Case Report

Promoting Physical Activity via Telehealth in People With Parkinson Disease: The Path Forward After the COVID-19 Pandemic?

L. Quinn, C. Macpherson, K. Long, H. Shah

Objective. There is mounting evidence in support of exercise and physical activity as a first-line approach to managing symptoms and potentially altering disease progression in people with Parkinson disease (PD). For many patients, a critical gap is the need for expert guidance to overcome barriers, set realistic goals, and provide personalized advice to optimize exercise uptake and adherence. The purpose of this case report is to describe a physical activity coaching program (Engage-PD) for individuals newly diagnosed with PD and to highlight rapid modifications made to this program in response to the COVID-19 pandemic.

Methods (Case Description). Engage-PD is a single cohort implementation study of a coaching intervention grounded in self-determination theory being conducted at Columbia University Parkinson’s Foundation Center of Excellence in New York City, NY (USA), the early epicenter of the COVID-19 pandemic in the United States. The project was uniquely positioned to be adapted to telehealth delivery and to address an immediate need for support and guidance in the home environment, including people with early-mid-stage PD. Participants completed baseline and follow-up (3 months) assessments and participated in up to 4 coaching sessions, all delivered via a telehealth platform. The intervention incorporated 1:1 coaching, goal-setting, physical activity monitoring, and use of a disease-specific workbook to promote and support safe exercise uptake.

Results. While the program is ongoing, 52 referrals were received and 27 individuals with PD enrolled in the first 2 months of the pandemic for a recruitment rate of 52%. Although direct comparisons with pre-coronavirus recruitment are difficult due to the recency of the Engage-PD implementation study, this recruitment rate was larger than expected, which may have been due to several factors (eg, most patients had limited, if any, access to in-person programs and therapy services during this time, so the Engage program filled an immediate need to provide exercise and activity guidance). There was a wide range of scores for both baseline physical activity and self-efficacy measures.

Conclusion. Remotely delivered interventions may serve as a sustainable platform for physical activity coaching programs for people with PD as well as other neurodegenerative diseases.

Impact. With the uncertainty brought about by the current pandemic, this case report highlights the opportunity to shift the current model of care for individuals with neurodegenerative diseases such as PD.
The benefits of exercise for people with Parkinson disease (PD) are well known, with a wealth of community-based interventions offered for the over 1 million individuals living with PD in the United States. Community-based programs provide people with PD invaluable access to low-cost programs and are an essential complementary treatment to individualized physical therapy that may be limited by geographical constraints, service restrictions, or insurance stipulations. Importantly, physical therapists should play a role in facilitating exercise uptake in the community, and therapist-delivered coaching programs to promote people with PD to engage in exercise, particularly soon after diagnosis, are lacking. In particular, there is a need for interventions that facilitate enhanced self-efficacy for physical activity engagement while specifically addressing barriers and facilitators unique to each individual.

There is also growing evidence in support of the neuroprotective benefits of aerobic exercise in individuals with neurologic diseases and disorders. However, people with PD have specific barriers to exercise uptake, including disease-specific balance and gait impairments, apathy, and depression that may result in a greater likelihood of sedentary behavior. In addition to high levels of sedentary behavior, people with PD are frequently referred to rehabilitation services once the onset of disability occurs, wherein progressive mobility, activities of daily living, and cognitive declines can lead to a rapid deterioration in functional status, increased risk for falls, and subsequent rates of higher health care utilization. Early referral and implementation of exercise and coaching programs are needed so that individuals may capitalize on the benefits throughout the course of their disease.

The purpose of this paper is to describe a physical activity coaching program, Engage-PD, for individuals newly diagnosed with PD and to highlight rapid modifications made to this program in response to the coronavirus pandemic. While modifications to the Engage program were made to adapt to stay-at-home guidelines, we discuss the importance of remotely delivered interventions as a sustainable platform for future physical activity coaching programs for people with PD.

