DYNAMICAL INVARIANTS OF TORIC CORRESPONDENCES

NGUYEN-BAC DANG, ROHINI RAMADAS

Abstract. We focus on various dynamical invariants associated to toric correspondences, using algebraic geometry or arithmetic. We find a formula for the dynamical degrees, relate the exponential growth of the degree sequences with a strict log-concavity condition on the dynamical degrees and compute the asymptotic ratio of the growth of heights of points of such correspondences.

Contents

1. Introduction 1
 1.1. Acknowledgements 4
2. Background 5
 2.1. Rational correspondences 5
 2.2. Pullback on numerical groups by correspondences 6
 2.3. Dynamical degrees 6
 2.4. Monomial correspondences 7
3. Dynamics of monomial correspondences 7
 3.1. Dynamical degree of monomial correspondences 9
 3.2. Proof of Theorem A 10
 3.3. Proof of Theorem B 11
 3.4. Proof of Theorem C 12
 3.5. Proof of Theorem D 12
References 13

1. Introduction

Let K be an algebraically closed field of characteristic zero, X be a smooth n-dimensional quasiprojective variety over K. A rational correspondence g on X is a quasiprojective variety Γ_f together with two maps π_1 and π_2 to X, such that both maps are dominant when restricted to every irreducible component of Γ_f. Fix a normal compactification \overline{X} of X, a desingularization $\overline{\Gamma_f}$ of Γ_f and denote by π_1 and π_2 the two regular maps from $\overline{\Gamma_f}$ to \overline{X}.

Rational correspondences can be iterated (see Section 2.1); we denote by f^p the p-th iterate of the correspondence f. There are invariants of various nature associated to the dynamical system induced by a given correspondence. They can be transcendental or algebraic, or arithmetic if K is \mathbb{Q}.

2010 Mathematics Subject Classification. 14H10 (primary), 14N99, 14M99, 37F05.
This work was partially supported by NSF grant 1703308.
Let us present a first invariant defined purely using algebraic geometry. Fix an ample divisor D on X and an integer $k \leq n$, the k-degree of the correspondence g with respect to X and D is the intersection number:

$$\deg_k(f) := (\pi_1^* D^{n-k} \cdot \pi_2^* D^k)$$

on Γ_f. The asymptotic behavior of the sequence $(\deg_k(f^p))_p$ roughly measures the algebraic complexity of the iterates of f. These degree sequences have been studied most in the case when Γ_f is the graph of a rational map f. The growth of the sequence of degrees is an essential tool when one studies the group of birational transformations (see [Giz80], [DF01], [Can11], [BD16], [BC16] for surfaces, [DS04] for the study of commutative automorphism groups in dimension ≥ 3 and [CZ12], [Zha14] for some characterizations of positive entropy automorphisms in higher dimension).

When \mathbb{K} is the field of complex numbers, Dinh-Sibony [DS05a, DS08] proved that the sequence of degrees is submultiplicative and this result was recently extended to a field of arbitrary characteristic by Truong [Tru16]. As a result, Fekete’s lemma implies that the asymptotic ratio of the sequence $\deg_k(g^p)$, called the k-th dynamical degree of g and denoted $\lambda_k(g)$ is well-defined and is equal to the limit

$$\lambda_k(g) := \lim_{p \to +\infty} \frac{\deg_k(g^p)}{p^{1/p}}.$$

These numbers were first defined for rational maps over the complex projective space by Russakovski-Shiffman [RS97] and are in general birational invariants [Tru16]. Dynamical degrees are also a key ingredient in the construction of ergodic invariant measures ([BS92], [Sib99], [DS05a], [Gue05], [DTV10], [DS10], [DDG11]).

The quantity analogous to the dynamical degree in the analytic setting is the topological entropy – the logarithmic asymptotic rate of the number of (n, ϵ) separated orbit which avoid the indeterminacy locus of a given correspondence. These two invariants are closely related as the dynamical degrees control the topological entropy ([DS08]) and the equality between the topological entropy and the logarithm of its largest dynamical degree is achieved for holomorphic maps [Yom87, Gro03].

Like the entropy, the dynamical degrees are also difficult to compute in general – the issue when $k = 1$ is that g has in general a non-empty indeterminacy locus and hence the pullback $(g^p)^*$ on the Neron Severi group need not be equal to $(g^*)^p$. Thus computing λ_k involves computing infinitely many potentially unrelated pullback maps. Therefore, they have only been computed in low dimension or for maps which preserve certain geometric constraints: they are known for regular morphisms, for birational maps of surfaces [DF01], for endomorphisms of the affine plane [FJ11], for monomial maps [Lin12, FW12] and for birational maps of hyperkähler varieties [LB17]. Due to this difficulty, there are many open questions – for example, it is not known whether every dynamical degree is an algebraic integer.

In contrast to the general situation, the dynamical degrees and the sequence of degrees of monomial maps are well understood [BK08, Lin12, FW12, JW11]. Fix $n > 0$, and denote by T the n-dimensional torus $(\mathbb{K}^*)^n$. Let $M = (M_{ij})$ be an $n \times n$ integer matrix. Then M induces a monomial self-map $\phi(M)$ of T, sending (x_1, \ldots, x_n) to $(\prod_j x_{M_{1j}}^{M_{j1}}, \ldots, \prod_j x_{M_{nj}}^{M_{jn}})$. If M is non-singular then $\phi(M)$ is dominant, with topological degree $\det(M)$. The k-th dynamical degree of $\phi(M)$ is

$$|\rho_1| \cdot \ldots \cdot |\rho_k|,$$
where \(\rho_1, \ldots, \rho_k \) are the \(k \) largest eigenvalues of \(M \).

Now let \(M \) and \(N \) be two nonsingular integer matrices. Then we have two dominant maps, \(\phi(M) \) and \(\phi(N) \), both from \(T \) to \(T \). This induces a rational correspondence on \(T \); we call such a correspondence a monomial correspondence. Here, we compute the dynamical degrees of monomial correspondences. We show:

Theorem A. For any two \(n \times n \) integer matrices \(M \) and \(N \) with non-zero determinant, the \(k \)-dynamical degree of the correspondence \((T, \phi(M), \phi(N)) \) is equal to

\[
|\det(M)| |\rho_1| \cdots |\rho_k|,
\]

where \(\rho_1, \ldots, \rho_k \) are the \(k \) largest eigenvalues of the matrix \(N \cdot M^{-1} \).

