Adaptor protein 2–mediated endocytosis of the β-secretase BACE1 is dispensable for amyloid precursor protein processing

Yogikala Prabhu1, Patricia V. Burgos2,b, Christina Schindlera, Ginny G. Fariasa, Javier G. Magadár3, and Juan S. Bonifacinoa

aCell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892; bLaboratorio de Biología Celular y Molecular, Instituto de Fisiología, Facultad de Medicina, and Centro de Investigación Sur-Austral en Enfermedades del Sistema Nervioso, Universidad Austral de Chile, Valdivia S11-0566, Chile

ABSTRACT The β-site amyloid precursor protein (APP)–cleaving enzyme 1 (BACE1) is a transmembrane aspartyl protease that catalyzes the proteolytic processing of APP and other plasma membrane protein precursors. BACE1 cycles between the trans-Golgi network (TGN), the plasma membrane, and endosomes by virtue of signals contained within its cytosolic C-terminal domain. One of these signals is the DXXLL-motif sequence DISLL, which controls transport between the TGN and endosomes via interaction with GGA proteins. Here we show that the DISLL sequence is embedded within a longer [DE]XXX[L][L]-motif sequence, DDISLL, which mediates internalization from the plasma membrane by interaction with the clathrin-associated, heterotetrameric adaptor protein 2 (AP-2) complex. Mutation of this signal or knockdown of either AP-2 or clathrin decreases endosomal localization and increases plasma membrane localization of BACE1. Remarkably, internalization-defective BACE1 is able to cleave an APP mutant that itself cannot be delivered to endosomes. The drug brefeldin A reversibly prevents BACE1-catalyzed APP cleavage, ruling out that this reaction occurs in the endoplasmic reticulum (ER) or ER–Golgi intermediate compartment. Taken together, these observations support the notion that BACE1 is capable of cleaving APP in late compartments of the secretory pathway.

INTRODUCTION Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by accumulation of intraneuronal fibrillary tangles and extracellular amyloid plaques in the brain (Hardy and Selkoe, 2002). The main constituent of amyloid plaques is an overlapping set of peptides known as amyloid-β (Aβ), which are generated by sequential cleavage of a type I transmembrane protein, the amyloid precursor protein (APP), by transmembrane β-secretase and γ-secretase enzymes. Increased Aβ levels have been linked to both familial and sporadic forms of AD. The rate-limiting enzyme for the production of Aβ in neurons is the β-secretase, β-site APP cleaving enzyme 1 (BACE1; Rossner et al., 2001). The levels of BACE1 increase with age (Fukumoto et al., 2004) and are particularly elevated in the brain cortex of patients with AD (Fukumoto et al., 2002, 2004; Holsinger et al., 2002, Yang et al., 2003), making BACE1 a prime target for therapeutic intervention (Vassar et al., 2009; Willem et al., 2009; Evin et al., 2010).

BACE1 is an aspartyl protease having two signature D(T/S)G(T/S) sequences (i.e., DTGS and DSGT) within its ectodomain (Figure 1A), which catalyzes the cleavage of several transmembrane substrates, including APP (Hunt and Turner, 2009; Vassar et al., 2009). BACE1 cleaves APP at two alternative sites, β and β’, in the APP ectodomain, generating transmembrane C-terminal fragments (CTFs) named CTFβ (C99) and CTFβ’ (C89), respectively (see later.

This article is published online ahead of print in MboC in Press (http://www.molbiolcell.org/cgi/doi/10.1091/mbc.E11-11-0944) on May 2, 2012. Address correspondence to Juan S. Bonifacino (juan@helix.nih.gov).

Abbreviations used: AD, Alzheimer’s disease; APP, amyloid precursor protein BACE1, β-site amyloid precursor protein (APP)-cleaving enzyme 1; Aβ, amyloid beta; CTF, C-terminal fragment; GGA, Golgi-associated, γ-adaptin homologous, ARF-riboarylase factor (ARF)-interacting protein; KD, knockdown; Y3H, yeast three-hybrid.

© 2012 Prabhu et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons license (http://creativecommons.org/licenses/by-nc-sa/3.0).

“ASCB,” “The American Society for Cell Biology,” and “Molecular Biology of the Cell” are registered trademarks of The American Society for Cell Biology.
There is conflicting evidence in the literature regarding the intracellular compartment(s) where the amyloidogenic processing of APP takes place. Whereas some studies favor the notion that APP is generated in the endosomal–lysosomal system (Haass et al., 1992; Koo and Squazzo, 1994; Perez et al., 1999; He et al., 2005; Wahle et al., 2005; Tesco et al., 2007), other studies indicate that APP generation occurs in the endoplasmic reticulum/intermediate compartment (ER/IC; Hartmann et al., 1997), the Golgi complex/trans-Golgi network (TGN; Thinakaran et al., 1996; Xu et al., 1997; Xia et al., 2000), or the plasma membrane (Chayung and Selkoe, 2003). At steady state, the majority of BACE1 localizes to endosomes and the TGN, reflecting its cycling between these compartments (Vassar et al., 1999; Huse et al., 2000; He et al., 2005). The lumen of both endosomes and the TGN is moderately acidic (pH 5–6; Yamashiro and Maxfield, 1984; Demaurex et al., 1998), providing an appropriate, albeit not optimal, environment for the enzymatic activity of BACE1, which has a pH optimum of −4.5 (Fukumoto et al., 2002). The intracellular localization and trafficking of BACE1 is controlled by the sequence DDLL (residues 496–500), which fits the consensus motif DXXLL (X is any amino acid; Bonifacino and Traub, 2003), in the cytosolic tail of the protein (Figure 1A). This sequence controls BACE1 recycling between the TGN and endosomes (Walter et al., 2001; Huse et al., 2002; Pastirino et al., 2002; Shiba et al., 2002; He et al., 2005; Tesco et al., 2007) through recognition by the Golgi-associated, γ-adaptin-homologous, ADP-ribosylation factor–interacting (GGA) proteins (Bonifacino, 2004). The dileucine (L499 and L500) that is part of the DXXLL motif also mediates BACE1 internalization from the plasma membrane (Huse et al., 2000; Pastirino et al., 2002), but the mechanism by which it participates in internalization and the machinery involved remains to be elucidated.

