Some reminiscences on studies of age-dependent and activity-dependent degeneration of sensory and motor endings in mammalian skeletal muscle

Citation for published version:
Ribchester, RR 2015, 'Some reminiscences on studies of age-dependent and activity-dependent degeneration of sensory and motor endings in mammalian skeletal muscle', Journal of Anatomy, vol. 227, no. 2, pp. 231-6. https://doi.org/10.1111/joa.12334

Digital Object Identifier (DOI):
10.1111/joa.12334

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Journal of Anatomy

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
A great deal of thought, in a wholly engaging way, and
found on a balanced view of the evidence, including
accounts and arguments based on ongoing and unpub-
lished research. At the same time, I learned all about the
ultrastructure of motor neurons, axons and neuromuscular
junctions (NMJs) under Mike Stacey’s tutelage at the helm
of the department’s electron microscope, and about mecha-
isms of neuromuscular transmission under David Hyde’s
calm and insightful tutorial supervisions. From David Harker
and Alice Milburn, I learned how to stain intramuscular
nerves, using the silver chloride method so adroitly applied
by the Barker lab, and to stain NMJs for cholinesterase activ-
ity, then to make teased preparations of this stained neuro-
muscular material for conventional light microscopy. I also
carried out an undergraduate research project, on oxidative
phosphorylation in blowfly flight muscle mitochondria,
encouraged by the infectious enthusiasm and rigorous
direction of Ken Bowler. Indeed, were it not for the lure of
the bright lights (literally) of electrophysiological apparatus
at the Muscular Dystrophy Laboratories in Newcastle, and a
fortuitous series of circumstances that led me there, I would
have stayed on with Bowler for my PhD training.

Neuromuscular synaptic structure and
function in dystrophic mice

As it turned out, however, I migrated a few miles up the
road and took up post as an MRC PhD student at the Muscu-
lar Dystrophy Laboratories, under John B Harris’ expert
supervision, in the autumn of 1974. However, I renewed my
connections with Durham shortly afterwards. By that time,
Barker’s group had been joined by Bob Banks, who brought and meticulously applied an approach that combined physiological recording and microanatomical description (Banks et al. 1978, 1998, 2009; Banks & Barker, 1989; Banks, 1994, 2006). Meanwhile, I honed the skills I had learned at Durham in single-fibre teasing, together with electrophysiological analysis of neuromuscular synaptic transmission that I learned from John Harris, and I subsequently brought them to bear on an experimental investigation that related to another controversy around that time, namely whether the signs and symptoms of muscular dystrophy were due to a significant amount of ‘functional denervation’ (Harris & Ribchester, 1979a). I also adapted a technique I first heard about during Barker’s lectures at Durham: intracellular staining of muscle fibres by microinjection of Procion dyes, in order to correlate microanatomy with electrophysiology (Barker et al. 1978). I put all these techniques and my acquired skills together, which enabled us to report with confidence that functional denervation was not a sufficient explanation for pathology in the signs and symptoms of murine muscular dystrophy in the dyldy mouse mutant (Harris & Ribchester, 1978, 1979b).

Neuromuscular synapse elimination in development and regeneration

An important lesson that I learned from Barker and his colleagues was to be ever vigilant and skeptical of tidy biological explanations: and that the prettiest explanation is not always the correct one. In the words of a guru from a quite different field of research (theoretical quantum electrodynamics), ‘the thing that doesn’t fit is the thing that is the most interesting’ (Feynman, 2001). This notion came to the fore again during my research a few years later, when – after postdoctoral fellowships abroad, mentored by Bill Betz in Denver (Betz et al. 1979, 1980a,b) and Jan Jansen in Oslo (Eide et al. 1982) – I was exploring the relationship between use and disuse (i.e. activity) of neuromuscular synapses during postnatal synapse elimination, a competitive process that occurs in rodents both during normal development (Brown et al. 1976; Betz et al. 1979, 1980a), and after nerve injury and regeneration in adults (Mc Ardle, 1975; Ribchester & Taxt, 1983; Taxt, 1983). The prevailing view in the 1990s was that the outcome of synapse elimination was largely determined by differences in the activity of the axons converging and disposing their terminals at polyno neurally innervated NMJs (Ribchester & Taxt, 1983, 1984; Ridge & Betz, 1984; Ribchester, 1988; Betz et al. 1990; Balice-Gordon & Lichtman, 1994; Ribchester & Barry, 1994). However, I and my colleagues Jacqueline Barry and Ellen Costanzo showed that on the one hand, in reinnervated but experimentally paralysed muscle polyno neuronal innervation may persist after activity has resumed; and conversely that synapse elimination and synaptic remodelling can still occur when muscles are completely paralysed, via a combined nerve conduction and neuromuscular transmission block. Together, these findings suggested that activity, though strongly influential on synapse elimination, is not decisive (Barry & Ribchester, 1995; Costanzo et al. 1999, 2000).

