The paper Andreas ZÜTTEL, Noris GALLANDAT, Paul J. DYSON, Louis SCHLAPBACH, Paul W. GILGEN, Shin-Ichi ORIMO, “Future Swiss Energy Economy: the challenge of storing renewable energy”, Frontiers in Energy Research: Process and Energy Systems Engineering, accepted (2021) represents an analysis of the technical and economic challenges Switzerland faces when all fossil energy is replaced by locally produced renewable energy (hydroelectricity photovoltaics and wind turbine).

Future Swiss Energy Economy: the challenge of storing renewable energy

SUMMARY

Fossil fuels and materials on Earth are a finite resource and the disposal of waste into the air, on land, and into water has an impact on our environment on a global level. While the climate change due to the increase of the CO$_2$ concentration in the atmosphere receives currently a lot of attention in the media the limited resources of fossil fuels are much less prominent. However, countries that currently have their own resources of fossil energy carriers need to develop renewable energy for future energy security. Therefore, solutions, e.g. PV, that provide most energy in the summer but little in winter offer strong contributions to reduce the CO$_2$ emissions, but development of seasonal storage is needed to provide energy security. Using Switzerland as an example, the energy demand and the technical challenges as well as the economic feasibility of a transition to an energy economy based entirely on renewable energy were analyzed. Three approaches for the complete substitution of fossil fuels with renewable energy from photovoltaics were considered

1) a purely electric system with battery storage
2) an energy system using hydrogen as energy carrier
3) an energy system based on synthetic hydrocarbons.

1) The electricity-based energy system (ELC) is the most energy efficient solution with 48m2 of photovoltaic (PV) per capita (12% of the urban area of CH) and a reduction of 30% of the energy demand in Switzerland, however, it requires seasonal electricity storage to meet year-round energy needs. Meeting this need through batteries has a significant capital cost and is economically and technically not feasible at current rates of battery production, and expanding pumped hydropower to the extent necessary will have a major impact on the environment in order to build 13 additional “Grand Dixence” if it would be at all possible.

2) The hydrogen-based system (HYS) requires 116m2 PV per capita allows massive underground hydrogen storage of the size of 25 times the “Gotthard base tunnel” to balance seasonal demand and requires building a hydrogen infrastructure and applications working with hydrogen.

3) Finally, the synthetic hydrocarbon-based energy system (HCL) requires the largest PV field of 220m2 per capita and CO$_2$ air capture, but the infrastructure and the applications already exist. The resulting synthetic liquid hydrocarbon would cost at least 5 CHF/L. The size of the seasonal storage decreases with increasing area of PVs, as a consequence over dimensioning the PV will lead to a excess of electricity in summer and reduce the storage size for winter, however also reduces the resilience of the energy system. PV installed close to the equator reduces the seasonal variation of the electricity production and due to the higher solar intensity also reduces the
necessary area. The cost of the synthetic hydrocarbon would therefore be reduced to 3.2 CHF/L. The model for Switzerland can be applied to other countries, adapting the solar irradiation, the energy demand and the storage options.

Highlights

- Renewable energy covering up to 70% of the annual energy demand is limited to day/night storage and low cost, the remaining 30% are challenging (seasonal storage).
- A pure electric energy system with battery storage is very expensive and resource demanding.
- The energy system based on hydrogen (HSY) is twice as expensive as the electricity (ELC) based one and requires development of hydrogen infrastructure and hydrogen applications.
- The energy system based on synthetic hydrocarbons is 3 times as expensive as ELC.
- Only the synthetic hydrocarbon based system enables production of jet fuel and current infrastructure and applications can still be used.
- The cost of synthetic fuel is about 0.5 CHF/kWh but expected to decrease with time.
- Production of renewable energy and synthetic fuel close to the equator reduces the cost by 35%.

Keywords: renewable energy, electricity, photovoltaic, batteries, hydrogen, synthetic hydrocarbons
Die Publikation Andreas ZÜTTEL, Noris GALLANDAT, Paul J. DYSON, Louis SCHLAPBACH, Paul W. GILGEN, Shin-Ichi ORIMO, “Future Swiss Energy Economy: the challenge of storing renewable energy”, Frontiers in Energy Research: Process and Energy Systems Engineering, accepted (2021) stellt eine Analyse der technischen und wirtschaftlichen Herausforderungen dar, vor denen die Schweiz steht, wenn die gesamte fossile Energie durch lokal erzeugte erneuerbare Energie (Wasserkraft, Photovoltaik und Windkraftanlage) ersetzt wird.

