LOGARITHM LAWS FOR UNIPOTENT FLOWS
ON HYPERBOLIC MANIFOLDS

SHUCHENG YU
(Communicated by Dmitry Kleinbock)

ABSTRACT. We prove logarithm laws for unipotent flows on non-compact finite-volume hyperbolic manifolds. Our method depends on the estimate of norms of certain incomplete Eisenstein series.

1. INTRODUCTION

Let G denote a connected real semisimple Lie group with no compact factors and $\Gamma \subset G$ be a non-uniform irreducible lattice, that is, Γ is discrete, the homogeneous space $\Gamma \backslash G$ is non-compact and has finite co-volume with respect to the Haar measure of G. Let σ denote the right G-invariant probability measure on $\Gamma \backslash G$. Any unbounded one-parameter subgroup $\{g_t\}_{t \in \mathbb{R}} \subset G$ acts on $\Gamma \backslash G$ by right multiplication. By Moore’s Ergodicity Theorem this action is ergodic with respect to σ, hence for σ-a.e. $x \in \Gamma \backslash G$ the orbit $\{xg_t\}$ is dense. In particular, these orbits will make excursions into the cusp(s) of $\Gamma \backslash G$. A natural question to ask is at what rate these cusp excursions occur.

We first fix some notations throughout this paper. We write $A \sim B$ if there is some constant $c > 1$ such that $\frac{1}{c} A \leq B \leq c A$. And we write $A \lesssim B$ or $A = O(B)$ to indicate that $A \leq cB$ for some positive constant c. We will use subscripts to indicate the dependence of the constant on some parameters.

The above question can be restated as a shrinking target problem. Let K be a maximal compact subgroup of G, $\Gamma \backslash G$ has a naturally defined distance function, dist, induced from a left G-invariant and bi-K-invariant Riemannian metric on G. For a fixed $o \in \Gamma \backslash G$ we define the cusp neighborhoods by

$$B_r := \{ x \in \Gamma \backslash G \mid \text{dist}(o,x) > r \}$$

for any $r > 0$. By [13] there exists a constant $\varkappa > 0$ such that $\sigma(B_r) \approx e^{-\varkappa r}$. For $\{r_\ell\}$ a sequence of positive real numbers with $r_\ell \to \infty$, consider the family of shrinking cusp neighborhoods $\{B_{r_\ell}\}$, we define a corresponding sequence of random variables on $\Gamma \backslash G$ by

$$X_\ell (x) := \begin{cases} 1 & \text{if } xg_\ell \in B_{r_\ell} \\ 0 & \text{otherwise.} \end{cases}$$
Note that $X_\ell(x) = 1$ if and only if the ℓth orbit of x makes excursion into the ℓth cusp neighborhood B_{r_ℓ}. In this setting, one can vary the sequence $\{r_\ell\}$ to enlarge or shrink the family of cusp neighborhoods $\{B_{r_\ell}\}$, and then ask whether the events $X_\ell(x) = 1$ happen finitely or infinitely many times for a generic point x. We note that the first half of Borel-Cantelli lemma implies that if $\sum_{\ell=1}^\infty \rho(B_{r_\ell}) < \infty$, then for σ-a.e. $x \in \Gamma \backslash G$, the events $X_\ell(x) = 1$ happen for finitely many ℓ. Thus $\limsup_{\ell \to \infty} \frac{\text{dist}(o, xg_\ell)}{r_\ell} \leq 1$ for σ-a.e. $x \in \Gamma \backslash G$. In particular, for any small positive number ϵ, choosing $r_\ell = \frac{(1+\epsilon) \log(\ell)}{x}$, a standard continuity argument implies that $\limsup_{t \to \infty} \frac{\text{dist}(o, xg_\ell)}{\log(t)} \leq \frac{1}{x}$ for σ-a.e. $x \in \Gamma \backslash G$. Letting $\epsilon \to 0$, we get $\limsup_{t \to \infty} \frac{\text{dist}(o, xg_\ell)}{\log(t)} = \frac{1}{x}$ for σ-a.e. $x \in \Gamma \backslash G$. If the bound is sharp, for σ-a.e. $x \in \Gamma \backslash G$, we say that the flow $\{g_\ell\}_{\ell \in \mathbb{R}}$ satisfies the logarithm law. Following [2], we say a sequence of cusp neighborhoods $\{B_{r_\ell}\}$ is Borel-Cantelli for $\{g_\ell\}$ if $\sum_{\ell=1}^\infty \rho(B_{r_\ell}) = \infty$ and for σ-a.e. $x \in \Gamma \backslash G$, $X_\ell(x) = 1$ for infinitely many ℓ. Note that $\{g_\ell\}$ satisfying logarithm law is equivalent to the statement that for any $\epsilon > 0$, any sequence of cusp neighborhoods $\{B_{r_{1,\ell}}\}$ with $\rho(B_{r_{1,\ell}}) \approx \frac{1}{\ell^{2-\epsilon}}$ is Borel-Cantelli for $\{g_\ell\}$.

The problem of logarithm laws in the context of homogeneous space was first studied by Sullivan [18] where he proved logarithm laws for geodesic flows on non-compact finite-volume hyperbolic manifolds. The general case of one-parameter diagonalizable flows on non-compact finite-volume homogeneous spaces was proved by Kleinbock and Margulis [13]. The main ingredient of their proof is the exponential decay of matrix coefficients of diagonalizable flows, from which they deduced the quasi-independence of the above events X_ℓ. Then the logarithm law follows from a quantitative Borel-Cantelli lemma.

The problem of logarithm laws for unipotent flows is more subtle since the matrix coefficients of unipotent flows only decay polynomially. Nevertheless, using a random analogy of Minkowski’s theorem Athreya and Margulis [4] proved logarithm laws for one-parameter unipotent subgroups on the space of lattices $X_d := SL_d(\mathbb{Z}) \backslash SL_d(\mathbb{R})$. Later Kelmer and Mohammadi [12] proved the case when G is a product of copies of $SL_2(\mathbb{R})$ and $SL_2(\mathbb{C})$ and Γ is any irreducible non-uniform lattice. We note that in the above two cases, their methods are closely related and both rely on the estimate of L^2-norms of certain transform functions.

In [3], Athreya studied the cusp excursion of the full horospherical group with respect to some one-parameter diagonalizable subgroup on X_d. Surprisingly, he was able to relate the cusp excursion rates for diagonalizable and horospherical actions and certain Diophantine properties for every $x \in X_d$. In particular, his result implies logarithm laws for unipotent flows on X_d. The most general result known for unipotent flows was obtained by Athreya and Margulis [5]. More precisely, for G a semisimple Lie group without compact factors, $\Gamma \subset G$
an irreducible non-uniform lattice in G and $\{g_t\}_{t \in \mathbb{R}}$ a one-parameter unipotent subgroup in G, they proved that for any $o \in \Gamma \backslash G$ and σ-a.e. $x \in \Gamma \backslash G$, there exists $0 < \beta \leq 1$ such that $\limsup_{t \to \infty} \frac{\text{dist}(o, x g_t)}{\log t} = \frac{\beta}{2}$. Moreover, they asked whether such β can always attain 1, which is the upper bound coming from the first half of Borel-Cantelli lemma.

In this paper, we generalize the approach in [4] and [12] to give a positive answer to this question when $\Gamma \backslash G$ is the frame bundle of hyperbolic manifolds. Before stating our main result, we first fix some notations. Let \mathbb{H}^{n+1} be the $(n+1)$-dimensional real hyperbolic space with $n \geq 2$ and $\text{Iso}^+(\mathbb{H}^{n+1})$ denote the orientation preserving isometry group of \mathbb{H}^{n+1}. Fix a maximal compact subgroup K and identify G/K with \mathbb{H}^{n+1}.

Theorem 1.1. Let $G = \text{Iso}^+(\mathbb{H}^{n+1})$ with $n \geq 2$, $\Gamma \subset G$ a non-uniform lattice and $\{g_t\}_{t \in \mathbb{R}}$ a one-parameter unipotent subgroup of G. Let $\text{dist}(\cdot, \cdot)$ denote the distance function obtained from hyperbolic metric on the hyperbolic manifold $\Gamma \backslash \mathbb{H}^{n+1}$. Then for any fixed $o \in \Gamma \backslash G$,

\[
\limsup_{t \to \infty} \frac{\text{dist}(o, x g_t)}{\log t} = \frac{1}{n},
\]

for σ-a.e. $x \in \Gamma \backslash G$.

We give a brief outline of our proof here. We first note that if (1.1) holds for Γ, then it also holds for any Γ' conjugate to Γ (see Section 5). Hence after suitable conjugation we can assume Γ has a cusp at ∞ (see Section 2.3 for the definition of cusps).

The upper bound, as mentioned above, follows from the first half of the Borel-Cantelli lemma. For the lower bound, we first note that it suffices to show that the set

\[\mathcal{A}_\epsilon := \left\{ x \in \Gamma \backslash G \mid \limsup_{t \to \infty} \frac{\text{dist}(o, x g_t)}{\log t} \geq \frac{1 - \epsilon}{n} \right\}\]

has positive measure for any $\epsilon > 0$. This is because \mathcal{A}_ϵ is invariant under the action of $\{g_t\}_{t \in \mathbb{R}}$, hence by ergodicity, if \mathcal{A} is of positive measure it must have full measure. Then the theorem follows by letting ϵ approach zero.

Next, in order to show that \mathcal{A}_ϵ has positive measure, we construct a subset $\mathcal{B}_\epsilon \subset \mathcal{A}_\epsilon$ which we show has positive measure. To describe our construction, we need some additional notations. Fix an Iwasawa decomposition $G = NAK$ with the maximal unipotent subgroup N fixing ∞. Let $M \subset K$ be the centralizer of A in K, $P = NAM$ the stabilizer of ∞ in G and $\Gamma_\infty = \Gamma \cap P$ the stabilizer of ∞ in Γ. Let $Q = NM$ be the maximal subgroup of P containing Γ_∞ such that $\Gamma_\infty \backslash Q$ is relatively compact. See Section 2.1 for explicit descriptions of these groups. For any $\mathcal{D} \subset Q \backslash G$ we let

\[Y_\mathcal{D} = \{ \Gamma g \in \Gamma \backslash G \mid Q \gamma g \in \mathcal{D} \text{ for some } \gamma \in \Gamma \} .\]

Here by abuse of notation, for $o, x g_t \in \Gamma \backslash G$, we write $\text{dist}(o, x g_t)$ for the distance between their projections to $\Gamma \backslash \mathbb{H}^{n+1}$.
In Section 5.1, for any $\epsilon > 0$ we construct a sequence of sets $\mathcal{D}_m \subset Q \setminus G$ explicitly by taking unions of certain translations of cusp neighborhoods and we show that $\{\sigma (Y_{\mathcal{D}_m})\}_{m \in \mathbb{N}}$ is uniformly bounded from below and each $Y_{\mathcal{D}_m}$ satisfies

$$\forall x \in Y_{\mathcal{D}_m} \exists \ell \geq m \text{ such that } \frac{\text{dist}(x, xg_{\ell})}{\log \ell} \geq \frac{1-\epsilon}{n}. \tag{1.2}$$

By (1.2) it is clear that the limit superior set $\mathcal{B}_\epsilon := \cap_{\ell=1}^{\infty} \cup_{m=1}^{\infty} Y_{\mathcal{D}_m}$ is contained in \mathcal{A}_ϵ. Moreover, since $\{\sigma (Y_{\mathcal{D}_m})\}_{m \in \mathbb{N}}$ is uniformly bounded from below, \mathcal{B}_ϵ has positive measure. Hence \mathcal{A}_ϵ is of positive measure.

To show that $\{\sigma (Y_{\mathcal{D}_m})\}$ has a uniform lower bound, we find nice subsets $\mathcal{D}'_m \subset \mathcal{D}_m$ with $|\mathcal{D}'_m| = |\mathcal{D}_m|$ (here $|\cdot|$ denotes a right G-invariant measure on $Q \setminus G$) and we show $\{\sigma (Y_{\mathcal{D}'_m})\}$ is uniformly bounded from below. One standard way to handle $\sigma (Y_{\mathcal{D}'_m})$ to \mathcal{D}'_m. More precisely, for any compactly supported function f on $Q \setminus G$ the corresponding incomplete Eisenstein series $\Theta_f \in L^2(G \setminus G)$ attached to f is defined by

$$\Theta_f (g) = \sum_{\gamma \in \Gamma \gamma \Gamma} f(\gamma g).$$

Note that if f is supported on \mathcal{D}, then Θ_f is supported on $Y_{\mathcal{D}}$. To show that $\{\sigma (Y_{\mathcal{D}'_m})\}$ is bounded from below, it is enough to show that the L^2-norm (with respect to the measure σ) of the incomplete Eisenstein series $\Theta_{1_{\mathcal{D}'_m}}$ is not too large compared to the measure of \mathcal{D}'_m, where $1_{\mathcal{D}'_m}$ is the characteristic function of \mathcal{D}'_m. To show this, we bound $||\Theta_{1_{\mathcal{D}'_m}}||_2$ in terms of $|\mathcal{D}'_m|$. In fact, for any parameter $\lambda > 0$ we define a family of functions $\mathcal{A}_\lambda \subset L^2(Q \setminus G)$ (see description of \mathcal{A}_λ in Section 4.2) and we prove the following bound for functions in \mathcal{A}_λ.

Theorem 1.2. Let $G = \text{Iso}^+ (\mathbb{H}^{n+1})$ and $\Gamma \subset G$ a non-uniform lattice with a cusp at ∞. For any parameter $\lambda > 0$ there exists some constant C (depending on Γ and λ) such that

$$||\Theta_f||_2^2 \leq C (||f||_1^2 + ||f||_2^2) \tag{1.3}$$

for any $f \in \mathcal{A}_\lambda$, where the norms on the right are with respect to the right G-invariant measure on $Q \setminus G$.

