L_p Convergence with Rates of Smooth Poisson-Cauchy Type Singular Operators

George A. Anastassiou & Razvan A. Mezei

Department of Mathematical Sciences
The University of Memphis
Memphis, TN 38152, U.S.A.
ganastss@memphis.edu
rmezei@memphis.edu

Abstract. In this article we continue the study of smooth Poisson-Cauchy Type singular integral operators on the line regarding their convergence to the unit operator with rates in the L_p norm, $p \geq 1$. The related established inequalities involve the higher order L_p modulus of smoothness of the engaged function or its higher order derivative.

AMS 2000 Mathematics Subject Classification: Primary: 41A17, 41A35; Secondary: 26D15

Key Words and Phrases: Poisson-Cauchy Type singular integral, modulus of smoothness, L_p convergence.

1 Introduction

The rate of convergence of singular integrals has been studied in [9], [13], [14], [15], [7], [8], [4], [5], [6] and these articles motivate our work. Here we study the L_p, $p \geq 1$, convergence of smooth Poisson-Cauchy Type singular integral operators over \mathbb{R} to the unit operator with rates over smooth functions with higher order derivatives in $L_p(\mathbb{R})$. We establish related Jackson type inequalities involving the higher L_p modulus of smoothness of the engaged function or its higher order derivative. The discussed operators are not in general positive, see [10], [11]. Other motivation comes from [1], [2].

2 Results

In the next we introduce and deal with the smooth Poisson-Cauchy Type singular integral operators $M_{r,\xi}(f; x)$ defined as follows.

For $r \in \mathbb{N}$ and $n \in \mathbb{Z}_+$ we set

$$\alpha_j = \begin{cases} (-1)^{r-j}\binom{r}{j}j^{-n}, & j = 1, \ldots, r, \\ 1 - \sum_{j=1}^{r}(-1)^{r-j}\binom{r}{j}j^{-n}, & j = 0, \end{cases}$$

that is $\sum_{j=0}^{r} \alpha_j = 1$.

Let $f \in C^n(\mathbb{R})$ and $f^{(n)} \in L_p(\mathbb{R})$, $1 \leq p < \infty$, $\alpha \in \mathbb{N}$, $\beta > \frac{1}{2\alpha}$, we define for $x \in \mathbb{R}$, $\xi > 0$ the Lebesgue integral
\[
M_{r,\xi}(f; x) = W \int_{-\infty}^{\infty} \sum_{j=0}^{r} \alpha_j f(x + jt) \left(\frac{t^{2\alpha} + \xi^{2\alpha}}{t^{2\alpha} + \xi^{2\alpha}}\right)^{\beta} dt,
\]
where the constant is defined as
\[
W = \frac{\Gamma(\beta) \alpha \xi^{2\alpha \beta - 1}}{\Gamma(\frac{1}{2\alpha}) \Gamma(\beta - \frac{1}{2\alpha})}.
\]

Note 1. The operators $M_{r,\xi}$ are not, in general, positive. See [10], (18).

We notice by $W \int_{-\infty}^{\infty} \left(\frac{t^{2\alpha} + \xi^{2\alpha}}{t^{2\alpha} + \xi^{2\alpha}}\right)^{\beta} dt = 1$, that $M_{r,\xi}(c, x) = c$, c constant, see also [10], [11], and
\[
M_{r,\xi}(f; x) - f(x) = W \left(\sum_{j=0}^{r} \alpha_j \int_{-\infty}^{\infty} \left[f(x + jt) - f(x)\right] \frac{1}{(t^{2\alpha} + \xi^{2\alpha})^{\beta}} dt\right).
\]

We use also that
\[
\int_{-\infty}^{\infty} \frac{t^k}{(t^{2\alpha} + \xi^{2\alpha})^{\beta}} dt = \begin{cases} 0, & k \text{ odd}, \\ \frac{\Gamma(k+1)\Gamma(\beta-k+1)}{\Gamma(\beta)} \frac{\xi^{2\alpha \beta-k-1}}{\xi^{2\alpha-k+1}} \Gamma(\beta-k+1), & k \text{ even}, \beta > \frac{k+1}{2\alpha}, \end{cases}
\]
see [16].

We need the rth L_p-modulus of smoothness
\[
\omega_r(f^{(n)}, h)_p := \sup_{|t| \leq h} \|\Delta_r f^{(n)}(x)\|_{p,x}, \quad h > 0,
\]
where
\[
\Delta_r f^{(n)}(x) := \sum_{j=0}^{r} (-1)^{r-j} \binom{r}{j} f^{(n)}(x + jw),
\]
see [12], p. 44. Here we have that $\omega_r(f^{(n)}, h)_p < \infty$, $h > 0$.

We need to introduce
\[
\delta_k := \sum_{j=1}^{r} \alpha_j j^k, \quad k = 1, \ldots, n \in \mathbb{N},
\]
and denote by $\lfloor \cdot \rfloor$ the integral part. Call
\[
\tau(w, x) := \sum_{j=0}^{r} \alpha_j j^n f^{(n)}(x + jw) - \delta_n f^{(n)}(x).
\]

Notice also that
\[
- \sum_{j=1}^{r} (-1)^{r-j} \binom{r}{j} = (-1)^r \binom{r}{0}.
\]
According to [3], p. 306, [1], we get
\[
\tau(w, x) = \Delta_{\infty} f^{(n)}(x).
\]

Thus
\[
\|\tau(w, x)\|_{p,x} \leq \omega_r(f^{(n)}, |w|)_p, \quad w \in \mathbb{R}.
\]
Using Taylor’s formula, and the appropriate change of variables, one has (see [6])
\[
\sum_{j=0}^{r} \alpha_j [f(x+jt) - f(x)] = \sum_{k=1}^{n} \frac{f^{(k)}(x)}{k!} \delta_k t^k + R_n(0, t, x),
\]
where
\[
R_n(0, t, x) := \int_0^t \frac{(t-w)^{n-1}}{(n-1)!} \tau(w, x) dw, \quad n \in \mathbb{N}.
\]

Using the above terminology we obtain for \(\beta > \frac{2l_0}{p} + \frac{p}{2(\alpha_n)} \) that
\[
\Delta(x) := M_{r, \xi}(f; x) - f(x) - \sum_{m=1}^{[n/2]} f^{(2m)}(x) \delta_{2m} \frac{\Gamma \left(\frac{2m+1}{2} \right) \Gamma \left(\beta - \frac{2m+1}{2} \right) \xi_{\tau}^{2m}}{\Gamma \left(\frac{1}{2} \right) \Gamma \left(\beta - \frac{1}{2} \right)} = R_n^*(x),
\]
where
\[
R_n^*(x) := W \int_{-\infty}^{\infty} R_n(0, t, x) \frac{1}{(t^{2\alpha} + \xi^{2\alpha})^\beta} dt, \quad n \in \mathbb{N}.
\]

In \(\Delta(x) \), see (14), the sum collapses when \(n = 1 \).

We present our first result.

Theorem 1. Let \(p, q > 1 \) such that \(\frac{1}{p} + \frac{1}{q} = 1, \ n \in \mathbb{N}, \ \alpha \in \mathbb{N}, \ \beta > \alpha \left(\frac{1}{p} + n + r \right) \) and the rest as above. Then
\[
\|\Delta(x)\|_p \leq \frac{\left(2\alpha \right)^{\frac{1}{p}} \Gamma \left(\beta \right) \Gamma \left(\frac{q^2}{2} - \frac{1}{2\alpha} \right)^{\frac{1}{p}} \xi_{\tau}^{n_\beta}}{\Gamma \left(\frac{q^2}{2} \right)^{\frac{1}{p}} \Gamma \left(\frac{1}{2} \right) \Gamma \left(\beta - \frac{1}{2} \right) (rp + 1)^\beta ((n-1)!)(q(n-1)+1)^{1/q}} \omega_{\tau}(f^{(n)}; \xi, p).
\]

where
\[
0 < \tau := \left[\int_0^{\infty} (1 + u)^{rp+1} \frac{u^{n_\beta-1}}{(u^{2\alpha} + 1)^{1/2}} du - \int_0^{\infty} \frac{u^{n_\beta-1}}{(u^{2\alpha} + 1)^{3/2}} du \right]< \infty.
\]

Hence as \(\xi \to 0 \) we obtain \(\|\Delta(x)\|_p \to 0 \).

