SYMMETRIC MONOIDAL CATEGORIES AND $\Gamma$-CATEGORIES

AMIT SHARMA

Abstract. In this paper we construct a symmetric monoidal closed model category of coherently commutative monoidal categories. The main aim of this paper is to establish a Quillen equivalence between a model category of coherently commutative monoidal categories and a natural model category of Permutative (or strict symmetric monoidal) categories, $\textbf{Perm}$, which is not a symmetric monoidal closed model category. The right adjoint of this Quillen equivalence is the classical Segal’s Nerve functor.

Contents

1. Introduction 2
2. The Setup 5
  2.1. Preliminaries 5
  2.2. Review of $\Gamma$-categories 12
  2.3. Natural model category structure on $\textbf{CAT}$ 14
  2.4. Leinster construction 19
  2.5. Gabriel Factorization 21
3. The model category of Permutative categories 24
  3.1. The natural model category $\textbf{Perm}$ 24
4. The model category of coherently commutative monoidal categories 32
  4.1. The model category of coherently commutative monoidal categories 35
5. Segal’s Nerve functor 42
6. The Thickened Nerve 57
Appendix A. Model category structure on $\textbf{Perm}$ 69
Appendix B. The notion of a Bicycle 76
Appendix C. Bicycles as oplax sections 81
Appendix D. The adjunction $\mathcal{L} \dashv \mathcal{K}$ 89
Appendix E. On local objects in a model category enriched over quasicategories 93
  E.1. Introduction 93
  E.2. Preliminaries 93
  E.3. Function spaces for quasi-categories 95
  E.4. Local objects 96
References 98
1. Introduction

In the paper \[BF78\] Bousfield and Friedlander constructed a model category of $\Gamma$-spaces and proved that its homotopy category is equivalent to a homotopy category of connective spectra. Their research was taken further by Schwede \[Sch99\] who constructed a Quillen equivalent model structure on $\Gamma$-spaces whose fibrant objects can be described as (pointed) spaces having a coherently commutative group structure. Schwede’s model category is a symmetric monoidal closed model category under the smash product defined by Lydakis in \[Lyd99\] which is just a version of the Day convolution product \[Day70\] for normalized functors. This paper is the first in a series of papers in which we study coherently commutative monoidal objects in cartesian closed model categories. In particular we are interested in understanding coherently commutative monoidal objects in suitable model categories of $(\infty, n)$-categories such as \[Rez10\], \[Ara14\]. The current paper deals with the case of ordinary categories which is an intermediate step towards achieving the aforementioned goal. A $\Gamma$-category is a functor from the (skeletal) category of finite based sets $\Gamma^{op}$ into the category of all (small) categories \(\text{CAT}\). We denote the category of all $\Gamma$-categories and natural transformations between them by $\Gamma\text{CAT}$. Along the lines of the construction of the stable $Q$-model category in \[Sch99\] we construct a symmetric monoidal closed model category structure on $\Gamma\text{CAT}$ which we refer to as the model category structure of coherently commutative monoidal categories. A $\Gamma$-category is called a coherently commutative monoidal category if it satisfies the Segal condition, see \[Seg74\] or equivalently it is a homotopy monoid in \(\text{CAT}\) in the sense of Leinster \[Lei00\]. These $\Gamma$-categories are fibrant objects in our model category of coherently commutative monoidal categories. The main objective of this paper is to compare the category of all (small) symmetric monoidal categories with our model category of coherently commutative monoidal categories. There are many variants of the category of symmetric monoidal categories all of which have equivalent homotopy categories, see \[Man10, Theorem 3.9\]. All of these variant categories are fibration categories but they do not have a model category structure. Due to this shortcoming, in this paper we will work in a subcategory \(\text{Perm}\) which inherits a model category structure from \(\text{CAT}\). The objects of \(\text{Perm}\) are permutative categories (also called strict symmetric monoidal categories) and maps are strict symmetric monoidal functors. We recall that a permutative category is a symmetric monoidal category whose tensor product is strictly associative and unital. It was shown by May \[May72\] that permutative categories are algebras over the categorical Barrat-Eccles operad, in \(\text{CAT}\). We will construct a model category structure on \(\text{Perm}\) by transferring along the functor $F$ which assigns to each category, the free permutative category generated by it. This functor is a right adjoint of an adjunction $U : \text{Perm} \rightleftarrows \text{CAT} : F$ where $U$ is the forgetful functor. This model category structure also follows from results in \[BM03\] and \[Lac07\]. We will refer to this model structure on \(\text{Perm}\) as the natural model category structure of permutative categories. The weak equivalences and fibrations in this model category structure are inherited from the natural model category structure on \(\text{CAT}\), namely they are equivalence of categories and isofibrations respectively. The homotopy category of \(\text{Perm}\) is equivalent to the homotopy categories of all the variant categories of symmetric monoidal categories mentioned above. The model category of all (small) permutative categories is enriched over \(\text{CAT}\). However the shortcoming of the natural model category structure is that it is not a symmetric monoidal
closed model category structure. In the paper [Sch08] a tensor product of symmetric monoidal categories has been defined but this tensor product does not endow the category of symmetric monoidal categories with a symmetric monoidal closed structure. However it would only endow a suitably defined homotopy category with a symmetric monoidal closed structure.

The model category structure of coherently commutative monoidal categories on $\Gamma\text{CAT}$ is obtained by localizing the projective (or strict) model category structure on $\Gamma\text{CAT}$. The guiding principle of this construction is to introduce a semi-additive structure on the homotopy category. We achieve this by inverting all canonical maps $X \sqcup Y \to X \times Y$ in the homotopy category of the projective model category structure on $\Gamma\text{CAT}$.

The fibrant objects in this model category structure are coherently commutative monoidal categories. We show that $\Gamma\text{CAT}$ is a symmetric monoidal closed model category with respect to the Day convolution product. In the paper [KS15] the authors construct a model category of $E_\infty$-quasicategories whose underlying category is the category of (honest) commutative monoids in a functor category. The authors go on further to describe a chain of Quillen equivalences between their model category and the model category of algebras over an $E_\infty$-operad in the Joyal model category of simplicial sets. However they do not get a symmetric monoidal closed model category structure. Moreover in this paper we want to explicitly describe a pair of functors which give rise to a Quillen equivalence (in the case of ordinary categories).

In the paper [Seg74], Segal described a functor from (small) symmetric monoidal categories to the category of infinite loop spaces, or equivalently, the category of connective spectra. This functor is often called Segal’s $K$-theory functor because when applied to the symmetric monoidal category of finite rank projective modules over a ring $R$, the resulting (connective) spectrum is Quillen’s algebraic $K$-theory of $R$. This functor factors into a composite of two functors, first of which takes values in the category of (small) $\Gamma$-categories $\Gamma\text{CAT}$, followed by a group completion functor. In this paper we will refer to this first factor as Segal’s Nerve functor. We will construct an unnormalized version of the Segal’s nerve functor and denote it by $\mathcal{K}$. The main result of this paper is that the unnormalized Segal’s nerve functor $\mathcal{K}$ is the right Quillen functor of a Quillen equivalence between the natural model category of permutative categories and the model category of coherently commutative monoidal categories. Unfortunately, the left adjoint to $\mathcal{K}$ does not have any simple description therefore in order to prove our main result we will construct another Quillen equivalence, between the same two model categories, whose right adjoint is obtained by a thickening of $\mathcal{K}$. We will denote this by $\overline{\mathcal{K}}$ and refer to it as the thickened Segal’s nerve functor. The (skeletal) category of finite (unbased) sets whose objects are ordinal numbers is an enveloping category of the commutative operad, see [Shaon]. In order to define a left adjoint to $\overline{\mathcal{K}}$ we will construct a symmetric monoidal completion of an oplax symmetric monoidal functor along the lines of Mandell [Man10, Prop 4.2]. In order to do so we define a permutative category $\mathcal{Z}$ equipped with an oplax symmetric monoidal inclusion functor $i : \mathcal{N} \to \mathcal{Z}$, having the universal property that each oplax symmetric monoidal functor $X : \mathcal{N} \to \text{CAT}$ extends uniquely to a symmetric monoidal functor $\mathcal{Z}X : \mathcal{Z} \to \text{CAT}$ along the inclusion $i$. The category of oplax symmetric monoidal functors $[\mathcal{N}, \text{CAT}]^{OL}$ is isomorphic to $\Gamma\text{CAT}$ therefore this symmetric monoidal
extension defines a functor \(L : \Gamma \text{CAT} \to [\mathcal{L}, \text{CAT}]_\otimes\). Now the left adjoint to \(\mathcal{K}, \mathcal{L}\), can be described as the following composite

\[
\Gamma \text{CAT} \xrightarrow{\mathcal{L}(-)} [\mathcal{L}, \text{CAT}]_\otimes \xrightarrow{\text{hocolim}} \text{Perm},
\]

where \(\text{hocolim}\) is a homotopy colimit functor. The relation between permutative categories and connective spectra has been well explored in [Tho95], [Man10]. Thomason was the first one to show that every connective spectra is, up to equivalence, a K-theory of a permutative category. Mandell [Man10] used a different approach to establish a similar result based on the equivalence between \(\Gamma\)-spaces and connective spectra established in [BF78]. In the same paper Mandell proves a non-group completed version of Thomason’s theorem [Man10, Theorem 1.4] by constructing an oplax version of Segal’s nerve functor. This theorem states that the oplax version of Segal’s nerve functor induces an equivalence of homotopy theories between a homotopy theory of permutative categories and a homotopy theory of coherently commutative monoidal categories where the weak equivalences of both homotopy theories are based on weak equivalences in the Thomason model category structure on \(\text{CAT}\) [Tho80]. We have based our theory on the natural model category structure on \(\text{CAT}\) wherein the notion of weak equivalence is much stronger. In a subsequent paper we plan to show that our main result implies the non-group completed version of Thomason’s theorem [Man10, Theorem 1.4].

Acknowledgments. The author gratefully acknowledges support from CIRGET which is based at the Université du Québec Montréal, at which a significant part of the research for this paper was performed. The author is most thankful to André Joyal for his mentorship during the author’s stay in Montreal. Without his vision, guidance and motivation this research would not have been possible. The author is also thankful to André Joyal for providing a very detailed sketch of appendix E to the author.
2. The Setup

In this section we will collect the machinery needed for various constructions in this paper. We will begin with a review of symmetric monoidal categories and different types of functors between them. We will also review Γ-categories and collect some useful results about them. Most importantly we will be reviewing the notion of Grothendieck construction of CAT values functors and use those to construct Leinster’s category which will play a pivotal role in our theory.

2.1. Preliminaries. In this subsection we will briefly review the theory of permutative categories and monoidal and oplax functors between them. The definitions reviewed here and the notation specified here will be used throughout this paper.

Definition 2.1. A symmetric monoidal category is consists of a 7-tuple

\[(C, - \otimes -, 1_C, \alpha, \beta_l, \beta_r, \gamma)\]

where \(C\) is a category, \(- \otimes - : C \times C \to C\) is a bifunctor, \(1_C\) is a distinguished object of \(C\),

\[\alpha : (- \otimes -) \otimes - \Rightarrow - \otimes (- \otimes -)\]

is a natural isomorphism called the associativity natural transformation, \(\beta_l : 1_C \otimes - \Rightarrow id_C\) and \(\beta_r : - \otimes 1_C \Rightarrow id_C\) are called the left and right unit natural isomorphisms and finally

\[\gamma : (- \otimes -) \Rightarrow - \otimes - \circ \tau\]

is the symmetry natural isomorphism. This data is subject to some conditions which are well documented in [Mac71, Sec. VII.1, VII.7]

Definition 2.2. A symmetric monoidal category \(C\) is called either a permutative category or a strict symmetric monoidal category if the natural isomorphisms \(\alpha, \beta_l\) and \(\beta_r\) are the identity natural transformations.

Definition 2.3. An oplax symmetric monoidal functor \(F\) is a triple \((F, \lambda_F, \epsilon_F)\), where \(F : C \to D\) is a functor between symmetric monoidal categories \(C\) and \(D\),

\[\lambda_F : F \circ (- \otimes -) \Rightarrow (- \otimes -) \circ (F \times F)\]

is a natural transformation and \(\epsilon_F : F(1_C) \to 1_D\) is a morphism in \(D\), such that the following three conditions are satisfied

OL.1 For each objects \(c \in Ob(C)\), the following diagram commutes

\[
\begin{array}{ccc}
F(1_C \otimes c) & \xrightarrow{\lambda_F(1_C,c)} & F(1_C) \otimes F(c) \\
F(\beta^l(c)) & \downarrow & F(\beta^l(c))^{-1} \\
F(c) & \xrightarrow{\epsilon_F \circ id_{F(c)}} & 1_D \otimes F(c)
\end{array}
\]
OL.2 For each pair of objects $c_1, c_2 \in Ob(C)$, the following diagram commutes

$$
\begin{array}{ccc}
F(c_1 \otimes c_2) & \xrightarrow{\lambda_F(c_1,c_2)} & F(c_1) \otimes F(c_2) \\
F(\gamma_C(c_1,c_2)) & \downarrow & \gamma_D(F(c_1),F(c_2)) \\
F(c_2 \otimes c_1) & \xrightarrow{\lambda_F(c_2,c_1)} & F(c_2) \otimes F(c_1)
\end{array}
$$

OL.3 For each triple of objects $c_1, c_2, c_3 \in Ob(C)$, the following diagram commutes

$$
\begin{array}{cccc}
F(c_1 \otimes c_2) \otimes F(c_3) & \xrightarrow{\lambda_F(c_1, c_2) \otimes id_{F(c_3)}} & (F(c_1) \otimes F(c_2)) \otimes F(c_3) \\
F((c_1 \otimes c_2) \otimes c_3) & \xrightarrow{\alpha_D(F(c_1),F(c_2),F(c_3))} & F(c_1 \otimes (c_2 \otimes c_3)) \\
F(c_1 \otimes (c_2 \otimes c_3)) & \xrightarrow{id_{F(c_1)} \otimes \lambda_F(c_2,c_3)} & F(c_1) \otimes (F(c_2 \otimes c_3))
\end{array}
$$

**Definition 2.4.** An opalx natural transformation $\eta$ between two oplax symmetric monoidal functors $F : C \to D$ and $G : C \to D$ is a natural transformation $\eta : F \Rightarrow G$ such that for each pair of objects $c_1, c_2$ of the symmetric monoidal category $C$, the following two diagrams commute:

$$
\begin{array}{ccc}
F(c_1 \otimes c_2) & \xrightarrow{\eta(c_1 \otimes c_2)} & G(c_1 \otimes c_2) \\
\lambda_F(c_1,c_2) & \downarrow & \lambda_G(c_1, c_2) \\
F(c_1) \otimes F(c_2) & \xrightarrow{\eta(c_1) \otimes \eta(c_2)} & G(c_1) \otimes G(c_2)
\end{array}
$$

$$
\begin{array}{ccc}
F(1_C) & \xrightarrow{\eta(1_C)} & G(1_C) \\
\epsilon_F & \downarrow & \epsilon_G \\
1_D & \xrightarrow{} & 1_D
\end{array}
$$

**Notation 2.5.** We will say that a functor $F : C \to D$ between two symmetric monoidal categories is unital or normalized if it preserves the unit of the symmetric monoidal structure i.e. $F(1_C) = 1_D$. In particular, we will say that an oplax symmetric monoidal functor is a unital (or normalized) oplax symmetric monoidal functor if the morphism $\epsilon_F$ is the identity.

**Proposition 2.6.** Let $F : C \to D$ be a functor and

$$
\phi = \{ \phi(c) : F(c) \xrightarrow{\sim} G(c) \}_{c \in Ob(C)}
$$

is a family of isomorphisms in $D$ indexed by the object set of $C$. Then there exists a unique functor $G : C \to D$ such that the family $\phi$ glues together into a natural isomorphism $\phi : F \Rightarrow G$.

The following lemma is a useful property of unital symmetric monoidal functors:
Lemma 2.7. Given a unital oplax symmetric monoidal functor \((F, \lambda_F)\) between two symmetric monoidal categories \(C\) and \(D\), a functor \(G : C \to D\), and a unital natural isomorphism \(\alpha : F \cong G\), there is a unique natural isomorphism \(\lambda_G\) which enhances \(G\) to a unital oplax symmetric monoidal functor \((G, \lambda_G)\) such that \(\alpha\) is an oplax symmetric monoidal natural isomorphism. If \((F, \lambda_F)\) is unital symmetric monoidal then so is \((G, \lambda_G)\).

Proof. We consider the following diagram:

\[
\begin{array}{ccc}
C \times C & \xrightarrow{\alpha \times \alpha} & C \\
& \searrow_{\circ} & \\
D \times D & \xrightarrow{\alpha \times \alpha} & D \\
& \swarrow_{\circ} & \\
G \times G & \xrightarrow{\times} & G
\end{array}
\]

This diagram helps us define a composite natural isomorphism \(\lambda_G : G \circ (- \otimes -) \Rightarrow (- \otimes -) \circ G \times G\) as follows:

\[
\lambda_G := (id_{\circ_D} \circ \alpha \times \alpha) \cdot \lambda_F \cdot (\alpha^{-1} \circ id_{\circ_D}).
\]

This composite natural isomorphism is the unique natural isomorphism which makes \(\alpha\) a unital monoidal natural isomorphism. Now we have to check that \(\lambda_G\) is a unital monoidal natural isomorphism with respect to the above definition. Clearly, \(\lambda_G\) is unital because both \(\alpha\) and \(\lambda_F\) are unital natural isomorphisms. We first check the symmetry condition OL.2. This condition is satisfied because the following composite diagram commutes

\[
\begin{array}{ccc}
G(c_1 \otimes c_2) & \xrightarrow{\alpha^{-1}(c_1 \otimes c_2)} & F(c_1 \otimes c_2) \\
\uparrow G(\gamma_C(c_1, c_2)) & & \downarrow F(\gamma_C(c_1, c_2)) \\
G(c_2 \otimes c_1) & \xrightarrow{\alpha^{-1}(c_2 \otimes c_1)} & F(c_2 \otimes c_1) \\
\downarrow G(\gamma_C(c_1, c_2)) & & \uparrow F(\gamma_C(c_1, c_2)) \\
F(c_1 \otimes F(c_2)) & \xrightarrow{\alpha(c_1) \circ \alpha(c_2)} & G(c_1) \otimes G(c_2) \\
\downarrow F(\gamma_D(F(c_1), F(c_2))) & & \downarrow F(\gamma_D(G(c_1), G(c_2))) \\
G(c_2 \otimes c_1) & \xrightarrow{\alpha(c_2) \otimes \alpha(c_1)} & G(c_2) \otimes G(c_1)
\end{array}
\]

The condition OL.3 follows from the following equalities

\[
\alpha_D(G(c_1), G(c_2), G(c_3)) \circ \lambda_G(c_1, c_2) \otimes id_{\gamma_D(c_3)} \circ \lambda_G(c_1 \otimes c_2, c_3) =
\]

\[
(\alpha(c_1) \otimes \alpha(c_2)) \otimes \alpha(c_3) \circ \alpha_D(F(c_1), F(c_2), F(c_3)) \circ \lambda_F(c_1, c_2) \otimes id_{\gamma_D(c_3)} \circ
\]

\[
\lambda_F(c_1 \otimes c_2, c_3) \circ \alpha^{-1}((c_1 \otimes c_2) \otimes c_3) =
\]

\[
(\alpha(c_1) \otimes \alpha(c_2)) \otimes \alpha(c_3) \circ id_{\gamma_D(c_1, c_2)} \otimes \lambda_F(c_1, c_2) \circ \lambda_F(c_1, c_2 \otimes c_3) \circ F(\alpha_G(c_1, c_2, c_3))
\]

\[
\circ \alpha^{-1}((c_1 \otimes c_2) \otimes c_3) =
\]

\[
\circ id_{\gamma_D(c_1, c_2)} \otimes \lambda_G(c_1, c_2) \circ \lambda_G(c_1, c_2 \otimes c_3) \circ G(\alpha_G(c_1, c_2, c_3)).
\]

If \(F = (F, \lambda_F)\) is a symmetric monoidal functor then so is \(G = (G, \lambda_G)\) because (1) is a natural isomorphism.
In this paper we will frequently encounter oplax (and lax) symmetric monoidal functors. In particular we will be dealing with such functors taking values in $\text{CAT}$. Let $*$ denote the terminal category.

**Definition 2.8.** We define a category $\text{CAT}_1$ whose objects are pairs $(C, c)$, where $C$ is a category and $c : * \to C$ is a functor whose value is $c \in C$. A morphism from $(C, c)$ to $(D, d)$ in $\text{CAT}_1$ is a pair $(F, \alpha)$, where $F : C \to D$ is a functor and $\alpha : F(c) \to d$ is a map in $D$. The category $\text{CAT}_1$ is equipped with an obvious projection functor

$$p_1 : \text{CAT}_1 \to \text{CAT}.$$  

We will refer to the functor $p_1$ as the universal left fibration over $\text{CAT}$.

Let $(F, \alpha) : (C, c) \to (D, d)$ and $(G, \beta) : (D, d) \to (E, e)$ be a pair of composable arrows in $\text{CAT}_1$. Then their composite is defined as follows:

$$(G, \beta) \circ (F, \alpha) := (G \circ F, \beta \cdot (id_C \circ \alpha)),$$

where $\cdot$ represents vertical composition and $\circ$ represents horizontal composition of 2-arrows in $\text{CAT}$.

**Definition 2.9.** The category of elements of a $\text{CAT}$ valued functor $F : C \to \text{CAT}$, denoted by $\int^{c \in C} F(c)$ or $el F$, is a category which is defined by the following pullback square in $\text{CAT}$:

$$\begin{array}{ccc}
\int^{c \in C} F(c) & \xrightarrow{p_2} & \text{CAT}_1 \\
p_1 \downarrow & & \downarrow p_1 \\
C & \xrightarrow{F} & \text{CAT}
\end{array}$$

The category $\int^{c \in C} F(c)$ has the following description:

The object set of $\int^{c \in C} F(c)$ consists of all pairs $(c, d)$, where $c \in Ob(C)$ and $d : * \to F(c)$ is a functor. A map $\phi : (c_1, d_1) \to (c_2, d_2)$ is a pair $(f, \alpha)$, where $f : c_1 \to c_2$ is a map in $C$ and $\alpha : F(f) \circ d_1 \Rightarrow d_2$ is a natural transformation. The category of elements of $F$ is equipped with an obvious projection functor $p : \int^{c \in C} F \to C$.

**Remark 1.** We observe that a functor $d : * \to F(c)$ is the same as an object $d \in F(c)$. Similarly a natural transformation $\alpha : F(f) \circ d \Rightarrow b$ is the same as an arrow $\alpha : F(f)(d) \Rightarrow b$ in $F(a)$, where $f : c \to a$ is an arrow in $C$. This observation leads to a simpler equivalent description of $\int^{c \in C} F(c)$. The objects of $\int^{c \in C} F(c)$ are pairs $(c, d)$, where $c \in C$ and $d \in F(c)$. A map from $(c, d)$ to $(a, b)$ in $\int^{c \in C} F(c)$ is a pair $(f, \alpha)$, where $f : c \to a$ is an arrow in $C$ and $\alpha : F(f)(d) \Rightarrow b$ is an arrow in $F(a)$.

Next we want to define a symmetric monoidal structure on the category $\int^{c \in C} F(c)$. In order to do so we will use two functors which we now define. The first is the following composite

$$p_1^\otimes : \int^{c \in C} F(c) \times \int^{c \in C} F(c) \xrightarrow{p_1 \times p_1} C \times C \xrightarrow{\otimes} C.$$
In order to define this natural transformation, consider the following diagram:

\[ \begin{align*}
&p_2^\otimes : \int^{c \in C} F(c) \times \int^{c \in C} F(c) \to \text{CAT}_l
\end{align*} \]

is defined on objects as follows:

\[ p_2^\otimes((c_1, d_1), (c_2, d_2)) := d_1 \otimes d_2, \]

where the map on the right is defined by the following composite

\[ * \xrightarrow{(d_1, d_2)} F(c_1) \times F(c_2) \xrightarrow{\lambda_F((c_1, c_2))} F(c_1 \otimes c_2). \]

Let \((f_1, \alpha_1) : (c_1, d_1) \to (a_1, b_1)\) and \((f_2, \alpha_2) : (c_2, d_2) \to (a_2, b_2)\) be two maps in \(\int^{c \in C} F(c)\). The functor is defined on arrows as follows:

\[ p_2^\otimes((f_1, \alpha_1), (f_2, \alpha_2)) := (F(f_1 \otimes f_2), \alpha_1 \otimes \alpha_2), \]

where the second component \(\alpha_1 \otimes \alpha_2\) is a natural transformation

\[ \alpha_1 \otimes \alpha_2 : F(f_1 \otimes f_2) \circ \lambda_F((c_1, c_2)) \circ (d_1, d_2) \Rightarrow \lambda_F((a_1, a_2)) \circ (b_1, b_2). \]

In order to define this natural transformation, consider the following diagram:

Now we define

\[ \alpha_1 \otimes \alpha_2 := id_{\lambda_F((a_1, a_2))} \circ (\alpha_1, \alpha_2). \]

The arrow \(\alpha_1 \otimes \alpha_2(*)\) has domain \(\lambda_F((a_1, a_2))(F(f_1)(d_1(*)), F(f_2)(d_2(*))) \in F(a_1 \otimes a_2)\). The following diagram

\[ \begin{align*}
&F(c_1) \times F(c_2) & \xrightarrow{\lambda_F((c_1, c_2))} & F(c_1 \otimes c_2) \\
&F(f_1 \otimes f_2) & \xrightarrow{\lambda_F((a_1, a_2))} & F(a_1 \otimes a_2)
\end{align*} \]

shows that

\[ F(f_1 \otimes f_2)(\lambda_F((c_1, c_2))(d_1(*), d_2(*))) = \lambda_F(a_1, a_2)(F(f_1)(d_1(*)), F(f_2)(d_2(*))). \]
Now we have to verify that $p_2^\otimes$ is a bifunctor. Let $(g_1, \beta_1) : (a_1, b_1) \to (x_1, z_1)$ and $(g_2, \beta_2) : (a_2, b_2) \to (x_2, z_2)$ be another pair of maps in $\int^{c \in C} F(c)$. The following diagram will be useful in establishing the desired bifunctoriality:

Now consider the following chain of equalities:

\[
p_2^\otimes((g_1, \beta_1), (g_2, \beta_2)) \circ p_2^\otimes((f_1, \alpha_1), (f_2, \alpha_2)) = (F(g_1 \otimes g_2) C) \circ (F(f_1 \otimes f_2) C) \circ (\alpha_1, \alpha_2) =
\]

\[
(F(g_1 \otimes g_2) C) \circ (\beta_1, \beta_2) \circ (\alpha_1, \alpha_2) =
\]

\[
(F(g_1 \otimes g_2) C) \circ (f_1 \otimes f_2) C) \circ (\beta_1, \beta_2) \circ (\alpha_1, \alpha_2) =
\]

\[
(F(g_1 \otimes g_2) C) \circ (\beta_1, \beta_2) \circ (\alpha_1, \alpha_2) =
\]

The above chain of equalities prove that $p_2^\otimes$ is a bifunctor. The definitions of the functors $p_1^\otimes$ and $p_2^\otimes$ imply that the outer rectangle in the following diagram is commutative:

Since $\int^{c \in C} F(c)$ is apullback of $p_1$ along $F$, therefore there exists a bifunctor

\[
(3) \quad - \otimes - : \int^{c \in C} F(c) \times \int^{c \in C} F(c) \to \int^{c \in C} F(c)
\]
which makes the entire diagram commutative. We describe this bifunctor next. Let \(((c_1, d_1), (c_2, d_2))\) be an object in \(\int_{c \in C} F \times \int_{c \in C} F(c)\).

\[
(c_1, d_1) \boxtimes (c_2, d_2) := (c_1 \otimes C c_2, \lambda_F(c_1, c_2) \circ ((d_1, d_2))).
\]

Let \((f_1, \alpha_1) : (c_1, d_1) \to (a_1, b_1)\) and \((f_2, \alpha_2) : (c_2, d_2) \to (a_2, b_2)\) be two maps in \(\int_{c \in C} F(c)\).

\[
(f_1, \alpha_1) \boxtimes (f_2, \alpha_2) := (f_1 \otimes \lambda_{f_2(a_1, a_2)} \circ (\alpha_1, \alpha_2)).
\]

**Theorem 2.10.** The category of elements of a \textbf{CAT} valued lax symmetric monoidal functor whose domain is a permutative category is a permutative category.

**Proof.** Let \((F, \lambda_F) : C \to \textbf{CAT}\) be a lax symmetric monoidal functor. We begin by defining the symmetry natural isomorphism \(\gamma_{\int_{c \in C} F(c)}\). Let \((c_1, d_1), (c_2, d_2)\) be a pair of objects in \(\int_{c \in C} F\). We define

\[
\gamma_{\int_{c \in C} F}(((c_1, d_1), (c_2, d_2))) := (\gamma_C(c_1, c_2), id).
\]

The second component is identity because the lax symmetric monoidal structure of \(F\) implies that the following diagram commutes:

![Diagram](attachment:image.png)

It is easy to see that this defines a natural isomorphism. We claim that the proposed symmetric monoidal structure on \(\int_{c \in C} F(c)\) is strictly associative. Given a third object \((c_3, d_3)\) in \(\int_{c \in C} F(c)\), we observe that

\[
((c_1, d_1) \boxtimes (c_2, d_2)) \boxtimes (c_3, d_3) =
(c_1 \otimes C c_2 \otimes C c_3, (\lambda_F(c_1 \otimes C c_2, c_3)) \circ (\lambda_F((c_1, c_2)) \times id) \circ ((d_1, d_2), (d_3))).
\]
The following diagram, which is the lax version of (OL.3) for $F$,

![Diagram](image)

tells us that

$$
((c_1 \otimes c_2 \otimes c_3, \lambda_F((c_1 \otimes c_2, c_3) \circ (\lambda_F((c_1, c_2)) \times id) \circ ((d_1, d_2), d_3)) =
(c_1 \otimes c_2 \otimes c_3, \lambda_F((c_1, c_2, c_3) \circ (id \times \lambda_F((c_2, c_3))) \circ (d_1, (d_2, d_3))) =
(c_1, d_1) \boxtimes ((c_2, d_2) \boxtimes (c_3, d_3)).
$$

Thus we have proved that the symmetric monoidal functor is strictly associative. It is easy to see that the symmetry isomorphism $\gamma_{f \in C} F(f)$ satisfies the hexagon diagram because $C$ is a permutative category by assumption. Thus we have proved that $\int^{c \in C} F(c)$ is a permutative category.

\[ \square \]

Let $F : C^{op} \to \text{CAT}$ be a functor. The above definition of category of elements provides a description namely the objects of $\int^{c \in C} F(c)$ are pairs $(c, d)$, where $d \in F(c)$. A morphism between $(c, d)$ and $(e, k)$ is a pair $(f, \alpha)$, where $f : c \to e$ is a map in $C^{op}$ and $\alpha : k \to F(f)(d)$. We want to describe the category of elements of $F$.

**Definition 2.11.** The category of elements of $F$, denoted $\int^{c \in C} F(c)$, has objects all pairs $(c, d)$, where $c \in C^{op}$ and $d \in F(c)$. A morphism from $(c, d)$ to $(e, k)$ in $\int^{c \in C} F(c)$ is a pair $(f, \alpha)$, where $f : e \to c$ is a map in $C$ and $\alpha : d \to F(f)(k)$ is a map in $F(c)$.

Let $(f, \alpha) : (c, d) \to (e, k)$ and $(g, \beta) : (e, k) \to (a, b)$ be two composable arrows in $\int^{c \in C} F(c)$. Their composite is defined as follows:

$$(g, \beta) \circ (f, \alpha) := (gf, \beta \circ F(g)(\alpha)).$$

2.2. **Review of $\Gamma$-categories.** In this subsection we will briefly review the theory of $\Gamma$-categories. We begin by introducing some notations which will be used throughout the paper.

**Notation 2.12.** We will denote by $\mathbb{N}$ the finite set $\{1, 2, \ldots, n\}$ and by $\mathbb{N}^+$ the based set $\{0, 1, 2, \ldots, n\}$ whose basepoint is the element 0.
Notation 2.13. We will denote by $\mathcal{N}$ the skeletal category of finite unbased sets whose objects are $n$ for all $n \geq 0$ and maps are functions of unbased sets. The category $\mathcal{N}$ is a (strict) symmetric monoidal category whose symmetric monoidal structure will be denoted by $+$. For objects $k, l \in \mathcal{N}$ their tensor product is defined as follows:

\[
k + l := k + l.
\]

Notation 2.14. We will denote by $\Gamma^{op}$ the skeletal category of finite based sets whose objects are $n^+$ for all $n \geq 0$ and maps are functions of based sets.

Notation 2.15. We denote by $\text{Inrt}$ the subcategory of $\Gamma^{op}$ having the same set of objects as $\Gamma^{op}$ and intert morphisms.

Notation 2.16. We denote by $\text{Act}$ the subcategory of $\Gamma^{op}$ having the same set of objects as $\Gamma^{op}$ and active morphisms.

Notation 2.17. A map $f : n \to m$ in the category $\mathcal{N}$ uniquely determines an active map in $\Gamma^{op}$ which we will denote by $f^+ : n^+ \to m^+$. This map agrees with $f$ on non-zero elements of $n^+$.

Notation 2.18. Given a morphism $f : n^+ \to m^+$ in $\Gamma^{op}$, we denote by $\text{Supp}(f)$ the largest subset of $n$ whose image under $f$ does not contain the basepoint of $m^+$. The set $\text{Supp}(f)$ inherits an order from $n$ and therefore could be regarded as an object of $\mathcal{N}$. We denote by $\text{Supp}(f)^+$ the based set $\text{Supp}(f) \sqcup \{0\}$ regarded as an object of $\Gamma^{op}$ with order inherited from $n$.

Proposition 2.19. Each morphism in $\Gamma^{op}$ can be uniquely factored into a composite of an inert map followed by an active map in $\Gamma^{op}$.

Proof. Any map $f : n^+ \to m^+$ in the category $\Gamma^{op}$ can be factored as follows:

\[
\begin{array}{ccc}
& n^+ & \\
& \downarrow f_{\text{inrt}} & \downarrow \uparrow f_{\text{act}} \\
\text{Supp}(f)^+ & & m^+
\end{array}
\]

where $\text{Supp}(f) \subseteq n$ is the support of the function $f$, i.e. $\text{Supp}(f)$ is the largest subset of $n$ whose elements are mapped by $f$ to a non-zero element of $m^+$. The map $f_{\text{inrt}}$ is the projection of $n^+$ onto the support of $f$ and therefore $f_{\text{inrt}}$ is an inert map. The map $f_{\text{act}}$ is the restriction of $f$ to $\text{Supp}(f) \subset n$, therefore it is an active map in $\Gamma^{op}$.

Lemma 2.20. The restriction of a $\Gamma$-category $X$ to $\mathcal{N}$, namely the composite functor

\[
X|_{\mathcal{N}} : \mathcal{N} \to \Gamma^{op} \overset{X}{\to} \text{CAT}
\]

is an oplax symmetric monoidal functor.

Proof. For any pair of objects $k, l \in \text{Ob}(\mathcal{N})$ we have the following functor

\[
(X(\delta_{k}^{k+l}), X(\delta_{l}^{k+l})) : X((k + l)^+) \to X(k^+) \times X(l^+).
\]

Using this functor we will define a natural transformation

\[
\lambda_X : X|_{\mathcal{N}} \circ (- + -) \Rightarrow (- \times -) \circ (X|_{\mathcal{N}} \times X|_{\mathcal{N}}),
\]
These two equations give us the following two commutative diagrams
\[
\begin{array}{ccc}
\lambda (k, l) := (X(\delta^{k+l}_k), X(\delta^{k+l}_{l})) & & \\
X((k + l)^+) & \xrightarrow{X(f_1+f_2)} & X((m + n)^+) \\
& \xrightarrow{X(\delta^{m+n}_m)} & \\
& \xrightarrow{X(\delta^{m+n}_{m+n})} & \\
X(k^+) & \xrightarrow{X(f_1)} & X(m^+) \\
\end{array}
\]
These diagrams together imply that \( \lambda_X \) is a natural transformation. We observe that
\[
\delta^{l+k}_k \circ \tau(k, l) = \delta^{k+l}_k \quad \text{and} \quad \delta^{l+k}_l \circ \tau(k, l) = \delta^{k+l}_l
\]
These two equations give us the following two commutative diagrams
\[
\begin{array}{ccc}
\xrightarrow{X(\tau(k, l))} & & \\
X((l + k)^+) & \xrightarrow{X(\gamma_N(k, l))} & X((k + l)^+) \\
& \xrightarrow{id} & \\
& \xrightarrow{X(\delta^{m+n}_m)} & \\
& \xrightarrow{X(\delta^{m+n}_{m+n})} & \\
X(k^+) & \xrightarrow{X(f_1)} & X(m^+) \\
\end{array}
\]
The following commutative diagram shows that the functor \( X|_N \) satisfies the symmetry condition OL.2.
\[
\begin{array}{ccc}
X((k + l)^+) & \xrightarrow{X(\gamma_N)} & X((m + n)^+) \\
\xrightarrow{(X(\delta^{k+i}_k), X(\delta^{k+i}_l))} & & \xrightarrow{(X(\delta^{l+i}_k), X(\delta^{l+i}_l))} \\
X(k^+) \times X(l^+) & \xrightarrow{\mathsf{CAT}} & X(l^+) \times X(k^+) \\
\end{array}
\]
The functor \( X|_N \) is unital therefore the unit natural transformation \( \epsilon_X \) is the identity.

2.3. Natural model category structure on \( \mathsf{CAT} \). In this subsection we will review the natural model category structure on the category of all small categories \( \mathsf{CAT} \). The weak equivalences in this model structure are equivalences of categories. A significant part of this section will be devoted to review properties of fibrations in this model structure, namely isofibrations, which we now define:

**Definition 2.21.** If \( C \) and \( D \) are categories, we shall say that a functor \( F : C \to D \) is an isofibration if for every object \( c \in C \) and every isomorphism \( v \in \mathsf{Mor}(D) \) with source \( F(c) \), there exists an isomorphism \( u \in C \) with source \( c \) such that \( F(u) = v \).

**Notation 2.22.** Let \( J \) be the groupoid generated by one isomorphism \( 0 \cong 1 \). We shall denote the inclusion \( \{0\} \subset J \) as a map \( d_1 : 0 \to J \) and the inclusion \( \{1\} \subset J \) by the map \( d_0 : 1 \to J \).
Notation 2.23. Let $A$ and $B$ be two small categories, we will denote by $[A,B]$, the category of all functors from $A$ to $B$ and natural transformations between them.

The next proposition gives a characterization of isofibrations.

Proposition 2.24. A functor $F : C \to D$ is an isofibration if and only if it has the right lifting property with respect to the inclusion $i_0 : 0 \to J$ and therefore also with the inclusion $i_1 : 1 \to J$.