Some intriguing aspects of neuromuscular synaptic protection in Wld^δ mice

In the early-1990s, I began to turn my attention to the serendipitous discovery by Hugh Perry, Michael Brown and their colleagues of the mouse mutant now known as Wld^δ (Lunn et al. 1988; Lyon et al. 1993; Coleman et al. 1998). In this strain, which turns out to have a tandem triplication of an 85-kb segment of genomic DNA, there is overexpression and cytoplasmic localization of a chimeric variant of the enzyme Nmnat-1. This enzyme catalyses synthesis of nicotinamide adenine dinucleotide from its substrate nicotinamide mononucleotide (NMN). The chimeric Wld^δ protein confers exceptionally strong protection on axons and their terminals from axotomy-induced Wallerian degeneration (Mack et al. 2001; Coleman & Freeman, 2010). The chimeric protein, which has a longer half-life than the axonal isoform Nmnat-2, substitutes for the precipitous loss of the latter isoform following axotomy (Golley & Coleman, 2010; Conforti et al. 2014; Di Stefano et al. 2015).

Neuromuscular sensory and motor axons and their terminals are especially well visualized in the F1 generation of Wld^δ mice (which have no overt behavioural phenotype) cross-bred with transgenic mice expressing Yellow Fluorescent Protein (YFP) in sensory and motor neurons (Fig. 1). We backcrossed these mice to make double homozygotes expressing the mutant Wld^δ gene and the YFP transgene (Feng et al. 2000; Wong et al. 2009; Oyebode et al. 2012; Hirst & Ribchester, 2013). In the case of motor nerve terminals, onset of degeneration after axotomy in the double homozygotes, as in young (1–2 months old) homozygous Wld^δ mice without the YFP transgene, is delayed by about 3 days. Degeneration occurs by progressive retraction of motor nerve terminals from motor endplates over the following 7 days, instead of the 12–24 h that is normally all that is required for complete degeneration in motor terminals in wild-type mice (Miledi & Slater, 1970; Winlow & Usherwood, 1975; Ribchester et al. 1995; Gillingwater et al. 2002; Bridge et al. 2009; Wong et al. 2009). Severed distal axons in Wld^δ mice are protected for even longer: up to 3 weeks or more (Mack et al. 2001; Beirovski et al. 2005, 2009). Wld^δ protein does not protect against cell death by apoptosis and, conversely, overexpression of anti-apoptotic genes does not protect axons from Wallerian degeneration (Sagot et al. 1995; Adalbert et al. 2006). This differential protection of neuronal compartments suggests that neuronal maintenance itself is compartmentalized, and that different but perhaps overlapping molecular processes regulate degeneration in somatic, axonal and terminal regions of a projection neuron (Gillingwater & Ribchester, 2001, 2003).
notion is supported by the discovery of novel point mutations, induced by ethylnitrosourea, that confer additive protection of axotomized neuromuscular synapses (Wong et al. 2009), although protection of axotomized motor terminals can also be extended by increasing the proportion of WldS protein that is retained in a motor neurone’s cytoplasm (Beirowski et al. 2009; Wong et al. 2009; Babetto et al. 2010). Recent studies have implicated both accumulation of NMN, the normal substrate for Nmnat-2, and Sterile Alpha And HEAT/Armadillo Motif Protein-1 (Sarm1) as upstream and downstream components of axons that may be toxic to them following nerve injury (Osterloh et al. 2012; Di Stefano et al. 2015).

