Modulation of mdr1 expression by cytokines in human colon carcinoma cells: an approach for reversal of multidrug resistance

U Stein, W Walther and RH Shoemaker

Laboratory of Drug Discovery Research and Development, Developmental Therapeutics Program, Division of Cancer Treatment, National Cancer Institute, Frederick, Maryland 21702–1201, USA.

Summary Reversal of multidrug resistance (MDR) may offer a means of increasing the effectiveness of tumour chemotherapy. A variety of recent evidence indicates that cytokines may be particularly useful in this endeavour. To investigate the molecular mechanism by which cytokines may sensitise multidrug-resistant colon carcinoma cells, HCT15 and HCT116, to treatment with MDR-related drugs, we evaluated the effects of the human cytokines tumour necrosis factor α (TNFα), interleukin 2 (IL-2) and interferon γ (IFNγ) on mdr1 gene expression at the mRNA level by reverse transcription–polymerase chain reaction (RT–PCR) and at the protein level with monoclonal antibodies by immuno flow cytometry. P-glycoprotein function was examined after accumulation of the fluorescent drug, doxorubicin, by flow cytometry. Chemosensitivity to doxorubicin and vincristine was analysed within the cells. The expression characteristics of mdr1 protein levels, P-glycoprotein function and measured chemosensitivity to MDR-associated anti-cancer drugs. This cytokine-induced reversal of MDR was strongly time dependent, with maximal effects after 48 and 72 h of cytokine treatment. If similar modulation of MDR phenotype can be obtained in in vivo models, it may be possible to verify the time course for modulation by cytokine treatment and to design appropriate clinical trials of this strategy for MDR reversal.

Keywords: multidrug resistance; reversal; cytokine; colon carcinoma cell

Successful chemotherapy of human cancers is often limited by resistance against structurally and functionally unrelated drugs (Germann et al., 1993; Roninson, 1991). Multidrug resistance (MDR) represents a resistance mechanism with potential clinical relevance, frequently observed in tumours derived from tissues with excretory/secretory functions like colon, liver, kidney, etc. (Goldstein et al., 1989; Nooter and Herweijer, 1991). The MDR phenotype is caused by overexpression of the mdr1 gene encoding the P-glycoprotein, which is responsible for the energy-dependent extrusion of a variety of compounds, resulting in decreased concentrations of, e.g. chemotherapeutic drugs within the cells (Endicott and Ling, 1989; Valverde et al., 1992; Chin et al., 1993; Abraham et al., 1993; Roepe, 1995).

For many years, various approaches to reversal of MDR in human tumour cells have been investigated. A variety of compounds are able to modulate MDR phenotype. Substances belonging to this group include calcium channel antagonists, cyclosporin, calmodulin inhibitors, antimalarials and steroids (Lum et al., 1993; Raderer and Scheithauer, 1993). Their effects on MDR reversal have been analysed by functional assays of P-glycoprotein, such as altered anticancer drug efflux and accumulation of fluorescent dyes, as well as through drug resistance assays. Although these compounds were examined in phase I/II trials showing activity in some cancers (Lum et al., 1993), their clinical activity, as well as their mode of action for MDR reversal, remains controversial (Wadkins and Houghton, 1993; McLeod, 1994).

Other strategies to overcome MDR include alteration of mdr1 gene expression by antisense oligonucleotides, inhibition of P-glycoprotein function with antibodies, selection of cytotoxic drugs unaffected by P-glycoprotein, reduction of the availability of ATP, regional administration of modulators, or liposomal encapsulation of cytotoxic agents, as reviewed by Kellen (1993). Most of these approaches are focused on modulation of P-glycoprotein function.

An alternative strategy for an efficient MDR reversal concerns the regulation of mdr1 gene expression. Since it has been shown that tumour response rates may increase when treatment with conventional chemotherapeutic drugs is combined with cytokines (Wadler and Schwartz, 1990), several cytokines were analysed for their capability to influence the MDR phenotype, and specifically, to modulate mdr1 expression. So far, there are reports examining MDR modulation effects for TNF (Salmon et al., 1989; Kikuchi et al., 1992; Walther and Stein, 1994; Borsellino et al., 1994), IFN α (Scala et al., 1991; Kikuchi et al., 1992; Kang and Perry, 1994; Fogler et al., 1995), IFN γ (Kikuchi et al., 1992; Walther and Stein, 1994), IL-1 α (Borsellino et al., 1994; Monti et al., 1994), IL-2 (Walther and Stein, 1994) as well as for leukoregulin (Evans and Baker, 1992), representing cytokines with different modes of action. Thus, it appears that cytokines are able to influence/overcome MDR phenotype and to enhance cytotoxicity of MDR-associated drugs to tumour cells. In most studies this has been shown by comparison of parental cells and resistant sublines. However, data obtained for cytokine-induced mdr1 expression modulation on mRNA and/or protein level, have not been consistently described (Salmon et al., 1989; Scala et al., 1991; Evans and Baker, 1992; Walther and Stein, 1994; Kang and Perry, 1994).

