Quantum j-invariant in positive characteristic II:
formulas and values at the quadratics

L. DEMANGOS AND T. M. GENDRON

Abstract. In this sequel to Demangos and Gendron (Arch Math 107:23–35, 2016), the multi-valued quantum j-invariant in positive characteristic is studied at quadratic elements. For every quadratic f, an explicit expression for each of the values of $j_{\text{qt}}(f)$ is given as a limit of rational functions of f. It is proved that the number of values of $j_{\text{qt}}(f)$ is finite.

Mathematics Subject Classification. Primary 11R58, 11F03, 11R11; Secondary 11K60.

Keywords. Quantum j-invariant, Global function field, Quadratic extensions, Diophantine approximation.

1. Introduction. Let \mathbb{F}_q be the field with q elements, $q = p^r$ a prime power, $k = \mathbb{F}_q(T)$ the function field over \mathbb{F}_q, k_{∞} the completion of k with respect to the valuation $v(f) = -\deg_T(f)$. In [2], the quantum j-invariant was introduced as a multi-valued modular function

$$j_{\text{qt}} : \text{GL}_2(A) \backslash k_{\infty} \rightarrow k_{\infty} \cup \{\infty\}$$

obtained as the limit of a sequence of approximating functions

$$j_{\varepsilon} : k_{\infty} \rightarrow k_{\infty} \cup \{\infty\}$$ (1)

as $\varepsilon \rightarrow 0$. Explicit formulas for the approximants (1) in terms of the sequence $\{q_i\} \subset A$ of best approximations of f were obtained, and using them, it was shown that $f \in k$ if and only if eventually $j_{\varepsilon}(f) = \infty$.

In this paper we consider $j_{\text{qt}}(f)$ in the special case of $f \in k_{\infty}$ quadratic. Here we are able to derive explicit formulas not just for the approximants but for all the values of $j_{\text{qt}}(f)$, each of which expressed as a limit of certain rational functions of f. Using these formulas, we are able to prove that for f quadratic, $\# j_{\text{qt}}(f) < \infty$.

In what follows, we fix notation used in [2].
2. Values at quadratic units. Fix \(a \in A - \mathbb{F}_q \), \(b \in \mathbb{F}_q^\times \) with
\[
d := \deg a > 0,
\]
and write \(D = a^2 + 4b \). The solutions \(f \) and \(f' \) of \(X^2 - aX - b = 0 \) are quadratic units, and every quadratic unit in \(k_\infty - k \) occurs in this way. Since \(ff' = -b \), we have \(|ff'| = 1 \). Moreover, since \(f + f' = a \), we have as well that \(|f|, |f'| \neq 1 \). Therefore, if we assume that \(|f| > 1 \), then
\[
|f| = |a| = q^d > 1 \quad \text{and} \quad |f'| = |b/a| = q^{-d} < 1.
\]

Consider the recursive sequence
\[
Q_0 = 1, Q_1 = a, \ldots, Q_{n+1} = aQ_n + bQ_{n-1}.
\]
Note that when \(b = 1 \), \(Q_n = q_n \) is the sequence of best approximations for \(f = [a, a, \ldots] \); see [2, §3]. It is clear that for all \(n \)
\[
|Q_n| = |a|^n = q^{dn}.
\]
Recall Binet’s formula
\[
Q_n = \frac{f^{n+1} - (f')^{n+1}}{\sqrt{D}}, \quad n = 0, 1, \ldots,
\]
which, while usually stated over \(\mathbb{Q} \), is equally true in this setting, by a very simple induction on \(n \). The root \(\sqrt{D} \) is chosen so that in odd characteristic, \(f = (a + \sqrt{D})/2 \); in even characteristic, we simply take \(\sqrt{D} = a \).