Zukünftige Schweizer Energiewirtschaft: die Herausforderung der Speicherung erneuerbarer Energie

ZUSAMMENFASSUNG
Fossile Brennstoffe und Materialien auf der Erde sind eine endliche Ressource und die Entsorgung von Abfällen in die Luft, an Land und ins Wasser hat Auswirkungen auf unsere Umwelt auf globaler Ebene. Während der Klimawandel durch den Anstieg der CO₂-Konzentration in der Atmosphäre derzeit in den Medien viel Aufmerksamkeit erhält, sind die begrenzten Ressourcen fossiler Energieträger weit weniger ausgeprägt. Länder, die derzeit über eigene Ressourcen an fossilen Energieträgern verfügen, müssen jedoch erneuerbare Energien für die zukünftige Energiesicherheit entwickeln. Daher sind Lösungen, z.B. PV, die hauptsächlich im Sommer, und wenig Energie im Winter liefert, reduziert die CO₂-Emissionen beträchtlich, aber saisonale Energiespeicherung ist nötig um die Energieversorgung sicherzustellen.

Am Beispiel der Schweiz wurden der Energiebedarf und die technischen Herausforderungen sowie die wirtschaftliche Machbarkeit eines Übergangs zu einer vollständig auf erneuerbaren Energien basierenden Energiewirtschaft analysiert. Drei Ansätze zur vollständigen Substitution fossiler Brennstoffe durch erneuerbare Energien aus Photovoltaik wurden betrachtet, nämlich:

1. ein rein elektrisches System mit Batteriespeicher,
2. ein zweites mit Wasserstoff,
3. und das dritte mit synthetischen Kohlenwasserstoffen.

1. Das strombasierte Energiesystem ELC ist mit 48m² Photovoltaik (PV) pro Kopf (12% der Stadtfläche von CH) und einer Reduktion des Energiebedarfs in der Schweiz um 30% die energieeffizienteste Lösung, benötigt jedoch saisonalen Strom Speicher, um den ganzjährigen Energiebedarf zu decken. Die Deckung dieses Bedarfs durch Batterien ist mit erheblichen Kapitalkosten verbunden und ist bei den derzeitigen Kapazitäten der Batterieproduktion wirtschaftlich und technisch nicht machbar, wenn es überhaupt möglich wäre.

2. Das wasserstoffbasierte System (HYS) benötigt 116 m² PV pro Kopf, ermöglicht eine massive unterirdische Wasserstoffspeicherung in der Größe des 25-fachen des „Gotthard-Basistunnels“, um den saisonalen Bedarf auszugleichen und erfordert den Aufbau einer Wasserstoffinfrastruktur und Anwendungen, die mit Wasserstoff arbeiten.

3. Schließlich erfordert das synthetische Kohlenwasserstoff-basierte Energiesystem (HCR) das größte PV-Feld von 220 m² pro Kopf und CO₂-Luftabscheidung, aber die Infrastruktur und die Anwendungen sind bereits vorhanden. Der resultierende synthetische flüssige
Kohlenwasserstoff würde mindestens 5 CHF/L kosten. Die Größe des saisonalen Speichers nimmt mit zunehmender PV-Fläche ab, eine Überdimensionierung der PV führt im Sommer zu einem Stromüberschuss und reduziert die Speichergröße für den Winter, verringert aber auch die Widerstandsfähigkeit des Energiesystems. Äquatornahe PV-Anlagen reduzieren die jahreszeitlichen Schwankungen der Stromproduktion und reduzieren aufgrund der höheren Sonnenintensität auch die benötigte Fläche. Die Kosten für den synthetischen Kohlenwasserstoff würden somit auf 3.2 CHF/L reduziert. Das Modell für die Schweiz lässt sich auf andere Länder übertragen, indem die Sonneneinstrahlung, der Energiebedarf und die Speichermöglichkeiten angepasst werden.

Ergebnisse in Stichworten
- Erneuerbare Energien, die bis zu 70 % des Jahresenergiebedarfs decken, sind auf Tag-/Nachtspeicherung und geringe Kosten beschränkt, die restlichen 30 % sind anspruchsvoll (saisonale Speicherung).
- Ein rein elektrisches Energiesystem (ELC) mit Batteriespeicher ist sehr teuer und ressourcenintensiv.
- Das auf Wasserstoff basierende Energiesystem (HSY) ist doppelt so teuer wie das auf Strom basierende und erfordert die Entwicklung einer Wasserstoffinfrastruktur und Wasserstoffanwendungen.
- Das auf synthetischen Kohlenwasserstoffen (HCR) basierende Energiesystem ist dreimal so teuer wie ELC.
- Nur das auf synthetischen Kohlenwasserstoffen basierende System (HCR) ermöglicht die Produktion von Kerosin und die derzeitige Infrastruktur und Anwendungen können weiterhin verwendet werden.
- Die Kosten für synthetischen Kraftstoff betragen etwa 0,5 CHF/kWh, werden aber voraussichtlich mit der Zeit sinken.
- Die Produktion von erneuerbarer Energie und synthetischem Kraftstoff in Äquatornähe reduziert die Kosten um 35 %.
L'article Andreas ZÜTTEL, Noris GALLANDAT, Paul J. DYSON, Louis SCHLAPBACH, Paul W. GILGEN, Shin-Ichi ORIMO, “Future Swiss Energy Economy: the challenge of storing renewable energy”, Frontiers in Energy Research: Process and Energy Systems Engineering, accepted (2021) représente une analyse des défis techniques et économiques auxquels la Suisse est confrontée lorsque toute l’énergie fossile est remplacée par des énergies renouvelables produites localement (hydroélectricité, photovoltaïque et éolienne).

