Thermodynamic Analysis of Cast Irons Solidification With Various Types of Graphite

T. Elbel *, J. Hampl
VSB Technical University of Ostrava, Faculty of Metallurgy and Materials Engineering, 17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic
*Corresponding author. E-mail address: tomas.elbel@vsb.cz

Received 18.06.2012; accepted in revised form 03.09.2012

Abstract

The contribution summarises the results of oxygen activity determinations, which were measured and registered continuously in castings from cast irons with various types of graphite. The results were used to find the relationship between two variables: natural logarithm of oxygen activities and reverse value of thermodynamic temperature 1/T. Obtained regression lines were used to calculate oxygen activity at different temperatures, to calculate Gibbs free energy ΔG at the different temperatures and to calculate the single ΔG value for significant temperature of the graphite solidification. The results were processed by a statistical analysis of data files for the different types of graphite with flake, vermicular and spheroidal graphite. Each material has its proper typical oxygen activities range and individual temperature function of Gibbs free energy for analysing and governing casting quality.

Keywords: Continuous oxygen activity measurement, Calculation of Gibbs free energy, Cast iron solidification

1. Introduction

In a recent paper [1], J.G. Sturm and G. Busch have shown that cast iron is a predictable material and they have stated that melting and used metallurgical procedures have a decisive impact on the integrity of the properties of castings. This is especially true for the cast parts with which metallurgical processing is important for the final structure and properties of castings. Except for the graphite, the microstructure of a cast-iron casting contains other components, each of which depends on a different content of carbon, silicon, oxygen, and other present elements. After finishing of solidification, we can encounter the following types of the shape of graphite in castings: flake (lamellar) graphite, vermicular (compacted) graphite and spheroidal (nodular) graphite. There can also come into existence metastable white structure with eutectic cementite (ledeburite) too. The way of solidification is thus closely connected with chemical composition of the basic cast iron melting, the cooling rate ad the way of inoculation and modification.

Inoculation is a typical procedure for the grain refinement and it involves on the introduction of nucleating agents (inoculants) into the melt. The inoculation effect on graphite nucleation in cast irons is based upon the formation of complex non-metallic micro inclusions. The inoculants chemistry usually includes active elements which have high affinity toward oxygen, prospective to sulphur and nitrogen. The necessity of inoculation of different types of irons is determined by the thermodynamic nature of the transfer from liquid to solid state iron - carbon equilibrium diagram which has stable or metastable liquid-solid types of transformations [2].
Modification is in the present paper preferred equivalent for English formulations “graphite spheroidization” or “nodulizing,” (nodulizing treatment, Mg treatment). Modification practice supports the transformation from flake to nodule (spheroidal) shape graphite and in the same time undercools the melt. That is reason why effective inoculation have to promote the stable austenite –graphite solidification and minimizes any austenite-carbide solidification.

The most useful tools of quality control of the melt are thermal analysis and measurement of the oxygen activity. As stated by [3] and many other authors, a considerable role is played in both processes by oxygen. F. Mampaey [4,5,6] has published recently several papers on this topic. In the first one of them Mampaey [4], on the basis of thermodynamic analysis elaborated measurement of the oxygen activity in the induction furnace at various temperatures. He continued with papers on the utilization of the measurement of oxygen activity for the determination of optimal properties of ductile iron [5] and with cast iron with vermicular graphite [6]. In several previous studies, the authors of the contribution have also dealt with the behavior of oxygen in cast irons and the present contribution utilizes and verifies the results of a continuous measurement of oxygen activities in cast irons and the present contribution have also dealt with the behavior of oxygen in cast irons and the present contribution utilizes and verifies the contributions of thermodynamic equilibrium with the strongest deoxidizing element.

