Cd alone is generally a poor predictor for Cd accumulation in crop plants.

In general, the great site-to-site variations of K_d and PUF indicated a complicated relationship between Cd concentration in soil, soil solution, and crop plants and environmental factors, thus making risk assessment and management more challenging. Although the use of representative K_d and PUF values in relevant works may be similar, the probability risk interpretations are quite different. Results indicate that characterizing K_d and PUF in probabilistic terms is necessary for a consistent risk assessment.

Relationships Between K_d and Soil Factors. The bioavailability of Cd in agricultural soil is governed by a range of soil factors. Values of K_d showed a curvilinear increase with pH over the range 3.4–7.84 (Figure 2). Soil pH alone accounted for 58% and 71% of the variability in vegetable and paddy fields, respectively, suggesting that Cd in paddy fields is more sensitive to the influence of soil pH than in vegetable fields.

A pH value of 5.5 is the acidification threshold of soils in southern China. The K_d values in both vegetable and paddy soils are divided into two groups depending on this pH threshold, as shown in Figure 2. In the acidic soil group ($pH < 5.5$), 56.1% (268 of 478) of vegetable fields had low levels of K_d (lower than their geometric mean, 38.4 L kg$^{-1}$), and 56.1% of paddy fields (115 of 205) had low levels of K_d (lower than their geometric mean, 29.5 L kg$^{-1}$). Soil acidification increases the metal pool have similar affinity for sorption sites. Soil pH in sampled soils averaged 5.3, and 74.4% of fields (508 of 683) belonged to the acidic soil group ($pH < 5.5$). The strong acidification of soils in study area implies a lower retention capacity of cationic Cd and thus uptake by crop plants.

Table 1. Derived Transfer Functions for K_d and PUF in Vegetable and Paddy Field

no. of equations	field	regression model	n	R^2	RMSE	p
1	vegetable	$\log[K_d] = -3.17 + 0.74 pH + 0.27 \log[Zn] + 0.29 \log[SOM]$	478	0.69	0.41	<0.001
2	rice	$\log[K_d] = -5.41 + 0.83 pH + 1.3 \log[Zn]$	205	0.81	0.19	<0.001
3	vegetable	$\log[PUF] = 1.08 - 0.25 pH - 0.54 \log[SOM]$	478	0.62	0.19	<0.001
4	rice	$\log[PUF] = 2.04 - 0.23 pH + 0.43 \log[Mn_{ox}]$	205	0.37	0.26	<0.001
5	rice	$\log[Cd_{soil}] = 1.62 - 0.22 pH + 0.26 \log[Cd_{soil}] - 0.41 \log[Mn_{ox}]$	205	0.42	0.23	<0.001

Figure 2. Relationship between soil pH and K_d in (a) vegetable and (b) paddy field.
ploughings cause a strong disturbance of the surface soil profile (0–20 cm), destroy soil aggregates, improve the soil aeration porosity, and speed up the decomposition and mineralization of SOM.16,31 Fields ploughed three times a year or more for vegetable production required more fertilizer input. The application of nitrogenous fertilizer in the vegetable and paddy fields in this study reached 332 and 140 kg ha−1, respectively, significantly higher than applications of phosphorus and potassium fertilizer (Table S3). The negative correlation between nitrogenous fertilizer input and soil pH (r = −0.366*) and SOM (r = −0.219*) in vegetable fields shows that excessive fertilizer application may lead to soil acidification and a decline in SOM owing to nitrification and physiological acidity.9,11 In addition, vegetable field practices led to drought conditions during the whole tillage stage, while paddy fields alternated between dry and wet conditions. Aerobic and warmer conditions further led to decreases in Feox and Mnox in vegetable fields (Table S5). Accordingly, the decreases of SOM, CEC, Feox, and Mnox resulted in a higher solubility of Cd2+ in vegetable fields compared to paddy fields. Other studies in Hunan,10 Guangdong,37 and Jiangsu38 found similar decreased soil fertility conditions in vegetable fields compared with paddy fields.

Relationships Between PUF and Soil Factors. The derived transfer functions revealed that in addition to soil pH, SOM had a major influence on PUF variation in vegetable fields, and Mnox is the principal control factor of PUF in rice field (eqs 3 and 4, Table 1). In the acidic soil group (pH < 5.5), the PUF averaged 0.2 and 1.6 for vegetable and rice fields, respectively, and was significantly higher than the PUF in fields with pH values above 5.5 (Figure 2). These results suggest that soil acidification increased the Cd availability and thus uptake by crop plants.

