Cofilin Phosphorylation Decreased by Serum-free Starvation with Low Glucose in the L6 Myoblasts

MEE-YOUNG KIM, PT, PhD1)a, JU-HYUN KIM, PT, PhD1)a, JEONG-UK LEE, PT, PhD1), LIM-KYU LEE, PT, MS1), SEUNG-MIN YANG, PT, MS1), BYOUNG-SUN PARK PT, MS1), HYE-JOO JEON, PT, MS1), WON-DEOK LEE, PT, MS1), JI-WOONG NOH, PT, MS1), TAE-YONG KWAK, PhD3), SUNG-HO JANG, PhD3), TAE-HYUN LEE, PhD3), JU-YOUNG KIM, PhD3), TAE-WHAN KIM, PhD3), BOKYUNG KIM, DVM, PhD3), JUNGHWAN KIM, PT, PhD7)*

1) Department of Physical Therapy, Laboratory of Health Science and Nanophysiotherapy, Yongin University, Republic of Korea
2) Department of Taekwondo Instructor Education, College of Martial Arts, Yongin University, Republic of Korea
3) Department of Judo, College of Martial Arts, Yongin University, Republic of Korea
4) Combative Martial Arts Training, College of Martial Arts, Yongin University, Republic of Korea
5) Department of Sports Science and Engineering, Korea Institute of Sport Science, Republic of Korea
6) Department of Physiology, School of Medicine, Institute of Functional Genomics, Konkuk University, Republic of Korea
7) Department of Physical Therapy, College of Public Health and Welfare, Yongin University: Yongin 449-714, Republic of Korea

Abstract. [Purpose] Many studies have been using cell culture models of muscle cells with exogenous cytokines or glucocorticoids to mimic atrophy in in vivo and in vitro tests. However, the changes in the phosphorylation of atrophy-related cofilin are still poorly understood in starved skeletal muscle cells. In this study, we first examined whether or not phosphorylation of cofilin is altered in L6 myoblasts after 3, 6, 12, 24, 48, and 72 hours of serum-free starvation with low glucose. [Methods] We used Western blotting to exam protein expression and phosphorylation in atrophied L6 myoblasts. [Results] L6 cell sizes and numbers were diminished as a result of serum-free starvation in a time-dependent manner. Serum-free starvation for 3, 6, 12, 24, 48, and 72 hours significantly decreased the phosphorylation of cofilin, respectively. [Conclusion] These results suggest that starvation-induced atrophy may be in part related to changes in the phosphorylation of cofilin in L6 myoblasts.

Key words: Cofilin, Serum-free starvation, L6 myoblasts

INTRODUCTION

Starvation and other altered metabolic conditions such as immobilization, denervation, aging, and unloading states induces loss of muscle mass1–4). To study the signal transduction of atrophy in particular, various cell culture models have been developed5–7). In many studies, exogenous cytokines such as TNF-α, glucocorticoids such as dexamethasone, and serum-free starvation of cultured cells have been used as atrophy models to confirm the mechanisms of whole skeletal muscle atrophy in vivo8–10). The elevated degradation of proteins in skeletal muscle atrophy and serum-free starvation is commonly coupled with activation of the protein ligases such as muscle specific RING finger-1 (MuRF-1) and atrogin-11, 4, 5, 11). Meanwhile, cofilin is a ubiquitously expressed protein in mammalian cells and thereby regulates the actin filament dynamics and reorganization and other functions12, 14). Furthermore, cofilin binds to actin molecules, changing fibrous actin to globular actin13). This process is enabled by the dephosphorylation of cofilin by phosphatases12, 15). On the other hand, phosphorylation of cofilin abolishes the cofilin activity and inhibits its severing function12, 16) (Fig. 1C). However, the changes in phosphorylation of cofilin in starvation-induced atrophy are not fully understood. Therefore, we investigated the changes in the phosphorylation of cofilin in L6 myoblasts during serum-free starvation with low glucose.

