ELEONOR ADEGA CASTRO JANER

RESISTÊNCIA DE RHIPICEPHALUS (BOOPHILUS) MICROPLUS (ACARI: IXODIDAE) A FIPRONIL: PADRONIZAÇÃO DE BIOENSAIOS IN VITRO, DETECÇÃO DE RESISTÊNCIA EM POPULAÇÕES DE CAMPO E AVALIAÇÃO SOBRE RESISTÊNCIA CRUZADA COM OUTRAS DROGAS

Tese apresentada ao Programa de Pós-Graduação em Biologia da Relação Patógeno-Hospedeiro do Instituto de Ciências Biomédicas da Universidade de São Paulo, para obtenção do Título de Doutor em Ciências.

São Paulo
2010
ELEONOR ADEGA CASTRO JANER

RESISTÊNCIA DE RHIPICEPHALUS (BOOPHILUS) MICROPLUS (ACARI: IXODIDAE) A FIPRONIL: PADRONIZAÇÃO DE BIOENSAIOS IN VITRO, DETECÇÃO DE RESISTÊNCIA EM POPULAÇÕES DE CAMPO E AVALIAÇÃO SOBRE RESISTÊNCIA CRUZADA COM OUTRAS DROGAS

Tese apresentada ao Programa de Pós-Graduação em Biologia da Relação Patógeno-Hospedeiro do Instituto de Ciências Biomédicas da Universidade de São Paulo, para obtenção do Título de Doutor em Ciências.

Área de Concentração: Biologia da Relação Patógeno-Hospedeiro

Orientadora: Profa. Dra. Teresinha Tizu Sato Schumaker

São Paulo
2010
Castro-Janer, Eleonor Adega.

Resistência de *Rhipicephalus (Boophilus) microplus* (*Acari: Ixodidae*) a Fipronil: padronização de bioensaios *in vitro*, detecção de resistência em populações de campo e avaliação sobre resistência cruzada com outras drogas / Eleonor Adega Castro Janer. -- São Paulo, 2010.

Orientador: Teresinha Tizu Sato Schumaker.

Tese (Doutorado) – Universidade de São Paulo. Instituto de Ciências Biomédicas. Departamento de Parasitologia. Área de concentração: Biologia da Relação Patógeno-Hospedeiro. Linha de pesquisa: Artrópodes de interesse médico-veterinário: diagnóstico e resistência à droga

Versão do título para o inglês: Resistance of *Rhipicephalus (Boophilus) microplus* (*Acari: Ixodidae*) to fipronil: standardization of *in vitro* bioassays, detection of resistance in field populations and evaluation of cross-resistance with other drugs.

Descritores: 1. Bovinos (Doenças) 2. Fipronil 3. *Boophilus microplus* (controle) 4. Carrapatos (resistência a inseticidas) 5. Diagnóstico 6. Bioensaios 1. Schumaker, Teresinha Tizu Sato 2. Universidade de São Paulo.Instituto de Ciências Biomédicas.Programa de Pós-Graduação em Biologia da Relação Patógeno-Hospedeiro. III. Título.

ICB/SBIB0153/2010
Candidato(a): Eleonor Adega Castro Janer.

Título da Tese: Resistência de *Rhipicephalus (Boophilus) microplus* (*Acari: Ixodidae*) a Fipronil: padronização de bioensaios *in vitro*, detecção de resistência em populações de campo e avaliação sobre resistência cruzada com outras drogas.

Orientador(a): Teresinha Tizu Sato Schumaker.

A Comissão Julgadora dos trabalhos de Defesa da Tese de Doutorado, em sessão pública realizada a/........./............., considerou

() Aprovado(a) () Reprovado(a)

Examinador(a): Assinatura: ...
Nome: ...
Instituição: ...

Presidente: Assinatura: ...
Nome: ...
Instituição: ...
CERTIFICADO

Certificamos que o protocolo registrado sob nº 044 nas fls. 15 do livro 2 para uso de animais em experimentação, sob a responsabilidade da Prof. Dra. Teresinha Tizu Sato Schumaker, Coordenadora da Linha de Pesquisa "Ectoparasitos de animais domésticos: resistência a antiparasitários e estudos genéticos" do qual participou(aram) o(s) aluno(s): Guilherme Marcondes Klafke, Gustavo Adolfo Sabatini, Rodrigo Gonzalez, Thais Albuquerque Themudo Lessa, está de acordo com os Princípios Éticos de Experimentação Animal adotado pelo Colégio Brasileiro de Experimentação Animal (COBEA) e foi aprovado pela COMISSÃO DE ÉTICA EM EXPERIMENTAÇÃO ANIMAL (CEEA) em 26.04.2005.

São Paulo, 27 de abril de 2005.

Profa. Dra. Marília C. Leite Seelaender
Coordenadora da CEEA

Prof. Dr. Francisco Carlos Pereira
Secretário da CEEA
DECLARAÇÃO

Em adendo ao Certificado 044/05/CEEA, registrado nas fis.15. digo 16 do livro 2, aprovo a inclusão da aluna: ELEONOR ADEGA CASTRO JANER ao protocolo intitulado: "Ectoparasitos de animais domésticos: resistência a antiparasitários e estudos genéticos", para uso da espécie animal utilizado e métodos semelhantes, mediante solicitação da Profa. Dra. Teresinha Tizu Sato Schumaker, responsável pela linha de Pesquisa.

São Paulo, 22. de fevereiro de 2006.

Profa. Dra. Marília C. L. Seelaender
Coordenadora da CEEA - ICB/USP
A minha mãe, quem com o seu exemplo encorajou-me a enfrentar os diferentes desafios da vida.
Aos meus sobrinhos que me renovam a cada dia.
AGRADECIMENTOS

À professora Dra. Terezinha Tizu Sato Schumaker pela sua amizade, guia constante, confiança e generosidade, dedicando-me seu valioso tempo em horas difíceis. Obrigada, também, pelo seu incentivo para incursionar em outras áreas do conhecimento.

À Universidade de São Paulo pela oportunidade de realizar o curso de pós-graduação

À Faculdade de Veterinária-UDELAR por me permitir a realização e conclusão deste trabalho e aos meus colegas do Departamento de Parasitologia por terem me apoiado para realizar este estudo.

Aos Drs. Laura Rifran, Patricia González, Carlos Niell e André Namindome pela importante colaboração nesta pesquisa.

Aos Drs. Andrés Gil e José Piaggio (FV-UDELAR) pelo apoio e disponibilidade para atender as minhas “urgências estatísticas”.

Ao Departamento de Parasitologia da DILAVE (MGAP-Uruguay), particularmente aos Drs. María Angélica Solari e Ulises Cuore, por terem fornecido continuamente a cepa Mozo, por terem me dado as condições para manutenção da população resistente de carrapato e por terem disponibilizado as instalações do laboratório para a realização dos bioensaios.

Aos colegas do Departamento de Parasitologia da DILAVE pelos almoços relaxados e ao Pilo pelo seu companheirismo.

À amiga Queca, pela eterna disposição em me auxiliar e orientar em todos os momentos.

Ao Dr. Armando Nari, pela amizade, apoio irrestrito e pelas discussões técnicas e filosóficas.

Ao Dr. Daniel Salada, pela amizade, pelo seu apoio e incentivo constante na procura de respostas aos novos questionamentos.

Aos colegas veterinários de Uruguai e de Brasil pela remissão dos carrapatos das fazendas.

À Dra. Márcia Cristina Mendes (Instituto Biológico de São Paulo) pelo fornecimento da cepa susceptível e pelo seu apoio para a realização deste trabalho.

Ao Dr. Guilherme Klafke, companheiro de jornada, pela sua amizade, apoio e incentivo na procura de novas abordagens de conhecimento.
Ao Dr. Gustavo Sabatini pela sua amizade e suas valiosas sugestões na hora de começar este estudo.

Aos colegas do Laboratório 41, Eliana, Flávia, Thais e aos colegas do “Lab” do lado, pelas conversas e discussões.

Aos professores, bolsistas e colegas do Departamento de Parasitologia do ICB pelo valioso intercâmbio de conhecimentos.

Aos amigos de Guararema que me mostraram outros caminhos para atingir mais conhecimento e paz.

Aos amigos da Biodança, com os quais aprendi a desfrutar da vida enquanto trabalhamos, pelas vivências, maratona e minotauros, ensinamentos que me acompanharam por sempre.

À Luciana e a “família Marcondes” pelas horas felizes, que fizeram a minha vida muito agradável e enriquecedora durante a minha permanência nesta cidade.

À FAPESP e CAPES (Brasil) pelo financiamento do projeto de pesquisa e a bolsa de estudos.

Ao Instituto Nacional de Investigación Agropecuaria (INIA-FPTA) e ao Ministerio de Educación y Cultura (Programa de Desarrollo Tecnológico) (MEC-PDT)(Uruguai), pelo financiamento do projeto de pesquisa e o complemento de bolsa.
RESUMO

Castro Janer EA. Resistência de *Rhipicephalus (Boophilus) microplus* (ACARI: IXODIDAE) a Fipronil: Padronização de bioensaios *in vitro*, detecção de resistência em populações de campo e avaliação sobre resistência cruzada com outras drogas. [tese (Doutorado em Ciências)]. São Paulo (Brasil): Instituto de Ciências Biomédicas da Universidade de São Paulo; 2010.

Rhipicephalus (Boophilus) microplus é uma das principais pragas que atacam os bovinos. As perdas causadas por este carrapato podem ser minimizadas pela utilização de acaricidas. O artrópode, entretanto, tem desenvolvido resistência à maioria deles, constituindo sério problema nos programas de controle. Para o sucesso nas estratégias de manejo é necessário usar testes práticos, econômicos, rápidos e confiáveis que possam detectar a presença de fenótipos resistentes nas populações alvo. O fipronil é um acaricida de uso relativamente recente nos bovinos, não se dispondo de testes *in vitro* padronizados para o diagnóstico da resistência do carrapato. O presente trabalho teve como objetivo a padronização de bioensaios *in vitro* para diagnóstico de resistência ao fipronil, visando sua aplicação na detecção da resistência em populações de campo (Brasil e Uruguai), em estudos sobre participação de enzimas detoxificadoras no mecanismo de resistência e sobre ocorrência de resistência cruzada com outras drogas (ivermectina, lindano). Foram realizados ensaios em triplicada para padronização dos Teste de Imersão de Adultas (TIA; n=26), Teste de Imersão de Larvas (TIL; n=71) e Teste de Pacote com Larvas (TPL; n=41), empregando-se as cepas susceptível (Mozo) e resistente a fipronil. No TIA foram analisadas quatro variáveis: mortalidade, peso dos ovos aos 7 e 14 dias, índice de fertilidade e índice de fecundidade e todas elas discriminaram as populações. Para os testes de larvas foram analisadas as curvas de mortalidade. O TIA e o TIL foram mais sensíveis que o TPL, com maiores fatores de resistência (FR). As concentrações discriminatórias (CD) (2xCL_{99,9}) para mortalidade nos ensaios usando TIA, TIL e TPL foram, respectivamente: 4,98; 7,64 e 2365,8 ppm com a cepa Mozo. Os FR da população resistente foram 202,4; 5,36 e 1,52. Os ensaios foram validados com populações de campo do Brasil (38) e Uruguai (28) oriundas, respectivamente, de propriedades de produção de leite e de gado de corte. O uso do TIL, permitiu os primeiros diagnósticos de resistência a fipronil *in vitro* (FR≥2) em populações de carrapatos bovinos do Brasil (19) e Uruguai (5), além de outras com resistência incipiente. No Uruguai, as populações resistentes estão
limitadas a uma região principalmente agrícola onde a utilização de endosulfan e fipronil nas culturas foi intensa. Carrapatos de propriedades brasileiras que nunca usaram fipronil nos animais, mas que o aplicavam no controle de cupins, foram resistentes (TIL). Embora as evidências sejam indiretas, infere-se que o controle de pragas agrícolas pode interferir no controle do carrapato. A CD presentemente determinada foi eficiente, já que em seu emprego, todas as populações resistentes testadas apresentaram sobreviventes. Foi estudada a resistência metabólica mediante uso de inibidores enzimáticos: butóxido de piperonila (BPO), Trifenilfosfato (TPP) e Dietilmaleato (DEM). Não foi detectado importante sinergismo da droga com BPO e TPP. Possivelmente o mecanismo de resistência seja por insensibilidade do sítio de ação, determinada por uma mutação do tipo *Rdl*, já que das 17 populações resistentes a fipronil, 14 foram resistentes a lindano. Não foi observada resistência cruzada com IVM (n=29). A resistência a IVM no Uruguai ainda é incipiente.

Palavras-chave: *Rhipicephalus (Boophilus) microplus*. Resistência a carrapaticidas. Diagnóstico. Bioensaios. Mecanismos de resistência. Fipronil. Lindano. Ivermectina
CASTRO JENER EA. Resistance of *Rhipicephalus (Boophilus) microplus* (ACARI: IXODIDAE) to fipronil: standardization of *in vitro* bioassays, detection of resistance in field populations and evaluation of cross-resistance with other drugs. [Ph.D. thesis (Philosofic Doctor in Sciences)]. São Paulo (Brasil): Instituto de Ciências Biomédicas da Universidade de São Paulo; 2010.

Rhipicephalus (Boophilus) microplus is one of the main pests of cattle. The losses caused by this tick can be minimized by the use of acaricides. The arthropod, however, has developed resistance to most of them, constituting serious problem in control programs. For the success of management strategies is necessary to use practical tests, economical, fast and reliable that can detect the presence of resistant phenotypes in a population. Fipronil is a relatively new acaricide for use in cattle and there have been no standardized *in vitro* tests for the diagnosis of tick resistance. This study aimed to standardize *in vitro* bioassays for diagnosis of resistance to fipronil for their application in the detection of resistance in field populations (Brazil and Uruguay), in studies involving detoxification enzymes in the mechanism of resistance and on the occurrence of cross-resistance to other drugs (ivermectin, lindane). Assays were performed in triplicate for standardization of Adult Immersion Test (AIT, n = 26), Larval Immersion Test (LIT, n = 71) and Larval Packet Test (LPT, n = 41), using the strains susceptible (Mozo) and resistant to fipronil. AIT discriminated the populations in four variables: mortality, egg weight at 7 and 14 days, fertility index and fecundity index. For the tests with larvae the concentration-mortality curves were analyzed. The AIT and LIT were more sensitive than LPT, with higher resistance ratios (RR). The discriminating concentrations (DC) (2xCL_{99,9}) for mortality in trials using AIT, LIT and LPT were: 4.98, 7.64 and 2365.8 ppm with strain Mozo. The RR of the resistant population were 202.4, 5.36 and 1.52. The tests were validated with field populations of Brazil (38) and Uruguay (28) derived, respectively, from ranches of milk and beef cattle. The use of LIT, allowed the early diagnosis of *in vitro* resistance to fipronil (RR≥2) in populations of cattle ticks in Brazil (19) and Uruguay (5), beside others with incipient resistance. In Uruguay, the resistant populations are limited to a mainly agricultural region where the use of endosulfan and fipronil in the cultures was intense. Ticks from Brazilian ranches that never used fipronil in animals, but
that applied it to control termites, were resistant (LIT). Although the evidence is indirect, it appears that the control of agricultural pests can interfere in tick control. The DC currently stipulated was effective because in its use, all the resistant populations tested presented survivors. Metabolic resistance was assessed by use of enzymatic inhibitors: piperonyl butoxide (PBO), triphenylphosphate (TPP) and diethylmaleate (DEM). It was not detected significant drug synergism with PBO and TPP. Possibly the mechanism of resistance could be the target-site insensitivity determined by a mutation *Rdl*-type since, from 17 populations resistant to fipronil, 14 were resistant to lindane. It was not observed cross-resistance with IVM (n = 29). Resistance to IVM in Uruguay is still incipient.

Keywords: *Rhipicephalus (Boophilus) microplus*. Acaricide resistance. Diagnose. Bioassays. Mechanisms of resistance. Fipronil. Lindane. Ivermectin.
LISTA DE ILUSTRAÇÕES

Figura 1 - Manutenção de populações de carrapatos em células de contenção sobre bezerro... 34

Figura 2 - Localização geográfica da procedência das populações de carrapatos do Brasil... 39

Figura 3 - Localização geográfica da procedência das populações de carrapatos do Uruguai... 41

Figura 4 - Relação entre os pesos dos ovos registrados nos dias 7 e 14 para cepa de R. (B.) microplus susceptível (Mozo) e para população resistente ao fipronil (RFSan.).................47

Figura 5 - Atividade comparativa do fipronil para dose-resposta de mortalidade, peso dos ovos, índice de fertilidade e índice de fecundidade em uma cepa de R. (B.) microplus susceptible (Mozo) e em uma população resistente (RFSan). Linhas descontínuas indicam intervalos de confiança 95%...49

Figura 6 - Distribuição das CL50 e CL99,9 do fipronil com relação à mortalidade, peso dos ovos, índice de fertilidade e índice de fecundidade (inibição de postura) para R.(B.) microplus, cepa Mozo.. 50

Figura 7 - Distribuição das CL50 e CL99,9 do fipronil com relação à mortalidade, peso dos ovos, índice de fertilidade e índice de fecundidade para R.(B.) microplus, cepa RFSan.. 51

Figura 8 - Curvas dose-resposta de uma cepa de R. (B.) microplus susceptível (Mozo) e de uma população resistente (RFSan) a fipronil obtida através do TPL (test de pacote de larvas) e do TIL (test de imersão de larvas). Linhas descontínuas indicam intervalos de confiança 95%... 55

Figura 9 - Curva dose-resposta de fipronil obtida pelo TIL em populações de campo Rhipicephalus (Boophilus) microplus que se apresentaram como susceptíveis.................66

Figura 10 - Curva dose-resposta do fipronil obtida pelo TIL em populações de campo Rhipicephalus (Boophilus) microplus (Brasil) que se apresentaram como resistentes....... 67

Figura 11 - Curva dose-resposta do fipronil obtida pelo TPL em populações de campo Rhipicephalus (Boophilus) microplus que se apresentaram como susceptíveis no TIL.. 72

Figura 12 - Curva dose-resposta do fipronil obtida pelo TPL em populações de campo Rhipicephalus (Boophilus) microplus de campo (Brasil) que se apresentaram como resistentes no TIL...75

Figura 13 - Curva dose-resposta do fipronil obtida pelo TIL em populações de campo Rhipicephalus (Boophilus) microplus de campo (Uruguai) que não foram submetidas a tratamento com o produto... 78
Figura 14 - Curva dose-resposta do fipronil obtida pelo TIL em populações de *Rhipicephalus (Boophilus) microplus* de campo (Uruguai) que foram submetidas a tratamento com o produto..81

Figura 15 - Curva dose-resposta do fipronil obtida pelo TPL em populações de *Rhipicephalus (Boophilus) microplus* de campo do Uruguai..88

Figura 16 - Curva dose-resposta do lindano obtida pelo TPL em populações de campo de *Rhipicephalus (Boophilus) microplus* do Brasil e do Uruguai...104
LISTA DE TABELAS

Tabela 1 - Concentração letal de fipronil segundo variável em Testes de Imersão de Adultos (TIA) conduzidos com *Rhipicephalus (B.) microplus* cepa susceptível Mozo...... 48

Tabela 2 - Concentração letal de fipronil segundo variável em Testes de Imersão de Adultos (TIA) conduzidos com *Rhipicephalus (B.) microplus* cepa resistente RFSan...... 48

Tabela 3 - Padronização do Teste de Pacote de Larvas (TPL) e de Imersão de Larvas (TIL) para fipronil conduzida com *R. (B.) microplus* cepa susceptível Mozo 54

Tabela 4 - Concentrações letais de fipronil obtidas por TPL e TIL para *R. (B.) microplus* cepa susceptível Mozo e cepa resistente à fipronil RFSan.. 54

Tabela 5 - Efeito de inibidores enzimáticos e fipronil sobre o índice de fertilidade determinado pelo a do Teste de Imersão de Adultos (n=20) em uma população de *R.(B.) microplus* resistente a fipronil (RFSan)... 56

Tabela 6 - Efeito de inibidores enzimáticos e fipronil sobre populações de *R. (B.) microplus* tomadas como cepas referências susceptível (Mozo) e resistente a fipronil (RFSan) determinado pelo Teste de Imersão de Larvas... 57

Tabela 7 - Efeito de inibidores enzimáticos e fipronil sobre cepa susceptível (Mozo) e população de campo (U-DUR) de *R. (B.) microplus* determinados pelo Teste de Imersão de Larvas ... 58

Tabela 8 - Efeito de inibidores enzimáticos e fipronil sobre populações de *R.(B.) microplus* através do Teste de Imersão de Larvas ... 58

Tabela 9 - Concentrações letais de fipronil obtidas pelo Teste de Imersão de Larvas para a cepa susceptível (Mozo/POA) e populações de campo de *Rhipicephalus (Boophilus) microplus* sem antecedentes de uso de fipronil no estabelecimento................. 61

Tabela 10 - Concentrações letais de fipronil obtidas pelo Teste de Imersão de larvas para a cepa susceptível (Mozo/POA) e para populações de campo de *Rhipicephalus (B.) microplus* e antecedentes de uso de fipronil no estabelecimento .. 63

Tabela 11 - Percentagem de *Rhipicephalus (Boophilus) microplus* sobreviventes de populações resistentes a fipronil (TIL) na maior concentração do produto testada e à concentração discriminatória (8 ppm)... 71

Tabela 12 - Concentrações letais de fipronil obtidas pelo Teste de Pacote de Larvas para a cepa susceptível (Mozo/POA) e para populações de campo de *Rhipicephalus (Boophilus) microplus* ... 73

Tabela 13 - Relação de Fatores de resistência para o fipronil determinados pelo Teste de Imersão de Larvas (TIL) e Teste de Pacote de Larvas (TPL) em populações de carrapatos do Brasil ... 76
Tabela 14 - Concentração letal de fipronil e fatores de resistência obtidos pelo Teste de Imersão de Larvas para a cepa susceptível (Mozo) e para populações de campo de *R. (B.) microplus* que nunca foram submetidas a tratamentos com fipronil ou avermectinas

Tabela 15 - Concentração letal de fipronil e fatores de resistência obtidos pelo Teste de Imersão de Larvas para a cepa susceptível (Mozo) e para populações de campo de *R. (B.) microplus* que nunca foram submetidas a tratamentos com fipronil, mas que foram submetidas a tratamentos com avermectinas

Tabela 16 - Concentração letal de fipronil e fatores de resistência obtidos pelo Teste de Imersão de Larvas para a cepa susceptível (Mozo) e para populações de campo de *R. (B.) microplus* submetidas a tratamentos com fipronil e não submetidas a tratamentos com avermectinas

Tabela 17 - Concentrações letais de fipronil e fatores de resistência obtidos pelo Teste de Pacote de Larvas para a cepa susceptível (Mozo) e para populações de campo de *Rhipicephalus (Boophilus) microplus* do Uruguai

Tabela 18 - Relação de Fatores de resistência para o fipronil determinados pelo Teste de Imersão de Larvas (TIL) e Teste de Pacote de Larvas (TPL) em populações do Uruguai

Tabela 19 - Concentração letal de ivermectina e fatores de resistência obtidos pelo Teste de Imersão de Larvas para a cepa susceptível (Mozo) e para populações de campo de *R. (B.) microplus* do Brasil não submetidas a tratamentos com avermectinas

Tabela 20 - Concentração letal de ivermectina e fatores de resistência obtidos pelo Teste de Imersão de Larvas para a cepa susceptível (Mozo/POA) e para populações de campo de *R. (B.) microplus* do Brasil submetidas a tratamentos com avermectina

Tabela 21 - Concentração letal de ivermectina e fatores de resistência obtidos pelo Teste de Imersão de Larvas para a cepa susceptível (Mozo) e para populações de campo de *R. (B.) microplus* do Uruguai não submetidas a tratamentos com avermectinas

Tabela 22 - Concentração letal de ivermectina e fatores de resistência obtidos pelo Teste de Imersão de Larvas para a cepa susceptível (Mozo) e para populações de campo de *R. (B.) microplus* do Uruguai submetidas a tratamentos com avermectinas

Tabela 23 - Cruzamento de informações sobre resistência e susceptibilidade ao fipronil e IVM de populações sem e/ou com histórico de uso das drogas

Tabela 24 - Efeito do lindano na mortalidade e no índice de fertilidade da cepa Mozo e RFSan

Tabela 25 - Concentrações letais de lindano e fatores de resistência obtidos pelo Teste de Pacote de Larvas para a cepa susceptível (Mozo/POA) e populações de campo de *Rhipicephalus (Boophilus) microplus* do Brasil e do Uruguai, resistentes ao fipronil no Teste de Imersão de Larvas
LISTA DE ABREVIATURAS E SIGLAS

ABIEC - Associação Brasileira das Indústrias Exportadoras de Carne
°C - Graus Celsius
BPO – Butóxido de Piperonila
CL$_{50}$ – Concentração Letal para 50%
CL$_{99,9}$ – Concentração Letal para 99,9%
CL$_{90}$ – Concentração Letal para 90%
CD – Concentração Discriminatória
DEM – Dietilmaleato
DILAVE – División de Laboratorios Veterinarios
Eth-Tx – Solução de Etanol e Triton-X 100
FAO – Food and Agriculture Organization
GABA – ácido gama aminobutírico
GSTs - glutationa S- transferases
INAC - Instituto Nacional de Carnes
IVM- Ivermectina
LMs – Lactonas Macrocílicas
MGAP – Ministerio de Ganadería, Agricultura y Pesca
OFs – Organofosforados
OO- Óleo de oliva
P450s - Citocromo P450 monoxigenases
ppm – partes por milhão
PS – piretróides sintéticos
SINDAN – Sindicato Nacional das Indústrias de Produtos para Saúde Animal
TCE – Tricloroetileno
TIA – Teste de Imersão de Adultos
TIL – Teste de Imersão de Larvas
TPL – Teste do Pacote com Larvas
TPP- Trifenilfosfato
SUMÁRIO

1 INTRODUÇÃO .. 21
1.1 *Rhipicephalus (Boophilus) microplus* (carrapato bovino): controle no Brasil e Uruguai .. 21
1.2 Molécula Fipronil: características, atividade acaricida e resistência 24
2 OBJETIVOS .. 32
3 MATERIAL E MÉTODOS .. 33
3.1 Carrapatos .. 33
3.1.1 Procedência ... 33
3.1.2 Manutenção .. 33
3.1.3 Preparação dos carrapatos ... 34
3.2 Adequação de bioensaios *in vitro* com fipronil e validação com cepa resistente 35
3.2.1 Teste de Imersão de Adultas .. 35
3.2.2 Teste de Pacote com Larvas .. 36
3.2.3 Teste de Imersão de Larvas .. 37
3.3 Bioensaios com inibidores enzimáticos e fipronil para determinação de resistência metabólica .. 37
3.4 Testes de Campo para diagnóstico de resistência ao fipronil .. 37
3.4.1 Estabelecimentos do Brasil .. 38
3.4.1.1 Localização e caracterização dos estabelecimentos .. 38
3.4.1.2 Controle de carrapato ... 39
3.4.2 Estabelecimentos do Uruguai ... 41
3.4.2.1 Localização e caracterização dos estabelecimentos .. 42
3.4.2.2 Controle de carrapato ... 42
3.5 Determinação de resistência cruzada entre fipronil e outras drogas em *R. (B.) microplus* .. 43
3.5.1 Resistência cruzada com ivermectina ... 43
3.5.2 Resistência cruzada com lindano .. 43
3.6 Análise dos dados ... 44
4 RESULTADOS E DISCUSSÃO ... 46
4.1 Padronização dos bioensaios *in vitro* para fipronil e validação com população de referência resistente a fipronil ... 46
4.1.1 Teste de Imersão de Adultos (TIA) .. 46
4.1.2 Teste de Pacote com Larvas (TPL) e Teste de Imersão de Larvas (TIL) 53
4.2 Bioensaios com inibidores enzimáticos e fipronil .. 56
4.3 Diagnóstico de resistência ao fipronil no campo ... 59
4.3.1 Brasil ... 59
4.3.2 Uruguai .. 77
4.4 Determinação de resistência cruzada com outras drogas .. 89
4.4.1 Ivermectina .. 89
4.4.2 Lindano .. 99

5 CONSIDERAÇÕES FINAIS .. 106

6 CONCLUSÕES ... 107

REFERÊNCIAS ... 108

ANEXO A – Artigo 1 E. Castro-Janer, L. Rifran, J. Piaggio, A. Gil, R.J. Miller, T.T.S. Schumaker. \textit{In vitro} tests to establish LC$_{50}$ and discriminating concentrations for fipronil against \textit{Rhipicephalus (Boophilus) microplus} (Acari: Ixodidae) and their standardization. Vet Parasitol. 2009;162:120–128. .. 119

ANEXO B – Artigo 2 E. Castro-Janer, L. Rifran, P. González, J. Piaggio, A. Gil, T.T.S. Schumaker. \textit{Rhipicephalus (Boophilus) microplus} (Acari: Ixodidae) resistance to fipronil in Uruguay evaluated by \textit{in vitro} bioassays. Vet Parasitol. 2010;169:172-177. 129

ANEXO C – Artigo 3 E. Castro-Janer, J.R. Martins, M.C. Mendes, G.M. Klaafke, T.T.S. Schumaker. Diagnoses of fipronil resistance in Brazilian cattle ticks (\textit{Rhipicephalus (Boophilus) microplus}) using \textit{in vitro} larval bioassays. Vet Parasitol. (2010), In press. ... 136

ANEXO D – Artigo 4 E. Castro-Janer, L. Rifran, P. González, C. Niell, J. Piaggio, A. Gil, T.T.S. Schumaker. Susceptibility of \textit{Rhipicephalus (Boophilus) microplus} (Acari: Ixodidae) to ivermectin and fipronil by Larval Immersion Test (LIT), in Uruguay. (Submitted to Veterinary Parasitology, 2010) ... 144
1 INTRODUÇÃO

1.1 Rhipicephalus (Boophilus) microplus (carrapato bovino): controle no Brasil e Uruguai

Tanto para o Brasil quanto para o Uruguai, a produção pecuária é de fundamental importância para o ingresso de divisas ao país. O Brasil é o principal exportador mundial de carne bovina com um rebanho que cresceu, aproximadamente, 30% na última década e com quase 200 milhões de cabeças (Associação Brasileira das Indústrias Exportadoras de Carne, 2010). O Uruguai destaca-se por ter um rebanho bovino de quase 12 milhões de cabeças (2009), com crescimento aproximado de 10% na última década; e cujo abate tem aumentado 20% (cerca de 2 milhões de cabeças) (Instituto Nacional de Carne, 2010). Em 2009, o Brasil exportou 2 milhões de toneladas de carne e o Uruguai, aproximadamente, 500 mil toneladas (ABIEC, 2010).

O consumo de carne e leite está aumentando, tanto nos países desenvolvidos quanto naqueles em desenvolvimento com renda/per capita em crescimento. Este fato constitui uma motivação para incrementar e melhorar a eficiência produtiva da produção pecuária do ponto de vista tanto qualitativo quanto quantitativo, através da implementação de programas de saúde e manejo, em permanente adequação às exigências crescentes do mercado mundial, principalmente, em relação a resíduos em carne, leite e meio ambiente. As doenças parasitárias constituem uma das limitantes produtivas mais importantes pois o controle dos agentes se faz principalmente através de produtos químicos. Cada vez mais o mercado mundial aumenta as suas exigências quanto ao nível de resíduos permitidos nos alimentos, constituindo mais um desafio para o controle das parasitoses.

Rhipicephalus (Boophilus) microplus (ACARI: IXODIDAE), carrapato de um só hospedeiro, parasito obrigatório principalmente de bovinos, apresenta uma distribuição mundial entre os paralelos 32º latitude norte e 34º latitude sul. Este carrapato constitui um importante flagelo para a indústria pecuária tanto pela sua ação patogênica direta (hematófagia, injeção de toxinas) como pela transmissão de patógenos (Anaplasma marginale, Babesia bovis, Babesia bigemina) responsáveis pela tristeza parasitária bovina (Thullner, 1997). Em média, cada fêmea ingurgitada é responsável pela perda de 1,37 g e 1,18 g de peso vivo, respectivamente, em bovinos Bos taurus e a sua cruza com Bos indicus,
(Jonsson, 2006). As perdas na produtividade, seja por diminuição do ganho de peso, da produção de leite, somadas aos custos pelo controle do carrapato (tratamentos acaricidas e mão de obra) são responsáveis por uma perda mundial estimada em sete bilhões de dólares/ano (Food and Agriculture Organization, 2004). No entanto o impacto do parasita depende do sistema de produção, manejo e condições geo-climáticas. Para o Brasil essas perdas foram estimadas em dois bilhões de dólares ao ano (Grisi et al., 2002) e para o Uruguai, em 45 milhões de dólares ao ano (Ministerio de Ganadería Agricultura y Pesca, 2005).

As perdas causadas pelo carrapato podem ser minimizadas pelo tratamento dos bovinos com acaricidas, no entanto a resistência à maioria deles tem emergido nas populações de *R. (B.) microplus* (Kunz e Kemp, 1994). Embora a mutação gênica para conferir resistência ocorra antes da exposição do inseticida, a resistência acaba sendo uma conseqüência inevitável dos tratamentos acaricidas. Segundo definição da FAO (2004) “a resistência é a capacidade que tem alguns indivíduos de uma população de uma espécie de parasito de sobreviverem (ou tolerarem) as doses de droga que tem sido provadas como letais para a maioria dos indivíduos da mesma população”. É a expressão fenotípica da população, que sempre está expressa em ao menos alguns indivíduos da população antes da exposição ao tóxico e é transmitida de forma hereditária (Scott, 1995).

Durante as últimas décadas, a resistência a praguicidas tem sido, e ainda é, o principal problema técnico nos programas de controle de pestes e vetores na agricultura, na produção pecuária e na saúde pública (Shidrawi, 1990). Além disto, muitas vezes, o tratamento contra uma praga tem efeito em populações não alvo, alterando os níveis de susceptibilidade dos parasitos (Roush e Daly, 1990), trazendo complicações para o controle e prevenção de doenças do homem e colocando em risco a biodiversidade dos artrópodes na natureza.

A resistência às várias classes de carrapaticidas vem aumentando rapidamente como resultado da excessiva pressão de seleção determinada pelo uso intensivo de drogas por longo período de tempo (Nari e Hansen, 1999). Em muitas regiões do mundo o problema da resistência do carrapato para a maioria das drogas é gravíssimo, havendo sido detectada a organofosforados (OFs), piretróides sintéticos (PS) e, mais recentemente, para amitraz e ivermectina (IVM) em várias regiões do mundo. Atualmente são usadas com sucesso no controle, moléculas novas como, por exemplo, o fipronil e fluazuron, que apresentam elevado poder residual no controle de *R. (B.) microplus* (Bull et al., 1996; Cuore et al., 2007) mas, devido ao seu alto custo em relação aos outros produtos, sua utilização tem sido limitada.
No Brasil, o carrapato bovino apresenta resistência a todos os grupos químicos com exceção do fipronil e fluazuron, havendo sido registrada resistência principalmente para OFs, PS e amitraz na região sul do país (Vieira et al., 1998; Farias, 1999) e na região sudeste (Arantes et al., 1995; Furlong, 1999). Como alternativa para o controle dessas populações resistentes, e pela facilidade de aplicação, a partir de meados da década do 90 foi intensificado o uso das Lactonas Macrocíclicas (LMs), compostos de amplo espectro e com ação endectocida (Campbell, 1985). Como era previsível, a aparição de resistência a LMs não tardou em se manifestar no campo (Martins e Furlong, 2001; Martins, 2008). Entre 2002 e 2006, a venda de endectocidas no país cresceu 48,88%, atingindo a marca de cerca de 500 milhões de doses vendidas (Sindicato Nacional da Indústria de Produtos para Saúde Animal, 2007), indicando sua intensa utilização. Recentemente foi diagnosticada resistência a IVM em populações de São Paulo (Klafke et al., 2006). Atualmente, suspeita-se, também, a ocorrência de resistência a fipronil nos estados de Minas Gerais, Rio Grande do Sul, Mato Grosso do Sul e São Paulo (Furlong, 2007 (comunicação pessoal)¹; Martins, 2007 (comunicação pessoal)²). Inicialmente a utilização do fipronil de uso veterinário foi limitada pelo seu alto custo em relação aos outros produtos: em algumas ocasiões, alguns produtores o substituem por fipronil de uso agrícola o que contribui para o aumento da pressão de seleção de cepas resistentes.

No Uruguai, o controle do carrapato bovino está regulamentado. Em 1956 foi aprovada uma Lei (12.293) para a sua erradicação, onde o carrapato é declarado praga nacional. O controle baseia-se principalmente no uso de acaricidas cujos intervalos de aplicações para a erradicação são propostos de acordo com sua capacidade residual (Cuore et al., 2008). Um levantamento sobre as formas de aplicação dos tratamentos acaricidas, realizado no ano 2006, mostrou que 62% das fazendas usam banhos de imersão com uma media de seis tratamentos/ano. O número médio de tratamentos por ano quando a aplicação é realizada por forma de aspersão, derrame dorsal e por via injetável é de cinco, três e três vezes respectivamente (Gil e Piaggio, 2007). Em um estudo retrospectivo, realizado sobre 64 acaricidas aprovados para o controle do carrapato desde 1973 até 2007, levando em conta as características de eficácia, poder residual e risco epidemiológico, conclui-se que os banhos de imersão oferecem menos risco epidemiológico que as aplicações por derrame dorsal ou injetável (Cuore et al., 2008). A eficiência dessa campanha tem sido irregular ao longo dos anos, parte pelo uso inadequado de acaricidas (MGAP, 2005) e pela falta de técnicas de

¹ FURLONG, J. MG, 2007.
² MARTINS J.R. Eldorado do Sul, RS, 2007.
diagnóstico que acompanhem os estudos de eficácia de drogas de uso relativamente recente. Tem se diagnosticado resistência aos arsenicais (1960), OFs (final da década do 70) e PS e suas mesclas (início dos anos 90) (Cardozo et al., 1994). O fipronil e a IVM começaram a ser usados no final da década de 90, mas só recentemente foi diagnosticada resistência ao fipronil através de provas de estábulo (Cuore et al., 2007). Por razões econômicas o amitraz começou a ser usado em substituição dos PS quando os carrapatos mostravam resistência a este pesticida e só, recentemente foi diagnosticada resistência a ele (Cuore, 2009, (comunicação pessoal)3).

Com a diminuição da exposição a um princípio ativo em particular evita-se que a seleção de carrapatos resistentes continue (Kemp et al., 1999), sendo recomendável o monitoramento regular do comportamento das populações frente aos acaricidas para evitar a disseminação de carrapatos resistentes, possibilitar a escolha do produto mais eficaz para essa fazenda ou estabelecer alternativas de controle de maior eficiência. Mas para isso, torna-se necessário o desenvolvimento de técnicas diagnósticas de resistência que permitam, inclusive, elucidar os mecanismos de resistência envolvidos.

1.2 Molécula Fipronil: características, atividade acaricida e resistência

O fipronil, inseticida fenilpirazólico, é uma molécula com alta seletividade para os insetos em relação aos mamíferos (Narahashi et al., 2007). Foi usado inicialmente para o controle de pragas agrícolas e de importância na saúde pública (Colliot et al., 1992) e posteriormente na área veterinária para o controle de parasitas externos (Hainzl e Casida, 1996). Seu uso no controle do *R. (B.) microplus*, começou a meados dos anos 90.

A aplicação de fipronil é eficaz para o controle de grande variedade de insetos foliares em culturas de arroz e cana de açúcar (Balança e De Visscher, 1997), verduras e frutas (Colliot et al., 1992; Zhao et al., 1995; Stevens et al., 1998). No entanto, já foram reportados casos de resistência tanto na área agrícola quanto na saúde pública (Holbrook et al., 2003; Bass et al., 2004; MingZhang et al., 2004) e ocorrência de resistência cruzada com ciclodienos (Scott e Zhi Mou, 1997; Brooke et al., 2000).

A molécula se degrada lentamente na vegetação e de forma relativamente lenta no solo e na água (Tingle et al., 2003). O destino e a biodisponibilidade do fipronil no solo depende da variabilidade dos processos de sorção, diferindo de um solo para outro (Spomer e Kamble, 2000).
2010). Sob condições aeróbicas, a vida média do fipronil em solo arenoso é de 122-128 dias e quando aplicado no solo por incorporação varia entre 3- a 7,3 meses. Tem baixa mobilidade. Os resíduos no solo permanecem nos primeiros 10 cm de profundidade. No entanto, pode se adsorver a partículas do solo o que lhe conferem potencial de contaminação de água; pode-se ligar a material particulado em suspensão, depositar-se no sedimento ou ser absorvido por organismos que o degrada ou acumula. Em algumas espécies de animais aquáticas, o fipronil pode se bioacumular (Gunasekara et al., 2007).

A degradação do fipronil ocorre tanto em condições oxidativas quanto de redução, produzindo diferentes metabólitos. No solo, fipronil sulfona é produto de sua oxidação e fipronil sulfide de redução (Bobe et al., 1997), ambos com ação inseticida. Também, metabólitos do fipronil podem ser resultado de sua hidrólise (ex. amida, produto de hidrólise em água ou solo) ou de sua fotodegradação (desulfinyl). Os metabólitos do fipronil são considerados mais tóxicos e mais persistentes que o fipronil. Com o intuito de diminuir a extensão de terra contaminada, outras formas de aplicação do inseticida nas culturas estão sendo estudadas. Raveton et al. (2007) estudaram a taxa de acúmulo dos metabólitos no solo e em sementes de girassol tratadas com fipronil, a través da análise do solo em 3 zonas delimitadas ao redor do ponto de plantio da semente (1,8; 5 e 11 cm). Observaram que a taxa de acúmulo diminuía sensivelmente a partir dos 5 cm e que os principais metabólitos acumulados no solo foram fipronil sulfona e fipronil-sulfide. Neste estudo a contaminação detectável no solo foi limitada a 11 cm ao redor da semente tratada. Depois de 6 meses de ter sido cultivada, cerca de 50% de fipronil foi encontrado no solo.

O mecanismo de ação do fipronil é atribuído ao bloqueio dos canais de íons cloreto controlados pelo ácido gama aminobutírico (GABA) (GABA-Cl) presentes nos neurônios do sistema nervoso central de insetos (Cole et al., 1993; Durham et al., 2001; Bloomquist, 2003). O sistema receptor do GABA é responsável pela inibição da atividade neural normal. Quando as funções regulares do sistema são bloqueadas, o resultado é a excitação neuronal e a morte do inseto. O glutamato é um transmissor do impulso nervoso na sinapse que, nos insetos, tem uma função excitatória ou inibitória, existindo dois tipos de canais de cloro ligados ao glutamato com características electrofisiológicas e farmacológicas diferentes. O fipronil também é bloqueador dos canais de íons cloreto ativados pelo glutamato (Narahashi et al., 2007) e esta característica pode ser em parte, responsável pela maior toxicidade seletiva para os insetos, já que os mamíferos não tem esse tipo de canal.
Algumas classes de inseticidas com estruturas químicas diversas podem apresentar o mesmo sítio alvo, resultando em resistência cruzada a diferentes classes caso haja alteração desse sítio (Casida, 2009). O modo de ação da IVM é atribuído à ligação de alta afinidade do fármaco aos canais de cloro controlados pelo glutamato e GABA presentes nas células musculares e nervosas dos invertebrados (Cully et al., 1994; Mckellar e Benchaoui, 1996; Geary et al., 1993). Outra possibilidade é a resistência cruzada com ciclodienos (dieldrin), que atuam no GABA bloqueando também o ingresso dos íons cloreto. Resistência cruzada entre ciclodienos e inseticidas fenlpirazoles (fipronil e outros) tem sido bem demonstrada em outros estudos (Colliot et al., 1992; Cole et al., 1993, 1995; Bloomquist, 1994; Scott e ZhiMou, 1997; Brooke et al., 2000). O conhecimento e compreensão dos mecanismos de resistência envolvidos são necessários para monitorar a resistência cruzada a novos compostos ainda em desenvolvimento que tem como alvo o GABA (Hope et al., 2010), podendo prover informações valiosas para o seu manejo.

O desenvolvimento da resistência foi descrito por Sutherst e Commins (1979). No início do processo, ocorre uma mutação em algum alelo na população que independe da pressão de seleção de resistência (estabelecimento). Esta última só começa com a utilização dos tratamentos que mata os indivíduos susceptíveis, tornando mais freqüente o alelo que determina resistência nessa população (desenvolvimento). Finalmente, a freqüência do alelo de resistência é suficiente para reduzir notavelmente a eficácia do tratamento (emergência).