2. Thermodynamic considerations

Thermodynamic relationships used in measurement of the oxygen activity and in evaluation of the results of this study have been analyzed in detail in many other studies and will be briefly mentioned. These are the above mentioned studies by Mampaey [4,5], T. Elbel and J. Hampel [8,9], the monographs by A. Zadera [10], J. Senberger [11], T. Myšlivec [12] and S. Katz [13]. We depart from the fact that the role of oxygen for obtaining of the required graphite structure in cast irons is undisputed. The relation between oxygen in solution and oxygen bound in oxides in the melt can be described by the Nernst ratio for the equilibrium constant K_0 expressed with the help of activities [11].

$$K_0 = \frac{a_o}{a_{MeO}}$$ (1)

The relation (1) constitutes the equilibrium between the oxygen in the melt a_o and the oxygen in oxides a_{MeO} at constant temperature. The value of the equilibrium activity in the melt according to the reaction (1) is strongly influenced by temperature. The oxygen activity is changing with the reversed value of thermodynamic temperature (1/T) according to linear relation:

$$\ln K_0 = -\frac{\Delta G_0^o}{R \cdot T}$$ (2)

In relation (2) ΔG_0^o is a change of the Gibbs free energy in standard state [J mol$^{-1}$], T – thermodynamic temperature [K] and R stands for the universal gas constant 8.314 [J mol$^{-1}$K$^{-1}$]. The equilibrium state is an extreme case where the metallurgical procedures can occur in practice. In real conditions the composition of melts more or less approaches the equilibrium. In a non-equilibrium state, oxygen from the melt can pass into oxide or conversely, oxides can “dissolve” in the melt. With regards to the oxide of the base metal MeO, the process of these reactions can be predicted according to the value of the Gibbs free energy between equilibrium and unbalanced state which is given by the equation:

$$\Delta G = -x \cdot RT \left(\ln a'_O - \ln a''_O \right)$$ (3)

Where a'_O is an oxygen activity in an equilibrium state and a''_O is in unbalanced (real) state. The x symbol stands for the number of moles of the Me element that enter into the reaction with 1 mole of oxygen. In the case that only one element enters the reaction with the oxygen and the product of the reaction is an oxide, its activity can be considered unit:

$$\Delta G = -x \cdot RT \left(\ln 1 - \ln a''_O \right) = x \cdot RT \cdot \ln a''_O$$ (4)

The content of deoxidizing element in an equilibrium and unbalanced state can be considered identical. For cast irons in a furnace and in a ladle, in the interval of temperature from 1350 to 1400 C, the values of ΔG range from -65000 to -45000 J mol$^{-1}$ [9]. If ΔG has a negative value, the reaction will run between oxygen and silicon that will be dissolved in a cast iron. The reaction ($\text{SiO}_2 = [\text{Si}] + 2 [\text{O}]$) then proceeds from the right to the left and the volume of silicon oxide increases in the melt or new crystallization nuclei may appear based on SiO_2. With higher temperatures, the deoxidation effect of carbon begins to show and the value of ΔG between $[\text{Si}]$ and $[\text{O}]$ increases.

As the change of the standard free energy ΔG [J mol$^{-1}$] is dependent on temperature, thermodynamic properties are usually expressed with the help of standard enthalpy ΔH^0 [J mol$^{-1}$] and the entropy ΔS^0 [J mol$^{-1}$K$^{-1}$] of formation, according Van’t Hoff equation:

$$\Delta G^0 = \Delta H^0 - T \Delta S^0$$ (5)

in which T stands for the thermodynamic temperature [K].

To express the free energy according to equation (4) the equation (2) takes the shape:

$$RT \cdot \ln a''_O = \Delta H^0 - T \Delta S^0$$ (6)

In conclusion, it can be said that measurement of the oxygen activity that controls chemical reactions in the melt can be used for monitoring of changes that these reactions activate. The equation of linear temperature dependency obtained by experimental measurement is often used to do that. It is in the following shape:
The melts were cast into a small ladle with a capacity of 20 kg. The melts were cast in two types of casting: cylinders for oxygen activities and metallographic analysis and Y blocks for the tensile strength testing and metallographic analysis. The melt was poured into a small ladle with a capacity of 20 kg. Inoculation was made with stream addition of 0.8% FeSi75. Two modifiers NiMg with 15% Mg and FeSiMg5 as a sandwich process were used.

