Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Higher mortality of hospitalized haematologic patients with COVID-19 compared to non-haematologic is driven by thrombotic complications and development of ARDS: An age-matched cohorts study

Ana Fernández-Cruz a,8, Alba Puyuelo b, Lucía Núñez Martín-Buitrago b, Enrique Sánchez-Chica c, Carmen Díaz-Pedroche d,h,j, Rosa Ayala e,h, Manuel Lizasoain i,h, Rafael Duarte b,g,l, Carlos Lumbreras l,h,j, Juan Antonio Vargas c,s,i

a Infectious Diseases Department, Hospital Puerta de Hierro-Majadahonda, Madrid, Spain
b Haematology Department, Hospital Puerta de Hierro-Majadahonda, Madrid, Spain
c Internal Medicine Department, Hospital Puerta de Hierro-Majadahonda, Madrid, Spain
d Internal Medicine Department, Hospital Doce de Octubre, Madrid, Spain
e Haematology Department, Hospital Doce de Octubre, Madrid, Spain
f Infectious Diseases Department, Hospital Doce de Octubre, Madrid, Spain

ABSTRACT

Background and Objectives: The characteristics of COVID-19 in haematologic patients compared to non-haematologic patients have seldom been analyzed. Our aim was to analyze whether there are differences in clinical characteristics and outcome of haematologic patients with COVID-19 as compared to non-haematologic.

Patients and methods: Retrospective cohort study in 2 University hospitals of patients admitted with laboratory-confirmed COVID-19 included in the SEMICOV19 database. The cohort with underlying haematologic disease was compared to a cohort of age and date-of-COVID-19-matched controls without haematologic disease (1:2).

Results: 71 cases and 142 controls were included from March-May 2020.

Twenty (28.1%) had received recent chemotherapy. Twelve (16.9%) were stem cell transplant recipients (SCT). Eleven (15.5%) were neutropenic concurrently with COVID-19 diagnosis.

Haematologic patients presented ARDS (58.5 vs 20.7%, p = 0.0001), thrombotic complications (15.7 vs 2.1%, p = 0.0002), DIC (5.7 vs 0.0%, p = 0.011), heart failure (14.3 vs 4.9%, p = 0.029) and required ICU admission (15.5 vs 2.8%, p = 0.001), MV (14.1% vs 2.1%, p = 0.001), steroid (64.8 vs 33.1%, p = 0.0001), tocilizumab (33.8 vs 8.5%, p = 0.0001) or anakinra treatment (9.9% vs 0%, p = 0.0001) more often. In-hospital mortality was significantly higher (38.0% vs 18.3%, p = 0.002).

Conclusions: Our results suggest COVID-19 has worse outcomes in haematologic patients than in non-haematologic, independently of age, and that the development of ARDS and thrombotic complications drive the higher in-hospital mortality.

Abbreviations: ARDS, acute respiratory distress syndrome; C-RP, C-reactive protein; CI, confidence interval; CLL, chronic lymphocytic leukemia; COVID-19, Coronavirus disease 2019; DIC, disseminated intravascular coagulation; ECOG scale, Eastern Cooperative Oncology Group scale; G-CSF, granulocyte stimulating factor; HFNC, high flow nasal cannula; ICU, Intensive Care Unit; IL6, Interleukin 6; IQR, interquartile range; LDH, Lactate dehydrogenase; MDS, myelodysplastic syndrome; MM, multiple myeloma; MV, mechanical ventilation; NHL, non-Hodgkin lymphoma; NIMV, non-invasive mechanical ventilation; OR, Odds ratio; PaO2/FiO2, arterial oxygen tension/inspiratory oxygen fraction; PEEP, positive end expiratory pressure; SARS-CoV-2, Severe acute respiratory syndrome coronavirus 2; SCT, stem cell transplantation; SD, standard deviation.

* This study was previously presented at the 31st ECCMID as an e-Poster (Session: 12c. Clinical features, case management, outcome) 9–12 July online.

* Corresponding author at: Unidad de Enfermedades Infecciosas, Servicio de Medicina Interna, Hospital Universitario Puerta de Hierro, Instituto de Investigación Sanitaria Puerta de Hierro - Segovia de Arana, Madrid, Spain.

E-mail address: afruz@salud.madrid.org (A. Fernández-Cruz).

https://doi.org/10.1016/j.clinpr.2022.100137
Received 12 December 2021; Received in revised form 18 January 2022; Accepted 4 February 2022
Available online 15 February 2022
2590-1702/© 2022 The Author(s). Published by Elsevier Ltd on behalf of British Infection Association. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Haematologic patients present a high risk for infection, due to immune-compromise secondary to underlying disease and subsequent therapy. Viral infections such as RSV or Influenza that are considered mild in immunocompetent hosts can become life-threatening in certain haematologic patients (Kmeid et al., 2016; Sheshadri et al., 2019).

The characteristics of SARS-CoV-2 infection and COVID-19 in haematologic patients are not yet well known. In the context of COVID-19 pandemic, the underlying haematologic disease could influence the inflammatory response and viral clearance, and modify manifestations and outcome of the disease (Chamilos et al., 2021).

Studies published so far suggest haematologic patients with COVID-19 present a higher mortality as compared with general population data (García-Suárez et al., 2020). However, the characteristics of COVID-19 in haematologic patients as directly compared to non-haematologic patients have seldom been analyzed. There is a lack of information regarding differences in clinical presentation, incidence of different complications and management of patients with haematologic malignancy and COVID-19, compared to non-haematologic cases. The scarce prior published series that compare to the general population (Passamonti et al., 2020) present mainly population-based data and lack detailed information of cases.

We present a cohort of haematologic patients with COVID-19, and compare them to non-haematologic patients with COVID-19.

Material/ Patients and methods

Setting and study design

We performed a retrospective cohort study in 2 University hospitals in Madrid, Spain, of admitted patients with SARS-CoV-2 laboratory-confirmed pneumonia included in the SEMICOVID19 Registry (compiled by the Spanish Society of Internal Medicine) from March to May 2020. Both centres are tertiary teaching hospitals, with reference Haematology Departments, that possess stem cell transplantation units and treat complex Haematology patients.

