Correlation of \(p53 \) gene mutation and expression of P53 protein in cholangiocarcinoma

Xiao-Fang Liu, Hao Zhang, Shi-Guang Zhu, Xian-Ting Zhou, Hai-Long Su, Zheng Xu, Shao-Jun Li

AIM: To characterize the tumor suppressor gene \(p53 \) mutations and study the correlation of \(p53 \) gene mutation and the expression of P53 protein in cholangiocarcinoma.

METHODS: A total of 36 unselected, frozen samples of cholangiocarcinoma were collected. \(p53 \) gene status (exon 5-8) and P53 protein were examined by automated sequencing and immunohistochemical staining, combined with the clinical parameters of patients.

RESULTS: \(p53 \) gene mutations were found in 22 of 36 (61.1%) patients. Nineteen of 36 (52.8%) patients were positive for P53 protein expression. There were significant differences in extent of differentiation and invasion between the positive and negative expression of P53 protein. However, there were no significant differences in pathologic parameters between the mutations and non-mutations.

CONCLUSION: The alterations of the \(p53 \) gene evaluated by DNA sequence analysis is relatively accurate. Expression of P53 protein could not act as an independent index to estimate the prognosis of cholangiocarcinoma.

INTRODUCTION

Tumor suppressor gene, besides oncogene, is involved in the development of cancer, which inhibits cell proliferation and formation of tumor. Normally tumor suppressor gene counteracts with oncogene to protect an organism against cancer. The \(p53 \) tumor suppressor gene is the most common mutated gene in human cancer\[10-12,19\], occurring in approximately 50% cancers. Cholangiocarcinoma is among the most common malignant tumors. Mutation of \(p53 \) is one of the most frequently encountered genetic alterations in cholangiocarcinoma. \(p53 \) mutations play a central role in carcinogenesis of cholangiocarcinoma.

MATERIALS AND METHODS

Patients

A total of 36 unselected, frozen samples were obtained from patients with cholangiocarcinoma who had been treated by surgical resection from April 2000 to May 2005 in the Department of General Surgery of the First Affiliated Hospital of China Medical University and Hepatobiliary Surgery of the Affiliated Yantai Yuhuangding Hospital of Qingdao University Medical College. The types of cholangiocarcinoma included 18 cases of tubular adenocarcinomas, 9 cases of papillary adenocarcinomas, 4 cases of mucoid carcinomas and 5 cases of undifferentiated carcinoma. Among them, well-moderately differentiated was 25 and poorly differentiated was 11 cases respectively. There were 16 cases of T1 stage, 10 cases of T2 stage and 10 cases of T3 stage by the UICC standard. Lymph node metastasis was seen in 33 cases. Non-lymph node metastasis was seen in 3 cases. The patients contained 23 males.
and 13 females, with age ranging from 36 to 71 (median, 61.2) years. All of the samples were frozen at -80°C until DNA extraction and subjected to histological diagnosis by a pathologist.

DNA extraction
DNA was extracted from tissues using a QIAamp DNA Micro kit: QIA (Germany). Tissue samples weighing less than 10 mg were placed into a 1.5 mL microcentrifuge tube. Immediately 180 μL buffer ATL and 20 μL proteinase K were added and mixed by pulse-vortexing for 15 s. Then they were incubated at 56°C overnight. Two hundred microliter buffer AL and 200 μL ethanol (100%) were added and incubated for 5 min at room temperature. After that, all of the lysates were applied onto the QIAamp MinElute column. Five hundred microliter buffer AW1 and buffer AW2 were added. After centrifugation, 100 μL buffer AE was applied to get DNA. DNA quantity was determined by the ratio of A260/280.

Primer sequences and PCR amplification
Table 1 shows primer sequences used for p53 exons 5-8, which was synthesized by Hokkaido Bioscience Co. (Japan). PCR used a 20 μL reaction volume containing 1 unit of Hot start EXTaq DNA polymerase (Takara, Biochemical, Japan), 2 μL of 10 × EXTaq buffer, 2 μL of dNTP mixture and each primer (8 pmol each for reaction) and 1 μL of DNA template. The condition of the first PCR is as follows: 96°C for 3 min for denaturation, 40 cycles of 96°C for 30 s, 60°C for 30 s, 72°C for 30 s with a final elongation step of 4 min at 72°C. Water was used as a negative control. Five microliters of PCR product were analyzed on 1% TBE gel electrophoresis. Each sample was repeated three times.

