Ultrafast self-heating synthesis of robust heterogeneous nanocarbides for high current density hydrogen evolution reaction

Chenyu Li1,5, Zhijie Wang2,5, Mingda Liu1,5, Enze Wang1, Bolun Wang1, Longlong Xu1, Kaili Jiang3, Shoushan Fan3, Yinghui Sun4, Jia Li2 & Kai Liu1

Designing cost-effective and high-efficiency catalysts to electrolyze water is an effective way of producing hydrogen. Practical applications require highly active and stable hydrogen evolution reaction catalysts working at high current densities (≥1000 mA cm⁻²). However, it is challenging to simultaneously enhance the catalytic activity and interface stability of these catalysts. Herein, we report a rapid, energy-saving, and self-heating method to synthesize high-efficiency Mo₂C/MoC/carbon nanotube hydrogen evolution reaction catalysts by ultrafast heating and cooling. The experiments and density functional theory calculations reveal that numerous Mo₂C/MoC hetero-interfaces offer abundant active sites with a moderate hydrogen adsorption free energy ΔG_H⁺ (0.02 eV), and strong chemical bonding between the Mo₂C/MoC catalysts and carbon nanotube heater/electrode significantly enhances the mechanical stability owing to instantaneous high temperature. As a result, the Mo₂C/MoC/carbon nanotube catalyst achieves low overpotentials of 233 and 255 mV at 1000 and 1500 mA cm⁻² in 1 M KOH, respectively, and the overpotential shows only a slight change after working at 1000 mA cm⁻² for 14 days, suggesting the excellent activity and stability of the high-current-density hydrogen evolution reaction catalyst. The promising activity, excellent stability, and high productivity of our catalyst can fulfill the demands of hydrogen production in various applications.
Hydrogen evolution reaction (HER), which involves overall water splitting, has been considered as a promising approach for hydrogen production. Catalytic activity and stability are important criteria for high-efficiency HER catalysts. In industrial applications, an HER catalyst must be highly active and stable on an electrode at high current densities (e.g., ≥500 or 1000 mA cm⁻²) over a long period of time (≥300 h). Pt is usually used for HER but limited for the high cost and scarcity, and thus Pt-group metal-free catalysts with the HER activity comparable to Pt have been extensively studied. However, the development of high-efficiency and Pt-group metal-free HER catalytic electrodes for high-current-density HER is challenging because it requires simultaneous high chemical activity, high chemical stability, and high mechanical stability of the electrodes. In recent years, high activity of HER catalysts at high current densities has been reported via heterogeneous atom doping, composite synergy, morphology engineering, and strain engineering. Nevertheless, many HER catalysts with high activity usually exhibit low chemical stability, and large mechanical forces caused by active sites during the release of large quantities of H₂ bubbles would continually exfoliate the catalyst from the electrode, making their mechanical stability difficult to maintain at high current densities.

It is difficult to simultaneously improve the chemical and mechanical stabilities without affecting the activity of an HER catalyst. To improve the chemical stability, chemically stable Pt-group metal-free catalysts, such as Mo₂C, MoS₂, MoS₂/NiS₂, and CrₓMoₓB, were explored. To enhance the mechanical stability, robust catalytic electrodes were directly employed, or binders were used to strengthen the adhesion between the catalyst and electrode, and specific channels or superaerophobic structures of electrodes were designed to reduce the mechanical forces generated in catalysts by facilitating the release of bubbles. However, these approaches to enhancing the stability may weaken the chemical activity of the HER catalysts. For example, additional binders obstruct the exposure of active sites and reduce the overall activity.

Therefore, development of new methods for intrinsically enhancing the stability of HER catalysts and simultaneously maintaining their high activity is crucial for applications at high current densities.

Instantaneously creating chemical bonding between the active catalysts and electrodes may be an effective way to intrinsically improve the mechanical stability of HER catalysts and not influence their chemical activity and stability. In this regard, fast self-heating (Joule-heating) of a conductive matrix could be used to in situ synthesize chemically bonded catalysts on the matrix and avoid the decay of their activity caused by agglomeration, which is superior to traditional methods. Herein, we develop a low-energy-consumption method using a carbon nanotube (CNT) film as a heat source and matrix, which rapidly changes its temperature in hundreds of milliseconds to in situ synthesize a robust Mo₂C/MoC/CNT composite film in the presence of Mo and C precursors. The as-prepared uniformly dispersed Mo₂C/MoC/CNT heterogeneous nanoparticles are tens of nanometres in size and form strong chemical bonds with the CNT film. Consequently, massive Mo₂C/MoC/CNT composites offer abundant active sites for HER, resulting in the Mo₂C/MoC/CNT film with a low overpotential of 255 mV at a high current density of 1500 mA cm⁻² in 1 M KOH.

The strong chemical bonds between Mo₂C/MoC and CNTs significantly weaken the dissolution and shedding of the Mo₂C/MoC nanoparticles during the HER at high current densities. As a result, the overpotential of the Mo₂C/MoC/CNT film changes by only ~32 and ~47 mV after working at 500 and 1000 mA cm⁻² for 14 days, respectively. Density functional theory (DFT) calculations demonstrate the moderate free energy (ΔG_ads) of 0.02 eV for hydrogen adsorption at sites around Mo₂C/MoC interfaces and a strong coupling between the Mo₂C and CNT matrix, which ensures the high activity and stability of the heterogeneous Mo₂C/MoC/CNT film.

Results

Self-heating synthesis of Mo₂C/MoC/CNT catalysts. The synthesis of Mo₂C/MoC/CNT catalysts by self-heating is shown in Fig. 1a. First, precursors including ammonium molybdate as metal source and glucose and urea as carbon source were loaded onto a laser-drilled CNT film by dip coating (step 1). Second, the CNT film loaded with precursors was dried at 60 °C for 10 min in air (step 2). Finally, self-heating synthesis was performed in a mixed atmosphere of 10% H₂ and 90% Ar with a total flow rate of 200 sccm, in which the precursors in situ reacted on the rapidly Joule-heated CNT film (step 3), resulting in a Mo₂C/MoC/CNT composite film as an HER electrode (Fig. 1b). It took approximately ~256 ms to heat up from room temperature to ~1770 K and ~330 ms to cool down from ~1770 K to ~600 K (Fig. 1c and Supplementary Fig. 1a). The CNT films emit visible light after the application of a voltage of ~0.5 V/mm and show a uniform distribution of temperature (Fig. 1d and inset). The as-prepared Mo₂C/MoC/CNT film remains flexible, akin to the pure CNT, MoO/CNT, and Mo₂C/CNT films before and after the rapid treatment at ~1770 K (Supplementary Fig. 2). We simulated the in-plane temperature distribution of the CNT film at ~1770 K and the central temperature under the same power density with different CNT film sizes (by fixing the aspect ratio at 15:8) using the COMSOL Multi-Physics software.

The constant temperature zone increases with the size of the CNT film and is adjustable to the application requirements (Fig. 1e and Supplementary Fig. 1b, d), although the temperature rapidly changes within ~1 mm at the boundary in contact with the graphite clips. This method is also suitable for large-scale fabrication (inset of Fig. 1e).