3. Experimental procedures and results

For the study of graphite nucleation in cast irons, several samples of melts of the chemical composition near eutectic were melted in a middle frequency induction crucible with the capacity of 100 kg. The melts were cast in two types of casting: cylinders with a diameter of 70 mm and height of 105 mm for oxygen activities measurements that are schematically shown in Figure 1 and Y blocks for the tensile strength testing and metallographic analysis. The melt was poured into a small ladle with a capacity of 20 kg. Inoculation was made with stream addition of 0.8% FeSi75. Two modifiers NiMg with 15% Mg and FeSiMg5 as a sandwich process were used.

\[
\ln a_0 = \frac{A}{T} + B \quad (7)
\]

Parameters A is the slope of the straight line and B is the intercept that have thermodynamic meaning according to the equation in (6). The B constant presents the changes of content of deoxidizing elements (Al, Si, Mg) and activities of the corresponding oxide. Mampaey [6] explains the physical nature of the A coefficient as being proportional to the standard change of enthalpy \(\Delta H^0\). For the reaction at the constant pressure \(\Delta H^0\) is equal to the heat evolved by the reaction. With the exothermic reaction the value \(\Delta H^0\) is negative. By modification of equations (6) and (7) we obtain the relationship:

\[
\Delta G = R(A + B \cdot T) = 8.314(A + B T); [\text{J \cdot mol}^{-1}] \quad (8)
\]

If we find out the course of the \(\ln a_0\) dependency on the temperature according to equation (6), we can calculate the values of standard enthalpy and entropy from the following equations (9) and (10).

\[
A = \Delta H^0 / R \quad (9)
\]

\[
B = \Delta S^0 / R \quad (10)
\]

The charge for the preparation of the melt consisted of the pig iron with low content of S, return material and steel scrap. From each 100 kg melting, three to five ladles with various levels of modification were cast at the same chemical composition in order to achieve different content of Mg for obtaining cast iron with vermicular or spheroidal graphite. Measurement of oxygen activity was conducted in the mould cavity by laboratory probes placed into thermal axis of cylindrical castings according to Figure 1. The mould was made from bentonite moulding mixture. The working surface of the mould cavity itself was made of insulating lining. Oxygen activity was measured continuously from the initial temperature of metal in the mould cavity until the end of solidification, which lasted approximately for 18 minutes. The probe is a sensor composed of solid electrolyte and a reference mixture fixed in a tube from silica glass. The probes were produced by Termosondy Kladno from commercial immersion probes TSO 6 for a single measurement of oxygen activities in furnaces. The contact with the melt was ensured by molybdenum wire. Electromotive force from the sensor was registered with 1 Hz frequency.

Fifteen castings (melts 77 to 79) were cast by using the master alloy NiMg nodulizer and there was conducted measurement of oxygen activities in six castings with various content of residual Mg. Another series of ten casts (melts 80 and 81) was cast using the FaSiMg5 nodulizer and there were registered oxygen activities in seven castings. One ladle was poured without modification as a cast iron with flake graphite for comparison. The chemical composition of cast iron (main elements) is illustrated in Table 1 and Table 2. In the melt No. 81, the melting was conducted under an Ar protective atmosphere. In the course of the melt, Argon was continually transported on the surface of the melt with the help of a refractory armature placed at crucible of the electric induction furnace.

Out of experimental castings, there were first evaluated records of measurements of oxygen activities depending on time and temperature. The resulting exponential curves were published in our previous study [7] and we assume that it is not necessary to repeat them again. Out of these curved lines, we subtracted values of oxygen activities at various temperatures. For specification of these values and for obtaining of equations that will enable further thermodynamic considerations, these dependencies were transformed according to the equation (6) as the natural logarithm \(\ln a_0\) linear relationship on the reversed value of thermodynamic temperature \(1/T\). There were obtained very high strength relationship with a high coefficient of correlation for all 21 castings. The summary of all regression lines is illustrated in Figure 2.

