Large-Scale Structure of Short-Lived Lymanα Emitters

Ikkoh Shimizu,1* Masayuki Umemura,1 † Atsunori Yonehara,2 ‡ §

1 Center for Computational Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
2 Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstrasse 12-14, 69120, Heidelberg, Germany; Department of Physics, Faculty of Science, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto, 603-8555, Japan

Abstract

Recently discovered large-scale structure of Lyα Emitters (LAEs) raises a novel challenge to the cold dark matter (CDM) cosmology. The structure is extended over more than 50 Mpc at redshift $z = 3.1$, and exhibits a considerably weak angular correlation. Such properties of LAE distributions appear to be incompatible with the standard biased galaxy formation scenario in the CDM cosmology. In this paper, by considering the possibility that LAEs are short-lived events, we attempt to build up the picture of LAEs concordant with the CDM cosmology. We find that if the lifetime of LAEs is as short as $(6.7 \pm 0.6) \times 10^7$ yr, the distributions of simulated galaxies successfully match the extension and morphology of large-scale structure of LAEs at $z = 3.1$, and also the weak angular correlation function. This result implies that LAEs at $z = 3.1$ do not necessarily reside in high density peaks, but tends to be located in less dense regions, in a different way from the expectation by the standard biased galaxy formation scenario. In addition, we make a prediction for the angular correlation function of LAEs at redshifts higher than 3. It is found that the prediction deviates from that by the standard biased galaxy formation scenario even at redshifts $4 \lesssim z \lesssim 6$.

Key words: Galaxies – Lyα emitters; Galaxies – correlation function; Galaxies – Evolution

1 INTRODUCTION

Recently, the deep imaging surveys by 8 ~ 10 m class telescopes with narrow-band filter have effectively revealed the properties of Lyα emitters (LAEs), which are one class of high redshift objects (Cowie & Hu 1998; Hu et al. 1998, 1999, 2002). Based on the observational results, it is inferred that LAEs have smaller sizes, much less dust, and a smaller amount of stellar component than the other class of high redshift galaxies, e.g., Lyman Break Galaxies (LBGs) at same redshifts (Shapley et al. 2001; Venemans et al. 2002). The spatial distribution of observed LAEs generally shows large filamentary structure (Shimasaku et al. 2003; Ouchi et al. 2004, 2005; Matsuda et al. 2005). However, as pointed out by Hamana et al. (2004) recently, the observed properties of LAEs such as weak angular correlation function (ACF) are not explained well by a standard biased galaxy formation scenario in the context of cold dark matter (ΛCDM) cosmology. Especially, the large-scale structure of LAEs found by Havashimo et al. (2004) is difficult to reproduce. The large-scale structure shows belt-like structure rather than filamentary structure, and may correspond to 6σ density fluctuation if it follows underlying dark matter distribution (Kauffmann et al. 1999). ACF is significantly weaker than that predicted in a conventional biased galaxy formation model (e.g., Kauffmann, Nusser & Steinmetz (1997)). Moreover, ACF becomes negative at small scale of < 180 arcsec ($< 6h^{-1}$ Mpc) in high density regions (HDR) (Havashimo et al. 2004). Hence, the observational features of spatial distribution of LAEs appear to be incompatible with the standard biased galaxy formation model.

From a theoretical point of view, it is recently argued that LAEs corresponds to an early chemodynamical evolution phase of primordial galaxies (Mori & Umemura 2006a,b). In an ultra high resolution simulation on the dynamical and chemical evolution of galaxy by Mori & Umemura (2006a,b), it is shown that multiple supernova explosions at an early phase of $< 3 \times 10^8$ yr result in forming high density cooling shells, which emit strong Lyα as to account for the luminosity of LAEs. However, it has not been argued whether this picture of LAEs is consistent with the observation.

In this letter, the spatial distributions of LAEs are simulated by taking into account the lifetime of the emitters, which has not been thitherto considered in the standard...
biased galaxy formation scenario (Kauffmann et al. 1993; Hamana et al. 2004). Then, we investigate whether the picture of short-lived LAEs can explain the clustering properties of LAEs found by Hayashino et al. (2004). In §2, we describe the basic picture and numerical method. In §3, the results are presented with some discussion. §4 is devoted to the summary. Throughout this letter, we adopt ΛCDM cosmology with the matter density Ωm = 0.3, the cosmological constant ΩΛ = 0.7, the Hubble constant h = 0.7 in units of Hz = 100 km s⁻¹ Mpc⁻¹, the baryon density ΩBh² = 0.02, and σ₈ = 0.92 (Spergel et al. 2003).

