Comparison theorems for splittings of M-matrices in (block) Hessenberg form

Luca Gemignani1 · Federico Poloni1

Received: 20 June 2021 / Accepted: 25 October 2021 / Published online: 23 November 2021
© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract
Some variants of the (block) Gauss–Seidel iteration for the solution of linear systems with M-matrices in (block) Hessenberg form are discussed. Comparison results for the asymptotic convergence rate of some regular splittings are derived: in particular, we prove that for a lower-Hessenberg M-matrix $\rho(P_{GS}) \geq \rho(P_{S}) \geq \rho(P_{AGS})$, where $P_{GS}$, $P_{S}$, $P_{AGS}$ are the iteration matrices of the Gauss–Seidel, staircase, and anti-Gauss–Seidel method. This is a result that does not seem to follow from classical comparison results, as these splittings are not directly comparable. It is shown that the concept of stair partitioning provides a powerful tool for the design of new variants that are suited for parallel computation.

Keywords M-matrix · Staircase splitting · Gauss–Seidel method · Hessenberg matrix · Markov chain

Mathematics Subject Classification 65F15

1 Introduction
Solving block Hessenberg systems is one of the key issues in numerical simulations of many scientific and engineering problems. Possibly singular M-matrix linear systems in block Hessenberg form are found in finite difference or finite element methods for
partial differential equations, Markov chains, production and growth models in economics, and linear complementarity problems in operational research [2,17]. Finite difference or finite element discretizations of PDEs usually produce matrices which are banded or block banded (e.g., block tridiagonal or block pentadiagonal) [20]. Discrete-state models encountered in several applications such as modeling and analysis of communication and computer networks can be conveniently represented by a discrete/continuous time Markov chain [17]. In many cases an appropriate numbering of the states yields a chain with block upper or lower Hessenberg structures (GI/M/1 and M/G/1 queues) or, in the intersection, a block tridiagonal generator or transition probability matrix, that is, a quasi-birth-and-death process (QBD). QBDs are also well suited for modeling various population processes such as cell growth, biochemical reaction kinetics, epidemics, demographic trends, or queuing systems, amongst others [12].

Active computational research in this area is focused on the development of techniques, methods and data structures, which minimize the computational (space and time) requirements for solving large and possibly sparse linear systems. One of such techniques is parallelization. Divide-and-conquer solvers for $M$-matrix linear systems in block banded or block Hessenberg form are described in [5,8,22]. A specialization of these algorithms based on cyclic reduction for block Toeplitz Hessenberg matrices is discussed in [3]. However, due to the communication costs these schemes typically scale well with processor count only for very large matrix block sizes. Iterative methods can provide an attractive alternative primarily because they simplify both implementation and sparsity treatment. The crux resides in the analysis of their convergence properties.

Among classical iterative methods, the Gauss–Seidel method has several interesting features. It is a classical result that on a nonsingular $M$-matrix the Gauss–Seidel method converges faster than the Jacobi method [2, Corollary 5.22]. The SOR method with the optimal relaxation parameter can be better yet, but, however, choosing an optimal SOR relaxation parameter is difficult for many problems. Therefore, the Gauss–Seidel method is very attractive in practice and it is also used as preconditioner in combination with other iterative schemes. A classical example is the multigrid method for partial differential equations, where using Gauss–Seidel or SOR as a smoother typically yields good convergence properties [24]. Parallel implementations of the Gauss–Seidel method have been designed for certain regular problems, for example, the solution of Laplace’s equations by finite differences, by relying upon red–black coloring or more generally multi-coloring schemes to provide some parallelism [19]. In most cases, constructing efficient parallel true Gauss–Seidel algorithms is challenging and Processor Block (or localized) Gauss–Seidel is often used [21]. Here, each processor performs Gauss–Seidel as a subdomain solver for a block Jacobi method. While Processor Block Gauss–Seidel is easy to parallelize, the overall convergence can suffer. In order to improve the parallelism of Gauss–Seidel-type methods while retaining the same convergence rate, in [14] staircase splittings are introduced by showing that for consistently ordered matrices [20] the iterative scheme based on such partitionings splits into independent computations and at the same time exhibits the same convergence rate as the classical Gauss–Seidel iteration. An extension of this result for block tridiagonal matrices appeared in [1]. The use of a Krylov solver like
BCG, GMRES and BiCGSTAB, for block tridiagonal systems complemented with a stair preconditioner which accounts for the structure of the coefficient matrix is proposed in [13].

A classical framework to study the convergence speed of iterative methods for linear systems $Ax = b$ is that of matrix splittings: one writes $A = M - N$, with $M$ invertible, and considers the iterative method

$$x^{(\ell+1)} = Px^{(\ell)} + M^{-1}b, \quad \ell \geq 0,$$

where $P = M^{-1}N$ is the iteration matrix. Various results exist to compare the spectral radii of the iteration matrices of two splittings $A = M_1 - N_1 = M_2 - N_2$ under certain elementwise inequalities, such as

$$N_2 \geq N_1 \geq 0, \quad M_1^{-1} \geq M_2^{-1}, \quad \text{or} \quad A^{-1}N_2A^{-1} \geq A^{-1}N_1A^{-1};$$

see for instance [2,4,25].

In this paper, we consider the solution of $M$-matrix linear systems in (block) Hessenberg form, and we show new comparison results between matrix splittings that hold for this special structure. In particular, for a lower Hessenberg invertible $M$-matrix $A$ we prove the inequalities

$$\rho(P_{GS}) \geq \rho(P_S) \geq \rho(P_{AGS}),$$

where $\rho(A)$ denotes the spectral radius of $A$ and $P_{GS}, P_S, P_{AGS}$ are the iteration matrices of the Gauss–Seidel method, the staircase splitting method and the anti-Gauss–Seidel method, respectively. The first inequality fosters the use of stair partitionings for solving Hessenberg linear systems in parallel. The second inequality says that the anti-Gauss–Seidel method—also called Reverse Gauss–Seidel in [23] and Backward Gauss–Seidel in [20]—gives the better choice in terms of convergence speedup. Comparison results for more general splittings including some generalizations of staircase partitionings are also obtained.