Há três tipos de mutação que podem resultar em resistência de um inseto a um praguicida (Scott, 1995): amplificação gênica, regulação gênica alterada e alteração estrutural de um gene. Na “amplificação gênica”, ao invés de existir uma cópia do gene, várias cópias deste gene estão presentes no DNA do inseto. Como conseqüência, a quantidade de produto produzido por esse gene vai ser maior. No caso de um gene codificador de uma enzima detoxificante o inseto poderá metabolizar muito mais inseticida que outro não mutante. No segundo tipo de mutação, o sistema de regulação do gene é alterado de maneira que o gene, depois da mutação passa a produzir em maior ou menor quantidade o produto de sua codificação. No terceiro tipo de mutação, a alteração estrutural do gene leva a uma mudança em seu produto. Por exemplo, a troca de um nucleotídeo na região codificadora do gene pode gerar uma mudança na codificação de um aminoácido, e consequentemente, uma alteração na sequência da proteína, resultando ou não em resistência. Essa mutação pode levar a uma alteração estrutural no sítio de ação do inseticida, reduzindo ou bloqueando a capacidade do inseticida em se ligar ao sítio de ação, ou aumentar ou diminuir a habilidade do produto do
gene em metabolizar o inseticida. Uma mudança estrutural não altera a quantidade de produto, mas sim a qualidade do produto codificado pelo gene. Essas mutações estão associadas a três tipos de mecanismo de resistência: metabólica (Citocromo P450 monoxigenases, esterases e S-transferase), insensibilidade do sítio de ação (acetilcolinesterase, GABA, canal de sódio) e outros (redução de penetração do praguicida e mudança de comportamento) (Scott, 1995). Estes mecanismos, seja individualmente ou em combinação, conferem resistência a todas as classes de inseticidas disponíveis, sendo que os dois primeiros tipos de mecanismos produzem altos níveis de resistência. Basicamente, três sistemas enzimáticos podem estar envolvidos no metabolismo de inseticidas: Citocromo P450 monoxigenases (P450s), esterases e glutatonia S-transferases (GSTs) (Li et al., 2007). As proteínas destas famílias também participam na proteção contra o estresse oxidativo, na transmissão de sinais nervosos e no transporte celular (Hemingway et al., 2002). As P450s são enzimas capazes de oxidação de compostos endógenos e exógenos por oxidação ou reações relacionadas tornando os compostos tóxicos mais solúveis e, portanto, mais fáceis de serem excretados. São responsáveis pela detoxificação de piretróides e organofosforados em artrópodes. As esterases são enzimas capazes de hidrolisar compostos contendo pontes tipo éster, estando envolvidas na detoxificação de organofosforados e piretróides sintéticos. Já, as enzimas GSTs são capazes de conjugar a glutatonia reduzida aos centros eletrofílicos de compostos exógenos e endógenos, para formar um composto solúvel e mais fácil de ser excretado. São responsáveis pela detoxificação de organoclorados (DDT), OFs e PS (Li et al., 2007) e de IVM (Stumpf e Nauen, 2002). Uma mutação que produz alteração em alguma destas enzimas na função detoxificante do praguicida produzirá resistência metabólica, e, ainda, resistência cruzada considerando a ampla versatilidade de substratos específicos (Li et al., 2007). Por exemplo, em uma população resistente o aumento da atividade enzimática detoxificadora para um determinado praguicida pode ser a origem de resistência cruzada com outro praguicida. Este tipo de mecanismo pode explicar a aparição rápida de resistência a grupos químicos diferentes. Na Austrália, Nolan et al. (1977) demonstraram que populações de carrapatos bovinos resistentes a DDT eram resistentes a PS experimentais (mesmo previamente à sua introdução comercial), devido a um incremento na atividade esterase, mecanismo que fora demonstrado posteriormente por Schnitzerling et al. (1983). Este fato pode explicar a aparição rápida da resistência a PS na Austrália (Jonsson et al., 2008).

O entendimento sobre os mecanismos de resistência pode prover informações valiosas para o seu manejo. A utilização de inibidores enzimáticos em bioensaios pode auxiliar na
determinação dos possíveis mecanismos metabólicos envolvidos na resistência a um produto. Os testes são realizados utilizando-se inibidores enzimáticos tais como o TPP (trifenilfosfato), o BPO (butóxido de piperonila) e o DEM (dietilmaleato), que atuam sobre as principais enzimas envolvidas com a resistência metabólica, respectivamente, esterases, P450s e GSTs. Estes inibidores têm sido estudados em insetos para a elucidação de mecanismos metabólicos de resistência a organofosforados, piretróides sintéticos, avermectinas e o fipronil (Scott et al., 1997; Liu e Yue, 2000; Kristensen et al., 2004; Wu et al., 2004), existindo poucos trabalhos com *R. (B.) microplus* e são referentes à resistência a piretróides, organofosforados e amitraz (Miller et al., 1999; Villarino et al., 2002, 2003; Li et al., 2003; Chevillon et al., 2007). A importância prática do estudo dos inibidores enzimáticos consiste em identificar algum sinergista da droga em estudo, constituindo uma alternativa útil no controle de populações resistentes. Miller et al. (1999) demonstraram o sinergismo para permetrina com TPP e BPO e Li et al. (2004) encontram sinergismo para o amitraz utilizando os mesmos inibidores. De modo geral, a identificação do sinergismo com BPO é a mais provável pois constitui o único sistema metabólico que pode mediar para todas as classes de inseticidas. Isto se deve ao fato de que as P450s têm diversidade genética, ampla especificidade de substrato e grande versatilidade catalítica (Li et al., 2007). Esta e a menor toxicidade para os animais são razões para que o BPO seja considerado nas formulações de drogas para o controle de populações resistentes.

Os principais alvos dos inseticidas convencionais são: 1. Receptor GABA contendo subunidades RDL codificadas pelo gene “*Resistance to dieldrin*” ou *Rdl* (inseticidas ciclodienos, fipronil); 2. Canais de sódio (PARA) codificados pelo gene *para* (DDT e OS); 3. Acetilcolinesterase de insetos (ACHE) codificada pelo gene *Ace* (OFs e carbamatos). Apesar da complexidade dos receptores ou enzimas, foram detectadas muito poucas e conservadas substituições de aminoácidos nos insetos resistentes (uma com RDL, dois com PARA e três ou mais com AChE) (ffrench-Constant et al., 1998). Este fato talvez se deva a que suas funções sejam vitais ao organismo e, assim, poucas alterações podem diminuir a sensibilidade ao praguicida sem produzir nenhuma perda das funções normais. Isto se diferencia com o que acontece com os genes associados a resistência metabólica que median funções de respostas ao ambiente com poucas restrições intrínsecas e tendem a ser mais tolerantes às modificações genônicas alterando a sua função, expressão ou ambas (Li et al., 2007).

Segundo Scott (1995), o método ideal de diagnóstico tem que ser de fácil uso, baixo custo, que diagnostique todos os tipos de resistência e seja capaz de detectá-la em seu estágio
inicial de seu desenvolvimento, quando a freqüência dos alelos que conferem o fenótipo de resistência for ainda inferior a 1%, ou seja, insuficiente para determinar uma diminuição na eficácia do produto. Existem várias metodologias para o diagnóstico de resistência que podem ser divididas em bioensaios *in vivo*, técnicas moleculares e bioensaios *in vitro*.

Os bioensaios *in vivo*, consistem na realização de infestações controladas de carrapato onde um grupo de animais é tratado com a droga suspeita e o outro não e é determinada a eficácia do produto através da medição de várias variáveis (número e peso dos carrapatos, postura e ecloibilidade). São provas demoradas, extremamente dispendiosas, usadas para a confirmação da resistência e consideradas como provas de referência. Em geral, estão limitadas a centros de referência de resistência a acaricidas.

Os métodos de detecção por técnicas moleculares se caracterizam por serem rápidos e por distinguir diferentes genótipos de resistência diferentemente dos tradicionais (bioensaios) que são mais demorados e diferenciam fenótipos (viva/morta). No entanto, têm a desvantagem de que a detecção da resistência está limitada ao gene conhecido, devendo-se realizar ensaios específicos para cada gene. Atualmente, os testes moleculares disponíveis para *R. (B.) microplus* não detectam os diferentes tipos de resistência já que se conhecem muito poucas mutações associadas à resistência. Deste modo, uma população de carrapatos com mecanismo de resistência conferido por uma mutação diferente daquela detectável por um marcador molecular já descrito pode apresentar indivíduos genotipados como susceptíveis, levando a um diagnóstico errôneo de susceptibilidade da população. Populações mexicanas de carrapatos resistentes a PS têm apresentado uma mutação no domínio IIIS6 para do canal de sódio (He et al., 1999) que, não foi encontrada em populações de carrapatos resistentes na Austrália usando a mesma técnica. No entanto, entre estas últimas foi encontrada uma outra mutação no domínio IIS4-5 que também está associada a resistência a PS (Jonsson et al., 2008). Recentemente foi descrita uma mutação na região RDL que confere resistência a dieldrin (Hope et al., 2010). Segundo Jonsson et al. (2008), as técnicas moleculares não deveriam ser consideradas como um substituto dos bioensaios tradicionais.

Os bioensaios *in vitro* são relativamente simples, de baixo custo e requerem pouco equipamento (Scott, 1995). Baseiam-se na utilização dos estádios de vida livre do carrapato como fêmeas ingurgitadas prontas para a oviposição ou larvas. O modo de aplicação do produto nos carrapatos adultos pode ser via Aplicação Tópica em Adultos (ATA), Injeção em adultos (IA) ou Imersão de Adultos (TIA). No caso de ATA, a penetração do pesticida no carrapato é difícil, por isso a acetona é utilizada em pequenos volumes para auxiliar na
absorção. A IA exige precisão por parte do operador, já que o acaricida tem que ser injetado sempre da mesma maneira e no mesmo local do carrapato e, embora esta técnica não envolva problemas na absorção, uma vez que o carrapaticida fica em contato com o tecido interno do carrapato, o equipamento necessário é caro. O TIA utiliza fêmeas ingurgitadas que são imersas em acaricidas técnicos ou comerciais. Este teste foi adotado por muitos autores (Whitnall e Bradford, 1947; Hitchcocoock, 1953), contudo, o protocolo descrito por Drummond et al. (1973) é o mais comummente utilizado.

O TIA se baseia na comparação da taxa de oviposição entre as fêmeas de dois grupos: tratado e controle. Os ovos podem ser analisados por peso e viabilidade. Também pode ser avaliada a mortalidade, considerando fêmeas que ovipõem ou não, o que diminui o tempo de obtenção dos resultados (1-2 semanas), em comparação ao tempo de determinação da ecloibilidade (5-6 semanas). Por sua praticidade, o protocolo mais utilizado é o de Drummond et al. (1973) que utiliza a concentração discriminatória (CD) para diferenciar carrapatos resistentes dos susceptíveis. O fator limitante para o uso do TIA é o número de fêmeas ingurgitadas utilizadas, que nem sempre é suficiente para se obter resultados confiáveis (Sabatini et al., 2001; Jonsson et al., 2007). O Teste de Imersão com Larvas (TIL) é uma alternativa, pois o número de indivíduos que podem ser obtidos em laboratório é muito maior favorecendo a repetição do ensaio, inclusive com emprego de uma grande amplitude de concentrações de diferentes acaricidas. Foi desenvolvido por Shaw (1966) e consiste na imersão das larvas em soluções ou suspensões do acaricida técnico ou comercial. A resposta é avaliada em porcentagem de larvas que morrem frente ao tratamento e o resultado é obtido em 5-6 semanas após a coleta dos adultos. No Teste de Pacotes com Larvas (TPL) desenvolvido por Stone e Haydock (1962), as larvas são incubadas em pacotes de papel filtro (Whatman N°1) impregnados com o soluções de acaricida técnico, comparando-se a taxa de mortalidade 24 horas após incubação. Este teste é recomendado pela FAO (2004) para diagnóstico de resistência. Entretanto dados preliminares sobre resistência a lactonas macrocíclicas sugerem o TIL por ser muito mais sensível que o TPL (FAO, 2004).

Os programas de monitoramento de resistência devem testar populações frente a todas as classes de drogas disponíveis, permitindo a detecção precoce de populações resistentes e a rápida divulgação da informação obtida. Com relação a detecção de resistência a drogas de uso recente, há poucos protocolos disponíveis. Para ivermectina, há apenas um protocolo utilizando TIL foi sugerido até o momento (Klaflke et al., 2006) mostrando ser eficiente no diagnóstico de populações de campo (Pérez-Cogollo et al., 2010).
No entanto, ainda não há protocolos para bioensaios \textit{in vitro} que possibilitem a detecção de resistência ao fipronil para \textit{R. (B.) microplus}. Com a normatização dos testes se logrará um máximo de precisão e segurança com relação aos resultados obtidos, fato que permitirá a comparação entre os dados determinados por pesquisadores em várias regiões do mundo e elaborar sugestões para o controle deste ectoparasito de grande importância na medicina veterinária.
2 OBJETIVO

O presente trabalho tem como objetivo geral desenvolver bioensaios in vitro para diagnóstico de resistência de *R. B. microplus* para o fipronil, que sejam eficazes, práticos e econômicos e que possam ser usados para supervisionar e diagnosticar em campo a resistência a esse princípio ativo.

Especificamente, os seguintes objetivos serão perseguidos:

1. Adequação de bioensaios *in vitro* para diagnóstico de resistência de *R. (B.) microplus*, adultos e larvas, para fipronil.
2. Validação das técnicas com uma população de campo comprovada como resistente para fipronil por prova de estábulo.
3. Determinação de resistência metabólica ao fipronil através de bioensaios com inibidores enzimáticos em *R. (B.) microplus*.
4. Diagnóstico de resistência de *R. (B.) microplus* ao fipronil em estabelecimentos de criação de bovinos com antecedentes de uso do fipronil ou ivermectina no Uruguai e no Brasil.
5. Diagnóstico de resistência cruzada entre fipronil e ivermectina e entre fipronil e lindano em populações de *R. (B.) microplus*.
3 MATERIAL E MÉTODOS

3.1 Carrapatos

3.1.1 Procedência

Cepa Mozo e/ou Porto Alegre: Ambas as cepas foram usadas como controle susceptível. A cepa Mozo, originária do Uruguai é cepa susceptível referência da FAO para estudos e diagnóstico de resistência. Foi fornecida pelo Departamento de Parasitologia de la División de los Laboratorios Veterinarios (Di.La.Ve.) “Miguel C. Rubino” (Ministerio de Ganadería, Agricultura y Pesca-MGAP, Montevideú, Uruguai) para os estudos realizados no país. A cepa susceptível Porto Alegre, oriunda do estado do Rio Grande Sul, foi cedida pelo Dr. Itabajara da Silva Vaz Júnior da Universidade Federal de Rio Grande do Sul.

População RFSan: originária do Departamento de Salto, Uruguai, resistente ao fipronil (prova de estábulo) (Cuore et al., 2007) e mantida inicialmente na Di.La.Ve, e posteriormente na Faculdade de Veterinária da Universidad de la República, Montevideú, Uruguai.

Populações de campo: oriundas de 38 propriedades de criação bovina do Brasil e 28 do Uruguai, com e sem suspeitas de resistência ao fipronil ou ivermectina. Estas populações foram testadas no país de origem.

3.1.2 Manutenção

A manutenção da população susceptível foi realizada no Instituto Biológico de São Paulo, entre 2006-2009. Foram utilizados como hospedeiros bovinos da raça holandesa, com idades entre 3 e 6 meses, vermifugados, com tratamento preventivo contra babesiose e anaplasmosse. Estes ficaram alojados em baias individuais de alvenaria, (dimensões 2,30m x 3m) localizadas em um galpão experimental, onde permaneceram isolados durante 30 dias, período necessário para que o ciclo parasitário do carrapato fosse completado, de larva a teleógina. Após este período, os animais foram tratados contra carrapatos (carrapaticida clorpirifós associado à cipermetrina) e alocados em piquetes individuais. Durante o experimento, os animais foram alimentados com feno, sal mineral, vitaminas, ração e água à
vontade. Foram realizadas infestações semanais com larvas *R. (B). microplus* de duas semanas de idade (100mg).

Durante o ano 2006 as infestações e manutenção da população de carrapatos resistentes a fipronil (RFSan) foram realizadas no Departamento de Parasitologia da Di.La.Ve (MGAP-Uruguai) e entre dezembro 2007- abril 2008 na Faculdade de Veterinária de Uruguai. A infestação do bezerro foi realizada mediante o uso de células de contenção, restringindo assim a área de infestação e evitando a contaminação com a cepa susceptível (Figura 1) (Rifran et al., 2009). Para isso, foram utilizados dois bezerros de 3 meses de idade selecionados de estabelecimentos da zona livre de carrapatos do Uruguai.

![Figura 1 - Manutenção de populações de carrapatos em células de contenção sobre bezerro.](image)

3.1.3 Preparação dos carrapatos

Os procedimentos utilizados estão de acordo com o manual da FAO (FAO, 2004) para testes de diagnóstico de resistência. Fêmeas ingurgitadas (maiores de 4mm de comprimento) foram coletadas no dia do desprendimento natural do bovino. Após lavagem (água) e secagem (papel toalha), os carrapatos foram pesados e aderidos (dorsalmente), com o auxílio de uma fita dupla face, à tampa de uma placa de Petri plástica (100mm de diâmetro X 22mm de altura) que foi, então, por ela fechada. Esta prática permitiu que os ovos resultantes da postura caíssem da tampa e fossem coletados de maneira simples, fácil e rápida. O recipiente foi identificado e mantido a temperatura entre 27 - 28 ºC e umidade relativa do ar entre 85 – 90%. Sob estas condições, as posturas dos ovos ocorreram em duas semanas. Foram reunidos os ovos correspondentes aos dias 3, 4 e 5 posteriores à queda, com a finalidade de se obter lotes de larvas com idades aproximadas. As massas de ovos assim obtidas foram então incubadas.
em tubos do tipo Falcon, fechados com algodão. Para os testes com larvas foram utilizados exemplares com 14 a 21 dias de vida.

3.2 Adequação de bioensaios in vitro com fipronil e validação com cepa resistente

Primeiramente foram determinados os perfis de toxicidade do fipronil em larvas e adultos de *R. (B.) microplus* da cepa susceptível Mozo, utilizando uma série de diluições de fipronil técnico (95,3% de pureza, Agromen Chemicals Co. LTD, HangZhou, China, Lote ZF300), tendo em vista a obtenção de resultados com sobrevivência total dos indivíduos até a morte do total de indivíduos testados.

Foram conduzidos o Teste de Imersão de Adultas (TIA) (Drummond et al., 1973, modificado) o Teste do Pacote com Larvas (TPL) (Stone e Haydock, 1962) e o Teste de Imersão de Larvas (TIL) (Shaw, 1966). As diluições utilizadas abrangeram desde a sobrevivência total até a morte do total de indivíduos testados. Para estabelecer a linha de base para a cepa susceptível, o procedimento foi repetido pelo menos 26 vezes, para qualquer um dos testes. Para validação dos protocolos obtidos, todos os bioensaios foram realizados para a população de referência resistente, RFSan. Na continuação, segue o detalhamento dos protocolos.

3.2.1 Teste de Imersão de Adultas

Foi considerado o protocolo de Drummond et al. (1973), para a adequação do TIA com emprego do fipronil e registrados os seguintes parâmetros: Mortalidade, Peso dos ovos nos dias 7 (PO7d) e 14 (PO14d) após tratamento e a porcentagem de eclodibilidade. Foram realizados 26 e 46 ensaios para a cepa Mozo e RFSan, respectivamente. Foi preparada uma solução estoque contendo 1% de acaricida técnico (fipronil 95,3%) diluído em acetona e conservada a 4 ºC. No dia do ensaio foram realizadas duas pré-diluições para redução da concentração final de acetona a 10% e uma solução de fipronil 0,01%. As concentrações de trabalho foram (em ppm): 3; 2,5; 2; 1,7; 1,5; 1,2; 1; 0,8; 0,7; 0,6; 0,5; 0,4; e 0,2. O grupo controle foi imerso em uma solução de acetona 10% sem acaricida. Foram testadas entre cinco e 13 diluições por ensaio, dependendo da disponibilidade de carrapatos. Sempre que o número de carrapatos permitiu foram usadas duplicatas ou triplicatas por diluição. Para a determinação da CL50 (Concentração Letal) da população RFSan, foram usadas diluições
duplas seriadas desde 0,1% até 0,01% com uma concentração final de acetona de 50%. Neste caso o grupo controle foi imerso em acetona 50%.

Foram organizados grupos com 10 teleóginas cada, com exemplares homogêneos em tamanho, peso e vigor para cada uma das diluições testadas, mais o grupo controle. Durante um minuto, cada grupo foi imerso em 20ml da diluição correspondente, contidos em bêqueres (50ml), agitados levemente. Imediatamente após a retirada da solução acaricida, as teleóginas foram secas com papel toalha, colocadas em placas de Petri e incubadas em temperatura 27-28 ºC e umidade relativa do ar (UR) 80-90%. Aos sete e 14 dias foram registrados os números de carrapatos vivos e mortos, considerando-se vivos aqueles que tivessem realizado qualquer tipo de postura (completa ou incompleta, viável ou não) e, em ambos os dias, foi registrado o peso dos ovos. Na 6a semana, foi registrada a porcentagem de eclodibilidade.

3.2.2 Teste do Pacote com Larvas

Foi preparada uma solução de duas partes de tricloroetileno (TCE) e uma parte de óleo de oliva (OO) de acordo com Stone e Hadock (1962). Esta solução foi autoclavada e foi adicionando o anti-oxidante ionol 0,02%. Foi preparada uma solução de fipronil 0,01% nesta solução de TCE-OO a partir da qual foram realizadas diluições duplas seriadas, desde 300 ppm até 0,59 ppm. O preparo dos pacotes foi feito segundo FAO (2004). Uma aliquota de 0,67mL de cada solução foi aplicada ao papel de filtro (Whatman Nº1 - dimensões: 750mm x 850mm), previamente identificado. O grupo controle foi exposto ao papel impregnado com os solventes orgânicos voláteis, livres de acaricida. Após a evaporação do TCE (24h a temperatura ambiente), os papéis foram dobrados na metade e vedados nas laterais com auxílio de clips de metal formando os pacotes. Aproximadamente 100 larvas foram colocadas em cada pacote, que foi então selado por um terceiro clipe. Os pacotes com larvas foram mantidos por 24h em estufa B.O.D. (27 ºC / 80% UR). Após este período, os pacotes foram abertos e as larvas vivas e mortas contadas. O teste foi realizado em triplicata e repetido 15 vezes com a cepa Mozo para sua padronização. Posteriormente, foi determinada a CL50 da população RFSan, realizando-se 7 ensaios com 3 repetições.
3.2.3 Teste de Imersão de Larvas

Foi utilizado o protocolo de Shaw (1966) segundo modificações de Klaufke et al. (2006) e usada a mesma solução estoque de fipronil técnico 1% descrita para o TIA. Na hora do teste, foram realizadas duas pré-diluições conforme a seção 3.2.1 contendo Triton X-100 a 0,04%. A solução final de trabalho foi de fipronil 0,001% e acetona10%. As concentrações utilizadas nas soluções de imersão foram (em ppm): 5; 3; 2,5; 2; 1,7; 1,5; 1,2; 1; 0,8; 0,6; 0,4 e 0,2. Como controle, foi usada a solução diluente sem fipronil. Para determinar a CL_{50} da população resistente, foram incluídas mais duas diluições (50 e 100 ppm). O tempo de imersão das larvas na solução acaricida foi de 10 minutos. A determinação da mortalidade das larvas foi realizada após 24 horas. Para a padronização do teste foram realizados 25 ensaios em triplicata com a cepa Mozo e 5 ensaios em triplicata com a população RFSan.

3.3 Bioensaios com inibidores enzimáticos e fipronil para determinação de resistência metabólica

Foram conduzidos bioensaios com larvas (TIL) de *R. (B.) microplus* das cepas Mozo e RFSan utilizando inibidores enzimáticos específicos para esterases (Trifenilfosfato-TPP), citocromo P450 monooxigenases (Butóxido de piperonila-BPO) e glutatonia S-transferases (Dietilmaleato- DEM). Para as teleóginas foi empregado o TIA, com DEM e BPO. Nos dois testes, as concentrações finais dos inibidores foram: TPP 0,01%, BPO 0,01% e DEM 0,05% e as concentrações do fipronil foram as mesmas que em seções 3.2.1 e 3.2.3. O grupo controle foi testado só com fipronil e outros três grupos com fipronil adicionando-se um dos inibidores.

O efeito dos inibidores foi avaliado por TIL nas populações de campo resistentes a fipronil: RFSan, JRRS, DUR e QUE. O ensaio foi realizado em triplicata para cada população em paralelo à cepa Mozo.

3.4 Testes de Campo para diagnóstico de resistência ao fipronil

As coletas dos carrapatos foram realizadas entre 2007 e 2009. No momento da coleta, foi realizado um inquérito onde foram registrados os dados gerais dos estabelecimentos, os tratamentos acaricidas realizados nos últimos cinco anos com especial atenção a fipronil e
IVM, freqüência e formas de aplicação e antihelminticos usados. Também foram registrados dados sobre a utilização de praguicidas para o controle de outras pragas na propriedade. Para aquelas populações que se mostraram resistentes ao fipronil e cujos responsáveis declaravam não ter usado o produto, foi realizada uma segunda visita com o objetivo de levantar informação mais precisa sobre a utilização de praguicidas de uso agrícola nos animais e sobre o manejo sanitário no ingresso ao estabelecimento. Nessa oportunidade foi observada a topografia do local, presença de culturas ou lavouras tanto na propriedade como nos seus arredores.

Foram utilizados o TIA, TIL e TPL de acordo às seções 3.2.1, 3.2.2 e 3.2.3., conforme o número de carrapatos remitidos ao laboratório, no intuito de determinar a sensibilidade dos teste. O TIA só pode ser aplicado para testar a população U-DUR. Neste caso foram usadas 6 diluições (0,2; 0,8; 1,2; 5; e 10 ppm) de fipronil com 25 carrapatos/diluição e outros 25 carrapatos como controle. A cepa Mozo foi testada com 5 diluições (0,2; 0,6; 0,8; 1 e 2 ppm de fipronil). Para cada população os testes de larvas foram realizados em triplicata e em paralelo à cepa Mozo ou POA (controles susceptíveis).

3.4.1 Estabelecimentos do Brasil

Foram coletadas no local ou remetidas ao laboratório, teleóginas de 38 propriedades de criação bovina dos estados de São Paulo (n=35), Rio Grande do Sul (n=1) e Mato Grosso do Sul (n=2), com ou sem histórico de uso de fipronil e ivermectina. TIL com fipronil e TIL com IVM foram conduzidos em todas as populações e TPL com fipronil em 6 populações,

3.4.1.1 Localização e caracterização dos estabelecimentos

As populações oriundas do estado de São Paulo (n=35) foram coletadas em propriedades de produção leite com mão de obra familiar, com uma extensão média de 50 hectares, com uma média de 55 animais mestiços de *Bos taurus* e *Bos indicus*. O sistema de produção a pasto é predominante, sem ou com rodízio de piquetes em intervalos de 12 horas a 30 dias. Foram analisadas populações das regiões Alta Sorocabana (CSO, REF, MAS, LIS), Centro Norte (LAA, GAM, ESS, ZOR, RIM,), Extremo Oeste (TRE), Leste Paulista (ITA, CAHC, LAM), Nordeste Paulista (AR, LE), Sudoeste Paulista (NIA, SSA, JS, VIBE, NES) e
do Vale do Paraíba (APO, FAR, POR, LAC, FIG, VIS, ALE, LU, NOB, TPA, BDT1, BDT3, ANT, PIQ, PCE) (Figura 2).

As populações de carrapatos oriundas do estado do Rio Grande do Sul (JRRS) são provenientes de gado de corte (*Bos taurus taurus*) assim como as de Mato Grosso do Sul (*Bos taurus indicus*) (NET, StaP).

Figura 2 - Localização geográfica da procedência das populações de carrapatos do Brasil. Fonte:Wikimedia ([2010]).

3.4.1.2. Controle de carrapato

Todas as propriedades tinham problemas com o controle de carrapatos havendo sido utilizadas todas as classes de acaricidas. As classes mais usadas, por ordem de freqüência, foram associações entre OFs PS, PS, LMs, amitraz, OFs, fipronil e fluazuron.

Uso de fipronil. Treze populações de carrapatos (LAA, NES, LIS, TPA, ITA, CAHC, ESS, SSA, CSO, StaP, FIG, BDT1, BDT3) provinham de propriedades que nunca haviam utilizado fipronil nos animais e/ou lavouras, assim como formicida ou cupinicida. Quinze
fazendas usavam fipronil de uso veterinário para o controle dos carrapatos (JRRS, NIA, ZOR, NET, NOB, VIS, PIQ, FAR, POR, LAC, ALE, PCE, LU, JS, ANT), com histórico de uso de pelo menos três anos. Duas propriedades (ZOR, GAM) usaram fipronil de uso agrícola (Regent®800WG - BASF S.A.) nos animais em pelo menos três oportunidades. Estas fazendas baseavam-se no critério econômico no momento da eleição do carrapaticida, extrapolando produtos de uso agrícola para a sua aplicação no gado, na forma de aspersão. Nove propriedades do estado de São Paulo declararam não utilizar fipronil nos animais (LE, AR, LAM, TRE, RIM, APO, REF, MAS, VIBE) mas empregavam Regent® nas culturas de cana de açúcar e/ou no controle de cupins e formigas. Para estas populações, os proprietários negavam a aplicação de praguicidas nos animais.

A população JRRS, foi controlada com OFs e amitraz até 2003 quando esses princípios ativos foram substituídos por aplicações alternadas de fipronil, LMs e fluazuron a intervalos variáveis. Esta fazenda declarava ter problemas graves no controle do carrapato. A população NET recebeu 12 aplicações de fipronil nos últimos três anos, aparecendo recentemente problemas no controle. Na fazenda NIA só os animais secos e a recria eram tratados com fipronil havia três anos e pastoreavam em piquetes diferentes aos das vacas em ordenha, que eram tratadas com amitraz. No entanto, durante o período de seca dos animais, estes eram levados aos campos com carrapatos que tinham sido tratados com fipronil. Na fazenda PIQ, usou-se durante um ano e meio fipronil nas vacas em lactação a cada 2-3 meses e também em gado seco e de corte, tratamento que até hoje continua-se fazendo nestas duas categorias, havendo-se substituído o fipronil nas vacas em lactação por fluazuron e produtos fitoterápicos (neem). Tanto na fazenda NIA quanto na PIQ ainda não se tinham falhas de eficácia manifestas a fipronil. O mesmo foi declarado para as outras fazendas que usavam fipronil (NOB, VIS, FAR, POR, LAC, ALE, PCE, LU, JS e ANT).

Uso de lactonas macrocíclicas. Oito populações (BDT1, BDT3, TRE, JS, AR, StaP e SSA) foram coletadas em propriedades que relataram nunca ter utilizado qualquer LM para o controle de carrapatos. As outras propriedades (GAM, CSO, MAS, FIG, VIS ANT, POR, REF, APO, ESS, NET, TPA, PIQ, NOB, PCE, JRRS, FAR, LAC) vinham utilizando IVM havia mais de três anos, com freqüência variável.
3.4.2 Estabelecimentos do Uruguai.

No Uruguai, foram coletadas 28 populações de *R. (B.) microplus* de bovinos de estabelecimentos de diferentes Departamentos do país com e sem histórico de uso de fipronil ou IVM. Devido à insuficiente quantidade de larvas, as populações U-Tej e U-Pol13 foram testadas nas seguintes concentrações de fipronil: 0; 0,2; 0,8 e 2 ppm. Para a população Rea não foram feitas replicatas para fipronil, tendo sido testada com as seguintes concentrações de IVM: 0; 2,8; 24 e 100 ppm.

![Figura 3 - Localização geográfica da procedência das populações de carrapatos do Uruguai. Fonte: Servicio Geográfico Militar, Uruguai ([2010]).](image)
3.4.2.1 Localização e caracterização dos estabelecimentos

As 28 populações de carrapatos eram provenientes de diferentes regiões: Norte: Artigas (U-Frig, U-Rea, U-Bru), Rivera (U-Cblan, U-LaLat) e Salto (U-Ori, RFSan); Noroeste: Paysandú (U-Ñan, U-Snic, U-DUR, U-Am10, U-Per, U-Sap, U-Am20, U-Pol13, U-QUE, U-Cap, U-IRA) e Rio Negro (U-Flor, U-Gui2); e Sudeste: Rocha (U-Gar, U-Riv, U-Tej), Lavalleja (U-Bar, U-Trel, U-Aig, U-Pil) e Treinta e Tres (U-LaTap) (Figura 3).

A maioria dos estabelecimentos eram fazendas de exploração de gado de carne (Hereford) de tipo extensivo, com uma lotação animal média de 0,8 UA/ha. No entanto, as fazendas do Departamento de Paysandú, tinham uma lotação maior, por ser uma região de alta produtividade agrícola (culturas de trigo e soja e pastagens artificiais). Nos últimos cinco anos essa zona vem sendo utilizada de forma importante para a cultura de eucaliptos. Três fazendas também tinham cultivos de eucaliptos (U-DUR, U-Am10, U-Am20), mas não constituía a principal fonte de produção. Só as fazendas U-Per e U-SAP tinham como objetivo principal a produção de eucalipto e a U-SAP realizava silvi-pastoreio. Mais duas fazendas (U-Gui2, U-Riv), situadas em outros Departamentos também exploravam a cultura de eucalipto tendo uma lotação animal bem mais baixa do que as primeiras (0,2UA/ha).

3.4.2.2 Controle do carrapato

Oito fazendas usavam PS, OF+PS e amitraz para o controle do carrapato e nunca tinham usado avermectina nem fipronil (U-Cap, U-Aig, U-Snic, U-Gar, U-Bru, U-Trel, U-Cblan, U-Am20). Nove usaram avermectinas pelo menos duas vezes por ano nos últimos 3 anos (U-Flor, U-Per, U-Pil, U-Rea, U-Orí, U-Gui2, U-Pol13, U-Tej, U-Latap).

Seis fazendas, além da RFSan, usavam fipronil (U-IRA, U-DUR, U-QUE, U-SAP, U-Bar, U-Lalat) e outras quatro usaram fipronil alternando com ivermectina. (U-Am10, U-Ñan, U-Frig, U-Riv). Nos últimos 3–7 anos, as fazendas das populações U-IRA, U-DUR, U-QUE e U-SAP vinham usando fipronil para o controle do carrapato com uma frequência de 3-5 vezes/ano. Ultimamente todas estas fazendas começaram a apresentar falhas de eficácia com fipronil. As fazendas das populações U-Bar, U-Lalat e U-Am10 começaram a usar o fipronil recentemente, mas nenhuma delas tinha suspeitas de falhas de eficácia no campo. Esta última fazenda (U-Am10) assim como as fazendas U-Snic e U-Per também usaram PS no controle.
3.5 Determinação de resistência cruzada entre fipronil e outras drogas em *R. (B.) microplus*

3.5.1 Resistência cruzada com ivermectina

Para diagnóstico de resistência a IVM, foi conduzido o TIL segundo Klafke et al. (2006) utilizando uma série de diluições de IVM técnica (95,7%, Agromen Chemicals Co. LTD, Hang Zhou, China Lote 7231104). Foi preparada uma solução estoque de IVM 1% em etanol absoluto e conservada a 4 °C por no máximo uma semana. Na hora do teste, a solução estoque foi diluída 1/100 em um diluente composto por água destilada e Triton X-100 (Sigma) a 0,02%, obtendo-se uma concentração final de 0,01% (100ppm). Desta solução, foram feitas diluições seriadas a 30% no diluente a fim de obter as seguintes concentrações de trabalho (em ppm): 70; 49; 34,3; 24; 16,8; 11,7; 8,2; 5,7; 4; 2,8. Como controle, foi usado o diluente sem IVM. A determinação da mortalidade foi realizada após 24 horas.

O perfil de toxicidade da ivermectina foi determinado pelo TIL na cepa RFSan (referência resistente a fipronil) que nunca havia sido submetida a tratamentos com avermectinhas. Os valores de CL$_{50}$ (IC95%) da droga foram comparados com os da cepa susceptível (Mozo). Para verificar a hipótese de resistência cruzada entre fipronil e ivermectina foram também cruzados os dados de histórico de uso destas drogas, com o diagnóstico positivo ou negativo, para resistência nas populações de campo. Os dados das populações de campo do Brasil testadas com IVM foram fornecidos por Klafke, 2010 (em fase de elaboração)4.

3.5.2 Resistência cruzada com lindano

Para a detecção de resistência a lindano, foram usados o TIA e TPL para a população RFSan e para as populações de campo só o TPL. Foi usado lindano de grau técnico cedido pelo Instituto Biológico. No TIA foram usadas as seguintes concentrações (em ppm) tanto para a cepa Mozo quanto para a RFSan: 0; 15; 62,5; 125; 250; 500; 1000 com um tempo de imersão de um minuto. Foi avaliado o PO7d, e a percentagem de eclosão dos ovos. Na realização do TPL, seguiu-se o protocolo de Stone e Hadock (1962) e o preparo dos pacotes

4 KLAFKE, GM. São Paulo, 2010.
foi realizado segundo recomendações da FAO (2004). Os carrapatos foram testados em diluições duplas desde 1000 ppm até 1,95 ppm. Quando o número de carrapatos foi suficiente, populações de campo que se comportaram como resistentes ao fipronil, tanto do Brasil quanto do Uruguai, também foram testadas com lindano.

3.6 Análise dos dados

Para a análise dos dados obtidos na padronização dos testes foi usado o programa Intercooled Stata 10 (2007). No TIA foram usados os dados obtidos das duas populações (resistente e susceptível) de forma separada. Primeiro, foram determinadas as correlações entre o peso dos ovos ao dia 7 (PO7d) e peso dos ovos ao dia 14 (PO14d). Depois, foi realizada a transformação logarítmica das concentrações para a análise das regressões. Quando a mortalidade nos controles foi 5-10%, ela foi corrigida usando a fórmula de Abott; quando superior, o ensaio foi desconsiderado e não foi aplicada quando inferior a 5%.

\[
\text{\% de mortalidade corrigida} = \left(\frac{\text{\% MT} - \text{\% MC}}{100 - \text{\% MC}} \right) \times 100
\]

Onde:
MT= Percentagem de mortalidade nos tratamentos
MC= Percentagem de mortalidade nos controles

Para o cálculo da dose-resposta foram comparados os seguintes parâmetros:

a) Mortalidade: teleóginas que não colocaram ovos foram consideradas como mortas.
b) PO7d e PO14d, calculando-se a CL50 como a diluição que diminui o peso dos ovos à metade.
c) Índice de fertilidade (IFer) = peso dos ovos depositados (g)/peso das fêmeas (g)
d) Índice de fecundidade (IFec) = IFer x \% de eclosão

Nos testes de larvas, os dados de mortalidade foram submetidos a modelo de regressão Probit, determinando-se os estimados das CL para 50\% (CL50), CL para 99,9\% (CL99,9) e os seus respectivos intervalos de confiança de 95\% (IC).

Para a comparação das CL50 e CL90, estimadas a partir de testes com larvas das populações de campo e as cepas de referência susceptíveis (Mozo/POA) foi usado o programa Polo Plus (LeOra Sofware, 2004). O teste de Chi quadrado foi usado para testar a hipótese de
paralelismo e igualdade ($p=0.05$). Foram determinados os estimados da CL para 50% (CL$_{50}$) e para 90% (CL$_{90}$) de mortalidade com os seus respectivos intervalos de confiança de 95% (IC95%). Os valores de CL para cada população foram comparados com os da cepa de referência susceptível, levando também em conta os IC95%. A CL de uma população foi considerada significativamente diferente da referência susceptível quando os IC95% não se sobrepunham.

O Fator de Resistência (FR) foi calculado como o coeficiente das CL$_{50/90/99.9}$ de cada uma das populações de campo comparado com as correspondentes CL da cepa de referência susceptível segundo modelo matemático proposto por Robertson et al. (2007).

Para facilitar a interpretação dos dados sob um ponto de vista prático, foram estabelecidos três critérios para o diagnóstico de resistência nas populações de campo:

Susceptível: quando o valor da CL$_{50}$ estimada (IC95%) na população de campo não difere estatisticamente da cepa de referência.

Resistência incipiente: quando o valor da CL$_{50}$ estimada (IC95%) na população de campo difere estatisticamente da cepa de referência e o FR$_{50} < 2$.

Resistente: quando o valor da CL$_{50}$ estimada (IC95%) na população de campo difere estatisticamente da cepa de referência e o FR$_{50} \geq 2$.

Para a análise dos bioensaios com sinergistas também foi utilizado o programa Polo Plus (LeOra Software, 2004). Os valores de CL$_{50}$ (IC95%) obtidos na presença e ausência dos inibidores foram comparados para obtenção dos Fatores de Sinergismo (FS) através da seguinte equação:

$$FS = \frac{CL_{50}(IC95\%) \text{ sem inibidor}}{CL_{50}(IC95\%) \text{ com inibidor}}$$

Foram considerados estatisticamente diferentes somente os valores de FS que não apresentaram sobreposição dos intervalos de confiança de 95%.
4 RESULTADOS E DISCUSSÃO

4.1 Padronização dos bioensaios *in vitro* para fipronil e validação com população de referência resistente a fipronil

4.1.1 Teste de Imersão de Adultos (TIA)

Para padronização do teste foram utilizadas 3635 fêmeas da cepa susceptível Mozo e 4344 da cepa resistente RFSan. A *Figura 4* apresenta os gráficos da relação entre o PO7d e o PO14d mostrando alta associação positiva entre eles, com coeficiente de correlação (r) de 0,968 para cepa Mozo (n=62) e de 0,974 para a RFSan (n=305). Por ser o parâmetro mais precoce, nos cálculos posteriores, foi usado o PO7d para avaliação da resistência.
Figura 4 - Relação entre os pesos dos ovos registrados nos dias 7 e 14 para cepa de *R. (B.) microplus* susceptível (Mozo) e para população resistente ao fipronil (RFSan).
Os valores de CL₅₀ e CL₉₉,₉ obtidos para cada variável considerada (Mortalidade, PO7d, IFer, IFec) constam na Tabela 1 (cepa Mozo) e Tabela 2 (cepa RFSan). Na Figura 5 estão representadas as curvas de regressão da toxicidade do fipronil para cada variável considerada, comparando as duas populações.

Tabela 1 - Concentração letal de fipronil segundo variável em Testes de Imersão de Adultos (TIA) conduzidos com Rhipicephalus (B.) microplus cepa susceptível Mozo

Variável	N	n	Slope ±EP	t	R²	CL₅₀*(ppm) (IC95%)	CL₉₉,₉*(ppm) (IC95%)
Mortalidade	26	267	0,79 ±0,04	17,83	0,55	0,75c (0,72-0,84)	2,49c (2,35-2,6)
PO - 7d	23	197	-1,10 ±0,08	-13,89	0,50	0,62b (0,55-0,67)	1,36b (1,16-1,56)
IFer	23	202	-0,31 ±0,02	-12,75	0,45	0,66b (0,57-0,7)	1,46b (1,23-1,75)
IFec	17	125	-28,56 ±3,9	-7,23	0,3	0,45a (0,39-0,52)	0,84a (0,7-1,04)

N= número de ensaios; n= número de observações; Slope: inclinação da curva; EP, erro padrão; t = teste de Student; R² = Coeficiente da regressão; CL= concentração letal; *valores seguidos com a mesma letra não diferem significativamente para p < 0,05; Variáveis: PO-7d = Peso dos ovos ao 7 dia; IFer= Índice de fertilidade; IFec = Índice de fecundidade.

Tabela 2 - Concentração letal de fipronil segundo variável em Testes de Imersão de Adultos (TIA) conduzidos com Rhipicephalus (B.) microplus cepa resistente RFSan

Variável	N	Slope ±EP	t	R²	CL₅₀*(ppm) (IC95%)	CL₉₉,₉*(ppm) (IC95%)	FR**
Mortalidade	408	0,11±0,003	35,23	0,75	151,9c (140,2-163)	348013,7c (293606-41250)	202,4
PO - 7d	365	-0,15±0,004	-34,2	0,76	59,3b (50,4-70,5)	2297,5b (2017-2590)	96,3
IFer	365	-0,04±0,001	-32,7	0,75	66,4b (56,4-78,8)	2391,3b (2099-2750)	134,9
IFec	318	-3,55±0,5	-23,9	0,64	36,7a (21,9-35,2)	506,8a (427-589)	81,97

N= número de ensaios; n= número de observações; Slope: inclinação da curva; EP, erro padrão; t=teste de Student; R²= Coeficiente da regressão; CL= concentração letal; *valores seguidos com a mesma letra não diferem significativamente para p < 0,05; **FR= Fator de resistência. Variáveis: PO-7d = Peso dos ovos ao 7 dia; IF = Índice de fertilidade; IFec= Índice de fecundidade.
Nas duas populações não foram detectadas diferenças estatisticamente significativas entre as CL\textsubscript{50} determinadas para PO7d e IFer, ao contrário do constatado para Mortalidade e IFec. A concentração de fipronil necessária para inibir a metade da eclosão (IFec) foi inferior em relação às CL\textsubscript{50} das outras variáveis. O mesmo é valido em relação às CL\textsubscript{99.9}. Ao se comparar as CL\textsubscript{99.9}, foram detectadas diferenças significativas entre as concentrações letais para Mortalidade com as das demais variáveis. Como era previsível, tanto a CL\textsubscript{50} quanto a CL\textsubscript{99.9} para PO7d, foram similares àquelas referentes ao do IFer por estarem altamente relacionadas, biológica e estatisticamente. Os FR calculados para cada um dos parâmetros estão registrados na Tabela 2 onde os valores mais altos foram observados para Mortalidade.

Qualquer um dos parâmetros utilizados permitiu uma boa discriminação entre as populações susceptível e resistente. A maior variação foi observada com a variável IFec, onde o intervalo de confiança da regressão foi amplo tanto para a cepa Mozo quanto RFSan (Figura 5).