The SEMICOVID19 is an ongoing, nationwide multicentre anonymized online database of consecutive adult patients admitted with SARS-CoV-2 laboratory-confirmed pneumonia from 131 different Spanish hospitals. Inclusion criteria for the registry were age ≥ 18 years and first hospital discharge with a confirmed diagnosis of COVID-19; exclusion criteria were subsequent admissions of the same patient and denial or withdrawal of informed consent, as described elsewhere (Casas-Rojo et al., 2020). Patients were cared for according to local protocols and clinical judgment of their attending physician.

For the present study, only 2 of these hospitals were selected that had included all their haematologic hospitalized patients with COVID-19 in the Registry database. A retrospective cohort study was designed to compare the differences between patients with underlying haematologic disease and patients without underlying haematologic disease. All patients with underlying haematologic disease were selected and two controls without haematologic disease were selected for each haematologic patient, matched by age and date of COVID-19. To ensure a standard process of choosing controls, an algorithm was used to select those of the same age among the possible controls diagnosed at the nearest date of COVID diagnosis.

Data collection

The SEMICOVID Registry includes epidemiological, clinical, laboratory and radiologic data extracted from electronic medical records. For more comprehensive information on the registry, see previously published works (Casas-Rojo et al., 2020).

A complementary standardized form was fulfilled for haematologic patients that included specific data about haematologic disease: underlying haematologic disease, ECOG, status, therapy, stem cell transplantation.

Definitions

We considered SARS-CoV-2 infected patients those with a microbiological confirmation by reverse transcription polymerase chain reaction (RT-PCR) testing of a respiratory sample. All patients admitted with symptomatic COVID-19 infection were included, with or without pneumonia.

We included in the “Haematologic disease cohort” patients (or “Haematologic patients”) admitted with SARS-CoV-2 infection who had an underlying active haematological malignancy, or were stem cell-transplantation (SCT) recipients (as treatment for haematological malignancy). Patients were considered as having active onco-haematologic disease when they were under treatment (chemotherapy, or targeted therapy) or being still immunocompromised due to their underlying haematological condition or treatment. The “Non-haematologic disease cohort” (or “Non-haematologic patients”) included patients admitted with SARS-CoV-2 infection and without onco-haematologic disease or SCT. Patients with active solid tumours were excluded from both cohorts and will be analysed separately.

Disease status at the time of SARS-CoV-2 detection was defined according to each specific disease’s revised criteria for leukemia, myeloproliferative neoplasm, multiple myeloma and lymphoma (Döhner et al., 2017; Cheson et al., 2014; Kumar et al., 2016).

Performance status at the diagnosis of COVID-19 was graded according to the Eastern Cooperative Oncology Group (ECOG) (Oken et al., 1982).

The diagnosis and grading of ARDS was determined according to modified Berlin criteria (Force et al., 2012) (in non-ventilated patients, the PEEP value in the modified criteria was not taken into consideration): Mild: PaO2/FiO2 200–300 mmHg (PEEP or CPAP ≥ 5 cmH2O, or non-ventilated); Moderate: PaO2/FiO2 100–200 (PEEP ≥ 5 cmH2O, or non-ventilated); Severe: PaO2/FiO2 ≤ 100 mmHg (PEEP ≥ 5 cmH2O, or non-ventilated).

The main outcome variable was in-hospital mortality.

Statistical analysis

Quantitative variables were expressed as means and standard deviations (SD) and/or medians and interquartile ranges, and qualitative variables as frequencies and percentages.

To compare differences between haematologic and non-haematologic cohorts, the Mann-Whitney U test, χ² test, Fisher’s exact test or Student t test were used where appropriate.

To explore risk factors associated with in-hospital death among haematologic patients, univariable and multivariable logistic regression models were used. Variables with a p < 0.05 in univariable analyses were selected into the multivariable.

All statistical analyses were performed using SPSS system (version 26.0 for Windows, SPSS Inc., Chicago, IL, USA). The statistical significance level was set at a two-sided p value of < 0.05. An odds ratio (OR) was reported along with 95% confidence interval (CI).

Results

From March to May 2020, 5592 patients with COVID-19 were admitted to the 2 hospitals. Among them, 71 (1.3%) cases had an underlying haematologic disease. One-hundred and forty-two patients with COVID-19 but without haematologic disease admitted to the hospital during the study period were selected as the control cohort.

Patients were followed until discharge, and if readmitted, until subsequent discharge (median follow-up of 7 days (IQR 4–14)).
Characteristics of underlying haematologic disease

The characteristics of underlying haematologic diseases are summarized in Table 1 and Fig. 1. The most common was NHL, followed by MM, CLL and MDS. In 14.1% the haematologic disease was at an initial stage, whereas in 16.9% it was refractory or relapsed. Performance status measured by ECOG scale was > 1 in 12.9 %.

Twelve patients (16.9%) were stem cell transplantation recipients (SCT). In the majority of cases SCT was autologous (58.3% autologous versus 41.7% allogeneic). Median time from SCT to COVID-19 diagnosis was 607 days (IQR 259–1291 days).

Forty-five cases (63.4%) were under oncologic therapy at COVID-19 diagnosis, which in 25 (55.6%) of cases was considered as palliative/symptomatic care.

Twenty patients (28.1%) had received chemotherapy in the prior month and 11 (15.5%) were neutropenic concurrently with COVID-19 diagnosis. Among these, 6 (54.5%) were treated with ibritinib, 2 with oral BTK inhibitors (4) or other proteasome inhibitors (2), 2 with imatinib, 2 with lenalidomide combined with carfilzomib and 1 with rituximab. Treatment with ibritinib or other BTK inhibitors was maintained throughout the COVID-19 episode in all cases.