Structural characterizations. Raman spectroscopy and X-ray diffraction (XRD) spectroscopy were performed to analyse the chemical composition of the Mo₂C/MoC/CNT film. The Mo₂C/MoC/CNT film exhibits four apparent Raman peaks, of which two peaks at 822 and 995 cm⁻¹ belong to β-Mo₂C, and two peaks at ~1350 and ~1580 cm⁻¹ belong to CNT (Fig. 2a). As shown in Fig. 2b and Supplementary Fig. 3a, the strong XRD peaks originate from β-Mo₂C, α-Mo₂C, and CNT. The fitted weight percentages of α-Mo₂C and β-Mo₂C are 59.8% and 40.2%, respectively, corresponding to an α-Mo₂C-to-β-Mo₂C molar ratio of about 2.8:1. Besides these peaks, there is a weak XRD peak at about 2θ = 11.5° (Supplementary Fig. 3b), corresponding to a reduced c lattice parameter of a transition phase from 2D Mo₂C (MXene) to β-Mo₂C. This may result from the defunctionalization of the surface terminations, the removal of intercalated water, and the reestablishment of long-range order in 2D Mo₂C. These results indicate that β-Mo₂C and α-Mo₂C are major phases in the composite and the transition phase from 2D Mo₂C to β-Mo₂C is minor. Furthermore, we qualitatively studied the trend of component changes through the peak intensity in the XRD patterns. The ratio of ammonium molybdate to glucose in the precursor solution adjusts the final loading content of Mo₂C and MoC as well as the ratio of MoC to Mo₂C. As shown in Fig. 2c and Supplementary Fig. 4, the heating time at 135 W also regulates MoC:Mo₂C. The XRD peak intensity ratio of MoC (111) to Mo₂C (002) decreases with increased heating time, which indicates an increased content of MoC or a decreased content of MoC and verifies the conversion of MoC to Mo₂C at high temperatures.

When the heating time is long enough, the Mo₂C phase completely replaces the hybrid Mo₂C/MoC, suggesting that a short reaction time is crucial for synthesizing the Mo₂C/MoC heterostructure (Supplementary Fig. 5 and Supplementary Fig. 6).
X-ray photoelectron spectroscopy (XPS) was performed to analyse the electronic states. As shown in Supplementary Fig. 7a, clear Mo and C peaks appeared in the full spectra. The peaks of Mo 3d are divided into three groups, including two peaks of Mo$_{2}^{2+}$ at 228.5 and 231.7 eV, two peaks of Mo$_{3}^{3+}$ at 228.9 and 232.1 eV, and two peaks of Mo$_{4}^{4+}$ at 229.9 and 233.1 eV, respectively (Fig. 2d)33–35. It is still debating for the exact valence states of Mo in Mo$_{2}$C or MoC. Most studies suggest the dominance of Mo$_{2}^{2+}$ in Mo$_{2}$C and Mo$_{3}^{3+}$ in MoC, and higher valence states of Mo$_{4}^{4+}$, Mo$_{5}^{5+}$, and Mo$_{6}^{6+}$ result from partial oxidation36,37. Under this assumption, compared with the Mo$_{2}^{2+}$ peak in Mo$_{2}$C and the Mo$_{3}^{3+}$ peak in MoC, in the Mo$_{2}$C/MoC/CNT film, the Mo$_{2}^{2+}$ peak apparently blueshifts (~0.6 eV) while the Mo$_{3}^{3+}$ peak redshifts (~0.5 eV), suggesting the existence of electron transfer from Mo$_{2}$C to MoC in the heterogeneous composite. Note that the strong Mo$_{4}^{4+}$, Mo$_{5}^{5+}$, and Mo$_{6}^{6+}$ peaks in the MoC sample should result from the surface MoO$_{x}$ because MoC is very prone to oxidation. Furthermore, we investigated the charge distribution in Mo$_{2}$C and MoC by DFT calculations. As shown in Supplementary Fig. 8, each Mo atom loses about 0.80 and 0.50 electron, respectively, in the body of the MoC (111) and Mo$_{2}$C (100) regions, while at the Mo$_{2}$C/MoC interface, each Mo atom loses about 0.75 and 0.70 electron because of the electron transfer from Mo$_{2}$C to MoC regions. This result clearly proves that the charge transfer exists solely at the Mo$_{2}$C/MoC interface. In addition, evident peaks in the C 1s spectra of C–C, C–O, O=C–O, and Mo–C are derived from CNT and MoOx (Fig. 2e)38. However, the peaks of N 1s are not observed in the XPS spectra though urea is a precursor. This may be because N cannot replace C as a doping atom at a high temperature of ~1770 K (Supplementary Fig. 7b) during rapid heating. We also verified the absence of N using a material element analyser, as shown in Supplementary Table. 1. Thermogravimetric (TG) analysis was performed in air at 30–700 °C to estimate the content of each component in the Mo$_{2}$C/MoC/CNT film (Fig. 2f). A significant increase in weight from ~250 to ~450 °C is mainly due to the oxidation of MoC and Mo$_{2}$C to MoO$_{x}$, followed by a weight loss caused by the oxidation of CNTs to CO$_{2}$. Combining XRD and TGA data, the wt% of Mo$_{2}$C, MoC, and CNTs in the Mo$_{2}$C/MoC/CNT film is estimated to be ~15.4%, 22.8%, and 61.8%, respectively.

The surface morphology of the Mo$_{2}$C/MoC/CNT film was observed using scanning electron microscopy (SEM). To improve the electrode stability, the CNT film was drilled by a laser to construct periodic micropores as the channels for H$_{2}$ release (Supplementary Fig. 9)10. As shown in Fig. 3a, b the
Catalyst particles are uniformly dispersed on the surface of the CNT film without visible agglomeration. Mo$_2$C/MoC particles, functioning as solder joints, bind several CNTs together to form a bundle, which tightly connect adjacent CNTs and prevent CNTs from sliding, greatly enhancing the binding force between adjacent CNTs and strengthening the CNT matrix. The small size (~20 nm) and distribution states of Mo$_2$C/MoC particles facilitate the effective strengthening (Fig. 3c). We also changed the heating ramp time for both heating steps from room temperature to ~1100 K (30 W) and from ~1100 to ~1770 K (135 W). As the heating ramp rate decreases, the Mo$_2$C/MoC particles gradually agglomerate and increase in size because they are more likely to diffuse and aggregate during the heating process, especially at high temperatures (Supplementary Fig. 10).

