Helicobacter pylori infection associates with fecal microbiota composition and diversity

Fabian Frost¹, Tim Kacprowski²,³, Malte Rühlemann⁴, Corinna Bang⁴, Andre Franke⁴, Kathrin Zimmermann⁵, Matthias Nauck⁶,⁷, Uwe Völker³,², Henry Völzke⁸, Reiner Biffar⁹, Christian Schulz¹⁰, Julia Mayerle¹¹,¹, Frank U. Weiss¹, Georg Homuth¹,¹¹ & Markus M. Lerch¹,¹¹*

Helicobacter (H.) pylori is the most important cause for peptic ulcer disease and a risk factor for gastric carcinoma. How colonization with *H. pylori* affects the intestinal microbiota composition in humans is unknown. We investigated the association of *H. pylori* infection with intestinal microbiota composition in the population-based cohort Study-of-Health-in-Pomerania (SHIP)-TREND. Anti-*H. pylori* serology and *H. pylori* stool antigen tests were used to determine the *H. pylori* infection status. The fecal microbiota composition of 212 *H. pylori* positive subjects and 212 matched negative control individuals was assessed using 16S rRNA gene sequencing. *H. pylori* infection was found to be significantly associated with fecal microbiota alterations and a general increase in fecal microbial diversity. In infected individuals, the *H. pylori* stool antigen load determined a larger portion of the microbial variation than age or sex. The highest *H. pylori* stool antigen loads were associated with a putatively harmful microbiota composition. This study demonstrates profound alterations in human fecal microbiota of *H. pylori* infected individuals. While the increased microbiota diversity associated with *H. pylori* infection as well as changes in abundance of specific genera could be considered to be beneficial, others may be associated with adverse health effects, reflecting the complex relationship between *H. pylori* and its human host.

The Gram-negative proteobacterium *Helicobacter (H.) pylori* infects the gastric mucosa of approximately 50% of the global human adult population. It represents the major pathogen in the pathophysiology of diverse gastrointestinal conditions including gastritis, peptic ulcer disease, gastric adenocarcinoma, and mucosa-associated lymphoma. In addition, several extra-gastrointestinal disorders such as iron deficiency anemia or idiopathic immunocytopenic thrombocytopenia have been associated with *H. pylori* infection. However, despite chronic gastritis being histologically detectable in almost all cases, the majority of affected individuals remain clinically asymptomatic during their lifetime.

In order to survive the hostile gastric environment, specifically gastric acid, *H. pylori* produces an alkaline ammonium cloud and moves towards the bicarbonate-rich mucous layer. Although *H. pylori* does not invade the gastric epithelial layer its outer membrane proteins allow attachment to the epithelium. Once infection is established, *H. pylori* persistently colonizes the gastric mucosa and dominates the gastric microbiome. In Mongolian gerbils, *H. pylori* colonization has also been associated with changes in the large intestinal microbiota. *H. pylori* infected transgenic insulin-gastrin mice were shown to have increased microbiota richness not

¹Department of Medicine A, University Medicine Greifswald, Greifswald, Germany. ²Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany. ³Research Group Computational Systems Medicine, Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan, Germany. ⁴Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany. ⁵Friedrich Loeffler Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany. ⁶Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany. ⁷DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, University Medicine Greifswald, Greifswald, Germany. ⁸Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany. ⁹Department of Prosthetic Dentistry, Gerodontology and Biomaterials, University of Greifswald, Greifswald, Germany. ¹⁰Department of Medicine II, University Hospital, LMU Munich, Munich, Germany. ¹¹These authors contributed equally: Georg Homuth and Markus M. Lerch. *email: markus.lerch@med.uni-greifswald.de
therapy which is assumed to influence gut microbiota10. After matching also considered for matching because affected individuals were more likely to have been subjected to eradication in those studies, changes in the microbiome can- not unambiguously be attributed to the absence of the pathogen. Older studies relied on culturing techniques12 which are inherently inappropriate to investigate the predominantly anaerobic gut milieu. In the present study we analyzed fecal microbiota profiles generated by 16S rRNA gene sequencing of 212 H. pylori infected and 212 phenotypically matched control individuals from the population-based Study-of-Health-in-Pomerania-TREND (SHIP-TREND)13.

Results
Phenotypic matching of the 212 H. pylori infected and 212 H. pylori negative subjects was performed to control for putative confounders known to influence intestinal microbiota such as age, sex, body mass index (BMI), alcohol consumption, smoking, proton pump inhibitor (PPI) intake, and diet14–18. A history of peptic ulcer disease was also considered for matching because affected individuals were more likely to have been subjected to eradication therapy which is assumed to influence gut microbiota10. After matching H. pylori cases and controls exhibited similar distribution patterns for all accounted phenotypic variables (Table 1 and Supplementary Table S1). None of the selected individuals were under antibiotic therapy at the time of sample collection.

