LONG RANGE SCATTERING FOR THE NONLINEAR SCHROEDINGER EQUATION WITH HIGHER ORDER ANISOTROPIC DISPERSION IN TWO DIMENSIONS

JEAN-CLAUDE SAUT AND JUN-ICHI SEGATA

Abstract. This paper is a continuation of our previous study [13] on the long time behavior of solution to the nonlinear Schrödinger equation with higher order anisotropic dispersion (4NLS). We prove the long range scattering for (4NLS) with the quadratic nonlinearity in two dimensions. More precisely, for a given asymptotic profile \(u_+ \), we construct a solution to (4NLS) which converges to \(u_+ \) as \(t \to \infty \), where \(u_+ \) is given by the leading term of the solution to the linearized equation of (4NLS) with a logarithmic phase correction.

1. Introduction

This paper is a continuation of our previous study [13] on the long time behavior of solution to the nonlinear Schrödinger equation with higher order anisotropic dispersion:

\[
i\partial_t u + \frac{1}{2} \Delta u - \frac{1}{4} \partial_4^4 u = \lambda |u|^{p-1} u, \quad t > 0, x \in \mathbb{R}^d,
\]

(1.1)

where \(u : \mathbb{R} \times \mathbb{R}^d \to \mathbb{C} \) is an unknown function and \(p > 1 \). Equation (1.1) arises in nonlinear optics to model the propagation of ultrashort laser pulses in a medium with anomalous time-dispersion in the presence of fourth-order time-dispersion (see [3, 6, 16] and the references therein). It also arises in models of propagation in fiber arrays (see [1, 5]). The readers can consult [4] for the well-posedness of (1.1), and existence/non-existence and qualitative properties results of solitary wave solutions for (1.1).

In this paper, we consider the scattering problem for (1.1). Since the solution to the linearized equation of (1.1) decays like \(O(t^{-d/2}) \) in \(L^\infty(\mathbb{R}^d) \) as \(t \to \infty \) (see Ben-Artzi, Koch and Saut [2]), we expect that if \(p > 1 + 2/d \), then the (small) solution to (1.1) will scatter to the solution to the linearized equation and if \(p \leqslant 1 + 2/d \), then the solution to (1.1) will not scatter. The homogeneous fourth order nonlinear Schrödinger type equation

\[
i\partial_t u + \frac{1}{2} \Delta^2 u = \lambda |u|^{p-1} u, \quad t > 0, x \in \mathbb{R}^d
\]

(1.2)

has been studied by many authors from the point of view of the scattering. See [13] for a review of the known results on the scattering and blow-up problem for (1.2). Compared to the homogeneous equation (1.2), there are few results on the long time behavior of solution for (1.1). For the

2000 Mathematics Subject Classification. Primary 35Q55; Secondary 35B40.

Key words and phrases. Schrödinger equation with higher order dispersion, scattering problem.
one dimensional cubic case, the second author [14] proved that for a given asymptotic profile, there exists a solution \(u \) to (1.1) which converges to the given asymptotic profile as \(t \to \infty \), where the asymptotic profile is given by the leading term of the solution to the linearized equation with a logarithmic phase correction. Recently, the authors [13] have shown the unique existence which behaves like a solution to the linearized equation with a logarithmic phase correction. Furthermore, Hayashi and Naumkin [10] proved that for any small initial data, there exists a global solution to (1.1) with \(d = 1, p = 3 \) which behaves like a solution to the linearized equation with a logarithmic phase correction. Recently, the authors [13] have shown the unique existence of solution \(u \) to (1.1) which scatters to the free solution for \(2 < p < 3 \) if \(d = 2 \) and \(9/5 < p < 7/3 \) if \(d = 3 \). In this paper, refining the asymptotic formula [13] Proposition 2.1 as \(t \to \infty \) for the solution to the linearized equation of (1.1), we prove the long range scattering for (1.1) with the quadratic nonlinearity in two dimensions.

Let us consider the final state problem:

\[
\begin{aligned}
i\partial_t u + \frac{1}{2} \Delta u - \frac{1}{4} \partial_{x_1}^4 u &= \lambda |u|^2 u, \quad t > 0, x \in \mathbb{R}^2, \\
\lim_{t \to +\infty} (u(t) - u_+(t)) &= 0, \quad \text{in} \ L^2(\mathbb{R}^2),
\end{aligned}
\]

(1.3)

where \(u : \mathbb{R} \times \mathbb{R}^2 \to \mathbb{C} \) is an unknown function and \(u_+ : \mathbb{R} \times \mathbb{R}^2 \to \mathbb{C} \) is a “modified” asymptotic profile given by

\[
\begin{aligned}
u_+(t, x) &= \frac{t^{-1}}{\sqrt{3\mu_1^2 + 1}} \psi_+(\mu)e^{\frac{1}{2}|\mu|^2 + \frac{1}{2}iS_+(t, \mu) - \frac{i\pi}{2}}, \\
S_+(t, \xi) &= -\lambda \frac{|\psi_+(\xi)|}{\sqrt{3\xi_1^2 + 1}} \log t,
\end{aligned}
\]

(1.4)

where \(\mu = (\mu_1, \mu_2) \in \mathbb{R} \times \mathbb{R} \) is a stationary point for the oscillatory integral (2.2) associated with the linearized equation of (1.3), i.e.,

\[
\begin{aligned}
\mu_1 &= \frac{1}{2\pi} \left\{ \left(\frac{x_1}{t} + \sqrt{(\frac{x_1}{t})^2 + \frac{4}{27}} \right)^{1/3} + \left(\frac{x_1}{t} - \sqrt{(\frac{x_1}{t})^2 + \frac{4}{27}} \right)^{1/3} \right\}, \\
\mu_2 &= \frac{x_2}{t}.
\end{aligned}
\]

(1.5)

Our main result in this paper is as follows:

Theorem 1.1 (Long range scattering). There exists \(\varepsilon > 0 \) with the following properties: for any \(\psi_+ \in H^{0,2}(\mathbb{R}^2) \) with \(\|\psi_+\|_{H^{0,2}} < \varepsilon \) (see (1.9) for the definition of \(H^{0,2} \)), there exists a unique global solution \(u \in C(\mathbb{R}; L^2_\text{loc}(\mathbb{R}; L^2_\text{loc}(\mathbb{R}^2))) \cap (\partial_{x_1})^{-1/4}L^2_\text{loc}(\mathbb{R}; L^4_\text{loc}(\mathbb{R}^2)) \) to (1.3) satisfying

\[
\|u(t) - u_+(t)\|_{L^2} \leq Ct^{-\alpha}
\]

for \(t \geq 3 \), where \(1/2 < \alpha < 3/4 \) and \(u_+ \) is given by (1.4).