Recall that \(\|x\| \) is distance of \(x \) to the nearest element of \(A \); see [2, §2] for this and other relevant notation. Binet’s formula immediately gives
\[
\|Q_n f\| = q^{-(n+1)d}. \quad (2)
\]
Indeed,
\[
|Q_n f - Q_{n+1}| = \frac{|f'|^{n+1}|f - f'|}{\sqrt{D}} = |f'|^{n+1} = q^{-(n+1)d} < 1. \quad (3)
\]
In particular, \(Q_n^\perp = Q_{n+1} \), where \(\lambda^\perp \) denotes the element of \(A \) closest to \(\lambda f \).

The remainder of this section is devoted to deriving an explicit formula for each value of \(j^{\text{un}}(f) \). In view of our need to work with monic polynomials, we make the following modification to the above sequence. For each \(n \), we write \(Q_n \) for the unique monic polynomial obtained as \(c_n Q_n \) for some \(c_n \in \mathbb{F}_q^\times \). Then \(|Q_n| = |Q_n| \) and \(\|Q_n f\| = \|Q_n f\| \) since \(Q_n^\perp = c_n Q_n^\perp \). (N.B. \(Q_n^\perp \) is not necessarily monic.) Note that if we choose \(c \in \mathbb{F}_q^\times \) so that \(ca \) is monic, then \(c_n = c^n \). It follows from Binet’s formula that
\[
Q_n = c^n \frac{f^{n+1} - (f')^{n+1}}{\sqrt{D}} = \frac{\tilde{f}^{n+1} - (\tilde{f'})^{n+1}}{c\sqrt{D}}, \quad \tilde{f} := cf, \quad \tilde{f'} := cf'. \quad (4)
\]
The set
\[
\mathcal{B} = \{ T^{d-1}Q_0, \ldots, TQ_0, Q_0; T^{d-1}Q_1, \ldots, TQ_1, Q_1; \ldots \} \quad (5)
\]
is a basis for A as an \mathbb{F}_q-vector space, as the degree map $\deg : B \to \mathbb{N} = \{0, 1, \ldots\}$ is a bijection. The order in which we have presented the elements of B corresponds to decreasing errors: for $0 \leq l \leq d - 1$ and $n \geq 0$,

$$\| T^l \mathcal{Q}_n f \| = | T^l \mathcal{Q}_n f - T^l \mathcal{Q}_{n+1} | = q^{l-(n+1)d} < 1. \quad (6)$$

In particular, $(T^l \mathcal{Q}_n)^\perp = T^l \mathcal{Q}_n^\perp$, and the map

$$B \rightarrow q^{-\mathbb{N}}, \quad T^l \mathcal{Q}_n \mapsto \| T^l \mathcal{Q}_n f \| \quad (7)$$

defines a bijection between B and the set of possible errors.

Write

$$B(i) = \{ T^{d-1} \mathcal{Q}_i, \ldots, \mathcal{Q}_i \}$$

for the ith block of B. Furthermore, for $0 \leq \tilde{d} \leq d - 1$, denote

$$B(i)_{\tilde{d}} = \{ T^d \mathcal{Q}_i, \ldots, \mathcal{Q}_i \}.$$

Lemma 1. Let $l \in \{0, \ldots, d - 1\}$ and write

$$d_l = d - 1 - l.$$

Then

$$\Lambda_{q^{-Nd-l}}(f) = \text{span}_{\mathbb{F}_q}(B(N)_{d_l}, B(N + 1), \ldots).$$

Proof. First observe that

$$\text{span}_{\mathbb{F}_q}(B(N)_{d_l}, B(N + 1), \ldots) \subset \Lambda_{q^{-Nd-l}}(f).$$

Indeed, for $T^d \mathcal{Q}_{N+r}$ with $\tilde{d} \leq d - 1$ and $\tilde{d} \leq d_l$ if $r = 0$, we have

$$\| T^d \mathcal{Q}_{N+r} f \| \leq q^{d_l}, q^{-(N+1)d} = q^{-Nd-l-1} < q^{-Nd-l}.$$

