Charge diffusion in the one-dimensional Hubbard model

R. Steinigeweg, F. Jin, H. De Raedt, K. Michielsen, and J. Gemmer

1Department of Physics, University of Osnabrück, D-49069 Osnabrück, Germany
2Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, D-52425 Jülich, Germany
3Zernike Institute for Advanced Materials, University of Groningen, NL-9747AG Groningen, The Netherlands
4RWTH Aachen University, D-52056 Aachen, Germany

We study the real-time and real-space dynamics of charge in the one-dimensional Hubbard model in the limit of high temperatures. To this end, we prepare pure initial states with sharply peaked density profiles and calculate the time evolution of these nonequilibrium states, by using numerical forward-propagation approaches to chains as long as 20 sites. For a class of typical states, we find excellent agreement with linear-response theory and unveil the existence of remarkably clean charge diffusion in the regime of strong particle-particle interactions. Moreover, we demonstrate that this diffusive behavior does not depend on certain details of our initial conditions, i.e., it occurs for five different realizations with random and nonrandom internal degrees of freedom, single and double occupation of the central site, and displacement of spin-up and spin-down particles.

PACS numbers: 05.60.Gg, 71.27.+a, 75.10.Jm

Introduction. Static properties of integrable quantum many-body systems are well understood [1]. In contrast, dynamical questions in these systems continue to be a major challenge in many areas of modern physics and range from fundamental questions in statistical physics to applied questions for a specific class of materials. On the one hand, integrable systems feature a macroscopic number of (quasi-)local conservation laws [2–4] and any overlap with these conserved quantities leads to the breakdown of conventional equilibration and thermalization [5, 6]. On the other hand, such overlap is not warranted for all possible initial states, observables, or model parameters and integrability does not rigorously exclude the existence of thermodynamic relaxation such as exponential decay or diffusive transport. This type of relaxation, however, is often traced back to chaos [7, 8], being absent in integrable systems.

In this context, two important and extensively studied examples are (i) the one-dimensional XXZ spin-1/2 model and (ii) the (Fermi-)Hubbard chain. As typical for integrable systems, the energy current is (i) strictly or (ii) at least partially conserved [2] such that energy flow is ballistic at any finite temperature [9–12], as signaled by a nonzero Drude weight within linear-response theory. However, a much richer dynamical phase diagram develops for other transport quantities. In case (i) of the XXZ spin-1/2 chain, the spin current is not strictly conserved. While the partial conservation of this current and a nonzero Drude have been proven analytically below the isotropic point [3, 4, 13, 14], strong numerical evidence for a vanishing Drude weight and nonballistic dynamics has been provided above this point [15–19]. In fact, for the latter regime, clear signatures of diffusion have been reported in various works [11, 20–22]. In case (ii) of the Hubbard chain, the situation appears to be similar for charge transport. Even though clarifying the existence of a nonzero Drude weight has turned out to be hard task analytically [23–26], numerical studies point to a vanishing Drude weight for strong particle-particle interactions [27–29]. While signatures of diffusion have been observed for such interactions also [29–32], a direct detection of the characteristic Gaussian broadening is lacking.

The intention of our Letter is to clarify the existence of charge diffusion in the Hubbard chain. For this purpose, we study the nonequilibrium dynamics as resulting for a convenient class of initial states. These initial states are pure and realize density profiles where a peak with the maximum amplitude possible is located in the center of the chain and lies on top of a homogeneous many-body background. First, we focus on a subclass with random internal degrees of freedom and rely on the well-known concept of typicality [33–46] to obtain the real-time broadening of density profiles in the linear-response regime. In this regime, our large-scale numerical simulations for chains as long as 20 sites allow us to unveil the existence of remarkably clean charge diffusion, as a key result of our Letter. Finally, we extend our analysis to initial states without any randomness and show that the dynamical behavior is stable against varying details of the initial conditions. This stability is another central result of our work and reveals that exactly the same charge diffusion emerges in a far-from-equilibrium setup. These findings clearly demonstrate that thermodynamic relaxation can occur in integrable systems.