Coefficients of equation (7) A, B, converted into the form \(y = Ax + B\) are summarized in Table 4. In the first column of Table 4 the determination coefficient is stated. Accordding the ultimate tensile strength and verifying microstructure to individual samples of castings EU standards were appropriated. They are indicated with abbreviations in last column of the same table.

The data from Table 4 we can calculate the oxygen activities for various temperatures. In Table 5 there are stated the values of calculated oxygen activities for the temperatures of 1400 °C (1673.15 K) and 1300 °C (1573.15 K). Oxygen activities calculated for these two temperatures were put into Table 5 together with the data about the content of the residual Mg in cast iron. The mean value of ultimate tensile strength, total oxygen content \(O_{OX}\) with the note about the method of preparation of cast iron.
Table 1.
Chemical composition of the melts 78 and 79

Element (wt.%)	Melting on air	Modification by NiMg
Casting Nr	78/1	78/3
	79/1	79/3
	79/4	79/5
C	3.63	3.72
	3.57	3.6
	3.64	3.59
Si	2.67	2.66
	2.58	2.51
	2.5	2.47
Mn	0.554	0.661
	0.516	0.514
	0.512	0.515
P	0.105	0.101
	0.103	0.102
	0.106	0.102
S	0.0111	0.0125
	0.0125	0.0119
	0.0114	0.0122
Mg	0.016	0.0260
	0.0234	0.0265
	0.0435	0.031
O_{ox} (ppm)	51	28
	67	49
	16	39

O_{ox} total oxygen content

Table 2.
Chemical composition of the melts 80 and 81

Element (wt.%)	Melting on air	Melting with Ar protection
Casting Nr	80/1	80/2
	80/3	80/4
	81/1	81/2
	81/3	
FeSiMg5 (%)	0	0.5
	1.0	1.5
	0	0.5
	1.0	
C	3.57	3.45
	3.51	3.66
	3.55	3.56
	3.65	
Si	1.94	2.19
	2.4	2.76
	1.4	2.32
	2.33	
Mn	0.215	0.219
	0.223	0.223
	0.187	0.191
	0.194	
P	0.0307	0.0324
	0.0324	0.0339
	0.033	0.0349
	0.0343	
S	0.011	0.01
	0.011	0.011
	0.011	0.013
	0.013	
Mg	0	0.009
	0.017	0.0382
	0	0.0123
	0.0181	
O_{ox} (ppm)	103	56
	42	66
	174	84
	96	

O_{ox} total oxygen content

Table 3.
Chemical composition of melts 82 and 84

Element (wt.%)	Deoxidation with CO reaction	Argon injection
Casting Nr	82/1	84/1
	82/2	84/2
	82/3	84/3
	82/4	84/4
FeSiMg (%)	0	1.0
	0	1.5
	0	1.0
	1.5	1.5
C	3.71	3.34
	3.10	3.4
	3.37	3.48
	3.31	3.31
Si	1.67	1.66
	1.68	2.69
	2.72	2.8
	2.42	2.42
Mn	0.43	0.433
	0.439	0.347
	0.349	0.346
	0.346	0.346
P	0.121	0.119
	0.121	0.0672
	0.0557	0.0686
	0.0658	0.0658
S	0.02	0.0205
	0.0201	0.0169
	0.017	0.016
	0.016	0.016
Mg	0	0
	0	0
	0.0209	0.0265
	0.0223	0.0227
O_{ox} (ppm)	-	7.6
	-	12.1
	-	6.4
	-	70.3

O_{ox} total oxygen content
As the modifying effect does not express only residual content of Mg, but also the content of sulfur and metals of rare earth, the calculated rates of the sulfur surplus indicator according to J.P. Hrusovsky and F. Wallace [14] were added to the table.

\[
\Delta S = \% S - 0.34 \times (\% \text{RE}) - 1.34 \times (\% \text{Mg}) \tag{11}
\]

In which \(\Delta S\) \(\%\) stands for sulfur surplus in cast iron, \% RE stands for the content of rare earth in cast iron and \% Mg stands for the residual content of magnesium. This parameter \(\Delta S\) defines the areas of cast irons with flake, vermicular and spheroidal graphite and the authors successfully made use of it in the previous studies [15].

