Remodeling gut microbiota by *Streptococcus thermophilus* 19 attenuates inflammation in septic mice

Author names

Gaofeng Wu*\(^a\), Yijie Zhang*\(^ab\), Xuekang Yang*\(^a\), Zhuoqun Fang*\(^a\), Shichao Han\(^a\), Xiaoqiang Li\(^a\), Weixia Cai\(^a\), Dan Xiao\(^a\), Jiaqi Liu\(^a\), Wanfu Zhang\(^a\), Na Li\(^a\), Peng Ji\(^a\), Hongyi Hou\(^a\), Juntao Han\(^a#\), Dahai Hu\(^a#\)

\(^a\) Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China

\(^b\) Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, First Hospital Affiliated to General Hospital of PLA, Beijing, 100048, China

#Corresponding authors

E-mail: hanjt@fmmu.edu.cn and hudahaidoc@163.com

Gaofeng Wu, Yijie Zhang and Yang Xuekang contributed equally to this work

#These authors also contributed equally to this work.

Abstract

Background: Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection and is the leading cause of death in burn patients. *S. thermophilus* 19 is highly effective probiotic strains with well-studied health benefits, but its role in protecting viscera against injury caused by sepsis and the underlying mechanism is poorly understood.
Methodology/Principal Findings: We tested the utility of *S. thermophilus* 19 in attenuating inflammation in *vitro* and *vivo* of a Lps-induced sepsis mouse model. We also evaluated the influence of sepsis and *S. thermophilus* on microbial community. *In vitro*, *S. thermophilus* 19 can decrease the expression of inflammatory factors. Additionally, in a lipopolysaccharide (LPS)-induced septic mouse model, mice administered the probiotics 19 was highly resistant to LPS and exhibited decreased expression of inflammatory factors compared to LPS-treated control mice. A MiSeq-based sequence analysis revealed that gut microbiota alterations in mice intraperitoneally injected with 1 mg/ml LPS were mitigated by the administration of oral probiotics 19. Furthermore, changes in the levels of inflammatory factors in different organs related to different gut microbiota alterations were observed.

Conclusions/Significance: Together these findings indicate that *S. thermophilus* 19 may be a new avenue for interventions against inflammation caused by sepsis and other systemic inflammatory diseases.

Author summary

Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection and is the leading cause of death in burn patients, responsible for up to 50 to 60% of burn injury deaths. Although our understanding of sepsis has increased substantially in recent years, it is still reported to be the leading cause of death in seriously ill patients, and the incidence of sepsis has increased annually. Therefore, new insights into the causes of sepsis are urgently needed. Here, we use Miseq method to determine the composition of gut microbiota. We also use a probiotic (*Streptococcus thermophilus* 19) to investigate the therapeutic effect on sepsis. We found that the
exceptional efficacy of probiotic *Streptococcus thermophilus* 19 in attenuating the inflammation in septic mice by modifying the structure and function of gut microbiota. Our study proposed oraling *Streptococcus thermophilus* 19 might be a new avenue for interventions against inflammation caused by sepsis and other systemic inflammatory diseases.
Introduction

Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection and is the leading cause of death in burn patients, responsible for up to 50 to 60% of burn injury deaths[1, 2]. Although our understanding of sepsis has increased substantially in recent years, it is still reported to be the leading cause of death in seriously ill patients, and the incidence of sepsis has increased annually. Therefore, new insights into the causes of sepsis are urgently needed.

The gut microbiota is a complex ecosystem consisting of trillions of bacteria that live in the digestive tracts of humans and other animals[3]. Growing evidence supports the key role of a healthy gut microbiota in promoting and maintaining a balanced immune response and in the establishment of the gut barrier immediately after birth[4, 5]. Moreover, a dysbiotic state of the gut microbiota can lead to dysregulation of various processes, which can in turn contribute to the development of autoimmune conditions[6]. For instance, the presence or overabundance of specific types of bacteria may contribute to inflammatory disorders such as IBD[6]. Additionally, metabolites from certain members of the gut flora may influence host signaling pathways, contributing to disorders such as colon cancer and obesity. Sepsis is an extreme response to inflammation that has profound effects on all parts of the body. For decades, the gut has been regarded as the motor of sepsis[7], and it has recently been shown that a healthy gut microbiota has a protective role during systemic inflammation. Thus, we hypothesized that intestinal bacteria play an important role in sepsis since the gut microbiota is associated with many diseases.
Probiotics are live microbes that have beneficial effects on human and animal health when ingested in sufficient amounts[8]. Probiotics play an important role in maintaining the normal microbiota composition and have been used to treat or prevent a number of gut health disorders, such as irritable bowel syndrome, hypercholesterolemia, gastritis, gut infection, parasitic infestation, hypersensitivity (including food allergies), and even certain types of cancers (e.g., colorectal cancer)[9, 10]. The use of microbes as probiotics also hold potential for oral health in preventing and treating oral infections, dental plaque-related diseases, periodontal diseases and halitosis. Furthermore, probiotics can alleviate inflammation associated with some human diseases by promoting changes in the gut microbiota composition[11, 12]. *Streptococcus thermophilus* is a highly effective probiotic that has well studied health benefits, including the production of antibiotics that prevent infections from pneumonia-causing microbes and *C. difficile* and can help to prevent ulcers[13-15].