Distinct interfaces and two Mo-C phases in the particles were observed by high-resolution transmission electron microscopy (HRTEM, Fig. 3d). The (100) crystal plane of Mo$_2$C forms an interface with the (111) crystal plane of MoC, whose interplanar distances of ~0.260 and ~0.246 nm are relatively similar. To further detect the phase structure and interface, high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) was performed, displaying Mo atoms because of a large Z value. Composite phases of Mo$_2$C/MoC are formed in most catalytic particles and one typical particle is shown in Fig. 3e, where Mo$_2$C, MoC, and an interfacial transition zone simultaneously exist. The inset (top right) of Fig. 3e and Supplementary Fig. 11 show the crystal structure of MoC, where the angles of (111) and (220) is 90°, which is consistent with the measurement results in HAADF-STEM images and Fourier transform (FT) patterns. The inset (bottom right) of Fig. 3e and Supplementary Fig. 11b show the crystal structure of Mo$_2$C, where the angles of (100) and (002) are 90° from the measurements, which is consistent with the theoretical prediction. Figure 3f shows the results of selected electron area diffraction (SAED), in which the diffraction spots/circles of Mo$_2$C (101), MoC (111), and CNT (002) suggest the composition of Mo$_2$C, MoC, and CNT. Energy-dispersive spectroscopy (EDS) mapping images show the distribution of Mo, C, and N in Fig. 3g and Supplementary Fig. 12. Mo atoms are concentrated on the catalyst particles, and C atoms are concentrated on catalyst particles and CNTs. However, no clear signal of N atoms was detected, which is consistent with the XPS spectra.
Electrochemical performance at high current densities. The electrochemical performance of the catalysts was measured in 1 M KOH (pH = 14) in a three-electrode configuration. Different Mo$_2$C/MoC/CNT samples were prepared by changing the type of carbon sources, e.g., glucose, sodium phenolate, and phenylalanine, the content of the precursor, the weight percent of CNT, and the heating time (Supplementary Figs. 13–18). Glucose is a suitable carbon source owing to its high activity, easily breaking C-C bonds and forming Mo-C bonds within a short time (Supplementary Fig. 18). A suitable proportion of MoC and Mo$_2$C offers richer interfaces and provides more HER active sites. The optimal ratio of Mo to C source and glucose to urea is 4:3 and 20:3, respectively. Besides the ratios of Mo to C source and glucose to urea, the CNT wt% also plays a great role in the performance of the Mo$_2$C/MoC/CNT films. When the content of CNT is high, the content of Mo or Mo$_2$C is very few, and thereby the total Mo$_2$C/MoC interfacial area becomes very limited. And for the samples with a low content of CNT, Mo$_2$C/MoC will agglomerate during the self-heating process, also reducing the total Mo$_2$C/MoC interfacial area (Supplementary Fig. 18). This result suggests that an appropriate CNT wt% is needed to increase the Mo$_2$C/MoC interfacial area for a better HER.

As shown in Fig. 4a, the as-prepared Mo$_2$C/MoC/CNT film requires the overpotentials of only 82, 201, 233, and 255 mV to achieve HER current densities of 10, 500, 1000, and 1500 mA cm$^{-2}$, respectively. Compared to precious metal electrodes, Mo$_2$C/MoC/CNT films perform better at current densities over ~450 mA cm$^{-2}$ than Pt/C, which is considered as a benchmark for HER catalysts. The overpotential of the Mo$_2$C/MoC/CNT film is notably smaller than that of the Mo$_2$C/CNT, MoC/CNT, and CNT films throughout the entire HER process, for which the overpotentials are ~318, >350, and >500 mV at 1000 mA cm$^{-2}$, respectively. Compared to the Mo$_2$C/CNT film, the MoC/CNT film, and especially the physically mixed Mo$_2$C/MoC/CNT film (m-Mo$_2$C/MoC/CNT film, Supplementary Fig. 19), the superiority of the Mo$_2$C/MoC/CNT film made by self-heating suggests the importance of the Mo$_2$C/MoC interface, where Mo is more conducive to the adsorption and desorption of H* via interfacial charge transfer.33 Otherwise, either strong adsorption or strong desorption of H* weaken the activity of HER, leading to the lower electrochemical activity of the Mo$_2$C/CNT and MoC/CNT films, respectively. To investigate the kinetics, Tafel slopes were calculated from the polarization curves (Supplementary Fig. 20). The Tafel slope of the Mo$_2$C/MoC/CNT film is 42 mV dec$^{-1}$, which is smaller than that of the Mo$_2$C/CNT film (50 mV dec$^{-1}$), MoC/CNT film
(58 mV dec⁻¹), and is close to that of Pt/C (31 mV dec⁻¹), indicating that HER is based on the Volmer-Heyrovsky mechanism. As the kinetic activity is affected by the electrochemical surface area (ECSA) and charge transfer resistance, we measured the electrochemical double-layer capacitances (C_{dl}) of various electrodes, which were proportional to the ECSAs, and charge transfer resistances. As shown in Supplementary Figs. 21 and 22, the Mo₂C/MoC/CNT film exhibits a high C_{dl} of 119.9 mF cm⁻² and a small charge transfer resistance of ~3.2 Ω, suggesting an evident advantage compared to the Mo₂C/CNT (83.5 mF cm⁻² and ~4.5 Ω) and MoC/CNT (66.0 mF cm⁻² and ~6.9 Ω) films. The polarization curves of the three kinds of films normalized to the ECSA and the mass of active materials are shown in Supplementary Fig. 23 (C_{e} is set to be 40 μF cm⁻²), which demonstrate that the activity of Mo₂C/MoC/CNT film does increase intrinsically compared with those of Mo₂C/CNT and MoC/CNT film. For C_{ab}, the measurement error includes systematic errors (0.01% for voltage application and 0.2% for current detection) and random error (~5%), which is negligible. For C_{e}, as the actual value cannot be determined precisely in this work, C_{e} for a flat surface is generally found to be in a range of 20–60 μF cm⁻², and the value of 40 μF cm⁻² is used in this work to calculate the ECSA. The actual value of C_{e} could be very different from the used value and thus an error may be introduced in the absolute value of ECSA. However, the relative values of the ECSA for the materials reported in this work are not affected by the absolute errors because the Mo₂C/MoC/CNT film, Mo₂C/CNT film, and MoC/CNT film are prepared on the same supporting material, the CNT films. The C_{e} values for these materials should be nearly identical in principle, and thus the calculated ECSAs can be compared relatively. Moreover, we also evaluated the turnover frequency (TOF) of each catalyst film (Supplementary Fig. 24). At an overpotential of 250 mV, the TOF of Mo₂C/MoC/CNT film, Mo₂C/CNT film, and MoC/CNT film is 0.65, 0.30, and 0.22 s⁻¹, respectively, which validates that Mo₂C/MoC/CNT catalyst has higher intrinsic activity besides the larger ECSA. The increase of the intrinsic activity should be attributed to the increase in the number of Mo₂C/MoC interfaces.