Proof. Let us assume that $F : C \to D$ is an isofibration, then whenever we have a (outer) commutative square

$$
\begin{array}{ccc}
0 & \xrightarrow{i_0} & C \\
\downarrow & & \downarrow F \\
J & \xrightarrow{c} & D
\end{array}
$$

it is easy to see that there exists a dotted arrow which makes the entire diagram commute. Conversely, let us assume that the functor $F$ has the right lifting property with respect to the inclusion functor $i_0$. Let $f : F(c) \to d$ be an isomorphism in $D$, where $c \in \text{Ob}(C)$. Now there exists a (unique) functor $A : J \to D$ such that $A(0 \cong 1) = f$ and we have the following (outer) commutative square

$$
\begin{array}{ccc}
0 & \xrightarrow{\sim} & C \\
\downarrow & & \downarrow F \\
J & \xrightarrow{L} & D
\end{array}
$$

By assumption there exists a dotted arrow $L$ making the entire diagram commutative. This implies that $F(L(0 \cong 1)) = A(0 \cong 1) = f$.

Thus we have an isomorphism $L(0 \cong 1) : c \to e$, in $C$, such that $F(L(0 \cong 1)) = f$. This proves that $F$ is an isofibration. Thus we have proved that a functor is an isofibration if and only if it has the right lifting property with respect to $i_0$. Finally we will show that a functor has the right lifting property with respect to $i_0$ if and only if it has the right lifting property with respect to $i_1$. It would be sufficient to observe that the right commutative square, in the following diagram

$$
\begin{array}{ccc}
1 & \xrightarrow{\sim} & 0 \\
\downarrow & & \downarrow F \\
J & \xrightarrow{\sigma} & A
\end{array}
$$

has a lift if and only if the outer commutative diagram has a lift. The automorphism $\sigma : J \to J$ in the diagram above permutes the two objects of the groupoid $J$. \hfill \Box

We want to present a characterization of acyclic isofibrations, i.e. those functors of categories which are both an isofibration and an equivalence of categories, similar to the characterization of isofibrations given by proposition 2.24. The following property of acyclic isofibrations will be useful in achieving this goal:

Lemma 2.25. An equivalence of categories is an isofibration iff it is surjective on objects.
Proof. Let $F : C \to D$ be an equivalence which is an isofibration. Then for every object $d \in \text{Ob}(D)$, there exists an object $c \in \text{Ob}(C)$ together with an isomorphism $v : F(c) \to d$ because an equivalence is essentially surjective. There is then an isomorphism $u : c \to c'$ in $C$ such that $F(u) = v$ because $F$ is an isofibration. We then have $F(c') = d$, and this shows that $F$ is surjective on objects. Conversely, let us show that an equivalence $F : C \to D$ surjective on objects is an isofibration. If $c$ is an object of $C$ and $v : F(c) \to d$ is an isomorphism in $D$, then there exists an object $c' \in C$ such that $F(c') = d$ because $F$ is surjective on object by assumption. The map $F_{c,c'} \text{Hom}_C(c,c') \to \text{Hom}_D(F(c),F(c'))$ specified by the functor $F$ is bijective because $F$ is an equivalence. Hence there exists a morphism $u : c \to c'$ such that $F(u) = v$. The morphism $u$ is invertible because $v$ is invertible and $F$ is an equivalence. This shows that $F$ is an isofibration. \[\square\]

**Notation 2.26.** We will denote the category $0 \to 1$ either by $I$ or by $[1]$. We will denote the discrete category $\{0, 1\}$ either by $\partial I$ or $\partial[1]$. We will denote the category $0 \overset{f_{01}}{\to} 1 \overset{f_{12}}{\to} 2$ by $[2]$.

Now we define a category $\partial[2]$ which has the same object set as the category $[2]$, namely $\{0, 1, 2\}$. The Hom sets of this category are defined as follows:

$$\text{Hom}_{\partial[2]}(i,j) = \begin{cases} \{f_{01}\}, & \text{if } i = 0 \text{ and } j = 1 \\ \{f_{12}\}, & \text{if } i = 1 \text{ and } j = 2 \\ \{f_{02}, f_{12} \circ f_{01}\}, & \text{if } i = 0 \text{ and } j = 2 \\ \{id\}, & \text{otherwise.} \end{cases}$$

We have the following functor

$$\partial_2 : \partial[2] \hookrightarrow [2]$$

which is identity on objects. This functor sends the morphism $f_{01}$ (resp. $f_{12}$) to the morphism $0 \to 1$ (resp. $1 \to 2$) in the category $[2]$. Both morphisms $f_{02}, f_{12} \circ f_{01}$ are mapped to the composite morphism $0 \overset{f_{01}}{\to} 1 \overset{f_{12}}{\to} 2$. Similarly we have the map $\partial_1 : \partial[1] \to [1]$ which is identity on objects. We have a third functor $\partial_0 : \emptyset \to \{0\}$ which is obtained by the unique function $\emptyset \to \{0\}$. We will refer to these three functors as the boundary maps.

**Proposition 2.27.** A functor $F : C \to D$ is both isofibration and an equivalence of categories if and only if it has the right lifting property with respect to the three boundary maps $\partial_0, \partial_1$ and $\partial_2$.

Proof. Let us first assume that $F$ is an isofibration as well as an equivalence of categories. Now Lemma 2.25 says that $F$ is surjective on objects which is equivalent to $F$ having the right lifting property with respect to the boundary map $\partial_0$. Now we observe that for any pair of objects $d, d' \in \text{Ob}(D)$, there exists a pair of objects $c, c' \in \text{Ob}(C)$ such that $F(c) = d$ and $F(c') = d'$ and the morphism $F_{c,c'} : \text{Hom}_C(c,c') \to \text{Hom}_D(d,d')$
is a bijection. This implies that \( F \) has the right lifting property with respect to the morphism \( \partial_1 \). Whenever we have the following (outer) commutative diagram

\[
\begin{array}{ccc}
\partial[2] & \xrightarrow{K} & C \\
\partial_2 & \searrow & \downarrow F \\
[2] \quad & \quad & \downarrow \quad D \\
\end{array}
\]

we have the following equality

\[
F(K(f_{02})) = F(K(f_{12}) \circ F(K(f_{01})),
\]

where the maps \( f_{02}, f_{12} \) and \( f_{01} \) are defined above. The morphism

\[
F_{K(0),K(2)} : \text{Hom}_C(K(0), K(2)) \rightarrow \text{Hom}_D(F(K(0)), F(K(2)))
\]

is a bijection, this implies that the morphism \( K(f_{02}) : K(0) \rightarrow K(2) \) is the same as the composite morphism \( K(f_{12}) \circ K(f_{01}) : K(0) \rightarrow K(2) \). Now we are ready to define the lifting (dotted) arrow \( L \). We define the object function of the functor \( L \) to be the same as that of the functor \( K \), i.e. \( L_{\text{Ob}} = K_{\text{Ob}} \). We define \( L(f_{01}) = K(f_{01}) \) and \( L(f_{12}) = K(f_{12}) \). Now the discussion above implies that this definition makes the entire diagram commute.

Conversely, let us assume that the morphism \( F \) has the right lifting property with respect to the three boundary maps. The morphism \( F \) having the right lifting property with respect to \( \partial_0 \) is equivalent to \( F \) being surjective on objects. Now the right lifting property with respect to \( \partial_1 \) implies that for any map \( g : d \rightarrow d' \) in the category \( D \), there exists a map \( w : c \rightarrow c' \) in \( C \), such that \( F(w) = g \), for each pair of objects \( c, c' \in \text{Ob}(C) \) such that \( F(c) = d \) and \( F(c') = d' \). Let \( c \in \text{Ob}(C) \) and \( v : F(c) \rightarrow d \) be an isomorphism in \( D \). Now we can define a functor \( A : [2] \rightarrow D \), on objects by \( A(0) = A(2) = F(c) \), \( A(1) = d \) and on morphisms by \( A(f_{01}) = v \) and \( A(f_{12}) = v^{-1} \). As mentioned earlier, the right lifting property with respect to \( \partial_1 \) implies that there exist two maps \( u : c \rightarrow c' \) and \( r : c' \rightarrow c \) such that \( F(u) = v \) and \( F(r) = v^{-1} \). This allows us to define a functor \( K : \partial[2] \rightarrow C \), on objects by \( K(0) = K(2) = c \) and \( K(1) = c' \) and on morphisms by \( K(f_{01}) = u \), \( K(f_{12}) = r \) and \( K(f_{02}) = r \circ u \). This definition gives us the following (outer) commutative diagram

\[
\begin{array}{ccc}
\partial[2] & \xrightarrow{K} & C \\
\partial_2 & \searrow & \downarrow F \\
[2] \quad & \quad & \downarrow \quad A \\
\end{array}
\]

Our assumption of right lifting property with respect to \( \partial_2 \) gives us a lift (dotted arrow) \( L \) which makes the entire diagram commute. This implies the \( r \circ u = \text{id}_c \). A similar argument will show that \( u \circ r = \text{id}_{c'} \). Thus we have shown that \( F \) is an isofibration which is surjective on objects. Lemma 2.25 says that \( F \) is both an equivalence of categories and an isofibration.

\[\square\]

**Definition 2.28.** We shall say that a functor \( F : C \rightarrow D \) is monic (resp. surjective, bijective) on objects if the object function of \( F \), \( F_{\text{Ob}} : \text{Ob}(C) \rightarrow \text{Ob}(D) \), is injective (resp. surjective, bijective).
**Theorem 2.29** ([Joy08]). There is a model category structure on the category of all small categories $\text{CAT}$ in which

1. A cofibration is a functor which is monic on objects.
2. A fibration is an isofibration and
3. A weak-equivalence is an equivalence of categories.

Further, this model category structure is cartesian closed and proper. We will call this model category structure as the natural model category structure on $\text{CAT}$.

**Notation 2.30.** We will denote by $0$ the terminal category having one object $0$ and just the identity map.

**Definition 2.31.** A small pointed category is a pair $(C,\phi)$ consisting of a small category $C$ and a functor $0 \to C$. A basepoint preserving functor between two pointed categories $(C,\phi)$ and $(D,\psi)$ is a functor $F : C \to D$ such that the following diagram commutes

$$
\begin{array}{ccc}
C & \xrightarrow{\phi} & D \\
\downarrow{F} & & \downarrow{D} \\
\end{array}
$$

Every model category uniquely determines a model category structure on that category of its pointed objects, see [JT08, Proposition 4.1.1]. Thus we have the following theorem:

**Theorem 2.32.** There is a model category structure on the category of all pointed small categories and basepoint preserving functors $\text{CAT}_*$ in which

1. A cofibration is a basepoint preserving functor which is monic on objects.
2. A fibration is a basepoint preserving functor which is also an isofibration of (unbased) categories and
3. A weak-equivalence is a basepoint preserving functor which is also equivalence of (unbased) categories.

We will call this model category structure as the natural model category structure on $\text{CAT}_*$.

Let $J^+$ denote the category $J \sqcup *$ i.e. the category having two connected components $J$ and the terminal $*$. We will consider $J^+$ as a pointed category having basepoint $*$. Let $0^+$ and $1^+$ denote the discrete pointed categories $0 \sqcup *$ and $1 \sqcup *$ respectively, both having basepoints $*$. Let $I$ denote the category $0 \to 1$. As above we denote by $I^+$ the category $I \sqcup *$. We will use the following result later in this paper

**Theorem 2.33.** The natural model category structure on $\text{CAT}_*$ is a combinatorial model category structure.

**Proof.** The category $\text{CAT}_*$ is locally presentable because $\text{CAT}$ is a locally presentable category and the category of pointed objects of a locally presentable category is also locally presentable [AR94]. Now it remains to show that the natural model category $\text{CAT}_*$ is cofibrantly generated. Proposition 2.27 implies that a morphism in $\text{CAT}_*$ is an acyclic fibration if and only if it has the right lifting property with respect to the three boundary maps $\partial_0^+, \partial_1^+$ and $\partial_2^+$. 

The set of generating acyclic cofibrations is $Q = \{i_0^+, i_1^+\}$ where $i_0^+ : 0^+ \hookrightarrow J^+$ and $i_1^+ : 1^+ \hookrightarrow J^+$ are the two basepoint preserving inclusion functors. This follows from proposition 2.24. The set of generating cofibrations is $R = \{\text{in}^+_0, \text{in}^+_1\}$ where $\text{in}^+_0 : 0^+ \hookrightarrow I^+$ and $\text{in}^+_1 : 1^+ \hookrightarrow I^+$ are the two basepoint preserving inclusion functors.

Let $(C, \phi)$ and $(D, \psi)$ be two pointed categories, we define another category, which is denoted by $C \bigvee D$, by the following pushout square:

$$
\begin{array}{ccc}
0 & \overset{\phi}{\longrightarrow} & C \\
\psi \downarrow & & \downarrow \\
D & \longrightarrow & C \bigvee D
\end{array}
$$

$C \bigvee D$ is a pointed category with the obvious basepoint and we will refer to it as the sum of $(C, \phi)$ and $(D, \psi)$. We define another (small) pointed category $C \bigwedge D$ by the following pushout square:

$$
\begin{array}{ccc}
C \bigvee D & \longrightarrow & C \times D \\
\downarrow & & \downarrow \\
\ast & \longrightarrow & C \bigwedge D
\end{array}
$$

We will refer to the pointed category $C \bigwedge D$ as the tensor product of $C$ and $D$. It is easy to check that this tensor product construction is functorial i.e. there is a bifunctor $- \bigwedge - : \text{CAT} \times \text{CAT} \to \text{CAT}$ which is defined on objects by $(C, D) \mapsto C \bigwedge D$.

2.4. Leinster construction. In this section we will construct a category which would help us in constructing the desired left adjoint to the Segal’s Nerve functor. We will refer to this category as the Leinster category and we will denote it by $\mathfrak{L}$. An object in $\mathfrak{L}$ is an order preserving morphism of the category $\mathcal{N}$ namely an order preserving map of (finite) unbased sets $\vec{k} : \overrightarrow{k} \to \overrightarrow{r}$. For another object $\vec{m} : \overrightarrow{m} \to \overrightarrow{s}$ in $\mathfrak{L}$, a morphism between $\vec{k}$ and $\vec{m}$ is a pair $(h, \phi)$, where $h : \overrightarrow{s} \to \overrightarrow{r}$ and $\phi : \overrightarrow{k} \to \overrightarrow{m}$ are morphisms in $\mathcal{N}$ such that the following diagram commutes:

$$
\begin{array}{ccc}
\vec{k} & \overset{\phi}{\longrightarrow} & \vec{m} \\
\vec{h} \downarrow & & \downarrow \\
\vec{k} & \longrightarrow & \vec{m}
\end{array}
$$

Notation 2.34. For an object $\vec{m} : \overrightarrow{m} \to \overrightarrow{s}$ in $\mathfrak{L}$ we will refer to the natural number $s$ as the length of $\vec{m}$.

Remark 2. An object of $\mathfrak{L}$, $\vec{m} : \overrightarrow{m} \to \overrightarrow{s}$, should be viewed as a finite sequence of objects of $\mathcal{N}$ namely $(m_1, m_2, \ldots, m_s)$ for $s > 0$, with $s = 0$ corresponding to the empty sequence $()$, where $m_i = \vec{m}^{-1}(i)$, for $1 \leq i \leq s$.

Remark 3. An object $\vec{m} : \overrightarrow{m} \to \overrightarrow{s}$ does not have to be a surjective map. In other words the corresponding sequence $\vec{m} = (m_1, \ldots, m_s)$ can have components which are empty sets.
Remark 4. Let \( \vec{n} \) and \( \vec{m} \) be two objects in \( \mathfrak{L} \). A morphism \((h, \phi) : \vec{n} \to \vec{m} \) in \( \mathfrak{L} \), should be viewed as a family of morphisms

\[
\phi(i) = n_i \to m_j
\]

for \( 1 \leq i \leq s \), where + represents the symmetric monoidal structure on \( \mathcal{N} \).

The category \( \mathfrak{L} \) is isomorphic to the category \( EM(\mathcal{N}) \), where \( E \) and \( M \) are the left and right adjoints of an adjunction

\[
E : \text{SMCAT} \rightleftharpoons \text{Perm} : M
\]

where \( \text{SMCAT} \) is the category of all symmetric multicategories. See [Shaon] for a detailed description of this adjunction. Next we want to recall from [Shaon] how each \( \Gamma \)-category \( X \) can be extended to a symmetric monoidal functor \( \mathfrak{L}(X) : \mathfrak{L} \to \text{CAT} \). This functor is defined on objects as follows:

\[
\mathfrak{L}(X)(\vec{n}) := X(m_1^+) \times X(m_2^+) \times \cdots \times X(m_r^+)
\]

where \( () \neq \vec{n} = (m_1, m_2, \ldots, m_r) \) is an object of \( \mathfrak{L} \). \( \mathfrak{L}(X)(()) = * \). For each map \( F = (f, \phi) : \vec{m} \to \vec{n} \) in \( \mathfrak{L} \) we want to define a functor

\[
\mathfrak{L}(X)(F) : \mathfrak{L}(X)(\vec{m}) \to \mathfrak{L}(X)(\vec{n}).
\]

Each map \( \phi(i) \) in the family \( \phi \) provides us with a composite functor

\[
X(m_i^+) \to X( + n_j) K_i \to \prod_{f(j) = i} X(n_j),
\]

where \( K_i = (X(\delta_{n_1}^{m_1}), \ldots, X(\delta_{n_r}^{m_r})) \). For each pair \( n \)-fold product functor in \( \text{CAT} \), there is a canonical natural isomorphism between them which we denote by \( \text{can} \). This gives us the following composite functor

\[
\prod_{i=1}^{\vec{m}} X(m_i^+) \to X( + n_j) \prod_{i=1}^{\vec{m}} X(n_j) \to \prod_{k=1}^{\vec{n}} n_k
\]

which is the definition of \( \mathfrak{L}(X)(F) \). In other words

\[
\mathfrak{L}(X)(F) := \text{can} \circ \prod_{i=1}^{\vec{m}} K_i \circ \prod_{i=1}^{\vec{n}} X(\phi(i))
\]

**Proposition 2.35.** Let \( X \) be a \( \Gamma \)-category, there exists an extension of \( X \) to \( \mathfrak{L} \), \( \mathfrak{L}(X) : \mathfrak{L} \to \text{CAT} \) which is a symmetric monoidal functor.

**Remark 5.** The symmetric monoidal extension described above is functorial in \( X \). In other words we get a functor

\[
\mathfrak{L}(-) : \Gamma\text{CAT} \to [\mathfrak{L}, \text{CAT}]_{\otimes}
\]

**Definition 2.36.** For a \( \Gamma \)-category \( X \) we define

\[
\mathfrak{L}(X) := \int_{\vec{n} \in \mathfrak{L}} \mathfrak{L}(X)(\vec{n})
\]

i.e. the Grothendieck construction of \( \mathfrak{L}(X) \).
More concretely, an object in the category $\mathcal{L}(X)$ is a pair $(\vec{m}, \vec{x})$ where $\vec{m} : m \to s \in \text{Ob}(\mathcal{L})$ and
\[
\vec{x} = (x_1, x_2, \ldots, x_s) \in \text{Ob}(\mathcal{X}(n_1^+) \times \mathcal{X}(n_2^+) \times \cdots \times \mathcal{X}(n_s^+)).
\]
A morphism from $(\vec{m}, \vec{x})$ to $(\vec{n}, \vec{y})$ in $\mathcal{L}(X)$ is a pair $((h, \phi), F)$ where $(h, \phi) : \vec{m} \to \vec{n}$ is a map in $\mathcal{L}$ and $F : \mathcal{X}(\vec{x})((h, \phi)((\vec{x}))) \to \vec{y}$ is a map in the product category $\mathcal{X}(n_1^+) \times \mathcal{X}(n_2^+) \times \cdots \times \mathcal{X}(n_s^+)$. For a pair of morphisms $((h_1, \alpha), a) : (\vec{n}, \vec{x}) \to (\vec{k}, \vec{s})$ and $((h_2, \beta), b) : (\vec{m}, \vec{y}) \to (\vec{l}, \vec{t})$, in $\mathcal{L}(X)$, we define another morphism in $\mathcal{L}(X)$ as follows:
\[
((h_1, \alpha), a) \otimes ((h_2, \beta), b) := ((h_1, \alpha) \square (h_2, \beta), \lambda_{\mathcal{L}(X)}((h_1, \alpha), (h_2, \beta))^{-1}((a, b))).
\]
where $\lambda_{\mathcal{L}(X)}((h_1, \alpha), (h_2, \beta))$ is the composite functor $\mathcal{L}(X)((h_1, \alpha)) \times \mathcal{L}(X)((h_2, \beta)) \circ \lambda_{\mathcal{L}(X)}((\vec{n}, \vec{m}) = \lambda_{\mathcal{L}(X)}((\vec{k}, \vec{l}) \circ \mathcal{L}(X)((h_1, \alpha) \square (h_2, \beta))$.

Proposition 2.37. The category $\overline{\mathcal{L}}(X)$ is a permutative category with respect to the tensor product defined above.

Proof. The category $\mathcal{L}$ is a permutative category. Now the proposition follows from theorem 2.10. □

2.5. Gabriel Factorization. In analogy with the way a functor can be factored as a fully faithful functor followed by an essentially surjective one, every strict symmetric monoidal $\Phi : E \to F$ admits a factorization of the form

\[
\begin{array}{ccc}
E & \xrightarrow{\Phi} & F \\
\downarrow{\Gamma} & & \downarrow{\Delta} \\
G & & \\
\end{array}
\]

where $\Gamma$ is essentially surjective and $\Delta$ is fully faithful. In fact we may suppose that $\Gamma$ is identity on objects in which case we get the Gabriel factorization of $\Phi$. In order to obtain a Gabriel factorization we define the symmetric monoidal category $G$ as having the same objects as $E$ and letting, for $c, d \in \text{Ob}(G)$,
\[
G(c, d) := F(\Phi(c), \Phi(d)).
\]

The composition in $G$ is defined via the composition in $F$ in the obvious way. The symmetric monoidal structure on $G$ is defined on objects as follows:
\[
e_1 \otimes e_2 := e_1 \otimes e_2
\]
where $e_1, e_2 \in \text{Ob}(G) = \text{Ob}(E)$. For a pair of morphisms $f_1 : e_1 \to h_1$ and $f_2 : e_2 \to h_2$ we define
\[
f_1 \otimes f_2 := f_1 \otimes f_2.
\]
We recall that $\Pi_1 : \text{CAT} \to \text{Gpd}$ is the functor which assigns to each category $C$ the groupoid obtained by inverting all maps in $C$.

**Lemma 2.38.** Let $F : C \to D$ be a functor which is either a left or a right adjoint, then the induced functor $\Pi_1(F) : \Pi_1(C) \to \Pi_1(D)$ is an equivalence of categories.

**Proof.** We begin the proof by observing that the category of all (small) groupoids $\text{Gpd}$ is enriched over itself. We claim the pair $(\Pi_1(F), \Pi_1(H))$ is an adjoint equivalence. For each $c \in \text{Ob}(C)$, the unit $\eta$ of the adjunction $(F, H)$ provides a map $\eta(c) : c \to GF(c)$ in $C$. We observe that this map has an inverse in $\Pi_1(C)$. We define the unit of the adjunction $\eta_{\Pi_1} : \text{id}_{\Pi_1(C)} \Rightarrow \Pi_1(H)\Pi(F)$ as follows:

$$\eta_{\Pi_1}(c) := \eta(c)$$

for all $c \in \text{Ob}(C) = \text{Ob}(\Pi_1(C))$. We recall that maps in $\Pi_1(C)$ are composites of maps in $C$ and their formal inverses. In order to check that the family $\{\eta(c)\}_{c \in C}$ defines a natural isomorphism it would be enough to show that it does so on the generating morphisms of $\Pi_1(C)$. This is obvious for maps in $C$. Let $f^{-1}$ be a (formal) inverse of a map $f : d \to c$ in $C$. By definition of the functor $\Pi_1$, $\Pi_1(F)(f^{-1}) = F(f)^{-1}$. Now we observe that the following diagram commutes in the category $\Pi_1(C)$

$$
\begin{array}{ccc}
  c & \xrightarrow{\eta(c)} & \Pi_1(HF)(c) \\
 f^{-1} & \downarrow & \downarrow((HF)(f))^{-1} \\
 d & \xrightarrow{\eta(d)} & \Pi_1(HF)(d)
\end{array}
$$

because the following diagram commutes in $C$

$$
\begin{array}{ccc}
  c & \xrightarrow{\eta(c)} & HF(c) \\
 f & \downarrow & \downarrow HF(f) \\
 d & \xrightarrow{\eta(d)} & HF(d)
\end{array}
$$

and we have the following equalities

$$\Pi_1(H)\Pi_1(F)(f^{-1}) = \Pi_1(HF)(f^{-1}) = (\Pi(H)(f))^{-1} = ((HF)(f))^{-1} = (HF(f))^{-1}.$$

Thus we have shown that the family of isomorphisms $\eta_{\Pi_1} = \{\eta(c)\}_{c \in C}$ glue together to define a natural isomorphism $\eta_{\Pi_1} : \text{id}_{\Pi_1(C)} \Rightarrow \Pi_1(H)\Pi(F)$. A similar argument gives us a counit natural isomorphism $\epsilon_{\Pi_1} : \Pi_1(F)\Pi_1(H) \Rightarrow \text{id}_{\Pi_1(D)}$.

$\square$

**Proposition 2.39.** Let $E$ be a symmetric monoidal category, $F$ be a symmetric monoidal groupoid and $\Phi : E \to F$ be a strict symmetric monoidal which is a composite of $n$ strict symmetric monoidal functors i.e. $\Phi = \phi_n \circ \cdots \circ \phi_1$ such that each $\phi_i$ has either a left or a right adjoint for $1 \leq i \leq n$. Then the Gabriel category of $\Phi$, $G$, is isomorphisc to $\Pi_1(E)$. 
Proof. The functor $\Phi$ has a Gabriel factorization

\[
\begin{array}{c}
E \\
\downarrow \downarrow \downarrow \gamma \Delta
\end{array}
\xrightarrow{\Phi} \begin{array}{c}
F \\
\downarrow \downarrow \Delta
\end{array}
\]

see [GJ08, Sec. 1.1]. The above lemma 2.38 tells us that the functor $\Pi_1(\Phi) : \Pi_1(E) \to \Pi_1(F) = F$ is an equivalence of groupoids. In the above situation the Gabriel category $G$ is a groupoid therefore $\Pi_1(G) = G$. We recall that $Ob(G) = Ob(E)$ and since $\Pi_1(\Phi)$ is an equivalence of categories therefore for each pair of objects $e_1, e_2 \in E$ we have the following

\[E(e_1, e_2) \cong F(\Phi(e_1), \Phi(e_2)) = G(e_1, e_2)\]

Thus the functor $\Gamma$ is an isomorphism of categories. 

\[\square\]
3. THE MODEL CATEGORY OF PERMUTATIVE CATEGORIES

In this section we will describe a model category structure on the category of all (small) permutative categories \( \text{Perm} \) and two model category structures on the category of all \( \Gamma \)-categories \( \Gamma \text{CAT} \). The three desired Quillen adjunctions will be amongst the model categories described here. We begin with the category \( \text{Perm} \). The desired model category structure on \( \text{Perm} \) is a restriction of the natural model category structure on \( \text{CAT} \), which leads us to call it the \textit{natural model category structure on} \( \text{Perm} \).

3.1. The natural model category \( \text{Perm} \). We begin this subsection by reviewing permutative categories. A permutative category is a symmetric monoidal category in which the associativity and unit natural isomorphisms are the identity natural transformations. A map in \( \text{Perm} \) is a \textit{strict monoidal functor} i.e. a functor which strictly preserves the tensor product, the unit object and also the associativity, unit and symmetry isomorphisms. A permutative category can be equivalently described as an algebra over a categorical version of the Barratt-Eccles operad, see [Dun94, Proposition 2.8]. The objective of this subsection is to define a model category structure on \( \text{Perm} \). We will obtain this model category structure, in appendix A, by regarding \( \text{Perm} \) as a reflective subcategory of \( \text{CAT} \) and transferring the natural model category structure to \( \text{Perm} \).

**Theorem 3.1.** There is a model category structure on the category of all small permutative categories and strict symmetric monoidal functors \( \text{Perm} \) in which

1. A fibration is a strict symmetric monoidal functor which is also an isofibration of (unbased) categories and
2. A weak-equivalence is a strict symmetric monoidal functor which is also an equivalence of (unbased) categories.
3. A cofibration is a strict symmetric monoidal functor having the left lifting property with respect to all maps which are both fibrations and weak equivalences.

Further, this model category structure is combinatorial and proper.

A functor \( F : C \to D \) is an equivalence of categories if and only if there exists another functor \( G : D \to C \) and two natural isomorphisms \( FG \cong \text{id}_C \) and \( \text{id}_D \cong GF \). We would like to have a similar characterization for a weak equivalence in \( \text{Perm} \) but unfortunately this is only possible by relaxing the strictness condition on the functor \( G \).

**Theorem 3.2.** Let \( F : C \to D \) be a strict symmetric monoidal functor in \( \text{Perm} \). Any adjunction \( (F, G, \eta, \epsilon) \) consisting of a unital right adjoint functor \( G : D \to C \) and a pair of unital natural isomorphisms \( \epsilon : FG \cong \text{id}_D \) and \( \eta : \text{id}_C \cong GF \), enhances uniquely to a unital symmetric monoidal adjunction i.e. there exists a unique natural isomorphism

\[
\lambda_G := \text{id} \circ(\epsilon \times \epsilon) \cdot (\lambda_{GF} \circ \text{id}_{G \times G}) \cdot \text{id} \circ (\epsilon^{-1} \times \epsilon^{-1}).
\]

enhancing \( G = (G, \lambda_G) \), into a unital symmetric monoidal functor such that \( \eta \) and \( \epsilon \) are unital monoidal natural isomorphisms.

**Proof.** We will show that \( G \) is a symmetric monoidal functor and \( \eta \) and \( \epsilon \) are symmetric monoidal natural isomorphisms. We will first show the later part. In
order to do so we first have to show that the composite functors $GF$ and $FG$ are symmetric monoidal. We consider the following diagram:

$$
\begin{array}{ccc}
C \times C & \overset{\otimes}{\to} & C \\
\downarrow \eta \times \eta & & \downarrow \eta \\
GF \times GF & \overset{id}{\to} & GF \\
\downarrow \eta \times \eta & & \downarrow \eta \\
C \times C & \overset{\otimes}{\to} & C
\end{array}
$$

Even though the definition follows from lemma 2.7, still the above diagram is helpful in defining a composite natural isomorphism $\lambda_{GF}$:

$$
\lambda_{GF} := (id_{-\otimes-} \circ \eta \times \eta) \cdot (\eta^{-1} \circ id_{-\otimes-})
$$

It follows from lemma 2.7 that $GF = (GF, \lambda_{GF})$ is a symmetric monoidal functor and $\eta$ is a unital monoidal natural isomorphism. A similar argument shows that the composite functor $FG$ is a symmetric monoidal functor and $\epsilon$ is a unital monoidal natural isomorphism.

Now it remains to show that $G$ is a symmetric monoidal functor. The given adjunction is a unital symmetric monoidal adjunction if and only if there exists a unital monoidal isomorphism $\lambda_G$ such that the following diagram commutes

$$
\begin{array}{ccc}
(- \otimes -) \circ (GF \times GF) \circ (G \times G) & \overset{id \circ (\epsilon^{-1} \times \epsilon^{-1})}{\Rightarrow} & (- \otimes -) \circ (G \times G) \\
\downarrow \lambda_{GF} \circ id_{G \times G} & & \downarrow \lambda_G \\
GF \circ (- \otimes -) \circ (G \times G) & \Rightarrow & G \circ (- \otimes -)
\end{array}
$$

There is only one way to define $\lambda_G$ which is the following composite natural isomorphism:

$$
(- \otimes -) \circ (G \times G) \overset{id \circ (\epsilon^{-1} \times \epsilon^{-1})}{\Rightarrow} (- \otimes -) \circ (G \times G) \circ (FG \times FG) = (- \otimes -) \circ (GF \times GF) \circ (G \times G)
$$

$$
\lambda_{GF} \circ id_{G \times G} \Rightarrow GF \circ (- \otimes -) \circ (G \times G) \overset{id \circ \lambda_G}{\Rightarrow} G \circ (- \otimes -) \circ (FG \times FG) \overset{id \circ (\epsilon \times \epsilon)}{\Rightarrow} G \circ (- \otimes -).
$$

$\lambda_G$ satisfies the symmetry and associativity condition $OL.2$ and $OL.3$ because it is a composite of a symmetric monoidal natural isomorphism $\epsilon$, some identity natural isomorphisms and $\lambda_F$ and all of these satisfy $OL.2$ and $OL.3$. Thus we have proved that $(G, \lambda_G)$ is a symmetric monoidal functor.

**Corollary 3.3.** A strict symmetric monoidal functor $F : C \to D$ is a weak equivalence in $Perm$ if and only if there exists a symmetric monoidal functor $G : D \to C$ and a pair of symmetric monoidal natural isomorphisms $\epsilon : FG \cong id_D$ and $\eta : id_C \cong GF$.

**Proof.** The only if part of the statement of the corollary is obvious. Let us assume that $F$ is a weak equivalence in $Perm$. By regarding the unit objects of $C$ and $D$ as basepoints, we may view $F$ as a (pointed) functor in $CAT$, which is a weak
equivalence in the natural model category of pointed categories $\text{CAT}_\ast$. Then, by definition, there exists a unital functor $G : D \to C$ and two unital natural isomorphisms $\eta : \text{id}_C \Rightarrow GF$ and $\epsilon : FG \Rightarrow \text{id}_D$. Now the result follows from the theorem. □

Next we want to give a characterization of acyclic fibrations in $\text{Perm}$. Recall that a functor is an acyclic fibration in $\text{CAT}$ if and only if it is an equivalence which is surjective on objects. The following corollary provides equivalent characterizations of acyclic fibrations in $\text{Perm}$

**Corollary 3.4.** Given a strict symmetric monoidal functor $F : C \to D$ between permutative categories, the following statements about $F$ are equivalent:

1. $F$ is an acyclic fibration in $\text{Perm}$.
2. $F$ is an equivalence of categories and surjective on objects.
3. There exist a unital symmetric monoidal functor $G : D \to C$ such that $FG = \text{id}_D$ and a unital monoidal natural isomorphism $\eta : \text{id}_C \cong GF$.

**Proof.** (1) $\Rightarrow$ (2) An acyclic fibration $F : C \to D$ in $\text{Perm}$ is an acyclic fibration in $\text{CAT}_\ast$, when the unit objects are regarded as basepoints of $C$ and $D$. Every acyclic fibration in $\text{CAT}_\ast$ is an equivalence of categories and surjective on objects, see 2.25.

(2) $\Rightarrow$ (3) Since every object is cofibrant in the natural model category structure on $\text{CAT}_\ast$, therefore there exist a unital functor $G : D \to C$ such that $FG = \text{id}_D$. There also exists a unital natural isomorphism $\eta : \text{id}_C \cong GF$, see 2.32. Now the theorem tells us that there is a unique enhancement of $G$ to a unital symmetric monoidal functor such that $\eta$ is a unital monoidal natural isomorphisms.

(3) $\Rightarrow$ (4) Conversely, if there exists a unital symmetric monoidal functor $(G, \lambda_G)$ and a unital monoidal natural isomorphisms $\eta : \text{id}_C \cong GF$ such that $FG = \text{id}_D$ then $F$ is an acyclic fibration in $\text{CAT}$ and therefore it is an acyclic fibration in $\text{Perm}$. □

Every object in $\text{CAT}$ is cofibrant in the natural model structure but this is not the case in $\text{Perm}$. The cofibrant objects satisfy a freeness condition, for example every free permutative category generated by a category is a cofibrant object in $\text{Perm}$. In general, the notion of cofibrations in $\text{Perm}$ is stronger than that in $\text{CAT}$ as the following lemma suggests:

**Lemma 3.5.** A cofibration in $\text{Perm}$ is monic on objects.

**Proof.** We begin the proof by defining a permutative category $EC$ whose set of objects is the same as that of $C$. The category $EC$ has exactly one arrow between any pair of objects. This category gets a unique permutative category structure which agrees with the permutative category structure of $C$ on objects. The category $EC$ is equipped with a unique strict symmetric monoidal functor $\iota_C : C \to EC$ which is identity on objects. It is easy to see that the category $EC$ is a groupoid and the terminal map $EC \to \ast$ is an acyclic fibration in $\text{Perm}$.

Let $i : C \to D$ be a cofibration in $\text{Perm}$. Let us assume that the object function $\text{Ob}(i) : \text{Ob}(C) \to \text{Ob}(D)$ is NOT a monomorphism. Now we have the following
The above diagram has NO lift because \( \text{Ob}(i) \) is NOT a monomorphism. Since the terminal map \( EC \to * \) is an acyclic fibration, we have a contradiction to our assumption that \( i \) is a cofibration in \( \text{Perm} \). Thus a cofibration in \( \text{Perm} \) is always monic on objects. \( \square \)

Frequently in this paper we would require a characterization of cofibrations in \( \text{Perm} \). The object function of a strict symmetric monoidal functor, which is a homomorphisms of monoids, determines whether the functor is a cofibration in \( \text{Perm} \). We now recall that the category of monoids has a (weak) factorization system:

**Lemma 3.6.** There is a weak factorization system \( (L, R) \) on the category of monoids, where \( R \) is the class of surjective homomorphisms of monoids.

**Proof.** We have to show that each homomorphism of monoids \( f : X \to Y \) admits a factorisation \( f : X \xrightarrow{u} E \xrightarrow{p} Y \) with \( u \) lies in the class \( L \) and \( p \) lies in the class \( R \). For this, let \( q : F(Y) \to Y \) be the homomorphism adjunct to the identity map on \( Y \) in the category of sets, where \( F(Y) \) is the free monoid generated by the underlying set of \( Y \). The homomorphism \( q \) is surjective. Let \( E = X \coprod F(Y) \) be the coproduct of \( X \) and \( F(Y) \) in the category of monoids, and let \( u : X \to E \) and \( v : F(Y) \to E \) be the inclusions. Then there is a unique map \( p : E \to Y \) such that \( pu = f \) and \( pv = q \). We claim that \( u \) is in \( L \) and \( p \) is in \( R \). The homomorphism \( p \) is surjective because \( q \) is surjective. In order to show that \( u \) is in \( L \) we have to show that whenever we have a (outer) commutative diagram in the category of monoids, where \( s \) is in \( R \)

\[
\begin{array}{ccc}
X & \xrightarrow{g} & C \\
\downarrow{u} & \searrow{L} & \downarrow{s} \\
E = X \coprod F(Y) & \xrightarrow{f} & D
\end{array}
\]

there exists a diagonal filler \( L \) which makes the entire diagram commutative. The lower horizontal map \( f \) can be viewed as a pair of homomorphisms \( f_1 : X \to D \) and \( f_2 : F(Y) \to D \). Now, it would be sufficient to show that there exists a homomorphism \( L_2 : F(Y) \to C \) such that the following diagram commutes

\[
\begin{array}{ccc}
C & \xrightarrow{L_2} & F(Y) \\
\downarrow{s} & \searrow{f_2} & \downarrow{s} \\
D & \xrightarrow{s} & D
\end{array}
\]

By adjointness, the existence of the homomorphism \( L_2 \) is equivalent to the existence of a morphism of sets, \( T : Y \to U(C) \), such that the following diagram commutes.
in the category of sets

\[
\begin{array}{ccc}
U(C) & \xrightarrow{T} & U(s) \\
\downarrow & & \downarrow \\
\downarrow & & \downarrow \\
\downarrow & & \downarrow \\
Y & \xrightarrow{U(f_2)} & U(D)
\end{array}
\]

where \( U \) is the forgetful functor from the category of monoids to the category of sets which is right adjoint to the free monoid functor \( F \). Such a map \( T \) exists because \( s \) is a surjective map of sets. Thus we have shown that the homomorphism \( u \) lies in the class \( L \).