In this study, we used a coculture system (probiotics and RAW264.7 cells) to assess the ability of probiotics to decrease the expression of inflammatory factors. We showed that *Streptococcus thermophilus* 19 can decrease the inflammation induced by LPS in RAW264.7 cells. Furthermore, we investigated the ability of *Streptococcus thermophilus* 19 to protect mice against LPS-induced inflammation and gut microbiota alterations when administered as a probiotic. We observed that the administration of *S. thermophilus* 19 as probiotics could alter the gut microbiota composition of untreated mice or mice with LPS-induced sepsis, with the symptoms of sepsis mitigated in the latter group. Moreover, the levels of several inflammatory factors in various organs were correlated to a diverse gut microbiota composition. We
hypothesize that the supplementation of diets with probiotics protects visceral organs by reducing inflammation through alterations in the gut microbiota after sepsis.

Results

Probiotics decrease the expression of inflammatory factors in vitro

To assess the influence of the assayed probiotics on the expression of inflammatory factors, we developed a coculture system (probiotics and RAW264.7 cells). After incubating for 6 hours, total RNA was extracted and the expression of inflammatory factors was assessed via quantitative RT-PCR. The LPS treatment increased the expression of inflammatory factors compared to the untreated group. After coculturing with probiotics, we observed a reduction in inflammatory factor expression, particularly when cells were incubated *S. thermophilus* 19 (Figure. 1). Moreover, we also observed a reduction in CD86 expression when cells treated with *S. thermophilus* 19 (Figure. S1). Therefore, *S. thermophilus* 19 was chosen for further study.

Food and water intake and animal health conditions

Mice were induced by intravenous injection with different doses of LPS to induce sepsis. All mice died when the concentration of LPS exceeded 2.5 mg/ml, even in mice administered probiotics (data not shown). However, nearly 60% of mice survived when administered probiotics together with 2 mg/ml LPS, whereas only 20% of mice administered the same LPS without probiotics survived. All mice treated with 1 mg/ml of LPS survived (Figure. 2A).

We also recorded the total food and water intake and the animal health conditions for all mice. LPS-treated mice with or without probiotics exhibited a reduction in total drinking water and rat chow intake (Figure. 2C). Furthermore, mice treated with the probiotics alone also
exhibited decreased water and rat chow intake (Figure. 2C). However, mice treated with LPS lost approximately 10% of their body weight during the 48 hours after injection, while untreated mice did not lose weight. Although all treated groups regained their baseline weight by the third day, mice treated with *S. thermophilus* 19 exhibited high rates of body weight recovery. Meanwhile, mice treated with *S. thermophilus* 19 alone showed no changes in body weight, although they exhibited lower drinking water and food intake (Figure. 2B). The decrease in body weight of the LPS-treated mice could be explained by the LPS-induced inflammation causing a reduction in food and drinking water intake, while the probiotics could alleviate inflammation to promote the recovery in body weight.

Probiotics alleviate the serum inflammatory factor levels in septic mice

To test whether the assayed probiotics could alleviate inflammation *in vivo*, we induced sepsis in BALB/c (H-2D^d) mice with LPS (1 mg/ml) through intraperitoneal injection and treated them with PBS, *S. thermophilus* 19 via oral gavage. We observed a 2-fold increase in TNF-α expression in the sera of mice treated with LPS, while that of IL-1β was less affected (Figure. S2). In mice administered probiotics, the TNF-α level was reduced to that observed in the control group. In contrast, in mice treated with probiotics without the LPS treatment, no significant effect on the serum levels of IL-1β and TNF-α were observed compared to the control group, demonstrating that the probiotics has no influence on the host in the absence of sepsis.