The remarkable feature of these results is that they do not seem to arise from classical comparison results or from elementwise inequalities of the form (1.2) between the matrices that define the splittings: $M_{GS}$ is lower triangular and $M_{AGS}$ is upper triangular, so they are far from being comparable.

Another reason why our results are counterintuitive is that the intuition behind inequalities of the form (1.2) and classical comparison theorems (such as Theorem 2.1 in the following) suggests that one should put “as much of the matrix $A$ as possible” into $M$ to get a smaller radius: so it is surprising that on a lower Hessenberg matrix $AGS$, in which $M$ only has $2n - 1$ nonzeros, works better than $GS$, in which $M$ has $\frac{n(n+1)}{2}$ nonzeros, and that this property holds irrespective of the magnitude of these nonzero items.

We give an alternative combinatorial proof of the inequality $\rho(P_{GS}) \geq \rho(P_{AGS})$, which adds a new perspective and shows an elementwise inequality that can be used to derive these bounds. Extensions to deal with possibly singular $M$-matrices and block
Hessenberg structures are discussed. Finally, some numerical experiments confirm the results and give a quantitative estimate of the difference between these spectral radii.

2 Preliminaries

Let \( A \in \mathbb{R}^{n \times n} \) be an invertible M-matrix.

A regular splitting of \( A \) is any pair \((M, N)\), where \( M \) is an invertible M-matrix, \( N \geq 0 \), and \( A = M - N \). In the terminology of Forsythe [7] a linear stationary iterative method for solving the system \( Ax = b \) can be described as (1.1). Let

\[
A = M - N = M' - N'
\]

be two regular splittings of \( A \). We can derive two iterative schemes with iteration matrices \( P = M^{-1}N \) and \( P' = M'^{-1}N' \). When \( A \) is nonsingular, it is well known that the scheme (1.1) is convergent if and only if \( \rho(P) < 1 \), with \( \rho(P) \) the spectral radius of \( P \). Under convergence the asymptotic rate of convergence is also given by \( \rho(P) \), and, therefore, it is interesting to compare \( \rho(P) \) and \( \rho(P') \). A classical result is the following.

Theorem 2.1 [23] Let \((M, N)\) and \((M', N')\) be regular splittings of \( A \). If \( N \leq N' \), then \( \rho(M^{-1}N) \leq \rho((M')^{-1}N') \).

Another tool to obtain comparison results for matrix splittings is the exploitation of certain block partitionings of the matrix \( A \).

Lemma 2.1 Let

\[
M = \begin{bmatrix} M_{11} & 0 \\ A_{21} & M_{22} \end{bmatrix}, \quad N = \begin{bmatrix} N_{11} & -A_{12} \\ 0 & N_{22} \end{bmatrix}.
\]

and

\[
\hat{M} = \begin{bmatrix} M_{11} & A_{12} \\ 0 & M_{22} \end{bmatrix}, \quad \hat{N} = \begin{bmatrix} N_{11} & 0 \\ -A_{21} & N_{22} \end{bmatrix}.
\]

be two regular splittings of \( A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \), with \( A_{11}, M_{11}, N_{11} \in \mathbb{R}^{k \times k} \) and \( A_{22}, M_{22}, N_{22} \in \mathbb{R}^{(n-k) \times (n-k)} \).

Then, \( \hat{M}^{-1}\hat{N} \) and \( M^{-1}N \) have the same eigenvalues (and, hence, the same spectral radius).

Proof We shall prove that the polynomials

\[
p(x) = \det(M) \det(xI - M^{-1}N)
\]

\( \Box \) Springer
and
\[
q(x) = \det(\hat{M}) \det(xI - \hat{M}^{-1}\hat{N}) = \det(x\hat{M} - \hat{N}) = \det\left[ xM_{11} - N_{11} \atop xA_{21} \right] \atop \left[ xM_{22} - N_{22} \atop A_{12} \right] := Q(x)
\]

coincide, hence they have the same zeros. For any \( x \neq 0 \) we have
\[
P(x) = \text{diag}(I_k, xI_{n-k}) \cdot Q(x) \cdot \text{diag}(I_k, x^{-1}I_{n-k}).
\]

The proof follows from the continuity of the determinant w.r.t. the matrix entries. □

**Corollary 2.1** Let
\[
M' = \begin{bmatrix} M_{11} & 0 \\ M_{21} & M_{22} \end{bmatrix}, \quad N' = \begin{bmatrix} N_{11} & -A_{12} \\ N_{21} & N_{22} \end{bmatrix}.
\]

and
\[
\hat{M} = \begin{bmatrix} M_{11} & A_{12} \\ 0 & M_{22} \end{bmatrix}, \quad \hat{N} = \begin{bmatrix} N_{11} & 0 \\ -A_{21} & N_{22} \end{bmatrix}.
\]

(2.1)

(where the blocks on the diagonal are square) be two regular splittings of \( A \). Then,
\[
\rho(\hat{M}^{-1}\hat{N}) \leq \rho((M')^{-1}N').
\]

**Proof** By Lemma 2.1 and Theorem 2.1, \( \rho(\hat{M}^{-1}\hat{N}) = \rho(M^{-1}N) \leq \rho((M')^{-1}N') \).

□

### 3 Comparing the GS, AGS, and staircase splitting on Hessenberg matrices

Corollary 2.1 shows that a regular splitting with \( M(1:k, k+1:n) = 0 \) can be converted into one with \( M(k+1:n, 1:k) = 0 \) and \( N(1:k, k+1:n) = 0 \) by decreasing its spectral radius, that is, equivalently by improving its asymptotic rate of convergence. On a lower Hessenberg matrix, we can apply the lemma repeatedly for different values of \( k \), since each superdiagonal block \( M(1:k, k+1:n) \) contains only one nonzero that does not overlap with blocks with a different \( k \). In this way we obtain comparison results for different regular splittings.