The next lemma provides the desired characterization of cofibrations.

**Lemma 3.7.** A strict symmetric monoidal functor \( F : C \rightarrow D \) in \( \text{Perm} \) is a cofibration if and only if the object function of \( F \) lies in the class \( L \) i.e. it has the left lifting property with respect to surjective homomorphisms of monoids.

**Proof.** Let us assume that \( \text{Ob}(F) \) lies in the class \( L \). Let \( p : X \rightarrow Y \) be an acyclic fibration in \( \text{Perm} \) then the object function \( \text{Ob}(p) : \text{Ob}(X) \rightarrow \text{Ob}(Y) \) is a surjective homomorphism. The assumption that \( \text{Ob}(F) \) lies in \( L \) implies that whenever we have the following (outer) commutative diagram there exists a (dotted) diagonal filler \( \text{Ob}(L) \) which makes the entire diagram commutative in the category of monoids

\[
\begin{array}{ccc}
\text{Ob}(C) & \xrightarrow{} & \text{Ob}(X) \\
\downarrow \text{Ob}(F) & & \downarrow \text{Ob}(p) \\
\text{Ob}(D) & \xrightarrow{} & \text{Ob}(Y)
\end{array}
\]

Now we want to show that whenever we have a (outer) commutative diagram, there exists a lift \( L \) which makes the following diagram commutative in \( \text{Perm} \)

\[
\begin{array}{ccc}
C & \xrightarrow{L} & X \\
\downarrow F & & \downarrow p \\
D & \xrightarrow{G} & Y
\end{array}
\]

We will present a construction of the strict symmetric monoidal functor \( L \) in the above diagram. We choose a lift \( \text{Ob}(L) \) in the diagram (11) to be the object function of the functor \( L \). Since \( p \) is an acyclic fibration therefore for each pair of objects \( y, z \in \text{Ob}(X) \), each function

\[
p_{y,z} : X(y, z) \rightarrow Y(p(y), p(z))
\]

is a bijection. For each pair of objects \( d_1, d_2 \) in \( D \), we define a function \( L_{d_1, d_2} : D(a, b) \rightarrow X(L(d_1), L(d_2)) \) by the following composite diagram

\[
D(d_1, d_2) \xrightarrow{G_{d_1, d_2}} Y(G(d_1), G(d_2)) \xrightarrow{p_{L(d_1), L(d_2)}^{-1}} X(L(d_1), L(d_2)).
\]
In order to check that our definition respects composition, it would be sufficient to check that for another object $d_3 \in \text{Ob}(D)$, the following diagram commutes:

$$
\begin{array}{c}
Y(F(d_1), F(d_2)) \times Y(F(d_2), F(d_3)) \xrightarrow{p_{L(d_1), L(d_2)} \times p_{L(d_2), L(d_3)}} X(L(d_1), L(d_2)) \times X(L(d_2), L(d_3)) \\
\downarrow \circ \downarrow \\
Y(F(d_1), F(d_2)) \xrightarrow{p_{L(d_1), L(d_3)}} X(L(d_1), L(d_3))
\end{array}
$$

The commutativity of the above diagram follows from the commutativity of the following diagram which is the result of the assumption that $p$ is a functor

$$
\begin{array}{c}
Y(F(d_1), F(d_2)) \times Y(F(d_2), F(d_3)) \xrightarrow{p_{L(d_1), L(d_2)} \times p_{L(d_2), L(d_3)}} X(L(d_1), L(d_2)) \times X(L(d_2), L(d_3)) \\
\downarrow \circ \downarrow \\
Y(F(d_1), F(d_2)) \xleftarrow{p_{L(d_1), L(d_3)}} X(L(d_1), L(d_3))
\end{array}
$$

Thus we have shown that the family of functions $\{L_{d_1, d_2}\}_{d_1, d_2 \in \text{Ob}(D)}$ together with the object function $\text{Ob}(L)$ defines a functor $L$. Now we have to check that $L$ is a strict symmetric monoidal functor. Clearly $L(d_1 \otimes d_2) = L(d_1) \otimes L(d_2)$ for each pair of objects $d_1, d_2 \in \text{Ob}(D)$ because the object function of $L$ is a homomorphism of monoids. The same equality holds for each pair of maps in $D$. Finally we will show that $L$ strictly preserves the symmetry isomorphism. By definition, $L(\gamma_{d_1, d_2}^D) = p^{-1}_{G(d_1 \otimes d_2), G(d_2 \otimes d_1)} \circ G(\gamma_{d_1, d_2}^D)$. Since $G$ is a strict symmetric monoidal functor, therefore $G(\gamma_{d_1, d_2}^D) = \gamma_{G(d_1), G(d_2)}^Y = \gamma_{pL(d_1), pL(d_2)}^Y$. Since $p$ is also a strict symmetric monoidal functor therefore

$$p^{-1}_{G(d_1 \otimes d_2), G(d_2 \otimes d_1)}(\gamma_{G(d_1), G(d_2)}^Y) = p^{-1}_{G(d_1 \otimes d_2), G(d_2 \otimes d_1)}(\gamma_{pL(d_1), pL(d_2)}^Y) = \gamma_{L(d_1), L(d_2)}^X.$$

This means that $L(\gamma_{d_1, d_2}^D) = \gamma_{L(d_1), L(d_2)}^X$ for each pair of objects $d_1, d_2 \in \text{Ob}(D)$. Thus we have shown that $L$ is a strict symmetric monoidal functor which makes the entire diagram (3.1) commutative i.e. $F$ is an acyclic cofibration in $\text{Perm}$.

Conversely let us assume that $F$ is an acyclic cofibration in $\text{Perm}$. We want to show that the object function of $F$ lies in the class $L$. Let $f : M \to N$ be a surjective homomorphism of monoids. The homomorphism $f$ induces an acyclic fibration $E(f) : EM \to EN$, where $EM$ and $EN$ are permutative categories whose monoid of objects are $M$ and $N$ respectively and there is exactly one map between each pair of objects. By assumption the functor $F$ has the left lifting property with respect to all strict symmetric monoidal functors in the set

$$\{E(f) : EM \to EN : f \in R\}$$

because every element of this set is an acyclic fibration in $\text{Perm}$. This implies that the object function of $F$ has the left lifting property with respect to all maps in $R$.

The next proposition provides three equivalent characterizations of acyclic cofibrations in $\text{Perm}$:

**Proposition 3.8.** Let $F : C \to D$ be a strict symmetric monoidal functor between permutative categories $C$ and $D$, the following conditions on $F$ are equivalent:
(1) The strict symmetric monoidal functor $F$ is an acyclic cofibration in $\text{Perm}$. 
(2) There exist a strict symmetric monoidal functor $G : D \to C$ such that $GF = id_C$ and a unital monoidal natural isomorphism $\eta : id_D \cong FG$ which is the unit of an adjunction $(G, F, \eta, id) : D \to C$. 
(3) There is a (permutative) subcategory $S$ of $D$, an isomorphism $H : C \cong S$, in $\text{Perm}$, a strict symmetric monoidal functor $T : D \to S$ and a unital monoidal natural isomorphism $\iota_S : T \cong id_D$, where $\iota_S : S \hookrightarrow D$ is the inclusion functor such that $T \circ \iota_S = id_S$ and $F = \iota_S \circ H$.

Proof. (1) $\Rightarrow$ (2) Since $F$ is an acyclic cofibration in $\text{Perm}$ therefore the (outer) commutative diagram has a diagonal filler $G$ such that the entire diagram is commutative in $\text{Perm}$

\[
\begin{array}{ccc}
C & \xrightarrow{G} & C \\
\downarrow{F} & & \downarrow{p} \\
D & \xrightarrow{=} & \ast
\end{array}
\]

Now we construct the monoidal natural isomorphism $\eta : id_D \to FG$. For each object $d \in \text{Ob}(D)$ which is in the image of $F$, there exists a unique $c \in \text{Ob}(C)$ such that $d = F(c)$. In this case we define $\eta(d) = id_d$. Let $d \in \text{Ob}(D)$ lie outside the image of $F$. Since $F$ is an equivalence of categories, we may choose an object $c \in \text{Ob}(C)$ and an isomorphism $\iota_d : F(c) \cong d$ such that for each arrow $f : d \to e$ in $D$, there exists a unique arrow $g : c \to a$ in $C$ which makes the following diagram commutative in $D$:

\[
\begin{array}{ccc}
F(c) & \xrightarrow{id_d} & d \\
\downarrow{F(g)} & & \downarrow{f} \\
F(a) & \xrightarrow{\iota_d} & e
\end{array}
\]

Whenever $d = d_1 \otimes d_2$, we may choose $c = c_1 \otimes c_2$ and $id_d = id_{d_1} \otimes id_{d_2}$. This gives us a composite isomorphism

\[\eta(d) := d \overset{(id_d)^{-1}}{\to} FG(F(c)) \overset{FG(id_d)}{\to} FG(d)\]

In light of the commutative diagram (12), it is easy to see that this isomorphism is natural. Thus we have defined a (unital) natural isomorphism $\eta : id_D \Rightarrow FG$. Our choice for each pair of objects $d_1, d_2 \in \text{Ob}(D)$ for $id_{d_1} \otimes id_{d_2} = id_{d_1 \otimes d_2}$ garuntee that $\eta$ is a monoidal natural isomorphism i.e. $\eta(d_1 \otimes d_2) = \eta(d_1) \otimes \eta(d_2)$.

(2) $\Rightarrow$ (3) The permutative subcategory $S \subseteq D$ is the full subcategory of $D$ whose objects lie in the image of $F$ i.e. the object set of $S$ is defined as follows:

\[\text{Ob}(S) := \{F(c) : c \in \text{Ob}(C)\}\]

If $F(c_1)$ and $F(c_2)$ lie in $S$ then $F(c_1) \otimes F(c_2) = C \overset{D}{\to} C$ also lies in $S$. Thus $S$ is a permutative subcategory. The isomorphism $H$ is obtained by restricting the codomain of $F$ to $S$. The left adjoint of $\iota_S$ is the composite functor $FG$. The counit of the adjunction $(FG, \iota_S)$ is the identity natural isomorphism. The unit (monoidal) natural isomorphism is just $\eta$. Thus $S$ is reflective.
(3) ⇒ (1) If we assume (4) then any (outer) commutative square

\[
\begin{array}{ccc}
C & \overset{Q}{\rightarrow} & X \\
F & \downarrow^{L} & \downarrow^{p} \\
D & \rightarrow^{R} & Y
\end{array}
\]

where \( p \) is a fibration in \( \textbf{Perm} \), would have a diagonal filler \( L \) if and only if the lower square in the following (solid arrow) commutative diagram has a diagonal filler \( K \)

\[
\begin{array}{ccc}
C & \overset{Q}{\rightarrow} & X \\
S & \downarrow^{\iota_S} & \downarrow^{p} \\
D & \rightarrow^{R} & Y
\end{array}
\]

Since \( \iota_S \) has a strict symmetric monoidal left adjoint \( T \) with an identity counit, therefore the composite \( K = T \circ Q \circ H^{-1} \) is a diagonal filler of the lower square such that entire diagram commutes. This implies that \( F \) has the left lifting property with respect to fibrations in \( \textbf{Perm} \). Thus \( F \) is an acyclic cofibration in \( \textbf{Perm} \). □
4. THE MODEL CATEGORY OF COHERENTLY COMMUTATIVE MONOIDAL CATEGORIES

A $\Gamma$-category is a functor from $\Gamma^{op}$ to $\text{CAT}$. The category of functors from $\Gamma^{op}$ to $\text{CAT}$ and natural transformations between them $[\Gamma^{op}, \text{CAT}]$ will be denoted by $\Gamma\text{CAT}$. We begin by describing a model category structure on $\Gamma\text{CAT}$ which is often referred to either as the \textit{projective model category structure} or the \textit{strict model category structure}. Following [Sch99] we will use the latter terminology.

**Definition 4.1.** A morphism $F : X \to Y$ of $\Gamma$-categories is called

1. a \textit{strict equivalence} of $\Gamma$-categories if it is degreewise weak equivalence in the natural model category structure on $\text{CAT}$ i.e. $F(n^+) : X(n^+) \to Y(n^+)$ is an equivalence of categories.
2. a \textit{strict fibration} of $\Gamma$-categories if it is degreewise a fibration in the natural model category structure on $\text{CAT}$ i.e. $F(n^+) : X(n^+) \to Y(n^+)$ is an isofibration.
3. a $Q$-cofibration of $\Gamma$-categories if it has the left lifting property with respect to all morphisms which are both strict weak equivalence and strict fibrations of $\Gamma$-categories.

In light of proposition 2.27 we observe that a map of $\Gamma$-categories $F : X \to Y$ is a strict acyclic fibration of $\Gamma$-categories if and only if it has the right lifting property with respect to all maps in the set

$$\mathcal{I} = \{\Gamma^n \times \partial_0, \Gamma^n \times \partial_1, \Gamma^n \times \partial_2 \mid \forall n \in \text{Ob}(\mathcal{N})\}.$$ 

We further observe, in light of proposition 2.24, that $F$ is a strict fibration if and only if it has the right lifting property with respect to all maps in the set

$$\mathcal{J} = \{\Gamma^n \times i_0, \Gamma^n \times i_1 \mid \forall n \in \text{Ob}(\mathcal{N})\}.$$ 

**Theorem 4.2.** Strict equivalences, strict fibrations and $Q$-cofibrations of $\Gamma$-categories provide the category $\Gamma\text{CAT}$ with a combinatorial model category structure.

A proof of this proposition is given in [Lur09, Proposition A.3.3.2].

To each pair of objects $(X, C) \in \text{Ob}(\Gamma\text{CAT}) \times \text{Ob}(\text{CAT})$ we can assign a $\Gamma$-category $X \otimes C$ which is defined in degree $n$ as follows:

$$(X \otimes C)(n^+) := X(n^+) \times C,$$

This assignment is functorial in both variables and therefore we have a bifunctor

$$- \otimes - : \Gamma\text{CAT} \times \text{CAT} \to \Gamma\text{CAT}.$$ 

Now we will define a couple of function objects for the category $\Gamma\text{CAT}$. The first function object enriches the category $\Gamma\text{CAT}$ over $\text{CAT}$ i.e. there is a bifunctor

$$\text{Map}_{\Gamma\text{CAT}}(-, -) : \Gamma\text{CAT}^{op} \times \Gamma\text{CAT} \to \text{CAT}$$

which assigns to any pair of objects $(X, Y) \in \text{Ob}(\Gamma\text{CAT}) \times \text{Ob}(\Gamma\text{CAT})$, a category $\text{Map}_{\Gamma\text{CAT}}(X, Y)$ whose set of objects is the following

$$\text{Ob}(\text{Map}_{\Gamma\text{CAT}}(X, Y)) := \text{Hom}_{\Gamma\text{CAT}}(X, Y)$$

and the morphism set of this category are defined as follows:

$$\text{Mor}(\text{Map}_{\Gamma\text{CAT}}(X, Y)) := \text{Hom}_{\Gamma\text{CAT}}(X \times I, Y)$$
For any $\Gamma$-category $X$, the functor $X \otimes - : \text{CAT} \to \Gamma\text{CAT}$ is left adjoint to the functor $\text{Map}_{\Gamma\text{CAT}}(X, -) : \Gamma\text{CAT} \to \text{CAT}$. The counit of this adjunction is the evaluation map $ev : X \otimes \text{Map}_{\Gamma\text{CAT}}(X, Y) \to Y$ and the unit is the obvious functor $C \to \text{Map}_{\Gamma\text{CAT}}(X, X \otimes C)$. To any pair of objects $(C, X) \in \text{Ob}(\text{CAT}) \times \text{Ob}(\Gamma\text{CAT})$ we can assign a $\Gamma$-category $\text{hom}_{\Gamma\text{CAT}}(C, X)$ which is defined in degree $n$ as follows:

$$\text{hom}_{\Gamma\text{CAT}}(C, X)(n^+) := [C, X(n^+)].$$

This assignment is functorial in both variables and therefore we have a bifunctor $\text{hom}_{\Gamma\text{CAT}}(-, -) : \text{CAT}^{\text{op}} \times \Gamma\text{CAT} \to \Gamma\text{CAT}$.

For any $\Gamma$-category $X$, the functor $\text{hom}_{\Gamma\text{CAT}}(-, X) : \text{CAT} \to \Gamma\text{CAT}^{\text{op}}$ is left adjoint to the functor $\text{Map}_{\Gamma\text{CAT}}(-, X) : \Gamma\text{CAT}^{\text{op}} \to \text{CAT}$. The following proposition summarizes the above discussion.

**Proposition 4.3.** There is an adjunction of two variables

$$(15) \quad (- \otimes -, \text{hom}_{\Gamma\text{CAT}}(-, -), \text{Map}_{\Gamma\text{CAT}}(-, -)) : \Gamma\text{CAT} \times \text{CAT} \to \Gamma\text{CAT}.$$ 

**Definition 4.4.** Given model categories $\mathcal{C}$, $\mathcal{D}$ and $\mathcal{E}$, an adjunction of two variables, $(\otimes, \text{hom}_{\mathcal{C}}, \text{Map}_{\mathcal{C}}, \phi, \psi) : \mathcal{C} \times \mathcal{D} \to \mathcal{E}$, is called a Quillen adjunction of two variables, if, given a cofibration $f : U \to V$ in $\mathcal{C}$ and a cofibration $g : W \to X$ in $\mathcal{D}$, the induced map

$$f \Box g : (V \otimes W) \coprod_{U \otimes W} (U \otimes X) \to V \otimes X$$

is a cofibration in $\mathcal{E}$ that is trivial if either $f$ or $g$ is. We will refer to the left adjoint of a Quillen adjunction of two variables as a Quillen bifunctor.

The following lemma provides three equivalent characterizations of the notion of a Quillen bifunctor. These will be useful in this paper in establishing enriched model category structures.

**Lemma 4.5.** [Hov99, Lemma 4.2.2] Given model categories $\mathcal{C}$, $\mathcal{D}$ and $\mathcal{E}$, an adjunction of two variables, $(\otimes, \text{hom}_{\mathcal{C}}, \text{Map}_{\mathcal{C}}, \phi, \psi) : \mathcal{C} \times \mathcal{D} \to \mathcal{E}$. Then the following conditions are equivalent:

1. $\otimes : \mathcal{C} \times \mathcal{D} \to \mathcal{E}$ is a Quillen bifunctor.
2. Given a cofibration $g : W \to X$ in $\mathcal{D}$ and a fibration $p : Y \to Z$ in $\mathcal{E}$, the induced map

$$\text{hom}_{\mathcal{C}}(g, p) : \text{hom}_{\mathcal{C}}(X, Y) \to \text{hom}_{\mathcal{C}}(X, Z) \times_{\text{hom}_{\mathcal{C}}(W, Z)} \text{hom}_{\mathcal{C}}(W, Y)$$

is a fibration in $\mathcal{C}$ that is trivial if either $g$ or $p$ is a weak equivalence in their respective model categories.
3. Given a cofibration $f : U \to V$ in $\mathcal{C}$ and a fibration $p : Y \to Z$ in $\mathcal{E}$, the induced map

$$\text{Map}_{\mathcal{C}}(f, p) : \text{Map}_{\mathcal{C}}(V, Y) \to \text{Map}_{\mathcal{C}}(V, Z) \times_{\text{Map}_{\mathcal{C}}(W, Z)} \text{Map}_{\mathcal{C}}(W, Y)$$

is a fibration in $\mathcal{C}$ that is trivial if either $f$ or $p$ is a weak equivalence in their respective model categories.
Definition 4.6. Let $S$ be a monoidal model category. An $S$-enriched model category is an $S$-enriched category $A$ equipped with a model category structure (on its underlying category) such that there is a Quillen adjunction of two variables, see definition 4.4, $(\otimes, \text{hom}_A, \text{Map}_A, \phi, \psi) : A \times S \to A$.

Theorem 4.7. The strict model category of $\Gamma$-categories, $\Gamma\text{CAT}$, is a $\text{CAT}$-enriched model category.

Proof. We will show that the adjunction of two variables (15) is a Quillen adjunction for the strict model category structure on $\Gamma\text{CAT}$ and the natural model category structure on $\text{CAT}$. In order to do so, we will verify condition (2) of Lemma 4.5. Let $g : C \to D$ be a cofibration in $\text{CAT}$ and let $p : Y \to Z$ be a strict fibration of $\Gamma$-categories, we have to show that the induced map

$$\text{hom}_{\Gamma\text{CAT}}(g,p) : \text{hom}_{\Gamma\text{CAT}}(X,Y) \to \text{hom}_{\Gamma\text{CAT}}(D,Z) \times \text{hom}_{\Gamma\text{CAT}}(C,Y)$$

is a fibration in $\text{CAT}$ which is acyclic if either of $g$ or $p$ is acyclic. It would be sufficient to check that the above morphism is degreewise a fibration in $\text{CAT}$, i.e. for all $n^+ \in \Gamma^{\text{op}}$, the morphism

$$\text{hom}_{\Gamma\text{CAT}}(g,p)(n^+) : [D, Y(n^+)] \to [D, Z(n^+)] \times [C, Y(n^+)],$$

is a fibration in $\text{CAT}$. This follows from the observations that the functor $p(n^+) : Y(n^+) \to Z(n^+)$ is a fibration in $\text{CAT}$ and the natural model category $\text{CAT}$ is a $\text{CAT}$-enriched model category whose enrichment is provided by the bifunctor $[-, -]$.

Proposition 4.8. The category of all $\Gamma$-categories $\Gamma\text{CAT}$ is a symmetric monoidal category under the Day convolution product (16). The unit of the symmetric monoidal structure is the representable $\Gamma$-category $\Gamma^1$.

Next we define an internal function object of the category $\Gamma$-category which we will denote by

$$\overline{\text{Map}}_{\Gamma\text{CAT}}(-,-) : \Gamma\text{CAT}^{\text{op}} \times \Gamma\text{CAT} \to \Gamma\text{CAT}.$$  

Let $X$ and $Y$ be two $\Gamma$-categories, we define the $\Gamma$-category $\overline{\text{Map}}_{\Gamma\text{CAT}}(X,Y)$ as follows:

$$\overline{\text{Map}}_{\Gamma\text{CAT}}(X,Y)(n^+) := \text{Map}_{\Gamma\text{CAT}}(X \ast \Gamma^n, Y).$$
Proposition 4.9. The category $\Gamma\text{-CAT}$ is a closed symmetric monoidal category under the Day convolution product. The internal Hom is given by the bifunctor (17) defined above.

The above proposition implies that for each $n \in \mathbb{N}$ the functor $- \star \Gamma^n : \Gamma\text{-CAT} \to \Gamma\text{-CAT}$ has a right adjoint $\text{Map}_{\Gamma\text{-CAT}}(\Gamma^n, -) : \Gamma\text{-CAT} \to \Gamma\text{-CAT}$. It follows from [3, Thm.] that the functor $- \star \Gamma^n$ has another right adjoint which we denote by $-(n^+ \land -) : \Gamma\text{-CAT} \to \Gamma\text{-CAT}$. We will denote $-(n^+ \land -)(X)$ by $X(n^+ \land -)$, where $X$ is a $\Gamma$-category. The $\Gamma$-category $X(n^+ \land -)$ is defined by the following composite:

$$\Gamma^{op} n^+ \land - \to \Gamma^{op} \to \text{CAT}.$$  

(18)

The following proposition sums up this observation:

Proposition 4.10. There is a natural isomorphism

$$\phi : -(n^+ \land -) \cong \text{Map}_{\Gamma\text{-CAT}}(\Gamma^n, -).$$

In particular, for each $\Gamma$-category $X$ there is an isomorphism of $\Gamma$-categories

$$\phi(X) : X(n^+ \land -) \cong \text{Map}_{\Gamma\text{-CAT}}(\Gamma^n, X).$$

The next theorem shows that the strict model category $\Gamma\text{-CAT}$ is compatible with the Day convolution product.

Theorem 4.11. The strict $Q$-model category $\Gamma\text{-CAT}$ is a symmetric monoidal closed model category under the Day convolution product.

Proof. Using the adjointness which follows from proposition 4.9 one can show that if a map $f : U \to V$ is a (acyclic) cofibration in the strict model category $\Gamma\text{-CAT}$ then the induced map $f \star \Gamma^n : U \star \Gamma^n \to V \star \Gamma^n$ is also a (acyclic) cofibration in the strict model category for all $n \in \mathbb{N}$. By (3) of Lemma 4.5 it is sufficient to show that whenever $f$ is a cofibration and $p : Y \to Z$ is a fibration then the map

$$\text{Map}_{\Gamma\text{-CAT}}(f, p) : \text{Map}_{\Gamma\text{-CAT}}(V, Y) \to \text{Map}_{\Gamma\text{-CAT}}(V, Z) \times \text{Map}_{\Gamma\text{-CAT}}(U, Z)$$

is a fibration in $\Gamma\text{-CAT}$ which is acyclic if either $f$ or $p$ is a weak equivalence. The above map is a (acyclic) fibration if and only if the map

$$\text{Map}_{\Gamma\text{-CAT}}(f \star \Gamma^n, p(n^+)) : \text{Map}_{\Gamma\text{-CAT}}(V \star \Gamma^n, Y) \to \text{Map}_{\Gamma\text{-CAT}}(V \star \Gamma^n, Z) \times \text{Map}_{\Gamma\text{-CAT}}(U \star \Gamma^n, Z)$$

is a (acyclic) fibration in $\text{CAT}$ for all $n \in \mathbb{N}$. Since $f \star \Gamma^n$ is a cofibration as observed above, the result follows from theorem 4.7.

4.1. The model category of coherently commutative monoidal categories.

The objective of this subsection is to construct a new model category structure on the category $\Gamma\text{-CAT}$. This new model category is obtained by localizing the strict model category defined above and we call it the $\text{The model category of coherently commutative monoidal categories}$. We will refer to this new model category structure as the $\text{model category structure of coherently commutative monoidal categories}$ on $\Gamma\text{-CAT}$. The aim of this new model structure is to endow its homotopy category with a semi-additive structure. In other words we want this new model category structure to have finite homotopy biproducts. We go on further to show that this
new model category is symmetric monoidal with respect to the Day convolution product, see [Day70]. We begin by recalling the notion of a left Bousfield localization:

**Definition 4.12.** Let $\mathcal{M}$ be a model category and let $\mathcal{S}$ be a class of maps in $\mathcal{M}$. The left Bousfield localization of $\mathcal{M}$ with respect to $\mathcal{S}$ is a model category structure $L_\mathcal{S}\mathcal{M}$ on the underlying category of $\mathcal{M}$ such that

1. The class of cofibrations of $L_\mathcal{S}\mathcal{M}$ is the same as the class of cofibrations of $\mathcal{M}$.
2. A map $f : A \to B$ is a weak equivalence in $L_\mathcal{S}\mathcal{M}$ if it is an $\mathcal{S}$-local equivalence, namely, for every fibrant $\mathcal{S}$-local object $X$, the induced map on homotopy function complexes

   $$f^* : \text{Map}_\mathcal{M}^\delta(B, X) \to \text{Map}_\mathcal{M}^\delta(A, X)$$

   is a homotopy equivalence of simplicial sets. Recall that an object $X$ is called fibrant $\mathcal{S}$-local if $X$ is fibrant in $\mathcal{M}$ and for every element $g : K \to L$ of the set $\mathcal{S}$, the induced map on homotopy function complexes

   $$g^* : \text{Map}_\mathcal{M}^\delta(L, X) \to \text{Map}_\mathcal{M}^\delta(K, X)$$

   is a weak homotopy equivalence of simplicial sets.

where $\text{Map}_\mathcal{M}^\delta(-,-)$ is the simplicial function object associated with the strict model category $\mathcal{M}$, see [DK80a], [DK80c] and [DK80b].

**Remark 6.** The strict model category of all $\Gamma$-categories is a $\text{CAT}$-enriched model category by theorem 4.7, this enrichment is equivalent to having a Quillen adjunction $- \otimes \Gamma^1 : \text{CAT} \rightleftarrows \Gamma \text{CAT} : \text{Map}_{\Gamma \text{CAT}}(\Gamma^1,-)$ whose left adjoint preserves the tensor product, see [Bar07, Lemma 3.6]. Further the adjunction $\tau_1 : s\text{Sets} \rightleftarrows \text{CAT} : N$, see [Joy08], is a Quillen adjunction with respect to the Joyal model category structure on $s\text{Sets}$ and natural model category structure on $\text{CAT}$ whose left adjoint $\tau_1$ preserves finite products (and thus the tensor product in the Joyal model category of simplicial sets). Again lemma [Bar07, Lemma 3.6] implies that the strict model category of $\Gamma$-categories is a $s\text{Sets}$-enriched model category with respect to the Joyal model category structure on $s\text{Sets}$. The right Hom bifunctor of this enrichment

$$\text{Map}(-,-) : \Gamma \text{CAT}^{\text{op}} \times \Gamma \text{CAT} \to s\text{Sets}$$

assigns to a pair of objects $(X, C)$, a simplicial sets $\text{Map}(XC)$ which is defined as follows:

$$\text{Map}(X, C) := N(\text{Map}_{\Gamma \text{CAT}}(X, C)).$$

We want to construct a left Bousfield localization of the strict model category of $\Gamma$-categories. For each pair $k^+, l^+ \in \Gamma^{op}$, we have the obvious projection maps in $\Gamma \mathcal{S}$

$$\delta^+_{k,l} : (k+l)^+ \to k^+ \quad \text{and} \quad \delta^+_{l,k} : (k+l)^+ \to l^+.$$  

The maps

$$\Gamma^{op}(\delta^+_{k,l}, -) : \Gamma^k \to \Gamma^{k+l} \quad \text{and} \quad \Gamma^{op}(\delta^+_{l,k}, -) : \Gamma^l \to \Gamma^{k+l}$$

induce a map of $\Gamma$-spaces on the coproduct which we denote as follows:

$$h^+_{k,l} : \Gamma^{l} \sqcup \Gamma^{l} \to \Gamma^{l+k}.$$
We now define a class of maps $\mathcal{E}_\infty \mathcal{S}$ in $\Gamma \text{CAT}$:

$$\mathcal{E}_\infty \mathcal{S} := \{h^l_k : \Gamma^l \sqcup \Gamma^l \to \Gamma^{l+k} : l, k \in \mathbb{Z}^+\}$$

**Definition 4.13.** We call a $\Gamma$-category $X$ a $(\Delta \times \mathcal{E}_\infty \mathcal{S})$-local object if, for each map $h^l_k \in \mathcal{E}_\infty \mathcal{S}$, the induced simplicial map

$$\text{Map}^h_{\Gamma \text{CAT}}(\Delta[n] \times h^l_k, X) : \text{Map}^h_{\Gamma \text{CAT}}(\Delta[n] \times \Gamma^{k+l}, X) \to \text{Map}^h_{\Gamma \text{CAT}}(\Delta[n] \times (\Gamma^l \sqcup \Gamma^l), X),$$

is a homotopy equivalence of simplicial sets for all $n \geq 0$ where $\text{Map}^h_{\Gamma \text{CAT}}(\cdot, \cdot)$ is the simplicial function object associated with the strict model category $\Gamma \text{CAT}$, see [DK80a], [DK80c] and [DK80b].

Remark (6) above and appendix E tell us that a model for $\text{Map}^h_{\Gamma \text{CAT}}(X, Y)$ is the Kan complex $J(N(\text{Map}_{\Gamma \text{CAT}}(X, Y)))$ which is the maximal Kan complex contained in the quasicategory $N(\text{Map}_{\Gamma \text{CAT}}(X, Y))$.

The following proposition gives a characterization of $\mathcal{E}_\infty \mathcal{S}$-local objects

**Proposition 4.14.** A $\Gamma$-category $X$ is a $(\Delta \times \mathcal{E}_\infty \mathcal{S})$-local object in $\Gamma \text{CAT}$ if and only if it satisfies the Segal condition namely the functor

$$(X(\delta^{(k+l)}_k), X(\delta^{(k+l)}_l)) : X((k+l)^+) \to X(k^+) \times X(l^+)$$

is an equivalence of categories for all $k^+, l^+ \in \text{Ob}(\Gamma^\text{op})$.

**Proof.** We begin the proof by observing that each element of the set $\mathcal{E}_\infty \mathcal{S}$ is a map of $\Gamma$-categories between cofibrant $\Gamma$-categories. Theorem E.6 implies that $X$ is a $(\Delta \times \mathcal{E}_\infty \mathcal{S})$-local object if and only if the following simplicial map

$$N(\text{Map}_{\Gamma \text{CAT}}(h^l_k, X)) : N(\text{Map}_{\Gamma \text{CAT}}(\Gamma^{(k+l)}, X)) \to N(\text{Map}_{\Gamma \text{CAT}}(\Gamma^k \sqcup \Gamma^l, X))$$

is a categorical equivalence of quasicategories. The simplicial map $N(\text{Map}_{\Gamma \text{CAT}}(h^l_k, X))$ is a categorical equivalence if and only if the functor

$$\text{Map}_{\Gamma \text{CAT}}(h^l_k, X) : \text{Map}_{\Gamma \text{CAT}}(\Gamma^{(k+l)}, X) \to \text{Map}_{\Gamma \text{CAT}}(\Gamma^k \sqcup \Gamma^l, X)$$

is an equivalence of (ordinary) categories [Joy08, Proposition 6.14]. We observe that we have the following commutative square in $\text{CAT}$

$$\begin{array}{ccc}
\text{Map}^h_{\Gamma \text{CAT}}(\Gamma^k \sqcup \Gamma^l, X) & \xrightarrow{\text{Map}^h_{\Gamma \text{CAT}}(h^l_k, X)} & \text{Map}^h_{\Gamma \text{CAT}}(\Gamma^{(k+l)}, X) \\
\cong & & \cong \\
X((k+l)^+) & \xrightarrow{(X(\delta^{(k+l)}_k), X(\delta^{(k+l)}_l))} & X(k^+) \times X(l^+)
\end{array}$$

This implies that the functor $(X(\delta^{(k+l)}_k), X(\delta^{(k+l)}_l))$ is an equivalence of categories if and only if the functor $\text{Map}^h_{\Gamma \text{CAT}}(h^l_k, X)$ is an equivalence of categories. □

**Definition 4.15.** We will refer to a $(\Delta \times \mathcal{E}_\infty \mathcal{S})$-local object as a coherently commutative monoidal category.

**Definition 4.16.** A morphism of $\Gamma$-categories $F : X \to Y$ is a $(\Delta \times \mathcal{E}_\infty \mathcal{S})$-local equivalence if for each coherently commutative monoidal category $Z$ the following simplicial map

$$\text{Map}^h_{\Gamma \text{CAT}}(F, Z) : \text{Map}^h_{\Gamma \text{CAT}}(Y, Z) \to \text{Map}^h_{\Gamma \text{CAT}}(X, Z)$$
is a homotopy equivalence of simplicial sets.

**Proposition 4.17.** A morphism between two cofibrant $\Gamma$-categories $F : X \to Y$ is an $(\Delta \times E_\infty S)$-local equivalence if and only if the functor

$$\text{Map}_{\Gamma\text{CAT}}(F, Z) : \text{Map}_{\Gamma\text{CAT}}(Y, Z) \to \text{Map}_{\Gamma\text{CAT}}(X, Z)$$

is an equivalence of categories for each coherently commutative monoidal category $Z$.

**Definition 4.18.** We will refer to a $(\Delta \times E_\infty S)$-local equivalence as an equivalence of coherently commutative monoidal categories.

The main result of this section is about constructing a new model category structure on the category $\Gamma\text{CAT}$, by localizing the strict model category of $\Gamma$-categories with respect to morphisms in the set $E_\infty S$. We recall the following theorem which will be the main tool in the construction of the desired model category. This theorem first appeared in an unpublished work [Smi] but a proof was later provided by Barwick in [Bar07].

**Theorem 4.19.** [Bar07, Theorem 2.11] If $\mathcal{M}$ is a combinatorial model category and $\mathcal{S}$ is a small set of homotopy classes of morphisms of $\mathcal{M}$, the left Bousfield localization $L_\mathcal{S}\mathcal{M}$ of $\mathcal{M}$ along any set representing $\mathcal{S}$ exists and satisfies the following conditions.

1. The model category $L_\mathcal{S}\mathcal{M}$ is left proper and combinatorial.
2. As a category, $L_\mathcal{S}\mathcal{M}$ is simply $\mathcal{M}$.
3. The cofibrations of $L_\mathcal{S}\mathcal{M}$ are exactly those of $\mathcal{M}$.
4. The fibrant objects of $L_\mathcal{S}\mathcal{M}$ are the fibrant $\mathcal{S}$-local objects $Z$ of $\mathcal{M}$.
5. The weak equivalences of $L_\mathcal{S}\mathcal{M}$ are the $\mathcal{S}$-local equivalences.

**Theorem 4.20.** There is a closed, left proper, combinatorial model category structure on the category of $\Gamma$-categories, $\Gamma\text{CAT}$, in which

1. The class of cofibrations is the same as the class of $Q$-cofibrations of $\Gamma$-categories.
2. The weak equivalences are $E_\infty$-equivalences.

An object is fibrant in this model category if and only if it is a coherently commutative monoidal category.

**Proof.** The strict model category of $\Gamma$-categories is a combinatorial model category therefore the existence of the model structure follows from theorem 4.19 stated above.

**Notation 4.21.** The model category constructed in theorem 4.20 will be called the model category of coherently commutative monoidal categories.

The rest of this section is devoted to proving that the model category of coherently commutative monoidal categories is a symmetric monoidal closed model category. In order to do so we will need some general results which we state and prove now.

**Proposition 4.22.** A cofibration, $f : A \to B$, between cofibrant objects in a model category $\mathcal{C}$ is a weak equivalence in $\mathcal{C}$ if and only if it has the right lifting property with respect to all fibrations between fibrant objects in $\mathcal{C}$.
Proof: The unique terminal map \( B \to * \) can be factored into an acyclic cofibration \( \eta_B : B \to R(B) \) followed by a fibration \( R(B) \to * \). The composite map \( \eta_B \circ f \) can again be factored as an acyclic cofibration followed by a fibration \( R(f) \) as shown in the following diagram:

\[
\begin{array}{ccc}
A & \xrightarrow{\eta_A} & R(A) \\
\downarrow{f} & & \downarrow{R(f)} \\
B & \xrightarrow{\eta_B} & R(B)
\end{array}
\]

Since \( B \) is fibrant and \( R(f) \) is a fibration, therefore \( R(A) \) is a fibrant object in \( \mathcal{C} \). Thus \( R(f) \) is a fibration between fibrant objects in \( \mathcal{C} \) and now by assumption, the dotted arrow exists which makes the whole diagram commutative. Since both \( \eta_A \) and \( \eta_B \) are acyclic cofibrations, therefore the two out of six property of model categories implies that the map \( F \) is a weak-equivalence in the model category \( \mathcal{C} \).

\[\square\]

Proposition 4.23. Let \( X \) be a coherently commutative monoidal category, then for each \( n \in \text{Ob}(\mathcal{N}) \), the \( \Gamma \)-category \( X(n^+ \wedge -) \) is also a coherently commutative monoidal category.