Variable	Controls (n = 212)	H. pylori cases (n = 212)	p-value
Age (years)	53.0 (43.0–63.0)	53.0 (44.0–62.0)	0.826
Male sex (%)	42.5	42.9	1
BMI (kg/m²)	27.3 (24.5–30.3)	27.3 (24.7–29.8)	0.493
Alcohol consumption (g/d)	4.1 (1.1–10.4)	3.9 (1.4–9.1)	0.851
Current smokers (%)	17.0	18.4	0.799
PPI users (%)	1.9	2.4	1
Individuals with history of PUD (%)	4.2	5.3	0.800

Table 1. Phenotype variables of H. pylori infected cases and matched H. pylori negative controls. Continuous variables are expressed as median (1st–3rd quartile). Binary variables are given as percentages. The statistical significance was assessed using the Mann-Whitney test for continuous and the Fisher’s exact test for binary variables. BMI: Body mass index; PPI: Proton pump inhibitor; PUD: Peptic ulcer disease; n: number of individuals.

Alpha diversity estimators characterize the diversity of an ecological community within a sample. We determined several alpha diversity indices with different emphases. The Shannon diversity index (H) and the Simpson diversity number (N2) include information about the number of different operational taxonomic units (OTUs), as well as the abundance of each taxon in the respective samples. The ‘Phyllogenetic diversity’ tries to predict the genetic relatedness of the taxa in each sample. We compared the alpha diversity scores between H. pylori cases and controls using the parametric two-tailed t-test in case of the normally distributed ‘Shannon diversity index’ (Supplementary Fig. S1). In case of the non-normal distributed ‘Simpson diversity number’ and ‘Phyllogenetic diversity’ (Supplementary Fig. S1) the two-tailed Mann-Whitney test was applied. Alpha diversity estimations revealed significantly higher scores in H. pylori cases compared to controls for ‘Shannon diversity index’ and ‘Simpson diversity number’ (Table 2 and Fig. 2). Although the median and mean ‘Phyllogenetic diversity’ scores of H. pylori cases were also higher compared to controls, this was not significant.

Altered beta diversity analysis of H. pylori infected individuals as compared to non-infected controls.
Beta diversity analysis estimates how samples differ from each other. We used the commonly applied Bray-Curtis dissimilarity which is calculated based on the minimal shared abundance of each taxon. Thus, dual absence of taxa is not treated as similarity. Figure 1 shows the result of a principal coordinate analysis (PCoA) based on Bray-Curtis dissimilarity including all 424 microbiota samples. H. pylori infection was associated with a clear shift mainly along the first principal coordinate axis. Permutational analysis of variance (PERMANOVA) based on Bray-Curtis dissimilarity confirmed a significant shift of H. pylori cases compared to controls ($r^2 = 0.011$, $p < 0.001$). Association of continuous H. pylori antigen levels with beta-diversity explained even more variation ($r^2 = 0.023$, $p < 0.001$). The association with continuous H. pylori antibody levels was much weaker ($r^2 = 0.006$, $p = 0.014$). In a next step, we investigated whether H. pylori antibody or H. pylori stool antigen levels showed a significant association with beta-diversity only within the group of controls or H. pylori cases, respectively. No significant association was found within the group of controls. Within the group of H. pylori cases, H. pylori antibody levels did not show an association with beta-diversity. In contrast, continuous H. pylori antigen levels were associated with distinct changes in beta-diversity ($r^2 = 0.029$, $p < 0.001$). This effect size was even larger than that of age ($r^2 = 0.015$, $p = 0.005$) or sex ($r^2 = 0.018$, $p = 0.002$). No significant associations with beta-diversity were found for BMI, alcohol, smoking, use of PPI, or history of peptic ulcer disease in the group of H. pylori cases.

Alterations of the intestinal microbiota in H. pylori infected individuals. In the complete study sample, the most abundant taxa at genus level were Bacteroides, unclassified members of the family
Ruminococcaceae, Faecalibacterium, and Prevotella comprising 41.4% of all microbiota. Supplementary Figs. S2 and S3 show the individual and the average composition of all participants at phylum and genus level, respectively.

Comparing genus abundance data between H. pylori cases and controls, we identified 13 taxa, namely Bacteroides, Prevotella, Parasutterella, unclassified Bacteroidales (order), unclassified Bacteroidetes (phylum), unclassified Burkholderiales (order), Holdemanella, unclassified Betaproteobacteria (class), unclassified Prevotellaceae (family), Pseudoflavonifractor, Haemophilus, Allisonella, and Howardella, that were differentially abundant in H. pylori cases. These taxa represented 32.6% of the total microbial abundance in the complete cohort. The majority of identified taxa including the highly abundant Prevotella were associated positively with H. pylori infection (Fig. 3a and Supplementary Table S2), whereas the most abundant genus Bacteroides was reduced by 16.6% in H. pylori cases compared to controls.