If additionally \(f^{(2m)} \in L_p(\mathbb{R}), m = 1, 2, \ldots, \left[\frac{n}{2} \right] \) then \(\|M_{r, \xi}(f) - f\|_p \to 0, \) as \(\xi \to 0 \).

Proof. We observe that
\[
|\Delta(x)|^p = W^p \left[\int_{-\infty}^{\infty} R_n(0, t, x) \frac{1}{(t^{2\alpha} + \xi^{2\alpha})^\beta} dt \right]^p
\leq W^p \left(\int_{-\infty}^{\infty} |R_n(0, t, x)| \frac{1}{(t^{2\alpha} + \xi^{2\alpha})^\beta} dt \right)^p
\leq W^p \left(\int_{-\infty}^{\infty} \left(\int_0^{|t|} \frac{|t-w|^{n_\beta-1}}{(n-1)!} |\tau(\text{sign}(t) \cdot w, x)| dw \right) \frac{1}{(t^{2\alpha} + \xi^{2\alpha})^\beta} dt \right)^p.
\]

Hence we have
\[
I := \int_{-\infty}^{\infty} |\Delta(x)|^p dx \leq W^p \left(\int_{-\infty}^{\infty} \left(\int_0^{|t|} \frac{1}{(t^{2\alpha} + \xi^{2\alpha})^\beta} dt \right)^p dx \right),
\]
where
\[
\gamma(t, x) := \int_0^{|t|} \frac{|t-w|^{n_\beta-1}}{(n-1)!} |\tau(\text{sign}(t) \cdot w, x)| dw \geq 0.
\]
Therefore by using Hölder’s inequality suitably we obtain

\[R.H.S.(19) = W^p \left(\int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \gamma(t, x) \frac{1}{(t^{2\alpha} + \xi^{2\alpha})^{\beta/2}} dt \right)^p dx \right) \]

\[\leq W^p \cdot \left(\int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \gamma(t, x) \frac{1}{(t^{2\alpha} + \xi^{2\alpha})^{\beta/2}} dt \right)^p \left(\int_{-\infty}^{\infty} \frac{1}{(t^{2\alpha} + \xi^{2\alpha})^{\beta/2}} dt \right)^{\frac{p}{q}} dx \right) \]

\[= W^p \cdot \left(\int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \gamma(t, x) \frac{1}{(t^{2\alpha} + \xi^{2\alpha})^{\beta/2}} dt \right)^p \right) \left(\int_{-\infty}^{\infty} \frac{1}{(t^{2\alpha} + \xi^{2\alpha})^{\beta/2}} dt \right)^{\frac{p}{q}} \]

\[= W^p \cdot \left(\int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \gamma(t, x) \frac{1}{(t^{2\alpha} + \xi^{2\alpha})^{p\beta/2}} dt \right)^p \right) \left(\int_{-\infty}^{\infty} \frac{1}{(t^{2\alpha} + \xi^{2\alpha})^{p\beta/2}} dt \right)^{\frac{p}{q}} \]

\[= \frac{\xi^{p\alpha\beta - 1}}{\Gamma \left(\frac{\alpha}{2} \right) \Gamma \left(\frac{\beta}{2} \right)} \left(\int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \gamma(t, x) \frac{1}{(t^{2\alpha} + \xi^{2\alpha})^{p\beta/2}} dt \right)^p \right) \left(\int_{-\infty}^{\infty} \frac{1}{(t^{2\alpha} + \xi^{2\alpha})^{p\beta/2}} dt \right)^{\frac{p}{q}} \]

(21)

Again by Hölder’s inequality we have

\[\gamma^p(t, x) \leq \left(\int_0^{|t|} \left| \tau(\text{sign}(t \cdot w, x)) \right|^p dw \right) \frac{|t|^{n-1}}{(q(n-1)+1)^{p/q}}. \]

(22)

Consequently we have

\[R.H.S.(21) \leq \frac{\xi^{p\alpha\beta - 1}}{\Gamma \left(\frac{\alpha}{2} \right) \Gamma \left(\frac{\beta}{2} \right)} \left(\int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \gamma(t, x) \frac{1}{(t^{2\alpha} + \xi^{2\alpha})^{p\beta/2}} dt \right)^p \right) \frac{|t|^{n-1}}{(q(n-1)+1)^{p/q}} \]

\[=: (\ast), \]

(calling

\[c_1 := \frac{\xi^{p\alpha\beta - 1}}{\Gamma \left(\frac{\alpha}{2} \right) \Gamma \left(\frac{\beta}{2} \right)} \left(\int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \gamma(t, x) \frac{1}{(t^{2\alpha} + \xi^{2\alpha})^{p\beta/2}} dt \right)^p \right) \frac{|t|^{n-1}}{(q(n-1)+1)^{p/q}} \]

(23)
and

\[(*) = c_1 \left(\int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} |\tau(t, w, x)|^p dw \right) |t|^{p-1} \frac{1}{(t^{2\alpha} + \xi^{2\alpha})^{p\beta/2}} dt \right) \]

\[= c_1 \left(\int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} |\Delta^r(t, w) f(n)(t)|^p dw \right) |t|^{p-1} \frac{1}{(t^{2\alpha} + \xi^{2\alpha})^{p\beta/2}} dt \right) \]

\[= c_1 \left(\int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} |\Delta^r(t, w) f(n)(t)|^p dw \right) |t|^{p-1} \frac{1}{(t^{2\alpha} + \xi^{2\alpha})^{p\beta/2}} dt \right) \]

\[\leq c_1 \left(\int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \omega_r(f(n), w)^p dw \right) |t|^{p-1} \frac{1}{(t^{2\alpha} + \xi^{2\alpha})^{p\beta/2}} dt \right). \quad (24) \]

So far we have proved

\[I \leq c_1 \left(\int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \omega_r(f(n), w)^p dw \right) |t|^{p-1} \frac{1}{(t^{2\alpha} + \xi^{2\alpha})^{p\beta/2}} dt \right). \quad (25) \]

By [12], p. 45 we have

\[(R.H.S.(25)) \leq c_1 \left(\omega_r(f(n), \xi)^p \left(\int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \left(1 + \frac{w}{\xi} \right)^p \frac{1}{(t^{2\alpha} + \xi^{2\alpha})^{p\beta/2}} dt \right) \right) =: (**) \right. \] \[\text{But we see that} \]

\[(***) = \left(\frac{\xi c_1}{rp + 1} \right) \left(\omega_r(f(n), \xi)^p \right) \mathcal{J}, \quad (26) \]

where

\[\mathcal{J} = \int_{-\infty}^{\infty} \left(\left(1 + \frac{|t|}{\xi} \right)^{p+1} - 1 \right) \frac{1}{(t^{2\alpha} + \xi^{2\alpha})^{p\beta/2}} dt \]

\[= 2 \int_{0}^{\infty} \left(\left(1 + \frac{t}{\xi} \right)^{p+1} - 1 \right) \frac{1}{(t^{2\alpha} + \xi^{2\alpha})^{p\beta/2}} dt. \quad (28) \]

Here we find

\[\mathcal{J} = 2 \xi^{p(n-\alpha\beta)} \int_{0}^{\infty} \left((1 + u)^{p+1} - 1 \right) \frac{1}{(u^{2\alpha} + 1)^{p\beta/2}} du \]

\[= 2 \xi^{p(n-\alpha\beta)} \left[\int_{0}^{\infty} \left((1 + u)^{p+1} - 1 \right) \frac{1}{(u^{2\alpha} + 1)^{p\beta/2}} du - \int_{0}^{\infty} \left((1 + u)^{p+1} - 1 \right) \frac{1}{(u^{2\alpha} + 1)^{p\beta/2}} du \right]. \quad (29) \]