We obtain further information on the growth of the degrees when the sequence \(k \mapsto \lambda_k(f) \) is locally strictly log-concave.

Theorem B. Fix two \(n \times n \) integer matrices \(M \) and \(N \) with non-zero determinant and take \(f \) the monomial correspondence \(f := (T, \phi(M), \phi(N)) \). Suppose that \(\lambda_2^p(f) > \lambda_{l+1}(f) \lambda_{l-1}(f) \) for an integer \(1 \leq l \leq n \), then there exists a constant \(C > 0 \) and an integer \(r \) such that

\[
\deg_l(f^p) = C \lambda_l(f)^p + O \left(p^r \left(\frac{\lambda_{l-1}(f) \lambda_{l+1}(f)}{\lambda_l(f)} \right)^p \right).
\]

We find an appropriate toric compactification \(Y \) on which the pullback on the \(2k \) cohomology is functorial (i.e. \((f^p)^* = (f^*)^p \) on \(H^{2k}(Y(\mathbb{C})) \)) for an embedding of \(\mathbb{K} \) into \(\mathbb{C} \). We say that \(f \) is \(k \)-stable when this happens.

Theorem C. Fix two \(n \times n \) integer matrices \(M \) and \(N \) with non-zero determinant and take \(f \) the monomial correspondence \(f := (T, \phi(M), \phi(N)) \). Suppose that the eigenvalues of the matrix \(NM^{-1} \) are all real, distinct and positive. Then there exists a projective toric variety with at worst quotient singularities on which \(f \) is algebraically \(k \)-stable.

Finally, we describe the monomial correspondences by computing invariant using arithmetic tools. Recall that given an ample divisor \(D \) on \(\mathbb{P}^n \), one can associate a function \(h_D : \mathbb{P}^n(\mathbb{Q}) \to \mathbb{R}^+ \) called a Weil height. These heights are essential to understand rational points and integral points on algebraic varieties. More precisely, they are used to count the asymptotic growth of rational points [Sch79], to characterize torsion points on abelian varieties [N65, Lat74] and to obtain equidistribution results in algebraic dynamics [SUZ97, Yua08, DM17] and to study stability properties of algebraic families of one dimensional maps [MZ10, BD11, DeM16, DWY16, FG18]. In our setting, we fix an embedding from \(T \) into \(\mathbb{P}^n(\mathbb{Q}) \) so that we get an injection from \(T(\mathbb{Q}) \) in \(\mathbb{P}^n(\mathbb{Q}) \). If \(x \) is a point in \(T(\mathbb{Q}) \), then its image by a monomial correspondence is a well-defined cycle of dimension 0, i.e. a finite number of \(T(\mathbb{Q}) \) points counted with multiplicities \(\sum a_i[x_i] \) for \(a_i \in \mathbb{Z}, x_i \in T(\mathbb{Q}) \), and we define the height of the image as the sum \(\sum a_i h_D(x_i) \). Take \(f := (T, \phi(M), \phi(N)) \) a monomial correspondence with \(M, N \) two matrices with integer entries and fix a \(a \) a point in \(T(\mathbb{Q}) \). We define the arithmetic degree of \(x \) as the following asymptotic limit:

\[
\alpha_f(x) := \limsup_{p \to +\infty} h_D(f^p(x))^{1/p}.
\]
In [KS16a], Kawaguchi and Silverman defined this quantity and conjectured that when f is dominant rational map and when x is a rational point whose orbit is Zariski dense, the quantity $\alpha_f(x)$ is equal to the first dynamical degree of f.

Theorem D. Suppose that the field $K = \mathbb{Q}$ is the field of algebraic numbers. Fix two $n \times n$ integer matrices M and N with non-zero determinant and take f the monomial correspondence $f := (\mathbb{T}, \phi(M), \phi(N))$. Then for any point $x \in \mathbb{T}(\overline{\mathbb{Q}})$, the quantity $\alpha_f(x)$ is finite and belongs to the set

$$\{1, |\det(M)\rho_1|, |\det(M)\rho_2|, \ldots, |\det(M)\rho_n|\}$$

where each ρ_i is an eigenvalue of $N \cdot M^{-1}$.

Let us explain how we can obtain these four results. Fix M, N two $n \times n$ integer matrices with non-zero determinant. Our approach relies on a very simple observation: mainly, by post-composing by the monomial map associated to the matrix $\det(M)^p \text{Id}$, we obtain the following diagram:

$$\begin{array}{c}
\Gamma_p \\
\downarrow \\
\mathbb{T} \\
\downarrow \\
\phi(P^p) \\
\downarrow \\
\mathbb{T} \\
\downarrow \\
\phi(\det(M)^p \text{Id}) \\
\downarrow \\
\mathbb{T}
\end{array}$$

where Γ_p is the correspondence associated to g^p, where P is the matrix $T \text{Com} M \cdot N$ and where \mathbb{T} is the torus \mathbb{K}^n. This diagram allows us to transport the dynamical properties of the monomial map induced by P with the dynamics of the monomial correspondence. We finally conclude using Favre-Wulcan’s [FW12], Lin-Wulcan’s results [LW14], and Silverman’s result [Sil14] to prove Theorem A, B, C and D respectively.

To pursue the study of these particular correspondences, it is natural to ask whether we can relate the entropy of such correspondence with their dynamical degrees as in the rational setting ([HP07]). Precisely, we formulate the following question.

Question 1.1. Take M and N two $n \times n$ integer matrices with non-zero determinant. Is the topological entropy of a monomial correspondence $f = (\mathbb{T}, \phi(M), \phi(N))$ equal to

$$\max_{0 \leq k \leq n} \lambda_k(f).$$

Once this question is answered, then one would wish to understand the ergodic properties of our correspondences, mainly:

Question 1.2. Is there a measure of maximal entropy and can we compute its Hausdorff dimension?

1.1. **Acknowledgements.** The first author is grateful to Eric Bedford and Mikhail Lyubich for their support on this project, both authors thank Mattias Jonsson for his encouragements and the second author also thanks Melody Chan for useful conversations.
2. Background

2.1. Rational correspondences. A rational correspondence from X to Y is a multi-valued map to Y defined on a dense open set of X. When K is the field of complex numbers, they are also called meromorphic multi-valued maps.

