Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Cross-sectional Study

Psychological impact of the COVID-19 pandemic on waitlisted pre-bariatric surgery patients in Saudi Arabia: A cross-sectional study

Sultan F. Magliah a,⁎, Abdullah M. Alzahrani b, Mahmoud F. Sabban a, Bahaa A. Abulaban a, Haneen A. Turkistani a, Hosam F. Magliah c, Tariq M. Jaber d

a Department of Family Medicine, Ministry of the National Guard-Health Affairs, King Abdulaziz Medical City, P.O. Box 9515, Jeddah, 21423, Saudi Arabia
b Department of Family Medicine, King Abdulaziz International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Ministry of the National Guard-Health Affairs, King Abdulaziz Medical City, P.O. Box 9515, Jeddah, 21423, Saudi Arabia
c College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, P.O. Box 9515, Jeddah, 21423, Saudi Arabia
d Department of Surgery, Ministry of the National Guard-Health Affairs, King Abdulaziz Medical City, P.O. Box 9515, Jeddah, 21423, Saudi Arabia

A R T I C L E I N F O

Keywords:
Bariatric surgery waiting list
COVID-19 pandemic
Obesity
Psychological impact

A B S T R A C T

Background: During the COVID-19 pandemic, the number of bariatric surgeries was decreased to ensure patient safety. This study aimed to evaluate the effect of such delays on the psychological status and weight management behaviors of waitlisted pre-bariatric surgery patients in Jeddah, Saudi Arabia.

Materials and methods: A web-based cross-sectional survey was conducted. Results were then evaluated with simple descriptive statistics and inferential analyses through the Chi-square test, one-way ANOVA, and the general linear regression model.

Results: Of 437 patients, 208 successfully completed the survey. Approximately half of the participants reported weight change (46.6%, n = 97), while other weight management behaviors remained unchanged. The mean Patient Health Questionnaire-9 (PHQ-9) total score of the respondents was 8.29 ± 6.3, indicating mild depression. Higher PHQ-9 scores were associated with being a student, unhealthy dietary habits, physical inactivity, worsened psychological status, and weight gain. Among these factors, being a student was the strongest predictor of the total PHQ-9 score.

Conclusion: The COVID-19 pandemic significantly affected the psychological status of patients with obesity on the bariatric surgery waitlist. Since delays in bariatric surgeries could worsen patients’ psychological status, as substantiated in this study, the provision of virtual care through telemedicine and the development of policies for reintroducing bariatric surgeries for future lockdowns are highly recommended.

1. Introduction

The coronavirus disease 2019 (COVID-19) pandemic has negatively affected general hospital services worldwide. Reducing the number of elective surgeries was among the measures taken to ensure patient safety as well as to control in-hospital virus transmission. This resulted in a backlog of patients and a delay in the conduction of urgent procedures, raising the risk of morbidity and mortality [1].

A recent meta-analysis by Liu et al. [2] revealed that postponement of in-person clinical care affected the management of patients with chronic diseases, such as the postponement of bariatric surgeries for chronic obesity [3]. A worldwide survey of bariatric surgeons revealed that 84.6% had postponed primary or redo bariatric procedures under COVID-19 restrictions [4]. In the researcher’s center in Saudi Arabia, bariatric surgeries were not routinely performed until August 2021.

Obesity is a major community health problem in Saudi Arabia. A nationwide cross-sectional study in 2020 reported that obesity was prevalent among 24.7% of individuals [5]. Existing literature also substantiated the supposition that patients with obesity are at a higher risk of complications after COVID-19 [6–8].

Associations between psychological status and obesity have also been demonstrated in several studies [9–15], where increased anxiety...
and psychological distress were the commonly reported effects of delayed bariatric surgeries. While several Western studies have examined the psychological impact of the COVID-19 pandemic on both pre- and post-bariatric surgery patients, no study has yet explored the impact of the pandemic on the weight management behaviors of waitlisted pre-bariatric surgery patients in Jeddah, Saudi Arabia, which has different lifestyle behaviors and COVID-19 protocols. Moreover, the novelty of this study is its inclusion of waitlisted pre-bariatric surgery patients instead of the general population as described in previous studies.