Thus by (17) and (29) we obtain

\[\mathcal{J} = 2 \xi^{p(n-\alpha\beta)} \mathcal{r}. \quad (30) \]
We notice that
\[
0 < \tau < \int_0^\infty \frac{(1 + u)^{p+1} u^{n-1}}{(u^{2\alpha} + 1)^{p\beta/2}} du
\]
\[
< \int_0^\infty \frac{(1 + u)^{p+1} (1 + u)^{n-1}}{(u^{2\alpha} + 1)^{p\beta/2}} du
\]
\[
= \int_0^\infty \frac{(1 + u)^{p(n+r)}}{(u^{2\alpha} + 1)^{p\beta/2}} du =: I_1.
\]

Also call
\[
K := \int_0^1 \frac{(1 + u)^{p(n+r)}}{(u^{2\alpha} + 1)^{p\beta/2}} du < \infty.
\]

Then we can write
\[
I_1 = K + \int_1^\infty \frac{(1 + u)^{p(n+r)}}{(u^{2\alpha} + 1)^{p\beta/2}} du < K + 2^p(n+r) \int_1^\infty \frac{u^{p(n+r)}}{(u^{2\alpha} + 1)^{p\beta/2}} du = K + 2^p(n+r) I_2,
\]
where \(I_2 := \int_1^\infty \frac{u^{p(n+r)}}{(u^{2\alpha} + 1)^{p\beta/2}} du.
\]

Since \(\frac{1}{1+u}\) is finite, so is \((u^{2\alpha})^{-\beta}\), for \(u \in [1, \infty).\)

So we get
\[
I_2 < \int_1^\infty u^{p(n+r-\alpha\beta)} du = \lim_{\varepsilon \to \infty} \int_1^\varepsilon u^{p(n+r-\alpha\beta)} du
\]
\[
= \lim_{\varepsilon \to \infty} \left(\frac{\varepsilon^{p(n+r-\alpha\beta)+1} - 1}{p (n + r - \alpha\beta) + 1} \right) = \frac{-1}{p (n + r - \alpha\beta) + 1},
\]

which is a positive number since \(\beta > \frac{1}{n} \left(\frac{1}{p} + n + r \right)\).

Consequently \(I_2\) is finite, so is \(I_1\), proving \(\tau < \infty\).

Using (27) and (30) we get
\[
(\ast\ast) = \left(\frac{\xi \xi_1}{rp + 1} \right) \left(\omega_r(f^{(n)}, \xi)_p \right)^p 2\xi^{p(n-\alpha\beta)} \tau
\]
\[
= \frac{2\alpha [\Gamma(\beta)]^p \Gamma\left(\frac{q\beta - 1}{2\alpha}\right)^\frac{q}{2} \tau}{(rp + 1) \Gamma\left(\frac{1}{2\alpha}\right) \Gamma\left(\beta - \frac{1}{2\alpha}\right) \Gamma\left(\frac{q\beta}{2}\right)^\frac{q}{2} ((n - 1)!)^p (q(n - 1) + 1)^{p/q}}
\]
I.e. we have established that
\[
I \leq \frac{2\alpha [\Gamma(\beta)]^p \Gamma\left(\frac{q\beta - 1}{2\alpha}\right)^\frac{q}{2} \tau}{(rp + 1) \Gamma\left(\frac{1}{2\alpha}\right) \Gamma\left(\beta - \frac{1}{2\alpha}\right) \Gamma\left(\frac{q\beta}{2}\right)^\frac{q}{2} ((n - 1)!)^p (q(n - 1) + 1)^{p/q}} \xi^{pn} \left(\omega_r(f^{(n)}, \xi)_p \right)^p.
\]

That is finishing the proof of the theorem. \(\blacksquare\)

The counterpart of Theorem 1 follows, case of \(p = 1\).

Theorem 2. Let \(f \in \mathcal{C}_n(\mathbb{R})\) and \(f^{(n)} \in L_1(\mathbb{R}), n \in \mathbb{N}, \alpha \in \mathbb{N}, \beta > \frac{n+r+1}{2\alpha}.\) Then
\[
\|\Delta(x)\|_1 \leq \frac{1}{(r+1)(n-1)! \Gamma\left(\frac{1}{2\alpha}\right) \Gamma\left(\beta - \frac{1}{2\alpha}\right)} \cdot \sum_{k=0}^{r+1} \binom{r+1}{k} \Gamma\left(\frac{n+k}{2\alpha}\right) \Gamma\left(\beta - \frac{n+k}{2\alpha}\right) \omega_r(f^{(n)}, \xi)_1 \xi^n.
\]
Hence as $\xi \to 0$ we obtain $\|\Delta(x)\|_1 \to 0$.
If additionally $f^{(2m)} \in L_1(\mathbb{R})$, $m = 1, 2, \ldots, \left\lfloor \frac{n}{2} \right\rfloor$ then $\|M_{r, \xi}(f) - f\|_1 \to 0$, as $\xi \to 0$.

Proof. It follows

$$|\Delta(x)| = W \left| \int_{-\infty}^{\infty} \mathcal{R}_n(0, t, x) \frac{1}{(t^{2\alpha} + \xi^{2\alpha})} dt \right|$$

$$\leq W \int_{-\infty}^{\infty} |\mathcal{R}_n(0, t, x)| \frac{1}{(t^{2\alpha} + \xi^{2\alpha})^\beta} dt$$

$$\leq W \int_{-\infty}^{\infty} \left(\int_{0}^{[t]} \frac{(|t| - w)^{n-1}}{(n-1)!} |\tau(\text{sign}(t) \cdot w, x)| dw \right) \frac{1}{(t^{2\alpha} + \xi^{2\alpha})^\beta} dt. \quad (34)$$

Thus

$$\|\Delta(x)\|_1 = \int_{-\infty}^{\infty} |\Delta(x)| dx \leq W \cdot \int_{-\infty}^{\infty} \left(\int_{0}^{[t]} \frac{(|t| - w)^{n-1}}{(n-1)!} |\tau(\text{sign}(t) \cdot w, x)| dw \right) \frac{1}{(t^{2\alpha} + \xi^{2\alpha})^\beta} dt \cdot dx$$

$$=: (*)$$

But we see that

$$\int_{0}^{[t]} \frac{(|t| - w)^{n-1}}{(n-1)!} |\tau(\text{sign}(t) \cdot w, x)| dw \leq \frac{|t|^{n-1}}{(n-1)!} \int_{0}^{[t]} |\tau(\text{sign}(t) \cdot w, x)| dw. \quad (36)$$

Therefore it holds

$$(*) \leq W \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \frac{|t|^{n-1}}{(n-1)!} \int_{0}^{[t]} |\tau(\text{sign}(t) \cdot w, x)| dw \right) \frac{1}{(t^{2\alpha} + \xi^{2\alpha})^\beta} dt \cdot dx$$

$$= \frac{W}{(n-1)!} \left(\int_{-\infty}^{\infty} \left(\int_{0}^{[t]} \int_{-\infty}^{\infty} |\tau(\text{sign}(t) \cdot w, x)| dx \right) dw \right) \frac{|t|^{n-1}}{(t^{2\alpha} + \xi^{2\alpha})^\beta} dt$$

$$\leq \frac{W}{(n-1)!} \left(\int_{-\infty}^{\infty} \left(\int_{0}^{[t]} \omega_r(f^{(n)}, w) dw \right) \frac{|t|^{n-1}}{(t^{2\alpha} + \xi^{2\alpha})^\beta} dt \right). \quad (37)$$

I.e. we get

$$\|\Delta(x)\| \leq \frac{W}{(n-1)!} \left(\int_{-\infty}^{\infty} \left(\int_{0}^{[t]} \omega_r(f^{(n)}, w) dw \right) \frac{|t|^{n-1}}{(t^{2\alpha} + \xi^{2\alpha})^\beta} dt \right). \quad (38)$$

