Low Level Quantification of Potential Genotoxic Impurities In Telmisartan Drug Substance by HPLC

K. Srivalli *3, N. Annapurna 2, K. Raghu Babu 2, C. Ramdas 1, Hemant Kumar Sharma 1, V. Jagadeesh Kumar 1, K. S. R. Pavan Kumar 1, N. Srinivas 1
1. Aurobindo Pharma Limited Research Centre-II, Sangareddy, Telangana, India
2. College of Engineering, Andhra University, Visakhapatnam, Andhra Pradesh, India
3. Scientist, Department of Analytical Research, Aurobindo Pharma Limited Research Centre-II, Indrakaran (V), Kandi (M), Sangareddy - 502329, Telangana, India.

ABSTRACT

A sensitive and rapid HPLC method was developed and validated for the determination of potential genotoxic impurities i.e (Bromomethyl)biphenyl methyl ester and (Dibromomethyl)biphenyl methylester at trace level in Telmisartan drug substance by applying the concept of threshold of toxicological concern (TTC). The HPLC method was developed and optimized on Symmetry Shield RP18, 3.5 μ (150mm × 4.6mm) column with oven temperature maintaining at 40°C and 0.02M Phosphate buffer pH 2.5 was chosen as mobile phase A and mixture of acetonitrile and Phosphate buffer (55:45) was selected as mobile phase B in gradient reverse phase mode in isocratic mode of composition. Chromatographic parameters i.e flow rate: 1.0 ml/min, wavelength detection: 205 nm, injection volume: 20μl and run time: 25 min were applied in this methodology. Based on validation data, the method is found to be specific, sensitive, accurate and precise. The established limits of Limit of detection and Limit of quantification for subjected impurities are found to be 2.4 µg/g and 4.7 µg/g respectively for each impurity. The recovery at LOQ level obtained was 98.2% for (Bromomethyl) biphenyl methyl ester and 99.2% for (Dibromomethyl) biphenyl methyl ester. This method can be used as good quality control tool for quantization of these impurities at low level. The experimental results are discussed in detail in this research paper.

Keywords: Telmisartan, Genotoxicity, Validation, HPLC.

*Corresponding Author Email: srivalli_kasina@yahoo.co.in
Received 28 April 2021, Accepted 05 June 2021

Please cite this article as: Srivalli K et al., Low Level Quantification of Potential Genotoxic Impurities In Telmisartan Drug Substance by HPLC. American Journal of PharmTech Research 2021.
INTRODUCTION

Telmisartan is chemically known as 4’-[(4-methyl-6-(1-methyl-1H-benzimidazol-2-YL)-2-propyl-1H-benzimidazol-1-YL) methyl] biphenyl-2-carboxylic acid its molecular formula is C$_{33}$H$_{30}$N$_4$O$_2$ and molecular weight is 514.6.

Telmisartan is an antihypertensive drug of the Angiotensin-II receptor blockers category1. It is an efficient antagonist to angiotensin-II, 2 and this drug is a potent vasoconstrictor for both arteries and veins. The results proven that, the arteries and veins enlarge and blood pressure falls. It is also used for reducing the risk of heart attack, stroke, or death from cardiovascular causes 3. It is also producing a beneficial protective effect against vascular and renal damage instigated in diabetes and cardiovascular diseases, due to its arteriolar and venous dilation capability 4. Typically, Telmisartan given in combination with hydrochlorothiazide and available in fixed-dose combination with hydrochlorothiazide doses of 40 mg/12.5 mg and 80 mg/12.5 mg. The combination is useful in the treatment of mild to moderate hypertension, well tolerated with a lower incidence of cough than ACE inhibitors 5.

Few analytical methods for the determination of the impurities either in bulk drugs or in pharmaceuticals have been reported. In the last few years, it was observed that an interest was increased for the identification and quantification of impurities in bulk drugs using new methodologies. For the determination of Telmisartan and its related substances and genotoxic impurities, many methods are available in literature 6-8. Chemical structure of Telmisartan is shown in Figure 1.