Économie énergétique future de la Suisse: le défi du stockage des énergies renouvelables

SOMMAIRE

Les combustibles et matériaux fossiles sur Terre sont une ressource limitée et l’élimination des déchets dans l’air, sur terre et dans l’eau a un impact sur notre environnement au niveau mondial. Alors que le changement climatique dû à l’augmentation de la concentration de CO$_2$ dans l’atmosphère reçoit actuellement beaucoup d’attention dans les médias, les ressources limitées en combustibles fossiles sont beaucoup moins importantes. Cependant, les pays qui disposent actuellement de leurs propres ressources en vecteurs d’énergie fossile doivent développer les énergies renouvelables pour la sécurité énergétique future. Par conséquent, des solutions, par ex. Le PV, qui ne fournit de l’énergie qu’en été mais pas en hiver, peut aider à réduire les émissions de CO$_2$, mais n’assure pas la sécurité énergétique. En prenant l’exemple de la Suisse, la demande énergétique et les défis techniques ainsi que la faisabilité économique d’une transition vers une économie énergétique entièrement basée sur les énergies renouvelables ont été analysés.

Trois approches pour la substitution complète des énergies fossiles par des énergies renouvelables issues du photovoltaïque ont été envisagées à savoir :

- un système purement électrique avec stockage sur batterie,
- la seconde impliquant l’hydrogène, et
- la troisième incluant les hydrocarbures de synthèse.

Le système énergétique basé sur l’électricité est la solution la plus économe en énergie avec 48m2 de photovoltaïque (PV) par habitant (12% de la superficie urbaine de CH) et une réduction de 30% de la demande énergétique en Suisse, cependant, il nécessite de l’électricité saisonnière stockage pour répondre aux besoins énergétiques tout au long de l’année. Répondre à ce besoin grâce à des batteries a un coût d’investissement important et n’est économiquement et techniquement pas faisable aux taux actuels de production de batteries, et l’expansion de l’hydroélectricité pompée dans la mesure nécessaire aura un impact majeur sur l’environnement afin de construire 13 "Grand Dixence" supplémentaires si c’était possible. Le système à base d’hydrogène (HYS) nécessite 116 m2 de PV par habitant permet un stockage souterrain massif d’hydrogène de la taille de 25 fois le « tunnel de base du Gothard » pour équilibrer la demande saisonnière et nécessite la construction d’une infrastructure hydrogène et d’applications fonctionnant avec l’hydrogène.

Enfin, le système énergétique à base d’hydrocarbures synthétiques nécessite le plus grand champ photovoltaïque de 220 m2 par habitant et le captage du CO$_2$ dans l’air, mais l’infrastructure et les applications existent déjà. L’hydrocarbure liquide synthétique résultant coûterait au moins 5 CHF/L. La taille du stockage saisonnier diminue avec l’augmentation de la
superficie des PV, en conséquence le surdimensionnement du PV entraînera un excès d'électricité en été et réduira la taille du stockage pour l'hiver, mais réduira également la résilience du système énergétique. Le PV installé près de l'équateur réduit la variation saisonnière de la production d'électricité et, en raison de l'intensité solaire plus élevée, réduit également la surface nécessaire. Le coût de l'hydrocarbure synthétique serait ainsi ramené à 3.2 CHF/L. Le modèle pour la Suisse peut être appliqué à d'autres pays, en adaptant le rayonnement solaire, la demande énergétique et les options de stockage.

Points forts
- L'énergie renouvelable couvrant jusqu'à 70 % de la demande énergétique annuelle est limitée au stockage jour/nuit et à faible coût, les 30 % restants sont difficiles (stockage saisonnier).
- Un système d'énergie purement électrique avec stockage par batterie est très coûteux et gourmand en ressources.
- Le système énergétique basé sur l'hydrogène (HSY) est deux fois plus cher que celui basé sur l'électricité (ELC) et nécessite le développement d'infrastructures hydrogène et d'applications hydrogène.
- Le système énergétique à base d'hydrocarbures synthétiques est 3 fois plus cher que l'ELC.
- Seul le système à base d'hydrocarbures synthétiques permet la production de carburéacteur et les infrastructures et applications actuelles peuvent encore être utilisées.
- Le coût du carburant synthétique est d'environ 0.5 CHF/kWh mais devrait diminuer avec le temps.
- La production d'énergie renouvelable et de carburant de synthèse à proximité de l'équateur réduit le coût de 35 %.

Mots clés : énergies renouvelables, électricité, photovoltaïque, batteries, hydrogène, hydrocarbures synthétiques