![Figura 5](image)

Figura 5 - Atividade comparativa do fipronil para dose-resposta de mortalidade, peso dos ovos, índice de fertilidade e índice de fecundidade em uma cepa de *R. (B.) microplus* susceptível (Mozo) e em uma população resistente (RFSan). Linhas descontínuas indicam intervalos de confiança 95%.
Na cepa Mozo, a dispersão das CL\textsubscript{50} (Figura 6) segundo variável analisada foi diferente daquelas observadas para CL\textsubscript{99,9} (Figura 7) nas quais, como esperado, houve maior variação. O IFec foi o parâmetro que mostrou menor dispersão de CL\textsubscript{50/99,9}.

![Diagrama de dispersão CL\textsubscript{50} e CL\textsubscript{99,9} do fipronil com relação à mortalidade, peso dos ovos, índice de fertilidade e índice de fecundidade (inibição de postura) para R.(B.) microplus, cepa Mozo.](image)

Figura 6 - Distribuição das CL\textsubscript{50} e CL\textsubscript{99,9} do fipronil com relação à mortalidade, peso dos ovos, índice de fertilidade e índice de fecundidade (inibição de postura) para R.(B.) microplus, cepa Mozo.

Na população RFSan, a distribuição das CL\textsubscript{50}, para qualquer uma das variáveis, teve uma menor dispersão em relação a CL\textsubscript{99,9} (Figura 7). A CL\textsubscript{50} do IFec foi a variável com menor dispersão. Já, na CL\textsubscript{99,9} esta variável apresentou uma dispersão semelhante àsquelas do IFer e PO. Tanto a CL\textsubscript{50} quanto a CL\textsubscript{99,9} para Mortalidade apresentaram as maiores variações.

A eleição do fipronil técnico e não do comercial foi baseada na dificuldade de se obter uma solução controle, já que se desconhecem todos os ingredientes e proporções componentes do excipiente o que poderia afetar a mortalidade final (Shaw, 1966). Além disto, a solubilização do fipronil comercial só era atingida com uma alta concentração de acetona que poderia interferir nos ensaios. Problemas de solubilidade com produtos comerciais foram observados por outros autores (Sabatini et al., 2001). No presente trabalho, tanto o uso de fipronil técnico quanto o uso da acetona como solvente facilitaram a padronização dos três tipos de bioensaios em adequação. No entanto, acetona é muito volátil e foi observado que só
poderiam se manter soluções estoque de fipronil sem alterações dos resultados por até duas semanas. Por outro lado, não é conveniente manter soluções com baixas concentrações de fipronil (0,01%) em acetona 5% ou 10% porque depois de alguns dias, o fipronil começa a precipitar.

![Distribuição das CL50 e CL99,9 do fipronil com relação à mortalidade, peso dos ovos, índice de fertilidade e índice de fecundidade para *R. (B.) microplus*, cepa RFSan.](image)

Figura 7 - Distribuição das CL50 e CL99,9 do fipronil com relação à mortalidade, peso dos ovos, índice de fertilidade e índice de fecundidade para *R. (B.) microplus*, cepa RFSan.

No TIA, embora tenha sido constatada uma alta variação das CL50 estimadas na Mozo para Mortalidade, qualquer uma das variáveis estudadas pode ser usada para o diagnóstico da resistência. Essa alta variação das CL50 se deve, provavelmente, ao baixo número de teleóginas usadas por unidade de observação (n=10), pois nem sempre um grande número de fêmeas ingurgitadas, de tamanho uniforme, se encontrava disponível. No entanto, esse comportamento não foi esperado em relação ao peso dos ovos e ao IF, já que elas são variáveis contínuas. A variável IFec mostrou a maior variação de dados na curva dose-resposta com um IC95% muito amplo. Talvez isto se deva ao longo tempo de incubação. Os
dados foram obtidos depois das 5-6 semanas em contraposição com os da mortalidade ou peso dos ovos que foram obtidos em uma semana. A pequena variação da distribuição das CL₅₀ da mortalidade, talvez se deva a que o registro de mortalidade foi dado pela postura e não pelo peso ou viabilidade dos ovos. A cepa Mozo pode ser considerada homogênea visto que as variações na CL₅₀ de todos os parâmetros registrados refletem a variação normal dessa cepa (Robertson et al., 2007).

A população resistente deve ser considerada heterogênea, pelo qual a alta variação dos estimados da CL₅₀ para mortalidade era esperada já que os dois tipos de genotipos, susceptíveis e resistentes, estavam presentes quando foram testados. Os intervalos de confiança foram muito amplos quando foi usado o TIA, talvez porque concentrações que matassem 70-95% dos adultos não foram testadas.

O TIA é influenciado por vários fatores, um deles é o tempo de imersão. Para o fipronil, esse é um ponto crítico devido à alta toxicidade do acaricida. Sabatini et al. (2001) usando a mesma concentração para LMs observaram um incremento da mortalidade com o tempo. Diferentes tempos de imersão têm sido usados para outros acaricidas. Para amitraz (Oliveira et al., 2000) e cipermetrina (Mendes et al., 2000) foram usados tempos de imersão de 10 e 15 minutos, respectivamente. Nos estudos de Jonsson et al. (2007), foram usados os protocolos de FAO (2004), com um tempo de imersão 30 minutos. No presente trabalho o tempo máximo de imersão foi 1 minuto. Jonsson et al. (2007) avaliaram o TIA como bioensaio para discriminar populações resistentes ao amitraz e cipermetrina, mas não obtiveram reprodutibilidade e a inclinação da curva (slope) foi muito baixa. A principal causa disso foi o número baixo de teleóginas usadas por diluição (n=10) e a ausência de repetições. Os autores concluíram que o TIA não é um método adequado para screening de resistência devido à grande variação dos dados obtidos. No presente trabalho os valores de slope gerados foram também muito baixos. No entanto, apesar dessa variação, os nossos dados mostram que o TIA foi confiável para o diagnóstico de resistência a fipronil. Isto provavelmente se deva ao fato de que presentemente tenha sido utilizado um grande número de carrapatos por concentração além das múltiplas repetições por bioensaio (Tabelas 1 e 2).

Para diagnóstico de resistência, seria desejável realizar o bioensaio usando simultaneamente, a população suspeita de resistência com uma susceptível, utilizando 3 concentrações (0,2 ppm, 1 ppm e 5 ppm). Finalmente, concordo com Jonsson et al. (2007) no fato de que incluindo mais indivíduos por concentração se gerariam dados mais confiáveis.
Qualquer uma das quatro variáveis consideradas no TIA para a determinação das CDs (Tabela 1) mostraram-se eficiente para diferenciar uma população suscetível de uma resistente, mas a utilização da Mortalidade se mostra vantajosa pois é o parâmetro mais precocemente registrado. A concentração discriminatória, CD \((2 \times CL_{99,9}) \) determinada para Mortalidade foi 5 ppm. A presença de teleóginas ovipondo quando tratadas com a CD seria um diagnóstico positivo de resistência. Usando este parâmetro, é possível obter resultados confiáveis em uma semana e com menos trabalho, pois não é necessário incubar os ovos e determinar a percentagem de eclosão das larvas. A obtenção de dados rapidamente é de grande importância prática especialmente quando é necessário decidir sobre a rotação de acaricidas em uma área em particular, onde os carrapatos podem ser resistentes a droga em uso. No entanto, é necessário um grande número de teleóginas de tamanho uniforme para realizar um teste seguro e não sempre isso é possível. Porém, quando as teleóginas coletadas são poucas, pode se fazer um teste com larvas.

4.1.2 Teste de Pacote com Larvas (TPL) e Teste de Imersão de Larvas (TIL)

Os resultados da padronização do TPL e do TIL para a cepa Mozo estão apresentados na Tabela 3. Nos ensaios de TPL com a cepa Mozo em paralelo com a população RFSan, obtiveram-se valores de inclinação da curva \((slope) \) semelhantes entre si (Tabela 4), com linhas de regressão paralelas mas não iguais (Figura 8), não se detectando diferenças significativas entre as duas populações. Os resultados do TPL para a RFSan concordam com os obtidos na prova de estábulo por Cuore et al. (2007), com esta mesma cepa, onde o fipronil teve uma eficácia de 93% em larvas. Indivíduos jovens ou imaturos geralmente são mais susceptíveis aos agentes químicos do que os adultos, provavelmente em função das diferenças no grau de desenvolvimento do mecanismo de detoxificação.
Tabela 3 - Padronização do Teste de Pacote de Larvas (TPL) e de Imersão de Larvas (TIL) para fipronil conduzido com *R. (B.) microplus* cepa susceptível Mozo

Teste	N	n	Slope ±EP	t	R²	CL₅₀* (ppm) IC95%	CL₉₉,₉*(ppm) IC95%
TPL	41	392	17,1 ± 0,6	27,4	0,66	44,8	1182,9
						35,8-54,4	688,4-2031,9
TIL	71	693	67,3 ± 1,5	46	0,75	1,43	3,82
						1,34-1,51	3,5-4,1

N= Número de ensaios realizados; n= número de diluições; Slope: inclinação da curva; EP: erro padrão; t: test de Student; R², coeficiente da regressão; CL: concentração letal; IC: intervalo de confiança 95%.* Valores seguidos com a mesma letra não diferem significativamente para *p* < 0,05.

Tabela 4 - Concentrações letais de fipronil obtidas por TPL e TIL para *R. (B.) microplus* cepa susceptível Mozo e cepa resistente à fipronil RFSan

Teste	CEPA	Slope ±EP	t	CL₅₀* (ppm) IC95%	CL₉₉,₉*(ppm) IC95%	FR₅₀**
TPL	Mozo	16,9 ±0,8	21,55	64,4c	50,4-82,2	-
	RFSan	15,5 ±0,8	20,01	98,1c	77-125,1	1,52
TIL	Mozo	71,3 ±3,4	21,15	1,8¹	1,8-1,9	-
	RFSan	20,6 ±1	20,34	9,7¹	7,3-12,8	5,36

Número de ensaios realizados: 18 (TPL) e 12 (TIL). Slope: inclinação da curva; EP: erro padrão; t: test de Student; R², coeficiente da regressão; CL: concentração letal; IC: intervalo de confiança 95%; * Valores seguidos com a mesma letra não diferem significativamente para *p* < 0,05; ** FR= Fator de resistência.

No TIL, o fipronil apresentou uma maior toxicidade em relação ao TPL (Tabela 3), coincidindo com os resultados obtidos por Shaw (1966) e White e col. (2004) para outras drogas. Esta maior toxicidade deve-se, provavelmente, ao fato do TIL propiciar um maior contato da larva com o produto em teste. Embora o TPL seja um teste mais fácil e menos laborioso de ser executado, o TIL foi mais eficiente na discriminação das populações (Figura 8).
As CD determinadas pelo TIL e TPL foram, respectivamente, 8 ppm e 23,66 ppm.

Segundo Jonsson et al. (2007), baixos valores de slope para o TIA poderiam constituir problema para a definição das CD diagnósticas da resistência, particularmente se os FR são baixos. No presente trabalho, os valores de slope foram muito baixos, porém, seus FR foram muito mais elevados. Os altos valores para a mortalidade calculados para a cepa resistente a fipronil concordam com o baixo valor percentual de eficácia (18%) determinado por provas de estábulo (Cuore et al., 2007). Os nossos dados também mostram que é possível usar o TIA como técnica diagnóstica para detecção de resistência a fipronil.
Em resumo, os resultados sugerem que qualquer um dos bioensaios desenvolvidos neste estudo pode ser usado para o diagnóstico de resistência de *R. (B.) microplus* a fipronil, embora o TIL tenha se demonstrado como o de melhor desempenho. Os testes resultaram econômicos, práticos, precisos e confiáveis para o diagnóstico da resistência ao fipronil e podem ser utilizados para o seu manejo em populações de campo. No entanto, uma melhor avaliação sobre sua reprodutibilidade poderá ser obtida após o emprego destes protocolos por outros laboratórios. Mais ensaios com Teste de Pacote com Larvas (TPL) devem ser realizados, envolvendo um maior número de populações, para referendar seu poder discriminatório de resistência a fipronil.

4.2 Bioensaios com inibidores enzimáticos e fipronil

O efeito dos inibidores estudados para a população RFSan através do TIA se encontra representado na Tabela 5. A Tabela 6 apresenta os resultados dos testes usando inibidores enzimáticos obtidos com as cepas Mozo e RFSan, empregando o TIL. Os valores de FS obtidos para a população RFSan foram baixos, não observando-se nenhuma alteração fenotípica devida à adição de DEM ou BPO. No teste com larvas, ao se compararem esses valores com os da cepa Mozo observa-se uma inibição maior das esterases pelo TPP e de oxidases pelo BPO. Esses dados sugerem a presença de fenótipos com modificação da atividade esterase e P450s. O fato do teste não ter evidenciado nenhum efeito sinérgico nos adultos e sim nas larvas, pode ser devido ao baixo número de indivíduos testados ou diferenciações entre os estádios evolutivos.

Tabela 5 - Efeito de inibidores enzimáticos e fipronil sobre o índice de fertilidade determinado pelo Teste de Imersão de Adultos (n=20) em uma população de *R.(B.) microplus* resistente a fipronil (RFSan)

Concentração (ppm)	N	Sem inibidor	DEM 0,5%	BPO 0,1%	FS* DEM	FS* BPO
0	20	0,34	0,3	0,24	1,12	1,41
10	20	0,21	0,13	0,15	1,56	1,35
100	20	0,17	0,13	0,15	1,26	1,11
1000	20	0,09	0,07	0,1	1,46	0,98
5000	20	0,03	0,04	0,05	0,72	0,57

FS, fator de sinergismo
Tabela 6 - Efeito de inibidores enzimáticos e fipronil sobre populações de *R. (B.) microplus* tomadas como cepas referências susceptível (Mozo) e resistente a fipronil (RFSan) determinado pelo Teste de Imersão de Larvas

Cepa	Inibidor	n	Slope±EP	CL50	IC95%	FR	IC95%	FS	IC95%
RFSan	----	1913	4±0,3	7,31	5,81-11,24	3,98	3,4-4,6	---	---
RFSan	TPP	1702	1±0,1	2,88	1,98-5,25	---	2,5	2,1-3,1	---
RFSan	BPO	1231	2±0,1	2,21	1,74-2,89	---	3,3	2,8-4	---
RFSan	----	2286	3±0,1	10,08	8,24-13,5	---	---	---	---
RFSan	DEM	2314	2±0,1	9,1	5,7-28	---	1,1	0,8-1,5	---
Mozo	----	3193	6±0,2	1,84	1,73-1,95	---	---	---	---
Mozo	TPP	1742	3±0,2	1,65	1,20-2,44	---	1,1	0,9-1,1	---
Mozo	BPO	1300	7±0,3	0,85	0,75-0,94	---	2,2	2,1-2,3	---
Mozo	DEM	2788	5,7±0,2	1,34	1,25-1,44	---	1,4	1,3-1,4	---

n = número de larveas; Slope: inclinação da curva; EP, erro padrão; *FS, fator de sinergismo.

Inibidores enzimáticos: Trifenilfosfato e Butóxido de piperonila 0,01% e Dietilmaleato 0,05%.

Os valores de FS obtidos com o TPP concordam com os dados preliminares observados por Miller et al. (2008) em uma população pressionada com fipronil. Os autores pressionaram experimentalmente com fipronil por 3 gerações, uma população resistente a permetrina (El Zamora). Curiosamente, a resistência a este piretróide não estava associada a mutação do canal de sódio, mas sim ao aumento de atividade de esterases. Como este mecanismo de resistência é raro para PS, os autores suspeitaram que o aumento de atividade de esterases poderia ser derivado da seleção para resistência ao fipronil. Para confirmar esta hipótese, uma segunda cepa (Coazacoalcos), que tem atividade aumentada de esterases, foi testada para resistência ao fipronil. Essa população foi coletada do campo 13 anos antes que o fipronil aparecesse no mercado e é mantida em laboratório sob pressão de seleção com permetrina. A cepa Coazacoalcos se mostrou resistente ao fipronil comparado a uma cepa susceptível, mas não tanto quanto a cepa El Zamora. Pelo qual o aumento de atividade de esterases poderia ter contribuído para a resistência a fipronil. Os resultados do presente trabalho poderiam também estar relacionados ao da aumento da atividade das esterases devido a presença de indivíduos resistentes a OFs (Miller et al., 1999, 2001; Villarino et al., 2001, 2002). Embora se saiba que as populações RFSan, U-QUE e U-DUR não foram expostas à esta molécula há mais de 15 anos, mesmo assim é possível que ainda existam indivíduos resistentes por esta característica. Situação semelhante observou-se na população JRRS, com o maior FS para TPP.
Tabela 7 - Efeito de inibidores enzimáticos e fipronil sobre cepa susceptível (Mozo) e população de campo (U-DUR) de *R. (B.) microplus* determinados pelo Teste de Imersão de Larvas

Cepa	Inibidor	N	Slope±EP	CL50	IC 95%	FR	IC95%	FS	IC95%
U-DUR	SEM	3415	2,22±0,1	2,02	1,79-2,32	2,1	1,9-2,2	---	---
U-DUR	TPP	3104	2,47±0,1	1,27	1,16-1,38	---	---	1,6	1,5-1,7
U-DUR	DEM	2921	2,43±0,1	1,38	1,27-1,51	---	---	1,5	1,3-1,6
Mozo	SEM	3104	3,33±0,1	0,98	0,86-1,12	---	---	---	---
Mozo	TPP	3183	3,12±0,1	1,01	0,94-1,08	---	---	1	0,9-1
Mozo	DEM	2834	3,01±0,1	1,18	1,08-1,3	---	---	0,8	0,8-0,9

n= número de larvas; Slope: inclinação da curva; EP, erro padrão; *FS, fator de sinergismo; Inibidores enzimáticos: Trifenilfosfato e Butóxido de piperonila 0,01% e Dietilmaleato 0,05%.

Tabela 8 - Efeito de inibidores enzimáticos e fipronil sobre populações de *R. (B.) microplus* através do Teste de Imersão de Larvas

Cepa	Inibidor	n	Slope±EP	CL50	IC 95%	FR	IC95%	FS	IC95%
U-QUE	SEM	1005	2,4±0,2	nd	---	87,7	76,1-101,1	0,9	0,8-1
U-QUE	DEM	1314	7,1±0,1	72,69	51,1-88,1	0,9	0,8-1		
JRRS	SEM	3999	1,0±0,3	6,42	4,21-10,5	3,5	3,1-3,9		
JRRS	TPP	1762	1,5±0,1	2,25	1,55-3,3	2,9	2,4-3,4		

n= número de larvas; Slope: inclinação da curva; EP, erro padrão; *FS, fator de sinergismo; Inibidores enzimáticos: Trifenilfosfato e Butóxido de piperonila 0,01% e Dietilmaleato 0,05%.

A adição de BPO contribuiu para uma diminuição do FR na população RFSan, reduzindo seu valor para quase a metade. Este resultado pode ter uma aplicação prática para o controle de populações com este tipo de resistência mediante uma nova formulação que permitisse a adição do sinergista. No entanto, com relação ao sinergismo por BPO, há de se levar em conta que as oxidases atuam em inúmeras reações e que todas as populações de campo testadas tinham antecedentes de falha de eficácia no controle do carrapato quando do uso de PS. Esta situação não permite uma conclusão sobre sua participação no mecanismo de resistência ao fipronil.
Possivelmente, o uso dos piretróides nas últimas décadas tenha pré-selecionado para resistência a fipronil, seja pelo aumento das esterases e/ou P450s, o que se traduz em uma resposta rápida à seleção pelo acaricida manifestada através de falhas de eficácia à droga no campo. Qualquer inferência genética baseada em ensaios toxicológicos, em que é avaliado o fenótipo (viva/morta), pode levar a uma interpretação errônea. A análise de genes específicos (p.e. GluCl, GABA-Cl) em busca de mutações associadas ao fenótipo resistente pode abrir perspectivas reais sobre a base genética da resistência envolvida nesta ou outras classes de drogas. Mais estudos devem ser feitos para esclarecer o/s mecanismo/s de resistência a fipronil, e para isso, seria importante a obtenção de uma cepa homogênea, através de seleção por tratamento com a droga.

4.3 Diagnóstico de resistência ao fipronil no campo

Devido a que estatisticamente algumas populações podem ser classificadas como resistentes quando o acaricida ainda é eficaz no campo, para facilitar a interpretação dos resultados do ponto de vista prático, adotou-se o critério Resistência incipiente, quando havia diferença estatística no valor da CL$_{50}$ estimada (IC95%) na população de campo com a cepa de referência (FR$_{50}$< 2), mas não se observavam falhas de eficácia no campo. Em populações com este comportamento, o monitoramento da resistência deve ser adotado e mantido de maneira a preservar a molécula em uso, possibilitando escolha de estratégias de controle mais eficientes antes que a resistência se estabeleça conduzindo a falhas de eficácia.

4.3.1 Brasil

Nenhuma das 13 populações de carrapatos dos estabelecimentos que nunca tinham usado fipronil nas suas fazendas se apresentou como resistente a droga através do TIL (Tabela 9 e Figura 9). Todas elas apresentaram valores altos de slope demonstrando um comportamento semelhante ao das cepas referências (POA/MOZO), indicando susceptibilidade ao acaricida.

Das 38 populações de campo estudadas (Tabelas 9 e 10), 19 foram resistentes ao fipronil com valores de FR \geq 2 e seis com valores de FR< 2 mas com CL$_{50}$ significativamente diferentes das cepas de referência (Figura 10) sendo, então, consideradas populações com resistência incipiente. Os fatores de resistência (FR) obtidos através do TIL, para as
populações oriundas dos Estados de Rio Grande do Sul e de Mato Grosso do Sul foram de 14,9 e 2,6, respectivamente, enquanto que as populações do Estado de São Paulo apresentaram fatores de resistência que variaram entre 1,2 e 26,57 (Tabela 10).

Os valores de slope são dados indicativos de resistência, sendo comum a obtenção de baixos valores em cepas de campo resistentes. Isto talvez seja devido à presença de genes resistentes e susceptíveis nessa população permitindo a existência de indivíduos homozigotos e heterozigotos (Roush e Daly, 1990). A população JRRS (Figura 10) foi a que apresentou a resposta menos uniforme ao incremento das concentrações de fipronil, indicando que a mesma encontrava-se em processo de seleção mais avançado. O alto valor de FR registrado em laboratório para esta população é concordante com as falhas no controle observadas no campo. Já, na população PIQ não era esperado um valor de FR alto uma vez que só foram realizadas 8 aplicações de fipronil. Talvez, a introdução de animais para engorda procedentes de outras fazendas, sem controle sanitário prévio, tenha possibilitado a introdução de carrapatos resistentes. Também nas fazendas NIA e VIS, o diagnóstico de resistência pelo TIL foi mais precoce em relação ao observado no campo, já que os produtores ainda não tinham observado uma diminuição de eficácia.

As populações das fazendas FAR, ALE e PCE, também tiveram valores altos de FR, no entanto, nenhuma delas tinha queixas de falha de eficácia no campo. É provável, entretanto, que esta aparente incongruência possa ser devido à falta de atenção dos tratadores de animais que não registraram essas falhas ou estas ainda não eram importantes (abaixo de 70%).
Tabela 9 - Concentrações letais de fipronil obtidas pelo Teste de Imersão de Larvas para a cepa susceptível (Mozo/POA) e populações de campo de *Rhipicephalus (Boophilus) microplus* sem antecedentes de uso de fipronil no estabelecimento

(continua)

População	n	Slope±EP	χ^2 (gl)	CL50 (IC95%)	FR50 (IC95%)*	CL90 (IC95%)	FR90 (IC95%)*
LIS	1856	7± 0,3	58,6 (16)	1,3 (1,2-1,3)	1 (0,9-1)	1,9 (1,8-2,1)	0,95 (0,9-1)
Mozo	1585	6,4±0,3	39 (16)	1,3 (1,2-1,3)	---	2 (1,9-2,2)	---
LAA	1062	3,2 ±0,2	45,5 (10)	1,3 (1,1-1,5)	1,1 (1-1,1)	3,2 (2,5-4,9)	1,74 (1,5-2)
CSO	1363	4,8 ±0,2	111,6 (10)	1,5 (1,2-1,8)	1,2 (1,1-1,3)	2,7 (2,2-3,4)	1,5 (1,3-1,7)
POA	1320	9,2 ±0,8	8 (10)	1 (1-1,1)	0,8 (0,8-0,9)	1,4 (1,3-1,5)	0,7 (0,7-0,8)
Mozo	1025	6,9±0,5	25 (9)	1,2 (1,1-1,3)	---	1,9 (1,6-2,3)	---
ITA	841	8,2± 0,8	71,3 (8)	0,6 (0,4-0,7)	0,6 (0,6-0,7)	0,9 (0,8-1,4)	0,7 (0,6-0,7)
Mozo	1294	8,7±0,5	106,5 (10)	1 (0,9-1,1)	---	1,4 (1,2-1,7)	---
CAHC	1800	4,6 ±0,2	57,5 (16)	0,8 (0,7-0,85)	1 (0,9-1)	1,5 (1,3-1,7)	1,4 (1,3-1,5)
Mozo	1991	10,3 ±0,6	62,1 (19)	0,8 (0,8-0,84)	---	1,1 (1-1,2)	---
SSA	2783	5,5±0,2	24,7 (28)	0,9 (0,88-0,9)	0,7 (0,6-0,7)	1,6 (1,5-1,6)	0,7 (0,7-0,8)
Mozo	2909	5,6± 0,2	120 (27)	1,3 (1,2-1,4)	---	2,2 (2-2,4)	---

* Indica significância estatística (P<0.05); n: número de larvas; Slope: inclinação da curva; EP: erro padrão; gl: graus de liberdade; CL: concentração letal em ppm.; IC: intervalo de confiança; FR50 fator de resistência para CL50; FR90: fator de resistência para CL90.
| População | n | Slope±EP | χ^2 (gl) | CL$_{50}$ (IC95%) | FR$_{50}$ (IC95%)* | CL$_{90}$ (IC95%) | FR$_{90}$ (IC95%)* |
|-----------|------|----------|--------------|------------------|--------------------|------------------|--------------------|
| SSeb | 9636 | 2,36 ±0,1 | 1421,4 (96) | 1,16 (0,98-1,34) | 0,96 (0,93-0,99) | 2,84 (2,4-3,4) | 0,95 0.89-1.01 |
| Mozo | 8788 | 3,56 ±0,1 | 813,41 (88) | 1,2 (1,12-1,28) | | 2,9 (2,6-3,4) | |
| NES | 3056 | 7,2 ±0,2 | 16,4 (31) | 1 (0,9-1) | 0,77 (0,74-0,79) | 1,5 (1,4-1,5) | 0,77 (0,73-0,8) |
| Mozo | 2413 | 7,18 ±0,2 | 29,2 (28) | 1,28 (1,2-1,3) | | 1,9 (1,87-2) | |
| StaP | 1935 | 5,64 ±0,2 | 54,2 (22) | 0,76 (0,71-0,8) | 0,73 (0,69-0,76) | 1,28 (1,2-1,4) | 0,8 (0,76-0,85) |
| Mozo | 2001 | 7,07 ±0,2 | 37,4 (25) | 1,05 (1-1,08) | | 1,59 *1,5-1,67 | |
| FIG | 1832 | 6,89 ±0,3 | 131,1 (25) | 1,07 (0,97-1,15) | 1,07 (1,01-1,12) | 1,63 (1,5-1,8) | 0,9 (0,85-0,97) |
| Mozo | 1813 | 5,04 ±0,2 | 149,9 (24) | 1 (0,89-1,1) | | 1,79 (1,6-2,1) | |
| BDT1 | 1965 | 4,37 ±0,2 | 34 (20) | 1,38 (1,31-1,46) | 1,01 (0,96-1,07) | 2,72 (2,5-3) | 1,18 (1,1-1,3) |
| BDT3 | 1496 | 4,03 ±0,2 | 55,04 (20) | 1,29 (1,18-1,41) | 0,94 (0,88-0,99) | 2,69 (2,37-3,18) | 1,17 (1,06-1,29) |
| MOZO | 1303 | 5,82 ±0,3 | 23,4 (15) | 1,38 (1,31-1,45) | | 2,3 (2,14-2,5) | |

* Indica significância estatística (P<0.05); n: número de larvas; Slope: inclinação da curva; EP: erro padrão; gl: graus de liberdade; CL: concentração letal em ppm.; IC: intervalo de confiança; FR$_{50}$ fator de resistência para CL$_{50}$; FR$_{90}$: fator de resistência para CL$_{90}$.
Tabela 10 - Concentrações letais de fipronil obtidas pelo Teste de Imersão de larvas para a cepa susceptível (Mozo/POA) e para populações de campo de *Rhipicephalus (B.) microplus* e antecedentes de uso de fipronil no estabelecimento (continua)

População	n	Slope±EP	χ^2 (gl)	CL₅₀ (IC95%)	FR₅₀ (IC95%)*	CL₉₀ (IC95%)	FR₉₀ (IC95%)*	No animal
JRRS	3693	1 ± 0,03	312 (30)	7,4 (4,9-12,3)	14,9 (12,9-17,2)*	251,8 (101-1091)	292,1 (207-412)*	SIM
POA	2072	5,3 ± 0,2	35,2 (18)	0,5 (0,4-0,5)	---	0,9 (0,8-0,9)	---	
NIA	2021	3,2 ± 0,2	26,7 (19)	5,5 (4,8-6,5)	6,9 (6,1-7,7)*	13,9 (11-19,1)	13 (10,4-16,2)*	SIM
Mozo	2021	10,4 ± 0,6	62,1 (19)	0,8 (0,77-0,8)	---	1,1 (1-1,2)	---	
ZOR	2921	1,8 ± 0,1	13,8 (28)	9,1 (6,9-13,6)	6,3 (4,5-8,9)*	46,7 (27,3-103)	19,3 (10-37,2)*	SIM
Mozo	2921	5,7 ± 0,1	55 (27)	1,4 (1,4-1,5)	---	2,4 (2,3-2,6)	---	
NET	3397	1,6 ± 0,1	102,1 (34)	3,7 (3,3-4,3)	2,6 (2,4-2,8)*	24 (18,8-32,5)	10,8 (9,2-12,7)*	SIM
Mozo	3397	6,7 ± 0,3	21,9 (28)	1,4 (1,4-1,5)	---	2,2 (2,1-2,3)	---	
NOB	1835	1,6 ± 0,1	115,09 (25)	4,4 (3,4-6,2)	2,7 (24-3,1)*	27,8 (15-57-77,8)	10,7 (7,5-15)*	SIM
Mozo	1835	6,1 ± 0,3	29,9 (24)	1,6 (1,5-1,7)	---	2,6 (2,5-2,8)	---	
VIS	1877	2,1 ± 0,2	9,08 (25)	5,1 (4,2-6,7)	5,1 (4-6,5)*	20,6 (13,8-36,7)	11,5 (7,1-18,7)*	SIM
Mozo	1877	5 ± 0,2	149,97 (24)	1 (0,9-1,1)	---	1,8 (1,6-2,1)	---	
PIQ	2561	1 ± 0,1	82,4 (28)	21 (11,3-69,7)	16,4 (10,3-26)*	442,7 (114-6629)	211,7 (76-593)*	SIM
Mozo	2561	6 ± 0,2	307,3 (28)	1,3 (1,2-1,4)	---	2,1 (1,9-2,5)	---	

* Indica significância estatística (P<0,05); n: número de larvas; Slope: inclinação da curva; EP: erro padrão; gl: graus de liberdade; CL: concentração letal em ppm.; IC: intervalo de confiança; FR₅₀ fator de resistência para CL₅₀; FR₉₀ fator de resistência para CL₉₀.
Tabela 10 - Concentrações letais de fipronil obtidas pelo Teste de Imersão de larvas para a cepa susceptível (Mozo/POA) e para populações de campo de *Rhipicephalus (B.) microplus* e antecedentes de uso de fipronil no estabelecimento (n=25) (continuação)

População	n	Slope± EP	χ²(gl)	CL₅₀ (IC95%)	FR₅₀ (IC95%)*	CL₉₀ (IC95%)	FR₉₀ (IC95%)*	No animal
FAR	1391	2,1 ± 0,2	34,85 (16)	3,5 (2,8-4,9)	4,1 (3,4-4,8)*	14 (8,7-33,9)	10 (6,7-15,1)*	SIM
POR	1214	2,6 ± 0,2	20,03 (15)	2,1 (1,9-2,4)	2,4 (2,2-2,7)*	6,7 (5,2-9,5)	4,7 (3,7-6)*	SIM
LAC	1199	2,7 ± 0,2	30,13 (15)	1,8 (1,6-2)	2,1 (1,9-2,3)*	5,3 (4,2-7,6)	3,8 (3,1-4,6)*	SIM
Mozoo	916	6,1 ± 0,5	11,31 (11)	0,9 (0,8-0,9)	---	1,4 (1,3-1,5)	---	---
ALE	682	1,8 ± 0,2	38,36 (19)	5,32 (4,8-3,3)	2,8 (3,4-6,1)*	27,6 (15-85,6)	12,6 (7,4-21,6)*	SIM
PCE	1184	1 ± 0,2	33,3 (20)	29,2 (13,6-184)	2,6 (12,1-58,2)*	591 (120-24893)	271 (51,5-1424)*	SIM
Mozoo	1939	4,3 ± 0,2	75,6	1,1 (1-1,2)	---	2,2 (2,2-2,5)	---	---
LU	2496	1,7±0,1	206 (19)	1,1 (0,82-1,41)	2,26 (2,1-2,5)*	6,1 (3,9-13)	7,4 (6,3-8,7)*	SIM
Mozoo	1747	5,6 ± 0,2	66,6 (18)	0,48 (0,4-0,5)	---	0,8 (0,75-0,9)	---	---
JS	8599	1,7 ± 0,1	616,6 (88)	2,2 (1,9-2,5)	1,6 (1,5-1,7)*	12,9 (9,2-20,5)	3,6 (3-4,2)*	SIM
Mozoo	9036	3 ± 0,1	1057,3 (88)	1,4 (1,3-1,5)	---	3,6 (3,1-4,4)	---	---
ANT	1739	3,7 ± 0,2	29,4 (25)	2 (1,9-2,2)	1,8 (1,7-1,9)*	4,5 (4-5,1)	2,5 (2,2-2,8)*	SIM
Mozoo	2017	6 ± 0,3	50,9 (24)	1,1 (1-1,1)	---	1,8 (1,7-1,9)	---	---
GAM	1506	2,0 ± 0,1	62,6 (10)	3 (2,3-4,4)	2,5 (2,2-2,8)*	13,3 (7,7-38)	7,1 (4,5-9,3)*	SIM
LE	1154	3,1 ± 0,3	27,7 (6)	7,03 (5,3-13,1)	5,8 (5-6,7)*	18,4 (10,8-75,3)	9,92 (7,3-13,5)*	NÃO
Mozoo	1025	6,9 ± 0,5	25 (9)	1,2 (1,1-1,3)	---	2 (1,9-2,2)	---	---

* Indica significância estatística (P<0.05); n: número de larvas; Slope: inclinação da curva; EP: erro padrão; gl: graus de liberdade; CL: concentração letal em ppm.; IC: intervalo de confiança; FR₅₀ fator de resistência para CL₅₀; FR₉₀: fator de resistência para CL₉₀.
Tabela 10 - Concentrações letais de fipronil obtidas pelo Teste de Imersão de larvas para a cepa susceptível (Mozo/POA) e para populações de campo de *Rhipicephalus (B.) microplus* e antecedentes de uso de fipronil no estabelecimento

(conclusão)

População	n	Slope ± EP	χ²(gl)	CL₅₀ (IC95%)	FR₅₀ (IC95%)*	CL₉₀ (IC95%)	FR₉₀ (IC95%)*	No animal
AR	1472	3,1 ± 0,2	75,3 (12)	1,7 (1,4-2)	2,7 (2,5-3)*	4,4 (3,5-6,4)	4,4 (3,8-5,1)*	NÃO
LAM	1193	2,7 ± 0,2	64,2 (12)	3,0 (2,2-4,1)	4,9 (4,3-5,4)*	9,0 (6,1-19,7)	9,1 (7,2-11,4)*	NÃO
POA	528	6,3 ± 0,7	1,8 (3)	0,6 (0,6-0,7)	---	1 (0,1-1,1)	---	
TRE	3126	1,2 ± 0,1	130,5 (31)	4,1 (3,2-5,9)	3,2 (2,8-3,6)*	45,1 (23,3-132,4)	21,5 (14,5-31,7)*	NÃO
Mozo	2504	6,1 ± 0,2	14,4 (27)	1,3 (1,3-1,3)	---	2,1 (2-2,1)	---	
RIM	2673	3,6 ± 0,1	31,7 (31)	1,8 (1,8-1,9)	3,2 (2,9-3,4)*	4,2 (3,9-4,6)	3,4 (3-3,7)*	NÃO
Mozo	2005	3,8 ± 0,2	24 (22)	0,6 (0,5-0,6)	---	1,2 (1,2-1,3)	---	
APO	1767	2,9 ± 0,7	21,3 (25)	2,2 (2,1-2,3)	1,8 (1,6-1,9)*	6,34 (5,4-7,7)	3,3 (2,8-4)*	NÃO
Mozo	1781	6,9 ± 0,3	28,2 (24)	1,2 (1,2-1,3)	---	1,89 (1,8-2)	---	
REF	3234	6,8±0,1	34,8 (31)	1,6 (1,6-1,7)	1,2 (1,1-1,2)	2,5 (2,4-2,6)	1,1 (1,1-1,2)	NÃO
Mozo	2570	6,6±0,1	123 (28)	1,4 (1,3-1,5)	---	2,2 (2-2,4)	---	
MAS	1752	2,5 ± 0,1	64,3 (25)	2,7 (2,4-3)	1,7 (1,5-1,8)*	8,7 (6,9-12)	3,3 (2,8-3,9)*	NÃO
Mozo	1801	6,1 ± 0,3	29,9 (24)	1,6 (1,5-1,7)	---	2,6 (2,5-2,8)	---	
VIBE	2673	2,9 ± 0,1	94,7 (28)	2,4 (2,2-2,7)	1,7 (1,6-1,8)*	6,6 (5,5-8,6)	2,8 (2,5-3,1)*	NÃO
Mozo	2476	5,8 ± 0,2	57,7 (28)	1,4 (1,4-1,5)	---	2,4 (2,2-2,6)	---	

* Indica significância estatística (P<0,05); n: número de larvas; Slope: inclinação da curva; EP: erro padrão; cl: graus de liberdade; CL: concentração letal em ppm.; IC: intervalo de confiança; FR₅₀ fator de resistência para CL₅₀; FR₉₀ fator de resistência para CL₉₀.
Figura 9 - Curva dose-resposta de fipronil obtida pelo TIL em populações de campo *Rhipicephalus (Boophilus) microplus* (Brasil) que se apresentaram como susceptíveis.
Figura 10 - Curva dose-resposta do fipronil obtida pelo TIL em populações de campo *Rhipicephalus (Boophilus) microplus* (Brasil) que se apresentaram como resistentes.
Figura 10 - Curva dose-resposta do fipronil obtida pelo TIL em populações de campo *Rhipicephalus (Boophilus) microplus* (Brasil) que se apresentaram como resistentes.
Os dados de FR obtidos para as populações ZOR e GAM são concordantes com o uso de fipronil de aplicação agrícola nos animais. O fipronil de uso agrícola é, aproximadamente, 20 vezes mais barato do que o de uso animal no Brasil. Por essa razão, alguns produtores o usam nos animais por aspersão, sem ter certeza da dose final que está sendo aplicada. A falta de informação e o uso irresponsável deste procedimento podem contribuir para falhas no controle, dano na saúde pública devido a resíduos no leite e riscos de intoxicação dos animais. Essa prática está contribuindo para inviabilizar o uso dos poucos acaricidas que ainda são eficazes nas regiões tropicais. A assistência veterinária nas propriedades é fundamental para a recomendação de um correto controle do carrapato, introduzindo o uso do LIT e ou do LPT como ferramentas de rotina no monitoramento da resistência acaricida. O maior problema no presente trabalho foi a obtenção de informação confiável dos históricos de tratamento porque os produtores são cientes que estão usando um produto proibido para gado em lactação.

A população REF se comportou como suscetível no TIL (Figura 9), mas, embora na propriedade usasse fipronil no controle de pragas agrícolas, o fazia de forma esporádica. As populações LE, AR, LAM, TRE, RIM, APO, MAS, VIBE (Figura 10), apresentaram características de resistência embora os proprietários tenham declarado nunca terem usado fipronil. No caso das populações APO e MAS, o controle de cupins com fipronil era muito intenso. Na propriedade LE, a cultura de cana de açúcar ocupava uma grande extensão de terra sendo prática comum a utilização de fipronil na plantação da semente, do mesmo modo que na propriedade TRE. Nas outras três propriedades (AR, LAM, RIM) também se cultivava cana, mas o que se destacava era o controle de cupins e formigas com fipronil. Nestas propriedades, assim como também nas de origem de ZOR e GAM, a área colonizada pelos cupins e formigas era importante em relação à área destinada para a pastagem dos animais. Além disto, o combate dos insetos era muito frequente. Considerando que os metabólitos do fipronil são mais tóxicos que a própria molécula e que permanecem por mais tempo no ambiente, a intensidade de controle dos insetos pode indiretamente estar afetando aqueles artrópodes que compartilham o mesmo ambiente (Zhu et al., 2004; Gunasekara et al., 2007).

Atualmente, o fipronil é registrado no Brasil para o controle de cupins, besouros, lagartas e brocas nas culturas de algodão, batata, cana de açúcar, milho e soja (Ministério da Agricultura, Pecuária e Abastecimento, 2007). Embora o fipronil tenha baixa mobilidade no ambiente, a alta concentração com que é utilizada como formicida (10 gr/boca/m2) e a alta lotação animal pode ter propiciado o encontro do carrapato com o praguicida com a conseqüente pressão de seleção indireta. Portanto, pode-se inferir que a utilização deste
praguicida como formicida ou cupinicida nas fazendas em questão, tenha contribuído para o aparecimento da resistência nessas populações. Este tipo de interferência foi sugerido como provável causa de falhas no controle de insetos de importância na saúde pública (Georghiou, 1990; Kasap et al., 2000) e de carrapatos R. (B.) microplus (Castro-Janer et al., 2010a). Chama-se a atenção que o Brasil, é o maior produtor mundial de cana-de-açúcar e o Estado de São Paulo, o maior produtor e usuário de tecnologia na cultura de cana-de-açúcar (SINDAG, 2007), pelo qual, pode-se pensar que o problema de resistência a fipronil esteja mais disseminado. A utilização do TIL em populações sem antecedentes de uso de qualquer produto a base de fipronil garantiu a confiabilidade do teste.

Das cinco populações com FR50 <2 (Figura 10, Tabela 10) e significativamente resistentes (Resistência incipiente) duas tinham sido submetidas a poucos tratamentos (JS, ANT) o que pode justificar esses baixos valores. Por outro lado, as populações MAS, APO, e VIBE também com valores baixos de FR, não tinham antecedentes de uso de fipronil apresentando CL50 (IC95%) e valores de slope diferenciados da cepa Mozo. É provável que essas populações tenham tido contato prévio com fipronil. No entanto não se pode afirmar que sejam resistentes, devendo-se repetir o teste e aprimorar as informações a respeito do histórico de uso de praguicidas nessas fazendas. Já a população REF, também sem histórico de uso da droga, apresentou CL50 (IC95%) e valor de slope muito próximos aos da cepa Mozo o que sugere que não seja uma população que esteja sendo selecionada para resistência a fipronil.

Na Tabela 11 constam as percentagens de sobrevivência dos carrapatos na concentração mais alta testada para populações resistentes, superior a 2 ppm (concentração que matou 100% da população susceptível referência). Em todas as populações resistentes, mais de 10% dos indivíduos sobreviveu à CD (8 ppm) determinada previamente com a cepa Mozo com utilização de TIL (seção 4.1.2.; Castro-Janer et al., 2009) indicando a possibilidade de ser usada com confiabilidade para o diagnóstico de resistência em populações de campo. As populações de campo usualmente são heterogêneas com mescla de genótipos. Quando as curvas dose-respostas destes diferentes genótipos se sobrepõem, a utilização de uma única CD não é segura (ffrench-Constant e Roush, 1990). Por outro lado, com a utilização de uma CD alta só estarão se detectando indivíduos homozigotos resistentes, o que pode ser de utilidade na confirmação de resistência. Mas, quando se quer monitorar a resistência, seria conveniente incluir a detecção dos indivíduos heterozigotos, o que permitiria instaurar mais precocemente medidas de manejo. Isto pode ser feito com a inclusão de uma CD menor. Os dados do presente trabalho, mostram que usando uma CD menor (3 ppm),
incluíram-se mais nove populações resistentes (TRE, JS, MAS, LE, GAM, LAM, AR, RIM, U-IRA). Como estas populações não foram testadas a 8 ppm, não se pode afirmar que elas poderiam ter sido classificadas erradamente como susceptíveis a essa CD. Sugere-se então a utilização de dois CD: 3 ppm e 8 ppm para evitar o diagnóstico de populações “falso negativas” a resistência.