Arumugam et al. described the existence of specific enterotypes that are either dominated by Bacteroides (enterotype 1), Prevotella (enterotype 2), or Ruminococcus (enterotype 3)19. To investigate whether the H. pylori carrier status affects the enterotype distribution, we performed enterotype clustering similar to the approach described by Arumugam et al. We found only two enterotypes in our dataset either dominated by Bacteroides or Prevotella. Ruminococcus or unclassified Ruminococcaceae were present in both groups and did not constitute a unique cluster. In controls, the enterotype 1 was present in 66.5% and enterotype 2 in 33.5% of cases. Analysis of H. pylori carriers revealed a shift from enterotype 1 (56.1%) towards enterotype 2 (43.9%) compared to controls (p = 0.036; Fisher’s exact test), (Fig. 3b).

Table 2. Alpha diversity estimations.

	Controls	H. pylori cases	p-value
Shannon diversity index (H)	4.03 (3.75–4.29) 4.01 ± 0.03	4.12 (3.87–4.31) 4.09 ± 0.02	0.032* (t-test)
Simpson diversity number (N2)	25.23 (19.36–32.79) 26.92 ± 0.76	26.73 (21.83–34.01) 28.91 ± 0.74	0.026* (MW)
Phylogenetic diversity (PD)	53.32 (44.07–64.70) 54.30 ± 0.97	55.84 (44.99–64.58) 54.91 ± 0.85	0.648 (MW)

The results of the beta-diversity analysis revealed a significant microbiota variation even within the group of the 212 H. pylori cases with respect to the individual H. pylori load determined by stool antigen test. Hence, we performed linear regression analysis to identify the genera that are associated with the H. pylori stool antigen load. We analyzed all genera present in at least ten percent of all samples. Due to the reduced statistical

Figure 1. Principal coordinate analysis (PCoA) based on Bray-Curtis dissimilarity of H. pylori infected individuals and controls. (a) Shown are PCo1 and PCo2 of 424 gut microbiota samples. Orange triangles represent samples from H. pylori infected (n = 212) and blue squares samples from control individuals (n = 212), respectively. The centroids of both groups are displayed as diamonds and the respective samples are surrounded by a 95% data ellipse. H. pylori infected cases are shifted from controls. (b) Contribution of H. pylori stool antigen level and serology titer to beta-diversity. The association of H. pylori stool antigen level clearly exceeds that of serology titer.
power in this smaller data subset we focused on more prominent taxa by additionally excluding all genera with a mean abundance of less than or equal to 0.1% and all unclassified taxa at genus level. This analysis identified four genera that were all negatively associated with *H. pylori* stool antigen load, namely *Bacteroides* ($q = 0.003$),

Figure 2. Alpha diversity analysis. Bars depict the relative change of the mean for Shannon diversity index (H, red), Simpson diversity number (N2, blue), and Phylogenetic diversity (PD, yellow) of *H. pylori* positive cases ($n = 212$) as compared to controls ($n = 212$). *Indicates a significant result ($p < 0.05$) according to t-test or Mann-Whitney test for H, N2, and PD, respectively.

Figure 3. Alterations of intestinal microbiota in *H. pylori* infected individuals. (a) Barplots (mean + SEM) are showing all taxa at genus level with significantly different ($q < 0.05$, Mann-Whitney test) abundance between controls (blue, $n = 212$) and *H. pylori* infected (orange, $n = 212$) individuals. Lower case letters in brackets indicate taxonomic rank of unclassified taxa at genus level: class (c), family (f), order (o), or phylum (p). (b) Pie charts showing the distribution of enterotype 1 (*Bacteroides*-dominated, brown) and enterotype 2 (*Prevotella*-dominated, yellow) in controls (left) and *H. pylori* cases (right).
Barnesiella ($q = 0.018$), Alistipes ($q = 0.035$), and Fusicatenibacter ($q = 0.046$), (Fig. 4 and Supplementary Table S3). Performing a similar analysis for the individual *H. pylori* serology level instead of the stool antigen load did not yield a significant association.

