Biswas, Indranil; Mj, Mahan

H₁-semistability for projective groups. (English) Zbl 1378.14020
Math. Proc. Camb. Philos. Soc. 162, No. 1, 89-100 (2017).

Summary: We initiate the study of the asymptotic topology of groups that can be realised as fundamental groups of smooth complex projective varieties with holomorphically convex universal covers (these are called here as holomorphically convex groups). We prove the H₁-semistability conjecture of Geoghegan for holomorphically convex groups. In view of a theorem of Eyssidieux et al. [Ann. Math. (2) 176, No. 3, 1545–1581 (2012; Zbl 1273.32015)], this implies that linear projective groups satisfy the H₁-semistability conjecture.

MSC:

14F35 Homotopy theory and fundamental groups in algebraic geometry
32E05 Holomorphically convex complex spaces, reduction theory
32Q30 Uniformization of complex manifolds
55T10 Serre spectral sequences

Full Text: DOI arXiv

References:
[1] Andreotti, A. and Narasimhan, R.A topological property of Runge pairs. Ann. of Math.76 (1962), 499-509. doi:10.2307/1970370 · Zbl 0178.42703
[2] Bieri, R. and Eckmann, B.Groups with homological duality generalizing Poincaré duality. Invent. Math.20 (1973), 103-124. doi:10.1007/BF01404605 · Zbl 0274.20066
[3] Biswas, I., Mj, M. and Pancholi, D.Homotopical height. Internat. J. Math.25, no. 13, 1450123 (2014), (43 pages). doi:10.1142/S0129167X14501237 · Zbl 1308.32024
[4] Brown, K. S.Cohomology of groups. Graduate Texts in Mathematics (Springer-Verlag, 1982). doi:10.1007/978-1-4684-9327-6 · Zbl 0584.20036
[5] Dyer, M. N., On the second homotopy module of two-dimensional CW complexes, Proc. Amer. Math. Soc., 55, 400-404, (1976) · Zbl 0323.55002 · doi:10.1090/S0002-9939-1976-0410739-6
[6] Eyssidieux, P., Katzarkov, L., Pantev, T. and Ramachandran, M.Linear Shafarevich conjecture. Ann. of Math.176 (2012), 1545-1581. doi:10.4007/annals.2012.176.3.4 · Zbl 1273.32015
[7] Eyssidieux, P., Sur la convexité holomorphe des revêtements linéaires réductifs d’une variété projective algébrique complexe, Invent. Math., 156, 503-564, (2004) · Zbl 1064.32007 · doi:10.1007/s00222-003-0345-0
[8] Farrell, F. T., The second cohomology group of G with \textit{Hn}(\textit{G}, \textit{G}) coefficients, Topology, 13, 313-326, (1974) · Zbl 0322.55007 · doi:10.1016/0040-9383(74)90023-8
[9] Geoghegan, R. Topological Methods in Group Theory. Graduate Texts in Mathematics 243 (Springer, 2008). doi:10.1007/978-0-387-74614-2 · Zbl 1141.57001
[10] Geoghegan, R. and Mihalik, M. L.Free abelian cohomology of groups and ends of universal covers. J. Pure Appl. Alg.36 (1985), 233-137. doi:10.1016/0022-4049(85)90065-9 · Zbl 0577.20024
[11] Geoghegan, R. and Mihalik, M. L.A note on the vanishing of \textit{Hn}(\textit{G}) and \textit{Hn}(\textit{G}/\textit{G}). J. Pure Appl. Alg.39 (1986), 301-304. doi:10.1016/0022-4049(86)90149-0 · Zbl 0599.20083
[12] Goresky, M. and Macpherson, R.Stratified Morse theory. Ergebnisse der Mathematik und ihrer Grenzgebiete 14 (Springer-Verlag, Berlin, 1988). doi:10.1007/978-3-642-71714-7
[13] Guillatt, C. R. Ends, shapes, and boundaries in manifold topology and geometric group theory. To appear in Springer Lecture Notes in Math. volume Topology and Geometric Group Theory (Proceedings of the OSU special year 2010-2011); arXiv:1210.6741
[14] Gujjar, R. V., Two remarks on the topology of projective surfaces, Math. Ann., 328, 701-706, (2004) · Zbl 1056.14026 · doi:10.1007/s00208-003-0505-y
[15] Hu, S. T.Homotopy theory. Pure and Appl. Math., vol. 8 (Academic Press, New York and London, 1959). · Zbl 0088.38803
[16] Klingler, B. Kähler groups and duality. Preprint, arXiv:math.LO 1005.2024
[17] Katzarkov, L. and Ramachandran, M.On the universal coverings of algebraic surfaces. Ann. Sci. École Norm. Sup.31 (1998), 525-535. · Zbl 0936.140114
[18] Mihalik, M. L., Semistability at the end of a group extension, Trans. Amer. Math. Soc., 277, 307-321, (1983) · Zbl 0518.57002
[19] Mihalik, M. L., Semistability at \(\mathbb{Z} \), \(\mathbb{Z} \)-ended groups and group cohomology, Trans. Amer. Math. Soc., 303, 479-485, (1987) - Zbl 0641.57001

[20] Mihalik, M. L., Semistability of Artin and Coxeter groups, J. Pure Appl. Alg., 111, 205-211, (1996) - Zbl 0942.20021 - doi:10.1016/0022-4049(95)00117-4

[21] Mihalik, M. L. and Tschantz, S. T., One relator groups are semistable at infinity. Topology 31 (1992), 801-804. doi:10.1016/0040-9383(92)90019-F - Zbl 0789.57003

[22] Mihalik, M. L. and Tschantz, S. T., Semistability of amalgamated products and HNN-extensions. Mem. Amer. Math. Soc. 98 (1992), 473.1110521 - Zbl 0792.20027

[23] Narasimhan, R., On the homology groups of Stein spaces, Invent. Math., 2, 377-385, (1967) - Zbl 0148.32202 - doi:10.1007/BF01428900

[24] Remmert, R., Sur les espaces analytiques holomorphiquement séparables et holomorphiquement convexes, Com. Ren. Acad. Sci. Paris, 243, 118-121, (1956) - Zbl 0067.30401

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.