Multi-gap nodeless superconductivity in iron selenide FeSe$_x$: evident from quasiparticle heat transport

J. K. Dong,1 T. Y. Guan,1 S. Y. Zhou,1 X. Qiu,1
L. Ding,1 C. Zhang,1 U. Patel,2 Z. L. Xiao,2 S. Y. Li1,*

1Department of Physics, Surface Physics Laboratory (National Key Laboratory),
and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
2Department of Physics, Northern Illinois University, Dekalb, Illinois 60115, USA

(Dated: June 21, 2009)

The in-plane thermal conductivity κ of the iron selenide superconductor FeSe$_x$ ($T_c = 8.8$ K) were measured down to 120 mK and up to 14.5 T ($\gtrsim 3/4 H_{c2}$). In zero field, the residual linear term κ_0/T at $T \rightarrow 0$ is only about 16 μW K$^{-2}$ cm$^{-1}$, less than 4% of its normal state value. Such a small κ_0/T does not support the existence of nodes in the superconducting gap. More importantly, the field dependence of κ_0/T in FeSe$_x$ is very similar to that in NbSe$_2$, a typical multi-gap s-wave superconductor. We consider our data as strong evidence for multi-gap nodeless superconductivity in FeSe$_x$. This kind of superconducting gap structure may be generic for all Fe-based superconductors.

PACS numbers: 74.25.Fy, 74.25.Op, 74.25.Jb

Just as CuO-plane is the basic building block of high-T_c cuprate superconductors, the FeAs-layer is the basic structure of the newly discovered FeAs-based high-T_c superconductors.$^{1-5,6,7}$ The FeAs-layer consists of a Fe square planar sheet tetrahedrally coordinated by As. However, unlike the rigid CuO-plane in cuprates, partial substitution of Fe by Co or Ni, or As by P within the FeAs-layer can effectively induce superconductivity.8,9,10,11 In this sense, the discovery of superconductivity in binary FeSe$_x$ ($T_c \approx 8$ K) is of great interests, since it only contains the superconducting FeAs-layer which has identical structure as FeAs-layer, and the Se deficiency may cause the superconductivity.11

More remarkably, the onset T_c can be enhanced to as high as 37 K for FeSe$_x$ under high pressure.14,15,16 which further implies that superconductivity in FeSe$_x$ may have the same mechanism as in FeAs-based superconductors.

For this new family of high-T_c superconductors, the pairing symmetry of its superconducting gap is a key to understand the mechanism of superconductivity. Extensive experimental and theoretical work have been done to address this important issue for FeAs-based superconductors (for a theoretical review, see Ref. 17; for an experimental review, see Ref. 18). Although there is still no consensus, more and more evidences point to multi-gap nodeless superconductivity, possibly an unconventional s^\pm-paring mediated by antiferromagnetic fluctuations.20 For the prototype FeSe$_x$ superconductor, however, there were very few experiments to study the superconducting gap structure. This is due to its relatively lower T_c and lack of sizable high-quality single crystals.20,21 The measurements of in-plane magnetic penetration depth for polycrystal FeSe$_{0.85}$ are in favor of anisotropic s-wave superconducting gap or two gaps ($s + s$)22 To clarify this important issue, more experimental work are needed for FeSe$_x$ superconductor.

Low-temperature thermal conductivity measurement is a powerful tool to study the superconducting gap structure.22 The field dependence of the residual thermal conductivity κ_0/T for BaNi$_2$As$_2$ ($T_c = 0.7$ K) is consistent with a dirty fully gapped superconductivity.23 For Ba$_{1-x}$K$_x$Fe$_2$As$_2$ ($T_c \simeq 30$ K) and BaFe$_{1.9}$Ni$_{0.1}$As$_2$ ($T_c = 20.3$ K), a negligible κ_0/T was found in zero field, indicating a full superconducting gap.23,24 However, $\kappa(T)$ was only measured in magnetic fields up to $H = 15$ T ($\simeq 1/4 H_{c2}$), thus cannot show clearly whether the superconductivity has multi-gap character in FeAs-based superconductors.25,26

In this paper, we measure the thermal conductivity κ of a FeSe$_x$ single crystal with $T_c = 8.8$ K down to 120 mK and up to 14.5 T ($\simeq 3/4 H_{c2}$) to probe its superconducting gap structure. In zero field, κ_0/T is about 16 μW / K2 cm, less than 4% of its normal-state value. Such a small κ_0/T should not come from the nodal quasiparticle contribution. It may simply come from the slight overestimation when doing extrapolation, due to the lack of lower temperature data. The field-dependence of κ_0/T is very similar to that in multi-gap s-wave superconductor NbSe$_2$. Based on our data, it is evident that FeSe$_x$ is a multi-gap nodeless superconductor.