Tabela 11 - Percentagem de *Rhipicephalus (Boophilus) microplus* sobreviventes de populações resistentes a fipronil (TIL) na maior concentração do produto testada e à concentração discriminatória (8 ppm)

População	Concentração de fipronil (ppm)			
	3	5	8	10
TRE	56		46	
JS	29			
REF	3			
LAR	2			
MAS	35			
LE		63,3		
GAM		41,7		
LAM		35,6		
AR		13,3		
RIM		8,5		
NIA			32	
ZOR			59,5	
VIBE			22	
NET			28	
PIQ			75	
JRRS			40	
U-IRA			71,2	
U-DUR			20	
U-QUE			93,8	
U-SAP			95,2	
O TPL mostrou-se menos sensível do que o TIL já que somente 3 das 6 populações que se apresentaram como resistentes no TIL foram consideradas resistentes (Tabelas 12 e 13). Duas populações que se apresentaram como suspeitas no TIL (MAS, REF) foram consideradas susceptíveis no TPL. A população TRE, que apresentou um FR ≥ 2 no TIL foi considerada susceptível no TPL. As diferenças entre os valores de slope das populações de campo e as susceptíveis registradas pelo TPL foram menores que aquelas verificadas pelo TIL (Tabelas 9 e 10). As CL$_{50}$ determinadas pelo TPL foram maiores que as obtidas pelo TIL (Tabelas 9, 10 e 12). Nas Figuras 11 e 12 mostram os perfis toxicológicos das populações susceptíveis e resistente, respectivamente, com uso do TPL.

Figura 11 - Curva dose-resposta do fipronil obtida pelo TPL em populações de *Rhipicephalus (Boophilus) microplus* de campo (Brasil) que se apresentaram como susceptíveis no TIL.
Tabela 12

Concentrações letais de fipronil obtidas pelo Teste de Pacote de Larvas para a cepa suscetível (Mozo/POA) e para populações de campo de *Rhipicephalus (Boophilus) microplus* (continua)

População	n	Slope±EP	χ² (gl)	CL₅₀ (IC₉₅%)	FR₅₀ (IC₉₅%)*	CL₉₀ (IC₉₅%)	FR₉₀ (IC₉₅%)*
NIA	672	1,4±0,1	31,6 (8)	40 (24-64,3)	15,6 (11,8-20,8)*	306,8 (163-825,6)	21,6 (13,7-34)*
Mozo	479	1,7±0,1	47,0 (4)	nd	140,6 (48,6-407)*	nd	349044 (14960-8143866)*
GAM	2618	0,3±0,05	313,3 (25)	nd	18 (25-120)	18 (25-120)	18 (25-120)
Mozo	1803	4,4±0,3	16,0 (22)	21,9 (20,5-23,4)	2,8 (2,5- 3,2)*	42,7 (39,2-47,2)	42,7 (39,2-47,2)
ZOR	2756	1,5±0,05	123,4 (25)	75,1 (60,5- 94,7)	2,8 (2,5- 3,2)*	570,1 (392,3-930,3)	7,7 (6,2- 9,5)*
Mozo	2647	2,9±0,1	28,5 (25)	26,8 (24,4- 29,1)	2,8 (2,5- 3,2)*	74,3 (66,7- 84,3)	7,7 (6,2- 9,5)*
JRRS	2816	1,2±0,05	364,8 (19)	78,5 (48-144,5)	18,8 (16,4-21,5)*	878,5 (384,8-3755,3)	85,5 (66,4-110,2)*
POA	1681	3,3±0,2	62,5 (18)	4,2 (3,6-4,9)	---	10,3 (8,5-13,3)	---
AR	2136	1,81±0,2	17,71 (28)	728,2 (533,8-1220)	6,97 (4,7-10,6)*	3818,4 (1968,5-11813)	4,4 (1,9-10,1)*
Mozo	2120	1,44 ±0,1	21,55 (28)	nd	---	---	---
LU	1779	1,55 ±0,1	115,3 (15)	8,62 (6,07-13)	0,37 (0,3-0,4)	57,8 (36-118,9)	1,5 (1,1-1,9)*
Mozo	776	5,54 ±0,5	5,351 (6)	23,12 (21,2-25,4)	---	39,4 (34,8-46,4)	---
MAS	1992	1,71 ±0,1	14,13 (25)	24,96 (26,7-27,4)	0,94 (0,84-1,1)	139,7 (120,9-164,2)	1,3 (1,1-1,6)
Mozo	2264	2,09 ±0,1	137,07 (19)	26,44 (21,4-32,8)	---	108,3 (78,7-171,1)	---
TRE	3102	1,06 ±0,04	165,67 (25)	24,7 (18-33,2)	0,93 (0,8-1,1)	400,6 (251,7-752,9)	5 (4- 6,3)*
Mozo	2270	2,68 ±0,1	192,64 (22)	26,72 (21,2-33,3)	---	80,1 (60,4-120,6)	---

* Indica significância estatística (P<0,05); n: número de larvas; Slope: inclinação da curva; EP: erro padrão; gl: graus de liberdade; CL: concentração letal em ppm.; IC: intervalo de confiança; FR₅₀ fator de resistência para CL₅₀; FR₉₀: fator de resistência para CL₉₀; nd: não determinada.
Tabela 12 - Concentrações letais de fipronil obtidas pelo Teste de Pacote de Larvas para a cepa susceptível (Mozo/POA) e para populações de campo de *Rhipicephalus (Boophilus) microplus* (conclusão)

População	n	Slope±EP	χ^2 (gl)	CL$_{50}$ (IC95%)	FR$_{50}$ (IC95%)*	CL$_{90}$ (IC95%)	FR$_{90}$ (IC95%)*
CSO	2250	3,13 ±0,2	10,36 (25)	7,63 (7,07-8,22)	0,25 (0,23-0,28)	19,9 (17,9-22,4)	0,3 (0,2-0,35)
REF	2342	5,39 ±0,3	4,99 (25)	9,2 (8,7-9,7)	0,3 (0,28-0,3)	15,9 (14,7-17,4)	0,24 (0,2-0,3)
LIS	2250	4,34 ±0,2	12,68 (25)	10,16 (9,5-10,8)	0,3 (0,3-0,4)	20 (18,4-22,2)	0,3 (0,26-0,34)
RIM	1849	2,11 ±0,1	171,75 (22)	12,68 (6,3-22,4)	0,4 (0,37-0,5)	51,3 (27,9-186,6)	0,6 (0,5-0,7)
Mozo	2143	3,72 ±0,2	87,12 (24)	30,36 (26,7-34,7)	---	67,1 (56,3-84,5)	---
NES	1866	2,38 ±0,1	235,38 (20)	8,65 (6,5-11,7)	0,93 (0,8-1)	29,9 (20,3-55,2)	0,7 (0,6-0,9)
Mozo	1937	2,04 ±0,1	99,07 (20)	9,33 (7,6-11,5)	---	39,7 (295-58,9)	---

* Indica significância estatística (P<0.05); n: número de larvas; Slope: inclinação da curva; EP: erro padrão; gl: graus de liberdade; CL: concentração letal em ppm.; IC: intervalo de confiança; FR$_{50}$ fator de resistência para CL$_{50}$; FR$_{90}$: fator de resistência para CL$_{90}$.
Figura 12 - Curva dose-resposta do fipronil obtida pelo TPL em populações de *Rhipicephalus* (*Boophilus*) *microplus* de campo (Brasil) que se apresentaram como resistentes no TIL.
Ao se considerar os valores de FR obtidos através do TPL em relação ao TIL (Tabela 13) pode se observar que dobrou para uma população (GAM) e diminuiu para outra (ZOR) em quase a metade do valor. No entanto, para outra população (JRRS) o valor do FR variou muito pouco. As populações MAS e REF que foram diagnosticadas como suspeitas pelo TIL foram consideradas susceptíveis pelo TPL. As duas populações negativas pelo TIL (CSO, LIS) também foram classificadas como susceptíveis no TPL.

O TIL mostrou-se mais sensível para o diagnóstico de resistência em relação ao TPL, confirmando os dados obtidos na padronização dos testes com fipronil (Castro-Janer et al., 2009). A maior sensibilidade observada no TIL já foi reportada por Shaw (1966) e por White et al. (2004) e, talvez, possa ser devido a maior superfície de contato da droga com o corpo da larva.

Tabela 13 - Relação de Fatores de resistência (FR) para o fipronil determinados pelo Teste de Imersão de Larvas (TIL) e Teste de Pacote de Larvas (TPL) em populações de carrapatos do Brasil (n=8)

Cepa	FR TIL	FR TPL
JRRS	14,9	18,77
GAM	2,46	140,63
ZOR	6,3	2,81
TRE	3,18	0,93
MAS	1,75	0,94
REF	1,17	0,31
CSO	0,75	0,25
LIS	1	0,33

Finalmente, o trabalho possibilitou observações in loco, das más práticas de manejo no controle de carrapatos. Um exemplo é o emprego de fipronil de uso agrícola como acaricida em animais, e outro, o uso de fipronil em animais em lactação, observados em algumas propriedades de gado de leite no Estado de São Paulo, de produção familiar. Esta situação, deve ser considerada um problema alarmante para a saúde pública (resíduos no leite), para saúde animal (intoxicações) e para o controle do carrapato (resistência).
4.3.2 Uruguai

A Figura 13 apresenta os gráficos do perfil toxicológico das populações de campo em relação ao fipronil e que resultaram susceptíveis pelo TIL. Nenhuma das oito populações que nunca foram submetidas a tratamentos com fipronil ou avermectina se apresentaram como resistentes no TIL (Tabela 14) o que demonstra a alta especificidade do teste. Nenhuma das nove populações que foram submetidas a tratamentos só com avermectinas e que não tinham falhas de eficácia no campo apresentaram FR ≥2 para o fipronil. Embora os IC95% da CL₅₀ da população U-Rea não tenham-se superpostos com os da Mozo, esta população deve ser considerada não resistente por ter um valor de slope maior e por ter-se obtido um valor muito baixo de FR. (Tabela 15).

A total mortalidade registrada nas populações U-Tej e U-Pol13 com a utilização da CD (8 ppm) obtida na padronização do teste (seção 4.1.2) (Castro-Janer et al., 2009), coincide com o histórico de não uso do fipronil nos animais.

Das 10 populações com antecedentes de uso de fipronil (Tabela 16), além da população de referência resistente a fipronil (RFSan), foram diagnosticadas mais cinco populações (U-IRA, U-DUR, U-QUE, U-SAP, U-Am10) as quatro primeiras com queixas de falhas de eficácia do fipronil, todas elas oriundas do Departamento de Paysandú (Figura 14).
Figura 13 - Curva dose-resposta do fipronil obtida pelo TIL em populações de *Rhipicephalus* (*Boophilus*) *microplus* de campo (Uruguai) que não foram submetidas a tratamento com o produto.
Tabela 14 - Concentração letal de fipronil e fatores de resistência obtidos pelo Teste de Imersão de Larvas para a cepa susceptível (Mozo) e para populações de campo de *R. (B.) microplus* que nunca foram submetidas a tratamentos com fipronil ou avermectinas

População	n	Slope±EP	χ² (gl)	CL₅₀ (IC95%)	FR₅₀ (IC95%)*	CL₉₀(IC95%)	FR₉₀(IC95%)*
U-Cap	3734	3,73±0,13	320,9 (28)	0,93(0,8-1)	0,55 (0,52-0,57)	2,05 (1,7-2,5)	0,67 (0,62-0,73)
Mozó	2506	5,00±0,2	238,5 (21)	1,69 (1,5-1,9)	-	3,05 (2,5-4,2)	-
U-Aig	1501	7,43±0,33	166,1 (13)	1,14 (0,99-1,3)	0,69 (0,66-0,71)	1,7 (1,48-2,1)	0,6 (0,56-0,63)
Mozó	3194	5,51±0,18	166,4 (27)	1,66 (1,5-1,7)	-	2,84 (2,6-3,3)	-
U-Snic	2586	2,38±0,08	351,1 (25)	1,16 (0,9-1,5)	0,83 (0,78-0,89)	4,3 (2,8-7)	1,76 (1,5-2,02)
Mozó	2686	5,46±0,2	95,3 (24)	1,41 (1,3-1,5)	-	2,42 (2,2-2,7)	-
U-Gar	2318	4,19±0,22	138,5 (21)	1,09 (0,9-1,2)	0,95 (0,9-1,01)	2,22 (1,85-2,97)	0,98 (1,5-1,9)
Mozó	3530	4,75±0,16	67,01 (25)	1,15 (1,1-1,2)	-	2,27 (2-2,6)	-
U-Bru	2426	4,14±0,17	205,5 (20)	0,81 (0,7-1,9)	0,81 (0,77-0,85)	1,66 (1,4-2,1)	0,9 (0,87-1)
Mozó	3116	5,22±0,2	71,4 (25)	1,01 (0,96-1)	-	1,78 (1,65-1,9)	-
U-Trel	2356	4,50±0,17	78,3 (25)	0,7 (0,65-0,75)	0,83 (0,78-0,88)	1,35 (1,2-1,5)	0,6 (0,6-0,7)
Mozó	2553	3,28±0,12	141,7 (25)	0,84 (0,76-0,9)	-	2,08 (1,78-2,54)	-
U-Cblan	706	4,96±0,45	31,3 (8)	0,81 (0,6-0,9)	1,09 (0,99-1,2)	1,47 (1,2-2,09)	1,1 (0,96-1,2)
Mozó	1795	4,84±0,21	123,3 (22)	0,74 (0,66-0,8)	-	1,36 (1,2-1,59)	-
U-Am20	2308	5,37±0,23	49,6 (20)	1,09 (1,03-1,15)	0,78 (0,75-0,81)	1,89 (1,74-2,1)	0,9 (0,84-0,96)
Mozó	3239	7,1±0,23	333 (25)	1,39 (1,27-1,54)	-	2,01 (1,84-2,6)	-

* Indica significância estatística (P<0.05); n: número de larvas; Slope: inclinação da curva; EP: erro padrão; gl: graus de liberdade; CL: concentração letal em ppm.; IC: intervalo de confiança; FR₅₀ fator de resistência para CL₅₀; FR₉₀: fator de resistência para CL₉₀.
| População | n | Slope±EP | χ^2(gl) | CL50 (IC95%) | FR50(IC95%)* | CL90(IC95%) | FR90 (IC95%)* |
|-----------|-----|----------|--------------|--------------|--------------|-------------|---------------|
| U-Flor | 1097 | 4,73±0,31 | 6,3 (8) | 0,7 (0,66-0,74) | 0,52 (0,49-0,55) | 1,31 (1,2-1,44) | 0,6 (0,55-0,68) |
| Mozo | 2867 | 6,49±0,22 | 337,5 (25) | 1,35 (1,2-1,5) | -- | 2,13 (1,87-2,6) | -- |
| U-Per | 1994 | 3,65±0,17 | 45,6 (20) | 0,55 (0,5-0,6) | 0,56 (0,52-0,6) | 1,23 (1,1-1,4) | 0,5 (0,5-0,6) |
| Mozo | 3204 | 3,33±0,11 | 317,9 (31) | 0,98 (0,86-1,1) | -- | 2,38 (1,96-3,1) | -- |
| U-Pil | 2662 | 2,51±0,13 | 254,9 (24) | 0,66 (0,46-0,8) | 0,39 (0,36-0,42) | 2,14 (1,7-3,2) | 0,7 (0,6-0,8) |
| Mozo | 2506 | 4,99±0,2 | 238,5 (21) | 1,69 (1,5-1,9) | -- | 3,05 (2,5-4,2) | -- |
| U-Rea | 1061 | 6,29±0,41 | 8,2 (7) | 1,21 (1,06-1,18) | 1,29 (1,23-1,36) | 1,79 (1,67-1,99) | 1,1 (1-1,2) |
| Mozo | 3100 | 4,68±0,18 | 84,5 (28) | 0,87 (0,8-0,9) | -- | 1,63 (1,5-1,8) | -- |
| U-Ori | 3187 | 3,92±0,14 | 197,3 (31) | 0,54 (0,48-0,6) | 0,85 (0,81-0,9) | 1,15 (1,1-1,35) | 0,9 (0,87-1) |
| Mozo | 2582 | 4,47±0,16 | 140,3 (26) | 0,64 (0,57-0,69) | -- | 1,23 (1,1-1,4) | -- |
| U-Gui2 | 2422 | 5,29±0,23 | 34,3 (20) | 0,66 (0,63-0,7) | 0,49 (0,47-0,51) | 1,16 (1,09-1,25) | 0,5 (0,51-0,58) |
| Mozo | 2867 | 6,49±0,22 | 337,5 (25) | 1,35 (1,2-1,5) | -- | 2,13 (1,87-2,6) | -- |
| U-LaTap | 2442 | 5,50±0,23 | 81,5 (20) | 0,88 (0,8-0,9) | 0,63 (0,6-0,65) | 1,5 (1,36-1,7) | 0,7 (0,66-0,7) |
| Mozo | 3239 | 6,89±0,23 | 458,1 (25) | 1,39 (1,27-1,55) | -- | 2,1 (1,9-2,4) | -- |

* Indica significância estatística (P<0.05); n: número de larvas; Slope: inclinação da curva; EP: erro padrão; gl: graus de liberdade; CL: concentração letal em ppm.; IC: intervalo de confiança; FR₅₀ fator de resistência para CL₅₀; FR₉₀: fator de resistência para CL₉₀.
Figura 14 - Curva dose-resposta do fipronil obtida pelo TIL em populações de *Rhipicephalus* (*Boophilus*) *microplus* de campo (Uruguai) que foram submetidas a tratamento com o produto.
Através do TIL foram obtidos valores de inclinação da curva bem diferentes para a cepa referência em relação às de campo. Para estas, os valores do slope variaram entre 0,69 e 2,23 enquanto que para a Mozo, entre 3,8 e 4,4. As populações U-IRA, U-DUR, U-QUE, U-SAP, U-Am10 foram diagnosticadas como resistentes.

As mortalidades obtidas no TIA para a cepa Mozo nas concentrações 1 e 2 ppm foram 55,6% e 100%, respectivamente. Para a população U-DUR estas taxas foram 5,5 e 33,3% nas concentrações 2 e 10 ppm, respectivamente. O FR50 obtido pelo TIA foi maior do que o obtido pelo TIL (32 e 3,3, respectivamente). Estudos prévios mostraram valores de toxicidade do fipronil significativamente mais altos no adulto do que nas larvas (Castro-Janer et al., 2009). Jonsson et al. (2007) mostrou que a aplicação de CD (para amitraz e cipermetrina) no TIA modificado não é uma eficiente ferramenta para o diagnóstico da resistência. Embora só uma população (U-DUR) tenha sido testada, a CD determinada previamente para o fipronil de 5 ppm (Castro-Janer et al., 2009) pode ser usada com sucesso para determinar resistência a fipronil em adultos. Usando essa CD, que produz 100% de mortalidade na cepa Mozo, 89% dos sobreviventes foram classificados como resistentes nessa população. A alta sensibilidade do teste possibilitou detectar resistência quando a frequência de indivíduos resistentes era baixa.

Usando o TIL, a maior concentração de fipronil empregada para testar a população U-IRA (5 ppm) produziu 32% de mortalidade e uma alta mortalidade na população U-DUR (50,6%). Tanto para a população U-QUE quanto para a U-SAP não foi possível determinar a CL50/90, devido aos poucos pontos de mortalidade registrados na curva dose-resposta além de fato de terem sido testadas concentrações mais elevadas (100 ppm e 10 ppm, respectivamente). A maior concentração testada para a população U-SAP (10 ppm) produziu 4,4% de mortalidade. Para a população U-QUE foi possível testar uma maior concentração de fipronil, obtendo-se 20% de mortalidade com 100 ppm. Estas duas populações (U-SAP e U-QUE) mostraram os mais altos FR (Tabela 16).
Tabela 16 - Concentração letal de fipronil e fatores de resistência obtidos pelo Teste de Imersão de Larvas para a cepa susceptível (Mozo) e para populações de campo de *R. (B.) microplus* submetidas a tratamentos com fipronil e não submetidas a tratamentos com avermectinas (continua)

População	n	Slope±EP	χ^2(gl)	CL$_{50}$ (IC95%)	FR$_{50}$ (IC95%)*	CL$_{90}$ (IC95%)	FR$_{90}$ (IC95%)*
RFSan	2559	1,89±0,1	149 (21)	9,7 (7,3-12,7)	5,4 (4,5-6,4)*	73,66 (46,1-146,1)	24,8 (20,1-30,6)*
Mozo	3193	6,14±0,2	185,5 (24)	1,8 (1,7-1,9)	-	2,97 (2,7-3,4)	-
U-IRA	572	1,82±0,25	18,85 (5)	9,8 (4,7-259,3)	21,02 (13,4-33)*	49,6 (13,3-42617)	62 (25,9-147,6)*
Mozo	1315	5,46±0,27	46,48 (3)	0,47 (0,41-0,52)	-	0,8 (0,7-0,9)	-
U-DUR	3066	2,38±0,09	540,12 (31)	4,86 (3,6-7,6)	3,25 (2,97-3,6)*	16,75 (10-41,8)	5,3 (4,5-6,3)*
Mozo	3032	3,95±0,14	421,60 (31)	1,50 (1,3-1,75)	-	3,16 (2,5-4,5)	-
U-QUE	1005	2,37±0,19	539,42 (13)	nd	87,7 (76,1-101,1)*	nd	141 (104,2-191)*
Mozo	1467	3,83±0,2	370,37 (13)	1,46 (0,95-1,94)	-	3,15 (2,3-8,6)	-
U-SAP	899	0,69±0,27	9,27 (7)	nd	3513,4 (12,7-968949)*	nd	133599 (17,7-1009232413)*
Mozo	3100	4,68±0,18	84,47(28)	0,87 (0,8-0,9)	-	1,63 (1,5-1,8)	-

* Indica significância estatística (P<0.05); n: número de larvas; Slope: inclinação da curva; EP: erro padrão; gl: graus de liberdade; CL: concentração letal em ppm.; IC: intervalo de confiança; FR$_{50}$ fator de resistência para CL$_{50}$; FR$_{90}$: fator de resistência para CL$_{90}$; nd: não determinado.
Tabela 16 - Concentração letal de fipronil e fatores de resistência obtidos pelo Teste de Imersão de Larvas para a cepa susceptível (Mozo) e para populações de campo de *R. (B.) microplus* submetidas a tratamentos com fipronil e não submetidas a tratamentos com avermectinas (conclusão)

População	n	Slope±EP	χ^2(gl)	CL$_{50}$ (IC95%)	FR$_{50}$ (IC95%)*	CL$_{90}$ (IC95%)	FR$_{90}$ (IC95%)*
U-Bar	3530	4,75±0,16	76,61 (25)	2,04 (1,9-2,2)	1,78 (1,69-1,88)*	3,8 (3,4-4,3)	1,67 (1,52-1,85)*
Mozo	2912	4,35±0,16	67,01 (25)	1,15 (1-1,2)	-	2,26 (2-2,6)	-
U-Lalat	1202	3,27±0,18	115,59 (12)	0,64 (0,5-0,8)	0,65 (0,61-0,71)	1,57 (1,2-2,7)	0,96 (0,85-1,09)
Mozo	1641	4,46±0,19	337,68 (18)	0,97 (0,8-1,2)	-	1,63 (1,3-2,5)	-
U-Am10**	3415	2,23±0,08	149,05 (31)	2,02 (1,8-2,3)	2,06 (1,92-2,21)*	7,62 (5,96-10,5)	3,2 (2,8-3,7)*
Mozo	3104	3,33±0,11	317,27 (30)	0,98 (0,86-1,1)	-	2,38 (1,96-3,2)	-
U-Ñan**	2322	6,17±0,27	66,94 (20)	0,68 (0,6-0,7)	0,74 (0,71-0,77)	1,09 (1-1,2)	0,7 (0,68-0,8)
Mozo	2771	5,96±0,21	49,97 (25)	0,92 (0,88-0,95)	-	1,5 (1,4-1,6)	-
U-Frig**	2316	3,95±0,14	146,14 (25)	0,75 (0,67-0,8)	0,93 (0,88-0,99)	1,58 (1,38-1,89)	0,8 (0,8-0,9)
Mozo	2171	3,46±0,13	327,96 (25)	0,8 (0,68-0,95)	-	1,89 (1,5-2,7)	-
U-Riv**	2655	2,33±0,1	95,4 (25)	0,39 (0,3-0,4)	0,27 (0,33-0,44)	1,37 (1,1-1,7)	0,6 (0,5-0,6)
Mozo	2686	5,46±0,2	95,3 (25)	1,41 (1,3-1,5)	-	2,42 (2,2-2,7)	-

*Indica significância estatística (P<0.05); n: número de larvas; Slope: inclinação da curva; EP: erro padrão; gl: graus de liberdade; CL: concentração letal em ppm.; IC: intervalo de confiança; FR$_{50}$ fator de resistência para CL$_{50}$; FR$_{90}$: fator de resistência para CL$_{90}$; **: submetidas a tratamentos avermectinas.
O presente trabalho demonstra que a resistência fenotípica a fipronil em populações de campo de carrapato bovino está presente no Departamento de Paysandú.

O uso da CD, obtida previamente por Castro-Janer et al. (2009) para o TIL, fornece alta confiabilidade no diagnóstico de resistência ao fipronil. Usando 8 ppm como CD, todas as populações de campo foram corretamente diagnosticadas como resistentes a fipronil. As populações de campo U-IRA, U-QUE e U-DUR provinham de estabelecimentos pecuários com antecedentes de uso da droga nos animais havia 3-7 anos. As populações U-IRA e U-QUE foram submetidas a mais de 18 tratamentos com fipronil, mostrando os mais altos valores de FR (21 e 87,7, respectivamente). A população U-DUR foi submetida a oito tratamentos resultando no mais baixo valor de FR (3,3). Aparentemente, parece existir uma relação entre os valores do FR e o número de aplicações de fipronil. Os FR calculados para cada população foram semelhantes ao aquele calculado por Castro-Janer et al. (2009) para uma população resistente a fipronil (RFSan) submetida a 13 tratamentos durante 8 anos (FR=5,36) (Tabela 16). As falhas de eficácia no campo corresponderam a valores de FR≥ 3,2.

A população U-Bar foi submetida a sete tratamentos com fipronil e não tinha antecedentes de falha de eficácia à droga, apresentando-se com resistente incipiente no TIL. O fato do teste demonstrar resistência a fipronil em populações nas quais ainda não havia suspeitas de falhas de eficácia pode estar indicando a precocidade do mesmo para o diagnóstico da resistência a fipronil.

As populações U-Ñan, U-Frig, U-Lalat e U-Riv não se apresentaram como resistentes no teste, resultados que eram esperados devido a que estas populações só tinham sido submetidas a 2-4 tratamentos de fipronil (Figura 13). Estes diagnósticos de resistência sugerem que ela pode ser monogênica, como fora descrito por Sayved e Wright (2004). Ao contrário do esperado, o maior FR (3635) foi observado na população U-SAP que foi submetida a poucos tratamentos com fipronil (n=7) e na qual já se tinha observado uma diminuição da eficácia a partir da 5ª aplicação. Estes carrapatos vieram de uma fazenda onde os bovinos pastejavam em áreas onde se compartilhavam pastagens e floresta de eucaliptos. Embora seja uma fazenda de produção de sistema aberto, o controle do carrapato no Uruguai está regulamentado, e o movimento de animais entre campos exige a ausência de carrapatos e tratamento acaricida. Por tanto, a introdução de carrapatos resistentes por compra de animais pode ser desconsiderada. Uma das razões para o aparentemente rápido incremento na seleção da resistência na população U-SAP pode ser devido ao uso do fipronil como formicida nos últimos 10 anos ou no controle de outras pragas agrícolas, como fora descrito para alguns
estabelecimentos de São Paulo (seção 4.3.1) (Castro-Janer et al., 2010b). Praguicidas não polares como o fipronil são seqüestrados pela matéria orgânica no solo (Spomer e Kamble, 2010). Outra possibilidade pode ser devido o uso de endosulfan (inseticida ciclodieno) que vem sendo usado há muitos anos na agricultura (MGAP, 2010). A população U-SAP tem origem em uma área onde a cultura de soja e o uso do endosulfan têm se intensificado nos últimos anos. Durante o período 2000-2007 a importação do endosulfan no país aumentou em 4800% (Red de Acción en Plaguicidas y sus Alternativas de América Latina, 2010). Embora seu uso tenha sido restringido recentemente no país, provavelmente seus efeitos no ambiente continuem por mais tempo. A resistência cruzada entre ciclodienos (dieldrin) e inseticidas fenilpirazoles (fipronil e outros) tem sido bem demonstrada em estudos com outros artrópodes (Colliot et al., 1992; Cole et al., 1993, 1995; Bloomquist, 1994; Scott e ZhiMou, 1997; Brooke et al., 2000). Como já mencionado e discutido na seção 4.3.1, o controle intensivo de pragas agrícolas pode interferir com o controle de vetores de importância na saúde pública que estão presentes no mesmo ambiente. Este fato pode alterar os níveis de susceptibilidade destes organismos às drogas. Os resultados do presente trabalho mostram que esta interação está limitada a situações e circunstâncias de manejo particulares.

Na Tabela 17 encontram-se os dados do TPL para populações resistentes e susceptíveis diagnosticadas previamente através do TIL e na Figura 15, as respectivas curvas dose-resposta. A toxicidade do fipronil para as larvas da população U-DUR foi mais baixa quando testada pelo TPL do que pelo TIL (Tabelas 16 e 17). A CL_{50} (IC95%) no TPL foi 134,4 ppm (106,3-175) e o FR 7,05 (6,36-7,82) (Tabela 17). No entanto, o TPL diferenciou eficientemente a população susceptível (Mozo) da população de campo resistente a fipronil (U-DUR). A menor toxicidade encontrada no TPL ao se comparar com o TIL concorda com os dados obtidos por Shaw (1966) e Castro-Janer et al. (2009). Além deles, White et al. (2004) encontraram alta toxicidade usando imersão de larvas em microensaios em relação ao TPL, devido à grande superfície de contato do carrapato com o acaricida.
Tabela 17 - Concentrações letais de fipronil e fatores de resistência obtidos pelo Teste de Pacote de Larvas para a cepa susceptível (Mozo) e para populações de campo de *Rhipicephalus (Boophilus) microplus* do Uruguai

População	n	Slope±EP	χ^2 (gl)	CL$_{50}$ (IC95%)	FR$_{50}$ (IC95%)*	CL$_{90}$ (IC95%)	FR$_{90}$ (IC95%)*
U-Cap	3000	2,1 ± 0,1	137,43 (22)	18,6 (15,5-22,5)	0,7 (0,6-0,8)	76,3 (58,4-108)	0,3 (0,22-0,4)
U-Pil	2687	1,8 ± 0,1	121,18 (22)	10,5 (8,4-12,9)	0,4 (0,3-0,4)	55,9 (41,7-82)	0,2 (0,11-0,26)
Mozo	2776	1,3 ± 0,1	323,48 (21)	27,2 (17,3-42,7)	273,4 (138,3-949)		
U-DUR	3160	1,6 ± 0,1	194,45 (25)	134,4 (106,3-175)	7,1 (6,4-7,8)*	823,7 (542-1493)	18 (14,9-21,9)*
Mozo	2613	3,4 ± 0,1	85,238 (24)	19,1 (16,9-21,4)	45,7 (38,9-56,1)		
U-Frig	2267	2,4 ± 0,1	335,36 (25)	46,1 (33,9-63,5)	0,9 (0,8-1,1)	161,6 (109-293)	0,8 (0,7-1)
Mozo	1669	2,1 ± 0,1	359,87 (19)	49,8 (32,3-85,2)	198,9 (109-630)		

* Indica significância estatística (P<0.05); n: número de larvas; Slope: inclinação da curva; EP: erro padrão; gl: graus de liberdade; CL: concentração letal em ppm.; IC: intervalo de confiança; FR$_{50}$ fator de resistência para CL$_{50}$; FR$_{90}$: fator de resistência para CL$_{90}$.
Figura 15 - Curva dose-resposta do fipronil obtida pelo TPL em populações de *Rhipicephalus (Boophilus) microplus* de campo do Uruguai.

Ao se compararem os resultados dos dois testes (*Tabela 18*) observa-se que houve variações nos FR como observado nas populações do Brasil (*Tabela 13*). Embora tenham sido testadas poucas populações os dados do presente trabalho (*Tabelas 13 e 18*) mostram que ambos os testes são específicos, com sensibilidade maior para o TIL. O TIL talvez possa detectar mais precocemente cepas resistentes. Villarino et al. (2001) têm demonstrado uma maior atividade enzimática (esterases) no tegumento de carrapatos resistentes a OFs. Neste caso, não se pode descartar a hipótese de que as larvas resistentes ao fipronil tenham igualmente um mecanismo de detoxificação importante no nível tegumentário que pode ser detectado através de TIL. Nos testes com inibidores, pôde se observar uma participação de esterases na resistência (*Tabelas 6, 7 e 8*). Outra possibilidade a considerar, é que com a imersão da larva, ingresse maior quantidade de tóxico no organismo atingindo um limiar suficiente para ativação das enzimas detoxificantes, limiar este não atingido no caso do TPL. Recomendam-se maiores estudos para esclarecimentos sobre as diferenças observadas no comportamento de algumas populações mediante os testes avaliados.
Em resumo a resistência fenotípica a fipronil foi detectada principalmente em populações de carrapatos oriundos do Departamento de Paysandú, cujas terras se apresentam como um mosaico de culturas, principalmente de trigo, soja, eucalipto e pastagens artificiais e nativas, onde é comum a prática do pastoreio dos animais nas restevas e o silvi-pastejo. Há fortes indicativos de que podem ocorrer interações entre os manejos agrícola e pecuário de pragas, devendo ser monitorado frequentemente o perfil toxicológico das populações de carrapato desta e de outras regiões com perfil semelhante.

Cepa	FR TIL	FR TPL
U-RFSan	5,36	1,52
U-DUR	3,25	7,1
U-Frig	0,93	0,93
U-Cap	0,55	0,68
U-Pil	0,39	0,39

4.4 Determinação de resistência cruzada com outras drogas

4.4.1 Ivermectina

Para análise desta seção foram cruzadas as informações obtidas sobre resistência a IVM e fipronil das populações de campo. As populações GAM, VIS, ANT, POR NET, PIQ, NOB, PCE, JRRLS, FAR, LAC, foram desconsideradas para a análise de resistência cruzada por terem sido submetidas a tratamento com as duas drogas.

Os resultados dos bioensaios (TIL) para detecção de resistência à IVM no Brasil encontram-se nas Tabelas 19 e 20. Em todas as regiões estudadas foram diagnosticadas populações resistentes ou suspeitas de resistência. De 26 populações avaliadas pelo TIL, nove foram diagnosticadas como susceptíveis, 12 como resistentes, cinco com resistência
incipiente. Foram encontrados diferentes níveis de resistência a IVM nas populações testadas (CL$_{50}$ em relação a cepas referências) com FR determinados entre 1,42 (ECP) e 4,95 (ANT). Estes dados são semelhantes aos determinados por Perez-Cogollo et al. (2010) México, cujos FR variaram entre 2,04-8,59. Entre as populações sem histórico de uso de IVM (Tabela 19) todas se mostraram susceptíveis. Em todas as propriedades com resistência positiva (FR≥2), havia histórico de uso da IVM por três anos ou mais (Tabela 20). Dentre estas, somente a CSO foi determinada como susceptível (FR=0,80) talvez por causa de uma baixa frequência de tratamentos.
Tabela 19 - Concentração letal de ivermectina e fatores de resistência obtidos pelo Teste de Imersão de Larvas para a cepa suscetível (Mozo) e para populações de campo de *R. (B.) microplus* do Brasil não submetidas a tratamentos com avermectinas

População	n	Slope±EP	χ^2 (gl)	CL₅₀ (IC95%)	FR₅₀ (IC95%)*	CL₉₀ (IC95%)	FR₉₀ (IC95%)*
BDT1	2497	2,34±0,07	24,9 (31)	18,2 (16,59 - 19,98)	0,77 (0,71 - 0,83)	63,96 (55,17 - 76,16)	1,32 (1,16 - 1,50)
BDT3	918	2,58±0,13	31,6 (30)	22,91 (18,24 - 28,84)	0,97 (0,87 - 1,08)	71,81 (53,34 - 109,77)	1,5 (1,25 - 1,76)
Mozo	2333	4,09±0,19	57,2 (30)	23,5 (22,32 - 24,70)	-	48,36 (45,23 - 52,23)	-
TRE	2097	3,05±0,12	71,8 (19)	13,08 (11,68 - 14,78)	0,93 (0,87 - 1)	34,43 (28,52 - 44,12)	1,6 (1,38 - 1,81)
Mozo	1728	6,61±0,48	17,8 (17)	13,95 (13,35 - 14,63)	-	21,8 (20,13 - 24,22)	-
JS	3278	3,39±0,10	44 (31)	11,87 (11,27 - 12,51)	0,9 (0,85 - 0,96)	28,31 (26,14 - 30,93)	1,04 (0,951 - 1,14)
Mozo	3189	4,05±0,12	112,9 (30)	13,09 (12,12 - 14,16)	-	27,12 (24,22 - 31,12)	-
AR	2528	4,17±0,14	57,3 (22)	14,97 (14,02 - 16,03)	1,01 (0,96 - 1,07)	30,37 (27,30 - 34,60)	1,12 (1,02 - 1,23)
Mozo	2722	4,83±0,20	48,6 (22)	14,765 (13,9 - 15,64)	-	27,18 (24,98 - 30,15)	-
StaP	1858	2,69±0,10	27,1 (22)	18,92 (17,49 - 20,47)	0,87 (0,79 - 0,96)	56,6 (50,21 - 64,95)	1,05 (0,90 - 1,23)
Mozo	1495	3,23±0,13	23,7 (21)	21,54 (20 - 23,25)	-	53,66 (47,95 - 61,12)	-
SSA	2234	2,16±0,08	19,9 (25)	5,21 (4,80 - 5,63)	0,5 (0,46 - 0,56)	20,36 (18,36 - 22,85)	0,69 (0,61 - 0,81)
Mozo	2416	2,82±0,09	114 (24)	10,26 (8,98 - 11,72)	-	29,14 (24,18 - 36,89)	-

* Indica significância estatística (P<0,05); n: número de larvas; Slope: inclinação da curva; EP: erro padrão; gl: graus de liberdade; CL: concentração letal em ppm.; IC: intervalo de confiança; FR₅₀ fator de resistência para CL₅₀; FR₉₀: fator de resistência para CL₉₀.
Fonte: Klafke et al. (2010)
| População | n | Slope±EP | χ² (gl) | CL-50 (IC95%) | FR50 (IC95%)* | CL-90 (IC95%) | FR-90 (IC95%)* |
|-----------|-----|----------|---------|---------------|---------------|---------------|----------------|
| ZOR | 2089| 2,20±0,09| 113,9 (22) | 28,7 (24,9 - 33,2) | 2,33 (2,1 - 2,5)* | 109,23 (85,8 - 149,9) | 4,3(3,6 - 5)* |
| Mozo | 2051| 4,02±0,15| 111,4 (20) | 12,3 (11,2 - 13,5) | - | 25,63 (22,4 - 30,6) | - |
| SSB | 1924| 2,40±0,09| 161,8 (14) | 18,22 (14,2 - 23,3) | 2,02 (1,8 - 2,2)* | 62,12 (44,9 - 99,5) | 3,9 (3,4 - 4,5)* |
| Mozo | 1621| 5,33±0,27| 92,8 (22) | 9,01 (8,6 - 9,4) | - | 15,67 (14,9 - 16,9) | - |
| GAM | 1938| 2,20±0,09| 43,1 (24) | 37,82 (34,1 - 42,2) | 1,69 (1,5 - 1,9)* | 144,21 (119,2 - 182,4) | 2,1 (1,8 - 2,6)* |
| Mozo | 1939| 2,67±0,10| 63,7 (24) | 22,4 (20 - 25,1) | - | 67,56 (56,9 - 83,4) | - |
| NET | 2799| 1,58±0,06| 447 (22) | 21,84 (15,3 - 33,4) | 1,74 (1,6 - 1,9)* | 140,58 (74 - 522,8) | 6,6 (5,5 - 8)* |
| TPA | 2407| 2,31±0,09| 107,3 (21) | 22,97 (19,9 - 27) | 1,83 (1,7 - 2)* | 82,14 (62,9 - 119) | 3,86 (3,4 - 4,5)* |
| Mozo | 2434| 5,60±0,24| 30,7 (21) | 12,55 (12,1 - 13,1)| - | 21,33 (20,1 - 22,9) | - |
| PIQ | 2546| 3,76±0,15| 15,7 (22) | 28,85 (27,5 - 30,3) | 2,27 (2,14 - 2,49)*| 63,23 (58 - 69,8) | 2,9 (2,7 - 3,3)* |
| Mozo | 2588| 5,65±0,20| 161,1 (21) | 12,67 (11,6 - 13,9)| - | 21,36 (18,9 - 25,4) | - |
| FER | 3450| 1,99±0,08| 182,8 (31) | 35,8 (30,0 - 43,9) | 2,45 (2,25 - 2,7)*| 156,93 (110,6 - 263,9) | 4,85 (4,1 - 5,8)* |
| LAR | 1535| 3,00±0,13| 65,1 (31) | 11,7 (10,5 - 12,9) | 0,8 (0,73 - 0,9) | 31,2 (26,9 - 37,4) | 0,96 (0,8 - 1,1) |
| Mozo | 3244| 3,68±0,10| 39,8 (31) | 14,55 (13,9 - 15,3)| - | 32,4 (30,1 - 35) | - |

* Indica significância estatística (P<0.05); n: número de larvas; Slope: inclinação da curva; EP: erro padrão; gl: graus de liberdade; CL: concentração letal em ppm.; IC: intervalo de confiança; FR50 fator de resistência para CL50; FR90 fator de resistência para CL90.

Fonte: Klafke et al. (2010).
População	n	Slope±EP	χ² (gl)	CL₅₀ (IC95%)	FR₅₀ (IC95%)*	CL₉₀ (IC95%)	FR₉₀ (IC95%)*
MAS	2626	2,53±0,09	50,66 (22)	35,3 (32 - 39,5)	2,4 (2,2 – 2,52)*	113,4 (94,16 - 142,44)	4,23 (3,7 - 4,9)*
NOB	2348	2,88±0,11	43,93 (22)	25,8 (23,8 - 28,3)	1,7(1,6 - 1,83)*	71,9 (61,38 - 87,38)	2,7 (2,3 - 3,1)*
Mozó	2030	5,12±0,20	39,81 (21)	15,1(14,3 - 15,9)	-	26,83 (24,81 - 29,47)	-
FIG	2168	2,51±0,10	22,7 (31)	47,5 (44,4 - 51)	4,5 (4,11 - 4,8)*	153,9 (135,21 - 178,86)	6,9 (5,9 - 8,1)*
VIS	2289	1,68±0,07	27,3 (31)	48,9 (44,2 - 54,6)	4,6 (4,11 - 5,19)*	280,6 (226,84 - 360,62)	12,5 (9,8 - 16)*
Mozó	2365	3,94±0,14	16,2 (30)	10,6 (10,1 - 11,1)	-	22,4 (20,88 - 24,15)	-
APO	2211	1,78±0,07	61,5 (31)	39 (34,4 - 44,8)	2,98 (2,7 - 3,3)*	203,6 (157,68 - 281,01)	8 (6,5 - 9,9)*
Mozó	1810	4,45±0,22	42,2 (24)	13,1(12,3 - 13,8)	-	25,4 (23,57 - 27,57)	-
ANT	2549	1,81±0,07	141,3 (31)	56,6 (46,8 - 71,95)	4,9 (4,45 - 5,5)*	288,8 (194,76 - 506,51)	13,1 (10,5 - 16,3)*
Mozó	2166	4,48±0,15	122,1 (21)	11,4 (10,4 - 12,7)	-	22,1 (19,24 - 26,61)	-
FAR	2538	1,95±0,06	138,0 (31)	18,9 (16,3 - 22)	1,9 (1,8 - 2,08)*	85,9 (67,54 - 117,16)	4,3 (3,7 - 4,9)*
POR	2000	2,11±0,07	72,31 (31)	19,3 (17,2 - 21,7)	1,9 (1,8 - 2,1)*	77,8 (64,42 - 97,77)	3,9 (3,4 - 4,5)*
LAC	2571	1,77±0,07	110,6 (31)	46,8 (39,8 - 56,6)	4,7 (4,3 - 5,2)*	247,3 (176,9 - 388,3)	12,4 (10 - 15,2)
Mozó	2316	4,17±0,14	48,6 (24)	9,86 (9,3 - 10,5)	-	20,01 (18,32 - 22,18)	-
JRRS	2186	2,6 = 0,1	35, (20)	23,8 (21,4-26,7)	3,5 (3,2-3,9)*	74,7 (62-94,2)	5,6 (4,7-6,7)
POA	1805	4,3 0,2	54,3 (20)	6,7 (6-7,5)	13,3 (11,5-16,1)	-	-

* Indica significância estatística (P<0.05); n: número de larvas; Slope: inclinação da curva; EP: erro padrão; gl: graus de liberdade; CL: concentração letal em ppm.; IC: intervalo de confiança; FR₅₀ fator de resistência para CL₅₀; FR₉₀: fator de resistência para CL₉₀.
Fonte: Klafke et al. (2010).
Do Uruguai, foram testadas 17 populações de campo para IVM (Tabela 21). Todas as populações que nunca tinham sido submetidas a tratamentos com LM s foram diagnosticadas como susceptíveis. No entanto, aquelas populações (U-Frig, U-Ori, U-Ñan, U-Flor, U-LaTap e U-Gui2) que tinham sido submetidas a tratamentos com IVM apresentaram FR<2, com diferença significativa para a cepa Mozo (Tabela 22). Os FR baixos podem ser devidos à introdução recente de IVM para o controle de carrapatos nessas fazendas. Em nenhuma delas havia queixas de falha de eficácia desta droga. Com estes FR, essas populações são consideradas com resistência incipiente a IVM e devem ser testadas novamente, após uma maior pressão de seleção com IVM com a finalidade de monitorar e confirmar o diagnóstico.