The present report provides a detailed investigation of the dependence on time and on cell line’s MDR phenotype of cytokine-mediated effects on mdr1 expression and chemosensitivity in cytokine-pretreated cells. The study presents new data, which may be important in planning improved combination therapy approaches for treatment of drug-resistant tumours. The capability of the cytokines, TNFα, IL-2 and IFNγ, to modulate/reverse the MDR phenotype was investigated. Our interest was focused on two human colon carcinoma cell lines, HCT15 and HCT116, which express different levels of mdr1 mRNA/P-glycoprotein and, therefore, possess different P-glycoprotein-mediated MDR phenotypes. Cells of both lines were incubated with 100 μM 1 TNFα, IL-2 or IFNγ for 2, 12, 24, 48 and 72 h respectively. Cytokine-induced effects were examined on the mdr1 mRNA level by reverse transcription–polymerase chain reaction (RT–PCR), on the P-glycoprotein level with monoclonal antibodies by immuno flow cytometry, on the
P-glycoprotein functional level by accumulation experiments using a fluorescent drug, as well as by chemosensitivity assays with MDR-associated drugs. The following questions were addressed: (1) Do these cytokines modulate/decrease mdr1 expression on mRNA and/or P-glycoprotein level? (2) Do they influence P-glycoprotein function? (3) Do they cause enhanced cytotoxicity of MDR-associated drugs, like doxorubicin-verapamil? (4) How do they act in a time-dependent manner? and finally, (5) Do they modulate mdr1 expression and/or MDR phenotype in dependence on the cell line’s MDR rank?

Materials and methods

Cell lines

The human colon carcinoma cell lines, HCT15 (Iwahashi et al., 1991) and HCT116 (Brettain et al., 1981), were selected from the 62 cell line panel of the National Cancer Institute, USA, which is extensively used for screening assays of new anti-cancer drugs. These cell lines are well characterised, including their properties of resistance phenotypes as well as their expression levels of resistance-associated genes like mdr1 (Wu et al., 1992; Izquierdo et al., 1996). Therefore, both cell lines possess the P-glycoprotein-mediated type of MDR intrinsically, with the higher MDR rank for HCT15, compared with HCT116.

Cells were grown in RPMI-1640 medium supplemented with 10% fetal calf serum (FCS; HyClone, Logan, UT, USA) and 5 mM l-glutamine at 37°C and 5% carbon dioxide.

Cytokine treatment

To analyse the influence of cytokines on mdr1 expression, 1 x 10⁵ colon carcinoma cells were seeded into each well of 24-well dishes (Costar, Cambridge, MA, USA) and were cultured for 12 h in 1 ml medium. To test cytokine sensitivity in HCT15 and HCT116 cells, concentrations of 10 U ml⁻¹, 100 U ml⁻¹ and 1000 U ml⁻¹ of TNF, IL-2 and IFN y were tested for 2, 12, 24, 48 and 72 h. Both cell lines did not show antiproliferative or cytotoxic response to either cytokine at 10 or 100 U ml⁻¹; however, 1000 U ml⁻¹ of TNF, IL-2 or IFN y caused significant growth-inhibitory effects, indicating that the latter concentrations could not be used for the study. Furthermore, since earlier experiments have shown that 100 U ml⁻¹ of TNF, IL-2 or IFN y are suitable for combination experiments with cytostatic drugs, cytokine concentrations of 100 U ml⁻¹ were applied for all experiments in this study. Cells were treated with the recombinant cytokines TNF, IL-2 and IFN y (Promega, Madison, WI, USA) at 37°C. After 2, 12, 24, 48 and 72 h, cytokine-containing medium was removed and cells were used either for RNA isolation, P-glycoprotein detection by MRK16 or C219 or doxorubicin accumulation experiments.

RNA isolation and RT–PCR

After washing the cells with 1 ml ice-cold 0.9% sodium chloride solution, they were harvested by addition of 200 µl lithium chloride/urea (3 M lithium chloride, 6 M urea; Sigma, St Louis, MO, USA). Total RNA was prepared using the miniprep-RNA protocol (Walther et al., 1994). RT–PCR was performed with the Gene Amp RNA PCR kit (Perkin Elmer via Roche Molecular Systems Inc., Branchburg, NJ, USA). The RT reaction was performed using 1 µg of each miniprep-RNA with the random hexamer primers supplied with the kit. PCR was carried out using mdr1-specific primers (Noonan et al., 1990) producing a 167 bp product, or β-actin-specific primers (Wu et al., 1992) producing a 316 bp product. Steps for RT were as follows: the RT reaction was run at 42°C for 15 min, followed by an RT-inactivating denaturation step at 95°C for 5 min and a cooling step at 5°C for 5 min. Amplification was performed initially at 95°C for 2 min, continued for 35 cycles of melting (95°C for 1 min) and annealing–extending with Tag thermostable polymerase (60°C for 1 min), followed by a final step at 72°C for 7 min. Gel electrophoresis for separation of RT–PCR products was performed in a 1.5% agarose gel and was semi-quantitatively from video images by densitometry using the Image 1.37 program (obtained from Wayne Rasband, NIMH, Bethesda, MD, USA). To ensure the results, the same cell lines were treated in several times with the cytokines and separate experiments to perform RT–PCR. Moreover, several RT–PCRs from the same RNA sample were carried out.