Moreover, by (6), $\Lambda_{q^{-Nd-l}}(f)$ contains no other elements of B. In view of the bijection (7), no linear combination of the excluded basis elements could appear in $\Lambda_{q^{-Nd-l}}(f)$. This proves the equality in the statement of the lemma. \(\square\)

We recall the main definitions established in [2]. For each ε, $\Lambda^{\text{mon}}_\varepsilon(f)$ is the subset of monic polynomials in $\Lambda_\varepsilon(f)$. We defined

$$\zeta_{f, \varepsilon}(n) := \sum_{\lambda \in \Lambda^{\text{mon}}_\varepsilon(f) \setminus \{0\}} \lambda^{-n}, \quad n \in \mathbb{N},$$

and

$$\tilde{j}_\varepsilon(f) = \frac{1}{Tq - T} - j_\varepsilon(f);$$

where

$$j_\varepsilon(f) = \frac{Tq^2 - T}{(Tq - T)^{q+1}} \cdot \tilde{j}_\varepsilon(f), \quad \tilde{j}_\varepsilon(f) := \frac{\zeta_{f, \varepsilon}(q^2 - 1)}{\zeta_{f, \varepsilon}(q - 1)^{q+1}}.$$

Then $j^{\text{at}}(f)$ is the set of limits of $j_\varepsilon(f)$ for $\varepsilon \to 0$. It follows from Lemma 1 that to calculate the values of $j^{\text{at}}(f)$, it suffices to consider the possible limits of $j_\varepsilon(f)$ formed from the spans of the initial truncations of B.

Let $\varepsilon = q^{-Nd-l}$. As in [2], we decompose

$$\Lambda^{\text{mon}}_\varepsilon(f) = \bigcup \Lambda^{\text{bas}}_\varepsilon(f) \bigcup \Lambda^{\text{non-bas}}_\varepsilon(f).$$
where
\[\Lambda^\text{bas}_\varepsilon(f) = \{B(N)_d, B(N + 1), \ldots\} \]
and
\[\Lambda^\text{non-bas}_\varepsilon(f) = \Lambda^\text{mon}_\varepsilon(f) - (\Lambda^\text{bas}_\varepsilon(f) \cup \{0\}) . \]
Any element \(\lambda \in \Lambda^\text{non-bas}_\varepsilon(f) \) may therefore be written in the form
\[\lambda = c_0(T)Q_N + c_1(T)Q_{N + 1} + \cdots + c_m(T)Q_{N + m}, \]
where the \(c_i(T) \in A \) are polynomials that are not all zero and satisfy the following conditions:

I. \(c_m(T) \) is monic and if \(\lambda = c_m(T)\bar{Q}_{N + m} \), \(c_m(T) \neq T^j \) for all \(j \leq d - 1 \).

II. \(\deg(c_i(T)) \leq d - 1, \ i = 0, \ldots, m \).

III. \(\deg(c_0(T)) \leq d_l \).

In view of this characterization, sums over \(\lambda \in \Lambda^\text{non-bas}_\varepsilon(f) \) may be understood as sums indexed by tuples \(c_0(T), \ldots, c_m(T) \) subject to conditions I, II, and III, and so we will abbreviate
\[\sum_{\text{Conditions I, II, III}} := \sum_{\Lambda^\text{non-bas}_\varepsilon(f)} \cdot \]

Using this notation, we may now express
\[\tilde{J}_\varepsilon(f) = \frac{\sum_{\lambda \in \Lambda^\text{bas}_\varepsilon(f)} \lambda^{1-q^2} + \sum_{\text{Conditions I, II, III}} \left(\sum_{i=0}^{m} c_i(T)Q_{N + i} \right)^{1-q^2}}{\left(\sum_{\lambda \in \Lambda^\text{bas}_\varepsilon(f)} \lambda^{1-q} + \sum_{\text{Conditions I, II, III}} \left(\sum_{i=0}^{m} c_i(T)Q_{N + i} \right)^{1-q} \right)^{q+1}}. \]

