A comparative evaluation of antimicrobial efficacy of calcium hydroxide and Sesame oil based intracanal medicaments on enterococcus faecalis: An in vitro study

Dr. Hussain Mookhtiar, Dr. Vivek Hegde, Dr. Khatija Memon, Dr. Srilatha Shanmugasundaram Dr. Samia Shaikh, Mustafa Merchant and Zahra Shakil Memon

DOI: https://doi.org/10.22271/oral.2022.v8.i3b.1589

Abstract
AIM: The aim is to compare the antimicrobial efficacy of calcium hydroxide, combination of sesame oil with chitosan paste combination and combination of sesame oil with polyethylene glycol paste intracanal medicaments on Enterococcus Faecalis at 72 hours, 8 days and 14 days respectively.

Materials and Methodology: A total of 72 single-rooted anterior teeth were selected, root canal preparation was done, and teeth were divided into three groups and contaminated with *E. faecalis*, which were further divided into four test groups each according to intracanal medicaments used. After 21 days, the 72 samples were randomly divided into three groups (n=18) according to the medicaments used and are as –

Group 1: Negative Control, No medicament used
Group 2: Calcium Hydroxide intracanal medicament paste
Group 3: Sesame oil with chitosan paste
Group 4: Sesame oil with polyethylene glycol

The specimens were then incubated at 37°C in an incubator until evaluation. After 72 hours, 6 samples per group were retrieved from the incubator and analyzed. Values on continuous variable (CFU) were shown as mean ± SD across four study groups. The inter-group statistical comparisons were done using one-way analysis of variance (ANOVA) with Bonferroni’s correction for multiple group comparisons.

Results
1) All the medicaments showed reduction in the bacterial load of Enterococcus Faecalis. However, Calcium hydroxide medicament with Sesame oil and chitosan medicament showed better reduction in the colonies than Sesame oil with polyethylene glycol.
2) Significant reduction of bacterial load was also observed at 14 days when compared after 72 hrs and 8 days in all the three medications.
3) Calcium hydroxide medicament and Sesame oil with Chitosan compared to sesame oil with chitosan.

Conclusion: In this study, all the three groups showed reduction in the bacterial count of Enterococcus Faecalis, however complete eradication of this stubborn organism was not achieved which is still a drawback of intracanal medication of root canal therapy. However, Calcium hydroxide medicament with Sesame oil and chitosan medicament showed better reduction in the colonies than Sesame oil with polyethylene glycol.

Keywords: Sesame oil, chitosan, polyethylene glycol, calcium hydroxide, intracanal medicament, endodontics

Introduction
The microenvironment of root canal presents excellent conditions to establish microbial growth. Successful endodontic treatment depends upon the removal of microbes from the root-canal system which leads prevention of re-infection [1]. Thorough irrigation of root canals with any antimicrobial solution might not be sufficient to eliminate all microorganisms from the root canal.
As root canal infections have a polymicrobial nature hence, anaerobic and facultative anaerobic microorganisms are usually found together in endodontic flare-ups and cases with post-treatment diseases [1-3].

Enterococcus faecalis (E. faecalis) is a bacterium commonly found in endodontic infections, particularly in retreatment cases. E. faecalis can be very easily eliminated in planktonic forms in-vitro. However, it appears to turn out to be more resistant while it is present in an infected root canal system [3]. The resistance may be caused by the activation of virulence factors, biofilm formation, or invasion of dentinal tubules. Enterococcus faecalis has been reported to remain viable, proliferate, and establish a biofilm phenotype that is highly resistant to phagocytosis, antibodies and antimicrobials than non-biofilm producing organisms [4].

Intracanal medicament is generally recommended when treatment cannot be completed in one appointment; there are chances that surviving intracanal bacteria often proliferate between appointments. To curtail bacterial regrowth and possibly even improve bacterial suppression, an intracanal medication can be advantageous and successfully used to eliminate the bacterial flora [5].

Calcium hydroxide (Ca(OH)\(_2\)) is widely used as an intracanal medicament in endodontic therapy. The high pH of Ca(OH)\(_2\) destroys the bacterial cell membrane and protein structures. In spite of various advantages and indications of calcium hydroxide, it do have some limitations. However, its low diffusibility and solubility makes it difficult to cause an increase in pH and gets neutralized by buffering system of the dentin itself and acids present in deeper layers of dentin and thus decrease its bioavailability [6].

