Role of mean platelet volume in hypertriglyceridemia-induced acute pancreatitis during pregnancy

CURRENT STATUS: UNDER REVIEW

BMC Pregnancy and Childbirth • BMC Series

Longhuan Zeng
Hangzhou First People's Hospital

Xueying Cai
Hangzhou First People's Hospital

Jiayi Chen
Hangzhou First People's Hospital

Guangyong Jin
Hangzhou First People's Hospital

Yongke Zheng hzsymedical@163.com
Hangzhou First People's Hospital

Corresponding Author
ORCID: 0000-0001-9148-9590

DOI:
10.21203/rs.2.12665/v1

SUBJECT AREAS
Maternal & Fetal Medicine

KEYWORDS
Hypertriglyceridemia-induced acute pancreatitis, Pregnancy, Mean platelet volume, Diagnosis, Severity
Abstract

Purpose

Hypertriglyceridemia-induced acute pancreatitis (HTG-AP) during pregnancy is a rare but severe disease with high maternal-fetal mortality risk, which constitutes a systemic inflammatory process accompanied by thrombosis and bleeding disorders. However, the role of mean platelet volume (MPV) in HTG-AP during pregnancy remains unclear. This study aimed to assess the role of MPV and the potential relationship with disease severity in HTG-AP during pregnancy.

Methods

In the retrospective study, we collected 45 patients with HTG-AP during pregnancy as the HTG-AP group and 49 pregnant females with hypertriglyceridemia as the control group. MPV and other relevant variables at onset and remission were collected and compared.

Results

MPV levels were significantly higher in the HTG-AP group than in the control group (P < 0.001), and lower in remission than on onset (P = 0.002). According to the severity of acute pancreatitis, all subjects were classified into mild AP (MAP), moderately severe AP (MSAP), and severe AP (SAP) groups. There was a significant difference in MPV on onset among the three groups (P = 0.048), and the SAP patients had the highest levels of MPV. In addition, only in the SAP group, MPV was lower in remission than on onset (P = 0.010).

Conclusion

These results may indicate an important role of MPV in evaluating the severity of HTG-AP during pregnancy.

Background

Acute pancreatitis (AP) during pregnancy is a rare, but life-threatening disease with an
estimated incidence of approximately 3-10/10,000 [1,2]. AP can result in multiple organ
dysfunction and disseminated intravascular coagulation owing to activation of the
inflammatory and coagulation systems. Moreover, pregnancy-related physiologic
alterations influence the diagnosis and management of many diseases. Therefore, AP in
pregnancy can severely affect the mother and fetus and lead to a higher risk of
intrauterine fetal death.
The most common cause of AP in pregnancy is gallstones, followed by alcohol abuse,
hypertriglyceridemia, and unknown causes [3]. Non-gallstone pancreatitis is thought to be
related to more complications and a poorer prognosis, such as hypertriglyceridemia-
induced AP (HTG-AP) [4].
Mean platelet volume (MPV) is a blood parameter used for measuring platelet size and is
accepted as a widely used indicator of thrombocytic activity. In addition, MPV has been
investigated in various thrombotic and inflammatory diseases [5].
To date, there have been few studies reporting the association between MPV and AP, and
the results have been inconsistent [6-9]. Furthermore, fewer reports have focused on the
relationship between MPV and HTG-AP in pregnancy, and the role of MPV is unclear in this
population. Therefore, we designed the current study to assess the role of MPV and the
potential relationship with disease severity in HTG-AP during pregnancy.

Methods

Ethical approval of the study protocol
This study complied with the Declaration of Helsinki [10] and was approved by the Ethics
Committee of Hangzhou First People’s Hospital. All patients enrolled in the study
submitted written informed consent.