Specifically, this study primarily aimed (1) to identify the association between the respondents’ weight-management behaviors (including dietary habits, physical activity and psychological status of patients on the bariatric surgery waiting list at the investigators’ center in Jeddah) during the pandemic and demographic characteristics, comorbidities and perceptions of obesity as a COVID-19 risk factor; (2) to evaluate the psychological status of respondents during the COVID-19 pandemic using the Arabic version of the Patient Health Questionnaire-9 (PHQ-9); (3) to determine which of the aforementioned factors significantly affected PHQ-9 scores; and (4) to determine the strongest predictor of PHQ-9 scores among the significant factors identified in (3).

2. Methods

2.1. Study area/setting

A web-based survey was conducted with pre-bariatric surgery patients visiting the bariatric surgery clinic at the researchers’ institution (Jeddah, Saudi Arabia). The clinic regularly followed up with patients undergoing bariatric surgery preoperatively and postoperatively. The National Institutes of Health established the eligibility conditions for bariatric surgery in 1992, and all patients referred to the said clinic were required to meet these conditions. The inclusion criteria for bariatric surgery included the following: body mass index (BMI) of 40 or higher, or required to meet these conditions. The inclusion criteria for bariatric surgery included the following: body mass index (BMI) of 40 or higher or a BMI of 35–40 with obesity-associated comorbidities, such as hypertension, diabetes, heart disease, or severe sleep apnea. All patients who met the bariatric surgery inclusion criteria were included in the bariatric-surgery waiting list.

Prior to the COVID-19 pandemic, the annual number of bariatric surgeries performed in the center ranged from 100 to 150. During the pandemic, bariatric-surgery patients had regular follow-up appointments with the bariatric clinic and were informed of the surgery being postponed as an infection control measure to decrease the spread of COVID-19. During the clinic visit, patients received weight-loss counseling, including consultations on lifestyle behavioral changes, medical and surgical options, and dietician referrals.

2.2. Study subjects

Patients aged ≥18 years and on the bariatric surgery waiting list were included in the study. Patients who refused to participate, did not complete the survey, underwent bariatric surgery outside the researchers’ center, and no longer wanted to undergo bariatric surgery were excluded.

2.3. Study design

This study employed a cross-sectional and quantitative design in accordance with the STROCSS 2021 guidelines. Data were collected via an online survey and were subjected to both descriptive and inferential analyses. The English version of the survey is available in Supplementary File 1.

2.4. Sample size and sampling technique

A computer-generated simple random sampling method was used to enroll participants. The sample size (n) was calculated to be 205 patients, with the use of the Raosoft Sample Size Software and the following parameters: population size of 437 patients on the bariatric-surgery waiting list at our center, 50% response distribution, 95% confidence interval, and 5% margin of error.

2.5. Data collection and measurement

The study utilized an Arabic web-based survey designed by the research team. The survey was composed of four sections: (1) demographic profile; (2) COVID-19-related items; (3) weight management behaviors; and (4) psychological status assessment. A score of 10 or more on the PHQ-9 was used to define depression; cut-off values for mild, moderate, moderately severe, and severe depression were set at 5, 10, 15, and 20, respectively.

Using Google forms, data collection was performed between November 22, 2021, and January 31, 2022. The survey was disseminated to participants via WhatsApp and their phone numbers registered on the record system of the center. The pre-pilot testing phase of the study involved 10 participants. Subsequently, the questionnaire was deployed to 30 patients during the pilot phase. Three consultants with expertise in the fields of obesity and bariatric surgery face-validated the questionnaire. Modifications were made based on their feedback.

2.6. Data analysis

IBM SPSS version 23 (IBM Corp., Armonk, N.Y., USA) was used to analyze the data. Simple descriptive statistics were used, as necessary, to characterize the research variables. The Chi-square test was used to identify the association between weight management behaviors and PHQ-9 scores with demographic characteristics and other predictors. One-way ANOVA was employed to determine whether the predictors showed statistically significant differences with the PHQ-9 scores. The general linear regression model was then used to determine the strongest predictor of the PHQ-9 scores.