Besides the excellent HER activity of the Mo₂C/MoC/CNT film at high current densities, our self-heating method has notable advantages in the rapid synthesis process and high productivity, which takes a comparable pre-/post-synthesis processing time and a much shorter synthesis time than traditional methods.
The η_{1000} of the Mo$_2$C/MoC/CNT film is close to Mo$_5$S$_7$/MoS$_2$, MoS$_2$/Ni$_3$S$_2$, and is much lower than Ni$_3$P/FeNi19,22, Ni$_3$Mo$_2$P-NF30, a-MoB$_2$40, NiCo LDH/NF31, Ni$_3$P-Fe-P31, 2H-Nb$_2$S$_3$-Mo42, HC-MoS$_2$/Mo$_2$C33, Sn-Ni$_3$S$_2$, LiCoBPO/NF33, and IrFe/NC43. The total growth time of one-cycle self-heating synthesis is only 45 s, which means that 1920 synthesis cycles can be theoretically completed within a day, more efficient than traditional furnace heating or solvothermal methods that require several hours for one cycle. Therefore, our self-heating synthesis not only delivers Mo$_2$C/MoC/CNT films that have excellent HER activity and tolerate high current densities but also achieves high productivity beyond traditional methods.

To study the formation of chemical bonds between the CNTs and Mo$_2$C and MoC, we used only CNTs as the carbon source to conduct an experiment under the same reaction conditions without glucose and urea. The XRD patterns show the successful synthesis of Mo$_2$C (Fig. 4c), indicating that CNTs are involved in chemical reactions and Mo-C bonds are formed. Thus, the interaction between CNTs and Mo$_2$C is strengthened because of the Mo-C bonds, which significantly improve the electron transfer and stability. As a result, the polarization curve of the Mo$_2$C/MoC/CNT film after 10,000 CV cycles remains unchanged compared with the original polarization curve, with a deviation of only 10 mV from 0 to 1500 mA cm$^{-2}$ (Fig. 4d), which suggests that the Mo$_2$C/MoC/CNT film is highly stable under CV cycle conditions. As shown in Supplementary Table. 3, the cycle voltage stability of the Mo$_2$C/MoC/CNT film is higher than all of the previous catalysts. We also performed 14-day chronopotentiometry (CP, at fixed current) at large current densities of 500 and 1000 mA cm$^{-2}$ to further verify the stability (Fig. 4e, left). The Mo$_2$C/MoC/CNT film synthesized by self-heating shows an increase of overpotential by only ~32 and ~47 mV after 14 days (336 h) at 500 and 1000 mA cm$^{-2}$, respectively. In contrast, the overpotential of Mo$_2$C/MoC/CNT film synthesized by tube furnace heating (denoted as f-Mo$_2$C/MoC/CNT film, Supplementary Fig. 25) increases by ~344 mV after working at 1000 mA cm$^{-2}$ for 14 days, which is much inferior to that of the Mo$_2$C/MoC/CNT film by self-heating. The long-term stability of the Mo$_2$C/MoC/CNT film at 3000 mA cm$^{-2}$ is also much better than that of the f-Mo$_2$C/MoC/CNT film (Supplementary Fig. 26).

It is found that the HER performance of the Mo$_2$C/MoC/CNT catalyst was improved at the initial several hours (Supplementary Fig. 27), which may result from the fact that the surface of the as-prepared samples was reconstructed owing to the adsorption of oxygen-containing groups during the HER24,45. After a long-term test at a high current density, the content of Pt in the electrolyte is below the detection limit of inductively coupled plasma (ICP) mass spectrometry (Supplementary Table. 4), which excludes the influence of Pt dissolution from counter electrodes during the electrochemical measurements. A similar long-term test at the high current density using a graphite counter electrode also exhibits high stability until the graphite electrode is dissolved (Supplementary Fig. 28). We also used a graphite rod as the counter electrode to measure the CV curves of Mo$_2$C/MoC/CNT films for 50 cycles, and then changed to use a Pt counter electrode for the other 50-cycles CV measurement. The CV curves obtained by graphite and Pt counter electrodes are almost identical (Supplementary Fig. 29). To further investigate the higher stability of the Mo$_2$C/MoC/CNT catalyst than the f-Mo$_2$C/MoC/CNT catalyst, we used an ultrasonic machine to treat the catalysts. As shown in Fig. 4e (right), the mass loss of the Mo$_2$C/MoC/CNT film (3.2 ± 2.9%) after the ultrasonic treatment is lower than that of the f-Mo$_2$C/MoC/CNT film (8.7 ± 1.1%), suggesting a stronger binding between Mo$_2$C/MoC and CNTs in the Mo$_2$C/MoC/CNT film. On the microscopic level, unlike bulk Mo$_2$C/MoC with poor crystallinity covering CNTs in the f-Mo$_2$C/MoC/CNT film, the well-crystalline Mo$_2$C/MoC nanoparticles disperse in the Mo$_2$C/MoC/CNT film (Supplementary Figs. 30 and 31), leading to huge effective contact areas and sufficient binding strength at the interfaces due to chemical Mo-C bonding. Such strengthened interfaces are sufficient to prevent the Mo$_2$C/MoC from being peeled off by large quantities of H$_2$ bubbles when working at high current densities. After working for ~6 days at 1000 mA cm$^{-2}$, the Mo$_2$C/MoC/CNT film changes slightly in the microscopic morphology of Mo$_2$C/MoC particles, while the f-Mo$_2$C/MoC/CNT film only has a few agglomerated Mo$_2$C/MoC remained surrounding the CNTs (Supplementary Fig. 32). The XRD spectrum of the Mo$_2$C/MoC/CNT film after working at 1000 mA cm$^{-2}$ for ~6 days still shows clear MoC and Mo$_2$C peaks as well as unnoticeable MoO$_2$ or MoO$_3$ peaks, although the ratio of the peak intensity of MoC to Mo$_2$C changes (Supplementary Fig. 33) owing to the different etching and shedding rates of the two phases. Although the material is corroded, the remained excellent HER performance indicates that the Mo$_2$C/MoC interface, rather than single Mo$_2$C or MoC, is crucial in HER. In contrast, XRD peaks belonging to MoO$_2$ and MoO$_3$ appear in the f-Mo$_2$C/MoC/CNT film after the test in the same period. This indicates that the f-Mo$_2$C/MoC/CNT film is more prone to oxidation because of its poorer crystallinity, because in the furnace-heating, it is difficult to obtain high crystallinity of the f-Mo$_2$C/MoC/CNT film and simultaneously maintain the Mo$_2$C/MoC composite phase due to the much longer heating process at a lower temperature.