Interestingly, the WldS phenotype is modifiable by several genetic, intrinsic and environmental determinants, most notably age, gene-copy number and the localization of the protective protein (Gillingwater et al. 2002; Beirowski et al. 2009; Wong et al. 2009; Babetto et al. 2010). However, another important phenotypic difference is observed in substantially greater protection of the annulospiral sensory axons and their endings on muscle spindles, compared with alpha motor axons and their terminals on extrafusal muscle fibres (Brown et al. 1994; Oyebode et al. 2012). The primary afferent endings of muscle spindles in hindfoot lumbarial muscles are especially well preserved up to 20 days after axotomy (Fig. 2a), even in heterozygous WldS mice, or in aged mice, in which the protection of motor nerve terminals (but not axons) is lost within 24–48 h (Oyebode et al. 2012).

Neuromuscular synaptic degeneration is sensitive to activity

The cause of the selective, enhanced protection of the lafferent endings compared with motor axons is unknown but could be related, at least partly, to differences in the level of expression or cytoplasmic localization of the WldS protective protein, as forced retention of this protein in the cytoplasm enhances protection (Beirowski et al. 2009; Babetto et al. 2010). However, an additional, notable and physiological difference between isolated sensory and motor endings in axotomized WldS mice is that axotomized sensory endings continue to respond, generating and propagating action potentials in the severed distal axons (Fig. 2b), for as long as the sensory endings remain intact (Oyebode et al. 2012); whereas, of course, orthodromic activity in the case of motor neurons is propagated from cell body to axon terminal, and this pathway is broken when the axons are cut.

To test whether differences in activity might influence or determine the sensorimotor differences in rate of terminal degeneration, we recently conducted experiments utilizing...
isolated flexor digitorum brevis and lumbrical muscle preparations from \textit{Wld}a mice. We found that these preparations, in contrast to those from wild-type mice, survive and continue to function for at least 48 h when maintained in oxygenated physiological saline at a constant temperature of 32 °C (Brown et al. 2015). This allowed us to test for a modifying affect of activity. Thus, if activity were protective, this should extend the survival time of NMJ's \textit{ex vivo}. However, we found only liminally discernible benefits of moderate levels of activity in this preparation but, by contrast, patterned intense high-frequency stimulation (100 Hz) \textit{ex vivo} accelerated synaptic degeneration. Thus, the sensorimotor differences in protection conferred by \textit{Wld}a protein expression cannot be explained by differences in the ongoing endogenous activity of their severed distal axons. Moreover, we also found that preconditioning axons, either with chronic disuse or by voluntary exercise, also rendered motor nerve terminals more sensitive to the effects of axotomy (Brown et al. 2015).

Intensive activity was shown many years ago, in the context of a different and natural degenerative phenomenon, to accelerate the withdrawal of synapses that occurs during developmental synapse elimination (O’Brien et al. 1978; Thompson, 1983). Similar effects are suggested indirectly by some experiments on the effects of electrical stimulation or stressful activity on the onset and progression of disease signs in a mouse model of amyotrophic lateral sclerosis (ALS; Lepore et al. 2010; Alvarez et al. 2013). These observations further support conjecture about the mechanistic similarities between synaptic remodeling in development, synaptic degeneration in models of neurodegenerative disease, and axotomy-induced Wallerian degeneration (Gillingwater & Ribchester, 2003; Conforti et al. 2014).

\textbf{Age need not weary us . . .}

It will be interesting to find out whether insights into the gene-dose dependence age-sensitivity, and apparent activity-dependence of the protection by \textit{Wld}a might be obtained utilizing the advantages of \textit{ex vivo} preparations as well as other animal models, such as \textit{Drosophila}, which lend themselves to analysis using powerful molecular genetic, anatomical, electrophysiological and optical techniques (Eaton et al. 2002; Peled & Isacoff, 2011; Avery et al. 2012; Osterloh et al. 2012; Melom et al. 2013; Ribchester et al. 2013; Ford & Davis, 2014; Peled et al. 2014; Robinson et al. 2014). These preparations also provide opportunities for screening the efficacy and benefits of potentially neuroprotective compounds (Di Stefano et al. 2015) or investigating the mechanism of action of environmental toxins, including pesticides (Dissanayake et al. 2012).