SOM was closely correlated with PUF in vegetable fields (r = −0.362**) (Table S6). When the SOM content was below 10 g kg−1, 63% of the vegetable fields had a PUF greater than their mean value (0.15). This ratio significantly decreased to 17.2% when SOM content in vegetable soil increased to 30 g kg−1. The relationship between SOM and rice PUF is relatively poor (r = 0.053). The root biomass and plant residue amount of vegetables was only 33.7% of that in rice, which resulted in a significantly lower C/N ratio in vegetable fields (10.4) compared to paddy fields (12.4) (Table S5). Low C/N in vegetable fields shows an inhibitory effect on microorganism activity, and decreases microbial biomass and metabolites.38 This could partially explain the lower SOM in vegetable fields (20 g kg−1) compared to paddy fields (39.6 g kg−1) (Table S5), and the significant influence of SOM on Cd accumulation in vegetables.

A Mn transporter (OsNRAMPS) has recently been proposed as the major Cd uptake pathway in rice.70 As shown in Figure 3a, PUF values of paddy soils are separated clearly into two groups by the Mnox content of 82 mg kg−1. About 83.8% of rice fields with a PUF above 1 were distributed in sites with soil Mnox below 82 mg kg−1. The PUF level in this low-Mnox group averaged 2.0, significantly higher than in the high-Mnox group (average 1.03). Our investigation also showed that Cd uptake by rice can be significantly inhibited by soil Mnox indicated by the strong negative correlation between soil Mnox and Cd accumulation in rice roots (r = −0.389**) and rice grain (r = −0.499**). Our field experiments over four rice growing seasons demonstrate that Mn application is effective in reducing Cd uptake in rice, as the PUF of rice roots and rice grains decreased by 27.2% and 44.5%, respectively, as shown in Figure 3b.

The average and median value of Mn concentration in paddy soils were 248 and 209 mg kg−1, respectively, far below the soil background value (459 mg kg−1).39 The high temperature (Table S2) and drainage of paddy fields in the mature stage result in aerobic conditions that enhance the soil acidity and Mn2+ oxidation.6,15 This in turn aggravates the loss of Mn due to drainage in paddy fields, and consequently weakens the effect of Mn in suppressing Cd transfer from soil to rice grain.

The average concentration of Zn in the vegetable and paddy field was 111 and 99.5 mg kg−1, respectively (Table S5), and slightly higher than the soil background value of 94.5 mg kg−1.39 The relationship between soil Zn and vegetable Cd was poor (r = 0.064). However, a negative correlation (r = −0.399**) between Zn and Cd accumulation in vegetable soils was found in areas that had a Zn:Cd ratio around 50:1. In the paddy fields, Zn had little influence on Cd accumulation (r = 0.062). These areas suffer from strong acidification and serious Cd contamination, which cause a dysfunction in the soil-crop.
Risk Prediction. The daily intakes (DI) of Cd through consumption of vegetables and rice are estimated using the health risk equation and Monte Carlo simulation (details are given in the SI). DI averaged 0.06 and 2.1 μg DW kg⁻¹ day⁻¹ for vegetable and rice, respectively (Figure S2). About 85.5% of the adult population living in affected areas had a daily Cd intake risk above the toxic value recommended by JECFA (0.8 μg BW kg⁻¹ day⁻¹), with rice consumption contributing 97.2% of the risk (Figure S2). A ratio of Cd to Zn in food crops below 0.015 is reported to effectively protect from Cd-induced health impacts. About 98.3% and 23.9% of vegetables and rice samples were within this safe ratio, respectively. Considering the greater risk posed by rice consumption, the factors governing Cd accumulation in rice are more important than those in vegetables in terms of practical farmland management.