Discussion

We investigated changes in the intestinal microbial community structure of *H. pylori* infected individuals, finding significant alterations of the microbiota composition and diversity. Strikingly, in *H. pylori* cases, the alpha diversity estimators 'Shannon diversity index' and the 'Simpson diversity number' exhibited generally higher scores, indicating increased microbial diversity. High diversity is generally considered to be an indicator of a healthy gut microbiome, while a decrease is associated with poorer health or unhealthy habits. For example, a plant rich diet increases alpha diversity,20 whereas a Western lifestyle or obesity are associated with reduced bacterial diversity.21,22 In addition, conditions such as recurrent antibiotic-associated diarrhea,23 Crohn's disease,24 or ulcerative colitis,25 have all been reported to be associated with reduced intestinal diversity. Considering these findings, the observed positive correlation of *H. pylori* infection with increased diversity suggests a putative beneficial effect of *H. pylori* as it may strengthen the host’s resilience against microbiome perturbations or gastrointestinal infections. In more detail, a total of 13 taxa exhibited different abundance values between *H. pylori* infected cases and controls. We found Parasutterella to be decreased in case of *H. pylori* infection, a genus that has been reported to be increased in the ileal submucosa of Crohn’s disease patients.26 *H. pylori* infected individuals exhibited increased levels of the facultative pathogen *Haemophilus* and decreased levels of *Pseudoflavonifractor*. The latter has been reported to be involved in the production of short-chain fatty acids (SCFA) such as butyrate27. SCFA represent an important energy source for colonic epithelia28 and have been shown to modulate the immune response by...
regulating colonic regulatory T-cell function and alleviate experimental colitis in rodents. Thus, the decrease of the SCFA producer *Pseudoflavonifractor* may be disadvantageous for the human host as well.

In addition to the binary comparison of *H. pylori* infected individuals with controls we addressed putative differences within the group of *H. pylori* positive individuals and found that the *H. pylori* antigen load was associated with larger alterations in the fecal microbiota than age or sex. Of note, this association was not found for variations in the *H. pylori* antibody titer. The *H. pylori* antigen load was negatively associated with the four genera *Bacteroides*, *Barnesiella*, *Fussicatenibacter*, and *Alistipes*. Several of these taxa have previously been attributed health promoting features. The presence of *Barnesiella* was reported to be positively associated with higher eradication rates of antibiotic-resistant bacteria after fecal microbiota transplantation in mice and humans, whereas higher rates of chemotheraphy-related blood stream infections were observed in individuals with reduced *Barnesiella* counts. *Fussicatenibacter* is known to be involved in SCFA production and to produce lactic acid. It may therefore exert anti-inflammatory properties as shown for other lactic acid producing bacteria. Finally, *Alistipes* is a supposed producer of the SCFA butyrate, which can alleviate intestinal inflammation. Consequently, the observed alterations in individuals with a particularly high *H. pylori* antigen load may together cause adverse consequences for the human host. The putative health benefits mediated by the increased microbial diversity associated with *H. pylori* infection could be counteracted when *H. pylori* load is high.

Arumugam et al. first reported three different fecal microbiome clusters they designated as enterotypes. It was proposed that each enterotype is characterized by a marked occurrence of *Bacteroides* (enterotype-1), *Prevotella* (enterotype-2), or *Ruminococcus* (enterotype-3). These authors also reported that enterotype-1 generates energy primarily by fermentation of carbohydrates and proteins, since genes encoding for galactosidases, hexosaminidases and proteases were more common. In contrast, the dominating genus of enterotype-2, *Prevotella*, is proposed to be a mucin degrader. Furthermore, *Arumugam et al.* did not find a significant correlation of any of these enterotypes with BMI, sex, or age. In a later study, only two clusters dominated by *Bacteroides* or *Prevotella* were confirmed. *Ruminococcus* which did not form an individual cluster was subsequently fused with that of *Bacteroides*. Both remaining clusters were primarily separated by dietary effects. The *Bacteroides* dominated enterotype was associated with the intake of animal protein and saturated fats, whereas the *Prevotella* dominated enterotype was associated with the intake of carbohydrates and plant-based diet. In the present study, using a similar approach to that of *Arumugam et al.*, two clusters either dominated by *Bacteroides* or *Prevotella* could be identified. The *Prevotella* dominated enterotype 2 was more common in *H. pylori* infected individuals. As our dataset was matched with respect to diet, this observation could not merely be explained by differences in intake of animal proteins or plant based products. There is currently an ongoing debate about the general concept of enterotypes. It was proposed that the clustering results which revealed separated enterotypes were rather guided by the dominant abundance of *Bacteroides* enterotypes. It was further emphasized that *Prevotella* enterotype was associated with the intake of carbohydrates and a plant-based diet. In the present study, using a specific primers, *H. pylori* DNA even when using specific primers, *H. pylori* DNA even when using specific primers. As the gastric pathogen *H. pylori* may mostly not survive under the anaerobic conditions of the distal intestine its fecal DNA concentrations are likely very low compared to the majority of anaerobic bacteria. It may therefore escape detection in fecal samples when investigating with an untargeted approach such as 16S rRNA gene sequencing.