FeSe$_x$ single crystals with nominal formula FeSe$_{0.82}$ were grown via a vapor self-transport method.21 The ab-plane dimensions of as-grown crystals ranges from a few hundred μm to 1 mm. Energy Dispersive of X-ray (EDX) microanalysis (Hitachi S-4800) show that the actual Fe:Se ratio is very close to 1:1 in our FeSe$_x$ single crystals. The nominal formula FeSe$_{0.82}$ was used in the initial work by Hsu et al.21 However, the actual superconducting phase was later determined to be FeSe$_{0.99\pm0.02}$ in Ref. 27 and FeSe$_{0.974\pm0.005}$ in Ref. 28. Therefore the EDX result of our FeSe$_x$ single crystals is consistent with these two later reports.

The ac magnetization was measured in a Quantum Design Physical Property Measurement System (PPMS). An as-grown single crystal with dimensions 1.0×0.40 mm2 in the plane and 190 μm thickness along the c-axis was selected for transport study. Contacts were made directly on the sample surfaces with silver paint, which
completely suppresses the resistive transition, we define

\[\rho(T) \sim T^a \]

single crystals. To ensure a homogeneous field distribution in the sample, all fields were applied at perpendicular to the heat current. To estimate the upper critical field \(H_c(0) \) at the temperature where \(\rho(T) \) deviates from the linear dependence, and get \(T_c(\text{onset}) = 11.9 \) and 6.3 K for \(H = 0 \) and 14.5 T, respectively. Using the relationship \(H_{c2}/H_{c2}(0) = 1 - (T_c/T_c(0))^2 \), we get \(H_{c2}(0) = 20.1 \) T. Note that \(H_{c2}(0) = 16.3 \) T was estimated for the powder sample, in which \(T_c \) was defined at the middle point of the transition.\(^{13}\)

In Fig. 1b, the normalized ac magnetization for FeSe\(_x\) single crystal is plotted. The positive ferromagnetic background has been attributed to the existence of Fe impurity in the FeSe\(_x\) powder sample.\(^{13}\) However, no iron, iron oxide, or iron silicide impurities were detected in our crystals,\(^{21}\) therefore the ferromagnetic background likely results from the magnetic Fe cluster promoted by Se vacancies.\(^{20}\)

Fig. 2 shows the temperature dependence of the in-plane thermal conductivity for FeSe\(_x\) in zero field. To extrapolate the residual linear term \(\kappa_0/T \), we fit the data to \(\kappa/T = a + bT^{\alpha-1} \), where \(aT \) and \(bT^{\alpha} \) represent electronic and phonon contributions, respectively. In Fig. 2, the data from 120 mK to 0.7 K can be fitted (the solid line) and gives \(\kappa_0/T = 16 \pm 2 \mu W K^{-2} cm^{-1} \), with \(\alpha = 2.47 \).

