Chinese herbal medicine for migraine management: A hospital-based retrospective analysis of electronic medical records

Shaohua Lyu1,2, Claire Shuiqing Zhang1, Jingbo Sun2, Heng Weng2, Charlie Changli Xue1,2, Xinfeng Guo2* and Anthony Lin Zhang1*

1The China Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, VIC, Australia, 2Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China

Background: Migraine is a chronic neurological disease causing significant socioeconomic burden and impaired quality of life. Chinese medicine is commonly used for migraine in China. Clinical trials have generated evidence of the effectiveness of Chinese medicine therapies for migraine. However, little is known about how to use these therapies to treat migraine in real-world clinical settings.

Methods: In this retrospective study, we analyzed data from the electronic medical records (EMRs) of 2,023 migraine patients who attended the Guangdong Provincial Hospital of Chinese Medicine (GPHCM) between July 2018 and July 2020.

Results: More than three-quarters (77.21%) of the patients were female. Most (78.20%) of the patients were aged between 18 and 50 years, 18.49% were aged above 50 years, and the remaining 3.31% were under 18 years. Sleep disorders were the most documented comorbidity occurring in 27.29% of patients, and more common in females (29.77%) than male (18.87%). Fatigue was the most frequently reported trigger of migraine attacks among all patients (9.39%), while menstruation was the most common trigger for female patients (10.24%). Less than a quarter of patients (21.01%) reported a history of taking analgesic medication for their migraine. The median treatment duration reported by the patients was 10 days. Chinese herbal medicine (CHM) was the predominant treatment for migraine at the hospital (88.48%), while pharmacotherapies were prescribed to 28.97% of the patients. CHM was prescribed more often as a sole treatment (53.58% of patients) than combined with pharmacotherapies (27.39% of patients). Among patients who reported improvements after taking CHM, the most frequently used herbs were fu ling and chuan xiong, the most frequent patented CHM product was tong tian oral
solution, and the main herbal formulae were chuan xiong cha tiao san and yi qi cong ming tang.

Conclusion: CHM formulae, such as chuan xiong cha tiao san and yi qi cong ming tang, patented CHM product tong tian oral solution, and some herbs are potentially effective treatments for migraine. As such, CHM can be used as an alternative to conventional pharmacotherapies for migraine and is worth further evaluation in randomized controlled trials.

KEYWORDS
migraine, electronic medical records (EMR), Chinese medicine, Chinese herbal medicine (CHM), real-world, clinical features, treatment patterns, therapeutic characteristics

Introduction

Migraine is a prevalent primary headache disorder characterized by recurrent, unilateral, moderate-to-severe pulsating headaches (1). The headache is usually associated with nausea, vomiting, phonophobia, and photophobia (1). Migraine is often accompanied by comorbidities, such as sleep disorders, anxiety, and depression (2–6), and can be triggered by common lifestyle factors, including stress, caffeine, and menstruation (7, 8). According to a systematic review of the Global Burden of Disease Study (9), migraine was estimated to affect 1.04 billion people with a global age-standardized prevalence of 14.4% and caused 45.1 million years of life with disabilities (YLDs). Both the prevalence and YLDs of migraine peaked between 35 and 39 years of age in both genders (9).

Current pharmacotherapies for migraine consist of acute treatments including triptans and ergots, and prophylactic therapies such as calcium channel blockers (CCBs), beta-blockers, and calcitonin gene-related peptide (CGRP) antibodies (10, 11). Patients are often unsatisfied with these medications due to their insufficient treatment effects, potential risk of causing comorbidities, and unwanted side effects (12–14). Moreover, acute pain-relief medications tend to be overused by migraine patients, resulting in the transformation from episodic migraine to chronic migraine (15, 16) as well as a higher risk of psychological comorbidities (17, 18), and hence increases the disease burden (19).

Due to these challenges, complementary and alternative medicine is popular among migraine patients (20, 21). Chinese medicine therapies, including Chinese herbal medicine (CHM) and acupuncture, were reported to be prescribed over 60% of migraine patients in China (22). Systematic reviews concluded that Chinese medicine therapies were comparable or superior to conventional pharmacotherapies, either being used solely or in combination with pharmacotherapies (23–33). However, the existing research evidence was obtained from randomized controlled trials (RCTs) that applied unified treatments to certain populations based on pre-defined selection criteria. There is a lack of real-world information about treatment patterns and first-hand clinicians’ experience. Moreover, the clinical characteristics and preferences of migraine patients seeking Chinese medicine therapies also remain unclear. Therefore, we conducted a retrospective analysis of electronic medical records (EMRs) from a large-sized Chinese medicine hospital to explore and summarize the real-world clinical evidence, patients’ characteristics, and clinicians’ experiences. The results of this research will be valuable for evidence-based clinical practice.

Materials and methods

This retrospective study collected clinical data from outpatient departments at the Guangdong Provincial Hospital of Chinese Medicine (GPHCM), the largest tertiary hospital that provides integrated Chinese medicine and conventional therapies for patients in China (34).

Ethics consideration

The study was approved by the Human Research Ethics Committee (HREC) of GPHCM (ZE2020-243-01) and registered with the HREC at RMIT University (no. 24235). Informed consent was waived since identifiable information, including names, identification numbers, dates of birth, phone
numbers, and residential addresses of patients, had been deidentified in the dataset before data screening and analyses.

Data search and screening

The EMRs between July 2018 and July 2020 were retrieved by the Information Technology Department of GPHCM to locate migraine-related patient encounters (PEs). Only those PEs with migraine as the primary diagnosis were exported to an Excel dataset and then screened by a clinician who specialized in headache and neurology (S Lyu) for eligibility.

PE records were excluded if they met any of the following criteria: (1) incomplete records; (2) symptoms not consistent with migraine diagnostic criteria (1); (3) chief complaint is not related to migraine; and (4) reporting treatment effects in the first PE among a series of PEs. Uncertainties were resolved by consulting a senior headache/neurology specialist (J Sun).

Data extraction

Preliminary data extraction was conducted by H Weng using TNorm, a rule-based and pattern learning-based approach developed for automatic temporal expression extraction and normalization for data in Chinese text (35). Structured data, such as age (at the first visit), date of visits, gender, current and previous medical histories, diagnoses, and treatment details, were extracted from each PE into an Excel dataset at this stage. During this procedure, PEs sharing the same medical record number were merged as one EMR.

Further data extraction was manually conducted by S Lyu to identify unstructured data on migraine comorbidities, triggers, numbers of visits, total treatment duration, patients’ response to treatments, and in which visits patients reported improvements. Clinical conditions, such as depression, anxiety, sleep disorder, rhinitis, and dermatological conditions, were considered as comorbidities of migraine according to previous research (36–40). Factors including fatigue, menstruation, coldness or wind, emotion, crowded environment, poor sleep, weather changes, stress, diet, strong light exposure, exercise, washing hair, and odor, were classified as triggers of migraine episodes based on clinical guidelines and previous studies (41–48). Since migraine triggers vary across individuals, the trigger data were extracted based on patient-reported information. Treatment responses were briefly classified as “improved” and “no response or unclear,” based on patients’ self-reporting as recorded in EMRs. Where EMRs recorded a response consistent with the Diagnostic Criteria and Category of Treatment Response of Toufeng in China (49), including the reduction of migraine or other symptoms in general after certain treatments, the patients were marked as “improved” and the previous PE was marked as “patient encounter reporting improvements (PERI).”

Data analyses

Categorical variables were presented as frequency/percentage and compared via Chi-square or Fisher’s tests, where appropriate. Continuous variables were presented as mean with standard deviation and compared via the t-test when they were normally distributed. Otherwise, they were presented as median with interquartile range and compared via the Mann–Whitney U-test. SPSS software (version 20.0, SPSS Inc., Chicago, IL, U.S.A) was used for the descriptive analyses of patients’ characteristics and treatment information. Values of \(p < 0.05 \) were considered to indicate statistical significance.

Association rule construction based on the Apriori algorithm (51, 52) was conducted to identify high-frequency herb combinations and associations between triggers or comorbidities with herbs, using SPSS Modeler software (version 18.0, SPSS Inc., Chicago, IL, U.S.A). A network diagram was generated to visualize the co-occurrence between the frequently used herbs.