Write
\[\zeta_{T,l}(n) := 1 + T^{-n} + \cdots + T^{-nd_l}, \quad \zeta_T(n) := \zeta_{T,0}(n), \]
then define
\[H_l(n) := \zeta_{T,l}(n) + \sum_{\text{Conditions I, II, III}} \left(\sum_{c_0(T) \neq 0}^{m} c_i(T)\bar{f}^i \right)^{-n} \]
and
\[H(n) := \frac{\zeta_T(n)}{f^n - 1} + \sum_{\text{Conditions I, II}} \left(\sum_{i=1}^{m} c_i(T)\bar{f}^i \right)^{-n} . \]

Now let
\[\tilde{J}(f)_l := H_l(q^2 - 1) + H(q^2 - 1) \]
\[\frac{H_l(q - 1) + H(q - 1))^{1+q}}{H_l(q - 1) + H(q - 1))^{1+q}} . \]

Note that \(\tilde{J}(f)_l \) converges. Indeed, both numerator and denominator have absolute value 1, and \(|\tilde{J}(f)_l| = 1 \). Finally, we write
\[J(f)_l := \frac{Tq^2 - T}{(Tq - T)^{q+1}} \cdot \tilde{J}(f)_l . \]
Theorem 1. Let f be a quadratic unit which is a solution of $X^2 - aX - b$ with $\deg a = d > 0$ and $\deg b = 0$. Then $j^{qt}(f)$ has precisely $d = \deg a = \log_q |\sqrt{D}|$ values, and they are

$$j^{qt}(f) = \left\{ j(f)_l := \frac{1}{T^{q^l} - J(f)_l} \right\}_{l=0}^{d-1}.$$

Proof. The conjugate solution satisfies $f' = -bf^{-1}$ with $b \in \mathbb{F}_q^\times$, so f' is $GL_2(A)$-equivalent to f, hence by modularity, $j^{qt}(f') = j^{qt}(f)$. Thus, in what follows, we will suppose f satisfies $|f| > 1$. As above, $\varepsilon = q^{-Nd-l}$. We begin by noting that

$$\sum_{\lambda \in \Lambda^b_{bas}(f)} \lambda^{-n} = \zeta_{T,l}(n) Q_N^{-n} + \zeta_T(n) \sum_{i=1}^{\infty} Q_{N+i}^{-n}.$$

Then if we define

$$H_{N,l}(n) := \zeta_{T,l}(n) Q_N^{-n} + \sum_{\text{Conditions I, II, III}} \left(\sum_{i=0}^{m} c_i(T) Q_{N+i} \right)^{-n},$$

and

$$H_N(n) := \zeta_T(n) \sum_{i=1}^{\infty} Q_{N+i}^{-n} + \sum_{\text{Conditions I, II}} \left(\sum_{i=1}^{m} c_i(T) Q_{N+i} \right)^{-n},$$

we may re-write (8) as

$$\tilde{J}_\varepsilon(f) = \frac{H_{N,l}(q^2 - 1) + H_{N}(q^2 - 1)}{(H_{N,l}(q-1) + H_{N}(q-1))^{q+1}}.$$

Replace in (9) each \bar{Q}_{N+i} by $(f^{N+i+1} - f^{i(N+i+1)})/c\sqrt{D}$ using (4): equivalently (since the numerator and denominator of (9) have homogeneous degree $1 - q^2$), we may omit the constant $1/c\sqrt{D}$ and simply replace \bar{Q}_{N+i} by $f^{N+i+1} - f^{i(N+i+1)}$. Then dividing out the numerator and denominator by $f^{(1-q^2)(N+1)}$ yields

$$\tilde{J}_\varepsilon(f) = \frac{\hat{H}_{N,l}(q^2 - 1) + \hat{H}_{N}(q^2 - 1)}{(\hat{H}_{N,l}(q-1) + \hat{H}_{N}(q-1))^{q+1}},$$