Our construction of \mathcal{D}'_m yields that we can take functions in \mathcal{A}_{λ} (for some λ) to approximate $1_{\mathcal{D}'_m}$, then we can use Theorem 1.2 to bound $||\Theta_{1_{\mathcal{D}'_m}}||_2^2$ in terms of $|\mathcal{D}'_m|$. We note that our strategy of proving (1.3) is similar to the one used in [13]. To prove Theorem 1.2, we work out an explicit constant term formula for certain non-spherical Eisenstein series (for arbitrary $n \geq 2$). With this constant term formula, a formal computation ensures that we can bound the L^2-norm of any incomplete Eisenstein series by the right-hand side of (1.3), together with a third term expressed in terms of the exceptional poles of Eisenstein series. Thus (1.3) follows if we can bound this third term by the right-hand side of (1.3). However, to prove this bound, we need to assume the functions are from \mathcal{A}_{λ}.
Remark 1. An interesting question is whether (1.3) holds uniformly for any \(\mathcal{A}_f \). In particular, for our purpose if one can prove (1.3) uniformly for linear combinations of nonnegative functions in \(\mathcal{A}_f \), then the same method implies a stronger Borel-Cantelli law: every sequence of nested cusp neighborhoods \(\{ B_r \} \) with \(\sum_{r=1}^{\infty} \sigma(B_r) = \infty \) is Borel-Cantelli for unipotent flows. Such a result was obtained in [12, Remark 8] by proving (1.3) for all nonnegative functions in \(C_c^\infty(Q) \) when \(G \) is a product of copies of \(SL_2(\mathbb{R}) \left(\cong Iso^+(\mathbb{H}^2) \right) \) and \(SL_2(\mathbb{C}) \left(\cong Iso^+(\mathbb{H}^3) \right) \) and \(\Gamma \) is any arithmetic irreducible lattice. Their proof of (1.3) is indirect and depends on the existence of a family of lattices for which the Eisenstein series have no exceptional poles. We note that in [11] Gritsenko gave an example of such a lattice in \(Iso^+(\mathbb{H}^4) \). Hence using the general constant term formula we get, one can prove the above Borel-Cantelli law (for unipotent flows) for this specific lattice (and its commensurable lattices) in \(Iso^+(\mathbb{H}^4) \).

Remark 2. We end the introduction by remarking that the sets \(\mathcal{D}_m \) are constructed by taking unions of translations of the neighborhoods at the cusp \(\infty \) (along the unipotent flow), hence our method implies a slightly stronger result: logarithm laws for excursions of unipotent flows into any individual cusp (for other cusps, the result can be obtained by conjugating this cusp to \(\infty \)).

2. Preliminaries and notations

2.1. Vahlen group.** Let \(\mathbb{H}^{n+1} \) denote the \((n+1)\)-dimensional real hyperbolic space and \(G = Iso^+(\mathbb{H}^{n+1}) \) be its orientation preserving isometry group. There are various hyperbolic models of \(\mathbb{H}^{n+1} \) and each model gives an explicit description of \(G \). In this paper, we choose the upper half space model and realize \(G \) via the Vahlen group (see [1] [7] and [8] for more details about Vahlen group).

We first briefly recall some facts about Clifford algebra. The Clifford algebra \(C_n \) is an associative algebra over \(\mathbb{R} \) with \(n \) generators \(e_1, \ldots, e_n \) satisfying relations \(e_i^2 = -1, e_i e_j = -e_j e_i \). Let \(\mathcal{P}_n \) be the set of subsets of \(\{1, \ldots, n\} \). For \(I \in \mathcal{P}_n \), \(I = \{i_1, \ldots, i_r\} \) with \(i_1 < \cdots < i_r \), we define \(e_I := e_{i_1} \cdots e_{i_r} \) and \(e_{\emptyset} = 1 \). These \(2^n \) elements \(e_I \) \((I \in \mathcal{P}_n)\) form a basis of \(C_n \). The Clifford algebra \(C_n \) has a main anti-involution \(\ast \) and a main involution \(\cdot \). Explicitly, their actions on the basis elements are given by \((e_{i_1} \cdots e_{i_r})^* = e_{i_r} \cdots e_{i_1} \) and \((e_{i_1} \cdots e_{i_r})' = (-1)^r e_{i_r} \cdots e_{i_1} \). Their composition \(\bar{e}_I := (e_I^*)^* \) gives the conjugation map on \(C_n \).

For any \(1 \leq i \leq n \), let \(\mathbb{V}^i \) denote the real vector space spanned by \(1, e_1, \ldots, e_i \). Note that \(\dim \mathbb{V}^i = i + 1 \). The Clifford group \(T_i \) is defined to be the collection of all finite products of non-zero elements from \(\mathbb{V}^i \) with group operation given by multiplication. There is a well-defined norm on \(\mathbb{V}^n \) given by \(|v| = \sqrt{v \bar{v}} \) and it extends multiplicatively to a norm on \(T_i \).

In this setting, the \((n+1)\)-dimensional hyperbolic space model is the upper half space

\begin{equation}
\mathbb{H}^{n+1} := \{ x_0 + x_1 e_1 + \cdots + x_n e_n \in \mathbb{V}^n \mid x_i \in \mathbb{R}, x_n > 0 \}
\end{equation}
endowed with the Riemannian metric

\begin{equation}
 ds^2 = \frac{dx_0^2 + \cdots + dx_n^2}{x_n^2}.
\end{equation}

Let $M_2(C_n)$ be the set of 2×2 matrices over C_n. The Vahlen group $SL(2,T_{n-1})$ is defined by

\[
 SL(2,T_{n-1}) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_2(C_n) \mid a,b,c,d \in T_{n-1} \cup \{0\}, \begin{array}{l} ab^* + cd^* \in V^{n-1}, \\ \text{ad}^* - bc^* = 1 \end{array} \right\}.
\]

An element $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ in $SL(2,T_{n-1})$ acts on \mathbb{H}^{n+1} as an isometry via the Möbius transformation

\begin{equation}
 g \cdot v = (av + b)(cv + d)^{-1}.
\end{equation}

This gives a surjective homomorphism from $SL(2,T_{n-1})$ to $\text{Iso}^+ (\mathbb{H}^{n+1})$ with kernel $\pm I_2$. Hence G is realized as $PSL(2,T_{n-1}) := SL(2,T_{n-1}) / \{ \pm I_2 \}$. Here I_2 is the 2×2 identity matrix.

We fix an Iwasawa decomposition

\[PSL(2,T_{n-1}) = NAK, \]

with

\[N = \left\{ u_x = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \mid x = x_0 + x_1 e_1 + \cdots + x_{n-1} e_{n-1} \in V^{n-1} \right\}, \]

\[A = \left\{ a_t = \begin{pmatrix} e^{it} & 0 \\ 0 & e^{-it} \end{pmatrix} \mid t \in \mathbb{R} \right\}, \]

and

\[K = \{ g \in SL(2,T_{n-1}) \mid g \cdot e_n = e_n \} / \{ \pm I_2 \} \]

is the stabilizer of e_n. From this we can identify G/K with \mathbb{H}^{n+1} by sending gK to $g \cdot e_n$.

An element in K is of the form $\begin{pmatrix} q_2^* & -q_1^* \\ q_1 & q_2 \end{pmatrix}$ with $|q_1|^2 + |q_2|^2 = 1$ and $q_1 q_2^* \in V^{n-1}$. Let M be the centralizer of A in K, that is, M is the subgroup of K consisting of diagonal matrices. For later use we note that K is isomorphic to $SO(n+1)$, M is isomorphic to $SO(n)$ and $M \backslash K$ can be identified with the n-sphere S^n via the map

\[M \backslash K \longrightarrow S^n := \{ x_0 + x_1 e_1 + \cdots + x_n e_n \mid x_j \in \mathbb{R}, x_0^2 + x_1^2 + \cdots + x_n^2 = 1 \} \]

\[\begin{pmatrix} q_2^* & -q_1^* \\ q_1 & q_2 \end{pmatrix} \longrightarrow 2q_1^* q_2 + (|q_2|^2 - |q_1|^2) e_n. \]

Here this map is well-defined since $q_1 q_2^* \in V^{n-1}$ if and only if $q_1^* q_2 \in V^{n-1}$ ([16, Corollary 7.15]).
2.2. **Coordinates and normalization.** Let $G = NAK$ be the fixed Iwasawa decomposition as above and let $Q = NM$. Under the coordinates $g = u_xa_tk$, the Haar measure of G is given by
\[dg = e^{-nt}dxdt\,dk, \]
where dx is the usual Lebesgue measure on N (identified with \mathbb{R}^n), dk is the probability Haar measure on K. Hence the probability Haar measure $\sigma = \sigma_\Gamma$ on $\Gamma \backslash G$ is given by
\[d\sigma(g) = \frac{1}{\nu_\Gamma}e^{-nt}dxdt\,dk, \]
with $\nu_\Gamma = \int_{\mathcal{F}_\Gamma} dg$, where \mathcal{F}_Γ is a fundamental domain for $\Gamma \backslash G$.

We normalize the measures on various spaces as following. First for $\phi \in L^2(M\backslash K)$, we view ϕ as a left M-invariant function on K and normalize the Haar measure on $M\backslash K$ (also denoted by dk) such that
\[\int_{M\backslash K} \phi(k)\,dk = \int_K \phi(k)\,dk. \]
Next we identify $Q\backslash G = A \times M\backslash K$ and we normalize the Haar measure on $Q\backslash G$ so that for any $f \in C_\infty^c(Q\backslash G)$ we have
\[\int_{Q\backslash G} f(g)\,dg = \int_{\mathbb{R}}\int_{M\backslash K} f(a_tk)\,e^{-nt}dx\,dt\,dk. \]
We then normalize the Haar measure on Q so that for any $f \in C_\infty^c(G)$ we have
\[\int_G f(g)\,dg = \int_{Q\backslash G}\int_Q f(qg)\,dq\,dg. \]

2.3. **Cusps and reduction theory.** Fix the notations as above. Let $\partial \mathbb{H}^{n+1} := \{x_0 + x_1e_1 + \cdots + x_{n-1}e_{n-1} \in \mathbb{H}^{n-1} \mid x_i \in \mathbb{R}\} \cup \{\infty\}$ denote the boundary of \mathbb{H}^{n+1}. The action (2.3) extends naturally to $\partial \mathbb{H}^{n+1}$ by the same formula. Let $P = NAM$ be the subgroup of upper triangular matrices in G. We note that P is the stabilizer of ∞. Let $\Gamma \subseteq G$ be a non-uniform lattice in G. Define
\[\Gamma_\infty = \Gamma \cap P \]
and
\[\Gamma'_\infty = \Gamma \cap N. \]
Note that Γ_∞ is the stabilizer of ∞ in Γ, and Γ'_∞ consists the identity and unipotent elements in Γ_∞. We say that Γ has a cusp at ∞ if Γ'_∞ is nontrivial. Note that if Γ has a cusp at ∞, then $\Gamma \backslash G$ having finite co-volume implies that Γ'_∞ is a lattice (free abelian and of full rank) in N (see [9, Definition 0.5 and Theorem 0.7]). Moreover, we note that by discreteness, $\Gamma_\infty \cap A = \{I_2\}$. Thus the conjugation action of Γ_∞ on $N(= \mathbb{H}^{n-1})$ and Γ'_∞ induces an injection
\[\Gamma_\infty / \Gamma'_\infty \hookrightarrow SO(\mathbb{H}^{n-1}) \cap GL(\Gamma'_\infty). \]
Hence Γ'_∞ is a finite index subgroup of Γ_∞. Denote by $[\Gamma_\infty : \Gamma'_\infty]$ this index.
satisfies the following properties:

\[G \text{ is left invariant and satisfies } \text{dist}\text{ to be their lifts to } \Gamma = \mathbb{H}^{n+1}. \]

The distance function.

For any \(\xi \in \partial \mathbb{H}^{n+1} \), there exists some \(g \in G \) such that \(g \cdot \xi = \infty \). We say \(\Gamma \) has a cusp at \(\xi \) if \(g \Gamma g^{-1} \) has a cusp at \(\infty \). And we say two cusps \(\xi, \xi' \) are \(\Gamma \)-equivalent if there exists some \(\gamma \in \Gamma \) such that \(\gamma \cdot \xi = \xi' \). Assume that \(\Gamma \) has a cusp at \(\infty \), define the lattice

\[\mathcal{O}_\Gamma := \{ x \in \mathbb{H}^{n+1} \mid u_x \in \Gamma' \} \]

in \(\mathbb{H}^{n+1} \). Let \(\mathcal{F}_\mathcal{O}_\Gamma \subset \mathbb{H}^{n+1} \) be a fundamental domain for \(\mathcal{O}_\Gamma \). One easily sees that the set

\[(2.7) \quad \mathcal{F}^\prime_\infty = \{ u_x a_t k \mid x \in \mathcal{F}_\mathcal{O}_\Gamma, t \in \mathbb{R}, k \in K \} \]

is a fundamental domain for \(\Gamma' \setminus G \). It contains \([\Gamma_\infty : \Gamma^\prime_\infty] \) copies of \(\Gamma_\infty \setminus G \). For later use, we note that since \(\Gamma_\infty \) is a lattice in \(N \), \(\Gamma_\infty \setminus Q \) is relatively compact, hence

\[\omega_\Gamma := \int_{\Gamma_\infty \setminus Q} dq \]

is finite.

For any \(\tau \in \mathbb{R} \), let us denote \(A(\tau) = \{ a_t \mid t \geq \tau \} \). Recall that a Siegel set is a subset of \(G \) of the form \(\Omega_{\tau, U} = U A(\tau) K \) where \(U \) is an open, relatively compact subset of \(N \). Since \(G \) is of real rank one, we can apply the reduction theory of Garland and Raghunathan ([9] Theorem 0.6). That is, there exists \(\tau_0 \in \mathbb{R} \), an open, relatively compact subset \(U_0 \subset N \), a finite set \(\Xi = \{ \xi_1, \cdots, \xi_h \} \subset G \) (corresponding to a complete set of \(\Gamma \)-inequivalent cusps) and an open, relatively compact subset \(\mathcal{C} \) of \(G \) such that the Siegel fundamental domain

\[(2.8) \quad \mathcal{F}_{\tau, \tau_0, U_0} = \mathcal{C} \bigcup \left(\bigcup_{\xi_j \in \Xi} \xi_j \Omega_{\tau_0, U_0} \right) \]

satisfies the following properties:

1. \(\Gamma \mathcal{F}_{\tau, \tau_0, U_0} = G \);
2. the set \(\{ \gamma \in \Gamma \mid \gamma \mathcal{F}_{\tau, \tau_0, U_0} \cap \mathcal{F}_{\tau, \tau_0, U_0} \neq \emptyset \} \) is finite;
3. \(\gamma \xi_j \Omega_{\tau_0, U_0} \cap \xi_j \Omega_{\tau_0, U_0} = \emptyset \) for all \(\gamma \in \Gamma \) whenever \(\xi_i \neq \xi_j \in \Xi \).