Generally, an Apriori algorithm is constructed based on the notion that the antecedent item sets and the consequent item set only co-occur in the dataset rather than due to a causal effect (53). Three parameters—support, confidence, and lift—are used to assess the associations of variables. Support is the prevalence of antecedent and corresponds to statistical significance (see formula A) (51). The minimum threshold of
support is usually predefined to avoid occasional co-occurrence (51, 52). After iterative tests, we set the support level at 5% for herb pair and herb combination analyses to ensure only frequently used herbs appear in the antecedent. Confidence and lift indicate the strength of association, with higher values showing more robust connections between the consequent and antecedent. Confidence reflects the possibility of co-occurrences showing more robust connections between the consequent and antecedent. The thresholds of antecedent (see formula B), while the lift is a value that frequently used herbs appear in the antecedent. Confidence (53, 54).

The thresholds of confidence in the association rules were determined according to individual situations.

The formulae for these three metrics are listed as follows (53, 54):

\[
\text{Support} : s(X \rightarrow Y) = \frac{P(X \cup Y)}{N} \quad (A)
\]

\[
\text{Confidence} : c(X \rightarrow Y) = \frac{P(X \cup Y)}{P(X)} = \frac{\sigma(X \cup Y)}{\sigma(X)} \quad (B)
\]

\[
\text{Lift} : l(X \rightarrow Y) = \frac{P(X \cup Y)}{P(X) \cdot P(Y)} = \frac{\sigma(X \cup Y)}{\sigma(X) \cdot \sigma(Y)} \cdot N \quad (C)
\]

Results

Summary of the research procedure

A total of 6,582 PEs with a primary diagnosis of migraine were identified and exported. After eligibility screening, 4,395 PEs from 2,023 EMRs (i.e., individual patient records) were included and analyzed for patient characteristics and treatment patterns. Among them, 1,812 PERIs contributed to the in-depth analyses of treatment patterns and therapeutic characteristics to identify the frequently used herbs and herb combinations. The procedure is illustrated in Figure 1.

Clinical features of all patients

Demographics

Among the 2,023 patients (EMRs), 1,562 (77.21%) were female. The mean age of all patients was (37.89 ± 12.74) years. The mean age of female patients (38.11 ± 12.53 years) was similar to that of male patients (37.16 ± 13.42 years) (p = 0.16).

More than three-quarters of the patients were adults under 50 years of age (n = 1,582, 78.20%), while 374 (18.49%) patients were over 50 years of age and the remaining 67 (3.31%) patients were under 18 years of age (Table 1).

Characteristics

The characteristics of migraine were insufficiently recorded in the EMRs. Only 140 (6.92%) EMRs contained information about aura, with 100 (4.94%) patients diagnosed as migraine with aura and 40 (1.98%) were diagnosed as migraine without aura. A total of 225 (11.12%) patients had a family history of migraine, 84 (4.15%) patients did not have such a family history, and the remaining 1,714 EMRs did not include this information. Acute medication-taking behavior was only reported by 432 (21.35%) patients. Among these patients, 425 (21.01%) had taken acute medication for migraine and 7 patients reported never taking any acute medication. The remaining 1,591 EMRs did not provide clear information on the history of acute medication usage history (Table 1).

In addition, 65 (4.32%) adult female patients reported the occurrence or aggregation of migraine after childbearing. However, the number of adult women whose migraine were not associated with childbearing was unavailable (Table 1).

Comorbidities

Common migraine comorbidities that patients reported were sleep disorders (n = 552, 27.29%), anxiety and/or depression (n = 117, 5.78%), rhinitis (n = 15, 0.74%), and dermatological conditions (n = 37, 1.83%).

As the most reported comorbidity, sleep disorders involved symptoms of insomnia, interrupted sleep, dreaminess, and so on. Around half (n = 890, 43.99%) of the patients were recorded with information on their sleep quality, with 338 (16.71%) reporting satisfactory sleep quality. Based on the available data, female patients seemed more likely to have sleep disorders than male patients (29.77% vs. 18.87%) (Table 1).

Triggers

Migraine triggers documented in the PEs for both genders were fatigue (n = 190, 9.39%), coldness (n = 99, 4.89%), emotion (n = 77, 3.81%), crowded environment (n = 76, 3.76%), poor sleep (n = 68, 3.36%), weather changes (n = 48, 2.37%), stress (n = 26, 1.29%), diet (n = 21, 1.04%), strong light exposure (n = 18, 0.89%), exercise (n = 11, 0.54%), washing hair (n = 8, 0.40%), and odor (n = 1, 0.05%). Among female patients, menstruation was the leading trigger (n = 160, 10.24% of all female patients) (Table 1).

Treatment patterns of all patients

Treatment categories

The treatment patterns among 2,023 EMRs are presented in Table 2. Most migraine patients (n = 1,790, 88.48%) had been prescribed CHM, followed by conventional pharmacotherapies (n = 586, 28.97%) and acupuncture (n = 348, 17.20%). CHM was prescribed more often as a sole treatment (n = 1,084) than in combination with conventional pharmacotherapies (n = 554). There was no significant statistical difference
in treatment methods between genders ($p = 0.467$) nor between adult and non-adult groups ($p = 0.668$). During the treatment course, only 32 (1.58%) patients were newly prescribed acute medication, and 428 (21.16%) patients were prescribed CCBs (flunarizine or nimodipine tablets). Other pharmacotherapies included hypnotic drugs ($n = 81, 4.00%$), antidepressants/antianxiety drugs ($n = 61, 3.02%$), and antiepileptic drugs ($n = 18, 0.89%$).

Times of visits and treatment duration

Fifty-five patients only visited the doctors for advice or examinations and did not receive any treatment. The total number of visits to the hospital for migraine was available from 1,976 patients. More than half ($n = 1,069, 54.10%$) only visited the hospital once for migraine, therefore, their responses to treatments were not available (Table 3).

According to 1,968 EMRs with treatment information, the median duration of migraine-specific treatments was 10 days. Of these patients, 72.41% ($n = 1,425$) of patients underwent treatment for less than 4 weeks, and nearly one-third of them ($n = 635, 31.39%$) only accepted treatments for 7 days. This is notably shorter than the recommendation of "at least 4 weeks treatment for migraine prophylaxis" in clinical guidelines (10, 11) (Table 3).

In addition, the duration of the treatment which achieved certain improvements was available from 397 EMRs. The most commonly reported duration was 7 days ($n = 121, 30.48%$), and the median treatment duration was 14 days (Table 3).

Therapeutic characteristics of Chinese herbal medicine

The therapeutic characteristics of CHM, as the predominant treatment method, were further summarized based on the 1,812 PERIs as follows, regardless of whether they were used alone or in combination with other treatments.

Chinese herbal decoction

Frequently used herb

In 1,506 PERIs, 258 individual herbs were prescribed 23,329 times in a decoction form. Herbs recorded by more than 15% of PERIs are listed in Table 4. The top 10 frequently used herbs were fu ling, chuan xiong, bai shao, ban xia, zhi gan cao, gui zhi, yan hu suo, bai zhu, chen pi, and chang pu.

To visualize the associations between individual herbs, a network diagram was generated and presented in Figure 2. In this figure, a thicker line indicates a stronger association between two herbs, indicating that these herbs are more commonly prescribed together. As the figure illustrates, the top 10 strongest links are jing jie and du huo, gao ben, and du huo, bo he and jing jie, jing jie and xia tian wu, jing jie and gao ben, xia tian wu and du huo, xia tian wu and gao ben, bo he and
TABLE 1 Characteristics, comorbidities and triggers of the patients.