To be more specific, let \( A \in \mathbb{R}^{n \times n} \) be a lower Hessenberg invertible M-matrix. Then
\[
M_J = \text{diag}(A), \quad N_J = M_J - A, \quad P_J = M_J^{-1}N_J
\]
\[ M_{GS} = \text{tril}(A), \quad N_{GS} = M_{GS} - A, \quad P_{GS} = M_{GS}^{-1} N_{GS} \]

are the customary Jacobi and Gauss–Seidel regular splittings. An easy modification of the Gauss–Seidel partitioning is the so called anti-Gauss–Seidel regular splitting defined by

\[ M_{AGS} = \text{triu}(A), \quad N_{AGS} = M_{AGS} - A, \quad P_{AGS} = M_{AGS}^{-1} N_{AGS}. \]

Alternative regular splittings are analyzed in the works \[14,16\] which introduce the concept of stair partitioning of a matrix aimed at the design of fast parallel (preconditioned) iterative solvers. Let \( \text{tridiag}(A) = \text{tridiag}(A_{i,i}, A_{i,i+1}) \) be the tridiagonal matrix formed from the subdiagonal, diagonal and superdiagonal entries of \( A \). The \textit{stair matrix} of first order generated by \( A \) is the \( n \times n \) matrix \( S_1 = \mathcal{S}_1(A) \) filled with the entries of \( A \) according to the following rule:

\[ S_1 = \text{tridiag}(A); \quad \text{for } i = 1 : 2 : n; \quad S_1(i,i-1) = 0; \quad S_1(i,i+1) = 0. \]

Analogously, the stair matrix of second order generated by \( A \) is the \( n \times n \) matrix \( S_2 = \mathcal{S}_2(A) \) defined by

\[ S_1 = \text{tridiag}(A); \quad \text{for } i = 2 : 2 : n; \quad S_1(i,i-1) = 0; \quad S_1(i,i+1) = 0. \]

If \( S = \mathcal{S}(A) \) is the stair matrix of the first or second order constructed from \( A \) then

\[ M_{S} = S, \quad N_{S} = M_{S} - A, \quad P_{S} = M_{S}^{-1} N_{S} \]

gives a staircase regular splitting of \( A \). The next result compares the asymptotic convergence rates of these splittings. Recall that the classical inequality

\[ \rho(P_J) \geq \rho(P_{GS}) \]

easily follows from Theorem 2.1.

**Theorem 3.1** Let \( A \) be a lower Hessenberg invertible \( M \)-matrix. Then,

\[ \rho(P_{GS}) \geq \rho(P_{S}) \geq \rho(P_{AGS}). \]

**Proof** The proof consists in applying Corollary 2.1 repeatedly for all odd values of \( k \), and then for all even values of \( k \). We depict the transformations in the case \( n = 7 \). We show here the nonzero pattern of \( M \), displaying in position \( i, j \) a symbol \( \times \) to denote a nonzero entry \( M_{ij} = A_{ij} \), and an empty cell to denote a zero entry \( M_{ij} = 0 \). The symbol \( \mapsto \) is used to denote a transformation of \( M \) that reduces the spectral radius by

\[ \odot \] Springer
Corollary 2.1.

\[
M_{GS} = \begin{bmatrix}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\end{bmatrix} \mapsto \begin{bmatrix}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\end{bmatrix} = M_{S}.
\]

This sequence of transformations shows that \( \rho(P_{GS}) \geq \rho(P_{S}) \). We then continue with even values of \( k \) to obtain the anti–Gauss–Seidel splitting.

\[
M_{S} = \begin{bmatrix}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\end{bmatrix} \mapsto \begin{bmatrix}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\end{bmatrix} = M_{AGS}.
\]

\[\square\]

Remark 3.1 Theorem 4 extends straightforwardly to nonsingular M-matrices in block Hessenberg form by considering the corresponding block regular splittings.
Comparing substitution splittings for Hessenberg matrices

Substitution splittings provide a generalization of the partitionings introduced in the previous section. A permutation \( v = (i_1, i_2, \ldots, i_n) \) of \( (1, 2, \ldots, n) \) is said a substitution order for \( M \in \mathbb{R}^{n \times n} \) if \( M_{ij} = 0 \) whenever \( j \) comes after \( i \) in the list \( v \). This property means that we can solve a system \( Mx = b \) by substitution, computing unknowns \( x_i \) in the order of the list \( v \), as in the following pseudocode:

\[
\text{for } i = i_1, i_2, \ldots, i_n \\
\quad \text{solve for } x_i \text{ in the } i\text{th row of } Mx = b; \\
\text{end}
\]

We call substitution matrix any matrix \( M \) that admits a substitution order. This includes lower triangular matrices (with order \( [1, 2, \ldots, n] \)), upper triangular matrices (with order \( [n, n-1, \ldots, 1] \)) and staircase partitionings (with order \( [1, 3, \ldots, 2, 4, \ldots] \) or \( [2, 4, \ldots, 1, 3, \ldots] \)). Substitution splittings also comprise the generalized staircase partitionings described in [14]. More generally, it is not hard to see that \( M \) is a substitution matrix if and only if \( \Pi M \Pi^T \) is lower triangular, where \( \Pi \) is the permutation matrix associated to \( v \).

The following theorem generalizes the previous result on comparing splittings for Hessenberg matrices.

**Theorem 4.1** \( A \) be a lower Hessenberg invertible M-matrix, and let \((M, N)\) be a regular splitting with a substitution matrix \( M \). Then,

\[
\rho(M^{-1}N) \geq \rho(\hat{M}^{-1}\hat{N}).
\]

**Proof** First of all, note that it is sufficient to consider splittings of the form

\[
M_{ij} = \begin{cases} 
0 & \text{if } j \text{ comes after } i \text{ in } v, \\
A_{ij} & \text{otherwise.}
\end{cases}
\] (4.1)

for some permutation \( v \). Indeed, if \( M' \) is another substitution matrix with the same \( v \), then \( N' \geq N \) and hence \( \rho((M')^{-1}N') \geq \rho(M^{-1}N) \) by Theorem 2.1.