![Figure 1: Chemical structure of Telmisartan](image-url)
this same reactivity of the reactants could result in genotoxicity if any unreacted material left with the final product as an impurity, which makes these impurities to consider critically eliminating them from the final drug product\(^9\). The risk of carryover into the drug substance should be assessed for identified impurities that are present in starting materials / intermediates and impurities that are reasonably expected by products in the route of synthesis from the starting material to the drug substance.

(Bromomethyl) biphenyl methylester is one of the key raw materials in the preparation of Telmisartan, further (Dibromomethyl)biphenyl methylester is possible impurity of (Bromomethyl)biphenyl methylester, and these two impurities are structurally alert genotoxic impurities as per silico toxicity assessment, impurities structures and toxicity information given in Table.1. The acceptable limit of 18.75µg/g calculated based on the maximum daily dose 80mg and lifetime duration of treatment considered for Telmisartan drug by TTC approach as per ICH M7\(^10\).

Table 1: Impurities chemical structures and Toxicity information

Impurity	Chemical structure	Category	In-silico toxicity information	Leadscope
(Bromomethyl) Biphenyl methylester	![Chemical Structure](image1)	Raw material	Derek: Positive	Consensus: Positive Probability: 0.760
(Dibromomethyl) Biphenyl methylester	![Chemical Structure](image2)	Possible impurity of Raw material	Sarah: Positive	Consensus: Positive Probability: 0.776

The goal of this research study is to develop a sensitive, selective, accurate, reproducible and simple method to analyze these genotoxic impurities in Telmisartan drug substance. For the sensitivity of impurity level, we have chosen HPLC technique. To the best of our knowledge, determination of (Bromomethyl)biphenyl methylester and (Dibromomethyl)biphenyl methylester by HPLC in Telmisartan drug substance has not been reported in literature till date. This paper describes the development, optimization of HPLC method for the determination of subjected impurities and method validated accordance with ICH guidelines\(^{11}\).

MATERIALS AND METHOD

Chemicals, reagents and samples

Telmisartan drug substance, subjected analytes (i.e (Bromomethyl) biphenyl methylester, (Dibromomethyl)biphenyl methylester) were gifted from APL Research Centre-II (A division of Aurobindo Pharma Ltd., Hyderabad). Potassium dihydrogen ortho phosphate (Analytical grade), Orthophosphoric acid (≥88%) (GR grade), Sodium hydroxide (AR grade) Methanol (HPLC grade),
Dichloromethane (AR grade), Acetonitrie (HPLC grade) were procured from Merck and highly pure milli-Q water was obtained by using millipore purification system.

Instrumentation and Chromatographic conditions

Chromatographic separations were performed on HPLC (High Performance Liquid Chromatograph) system with Alliance –waters e2695 separation module with 2998 PDA detector and 2489 UV detector using Empower software. The mobile phase is consisting acetonitrile and buffer in the ratio of 55:45 v/v, where buffer was prepared by dissolving 2.72 g of Potassium dihydrogen orthophosphate in 1000 ml of water. Adjust to pH 2.5±0.05 with orthophosphoric acid. The analysis was carried out on Symmetry Shield RP18 (150mm × 4.6mm),3.5 μm µm particle diameter column (Make: Waters), maintained at temperature 40°C. Mobile phase was flushed through the column at a flow rate of 1.0 ml/min and pump was in isocratic mode. The injection volume was 20 μl and the analyte was monitored at 205 nm and running time is 25 min. (Bromomethyl) biphenyl methylester peak retention time is 9.6 min and (Dibromomethyl)biphenyl methylester retention time is 14.0 min.

Preparation of Solutions:

Standard solution A (0.4 mg/ml)

Accurately weigh and transfer about 40 mg of (Bromomethyl)biphenyl methylester reference standard into a 100 ml clean, dry volumetric flask, add 70 ml of methanol and sonicate to dissolve. Make up to volume with methanol.

Standard solution B: (0.4 mg/ml)

Accurately weigh and transfer about 40 mg of (Dibromomethyl)biphenyl methylester reference standard into a 100 ml clean, dry volumetric flask, add 50 ml of Dichloromethane and sonicate to dissolve. Make up to volume with acetonitrile.

Standard solution

Transfer each 5 ml of standard solution A and standard solution B into a 100 ml clean, dry volumetric flask and make up to volume with methanol. Dilute 5 ml of this solution to 100 ml with methanol. Further dilute 5 ml of this solution to 50 ml with methanol. Filter through 0.45μ or finer porosity membrane filter.