The strength of the present study includes the large study population, the high specificity of the *H. pylori* diagnosis based on the assessment of both serology and stool antigen testing, and the thorough phenotypic matching of factors known to influence intestinal microbiota in order to avoid bias. Its main limitations result from the design as an association study. It may be possible that the *H. pylori* stool antigen levels were influenced by the gut microbiota composition, rather than the *H. pylori* load determining the gut microbiota. However, given the high sensitivity and specificity of the *H. pylori* stool antigen test in comparison to histology, culture, rapid urease test, or urea breath test, it seems unlikely that the antigen levels were affected by gut microbiota to a great extent. A
poorer performance of the stool antigen test could be predicted if defined gut bacteria would specifically degrade
the target antigen.

It has been assumed that humans have been infected with *H. pylori* for at least ~100,000 years and distinctly
more than half of the population in many developing and emerging countries are currently infected. In light of
the sometimes life-threatening disorders that can arise in *H. pylori* infected individuals, this long lasting evolu-
tionary relationship may be explainable by counterbalancing beneficial effects of the infection. Among them are
the already mentioned protection against atopic diseases described in murine models and, according to our
data, possible suppression of other gastrointestinal pathogens by increasing microbial diversity. Therefore, *H.
pylori* eradication may trigger unwanted detrimental gut microbiota alterations, namely a reduced microbiota
diversity, in individuals with low-grade infection. This underlines the need for careful decision making regarding
H. pylori eradication in each individual. However, the complex relationship between *H. pylori* and its human
host is once again demonstrated by the probably adverse microbial alterations found in individuals with high *H.
pylori* antigen load. The large proportion of *H. pylori* infected individuals in the global population emphasizes the
importance of this finding. As the applied method of 16S rRNA gene sequencing only allows taxon identification,
future whole-genome sequencing approaches will have to define the functional potential of the enriched taxa in
H. pylori cases.

Methods

Study participants. The longitudinal population-based Study-of-Health-in-Pomerania (SHIP) aims to
determine the incidence and prevalence of common risk factors, subclinical disorders and clinical disease. It
comprises the two independent cohorts SHIP (recruitment 1997–2001) and SHIP-TREND (recruitment 2008–
2012) with re-evaluations in 5-year intervals. All participants provided written informed consent. The study was
approved by the ethics committee of the University Medicine Greifswald and carried out in accordance with its
regulations.

H. pylori stool antigen test and serology. The *H. pylori* stool antigen test was performed using the *H.
pylori* antigen ELISA Kit (Immundiagnostik AG, Bensheim, Germany). According to the manufacturer’s instruc-
tions, 100 mg stool were used per sample and all samples with an OD greater than or equal to 0.015 at 450 nm
were considered positive for *H. pylori*. The *H. pylori* serology status was evaluated by anti- *H. pylori* serum IgG
determination using the enzyme-linked immunoassay Pyloriset EIA-G III (Orion Diagnostica, Espoo, Finland).
A positive test result was considered for antibody titers equal or greater to 20 U/ml.

Definition of *H. pylori* infection. The initial dataset comprised 931 SHIP-TREND participants with avail-
able *H. pylori* stool antigen test as well as serology results. *H. pylori* infection was assumed when both, *H. pylori*
stool antigen test and *H. pylori* serology were positive. *H. pylori* negativity was assigned when both *H. pylori*
stool antigen test and serology were negative. According to these criteria, 228 individuals were positive (24.5%) and 500
negative (53.7%) for *H. pylori* infection. A total of 183 (19.7%) participants demonstrated exclusively a positive
H. pylori serology and 20 (2.1%) participants exclusively a positive stool antigen test. Of the total dataset of 931
individuals, we excluded 12 participants due to missing phenotype data and further 6 individuals because of an
intake of antibiotics at the time of sample collection. This resulted in 221 *H. pylori* infected individuals of whom
stool DNA for microbiota analysis by 16S rRNA sequencing was available for 212 individuals. As controls, 212
samples from individuals with both negative *H. pylori* stool antigen test as well as *H. pylori* serology were selected.
All control samples were matched with respect to age, sex, BMI, alcohol consumption, smoking, PPI usage, his-
tory of peptic ulcer disease, and dietary habits using the ‘R’ package ‘MatchIt’ (option ‘nearest’) [13]