Characteristics	Overall ($n = 2,023$)	Male ($n = 461$)	Female ($n = 1,562$)
Mean age, years (SD)	37.89 (12.74)	37.16 (13.42)	38.11 (12.53)
Categories	**No (%)**	**No (%)**	**No (%)**
Characteristics			
Age group			
< 18	67 (3.31)	26 (5.64)	41 (2.62)
$18 \leq$ age < 50	1,582 (78.20)	357 (77.44)	1,225 (78.43)
≥ 50	374 (18.49)	78 (16.92)	296 (18.95)
Aura			
Migraine with aura	100 (4.94)	25 (5.42)	75 (4.80)
Migraine without aura	40 (1.98)	5 (1.08)	35 (2.24)
NS	1,883 (93.08)	431 (93.49)	1,452 (92.96)
Family history			
Yes	225 (11.12)	45 (9.76)	180 (11.52)
No	84 (4.15)	23 (4.99)	61 (3.91)
NS	1,714 (84.73)	393 (85.25)	1,321 (84.57)
Acute medication usage			
Yes	425 (21.01)	108 (23.43)	317 (20.29)
No	7 (0.34)	3 (0.65)	4 (0.26)
NS	1,591 (78.65)	350 (75.92)	1,241 (79.45)
Childbearing (valid $n = 1,505$)			
Yes	65 (4.32)	N/A	65 (4.32)
No	0 (0)	N/A	0 (0)
NS	1,440 (95.68)	N/A	1,440 (95.68)
Comorbidities			
Anxiety and/or depression			
Yes	117 (5.78)	20 (4.34)	97 (6.21)
No	0 (0)	0 (0)	0 (0)
NS	1,906 (94.22)	441 (95.66)	1,465 (93.79)
Rhinitis			
Yes	15 (0.74)	5 (1.08)	10 (0.64)
No	0 (0)	0 (0)	0 (0)
NS	2,008 (99.26)	456 (98.92)	1,552 (99.36)
Dermatological conditions			
Yes	37 (1.83)	5 (1.08)	32 (2.05)
No	0 (0)	0 (0)	0 (0)
NS	1,986 (98.17)	456 (98.92)	1,530 (97.95)
Sleep disorders			
Yes	552 (27.29)	87 (18.87)	465 (29.77)
No	338 (16.71)	80 (17.35)	258 (16.52)
NS	1,133 (56.00)	294 (63.77)	839 (53.71)
Triggers			
Fatigue			
Yes	190 (9.39)	47 (10.20)	143 (9.15)
No	24 (1.19)	3 (0.65)	21 (1.34)
NS	1,809 (89.42)	411 (89.15)	1,398 (89.50)
Coldness or Wind			
Yes	99 (4.89)	25 (5.42)	74 (4.74)
No	26 (1.29)	4 (0.87)	22 (1.41)
NS	1,898 (93.82)	432 (93.71)	1,466 (93.85)
Emotion			
Yes	77 (3.81)	14 (3.04)	63 (4.03)
No	24 (1.19)	2 (0.43)	22 (1.41)
NS	1,922 (95.00)	445 (96.53)	1,477 (94.56)
Crowded environment			
Yes	76 (3.76)	20 (4.34)	56 (3.59)
No	27 (1.33)	4 (0.87)	23 (1.47)
NS	1,920 (94.91)	437 (94.79)	1,483 (94.94)
Poor sleep			
Yes	68 (3.36)	9 (1.95)	59 (3.78)
No	27 (1.33)	4 (0.87)	23 (1.47)
NS	1,928 (95.30)	448 (97.18)	1,480 (94.75)
Weather changes			
Yes	48 (2.37)	14 (3.04)	34 (2.18)
No	27 (1.33)	4 (0.87)	23 (1.47)
NS	1,948 (96.29)	443 (96.10)	1,505 (96.35)
and du huo, fang feng and jing jie, and suan zao ren and long gu.

Core herb pairs
To identify core herb pairs, 491 association rules were constructed when support was set as 5% and confidence as 50%, with only one antecedent. Among them, 15 herb pairs shared bidirectional associations with lifts over three (Table 5). Bidirectional associations are considered mandatory relationships (55, 56). The herb pair with the highest lift (that is, these herbs are more commonly prescribed together) is bo he and jing jie, followed by jing jie and du huo, jing jie and fang feng, du huo and gao ben, du huo and bo he, du huo, and fang feng.

Core herb combinations
During the iterative tests of the association rule for core herb combinations, it was found that the overall confidence in the association rules was high. Therefore, the confidence was preset at 95%, while the support value remained at 5%. The maximum number of antecedents was limited to eight. Based on the predetermined values (see "Materials and methods" section), a total of 837,008 association rules were constructed, 87 of which had a lift over 10 (Table 6). Only 17 herbs were involved in these 87 combinations since the combinations shared the same or similar herbs. The first combination covering the most overlapping herbs is similar to the formula chuan xiong cha tiao san (CXCTS), whose ingredients include bo he, jing jie, fang feng, qiang huo, bai zhi, and chuan xiong. The second combination includes sheng ma, huang qi, man jing zi, ge gen, gan cao, bai zhu, fu ling, ze xie, and yuan zhi, which is similar to the CHM formula yi qi cong ming tang (YQCMT).

Associations between comorbidities/triggers and herbs
Triggers and comorbidities were set as antecedents, and frequently used herbs were put in the consequent sets. The support level was preset as 5% and confidence as 50%. Constructed associations with lift ≥ 2.0 are presented in Table 7. Menstruation was the only trigger successfully included in the associations and was usually associated with herbs that activate the circulation of Blood and qi, such as xiao hui xiang, wu yao, sha ren, and xiang fu.

Patented Chinese herbal medicine products
A total of 51 PCHMPs were identified from the 1,158 PERIs that used PCHMPs. The top 14 most frequently used PCHMPs are presented in Table 8. The leading PCHMP was tong tian oral solution, with a frequency of 762 (65.80%). It consists of chuan xiong, chi shao, tian ma, qiang huo, bai zhi, xi xin, ju hua, bo he, and du huo.
TABLE 2 Treatment categories.

Treatment categories	No. (%*)	Gender	Age	Difference		
		Female	Male	<18	≥18	Difference
Single use ACU related	146 (7.22)	106	40	3	143	1,043
CHM	1,084 (53.58)	845	239			
PCHMP	26 (1.29)	16	10	0	26	
Combinations ACU related + CHM	152 (7.51)	120	32	2	150	
ACU related + PCHMP	44 (2.17)	34	10	1	43	
CHM + PCHMP	510 (25.21)	396	114	17	493	
No treatment	55 (2.72)	41	14	3	52	
Total	2,023 (100)	1,562	461	N/A	67	N/A
CP	32 (1.58)	N/A				
AEDs	18 (0.89)	N/A				
Antidepressants/Antianxiety	61 (3.02)	N/A				
CCB	428 (21.16)	N/A				
Hypnotic	81 (4.00)	N/A				
Sub-total WM	586 (28.97)	N/A				

ACU, acupuncture; AEDs, Anti-epileptic drugs; CCB, calcium channel blocker; CHM, Chinese herbal medicine; CP, conventional pharmacotherapies; PCHMP, patent Chinese herbal medicine product; N/A, not applicable; No., number.

*Percentage in all patients.
#Tested by Fisher’s exact test.

TABLE 3 Description of treatment duration and visit times.

Treatment	Treatment duration (days)	Treatment duration to show effects (days)	Total times of visits	
No. of medical records	Valid	1,968	397	1,976
	Missing	55	1,626	47
Median	10	14	1	
Percentiles	25	7	7	1
75	29	28	2	
Mode	7	7	1	
Frequency of mode (%)	635 (32.3)	1,069 (54.10)		

*Valid percentage; CHM, Chinese herbal medicine; No., number.

The other PCHMPs that contributed to more than 15% of PERIs were jian wei yu yang tablet (n = 208, 17.96%), tian shu tablet (n = 206, 17.79%), and er shi wu wei shan hu capsule (n = 196, 16.93%).

Mechanism of herbs and formula

The most frequently used herb, *fu ling*, tonifies Spleen and eliminates dampness (50). Patients in this study are primarily located in southern China, and as such, dampness would be the key Chinese medicine pathogenic factor in their cases (57, 58). It could be explained that *fu ling* was often used due to these patients’ general constitutions. Currently, there is no direct pre-clinical evidence to support *fu ling*’s mechanism for curing migraine or headaches. However, research illustrated that Poria cocos polysaccharide, an active compound of *fu ling*, could exert neuroprotective effects by alleviating oxidative stress, apoptosis, inflammation, and inhibiting the MAPK/NF-κB pathway in Alzheimer’s disease rats (59). Similar pathways were identified in migraine pathology (60–62).