MATERIALS AND METHODS

L6 myoblasts from rat neonate skeletal muscle were separated into control and serum-free starvation groups1). The control group of L6 myoblasts was purchased from the American Type Culture Collection (Rockville, MD,
USA) and cultured in Dulbecco’s modified Eagle’s medium containing 10% fetal bovine serum, 100 U/ml penicillin, 100 μg/ml streptomycin, 200 mM glutamine, and 4,500 mg/L high-concentration D-glucose. The serum-free starvation group of L6 myoblasts grown to 60–70% confluence and undernourished in DEMEM containing 1,000 mg/L low-concentration D-glucose without FBS for 3, 6, 12, 24, 48, and 72 h, respectively. After each experimental treatment, cells were lysed with an extraction buffer (20 mM HEPES, pH 7.5, 1% Nonidet P-40, 150 mM NaCl, 10% glycerol, 10 mM NaF, 1 mM NaVO₄, 2.5 mM 4-nitrophenylphosphate, 0.5 mM PMSF, and one tablet of Complete Proteinase Inhibitor Cocktail [Roche, Indianapolis, IN, USA]). The morphological changes in L6 myoblasts with or without each experimental treatment were visualized with an inverted microscope (AE3031, Motic Incorporation, Richmond, BC, Canada). To measure the phosphorylation of cofilin, the samples were then homogenized in a sample buffer. The homogenate was centrifuged, and the supernatant was collected. Proteins (30–45 μg/lane) were separated on 12% polyacrylamide sodium dodecyl sulfate gels and then transferred electrophoretically to a polyvinylidene fluoride membrane (Millipore; Bedford, MA, USA) and cultured in Dulbecco’s modified Eagle’s medium containing 10% fetal bovine serum, 100 U/ml penicillin, 100 μg/ml streptomycin, 200 mM glutamine, and 4,500 mg/L high-concentration D-glucose. The serum-free starvation group of L6 myoblasts grown to 60–70% confluence and undernourished in DEMEM containing 1,000 mg/L low-concentration D-glucose without FBS for 3, 6, 12, 24, 48, and 72 h, respectively. After each experimental treatment, cells were lysed with an extraction buffer (20 mM HEPES, pH 7.5, 1% Nonidet P-40, 150 mM NaCl, 10% glycerol, 10 mM NaF, 1 mM NaVO₄, 2.5 mM 4-nitrophenylphosphate, 0.5 mM PMSF, and one tablet of Complete Proteinase Inhibitor Cocktail [Roche, Indianapolis, IN, USA]). The morphological changes in L6 myoblasts with or without each experimental treatment were visualized with an inverted microscope (AE3031, Motic Incorporation, Richmond, BC, Canada). To measure the phosphorylation of cofilin, the samples were then homogenized in a sample buffer. The homogenate was centrifuged, and the supernatant was collected. Proteins (30–45 μg/lane) were separated on 12% polyacrylamide sodium dodecyl sulfate gels and then transferred electrophoretically to a polyvinylidene fluoride membrane (Millipore; Bedford, MA, USA) and cultured in Dulbecco’s modified Eagle’s medium containing 10% fetal bovine serum, 100 U/ml penicillin, 100 μg/ml streptomycin, 200 mM glutamine, and 4,500 mg/L high-concentration D-glucose. The serum-free starvation group of L6 myoblasts grown to 60–70% confluence and undernourished in DEMEM containing 1,000 mg/L low-concentration D-glucose without FBS for 3, 6, 12, 24, 48, and 72 h, respectively. After each experimental treatment, cells were lysed with an extraction buffer (20 mM HEPES, pH 7.5, 1% Nonidet P-40, 150 mM NaCl, 10% glycerol, 10 mM NaF, 1 mM NaVO₄, 2.5 mM 4-nitrophenylphosphate, 0.5 mM PMSF, and one tablet of Complete Proteinase Inhibitor Cocktail [Roche, Indianapolis, IN, USA]). The morphological changes in L6 myoblasts with or without each experimental treatment were visualized with an inverted microscope (AE3031, Motic Incorporation, Richmond, BC, Canada). To measure the phosphorylation of cofilin, the samples were then homogenized in a sample buffer. The homogenate was centrifuged, and the supernatant was collected. Proteins (30–45 μg/lane) were separated on 12% polyacrylamide sodium dodecyl sulfate gels and then transferred electrophoretically to a polyvinylidene fluoride membrane (Millipore; Bedford, MA, USA). Anti-cofilin antibody was purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA). Antibody-specific bands were quantified using an image analyzer (Bio-Rad). The protocol for the study was approved by the Committee of Ethics in Research of the University of Yongin, in accordance with the terms of Resolution 5-1-20, December 2006. Data were expressed as means±SEM. The data were statistically evaluated using Student’s t-tests for comparisons between pairs of groups and by ANOVA for multiple comparisons. A p value of < 0.05 was considered to be statistically significant.