Physical Activity Coaching and the Engage-PD Program

Physical activity coaching programs have been developed over the past several decades to combat sedentary behavior and address barriers to exercise uptake. Programs such as the LIFE program for neurologic disorders in the United Kingdom and ParkFIT for PD in the Netherlands have used similar models of behavioral change interventions to facilitate physical activity uptake and adherence. Key components of such programs include disease-specific education, personalized coaching by trained professionals, and individualized goal-setting. It is important that such programs be implemented at the earliest stages of PD when identification of exercise habits and barriers can be addressed.

At the Columbia University Parkinson’s Foundation Center of Excellence, we developed a program to deliver physical activity coaching for those who are newly diagnosed and/or are in the earlier stages of PD using the Engage-PD program (Columbia University Irving Medical Center Institutional Review Board no. AAAS4709). Engage-PD is a single-cohort implementation study of a coaching intervention originally designed for persons with Huntington’s disease, which has been adapted for individuals with PD. This program provides individuals with the tools needed for secondary prevention of physical activity decline throughout their disease course, with particular emphasis on individuals newly diagnosed and in the early disease stages. The Figure illustrates the Engage-PD logic model, including inputs (coaching sessions, disease-specific workbook and educational components, and physical activity monitoring) and outputs (assessments and impact).

Prior to the pandemic restrictions, neurologists referred study candidates during clinic hours at Columbia University Irving Medical Center, so they could readily participate in the Engage-PD program on the same day as neurology appointments within our multi-disciplinary center. Participants were screened for readiness to engage in exercise using the Physical Activity Readiness Questionnaire. Baseline measures included the Timed Up and Go, 10-minute walk test, 30-second chair stand test, Brunel Lifestyle Physical Activity Questionnaire, and the Norman Self-Efficacy Scale. Participants received 1 in-person and 1 remotely delivered coaching session followed by a follow-up remote assessment at 3 months.

The Engage-PD intervention is grounded in self-determination theory, promoting individual autonomy, competence, and relatedness. Engage-PD is designed to address barriers to exercise engagement and support adherence to individualized exercise plans that are both purposeful and meaningful to patients. The program specifically targets those individuals who are not currently engaged in sufficiently intense or frequent levels of exercise, empowering them early in the disease process with adequate knowledge and self-management techniques through a coaching program. By using a behavior-change model, Engage-PD promotes self-efficacy and regulation of motivation for exercise, thereby facilitating long-term sustainability in each participant. A disease-specific workbook, which was developed after piloting in a previous study, includes evidence-based exercise recommendations, including frequency, intensity, and duration for aerobic, strengthening/resistance, flexibility, and neuromotor exercises. This includes...
Promoting Physical Activity in PD After COVID-19

Figure 1.
Logic model framework for the Engage-PD Physical Activity Coaching Program.

Input: Intervention & Resources	**Output: Intervention Processes**	**Output: Primary & Secondary Assessments**
Therapist Coaching: Workbook, 1-on-1 Telehealth Interaction	• Implementation of coaching sessions grounded in Self-Determination Theory and incorporating motivational interviewing strategies	
• Stage of Change Checklist provides a focus of attention for each stage of behavioral physical activity change		
• Use of Activity Pyramid to identify activity levels and make disease-specific recommendations	**Construct**	**Measure**
		Acceptability & Fidelity
		Acceptability
Rates of Adherence and Retention		
Post-Intervention Questionnaire		
		Physical Activity
		Disease Specific/Impairments
		Balance Function
30 sec chair stand test (30CST)		
		Gait speed
		Motivation & Self Efficacy
		Satisfaction/Performance with Exercise
	Engage-PD Workbook	• Overcoming Challenges or Barriers to Exercise
• Individualized Goals and Targets		
• Safety and Monitoring during Exercise		
• Recording Physical Activity and progress		
• Development of a Physical Activity Plan of Action		
• Useful apps and resources for those with PD		
	Physical Activity Monitoring	• Supports Self-Efficacy
• Activity Monitors/Smart Phone Applications: Track and provide feedback on activity levels, intensities, heart rate, reminders, pace and distance, and records route.
• Daily Records/Diaries: Maintain engagement and accountability | | |

On physical activity monitoring to support autonomy, which participants can do using wearable activity monitors, smartphones, or exercise diaries.