The second frequently used herb *chuan xiong* activates *qi* and Blood, expels Wind, and alleviates pain (50). It has been widely used for migraine and headaches in historical and current clinical practice (23, 63–65). An RCT-based systematic review indicated that formulae containing *chuan xiong* were effective in migraine prophylaxis (24). The key
TABLE 4 Frequently used herbs in Chinese herbal decoctions for which patients reported improvements.

Herb name in pin yin and Chinese characters	Scientific name	No. (%)
Fu ling 防风	Poria cocos (Schw.) Wolf	955 (52.70)
Chuan xiong 川芎	Ligusticum chuanxiong Hort.	929 (51.27)
Bai shao 白芍	Paeonia lactiflora Pall.	894 (49.34)
Ban xia 半夏	Pinellia ternate (Thunb.) Breit.	837 (46.19)
Gan cao (honey fried) 气枣	Glycyrrhiza Radix Et Rhizoma Praeparata Cum Melle	790 (43.60)
Gui zhi 桂枝	Cinnamomum cassia Presl	788 (43.49)
Yan hu kao 延胡索	Corydalis yanhusuo W.T. Wang	763 (42.11)
Bai zhu 白术	Atractylodes macrocephala Koiz.	761 (42.00)
Ban xia 半夏	Pinellia ternate (Thunb.) Breit.	736 (40.62)
Gan cao (honey fried) 气枣	Glycyrrhiza Radix Et Rhizoma Praeparata Cum Melle	736 (40.62)
Gui zhi 桂枝	Cinnamomum cassia Presl	725 (39.73)
Yan hu kao 延胡索	Corydalis yanhusuo W.T. Wang	725 (39.73)
Bai zhu 白术	Atractylodes macrocephala Koiz.	725 (39.73)
Chang pu 九节菖蒲	Cyperus rotundus	654 (35.15)
Wu yao 乌药	Lindera aggregate (Sims) Kos-term.	625 (34.49)
Bai zhu 白术	Atractylodes macrocephala Koiz.	625 (34.49)
Liu ji nu 留夏	Herba Artemisiae Anomalae	546 (30.13)
Xiao hui xiang 小茴香	Foeniculum vulgare Mill.	536 (29.58)
Hou po 垂朴	1. Magnolia officinalis Rehd.et Wils.	526 (29.03)
Herba Artemisiae Anomalae	2. Magnolia officinalis Rehd.et Wils.var.biloba Rehd.et Wils.	526 (29.03)
Sha ren 砂仁	1. Amomum villosum Lour.	526 (29.03)
小茴香	2. Amomum villosum Lour.var.xanthioideae T.L.Wu et Senyen	526 (29.03)
甘草	3. Amomum longiligulare T.L.Wu	526 (29.03)
Gan cao 甘草	1. Glycyrrhiza uralensis Fisch.	493 (27.21)
小茴香	2. Glycyrrhiza inflata Bat.	493 (27.21)
甘草	3. Glycyrrhiza glabra L.	493 (27.21)
Dang shen 麦冬	1. Codonopsis pilosula (Franch.)Nannf.	489 (26.99)
丹参	2. Codonopsis pilosula Nannf.var.modesta (Nannf.) L.T.Shen	489 (26.99)
丹参	3. Codonopsis tangshenOliv.	489 (26.99)
Qiang huo 香附	1. Notopterygium incisum Ting ex H. T. Chang	467 (25.77)
香附	2. Notopterygium franchetti H. de Boiss.	467 (25.77)
Shan zhu ya 山茱萸	Cornus officinalis Sieb. et Zucc.	407 (22.46)
山茱萸	1. Bupleurum chinenseDC.	388 (21.41)
Chai hu 柴胡	2. Bupleurum scorzonerifolium Wildl.	388 (21.41)
柴胡	1. Angelica dahurica (Fisch.ex Hoffm.) Benth.et Hook.f.	572 (31.57)
1. Angelica dahurica (Fisch.ex Hoffm.) Benth.et Hook.f.	2. Angelica dahurica (Fisch. ex Hoffm.) Benth.et Hook.f.var.formosana (Boiss.) Shan et Yuan	572 (31.57)
Liu ji nu 留夏	Herba Artemisiae Anomalae	546 (30.13)
Xiao hui xiang 小茴香	Foeniculum vulgare Mill.	536 (29.58)
Hou po 垂朴	1. Magnolia officinalis Rehd.et Wils.	526 (29.03)
芫花	2. Magnolia officinalis Rehd.et Wils.var.biloba Rehd.et Wils.	526 (29.03)
Herba Artemisiae Anomalae	3. Amomum longiligulare T.L.Wu	526 (29.03)
Yan hu kao 延胡索	Corydalis yanhusuo W.T. Wang	763 (42.11)
Bai zhu 白术	Atractylodes macrocephala Koiz.	761 (42.00)
芫花	1. Angelica dahurica (Fisch.ex Hoffm.) Benth.et Hook.f.	572 (31.57)
甘草	2. Angelica dahurica (Fisch. ex Hoffm.) Benth.et Hook.f.var.formosana (Boiss.) Shan et Yuan	572 (31.57)
Dang shen 麦冬	1. Codonopsis pilosula (Franch.)Nannf.	489 (26.99)
丹参	2. Codonopsis pilosula Nannf.var.modesta (Nannf.) L.T.Shen	489 (26.99)
丹参	3. Codonopsis tangshenOliv.	489 (26.99)
Qiang huo 香附	1. Notopterygium incisum Ting ex H. T. Chang	467 (25.77)
香附	2. Notopterygium franchetti H. de Boiss.	467 (25.77)
甘草	1. Glycyrrhiza uralensis Fisch.	493 (27.21)
小茴香	2. Glycyrrhiza inflata Bat.	493 (27.21)
甘草	3. Glycyrrhiza glabra L.	493 (27.21)
Dang shen 麦冬	1. Codonopsis pilosula (Franch.)Nannf.	489 (26.99)
丹参	2. Codonopsis pilosula Nannf.var.modesta (Nannf.) L.T.Shen	489 (26.99)
丹参	3. Codonopsis tangshenOliv.	489 (26.99)
Qiang huo 香附	1. Notopterygium incisum Ting ex H. T. Chang	467 (25.77)
香附	2. Notopterygium franchetti H. de Boiss.	467 (25.77)
甘草	1. Glycyrrhiza uralensis Fisch.	493 (27.21)
小茴香	2. Glycyrrhiza inflata Bat.	493 (27.21)
甘草	3. Glycyrrhiza glabra L.	493 (27.21)

No., number.

The active compound of *chuan xiong*, Senkyunolide I, exerts antimigraine effects by adjusting monoamine neurotransmitters levels and turnover rates and decreases nitric oxide levels in the blood and brain (66). Also, the volatile oil from *chuan xiong* presents an analgesic effect by inhibiting the *c-fos* gene expression and plasma CGRP in nitroglycerin-induced headaches in rats (67). In addition, a *chuan xiong* extract, ligustazine, showed potent activity against nitroglycerin-induced migraine in rats by inhibiting the *c-fos/ERK* signaling pathway (68).

The formula CXCTS has also been widely used in historical and current clinical practice (69, 70), and has been proven effective for migraine management (71). CXCTS exerts antimigraine effects by reducing the CGRP level (72) and inhibiting the PI3K-AKT and HIF-1 signaling pathways (73). The formula YQCMT was proved to be more effective than flunarizine in treating vestibular migraine with a Chinese medicine syndrome of *qi* deficiency (74). Mechanisms on the core herb pairs for migraine are yet to be discovered and require further bench research.
Discussion

Summary of the results

Migraine is a prevalent, disabling disease that causes significant burdens on patients and the health system. As current conventional migraine management, including pharmacotherapies and lifestyle changes, is not always effective, it is important to explore how complementary and alternative treatments for migraines can be used in real-world clinical practice. EMRs are invaluable sources of real-world data that can be used to generate clinical practice evidence (75). Hospital-based EMRs have the natural advantages of being reliable sources, large sample sizes, structured frameworks, and diverse levels (76). This real-world clinical data provides first-hand, convincing information about Chinese medicine clinicians’ experience (77), which can vitally contribute to evidence-based practice (78).

