E-INFINITY COALGEBRA STRUCTURE ON CHAIN COMPLEXES WITH COEFFICIENTS IN Z

JESÚS SÁNCHEZ-GUEVARA

Abstract. The aim of this paper is to construct an E_∞-operad \mathcal{R} and prove that this operad induces an E_∞-coalgebra structure on chain complexes with coefficients in \mathbb{Z}. The operad \mathcal{R} is an alternative to the description of the E_∞-coalgebra structure on chain complexes by the Barrat-Eccles operad.

1. Introduction

In [10], Smith describes an E_∞-coalgebra structure on the chain complex of a simplicial set when the coefficients ring is \mathbb{Z}. In order to do this, he uses an E_∞-operad, denoted Θ, with components Σn, the Σn-free bar resolution of \mathbb{Z}. The morphisms $f_n : \Sigma n \otimes C_\ast(X) \to C_\ast(X)^{\otimes n}$ determined by the E_∞-coalgebra structure contains a family of higher diagonals on $C_\ast(X)$, starting with an homotopic version of the iterated Alexander-Whitney diagonal (given by $x \mapsto f_n(\otimes n \otimes x)$). The construction made by Smith can be seen as a version of the Barratt-Eccles operad (see [1]). Moreover, Berger and Fresse (see [2]) construct a explicit coaction over the normalized chain complex associated to a simplicial set by the Barrat-Eccles operad that extend the structure given by the Alexander-Whitney diagonal.

In this article, it is constructed an E_∞-operad \mathcal{R} which is used to give an alternative description of the E_∞-structure on the chain complex of a simplicial set. The method used to construct \mathcal{R} gives an simply way to produce E_∞-operads.

The operad \mathcal{R} presents similarities with the bar-cobar resolution of Ginzburg-Kapranov (see [6]). Berger and Moerdijk (see [3]) show that this resolution can identified with the W-construction of Boardman and Vogt (see [4]), given as a result that applied to the Barratt-Eccles operad, the W-construction gives a cofibrant resolution of it. Then, the construction of \mathcal{R} can be seen as a middle point between the Barratt-Eccles operad and its W-construction.

The results in this article are based in the Phd thesis of the author [9], where the construction of E_∞-operads is needed to study homotopy properties, described by Alain Prout in [7] and [8], of structures associated to chain complexes determinated by the Eilenberg-Mac lane transformation.

2. Preliminaries

2.1. Differential graded modules. A \mathbb{Z}-module M is graded if there is a collection $\{M_i\}_{i \in \mathbb{Z}}$ of submodules of M such that $M = \bigoplus_{i \in \mathbb{Z}} M_i$. A differential graded module with augmentation and coefficients in \mathbb{Z}, or DGA-module for short, is a graded module M together with an application $\partial : M \to M$ of degree -1 such that $\partial^2 = 0$, an applications $\epsilon : M \to \mathbb{Z}$, $\eta : \mathbb{Z} \to M$ of degree 0, called the augmentation.

The author was supported by Universidad de Costa Rica.
and coaugmentation of M, respectively, such that $\epsilon \circ \eta = 1_Z$. The category of DGA-modules is denoted DGA-Mod.

2.2. Operads. An operad P on the monoidal category DGA-Mod is a collection of DGA-modules $\{P(n)\}_{n \geq 1}$ together with right actions of the symmetric group Σ_n on each component $P(n)$, and morphisms of the form $\gamma : P(r) \otimes P(i_1) \otimes P(i_r) \to P(i_1 + \cdots + i_r)$, which satisfies the usual conditions of existence of an unit, associativity and equivariance. The morphisms γ will be called composition morphisms or simply the composition of the operad. A morphism between operads $f : P \to Q$, is a collection of DGA-morphisms $f_n : P(n) \to Q(n)$ of degree 0, respecting the units, composition and equivariance. The category of operads is denoted OP.

If we forget the composition morphism of an operad P, the collections with the right actions by the symmetrics groups are called S-modules. They form a category denoted S-Mod. The forgetful functor $U : \text{OP} \to \text{S-Mod}$ has a right adjoint denoted $F : \text{S-Mod} \to \text{OP}$, called the free operad functor.