We give an outline of the proof of Theorem 1.1. To prove Theorem 1.1 we employ the argument by Ozawa [12], Hayashi and Naumkin [8, 9]. We first construct a solution \(u \) to the final state problem

\[
\begin{aligned}
i\partial_t u + \frac{1}{2} \Delta u - \frac{1}{4} \partial_{x_1}^4 u &= \lambda |u|^2 u, \quad t > 0, x \in \mathbb{R}^2, \\
\lim_{t \to +\infty} (u(t) - W(t)\mathcal{F}^{-1}w) &= 0, \quad \text{in} \ L^2(\mathbb{R}^2).
\end{aligned}
\]

(1.6)
where \(w(t, \xi) = \hat{\psi}_+ (\xi) e^{i S_+(t, \xi)} \) and \(\{ W(t) \}_{t \in \mathbb{R}} \) is a unitary group generated by the operator \((1/2) i \Delta - (1/4) i \partial_x^4 \). To prove this, we first rewrite (1.6) as the integral equation
\[
\begin{align*}
 u(t) - W(t) F^{-1} w &= i \lambda \int_t^{+ \infty} W(t - \tau) \| u - |W(t) F^{-1} w| W(t) F^{-1} w \| d\tau \\
 &= - i \int_t^{+ \infty} W(t - \tau) R(\tau) d\tau, \quad \text{(1.7)}
\end{align*}
\]
where
\[
R = W(t) F^{-1} \left[\frac{\lambda t^{-1}}{\sqrt{3 \xi^2 + 1}} |\hat{\psi}_+ (\xi) e^{i S_+(t, \xi)}| \right] - \lambda |W(t) F^{-1} w| W(t) F^{-1} w.
\]

Next, we apply the contraction mapping principle to the integral equation (1.7) in a suitable function space. In this step the asymptotic formula (Proposition 2.1) and the Strichartz estimate (Lemma 2.2) for the linear equation (2.1) play an important role. Finally, we show that the solutions (Proposition 2.1) and the Strichartz estimate (Lemma 2.2) for the linear (1.7) in a suitable function space. In this step the asymptotic formula (1.6) converges to \(u_+ \) in \(L^2 \) as \(t \to \infty \).

Remark 1.2. It is not likely that our proof will be applicable for the three dimensional critical case (i.e., \(d = 3 \) and \(p = 5/3 \)) due to the lack of smoothness of the nonlinear term.

By using the argument by Glassey [2] we can prove the non-existence of asymptotically free solution for (1.1) with \(p \leq 1 + 2/d \).

Theorem 1.3 (Nonexistence of asymptotically free solution). Let \(d \geq 2 \) and \(1 < p \leq 1 + 2/d \). Let \(u \in C(\mathbb{R}, L^2(\mathbb{R}^d)) \) be a solution to (1.1) with \(u(0, x) = u_0 \in L^2(\mathbb{R}^d) \). Assume that there exists a function \(\psi_+ \in H^{0,s} \cap \langle \partial_x \rangle^{p-1} L^{2/p} \) with \(s > (4 - d)/2 + (d - 1)p/2 \) such that
\[
\| u(t) - W(t) \psi_+ \|_{L^2_x} \to 0, \quad \text{(1.8)}
\]
as \(t \to \infty \), where \(\{ W(t) \}_{t \in \mathbb{R}} \) is a unitary group generated by the operator \((1/2) i \Delta - (1/4) i \partial_x^4 \). Then \(u \equiv 0 \).

We introduce several notations and function spaces which are used throughout this paper. For \(\psi \in S'(\mathbb{R}^d) \), \(\hat{\psi} (\xi) = F[\psi] (\xi) \) denote the Fourier transform of \(\psi \). Let \(\langle \xi \rangle = \sqrt{\xi^2 + 1} \). The differential operator \(\langle \nabla \rangle^s = (1 - \Delta)^{s/2} \) denotes the Bessel potential of order \(-s \). We define \(\langle \partial_x \rangle^s = F^{-1} \langle \xi \rangle^s F^{-1} \) for \(s \in \mathbb{R} \). For \(1 \leq q, r \leq \infty \), \(L^q(t, \infty; L^r_x(\mathbb{R}^d)) \) is defined as follows:
\[
L^q(t, \infty; L^r_x(\mathbb{R}^d)) = \{ u \in S'(\mathbb{R}^{1+d}); \| u \|_{L^q(t, \infty; L^r_x)} < \infty \},
\]
\[
\| u \|_{L^q(t, \infty; L^r_x)} = \left(\int_t^{+ \infty} \| u(\tau) \|_{L^r_x}^q d\tau \right)^{1/q}.
\]
We will use the Sobolev spaces
\[
H^s(\mathbb{R}^d) = \{ \phi \in S'(\mathbb{R}^d); \| \phi \|_{H^s} = \| \langle \nabla \rangle^s \phi \|_{L^2} < \infty \}
\]
and the weighted Sobolev spaces
\[
H^{m,s}(\mathbb{R}^d) = \{ \phi \in S'(\mathbb{R}^d); \| \phi \|_{H^{m,s}} = \| \langle x \rangle^m \langle \nabla \rangle^s \phi \|_{L^2} < \infty \}. \quad \text{(1.9)}
\]
We denote various constants by C and so forth. They may differ from line to line, when this does not cause any confusion.

The plan of the present paper is as follows. In Section 2, we prove several linear estimates for the fourth order Schrödinger type equation (2.1). In Section 3, we prove Theorem 1.1 by applying the contraction mapping principle to the integral equation (1.7). Finally in Section 4, we give the proof of Theorem 1.3.

2. Linear Estimates

In this section, we derive several linear estimates that will be crucial for the proof of Theorem 1.1, for the fourth order Schrödinger type equation

\[
\begin{cases}
 i\partial_t u + \frac{1}{2}\Delta u - \frac{1}{4}\partial_x^4 u = 0, & t > 0, x \in \mathbb{R}^2, \\
u(0, x) = \psi(x), & x \in \mathbb{R}^2.
\end{cases}
\]

The solution to (2.1) can be rewritten as

\[
u(t, x) = \left[W(t) \psi \right](x) = \frac{1}{2\pi} \int_{\mathbb{R}^2} e^{ix\xi - \frac{1}{2}t|\xi|^2 - \frac{1}{4}t\xi_1^4} \hat{\psi}(\xi) d\xi.
\]

The following proposition is a refinement of [13, Proposition 2.1.] for $d = 2$ and $p = 2$.

Proposition 2.1. We have

\[
\left[W(t) \psi \right](x) = \frac{t^{-1}}{\sqrt{3\mu_1^4 + 1}} \hat{\psi}(\mu) e^{\frac{3}{2}it\mu_1^4 + \frac{1}{2}it|\mu|^2 - \frac{1}{2}it^2} + R(t, x)
\]

for $t \geq 2$, where $\mu = (\mu_1, \mu_2)$ is given by (1.5) and R satisfies

\[
\|R(t)\|_{L^2} \leq C t^{-\beta}\|\psi\|_{H^{0,2}},
\]

for $0 < \beta < 3/4$.

Proof of Proposition 2.1. We easily see

\[
\left[W(t) \psi \right](x) = \int_{\mathbb{R}^2} K(t, x - y)\psi(y)dy,
\]

where

\[
K(t, z) = \left(\frac{1}{2\pi} \right)^2 \int_{\mathbb{R}^2} e^{iz\xi - \frac{1}{2}t|\xi|^2 - \frac{1}{4}t\xi_1^4} d\xi.
\]

By the Fresnel integral formula

\[
\frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{iz\xi - \frac{1}{2}t|\xi|^2} d\xi = t^{-\frac{1}{4}} e^{-\frac{it}{2\pi} - \frac{i}{4}z^2},
\]

we have

\[
K(t, z) = \left(\frac{1}{2\pi} \right)^2 t^{-\frac{1}{4}} e^{-\frac{it}{2\pi} - \frac{i}{4}z^2} \int_{\mathbb{R}} e^{iz_1\xi_1 - \frac{1}{2}t\xi_1^2 - \frac{1}{4}t\xi_1^4} d\xi_1.
\]