Sesame (Sesamum indicum L.) is a flowering plant in the genus Sesamum and the family of Pedaliaceae which is annual plant and native to tropical areas. 50% of sesame seeds consist of oil, which contain Sesamol, Sesamolin, Sezamin, Sesaminol, \(\gamma\)-tocopherol and polyphenols. Sesamin and sesamolin are used as active ingredients in antioxidants, antiseptics, bactericides, viricides, disinfectants, moth repellents and antitubercular agents [7, 8]. Sesame oil downregulates the expression of Matrix Metalloproteinase—9 responsible for dental caries, pulp and periapical inflammation which play an important role in the degradation of the collagenous structure and spread of the pathology [8].

Chitosan is a natural cationic polysaccharide derived by N-deacetylation of chitin obtained from shells of shrimps and crabs [9]. Chitosan exhibits adhesiveness, biocompatibility and biodegradability and is widely used in biomedical and pharmaceutical applications. There is increasing scientific evidence regarding the role of chitosan on C. albicans and E. faecalis particularly as members of secondary or persistent infections associated with failed endodontic therapy and their resistance against commonly used intracanal medicaments [10].

Glycols are usually used as a carrier for triple antibiotic paste in endodontics. Evidence has proved that Polyethylene glycol shows some antibacterial qualities against E. Faecalis, Streptococcus mutans and E. coli [11].

The purpose of this study is to compare the antimicrobial efficacy of calcium hydroxide, sesame oil with chitosan paste combination, sesame oil with polyethylene glycol paste combination based intracanal medicaments on E. Faecalis.

Methodology

After obtaining the Institute Ethical clearance, the study was conducted in the Department of Conservative Dentistry and Endodontics in association Department of Microbiology of the same institute. Seventy-Two human extracted single-rooted teeth with single canal and well-formed root apices, extracted for orthodontic reasons were collected from Department of Oral and Maxillofacial Surgery with informed consent of the donor. The criteria for selection of samples were as follows:

Inclusion Criteria

a) Sound single canal teeth with well-formed root apices (Vertucci Type 1)

Exclusion Criteria

a) Multi-rooted teeth
b) Teeth with canal variations
c) Carious teeth
d) Teeth with development anomalies
e) Teeth with more than one root canal
f) Teeth with resorption
g) Teeth with calcifications
h) Apically curved teeth
i) Teeth with cracks

The teeth were stored in thymol solution at room temperature until use. The crowns were decoronated at the cemento-enamel junction (CEJ) using a rotating diamond disc (Carbodent; Gysi S.A, Buenos Aires, Argentina) at 20000 rpm under water spray and the canal lengths were standardized to 14mm. Each tooth was buccolingually and mesiodistally radiographed to verify the presence of a single canal and a single apex at the apical third (Vertucci type 1). The root specimens were then thoroughly ultrasonically scaled for any deposits or remnant periodontal tissues. The roots were then sterilized in an autoclave at a temperature of 121°C and a pressure of 15lbs for 20 min. The sterility of the specimens was indicated using Autoclave colour indicator and subjected to bacterial contamination.