This retrospective study summarized migraine patients’ characteristics, comorbidities, and triggers based on EMRs from a tertiary Chinese medicine hospital with approximately seven million outpatient visits annually. The gender distribution of all EMRs (female to male ratio 3.4:1), among patients receiving CHM (1,395:395) and acupuncture-related treatments (264:84), are all consistent with previous epidemiological studies (79, 80). The age range of patients is also consistent with the Global Burden of Disease Study (9). The comorbidities (e.g., sleep disorders, anxiety, and depression) and triggers (e.g., fatigue, stress, diet, poor sleep, and menstruation) identified in this study have been commonly reported in previous research (2–5, 81–85). This study found that fatigue is the most commonly reported trigger of migraine attacks. However, fatigue might be a prodromal symptom (86) rather than a trigger, and migraine patients might not be able to differentiate between prodromal symptoms and triggers. In addition, it should be acknowledged that the information on triggers collected from EMRs was not as
The support level was set as 5%, confidence level as 50%. Bidirectional associations with lift over 3.0 were presented.
TABLE 6 Core herb combinations in Chinese herbal decoctions for which patients reported improvements.

Consequent	Antecedent	Support %	Confidence %	Lift
Jing jie 别芥	Bo he 薄荷 and fang feng 防风	5.02	98.90	16.91
Jing jie 别芥	Bo he 薄荷 and feng feng 防风 and qiang huo 茶花	5.02	98.90	16.91
Jing jie 别芥	Bo he 薄荷 and feng feng 防风 and chuan xiong 香果	5.02	98.90	16.91
Jing jie 别芥	Bo he 薄荷 and qiang huo 茶花 and bai zhi 白芷	5.02	98.90	16.91
Jing jie 别芥	Bo he 薄荷 and feng feng 防风和 qiang huo 茶花 and chuan xiong 川芎	5.02	98.90	16.91
Jing jie 别芥	Bo he 薄荷 and qiang huo 茶花 and bai zhi 白芷	5.02	98.90	16.91
Jing jie 别芥	Bo he 薄荷 and qiang huo 茶花 and chuan xiong 川芎	5.13	96.77	16.54
Jing jie 别芥	Bo he 薄荷 and fang feng 防风和 qiang huo 茶花 and bai zhi 白芷	5.13	96.77	13.81
Jing jie 别芥	Bo he 薄荷 and fang feng 防风 and bai zhi 白芷	5.13	96.77	13.81
Jing jie 别芥	Bo he 薄荷 and fang feng 防风和 chuan xiong 川芎	5.13	96.77	13.81
Jing jie 别芥	Bo he 薄荷和 qiang huo 茶花 and bai zhi 白芷 and chuan xiong 川芎	5.13	96.77	13.81
Jing jie 别芥	Bo he 薄荷 and bai zhi 白芷 and chuan xiong 川芎	5.19	95.74	13.66
Jing jie 别芥	Bo he 薄荷 and bai zhi 白芷 and chuan xiong 川芎	5.19	95.74	13.66
Fang feng 防风	Pi pa ye 柏枝叶和 qiang huo 茶花	5.52	99.00	12.12
Fang feng 防风	Pi pa ye 柏枝叶和 qiang huo 茶花 and chuan xiong 川芎	5.41	98.98	12.12
Fang feng 防风	Jing jie 别芥 and bai zhi 白芷 and chuan xiong 川芎	5.19	99.92	12.21
Fang feng 防风	Jing jie 别芥 and fang feng 防风 and chuan xiong 川芎	5.19	98.94	11.21
Fang feng 防风	Jing jie 别芥 and fang feng 防风和 qiang huo 茶花 and bai zhi 白芷	5.19	98.94	12.21
Fang feng 防风	Jing jie 别芥和 fang feng 防风和 bai zhi 白芷和 chuan xiong 川芎	5.19	98.94	11.21
Fang feng 防风	Bo he 薄荷和 qiang huo 茶花和 bai zhi 白芷和 chuan xiong 川芎	5.02	98.90	12.21
Fang feng 防风	Bo he 薄荷和 chuan xiong 川芎和 bai zhi 白芷和 chuan xiong 川芎	5.02	98.90	12.21
Fang feng 防风	Bo he 薄荷和 chuan xiong 川芎和 bai zhi 白芷和 chuan xiong 川芎	5.02	98.90	12.21
Fang feng 防风	Jing jie 别芥 and chuan xiong 川芎	5.46	97.98	12.00
Fang feng 防风	Jing jie 别芥和 chuan xiong 川芎	5.24	97.89	11.99
Fang feng 防风	Jing jie 别芥和 qiang huo 茶花和 bai zhi 白芷	5.24	97.89	11.99
Fang feng 防风	Jing jie 别芥和 chuan xiong 川芎和 bai zhi 白芷	5.24	97.89	11.99
Fang feng 防风	Bo he 薄荷和 qiang huo 茶花和 chuan xiong 川芎	5.13	98.95	11.88
Fang feng 防风	Bo he 薄荷和 qiang huo 茶花和 chuan xiong 川芎	5.13	98.95	11.88
Fang feng 防风	Jing jie 别芥和 qiang huo 茶花	5.30	98.88	11.86
Sheng ma 升麻	Huang qi 黄芪 and yuan zhi 云芝 and ge gen 菟根	5.24	98.95	11.21
Sheng ma 升麻	Huang qi 黄芪 and man jing jing 男精 and bai zhi 白术	5.24	98.95	11.21
Sheng ma 升麻	Huang qi 黄芪 and yuan zhi 云芝 and ge gen 菟根 and fu ling 福苓	5.24	98.95	11.21
Sheng ma 升麻	Ze xie 桂枝 and Huang qi 黄芪 and yuan zhi 云芝	5.13	98.92	11.20
Sheng ma 升麻	Ze xie 桂枝和 yuan zhi 云芝 and man jing jing 男精和 feng feng 伏苓	5.13	98.92	11.20
Sheng ma 升麻	Huang qi 黄芪 and yuan zhi 云芝 and man jing jing 男精和 feng feng 伏苓	5.13	98.92	11.20
Sheng ma 升麻	Huang qi 黄芪 and yuan zhi 云芝 and man jing jing 男精和 feng feng 伏苓	5.13	98.92	11.20
Sheng ma 升麻	Yuan zhi 椤子 and man jing jing 男精 and ge gen 菟根	5.13	98.92	11.20
Sheng ma 升麻	Yuan zhi 椤子 and man jing jing 男精和 ge gen 菟根和 fu ling 福苓	5.13	98.92	11.20
Sheng ma 升麻	Yuan zhi 椤子和 ge gen 菟根和 fu ling 福苓	5.13	98.92	11.20
Sheng ma 升麻	Ze xie 桂枝和 Huang qi 黄芪 and yuan zhi 云芝 and man jing jing 男精和 feng feng 伏苓	5.13	98.92	11.20

(Continued)
TABLE 6 (Continued)

Consequent Antecedent	Support %	Confidence %	Lift
Sheng ma Ze xie and huang qi and yuan zhi and ge gen and fu ling	5.13	98.92	11.20
Sheng ma Ze xie and yuan zhi and man jing zi and ge gen and fu ling	5.13	98.92	11.20
Sheng ma Huayu and yuan zhi and man jing zi and ge gen and fu ling	5.13	98.92	11.20
Sheng ma Ze xie and yuan zhi and man jing zi and ge gen and fu ling	5.13	98.92	11.20
Sheng ma Huayu and yuan zhi and man jing zi and ge gen and fu ling	5.08	98.91	11.20
Sheng ma Huayu and man jing zi and ge gen and fu ling	5.08	98.91	11.20
Sheng ma Huayu and yuan zhi and man jing zi and ge gen and fu ling	5.08	98.91	11.20
Sheng ma Huayu and man jing zi and ge gen and fu ling	5.08	98.91	11.20
Sheng ma Yuan zhi and man jing zi	5.19	97.87	11.08
Sheng ma Yuan zhi and man jing zi and ge gen	5.19	97.87	11.08
Sheng ma Huayu and man jing zi and ge gen and fu ling	5.13	97.85	11.08
Sheng ma Huayu and yuan zhi and man jing zi and ge gen and fu ling	5.02	96.70	10.95
Sheng ma Huayu and yuan zhi and man jing zi and ge gen and fu ling	5.02	96.70	10.95
Sheng ma Huayu and yuan zhi and man jing zi and ge gen and fu ling	5.02	96.70	10.95
Sheng ma Huayu and yuan zhi and man jing zi and ge gen and fu ling	5.02	96.70	10.95
Sheng ma Huayu and yuan zhi and man jing zi and ge gen and fu ling	5.02	96.70	10.95
Sheng ma Huayu and yuan zhi and man jing zi and ge gen and fu ling	5.02	96.70	10.95
Sheng ma Huayu and yuan zhi and man jing zi and ge gen and fu ling	5.02	96.70	10.95

Support level was set at 5%, and confidence level at 95%. Associations with lift ≥ 10 were presented.
TABLE 7 Association rules between comorbidities/triggers and herbs.