Definition 2.1. Let X and Y be irreducible quasiprojective varieties. A rational correspondence $f = (\Gamma_f, \pi_X, \pi_Y) : X \nrightarrow Y$ is a diagram

$$
\begin{array}{ccc}
\pi_X & \Gamma_f & \pi_Y \\
\downarrow & & \downarrow \\
X & & Y
\end{array}
$$

where Γ_f is a quasiprojective variety, not necessarily irreducible, and the restriction of π_X to every irreducible component of Γ_f is dominant and generically finite. We say that the variety Γ_f is the graph of the correspondence f.

Over some dense open set in X, π_X is an étale map (over \mathbb{C}, a covering map), and $\pi_Y \circ \pi_X^{-1}$ defines a multi-valued map to Y. We define the domain of definition of g to be the largest such open set of X, however, considered as a multi-valued map from X to Y, it is possible that $\pi_Y \circ \pi_X^{-1}$ has indeterminacy, since some fibers of π_X may be empty or positive-dimensional.

Example 2.2. Let $g : X \to Y$ be a rational map. Set Γ_f to be the graph of g, i.e. the set $(x, f(x)) \in X \times Y$, and set π_X and π_Y to be the natural projection maps from Γ_f to X and Y respectively. Then $(\Gamma_f, \pi_X, \pi_Y) : X \nrightarrow Y$ is a rational correspondence, that happens to be generically single-valued. Thus any rational map can be thought of as a rational correspondence.

Example 2.3. Let ϕ be an orientation-preserving branched covering from S^2 to itself, such that every critical point of ϕ has finite forward orbit. Thurston [DH93] described a pullback map induced by ϕ on the Teichmüller space of complex structures of S^2 marked at the post-critical locus of ϕ; Koch [Koc13] showed that Thurston’s pullback map descends to a correspondence on the moduli space $M_{0,n}$ of configurations of n points on \mathbb{P}^1. These correspondences are called Hurwitz correspondences and have been studied in [Ram18, Ram19].

Example 2.4. Recall from that the modular surface $X_0 := \text{SL}_2(\mathbb{Z})/\mathbb{H}$ defined as the left quotient of the hyperbolic plane by $\text{SL}_2(\mathbb{Z})$ is isomorphic to \mathbb{C}. We can thus view X_0 as an algebraic Riemann surface, whose compactification is the Riemann sphere. The Hecke operator of weight n is a morphism on the free abelian group generated by the rank two lattices of \mathbb{R}^2 such that for any lattice Λ in \mathbb{R}^2, the image $T(n)(\Lambda)$ is defined as:

$$
T(n)[\Lambda] = \sum_{[\Lambda'] = n} [\Lambda'].
$$

Since X_0 is the quotient of the space of rank 2 lattices of \mathbb{R}^2 up to a scaling by [Ser73] VII §2.2 Proposition 3, the map $T(n)$ descends to a correspondence on X_0.

Definition 2.5. Suppose $f = (\Gamma_f, \pi_X, \pi_Y) : X \nrightarrow Y$ and $g = (\Gamma_g, \pi_Y', \pi_Z) : Y \nrightarrow Z$ are rational correspondences such that the image under π_Y of every irreducible component of Γ_f intersects the domain of definition of the multi-valued map $\pi_Z' \circ$
\((\pi_i')^{-1}\). The composite \(g \circ f\) is a rational correspondence from \(X\) to \(Z\) defined as follows.

Pick dense open sets \(U_X \subseteq X\) and \(U_Y \subseteq Y\) such that \(\pi_Y(\pi_X^{-1}(U_X)) \subseteq U_Y\), and \(\pi_X|_{\pi_X^{-1}(U_X)}\) and \(\pi_Y|_{(\pi')^{-1}(U_Y)}\) are both étale. Set
\[
g \circ f := (\pi_X^{-1}(U_X) \times_{\pi_Y} (\pi')^{-1}(U_Y), \pi_1, \pi_2),
\]
where \(\pi_1\) and \(\pi_2\) are the natural maps to \(X\) and \(Z\) respectively.

This composite does depend on the choices of open sets \(U_X\) and \(U_Y\), but is well-defined up to conjugation by a birational transformation.

2.2. Pullback on numerical groups by correspondences. Fix \(\overline{X}\) a normal projective compactification of \(X\). We now recall how these correspondences induce a natural action on the numerical groups of \(k\)-cycles.

When \(\mathbb{K}\) is the field of complex numbers and \(\overline{X}\) is smooth, then one can naturally consider the pullback action of correspondences on the degree 2 \(k\) de Rham cohomology of \(\overline{X}\). In our setting, we replace the de Rham cohomology by some abelian groups called numerical groups. Let us first introduce the general terminology on these groups.

A \(k\)-cycle on \(\overline{X}\) is a formal linear combination of subvarieties \(\sum a_i[V_i]\) where \(a_i\) are real numbers and where \(V_i\) are subvarieties of \(\overline{X}\). The group of \(k\)-cycles on \(\overline{X}\) is denoted \(Z_k(\overline{X})\). The rational equivalence classes of \(k\)-cycles form the group \(A_k(\overline{X})\). In [Ful98, Chapter 3], Fulton introduces the Chern classes of a vector bundle \(E\) on \(\overline{X}\) of degree \(k\) as operators from \(A_l(\overline{X}) \to A_{l-k}(\overline{X})\). Chern classes can be composed and a product of Chern classes \(\alpha\) of degree \(k\) is said to be numerically equivalent to zero if the intersection \((\alpha \cdot z)\) is equal to zero for any \(k\)-cycle \(z\). The numerical group of codimension \(k\) of \(\overline{X}\), denoted \(N^k(\overline{X})\) is the abelian group generated by product of Chern classes of degree \(k\) modulo the numerical equivalence relation. Dually, we denote by \(N_k(\overline{X})\) the quotient of the abelian group of \(k\)-cycles on \(\overline{X}\) by the group generated by cycles \(z \in Z_k(\overline{X})\) satisfying \((\alpha \cdot z) = 0\) for any product of Chern classes of degree \(k\). When \(\overline{X}\) is smooth or has at worst quotient singularities, then the two groups \(N^k(\overline{X})\) and \(N_{n-k}(\overline{X})\) are isomorphic and the isomorphism is realized by intersecting with the fundamental class \([\overline{X}]\). Classes in \(N^k(\overline{X})\) can be pulled back and conversely classes in \(N_{n-k}(\overline{X})\) can be pushed forward.