A Tabela 23 mostra a associação entre FR, diagnóstico de resistência e histórico de uso de fipronil e IVM, nas populações de campo do Brasil (n=14) e Uruguai (n=15), respectivamente.

Das oito populações sem antecedentes de uso de fipronil e IVM, todas se mostraram susceptíveis a ambas as drogas (U-Bru, BDT3, StaP, BDT1, U-Trel, SSA, U-Am20, U-Gar). Doze populações (FIG, APO, REF, MAS, ESS, U-LaTap, TPA, U-Flor, U-Ori, U-Gui2, U-Per, CSO) haviam sido submetidas ao tratamento com IVM, sem contato prévio com fipronil. Cinco destas se comportaram como resistentes a IVM (FIG, APO, REF, MAS, ESS), cinco com resistência incipiente (U-LaTap; TPA; U-Flor; U-Ori, U-Gui2) e duas susceptíveis (U-Per, CSO). Nove destas populações (FIG, ESS, U-LaTap, TPA, U-Flor, U-Ori, U-Gui2, U-Per, CSO) não apresentaram resistência ao fipronil, concordando com o histórico de não uso. No entanto as populações APO, REF e MAS, resistentes a IVM, foram as únicas que apresentaram resistência incipiente ao fipronil, embora não relatassem uso do mesmo nos animais. Isto, provavelmente, se deva à seleção indireta devida à utilização do fipronil utilizado para o controle de cupins nessas fazendas e não pela IVM, como fora discutido em parágrafos anteriores (seção 4.3.1).

Das nove populações com histórico de uso do fipronil e sem histórico de uso de IVM, todas se mostraram susceptíveis a esta última. Como esperado, o status de resistência das populações variou de acordo com a freqüência de tratamentos com fipronil (seção 2.1.2), cinco foram resistentes (AR, TRE, U-Dur, U-Am10, U-Sap), duas com resistência incipiente (JS, U-Bar) e uma susceptível (U-Riv). Adicionalmente, os FR determinados pelo TIL para fipronil e IVM para cepa RFSan foram, respectivamente, 5,36 e 1,1 como indicativo de ausência de resistência cruzada nesta cepa.
Tabela 21 - Concentração letal de ivermectina e fatores de resistência obtidos pelo Teste de Imersão de Larvas para a cepa susceptível (Mozo) e para populações de campo de *R. (B.) microplus* do Uruguai não submetidas a tratamentos com avermectinas

População	n	Slope±EP	χ²(gl)	CL₅₀ IC₉₅%	FR₅₀ (IC₉₅%)*	CL₉₀ IC₉₅%	FR₉₀ (IC₉₅%)*
U-Snic	3189	2,11±0,1	208,08 (31)	20,16 (17,3-23,6)	0,8 (0,75-0,87)	81,51 (63,6-112,8)	1,1 (0,95-1,24)
Mozo	3679	2,69±0,1	110,27 (31)	24,94 (22,9-27,2)	--	74,77 (64,8-88,8)	--
U-Gar	3070	2,96±0,1	57,41 (31)	6,52 (6,1-7)	0,42 (0,39-0,45)	17,69 (16-19,8)	0,5 (0,5-0,6)
U-Bar*	972	2,38±0,1	31,92 (10)	9,27 (7,2-11,5)	0,59 (0,5-0,7)	31,9 (24,7-45,8)	0,93 (0,8-1,1)
Mozo	3399	3,76±0,1	170,76 (31)	15,7 (14,2-17,4)	--	34,42 (30,1-40,7)	--
U-Bru	2379	4±0,1	419,3 (20)	19,71 (15,7-25)	1,04 (1-1,1)	41,2 (31,2-67,1)	1 (0,9-1,1)
Mozo	3214	3,81±0,1	283,23 (28)	18,88 (16,7-21,5)	--	40,9 (34,3-52,3)	--
U-Trel	3123	2,87±0,1	43,21 (31)	6,75 (6,75-7,2)	0,75 (0,7-0,8)	18,8 (17,3-20,8)	0,82 (0,7-0,9)
Mozo	3315	3,15±0,1	41,16 (31)	9,02 (8,5-9,5)	--	23 (21,3-25,1)	--
U-Am20	2470	2,94±0,1	56,61 (25)	6,5 (6,1-7)	0,41 (0,4-0,45)	17,8 (15,9-20,3)	0,52 (0,49-0,57)
Mozo	3389	3,86±0,1	172,4 (31)	15,4 (14,1-17,6)	--	34,3 (30,8-40,9)	--
RFSan**	1502	3,73±0,2	146 (16)	9,86 (7,96-12,55)	1 (0,95-1,15)	21,73 (16,19-37)	1,08 (0,9-1,3)
Mozo	1281	3,93±0,2	50,79 (14)	9,47 (8,23-11,02)	--	20,05 (16,28-27,5)	--
U-DUR*	3843	4,14±0,1	154,58 (31)	8,72 (8-9,5)	0,86 (0,8-0,92)	17,77 (15,8-20,6)	0,61 (0,5-0,7)
Mozo	3378	2,78±0,1	120,19 (31)	10,08 (9,1-11,1)	--	29,18 (25,5-34,4)	--

* Indica significância estatística (P<0.05); n: número de larvas; Slope: inclinação da curva; EP: erro padrão; gl: graus de liberdade; CL: concentração letal em ppm.; IC: intervalo de confiança; FR₅₀ fator de resistência para CL₅₀; FR₉₀: fator de resistência para CL₉₀; **: submetidas a tratamentos com fipronil
Tabela 22 - Concentração letal de ivermectina e fatores de resistência obtidos pelo Teste de Imersão de Larvas para a cepa susceptível (Mozo) e para populações de campo de *R. (B.) microplus* do Uruguai submetidas a tratamentos com avermectinas (continua)

População	n	Slope ±EP	χ^2(gl)	CL$_{50}$ IC95%	FR$_{50}$ (IC95%)*	CL$_{90}$ IC95%	FR$_{90}$ (IC95%)*
U-Flor	2507	2,86± 0,1	53,46 (20)	26,57 (24,6-29,1)	1,69 (1,6-1,8)*	74,5 (64,4-88,9)	2,16 (1,9-2,4)*
Mozoo	3399	3,76± 0,1	170,76 (31)	15,7 (14,1-17,4)	-	34,4 (30,1-40,7)	-
U-Per	1961	3,43 ±0,1	33,72 (20)	9,3 (8,6-10,1)	0,92 (0,9-1)	21,97 (19,7-25)	0,75 (0,67-0,84)
Mozoo	3278	2,77 ±0,1	119,6 (30)	10,08 (9,1-11,1)	--	29,25 (25,44-34,7)	--
U-Ori	2758	1,88± 0,1	184,15 (31)	27 (22,8-32,4)	1,6 (1,5-1,7)*	130,2 (95,4-199,1)	2,73 (2,3-3,2)*
Mozoo	2891	2,85 ±0,1	143,4 (31)	16,86 (15,1-18,9)	-	47,5 (40,2-58,5)	-
U-Gui 2	1879	2,29± 0,1	117,73 (20)	13,61 (11,3-16,3)	1,35 (1,2-1,5)*	49,46 (38-70,9)	1,69 (1,47-1,95)*
U-LaTap	2178	2,12± 0,1	164,85 (20)	20,03 (16,2-25)	1,98 (1,8-2,1)*	80,65 (58-130,1)	2,77 (2,38-3,21)*
Mozoo	3378	2,78± 0,1	120,19 (31)	10,08 (9,1-11,1)	--	29,18 (25,5-34,4)	--
U-Am10**	3239	3,32± 0,1	48,21 (31)	8,28 (7,8-8,80)	0,82 (0,8-0,9)	20,11 (18,5-22,1)	0,69 (0,62-0,76)
Mozoo	3278	2,77 ±0,1	119,6 (30)	10,08 (9,1-11,1)	--	29,25 (25,44-34,7)	--
U-Ñan**	2163	5,38± 0,2	17,43 (20)	12,31 (11,8-12,8)	1,27 (1,3-1,4)	21,3 (20,2-22,8)	0,95 (0,8-1)
Mozoo	2855	3,53± 0,1	158,89 (28)	9,71 (8,7-10,8)	-	22,4 (19,3-27,1)	-
U-Frig**	5892	1,87 ±0,04	515,27 (58)	13 (11,2-15,1)	1,8 (1,7-1,9)*	62,96 (49,7-84,4)	2,34 (2,1-2,63)*
Mozoo	5824	2,25 ±0,04	398,89 (57)	7,21 (6,4-8,1)	-	26,86 (22,4-33,4)	-
U-Riv**	1879	2,29± 0,1	117,73 (20)	13,61 (11,3-16,4)	0,55 (0,5-0,6)	49,46 (38-70,9)	0,66 (0,57-0,76)
Mozoo	3679	2,69± 0,1	110,27 (31)	24,94 (22,9-27,2)	--	74,77 (64,8-88,8)	--

* Indica significância estatística (P<0.05); n: número de larvas; Slope: inclinação da curva; EP: erro padrão; gl: graus de liberdade; CL: concentração letal em ppm.; IC: intervalo de confiança; FR$_{50}$ fator de resistência para CL$_{50}$; FR$_{90}$: fator de resistência para CL$_{90}$; **: submetidas a tratamentos com fipronil
Tabela 22 - Concentração letal de ivermectina e fatores de resistência obtidos pelo Teste de Imersão de Larvas para a cepa susceptível (Mozo) e para populações de campo de *R. (B.) microplus* do Uruguai submetidas a tratamentos com avermectinas

(conclusão)

População	n	Slope ±EP	χ^2(gl)	CL₅₀ IC95%	FR₅₀ (IC95%)*	CL₉₀ IC95%	FR₉₀ (IC95%)*
U-Am10	3239	3,32± 0,1	48,21 (31)	8,28 (7,8-8,8)	0,82 (0,8-0,9)	20,11 (18,5-22,1)	0,69 (0,62-0,76)
Mozo	3278	2,77 ±0,1	119,6 (30)	10,08 (9,1-11,1)	--	29,25 (25,44-34,7)	--
U-Ñan	2163	5,38± 0,2	17,43 (20)	12,31 (11,8-12,8	1,27 (1,3-1,4)	21,3 (20,2-22,8)	0,95 (0,8-1)
Mozo	2855	3,53± 0,1	158,89 (28)	9,71 (8,7-10,8)	--	22,4 (19,3-27,1)	--
U-Frig	5892	1,87 ±0,04	515,27 (58)	13 (11,2-15,1)	1,8 (1,7-1,9)*	62,96 (49,7-84,4)	2,34 (2,1-2,63)*
Mozo	5824	2,25 ±0,04	398,89 (57)	7,21 (6,4-8,1)	--	26,86 (22,4-33,4)	--
U-Riv	1879	2,29± 0,1	117,73 (20)	13,61 (11,3-16,4)	0,55 (0,5-0,6)	49,46 (38-70,9)	0,66 (0,57-0,76)
Mozo	3679	2,69± 0,1	110,27 (31)	24,94 (22,9-27,2)	--	74,77 (64,8-88,8)	--

* Indica significância estatística (P<0.05); n: número de larvas; Slope: inclinação da curva; EP: erro padrão; gl: graus de liberdade; CL: concentração letal em ppm.; IC: intervalo de confiança; FR₅₀ fator de resistência para CL₅₀; FR₉₀ fator de resistência para CL₉₀.
| População | FR | Diagnóstico | Histórico | FR | Diagnóstico | Histórico |
|--------------|----|-------------|-----------|----|-------------|-----------|
| | FIP| FIP | FIP | IVM| IVM | IVM |
| U-Bru | 0,81 | - | NÃO | 1,04 | - | NÃO |
| BDT3 | 1,29 | - | NÃO | 0,97 | - | NÃO |
| StaP | 0,73 | - | NÃO | 0,88 | - | NÃO |
| BDT1 | 1,01 | - | NÃO | 0,77 | - | NÃO |
| U-Trel | 0,83 | - | NÃO | 0,75 | - | NÃO |
| SSA | 0,61 | - | NÃO | 0,51 | - | NÃO |
| U-Am20 | 0,78 | - | NÃO | 0,42 | - | NÃO |
| U-Gar | 0,95 | - | NÃO | 0,42 | - | NÃO |
| FIG | 1,07 | - | NÃO | 4,49 | + | SIM |
| APO | 1,77 | Incipiente | NÃO | 2,99 | + | SIM |
| REF | 1,17 | Incipiente | NÃO | 2,46 | + | SIM |
| MAS | 1,75 | Incipiente | NÃO | 2,34 | + | SIM |
| ESS | 0,96 | - | NÃO | 2,02 | + | SIM |
| U-LaTap | 0,63 | - | NÃO | 1,99 | Incipiente | SIM |
| TPA | 0,51 | - | NÃO | 1,83 | Incipiente | SIM |
| U-Flor | 0,52 | - | NÃO | 1,69 | Incipiente | SIM |
| U-Ori | 0,85 | - | NÃO | 1,60 | Incipiente | SIM |
| U-Gui2 | 0,49 | - | NÃO | 1,35 | Incipiente | SIM |
| U-Per | 0,56 | - | NÃO | 0,92 | - | SIM |
| CSO | 0,75 | - | NÃO | 0,80 | - | SIM |
| RFSan* | 5,36 | + | SIM | 1,10 | - | NÃO |
| AR | 2,74 | + | SIM | 1,01 | - | NÃO |
| TRE | 3,18 | + | SIM | 0,94 | - | NÃO |
| JS | 1,60 | Incipiente | SIM | 0,91 | - | NÃO |
| U-Dur | 3,25 | + | SIM | 0,87 | - | NÃO |
| U-Am10 | 2,06 | + | SIM | 0,82 | - | NÃO |
| U-Sap | 3513,37 | + | SIM | 0,81 | - | NÃO |
| U-Bar | 1,78 | Incipiente | SIM | 0,59 | - | NÃO |
| U-Riv | 0,27 | - | SIM | 0,55 | - | NÃO |

FR: fator de resistência; FIP: fipronil; IVM: IVM; +: resistente; -: susceptível; * RFSan: cepa referência resistente ao fipronil.
Segundo Cuore et al. (2007) a aparição rápida de resistência ao fipronil no Uruguai (RFSan) possa ser devida à resistência cruzada com IVM. Esta hipótese é plausível uma vez que as duas drogas compartilham o mesmo alvo no sistema nervoso (Cully et al., 1994; Le Corronc et al., 2002; Li et al., 2006; Janssen et al., 2007). No entanto, os resultados do presente trabalho rejeitam essa hipótese uma vez que mostram que a resistência selecionada pelo uso de IVM não interfere na seleção para resistência ao fipronil e vice versa. Isto pode ser explicado ao fato de que não necessariamente uma mutação no sítio de ação levaria à resistência cruzada entre ambas as drogas. Embora ambas atuem no GluCl, os seus sítios de ligação são diferentes na molécula, sendo que a IVM se liga a receptores localizados na região extracelular dos GluCl (Cully et al., 1994) mantendo o canal de cloro aberto hiperpolarizando os neurônios inibitórios levando a morte por paralisia flácida. Por outro lado, o fipronil se liga na região transmembrana dos canais bloqueando-os (Du et al., 2005), despolarizando e interrompendo o pulso nervoso nos neurônios inibitórios levando a hiperexcitação (morte por paralisia espástica) (Bloomquist, 2003).

4.4.2 Lindano

Na Tabela 24 se apresenta comparativamente, o efeito do lindano na mortalidade das teleóginas e no índice de fertilidade para as cepas de referência susceptível (Mozo) e resistente (RFSan).

Concentração (ppm)	Mozo		RFSan			
	n Mortas	IF	n Mortas	IF	FR	
0	21	0,46	15	0,50	1,1	
15	24	1,44	15	1	0,50	1,1
62,5	19	0,32	15	0,53	1,6	
125	22	0,29	15	0,46	1,6	
250	17	0,28	15	0,52	1,6	
500	6	0,05	15	0,51	10,7	
1000	8	0,04	15	8	0,21	6,0

Tabela 24 - Efeito do lindano na mortalidade e no índice de fertilidade da cepa Mozo e RFSan
Note-se que o índice de fertilidade na cepa Mozo diminui significativamente a partir das 500 ppm, mantendo-se praticamente inalterado na cepa resistente. Nessa mesma concentração a mortalidade é muito alta (acima de 80%) enquanto que não há mortalidade para a cepa RFSan, obtendo-se um FR de 10,7. A mortalidade nesta população só aparece na seguinte concentração (1000 ppm).

As curvas de regressão dose-resposta para as populações de campo estão apresentadas na Figura 16. Todas as populações que foram resistentes pelo TIL a fipronil (FR ≥ 2) também foram resistentes ao lindano (Tabela 25). Das 17 populações testadas com lindano, três foram susceptíveis (LU, JS, U-Am10), uma apresentou resistência incipiente (APO) e 13 foram resistentes. As populações que foram diagnosticadas como susceptíveis ao lindano, apresentaram resistência incipiente a fipronil.

Os FS obtidos nos bioensaios com sinergistas (Tabelas 6, 7 e 8) não foram o suficientemente altos para afirmar que a resistência metabólica nessas populações seja o principal mecanismo de resistência. O fato de que a maioria das populações que se apresentou resistente ao fipronil também tenha se comportado como resistente ao lindano, pode estar associado a que a resistência nessas populações deva-se a insensibilidade no sítio de ação, e, possivelmente, esta mutação possa conferir resistência para ambos acaricidas, fipronil e lindano. A resistência cruzada entre os dois grupos químicos já foi observado em Blatella germanica, Musca domestica (Scott e Zhi Mou, 1997) e Anopheles gambiae (Brooke et al., 2000).

As bases genéticas da resistência a fipronil têm sido bem determinadas em várias espécies de insetos como a mutação no domínio transmembrana II do gene Rdl (Hope et al., 2010), onde um resíduo de alanina na posição 302 é substituído por uma serina ou glicina (A302S/G), conferindo resistência (ffrench-Constant et al., 1998). A mesma mutação foi identificada em várias espécies de insetos: mosca doméstica, baratas, besouros e mosquitos (ffrench-Constant et al., 2004). Recentemente Hope et al. (2010) identificaram uma nova mutação associada a resistência do carrapato bovino ao dieldrin, diferente daquela reportada nos insetos e que tem se mantido nas populações mesmo sem pressão de seleção, uma vez que o dieldrin foi retirado do mercado na Austrália há 20 anos atrás.
Tabela 25 - Concentrações letais de lindano e fatores de resistência obtidos pelo Teste de Pacote de Larvas para a cepa susceptível (Mozo/POA) e populações de campo de *Rhipicephalus (Boophilus) microplus* do Brasil e do Uruguai, resistentes ao fipronil no Teste de Imersão de Larvas

População	n	Slope ±	χ² (gl)	CL₅₀ (IC95%)	FR₅₀ (IC95%)*	CL₉₀ (IC95%)	FR₉₀ (IC95%)*
NIA	2117	1,6 ± 0,1	7,7 (28)	844,4 (754,8-951)	13,3 (11,5-15,3)*	5158,4 (4155-6663)	30,6 (23,4-40)*
ROZ	2201	1,1 ± 0,06	38,9 (28)	1396,5 (1137,6-1769,6)	22 (18-26,8)*	19395 (12601-33265)	115,1 (76-174,1)*
Mozo	1467	3 ± 0,2	19,2 (19)	63,5 (58-69,3)	168,5 (150-193)		
LE	690	1,8 ± 0,1	23,8 (5)	1122,1 (710,7-1983)	12,5 (9,8-15,9)*	5584,1 (2829-27527)	19,8 (12,1-32,3)*
LAM	634	1,5 ± 0,1	33,3 (4)	1051,9 (443,9-3505,9)	11,7 (8,9-15,3)*	7672,3 (2630-450785)	27,2 (15,8-46,7)*
GAM	980	1,1 ± 0,06	40,9 (6)	332,7 (172,6-679,5)	3,7 (2,8-4,8)*	5082,7 (1954-32423)	18 (10,6-30,6)*
POA	312	2,6 ± 0,3	80,4 (3)	nd	nd	nd	nd
JRRS	2211	1,7 ± 0,06	95,5 (13)	479,2 (348-645)	192,9 (106,5-349)*	2801,8 (1892,6-4880)	84,3 (61,6-115,3)*
POA	820	1,1 ± 0,1	72 (8)	nd	nd	nd	nd
NOB	2378	1,2 ± 0,05	140 (28)	397,7 (301,4-537,5)	5,5 (4,8-6,3)*	4251,9 (2639,5-8060)	31,9 (24,8-41,2)*
MAS	2468	1,8 ± 0,06	53,8 (28)	196,9 (173-224)	2,7 (2,4-3)*	1004 (829,3-1253,6)	7,5 (6,4-8,9)*
Mozo	1579	4,8 ± 0,3	47,6 (19)	72,3 (65,1-79,8)	485,1 (349,8-792)		
LU	1425	1 ± 0,0	135,1 (11)	20,6 (7,6-40,3)	0,23 (0,2-0,3)	348,5 (148,4-2081)	1,2 (0,8-1,7)
Mozo	774	2,5 ± 0,2	121,1 (6)	nd	nd	nd	nd
TRE	2801	1,4 ± 0,05	58,8 (28)	415,7 (354,1-491,9)	4,5 (4-5,1)*	3596,7 (2706,1-5061,8)	15,8 (12,5-19,9)*
Mozo	2371	3,3 ± 0,1	69,3 (19)	92,5 (81,9-104,2)	228,2 (191,3-290,5)		

* Indica significância estatística (P<0.05); n: número de larvas; Slope: inclinação da curva; EP: erro padrão; gl: graus de liberdade; CL: concentração letal em ppm.; IC: intervalo de confiança; FR₅₀ fator de resistência para CL₅₀; FR₉₀: fator de resistência para CL₉₀; nd: não determinada.
Tabela 25 - Concentrações letais de lindano e fatores de resistência obtidos pelo Teste de Pacote de Larvas para a cepa susceptível (Mozo/POA) e populações de campo de *Rhipicephalus (Boophilus) microplus* do Brasil e do Uruguai, resistentes ao fipronil no Teste de Imersão de Larvas

(conclusão)

População	n	Slope ± EP	χ^2 (gl)	CL$_{50}$ (IC95%)	FR$_{50}$ (IC95%)*	CL$_{90}$ (IC95%)	FR$_{90}$ (IC95%)*
TRE	2801	1,4 ± 0,05	58,8 (28)	415,7 (354,1-491,9)	4,5 (4,5-1,1)*	3596,7 (2706-5062)	15,8 (12,5-19,9)*
Mozo	2371	3,3 ± 0,1	69,3 (19)	92,5 (81,9-104,2)	228,2 (191,3-290,5)	15,8 (12,5-19,9)*	
JS	1137	4,3 ± 0,3	39,3 (12)	156,1 (134,3-180,2)	1,1 (1-1,2)	308,3 (255,8-411,2)	1,3 (1,2-1,6)
Mozo	1835	6,6 ± 0,4	12,7 (19)	145,4 (138,4-152,5)	227,4 (213-246)	15,8 (12,5-19,9)*	
APO	2233	1,9 ± 0,1	63,8 (25)	125,9 (107,7-146,6)	1,9 (1,7-2,1)*	575,1 (462-757)	4 (3,4-7)*
Mozo	1864	3,9 ± 0,2	57,2 (19)	67,5 (59,9-75,8)	144,6 (124-178)	15,8 (12,5-19,9)*	
RFSan	2474	2,7 ± 0,1	55,3 (25)	381,7 (340,5-427,9)	4,4 (3,9-4,9)*	1140,5 (971,6-1383,5)	6,3 (5,4-7,4)*
Mozo	1846	4 ± 0,2	67,5 (17)	86,6 (74-102,5)	179,9 (146,9-236,8)	15,8 (12,5-19,9)*	
U-IRA	546	1,7 ± 0,2	1,54 (4)	1689,5 (1379-2143)	114,3 (90-145)*	9288,7 (6256,8-16357)	169 (102-278)*
Mozo	1180	2,2 ± 0,1	33,7 (9)	14,8 (11,8-18,3)	55 (41-85)	15,8 (12,5-19,9)*	
U-DUR	1495	3,6 ± 0,2	89,6 (16)	114,3 (96,6-134,7)	4,7 (4,3-5)*	256 (208-346)	6 (5,4-6,8)*
Mozo	1472	5,3 ± 0,2	6,9 (10)	24,4 (23,5-25,4)	42,5 (40-45)	15,8 (12,5-19,9)*	
U-LaTap	667	3,1 ± 0,3	37,2 (5)	nd	2,2 (1,8-2,6)*	Nd	1,5 (1,1-2)*
Mozo	582	2,2 ± 0,1	2,6 (5)	64,7 (56,1-74,5)	244,1 (199-313,2)	15,8 (12,5-19,9)*	
U-Am10	559	4 ± 0,3	19,57 (6)	32,4 (26,6-39,1)	1,2 (1,7-1,3)	67,4 (53,7-96,6)	0,82 (0,7-1)
Mozo	1738	2,7 ± 0,1	230 (15)	27,2 (18,7-36,2)	82,3 (58,2-158,4)	15,8 (12,5-19,9)*	

* Indica significância estatística (P<0.05); n: número de larvas; Slope: inclinação da curva; EP: erro padrão; gl: graus de liberdade; CL: concentração letal em ppm.; IC: intervalo de confiança; FR$_{50}$ fator de resistência para CL$_{50}$; FR$_{90}$: fator de resistência para CL$_{90}$; nd: não determinada.
Em insetos, tem sido reportada resistência cruzada entre fipronil e ciclodienos, no entanto, ainda não há relatos na literatura da sobre este tipo de resistência cruzada no carrapato bovino. No Brasil e Uruguai, a utilização de ciclodienos no controle de artrópodes de importância veterinária é proibida há mais de 30 anos, e só foram usados por muito pouco tempo (2-3 anos) no início da década de 60 para o controle de carrapatos resistentes aos arsenicais, sendo substituídos rapidamente pelos OFs. A persistência de fenótipos resistentes a dieltrin sem pressão de seleção já foi demonstrado por Kemp (1997) apud Hope et al. (2010). No entanto, chama a atenção à alta prevalência já que de 17 populações resistentes ou com resistência incipiente a fipronil, 14 delas foram resistentes também ao lindano. É possível que esta alta prevalência possa se dever à utilização de endosulfan no controle de pragas agrícolas.

Embora tenha se diagnosticado resistência cruzada entre lindano e fipronil, o controle de algumas populações resistentes a lindano com o uso do fipronil pode ser possível devido a existência de outro tipo de mecanismo de ação, o bloqueio dos GluCL (Narahashi et al., 2007).

A resistência cruzada entre lindano e fipronil, aqui demonstrada fenotipicamente, deve ser melhor estudada geneticamente para elucidação de alguns aspectos importantes: se mutações na posição A302S no gene Rdl estão presentes em populações resistentes e ainda se existem mutações em regiões diferentes do gene associadas à resistência a fipronil.
Figura 16 - Curva dose-resposta do lindano obtida pelo TPL em populações de *Rhipicephalus (Boophilus) microplus* de campo do Brasil e do Uruguai.
Figura 16 - Curva dose-resposta do lindano obtida pelo TPL em populações de *Rhipicephalus (Boophilus) microplus* de campo do Brasil e do Uruguai.
5 CONSIDERAÇÕES FINAIS

A evidência do envolvimento do controle de pragas agrícolas na resistência do carrapato bovino é indireta e circumstancial, tendo sido observada: a) quando uma alta lotação animal estava acompanhada do uso intensivo de fipronil para o controle de cupins e, b) em propriedades que realizavam silvi-pastorejo em culturas de eucaliptos com uso de fipronil para o controle de formigas e em fazendas vizinhas a áreas com cultura de soja e trigo sob prática de fumigações com endosulfan. De qualquer maneira, antes de estabelecer um plano de controle de pragas de importância veterinária, é necessário conhecer quais foram os inseticidas e/ou acaricidas usados no controle pragas de importância na agricultura e na saúde pública aplicados previamente na área.

A resistência a fipronil diagnosticada no presente trabalho pode não ser exclusivamente devida ao uso do fipronil per se. Outros fatores podem ter contribuído, como por exemplo, a seleção de sistemas enzimáticos de detoxificação por outros praguicidas previamente utilizados (PS) ou manutenção de genótipos resistentes a ciclodienos, favorecidos pelo uso de endosulfan nas culturas.

Portanto, sugere-se a realização de: a) estudos controlados que avaliem a seleção do fenótipo de resistência ao fipronil em carrapatos mantidos em solo contaminado com a droga para confirmar a hipótese, presentemente levantada, sobre a interferência da presença de praguicidas no solo, derivada do controle de pragas agrícolas, no controle do R. (B.) microplus; e, b) estudos moleculares para a investigação da existência de mutações tipo Rdl.
6 CONCLUSÕES

- Os bioensaios padronizados para fipronil (TIA, TPL e TIL) no presente trabalho constituem uma ferramenta válida no diagnóstico e no monitoramento de resistência a esta droga em *R. (B). microplus*.

- O TIL mostrou-se mais sensível do que o TPL no diagnóstico de resistência para fipronil.

- A participação de esterases, citocromo-oxidases e glutatiana-S-transferases, determinada pelos bioensaios com inibidores enzimáticos, não parece ser o principal mecanismo de resistência ao fipronil tanto na população resistente de referência (RFSan) quanto nas populações de campo resistentes a fipronil estudadas, pelo qual, a resistência determinada por insensibilidade no sítio de ação deve ser considerada.

- Não há resistência cruzada entre fipronil e IVM demonstrável fenotípicamente.

- Há resistência cruzada entre fipronil e lindano demonstrável fenotípicamente.

- A resistência a fipronil foi diagnosticada pela primeira vez no mundo, em populações de *R. (B.) microplus* do Brasil e do Uruguai, por bioensaios *in vitro*.

- O controle de pragas agrícolas com produtos à base de fipronil pode interferir no controle de *R. (B.) microplus* com esta droga.

- A utilização de fipronil e ivermectina é uma prática comum entre produtores do Estado de São Paulo, embora não recomendada para o tratamento de bovinos de produção de leite.
Arantes GJ, Marques AO, Honer MRO. O carrapato bovino, *Boophilus microplus*, no município de Uberlândia, MG: análise da sua resistência contra carraticidas comerciais. Rev Bras Parasitol Vet. 1995;4(2):89-93.

Associação Brasileira das Indústrias Exportadoras de Carne. [homepage]. São Paulo; ABIEC. 2009. Disponível em: http://www.abiec.com.br/download/fluxo_por.pdf [2010 Set 7].

Balança G, De Visscher M. Impacts on non-target insects of a new insecticide compound used against the desert locust *Schistocerca gregaria* (Forskal 1775). Arch Environ Contam Toxicol. 1997;32:58-62.

Bass C, Schroeder I, Turberg A, Field LM, Williamson, MS. Identification of the Rdl mutation in laboratory and field strains of the cat flea, *Ctenocephalides felis* (Siphonaptera: Pulicidae). Pest Managem Sci. 2004;60(12):1157-1162.

Bloomquist JR. Cyclodiene resistance at the insect GABA receptor/chloride channel complex confers broad cross resistance to convulsants and experimental phenylpyrazole insecticides. Arch Insect Biochem Physiol. 1994;26:69-79.

Bloomquist JR. Chloride channels as tools for developing selective insecticides. Arch Insect Biochem Physiol. 2003;54(4):145-156.

Bobe A, Coste CM. Cooper J. Factors influencing the adsorption of fipronil on soil. J Agric Food Chem. 1997;45:4861-4865.

Brooke BD, Hunt RH, Coetzee M. Resistance to dieldrin+fipronil assorts with chromosome inversion 2La in the malaria vector *Anopheles gambiae*. Med Vet Entomol. 2000;14:190-194.

Bull MS, Swindale S, Overend, D, Hess, EA. Suppression of *Boophilus microplus* populations with fluazuron - an acarine growth regulator. Aust Vet J. 1996;74:468-470.

Campbell WC. Ivermectin: an update. Parasitol Today. 1985;1 (1):10-15.

Cardozo H, Franchi M. Garrapata: epidemiologia y control de *Boophilus microplus*. In: Nari A, Fiel C, editors. Enfermedades Parasitarias de Importancia Económica en bovinos. Bases

* De acordo com: International Commitee of Medical Journal Editors. Uniform requirements for manuscripts submitted to Biomedical Journal: sample references. Available from: http://www.icmje.org [2007 May 22].
epidemiológicas para su prevención y control en Argentina y Uruguay. Montevideo, Uruguay: Hemisferio Sur; 1994. p. 369-407

Casida JE. Pest toxicology: the primary mechanisms of pesticide action. Chem Research Toxicol. 2009;22:609-619.

Castro-Janer E, Rifran L, Piaggio J, Gil A, Miller RJ, Schumaker TTS. In vitro tests to establish LC$_{50}$ and discriminating concentrations for fipronil against Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) and their standardization. Vet Parasitol. 2009;162:120-128.

Castro-Janer E, Rifran L, González P, Piaggio J, Gil A, Schumaker TTS. Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) resistance to fipronil in Uruguay evaluated by in vitro bioassays. Vet Parasitol. 2010a;169:172-177.

Castro-Janer E, Martins JR, Mendes MC, Namindome A, Klfak GM, Schumaker TTS. Diagnose of fipronil resistance in Brazilian cattle ticks (Rhipicephalus (Boophilus) microplus) using in vitro larval bioassays. Vet Parasitol. (2010b). In press. doi:10.1016/j.vetpar.2010.06.036

Chevillon C, Ducornez S, De Meeüs T, Koffi BB, Gaïa H, Delathière J.M, Barré, N. Accumulation of acaricide resistance mechanisms in Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) populations from New Caledonia Island. Vet Parasitol. 2007;147:272-288.

Cole LM, Nicholson RA, Casida JE. Action of phenylpyrazole insecticides at the GABA-gated chloride channel. Pestic. Biochem. Physiol. 1993;46:47-54.

Cole LM, Roush RT, Casida JE. Drosophila GABA-gated chloride channel: modified [3H]EBOB binding site associated with ALA->SER of GLY mutants od Rdl subunit. Life Sci. 1995;56:757-765.

Colliot F, Kukorowski KA, Hawkins DW, Roberts DA. A new soil and foliar broad spectrum insecticide. Brighton Crop Protection Conference Pests and Diseases. 1992;1:29-34.

Cully DF, Vassilatis DK, Liu KK, Paress PS, Van Der Ploeg, LHT, Schaeffer JM, Arena JP.. Cloning of an avermectin-sensitive glutamate-gated chloride channels from Caenorhabditis elegans. Nature. 1994;371:707-711.
Cuore U, Trelles A, Sanchís J, Gayo V, Solari MA. Primer diagnóstico de resistencia al Fipronil en la garrapata común del ganado *Boophilus microplus*. Veterinaria (Montevideo). 2007;42:35-41.

Cuore U, Cardozo H, Trelles A, Nari A, Solari MA. Características de los garrapaticidas utilizados en Uruguay. Eficacia y poder residual. Veterinaria (Montevideo). 2008;43(169): 13-24.

Drummond RO, Ernst SE, Trevino JL, Gladney WJ, Graham OH. *Boophilus annulatus* and *Boophilus microplus*: Laboratory test of insecticides. J Econ Entomol. 1973;66:130-133.

Du W, Awolola TS, Howell P, Koekemoer LL, Brooke BD, Benedict MQ, Coetzee M, Zheng L. Independent mutations in the Rdl locus confer dieldrin resistance to Anopheles gambiae and An. arabiensis. Insect Mol Biol. 2005;14(2):179–183.

Durham EW, Scharf ME, Siegfried BD. Toxicity and neurophysiological effects of fipronil and its oxidative sulfone metabolite on European corn borer larvae (Lepidoptera: Crambidae). Pestic Biochem Physiol. 2001;71:97-106.

Farias NA. Situación de la resistencia de la garrapata *Boophilus microplus* en la región sur de Rio Grande del Sur, Brazil. In: 4 Seminario Internacional de Parasiotlogía; 1999; Puerto Vallarta. Mexico: Conasag;1999. p. 25-31.

ffrench-Constant RH, Roush RT. Resistance detection and documentation. In: Roush RT, Tabashnik BE, editors. Pesticide resistance in arthropods. London: Chapman and Hall; 1990. p. 4

ffrench-Constant RH, Pittendrigh B, Vaughan A, Anthony N. Why are there so few resistance-associated mutations in insecticide target genes? Phil Trans R Soc Lond B. 1998;353:1685-1693.

ffrench-Constant RH, Daborn PJ, Le Goff G. The genetics and genomics of insecticide resistance. Trends Genet. 2004;20:163-170.

Food and Agricultural Organization. Resistance Management and Integrated Parasite Control in Ruminants: Guidelines. [homepage]. Local: FAO. 2004. Available from: http://www.fao.org/ag/aga.html [2006 Mar 10].
Furlong J. Diagnostico de la susceptibilidad de la garrapata del ganado *Boophilus microplus* a los acaricidas en el estado de Minas Gerais, Brasil. In: 4 Seminario Internacional de Parasitología; 1999; Puerto Vallarta, Mexico: Conasag; 1999. p. 41-46.

Geary TG, Sims SM, Thomas EM, Vanover L, Davis JP, Winterrowd CA, Klein RD, Ho NF, Thompson DP. *Haemonchus contortus*: ivermectin-induced paralysis of the pharynx. Exp Parasitol. 1993;77:88-96.

Georghiou GP. The effect of Agrochemicals on Vector populations. In: Roush RT, Tabashnik BE, editors. Pesticide resistance in arthropods. London: Chapman and Hall; 1990. p. 183.

Gil A, Piaggo J. Diagnóstico de situación de la infraestructura de baños acaricidas para bovinos en Uruguay. In: Seminario Regional “Aplicación del control integrado de parasitos (CIP) a la garrapata *Boophilus microplus* en Uruguay”: documento proyecto TCP FAO URU 3003 A; 2007; Montevideo: Departamento de Parasitología. DILAVE Miguel C. Rubino, MGAP; 2007. Disponível em: http://www.mgap.gub.uy/dsg/DILAVE/Parasitolog%C3%ADa/Documento%20Uruguay%20TCP%20%20URU%203003.pdf. [2010 Fev 1].

Grisi L, Massard CL, Moya Borja GE et al. Impacto econômico das principais ectoparasitoses em bovinos no Brasil. A Hora Vet. 2002;21(125):8-10.

Gunasekara AM, Truong T, Goh KS, Spurlock F, Tjeerdema RS Environmental fate and toxicology of fipronil. J Pestici Sci. 2007;32(3):189-199.

Hainzl D, Casida JE. Fipronil insecticide: novel photochemical desulfinylation with retention of neurotoxicity. Proc Nal Acad Sci. 1996;93:12764-12767.

He H, Chen AC, Davey RB, Ivie GW, George JE. Identification of a point mutation in the para-sodium channel gene from a pyrethroid-resistant cattle tick. Biochem Biophys Res Commun. 199;261:558-561.

Hemingway J, Fiel L, Vontas J. An overview of insecticide resistance. Science. 2002;298:96-97.

Hitchcock LF. Resistance of cattle tick (*Boophilus microplus*, Canestrini) to benzene hexachloride. Aust. J. Agr. Res. 1953; 4:360-364.
Holbrook GL, Roebuck J, Moore CB, Waldvogel MG, Schal C. Origin and extent of resistance to fipronil in the German cockroach, *Blattella germanica* (L.) (Dictyoptera: Blattellidae). *Econ Entomol.* 2003;96(5):1548-1558.

Hope M, Menzies M, Kemp D. Identification of a Dieldrin Resistance-Associated Mutation in *Rhipicephalus* (Boophilus) *microplus* (Acari: Ixodidae) *J Econ Entomol.* 2010;103(4): 1355-1359.

Instituto Nacional de Carnes. Informe estadístico año agrícola [homepage]. Montevideo: INAC. Disponível em: http://www.inac.gub.uy/innovaportal/file/4458/1/Ejercicio%20Agr%EDcola%202009%20FINAL.pdf [2010 Set 7].

Janssen D, Derst C, Buckinx R, Van den Eynden J, Rigo JM, Van Kerkhove E. Dorsal Unpaired Median Neurons of *Locusta migratoria* Express Ivermectin- and Fipronil-Sensitive Glutamate-Gated Chloride Channels. *J Neurophysiol.* 2007;97:2642-2650.

Jonsson NN. The productivity effects of cattle tick (*Boophilus microplus*) infestation on cattle, with particular reference to *Bos indicus* cattle and their crosses. *Vet Parasitol.* 2006;137:1-10.

Jonsson NN, Miller RJ, Robertson JL. Critical evaluation of the modified-adult immersion test with discriminating dose bioassay for *Boophilus microplus* using American and Australian isolates. *Vet. Parasitol.* 2007;146:307-315.

Jonsson NN, Corlec SW, Morgan J, Jackson LM, Moolhuijzen P, Lew AE. Nuevos diagnósticos moleculares para detector Resistencia a piretroides sintéticos y amitraz en *Rhipicephalus microplus* en Australia. In: 6 Seminario Internacional de Parasitología Animal; 2008; Mexico: Boca del Río Veracruz: INIFAP; 2008. 1 CD-ROM.

Kasap H, Kasap M, Alptekin D, Lüleyap Ü, Herath PRJ. Insecticide resistance in *Anopheles sacharovi* Favre in southern Turkey. *Bull Word Health Org.* 2000;78(5):687-692.

Kemp HD, McKenna VR, Thullner R. et al. Strategies for tick control in a world of acaricide resistance. In: 4 Seminario Internacional de Parasitologia Animal; 1999; Puerto Vallarta, Mexico: Conasag;1999. p. 1-10.

Klafke GM, Sabatini GA, Albuquerque TA, Martins JR, Kemp DH, Miller RJ, Schumaker TTS. Larval Immersion Tests with ivermectin in populations of the cattle tick *Rhipicephalus*
Kristensen M, Jespersen JB, Knorr M. Cross-resistance potential of fipronil in *Musca domestica*. Pest Manag Sci. 2004;60(9):894-900.

Kunz SE, Kemp DH. Insecticides and acaricides: resistance and environmental impact. Rev Sci Tech Off Int Epizoot. 1994;13(4):1249-1286.

Le Corronc H, Alix P, Hue B. Differential sensitivity of two insect GABA-gated chloride channels to dieldrin, fipronil and picrotoxinin. J Insect Physiol. 2002;48:419-431

LeOra Software. Polo plus probit and logit analysis: user’s guide [CD-ROM]. Berkeley: LeOra Software; 2004. 1 CD-ROM.

Li A, Davey RB, Miller R, George JE Resistance to coumaphos and diazinon in *Boophilus microplus* (Acari: Ixodidae) and evidence for the involvement of an oxidative detoxification mechanism. J Med Entomol. 2003;40:482-490.

Li AY, Davey RB, Miller RJ, George JE. Detection and characterization of amitraz resistance in the southern cattle tick, *Boophilus microplus* (Acari: Ixodidae). J Med Entomol. 2004;41:193-200.

Li A, Yang Y, Wu S, Wu Y. Investigation of resistance mechanisms to *f*ipronil in diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol. 2006;99:914-919.

Li X, Schuler MA, Berenbaum MR. Molecular Mechanisms of Metabolic Resistance to Synthetic and Natural Xenobiotics. Annu Rev Entomol. 2007;52:231-53.

Liu N, Yue X. Insecticide resistance and cross-resistance in the house-fly (Diptera: muscidae). J Econ Entomol. 2000;93:1269-1275.

Martins JR, Furlong J. Avermectin resistance of the cattle tick *Boophilus microplus* in Brazil. Vet Rec. 2001;149(2):64.

Martins JR. Carrapato *Boophilus microplus* (Can. 1887) (ACARI: IXODIDAE) resistente a ivermectina, moxidectina e doramectina Rio Grande do Sul, Brasil. [tese (Doutorado em Ciência Animal)]. Belo Horizonte, MG: Universidade Federal de Minas Gerais; 2008. 74 p.
Mckellar QA, Benchouli HA. Avermectins and milbemycins. J Vet Pharmacol Ther. 1996;19:331-351.

Mendes MC, Oliveira RO, Vieira Bressan MCR. Determination of minimal immersion times for use in in vitro resistance test with Boophilus microplus (Canestrini, 1887) engorged females and pyrethroid acaricides. Rev Brasileira Parasitol Vet. 2000;9: 33-39.

Miller RJ, Davey RB, George JE. Characterization of pyrethroid resistance and susceptibility to coumaphos in Mexican Boophilus microplus (Acari: Ixodidae). J Med Entomol. 1999;36:533-538.

Miller RJ, George JE, Guerrero F, Carpenter L, Welch JB. Characterization of acaricide resistance in Rhipicephalus sanguineus (Latreile) (Acari: Ixodidae) collected from the Corozal Army Veterinary Quarantine Center, Panama. J Med Entomol. 2001;38: 298-301.

Miller RJ, Almazán-García C, Estrada-Ortiz M, Davey RB, George JE. A survey for fipronil and ivermectin resistant Rhipicephalus (Boophilus) microplus collected in northern Mexico and the options for the management of acaricide-resistant ticks with pesticides. In: 6 Seminario Internacional de Parasitología Animal; 2008; Mexico: Boca del Río Veracruz: INIFAP; 2008. 1 CD-ROM

Ministério da Agricultura, Pecuária e Abastecimento. AGROFIT. Sistema de Agrotóxicos fitosanitários.[homepage]. Brasília; 2007. Disponível em: http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons [2007 Set 7].