3. Results

A total of 437 patients were identified from the bariatric surgery waiting list. Of these, only 208 patients were able to complete the survey. The majority of the respondents were female, married, and had a BMI category of class 3 obesity (Table 1). Most respondents also strongly agreed that obesity was significantly linked to an increased risk of developing severe COVID-19. Notwithstanding this, most respondents did not return a positive test result for COVID-19 (nasopharyngeal or oral swab). Most of those who tested positive only required home isolation to manage their COVID-19 disease (83.3%, n = 55). Since the researchers hypothesized that those who had contracted the infection were more predisposed to depression, this particular item was added to the questionnaire.

A majority of the participants demonstrated no changes in terms of their diet and psychological status (Table 2). Most participants did not exercise even before the COVID-19 pandemic (37%, n = 77). Over 80% of respondents were not diagnosed with mental disorders (86.5%, n = 180), whereas almost 10% were diagnosed with depression (9.6%, n = 20). Almost half of the participants experienced weight change during the pandemic (46.6%, n = 97), with the following reported ranges of weight gain: >10 kg (26.8%, n = 26); 7.1–10 kg (16.5%, n = 16); 5.1–7 kg (24.7%, n = 24); 3.1–5 kg (19.6%, n = 19); and <3 kg (12.4%, n = 12) (Table 2).

Statistically significant associations were established between the demographic profile of respondents and their weight management behaviors through a Chi-square test (Table 3). A change in dietary habits was significantly associated with age (p = 0.010), highest educational attainment (p = 0.018), and employment status (p = 0.030). Although most of the respondents demonstrated no changes in their diets,
Table 1
Respondents’ demographic profile, perspective on obesity and COVID-19, and treatment received for COVID-19.

Variables	Count (%)
Demographics (Continuous)	
Age	45.32
Height (cm)	162.74
Current weight (kg)	117.42
BMI	44.46
Demographics (Categorical)	
Total	208
Sex	
Male	80
Female	128
Age	
<30 years old	26
31–45 years old	84
46–60 years old	76
>60 years old	22
Marital status	
Single	20
Married	157
Divorced	16
Widow/Widower	15
Highest educational attainment	
Uneducated or illiterate	27
Elementary school	30
Intermediate school	22
High school	67
Higher education	62
Monthly income	
5,000 SR or less	100
5001–10,000 SR	68
10,001–15,000 SR	22
More than 15,000 SR	18
Employment status	
Employed	68
Unemployed	98
Student	9
Retired	33
Comorbidities	
None	45
One comorbidity	52
Two comorbities	44
Three or more comorbidities	67
BMI categories	
Class 1 Obesity 25–29.9	4
Class 2 Obesity 30–34.9	15
Class 3 Obesity 35–39.9	51
Class 3 Obesity ≥40	138
How much do you agree with the following statement?	
Total	208
Obesity is associated with increased risks of severe COVID-19 outcomes	
Strongly disagree	4
Disagree	13
Neutral	37
Agree	62
Strongly agree	92
Were you tested positive for COVID-19 through nasopharyngeal or oral swab?	
Yes	66
No	142
Treatment received for COVID-19	
Total	66

Table 2
Respondents’ weight-management behaviors during the COVID-19 pandemic.

Variables	Count (%)
Dietary change	
Compared to the period prior to the COVID-19 pandemic, how has your diet changed?	
Got healthier	34
Got unhealthier	31
No change	143
Compared to the period prior to the COVID-19 pandemic, I have been feeling hungry	
More often	36
Less often	33
No change	139
Compared to the period prior to the COVID-19 pandemic, I have been eating snacks	
More often	69
Less often	25
No change	114
Compared to the period prior to the COVID-19 pandemic, I have been ordering food from outside	
More often	70
Less often	56
No change	82
Physical activity change	
Compared to the period prior to the COVID-19 pandemic, how has your physical activity changed?	
Increased	21
Decreased	30
No change	77
Compared to the period before the COVID-19 pandemic, how has the intensity of your exercise changed?	
Increased	16
Decreased	50
No change	49
Psychological status	
Compared to the period prior to the COVID-19 pandemic, my psychological status has	
Got better	33
Got worse	64
No change	111
Have you been diagnosed with a mental health disorder?	
None	180
Depression	20
Generalized	6
Anxiety Disorder	1
Schizophrenia	1
Presence of psychiatric disease	
No	180
Yes	28
Weight lost/gained	
Have you lost/gained weight during the pandemic?	
Gained	97
Lost	48
No change	63
Weight changes in kg	
<3 kg	21
3–5 kg	30
5.1–7 kg	33
7.1–10 kg	22
>10 kg	39
No change	63