Probiotics effectively alleviated viscera damage induced by sepsis

Sepsis is an extreme response to inflammation, which has profound effects on all parts of the body. Thus, we investigated the inflammation state of the kidneys, small intestines, liver, heart
and lungs of each mouse after the LPS and probiotic treatment. In the small intestines, the LPS treatment dramatically increased the expression of IL-1β, CCL2, TGF-β, IL-6 and TNF-α, while that of IL-10 was decreased compared to the control group. The expression of IL-1β, CCL2, TGF-β, IL-6 and TNF-α were effectively rescued in the mice treated with probiotics compared to the mice treated with LPS alone. Moreover, the expression of TNF-α and IL-1β in the probiotic- and LPS-treated mice and the control mice did not significantly differ, while that of TGF-β and CCL2 exhibited a slight difference. Meanwhile, mice treated only with probiotics exhibited altered TGF-β and CCL2 expression compared to the control group (Figure 3A, Figure S3). However, the administration of probiotics in the LPS-treated mice could not mitigate the change in IL-10 expression observed mice treated with LPS alone. In the lungs, the LPS treatment increased IL-1β, TNF-α, CCL2 and IL-6 expression, whereas the expression of IL-1β, TNF-α, CCL2 and IL-6 was decreased in the probiotic- and LPS-treated mice. In addition, the LPS treatment did not affect the expression of IL-10 and TGF-β, while the probiotic treatment decreased the expression of IL-10(Figure 3A, Figure S3). In the kidneys, the LPS treatment dramatically increased the expression of IL-1β, CCL2, TGF-β, IL-6 and TNF-α compared to the control group, whereas mice treated with the probiotics exhibited decreased expression of these inflammation factors. However, the expression of IL-10 in mouse kidneys has a crosscurrent compared with that observed in the small intestines (Figure S3). Furthermore, the administration of probiotics could decrease the high expression of IL-10 observed in the kidneys due to the LPS treatment. In the livers, the probiotic treatment was also observed to decrease the expression of inflammatory factors (IL-1β, TNF-α, IL-6, and CCL2) induced by LPS (Figure.
The expression of IL-10 in the liver exhibited the same tendency observed in the small intestine. H&E staining (Figure 3B) revealed that compared with the liver sections in the control group mice, significant congestion of veins and hepatocyte necrosis was observed in the LPS-treated mice, and the loss of intact liver plates and hepatocyte vacuolization was observed. In pulmonary sections, drastic destruction of alveolar structures was detected in the LPS-treated mice, and the effusion in alveoli in these mice was markedly more severe than that observed in the control group mice. Furthermore, tissue infiltration by inflammatory cells was substantially higher in LPS-treated mice than in the control group mice. Cotreatment with probiotics resulted in the restoration of a close-to-normal appearance of liver and lung tissues. Moreover, *S. thermophilus* 19 treatments alone did not affect the liver and lung sections of mice (Figure 3B).

LPS altered the gut microbiota structure of mice

In the balance between intestinal microbiota and inflammation, deviations either way may cause corresponding adjustments in the other. To test whether the gut microbiota of mice was altered due to sepsis, we collected the cecal feces of mice and assayed them via MiSeq sequencing to determine the composition of gut microbiota. Mice treated with LPS exhibited decreases intestinal microbiota richness compared to the control group (Chao1 index) while no difference in diversity (Shannon index) between two groups was observed (Figure 4A-B). Interestingly, 8 OTUs were specifically present in the LPS-treatment group compared to the control group, while the control group also contained 8 specific OTUs (Figure S4). The fecal microbiota of the mice treated with LPS only clustered differently from those of the control group mice, demonstrating the significant effect of LPS on the gut microbiota (Figure 4C).
Probiotics intervention alters the gut microbiota of mice

To investigate the effect of probiotics on the gut microbiota of mice, we sequenced the gut microbiota of the mice treated with probiotics alone. The diversity of the intestinal microbiota differed for the various probiotics assayed compared to the control group, while no difference in richness was observed among the groups (Figure 5A-B). Nine OTUs were specifically present in the group treated with S. thermophilus 19 alone compared to the control group, while the control group also had 5 specific OTUs (Figure S4). Moreover, the gut microbiota of mice treated with probiotics alone clustered differently from that of the control group mice (Figure S5C).

Oral administration of Probiotics alleviated viscera damage via altering the gut microbiota

We showed that probiotic intervention can attenuate the inflammation in septic mice (Figure 3 and Figure S3). Furthermore, we previously reported that probiotics can reduce the inflammation induced by Cr(VI) in mice through modifying the gut microbiota. Thus, we hypothesized that the protection of viscera by the probiotic-induced attenuation of inflammation in septic mice is also associated with changes in the intestinal microbiota. To test this hypothesis, we sequenced the 16S rRNA gene variable (V) V3-V4 region of the fecal bacteria samples obtained from S. thermophilus 19 treated Lps-treated mice (Lps7) and compared the results to those obtained from the mice treated with LPS alone and the control group. Overall, differences between the S. thermophilus 19- and LPS-treated mice were observed (Figure 5A-B). Mice administered S. thermophilus 19 and treated with LPS had 8 specific OTUs compared to mice treated with LPS alone (Figure S4). Meanwhile, the intestinal microbiota of LPS7 groups
clustered differently from mice treated with LPS alone group (Figure. 5C), demonstrating the important effect of probiotics. Next, we compared the differences in gut microbiota composition between the probiotic- and LPS-treated mice and the control group mice. Mice treated with LPS and *S. thermophilus* 19 exhibited decreases intestinal microbiota richness compared to the control group (Chao1 index) while no difference in diversity (Shannon index) between two groups was observed (Figure. S6 A - B). The gut microbiota of mice treated with LPS and 19 clustered differently from that of the control group mice (Figure. S6C). Six specific OTUs were identified in the LPS7 group mice and 9 were identified in the control group (Figure. S4). Taken together, these results indicated that all the treatments altered the composition of the gut microbiotas of the assayed mice. Although the composition of the gut bacteria in the mice treated with probiotic and that of the control group differed, the expression of inflammation-associated factors in these mice did not significantly differ. We speculated that the gut microbiota in these exhibited a healthy status, whereas the probiotic and LPS-treated mice had a lower health status.

