Supplementary Material

A Metabolomics Coupled with Chemometrics Strategy to Filter Combinatorial discriminatory Quality Markers of Crude and Salt-fired *Eucommiae Cortex*

Jiading Guo1,2, Jin Li1, Xuejing Yang1,3, Hui Wang1,2, Jun He1,2, Erwei Liu1,2, Xiumei Gao1,2, Yan-xu Chang1,2,*

1Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China

2Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China

3School of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang, PR China

* Correspondence:
Yan-xu Chang, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine
Tel.: +86-22-59596163
Fax: +86-22-59596163
E-mail: tcmcyx@tjutcm.edu.cn (Y.-x.Chang)
Table S1. The precision, repeatability, and stability of the qualitative method

compounds	precision		repeatability		stability				
	Rt (%)	m/z (%)	Peak area (%)	Rt (%)	m/z (%)	Peak area (%)	Rt (%)	m/z (%)	Peak area (%)
M1	0.32	0.00	2.09	0.40	0.00	2.63	0.39	0.00	3.30
M2	0.21	0.00	1.20	0.28	0.00	1.00	0.20	0.00	1.65
M3	0.17	0.00	2.22	0.17	0.00	1.44	0.13	0.00	2.27
M4	0.16	0.00	1.18	0.17	0.00	2.07	0.13	0.00	2.22
M5	0.19	0.00	1.13	0.08	0.00	1.61	0.21	0.00	2.14
M6	0.12	0.00	3.46	0.12	0.00	3.86	0.08	0.00	1.06
M7	0.16	0.00	2.05	0.14	0.00	1.98	0.07	0.00	1.98
M8	0.10	0.00	0.74	0.09	0.00	0.71	0.14	0.00	1.42
M9	0.04	0.00	1.09	0.07	0.00	2.04	0.07	0.00	1.31
M10	0.04	0.00	1.02	0.05	0.00	1.22	0.04	0.00	1.37
M11	0.04	0.00	1.40	0.05	0.00	2.22	0.06	0.00	1.29

M1-11 represented geniposidic acid, neochlorogenic acid, chlorogenic acid, caffeic acid, geniposide, genipin, pinoresinol di-o-glucopyranoside, syringaresinol di-o-glucopyranoside, isochlorogenic acid A, pinoresinol o-glucopyranoside, and isochlorogenic acid C, respectively.
Table S2. The 72 candidate compounds found by formula