In other words, the restriction to \(\mathcal{F}_{\tau, \tau_0, U_0} \) of the natural projection of \(G \) onto \(\Gamma \setminus G \) is surjective, at most finite-to-one, and the cusp neighborhood of each cusp of \(\Gamma \setminus G \) can be taken to be disjoint. We will fix this Siegel fundamental domain \(\mathcal{F}_{\tau, \tau_0, U_0} \) throughout the paper. For further use, we note that \(U_0 \) contains a fundamental domain of \(\Gamma_\infty \setminus N \).

2.4. The distance function. Fix a non-uniform lattice \(\Gamma \) in \(G \). Let \(\text{dist}_G \) and \(\text{dist} = \text{dist}_\Gamma \) denote the hyperbolic distance functions on \(G/K = \mathbb{H}^{n+1} \) and \(\Gamma \setminus G/K = \Gamma \setminus \mathbb{H}^{n+1} \) respectively. By slight abuse of notation, we also denote \(\text{dist}_G \) and \(\text{dist} \) to be their lifts to \(G \) and \(\Gamma \setminus G \) respectively. In particular, \(\text{dist}_G \) is left \(G \)-invariant and satisfies \(\text{dist}_G (I_2, a_t k) = t \) for any \(t \geq 0 \) and \(k \in K \), where \(I_2 \) is the identity matrix in \(G \). Moreover, for any \(g, h \in G \), \(\text{dist}_G \) and \(\text{dist} \) satisfy the relation

\[\text{dist}(\Gamma g, \Gamma h) = \inf_{\gamma \in \Gamma} \text{dist}_G (g, \gamma h) \].
Clearly, $\dist(\Gamma g, \Gamma h) \leq \dist_G(g, h)$. Conversely, if g, h are from the Siegel set Ω_{τ_0, U_0}, then there exists a constant D such that $\dist_G(\xi_i g, \gamma \xi_j h) \geq \dist_G(g, h) - D$ for any $\xi_i, \xi_j \in \Xi$ and any $\gamma \in \Gamma$ (see [6, Theorem C]). In particular, this implies
\[
\dist(\Gamma \xi_j g, \Gamma \xi_j h) \geq \dist_G(g, h) - D
\]
for any $\xi_j \in \Xi$ and any $g, h \in \Omega_{\tau_0, U_0}$. We then have

Lemma 2.1. For $o \in \mathcal{F}_{\Gamma, \tau_0, U_0}$ fixed, there exists a constant D' such that
\[
(2.9) \quad \dist_G(o, \xi_j g) - D' \leq \dist(o, \xi_j g) \leq \dist_G(o, \xi_j g)
\]
for any $\xi_j \in \Xi$ and any $g \in \Omega_{\tau_0, U_0}$.

Remark 3. We view $o, \xi_j g$ as elements in $\Gamma \backslash G$ when we write $\dist(o, \xi_j g)$, and as elements in G when we write $\dist_G(o, \xi_j g)$.

Proof. Only the first inequality needs a proof. Fix an arbitrary $h \in \Omega_{\tau_0, U_0}$, we have
\[
\dist(o, \xi_j g) \geq \dist(\xi_j h, \xi_j g) - \dist(o, \xi_j h) \\
\geq \dist_G(h, g) - D - \dist_G(o, \xi_j h) \\
= \dist_G(\xi_j h, \xi_j g) - D - \dist_G(o, \xi_j h) \\
\geq \dist_G(o, \xi_j g) - 2\dist_G(o, \xi_j h) - D.
\]
Then $D' = 2\sup_{\xi_j \in \Xi} \dist_G(o, \xi_j h) + D$ satisfies (2.9). \qed

Note that any $g \in \Omega_{\tau_0, U_0}$ can be written as $g = ua_t k$ with $u \in U_0, t \geq \tau_0, k \in K$. Since U_0 is relatively compact, Ξ is finite and dist is right K-invariant, in view of Lemma 2.1 we have
\[
(2.10) \quad \dist(o, \xi_j g) = \dist_G(o, a_t) + O(1) = t + O(1).
\]
In particular, if Γ has a cusp at ∞, Ξ can be taken such that it contains the identity element. Hence in this case,
\[
(2.11) \quad \dist(o, g) = t + O(1)
\]
for any $g = ua_t k \in \Omega_{\tau_0, U_0}$. Finally, we note that when r is sufficiently large, B_r is a collection of neighborhoods at all cusps. In view of the above reduction theory and the Haar measure (2.4) we have
\[
(2.12) \quad \sigma(B_r) \asymp e^{-nr}
\]
for any $r > 0$.

3. **Incomplete Eisenstein series**

Let G be as before, $\Gamma \subset G$ be a non-uniform lattice in G with a cusp at ∞. Given a compactly supported function $f \in L^2(Q \backslash G)$, we define the incomplete Eisenstein series attached to f by
\[
\Theta_f(g) = \sum_{\gamma \in \Gamma \cap \Gamma g} f(\gamma g).
\]
Note that \(\Theta_f \) is left \(\Gamma \)-invariant since \(f \) is left \(\Gamma_\infty \)-invariant \((\Gamma_\infty \subset Q) \). Moreover, since \(f \) is compactly supported, the summation is a finite sum. Hence it is a well-defined function on \(\Gamma \backslash G \). We first give a simple but useful identity related to \(\Theta_f \) given by the standard unfolding trick.

Lemma 3.1. For \(\Theta_f \) as above and any \(F \in L^2(\Gamma \backslash G) \)
\[
\int_{\Gamma \backslash G} \Theta_f(g)F(g)\,d\sigma(g) = \int_{\Gamma_\infty \backslash G} f(g)\,d\sigma(g).
\]

Proof. Let \(\mathcal{F}_\Gamma \) be a fundamental domain for \(\Gamma \backslash G \). Note that \(\mathcal{F}_\infty = \cup_{\gamma \in \Gamma_\infty} \gamma \mathcal{F}_\Gamma \) form a fundamental domain for \(\Gamma_\infty \backslash G \), hence
\[
\int_{\mathcal{F}_\Gamma} \Theta_f(g)F(g)\,d\sigma(g) = \sum_{\gamma \in \Gamma_\infty \backslash \Gamma} \int_{\mathcal{F}_\Gamma} f(\gamma g)F(g)\,d\sigma(g)
\]
\[
= \sum_{\gamma \in \Gamma_\infty \backslash \Gamma} \int_{\mathcal{F}_\Gamma} f(g)\,d\sigma(g)
\]
\[
= \int_{\cup_{\gamma \in \Gamma_\infty \backslash \Gamma} \gamma \mathcal{F}_\Gamma} f(g)\,d\sigma(g)
\]
\[
= \int_{\Gamma_\infty \backslash G} f(g)\,d\sigma(g).
\]

In particular, taking \(F = \overline{\Theta_f} = \Theta_T \) we get
\[
||\Theta_f||^2_2 = \int_{\Gamma_\infty \backslash G} \overline{f(g)}\Theta_f(g)\,d\sigma(g).
\]

Moreover, by (2.4) and (2.7) we have
\[
||\Theta_f||^2_2 = \frac{1}{[\Gamma_\infty : \Gamma_\infty \cap \Gamma]_K} \int_K \int_{\mathcal{F}_{\mathcal{V}_T}} f(a_t k)e^{-nt} \int_{\mathcal{F}_{\mathcal{V}_T}} \Theta_f(u_x a_t k)\,dx\,dt\,dk.
\]

Next we will compute \(||\Theta_f||^2_2 \) by expressing the term \(\int_{\mathcal{F}_{\mathcal{V}_T}} \Theta_f(u_x a_t k)\,dx \) as an integral of certain non-spherical Eisenstein series (see Lemma 4.2). Before we can do that, we need to recall some facts of spherical Eisenstein series of real rank one groups (see [20] for the statements and [15] for the general theory).

3.1. Spherical Eisenstein series
Denote by \(C^\infty(Q \backslash G / K) \) the space of smooth left \(Q \)-invariant and right \(K \)-invariant functions on \(G \). For any \(s \in \mathbb{C} \), define the function \(\varphi_s \in C^\infty(Q \backslash G / K) \) by
\[
\varphi_s(ua_t k) = e^{st}.
\]

Given a lattice \(\Gamma \subset G \) with a cusp at \(\infty \), the spherical Eisenstein series (corresponding to the cusp at \(\infty \)) is defined by
\[
E(s, g) = \sum_{\gamma \in \Gamma_\infty \backslash \Gamma} \varphi_s(\gamma g).
\]

This series converges for \(\text{Re}(s) > n \), it is right \(K \)-invariant and satisfies the following differential equation
\[
(\Delta + s(n - s)) E(s, g) = 0,
\]
where \(\Delta \) is the Laplacian on \(G \backslash \mathbb{R}^n \).
where $\Delta = e^{2t} \left(\frac{\partial^2}{\partial x_0^2} + \cdots + \frac{\partial^2}{\partial x_{n-1}^2} \right) + \left(\frac{\partial^2}{\partial t^2} - n \frac{\partial}{\partial t} \right)$ is the Laplace-Beltrami operator on the upper half space

$$\mathbb{H}^{n+1} = \{ x_0 + x_1 e_1 + \cdots + x_{n-1} e_{n-1} + e^t e_n \mid x_i, t \in \mathbb{R} \}.$$

The constant term of the Eisenstein series (corresponding to the cusp at ∞) is defined as

$$E^0 (s, g) = \frac{1}{|\mathbb{F}_\mathbb{C}|} \int_{x \in \mathbb{F}_\mathbb{C}} E(s, u_x g) \, dx.$$

It has the form

$$E^0 (s, g) = \phi_s (g) + \mathcal{C}_\Gamma (s) \phi_{n-s} (g),$$

where the function $\mathcal{C} (s) = \mathcal{C}_\Gamma (s)$ can be extended to a meromorphic function on the half plane $\text{Re}(s) \geq \frac{n}{2}$ with a simple pole at $s = n$ and only possibly finitely many simple poles (called exceptional poles) on the interval $(\frac{n}{2}, n)$. Finally we note that using the functional equation satisfied by the Eisenstein series and the same argument in [13, p. 10], $|\mathcal{C} (s)| \leq 1$ for $\text{Re}(s) = \frac{n}{2}$.

3.2. The raising operator.

Let \mathfrak{g} and \mathfrak{k} be the Lie algebra of G and K respectively. Let $\mathfrak{g} = \mathfrak{g} \otimes \mathbb{C}$ and $\mathfrak{k} = \mathfrak{k} \otimes \mathbb{C}$ be their complexifications. As a real vector space, \mathfrak{k} is spanned by the matrices

$$- \frac{1}{2} \begin{pmatrix} e_i e_j & 0 \\ e_i e_j & 0 \end{pmatrix} (1 \leq i < j \leq n-1), \quad - \frac{1}{2} \begin{pmatrix} e_l & 0 \\ 0 & -e_l \end{pmatrix} (1 \leq l \leq n-1),$$

$$\frac{1}{2} \begin{pmatrix} 0 & e_m \\ e_m & 0 \end{pmatrix} (1 \leq m \leq n-1), \quad \frac{1}{2} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix},$$

where e_1, \ldots, e_{n-1} are elements in the Clifford algebra C_n as before. The Lie algebra \mathfrak{g} is spanned by the matrices as above and

$$\begin{pmatrix} 0 & e_i \\ 0 & 0 \end{pmatrix} (1 \leq i \leq n-1), \quad \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

3.2.1. Root-space decomposition of \mathfrak{k}_C.

Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{k}_C. Since \mathfrak{k}_C is a complex semisimple Lie algebra, it has a root-space decomposition with respect to \mathfrak{h}:

$$\mathfrak{k}_C = \mathfrak{h} \oplus \bigoplus_{\alpha \in \Phi (\mathfrak{k}_C, \mathfrak{h})} \mathfrak{k}_\alpha,$$

where $\Phi = \Phi (\mathfrak{k}_C, \mathfrak{h})$ is the corresponding set of roots, and for each $\alpha \in \Phi$ the root-space \mathfrak{k}_α is given by

$$\mathfrak{k}_\alpha := \{ X \in \mathfrak{k}_C \mid [H, X] = \alpha (H) \, X \text{ for any } H \in \mathfrak{h} \}.$$

Each root-space is one-dimensional and satisfies $[\mathfrak{k}_\alpha, \mathfrak{k}_\beta] \subset \mathfrak{k}_{\alpha + \beta}$ for any $\alpha, \beta \in \Phi$. Fix a set of simple roots Δ and let Φ^+ denote the corresponding set of positive roots. Then $\Phi = \Phi^+ \cup (-\Phi^+)$. For backgrounds on complex semisimple Lie algebra, see [14, Chapter II]. In this subsection, we first give an explicit isomorphism between K and $SO (n + 1)$, then use this isomorphism and the classical root-space decomposition of $so (n + 1, \mathbb{C})$ to get an explicit root-space decomposition of \mathfrak{k}_C.