Model and Observables. In one spatial dimension and with periodic boundary conditions, the Hamiltonian of the Hubbard model reads $H = \sum_{r=1}^{L} h_r$, $h_r = -t_h \sum_{s=\downarrow,\uparrow} \left(a_{r,s}^\dagger a_{r+1,s} + h.c. \right) + U (n_{r,\downarrow} - \frac{1}{2}) (n_{r,\uparrow} - \frac{1}{2})$, where the operator $a_{r,s}^\dagger (a_{r,s})$ creates (annihilates) at site r a fermion with spin s, t_h is the hopping matrix element,
and \(L \) is the number of sites. The operator \(n_{r,s} = a_{r,s}^\dagger a_{r,s} \) is the local occupation number and \(U \) is the strength of the on-site interaction. For all values, this model is integrable and the total particle numbers \(N_s = \sum_r n_{r,s} \) and \(N = N\downarrow + N\uparrow \) are strictly conserved quantities. We do not restrict ourselves to a particular particle sector, i.e., we study the case \(\langle N \rangle = L \) \[51\]. It is worth mentioning that, via the Jordan-Wigner transformation, this model can be mapped onto a spin-1/2 two-leg ladder of length \(L \), with XY exchange in the legs and Ising exchange in the rungs \[31\]. In fact, this spin model is used in our numerical simulations.

We are interested in the real-time dynamics of the local occupation numbers \(n_{r,s} \) and investigate the expectation values \(p_{r,s}(t) = \text{tr}[n_{r,s}(t)] \) for the density matrix \(\rho(t) \) at time \(t \). (It is important to note that \(t \neq t_h \).) Doing so, we can follow the broadening of nonequilibrium density profiles, as realized by the preparation of a proper initial state \(\rho(0) \).

Initial States. In this Letter, we prepare pure initial states \(\rho(0) = |\psi(0)\rangle\langle\psi(0)| \). To specify our \(|\psi(0)\rangle \), it is convenient to consider the common eigenbasis of all \(n_{r,s} \). Let \(|\psi_k\rangle \) be this basis. Then, our initial states read

\[
|\psi(0)\rangle \propto n_{L/2,\uparrow}\ |\phi\rangle , \quad |\phi\rangle = \sum_{k=1}^{4L} c_k |\psi_k\rangle ,
\]

where \(c_k \) are complex and yet arbitrary coefficients. Since \(n_{L/2,\uparrow}\) projects only onto states with a spin-up particle in the middle of the chain, \(p_{L/2,\uparrow}(0) = 1 \) has the maximum value possible.

In this Letter, we focus on two particular choices for the coefficients \(c_k \). First, we choose all \(c_k \) to be the same number. Second, we choose the \(c_k \) at random according to the unitary invariant Haar measure \[37\]. This choice means in practice that real and imaginary part of the \(c_k \) are independently drawn from a Gaussian distribution with zero mean. For both, the random and equal choice of the \(c_k \), all \(p_{r\neq L/2,s\neq\uparrow}(0) = p_{\text{eq.}} = 1/2 \) take on their equilibrium value, and still \(p_{L/2,\uparrow}(0) = 1 \). Therefore, the initial density profile features a central peak on top of a homogeneous many-particle background.

A very similar form for the density profile also results for the state

\[
|\psi_{\text{double}}(0)\rangle \propto n_{L/2,\downarrow} |\psi(0)\rangle .
\]

Then, due to the additional projection, \(p_{L/2,\downarrow}(0) = 1 \) also for equal and random \(c_k \). Therefore, the density profiles \(p_{\uparrow}(t) = p_{\downarrow}(t) \) are identical for \(t = 0 \) and all later times \(t > 0 \) as well, see \[51\] for initial displacement.

All initial states introduced have to be considered as far-from-equilibrium states: They are not only pure but also have maximum \(p_{L/2,\uparrow}(0) = 1 \). Remarkably, however, the dynamics of \(|\psi(0)\rangle \) in Eq. \((2) \) with random \(c_k \) can be connected to the linear-response Kubo formula, since the underlying \(|\phi\rangle \) is a so-called typical state \[22\], see also Refs. \[33\--\[46\] for the concept of typicality. Exploiting this typicality allows one to derive the relation \[51\]

\[
p_{\uparrow}(t) - p_{\text{eq.}} = 2 \left(\langle n_{L/2,\uparrow} \rangle - p_{\text{eq.}} \right) (p_{\uparrow}(t) - p_{\text{eq.}}) ,
\]

where \(\langle \bullet \rangle = \text{tr}[\bullet]/4^L \) is the thermodynamic average at formally infinite temperature. Thus, for a typical state, the nonequilibrium expectation value is directly related to an equilibrium correlation function. This fact enables a connection to the Kubo formula via the variance