where

$$\hat{H}_{N,l}(n) := \zeta_{T,l}(n) (1 - (\bar{f}/f)^{N+1})^{-n}$$

$$+ \sum_{\text{Conditions I, II, III}} \left(\sum_{i=0}^{m} c_i(T) \bar{f}_i (1 - (\bar{f}/f)^{N+i+1}) \right)^{-n}.$$
and

\[
\hat{H}_N(n) := \left\{ \zeta_T(n) \sum_{i=1}^{\infty} \tilde{f}^{-ni} \left(1 - \left(\tilde{f}'/\tilde{f} \right)^{N+i+1} \right)^{-n} + \sum_{\text{Conditions } 1, II} \left(\sum_{i=1}^{m} c_i(T) \tilde{f}^i \left(1 - \left(\tilde{f}'/\tilde{f} \right)^{N+i+1} \right) \right)^{-n} \right\}.
\]

Since \(|\tilde{f}'/\tilde{f}| < 1 \),

\[
1 - \left(\tilde{f}'/\tilde{f} \right)^{N+i+1} \longrightarrow 1
\]
as \(N \to \infty \), uniformly in \(i \), and it follows that

\[
\lim_{N \to \infty} \hat{H}_{N,l}(n) = H_l(n) \quad \text{and} \quad \lim_{N \to \infty} \hat{H}_N(n) = H(n),
\]

and therefore

\[
\lim_{N \to \infty} \tilde{J}^{\epsilon-N-d-l}(f) = \tilde{J}(f). \quad \square
\]

\textbf{Note 1.} In the number field case, PARI GP experiments \([3]\) performed on fundamental quadratic units \(\theta \) indicate that \(j^{\epsilon}(\theta) \) appears to have \(D \) values, where \(D \) is the corresponding fundamental discriminant.

\textbf{3. Arbitrary real quadratics.} Let \(h \in k_{\infty} - k \) be an arbitrary quadratic. By the Dirichlet unit theorem \([1]\), the group of units in the quadratic extension \(k(h) \) is isomorphic to \(\mathbb{F}_q^* \times \mathbb{Z} \). Thus there exists a unit \(f \) such that \(k(h) = k(f) \), i.e. \(h \) can be written in the form

\[
h = \frac{x + yf}{z}, \quad x, y, z \in A,
\]

where \(f \) satisfies \(X^2 - aX - b = 0 \), \(d = \deg(a) > 0 \), and \(\deg(b) = 0 \).

Note that for \(h \) and \(f \) as in (11) and \(\varepsilon \) satisfying \(|z| \varepsilon < 1 \), we have the following inclusions of \(\mathbb{F}_q \)-vector spaces

\[
z\Lambda_{|y|^{-1}\varepsilon}(f) \subset \Lambda_{\varepsilon}(h) \subset y^{-1}\Lambda_{|z|\varepsilon}(f).
\]

The first inclusion follows upon noting that if \(z\lambda \in z\Lambda_{|y|^{-1}\varepsilon}(f) \), we have

\[
\|(z\lambda)h\| = |(z\lambda)h - (y\lambda^\perp + \lambda x)| = |\lambda(x + yf) - (y\lambda^\perp + \lambda x)| = |y||\lambda f - \lambda^\perp| < \varepsilon.
\]

The second inclusion follows from noting that if \(\lambda \in \Lambda_{\varepsilon}(h) \), \(y\lambda \in \Lambda_{|z|\varepsilon}(f) \), as

\[
\|(y\lambda)f\| = |(y\lambda)f - (\lambda^\perp z - \lambda x)| = |\lambda(zh - x) - (\lambda^\perp z - \lambda x)| = |z||\lambda h - \lambda^\perp| < |z|\varepsilon.
\]