Proof. We begin by observing that \( X(n^+ \wedge -)(1^+) = X(n^+) \) and since \( X \) is fibrant, the pointed category \( X(n^+) \) is equivalent to \( \prod_n X(1^+) \). Notice that the isomorphisms \( (n^+ \wedge (k + l)^+) \cong n_1(k + l)^+ \cong (n_1^+ k^+ \vee n_1^+ l^+) \cong (n_1^+ k^+) + (n_1^+ l^+) \). The two projection maps \( \delta_k^{k+l} : (k + l)^+ \to k^+ \) and \( \delta_l^{k+l} : (k + l)^+ \to l^+ \) induce an equivalence of categories \( X((n_1^+ k^+) + (n_1^+ l^+)) \to X(n_1^+ k^+) \times X(n_1^+ l^+) \). Composing with the isomorphisms above, we get the following equivalence of pointed simplicial sets \( X(n^+ \wedge -)((k + l)^+) \to X(n^+ \wedge -)(k^+) \times X(n^+ \wedge -)(l^+) \).

\[\square\]

Corollary 4.24. For each coherently commutative monoidal category \( X \), the mapping object \( \text{Map}_{\text{CAT}}(\Gamma^n, X) \) is also a coherently commutative monoidal category for each \( n \in \mathbb{N} \).

Proof. The corollary follows from proposition 4.10.

The category \( \Gamma^{op} \) is a symmetric monoidal category with respect to the smash product of pointed sets. In other words the smash product of pointed sets defines a bi-functor \( - \wedge - : \Gamma^{op} \times \Gamma^{op} \to \Gamma^{op} \). For each pair \( k^+, l^+ \in \text{Ob}(\Gamma^{op}) \), there are two natural transformations

\[ \delta_k^{k+l} \wedge - : (k + l)^+ \wedge - \Rightarrow k^+ \wedge - \quad \text{and} \quad \delta_l^{k+l} \wedge - : (k + l)^+ \wedge - \Rightarrow l^+ \wedge - . \]

Horizontal composition of either of these two natural transformations with a \( \Gamma \)-category \( X \) determines a morphism of \( \Gamma \)-categories

\[ \text{id}_X \circ (\delta_k^{k+l} \wedge -) : X(\delta_k^{k+l} \wedge -) : X((k + l)^+ \wedge -) \to X(k^+ \wedge -). \]

Proposition 4.25. Let \( X \) be a coherently commutative monoidal category, then for each pair \( (k, l) \in \text{Ob}(\mathcal{N}) \times \text{Ob}(\mathcal{N}) \), the following morphism

\[ (X(\delta_k^{k+l} \wedge -), X(\delta_l^{k+l} \wedge -)) : X((k + l)^+ \wedge -) \to X(k^+ \wedge -) \times X(l^+ \wedge -) \]

is a strict equivalence of \( \Gamma \)-categories.
Using the previous two propositions, we now show that the mapping space functor $\Map_{\Gamma\text{-CAT}}(-, -)$ provides the homotopically correct function object when the domain is cofibrant and codomain is fibrant.

**Lemma 4.26.** Let $W$ be a $Q$-cofibrant $\Gamma$-category and let $X$ be a coherently commutative monoidal category. Then the mapping object $\Map_{\Gamma\text{-CAT}}(W, X)$ is also a coherently commutative monoidal category.

**Proof.** We begin by recalling that

$$\Map_{\Gamma\text{-CAT}}(W, X)((k + l)^+ \land \cdot) = \Map_{\Gamma\text{-CAT}}(W, X((k + l)^+ \land \cdot)).$$

Since $X$ is a coherently commutative monoidal category, therefore $X((k + l)^+ \land \cdot)$ is also a coherently commutative monoidal category, for all $k, l \geq 0$ according to proposition 4.23. The proposition 4.25 tells us that the map $(X(\delta_k^k \land \cdot), X(\delta_l^l \land \cdot))$ is a strict equivalence of $\Gamma$-categories. Now Theorem 4.11 implies that the following induced functor on the mapping (pointed) categories

$$(\Map_{\Gamma\text{-CAT}}(W, X(\delta_k^k \land \cdot)), \Map_{\Gamma\text{-CAT}}(W, X(\delta_l^l \land \cdot))) \to \Map_{\Gamma\text{-CAT}}(W, X((k + l)^+ \land \cdot)) \times \Map_{\Gamma\text{-CAT}}(W, X((l + k)^+ \land \cdot))$$

is an equivalence of categories. □

Finally we get to the main result of this section. All the lemmas proved above will be useful in proving the following theorem:

**Theorem 4.27.** The model category of coherently commutative monoidal categories is a symmetric monoidal closed model category under the Day convolution product.

**Proof.** Let $i : U \to V$ be a $Q$-cofibration and $j : Y \to Z$ be another $Q$-cofibration. We will prove the theorem by showing that the following pushout product morphism

$$i \Box j : U \boxdot Z \coprod_{U \times Y} V \boxdot Y \to V \boxdot Z$$

is a $Q$-cofibration which is also an equivalence of coherently commutative monoidal categories whenever either $i$ or $j$ is an equivalence of coherently commutative monoidal categories. We first deal with the case of $i$ being a generating $Q$-cofibration. The closed symmetric monoidal model structure on the strict $Q$-model category, see theorem 4.11, implies that $i \Box j$ is a $Q$-cofibration. Let us assume that $j$ is an acyclic $Q$-cofibration i.e. the $Q$-cofibration $j$ is also an equivalence of coherently commutative monoidal categories. According to proposition 4.22 the $Q$-cofibration $i \Box j$ is an equivalence of coherently commutative monoidal categories if and only if it has the left lifting property with respect to all strict fibrations of $\Gamma$-categories between coherently commutative monoidal categories. Let $p : W \to X$ be a strict fibration between two coherently commutative monoidal categories. A (dotted) lifting arrow would exists in the following diagram

```
U \boxdot Z \coprod_{U \times Y} V \boxdot Y \longrightarrow W
\downarrow
V \boxdot Z \longrightarrow Y
\downarrow p
```

\[ p \text{ of the form } (\delta_k^k \land \cdot, \delta_l^l \land \cdot) \text{ for some } k, l \geq 0, \text{ is a strict equivalence of } \Gamma\text{-categories.} \]
if and only if a (dotted) lifting arrow exists in the following adjoint commutative diagram
\[
\begin{array}{ccc}
C & \xrightarrow{j} & \text{Map}_{\Gamma\text{CAT}}(V,W) \\
\downarrow & & \downarrow \\
D & \xrightarrow{\text{Map}_{\Gamma\text{CAT}}(U,X) \times \text{Map}_{\Gamma\text{CAT}}(U,Y) \text{Map}_{\Gamma\text{CAT}}(V,Y)} & \\
\end{array}
\]

The map \((j^*, p^*)\) is a strict fibration of \(\Gamma\)-categories by lemma 4.5 and theorem 4.11. Further the observation that both \(V\) and \(U\) are Q-cofibrant and the above lemma 4.26 together imply that \((j^*, p^*)\) is a strict fibration between coherently commutative monoidal categories and therefore a fibration in the model category of coherently commutative monoidal categories. Since \(j\) is an acyclic cofibration by assumption therefore the (dotted) lifting arrow exists in the above diagram. Thus we have shown that if \(i\) is a Q-cofibration and \(j\) is a Q-cofibration which is also a weak equivalence in the model category of coherently commutative monoidal categories then \(i \Box j\) is an acyclic cofibration in the model category of coherently commutative monoidal categories. Now we deal with the general case of \(i\) being an arbitrary Q-cofibration. Consider the following set:

\[S = \{i : U \to V | i \Box j \text{ is an acyclic cofibration in } \Gamma\text{CAT}\}\]

where \(\Gamma\text{CAT}\) is endowed with the model structure of coherently commutative monoidal categories. We have proved above that the set \(S\) contains all generating Q-cofibrations. We observe that the set \(S\) is closed under pushouts, transfinite compositions and retracts. Thus \(S\) contains all Q-cofibrations. Thus we have proved that \(i \Box j\) is a cofibration which is acyclic if \(j\) is acyclic. The same argument as above when applied to the second argument of the Box product \((i.e.\ in\ the\ variable\ j)\) shows that \(i \Box j\) is an acyclic cofibration whenever \(i\) is an acyclic cofibration in the model category of coherently commutative monoids.

\(\square\)
5. Segal’s Nerve functor

In the paper [Seg74], Segal described a construction of a Γ-category from a (small) symmetric monoidal category which we call the Segal’s nerve of the symmetric monoidal category. His construction defined a functor which we call Segal’s nerve functor. This functor was further studied in [SS79], [May78]. Oplax and lax variations of Segal’s Nerve functor were defined in [Man10], [EM06]. In this section we will review Segal’s Nerve functor and describe a new representation of Segal’s nerve functor. The Segal’s nerve functor is built on a family of discrete categories which carry a partial symmetric monoidal structure namely \( \{\mathcal{P}(n)\}_{n \in \mathbb{N}} \), where \( \mathcal{P}(n) \) denotes the power set of the finite set \( n \). The partial symmetric monoidal structure is just the union of disjoint subsets of \( n \). Segal’s nerve of a symmetric monoidal category consists of, in degree \( n \), the category of all functors which preserve this partial symmetric monoidal structure up to isomorphism. One of our goals in this section is to further clarify the situation by firstly defining an unnormalized version of Segal’s nerve and secondly by completing the partial symmetric monoidal structures and thereby present a construction of Segal’s nerve using (strict) symmetric monoidal functors. For each \( n \in \mathbb{N} \) we construct a permutative category \( \mathcal{L}(n) \) which is equipped with an inclusion functor \( i : \mathcal{P}(n) \rightarrow \mathcal{L}(n) \) and which satisfies the following universal property:

\[
\begin{array}{ccc}
\mathcal{P}(n) & \xrightarrow{F} & C \\
i & \downarrow & \swarrow \\
\mathcal{L}(n) & & \end{array}
\]

where the functor \( F \) satisfies \( F(S \cup T) \cong F(S) \otimes_C F(T) \) for all \( S, T \in \mathcal{P}(n) \) and \( S \cap T = \emptyset \). This allows us to define our unnormalized Segal’s nerve, in degree \( n \), as follows:

\[
\mathcal{K}(C)(n^+) := [\mathcal{L}(n), C]_{\otimes}^{str}.
\]

We will show the existence of a functor \( \mathcal{L} : \Gamma \text{CAT} \rightarrow \text{Perm} \) which is a left adjoint to the unnormalized Segal’s Nerve functor \( \mathcal{K} \). The main objective of this section is to show that the adjoint pair of functors \( (\mathcal{L}, \mathcal{K}) \) induces a Quillen equivalence between the natural model category \( \text{Perm} \) and the model category of coherently commutative monoidal categories \( \Gamma \text{CAT} \). We begin by reviewing Segal’s construction.

**Definition 5.1.** An \( nth \) Segal bicycle into a symmetric monoidal category \( C \) is a triple \( \Psi = (\Psi, \sigma_\Psi, u_\Psi) \), where \( \Psi \) is a family of objects of \( C \)

\[
\Psi = \{\Psi(S) : \Psi(S) \in \text{Ob}(C)\}_{S \in \mathcal{P}(n)}
\]

and \( \sigma_\Psi \) is a family of morphisms of \( C \)

\[
\sigma_\Psi = \{\sigma_\Psi((S, T)) : \Psi(S \cup T) \xrightarrow{\cong} \Psi(S) \otimes \Psi(T) : f_{(S, T)} \in \text{Mor}(C)\}_{(S, T) \in \Lambda},
\]

where the indexing set \( \Lambda := \{(S, T) : S, T \subseteq n, S \cap T = \emptyset\} \). Finally \( u_\Psi : \Psi(\emptyset) \xrightarrow{\cong} 1_C \) is an isomorphism in \( C \). This triple is subject to the following conditions:
SB.1 For each $S \in \mathcal{P}(n)$, the following diagram commutes:

$$
\begin{align*}
\Psi(\emptyset) \otimes \Psi(S) & \xrightarrow{\sigma_\Phi((\emptyset,S))} \Psi(S) \xrightarrow{\sigma_\Phi((S,\emptyset))} \Psi(S) \otimes \Psi(\emptyset) \\
1_C \otimes \Psi(S) & \xrightarrow{\beta_l} \Psi(S) \xleftarrow{\beta_r} \Psi(S) \otimes 1_C
\end{align*}
$$

SB.2 For each triple $S, T, U \in \mathcal{P}(n)$ of mutually disjoint subsets of $\mathbb{n}$, the following diagram commutes:

$$
\begin{align*}
\Psi(S \sqcup T \sqcup U) & \xrightarrow{\sigma_\Phi((S,T \sqcup U))} \Psi(S) \otimes \Psi(T \sqcup U) \\
\Psi(S \sqcup T) \otimes \Psi(U) & \xrightarrow{\sigma_\Phi((S,T)) \otimes id} (\Psi(S) \otimes \Psi(T)) \otimes \Psi(U) \xleftarrow{\sigma_\Theta((\Psi(S),\Psi(T),\Psi(U)))} \Psi(S) \otimes (\Psi(T) \otimes \Psi(U))
\end{align*}
$$

SB.3 For each pair $S, T \in \mathcal{P}(n)$ of disjoint subsets of $\mathbb{n}$, the following diagram commutes:

$$
\begin{align*}
\Psi(S \sqcup T) & \xrightarrow{\sigma_\Phi((S,T))} \Psi(S) \otimes \Psi(T) \\
\Psi(S) \otimes \Psi(T) & \xrightarrow{\gamma_C((S,T))} \Psi(T) \otimes \Psi(S)
\end{align*}
$$

Next we define morphisms of Segal bicycles

**Definition 5.2.** A morphism of $n$th Segal bicycles $\tau : (\Psi, \sigma_\Psi) \to (\Omega, \sigma_\Omega)$ in a symmetric monoidal category $C$ is a family of maps of $C$

$$
\tau = \{ \tau(S) : \Psi(S) \to \Omega(S) \}_{S \in \mathcal{P}(\mathbb{n})}
$$

such that the following two diagram commutes

$$
\begin{align*}
\Psi(S \sqcup T) & \xrightarrow{\tau(S \sqcup T)} \Omega(S \sqcup T) \\
\Psi(S) \otimes \Psi(T) & \xrightarrow{\tau(S) \otimes \tau(T)} \Omega(S) \otimes \Omega(T)
\end{align*}
$$

Given a permutative category $C$, $n$th Segal bicycles and morphisms of $n$th Segal bicycles define a category which we denote by $K(C)(n^+)$. Next we want to compare the notion of an $n$th Segal bicycle to that of a strict bicycle in the permutative category $C$:

**Lemma 5.3.** Let $C$ be a permutative category. For each $\mathbb{n}$, the category $K(C)(n)$ is isomorphic to the category of all strict bicycles from $\Gamma^n$ to $C$, $\text{Bikes}^{\text{Str}}(\Gamma^n, C)$.

**Proof.** We will prove the lemma by constructing a pair of inverse functors. We begin by defining a functor $F : K(C)(n) \to \text{Bikes}^{\text{Str}}(\Gamma^n, C)$. Let $(\Psi, \sigma_\Psi, u_\Psi) \in$
we define an

We define

It follows from definition 5.2 that

where

This collection glues together to define a map of

For each

Definition 5.4. The objects of this groupoid are finite collections of subsets of

We define the inverse functor

Finally

We define the object function of

For each morphism

Next we define an

where

It follows from definition 5.2 that

Now we define the inverse functor

where

We define the object function of

It follows from definition 5.2 that

For each morphism

Now we define the inverse functor

where

We define the object function of

It follows from definition 5.2 that

At the moment, we have not defined

At the moment, we have not defined

We define the object function of

At the moment, we have not defined

This collection glues together to define a map of

natural isomorphism

where

Following two diagrams

we define

and

We define the object function of

For each morphism

Finally

We define the object function of

We define the object function of

Finally

A map of strict bicycles

This collection glues together to define a map of

Now we define the inverse functor

where

We define the object function of

At the moment, we have not defined

At the moment, we have not defined

This collection glues together to define a map of

We define the object function of

We define the object function of

Finally

At the moment, we have not defined

At the moment, we have not defined

We define the object function of

We define the object function of

Finally

At the moment, we have not defined

At the moment, we have not defined

We define the object function of

We define the object function of

Finally

At the moment, we have not defined

At the moment, we have not defined

We define the object function of

We define the object function of

Finally

At the moment, we have not defined

At the moment, we have not defined

We define the object function of

We define the object function of

Finally

At the moment, we have not defined

At the moment, we have not defined

We define the object function of

We define the object function of

Finally

At the moment, we have not defined

At the moment, we have not defined

We define the object function of

We define the object function of

Finally

A morphism

is an isomorphism of finite

Definition 5.4. For each

We define the object function of

A morphism

is an isomorphism of finite
sets \( F : S_1 \coprod S_2 \coprod \cdots \coprod S_r \to T_1 \coprod T_2 \coprod \cdots \coprod T_k \) such that the following diagram commutes

\[
\begin{array}{ccc}
S_1 \coprod S_2 \coprod \cdots \coprod S_r & \xrightarrow{F} & T_1 \coprod T_2 \coprod \cdots \coprod T_k \\
\downarrow \cong & & \downarrow \cong \\
\cong & & \cong 
\end{array}
\]

where the diagonal maps are the unique inclusions of the coproducts into \( n \).

We define a subcategory \( PL(n) \) of \( L(\Gamma^n) \) which turns out to be a coreflective subcategory. An object of \( PL(n) \) is a finite sequence \( S = (S_1, S_2, \ldots, S_r) \), where \( S_i \) is a subset of \( n \) for \( 1 \leq i \leq r \).

**Notation 5.5.** An object \( S = (S_1, S_2, \ldots, S_r) \in Ob(PL(n)) \) uniquely determines a morphism (of unbased sets) \( \sigma(S) : \bigsqcup_{i=1}^r S_i \to n \). We will refer to the map \( \sigma(S) \) as the **canonical inclusion** of \( S \) in \( n \).

**Notation 5.6.** An object \( S = (S_1, S_2, \ldots, S_r) \in Ob(PL(n)) \) uniquely determines a morphism (of unbased sets) \( \text{Ind}(S) : \bigsqcup_{i=1}^r S_i \to \bigsqcup_{j=1}^s T_j \). We will refer to the map \( \text{Ind}(S) \) as the **canonical index** of \( S \).

Given another object \( T = (T_1, T_2, \ldots, T_s) \) in \( PL(n) \), where \( T_j \) is a subset of \( n \) for \( 1 \leq j \leq r \), a morphism \( F : S \to T \) in \( PL(n) \) is a pair \( (h, p) \), where \( h : s \to r \) is a map of finite unbased sets and \( p : \bigsqcup_{i=1}^r S_i \to \bigsqcup_{j=1}^s T_j \) is a bijection. The pair is subject to the following condition:

1. The following diagram commutes:

\[
\begin{array}{ccc}
\emptyset & \xrightarrow{\sigma(S)} & n \\
\downarrow \sigma(\text{Ind}(S)) & & \downarrow \sigma(\text{Ind}(T)) \\
\bigsqcup_{i=1}^r S_i & \xrightarrow{p} & \bigsqcup_{j=1}^s T_j \\
\downarrow h & & \downarrow \text{Ind}(T) \\
r & \xrightarrow{\sigma(\text{Ind}(T))} & \emptyset
\end{array}
\]

**Remark 7.** The construction above defines a contravariant functor \( PL(\cdot) : \Gamma^{op} \to \text{Perm} \). A map \( f : n^+ \to m^+ \) in \( \Gamma^{op} \) defines a strict symmetric monoidal functor \( PL(f) : PL(m) \to PL(n) \). An object \( (S_1, S_2, \ldots, S_r) \in PL(m) \) is mapped by this functor to \( (f^{-1}(S_1), f^{-1}(S_2), \ldots, f^{-1}(S_r)) \in PL(n) \).

**Definition 5.7.** For each \( n \in \mathbb{N} \) we define a permutative category \( L(\Gamma^n) \) as follows:

\[
L(\Gamma^n) := \int_{k \in L} L(\Gamma^n)(\tilde{k}),
\]

see 2.36. This construction defines a functor \( L(\Gamma^-) \) which is the following composite

\[
\Gamma^{op} \xrightarrow{\text{proj}} \Gamma \text{CAT} \xrightarrow{\otimes(-)} [L, \text{CAT}]_{\otimes} \to \text{Perm}
\]
where \( y \) is the Yoneda functor. \( \mathcal{L}(-) \) is the functor defined 7.

**Proposition 5.8.** The category \( \mathcal{P}(\Gamma^0) \) is isomorphic to the full subcategory of \( \mathcal{L}(\Gamma^0) \) whose objects are finite sequences of projection maps in \( \Gamma^0 \) having domain \( n^+ \).

**Proof.** We will define a functor \( G : \mathcal{P}(\Gamma^0) \to \mathcal{L}(\Gamma^0) \). This functor is defined on objects as follows:

\[
G((S_1, S_2, \ldots, S_r)) := (f_1, f_2, \ldots, f_r),
\]

where \( S = (S_1, S_2, \ldots, S_r) \) is an object in \( \mathcal{P}(\Gamma^0) \) and each \( f_i : n^+ \to S_i^+ \) is a projection map onto \( S_i \). Let \( T = (T_1, T_2, \ldots, T_s) \) be another object in \( \mathcal{P}(\Gamma^0) \). A map \( (h, p) : S \to T \) in \( \mathcal{P}(\Gamma^0) \) is also a map in \( \mathcal{L} \) such that \( \mathcal{L}(\Gamma^0)((h, p))(S) = T \). This defines the functor \( G \) which is fully faithful.

\[\square\]

**Remark 8.** The functor \( G : \mathcal{P}(\Gamma^0) \to \mathcal{L}(\Gamma^0) \) defined in the proof above is a strict symmetric monoidal functor. This functor is a component of a natural transformation between two contravariant functors

\[ i : \mathcal{P}(\Gamma^0) \Rightarrow \mathcal{L}(\Gamma^0), \]

where \( i(n^+) := G \) and \( \mathcal{L}(\Gamma^0) : \Gamma^0 \to \text{Perm} \) is the functor that maps \( n^+ \) to \( \mathcal{L}(\Gamma^0) \).

**Remark 9.** Composing the natural transformation \( i \) in the above remark with the functor \( \Pi_1 \) gives us a natural equivalence

\[ i \circ \Pi_1 : \mathcal{P}(\Gamma^0) \Rightarrow \mathcal{L}(\Gamma^0) \]

i.e. for each \( n^+ \in \Gamma^0 \) the functor

\[ \text{id} \circ i(n^+) : \Pi_1(\mathcal{P}(\Gamma^0)) \to \Pi_1(\mathcal{L}(\Gamma^0)) \]

is an equivalence of categories.

**Notation 5.9.** Let \( C \) be a strict symmetric monoidal category. Let us denote by \( \underline{C} \) the underlying groupoid of \( C \) i.e. the groupoid obtained by discarding all non-invertible maps in \( C \). We recall that \( \underline{C} \) retains the strict symmetric monoidal structure of \( C \).

We recall that a strict bicycle \( \Psi = (\psi, \sigma, u) : \Gamma^n \Rightarrow C \) defines an oplax symmetric monoidal functor \( \Psi : \mathcal{N} \to (\underline{C}^{\Gamma^n})^P \), see section C. For each \( k \in \mathcal{N} \), there is a functor \( \Psi(k) : \Gamma^n(k) \to \underline{C} \) which is defined as follows:

\[ \Psi(k)(f) := \psi(k)(f) \]

for each \( f \in \Gamma^n(k) \). For each morphism \( h : k \to l \) in \( \mathcal{N} \), \( \Psi(h) := id \), i.e. the identity natural transformation. The family of natural isomorphisms \( \sigma \) and the unit natural isomorphism \( u \) provide an oplax symmetric monoidal structure on \( \Psi \). The oplax symmetric monoidal inclusion functor \( i : (\underline{C}^{\Gamma^n})^P \to (\underline{C}^{\Gamma^n})^P \) provides the following composite oplax symmetric monoidal functor

\[ \mathcal{N} \Rightarrow (\underline{C}^{\Gamma^n})^P \Rightarrow (\underline{C}^{\Gamma^n})^P. \]
This composite oplax symmetric monoidal functor extends uniquely, along the inclusion \( N \to \mathcal{L} \), into a strict symmetric monoidal functor \( \varphi : \mathcal{L} \to \left( \mathcal{C}_{\text{str}}(\Gamma^n) \right)^{P_n} \). This functor uniquely determines another strict symmetric monoidal functor \( \Phi : \mathcal{L}(\Gamma^n) \to \mathcal{C} \).

Let \( \phi : \mathcal{P}\mathcal{L}(n) \to \mathcal{C} \) be a strict symmetric monoidal functor. The functor \( \phi \) determines a strict Segal bicycle \((F(\phi), \sigma_{F(\phi)}, u_{F(\phi)})\) which we now define. For each \( S \subseteq \mathbb{N} \), we define \( F(\phi)(S) = \phi(S) \). The collection of isomorphism \( \sigma_{F(\phi)} \) is defined as follows:

\[
\sigma_{F(\phi)}((S, T)) := \phi((m, \text{id})),
\]

where \((m, \text{id}) : (S \sqcup T) \to (S, T)\) is a map in \( \mathcal{P}\mathcal{L}(n) \) whose first component is given by the multiplication map \( m : 2 \to 1 \). Finally, the isomorphism \( u_{F(\phi)} \) is defined as follows:

\[
u_{F(\phi)} := \phi((\text{id}, i)),
\]

where \((\text{id}, i) : (\emptyset) \to ()\) is the following map in \( \mathcal{P}\mathcal{L}(n) \):

\[
\begin{array}{ccc}
\emptyset & \to & \emptyset \\
\downarrow & & \downarrow \\
1 & \to & 0
\end{array}
\]

The conditions \( SB1, SB2 \) and \( SB3 \) follow from the strict symmetric monoidal functor structure of \( \phi \). The above construction defines a functor

\[
F : [\mathcal{P}\mathcal{L}(n), \mathcal{C}^{\text{str}}_{\otimes}] \to K(C)(n^+).
\]

**Lemma 5.10.** The functor \( F \) is an isomorphism of categories.

**Proof.** We will define a functor \( F^{-1} : K(C)(n^+) \to [\mathcal{P}\mathcal{L}(n), \mathcal{C}^{\text{str}}_{\otimes}] \) which is the inverse of \( F \). An object \( \Phi \in K(C)(n^+) \) is an \( n \)th strict Segal bicycle. An \( n \)th strict Segal bicycle uniquely determines a strict symmetric monoidal functor \( \Phi : \mathcal{L}(\Gamma^n) \to \mathcal{C} \), see (19). Now we define the strict symmetric monoidal functor \( F^{-1}(\Phi) \) to be the following composite:

\[
\mathcal{P}\mathcal{L}(n) \cong \mathcal{L}(\Gamma^n)^{\text{proj}} \hookrightarrow \mathcal{L}(\Gamma^n) \xrightarrow{\Phi} \mathcal{C}.
\]

\( \square \)

**Remark 10.** In the statement of the above lemma the functor category \( [\mathcal{P}\mathcal{L}(n), \mathcal{C}^{\text{str}}_{\otimes}] \) could be replaced by the isomorphic category \( [\Pi_1(\mathcal{P}\mathcal{L}(n)), \mathcal{C}^{\text{str}}_{\otimes}] \) where \( \Pi_1(\mathcal{P}\mathcal{L}(n)) \) is the groupoid obtained by inverting all morphisms in \( \mathcal{P}\mathcal{L}(n) \).

**Notation 5.11.** Let \( f = (f_1, f_2, \ldots, f_r) \) be a finite sequence, where \( f_i : n^+ \to k_i^+ \) is a map of based sets for \( 1 \leq i \leq r \). We denote the finite sequence \((\text{Supp}(f_1), \text{Supp}(f_2), \ldots, \text{Supp}(f_r))\) by \( \text{Supp}(f) \).

**Notation 5.12.** Let \( f = (f_1, f_2, \ldots, f_r) \) be a finite sequence, where \( f_i : n^+ \to k_i^+ \) is a map of based sets for \( 1 \leq i \leq r \). We denote the sum \( \sum_{i=1}^r f_i|_{\text{Supp}(f_i)} \) by \( \text{tot}(f) \), where the map \( f_i|_{\text{Supp}(f_i)} : \text{Supp}(f_i) \to k_i \) is the restriction of \( f_i \).
We now define another category $L(n)$ which is equipped with an inclusion functor

(20) \[ \iota : \mathcal{P}L(n) \hookrightarrow L(n) \]

**Definition 5.13.** An object in $\mathcal{L}(n)$ is a finite sequence $f = (f_1, f_2, \ldots, f_r)$, where $f_i : n^+ \rightarrow k_i^+$ is a map of based sets for $1 \leq i \leq r$. To each finite sequence $f$ one can associate the following zig-zag

\[
\begin{array}{ccc}
\biguplus_{i=1}^{r} \text{Supp}(f_i) & \xrightarrow{\text{tot}(f)} & \biguplus_{i=1}^{r} k_i \\
\sigma(f) & \downarrow & \downarrow \\
L & & L
\end{array}
\]

where $\sigma(f) := \sigma(\text{Supp}(f))$. A map from $f$ to $g = (g_1, g_2, \ldots, g_s)$ in $\mathcal{L}(n)$ is a triple is a triple $(h, q, p)$, where $h : S \rightarrow T$ is a map in $\mathcal{N}$, $q$ is a map in $\mathcal{N}$ and $p$ is a bijection in $\mathcal{N}$ such that the following diagram commutes

\[
\begin{array}{c}
\biguplus_{i=1}^{r} \text{Supp}(f_i) \\
\sigma(f)
\end{array} \xrightarrow{\sigma(g)} \begin{array}{c}
\biguplus_{i=1}^{s} \text{Supp}(g_i) \\
\sigma(g)
\end{array}
\]

\[
\begin{array}{ccc}
\biguplus_{i=1}^{r} k_i & \xrightarrow{\text{Ind}(f)} & \biguplus_{i=1}^{r} l_i \\
\downarrow & & \downarrow \\
L & & L
\end{array}
\]

\[
\begin{array}{ccc}
\biguplus_{i=1}^{s} k_i & \xrightarrow{\text{Ind}(g)} & \biguplus_{i=1}^{s} l_i \\
\downarrow & & \downarrow \\
S & & S
\end{array}
\]

Each subset $S \subseteq n$ uniquely determines a projection map $f_S : n^+ \rightarrow S^+$. The inclusion functor (20) is defined on objects as follows:

\[ \iota((S_1, S_2, \ldots, S_r)) := f_S = (f_{S_1}, f_{S_2}, \ldots, f_{S_r}). \]

The functor is defined on morphisms as follows:

\[ \iota((h, p)) := (h, p, p), \]

where $(h, p) : S = (S_1, S_2, \ldots, S_r) \rightarrow T = (T_1, T_2, \ldots, T_s)$ is a map in $\mathcal{P}L(n)$ and $(h, p, p) : f_S \rightarrow f_T = (f_{T_1}, f_{T_2}, \ldots, f_{T_s})$ is a map in $\mathcal{L}(n)$ which is described by the
Lemma 5.14. For each \( n \in \mathbb{N} \) the permutative category \( \overline{L}(n) \) is isomorphic to the permutative category \( \overline{L}(\Gamma^n) \).

Proof. We define an isomorphism of permutative categories \( J(n) : \overline{L}(\Gamma^n) \to \overline{L}(n) \) which is identity on objects. \( \square \)

Remark 11. By proposition 2.6 there exists a unique functor \( \overline{L}(-) : \Gamma^{op} \to \text{Perm} \) and the family isomorphisms \( J(n) \) in the lemma above glue together to define a natural isomorphism \( J : \overline{L}(\Gamma^-) \Rightarrow \overline{L}(-) \). This implies that we have a composite natural transformation

\[
P_{\overline{L}}(-) \Rightarrow \overline{L}(\Gamma^-) \Rightarrow \overline{L}(-)
\]

where \( i \) is the natural transformation obtained in remark 8. Further the natural equivalence of remark 9 extends to a natural equivalence \( \Pi \circ (J \circ i) \)

\[id_{\overline{L}} \circ (J \circ i) : \Pi \circ P_{\overline{L}}(-) \Rightarrow \Pi \circ \overline{L}(\Gamma^-) \Rightarrow \Pi \circ \overline{L}(-).
\]

We define another functor \( G : \overline{L}(n) \to P_{\overline{L}}(n) \). This functor is defined on objects as follows:

\[G((f_1, f_2, \ldots, f_r)) := \text{Supp}(f) = (\text{Supp}(f_1), \text{Supp}(f_2), \ldots, \text{Supp}(f_r)).\]

This functor is defined on morphisms as follows:

\[G((h, q, p)) := (h, p).\]

Theorem 5.15. The category \( P_{\overline{L}}(n) \) is a coreflective subcategory of \( \overline{L}(n) \).

Proof. We will show that the functor \( G \) defined above is a right adjoint to the inclusion functor \( \iota \). It is easy to see that \( id_{P_{\overline{L}}(n)} = Gi \). We define a natural transformation \( \epsilon : \iota G \Rightarrow id_{L_{\overline{L}}(n)} \). Let \( f = (f_1, f_2, \ldots, f_r) \) be an object in \( \overline{L}(n) \). We define

\[\epsilon(f) := (id, \text{tot}(f), id) : (f_{\text{Supp}(f_1)}, f_{\text{Supp}(f_2)}, \ldots, f_{\text{Supp}(f_r)}) = f_{\text{Supp}(f)} = \iota G(f) \to f\]
The following commutative diagram verifies that the triple on the right is a map in $L(n)$:

\[
\begin{array}{ccc}
\bigcup_{i=1}^{r} \text{Supp}(f_{\text{Supp}(f_i)}) & \xrightarrow{id} & \bigcup_{i=1}^{r} \text{Supp}(f_i) \\
\downarrow & & \downarrow \text{tot}(f) \\
\bigcup_{i=1}^{r} \text{Supp}(f_{\text{Supp}(f_i)}) & \xrightarrow{\text{tot}(f)} & \bigcup_{i=1}^{r} k_i \\
\end{array}
\]

The following chain of equalities verifies that $\epsilon$ is a natural transformation:

\[
(h, q, p) \circ \epsilon(f) = (h, q, p) \circ (id, \text{tot}(f), id) = (h, q \circ \text{tot}(f), id) =
(h, \text{tot}(g) \circ p, p) = (id, \text{tot}(g), id) \circ (h, p, p) = \epsilon(g) \circ \iota G((h, q, p)).
\]

Now we want to define another category $QL''(n)$ which is isomorphic to the full subcategory of $P\overline{L}(n)$ whose objects are finite sequences of, not necessarily distinct, singleton subsets of $n$. We will denote an object of $QL''(n)$ by $s = (s_1, s_2, \ldots, s_r)$. Equivalently we may describe this object $S$ by a map

\[s : r \to n\]

A map $p : (s_1, s_2, \ldots, s_r) \to (t_1, t_2, \ldots, t_r) = t$ in $QL''(n)$ is a bijection $p : r \to r$ such that the following diagram commutes:

\[
\begin{array}{ccc}
r & \xrightarrow{p} & r \\
\downarrow s & & \downarrow t \\
\bigcup_{i=1}^{r} k_i & & \bigcup_{i=1}^{r} k_i
\end{array}
\]

We observe that the category $QL''(n)$ is in fact a groupoid. We define a functor $H : P\overline{L}(n) \to QL''(n)$. Let $S = (S_1, S_2, \ldots, S_r)$ be an object of $P\overline{L}(n)$, we define $H(S)$ to be the following composite where the first map is the canonical bijection

\[
H(S) : \bigcup_{i=1}^{r} S_i \xrightarrow{\text{can}^{-1}} \bigcup_{i=1}^{r} S_i \xrightarrow{\sigma(S)} n,
\]

where $+$ denotes the tensor product in $N$. Let $(h, p) : S \to T = (T_1, T_2, \ldots, T_s)$ be a map in $P\overline{L}(n)$. We define the morphism function of the functor $H$ as follows:

\[H((h, p)) := N(p),\]
where $\mathcal{N}(p) : \mathop{\sum}_{j=1}^r T_j \to \mathop{\sum}_{i=1}^r S_i$ is the bijection in $\mathcal{N}$ which makes the following diagram commutative

It is easy to check that $H : P\overline{L}(n) \to QL''(n)$ is a functor. The following commutative diagram indicates the naturality in our definition of the functor $H$:

The above diagram will be useful in proving that $H$ is a left-adjoint-inverse. Now we define another functor $\iota : QL''(n) \to P\overline{L}(n)$. Let $s : \underline{r} \to \underline{n}$ be an object in $QL''(n)$. The canonical inclusion of $s$ in $\underline{n}$ can be factored as follows:

where $\text{Ind}(s)$ is the bijection $s(i) \to i$ and $\sigma(s)$ is the canonical inclusion map. The functor $\iota$ is defined on objects as follows:

Let $p : s \to t$ be a map in $QL''(n)$, the functor $\iota$ is defined on morphisms as follows:

$$\iota(p) := (p^{-1}, p').$$
where $p'$ is the unique bijection which makes the following diagram commute:

$$
\begin{array}{c}
\begin{array}{c}
\bigcup_{i=1}^{r} s(i) \\
\downarrow \text{Ind}(s) \\
\downarrow \\
\end{array} \\
\begin{array}{c}
\bigcup_{i=1}^{r} t(i) \\
\downarrow \text{Ind}(t) \\
\downarrow \\
\end{array}
\end{array}
\end{array}

\begin{array}{c}
\begin{array}{c}
p' \\
\downarrow p^{-1} \\
\downarrow \\
\end{array} \\
\begin{array}{c}
p^{-1} \\
\downarrow \\
\downarrow \\
\end{array}
\end{array}

By the above commutative diagram and factorization (22) we get the following commutative diagram which shows that $\iota(p) = (p^{-1}, p')$ is indeed a morphism in $PL(n)$:

$$
\begin{array}{c}
\begin{array}{c}
\bigcup_{i=1}^{r} s(i) \\
\downarrow \sigma(s) \\
\downarrow \sigma(t) \\
\downarrow \\
\bigcup_{i=1}^{r} t(i) \\
\downarrow \text{can} \\
\text{Ind}(s) \\
\downarrow \text{Ind}(t) \\
\downarrow \\
\end{array}
\end{array}
\end{array}

\begin{array}{c}
\begin{array}{c}
p' \\
\downarrow p^{-1} \\
\downarrow \\
\downarrow \\
\end{array} \\
\begin{array}{c}
p^{-1} \\
\downarrow \\
\downarrow \\
\downarrow \\
\end{array}
\end{array}

\textbf{Theorem 5.16.} The category $QL''(n)$ is isomorphic to a reflective subcategory of $\overline{PL}(n)$.