\textbf{Ageing is the most important risk factor for several neurodegenerative diseases, including Alzheimer's disease and ALS; and several mechanistic similarities and thera-
Barker D, Emonet-Denand F, Harker DW, et al. (1978) Histological analysis of cat muscle spindles following direct observation of the effects of stimulating dynamic and static motor axons. J Physiol 283, 605–619.

Banks RW, Hulliger M, Scheepstra KA (1998) Correlated histological and physiological observations on a case of common sensory output and motor input of the bag1 fibre and a chain fibre in a cat tenuissimus spindle. J Anat 193(Pt 3), 373–381.

Banks RW, Hulliger M, Saed HH, et al. (2009) A comparative analysis of the encapsulated end-organs of mammalian skeletal muscles and of their sensory nerve endings. J Anat 214, 859–887.

Barker D, Emonet-Denand F, Harker DW, et al. (1977) Types of intra- and extrafusal muscle fibre innervated by dynamic skeleto-fusimotor axons in cat peroneus brevis and tenuissimus muscles, as determined by the glycogen-depletion method. J Physiol 266, 713–726.

Barker D, Emonet-Denand F, Harker DW, et al. (1978) Identification of intrafusal muscle fibres activated by single fusimotor axons and injected with fluorescent dye in cat tenuissimus spindles. J Physiol 275, 149–165.

Barry JA, Ribchester RR (1995) Persistent polyneuronal innervation in partially denervated rat muscle after reinnervation and recovery from prolonged nerve conduction block. J Neurosci 15, 6327–6339.

Beirowski B, Adalbert R, Wagner D, et al. (2005) The progressive nature of Wallerian degeneration in wild-type and slow Wallerian degeneration (WldS) nerves. BMC Neurosci 6, 6.

Beirowski B, Babetto E, Gilley J, et al. (2009) Non-nuclear Wld(S) determines its neuroprotective efficacy for axons and synapses in vivo. J Neurosci 29, 653–668.

Betz WJ, Caldwell JH, Ribchester RR (1979) The size of motor units during post-natal development of rat lumbal muscle. J Physiol 297, 463–478.

Betz WJ, Caldwell JH, Ribchester RR (1980a) The effects of partial denervation at birth on the development of muscle fibres and motor units in rat lumbal muscle. J Physiol 303, 265–279.

Betz WJ, Caldwell JH, Ribchester RR, et al. (1980b) Endogenous electric field around muscle fibres depends on the Na+–K+ pump. Nature 287, 235–237.

Betz WJ, Ribchester RR, Ridge RM (1990) Competitive mechanisms underlying synapse elimination in the lumbal muscle of the rat. J Neurobiol 21, 1–17.

Bewick GS, Reid B, Richardson C, et al. (2005) Autogenic modulation of mechanoeceptor excitability by glutamate release from synaptic-like vesicles: evidence from the rat muscle spindle primary sensory ending. J Physiol 562, 381–394.

Boyd IA, Gladden MH, McWilliam PN, et al. (1977) Control of dynamic and static nuclear bag fibres and nuclear chain fibres by gamma and beta axons in isolated cat muscle spindles. J Physiol 265, 133–162.

Bridge KE, Berg N, Adalbert R, et al. (2009) Late onset distal axonal swelling in YFP-H transgenic mice. Neurobiol Aging 30, 309–321.

Brown MC, Jansen JK, Van Essen D (1976) Polyneuronal innervation of skeletal muscle in new-born rats and its elimination during maturation. J Physiol 261, 387–422.

Brown MC, Perry VH, Hunt SP, et al. (1994) Further studies on motor and sensory nerve regeneration in mice with delayed Wallerian degeneration. Eur J Neurosci 6, 420–428.

Brown R, Hynes-Allen A, Swan AJ, et al. (2015) Activity-dependent degeneration of axotomized neuromuscular synapses in Wld(S) mice. Neuroscience 290, 300–320.

Coleman MP, Freeman MR (2010) Wallerian degeneration, wild (s), and mnmat. Annu Rev Neurosci 33, 245–267.

Coleman MP, Conforti L, Buckmaster EA, et al. (1998) An 85-kb tandem triplication in the slow Wallerian degeneration (Wlds) mouse. Proc Natl Acad Sci USA 95, 9985–9990.