Patient enrollment
In this retrospective study, we collected 45 patients with HTG-AP during pregnancy (HTG-
AP group). The patients were hospitalized in the intensive care unit (ICU) at Hangzhou First People’s Hospital (Hangzhou, China) from January 2010 to December 2018. As a control group, 49 consecutive pregnant females with hypertriglyceridemia were included. Patients who had biliary AP, idiopathic AP, alcohol intake, trauma, preexisting chronic pancreatitis, and a history of AP were excluded from the study. This study was approved by the Ethics Committee of Hangzhou First People’s Hospital and complied with the ethical standards.

Based on the Chinese guidelines for AP and HTG-AP, patients with AP who had a triglycerides level \geq 11.3 mmol/L (1000 mg/dl) or between 5.65 and 11.3 mmol/L (500–1000 mg/dl), but with lipemic serum after excluding gallstone, alcohol, or medication factors, were diagnosed with HTG-AP [11].

The severity of AP was classified according to the 2012 revised Atlanta Classification, as follows: mild AP (MAP), patients without organ failure and without local complications; moderately severe AP (MSAP), patients with organ failure for < 48 h or local complications; and severe AP (SAP), patients with organ failure for > 48 h [12]. All patients were categorized into the following three groups: MAP; MSAP; and SAP. We defined gestational age as the first (before 12 weeks), second (13–27 weeks), and third trimesters (28 weeks until delivery).

Data collection

The first day of hospitalization in the ICU was designated as the onset, and the day that a patient was discharged from the ICU was designated as remission when the clinical symptoms and biochemical tests were normal. Clinical data, including the age, gestational age, Ranson score, medical history, complications, and treatment were collected. Laboratory indicators, including the white blood cell (WBC) count, platelet count, MPV, hematocrit, high-sensitivity C-reactive protein (hs-CRP), total bilirubin, alanine
aminotransferase (ALT), aspartate aminotransferase (AST), albumin, lactate dehydrogenase (LDH), triglycerides, total cholesterol (TC), glucose, creatinine, amylase, calcium, and D-dimer, were measured and collected at the onset. Except for the control group, the platelet count, MPV, and D-dimer were collected in remission.

Statistical analysis

The Kolmogorov-Smirnov test was utilized for estimating the compatibility of normally distributed data. Continuous data were expressed as the mean ± standard deviation or median and 25th–75th percentiles as appropriate. All normally-distributed data were compared using independent samples or paired Student’s t-tests. Data shown to be non-normally distributed were analyzed using the Mann-Whitney U test or the Wilcoxon rank-sum test. Multi-group comparisons were made using one-way ANOVA or the Kruskal-Wallis H test, depending on the distribution of variables. Logistic regression analysis was used to determine the relationship between MPV as well as other clinical data and HTG-AP during pregnancy. For all tests, a two-tailed P-value < 0.05 was considered statistically significant. All calculations were performed using SPSS (version 16.0 for Windows; IBM, Armonk, NY, USA).

Results

Forty-five patients with HTG-AP during pregnancy and 49 control subjects were enrolled in the present study. Of the 45 pregnant women with HTG-AP, the mean gestational age was 31.22 ± 6.65 weeks, with most of the cases occurring in the third trimester (69%). MAP was diagnosed in 38% (n = 17) of the patients, MASP in 29% (n = 13), and SAP in 33% (n = 15). The clinical characteristics, complications, and treatment of study participants are summarized in Table 1. One patient with SAP died during the ICU stay.

Table 2 shows that there were no significant differences in age, gestational age, platelet
count, ALT, AST, total bilirubin, and creatinine between the HTG-AP and control groups (all P > 0.05).

Patients with HTG-AP had a significantly higher length of hospital stay than the control group (P < 0.001). The WBC (P < 0.001), hs-CRP (P < 0.001), glucose (P < 0.001), TC (P < 0.001), triglycerides (P < 0.001), HDL-C (P = 0.034), LDL-C (P < 0.001), LDH (P < 0.001), amylase (P < 0.001), and D-dimer (P < 0.001) levels were significantly higher in the HTG-AP patients during pregnancy than the control group, whereas serum calcium (P < 0.001) and hematocrit (P = 0.005) levels in the HTG-AP group were significantly lower than those in the control group (Table 2).