Therefore, we find

\[
u(t, x) = \frac{1}{\sqrt{2\pi}} t^{-\frac{1}{4}} e^{\frac{3}{2}it\mu_1^4 - \frac{1}{2}it^2} \int_{\mathbb{R}} e^{ix_1\xi_1 - \frac{1}{2}t\xi_1^2 - \frac{1}{4}t\xi_1^4} \mathcal{F}[e^{\frac{it}{2\pi}} \psi](\xi_1, \mu_2) d\xi_1.
\]
We split u into the following two pieces:

$$u(t, x) = \frac{1}{\sqrt{2\pi}} e^{\frac{i}{4} x^2 t^2 - \frac{i}{4} \pi} \int_{\mathbb{R}} e^{ix_1 \xi_1 - \frac{i}{4} t \xi_1^2 + \frac{i}{4} \xi_1^4} \mathcal{F}[\psi](\xi_1, \mu_2) d\xi_1$$

$$+ \frac{1}{\sqrt{2\pi}} e^{\frac{i}{4} x^2 t^2 - \frac{i}{4} \pi} \int_{\mathbb{R}} e^{ix_1 \xi_1 - \frac{i}{4} t \xi_1^2 + \frac{i}{4} \xi_1^4} \mathcal{F}[(e^{\frac{i}{2\pi} t^2} - 1)\psi(\xi_1, \mu_2)] d\xi_1$$

$$=: L(t, x) + R(t, x).$$

To evaluate L, we split L into

$$L(t, x) = \frac{1}{\sqrt{2\pi}} e^{\frac{i}{4} x^2 t^2 - \frac{i}{4} \pi} \mathcal{F}[\psi](\mu) \int_{\mathbb{R}} e^{ix_1 \xi_1 - \frac{i}{4} t \xi_1^2 + \frac{i}{4} \xi_1^4} d\xi_1$$

$$+ \frac{1}{\sqrt{2\pi}} e^{\frac{i}{4} x^2 t^2 - \frac{i}{4} \pi} \partial_{\xi_1} \mathcal{F}[\psi](\mu) \int_{\mathbb{R}} e^{ix_1 \xi_1 - \frac{i}{4} t \xi_1^2 + \frac{i}{4} \xi_1^4} (\xi_1 - \mu_1) d\xi_1$$

$$+ \frac{1}{\sqrt{2\pi}} e^{\frac{i}{4} x^2 t^2 - \frac{i}{4} \pi} \int_{\mathbb{R}} e^{ix_1 \xi_1 - \frac{i}{4} t \xi_1^2 + \frac{i}{4} \xi_1^4}$$

$$\times (\mathcal{F}[\psi](\xi_1, \mu_2) - \mathcal{F}[\psi](\mu_1, \mu_2) - \partial_{\xi_1} \mathcal{F}[\psi](\mu) (\xi_1 - \mu_1) d\xi_1 =: L_1(t, x) + L_2(t, x) + L_3(t, x)$$

We rewrite L_1 as follows:

$$L_1(t, x) = \frac{1}{\sqrt{2\pi}} e^{\frac{i}{4} x^2 t^2 - \frac{i}{4} \pi} \mathcal{F}[\psi](\mu) \int_{\mathbb{R}} e^{-itS(\mu_1, \xi_1)} d\xi_1,$$

where $S(\mu_1, \xi_1)$ is defined by

$$S(\mu_1, \xi_1) = \frac{1}{4} \xi_1^4 + \frac{1}{2} t^2 - (\mu_1^3 + \mu_1) \xi_1 + \frac{3}{4} \mu_1^4 + \frac{1}{2} \mu_1^2.$$

Let

$$\eta_1 = \mu_1 + \frac{1}{\sqrt{2} \sqrt{3 \mu_1^2 + 1}} (\xi_1 - \mu_1) \sqrt{\xi_1^2 + 2 \mu_1 \xi_1 + 3 \mu_1^2 + 2}. $$

Then, L_1 can be rewritten as follows:

$$L_1(t, x) = \frac{1}{\sqrt{2\pi}} e^{\frac{i}{4} x^2 t^2 - \frac{i}{4} \pi}$$

$$\times \left\{ \int_{\mathbb{R}} e^{-itS(\mu_1, \xi_1)} d\eta_1 \frac{d\eta_1}{d\xi_1} \right\} \int_{\mathbb{R}} e^{-itS(\mu_1, \xi_1)} (\xi_1 - \mu_1) d\xi_1$$

$$+ \int_{\mathbb{R}} e^{-itS(\mu_1, \xi_1)} (1 - \frac{d\eta_1}{d\xi_1}) \left\{ \frac{d^2 \eta_1}{d\xi_1^2} \right\} (\xi_1 - \mu_1) d\xi_1$$

$$=: e^{\frac{i}{4} x^2 t^2 - \frac{i}{4} \pi} (L_{1,1}(t, x) + L_{1,2}(t, x) + L_{1,3}(t, x)).$$

For $L_{1,1}$, changing the variable $\xi_1 \mapsto \eta_1$, we have

$$L_{1,1}(t, x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{\frac{i}{4} (3 \eta_1^2 + 1)(\eta_1 - \mu_1)^2} d\eta_1.$$
In addition, changing the variable \(\zeta_1 = (1/\sqrt{2})^{1/2} \sqrt{3\mu_1^2 + 1} (\eta_1 - \mu_1) \) (\(\eta_1 \mapsto \zeta_1 \)) and using the Fresnel integral formula, we obtain

\[
L_{1,1}(t,x) = \sqrt{\frac{2}{\pi}} \frac{t^{-1/2}}{\sqrt{3\mu_1^2 + 1}} \int_{\mathbb{R}} e^{-i\zeta^2} d\zeta = \frac{t^{-1/2}}{\sqrt{3\mu_1^2 + 1}} e^{-i\pi/4}. \tag{2.6}
\]

Next we evaluate \(L_{1,2} \). Integrating by parts via the identity

\[
e^{-itS(\mu_1, \xi_1)}(\xi_1 - \mu_1) = it^{-1}G(\mu_1, \xi_1)\partial_{\xi_1} e^{-itS(\mu_1, \xi_1)} \tag{2.7}
\]

with

\[
G(\mu_1, \xi_1) = \frac{1}{\xi_1^2 + \mu_1 \xi_1 + \mu_1^2 + 1},
\]

we have

\[
\int_{\mathbb{R}} e^{-itS(\mu_1, \xi_1)}(\xi_1 - \mu_1)d\xi_1 = -it^{-1} \int_{\mathbb{R}} e^{-itS(\mu_1, \xi_1)} \partial_{\xi_1} G(\mu_1, \xi_1)d\xi_1.
\]

Furthermore, integrating by parts via the identity

\[
e^{-itS(\mu_1, \xi_1)} = H(t, \mu_1, \xi_1)\partial_{\xi_1} \{(\xi_1 - \mu_1)e^{-itS(\mu_1, \xi_1)}\} \tag{2.8}
\]

with

\[
H(t, \mu_1, \xi_1) = \frac{1}{1 - it(\xi_1 - \mu_1)^2(\xi_1^2 + \mu_1 \xi_1 + \mu_1^2 + 1)},
\]

we obtain

\[
\int_{\mathbb{R}} e^{-itS(\mu_1, \xi_1)}(\xi_1 - \mu_1)d\xi_1
\]

\[
= it^{-1} \int_{\mathbb{R}} e^{-itS(\mu_1, \xi_1)}(\xi_1 - \mu_1)\partial_{\xi_1} \{H(t, \mu_1, \xi_1)\partial_{\xi_1} G(\mu_1, \xi_1)\} d\xi_1
\]

\[
= it^{-1} \int_{\mathbb{R}} e^{-itS(\mu_1, \xi_1)}(\xi_1 - \mu_1)H(t, \mu_1, \xi_1)\partial_{\xi_1}^2 G(\mu_1, \xi_1)d\xi_1
\]

\[
+ it^{-1} \int_{\mathbb{R}} e^{-itS(\mu_1, \xi_1)}(\xi_1 - \mu_1)\partial_{\xi_1} H(t, \mu_1, \xi_1)\partial_{\xi_1} G(\mu_1, \xi_1)d\xi_1.
\]