Blank solution

Transfer 100 μl of sodium hydroxide* solution into a 10 ml clean, dry volumetric flask containing 5 ml of methanol and make up to volume with methanol.

*Preparation of 1N Sodium hydroxide solution: Dissolve 4.0 g of sodium hydroxide in 100 ml of water.
Sample solution
Accurately weigh and transfer about 50 mg of sample into a 10 ml clean, dry volumetric flask, add 2 ml of methanol and 100 µl 1N sodium hydroxide solution and sonicate to dissolve. Make up to volume with methanol. Filter through 0.45 µ or finer porosity membrane filter.

RESULTS AND DISCUSSION

Method validation
The developed and optimized method was then validated for the following parameters.

- Specificity
- Limit of Detection (LOD) and Limit of Quantitation (LOQ)
- Linearity
- Precision (System Precision)
- Accuracy
- Stability of Sample Solution
- Robustness
- System suitability.

The results of each of the above validation experiments indicated the conformity to the stipulated acceptance criteria and these experimental results have been discussed in this research article.

Specificity
Specificity of the method is its ability to detect and separate all the impurities present in the drug substance. Specificity of the method is demonstrated in terms of spectral as well as peak purity data of the drug and its impurities present in the drug. Peak passed the peak purity test. (Bromomethyl)biphenyl methylester and (Dibromomethyl)biphenyl methylester solution, all known related substances were prepared individually and injected to confirm retention time. Solution of Telmisartan drug substance, Telmisartan drug substance spiked with (Bromomethyl)biphenyl methylester and (Dibromomethyl)biphenyl methylester (Control Sample) and Telmisartan drug substance spiked with all known related substances including (Bromomethyl)biphenyl methylester and (Dibromomethyl)biphenyl methylester (Spiked Sample) were injected to confirm any co-elution with (Bromomethyl)biphenyl methylester and (Dibromomethyl)biphenyl methylester peak from any known related substances. Peak purity for (Bromomethyl)biphenyl methylester and (Dibromomethyl)biphenyl methylester were established by using LC solution software and found to be passed (Purity angle should be less than purity threshold). Retention Times (Bromomethyl) biphenyl methylester and (Dibromomethyl)biphenyl methylester obtained with Standard and Test sample spiked with (Bromomethyl)biphenyl
methylester and (Dibromomethyl)biphenyl methylester were comparable and the peak purity data of (Bromomethyl)biphenyl methylester and (Dibromomethyl)biphenyl methylester in Control Sample and Spiked Sample indicates that the peaks are homogeneous and have no co-eluting peaks indicating specificity of the method. Specificity experiments are shown in Table 2 and typical HPLC chromatograms of specificity experiments are shown in in Figure 2.

Table 2: Specificity experiment results

Name	Retention Time (min.)	For RT confirmation
	Standard	Sample
(Bromomethyl)biphenyl methylester	10.109	10.127
(Dibromomethyl)biphenyl methylester	15.029	15.054

Name	RT (min.)	Peak Purity index	Single point Threshold	Minimum Peak Purity Index
Control Sample				
(Bromomethyl)biphenyl methylester	10.127	0.999981	0.995984	3997
(Dibromomethyl)biphenyl methylester	15.054	0.999449	0.987660	11789

Spiked Sample				
(Bromomethyl)biphenyl methylester	10.132	0.999892	0.994608	5284
(Dibromomethyl)biphenyl methylester	15.067	0.999744	0.986188	13556
LOD and LOQ
The sensitivity for detection can be demonstrated by determining the limit of detection (LOD) and limit of quantitition (LOQ). LOD/LOQ values of desired analytes were determined from based on response of analytes. The predicted concentrations of LOD and LOQ for these contents were verified for precision by preparing the solutions containing impurities at about predicted concentrations. Each of these solutions six times injected into the HPLC.

Linearity
Linearity of the method was checked by preparing solutions at nine concentration levels from LOQ to 150% of specification level by prepared using (Bromomethyl)biphenyl methylester and (Dibromomethyl)biphenyl methylester standard solutions and each solution was injected into HPLC. Linearity was established by using concentration (µg/ml) on X-axis, area on Y-axis and calculated statistical values like slope, intercept, residual sum of squares and correlation coefficient. The linearity, LOD and LOQ experiments data is shown in Table 3.