Definition 2.6. Suppose \(f = (\Gamma_f, \pi_1, \pi_2) : X \to \overline{X}\) is a rational correspondence, and \(\overline{X}\) is a normal projective variety birational to \(X\). Take a desingularization of \(\tilde{\Gamma}_f\) of \(\Gamma_f\) such that \(\pi_1\) and \(\pi_2\) are regular maps on \(\tilde{\Gamma}_f\). The pullback map on the numerical groups, denoted \(f^* : N^k(\overline{X}) \to N_{n-k}(\overline{X})\) is given by the following intersection product:
\[
f^*(\alpha) := \pi_1^*(\pi_2^* \alpha \cdot [\tilde{\Gamma}_f]) \in N_{n-k}(\overline{X}),
\]
where \(\alpha\) is a class in \(N^k(\overline{X})\).

2.3. Dynamical degrees.

Definition 2.7. Let \(\dim X = n\), and let \(f = (\Gamma_f, \pi_1, \pi_2) : X \to \overline{X}\) be a rational correspondence. Fix a smooth projective compactification \(\overline{X}\) of \(X\), a projective compactification and \(D\) an ample divisor class on \(\overline{X}\). Now pick a projective compactification \(\overline{\Gamma}_f\) of \(\Gamma_f\) such that both maps \(\pi_1, \pi_2 : \overline{\Gamma}_f \to \overline{X}\) are regular. Now, for
$k = 0, \ldots, n$, the k-degree of f with respect to D is the intersection number on Γ_f:
\[
\deg_k(f, \overline{X}, D) := (\pi_1^*D^{n-k} \cdot \pi_2^*D^k).
\]
Note that while this intersection number very much does depend on the choices of \overline{X} and D, by the projection formula, it is independent of the choice of compatible compactification Γ_f.

Definition 2.8. Let $f = (\Gamma_f, \pi_1, \pi_2) : X \to X$ be a rational correspondence such that the restriction of π_2 to every irreducible component of Γ_f is dominant. In this case we say f is a dominant rational self-correspondence.

Definition 2.9. Let Γ_f be as in Definition 2.8. Let $f^p = f \circ \ldots \circ f$ (p times). Pick any normal projective variety \overline{X} birational to X and fix D an ample divisor class on \overline{X}. The kth dynamical degree $\lambda_k(f)$ of Γ_f is defined to be
\[
\lambda_k(f) := \lim_{p \to \infty} \left(\frac{\deg_k(f^p, \overline{X}, D)}{p} \right)^{1/p}.
\]
This limit exists and does not depend on the choice of the normal projective variety \overline{X} birational to X nor on the choice of the ample divisor D. Moreover, the sequence $k \mapsto \lambda_k(f)$ is log-concave and we shall refer to [Tru16] for the general properties of these quantities.

2.4. Monomial correspondences

Fix $n > 0$ and let T be the torus $(\mathbb{K}^*)^n$. Recall that any $(n \times n)$ matrix $M = (M_{ij})$ with integer entries defines a morphism (homomorphism) $\phi(M)$ on T defined by:
\[
\phi(M) : (x_1, \ldots, x_n) \mapsto \left(\prod_l x_1^{M_{1l}}, \ldots, \prod_l x_l^{M_{ll}} \right).
\]
We have: $\phi(M \cdot N) = \phi(M) \circ \phi(N)$. Also, $\phi(M)$ is dominant if and only if M is non-singular; in which case $\phi(M)$ is étale of degree $\det(M)$. A monomial correspondence is any correspondence on the torus T that given by $(T, \phi(M), \phi(N))$ where M, N are matrices with integer entries, and M is non-singular. The correspondence $(T, \phi(M), \phi(N))$ is dominant if and only if N is non-singular as well.

3. Dynamics of monomial correspondences

While the composition of monomial maps $\phi(M)$ and $\phi(N)$ is itself a monomial map, namely $\phi(M \cdot N)$, the composition of two monomial correspondences may not be monomial. Also, for a fixed monomial correspondence $(T, \phi(M), \phi(N))$, its iterates may not be monomial. The essential ingredient to understand the iterates of monomial correspondences is the following lemma, which relates the dynamical behavior of the monomial correspondence $(T, \phi(M), \phi(N))$ to the dynamical behaviour of $\phi(N \cdot TCom(M))$, where $TCom(M)$ is the transpose of the cofactor matrix of M.

Lemma 3.1. Fix two $n \times n$ integer matrices M and N, both with non-zero determinant and take f to be the monomial correspondence $f := (T, \phi(M), \phi(N))$ and $P = N \cdot TCom(M)$ where $TCom(M)$ is the transpose of the cofactor matrix of M.

For any integer \(p \geq n \), the following diagram is commutative:

\[
\begin{array}{c}
\Gamma_p \\
\downarrow_{u_p} \\
\downarrow_{v_p} \\
\phi(P^p) \\
\downarrow_{\phi(\det(M)^p \text{Id})} \\
\end{array}
\]

where \(f^p := (\Gamma_p, u_p, v_p) \) denotes the \(p \)-th iterate of \(f \).

Proof. We induct on \(p \). Throughout, we use the facts that \(\phi(A \cdot B) = \phi(A) \circ \phi(B) \), and that a scalar matrix (in particular \(\det(M) \text{Id} \)) commutes with all matrices, so \(\phi(\det(M) \text{Id}) \text{ commutes with all monomial maps.}

Base Case: \(p = 1 \). Then \((\Gamma_p, u_p, v_p) = (T, \phi(M), \phi(N)) \). So
\[
\phi(P^p) \circ u_p = \phi(P) \circ \phi(M)
\]
\[
= \phi(N \cdot TCom(M)) \circ \phi(M)
\]
\[
= \phi(N) \circ \phi(TCom(M)) \circ \phi(M)
\]
\[
= \phi(TCom(M)) \circ \phi(M) \circ \phi(N)
\]
\[
= \phi(TCom(M) \cdot M) \circ \phi(N)
\]
\[
= \phi(\det(M) \text{Id}) \circ \phi(N)
\]
\[
= \phi(\det(M^p) \text{Id}) \circ v_p.
\]

Inductive Hypothesis: For some \(p > 0 \), \(\phi(P^p) \circ u_p = \phi(\det(M^p) \text{Id}) \circ v_p \).