Conforti L, Gilley J, Coleman MP (2014) Wallerian degeneration: an emerging axon death pathway linking injury and disease. Nat Rev Neurosci 15, 394–409.

Costanzo EM, Barry JA, Ribchester RR (1999) Co-regulation of synaptic efficacy at stable polyneuronally innervated neuromuscular junctions in reinnervated rat muscle. J Physiol 521(Pt 2), 365–374.

Costanzo EM, Barry JA, Ribchester RR (2000) Competition at silent synapses in reinnervated skeletal muscle. Nat Neurosci 3, 694–700.

Di Stefano M, Nascimento-Ferreira I, Orsomando G, et al. (2015) A rise in NAD precursor nicotinamide mononucleotide (NMM) after injury promotes axon degeneration. Cell Death Differ 22, 731–742.

Dissanayake KN, Eddleston MP, Ribchester RR (2012) Model of organophosphorus toxicity in mice. Proc Physiol Soc, 27, PC51.

Eaton BA, Fetter RD, Davis GW (2002) Dynactin is necessary for synapse stabilization. Neuron 34, 729–741.

Eide AL, Jansen JK, Ribchester RR (1982) The effect of lesions in the neural crest on the formation of synaptic connexions in the embryonic chick spinal cord. J Physiol 324, 453–478.

Feng G, Mellor RH, Bernstein M, et al. (2000) Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51.

Feynman RP (2001) The Pleasure of Finding Things Out. London: Penguin Books.

Ford KJ, Davis GW (2014) Archaerhodopsin voltage imaging: synaptic calcium and BK channels stabilize action potential repolarization at the drosophila neuromuscular junction. J Neurosci 34, 14 517–14 525.

Gilley J, Coleman MP (2010) Endogenous Mnmat2 is an essential survival factor for maintenance of healthy axons. PLoS Biol 8, e1000300.

Gillingwater TH, Ribchester RR (2001) Compartmental neurodegeneration and synaptic plasticity in the Wld(s) mutant mouse. J Physiol 534, 627–639.

Gillingwater TH, Ribchester RR (2003) The relationship of neuromuscular synapse elimination to synaptic degeneration and pathology: insights from WldS and other mutant mice. J Neurocytol 32, 863–881.

Gillingwater TH, Thomson D, Mack TG, et al. (2002) Age-dependent synapse withdrawal at axotomised neuromuscular junctions in Wld(s) mutant and Ube4b/Mnmat transgenic mice. J Physiol 543, 739–755.

Harris JB, Ribchester RR (1978) Neuromuscular transmission is adequate in identified abnormal dystrophic muscle fibres. Nature 271, 362–364.

Harris JB, Ribchester RR (1979a) Muscular dystrophy in the mouse: neuromuscular transmission and the concept of functional denervation. Ann N Y Acad Sci 317, 152–170.

Harris JB, Ribchester RR (1979b) The relationship between end-plate size and transmitter release in normal and dystrophic muscles of the mouse. J Physiol 296, 245–265.

Hirst TC, Ribchester RR (2013) Segmentation of the mouse fourth deep lumbal muscle connectome reveals concentric organisation of motor units. J Physiol 591, 4859–4875.
Degeneration of sensory and motor endings, R. R. Ribchester

Lepore AC, Tolmie C, O'Donnell J, et al. (2010) Peripheral hyperstimulation alters site of disease onset and course in SOD1 rats. *Neurobiol Dis* 39, 252–264.

Lunn ER, Perry VH, Brown MC, et al. (1989) Absence of Wallerian degeneration does not hinder regeneration in peripheral nerve. *Eur J Neurosci* 1, 27–33.

Lyons MF, Ogunkolade BW, Brown MC, et al. (1993) A gene affecting Wallerian nerve degeneration maps distally on mouse chromosome 4. *Proc Natl Acad Sci USA* 90, 9717–9720.

Mack TG, Reiner M, Beirovski B, et al. (2001) Wallerian degeneration of injured axons and synapses is delayed by a Ube4b/mouse chromosome 4. *Neurobiol Dis* 39, 252–264.

McArdle JJ (1975) Complex end-plate potentials at the regenerating neuromuscular junction of the rat. *Exp Neurol* 49, 629–638.