A statistically significant increase in MPV levels was observed in patients with HTG-AP during pregnancy compared with the control group (11.29±1.47 vs 10.01±1.54, P < 0.001, Table 2). Fig. 1 shows that the mean MPV values of HTG-AP patients during pregnancy at onset and in remission compared with controls.

All HTG-AP patients during pregnancy were classified into MAP, MSAP, and SAP groups. The patients at onset had higher mean MPV levels than patients in remission (11.29±1.47 fL vs 10.10±2.03 fL, P = 0.002). Further analysis revealed a significant difference in MPV at onset among the three groups (10.64±1.56 fL, 11.48±1.42 fL vs 11.88±1.19 fL, P = 0.048), with the highest levels detected in the SAP patients (11.88±1.19 fL, Table 3, Fig. 2). Differences in MPV in remission were not statistically significant among the three groups (10.00±2.03 fL, 10.16±2.09 fL vs 10.16±2.11 fL, P = 0.976, Table 3).

There was also a significant difference between onset and remission in the SAP group (P = 0.010), but no significant differences were shown in the MAP and MSAP groups (all P > 0.05, Table 3).

In multivariate logistic regression analysis, the age-adjusted MPV was significantly correlated with HTG-AP during pregnancy (odds ratio [OR] = 1.764, 95% confidence
interval [CI], 1.291-2.410; P < 0.001). Moreover, serum MPV level remained significantly associated with HTG-AP during pregnancy after further adjustments in model 2 (OR = 1.440, 95% CI, 1.005-2.061; P = 0.047, Table 4).

Discussion

The main findings of the current study were as follows: 1) the MPV levels were significantly higher in patients with HTG-AP during pregnancy than the control group; 2) the mean MPV levels were increased with the severity of HTG-AP at onset; 3) the MPV levels were lower during remission than at onset in patients with hypertriglyceridemia-induced SAP during pregnancy; 4) the MPV levels were independently associated with HTG-AP during pregnancy. These results indicate that MPV could be related to HTG-AP severity and used as an independent risk factor of HTG-AP during pregnancy.

HTG-AP during pregnancy is a rare but severe disease with high maternal-fetal mortality risks, which presents as a systemic inflammatory process that is often accompanied by thrombosis and bleeding disorders. Normally, triglyceride levels rise gradually during pregnancy and reach a peak in the third trimester of gestation to 2-to-4-fold over prepregnancy levels. In addition, high levels of estrogen related to pregnancy can reduce the activity of lipoprotein lipase and lead to hypertriglyceridemia [13] There is an increased risk for AP when serum triglyceride levels are > 10 g/L (11.3 mmol/L) [14], which is why most cases of HTG-AP occurred during the third trimester of gestation.

Currently, there are no standardized guidelines for clinicians regarding hypertriglyceridemia-induced AP during pregnancy. Moreover, the main diagnostic methods rely on clinical experience, and the existing serum biomarkers are helpful in assessing AP severity. Therefore, early, alternative, and easily applicable markers are needed.

It has been reported that platelet activation plays an important role in the development
and evolution of AP [15]. MPV is a simple parameter showing platelet function and activation that can be measured by complete blood count analysis at no additional cost. Abnormal MPV has been correlated with thrombotic and inflammatory conditions, such as myocardial infarction, acute cerebral ischemia, inflammatory bowel disease, rheumatoid arthritis, and familial Mediterranean fever [16-20]; however, the relationship between MPV and AP has not been fully clarified, especially hypertriglyceridemia-induced SAP during pregnancy.

Our finding showed that MPV levels were increased in patients with HTG-AP during pregnancy compared with controls. Furthermore, MPV levels were decreased during remission. To date, several previous studies have investigated the relationship between AP and MPV, but the results were conflicting. Beyazit et al [21] examined the role of MPV in AP and described a significant decrease in MPV in patients with AP compared with healthy subjects. Erbis et al [9] in a study involving 76 patients with pancreatitis showed that patients with pancreatitis had lower levels in MPV, and the mean MPV values were lower in AP patients (7.2 ± 0.52 fL) than in AP (7.9 ± 0.53 fL). Another contemporaneous study reported that MPV was significantly lower on admission than during remission in biliary and non-biliary AP patients [9]. Recently, Lei et al [22] also reported that MPV levels were significantly lower in the AP group than the control group, and MPV presented an upward trend during the first week after admission in all AP patients.