Inductive Step: We have the following commutative diagram:

\[
\begin{array}{c}
\Gamma_p+1 \\
\downarrow_{\phi(M)} \\
\downarrow_{\phi(N)} \\
\end{array}
\]

Here, the square is Cartesian, \(u_{p+1} = \phi(M) \circ x \), and \(v_{p+1} = v_p \circ y \).

Now, we post-compose \(v_{p+1} \) by \(\phi(\det(M)^{p+1} \text{Id}) \) to obtain:
\[
\phi(\det(M^{p+1}) \text{Id}) \circ v_{p+1} = \phi(\det(M) \text{Id}) \circ \phi(\det(M)^p \text{Id}) \circ v_p \circ y
\]
\[
= \phi(\det(M) \text{Id}) \circ \phi(P^p) \circ u_p \circ y
\]
\[
= \phi(\det(M) \text{Id}) \circ \phi(P^p) \circ \phi(N) \circ x
\]
\[
= \phi(P^p) \circ \phi(N) \circ \phi(\det(M) \text{Id}) \circ x
\]
\[
= \phi(P^p) \circ \phi(N) \circ \phi(TCom(M) \cdot M) \circ x
\]
\[
= \phi(P^p) \circ \phi(N) \circ \phi(TCom(M)) \circ \phi(M) \circ x
\]
\[
= \phi(P^p) \circ \phi(P) \circ \phi(M) \circ x
\]
\[
= \phi(P^{p+1}) \circ \phi(M) \circ x
\]
\[
= \phi(P^{p+1}) \circ u_{p+1}
\]
Here, the second equality follows from the inductive hypothesis and the third equality follows from the commutativity of the Cartesian square.

3.1. Dynamical degree of monomial correspondences.

Theorem 3.2. Fix two \(n \times n \) integer matrices \(M \) and \(N \), both with non-zero determinant, and take \(f \) to be the monomial correspondence \(f := (\mathbb{T}, \phi(M), \phi(N)) \).

Denote by \(P = N \cdot TCom(M) \) where \(TCom(M) \) is the transpose of the cofactor matrix of \(M \). For any toric compactification \(X \) of \(\mathbb{T} \), for any integer \(p \geq 1 \) and for any integer \(l \leq n \), the following equality holds on \(N^l(X) \otimes \mathbb{Q} \):

\[
(f^p)^\bullet = \frac{1}{|\det(M)|^{p-l} \phi(P^p)^\bullet}
\]

Proof. Fix a toric compactification \(X \) of \(\mathbb{T} \). We observe that for any scalar matrix \(a \text{Id} \), the map \(\phi(a \text{Id}) \) is a regular morphism on \(X \) and that the pullback satisfies:

\[
\phi(a \text{Id})^\ast = |a|^l \text{Id}
\]

on \(N^l(X) \). Thus the morphism \(\phi(\det(M)^p \text{Id}) \) on \(\mathbb{T} \) induces a regular morphism on \(X \) and the pullback satisfies:

\[
\phi(\det(M)^p \text{Id})^\ast = |\det(M)|^l \text{Id}
\]

on \(N^l(X) \). As a result, we have the following equality on \(N^l(X) \otimes \mathbb{Q} \)

\[(3) \quad \frac{1}{|\det(M)|^l} \phi(\det(M)^p \text{Id})^\ast = \text{Id}.
\]

By Lemma 3.1, for any integer \(p \), the following diagram is commutative:

\[
\begin{array}{ccc}
\Gamma_p & \xrightarrow{u_p} & \mathbb{T} \\
\downarrow \phi(P^p) & & \downarrow \phi(\det(M)^p \text{Id}) \\
X & \xleftarrow{\phi(\det(M)^p \text{Id})} & \mathbb{T}
\end{array}
\]

where \(P = N \cdot TCom(M) \). Note that \(u_p \) and \(v_p \) are étale of degrees \(|\det(M)|^p \) and \(|\det(N)|^p \) respectively. First, we choose a birational modification \(\pi : \hat{X} \to X \) so that the map \(\tilde{\phi}(P^p) : \hat{X} \to X \) induced by \(\phi(P^p) \) is regular. Then, we choose a compactification \(\Gamma_p \) of \(\Gamma_p \) so that the map induced by \(u_p \) and \(v_p \) from \(\Gamma_p \) to \(X \) are regular, and the map \(\tilde{u}_p : \Gamma_p \to \hat{X} \) is also regular. We thus obtain the following commutative diagram:

\[
\begin{array}{ccc}
\Gamma_p & \xrightarrow{u_p} & \hat{X} \\
\downarrow \bar{\phi}(P^p) & & \downarrow \phi(\det(M)^p \text{Id}) \\
X & \xleftarrow{\phi(\det(M)^p \text{Id})} & \mathbb{T}
\end{array}
\]

\[
\begin{array}{ccc}
\Gamma_p & \xrightarrow{u_p} & \hat{X} \\
\downarrow \bar{\phi}(P^p) & & \downarrow \phi(\det(M)^p \text{Id}) \\
X & \xleftarrow{\phi(\det(M)^p \text{Id})} & \mathbb{T}
\end{array}
\]

\[
\begin{array}{ccc}
\Gamma_p & \xrightarrow{u_p} & \hat{X} \\
\downarrow \bar{\phi}(P^p) & & \downarrow \phi(\det(M)^p \text{Id}) \\
X & \xleftarrow{\phi(\det(M)^p \text{Id})} & \mathbb{T}
\end{array}
\]
Note that \tilde{u}_p as a map from $\tilde{\Gamma}_p$ to \tilde{X} is generically finite of degree $|\det(M)|^p$. Thus, on $N_l(\tilde{X}) \otimes \mathbb{Q}$, we have that $(\tilde{u}_p)_* \circ \tilde{u}_p^* = |\det(M)|^p \text{Id}$. By the above diagram and (3), we compute the pullback $(f^p)_*$ on $N_l(X) \otimes \mathbb{Q}$:

$$(f^p)_* = u_p^* \circ v_p^*$$

$$= \frac{1}{|\det(M)|^p} u_p^* \circ v_p^* \circ \phi(\det(M)^p \text{Id})^*$$

$$= \frac{1}{|\det(M)|^p} u_p^* \circ \tilde{u}_p^* \circ \tilde{\phi}(P^p)^*$$

$$= \frac{1}{|\det(M)|^p} \pi_* \circ (\tilde{u}_p)_* \circ \tilde{u}_p^* \circ \tilde{\phi}(P^p)^*$$

$$= \frac{1}{|\det(M)|^p \cdot \phi(P^p)^*}$$

where the second-to-last equality follows from the fact that $(\tilde{u}_p)_* \circ \tilde{u}_p^* = |\det(M)|^p \text{Id}$. □

From the behavior of the corresponding monomial map associated to the correspondence on the numerical groups, we deduce Theorem A.