\[
\sigma(t)^2 = \sum_{r=1}^{L} r^2 \delta p_{\uparrow}(t) - \left[\sum_{r=1}^{L} r \delta p_{\uparrow}(t) \right]^2 ,
\]

where \(\delta p_{\uparrow}(t) = 2(p_{\uparrow}(t) - p_{\text{eq.}}) \) excludes the equilibrium background and is normalized to \(\sum_r \delta p_{\uparrow}(t) = 1 \). As shown in Ref. \[47\], the time derivative of this variance satisfies

\[
\frac{d}{dt} \sigma(t)^2 = 2D(t) , \quad D(t) = \frac{4}{L} \int_0^t dt' \langle j_\uparrow(t')j_\uparrow(t) \rangle ,
\]

where \(j_\uparrow = -t_h \sum_r (a_{r,\uparrow}^\dagger a_{r+1,\uparrow} + \text{H.c.}) \) is the total current of the spin-up particles and the quantity \(D(t) \) plays the role of a time-dependent diffusion coefficient. For \(U = 0 \), \([j_\uparrow, H] = 0 \) necessarily leads to ballistic scaling \(D(t) \propto t \) and \(\sigma(t) \propto t \). For large \(U \gg t_h \), signatures of diffusive scaling \(D(t) = \text{const.} \) and \(\sigma(t) \propto \sqrt{t} \) have been reported in Refs. \[29\,30\]. So far, however, a systematic analysis beyond the mere width of the density profile is lacking and the central issue of our Letter.
Numerical Technique and Results. From a numerical point of view, the Hubbard chain is challenging since the Hilbert-space dimension $\dim = 4^L$ grows rapidly with L, e.g., much faster than the also exponential increase $\dim = 2^L$ in case of a spin-$1/2$ chain. As a consequence, exact diagonalization of the Hamiltonian is only feasible for a few lattice sites and a real-space experiment like the one done in our Letter would not be reasonable. Hence, we proceed differently and profit from the fact that we only need to deal with pure states. The time evolution of these states can be obtained by forward-propagation methods such as fourth-order Runge-Kutta [18, 19, 41] or more sophisticated schemes such as Trotter decompositions or Chebyshev polynomials [29, 48, 49]. We apply a second-order Trotter formula with a time step $\delta t = 0.05$, sufficient to reach very good agreement with Chebyshev-polynomial algorithms. A massively parallelized implementation of this formula allows us to treat Hubbard chains as long as $L = 20$ sites. For this system size and a maximum time $t_{th} = 8$, the simulation takes about 9 hours when using 262,144 double-thread cores. Therefore, apart from the $L = 20$ data depicted in Fig. 2, we focus on $L = 18$ to reduce computational costs at least a bit.

Now, we turn to our numerical results. We start with the initial state $|\psi(0)\rangle$ in Eq. (2) with a random choice of the coefficients c_k, i.e., a typical state. It is important to note that we consider a single realization of the c_k and do not perform any kind of averaging. Still, we allow the c_k to be different for each simulation. In Figs. 1 (a)-(c) we depict our results for the spin-up occupation numbers $p_{r,\uparrow}(t)$ for a Hubbard chain of length $L = 18$ and with different interactions $U/t_{th} = 16$, 4, 0, in a 2D time-space density plot. Several comments are in order. First, for the noninteracting case $U = 0$ in Fig. 1 (c), the real-time broadening of $p_{r,\uparrow}(t)$ is clearly linear and, as discussed above, has to occur due to the strict conservation of the particle current. The pronounced jets visible are typical for free-particle cases [11, 22] and propagate fast without any scattering until they eventually hit the boundary of the chain at short times $t_{th} \sim 4$. Second, for the interacting cases $U/t_{th} = 16$, 4 in Figs. 1 (a), (b), these jets and the linear broadening as well disappear, i.e., the dynamics is not ballistic. Note that, in contrast, the flow of energy is ballistic for arbitrary U [51]. Third, the broadening is the slower the larger U because scattering becomes stronger as U increases. In particular, for the largest $U/t_{th} = 16$ in Fig. 1 (a) and the maximum time $t_{th} = 8$ calculated, the overall width of $p_{r,\uparrow}(t)$ is still smaller than the chain length. Therefore, we can exclude trivial finite-size effects for such times [51].