DNA sequencing
All of the PCR products were purified using Auto seq TMG-50 (Amersham Biochemical Company, USA). Big-Dye Terminator Cycle sequencing Ready Reaction (Perkin Elmer, USA) was used. The primers of sequencing were the same as PCR primers. But its concentration was one tenth of PCR primers. The condition is as follows: 95°C for 4 min, 95°C for 30 s, 55°C for 30 s, 72°C for 30 s for 40 cycles with a final step of 4 min at 72°C. Both sense and antisense chains were analyzed on an ABI prism 310 Genetic Analyzer (Perkin Elmer). Each sample was repeated three times.

Immunohistochemistry
Five-micron sections were dewaxed in xylene and rehydrated. Endogenous peroxidase was destroyed by a 15-min treatment in 30 mL/L hydrogen peroxide(H2O2) in phosphate-buffered saline (PBS) at room temperature. The sections were blocked with a combination of normal mouse serum and then incubated with anti-p53 protein(dilution 1:50, mouse anti-p53 protein by Boster Co.), followed by biotinylated-conjugated sheep antigo mouse IgG (Boster Co.). The complex was visualized by diaminobenzidine (Boster Co.). The specificity of the reaction was confirmed by use of negative control, blank control and substitution control, in which PBS substituted for the secondary antibody biotinylated-conjugated sheep anti-mouse IgG.

Statistical analysis
The results were analyzed with χ² test. P < 0.05 was taken as significant.

RESULTS
p53 gene mutations and expression of P53 protein in cholangiocarcinoma tissues
Positive band of exons 5-8 was found in all samples after PCR amplification (Figures 1 A-D). p53 gene mutations were detected in 22 of 36 patients (61.1%) by DNA sequencing. Among them, there were 7 cases of exon 5 mutations, which were located on 161, 175 and 196 codons. All were transition (G:C/A:T). Six cases of exon 6 mutations were located on 209, 213 and 215 codons, of which 4 cases were of transition(G:C/A:T) and 2 cases
of tranversion (G-T). Three cases of exon 7 mutations were located on 248, 252 codons. Six cases of exon 8 mutations were located on 252, 278, 289, 306 codons, of which 4 cases were of transition (G:C/A:T) and 2 cases of tranversion (G-T) (Figures 2 A-C).

Nineteen cases (52.8%) were positive for P53 protein. P53 protein localized in the nuclei of cholangic epithelial cells. Moreover, it was crisp and finely granular (Figure 3).

Correlation of p53 gene mutation and clinical parameters

There were significant differences in degree of differentiation and invasion between the positive and negative samples of P53 protein expression ($P < 0.05$). However, there were no significant differences in age, gender, degree of differentiation and invasion, lymph node metastasis, stage between the mutations and non-mutations ($P > 0.05$) (Table 2).

DISCUSSION

Cholangiocarcinoma is the second most common cancer of the hepatobiliary system. In recent years, the incidence and mortality of cholangiocarcinoma have been increasing in China$^{[15,16]}$. In most patients, the disease is only diagnosed at a late stage. Patients with obstructive jaundice are frequently at the advanced stage of the disease, which is contraindicated for operation$^{[20-26]}$. The development of molecular biology, the identification of molecular factors involved in cholangiocarcinoma carcinogenesis, and the elucidation of the mechanisms will significantly impact prevention, diagnosis, treatment and prognosis. $p53$ gene is located on the short arm of chromosome 17, which consists of 11 exons. There are four mutation hotspots (132-143, 174-179, 236-248, 272-281) within the core domain (exon 5-8), which are the key sites of biological activity of $p53$ protein$^{[27,28]}$. $p53$ gene is an important regulator factor of cell proliferation. It is related to cell cycles, DNA repair, cell differentiation and apoptosis. In the presence of DNA damage the expression of $p53$ is enhanced and induces G1 cell cycle arrest until DNA is repaired. If repair is insufficient, $p53$ gene promotes apoptotic cell death. However, $p53$ gene mutation cannot block cell proliferation. Through cooperation with inactivation of tumor suppressor genes and activation of oncogenes, cells transform into malignant ones and become a tumor. $p53$ tumor suppressor gene is the most common mutated gene in human cancer and is frequently seen in cholangiocarcinoma. Recent studies have found that positive expression of P53 protein is related to invasion and lymph node metastasis in cholangiocarcinoma$^{[15,16]}$.
p53 gene mutation could act as an index to estimate the prognosis of cholangiocarcinoma.