Shaping and Cleaning of Samples

A size 10 K-Fire were placed into the canal until it was visible at the apical foramen to ensure that the canals were patent. (Figure 1). Root canals was instrumented 0.5 mm short of the apex up to size 25 instrument. The samples were then instrumented 1 mm short of their apices up to Pro Taper universal size F3 files by using the crown-down technique. 2ml of 5.25% sodium hypochlorite was used for irrigation after each instrument use. (Figure 2) 5 mL of 17% ethylenediamine tetra acetic acid (EDTA) for 3 minutes for each specimen to remove the residual debris. Final irrigation was done with 5 ml saline to remove the residual irrigants from the canals. The canals were dried by using Pro Taper Universal paper points of size F3 before placement of medicaments. The samples were then autoclaved at 121°C for 20 minutes at 20 psi.
Bacterial strain and microbial growth preparation
Enterococcus faecalis (ATCC 29212; Microbiologists, Medimark Europe) was incubated in Trypticase soy agar plate (HiMedia Laboratory Private Limited, Mumbai, Maharashtra, India) to improve their growth. (Figure 3) Observation under stereomicroscope (BX-63 Olympus DIC) was performed to check the 100% purity of culture. The culture was incubated anaerobically at 37°C for 7 days. Enterococcus Faecalis was then incubated in Trypticase soy broth at 36.5°C for 24 hrs (Figure 4) (HiMedia Laboratory Private Limited, Mumbai, Maharashtra, India) to obtain a turbid suspension of Enterococcus Faecalis and the turbidity was spectrophotometrically adjusted to 1.5x10^8 organisms/ml (equivalent to 0.5 McFarland standard). (Figure 5)
Specimen Contamination: The autoclaved root samples were placed in Eppendorf tubes and inoculated with 15 ml of 1.5×10^8 organisms/ml of Trypticase soy broth. The Eppendorf tubes were incubated under anaerobic conditions for 3 weeks at 37°C and after every 3 days, the Eppendorf tubes with roots specimens were changed with fresh bacterial broth to ensure the penetration of Enterococcus Faecalis into dentinal tubules. The samples were then incubated for 21 days. (Figure 6)
Medicament Preparation Sesame oil and Chitosan Medicament: 1) Sesame oil and Chitosan paste (100 gm) Material: Sesame Oil: Chitosan (1:1) Ingredient Quantity Sesame oil 50 ml Chitosan 50 gm Method: The size of Chitosan was reduced in mortar pestle - Oil was added and triturated to a get smooth paste 2) Sesame oil and Polyethylene Glycol Medicament: Sesame oil and PEG 400 paste (100 gm) Material: Sesame Oil: PEG 400 (1:1) Ingredient Quantity Sesame oil 50 ml PEG 400 50 gm Method: Peg 400 was melted in a beaker, on water bath Oil was added and cooled with stirrer. Powder was scraped out and reduced in size with mortar and pestle to get smooth paste. (Figure 7)

Specimen Treatment After 21 days, the 72 samples were randomly divided into three groups (n=18) according to the medicaments used and are as – Group 1: Negative Control, No medicament used Group 2: Calcium Hydroxide intracanal medicament paste Group 3: Sesame oil with chitosan paste Group 4: Sesame oil with polyethylene glycol

To Standardize the amount of intracanal medicaments that were to be loaded into each root, 0.8 mg of each medicament were weighed on an electronic scale and were syringed into each canal. The teeth were sealed with Intermittent Restorative Material. The specimens were then incubated at 370C in an incubator until evaluation. After 72 hours, 6 samples per group were retrieved from the incubator and analyzed. After removing the restoration Gates Glidden drill no.4 were used to harvest the dentinal shaving from the canals. Autoclaved Paper points (size F3) were placed inside each root canal for 5 min to collect the dentinal shavings from the canals. After sampling, each paper point was transferred in Eppendorf tubes containing 1 mL of Tryptic soy broth. Decimal series of dilutions of the broth was made up to 10⁻³. A 0.1 mL aliquot of this microbial suspension were incubated on a Blood agar for 24 h at 37°C. The above procedures were repeated at time intervals of 8 days and 14 days.
Values on continuous variable (CFU) were shown as mean ± SD across four study groups. The inter-group statistical comparisons were done using one-way analysis of variance (ANOVA) with Bonferroni’s correction for multiple group comparisons. The intra-group comparisons were done using repeated measures analysis of variance (ANOVA) in each study group. The underlying normality assumption were tested before subjecting the study variable to ANOVA. P-values less than 0.05 would be considered to be statistically significant. The entire statistical analysis was performed using a statistical software called statistical package for social sciences (SPSS version 21) for MS Windows.

Results

Inter-group comparison of mean bacterial count (CFU).

Table 1 summarizes the Inter-Group Colony Forming Units (CFU).

Distribution of mean bacterial count at 72-Hrs is significantly higher in Group 1 compared to Group 2, 3 and 4 (P-value<0.05 for all).

Distribution of mean bacterial count at 8-Days is significantly higher in Group 1 compared to Group 2, 3 and 4 (P-value<0.05 for all).

Distribution of mean bacterial count at 14-Days is significantly higher in Group 1 compared to Group 2, 3 and 4 (P-value<0.05). Distribution of mean bacterial count at 14-Days did not differ significantly between study groups 3 and 4 (P-value>0.05).