References

[13, p. 10]
[14, Chapter II]
Recall the identification
\[M \setminus K \rightarrow S^n := \{ x_0 + x_1 e_1 + \cdots + x_n e_n \mid x_i \in \mathbb{R}, x_0^2 + x_1^2 + \cdots + x_n^2 = 1 \} \]

Embedding \(S^n \) in \(\mathbb{V}^n \) and fix an inner product on \(\mathbb{V}^n \) such that \(\{1, e_1, \cdots, e_n\} \) form an orthonormal basis of \(\mathbb{V}^n \). Then the right regular action of \(K \) on \(M \setminus K = S^n \) induces an isomorphism from \(K \) to \(SO(n + 1) \). In particular, it induces an isomorphism between \(\mathfrak{t}_C \) and \(\mathfrak{s} \mathfrak{o} (n + 1, \mathbb{C}) \). Explicitly, for any \(0 \leq i < j \leq n \) define \(L_{i,j} \in \mathfrak{t}_C \) as following:

\[L_{i,j} = \begin{cases}
\frac{1}{2} \begin{pmatrix} e_i e_j & 0 \\
0 & e_i e_j \end{pmatrix} & \text{if } 1 \leq i < j \leq n - 1 \\
\frac{1}{2} \begin{pmatrix} 0 & -e_i \\
e_i & 0 \end{pmatrix} & \text{if } i = 0, 1 \leq j \leq n - 1 \\
\frac{1}{2} \begin{pmatrix} e_i & 0 \\
0 & e_i \end{pmatrix} & \text{if } 1 \leq i \leq n - 1, j = n \\
\frac{1}{2} \begin{pmatrix} 0 & 1 \\
-1 & 0 \end{pmatrix} & \text{if } i = 0, j = n.
\end{cases} \tag{3.4} \]

By direct computation, the induced isomorphism from \(\mathfrak{t}_C \) to \(\mathfrak{s} \mathfrak{o} (n + 1, \mathbb{C}) \) is given by sending \(L_{i,j} \) to \(E_{i,j} \) for any \(0 \leq i < j \leq n \), where \(E_{i,j} \) is the antisymmetric \((n + 1) \times (n + 1)\) matrix with \((i,j) \)th entry equals one, \((j,i) \)th entry equals negative one and zero elsewhere. Using the classical commutator relations of \(E_{i,j} \) we get the commutator relations of \(L_{i,j} \). To ease the notation, we let \(L_{i,i} = 0 \) for \(0 \leq i \leq n \) and \(L_{i,j} = -L_{j,i} \) for \(0 \leq j < i \leq n \). Explicitly, \(L_{i,j} \) satisfy the following commutator relations

\[[L_{i,j}, L_{i,m}] = \delta_{jl} L_{i,m} - \delta_{il} L_{j,m} - \delta_{jm} L_{i,l} + \delta_{im} L_{j,l} \tag{3.5} \]

for any \(0 \leq i, j, l, m \leq n \), where \(\delta_{ij} \) is the Kronecker symbol. Moreover, using the root-space decomposition of \(\mathfrak{s} \mathfrak{o} (n + 1, \mathbb{C}) \) (see [14, p. 127-129]) we get the following root-space decomposition of \(\mathfrak{t}_C \) depending on the parity of \(n + 1 \).

Case 1: \(n + 1 = 2k + 1 \) is odd. For each \(0 \leq i \leq k - 1 \), let

\[H_i = \sqrt{-1} L_{2i,2i+1} \]

with \(L_{2i,2i+1} \) defined in (3.4). Let \(\mathfrak{h} \) be the complex vector space spanned by the set \(\{ H_i \mid 0 \leq i \leq k - 1 \} \). For each \(0 \leq i \leq k - 1 \), let \(\epsilon_i : \mathfrak{h} \to \mathbb{C} \) be the linear functional on \(\mathfrak{h} \) characterized by \(\epsilon_i (H_j) = \delta_{ij} \). Using the above isomorphism between \(\mathfrak{t}_C \) and the root-space decomposition of \(\mathfrak{s} \mathfrak{o} (2k + 1, \mathbb{C}) \), we know \(\mathfrak{h} \) is a Cartan subalgebra and we can choose the set of simple roots to be

\[\Delta = \{ \epsilon_0 - \epsilon_1, \epsilon_1 - \epsilon_2, \ldots, \epsilon_{k-2} - \epsilon_{k-1}, \epsilon_{k-1} \}. \]

The corresponding positive roots are given by

\[\Phi^+ = \{ \epsilon_i \pm \epsilon_j \mid 0 \leq i < j \leq k - 1 \} \cup \{ \epsilon_l \mid 0 \leq l \leq k - 1 \}. \]
Moreover, for any $0 \leq i < j \leq k - 1$ and $0 \leq l \leq k - 1$, the positive root-spaces $\mathfrak{t}_{\varepsilon_i \pm \varepsilon_j}$ and $\mathfrak{t}_{\varepsilon_i}$ are given as following:

\[
\mathfrak{t}_{\varepsilon_i \pm \varepsilon_j} = \mathbb{C} \left\langle \left(L_{2i,2j} - \sqrt{-1} L_{2i+1,2j} \right) \pm \left(L_{2i+1,2j+1} + \sqrt{-1} L_{2i,2j+1} \right) \right\rangle,
\]

and

\[
\mathfrak{t}_{\varepsilon_i} = \mathbb{C} \left\langle L_{2i,2k} - \sqrt{-1} L_{2i+1,2k} \right\rangle.
\]

Case II: $n + 1 = 2k$ is even. Similar to the odd case, for each $0 \leq i < k - 1$, let

\[
H_i = \sqrt{-1} L_{2i,2i+1}
\]

and let \mathfrak{h} be the complex vector space spanned by $\{H_i \mid 0 \leq i \leq k - 1\}$. For each $0 \leq i \leq k - 1$, denote $\varepsilon_i : \mathfrak{h} \to \mathbb{C}$ the linear functional on \mathfrak{h} characterized by $\varepsilon_i(H_j) = \delta_{ij}$. The set of simple roots can be chosen to be

\[
\Delta = \{\varepsilon_0 - \varepsilon_1, \varepsilon_1 - \varepsilon_2, \ldots, \varepsilon_{k-2} - \varepsilon_{k-1}, \varepsilon_{k-2} + \varepsilon_{k-1}\}.
\]

The corresponding positive roots are given by

\[
\Phi^+ = \{\varepsilon_i \pm \varepsilon_j \mid 0 \leq i < j < k - 1\},
\]

with $\mathfrak{t}_{\varepsilon_i \pm \varepsilon_j}$ also given by (3.6).

Remark 4. The commutator relations and root-space decomposition above can both be checked directly using the relations $e_i e_j + e_j e_i = -2\delta_{i,j}$ for any $1 \leq i, j \leq n$.

3.2.2. **Spherical principal series representation.** Let $G = NAK$ be the fixed Iwahori decomposition and M be the centralizer of A in K as before. For any $s \in \mathbb{C}$, recall the function φ_s on NA defined by

\[
\varphi_s(ua_i) = e^{st}
\]

for any $u \in N$ and $a_i \in A$. Consider the corresponding spherical principal series representation $I^s = \text{Ind}_{NAM}^G(\varphi_s \otimes 1_M)$, where 1_M is the trivial representation of M. Elements in I^s are measurable functions $f : G \to \mathbb{C}$ satisfying

\[
\int (uawg) = \varphi_s(a)f(g) \quad \text{for} \quad \sigma \text{-a.e.} \quad g \in G,
\]

with $u \in N, a \in A$ and $w \in M$.

G acts on I^s by right regular action. We note that due to condition (3.8), $f \in I^s$ is a function on $A \times M \setminus K$, thus by the identification between $M \setminus K$ and S^n, f is a functions in coordinates $(t, x_0, x_1, \ldots, x_n)$ with the restriction $x_0^2 + x_1^2 \cdots + x_n^2 = 1$.

Let I_∞^s be the space of smooth functions in I^s. We note that I_∞^s is a dense subspace of I^s and the right regular action of G on I^s induces a g-module structure on I_∞^s: For any $X \in g$ and any $f \in I_\infty^s$, define the Lie derivative, $\pi(X)$, by

\[
\left(\pi(X)f \right)(g) = \frac{d}{dy} f \left(g \exp(yX) \right) \bigg|_{y=0}.
\]

We note that the Lie derivative respects the Lie bracket, that is, $[\pi(X), \pi(Y)] = \pi([X, Y])$ for any $X, Y \in g$, where the first Lie bracket is the Lie bracket of endomorphisms. Since functions in I_∞^s are complex-valued, we can complexify the Lie derivative by defining $\pi(X + \sqrt{-1} Y) := \pi(X) + \sqrt{-1} \pi(Y)$ for any $X, Y \in g$.

Thus I^s_∞ becomes a \mathfrak{g}_C-module. In particular, I^s_∞ is also a \mathfrak{t}_C-module. Let \mathfrak{h} and Φ^+ be as before. Let \mathfrak{h}^* denote the complex dual of \mathfrak{h}. Given a \mathfrak{t}_C-module V and $\rho \in \mathfrak{h}^*$, we say $v \in V$ is of K-weight ρ if $H \cdot v = \rho(H) v$ for any $H \in \mathfrak{h}$. We say $v \in V$ is a highest weight vector if v is of K-weight ρ for some $\rho \in \mathfrak{h}^*$ and $X \cdot v = 0$ for any $\alpha \in \Phi^+$ and any $X \in \mathfrak{g}_\alpha$. We note that every irreducible representation of K is a finite-dimensional irreducible \mathfrak{t}_C-module by differentiating the group action at the identity, and every finite-dimensional irreducible \mathfrak{t}_C-module admits a unique (up to scalars) highest weight vector (see [14, Theorem 5.5 (b)]).

Due to condition (3.8), I^s is isomorphic to $L^2(M \backslash K)$ as K-representations by sending f to $f|_K$. Identify $M \backslash K$ with S^n as above, we have the following decomposition of $L^2(M \backslash K)$ as K-representations:

$$L^2(M \backslash K) = \bigoplus_{m \geq 0} L^2(M \backslash K, m),$$

where $L^2(M \backslash K, m)$ is the space of degree m harmonic polynomials in $n + 1$ variables restricted to S^n (see [10, Corollary 5.0.3]) and \bigoplus denote the Hilbert direct sum. Moreover, let \mathcal{H}^m be the space of degree m harmonic polynomials in coordinates $(x_0, x_1, \cdots, x_n) \in \mathbb{V}^n$. Then \mathcal{H}^m is an irreducible K-representation and is isomorphic to $L^2(M \backslash K, m)$ via the map $\phi \mapsto \phi|_{S^n}$ ([19, Theorem 0.3 and 0.4]). Finally, we note that $(x_0 - \sqrt{-1} x_1)^m \in \mathcal{H}^m$ is of K-weight $m \varepsilon_0$ ([14, p. 277-278]) and \mathcal{H}^m is of highest weight $m \varepsilon_0$ ([14, p. 339 Prob. 9.2]). Hence $(x_0 - \sqrt{-1} x_1)^m$ is the unique (up to scalars) highest weight vector in \mathcal{H}^m.

Correspondingly, let $I^s_\infty(K, m) := \{ f \in I^s_\infty \mid f|_K \in L^2(M \backslash K, m) \}$. Then we have a decomposition of I^s_∞

$$I^s_\infty = \bigoplus_{m=0}^{\infty} I^s_\infty(K, m).$$

Moreover, $I^s_\infty(K, m)$ is an irreducible \mathfrak{t}_C-module of highest weight $m \varepsilon_0$, and the highest weight vector is given by

$$\varphi_{s, m}(t, x_0, x_1, \cdots, x_n) := e^{st} (x_0 - \sqrt{-1} x_1)^m.$$

Now we define the raising operator $R^+ \in \mathfrak{g}_C$ by

$$R^+ = \frac{1}{2} \pi \left(\begin{array}{cc} 0 & -1 + \sqrt{-1} e_1 \\ -1 - \sqrt{-1} e_1 & 0 \end{array} \right) = -\frac{1}{2} \pi \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) + \frac{\sqrt{-1}}{2} \pi \left(\begin{array}{cc} 0 & e_1 \\ -e_1 & 0 \end{array} \right).$$

To compute R^+ explicitly, we use the spherical coordinates on S^n: Let (x_0, x_1, \cdots, x_n) be the coordinates on S^n as above, define $(\theta_0, \theta_1, \ldots, \theta_{n-1}) \in [0, 2\pi)^{n-1} \times$
[0, \pi) such that
\[
\begin{align*}
 x_0 &= \cos \theta_0, \\
 x_1 &= \sin \theta_0 \cos \theta_1, \\
 &\vdots \\
 x_{n-1} &= \sin \theta_0 \cdots \sin \theta_{n-2} \cos \theta_{n-1}, \\
 x_n &= \sin \theta_0 \cdots \sin \theta_{n-2} \sin \theta_{n-1}.
\end{align*}
\]
Hence under the coordinates \((t, \theta_i)\), \(\varphi_{s,m}\) is given by
\[
\varphi_{s,m}(t, \theta_i) = e^{st\left(\cos \theta_0 - \sqrt{-1} \sin \theta_0 \cos \theta_1\right)}^m.
\]
Moreover, in these coordinates, for any \(X \in g_C\), the Lie derivative \(\pi(X)\) is a first order differential operator of the form
\[
\pi(X) = F \frac{\partial}{\partial t} + \sum_{i=0}^{n-1} F_i \frac{\partial}{\partial \theta_i},
\]
where \(F, F_i\) are functions in \((t, \theta_i)\). For our purpose, we define
\[
\pi(X) := F \frac{\partial}{\partial t} + F_0 \frac{\partial}{\partial \theta_0} + F_1 \frac{\partial}{\partial \theta_1}.
\]
Since \(\varphi_{s,m}\) only depends on the variables \((t, \theta_0, \theta_1)\), \(\pi(X) \varphi_{s,m} = \pi(X) \varphi_{s,m}\) for any \(X \in g_C\).