P-glycoprotein detection by MRK16 and C219 immuno flow cytometry

HCT15 and HCT116 cells were trypsinised and harvested in phosphate-buffered saline (PBS; w/ Ca⁺² and Mg⁺²). The monoclonal antibody C219 (Signet Laboratories Inc., Dedham, MA, USA) recognises an intracytoplasmic epitope. Therefore, cells were permeabilised by incubation in 3.7% formaldehyde for 10 min at room temperature and washed once with PBS. All cells were resuspended in 2% heat-inactivated human AB serum (Irvine Scientific, Santa Ana, CA, USA) for 5 min at room temperature to prevent non-specific antibody binding. After washing, the cells were incubated at 4°C with the appropriate monoclonal antibody in a PBS solution containing 2% bovine serum albumin (BSA): 2 µg of C219/5 x 10⁵ cells for 60 min, or in a 1:100 dilution of MRK16 (Hoechst Japan Ltd., Japan), which recognises an external epitope of P-glycoprotein, for 30 min. Cells incubated with the mouse IgG, (Becton Dickinson Immunocytometry Systems, San Jose, CA, USA) served as negative controls. A fluorescein-conjugated goat anti-mouse antibody (Tago Inc., Burlingham, CA, USA) was used as a secondary antibody and cells were treated for 30 min at 4°C. After washing, the fluorescence intensity of 1 x 10⁵ cells per group was measured with a FACScan flow cytometer (Becton Dickinson, Mountain View, CA, USA). Quantification of the data was done by using the LYSYS software program, which enables the calculation and the statistics of each of the entire, non-gated histograms.

Doxorubicin accumulation

Accumulation of the fluorescent anthracycline doxorubicin (Sigma, St Louis, MO, USA) was measured as a functional index of P-glycoprotein activity. For these studies, cells were cultured in phenol red-free RPMI-1640, supplemented with 10% FCS. They were trypsinised and washed with phenol red-free RPMI-1640/5% FCS, aliquoted and incubated for 3 h at 37°C in phenol red-free RPMI-1640/5% FCS containing 50 µM doxorubicin (Leonce et al., 1992). After incubation, cells were washed twice with medium and held on ice. Fluorescence intensity of 1 x 10⁶ cells was then determined by flow cytometry for each treatment group. As a necessary prerequisite, series of time course experiments for doxorubicin accumulation were performed after 30 min, 1 h, 2 h, 3 h and 5 h in both cell lines, which was the basis for the following 3 h drug accumulation experiments. After 5 h of doxorubicin incubation, a plateau was reached in both lines.

Drug incubation time: 0 30 min 1 h 2 h 3 h 5 h
Mean fluorescence per cell in HCT15: 2.8 5.9 11.8 23.8 32.2 44.8
Mean fluorescence per cell in HCT116: 3.9 20.3 54.9 141.4 205.4 234.6

Chemosensitivity assay

Chemosensitivity of tumour cell lines was determined by using the XTT (2,3-bis(2-methoxy-4-nitro-5-sulphophenyl)-5-(phenylamino)carboxyl)-2H-tetrazolium hydroxide) cytotoxicity assay (Scudiero et al., 1988). One hundred cells were plated into each well of 96-well microtitre plates (Costar, Cambridge, MA, USA), grown for 12 h and incubated with
the appropriate cytokine at a concentration of 100 U ml⁻¹ for 2, 12, 24, 48 and 72 h at 37°C. The cytokine-containing medium was then removed, 200 μl dilutions of the appropriate drug were added (doxorubicin: 50–2000 ng ml⁻¹; vincristine: 50–1500 ng ml⁻¹) and incubation was continued for 3 days at 37°C. After incubation, medium was removed and 50 μl XTT solution (1 mg ml⁻¹ XTT in serum-free medium and 0.02 mM N-methylphenazonium methosulphate) per well was added for 4 h at 37°C. Cells treated only with drugs for 3 days or treated simultaneously with cytokines and drugs for 3 days served as controls. In separate experiments, the IC₅₀ for doxorubicin or vincristine in cytokine-treated and -untreated tumour cells was determined and the dose-modifying factor was calculated (Table 1). Absorbance was measured at 450 nm in a microplate reader. Absorbance of untreated controls was taken as 100% survival and the percentage inhibition was calculated as follows:

\[\text{Growth inhibition (\%)} = 100 - \frac{100 \times (T - B)}{(U - B)} \]

where T, treated: absorbance determined when tumour cells are exposed to drugs; U, untreated: absorbance of untreated cells; B, blank: absorbance when neither the drug nor XTT was added.