Definition 2.1. Let P be an operad on the category of DGA-\mathbb{Z}-modules, with composition γ. A sub S-module I of $U(P)$ is called an operadic ideal of P if it satisfies $\gamma(x \otimes y_1 \otimes \cdots \otimes y_k) \in I$, whenever some of the elements x, y_1, \ldots, y_k belongs to I.

Definition 2.2. Let P be an operad and I an operadic ideal of P. We define the quotient operad P/I as the operad with components given by $(P/I)(k) = P(k)/I(k)$ for every $k \geq 1$, and composition induced by the composition of P.

Remark 2.3. Clearly the operad structure P/I is well defined by the properties of the ideal, which allows the pass to the quotient of the composition in P.

2.3. The Bar Resolution. Σ_n will denote the symmetric group on of the set $[n] = \{1, \ldots, n\}$. The chain complex with coefficients in \mathbb{Z} given by the Σ_n-free bar resolution of \mathbb{Z} is denoted $R\Sigma_n$. Recall that degree m elements of $R\Sigma_n$ are \mathbb{Z}-linear combinations of elements of the form $\sigma[\sigma_1/\cdots/\sigma_m]$, where $\sigma, \sigma_1, \ldots, \sigma_m \in \Sigma_n$ and their border is determinated by the equations $\partial = \sum_{i=0}^{m} (-1)^i \partial_i$, where $\partial_0[\sigma_1/\cdots/\sigma_m] = \sigma_1[\sigma_2/\cdots/\sigma_m]$, for $0 < i < m$ $\partial_i[\sigma_1/\cdots/\sigma_m] = [\sigma_1/\cdots/\sigma_i, \sigma_{i+1}/\cdots/\sigma_m]$, and $\partial_m[\sigma_1/\cdots/\sigma_m] = [\sigma_1/\cdots/\sigma_{m-1}]$. In degree zero, the $\mathbb{Z}[\Sigma_n]$-module is generated by the element writed $[\cdot]$.

The contracting chain homotopy for the chain complex $R\Sigma_n$ is the application $\psi_n : R\Sigma_n \to R\Sigma_n$ of degree 1 defined by the relations $\psi_n[\sigma_1/\cdots/\sigma_m] = 0$ and $\psi_n[\sigma_1/\cdots/\sigma_m] = [\sigma/\sigma_1/\cdots/\sigma_m]$.

2.4. E_∞-Operads.

Definition 2.4. An operad P on the category DGA-Mod is called E_∞-operad if each component $P(n)$ is a Σ_n-free resolution of \mathbb{Z}.

Definition 2.5. We call E_∞-algebra any P-algebra with P an E_∞-operad. And in the same way, an E_∞-coalgebra is an P-coalgebra where the operad P is an E_∞-operad.

We introduce a notion of morphism between E_∞-coalgebras which is well suited for our purpose.

Definition 2.6. Let P be an E_∞-operad on the category DGA-Mod, and let A, B P-coalgebras. A morphism $f : A \to B$ of P-coalgebras is a morphism of DGA-Mod.
which preserves the \mathcal{P}-coalgebra structure up to homotopy, that is, the following diagram

$$
\begin{array}{ccc}
\mathcal{P}(n) \otimes A & \xrightarrow{\varphi_n^A} & A^\otimes n \\
1 \otimes f & \downarrow & f^\otimes n \\
\mathcal{P}(n) \otimes B & \xrightarrow{\varphi_n^B} & B^\otimes n
\end{array}
$$

is commutative up to homotopy for every $n > 0$, where φ_n^A and φ_n^B are the associated morphisms of the \mathcal{P}-coalgebra structure of A and B, respectively. The category of coalgebras on the operad \mathcal{P} is denoted \mathcal{P}-Coalg.

3. The Operad \mathcal{R}

In this section, it is constructed an E_∞-operad \mathcal{R} which is used to describe $C_*(X)$ as an E_∞-coalgebra. Roughly speaking, to construct the operad \mathcal{R}, first take the \mathcal{S}-module with components the $\mathbb{Z}[\Sigma_n]$-free bar resolutions of \mathbb{Z}, and then make the quotient of the free operad on this \mathcal{S}-module by a suitable operad ideal \mathcal{I} (see [6] §2.1), such that our operad will have only one generator of degree 0 in each component.