Consequently we have

$$\|\Delta(x)\| \leq \frac{W \omega_r(f^{(n)}, \xi)_1}{(n-1)!} \left(\int_{-\infty}^{\infty} \left(\int_{0}^{[t]} \left(1 + \frac{w}{\xi} \right)^r dw \right) \frac{|t|^{n-1}}{(t^{2\alpha} + \xi^{2\alpha})^\beta} dt \right)$$

$$= \frac{2\xi W \omega_r(f^{(n)}, \xi)_1}{(r+1)(n-1)!} \left(\int_{-\infty}^{\infty} \left(1 + \frac{t}{\xi} \right)^{r+1} - 1 \right) \frac{t^{n-1}}{(t^{2\alpha} + \xi^{2\alpha})^\beta} dt$$

$$= \frac{2\Gamma(\beta) \alpha \xi^{2\alpha \beta} \omega_r(f^{(n)}, \xi)_1}{(r+1)(n-1)! \Gamma \left(\frac{1}{2\alpha} \right) \Gamma \left(\beta - \frac{1}{2\alpha} \right)} \left(\int_{0}^{\infty} \left(1 + \frac{t}{\xi} \right)^{r+1} - 1 \right) \frac{t^{n-1}}{(t^{2\alpha} + \xi^{2\alpha})^\beta} dt. \quad (39)$$
We have gotten so far

\[
\| \Delta(x) \|_1 \leq \frac{2 \Gamma (\beta) \alpha \xi^{2 \alpha} \omega_r(f^{(\eta)}, \xi_1) \cdot \lambda}{(r + 1) (n - 1)! \Gamma \left(\frac{2 \alpha}{2 \alpha} \right) \Gamma \left(\beta - \frac{n}{2 \alpha} \right)}, \tag{40}
\]

where

\[
\lambda := \int_0^\infty \left(\left(1 + \frac{t}{\xi} \right)^{r+1} - 1 \right) \frac{t^{n-1}}{(t^2 + \xi^{2\alpha})^\beta} dt. \tag{41}
\]

One easily finds that

\[
\lambda = \int_0^\infty \left(\sum_{k=1}^{r+1} \left(\frac{t+1}{k} \right)^k \right) \frac{t^{n-1}}{(t^2 + \xi^{2\alpha})^\beta} dt
\]

\[
= \xi^{-2\alpha} \sum_{k=1}^{r+1} \left(\frac{t+1}{k} \right)^k \int_0^\infty \frac{T^{n+k-1}}{(T^2 + 1)^\beta} dT
\]

\[
= \xi^{-2\alpha} \sum_{k=1}^{r+1} \left(\frac{t+1}{k} \right)^k K_{n+k}. \tag{42}
\]

Where

\[
K_{n+k} := \int_0^\infty \frac{T^{n+k-1}}{(T^2 + 1)^\beta} dT = \frac{\Gamma \left(\frac{n+k}{2\alpha} \right) \Gamma \left(\beta - \frac{n+k}{2\alpha} \right)}{\Gamma (\beta) 2\alpha}, \tag{43}
\]

\[
\| \Delta(x) \|_1 \leq \frac{1}{(r + 1) (n - 1)! \Gamma \left(\frac{2 \alpha}{2 \alpha} \right) \Gamma \left(\beta - \frac{n}{2 \alpha} \right)} \left[\sum_{k=1}^{r+1} \left(\frac{t+1}{k} \right)^k \Gamma \left(\frac{n+k}{2\alpha} \right) \Gamma \left(\beta - \frac{n+k}{2\alpha} \right) \right] \omega_r(f^{(\eta)}, \xi_1)1\xi^n.
\]

We have proved (33). \hfill \blacksquare

The case \(n = 0 \) is met next.

Proposition 1. Let \(p, q > 1 \) such that \(\frac{1}{p} + \frac{1}{q} = 1 \), \(\alpha \in \mathbb{N} \), \(\beta > \frac{1}{\alpha} \left(r + \frac{1}{p} \right) \) and the rest as above. Then

\[
\| M_{r, \xi}(f) - f \|_p \leq \frac{(2\alpha)^\frac{1}{q} \Gamma (\beta) \left(\frac{q^2}{2} - \frac{1}{2\alpha} \right)^\frac{1}{q} \theta^\frac{1}{q}}{\Gamma \left(\frac{1}{q} \right)^\frac{1}{q} \Gamma (\beta - \frac{1}{q}) \Gamma \left(\frac{q^2}{2} \right)^\frac{1}{q}} \omega_r(f, \xi)_p, \tag{44}
\]

where

\[
0 < \theta := \int_0^\infty (1 + t)^p \frac{1}{(t^2 + 1)^{p\beta/2}} dt < \infty. \tag{45}
\]

Hence as \(\xi \to 0 \) we obtain \(M_{r, \xi} \to \) unit operator \(I \) in the \(L_p \) norm, \(p > 1 \).

Proof. By (3) we notice that,

\[
M_{r, \xi}(f; x) - f(x) = W \left(\sum_{j=0}^r \alpha_j \int_{-\infty}^\infty (f(x + jt) - f(x)) \frac{1}{(t^2 + \xi^{2\alpha})^\beta} dt \right)
\]

\[
= W \left(\int_{-\infty}^\infty \left(\sum_{j=0}^r \alpha_j (f(x + jt) - f(x)) \right) \frac{1}{(t^2 + \xi^{2\alpha})^\beta} dt \right)
\]

\[
= W \left(\int_{-\infty}^\infty \left(\sum_{j=1}^r \alpha_j f(x + jt) - \sum_{j=1}^r \alpha_j f(x) \right) \frac{1}{(t^2 + \xi^{2\alpha})^\beta} dt \right)
\]
\[W \left(\int_{-\infty}^{\infty} \left(\sum_{r=1}^{\infty} \left(-1 \right)^{r-j} \binom{r}{j} j^{-n} f(x+jt) - \sum_{j=1}^{\infty} \left(-1 \right)^{r-j} \binom{r}{j} j^{-n} f(x) \right) \frac{1}{(t^{2\alpha} + \xi^{2\alpha})^{3/2}} dt \right) \]

\[W \left(\int_{-\infty}^{\infty} \left(\sum_{j=1}^{\infty} \left(-1 \right)^{r-j} \binom{r}{j} f(x+jt) - \sum_{j=1}^{\infty} \left(-1 \right)^{r-j} \binom{r}{j} f(x) \right) \frac{1}{(t^{2\alpha} + \xi^{2\alpha})^{3/2}} dt \right) \]

\[\int_{-\infty}^{\infty} (\Delta_{t}^{\alpha} f)(x) \frac{1}{(t^{2\alpha} + \xi^{2\alpha})^{3/2}} dt \]

And then

\[|M_{r,\xi}(f; x) - f(x)| \leq W \left(\int_{-\infty}^{\infty} |\Delta_{t}^{\alpha} f(x)| \frac{1}{(t^{2\alpha} + \xi^{2\alpha})^{3/2}} dt \right). \]

We next estimate

\[\int_{-\infty}^{\infty} \left| M_{r,\xi}(f; x) - f(x) \right|^p dx \leq \int_{-\infty}^{\infty} \left(W \right)^p \left(\int_{-\infty}^{\infty} \left| \Delta_{t}^{\alpha} f(x) \right| \frac{1}{(t^{2\alpha} + \xi^{2\alpha})^{3/2}} dt \right)^p dx \]

\[= \left(W \right)^p \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \left| \Delta_{t}^{\alpha} f(x) \right| \frac{1}{(t^{2\alpha} + \xi^{2\alpha})^{3/2}} dt \right)^p \frac{1}{(t^{2\alpha} + \xi^{2\alpha})^{3/2}} dx \]

\[\leq \left(W \right)^p \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \left| \Delta_{t}^{\alpha} f(x) \right| \frac{1}{(t^{2\alpha} + \xi^{2\alpha})^{3/2}} dt \right)^q \frac{1}{(t^{2\alpha} + \xi^{2\alpha})^{3/2}} dx \]

\[= \left(W \right)^p \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \left| \Delta_{t}^{\alpha} f(x) \right|^p \frac{1}{(t^{2\alpha} + \xi^{2\alpha})^{3/2}} dt \right)^q \frac{1}{(t^{2\alpha} + \xi^{2\alpha})^{3/2}} dx \]