Statistical analysis

The levels of statistical significance were evaluated with data from at least three independent experiments using Student’s t-test.

Results

mdrl gene expression in cytokine-treated cells

Expression of the *mdrl* gene was evaluated in human colon carcinoma cell lines HCT15 and HCT116 by RT–PCR. Total RNA was isolated and *mdrl* expression was determined using *mdrl*-specific primers producing a 167 bp RT–PCR product. Control RT–PCR was carried out in parallel with β-actin-specific primers producing a 316 bp RT–PCR product. RNA from untreated parental cells served as controls. RT–PCR for the untreated cells of both lines (always in the stage of subconfluence) at the time points of 2, 12, 24, 48 and 72 h resulted in unchanged *mdrl* expression levels. Products were determined by video densitometry in a semiquantitative analysis and calculated as relative *mdrl* expression (*mdrl* expression/β-actin expression).

To examine the influence of several cytokines on *mdrl* expression, HCT15 and HCT116 cells were incubated with 100 U ml⁻¹ of TNF, IL-2 or IFNy for 2, 12, 24, 48 and 72 h. As shown in Figure 1, *mdrl*-specific products were detectable at each time point during cytokine treatment. It was observed that the *mdrl* expression level in cytokine-treated cells was modulated in a time-dependent manner regardless of the cytokine used. After 48 h of treatment with TNF, IL-2 or IFNy, a decrease of *mdrl* mRNA level was detected in the highly resistant HCT15 as well as in the HCT116 line, compared with the untreated controls. Although the

![Figure 1](https://example.com/figure1.png)
reduction of \(mdr1 \) expression was detected in all cytokine-treated cells, this effect was most striking in cells incubated with TNF. However, the time dependence of the cytokine-induced decrease in \(mdr1 \) expression after 48 h was also observed in cells treated with IL-2 and IFN\(\gamma \). After 72 h of cytokine treatment, \(mdr1 \) expression increased again, reaching a level close to untreated controls.

The influence of cytokine treatment on \(mdr1 \) mRNA level was calculated as relative \(mdr1 \) expression determined as the ratio of \(mdr1 \) to \(\beta\)-actin expression by semiquantitative analysis (at least three independent cytokine treatment experiments). Compared with the untreated control cells of both lines, the data of the relative \(mdr1 \) expression confirm the time dependence of the cytokine-caused decrease in \(mdr1 \) expression, with the most convincing effect after 48 h.

P-glycoprotein expression in cytokine-treated cells detected by MRK16 and C219

Determination of P-glycoprotein expression was performed with the two monoclonal antibodies, MRK16 and C219. After incubation with a secondary, fluorescein-conjugated antibody, the level of P-glycoprotein was measured by immuno flow cytometry and compared with untreated cells serving as controls. P-glycoprotein expression determined in the untreated cells of both lines at all time points remained unchanged. Untreated colon carcinoma cell lines were compared concerning their intrinsic P-glycoprotein expression: FACScan histograms for MRK16, recognising an extracellular epitope, showed a mean fluorescence per cell of 141.5 for HCT15 and 41.9 for HCT116 (Figure 2). Thus, the MRK16-detected P-glycoprotein expression in the more resistant HCT15 cells was approximately 3.5 times higher than in the HCT116 cells (\(P<0.0004 \)). Results obtained with the C219 antibody, binding to a cytoplasmic epitope of P-glycoprotein, demonstrated a similar situation (Figure 3): the mean fluorescence per cell for HCT15 was 82.4, whereas the value for HCT116 was 47.8, reflecting an approximately 2-fold higher P-glycoprotein expression level for HCT15 compared with HCT116 (\(P<0.0008 \)).

To analyse the influence of cytokines on P-glycoprotein expression, colon carcinoma cells were treated with 100 U ml\(^{-1} \) TNF, IL-2 or IFN\(\gamma \) for 2, 12, 24, 48 or 72 h. Cells were then incubated with MRK16 or C219, respectively, as described in Materials and methods. In general, a time-dependent reduction of P-glycoprotein expression was observed in both cell lines after treatment with TNF, IL-2 or IFN\(\gamma \). Results obtained with the two monoclonal antibodies, MRK16 and C219, were in agreement and consistent with the data on \(mdr1 \) mRNA level. The maximum decrease of P-glycoprotein expression was after 48 h of cytokine treatment, shown for both lines with MRK16 in Figure 2. In HCT15 cells (Figure 2a), the mean fluorescence per cell after 48 h TNF treatment was 44.7 compared with untreated controls with 141.5, representing a significant decrease in P-glycoprotein expression (\(P<0.0004 \)).