Comparison of haematologic and non-haematologic patients with COVID-19

The baseline characteristics of patients with and without haematologic disease are shown in Table 2 (baseline characteristics) and Table 3 (management and outcome characteristics).

Baseline significant differences included a higher age-adjusted Charlson comorbidity index (5.4 vs 3.4, \(p = 0.0001 \)), creatinine (1.26 vs 0.95 mg/dl, \(p = 0.027 \)), C-reactive protein (111 vs 79 mg/dl, \(p = 0.023 \)) and D-dimer levels (2893 vs 1077 ng/mL, \(p = 0.047 \)), increased prevalence of neutropenia (15.5% vs 1.4%, \(p = 0.0001 \)) and randomization (hemoglobin 11.9 vs 14.2 g/dl, \(p = 0.002 \)) and prior steroids (64.8 vs 33.1%, \(p = 0.0001 \)), more frequent receipt of prior anticoagulants (21.1% vs 7.7%, \(p = 0.003 \)) and prior steroids (18.3% vs 3.5%, \(p = 0.024 \)) or immunosuppressive therapy (26.7% vs 21.1%, \(p = 0.0001 \)) in haematologic patients. Both cohorts had similar median age (70.7 vs 69.6 y, \(p = 0.734 \)). Of note, there were no differences either in prevalence of baseline lymphopenia, thrombocytopenia or other alteration of coagulation parameters (different from D-dimer) between haematologic cases and controls, or in LDH, ferritin or IL6 levels.

Regarding outcome, haematologic patients presented ARDS (58.5 vs 20.7%, \(p = 0.0001 \)), thrombotic complications (15.7 vs 2.1%, \(p = 0.002 \)), disseminated intravascular coagulation (5.7 vs 0.0%, \(p = 0.011 \)) and heart failure (14.3 vs 4.9%, \(p = 0.029 \)) more often and required ICU admission (15.5 vs 2.8%, \(p = 0.001 \)), mechanical ventilation (14.1% vs 2.1%, \(p = 0.001 \)), and steroid (64.8 vs 33.1%, \(p = 0.0001 \)), tocilizumab (33.8 vs 8.5%, \(p = 0.0001 \)) or anakinra treatment (9.9% vs 0%, \(p = 0.0001 \)) in a higher proportion than controls. Length of stay after COVID-19 diagnosis was longer for haematologic patients (18 days (SD17.1) versus 7 (7.4) days, \(p = 0.0001 \)). Interestingly, haematologic patients did not present more infectious complications than non-haematologic. In 67 (31.5%) cases that had a follow-up SARS-CoV-2 PCR, there was a non-significant trend to a longer duration of positivity in haematologic patients (11 vs 4.5 days, \(p = 0.861 \)).

In-hospital mortality was significantly higher among haematologic cases versus controls (38.0% vs 18.3%, \(p = 0.002 \)). However, there were no significant differences in in-hospital mortality in patients who developed ARDS, or required ICU admission or ventilation, according to the presence of haematologic disease (Table 3).

Risk factors for in-hospital mortality among haematologic patients

Univariable analysis of factors associated with in-hospital mortality are displayed in Table 4.

When considering only haematologic patients, only development of ARDS (96.3 vs 36.4, \(p = 0.0001 \)) (OR 309.3 (5.83–309.060) \(p = 0.001 \)) was independently associated with a higher probability of in-hospital death in the multivariable analysis. Other factors such as recent chemotherapy, neutropenia, targeted therapies or uncontrolled haematologic disease were not predictors of in-hospital mortality in the multivariable analysis.

In-hospital mortality in recipients of SCT was similar to that of non-recipients (33.3% vs 39% (\(p = 0.999 \)), however, there were no pre-engraftment cases of SCT.

Administration of G-CSF in haematologic patients was not associated with development of ARDS (\(p = 0.417 \)).
Demographic and Clinical Characteristics (n, %)	Haematological malignancy (71)	Non Haematological malignancy (142)	p
Demographic Characteristics			
Sex			
Male	44 (61.9%)	77 (54.2%)	0.378
Female	27 (38.0%)	64 (45.1%)	
Age (median-IQR) (mean-SD)	70.7 (59.6-80.7)	69.6 (59.5-80.3)	0.734
Age-adjusted Charlson comorbidity index	5.4 (2.6)	3.4 (2.4)	0.0001
Ethnicity			
Caucasian	63 (88.7%)	124 (87.3%)	0.983
Latin American	6 (8.5%)	13 (9.2%)	
Other	1 (1.4%)	2 (1.4%)	
COVID-19 close contact			
No	58 (81.7%)	96 (67.6%)	0.088
Yes	12 (17.1%)	39 (27.5%)	
Acquisition			
Community-acquired	59 (83.1%)	120 (90.8%)	0.174
Hospital-acquired	7 (9.9%)	6 (4.2%)	
Nursing home	5 (7.0%)	6 (4.2%)	
Comorbidities and prior therapies			
Enolism	2 (2.8%)	5 (3.5%)	0.999
Smoking status			0.133
No	45 (63.4%)	106 (74.6%)	
Ex-smoker	22 (31%)	27 (19%)	
Smoker	3 (4.2%)	4 (2.8%)	
Hypertension			0.246
Yes	35 (42.3%)	58 (40.8%)	
ACE inhibitors	11 (31.4%)	18 (31%)	0.673
ARBs	14 (40%)	29 (50%)	0.999
Dyslipidaemia			0.223
Yes	29 (40.8%)	45 (31.7%)	
Statins	26 (89.7%)	43 (30.3%)	0.356
Atrial Fibrillation	11 (15.5%)	11 (7.7%)	0.097
Obesity (Body Mass Index > 30)	14 (19.7%)	33 (23.2%)	0.721
Degenerative neurological disease	3 (4.2%)	11 (7.7%)	0.394
Chronic kidney disease			0.131
Moderate/Severe	7 (9.9%)	6 (4.2%)	
Diabetes			0.346
Hemodialysis	2 (2.8%)	3 (2.1%)	
Peritoneal dialysis	1 (1.4%)	0 (0.0%)	
SolI-organ transplantation	1(1.4%)	1 (0.7%)	0.687
Liver	0 (0.0%)	1 (0.7%)	
Kidney			
Immunosuppression			0.0001
Azathioprine	0 (0.0%)	1 (0.7%)	
Methotrexate	0 (0.0%)	1 (0.7%)	
Cyclophosphamide	0 (0.0%)	2 (1.4%)	
Others	17 (24%)	1 (0.7%)	
Diabetes mellitus without			0.999
end-organ damage	11 (15.5%)	23 (16.2%)	
Diabetes mellitus with end-organ damage	6 (8.5%)	6 (4.2%)	0.220
Metformin	13 (18.3%)	25 (17.6%)	0.851
Mefoxin	5 (7%)	13 (9.2%)	0.795
DPP-4 inhibitors	2 (2.8%)	0 (0.0%)	0.110
GLP-1 agonists	3 (4.2%)	5 (3.5%)	0.999
SGLT2 inhibitors	5 (7%)	5 (3.5%)	0.307
Insulin			
Prior systemic corticosteroids	13 (18.3%)	5 (3.5%)	0.001
Hydroxychloroquine	1 (1.4%)	0 (0.0%)	0.335
Biological agents	7 (9.9%)	2 (1.4%)	0.007
Anticoagulants			0.003
VKAs	6 (8.5%)	3 (2.1%)	
DOACs	5 (7.0%)	8 (5.6%)	
LMWH	4 (5.6%)	0 (0.0%)	
LDH (U/L) (mean-SD)	1280 (1708)	1217 (1768)	0.983
Serum ferritin (μg/mL) (mean-SD)	2893 (6431)	1077 (1376)	0.047