Consequent	Antecedent	Support %	Confidence %	Lift	Functions of the herb
Xiao hui xiang	Menstruation	14.96	67.90	2.30	Expelling the Coldness and warming the meridian, alleviating pain, activating the circulation of qi
Wu yao	Menstruation	14.96	76.75	2.23	Activating the circulation of qi and alleviating pain, expelling the Coldness, and warming the Kidney
Sha ren	Menstruation	14.96	64.58	2.22	Eliminating dampness and activating the circulation of qi
Ya jiao ai	Menstruation	14.96	66.79	2.22	Activating the circulation of Blood and removing the Stasis of Blood, smoothing the meridians, and alleviating the pain
Xiang fu	Menstruation	14.96	69.00	2.04	Smoothing the Liver meridian, activating the circulation of qi and Blood, and alleviating the pain
Chen pi	Menstruation	14.96	82.29	2.03	Tonifying the Spleen, activating the circulation of qi and eliminating Dampness and Phlegm

The support level was set as 5%, confidence level as 50%. Associations with lift ≥ 2.0 were presented.

TABLE 8 Frequently used patented Chinese herbal medicine products for which patients reported improvements.

Names in pinyin and Chinese characters	No. (%) (Total valid No. = 1,158)	Ingredients
Tong tian oral solution	762 (65.80)	chuan xiong 川芎, chi zhao 陈皮, tian ma 天麻, qiang huo 羌活, bai zheng 白芷, xi xin 姜炙, ju hua 菊花, bo he 薄荷, jiang feng 青风, sha 砂, gan cao 甘草
Jian weiyu yu yang tablet	208 (17.96)	chai hu 柴胡, dang shen 党参, bai shao 白芍, yuan hu suo 原胡索, bei jie 白芥, zhu cong ceng 珠丛层, qing dai 青黛, gan cao 甘草
Tian shu tablet 天舒片	206 (17.79)	chuan xiong 川芎, tian ma 天麻
Er shi wu wei shan hu capsule	196 (16.93)	shan hu 龙骨, suan zao ren 酸枣仁, dan shen 丹参, wu wei zi 五味子
Zao ren an shen capsule	126 (10.88)	suan zao ren 酸枣仁, dan shen 丹参, wu wei zi 五味子
Wei su granulate胃苏颗粒	120 (10.36)	zi su 芝苏, xiang fu 香附, shi chang pu 白术, ji nei jin 金银花
Yang xue qing nao granule	94 (8.12)	dang gui 当归, chuan xiong 川芎, bai shao 白芍, zhi qiao 柴胡, shi chang pu 白术
Deng zhan sheng mai capsule	34 (2.94)	deng zhan xi xin 盆栽盆景, ren shen 人参, wu wei zi 五味子, mai dong 麦冬
San qi tong shu capsule	32 (2.76)	san qi 三七
Song ling xue mai kang capsule	26 (2.25)	song ye 松叶, ge gen 葛根, pearl powder 珍珠粉
Wu ling capsule 天麻胶囊	26 (2.25)	he zi 蜈蚣, cao wu 草乌, chuan xiong 川芎, tian ma 天麻
Zha sha tong mai pill	26 (2.25)	chuan xiong 川芎, tian ma 天麻, hua hua 花黄, chi zhao 陈皮, xue fu 熊果酸, zuo cuo 跌打granule, niu huang 牛黄, huang qi 黄芪, xi xin 五味子
Tian dan tong huo capsule	25 (2.16)	chuan xiong 川芎, zhi qiao 柴胡, tian ma 天麻, hua hua 花黄, shu jiang 苦参, tao 藤
Xue fu zhu yu oral solution/tablet	23 (1.99)	tao ren 桃仁, hua hua 花黄, tang xian 川芎, zhi qiao 柴胡, xin 胸, xin 胸, xin 胸, xin 胸

No., number.
worth noting that improvements in comorbidities, such as insomnia and anxiety, were reported, although anti-depressant and hypnotic drugs were rarely used. Such findings could indicate the potential effects of Chinese medicine in managing various comorbidities and requires further exploration in future studies.

The treatment duration for migraine in the Chinese hospital (mean = 10 days) is shorter than the recommended duration of “at least 4 weeks” for conventional pharmacotherapies (10, 11). The duration for patients to report general improvements is also relatively short (median duration = 14 days), though not rigorously measured. This raised our curiosity about the optimal treatment duration and long-term effects of Chinese medicine. Whether adding Chinese medicine therapies to migraine management could shorten the required treatment duration is yet to be discovered.

Most patients were treated with a single type of treatment, mainly CHM (53.58%) or acupuncture (7.22%). Although both monotherapy and combination therapies of Chinese medicine with conventional pharmacotherapies have been proven effective for migraine in clinical trials (23–25), we suggest a pragmatic trial to compare the therapeutic effects and economic cost of Chinese medicine alone to that of Chinese medicine combined with conventional pharmacotherapies.

Furthermore, the study provided real-world clinicians’ experience of prescribing CHM for migraine. The frequency analysis results revealed that the most frequently used herbs are fu ling and chuan xiong, the most frequently used formula is CXCTS, and PCHMP is tong tian oral solution. These herbs and formulae have been proven to carry potential anti-migraine effects in previous bench or clinical research.

Identifying core CHM treatments is essential for selecting candidates for basic research, clinical trials, and daily practice (93, 94). Herb pair is the smallest compatible unit in CHM formulae, referring to two individual herbs repeatedly coexisting to enhance therapeutic effects or reduce toxicity (95). The top herb pair with a bidirectional association is bo he and jing jie. The core formulae found by herb combination construction include CXCTS and YQCMT, while CXCTS is also the basic formula for tong tian oral solution. These formulae are recommended for migraine treatment in the Guidelines for Diagnosis and Treatment of Common Internal Diseases in Chinese Medicine (96).

The constructed association rules between comorbidities/triggers and herbs indicate that females with menstruation-triggered migraine are more likely to be prescribed herbs that warm the meridian and activate the circulation of Blood and qi. This is consistent with recently published data-mining results (97). These results provide insight into the management of menstrual migraine and menstrually related migraine. We did not conduct association rule construction between other health conditions (e.g., hypertension and diabetes) and herbs, because (1) these conditions are not closely associated with migraine; and (2) they were not detailed in the EMRs for patients who visited the hospital to seek migraine treatment.

Limitations

The findings of this study should be interpreted with several limitations in mind. First, the patients’ characteristics, triggers, and comorbidities were collected from the EMRs, then there is a lack of consistency in depth and detail across EMRs. Second, the treatment response was defined and extracted based on the text recorded in the EMRs. It was not feasible for us to rigorously evaluate the effectiveness, because clinicians did not record treatment effects assessed by standard outcome measures as is done in clinical trials. Third, this study was conducted in one Chinese medicine hospital, so the results may be restricted in generality and more valuable for Chinese medicine clinical practice in southern China. Multi-center, prospective registry studies based on different geographic locations will provide more accurate and applicable information about Chinese medicine treatments for migraine.

Conclusion

This study presented the clinical features of 2,023 migraine patients and their treatment patterns, based on their EMRs in a Chinese medicine hospital. CHM can be used as an alternative to conventional pharmacotherapies, given that CHM was taking predominant treatment for migraine management while acute medication and prophylactic medicine were only prescribed to a small proportion of the migraine patients in the hospital. CHM formulae, such as chuan xiong cha tiao san and yi qi cong ming tang, patented CHM product tong tian oral solution, and some herb ingredients are potentially effective for migraine and are worth further evaluation. The optimal treatment duration, long-term effects, and treatment-effect curve of Chinese medicine for migraine need further exploration.