Similar situations were observed with IL-2- or IFN\(\gamma \)-treated HCT15 cells with mean fluorescence values of 46.9 for IL-2 (\(P<0.0007 \)) and 57.0 for IFN\(\gamma \) (\(P<0.0009 \)). In HCT116 cells (Figure 2b), the maximum time-dependent reduction of P-glycoprotein was observed with mean fluorescences per cell of 15.8 for TNF (\(P<0.0006 \)), 19.9 for IL-2 (\(P<0.001 \)) and 20.3 for IFN\(\gamma \) (\(P<0.001 \)), compared with untreated control cells (mean fluorescence 41.9).

![Figure 2](image1)

Figure 2 P-glycoprotein expression in cytokine-pretreated human colon carcinoma cells, detected with the monoclonal antibody, MRK 16. a, HCT 15; b, HCT 116. Fluorescence intensity was measured with a FACScan flow cytometer as mean fluorescence of 1 x 10\(^6 \) cells. Each value represents the average of triplicate experiments (s.d. was less than 10\%). The cytokine-mediated time-dependent differences in mean fluorescence were tested for significance with Student's t-test. ▲, TNF; ○, IL-2; ■ IFN\(\gamma \).

![Figure 3](image2)

Figure 3 P-glycoprotein expression in cytokine-pretreated human colon carcinoma cells, detected with the monoclonal antibody, C219. a, HCT 15; b, HCT 116. Fluorescence intensity was measured with a FACScan flow cytometer as mean fluorescence of 1 x 10\(^6 \) cells. Each value represents the average of triplicate experiments (s.d. was less than 10\%). The cytokine-mediated time-dependent differences in mean fluorescence were tested for significance with Student's t-test. ▲, TNF; ○, IL-2; ■ IFN\(\gamma \).
Results obtained with the monoclonal antibody C219 are summarised in Figure 3, confirming the time dependence as well as the cell type specificity of the cytokine-modulated P-glycoprotein expression. In HCT15 cells (Figure 3a), significantly decreased mean fluorescence was measured after 48 h treatment with TNF (17.5; $P<0.0003$), IL-2 (12.6; $P<0.0002$) and IFNγ (30.0; $P<0.0005$), compared with untreated parental cells (82.4). In the HCT116 line (Figure 3b), cytokine-induced effects after 48 h were determined as a mean fluorescence per cell of 22.5 for TNF ($P<0.002$), 27.5 for IL-2 ($P<0.005$) and 17.8 for IFNγ ($P<0.0008$) with regard to the controls (47.8).

Doxorubicin accumulation in cytokine-treated cells
To assess mdr1 expression on the functional level, accumulation of the fluorescent MDR-associated drug, doxorubicin, was measured and quantitated by FACScan analysis in both colon carcinoma lines. Doxorubicin accumulation in untreated cells was approximately 7 times lower in the more resistant HCT15 compared with HCT116 cells, as illustrated in Figure 4. This is reflected by the mean fluorescence per cell of 32 observed for HCT15 and 205 for HCT116, as determined after 3 h doxorubicin incubation.

To examine the influence of cytokines on P-glycoprotein function, cells were treated with TNF, IL-2 or IFNγ for 2, 12, 24, 48 or 72 h. Cytokine-pretreated cells were incubated with doxorubicin for 3 h and the accumulated fluorescent drug was measured. An enhancement of doxorubicin accumulation was determined in all cytokine-pretreated cells of both lines. The highest drug fluorescence was measured in cells incubated for 48 h with cytokine. In HCT15, mean fluorescence per cell following 48 h cytokine treatment was as follows: 138 for TNF ($P<0.0003$), 97 for IL-2 ($P<0.0004$) and 82 for IFNγ ($P<0.0005$) (control; 32; Figure 4a). Uptake data obtained for HCT116 treated for 48 h were 467 for TNF ($P<0.0009$), 347 for IL-2 ($P<0.004$) and 656 for IFNγ ($P<0.0004$) (control: 205; Figure 4b).

Enhancement of chemosensitivity in cytokine-treated cells
To determine if cytokine pretreatment caused a sensitisation of multidrug-resistant human colon carcinoma cells to MDR-associated drugs, cells were preincubated with TNF, IL-2 and IFNγ for 2, 12, 24, 48 and 72 h. The following treatments with anti-cancer drugs were then carried out for 3 days in a concentration range of 50 to 2000 ng ml⁻¹ doxorubicin or vincristine. Cytotoxicity was expressed as percentage growth inhibition compared with untreated control cells. Cells only treated with the appropriate drug or cells simultaneously treated with cytokine and anti-cancer drug served as additional controls (Figures 5 and 6).