\textbf{Lemma 2.} The inclusion of \(\mathbb{F}_q \)-vector spaces

\[
z\Lambda_{|y|^{-1}\varepsilon}(f) \subset \Lambda_{\varepsilon}(h)
\]

has index bounded by a constant which depends only on \(y \) and \(z \).
Proof. By (12), it suffices to show that the induced inclusion
\[z\Lambda_{|y|^{-1}\varepsilon}(f) \subset y^{-1}\Lambda_{|z|\varepsilon}(f) \]
is of index bounded by a constant which only depends on \(y, z \). For any \(\delta < 1 \), denote
\[\Lambda_\delta^2(f) := \{ (\lambda, \lambda^\perp) \in A^2 | \lambda \in \Lambda_\delta(f) \}. \]
Note that the map \(\lambda \mapsto (\lambda, \lambda^\perp) \) induces an isomorphism \(\Lambda_\delta(f) \cong \Lambda_\delta^2(f) \) of \(\mathbb{F}_q \)-
vector spaces: this, in fact, follows from [2, Proposition 1]. In turn, we obtain an induced isomorphism of \(y^{-1} \)-rescalings
\[y^{-1}\Lambda_\delta(f) \cong y^{-1}\Lambda_\delta^2(f). \]
Taking \(\delta = |z|\varepsilon \), the corresponding isomorphism takes \(z\Lambda_{|y|^{-1}\varepsilon}(f) \) to \(z\Lambda_{|y|^{-1}\varepsilon}(f) \). Thus
\[y^{-1}\Lambda_{|z|\varepsilon}(f)/z\Lambda_{|y|^{-1}\varepsilon}(f) \cong y^{-1}\Lambda_{|z|\varepsilon}(f)/z\Lambda_{|y|^{-1}\varepsilon}(f). \]
On the other hand, the natural map
\[y^{-1}\Lambda_{|z|\varepsilon}(f)/z\Lambda_{|y|^{-1}\varepsilon}(f) \hookrightarrow (y^{-1}A)^2/(zA)^2 \]
is injective: for if \((\lambda_1, \lambda_1^\perp) \) and \((\lambda_2, \lambda_2^\perp) \in \Lambda_{|z|\varepsilon}(f) \) satisfy
\[y^{-1}(\lambda_1, \lambda_1^\perp) - y^{-1}(\lambda_2, \lambda_2^\perp) = z(\beta_1, \beta_2) \in (zA)^2, \]
then since \(z(\beta_1, \beta_2) \in y^{-1}\Lambda_{|z|\varepsilon}(f) \) (being a difference of elements of the latter),
\[|(yz\beta_1) - yz\beta_2| < |z|\varepsilon \]
which implies \((\beta_1, \beta_2) \in \Lambda_{|y|^{-1}\varepsilon}(f) \). Therefore the index of \(z\Lambda_{|y|^{-1}\varepsilon}(f) \) in
\(y^{-1}\Lambda_{|z|\varepsilon}(f) \) is bounded by \(\dim_{\mathbb{F}_q}((y^{-1}A)^2/(zA)^2) \). This proves the lemma. \(\square \)

Theorem 2. Let \(h \in k_\infty - k \) be quadratic. Then \#\(j^{qt}(h) \) < \(\infty \).