Ministerio de Ganadería, Agricultura y Pesca. Jornada-Taller: Programa de Lucha contra la Garrapata. Durazno (Uruguay): MGAP; 2005. 55 p.

Ministerio de Ganadería, Agricultura y Pesca. Agrotóxicos [homepage]. Montevideo; Disponível em: http://www.mgap.gub.uy/dgsa/ [2010 Set 16].

MingZhang C, JinLiang S, JinZhen Z, Mei L, Xiaoyu L, WeiJun Z Monitoring of insecticide resistance and inheritance analysis of triazophos resistance in the striped stem borer (Lepidoptera: Pyralidae). Chinese J Rice Sci. 2004;18(1):73-79.

Nari A, Hansen HJ. Resistance of ecto-endoparasites: current and future solutions. In: 67th General Session. International Committee. OIE; 1999; Paris. OIE; 1999. p. 12.
Narahashi T, Zhao X, Ikeda K, Yeh JZ. Differential actions of insecticides on target sites: basis for selective toxicity. Hum Exp Toxicol. 2007;26(4):361-366.

Nolan J, Roulston WJ, Wharton RH. Resistance to synthetic pyrethroids in a DDT-resistant strain of Boophilus microplus. Pestic Sci. 1977;8:484-486.

Oliveira RO, Mendes MC, Jensen JR, Vieira Bressan MCR. Determination of the minimum immersion time of *Boophilus microplus* (Canestrini, 1887) engorged females for in vitro resistance tests with amitraz at 50% effective concentration (EC50). Rev Brasileira Parasitol Vet. 2000; 9:41-43.

Perez-Cogollo LC, Rodriguez-Vivas RI, Ramirez-Cruz GT, Miller RJ First report of the cattle tick *Rhipicephalus microplus* resistant to ivermectin in Mexico. Vet Parasitol. 2010;168:165-169.

Red de Acción en Plaguicidas y sus Alternativas de América Latina- RAPAL. [homepage] Montevideo. Disponível em: www.rapaluruguay.org [2010 Set 7].

Robertson LJ, Russell RM, Presler HK, Savin NE. Bioassays with arthropods, CRC Press, editors. Boca Raton; 2007. 199 p.

Raveton M, Aajoud A, Willison J, Cherifi M, Tissut M, Ravanel P Soil distribution of fipronil and its metabolites originating from a seed-coated formulation. Chemosphere. 2007;69:1124-1129.

Rifran L, Silveira R, Castro-Janer E. Comportamento reprodutivo de uma população de *Rhipicephalus (Boophilus) microplus* criada sob condições de confinamento sobre hospedeiro. In: 36 Congresso Brasileiro de Veterinária; 2009; Porto Seguro, Bahia: Sociedade de Medicina Veterinária da Bahia; 2009. 1 CD-ROM

Roush RT, Daly JC. The role of population genetics in resistance research and management. In: Roush RT, Tabashnik BE, editors. Pesticide resistance in arthropods. London: Chapman and Hall; 1990. p. 297

Sabatini GA, Kemp DH, Hughes S, Nari A, Hansen J. Test to determine LC50 and discriminating doses for macrocyclic lactones against the cattle tick *Boophilus microplus*. Vet Parasitol. 2001;95:53-62.
Sayved AH, Wright DL. Fipronil resistance in the diamondback moth (Lepidoptera: Plutellidae): inheritance and number of genes involved. J Econ Entomol. 2004;97(6):2043-2050.

Scott JA. The molecular genetics of resistance: resistance as a response to stress. Florida Entomologist. 1995;78:399-414.

Scott JG, ZhiMou W. Toxicity of fipronil to susceptible and resistant strains of German cockroaches (Dictyoptera: Blattellidae) and house flies (Diptera: Muscidae). J Econ Entomol. 1997;90:1152-1156

Schnitzerling HJ, Nolan J, Hughes S. Toxicology and metabolism of some synthetic pyrethroids in larvae of the cattle tick Boophilus microplus (Can). Pestic Sci. 1983;14:64-72.

Servicio Geografico Militar. Mapa [homepage]. Disponível em: http://www.ejercito.mil.uy/cal/sgm/principal1024.html [2010 Set 16]

Shaw RD. Culture of an organophosphorus resistant strain of Boophilus microplus (Canestrini) and assesment of its resistance spectrum. Bull Entomol Res. 1966;56(4):398-405.

Shidrawi GR. A WHO global programme for monitoring vector resistance to pesticides. Bull World Health Org. 1990;68:403-408

Sindicato Nacional da Indústria de Produtos para Saúde Animal. Mercado veterinário por classe terapêutica e espécie animal [homepage]. São Paulo: SINDAN; 2007. Disponível em: http://www.sindan.org.br [2007 Ago 5].

Spomer NA, Kamble ST. Sorption and Desorption of Fipronil in Midwestern Soils. Bull. Environ Contam Toxicol. 2010;84:264–268.

StataCorp. Stata Statistical Sofware: Release 10. [CD-ROM]. College Station, TX: StataCorp LP; 2007. 1 CD-ROM.

Stevens MM, Helliwell SS, Warren GN. Fipronil seed treatments for the control of chironomid larvae (Diptera: Chironomidae) in aerially-sown rice crops. Field Crops Res. 1998;57:195-207.
Stone BF, Haydock RP. A method for the cattle tick *Boophilus microplus* (Can.) Bull. Entomol. Res. 1962;53:563-578.

Stumpf N, Nauen R. Biochemical markers linked to abamectin resistance in *Tetranychus urticae* (Acari: Tetranychidae). Pestic Biochem Physiol. 2002;72:111-121.

Sutherst RW, Comins HN. The management of acaricide resistance in the cattle tick (*Boophilus microplus* (Canestrini) (Acari: Ixodidae), in Australia. Bull Entomol Res. 1979;69:519-540.

Thullner F. Impact of pesticide resistance and network for global pesticide resistance management based on a regional structure. WAR- RMZ. 1997;89:41-47.

Tingle CC, Rother JA, Dewhurst CF, Lauer S, King WJ. Fipronil: environmental fate, ecotoxicology, and human health concerns. Rev Environ Contam Toxicol. 2003;176:1-66.

Veira MIB, Tuerlinekx SM, Santos AB. Avaliação da sensibilidade do carrapato *Boophilus microplus* a carrapaticidas em rebanhos de corte e leite do município de Bagé, RS, Brasil. Rev Cienc Rur. 1998;3(2):68-72.

Villarino MA, Waghela SD, Wagner GG. Histochemical localization of esterases in the integument of the female *Boophilus microplus* (Acari: Ixodidae) tick. J Med Entomol. 2001;38(6):780-782.

Villarino MA, Wagner GG. George JE. In vitro detection of acaricide resistance in *Boophilus microplus* (Acari: Ixodidae). Exp Applied Acarology. 2002;28:265-271.

Villarino MA, Waghela SD, Wagner GG. Biochemical detection of esterases in the adult female integument of organophosphate-resistant *Boophilus microplus* (Acari: Ixodidae). J Med Entomol. 2003;40:52-57.

White WH, Plummer PR, Kemper CJ, Miller RJ, Davey RB, Kemp DH, Hughes S, Smith II CK, Gutiérrez JA. An *in vitro* Larval Immersion Microassay for Identifying and Characterizing Candidate Acaricides. J Med Entomol. 2004;41:1034-1042.

Whitnall AB, Bradford B. An arsenic resistant tick and its control with gammexane dips. Bull. Entomol Res. 1947;38:353-372.
Wikimedia. Mapa Estado de São Paulo [homepage]. Disponível em: http://upload.wikimedia.org/wikipedia/commons/8/86/SaoPaulo_MesoMicroMunicipio.svg [2010 Set 16].

Wu G, Jiang S, Miyata T. Effects of synergists on toxicity of six insecticides in parasitoid Diaretiella rapae (Hymenoptera: Aphidiidae). J Econ Entomol. 2004;97:2057-2066.

Zhao JZ, Wu SC, Zhu GR. Bioassays with recommended field concentrations of several insecticides for resistance monitoring in Plutella Xylostella. Res Pest Manag. 1995;7(1):13-14.

Zhu G, Wu H, Guo J, Kimaro FME. Microbial degradation of fipronil in clay loam soils. Water Air Soil Pollute. 2004;153:35–44.
Artigo 1 Castro-Janer E, Rifran L, Piaggio J, Gil A, Miller RJ, Schumaker TTS. *In vitro* tests to establish LC$_{50}$ and discriminating concentrations for fipronil against *Rhipicephalus* (*Boophilus*) *microplus* (Acari: Ixodidae) and their standardization. Vet Parasitol. 2009;162:120–128.
In vitro tests to establish LC50 and discriminating concentrations for fipronil against Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) and their standardization

E. Castro-Janer a,b,*, L. Rifran a, J. Piaggio c, A. Gil c, R.J. Miller d, T.T.S. Schumaker b

a Department of Parasitology, Faculty of Veterinary, UDELAR, Uruguay
b Department of Parasitology, Instituto de Biociências, USP, Brazil
c Department of Bioestatistic, Faculty of Veterinary, UDELAR, Uruguay
d USDA-ARS Cattle Fever Tick Research Laboratory, Edinburg, TX, USA

1. Introduction

The southern cattle tick, Rhipicephalus (Boophilus) microplus (Canestrini), is one of the most damaging pests that attack bovines in tropical and subtropical regions of the world. These ticks cause severe economic losses feeding on host blood and through the transmission of disease-causing agents (Thullner, 1997). In subtropical and tropical countries of South America, R. microplus transmits Babesia bigemina, B. bovis and Anaplasma marginale. The economical world losses were estimated in $7 billion (FAO, 2004), $1 billion for Latin-American (FAO, 2004) and $32.5 million/year USD for Uruguay (MGAP, 2005). These losses can be minimized with acaricide treatment, but this has contributed to the development of resistance which is, at least in different parts of the world, the main technical problem for pest and vector control programs in livestock and public health (Shidrawi, 1990). For example, resistance has been detected in R. microplus for almost every chemical that is registered for use against it and it stands as number 6th in the world for the number of different acaricides it is resistant to compared to all other arthropods (Whalon et al., 2008).

In Uruguay, tick control has been legislated since the 1940s relying mainly on acaricide use to include organophosphates (OP), synthetic pyrethroids (SP), amidines
Until now, no tests have been developed or validated for fipronil resistance in the cattle tick. Therefore, to confirm fipronil resistance in *R. microplus* it has been necessary to perform stall trials involving treatment of experimentally infested cattle with formulated product. For this reason, the objective of the present study was to develop an adequate *in vitro* bioassay technique for the diagnosis of fipronil resistance in cattle ticks and to establish DCs for AIL, LIT and LPT technique.

2. Materials and methods

To standardize each method, the repetitions were made in the same laboratory conditions and adjustable volume micropipettes (*Acura 835*%, Socorex ISBA S.A.) were used. Micropipette imprecision (CV) was <0.5% for 1000 μl volume micropipette and <1% for 50 μl volume micropipette.

2.1. Acaricides

Technical grade (95.3%) fipronil (Agromen Chemicals Co., LTD, HangZhou, China, Lote ZF300) was used in this study.

2.2. Ticks

The Mozo strain was used as susceptible reference strain. It is maintained in laboratory conditions in the Parasitology Department of the División de Laboratorios Veterinarios “Miguel C. Rubino” (MGAP, Uruguay) since May 1973 (*Cardozo et al., 1984*). Laboratory rearing conditions were as follows; engorged females were collected from experimental infested calves, washed with water and dried with a paper towel. Twenty to thirty engorged females were randomly selected for fecundity measurement and others 80–100 for AIT. Females selected for the fecundity measurement were stuck dorsal surface down on double sided tape on the lid of a plastic petri dish. Later, they were incubated at 27–28 °C, 80–85% RH. The eggs from 3 days to 5 were pooled and used for the LPT testing. Larvae for LPT and LIT were obtained 6 weeks after the collection of adult females.

The fipronil resistant strain was originally collected in Uruguay from a population of ticks that could not be controlled with fipronil after 13 applications over an 8-year duration. The resistance was described by *Cuore et al. (2007)* using stable trials.

2.3. AIT

The protocol described by *Drummond et al. (1973)* and *Benavides et al. (1999)* were considered to standardize the AIT with fipronil. The following parameters were measured: female mortality, weight of eggs 7 day and 14 day after the treatment and percent hatch. Twenty-six and 46 assays were performed for the Mozo and fipronil resistant strain, respectively. A 1% stock solution from technical fipronil was prepared in acetone and held at 4 °C for 15 days. To lower the final acetone concentration, two pre-dilutions were prepared on the same day of assay. One ml of stock solution was diluted in 9 ml of acetone, and after 1 ml of this
solution was diluted in 9 ml of distilled water. The final fipronil concentration was 0.01% in 10% of acetone. For bioassays with the Mozo strain, the following concentrations were used: 3 ppm, 2.5 ppm, 2 ppm, 1.7 ppm, 1.5 ppm, 1.2 ppm, 1 ppm, 0.8 ppm, 0.7 ppm, 0.6 ppm, 0.5 ppm, 0.4 ppm, and 0.2 ppm. The control group was submerged in an acetone solution 10% without acaricide. Bioassays were made with 5–13 dilutions, depending on the number of ticks available. Each concentration was repeated 2–3 times also depending on the number of ticks available at the time of testing. To determine the LC50 for the fipronil resistant strain, replicated serial dilutions were made from 0.1% to 0.01% with a final acetone concentration 50%, and the control group was immersed in an acetone solution 50%. Homogeneous groups in size, weight and vigor of 10 engorged females for dilution and for the control group were done. Each group was weighed and immersed for 1 min in 20 ml of the respective dilution in a 50-ml beaker and gently agitated. Later, ticks were recovered from the dilutions, dried rapidly and stuck dorsal side down on double sided tape on the lid of a plastic petri dish and incubated at 27–28 °C, 80–85% RH. On day 7 and 14, the number of females laying eggs was recorded and eggs were weighed. Treated engorged female ticks were considered live if laying eggs (independently of egg viability) and dead when not laying. At 6 weeks percentage hatch was recorded.

2.4. LPT

The LPT was carried out according the protocol described by FAO (2004). Fipronil was diluted in a solution that contained one part commercial olive oil and two parts trichloroethylene (Merck) (TCE-OO) and ionol (0.01%) as conservator. The same stock fipronil solution (1% in acetone) described in item 2.3 was used. One ml of this solution was diluted in TCE-OO to make 100 ml. Ten serial dilutions were prepared to cover the entire dose–response range (300 ppm, 150 ppm, 75 ppm, 37.5 ppm, 18.75 ppm, 9.37 ppm, 4.69 ppm, 2.34 ppm, 1.17 ppm and 0.59 ppm) in daylight conditions. Six hundred and seventy μl of each dilution was deposited over the surface of filter paper filter paper (Whatman No. 1, 850 mm × 750 mm). The control group was exposed to the filter paper treated only with the organic solvents and OO, without acaricide. The papers were held at room temperature for 24 h to permit TCE and acetone evaporation and then the papers were formed into packets by folding in half and applying clips to the sides. Approximately, 100 larval ticks (15-day-old) were placed into the packets, sealed with a clip on the open end, and incubated at 27–28 °C and 80–85% RH for 24 h. After incubation, the packets were opened and the number of live and dead larvae recorded. Each dilution was replicated three times and 15 assays were performed for the standardization. Later, the LC50 of the fipronil resistant strain was calculated using the data from 7 assays with 3 replicated for dilution.

2.5. Larval immersion test for fipronil

Modifications to the Shaw (1966) protocol were done making it similar to the LIT used by Benavides and Romero (1999). Fipronil stock solution (1% described in item 2.3) was used. However, Triton X-100 was added (0.04%) to the stock solutions prior to dilution for the test. One ml of fipronil (0.01%) was diluted in 9 ml of a solution that contained 10% acetone technical grade (100%) in distilled water and 0.04% Triton X-100. The final concentrations used were: 5 ppm, 3 ppm, 2.5 ppm, 2 ppm, 1.7 ppm, 1.5 ppm, 1.2 ppm, 1 ppm, 0.8 ppm, 0.6 ppm, 0.4 ppm and 0.2 ppm. As a control the diluent solution without fipronil was used. To determine the LC50 of the fipronil resistant strain, two higher dilutions were included (50 ppm and 100 ppm).

One ml of each dilution was added to 2.0 ml Eppendorf tubes. A group of approximately 500 tick larvae (±100) were immersed for 10 min. Tubes were agitated vigorously by hand to submerge the larvae, later the tubes with larvae were agitated gently by hand for 10 min. After, the tubes were opened and the contents drained. The larvae were removed from the microvial with a paint brush. The larvae were placed on a filter paper to dry. Approximately, 100 larvae were transferred to a filter paper (described previously in the LPT protocol). The packets were held at 27–28 °C and 80–85% RH for 24 h. After 24 h the packets were opened and the number of live and dead larvae recorded.

2.6. Statistical analyses

All statistical analyses were performed with Intercooled Stata 10 program (StataCorp, 2007). Lethal doses (LC50 and LC99.9) for each strain were compared taking into consideration their 95% confidence limits. Significance of this comparison was determined only if one was not include in the confidence interval. If the limits overlap, lethal doses do not differ significantly.

2.6.1. AIT

Two strains (susceptible and fipronil resistant strain) were used to evaluate the test. First, the correlation egg weight to fipronil concentration on day 7 and 14 was determined. The analyses included logarithm transformation dose. To calculate dose–response the following parameters were compared:

(a) Mortality: engorged females that oviposited were considered as live and females that did not oviposit were considered as dead.
(b) Egg weight on day 7 and 14. The LC50 was determined as the dilution that diminish egg weight by half.
(c) Index of fertility (IF) = egg mass weight (g)/females weight (g).
(d) Index of fecundity (IFec) = (IF × % de hatching)/100.

LC50 for IF and IFec was determined as the concentration that lowered the IF and IFec by half. Linear regression analyses were run on bioassay results. Taken into consideration all assays mean lethal concentration for each dilution was calculated. As measure of the precision of the bioassays variance was determined. Resistance factors (RF) were only calculated as the coefficient of LC50 of fipronil resistant strain and LC50 of susceptible strain (Mozo), because the LC99.9 values would provide unrea-
listic RF as these concentrations. CI 95% of the distributions observed was compared for LC$_{50}$ and LC$_{99.9}$ for each variable. Two times LC$_{99.9}$ as discriminating doses (DCs) was used, as FAO recommended for acaricide resistance (FAO, 2004) in other pesticides.

2.6.2. LPT and LIT
Probit analysis of the concentration-response data was carried out. The LC$_{50}$ and LC$_{99.9}$ values were determined by applying regression equation analysis to the probit transformed data. Because repeatability could be different for each concentration, mean mortality was calculated for each concentration for each day. Variance was considered to study variability of LC$_{50}$ estimation. A Student’s t-test was used to statistically analyze the LC$_{50}$ for both strains and a resistant factor was calculated according item 2.6.1.

3. Results

3.1. AIT

Fig. 1 presents the relationship between the weight of eggs at day 7 and at day 14 for both strains. A positive association was determined for each strain. The correlation coefficient for Mozo strain ($n = 62$) and fipronil resistant ($n = 305$) ticks was 0.968 and 0.974, respectively. Based in these results, we used the egg weight at day 7 because was the quickest parameter to measure. The LC$_{50}$ and LC$_{99.9}$ estimates for each variable considered in the AIT are shown in Tables 1 and 2 for the Mozo and the fipronil resistant strain, respectively. No significant differences were observed at the LC$_{50}$ estimate for egg weight at 7 day and IF within each strains. However, LC$_{50}$ for IFec was significantly different from LC$_{50}$ for egg weight and IF within each strain. The fipronil concentration to inhibit 50 and 99.9% of hatching was lower than the other variables. When LC$_{99.9}$ was compared, significant differences for mortality and IFec for both strains were detected. The LC$_{50}$ and LC$_{99.9}$ for egg weight at 7 days and IF did not differ. Resistance factors for each variable were calculated (Table 2) and mortality presented the greatest difference among the variables measured.

Regressions of fipronil toxicity for each variable and for both strains are shown in Fig. 2. All variables discriminated between susceptible and fipronil resistant phenotypes. IFec showed the most variation in both strains where CI (95%) for the regression was very large. In the Mozo strain depending on the variable measured, the LC$_{50}$ dispersion

Table 1
Lethal fipronil concentration 50 and 99.9 obtained by AIT for several variables for the susceptible (Mozo) R. microplus strain.

Variable	N	n	Slope	SE slope	t	R^2	LC$_{50}$ (ppm) (95% CI)	Variance	LC$_{99.9}$ (ppm) (95% CI)	Variance
Mortality	26	267	0.79	0.04	17.8	0.55	0.75* (0.72–0.84)	0.04	2.49* (2.35–2.6)	0.07
Egg weight 7 day	23	197	0.10	0.08	13.9	0.50	0.62* (0.55–0.67)	0.02	1.38* (1.16–1.56)	0.06
Index of fertility	23	202	0.31	0.02	12.7	0.45	0.66* (0.57–0.7)	0.02	1.46* (1.23–1.75)	0.06
Index of fecundity	17	125	28.56	3.95	7.2	0.3	0.45* (0.39–0.52)	0.01	0.84* (0.7–1.04)	0.04

N: number of assays, n: number of observations, t: test and R^2: regression coefficient.

* Values followed with the same letter are not significantly different ($P < 0.05$).
was different than that observed in LC99.9 (Fig. 3), where variation was bigger. IFec was the variable with the least dispersion at the LC50 and LC99.9. The LC50 calculated for egg weight as well as IF showed symmetrical distributions. In the fipronil resistant strain, the LC50 for each variable presented minor dispersion in relation to LC99.9 (Fig. 4). Likewise, the LC50 for IFec was the variable with least dispersion, but, in reference to LC99.9, presented similar

Table 2
Lethal fipronil concentration 50 and 99.9 obtained by AIT for several variables for fipronil resistant R. microplus (N = 46) strain.

Variable	n	Slope	SE slope	t	R^2	LC50* (ppm) (95% CI)	LC99.9* (ppm) (95% CI)	RF50*a
Mortality	408	0.11	0.003	35.23	0.75	151.9 (140.2–163)	348013.7 (293606.8–412502.5)	202.4
Egg weights 7 day	365	−0.15	0.004	−34.2	0.76	59.3 (50.4–70.5)	2297.5 (2017.3–2590.5)	96.3
Index of fertility	365	−0.04	0.0013	−32.7	0.75	66.3 (56.4–78.8)	2391.3 (2099.6–2750.8)	134.9
Index of fecundity	318	−3.55	0.486	−23.9	0.64	36.7 (21.9–35.2)	506.8 (427.4–588.9)	81.97

n: number of observations, t: test and R^2: regression coefficient.
* Values followed with the same letter are not significantly different ($P < 0.05$).
* RF = resistance factor.

Fig. 2. Comparative activity of fipronil on susceptible and resistant tick strains for dose–response mortality, egg weight, index of fertility and index of fecundity. Dashed lines indicate 95% confidence intervals.

Fig. 3. Distribution of LC50 and CL99.9 of fipronil to mortality, egg weight, index of fertility and index of fecundity for Mozo strain.
dispersion for IF and egg weight. Mortality presented the greatest variability in the observed parameters at the LC$_{50}$ and LC$_{99.9}$ estimates.

3.2. LPT

The results of LPT standardization of the Mozo strain are shown in Table 3. High doses of fipronil were required to kill half of susceptible strain in relation with AIT and LIT. The LC$_{50}$ dispersion (Fig. 5) showed similar results when compared to the AIT. When assays were performed simultaneously using the fipronil resistant strain ($N = 18$), similar slope values were obtained (Table 4). The regression lines were parallel but not equal (Fig. 6). The regression coefficient (R^2) was 0.74 for Mozo strain and 0.71 for fipronil resistant strain. Because the CI (95%) for

Test	n	Slope ± SE	t	R^2	LC$_{50}$ (ppm)	95% CI	Variance	LC$_{99.9}$ (ppm)	95% CI	Variance
LPT	392	17.09 ± 0.62	27.41	0.66	44.8, 35.8–54.4	0.44	1182.9, 688.4–2031.9	0.07		
LIT	693	67.27 ± 1.46	46.02	0.75	1.43, 1.34–1.51	0.02	3.82, 3.53–4.1	0.07		

Fig. 4. Distribution of LC$_{50}$ and LC$_{99.9}$ estimation of fipronil to mortality, egg weight, index of fertility and index of fecundity for fipronil resistant strain.

Fig. 5. Distribution of LC$_{50}$ and LC$_{99.9}$ estimation of fipronil to mortality for susceptible strain (Mozo) by larval packet test (LPT) and larval immersion test (LIT).
both the LC50 and the LC99.9 overlapped, the lethal doses do not differ significantly.

3.3. LIT

The results of the LIT standardization of the Mozo strain are shown in Table 3 and Fig. 5. The toxicity of fipronil was higher when the LIT and the AIT technique were used when compared with the LPT. When bioassays were performed simultaneously with the fipronil resistant strain (N = 12), very different slopes values were obtained (Table 4). The R^2 for Mozo and fipronil resistant strain was 0.78 and 0.77, respectively, indicating a good fit to the statistical mode. Significant differences were measured between the LC50 from both strains ($P = 0.0001$) ($t = -11.272$, GL = 22). The resistance factor obtained by LIT was larger than that obtained by LPT (Table 4).

4. Discussion

The choice of technical fipronil and not commercially formulated product was based in the difficulty to prepare a control solution and the facility to dissolve it. Because commercial products have proprietary ingredients it is difficult to distinguish the mortality due to the active ingredient versus that which could be due to the other components of the formulation (Shaw, 1966). Solubility problems with other commercial products have been reported. Sabatini et al. (2001) detected problems with commercial injectable formulations limiting its use for LPT. In the present study, technical fipronil dissolved well in acetone, facilitating the standardization of the three bioassay techniques used in this study. However, acetone is highly volatile, and we observed that fipronil stock solutions could be maintained refrigerated for 2 weeks without changes in the results of the test for this reason. Likewise, it was not convenient to maintain stock solutions with low fipronil concentrations (0.01%) in acetone 5% or 10% because after a few days, the fipronil began to precipitate. In the present study, ethanol was used because its lower volatility.

For AIT, each variable could be used for resistance diagnosis despite the fact that the degree of LC50 dispersion for mortality, egg weight and IF was very large in relation to IFec for Mozo strain. This behavior was expected for mortality because the numbers of ticks for observation unit was low ($n = 10$), but it was not expected in relation to egg weight and IF since they were continuous variables.

![Graph](image)

Table 4

Lethal fipronil concentration 50 and 99.9 obtained by LPT ($N = 18$) and LIT ($N = 12$) for susceptible (Mozo) and fipronil resistant R. microplus.

Test	Strain	Slope ± SE	t	LC50 * (ppm)	LC99.9 * (ppm)	RF50a
				95% CI	95% CI	
LPT	Mozo	16.93 ± 0.78	21.55	64.39, 50.4–82.2	2724.69, 1540.4–4819	–
	Fipronil resistant	15.54 ± 0.78	20.01	98.15, 77–125.1	2848.12, 1533.4–5289.2	1.52
LIT	Mozo	71.34 ± 3.37	21.15	1.8*, 1.8–1.9	3.83*, 3.5–4.1	–
	Fipronil resistant	20.60 ± 1.02	20.34	9.7b, 7.3–12.8	17.63b, 7.1–40.9	5.36

* Values follow with the same letter no statistically differences for $P < 0.05$.

a RF = resistance factor.

Fig. 6. Dose–response mortality data of susceptible (Mozo) ($n = 206$) and fipronil field resistant larvae ($n = 162$) of R. microplus using LPT and LIT.
The Ifec variable showed the most data variation in the dose–response curve with a CI 95% very large. Perhaps this was due to the long incubation time. The data was obtained after 5–6 weeks in contrast with mortality and egg weight that were obtained within 1 week. The small amount of deviation in LC₅₀ mortality distribution indicates that it satisfactory to only record oviposition to determine if engorged females are resistant without consideration of egg mass weight or egg viability. The Mozlo strain could be considered homogeneous so the LC₅₀ variations in all parameters reflect the natural variation of this strain (Robertson et al., 2007).

The fipronil resistant strain should be considered as heterogeneous. Therefore, the high variation at the LC₅₀ estimate for mortality was expected because both susceptible and resistance genes were present in this strain when tested. The confidence intervals were large when the AIT was used. Perhaps because concentrations that kill 70–95% of adults were not tested.

AIT is influenced by several factors, one of which is immersion time. For fipronil, this was a critical point due to the high toxicity of this acaricide. Sabatini et al. (2001) using the same concentration for macrocyclic lactones noted an increase of the mortality with the time. Different immersion times have been used for other acaricides. Ten minutes have been used for amitraz (Oliveira et al., 2000) and 15 min for cypermethrin (Mendes et al., 2000). In the work of Jonsson et al. (2007), FAO protocols were followed with 30 min of immersion. In the present work, the maximum immersion time was 1 min. Jonsson et al. (2007) evaluated AIT as bioassay technique to discriminate amitraz and cypermethrin resistant strains, but did not obtain reproducibility and the slope for dose–response curve was very low. The likely cause for this was the low number of ticks used in each dilution (n = 10) and the absence of repetitions. Hence, the authors concluded that AIT is not an adequate method for resistant screening due the great data variation obtained from sample sizes likely to be obtained directly from the field. In this study the generated slopes were also low. However, in spite of this variation, our data showed that AIT was reliable for the diagnosis of fipronil resistance. This was most likely due to our use of greater numbers of ticks per concentration and multiple repeats of each bioassay (Tables 1 and 2). It would be advisable to execute a bioassay, using a suspected resistant strain along with a susceptible strain at three concentrations (0.2 ppm, 1 ppm and 5 ppm) to diagnose resistance to fipronil. Furthermore, we agree with Jonsson et al. (2007) in the fact that the more individuals included at each concentration produce more reliable results. Because all of four variables considered in the AIT to determine DCs were efficient to discriminate a susceptible from fipronil resistant strain, there is an advantage in use of mortality because is the earliest parameter to measure. The presence of engorged females laying eggs at DC is a positive resistant diagnostic. Using this parameter, it was possible to obtain reliable results in 7 days and with less work, because it was not necessary to weigh eggs and determine percentage of hatching. Additionally, the advantage of recording mortality at 7 days, avoids the use of more complex equipment for the incubation of eggs.

Fast data attainment is of great practical importance when it is necessary to decide about acaricide rotation in a particular area where ticks maybe resistant to the current acaricide in use. However, a great number of engorged females with uniform size are needed to execute an accurate test and this is not often the case. However, when few engorged females are collected, a larval test can be used in place of the AIT.

The fact that fipronil used in the LPT showed less toxic than when used in the LIT (Table 3), agrees with data obtained by Shaw (1966). Likewise, White et al. (2004) encountered greater toxicity using larval immersion test by means microassay than LPT, due to larger product tick contact. LIT more efficiently discriminated between the resistant and susceptible strain. This is valuable in that fipronil resistance is more likely to be detected sooner when the LIT is used rather than when the LPT is used.

According to Jonsson et al. (2007), low slopes values for AIT could be a problem to define DCs for the diagnosis of resistance, particularly if RFs are low. In the present study, the slope values were low, however, RF values were high. The high RF value for mortality calculated for the fipronil resistant strain is in agreement with the very low percentage of efficacy (18%) determined by stable trials (Cuore et al., 2007). Our data show that it is possible to use the AIT as a diagnostic for the detection of fipronil resistance.

Either one of the bioassays developed in this study can be used for the diagnosis of resistance in R. microplus to fipronil. The LIT showed the best performance in this study. However, the AIT could be improved by using ethanol as solvent and testing more ticks per concentration in the DC, and more LPT assays need to be completed with more strains to verify the discriminate power of resistance for fipronil. For more reliable results, it is desirable to use a susceptible strain along with the unknown strain (at less with one dilution). More studies will be required to associate the field acaricide efficacy with RF value. These results establish an accurate and representative DC for the detection of fipronil resistance in field collected R. microplus.

Acknowledgements

We thank Maria Angélica Solari and Ulises Cuore from the Department of Parasitology-DILAVE (Uruguay) for providing us with Mozo strain and Armando Nari for the critical reviewing. We also appreciate the assistance with the project of Rosario Silveira and Rosmary Domínguez from the College of Veterinary Medicine (Uruguay) and Guilherme Klafke from the Institute of Biosciences, University of Sao Paulo (Brazil).

This project was done with financial support of INIA-FPTA No. 243 (Uruguay) and FAPESP (Brazil).

References

Alberti, H., Alberti, A.L.L., Rinaldi, P.L.F., Lamberti, D.D.G., Rodrigues, L.G., Lima, G.L., 2001. Avaliação da eficácia do fipronil e da deltametrina, University of Sao Paulo (Brazil).
formulação “pour-on”, no control da Haematobia irritans, parasitando bovinos em regime de campo, na região oeste do Estado de São Paulo.

A-Hora-Veterinaria 20 (119), 48–51.

Benavides, O.E., Romero, M.A., 1999. Preliminary results of a larval resistance test to ivermectin using Boophilus microplus reference strains. In: Proceedings of the 5th Biennial Conference of the Society for Tropical Veterinary Medicine. Key West, FL. 12–16 June 1999.

Benavides, O.E., Romero, M.A., Rodríguez, J.L., Silva, Z.J., 1999. Evidencia preliminar de la aparición de resistencia a lactonas macrocíclicas en cepas de garrapata Boophilus microplus en Colombia. In: Memorias IV Seminarios Internacionales de Parasitología, Puerto Vallarta, Jalisco., México, 20–22 October 1999, pp. 260–264.

Cardozo, H., Petraccia, C., Nari, A., Solari, M.A., 1984. Estudios de la resistencia a acaricidas organofosforados del Boophilus microplus en el Uruguay. I. Perfil de sensibilidad de la cepa Mozo tomada como patrón susceptible. Veterinaria (Montevideo) 20, 11–15.

Colliot, F., Kukorowski, K.A., Hawkins, D.W., Roberts, D.A., 1992. A new soil and foliar broad spectrum insecticide. Brighton Crop Prot. Conf. Pests Dis. 1, 29–34.

Cuore, U., Treilles, A., Sanchís, J., Gayo, V., Solari, M.A., 2007. Primer diagnóstico de resistencia al Fipronil en la garrapata común del ganado Boophilus microplus. Veterinaria (Montevideo) 42, 35–41.

Drummond, R.O., Ernst, S.E., Trevino, J.L., Gladney, W.J., Graham, O.H., 1973. Boophilus annulatus and Boophilus microplus: laboratory test of insecticides. J. Econ. Entomol. 66, 130–133.

FAO, 1971. Recommended methods for the detection and measurement of resistance of agricultural pest to pesticides-tentative method for larvae of cattle ticks, Boophilus microplus spp. FAO method no. 7.

FAO Plant Prot. Bull. 19, 15–18.

FAO, 2004. Resistance Management and Integrated Parasite Control in Ruminants: Guidelines. http://www.fao.org/ag/aga.html.

Guglielmone, A.A., Volpogni, M.M., Mangold, A.J., Anziani, O.S., Castelli, M.C., 2000. Evaluación de una formulación comercial “pour-on” con fipronil al 1% para el control de Haemotobia irritans en vaquillonas Holando naturalmente infestadas. Veterinaria (Argentina) 17, 108–113.

Hitchcock, L.F., 1953. Resistance of cattle tick (Boophilus microplus, Canestrini) to benzene hexachloride. Aust. J. Agric. Res. 4, 360–364.

Jonsson, N.N., Miller, R.J., Robertson, J.L., 2007. Critical evaluation of the modified-adult immersion test with discriminating dose bioassay for Boophilus microplus using American and Australian isolates. Vet. Parasitol. 146, 307–315.

Medina, P., Budía, F., Del Estal, P., Adán, A., Viñuela, E., 2003. Toxicity of fipronil to the predatory lacewing Chrysoperla carnea (Neuroptera: Chrysopidae). Biocontrol Sci. Technol. 14, 261–268.

Mendes, M.C., Oliveira, R.O., Vieira Bressan, M.C.R., 2000. Determination of minimal immersion times for use in in vitro resistance test with Boophilus microplus (Canestrini, 1887) engorged females and pyrethroid acaricides. Rev. Brasileira Parasitol. Vet. 9, 33–39.

Ministerio de Ganadería, Agricultura y Pesca. Jornada-Taller: Programa de Lucha contra la Garrapata, Durazno, 2005.

Oliveira, R.O., Mendes, M.C., Jensen, J.R., Vieira Bressan, M.C.R., 2000. Determination of the minimum immersion time of Boophilus microplus (Canestrini, 1887) engorged females for in vitro resistance tests with amitraz at 50% effective concentration (EC50). Rev. Brasileira Parasitol. Vet. 9, 41–43.

Robertson, J.L., Russell, R.M., Price, H.K., Savin, N.E., 2007. Bioassays with Arthropods, 2nd ed. CRC Press, Boca Raton, FL, USA.

Sabatini, G.A., Kemp, D.H., Hughes, S., Nari, A., Hansen, J., 2001. Test to determine LC50 and discriminating doses for macrocyclic lactones against the cattle tick Boophilus microplus. Vet. Parasitol. 95, 53–62.

Scott, J.A., 1995. The molecular genetics of resistance: resistance as a response to stress. Fla. Entomol. 78, 399–414.

Shaw, R.D., 1966. Culture of an organophosphorus resistant strain of Boophilus microplus (Canestrini) and assessment of its resistance spectrum. Bull. Entomol. Res. 56(4), 398–405.

Shidrawi, G.R., 1990. A WHO global programme for monitoring vector resistance to pesticides. Bull. World Health Org. 68, 403–408.

StataCorp, 2007. Stata Statistical Software: Release 10. StataCorp LP, College Station, TX.

Stout, B.F., Haydock, R.P., 1962. A method for the cattle tick Boophilus microplus (Can.). Bull. Entomol. Res. 53, 563–578.

Thullner, F., 1997. Impact of pesticide resistance and network for global pesticide resistance management based on a regional structure. WAR-RMZ 89, 41–47.

Wharton, M.E., Mota-Sánchez, D., Hollingworth, R.M., 2008. Global Pesticide Resistance in Arthropods. CAB International, p. 381.

White, W.H., Plummer, P.R., Kemper, C.J., Miller, R.J., Davey, R.B., Kemp, D.H., Hughes, S., Smith II, C.K., Gutiérrez, J.A., 2004. An in vitro larval immersion microassay for identifying and characterizing candidate Acaricides. J. Med. Entomol. 41, 1034–1042.

Whitnall, A.B., Bradford, B., 1947. An arsenic resistant tick and its control with gammexane dips. Bull. Entomol. Res. 38, 353–372.
ANEXO B

Artigo 2 Castro-Janer E, Rifran L, González P, Piaggio J, Gil A, Schumaker TTS. *Rhipicephalus (Boophilus) microplus* (Acari: Ixodidae) resistance to fipronil in Uruguay evaluated by *in vitro* bioassays. Vet Parasitol. 2010;169:172-177.
Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) resistance to fipronil in Uruguay evaluated by in vitro bioassays

E. Castro-Janer, L. Rifran, P. González, J. Piaggio, A. Gil, T.T.S. Schumaker

Department of Parasitology, School of Veterinary Medicine, UDELAR, Uruguay
Department of Parasitology, Institute of Biomedical Sciences, USP, Brazil
Department of Biostatistic, School of Veterinary Medicine, UDELAR, Uruguay

1. Introduction

Rhipicephalus (Boophilus) microplus, the most important cattle tick in the tropical and subtropical areas of Central and South America, causes significant economic losses. These losses were estimated at 7 billion dollars worldwide (FAO, 2004), 1 billion dollars for Latin-America (FAO, 2004), and 32.5 million dollars/year for Uruguay (Ministry of Livestock, Agriculture and Fisheries, MGAP, 2005). Acaricides are widely used to control infestations by ticks. However, one of the most serious problems encountered has been the resistance to acaricides. This problem has been reported for different classes of acaricides including organophosphates, synthetic pyrethroids, and formamidines. In the past few years, several authors have reported cases of R. (B.) microplus strains resistant to macro-cyclic lactones (Martins and Furlong, 2001; Klafke et al., 2006). More recently, a R. (B.) microplus strain resistant to fipronil was detected for the first time using stable probes (Cuore et al., 2007) and in vitro bioassays (Castro-Janer et al., 2009).

Over the past decades, resistance to insecticides has constituted the main technical problem in pest control programs in agriculture, livestock, and public health (Shidrawi, 1990). In Uruguay, tick control has been the subject of legislation since the 1940s and has relied mainly on the use of acaricides that include organophosphates, synthetic pyrethroids, amidines, macro-cyclic lactones, fluazuron, and phenylpyrazole (fipronil) (MGAP, 2005). The resistance of R. (B.) microplus to the various acaricides appeared chronologically with their use. The resistance to arsenicals appeared in 1960, to organophosphates at the end of the 1970s, and to synthetic pyrethroids at the beginning of the 1990s (Cardozo and Franchi, 1994). Currently, amitraz, fipronil, and fluazuron have been used with success. The approval to use fipronil and fluazuron in

ARTICLE INFO

Article history:
Received 9 June 2009
Received in revised form 14 December 2009
Accepted 14 December 2009

Keywords:
Rhipicephalus (Boophilus) microplus
Fipronil
Acaricide
Resistance tests

ABSTRACT

Rhipicephalus (Boophilus) microplus obtained from four local populations in Uruguay (2007–2008) were subjected to various bioassay techniques to determine the presence of fipronil resistance within the country. Resistance ratios (RRs) obtained by larval immersion test varied between 3.3 and 3635 for tick populations subjected to treatment with fipronil for the last 3–7 years. The highest RR was observed in the population which received fewer treatments. Using discriminating concentration (8 ppm) for larval immersion test, all field strains were correctly diagnosed as fipronil-resistant. This study presents the first diagnoses of cattle tick resistance to fipronil in Uruguay’s field populations. It also highlights the importance of the possible conflict between programs to control agricultural pests and cattle ticks. The findings provide valuable information for selection and adoption of new control alternatives to manage drug resistance exhibited by cattle ticks.
the control of ticks on cattle in Uruguay was obtained in 1998. At the beginning, these two products were not commonly used for reasons of cost, but over the past few years the reduction in their costs and rising problems with resistance to other molecules has increased their use. Currently, less than 10% of livestock farms use fipronil in Uruguay.

The mechanism of action of fipronil (phenylpyrazole agent) in insects is primarily the blockage of GABA-regulated chloride channels (Hunter et al., 1994). The aim of the present study was to determine, by in vitro bioassays, whether field strains of *R. (B.) microplus* showed resistance to fipronil.

2. Materials and methods

2.1. Acaricides

Technical grade (95.3%) fipronil (Agromen Chemicals Co. Ltd., Hang Zhou, China, Lote ZF300) was used in this study.

2.2. Ticks

R. (B.) microplus populations were collected from four cattle farms (DUR, IRA, QUE, and SAP) at the Department of Paysandú (S32°8'57", W58°02'13"), Uruguay, from 2007 to 2008. This region has been forested in the last 5 years and is known for its rich agricultural and livestock production. For the last 3–7 years, the four farms have been breeding Hereford cattle using fipronil for tick control at a treatment frequency of 3–5 times/year. Lately, all these farms have encountered failures in the use of fipronil to control cattle tick. The Mozo strain, provided by the Parasitology Department of the Veterinary Laboratories Division “Miguel C. Rubino” (MGAP, Uruguay), was used as a control or susceptible reference strain. Details of the laboratory rearing conditions have been described previously (Castro-Janer et al., 2009).

2.3. Preparation of ticks

Engorged female ticks (20–50 individuals) were collected directly from infested animals, placed in identified cardboard boxes, and transported to the Laboratory of Parasitology at the School of Veterinary Medicine (Udelar, Uruguay). They were washed in water and dried with paper towels. These females were then attached to the lid of a plastic petri dish (4.5 cm diameter, 1.5 cm high) with double-sided sticky tape. They were then incubated at 27–28 °C and relative humidity 80–90%. After 14 days, the eggs of the 20–50 females were collected combined and transferred to a conical plastic tube (50 mL) plugged with a cotton closure to allow circulation of air and moisture. After 2 additional weeks, larvae from the hatched eggs were tested when they were 2 weeks old.

2.4. Bioassays in vitro

Adult immersion test (AIT), larval packet test (LPT), and larval immersion test (LIT) bioassays were carried out according to the protocols described previously by Castro-Janer et al. (2009). All bioassays were performed simultaneously for the field and Mozo strains. Larval bioassays were done in triplicate. AIT was not possible to replicate, because there were not enough engorged females to do it. AIT was only used to test the DUR strain with 6 dilutions (0.2, 0.8, 1, 2, 5, and 10 ppm of fipronil), with 25 ticks/dilution, and another 25 ticks for the control, because the number of ticks remitted was enough to perform it. For the Mozo strain, 5 dilutions (0.2, 0.6, 0.8, 1, and 2 ppm of fipronil) were used with 10 ticks/dilution. Because of its
Table 1
Lethal fipronil concentrations of susceptible- (Mozo) and fipronil field-resistant (DUR) strains of R. (B) microplus obtained by adult immersion test (AIT) and larval packet test (LPT).