Melom JE, Akbengenovala Y, Gavornik JP, et al. (2013) Spontaneous and evoked release are independently regulated at individual active zones. *J Neurosci* 33, 17 253–17 263.

Miledi R, Slater CR (1970) On the degeneration of rat neuromuscular junctions after nerve section. *J Physiol* 207, 507–528.

O'Brien RA, Ostberg AJ, Vrbova G (1978) Observations on the elimination of polyneuronal innervation in developing mammalian skeletal muscle. *J Physiol* 282, 511–522.

Osterloh JM, Yang J, Rooney TM, et al. (2012) dSarm/Sarm1 is required for activation of an injury-induced axon death pathway. *Science* 337, 481–484.

Oyebode OR, Hartley R, Singhota J, et al. (2012) Differential protection of neuromuscular sensory and motor axons and their endings in Wld(S) mutant mice. *Neuroscience* 200, 142–158.

Peled ES, Isa coff EY (2011) Optical quantal analysis of synaptic transmission in wild-type and rab3-mutant Drosophila motor axons. *Nat Neurosci* 14, 519–526.

Peled ES, Newman ZL, Isa coff EY (2014) Evoked and spontaneous transmission favored by distinct sets of synapses. *Curr Biol* 24, 484–493.

Ribchester RR (1988) Competitive elimination of neuromuscular synapses. *Nature* 331, 21–22.

Ribchester RR, Barry JA (1994) Spatial versus consumptive competition at polyneuronally innervated neuromuscular junctions. *Exp Physiol* 79, 465–494.

Ribchester RR, Taxt T (1983) Motor unit size and synaptic competition in rat lumbrical muscles reinnervated by active and inactive motor axons. *J Physiol* 344, 89–111.

Ribchester RR, Taxt T (1984) Repression of inactive motor nerve terminals in partially denervated rat muscle after regeneration of active motor axons. *J Physiol* 347, 497–511.

Ribchester RR, Tsao JW, Barry JA, et al. (1995) Persistence of neuromuscular junctions after axotomy in mice with slow Wallerian degeneration (C57BL/WldS). *Eur J Neurosci* 7, 1641–1650.

Ribchester RR, Al-Najar S, Thomas JM, et al. (2013) Intrinsc variability of synaptic strength in muscle fiber 5 of third instar larval Drosophila. *Neurobiology of Drosophila*, 220.

Ridge RM, Betz WJ (1984) The effect of selective, chronic stimulation on motor unit size in developing rat muscle. *J Neurosci* 4, 2614–2620.

Robinson SW, Nugent ML, Dinsdale D, et al. (2014) Prion protein facilitates synaptic vesicle release by enhancing release probability. *Hum Mol Genet* 23, 4581–4596.

Sagot Y, Dubois-Dauphin M, Tan SA, et al. (1995) Bcl-2 overexpression prevents motoneuron cell body loss but not axonal degeneration in a mouse model of a neurodegenerative disease. *J Neurosci* 15, 7727–7733.

Shenton F, Bewick GS, Banks RW (2014) A study of the expression of small conductance calcium-activated potassium channels (SK1-3) in sensory endings of muscle spindles and lanceolate endings of hair follicles in the rat. *PLoS ONE* 9, e107073.

Simon A, Shenton F, Hunter I, et al. (2010) Amiloride-sensitive channels are a major contributor to mechanotransduction in mammalian muscle spindles. *J Physiol* 588, 171–185.

Taxt T (1983) Local and systemic effects of tetrodotoxin on the formation and elimination of synapses in reinnervated adult rat muscle. *J Physiol* 340, 175–194.

Thompson W (1983) Synapse elimination in neonatal rat muscle is sensitive to pattern of muscle use. *Nature* 302, 614–616.

Winlow W, Usherwood PN (1975) Ultrastructural studies of normal and degenerating mouse neuromuscular junctions. *J Neurocytol* 4, 377–394.

Wong F, Fan L, Wells S, et al. (2009) Axonal and neuromuscular synaptic phenotypes in Wld(S), SOD1(G93A) and oste mutant mice identified by fiber-optic confocal microendoscopy. *Mol Cell Neurosci* 42, 296–307.