In this study, we show that the DDLL sequence is part of a longer sequence, DDSLL (residues 495–500), which fits another consensus motif, [DE]XXX[L][L], for endocytic and lysosomal-, melanosomal-, and basolateral-targeting signals (Bonifacino and Traub, 2003). We demonstrate that the DDSLL sequence mediates internalization of BACE1 by virtue of an interaction with the clathrin-associated, heterotetrameric adapter protein-2 (AP-2) complex. The DDSLL sequence is therefore a dual-function motif encompassing both DXXLL and [DE]XXX[L][L] signals that alternatively interact with the GGAs and AP-2, respectively. Mutation of the [DE]XXX[L][L] signal or knockdown (KD) of AP-2 or clathrin reduces internalization of BACE1. Remarkably, coexpression of BACE1 and APP mutants that are unable to reach endosomes from either the plasma membrane or the TGN does not prevent BACE1-catalyzed APP cleavage, supporting the notion that this cleavage can occur along the late secretory pathway, en route to the plasma membrane.

RESULTS

BACE1 interacts with the α-α2 hemocomplex of AP-2

Inspection of the BACE1 tail sequence revealed that the GGA-interacting DDLL sequence (Bonifacino, 2004) is part of a longer DDSSL sequence that fits the [DE]XXX[L][L] motif for dileucine-based sorting signals (Figure 1A). In general, [DE]XXX[L][L]-type signals are recognized by the heterotetrameric, clathrin-associated adapter protein.
The serine residue (S498) within this sequence can undergo phosphorylation, affecting its interaction with the VHS domain of GGA proteins and the intracellular localization of BACE1 (Walter et al., 2001; Shiba et al., 2004a). However, we observed that mutation of S498 to alanine had no effect on the interaction of the BACE1 tail with the α-$_2$ hemicomplex (Figure 1D). These experiments thus demonstrated that the DDISLL sequence from BACE1 behaves as a [DE]XXXL[LI] signal that specifically interacts with AP-2.

Involvement of AP-2 in the transport of BACE1 to endosomal compartments

We conducted functional analyses to examine the role of the DDSSL signal and AP-2 in the endosomal targeting of BACE1. Immunofluorescence microscopy of human neuroglioma H4 cells transfected with a construct encoding wild-type (wt) BACE1 tagged with the hemagglutinin (HA) epitope (BACE1-wt) showed predominant staining of punctate cytoplasmic structures (Figure 2, A and C), which
corresponded to endosomes and lysosomes, as shown by colocalization with transferrin receptor–positive sorting/recycling endosomes, Rab7-positive maturing endosomes, and Lamp-1–positive late endosomes and lysosomes (Supplemental Figure S1). Mutation of the dileucine (L499 and L500) to two alanine residues decreased endosomal localization and caused accumulation of BACE1 at the plasma membrane and in the juxtanuclear area of the cytoplasm (Figure 2, A and C, and Supplemental Figure S2), as previously reported (Pastorino et al., 2002). Mutation of D495 (part of the AP-2–binding motif but not the GGA-binding motif) to arginine had a similar effect (Figure 2, A and C). In contrast, mutation of S498 to alanine had little or no effect on the distribution of BACE1 (Figure 2, A and C), indicating that phosphorylation of this residue is unlikely to determine the steady-state localization of the protein. Similar results were obtained using rat hippocampal neurons (Figure 2, B and D). These experiments thus demonstrated that the DDISLL sequence indeed behaves as a canonical [DE]XXXL[LI]-type signal that mediates endosomal localization of BACE1.

Treatment of H4 cells stably expressing wild-type BACE1 with small interfering RNAs (siRNAs) targeting the α subunit of AP-2 (Figures 3, A and B, and 4) or clathrin heavy chain (CHC; Figure 3, C and D) caused partial redistribution of BACE1 from endosomes to the plasma membrane, as observed by immunofluorescence staining of fixed-permeabilized cells (Supplemental Figure S3). In contrast, siRNA-mediated KD of the γ subunit of AP-1 had no effect on BACE1 distribution (Supplemental Figure S4). Therefore the [DE]XXXL[LI]-mediated targeting of BACE1 to endosomes is dependent on the AP-2 complex and its binding partner, clathrin. Staining for BACE1 on the surface of nonpermeabilized cells revealed localization of this protein to puncta that also contained the transferrin receptor (TfR; Figure 4), characteristic of endocytic clathrin-coated pits (Hansen et al., 1992; Liu et al., 2010). KD of AP-2 α resulted in higher and more diffuse staining for both BACE1 and TfR at the cell surface (Figure 4). These findings indicated that AP-2 is required for colocalization of BACE1 and TfR to endocytic clathrin-coated pits at the plasma membrane.

Cell surface expression and internalization of BACE1 mutants

The increased surface expression of BACE1 mutants defective in AP-2 binding was corroborated biochemically using a surface biotinylation assay. In both H4 cells (Figure 5, A and B) and cortical neurons (Figure 5, C and D), mutation of the LL or D495 residues of the signal resulted in a twofold-to-threefold increase in the levels of BACE1 at the cell surface. Using the same assay, we demonstrated that siRNA-mediated KD of AP-2 α or CHC (Figure 5, E and F), but not AP-1 γ, AP-3 δ, or AP-4 ε (unpublished data), in H4 cells increased surface BACE1 levels by approximately threefold. These effects were similar to those on the TfR (unpublished data), a prototypic endocytic receptor that is internalized from the cell surface in an AP-2–dependent manner (Motley et al., 2003; Boucrot et al., 2010). These results confirmed that levels of BACE1 at the cell surface are controlled by the [DE]XXXL[LI] signal and the AP-2 endocytic adaptor.

We next examined whether alterations in the intracellular distribution and surface expression of BACE1 were due to changes in
the amount of protected BACE1 at these times, whereas mutation of S498 had no effect (Figure 6A). An antibody uptake assay also showed that mutation of the LL or D495 residues (Figure 6, B and C) or KD of AP-2 α or CHC (Figure 6D) inhibited internalization of BACE1.

Taken together, these experiments indicated that interaction of the [DE][XXX][LI] signal with AP-2 mediates internalization of BACE1, contributing to the steady-state localization of BACE1 to endosomes.