(continued on next page)
Discussion

Our results show that, despite immunosuppression, haematologic patients with COVID-19 present significantly more respiratory and thrombotic complications as compared to non-haematologic patients, and a higher in-hospital mortality.

Some of the cancer-associated factors that have been advocated to contribute to worse outcomes of SARS-CoV-2 infection (lymphopenia and lymphocyte dysfunction, hypercoagulability, immuno-metabolic deregulation related to myeloid cell dysfunction) converge in patients with haematological malignancy. On the other hand, chemotherapy-induced neutropenia and monocytopeny might attenuate the hyper-inflammatory response to the virus, whereas neutrophil recovery, treatment with G-CSF or immunotherapy could enhance it (Chamilos et al., 2020).

Several series attribute the increased mortality of haematologic patients to their higher age (García-Suarez et al., 2020). Age is an important prognostic factor in COVID-19 (Moreno-Torres et al., 2021). However, in our age-matched cohort, we still observed a significant difference in mortality between haematologic and non-haematologic cohorts. Nevertheless, patients with ARDS and patients requiring ICU had a similar mortality, regardless of the presence underlying haematologic disease. In the present series, both the development of ARDS and thrombotic complications were more frequent and could account for the increased mortality, in the haematologic cohort.

In COVID-19 patients, ARDS is driven by the inflammatory response to SARS-CoV-2, rather than by direct viral damage (Osuchowski et al., 2021). However, despite immunosuppression, haematologic patients in this series presented ARDS more often than non-haematologic. Haematologic patients with pneumonia are at risk of developing ARDS during neutropenia recovery (Rhee et al., 2009; Malek et al., 2021). It is a matter of controversy whether G-CSF could exacerbate the effect of neutrophil recovery contributing to ARDS (Rhee et al., 2009; Mignard et al., 2019). G-CSF upregulates the production of cytokines that increase alveolar permeability and neutrophil influx, and may enhance secretion of pro-inflammatory cytokines by alveolar macrophages (Rhee et al., 2009). In the present series, G-CSF was not a risk factor for ARDS, although it was administered to only a minority of patients.

Nevertheless, endothelitis and coagulopathy leading to in-situ thrombosis is increasingly gaining consideration in the pathogenesis of respiratory failure in COVID-19 (Bonaventura et al., 2021). Micro-thrombosis seems to be involved in the physiopathology of acute respiratory distress syndrome (ARDS) (Bonaventura et al., 2021; O’Donnell et al., 2021). The development of a pro-thrombotic state is an important feature of COVID-19. In the present series, thrombotic events were strikingly more frequent in haematologic patients. Cancer is a well-known risk factor for thrombosis and, in particular, patients with

Table 2 (continued)

Demographic and Clinical Characteristics (n, %)	Haematological malignancy (71)	Non Haematological malignancy (142)	p
Alveolar infiltrates	10 (14.1%)	26 (18.3%)	0.805
Unilateral	27 (38.0%)	53 (37.3%)	0.016
Ground-glass infiltrates	4 (5.6%)	16 (11.3%)	0.019
Bilateral	36 (50.7%)	89 (62.7%)	0.029
Pleural effusion	3 (4.2%)	1 (0.7%)	0.114
Unilateral	5 (7.0%)	2 (1.4%)	0.114
Influenza PCR test	6 (8.5%)	25 (17.6%)	0.016
Negative	62 (87.3%)	112 (78.9%)	0.016
Not performed	19 (26.8%)	56 (39.4%)	0.001
S. pneumoniai	1 (1.4%)	2 (1.4%)	0.001
Not performed	49 (69%)	74 (52.1%)	0.001