Table 1: Inter-group comparison of mean bacterial count (CFU).

Table 2: Inter-group statistical comparison of mean bacterial count (CFU).

P-value	Group 1 v Group 2	Group 1 v Group 3	Group 1 v Group 4	Group 2 v Group 3	Group 2 v Group 4	Group 3 v Group 4
72-Hrs	0.001***	0.001***	0.001***	0.999NS	0.999NS	0.999NS
8-Days	0.001***	0.001***	0.001***	0.999NS	0.608NS	0.999NS
14-Days	0.001***	0.001***	0.001***	0.999NS	0.018NS	0.051NS

P-value by one-way analysis of variance (ANOVA) with Bonferroni’s correction for multiple group comparisons. P-value<0.05 is considered to be statistically significant. *P-value<0.05, **P-value<0.01, ***P-value<0.001, NS-Statistically non-significant.

Intra-group comparison of mean bacterial count (CFU)

Table 2 summarizes the Intra-group mean CFU of E. Faecalis.

In Group 1: (Control Group)

Distribution of mean bacterial count at 72-Hrs did not differ significantly compared to mean bacterial count at 8-Days and 14-Days (P-value>0.05 for both). Distribution of mean bacterial count at 8-Days did not differ significantly compared to mean bacterial count at 14-Days (P-value>0.05).

In Group 2 (Calcium Hydroxide Group)

Distribution of mean bacterial count at 72-Hrs is significantly higher compared to mean bacterial count at 8-Days and 14-Days (P-value<0.001 for both). Distribution of mean bacterial count at 8-Days is significantly higher compared to mean bacterial count at 14-Days (P-value<0.001).

In Group 3 (Sesame oil Chitosan Group)

Distribution of mean bacterial count at 72-Hrs is significantly higher compared to mean bacterial count at 8-Days and 14-Days (P-value<0.001 for both). Distribution of mean bacterial count at 8-Days is significantly higher compared to mean bacterial count at 14-Days (P-value<0.001).

In Group 4 (Sesame oil Polyethylene Glycol Group)

Distribution of mean bacterial count at 72-Hrs did not differ significantly compared to mean bacterial count at 8-Days (P-value>0.05). Distribution of mean bacterial count at 72-Hrs is significantly higher compared to mean bacterial count at 14-Days (P-value<0.001). Distribution of mean bacterial count at 8-Days is significantly higher compared to mean bacterial count at 14-Days (P-value<0.01).

Table 2: Intra-group comparison of mean bacterial count (CFU).

Table 2: Intra-group statistical comparison of mean bacterial count (CFU).

CFU (x 103)	Group 1 (n=6)	Group 2 (n=6)	Group 3 (n=6)	Group 4 (n=6)
	Mean SD	Mean SD	Mean SD	Mean SD
72-Hrs	18.33 3.01	10.17 0.75	10.67 1.63	11.00 0.89
8-Days	18.33 3.01	7.83 0.75	8.17 0.75	9.50 1.05
14-Days	19.17 2.14	3.67 0.82	4.00 0.89	6.17 0.75

P-value (Intra-Group)

P-value	72-Hrs v 8-Days	72-Hrs v 14-Days	8-Days v 14-Days
	0.999**	0.001**	0.036**
	0.001**	0.001**	0.001**
	0.001**	0.001**	0.001**

P-value by repeated measures analysis of variance (RMANOVA). P-value<0.05 is considered to be statistically significant. **P-value<0.01, ***P-value<0.001, NS-Statistically non-significant.
Discussion
This study evaluated the antimicrobial efficacy of calcium hydroxide and prepared sesame oil intracanal medicaments on Enterococcus Faecalis. It also evaluated the time taken for these medicaments for the reduction in the bacterial count of Enterococcus Faecalis on blood agar.

The Various etiological factors for endodontic diseases are:
1. Physical eg. Trauma, pathological wear, thermal changes
2. Chemical eg erosion, acids in dental materials
3. Bacterial eg bacteria, bacterial toxins

Microorganisms and their products are considered to be the primary etiological agents in endodontic diseases. Success of endodontic treatment relies on complete elimination of bacteria and their toxic byproducts from the root canal system. Hence it is necessary to completely eliminate bacteria form the root canal system and prevention of recolonization or propagation of residual microorganisms. This is done effectively by means of chemo-mechanical preparation and irrigation. In spite of the most technically demanding procedures and thorough cleaning and shaping, residual microorganisms are left behind especially in the apical third of the canal because it has lateral canals and ramifications.