Table 1. Changes in expression and phosphorylation of cofilin of L6 myoblasts during serum-free starvation with low glucose

Experimental period	Cofilin (%)	p-Cofilin (%)
0 hour (control)	100.0±0.0	100.0±0.0
3 hours	252.3±29.5*	20.7±6.1*
6 hours	242.7±20.7*	25.3±4.6*
12 hours	201.0±26.2*	24.7±6.3*
24 hours	198.7±22.9*	26.3±5.9*
48 hours	196.0±22.1*	24.3±5.4*
72 hours	176.3±14.4*	18.0±5.5*

Data were presented as the mean ± SEM. *Compared with the 0 hour control, p<0.05.

RESULTS

L6 cell sizes and numbers were diminished as a result of serum-free starvation in a time-dependent manner (Fig. 1A). Phosphorylation of cofilin was significantly decreased after 3, 6, 12, 24, 48, and 72 hours of starvation compared with those of the control groups (n=3–4, Fig. 1B, Table 1). However, the expression of cofilin was significantly increased after 3, 6, 12, 24, 48, and 72 hours of starvation compared with the expression of cofilin in the control groups (n=3–4, Fig. 1B, Table 1).

DISCUSSION

Skeletal muscle atrophy and joint contracture have proven to be significant orthopaedic problems in the area of physical therapy. Our previous study demonstrated that cast immobilization of a hind limb and serum-free starvation of L6 myoblasts increases the expression of cofilin in eukaryotic cells. Meanwhile, cofilin in eukaryotic cells binds to actin and plays a role in actin dynamics and reorganization involved in cast immobilization-induced atrophy. Phosphorylation of cofilin is achieved by LIM domain proteins such as through skeletal muscle atrophy.
kinases and thereby inhibits the actin binding, severing, and depolymerizing activities of cofilin\(^6, 29\) (Fig. 1C). Furthermore, the kinases responsible for this phosphorylation are Rho-associated protein kinase and p21-activated protein kinase, which are downstream kinases of the Rho family small GTPases\(^{26-28}\). On the other hand, dephosphorylation of cofilin is mediated by the cofilin-specific phosphatases slingshot\(^{12, 15}\) (Fig. 1C). Although cofilin is essential for maintenance of skeletal muscle mass\(^{12}\), it has not been reported that phosphorylation of cofilin is related to atrophy caused by serum-free starvation in the area of physical therapy. However, further systematic studies in the area of physical therapy such as electrotherapy, neurotherapy, hydrotherapy, and others are needed to confirm the mechanism of cofilin under atrophic conditions\(^{29-31}\) (Fig. 1C). In summary, the phosphorylation of cofilin was decreased in starved skeletal muscle cells. The present results suggest that serum-free starvation-induced atrophy may be in part mediated by cofilin from L6 myoblasts.