Adaptation for Telehealth: Barriers and Opportunities

In response to stay-at-home guidelines, the Engage-PD program rapidly transitioned to a telehealth platform within 2 weeks of state enforcement of restrictions on non-essential medical visits in New York. With regard to inclusion criteria, we modified our program to include individuals with mid-stage PD (Hoehn and Yahr stage III in addition to previously targeted stages I–II). This change was made in response to the increased demand for...
exercise and activity guidance by our patients, many of whom were struggling to restructure their exercise routine to be conducted completely at home. All sessions were moved to a telehealth platform using Zoom Video Communications, Inc. (San Jose, CA, USA). The structure of assessments was also modified to exclude the Timed Up and Go, 30-second chair stand test, and 10-minute walk test. While these assessments could likely be completed by participants with instructions via Zoom, we were concerned about participant safety and reliability of the data. We weighed the risk/benefit ratio of this in our decision to eliminate these measures for the short term.

All other assessments were adapted for video interview.

The structure of the intervention sessions did not markedly change when implemented via telehealth; however, we made some adaptations to address the current stay-at-home environment. As a coaching intervention, the Engage-PD program consists mostly of 1:1 interactive discussion with participants, which easily translated to the telehealth environment. The original Engage program involved 1 follow-up session via phone/videoconference. Our team believed additional sessions would be useful as participants were facing more difficult circumstances and could benefit from having the option of multiple follow-up sessions; thus, we increased the number of follow-up sessions to 4. With regard to educational materials, participants received a digital version of the Engage workbook via email rather than a printed version. Therapists used the Share Screen option on Zoom to review aspects of the workbook with participants during sessions. With regard to exercise recommendations, stay-at-home guidelines required coaches and participants to jointly rethink their exercise routine and resources available to work within their environmental constraints.

From March 25 to May 27, we received 52 referrals to the program and enrolled 27 individuals for a recruitment rate of 52%. While direct comparisons with pre-coronavirus recruitment are difficult due to the recency of the Engage implementation study, this recruitment rate was larger than expected, which may have been due to several factors. For the clinic-based Engage program, time restrictions and parking/transportation considerations limited the ability of some participants to enroll in the study on-site. Furthermore, many patients were fatigued after their neurologist appointments and were not willing or able to extend their visit by another hour to participate in the program. The successful recruitment for the telehealth Engage program likely reflects the unique opportunity provided by stay-at-home guidelines. Most patients had limited, if any, access to in-person programs and therapy services during this time, and the Engage program filled an immediate need to provide exercise and activity guidance. The Engage program specifically aims to facilitate exercise uptake in the home or community environment, which perfectly aligned with stay-at-home guidelines.

Mean (SD) age for the 27 enrolled participants was 66.5 (8.6) years; 22 participants identified as white, 1 Asian, 1 Hispanic, 1 other, and 2 declined. For education level, we had incomplete data for 8 participants, 1 had some college, 2 had a college education, and 7 had advanced degrees. There was a wide range of scores for both baseline physical activity and self-efficacy measures. Mean (SD) (range) Brunnel score was 3.7 (1.0) (1.0–4.7) for planned and 2.4 (0.7) (1.3–3.3) for unplanned; Norman self-efficacy was 56.8 (17.0); range 19–84). All participants who enrolled in the program had access to technology (smartphone, tablet, or computer) to use the Zoom platform. Four participants experienced technology difficulties that took longer than 15 minutes to address, but all participants were able to connect within the first session. Twelve participants had a carer or partner present during all or most of the sessions to date either to help with technology or to observe the sessions.