BACE1-catalyzed cleavage of APP is independent of BACE1 localization to endosomes

The ability to manipulate the endosomal localization of BACE1 by mutations in its cytosolic tail allowed us to investigate the importance of this localization for BACE1-catalyzed APP cleavage. BACE1 cleaves full-length APP at two sites (β and β′) to generate the transmembrane CTFs C99 and C89 (Figure 7A; Sinha et al., 1999; Vassar et al., 1999; Yan et al., 1999; Creemers et al., 2001; Liu et al., 2002). Alternatively, full-length APP, as well as C99, can be cleaved by α-secretase to yield C83 (Figure 7A). Further cleavage of C99 and C83 by γ-secretase yields the secreted Aβ and p3 peptides, respectively, in addition to the cytosolic AICD fragment (Figure 7A; Hunt and Turner, 2009; Burgos et al., 2010). Furthermore, caspases can cleave the cytosolic tail of the CTFs to yield C31 (Figure 7A), a reaction that is enhanced by inhibition of γ-secretase with the compound N-((3,5-difluorophenyl)acetyl)-l-ala-nyl-2-phenylglycine-1,1-dimethylethyl ester (DAPT; Burgos et al., 2010). Because of the complexity of APP processing, it is difficult to assess BACE1-catalyzed cleavage in isolation from the other reactions. To facilitate analysis of BACE1 activity, we generated an APP construct (APP-F/P-D/A) with mutations that inhibit cleavage by both α-secretase (F615P; Haass et al., 1994; Jäger et al., 2009) and caspases (D664A; Lu et al., 2000; Supplemental Figure S5). The APP-F/P-D/A mutant was expressed in combination with or without BACE1 constructs, and cleavage products were analyzed by immunoblotting with appropriate antibodies (Figure 7B).

We observed that expression of APP-F/P-D/A alone or in the presence of DAPT resulted in the appearance of two full-length species corresponding to the Golgi-processed (upper band) and ER (lower band) forms of APP (Figure 7B). In addition, we observed the generation of C99 and C83, products of endogenous β- and α-secretase cleavage, respectively (Figure 7B). The presence of C83 indicated that the inhibition of α-secretase by the F615P mutation was incomplete, a phenomenon that was enhanced by mutation of the caspase cleavage site (Supplemental Figure S5).
Coexpression with BACE1 resulted in complete loss of the Golgi form, but not the ER form, of the full-length APP mutant, pointing to a post-ER location of the β-secretase cleavage (Figure 7B). Of interest, the most prominent cleavage product under these conditions was C89 rather than C99 (Figure 7B), probably due to the high levels of β-secretase activity resulting from transgenic BACE1 expression. Loss of the Golgi form of full-length APP and appearance of C89 were prevented by a mutation in the BACE1 catalytic site (D289N; Schmechel et al., 2004) or by incubation with BACE1 inhibitor IV (Stachel et al., 2004; Figure 7B), corroborating that changes were due to BACE1 catalytic activity.

We used this assay to examine the generation of C89 upon AP-2 α-adaptin KD (Figure 7C) or mutation of the [DE]XXXL[LI] signal in BACE1 (Figure 7, D and E). We observed that α-adaptin KD did not prevent the generation of C99 by endogenous β-secretase or C89 by transgenic BACE1 (Figure 7C). Moreover, mutation of D495 or L499-L500 in the [DE]XXXL[LI] signal had no effect on C89 production after correction for the different expression levels of the APP constructs in both H4 cells (Figure 7, D and E) and cortical neurons (Figure 7, F and G). From these experiments, we concluded that delivery of BACE1 to endosomes by virtue of interactions between the [DE]XXXL[LI] signal and AP-2 is dispensable for the BACE1-catalyzed APP cleavage.

BACE1-catalyzed cleavage occurs even when both BACE1 and APP are incapable of reaching endosomes

The results shown in Figure 7 indicated that transport of BACE1 to endosomes is not required for BACE1-catalyzed APP cleavage. To test whether transport of APP to endosomes is required for BACE1-catalyzed APP cleavage, we generated an APP-F615P/D664A construct with additional mutations in all three tyrosine residues (Y653, Y682, and Y687) in the cytosolic tail (APP-3Y-F615P/D664A). These mutations are expected to prevent delivery of APP from the plasma membrane (Ono et al., 1997; Zheng et al., 1998; Tarr et al., 2002; Schettini et al., 2010), as well as AP-4–mediated transport of APP from the TGN to endosomes (Burgos et al., 2010). Indeed, immunofluorescence microscopy showed that this construct localized to the ER, TGN, and plasma membrane, in contrast to the APP-F615P/D664A construct, which predominantly localized to endosomes (Figure 8, A and B). Surface biotinylation showed increased levels of APP-3Y-F615P/D664A at the cell surface, consistent with its inability to internalize (Figure 8C). The APP-3Y-F615P/D664A construct was next coexpressed with BACE1-wt and mutants of the [DE]XXXL[LI] signal that cannot be internalized, and BACE1 activity was assessed by generation of C89 in cortical neurons incubated with DAPT to prevent cleavage by γ-secretase. We observed that similar amounts of C89 were produced by coexpression with internalization-competent and internalization-defective BACE1 mutants (Figure 8D). These results indicated that BACE1-catalyzed cleavage of APP occurs even when both BACE1 and APP cannot be delivered to endosomes. Thus, cleavage is likely to occur along the secretory pathway, before delivery of APP and BACE1 to endosomes.

Figure 5: Cell surface expression and internalization of wild-type and mutant BACE1 constructs. (A) H4 human neuroglioma cells transiently transfected either with BACE1-wt or BACE1 mutant constructs were surface labeled with Sulfo-NHS-LC-Biotin at 4°C. After lysis, the extracts were incubated with NeutrAvidin-agarose, and bound proteins were analyzed by SDS–PAGE and immunoblotting using antibodies to an extracellular HA epitope tag and the TfR. (B) Densitometric quantification of bands was performed on three independent experiments as in A. Values are the mean ± SD from three independent experiments after normalization to wt in each experiment. (C) Rat cortical neurons were transfected with wild-type and mutant BACE1 constructs on DIV-4 and subjected to surface labeling by biotinylation and isolation of biotinylated proteins on DIV-7. Analysis was performed as described in A. (D) Quantification for three independent experiments as in B. (E) H4 human neuroglioma cells transiently transfected either with BACE1-wt or BACE1 constructs were subjected to KD of either the large subunit of AP-2 (α-siRNA) or clathrin heavy chain (CHC siRNA). Bottom, KD efficiency, using specific antibodies against total protein was calculated and processed as described in A. (F) Quantification for three independent experiments as in B. *p < 0.05, **p < 0.01, ***p < 0.001.
FIGURE 6: Internalization of wild-type and mutant BACE1. (A) H4 human neuroglioma cells transiently transfected with BACE1-wt or mutant constructs were surface labeled with Sulfo-NHS-LC-Biotin at 4°C and chased for 0, 30, and 60 min at 37°C in complete medium. After the chase period, the remaining surface label was specifically cleaved with non–cell-permeable glutathione. Isolation of biotinylated protein and analysis was performed as described in the legend to Figure 4. (B) H4 cells transiently transfected with wild-type and mutant BACE1 constructs were surface labeled at 4°C with polyclonal antibodies to the extracellular HA epitope tag, washed, and then chased for 20 min in complete medium before fixation. Internalization was analyzed by indirect immunofluorescence using Alexa 594–conjugated secondary antibody. (C) Images from B were quantified for localization of internalized BACE1 to cytoplasmic puncta (endosomal), plasma membrane, or intermediate phenotype (both plasma membrane and cytoplasmic puncta) and plotted as percentage of cells. Values are the mean ± SD from three different experiments. ***p < 0.001. (D) Antibody uptake assay carried out upon knockdown on AP-2α and CHC as described in B. Bars, 10 μm.
Cleavage of APP by BACE1 occurs in post-ER compartments