Strain-specific effects of probiotics on gut microbiota

Next, sequence data were analyzed at the family and genus levels to investigate the changes in gut microbiota composition. Compared to the control group, LPS-treated mice had lower abundances of bacteria belonging to the phylum *Fusobacteria* and of the genera *Fusobacterium* and *Psychrobacter* (Figure. 4D. and Figure. S7). In contrast, higher abundances of bacteria from the genus *Flavonifractor* were observed in the LPS-treated mice. Mice treated with S. *thermophilus* 19 exhibited a decreased abundance of bacteria belonging to the phylum *Bacteroidetes* and an increased abundance of the phylum *Firmicutes* (Figure. S 5D). The details
of the changes in microbiota compositions in the 19 treatment mice is shown in Supplementary Figure. 7. Compared to the LPS group, LPS-treated mice administered S. thermophilus 19 exhibited an increased abundance of Fusobacteria. In detail, LPS-treated mice administered S. thermophilus 19 had lower abundance of Clostridium XIVb and a higher abundance of Fusobacterium and Klebsiella (Figure.5D and Figure.S7). The changes in the microbiota composition between the LPS7 and control groups is shown in Figure.S 6D and S7.

Overall, these data showed that LPS and probiotics significantly impacted the microbiota composition of mice.

The function of gut microbiota was specifically altered after the administration oral probiotics

Next, we used a Kruskal-Wallis/Wilcoxon rank-sum test to determine how the altered community structure of the gut microbiota affects its function. One KEGG database biochemical pathway was significantly decreased and two were enriched in the LPS-treated mice compared to control group (Figure. 6 A). After oral administration 19, nineteen treated mice were decreased in 65 KEGG database biochemical pathways and enhanced for 73 compared to control mice (Figure. 6B). Moreover, 19 LPS-treated mice were enhanced for 2 KEGG database biochemical pathways and were reduced for 3 (Figure.6D). However, the LPS7 mice were enriched in 33 pathways and were reduced in 53 compared to the control mice (Figure.6C). Notably, LPS7 mice were decreased in both primary bile acid biosynthesis and secondary bile acid biosynthesis, which have proinflammatory properties compared to the LPS-treated mice. These data suggest a significantly decreased proinflammatory signature, as well as an increased anti-inflammatory capacity of the gut microbiome in probiotic-treated mice. Taken together, the probiotics were
observed to reshape the gut microbiota with a distinct composition, network topology and functionality.

Discussion

Sepsis is life-threatening organ dysfunction caused by a dysregulated host response to infection and often causes multiple organ damage. *S. thermophilus* has been shown to be highly effective probiotic strains with well-studied health benefits. However, the impact of *S. thermophilus* on the gut microbiota composition, and its influence on the inflammation caused by LPS-induced sepsis remains poorly understood. In this study, we utilized a MiSeq sequencing approach to assess how *S. thermophilus* 19 modulate the host fecal microbiota and inflammatory response in an LPS-induced mouse sepsis model. Our results showed that *S. thermophilus* 19 can decrease the expression of inflammatory factors RAW264.7 cells treated with LPS. Moreover, we showed that *S. thermophilus* 19 were able to protect viscera against damage induced by sepsis. Furthermore, *S. thermophilus* 19 could alter the microbiota composition and restore homeostasis of the gut microbiota disrupted by sepsis.

Inflammation and infection are frequently accompanied by an imbalance in the intestinal microflora[16]. A strong inflammatory response may then be mounted against microfloral bacteria, leading to a perpetuation of the inflammation and gut barrier dysfunction[17]. Sepsis is life-threatening organ dysfunction caused by a dysregulated host response to infection, which is often causes a systemic inflammatory response. To assess the relationship between the gut microbiota and sepsis, we induced sepsis in mice through intraperitoneal injection of LPS (2 mg/ml) and used a MiSeq sequencing-based approach to evaluate the gut microbiota.
compositions of the assayed mice. The results showed that the LPS treatment decreased the abundance of *Fusobacteria* and the richness of the intestinal microbiota. Moreover, the abundances of the genera *Fusobacterium*, *Flavonifractor* and *Psychrobacter* were altered in the septic mice. Previous studies showed that shifts in the intestinal *Firmicutes* to *Bacteroidetes* ratio, as well as reduced microbiota diversity[18, 19]. However, these studies had many uncertainties with regard to the variability and temporal nature of sepsis-induced dysbiosis. Thus, we used an LPS-induced sepsis model to investigate the changes in gut microbiota composition to eliminate the influence of other factors. Our results suggest that the genera *Fusobacterium*, *Flavonifractor* and *Psychrobacter* may play important role in the development of sepsis.

We observed that LPS significantly upregulates the expression of genes involved in inflammation, especially in the livers, lungs, kidneys and small intestines of mice. Moreover, LPS induced sepsis has been demonstrated to result in the expression of inflammation-related genes in multiple organs[1]. Probiotics are live microbial food supplements or bacterial components that have been shown to have beneficial effects on human health. Additionally, probiotics are often used to treat inflammation-related diseases, such as inflammatory bowel disease, allergic diseases, and acute gastroenteritis. *S. thermophilus* is probiotics that have been used to treat many illnesses. probiotics containing *S. thermophilus* KB19 significantly increased betaine plasma levels in chronic kidney disease[20-23]. Similarly, we observed that *S. thermophilus* decreased the level of inflammatory factors in an LPS-induced sepsis mouse model. In addition, the administration of *S. thermophilus* 19 did not trigger any inflammation or dysbiosis of the gut microbiota, suggesting that they could safely be used to treat sepsis with no
obvious harmful side effects. Thus, together with previous results, these results suggest that *S. thermophilus* 19 may be one alternative probiotics for use in sepsis intervention in the future.