Although the previous results suggested low MPV levels in AP, these studies excluded patients who had pregnancy or hyperlipidemia. In comparison, we focused on patients with hyperlipidemia-induced AP in pregnancy. It is probable that the disparity in the studies may be explained by differences in the study population and design. Thus, we should pay more attention to further studies.
The exact reason for increased MPV in hyperlipidemia-induced SAP during pregnancy remains unknown, but it has been speculated that platelets not only control thrombosis and hemostasis, but also regulate inflammatory conditions. There is a stimulation of megakaryopoiesis in the early stages of the inflammatory process associated with hyperlipidemia-induced SAP, which produces a large amount of young and large platelets with high procoagulation potential [23]. Osada et al [6] observed a significant increase in the number of large platelets in the AP groups; the median and mean MPV remained at high levels during the acute phase in the mild and severe AP groups. Moreover, the MPV levels showed a downward trend in remission phase in patients with SAP, which supported our results.

Thrombocytopenia is not only a common finding during pregnancy, but also frequent at the onset of AP [24]. Thrombocytopenia can lead to enhanced thrombopoiesis, which increases the quantity of highly reactive large-sized platelets [5]. Thus, these findings may partly explain why there were high MPV levels in our study patients. Akbal et al [7] also detected higher MPV levels in patients with AP at the time of admission than controls, which was consistent with our results. In addition, our data also showed that the D-dimer was elevated in patients with HTG-AP during pregnancy, which were in agreement with the alterations in MPV. Together, these studies suggest that an elevated MPV facilitates platelet adhesiveness and aggregation, which may lead to a high prothrombotic potential and impairment of pancreatic microcirculation in hyperlipidemia-induced SAP during pregnancy.

There were some limitations to the present study. First, the study population was relatively small. The current study had a very limited number of patients because of the rarity of HTG-AP during pregnancy. Second, owing to ethical reasons, we could not assess the clinical benefits of antiplatelet therapy in this population. It was also difficult to adjust
adequately for measurement of patient adherence. Third, this was a single-center, retrospective cohort study; therefore, the results we observed cannot be evaluated definitively. Further multi-center, large-scale, prospective studies are needed to verify the findings of the present study. Although our results may be limited in terms of the sample size and study design, the present study still offers implications for the diagnosis and management of HTG-AP during pregnancy. Given the specific population, we believe our findings may provide new evidence for further studies with larger sample sizes.

Conclusions

In conclusion, our study demonstrated that the MPV levels were higher in patients with HTG-AP during pregnancy than the control group. In addition, the highest MPV was detected on onset in patients with hypertriglyceridemia-induced SAP during pregnancy. Furthermore, MPV levels decreased in remission in such patients. Thus, MPV could play an important role in the early diagnosis of HTG-AP during pregnancy and may be helpful for evaluating the severity of HTG-AP; however, additional large-scale, prospective studies are required to validate our findings.

Abbreviations

ALT: alanine aminotransferase; AST: aspartate aminotransferase; HTG-AP: hypertriglyceridemia-induced acute pancreatitis; HS-CRP: high-sensitivity C-reactive protein; HDL-c: high-density lipoprotein cholesterol; ICU: intensive care unit; LDL-c: low-density lipoprotein cholesterol; LDH: lactate dehydrogenase; MPV: mean platelet volume; MAP: mild acute pancreatitis; MASP: moderately severe acute pancreatitis; SAP: severe acute pancreatitis; WBC: white blood cells; OR: odds ratio; CI: confidence interval.

Declarations

Acknowledgements
Funding
The authors declare no funding.

Availability of data and materials
The datasets used and analyzed in the current study are available from the corresponding author on reasonable request.