3.2. Proof of Theorem A

Let X be any toric compactification of \mathbb{T} and $P = N \cdot TCom(M)$. For any integer $p > 0$, Theorem 3.2 asserts that:

$$(f^p)_* = \frac{1}{|\det(M)|^{p-1} \phi(P^p)^*}$$

on $N_l(X) \otimes \mathbb{Q}$. We fix a norm $|| \cdot ||$ on $N_l(X) \otimes \mathbb{Q}$ and compute the l-dynamical degree of the correspondence using the formula:

$$\lambda_l(f) = \lim_{p \to +\infty} ||(f^p)_*||^{1/p}.$$

The previous expression thus gives:

$$\lambda_l(f) = \frac{1}{|\det(M)|^{l-1}} \lim_{p \to +\infty} ||\phi(P^p)^*||^{1/p}$$

$$= \frac{1}{|\det(M)|^{l-1}} \lambda_l(\phi(P))$$

Let ρ'_1, \ldots, ρ'_l be the l largest eigenvalues (in absolute value, and counted with multiplicity) of the matrix $P = N \cdot TCom(M) = \det(M) \cdot N \cdot M^{-1}$. Let ρ_1, \ldots, ρ_l be the l largest eigenvalues of the matrix $N \cdot M^{-1}$. Then $\rho'_i = \det(M) \cdot \rho_i$. By
Using Theorem A, this condition implies that:

\[\lambda(f) = \frac{1}{|\det(M)|^{l-1}} |\rho'_1| \cdots |\rho'_l|\]

Then we obtain:

\[\lambda(f) = \frac{1}{|\det(M)|^{l-1}} |\det(M)| |\rho_1| \cdots |\rho_l|\]

3.3. Remark 3.3. It follows immediately from the projection formula that for a general correspondence \((\Gamma, \pi_1, \pi_2)\) on an \(n\)-dimensional variety, the \(l\)-th dynamical degree of \((\Gamma, \pi_1, \pi_2)\) is equal to the \((n-l)\)-th dynamical degree of \((\Gamma, \pi_2, \pi_1)\). The following computation provides a sanity-check for Theorem A: Let \(\rho_1, \ldots, \rho_n\) be the eigenvalues of \(N \cdot M^{-1}\), arranged so that the sequence of absolute values is non-increasing. Then \(\frac{1}{\rho_n}, \ldots, \frac{1}{\rho_1}\) are the eigenvalues of \(M \cdot N^{-1}\), again arranged so that the sequence of absolute values is non-increasing. We note that:

- The \(l\)-th dynamical degree of \((T, \phi(M), \phi(N))\) is given by:
 \[\lambda_l(f) = |\det(M)|^{l-1} |\rho_1| \cdots |\rho_l|\]

3.3. Proof of Theorem B. Fix a monomial correspondence \(f := (T, \phi(M), \phi(N))\) for \(M, N \in \text{GL}_n(\mathbb{Z})\) whose \(l\)-dynamical degree satisfies the condition:

\[\lambda_l^2(f) > \lambda_{l+1}(f) \lambda_{l-1}(f)\]

Using Theorem A, this condition implies that:

\[\frac{\lambda_l(f)^2}{\lambda_{l+1}(f) \lambda_{l-1}(f)} = \frac{\lambda_l(\phi(P))^2}{\lambda_{l+1}(\phi(P)) \lambda_{l-1}(\phi(P))} > 1,\]

where \(P\) is the matrix \(N \cdot T \text{Com} M\). This prove that \(\phi(P)\) satisfies the conditions of [FW12 Theorem D], hence the asymptotic growth of the \(l\)-degree of \(\phi(P)\) is given by:

\[\deg_l(\phi(P))^p = C \lambda_l(\phi(P))^p + O\left(\left(\frac{\lambda_{l-1}(\phi(P)) \lambda_{l+1}(\phi(P))}{\lambda_l(\phi(P))}\right)^p\right),\]

as \(p \to +\infty\) where \(r\) is an integer.

Using Theorem 3.2 and the fact that \(\lambda_l(f) |\det(M)|^{l-1} = \lambda_l(\phi(P))\), we deduce that:

\[\deg_l(f^p) = C \lambda_l(f)^p + O\left(\left(\frac{\lambda_l(\phi(P))^2}{\lambda_{l+1}(\phi(P)) \lambda_{l-1}(\phi(P))}\right)^p\right),\]

and the theorem is proved.
3.4. Proof of Theorem C. Fix \(f = (T, \phi(M), \phi(N)) \) a monomial correspondence where \(M, N \) are two matrices in \(\text{GL}_n(\mathbb{Z}) \) such that the eigenvalues of the matrix \(NM^{-1} \) are all real, distinct and positive. This implies that the eigenvalues of the matrix \(P = N \cdot T \text{Com} M \) also satisfy the assumption of the theorem. By [LW14, Theorem A], we can find a toric compactification \(X \) of the torus \(T \), with at worst quotient singularities, on which the monomial map \(\phi(P) \) is \(k \)-stable. Using Theorem 3.2 we deduce that the \(k \)-stability of \(\phi(P) \) on \(X \) implies the \(k \)-stability of the correspondence \(f \) on \(X \), i.e. we have on \(N^1(X) \otimes \mathbb{Q} \):

\[
(f^p)^* = \frac{1}{|\det(M)|^{p(l-1)}} \phi(P^p)^* \\
= \left(\frac{1}{|\det(M)|^{(l-1)p}} \phi(P^*) \right)^p \\
= \left(\frac{1}{|\det(M)|^{(l-1)p}} \phi(P^*) \right)^p = (f^*)^p
\]