Data availability statement

The original contributions presented in this study are included in the article/supplementary material,
further inquiries can be directed to the corresponding author/s.

Author contributions
SL and CZ planned and drafted the article. CZ, AZ, JS, XG, and CX provided the informative and critical comments on the manuscript revision. SL and HW extracted and screened the data. SL conducted the data analyses. SL, XG, and AZ undertook the final proofing of the manuscript and are responsible for its accuracy. All authors critically revised the manuscript and approved the final version.

Funding
This study was supported by the China-Australia International Research Centre for Chinese Medicine and funded by the Guangzhou University of Chinese Medicine "Double First-Class” and High-level University Discipline Collaborative Innovation Team (No. 2021xk84).

References
1. Cephalalgia. Headache classification committee of the international headache society (IHS). The international classification of headache disorders 3rd edition. Cephalalgia. (2018) 38:1–211. doi: 10.1177/0333102417738202
2. Jette N, Patten S, Williams J, Becker W, Wiebe S. Comorbidity of migraine and psychiatric disorders—a national population-based study. Headache. (2008) 48:501–16. doi: 10.1111/j.1526-4610.2007.00993.x
3. Kim J, Cho SJ, Kim WJ, Yang KL, Yun CH, Chu MK. Insufficient sleep is prevalent among migraineurs: a population-based study. J Headache Pain. (2017) 18:50. doi: 10.1186/s10194-017-0756-8
4. Kozak HH, Boyans M, Uca AU, Aydi A, Kldü, I, Genç E, et al. Sleep quality, morningness-eveningness preference, mood profile, and levels of serum melatonin in migraine patients: a case-control study. Acta Neurol Belg. (2017) 117:111–9. doi: 10.1007/s13760-016-0273-1
5. Song TJ, Yun CH, Cho SJ, Kim WJ, Yang KL, Chu MK. Short sleep duration and poor sleep quality among migraineurs: a population-based study. Cephalalgia. (2018) 38:855–64. doi: 10.1177/0333102417716936
6. Torta R, Ieraci V. Migraine and depression comorbidity: antidepressant options. Neurof Sci. (2012) 33(Suppl. 1):S117–8. doi: 10.1007/s10072-012-1055-4
7. Hagen K, Åsberg AN, Stovner L, Linde M, Zwart JA, Winsvold BS, et al. Lifestyle factors and risk of migraine and tension-type headache. Follow-up data from the nord-trøndelag health surveys 1995-1997 and 2006-2008. Cephalalgia. (2018) 38:1919–26. doi: 10.1177/0333102418746888
8. Holstein KK, Hittle M, Barad M, Nelson LM. Development and internal validation of a multivariable prediction model for individual episodic migraine attacks based on daily trigger exposures. Headache. (2020) 60:2364–79. doi: 10.1111/head.13960
9. Gbd 2016 Headache Collaborators. Global, regional, and national burden of migraine and tension-type headache, 1990–2016: a systematic analysis for the Global burden of disease study 2016. Lancet Neurol. (2018) 17:954–76. doi: 10.1016/s1474-4422(18)30322-3
10. Chaplin S. SIGN on the pharmacological management of migraine. Prescriber. (2018) 29:27–31.
11. Chinese Medical Association Group. Guide to the prevention and treatment of migraine in China [in Chinese]. Chin J Pain Med. (2016) 22:721–7.
12. Lipton RB, Munjal S, Buse DC, Alam A, Fanning KM, Reed ML, et al. Unmet acute treatment needs from the 2017 migraine in america symptoms and treatment study. Headache. (2019) 59:1310–23. doi: 10.1111/head.13588
13. Lipton RB, Buse DC, Serrano D, Holland S, Reed ML. Examination of unmet treatment needs among persons with episodic migraine: results of the American Migraine Prevalence and Prevention (AMPP) study. Headache. (2013) 53:1300–11. doi: 10.1111/head.12154
14. Kim BK, Chu MK, Yu SJ, Dell’Agnello G, Han JH, Cho SJ. Burden of migraine and unmet needs from the patients’ perspective: a survey across 11 specialized headache clinics in Korea. J Headache Pain. (2021) 22:45. doi: 10.1186/s10194-021-01250-6
15. Sun-Edelstein C, Rapoport AM, Rattanawong W, Srikiatkhachorn A. The evolution of medication overuse headache: history, pathophysiology and clinical update. CNS Drugs. (2021) 33:545–65. doi: 10.1007/s40263-021-00818-9
16. Bigal ME, Lipton RB. Excessive opioid use and the development of chronic migraine. Pain. (2009) 142:179–82. doi: 10.1016/j.pain.2009.01.013
17. Schwedt TJ, Alam A, Reed ML, Fanning KM, Munjal S, Buse DC, et al. Factors associated with acute medication overuse in people with migraine: results from the 2017 migraine in America symptoms and treatment (MAST) study. J Headache Pain. (2018) 19:38–38. doi: 10.1186/s10194-018-0865-z
18. Radat F, Creach C, Swendsen JD, Lafiattau M, Irachabal S, Dousset V, et al. Psychiatric comorbidity in the evolution from migraine to medication overuse headache. Cephalalgia. (2005) 25:519–22. doi: 10.1111/j.1468-2982.2005.00910.x
19. Schwedt TJ, Buse DC, Argoff CE, Reed ML, Fanning KM, Hussar CR, et al. Medication overuse and headache burden: results from the CaMEO study. Neurol Clin Pract. (2021) 11:216–26. doi: 10.1212/cnp.0000000000001037
20. Rhee TG, Harris IM. Reasons for and perceived benefits of utilizing complementary and alternative medicine in U.S. adults with migraines/severe headaches. Complement Ther Clin Pract. (2018) 30:44–9. doi: 10.1016/j.ctcp.2017.12.003

Acknowledgments
We appreciate the assistance provided by the Information Technology Department of GPHCM with data extraction, Genghang Chen for his guidance on statistical analyses, and Louise Pobjoy for proofreading this manuscript.

Conflict of interest
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
database.

J Headache Pain.

Evid Based Complement medicine as prophylactic treatment for episodic migraine in adults: a systematic review and meta-analysis of randomized controlled trials. Evid Based Complement Alternat Med. (2020) 2020:5181587. doi: 10.1155/2020/5181587

Chin Med.

Complementary and alternative medicine use among adults with migraines/severe weather and the clinical features of headaches in patients with migraine and tension-type headaches. Headache. (2020) 60:954–66. doi: 10.1111/head.13806

Steiner T, MacGregor EA, Davies PTG. Guidelines for All Healthcare Professionals in the Diagnosis and Management of Migraine, Tension-Type, Cluster and Medication-Overuse Headache. (2010).

Pringheim T, Davenport W, Mackie G, Worthington I, Aube M, Christie SN, et al. Canadian headache society guideline for migraine prophylaxis. Can J Neurol Sci. (2012) 39(Suppl. 2):S1–59.

Worthington I, Pringheim T, Gawel MJ, Gladstone J, Cooper P, Dilli E, et al. Canadian headache society guideline for migraine. Can J Neurol Sci. (2013) 40(Suppl. 3):S1–80.

National Administration of Traditional Chinese Medicine. Diagnostic criteria and category of treatment response of toufeng headache and medication-overuse headache [in Chinese]. (Beijing: Univ Tradit Chin Med. (1995)) 16:69.

J Headache Pain.

J Integr Med. (2018) 6:50. doi: 10.1016/S2079-6510(17)30082-1

JMIR Med Inform. (2020) 8:e17652. doi: 10.2196/17652

http://www.gdhtcm.com/index.html (accessed November 9, 2021).

60:309–17. doi: 10.1111/head.13723

Mol Cell Biochem.

1097/wnr.0000000000001648

Cephalalgia.

Front Neurol. (2021) 11:57623. doi: 10.3389/fneur.2021/648003

Front Med. (2018) 12:312–21. doi: 10.1016/j.jmfr.2018.05.008

Chin J Tradit Chine Med.

Front Neurol. (2018) 9:589. doi: 10.3389/fneur.2018.00589

J Headache Pain.