Such a value of \(\kappa_0/T \) is slightly larger than the experimental error bar \(\pm 5 \mu W K^{-2} cm^{-1} \).\(^{21}\) However, it is still fairly small, less than 4% the normal state Wiedemann-Franz law expectation \(\kappa_{\text{NQ}}/T = L_0/\rho_0 = 0.423 \) mW K\(^{-2}\) cm\(^{-1}\), with \(L_0 \) the Lorenz number \(2.45 \times 10^{-8} \) W K\(^{-2}\) and \(\rho_0 = 57.9 \mu \Omega \) cm. For unconventional superconductors with nodes in the superconducting gap, a substantial \(\kappa_0/T \) in zero field contributed by the nodal quasiparticles has been found.\(^{32,33}\) For example, for overdoped \(d\)-wave cuprate superconductor Tl2201 with \(T_c = 15 \) K, \(\kappa_0/T = 1.41 \) mW K\(^{-2}\) cm\(^{-1}\), about 36\% \(\kappa_{\text{NQ}}/T \). For \(p\)-wave superconductor Sr\(_2\)RuO\(_4\) with \(T_c = 1.5 \) K, \(\kappa_0/T \) was used for both resistivity and thermal conductivity measurements. The typical contact resistance is a few ohms at room temperature and 1.5 K, which is not as good as that on Ba\(_{1-x}\)K\(_x\)Fe\(_2\)As\(_2\) and BaFe\(_{1.9}\)Ni\(_{0.1}\)As\(_2\) single crystals.\(^{22,23}\) In-plane thermal conductivity was measured in a dilution refrigerator using a standard one-heater-two-thermometer steady-state technique. Due to the small size of the sample and the non-ideal contacts, good thermalization between sample and the two RuO\(_2\) thermometers can only be achieved down to 120 mK. Magnetic fields were applied along the \(c\)-axis and perpendicular to the heat current. To ensure a homogeneous field distribution in the sample, all fields were applied at temperature above \(T_c \).

Fig. 1a shows the in-plane resistivity of FeSe\(_x\) single crystal in \(H = 0 \) and 14.5 T magnetic fields. The middle point of the resistive transition is at \(T_c = 8.8 \) K in zero field. The 10-90% transition width of our crystal is as broad as the powder sample,\(^{13}\) which has been noticed in Ref. 21. Above \(T_c \), \(\rho(T) \) manifests a very good linear dependence up to 80 K, similar to the powder sample.\(^{13}\) A linear fit of \(\rho(T) \) gives the residual resistivity \(\rho_0 = 57.9 \) \(\mu \Omega \) cm in \(H = 14.5 \) T, which is about 1/4 the value of powder sample.\(^{13}\)

To estimate the upper critical field \(H_{c2}(0) \) which completely suppresses the resistive transition, we define \(T_c(\text{onset}) \) at the temperature where \(\rho(T) \) deviates from
$= 17 \text{ mW K}^{-2} \text{ cm}^{-1}$, more than 9% κ_{N0}/T for the best sample.23 We also note that κ_0/T in zero field are all negligible in closely related superconductors BaNi$_2$As$_2$, Ba$_{1-x}$K$_x$Fe$_2$As$_2$, and BaFe$_{1.9}$Ni$_{0.1}$As$_2$.24,25,26 Therefore, it is unlikely that $\kappa_0/T = 16 \pm 2 \mu\text{W K}^{-2} \text{ cm}^{-1}$ in FeSe single crystal comes from the nodal quasiparticles. Since no impurity phases were detected, such a small κ_0/T may simply come from the slight overestimation when doing extrapolation, due to the lack of experimental data below 120 mK.

Below we turn to the field dependence of κ_0/T in FeSe. Fig. 3 shows the low-temperature thermal conductivity of FeSe in magnetic fields applied along the c-axis ($H = 0, 1, 4, 9, \text{ and } 14.5 \text{ T}$). For $H = 1 \text{ T}$, the data is also fitted to $\kappa/T = a + bT^{-\alpha-1}$, and gives $\kappa_0/T = 47 \pm 2 \mu\text{W K}^{-2} \text{ cm}^{-1}$, with $\alpha = 2.47$. For $H = 4, 9, \text{ and } 14.5 \text{ T}$, the electronic contribution becomes more and more dominant and the data get less smooth, therefore α is fixed to 2.47. The dashed line is the normal state Wiedemann-Franz law expectation at $T \to 0$, namely L_0/ρ_0, with L_0 the Lorenz number $2.45 \times 10^{-8} \text{ W} \Omega \text{ K}^{-2}$.

In Fig. 4, we put the normalized $\kappa_0/T(H)$ of FeSe together with the clean s-wave superconductor Nb34 the dirty s-wave superconducting alloy InBi35 the multi-band s-wave superconductor NbSe\textsubscript{36} and an overdoped sample of the d-wave superconductor Ti-220132 plotted as a function of H/H_{c2}. For a clean (like Nb) or dirty (like InBi) type-II s-wave superconductor with isotropic gap, κ_0/T should grow exponentially with field (above H_{c1}). This usually gives negligible κ_0/T for field lower than $H_{c3}/4$. For the d-wave superconductor Ti-2201, κ_0/T increases roughly proportional to \sqrt{H} at low field due to the Volovik effect.23 By contrast, for multi-gap superconductors NbSe\textsubscript{2} and MgB\textsubscript{2} magnetic field will first suppress the superconductivity on the Fermi surface with smaller gap, and give distinct shape of $\kappa_0/T(H)$ curve, as seen in Fig. 4.