Using the inequalities

\[
|\partial_{\xi_1}^j G(\mu_1, \xi_1)| \leq C(\mu_1)^{-j-2}, \tag{2.9}
\]

\[
|\partial_{\xi_1}^j H(t, \mu_1, \xi_1)| \leq C \frac{|\xi_1 - \mu_1|^{-j}}{1 + t(\xi_1 - \mu_1)^2(\xi_1^2 + \mu_1 \xi_1 + \mu_1^2 + 1)} \tag{2.10}
\]

for \(j = 0, 1, 2 \), we have

\[
\left| \int_{\mathbb{R}} e^{-itS(\mu_1, \xi_1)}(\xi_1 - \mu_1)d\xi_1 \right|
\]

\[
\leq Ct^{-1}(\mu_1)^{-4} \int_{\mathbb{R}} \frac{|\xi_1 - \mu_1| + |\mu_1|}{1 + t(\xi_1 - \mu_1)^2(\xi_1^2 + \mu_1 \xi_1 + \mu_1^2 + 1)} d\xi_1.
\]

By using the inequalities

\[
\xi_1^2 + \mu_1 \xi_1 + \mu_1^2 + 1 \geq \begin{cases}
\frac{1}{2} |\mu_1|^2, & \text{if } |\xi_1 - \mu_1| \leq |\mu_1|, \\
\frac{1}{4} (\xi_1 - \mu_1)^2, & \text{if } |\xi_1 - \mu_1| \geq |\mu_1|,
\end{cases}
\]
Furthermore, integrating by parts via the identity (2.7), we have
\[
\left| \int_{-\infty}^{\infty} e^{-itS(\mu_1, \xi_1)} (\xi_1 - \mu_1) d\xi_1 \right|
\leq C t^{-1} (\mu_1)^{-3} \int_{|\xi_1 - \mu_1| \leq (\mu_1)^{1/2}} \frac{1}{1 + t(\mu_1)^2 (\xi_1 - \mu_1)^2} d\xi_1
\]
\[+ C t^{-1} (\mu_1)^{-4} \int_{|\xi_1 - \mu_1| \geq (\mu_1)^{1/2}} \frac{|\xi_1 - \mu_1|}{1 + t(\xi_1 - \mu_1)^2} d\xi_1.\]
we see
\[
\left| \int_{-\infty}^{\infty} e^{-itS(\mu_1, \xi_1)} (\xi_1 - \mu_1) d\xi_1 \right|
\leq C t^{-1-\gamma} (\mu_1)^{-2\gamma-3} \int_{|\xi_1 - \mu_1| \leq (\mu_1)^{1/2}} |\xi_1 - \mu_1|^{-2\gamma} d\xi_1
\]
\[+ C t^{-2} (\mu_1)^{-4} \int_{|\xi_1 - \mu_1| \geq (\mu_1)^{1/2}} |\xi_1 - \mu_1|^{-3} d\xi_1
\leq C (t^{-1-\gamma} (\mu_1)^{-4\gamma-2} + t^{-2} (\mu_1)^{-6})
\leq C t^{-1-\gamma} (\mu_1)^{-4\gamma-2},\quad (2.11)
\]
where \(0 < \gamma < 1/2\). Hence
\[
|L_{1,2}(t, x)| \leq C t^{-1-\gamma} \left| \frac{d^2 \eta_1}{d \xi_1^2} \right|_{\xi_1 = \mu_1} |\mu_1|^{-4\gamma-2} \leq C t^{-1-\gamma} (\mu_1)^{-4\gamma-3}.\quad (2.12)
\]
For \(L_{1,3}\), integrating by parts via the identity (2.8), we have
\[
L_{1,3}(t, x) = -\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (\xi_1 - \mu_1) e^{-itS(\mu_1, \xi_1)}
\times \partial_{\xi_1} \left\{ H(t, \mu_1, \xi_1) (1 - \frac{d \eta_1}{d \xi_1} + \frac{d^2 \eta_1}{d \xi_1^2} |_{\xi_1 = \mu_3} (\xi_1 - \mu_1)) \right\} d\xi_1.
\]
Furthermore, integrating by parts via the identity (2.7), we have
\[
L_{1,3}(t, x)
= \frac{it^{-1}}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-itS(\mu_1, \xi_1)}
\times \partial_{\xi_1} \left[G(\mu_1, \xi_1) \partial_{\xi_1} \left\{ H(t, \mu_1, \xi_1) (1 - \frac{d \eta_1}{d \xi_1} + \frac{d^2 \eta_1}{d \xi_1^2} |_{\xi_1 = \mu_3} (\xi_1 - \mu_1)) \right\} \right] d\xi_1
\]
\[= \frac{it^{-1}}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-itS(\mu_1, \xi_1)} F_1(\mu_1, \xi_1) \frac{d^2 \eta_1}{d \xi_1^2} d\xi_1
\]
\[+ \frac{it^{-1}}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-itS(\mu_1, \xi_1)} F_2(\mu_1, \xi_1) \left(\frac{d^2 \eta_1}{d \xi_1^2} - \frac{d^2 \eta_1}{d \xi_1^2} |_{\xi_1 = \mu_1} \right) d\xi_1
\]
\[+ \frac{it^{-1}}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-itS(\mu_1, \xi_1)} F_3(\mu_1, \xi_1) \left(1 - \frac{d \eta_1}{d \xi_1} + \frac{d^2 \eta_1}{d \xi_1^2} |_{\xi_1 = \mu_1} (\xi_1 - \mu_1) \right) d\xi_1,\quad (2.13)
\]
where
\[
F_1(\mu_1, \xi_1) = -G(\mu_1, \xi_1) H(t, \mu_1, \xi_1),
\]
\[
F_2(\mu_1, \xi_1) = -2G(\mu_1, \xi_1) \partial_{\xi_1} H(t, \mu_1, \xi_1) - \partial_{\xi_1} G(\mu_1, \xi_1) H(t, \mu_1, \xi_1),
\]
\[
F_3(\mu_1, \xi_1) = G(\mu_1, \xi_1) \partial_{\xi_1}^2 H(t, \mu_1, \xi_1) + \partial_{\xi_1} G(\mu_1, \xi_1) \partial_{\xi_1} H(t, \mu_1, \xi_1).
\]
Since \(\left| \frac{d^3 \eta}{d \xi_1^3} \right| \leq C (\mu_1)^{-2} \), we see that
\[
\left| \frac{d^2 \eta}{d \xi_1^2} \right| \leq \sup_{\xi_1 \in \mathbb{R}} \left| \frac{d^3 \eta}{d \xi_1^3} \right| |\xi_1 - \mu_1| \leq C (\mu_1)^{-2} |\xi_1 - \mu_1|,
\]

\[
1 - \left| \frac{d \eta}{d \xi_1} + \frac{d^2 \eta}{d \xi_1^2} \right| (\xi_1 - \mu_1) = \left| \frac{d \eta}{d \xi_1} \right| + \frac{d^2 \eta}{d \xi_1^2} (\xi_1 - \mu_1)
\]

\[
\leq 1 - \frac{1}{2} \sup_{\xi_1 \in \mathbb{R}} \left| \frac{d^3 \eta}{d \xi_1^3} \right| |\xi_1 - \mu_1|^2 \leq C (\mu_1)^{-2} |\xi_1 - \mu_1|^2.
\]