For all combinations of cytokines and drugs (TNF, IL-2 or IFNγ plus doxorubicin, Figure 5 a–c and 6 a–c; TNF, IL-2 or IFNγ plus vincristine, Figure 5 d–f and 6 d–f), cytotoxicity was enhanced by cytokine pretreatment. In general, increase in cytotoxicity was time dependent with a maximum enhancement after cytokine preincubations for 48 and 72 h. Although the cytokine-induced enhancement of cytotoxicities of the MDR-associated drugs, doxorubicin and vincristine, were seemingly independent from the cytokine used, the highest increase was achieved by TNF.

To evaluate the sensitising effects of cytokine pretreatments in the two tumour lines, the IC₅₀ values for doxorubicin and vincristine were determined for untreated and cytokine-treated (pretreatment or simultaneous treatment) cells and their ratio was taken as dose-modifying factors (DMFs) (Table I). Thus, after 48 and 72 h of cytokine pretreatment, significantly increased cytotoxicities were observed for all combinations analysed in both cell lines. For example, in vincristine-treated HCT116 cells, DMFs of 17.3 (48 h) and 21.6 (72 h) were measured for TNF pretreatment ($P<0.00009$). In highly resistant vincristine-treated HCT15 cells, DMFs of 5.3 (48 h) and 9.0 (72 h) were determined ($P<0.0002$). In contrast to pretreated cells, simultaneous incubation of cytokine and anti-cancer drug did not result in a significant increase of cytotoxicity, either for doxorubicin or for vincristine.

Discussion
Colorectal cancer is one of the leading causes of cancer morbidity and mortality in the world (Goldstein et al., 1989). Although there has been extensive research on a variety of chemotherapeutic treatment regimens, a decisive success in increasing survival time of patients with colorectal cancer has yet to be achieved. Since overexpression of mdr1 gene in normal human colorectal tissue, as well as in human colorectal cancer, has been described frequently (Mizoguchi et al., 1990; Park et al., 1990; Lai et al., 1991), this intrinsic or acquired resistance against MDR-associated drugs, like doxorubicin, vincristine or actinomycin D, might be a reason for the failure of chemotherapeutic treatments with these drugs. Thus, colon cancer may be an area in which MDR reversal strategies may have benefit. The sensitisation of this tumour type to drugs, which are originally not in favour for the treatment of colon cancer, might have a therapeutic impact and could broaden the spectrum of drugs for chemotherapy of this cancer.

In the present report, the capability of cytokines to modulate MDR has been investigated in the highly drug-resistant HCT15 human colon carcinoma cell line and the HCT116 cell line, which manifests a lesser degree of multidrug resistance. In this study, cytokine effects as an approach for reversal of MDR were analysed on the mdr1 mRNA level by RT-PCR, as well as on the P-glycoprotein
level by using the monoclonal antibodies MRK16 and C219 and immuno flow cytometry. Cytokine-modulated P-glycoprotein function was examined by accumulation assays with the fluorescent MDR-associated drug, doxorubicin. Cytokine-influenced MDR phenotypes of both cell lines were determined by XTT chemosensitivity assays with doxorubicin and vincristine. The following results were achieved: (1) cytokines were able to decrease mdrl expression on the mRNA as well as on the P-glycoprotein level; (2) these effects were mediated by P-glycoprotein function; (3) cytokines augment the cytotoxicity of the MDR-associated drugs, doxorubicin and vincristine; (4) cytokines act in a time-dependent manner with maximum down-regulation in mdrl mRNA and P-glycoprotein levels after 48 h treatment; and finally, (5) cytokines modulate mdrl expression, P-glycoprotein function as well as drug sensitivity. These results confirm and extend our earlier data describing cytokine-mediated alteration of mdrl expression (Walther and Stein, 1994). In this study, we give evidence of dependence on time and on the cell line's MDR phenotype of these cytokine activities. It is further shown that cytokines are able to enhance cytotoxicities of MDR-associated drugs, expressed by reduced IC50 for doxorubicin and vincristine. The cytokine-mediated sensitisation of human tumour cells was manifested as a reversal of the MDR phenotypes of both cell lines. Cytokine treatment caused a decrease of mdrl expression, as well as the increase of doxorubicin accumulation and resultant cytotoxicity. Although our data suggest that cytokine treatment sensitises cell lines to chemotherapeutic drugs through a P-glycoprotein-mediated mechanism, because there is no strict correlation between relative MDR ranking and relative P-glycoprotein in colon carcinoma cell lines (Izquierdo et al., 1996), we cannot rule out the possibility that cytokines are also working in these cell lines through one or more non-P-glycoprotein-mediated mechanisms.