REFERENCES

1) Kim J, Won KJ, Lee HM, et al.: p38 MAPK participates in muscle-specific RING finger 1-mediated atrophy in cast-immobilized rat gastrocnemius muscle. Korean J Physiol Pharmacol, 2009, 13: 491–496. [Medline] [CrossRef]

2) Kim J, Kim B: Differential regulation of MAPK isoforms during cast-immobilization induced atrophy in rat gastrocnemius muscle. J Phys Ther Sci, 2010, 22: 217–222. [CrossRef]

3) Kim J, Kim B: Identification of atrophy-related proteins produced in response to cast immobilization in rat gastrocnemius muscle. Mol Cell Toxicol, 2010, 6: 359–369. [CrossRef]

4) Bodine SC, Latres E, Baumhueter S, et al.: Identification of ubiquitin ligases required for skeletal muscle atrophy. Science, 1999, 285: 1396–1406. [Medline] [CrossRef]

5) Sandri M, Sandri C, Gilbert A, et al.: Foxo transcription factors induce the expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle. J Biol Chem, 2005, 280: 2737–2744. [Medline] [CrossRef]

6) Li YP, Chen Y, John J, et al.: TNF-α acts via p38 MAPK to stimulate expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle. FASEB J, 2005, 19: 362–370. [Medline] [CrossRef]

7) Schulze PC, Fang J, Kassik KA, et al.: Transgenic overexpression of locally acting insulin-like growth factor-1 inhibits ubiquitin-mediated muscle atrophy in chronic left-ventricular dysfunction. Circ Res, 2005, 97: 418–426. [Medline] [CrossRef]

8) Cao PR, Kim HJ, Lecker SH: Ubiquitin-protein ligases in muscle wasting. Int J Biochem Cell Biol, 2005, 37: 2088–2097. [Medline] [CrossRef]

9) Latres E, Amini AR, Amini AA, et al.: Insulin-like growth factor-1 (IGF-1) irreversibly regulates atrophy-induced genes via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway. J Biol Chem, 2005, 280: 2737–2744. [Medline] [CrossRef]

10) Liu Y, Chen Y, John J, et al.: TNF-α acts via p38 MAPK to stimulate expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle. FASEB J, 2005, 19: 362–370. [Medline] [CrossRef]

11) Stevenson EJ, Koncarevic A, Giresi PG, et al.: Transcriptional profile of cofilin is mediated by the cofilin-specific phosphatases slingshot\(^{12, 15}\) (Fig. 1C). Although cofilin is essential for maintenance of skeletal muscle mass\(^{12}\), it has not been reported that phosphorylation of cofilin is related to atrophy caused by serum-free starvation in the area of physical therapy. However, further systematic studies in the area of physical therapy such as electrotherapy, neurotherapy, hydrotherapy, and others are needed to confirm the mechanism of cofilin under atrophic conditions\(^{29-31}\) (Fig. 1C). In summary, the phosphorylation of cofilin was decreased in starved skeletal muscle cells. The present results suggest that serum-free starvation-induced atrophy may be in part mediated by cofilin from L6 myoblasts.

REFERENCES

1) Kim J, Won KJ, Lee HM, et al.: p38 MAPK participates in muscle-specific RING finger 1-mediated atrophy in cast-immobilized rat gastrocnemius muscle. Korean J Physiol Pharmacol, 2009, 13: 491–496. [Medline] [CrossRef]

2) Kim J, Kim B: Differential regulation of MAPK isoforms during cast-immobilization induced atrophy in rat gastrocnemius muscle. J Phys Ther Sci, 2010, 22: 217–222. [CrossRef]

3) Kim J, Kim B: Identification of atrophy-related proteins produced in response to cast immobilization in rat gastrocnemius muscle. Mol Cell Toxicol, 2010, 6: 359–369. [CrossRef]

4) Bodine SC, Latres E, Baumhueter S, et al.: Identification of ubiquitin ligases required for skeletal muscle atrophy. Science, 1999, 285: 1396–1406. [Medline] [CrossRef]