\textit{Proof.} We will show that the functor $H$ defined above is a left-adjoint-inverse to $\iota$ which is also defined above. Clearly $H\iota = id_{QL''(n)}$. We now construct a natural transformation $\eta : id \rightarrow \iota H$. Let $S = (S_1, S_2, \ldots, S_r)$ be an object of $\overline{PL}(n)$. We define

$$
\eta(S) := (\text{Ind}(S) \circ \text{can}^{-1}, id).
$$

The following commutative diagram verifies that the pair on the right is a map in $\overline{PL}(n)$:

$$
\begin{array}{c}
\begin{array}{c}
\bigcup_{i=1}^{r} S_i \\
\downarrow \text{Ind}(S) \\
\downarrow \\
\end{array} \\
\begin{array}{c}
\bigcup_{i=1}^{r} S_i \\
\downarrow \text{can} \\
\text{Ind}(S) \circ \text{can}^{-1} \\
\downarrow \\
\end{array}
\end{array}
\end{array}

\begin{array}{c}
\begin{array}{c}
\sigma(S) \\
\downarrow \\
\downarrow \\
\end{array} \\
\begin{array}{c}
\sigma(S) \\
\downarrow \\
\downarrow \\
\end{array}
\end{array}

We claim that $\eta$ as defined above is a natural transformation. Let $(h, p) : S \rightarrow T = (T_1, T_2, \ldots, T_j)$ be a map in $\overline{PL}(n)$. In order to prove our claim we would like to
show that the following diagram commutes in \( P_L(n) \):

\[
\begin{array}{ccc}
S & \xrightarrow{\eta(S)} & \iota H(S) \\
\downarrow{(h,p)} & & \downarrow{\iota H((h,p))} \\
T & \xrightarrow{\eta(T)} & \iota H(T)
\end{array}
\]

The following chain of equalities verifies that \( \eta \) is a natural transformation:

\[
\eta(T) \circ (h, p) = (\text{Ind}(T) \circ \text{can}^{-1}, \text{id}) \circ (h, p) = (h \circ (\text{Ind}(T) \circ \text{can}^{-1}), p) = ((\text{Ind}(S) \circ \text{can}^{-1}) \circ H(p), p) \circ (\text{Ind}(S) \circ \text{can}^{-1}, \text{id}) = \iota H((h, p)) \circ \eta(S).
\]

we refer the reader to the commutative diagram (21) for an explanation of the
middle equalites. The composite natural transformation

\[
\text{id}_{P_L(n)} \circ \iota \Rightarrow \iota H \iota \Rightarrow \iota \circ \text{id}_{QL''(n)}
\]

is the identity, this follows from the observation that

\[
\eta((s)) = (\text{Ind}((s)) \circ \text{can}^{-1}, \text{id}) = (\text{can} \circ \text{can}^{-1}, \text{id}) = \iota((\text{id}, \text{id})) = \iota(s).
\]

Similarly we claim that the following composite natural transformation

\[
H \circ \text{id}_{P_L(n)} \Rightarrow H \iota H \Rightarrow \iota QL''(n) \circ H
\]

is the identity. Our claim follows from the observation that

\[
H(\eta(S)) = H((\text{Ind}(S) \circ \text{can}^{-1}, \text{id})) = (\text{id}, \text{id}) = \text{id}_S.
\]

The above discussion can be summarized by the following diagram in which both pairs of functors are adjunctions

\[
(23)
\]

We observe that the groupoid \( L(n) \), see definition 5.4, is just the Gabriel factor-
ization of the functor \( H \). Since the functor \( H \) has a right adjoint, proposition 2.39
implies that the groupoid \( L(n) \) is isomorphic to \( \Pi_1(P_L(n)) \). Thus we have the
following lemma:

**Lemma 5.17.** For a permutative category \( C \), the category \( K(C)(n^+) \) is isomorphic
to the \([L(n), C]_{\text{str}}\).

**Proof.** The above discussion and lemma 5.10 give us the following chain of isomorphisms:

\[
(24)
\]

\[K(C)(n^+) \cong [\Pi_1(P_L(n)), C]_{\text{str}} \cong [L(n), C]_{\text{str}}\]

\[\square\]

**Remark 12.** There is a functor \( P_L(\cdot) : \Gamma^{op} \rightarrow \text{Perm}^{op} \), see 5.7, which gives us
a composite functor \( \Pi_1 \circ P_L(\cdot) \). For each \( n \in \mathbb{N} \) we have an isomorphism of
categories \( I(n) : \Pi_1(P_L(n)) \cong L(n) \). Now proposition 2.6 implies that we have a
functor \( L(\cdot) : \Gamma^{op} \rightarrow \text{Perm}^{op} \) and a natural isomorphism \( I : \Pi_1(P_L(\cdot)) \Rightarrow L(\cdot) \).
Remark 13. There is a bifunctor defined by the following composite:

\[ \mathcal{L}(-, -)_{\text{str}} : \Gamma^{op} \times \text{Perm} \xrightarrow{\mathcal{L}(-) \times \text{id}} \text{Perm}^{op} \times \text{Perm} \xrightarrow{[-, -]_{\text{str}}} \text{CAT} \]

where \( \mathcal{L}(-) \) is the functor defined above and \([-, -]_{\text{str}}\) is the function object defined in appendix A.

Remark 14. The above lemma 5.17 and the above remark together imply that for each pair \((n^+, C) \in \Gamma^{op} \times \text{Perm}\) there is an isomorphism of categories \(\eta : [\mathcal{L}(n), C]_{\text{str}} \cong \mathcal{K}(C)(n^+)\). Now proposition 2.6 implies that there is a bifunctor

\[ \mathcal{K}(-, -) : \Gamma^{op} \times \text{Perm} \rightarrow \text{CAT} \]

defined by \(\mathcal{K}(n^+, C) = \mathcal{K}(C)(n^+)\) which is equipped with a natural isomorphism \(\eta : [\mathcal{L}(-), -]_{\text{str}} \cong \mathcal{K}(-, -)\). This also implies that there is a functor

\[ \mathcal{K} : \text{Perm} \rightarrow \Gamma\text{CAT} \]
defined by \(\mathcal{K}(C) : = \mathcal{K}(C, -)\) for each permutative category \(C\).

Remark 15. The above lemma 5.17 implies that for each permutative category \(C\), there is a \(\Gamma\)-category

\[ [\mathcal{L}(-), C]_{\text{str}} : \Gamma^{op} \rightarrow \text{CAT} \]

and it is isomorphic to \(\mathcal{K}(C)\).

Remark 16. The natural equivalence from remark 11 extends to the following composite natural equivalence:

\[ \text{id}_{\Pi_1} \circ (J \circ i) \circ I^{-1} : \mathcal{L}(n) \xrightarrow{I^{-1}} \Pi_1 \circ \mathcal{L}(\Pi_1^\top(-)) \Rightarrow \Pi_1 \circ \mathcal{L}(\Pi_1^\top(-)) \Rightarrow \Pi_1 \circ \mathcal{L}(\Pi_1^\top(-)). \]

where \(I\) is the natural isomorphism from remark 12.

The above lemma 5.17 implies that the functor \(\mathcal{K}\) preserves limits in \(\text{Perm}\) because degreewise it is isomorphic to a functor which preserves limits. The category \(\Gamma\text{CAT}\) is complete and cocomplete. Now the formal criterion for existence of an adjoint [Mac71, Thm. 2, Ch. X.7] implies that \(\mathcal{K}\) has a left adjoint which we denote

\[ \mathcal{L} : \Gamma\text{CAT} \rightarrow \text{Perm}. \]

Each \(n \in Ob(\mathcal{N})\) uniquely defines \(n\) projection maps of based sets \(\delta^k_n : n^+ \rightarrow 1^+\), \(1 \leq k \leq n\). Each of these projection maps induce a strict symmetric monoidal functor \(\mathcal{L}(\delta^k_n) : \mathcal{L}(1) \rightarrow \mathcal{L}(n)\) which maps the object \(1 \in Ob(\mathcal{L}(1))\) to the inverse image of \(1\) under the map \(\delta^k_n\). Each \(\mathcal{L}(\delta^k_n)(1) = (\delta^k_n)^{-1}1\) in \(\mathcal{L}(n)\) is a (finite) sequence \((S_1, S_2, \ldots , S_r)\) in which each \(S_i = (s_i, f_i)\) is a pair in which, for each \(1 \leq i \leq r, s_i = (1, 1, \ldots , 1)\) is an object of \(\mathcal{L}(1)\) and \(f_i : 1 \sqcup 1, \ldots , 1 \rightarrow \{k\} \subset n\) is a map of finite sets. A morphism \((s, f) = (S) \rightarrow (T) = (t, g)\) is an isomorphism \(i : s \rightarrow t\) in \(\mathcal{L}(1)\) such that \(g \circ i = f\). A morphism \((S_1, S_2, \ldots , S_r) \rightarrow (T_1, T_2, \ldots , T_r)\)
is a sequence of morphisms \((f_1, f_2, \ldots, f_r)\) in \(\mathcal{L}(1)\) such that each \(f_i : (S_i) \to (T_i)\) is a morphism between length one sequences which are described above.

The object function of the functor \(\bigvee_{k=1}^{n} \mathcal{L}(\delta^r_k)\) is defined as follows:

\[
\bigvee_{k=1}^{n} \mathcal{L}(\delta^r_k)((s_1, f_1), (s_2, f_2), \ldots, (s_r, f_r)) := s_1 \otimes_{\mathcal{L}(n)} s_2 \otimes_{\mathcal{L}(n)} \cdots \otimes_{\mathcal{L}(n)} s_r,
\]

where we are viewing a sequence \((1, 1, \ldots, 1)\) as an object of \(\mathcal{L}(n)\). The morphism function of the functor \(\bigvee_{k=1}^{n} \mathcal{L}(\delta^r_k)\) is defined similarly by viewing each \(f_i : s_i \to t_i\) as a map in \(\mathcal{L}(n)\) i.e.

\[
\bigvee_{k=1}^{n} \mathcal{L}(\delta^r_k)((f_1, f_2, \ldots, f_r)) := f_1 \otimes_{\mathcal{L}(n)} f_2 \otimes_{\mathcal{L}(n)} \cdots \otimes_{\mathcal{L}(n)} f_r.
\]

**Lemma 5.18.** The strict symmetric monoidal functor \(\bigvee_{k=1}^{n} \mathcal{L}(\delta^r_k)\) is an acyclic cofibration in \(\text{Perm}\).

**Corollary 5.19.** For each permutative category \(C\), \(\mathcal{K}(C)\) is a coherently commutative monoidal category.

**Proof.** By Lemma 5.17, \(\mathcal{K}(C)(n^+) \cong [\mathcal{L}(n), C]_{\otimes}^{	ext{str}}\). Now we have the following commutative diagram in \(\text{CAT}\)

\[
\begin{array}{ccc}
\mathcal{K}(C)(n^+) & \to & [\mathcal{L}(n), C]_{\otimes}^{	ext{str}} \\
(\mathcal{K}(C)(\delta^r_1), \ldots, \mathcal{K}(C)(\delta^r_n)) & \downarrow & ([\mathcal{L}(\delta^r_1, C]_{\otimes}^{\text{str}}, \ldots, [\mathcal{L}(\delta^r_n, C]_{\otimes}^{\text{str}}]) \\
\prod_{i=1}^{n} \mathcal{K}(C)(1^+) & \to & \prod_{i=1}^{n} [\mathcal{L}(1), C]_{\otimes}^{	ext{str}}
\end{array}
\]

According to the lemma 5.18, the strict symmetric monoidal functor \(\bigvee_{k=1}^{n} \mathcal{L}(\delta^r_k)\) is an acyclic cofibration therefore the right vertical functor is an acyclic fibration in \(\text{CAT}\), see corollary A.9. The two horizontal functors in this diagram are isomorphisms, therefore \((\mathcal{K}(C)(\delta^r_1), \ldots, \mathcal{K}(C)(\delta^r_n))\) is also an acyclic fibration in \(\text{CAT}\). Thus we have proved that \(\mathcal{K}(C)\) is a coherently commutative monoidal category for every \(C \in \text{Ob}(\text{Perm})\).

The above corollary will be extremely useful in proving that the adjunction \((\mathcal{L}, \mathcal{K})\) is a Quillen adjunction. We recall that a map in \(\Gamma\text{CAT}\) between two coherently commutative monoidal categories is a weak equivalence (resp. fibration) if and only if it is degreewise a weak equivalence (resp. fibration) in \(\text{CAT}\).

**Lemma 5.20.** The adjunction \((\mathcal{L}, \mathcal{K})\) is a Quillen adjunction between the natural model category \(\text{Perm}\) and the model category of coherently commutative monoidal categories \(\Gamma\text{CAT}\).

**Proof.** We will prove the lemma by showing that the right adjoint functor \(\mathcal{K}\) preserves fibrations and acyclic fibrations. Let \(F : C \to D\) be a fibration in \(\text{Perm}\). In order to show that \(\mathcal{K}(F)\) is a fibration in the model category of coherently commutative monoidal categories \(\Gamma\text{CAT}\), it would be sufficient to show that \(\mathcal{K}(F)(n^+)\) is a fibration in \(\text{CAT}\), for all \(n^+ \in \text{Ob}(\Gamma^\text{op})\). For each \(n \in \mathbb{N}\) the groupoid \(\mathcal{L}(n)\) is a cofibrant object in \(\text{Perm}\). The natural model category \(\text{Perm}\) is a \(\text{CAT}\)-model
category whose cotensor is given by the functor $[-, -]^{str}_\otimes$. This implies that the functor
\[ [\mathcal{L}(n), F]^{str}_\otimes : [\mathcal{L}(n), C]^{str}_\otimes \to [\mathcal{L}(n), D]^{str}_\otimes \]
is a fibration in $\mathbf{CAT}$ and it is an acyclic fibration in $\mathbf{CAT}$ whenever $F$ is an acyclic fibration. □
6. The Thickened Nerve

In this section we will describe a thickened version of Segal’s nerve functor which we will denote by \( \overline{\mathcal{K}} \) and show that \( \overline{\mathcal{K}} \) is the right Quillen functor of a Quillen equivalence. Unlike the left Quillen functor of the Quillen adjunction \((\mathcal{L}, \mathcal{K})\) described in the previous section, whose mere existence was shown, we will explicitly describe a functor \( \mathcal{L} : \Gamma \text{CAT} \to \text{Perm} \) and show that \( \mathcal{L} \) is the left Quillen adjoint of \( \mathcal{K} \). The explicit description will play a vital role in proving that the Quillen pair \((\mathcal{L}, \mathcal{K})\) is a Quillen equivalence. In this section we will also present the main result of this paper which proves that the Quillen pair of functors \((\mathcal{L}, \mathcal{K})\) is a Quillen equivalence.

The Quillen equivalence \((\mathcal{L}, \mathcal{K})\) will be used to prove the main result.

We begin by defining a functor \( \mathcal{L} \): \( \Gamma \text{CAT} \to \text{Perm} \). This functor is defined to be the following composite:

\[
\Gamma \text{CAT} \xrightarrow{\mathcal{L}(-)} [\mathcal{L}, \text{CAT}] \otimes \int_{\mathcal{L}} \mathcal{L} \xrightarrow{\mathcal{L}H \int_{\mathcal{L}}} \text{Perm}
\]

where \( \mathcal{L}(-) \) is the symmetric monoidal extension functor described in section 2.4.

The second functor \( \mathcal{L}H \int_{\mathcal{L}} \) first performs the Grothendieck construction on a functor \( F \in [\mathcal{L}, \text{CAT}] \otimes \mathcal{L} \) to obtain a permutative category \( \int_{\mathcal{L}} F \), see theorem 2.10. and then it localizes (or formally inverts) the horizontal arrows of the permutative category \( \int_{\mathcal{L}} F \). We recall that an arrow in the category \( \int_{\mathcal{L}} F \) is a pair \((f, \phi)\) where \( f \) is a map in \( \mathcal{L} \) and \( \phi \) is an arrow in the category \( F(\text{dom}(f)) \). An arrow \((f, \phi)\) is called horizontal if \( \phi \) is the identity morphism. Thus for a \( \Gamma \)-category \( X \), \( \overline{\mathcal{L}}(X) = \mathcal{L}H \int_{\mathcal{L}} \mathcal{L}(X) \) is the permutative category obtained by localizing with respect to the set of all horizontal morphisms in the (permutative) category \( \int_{\mathcal{L}} \mathcal{L}(X) \), see [GZ67, Ch. 1] for a procedure of localization. The results of [Day73] imply that the category \( \int_{\mathcal{L}} \mathcal{L}(X) \) has the universal property that any strict symmetric monoidal functor \( F : \int_{\mathcal{L}} \mathcal{L}(X) \to C \) which maps every horizontal morphism in \( \int_{\mathcal{L}} \mathcal{L}(X) \) to an isomorphism in \( C \) extends uniquely to a strict symmetric monoidal functor \( F_{Nat} : \overline{\mathcal{L}}(X) \to C \) along the projection map \( p : \int_{\mathcal{L}} \mathcal{L}(X) \to \overline{\mathcal{L}}X \), i.e. the functor \( F_{Nat} \) makes the following diagram commute

\[
\begin{array}{ccc}
\int_{\mathcal{L}} \mathcal{L}(X) & \xrightarrow{F} & C \\
p \downarrow & & \downarrow \phi_{Nat} \\
\overline{\mathcal{L}}X & \xrightarrow{\mathcal{L}H \int_{\mathcal{L}}} & \text{Perm}
\end{array}
\]

The localization construction is functorial in \( X \) and therefore we get a functor \( \overline{\mathcal{L}}(-) : \Gamma \text{CAT} \to \text{Perm} \).

Now we define the thickened nerve functor \( \overline{\mathcal{K}} \). We will first define this functor in the spirit of the papers [May78], [SS79], [Man10] and [EM06] and later we will provide a couple of new interpretation of this functor based on pseudo bicycles, see appendix B and strict symmetric monoidal functors.

**Definition 6.1.** An \( n \text{th pseudo Segal bicycle} \) in a symmetric monoidal category \( C \) is a quadruple \((\Phi, \alpha_{\Phi}, \sigma_{\Phi}, u_{\Phi})\) of families of objects or morphisms of the symmetric monoidal category \( C \), where
(1) $\Phi = \{c_f\}_{f \in A_n}$ is a family of objects of $C$, where the indexing set
\[ A_n := \{ f \in \Gamma^{op} : \text{domain}(f) = n^+ \} \].

(2) $\alpha_{\Phi} = \{\alpha(h, f) : c_f \to c_{h \circ f}\}_{(h, f) \in D}$ is a family of isomorphisms in $C$, where the indexing set
\[ D := \{(h, f) \in \text{Mor}(N) \times A_n : \text{dom}(h)^+ = \text{codom}(f)\} \].

(3) $\sigma_{\Phi} = \{\sigma(k, l, f) : c_f \to c_f^{k \otimes C c_f l}\}_{(k, l, f) \in B}$ is a family of isomorphisms in $C$, where $f_k = \delta_{k}^f \circ f$ and $f_l = \delta_{l}^f \circ f$ and the indexing set
\[ B := \{(k, l, f) \in N \times N \times A_n : \text{codom}(f) = (k + l)^+\} \].

(4) $u_{\Phi} = \{u(f) : c_f \to 1_C \}_{f \in A_n(0)}$ is a family of isomorphisms in $C$, where the indexing set is the following subset of $A_n$
\[ A_n(0) := \{ f \in A_n : \text{codom}(f) = 0^+ \} \].

The quadruple $(\Phi, \alpha_{\Phi}, \sigma_{\Phi}, u_{\Phi})$ is subject to the following conditions:

**PSB.1** For any (pointed) function $f : n^+ \to m^+$ in the indexing set $A_n$, the map
\[ c_f^{\sigma(m,0,f)} \to c_f m \otimes C c_f 0 \to 1_C \]

is the inverse of the (right) unit isomorphism in $C$. Similarly the map
\[ c_f^{\sigma(0,m,f)} \to 1_C \otimes C c_f m = c_f 0 \otimes C c_f m \]

is the inverse of the (left) unit isomorphism in $C$.

**PSB.2** For each triple $(k, l, f) \in B$, where the indexing set $B$ is defined above, the following diagram commutes in the category $C$

\[ \begin{array}{ccc}
  c_f & \xrightarrow{\alpha_{(\gamma^{N^+}_{k,l})} f} & c_f \\
  \downarrow{\sigma(k,l,f)} & & \downarrow{\sigma(l,k,f)} \\
  c_f k \otimes C c_f l & \xrightarrow{\gamma^{C c_f}_{c_f k, c_f l}} & c_f l \otimes C c_f k \\
\end{array} \]

**PSB.3** For any triple $k, l, m \in N$, and each $f : n^+ \to (k + l + m)^+$ in the set $A_n$, the following diagram commutes

\[ \begin{array}{ccc}
  c_f & \xrightarrow{\sigma(k,l,m,f)} & c_{k+l} \otimes C c_m \\
  \downarrow{\sigma(k,l+m,f)} & & \downarrow{\sigma(k,l,f) \otimes \text{id}_{c_f m}} \\
  (c_f k \otimes C c_f l) \otimes C c_m & \xrightarrow{\gamma^{C c_f}_{c_f k, c_f l} \otimes \sigma(l,m,f)} & (c_k \otimes C c_l) \otimes C c_m \\
\end{array} \]
For each triple \((k, l, h) \in B\), where the indexing set \(B\) is defined above, and each pair of active maps \(f : k^+ \to p^+, \ g : l^+ \to q^+\) in \(\Gamma^{op}\), the following diagram commutes in the category \(C\)

\[
\begin{array}{ccc}
C_h & \xrightarrow{\sigma(k,l,h)} & C_{hk} \otimes C_{hl} \\
\alpha(f+g,h) & & \downarrow \alpha(f+g,h_k) \otimes \alpha(f+g,h_l) \\
C(f+g) \circ h & \xrightarrow{\sigma((f+g) \circ h)_k} & C((f+g) \circ h)_k \otimes C((f+g) \circ h)_l
\end{array}
\]

Next we define the notion of a morphism of pseudo Segal bicycles:

**Definition 6.2.** A morphism of nth unnormalized pseudo Segal bicycles

\[F : (\Phi, \alpha_\Phi, \sigma_\Phi, u_\Phi) \to (\Psi, \alpha_\Psi, \sigma_\Psi, u_\Psi)\]

is a family

\[F = \{F(f) : c^\Phi_f \to c^\Psi_f\}_{f \in A_n}\]

of morphisms in \(C\) which satisfies the following conditions:

(1) For each \(f \in A_n(0)\) (\(\text{codom}(f) = 0^+\)), the following diagram commutes:

\[
\begin{array}{ccc}
C_f & \xrightarrow{F(f)} & c^\Psi_f \\
u_\Phi(f) & \downarrow & \downarrow u_\Psi(f) \\
1_C & & C_f
\end{array}
\]

(2) For each pair \((f, h) \in A_n \times \text{Mor}(\mathcal{N})\) such that the domain of \(h^+, \text{namely} \text{dom}(h)^+\), is the same as the codomain of \(f\), the following diagram commutes:

\[
\begin{array}{ccc}
c^\Phi_f & \xrightarrow{F(h \circ f)} & c^\Psi_f \\
\alpha_\Phi(h, f) & \downarrow & \downarrow \alpha_\Psi(h, f) \\
c^\Phi_{h \circ f} & & c^\Psi_{h \circ f}
\end{array}
\]

(3) For each triple \((k, l, f) \in B\), where the index set \(B\) is defined above, the following diagram commutes:

\[
\begin{array}{ccc}
c^\Phi_f & \xrightarrow{F(f)} & c^\Psi_f \\
\sigma^\Phi(k,l,f) & \downarrow & \downarrow \sigma^\Psi(k,l,f) \\
c^\Phi_{F(f)} & \xrightarrow{c^\Phi_{F(f)} \otimes c^\Phi_{F(f)}} & c^\Psi_{F(f)} \otimes c^\Psi_{F(f)}
\end{array}
\]

All nth unnormalized pseudo Segal bicycles in a symmetric monoidal category \(C\) and all morphisms of nth unnormalized pseudo Segal bicycles in \(C\) form a category which we denote by \(\text{K}(C)(n^+).\)

**Lemma 6.3.** Let \(C\) be a permutative category. For each \(n\), the category \(\text{K}(C)(n)\) is isomorphic to the category of all bicycles from \(\Gamma^n\) to \(C\) namely \(\text{Bikes}^{Ps}(\Gamma^n, C)\).
Let $C$ be a small permutative category, we define a $\Gamma$-category $\overline{K}(C)$ which is defined as follows:

$$\overline{K}(C)(n^+) := [\overline{\mathcal{L}}(n), C]^\text{str}.\,$$

In light of the bifunctorality involved in the construction of $\text{Bikes}^{Ps}(\Gamma^n, -)$, see B.9, it is easy to see that this defines a $\Gamma$-category $\overline{K}(C)$.

**Definition 6.4.** For each $n \in \text{Ob}(\mathcal{N})$ we will now define a permutative groupoid $\overline{\mathcal{L}}(n)$. The objects of this groupoid are finite collections of morphisms in $\Gamma^{\text{op}}$ having domain $n^+$, in other words the object monoid of the category $\overline{\mathcal{L}}(n)$ is the free monoid generated by the following set

$$\text{Ob}(\overline{\mathcal{L}}(n)) := \bigsqcup_{k \in \text{Ob}(\mathcal{N})} \Gamma^n(k^+).$$

We will denote an object of this groupoid by $(f_1, f_2, \ldots, f_r)$. A morphism $(f_1, f_2, \ldots, f_r) \rightarrow (g_1, g_2, \ldots, g_k)$ is an isomorphism of finite sets

$$F : \text{Supp}(f_1) \sqcup \text{Supp}(f_2) \sqcup \cdots \sqcup \text{Supp}(f_r) \cong \text{Supp}(g_1) \sqcup \text{Supp}(g_2) \sqcup \cdots \sqcup \text{Supp}(g_k)$$

such that the following diagram commutes

$$\text{Supp}(f_1) \sqcup \cdots \sqcup \text{Supp}(f_r) \xrightarrow{F} \text{Supp}(g_1) \sqcup \cdots \sqcup \text{Supp}(g_k) \xrightarrow{n^+} n$$

where the diagonal maps are the unique inclusions of the coproducts into $n$.

**Remark 17.** The construction above defines a contravariant functor $\overline{\mathcal{L}}(-) : \Gamma^{\text{op}} \rightarrow \text{Perm}$. A map $f : n^+ \rightarrow m^+$ in $\Gamma^{\text{op}}$ defines a strict symmetric monoidal functor $\overline{\mathcal{L}}(f) : \overline{\mathcal{L}}(m) \rightarrow \overline{\mathcal{L}}(n)$. An object $(f_1, f_2, \ldots, f_r) \in \overline{\mathcal{L}}(m)$ is mapped by this functor to $(f_1 \circ f, f_2 \circ f, \ldots, f_r \circ f) \in \overline{\mathcal{L}}(n)$.

**Remark 18.** We observe that the category $\overline{\mathcal{L}}(n)$ defined above is a Gabriel factorization of the composite functor $G \circ H$, see equation (23), and therefore by proposition 2.39 it is isomorphic to $\Pi_1 \overline{\mathcal{L}}(n)$, for each $n \in \mathbb{N}$. Further by proposition 2.6 these isomorphisms glue together to define a natural isomorphism $T : \Pi_1 \overline{\mathcal{L}}(-) \Rightarrow \overline{\mathcal{L}}(-)$.

**Remark 19.** The natural equivalence from remark 19 extends to the following composite natural equivalence:

$$T \circ (\text{id}_{\Pi_1} \circ (J \circ i) \circ I^{-1}) : \mathcal{L}(n) \xleftarrow{\text{id}^{-1}} \Pi_1 \circ \mathcal{P} \overline{\mathcal{L}}(-) \Rightarrow \Pi_1 \circ \overline{\mathcal{L}}(\Gamma^-) \Rightarrow \Pi_1 \circ \overline{\mathcal{L}}(-) \xrightarrow{T} \overline{\mathcal{L}}(-),$$

where $T$ is the natural isomorphism from remark 18.

**Proposition 6.5.** For each $n \in \text{Ob}(\mathcal{N})$, the permutative category $\overline{\mathcal{L}}(n)$ represents the functor $\text{Bikes}^{Ps}(\Gamma^n, -)$. In other words there is a natural isomorphism

$$\psi^n : \overline{\mathcal{L}}(n), -]^\text{str} \cong \text{Bikes}^{Ps}(\Gamma^n, -).$$

It was proved in [AGV72, sec. 6] that, for any $\Gamma$-category $X$, the permutative category $\overline{\mathcal{L}}(X)$ is a pseudo-colimit of the functor $\mathcal{L}X$. In other words $\overline{\mathcal{L}}(X)$ represents the category of pseudo-cones i.e. for any category $C$

$$\text{Ps}[\mathcal{L}X, \Delta C] \cong [\overline{\mathcal{L}}(X), C].$$

This characterization provides the functor $\overline{\mathcal{L}}$ with some very desirable homotopical properties.
Lemma 6.6. The functor $\mathcal{L}$ preserves degreewise equivalences of $\Gamma$-categories.

Proof. The functor $\mathcal{L}$ is a composite of the functor $\mathcal{L}$ followed by a pseudo-colimit functor. The functor $\mathcal{L} : \text{CAT} \to [\mathcal{L}, \text{CAT}]^{\otimes}$ preserves degreewise equivalences. The results of [Gam08] show that a pseudo colimit functor is a homotopy colimit functor and it preserves degreewise equivalences. Hence the functor $\mathcal{L}$ preserves degreewise equivalences of $\Gamma$-categories. □

Before moving on we would like to observe that for any object $\vec{n} \in \text{Ob}(\mathcal{L})$ there exists the following zig-zag of maps in $\mathcal{L}$

$$m_n : (n) \xrightarrow{f_{n_1 \cdots n_r}} (n_1, n_2, \ldots, n_r)$$

where $n = n_1 + n_2 + \cdots + n_r$ and $m_n : n^+ \to 1^+$ is the unique multiplication map from $n^+$ to $1^+$ in $\Gamma^{op}$. To be more precise, the left map is given by the following commutative diagram

$$\begin{array}{c}
\text{Diagram (27)}
\end{array}$$

and the right map is given by the following commutative diagram

$$\begin{array}{c}
\text{Diagram (28)}
\end{array}$$

The following corollary provides a useful insight into the structure of the localization of the category of elements of a coherently commutative monoidal category $X$, with respect to horizontal maps. It turns out that this localized category is a thickening of $X(1^+)$. This thickening is indicative of the fact that the homotopy colimit of a diagonal functor $\Delta(c)$ is equivalent to $c$. The category $\mathcal{L}(X)$ is a further thickening of this localized category.

Corollary 6.7. For each coherently commutative monoidal category $X$ the inclusion functor $i : X(1^+) \to \mathcal{L}(X)$ is an equivalence of categories.

Proof. The functor $i : X(1^+) \to \mathcal{L}(X)$ is an inclusion functor, it is defined on objects as follows:

$$i(x) := (id_{1^+}, x)$$

and for a morphism $f : x \to y$ in $X(1^+)$ it is defined as follows:

$$i(f) := ((id_{1^+}, id_y), f).$$

Clearly the functor $i$ is fully faithful. Now we will show that $i$ is also essentially surjective. In order to do so we will use the maps (27) and (28) defined above. For each object $(\vec{n}, \vec{x}) \in \mathcal{L}(X)$, the map (28) provides a functor

$$\mathcal{L}(X)((m_r, id_{1^+})) : X(m^+) \to \prod_{i=1}^r X(m_i).$$
Since $X$ is a coherently commutative monoidal category therefore the above functor is an equivalence of categories. Thus we may choose an object $x \in X(m^+)$ and an isomorphism $j : \mathcal{L}(X)((m_r, id_n))(x) \to \vec{x}$ in $\prod_{i=1}^{r} X(m_i)$. We observe that the map 

$$((m_r, id_n), j) : (\{n\}, x) \to (\vec{n}, \vec{x})$$

is an isomorphism in $\overline{\mathcal{L}}(X)$ because $\overline{\mathcal{L}}(X)$ is obtained by inverting all horizontal maps in the category of elements of $\mathcal{L}(X)$. The map (27) provides us with the following isomorphisms:

$$((id_1, m_n), id_{\mathcal{L}(X)((id_2, m_n))(\{n\})}) : (\{n\}, (x)) \to ((1), \mathcal{L}(X)((id_1, m_n))(\{n\}))$$

The above two isomorphisms show that each object $(\vec{n}, \vec{x}) \in \overline{\mathcal{L}}(X)$ is isomorphic to an object in the image of the functor $i$ namely $((1), \mathcal{L}(X)((id_1, m_n))(\{n\}))$. The isomorphism is given by the composite

$$((m_r, id_n), j) \circ ((id_1, m_n), id_{\mathcal{L}(X)((id_2, m_n))(\{n\})})^{-1}.$$  

Thus we have proved that $i$ is essentially surjective and therefore an equivalence.

\[\Box\]

**Remark 20.** There exists an inverse functor $i^{-1} : \overline{\mathcal{L}}(X) \to X(1^+)$ such that $i^{-1} \circ i = id_{X(1^+)}$.

Momentarily we will switch to the language of bicycles for the purpose of proving lemma 6.11. Each object of a permutative category $C$ defines a trivial bicycle from $\Gamma^1$ to $C$ which we denote by $\Phi_c = (\mathcal{L}_c, \sigma_c)$. We define this bicycle $\Phi_c : \Gamma^1 \Rightarrow C$. Next, we begin by defining the underlying lax cone $\mathcal{L}_c = (\phi_c, \alpha_c)$. For each $k \in \text{Ob}(N)$, we define the functor $\phi_c(k) : \Gamma^1(k^+) \to C$ as follows:

$$\phi_c(k)(f) = \begin{cases} c, & \text{if } f \neq 0 \\ 1_C, & \text{otherwise.} \end{cases}$$

For a map $h : k \to l$ in the category $N$, we define the map $\alpha_c(h)(f) : \phi_c(f) \to \phi_c(h \circ f)$ as follows:

$$\alpha_c(h)(f) = \begin{cases} id_c, & \text{if } f \neq 0 \\ id_{1_C}, & \text{otherwise.} \end{cases}$$

It is easy to see that with the above definition, $\mathcal{L}_c = (\phi_c, \alpha_c)$ is a lax cone. This lax cone is given a bicycle structure by defining $\sigma_c(k, l) : \phi_c(k + l) \Rightarrow \phi_c(k) \circ \phi_c(l)$ to be the identity natural transformation. Thus we have defined a strict bicycle $(\mathcal{L}_c, \sigma_c) = \Phi_c : \Gamma^1 \Rightarrow C$. This construction defines a functor

$$\Phi_\rightarrow : C \rightarrow \text{Bikes}^{\text{pr}}(\Gamma^1, C)$$

**Lemma 6.8.** Every bicycle $(\mathcal{L}, \sigma) = \Phi : \Gamma^1 \Rightarrow C$ is isomorphic to the trivial bicycle determined by the object $\phi(1)(id_{1^+}) \in \text{Ob}(C)$, namely $\Phi_{\phi(1)(id_{1^+})}$, where $\mathcal{L} = (\phi, \alpha)$ is the underlying lax symmetric monoidal cone of $\Phi$.

**Proof.** We will construct an isomorphism of bicycles

$$\eta(\Phi) : \Phi \to \Phi_{\phi(1)(id_{1^+})}.$$  

In order to do so, we will use the natural isomorphism

$$\alpha(m_k) : \phi(k^+) \Rightarrow \phi(1^+) \circ \Gamma^1(m_k)$$
provided by the bicycle \( \Phi \), where \( m_k : k^+ \to 1^+ \) is the multiplication map. For each \( k \in \text{Ob}(\mathcal{N}) \) we define a natural isomorphism \( \eta(\Phi)(k) \) as follows:

\[
\eta(\Phi)(k)(f) := \alpha(m_k)(f) : \phi(k)(f) \to \phi(1)(id_{1^+}),
\]

where \( f \in \Gamma^1(k^+) \). In order to show that \( \eta(\Phi) \) is a map of lax cones, we will have to show that for each morphism \( h : k \to l \) in the category \( \mathcal{N} \), \( \eta(\Phi)(k) = (\eta(\Phi)(k) \circ \Gamma^1(h)) \cdot \alpha(h) \), for each \( f \in \Gamma^1(k^+) \), \( \eta(\Phi)(k)(f) = \eta(\Phi)(l)(f \circ h) \).

One can easily check that the natural isomorphisms in the collection \( \{\eta(\Phi)(k)\}_{k \in \text{Ob}(\mathcal{N})} \) glue together into a desired isomorphism of bicycles \( \eta(\Phi) : \Phi \to \Phi_{\phi(1)(id_{1^+})} \).

\[\square\]

**Corollary 6.9.** For any symmetric monoidal category \( C \), the category \( \overline{\mathcal{C}}C(1^+) \) is equivalent to \( C \).

**Proof.** For each permutative category \( C \) we define a functor \( I(C) : \text{Bikes}^{Ps}(\Gamma^1, C) \to C \). On objects this functor is defined as follows:

\[
I(C)(\Phi) = \phi(1)(id_{1^+}),
\]

where \( \mathcal{L} = (\phi, \alpha) \) is the underlying lax cone of \( \Phi \). For a morphism of (pseudo) bicycles \( F : \Phi \to \Psi \) we define

\[
I(F) = F(1)(id_{1^+}).
\]

This functor is inverse of the functor \( \Phi_- \).

\[\square\]

Along the lines of bicycles, each object \( c \) of a permutative category \( C \) defines a strict symmetric monoidal functor which we denote by \( \Phi_c : \overline{\mathcal{Z}}(1) \to C \). The characterizing property of this function is that \( \Phi_c((id_{1^+})) := c \). An object of \( \overline{\mathcal{Z}}(1) \) is a finite sequence \((f_1, f_2, f_3, \ldots, f_r)\), where \( f_i \in \Gamma^1(k_i^+) \) for \( 1 \leq i \leq r \). The functor \( \Phi_c \) assigns to this object a tensor product of as many copies of \( c \) as there are non-zero functions in the sequence. One can check that this is defines a functor. We will refer to \( \Phi_c \) as the trivial bicycle determined by \( c \). Each strict symmetric monoidal functor \( \Phi : \overline{\mathcal{Z}}(1) \to C \) determines a trivial pseudo bicycle namely \( \Phi_{\Phi((id_{1^+}))} \). We will refer to it as the trivial bicycle associated to \( \Phi \). The following corollary is just a translation of lemma 6.8 into the language of strict symmetric monoidal functors:

**Corollary 6.10.** Every strict symmetric monoidal functor \( \Phi : \overline{\mathcal{Z}}(1) \to C \) is isomorphic to the trivial bicycle determined by the object \( \Phi((id_{1^+})) \in C \).