Definition 3.1. Let S be the \mathcal{S}-module on the category DGA-Mod, with components $S(n) = R\Sigma_n$, the $\mathbb{Z}[\Sigma_n]$-free bar resolution of \mathbb{Z}. Define the operad \mathcal{R} as the quotient operad $F(S)/\mathcal{I}$, where \mathcal{I} is the operadic ideal of the free operad $F(S)$ generating by the elements of degree zero of $F(S)$ of the form $x - y$, where x and y are not null.

Theorem 3.2. The operad \mathcal{R} is an E_∞-operad and induces an E_∞-coalgebra structure on $C_*(X)$.

Proof. It suffices to exhibit in each arity an contracting chain homotopy. In arity n, the contracting chain homotopy $\Phi_n : R(n) \to R(n)$ is obtained by extending on $R(n)$ the contracting chain homotopy ψ_n from the component $R\Sigma_n$ of S as follows.

$R(2)$ is isomorphic to $S(2)$, so the contracting chain homotopy remains the same. When $n > 2$, $R(n)$ has two types of elements: the elements from the injection $S(n) \to R(n)$ and the elements of the form $\gamma(x; y_1, \ldots, y_r)$, where $x \in S(r)$ and $y_j \in R(i_j)$. In the first case Φ_n will behaves as the contracting chain homotopy in $S(n)$, and for the second case, we define $\Phi_n \gamma(x; y_1, \ldots, y_r) = \gamma(\Phi_n(x); y_1, \ldots, y_r)$.

To check that $\partial \Phi_n + \Phi_n \partial = 1$, let x of the form $[\sigma_1] \cdots [\sigma_l]$, with $\sigma_j \in \Sigma_r$. Now $\partial \Phi_n \gamma(x; y_1, \ldots, y_r) = \partial \gamma(\Phi_n(x); y_1, \ldots, y_r) = 0$. On the other hand,

\begin{align*}
(3.1) & \quad \Phi_n \partial \gamma(x; y_1, \ldots, y_r) \\
(3.2) & \quad = \Phi_n \gamma(\partial x; y_1, \ldots, y_r) + \text{(sign)} \sum \Phi_n \gamma(x; y_1, \ldots, y_j, \ldots, y_r) \\
(3.3) & \quad = \gamma(\Phi_n \partial x; y_1, \ldots, y_r) + \text{(sign)} \sum \gamma(\Phi_n x; y_1, \ldots, y_j, \ldots, y_r) \\
(3.4) & \quad = \gamma(x - \partial \Phi_n x; y_1, \ldots, y_r) \\
(3.5) & \quad = \gamma(x; y_1, \ldots, y_r)
\end{align*}
When \(x \) has the form \(\sigma|\sigma_1|\cdots|\sigma_l \) the verification is similar, because the compositions \(\gamma \) satisfy the following equivariance relation:

\[
\gamma(\sigma|\sigma_1|\cdots|\sigma_l; y_1,\ldots,y_r) = \gamma((\sigma_1|\cdots|\sigma_l); y_{\sigma^{-1}(1)},\ldots,y_{\sigma^{-1}(l)}).
\]

Now, the universal property of the coaugmentation \(\iota \) of the adjunction \(F \vdash U \), gives the commutative diagram:

\[
\begin{array}{ccc}
S & \xrightarrow{\iota} & F(S) \\
\downarrow{\iota} & & \downarrow{p} \\
\mathcal{S} & & \text{CoEnd}(C_\ast(X))
\end{array}
\]

(3.6)

Where the morphism \(\iota \) is the identity of \(\mathcal{S} \)-modules. It is easy to see that \(p \) respect the ideal \(\mathcal{J} \) because, when the free operad construction is interpreted by rooted trees, \(p \) is essentially the contraction of vertices of trees. Thus \(p \) pass to the quotient and we obtain a morphism of operads \(\overline{p} : \mathcal{R} \to \mathcal{S} \), which implies that every \(\mathcal{S} \)-coalgebra is an \(\mathcal{R} \)-coalgebra.

Corollary 3.3. The construction in theorem 3.2 is functorial.