Some studies have described effects of externally added cytokines on MDR phenotypes, but only a few of them analysed the cytokine-induced modulation of mdrl gene expression on both the mRNA and P-glycoprotein level (Salmon et al., 1989; Scala et al., 1991; Evans and Baker, 1992; Walther and Stein, 1994; Kang and Perry, 1994). There were no alterations found for mdrl expression on mRNA levels in human drug-sensitive and -resistant leukaemia and myeloma cell lines 24 h after cytokine treatment (Salmon et al., 1989). This represents exactly the same incubation time in which we are also unable to detect significant changes in HCT15 and HCT116 cells. Studies investigating the effects caused by IFNs include one report which described increased mdrl expression on RNA and protein level within treatment intervals of up to 24 h in the Chinese hamster ovary cell line Chr C5 (Kang and Perry, 1994), and one report showing unchanged P-glycoprotein expression in LoVo colon carcinoma cells (Scala et al., 1991). For a panel of 21 known or newly discovered cytokines, including TNF, IL-2, IFNα and IFNγ, unaffacted P-glycoprotein levels were observed with cytokine treatments of 2 h, except for the cytokine, leukoregulin, which caused decreased mdrl expression (Evans and Baker, 1992). Elevated accumulation of fluorescent P-glycoprotein substrates, like rhodamine 123 or doxorubicin, after cytokine treatment have been reported for the cytokines TNF, IFNα, IL-1α and leukoregulin (Scala et al., 1991; Evans and Baker, 1992; Valenti et al., 1993; Borsellino et al., 1994), reflecting a sensitisation of the MDR phenotype in these cells. Interestingly, in contrast to the contradictory results described for cytokine effects on mdrl expression, investigations are in rather good agreement concerning cytokine-induced P-glycoprotein function. The greatest agreement concerning cytokine-altered MDR phenotypes was reported for TNF, IFNα, IFNγ, IL-2 and IL-1α and leukoregulin, based on chemosensitivity experiments with
the MDR-associated cytotoxic drugs like doxorubicin, vincristine or actinomycin D (Scala et al., 1991; Evans and Baker, 1992; Kikuchi et al., 1992; Monti et al., 1993; Valenti et al., 1993; Walther and Stein, 1994; Borsellino et al., 1994; Kamikaseda et al., 1994). Moreover, MDR reversal results have been described for combination of cytokines (e.g. IFNα) with agents that inhibit P-glycoprotein function, like monoclonal antibodies, such as MRK16 (Fogler et al., 1995), as well as for a combination with verapamil (Kang and Perry, 1994).

Interestingly, chemosensitivity assays have shown that cytokines of different origins and modes of action cause the same effect: they are capable of MDR reversal. In this study we describe the modulatory effects on mdr1 expression and function as well as on cytoxicities of MDR-related drugs caused by TNF, IL-2, and IFNγ. The finding that these cytokines exert the same effect could be explained by the well-accepted fact that cytokines act with redundancy and pleiotropy in very different cell types (for review see Kroemer et al., 1993). Another possible mechanism of action of these three cytokines could be the induction of expression of at least one major active cytokine which, in turn, may be responsible for the modulation of mdr1 expression. This hypothesis is supported by the findings of cytokine cascades (Kroemer et al., 1993). It is well known that, e.g. TNF expression is inducible by IL-2 or IFNγ (Sidhu and Bollon, 1993), and it will be of great interest to determine whether such a mechanism of cytokine induction takes place in treated tumour cells.

The potential of cytokines for MDR reversal, especially in highly resistant tumour cells, makes cytokine pretreatment an attractive approach for improved chemotherapy of these tumours. The present results suggest additional possibilities for more sophisticated combination therapies involving cytokines and MDR-related drugs.

Acknowledgements

This work was supported by Feodor-Lynen Fellowships (to Ulrike Stein and Wolfgang Walther) of the Alexander von Humboldt Foundation (Bonn, Germany) and by the Office of International Affairs, National Cancer Institute (Bethesda, MD, USA).

References

ABRAHAM EH, PRAT AG, GERWECK L, SENEVERATNE T, ARCESI RJ, KRAMER R, GUIDOTTI G AND CANTIELLO HF. (1993). The multidrug resistance (mdr1) gene product functions as an ATP channel. Proc. Natl Acad. Sci. USA, 90, 312 – 316.

BORSELLINO N, CRESCIMANNO M, FLANDINA C, FLUGGY A AND D’ALESSANDRO N. (1994). Combined activity of interleukin-1 alpha or TNF-alpha and doxorubicin on multidrug resistant cell lines: evidence that TNF and DXR have synergistic antitumor and differentiation-inducing effects. Anticancer Res., 14, 2643 – 2648.