3.5. Proof of Theorem D. We fix an embedding of \(T \) into \(\mathbb{P}^n \). Fix also an integer \(p \geq 1 \) and denote by \((\Gamma_p, u_p, v_p) \) the \(p \)-th iterate of the correspondence \(f \). By Lemma 3.1, we can find a toric compactification \(\Gamma_p \) of \(\Gamma_p \) such that the following diagram is commutative:

\[
\begin{array}{ccc}
\Gamma_p & \xrightarrow{u_p} & \mathbb{P}^n \\
\downarrow v_p & & \downarrow \phi(P^p) \\
\mathbb{P}^n & \xrightarrow{\phi} & \mathbb{P}^n \\
\end{array}
\]

Fix \(D \) an ample divisor in \(\mathbb{P}^n \), a point \(x \in \mathbb{T}(\mathbb{Q}) \) and denote by \(h_D \) the Weil-height associated to \(D \). Observe that since \(\phi(\det(M)^p \text{Id}) \) is the map that raises each homogenous coordinate of \(\mathbb{P}^n \) to its \(\det(M) \)\(^p\)-th power, we have:

\[
h_D(\phi(\det(M)^p \text{Id})x) = |\det(M)|^p h_D(x)
\]

for any point \(x \in \mathbb{T}(\mathbb{Q}) \). As a result, we compute the height of the image of the point \(x \in \mathbb{T}(\mathbb{Q}) \) as:

\[
h_D(u_p \ast u_p^*[x]) = \frac{1}{|\det(M)|^p} h_D(\phi(\det(M)^p \text{Id})_*, v_p \ast u_p^*[x]).
\]

As the above diagram is commutative, we thus obtain:

\[
h_D(u_p \ast u_p^*[x]) = \frac{1}{|\det(M)|^p} h_D(\phi(P^p)_*, u_p \ast u_p^*[x]).
\]

As the cycle \(u_p \ast u_p^*[x] \) equals \(|\det(M)|^p[x] \), we deduce that:

\[
h_D(f^p(x)) = h_D(\phi(P^p)(x)).
\]

By [Sil14, Theorem 4], the asymptotic limit

\[
\lim sup h_D(\phi(P^p)(x))^{1/p}
\]

is well-defined and belongs to the set \(\{1, |\rho_1|, |\rho_2|, \ldots, |\rho_n|\} \) where each \(\rho_i \) is an eigenvalue of \(P \) and the result is proved.
Remark 3.4. Observe that the Zariski density for the orbit of the monomial correspondence $f = (T, \phi(M), \phi(N))$ does not imply the Zariski density of the orbit of $\phi(P)$ where $P = N \cdot T \text{Com}(M)$. One can take for example the case where $M = 2 \text{Id}$, $N = \text{Id}$ and $T = \mathbb{C}$. The correspondence $f = (T, \phi(M), \phi(N))$ is the “square root” correspondence, i.e. $f(z) = \{ \pm \sqrt{T}(z), -\sqrt{T}(z) \}$. Consider the point $z_0 = 1 \in T$: its orbit under f is the set $\{ z \in \overline{\mathbb{Q}} \mid z^{(2^n)} = 1 \}$, thus Zariski dense. However, under the monomial map $\phi(P) = z \mapsto z^2$, the orbit of z_0 is $\{ z_0 \}$, not Zariski dense. As a result, one cannot directly apply Silverman’s result to prove that a point $x \in T(\overline{\mathbb{Q}})$ whose orbit for f is Zariski dense satisfies $\alpha_f(x) = \lambda_1(f)$. This later statement is often referred to as Kawaguchi-Silverman’s conjecture \cite{KS16}.

\begin{thebibliography}{99}
\item [{[BC16]}] Jérémie Blanc and Serge Cantat, \textit{Dynamics of birational transformations of projective surfaces}, Journal of the American Mathematical Society 29 (2016), 415–471.
\item [{[BD11]}] Matthew Baker and Laura DeMarco, \textit{Preperiodic points and unlikely intersections}, Duke Math. J. 159 (2011), no. 1, 1–29. MR 2817647
\item [{[BD15]}] Jérémie Blanc and Julie Déserti, \textit{Degree growth of birational maps of the plane}, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 14 (2015), no. 2, 507–533. MR 3410471
\item [{[BK08]}] Eric Bedford and Kyounghee Kim, \textit{Linear recurrences in the degree sequences of polynomial diffeomorphisms of \mathbb{C}^2}, Duke Math. J. 140 (2007), no. 1, 299–340. MR 2365912
\item [{[BS92]}] Eric Bedford and John Smillie, \textit{Polynomial diffeomorphisms of \mathbb{C}^2, III. Ergodicity, exponents and entropy of the equilibrium measure}, Math. Ann. 294 (1992), no. 3, 395–420. MR 1188127
\item [{[Can11]}] Serge Cantat, \textit{Sur les groupes de transformations birationnelles des surfaces}, Ann. of Math. (2) 174 (2011), no. 1, 299–340. MR 2811600
\item [{[CZ12]}] Serge Cantat and Abdelghani Zeghib, \textit{Holomorphic actions, Kummer examples, and Zimmer program}, Ann. Sci. Éc. Norm. Supér. (4) 45 (2012), no. 3, 447–489. MR 3014483
\item [{[DDG11]}] Jeffrey Diller, Romain Dujardin, and Vincent Guedj, \textit{Dynamics of meromorphic mappings with small topological degree II: Energy and invariant measure}, Comment. Math. Helv. 86 (2011), no. 2, 277–316. MR 2775130
\item [{[DeM16]}] Laura DeMarco, \textit{Bifurcations, intersections, and heights}, Algebra Number Theory 10 (2016), no. 5, 1031–1056. MR 3531361
\item [{[DF01]}] Jeffrey Diller and Charles Favre, \textit{Dynamics of bimeromorphic maps of surfaces}, American Journal of Mathematics 123 (2001), no. 6, 1135–1169.
\item [{[DH93]}] Adrien Douady and John H. Hubbard, \textit{A proof of Thurston’s topological characterization of rational functions}, Acta Mathematica 171 (1993), no. 2, 263–297.
\item [{[DM17]}] Laura DeMarco and Niki Myrto Mavraki, \textit{Variation of canonical height and equidistribution}, arXiv preprint arXiv:1701.07947 (2017).
\item [{[DS04]}] Tien-Cuong Dinh and Nessim Sibony, \textit{Groupes commutatifs d’automorphismes d’une variété kählérienne compacte}, Duke Math. J. 123 (2004), no. 2, 311–328. MR 2066940
\item [{[DS05a]}] \textit{Dynamics of regular birational maps in \mathbb{P}^k}, J. Funct. Anal. 222 (2005), no. 1, 202–216. MR 2129771
\item [{[DS05b]}] Tien-Cuong Dinh and Nessim Sibony, \textit{Une borne supérieure pour l’entropie topologique d’une application rationnelle}, Annals of Mathematics 161 (2005), no. 3, 1637–1644.
\item [{[DS08]}] Tien-Cuong Dinh and Nessim Sibony, \textit{Upper bound for the topological entropy of a meromorphic correspondence}, Israel J. Math. 163 (2008), 29–44. MR 2391122
\item [{[DS10]}] \textit{Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings}, Holomorphic dynamical systems, Lecture Notes in Math., vol. 1998, Springer, Berlin, 2010, pp. 165–294. MR 2648090
\item [{[DTV10]}] Henry De Thélin and Gabriel Vigny, \textit{Entropy of meromorphic maps and dynamics of birational maps}, Mém. Soc. Math. Fr. (N.S.) (2010), no. 122, vi+98. MR 2752759
\item [{[DWY16]}] Laura DeMarco, Xiaoqiang Wang, and Hexi Ye, \textit{Torsion points and the Lattès family}, Amer. J. Math. 138 (2016), no. 3, 697–732. MR 3506383
\end{thebibliography}
[FG18] Charles Favre and Thomas Gauthier, *Classification of special curves in the space of cubic polynomials*, Int. Math. Res. Not. IMRN (2018), no. 2, 362–411. MR 3801434