To determine whether BACE1-catalyzed APP cleavage occurs in the early or late secretory pathway, we used the drug brefeldin A (BFA). This drug redistributes proteins from the Golgi complex to the ER and interrupts export of newly synthesized proteins from the ER (Lippincott-Schwartz et al., 1989). BFA treatment of cells coexpressing APP-F615P/D664A with wild-type and BACE1 mutants in the presence of DAPT completely abrogated generation of C89 (Figure 9A). This treatment also abolished C99 generation by endogenous β-secretase (unpublished data). Washout of BFA restored C89 generation in cells coexpressing APP-F615P/D664A and BACE1-wt (Figure 9B). These experiments thus demonstrated that BACE1-catalyzed APP cleavage requires export from the ER.

FIGURE 7: BACE1-catalyzed APP cleavage is independent of BACE1 localization to endosomes.

(A) Schematic representation of APP-EFGP, indicating the position of the Aβ peptide, N- and C-terminal fragments (NTF and CTF, respectively), transmembrane domain (TM), the α-, β-, and γ-secretase, caspase-cleavage sites and the resulting fragments, and mutations or inhibitors that block cleavage. Underlined is the region in APP recognized by the 6E10 antibody used in this study to identify C99; all other CTFs and APP-FL were detected using anti-GFP-HRP antibody. The γ-secretase inhibitor DAPT was added to the media posttransfection for experiments in B–F. (B) Cleavage of an APP construct with mutations in the α-secretase and caspase-cleavage sites (APP-F/P-D/A) was analyzed in cells cotransfected with constructs encoding wild-type BACE1, an inactive form of BACE1 (D289N), and wild-type BACE1 in the presence of β-secretase inhibitor (β-INH) or without BACE1 (-). Cell extracts were analyzed by SDS–PAGE and immunoblottting for α-, β-, and γ-secretase cleavage products. C89 was the prominent band detected upon expression of wild-type BACE1 but not under the other conditions. (C) H4 cells were treated with siRNA to AP-2α or mock treated, and 72 h after RNAi cells were transfected with a wild-type BACE1 construct. Analysis was performed as in B. (D) H4 human neuroglioma cells were transiently cotransfected with APP-F/P-D/A and with BACE1-wt or endocytosis-defective BACE1 mutants or in the presence of BACE1 mutant deficient in β-cleavage constructs, as indicated. A control was carried out in parallel in the absence of BACE1 overexpression as shown. Analysis was performed as in B, using antibodies to detect APP-FL and C89 fragment as mentioned, and BACE1 was detected using anti–HA-HRP antibody. (E) Densitometric quantification of bands was performed on three independent experiments such as that shown in D. The mean ± SD of the ratio of C89 fragment to full-length APP was calculated. (F) Rat cortical neurons were cotransfected with APP-F/P-D/A and BACE1-wt and BACE1 mutant constructs at DIV-4. Controls involving coexpression of APP-F/P-D/A with inactive BACE1 D289N mutant or wild-type BACE1 in the presence of β-secretase inhibitor were included in the experiment. Analysis was performed on DIV-7 as described in D. (G) Quantification from three independent experiments was performed as in E and represented as mean ± SD.

DISCUSSION

The amounts of pathogenic Aβ peptide that are generated in the brain depend not only the levels and activity but also the intracellular itinerary of APP and the α-, β-, and γ-secretases. All of these proteins have been proposed to cycle between the TGN, the plasma membrane and endosomes (Zhi et al., 2011), but the mechanisms that regulate their cycling and steady-state levels in each compartment are incompletely defined. Of particular importance to the pathogenesis of AD is the understanding of the trafficking of β-secretase, the key enzyme for Aβ production.

Previous studies identified a DISLL sequence in the cytosolic tail of the β-secretase, BACE1, which, like other DXXLL-type motifs (Bonifacino and Traub, 2003), is recognized by the GGA adaptor proteins (Shiba et al., 2004a; von Arnim et al., 2004; He et al., 2005). Phosphorylation of the serine residue (S498) in this sequence enhances binding of GGA1 to BACE1 (Shiba et al., 2004b; von Arnim et al., 2004). This phosphorylation event was proposed to promote binding of BACE1 to GGA1 at the TGN for recycling of BACE1 to the plasma membrane (von Arnim et al., 2004), as well as in early endosomes for transport to the TGN and/or late endosomes (Walter et al., 2001; Wahle et al., 2005). However, the significance of BACE1 phosphorylation for APP processing remains unclear, as mutation of S498 to alanine or aspartate had no effect on APP cleavage (Walter et al., 2001).