Telehealth in Parkinson Disease

Although telehealth programs have been used in rehabilitation for many years, there has been inconsistent uptake of such programs across the health care continuum. Since the onset of the coronavirus pandemic, such programs have surged to the forefront of health care delivery, with considerable state and federal efforts to change reimbursement policies. Furthermore, the American Physical Therapy Association and other organizations have provided important guidance and structure for remote delivery of physical therapy services as well as reimbursement issues to ensure appropriate infrastructure is in place to support ongoing service delivery. Essential to this conversation is the structure of these programs, including physical activity coaching. Physical activity coaching should be a standard component of physical therapy intervention and is highly amenable to remote delivery.

Most clinical studies that have investigated engagement of exercise in people with PD have been conducted in ambulatory settings, under tightly controlled conditions, and with use of direct supervision of trained health care personnel. These studies and the subsequent evolution of applied health programs invoke many logistical barriers (cost, transportation, accessibility), which ultimately affect the reach, efficacy, and feasibility of targeted practice. With advances in both technology and health care, telehealth platforms are becoming more prevalent as an effective tool to deliver timely health care service. Compared with face-to-face delivery, interventions delivered via telehealth may increase accessibility of self-management interventions by addressing major barriers that may negatively affect patients’ participation.
Promoting Physical Activity in PD After COVID-19

including cost, mobility restrictions, or service availability in remote rural areas.

Telehealth interventions have produced positive clinical outcomes in a variety of chronic conditions. The implementation of telehealth to service people with PD is certainly evolving, although it remains in its infancy. A case report detailing a telehealth program for an individual with PD showed positive clinical health-related outcomes, including functional mobility. Furthermore, an investigation into a peer coaching program that included both in-person and telehealth platforms was deemed feasible, safe, and acceptable for use in people with PD. Most recently, Ellis and colleagues provided preliminary evidence in support of the feasibility and efficacy of a telehealth intervention in people with PD. In this study, people with PD who underwent a combined behavioral change and individualized exercise intervention via a mobile device showed improved rates of physical activity over the course of a year compared with those receiving a similar program without the use of technology. Patient preference for telehealth was also demonstrated in a feasibility study of the current Engage program in people with PD (Hoehn and Yahr stages I–II), where 85% (11/13) of participants opted to do at least 1 session remotely via videoconference and ultimately produced 100% adherence. These studies have made headway in bridging the gap of providing innovative, patient-centered interventions to address sedentary behavior and promote physical activity uptake in people with PD.

To sustain exercise and physical activity for long-term benefits, it is imperative that individuals are empowered through education and the development of self-management skills. To be successful, many individuals require support to develop necessary competencies such as problem-solving, decision-making, resource utilization, goal setting, and action planning. These skills, along with the support of a physical or occupational therapist, help to foster the formation of health-promoting habits and routines in their daily lives. Evidence suggests that self-management programs may yield better health outcomes and longer uptake of exercise and physical activity in people with chronic diseases and neurological diseases compared with non-self-management programs. Importantly, such self-management programs, which are largely focused on 1:1 discussions, may be highly amenable to telehealth delivery.

Looking Forward

With change comes opportunity and the vision, as well as clarity of thought, that can emerge in times of uncertainty. The coronavirus pandemic has forced a dramatic shift in the management of people with PD as well as health-related behaviors of the individual. With many hospitals and outpatient facilities providing limited in-person treatments, and social distancing or stay-at-home orders in place throughout much of the country, people with PD have had reduced access or ability to engage in physical activity and exercise. As social distancing restrictions begin to ease, people with PD may choose to stay at home rather than risk exposing themselves to infection. This may be the opportune time to begin more widespread implementation of telehealth programs for physical activity coaching in people with PD.