As shown in Fig. 4f1, the η_{1000}, η_{1000}, and η_{1200} of the Mo$_2$C/MoC/CNT film are lower than those of the f-Mo$_2$C/MoC/CNT film by 14, 28, and 43 mV, respectively. Throughout HER, the Tafel slope of the Mo$_2$C/MoC/CNT film increases slightly and is below 120 mV dec$^{-1}$, indicating a rapid kinetic process even at a high current density. In contrast, the Tafel slope of the f-Mo$_2$C/MoC/CNT film increases visibly and exceeds that of the Mo$_2$C/MoC/CNT film, suggesting a higher reaction resistance (Fig. 4f1). Owing to the good dispersion of the catalyst particles and their tight combination with the CNT matrix, the self-heating samples exhibit a larger C_{stal} and smaller charge transfer resistance than that of the furnace-heating ones (94.3 mF cm$^{-2}$ and ~10.4 Q). Therefore, the self-heating samples are preferable for HER (Supplementary Figs. 34 and 35). Direct mechanical tensile experiments visually illustrate that the Mo$_2$C/MoC/CNT film has much higher Young’s modulus (E = 231.60 MPa), breaking strength ($\sigma_b = 6.87$ MPa), and toughness (26.16 N m$^{-3}$) than pure CNT film and f-Mo$_2$C/MoC/CNT film. After the self-heating, the breaking strain of the pure CNT film is notably reduced while the breaking strength only slightly increases to ~0.32 MPa (Supplementary Fig. 36). In contrast, the Mo$_2$C/MoC/CNT film synthesized by the self-heating process has a much higher breaking strength. These results suggest that the enhancement of the mechanical strength of the Mo$_2$C/MoC/CNT film should be mostly attributed to the strong interaction between Mo$_2$C/MoC and CNTs, which improves the load transfer efficiency inside the film.

We have enumerated the long-term stability of the Mo$_2$C/MoC/CNT film and other HER catalysts. For a quantitative comparison, we introduce a parameter, C_{stal}, to evaluate the stability, which represents the discharge of HER per unit area resulting from per millivolt of overpotential change and can be described by a function,

$$C_{\text{stal}} = j \Delta V^{-1} \quad (1)$$

where j is current density, t is the whole working time, and ΔV is the variation of overpotential. A larger C_{stal} indicates that
more \(\text{H}_2 \) bubbles are produced per unit area when the same degradation occurs in overpotential, and thus the corresponding catalyst has better stability. As shown in Fig. 4g and Supplementary Table. 5, the \(C_{\text{cat}} \) of the Mo\(_2\)C/MoC/CNT film is as large as \(2.57 \times 10^{-7} \) cm\(^2\) V\(^{-1}\), which is times or even orders of magnitude higher than the values of other high-performance HER catalysts including 1T-MoS\(_2\), MoNi\(_4\)/MoO\(_2\), Ni\(_2\)P-Fe\(_2\)P, Co-NiS\(_2\), CoP/NiCoP/NC, S-MoS\(_2@C\), single atom NiI, etc. that were measured in alkali, as well as IrFe/NC and Ni\(_2\)P-Fe\(_2\)P, Co-NiS\(_2\), CoP/NiCoP/NC, S-MoS\(_2@C\), single atom NiI, etc. that were measured in acid\(^4,8,10,41,44,46,58\).

Mechanism of high catalytic activity and stability. DFT calculations were performed to further investigate the mechanisms of activity and stability. In general, \(\Delta G_{\text{H}^+} \) is considered as an important descriptor for analysing the HER activity. If hydrogen binds to the surface weakly, the adsorption step limits the catalytic activity, whereas, if the binding is too strong, the desorption step limits the activity. The \(\Delta G_{\text{H}^+} \) should be close to zero for an optimal catalyst\(^1\). In the calculations, oxygen-terminated Mo\(_2\)C (111) surface, Mo\(_2\)C (100) surface, and Mo\(_2\)C/MoC heterostructure were considered for HER, because the existence of high-valence Mo states (Mo\(^{4+}\), Mo\(^{5+}\), or Mo\(^{6+}\)) in the XPS spectra (Fig. 2d) suggests partial surface oxidation of Mo\(_2\)C, MoC, or Mo\(_2\)C/MoC. In addition, the calculated Pourbaix diagram also shows that, under the real reaction condition, the surface of Mo\(_2\)C is terminated by oxygen, which plays a key role in the catalytic performance of HER in alkaline media\(^2\). As shown in Fig. 5a, b, the values of \(\Delta G_{\text{H}^+} \) for the Mo\(_2\)C (100), MoC (111), and Mo\(_2\)C (100)/MoC (111) heterostructures were calculated, where \(\beta \)-Mo\(_2\)C and \(\alpha \)-MoC phases were used for modelling as these two phases are the main phases as identified by XRD patterns. The values of \(\Delta G_{\text{H}^+} \) for \(\text{H} \) and \(\text{T} \) sites on Mo\(_2\)C (100) surface are 0.25 and 0.70 eV, respectively, which shows weak hydrogen adsorption. For the MoC (111) surface, a \(\Delta G_{\text{H}^+} \) of \(-0.56\) eV indicates strong hydrogen adsorption, which is not favourable for HER. For the Mo\(_2\)C/MoC heterostructure, the values of \(\Delta G_{\text{H}^+} \) for B1, B2, T1, and T2 sites on the Mo\(_2\)C/MoC heterostructure are \(-0.14\), \(-0.16\), 0.02, and 0.08 eV, which is much closer to the ideal \(\Delta G_{\text{H}^+} \) of 0 eV, offering more favourable hydrogen adsorption kinetics toward HER than that of Mo\(_2\)C (100) and MoC (111). To reveal why the Mo\(_2\)C/MoC interfaces are more active, we performed further DFT calculations to investigate the electronic structures of Mo\(_2\)C (111), Mo\(_2\)C (100), and Mo\(_2\)C/MoC interface. The projected density of states (PDOS) of \(p_z \) orbital of O atoms adsorbed on Mo\(_2\)C (111), Mo\(_2\)C (100), and Mo\(_2\)C/MoC interface before and after H adsorption are shown in Supplementary Fig. 37. The \(p_z \)-band energy center \((\varepsilon_{p_z}) \) of the O atoms is investigated to describe the bonding strength of \(\text{H}^+ \) on the catalyst surface. The \(\varepsilon_{p_z} \) of O atoms on the MoC (111), MoC (100), and Mo\(_2\)C/MoC interface are \(-2.49\), \(-3.86\), and \(-3.09\) eV, respectively, which shows that the binding of \(\text{H}^+ \) on the oxidized Mo\(_2\)C (111) surface is the strongest, while for the oxidized Mo\(_2\)C (100) it is the weakest. The binding of \(\text{H}^+ \) at the Mo\(_2\)C/MoC interface is moderate, which results in excellent thermodynamic activity in HER. These results exhibit a similar trend with the HER activity in the experiment and thus verify that the Mo atoms at the interface are more HER active than Mo\(^{3+}\) in Mo\(_2\)C or Mo\(^{2+}\) in MoC. It is worth noting that the Mo\(_2\)C/MoC/CNT film synthesized by the self-heating method has numerous defects, dislocations, and twin boundaries, as shown in the HAADF-STEM image (Supplementary Fig. 38).
DFT calculations show that the absolute values of ΔG_{111}^* for Mo$_2$C (100) surface with carbon vacancy is almost unchanged compared to those of Mo$_2$C (100) surface without carbon defects, showing the poor HER activity. However, the absolute value of ΔG_{111}^* for MoC (111) surface with carbon vacancy decreases and is closer to 0 eV than that of MoC (111) surface without carbon defects, showing that the carbon vacancy defects in the MoC (111) surface can improve HER activity. Although carbon vacancy may promote HER activity, the ΔG_{111}^* for Mo$_2$C/MoC interface is as low as 0.02 eV, which is closer to 0 eV than those of Mo$_2$C (~0.35 or 0.65 eV for (100)) and MoC (~0.04 eV for (111)) surfaces with the carbon vacancy (Supplementary Table 6 and Fig. 39). In experiments, the HER performance of the Mo$_2$C/MoC composite is much better than the single Mo$_2$C or MoC phase. Therefore, in the Mo$_2$C/MoC/CNT film, we believe that the Mo$_2$C/MoC interface is the main contribution to the HER activity, and the defects may only additionally promote the HER. The suitable ΔG_{111}^* of Mo$_2$C/MoC and its unique structure indicate that the interface interaction between Mo$_2$C and MoC as well as the synthesis by self-heating is favourable for the effective adsorption and activation of the reactant, enhancing the HER performance.