The results of our study show that the DISLL sequence is embedded within a DDISLL sequence that fits the [DE]XXX[L/I] consensus AP-binding motif (Bonifacino and...
Volume 23 June 15, 2012 AP-2-mediated endocytosis of BACE1

Huse et al., 2000; Pastorino et al., 2002). Accordingly, RNA interference (RNAi)–mediated depletion of AP-2 reduces BACE1 internalization and endosomal localization (Figures 3, 4, and 6), supporting the physiological significance of the BACE1–AP-2 interaction. Therefore the DDISLL sequence is a dual-specificity signal that can alternatively interact with the GGAs at the TGN and/or endosomes and with AP-2 at the plasma membrane. Two bifunctional GGA/AP-2–interacting signals have also been reported to occur in the cytosolic tail of the lipoprotein receptor–related protein LRP9 (Doray et al., 2008). The proteins LRP3 (Takatsu et al., 2001), consortin (del Castillo et al., 2010), and SorLA (Jacobsen et al., 2002) also have cytosolic tail sequences that fit this dual consensus motif, but it is not known whether they function as bifunctional GGA/AP-2 interactions signals. Together with previous findings (Huse et al., 2000; Kinoshita et al., 2003; He et al., 2005), our observations indicate that BACE1 engages in a short cycling loop between the TGN and endosomes that is regulated by the GGAs and a long cycling loop involving the TGN, the plasma membrane, and endosomes in which AP-2 mediates the internalization step. Thus, BACE1 might be capable of reaching endosomes both from the TGN via the GGAs and from the plasma membrane via AP-2. The fact that the GGAs and AP-2 are clathrin adaptors (Bonifacino and Traub, 2003) is consistent with the observation that depletion of clathrin reduces the endosomal localization of BACE1 (Figure 3, C and D). These results indicate that a substantial pool of BACE1 is delivered to endosomes by AP-2/clathrin–dependent internalization from the plasma membrane.

While this article was in preparation, another report (Sannerud et al., 2011) was published confirming that endosomal targeting of BACE1 is dependent on the LL residues of the DDISLL sequence (Huse et al., 2000; Pastorino et al., 2002) but arguing that BACE1 internalization is independent of clathrin and AP-2 and instead mediated by Arf6. We do not know the reason for the discrepancy with our findings but speculate that it could be due to differences in the methods used for interfering with clathrin and AP-2 function. In our study we ablated clathrin function by siRNA-mediated depletion of the clathrin heavy chain, whereas Sannerud et al. (2011) interfered with clathrin function by overexpression of an AP180c dominant-negative mutant. In addition, we performed siRNA-mediated depletion of α-adaptin, a subunit involved in the recognition of dileucine-based sorting signals (Chaudhuri et al., 2007; Doray et al., 2007; Kelly et al., 2008), whereas Sannerud et al. (2011) performed siRNA-mediated depletion of µ2, a subunit that recognizes tyrosine-based sorting signals (Ohno et al., 1995; Owen and Evans, 1998). Moreover, using siRNAs we routinely get >80% depletion of α-adaptin, in

Traub, 2003) and interacts with the α-α2 hemicomplex of the plasma membrane–localized AP-2 complex (Figure 1, B and C). This interaction is dependent on not only the dileucine (L499 and L500), but also the first aspartate (D495) of the sequence (Figure 1D), and is independent of the phosphorylatable serine (S498), thus distinguishing the requirements for binding to AP-2 from those of the GGAs (Bonifacino and Traub, 2003; Doray et al., 2008). The use of D instead of E at position –4 in the [DE]XXX[LI] consensus motif likely explains why this sequence binds to AP-2 but not AP-1 (Figure 1C), as previously demonstrated for other signals (Doray et al., 2008). L499, L500, and D495, but not S498, are also required for internalization of BACE1 from the plasma membrane and contribute to the steady-state localization of BACE1 to endosomes (Figures 2 and 6;
also the case for an APP construct (APP-3Y-F615P/D664A) that was perturbations reduced endosomal localization of BACE1 but had no only inhibits endocytosis form the plasma membrane. All of these both the TGN and the plasma membrane, whereas AP-2 depletion with both GGAs and AP-2, impairing sorting to endosomes from the plasma membrane, the ability of BACE1 constructs to cleave the endosomally excluded APP-3Y-F615P/D664A mutant supports the conclusion that endosomal localization is not required for BACE1-mediated APP cleavage. A caveat in our experiments is that transgenic BACE1 constructs were overexpressed relative to endogenous BACE1, with the result that most APP was cleaved to the shorter C89 form. However, depletion of AP-2 also failed to prevent APP cleavage to C99 by endogenous BACE1 (Figure 7C), indicating that the dispensability of AP-2/clathrin–dependent BACE1 endocytosis for APP cleavage is independent of BACE1 expression levels.

BACE1 has an acidic optimum pH (Sinha et al., 1999; Vassar et al., 1999; Yan et al., 1999; Lin et al., 2000), ideally suited for cleavage in late endosomes and lysosomes. However, BACE1 is likely to be partially active at the moderately acidic pH of the TGN and early endosomes (Yamashiro and Maxfield, 1984; Demaurex et al., 1998). Moreover, unlike lysosomal hydrolases with a similar acidic optimum pH, BACE1 is active from the Golgi complex on, independent of the furin-dependent cleavage of its propeptide sequence (Creemers et al., 2001). Indeed, most of the known physiological substrates of BACE1 are plasma membrane proteins that mediate intercellular adhesion or signaling (Lichtenthaler et al., 2003; von Arnim et al., 2005; Hemming et al., 2009). Other BACE1 substrates include Golgi sialyltransferases (Kitazume et al., 2001, 2006) and plasma membrane voltage-gated sodium channels (Wong et al., 2005; Kim et al., 2007). Taken together, our findings indicate that the main role of BACE1 is to cleave substrates in transit to the plasma membrane, consistent with our observations on APP processing.

MATERIALS AND METHODS

Antibodies

We used mouse monoclonal antibodies to the following antigens: AP-1 γ and AP-4 ε (BD Biosciences, San Diego, CA), AP-2 α (BD Biosciences, and Affinity Bioreagents, Golden, CO), AP-3 δ (BD Biosciences, and Developmental Studies Hybridoma Bank, Iowa City, IA), clathrin heavy chain (BD Biosciences, and Thermo Scientific, Rockford, IL), transferrin receptor (Invitrogen, Carlsbad, CA), HA epitope (Covance, Dedham, MA), and APP C99 fragment (6E10; Sigma-Aldrich, St. Louis, MO). We also used rabbit polyclonal antibodies to the HA epitope (Covance) and BACE1 (kind gift from Robert W. Doms, University of Pennsylvania, Philadelphia, PA). Sheep anti-human TGN46 from Serotech (Raleigh, NC) was used. Anti–green fluorescent protein (GFP) and anti-HA antibodies conjugated to horseradish peroxidase (HRP) were from Milltenyi Biotech
Recombinant DNA procedures, site-directed mutagenesis, and yeast three-hybrid assays