Authors’ contributions
LHZ designed the study, acquired the data, analyzed the data and drafted the manuscript. XYC designed the study, acquired the data and analyzed the data. JYC and GYJ contributed to the acquirement and analyses of data. YKZ contributed to the design, analyses, interpretation of data and revising the manuscript.

Ethics approval and consent to participate
A written approval letter was obtained from an institutional review board of Hangzhou First People’s Hospital, before starting any data collection. The authors declare that all samples involved in the study were collected with the written informed consents were obtained from the parents of infants. And there were no adolescent mothers (under the age of 18) in this study.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

References
1. Juneja SK, Gupta S, Virk SS, Tandon P, Bindal V (2013) Acute pancreatitis in pregnancy: A treatment paradigm based on our hospital experience. Int J Appl Basic
1. Igbinosa 1, Poddar S, Pitchumoni C. Pregnancy associated pancreatitis revisited. Clin Res Hepatol Gastroenterol. 2013; 37:177-1.

2. Mali P. Pancreatitis in pregnancy: etiology, diagnosis, treatment, and outcomes. Hepatobiliary Pancreat Dis Int. 2016; 15:434-8.

3. Kiss L, Fűr G, Mátrai P, Hegyi P, Ivány E, Cazacu IM, Szabó I, Habon T, Alizadeh H, Gyöngyi Z, Vigh É, Erős B, Erős A,ottoffy M, Czákó L, Rakonczay Z Jr. The efect of serum triglyceride concentration on the outcome of acute pancreatitis: systematic review and meta-analysis. Sci Rep. 8:14096.

4. Adhikari DR, Vankipuram S, Tiwari AR, Chaphekar AP, Satardey RS. Mean platelet volume: a link between thrombosis and inflammation? Curr Pharm Des. 2011; 17: 47-58.

5. Osada J, Wereszczynska-Siemiatkowska U, Dabrowski A, Dabrowska Ml. Platelet Activation in Acute Pancreatitis. Pancreas. 2012; 41:1319-24.

6. Akbal E, Demirci S, Koçak E, Köklü S, Başar O, Tuna Y. Alterations of platelet function and coagulation parameters during acute pancreatitis. Blood Coagul Fibrinolysis. 2013; 24:243-6.

7. Erbis H, Aliosmanoglu I, Turkoglu MA, Ay E, Turkoglu A, Ulger BV. Evaluating mean platelet volume as a new indicator for confirming the diagnosis of necrotizing pancreatitis. Ann Ital Chir. 2015; 86:132-6.

8. Okuturlar Y, Soylu A, Dogan H, Cakmak S, Kirac Utku I, Oztosun B, Akarsu C, Ocak Serin S, Avci A, Kones O, Ozucelik DN, Guzey D, Harmankaya O, Kumbasar A. Mean platelet volume in patients with biliary and non-biliary acute pancreatitis. Int J Clin Exp Pathol. 2015; 8:2051-6.

9. World Medical Association. World Medical Association Declaration of Helsinki: ethical
principles for medical research involving human subjects.

[https://www.wma.net/members-area/working-documents/201804_cs_english/]
Accessed 9 Jul 2018.

11. Pancreas Study Group CSoG, Chinese Medical Association, Editorial Board of Chinese Journal of Pancreatology, Editorial Board of Chinese Journal of Digestion (2013) Chinese guidelines for the management of acute pancreatitis (Shanghai, 2013). J Clin Hepatol. 29:656–60.

12. Banks PA, Bollen TL, Dervenis C, Gooszen HG, Johnson CD, Sarr MG, Tsiotos GG, Vege SS; Acute Pancreatitis Classification Working Group. Classification of acute pancreatitis--2012: revision of the Atlanta classification and definitions by international consensus. Gut. 2013; 62:102-11.

13. Lee J, Goldberg IJ. Hypertriglyceridemia-induced pancreatitis created by oral estrogen and in vitro fertilization ovulation induction. J Clin Lipidol. 2008; 2:63-6.