Take such a splitting \((M, N)\), and suppose that \( M_{k,k+1} \neq 0 \) for some \( k \in \{1, 2, \ldots, n\} \). Then, \( M_{k,k+1} = 0 \), and we can apply Corollary 2.1 with the first block of size \( k \times k \) and show that the splitting \((\hat{M}, \hat{N})\) as defined in in (2.1) has \( \rho(\hat{M}^{-1}\hat{N}) \leq \rho(M^{-1}N) \).

We claim that \( \hat{M} \) is a substitution matrix, too. Indeed, consider the permutation obtained by concatenating \( v_2 = v \cap \{k+1, k+2, \ldots, n\} \) and \( v_1 = v \cap \{1, \ldots, k\} \) (with this notation we mean that the entries in the ordered lists \( v_1, v_2 \) come in the same order as in \( v \)). Then, this is a substitution order for \( \hat{M} \): indeed, if \( i \in v_2 \) and \( j \in v_1 \), then \( \hat{M}_{ij} = 0 \) by construction; while if \( i, j \) belong both to \( v_1 \) (resp. \( v_2 \)), with \( i \) coming before \( j \), then \( \hat{M}_{ij} = M_{ij} = 0 \).

Hence we have obtained a new splitting with \( \rho(\hat{M}^{-1}\hat{N}) \leq \rho(M^{-1}N) \) and a substitution matrix \( \hat{M} \) that has one more superdiagonal nonzero element than \( M \); we...
can repeat the process until we obtain \( M_{AGS} \), which is the (unique) splitting of the form (4.1) with the maximal number of superdiagonal nonzero elements. \( \square \)

**Remark 4.1** Theorem 4.1 also extends easily to nonsingular M-matrices \( A = (A_{ij}) \in \mathbb{R}^{N \times N}, A_{i,i} \in \mathbb{R}^{n_i \times n_i}, \sum_{i=1}^{n} n_i = N, \) in block Hessenberg form whenever we consider block regular splittings determined by substitution orders \( v = (i_1, i_2, \ldots, i_n) \) acting on the block entries. Adaptations of Theorems 3.1 and 4.1 for upper and block upper invertible M-matrices are immediate.

## 5 Singular systems

The solution of homogeneous singular systems \( Ax = 0 \) where \( A \) is a singular M-matrix in (block) Hessenberg form is of paramount importance for application in Markov chains. Linear stationary iterative methods of the type (1.1) have been successfully used for this problem. The rate of convergence of these iterative methods is governed by the quantity \( \gamma(P) = \max\{|\lambda| : \lambda \in \sigma(P), \lambda \neq 1\} \) where \( \sigma(P) \) is the spectrum of \( P \). Under convergence conditions this quantity is called the asymptotic convergence factor of the iterative method (1.1) applied for the solution of homogeneous singular system \( Ax = 0 \).

For the sake of clarity, let \( A \) be an irreducible singular M-matrix in lower Hessenberg form. Recall that from Theorem 4.16 in [2] \( A \) has rank \( n - 1 \) and, hence, \( \dim \ker(A) = 1 \) (see also [11] for a brief survey of properties of singular irreducible M-matrices). We assume, up to scaling, that \( A = I - T \), where \( T \) is a column stochastic matrix (in particular, \( T_{ij} \geq 0 \) for all \( i, j \)). It holds \( e^T A = 0^T \) and, hence,

\[
B = LA = \begin{bmatrix} A[1:n-1,1:n-1] & A[1:n-1,n] \\ 0^T & 0 \end{bmatrix}, \quad L = \begin{bmatrix} I_{n-1} & 0 \\ e^T & 1 \end{bmatrix}
\]

As \( A \) is irreducible, it follows that \( A_{n-1} := A[1:n-1,1:n-1] \) is a nonsingular lower Hessenberg M-matrix. This makes possible to construct Jacobi-like, Gauss–Seidel-like and staircase-like regular partitionings of \( A \) starting from their analogue for the matrix \( B \). Specifically, let us denote

\[
M'_J = L^{-1} \begin{bmatrix} \text{diag}(A_{n-1}) & 0 \\ 0^T & 1 \end{bmatrix}, \quad M'_{GS} = L^{-1} \begin{bmatrix} \text{tril}(A_{n-1}) & 0 \\ 0^T & 1 \end{bmatrix},
\]

and

\[
M'_{AGS} = L^{-1} \begin{bmatrix} \text{triu}(A_{n-1}) & 0 \\ 0^T & 1 \end{bmatrix}, \quad M'_S = L^{-1} \begin{bmatrix} \text{S}(A_{n-1}) & 0 \\ 0^T & 1 \end{bmatrix}.
\]

Theorem 3.1 implies the following.

**Theorem 5.1** Let \( A \) be an irreducible singular lower Hessenberg M-matrix. Then,

\[
\gamma(M'^{-1}_J N'_J) \geq \gamma(M'^{-1}_{GS} N'_{GS}) \geq \gamma(M'^{-1}_S N'_S) \geq \gamma(M'^{-1}_{AGS} N'_{AGS}).
\]
6 A combinatorial argument for $\rho(P_{GS}) \geq \rho(P_{AGS})$

M-matrices and non-negative matrices are intimately related to Markov chains and transition probabilities; hence the reader may wonder if the results presented here admit an alternative combinatorial proof based on comparing probabilities of certain walks on a Markov chain. We present briefly such a proof for the inequality $\rho(P_{GS}) \geq \rho(P_{AGS})$, to highlight the ideas behind the argument.