For expression in cells, human BACE1 cDNA (GeneCopeia, Germantown, MD) was cloned in pEGFP-N1 (Clontech, Mountain View, CA). A single HA tag was inserted after the propeptide cleavage site and a stop codon was introduced after residue K501 to stop the expression of GFP using site-directed mutagenesis (Stratagene, La Jolla, CA). This construct was considered as the wild type and used as template to introduce subsequent amino acid substitutions. An HA-tagged APP-EGFP fusion construct was generated by PCR amplification of the sequence encoding HA-APP695 (Burgos et al., 2010) and cloned in-frame into the HindIII and Sal sites of pEGFP-N1. The substitutions F615P, D664A, and Y687A (Y653A, Y683A, and Y687A) in the cytosolic tail of APP were introduced using site-directed mutagenesis as described. For Y3H assays, the cytosolic tail of BACE1 was amplified by PCR and cloned into multiple cloning site I of pBRIIDGE (Clontech) in fusion with the DNA-binding domain of Gal4, whereas individual σ subunits such as AP-1 σ1, AP-2 σ2, and AP-2 σ3A were cloned into multiple cloning site II of the same vector. Activation domain constructs for AP-2 α, AP-1 γ, and AP-3 δ were generated in pgGADT7 vector as previously described (Chaudhuri et al., 2007; Mattera et al., 2011). Amino acid substitutions were introduced by site-directed mutagenesis as described. Y3H assays were performed as previously described (Chaudhuri et al., 2007; Mattera et al., 2011).

Cell culture, transfection, and RNAi

H4 human neuroglioma cells were obtained from the American Type Culture Collection (Manassas, VA). Transfections were carried out using Lipofectamine 2000 (Invitrogen). Cells were analyzed between DIV-6 and DIV-8 as mentioned in the text. H4 cells grown on coverslips were labeled with a 1:100 dilution of rabbit anti-HA polyclonal antibodies in DMEM containing 10% fetal bovine serum at 4°C for 1 h, washed with phosphate-buffered saline (PBS), and chased with complete medium at 37°C for the indicated times. Cell fixation, permeabilization, indirect immunofluorescence staining, and image acquisition were performed as previously described (Rojas et al., 2008; Burgos et al., 2010). All images within one panel were captured with the same settings.

Cell surface biotinylation and endocytosis assays

Cell surface biotinylation was performed at 4°C. Cells were rinsed twice in PBS and exposed to 1 mM Sulfo-NHS-LC-Biotin reagent (Pierce, Rockford, IL) in PBS for 1 h. The cells were subsequently washed, incubated with 50 mM Tris-HCl for 10 min to quench unreacted ester, rinsed twice with PBS, and lysed in cell lysis buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 2 mM EDTA, 1% [vol/vol] Triton X-100, and protease inhibitors [Roche Applied Science, Indianapolis, IN]). Biotinylated proteins were isolated by incubation with NeutrAvidin-agarose (Pierce) in a rotary shaker for 2 h at 4°C, washed twice with cell lysis buffer and once with PBS, and analyzed by SDS-PAGE and immunoblotting with HRP-conjugated antibody to HA. For internalization experiments, cells were biotinylated as described but with 1 mM Sulfo-NHS-SB-Stitin reagent (Pierce). After quenching the unreacted ester, we subjected the cells to chase at 37°C for different time intervals. The cells were treated with non–cell-permeable 50 mM glutathione (Sigma-Aldrich) in cleavage buffer (Huse et al., 2000) for 1 h, followed by treatment with 50 mM iodoacetamide for 30 min, washed twice with PBS, and extracted with cell lysis buffer in the presence of 2.5 mM iodoacetamide. SDS–PAGE and immunoblotting were performed as described (Rojas et al., 2008).

Densitometry and statistical analysis

Immunoblots were scanned and densitometric analysis performed using the Quantity One software (Bio-Rad, Hercules, CA). Intensity values were corrected for background. All statistical analyses were performed using an analysis of variance test provided by Prism5 software (GraphPad, La Jolla, CA).

ACKNOWLEDGMENTS

We thank X. Zhu and H. Tsai for expert technical assistance, R. W. Doms for kind gift of reagents, R. Chaudhuri for his valuable suggestions in the initial phases of this work, V. C. Padmakumar for help with the figures, and G. Mardones for image quantitation and critical discussion of the manuscript. This research was supported by the Intramural Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, and by Grant 1100027 from the Fondo Nacional de Desarrollo Científico y Tecnológico (P.V.B.).

REFERENCES

Bonifacino JS (2004). The GGA proteins: adaptors on the move. Nat Rev Mol Cell Biol 5, 23–32.
Bonifacino JS, Traub LM (2003). Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu Rev Biochem 72, 395–447.
Bourouzet E, Saffarian S, Zhang R, Kirchhausen T (2010). Roles of AP-2 in clathrin-mediated endocytosis. PLoS One 5, e10597.
Burgos PV, Mardones GA, Rojas AL, daSilva LL, Prabhu Y, Hurley JH, Bonifacino JS (2010). Sorting of the Alzheimer’s disease amyloid precursor protein mediated by the AP-4 complex. Dev Cell 18, 425–436.
Chaudhuri R, Lindswagen OW, Smith WJ, Hurley JH, Bonifacino JS (2007). Downregulation of CD4 by human immunodeficiency virus type 1 Nef is dependent on clathrin and involves direct interaction of Nef with the AP2 clathrin adaptor. J Virol 81, 3877–3890.
Chung JH, Selkoe DJ (2003). Inhibition of receptor-mediated endocytosis demonstrates generation of amyloid beta-protein at the cell surface. J Biol Chem 278, 51035–51043.
Creemers JW, Ines Dominguez D, Plets E, Serneels L, Taylor NA, Multhaup G, Graessners K, Annaert W, De Strooper B (2001). Processing of beta-secretase by furin and other members of the proprotein convertase family. J Biol Chem 276, 51035–51043.
del Castillo FJ, Cohen-Salmon M, Charollais A, Caille D, Lampe PD, Chavrier P, Meda P, Petit C (2010). Consortin, a membrane and AP-2, and AP-3 adaptors. J Biol Chem 275, 4211–4217.
del Castillo FJ, Cohen-Salmon M, Charollais A, Caille D, Lampe PD, Chavrier P, Meda P, Petit C (2010). Consortin, a trans-Golgi network cargo receptor for the plasma membrane targeting and recycling of connexins. Hum Mol Genet 19, 262–275.
Demaurex N, Furuya W, D’Souza S, Bonifacino JS, Grinstein S (1998). Mechanism of acidification of the trans-Golgi network (TGN). In situ measurements of pH using retrieval of TGN38 and fumar from the cell surface. J Biol Chem 273, 2044–2051.
Doray B, Knisely JM, Wartman L, Bu G, Kornfeld S (2008). Identification of acidic dileucine signals in LRP9 that interact with both GGAs and AP-1/2-AP. Traffic 9, 1551–1562.