While delivery of the Engage program via telehealth is relatively new, analysis of the feasibility of implementation is essential to inform future modifications. While recruitment rates were initially high, we had low racial and educational diversity in our early referrals. A critical gap in provision of services for people with PD is toward the Hispanic/Latinx and African American/Black communities and to develop targeted strategies for recruitment and inclusion of these groups in telehealth programs. Individuals in these communities may have limited access to disease-specific exercise and physical activity advice, and Hispanic and African American people with PD are less likely to access rehabilitation services compared with Caucasians. For many people with PD, there is a need for expert guidance to overcome barriers, set realistic goals, and provide personalized advice adapted to their culture and in their native language to optimize exercise uptake and adherence. Importantly, a multi-faceted approach is needed to address individualized needs and consider linguistic and cultural differences in diverse communities found in New York City. Moving forward, we plan to implement specific efforts for a more diverse representative sample and to consider cultural adaptations to the program. Furthermore, there may be barriers to telehealth services more generally, including internet access and digital competencies, that would require systematic efforts to address.

With the uncertainty brought about by the current pandemic, it is advantageous to alter the current model of care. Emphasis on early-stage management, self-management, and coaching interventions that can be readily implemented via telehealth is essential. Changing models of care, whereby individuals with neurodegenerative diseases such as PD can be monitored periodically over an extended period, can potentially improve cost-effectiveness of rehabilitation services as well as outcomes for disease management. Such models would not replace short intensive episodes of care as needed but would rather provide a more comprehensive model that emphasizes a patient-centered approach to managing a complex, lifelong disease such as PD.

Author Contributions and Acknowledgments

Concept/idea/research design: L. Quinn, C. Macpherson, K. Long Writing: L. Quinn, C. Macpherson, K. Long, H. Shah
Data collection: C. Macpherson, K. Long
Data analysis: K. Long
Project management: L. Quinn, C. Macpherson, K. Long
Fund procurement: L. Quinn, K. Long
Providing participants: K. Long, H. Shah
Clerical/secretarial support: K. Long
Consultation (including review of manuscript before submitting): K. Long, H. Shah

The authors acknowledge the support of Oren Levy, MD; Elizabeth Delaney, LMSW; and Miriam King, BS, in development and implementation of the Engage-PD program at Columbia University Irving Medical Center. The authors also acknowledge Monica Busse, PhD, Cardiff University, UK, for development work on the Engage protocol, and Julie Fineman, PT, EdD, for helpful comments on this manuscript. The authors thank many participants in the Engage-PD program.

Funding
This program was funded in part by a community grant from the Parkinson’s Foundation. Support for this program and earlier pilot studies was provided by Teachers College, Columbia University. Support for development of the Engage-HD intervention was funded by Health and Care Research Wales. C. Macpherson’s role as a clinical evaluator was supported by the Parkinson’s Disease Foundation. The funders played no role in the design, conduct, and reporting of this case report.

Ethics Approval
Engage-PD was approved by Columbia University Medical Center’s Institutional Review Board (no. A4A54709).

Disclosures
The authors completed the ICMJE Form for Disclosure of Potential Conflicts of Interest and reported no conflicts of interest. Dr Quinn is a member of PTJ’s Editorial Board.