Up to scaling, we may assume $A = I - T$, where $T \in \mathbb{R}^{n \times n}$ is a substochastic matrix, i.e., $T$ is a substochastic matrix, i.e., $T \geq 0$ and $\sum_{i} T_{ii} \leq 1$, where $1 \in \mathbb{R}^{n}$ is the vector of all ones. A walk on the graph with vertices $\{1, 2, \ldots, n\}$ (from $i_{0}$ to $i_{\ell}$ of length $\ell$) is a sequence of consecutive edges (transitions) $\omega = ((i_{0}, i_{1}), (i_{1}, i_{2}), \ldots, (i_{\ell-1}, i_{\ell}))$. To a set of walks $\Omega$ we associate the transition probability matrix

$$P[\Omega] = (P[\Omega]_{ij}), \quad P[\Omega]_{ij} = \sum_{\omega \in \Omega \text{ with } i_{0} = i, i_{\ell} = j} T_{i_{1}i_{1}}T_{i_{1}i_{2}}\ldots T_{i_{\ell-1}j}.$$  

The matrix entry $P[\Omega]_{ij}$ can be interpreted as the probability of observing a walk from $i$ to $j$ belonging to $\Omega$ (conditioned on starting from $i_{0} = i$) in an absorbing Markov chain [9] with transition matrix

$$
\begin{bmatrix}
T & e \\
0 & 1
\end{bmatrix} \in \mathbb{R}^{(n+1) \times (n+1)}, \quad e = (I - T)1.
$$

We have added an additional absorbing state $n + 1$ to account for the missing probability due to $T1 \leq 1$ not being an equality. Note that $P[\Omega]$ defined in this way is a substochastic matrix only when the set $\Omega$ is prefix-free; otherwise it may contain entries larger than 1 due to repeating prefixes: e.g., when $\Omega$ contains both $((1, 2))$ and $((1, 2), (2, 3), (3, 2))$, then $P[\Omega]_{12}$ contains a sum of probabilities of events that are not disjoint.

We write $T = D + L + U$, where $L = \text{tril}(T)$ is associated with downward transitions, i.e., transitions from a level $i$ to a level $j < i$, and symmetrically $U = \text{triu}(T)$ is associated with upward transitions, i.e., transitions from a level $i$ to a level $j > i$. The key combinatorial lemma is the following.

Lemma 6.1 Let $A = I - T \in \mathbb{R}^{n \times n}$ (with $T$ substochastic) be lower Hessenberg, and $\omega$ be a walk with non-zero probability. If $\omega$ contains $k$ downward transitions, then it contains at least $k - n + 1$ upward transitions.

Proof Let us choose an integer $h$ such that $1 \leq h < n$, and define

$$
\begin{align*}
    s_{h}^{\uparrow}(\omega) &= \text{no. of transitions in } \omega \text{ from a state in}
        \{1, 2, \ldots, h\} \text{ to one in } \{h + 1, h + 2, \ldots, n\}, \\
    s_{h}^{\downarrow}(\omega) &= \text{no. of transitions in } \omega 
        \text{ from a state in } \{h + 1, h + 2, \ldots, n\} \text{ to one in } \{1, 2, \ldots, h\}.
\end{align*}
$$

\[\Box\] Springer
Clearly, once we reach \{h + 1, h + 2, \ldots, n\} we must leave it before entering it again, hence transitions of the two kinds alternate in \(\omega\), and thus

\[ s^\uparrow_h(\omega) - 1 \leq s^\downarrow_h(\omega) \leq s^\uparrow_h(\omega) + 1. \]

We take the rightmost inequality and sum over \(h\), to get

\[ s^\downarrow(\omega) \leq \sum_{h=1}^{n-1} s^\downarrow_h(\omega) \leq \sum_{h=1}^{n-1} (s^\uparrow_h(\omega) + 1) = s^\uparrow(\omega) + (n - 1). \]

Here, \(s^\uparrow(\omega)\) is the total number of upward transitions in \(\omega\), which is equal to \(\sum_{h=1}^{n-1} s^\uparrow_h(\omega)\) because in a lower Hessenberg matrix each upward transition with nonzero probability is of the form \((h, h + 1)\) for some \(h\). On the other hand, \(s^\downarrow(\omega)\) is the number of downward transitions in \(\omega\), which is smaller or equal than the sum \(\sum_{h=1}^{n-1} s^\downarrow_h(\omega)\), since each downward transition is counted in \(s^\downarrow_h(\omega)\) for at least one choice of \(h\), but may be counted in multiple ones: for instance, a transition from state 4 down to state 1 is counted in \(s^\downarrow_1(\omega)\), \(s^\downarrow_2(\omega)\), and \(s^\downarrow_3(\omega)\).

From the lemma we can obtain an alternative proof of the following result.

**Theorem 6.1** Let \( A = I - T \in \mathbb{R}^{n \times n} \) (with \( T \) substochastic) be lower Hessenberg. Then, \( \rho(P_{GS}) \geq \rho(P_{AGS}) \).

**Proof** By standard arguments for sojourn and hitting probabilities in Markov chains, we have

\[ P[\text{walks of any length } \ell \text{ with 0 downward transitions}] = I + (D + U) + (D + U)^2 + (D + U)^3 + \cdots = (I - D - U)^{-1}, \]

and

\[ P[\text{walks with exactly } k \text{ downward transitions, ending with a downward transition}] = (I - D - U)^{-1} L (I - D - U)^{-1} L (I - D - U)^{-1} L \cdots (I - D - U)^{-1} L = P_{AGS}^k, \]

where \( P_{AGS} = (I - D - U)^{-1} L \) is the iteration matrix of the anti-Gauss–Seidel method. Similarly, when \( k \geq n - 1 \), we have

\[ P[\text{walks with at least } k - n + 1 \text{ upwards transitions}] = (I - D - L)^{-1} U (I - D - L)^{-1} U (I - D - L)^{-1} U \cdots (I - D - L)^{-1} U (I + T + T^2 + \cdots) = P_{GS}^{k-n+1} (I - T)^{-1}, \]
since a walk with at least \( k - n + 1 \) upward transitions can be seen as a walk with exactly \( k - n + 1 \) upward transitions, ending with one of them, followed by any walk. In view of Lemma 6.1, the following inequality hold component-wise

\[
P^k_{AGS} \leq P^{k-n+1}_{GS} (I - T)^{-1}, \quad \text{for all } k \geq n - 1, \tag{6.1}
\]

and from (6.1) we get

\[
\left\| P^k_{AGS} \right\|_\infty^{1/k} \leq \left\| P^{k-n+1}_{GS} \right\|_\infty^{1/k} \left\| (I - T)^{-1} \right\|_\infty^{1/k}. 
\]

Passing to the limit and using Gelfand’s formula \( \lim_{k \to \infty} \left\| M^k \right\|_\infty^{1/k} = \rho(M) \), we obtain \( \rho(P_{AGS}) \leq \rho(P_{GS}) \). \( \square \)

**Remark 6.1** Equation (6.1) shows that this comparison theorem follows from an elementwise inequality, although a more complicated one than the ones considered in [4,25].