To gain insight into the dynamics at large $U/t_{th} = 16$, we show in Fig. 2 (a) the site dependence of the profile $p_{r,\uparrow}(t)$ for various times $t_{th} = 0, 1, 2, 4$, and for an even larger system size $L = 20$. We do so by subtracting from $p_{r,\uparrow}(t)$ the equilibrium value p_{eq} and using a semi-log plot, to visualize also the outer tails of the profile. It is intriguing to see that, for all times t depicted, the profiles can be described very well by Gaussians

$$p_r(t) - p_{eq} = \frac{1}{2} \frac{1}{\sqrt{2\pi \Sigma(t)}} \exp\left[-\frac{(r - L/2)^2}{2 \Sigma(t)^2}\right],$$

where

$Σ(t) = \sqrt{\frac{1}{2L^2} \int_0^L (\Sigma(r) - \Sigma(t))^2 dr},$
where the standard deviation $\Sigma(t)$ occurs as the only free parameter and is adjusted by fitting. The excellent fits over several orders of magnitude are a central result of our Letter and already provide strong evidence for the existence of diffusion. Still, however, $\Sigma(t)$ needs to scale as $\Sigma(t) \propto \sqrt{t}$.

For a final conclusion, we show in Fig. 2 (b) the time dependence of $\Sigma(t)$ and compare to the linear-response $\sigma(t)$ in Eq. (6), as resulting from the $D(t)$ calculated in Ref. [29] for the same interaction $U/t_h = 16$ and length $L = 18$. While the perfect agreement illustrates the high accuracy of the typicality relation, this agreement implies that the linear-response result $D(t) = \text{const.}$ [29, 30] also holds for our nonequilibrium dynamics. Thus, diffusion clearly exists. Note that the same conclusion can be drawn for smaller interactions $U/t_h = 8$ also [51], where finite-size effects are still negligibly small. For $U/t_h \ll 8$, however, significant finite-size effects are known to occur [29] and a reliable conclusion on the thermodynamic limit $L \to \infty$ is impossible on the basis of $L \sim 20$.

Next, we intend to shed light on the role of the specific initial-state realization, in particular on the influence of randomness. Therefore, in a first step, we investigate the initial state $|\psi(0)\rangle$ in Eq. (2) again but now with equal coefficients c_k. Recall that, while this nonrandom state has exactly the same initial density profile, the typicality relation does not need to hold any further. For this state, we repeat the calculation in Fig. 1 for $L = 18$ sites and different interactions $U/t_h = 16$, 4, 0 and summarize the corresponding results in Fig. 3. In comparison to Fig. 1, jet-like behavior for $U = 0$ is enhanced in Fig. 3 (c) and emerges now for $U/t_h = 4$ in Fig. 3 (b) in addition. The same observation has been made for the XXZ spin-1/2 chain below the isotropic point [22]. Remarkably, however, the diffusive behavior for $U/t_h = 16$ in Fig. 3 (a) turns out to be unaltered. In fact, this observation is different to the one found for the XXZ spin-1/2 chain above the isotropic point [22], where the impact of nonrandomness is strong.

The above finding suggests that charge diffusion for strong interactions U is stable against varying details of the initial condition. To substantiate this suggestion, we finally extend our analysis to the initial state $|\psi(\text{double})(0)\rangle$ in Eq. (3) and study both, random and equal coefficients c_k. To repeat, these states have the same initial density profile $p_{r,\uparrow}(0)$ but $p_{r,\downarrow}(0) = p_{r,\uparrow}(0)$ now. For system size $L = 18$, interaction $U/t_h = 16$, and two different times $t_h = 1, 4$, we compare in Fig. 4 the distribution $p_{r,\uparrow}(t)$ for these states with the one for the others. Apparently, $p_{r,\uparrow}(t)$ is practically indistinguishable for the two cases with random c_k. Even though not shown explicitly here, these two random cases also coincide for other values of U [51]. While the two equal cases in Fig. 4 differ from the two random ones, this difference is minor in view of the semi-log plot used. These observations are another central result of our Letter and clearly show that charge diffusion in the strong-interaction limit does not depend on the specific initial-state preparation, at least for the whole class of nonequilibrium states investigated.