Table 3

Complications and outcome	Haematological malignancy (71)	Non Haematological malignancy (142)	p
COMPLICATIONS (n, %)			
Heart failure	10 (14.3%)	7 (4.9%)	0.029
Cardiac arrhythmia	2 (2.8%)	3 (2.1%)	0.116
Atrial cardiac arrhythmia	2 (2.8%)	0 (0.0%)	0.000
Ventricular cardiac arrhythmia			
Acute myocardial infarction	2 (2.8%)	0 (0.0%)	0.010
Myocarditis	3 (4.2%)	0 (0.0%)	0.035
Stroke			
Ischemic stroke	0 (0.0%)	1 (0.7%)	0.035
Hemorrhagic stroke	1 (1.4%)	0 (0.0%)	0.035
Acute kidney failure	15 (21.1%)	19 (13.4%)	0.035
Sepsis	4 (5.7%)	2 (1.4%)	0.094
Bacterial pneumonia	3 (4.2%)	12 (8.5%)	0.395
Persistence of positive SARS-CoV-2 PCR (in 67 cases with available control PCR) (mean-SD) (median-IQR)	30.0 (29.0)	29.0 (29.0)	0.00001
Days of treatment with systemic corticosteroids (mean-SD) (prednisone equivalent)	11.3 (9.9)	5.6 (5.6)	0.001
Cumulative dose of systemic corticosteroids during admission (mean-SD)	997 (1015)	319 (214)	0.002
Number of days with systemic corticosteroid doses (mg prednisone equivalent) (mean-SD)	2 (2.3)	0.5 (1.0)	0.000
Lopinavir/ritonavir	40 (56.3%)	94 (66.2%)	0.177
Beta Interferon	9 (12.7%)	34 (24%)	0.070
Remdesivir	2 (2.8%)	3 (2.1%)	0.340
Hydroxychloroquine	63 (44.4%)	135 (95.1%)	0.097
Colchicine	0 (0.0%)	1 (0.7%)	0.999
Ticlozumab	24 (33.8%)	12 (8.5%)	0.00001
Immunoglobulins	1 (1.4%)	0 (0.0%)	0.330
Anakinra	7 (9.9%)	0 (0.0%)	0.00001
Baricitinib	0 (0.0%)	0 (0.0%)	NA
Intensive care unit (ICU) admission	11 (15.5%)	4 (2.8%)	0.001
Ventilation			
High flow nasal cannula	14 (19.7%)	19 (13.4%)	0.232
Non-invasive mechanical ventilation (NIMV)	7 (9.9%)	13 (9.2%)	0.999
Invasive mechanical ventilation (IMV)	10 (14.1%)	3 (2.1%)	0.001
Prone positioning therapy	12 (17%)	8 (5.6%)	0.012

(continued on next page)
active onco-haematologic conditions are known to be at higher risk for thromboembolism (Kekre and Connors, 2019). The baseline predisposition for thrombotic events seems to place haematologic patients more at risk for developing COVID-19 complications, both at the macro and at the microvascular level.

In immune-compromised patients there is a trend to longer persistence of viral shedding (Taramasso et al., 2021) that could contribute to a greater direct damage and mortality. Persistence of positive PCR could not be adequately evaluated in this retrospective series, as only 35% of cases had at least one control test after the diagnosis of COVID. Among those, there was a non-significant trend to a longer persistence of SARS-CoV-2.

Several studies report an inferior mortality of stem cell transplantation recipients as compared to other haematologic patients (Piñana et al., 2020). In published series, median time from SCT was, in general, long, and patients had had time enough to recover before presenting COVID-19. In addition, therapies typically used for graft versus host disease could mitigate the inflammatory response (Saraceni et al., 2021). On the contrary, outcome of recently transplanted patients that suffer from SARS-CoV-2 infection during the pre-engraftment period is not well known, and cases of ARDS at the moment of neutrophil recovery have been described (Malek et al., 2021). In our series, median time from transplantation to COVID-19 was close to 2 years and no persistence have been described (Malek et al., 2021). In our series, median time from transplantation to COVID-19 was close to 2 years and no persistence have been described (Malek et al., 2021).

The major strength of the present study is the direct comparison of a cohort of haematologic patients with COVID-19 with a non-haematologic cohort matched by age and date of diagnosis of COVID. This allows to avoid bias secondary to different age range of patients with haematologic disease, and bias secondary to presentation in different moments of the COVID-19 learning curve at the beginning of the pandemic. Patients included were only those admitted to two reference hospitals in Madrid, which ensures the homogeneity in management and therapeutic options, and increases the probability of the observed differences being attributable to differences in the response to SARS-CoV-2 in haematologic patients.

Limitations of our study include the small simple size and the

Complications and outcome	Haematological malignancy (71)	Non Haematological malignancy (142)	p
Hospital mortality (overall)	27 (39%)	26 (18.3%)	0.002
- in patients who developed ARDS	24 (64.9%)	16 (57.1%)	0.610
- in patients who required ICU admission	6 (60%)	1 (33.3%)	0.559
- in patients who required MV	5 (71.4%)	9 (69.2%)	0.999
- in patients who required NIMV	26 (18.3%)	26 (18.3%)	0.002
Outcome	30 (42.3%)	26 (18.3%)	0.0001
Length of stay after COVID diagnosis (mean-SD)	18 (17.1)	7 (7.4)	0.110
Re-admission	7 (9.9%)	5 (3.5%)	0.0001
Reason for discharge	5 (7%)	2 (1.4%)	0.469
Improvement: Home Convalescence: support centre	39 (55%)	114 (89.3%)	0.372
Death	27 (38%)	26 (18.3%)	0.0001