Combining (2.9) and (2.10) with the above three inequalities, we have
\[
|L_{1,3}(t, x)| \leq C t^{-1} (\mu_1)^{-5} \int_{\mathbb{R}} \frac{|\xi_1 - \mu_1| + \langle \mu_1 \rangle}{1 + t(\xi_1 - \mu_1)^2(\xi_1^2 + \mu_1^2 + 1)} d\xi_1.
\]

Hence, by an argument similar to (2.11), we have
\[
|L_{1,3}(t, x)| \leq C t^{-1 - \gamma} (\mu_1)^{-4\gamma - 3}, \tag{2.14}
\]

where \(0 < \gamma < 1/2\). By (2.5), (2.6), (2.12) and (2.14), we have
\[
L_1(t, x) = \frac{t^{-1}}{\sqrt{3\mu_1^3 + 1}} \mathcal{F}[\psi](\mu) e^{\frac{1}{2}(\mu_1^4 + x^2/4) - \frac{1}{2} \gamma} \mathcal{F} \left(\frac{\partial \langle \psi \rangle}{\partial \xi_1} \right) + R_1(t, x), \tag{2.15}
\]

where \(R_1\) satisfies
\[
|R_1(t, x)| \leq C t^{-\frac{3}{4} - \gamma} (\mu_1)^{-4\gamma - 3} |\mathcal{F}[\psi](\mu)|
\]

with \(0 < \gamma < 1/2\). Hence the Plancherel identity yield
\[
\|R_1(t)\|_{L_2^2} \leq C t^{-\frac{3}{4} - \gamma} \| (\mu_1)^{-4\gamma - 2} \mathcal{F}[\psi](\mu) \|_{L_2^2}
\]

\[
\leq C t^{-\frac{3}{4} - \gamma} \| \mathcal{F}[\psi](\mu) \|_{L_2^2}
\]

\[
= C t^{-\frac{3}{4} - \gamma} \| \psi \|_{L_2^2}. \tag{2.16}
\]

Next we evaluate \(L_2\). By (2.11), we obtain
\[
|L_2(t, x)| \leq C t^{-\frac{1}{2} - \gamma} (\mu_1)^{-4\gamma - 2} |\partial \xi_1 \mathcal{F}[\psi](\mu)|.
\]

By an argument similar to that in (2.16), we have
\[
\|L_2(t)\|_{L_2^2} \leq C t^{-\frac{1}{2} - \gamma} \| \psi \|_{H^{0,1}}. \tag{2.17}
\]

Next, we evaluate \(L_3\). We have
\[
L_3(t, x) = t^{-\frac{1}{4}} e^{\frac{3}{4} i \mu_1^1 x + \frac{x^2}{4} i \mu_2^2} \tilde{L}_3(t, x).
\]

The same argument as that in (2.13) yields that \(\tilde{L}_3\) is equal to the right hand side of (2.13) by replacing \(1 - \frac{d \eta}{d \xi_1} + \frac{d^2 \eta}{d \xi_1^2} \mid_{\xi = \mu_1} \) by \(\mathcal{F}[\psi](\xi_1, \mu_2) - \mathcal{F}[\psi](\mu_1, \mu_2) - \partial \xi_1 \mathcal{F}[\psi](\mu)(\xi_1 - \mu_1)\). Since
\[
|\partial \xi_1 \mathcal{F}[\psi](\xi_1, \mu_2) - \partial \xi_1 \mathcal{F}[\psi](\mu)| \leq \| \partial \xi_1 \mathcal{F}[\psi](\cdot, \mu_2) \|_{L_2^2} |\xi_1 - \mu_1|^\gamma,
\]
\(|\mathcal{F}[\psi](\xi, \mu_2) - \mathcal{F}[\psi](\mu_1, \mu_2) - \partial_{\xi} \mathcal{F}[\psi](\mu)(\xi_1 - \mu_1)| \leq \frac{2}{3} \|\partial_{\xi}^2 \mathcal{F}[\psi](\cdot, \mu_2)\|_{L_{\xi_1}} |\xi_1 - \mu_1|^\frac{3}{2},

we have
\[
|\tilde{L}_3(t, x)| \leq Ct^{-1} \|\partial_{\xi}^2 \mathcal{F}[\psi](\cdot, \mu_2)\|_{L_{\xi_1}^2} \times \left\{ \langle \mu_1 \rangle^{-2} \left(\int_\mathbb{R} \frac{1}{1 + t(\xi_1 - \mu_1)^2(\xi_1^2 + \mu_1 \xi_1 + \mu_1^2 + 1)} d\xi_1 \right)^{\frac{1}{2}} + \langle \mu_1 \rangle^{-3} \int_\mathbb{R} \frac{|\xi_1 - \mu_1|^\frac{3}{2} + \langle \mu_1 \rangle |\xi_1 - \mu_1|^{-\frac{1}{2}}}{1 + t(\xi_1 - \mu_1)^2(\xi_1^2 + \mu_1 \xi_1 + \mu_1^2 + 1)} d\xi_1 \right\}.
\]

By an argument similar to that in (2.11), we obtain
\[
|\tilde{L}_3(t, x)| \leq Ct^{-1-\gamma} \langle \mu_1 \rangle^{-4\gamma - \frac{3}{2}} \|\partial_{\xi}^2 \mathcal{F}[\psi](\cdot, \mu_2)\|_{L_{\xi_1}^2},
\]
where \(0 < \gamma < \frac{1}{4}\).

Hence
\[
\|L_3(t)\|_{L_{t, x}^2} \leq Ct^{-\frac{3}{2} - \gamma} \langle \mu_1 \rangle^{-4\gamma - \frac{3}{2}} \|\partial_{\xi}^2 \mathcal{F}[\psi](\cdot, \mu_2)\|_{L_{\xi_1}^2} \leq Ct^{-1-\gamma} \langle \mu_1 \rangle^{-4\gamma - \frac{3}{2}} \|\partial_{\xi} \mathcal{F}[\psi](\cdot, \mu_2)\|_{L_{t, x}^2} \leq \|L_3(t)\|_{L_{t, x}^2} \leq Ct^{-\frac{1}{2} - \gamma} \|\psi\|_{H^{0, 2}}.
\]

Finally let us evaluate \(R\). \(R\) can be rewritten as
\[
R = t^{-\frac{1}{2}} e^{i \frac{2}{\alpha}(\mu_2)^2 - i \frac{4}{\alpha} \gamma} W_{4LS}(t) \mathcal{F}_{x_2 \rightarrow \xi_2} [e^{i \frac{\xi_2^2}{4\alpha}} - 1] \psi(x_1, \mu_2),
\]
where \(\{W_{4LS}(t)\}_{t \in \mathbb{R}}\) is a unitary group generated by the linear operator \((i/2) \partial_{\xi_1}^2 - (i/4) \partial_{x_1}^4\):
\[
W_{4LS}(t) \phi = \frac{1}{\sqrt{2\pi}} \int_\mathbb{R} e^{i x_1 \xi_1 - \frac{i}{2} \xi_1^2 - \frac{i}{4} t \xi_1^4} \mathcal{F}_{x_1 \rightarrow \xi_1} [\phi](\xi_1) d\xi_1.
\]