It has now been recognized that alterations in gut microbiota composition and function appear to be an important mechanism by which probiotics alleviate human disease. Our results showed that the probiotics 19 altered the function of the gut microbiota in mice. In particular, mice treated with LPS and probiotics exhibited changes in the function of oxidative-phosphorylation and bile acid biosynthesis, which are important in inflammation-related diseases.[24, 25]. Moreover, probiotics also caused other functions of the gut microbiota to change. Meanwhile, mice treated with probiotics alone also exhibited changes in the function of the gut microbiota that may be good for host health by promoting low inflammatory factor expression and a good health state. Taken together, our results indicated that probiotics are good for host health despite the changes they induce in the composition and function of the gut microbiota.

In summary, we demonstrated that the probiotics *S. thermophilus* 19 can alleviate inflammation both *in vivo* and *in vitro*. This probiotics reduced the levels of inflammatory factors caused by sepsis, which may occur through multiple targets. For instance, probiotics can resistant some pathogenic bacteria enriched in gut after intraperitoneal injection of LPS, alter the functional potential of intestinal microbes, promote higher intestinal permeability, and alter the composition of the gut microbiota. These results suggest that the probiotics *S. thermophilus* 19 may be used to treat not only sepsis but also other systemic inflammatory diseases (inflammatory bowel disease, systemic inflammatory arthritis, multiple sclerosis and so on).
Collectively, the results of our study provide a conceptual framework to further text this hypothesis in humans to treat sepsis and other systemic inflammatory diseases.

Method and Materials

Bacteria and media

L. plantarum TW1-1, *Pediococcus acidilactici* XS40, *L. plantarum* DS45, *L. paracasei*, LZU-D2, *L. delbruckii*, *L. casei* 18-10, *Streptococcus thermophilus* 19 were provided by Dr. Xusheng Guo (Lanzhou University, Lanzhou, China). The bacterial strains were cultured in De Man, Rogosa, and Sharpe (MRS; Beijing Solarbio Science & Technology, Beijing, China) growth medium with the exception of 19 and XS40, which were cultured in M17 growth medium (MRS; Beijing Solarbio Science & Technology, Beijing, China) supplemented with 1% lactose and MRS medium supplemented with 0.5% glucose, respectively. MRS and M17 agar medium were used to determine the CFU of the assayed probiotic strains.

In vitro evaluation of inflammatory factors induced by probiotics and flow cytometry

The commercial immortal mouse macrophage cell line RAW264.7 was obtained from the American Type Culture Collection and was grown in Dulbecco’s Modified Eagle’s Medium (DMEM; Gibco, Gaithersburg, MD) supplemented with 10% heat-inactivated fetal bovine serum (FBS) under a humidified 10% CO$_2$ atmosphere at 37°C. The cells were cultured in 12-well culture plates at 1×10^6 cells/well. The bacterial strains were grown in MRS or M17 medium overnight (16 h), after which the cultures were diluted to an optical density (OD) of 0.3, washed with phosphate-buffered saline (PBS; pH 7.4), resuspended in PBS, and were used to infect the RAW264.7 cells at a multiplicity of infection (MOI) of 1:100 (cells/bacteria). The plates were
incubated for 6 h at 37°C under a 10% CO\textsubscript{2} atmosphere and samples were collected to assess the levels of inflammatory factors by qRT-PCR and the levels of CD86 and CD206 by flow cytometry. PBS without bacteria was used as negative control.

Animals and sepsis model

The 7-14-week-old BALB/c (H-2d) mice used in this study were originally purchased from the Experimental Animal Center of The Fourth Military Medical University and were bred in our facility under specific-pathogen-free conditions. All animals were maintained under a 12 h light/dark cycle. To induce sepsis, mice were administered different doses of lipopolysaccharide (LPS) by intraperitoneal injection, with a second dose administered 4 days after the first injection. The details of the experimental design are shown in Table 1. The names of the experimental groups were as follows: LPS7 denotes LPS+ S. thermophilus 19, 7 denotes S. thermophilus 19.

Ethics Statement

All procedures and protocols used in this study were carried out in compliance with the guidelines of the European Union for handling laboratory animals and were approved by the Ethics Committee of the Fourth Military Medical University.

Weight, water and food intake measurements and sampling

The body weight, water and food intake, and stool appearance were documented for all groups of mice every other day throughout the experiment. After 1 week, the liver, kidneys, lungs, heart and small intestines were collected from each mouse and were divided into triplicate samples, with one stored in liquid nitrogen, a second stored in RNAiso Plus for RNA extraction, and the
third was fixed in 4% (w/v) paraformaldehyde at 4°C for later histological analysis.

Histology of different tissues

After the animals were sacrificed, different tissue samples were collected. After fixation in 4% paraformaldehyde, the tissue samples were embedded in paraffin and serially cut into 7-mm thick sections. Tissue slides were stained with hematoxylin and eosin (H&E) for histological analysis.