\[= \left(W \right)^p \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \left| \Delta_{t}^{\alpha} f(x) \right|^p \frac{1}{(t^{2\alpha} + \xi^{2\alpha})^{3/2}} dt \right) \frac{\Gamma \left(\frac{q\alpha}{2} \right) \Gamma \left(\frac{q\alpha - 1}{2\alpha} \right)}{\Gamma \left(\frac{q\alpha}{2} \right) \alpha^{q\alpha-1}} dx \]

\[= \left(W \right)^p \frac{\Gamma \left(\frac{q\alpha}{2} \right) \Gamma \left(\frac{q\alpha - 1}{2\alpha} \right)}{\Gamma \left(\frac{q\alpha}{2} \right) \alpha^{q\alpha-1}} \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \left| \Delta_{t}^{\alpha} f(x) \right|^p \frac{1}{(t^{2\alpha} + \xi^{2\alpha})^{3/2}} dt \right) dx \]
Proposition 2. \(\beta > \frac{r + 1}{2} \). It holds

\[
\| M_{r,\xi} f - f \|_1 \leq \frac{2\alpha \Gamma (\beta) (q^{\beta_2} - \frac{1}{2\alpha})}{\Gamma (\frac{1}{2\alpha}) \Gamma (\beta - \frac{1}{2\alpha})} \cdot \int_0^\infty (1 + t)^{r} \frac{1}{(t^{2\alpha} + \xi^{2\alpha})^{3/2}} dt \| \omega_r (f, \xi) \|_1.
\]

Hence as \(\xi \to 0 \) we get \(M_{r,\xi} \to I \) in the \(L_1 \) norm.
Proof. By (47) we have again

\[|M_{r,ξ}(f; x) - f(x)| \leq W \left(\int_{-\infty}^{\infty} |\Delta_r^* f(x)| \frac{1}{(t^{2\alpha} + ξ^{2\alpha})^\beta} dt \right). \]

Next we estimate

\[
\int_{-\infty}^{\infty} |M_{r,ξ}(f; x) - f(x)| \, dx \leq W \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} |\Delta_r^* f(x)| \frac{1}{(t^{2\alpha} + ξ^{2\alpha})^\beta} dt \right) \, dx \\
= W \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} |\Delta_r^* f(x)| \, dx \right) \frac{1}{(t^{2\alpha} + ξ^{2\alpha})^\beta} dt \\
\leq W \int_{-\infty}^{\infty} \omega_r(f, |t|) \frac{1}{(t^{2\alpha} + ξ^{2\alpha})^\beta} dt \\
\leq W2\omega_r(f, ξ) \int_0^{\infty} \left(1 + \frac{t}{ξ} \right)^r \frac{1}{(t^{2\alpha} + ξ^{2\alpha})^\beta} dt \\
= \frac{\Gamma(\beta) \xi^{2\alpha\beta-1}2\alpha}{\Gamma(\frac{1}{2\alpha}) \Gamma(\beta - \frac{1}{2\alpha})} \omega_r(f, ξ) \int_0^{\infty} ξ^{1+} (1+t)^r \frac{1}{(t^{2\alpha} + 1)^\beta ξ^{2\alpha\beta}} dt \\
= \frac{\Gamma(\beta) 2\alpha}{\Gamma(\frac{1}{2\alpha}) \Gamma(\beta - \frac{1}{2\alpha})} \omega_r(f, ξ) \int_0^{\infty} (1+t)^r \frac{1}{(t^{2\alpha} + 1)^\beta} dt. \tag{50}
\]

We have proved (49).

We also notice that

\[
0 < \int_0^{\infty} (1+t)^r \frac{1}{(t^{2\alpha} + 1)^\beta} dt \\
= \int_0^{1} (1+t)^r \frac{1}{(t^{2\alpha} + 1)^\beta} dt + \int_1^{\infty} (1+t)^r \frac{1}{(t^{2\alpha} + 1)^\beta} dt \\
< \int_0^{1} (1+t)^r \frac{1}{(t^{2\alpha} + 1)^\beta} dt + 2r \int_1^{\infty} t^{-2\alpha\beta} dt \\
= \int_0^{1} (1+t)^r \frac{1}{(t^{2\alpha} + 1)^\beta} dt - \frac{2r}{(r - 2\alpha\beta + 1)},
\]

which is a positive finite constant. \[\blacksquare\]

In the next we consider \(f \in C^n(\mathbb{R}) \) and \(f^{(n)} \in L_p(\mathbb{R}), n = 0 \) or \(n \geq 2 \) even, \(1 \leq p < \infty \) and the similar smooth singular operator of symmetric convolution type

\[M_ξ(f; x) = W \int_{-\infty}^{\infty} f(x+y) \frac{1}{(y^{2\alpha} + ξ^{2\alpha})^\beta} dy, \quad \text{for all } x \in \mathbb{R}, \ \xi > 0. \tag{51} \]

That is

\[M_ξ(f; x) = W \int_0^{\infty} (f(x+y) + f(x-y)) \frac{1}{(y^{2\alpha} + ξ^{2\alpha})^\beta} dy, \]

for all \(x \in \mathbb{R}, \ \xi > 0 \). Notice that \(M_{1,ξ} = M_ξ \). Let the central second order difference

\[(\hat{Δ}_y^2 f)(x) := f(x+y) + f(x-y) - 2f(x). \tag{52} \]

Notice that

\[(\hat{Δ}_y^2 f)(x) = (\hat{Δ}_y f)(x). \]
When \(n \geq 2 \) even using Taylor’s formula with Cauchy remainder we eventually find
\[
(\tilde{\Delta}^2_y f)(x) = 2 \sum_{\rho=1}^{n/2} \frac{f^{(2\rho)}(x)}{(2\rho)!} y^{2\rho} + R_1(x),
\]
where
\[
R_1(x) := \int_0^y (\tilde{\Delta}^2 f^{(n)})(x) \frac{(y-t)^{n-1}}{(n-1)!} \, dt.
\]

Notice that
\[
M_\xi(f;x) - f(x) = W \int_0^\infty (\tilde{\Delta}^2 f(x)) \frac{1}{(y^{2\alpha} + \xi^{2\alpha})^\beta} \, dy.
\]

Furthermore by (4), (53) and (55) we easily see that
\[
K(x) := M_\xi(f;x) - f(x) - \sum_{\rho=1}^{n/2} \frac{f^{(2\rho)}(x)}{(2\rho)!} \frac{\Gamma \left(\frac{2\rho+1}{2\alpha} \right) \Gamma \left(\frac{\beta - 2\rho+1}{2\alpha} \right)}{\Gamma \left(\frac{1}{2\alpha} \right) \Gamma \left(\frac{\beta - 1}{2\alpha} \right)} \xi^{2\rho}
\]
\[
= W \int_0^\infty \left[\int_0^y (\tilde{\Delta}^2 f^{(n)})(x) \frac{(y-t)^{n-1}}{(n-1)!} \, dt \right] \frac{1}{(y^{2\alpha} + \xi^{2\alpha})^\beta} \, dy,
\]
where \(\beta > \frac{(n+1)}{2\alpha} \).

Therefore we have
\[
|K(x)| \leq W \int_0^\infty \left(\int_0^y |\tilde{\Delta}^2 f^{(n)}|(x) \frac{(y-t)^{n-1}}{(n-1)!} \, dt \right) \frac{1}{(y^{2\alpha} + \xi^{2\alpha})^\beta} \, dy.
\]

Here we estimate in \(L_p \) norm, \(p \geq 1 \), the error function \(K(x) \). Notice that we have \(\omega_2(f^{(n)}, h)_p < \infty \), \(h > 0 \), \(n = 0 \) or \(n \geq 2 \) even. Operators \(M_\xi \) are positive operators.

The related main \(L_p \) result here comes next.