Peak no.	Rt (min)	Formula	[M-H]$^-$	[M+COOH]$^+$	∆ppm	Identification
1	1.178	C$_6$H$_8$O$_7$	191.0196		3.26	isocitric acid
2	1.45	C$_{13}$H$_{22}$O$_9$	391.1231		4.29	aucubin
3	1.534	C$_{16}$H$_{22}$O$_{11}$	389.1090		0.47	deacetylasperulosidic acid
4	1.754	C$_{13}$H$_{22}$O$_{10}$	361.1122		5.03	catalpol
5	2.077	C$_{13}$H$_{16}$O$_9$	315.0714		2.39	protocatechuic acid-4-glucoside
						6-(4-formyl-2,6-dimethoxyphenoxy)-3,4,5-trihydroxytetrahydro-2H-pyran-2-yl methyl hydrogen sulfate
6	2.194	C$_{15}$H$_{20}$O$_{12}$S	423.0598		1.11	2-glucopyranosyloxy-5-hydroxyphenyl acetic acid
						methyl 3-(3,4-dihydroxyphenyl) propanoate
7	2.212	C$_{14}$H$_{18}$O$_9$	329.0873		1.53	vanillic acid
8	2.228	C$_{10}$H$_{12}$O$_4$	241.0720	-1.22		geniposidic acid
9	2.28	C$_8$H$_6$O$_4$	167.0341		0.80	3,4-dihydroxy benzoic acid
10	2.348	C$_{16}$H$_{22}$O$_{10}$	373.1125		3.97	4-glucopyranosyloxy-3,5-dimethoxy benzoic acid
11	2.534	C$_7$H$_6$O$_4$	153.0186		4.78	neochlorogenic acid
12	2.753	C$_{15}$H$_{20}$O$_{10}$	359.0981		0.75	harpagide
13	2.874	C$_{16}$H$_{18}$O$_9$	353.0883	-1.40		perioplobiose
14	3.008	C$_{15}$H$_{24}$O$_{10}$	363.1281		4.31	3-hydroxybenzoic acid
15	3.484	C$_{13}$H$_{24}$O$_9$	323.1336		3.63	5-methoxy-guaiacylglycerol
16	3.568	C$_7$H$_6$O$_3$	137.0241		2.30	3-methoxybenzoic acid
17	3.652	C$_{11}$H$_{16}$O$_6$	243.0862		4.96	catechol
18	3.652	C$_6$H$_4$O$_2$	109.0292		2.75	isochlorogenic acid A
19	3.702	C$_{22}$H$_{28}$O$_{14}$	515.1398		1.61	
----	-----	-------	-----------	---------	---	
20	4.109	C$_{32}$H$_{44}$O$_{17}$	745.2532	4.07	olivil 4''-4''-di-o-glucopyranoside	
21	4.16	C$_{16}$H$_{18}$O$_{9}$	353.0883	-1.4	neochlorogenic acid	
22	4.492	C$_{16}$H$_{18}$O$_{9}$	353.0876	0.58	neochlorogenic acid	
23	4.636	C$_{9}$H$_{8}$O$_{4}$	179.0355	-2.88	caffeic acid	
24	5.132	C$_{17}$H$_{22}$O$_{10}$	385.1136	1.09	4-[3-glucopyranosyloxy-2-hydroxyphenyl]-3-methyl-4-oxobutanoic acid	
25	5.465	C$_{18}$H$_{26}$O$_{10}$	447.1501	1.99	4-[2-(xylopyranosyloxy)ethyl] phenylxylopyranoside	
26	5.742	C$_{16}$H$_{18}$O$_{8}$	337.0933	-1.21	3-p-coumaroylquinic acid	
27	5.929	C$_{17}$H$_{24}$O$_{10}$	433.1341	-2.70	geniposide	
28	6.07	C$_{26}$H$_{34}$O$_{12}$	537.1956	3.99	olivil 4'-o-glucopyranoside	
29	6.552	C$_{22}$H$_{42}$O$_{17}$	697.2336	1.90	l-hydroxypinoresinol di-o-glucopyranoside	
30	6.62	C$_{33}$H$_{44}$O$_{19}$	743.2380	3.23	naringin DHC 4-α-β-d-glucopyranoside	
31	7.62	C$_{11}$H$_{14}$O$_{5}$	225.0767	0.65	genipin	
32	7.907	C$_{26}$H$_{34}$O$_{12}$	537.1956	3.99	olivil 4'-o-glucopyranoside	
33	8.162	C$_{32}$H$_{42}$O$_{16}$	681.2373	3.97	pinoresinol di-o-glucopyranoside	
34	8.450	C$_{10}$H$_{10}$O$_{4}$	193.0497	4.80	methyl 3-phenylacrylate	
35	8.705	C$_{32}$H$_{42}$O$_{16}$	681.2376	3.97	pinoresinol di-o-glucopyranoside	
36	8.974	C$_{17}$H$_{20}$O$_{9}$	367.1028	1.78	5-o-feruloylquinic acid	
37	9.112	C$_{23}$H$_{26}$O$_{13}$	509.1295	1.11	4,8,9,10-tetrahydroxy-3,6,7-trimethoxy-2-anthryl-glucopyranoside	
38	9.196	C$_{33}$H$_{46}$O$_{18}$	729.2584	3.75	3-[4-(2-[4-glucopyranosyloxy-3-methoxyphenyl]-2-hydroxy-1-(hydroxymethyl)ethoxy]-	
	Molecular Formula	Molecular Weight	Retention Time	Compound Name		
---	------------------	------------------	---------------	---------------		
39	C_{33}H_{44}O_{17}	711.2487	9.315	3,5-dimethoxyphenyl-2-propen-1-ylglucopyranoside		
40	C_{26}H_{32}O_{12}	535.1800	9.738	medioresinol di-o-glucopyranoside		
41	C_{26}H_{32}O_{12}	535.1800	10.196	l-hydroxypinoresinol 4’-o-glucopyranoside		
42	C_{34}H_{46}O_{18}	741.2593	10.281	syringaresinol di-o-glucopyranoside		
43	C_{10}H_{18}O_{5}	217.1078	10.671	l-hydroxypinoresinol 4’-o-glucopyranoside		
44	C_{23}H_{26}O_{13}	509.1292	11.838	4,8,9,10-tetrahydroxy-3,6,7-trimethoxy-2-anthryl-glucopyranoside		
45	C_{25}H_{31}NO_{11}	520.1811	12.094	eucomoside B		
46	C_{25}H_{24}O_{12}	515.1189	12.705	isochlorogenic acid A		
47	C_{20}H_{22}O_{7}	373.1291	12.774	erythro-guaiacylglycerol-β-conifery aldehyde ether		
48	C_{43}H_{56}O_{21}	907.3220	12.79	hedyotol C di-o-glucopyranoside		
49	C_{43}H_{54}O_{22}	921.3000	12.858	unknown		
50	C_{20}H_{22}O_{6}	357.1342	12.991	pinoresinol		
51	C_{26}H_{32}O_{11}	519.1862	12.994	pinoresinol-o-glucopyranoside		
52	C_{27}H_{34}O_{12}	549.1978	13.059	eucommin A		
53	C_{9}H_{16}O_{4}	187.0972	13.113	eucommiol		
54	C_{44}H_{58}O_{22}	937.3316	13.333	glycerol-syringaresinol ether di-glucopyranoside		
55	C_{28}H_{36}O_{13}	579.2027	13.516	syringaresinol 4’-o-glucopyranoside		
56	C_{27}H_{34}O_{12}	549.1978	13.604	eucommin A		
57	C_{20}H_{22}O_{7}	373.1278	13.859	erythro-guaiacylglycerol-β-conifery aldehyde ether		
No.	M & ESI	CAS	MW	Name		
-----	---------	-----	-----	------		
58	13.875	C₂₅H₂₄O₁₂	515.1189	isochlorogenic acid A		
59	14.063	C₄₂H₅₂O₂₁	891.2918	syringaresinol vanillic acid ether diglucopyranoside		
60	14.195	C₄₀H₄₈O₁₉	831.2689	pinoresinol vanillic acid ether diglucopyranoside		
61	14.264	C₁₃H₂₆O₇	317.1601	2-(5-hydroxy-2,3-dimethyl-2-cyclopenten-1-yl)ethylglucopyranoside		
62	14.265	C₄₁H₅₀O₂₀	861.2794	medioresinol vanillic acid ether diglucopyranoside		
63	14.334	C₂₀H₂₂O₇	373.1295	erythro-guaiacylglycerol-β-conifery aldehyde ether		
64	14.398	C₂₁H₂₄O₇	433.1499	medioresinol		
65	14.401	C₄₀H₄₈O₁₉	831.2686	pinoresinol vanillic acid ether diglucopyranoside		
66	14.604	C₃₇H₄₆O₁₆	745.2690	glycerol-medioresinol ether 4”-glucopyranoside		
67	15.094	C₃₇H₄₆O₁₆	745.2688	glycerol-medioresinol ether 4”-glucopyranoside		
68	16.3	C₃₆H₄₂O₁₆	729.23937	syringaresinol vanillic acid ether glucopyranoside		
69	16.383	C₃₅H₄₀O₁₅	699.2292	medioresinol vanillic acid ether glucopyranoside		
70	16.586	C₃₄H₃₈O₁₄	669.2182	pinoresinol vanillic acid ether glucopyranoside		
71	16.638	C₉H₁₆O₃	171.1023	1-deoxyeucommiol		
72	17.873	C₁₂H₂₀O₄	227.1281	5,6,7,8-tetrahydro-7-hydroxy-3,3-dimethyl-1Hcyclopenta[1,3]dioxepin-6-ethanol		
Table S3. The regressive equations, linear ranges, LODs, LOQs, repeatability, and recoveries of 11 compounds