Microbial DNA extraction and Illumina MiSeq sequencing

Microbial DNA was extracted from the samples using an E.Z.N.A.® Stool DNA Kit (Omega BioTek, Norcross, GA, USA) according to manufacturer’s protocols, and the DNA samples were assessed via PCR with the universal 16S rRNA primers 27F/1492R. The DNA concentration and integrity were determined by electrophoresis on 1% agarose gels containing ethidium bromide and spectrophotometrically using an EPOCH instrument (BioTek). After confirmation, the DNA was lyophilized and sent for Illumina MiSeq sequencing and data analysis.

The gut microbiota compositions of mice were assessed via Illumina MiSeq sequencing (Genergy Biotech) targeting the V3-V4 region of the bacterial 16S ribosomal RNA gene using the primers 341F (5’-CCTACGCGGNGGCWGCAG-3’) and 785R (5’-GACTACHVGGGTATCTAATCC-3’), with an eight-base barcode sequence unique to each sample. The amplicons were extracted from 2% agarose gels and purified using an AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Union City, CA, USA) according to the manufacturer’s instructions and were subsequently quantified using a QuantiFluor™-ST instrument (Promega, USA). The purified amplicons were pooled in equimolar ratios and
paired-end sequenced (2 × 300) on an Illumina MiSeq platform according to standard protocols. The raw reads were deposited at the NCBI Sequence Read Archive (SRA) database. Operational taxonomic units (OTUs) were clustered with a 97% similarity cutoff using UPARSE (version 7.1 http://drive5.com/uparse/), and chimeric sequences were identified and removed using UCHIME. The taxonomy of each 16S rRNA gene sequence was analyzed using RDP classifier (http://rdp.cme.msu.edu/) against the SILVA (SSU123) 16S rRNA database using a confidence threshold of 70%. The taxonomy of each ITS gene sequence was analyzed using Unite classifier (https://unite.ut.ee/index.php).

Quantitative RT-PCR for inflammatory factor determination

Total RNA was extracted from different tissues using RNAiso Plus (Takara, Dalian, China) and was subsequently reverse transcribed into cDNA using PrimeScript™ RT. Master Mix using random primers (Takara, Dalian, China) according to the manufacturer’s protocol. The expression of inflammatory factor-related genes was analyzed using SYBR® PremixEx Taq™ II and the Bio-Rad CFX system. For real-time PCR, the reaction mixtures contained 1 μL cDNA, 0.4 μL of each primer (10 mmol⁻¹), 5 μL of SYBR green PCR Master Mix, and distilled water to a final reaction volume of 10 μL. The Taq DNA polymerase was activated at 95°C for 10 min, followed by 40 cycles of 95°C for 15 s, 60°C for 30 s, and 72°C for 30 s. Quantitative RT-PCR data were normalized to the expression of the housekeeping gene β-actin using the 2⁻ΔCt method. The primers used in this study are shown in Table 2.

Quantification and statistical analysis
Graphpad Prism was used for graphical presentation and statistical analyses. Differences were considered statistically significant at p<0.05, and data are presented as the means ± SEM. The number of biological replicates (n) and the number of independent experiments are indicated in the figure legends. The Kruskal-Wallis/Wilcoxon rank-sum test was used to analyze the gut microbiota composition data for all the groups.

Acknowledgements

We thank Dr. Xusheng Guo(Lanzhou University) for his assistance for supply our strains and Dr. Guodong Yang(Fourth Military Medical University) for his advice on data and statistical analysis. This work was supported by grants from Natural Science Foundation of China (81530064, 81801913, 81601680 and 81701902).

References

1. Bai X, He T, Liu Y, Zhang J, Li X, Shi J, et al. Acetylation-dependent regulation of notch signaling in macrophages by sirt1 affects sepsis development. Front Immunol. 2018;9:762. doi: 10.3389/fimmu.2018.00762. PubMed PMID: 29867921; PubMed Central PMCID: PMCPMC5949384.

2. Manning J. Sepsis in the burn patient. Crit Care Nurs Clin North Am. 2018;30(3):423-30. doi: 10.1016/j.cnc.2018.05.010. PubMed PMID: 30098746.

3. Glenwright AJ, Pothula KR, Bhamidimarri SP, Chorev DS, Basle A, Firbank SJ, et al. Structural basis for nutrient acquisition by dominant members of the human gut microbiota. Nature. 2017;541(7637):407-11. doi: 10.1038/nature20828. PubMed PMID: 28077872; PubMed Central PMCID: PMCPMC5497811.

4. Hand TW. The role of the microbiota in shaping infectious immunity. Trends Immunol. 2016;37(10):647-58. doi: 10.1016/j.it.2016.08.007. PubMed PMID: 27616558; PubMed Central PMCID: PMCPMC5048567.
5. Maynard CL, Elson CO, Hatton RD, Weaver CT. Reciprocal interactions of the intestinal microbiota and immune system. Nature. 2012;489(7415):231-41. doi: 10.1038/nature11551. PubMed PMID: 22972296; PubMed Central PMCID: PMCPMC4492337.