Test	Strain	n	Slope ± error	χ^2 (df)	LC$_{50}$ (CI95%)	RR$_{50}$ (CI95%)	LC$_{90}$ (CI95%)	RR$_{90}$ (CI95%)	LC$_{99.9}$ (CI95%)	RR$_{99.9}$ (CI95%)
AIT	DUR	170	1.1 ± 0.6	1.3* (5)	nd	32 (2.9–345.7)	nd	350.3 (1.9–65,206.7)	nd	56,264.6 (0.6–51,01,231,701)
	Mozo	52	12.2 ± 5.6	0.13* (4)	nd	–	–	–	–	–
LPT	DUR	3160	1.6 ± 0.1	194.5* (25)	134.4 (106.3–175)	7.05 (6.4–7.8)	823.5 (542–1492.5)	18 (14.8–21.9)	38,554.2 (13,972.7–173,153.2)	131.7 (81.7–212.4)
	Mozo	2613	3.4 ± 0.1	81* (25)	19.1 (17–21.4)	45.7 (39.1–55.7)	–	–	292.7 (202–479.6)	–

Median lethal concentration estimates are presented in ppm. RR: resistance ratio; nd: lethal concentrations that could not be determined.

* Significance ($P < 0.05$).

Table 2
Lethal fipronil concentration obtained by larval immersion test for susceptible (Mozo) and fipronil field-resistant strains of R. (B) microplus.

Strain	n	Slope ± error	χ^2 (df)	LC$_{50}$ (CI95%)	RR$_{50}$ (CI95%)	LC$_{90}$ (CI95%)	RR$_{90}$ (CI95%)	LC$_{99.9}$ (CI95%)	RR$_{99.9}$ (CI95%)
QUE	1005	2.4 ± 0.2	539.4 (13)	nd	87.7 (76.1–101.1)	nd	141 (104.2–190.9)	nd	386.1 (185.0–805.8)
Mozo	1467	3.8 ± 0.2	370.4 (13)	1.46 (0.95–1.9)	–	3.2 (2.3–8.6)	–	16.2 (6.8–431.5)	–
IRA	572	1.8 ± 0.2	18.8 (5)	9.8 (4.7–259.3)	21 (13.4–33.1)	49.6 (13.3–42,617)	61.9 (26–147.6)	1543.2 (106.42–2,426,414,523.7)	613 (100.9–3726.2)
Mozo	1315	5.5 ± 0.3	46.5 (3)	0.47 (0.4–0.5)	–	0.8 (0.7–0.9)	–	2.52 (1.9–3.7)	–
DUR	3066	2.4 ± 0.1	540.1 (31)	4.86 (3.6–7.6)	3.3 (2.9–3.5)	16.8 (10–41.8)	5.3 (4.5–6.3)	231 (77.3–1783.6)	15 (10.3–21.9)
Mozo	3032	3.9 ± 0.1	421.6 (31)	1.5 (1.3–1.7)	–	3.2 (2.5–4.5)	–	15.43 (9.1–37.3)	–
SAP	899	0.7 ± 0.3	9.3* (7)	nd	3635 (13.2–1,002,610.7)	nd	132,686.6 (17.6–1,002,353,142.8)	nd	273,487,797.6 (31,403 to...)
Mozo	3100	4.4 ± 0.2	103.1* (28)	0.84 (0.8–0.9)	–	1.6 (1.5–1.8)	–	6.8 (5.2–9.6)	–

Median lethal concentration estimates are presented in ppm. RR: resistance ratio; nd: lethal concentrations that could not be determined.

* Significance ($P < 0.05$).
greater sensitivity, LIT was used to study the strains in all the four fields and LPT was used only to test the DUR tick population.

The use of discriminating concentrations (DC) for AIT (5 ppm) and LIT (8 ppm) obtained previously by Castro-Janer et al. (2009) was also tested.

2.5. Statistical analysis

The mortality data obtained were subjected to a probit analysis. A Chi-square test was used to test the hypotheses of parallelism and equality \((P = 0.05) \) with POLO PLUS software (LeOra Software, 2003). Lethal concentration (LC) estimates for 50, 90, and 99.9% were determined, applying regression equation analysis to the probit transformed data. LC values for each field strain were compared with those for the Mozo strain, taking into consideration the 95% confidence interval (CI). The LC value was considered significant only if the value 1 was not included in the CI, otherwise the LC value was not significantly different. Resistance ratios (RRs) were calculated as the coefficients of LC50, LC90, and LC99.9 of each field strain compared to the corresponding LC values of the susceptible strain (Mozo). Intercooled Stata software (StataCorp, 2007) was used to graph the data.

3. Results

By the AIT, the mortality percentages of the Mozo strain at fipronil concentrations of 1 and 2 ppm were 55.6 and 100%, respectively; those of the DUR strain were 5.5 and 33.3% at fipronil concentrations of 2 and 10 ppm, respectively (Fig. 1). RRs for lethal concentrations are shown in Table 1. Using the DC of 5 ppm, 89% of the survivors were classified as resistant in the DUR tick population.

The toxicity of fipronil for the DUR strain larvae was found to be lower when tested by LPT than when tested by LIT (Tables 1 and 2). In this case, LC50 was 134.4 ppm (CI95% 106.3–175) and RR50 7.05 (CI95% 6.36–7.82) (Table 1). However, LPT effectively differentiated between the susceptible- (Mozo) and fipronil field-resistant strains (DUR) (Fig. 1).

Fig. 2 shows the regression curves for the field- and Mozo strains determined by LIT. The results of the LIT obtained for each strain are presented in Table 2, showing the different slope values. The determination coefficients \((R^2) \) for Mozo- and IRA strains were 0.89 and 0.79, respectively, indicating a good fit to the statistical model. Because the confidence interval (95%) for LC50, LC90, and the LC99.9 did not overlap, the lethal doses varied significantly, an indication of fipronil resistance. Similar results were obtained with the other field strains when performed simultaneously with the Mozo strain. The \(R^2 \) for the Mozo- and DUR strains were 0.85 and 0.82, respectively. The highest fipronil concentration tested for IRA (5 ppm) produced 32% mortality, while also producing higher mortality for DUR (50.6%). For each test, the other two field strains, QUE and SAP, showed lower \(R^2 \) (0.43 and 0.65, respectively) than the Mozo strain (0.75 and 0.83, respectively). Few points of mortality were observed in the dose–mortality curve, hence it was not possible to determine LC50, LC90, and LC99.9 (Table 2). The highest fipronil concentration tested for SAP (10 ppm) produced 4.4% mortality. It was possible to test higher fipronil concentration for QUE, and 20% mortality was obtained with 100 ppm. These two strains (SAP and QUE) showed the highest RR50 (Table 2).

4. Discussion

This study demonstrated that phenotypic resistance to fipronil in R. (B.) microplus field populations is present at the Department of Paysandú (Uruguay). Taking into consideration the AIT results for the DUR strain, the RR
obtained was higher than that obtained by LIT. Previous studies showed that fipronil toxicity values were significantly higher in adult ticks than in larvae (Castro-Janer et al., 2009). Jonsson et al. (2007) showed that the application of DCs (for amitraz and cypermethrin) to the modified AIT was not as effective as the screening diagnosis test of resistance. However, the DC determined previously for fipronil could be used with success to determine fipronil resistance in adults. At the DC (5 ppm), the DUR strain and Mozo showed mortality percentages of approximately 10 and 100%, respectively. The high sensitivity of the test could detect resistance when the frequency of resistant individuals was low.

The finding that fipronil used in the LPT showed lower toxicity than when used in the LIT is in agreement with the data obtained by Shaw (1966) and Castro-Janer et al. (2009). Likewise, White et al. (2004) encountered higher toxicity using the larval immersion test by means of microassay than with LPT, due to greater product–tick contact.

The use of DC, obtained previously by Castro-Janer et al. (2009) for LIT, proved highly reliable in resistance diagnosis. Using DC (8 ppm), all field strains were correctly diagnosed as fipronil-resistant. Strains from the IRA, QUE, and DUR fields came from livestock farms with 3–7 years previous records of pour-on fipronil treatment. IRA- and QUE strains were subjected to more than 18 fipronil treatments, and showed the highest RR values. The DUR strain was subjected to 8 treatments, resulting in the lowest RR value. Apparently, there is a relationship between the RR value and the number of fipronil applications. The RRs calculated for each strain were similar to those obtained by Castro-Janer et al. (2009), where the RR obtained by LIT in a fipronil-resistant strain (RFSan) subjected to 13 treatments over 8 years was 5.36. These results suggested that the resistance in arthropods could be monogenic as described by Sayyed and Wright (2004).

In contrast to what was expected, the highest RR was observed in the SAP population, which received fewer treatments with fipronil (n = 7). These ticks came from a farm where the cattle pasture was composed of grassy and forested areas in combination. One of the reasons for the apparent rapid increase in selection for resistance in the SAP strain might be the use of fipronil as a Formicide over the previous 10 years. Another possibility is the use of endosulfan (ciclidiene insecticide). The SAP strain came from an area where soy-bean culture and the use of endosulfan had been intensified. The cross-resistance between cyclodiene (dieldrin) and phenylpyrazolic (fipronil and others) insecticides has been well demonstrated by several studies (Colliot et al., 1992; Cole et al., 1993, 1995; Bloomquist, 1994; Scott and Zhi Mou, 1997; Brooke et al., 2000). According to Georgiou (1994) and Kasap et al. (2000), the intensive control of agricultural pests has interfered with the control of vectors of importance for public health present in the same environment. This fact might have altered the susceptibility levels of the considered organisms to drugs.

Although the evidence for implication of agricultural insecticides in cattle tick resistance is indirect and circumstantial, the importance of integrating pest control should not be underestimated. Before deciding on a plan to control pests of veterinary importance, it is necessary to know whether control treatments for other pests of importance for agriculture or public health have been previously applied in the area. This information is essential to determine the susceptibility levels of ticks to acaricides, and thus to choose the most effective drug. The results from this study present valuable information necessary for selection and adoption of new alternatives to manage cattle tick resistance.

Acknowledgments

We thank the Department of Parasitology-DILAVE (Uruguay) for providing us with the Mozo strain. This project was undertaken with financial support of MEC-PDT (Uruguay), INIA-FPTA No 243 (Uruguay) and FAPESP (Brazil).

References

Bloomquist, J.R., 1994. Cyclodiene resistance at the insect GABA receptor/chloride channel complex confers broad cross resistance to convulsants and experimental phenylpyrazole insecticides. Arch. Insect Biochem. Physiol. 26, 69–79.

Brooke, B.D., Hunt, R.H., Coetzee, M., 2000. Resistance to dieldrin + fipronil assorts with chromosome inversion 2La in the malaria vector Anopheles gambiae. Med. Vet. Entomol. 14, 190–194.

Cardozo, H., Franchi, M., 1994. Garrapata: Epidemiología y control de Boophilus microplus. In: Nari, A., Fiel, C. (Eds.), Enfermedades Parasitarias de Importancia Económica en Bosinos. Bases epidemiológicas para su prevención y control en Argentina y Uruguay. Montevideo, Uruguay, pp. 369–407.

Castro-Janer, E., Rifran, L., Piaggio, J., Gil, A., Miller, R.J., Schumaker, T.T.S., 2005. In vitro tests to establish LC50 and discriminating concentrations for fipronil against Rhicephalus (Boophilus) microplus (Acar: Ixodidae) and their standardization. Vet. Parasitol. 162, 120–128.

Colliot, F., Kukorowski, K.A., Hawkins, D.W., Roberts, D.A., 1992. Fipronil: a new soil and foliar broad spectrum insecticide. In: Proc. Brighton Crop Prot. Conf. Pests Dis., vol. 1. pp. 29–34.

Cole, L.M., Nicholson, R.A., Casida, J.E., 1993. Action of phenylpyrazole insecticides at the GABA-gated chloride channel. Pestic. Biochem. Physiol. 46, 47–54.

Cole, L.M., Roush, R.T., Casida, J.E., 1995. Drosophila GABA-gated chloride channel: modified [3H]EBOB binding site associated with ALA — SER of GLY mutants of Rdl subunit. Life Sci. 56, 757–765.

Cruy, U., Trelles, A., Sanchis, J., Gayo, V., Solari, M.A., 2007. Primer diagnóstico de resistencia al Fipronil en la garrapata común del ganado Boophilus microplus. Veterinaria (Montevideo) 42, 35–41.

FAO, 2004. Resistance Management and Integrated Parasite Control in Ruminants: Guidelines. http://www.fao.org/ag/aga.html.

Georghiou, G.P., 1994. Principles of insecticide resistance management. Phytoprotection 75, 51–59.

Hunter III, J.S., Keister, D.M., Jeannin, P., Fipronil: a new compound for animal health. In: Proc. 39th Ann. Mtg. Amer. Assoc. Vet. Parasitol. San Francisco, CA, (Abstract), p. 48.

Jonsson, N.N., Miller, R.J., Robertson, J.L., 2007. Critical evaluation of the modified-adult immersion test with discriminating dose bioassay for Boophilus microplus using American and Australian isolates. Vet. Parasitol. 146, 307–315.

Kasap, H., Kasap, M., Alptekin, D., Lüleay, Ü., Herath, P.R.J., 2000. Insecticide resistance in Anopheles sacharovi Favre in southern Turkey. Bull. World Health Org. 78 (5), 687–692.

KlaBee C.M., Sabatini, G.A., de Albuquerque, T.A., Martins, J.R., Kemp, D.H., Miller, R.J., Schumaker, T.T.S., 2006. Larval immersion tests with ivermectin in populations of the cattle tick Rhipicephalus (Boophilus) microplus (Acar: Ixodidae) from State of Sao Paulo, Brazil. Vet. Parasitol. 142, 386–390.

LeOra Software, 2003. In: Robertson, J.L., Preiser, H.K., Russel, R.M. (Eds.), Polo Plus Probit and Logit Analysis, User’s Guide. Berkeley, p. 36.
Martins, J.R., Furlong, J., 2001. Avermectin resistance of the cattle tick *Boophilus microplus* in Brazil. Vet. Rec. 149, 64.

Ministry of Livestock, Agriculture and Fisheries, MGAP, 2005. Jornada-Taller: Programa de Lucha contra la Garrapata. Durazno (Uruguay).

Sayyed, A.H., Wright, D.L., 2004. Fipronil resistance in the diamondback moth (Lepidoptera: Plutellidae): inheritance and number of genes involved. J. Econ. Entomol. 97 (6), 2043–2050.

Scott, J.G., ZhiMou, W., 1997. Toxicity of fipronil to susceptible and resistant strains of German cockroaches (Dictyoptera: Blatellidae) and house flies (Diptera: Muscidae). J. Econ. Entomol. 90, 1152–1156.

Shaw, R.D., 1966. Culture of an organophosphorus resistant strain of *Boophilus microplus* (Canestrini) and assessment of its resistance spectrum. Bull. Entomol. Res. 56 (4), 398–405.

Shidrawi, G.R., 1990. A WHO global programme for monitoring vector resistance to pesticides. Bull. World Health Org. 68, 403–408.

StataCorp, 2007. Stata Statistical Software: Release 10. StataCorp LP, College Station, TX.

White, W.H., Plummer, P.R., Kemper, C.J., Miller, R.J., Davey, R.B., Kemp, D.H., Hughes, S., Smith II, C.K., Gutiérrez, J.A., 2004. An in vitro larval immersion microassay for identifying and characterizing candidate Acaricides. J. Med. Entomol. 41, 1034–1042.
Artigo 3 Castro-Janer E, Martins JR, Mendes MC, Namindome A, Klafke GM, Schumaker TTS. Diagnoses of fipronil resistance in Brazilian cattle ticks \textit{(Rhipicephalus (Boophilus) microplus)} using \textit{in vitro} larval bioassays. Vet Parasitol. (2010). In press. doi:10.1016/j.vetpar.2010.06.036
Fipronil is a phenylpyrazolic insecticide that is widely used in agriculture and has been recently used to control the cattle tick, *Rhipicephalus (Boophilus) microplus*. Because of the serious problems associated with resistance to the available acaricides, this product has been used as an important alternative to control acaricide-resistant ticks. The objective of this work was to analyse the fipronil sensitivity of ticks that were collected from farms with a history of fipronil use by larval bioassays. A total of 11 Brazilian tick populations were studied: one population from Rio Grande do Sul, one population from Mato Grosso do Sul and nine populations from São Paulo. To validate the assays, susceptible reference strains, POA (Porto Alegre, Brazil) and Mozo (Dilave, Uruguay), and ticks from six different farms that never used fipronil were tested. The resistance of various tick populations to technical grade fipronil (95.3%) was primarily evaluated using the larvae immersion test (LIT) and the larval packet test (LPT), when a sufficient number of larvae was collected. Using the LIT, the resistance ratios (RR50) of the tick populations from Rio Grande do Sul and Mato Grosso do Sul were 14.9 and 2.6, respectively, and the populations derived from São Paulo had RR50s ranging from 2.5 to 6.9. Four populations were evaluated with the LPT, and two populations displayed lower RR50, while other populations displayed higher RR50 than those determined by the LIT. This article reports the first cases of fipronil resistance in Brazil and highlights the LIT as a more sensitive technique for the evaluation of fipronil resistance in *R. (B) microplus* ticks. We suggest the use of the LIT as an evaluation tool for monitoring fipronil resistance in the control programmes of *R. (B) microplus*.

© 2010 Elsevier B.V. All rights reserved.
resistance has been reported in insects of agricultural and public health importance (MingZhang et al., 2004). Most recently, fipronil resistance has also been reported in *Rhipicephalus (Boophilus) microplus* from Uruguay (Cuore et al., 2007; Castro-Janer et al., 2009).

Routinely, *in vitro* bioassays are used to identify fipronil resistance as they are simple, inexpensive and require little equipment (Scott, 1995). The tests use the free-living stages of the ticks, specifically larvae or engorged females that are ready for oviposition. The tests that are most commonly used for the detection of resistance include the adult immersion test (AIT) (Whitnall and Bradford, 1947; Drummond et al., 1973), the larval packet test (LPT) (Stone and Haydock, 1962), which is recommended by Food and Agriculture Organization (FAO, 1971) and the larval immersion test (LIT) (Shaw, 1966). Even though the LIT is a less-used diagnostic technique, it has been successfully used to evaluate ivermectin resistance (Klafke et al., 2006). Recently, *in vitro* diagnostic techniques for adults and larvae have been standardised to diagnose resistance to fipronil (Castro-Janer et al., 2009). The objective of this study was to analyse Brazilian cattle-tick populations from farms with a history of fipronil use by larval tests.

1. Materials and methods

The populations of ticks that were studied from farms in the Brazilian states of Rio Grande do Sul (JRRS), Mato Grosso do Sul (NET) and São Paulo (NIA, GAM, LE, ZOR, AR, LAM, RIM, PIQ and VIBE) were collected from January 2007 to December 2008. The JRRS and NET tick populations were collected from beef cattle, *Bos taurus* and *Bos indicus*, respectively, while all of the tick populations from the farms in São Paulo were collected from dairy cattle, *B. indicus* and *B. taurus*. The selected farms were investigated regarding their current use of fipronil for the control of ticks and other agricultural pests.

As controls, the susceptible strains, POA (Porto Alegre, Brazil) and/or Mozo (Dilave, Uruguay, maintained at the Instituto Biológico de São Paulo, Brazil), were used based on the availability of larvae within each strain at the time of testing. Six tick populations from farms in São Paulo that never used fipronil were tested to validate the assay.

1.1. Farms

The JRRS farm raises approximately 3100 animals, mainly Aberdeen–Angus breed, in an area of about 3200 hectares (ha). Because the livestock production is semi-extensive, pasture (rye) is present in certain areas in the winter, while agriculture (soybean) is present during the period of spring–summer. The NET farm has extensive livestock production with a stocking rate of 0.6 animal units (AU) ha⁻¹.

The GAM, ZOR, AR, LAM, RIM and VIBE farms located in the state of São Paulo were small-extension (8–10 ha) dairy producers with an average of 20 animals. These family farms had a grazing rotation of 12–24 h in 0.2–0.5 ha. Farms LE and PIQ, which included approximately 30 ha, had a lower stocking rate (one animal ha⁻¹) and intervals of paddock rotations ranged from 15 to 30 days. PIQ also performed animal fattening by purchasing animals. NIA, a business farm with a larger area (110 ha), was primarily a commercial pig producer with a grazing rotation of 7–30 days.

The six populations of ticks that were used as negative controls (LIS, LAA, CSO, ITA, CAHC and SSA) were collected from dairy farms that had never used fipronil on animals and crops or in the control of ants and termites.

A survey of the properties showed that four farms, JRRS, NET, NIA and PIQ, used fipronil for veterinary use to control ticks. Two farms, GAM and ZOR, where control of the cattle tick was under the exclusive responsibility of the owners, used the crop formulation of fipronil (Regent®) on animals by aspersion in at least three occasions. These latter farms stated economic reasons for the choice of the crop formulation. In the other five properties, LE, AR, LAM, RIM and VIBE, the survey showed that these farms were using fipronil for the control of other pests (i.e., ants and termites). For these five populations, the owners denied the use of agricultural pesticides on animals.

The population JRRS was controlled with organophosphate and amitraz until 2003, when these active ingredients were replaced by alternating applications of fipronil, macrocyclic lactones and fluazuron using variable interval applications. This farm claimed to have serious problems with tick control. The NET farm cow population received 12 applications of fipronil in the last 3 years and recently presented problems with tick control. At the NIA farm, only dry cows were treated with fipronil in a period of 3 years, and these cows were allowed to graze in different paddocks of lactating cows that were treated with amitraz. However, during the dry period, the animals were located in tick-infested paddocks that had been previously exposed to fipronil. On the PIQ farm, cattle were treated with fipronil every 2–3 months for 1.5 years before ticks were collected. Currently, this same strategy of treatment has been applied to dry cows and beef cattle. Fluazuron and phytotherapeutic products replaced fipronil for the treatment of lactating dairy cows. Both of the NIA and PIQ farms developed no detectable failures of tick control.

Populations GAM, ZOR, LE, LAM, AR and RIM had problems with tick control.

1.2. Preparation of ticks

Approximately 40 engorged females were taken directly from the animals in each farm, stored in cardboard containers (200 ml) with perforated lids to allow air passage and then transported to the laboratory. In the laboratory, the ticks were washed with water, dried with paper towels and, after a previous selection based on viability, they were stuck dorsal surface down to double-sided tape on the lid of a plastic Petri dish (4.5-cm diameter, 1.5-cm height). Later, they were incubated in the dark at 27–28 °C and 80–85% relative humidity. After 14 days of incubation, eggs were collected and transferred to a conical plastic tube (50 ml), which was then plugged with cotton. The tubes were next incubated for 14 days at the same conditions to allow larval hatching and 2-week-old larvae were used for the tests.

Please cite this article in press as: Castro-Janer, E., et al., Diagnoses of fipronil resistance in Brazilian cattle ticks (*Rhipicephalus (Boophilus) microplus*) using *in vitro* larval bioassays. Vet. Parasitol. (2010), doi:10.1016/j.vetpar.2010.06.036
1.3. Larval test

The LIT was used in all cases in the first instance because it is more sensitive than the LPT (Castro-Janer et al., 2009, 2010), and when there was a surplus of larvae, the LPT was also used to confirm preliminary data observed with the LIT. Technical grade fipronil (95.3%) (Agromen Chemicals Co., Ltd., HangZhou, China, Lote ZF300) was used in this study. The LIT was processed according to Castro-Janer et al. (2009). For bioassays with the Mozo/POA-susceptible strains, the following concentrations were used: 3.0, 2.5, 2.0, 1.7, 1.5, 1.2, 1.0, 0.8, 0.7, 0.6, 0.5, 0.4 and 0.2 ppm. For field populations, greater concentrations were applied, depending on the number of larvae available. Moreover, when the number of larvae was not enough, some lower dilutions (<1.5 ppm) were omitted. A previously determined discriminating concentration (DC) of 8 ppm (Castro-Janer et al., 2009) was used to verify the reliability of the LIT for the diagnosis of fipronil resistance on field populations of ticks.

The LPT was performed according to the FAO recommendations (2004) using adaptations that were previously described (Castro-Janer et al., 2009). The NIA, GAM, ZOR and JRRS populations were tested in the presence of double serial dilutions of fipronil ranging from 300 to 0.58 ppm. All of the bioassays were performed in triplicate.

1.4. Statistical analysis

Mortality data were subjected to probit analysis using POLO PLUS software (LeOra Software, 2003) to calculate the lethal concentrations (LCs) and 95% confidence intervals (CI95%). Only the smallest concentration that produces total mortality was considered in the analysis and the plotting of graphics, eliminating the others. The chi-square test was used to test the hypotheses of parallelism and equality (α = 0.05%) among populations. LC estimates for 50% (LC50) and 90% (LC90) were determined by applying regression analysis to the probit-transformed data and the values were compared for each field population with those for the POA and Mozo strains, taking into consideration CI 95%. Resistance ratios (RRs) were calculated as the coefficients of LC50 and LC90 values of each field population and the corresponding LC values of the susceptible strain (POA, Mozo). The LC values were considered to be significantly different if the value of 1.0 was not included in the CI 95% of the RR; otherwise, the LC values were not considered to be significantly different (Robertson et al., 2007). Intercooled Stata 10 software (StataCorp, 2007) was used to graph the data.

2. Results

Table 1 shows the LCs of fipronil that were obtained using the LIT with field populations and reference strains (POA and Mozo) of R. (B.) microplus ticks. Fig. 1 shows the regression analyses for these populations. Slope values of the dose–response lines for the susceptible populations (POA/MOZO) obtained by the LIT were higher than those of the field populations (Table 1, Fig. 1). The RR50s obtained using the LIT for populations collected from Rio Grande do Sul and Mato Grosso do Sul were 14.9 and 2.6, respectively, while the populations of São Paulo displayed RR50s ranging between 2.5 and 6.9 (Table 1). The mortality obtained at the DC (8 ppm) to NIA, ZOR, JRRS, NET, PIQ and VIBE populations was: 68%, 40.5%, 60%, 72%, 25% and 78%, respectively (Fig. 1). The greater concentration tested to GAM, LE, AR, LAM and RIM was 5 ppm and the mortality was 58.3%, 36.7%, 86.7%, 64.4% and 91.5%, respectively (Fig. 1).

Tick populations collected from farms with no record of fipronil use (susceptible field control) displayed no fipronil resistance using the LIT (Table 2). All of the populations...
Fig. 1. Dose–response mortality data of susceptible strain and fipronil field populations of *R. (B.) microplus* with history of fipronil use through larval immersion test.

have high slope values, showing similar behaviours to the POA and Mozo reference strains and indicating a high susceptibility to the acaricide (Fig. 2). The differences between the slope values of the field populations and the susceptible strains recorded in the LPT were lower than those observed in the LIT (Tables 1 and 3). The LC50s determined by the LPT were higher than those obtained with the LIT (Tables 1 and 3), but both tests were effective in the diagnosis of resistance.

3. Discussion

The present data demonstrate the first report of fipronil resistance in Brazilian *R. (B.) microplus* ticks, as diagnosed by larval bioassays.

In the resistant populations, approximately more than 10% of the individuals survived at the DC (8 ppm) (Fig. 1), which was previously determined with the Mozo strain using the LIT (Castro-Janer et al., 2009). These results indi-

Table 2

Lethal concentrations of fipronil obtained by Larval Immersion Test for the susceptible strain (Mozo/POA) and field populations of *Rhipicephalus (Boophilus) microplus* without history of fipronil use.

Strain	n	Slope ± error	χ² (df)	LC50 (CI95%)	R.R.50 (CI95%)	LC50 (CI95%)	R.R.90 (CI95%)
LIS	1856	7 ± 0.3	58.6 (16)	1.3 (1.2–1.3)	1 (0.9–1)	1.9 (1.8–2.1)	0.95 (0.9–1)
Mozo	1585	6.4 ± 0.3	39 (16)	1.3 (1.2–1.3)	–	2 (1.9–2.2)	–
LAA	1062	3.2 ± 0.2	45.3 (10)	1.3 (1.1–1.5)	1.1 (1–1.1)	3.2 (2.5–4.9)	1.7 (1.5–2)
CSO	1363	4.8 ± 0.2	111.6 (10)	1.5 (1.2–1.5)	1.2 (1.1–1.1)	2.2 (2.1–3)	1.5 (1.3–1.7)
POA	1320	9.2 ± 0.8	8 (10)	1–1.1	0.8 (0.8–0.9)	1.4 (1.3–1.5)	0.7 (0.7–0.8)
Mozo	1025	6.9 ± 0.5	25 (9)	1.2 (1.1–1.3)	–	1.9 (1.6–2.3)	–
ITA	841	8.2 ± 0.8	71.3 (8)	0.6 (0.4–0.7)	0.6 (0.6–0.7)	0.9 (0.8–1.4)	0.7 (0.6–0.7)
Mozo	1294	8.7 ± 0.5	106.5 (10)	1 (0.9–1.1)	–	1.4 (1.2–1.7)	–
Mozov	1015	7.1 ± 0.6	106.5 (10)	1 (0.9–1.1)	–	1.4 (1.2–1.7)	–
Mozo	1025	6.9 ± 0.5	25 (9)	1.2 (1.1–1.3)	–	1.9 (1.6–2.3)	–
ITA	841	8.2 ± 0.8	71.3 (8)	0.6 (0.4–0.7)	0.6 (0.6–0.7)	0.9 (0.8–1.4)	0.7 (0.6–0.7)

* Indicate significance (p < 0.05); df: degrees of freedom; LC: lethal concentration; CI: confidence intervals; R.R.50: resistance ratio for LC50; R.R.90: resistance ratio for LC50.
cate that the LIT is a reliable technique that can be used for the diagnosis of fipronil field resistance.

The high value of the fipronil RR observed in the laboratory for the JRRS population is consistent with the control failure observed in the field, after more than 15 treatments. However, because only eight fipronil applications were made in the field, the high RR value observed with the PIQ population was unexpected. Perhaps the introduction of animals from other farms without prior sanitary control permitted the introduction of fipronil-resistant ticks. In the PIQ and NIA farm populations, the diagnosis of fipronil resistance by the LIT preceded the observation of field resistance, as farmers had not yet noted a possible decrease in fipronil effectiveness.

The use of fipronil for agricultural applications on animals and/or the control of termites as well as pests of sugar cane might explain the resistance observed for the ZOR, GAM, LAM and RIM populations.

In Brazil, the formulation of fipronil for agricultural purposes costs approximately 20 times less than the formulation for animal uses. For this reason, some farmers use agriculturally formulated fipronil on animals by aspersion without knowing the final dose that is being applied. This lack of knowledge and the irresponsible use of a procedure may contribute to control failures, to damage public health due to milk residuals and subject the animals to intoxication risks. This practice will lead us to destroy the few still-active acaricides in use in the tropics. Moreover,

Table 3

Lethal concentrations of fipronil obtained by Larval Packet Test for susceptible (Mozo/POA) strain and fipronil field-resistant populations of *Rhipicephalus* (B.) *microplus*.

Strain	n	Slope ± error	χ^2 (df)	LC$_{50}$ (CI95%)	R.R.$_{50}$ (CI95%)	LC$_{90}$ (CI95%)	R.R.$_{90}$ (CI95%)
NIA	672	1.4 ± 0.1	31.6 (8)	40.24–64.3	15.6 (11.8–20.8)	306.8 (163–825.6)	21.6 (13.7–34)
Mozo	479	1.7 ± 0.1	47.0 (4)	ND	ND	ND	ND
GAM	2618	0.3 ± 0.05	313.3 (25)	ND	140.6 (48.6–406.8)	ND	349944.2 (14959.9–8143866)
ZOR	2756	1.5 ± 0.05	123.4 (25)	21.9 (20.5–23.4)	2.8 (2.5–3.2)	570.1 (392.3–930.3)	7.7 (6.2–9.5)
Mozo	2647	2.9 ± 0.1	28.5 (25)	26.8 (24.4–29.1)	42.7 (39.2–47.2)	743. (66.7–843)	7.7 (6.2–9.5)
JRRS	2816	1.2 ± 0.05	364.8 (19)	78.5 (48–144.5)	18.8 (16.4–21.5)	878.5 (384.8–7355.3)	85.5 (66.4–110.2)
POA	1681	3.3 ± 0.2	62.5 (18)	4.2 (3.6–4.9)	74.3 (66.7–843)	7.7 (6.2–9.5)	

* Indicate significance ($P<0.05$); df: degrees of freedom; LC: lethal concentration; CI: confidence intervals; R.R.$_{50}$: resistance ratio for LC$_{50}$; R.R.$_{90}$: resistance ratio for LC$_{90}$; ND: lethal concentration could not be determined.
and the indiscriminate usage of acaricides/insecticides is one of the major causes for the development of resistance to these compounds by pests and should be avoided to protect the few active ingredients available for the control of ticks. Else, veterinary assistance at the farms is fundamental for the recommendation of the correct management of cattle-tick control and should be available to all ranches by means of cooperatives or particular assistance. In this case, the Veterinary could introduce the use of the LIT and/or the LPT as routine tools to monitor acaricide resistance during the tick treatments in the farm.

The biggest problem in the present study was obtaining reliable historical treatment information, as farmers were aware that they were using a banned product on dairy cattle and were uncooperative in providing reliable information.

The LE and VIBE populations showed characteristics of resistance, although farmers claimed that they never used fipronil on the animals. Currently, fipronil is registered in Brazil for the control of termites, beetles, caterpillars and borers in cotton, potatoes, sugar cane, corn and soybeans (Ministry of Agriculture, 2007). Therefore, we could infer that the use of this pesticide to control ants or termites in these farms has contributed to the emergence of resistance in the tick populations, once it was detected as fipronil in the soil of one farm (unpublished data). This type of resistance has been described in the control of insects of public health importance (Georghiou, 1990; Kasap et al., 2000) and suggested in the failure of the control of R. (B) microplus (Castro-Janer et al., 2010).

Lower slope values are suggestive of resistance and are commonly obtained with field-resistant-tick populations when the population is heterogeneous. This may be due to the presence of resistant and susceptible alleles in the population that allow the presence of homozygous and heterozygous individuals (Roush and Daly, 1990). The JRHS population presented a less-uniform response to fipronil, indicating that this population was in a more advanced process of resistance development. The LIT has higher precision and toxicity than the LPT in detecting resistance, confirming recently obtained results (Castro-Janer et al., 2009). The highest toxicity observed with the LIT was reported by Shaw (1966) and White et al. (2004) using the larval immersion microassay obtained with the LIT was reported by Shaw (1966) obtained results (Castro-Janer et al., 2009). The highest toxicity developed in the studied populations. More trials comparing the two techniques should be done to confirm the advantages of using one assay over another for the discrimination of fipronil-susceptible and resistant-tick populations.

4. Conclusion

This article reports the first cases of R. (B.) microplus resistance to fipronil in Brazil and provides evidence supporting that the LIT is more sensitive than the LPT for the evaluation of cattle tick fipronil resistance. In addition, we suggest the use of the LIT as a tool for the evaluation of fipronil resistance in control programmes of R. (B.) microplus.

Conflict of interest statement

All authors declare no conflicts of interests.

Acknowledgements

This project was supported by CAPES, FAPESP (No. 2007/56082-4) (Brazil), MEC-PDT (Uruguay) and INIA-FPTA No. 243 (Uruguay). We would like to thank the Laboratorio Cibeles (Montevideo, Uruguay) for providing technical grade fipronil.

References

Alberti, H., Alberti, A.L.L., Rinaldi, P.L.F., Lamberti, D.D.G., Rodríguez, L.G., Lima, G.L., 2001. Avaliação da eficácia do fipronil e da delfalametina, formulação “pour-on”, no control da Haematobia irritans, parasitando bovinos em regime de campo, na região oeste do Estado de São Paulo. A-Hora-Veterinaria 20, 48–51, 119.

Bloomquist, J.R., 2003. Chloride channels as tools for developing selective insecticides. Arch. Insect Biochem. Physiol. 54 (4), 145–156.

Castro-Janer, E., Rifran, L., Piaggio, J., Gil, A., Miller, R.J., Schumaker, T.T.S., 2009. In vitro tests to establish LC50 and discriminating concentrations for fipronil against Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) and their standardization. Vet. Parasitol. 162, 120–128.

Castro-Janer, E., Rifran, L., González, P., Piaggio, J., Gil, A., Schumaker, T.T.S., 2010. Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) resistance to fipronil in Uruguay evaluated by in vitro bioassays. Vet. Parasitol. 172–177–172.

Cole, L.M., Nicholson, R.A., Casida, J.E., 1993. Action of phenylpyrazole insecticides at the GABA-gated chloride channel. Est. Biochem. Physiol. 46, 47–54.

Cuore, U., Trelles, A., Sanchis, J., Gayo, V., Solari, M.A., 2007. Primer diagnóstico de resistencia al Fipronil en la Garrapata común del ganado Boophilus microplus. Veterinaria (Montevideo) 42, 35–41.

Drummond, R.O., Ernst, S.E., Trevino, J.L., Gladney, W.J., Graham, O.H., 1973. Boophilus annulatus and Boophilus microplus: laboratory test of insecticides. J. Econ. Entomol. 66, 130–133.

Durham, E.W., Scharf, M.E., Siegfried, B.D., 2001. Toxicity and neurophysiologic effects of fipronil and its oxidative sulfone metabolite on European corn borer larva (Lepidoptera: Crambidae). Pestic. Biochem. Physiol. 71, 97–106.

FAO, 1971. Recommended methods for the detection and measurement of resistance of agricultural pest to pesticides-tentative method for larva of cattle ticks, Boophilus microplus spp. FAO method no. 7. FAO Plant Prot. Bull. 19, 15–18.

Georghiou, G.P., 1990. The effect of agrochemicals on vector populations. In: Roush, R.T., Tabashnik, B.E. (Eds.), Pesticide Resistance in Agricultural Pests. Chapman & Hall, Inc., New York, p. 303.

Guglielmone, A.A., Volpogni, M.M., Mangold, A.J., Anziani, O.S., Castelli, M.C., 2000. Evaluación de una formulación comercial "pour on" con fipronil al 1% para el control de Haematobia irritans en vaquillas Holando naturalmente infestadas. Veterinaria (Argentina) 17, 108–113.

Kasap, H., Kasap, M., Alptekin, D., Lüleyap, Ü., Herath, P.R.J., 2000. Insecticide resistance in Anopheles sacharovi Favre in southern Turkey/Résistance de Anopheles sacharovi Favre aux insecticides (sud de la Turquie)/Resistencia de Anopheles sacharovi Favre a los insecticidas en el sur de Turquía. Bull. World Health Organ. 78 (5), 687–692.

Klabke, G.M., Sabatini, G.A., de Albuquerque, T.A., Martins, J.R., Kemp, D.H., Miller, R.J., Schumaker, T.T.S., 2006. Larval immersion tests with ivermectin in populations of the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) from State of Sao Paulo. Brazil. Vet. Parasitol. 142, 386–390.

LeOra Software, 2003. In: Robertson, J.L., Preiser, H.K., Russel, R.M. (Eds.), Polo Probit and Logit Analysis, User’s Guide. Berkeley, p. 36.

MingZhang, C., JinLiang, S., JinZhen, Z., Mei, L., Xiaoyu, L., Weijun, Z., 2004. Monitoring of insecticide resistance and inheritance analysis of triazophos resistance in the striped stem borer (Lepidoptera:Pyralidae). Chin. J. Rice Sci. 18 (1), 73–79.
Robertson, J.L., Russell, R.M., Presiler, H.K., Savin, N.E., 2007. Quarantine Statistics, 2007. Bioassays with Arthropods, 2nd ed. CRC Press.

Roush, R.T., Daly, J.C., 1990. The role of population genetics in resistance research and management. In: Roush, R.T., Tabashnik, B.E. (Eds.), Pesticide Resistance in Arthropods. Chapman & Hall, Inc., New York, p. 303.

Scott, J.A., 1995. The molecular genetics of resistance: resistance as a response to stress. Florida Entomol. 78, 399–414.

Shaw, R.D., 1966. Culture of an organophosphorus resistant strain of Boophilus microplus (Canestrini) and assessment of its resistance spectrum. Bull. Entomol. Res. 56, 398–405.

Stone, B.F., Haydock, R.P., 1962. A method for the cattle tick Boophilus microplus (Can.). Bull. Entomol. Res. 53, 563–578.

White, W.H., Plummer, P.R., Kemper, C.J., Miller, R.J., Davey, R.B., Kemp, D.H., Hughes, S., Smith, L.I., Gutiérrez, C.K.J.A., 2004. An in vitro larval immersion microassay for identifying and characterizing candidate acaricides. J. Med. Entomol. 41, 1034–1042.

Whitnall, A.B., Bradford, B., 1947. An arsenic resistant tick and its control with gammexane dips. Bull. Entomol. Res. 38, 353–372.

StataCorp, 2007. Stata Statistical Software: Release 10. StataCorp LP, College Station, TX.

Please cite this article in press as: Castro-Janer, E., et al., Diagnoses of fipronil resistance in Brazilian cattle ticks (Rhipicephalus (Boophilus) microplus) using in vitro larval bioassays. Vet. Parasitol. (2010), doi: 10.1016/j.vetpar.2010.06.036
Artigo 4 Castro-Janer E, Rifran L, González P, Niell C, Piaggio J, Gil A, Schumaker TTS. Susceptibility of *Rhipicephalus (Boophilus) microplus* (Acari: Ixodidae) to ivermectin and fipronil by Larval Immersion Test (LIT), in Uruguay. (Submitted to Veterinary Parasitology, 2010).
Manuscript Number:

Title: Determination of the susceptibility of *Rhipicephalus (Boophilus) microplus* (*Acari: Ixodidae*) to ivermectin and fipronil by the Larval Immersion Test (LIT) in Uruguay.

Article Type: Research Paper

Keywords: *Rhipicephalus (Boophilus) microplus*; Ivermectin; Fipronil; Resistance.

Corresponding Author: Dr Eleonor Castro-Janer, MD

Corresponding Author's Institution: Faculty of Veterinary

First Author: Eleonor Castro-Janer, MD

Order of Authors: Eleonor Castro-Janer, MD; Laura Rifran; Patricia González; Carlos Niell; José Piaggio, MD; Andrés Gil, PhD; Teresinha T. S Schumaker, PhD

Abstract: *Rhipicephalus (Boophilus) microplus* is an important cattle pest in Uruguay, and the law regulates its control. It is resistant to organophosphates, synthetic pyrethroids and, as recently discovered, to fipronil. Resistance to macrocyclic lactones (MLs) and amitraz have not been documented; however, veterinarians and farmers reported treatment failures. The objective of the present work was to study the susceptibility of cattle tick strains from different counties in Uruguay to ivermectin (IVM) and fipronil by using the Larval Immersion Test (LIT). The Mozo strain was used as the susceptible reference strain. From 2007 to 2009, twenty-eight tick populations were collected from cattle farms in different Uruguay counties with and without history of IVM or fipronil use. A probit analysis estimated dose-mortality regressions, lethal concentrations (LC), confidence intervals and slope. The resistance ratio (RR) was determined at the LC50 and LC90 estimates. To classify a tick population in relation to resistance, three categories based on a statistical analysis of LC and RR between field tick and Mozo strains were defined: susceptible (no differences), incipient resistance (differences and RR50<2) and resistant (differences and RR50≥2). Eighteen field populations were tested with IVM. Eight populations that were never subjected to MLs treatments were diagnosed as susceptible. None of the other ten populations that were subjected to treatments with avermectins but without field efficacy failures exhibited a RR50 ≥2. However, five of the populations presented a RR50 range between 1.3-1.98 and the LC50/90, which is statistically different than the Mozo strain (incipient resistance). However, the RR90 increases ≥2 in four of the populations, confirming that tick resistance to IVM is emergent. The low RR values obtained could be a result of a low frequency of treatments with IVM. This rate of treatment was not enough to increase the gene frequency to detectable levels by LIT. The eight populations that were not subjected to fipronil or IVM treatments did not show resistance by the LIT to fipronil. The other nine field strains that were subjected to IVM but never to fipronil showed susceptibility to this acaricide, too. Of the eleven field populations that were subjected to fipronil treatments, six were diagnosed as resistant by the LIT, and the others were diagnosed as susceptible, perhaps because of the treatment's low frequency. Cross-resistance was not observed between these acaricides. The current study presents different *R. (B.) microplus* populations with an incipient resistance to IVM, and indicates that the fipronil tick resistance is restricted to certain areas in Uruguay.
Determination of the susceptibility of *Rhipicephalus (Boophilus) microplus* (Acari: Ixodidae) to ivermectin and fipronil by the Larval Immersion Test (LIT) in Uruguay.

E. Castro-Janerab*, L. Rifrana, P. Gonzáleza, C. Niella, J. Piaggioc, A. Gilc and T.T.S. Schumakerb

aDepartment of Parasitology, School of Veterinary Medicine, UDELAR, Uruguay.
bDepartment of Parasitology, Institute of Biomedical Sciences, USP, Brazil.
cDepartment of Biostatistics, School of Veterinary Medicine, UDELAR, Uruguay.

* Corresponding author. Tel: +598-2-6221696; fax: +598-2-6280130.