Table 3: Linearity, LOD & LOQ experiments data

(Bromomethyl)biphenyl methylester	Concentration (µg/mL)	Area	Statistical analysis
Accuracy of the method was performed by recovery experiments using standard addition technique. Sample solutions were prepared in triplicate by spiking two analytes at levels of LOQ & 100% of specification limit as per test method and injected each solution into HPLC as per methodology and the percentage recoveries were calculated. The fully validated recovery results are shown in Table 4.

LOQ Level	Sample ID	Amount Added (µg/g)	Amount Found (µg/g)	% Recovery
LOQ Level	Sample - 1	4.857	4.725	97.3
LOQ Level	Sample - 2	4.866	4.798	98.6
LOQ Level	Sample - 3	4.837	4.778	98.8

Statistical Analysis

Mean 98.2 SD 0.81 % RSD 0.8

Table 4b: Accuracy data of (Dibromomethyl)biphenyl methylester

LOQ level	% Level	Amount Added (µg/g)	Amount Found (µg/g)	% Recovery
LOQ Level	100%	18.78	18.71	99.6
LOQ Level	100%	18.82	18.74	99.5
LOQ Level	100%	18.42	18.53	100.6

Overall Statistical Analysis

Mean 99.9 SD 0.61 % RSD 0.6
Precision

System precision was demonstrated by preparing the standard solutions of (Bromomethyl)biphenyl methylester and (Dibromomethyl)biphenyl methylester as per methodology and analyzed by injecting six replicates. For Method precision experiments, six sample solutions were prepared individually using single batch of Telmisartan drug substance spiked with (Bromomethyl)biphenyl methylester and (Dibromomethyl)biphenyl methylester at specification level and injected each solution into HPLC as per methodology. For intermediate precision sample (same batch used in method precision) solutions of same sets were prepared individually as described under method precision spiked with (Bromomethyl)biphenyl methylester and (Dibromomethyl)biphenyl methylester at specification level and injected each solution into HPLC as per the methodology by another analyst, on a different day using different system and different column. achieved results like %RSD and 95% confidence interval for six determinations are summarized in Table 5.
Name	Method precision (µg/g)	Sample-1	Sample-2	Sample-3	Sample-4	Sample-5	Sample-6
(Bromomethyl) biphenyl methylester		17.89	18.34	17.64	17.51	17.37	17.64
(Dibromomethyl) biphenyl methylester		18.73	18.42	18.63	18.47	18.49	18.68
Statistical analysis		Mean	SD	% RSD	95% confidence interval (±)		
(Bromomethyl) biphenyl methylester		17.73	0.34	1.9	0.36		
(Dibromomethyl) biphenyl methylester		18.57	0.13	0.7	0.14		
Intermediate precision (Ruggedness) (µg/g)							
(Bromomethyl) biphenyl methylester							
(Dibromomethyl) biphenyl methylester		17.97	18.87	18.22	18.27	17.51	19.01
Statistical analysis		Mean	SD	% RSD	95% confidence interval (±)		
(Bromomethyl) biphenyl methylester		18.31	0.56	3.1	0.59		
(Dibromomethyl) biphenyl methylester		20.03	1.13	5.6	1.19		

Solution stability

For the determination of stability of the standard and sample solutions, Telmisartan drug substance spiked with (Bromomethyl)biphenyl methylester and (Dibromomethyl)biphenyl methylester at specification level was prepared as per methodology and analyzed initially and at different time intervals by keeping the solutions at room temperature (~ 25°C) and refrigerator (~6°C) conditions. To determine stability acceptance criteria, the following difference has been considered, “Percentage difference between the area obtained at initial and different time interval should be not more than 10.0” for (Bromomethyl)biphenyl methylester and (Dibromomethyl)biphenyl methylester. From the experimental, it can be observed that in sample solution there is gradually decreases in the peak area of (Bromomethyl) Biphenyl methyl ester. Therefore, the stability of sample solution at room temperature (~ 25°C) can be considered stable for at least 5 hours and is stable for at least 48 hours at refrigerator condition (~6°C). The experimental data is tabulated in Table 6.