Conclusions. In this Letter, we have investigated the real-time broadening of charge in the Hubbard chain at high temperatures. First, we have introduced a class of pure initial states with density profiles where a sharp peak is located in the middle of the chain and lies on top of a homogeneous many-particle background. Then, we have calculated the dynamics of these nonequilibrium states, by using large-scale numerical simulations. Our results for typical states have unveiled the existence of remarkably clean charge diffusion in the limit of strong particle-particle interactions, in perfect agreement with the Kubo formula. We have additionally shown that this diffusive behavior is stable against varying details of the initial conditions.

Acknowledgments. We sincerely thank T. Prosen and F. Heidrich-Meisner for fruitful discussions. In addition, we gratefully acknowledge the computing time, granted by the “JARA-HPC Vergabegremium” and provided on the “JARA-HPC Partition” part of the supercomputer “JUQUEEN” [50] at Forschungszentrum Jülich.

SUPPLEMENTAL MATERIAL

Typicality Approximation

Single Projection

To make our Letter self-contained, we provide details on the calculation yielding the relation in Eq. (4) of the main text. A very similar calculation can be found in
Ref. [22] for the XXZ spin-1/2 chain.

Starting with the correlation function

$$C_{\tau,\tau}(t) = 2 \langle [n_{L/2,\uparrow} - p_{\text{eq}}][n_{r,\tau}(t) - p_{\text{eq}}] \rangle + p_{\text{eq}} \cdot \quad (S1)$$

multiplying out the two brackets, and using $p_{\text{eq}} = 1/2$ as well as $\langle n_{r,\tau}(t) \rangle = p_{\text{eq}}$, we get

$$C_{\tau,\tau}(t) = 2 \langle n_{L/2,\uparrow} n_{r,\tau}(t) \rangle = 2 \frac{\text{tr}[n_{L/2,\uparrow} n_{r,\tau}(t)]}{4L} \quad (S2)$$

and, due to $n_{L/2,\uparrow}^2 = n_{L/2,\uparrow}$ and a cyclic permutation in the trace, we obtain

$$C_{\tau,\tau}(t) = 2 \frac{\text{tr}[n_{L/2,\uparrow} n_{r,\tau}(t)] n_{L/2,\uparrow}}{4L}. \quad (S3)$$

If $|\Phi\rangle$ is a random pure state according to the unitary invariant Haar measure, this correlation function can be expressed as

$$C_{\tau,\tau}(t) = 2 \langle \frac{\langle \Phi | n_{L/2,\uparrow} n_{r,\tau}(t) n_{L/2,\uparrow} | \Phi \rangle}{\langle \Phi | \Phi \rangle} \rangle + \epsilon, \quad (S4)$$

where the negligibly small error $\epsilon \propto 4L^2/2$ is skipped in the following for clarity. Because of $n_{L/2,\uparrow}^2 = n_{L/2,\uparrow}$, we can rewrite this expression as

$$C_{\tau,\tau}(t) = 2 \langle \frac{\langle \Phi | n_{L/2,\uparrow} n_{r,\tau}(t) n_{L/2,\uparrow} | \Phi \rangle}{\langle \Phi | \Phi \rangle} \rangle \quad (S5)$$

and, applying $n_{r,\tau}(t) = e^{iHt} n_{r,\tau} e^{-iHt}$ and moving the factor 2 to the denominator, this expression becomes

$$C_{\tau,\tau}(t) = \frac{\langle e^{-iHt} n_{L/2,\uparrow} \Phi | n_{r} e^{iHt} n_{L/2,\uparrow} \Phi \rangle}{\langle \Phi | \Phi \rangle/2}. \quad (S6)$$

Finally, since $|\psi(0)\rangle = n_{L/2,\uparrow} |\Phi\rangle/\sqrt{\langle \Phi | \Phi \rangle/2}$, we end up with

$$C_{\tau,\tau}(t) = \langle \psi(t) | n_{r,\tau} | \psi(t) \rangle = p_{\tau,\tau}(t). \quad (S7)$$

FIG. S1. (Color online) The simulations in Fig. 1 of our Letter repeated for a random initial state $|\psi_{\text{double}}(0)\rangle$.

Comparing Eqs. (S1) and (S7) leads to

$$p_{\tau,\tau}(t) - p_{\text{eq}} = 2 \langle (n_{L/2,\uparrow} - p_{\text{eq}})[n_{r,\tau}(t) - p_{\text{eq}}] \rangle, \quad (S8)$$

i.e., the relation in Eq. (4) of the main text.