analytes	regressive equation	r²	linear range (g/mL)	LOQ (μg/mL)	LOD (μg/mL)	recovery average (%)	RSD (%)	repeatability RSD (%)
M1	y=14242.94x+1974.73	0.9991	1-250	0.4	0.1	95.9±3.6	3.19	1.69
M2	y=25774.93x+58.91	0.9994	0.04-10	0.04	0.01	104±4	3.46	1.87
M3	y=26005.17x-2756.75	0.9995	0.4-100	0.08	0.025	97.4±4.8	4.88	2.00
M4	y=60808.33x-438.04	0.9996	0.04-10	0.03	0.01	96.2±4.1	4.09	3.52
M5	y=18072.88x+855.45	0.9999	0.4-100	0.3	0.01	95.9±3.9	3.92	1.07
M6	y=24973.82x+2116.83	0.9999	0.4-100	0.35	0.15	97.0±4.3	4.38	0.86
M7	y=15837.93x-2843.27	0.9992	1-200	1	0.3	100±3	3.23	2.00
M8	y=15163.16x-629.57	0.9999	0.4-100	1	0.3	103±3	3.21	2.76
M9	y=23407.61x+2085.57	0.9991	0.1-25	0.04	0.01	100±3	3.17	3.35
M10	y=30106.82x-17.81	0.9998	0.4-100	0.4	0.16	94.3±4.1	4.32	1.49
M11	y=25787.85x-199.09	0.9997	0.04-10	0.04	0.16	98.1±4.3	4.56	4.23

M1-11 represented geniposidic acid, neochlorogenic acid, chlorogenic acid, caffeic acid, geniposide, genipin, pinoresinol di-o-glucopyranoside, syringaresinol di-o-glucopyranoside, isochlorogenic acid A, pinoresinol o-glucopyranoside, and isochlorogenic acid C, respectively.
Table S4. The Intra-day and Inter-day accuracy and precision, and stability of 11 markers (n = 6).