**Proof.** We begin by defining a morphism \( I(f) : r^+ \to r^+ \) for each object \( f = (f_1, f_2, \ldots, f_r) \) in \( \overline{\mathcal{Z}}(1) \) as follows:

\[
I(f)(i) = \begin{cases} 
i \text{ if } \text{Supp}(f_i) \neq \emptyset \\
0, \text{ otherwise.} \end{cases}
\]

for \( 0 \leq i \leq r \). Now we define a functor \( S : \overline{\mathcal{Z}}(1) \to \overline{\mathcal{Z}}(1) \). On objects it is defined as follows:

\[
S((f_1, f_2, \ldots, f_r)) := (f_1^S, f_2^S, \ldots, f_r^S),
\]

where

\[
f_i^S = \begin{cases} id_{1^+}, \text{ if } I(f)^{-1}(i) \neq \emptyset \\
0_{1^+}, \text{ otherwise.} \end{cases}
\]

for \( 1 \leq i \leq r \). The functor is defined on morphisms in the obvious way
Now the trivial pseudo bicycle associated to $\Phi$ is just the composite $\Phi \circ S$. Next we construct a nartural isomorphism $\beta : \Phi \Rightarrow \Phi \circ S$. Let $(f_1, f_2, \ldots, f_r)$ be an object of the category $Z(1)$. We define $\beta((f_1, f_2, \ldots, f_r))$ as follows:

$$
\beta((f_1, f_2, \ldots, f_r)) := \Phi(id_{\text{Supp}(f_1) \sqcup \cdots \sqcup \text{Supp}(f_r)}),
$$

where $id_{\text{Supp}(f_1) \sqcup \cdots \sqcup \text{Supp}(f_r)} : (f_1, f_2, \ldots, f_r) \rightarrow (f_1^S, f_2^S, \ldots, f_r^S)$ is the following map in $Z(1)$:

$$
\begin{array}{c}
\text{Supp}(f_1) \sqcup \cdots \sqcup \text{Supp}(f_r) \\
\downarrow \\
1
\end{array}
$$

It is easy to see that the above definition of $\beta$ defines a natural isomorphism. □

It was shown by Leinster in [Lei00] that the degree one category of a coherently commutative monoidal category has a symmetric monoidal structure. We want to explore the homotopy properties of the unit natural transformation $\eta$ of the adjunction $(L, K)$.

**Lemma 6.11.** For each coherently commutative monoidal category $X$ the unit map

$$
\eta(X) : X \rightarrow K(Z(X))
$$

is a strict equivalence of $\Gamma$-categories.

**Proof.** The $\Gamma$-category $K(Z(X))$ is a coherently commutative monoidal category, therefore $\eta(X)$ is a morphism between two coherently commutative monoidal categories. Thus it would be sufficient to show that the degree one functor

$$
\eta(X)(1^+) : X(1^+) \rightarrow (Z(1), Z(X))^\text{str}_{\otimes}
$$

is an equivalence of categories. We recall the definition of the functor $\eta(X)(1^+)$. For each $x \in X(1^+)$, the strict symmetric monoidal functor $\eta(X)(1^+)(x) : Z(1) \rightarrow Z(X)$ is defined as follows:

$$
\eta(X)(1^+)(x)((f_1, f_2, \ldots, f_r)) = (\bar{m}, (X(f_1)(x), X(f_2)(x), \ldots, X(f_r)(x))),
$$

where $f_i \in \Gamma^1(m_i^+)$ for $1 \leq i \leq r$ and $\bar{m} = (m_1, \ldots, m_r)$. We get the following commutative diagram

$$
\begin{array}{c}
X(1^+) \\
\downarrow \eta(1^+) \\
K(Z(1), Z(X))^\text{str}_{\otimes} = K(Z(X))(1^+) \\
\downarrow \psi^I \\
\text{Bikes}^{P \Gamma^1}(\Gamma^1, Z(X))
\end{array}
$$

where $\psi(1)$ is the isomorphism defined in the proof of proposition 6.5. Since the vertical arrow is an isomorphism therefore it would be sufficient to show that the functor $\eta_B(X)(1^+)$ is an equivalence of categories. We recall the definition of the functor $\eta_B(X)(1^+)$, it is defined on objects as follows:

$$
\eta_B(X)(1^+)(x) = \Phi^x,
$$

where $\Phi^x = (\mathcal{L}^x, \sigma^x)$ is a bicycle whose underlying lax cone is $\mathcal{L}^x = (\phi^x, \alpha^x)$. The functors in the collection $\phi^x$ are defined as follows:

$$
\phi^I(k)(f) := i(k)(X(f)(x)) = ((k), X(f)(x)),
$$
where $f \in \Gamma^1(k^+)$.

For a map $h : k \to l$ in $\mathcal{N}$, the natural isomorphism $\alpha^x(h) : \phi^x(k) \Rightarrow \phi^x(l) \circ \Gamma^1(h)$ is defined as follows:

$$\alpha^x(h)(f) := \alpha(h)(X(f)(x)),$$

where $\mathcal{L} = (\phi, \alpha)$ is the underlying lax cone of the universal bicycle $i$ and $f \in \Gamma^1(k^+)$. The family $\sigma^x$ consists of natural isomorphisms $\sigma^x(k, l)$ which are defined as follows:

$$\sigma^x(k, l)(f) := \sigma(k, l)(f),$$

where $i = (\mathcal{L}, \sigma)$ and $f \in \Gamma^1(k + l^+)$.

It was shown in corollary 6.7 that the inclusion functor $i : X(1^+) \rightarrow \overline{\Xi}(X)$ is an equivalence of categories. Let us choose an inverse of $i$ mentioned in remark 20 following lemma 6.7, namely $i^{-1}$. Now we define a functor $\overline{T} : \text{Bikes}^{Ps}(\Gamma^1, \overline{\Xi}(X)) \rightarrow X(1^+)$ as follows:

$$\text{Bikes}^{Ps}(\Gamma^1, \overline{\Xi}(X)) \xrightarrow{ev_{id^+}} \overline{\Xi}(X) \xrightarrow{i^{-1}} X(1^+).$$

where $ev_{id^+]$ is the functor whose value on an object $\Phi = (M, \delta)$ of $\text{Bikes}^{Ps}(\Gamma^1, \overline{\Xi}X)$, having underlying lax cone $M = (\phi, \beta)$, is the evaluation of $\phi(1)$ on $id_{1^+}$ i.e. $\phi(1)(id_{1^+}) \in \overline{\Xi}(X)$. For a morphism $F : \Phi \rightarrow \Psi$ in $\text{Bikes}^{Ps}(\Gamma^1, \overline{\Xi}X)$, we define

$$\overline{T}(F) := F(1)(id_{1^+}).$$

It is clear from the choice of the inverse functor of $i$, $i^{-1}$ see remark 20, that $\overline{T} \circ \eta_B(X)(1^+) = id_{X(1^+)}$. Now we construct a (unit) natural isomorphism $\beta : id_{\text{Bikes}^{Ps}(\Gamma^1, \overline{\Xi}X)} \rightarrow \eta_B(X)(1^+) \circ \overline{T}$. Lemma 6.8 says that $\Phi$ is isomorphic to $\Phi_{\phi(1)(id_{1^+})}$ by the isomorphism $\eta(\Phi)$ defined in the proof of the same lemma. We observe that the same lemma also implies that $\eta_B(X)(1^+) \circ \overline{T}(\Phi)$ is isomorphic to $\Phi_{\phi(1)(id_{1^+})}$ by the isomorphism $\eta(\eta_B(X)(1^+) \circ \overline{T}(\Phi))$. We define

$$\beta(\Phi) := (\eta_B(X)(1^+) \circ \overline{T}(\Phi))^{-1} \circ \eta(\Phi).$$

The naturality of $\beta$ follows from the fact that $\eta$ defined in the proof of lemma 6.8 is a natural transformation. $\square$

The adjoint functors $\overline{\Xi}$ and $\overline{\Xi}$ have sufficiently good properties which ensure that the above lemma implies that for each $\Gamma$-category $X$ the counit map $\eta(X)$ is a coherently commutative monoidal equivalence.

**Corollary 6.12.** For a $\Gamma$-category $X$, the unit map $\eta(X) : X \rightarrow \overline{\Xi}(\overline{\Xi}(X))$ is a coherently commutative monoidal equivalence.

**Proof.** Let $r : X \rightarrow X^f$ denote a fibrant replacement of $X$ in the model category of coherently commutative monoidal categories. In other words $X^f$ is a coherently commutative monoidal category and $r$ is an acyclic cofibration in the model category of coherently commutative monoidal categories. Since $\eta$ is a natural transformation therefore we have the following commutative diagram in $\Gamma\text{CAT}$

$$\begin{array}{ccc}
X^f & \xrightarrow{\eta(X^f)} & \overline{\Xi}(\overline{\Xi}(X^f)) \\
\downarrow{r} & & \downarrow{\overline{\Xi}(\overline{\Xi}(r))} \\
X & \xrightarrow{\eta(X)} & \overline{\Xi}(\overline{\Xi}(X))
\end{array}$$
The above lemma tells us that the morphism $\eta(Xf)$ is a coherently commutative monoidal equivalence and so is $r$ by assumption. Theorem 6.13 and lemma A.6 together imply that $K(\mathcal{T}(r))$ is a coherently commutative monoidal equivalence. Now the 2 out of 3 property of model categories implies that $\eta(X)$ is a coherently commutative monoidal equivalence. □

Finally we have developed enough machinery to provide a characterization of a coherently commutative monoidal equivalence.

**Theorem 6.13.** A morphism of $\Gamma$-categories $F : X \to Y$ is a coherently commutative monoidal equivalence if and only if the strict symmetric monoidal functor $\mathcal{T}(F) : \mathcal{T}(X) \to \mathcal{T}(Y)$ is an equivalence of (permutative) categories.

**Proof.** Let us first assume that the morphism of $\Gamma$-categories $F$ is a coherently commutative monoidal equivalence. Any choice of a cofibrant replacement functor $Q$ for $\Gamma\text{-CAT}$ provides a commutative diagram

$$
\begin{array}{ccc}
Q(X) & \xrightarrow{Q(F)} & Q(Y) \\
\downarrow & & \downarrow \\
X & \xrightarrow{F} & Y
\end{array}
$$

The vertical maps in this diagram are acyclic fibrations in the model category of coherently commutative monoidal categories which are strict equivalences of $\Gamma$-categories. Applying the functor $\mathcal{T}$ to this commutative diagram we get the following commutative diagram in $\text{Perm}$

$$
\begin{array}{ccc}
\mathcal{T}(Q(X)) & \xrightarrow{\mathcal{T}(Q(F))} & \mathcal{T}(Q(Y)) \\
\downarrow & & \downarrow \\
\mathcal{T}(X) & \xrightarrow{\mathcal{T}(F)} & \mathcal{T}(Y)
\end{array}
$$

The functor $\mathcal{T}$ is a left Quillen functor therefore it preserves weak equivalences between cofibrant objects. This implies that the top horizontal arrow in the above diagram is a weak equivalence in $\text{Perm}$. The above lemma 6.6 implies that the vertical maps in the above diagram are weak equivalences in $\text{Perm}$. Now the two out of three property of weak equivalences in model categories implies that $\mathcal{T}(F)$ is a weak equivalence in $\text{Perm}$.

Conversely, let us first assume that $\mathcal{T}(F) : \mathcal{T}(X) \to \mathcal{T}(Y)$ is a weak equivalence between coherently commutative monoidal categories in $\text{Perm}$. The functor $\mathcal{K}$ preserves equivalences in $\text{Perm}$, therefore the morphism $\mathcal{K}(\mathcal{T}(F)) : \mathcal{K}(\mathcal{T}(X)) \to \mathcal{K}(\mathcal{T}(Y))$ is a strict equivalence of $\Gamma$-categories. Now we have the following commutative diagram

$$
\begin{array}{ccc}
\mathcal{K}(\mathcal{T}(X)) & \xrightarrow{\mathcal{K}(\mathcal{T}(F))} & \mathcal{K}(\mathcal{T}(Y)) \\
\downarrow & & \downarrow \\
\eta(X) & \xrightarrow{\eta(Xf)} & \eta(Y) \\
\downarrow & & \downarrow \\
X & \xrightarrow{F} & Y
\end{array}
$$
Lemma 6.6 implies that the two vertical arrows in the above diagram are strict equivalences of $\Gamma$-categories, therefore by the two-out-of-three property of model categories, $F$ is also a coherently commutative monoidal equivalence. Now we tackle the general case. Let $F : X \to Y$ be a morphism of $\Gamma$-categories such that $\overline{\mathcal{L}}(F)$ is an equivalence of categories. By a choice of a functorial factorization functor we get the following commutative diagram whose vertical arrows are acyclic cofibrations in the model category of coherently commutative monoidal categories and $R(X)$ and $R(Y)$ are coherently commutative monoidal categories:

\[
\begin{array}{ccc}
R(X) & \xrightarrow{R(F)} & R(Y) \\
\zeta(X) & \downarrow & \zeta(Y) \\
X & \xrightarrow{F} & Y
\end{array}
\]

Applying the functor $\overline{\mathcal{L}}$ to the above diagram we get the following commutative diagram in $\Perm$:

\[
\begin{array}{ccc}
\overline{\mathcal{L}}(R(X)) & \xrightarrow{\overline{\mathcal{L}}(R(F))} & \overline{\mathcal{L}}(R(Y)) \\
\overline{\mathcal{L}}(\zeta(X)) & \downarrow & \overline{\mathcal{L}}(\zeta(Y)) \\
\overline{\mathcal{L}}(X) & \xrightarrow{\overline{\mathcal{L}}(F)} & \overline{\mathcal{L}}(Y)
\end{array}
\]

Since $\overline{\mathcal{L}}$ is a left Quillen functor therefore it preserves acyclic cofibrations. This implies that the two vertical morphisms in the above diagram are equivalences of categories. By assumption $\overline{\mathcal{L}}(F)$ is an equivalence of categories therefore the two out of three property implies that $\overline{\mathcal{L}}(R(F))$ is an equivalence of categories. The discussion earlier in this proof regarding strict equivalence between coherently commutative monoidal categories implies that $R(F)$ is a strict equivalence of $\Gamma$-categories. . . .

\[\square\]

The lemmas proved in this section and the results of appendix A together imply the main result of this paper which is the following:

**Theorem 6.14.** The adjunction $(\overline{\mathcal{L}}, \overline{\mathcal{K}})$ is a Quillen equivalence.

**Proof.** We observe that $\overline{\mathcal{L}}(n)$ is a cofibrant permutative category for all $n \in \mathbb{N}$. Since the permutative category $\overline{\mathcal{L}}(n)$ is cofibrant for all $n \geq 0$ therefore it is easy to check that the right adjoint functor $\overline{\mathcal{K}}$ preserves fibrations and trivial fibrations in $\Perm$ and therefore $(\overline{\mathcal{L}}, \overline{\mathcal{K}})$ is a Quillen adjunction. Let $X$ be a cofibrant object in the model category of coherently commutative monoidal categories and let $C$ be a permutative category. We will show that a map $F : \overline{\mathcal{L}}(X) \to C$ is a coherently commutative monoidal equivalence if and only if its adjunct map $\phi(F) : X \to \overline{\mathcal{K}}C$ is an equivalence of categories. Let us first assume that $F$ is an equivalence in $\Perm$. The adjunct map $\phi(F)$ is defined by the following commutative diagram:

\[
\begin{array}{ccc}
\overline{\mathcal{K}}(\overline{\mathcal{L}}(X)) & \xrightarrow{\overline{\mathcal{K}}(F)} & \overline{\mathcal{K}}(C) \\
\eta & \downarrow & \\
X & \xrightarrow{\phi(F)} & \overline{\mathcal{K}}(C)
\end{array}
\]
The right adjoint functor $K$ preserves weak equivalences therefore the top horizontal arrow is a strict equivalence of $\Gamma$-categories. The unit map $\eta$ is a coherently 
commutative monoidal equivalence by corollary 6.12. Now the 2 out of 3 property of model categories implies that $\phi(F)$ is also a coherently commutative monoidal 
equivalence.

Conversely, let us assume that $\phi(F)$ is a coherently commutative monoidal 
equivalence. The 2 out of 3 property of model categories implies that top horizontal 
arrow in the above commutative diagram, namely $K(F)$ is a coherently commuta-
tive monoidal equivalence and therefore a strict equivalence of $\Gamma$-categories. Now 
Lemma A.6 implies that the strict symmetric monoidal functor $F$ is an equivalence 
of categories. □

Now we are ready to state the main result of this paper which is a corollary of 
the above theorem:

**Corollary 6.15.** The adjunction $(L, K)$ is a Quillen equivalence.

**Proof.** Remark 19 gives a natural equivalence of permutative categories

$$T \circ (id_{\Pi_1} \circ (J \circ i) \circ I^{-1}) : \mathcal{L}(n) \implies \Pi_1 \circ T \mathcal{L}(-) \implies \Pi_1 \circ T(\Gamma^-) \implies \Pi_1 \circ T(-) \implies T(-).$$

We observe that for all $n \in \mathbb{N}$ $T \circ (id_{\Pi_1} \circ (J \circ i) \circ I^{-1})(n)$ is a weak equivalence in $\text{Perm}$ between cofibrant (and fibrant) permutative categories.

We recall from appendix A that the bifunctor $[-,-]_{\text{str}}$ is the Hom functor of the 
CAT-model category $\text{Perm}$. This implies that for each $n \in \mathbb{N}$ and each permuta-
tive category $C$, the functor

$$[T \circ (id_{\Pi_1} \circ (J \circ i) \circ I^{-1})(n), C]_{\text{str}} : [\mathcal{L}(n), C]_{\text{str}} \to [\mathcal{L}(n), C]_{\text{str}}$$

is an equivalence of categories. In other words the natural transformation

$$[T \circ (id_{\Pi_1} \circ (J \circ i) \circ I^{-1})(-), C]_{\text{str}} : [\mathcal{L}(-), C]_{\text{str}} \to [\mathcal{L}(-), C]_{\text{str}}$$

is a strict equivalence if $\Gamma$-categories. This morphism of $\Gamma$-categories uniquely 
determines a strict equivalence of $\Gamma$-categories $\eta(C) : K(C) \Rightarrow K(C)$ for each permutative category $C$. The family $\{\eta(C)\}_{C \in \text{Ob}(\text{Perm})}$ glues together to define 
a natural equivalence $\eta : K \Rightarrow K$. The natural equivalence $\eta$ induces a natural 
isomorphism between the derived functors of $K$ and $K$. Now the corollary follows 
from the above theorem 6.14. □
Appendix A. Model category structure on \textbf{Perm}

In this appendix we provide a proof of the natural model category structure on the category of all (small) permutative categories \textbf{Perm} which was defined in Theorem 3.1. \textbf{Perm} is a reflective subcategory of \textbf{CAT} i.e. the forgetful functor $U : \textbf{Perm} \to \textbf{CAT}$ has a left adjoint $F : \textbf{CAT} \to \textbf{Perm}$ which assigns to a category $B$, the free permutative category generated by $B$. We will construct the model category structure by transfer along the adjunction $(F,i)$. The main tool used here will be the following theorem

**Theorem A.1.** [GS07, Theorem 3.6] Let $F : C \rightleftarrows D : G$ be an adjoint pair and suppose $C$ is a cofibrantly generated model category. Let $I$ and $J$ be chosen sets of generating cofibrations and acyclic cofibrations, respectively. Define a morphism $f : X \to Y$ in $D$ to be a weak equivalence or a fibration if $G(f)$ is a weak equivalence or fibration in $C$. Suppose further that

1. The right adjoint $G : D \to C$ commutes with sequential colimits; and
2. Every cofibration in $D$ with the LLP with respect to all fibrations is a weak equivalence.

Then $D$ becomes a cofibrantly generated model category. Furthermore the collections \{ $F(i)|i \in I$ \} and \{ $F(j)|j \in J$ \} generate the cofibrations and the acyclic cofibrations of $D$ respectively.

The categories \textbf{CAT} and \textbf{Perm} are locally presentable so the first condition is satisfied by the adjunction $(F,i)$, see [AR94]. The first half of this section is devoted to verifying the second condition of the above theorem. In the second half of this appendix we will show that the transferred model category structure on \textbf{Perm} is the same as the one claimed in Theorem 3.1. We will verify the second condition in Theorem A.1 by using a factorization of maps in \textbf{Perm} as acyclic cofibrations followed by fibrations. We begin by constructing this factorization.

Let $C$ be a small category, the functor $\partial_1 = [d_1, C] : [J,C] \to C$ is the source functor which which takes an isomorphism $a : A_0 \to A_1$ to its source $A_0$, and $\partial_0 = [d_0, C]$ is the target functor which takes an isomorphism $a : A_0 \to A_1$ to its target $A_1$. If $s$ denotes the functor $J \to 0$, then the functor $\sigma = [s, C] : C \to [J,C]$ is the unit functor which takes an object $A \in C$ to the unit isomorphism $id_A : A \to A$. The relation $sd_1 = id_1 = sd_0$ implies that we have $\partial_1 \sigma = id_C = \partial_0 \sigma$. The functors $\partial_1, \partial_0$ and $\sigma$ are equivalences of categories, since the functors $d_1, d_0$ and $s$ are equivalences. We observe that the following functor

$$[J, (pr_1, pr_2)] : [J, C \times C] \to [J, C] \times [J, C]$$

is an isomorphism of categories, where $pr_1 : C \times C \to C$ and $pr_2 : C \times C \to C$ are the obvious projection functors. Let us further assume that $C$ is a permutative category, then the arrow category $[J, C]$ inherits the structure of a permutative category by the following bifunctor

$$- \otimes_{[J,C]} - : [J, C] \times [J, C] \xrightarrow{[J,(pr_1,pr_2)]^{-1}} [J, C \times C] \xrightarrow{[J,- \otimes -]} [J, C].$$

and the following symmetry natural isomorphism

$$\gamma_{[J,C]} : [J, C] \times [J, C] \xrightarrow{[J,(pr_1,pr_2)]^{-1}} [J, C \times C] \xrightarrow{[J,\gamma_C]} [J, [J,C]].$$
We observe that the following two diagrams commute

\[
\begin{array}{ccc}
[J,C] \times [J,C] & \xrightarrow{-\otimes_{[J,C]}-} & [J,C] \\
\partial_0 \times \partial_0 & \downarrow & \partial_0 \\
C \times C & \xrightarrow{-\otimes_C-} & C
\end{array}
\]

\[
\begin{array}{ccc}
[J,C] \times [J,C] & \xrightarrow{-\otimes_{[J,C]}-} & [J,C] \\
\partial_1 \times \partial_1 & \downarrow & \partial_1 \\
C \times C & \xrightarrow{-\otimes_C-} & C
\end{array}
\]

which implies that the functors \(\partial_0\) and \(\partial_1\) preserve the symmetric monoidal structure. We further observe that the following two diagrams commute

\[
\begin{array}{ccc}
[J,C] \times [J,C] & \xrightarrow{\gamma_{[J,C]}} & [J, [J,C]] \\
\partial_0 \times \partial_0 & \downarrow & \partial_0 \\
C \times C & \xrightarrow{\gamma_C} & C
\end{array}
\]

\[
\begin{array}{ccc}
[J,C] \times [J,C] & \xrightarrow{\gamma_{[J,C]}} & [J, [J,C]] \\
\partial_1 \times \partial_1 & \downarrow & \partial_1 \\
C \times C & \xrightarrow{\gamma_C} & C
\end{array}
\]

which implies that the functors \(\partial_0\) and \(\partial_1\) preserve the symmetry natural isomorphisms. Thus the functors \(\partial_0\) and \(\partial_1\) are strict symmetric monoidal functors. Similarly we see that the following two diagrams commute

\[
\begin{array}{ccc}
[J,C] \times [J,C] & \xrightarrow{-\otimes_{[J,C]}-} & [J,C] \\
\sigma \times \sigma & \downarrow & \sigma \\
C \times C & \xrightarrow{-\otimes_C-} & C
\end{array}
\]

\[
\begin{array}{ccc}
[J,C] \times [J,C] & \xrightarrow{\gamma_{[J,C]}} & [J, [J,C]] \\
\sigma \times \sigma & \downarrow & \sigma \\
C \times C & \xrightarrow{\gamma_C} & C
\end{array}
\]

This implies that the functor \(\sigma\) is a strict symmetric monoidal functor. The cartesian product \(C \times C\) is a product of two copies of \(C\) in the category \(\text{Perm}\), therefore the functor

\[
(\partial_0, \partial_1) : [J,C] \to C \times C
\]

is a strict symmetric monoidal functor.

**Proposition A.2.** The functor

\[
(\partial_0, \partial_1) : [J,C] \to C \times C
\]

is an isofibration and the functor \(\sigma : C \to [J,C]\) is an equivalence of categories. Moreover, the functors \(\partial_1\) and \(\partial_0\) are equivalences surjective on objects.

**Proof.** Let us show that the functor \((\partial_1, \partial_0)\) is an isofibration. Let \(a : A_0 \to A_1\) be an object of \([J,C]\) and let \((u_0, u_1) : (A_0, A_1) \to (B_0, B_1)\) be an isomorphism in \(C \times C\). There is then a unique isomorphism \(b : B_0 \to B_1\) such that the square

\[
\begin{array}{ccc}
A_0 & \xrightarrow{a} & A_1 \\
\downarrow{u_0} & & \downarrow{u_1} \\
B_0 & \xrightarrow{b} & B_1
\end{array}
\]

commutes, namely \(b = u_1 \circ a \circ u_0^{-1}\). The pair \(u = (u_0, u_1)\) defines an isomorphism \(a \to b\) in the category \([J,C]\), and we have \((\partial_1, \partial_0)(u) = (u_0, u_1)\). This proves that \((\partial_1, \partial_0)\) is an isofibration. We saw above that the functor \(\partial_1, \partial_0\) and \(\sigma\) are
equivalences of categories. The functor $\partial_1$ is surjective on objects, since $\partial_1 \sigma = id_C$. Similarly, the functor $\partial_0$ is surjective on objects.

**Definition A.3.** The mapping path object of a strict symmetric monoidal functor $F : X \to Y$ is the category $P(F)$ defined by the following pullback square.

There is a (unique) functor $i_X : X \to P(F)$ such that $P_i_X = \sigma F, P_i_X = \sigma F$ and $P_X i_X = id_X$ since square (A.3) is cartesian and we have $\partial_1 \sigma F = id_1 F = F id_X$. Let us put $P_Y = \partial_0 P$. Then we have $F = P_Y i_X : X \to P(F) \to Y$ since $P_Y i_X = \partial_0 P i_X = \partial_0 \sigma F = id_Y F = F$. This is the mapping path factorisation of the functor $F$ in the category $\Perm$. We now present a concrete construction of the pullback above. An object of $P(F)$ is a triple $(y, A, B)$, where $A$ is an object of $X$, $B$ is an object of $Y$ and $y : F(A) \to B$ is an isomorphism in $Y$. We have $P(y, A, B) = y$, $P_X (y, A, B) = A$ and $P_Y (y, A, B) = B$. A morphism $(y, A, B) \to (y', A', B')$ in the category $P(F)$ is a pair of maps $u : A \to A'$ and $v : B \to B'$ such that the following diagram commutes:

Our construction defines a permutative category with the obvious tensor product namely, $(y, A, B) \otimes (y', A', B') = (y \otimes y', A \otimes A', B \otimes B')$ and $(u, v) \otimes (u_1, v_1) = (u \otimes u_1, v \otimes v_1)$.

**Lemma A.4.** The functor $P_Y$ in the mapping path factorisation $F = P_Y i_X : X \to P(F) \to Y$

is an isofibration and the functor $i_X$ is an equivalence of categories.

**Proof.** The map $(P_X, P_Y)$ is a pullback (in $\CAT$) of the isofibration $(\partial_0, \partial_1)$ therefore it is an isofibration. Clearly the projection map $\pi_2 : X \times Y \to Y$ is an isofibration. We observe that $P_Y = \pi_2 \circ (P_X, P_Y)$ and therefore it is also an isofibration. Now we show that the functor $i_X$ is an equivalence. For this it suffices to exhibit a natural isomorphism $\alpha : i_X P_X \simeq id_X$ since we have already $P_X i_X = id_X$. But $i_X P_X (y, A, B) = (id_{FA}, A, FA)$ and the pair $(id_A, y)$ defines a natural isomorphism $\alpha((y, A, B)) : (id_{FA}, A, FA) \to (y, A, B)$.

Now we have verified all conditions of Theorem A.1 and thus we have transferred a model category structure on the category $\Perm$. Finally, we show that the thickened version of the Segal Nerve functor preserves weak equivalences.
Theorem A.5. Let $F : C \to D$ be a strict symmetric monoidal functor in $\text{Perm}$ such that $F$ has the left lifting property with respect to all maps $p : A \to B$ in $\text{Perm}$ having the property that $\overline{K}(p)$ is a fibration in the strict model category structure on $\Gamma\text{CAT}$. Then $F$ is an equivalence of categories.

Proof. Using the above factorization, the functor $F$ can be factored as $P_C i_X$, where $P_C$ is an isofibration and therefore has the property that $\overline{K}(P_C)$ is a fibration in the strict model category structure on $\Gamma\text{CAT}$. This means that there is a dashed lifting arrow $r$ in the following diagram:

$$
\begin{array}{c}
C & \xrightarrow{i_X} & P(F) \\
F & \searrow & \\
D & \xrightarrow{P_C} & D
\end{array}
$$

We can view the above diagram in $\text{CAT}$ by forgetting the symmetric monoidal structures. The existence of the lifting arrow $r$ in the above diagram implies that the map $F$ is a retract of $i_X$ i.e. we have the following commutative diagram

$$
\begin{array}{c}
C & \xrightarrow{i_X} & C & \xrightarrow{P(F)} & C \\
F & \searrow & \searrow & \searrow & \\
D & \xrightarrow{P_C} & D & \xrightarrow{P_C} & D
\end{array}
$$

Lemma A.4 says that the map $i_X$ is a weak equivalence in the natural model category structure on $\text{CAT}$ therefore $F$ is also a weak equivalence in the same model category. Since weak equivalences in the natural model category structure on $\text{CAT}$ are equivalences of categories, we have proved that the map $F$ is an equivalence of categories. □

Now we will like to show that the notion of weak equivalence in the transferred model category structure on $\text{Perm}$ is the same as that in the natural model category structure on $\text{Perm}$, see 3.1.

Lemma A.6. A strict symmetric monoidal functor in $\text{Perm}$ is an equivalence of categories if and only if its image under the right adjoint functor $\overline{K}$ is a strict equivalence in $\Gamma\text{CAT}$.

Proof. Let $F : C \to D$ be a strict symmetric monoidal functor in $\text{Perm}$ which is an equivalence of categories. We consider the following diagram

$$
(33) \quad \overline{K}(C)(1^+) = \text{Bikes}^{P_S}(\Gamma^1, C) \xrightarrow{\text{Bikes}^{P_S}(\Gamma^1, F)} \text{Bikes}^{P_S}(\Gamma^1, D) = \overline{K}(D)(1^+)
$$

where $I(C)$ and $I(D)$ are equivalences defined in the proof of corollary 6.9. If the functor $F$ is an equivalence then the two out of three property of weak equivalences says that the map $\overline{K}(F)(1^+) = \text{Bikes}^{P_S}(\Gamma^1, F)$ is an equivalence of categories. Since $\overline{K}(F)$ is a map between two $E_\infty$ $\Gamma$-categories, therefore it is a strict weak equivalence if and only if $\overline{K}(F)(1^+)$ is an equivalence of categories.
Conversely, if the morphism of $\Gamma$-categories $K(F)$ is a (strict) weak equivalence then $K(F)(1^+)\text{ is an equivalence of categories.}$ Another application of the two out of three property of weak equivalences to the commutative diagram (33) tells us that the functor $F$ is an equivalence of categories.

Finally we would like to show that the natural model category of permutative categories $\text{Perm}$ is enriched over $\text{CAT}$. The enrichment of $\text{Perm}$ is given by the following bifunctor which assigns to each pair of permutative categories $(C, D)$ the category $[C, D]_{\text{str}}^{\text{op}}$ whose objects are strict symmetric monoidal functors from $C$ to $D$ and unital monoidal natural transformations between them:

\[ [-, -]_{\text{str}}^{\text{op}} : \text{Perm}^{\text{op}} \times \text{Perm} \to \text{CAT} \]

The category $\text{Perm}$ is tensored over $\text{CAT}$ and the tensor product is given by a bifunctor

\[ - \boxtimes - : \text{CAT} \times \text{ Perm} \to \text{ Perm} \]

which maps a pair $(A, C) \in \text{ Ob}(\text{CAT} \times \text{ Perm})$ to the (product) permutative category $A \boxtimes C$, where $F : \text{CAT} \to \text{Perm}$ is the free permutative category functor.

We recall that the category of functors $[A, C]$ gets a permutative category structure. We claim that this category of functors is the cotensor of $A$ with $C$.

For each permutative category $D$ we consider the following two functors $[-, D]_{\text{str}}^{\text{op}} : \text{Perm}^{\text{op}} \to \text{CAT}$ and $[-, D] : \text{CAT} \to \text{Perm}^{\text{op}}$. We will define a natural transformation

\[ \eta_r : id_{\text{CAT}} \Rightarrow [[-, D], D]_{\text{str}}^{\text{op}}. \]

We will define a functor $\phi(A) : A \to [[A, D], D]_{\text{str}}^{\text{op}}$. For each object $a \in \text{ Ob}(A)$, we define

\[ \phi(A)(a) := ev_a : [A, D] \to D, \]

where $ev_a$ is the evaluation functor at $a$. Clearly this is a strict symmetric monoidal functor. To each map $f : a \to b$ in $A$ we have a natural transformation $\phi(A)(f) := ev_f : ev_a \Rightarrow ev_b$ which is defined at each $F \in \text{ Ob}([A, D])$ by $\phi(A)(f)(F) := F(f) : F(a) \to F(b)$. In order to prove our claim that $[A, D]$ is a cotensor, we will establish the universality of $\eta_r$ i.e. for each functor $G : A \to [C, D]_{\text{str}}^{\text{op}}$, we will show that there exists a unique strict symmetric monoidal functor $g : C \to [A, D]$ such that the following diagram commutes

\[ A \xrightarrow{\eta_r(A)} [[A, D], D]_{\text{str}}^{\text{op}} \]

\[ \downarrow \]

\[ [g, D]_{\text{str}}^{\text{op}} \]

\[ \downarrow \]

\[ [C, D]_{\text{str}}^{\text{op}} \]

For each $c \in \text{ Ob}(C)$, the functor $g(c) : A \to D$ is defined on objects as follows:

\[ g(c)(a) := G(a)(c). \]

The functor $g(c)$ is defined similarly on morphims i.e. for any map $f \in \text{ Mor}(C)$

\[ g(c)(f) := G(f)(c). \]
This defines a functor because $G$ is a functor and $g$ is strict symmetric monoidal because $G(a)$ is strict symmetric monoidal for each $a \in \text{Ob}(A)$. Now the following equality is a consequence of the definition of $g$:

$$G = [g, D]^{\text{str}} \circ \eta_r(A)$$

The uniqueness of $g$ is obvious. This implies that we have the following isomorphism

$$\text{Perm}(C, [A, D]) \cong \text{CAT}(A, [C, D]^{\text{str}}).$$

The universality of $\eta_r$ implies that the above isomorphism is natural in $A$ and $C$. One can check that it is also natural in $D$. Thus we have proved our claim that $\text{Perm}$ is cotensored over $\text{CAT}$. A consequence of our definition of cotensor is that it defines a bifunctor which we denote as follows:

$$(36) [\text{Perm}] : \text{CAT}^{\text{op}} \times \text{Perm} \to \text{Perm}.$$
Corollary A.9. For each permutative category $C$, the functor

$$[-, C]_{str}^{\otimes} : \text{Perm} \to \text{CAT}$$

maps cofibrations and acyclic cofibrations in $\text{Perm}$ to fibrations and acyclic fibrations respectively in $\text{CAT}_{str}$.

The proof is an easy consequence of proposition A.7.
Appendix B. The notion of a Bicycle

In the paper [Seg74], Segal described a functor from the category of all (small) symmetric monoidal categories to the category of Γ-category. The Γ-category assigned by this functor to a symmetric monoidal category was described by constructing a sequence of (pointed) categories whose objects are a pair of families of objects and maps in the symmetric monoidal category satisfying some coherence conditions, see [Man10], [SS79] for a complete definition. The objective of this section is to present a thicker version of Segal’s pair of families as pseudo cones which satisfy some additional coherence conditions which are usually associated to oplax symmetric monoidal functors. We begin by providing a definition of a pseudo cone in the spirit of Segal’s families:

Definition B.1. A pseudo cone from $X$ to $C$ is a pair $(\phi, \alpha)$, where $\phi = \{\phi(n)\}_{n \in \text{Ob}(N)}$ is a family of functors $\phi(n) : X(n) \to C$ and $\alpha = \{\alpha(f)\}_{f \in \text{Mor}(N)}$ is a family of natural isomorphisms $\alpha(f) : \phi(n) \Rightarrow \phi(m) \circ X(f)$, where $f : n \to m$ is a map in $N$ which can also be regarded as an active map $f : n^+ \to m^+$ in $\Gamma^{op}$. The pair $(\phi, \alpha)$ is subject to the following conditions

1. In the family $\alpha$, the natural isomorphism indexed by the identity morphism of an object in $N$ should be the identity natural transformation $\alpha(id_n) = id_{\phi(n)}$, for all $n \in \text{Ob}(N)$.

2. For every pair $(f : n \to m, g : m \to l)$ of composable arrows in $N$, the following diagram commutes:

\[
\begin{array}{ccc}
\phi(n) & \xrightarrow{\alpha(f)} & \phi(m) \\
\downarrow & & \downarrow \\
\phi(m) \circ X(f) & = & \phi(m) \circ X(g \circ f)
\end{array}
\]

Definition B.2. A strict cone $(\phi, \alpha)$ from $X$ to $C$ is a pseudo cone such that all natural isomorphisms in the family $\alpha$ are identity natural transformations.

Now we define a morphism between two pseudo cones from $X$ to $C$, $L_1 = (\phi, \alpha)$ and $L_2 = (\psi, \beta)$.

Definition B.3. A morphism of pseudo cones $F : L_1 \to L_2$ consists of a family of natural transformations $F = \{F(n)\}_{n \in \text{Ob}(N)}$, having domain $\phi(n)$ and codomain $\psi(n)$, which is compatible with the families $\alpha$ and $\beta$ i.e. the following diagram commutes

\[
\begin{array}{ccc}
\phi(n) & \xrightarrow{F(n)} & \psi(n) \\
\downarrow & & \downarrow \\
\phi(m) \circ X(f) & = & \psi(m) \circ X(f)
\end{array}
\]

Let $G : L_2 \to L_3 = (\upsilon, \delta)$ be another morphism of pseudo cones from $X$ to $C$, then their composition is defined degreewise i.e. $G \circ F$ consists of the collection
This triple is subject to the following conditions:

\[(G(m) \circ \text{id}_{X(f)}) \cdot (F(m) \circ \text{id}_{X(f)}) = (G(m) \cdot F(m)) \circ (\text{id}_{X(f)} \cdot \text{id}_{X(f)}) = (G(m) \cdot F(m)) \circ \text{id}_{X(f)}.
\]

In other words, the following diagram commutes

\[\begin{array}{ccc}
\phi(n) & \xrightarrow{G(n) \cdot F(n)} & v(n) \\
\alpha(f) \downarrow & & \downarrow \delta(f) \\
\phi(m) \circ X(f) & \xrightarrow{(G(m) \cdot F(m)) \circ \text{id}_{X(f)}} & v(m) \circ X(f)
\end{array}\]

Thus the composite of two morphisms of pseudo cones, as defined above, is a morphism of pseudo cones. The associativity of vertical composition of natural transformations and the interchange law of natural transformations one can prove the following proposition:

**Proposition B.4.** The composition of morphisms of pseudo cones as defined above is strictly associative.

Thus we have defined a category. We denote this category of pseudo cones from \(X\) to \(C\) by \(\text{PsCones}(X, C)\). In this paper we will be mainly concerned with pseudo cones having some additional structure which we describe next.