Doray B, Lee I, Knisely J, Bu G, Kornfeld S (2007). The gamma/sigma1 and alpha/sigma2 hexamic complexes harbor the dileucine recognition site. Mol Biol Cell 18, 1887–1896.

Evi G, Barakat A, Massoud T (2010). BACE: therapeutic target and potential biomarker for Alzheimer’s disease. Int J Biochem Cell Biol 42, 1923–1926.

Fukumoto H, Cheung BS, Hyman BT, Irizarry MC (2002). Beta-secretase protein and activity are increased in the neocortex in Alzheimer disease. Arch Neurol 59, 1381–1389.

Fukumoto H, Rosene DL, Moss MB, Raja S, Hyman BT, Irizarry MC (2004). Beta-secretase activity increases with aging in human, monkey, and mouse brain. J Neurosci 24, 719–725.

Haas C, Hung AY, Schlossmacher MG, Teplow DB, Selkoe DJ (1993). beta-Amyloid peptide and a 3-kDa fragment are derived by distinct cellular mechanisms. J Biol Chem 268, 3021–3024.

Haas C, Hung AY, Selkoe DJ, Teplow DB (1994). Mutations associated with a locus for familial Alzheimer’s disease result in alternative processing of amyloid beta-protein precursor. J Biol Chem 269, 17741–17748.

Haass C, Koo EH, Mellon A, Hung AY, Selkoe DJ (1992). Targeting of cell-surface beta-amyloid precursor protein to lysosomes: alternative processing into amyloid-bearing fragments. Nature 357, 500–503.

Hansen SH, Sandvig K, van Deurs B (1992). Internalization efficiency of the transferrin receptor. Exp Cell Res 199, 19–28.

Hardy J, Selkoe DJ (2002). The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297, 353–356.

Hartmann T et al. (1997). Distinct sites of intracelluar production for Alzheimer’s disease A beta 40/42 amyloid peptides. Nat Med 3, 1016–1020.

He X, Li F, Chang WP, Tang J (2005). GGA proteins mediate the recycling pathway of memapsin 2 (BACE). J Biol Chem 280, 11696–11703.

Henning ML, Elias JE, Gygi SP, Selkoe DJ (2009). Identification of beta-secretase (BACE1) substrates using quantitative proteomics. PLoS One 4, e8477.

Holsinger RM, McLean CA, Beyreuther K, Masters CL, Evin G (2002). Expression level of the amyloid precursor protein beta-secretase in Alzheimer’s disease. Ann Neurol 51, 783–786.

Hunt CE, Tumer AJ (2009). Cell biology, regulation and inhibition of beta-secretase (BACE-1). FEBS J 276, 1845–1859.

Huse JT, Liu K, Pijak DS, Carlin D, Lee VM, Doms RW (2002). Beta-secretase cleavage at the neurotrophin receptor promotes clathrin-coated pit initiation. J Cell Biol 191, 1381–1393.

Huse JT, Lee VM, Doms RW (2002). Glo1 site cleavage and N-terminally truncated A beta production upon BACE overexpression. Biochemistry 41, 3128–3136.

Lu DC, Rabizadeh S, Chandra S, Shyaff R, Ellerby LM, Ye X, Salvesen GS, Koo EH, Bredesen DE (2000). A second cytotoxic proteolytic peptide derived from amyloid beta-protein precursor. Nat Med 6, 397–404.

Marks N, Berg MJ (2010). BACE and gamma-secretase characterization and their sorting as therapeutic targets to reduce amyloidogenesis. Neurochem Res 35, 181–210.

Martin BL, Schrader-Fischer G, Busciglio J, Duke M, Paganiotti P, Yankner BA (1995). Intracellular accumulation of beta-amyloid in cells expressing the Swedish mutant amyloid precursor protein. J Biol Chem 270, 26272–262730.

Mattera R, Boehm M, Chaudhuri R, Prabhu Y, Bonifacino JS (2011). Conservation and diversification of dileucine signal recognition by adaptor protein (AP) complex variants. J Biol Chem 286, 2022–2030.

Matsumoto KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, Yarasheski KE, Bateman RJ (2010). Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 330, 1774.

Motley A, Bright NA, Seaman MN, Robinson MS (2003). Clathrin-mediated endocytosis in AP-2-depleted cells. J Cell Biol 162, 909–918.

Nunan J, Small DH (2000). Regulation of APP cleavage by alpha-, beta- and gamma-secretases. FEBS Lett 483, 6–10.

Ohno H, Stewart J, Fournier MC, Bosshart H, Rhee I, Miyatake S, Saito T, Gallusser A, Kirchhausen T, Bonifacino JS (1999). Interaction of tyrosine-based sorting signals with clathrin-associated proteins. Science 269, 1872–1875.

Ono Y, Kinouchi T, Sorimachi H, Ishiura S, Suzuki K (1997). Deletion of an endosomal/lysosomal targeting signal promotes the secretion of Alzheimer’s disease amyloid precursor protein (APP). J Biochem 121, 585–590.

Owen DJ, Evans PR (1998). A structural explanation for the recognition of tyrosine-based endocytic signals. Science 282, 1327–1332.

Pastorino L, Ikin AF, Nair AC, Puransin A, Buxbaum JD (2002). The carboxyl-terminus of BACE contains a sorting signal that regulates BACE trafficking but not the formation of total Abeta. Mol Cell Neurosci 19, 175–185.

Perez RG, Soriano S, Hayes JD, Ostaszewski B, Xia W, Selkoe DJ, Chen X, Stokin GB, Koo EH (1999). Mutagenesis identifies new signals for beta-amyloid precursor protein endocytosis, turnover, and the generation of secreted fragments, including Abeta42 and Abeta40. Proc Natl Acad Sci USA 96, 18851–18856.

Rojas R, van Vlijmen T, Mardones GA, Prabhu Y, Rojas AL, Mohammed S, Heck AJ, Raposo G, van der Sluijs P, Bonifacino JS (2008). Regulation of endocytosis by the AP-2. Traffic 9, 437–446.