From Fig. 4, the $\kappa_0/T(H)$ of FeSe\textsubscript{x} manifests almost identical behavior as that of multi-gap s-wave superconductor NbSe\textsubscript{2}. For NbSe\textsubscript{2}, the shape of $\kappa_0/T(H)$ has been quantitatively explained by multiband superconductivity, whereby the gap on the Γ band is approximately one third of the gap on the other two Fermi surfaces.36 Therefore, we consider our data as strong evidence for multi-gap nodeless superconductivity in FeSe\textsubscript{x}. Note that in the two-gap s + s-wave model to describe the in-plane penetration depth data, the magnitude of the two gaps are 1.60 and 0.38 meV, respectively.22 The ratio between these two gaps is about 4, close to that in NbSe\textsubscript{2}, thus supports the multi-gap scenario from our thermal conductivity results.

So far, there is still no experiment to directly measure the superconducting gap in Fe$_{1+y}$Te$_{1-x}$Se\textsubscript{x} system. Density functional calculations show that the electronic band structure of FeS, FeSe, and FeTe are very similar to the FeAs-based superconductors.39 In doped BaFe$_2$As$_2$, multi-gap nodeless superconductivity has been clearly demonstrated by angle-resolved photoemission spectroscopy (ARPES) experiments.40,41,42 For hole-doped Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ ($T_c = 37$ K), the average gap values $\Delta(0)$ for the two hole pockets (α and β) are 12.5 and 5.5 meV, respectively, while for the electron (γ and
δ) pockets, the gap value is similar, about 12.5 meV.41,44 For electron-doped BaFe\textsubscript{1−x}Co\textsubscript{x}As\textsubscript{2} (T\textsubscript{c} = 25.5 K), the average gap values Δ(0) of hole (β) and electron (γ and δ) pockets are 6.6 and 5.0 meV, respectively.42 The ratio between the large and small gaps is 2.3 for Ba\textsubscript{0.6}K\textsubscript{0.4}Fe\textsubscript{2}As\textsubscript{2}. This may explain the rapid increase of δ0/T(H) at low field in Ba\textsubscript{1−x}K\textsubscript{x}Fe\textsubscript{2}As\textsubscript{2} although magnetic field was only applied up to 1/4 H\textsubscript{c2} thus could not see clear multi-gap character as in our FeSe\textsubscript{2} single crystal.

In summary, we have measured the low-temperature thermal conductivity of iron selenide superconductor FeSe\textsubscript{2} to investigate its superconducting gap structure. A fairly small δ0/T at zero field and the dramatic field dependence of δ0/T give strong evidence for multi-gap nodeless superconductivity in FeSe\textsubscript{2}. Such a gap structure may be generic for all Fe-based superconductors. More experiments are needed to distinguish conventional s-wave from the unconventional s±-wave superconductivity in this new family of high-\textit{Tc} superconductors.

This work is supported by the Natural Science Foundation of China, the Ministry of Science and Technology of China (National Basic Research Program No:2009CB929203), Program for New Century Excellent Talents in University, and STCSM of China (No: 08dj1400200 and 08PJ1402100). The work in Northern Illinois University was supported by the US Department of Energy Grant No. DE-FG02-06ER46334 and Contract No. DE-AC02-06CH11357.