2 MODEL

2.1 Basic Picture

In Fig. 1, the schematic picture of the present galaxy formation model is presented. In the context of a conventional biased galaxy formation model, density peaks with the amplitude which exceeds a minimum threshold value (δmin in Fig. 1) in the linear regime are identified as galaxies. In other words, only this threshold of fluctuations has been discussed as a parameter of biased galaxy formation (Kauffmann et al. 1993; Hamana et al. 2004).

Here, we introduce an additional criterion with postulating that LAEs evolve to galaxies with no strong Lyα emission after their short lifetime. More specifically, we take following assumption for LAEs: (i) LAEs are galactic objects that form at peaks of density fluctuations. (ii) LAEs are in the phase of their first starbursts. (iii) Chemical evolution of LAEs results in strong attenuation of Lyα emission due to the increase of dust, and therefore cannot be observed as LAEs after their lifetime. We incorporate this picture by setting a maximum threshold of density fluctuations (δmax in Fig. 1). Then, we regard the fluctuations between δmin and δmax as LAEs (a shaded region in Fig. 1). The growth time from δmin to δmax corresponds to the lifetime of LAEs. For instance, peak A in Fig. 1 is the evolved galaxy that cannot be observed as LAEs because of exceeding δmax at the redshift. Peaks B and D can be observed as LAEs. Peak D is the oldest LAE.

2.2 Numerical Method

To compare our model with the observed clustering properties of LAEs (Hayashino et al. 2004), we numerically generate LAE distributions, and estimate the two-point angular correlation function by following procedures.

2.2.1 Generation of LAE Spatial Distribution

It is assumed that the dynamical evolution of baryonic matter follows that of dark matter. Density fields of dark matter are created by generating random Gaussian density fields, and the dynamical evolution is represented by truncated Zel’dovich approximation (Sathyaprakash et al. 1993). This approximation traces the growth of density fluctuations in the linear regime, and truncate nonlinear growth by suppressing the amplitude of density fluctuations that becomes nonlinear. In the present simulation, we use k-space Gaussian window Π = exp(−k²/2kG²) as truncation, where kG corresponds to the scale that just enters nonlinear stage at a redshift z. The truncated power spectrum of density fluctuation at z, \(P^\ast(k, z) \), is written as

\[
P^\ast(k, z) = P(k, z)\Pi^2(k, z),
\]

where \(P(k, z) \) is the power spectrum of density fluctuations at z. The wavenumber \(k_i \) and real scale \(r_i \) have the relation of \(k_i = 2\pi/r_i \).

According to the ΛCDM theory, the physical size of 1σ density fluctuation that collapses just at \(z = 3.1 \) is about \(R = 1h^{-1} \) Mpc. In this study, we consider density fluctuations down to this physical size. In order to directly compare our model with the LAE data in the comoving volume of \((50h^{-1} \text{ Mpc})^3\) (Hayashino et al. 2004), we simulate the same comoving volume with 200³ grids. The whole simulation box contains \(4.5 \times 10^{15}M_\odot \) in dark matter component, and each cell is \(0.25h^{-1} \) Mpc³ and has \(5.7 \times 10^8M_\odot \) on average. Next, we make coarse-graining of density fields by comoving volume of \((1h^{-1} \text{ Mpc})^3\) which corresponds to the physical size of interest. Each coarse-grained cell has \(3.6 \times 10^{10}M_\odot \) in dark matter on average. The coarse-grained cells that satisfy the density fluctuation criterion, \(\delta_{\text{min}} \leq \delta \leq \delta_{\text{max}} \), are regarded as LAEs. The positions are assumed to be the center of mass in coarse-grained cell.

We choose several combinations of δmin and δmax. A set of δmin and δmax is constrained so that the number of simulated LAEs should match the observed number of LAEs at \(z = 3.1 \) (Hayashino et al. 2004). Thus, if δmin is set, then δmax is determined from the constraint of the number of LAEs. In the linear regime, only density fluctuations with \(\delta \geq 1.7 \) corresponds to collapsed objects (Peacock 1999). Therefore, we consider δmin larger than 1.7. Resultant three-dimensional distributions of LAEs are projected into a two-dimensional plane to compare observed angular distributions.
distribution of LAEs, we use a following well-known estimator, \(\theta, \theta \) RDPs in a range of \(\langle \ddr \rangle \) is defined by the standard deviation of ACFs. \(\sigma_r = 1.70 \) \(\delta_{\text{min}} = 5.41 \) as Hayashino et al. (2004), where the number density 'High Density Region' (HDR) defined under the same condition as Hayashino et al. (2004); Venemans et al. 2005). The observed overdensities known overdensities that generally indicate strong correlation such as radio galaxies (Steidel et al. 2000; Hayashino et al. 2004; Venemans et al. 2003). The observed overdensities may correspond to the situation shown in the right pane of Fig. 2 and the observed LAEs correspond to the left panel of Fig. 2. In that sense, the results here look consistent with these observational features. Hence, the picture in this paper can explain not only a correlation function to be belt-like and less clustered, similar to the observed spatial distribution of LAEs (Hayashino et al. 2004).