Proof. By Lemma 2, for each \(\varepsilon \), we may find \(\lambda_{1,\varepsilon} = 0, \ldots, \lambda_{r,\varepsilon} \in \Lambda_{\varepsilon}(h), \ r < M = M(y, z), \) such that
\[\Lambda_{\varepsilon}(h) = [z\Lambda_{|y|^{-1}\varepsilon}(f) + \lambda_{1,\varepsilon}] \bigcup \cdots \bigcup [z\Lambda_{|y|^{-1}\varepsilon}(f) + \lambda_{r,\varepsilon}]. \quad (13) \]
Thus we have
\[\tilde{J}_{\varepsilon}(h) = \frac{\zeta_{h,\varepsilon}(q^2 - 1)}{\zeta_{h,\varepsilon}(q - 1)q^{1+1}} = -\frac{\sum_{\lambda \in \Lambda_{\varepsilon}(h)} - \lambda^{1-q^2}}{(\sum_{\lambda \in \Lambda_{\varepsilon}(h)} - \lambda^{1-q^2})^{q+1}} \]
\[= -\frac{\sum_{i=1}^{r} \sum_{\lambda \in \Lambda_{|y|^{-1}\varepsilon}(f)} (\lambda + \lambda_{i,\varepsilon}/z)^{1-q^2}}{(\sum_{i=1}^{r} \sum_{\lambda \in \Lambda_{|y|^{-1}\varepsilon}(f)} (\lambda + \lambda_{i,\varepsilon}/z)^{1-q})^{1+q}}. \]
By (12), for \(i \neq 1 \),
\[\lambda_{i,\varepsilon} \in y^{-1}\Lambda_{|z|\varepsilon}(f) - z\Lambda_{|y|^{-1}\varepsilon}(f), \quad (14) \]
so we may write
\[\lambda_{i,\varepsilon} = y^{-1} \sum_{j=m}^{m'} c_{ij,\varepsilon}(T)\tilde{q}_i, \quad (15) \]
where \(\deg(c_{ij}(T)) \leq d - 1 \) and \(m \) is the smallest index so that \(\mathcal{Q}_m \in \Lambda_{\{z|\varepsilon(f)\}} \). Note that by (14) and Lemma 2, the difference \(m' - m \) has a uniform bound which is independent of \(\varepsilon \). In particular, the set of all possible coefficients \(c_{ij,\varepsilon}(T) \) is finite in number.

Consider a sequence \(\{q^{-N(d-l)}\}_{N>1} \) of values for \(\varepsilon \) giving a limiting value for \(j^{q^t}(f) \) as described in Theorem 1: recall that the limit is calculated by using Binet’s formula to replace occurrences of \(\mathcal{Q}_{N+i} \) by \(\mathcal{f}^{N+i+1} \) in \(J_{\varepsilon}(f) \) and dividing out by \(\mathcal{f}^{1-\mathcal{q}^2}(N+1) \). We apply exactly the same process to \(J_{\varepsilon}(h) \): and in view of (15), we obtain approximations

\[
-z^{-1} \frac{\lambda_i,\varepsilon}{\mathcal{f}^{N+1}} \sim (yz)^{-1} \sum_{j=m}^{m'} c_{ij,\varepsilon}(T) \mathcal{f}^{j-N}, \quad m, m' \geq 0,
\]

where \(\deg(c_{ij,\varepsilon}(T)) \leq d - 1 \). Therefore, the set of possible limits of the \(z^{-1} \frac{\lambda_i,\varepsilon}{\mathcal{f}^{N+1}} \) as \(N \to \infty \) is contained in the finite set

\[
\left\{(yz)^{-1} \sum_{j=-n'}^{n'} c_{j}(T) \mathcal{f}^{j} \left| \deg(c_{j}(T)) \leq d - 1 \right.\right\}
\]

where \(n' + n = m' - m \). Thus within the family \(\{\varepsilon = q^{-N(d-l)}\}_{N>1} \), there are only finitely many possible limits of sub-sequences of \(\{J_{\varepsilon}(h)\} \) giving rise to elements of \(j^{q^t}(h) \). This proves the Theorem. \(\square \)

References

[1] P.M. Cohn, Algebraic Numbers and Algebraic Functions, Chapman and Hall/CRC, London, 1991.

[2] L. Demangos and T.M. Gendron, Quantum \(j \)-invariant in positive characteristic I: definitions and convergence, Arch. Math. 107 (2016), 23–35.

[3] C. Castaño Bernard and T.M. Gendron, Modular invariant of quantum tori, Proc. Lond. Math. Soc. 109 (2014), 1014–1049.

L. Demangos
Department of Mathematical Sciences (Mathematics Division),
University of Stellenbosch,
Private Bag X1, Matieland 7602, South Africa
e-mail: l.demangos@gmail.com

T. M. Gendron
Instituto de Matemáticas–Unidad Cuernavaca,
Universidad Nacional Autónoma de México,
Av. Universidad S/N, C.P. 62210 Cuernavaca,
Morelos, México
e-mail: tim@matcuer.unam.mx

Received: 14 January 2016