* E-mail: shiyan_ji@fudan.edu.cn

1. Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. \textbf{130}, 3296 (2008).
2. X. H. Chen, T. Wu, G. Wu, R. H. Liu, H. Chen, and D. F. Fang, Nature \textbf{453}, 761 (2008).
3. G. F. Chen, Z. Li, D. Wu, G. Li, W. Z. Hu, J. Dong, P. Zheng, J. L. Luo, and N. L. Wang, Phys. Rev. Lett. \textbf{100}, 247002 (2008).
4. Zhi-An Ren, Wei Lu, Jie Yang, Wei Yi, Xiao-Li Shen, A. S. Sefat, A. Huq, M. A. McGuire, R. Jin, B. C. Sales, D. J. Singh, and X. C. Wang, Q. Q. Liu, Y. X. Lv, W. B. Gao, L. X. Yang, M. Rotter, M. Tegel, and D. Johrendt, Phys. Rev. Lett. \textbf{101}, 087001 (2008).
5. R. H. Liu, G. Wu, T. Wu, D. F. Fang, H. Chen, S. Y. Li, K. Liu, Y. L. Xie, X. F. Wang, R. L. Yang, C. He, D. L. Feng, and X. H. Chen, Phys. Rev. Lett. \textbf{101}, 087001 (2008).
6. M. Rotter, M. Tegel, and D. Johrendt, Phys. Rev. Lett. \textbf{101}, 107006 (2008).
7. X. C. Wang, Q. Q. Liu, Y. X. Lv, W. B. Gao, L. X. Yang, R. C. Yu, F. Y. Li, and C. Q. Jin, Solid State Commun. \textbf{148}, 538 (2008).
8. A. S. Sefat, A. Huq, M. A. McGuire, R. Jin, B. C. Sales, D. Mandrus, Phys. Rev. B \textbf{78}, 104505 (2008).
9. Guanglei Cao, Shuai Jiang, Xiaolin Lin, Cao Wang, Yue Li, Zhi Ren, Quan Tao, Jiannan Dai, Zhu’an Xu, Fu-Chun Zhang, Phys. Rev. B \textbf{79}, 174505 (2009).
10. A. S. Sefat R. Jin, M. A. McGuire, B. C. Sales, D. J. Singh, D. Mandrus, Phys. Rev. Lett. \textbf{101}, 117004 (2008).
11. L. I. Li, Q. B. Wang, Y. K. Luo, H. Chen, Q. Tao, Y. K. Li., X. Lin, M. He, Z. W. Zhu, G. H. Cao, Z. A. Xu, New J. Phys. \textbf{11}, 025006 (2009).
12. Shuai Jiang, Cao Wang, Zhi Ren, Yongkang Luo, Guanglei Cao, and Zhu’an Xu, [arXiv:0901.3227].
13. Feng-Chi Hsu, Jiu-Yong Luo, Kuo-Wei Yeh, Ta-Kun Chen, Tzu-Wen Huang, Phillip M. Wu, Yong-Chi Lee, Yi-Lin Huang, Yuan-Yi Chu, Der-Chung Yan, and Maw-Kuen Wu, Proc. Natl. Acad. Sci. USA \textbf{105}, 14262 (2008).
14. Y. Mizuguchi, F. Tomioka, S. Tsuda, T. Yamaguchi, and Y. Takano, Appl. Phys. Lett. \textbf{93}, 152505 (2008).
15. S. Medvedev, T. M. McQueen, I. A. Troyan, T. Palysuky, M. I. Erements, R. J. Cava, S. Naghavi, F. Casper, V. Ksenofontov, G. Wortmann, and C. Felser Nature Mater. doi:10.1038/NMAT2491 (2009).
16. S. Margadonna, Y. Takabayashi, Y. Ohishi, Y. Mizuguchi, Y. Takano, T. Kagayama, T. Nakagawa, M. Takata, and K. Prassides, [arXiv:0903.2204].
17. I. I. Mazin and J. Schmalian, [arXiv:0901.4790].
18. K. Ishida, Y. Nakai, and H. Hosono, [arXiv:0906.2405].
19. I. I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du, Phys. Rev. Lett. \textbf{101}, 057003 (2008).
20. S. B. Zhang, Y. P. Sun, X. D. Zhu, X. B. Zhu, B. S. Wang, G. Li, H. C. Lei, X. Luo, Z. R. Yang, W. H. Song, and J. M. Dai, Supercond. Sci. Technol. \textbf{22}, 015020 (2009).
21. U. Patel, J. Hua, S. H. Yu, S. Avci, Z. L. Xiao, H. Claus, J. Schlueter, V. V. Vlasko-Vlasov, U. Welp, and W. K. Kwok, Appl. Phys. Lett. \textbf{94}, 082508 (2009).