16S rRNA gene sequencing. Sequencing was performed as described before. In brief, isolated DNA from
fecal samples was used for amplification of the V1-V2 region of bacterial 16S rRNA genes on a MiSeq platform
(Illumina, San Diego, USA). MiSeq Fast-Q files were created by CASAVA 1.8.2 (https://support.illumina.com/
sequencing/sequencing_software/casava). After quality trimming of sequences with Sickle (https://github.com/
najoshi/sickle), forward and reverse reads were merged and filtered using VSEARCH. Subsequently all reads
were quality filtered by FastX Toolkit (http://hannonlab.cshl.edu/fastx_toolkit). At this step, only reads with a
quality score of at least 30 (error probability 1 in 1,000) per base in 95% of sequenced nucleotides were included.
To reduce redundancy among sequences de-replication was performed. OTUs were clustered using VSEARCH
demanding a minimum sequence similarity of 97%. After chimera filtering by USEARCH each sample was
normalized to 10,000 reads by random selection. Four of the 424 samples contained slightly less than 10,000 reads
(9897, 9864, 9815, and 9408 reads). For assignment of taxonomy the SINTAX classifier was used. A confidence
of at least 80% for each taxonomic rank was ascertained. All taxa with a confidence below 80% were assigned to
an arbitrary taxon as unclassified family, order, class, phylum, or bacteria, respectively.

Data analysis. All statistical analyses were performed using ‘R’ Bar plots were created with GraphPad Prism
5 (GraphPad Software, San Diego, USA). For calculation of Shannon diversity index and Simpson diversity
number the R package ‘vegan’ was used based on OTU counts. Phylogenetic diversity was determined using
the package ‘picante’. Q-Q plots for normality assessment were generated using the ‘qplot’ function of the ‘stats’
package. The Bray-Curtis dissimilarity was calculated based on genus level data using the ‘vagenc’ function ve
and the significance assessed by 10,000 permutations. For regression of phenotypic variables on the two major principal coordinate axes the ‘vegan’ function envfit was used. The two-tailed Mann–Whitney
test was performed for assessment of significance in case of continuous data. A two-tailed t-test was applied for
significance assessment of the normally distributed ‘Shannon diversity index’. Fisher’s exact test was utilized for categorical data. Comparison of the relative abundance of all taxa that were present in at least ten percent of all samples at genus level between H. pylori cases and control individuals was performed using the two-tailed Mann-Whitney test. The resulting p-values were adjusted for multiple testing following the Benjamini-Hochberg procedure and called q-values. Association of the H. pylori antigen load with individual genera within the group of H. pylori infected individuals was examined as follows: All classified genera present in at least ten percent of all samples and with a mean abundance of greater than 0.1% were analyzed using a linear regression model (‘R’ function lm) based on log transformed abundance data. For this analysis zero-values were ignored, i.e. treated as missing values, to avoid biased linear regression estimates due to inflation of zeros. The putative confounder age and sex were included in the model and resulting p-values adjusted for multiple testing following the Benjamini-Hochberg procedure. P-values or q-values < 0.05 were considered significant. All p- and q- values were rounded to three significant digits.

Data availability
All microbiome and phenotype data were obtained from the Study-of-Health-in-Pomerania (SHIP/SHIP-TREND) data management unit and can be applied for online through a data access application form (https://www.fvcm.med.uni-greifswald.de/dd_service/data_use_intro.php).

Received: 27 August 2019; Accepted: 29 November 2019;
Published online: 27 December 2019