A linear relationship describing Cd transfer from soil to rice grain was also established using the stepwise multiple linear regression method, as shown in eq S in Table 1. On the basis of the Monte Carlo simulation method, the derived transfer function (eq S) can be used to predict the likely content of Cd in rice grains in different soil conditions (for the parameters of pH and Mn in eq S, values were randomly drawn from their measured distributions). As expected, the estimated Cd concentration in rice increased with soil Cd concentrations and decreased with soil Mn content and soil pH (Figure 4). Cropping rice in low contamination area (soil Cd = 0.3 mg kg⁻¹), caused a 94.5% and 43.3% likelihood of Cd to accumulate above the China food standard limit of 0.2 mg DW kg⁻¹, and the WHO limit of 0.4 mg DW kg⁻¹, respectively; while this risk was significantly increased to 99.4% and 81.6%, respectively, in seriously contaminated soils (soil Cd = 1.5 mg kg⁻¹). As illustrated in Figure 4a, under uncontaminated soil conditions (soil Cd < 0.3 mg kg⁻¹), and low levels of Mn (82 mg kg⁻¹), rice grown in strong acidic soil (pH = 5.0), acidic soil (pH = 5.5), and near-neutral soil (pH = 6.0) resulted in a risk of 100%, 78.7%, and 36.7%, respectively, of producing Cd-tainted rice (>0.4 mg DW kg⁻¹). This risk significantly decreased to 82%, 39.5%, and 18.8%, respectively, when soil Mn increased to 132 mg kg⁻¹ (Figure 4a). This result indicates the influence of Mn content and pH on Cd accumulation in rice is interactive and dynamic. Mn content controlled the variations of rice Cd when Mn content was less than 82 mg kg⁻¹, especially in pH below 5.5.

Field experiments indicate that in improved soil conditions, with a pH of ~6.0 and a Mn content of ~132 mg kg⁻¹, the risk of rice Cd exceeding 0.2 mg DW kg⁻¹ significantly decreased from 100% to 33.3% (Figure S3), agreeing with our estimation (Figure 4a). To maintain acceptable Cd concentrations in rice grains (<0.2 mg DW kg⁻¹), soil management strategies should aim to improve soil pH to ~6.0 and soil Mn to ~345 mg kg⁻¹ (roughly corresponding to 132 mg kg⁻¹ Mn content, Figure S4).

At present, the continuous acidification of paddy soils raises concerns in the government and farming communities. To improve the acidic condition of cropland soil, large applications of lime and biochar have been conducted in many areas of southern China. The use of these materials may result in a serious loss of soil trace elements, especially in paddy soils with a low level of Mn. Rebuilding the element balance in cropland soils is more likely to provide an effective risk-based approach for safer crop production, rather than enforcing a strict ban on the usage of discharging Cd-contaminated effluents on soils, or removing the Cd from contaminated soils via engineering projects. Characterizing the K₃ and PUF and their relationships with site-specific factors in probabilistic terms provide different tools to assess soil contamination and are useful in effective risk management.

ASSOCIATED CONTENT

3 Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jafc.7b01931.

Details on Cd intake risk estimation (eqs S1–S3), regional investigation (Tables S1–S5, Figure S1) and the relationship between environmental factors and K₃ and PUF from vegetable and paddy fields (Tables S6, Figures S2–S4) (PDF)
AUTHOR INFORMATION
Corresponding Author
*Phone: +86-010-62843981. E-mail: wpchen@rcees.ac.cn (W.P.C.).

ORCID
Yang Yang: 0000-0003-0232-0481

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
Funding for this project was provided by the Special Foundation of State Key Lab of Urban and Regional Ecology (SKLURE2013-1-04) and National Natural Science Foundation of China (41173123).