Now we describe the strategy to compute the Lie derivatives. We first show how to extract the coordinates \((t, \theta_i)\) from a given element \(g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G\). Write
\[
\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix} \begin{pmatrix} e^{t \frac{i}{2}} & 0 \\ 0 & e^{-t \frac{i}{2}} \end{pmatrix} \begin{pmatrix} q_2 & -q_1' \\ q_1' & q_2' \end{pmatrix}
\]
by Iwasawa decomposition. Comparing the second row of the matrices on both sides, we get
\[
e^{-t} = |c|^2 + |d|^2
\]
and
\[
x_0 + x_1 e_1 + \cdots + x_n e_n = \frac{2\bar{c}d + (|d|^2 - |c|^2) e_n}{|c|^2 + |d|^2},
\]
where \(x_i\) are expressed by \(\theta_i\) as above. Fix an element \(g \in G\). For any \(X \in g\), the coordinates \((t, \theta_i)\) of \(g \exp \{yX\}\) can be viewed as functions in \(y\) as \(y\) varies. Denote \(\{t(y), \theta_i(y)\}\) to indicate this dependence on \(y\). Then the Lie derivative \(\pi(X)\) is exactly given by
\[
\pi(X) = t'(0) \frac{\partial}{\partial t} + \theta_0'(0) \frac{\partial}{\partial \theta_0} + \theta_1'(0) \frac{\partial}{\partial \theta_1},
\]
Lemma 3.2. Let \(B_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \) and \(B_2 = \begin{pmatrix} 0 & e_1 \\ -e_1 & 0 \end{pmatrix} \). Then

\[
\pi(B_1) = -2 \cos \theta_0 \frac{\partial}{\partial t} - 2 \sin \theta_0 \frac{\partial}{\partial \theta_0},
\]

and

\[
\pi(B_2) = -2 \sin \theta_0 \cos \theta_1 \frac{\partial}{\partial t} + 2 \cos \theta_0 \cos \theta_1 \frac{\partial}{\partial \theta_0} - 2 \sin \theta_1 \frac{\partial}{\sin \theta_0 \partial \theta_1}.
\]

Proof. Using the formula \(\exp(yB_1) = \sum_{i=0}^{\infty} \frac{(yB_1)^i}{i!} \) we get

\[
\exp(yB_1) = \begin{pmatrix} \cosh y & \sinh y \\ \sinh y & \cosh y \end{pmatrix}.
\]

Thus

\[
\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \cosh y & \sinh y \\ \sinh y & \cosh y \end{pmatrix} = \begin{pmatrix} \ast & \ast \\ c \cosh y + d \sinh y & c \sinh y + d \cosh y \end{pmatrix}.
\]

Using (3.10) we get

\[
e^{-t(y)} = | \cosh y + d \sinh y |^2 + |c \sinh y + d \cosh y |^2 = e^{-t} \left(\cosh(2y) + \sinh(2y) \cos \theta_0 \right).
\]

Taking derivatives with respect to \(y \) and evaluating at 0 on both sides we get

\[
t'(0) = -2 \cos \theta_0.
\]

Similarly, using (3.11) and comparing the constant term and coefficient of \(e_1 \), we get

\[
\cos(\theta_0(y)) = \frac{\sinh(2y) + \cosh(2y) \cos \theta_0}{\cosh(2y) + \sinh(2y) \cos \theta_0}
\]

and

\[
\sin(\theta_0(y)) \cos(\theta_1(y)) = \frac{\sin \theta_0 \cos \theta_1}{\cosh(2y) + \sinh(2y) \cos \theta_0}.
\]

Taking derivatives with respect to \(y \) and evaluating at 0 we get

\[
\theta_0'(0) = -2 \sin \theta_0 \quad \text{and} \quad \theta_1'(0) = 0.
\]

Thus \(\pi(B_1) = -2 \cos \theta_0 \frac{\partial}{\partial t} - 2 \sin \theta_0 \frac{\partial}{\partial \theta_0} \).

Similarly, for \(B_2 \) we have \(\exp(yB_2) = \begin{pmatrix} \cosh y & \sinh y e_1 \\ -\sinh y e_1 & \cosh y \end{pmatrix} \) and

\[
\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \cosh y & \sinh y e_1 \\ -\sinh y e_1 & \cosh y \end{pmatrix} = \begin{pmatrix} \ast & \ast \\ c \cosh y - d e_1 \sinh y & c e_1 \sinh y + d \cosh y \end{pmatrix}.
\]

Using (3.10) and (3.11), after some tedious but straightforward computations we get

\[
e^{-t(y)} = e^{-t} \left(\cosh(2y) + \sinh(2y) \sin \theta_0 \cos \theta_1 \right),
\]

\[
\cos(\theta_0(y)) = \frac{\cos \theta_0}{\cosh(2y) + \sinh(2y) \sin \theta_0 \cos \theta_1},
\]

\[
\cos(\theta_0(y)) = \frac{\cos \theta_0}{\cosh(2y) + \sinh(2y) \sin \theta_0 \cos \theta_1}.
\]
and
\[
\sin(\theta(y)) \cos(\theta_1(y)) = \frac{\sinh(2y) + \cosh(2y) \sin \theta_0 \cos \theta_1}{\cosh(2y) + \sinh(2y) \sin \theta_0 \cos \theta_1}.
\]

Hence by taking derivatives with respect to \(y \) and evaluating at 0 we get
\[
t'(0) = -2 \sin \theta_0 \cos \theta_1, \quad \theta_0'(0) = 2 \cos \theta_0 \cos \theta_1 \quad \text{and} \quad \theta_1'(0) = -2 \frac{\sin \theta_1}{\sin \theta_0}.
\]

Hence \(\pi(B_2) = -2 \sin \theta_0 \cos \theta_1 \frac{\partial}{\partial t} + 2 \cos \theta_0 \cos \theta_1 \frac{\partial}{\partial \theta_0} - 2 \frac{\sin \theta_1}{\sin \theta_0} \frac{\partial}{\partial \theta_1} \).

In view of Lemma 3.2 we get
\[
\tilde{R}^+ = \left(\cos \theta_0 - \sqrt{-1} \sin \theta_0 \cos \theta_1 \right) \frac{\partial}{\partial t} + \left(\sin \theta_0 + \sqrt{-1} \cos \theta_0 \cos \theta_1 \right) \frac{\partial}{\partial \theta_0} - \sqrt{-1} \frac{\sin \theta_1}{\sin \theta_0} \frac{\partial}{\partial \theta_1}.
\]

Since \(R^+ \varphi_{s,m} = \tilde{R}^+ \varphi_{s,m} \), applying \(\tilde{R}^+ \) to \(\varphi_{s,m} \) we get
\[
(3.12) \quad R^+ \varphi_{s,m} = (s + m) \varphi_{s,m+1}.
\]

Remark 5. We note that using the explicit root-space decomposition described as above, one can directly check that the raising operator \(R^+ \) (more explicitly, the matrix representing \(R^+ \)) satisfies
\[
(3.13) \quad [H, R^+] = \epsilon_0(H) R^+ \quad \text{and} \quad [R^+, \xi_a] = 0
\]

for any \(H \in \mathfrak{h} \) and any \(\alpha \in \Phi^+ \). The first part of (3.13) implies that \(R^+ \) sends a vector of \(K \)-weight \(\rho \) to a vector of \(K \)-weight \(\rho + \epsilon_0 \) and the second part of (3.13) implies that \(R^+ \) sends a highest weight vector to either zero or another highest weight vector. Since \(\varphi_{s,m} \) is a highest weight vector of \(K \)-weight \(me_0 \), \(R^+ \varphi_{s,m} \) is either zero or a highest weight vector of \(K \)-weight \((m + 1)e_0 \). But since \(I^s_m = \sum_{m=0}^{\infty} I^s_m(K, m) \) and each \(I^s_m(K, m) \) has a unique (up to scalars) highest weight vector \(\varphi_{s,m} \), the set of highest weight vectors in \(I^s_m \) is exactly \(\{ \varphi_{s,m} \mid m \geq 0 \} \). Thus \(R^+ \varphi_{s,m} \) is a multiple of \(\varphi_{s,m+1} \). In fact, (3.13) is the characterization we used to find \(R^+ \). However, once we have found \(R^+ \), (3.13) is no longer essential for our proof, since we get (3.12) (which trivially implies that \(R^+ \varphi_{s,m} \) is a multiple of \(\varphi_{s,m+1} \)) by explicit computation.

3.3. Non-spherical Eisenstein series.

Given \(\phi \in L^2(M \backslash K, m) \), we view \(\phi \) as a function on \(G \) by setting \(\phi(\tau u a k) = \phi(k) \) for any \(u \in N \) and any \(a \in A \). We define the non-spherical Eisenstein series by
\[
E(\phi, s, g) = \sum_{g \in \Gamma \backslash \Gamma} \varphi_s(\gamma g) \phi(\gamma g).
\]

Note that \(E(\phi, s, g) \) is no longer right \(K \)-invariant. Its constant term (corresponding to the cusp at \(\infty \)) is defined by
\[
E^0(\phi, s, g) = \frac{1}{|\mathcal{F}_0|} \int_{x \in \mathcal{F}_0} E(\phi, s, u_x g) \, dx.
\]

Now using (3.12) we can get an explicit formula for \(E^0(\phi, s, g) \).
PROPOSITION 3.3. For any $\phi \in L^2(M \setminus K, m)$,

$$E^0(h_m, s, g) = (\varphi_s(g) + P_m(s) \mathcal{C}(s) \varphi_{n-s}(g)) \phi(g),$$

(3.14)

where $P_0(s) = 1$ and $P_m(s) = \prod_{k=0}^{m-1} \frac{n-s+k}{s+k}$ for $m \geq 1$.

Proof. For any $m \geq 0$, let h_m be the highest weight vector in $L^2(M \setminus K, m)$. We first prove (3.14) for h_m. We prove by induction. If $m = 0$, then (3.14) follows from the constant term formula for spherical Eisenstein series. Assume that it holds for some integer $m \geq 0$, we want to show it also holds for $m + 1$. We apply the raising operator R^+ to the constant term $E^0(h_m, s, g)$. On the one hand, by induction,

$$E^0(h_m, s, g) = \varphi_s, m(g) + P_m(s) \mathcal{C}(s) \varphi_{n-s, m}(g).$$

Hence by (3.12) we get

$$R^+ E^0(h_m, s, g) = (s + m) \varphi_{s, m+1}(g) + (n - s + m) P_m(s) \mathcal{C}(s) \varphi_{n-s, m+1}(g).$$

On the other hand, since R^+ commutes with the left regular action, we have

$$R^+ E^0(h_m, s, g) = \frac{1}{|F_{C_t}|} \int_{x \in F_{C_t}} \sum_{\gamma \in \Gamma_{\infty} \Gamma} R^+ \varphi_{s, m}(\gamma u x g) \, dx$$

$$= \frac{s + m}{|F_{C_t}|} \int_{x \in F_{C_t}} \sum_{\gamma \in \Gamma_{\infty} \Gamma} \varphi_{s, m+1}(\gamma u x g) \, dx$$

$$= (s + m) E^0(h_{m+1}, s, g).$$

Hence

$$E^0(h_{m+1}, s, g) = \frac{1}{s + m} ((s + m) \varphi_{s, m+1}(g) + (n - s + m) P_m(s) \mathcal{C}(s) \varphi_{n-s, m+1}(g))$$

$$= \varphi_{s, m+1}(g) + \frac{n - s + m}{s + m} P_m(s) \mathcal{C}(s) \varphi_{n-s, m+1}(g)$$

$$= \varphi_{s, m+1}(g) + P_{m+1}(s) \mathcal{C}(s) \varphi_{n-s, m+1}(g).$$

Now for general $\phi \in L^2(M \setminus K, m)$. Since $L^2(M \setminus K, m)$ is an irreducible ξ_C-module, ϕ can be written as $\phi = \mathcal{D} h_m$ with \mathcal{D} some differential operator on $L^2(M \setminus K, m)$ generated by $\pi(\xi_C)$. Since $\pi(\xi_C)$ acts trivially on the character φ_s, we have $\mathcal{D} \varphi_s, m = \varphi_s, \mathcal{D} h_m = \varphi_s, \phi$. Hence on the one hand,

$$\mathcal{D} E^0(h_m, s, g) = \frac{1}{|F_{C_t}|} \int_{x \in F_{C_t}} \sum_{\gamma \in \Gamma_{\infty} \Gamma} \mathcal{D} \varphi_{s, m}(\gamma u x g) \, dx$$

$$= \frac{1}{|F_{C_t}|} \int_{x \in F_{C_t}} \sum_{\gamma \in \Gamma_{\infty} \Gamma} \varphi_s(\gamma u x g) \phi(\gamma u x g) \, dx$$

$$= E^0(\phi, s, g).$$

On the other hand, using (3.14) for h_m we get

$$\mathcal{D} E^0(h_m, s, g) = \mathcal{D} ((\varphi_s(g) + P_m(s) \mathcal{C}(s) \varphi_{n-s}(g)) h_m(g))$$

$$= (\varphi_s(g) + P_m(s) \mathcal{C}(s) \varphi_{n-s}(g)) \phi(g).$$

This completes the proof.
4. Bounds for Incomplete Eisenstein Series

4.1. Explicit formula. For each $L^2 (M\backslash K, m)$ we fix an orthonormal basis

$$\{ \psi_{m,l} \mid 1 \leq l \leq \dim L^2 (M\backslash K, m) \}.$$

For any $f \in C_c^\infty (Q\backslash G)$ let

$$\hat{f}_{m,l} (a) = \int_K f (ak) \overline{\psi_{m,l}(k)} dk,$$

and we define the following function

$$M_f (s) = \sum_{m,l} P_m (s) \left| \int_{\mathbb{R}} \hat{f}_{m,l} (a_t) e^{-st} dt \right|^2,$$

with $P_m (s)$ as in Proposition 3.3. We then have

Proposition 4.1. (cf. [12, Proposition 2.3]) Let $\frac{n}{2} < s_p < \cdots < s_1 < s_0 = n$ denote the poles of c^s (s) and let $c_j = \text{Res}_{s=s_j} c^s$ be the residue of c^s (s) at s_j for $0 \leq j \leq p$. Then for any $f \in C_c^\infty (Q\backslash G)$ we have

$$\| \Theta f \|_2^2 \leq \frac{|\mathcal{F}_{\psi}|}{|\Gamma_\infty : \Gamma'_\infty|} \left(2 \| f \|_2^2 + \sum_{j=0}^p c_j M_f (s_j) \right).$$

Note that $f \in C_c^\infty (Q\backslash G)$ can be written as $f = \sum_{m,l} f_{m,l}$ with $f_{m,l} (ak) = \hat{f}_{m,l} (a) \psi_{m,l}(k)$. We first prove a preliminary estimate for each $f_{m,l}$ and then deduce the proposition from this estimate.