From the Table 5 a regression analysis was conducted between the oxygen activity at the temperatures of 1573.15 and 1673.15 K on the sulfur surplus in ppm. It has been found out that there exists a moderate dependence with the determination coefficient \(R^2 = 0.5175\) and \(0.4475\) which was expected, with regards to the previous study [7]. The results are stated in Figure 3. It has been confirmed that the production of graphite in cast irons is connected to the oxygen activity. Thanks to the dominant reaction of Mg with oxygen, modified cast irons have low oxygen activity, in contrast with cast irons with flake graphite.

For the confirmation of the above mentioned relation, the results of the calculation of oxygen activity have been divided into three groups for particular types of the GJL cast irons – 7 rates, GJV - 5 rates, and GJS 9 rates. In each file, an arithmetic mean and a standard deviation have been calculated. The results are summarized in Table 6 for the oxygen activity at the temperature of 1573.15 K and Table 7 at the temperature of 1673.15 K.
Table 5.
The survey of the principal measured and calculated results

Number of content	Mg content	ΔS	a₀	a₀	ΔG	Tensile strength	O₂	Note	
78/1	160	-95.15	447	142.7	-11 200	214	51	Modification	
78/3	260	-216.8	989.8	291.7	-41 870	273	28	by NiMg	
79/1	230	-186.2	997.1	195	-40	260	67		
79/3	270	-233.45	884.3	147.8	-1 700	292	49		
79/4	440	-464.55	520.7	109.6	-9 080	638	16		
79/5	310	-290.3	200.2	82.5	-22 370	504	39		
80/1	0	108.7	1135.4	297.4	1 770	134	103	Modification	
80/2	90	-15.7	2023.2	406	1 090	289	56	FeSiMg	
80/3	170	-126.1	673.1	125.1	-5 510	404	42		
80/4	382	-497.1	587.4	174.1	-7 400	509	66		
81/1	0	118.7	1162	163.8	2090	180	174	FeSiMg	
81/2	123	-53.6	487.7	165.5	-10 280	363	84	protection	
81/3	181	-110.7	473.8	138.1	-6980	417	96	with Ar	
82/1	0	200	3067.9	431.7	15 590	158	no	CO reaction	
82/2	0	198	1774	420.9	7 970	181	tests	without	
82/3	0	205	1826.4	455.8	8100	207	modification		
83/4	0	201	1276.3	524.7	20 170	194	inoculation		
84/1	209	-111	231.5	76.4	-20 240	595	7.6	Argon	
84/2	265	-185.1	305.7	122.4	-49 290	651	7.1	injection	
84/3	203	-138.8	381.6	132	-6090	588	6.1	FeSiMg	
84/4	227	-207.2	545.6	185.4	-8 420	460	70.3		

0 – means that Mg was not added

![Graph](image_url)

Fig. 3. The oxygen activity (ppb) dependence on the sulfur surplus in ppm

Result of the Table 6 for a summary of the calculated oxygen activities at 1573.15 K were subjected to tests of significance of mean values and variances. With regards to the normality of the distribution, the test was conducted only for the files GJL and GJS. There has been found a significant difference of both sets on the significance level of $p = 0.05$. The mean oxygen activity of the GJV file is located between the two sets tested, however, it is considerably smaller than with GJL and it nears the GJS. The same result of statistically significant difference of oxygen activity was obtained for files of mean values from Table 7, set at the temperature of 1673.15 K.
Table 8. The calculated values of the free energy change for cast iron with flake graphite at the temperatures of 1573.15 K and 1673.15 K