BRATTAIN MG, FINE WD, KHALED FM, THOMPSON J AND BRATTAIN DE. (1981). Heterogeneity of malignant cells from a human colonic carcinoma. Cancer Res., 41, 1751 – 1756.

CHIN K-V, PASTAN I AND GOTTEMSAN MM. (1993). Function and regulation of the human multidrug resistance gene. Adv. Cancer Res., 60, 157 – 180.

ENDICOTT JA AND LING V. (1989). The biochemistry of P-glycoprotein-mediated multidrug resistance. Annu. Rev. Biochem., 58, 71 – 137.
EVANS CH AND BAKER PD. (1992). Decreased P-glycoprotein expression in multidrug-sensitive and -resistant human myeloma cells induced by the cytokine leukokregulin. Cancer Res., 52, 5893 – 5899.

FOGLER GE, PEARSON JW, VOLKER K, ARIYOSHI K, WATABE H, RIGGS CW, WILTROTH RW AND LONGO DL. (1995). Enhancement by recombinant human interferon alfa of the reversal of multidrug resistance by MRK-16 monoclonal antibody. J. Natl Cancer Inst., 87, 94 – 104.

GERMANN UA, PASTAN I AND GOTTESMAN MM. (1993). P-glycoproteins: mediators of multidrug resistance. Semin. Cell Biol., 4, 63 – 76.

GOLDSTEIN LJ, GALSKI H, FOJO A, WILLINGHAM M, LAI SL, GAZDAR A, PRIER K, GREEN A, CRIST W, BRODEUR CM, LIEBER M, COWMAN J, GOTTESMAN MM AND PASTAN I. (1989). Expression of a multidrug resistance gene in human cancers. J. Natl Cancer Inst., 81, 116 – 124.

IWASHASHI T, OKOCI E, ONO K, SUGAWARA I, TSURUO T AND MORTI S. (1991). Establishment of multidrug resistant human colorectal carcinoma HCT-15 cell lines and their properties. Anticancer Res., 11, 1309 – 1312.

IZQUIERDO MA, SHOEemaker RH, FLENS MJ, SCHEFFER GL, WU L, PRATHER TR AND SCHEPER RJ. (1996). Overlapping phenotypes of multidrug resistance among panels of human cancer-cell lines. Int. J. Cancer, 65, 230 – 237.

KAMIKASEDA K, STAVROU D AND FUKUI M. (1994). The enhanced antitumour activity of DNA topoisoasemerase I-trapping drugs by natural human tumor necrosis factor against T24 and other human cancer cell lines in vitro. Oncol. Reports, 1, 735 – 738.

KANG Y AND PERRY RR. (1994). Effect of α-interferon on P-glycoprotein expression and function and on verapamil modulation of doxorubicin resistance. Cancer Res., 54, 2925 – 2928.

KELLEN JA. (1993). The reversal of multidrug resistance in cancer therapy: A critical review. Cancer Res., 48, 857 – 4833.

SIDHU R AND BOLLON AP. (1993). Tumor necrosis factor activities and cancer therapy – a perspective. Pharmac. Ther., 57, 79 – 128.

VALENTI M, CIMOLI, G, PARODI S, MARIANI GL, VENTURINI M, CONTE F AND RUSSO P. (1993). Potentiation of tumor necrosis factor-mediated cell killing by VP16 on human ovarian cancer cell lines. In vitro results and clinical implications. Eur. J. Cancer, 29A, 1157 – 1161.

VALLVERDE MA, DIAZ M, SEPULVEDA FV, GILL DR, HYDE SC AND HIGGINS CF. (1992). Volume-regulated chloride channels associated with the human multidrug-resistance P-glycoprotein. Nature, 355, 830 – 833.

WADKINS RM AND HOUGHTON PJ. (1993). The role of the drug–lipid interactions in the biological activity of modulators of multidrug resistance. Biochim. Biophys. Acta, 1153, 225 – 236.

WADLER S AND SCHWARTZ EL. (1990). Antineoplastic activity of the combination of interferon and cytotoxic agents against experimental and human malignancies: a review. Cancer Res., 50, 3473 – 3486.

WALTHER W AND STEIN U. (1994). Influence of cytokines on mdr1 expression in human colon carcinoma cell lines: increased cytotoxicity of MDR relevant drugs. J. Cancer Res. Clin. Oncol., 120, 471 – 478.

WALTHER W, STEIN U AND EDER C. (1994). RNA analysis using miniprep RNA in RT–PCR. Bio Techniques, 17, 674 – 675.

WU L, SMYTHE AM, STINSON SF, MULLENDORE LA, MONKS A, SCUDIERO DA, PAULL KD, KOUTSOUKOS AD, RUBINSTEIN LV, BOYD MR AND SHOEMAKER RH. (1992). Multidrug resistant phenotype of disease-oriented panels of human tumor cell lines used for anticancer drug screening. Cancer Res., 52, 3029 – 3034.