Lemma 4.2. Let $f \in C_c^\infty (Q\backslash G)$ be of the form $f (a_t) = v(t) \phi(k)$ where $v(t) \in C_c^\infty (\mathbb{R})$ and $\phi \in L^2 (M\backslash K, m)$ for some m. Let s_j and c_j be as above, we then have

$$\| \Theta f \|_2^2 \leq \frac{|\mathcal{F}_{\psi}|}{|\Gamma_\infty : \Gamma'_\infty|} \left(2 \| f \|_2^2 + \sum_{j=0}^p c_j M_f (s_j) \| \phi \|_2^2 \left| \int_{\mathbb{R}} v(t) e^{-s_j t} dt \right|^2 \right).$$

Proof. Let $\hat{v} (r) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} v(t) e^{-irt} dt$ denote the Fourier transform of v. Note that $\hat{v} (r)$ extends to an entire function in r since v is smooth and compactly supported. Recall the Fourier inversion formula

$$v (t) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \hat{v} (r) e^{irt} dr.$$

Making the substitution $s = ir$ we get

$$v (t) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \hat{v} (-is) e^{ist} ds.$$

For any $\sigma > n$ shifting the contour of integration to the line $\text{Re} (s) = \sigma$ we get

$$v (t) = \frac{1}{\sqrt{2\pi}} \int_{\sigma - i\infty}^{\sigma + i\infty} \hat{v} (-is) e^{ist} ds = \frac{1}{\sqrt{2\pi}} \int_{\sigma - i\infty}^{\sigma + i\infty} \hat{v} (-is) \phi_s (a_t) ds.$$

Consequently we can write

$$f (g) = \frac{1}{\sqrt{2\pi}} \int_{\sigma - i\infty}^{\sigma + i\infty} \hat{v} (-is) \phi_s (g) \phi (g) ds.$$
and summing over $\Gamma_\infty \setminus \Gamma$ we get

$$\Theta_f (g) = \frac{1}{\sqrt{2\pi i}} \int_{\sigma - i\infty}^{\sigma + i\infty} \hat{\nu}(-is) \sum_{\gamma \in \Gamma_\infty \setminus \Gamma} \varphi_s (\gamma g) \phi (\gamma g) \, ds$$

$$= \frac{1}{\sqrt{2\pi i}} \int_{\sigma - i\infty}^{\sigma + i\infty} \hat{\nu}(-is) E (\phi, s, g) \, ds.$$ Integrating this over \mathcal{F}_{Θ_f} gives

$$\int_{\mathcal{F}_{\Theta_f}} \Theta_f (u_x \alpha k) \, dx = \frac{|\mathcal{F}_{\Theta_f}|}{\sqrt{2\pi i}} \int_{\sigma - i\infty}^{\sigma + i\infty} \hat{\nu}(-is) \varphi_s (a) \, ds$$

$$= \frac{|\mathcal{F}_{\Theta_f}|}{\sqrt{2\pi i}} \int_{\sigma - i\infty}^{\sigma + i\infty} \hat{\nu}(-is) E^0 (\phi, s, a \alpha k) \, ds.$$ Using the formula (3.14) for $E^0 (\phi, s, g)$ we get

$$\int_{\mathcal{F}_{\Theta_f}} \Theta_f (u_x \alpha k) \, dx = \frac{|\mathcal{F}_{\Theta_f}|}{\sqrt{2\pi i}} \int_{\sigma - i\infty}^{\sigma + i\infty} \hat{\nu}(-is) \varphi_s (a) \, ds$$

$$+ \int_{\sigma - i\infty}^{\sigma + i\infty} \hat{\nu}(-is) \mathcal{C} (s) P_m (s) \varphi_{n-s} (a) \, ds$$

Now shift the contour of integration to the line $\Re (s) = \frac{n}{2}$ (picking up possible poles) to get

$$\int_{\mathcal{F}_{\Theta_f}} \Theta_f (u_x \alpha k) \, dx = \frac{|\mathcal{F}_{\Theta_f}|}{\sqrt{2\pi i}} \int_{\sigma - i\infty}^{\sigma + i\infty} \hat{\nu}(-is) \varphi_s (a) \, ds$$

$$+ \int_{\sigma - i\infty}^{\sigma + i\infty} \hat{\nu}(-is) \mathcal{C} (s) P_m (s) \varphi_{n-s} (a) \, ds$$

$$+ 2\pi i \sum_{j=0}^{p} c_j P_m (s_j) \hat{\nu}(-is_j) \varphi_{n-s_j} (a).$$ Where $c_j = \text{Res}_{s=s_j} \mathcal{C} (s)$ is the residue of $\mathcal{C} (s)$ at the pole s_j. Now applying formula (3.2) we get

$$||\Theta_f||_2^2 = \frac{1}{|\Gamma_\infty : \Gamma'_\infty| v^T} \int_{K} \int_{\Gamma} \int_{\Gamma} e^{-nt} \int_{\mathcal{F}_{\Theta_f}} \Theta_f (u_x \alpha k) \, dx \, dk$$

$$= \frac{|\mathcal{F}_{\Theta_f}|}{|\Gamma_\infty : \Gamma'_\infty| v^T} \int_{K} \int_{\Gamma} |\phi(k)|^2 \, dk \frac{1}{\sqrt{2\pi i}} \int_{\mathcal{F}_{\Theta_f}} \hat{\nu}(-is) \int_{\Gamma} e^{-nt} \varphi_s (a_t) \, dt \, ds$$

$$+ \int_{\sigma - i\infty}^{\sigma + i\infty} \hat{\nu}(-is) \mathcal{C} (s) P_m (s) \int_{\Gamma} e^{-nt} \varphi_{n-s} (a_t) \, dt \, ds$$

$$+ 2\pi i \sum_{j=0}^{p} c_j P_m (s_j) \hat{\nu}(-is_j) \int_{\Gamma} e^{-nt} \varphi_{n-s_j} (a_t) \, dt.$$
Note that for \(s \in \mathbb{C} \) we have

\[
\frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} v(t)e^{-nt} \varphi_s(a_t) \, dt = \vartheta(i(s - m)).
\]

Hence (use the substitution \(s = \frac{n}{2} + ir \))

\[
\|\Theta_f\|_2^2 = \left(\int_{\mathbb{R}} |\vartheta(r - \frac{n}{2}i)|^2 \, dr + \int_{\mathbb{R}} |\vartheta(r - \frac{n}{2}i)\vartheta(-r - \frac{n}{2}i)\mathcal{E}(\frac{n}{2} + ir)P_m(\frac{n}{2} + ir)\, dr + 2\pi \sum_{j=0}^{P} c_j P_m(s_j) |\vartheta(-is_j)|^2 \right) \frac{\|\mathcal{F}\varphi_f\|_{L^1}}{|\Gamma_{\infty} : \Gamma_{\infty}'|} \|\varphi\|_2^2.
\]

Now for the first term, applying Plancherel’s theorem for \(v(t) e^{-\frac{n}{2}t} \) we get

\[
\|\varphi\|_2^2 \int_{\mathbb{R}} |\vartheta(r - \frac{n}{2}i)|^2 \, dr = \|\varphi\|_2^2 \int_{\mathbb{R}} |v(t)|^2 e^{-nt} \, dt = \|f\|_2^2.
\]

For the second term, using the fact that \(|\mathcal{E}(\frac{n}{2} + ir)| \leq 1, |P_m(\frac{n}{2} + ir)| = 1 \) and Cauchy-Schwarz, we see that its absolute value is bounded by the first term. Finally, for the last term we have for each pole \(2\pi |\vartheta(-is_j)|^2 = | \int_{\mathbb{R}} v(t) e^{-s_j t} \, dt |^2 \).

This finishes the proof. \(\square \)

We can now give the proof of Proposition 4.1. Note that for \(f = \sum_{m,l} f_{m,l} \) as above, by orthogonality we have

\[
\|\Theta_f\|_2^2 = \sum_{m,l} \|\Theta_{f_{m,l}}\|_2^2.
\]

We can use Lemma 4.2 to estimate each of the terms \(\|\Theta_{f_{m,l}}\|_2^2 \) separately and sum all the contributions.

First, for the \(L^2 \)-norms we have \(\sum_{m,l} \| f_{m,l} \|_2^2 = \|f\|_2^2 \). Next, the contribution of the exceptional poles \(\frac{n}{2} < s_j < n \) is \(\sum_{j=1}^{P} c_j M_f(s_j) \). Finally, for the pole \(s_0 = n \), note that \(P_m(n) = 0 \) except \(m = 0 \). Thus its contribution is

\[
c_0 \left| \int_{\mathbb{R}} \int_{\mathbb{R}} f_{0,0}(a_t) e^{-nt} \, dt \right|^2 = c_0 \left| \int_{Q\setminus G} f(g) \, dg \right|^2 \leq c_0 \|f\|_1^2.
\]

Remark 6. We note that if \(f \) is of the form \(f(a_t,k) = v(t) \phi(k) \), with \(v \) smooth, compactly supported and \(\phi \) any function in \(L^2(M\setminus K) \), then Proposition 4.1 still holds by exactly the same computation.

4.2. **Proof of Theorem 1.2.** Fix a parameter \(\lambda > 0 \), define \(\mathcal{A}_\lambda \subset L^2(Q\setminus G) \) to be the set of functions of the form

\[
f(a_t,k) = v(t) \phi(k)
\]

with \(v \) smooth, nonnegative, compactly supported and satisfying

\[
\int_{\mathbb{R}} v(t)e^{-st} \, dt \leq \lambda \left(\frac{\int_{\mathbb{R}} v(t)e^{-nt} \, dt}{\left(\frac{\int_{\mathbb{R}} v(t)e^{-nt} \, dt} {v^2(t)e^{-nt} \, dt} \right)^{\frac{1}{n}}} \right)^{1-\frac{1}{n}}.
\]
for any \(s \in \left(\frac{n}{2}, n \right) \), and \(\phi \) any function in \(L^2(M \setminus K) \). In this section we will show that for any \(s \in \left(\frac{n}{2}, n \right) \),

\[
M_f(s) \lesssim_s \lambda \|f\|_1^2 + \|f\|_2^2
\]

for all \(f \in M_\lambda \). In particular, this bound holds at the finitely many exceptional poles \(s_j \) determined by \(\Gamma \). Hence in view of Proposition 4.1 it implies Theorem 1.2.

To show (4.2), we first give two preliminary lemmas.

Lemma 4.3. If \(f \in L^2(Q \setminus G) \) is of the form \(f(a_t,k) = v(t) \phi(k) \), then \(M_f(s) \) can be written as

\[
M_f(s) = \left(\sum_{m=0}^\infty P_m(s) \|\phi_m\|_2^2 \right) \left| \int_R v(t) e^{-st} dt \right|^2,
\]

where \(\phi_m \) denotes the projection of \(\phi \) into \(L^2(M \setminus K, m) \).

Proof. For each \(m \geq 0 \), let

\[
\{\psi_{m,l} \mid 1 \leq l \leq \dim L^2(M \setminus K, m)\}
\]

be the fixed orthonormal basis of \(L^2(M \setminus K, m) \) as before. Then we have

\[
\phi_m(k) = \sum_l c_{m,l} \psi_{m,l}(k)
\]

with \(c_{m,l} = \int_K \phi(k) \overline{\psi_{m,l}(k)} \, dk \). Moreover, we have

\[
\|\phi_m\|_2^2 = \sum_l |c_{m,l}|^2
\]

and

\[
\hat{f}_{m,l}(a_t) = v(t) \int_K \phi(k) \overline{\psi_{m,l}(k)} \, dk = c_{m,l} v(t).
\]

Hence

\[
M_f(s) = \sum_{m,l} P_m(s) \left| \int_R \hat{f}_{m,l}(a_t) e^{-st} dt \right|^2
\]

\[
= \sum_{m=0}^\infty P_m(s) \sum_l |c_{m,l}|^2 \left| \int_R v(t) e^{-st} dt \right|^2
\]

\[
= \left(\sum_{m=0}^\infty P_m(s) \|\phi_m\|_2^2 \right) \left| \int_R v(t) e^{-st} dt \right|^2.
\]

Lemma 4.4. For any \(s \in \left(\frac{n}{2}, n \right) \), \(P_m(s) \approx_s (m+1)^{(n-2s)} \).

Proof. Since \(P_m(s) = \prod_{k=0}^{m-1} \frac{n-s+k}{s+k} \) we have

\[
\log(P_m(s)) = \log \left(\frac{n}{s} \right) + \sum_{k=1}^{m-1} \left(\log \left(1 + \frac{n-s}{k} \right) - \log \left(1 + \frac{s}{k} \right) \right)
\]

\[
= (n-2s) \sum_{k=1}^{m-1} \frac{1}{k} + O_s(1) = (n-2s) \log(m+1) + O_s(1). \]

\[\]
Thus for $f(a_t k) = v(t) \phi(k) \in \mathcal{A}_\lambda$ we define

$$\tilde{M}_f(s) := \left(\int_{\mathbb{R}} v(t) e^{-st} dt \right)^2 \sum_{m=0}^{\infty} \frac{||\phi_m||_2^2}{(m+1)^{(2s-n)}},$$

where ϕ_m is the projection of ϕ into $L^2(M \setminus K, m)$. In view of these two lemmas it suffices to prove $\tilde{M}_f(s) \leq ||f||_1^2 + ||f||_2^2$ for all $f \in \mathcal{A}_\lambda$.