To theoretically study the stability, we establish the heterostructures of Mo$_2$C (001) or MoC (111) slabs with graphene, instead of CNTs, as a simplified model, as graphene has similar properties to CNTs. The binding energy and charge density differences were calculated, as shown in Fig. 5c. The charges transfer from the Mo$_2$C slab to graphene and the binding energies for graphene/Mo$_2$C and graphene/MoC are -62.11 and -52.26 meV/Å2, respectively, which is approximately three times larger than that of bilayer graphene (~-23.01 meV/Å2). These results indicate strong coupling between the Mo$_2$C slab and graphene. Moreover, the shortest distance between Mo$_2$C (MoC) and graphene is 2.28 (2.25) Å, which is close to the Mo–C bond length of Mo$_2$C (2.11 Å) (2.17 Å for MoC), indicating that they are bonded to each other.

Moreover, self-heating synthesis is a universal synthesis method for single-phase and composite carbides. As shown in Supplementary Fig. 40, we successfully synthesized well-dispersed single-phase NbC$_3$ and W$_2$C/WC composite nano-carbides by self-heating within several seconds and regulated the production by adjusting parameters, such as metal/non-metal sources, self-heating time, and output power with high productivity.

Methods

Syntheses. CNT film was made from super-aligned CNTs (SACNTs), which were synthesized by our previous work through low-pressure chemical vapour deposition. 20 mg SACNTs were dispersed into 250 ml ethanol by high-power probe ultrasonication for 5 min at 600 W. The suspension solution was immediately transferred to the suction filter to form a CNT film. After sufficiently dried in the air, the CNT film was cut into rectangular shapes and drilled with many microscale holes by a direct laser writing machine (1064 nm in wavelength). The drilled holes have a diameter of ~40 mm and a pitch of 800 μm. This kind of holey CNT film effectively releases H$_2$ bubbles during HER, as revealed in our previous work.

To synthesize Mo$_2$C/MoC/CNT film, ammonium molybdate ((NH$_4$)$_2$MoO$_4$·4H$_2$O) and glucose (C$_6$H$_{12}$O$_6$) with varied atomic ratios of Mo:C (1:1, 4:3, 2:1, and 4:1) were dissolved in a mixed solution of deionized water and ethanol. Urea (CH$_4$N$_2$O) was then dissolved into the mixed solution based on an optimal atomic ratio of Mo:C (4:3 in the experiment) and varied molar ratios of glucose to urea (0, 10:1, 20:3, 5:1, 5:2). To promote the dissolution of (NH$_4$)$_2$MoO$_4$·4H$_2$O and prevent the solution from precipitation, we added ammonia water to adjust the pH value of the solution to about 11.5. The precursor was loaded on a CNT film through three times of dip coating and then dried at 60 °C for 10 min in air. The CNT film loaded with precursor was then clamped at both ends by graphite clips and put into a quartz tube. The graphite clips were connected to a stabilized power supply through copper foil. The self-heating process of the CNT film took place in a reductive, mixed atmosphere of 10% H$_2$ and 90% Ar with a certain voltage applied to both ends of the CNT film by a stabilized power supply outputting 30 W or 135 W. The heating time was 30 s at 30 W and ranged from 10 to 120 s at 135 W. The power supply kept an output of 30 W for 30 s at first for carbonization of glucose/urea and decomposition of ammonium molybdate, which prevented H$_2$O molecules generated by the decomposition of glucose and ammonium molybdate from etching and disintegrating CNTs at high temperatures. Then the output was increased to 135 W and maintained for a short period (10–120 s) to form Mo–C bonds. As-synthesized Mo$_2$C/MoC/CNT film is washed with deionized water and ethanol orderly several times and dried before the following electrochemical tests. Besides the self-heating approach to Mo$_2$C/MoC/CNT film, we also synthesize F-Mo$_2$C/MoC/CNT films by furnace, with the same pretreatment process but a tube-furnace growth as shown in Supplementary Fig. 25. The loading of the Mo$_2$C/MoC on the Mo$_2$C/MoC/CNT film is ~ 1.8 mg cm$^{-2}$, which indicates ~ 38 wt % of active material. The thickness is ~ 0.05 mm and the size is 15 mm \times 8 mm.

To synthesize Mo$_2$C/CNT film, the same pretreatment process was carried out as did in the synthesis of Mo$_2$C/MoC/CNT film, except that the self-heating growth process was set at 30 W for 20 min. To synthesize Mo$_2$C/CNT film, the self-heating growth process was set at 30 W for 45 s. The loading of the active materials, i.e., Mo$_2$C on the Mo$_2$C/CNT film, and MoC on the Mo$_2$C/CNT film, are ~ 2.0 and 1.7 mg cm$^{-2}$, respectively.

Characterizations. Morphology of samples was observed by scanning electron microscope (SEM, ZEISS, Merlin Compact), transmission electron microscopy (TEM, JEOL, JEM 2100F, 200 kV), and spherical aberration transmission electron microscopy (sc-TEM, JEOL JEM ARM 200 F, 200 kV). Surface states of the samples were analysed by X-ray diffraction (XRD, D/MAX-2500/PC, Rigaku) with Cu Ka radiation ($\lambda = 0.15406$ nm) operated at 40 kV and 150 mA. Raman
were converted to RHE. The polarization curves were measured at 5 mV s⁻¹ served as the reference electrode and Pt as a counter electrode. All the potentials according to our calculated results, the values of ΔGH *= ΔE* + ΔEₚ = TΔS, where ΔE* and ΔEₚ are the adsorption energy, zero-point energy change and entropy change of hydrogen adsorption, respectively. T is the temperature (T = 298.15 K). Moreover, according to our calculated results, the values of ΔEₚ with the implicit solvent environment show the same conclusion as the implicit solvent environment as implemented in VASP05.