**Definition B.5.** A **pseudo bicycle** \(\Phi\) from \(X\) to \(C\), denoted \(\Phi : X \Rightarrow C\), consists of a triple \(\Phi = (L, \sigma, \tau)\), where \(L = (\phi_L, \alpha_L)\) is the underlying pseudo cone, \(\tau : \phi_L(\mathbb{1}) \Rightarrow \Delta(1_C)\) is a natural transformation to the constant functor on the category \(X(0^+)\) taking value \(1_C\), and \(\sigma = \{\sigma(k, l)\}_{k, l \in \text{Ob}(N) \times \text{Ob}(N)}\) is a family of natural transformations

\[\sigma(k, l) : \phi(k + l) \Rightarrow \phi(k) \odot \phi(l)\]

The functor \(\phi(k) \odot \phi(l) : X((k + l)^+) \rightarrow C\) on the right is defined by the following composite

\[X((k + l)^+) \xrightarrow{X(\delta_{k+l}^+)} X(k^+) \times X(l^+) \xrightarrow{\phi(k) \times \phi(l)} C \times C \xrightarrow{\text{comp}} C.\]

This triple is subject to the following conditions:

**C.1** For any object \(x \in X(m^+)\), the map

\[\sigma(m, 0)(x) : \phi(m + 0)(x) \rightarrow \phi(m)(x) \odot \phi(0)(X(\delta_0^m)(x)) = (\phi(m) \odot \phi(\mathbb{1}))(x)^C_{\text{id} \odot \tau(x(\delta_0^m)(x))} \rightarrow \phi(m)(x) \odot 1_C\]

is required to be the inverse of the (right) unit isomorphism in \(C\). The map \(\delta_0^m : m^+ \rightarrow 0^+\) in the arrow above is the unique map in \(\Gamma^{op}\) from \(m^+\) to the terminal object. Similarly the map

\[\phi(0 + m)(x) \xrightarrow{\phi(\mathbb{1})(x)} \phi(\mathbb{1})(X(\delta_0^m)(x)) \odot \phi(m)(x) = (\phi(\mathbb{1}) \odot \phi(m))(x)_{\text{\tau(x(\delta_0^m)(x))} \odot \text{id}} \rightarrow 1_C \odot \phi(m)(x)\]
is the inverse of the (left) unit isomorphism in $C$.

C.2 For each pair of objects $k, l \in \text{Ob}({\mathcal{N}})$, we define a natural transformation $\gamma_{\phi(k), \phi(l)} : \phi(k) \circ \phi(l) \Rightarrow \phi(l) \circ \phi(k)$ as follows:

$$\gamma_{\phi(k), \phi(l)} := \gamma^C \circ id_{\phi(k)} \times \phi(l) \circ id_{(X(\delta^k_{k+1}), X(\delta^k_{k+1}))},$$

where $\gamma^C$ is the identity natural isomorphism of $C$. We require that each natural transformation $\sigma_{k, l}$ in the collection $\sigma$ to satisfy the following symmetry condition

$$\phi(k + l) \xrightarrow{\sigma_{k, l}} \phi(l + k).$$

C.3 For any triple of objects $k, l, m$ in $\mathcal{N}$, the following diagram commutes

$$\phi((k + l + m)) \xrightarrow{\sigma_{k, l + m}} \phi(k + l) \circ \phi(m) \xrightarrow{\sigma_{k, l}} \phi(k) \circ \phi(l + m) \xrightarrow{id_{\phi(k)} \circ \sigma_{l, m}} \phi(k) \circ (\phi(l) \circ \phi(m)) = \phi(k) \circ (\phi(l) \circ \phi(m)).$$

where the natural isomorphism $\alpha_{\phi(k), \phi(l), \phi(m)}$ is defined by the following diagram which, other than the bottom rectangle, is commutative:

$$X((k + l + m)^+) \xrightarrow{F_1} X((k + l)^+) \times X(m^+) \xrightarrow{F_2} X(k^+) \times X(l^+) \times X(m^+) \xrightarrow{F_3} X(k^+) \times X(l^+) \times X(m^+) \xrightarrow{\alpha^C} (C \times (C \times C) \times C = (C \times C) \times C.$$

where $\alpha^C$ is the associator of the symmetric monoidal category $C$, the arrow $F_3 = (X(\delta^k_{k+1}), X(\delta^k_{k+1})) \times id$, the arrow $F_1 = (X(\delta^k_{k+1}), X(\delta^k_{k+1}) \times id)$, the arrow $F_2 = (X(\delta^k_{k+1}), X(\delta^k_{k+1}))$ and the arrow $F_3 = (X(\delta^k_{k+1}), X(\delta^k_{k+1}))$. We observe that the to and right vertical composite arrows are just the functor $\phi(k) \circ \phi(l) \circ \phi(m)$ and the diagonal and left vertical arrow are just the functor $\phi(k) \circ \phi(l) \circ \phi(m)$. 


C.4 For each pair of maps \( f : k \to p, \ g : l \to q \) in \( N \), the following diagram should commute
\[
\begin{array}{ccc}
\phi(k+l) & \xrightarrow{\alpha(f+g)} & \phi(k) \circ \phi(l) \\
\downarrow{\sigma(k,l)} & & \downarrow{\alpha(f) \circ \alpha(g)} \\
\phi(p+q) \circ X(f+g) & \xrightarrow{\sigma(p,q) \circ id_{X(f+g)}} & (\phi(p) \circ X(f)) \circ (\phi(q) \circ X(g))
\end{array}
\]
where \( \alpha(f) \circ \alpha(g) = id_{-\otimes-} \circ (\alpha(f) \times \alpha(g)) \circ id_{X(f+g)} \). We observe that
\[
(\phi(p) \circ \phi(q)) \circ X(f+g) = (\phi(p) \circ X(f)) \circ (\phi(q) \circ X(g)).
\]

Let \( \Psi : X \xrightarrow{\sim} C \) be another bicycle which is composed of the pair \((\kappa, \delta)\)

**Definition B.6.** A morphism of bicycles \( F : \Phi \to \Psi \) is a morphism of pseudo cones \( F : L \to K \) which is compatible with the additional structure of the two bicycles, i.e. for all pairs \((k, l) \in Ob(N) \times Ob(N)\), the following diagram commutes
\[
\begin{array}{ccc}
\phi(k+l) & \xrightarrow{F(k+l)} & \psi(k+l) \\
\downarrow{\sigma(k,l)} & & \downarrow{\psi(k) \circ \psi(l)} \\
\phi(k) \circ \phi(l) & \xrightarrow{F(k) \circ F(l)} & \psi(k) \circ \psi(l)
\end{array}
\]

For any pair \((k, l) \in Ob(N) \times Ob(N)\), the natural transformations \( F(k) \) and \( F(l) \) determine another natural transformation
\[
F(k) \times F(l) : \phi(k) \times \phi(l) \Rightarrow \psi(k) \times \psi(l)
\]
which is defined on objects as follows:
\[
(F(k) \times F(l))(x, y) := (F(k)(x), F(k)(y)),
\]
where \((x, y) \in Ob(X(k^+) \times Ob(X(l^+))\). It is defined similarly on morphisms of the product category \(X(k^+) \times X(l^+)\). The natural transformation \( F(k) \circ F(l) \) in the diagram above is defined by the following composite
\[
\begin{array}{ccc}
X((k+l)^+) & \xrightarrow{L} & X(k^+) \times X(l^+) \\
\phi(k) \times \phi(l) & \xrightarrow{F(k) \times F(l)} & C \times C
\end{array}
\]
where \( L = (X(\delta^{k+l}_k), X(\delta^{k+l}_l)) \). Composition of morphisms of bicycles is done by treating them as morphisms of pseudo cones. We will use the following lemma to show that the composition of two composable morphisms of bicycles is always a morphism of bicycles.

**Lemma B.7.** Let \( F : \Phi \to \Psi \) and \( G : \Psi \to \Upsilon \) be two morphisms of bicycles, then for all pairs \((k, l) \in Ob(N) \times Ob(N)\)
\[
(G(k) \circ G(l)) \cdot (F(k) \circ F(l)) = (G(k) \cdot F(k)) \circ (G(l) \cdot F(l)).
\]

**Proof.** The proof of the above lemma follows from the interchange law of compositions of natural transformations. \( \square \)

**Corollary B.8.** Let \( F : \Phi \to \Psi \) and \( G : \Psi \to \Upsilon \) be two morphisms of bicycles, then their composite \( G \circ F \) is a morphism of bicycles.
Proof. We know that $G \circ F$ is a morphism of pseudo cones. All that we have to verify is that the following diagram commutes

\[
\begin{array}{ccc}
\phi(k + l) & \xrightarrow{G \cdot F(k + l)} & v(k + l) \\
\sigma(k,l) & \parallel & \delta(k,l) \\
\phi(k) \circ \phi(l) & \xrightarrow{(G \cdot F(k)) \circ (G \cdot F(l))} & v(k) \circ v(l)
\end{array}
\]

Since $F$ and $G$ are morphisms of bicycles, therefore the following equality always holds

\[
\delta(k,l) \cdot (G \cdot F(k + l)) = ((G(k) \circ G(l)) \cdot (F(k) \circ F(l))) \cdot \sigma(k,l).
\]

The lemma B.7 tells us that

\[
(G(k) \circ G(l)) \cdot (F(k) \circ F(l)) = (G(k) \cdot F(k)) \circ (G(l) \cdot F(l)).
\]

Thus the above diagram commutes. \qed

**Proposition B.9.** The definition of the category of all pseudo bicycles from $X$ to $C$ determines a bifunctor

\[
\text{Bikes}^{\mathrm{Ps}}(-, -) : \Gamma \mathrm{CAT}^{\mathrm{op}} \times \mathrm{Perm} \to \mathrm{CAT}.
\]

**Definition B.10.** A strict bicycle $(\mathcal{L}, \sigma)$ is a bicycle such that $\mathcal{L}$ is a strict cone and all natural transformations in the collection $\sigma$ are natural isomorphisms.

Strict bicycles from $X$ to $C$ constitute a full subcategory of the category of pseudo bicycles $\text{Bikes}^{\mathrm{Ps}}(X, C)$, which we denote by $\text{Bikes}^{\mathrm{Str}}(X, C)$. The definition of the category of all strict bicycles from $X$ to $C$ is functorial in both variables.

**Proposition B.11.** The definition of the category of all pseudo bicycles from $X$ to $C$ determines a bifunctor

\[
\text{Bikes}^{\mathrm{Str}}(-, -) : \Gamma \mathrm{CAT}^{\mathrm{op}} \times \mathrm{Perm} \to \mathrm{CAT}.
\]
Appendix C. Bicycles as oplax sections

In this appendix we want to describe a (pseudo) bicycle as an oplax symmetric monoidal functor from the category $\mathcal{N}$. We will construct a symmetric monoidal category $(C^X)^{Ps}$. The objects of this category are all pairs $(n, \phi)$ where $n \in \text{Ob}(\mathcal{N})$ and $\phi : X(n^+) \to C$ is a functor. A map from $(m, \psi)$ to $(m, \psi)$ in $(C^X)^{Ps}$ is a pair $(f, \eta)$ where $f : n \to m$ is a map in the category $\mathcal{N}$ and $\eta : f(\phi) \Rightarrow \psi(\phi) \circ X(f)$ is a natural isomorphism. Let $(g, \beta) : (m, \psi) \to (k, \alpha)$ be another map in $(C^X)^{Ps}$, then we define their composition as follows:

$$(g, \beta) \circ (f, \eta) := (g \circ f, \beta \cdot \eta),$$

where $\beta \cdot \eta$ is the composite natural transformation $(\beta \circ X(f)) \cdot \eta$ in which $\phi \circ X(f)$ is the horizontal composition of the natural transformations $\phi(g)$ and $id_{X(f)}$ and $(\beta \circ X(f)) \cdot \eta$ is the vertical composition of the two natural transformations. Using the interchange law and the associativity of compositions we will now show that the composition defined above is associative.

**Proposition C.1.** The composition law for the category $(C^X)^{Ps}$, as defined above, is strictly associative.

**Proof.** Let $(f, \eta(f)) : (n, \phi) \to (m, \psi)$, $(g, \beta(g)) : (m, \psi) \to (k, \alpha)$ and $(h, \theta(h)) : (k, \alpha) \to (j, \delta)$ be three composable morphisms in $(C^X)^{Ps}$. We want to show that

$$((h, \theta) \circ (g, \beta) \circ (f, \eta) = (h, \theta) \circ ((g, \beta \circ (f, \eta)).$$

In order to do so it would be sufficient to verify the associativity of the operation $\ast$, i.e., to verify $(\theta \ast (\beta \ast \eta)) = (\theta \ast (\beta \ast \eta))$. The situation is depicted in the following diagram

$$
\begin{array}{ccccccc}
X(n^+) & \xrightarrow{\phi} & C \\
\downarrow \phi & & \downarrow \psi \\
X(m^+) & \xrightarrow{\psi} & C \\
\downarrow \psi & & \downarrow \gamma \\
X(k^+) & \xrightarrow{\alpha} & C \\
\downarrow \alpha & & \downarrow \delta \\
X(j^+) & \xrightarrow{\delta} & C \\
\end{array}
$$

We begin by considering the left hand side, namely

$$\theta * (\beta \ast \eta) = (\theta \circ id_{X(g)} \circ id_{X(f)}) \cdot ((\beta \circ id_{X(f)}) \cdot \eta),$$

where $\cdot$ represents vertical composition of natural transformations which is an associative operation. Therefore by rearranging we get

$$\theta * (\beta \ast \eta) = (\theta \circ id_{X(g)} \circ id_{X(f)}) \cdot ((\beta \circ id_{X(f)}) \cdot \eta) \cdot ((\beta \circ id_{X(f)}) \cdot \eta).$$
Now the interchange law says that the vertical composite \(((\theta \circ \text{id}_{X(g)}) \circ \text{id}_{X(f)}) \cdot (\beta \circ \text{id}_{X(f)})\) is the same as \(((\theta \circ \text{id}_{X(g)}) \cdot \beta) \circ (\text{id}_{X(f)} \cdot \text{id}_{X(f)})\) \cdot \eta which is the same as \((\theta \ast \beta) \ast \eta\).

Thus we have defined the category \((C^X)^{Ps}\). Next we want to define a symmetric monoidal structure on the category \((C^X)^{Ps}\). Let \((\underline{n}, \phi)\) and \((\underline{m}, \psi)\) be two objects of \((C^X)^{Ps}\), we define

\[(\underline{n}, \phi) \otimes (\underline{m}, \psi) := (\underline{n} + \underline{m}, \phi \otimes \psi),\]

where the second component on the right is defined as the following composite

\[X((n + m)^+) \xrightarrow{X(\delta_{n+m}^+)} X(n^+) \times X(m^+) \xrightarrow{\phi \times \psi} C \times C \xrightarrow{\circ} C\]

Let \((f, \eta) : (\underline{n}, \phi) \to (\underline{k}, \delta)\) and \((g, \beta) : (\underline{m}, \psi) \to (\underline{l}, \alpha)\) be two maps in \((C^X)^{Ps}\), then we define

\[(f, \eta) \otimes (g, \beta) := (f + g, \eta \circ \beta),\]

where \(f + g : \underline{n} + \underline{m} \to \underline{k} + \underline{l}\) is the map determined by the symmetric monoidal structure on \(\mathcal{N}\) and the natural transformation \(\eta \circ \beta\) is defined to be the following composite:

\[id_{\circ} \circ (\eta \times \beta) \circ \text{id}_{X(\delta_{n+m}^+) \times X(\delta_{m}^+)}.\]

In other words for any \(x \in X((n + m)^+)\)

\[(\eta \circ \beta)(x) := \eta(X(\delta_{n+m}^+)(x)) \otimes \beta(X(\delta_{m}^+)(x)),\]

where \(x \in X((n + m)^+)\). It is easy to see that this defines a natural transformation between the functors

\[\phi \otimes \psi : X((n + m)^+) \to C\]

and the following composite functor

\[X((n + m)^+) \xrightarrow{X(\delta_{n+m}^+) \times X(\delta_{m}^+)} X(n^+) \times X(m^+) \xrightarrow{\phi \times \psi} C \times C \xrightarrow{\circ} C.\]

We observe that for any two maps \(f : \underline{n} \to \underline{k}\) and \(g : \underline{m} \to \underline{l}\) in the category \(\mathcal{N}\), the following diagram

\[
\begin{array}{ccc}
X((n + m)^+) & \xrightarrow{(X(\delta_{n+m}^+).X(\delta_{m}^+))} & X(n^+) \times X(m^+)
\end{array}
\]

\[
\begin{array}{ccc}
X((k + l)^+) & \xrightarrow{(X(\delta_{k+l}^+).X(\delta_{l}^+))} & X(k^+) \times X(l^+)
\end{array}
\]

This shows that \(\eta \circ \beta\) is a natural transformation between the functors \(\phi \otimes \psi\) and \((\phi \otimes \psi) \circ X(f + g)\).

**Proposition C.2.** The category \((C^X)^{Ps}\) is a symmetric monoidal category.
Proof. The unit object of $(C^X)^{Ps}$ is the pair $(0, \phi(0))$, where $\phi(0) : X(0^+) \to C$ is the constant functor assigning the value $1_C$. We begin by verifying that the tensor product defined above defines a bifunctor

$$- \otimes - : (C^X)^{Ps} \times (C^X)^{Ps} \to (C^X)^{Ps}.$$ 

Let $((f, \eta), (g, \beta)) : ((\underline{f}, \phi), (\underline{g}, \phi)) \to ((\underline{m}, \phi), (\underline{n}, \phi))$ and $((p, \delta)(q, \theta)) : ((\underline{m}, \phi(m)), (\underline{n}, \phi)) \to ((a, \phi(a)), (b, \phi(b)))$ be a pair of composable arrows in the product category $(C^X)^{Ps} \times (C^X)^{Ps}$. We will show that

$$(p \circ f, \eta(f) \otimes \delta(p)) \otimes (q \circ g, \beta(f) \otimes \theta(p)) = ((p, \delta(p)) \otimes (q, \theta(q))) \circ ((f, \eta(f)) \otimes (g, \beta(g))).$$

Throughout this proof we will refer to the following commutative diagram

$$
\begin{array}{c}
X((k + l)^+) \xrightarrow{(X(\delta_{k+1}^{k+l}), X(\delta_{l+1}^{l+l}))} X(k^+) \times X(l^+) \xrightarrow{\phi(k) \times \phi(l)} C \times C \\
X(f+g) \downarrow \hspace{1cm} X(f) \times X(g) \downarrow \hspace{1cm} \eta(f) \times \beta(g) \downarrow \\
X((m + n)^+) \xrightarrow{(X(\delta_{m+n}^{m+n}), X(\delta_{n+n}^{n+n}))} X(m^+) \times X(n^+) \xrightarrow{\phi(m) \times \phi(n)} C \times C \\
X(p+q) \downarrow \hspace{1cm} X(p) \times X(q) \downarrow \hspace{1cm} \delta(p) \times \theta(q) \downarrow \\
X((a + b)^+) \xrightarrow{(X(\delta_{a+b}^{a+b}), X(\delta_{b+b}^{b+b}))} X(a^+) \times X(b^+) \xrightarrow{\phi(a) \times \phi(b)} C \times C
\end{array}
$$

Since the addition operation, $+$, is the symmetric monoidal structure on $\mathcal{N}$, therefore $p \circ f + q \circ g = (p + q) \circ (f + g)$. We recall that

$$(p \circ f, \eta(f) \otimes \delta(p)) \otimes (q \circ g, \beta(f) \otimes \theta(p)) = (p \circ f + q \circ g, (\eta \star \delta) \otimes (\beta \star \theta)(p \circ f + q \circ g)).$$

By definition, the natural transformation $(\eta \star \delta) \otimes (\beta \star \theta)(p \circ f + q \circ g)$ is the following composite:

$$id_{- \otimes -} \circ (((\delta(p) \circ id_{X(f)}) \cdot \eta(f)) \times (((\theta(q) \circ id_{X(g)}) \cdot \beta(f))) \circ id_{X(\delta_{k+1}^{k+l}) \times X(\delta_{l+1}^{l+l})}.$$ 

We observe that the above composite is the same as the following composite:

$$id_{- \otimes -} \circ ((\delta(p) \times \theta(q)) \circ (id_{X(f)} \times id_{X(g)}) \cdot (\eta(f) \times \beta(g))) \circ id_{(X(\delta_{k+b}^{k+b}), X(\delta_{l+l}^{l+l}))}.$$ 

The composite natural transformation $((p, \delta) \otimes (q, \theta)) \circ ((f, \eta) \otimes (g, \beta(g)))$ is, by definition, the same as $(\theta \circ \delta \circ id_{f+g}) \cdot (\eta \circ \beta)$. Unwinding definitions gives us the following equality

$$(\theta \circ \delta \circ id_{f+g}) \cdot (\eta \circ \beta(f + g)) =
\begin{align*}
&\quad (id_{- \otimes -} \circ (\delta \times \theta) \circ id_{X(\delta_{m+n}^{m+n}), X(\delta_{n+n}^{n+n})}) \circ id_{X(f+g)} \\
&\quad \cdot (id_{- \otimes -} \circ (\eta \times \beta) \circ id_{X(\delta_{k+1}^{k+1}), X(\delta_{l+1}^{l+1})}).
\end{align*}$$
The above diagram tells us that \((X(\delta^{m+n}_m), X(\delta^{m+n}_n)) \circ X(f+g) = (X(f) \times X(g)) \circ (X(\delta^{k+l}_k), X(\delta^{k+l}_l))\). Now the interchange law of composition of natural transformations gives the following equalities

\[
\theta \circ \delta \circ id_{f+g} \cdot (\eta \circ \beta(f+g)) = (id_{\circ} \circ (\delta \times \theta) \circ (id_{X(f)} \times id_{X(g)}) \circ id_{(X(\delta^{k+l}_k), X(\delta^{k+l}_l))}) = (id_{\circ} \circ (\eta \times \beta) \circ id_{(X(\delta^{k+l}_k), X(\delta^{k+l}_l))}) = id_{\circ} \circ ((\delta \times \theta) \circ (id_{X(f)} \times id_{X(g)}) \cdot (\eta \times \beta)) \circ id_{(X(\delta^{k+l}_k), X(\delta^{k+l}_l))}.
\]

\[
\ldots \quad \square
\]

We will refer to the category \(\Gamma^{OL}(\mathcal{N}, (C^X)^{Ps})\) as the category of elements of the exponential from \(X\) to \(C\).

**Proposition C.3.** The construction of the category of elements of the exponential described above defines a bifunctor

\[
(\mathcal{N}, (C^X)^{Ps}) : \Gamma^{CAT^{op}} \times \text{Perm} \to \text{Perm}.
\]

The category \((C^X)^{Ps}\) has an associated projection functor \(pr_N : (C^X)^{Ps} \to \mathcal{N}\) which projects the first coordinate. Now we are ready to define a bicycle

**Definition C.4.** A oplax symmetric monoidal section of \((C^X)^{Ps}\) is a unital oplax symmetric monoidal functor \(\Phi : \mathcal{N} \to (C^X)^{Ps}\) such that \(pr_N \circ \Phi = id_{\mathcal{N}}\). A morphism of oplax symmetric monoidal sections of \((C^X)^{Ps}\) is an oplax natural transformation between two oplax symmetric monoidal section of \((C^X)^{Ps}\).

We will denote the category of all oplax symmetric monoidal section of \((C^X)^{Ps}\) by \(\Gamma^{OL}(\mathcal{N}, (C^X)^{Ps})\).

**Proposition C.5.** The category of all oplax symmetric monoidal section of \((C^X)^{Ps}\) is isomorphic to the category of all bicycles from \(X\) to \(C\). We begin by defining \(I\).

**Proof.** We will define a pair of functors \(I : \Gamma^{OL}(\mathcal{N}, (C^X)^{Ps}) \to \text{Bikes}^{Ps}(X, C)\) and \(J : \text{Bikes}^{Ps}(X, C) \to \Gamma^{OL}(\mathcal{N}, (C^X)^{Ps})\) and show that they are inverses of one another. For an object \(\Phi \in Ob(\Gamma^{OL}(\mathcal{N}, (C^X)^{Ps}))\) we define the bicycle \(I(\Phi)\) to be the pair \((\mathcal{L}_\Phi, \sigma_\Phi)\) where \(\mathcal{L}_\Phi\) is a pair \((\phi, \alpha_\Phi)\) consisting of a collection of functors \(\phi\) which is composed of a functor \(\phi(n) : X(n) \to C\), for each \(n \in Ob(\mathcal{N})\), which is defined as follows:

\[
\phi(n) := \Phi(n).
\]

and a collection of natural transformations \(\alpha_\Phi\) consisting of one natural transformation \(\alpha_\Phi(f)\) for each \(f \in Mor(\mathcal{N})\), which is defined as follows:

\[
\alpha_\Phi(f) := \Phi(f).
\]

Finally \(\sigma_\Phi\) is a collection consisting of a natural transformation \(\sigma_\Phi(k, l)\), for each pair of objects \((k, l) \in Ob(\mathcal{N}) \times Ob(\mathcal{N})\) which is defined as follows:

\[
\sigma_\Phi(k, l) := \lambda_\Phi(k, l).
\]
where $\lambda_\Phi$ is the natural transformation providing the oplax structure to the functor $F$. The pair $\mathcal{L}_\Phi = (\phi, \alpha_\Phi)$ is a normalized lax cone because $\Phi$ is a functor from $\mathcal{N}$ to $(C^X)^{Ps}$. The conditions in the definition of a bicycle, namely C.1, C.2, C.3 follow from the oplax structure on $\Phi$. Thus we have defined a bicycle $I(\Phi)$. A morphism $F : \Phi \rightarrow \Theta$ in $\Gamma^{OL}(\mathcal{N}, (C^X)^{Ps})$ determines a collection of natural transformations $C_F$ consisting of a natural transformation $F(n)$ for each $n \in Ob(\mathcal{N})$. This collection defines a morphism of bicycles because $F$ is an oplax symmetric monoidal functor.

Now we define the functor $J$. Let $\Psi : X \rightsquigarrow C$ be a bicycle from $X$ to $C$ which is represented by a pair $(\mathcal{L}_\Psi, \sigma_\Psi)$ and whose underlying lax monoidal cone is given by a pair $\mathcal{L}_\Psi = (\psi, \alpha_\Psi)$. We define an oplax symmetric monoidal section of $(C^X)^{Ps}$, $\Phi$, as follows:

$$\Phi(n) := \psi(n), \quad \text{and} \quad \Phi(f) := \alpha_\Psi(f).$$

This defines a functor $\Phi$ which is given the oplax symmetric monoidal structure by a natural transformation $\lambda_\Phi : \Phi \circ (- \otimes -) \Rightarrow (- \otimes -) \circ (\Phi \times \Phi)$ which is defined as follows:

$$\lambda_\Phi(k, l) := \sigma_\Psi(k, l).$$

Along the lines of the symmetric monoidal category $(C^X)^{Ps}$, we want to define another symmetric monoidal category $(C^{\mathcal{L}(X)})^{Ps}$ for every pair $(X, C) \in Ob(\Gamma^{op}) \times Ob(\text{Perm})$. The objects of $(C^{\mathcal{L}(X)})^{Ps}$ are all pairs $(\bar{n}, \phi(\bar{n}))$, where $\bar{n} \in Ob(\mathcal{L})$ and $\phi(\bar{n}) : \mathcal{L}(X)(\bar{n}) \rightarrow C$ is a basepoint preserving functor. A map from $(\bar{n}, \phi(\bar{n}))$ to $(\bar{m}, \psi(\bar{m}))$ is a pair $(f, \eta(f))$ where $f : \bar{n} \rightarrow \bar{m}$ is a map in the category $\mathcal{L}$ and $\eta(f) : \phi(\bar{n}) \Rightarrow \psi(\bar{m})$ of $\mathcal{L}(X)(f)$ is a natural transformation. Let $(g, \beta(g)) : (\bar{m}, \psi(\bar{m})) \rightarrow (\bar{k}, \alpha(\bar{k}))$ be another map in $(C^{\mathcal{L}(X)})^{Ps}$, then we define their composition as follows:

$$(g, \beta(g)) \circ (f, \eta(f)) := (g \circ f, \beta(g) \ast \eta(f)),$$

where $\beta(g) \ast \eta(f)$ is the composite natural transformation $(\beta(g) \circ \text{id}_{X(f)}) \cdot \eta(f)$ in which $\phi(\bar{f}) \circ \text{id}_{X(f)}$ is the horizontal composition of the natural transformations $\beta(g)$ and $\text{id}_{X(f)}$ and $(\beta(g) \circ X(f)) \cdot \eta(f)$ is the vertical composition of the two natural transformations. Using the interchange law and the associativity of compositions, an argument similar to C.1 can be written which proves that the composition defined above is associative. The category $(C^{\mathcal{L}(X)})^{Ps}$ is a symmetric monoidal category with the symmetric monoidal structure being an extension of the symmetric monoidal structure of $(C^X)^{Ps}$. Let $(\bar{n}, \phi(\bar{n}))$ and $(\bar{m}, \psi(\bar{m}))$ be two objects of $(C^{\mathcal{L}(X)})^{Ps}$, we define

$$(\bar{n}, \phi(\bar{n})) \otimes (\bar{m}, \psi(\bar{m})) := (\bar{n} \square \bar{m}, \phi(\bar{n}) \Box \psi(\bar{m})),\$$

where the second component on the right is defined as the following composite

$$(39) \quad \mathcal{L}(X)(\bar{n} \square \bar{m}) \xrightarrow{\lambda_{\mathcal{L}(X)}(n, m)} \mathcal{L}(X)(\bar{n}) \times \mathcal{L}(X)(\bar{m}) \xrightarrow{\phi(\bar{n}) \times \psi(\bar{m})} C \times C \xrightarrow{\text{op}} C,$$

where $\lambda_{\mathcal{L}(X)}(n, m)$ is the map given by the pseudo-functor structure of $\mathcal{L}(X)$. Let $(f, \eta(f)) : (\bar{n}, \phi(\bar{n})) \rightarrow (\bar{k}, \delta(k))$ and $(g, \beta(g)) : (\bar{m}, \psi(\bar{m})) \rightarrow (\bar{l}, \alpha(\bar{l}))$ be two maps
in \((C^{\Xi(X)})^{Ps}\), then we define
\[
(f, \eta(f)) \otimes (g, \beta(g)) := (f \square g, \eta \square \beta(f \square g)),
\]
where \(f \square g : n \square m \to k \square l\) is the map determined by the symmetric monoidal structure on \(\Xi\) and the natural transformation \(\eta \square \beta(f \square g)\) is defined as follows
\[
(\eta \square \beta(f \square g)) := (id_{\square} \otimes \beta) \circ (\eta \times \beta),
\]
where \(\eta(f) \times \beta(g) : \phi(n) \times \psi(m) \Rightarrow \delta(k) \times \alpha(l)\) is the product of \(\eta(f)\) and \(\beta(f)\).

An argument similar to Proposition C.2 shows that \((C^{\Xi(X)})^{Ps}\) is a symmetric monoidal category which is permutative if \(C\) is permutative. We will refer to the category \(\Gamma_{\otimes}^{\text{str}}(\Xi, (C^{\Xi(X)})^{Ps})\) as the symmetric monoidal completion of the category of elements of the exponential from \(X\) to \(C\).

**Proposition C.6.** The symmetric monoidal completion of the category of elements of the exponential described above defines a bifunctor
\[
(\Xi(-))^{Ps} : \text{CAT}^{op} \times \text{Perm} \to \text{Perm}.
\]

The category \((C^{\Xi(X)})^{Ps}\) has an associated projection functor \(pr_{\Xi} : (C^{\Xi(X)})^{Ps} \to \Xi\) which to projects the first coordinate.

**Definition C.7.** A strict symmetric monoidal section of \((C^{\Xi(X)})^{Ps}\) is a strict symmetric monoidal functor \(\Phi : N \to (C^{\Xi(X)})^{Ps}\) such that \(pr_{A} \circ \Phi = id_{\Xi}\). A morphism of strict symmetric monoidal sections of \((C^{\Xi(X)})^{Ps}\) is a symmetric monoidal natural transformation between two strict symmetric monoidal section of \((C^{X})^{Ps}\).

We will denote the (pointed) category of all strict symmetric monoidal sections of \((C^{\Xi(X)})^{Ps}\) by \(\Gamma_{\otimes}^{\text{str}}(\Xi, (C^{\Xi(X)})^{Ps})\).

There is an obvious inclusion functor \(\mathcal{I} : (C^{X})^{Ps} \hookrightarrow (C^{\Xi(X)})^{Ps}\) which is defined on objects as follows:
\[
(n, \phi) \mapsto ((n), \phi((n))).
\]

**Proposition C.8.** The inclusion functor \(\mathcal{I} : (C^{X})^{Ps} \hookrightarrow (C^{\Xi(X)})^{Ps}\) is a unital oplax symmetric monoidal functor.

**Proof.** Let \((k, \phi(k))\) and \((l, \psi(l))\) be two objects in the category \((C^{X})^{Ps}\). Then
\[
\mathcal{I}((k + l, \phi(k) \circ \psi(l))) = ((k + l), \phi(k) \circ \psi(l)).
\]

There is a partition map \(p_{k,l} : (k + l) \to (k, l)\) in \(\Xi\) which makes the following diagram commutative:
\[
\begin{array}{ccc}
\Xi(X)((k + l)) & \xrightarrow{\phi(k) \circ \psi(l)} & C \\
\Xi(X)(p_{k,l}) \downarrow & & \downarrow \phi((k) \square \psi((l))) \\
\Xi(X)((k, l)) & & \\
\end{array}
\]
This diagram implies that the partition map \( p_{k,l} \) defines a map
\[
(p_{k,l}, id) : ((k + l), \phi((k)) \odot \psi((l))) \to ((k, l), \phi((k)) \square \psi((l)))
\]
in \( (C_{\mathcal{L}(X)})^{Ps} \). We denote this map by \( \lambda_{\mathcal{I}}((k, \phi(k)), (l, \psi(l))) \). We observe that \( \mathcal{I}(0, \phi(0)) = ((0, \phi((0)))) \). Thus \( \mathcal{I} \) strictly preserves the unit. Now we need to check the unit, symmetry and associativity conditions, we begin by checking the symmetry condition. We observe that the following diagram commutes
\[
\begin{array}{ccc}
(k + l, \phi(k) \odot \psi(l)) & \xrightarrow{\mathcal{I}((\gamma))} & (l + k, \phi(l) \odot \psi(k)) \\
\downarrow{\lambda_{\mathcal{I}}((k, \phi(k)), (l, \psi(l)))} & & \downarrow{\lambda_{\mathcal{I}}((l, \phi(l)), (k, \psi(k)))} \\
((k, l), \phi((k)) \square \psi((l))) & \xrightarrow{\gamma} & ((l, k), \phi((l)) \square \psi((k)))
\end{array}
\]
because \( \gamma_{((k, \phi(k)), (l, \psi(l)))} = \gamma_{((l, \phi(l)), (k, \psi(k)))} \circ \text{id}_{(C_{\mathcal{L}(X)})^{Ps}} \). This equality follows from the following commutative diagram:
\[
\begin{array}{ccc}
\mathcal{L}(X)((k + l), \phi((k)) \odot \psi((l))) & \xrightarrow{\mathcal{L}(X)(p_{k,l})} & \mathcal{L}(X)((k, l), \phi((k)) \square \psi((l))) \\
\downarrow{\mathcal{L}(X)((\gamma)_{(k,l)}^{\mathcal{L}})} & & \downarrow{\phi((k)) \square \psi((l))} \\
\mathcal{L}(X)((l + k), \phi((l)) \square \psi((k))) & \xrightarrow{\mathcal{L}(X)(p_{l,k})} & \mathcal{L}(X)((l, k), \phi((l)) \square \psi((k))) \\
\downarrow{\mathcal{L}(X)((\gamma)_{(l,k)}^{\mathcal{L}})} & & \downarrow{G} \\
C & & C
\end{array}
\]
where \( (\gamma_{(k,l)}^{\mathcal{L}}, G) = \gamma_{((k, \phi(k)), (l, \psi(l)))} \). A similar argument shows that the pair \( (\mathcal{I}, \lambda_{\mathcal{I}}) \) satisfies the associativity condition \( OL.3 \). Thus we have proved that \( \mathcal{I} \) is a unital oplax symmetric monoidal functor.

\[\square\]

**Theorem C.9.** The category \( \Gamma^{OL}(\mathcal{N}, (C_{X})^{Ps}) \) is isomorphic to the category \( \Gamma^{str}_{\odot}(\mathcal{L}, (C_{\mathcal{L}(X)})^{Ps}) \) for every pair \((X, C) \in \text{Ob}(\Gamma\text{CAT}) \times \text{Ob}(\text{Perm})\).

**Proof.** We will define a functor \( E : \Gamma^{OL}(\mathcal{N}, (C_{X})^{Ps}) \to \Gamma^{str}_{\odot}(\mathcal{L}, (C_{\mathcal{L}(X)})^{Ps}) \) which is the inverse of the functor \( i_{\gamma}^{\mathcal{N}} : \Gamma^{str}_{\odot}(\mathcal{L}, (C_{\mathcal{L}(X)})^{Ps}) \to \Gamma^{OL}(\mathcal{N}, (C_{X})^{Ps}) \).