6. Clemente JC, Manasson J, Scher JU. The role of the gut microbiome in systemic inflammatory disease. BMJ. 2018;360:j5145. doi: 10.1136/bmj.j5145. PubMed PMID: 29311119.

7. Carrico CJ, Meakins JL, Marshall JC, Fry D, Maier RV. Multiple-organ-failure syndrome. Arch Surg. 1986;121(2):196-208. PubMed PMID: 3484944.

8. Isolauri E, Kirjavainen PV, Salminen S. Probiotics: a role in the treatment of intestinal infection and inflammation? Gut. 2002;50 Suppl 3:III54-III9. PubMed PMID: 11953334; PubMed Central PMCID: PMCPMC1867676.

9. Mombaerts P, Mizoguchi E, Grusby MJ, Glimcher LH, Bhan AK, Tonegawa S. Spontaneous development of inflammatory bowel disease in T cell receptor mutant mice. Cell. 1993;75(2):274-82. PubMed PMID: 8104709.

10. Doron S, Snydman DR. Risk and safety of probiotics. Clin Infect Dis. 2015;60 Suppl 2:S129-S34. doi: 10.1093/cid/civ085. PubMed PMID: 25922398; PubMed Central PMCID: PMCPMC4490230.

11. Wu G, Xiao X, Feng P, Xie F, Yu Z, Yuan W, et al. Gut remediation: a potential approach to reducing chromium accumulation using Lactobacillus plantarum TW1-1. Sci Rep. 2017;7(1):15000. doi: 10.1038/s41598-017-15216-9. PubMed PMID: 29118411; PubMed Central PMCID: PMCPMC5678100.

12. Hwang IY, Koh E, Wong A, March JC, Bentley WE, Lee YS, et al. Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeruginosa gut infection in animal models. Nat Commun. 2017;8:15028. doi: 10.1038/ncomms15028. PubMed PMID: 28398304; PubMed Central PMCID: PMCPMC5394271.

13. Correa NB, Peret Filho LA, Penna FJ, Lima FM, Nicoli JR. A randomized formula controlled trial of
Bifidobacterium lactis and Streptococcus thermophilus for prevention of antibiotic-associated diarrhea in infants. J Clin Gastroenterol. 2005;39(5):385-9. PubMed PMID: 15815206.

14. Saavedra JM, Bauman NA, Oung I, Perman JA, Yolken RH. Feeding of Bifidobacterium bifidum and Streptococcus thermophilus to infants in hospital for prevention of diarrhoea and shedding of rotavirus. Lancet. 1994;344(8929):1046-9. PubMed PMID: 7934445.

15. Mater DD, Bretigny L, Firmesse O, Flores MJ, Mogenet A, Bresson JL, et al. Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus survive gastrointestinal transit of healthy volunteers consuming yogurt. FEMS Microbiol Lett. 2005;250(2):185-7. doi: 10.1016/j.femsle.2005.07.006. PubMed PMID: 16099606.

16. Khosravi A, Yanez A, Price JG, Chow A, Merad M, Goodridge HS, et al. Gut microbiota promote hematopoiesis to control bacterial infection. Cell Host Microbe. 2014;15(3):374-81. doi: 10.1016/j.chom.2014.02.006. PubMed PMID: 24629343; PubMed Central PMCID: PMCPMC4144825.

17. Schuijt TJ, Lankelma JM, Scicluna BP, de Sousa e Melo F, Roelofs JJ, de Boer JD, et al. The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia. Gut. 2016;65(4):575-83. doi: 10.1136/gutjnl-2015-309728. PubMed PMID: 26511795; PubMed Central PMCID: PMCPMC4819612.

18. Ojima M, Motooka D, Shimizu K, Gotoh K, Shintani A, Yoshiya K, et al. Metagenomic analysis reveals dynamic changes of whole gut microbiota in the acute phase of intensive care unit patients. Dig Dis Sci. 2016;61(6):1628-34. doi: 10.1007/s10620-015-4011-3. PubMed PMID: 26715502; PubMed Central PMCID: PMCPMC4875048.

19. Zaborin A, Smith D, Garfield K, Quensen J, Shaksheer B, Kade M, et al. Membership and behavior of ultra-low-diversity pathogen communities present in the gut of humans during prolonged critical illness. MBio. 2014;5(5):e01361-e14. doi: 10.1128/mBio.01361-14. PubMed PMID: 25249279; PubMed Central PMCID:
20. Pantoflickova D, Corthesy-Theulaz I, Dorta G, Stolte M, Isler P, Rochat F, et al. Favourable effect of regular intake of fermented milk containing Lactobacillus johnsonii on Helicobacter pylori associated gastritis. Aliment Pharmacol Ther. 2003;18(8):805-13. PubMed PMID: 14535874.

21. Xin J, Zeng D, Wang H, Ni X, Yi D, Pan K, et al. Preventing non-alcoholic fatty liver disease through Lactobacillus johnsonii BS15 by attenuating inflammation and mitochondrial injury and improving gut environment in obese mice. Appl Microbiol Biotechnol. 2014;98(15):6817-29. doi: 10.1007/s00253-014-5752-1. PubMed PMID: 24811405.