Density functional theory calculations. All calculations based on density functional theory (DFT) were performed using the Vienna ab initio simulation package (VASP)94. The projector augmented wave (PAW) potentials62 and generalized gradient approximation (GGA) of the Perdew-Burke-Ernzerhof (PBE) functional63 were used for the electron-ion interaction and exchange-correlation energy, respectively. A 3 × 2 × 1 MoCₓ (100) slab consisting of six layers of Mo and three layers of C was constructed to investigate the HER catalytic performance. Moreover, a 3 × 3 × 1 MoCₓ (001) slab consisting of three layers MoCₓ and a 2 × 2 × 1 MoC (111) slab were taken into account to establish the heterostructures with a 5 × 5 × 1 graphene supercell. During structural relaxation, the bottom two layers of Mo and C for the MoC (100) and MoC (111) and the bottom MoₓC layer for MoC (001) slab were fixed. The cutoff energy of the plane wave basis was set to 400 eV. The convergence criteria for the total energy and force were set to 10⁻⁵ eV and 0.01 eV Å⁻¹, respectively. The vacuum layer of at least 15 Å in the z direction was selected to eliminate the interactions between the periodic images. A dipole correction along the z direction of the slab was used in all calculations. The DFT-D3 method84 was used to describe the Van der Waals interaction. The Gibbs free energy of adsorption hydrogen (ΔGH) is calculated using ΔGH = ΔE* + ΔEP − TΔS, where ΔE* and ΔEP are the adsorption energy, zero-point energy change and entropy change of hydrogen adsorption, respectively. T is the temperature (T = 298.15 K). Moreover, according to our calculated results, the values of ΔEP without the implicit solvent environment show the same conclusion as the implicit solvent environment as implemented in VASP95.

Data availability
The data supporting this study are available within the paper and the Supplementary Information. All other relevant source data are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