REFERENCES
(1) Reeves, P. G.; Chaney, R. L. Bioavailability as an issue in risk assessment and management of food cadmium: A review. Sci. Total Environ. 2008, 399, 383–19.
(2) Clemens, S.; Aarts, M. G. M.; Thomine, S.; Verbruggen, N. Plant science: the key to preventing slow cadmium poisoning. Trends Plant Sci. 2013, 18, 92–99.
(3) Chaney, R. L. Food safety issues for mineral and organic fertilizers. Adv. Agron. 2012, 117, 51–116.
(4) JECFA (Joint FAO/WHO Expert Committee on Food Additives). Joint FAO/WHO Expert Committee on Food Additives, 73rd meeting; World Health Organization: Geneva, 2010.
(5) Gaw, S. K.; Kim, N. D.; Northcott, G. L.; Wilkins, A. L.; Robinson, G.; Uptake of ZDDT, arsenic, cadmium, copper, and lead by lettuce and radish grown in contaminated horticultural soils. J. Agric. Food Chem. 2008, 56, 6584–6593.
(6) Honma, T.; Ohba, H.; Kaneko-Kadokura, A.; Makino, T.; Nakamura, K.; Katou, H. Optimal soil Eh, pH, and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains. Environ. Sci. Technol. 2016, 50, 4178–4185.
(7) Ishikawa, S.; Ishimaru, Y.; Igrua, M.; Kuramata, M.; Abe, T.; Senoura, T.; Hase, Y.; Arai, T.; Nishizawa, N. K.; Nakashishi, H. Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 19166–19171.
(8) Fulda, B.; Voegelin, A.; Kretzschmar, R. Redox-controlled changes in cadmium solubility and solid-phase partitioning in a paddy soil as affected by reducible sulfate and copper. Environ. Sci. Technol. 2013, 47, 12775–12783.
(9) Hu, Y.; Cheng, H.; Tao, S. The challenges and solutions for cadmium-contaminated rice in China: a critical review. Environ. Int. 2016, 92–93, 515–532.
(10) Wu, L.; Tang, S.; He, D.; Wu, X.; Shaaban, M.; Wang, M.; Zhao, J.; Khan, I.; Zheng, X.; Hu, R.; Horwath, W. R. Conversion from rice to vegetable production increases NOx emission via increased soil organic matter mineralization. Sci. Total Environ. 2017, 583, 190–201.
(11) Zhao, F. J.; Ma, Y.; Zhu, Y. G.; Tang, Z.; McGrath, S. P. Soil contamination in China: current status and mitigation strategies. Environ. Sci. Technol. 2015, 49, 750–759.
(12) McBride, M. B.; Shayler, H. A.; Splethoff, H. M.; Mitchell, R. G.; Marquez-Bravo, L. G.; Ferenz, G. S.; Russell-Anelli, J. M.; Carey, L.; Bachman, S. Concentrations of lead, cadmium and barium in urban garden-grown vegetables: The impact of soil variables. Environ. Pollut. 2014, 194, 254–261.
(13) Wang, M.; Chen, W.; Peng, C. Risk assessment of Cd polluted paddy soils in the industrial and township areas in Hunan, Southern China. Chemosphere 2016, 144, 346–351.
(14) Bonten, L. T.; Groenenberg, J. E.; Weng, L.; Van Riemsdijk, W. H. Use of speciation and complexation models to estimate heavy metal sorption in soils. Geoderma 2008, 146, 303–310.
(15) Römkens, P.; Guo, H. Y.; Chu, C. L.; Liu, T. S.; Chiang, C. F.; Koopmans, G. Characterization of soil heavy metal pools in paddy fields in Taiwan: chemical extraction and solid-solution partitioning. J. Soils Sediments 2009, 9, 216–228.
(16) de Vries, W.; McLaughlin, M. J.; Groenenberg, J. E. Transfer functions for solid–solution partitioning of cadmium for Australian soils. Environ. Pollut. 2011, 159, 3583–3594.
(17) Groenenberg, J. E.; Dijkstra, J. J.; Bonten, L. T. C.; de Vries, W.; Comans, R. N. J. Evaluation of the performance and limitations of empirical partition-relations and process based multisurface models to predict trace element solubility in soils. Environ. Pollut. 2012, 166, 98–107.
(18) Lim, G. H.; Seo, B. H.; Kim, K. H.; Kim, H. S.; Kim, W. L.; Owens, G.; Kim, K. R. Transfer functions for estimating phytoavailable Cd and Pb in metal contaminated paddy and upland soils: Implications for phytoavailability based land management. Geoderma 2016, 270, 89–97.
(19) Samse-Petersen, L.; Larsen, E. H.; Larsen, P. B.; Bruun, P. Uptake of trace elements and PAHs by fruit and vegetables from contaminated soils. Environ. Sci. Technol. 2002, 36, 3057–3063.
(20) Rodrigues, S. M.; Henriques, B. d.; da Silva, E. F.; Pereira, M. E.; Duarte, A. C.; Groenenberg, J. E.; Römkens, P. F. A. M. Evaluation of an approach for the characterization of reactive and available pools of 20 potentially toxic elements in soils: Part II—Solid-solution partition relationships and ion activity in soil solutions. Chemosphere 2010, 81, 1560–1570.
(21) Chen, W.; Li, L.; Chang, A. C.; Wu, L.; Chaney, R. L.; Smith, R.; Ajwa, H. Characterizing the solid–solution partitioning coefficient and plant uptake factor of As, Cd, and Pb in California croplands. Agric. Ecosyst. Environ. 2009, 129, 212–220.
(22) Luo, X. S.; Zhou, D. M.; Liu, X. H.; Wang, Y. J. Solid/solution partitioning and speciation of heavy metals in the contaminated agricultural soils around a copper mine in eastern Nanjing city, China. J. Hazard. Mater. 2006, 131, 19–27.
(23) Ding, C.; Zhang, T.; Wang, X.; Zhou, F.; Yang, Y.; Huang, G. Prediction model for cadmium transfer from soil to carrot (Daucus carota L.) and its application to derive soil thresholds for food safety. J. Agric. Food Chem. 2013, 61, 10273–10282.
(24) Augustsson, A. L. M.; Uddh-Söderberg, T. E.; Hogmalm, K. J.; Filipsson, M. E. Metal uptake by homegrown vegetables—The relative importance in human health risk assessments at contaminated sites. Environ. Res. 2015, 138, 181–190.
(25) Le, T. T. Y.; Hendriks, A. J. Uncertainties associated with lacking data for predictions of solid-solution partitioning of metals in soil. Sci. Total Environ. 2014, 490, 44–49.
(26) Swartjes, F. A.; Versluijs, K. W.; Otte, P. F. A tiered approach for the human health risk assessment for consumption of vegetables from cadmium-contaminated land in urban areas. Environ. Res. 2013, 126, 223–231.
(27) Peng, C.; Wang, M.; Chen, W. Modelling cadmium contamination in paddy soils under long-term remediation measures: Model development and stochastic simulations. Environ. Pollut. 2016, 216, 146–155.
(28) Sauvé, S.; Hendershot, W.; Allen, H. E. Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter. Environ. Sci. Technol. 2000, 34, 1125–1131.
(29) Groenenberg, J. E.; Römkens, P. F. A. M.; Comans, R. N. J.; Luster, J.; Pampura, T.; Shothbolt, L.; Tipping, E.; De Vries, W. Transfer functions for solid-solution partitioning of cadmium, copper, nickel, lead and zinc in soils: derivation of relationships for free metal ion activities and validation with independent data. Eur. J. Soil Sci. 2010, 61, 58–73.
(30) Chaney, R. L. How does contamination of rice soils with Cd and Zn cause high incidence of human Cd disease in subsistence rice farmers. Curr. Pollut. Rep. 2015, 1, 13–22.
(31) Wang, H.; Guan, D.; Zhang, R.; Chen, Y.; Hu, Y.; Xiao, L. Soil aggregates and organic carbon affected by the land use change from rice paddy to vegetable field. Ecol. Eng. 2014, 70, 206–211.
(32) Yang, Y.; Chen, W.; Wang, M.; Peng, C. Regional accumulation characteristics of cadmium in vegetables: Influencing factors, transfer model and indication of soil threshold content. Environ. Pollut. 2016, 219, 1036–1043.