22. Chiva M, Soriano G, Rochat I, Peralta C, Rochat F, Llovet T, et al. Effect of Lactobacillus johnsonii La1 and antioxidants on intestinal flora and bacterial translocation in rats with experimental cirrhosis. J Hepatol. 2002;37(4):456-62. PubMed PMID: 12217598.

23. Borges NA, Stenvinkel P, Bergman P, Qureshi AR, Lindholm B, Moraes C, et al. Effects of probiotic supplementation on trimethylamine-N-oxide plasma levels in hemodialysis patients: a pilot study. doi: 10.1007/s12602-018-9411-1. Probiotics Antimicrob Proteins. 2018:1-7. PubMed PMID: 29651635.

24. Sonnenburg JL, Backhed F. Diet-microbiota interactions as moderators of human metabolism. Nature. 2016;535(7610):56-64. doi: 10.1038/nature18846. PubMed PMID: 27383980; PubMed Central PMCID: PMCPMC5991619.

25. Wang J, Tang H, Zhang C, Zhao Y, Derrien M, Rocher E, et al. Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice. ISME J. 2015;9(1):1-15. doi: 10.1038/ismej.2014.99. PubMed PMID: 24936764; PubMed Central PMCID: PMCPMC4274436.
Tables

Table 1

Group	Treatment Groups (n=8)	Gavaging
1	Control	PBS
2	LPS only	PBS
3	LPS + S. thermophilus 19	PBS + S. thermophilus 19
4	S. thermophilus 19 only	PBS + S. thermophilus 19

LPS: 1mg/ml; S. thermophilus 19: 1x10^9 CFU/ml once every other day in 0.3 ml PBS. Mice received LPS through intraperitoneal injection. Mice received PBS and 19 via gavage.

Table 2

Primer	Sequence (5’-3’)
β-actin	GTACGCCAACACAGTGCTG/CGTCATACTCCTGCTTGCTG
IL-1β	GCTTCAGGCAGGCAGTATC/AGGATGGGCTCTTCTTCAAAG
TNF-α	AGAGCTACAAGAGGATCACAGCAG/TCAGATTTACGGGCTCAACTTCACAT
TGF-β	CTTCAATACGTCAAGATTTACGGGCTCAACTTCACAT
IL-6	GAGGATACCAACTCCTCCAACGAGCC/AGGTGCATCATCTGTTGTGCTA
IL-10	GCTCTTACTGACTGGCATGAG/CGCAGCTCTAGGAGCATGTG
CCL2	AGCAGCAGGCTGCCAAAGA/GTGCTGAAGACCTTAGGGCAGA

Primers used in this study.
Figure 1.

Figure 2.
Figure 3.

Figure 4.
Figure 5.

Figure 6.

Figure S1.
Figure S2.

Figure S3.

Figure S4.
Figure S5.

Figure S6.
Figure 1. The expression of inflammatory factors (IL-1β, TNF-α, IL-6 and IL-10) in LPS-treated, probiotics-LPS treated and untreated RAW264.7 cells. Error bars represents SEM.

Figure 2. Probiotics alleviate the inflammatory caused by LPS-induced sepsis. (A) Survival rates of mice with or without probiotics treatment after 48h stimulation with different dose of LPS. (B) Body weight change and relative weight change (n=8/group). (C) Total rat chow intake and drinking water.

Figure 3. Probiotics intervention resulted in decreased inflammation in vivo. (A) inflammation factor of Small intestine, lung, liver and kidney. Error bars represents SEM. (B) Hematoxylin and eosin staining of liver, and lung tissues from different groups. Sections were examined and photographed under a microscope.

Figure 4. LPS induce significant impact on microbiota composition. (A) (B) Fecal microbiota alfa diversity. (C) PLS_DA plot of fecal microbiota of LPS-treated or control mice. (D) The change of gut microbiota at phylum level.

Figure 5. S. thermophilus 19 induce significant impact on microbiota composition compared to LPS-treated mice. (A) (B) Fecal microbiota alfa diversity. (C) PLS_DA plot of fecal microbiota
of LPS-treated mice with or without *S. thermophilus* 19 treatment. (D) The change of gut microbiota at phylum level.

Figure 6. The presence of LPS and *S. thermophilus* 19 induces changes in gut microbiota function. Statistical comparison was performed by first testing normality using Kruskal-Wallis/Wilcoxon rank-sum test. Error bars represents SEM.

Figure S1. The expression level of CD86 and CD206 in RAW264.7 cells from different groups gated on F4/80+ cells. 19: *S. thermophilus* 19, LPS19:LPS+ *S. thermophilus* 19.

Figure S2. Levels of IL-1β and TNF-α in blood were determined using commercial ELISA kits. Error bars represents SEM.

Figure S3. Probiotics intervention resulted in decreased inflammation in vivo. Inflammation factor (CCL2, IL-6, IL-10 and TGF-β) of small intestine, lung, liver and kidney. Error bars represents SEM.

Figure S4. Specifically OTUS existed in different groups.

Figure S5. *S. thermophilus* 19 induce significant impact on microbiota composition compared to control mice.

Figure S6. The gut microbiota composition between control group and co-treatment (19 and LPS) group.

Figure S7. The details of the change of gut microbiota at phylum and genus level in different groups.