Casting	Regression coefficients y = Ax + B	ΔG 1573.15 K	ΔG 1673.15 K	
GJL	A	B	[J·mol⁻¹]	[J·mol⁻¹]
80/1	-35 265	21 204	-15 860	1 770
80/2	-42 276	25 972	-11 790	1 090
81/1	-51 573	30 974	-23 660	2 090
82/1	-51 615	31 977	-10 150	15 590
82/2	-37 868	23 206	-11 320	7 970
82/3	-36 536	22 419	-10 540	8 100
82/4	-21 393	14 229	8 240	20 170
XMI	-43 104	26 03	-17 100	1 650
XPMII	-36 853	22 95	-5 942	12 957

XMI, the arithmetic mean of castings 80/1, 80/2, 81/1

Table 9. The calculated values of the free energy change for cast iron with spheroidal graphite at the temperatures of 1573.15 K and 1673.15 K

Casting	Regression coefficients y = Ax + B	ΔG 1573.15 K	ΔG 1673.15 K	
GJL	A	B	[J·mol⁻¹]	[J·mol⁻¹]
79/4	-41 025	23 867	-28 530	-9 080
79/5	-23 331	12 336	-32 630	-22 370
80/3	-44 293	-26 077	-27 110	-5 506
80/4	-32 014	18 602	-22 870	-7 400
81/1	-32 459	18 653	-25 900	-6 980
84/1	-29 535	16 197	-33 710	-20 240
84/2	-28 964	13 768	-58 490	-49 290
84/3	-28 676	16 701	-19 980	-6 090
84/4	-28 315	16 318	-21 990	-8 420
XPIII	-37 948	21 97	-27 448	-10 267
XPMII	-28 872	15 75	-33 350	-21 114

XMI, the arithmetic mean of castings 79/4, 79/5, 80/3, 80/4, 81/1

XPMII, the arithmetic mean of castings 84

Cast iron with flake graphite
The set was divided into 2 groups of 3 castings of 80/1, 80/2, 81/1 prepared by the inoculation of FeSi and castings 82 without inoculation. For the coefficients A and B were added to equation (7) substituted arithmetic mean from these melts. The relationship was thus obtained from the equation (9) calculated relationship:
lnaO = - 43 104/T + 26.03 ; (castings of 80/1, 80/2, 81/1)
lnaO = - 36 853/T + 22.95 ; (castings 82/1, 82/2, 82/3,82/4 were not inoculated)

Cast iron with vermicular graphite
All 5 castings from Table 9 were evaluated by the same procedure:
ln aO = - 36 405/T + 20.67

Cast irons with spheroidal graphite
This set was divided into two groups: four castings from the melt 82 and second set 4 remaining castings (without the forming 79/5 was excepted from the evaluation).
ln aO = - 28 872/T + 15.75 ; 4 castings 84/1,2,3,4
ln aO = - 37 948/T + 21.97 . 4 castings 79/4, 80/3, 80/4, 81/3,