5) Sandri M, Sandri C, Gilbert A, et al.: Foxo transcription factors induce the expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle. J Biol Chem, 2005, 280: 2737–2744. [Medline] [CrossRef]

6) Li YP, Chen Y, John J, et al.: TNF-α acts via p38 MAPK to stimulate expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle. FASEB J, 2005, 19: 362–370. [Medline] [CrossRef]

7) Schulze PC, Fang J, Kassik KA, et al.: Transgenic overexpression of locally acting insulin-like growth factor-1 inhibits ubiquitin-mediated muscle atrophy in chronic left-ventricular dysfunction. Circ Res, 2005, 97: 418–426. [Medline] [CrossRef]

8) Cao PR, Kim HJ, Lecker SH: Ubiquitin-protein ligases in muscle wasting. Int J Biochem Cell Biol, 2005, 37: 2088–2097. [Medline] [CrossRef]

9) Latres E, Amini AR, Amini AA, et al.: Insulin-like growth factor-1 (IGF-1) irreversibly regulates atrophy-induced genes via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway. J Biol Chem, 2005, 280: 2737–2744. [Medline] [CrossRef]

10) Liu Y, Chen Y, John J, et al.: TNF-α acts via p38 MAPK to stimulate expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle. FASEB J, 2005, 19: 362–370. [Medline] [CrossRef]

11) Stevenson EJ, Koncarevic A, Giresi PG, et al.: Transcriptional profile of cofilin is mediated by the cofilin-specific phosphatases slingshot\(^{12, 15}\) (Fig. 1C). Although cofilin is essential for maintenance of skeletal muscle mass\(^{12}\), it has not been reported that phosphorylation of cofilin is related to atrophy caused by serum-free starvation in the area of physical therapy. However, further systematic studies in the area of physical therapy such as electrotherapy, neurotherapy, hydrotherapy, and others are needed to confirm the mechanism of cofilin under atrophic conditions\(^{29-31}\) (Fig. 1C). In summary, the phosphorylation of cofilin was decreased in starved skeletal muscle cells. The present results suggest that serum-free starvation-induced atrophy may be in part mediated by cofilin from L6 myoblasts.

REFERENCES

1) Kim J, Won KJ, Lee HM, et al.: p38 MAPK participates in muscle-specific RING finger 1-mediated atrophy in cast-immobilized rat gastrocnemius muscle. Korean J Physiol Pharmacol, 2009, 13: 491–496. [Medline] [CrossRef]

2) Kim J, Kim B: Differential regulation of MAPK isoforms during cast-immobilization induced atrophy in rat gastrocnemius muscle. J Phys Ther Sci, 2010, 22: 217–222. [CrossRef]

3) Kim J, Kim B: Identification of atrophy-related proteins produced in response to cast immobilization in rat gastrocnemius muscle. Mol Cell Toxicol, 2010, 6: 359–369. [CrossRef]

4) Bodine SC, Latres E, Baumhueter S, et al.: Identification of ubiquitin ligases required for skeletal muscle atrophy. Science, 1999, 285: 1396–1406. [Medline] [CrossRef]

5) Sandri M, Sandri C, Gilbert A, et al.: Foxo transcription factors induce the expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle. J Biol Chem, 2005, 280: 2737–2744. [Medline] [CrossRef]

6) Li YP, Chen Y, John J, et al.: TNF-α acts via p38 MAPK to stimulate expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle. FASEB J, 2005, 19: 362–370. [Medline] [CrossRef]

7) Schulze PC, Fang J, Kassik KA, et al.: Transgenic overexpression of locally acting insulin-like growth factor-1 inhibits ubiquitin-mediated muscle atrophy in chronic left-ventricular dysfunction. Circ Res, 2005, 97: 418–426. [Medline] [CrossRef]

8) Cao PR, Kim HJ, Lecker SH: Ubiquitin-protein ligases in muscle wasting. Int J Biochem Cell Biol, 2005, 37: 2088–2097. [Medline] [CrossRef]