Table 4

In-hospital mortality in patients with haematologic disease and COVID-19.	Haematologic patients mortality (n, %)	Non-survivors (27)	Survivors (44)	p
Age (mean, SD)	72.5 (16.4)	66.2 (11.6)	0.065	
Sex				0.318
Male	19 (70.4%)	25 (56.8%)		
Female	8 (29.6%)	19 (43.2%)		
Race				0.694
Caucasian	25 (92.6%)	38 (86.4%)		
Latin	2 (7.4%)	4 (9.1%)		
Haematological malignancy status				0.278
Initial diagnosis	5 (18.5%)	11 (25.0%)		
Stable, no remission	5 (18.5%)	11 (25.0%)		
Relapsed or refractory	7 (25.9%)	5 (11.4%)		
Complete/partial response	10 (37.0%)	23 (52.3%)	0.011	
ECOG ≥ 1	7 (26.9%)	2 (4.5%)		
Oncologic treatment				0.372
Curative	6 (22.2%)	14 (31.8%)		
Palliative	11 (40.7%)	14 (31.8%)		
Chemotherapy during the last month	7 (25.9%)	13 (29.5%)	0.563	
Rituximab	8 (29.6%)	7 (15.9%)	0.232	
Ibrutinib	2 (7.4%)	5 (11.4%)	0.701	
G-CSF	2 (7.4%)	4 (9.1%)	0.999	
Stem cell transplant recipient	4 (14.8%)	8 (18.2%)	0.999	
Allogeneic	2 (7.4%)	3 (6.8%)		
Autologous	2 (7.4%)	5 (11.4%)	0.447	
Type of haematological malignancy				0.447
Hodgkin lymphoma	0 (0.0%)	1 (2.3%)		
Non-Hodgkin lymphoma	11 (40.7%)	10 (22.7%)		
Chronic lymphocytic leukemia	3 (11.1%)	10 (22.7%)		
Acute lymphoblastic leukemia	1 (3.7%)	0 (0.0%)		
Acute myeloid leukemia	1 (3.7%)	2 (4.5%)		
Multiple myeloma	4 (14.8%)	11 (25.0%)		
Myelodysplastic syndrome	4 (14.8%)	6 (13.6%)		
Myeloproliferative neoplasm	2 (7.4%)	4 (9.1%)		
Smoker	9 (33.3%)	16 (36.4%)	0.373	
Hypertension	16 (59.3%)	19 (43.2%)	0.227	
Dyslipemia	11 (40.7%)	18 (40.9%)	0.999	
Obesity (Body Mass Index > 30)	3 (11.1%)	11 (25.0%)	0.215	
Chronic kidney disease	2 (7.4%)	5 (11.4%)	0.701	
Diabetes	7 (25.9%)	10 (22.7%)	0.086	
Heart failure	2 (7.4%)	4 (9.1%)	0.999	
COPD	1 (3.7%)	0 (0.0%)	0.380	
Asthma	1 (3.7%)	2 (4.5%)	0.999	
Laboratory parameters (mean, SD)				0.0001
Neutrophils (<500 cells/μL)	4 (14.8%)	1 (2.3%)	0.066	
Lymphocytes (<1000 cells/μL)	16 (59.3%)	23 (52.3%)	0.243	
C-RR (mg/dL)	139.3 (25.8)	93.7 (11.9)	0.117	
Ferritin (mg/L)	13,898 (1600)	11,807 (1800)	0.680	
LDH (U/L)	663.9 (219.3)	345.2 (20.0)	0.161	
DD (mg/mL)	3565 (8812)	2521 (4551)	0.594	
DIC	3 (11.1%)	1 (2.3%)	0.141	
ARDS	25 (92.6%)	16 (36.3%)		
heterogeneous haematologic population, which prevents from drawing any conclusion about specific types of haematologic disease or specific haematologic therapies in relation to COVID-19 outcome. During the study period, at the beginning of the pandemic, patients who received steroids, remdesivir and tocilizumab did so in the setting of clinical trials, or off-label, as compassionate use. In the case of steroids and tocilizumab, their use was significantly inferior than in patients without hematological malignancy, probably for fear of increasing immune-compromise without the certainty of a beneficial effect. Only 1 case had access to remdesivir. In this respect the results may not be applicable to the current management of COVID-19. Patients included belong only to the first COVID-19 wave, when antibody detection during recovery was not systematically addressed, and consequently it was not possible to analyze. Our series includes only hospitalized patients with COVID-19 and the results cannot be generalizable to a wider population of non-admitted haematologic patients.

Our results suggest COVID-19 has worse outcomes in haematologic patients than in non-haematologic, independently of age, and that the development of ARDS and thrombotic complications drive the higher in-hospital mortality. Immune-compromise does not prevent inflammatory complications but may in addition impede viral elimination. Maximal stress in preventive measures in haematologic patients is warranted (Malek et al., 2021), and, if unfortunately infected, close surveillance with antiviral, anti-inflammatory and anticoagulant treatment before decompensation as well as prompt consideration of intensive care management in those deteriorating (Giesen et al., 2021).

Funding
There was no funding granted for this article.

Availability of data and materials
The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Ethics
This study was carried out in accordance with the Declaration of Helsinki and was approved by the Institutional Research Ethics Committee of Malaga on March 27, 2020 (Ethics Committee code: SEMI-COVID-19 27-03-20), as per the guidelines of the Spanish Agency of Medicines and Medical Products.

Consent for publication
Only patients who had previously given consent for their medical records to be used for medical research were included in this registry. Data confidentiality and patient anonymity were maintained at all times, in accordance with Spanish regulations on observational studies.

Acknowledgements

We gratefully acknowledge all the investigators who participate in the SEMI-COVID-19 Registry (appendix), as well as all the clinicians of all specialties that cared for COVID-19 patients during the first wave.

Appendix

List of the SEMI-COVID-19 network members

Coordinator of the SEMI-COVID-19 Registry: José Manuel Casas Rojo.

SEMI-COVID-19 Scientific Committee Members: José Manuel Casas Rojo, José Manuel Ramos Rincón, Carlos Lumbreras Bermejo, Jesús Millán Núñez-Cortés, Juan Miguel Antón Santos, Ricardo Gómez Huelgas.