E-mail address: elinor@adinet.com.uy (E. Castro-Janer)

Abstract

Rhipicephalus (Boophilus) microplus is an important cattle pest in Uruguay, and the law regulates its control. It is resistant to organophosphates, synthetic pyrethroids and, as recently discovered, to fipronil. Resistance to macrocyclic lactones (MLs) and amitraz have not been documented; however, veterinarians and farmers reported treatment failures. The objective of the present work was to study the susceptibility of cattle tick strains from different counties in Uruguay to ivermectin (IVM) and fipronil by using the Larval Immersion Test (LIT). The Mozo strain was used as the susceptible reference strain. From 2007 to 2009, twenty-eight tick populations were collected from cattle farms in different Uruguay counties with and without history of IVM or fipronil use. A probit analysis estimated dose-mortality regressions, lethal concentrations (LC), confidence intervals and slope. The resistance ratio (RR) was determined at the LC\textsubscript{50} and LC\textsubscript{90} estimates. To classify a tick population in relation to resistance, three categories based on a statistical analysis of LC and RR between field tick
and Mozo strains were defined: susceptible (no differences), incipient resistance (differences and $RR_{50} < 2$) and resistant (differences and $RR_{50} \geq 2$). Eighteen field populations were tested with IVM. Eight populations that were never subjected to MLs treatments were diagnosed as susceptible. None of the other ten populations that were subjected to treatments with avermectins but without field efficacy failures exhibited a $RR_{50} \geq 2$. However, five of the populations presented a RR_{50} range between 1.3-1.98 and the $LC_{50/90}$, which is statistically different than the Mozo strain (incipient resistance). However, the RR_{90} increases ≥ 2 in four of the populations, confirming that tick resistance to IVM is emergent. The low RR values obtained could be a result of a low frequency of treatments with IVM. This rate of treatment was not enough to increase the gene frequency to detectable levels by LIT. The eight populations that were not subjected to fipronil or IVM treatments did not show resistance by the LIT to fipronil. The other nine field strains that were subjected to IVM but never to fipronil showed susceptibility to this acaricide, too. Of the eleven field populations that were subjected to fipronil treatments, six were diagnosed as resistant by the LIT, and the others were diagnosed as susceptible, perhaps because of the treatment’s low frequency. Cross-resistance was not observed between these acaricides. The current study presents different $R. (B.)$ microplus populations with an incipient resistance to IVM, and indicates that the fipronil tick resistance is restricted to certain areas in Uruguay.

Keywords: *Rhipicephalus (Boophilus) microplus*; Ivermectin; Fipronil; Resistance.

Introduction

Pest resistance is the main problem in agriculture, livestock and public health pest control programmes. *Rhipicephalus (Boophilus) microplus* was detected in several countries
and is resistant to organophosphates (OP), synthetic pyrethroids (SP), amitraz and ivermectin (IVM). According to Thullner (1997), it is necessary to establish a worldwide system to prevent pest resistance and maintain the efficacy of the acaricide. Tick control programmes will be more efficient if the developed of resistance to the new insecticides could be prevented (Liu and Yue, 2000). These insecticide resistance monitoring programmes would benefit from testing strains against all available acaricides so that early diagnoses could be determined. Only recently, in vitro bioassays performed with cattle ticks were performed and standardised to fipronil (Castro Janer et al, 2009).

There is a National Control Programme in Uruguay for R. (B.) microplus that is based mainly on the use of acaricide treatments. Sixty-two percent of farms use immersion tick control with a median of 6 treatments per year (Gil and Piaggio, 2007). The median for aspersion, pour on and injectable treatments per year was 5, 3, and 3, respectively. There was a detected resistance to arsenic (1960), OP (at the end of the 1970s) and SP (at the beginning of the 1990s). Due economical reasons, amitraz only was beginning to use as substitution of SP when tick showed resistance to this pesticide and recently, amitraz resistance has been detected. Fipronil and IVM coming to be used at the end of the 1990s, but only recently resistance to fipronil was diagnosed by stable proves (Cuore et al., 2007) and in vitro bioassays (Castro Janer et al., 2009, 2010). Resistance to amitraz (Martins, 1995) and macrocyclic lactones (MLs) (Martins and Furlong, 2001) have been detected in Brazil. Although the Larval Immersion Test (LIT) is not recommended by the FAO (1971; 2004), it is more sensitive than the Larval Packet Test to diagnose tick cattle resistance to MLs (Sabatini et al., 2001) and fipronil (Castro Janer et al, 2009). The LIT was successfully used for diagnosing the resistance to IVM (Klafke et al., 2006; Perez et al., 2010) and fipronil (Castro Janer et al., 2010). The objective of the present work was to study the susceptibility of cattle tick strains in Uruguay counties to IVM and fipronil by using the LIT.
Materials and Methods

Ticks

R. (B.) microplus populations that were and were not exposed to ivermectin (IVM) or fipronil were collected from cattle farms in Uruguay counties from 2007 to 2009. Twenty-eight field strains of cattle ticks from different regions of Uruguay were tested; North: Artigas (Frig, Rea, Bru), Rivera (Cblan, LaLat) and Salto (Ori, RFSan); Northwest: Paysandú (Ñan, Snic, DUR, Am10, Am20, Per, Sap, Pol13, IRA, QUE) and Río Negro (Gui2, Flor); and Southeast: Rocha (Gar, Riv, Tej), Lavalleja (Bar, Trel, Aig, Pil, Cap) and Treinta y Tres (LaTap).

The Mozo strain, provided by the Departamento de Parasitología de la División de Laboratorios Veterinarios (DiLaVe)“Miguel C. Rubino” (Ministerio de Ganadería, Agricultura y Pesca-MGAP, Uruguay), was used as a control or susceptible reference strain.

Details regarding the preparation of ticks and laboratory conditions were previously described (Castro-Janer et al., 2009).

Farms and Tick control

Grass-fed beef cattle (Hereford) were the main production source on the farms, with an approximate 0.8 unit animal (UA)/ha per farm. The Paysandú region is characterised by its agricultural production, especially corn and soy, and has been forested during the last five years. Three farms had eucalyptus forestry (DUR, Am10, Am20), but this was not the farms’ main source of production. Per and SAP farms use silvo-grazing practices and produce eucalyptus. Two farms (Gui2, Riv) produced eucalyptus but had a smaller animal concentration by hectare than the others (0.2 UA/ha).
Eight farms used SP (pour on or immersion), OP+SP and amitraz for tick control and never used IVM or fipronil (Cap, Aig, Snic, Gar, Bru, Trel, Cblan, Am20). Nine farms used avermectins at least twice per year for three years before 2007 (Flor, Per, Pil, Rea, Ori, Gui2, Pol13, Tej, Latap).

Seven farms used fipronil (RFSan, IRA, DUR, QUE, SAP, Bar, Lalat) and the others alternately used fipronil and IVM (Am10, Ñan, Frig, Riv). During the last three to seven years, the treatment frequency of fipronil in four farms (IRA, DUR, QUE and SAP) was three to five times per year. All of these farms have recently encountered failures while using fipronil to control cattle ticks. The SAP farm used fipronil for three years (7 treatments) but tick control failure was observed during the fifth treatment. The Bar, Lalat and Am10 farms recently started using fipronil, but none of these farms observed failures in the efficacy. The Am10, Snic and Per farms also used SP for tick control.

Bioassays in vitro

A Larval Immersion Test (LIT) with IVM was performed according to Shaw (1969) with modifications suggested by Klafke et al. (2006). Finally, concentrations of ivermectin in immersion solutions were obtained by performing 30% serial dilutions starting from 0.01%. The following concentration (ppm) of immersion solutions were used: 100, 70, 49, 34.3, 24, 16.8, 11.8, 8.2, 5.8, 4 and 2.8 ppm, and no active ingredient was added to the control solution. The LIT with fipronil was carried out according to the protocols described previously by Castro-Janer et al. (2009). When a sufficient number of larvae were not available, the LIT with fipronil was primarily performed. Because there were a low number of larvae available for all of the dilutions, the Tej and Pol13 strains were tested only with fipronil solution containing 0.2, 0.8 and 2 ppm of fipronil or with a control solution without fipronil. For the
same reason, the Rea population was tested only with an IVM solution containing 2.8, 24 and 100 ppm of IVM or with a control solution without IVM.

All bioassays were performed simultaneously for the field and Mozo strains and were done in triplicate.

Technical grade ivermectin (95.7%) (Agromen Chemicals Co. LTD, Hang Zhou, China Lote 7231104) and fipronil (95.3%) (Agromen Chemicals Co. LTD, Hang Zhou, China, Lote ZF300) were used in this study.

Statistical analysis

The mortality data obtained were subjected to a probit analysis. A Chi-square test was used to test the hypotheses of parallelism and equality \((P = 0.05)\) with POLO PLUS software (LeOra Software, 2003). Lethal concentration (LC) estimates for 50 and 90% with their confidence interval of 95% (CI95%) were determined, applying a regression equation analysis to the probit transformed data. The LC values for each field strain were compared with those for the susceptible strain (Mozo), while taking into consideration the CI95%. The LC value of each field strain was considered significantly different from the Mozo strain only if the CI95% did not overlap. Resistance ratios (RRs) were calculated as the coefficients of LC50 and LC90, of each field strain compared to the corresponding LC values of the Mozo strain. If the values of the CI95% included 1, both populations were not significantly different (Robertson et al., 2007).

It may always be difficult to predict acaricide efficacy by resistance bioassays. It is necessary to have a test with great sensibility, such as the LIT, to diagnose resistance before control failures appear. But this high sensibility could lead to an incorrect classification of some populations as resistant when the pesticide is still efficacious. To facilitate the
interpretation of the results with a practical point of view, three criterions were established to diagnose resistance in a population:
- Susceptible: when the LC$_{50}$ (CI95%) of the field strain is not statistically different than the reference strain.
- Incipient resistance: when the LC$_{50}$ (CI95%) of the field strain is statistically different than the reference strain and RR$_{50}$<2.
- Resistant: when the LC$_{50}$ (CI95%) of the field strain is statistically different than the reference strain and RR$_{50}$ ≥2.

Results

Eighteen field populations tested with IVM are presented in Tables 1 and 2. The eight populations that were never subjected to MLs treatments were diagnosed as susceptible by the LIT (Table 1). None of the ten populations that were subjected to treatments with avermectins and without field efficacy failures showed RR$_{50}$ ≥2 (Table 2). Although, six (LaTap, Frig, Flor, Ori, Gui2 and Ñan) presented evidence of resistance to IVM with a RR$_{50}$<2 and an LC$_{50}$/LC_{90} statistically different from the Mozo strain. In four of the populations, the RR for LC$_{90}$ increased to values superior to >2. For the Ñan strain, the RR$_{90}$ decreased to values lower than 1 because its slope value is higher than the Mozo strain. Thus, the Ñan population will be considered susceptible. The RR$_{90}$ for the Gui2 population did not increase by much. The observed Rea population mortality was similar to that of the Mozo strain. The mortality registered at 2.8, 24 and 100 ppm of IVM was 5.56, 24.39 and 98.5%, respectively, and for the Mozo strain was 6.6, 38.6 and 100%. No deaths were observed in the control groups of both populations.

None of the eight populations that were not subjected to fipronil or IVM treatments showed resistance by LIT to fipronil (Table 3). The other nine field strains that were
subjected to IVM but not to fipronil showed susceptibility to this acaricide, too (Table 4). Despite the CI95% of the LC50/90 of the Rea population did not overlap with the Mozo strain, this population will be considered susceptible to fipronil because of a high slope value and a low RR50 value (Table 4). The Pol13 and Tej populations were diagnosed as susceptible strains with mortality superior than the Mozo strain at the concentrations used. The mortality registered for Pol13 strains at 0.2, 0.8 and 2 ppm was 19.35, 45.5 and 100%, respectively, and for the Mozo strain it was 1.5, 22.33 and 100%. The mortality obtained for the Tej population at 0.8 and 2 ppm was 94 and 100%, respectively, and for the Mozo strain it was 20.66 and 100% respectively. Mortality was not registered in the control groups for all these populations.

In Table 5, the results for the eleven field populations with an antecedent of fipronil are presented. The populations RFSan, IRA, DUR, QUE, SAP and Am10 were diagnosed as resistant, but only the first five had fipronil efficacy failures detected in the field. The Bar population was diagnosed as incipient resistant with RR50/90 <2.

Discussion

Taking into consideration that the development of acaricide resistance in a tick population is dependent on the frequency of the occurrence of resistant individuals in the population and the intensity of chemical selection pressure (Kunz and Kemp, 1994), it will be important to define groups of frequencies of resistance that could allow us to predict control failures with different densities of populations. In this context, we defined those three categories and the criterions (see Materials and Methods) to classify tick populations in relation to susceptibility levels. We think that only the last criterion (LC50 (IC95%) of the field strain is statistically different to the reference strain and RR50 ≥2) could be considered to
implement new management strategies, but additional and complementary studies of gene
frequencies and correlation efficacy treatment are necessary to confirm this statement. The
implementation of resistance management tactics is most effective when the frequency of
resistance is less than 1% (ffrench-Constant and Roush, 1990).

The LIT was shown to be an efficient technique to diagnose resistance of tick field
populations to IVM in relation to the results obtained by Klafke et al. (2006) and Pérez et al.
(2010). Also, the LIT was shown to be specific as none of the populations that were not
subject to fipronil treatment or IVM were diagnosed as resistant to IVM.

In Uruguay, the ixodicides that are approved to eradicate cattle ticks are as follows:
synthetic piretroid and their mixtures, amidinas, MLs, fipronil and fluazuron (Cuore et al.,
2008). MLs were approved to a pour-on and an injectable (1% and 3.15%), but not all the
MLs that are in the market can be used for this purpose. The use of IVM to control cattle
ticks began to spread in an ample way at the beginning of 2000, mainly in those farms that no
had deep bath and was used as a substitute for PS and PS+OF. The low RRs value obtained
could be a result of the recent introduction of IVM to control ticks in these farms as observed
by Pérez et al. (2010). None of these farms claimed tick control failures. The resistance to
IVM in these tick populations is incipient because the frequency of resistant individuals is
still low. Therefore, this situation could quickly change. Taking into consideration that the
resistance varies significantly between each generation (Plapp et al., 1990), these field
populations might be tested again after a selection pressure with IVM to monitor and confirm
the diagnosis. The lower RRs value obtained in the present paper are similar to those
registered by Klafke et al. (2006) in field tick strains. In addition, Klafke et al. (2010) used a
field tick population with control failures, and after ten generations, when they were
subjected to selection pressure by IVM treatments, the RR₅₀ increased from 1.37 to 8.06.
The RR to fipronil observed in tick populations from farms with a background of fipronil treatments could also be related to the frequency of cattle treatments. Although, an interaction with agricultural pest control was suspected with the SAP population (Castro Janer et al., 2010) with the greatest RR registered. Fipronil resistance results of the RFSan, DUR, QUE, IRA and SAP strains were discussed in detail in a previous paper (Castro Janer et al, 2010). In these populations the RRs50 values were greater than 3 and are consistent with the control failures observed in the field. In the Am10 farm population, the diagnosis of fipronil resistance by the LIT is probably a previous step to observed field resistance. However, the fipronil treatment alternated with IVM could be considered as interference with this result. The RR50 value for the Am10 population was unexpected because this population was subjected to few fipronil treatments that would not be enough to justify the resistance. The RR90 value is higher (3), indicating that the selection process is “walking”. Despite those farmers who bought cattle from regions with tick control problems, the introduction of animals with tick resistance is improbable because tick control in Uruguay is regulated by law and is verified before any cattle movement. However, the most probable cause of resistance could be related to the soy and corn cultures in the farms surrounded by forested areas. All the resistant tick populations came from the same region where the use of endosulfan and fipronil on the agriculture is common. The existence of interactions between the agricultural, public health and veterinary pest control was suggested by some authors (Georghiou, 1994, Kassap et al., 2000; Castro-Janer et al., 2010). This fact could alter the levels of susceptibility of the different organisms. Then again, the cross-resistance between cyclodienes (dieldrin, endosulfan) and phenylpirazolic insecticides (fipronil) has been demonstrated in other studies (Colliot et al., 1992; Cole et al., 1993, 1995; Bloomquist, 1994; Scott and ZhiMou, 1997; Brooke et al., 2000). Fipronil is a phenyl pyrazole insecticide used to control termites, fleas, fire ants and agricultural pests. Its mean life on the soil is 128-300
days, and its metabolites have a great insecticide activity. According by Georghiou (1994), fipronil is expected to increase in use as organophosphate (OP) insecticides decrease in use. Our results show that fipronil is used mainly on cattle from agricultural and forested areas. Perhaps, because of its high cost in relation to the other acaricides, its use is not evenly distributed and only recently has been more frequently used. The Bar population was subject to seven treatments with fipronil but no field failures were detected. However, this population was resistant with a low RR_{50/90} value (<2). This fact shows the precocity of the test to diagnose fipronil resistance, but caution needs to be taken in the interpretation of the RR_s value. In this case, the result shows an incipient resistance, so another test with further generations before changing control measures would be appropriate. The Ñan, Frig, Lalat and Riv strains were presented as susceptible to fipronil. This was expected because these populations were only subjected to two to four fipronil treatments. Cuore et al. (2007) suggested that the quickly developed fipronil resistance in the field tick population could be associated with the use of IVM. Both drugs share the same linking site in the nervous system (Cully et al., 1994; Janssen et al., 2007). However, our results show that the populations that were subject to IVM but were never subjected to fipronil treatments were susceptible to fipronil and those tick resistant populations to fipronil were susceptible to IVM. In conclusion, no cross-resistance between fipronil and IVM on ticks was observed. No registered cases of resistance of ticks to MLs have been reported in Uruguay. The present study demonstrates for the first time that R. (B.) microplus populations are resistant to IVM. Recently, the use of doramectin in newborn calves when the first generation of ticks and myiasis occurs has become a common practice among farmers. It can be expected in the short term that the use of MLs to control ticks, myasis and gastrointestinal nematodes in cattle will continue to increase due to its endectocide activity and the low-cost generic versions of MLs. Conversely, the possibility of interaction of agricultural pest control with
cattle tick control could complicate the susceptibility levels to acaricides. Both reasons justify the application of an integrated management with the interactive participation of professionals who have knowledge in Integrated Pest Management. With them, individualised programmes for sustainable production for each farm could be achieved by reducing the costs of control in the long term and with the help of the National Tick Control Programme.

Acknowledgments

We thank the Department of Parasitology-DILAVE (Uruguay) for providing us with the Mozo strain and Dr: Daniel Salada, Lauro Artia, Pedro García-Ramos and Gabriel García-Pintos for providing us with the field tick population. This project was undertaken with financial support from MEC-PDT (Uruguay), INIA-FPTA No 243 (Uruguay), FAPESP and CAPES (Brazil).

References

Bloomquist, J.R., 1994. Cyclodiene resistance at the insect GABA receptor/chloride channel complex confers broad cross resistance to convulsants and experimental phenylpyrazole insecticides. Arch Insect Biochem Physiol. 26, 69-79.

Brooke, B.D., Hunt, R.H., Coetzee, M., 2000. Resistance to dieldrin+fipronil assorts with chromosome inversion 2La in the malaria vector *Anopheles gambiae*. Med. Vet. Entomol. 14, 190-194.

Castro-Janer, E., Rifran, L., Piaggio, J., Gil, A., Miller, R.J., Schumaker, T.T.S., 2009. *In vitro* tests to establish LC$_{50}$ and discriminating concentrations for fipronil against
Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) and their standardization. Vet. Parasitol. 162, 120-128.

Castro-Janer, E., Rifran, L., González, P., Piaggio, J., Gil, A., Schumaker, T.T.S., 2010. Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) resistance to fipronil in Uruguay evaluated by in vitro bioassays. Vet. Parasitol. 169, 172–177

Cole, L.M., Nicholson, R.A., Casida, J.E., 1993. Action of phelylpyrazole insecticides at the GABA-gated chloride channel. Est. Biochem. Physiol. 46, 47-54.

Cole, L.M., Roush, R.T., Casida, J.E., 1995. Drosophila GABA-gated chloride channel: modified [3H]EBOB binding site associated with ALA->SER of GLY mutants od Rd1 subunit. Life Sci. 56, 757-765.

Colliot, F., Kukorowski, K.A., Hawkins, D.W., Roberts, D.A., 1992. A new soil and foliar broad spectrum insecticide. Brighton Crop Protection Conference Pests and Diseases 1, 29-34.

Cully, D.F., Vassilatis, D.K., Liu, K.K., Paress, P.S., Van Der Ploeg, L.H.T., Schaeffer, J.M., Arena, J.P. 1994. Cloning of an avermectin-sensitive glutamate-gated chloride channels from Caenorhabditis elegans. Nature, 371, 707-711.

Cuore, U., Trelles, A., Sanchís, J., Gayo, V., Solari, M.A., 2007. Primer diagnóstico de resistencia al Fipronil en la garrapata común del ganado Boophilus microplus.

Veterinaria (Montevideo) 42, 35-41.

Cuore, U., Cardozo, H., Trelles, A., Nari, A., Solari, M.A., 2008. Características de los garrapaticidas utilizados en Uruguay. Eficacia y poder residual. Veterinaria (Montevideo) 43, 13-24.

FAO. (Food and Agricultural Organization) 1971. Recommended methods for the detection and measurement of resistance of agricultural pest to pesticides-tentative method for
larvae of cattle ticks, *Boophilus microplus* spp. FAO method no. 7. FAO Plant Prot. Bull. 19, 15-18.

FAO. (Food and Agricultural Organization) 2004. Resistance Management and Integrated Parasite Control in Ruminants: Guidelines. http://www.fao.org/ag/aga.html

ffrench-Constant, R.H, Roush, R.T. 1990. Resistance Detection and Documentation: The Relative Roles of Pesticidal and Biochemical Assays, pp. 4-38. *In* R.T. Roush and B.E. Tabashnik (eds), Pesticide resistance in arthropods. Routledge, Chapman & Hall, Inc., New York, USA, 303p

Georghiou, G.P. 1990. The effect of Agrochemicals on Vector populations, pp. 183-202. *In*: R.T. Roush and B.E. Tabashnik (eds), Pesticide resistance in arthropods. Routledge, Chapman & Hall, Inc., New York, USA, p. 303.

Georghiou, G. P., 1994. Principles of insecticide resistance management. Phytoprotection. 75, 51–59.

Gil A., Piaggo, J. 2007. Diagnóstico de situación de la infraestructura de baños acaricidas para bovinos en Uruguay. *In* Seminario Regional “Aplicación del control integrado de parásitos (CIP) a la garrapata *Boophilus microplus* en Uruguay” Departamento de Parasitología. DILAVE Miguel C. Rubino, MGAP, Uruguay. Documento proyecto TCP FAO URU 3003 A. ISBN 978-92-305846-4

http://www.mgap.gub.uy/dgsg/DILAVE/Parasitolog%C3%ADa/Documento%20Uruguay%20TCP%20%20URU%203003.pdf. Accessed 1 February 2010.

Janssen, D., Derst C., Buckinx R., Van den Eynden J., Rigo J.M., Van Kerkhove E. 2007. Dorsal Unpaired Median Neurons of *Locusta migratoria* Express Ivermectin- and Fipronil-Sensitive Glutamate-Gated Chloride Channels. J Neurophysiol. 97, 2642-2650.

Kasap, H., Kasap, M., Alptekin, D., Lüleyap, Ü., Herath, P.R.J., 2000. Insecticide resistance in *Anopheles sacharovi Favre* in southern Turkey/ Résistance d’ *Anopheles sacharovi*
Favre aux insecticides (sud de la Turquie) / Resistencia de Anopheles sacharovi Favre a los insecticidas en el sur de Turquía. Bull World Health Organ 78, 687-692.

Klafke, G.M., Sabatini, G.A., de Albuquerque, T.A., Martins, J.R., Kemp, D.H., Miller, R.J., Schumaker, T.T.S., 2006. Larval immersion tests with ivermectin in populations of the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) from State of Sao Paulo, Brazil. Vet. Parasitol. 142, 386–390.

Klafke, G.M., Albuquerque, T.A., Miller, R.J., Schumaker, T.T.S. 2010. Selection of an ivermectin-resistant strain of Rhipicephalus microplus (Acari: Ixodidae) in Brazil. Vet. Parasitol 168, 97–104.

Kunz, S.E., Kemp, D.H., 1994. Insecticides and acaricides: resistance and environmental impacts. Rev. Sci. Tech. Off. Int. Epiz. 13, 1249–1286.

LeOra Software, 2003. In: Robertson, J.L., Preisler, H.K., Russel, R.M. (Eds.), Polo Plus Probit and Logit Analysis, User’s Guide. Berkeley, p. 36.

Liu, N. E Yue, X. 2000. Insecticide resistance and cross-resistance in the house-fly (Diptera: muscidae). J. Econ. Entomol. 93, 1269-1275.

Martins, J.R., 1995. A situation report on resistance to acaricides by the cattle tick Boophilus microplus in the state of Rio Grande do Sul, Southern Brazil. In: III Seminario Internacional de Parasitologia Animal, INIFAP, Acapulco, Mexico, pp. 1–8.

Martins, J.R., Furlong, J., 2001. Avermectin resistance of the cattle tick Boophilus microplus in Brazil. Vet. Rec. 149, 64.

Plapp, F.W., Campanhola, J.R., Bagwell, R.D., McCutcheon, F.M. 1990. Management of Pyretroid-resistant Tobacco Budworms on Cotton in the United States, pp. 237-260. In R.T. Roush and B.E. Tabashnik.(eds), Pesticide resistance in arthropods. Routledge, Chapman & Hall, Inc., New York, USA, 303p
Perez-Cogollo, L.C., Rodriguez-Vivas, R.I., Ramirez-Cruz, G.T., Miller, R.J. 2010. First report of the cattle tick Rhipicephalus microplus resistant to ivermectin in Mexico Vet. Parasitol. 168, 165–169.

Robertson, J.L., Russell, R.M., Presiler, H.K., Savin, N.E. Quarantine statistics, 2007. In: Bioassays with arthropods, 2nd ed. CRC Press 2007.

Roush, R.T., Daly, J.C. The role of population genetics in resistance research and management, 1990. In: Roush, R.T., Tabashnik. B.E. (Eds), Pesticide resistance in arthropods, p. 303.

Sabatini, G.A., Kemp, D.H., Hughes, S., Nari, A., Hansen, J. 2001. Test to determine LC50 and discriminating doses for macrocyclic lactones against the cattle tick Boophilus microplus. Vet. Parasitol. 95, 53-62

Scott, J.A., 1995. The molecular genetics of resistance: resistance as a response to stress. Florida Entomologist: 78, 399-414.

Shaw, R.D. 1966. Culture of an organophosphorus resistant strain of Boophilus microplus (Canestrini) and assessment of its resistance spectrum. Bull. Entomol. Res. 56, 398-405.

Thullner, F. 1997. Impact of pesticide resistance and network for global pesticide resistance management based on a regional structure. WAR- RMZ 89, 41-47.

USEPA, 1996. Fipronil pesticide fact sheet. EPA-737-F-96-005. Office of Prevention, Pesticides and Toxic Substances, Washington, DC, 6pp.
Table 1. Lethal ivermectin concentration and resistance ratio obtained by the Larval Immersion Test for susceptibility (Mozo) and field strains of *R. (B.) microplus* (n=5) that were not subjected to avermectin treatments.

Strain	n	Slope±SD	\(\chi^2 \) (df)	\(\text{LC}_{50} \) (ppm)	CI95%	RR50 (CI95%)	\(\text{LC}_{90} \) (ppm)	CI95%	RR90 (CI95%)
Snic	3189	2.11±0.1	208.08 (31)	20.16	17.3-23.6	0.8 (0.75-0.87)	81.51	63.6-112.8	1.09 (0.95-1.24)
Mozo	3679	2.69±0.1	110.27 (31)	24.94	22.9-27.2	--	74.77	64.8-88.8	--
Gar	3070	2.96±0.1	57.41 (31)	6.52	6.1-7	0.42 (0.39-0.45)	17.69	16-19.8	0.5 (0.47-0.55)
Mozo	3399	3.76±0.1	170.76 (31)	15.7	14.2-17.4	--	34.4	30.1-40.7	--
Bru	2379	4±0.1	419.3 (20)	19.71	15.7-25	1.04 (1-1.1)	41.2	31.2-67.1	1 (0.9-1.1)
Mozo	3214	3.81±0.1	283.23 (28)	18.88	16.7-21.5	--	40.9	34.3-52.3	--
Trel	3123	2.87±0.1	43.21 (31)	6.75	6.75-7.2	0.75 (0.7-0.8)	18.8	17.3-20.8	0.82 (0.7-0.9)
Mozo	3315	3.15±0.1	41.16 (31)	9.02	8.5-9.5	--	23	21.3-25.1	--
Am20	3070	2.96±0.1	57.41 (31)	6.52	6.1-7	0.42 (0.4-0.4)	18	14.8-21.9	0.5 (0.47-0.57)
Mozo	3399	3.76±0.1	170.76 (31)	15.7	14.1-17.4	--	34.4	30.1-40.7	--

n: number of larvae; SD: standard deviation; (df):degree freedom; ppm: parts per million ; CI: confidence interval; RR: resistance ratio
Table 1 (cont). Lethal ivermectin concentration and resistance ratio obtained by the Larval Immersion Test for susceptibility (Mozo) and field strains of *R. (B.) microplus* (n=3) that were not subjected to avermectin treatments.

Strain	n	Slope±SD	χ^2(df)	LC$_{50}$ (ppm)	CI95% LC$_{50}$	RR$_{50}$ (CI95%)	LC$_{90}$ (ppm)	CI95% LC$_{90}$	RR$_{90}$ (CI95%)
RFSan*	1502	3.73±0.2	146 (16)	9.86	7.96-12.55	1.04 (0.95-1.15)	21.73	16.19-37	1.08 (0.95-1.28)
Mozo	1281	3.93±0.2	50.79 (14)	9.47	8.23-11.02	-	20.05	16.28-27.5	--
DUR*	3843	4.14±0.1	154.58 (31)	8.72	8-9.5	0.86 (0.8-0.92)	17.77	15.8-20.6	0.61 (0.55-0.67)
Mozo	3378	2.78±0.1	120.19 (31)	10.08	9.1-11.1	--	29.18	25.5-34.4	--
Bar*	972	2.38±0.1	31.92 (10)	9.27	7.2-11.5	0.59 (0.5-0.7)	31.9	24.7-45.8	0.93 (0.8-1.1)
Mozo	3399	3.76±0.1	170.76 (31)	15.7	14.1-17.4	-	34.4	30.1-40.7	-

n: number of larvae; SD: standard deviation; (df): degree freedom; ppm: parts per million; CI: confidence interval; RR: resistance ratio; *: populations subject to fipronil treatments
Table 2. Lethal ivermectin concentration and resistance ratio obtained by the Larval Immersion Test for susceptibility (Mozo) and field strains of *R. (B.) microplus* (n=5) that were subjected to avermectin treatments.

Strain	n	Slope±SD	χ^2(df)	LC$_{50}$ (ppm)	CI95% LC$_{50}$	RR$_{50}$ (CI95%)	LC$_{90}$ (ppm)	CI95% LC$_{90}$	RR$_{90}$ (CI95%)
Flor	2507	2.86± 0.1	53.46 (20)	26.57	24.6-29.1	1.69 (1.6-1.8)	74.5	64.4-88.9	2.16 (1.9-2.4)
Mozo	3399	3.76± 0.1	170.76 (31)	15.7	14.1-17.4	-	34.4	30.1-40.7	-
Per	1961	3.43 ±0.1	33.72 (20)	9.3	8.6-10.1	0.92 (0.9-1)	21.97	19.7-25	0.75 (0.67-0.84)
Mozo	3278	2.77 ±0.1	119.6 (30)	10.08	9.1-11.1	--	29.25	25.44-34.7	--
Ori	2758	1.88± 0.1	184.15 (31)	27	22.8-32.4	1.6 (1.5-1.7)	130.2	95.4-199.1	2.73 (2.3-3.2)
Mozo	2891	2.85 ±0.1	143.41 (31)	16.86	15.1-18.9	-	47.5	40.2-58.5	-
Gui 2	1879	2.29± 0.1	117.73 (20)	13.61	11.3-16.3	1.35 (1.2-1.5)	49.46	38.70-9.9	1.69 (1.47-1.95)
LaTap	2178	2.12± 0.1	164.85 (20)	20.03	16.2-25	1.98 (1.8-2.1)	80.65	58-130.1	2.77 (2.38-3.21)
Mozo	3378	2.78 ±0.1	120.19 (31)	10.08	9.1-11.1	--	29.18	25.5-34.4	--

n: number of larvae; SD: standard deviation; (df): degree freedom; ppm: parts per million; CI: confidence interval; RR: resistance ratio.
Table 2 (cont). Lethal ivermectin concentration and resistance ratio obtained by the Larval Immersion Test for susceptibility (Mozo) and field strains of *R. (B.) microplus* (n=4) that were subjected to avermectin treatments

Strain	n	Slope±SD	χ^2(df)	LC$_{50}$ (ppm)	CI95% LC$_{50}$	RR$_{50}$ (CI95%)	LC$_{90}$ (ppm)	CI95% LC$_{90}$	RR$_{90}$ (CI95%)
Am10*	3239	3.32±0.1	48.21 (31)	8.28	7.8-8.8	0.82 (0.8-0.9)	20.11	18.5-22.1	0.69 (0.62-0.76)
Mozo	3278	2.77±0.1	119.6 (30)	10.08	9.1-11.1	--	29.25	25.44-34.7	--
Ñan*	2163	5.38±0.2	17.43 (20)	12.31	11.8-12.8	1.27 (1.3-1.4)	21.3	20.2-22.8	0.95 (0.8-1)
Mozo	2855	3.53±0.1	158.89 (28)	9.71	8.7-10.8	-	22.4	19.3-27.1	-
Frig*	5892	1.87±0.04	515.27 (58)	13	11.2-15.1	1.8 (1.7-1.9)	62.96	49.7-84.4	2.34 (2.09-2.63)
Mozo	5824	2.25±0.04	398.89 (57)	7.21	6.4-8.1	-	26.86	22.4-33.4	-
Riv*	1879	2.29±0.1	117.73 (20)	13.61	11.3-16.4	0.55 (0.5-0.6)	49.46	38-70.9	0.66 (0.57-0.76)
Mozo	3679	2.69±0.1	110.27 (31)	24.94	22.9-27.2	--	74.77	64.8-88.8	--

n: number of larvae; SD: standard deviation; (df):degree freedom; ppm: parts per million; CI: confidence interval; RR: resistance ratio; *: populations subject to fipronil treatments.
Table 3. Lethal fipronil concentration and resistance ratio obtained by the Larval Immersion Test for susceptibility (Mozo) and field strains of *R. (B.) microplus* (n=5) that were never subjected to fipronil or avermectin treatments.

Strain	n	Slope±SD	χ^2 (df)	LC$_{50}$ (ppm)	CI95% LC$_{50}$	RR (CI95%)	LC$_{90}$ (ppm)	CI95% LC$_{90}$	RR$_{90}$(CI95%)
Cap	3734	3.73±0.13	320.9 (28)	0.93	0.81-1.03	0.55 (0.52-0.57)	2.05	1.77-2.53	0.67 (0.62-0.73)
Mozo	2506	5.00±0.2	238.5 (21)	1.69	1.53-1.92	-	3.05	2.53-4.17	-
Aig	1501	7.43±0.33	166.1 (13)	1.14	0.99-1.28	0.69 (0.66-0.71)	1.70	1.48-2.12	0.6 (0.56-0.63)
Mozo	3194	5.51±0.18	166.4 (27)	1.66	1.55-1.8	-	2.84	2.56-3.29	-
Snic	2686	2.38±0.08	351.1 (25)	1.16	0.93-1.48	0.83 (0.77-0.88)	4.01	2.82-7.05	3.2 (2.5-4.1)
Mozo	2586	5.45±0.2	94.8 (24)	1.41	1.32-1.51	-	2.42	2.19-2.74	-
Gar	2318	4.19±0.22	138.5 (21)	1.09	0.95-1.25	0.95 (0.9-1.01)	2.22	1.85-2.97	0.98 (1.5-1.9)
Mozo	3530	4.75±0.16	67.01 (25)	1.15	1.08-1.22	-	2.27	2.02-2.63	-
Bru	2426	4.14±0.17	205.5 (20)	0.81	0.7-0.92	0.81 (0.77-0.85)	1.66	1.4-2.16	0.9 (0.87-1)
Mozo	3116	5.22±0.2	71.4 (25)	1.01	0.96-1.06	-	1.78	1.65-1.94	-

n: number of larvae; SD: standard deviation; (df):degree freedom; ppm: parts per million; CI: confidence interval; RR: resistance ratio
Table 3 (cont). Lethal fipronil concentration and resistance ratio obtained by the Larval Immersion Test for susceptibility (Mozo) and field strains of *R. (B.) microplus* (n=5) that were never subjected to fipronil or avermectin treatments.

Strain	n	Slope±SD	χ^2 (df)	LC$_{50}$ (ppm)	CI95% LC$_{50}$	RR (CI95%)	LC$_{90}$ (ppm)	CI95% LC$_{90}$	RR$_{90}$(CI95%)
Trel	2356	4.50±0.17	78.3 (25)	0.70	0.65-0.75	0.83 (0.78-0.88)	1.35	1.24-1.5	0.6 (0.6-0.7)
Mozo	2553	3.28±0.12	141.7 (25)	0.84	0.76-0.94	-	2.08	1.78-2.54	-
Ublan	706	4.96±0.45	31.3 (8)	0.81	0.63-0.95	1.09 (0.99-1.2)	1.47	1.21-2.09	1.1 (0.96-1.2)
Mozo	1795	4.84±0.21	123.3 (22)	0.74	0.66-0.82	-	1.36	1.21-1.59	-
Am20	2308	5.37±0.23	49.6 (20)	1.09	1.03-1.15	0.78 (0.75-0.81)	1.89	1.74-2.09	0.9 (0.84-0.96)
Mozo	3239	7.1±0.23	333 (25)	1.39	1.27-1.54	-	2.01	1.84-2.62	-

N: number of larvae; SD: standard deviation; (df): degree of freedom; ppm: parts per million; CI: confidence interval; RR: resistance ratio
Table 4. Lethal fipronil concentration and resistance ratio obtained by the Larval Immersion Test for susceptibility (Mozo) and field strains of *R. (B.) microplus* (n=5) that were never subjected to fipronil treatments but were subjected to avermectin treatments.

Strain	**n**	Slope±SD	χ^2 (df)	LC$_{50}$ (ppm)	CI95% LC$_{50}$	RR (CI95%)	LC$_{90}$ (ppm)	CI95% LC$_{90}$	RR$_{90}$ (CI95%)
Flor	1097	4.73±0.31	6.3 (8)	0.70	0.66-0.74	0.52 (0.49-0.55)	1.31	1.2-1.44	0.6 (0.55-0.68)
Mozo	2867	6.49±0.22	337.5 (25)	1.35	1.23-1.5	--	2.13	1.87-2.6	--
Per	1994	3.65±0.17	45.6 (20)	0.55	0.5-0.6	0.56 (0.52-0.6)	1.23	1.1-1.4	0.5 (0.5-0.6)
Mozo	3204	3.33±0.11	317.9 (31)	0.98	0.86-1.12	--	2.38	1.96-3.13	--
Pil	2662	2.51±0.13	254.9 (24)	0.66	0.46-0.81	0.39 (0.36-0.42)	2.14	1.71-3.16	0.7 (0.6-0.8)
Mozo	2506	4.99±0.2	238.5 (21)	1.69	1.53-1.92	--	3.05	2.53-4.17	--
Rea	1061	6.29±0.41	8.2 (7)	1.21	1.06-1.18	1.29 (1.23-1.36)	1.79	1.67-1.99	1.1 (1-1.2)
Mozo	3100	4.68±0.18	84.5 (28)	0.87	0.81-0.92	--	1.63	1.5-1.8	--
Ori	3187	3.92±0.14	197.3 (31)	0.54	0.48-0.6	0.85 (0.81-0.9)	1.15	1.01-1.35	0.9 (0.87-1)
Mozo	2582	4.47±0.16	140.3 (26)	0.64	0.57-0.69	--	1.23	1.1-1.4	--

n: number of larvae; SD: standard deviation; (df): degree freedom; ppm: parts per million; CI: confidence interval; RR: resistance ratio.
Table 4. Lethal fipronil concentration and resistance ratio obtained by the Larval Immersion Test for susceptibility (Mozo) and field strains of *R. (B.) microplus* (n=2) that were never subjected to fipronil treatments but were subjected to avermectin treatments.

Strain	Slope±SD	χ^2 (df)	LC$_{50}$ (ppm)	CI95% LC$_{50}$	RR (CI95%)	LC$_{50}$ (ppm)	CI95% LC$_{90}$	RR$_{90}$ (CI95%)	
Gui2	2422	5.29±0.23	34.3 (20)	0.66	0.63-0.7	0.49 (0.47-0.51)	1.16	1.09-1.25	0.5 (0.51-0.58)
Mozo	2867	6.49±0.22	337.5 (25)	1.35	1.23-1.5	--	2.13	1.87-2.6	--
LaTap	2442	5.50±0.23	81.5 (20)	0.88	0.81-0.94	0.63 (0.6-0.65)	1.50	1.36-1.69	0.7 (0.66-0.7)
Mozo	3239	6.89±0.23	458.1 (25)	1.39	1.27-1.55	--	1.50	1.36-1.69	--

n: number of larvae; SD: standard deviation; (df): degree freedom; ppm: parts per million; CI: confidence interval; RR: resistance ratio
Table 5. Lethal fipronil concentration and resistance ratio obtained by the Larval Immersion Test for susceptibility (Mozo) and field strains of *R. (B.) microplus* (n=5) that were subjected to fipronil treatments but not to avermectin treatments.

Strain	n	Slope±SD	χ^2(df)	LC$_{50}$ (ppm)	CI95% LC$_{50}$	RR (CI95%)	LC$_{90}$ (ppm)	CI95% LC$_{90}$	RR$_{90}$ (CI95%)
RFSan	2559	1.89±0.1	149 (21)	9.7	7.3-12.7	5.4 (4.5-6.4)	73.66	46.15-146.16	24.8 (20.1-30.6)
Mozo	3193	6.14±0.2	185.5 (24)	1.8	1.7-1.95	-	2.97	2.69-3.41	-
IRA	572	1.82±0.25	18.85 (5)	9.80	4.7-259.3	21.02 (13.4-33)	49.57	13.35-42617	62 (25.9-147.6)
Mozo	1315	5.46±0.27	46.48 (3)	0.47	0.41-0.52	-	0.80	0.72-0.91	-
DUR	3066	2.38±0.09	540.12 (31)	4.86	3.6-7.6	3.25 (2.97-3.6)	16.75	10.01-41.8	5.3 (4.5-6.3)
Mozo	3032	3.95±0.14	421.60 (31)	1.50	1.3-1.75	-	3.16	2.54-4.46	-
QUE	1005	2.37±0.19	539.42 (13)	nd	nd	87.7 (76.1-101.1)	nd	nd	141 (104.2-191)
Mozo	1467	3.83±0.2	370.37 (13)	1.46	0.95-1.94	-	3.15	2.28-8.6	-
SAP	899	0.69±0.27	9.27 (7)	nd	nd	3513.4 (12.7-968949)	nd	nd	133599 (17.7-1009232413)
Mozo	3100	4.68±0.18	84.47(28)	0.87	0.81-0.92	-	1.63	1.5-1.8	-

n: number of larvae; SD: standard deviation; (df): degree freedom; ppm: parts per million; CI: confidence interval; RR: resistance ratio; nd: not determined
Table 5. Lethal fipronil concentration and resistance ratio obtained by the Larval Immersion Test for susceptibility (Mozo) and field strains of *R. (B.) microplus* (n=6) that were subjected to fipronil treatments but not to avermectin treatments.

Strain	n	Slope±SD	χ^2 (df)	LC_{50} (ppm)	CI95% LC_{50}	RR (CI95%)	LC_{90} (ppm)	CI95% LC_{90}	RR$_{90}$ (CI95%)
Am10*	3415	2.23±0.08	149.05 (31)	2.02	1.8-2.3	2.06 (1.92-2.21)	7.62	5.96-10.53	3.2 (2.8-3.7)
Mozo	3104	3.33±0.11	317.27 (30)	0.98	0.86-1.12	-	2.38	1.96-3.16	-
Bar	3530	4.75±0.16	76.61 (25)	2.04	1.91-2.2	1.78 (1.69-1.88)	3.80	3.41-4.34	1.67 (1.52-1.85)
Mozo	2912	4.35±0.16	67.01 (25)	1.15	1.08-1.22	-	2.26	2.03-2.58	-
Lalat	1202	3.27±0.18	115.59 (12)	0.64	0.49-0.78	0.65 (0.61-0.71)	1.57	1.17-2.7	0.96 (0.85-1.09)
Mozo	1641	4.46±0.19	337.68 (18)	0.97	0.82-1.17	-	1.63	1.3-2.5	-
Ñan*	2322	6.17±0.27	66.94 (20)	0.68	0.63-0.72	0.74 (0.71-0.77)	1.09	1.01-1.2	0.7 (0.68-0.8)
Mozo	2771	5.96±0.21	49.97 (25)	0.92	0.88-0.95	-	1.50	1.42-1.6	-
Frig*	2316	3.95±0.14	146.14 (25)	0.75	0.67-0.82	0.93 (0.88-0.99)	1.58	1.38-1.89	0.8 (0.8-0.9)
Mozo	2171	3.46±0.13	327.96 (25)	0.80	0.68-0.95	-	1.89	1.51-2.71	-
Riv*	2655	2.33±0.1	95.40 (25)	0.39	0.33-0.44	0.27 (0.33-0.44)	1.37	1.15-1.71	0.6 (0.5-0.6)
Mozo	2686	5.46±0.2	95.26 (25)	1.41	1.32-1.5	-	2.42	2.2-2.7	-

n: number of larvae; SD: standard deviation; (df): degree freedom; ppm: parts per million; CI: confidence interval; RR: resistance ratio; *strains that subjected a treatments with avermectin