BMI, body mass index; COVID-19, coronavirus disease 2019; ICU, intensive care unit; SD, standard deviation; SR, Saudi Riyals.

Participants who were ≤30 years old (30.8%), uneducated (11.1%), with the highest educational attainment of high school (16.4%) and higher (24.2%), employed (25.0%), and students (22.2%) became less healthy.

Change in physical activity was also associated with comorbidities (p = 0.038). Most of those who had decreased physical activity had a single comorbidity (36.5%, n = 19). Meanwhile, psychological status was associated with the perception that obesity was linked with increased risks of developing severe COVID-19 complications (p = 0.028). Interestingly, those who strongly disagreed that obesity was a risk factor for COVID-19 demonstrated worse psychological status (75.0%).

Based on the PHQ-9 questionnaire, most of the respondents demonstrated no depression (32.2%), followed by those with mild depression (30.8%). The mean total PHQ-9 score of the participants was 8.29 ± 6.3 (min = 0, max = 27), indicating mild depression (Table 4). Statistically significant differences among the total PHQ-9 scores of subgroups of participants, stratified by the demographic profile and

S.F. Maglah et al.
Annals of Medicine and Surgery 82 (2022) 104767
weight management behaviors, were evaluated with a one-way ANOVA test (Table 5). Significant differences in the total PHQ-9 scores were only observed in subgroups of participants stratified by employment status (p = 0.031), diet change (p = 0.002), physical activity change (p = 0.004), psychological status (p = 0.001), and weight change (p = 0.006). Across all categories, higher PHQ-9 scores were observed among students (12.56 ± 6.8), those who did not exercise (9.71 ± 7.1), those whose psychological status worsened (11.56 ± 6.7), and those who gained weight (9.55 ± 6.3).

A univariate analysis with the general linear regression model was used to identify predictors of PHQ-9 scores among the variables which were found to be significantly associated with these scores (Table 6). Of which, being a student was the strongest predictor of the PHQ-9 score (B = 3.526, p = 0.001), followed by a worsened psychological status (B = 3.269, p = 0.001), less healthy dietary habits (B = 2.764, p = 0.032), healthier dietary habits (B = 2.613, p = 0.033), and unchanged physical activity (B = −2.359, p = 0.028).

4. Discussion

The frequency of bariatric surgeries was reportedly insufficient even before the COVID-19 pandemic due to the growing incidence of obesity and the demands of bariatric patients globally [17,18]. Many elective surgeries were either canceled or postponed to optimize the availability of intensive care unit facilities for the management of more critical COVID-19 cases. Subsequently, patients on the waiting list for such operations had increased [19–21].

Prior to the pandemic, the global prevalence of depression in the outpatient setting was 27% [22]. In the general population of Saudi Arabia, the prevalence of depression was 20% [23]. Consistent with this report, a systematic review of the risk of depression in Saudi Arabia found a prevalence of 41% [24].

During the COVID-19 pandemic, particularly between March and April 2020, Alyami et al. showed that the prevalence of anxiety and depression in the general population of Saudi Arabia were 9.4% and 7.3%, respectively [25]. Furthermore, this study suggested that the Saudi population was at an increased risk of developing mental illness during the COVID-19 pandemic.