Received: 13 August 2021; Accepted: 31 May 2022; Published online: 09 June 2022

References
1. Seh, Z. W. et al. Combining theory and experiment in electrocatalytic Insights into materials design. Science 355, eaad4998 (2017).
2. Luo, Y. et al. Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density. Nat. Commun. 10, 269 (2019).
3. Yang, H., Chen, Z., Guo, P., Fei, B. & Wu, R. B-doping-induced amorphization of LDH for large-current-density hydrogen evolution reaction. Appl Catal. B. 261, 118240 (2020).
4. Zhao, Y. et al. Non-metal Single-Iodine-Atom Electrocatalsys for the Hydrogen Evolution Reaction. Angew. Chem. Int. Ed. 58, 12252–12257 (2019).
5. Jian, J. et al. Sn-Ni3S2 Ultrathin Nanosheets as Efficient Bifunctional Water-Splitting Catalysts with a Large Current Density and Low Overpotential. ACS Appl Mater. Interfaces. 10, 40568–40576 (2018).
6. Staffell, I. et al. The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 12, 463–491 (2019).
7. Zhu, W. et al. NiCoNiO−OH and NiFeNiFe−OH core shell nanocatalysts for water splitting electrocatalysis at large currents. Appl Catal. B. 278, 119326 (2020).
8. Jia, Z. et al. A Novel Multinary Intermetallic as an Active Electrocatalyst for Hydrogen Evolution. Adv. Mater. 32, e200385 (2020).
9. Xue, S., Liu, Z., Ma, C., Cheng, H.-M. & Ren, W. A highly active and durable electrocatalyst for large current density hydrogen evolution reaction. Sci. Bull. 65, 123–130 (2020).
10. Li, C. et al. A lightly Fe-doped (Ni55/Mo45)/carbon nanotube hybrid electrocatalyst film with laser-drilled micropores for stabilized overall water splitting and pH-universal hydrogen evolution reaction. J. Mater. Chem. A, 8, 17327–17336 (2020).
11. Tang, T. et al. Electronic and Morphological Dual Modulation of Cobalt Carbonate Hydroxides by Mn Doping toward Highly Efficient and Stable Bifunctional Electrocatalsys for Overall Water Splitting. J. Am. Chem. Soc. 139, 8320–8328 (2017).
12. Yu, X. et al. “Superaerophobic” Nickel Phospide Nanorayarray Catalyst for Efficient Hydrogen Evolution at Ultralight Current Densities. J. Am. Chem. Soc. 141, 7537–7543 (2019).
13. Hu, C. et al. Synergism of Geometric Construction and Electronic Regulation: 3D Se-(Ni55/Mo45)/HO3 Nanosheets for Highly Efficient Overall Water Splitting. Adv. Mater. 30, e1705538 (2018).
14. Yu, Q. et al. A Ta-Ta5 catalyst with robust and metallic interface for superior hydrogen evolution. Nat. Commun. 12, 6051 (2021).
15. Liu, Y. et al. Self-optimizing, highly surface-active layered metal dichalcogenide catalysts for hydrogen evolution. Nat. Energy. 2, 17172 (2017).
16. Lu, Z. et al. Ultrahigh hydrogen evolution performance of under-water “superaerophobic” MoS2 nanostructured electrodes. Adv. Mater. 26, 2683–2687 (2014).
17. Jia, J. et al. Ultrathin N-Doped Mo5C nanosheets with exposed active sites as efficient electrocatalyst for hydrogen evolution reactions. ACS Nano. 11, 12509–12518 (2017).
18. Zhang, C. et al. High-throughput production of cheap mineral-based two-dimensional electrocatalsys for high-current-density hydrogen evolution. Chem. Commun. 11, 3724–3726 (2015).
19. Li, C. et al. Flexible and free-standing hetero-electrocatalyst of high-valence-cation doped Mo5C/MoS2/CNT foam with synergistically enhanced hydrogen evolution reaction catalytic activity. J. Mater. Chem. A, 8, 14944–14954 (2020).
20. Park, H. et al. Canonic-Like HER activity of CrₓMoₓBᵧ solid solution: overpowering PV/C at high current density. Adv. Mater. 32, e2008855 (2020).
21. Feng, M. et al. 3D printed mechanically robust graphene/CNT electrodes for highly efficient overall water splitting. Adv. Mater. 32, e1908201 (2020).
22. Yang, W. et al. Conversion of intercalated MoO3 to multi-heteroatoms-doped Mo5S with high hydrogen evolution activity. Adv. Mater. 32, e2001167 (2020).
23. Zhao, S. et al. Dual-template engineering of triple-layered nanoarray electrode of metal chalcogenides sandwiched with hydrogen-substituted graphdiyne. Nat. Commun. 9, 3132 (2018).
24. Zhang, J., Zhang, Q. & Feng, X. Support and interface effects in water-splitting electrocatalsys. Adv. Mater. 31, e1808167 (2019).
25. Xie, H. et al. High-temperature pulse method for nanoparticle redispersison. J. Am. Chem. Soc. 142, 17364–17371 (2020).
26. Wang, C. et al. A general method to synthesize and sinter bulk ceramics in seconds. Science 368, 521–526 (2020).
27. Yao, Y. et al. High temperature shockwave stabilized single atoms. Nat. Nanotechnol. 14, 851–857 (2019).
28. Huang, Y. et al. Mo2C nanoparticles dispersed on hierarchical carbon microflowers for efficient electrocatalytic hydrogen evolution. ACS Nano. 10, 11337–11343 (2016).
29. Kim, H., Anasori, B., Gogotsi, Y. & Alshareef, H. N. Thermoelectric properties of highly conductive, porous graphene/CoO multilayers. Nat. Commun. 10, 4056–40576 (2018).
30. Geng, D. et al. Direct Synthesis Of Large-area 2D Mo2C on in situ grown graphene. Adv. Mater. 29, 1700072 (2017).
31. Zhou, H. et al. Two-dimensional molybdenum carbide 2D-Mo2C as a superior catalyst for CO2 hydrogenation. Nat. Commun. 12, 5510 (2021).
32. Halim, J. et al. Synthesis and characterization of 2D molybdenum carbide (MXene). Adv. Funct. Mater. 26, 3118–3127 (2016).
33. Zhang, X. et al. Structure and phase regulation in Mo2C (α-Mo2C, χ-Mo2C) to enhance hydrogen evolution. Appl Catal. B 247, 78–85 (2019).
34. Ge, Y. et al. Maximizing the synergistic effect of CoNi catalysts for efficient hydrogen evolution. Nat. Commun. 12, 6776 (2021).
35. Yao, S. et al. Atomic-layered Au clusters on α-Mo2C as catalysts for the low-temperature water-gas shift reaction. Science 357, 389–393 (2017).
36. Murugappan, K. et al. Operando NAP-XPS unveils differences in MoO3 and Mo2C during hydrodeoxygenation. Nat. Catal. 1, 960–967 (2018).
37. Liu, W. et al. A durable and pH-universal self-standing MoOx-Mo2C heterojunction electrode for efficient hydrogen evolution reaction. Nat. Commun. 12, 6776 (2021).
38. Yu, B. et al. Mo2C nanodots anchored on N-doped porous MoO3 microspheres as electrode for efficient Li-Ion storage. Small Methods. 3, 1800287 (2019).
39. Yu, L. et al. Terminy Nix2(1-x)Mo2xP nanowire arrays toward efficient and stable hydrogen evolution electrocatalysis under large-current-density. Nano Energy. 53, 492–500 (2018).
40. Chen, Y. et al. Highly active, nonprecious electrocatalyst comprising borophene subunits for the hydrogen evolution reaction. J. Am. Chem. Soc. 139, 12370–12373 (2017).
41. Wu, L. et al. Heterogeneous bimetallic phosphide Ni2P–Fe3P as an efficient bifunctional catalyst for water/steam splitting. Adv. Funct. Mater. 31, 2006484 (2021).
42. Yang, J. et al. Ultrathin-current-density niobium disulfide nanosheets as a terahertz biosensor. Appl. Catal. B 258, 117965 (2021).
43. He, L. et al. Molybdenum carbide-oxide heterostructures: in situ surface reconfiguration toward efficient electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 59, 5344–5348 (2020).
44. Chen, W. et al. Achieving rich and active alkaline hydrogen evolution hetrostructures via interface engineering on 2D Ti-MoS2 quantum sheets. Adv. Funct. Mater. 30, 2000551 (2020).
45. Senthil Raja, D., Chuaa, X.-F. & Lui, S.-Y. In situ grown bimetallic MOF-based composite as highly efficient bifunctional electrocatalyst for overall water splitting with ultrastability at high current densities. Adv. Energy Mater. 8, 1801065 (2018).
46. Li, S. et al. Bifunctional CoNi/CoFe2O4/Ni foam electrodes for efficient overall water splitting at a high current density. J. Mater. Chem. A 6, 19221–19230 (2018).
47. Zhang, H. et al. Continuous oxygen vacancy engineering of the Co3O4 layer for an enhanced alkaline electrocatalytic hydrogen evolution reaction. J. Mater. Chem. A 7, 13506–13510 (2019).
48. Shen, F. et al. Bimetallic iron-iridium alloy nanoparticles supported on nickel foam as highly efficient and stable catalyst for overall water splitting at large current density. Appl Catal. B 278, 119327 (2020).
49. Zhang, J. et al. Efficient hydrogen production on MoNi2 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 8, 1–8 (2017).
50. Lim, K. G. et al. 2H-MoS2 on Mo2CTx MXene nanohybrid for efficient and durable electrocatalytic hydrogen evolution. ACS Nano. 14, 16140–16155 (2020).
51. Tang, C., Cheng, N., Pu, Z., Xing, W. & Sun, X. NiSe nanowire film supported on nickel foam: an efficient and stable 3d bifunctional electrode for full water splitting. Angew. Chem. Int. Ed. 127, 9483–9487 (2015).
52. Yin, J. et al. Atomic arrangement in metal-doped NiS2 boosts the hydrogen evolution reaction in alkaline media. Angew. Chem. Int. Ed. 58, 18676–18682 (2019).
53. Boppella, R., Tan, J., Yang, W. & Moon, J. Homologous Co/PNiCoP heterostructure on N-doped carbon for highly efficient and pH-universal hydrogen evolution electrocatalysis. Adv. Funct. Mater. 29, 1807976 (2019).
54. Li, R.-Q. et al. Monolithic electrode integrated of ultrathin NiFeP on 3D MXene nanostructure for an enhanced alkaline electrocatalytic hydrogen evolution reaction. Adv. Mater. 9, 1802553 (2019).
55. Ichibata, K. et al. NiS2/PNiFeP nanoarchitecture: an advanced three-dimensional bifunctional electrocatalyst for overall water splitting. Adv. Energy Mater. 9, 1800287 (2019).
56. Zhang, X. et al. Spinning and processing continuous yarns from 4-inch wafer scale super-aligned carbon nanotube arrays. Adv. Mater. 18, 1505–1510 (2006).
57. Yu, W., Liu, C. & Fan, S. Advances of CNT-based systems in thermal management. Nano Res. 14, 2471–2490 (2021).
58. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
59. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).
60. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
61. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–P. J. Chem. Phys. 132, 154104 (2010).
62. Mathew, K., Sundaraman, R., Letchworth-Weaver, K., Arias, T. A. & Hennig, R. G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 140, 084106 (2014).

Acknowledgements
K.L. acknowledges the financial support from the National Key R&D Program of China (2018YFA0208400), Basic Science Center Project of NSFC under grant No. 51972193, and National Natural Science Foundation of China (51972193). J.L. acknowledges the support from the National Natural Science Foundation of China (11874036), Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT010111), and Basic Research Project of Shenzhen, China (JCYJ202001019142816479, WZDES2020809115243002). Y.S. acknowledges the support from the National Natural Science Foundation of China (11974041).

Author contributions
K.L. and C.L. conceived the project and designed experiments. C.L., M.L., L.K., and Y.S. fabricated and tested samples. M.L. completed the COMSOL simulation. J.L. and Z.W. performed the DFT calculations. C.L., E.W., and B.W. discussed the working mechanism. C.L., K.L., Y.S., K.J., and S.F. analysed the data. C.L., K.L., Z.W., J.L., and Y.S. wrote and revised the manuscript. All authors discussed the results and contributed to the final version of the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-022-31077-x.

Correspondence and requests for materials should be addressed to Yinghui Sun, Jia Li or Kai Liu.

Peer review information Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022