Double Projection

For the initial state $|\psi_{\text{double}}(0)\rangle = n_{L/2,\uparrow} |\psi(0)\rangle$, one can simply repeat the steps in Eqs. (S1) - (S7) to show the relation

$$p_{\tau,\tau}(t) - p_{\text{eq}} = 2 \langle (2 n_{L/2,\uparrow} n_{L/2,\uparrow} - p_{\text{eq}})[n_{r,\tau}(t) - p_{\text{eq}}] \rangle. \quad (S9)$$

Thus, the resulting relation for $|\psi_{\text{double}}(0)\rangle$ differs from the one for $|\psi(0)\rangle$. However, both relations are identical for $U = 0$ (and arbitrary t) or for $t = 0$ (and arbitrary U). For other values of U and t, we can use symmetries of our specific Hamiltonian in Eq. (1), i.e., particle-hole symmetry of each particle species. Due to the symmetry for spin-down particles, we get

$$\langle n_{L/2,\downarrow} n_{L/2,\uparrow} n_{L/2,\uparrow} (t) \rangle = \langle (1 - n_{L/2,\downarrow}) n_{L/2,\uparrow} n_{L/2,\uparrow} (t) \rangle \quad (S10)$$

or, equivalently,

$$2 \langle n_{L/2,\uparrow} n_{L/2,\uparrow} n_{L/2,\uparrow} (t) \rangle = \langle n_{L/2,\uparrow} n_{L/2,\uparrow} (t) \rangle. \quad (S11)$$

Using this identity, Eq. (S9) simplifies to Eq. (4) and the relations for $|\psi(0)\rangle$ and $|\psi_{\text{double}}(0)\rangle$ coincide, at least for the Hubbard chain.

Numerically, we have observed in Fig. 4 of our Letter that the dynamics resulting for the two random initial states $|\psi_{\text{double}}(0)\rangle$ and $|\psi(0)\rangle$ are practically the same, at least for the case of a strong interaction $U/t_h = 16$. To demonstrate that no difference is found for other values
of U also, we repeat the full calculation in Fig. 1 of the main text for $|\psi_{\text{double}}(0)\rangle$ and depict the corresponding results in Fig. S1. Apparently, the real-time broadening does not change for this initial state, in agreement with the analytical arguments above.

Intermediate Interactions

In Fig. 2 of our Letter, we have shown the pronounced Gaussian form of the density profile $p_{r,\uparrow}(t)$ for different times t but only for a representative interaction strength $U/t_h = 16$. To demonstrate that this form also emerges for other values of U, we repeat in Fig. S2 the analysis for the intermediate value $U/t_h = 8$. As before, the Gaussian fits in Fig. S2 (a) describe the data very well over several orders of magnitude and the agreement of the resulting standard deviation with linear response theory in Fig. S2 (b) is excellent.

Chain Length and Particle Sector

All data presented in the main text corresponds to the largest system size available, i.e., $L = 18$ (and $L = 20$ for a single set of parameters as well). In addition, we have performed a careful finite-size analysis to ensure that these data allow us to draw reliable conclusions on the thermodynamic limit $L \to \infty$. Thus, as an example, we present in Fig. S3 (a) such an analysis for a random initial state $|\psi(0)\rangle$, interaction strength $U/t_h = 16$, and the longest time $t_h = 4$ considered. Clearly, the density profile $p_{r,\uparrow}(t)$ depicted is practically the same for lengths $L = 14, 18, 20$ and even the outer tails of this profile do not have a significant finite-size dependence.

Energy Flow

In the main text, we have unveiled the emergence of remarkably clean particle diffusion for sufficiently large interaction strengths $U \gg t_h$. But this diffusive behavior should be contrasted against the dynamical behavior of other quantities for exactly the same initial states. Such a quantity occurs in the second term of the Hamiltonian (1), i.e., the local interaction energy

$$
\epsilon_r(t) = U(n_{r,\downarrow} - \frac{1}{2})(n_{r,\uparrow} - \frac{1}{2}).
$$

This quantity becomes the full local energy in the limit of large U. Thus, the flow is expected to be ballistic [12], as typical for integrable systems. In Fig. S4 we confirm this expectation for, e.g., a random initial state $|\psi_{\text{double}}(0)\rangle$.
where the central interaction energy $\epsilon_{L/2}(0) = U/4$ takes on the maximum value possible. Apparently, the jet-like broadening of energy observed for $U/t_h = 16$ in Fig. S4 (a) is very similar to the one of charge found for $U = 0$ in Fig. S1 (c). These findings also illustrate that our initial states do no enforce diffusive dynamics.