Proof of Theorem 1.2. We first prove for $f = v \phi \in \mathcal{A}_\lambda$ with $||\phi||_2 \leq ||\phi||_1$. We first recall a simple inequality that for any $y_1, y_2 > 0$ and $0 < \eta < 1$, $y_1^{1-\eta} y_2 \leq \max\{y_1, y_2\} \leq y_1 + y_2$. Hence in view of (4.1), for any $s \in \left(\frac{n}{2}, n\right]$, since $(\frac{2n}{n} - 1) + (2 - \frac{2s}{n}) = 1$, we have

$$\left(\int_{\mathbb{R}} v(t) e^{-st} dt \right)^2 \leq \lambda^2 \left(\int_{\mathbb{R}} v(t) e^{-nt} dt \right)^2 + \int_{\mathbb{R}} v^2(t) e^{-nt} dt.$$

Thus

$$\tilde{M}_f(s) = \left(\int_{\mathbb{R}} v(t) e^{-st} dt \right)^2 \sum_{m=0}^{\infty} \frac{||\phi_m||_2^2}{(m+1)^{(2s-n)}}$$

$$\leq \lambda^2 \left(\int_{\mathbb{R}} v(t) e^{-nt} dt \right)^2 + \int_{\mathbb{R}} v^2(t) e^{-nt} dt \frac{||\phi||_1^2}{2}$$

$$\leq \lambda^2 \left(\int_{\mathbb{R}} v(t) e^{-nt} dt \right)^2 ||\phi||_1^2 + \int_{\mathbb{R}} v^2(t) e^{-nt} dt ||\phi||_2^2$$

$$= \lambda^2 (||f||_1^2 + ||f||_2^2).$$

Now we prove the case $||\phi||_2 > ||\phi||_1$. Let $\iota := \frac{||\phi||_2}{||\phi||_1} > 1$. We separate the summation into two parts:

$$\sum_{m=0}^{\infty} \frac{||\phi_m||_2^2}{(m+1)^{(2s-n)}} = \left(\sum_{m=0}^{\left\lfloor \frac{\iota}{\iota + 1}\right\rfloor} + \sum_{m=\left\lfloor \frac{\iota}{\iota + 1}\right\rfloor + 1}^{\infty} \frac{||\phi_m||_2^2}{(m+1)^{(2s-n)}} \right).$$

For the first part, we invoke an estimate from spherical harmonic analysis ([17, inequality (4.4)]). Namely, for any $\phi \in L^2(M \setminus K)$ and $m \geq 0$,

$$||\phi_m||_2^2 \lesssim (m+1)^{n-1} ||\phi||_1^2$$

with the implicit constant only depends on the dimension of $M \setminus K$. Thus we have

$$\sum_{m=0}^{\left\lfloor \frac{\iota}{\iota + 1}\right\rfloor} \frac{||\phi_m||_2^2}{(m+1)^{(2s-n)}} \lesssim \sum_{m=0}^{\left\lfloor \frac{1}{\iota + 1}\right\rfloor} \frac{||\phi||_1^2}{(m+1)^{(2(n-s))}}$$

$$\lesssim (\frac{1}{\iota + 1})^{2(n-s)} ||\phi||_1^2$$

(since $1 - 2(n-s) < 1$)

$$= ||\phi||_1^2 \left(\frac{n}{n-1} \right)^{4(1-\frac{s}{n})}.$$

\[\text{The exact form of inequality (4.4) in [17] is } ||\phi_m||_2 \lesssim m^{\frac{n-1}{2}} ||\phi||_1. \text{ Here we square both sides and replace } m \text{ by } m+1 \text{ to cover the case } m = 0.\]
For the second part, we have
\[
\sum_{m=1}^{\infty} \frac{||\phi_m||_2^2}{(m+1)^{2s-n}} \leq \frac{1}{(t^n)^{2s-n}} \sum_{m=1}^{\infty} ||\phi_m||_2^2 \leq t^{-2\left(\frac{2}{n}-1\right)} ||\phi||_2^2 = ||\phi||_1^2 \left(\frac{1}{2} - \frac{1}{n}\right).
\]

Hence
\[
\sum_{m=0}^{\infty} \frac{||\phi_m||_2^2}{(m+1)^{2s-n}} \lesssim_s ||\phi||_1^2 ||\phi||_2^2 \left(\frac{1}{2} - \frac{1}{n}\right).
\]

Thus by (4.1) and (4.3) we get
\[
\tilde{M}_f(s) = \left(\int_{\mathbb{R}} v(t) e^{-st} dt\right) \sum_{m=0}^{\infty} \frac{||\phi_m||_2^2}{(m+1)^{2s-n}} \lesssim_{s,A} \left(\int_{\mathbb{R}} v(t) e^{-nt} dt\right)^{2\left(\frac{2}{n}-1\right)} \left(\int_{\mathbb{R}} v^2(t) e^{-nt} dt\right)^{2-s-n} \left(||\phi||_1^2 ||\phi||_2^2 \left(\frac{1}{2} - \frac{1}{n}\right)\right) = ||f||_1^2 ||f||_2^2
\]
\[
\leq ||f||_1^2 + ||f||_2^2.
\]

This finishes the proof. \(\square\)

5. Logarithm laws

Fix \(o \in \Gamma \backslash G \) and let \(\{g_t\} \subset G \) be a one-parameter unipotent subgroup in \(G \). Let \(\text{dist}_G \) and \(\text{dist}_\Gamma \) be the hyperbolic distance functions on \(G/K \) and \(\Gamma \backslash G/K \) respectively. In this section we will prove logarithm laws for the unipotent flow \(\{g_t\} \), that is
\[
\limsup_{t \to \infty} \frac{\text{dist}_\Gamma(o,xg_t)}{\log t} = \frac{1}{n}
\]
for \(\sigma \)-a.e. \(x \in \Gamma \backslash G \). First we note that if (5.1) holds for \(\Gamma \), then it also holds for any \(\Gamma' = g^{-1}\Gamma g \). This follows from the following identity
\[
\text{dist}_\Gamma(\Gamma h, \Gamma h') = \text{dist}_{\Gamma'}(\Gamma' g^{-1} h, \Gamma' g^{-1} h'),
\]
where \(h, h' \) are any two elements in \(G \) and \(\text{dist}_{\Gamma'} \) is the hyperbolic distance function on \(\Gamma' \backslash G/K \). Hence we can assume that \(\Gamma \) has a cusp at \(\infty \). Fix this \(\Gamma' \) and we denote dist = dist\(_{\Gamma'}\) without ambiguity. Next note that \(\{g_t\} \) can be replaced by a new flow \(\{\tilde{g}_t\} \) with \(\tilde{g}_t = k^{-1} g_{nt} k \) for some \(k \in K \) and \(\eta > 0 \). This is because
\[
\limsup_{t \to \infty} \frac{\text{dist}(o, x\tilde{g}_t)}{\log t} = \limsup_{t \to \infty} \frac{\text{dist}(o, x'g_t)}{\log t}
\]
with \(x' = xk^{-1} \). For any \(x \in \mathbb{V}^{n-1} \), denote \(u_x = \begin{pmatrix} 1 & 0 \\ x & 1 \end{pmatrix} \) to be the corresponding lower triangular unipotent matrix.
Lemma 5.1. Every unipotent element in G is K-conjugate to u_x for some $x > 0$.

Proof. Let g be an unipotent element in G. We first note that it suffices to show g is K-conjugate to u_x for some $x > 0$. This is because u_x is conjugate to u_{-x} via $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \in K$. Next we note that since g is unipotent, g is conjugate to some element in N. By Iwasawa decomposition and the fact that NA normalizes N, g is K-conjugate to some element in N. Hence we can assume g is contained in N. Finally, we note that any element in N is conjugate to some u_x with $x > 0$ via the group M since the conjugation action of M on N realizes M as the rotation group of N.

Since we can conjugate $\{g_t\}$ by some element in K and rescale it by a positive number, in view of Lemma 5.1 we can assume the unipotent flow is given by $\{g_t = u_t\}_{t \in \mathbb{R}}$.

5.1. Technical lemmas. For any $\mathcal{D} \subset Q \setminus G$, we denote $|\mathcal{D}|$ to be its measure with respect to the right G-invariant measure on $Q \setminus G$ as fixed in (2.5). We define the set $Y_\mathcal{D} \subset \Gamma \setminus G$ corresponding to \mathcal{D} by

$$Y_\mathcal{D} := \{ \gamma g \in \Gamma \setminus G \mid Q \gamma g \in \mathcal{D} \text{ for some } \gamma \in \Gamma \}.$$

Let $\{r_\ell\}$ be any sequence of positive numbers such that $r_\ell \to \infty$ and $\sum_{\ell = 1}^{\infty} e^{-n r_\ell} = \infty$. For any integer $m \geq 1$, let $p(m) > m$ be an integer such that $\sum_{\ell = m}^{p(m)} e^{-n r_\ell} \geq 1$ for all $m \geq 1$. Let N^- be the subgroup of lower triangular unipotent matrices and

$$B^- = \{ u_x^- \mid x \in \mathbb{V}^{n-1}, |x| < \frac{1}{2} \}$$

be the open ball with radius $\frac{1}{2}$, centered at the identity in N^-. We define the set

$$\mathcal{D}_m := Q \setminus \bigcup_{\ell = m}^{p(m)} QA(r_\ell) B^- g_{-\ell} \subset Q \setminus G,$$

where $A(\tau) = \{ a_t \mid t \geq \tau \}$.

Lemma 5.2. $||\mathcal{D}_m||_{m \geq 1}$ is uniformly bounded from below.

Proof. Note that every matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G$ with $d \neq 0$ can be written uniquely as

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & bd^{-1} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} d' & 0 \\ 0 & d' \end{pmatrix} \begin{pmatrix} |d|^{-1} & 0 \\ 0 & |d| \end{pmatrix} \begin{pmatrix} 1 & 0 \\ c & 1 \end{pmatrix}.$$

Hence $MAN^- = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G \mid d \neq 0 \right\}$ is a Zariski open dense subset of G. Thus there is a Zariski open dense subset in $Q \setminus G$ which can be expressed by the coordinates $Qg = QA_t u_x^-$. We note that in these coordinates, the right G-invariant measure on $Q \setminus G$ (up to scalars) is given by $e^{-nt} dtdx$ since this is the right Haar measure for the group AN^-. Moreover, \mathcal{D}_m is a disjoint union of the sets...
$Q \backslash QA(r_\ell)B^{-g_{-\ell}}$ since $B^{-g_{-\ell_1}} \cap B^{-g_{-\ell_2}} = \emptyset$ whenever $\ell_1 \neq \ell_2$. Hence one can compute

$$|\Omega_m| = \sum_{\ell = m}^{p(m)} \int_{r_\ell}^\infty e^{-n_\ell t} dt \int_{B^{-g_{-\ell}}} 1 dx \approx \sum_{\ell = m}^{p(m)} e^{-n_\ell t} \geq 1. \quad \square$$

Lemma 5.3. There is some sufficiently large integer L such that for any $m \geq L$ and any $x \in Y_{\Omega_m}$ there exists $m \leq \ell \leq p(m)$ such that

$$\text{dist}(o, xg_\ell) \geq r_\ell + O(1).$$

Proof. First recall the Siegel fundamental domain $\mathcal{F}_{\Gamma, r_0, U_0}$ we fixed in (2.8), take L such that $r_\ell - \log 2 \geq \tau_0$ for all $\ell \geq L$. Next using (3.10) we have that for any $\tau \in \mathbb{R}$

$$QA(\tau) B^{-\ell} \subset QA(\tau - \log 2) \subset NA(\tau - \log 2) K.$$ (5.2)

Hence for $m \geq L$, $x \in Y_{\Omega_m}$ can be written as $x = \Gamma g_{xg_\ell}$ for some $m \leq \ell \leq p(m)$ with $g \in QA(\tau_{\ell}) B^{-\ell} \subset NA(\tau_{\ell} - \log 2) K$. After left multiplying by some $\gamma \in \Gamma' \setminus \Lambda$ we can assume that $g = u_{\ell} a_{\ell} k$ is contained in the Siegel set $U_0 A[\tau_\ell - \log 2] K$ (we can do this since U_0 contains a fundamental domain of $\Gamma' \setminus \Lambda$). Since $\ell \geq m \geq L$, $r_\ell - \log 2 \geq \tau_0$. By (2.11) we have

$$\text{dist}(o, xg_\ell) = \text{dist}(o, u_{\ell} a_{\ell} k) = t + O(1) \geq r_\ell - \log 2 + O(1) = r_\ell + O(1). \quad \square$$

The next lemma shows that there exists a nice set sitting inside Ω_m. We first identify $Q \backslash G$ with $A \times M \backslash K$. Let $Pr : Q \backslash G \to M \backslash K$ be the natural projection map and

$$K(\ell) := \text{Pr}(Q \backslash QA(\tau_{\ell}) B^{-g_{-\ell}})$$

be the K-part of $Q \backslash QA(\tau_{\ell}) B^{-g_{-\ell}}$. We note that $K(\ell)$ is independent of r_{ℓ}, that is, $K(\ell) = \text{Pr}(Q \backslash QA(\tau) B^{-g_{-\ell}})$ for any $\tau \in \mathbb{R}$.

Lemma 5.4. For any $\ell \geq 1$, let $\tau_{\ell} = r_{\ell} - 2\log(\ell) + \log 2$. Then

$$A(\tau_{\ell}) \times K(\ell) \subset Q \backslash QA(\tau_{\ell}) B^{-g_{-\ell}} \quad \text{and} \quad |A(\tau_{\ell}) \times K(\ell)| = |Q \backslash QA(\tau_{\ell}) B^{-g_{-\ell}}|$$

with the implicit constant independent of ℓ.

Proof. For each $k \in K(\ell)$, define

$$I(k) := \{ t \in \mathbb{R} \mid Qa_{\ell} k \in Q \backslash QA(\tau_{\ell}) B^{-g_{-\ell}} \}$$

and

$$t(k) := \inf I(k).$$

We first note that if $t \in I(k)$ (that is, $a_{\ell} k = qa_{t_0} u_{x_{t_0}}$ for some $q \in Q$, $t_0 \geq r_{\ell}$ and $|x_{t_0}| < \frac{1}{2}$), then $(t, \infty) \subset I(k)$. This is because for any $t' > t$ we have

$$a_{\ell} k = a_{t' - t} a_{\ell} k = a_{t' - t} qa_{t_0} u_{x_{t_0}} = q' a_{t' - t + t_0} u_{x_{t_0}},$$

where $q' = qa_{t_0} u_{x_{t_0}}$. Therefore

$$Q \backslash QA(r_{t'}) B^{-g_{-t'}} \cap \cup_{k \in K(\ell)} \{ qa : q \in Q \} = \emptyset.$$
and \(t' - t + t_0 > t_0 \geq r_\ell \). Here \(q' = a_{r'-t} q a_{t'-t} \in Q \). This implies that

\[
Q \setminus QA(r_\ell) B^{-} g_{-\ell} = \bigcup_{k \in K(\ell)} A(t(k)) \times \{k\}.
\]

Moreover, by (3.10), the relation \(a_t k = q a_u u_{x_{-\ell}}^{-} \) implies

\[
t = t_0 - \log(1 + |x - \ell|^2).
\]

In particular, the minimality of \(t(k) \) implies that

\[
t(k) = r_\ell - \log(1 + |x - \ell|^2)
\]

for some \(x \) (determined by \(k \)). As \(k \) ranges over \(K(\ell) \) (that is, \(x \) ranges over \(B^{-} \)),

\(t(k) \) attains the maximal value when \(x = \frac{1}{2} \) and the minimal value when \(x = -\frac{1}{2} \).