It can be said that the slope of the line (7) is the more steeper the more magnesium is added into the melt. This corresponds to the value of A = - 28 872 for the castings processed by injection of the melt by argon, where there was obtained even at the relatively low Mg content the cast iron with spheroidal graphite.
The second set of castings from cast iron with spheroidal graphite processed without Ar injection and with the NiMg modification (two castings) and FeSiMg (one casting) has A = - 37 948 which approaches the mean value of the A coefficient for GJV and even to castings from GJL from the melt processed by a CO reaction and melted under the protective atmosphere of Ar, without inoculation and modification.
A set of three castings of the cast iron with flake graphite had the smallest slope whose melt was processed by the FeSi inoculation. The sample 79/5 A = - 23 331 had the lowest slope at all.
The coefficients A were compared with values by Mampaey [5] which were given for common logarithm of oxygen activities. For the comparison with the results presented, the coefficients have been restated for the natural logarithm. Mampaey comments this by the claim that at low temperatures of oxygen activities, equation based on the mean value of A = - 59 150, which corresponds to heat associated with the formation of MgO. This means that under these conditions all the dissolved oxygen present in the melt, which reacts to formation of the oxide, is the one with the Mg.
On the other hand, when there is dissolved no Mg in the melt A = - 29 900. This value may be compared with the reaction of formation of SiO2, for which it is stated A = - 35 400, then reactions for FeO A = - 17 250 and A = - 35 400 for the formation of MnO. Thus, as soon as more FeO is created instead of SiO2 less heat is released. This conclusion is in accordance to Mampaey [6] of important practical implications. The activity of oxygen in the basic melt (without the presence of Mg and other elements with high activity to oxygen) can vary, because the oxygen in solution is different but also because silica activity can vary. The last option is quite likely because the ratio of FeO/SiO2 can vary in the melt within wide limits. Arithmetic mean of AG from Tables 8 to 10 were plotted into the Table 11 for both temperatures considered yet. From Table 11 we can read that cast irons with flake graphite have the lowest value of AG as opposed to modified cast irons.

At the temperature of 1573.15 K the change of Gibbs free-energy has the lowest value at GJS II processed by modification of FeSiMg followed by GJV, GJS I, GJL I and GJL II. At higher temperature of 1673.15 K the mean value of the GJS II set is about 8000 J·mol⁻¹ lesser than the GJV, followed by GJS I, and finally GJL I and GJL II with positive values of ΔG. Thus, we can formulate another partial conclusion of the thermodynamic analysis. We depart from the general thermodynamic condition that the reaction product with the lowest free energy will be the most stable. In our case, it is cast irons modified by Mg i.e., by spheroidal graphite and vermicular graphite. The set of all experimental data, however, contains some anomalies and there is a need to further analyse individual cases, where in the melt, where in addition to changes in the oxygen activity different amounts of oxides are formed. The activity of a dissolved substance [O] in a solvent (cast iron) will be affected by the presence of other solutes.

Table 11.
The calculated ΔG values for the three types of cast irons at the temperature of 1573.15 and 1673.15 K

Grade of cast iron	ΔG [J·mol⁻¹]	Castings	
1573.15 K	1673.15 K	Number	
GJL I	- 17 100	1 650	80/1;80/2,83/1
GJL II	- 5 942	12 957	82/1,2,3,4
GJV	-30 144	-13 020	78/1,3;79/1,3;81/2
GJS I	- 27 448	-10 267	79/4;80/3,4,81/3
GJS II	-33 350	-21 118	84/1,2,3,4

With the help of the calculated values in Table 11, we can express the change in Gibbs free energy ΔG as a temperature dependence for particular groups of cast irons and compare them with the equations for the pure components. For the coefficients A and B from equation (7) we will substitute the arithmetic means from the stated melts and castings. From the obtained values, then, according to equation (8) we will calculate the relationship:

Cast iron with flake graphite
GJL I : ΔG = - 358 400 + 216.4 T ; [J·mol⁻¹]
GJL II : ΔG = - 306 400 + 190.1 T ; [J·mol⁻¹]

Cast iron with vermicular graphite GJV:
ΔG = - 319 300 +171.8 T ; [J·mol⁻¹]

Cast iron with spheroidal graphite
GJS I : ΔG = - 315 500 + 180.9 T ; [J·mol⁻¹]
GJS II : ΔG = - 240 000 + 131 T ; [J·mol⁻¹]

Although the statistical processing of the results of different sets of cast irons allows a generalization of the thermodynamic analysis, it does not give any statement about the individual melts, which must be assessed individually. This approach is beyond the scope of this paper and will be presented in the publications to come.
4. Conclusions

This paper summarizes the results of measurements of oxygen activities, which were determined by continuous measurement in castings in cast irons with different graphite type. The results were recorded as the exponential dependence of oxygen activity on the temperature measured from the highest metal temperature in the mould to the solidus temperature. The exponential relationship were then transformed into the straight line ones in semi-logarithmic scale for the dependent variable of the natural logarithm of the activity of oxygen to the inverted value of the thermodynamic temperature $1 / T$ (independent variable).