Room temperature (~ 25°C)	(Bromomethyl) biphenyl methylester	(Dibromomethyl) biphenyl methylester		
Time (in Hours)	Area	% Difference	Area	% Difference
Initial	13507	-	10185	-
After 1 hr	13237	2.0	10151	0.3
Time (in Hours)	(Bromomethyl) biphenyl methylester Area	% Difference	(Dibromomethyl) biphenyl methylester Area	% Difference
----------------	--	--------------	--	--------------
Initial	13353	-	10383	-
After 1 hr	13359	0.0	10375	0.1
After 48 hrs	13213	1.1	10592	2.0

CONCLUSION

The HPLC chromatography method was developed, optimized and validated for the determination of (Bromomethyl)biphenyl methylester and (Dibromomethyl)biphenyl methylester contents at trace level in Telmisartan drug substance and the results of various validation parameters proved that the method is specific, sensitive, precise and accurate and the method can be introduced into routine testing.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the management of APL Research Centre-II (A Division of Aurobindo Pharma Ltd.), for allowing us to carry out the present work. The authors are also thankful to the colleagues of Analytical Research Department and Chemical Research Department for their co-operation.

REFERENCES

1. Amy Barreras, PHARMD and Cheryle Gurk-Turner, RPH. (2003), Angiotensin II Receptor Blockers, Baylor University Medical Center Proceedings, Jan; 16(1): 123–126,
2. M. Burnier, (2009). Telmisartan: A Different Angiotensin II Receptor Blocker Protecting a Different Population? Journal of International Medical Research, 37(6), 1662–1679.
3. A.M. Sharma, J. Janke, K. Gorzelniak, S. Engeli, & F.C. Luft, (2002). Angiotensin Blockade Prevents Type 2 Diabetes by Formation of Fat Cells. Hypertension, 40(5), 609–611.
4. S. Yusuf, K.K. Teo, J. Pogue, L. Dyal, I. Copland, H. Schumacher, G. Dagenais, P. Sleight and C. Anderson, (2008) Telmisartan, Ramipril, or Both in Patients at High Risk for Vascular Events. The New England Journal of Medicine, 358, 1547-1559.
5. R.E. Schmieder, (2004). Telmisartan/hydrochlorothiazide combination therapy in the treatment of essential hypertension. Expert Opinion on Pharmacotherapy, 5(11), 2303–2310.
6. S. Mukhopadhyay, L. Sawant, N. Pandita, K. Kadam, & D. Nachane, (2011), Simultaneous determination of related substances of telmisartan and hydrochlorothiazide in tablet dosage form by using reversed phase high performance liquid chromatographic method. Journal of Pharmacy and Bioallied Sciences, 3(3), 375.

7. V. Bhavani, T. Siva Rao, S.V.N. Raju, B. Madhusudan, Jamelunnisa Begum, (2013), Stability indicating UPLC Method for the Estimation of Telmisartan Related Substances in Tablets Formulation, International Journal of Scientific and Research Publications, Volume 3, Issue 2, February. ISSN 2250-3153.

8. D. Suryakala, S. Sivakumar, B. Mallikarjuna Rao, (2020) LC-MS method development for the quantitation of potential genotoxic impurity 2-Methyl-6-nitro aniline in Telmisartan API, Journal of Applied Pharmaceutical Science Vol. 10(05), 092-096.

9. D. A. Pierson, B. A. Olsen, D. K. Robbins, K. M. DeVries, & D. L. Varie, (2009). Approaches to Assessment, Testing Decisions, and Analytical Determination of Genotoxic Impurities in Drug Substances. Organic Process Research & Development, 13(2), 285–291.

10. International Council for Harmonization of Technical Requirements For Pharmaceuticals For Human Use (ICH), March 2017, Assessment and Control of DNA Reactive (Mutagenic) Impurities In Pharmaceuticals To Limit Potential Carcinogenic Risk M7(R1) ICH Harmonized.

11. ICH guideline: (2006) Impurities in New drug substances Q3A, (R2), ICH guideline; Impurities in new drug products Q3B, (R2), International Conference on Harmonization.