Theorem 3. Let \(p, q > 1 \) such that \(\frac{1}{p} + \frac{1}{q} = 1 \), \(n \geq 2 \) even, \(\alpha \in \mathbb{N} \), \(\beta > \frac{1}{\alpha} \left(\frac{1}{p} + n + 2 \right) \) and the rest as above. Then
\[
\|K(x)\|_p \leq \frac{\tilde{\tau}^{1/p} \alpha^{1/p} \Gamma \left(\frac{q\beta}{2} - \frac{1}{2\alpha} \right)^{1/q}}{2^{1/p} \Gamma \left(\frac{1}{2\alpha} \right)^{1/p} \Gamma \left(\frac{\beta - 1}{2\alpha} \right) \Gamma \left(\frac{q\beta}{2} \right)^{1/q} (q(n-1) + 1)^{1/q} (2p+1)^{1/p} (n-1)!^\xi \omega_2(f^{(n)}, \xi)_p},
\]
where
\[
0 < \tilde{\tau} = \int_0^\infty \left((1+u)^{2p+1} - 1 \right) u^{pn-1} \frac{1}{(1+u^{2\alpha})^{p3/2}} \, du < \infty.
\]

Hence as \(\xi \to 0 \) we get \(\|K(x)\|_p \to 0 \).

If additionally \(f^{(2m)} \in L_p(\mathbb{R}), m = 1, 2, \ldots, \frac{\beta}{\alpha} \) then \(\|M_\xi(f) - f\|_p \to 0 \), as \(\xi \to 0 \).

Proof. We observe that
\[
|K(x)|^p \leq W^p \left(\int_0^\infty \left(\int_0^y |\tilde{\Delta}^2 f^{(n)}|(x) \frac{(y-t)^{n-1}}{(n-1)!} \, dt \right) \frac{1}{(y^{2\alpha} + \xi^{2\alpha})^\beta} \, dy \right)^p.
\]

Call
\[
\tilde{\gamma}(y, x) := \int_0^y |\tilde{\Delta}^2 f^{(n)}|(x) \frac{(y-t)^{n-1}}{(n-1)!} \, dt \geq 0, \quad y \geq 0,
\]
then we have
\[|K(x)|^p \leq W^p \left(\int_0^\infty \frac{1}{\left(y^{2\beta} + \xi^{2\alpha}\right)^s} \, dy \right)^p. \] (62)
Consequently
\[
\Lambda := \int_{-\infty}^{\infty} |K(x)|^p \, dx \leq W^p \int_{-\infty}^{\infty} \left(\int_0^\infty \frac{1}{\left(y^{2\beta} + \xi^{2\alpha}\right)^{s/2}} \, dy \right)^p \, dx
\]
(by Hölder’s inequality)
\[
\leq W^p \left(\int_{-\infty}^{\infty} \left(\int_0^\infty \frac{1}{\left(y^{2\beta} + \xi^{2\alpha}\right)^{s/2}} \, dy \right)^{p/q} \right)^{q/p}
\]
\[
= W^p \left(\frac{\Gamma \left(\frac{\alpha}{2\alpha} \right) \Gamma \left(\frac{\alpha}{\beta} \right)}{2 \Gamma \left(\frac{\alpha}{\beta} + 1 \right)} \right)^{p/q} \left(\int_{-\infty}^{\infty} \left(\int_0^\infty \frac{1}{\left(y^{2\beta} + \xi^{2\alpha}\right)^{s/2}} \, dy \right)^{p/q} \right)^{q/p}
\]
\[
= \frac{\Gamma (\beta)^p \alpha^{\frac{\alpha}{\beta} - 1} \Gamma \left(\frac{\alpha}{\beta} \right)^{p/q}}{2^{\frac{\alpha}{\beta}} \Gamma \left(\frac{\alpha}{\beta} + 1 \right)^{p/q}} \left(\int_{-\infty}^{\infty} \left(\int_0^\infty \frac{1}{\left(y^{2\beta} + \xi^{2\alpha}\right)^{s/2}} \, dy \right)^{p/q} \right)^{q/p}
\]
\[= (\ast). \] (63)
By applying again Hölder’s inequality we see that
\[
\tilde{\gamma}(y, x) \leq \left(\int_0^y |\mathring{D}_y^2 f^{(n)}(x)|^p \, dt \right)^{1/p} \frac{y^{(n-1+\frac{1}{q})}}{(n-1)!} \frac{y^{(n-1+\frac{1}{q})}}{(q(n-1)+1)!}. \] (64)
Therefore it holds
\[
(\ast) \leq \frac{\Gamma (\beta)^p \alpha^{\frac{\alpha}{\beta} - 1} \Gamma \left(\frac{\alpha}{\beta} \right)^{p/q}}{2^{\frac{\alpha}{\beta}} \Gamma \left(\frac{\alpha}{\beta} + 1 \right)^{p/q}} \left(\int_{-\infty}^{\infty} \left(\int_0^y |\mathring{D}_y^2 f^{(n)}(x)|^p \, dt \right)^{p/q} \frac{1}{\left(y^{2\beta} + \xi^{2\alpha}\right)^{s/2}} \, dy \right)^{q/p}
\]
\[
= \frac{\Gamma (\beta)^p \alpha^{\frac{\alpha}{\beta} - 1} \Gamma \left(\frac{\alpha}{\beta} \right)^{p/q}}{2^{\frac{\alpha}{\beta}} \Gamma \left(\frac{\alpha}{\beta} + 1 \right)^{p/q}} \left(\int_{-\infty}^{\infty} \left(\int_0^y |\mathring{D}_y^2 f^{(n)}(x)|^p \, dt \right)^{p/q} \frac{1}{\left(y^{2\beta} + \xi^{2\alpha}\right)^{s/2}} \, dy \right)^{q/p}
\]
\[= : (\ast\ast). \] (65)
We call
\[
c_{2} := \frac{\Gamma (\beta)^p \alpha^{\frac{\alpha}{\beta} - 1} \Gamma \left(\frac{\alpha}{\beta} \right)^{p/q}}{2^{\frac{\alpha}{\beta}} \Gamma \left(\frac{\alpha}{\beta} + 1 \right)^{p/q}} \left(\int_{-\infty}^{\infty} \left(\int_0^y |\mathring{D}_y^2 f^{(n)}(x)|^p \, dt \right)^{p/q} \frac{1}{\left(y^{2\beta} + \xi^{2\alpha}\right)^{s/2}} \, dy \right)^{q/p}. \] (66)
And hence

\[(**) = c_2 \left(\int_0^\infty \left(\int_{-\infty}^y \left| \Delta_+^2 f^{(n)}(x) \right|^p dx \right) \frac{1}{(y^{2\alpha} + \xi^{2\alpha})^{p\beta/2}} dy \right) \]

\[= c_2 \left(\int_0^\infty \left(\int_{-\infty}^y \left(\int_{-\infty}^\infty |\Delta_+^2 f^{(n)}(x)|^p dx \right) dt \right) \frac{1}{(y^{2\alpha} + \xi^{2\alpha})^{p\beta/2}} dy \right) \]

\[= c_2 \left(\int_0^\infty \left(\int_{-\infty}^y \left(\int_{-\infty}^\infty |\Delta_+^2 f^{(n)}(x-t)|^p dx \right) dt \right) \frac{1}{(y^{2\alpha} + \xi^{2\alpha})^{p\beta/2}} dy \right) \]

\[\leq c_2 \left(\int_0^\infty \left(\int_{-\infty}^y \omega_2(f^{(n)}, t)^p dt \right) \frac{1}{(y^{2\alpha} + \xi^{2\alpha})^{p\beta/2}} dy \right) \]

\[\leq c_2 \omega_2(f^{(n)}, \xi)_p \left(\int_0^\infty \left(\int_{0}^y \left(1 + \frac{t}{\xi} \right)^{2p} dt \right) \frac{1}{(y^{2\alpha} + \xi^{2\alpha})^{p\beta/2}} dy \right). \tag{67} \]

I.e. so far we proved that

\[\Lambda \leq c_2 \omega_2(f^{(n)}, \xi)_p \left(\int_0^\infty \left(\int_{0}^y \left(1 + \frac{t}{\xi} \right)^{2p} dt \right) \frac{1}{(y^{2\alpha} + \xi^{2\alpha})^{p\beta/2}} dy \right). \tag{68} \]