References

1. Doorkaars, E., Lagergren, J., Engstrand, L. & Brusselaers, N. Helicobacter pylori eradication treatment and the risk of gastric adenocarcinoma in a Western population. Gut 67, 2092–2096, https://doi.org/10.1136/gutjnl-2017-315363 (2018).
2. Wong, F., Rayner-Hartley, E. & Byrne, M. F. Extraintestinal manifestations of Helicobacter pylori: a concise review. Therapeutic advances in gastroenterology 9, 836–844, https://doi.org/10.17717/1756283X16663395 (2016).
3. Algood, H. M. S. & Coves, T. L. Helicobacter pylori persistence: an overview of interactions between H. pylori and host immune defenses. Clinical microbiology reviews 19, 597–613, https://doi.org/10.1128/CMR.00006-06 (2006).
4. Schulz, C. et al. The active bacterial assemblages of the upper GI tract in individuals with and without Helicobacter infection. Gut 67, 216–225, https://doi.org/10.1136/gutjnl-2016-312904 (2018).
5. Heimesaat, M. M. et al. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PloS one 5, e9836, https://doi.org/10.1371/journal.pone.009836 (2010).
6. Buhling, A., Radan, D., Muller, W. A. & Malfertheiner, P. Influence of anti-Helicobacter triple-therapy with metronidazole, omeprazole and clarithromycin on intestinal microflora. Alimentary pharmacology & therapeutics 15, 1445–1452, https://doi.org/10.1046/j.1365-2036.2001.01333.x (2001).
7. Volzke, H. et al. Cohort profile. The study of health in Pomerania. International journal of epidemiology 40, 294–307, https://doi.org/10.1093/ije/dys394 (2011).
8. Imhann, F. et al. Proton pump inhibitors affect the gut microbiome. Gut 65, 740–748, https://doi.org/10.1136/gutjnl-2015-310376 (2016).
9. Shanahan, F., van Sinderen, D., O’Toole, P. W. & Stanton, C. Feeding the microbiota. Transducer of nutrient signals for the host. Gut 66, 1709–1717, https://doi.org/10.1136/gutjnl-2017-313872 (2017).
10. Jackson, M. A. et al. Proton pump inhibitors alter the composition of the gut microbiota. Gut 65, 749–756, https://doi.org/10.1136/gutjnl-2015-310861 (2016).
11. Hopkins, M. J. Age and disease related changes in intestinal bacterial populations assessed by cell culture, 16S rRNA abundance, and community cellular fatty acid profiles. Gut 48, 198–205, https://doi.org/10.1136/gut.48.2.198 (2001).
12. Wang, I. et al. Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota. Nature genetics 48, 1396–1406, https://doi.org/10.1038/ng.3695 (2016).
13. Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174–180, https://doi.org/10.1038/nature09944 (2011).
14. Filipp, Cde et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proceedings of the National Academy of Sciences of the United States of America 107, 14691–14696, https://doi.org/10.1073/pnas.1005963107 (2010).
15. Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227, https://doi.org/10.1038/nature10953 (2012).
16. Schloen, F. et al. Richness of human gut microbiome correlates with metabolic markers. Nature 500, 541–546, https://doi.org/10.1038/10352 (2013).
17. Lui, L. et al. Changes in the Functional Potential of the Gut Microbiome Following Probiotic Supplementation during Helicobacter Pylori Treatment. Helicobacter 21, 493–503, https://doi.org/10.1111/hel.12306 (2016).
28. Topping, D. L. & Clifton, P. M. Short-chain fatty acids and human colonic function. Roles of resistant starch and nonstarch polysaccharides. *Physiological reviews* **81**, 1031–1064 (2001).

29. Smith, P. M. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. *Science (New York, N.Y.)* **341**, 569–573, https://doi.org/10.1126/science.1241165 (2013).

30. Ubeda, C. et al. Intestinal microbiota containing *Barnesiella* species cures vancomycin-resistant Enterococcus faecium colonization. *Infection and immunity* **81**, 965–973, https://doi.org/10.1128/IAI.00197-12 (2013).

31. Bilinski, J. et al. Fecal Microbiota Transplantation in Patients With Blood Disorders Inhibits Gut Colonization With Antibiotic-Resistant Bacteria. Results of a Prospective, Single-Center Study. *Clinical infectious diseases: an official publication of the Infectious Diseases Society of America* **65**, 364–370, https://doi.org/10.1093/cid/czw277 (2015).

32. Montassier, E. et al. Pretreatment gut microbiota predicts chemotherapy-related bloodstream infection. *Genome medicine* **8**, 49, https://doi.org/10.1186/s13073-016-0391-4 (2016).

33. Takata, T., Kurakawa, T., Tsujii, H. & Nomoto, K. Fusutienbacter saccharivorans gen. nov., sp. nov., isolated from human faeces. *International journal of systematic and evolutionary microbiology* **63**, 3691–3696, https://doi.org/10.1099/ijs.0.054823-0 (2013).

34. Menard, S. Lactic acid bacteria secrete metabolites retaining anti-inflammatory properties after intestinal transport. *Gut* **53**, 821–828, https://doi.org/10.1136/gut.2003.026254 (2004).

35. Borton, M. A. et al. Chemical and pathogen-induced inflammation disrupt the murine intestinal microbiome. *Microbiome* **5**, 47, https://doi.org/10.1186/s40168-017-0264-8 (2017).

36. Wright, D. P., Roseandel, D. I. & Robertson, A. M. Prevotella enzymes involved in mucin oligosaccharide degradation and evidence for a small operon of genes expressed during growth on mucin. *FEMS microbiology letters* **190**, 73–79 (2000).

37. Wu, G. D. et al. Linking long-term dietary patterns with gut microbiota enterotypes. *Science (New York, N.Y.)* **334**, 105–108, https://doi.org/10.1126/science.1208344 (2011).

38. Gorytovskaja, A., Holmes, S. P. & Huse, S. M. Interpreting Prevotella and Bacteroides as biomarkers of diet and diet. *Microbiome* **4**, 15, https://doi.org/10.1186/s40168-016-0160-7 (2016).

39. Jeffery, I. B., Claesson, M. J., O’Toole, P. W. & Shanahan, F. Categorization of the gut microbiota. Enterotypes or gradients? *Nat Rev Micro* **10**, 391–392, https://doi.org/10.1038/nrmmicro2839 (2012).