We examined mutation status of p53 gene exons 5-8 by automated sequencing in 36 cases of cholangiocarcinoma. We found p53 gene mutations in 22 of 36 (61.1 %) patients. Nineteen of 36 (52.8%) patients were positive for P53 protein expression. There were significant differences in extent of differentiation and invasion between positive and negative expression of P53 protein. However, there were no significant differences in age, gender, extent of differentiation, invasion, lymph node metastasis, and stage between the mutations and non-mutations.

Wild-type p53 (non-mutated) has a short half-life of about 20 min. Mutant P53 protein has a greater stability with half-life prolonged up to 1.4-7 h. It can be detected by IHC method. But the use of different P53 antibodies and methods can result in a marked difference in the degree of overexpression, and varying levels of overexpression may also be noted in the same tumor specimen. IHC has been shown to have discordance rates of 30%-35% compared with DNA sequencing. Thus, the determination of p53 overexpression is not an accurate measure of p53 function. Although DNA sequence analysis is a cumbersome, time-consuming and difficult method on archived material, it could provide a more accurate means of detecting p53 mutations. Thus, we think p53 gene mutation could not act as an independent index to estimate the prognosis of cholangiocarcinoma.

REFERENCES
1 Forslund A, Kressner U, Lönroth C, Andersson M, Lindmark G, Lundholm K. P53 mutations in colorectal cancer assessed in both genomic DNA and cDNA as compared to the presence of p53 LOH. Int J Oncol 2002; 21: 409-415
2 Gasco M, Shami S, Crook T. The p53 pathway in breast cancer. Breast Cancer Res 2002; 4: 70-76
3 Staib F, Hussain SP, Hofseth LJ, Wang XW, Harris CC. TP53 and liver carcinogenesis. Hum Mutat 2003; 21: 201-216
4 Caldeira S, Filotico R, Accardi R, Zehbe I, Franceschi S, Tommasino M. p53 mutations are common in human papillomavirus type 38-positive non-melanoma skin cancers. Cancer Lett 2004; 209: 119-124
5 Baroni TE, Wang T, Qian H, Dearth LR, Truong LN, Zeng J, Denes AE, Chen SW, Brachmann RK. A global suppressor motif for p53 cancer mutants. Proc Natl Acad Sci USA 2004; 101: 4930-4935
6 Lin JT, Wang JS, Jiann BP, Yu CC, Tsai JY, Huang JK, Wu TT. Correlation of p53 protein accumulation and Bcl-2 overexpression with histopathological features in prostatic cancer. J Formos Med Assoc 2005; 104: 864-867
7 El Far MA, Atwa MA, Yahya RS, El Basuni MA. Evaluation of serum levels of p53 in hepatocellular carcinoma in Egypt. Clin Chem Lab Med 2006; 44: 653-656
8 Saetta AA. K-ras, p53 mutations, and microsatellite instability (MSI) in gallbladder cancer. J Surg Oncol 2006; 93: 644-649
9 Tamura G. Alterations of tumor suppressor and tumor-related genes in the development and progression of gastric cancer. World J Gastroenterol 2006; 12: 192-198
10 Harms K, Nozell S, Chen X. The common and distinct target genes of the p53 family transcription factors. Cell Mol Life Sci 2004; 61: 822-842
11 Mir MM, Dar NA, Gochhait S, Zargar SA, Ahangar AG, Bameezi RN. p53 mutation profile of squamous cell carcinomas of the esophagus in Kashmir (India): a high-incidence area. Int J Cancer 2005; 116: 62-68