But

\[\text{R.H.S.}(68) = \frac{c_2 \xi}{2p + 1} \omega_2(f^{(n)}, \xi)_p \left(\int_0^\infty \left(\left(1 + \frac{y}{\xi} \right)^{2p+1} - 1 \right) \frac{1}{(y^{2\alpha} + \xi^{2\alpha})^{p\beta/2}} dy \right). \tag{69} \]

Call

\[M := \int_0^\infty \left(\left(1 + \frac{y}{\xi} \right)^{2p+1} - 1 \right) \frac{1}{(y^{2\alpha} + \xi^{2\alpha})^{p\beta/2}} dy, \tag{70} \]

and

\[\tilde{\tau} := \int_0^\infty \left((1 + u)^{2p+1} - 1 \right) \frac{1}{(1 + u^{2\alpha})^{p\beta/2}} du. \tag{71} \]

That is

\[M = \xi^{p(n-\alpha\beta)}\tilde{\tau}. \tag{72} \]

Therefore it holds

\[\Lambda \leq \frac{\tilde{\tau} \left[\Gamma(\beta) \right]^p \alpha \xi^{pn} \Gamma \left(\frac{q\beta}{2} - \frac{1}{2\alpha} \right)^{p/q} \omega_2(f^{(n)}, \xi)_p}{2^{\tilde{\tau}} (2p + 1) \Gamma \left(\frac{1}{2\alpha} \right) \Gamma \left(\beta - \frac{1}{2\alpha} \right)^p \Gamma \left(\frac{q\beta}{2} \right)^{p/q} \left((n - 1) ! \right)^p (q(n - 1) + 1)^{p/q}}. \tag{73} \]

We have established (58). \(\blacksquare \)

The counterpart of Theorem 3 follows, \(p = 1 \) case.
Theorem 4. Let \(f \in C^n(\mathbb{R}) \) and \(f^{(n)} \in L_1(\mathbb{R}) \), \(n \geq 2 \) even, \(\alpha \in \mathbb{N} \), \(\beta > \frac{n+3}{2\alpha} \). Then
\[
\|K(x)\|_1 \leq \frac{1}{6\Gamma \left(\frac{1}{2\alpha} \right) \Gamma \left(\beta - \frac{1}{2\alpha} \right) (n-1)!} \left[3\Gamma \left(\frac{n+1}{2\alpha} \right) \Gamma \left(\beta - \frac{n+1}{2\alpha} \right) \right. \\
+ 3\Gamma \left(\frac{n+2}{2\alpha} \right) \Gamma \left(\beta - \frac{n+2}{2\alpha} \right) + \Gamma \left(\frac{n+3}{2\alpha} \right) \Gamma \left(\beta - \frac{n+3}{2\alpha} \right) \right] \omega_2(f^{(n)}, \xi)x^n.
\] (74)

Hence as \(\xi \to 0 \) we obtain \(\|K(x)\|_1 \to 0 \).

If additionally \(f^{(2m)} \in L_1(\mathbb{R}) \), \(m = 1, 2, \ldots, \frac{n}{2} \) then \(\|M_{\xi}(f) - f\|_1 \to 0 \), as \(\xi \to 0 \).

Proof. Notice that

\[
\Delta_x^2 f^{(n)}(x) = \Delta_x^2 f^{(n)}(x-t),
\] (75)

all \(x, t \in \mathbb{R} \). Also it holds

\[
\int_{-\infty}^{\infty} |\Delta_x^2 f^{(n)}(x-t)|dx = \int_{-\infty}^{\infty} |\Delta_x^2 f^{(n)}(x)|dx \leq \omega_2(f^{(n)}, t_t), \quad \text{all } t \in \mathbb{R}^+.
\] (76)

Here we obtain

\[
\|K(x)\|_1 = \int_{-\infty}^{\infty} |K(x)|dx
\]

\[
\leq W \int_{-\infty}^{\infty} \left(\int_{0}^{y} \left(\int_{0}^{y} \frac{(y-t)^{n-1}}{(n-1)!} dt \right) \frac{1}{(y^{2\alpha} + \xi^{2\alpha})^\beta} dy \right) dx
\]

\[
\leq W \int_{0}^{\infty} \left(\int_{-\infty}^{\infty} \left(\frac{y^{n-1}}{(n-1)!} \right) \frac{1}{(y^{2\alpha} + \xi^{2\alpha})^\beta} dy \right) dx
\]

\[
= W \int_{0}^{\infty} \left(\int_{-\infty}^{\infty} \left(\frac{y^{n-1}}{(n-1)!} \right) \frac{1}{(y^{2\alpha} + \xi^{2\alpha})^\beta} dy \right) dx
\]

\[
\leq W \omega_2(f^{(n)}, \xi_1) \int_{0}^{\infty} \left(\int_{0}^{y} \frac{(1+t)^2}{(n-1)!} \frac{1}{(y^{2\alpha} + \xi^{2\alpha})^\beta} dy \right) dx
\]

\[
= W \omega_2(f^{(n)}, \xi_1) \int_{0}^{\infty} \left(\int_{0}^{y} \frac{3}{(1+y)^3 - 1} \frac{1}{(y^{2\alpha} + \xi^{2\alpha})^\beta} dy \right) dx
\]

\[
= \frac{\Gamma(\beta) \alpha \xi^n}{\Gamma \left(\frac{1}{2\alpha} \right) \Gamma \left(\beta - \frac{1}{2\alpha} \right) (n-1)!} \omega_2(f^{(n)}, \xi_1) \left(\int_{0}^{\infty} \frac{1}{(Y^2 + \xi^{2\alpha})^\beta} dY \right)
\]

\[
= \frac{\Gamma(\beta) \alpha \xi^n}{\Gamma \left(\frac{1}{2\alpha} \right) \Gamma \left(\beta - \frac{1}{2\alpha} \right) (n-1)!} \omega_2(f^{(n)}, \xi_1) \left(\int_{0}^{\infty} \frac{1}{(Y^2 + \xi^{2\alpha})^\beta} dY \right)
\]
We have proved (74).

The related case here of \(n = 0 \) comes next.

Proposition 3. Let \(p, q > 1 \) such that \(\frac{1}{p} + \frac{1}{q} = 1 \), \(\alpha \in \mathbb{N} \), \(\beta > \frac{1}{\alpha} \left(2 + \frac{1}{p} \right) \) and the rest as above. Then

\[
\| M_\xi(f) - f \|_p \leq \frac{p^{1/p} \Gamma(\beta) \alpha^{1/p} \Gamma \left(\frac{q\beta}{2} - \frac{1}{2\alpha} \right)}{2^{\frac{1}{2}} \Gamma \left(\frac{1}{2\alpha} \right) \Gamma \left(\frac{q\beta}{2} \right) \omega_2(f, \xi)^{1/q}} \| M_\xi(f) - f \|_p,
\]

where

\[
0 < \rho := \int_0^\infty (1 + y)^{2p} \frac{1}{(y^{2\alpha} + 1)^{\beta p/2}} dy < \infty.
\]

Hence as \(\xi \to 0 \) we obtain \(M_\xi \to I \) in the \(L_p \) norm, \(p > 1 \).