Then, we obtain
\[
\|R(t)\|_{L_{t, x}^2} = t^{-\frac{1}{2}} \|\mathcal{F}_{x_2 \rightarrow \xi_2} [e^{i \frac{\xi_2^2}{4\alpha}} - 1] \psi(x_1, \mu_2)\|_{L_{t, x}^2}.
\]
Combining the above identity and the Plancherel identity, we have
\[
\|R(t)\|_{L_{t, x}^2} = t^{-\frac{1}{2}} \|\mathcal{F}_{x_2 \rightarrow \xi_2} [(e^{i \frac{\xi_2^2}{4\alpha}} - 1) \psi(x_1, \mu_2)]\|_{L_{t, x}^2} \leq \|\mathcal{F}_{x_2 \rightarrow \xi_2} [(e^{i \frac{\xi_2^2}{4\alpha}} - 1) \psi(x_1, \mu_2)]\|_{L_{t, x}^2} \leq \|\psi\|_{L_{t, x}^2}.
\]
Collecting \(2.3, 2.4, 2.15, 2.16, 2.17, 2.18\) and \(2.19\), we obtain the desired result. □

To prove Theorem 1.1 we employ the decay estimate and the Strichartz estimate for the linear fourth order Schrödinger equation \((2.1)\).

Lemma 2.2. Let \(W(t)\) be given by \((2.2)\).

(i) Let \(2 \leq p \leq \infty\). Then, the inequality

\[
\left\| \langle \partial_{x_1} \rangle^{1-\frac{1}{p}} W(t) \psi \right\|_{L^p_t} \leq C t^{-d \left(\frac{3}{4} - \frac{2}{p} \right)} \left\| \psi \right\|_{L^p_t}
\]

holds.

(ii) Let \((q_j, r_j)\) \((j = 1, 2)\) satisfy \(1/q_j + 1/r_j = 1/2\) and \(2 \leq r_j < \infty\). Then, the inequality

\[
\left\| \langle \partial_{x_1} \rangle^{\frac{1}{p}} \int_{t}^{+\infty} W(t - t') F(t') dt' \right\|_{L^{q_j}_t (t; \infty; L^{r_j}_x)} \leq C \left\| \langle \partial_{x_1} \rangle^{1 - \frac{3}{4}} F \right\|_{L^{q_j}_t (t; \infty; L^{r_j}_x)}
\]

holds.

Proof of Lemma 2.2. See [11, Theorem 3.1, Theorem 3.2] for instance. □

3. **Proof of Theorem 1.1.**

In this section we prove Theorem 1.1. To this end, we show the following lemma for the asymptotic profile.

Lemma 3.1. Let \(S_+\) be given by \((3.4)\). Then we have for \(t \geq 3\),

\[
\left\| \hat{\psi}_+ e^{iS_+(t, \xi)} \right\|_{H^2_\xi} \leq (\log t)^2 P(\left\| \psi_+ \right\|_{H^{0,2}}),
\]

\[
\left\| \frac{1}{\sqrt{3\xi_1^2 + 1}} \hat{\psi}_+ e^{iS_+(t, \xi)} \right\|_{H^2_\xi} \leq (\log t)^2 P(\left\| \psi_+ \right\|_{H^{0,2}}),
\]

where \(P(\left\| \psi_+ \right\|_{H^{0,2}})\) is a polynomial in \(\left\| \psi_+ \right\|_{H^{0,2}}\) without constant term.

Proof of Lemma 3.1. Since the proof follows from a direct calculations, we omit the detail. □

Let us start the proof of Theorem 1.1. We first rewrite \((1.6)\) as the integral equation. Let \(L = i\partial_t + (1/2)\Delta - (1/4)\partial^4_2\) and let

\[
w(t, \xi) = \hat{\psi}_+(\xi) e^{iS_+(t, \xi)},
\]

where \(S_+\) is given by \((1.4)\). From \((1.6)\) and \((3.1)\), we obtain

\[
i\partial_t (\mathcal{F}_w(-t) u) = \mathcal{F}_w(-t) L u = \lambda \mathcal{F}_w(-t) |u| u,
\]

\[
i\partial_t w = \lambda \frac{t^{-1}}{\sqrt{3\xi_1^2 + 1}} |\hat{\psi}_+(\xi)| \hat{\psi}_+(\xi) e^{iS_+(t, \xi)}.
\]

Subtracting \((3.3)\) from \((3.2)\), we have

\[
i\partial_t (\mathcal{F}_w(-t) u - w) = \lambda \mathcal{F}_w(-t) \left[|u| u - W(t) \mathcal{F}^{-1} \left[\frac{t^{-1}}{\sqrt{3\xi_1^2 + 1}} |\hat{\psi}_+(\xi)| \hat{\psi}_+(\xi) e^{iS_+(t, \xi)} \right] \right].
\]
Proposition 2.1 and Lemma 3.1 yield
\[W(t)\mathcal{F}^{-1}\left[\frac{t^{-1}}{\sqrt{3\xi_1^2 + 1}}|\hat{\psi}_+(\xi)|\hat{\psi}_+(\xi)e^{iS_+(t,\xi)} \right] = |u_+ + R_1(t)|, \]
where \(u_+ \) is given by (1.4) and \(R_1 \) satisfies
\[\|R_1(t)\|_{L_x^2} \leq Ct^{-1-\beta}\|\mathcal{F}^{-1}\left[\frac{1}{\sqrt{3\xi_1^2 + 1}}|\hat{\psi}_+(\xi)|\hat{\psi}_+e^{iS_+(t,\xi)} \right]\|_{H_x^{0,2}} \]
\[= Ct^{-1-\beta}\|\hat{\psi}_+|\hat{\psi}_+e^{iS_+(t,\xi)}\|_{H_x^2} \]
\[\leq Ct^{-1-\beta}(\log t)^2\|\psi_+\|_{H_x^{0,2}}, \quad (3.5) \]
where \(0 < \beta < 3/4 \). Furthermore, by Proposition 2.1 and Lemma 3.1
\[\|R_2(t)\|_{L_x^2} = \|W(t)\mathcal{F}^{-1}wW(t)\mathcal{F}^{-1}w - |u_+|L_x^2 \| \]
\[\leq ((\|W(t)\mathcal{F}^{-1}w\|_{L_x^\infty} + \|u_+\|_{L_x^\infty})\|W(t)\mathcal{F}^{-1}w - u_+\|_{L_x^2} \]
\[\leq Ct^{-1-\beta}(\log t)^4\|\psi_+\|_{H_x^{0,2}}, \quad (3.7) \]
Substituting (3.6) into (3.4), we obtain
\[i\partial_t(\mathcal{F}W(-t)u - w) \]
\[= \lambda\mathcal{F}W(-t)||u||L_x^1 - |W(t)\mathcal{F}^{-1}w|W(t)\mathcal{F}^{-1}w| - \lambda\mathcal{F}W(-t)(R_1 + R_2). \]
Integrating the above equation with respect to \(t \) variable on \((t, \infty)\), we have
\[u(t) - W(t)\mathcal{F}^{-1}w \]
\[= i\lambda \int_t^{+\infty} W(t - \tau)||u||L_x^1 - |W(t)\mathcal{F}^{-1}w|W(t)\mathcal{F}^{-1}w|\tau)d\tau \]
\[- i\lambda \int_t^{+\infty} W(t - \tau)(R_1 + R_2)(\tau)d\tau. \quad (3.8) \]
To show the existence of \(u \) satisfying (3.8), we shall prove that if \(\|\psi_+\|_{H_x^{0,2}} \) is sufficiently small, then the map \(\Phi \) given by
\[\Phi[u](t) = i\lambda \int_t^{+\infty} W(t - \tau)||u||L_x^1 - |W(t)\mathcal{F}^{-1}w|W(t)\mathcal{F}^{-1}w|\tau)d\tau \]
\[- i\lambda \int_t^{+\infty} W(t - \tau)(R_1 + R_2)(\tau)d\tau \]
is a contraction on
\[X_{\rho, T} = \{ u \in C([T, \infty); L_x^2(\mathbb{R}^2)) \cap (\partial_{\tau_1})^{-\frac{1}{4}}L_{\text{loc}}(T, \infty; L_x^4(\mathbb{R}^2)); \]
\[\|u - W(t)\mathcal{F}^{-1}w\|_{X_T} \leq \rho \}, \]
\[\|u\|_{X_T} = \sup_{t \geq T} t^{\alpha}(\|u\|_{L_x^{\infty}(t, \infty; L_x^2)} + \|\partial_{\tau_1}\|^{\frac{1}{4}}\|u\|_{L_x^4(t, \infty; L_x^2)}) \]
for some $T \geq 3$ and $\rho > 0$.