Cephalalgia.

J Am Dent Assoc. (2005) 45:904–10.

Frontiers in Medicine 17 frontiersin.org

Front Neurol. (2015) 73:829–35. doi: 10.1016/j.jaad.2015.08.039

BMJ Support Palliat Care. (2021/7582581

Spring2017/slides/lecture_4-11-17.pdf (accessed March 8, 2022).

10.1186/s10194-020-00204

J Headache Pain.

J Acupunct. (2019) 41:1–5. doi: 10.1016/j.jacup.2019.01.1337

J Headache Pain.

J Integr Med. (2016) 16:312–21. doi: 10.1016/j.jimj.2016.08.062

J Headache Pain.

J Headache Pain.

J Headache Pain.

J Headache Pain.

Int J Acupunct. (2019) 47:1755–80. doi: 10.1142/s0192415x19500897

J Headache Pain.

J Headache Pain.
65. Fan R. Based on Data Mining of the Jin ad Yuan Dynasty in the Treatment of Headache Prescription Medication Law [in Chinese]. Master Thesis. Jinan: Shandong Traditional Chinese Medicine University (2014).

66. Wang YH, Liang S, Xu DS, Lin X, He CY, Feng Y, et al. Effect and mechanism of senkyunolide I as an anti-migraine compound from Ligusticum chuanxiong. J Pharm Pharmacol. (2011) 63:261–6. doi: 10.1111/j.1440-1681.2010.01191.x

67. Peng C, Xie X, Wang L, Guo L, Hu T. Pharmacodynamic action and mechanism of volatile oil from Rhizoma Ligustici Chuanxiong Hort. on treating headache. Phytomedicine. (2009) 16:25–34. doi: 10.1016/j.phymed.2008.10.010

68. Li H, Bai F, Cong C, Chen B, Xie W, Li S, et al. Effects of liguistazoline on the expression of neurotransmitters in the trigeminal ganglion of a rat migraine model. Acta Neurol Scand. (2021) 9:1318. doi: 10.21037/atm-21-3423

69. Chang YG, Tsai YT, Liu JN, Yeh CH, Lin SK. The traditional Chinese medicine prescription patterns for migraine patients in Taiwan: a population-based study. J Ethnopharmacol. (2014) 151:1209–17. doi: 10.1016/j.jep.2013.12.040

70. Wang L. The Research of Theory of Ancient Prescription Treating Headache Characteristics of Medication and Rule of Prescription Compatibility [in Chinese]. Master Thesis. Jinan: Shandong Traditional Chinese Medicine University (2015).

71. Wang Y, Shi Y, Zhang X, Zhou J, Liang Y, Tai J, et al. A Chinese prescription Chuanxiong Chaitiao san for migraine: a systematic review and meta-analysis of randomized controlled trials. Evid Based Complement Alternat Med. (2019) 2019:2301680. doi: 10.1155/2019/2301680

72. Li D, Yao H, Sun K. Effects of micro Chuanxiong chaitiao san on β-EP, CGRP of migraine mice [in Chinese]. Anaesthesia and a series of mechanisms of effect of CGRP. The impact. J Henan College of Traditional Chinese Medicine. (2020) 40:1–3.

73. Li J, Zhang Y, Sun F, Fan H, Shou Z. Mechanism of Chuanxiong chaitiao san for migraine: a study based on network pharmacology analysis [in Chinese]. Chinese Journal of Experimental Traditional Chinese Medicine. (2021) 49:780–3.

74. Gu J. Effectiveness of the Method of Tonifying qi and Yang for Vastibular Migraine with a Syndrome of qi Deficiency. A Clinical Trial [in Chinese]. Chinese Journal of Emergency Medicine. (2020) 2:140–13.

75. Food and Drugs Administration. Framework for FDA’s Real-World Evidence Program. Silver Spring, MD: Food and Drugs Administration (2018).

76. Zhaung X, Xie B, Weng S, Xie Y. Designs and thoughts of real-world evidence studies on the efficacy and safety of Chinese medicine. Chin J Mater Med. (2011) 36:2880–2.

77. Zhou X, Chen S, Liu B, Zhang R, Wang Y, Li P, et al. Development of traditional Chinese medicine clinical data warehouse for medical knowledge discovery and decision support. Artif Intell Med. (2010) 48:139–52. doi: 10.1016/j.artmed.2009.07.012

78. Dawes M, Summerskill W, Glasziou P, Davis KL. The association of migraine pathophysiology with migraine headache. Acta Neurol Scand. (2016) 135:195–7. doi: 10.1111/ane.12884

79. Jiang L, Yuan DL, Li M, Liu C, Liu Q, Zhang Y, et al. Combination of flunarizine and topiramate in migraine prophylaxis. Cephalalgia. (2019) 39:1518–34. doi: 10.1177/0333102419851855

80. Takaki H, Onozuka D, Hagihara A. Migraine-preventive prescription patterns by physician specialty in ambulatory care settings in the United States. Prev Med Rep. (2018) 9:6–7. doi: 10.1016/j.pmedr.2017.12.009

81. Jackson JL, Kay C, Scholoff C, Nickoloff S, Fletcher K. Migraine prophylactic management in neurology and primary care (2016-2015). J Neurol. (2019) 265:3019–21. doi: 10.1177/0022321719087618-6

82. Luo N, Di W, Zhang A, Wang Y, Ding M, Qi W, et al. A randomized, one-year clinical trial comparing the efficacy of topiramate, flunarizine, and a combination of flunarizine and transcutaneous supraorbital neurostimulation improves migraine prophylaxis. Acta Neurol Scand. (2019) 139:276–83. doi: 10.1111/ane.13050

83. Luo N, Di W, Zhang A, Wang Y, Ding M, Qi W, et al. A randomized, one-year clinical trial comparing the efficacy of topiramate, flunarizine, and a combination of flunarizine and transcutaneous supraorbital neurostimulation improves migraine prophylaxis. PAIN. (2012) 138:860–6. doi: 10.1016/j.pain.2011.09.009

84. Zhong G. Chinese Materia Medica [in Chinese]. (2007) 187:142–6. doi: 10.5694/j.1326-5377.2007.080179. x

85. Silva-Néto RP, de Almeida Soares A, Augusto Carvalho de Vasconcelos C, da Silva Lopes L. Watermelon and other plants foods that trigger headache in migraine patients. Postgrad Med. (2021) 133:760–4. doi: 10.1002/pmm.20859

86. Cuvellier JC. Pediatric vs. Adult proctome and postdrome: a window on migraine pathophysiology? Front Neurol. (2019) 10:199. doi: 10.3389/fneur.2019.00199

87. Stark BJ, Valenti L, Miller GC. Management of migraine in Australian general practice. Med J Aust. (2007) 187:142–6. doi: 10.5694/j.1326-5377.2007.080179. x

88. Meyers JL, Davis KL, Lenz RA, Sakai F, Xue F. Treatment patterns and characteristics of patients with migraine in Japan: a retrospective analysis of health insurance claims data. Cephalalgia. (2019) 39:1518–34. doi: 10.1177/0333102419851855

89. Chen HY, Lin YH, Chen YC. Identifying Chinese herbal medicine network for treating acne: implications from a nationwide database. J Ethnopharmacol. (2016) 179:1–8. doi: 10.1016/j.jep.2015.12.032

90. Chen HY, Lin YH, Thien PF, Chang SC, Chen YC, Lo SS, et al. Identifying core herbal treatments for children with asthma: implication from a chinese herbal medicine database in Taiwan. J Ethnopharmacol. (2013) 132:5943. doi: 10.1111/1365-3196

91. Zhao G. Chinese Materia Medica [in Chinese]. 1st ed. Beijing: Traditional Chinese Medicine publishing co (2004).

92. Ren Y, Li H, Wang Y, Chen Y. Report of guidelines for diagnosis and treatment of common internal diseases in Chinese medicine. Headache. J Ethnopharmacol. (2020) 137:10. doi: 10.1111/jep.2019.03378

93. Ren Z, Li S, Zheng T, Liu Z. Regularity of Chinese herbal medicine for menstrually related migraine: a data mining study [in Chinese]. J Natl Med Assoc (2021) 3:356–4.