This study represented the first investigation of the prevalence of depression among pre-bariatric surgery patients because of delays in scheduled bariatric procedures. Specifically, the prevalence of depression (defined by a PHQ-9 score of 10 or more) in the present study was 37%. Furthermore, this reported prevalence could result from (1) the impact of obesity as a medical comorbidity and its association with poor mental health [26,27], (2) higher susceptibility to developing poor weight management skills during the pandemic [28], and (3) frustration due to postponement of bariatric surgery [29,30]. As previously reported, bariatric surgery could reduce the prevalence of depression, consequently improving the psychological status among patients [31–33]. Interestingly, a relatively lower prevalence of depression (23.7%) was reported in another study of post-bariatric surgery patients in a tertiary care center in Saudi Arabia [34]. This variation in findings could be attributed to differences in the study population: the sample of the present study were pre-bariatric surgery patients, whereas that of Bineid et al. included post-bariatric surgery patients.

While the prevalence of depression was relatively higher in the current study compared to that in other settings, the mean total PHQ-9 score among the sample population was less severe (8.29 ± 6.3, mild depression). Consistent with this, more than half of the respondents demonstrated almost no change in psychological status compared to the period before the COVID-19 pandemic. A possible reason for this would be the availability of COVID-19 booster shots in Saudi Arabia during data collection (November 2021 to January 2022) [35]. It is
contradicted the recommended use of multicomponent perioperative
with physical inactivity and a sedentary lifestyle. However, this finding
larly, Dutra et al. [36] found that comorbidities were strongly associated
changes in physical activity and comorbidities, in which the presence of
psychological status.
ance to respondents, which could have translated into a less severe
hypothesized that this situation provided more protection and reassur-

Table 4
Patient Health Questionnaire-9 categories of respondents.

PHQ-9	Count	%
Total	208	100.0
Little interest or pleasure in doing things		
Not at all	89	42.8
Several days	66	31.7
More than half the days	26	12.5
Feeling down, depressed, or hopeless		
Not at all	85	40.9
Several days	69	33.2
More than half the days	30	14.4
Trouble falling or staying asleep, or sleeping too much		
Not at all	24	11.5
Several days	66	31.7
More than half the days	57	27.4
Feeling tired or having little energy		
Not at all	59	28.4
Several days	38	18.3
More than half the days	70	33.7
Poor appetite or overeating		
Not at all	80	38.5
Several days	70	33.7
More than half the days	29	13.9
Feeling bad about yourself or that you are a failure or have let yourself or your family down		
Not at all	121	58.2
Several days	44	21.2
More than half the days	18	8.7
Trouble concentrating on things, such as reading the newspaper or watching television		
Not at all	25	12.0
Several days	129	62.0
More than half the days	36	17.3
Moving or speaking so slowly that other people could have noticed. Or the opposite being so fidgety or restless that you have been moving around a lot more than usual		
Not at all	27	13.0
Several days	135	64.9
More than half the days	39	18.8
Thoughts that you would be better off dead or of hurting yourself		
Not at all	178	85.6
Several days	6	2.9
More than half the days	18	8.7
How difficult have these problems made it for you to do your work, take care of things at home, or get along with other people?		
Not at all	6	2.9
Not at all difficult	97	46.6
Somewhat difficult	71	34.1
Very difficult	19	9.1
Extremely difficult	21	10.1
No depression (0–4)	67	32.2
Mild depression (5–9)	64	30.8
Moderate depression (10–14)	40	19.2
Severe depression (20–27)	12	5.8
PHQ-9 score	208	100.0
N	Min	Max
208	0	27

Table 5
One-way analysis of variance between the Patient Health Questionnaire-9 total score and independent variables.