Rojas R, et al. (2011). ADP ribosylation factor 6 (ARF6) controls amyloid precursor protein (APP) processing by mediating the endosomal sorting of BACE1. Proc Natl Acad Sci USA 108, E559–E568.
Schettini G, Govoni S, Racchi M, Rodriguez G (2010). Phosphorylation of APP-CTF-AICD domains and interaction with adaptor proteins: signal transduction and/or transcriptional role—relevance for Alzheimer pathology. J Neurochem 115, 1299–1308.

Schmechel A, Strauss M, Schlicksupp A, Pipkorn R, Haass C, Bayer TA, Multhaup G (2004). Human BACE forms dimers and colocalizes with APP. J Biol Chem 279, 39710–39717.

Selkoe DJ (2002). Deciphering the genesis and fate of amyloid beta-protein yields novel therapies for Alzheimer disease. J Clin Invest 110, 1375–1381.

Shiba T, Kametaka S, Kawasaki M, Shibata M, Wagu R, Uchiyama Y, Wakatsuki S (2004a). Insights into the shphoregulation of beta-secretase sorting signal by the VHS domain of GGA1. Traffic 5, 437–448.

Shiba T et al. (2002). Structural basis for recognition of acidic-cluster dileucine sequence by GGA1. Nature 415, 937–941.

Shiba Y, Katoh Y, Shiba T, Yoshino K, Takatsu H, Kobayashi H, Shin HW, Wakatsuki S, Nakayama K (2004b). GAT (GGA and Tom1) domain responsible for ubiquitin binding and ubiquitination. J Biol Chem 279, 7105–7111.

Sinha S et al. (1999). Purification and cloning of amyloid precursor protein beta-secretase from human brain. Nature 402, 537–540.

Stachel SJ et al. (2004). Structure-based design of potent and selective cell-permeable inhibitors of human beta-secretase (BACE-1). J Med Chem 47, 6447–6450.

Tarr PE, Roncarati R, Pelicci G, Pelicci PG, D’Adamio L (2002). Tyrosine phosphorylation of the beta-amyloid precursor protein cytoplasmic tail promotes interaction with Shc. J Biol Chem 277, 16798–16804.

Takatsu H, Katoh Y, Shiba Y, Nakayama K (2001). Golgi-localizing, γ-adaptin ear homology domain, ADP-ribosylation factor-binding (GGA) proteins interact with acidic dileucine sequences within the cytoplasmic domains of sorting receptors through their Vps27p/Hrs/STAM (VHS) domains. J Biol Chem 276, 28541–28545.

Tesco G et al. (2007). Depletion of GGA3 stabilizes BACE and enhances beta-secretase activity. Neuron 54, 721–737.

Thinakaran G, Teplow DB, Siman R, Greenberg B, Sisodia SS (1996). Metabolism of the “Swedish” amyloid precursor protein variant in neuro2a (N2a) cells. Evidence that cleavage at the “beta-secretase” site occurs in the Golgi apparatus. J Biol Chem 271, 9390–9397.

Vassar R et al. (1999). Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286, 735–741.

Vassar R, Kovacs DM, Yan R, Wong PC (2009). The beta-secretase enzyme BACE in health and Alzheimer’s disease: regulation, cell biology, function, and therapeutic potential. J Neurosci 29, 12787–12794.

von Amim CA et al. (2005). The low density lipoprotein receptor-related protein (LRP) is a novel beta-secretase (BACE1) substrate. J Biol Chem 280, 17777–17785.

von Amim CA, Tangredi MM, Peltan ID, Lee BM, Irizarry MC, Kinoshita A, Hyman BT (2004). Demonstration of BACE (beta-secretase) phosphorylation and its interaction with GGA1 in cells by fluorescence-lifetime imaging microscopy. J Cell Sci 117, 5437–5445.

Wahle T, Prager K, Raffler N, Haass C, Fumulok M, Walter J (2005). GGA proteins regulate retrograde transport of BACE1 from endosomes to the trans-Golgi network. Mol Cell Neurosci 29, 453–461.

Walter J, Fluhrer R, Hartung B, Willem M, Kaether C, Capell A, Lammich S, Multhaup G, Haass C (2001). Phosphorylation regulates intracellular trafficking of beta-secretase. J Biol Chem 276, 14634–14641.

Willem M, Lammich S, Haass C (2009). Function, regulation and therapeutic properties of beta-secretase (BACE1). Semin Cell Dev Biol 20, 175–182.

Wong HK, Sakurai T, Oyama F, Kaneko K, Wada K, Miyazaki H, Kurosawa M, De Strooper B, Saffig P, Nukina N (2005). Beta subunits of voltage-gated sodium channels are novel substrates of beta-site amyloid precursor protein-cleaving enzyme (BACE1) and gamma-secretase. J Biol Chem 280, 23009–23017.

Xia W, Ray WJ, Ostaszewski BL, Rahmati T, Kimberly WT, Wolfe MS, Zhang J, Goate AM, Selkoe DJ (2000). Presenilin complexes with the C-terminal fragments of amyloid precursor protein at the sites of amyloid beta-protein generation. Proc Natl Acad Sci USA 97, 9299–9304.

Xu H, Sweeney D, Wang R, Thinakaran G, Lo AC, Sisodia SS, Greengard P, Gandy S (1997). Generation of Alzheimer beta-amyloid protein in the trans-Golgi network in the apparent absence of vesicle formation. Proc Natl Acad Sci USA 94, 3748–3752.

Yamashiro DJ, Maxfield FR (1984). Acidification of endocytic compartments and the intracellular pathways of ligands and receptors. J Cell Biochem 26, 231–246.

Yan R et al. (1999). Membrane-anchored aspartyl protease with Alzheimer’s disease beta-secretase activity. Nature 402, 533–537.

Yang LB et al. (2003). Elevated beta-secretase expression and enzymatic activity detected in sporadic Alzheimer disease. Nat Med 9, 3–4.

Zheng P, Eastman J, Vande PS, Pimplikar SW (1998). PAT1, a microtubule-interacting protein, recognizes the basolateral sorting signal of amyloid precursor protein. Proc Natl Acad Sci USA 95, 4745–4750.

Zhi P, Chia C, Gleeson PA (2011). Intracellular trafficking of the β-secretase and processing of amyloid precursor protein. IUBMB Life 63, 721–729.