The obtained regression lines with high correlation coefficient were then used to calculate the oxygen activities at different temperatures that confirmed the findings from the literature and the authors' earlier works. Activities of oxygen for sets with flake and spheroidal graphite were statistically significant in the observed heats, while the values of oxygen activity in a group of heats of cast iron with vermicular graphite lie between these two extreme values.

From the obtained regression relationships it was then possible to evaluate the lines from the equation (7), for which, the slope of the line (7) is the more steeper, the more magnesium is added into the melt. From the relation (8) it could then be calculated the Gibbs free energy dependence on temperature and also the specific values of ΔG for temperatures 1300° and 1400 ° C. In this way we obtained a tool for the evaluation of metallurgical quality of melts in foundries producing complicated ab sophisticated production such as e.g. centrifugally poured cast iron cylinders designed for rolling mills.

Acknowledgements

The paper was prepared with the financial support from the Ministry of Industry and Trade of the Czech Republic within the TIP project Nr TIP: FR-TI2/188 "The research and development of the work layer of centrifugally cast cylinders designed for modern trends of rolling."

References

[1] Sturm, J.C, & Busch, G. (2011). Cast Iron – a predictable material. China Foundry 1 (8), 51-61.
[2] Lekakh, S. & Loper, Jr. C.R. (2003). Improving inoculation of ductile iron. AFS Transactions. 111, 885-894.
[3] Mampaey, F. & Beghyn, K. (2006). Oxygen activity in cast iron measured induction furnace at variable temperature. AFS Transactions. 114, 637-656.
[4] Mampaey, F., Habets, D., Plessers, J. & Seutens, F. (2008). The use of oxygen activity measurement to determine optimal properties of ductile iron during production. Giessereiforschung-International Foundry Research 60 (1), 2-19.
[5] Mampaey, F., Habets, D., Plessers, J. & Seutens, F. (2010). On-line oxygen activity measurements to determine optimal graphite form during compacted graphite iron production. International Journal of Metalcasting. 25-40.
[6] Hampl, J. & Elbel, T. (2010). Effect oxygen on graphite morphology and properties of modified cast iron. Archives of Foundry Engineering. 10 (4), 55-60.
[7] Elbel, T., Senberger, J., Zádera, A., & Hampl, J. (2008). Behaviour of oxygen in cast irons. Archives of Materials Science and Engineering. 33 (2), 111-116.
[8] Elbel, T., Senberger, J., Zádera, A. & Kocian, L. (2006). Study of the occurrence and suppression of metal reoxidation in ferrous castings. Proceedings of the 67th World Foundry Congress, Harrogate, ICME 2006, paper 94/1-94/10.
[9] Zádera, A., Senberger, J. & Elbel, T. (2009). Reoxidation processes at casting ferrous alloys. Česká slévárenská společnost. Brno, (in Czech).
[10] Šenberger, J. et al. (2008). Metallurgy of cast steel. Nakladatelství VUTIUM, Brno 2008, (in Czech).
[11] Myslivec, T. (1971). Basic of physical chemistry of steelmaking. SNTL, Praha, 1971, (in Czech).
[12] Katz, S. Principles of physical chemistry. ASM Handbook, 15, Casting, 50-64.
[13] Hrusovsky, J.P. & Wallace, J.F. (1985). Effect of composition on solidification on compacted graphite iron. AFS Transactions. 93, 55 – 86.
[14] Elbel, T. & Hampl, J. (2009). Influence of Al and Ti on microstructure and quality of compacted graphite iron castings. Metallurgija/Metallurgy. 48 (4), 243-247.