Variables	Total	PHQ-9 total score	p-value
Sex	80	7.55 ± 7.1	0.203
Female	128	8.75 ± 5.7	
Age	26	8.92 ± 6.6	0.312
<30 years old			
31–45 years old	84	9.07 ± 6.6	
46–60 years old	76	7.62 ± 6.3	
>60 years old	22	6.86 ± 3.6	
Marital status	20	10.50 ± 6.9	0.410
Single			
Married	157	8.03 ± 6.3	
Divorced	16	8.56 ± 6.3	
Widow/Widower	15	7.73 ± 4.2	
Highest educational attainment	27	8.56 ± 6.1	0.306
Uneducated or illiterate	30	7.17 ± 5.4	
Elementary school	22	9.91 ± 5.8	
Intermediate school	67	9.03 ± 5.9	
High school	62	7.34 ± 5.9	
Higher education			
Family monthly income	100	9.04 ± 5.9	0.344
5,000 SR or less			
5,001–10,000 SR	68	7.69 ± 6.9	
10,001–15,000 SR	22	6.77 ± 6.2	
SR	58	5.89 ± 5.8	
More than 15,000 SR	18	8.22 ± 5.9	
Employment status	68	7.85 ± 7.14C	0.031
Employed			
Unemployed	98	8.88 ± 5.9	
Student	9	12.56 ± 6.2a	
Retired	33	6.27 ± 5.65	
Comorbidities	45	7.60 ± 6.0	0.732
None	60	6.0	
One	52	7.96 ± 6.6	
Two	44	8.50 ± 6.4	
Three or more	67	8.87 ± 6.2	
BMI categories	4	5.50 ± 2.9	0.526
Overweight	15	6.93 ± 6.3	
Class 2 Obesity	51	7.86 ± 6.2	
Class 3 Obesity	138	8.67 ± 6.4	
Obesity is associated with increased risks of severe COVID-19 outcomes			
Strongly disagree	4	5.75 ± 7.6	0.118
Disagree	13	5.92 ± 5.0	
Neutral	37	7.00 ± 7.6	
Agree	62	8.00 ± 6.0	
Strongly agree	92		

(continued on next page)
72.25% of the respondents considered obesity a major factor that might be mediated by another study by Waldziak et al., in 2020 [38], in which obesity was associated with a consistent trend of poor weight management and the National Institute for Health and Care Excellence [37]. Furthermore, most respondents concurred that obesity was linked to an increased risk of developing severe COVID-19. This finding was supported by another study by Waldziak et al., in 2020 [38], in which 72.25% of the respondents considered obesity a major factor that might impact the course of COVID-19 illness. Since the respondents were aware of such risk, it was expected that they would be more receptive to lifestyle modifications, particularly in terms of physical activity. Furthermore, patient counseling could be performed with relative ease in these cases, unlike those who lack the knowledge of such risks and are more likely to become hesitant toward lifestyle recommendations.

Higher total PHQ-9 scores were significantly associated with being a student, unhealthy dietary habits, a lack of physical activity, unstable psychological status, and weight gain. These findings concur with the results from the study by Liu et al. [39], in which the total PHQ-9 score was associated with a consistent trend of poor weight management behavior accompanied by worsening psychological status during the COVID-19 pandemic. Nasirzadeh et al. [40] also reported that emotional dysregulation induced by the COVID-19 pandemic could increase the symptoms of overeating before and after bariatric surgery. Ahmed et al., in 2021 [9] also reported that more than two-thirds of bariatric-surgery patients showed weight gain during the lockdown period.

Only employment status was significantly associated with the total PHQ-9 score; that is, students followed by unemployed participants had the highest PHQ-9 scores. Being a student was also the strongest predictor of the PHQ-9 score. Brooks et al. [41] found that students and unemployed individuals are at a higher risk of developing depression, which could be attributed to the uncertainty of academic and professional career growth implicated by the delays in bariatric procedures and unprecedented lockdowns [42].

4.1. Limitations of the study

Only respondents with internet access and active WhatsApp accounts could complete the survey. The response rate was approximately half of the study sample, which could have given rise to selection bias. Comparison with participants who were not waiting for surgery was also not shown in this study, potentially resulting in an overestimation of results. The study was also conducted at a later stage of the COVID-19 pandemic, potentially leading to an underestimation of its true impact. Furthermore, the results of this study were limited and could not be generalizeable since it focused on a single institution in Saudi Arabia.

5. Conclusions

Weight management behaviors that were significantly associated with higher total PHQ-9 scores included being a student, unhealthy dietary habits, physical inactivity, worsened psychological status, and weight gain. Among these factors, being a student was the strongest predictor of the PHQ-9 score. These findings highlight the need for
depression screening and the provision of psychotherapy services to promote healthy coping mechanisms, especially among students.

The evidence of depression in the study could have been due to the delays in scheduled surgeries, consequently affecting the participants’ ability to demonstrate effective bariatric weight management during the pandemic. Hence, it is important to prioritize policies for reintroducing bariatric surgeries in future lockdowns, along with the utilization of virtual care through telemedicine to provide individualized assistance and continued access to obesity management programs under lockdown restrictions.