### 7 Numerical experiments

To verify the statements of the theorems and give a quantitative assessment of the difference between \( \rho(P_{GS}), \rho(P_{S}), \rho(P_{AGS}) \), we plot them for various examples.

To obtain a random lower Hessenberg M-matrix \( A \in \mathbb{R}^{n \times n} \), we generate random non-negative \( P \in \mathbb{R}^{n \times n}, u, v \in \mathbb{R}^{n} \) by drawing their entries uniformly and independently from \([0, 1]\), and then we find the unique lower Hessenberg matrix \( A \) such that

\[
Au = v \quad \text{and} \quad A_{ij} = -P_{ij} \quad \text{for all } i \neq j, i \geq j - 1.
\]

In Matlab code:

```matlab
P = tril(rand(n), 1);
P = P - diag(diag(P));
u = rand(n, 1);
v = rand(n, 1);
d = (v + P * u) ./ u;
A = diag(d) - P;
```

The condition \( Au = v \) ensures that \( A \) is a nonsingular M-matrix, since any Z-matrix for which \( Au = v \) for some \( u > 0, v \geq 0, v \neq 0 \) is an M-matrix [2, Chapter 6, Condition I28].

We show in Fig. 1 the values of the three iteration radii for 50 random \( 5 \times 5 \) lower Hessenberg matrices. One can confirm that the three values are always in the order predicted by Theorem 3.1; moreover, the experiments reveal that while the difference between \( \rho(P_{GS}) \) and \( \rho(P_{S}) \) if often minimal, the difference with \( \rho(P_{AGS}) \) is much more substantial.

Springer
In Fig. 2, we investigate what happens as the matrices $A$ get close to singular. For this experiment, rather than taking random $u$, $v$, we set $u = 1$ and $v = \eta 1$ for a certain scalar $\eta$. The first plot displays the three spectral radii; one sees that as $\eta$ gets smaller they get closer to 1 (i.e., the iterative methods get slower) and the difference between them is harder to detect. For this reason, in a second plot we display the value of $k$ needed to obtain $\rho(P)^k \leq 0.01$ (that is, $k = \log_{0.01} \rho(P)$). This quantity gives an indication of the number of iterations required for the convergence of an iterative method, and is a more practical metric for this case. One can see that the benefits of the anti-Gauss–Seidel splitting in terms of convergence speed are present even in cases where the matrix is closer to singular.

For a more challenging example from applications, we take the generator matrix $Q$ from the queuing model described in [6]. This is a complex queuing model, a BMAP/PHF/1/N model with retrial system with finite buffer and non-persistent customers. We do not describe in detail the construction of this matrix, as it would take some space, but refer the reader to [6, Sections 4.3 and 4.5]. The only change with respect to the paper is that we fix the orbit size to a finite capacity $K$ (when the orbit is full, customers leave the queue forever). We set $N = 5$, which results in a block upper Hessenberg matrix $Q$ with $K \times K$ blocks of size 48. This matrix $Q$ is singular $M$-matrix, as it is the generator of an irreducible continuous-time Markov chain; hence we can apply the strategy in Sect. 5 to $A = -Q$ to solve the system $\pi Q = 0$ and determine the invariant distribution of the queue. In addition, the matrix is quite sparse: for $K = 50$ it has 1.1% of nonzero elements. This sparsity makes the use of iterative methods appealing, especially if one has in mind simulations with large values of $N$ and $K$. In this paper, we restrict to small and medium-sized matrices, so that we can comfortably compute their spectral radii with the Matlab function `eig`.

![Comparison of iteration radii for 50 random 5 × 5 lower Hessenberg M-matrices, sorted by decreasing value of $\rho(GS)$](image)
In Fig. 3, we plot once again the number of iterations required to reach $r_k^k \leq 0.01$, for various values of $K$, using the block variants of the iterative methods described above.

Note that this time the matrix is upper Hessenberg, not lower, hence the results are reversed and the best method is Gauss-Seidel, with a block lower bidiagonal $M_{GS}$, as predicted by the theory.

We conclude the section with a numerical exploration of overrelaxation in the context of these iterative methods. As is well known, the main difficulty in using SOR is the choice of the parameter $\omega$. Our theoretical results do not cover the case $\omega > 1$, 

 Springer
Comparison theorems for splittings of M-matrices in… 863

since it does not lead to regular splittings; however, it is still interesting to investigate the behavior of the iteration radius in this regime.

We recall briefly that GS and AGS with overrelaxation are given by

\[ \begin{align*}
    x_i^{(k+1)} &= (1 - \omega) x_i^{(k)} + \omega A_{ii}^{-1} \left( b - \sum_{j<i} A_{ij} x_j^{(k+1)} - \sum_{j>i} A_{ij} x_j^{(k)} \right), & i &= 1, 2, \ldots, n \\
    x_i^{(k+1)} &= (1 - \omega) x_i^{(k)} + \omega A_{ii}^{-1} \left( b - \sum_{j>i} A_{ij} x_j^{(k+1)} - \sum_{j<i} A_{ij} x_j^{(k)} \right), & i &= 1, 2, \ldots, n
\end{align*} \]

One can verify that these formulas correspond to taking \( M_{GSOR,\omega} = \frac{1}{\omega} D + L \), \( M_{AGSOR,\omega} = \frac{1}{\omega} D + U \), where \( D, L, U \) stand for the (block) diagonal, strictly (block) lower triangular, and strictly (block) upper triangular part of the matrix \( A \).