Members of the SEMI-COVID-19 Group
H. Univ. de Bellvitge. L’Hospitalet de Llobregat (Barcelona)
Xavier Corbella, Francesc Formiga Pérez, Narcís Homs, Abelardo Montero, Jose María Mora-Luján, Manuel Rubio-Rivas
H. U. 12 de Octubre. Madrid
Paloma Agudo de Blas, Coral Arévalo Cañas, Blanca Ayuso, José Bascuñana Morejón, Samara Campos Escudero, María Carnevali Frías, Santiago Cossio Tejido, Borja de Miguel Campo, Carmen Díaz Pedroche, Raquel Díaz Simon, Ana García Reyne, Laura Ibarra Veganzones, Lucía Jorge Huerta, Antonio Lalueza Blanco, Jaime Laurente Gonzalo, Jaime Lora-Tamayo, Carlos Lumbreras Bermejo, Guillermo Maestro de la Calle, Rodrigo Miranda Godoy, Barbara Otero Perpinya, Diana Paredes Ruiz, Marcos Sánchez Fernández, Javier Tejada Montes
H. Costa del Sol. Marbella (Málaga)
Victoria Augustín Bandera, Javier García Alegría, Nicolás Jiménez-García, Jairo Luque del Pino, María Dolores Martín Escalante, Francisco Navarro Romero, Victoria Nuñez Rodríguez, Julián Olalla Sierra
H. U. Gregorio Marañon. Madrid
Laura Abarca Casas, Álvaro Alejandre de Oña, Rubén Alonso Beato, Leyre Alonso Gonzalo, Jaime Alonso Muñoz, Christian Mario Amodeo Oblitás, Cristina Ausín García, Marta Bacete Cebrián, Jesús Baltasar Corral, María Barrientos Guerrero, Alejandro D. Bendala Estrada, María Calderón Moreno, Paula Carrascosa Fernández, Raquel Carrillo, Sabela Castañeda Pérez, Eva Cervilla Muñoz, Agustín Diego Chacón Moreno, María Carmen Cuenca Carvajal, Sergio de Santos, Andrés Enríquez Gómez, Eduardo Fernández Carracedo, María Mercedes Ferreiro-Mazón Jenaro, Francisco Galeano Valle, Alejandra García, Irene García Fernandez-Bravo, María Eugenia García Leóni, María Gómez Antúnez, Candela González San Narcisco, Anthony Alexander Gurjian, Loren Jiménez Ibáñez, Cristina Lavilla Olleros, Cristina Llamazares Mendo, Sara Luis García, Victor Mato Jimeno, Clara Millán Noahales, Jesús Millán Núñez-Cortés, Sergio Moragón Ledesma, Antonio Muñoz Míguez, Cecilia Muñoz Delgado, Lucía Ordieres Ortega, Susana Pardo Sánchez, Alejandro Parra Virto, María Teresa Pérez Sanz, Blanca Pinilla Lorente, Sandra Piqueras Ruiz, Guillermo Soria Fernández-Llamazares, María Toledano Macias, Neera Toledo Samaniego, Ana Torres del Rego, María Victoria Villaíba García, Gracia Villarreal, María Zurita Etxo
H. de Cabuenes. Gijón (Asturias)
Ana María Álvarez Suarez, Carlos Delgado Vergés, Rosa Fernandez-Madera Martínez, Eva Mª Fonseca Aizpuru, Alejandro Gómez Carrasco, Cristina Helguera Amezúa, Juan Francisco López Celaya, Diego López Martínez, María del Mar Martínez López, Aleida Martínez Zapico, Carmen Olabeuengaa Iscar, Lucía Pérez Casado, María Luisa Taboada Martínez, Lara María Tamargo Chamorro
H. Royo Villanova. Zaragoza
Nicolas Alcalá Rivera, Anxela Crestelo Vieitez, Esther del Corral Beamonte, Jesús Díez Manglano, Isabel Fiteni Mera, María del Mar García Andreu, Martín Gericó Aseguiñolaza, Cristina Gallego Lezaur, Claudia Josa Laorden, Raul Martínez Murgui, Marta Teresa Matía Sanz

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Ana Fernández-Cruz: Conceptualization, Formal analysis, Writing – original draft, Writing – review & editing. Alba Puyuelo: Data curation, Formal analysis, Writing – review & editing. Lucía Núñez Martín-Buitrago: Data curation, Formal analysis, Writing – review & editing. Enrique Sánchez-Chica: Data curation, Formal analysis, Writing – review & editing. Carmen Díaz-Pedroche: Conceptualization, Data curation, Formal analysis, Writing – review & editing. Rosa Ayalas: Data curation, Writing – review & editing. Manuel Lizasoain: Data curation, Writing – review & editing. Rafael Duarte: Conceptualization, Writing – review & editing. Carla Lumbreras: Conceptualization, Writing – review & editing. Juan Antonio Vargas: Conceptualization, Writing – review & editing. Project administration.

Acknowledgements

We gratefully acknowledge all the investigators who participate in the SEMI-COVID-19 Registry (appendix), as well as all the clinicians of all specialties that cared for COVID-19 patients during the first wave.

Appendix

List of the SEMI-COVID-19 network members

Coordinator of the SEMI-COVID-19 Registry: José Manuel Casas Rojo.

SEMI-COVID-19 Scientific Committee Members: José Manuel Casas Rojo, José Manuel Ramos Rincón, Carlos Lumbreras Bermejo, Jesús Millán Núñez-Cortés, Juan Miguel Antón Santos, Ricardo Gómez Huelgas.