Ethical approval

This study was approved by the International Review of the Board of King Abdullah International Medical Research Center, National Guard-Health Affairs, Riyadh, Saudi Arabia (registration no: H-01-R-005 and reference no. IRB/2002/21). The study was carried out in agreement with the principles of the Declaration of Helsinki.

Sources of funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author contribution

SM was involved in all stages of the study. MS, BA, and HT contributed to data collection and proposal and manuscript writing. HM participated in data collection and manuscript writing. AA and TJ provided scientific feedback in all stages of the study and contributed to manuscript writing. All authors read and approved the final version of the manuscript.

Consent

Electronic informed consent was secured from the participants at the beginning of the survey.

Registration of research studies

1. Name of the registry: Research Registry http://www.researchregistry.com.
2. Unique Identifying number or registration ID: researchregistry8140.
3. Hyperlink to your specific registration (must be publicly accessible and will be checked): https://researchregistry.knack.com/research-registry#user-researchregistry/registerresearchdetails/62e3914b9f4d280022a7e9e9c/

Guarantor

Sultan F. Magliah.
Department of Family Medicine, Ministry of the National Guard-Health Affairs, King Abdulaziz Medical City, P.O. Box 9515, Jeddah, 21423, Saudi Arabia Email: sultanfahmadmagliah@gmail.com.

Provenance and peer review

Not commissioned, externally peer reviewed.

Declaration of competing interest

The authors declare no conflicting interest for this study.

Acknowledgments

Researchers would like to thank Kattwahr Abdurabu, who assisted in obtaining patient data from duly authorized records.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jamsu.2022.104767. References