Let $v(t) = u(t) - W(t)F^{-1}w$ and $v \in X_{\rho,T}$. Then the Strichartz estimate (Lemma 2.2) implies

\[
||\Phi[u] - W(t)F^{-1}w||_{L^\infty(t,\infty;L^2)} + ||(\partial_x)^{\frac{1}{2}}(\Phi[u] - W(t)F^{-1}w)||_{L^4(t,\infty;L^\frac{4}{3})} \\
\leq C(||v||_{L^\frac{4}{3}(t,\infty;L^2)} + ||W(t)F^{-1}w||_{L^1(t,\infty;L^2)}) + ||R_1||_{L^1(t,\infty;L^2)}) \tag{3.9}
\]

By the H"older inequality,

\[
||v||_{L^\frac{4}{3}(t,\infty;L^2)} \leq C||v||_{L^\frac{4}{3}(t,\infty)} \leq C\rho ||v||_{L^\frac{4}{3}(t,\infty)} \leq C\rho ||v||_{L^2(t,\infty)} \leq C\rho^2 T^{-\alpha + \frac{1}{2}},
\]

\[
||W(t)F^{-1}w||_{L^1(t,\infty;L^2)} \leq ||W(t)F^{-1}w||_{L^\infty(t,\infty;L^2)} \leq C\rho P(||\psi_+||_{H^{0,2}})T^{-\alpha - \frac{1}{2}}.
\]

Substituting the above two inequalities, (3.5), and (3.7) into (3.9), we have

\[
||\Phi[u] - W(t)F^{-1}w||_{X_T} \leq C(\rho^2 T^{-\alpha + \frac{1}{2}} + \rho P(||\psi_+||_{H^{0,2}}) + T^{-\alpha + \beta} \log T^4).
\]

Choosing $1/2 < \alpha < \beta < 3/4$, T large enough, and $||\psi_+||_{H^{0,2}}$ sufficiently small, we find that Φ is a map onto $X_{\rho,T}$. In a similar way we can conclude that Φ is a contraction map on $X_{\rho,T}$. Therefore, by the Banach fixed point theorem we find that Φ has a unique fixed point in $X_{\rho,T}$ which is the solution to the final state problem (1.6).

From (1.6), we obtain

\[
u(t) = W(t - T)u(T) - i\lambda \int_T^t W(\tau)u|u(\tau)d\tau. \tag{3.10}
\]

Since $u(T) \in L^2_{\rho}(\R^3)$, combining the argument by Lemma 2.2 with the Strichartz estimate (Lemma 2.2) and L^2 conservation law for (3.11), we can prove that (3.10) has a unique global solution in $C(\R; L^2(\R^3)) \cap (\partial_x)^{-1/4}L^4_{\text{loc}}(\R; L^4(\R^3))$. Therefore the solution u of (1.6) can be extended to all times.

Finally we show that the solution to (1.6) converges to u_+ in L^2 as $t \to \infty$. Since $u - W(t)F^{-1}w \in X_{\rho,T}$, Proposition 2.1 and Lemma 3.1 yield

\[
\|u(t) - u_+(t)\|_{L^2} \leq \|u(t) - W(t)F^{-1}w\|_{L^2} + \|W(t)F^{-1}w - u_+\|_{L^2} \leq C_1 t^\alpha + C t^{-\beta} (\log t)^2 \leq C_1 t^\alpha,
\]

where $1/2 < \alpha < \beta < 3/4$. This completes the proof of Theorem 1.1 \qed
4. Proof of Theorem 1.3

In this section we prove Theorem 1.3 via the argument by Glassey [7]. To prove Theorem 1.3 we employ the asymptotic formula [13, Proposition 2.1] as $t \to \infty$ for the solution to
\begin{equation}
\begin{cases}
i\partial_t u + \frac{1}{2} \Delta u - \frac{1}{4} \partial^4_{x_1} u = 0, & t > 0, x \in \mathbb{R}^d, \\
u(0, x) = \psi(x), & x \in \mathbb{R}^d.
\end{cases}
\end{equation}

Lemma 4.1. Let $W(t)\psi$ be a solution to (4.1). Then we have
\[
[W(t)\psi](x) = \frac{t^{-\frac{d}{2}}}{\sqrt{3\mu_1^2 + 1}} \hat{\psi}(\mu) e^{\frac{3}{4}i\mu_1^2 + \frac{1}{2}i|\mu|^2 - \frac{i}{4}\pi} + R(t, x)
\]
for $t \geq 2$, where $\mu = (\mu_1, \mu_\perp)$ is given by
\[
\mu_1 = \left\{ \frac{1}{2t} \left(x_1 + \sqrt{x_1^2 + \frac{4}{27}t^2} \right) \right\}^{1/3} + \left\{ \frac{1}{2t} \left(x_1 - \sqrt{x_1^2 + \frac{4}{27}t^2} \right) \right\}^{1/3},
\]

and R satisfies
\[
\|R(t)\|_{L^p_x} \leq C t^{-d(\frac{1}{2} - \frac{1}{p}) - \beta} \|\psi\|_{H^2_x},
\]
for $2 \leq p \leq \infty$, $1/(4p) < \beta < 1/2$ and $s > d/2 - (d - 1)/p + 1$.

Proof of Lemma 4.1. See [13, Proposition 2.1]. □

Proof of Theorem 1.3. Let $0 < s < t$ and let u be a solution to (1.1) satisfying (1.8). We denote $\langle u, v \rangle = \int u(x)v(x)dx$. Then a direct calculation shows
\begin{align}
\langle W(-t)u(t) - W(-s)u(s), \psi_+ \rangle_{L^2_x} &= -i\lambda \int_s^t \langle W(-\tau)|u|^{p-1}u(\tau), \psi_+ \rangle_{L^2_x} d\tau \\
&= -i\lambda \int_s^t \langle (|u|^{p-1}u)(\tau), W(\tau)\psi_+ \rangle_{L^2_x} d\tau \\
&= -i\lambda \int_s^t \langle (|u|^{p-1}u)(\tau), u_+^0(\tau) \rangle_{L^2_x} d\tau \\
&\quad - i\lambda \int_s^t \langle (|u|^{p-1}u)(\tau), W(\tau)\psi_+ - u_+^0(\tau) \rangle_{L^2_x} d\tau \\
&\quad - i\lambda \int_s^t \langle (|u|^{p-1}u)(\tau) - (|u_+^0|^{p-1}u_+^0(\tau))(\tau), u_+^0(\tau) \rangle_{L^2_x} d\tau \\
&=: I_1(t, s) + I_2(t, s) + I_3(t, s),
\end{align}

where u_+^0 is defined by
\[
u_+^0(t, x) = \frac{t^{-\frac{d}{2}}}{\sqrt{3\mu_1^2 + 1}} \hat{\psi}_+(\mu) e^{\frac{3}{4}i\mu_1^2 + \frac{1}{2}i|\mu|^2 - \frac{i}{4}\pi}.
\]
By the definition of u^0_+, we easily see

$$I_1(t, s) = -i\lambda \left(\int_{\mathbb{R}^d} |\tilde{\psi}_+(\mu)|^{p+1} \frac{d\mu}{(1 + 3\mu_1^2)^{\frac{p}{2}}} \right) \left(\int_{s}^{t} \tau^{-\frac{d}{2}(p-1)} d\tau \right). \quad (4.3)$$