22. R. Khasanov, K. Conder, E. Pomjakushina, A. Amato, C. Baines, Z. Bukowski, J. Karpinski, S. Katrych, H.-H. Klauss, H. Luetkens, A. Shengelaya, and N. D. Zhigadlo, Phys. Rev. B \textbf{78}, 220510(R) (2008).
23. H. Shakeripour, C. Petrovic, Louis Taillefer, New Journal of Physics \textbf{11}, 055065 (2009).
24. N. Kurita, F. Ronning, Y. Tokiwa, E. D. Bauer, A. Subedi, D. J. Singh, J. D. Thompson, and R. Movshovich, Phys. Rev. Lett. \textbf{102}, 147004 (2009).
25. X. G. Luo, M. A. Tanatar, J.-Ph. Reid, H. Shakeripour, N. Doiron-Leyraud, N. Ni, S. L. Bud’ko, P. C. Canfield, Huiqian Luo, Zhaosheng Wang, Hai-Hu Wen, Ruslan Prozorov, and Louis Taillefer, [arXiv:0904.4049].
26. L. Ding, J. K. Dong, S. Y. Zhou, T. Y. Guan, X. Qiu, C. Zhang, L. J. Li, X. Lin, G. H. Cao, Z. A. Xu, and S. Y. Li, [arXiv:0906.0138].
27. T. M. McQueen, Q. Huang, V. Ksenofontov, C. Felser, Q. Xu, H. Zandbergen, Y. S. Hor, J. Allred, A. J. Williams, D. Qu, J. Checkelsky, N. P. Ong, and R. J. Cava, Phys. Rev. B \textbf{79}, 014522 (2009).
28. E. Pomjakushina, K. Conder, V. Pomjakushin, M. Bendele, and R. Khasanov, [arXiv:0905.2115].
29. K. W. Lee, V. Pardo, and W. E. Pickett, Phys. Rev. B \textbf{78}, 174502 (2008).
30. M. Sutherland, D. G. Hawthorn, R. W. Hill, F. Ronning, S. Wakimoto, H. Zhang, C. Proust, Etienne Boaknin, C. Zorov, and Louis Taillefer, [arXiv:0904.4049].
31. S. Y. Li, J.-B. Bonnemain, A. Payeur, P. Fourusual, C. H.
Wang, X. H. Chen, and Louis Taillefer, Phys. Rev. B 77, 134501 (2008).
32 C. Proust, E. Boaknin, R. W. Hill, L. Taillefer, and A. P. Mackenzie, Phys. Rev. Lett. 89, 147003 (2002).
33 M. Suzuki, M. A. Tanatar, N. Kikugawa, Z. Q. Mao, Y. Maeno, and T. Ishiguro, Phys. Rev. Lett. 88, 227004 (2002).
34 J. Lowell and J. Sousa, J. Low. Temp. Phys. 3, 65 (1970).
35 J. Willis and D. Ginsberg, Phys. Rev. B 14, 1916 (1976).
36 E. Boaknin, M. A. Tanatar, Johnpierre Paglione, D. Hawthorn, F. Ronning, R. W. Hill, M. Sutherland, Louis Taillefer, Jeff Sonier, S. M. Hayden, and J. W. Brill, Phys. Rev. Lett. 90, 117003 (2003).
37 G. E. Volovik, JETP Lett. 58, 469 (1993).
38 A. V. Sologubenko, J. Jun, S. M. Kazakov, J. Karpinski, and H. R. Ott, Phys. Rev. B 66, 014504 (2002).
39 Alaska Subedi, Lijun Zhang, D. J. Singh, and M. H. Du, Phys. Rev. B 78, 134514 (2008).
40 H. Ding, P. Richard, K. Nakayama, T. Sugawara, T. Arakane, Y. Sekiba, A. Takayama, S. Souma, T. Sato, T. Takahashi, Z. Wang, X. Dai, Z. Fang, G. F. Chen, J. L. Luo, N. L. Wang, Europhys. Lett. 83 47001 (2008).
41 K. Nakayama, T. Sato, P. Richard, Y.-M. Xu, Y. Sekiba, S. Souma, G. F. Chen, J. L. Luo, N. L. Wang, H. Ding, and T. Takahashi, arXiv:0812.0663.
42 K. Terashima, Y. Sekiba, J. H. Bowen, K. Nakayama, T. Kawahara, T. Sato, P. Richard, Y.-M. Xu, L. J. Li, G. H. Cao, Z.-A. Xu, H. Ding, and T. Takahashi, arXiv:0812.3704.