Members of the SEMI-COVID-19 Group
H. Univ. de Bellvitge. L’Hospitalet de Llobregat (Barcelona)
Xavier Corbella, Francesc Formiga Pérez, Narcís Homs, Abelardo Montero, Jose María Mora-Luján, Manuel Rubio-Rivas
H. U. 12 de Octubre. Madrid
Paloma Agudo de Blas, Coral Arévalo Cañas, Blanca Ayuso, José Bascuñana Morejón, Samara Campos Escudero, María Carnevali Frías, Santiago Cossio Tejido, Borja de Miguel Campo, Carmen Díaz Pedroche, Raquel Díaz Simon, Ana García Reyne, Laura Ibarra Veganzones, Lucía Jorge Huerta, Antonio Lalueza Blanco, Jaime Laurente Gonzalo, Jaime Lora-Tamayo, Carlos Lumbreras Bermejo, Guillermo Maestro de la Calle, Rodrigo Miranda Godoy, Barbara Otero Perpinya, Diana Paredes Ruiz, Marcos Sánchez Fernández, Javier Tejada Montes
H. Costa del Sol. Marbella (Málaga)
Victoria Augustín Bandera, Javier García Alegría, Nicolás Jiménez-García, Jairo Luque del Pino, María Dolores Martín Escalante, Francisco Navarro Romero, Victoria Nuñez Rodríguez, Julián Olalla Sierra
H. U. Gregorio Marañon. Madrid
Laura Abarca Casas, Álvaro Alejandre de Oña, Rubén Alonso Beato, Leyre Alonso Gonzalo, Jaime Alonso Muñoz, Christian Mario Amodeo Oblitás, Cristina Ausín García, Marta Bacete Cebrián, Jesús Baltasar Corral, María Barrientos Guerrero, Alejandro D. Bendala Estrada, María Calderón Moreno, Paula Carrascosa Fernández, Raquel Carrillo, Sabela Castañeda Pérez, Eva Cervilla Muñoz, Agustín Diego Chacón Moreno, María Carmen Cuenca Carvajal, Sergio de Santos, Andrés Enríquez Gómez, Eduardo Fernández Carracedo, María Mercedes Ferreiro-Mazón Jenaro, Francisco Galeano Valle, Alejandra García, Irene García Fernandez-Bravo, María Eugenia García Leóni, María Gómez Antúnez, Candela González San Narcisco, Anthony Alexander Gurjian, Loren Jiménez Ibáñez, Cristina Lavilla Olleros, Cristina Llamazares Mendo, Sara Luis García, Victor Mato Jimeno, Clara Millán Noahales, Jesús Millán Núñez-Cortés, Sergio Moragón Ledesma, Antonio Muñoz Míguez, Cecilia Muñoz Delgado, Lucía Ordieres Ortega, Susana Pardo Sánchez, Alejandro Parra Virto, María Teresa Pérez Sanz, Blanca Pinilla Lorente, Sandra Piqueras Ruiz, Guillermo Soria Fernández-Llamazares, María Toledano Macias, Neera Toledo Samaniego, Ana Torres del Rego, María Victoria Villaíba García, Gracia Villarreal, María Zurita Etxo
H. de Cabuenes. Gijón (Asturias)
Ana María Álvarez Suarez, Carlos Delgado Vergés, Rosa Fernandez-Madera Martínez, Eva Mª Fonseca Aizpuru, Alejandro Gómez Carrasco, Cristina Helguera Amezúa, Juan Francisco López Celaya, Diego López Martínez, María del Mar Martínez López, Aleida Martínez Zapico, Carmen Olabeuengaa Iscar, Lucía Pérez Casado, María Luisa Taboada Martínez, Lara María Tamargo Chamorro
H. Royo Villanova. Zaragoza
Nicolas Alcalá Rivera, Anxela Crestelo Vieitez, Esther del Corral Beamonte, Jesús Díez Manglano, Isabel Fiteni Mera, María del Mar García Andreu, Martín Gericó Aseguiñolaza, Cristina Gallego Lezaur, Claudia Josa Laorden, Raul Martínez Murgui, Marta Teresa Matía Sanz
Taramasso, L., Sepulcri, C., Mikulska, M., Magnasco, L., Lai, A., Bruzzone, B., Dentone, C., Bassetti, M., 2021. Duration of isolation and precautions in immunocompromised patients with COVID-19. J Hosp Infect 111, 202–204.

Piñana, J.L., Martino, R., García-García, I., Parady, R., Morales, M.D., Benzo, G., Gómez-Catalan, I., Coll, R., De La Fuente, I., Luna, A., Merchán, B., Chinea, A., de Miguel, D., Serrano, A., Pérez, C., Díaz, C., López, J.L., Saez, A.J., Bailen, R., Zudaire, T., Martínez, D., Jurado, M., Calbicho, M., Vázquez, I., García-Cadenas, I., Fox, I., Pimentel, A.I., Bautista, G., Nieto, A., Fernandez, P., Vallejo, J.C., Solano, C., Valero, M., Espigado, I., Saldana, R., Sisinni, L., Ribera, J.M., Jimenez, M.J., Trabazo, M., González-Vicent, M., Fernández, N., Talarn, C., Montoya, M.C., Codillo, A., Sureda, A., 2020. Risk factors and outcome of COVID-19 in patients with hematological malignancies. Exp Hematol Oncol 9 (1).

Saraceni, F., Scortechini, I., Mancini, G., Mariani, M., Federici, L., Gaetani, M., Barbatelli, P., Minnucci, M.L., Bagnarelli, P., Olivieri, A., 2021. Severe COVID-19 in a patient with chronic graft-versus-host disease after hematopoietic stem cell transplant successfully treated with ruxolitinib. Transpl Infect Dis 23 (1) [published Online First: 2020/07/07].

Wijaya, I., Andhika, R., Huang, I., Purwiga, A., Budiman, K.Y., Banhari, M.H., Reniarti, L., Roesli, R.M.A., 2021. The use of Janus Kinase inhibitors in hospitalized patients with COVID-19: Systematic review and meta-analysis. Clin Epidemiol Glob Health 11, 100755 [published Online First: 2021/05/11].

Stack, M., Sacco, K., Castagnoli, R., et al., 2021. BTK inhibitors for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): A Systematic Review. Res Sq. https://doi.org/10.21203/rs.3.rs-319342/v1 [published Online First: 2021/04/02].

Giesen, N., Sprute, R., Rüthrich, M., Khodasrnadi, Y., Meilinghoff, S.C., Beutel, G., Lueck, C., Koldenhof, M., Hentrich, M., Sandheer, M., von Bergwalt-Baldom, M., Wolf, H.-H., Hirch, H.H., Wormann, B., Cornely, O.A., Köhler, P., Schalk, E., von Lilienfeld-Toal, M., 2021. 2021 update of the AGIHO guideline on evidence-based management of COVID-19 in patients with cancer regarding diagnostics, viral shedding, vaccination and therapy. Eur J Cancer 147, 154–160 [published Online First: 2021/03/07].