Studies which have investigated the occurrence of Enterococcus Faecalis in root canal treated teeth with periapical lesion confirm that the microorganism’s antimicrobial resistance and the ability to adapt to changing environment help it to survive in root canal and cause re-infection.

Amongst these bacteria Enterococcus faecalis is the most dominant bacteria since it is the most commonly detected species in root filled teeth with persistent periapical lesions. Enterococcus faecalis is Gram positive cocci that occur singly in pairs or in short chains. It accounts of 9.6% in the entire microflora of the oral cavity. It is a facultative anaerobe present in small proportion of the flora of untreated canal as a part of polymicrobial flora. It is a predominant bacterium implicated in root canal failures & persistent infections. Prevalence ranges from 24% to 77%. in apical periodontitis. It has been reported that enterococci are frequently isolated from obturated root canals of teeth that exhibit chronic periapical pathology.

Enterococcus Faecalis possesses lytic enzymes, cytolysin, aggregation substance, pheromones and lipoteichoic acid.
which aids in its survival. It utilizes serum as the nutritional source [9]. Enterococcus Faecalis resists intracanal medicaments i.e. calcium hydroxide by maintaining pH haemostasis. It can colonize root canal and survive without the support of other bacteria and competes with other cells. It forms a biofilm that renders it more resistant to host immune response such as phagocytosis, antibodies & antimicrobial agents. Enterococcus faecalis is known to colonize dentinal tubules, isthmus, rami, lateral & accessory canals which are inaccessible sites during instrumentation. It is present in “mushroom shaped” micro colonies. The highly complex nature of the organism poses a great challenge for endodontists [9].

Action of intracanal medicaments

The purpose of intracanal medication is to kill the bacteria inside the root canals. Intracanal medicaments in modern endodontics have a different rationale [16, 17]. To curtail bacterial regrowth and possibly even improve bacterial suppression, an intracanal medication can be advantageous and successfully used to eliminate the bacterial flora. Interappointment antimicrobial medication acts by inhibiting proliferation of bacteria and further eliminates surviving bacteria, as well as minimizes ingress of pathogens through a leaking restoration [9].

Calcium Hydroxide was widely used for root canal treatment during 1970s and is now regarded as one of the first choices as a multiple-visit root canal medication. Ca (OH)2 applied for 7 days eliminated bacteria in canal systems even up to 5 weeks later. Thus, Calcium Hydroxide is considered as the gold standard of all the intracanal medicaments.

In this study, Ca (OH)2 showed reduction in the colonies of Enterococcus Faecalis to 8.67 x 10³ CFU/ml in 72 hrs, 9.50 x 10³ CFU/ml in 8 days and 4.00 x 10³ CFU/ml 14 days. In this study, all the three groups showed reduction in the bacterial count of Enterococcus Faecalis, however complete eradication of this stubborn organism was not achieved which is still a drawback of intracanal medication of root canal therapy. Thus, sesame oil with different antibacterial agents can be considered as a research project in near the near future.

Conclusion

Within the limitations of this study it can be concluded that antimicrobial efficacy of intracanal medicament is of utmost importance for better elimination of Enterococcus Faecalis within the dentinal tubules thereby more efficient reduction of the bacterial load within the canals.

1) All the medicaments showed reduction in the bacterial load of Enterococcus Faecalis. However, Calcium hydroxide medicament with Sesame oil and chitosan medicament showed better reduction in the colonies than Sesame oil with polyethylene glycol.

2) Significant reduction of bacterial load was also observed at 14 days when compared after 72 hrs and 8 days in all the three medicaments.

3) Calcium hydroxide medicament and Sesame oil with Chitosan compared to sesame oil with chitosan.