Analytes	Concentration (μg/mL)	Inter-day	Intra-day	Stability			
		Accuracy (%)	RSD (%)	Accuracy (%)	RSD (%)	Accuracy (%)	RSD (%)
2	93.3±2.4	2.30	97.8±2.6	2.60	96.4±2.2	2.16	
M1	104±0	0.10	104±1	0.72	104±0	0.49	
	103±0	0.39	103±1	1.54	99.7±1.5	1.52	
	92.9±4.1	3.70	96.4±0.8	0.79	97.1±3.0	2.98	
M2	97.2±1.2	1.17	99.6±2.1	2.06	98.5±1.0	0.97	
	80	90.8±1.9	1.70	95.1±3.3	3.07	99.1±1.3	1.30
	0.8	93.1±4.4	3.88	96.9±2.3	2.21	99.8±0.9	0.86
M3	91.9±0.8	0.76	94.2±2.2	2.09	91.3±0.6	0.58	
	80	92.1±0.7	0.63	96.6±3.3	3.07	97.9±1.3	1.32
	0.08	104±1	1.13	102±1	1.27	101±3	3.32
M4	96.4±0.6	0.56	97.5±1.1	1.04	96.8±0.7	0.71	
	80	98.7±0.4	0.41	101±1	1.35	97.6±3.0	2.83
	0.8	94.8±3.7	3.54	98.0±1.4	1.30	99.1±2.6	2.56
M5	96.3±0.4	0.42	99.6±2.5	2.43	100±0	0.48	
	80	94.6±0.3	0.27	96.1±1.5	1.48	97.4±2.8	2.60
	0.8	94.8±0.0	3.90	95.0±0.8	0.79	95.5±3.8	3.55
M6	94.3±1.9	1.76	96.3±1.1	1.07	93.6±1.2	1.08	
	80	92.4±0.2	0.20	94.4±2.1	1.48	92.3±3.9	3.47
	1.6	105±4	4.21	101±1	1.35	107±6	4.18
M7	97.1±1.1	1.31	100±2	2.30	103±1	1.01	
	160	97.5±0.1	0.11	98.8±1.6	1.58	101±3	2.66
	0.8	90.1±2.7	2.44	95.3±2.5	2.43	94.2±2.0	2.02
M8	8	96.8±0.6	0.59	99.9±2.7	2.05	99.5±0.8	0.82
----	-----	----------	------	----------	------	----------	------
	80	97.5±0.2	0.19	100±2	1.79	96.9±2.7	2.57
	0.2	88.2±3.5	3.14	92.8±3.2	2.97	88.3±3.0	2.74
M9	2	94.6±1.0	0.95	96.7±1.3	1.22	97.1±1.1	1.07
	20	105±0	0.40	101±3	2.86	103±1	1.29
	0.8	88.6±4.3	3.93	92.7±2.4	2.24	88.9±3.2	2.90
M10	8	95.1±1.0	0.97	97.3±1.4	1.38	97.0±1.5	1.43
	80	96.6±0.2	0.23	98.2±1.8	1.77	96.4±2.8	2.68
	0.08	97.8±4.9	4.69	97.1±2.5	2.40	97.0±2.3	2.19
M11	0.8	94.1±2.0	1.85	95.8±1.6	1.48	96.7±0.6	0.62
	8	93.5±1.4	1.28	97.7±3.1	2.91	96.3±2.8	2.68

M1-11 represented geniposidic acid, neochlorogenic acid, chlorogenic acid, caffeic acid, geniposide, genipin, pinoresinol di-α-glucopyranoside, syringaresinol di-α-glucopyranoside, isochlorogenic acid A, pinoresinol α-glucopyranoside, and isochlorogenic acid C, respectively.
Table S5. The variable importance parameter (VIP) of 11 CdQMs between two types of *Eucommiae Cortex* from same and different origin places by OPLS-DA analysis.

compounds	VIP	same origin places	different origin places
genipin	5.41589	6.75122	
pinoresinol di-<i>o</i>-glucopyranoside	5.05593	6.27523	
geniposide	5.57087	5.94117	
chlorogenic acid	4.81987	4.97134	
caffeic acid	4.06297	2.84501	
pinoresinol <i>o</i>-glucopyranoside	3.48873	3.26732	
isochlorogenic acid C	2.75739	2.55568	
geniposidic acid	2.02841	5.41920	
neochlorogenic acid	1.87003	1.84273	
syringaresinol di-<i>o</i>-glucopyranoside	1.77705	2.18564	
isochlorogenic acid A	1.60547	1.48496	