Let \(t_{\ell, \pm \frac{1}{2}} = r_\ell - \log(1 + |\ell + \frac{1}{2}|^2) \), then in view of (5.3) we have

\[
A(t_{\ell, \frac{1}{2}}) \times K(\ell) \subset Q \setminus QA(r_\ell) B^{-} g_{-\ell} \subset A(t_{\ell, -\frac{1}{2}}) \times K(\ell).
\]

Next, note that \(e^{-n\ell_{\ell, \frac{1}{2}}} \approx e^{-n\ell_{\ell, -\frac{1}{2}}} \approx e^{-n\ell} \epsilon^{2n} \), hence

\[
|A(t_{\ell, \frac{1}{2}}) \times K(\ell)| = |Q \setminus QA(r_\ell) B^{-} g_{-\ell}| \approx |A(t_{\ell, -\frac{1}{2}}) \times K(\ell)|.
\]

Finally, note that \(t_{\ell, \frac{1}{2}} \leq \tau_\ell \) and \(e^{-n\ell_{\ell, \frac{1}{2}}} \approx e^{-n\ell} \epsilon^{2n} \), hence

\[
A(\tau_\ell) \times K(\ell) \subset Q \setminus QA(r_\ell) B^{-} g_{-\ell} \quad \text{and} \quad |A(\tau_\ell) \times K(\ell)| = |Q \setminus QA(r_\ell) B^{-} g_{-\ell}|. \quad \square
\]

Remark 7. Later we will take \(r_\ell = \frac{1 - \epsilon}{n} \log(\ell) \) with \(\epsilon \) some fixed small positive number. We note that in this case we can take \(p(m) = 2m \). Moreover, since \(\tau_m \geq \tau_\ell \) and \(e^{-n\tau_m} \approx e^{-n\tau_\ell} \approx \epsilon^{2n(1 + \epsilon)} \) for all \(m \leq \ell \leq 2m \), in view of Lemma 5.5 we have

\[
A(\tau_m) \times K_m \subset \mathcal{D}_m \quad \text{and} \quad |A(\tau_m) \times K_m| \approx |\mathcal{D}_m|,
\]

where \(K_m := \bigcup_{\ell = m}^{2m} K(\ell) \).

5.2. Proof of Theorem 1.1

Now we can give the proof of logarithm laws.

Upper bound. Fix \(\epsilon > 0 \) and let \(r_\ell = \frac{1 + \epsilon}{n} \log(\ell) \). By (2.12) the sets

\[
\{ x \in \Gamma \setminus G | x g_\ell \in B_{r_\ell} \} = B_{r_\ell} g_{-\ell}
\]

satisfy

\[
\sum_{\ell = 1}^{\infty} \sigma(B_{r_\ell} g_{-\ell}) = \sum_{\ell = 1}^{\infty} \sigma(B_{r_\ell}) = \sum_{\ell = 1}^{\infty} \frac{1}{\ell^{1 + \epsilon}} < \infty.
\]

Hence by Borel-Cantelli lemma the set

\[
\{ x \in \Gamma \setminus G | x g_\ell \in B_{r_\ell} \text{ for finitely many } \ell \}
\]

has full measure. This implies that

\[
\limsup_{\ell \to \infty} \frac{\text{dist}(o, x g_\ell)}{\log(\ell)} \leq \frac{1 + \epsilon}{n}
\]

for \(\sigma \)-a.e. \(x \in \Gamma \setminus G \). Moreover, for all \(t \in \mathbb{R} \) let \(\ell = \lfloor t \rfloor \), we have

\[
|\text{dist}(o, x g_\ell) - \text{dist}(o, x g_\ell)| \leq \text{dist}(x g_\ell, x g_\ell) \leq \text{dist}_G(e, g_{\ell - t}) = O(1),
\]
hence we can replace the discrete limit over \(\ell \in \mathbb{N} \) with a continuous limit over \(t \in \mathbb{R} \). Finally, letting \(\epsilon \to 0 \) we get

\[
\limsup_{t \to \infty} \frac{\text{dist}(o, xg_t)}{\log t} \leq 1
\]

for \(\sigma \)-a.e. \(x \in \Gamma \setminus G \).

Lower bound. Fix \(\epsilon > 0 \) and let \(r_\ell = \frac{1-\epsilon}{n} \log \ell \). Let \(\mathcal{D}_m \) and \(Y_{\mathcal{D}_m} \) be as above. Note that in this case, for the definition of \(\mathcal{D}_m \) we can take \(p(m) = 2m \). We first prove the following

Lemma 5.5. There is a constant \(\kappa_G > 0 \) depending only on \(\Gamma \) such that \(\sigma(Y_{\mathcal{D}_m}) \geq \kappa_G \) for all \(m \geq 1 \).

Proof. Let \(\tau_m = r_m - 2\log(m) + \log 2 \) be as above. Let \(T \) be a sufficiently large integer such that

\[
(5.5) \quad \frac{1}{2n} e^{-rt_m} \leq \int_{T_m} e^{-nt} dt \leq \frac{2}{n} e^{-nt_m} \quad \text{and} \quad \frac{1}{2n} e^{-st_m} \leq \int_{T_m} e^{-st} dt \leq \frac{4}{n} e^{-st_m}
\]

for any \(s \in \left(\frac{n}{2}, n \right) \) and \(m \geq 1 \). We identify the subgroup \(A \) with \(\mathbb{R} \) by sending \(a_t \) to \(t \). For every \(m \geq 1 \) define the set

\[
\mathcal{D}'_m := [\tau_m, T] \times K_m,
\]

where \(K_m = \cup_{\ell=m} K(\ell) \). By Remark 7 we have \(\mathcal{D}'_m \subset \mathcal{D}_m \) and \(|\mathcal{D}'_m| = |\mathcal{D}_m| \). In particular, by Lemma 5.2, \(|\mathcal{D}'_m| \geq 1 \) are uniformly bounded from below for all \(m \geq 1 \). Using the same unfolding trick as we did in Lemma 3.1, one has the following identity

\[
\int_{\Gamma \setminus G} \Theta_{1_{\mathcal{D}'_m}}(g) d\sigma (g) = \frac{\omega}{\nu} \int_{Q \setminus G} 1_{\mathcal{D}'_m}(g) dg
\]

where \(\omega = \int_{\Gamma \setminus G} dq \) and \(\nu = \int_{\Gamma} dg \). By Cauchy-Schwartz and the fact that \(\Theta_{1_{\mathcal{D}'_m}} \) is supported on \(Y_{\mathcal{D}'_m} \), we have

\[
\left(\frac{\omega}{\nu} \right)^2 |\mathcal{D}'_m|^2 = \left(\int Y_{\mathcal{D}'_m} \Theta_{1_{\mathcal{D}'_m}}(g) d\sigma (g) \right)^2 \leq \sigma(Y_{\mathcal{D}'_m}) ||\Theta_{1_{\mathcal{D}'_m}}||^2_2.
\]

Now in view of (5.5) we can take \(f_m = \nu_m 1_{K_m} \) with \(1_{K_m} \) the characteristic function of \(K_m \) and \(\nu_m \) approximating \(1_{[\tau_{2m}, T]} \) from above sufficiently well such that

1. \(\nu_m \) is smooth, compactly supported and takes values in \([0, 1]\);
2. \(\frac{1}{3n} \leq \frac{\int \nu_m(t) e^{-st} dt}{e^{-st_m}} \leq 3 \) and \(\frac{1}{3n} \leq \frac{\int \nu_m(t) e^{-st} dt}{e^{-st_m}} \leq 5 \) for any \(s \in \left(\frac{n}{2}, n \right) \);
3. \(||f_m||_1 \leq 2 |\mathcal{D}'_m| \).

In particular, for any \(s \in \left(\frac{n}{2}, n \right) \)

\[
\frac{\int \nu_m(t) e^{-st} dt}{(\int \nu_m(t) e^{-nt} dt)^{\frac{2}{n} - 1}} \leq \frac{5}{n} e^{-st_m}
\]

\[
(\int \nu_m(t) e^{-nt} dt)^{\frac{2}{n} - 1} \leq \frac{5}{n} e^{-st_m}
\]

\[
(\int \nu_m(t) e^{-nt} dt)^{\frac{2}{n} - 1 + \frac{1}{n}} < 15.
\]
Hence \(\{f_m\} \subset \mathcal{A}_{15} \) and by Theorem 1.2 we can bound
\[
||\Theta_{f_m}||_2^2 \leq ||\Theta_{f_m}||_2^2 \lesssim \Gamma ||f_m||_1^2 + ||f_m||_2^2.
\]
Next, since \(||f_m||_2^2 \leq ||f_m||_1, ||f_m||_1 \leq 2|\mathcal{D}_m'| \) and \(|\mathcal{D}_m'| \gtrsim 1 \), we can bound
\[
||f_m||_2^2 + ||f_m||_1^2 \leq ||f_m||_2^2 + ||f_m||_1 \leq 4|\mathcal{D}_m'|^2 + 2|\mathcal{D}_m'| \lesssim |\mathcal{D}_m'|^2.
\]
Finally, since \(Y_{\mathcal{D}_m'} \subset Y_{\mathcal{D}_m} \), we conclude that there is a constant \(\kappa_\Gamma > 0 \) (independent of \(m \)) such that \(\sigma(Y_{\mathcal{D}_m}) \geq \sigma(Y_{\mathcal{D}_m'}) \gtrsim \kappa_\Gamma \) for any \(m \geq 1 \).

Now consider the set \(\mathcal{B}_\varepsilon := \cap_{t=1}^\infty \cup_{m=\ell}^{\infty} Y_{\mathcal{D}_m}, \) where \(L \) is as in Lemma 5.3. Then \(\sigma(\mathcal{B}_\varepsilon) \gtrsim \kappa_\Gamma > 0 \) by Lemma 5.5. Moreover, by Lemma 5.3, for any \(m \geq L, x \in Y_{\mathcal{D}_m} \) there is some \(\ell \geq m \) such that \(\text{dist}(o, xg_{\ell}) \geq r_\ell + O(1) \). Hence for any \(x \in \mathcal{B}_\varepsilon \) there is a sequence \(\ell_m \rightarrow \infty \) such that \(\text{dist}(o, xg_{\ell_m}) \gtrsim r_{\ell_m} + O(1) \). Consequently, we have
\[
\mathcal{B}_\varepsilon \subseteq \left\{ x \in \Gamma \backslash G \mid \limsup_{t \to \infty} \frac{\text{dist}(o, xg_t)}{\log t} \geq \frac{1}{n} \right\}.
\]
Since the latter set is invariant under the action of \(\{g_t\}_{t \in \mathbb{R}} \), by ergodicity it has full measure. Letting \(\varepsilon \to 0 \) we get
\[
\limsup_{t \to \infty} \frac{\text{dist}(o, xg_t)}{\log t} \geq \frac{1}{n}
\]
for \(\sigma \)-a.e. \(x \in \Gamma \backslash G \).

Remark 8. The same argument works for \(r_\ell = \frac{1}{n} \log \ell + O(1) \) taking \(p(m) = 2m \). Hence we can show that the sequence of nested cusp neighborhoods \(\{B_{r_\ell}\} \) with \(\sigma(B_{r_\ell}) = \frac{1}{m} \) is Borel-Cantelli for unipotent flows in this setting.

Acknowledgments. I am very grateful to my advisor Dubi Kelmer for his guidance and all the discussions and useful comments. I would like to thank the anonymous referee for many helpful comments that made this paper more readable. This work is partially supported by NSF grant DMS-1401747.

References

[1] L. Ahlfors, On the fixed points of Möbius tranformations in \(\mathbb{R}^n \), *Annales Academiae*, 10 (1985), 15–27.
[2] J. Athreya, Logarithm laws and shrinking target properties, *Proc. Indian Acad. Sci. Math. Sci.*, 119 (2009), 541–557.
[3] J. Athreya, Cusp excursions on parameter spaces, *J. London Math. Soc.*, 87 (2013), 741–765.
[4] J. Athreya and G. Margulis, Logarithm laws for unipotent flows. I, *J. Mod. Dyn.*, 3 (2009), 359–378.
[5] J. Athreya and G. Margulis, Logarithm laws for unipotent flows. II, *J. Mod. Dyn.*, 11 (2017), 1–16.
[6] A. Borel, Some metric properties of arithmetic quotients of symmetric spaces and an extension theorem, *J. Differential Geometry*, 6 (1972), 543–560.
[7] J. Elstrodt, F. Grunewald and J. Mennicke, Vahlen's group of Clifford matrices and spin-groups, *Math. Z.*, 196 (1987), 369–390.
[8] J. Elstrodt, F. Grunewald and J. Mennicke, Kloosterman sums for Clifford algebras and a lower bound for the positive eigenvalues of the Laplacian for congruence subgroups acting on hyperbolic spaces, *Invent. Math.*, 101 (1990), 641–685.
[9] H. Garland and M. S. Raghunathan, Fundamental domains for lattices in \mathbb{R}-rank 1 semi-simple groups, *Ann. of Math.*, **92** (1970), 279–326.

[10] P. Garrett, Harmonic analysis on spheres, http://www.math.umn.edu/~garrett/m/mfms/notes_2013-14/09_spheres.pdf.

[11] V. Gritsenko, Arithmetic of quaternions and Eisenstein Series, translation in *J. Soviet Math.*, **52** (1990), 3056–3063.

[12] D. Kelmer and A. Mohammadi, Logarithm laws for one parameter unipotent flows, *Geom. Funct. Anal.*, **22** (2012), 756–784.

[13] D. Y. Kleinbock and G. A. Margulis, Logarithm laws for flows on homogeneous spaces, *Invent. Math.*, **138** (1999), 451–494.

[14] A. W. Knapp, *Lie Groups Beyond an Introduction, Second Edition*, Progress in Mathematics, vol. 140, Birkhäuser, Boston, 2002.

[15] R. P. Langlands, *On the Functional Equations Satisfied by Eisenstein Series*, Lecture Notes in Math., SLN 544, Berlin-Heidelberg-New York, 1976.

[16] J. R. Parker, *Hyperbolic spaces*, Jyväskylä Lectures in Mathematics 2, 2008.

[17] C. D. Sogge, Oscillatory integrals and spherical harmonics, *Duke Math. J.*, **53** (1986), 43–65.

[18] D. Sullivan, Disjoint spheres, approximation by imaginary quadratic numbers, and the logarithm law for geodesics, *Acta Math.*, **149** (1982), 215–237.

[19] T. Ton–That, Lie group representations and harmonic polynomials of a matrix variable, *Trans. Amer. Math. Soc.*, **216** (1976), 1–46.

[20] G. Warner, Selberg’s trace formula for non-uniform lattices: The \mathbb{R}-rank one case, in *Studies in Algebra and Number Theory*, Adv. in Math. Suppl. Stud., 6, Academic Press, New York-London, 1979, 1–142.

SHUCHENG YU <shucheng.yu@bc.edu>: Department of Mathematics, Boston College, Chestnut Hill, MA 02467-3806, USA