References

1. Narayanan LL, Vaishnani C. Endodontic microbiology. J Conserv Dent. 2010 Oct;13(4):233-9.
2. Jhajharia K, Parolia A, Shetty KV, Mehta LK. Biofilm in endodontics: A review. J Int Soc Prev Community Dent. 2015 Jan-Feb;5(1):1-12
3. Esteve C, Silva JA, Alencar AH, Leles CR, Decurcio DA. Efficacy of sodium hypochlorite and chlorhexidine against Enterococcus faecalis: a systematic review. Journal of Applied oral science. 2008 Dec;16(6):364-8.
4. Ramezanli F, Samimi S, Khrazaifard M, Afkhami F. The *in vitro* antibacterial efficacy of persian green tea extract as an intracanal irrigant on Enterococcus faecalis biofilm. Iranian endodontic journal. 2016;11(4):304
5. Mozayeni MA, Haeri A, Dianat O, Jafari AR. Antimicrobial effects of four intracanal medicaments on enterococcus faecalis: An *in vitro* study. Iranian endodontic journal. 2014;9(3):195
6. Carbajal Mejía JB. Antimicrobial effects of calcium hydroxide, chlorhexidine, and propolis on Enterococcus faecalis and Candida albicans. Journal of investigative and clinical dentistry. 2014 Aug;5(3):194-200.
7. Periasamy S, Chien SP, Chang PC, Hsu DZ, Liu MY. Sesame oil mitigates nutritional steatohepatitis via attenuation of oxidative stress and inflammation: a tale of two-hit hypothesis. The Journal of nutritional biochemistry. 2014 Feb 1;25(2):232-40.

8. Heidari-Soureshjani R, Obeidavi Z, Relsi-Vanani V. Evaluation of antibacterial effect of sesame oil, olive oil and their synergism on Staphylococcus aureus. J Advance Herb med. 2016;2(3):13-9

9. Yadav P, Chaudhary S, Saxena RK, Talwar S, Yadav S. Evaluation of antimicrobial and antifungal efficacy of chitosan as endodontic irrigant against Enterococcus faecalis and Candida albicans biofilm formed on tooth substrate. Journal of clinical and experimental dentistry. 2017 Mar;9(3):e361.

10. Ong TH, Chitra E, Ramamurthy S, Siddalingam RP, Yuen KH, Ambu SP, Davamani F. Chitosan-propolis nanoparticle formulation demonstrates anti-bacterial activity against Enterococcus faecalis biofilms. PloS one. 2017 Mar 31;12(3):e0174888.

11. Savitha A, SriRekha A, Vijay R, Champa C, Jaykumar T. An in vivo comparative evaluation of antimicrobial efficacy of chitosan, chlorhexidine gluconate gel and their combination as an intracanal medicament against Enterococcus faecalis in failed endodontic cases using real time polymerase chain reaction (qPCR). The Saudi Dental Journal. 2019 Mar 11.

12. Nalawade TM, Bhat K, Sogi SH. Bactericidal activity of Propylene glycol, Polyethylene glycol 400, Polyethylene glycol 1000 against selected micro-organisms. J Int Soc Prev Community Dent 2015 Mar-Apr;5(2):114-9

13. Sharma S, Gupta P, Kumar A, Ray J, Aggarwal BK, Goyal P, Sharma A. In vitro evaluation of roots, seeds and leaves of Sesamum indicum L. for their potential antibacterial and antioxidant properties. African Journal of Biotechnology. 2014 Sep 3;13(36):3692-701.

14. Mozayeni MA, Haeri A, Dianat O, Jafari AR. Antimicrobial effects of four intracanal medicaments on enterococcus faecalis: An in vitro study. Iranian endodontic journal. 2014;9(3):195.

15. Yadav P, Chaudhary S, Saxena RK, Talwar S, Yadav S. Evaluation of antimicrobial and antifungal efficacy of chitosan as endodontic irrigant against Enterococcus faecalis and Candida albicans biofilm formed on tooth substrate. Journal of clinical and experimental dentistry. 2017 Mar;9(3):e361.

16. Kishore A, Obulesu G, Babu M Determination of antimicrobial efficacy of calcium hydroxide, ozonated sesame oil and their combination as intracanal medicaments on Enterococcus Faecalis. IAIM. 2016;3(8):219-227.

17. Elshinawy MI, Al-Madboly LA, Ghoneim WM, El-Deeb NM. Synergistic effect of newly introduced root canal medicaments; ozonated olive oil and chitosan nanoparticles, against persistent endodontic pathogens. Frontiers in microbiology. 2018 Jul 3;9:1371.