Proof. From (55) we get

\[
| M_\xi(f; x) - f(x) |^p \leq W_p \left(\int_0^\infty \left| \tilde{\Delta}_y^2 f(x) \right| \frac{1}{(y^{2\alpha} + \xi^{2\alpha})^{\beta/2}} dy \right)^p.
\]

We then estimate

\[
\int_{-\infty}^\infty | M_\xi(f; x) - f(x) |^p dx \leq W_p \int_{-\infty}^\infty \left(\int_0^\infty \left| \tilde{\Delta}_y^2 f(x) \right| \frac{1}{(y^{2\alpha} + \xi^{2\alpha})^{\beta/2}} dy \right)^p dx
\]

\[
= W_p \int_{-\infty}^\infty \left(\int_0^\infty \left| \tilde{\Delta}_y^2 f(x) \right| \frac{1}{(y^{2\alpha} + \xi^{2\alpha})^{\beta/2}} \frac{1}{(y^{2\alpha} + \xi^{2\alpha})^{\beta p/2}} dy \right)^p dx
\]

\[
\leq W_p \int_{-\infty}^\infty \left(\left(\int_0^\infty \left| \tilde{\Delta}_y^2 f(x) \right| \frac{1}{(y^{2\alpha} + \xi^{2\alpha})^{\beta/2}} dy \right)^p \left(\int_0^\infty \frac{1}{(y^{2\alpha} + \xi^{2\alpha})^{\beta q/2}} dy \right)^{\frac{p}{q}} \right)^{\frac{q}{p}} dx
\]

\[
= W_p \int_{-\infty}^\infty \left(\int_0^\infty \left| \tilde{\Delta}_y^2 f(x) \right|^p \frac{1}{(y^{2\alpha} + \xi^{2\alpha})^{\beta p/2}} dy \right) \left(\int_0^\infty \frac{1}{(y^{2\alpha} + \xi^{2\alpha})^{\beta q/2}} dy \right)^{\frac{p}{q}} dx
\]

\[
= W_p \left(\int_{-\infty}^\infty \left(\int_0^\infty \left| \tilde{\Delta}_y^2 f(x) \right|^p \frac{1}{(y^{2\alpha} + \xi^{2\alpha})^{\beta p/2}} dx \right) \frac{\Gamma \left(\frac{q\beta}{2} - \frac{1}{2\alpha} \right)}{2\Gamma \left(\frac{q\beta}{2} \right) \alpha\xi^{q\alpha\beta-1}} \right)^{\frac{p}{q}}
\]
Proposition 4. The proof of (78) is now completed.

Proof. Hence we get

\[
|M_\xi f - f| \leq \left[\frac{1}{2} + \frac{\Gamma (\frac{\alpha}{2}) \Gamma (\beta - \frac{\alpha}{2})}{\Gamma (\frac{\beta}{2}) \Gamma (\beta - \frac{\beta}{2})} + \frac{\Gamma (\frac{\beta}{2}) \Gamma (\beta - \frac{\alpha}{2})}{2 \Gamma (\frac{\beta}{2}) \Gamma (\beta - \frac{\beta}{2})} \right] \omega_2(f, \xi). \tag{82}
\]

Hence as \(\xi \to 0 \) we get \(M_\xi \to I \) in the \(L_1 \) norm.

Proof. From (55) we have

\[
|M_\xi f - f(x)| \leq W \left(\int_0^\infty |\Delta_x^\alpha f(x)| \frac{1}{(y^{2\alpha} + \xi^{2\alpha})^\beta} dy \right). \tag{83}
\]

Hence we get

\[
\int_{-\infty}^\infty |M_\xi f(x) - f(x)| dx \leq W \int_{-\infty}^{\infty} \left(\int_0^{\infty} |\Delta_x^\alpha f(x)| \frac{1}{(y^{2\alpha} + \xi^{2\alpha})^\beta} dy \right) dx
\]

\[
= W \int_0^{\infty} \left(\int_{-\infty}^{\infty} |\Delta_x^\alpha f(x)| dx \right) \frac{1}{(y^{2\alpha} + \xi^{2\alpha})^\beta} dy
\]

\[
= W \int_0^{\infty} \left(\int_{-\infty}^{\infty} |\Delta_x^\alpha f(x-y)| dx \right) \frac{1}{(y^{2\alpha} + \xi^{2\alpha})^\beta} dy
\]

\[
= W \int_0^{\infty} \left(\int_{-\infty}^{\infty} |\Delta_x^\alpha f(x)| dx \right) \frac{1}{(y^{2\alpha} + \xi^{2\alpha})^\beta} dy
\]

\[
\leq W \int_0^{\infty} \omega_2(f, \xi) \frac{1}{(y^{2\alpha} + \xi^{2\alpha})^\beta} dy.
\]
\[
\begin{align*}
\leq W \omega_2(f, \xi_1) \int_0^\infty \left(1 + \frac{y}{\xi}\right)^2 \frac{1}{(y^{2\alpha} + \xi^{2\alpha})^{\beta}} dy \\
= W \omega_2(f, \xi_1) \int_0^\infty \left(1 + x\right)^2 \frac{1}{(x^{2\alpha} + 1)^{\beta} \xi^{2\alpha \beta}} dx \\
= \frac{\Gamma(\beta) \alpha}{\Gamma\left(\frac{\alpha}{2}\right) \Gamma\left(\beta - \frac{1}{2\alpha}\right)} \omega_2(f, \xi_1) \int_0^\infty \left(1 + x\right)^2 \frac{1}{(x^{2\alpha} + 1)^{\beta}} dx \\
= \left[\frac{1}{2} + \frac{\Gamma\left(\frac{\alpha}{2}\right) \Gamma\left(\beta - \frac{1}{2}\right)}{\Gamma\left(\frac{\alpha}{2}\right) \Gamma\left(\beta - \frac{1}{2\alpha}\right)} + \frac{\Gamma\left(\frac{\alpha}{2}\right) \Gamma\left(\beta - \frac{3}{2\alpha}\right)}{2\Gamma\left(\frac{\alpha}{2}\right) \Gamma\left(\beta - \frac{1}{2\alpha}\right)} \right] \omega_2(f, \xi_1).
\end{align*}
\]

We have established (82). ■

References

[1] G.A. Anastassiou, Rate of convergence of non-positive linear convolution type operators. A sharp inequality, *J. Math. Anal. and Appl.*, 142 (1989), 441–451.

[2] G.A. Anastassiou, Sharp inequalities for convolution type operators, *Journal of Approximation Theory*, 58 (1989), 259–266.

[3] G.A. Anastassiou, *Moments in Probability and Approximation Theory*, Pitman Research Notes in Math., Vol. 287, Longman Sci. & Tech., Harlow, U.K., 1993.

[4] G.A. Anastassiou, *Quantitative Approximations*, Chapman & Hall/CRC, Boca Raton, New York, 2001.

[5] G.A. Anastassiou, Basic convergence with rates of smooth Picard singular integral operators, *J. of Computational Analysis and Applications*, Vol.8, No.4 (2006), 313-334.

[6] G.A. Anastassiou, L_p convergence with rates of smooth Picard singular operators, *Differential & difference equations and applications*, Hindawi Publ. Corp., New York, (2006), 31–45.

[7] G.A. Anastassiou and S. Gal, Convergence of generalized singular integrals to the unit, univariate case, *Math. Inequalities & Applications*, 3, No. 4 (2000), 511–518.

[8] G.A. Anastassiou and S. Gal, Convergence of generalized singular integrals to the unit, multivariate case, *Applied Math. Rev.*, Vol. 1, World Sci. Publ. Co., Singapore, 2000, pp. 1–8.

[9] G.A. Anastassiou and R. Mezei, L_p Convergence with Rates of Smooth Gauss-Weierstrass Singular Operators, Nonlinear Studies, accepted 2008.

[10] G.A. Anastassiou and R. A. Mezei, *Global Smoothness and Uniform Convergence of Smooth Poisson-Cauchy Type Singular Operators*, submitted 2009.

[11] G.A. Anastassiou and R. A. Mezei, *A Voronovskaya Type Theorem for Poisson-Cauchy Type Singular Operators*, submitted 2009.

[12] R.A. DeVore and G.G. Lorentz, *Constructive Approximation*, Springer-Verlag, Vol. 303, Berlin, New York, 1993.

[13] S.G. Gal, Remark on the degree of approximation of continuous functions by singular integrals, *Math. Nachr.*, 164 (1993), 197–199.
[14] S.G. Gal, Degree of approximation of continuous functions by some singular integrals, *Rev. Anal. Numér. Théor. Approx.*, (Cluj), Tome XXVII, No. 2 (1998), 251–261.

[15] R.N. Mohapatra and R.S. Rodriguez, On the rate of convergence of singular integrals for Hölder continuous functions, *Math. Nachr.* 149 (1990), 117–124.

[16] D. Zwillinger, *CRC Standard Mathematical Tables and Formulae, 30th Edition*, Chapman & Hall/CRC, Boca Raton, 1995.