[FJ11] Charles Favre and Mattias Jonsson, *Dynamical compactifications of \mathbb{C}^2*, Annals of Mathematics 173 (2011), no. 1, 211–249.

[Ful98] William Fulton, *Intersection theory*, second ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323

[FW12] Charles Favre and Elizabeth Wulcan, *Degree growth of monomial maps and McMullen’s polytope algebra*, Indiana Univ. Math. J. 61 (2012), no. 2, 493–524. MR 3043585

[Giz80] Marat Kharisovitch Gizatullin, *Rational G-surfaces*, Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), no. 1, 110–144, 239. MR 563788

[Gro03] Mikhaèl Gromov, *On the entropy of holomorphic maps*, Enseign. Math. 49 (2003), 217–235.

[Gue05] Vincent Guedj, *Ergodic properties of rational mappings with large topological degree*, Ann. of Math. (2) 161 (2005), no. 3, 1589–1607. MR 2179389

[HP07] Boris Hasselblatt and James Propp, *Degree-growth of monomial maps*, Ergodic Theory Dynam. Systems 27 (2007), no. 5, 1375–1397. MR 2358970

[HW11] Mattias Jonsson and Elizabeth Wulcan, *Stabilization of monomial maps*, Michigan Mathematical Journal 60 (2011), no. 3, 629–660.

[Koc13] Sarah Koch, *Teichmüller theory and critically finite endomorphisms*, Advances in Mathematics 248 (2013), 573–617.

[KS16a] Shu Kawaguchi and Joseph H. Silverman, *On the dynamical and arithmetic degrees of rational self-maps of algebraic varieties*, J. Reine Angew. Math. 713 (2016), 21–48. MR 3483624

[KS16b] ———, *On the dynamical and arithmetic degrees of rational self-maps of algebraic varieties*, J. Reine Angew. Math. 713 (2016), 21–48. MR 3483624

[LB17] Federico Lo Bianco, *On the primitivity of birational transformations of irreducible holomorphic symplectic manifolds*, International Mathematics Research Notices 2019 (2017), no. 1, 1–32.

[Lin12] Jan-Li Lin, *Pulling back cohomology classes and dynamical degrees of monomial maps*, Bull. Soc. Math. France 140 (2012), no. 4, 533–549 (2013). MR 3059849

[LW14] Jan-Li Lin and Elizabeth Wulcan, *Stabilization of monomial maps in higher codimension*, Ann. Inst. Fourier (Grenoble) 64 (2014), no. 5, 2127–2146. MR 330933

[MZ10] D. Masser and U. Zannier, *Torsion anomalous points and families of elliptic curves*, Amer. J. Math. 132 (2010), no. 6, 1077–1091. MR 2766181

[N65] A. Neron, *Quasi-fonctions et hauteurs sur les variétés abéliennes*, Ann. of Math. (2) 82 (1965), 249–331. MR 0179173

[Sch79] Stephen Hoel Schanuel, *Heights in number fields*, Bull. Soc. Math. France 107 (1979), no. 4, 433–449. MR 557080

[Ser73] J.-P. Serre, *A course in arithmetic*, Springer-Verlag, New York-Heidelberg, 1973, Translated from the French, Graduate Texts in Mathematics, No. 7. MR 0344216

[Sib99] Nessim Sibony, *Dynamique des applications rationnelles de \mathbb{P}^k*, Dynamique et géométrie complexes (Lyon, 1997), Panor. Synthèses, vol. 8, Soc. Math. France, Paris, 1999, pp. ix–x, xi–xii, 97–185. MR 1760844

[Sil14] Joseph H. Silverman, *Dynamical degree, arithmetic entropy, and canonical heights for dominant rational self-maps of projective space*, Ergodic Theory Dynam. Systems 34 (2014), no. 2, 647–678. MR 3233709

[SUZ97] Lucien Szpiro, Emmanuel Ullmo, and Shou-wu Zhang, *Équirépartition des petits points*, Inventiones mathematicae 127 (1997), no. 2, 337–347.
[Tat74] John T. Tate, *The arithmetic of elliptic curves*, Invent. Math. **23** (1974), 179–206. MR 0419359

[Tru16] Tuyen Trung Truong, Relative dynamical degrees of correspondences over a field of arbitrary characteristic, ArXiv e-prints (2016), arXiv:1605.05049.

[Yom87] Yosef Yomdin, *Volume growth and entropy*, Israel Journal of Mathematics **57** (1987), no. 3, 285–300.

[Yua08] Xinyi Yuan, *Big line bundles over arithmetic varieties*, Invent. Math. **173** (2008), no. 3, 603–649. MR 2425137

[Zha14] De-Qi Zhang, *Compact Kähler manifolds with automorphism groups of maximal rank*, Trans. Amer. Math. Soc. **366** (2014), no. 7, 3675–3692. MR 3192612

E-mail address: nguyen-bac.dang@stonybrook.edu, rohini.ramadas@brown.edu