As for the staircase splitting, a natural choice to perform overrelaxation is taking

\[ \begin{align*}
    x_i^{(k+1)} &= (1 - \omega) x_i^{(k)} \\
    &\quad + \omega A_{ii}^{-1} \left( b - \sum_{j \in J_i} A_{ij} x_j^{(k+1)} - \sum_{j \notin J_i, j \neq i} A_{ij} x_j^{(k)} \right), & i &= 1, 2, \ldots, n
\end{align*} \]


where

\[ J_i = \begin{cases} \{i - 1, i + 1\} \cap \{1, 2, \ldots, n\} & \text{if } i \text{ odd}, \\ \emptyset & \text{if } i \text{ even}, \end{cases} \]

i.e., for each index \( i \) one takes a weighted combination of the old entry \( x_i^{(k)} \) and what would be the new entry computed with the staircase splitting. This yields a splitting with \( M_{STSOR, \omega} = M_S + \frac{1-\omega}{\omega} D \), a matrix which coincides with \( M_S \) on the off-diagonal entries (or blocks) but has the diagonal entries (blocks) scaled by a factor \( \frac{1}{\omega} \).

This is not the only possible choice to define an over-relaxed version of the staircase splitting; a possible alternative is moving the weighted combination inside the parentheses and writing

\[
x_i^{(k+1)} = A_{ii}^{-1} \left( b - \sum_{j \in J_i} A_{ij} \left( (1 - \omega)x_j^{(k)} + \omega x_j^{(k+1)} \right) - \sum_{j \notin J_i, j \neq i} A_{ij} x_j^{(k)} \right),
\]

\( i = 1, 2, \ldots, n \)

instead. This yields a splitting with \( M_{STSOR2, \omega} = \omega M_S + (1 - \omega) D \), i.e., a matrix which coincides with \( M_S \) in the diagonal entries (blocks) but has the off-diagonal entries (blocks) scaled by a factor \( \omega \).

In Fig. 4 we investigate the effect of overrelaxation on the matrix \( Q \) from the previous example, setting \( K = 20 \) as the number of blocks. In this example, the iteration radius decreases until a certain threshold is reached, but after that it increases sharply and quickly surpasses 1 (and then the iterative method stops converging). This
threshold strongly depends on the method used, with STSOR2 being the one that is less sensitive to the value of $\omega$. One can see that even for $\omega > 1$ the inequality between $\rho(P_{\text{GSOR},\omega})$, $\rho(P_{\text{STSOR},\omega})$, $\rho(P_{\text{AGSOR},\omega})$ (but not $\rho(P_{\text{STSOR2},\omega})$) is preserved in this example.

It is worth pointing out that for the optimal choice of the relaxation parameter $\omega = 1.33$ in GSOR we find $\rho(P_{\text{GSOR},1.33}) \simeq (\rho(P_5))^6.335$. Since one iteration of the block staircase method requires only two parallel steps (as opposed to $n - 1$ for GSOR) it follows that even in absence of overrelaxation the staircase splitting method is still more efficient in a parallel computing environment. Comparison of the methods for the best choice of the corresponding relaxation parameters also yields considerably better results. For instance, we find $\rho(P_{\text{GSOR},1.33}) \simeq (\rho(P_{\text{STSOR2},1.89}))^{2.31}$.

In our last experiment, we consider an example with a block tridiagonal matrix. We take $Q = -(A \otimes I_n + I_n \otimes A + \lambda_1 \text{diag}(0_{n-1}, 1) \otimes R)$, where $A \in \mathbb{R}^{n \times n}$ is tridiagonal,

$$A = \begin{bmatrix} \lambda & -\mu \\ -\lambda & \lambda + \mu & -2\mu \\ -\lambda & \lambda + 2\mu & -3\mu \\ & \ddots & \ddots & \ddots \\ & & -\lambda & \lambda + s\mu & -s\mu \\ & & & \ddots & \ddots & \ddots \\ & & & & -\lambda & \lambda + s\mu & -s\mu \\ & & & & & -\lambda & s\mu \end{bmatrix},$$

and $R \in \mathbb{R}^{n \times n}$ is lower bidiagonal with diagonal and subdiagonal entries equal to 1 and $-1$, respectively, and $R(n,n) = 0$. We set $n = 21$, $s = 5$, $\lambda = 0.9$, $\mu = 0.1$ and $\lambda_1 = 1$. The matrix $Q$ is a singular block tridiagonal $M$-matrix, and is the generator of nearly-separable continuous-time Markov chain associated to a 2-queue overflow network [15]. Iterative methods are effective for the solution of nearly-separable Markov chains due to the knowledge of a good starting point [18]. From the results in Sects. 3 and 5 it follows that GS, AGS, and staircase splittings have the same iteration radius in absence of overrelaxation. In Fig. 5 one sees that this property is preserved for all values of $\omega$ for GSOR, STSOR, AGSOR (at least in this example), but not for STSOR2. Again, by comparison of the optimal choices for the relaxation parameter we find $\rho(P_{\text{GSOR},1.52}) \simeq (\rho(P_{\text{STSOR2},1.52}))^{1.686}$. Note that the block staircase partitioning is not block triangular and therefore the well known necessary condition $\omega \in (0, 2)$ for the convergence of SOR (due to Kahan [10]) does not apply.

8 Conclusions

In this paper we have shown that there is a hierarchy among matrix splittings for $M$-matrices in Hessenberg form, covering the Gauss–Seidel, anti-Gauss–Seidel, and staircase partitionings, together with some generalizations. These results encourage further investigation into comparison theorems for $M$-matrix splittings, suggesting
that this classical topic is far from being completely analyzed and solved. Future work is concerned with the analysis of these generalizations for the design of efficient processor-oriented variants of staircase splitting methods for parallel computation. Another interesting topic is the comparison of classical stationary iterative methods and staircase splitting methods for semidefinite matrices, under suitable structures.