14. Takaishi K, Miyoshi J, Matsumura T, Honda R, Ohba T, Katabuchi H. Hypertriglyceridemic acute pancreatitis during pregnancy: prevention with diet therapy and omega-3 fatty acids in the following pregnancy. Nutrition. 2009; 25:1094–7.

15. Mimidis K, Papadopoulos V, Kotsianidis J, Filippou D, Spanoudakis E, Bourikas G, Dervenis C, Kartalis G.. Alterations of platelet function, number and indexes during acute pancreatitis. Pancreatology. 2004; 4: 22-7.

16. Basaran O, Uncu N, Celikel BA, Aydin F, Cakar N. Assessment of neutrophil to lymphocyte ratio and mean platelet volume in pediatric familial Mediterranean fever patients. J Res Med Sci. 22; 2017.

17. Ranjith MP, DivyaRaj R, Mathew D, George B, Krishnan MN. Mean platelet volume and cardiovascular outcomes in acute myocardial infarction. Heart Asia 2016; 8:16-20.
18. Varol E. Increased thrombopoietin and mean platelet volume in patients with ischemic stroke. Clin Appl Thromb Hemost 2013; 19(3):342-343.

19. Öztürk ZA, Dag MS, Kuyumcu ME, Cam H, Yesil Y, Yiilmaz N, Aydinli M, Kadayifci A, Kepekci Y. Could platelet indices be new biomarkers for inflammatory bowel diseases? Eur Rev Med Pharmacol Sci. 2013;17:334-41.

20. Gasparyan AY, Sandoo A, Stavropoulos-Kalinoglou A, Kitas GD. Mean platelet volume in patients with rheumatoid arthritis: the effect of anti-TNF-α therapy. Rheumatol Int. 2010; 30: 1125-9.

21. Beyazit Y, Sayilir A, Torun S, Suvak B, Yesil Y, Purnak T, Oztas E, Kurt M, Kekilli M, Ibis M. Mean platelet volume as an indicator of disease severity in patients with acute pancreatitis. Clin Res Hepatol Gastroenterol. 2012; 36: 162-8.

22. Lei JJ, Zhou L, Liu Q, Xiong C, Xu CF. Can mean platelet volume play a role in evaluating the severity of acute pancreatitis? World J Gastroenterol. 2017;23:2404-13.

23. Park Y, Schoene N, Harris W. Mean platelet volume as an indicator of platelet activation: methodological issues. Platelets. 2002; 13:301-6.

24. Vaquero E, Casellas F, Bisbe V, Puig-Diví V, Bermejo B, Guarner L, Malagelada JR. Thrombocytopenia onset in acute episodes of pancreatitis. Med Clin (Barc). 1995; 105:334-7.

Tables

Table 1. Baseline characteristics in patients with HTG-AP during pregnancy (n = 45)

Variables	Value
During in ICU (days)	5.36 ± 4.18
Ranson score, median (range)	1 (0-3)
Trimester (n, %)	
-----------------------	-----
First	3
	(6.7%)
Second	11
	(24.4%)
Third	31
	(68.9%)

Comorbidity (n, %)	
Fatty liver	11
	(24.4%)
Gestational diabetes mellitus	5
	(11.1%)
Pregnancy-induced hypertension	2
	(4.4%)

Local complications (n, %)	
Acute necrotic collections	6
	(13.3%)
Walled-off pancreatic necrosis	14
	(31.1%)
Acute peripancreatic fluid collections	1
	(2.2%)
Pancreatic pseudocyst	8
	(17.8%)

Systemic complications (n, %)	
Circulatory failure	5
	(11.1%)
Respiratory failure	12
	(26.7%)
Renal failure	4
	(8.9%)
Ketoacidosis	8
	(17.8%)

Mortality (n, %)	
Mother	1
	(2.2%)
Foetus	6
	(13.3%)

Treatment (n, %)		
Procedure	Count	Percentage
--	-------	------------
Plasma exchange	32	(71.1%)
Intubation	16	(35.6%)
Abdominal paracentesis drainage	14	(31.1%)
Conservative treatment	11	(24.4%)

Table 2. Demographic characteristics and laboratory values of the patients and controls.
Table 3. MPV on onset and in remission in MAP, MASP and SAP group.