12 Moreno M, Pimentel F, Gazdar AF, Wistuba II, Miquel JF. TP53 abnormalities are frequent and early events in the sequential pathogenesis of gallbladder carcinoma. Ann Hepatol 2005; 4: 192-199
13 Wang X, Zhang J, Chen J. Result of p53, ki-67 protein expression in cholangiocarcinoma with in situ hybridization and immunohistochemistry methods. Zhongguo Yixue Ke xue yuan Xue bao 2000; 22: 57-60
14 Aherendi SA, Rashid A, Chow JT, Eisenberger CF, Pitti HA, Sidransky D. p53 overexpression and K-ras gene mutations in primary squamous cellgantliis-associated biliary tract cancer. J Hepatobiliary Pancreat Surg 2000; 7: 426-431
15 Horie S, Endo K, Kawasaki H, Terada T. Overexpression of MDM2 protein in intrahepatic cholangiocarcinoma: relationship with p53 overexpression, Ki-67 labeling, and clinicopathological features. Virchows Arch 2000; 437: 25-30
16 Ito Y, Takeda T, Sasaki Y, Sakon M, Yamada T, Ishiguro S, Imaoka S, Tsujimoto M, Matsuura N. Expression and clinical significance of the GI-S modulators in intrahepatic cholangiocellular cancer. Oncology 2001; 60: 242-251
17 Attallah AM, Abdel-Aziz MM, El-Sayed AM, Tabll AA. Detection of serum p53 protein in patients with different gastrointestinal cancers. Cancer Detect Prev 2003; 27: 127-131
18 Jan YY, Yeh CN, Yeh TS, Chen TC. Prognostic analysis of surgical treatment of peripheral cholangiocarcinoma: two decades of experience at Chang Gung Memorial Hospital. World J Gastroenterol 2005; 11: 1779-1784
19 Liu XF, Zhou XT, Zou SQ. An analysis of 680 cases of cholangiocarcinoma from 8 hospitals. Hepatobiliary Pancreat Dis Int 2005; 4: 585-588
20 Reddy SB, Patel T. Current approaches to the diagnosis and treatment of cholangiocarcinoma. Curr Gastroenterol Rep 2006; 8: 30-37
21 Singh P, Patel T. Advances in the diagnosis, evaluation and management of cholangiocarcinoma. Curr Opin Gastroenterol 2006; 22: 294-299
22 Mansfield SD, Barakat O, Charnley RM, Jaques BC, O’Sullilahain CB, Atherton PJ, Manns D. Management of hilar cholangiocarcinoma in the North of England: pathology, treatment, and outcome. World J Gastroenterol 2005; 11: 7625-7630
23 Patel T. Cholangiocarcinoma. Nat Clin Pract Gastroenterol Hepatol 2006; 3: 33-42
24 Khan SA, Thomas HC, Davidson BR, Taylor-Robinson SD. Cholangiocarcinoma. Lancet 2005; 366: 1303-1314
25 Sakata J, Shirai Y, Wakai T, Nomura T, Sakata E, Hatakeyama K. Catheter tract implantation metastases associated with percutaneous biliary drainage for extrahepatic cholangiocarcinoma. World J Gastroenterol 2005; 11: 7024-7027
26 Hubert C, Sempoux C, Berquin A, Deprez P, Jamar F, Gigot JF. Bile duct carcinoid tumors: an uncommon disease but with a good prognosis? Hepatogastroenterology 2005; 52: 1042-1047
27 Giglia-Mari G, Sarasin A. TP53 mutations in human skin cancers. Hum Mutat 2003; 21: 217-228
28 Khan SA, Taylor-Robinson SD, Carmichael PL, Habib N, Lemoine NR, Thomas HC. Analysis of p53 mutations for a mutational signature in human intrahepatic cholangiocarcinoma. Int J Oncol 2006; 28: 1269-1277

S-Editor Pan BR L-Editor Zhu LH E-Editor Ma WH