Finally, the analysis of relaxation techniques applied to (block) staircase splittings is an ongoing research.

References

1. Amodio, P., Mazzia, F.: A parallel Gauss–Seidel method for block tridiagonal linear systems. SIAM J. Sci. Comput. 16(6), 1451–1461 (1995). https://doi.org/10.1137/0916084
2. Berman, A., Plemmons, R.J.: Nonnegative matrices in the mathematical sciences. In: Classics in Applied Mathematics, vol. 9. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1994). https://doi.org/10.1137/1.9781611197126. Revised reprint of the 1979 original
3. Bini, D., Meini, B.: On cyclic reduction applied to a class of Toeplitz-like matrices arising in queueing problems. In: Stewart, W.J. (ed.) Computations with Markov Chains, Springer, Boston (1995)
4. Csordas, G., Varga, R.S.: Comparisons of regular splittings of matrices. Numer. Math. 44(1), 23–35 (1984). https://doi.org/10.1007/BF01389752
5. Dongarra, J., Cleary, A.: Implementation in scalapack of divide-and-conquer algorithms for banded and tridiagonal linear systems. Center for Research on Parallel Computation (CRPC), Rice University, Tech. rep. (1997)
6. Dudin, S., Dudin, A., Kostyukova, O., Dudina, O.: Effective algorithm for computation of the stationary distribution of multi-dimensional level-dependent Markov chains with upper block-Hessenberg structure of the generator. J. Comput. Appl. Math. 366, 112 (2020). https://doi.org/10.1016/j.cam.2019.112425
7. Forsythe, G.E.: Solving linear algebraic equations can be interesting. Bull. Am. Math. Soc. 59, 299–329 (1953). https://doi.org/10.1090/S0002-9904-1953-09718-X
8. Gemignani, L., Lotti, G.: Efficient and stable solution of M-matrix linear systems of (block) Hessenberg form. SIAM J. Matrix Anal. Appl. 24(3), 852–876 (2003). https://doi.org/10.1137/S0895479801387085
9. Grinstead, C.M., Snell, J.L.: Introduction to Probability. AMS (2003). http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/book.html
10. Kahan, W.M.: Gauss–Seidel methods of solving large systems of linear equations. Ph.D. thesis (1958)
11. Kalaukh, A., Lavanya, S., Sivakumar, K.C.: Singular irreducible M-matrices revisited. Linear Algebra Appl. 565, 47–64 (2019). https://doi.org/10.1016/j.laa.2018.11.030
12. Latouche, G., Ramaswami, V.: Introduction to Matrix Analytic Methods in Stochastic Modeling. ASA-SIAM Series on Statistics and Applied Probability. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; American Statistical Association, Alexandria, VA (1999). https://doi.org/10.1137/1.9780898719734
13. Li, H.B., Huang, T.Z., Zhang, Y., Liu, X.P., Li, H.: On some new approximate factorization methods for block tridiagonal matrices suitable for vector and parallel processors. Math. Comput. Simul. 79(7), 2135–2147 (2009). https://doi.org/10.1016/j.matcom.2008.09.009
14. Lu, H.: Stair matrices and their generalizations with applications to iterative methods. I. A generalization of the successive overrelaxation method. SIAM J. Numer. Anal 37(1), 1–17 (1999). https://doi.org/10.1137/S0036142998343294
15. Meier-Hellstern, K.: The analysis of a queue arising in overflow models. IEEE Trans. Commun. 37(4), 367–372 (1989). https://doi.org/10.1109/26.20117
16. Meurant, G.: Domain decomposition preconditioners for the conjugate gradient method. Calcolo 25(1–2), 103–119 (1989). https://doi.org/10.1007/BF02575749
17. Nelson, R.: Probability, Stochastic Processes, and Queueing Theory. The Mathematics of Computer Performance Modeling, Springer, New York (1995). https://doi.org/10.1007/978-1-4757-2426-4
18. O’Leary, D.P.: Iterative methods for finding the stationary vector for Markov chains. In: Linear Algebra, Markov Chains, and Queueing Models (Minneapolis, MN, 1992), IMA Vol. Math. Appl., vol. 48, pp. 125–136. Springer, New York (1993). https://doi.org/10.1007/978-1-4613-8351-2_9
19. Ortega, J.M., Voigt, R.G.: Solution of partial differential equations on vector and parallel computers. SIAM Rev. 27(2), 149–240 (1985). https://doi.org/10.1137/1027055
20. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2003). https://doi.org/10.1137/1.9780898718003
21. Shang, Y.: A distributed memory parallel Gauss–Seidel algorithm for linear algebraic systems. Comput. Math. Appl. 57(8), 1369–1376 (2009). https://doi.org/10.1016/j.camwa.2009.01.034
22. Stewart, G.W.: On the solution of block Hessenberg systems. Numer. Linear Algebra Appl. 2(3), 287–296 (1995). https://doi.org/10.1002/1099-1506(199506)2:3<287::AID-NLA8>3.0.CO;2-C
23. Varga, R.S.: Matrix Iterative Analysis. Springer Series in Computational Mathematics, vol. 27, expanded Springer, Berlin (2000). https://doi.org/10.1007/978-3-642-05156-2
24. Wallin, D., Löf, H., Hagersten, E., Holmgren, S.: Multigrid and Gauss–Seidel smoothers revisited: parallelization on multiprocessors. In: Egan, G.K., Muraoka, Y. (eds.) Proceedings of the 20th Annual International Conference on Supercomputing, ICS 2006, Cairns, Queensland, Australia, pp. 145–155. ACM (2006). https://doi.org/10.1145/1183401.1183423
25. Woźnicki, Z.I.: Matrix splitting principles. Int. J. Math. Math. Sci. 28(5), 251–284 (2001). https://doi.org/10.1155/S0161171201007062

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.