Let \( \Phi \) be a oplax symmetric monoidal section of \( \Gamma^{OL}(\mathcal{N}, (C_{X})^{Ps}) \), then composition with \( \mathcal{I} \) gives us a unital oplax symmetric monoidal functor \( \mathcal{I} \circ \Phi : \mathcal{N} \to \Gamma^{str}_{\odot}(\mathcal{L}, (C_{\mathcal{L}(X)})^{Ps}) \). Now proposition 2.35 and the isomorphism of categories \([\mathcal{N}, \Gamma^{str}_{\odot}(\mathcal{L}, (C_{\mathcal{L}(X)})^{Ps})]_{\odot} \cong [\Gamma^{op}, \Gamma^{str}_{\odot}(\mathcal{L}, (C_{\mathcal{L}(X)})^{Ps})] \) tells us that \( \mathcal{I} \circ \Phi \) uniquely extends to a strict symmetric monoidal functor \( \mathcal{L}(\mathcal{I} \circ \Phi) \) along the inclusion map \( i : \mathcal{N} \to \mathcal{L} \). Moreover this functor is a strict symmetric monoidal section of \( (C_{\mathcal{L}(X)})^{Ps} \). We define
\[E(\Phi) := \mathcal{L}(\mathcal{I} \circ \Phi) .\]

The uniqueness of the extension implies that the object function of the functor \( E \) is a bijection. A morphism \( F : \Phi \to \Psi \) in \( \Gamma^{OL}(\mathcal{N}, (C_{X})^{Ps}) \) can be seen as an oplax symmetric monoidal functor \( F : \mathcal{N} \to [I; (C_{X})^{Ps}] \), where \( I \) is the category having
two objects 0 and 1 and exactly one non-identity morphism $0 \to 1$, such that the following two diagrams commute

\[
\begin{array}{c}
\mathcal{N} \xrightarrow{F} [I; (C^X)^{Ps}] \quad \quad \mathcal{N} \xrightarrow{F} [I; (C^X)^{Ps}]
\
\downarrow \Phi \quad \quad \downarrow \Phi
\
(C^X)^{Ps} \quad (C^X)^{Ps}
\end{array}
\]

where $i_0 : 0 \to I$ and $i_1 : 1 \to I$ are the inclusion functors. We recall that the codomain functor category inherits a strict symmetric monoidal (permutative) structure from $(C^X)^{Ps}$. We can compose this functor with the oplax symmetric monoidal functor $[I, I]$ to obtain a composite functor

\[
\mathcal{N} \xrightarrow{F} [I; (C^X)^{Ps}] \xrightarrow{[I, I]} [I; (C^{\Lambda(X)})^{Ps}]
\]

This composite oplax symmetric monoidal functor extends uniquely to a strict symmetric monoidal functor

\[
\mathfrak{L}([I; I] \circ F) : \mathfrak{L} \to [I; (C^{\Lambda(X)})^{Ps}]
\]

along the inclusion map $i : \mathcal{N} \to \mathfrak{L}$. This extended strict symmetric monoidal functor can be seen as a morphism in the category $\Gamma^{str}(\mathfrak{L}, (C^{\Lambda(X)})^{Ps})$. We define

\[
E(F) := \mathfrak{L}([I; I] \circ F).
\]

One can check that $E(F \circ G) = E(F) \circ E(G)$. The uniqueness of the extension of $[I; I] \circ F$ to $\mathfrak{L}([I; I] \circ F)$ implies that the functor $E$ is fully faithful. Thus we have proved that the functor $E$ is an isomorphism of categories. \qed
Appendix D. The adjunction \( \mathcal{L} \dashv \mathcal{K} \)

In this Appendix we will establish an adjunction \( \mathcal{L} \dashv \mathcal{K} \), where \( \mathcal{L} : \mathbf{ΓCAT} \to \text{Perm} \) is the realization functor defined in section 6 and \( \mathcal{K} : \text{Perm} \to \mathbf{ΓCAT} \) is the functor which is also defined in section 6. We will establish the desired adjunction in two steps. In the first step we show that the mapping set \( \text{Perm}(\mathcal{L}(X), C) \) is isomorphic to the set of all strict symmetric monoidal sections from \( \mathcal{L} \) to \( (C^\mathcal{L}(X))^\text{Ps} \), namely \( \text{Ob}(\Gamma^{\text{str}}_\mathcal{L}(C, (C^\mathcal{L}(X))^\text{Ps})) \). Throughout this section \( X \) will denote a \( Γ \)-category and \( C \) will denote a permutative category. In the second step we show that the Hom set \( \Gamma\mathbf{CAT}(X, \mathcal{K}(C)) \) is isomorphic to the set of opolax symmetric monoidal sections \( \text{Ob}(\Gamma^{\text{OL}}(X, (C^X)^\text{Ps})) \). We begin by constructing a strict symmetric monoidal functor \( i : \mathcal{L} \to \left(\mathcal{L}(X)^{\mathcal{L}(X)}\right)^\text{Ps} \). For each \( \bar{n} \in \text{Ob}(\mathcal{L}) \) we will define a functor \( i(\bar{n}) : \mathcal{L}(X)(n^+) \to \mathcal{L}(X) \). For an \( x \in \text{Ob}(\mathcal{L}(X)(n^+)) \), we define

\[
i(\bar{n})(\bar{x}) := (\bar{n}, \bar{x}).
\]

For a morphism \( a : \bar{x} \to \bar{y} \) in \( \mathcal{L}(X)(n^+) \), we define

\[
i(a) := (id_{\bar{n}}, a),
\]

where \( (id_{\bar{n}}, a) : (\bar{n}, \bar{x}) \to (\bar{n}, \bar{y}) \) is a morphism in \( \mathcal{L}(X) \). For each morphism \( (h, \phi) : \bar{n} \to \bar{m} \) in \( \mathcal{L} \) we will define a natural transformation \( i((h, \phi)) : i(\bar{n}) \Rightarrow i(\bar{m}) \circ \mathcal{L}(X)((h, \phi)) \). Let \( \bar{x} \in \text{Ob}(\mathcal{L}(X)(n^+)) \), we define

\[
i((h, \phi))(\bar{x}) := \mathcal{L}(X)((h, \phi))(\bar{x}),
\]

where \( ((h, \phi), id_{\mathcal{L}(X)((h, \phi))}(\bar{x})) : (\bar{n}, \bar{x}) \to (\bar{m}, \mathcal{L}(X)((h, \phi))(\bar{x})) \) is a morphism in \( \mathcal{L}(X) \). It is easy to see that for any morphism \( (h, \phi) : \bar{x} \to \bar{y} \) in \( \mathcal{L}(X)(n^+) \) the following diagram commutes

\[
\begin{array}{ccc}
(\bar{n}, \bar{x}) & \xrightarrow{i((h, \phi))(\bar{x})} & (\bar{n}, \mathcal{L}(X)((h, \phi))(\bar{x})) \\
(id_{\bar{n}}, a) \downarrow & & \downarrow (id_{\bar{m}}, \mathcal{L}(X)((h, \phi))(a)) \\
(\bar{n}, \bar{y}) & \xrightarrow{i((h, \phi))(\bar{y})} & (\bar{n}, \mathcal{L}(X)((h, \phi))(\bar{y}))
\end{array}
\]

in the category \( \mathcal{L}(X) \). Thus we have defined a natural transformation \( i((h, \phi)) \).

**Proposition D.1.** The collection of functors \( \{i(\bar{n})\}_{\bar{n} \in \mathcal{N}} \) glue together to define a strict symmetric monoidal section of \( \left(\mathcal{L}(X)^{\mathcal{L}(X)}\right)^\text{Ps} \).

**Proof.** Clearly \( pr_\mathcal{L} \circ i = id_{\mathcal{L}} \). Further \( i(\bar{n} \Box \bar{m}) = i(\bar{n}) \Box i(\bar{m}) \). \( \square \)

A strict symmetric monoidal section of \( \left(\mathcal{L}(X)^{\mathcal{L}(X)}\right)^\text{Ps} \), \( \phi : \mathcal{L} \to \left(\mathcal{L}(X)^{\mathcal{L}(X)}\right)^\text{Ps} \), and a strict monoidal functor \( \mathcal{F} : \mathcal{L}(X) \to C \) determine another strict symmetric monoidal section of \( (C^\mathcal{L}(X))^\text{Ps} \), namely \( \left(\mathcal{F}^{\mathcal{L}(X)}\right)^\text{Ps} \circ \phi \). We want to show that \( i \) is a universal strict symmetric monoidal section i.e. for any strict symmetric monoidal section of \( \phi : \mathcal{L} \to (C^\mathcal{L}(X))^\text{Ps} \), there exists a unique strict symmetric monoidal functor \( \mathcal{F} : \mathcal{L}(X) \to C \), such that \( \left(\mathcal{F}^{\mathcal{L}(X)}\right)^\text{Ps} \circ i = \phi \).
Lemma D.2. The section $i$ is a universal strict symmetric monoidal section.

Proof. Let $\phi : \mathcal{L} \to (C_{\mathcal{L}(X)})^{Ps}$ be a normalized lax symmetric monoidal section. We begin by constructing a strict monoidal functor $\overline{\phi} : \overline{\mathcal{L}}(X) \to C$ such that $(\phi^{ Ps}) \circ i = \phi$. On objects of $\overline{\mathcal{L}}(X)$, the functor $\overline{\phi}$ is defined as follows:

$$\overline{\phi}((\bar{n}, \bar{x})) := \phi(\bar{n})(\bar{x}).$$

The morphism function of $\overline{\phi}$ is defined as follows:

$$\overline{\phi}((h, \psi), a)) := \phi(\bar{m})(a) \circ \phi((h, \psi))(\bar{x}).$$

One can easily check that $\overline{\phi}$ is a functor.

Let $(\bar{m}, \bar{y})$ be another object in $\overline{\mathcal{L}}(X)$, we consider

$$\overline{\phi}((\bar{n}, \bar{x}) \otimes_{\overline{\mathcal{L}}(X)} (\bar{m}, \bar{y})) = \overline{\phi}(\bar{n} \sqcup \bar{m}, \lambda(\bar{n}, \bar{m})^{-1}((\bar{x}, \bar{y}))) = \phi(\bar{n} \sqcup \bar{m})(\lambda(\bar{n}, \bar{m})^{-1}((\bar{x}, \bar{y}))),$$

where $(\bar{x}, \bar{y})$ is the concatenation of $\bar{x}$ and $\bar{y}$. Since $\phi$ is a symmetric monoidal functor, therefore $\phi(\bar{n} \sqcup \bar{m}) = \phi(\bar{n}) \boxdot \phi(\bar{m})$. Now we observe that

$$\phi(\bar{n} \sqcup \bar{m})(\lambda(\bar{n}, \bar{m})^{-1}((\bar{x}, \bar{y}))) = \phi(\bar{n})(\bar{x}) \otimes C(\phi(\bar{m}))(\bar{y}) = \overline{\phi}(\bar{n})(\bar{x}) \otimes \overline{\phi}(\bar{m}, \bar{y}).$$

where the second equality follows from (39). Thus the functor $\overline{\phi}$ preserves the symmetric monoidal product strictly. Finally, we would like to show that this functor is uniquely defined. Let $G : \overline{\mathcal{L}}(X) \to C$ be another a strict monoidal functor such that $(G_{\mathcal{L}(X)})^{Ps} \circ i = \phi$. Then for every object $(\bar{n}, \bar{x})$ in $\overline{\mathcal{L}}(X)$

$$G((\bar{n}, \bar{x})) = G \circ i(\bar{n})(\bar{x}) = \phi(\bar{n})(\bar{x}) = \overline{\phi}(\bar{n}, \bar{x}).$$

A similar argument for morphisms of $\overline{\mathcal{L}}(X)$ shows that $G$ agrees with $\overline{\phi}$ on morphisms also. Thus we have proved that $\overline{\phi}$ is a universal normalized lax symmetric monoidal section.

Notation D.3. As seen above we may compose a bicycle with a functor to obtain another bicycle. More precisely, let $F : \overline{\mathcal{L}}(X) \to C$ be a strict symmetric monoidal functor, then we will denote by $F \circ i$ the composite strict symmetric monoidal functor

$$\mathcal{L} \xrightarrow{i} \Gamma^{\text{str}} \left( \mathcal{L}, (\overline{\mathcal{L}}(X)_{\mathcal{L}(X)})^{Ps} \right) \xrightarrow{\Gamma^{\text{str}} G} \left( \mathcal{L}, (C_{\mathcal{L}(X)})^{Ps} \right).$$

This composition defines a functor which we will denote by $i^* : [\overline{\mathcal{L}}(X), C]^{\text{str}}_{\otimes} \to \Gamma^{\text{str}} \left( \mathcal{L}, (C_{\mathcal{L}(X)})^{Ps} \right)$.

The above lemma and argument similar to the proof of theorem C.9 lead us to the following corollary:

Corollary D.4. The functor $i^* : [\overline{\mathcal{L}}(X), C]^{\text{str}}_{\otimes} \to \Gamma^{\text{str}} \left( \mathcal{L}, (C_{\mathcal{L}(X)})^{Ps} \right)$ is an isomorphism of categories which is natural in both $X$ and $C$. 
The above corollary together with theorem C.9 and proposition C.5 provide us with the following chain of isomorphisms of categories:

(41) \[ \text{Bikes}^{PS}(X, C) \rightarrow \Gamma^{OL} \left( N, (C^X)^{PS} \right) \xrightarrow{\Phi} \Gamma^{str}_\otimes \left( \mathcal{L}, \left( C^\otimes(X) \right)^{PS} \right) \xrightarrow{\epsilon^*} \left[ \mathcal{L}(X), C \right]^{str}. \]

Now we start the second step involved in establishing the adjunction \( \mathcal{L} \dashv \mathcal{K} \). We want to define an oplax symmetric monoidal functor \( \epsilon : N \rightarrow \left( C^\otimes(X) \right)^{PS} \). In order to do so we will define, for each \( n \in Ob(N) \), a functor \( \epsilon(n) : \mathcal{K}(C)(n^+) \rightarrow C \). On objects this functor is defined as follows:

\[ \epsilon(n)(\Phi) := \Phi((id_{n^+})) \]

and on morphisms it is defined as follows:

\[ \epsilon(n)(F) := F(n)((id_{n^+})) \]

where \( F : \Phi \rightarrow \Psi \) is a morphism in \( \mathcal{K}(C) \). It is easy to see that the above definition preserves composition and identity in \( \mathcal{K}(C)(n^+) \). We recall that for each map \( f : n \rightarrow m \) in \( N \) we get a functor \( \mathcal{L}(f) : \mathcal{L}(m^+) \rightarrow \mathcal{L}(n^+) \) which maps an object \( (f_1, f_2, \ldots, f_k) \in Ob(\mathcal{L}(m^+)) \) to \( (f_1 \circ f, f_2 \circ f, \ldots, f_k \circ f) \in Ob(\mathcal{L}(n^+)) \). The functor \( \mathcal{K}(C)(f) : \mathcal{K}(C)(n^+) \rightarrow \mathcal{K}(m^+) \) is defined by precomposition \( \text{i.e.} \) for each strict symmetric monoidal functor \( \Phi : \mathcal{L}(n) \rightarrow \mathcal{C} \), \( \mathcal{K}(C)(f)(\Phi) := \Phi \circ \mathcal{L}(f) \). For each morphism \( f : n \rightarrow m \) we will define a natural transformation \( \epsilon(f) : \epsilon(n) \Rightarrow \epsilon(m) \circ \mathcal{K}(f) \). We recall that the identity map of \( n \) determines a map \( \text{can} : (id_{n^+}) \rightarrow (f) \) in the category \( \mathcal{L}(n) \) \( \text{i.e.} \) the following diagram commutes

\[ \text{Supp}(id_{n^+}) = n \xrightarrow{id} n = \text{Supp}(f) \]

For an object \( \Phi \in \mathcal{K}(n^+) \) we define

\[ \epsilon(f)(\Phi) := \Phi(\text{can}). \]

We observe that domain of \( \Phi(\text{can}) \) is \( \epsilon(n)(\Phi) = \Phi((id_{n^+})) \) and its codomain is \( \epsilon(m)(\mathcal{K}(C)(f)(\Phi)) = \mathcal{K}(C)(f)(\Phi)(id_{m^+}) = \Phi((f)) \). Let \( F : \Phi \rightarrow \Psi \) be a morphism in \( \mathcal{K}(C)(n^+) \), then we have the following commutative diagram

(42) \[ \Phi((id_{n^+})) \xrightarrow{\epsilon(f)(\Phi)} \Phi(f) \]

\[ \Psi((id_{n^+})) \xrightarrow{\epsilon(f)(\Psi)} \Psi(f) \]

where we observe that the map \( F(n)((id_{n^+})) \) is the same as \( \epsilon(n)(F) \) and the map \( F(m)(f) \) is the same as \( (\epsilon(m) \circ \mathcal{K}(C)(f))(F) \). Thus we have defined a natural transformations \( \epsilon(f) \) for all \( f \in Mor(N) \). For another morphism \( g : m \rightarrow k \) in the category \( N \) one can check that \( \epsilon(g \circ f) = \epsilon(g) \circ \epsilon(f) \).
Proposition D.5. The functor $\epsilon$ defined above is an oplax symmetric monoidal section of $(C^X)^{Ps}$.

Let $X$ and $Y$ be a $\Gamma$-categories and $C$ be a permutative category. We will say that an oplax symmetric monoidal section $H : \mathcal{N} \to \left(\mathcal{C}(X)\right)^{Ps}$ is co-universal if for any other oplax symmetric monoidal section $M : \mathcal{N} \to \left(\mathcal{C}(Y)\right)^{Ps}$ there exists a unique morphism of $\Gamma$-categories $F : Y \to X$ such that the following diagram commutes

\[
\begin{array}{ccc}
\mathcal{N} & \xrightarrow{H} & \left(\mathcal{C}(X)\right)^{Ps} \\
M \downarrow & & \downarrow (C\mathcal{C}(F))^{Ps} \\
\left(\mathcal{C}(Y)\right)^{Ps} & \xrightarrow{} & \left(\mathcal{C}(Y)\right)^{Ps}
\end{array}
\]

In the above situation we get a bijection

\[\text{Ob}(\Gamma_{\otimes}(\mathcal{N}, (C^Y)^{Ps})) \cong \text{Hom}_{\Gamma\text{CAT}}(Y, X).\]

Proposition D.6. The oplax symmetric monoidal functor $\epsilon : \mathcal{N} \to \left(\mathcal{C}(C)\right)^{Ps}$ defined above is co-universal.
Appendix E. On local objects in a model category enriched over quasicategories

A very detailed sketch of this appendix was provided to the author by Andre Joyal. This appendix contains some key results which have made this research possible.

E.1. Introduction. A model category $E$ is enriched over quasi-categories if the category $E$ is simplicial, tensored and cotensored, and the functor $[-;-]: E^{op} \times E \to \mathbf{sSets}$ is a Quillen functor of two variables, where $\mathbf{sSets} = (\mathbf{sSets}, Qcat)$ is the model structure for quasi-categories. The purpose of this appendix is to introduce the notion of local object with respect to a map in a model category enriched over quasi-categories.

E.2. Preliminaries. Recall that a Quillen model structure on a category $E$ is determined by its class of cofibrations together with its class of fibrant objects. For examples, the category of simplicial sets $\mathbf{sSets} = [\Delta^{op}, \mathbf{Set}]$ admits two model structures in which the cofibrations are the monomorphisms: the fibrant objects are the Kan complexes in one, and they are the quasi-categories in the other. We call the former the model structure for Kan complexes and the latter the model structure for quasi-categories. We shall denote them respectively by $(\mathbf{sSets}, Kan)$ and $(\mathbf{sSets}, QCat)$. Recall that a simplicial category is a category enriched over simplicial sets. There is a notion of simplicial functor between simplicial categories, and a notion of strong natural transformation between simplicial functors. If $E = (E, [-, -])$ is a simplicial category, then so is the category $\mathbf{SFunc}(E; \mathbf{sSets})$ of simplicial functors $E \to \mathbf{sSets}$. A simplicial functor $F : E \to \mathbf{sSets}$ isomorphic to a simplicial functor $[A, -] : E \to \mathbf{sSets}$ is said to be representable. Recall Yoneda lemma for simplicial functors: if $F : E \to \mathbf{sSets}$ is a simplicial functor and $A \in E$, then the map $y : \text{Nat}([A, -], F) \to F(A)_0$ defined by putting $y(\alpha) = \alpha(A)(1_A)$ for a strong natural transformation $\alpha : [A, -] \to F$ is bijective. The simplicial functor $F$ is said to be represented by a pair $(A, a)$, with $a \in F(A)_0$, if the unique strong natural transformation $\alpha : [A, -] \to F$ such that $\alpha(A)(1_A) = a$ is invertible. We say that a simplicial category $E = (E, [-, -])$ is tensored by $\Delta$ if the simplicial functor $[A, -]^{\Delta[n]} : E \to \mathbf{sSets}$ is representable (by an object denoted $\Delta[n] \times A$) for every object $A \in E$ and every $n \geq 0$. If $E$ has finite colimits and is tensored by $\Delta$, then it is tensored by finite simplicial sets: the simplicial functor is representable (by an object $K \times A$) for every object $A \in E$ and every finite simplicial set $K$. Dually, we say that a simplicial category $E$ is cotensored by $\Delta$ if the simplicial functor $[-, X]^{\Delta[n]} : E^{op} \to \mathbf{sSets}$ is representable (by an object denoted $X^{\Delta[n]}$) for every object $X \in E$ and every $n \geq 0$. If $E$ has finite limits and is cotensored by $\Delta$, then it is cotensored by finite simplicial sets: the simplicial functor $[-, X]^K : E^{op} \to \mathbf{sSets}$ is representable by an object $X^K$ for every object $X \in E$ and every finite simplicial set $K$. Recall that a model category $E$ is said to be simplicial if the category $E$ is simplicial, tensored and cotensored by $\Delta$ and the functor $[-, -] : E^{op} \times E \to \mathbf{sSets}$
is a Quillen functor of two variables, where \( \text{sSets} = (\text{sSet}, \text{Kan}) \). The last condition implies that if \( A \in E \) is cofibrant and \( X \in E \) is fibrant, then the simplicial set \( [A, X] \) is a Kan complex. For this reason, we shall say that a simplicial model category is enriched over Kan complexes.

**Definition E.1.** We shall say that a model category \( E \) is enriched over quasi-categories if the category \( E \) is simplicial, tensored and cotensored over \( \Delta \) and the functor \([-, -] : E^{op} \times E \to \text{sSets}\) is a Quillen functor of two variables, where \( \text{sSets} = (\text{sSets}, \text{Qcat}) \).

The last condition of definition E.1 implies that if \( A \in E \) is cofibrant and \( X \in E \) is fibrant, then the simplicial set \([A, X]\) is a quasi-category. If \( E \) is a category with finite limits than so is the category \([\Delta^{op}, E]\) of simplicial objects in \( E \). The evaluation functor \( ev_0 : [\Delta^{op}, E] \to E \) defined by putting \( ev_0(X) = X_0 \) has a left adjoint \( sk^0 \) and a right adjoint \( cosk^0 \). If \( A \in E \), then \( sk^0(A)_n = A \) and \( cosk^0(A)_n = A^{[n]} = A^{n+1} \) for every \( n \geq 0 \) (the simplicial object \( sk^0(A) \) is the constant functor \( cA : \Delta^{op} \to E \) with values \( A \)). The category \([\Delta^{op}, E]\) is simplicial. If \( X, Y \in [\Delta^{op}, E] \) then we have

\[
[X, Y]_n = Nat(X \circ p_n, Y \circ p_n)
\]

for every \( n \geq 0 \), where \( p_n \) is the forgetful functor \( \Delta/\{n\} \to \Delta \). If \( A \in E \) and \( cA := sk^0(A) \), then

\[
[cA, X]_n = E(A, X_n)
\]

for every \( n \geq 0 \). The simplicial category \([\Delta^{op}, E]\) is tensored and cotensored by \( \Delta \). By construction, if \( X \in [\Delta^{op}, E] \) and \( K \) is a finite simplicial set, then

\[
(K \times X)_n = k_n \times X_n \quad (X^K)_n = \int_{[k] \to [n]} X^k
\]

The object \( M_n(X) := (X \partial \Delta[n])_n \) is called the \( n \)-th matching object of \( X \). If \( S(n) \) denotes the poset of non-empty proper subsets of \( \{n\} \) then we have

\[
M_n(X) = \lim_{S(n)} X \circ s(n)
\]

where \( s(n) : S(n) \to \Delta \) is the canonical functor. From the inclusion \( \partial \Delta[n] \subset \Delta[n] \) we obtain a map \( X^{\Delta[n]} \to X^{\partial \Delta[n]} \) hence also a map \( X_n \to M_n(X) \).

If \( E \) is a model category, then a map \( f : X \to Y \) in \([\Delta^{op}, E]\) is called a **Reedy fibration** if the map \( X_n \to Y_n \times_{M_n(Y)} M_n(X) \) obtained from the square

\[
\begin{array}{ccc}
X_n & \to & M_n(X) \\
\downarrow f_n & & \downarrow M_n(f) \\
Y_n & \to & M_n(Y)
\end{array}
\]

is a fibration for every \( n \geq 0 \). There is then a model structure on the category \([\Delta^{op}, E]\) called the **Reedy model structure** whose fibrations are the Reedy fibrations and whose weak equivalences are the level-wise weak equivalences. A simplicial object \( X : \Delta^{op} \to E \) is Reedy fibrant if and only if the canonical map \( X_n \to M_n(X) \) is a fibration for every \( n \geq 0 \). The Reedy model structure is simplicial. If \( X \) is Reedy fibrant and \( A \in E \) then the simplicial set \( E(A, X) := [cA, X] \) is a Kan complex.
**Definition E.2.** Let $E$ be a model category. Then a simplicial object $Z : \Delta^{op} \to E$ is called a frame (see [Hov99]) if the following two conditions are satisfied:

1. $Z$ is Reedy fibrant;
2. $Z(f)$ is a weak equivalence for every map $f \in \Delta$.

The frame $Z$ is cofibrant if the canonical map $sk^0 Z_0 \to Z$ is a cofibration in the Reedy model structure. A coresolution of an object $X \in E$ is a frame $Fr(X) : \Delta^{op} \to E$ equipped with a weak equivalence $X \to Fr(X)_0$. Every fibrant object $X \in E$ has a (cofibrant) coresolution $Fr(X) : \Delta^{op} \to E$ with $Fr(X)_0 = X$. Let $E$ be a model category. If $A, X \in E$, then the homotopy mapping space $\mathcal{M}ap^h_E(A, X)$ is defined to be the simplicial set

$$\mathcal{M}ap^h_E(A, X) = E(A^c, Fr(X))$$

where $A^c \to A$ is a cofibrant replacement of $A$ and $Fr(X)$ is a coresolution of $X$. The simplicial set $E(A^c, Fr(X))$ is a Kan complex and it is homotopy unique. If $E$ is enriched over Kan complexes, if $A$ is cofibrant and $X$ is fibrant, then the simplicial set $\mathcal{M}ap^h_E(A, X)$ is homotopy equivalent to the simplicial set $[A, X]$ (see [Hir02]).

**E.3. Function spaces for quasi-categories.** If $C$ is a category, we shall denote by $J(C)$ the sub-category of invertible arrows in $C$. The sub-category $J(C)$ is the largest sub-groupoid of $C$. More generally, if $X$ is a quasi-category, we shall denote by $J(X)$ the largest sub-Kan complex of $X$. By construction, we have a pullback square

$$\begin{array}{ccc}
J(X) & \to & X \\
\downarrow & & \downarrow h \\
J(\tau_1(X)) & \to & \tau_1(X)
\end{array}$$

where $\tau_1(X)$ is the fundamental category of $X$ and $h$ is the canonical map. The function space $X^A$ is a quasi-category for any simplicial set $X$. We shall denote by $X^{(A)}$ the full sub-simplicial set of $X^A$ whose vertices are the maps $A \to X$ that factor through the inclusion $J(X) \subseteq X$. The simplicial set $X^{(\Delta[1])}$ is a path-space for $X$.

**Lemma E.3.** If $X$ is a quasi-category, then the simplicial object $P(X) \in [\Delta^{op}, sSet]$ defined by putting $P(X)_n = X^{(\Delta[n])}$ for every $n \geq 0$ is a cofibrant coresolution of $X$.

**Proposition E.4.** If $X$ is a quasi-category and $A$ is a simplicial set, then

$$\mathcal{M}ap^h_{s\text{Sets}}(A, X) \simeq J(X^A).$$

**Proof.** Proof. By Lemma E.3, we have

$$\mathcal{M}ap^h_{s\text{Sets}}(A, X)_n = s\text{Sets}(A, P(X)_n) = s\text{Sets}(A, X^{(\Delta[n])})$$

But a map $f : A \to X^{\Delta[n]}$ factors through the inclusion $X^{(\Delta[n])} \subseteq X^{\Delta[n]}$ if and only if the transposed map $f^t : \Delta[n] \to X^A$ factors through the inclusion $J(XA) \subseteq X^A$. Thus, $s\text{Sets}(A, X^{(\Delta[n])}) = s\text{Sets}(\Delta[n], J(X^A)) = J(X^A)_n$ and this shows that $\mathcal{M}ap^h_{s\text{Sets}}(A, X) \simeq J(X^A).$
Proposition E.5. Let $E$ be a model category enriched over quasi-categories. If $A \in E$ is cofibrant and $X \in E$ is fibrant, then the function space $\Map_{E}^{h}(A, X)$ is equivalent to the Kan complex $J([A, X])$.

Proof. The functor $[A, -] : E \to \text{sSets}$ is a right Quillen functor with values in the model category $(\text{sSets}, \text{Qcat})$, since $A$ is cofibrant. It thus takes a coresolution $Fr(X)$ of $X \in E$ to a coresolution $[A, Fr(X)]$ of the quasi-category $[A, X]$. We have $\Map_{\text{sSets}}^{h}(1, [A, X]) \simeq \text{sSets}(1, P([A, X]))$, since the simplicial set 1 is cofibrant. By Lemma E.3, the quasi-category $[A, X]$ has a cofibrant coresolution $P([A, X])$. We have $\Map_{\text{sSets}}^{h}(1, [A, X]) \simeq \text{sSets}(1, [A, Fr(X)])$, since the simplicial set 1 is cofibrant. There exists a level-wise weak categorical equivalence $\phi : P([A, X]) \to [A, Fr(X)]$ such that the map $\phi(0)$ is the identity, since the coresolution $P([A, X])$ is cofibrant. Moreover, the map

$$\text{sSets}(1, \phi) : \text{sSets}(1, P([A, X])) \to \text{sSets}(1, [A, Fr(X)])$$

is a weak homotopy equivalence. But we have $\text{sSets}(1, P([A, X])) = J([A, X])$ by lemma E.3. Moreover, $\text{sSets}(1, [A, Fr(X)]) = E(A, Fr(X))$, since

$$\text{sSets}(1, [A, Fr(X)]) = \text{sSets}(1, [A, Fr(X)])_{n} = \text{sSets}(1, [A, Fr(X)])_{n} = E(A, Fr(X))_{n}$$

for every $n \geq 0$. □

E.4. Local objects. Let $\Sigma$ be a set of maps in a model category $E$. An object $X \in E$ is said to be $\Sigma$-local if the map

$$\Map_{E}^{h}(u, X) : \Map_{E}^{h}(A', X) \to \Map_{E}^{h}(A, X)$$

is a homotopy equivalence for every map $u : A \to A'$ in $\Sigma$. Notice that if an object $X$ is weakly equivalent to a $\Sigma$-local object, then $X$ is $\Sigma$-local. If the model category $E$ is simplicial (=enriched over Kan complexes) and $\Sigma$ is a set of maps between cofibrant objects, then a fibrant object $X \in E$ is $\Sigma$-local iff the map $[u, X] : [A', X] \to [A, X]$ is a homotopy equivalence for every map $u : A \to A'$ in $\Sigma$.

Lemma E.6. Let $E$ be a model category enriched over quasi-categories. If $u : A \to B$ is a map between cofibrant objects, then the following conditions on a fibrant object $X \in E$ are equivalent

1. the map $[u, X] \Delta[n] : [B, X] \Delta[n] \to [A, X] \Delta[n]$ is a categorical equivalence;
2. the object $X$ is local with respect to the map $\Delta[n] \times u : \Delta[n] \times A \to \Delta[n] \times B$ for every $n \geq 0$.

Proof. (1 ⇒ 2) The map $[u, X] \Delta[n] : [B, X] \Delta[n] \to [A, X] \Delta[n]$ is a categorical equivalence for every $n \geq 0$, since the map $[u, X]$ is a categorical equivalence by the hypothesis. Hence the map $\Delta[n] \times u, X] \Delta[n]$ is a categorical equivalence, since $[\Delta[n] \times u, X] = [u, X] \Delta[n]$. It follows that the map $J([\Delta[n] \times u, X])$ is a homotopy equivalence, since the functor $J : \text{QCat} \to \text{Kan}$ takes a categorical equivalences to homotopy equivalences by [Joy08]. But we have $\Map_{E}^{h}(\Delta[n] \times u, X) = J([\Delta[n] \times u, X])$ by Proposition E.5, since $\Delta[n] \times u$ is a map between cofibrant objects. Hence the map $\Map_{E}^{h}(\Delta[n] \times u, X)$ is a homotopy equivalence for every $n \geq 0$. This shows that the object $X$ is local with respect to the map $\Delta[n] \times u$ for every $n \geq 0$.

(1 ⇔ 2) By Proposition E.5, we have $\Map_{E}^{h}(\Delta[n] \times u, X) = J([\Delta[n] \times u, X])$ for every $n \geq 0$, since $\Delta[n] \times u$ is a map between cofibrant objects. Hence the
map \( J(\Delta[n] \times u, X) \) is a homotopy equivalence for every \( n \geq 0 \). But we have
\([\Delta[n] \times u, X] = [u, X]^{\Delta[n]}\). Hence the map \( J([u, X]^{\Delta[n]}) \) is a homotopy equivalence
for every \( n \geq 0 \). By Theorem 4.11 and Proposition 4.10 of [JT] a map between
quasi-categories \( f : U \to V \) is a categorical equivalence if and only if the map
\( J(f^{\Delta[n]}) : J(U^{\Delta[n]}) \to J(V^{\Delta[n]}) \) is a homotopy equivalence for every \( n \geq 0 \). This
shows that the map \([u, X]\) is a categorical equivalence. □
References

[AGV72] M. Artin, A. Grothendieck, and J. L. Verdier, *Theorie des topos et cohomologie etale des schemas (SGA 4)*, Lecture Notes in Mathematics. **270** (1972).

[AR94] J. Adamek and J. Rosicky, *Locally presentable and accessible categories*, London Mathematical Society Lecture Note Series, Cambridge University Press, 1994.

[Ara14] Dimitri Ara, *Higher quasi-categories vs higher rezk spaces*, Journal of K-theory **14** (2014), no. 3, 701–749.

[Bar07] C. Barwick, *On (enriched) left bousfield localization of model categories*, arXiv:0708.2067, 2007.

[BF78] A. K. Bousfield and E. M. Friedlander, *Homotopy theory of $\Gamma$-spaces, spectra and bisimplicial sets*, Geometric applications of homotopy theory II, Lecture Notes in Mathematics, vol. 658, (1978), no. 658.

[BM03] C. Berger and I. Moerdijk, *Cofibrant operads and universal $E_{\infty}$-operads*, Comment. Math. Helv. **78** (2003).

[Day70] B. Day, *On closed categories of functors, reports of the midwest category seminar IV*, Lecture notes in Mathematics, vol. 137, Springer-Verlag, 1970.

[Day73] Note on monoidal localisation, Bull. Austral. Math. Soc. **8** (1973).

[DK80a] W. G. Dwyer and D. M. Kan, *Calculating simplicial localizations*, Journal of Pure and Appl. Algebra **18** (1980), 17–35.

[DK80b] Function complexes in homotopical algebra, Topology **19** (1980), 427–440.

[DK80c] Simplicial localizations of categories, Journal of Pure and Appl. Algebra **17** (1980), 267–284.

[Dun94] Gerald Dunn, *En-monoidal categories and their group completions*, J. Pure Appl. Algebra **95** (1994), 27–39.

[EM06] A. D. Elmendorf and M. A. Mandell, *Permutative categories, multicategories and algebraic K-theory*, Alg. and Geom. Top. **9** (2006), no. 4, 163–228.

[Gam08] N. Gambino, *Homotopy limits for 2-categories*, Mathematical Proceedings of the Cambridge Philosophical Society **145** (2008), no. 1, 4363.

[GJ08] N. Gambino and A. Joyal, *On operads, bimodules and analytic functors*, Mem. Amer. Math. Soc. **249** (2008), no. 1184.

[GS07] P. G. Goerss and K. Schemmerhorn, *Model categories and simplicial methods*, Contemp. Math. **436** (2007), 3–49.

[GZ07] P. Gabriel and M. Zisman, *Calculus of fractions and homotopy theory*, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 35, Springer-Verlag, 1967.

[Hir02] Phillip S. Hirchhorn, *Model categories and their localizations*, Mathematical Surveys and Monographs, vol. 99, Amer. Math. Soc., Providence, RI, 2002.

[Hov99] M. Hovey, *Model categories*, Mathematical Surveys and Monographs, vol. 63, Amer. Math. Soc., Providence, RI, 1999.

[Joy08] A. Joyal, *Theory of quasi-categories and applications*, http://mat.uab.cat/~kock/crm/hocat/advanced-course/Quadern45-2.pdf, 2008.

[JT] A. Joyal and M. Tierney, *Quasi-categories vs segal spaces*, https://arxiv.org/abs/math/0607820.

[JT08] Notes on simplicial homotopy theory, http://mat.uab.cat/~kock/crm/hocat/advanced-course/Quadern47.pdf, 2008.

[KS15] D. Kodjabachev and S. Sagave, *Strictly commutative models for $E_{\infty}$ quasi-categories*, Homology Homotopy Appl. **17** (2015).

[Lac07] S. Lack, *Homotopy-theoretic aspects of 2-monads*, Journal of Homotopy and Related Structures **2** (2007), no. 2, 229–260 (eng).

[Lei00] T. Leinster, *Homotopy algebras for operads*, Arxiv **126** (2000).

[Lur09] Jacob Lurie, *Higher topos theory*, Annals of Mathematics Studies, vol. 170, Princeton University Press, Princeton, NJ, 2009.

[Lyd99] M. Lydakis, *Smash products and $\Gamma$-spaces*, Math. Proc. Camb. Soc. **126** (1999).

[Mac71] S. MacLane, *Categories for the working mathematician*, Springer-Verlag, 1971.

[Man10] M. A. Mandell, *An inverse K-theory functor*, Doc. Math. **15** (2010), 765–791.

[May72] P. May, *The geometry of iterated loop spaces*, Lectures Notes in Mathematics, vol. 271, Springer-Verlag, 1972.
[May78] J. P. May, *The spectra associated to permutative categories*, Topology **17** (1978), no. 3, 225–228.

[Rez10] Charles Rezk, *A cartesian presentation of weak $n$categories*, Geom. Topol. **14** (2010), no. 1, 521–571.

[Sch99] S. Schwede, *Stable homotopical algebra and $\Gamma$-spaces*, Math. Proc. Camb. Soc. **126** (1999), 329.

[Sch08] V. Schmitt, *Tensor product for symmetric monoidal categories*, arXiv/0812.0150 (2008).

[Seg74] G. Segal, *Categories and cohomology theories*, Topology **13** (1974), 293–312.

[Smi] A. Sharma, *Symmetric multicategories as distributors*, In Preparation.

[SS79] N. Shimada and K. Shimakawa, *Delooping symmetric monoidal categories*, Hiroshima Math. J. **9** (1979), 627–645.

[Tho80] R. W. Thomason, *Cat as a closed model category*, Cahiers Topologie Geom. Differential Catég. **21** (1980), no. 3, 305–324.

[Tho95] R. W. Thomason, *Symmetric monoidal categories model all connective spectra*, Theory Appl. Categ. **1** (1995), no. 5, 78–118.

E-mail address: asharm24@kent.edu

Department of mathematical sciences, Kent State university, Kent, OH