Proof. The functoriality of the \(\mathcal{S} \)-coalgebra structure is hereditary by the \(\mathcal{R} \)-coalgebra structure by the operad morphism \(\overline{p} : \mathcal{R} \to \mathcal{S} \) in the proof of theorem 3.2 as shows the following commutative diagram for every morphism \(f : X \to Y \):

\[
\begin{array}{ccc}
\mathcal{R} & \xrightarrow{\overline{p}} & \mathcal{S} \\
\downarrow{f_*} & & \downarrow{f_*} \\
\text{CoEnd}(C_\ast(X)) & & \text{CoEnd}(C_\ast(Y))
\end{array}
\]

(3.7)

\[\square \]

We can understand the relation between the operad \(\mathcal{R} \) and the operad \(\mathcal{S} \) by the following proposition.

Corollary 3.4. There is an operad ideal \(\mathcal{I} \) such that \(\mathcal{S} \cong \mathcal{R}/\mathcal{I} \).

Proof. This is because the underlying \(\mathcal{S} \)-module of \(\mathcal{S} \) is \(S \), and a direct consequence of the definition of compositions \(\gamma \) of \(\mathcal{S} \) (see [10]), in the sense that, the operadic ideal \(\mathcal{I} \) is defined by the identification needed for \(\gamma \).

In [5] Vallette and Dehling describe an operad similar to \(\mathcal{R} \) and they show that this operad can be used to explicitly state (by the use relations) the definition of \(E_\infty \)-algebras, as it is already possible for \(A_\infty \)-algebras.

Corollary 3.5. Let \(A \) be a DGA-module together with:

1. For every integer \(m \geq 1 \), \(n \geq 1 \) and \(\sigma,\sigma_1,\ldots,\sigma_n \in \Sigma_m \), morphisms of degree \(n \):

 \[
 \mu_{\sigma|\sigma_1|\cdots|\sigma_n} : A \to A^\otimes n.
 \]

2. For every integer \(m \geq 1 \) and \(\sigma \in \Sigma_m \), applications of degree 0:

 \[
 \mu_{|\sigma} : A \to A^\otimes n.
 \]

Suppose these morphisms satisfy the following relations:

1. \(\mu_{\sigma x} = \mu_{x \sigma} \), where \(\sigma \) is the right action on \(n \) factors.
\(\mu_{x+y} = \mu_x + \mu y \) and \(\partial \mu_x = \mu \partial x\).

(3) \((\mu_1 \otimes \cdots \otimes \mu_n) = \mu_{1+\cdots+n} \).

Then, \(A\) is an \(R\)-coalgebra if and only if \(A\) has an structure of this type.

Proof. This is directly implied by the operad morphism \(R \to \text{Coend}(A)\). \(\square\)

References

1. M. G. Barratt and P. J. Eccles, \(\Gamma+\)-structures-I: a free group functor for stable homotopy theory, Topology 13 (1974), no. 1, 25 – 45.
2. C. Berger and B. Fresse, Combinatorial operad actions on cochains, Mathematical Proceedings of the Cambridge Philosophical Society 137 (2004), 135–174.
3. C. Berger and I. Moerdijk, Resolution of coloured operads and rectification of homotopy algebras, Contemporary mathematics 431 (2007), 31–58.
4. J. M. Boardman and R. M. Vogt, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Mathematics, Springer Berlin Heidelberg, 1973.
5. M. Dehling and B. Vallette, Symmetric homotopy theory for operads, ArXiv e-prints (2015).
6. V. Ginzburg and M. Kapranov, Koszul duality for operads, Duke Math. J. 76 (1994), no. 1, 203–272.
7. A. Prouté, Sur la transformation d’Eilenberg-Maclane, C. R. Acad. Sc. Paris 297 (1983), 193–194.
8. Sur la diagonal d’Alexander-Whitney, C. R. Acad. Sc. Paris 299 (1984), 391–392.
9. J. Sánchez-Guevara, About l-algebras, Ph.D. thesis, Universit Paris VII, Paris, 2016.
10. J. R. Smith, Iterating the cobar construction, American Mathematical Society: Memoirs of the American Mathematical Society, no. 524, American Mathematical Society, 1994.

Escuela de Matemáticas, Universidad de Costa Rica
E-mail address: jesus.sanchez-g@ucr.ac.cr