DOI: 10.1093/ptj/pzaa128

References
1 Marras C, Beck JC, Bower JH et al. Prevalence of Parkinson’s disease across North America. NPJ Park Dis. 2018;4:21.
2 Ellis T, Motl RW. Physical activity behavior change in persons with neurologic disorders: overview and examples from Parkinson disease and multiple sclerosis. J Neurol Phys Ther. 2013;37:85–90.
3 van Nimwegen M, Speelman AD, Overeem S, et al. Evaluation of implementation of the ParkFit program: a multifaceted intervention aimed to promote physical activity in patients with Parkinson’s disease. Physiotherapy. 2014;100:134–141.
4 Rafferty MR, MacDonald J, Byskosh A, et al. Using implementation frameworks to provide proactive physical therapy for people with Parkinson disease: case report. Phys Ther. 2019;99:1644–1655.
5 Quinn L, Trubey R, Gobat N, et al. Development and delivery of a physical activity intervention for people with Huntington disease: facilitating translation to clinical practice. J Neurol Phys Ther. 2016;40:1–10.
6 Long KM, Pre-active PD: a therapist delivered physical activity behavior change program for people with early stage Parkinson disease. ProQuest Publ. 2020;27739595:1–225.
7 Thomas S, Reading J, Shephard RJ. Revision of the physical activity readiness questionnaire (PAR-Q). Can J Sport Sci. 1992;17:338–345.
8 Vencato MM, Karageorghis CI, Nevill AM, Priest DL. Test–retest reliability of the Brunel lifestyle physical activity questionnaire. Psychol Sport Exerc. 2017;35:24–30.
9 Norman GJ, Vaughn AA, Roesch SC, Sallis JF, Calfas KJ, Patrick K. Development of decisional balance and self-efficacy measures for adolescent sedentary behaviors. Psychol Heal. 2004;19:561–575.
10 Teixeira PJ, Carraca EV, Markland D, Silva MN, Ryan RM. Exercise, physical activity, and self-determination theory: a systematic review. Int J Behav Nutr Phys Act. 2012;9:78.
11 Quinn L, Trubey R, Gobat N, et al. Development and delivery of a physical activity intervention for people with Huntington disease: facilitating translation to clinical practice. J Neurol Phys Ther. 2016;40:71–80.
12 Kim Y, Lai B, Mehta T, et al. Exercise training guidelines for multiple sclerosis, stroke, and Parkinson disease: rapid review and synthesis. Am J Phys Med Rehabil. 2019;98:613–621.
13 Gallo PM, Garber CE. Parkinson’s disease: a comprehensive approach to exercise. ACSM’s Health Fit J. 2011;15:8–17.
14 APTA. Telehealth in Practice. https://www.apta.org/your-practice/practice-models-and-settings/telehealth-practice. Accessed July 10, 2020.
15 Colón-Semenza C, Latham NK, Quintilliani LM, Ellis TD. Peer coaching through mHealth targeting physical activity in people with Parkinson disease: feasibility study. JMIR mHealth uHealth. 2018;6:e42.
Promoting Physical Activity in PD After COVID-19

26 Jette AM. Mobile technology: increasing the reach and scalability of physical therapist services in the digital age. Phys Ther. 2019;99:125–126.

27 Kruse CS, Krowski N, Rodriguez B, Tran L, Vela J, Brooks M. Telehealth and patient satisfaction: a systematic review and narrative analysis. BMJ Open. 2017;7:e016242.

28 Totten A, Womack D, Eden K, et al. Telehealth: mapping the evidence for patient outcomes from systematic reviews. AHRQ Comp Eff Tech Briefs. 2016; Report No. 16:EHC034-EF.

29 Chatto CA, York PT, Slade CP, Hasson SM. Use of a telehealth system to enhance a home exercise program for a person with Parkinson disease: a case report. J Neurol Phys Ther. 2018;42:22–29.

30 Ellis TD, Cavanaugh JT, DeAngelis T, et al. Comparative effectiveness of mHealth-supported exercise compared with exercise alone for people with Parkinson disease: randomized controlled pilot study. Phys Ther. 2019;99:203–216.

31 Dobkin BH. Behavioral self-management strategies for practice and exercise should be included in neurologic rehabilitation trials and care. Curr Opin Neurol. 2016;29:693–699.

32 van Weert E, Hockstra-Weebers JEHM, May AM, Korstjens I, Ros WJG, van der Schans CP. The development of an evidence-based physical self-management rehabilitation programme for cancer survivors. Patient Educ Couns. 2008;71:169–190.

33 Jones TM, Dear BF, Hush JM, Titov N, Dean CM. myMoves program: feasibility and acceptability study of a remotely delivered self-management program for increasing physical activity among adults with acquired brain injury living in the community. Phys Ther. 2016;96:1982–1993.

34 Van Der Eijk M, Nijhuis FAP, Faber MJ, Bloem BR. Moving from physician-centered care towards patient-centered care for Parkinson’s disease patients. Park Relat Disord. 2013;19:923–927.

35 Fullard ME, Thibault DP, Hill A, et al. Utilization of rehabilitation therapy services in Parkinson disease in the United States. Neurology. 2017;89:1162–1169.