(33) Lu, R. K. Analytical Methods of Agricultural Chemistry in Soil; China Agricultural Science and Technology Press: Beijing, China (in Chinese), 2000.

(34) Guo, W.; Zhang, P.; Jin, L.; Hu, S. Rice cadmium monitoring using heat-extraction electrothermal atomic absorption spectrometry. J. Anal. At. Spectrom. 2014, 29, 1949–1954.

(35) Du, C.; Luo, L.; Guo, W.; Jin, L.; Chen, B.; Hu, S. Accurate determination of trace cadmium in geological reference materials by closed vessel acid digestion ETAAS. Atom. Spectrosc. 2015, 36, 141–145.

(36) Zhang, H.; Luo, Y.; Song, J.; Zhang, H.; Xia, J.; Zhao, Q. Predicting As, Cd and Pb uptake by rice and vegetables using field data from China. J. Environ. Sci. 2011, 23, 70–78.

(37) SEPAC (State Environmental Protection Administration of China). Chinese environmental quality standard for soils (GB15618-1995) (in Chinese), 1995.

(38) Sun, B.; Dong, Z. X.; Zhang, X. X.; Li, Y.; Cao, H.; Cui, Z. L. Rice to vegetables: short- versus long-term impact of land-use change on the indigenous soil microbial community. Microb. Ecol. 2011, 62, 474–485.

(39) SEPAC (State Environmental Protection Administration of China). Total Station of China Environment Monitoring, Chinese Soil Element Background Values; China Environment Science Press: Beijing (in Chinese), 1990.

(40) SHAC (State Health Administration of China). Guidelines for limit values of pollutant contents in foods (GB2762–2005) (in Chinese), 2005.

(41) CAC (Codex Alimentarius Commission). Report of the 29th Session of the Codex Alimentarius Commission (ALINORM 06/29/41); Codex Alimentarius Commission: Rome, 2006.

(42) Zhu, H.; Chen, C.; Xu, C.; Zhu, Q.; Huang, D. Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China. Environ. Pollut. 2016, 219, 99–106.