40. Knights, D. et al. Rethinking “enterotypes”. *Cell host & microbe* **16**, 433–437, https://doi.org/10.1016/j.chom.2014.09.013 (2014).

41. Kusters, J. G., van Vliet, A. H. M. & Kuipers, E. J. Pathogenesis of Helicobacter pylori infection. *Clinical microbiology reviews* **19**, 449–490, https://doi.org/10.1128/CMR.00054-06 (2006).

42. Oertli, M. et al. DC-derived IL-18 drives Treg differentiation, murine Helicobacter pylori-specific immune tolerance, and asthma protection. *The Journal of clinical investigation* **122**, 1082–1096, https://doi.org/10.1172/JCI61029 (2012).

43. Arnold, I. C. et al. Helicobacter pylori infection prevents allergic asthma in mouse models through the induction of regulatory T cells. *The Journal of clinical investigation* **121**, 3088–3093, https://doi.org/10.1172/JCI45004 (2011).

44. Kabir, S. Detection of Helicobacter pylori in faeces by culture, PCR and enzyme immunoassay. *Journal of medical microbiology* **50**, 1012–1029, https://doi.org/10.1099/0022-1317-50-12-1021 (2001).

45. van Zweit, A. A., Thijs, J. C., Kooistra-Smid, A. M., Schirm, J. & Snijder, J. A. Use of PCR with feces for detection of Helicobacter pylori infections. *Journal of clinical microbiology* **32**, 1346–1348 (1994).

46. Gishert, J., La Morena, F. & Abraira, V. Accuracy of monoclonal stool antigen test for the diagnosis of *H. pylori* infection. A systematic review and meta-analysis. *The American journal of gastroenterology* **101**, 1921–1930, https://doi.org/10.1111/j.1572-0241.2006.00668.x (2006).

47. Moodley, Y. et al. Age of the association between Helicobacter pylori and man. *PLoS pathogens* **8**, e1002693, https://doi.org/10.1371/journal.ppat.1002693 (2012).

48. Mayerle, J. et al. Identification of genetic loci associated with Helicobacter pylori serologic status. *JAMA* **309**, 1912–1920, https://doi.org/10.1001/jama.2013.4350 (2015).

49. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria., https://www.R-project.org/ (2017).

50. Ho, D. E., Izmai, K., King, G. & Stuart, E. A. Matchit. Nonparametric Preprocessing for Parametric Causal Inference. *J. Statist. Soft.* **42**, 1–25 (2011).

51. Frost, F. et al. Impaired Exocrine Pancreatic Function Associates With Changes in Intestinal Microbiota Composition and Diversity. *Gastroenterology* **156**, 1010–1015, https://doi.org/10.1053/j.gastro.2018.10.047 (2019).

52. Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. *PeerJ* **4**, e2584, https://doi.org/10.7717/peerj.2584 (2016).

53. Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. *Bioinformatics (Oxford, England)* **27**, 2194–2200, https://doi.org/10.1093/bioinformatics/btr481 (2011).

54. Edgar, R. SINTAX. A simple non-Bayesian taxonomy classifier for 16S and ITS sequences (2016).

55. Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.4-2, https://CRAN.R-project.org/package=vegan (2017).

56. Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. *Bioinformatics (Oxford, England)* **26**, 1463–1464, https://doi.org/10.1093/bioinformatics/btq766 (2010).

Acknowledgements
We thank Anja Wiechert, Jana Hoffmann, Kathrin Hollmann, Kathrin Rosa, Susanne Wiche, Doris Jordan, Stefan Bollmann, Ilona Urbach, Tonio Hauptmann, and Ines Spitzer for excellent technical assistance. This work was supported by a scholarship from the Gerhard Domagk program of the University Medicine Greifswald. Further support was received from the PePPP-project (ESF-14-BM-A55_0045/16), and the RESPONSE-project (BMBF grant number 03ZZ0921E). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 777111. SHIP is part of the Research Network Community Medicine of the University Medicine Greifswald, which is supported by the German Federal State of Mecklenburg-West Pomerania. We acknowledge support for the Article Processing Charge from the DFG (German Research Foundation) and the Open Access Publication Fund of the University of Greifswald.

Author contributions
Planning and concept of study: M.M.L., H.V., J.M., U.V. and A.F. Acquisition of data: F.F., T.K., M.R., C.B., F.U.W., K.Z., H.V. Statistical analysis: F.F., T.K., M.R. Data interpretation and manuscript revision: F.F., T.K., G.H., M.M.L., J.M., H.V., U.V., M.N., A.F., K.Z., C.S., R.B., M.R., C.B., F.U.W. Writing committee: F.F., G.H., M.M.L.

Competing interests
The authors declare no competing interests.