Variables	HTG-AP group (n=45)	Control group (n=49)		
Age (years)	29.36±4.75	28.61±4.77		
Gestational age (weeks)	31.22±6.65	29.92±9.06		
During in hospital (days)	21.30±14.53	6.41±5.68		
WBC (× 10⁹/L)	15.26±4.82	9.07±2.94		
Hematocrit (%)	31.78±5.18	34.57±4.29		
Platelet (× 10⁹/L)	189.98±72.23	203.45±56.83		
MPV (fL)	11.29±1.47	10.01±1.54		
HS-CRP (mg/L)	111.00 (62.00-160.00)	5.00 (3.00-11.50)		
ALT (U/L)	18.00 (12.00-26.57)	19.00 (12.00-33.50)		
AST (U/L)	19.00 (19.00-28.50)	23.00 (17.00-32.36)		
Total bilirubin (μmol/L)	11.00 (7.50-16.70)	11.00 (8.00-16.15)		
Albumin (g/L)	32.46±7.90	33.53±4.19		
Calcium (mmol/L)	1.89±0.38	2.28±0.55		
Creatinine (μmol/L)	60.13±31.73	56.98±12.81		
Glucose (mmol/L)	7.72±4.45	5.11±3.30		
Total cholesterol (mmol/L)	22.81 (13.52-37.81)	6.09 (4.91-8.55)		
Triglyceride (mmol/L)	28.00 (17.56-56.65)	5.86 (5.35-8.26)		
HDL-c (mmol/L)	1.93 (1.24-3.36)	1.66 (1.35-1.83)		
LDL-c (mmol/L)	5.40 (3.20-9.76)	2.92 (1.99-3.68)		
LDH (U/L)	260.00 (189.00-398.50)	173.00 (148.00-206.50)		
Serum amylase (U/L)	224.00 (157.00-656.00)	78.00 (60.00-140.50)		
D-dimer (μg/L)	2846.67 (1916.11-4355.00)	1857.97 (1100.00-2182.00)		
Variable	Groups	Onset	Remission	P (onset and remission)
----------	---------------------	-------------	------------	------------------------
MPV	Total (n = 45)	11.29±1.47	10.10±2.03	
	MAP (n = 17)	10.64±1.56	10.00±2.03	
	MASP (n = 13)	11.48±1.42	10.16±2.09	
	SAP (n = 15)	11.88±1.19	10.16±2.11	
	P (MAP, MASP and SAP)	0.048	0.976	

Table 4 Logistic regression analyses of MPV, age as well as other clinical data and HTG-AP during pregnancy.

Variable	OR (95% CI)	P-value
Model 1^a		
Age	1.036 (0.943-1.137)	0.463
MPV	1.764 (1.291-2.410)	0.000
Model 2^b		
Age	1.046 (0.913-1.197)	0.517
Glucose	0.921 (0.719-1.180)	0.516
MPV	1.440 (1.005-2.061)	0.047
WBC	1.237 (1.055-1.451)	0.009
ALT	0.975 (0.942-1.008)	0.139
LDH	1.009 (0.998-1.019)	0.105
HS-CRP	1.010 (1.001-1.019)	0.023
Calcium	0.117 (0.012-1.165)	0.067

^aModel 1 adjusted for age and MPV.

^bModel 2 adjusted for age, MPV, glucose, ALT, WBC, HS-CRP, calcium and LDH.

Figures
Figure 1

MPV levels of the patients (at onset and remission) and healthy controls. MPV: mean platelet volume.
MPV levels of the patients with MAP, MSAP and SAP. MPV: mean platelet volume, MAP: mild acute pancreatitis, MASP: moderately severe acute pancreatitis, SAP: severe acute pancreatitis.