[1] COVIDSurg Collaborative. Elective surgery cancellations due to the COVID-19 pandemic: global predictive modelling to inform surgical recovery plans. Br. J. Surg. 107 (2020) 1440–1449. https://doi.org/10.1002/bjs.11746.
[2] D. Liu, Q. Cheng, H.R. Suh, M. Magdy, K. Loi, Role of bariatric surgery in a COVID-19 era: a review of economic costs, Surg. Obes. Relat. Dis. 17 (2021) 2091–2096. https://doi.org/10.1016/j.soard.2021.07.015.
[3] D.E. Arterburn, D.A. Telem, R.F. Kushner, A.P. Courcoulas, Benefits and risks of bariatric surgery in adults: a review, JAMA 324 (2020) 879–887. https://doi.org/10.1001/jama.2020.12567.
[4] I.I. Lazaridis, M. Kraljevic, R. Schneider, J.M. Klassen, D. Schizas, R. Peterli, L. Kow, T. Delko, Collaborators, The impact of the COVID-19 pandemic on bariatric surgery: results from a worldwide survey. Obes. Surg. 30 (2020) 4428–4436. https://doi.org/10.1007/s11695-020-04839-8.
[5] N.A. Althumiri, M.H. Basyouni, N. AlMousa, M.F. AlJuwaysim, R.A. Almubark, N. F. BinDhim, Z. Alkhamaali, S.A. Alqahtani, Obesity in Saudi Arabia in 2020: prevalence, distribution, and its current association with various health conditions, Health Care 9 (2021). https://doi.org/10.3390/healthcare9030311.
[6] A. Andreu, L. Flores, J. Molero, C. Mestre, A. Obach, F. Torres, V. Moizé, J. Vidal, R. Navínes, J.M. Peri, S. Canizares, Patients undergoing bariatric surgery: a special risk group for lifestyle, emotional and behavioral adaptations during the COVID-19 lockdown. Lessons from the first wave. Obes. Surg. 32 (2022) 441–449. https://doi.org/10.1007/s11695-021-05792-1.
[7] F. Rubino, R.V. Cohen, G. Mingrone, C.W. Le Roux, J.I. Mechanick, D.E. Arterburn, J. Vidal, G. Alberti, S.A. Amiel, R.L. Batterham, S. Bornstein, G. Chameseddine, S. Del Prato, J.B. Dixon, R.H. Eckel, D. Hopkins, B.M. McGowan, A. Pan, A. Patel, F. Pattou, P.R. Schauer, P.Z. Simmet, D.E. Cunningham, Bariatric and metabolic surgery during and after the COVID-19 pandemic: DSS recommendations for management of surgical candidates and postoperative patients and prioritisation of access to surgery, Lancet Diabetes Endocrinol. 8 (2020) 640–648. https://doi.org/10.1016/S2213-8587(20)30157-1.
[8] N. Stefan, A.L. Birkenfeld, M.F. Schulze, Global pandemics interconnected - obesity, impaired metabolic health and COVID-19, Nat. Rev. Endocrinol. 17 (2021) 135–149. https://doi.org/10.1038/s41574-020-00462-1.
[9] B. Ahmed, M. Altarawni, J. Ellison, B.H. Alkhaffaf, Serious impacts of postponing bariatric surgery as a result of the COVID-19 pandemic: the patient perspective, J. Patient Exp. 8 (2021), https://doi.org/10.1177/23743735211008282, 23743735211008282.
[10] J.P. Almandoz, L. Xie, J.N. Schellinger, M.S. Mathew, C. Gazda, A. Ofori, S. Kukreja, S.E. Mesiah, Impact of COVID-19 stay-at-home orders on weight-related behaviours among patients with obesity, Clin. Obes. 10 (2020) e12386, e12386. https://doi.org/10.1111/cob.12386.
[11] S. Amiri, S. Behnehzad, Obesity and anxiety symptoms: a systematic review and meta-analysis, Neuropsychiatry 33 (2019) 72–89, https://doi.org/10.1007/s40519-019-00302-z.
[12] M. Beisani, R. Villalonga, C. Petrola, A. Acosta, J.A. Casimiro, Effects of COVID-19 lockdown on a bariatric surgery waiting list cohort and its influence in surgical risk perception, Langenbecks Arch. Surg. 406 (2021) 393–400. https://doi.org/10.1007/s00423-020-02049-5.
[13] A. Jiménez, A. de Hollanda, E. Palou, E. Ortega, A. Andreu, J. Vidal, J. Escarrabill, V. Moizé, Psychosocial, lifestyle, and body weight impact of COVID-19-related lockdown in a sample of participants with current or past history of obesity in Spain, Obes. Surg. 31 (2021) 2115–2124. https://doi.org/10.1007/s11695-021-05225-z.
[14] A. Ibarzabal, A. Obach, L. Flores, C. Mestre, A. Barzabal, A. Obach, L. Flores, S. Canizares, J.M. Balibrea, J. Vidal, J. Escarrabill, V. Moizé, Psychosocial, lifestyle, and body weight impact of COVID-19-related lockdown in a sample of participants with current or past history of obesity in Spain, Obes. Surg. 31 (2021) 2115–2124. https://doi.org/10.1007/s11695-021-05225-z.
[15] F.S. Luppino, L.M. de Wit, P.F. Bouvy, T. Stijnen, F. Panizares, Patients undergoing bariatric surgery as a result of the COVID-19 pandemic: the patient perspective, J. Patient Exp. 8 (2021) 135–149. https://doi.org/10.1177/23743735211008282.
[16] S. Manfrini, L. Quintiliani, The psychological impact of COVID-19 pandemic on obesity in Spain, Obes. Surg. 31 (2021) 2115–2124. https://doi.org/10.1007/s11695-020-04839-8.
[17] S. Manfrini, L. Quintiliani, The psychological impact of COVID-19 pandemic on obesity in Spain, Obes. Surg. 31 (2021) 2115–2124. https://doi.org/10.1007/s11695-021-05225-z.
[18] S. Manfrini, L. Quintiliani, The psychological impact of COVID-19 pandemic on obesity in Spain, Obes. Surg. 31 (2021) 2115–2124. https://doi.org/10.1007/s11695-020-04839-8.
[19] S. Manfrini, L. Quintiliani, The psychological impact of COVID-19 pandemic on obesity in Spain, Obes. Surg. 31 (2021) 2115–2124. https://doi.org/10.1007/s11695-020-04839-8.