By Lemma 4.1 and the conservation law for L^2 norm of u, we have

$$|I_2(t, s)| \leq C \int_{s}^{t} \|u(\tau)\|_{L^2}^p \|W(\tau)\psi_+ - u^0_+(\tau)\|_{L^\infty} \frac{d\tau}{\tau^{\beta}}$$

$$\leq C \|u_0\|_{L^2}^p \|\psi_+\|_{H^{\alpha,s}} \int_{s}^{t} \tau^{-\frac{d}{2}(p-1)-\beta} d\tau, \quad (4.4)$$

where $(2-p)/8 < \beta < 1/2$ and $s > (4-d)/2 + (d-1)p/2$.

By Lemma 4.1 and the conservation law for L^2 norm of u, we have

$$|I_3(t, s)| \leq C \int_{s}^{t} \left(\|u(\tau)\|_{L^2}^{p-1} + \|u^0_+(\tau)\|_{L^2}^{p-1} \right) \left(\|u(\tau)\|_{L^2} + \|u^0_+\|_{L^\infty} \right) \frac{d\tau}{\tau^{\beta}}$$

$$\leq C \left(\|u_0\|_{L^2}^{p-1} + \|\psi_+\|_{L^2}^{p-1} \right) \|\partial_x\|_{-(p-1)} \|\psi_+\|_{L^2}$$

$$\times \int_{s}^{t} \left(\|u(\tau)\| - W(\tau)\psi_+ \right)_{L^2} + t^{-\beta} \|\psi_+\|_{H^{\alpha,s}} \tau^{-\frac{d}{2}(p-1)} d\tau, \quad (4.5)$$

where $1/8 < \beta < 1/2$ and $s > 3/2$. By (4.2), (4.3), (4.4) and (4.5), we have

$$\|\langle W(t)u(t) - W(-s)u(s), \psi_+ \rangle_{L^2} \|$$

$$\geq |\lambda| \left(\int_{\mathbb{R}^d} |\tilde{\psi}_+(\mu)|^{p+1} \frac{d\mu}{(1 + 3\mu_1^2)^{\frac{p}{2}}} \right) \left(\int_{s}^{t} \tau^{-\frac{d}{2}(p-1)} d\tau \right)$$

$$- C \int_{s}^{t} \tau^{-\frac{d}{2}(p-1)-\beta} d\tau - C \int_{s}^{t} \|u(\tau)\| - W(\tau)\psi_+ \|_{L^\infty} \tau^{-\frac{d}{2}(p-1)} d\tau.$$

Hence by the assumption (1.8) on u, we see that there exists $T > 0$ such that for $t > s > T$,

$$\|\langle W(t)u(t) - W(-s)u(s), \psi_+ \rangle_{L^2} \| \geq \frac{|\lambda|}{2} \left(\int_{\mathbb{R}^d} |\tilde{\psi}_+(\mu)|^{p+1} \frac{d\mu}{(1 + 3\mu_1^2)^{\frac{p}{2}}} \right) \left(\int_{s}^{t} \tau^{-\frac{d}{2}(p-1)} d\tau \right).$$

Hence we have $u \equiv 0$. This completes the proof. \hfill \Box

Acknowledgments. Part of this work was done while J.S was visiting the Department of Mathematics at Université de Paris-Sud, Orsay whose hospitality he gratefully acknowledges. J.S. is partially supported by JSPS, Grant-in-Aid for Scientific Research (B) 17H02851. J.-C. S. is partly supported by the ANR project ANuI.

References

[1] Aceves A.B., De Angelis C., Rubenchik A.M. and Turitsyn S.K., *Multidimensional solitons in fiber arrays*, Optical Letters 19 (1995), 329-331.

[2] Ben-Artzi M., Koch H. and Saut J.-C., *Dispersion estimates for fourth order Schrödinger equations*. C. R. Acad. Sci. Paris Sér. I Math. 330 (2000), 87-92.
[3] Bergé L., Wave collapse in physics : principles and applications to light and plasma waves, Phys. Rep., 303 (1998), 259.

[4] Bouchel O., Remarks on NLS with higher order anisotropic dispersion. Adv. Differential Equations 13 (2008), 169–198.

[5] Fibich Gadi., Ilan B. and Papanicolaou G., Self-focusing with fourth-order dispersion. SIAM J. Appl. Math. 62 (2002), 1437–1462.

[6] Fibich G., Ilan B. and Schochet S., Critical exponents and collapse of nonlinear Schrödinger equations with anisotropic fourth-order dispersion, Nonlinearity, 16 (2003), 1809-1821.

[7] Glassey R.T., On the asymptotic behavior of nonlinear wave equations, Trans. Amer. Math. Soc. 182 (1973) 187–200.

[8] Hayashi N. and Naumkin P. I., Domain and range of the modified wave operator for Schrödinger equations with a critical nonlinearity. Comm. Math. Phys. 267 (2006), no. 2, 477–492.

[9] Hayashi N. and Naumkin P. I., Asymptotic properties of solutions to dispersive equation of Schrödinger type. J. Math. Soc. Japan 60 (2008), 631–652.

[10] Hayashi N. and Naumkin P. I., On the inhomogeneous fourth-order nonlinear Schrödinger equation. J. Math. Phys. 56 (2015), 093502, 25 pp.

[11] Kenig C. E., Ponce G. and Vega L., Oscillatory integrals and regularity of dispersive equations. Indiana Univ. math J. 40 (1991), 33-69.

[12] Ozawa T., Long range scattering for nonlinear Schrödinger equations in one space dimension. Comm. Math. Phys. 139 (1991), 479–493.

[13] Saut J.-C., Segata J., Asymptotic behavior in time of solution to the nonlinear Schrödinger equation with higher order anisotropic dispersion, Discrete Contin. Dyn. Syst. Series A 39 (2019), no.1 219–239.

[14] Segata J., A remark on asymptotics of solutions to Schrödinger equation with fourth order dispersion. Asymptotic Analysis, 75 (2011), 25–36.

[15] Tsutsumi Y., L^2-solutions for nonlinear Schrödinger equations and nonlinear groups. Funkcial. Ekvac. 30 (1987), 115–125.

[16] Wen S. and Fan D., Spatiotemporal instabilities in nonlinear Kerr media in the presence of arbitrary higher order dispersions, J. Opt. Soc. Am. B 19 (2002), 1653-1659.

Laboratoire de Mathématiques, CNRS et Université Paris-Sud, 91405 Orsay, France
E-mail address: jean-claude.saut@u-psud.fr

Mathematical Institute, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
E-mail address: segata@m.tohoku.ac.jp