Displacement of Particle Species

For simplicity, our work has focused on the two cases: 1. The spin-down density profiles are $p_{r,\downarrow}(t) = p_{\text{eq},\downarrow}$, i.e., they are at equilibrium from the very beginning (initial state $|\psi(0)\rangle$). 2. These profiles are $p_{r,\downarrow}(t) = p_{r,\uparrow}(t)$, i.e., they are always identical to the density profiles of the other particle species (initial state $|\psi_{\text{double}}(0)\rangle$). This is why we have not shown results for $p_{r,\uparrow}(t)$ explicitly in the figures.

Certainly, it is possible to investigate other situations also. For instance, similar to $|\psi_{\text{double}}(0)\rangle$, one may study initial states

$$|\psi_{\text{displaced}}(0)\rangle = n_{L/2 - \delta r,\downarrow} |\psi(0)\rangle,$$

where $p_{r,\downarrow}(0)$ is not peaked in the middle of the chain and displaced to the left by δr sites. In such a situation, $p_{r,\downarrow}(t) \neq p_{r,\uparrow}(t)$ and also the dynamical behavior could change in principle. However, first results indicate that charge dynamics is qualitatively the same even for this situation. As an example, we show in Fig. S5 results for a random initial state $|\psi_{\text{displaced}}(0)\rangle$ with a displacement by $\delta r = 4$ sites, for a Hubbard chain of length $L = 18$ and with interaction $U/t_h = 16$. Here, it turns out that the two particle species spread independently from each other, and no significant difference to Fig. 1 (a) of the main text is visible. Once again, this observation can be understood analytically using typicality and arguments analogous to the ones in the context of Eq. (S9).
[30] C. Karrasch, T. Prosen, F. Heidrich-Meisner, arXiv:1611.04832 (2016).
[31] T. Prosen and M. Žnidarič, Phys. Rev. B 86, 125118 (2012).
[32] T. Prosen, Phys. Rev. E 89, 012142 (2014).
[33] J. Gemmer and G. Mahler, Eur. Phys. J. B 31, 249 (2003).
[34] S. Goldstein, J. L. Lebowitz, R. Tumulka, and N. Zanghi, Phys. Rev. Lett. 96, 050403 (2006).
[35] S. Popescu, A. J. Short, and A. Winter, Nature Phys. 2, 754 (2006).
[36] P. Reimann, Phys. Rev. Lett. 99, 160404 (2007).
[37] C. Bartsch and J. Gemmer, Phys. Rev. Lett. 102, 110403 (2009).
[38] C. Bartsch and J. Gemmer, EPL (Europhys. Lett.) 96, 60008 (2011).
[39] S. Sugiura and A. Shimizu, Phys. Rev. Lett. 108, 240401 (2012).
[40] S. Sugiura and A. Shimizu, Phys. Rev. Lett. 111, 010401 (2013).
[41] T. A. Elsayed and B. V. Fine, Phys. Rev. Lett. 110, 070404 (2013).
[42] A. Hams and H. De Raedt, Phys. Rev. E 62, 4365 (2000).
[43] T. Iitaka and T. Ebisu, Phys. Rev. Lett. 90, 047203 (2003).
[44] T. Iitaka and T. Ebisu, Phys. Rev. E 69, 057701 (2004).
[45] S. R. White, Phys. Rev. Lett. 102, 190601 (2009).
[46] T. Monnai and A. Sugita, J. Phys. Soc. Jpn. 83, 094001 (2014).
[47] R. Steinigeweg, H. Wichterich, and J. Gemmer, EPL (Europhys. Lett.) 88, 10004 (2009).
[48] R. Steinigeweg, F. Heidrich-Meisner, J. Gemmer, K. Michielsen, and H. De Raedt, Phys. Rev. B 90, 094417 (2014).
[49] A. Weiße, G. Wellein, A. Alvermann, and H. Fehske, Rev. Mod. Phys. 78, 275 (2006).
[50] M. Stephan and J. Docter, J. Large-Scale Res. Facil. A1, 1 (2015).
[51] See Supplemental material for additional information on typicality, finite-size scaling, the role of the particle sector, and energy flow.