In order to quantify the difference in spatial distributions, we calculate ACFs. In Fig. 3 the resultant ACFs for all the model are presented. Also, the ACF for LAEs observed in SSA22a field (Hayashino et al. 2004) is shown. The upper and the lower panels show the ACF in the whole region and that in HDR, respectively. The results show different behaviors on scales smaller than \(\sim 300 \) arcsec. The biased galaxy formation model shows strong correlation on small scales as expected in a standard biased model (Kauffmann et al. 1999), and obviously does not match the ACF of observed LAEs in SSA22a field. Furthermore, the model with \((\delta_{\text{min}}, \delta_{\text{max}}) = (2.5, 2.63) \) results in slightly stronger ACF than the observation. The model with \((\delta_{\text{min}}, \delta_{\text{max}}) = (1.7, 1.75) \) remarkably agrees with the ACF of LAEs in SSA22a field. In the HDR, the ACF exhibits negative correlation in the same way as the observation. The reduction of ACF for smaller \(\delta_{\text{min}} \) is understood as follows. In the random Gaussian density fields in a ΛCDM universe, higher density peaks are more clustered, while lower density peaks are located in less dense regions surrounding highest density regions. Thus, if small \(\delta_{\text{min}} \) is adopted and highest peaks are cut by \(\delta_{\text{max}} \) the objects of interest are located in less dense regions and accordingly the amplitude of ACF becomes smaller. Hence, the result that the model with \((\delta_{\text{min}}, \delta_{\text{max}}) = (1.7, 1.75) \) reproduces the observed ACF implies that LAEs at \(z = 3.1 \) do not reside in highest density peaks, but are located in less dense regions.

Observationally, LAEs have been discovered around known overdensities that generally indicate strong correlation such as proto-cluster region including massive galaxies such as radio galaxies (Steidel et al. 2000; Hayashino et al. 2004; Venemans et al. 2003). The observed overdensities may correspond to the situation shown in the right pane of Fig. 2 and the observed LAEs correspond to the left panel of Fig. 2. In that sense, the results here look consistent with these observational features. Hence, the picture in this paper can explain not only a correlation function.

![Figure 2. LAE distribution for different values of δmin and δmax. Left panel is the LAE distribution for the model with δmin = 1.7 and δmax = 1.75, and middle panel is δmin = 2.5 and δmax = 2.63. Right panel is δmin = 5.4 and δmax = ∞, which is corresponding to a conventional biased galaxy formation model. The contours represent high density regions (HDRs) of LAEs under the same condition as Hayashino et al. (2004).](image-url)
3.2 Lifetime of LAEs

As shown above, $\delta_{\text{min}} = 1.7$ gives the best fit model to account for the observed ACF. Since $\delta = 1.7$ is a critical amplitude for a fluctuation to collapse (Peacock 1998), we can conclude that LAEs begin to shine just after the collapse. In other words, LAEs should be in the first phase of galaxy evolution. Since the model with $(\delta_{\text{min}}, \delta_{\text{max}}) = (1.7, 1.75)$ agrees with the observed ACF at $z = 3.1$, LAEs are thought to shine during the growth time from δ_{min} to δ_{max}. The fluctuation with δ_{max} at $z = 3.1$ collapses at a higher redshift z_{coll} when the amplitude exceeds δ_{min}. Hence, the lifetime of LAEs can be assessed by the cosmic time between $z = 3.1$ and z_{coll}, which is 6.7×10^7 yr. Here, there is a small uncertainty in this estimation. When δ_{min} is chosen, δ_{max} is determined to match the number of observed LAEs. Since we generate random numbers to produce density fluctuations, a different set of random numbers results in slight difference in δ_{max}.

3.3 Luminosities of LAEs

We also calculate Lyα luminosities of simulated LAEs, using an evolutionary spectral synthesis code ‘PEGASE’ (Fioc & Rocca-Volmerange 1997). As a result, we have found that evaluated Lyα luminosities match those of observed LAEs ($L_{\text{Ly} \alpha} \sim 10^{42-43}$ ergs$^{-1}$) (Havashino et al. 2004; Matsuda et al. 2004; van Breukelen, Jarvis, & Venemans 2005). In this paper, density fields are coarse-grained by a scale of $1 h^{-1}$ Mpc which corresponds to 1σ density fluctuations in the ΛCDM cosmology. If a smaller scale is taken, intrinsic Lyα luminosities fall short of 10^{42-43} ergs$^{-1}$ during Lyα bright phase. For instance, if a coarse-graining scale is $0.25 h^{-1}$ Mpc, intrinsic Lyα luminosities are $\sim 10^{41}$ ergs$^{-1}$. On the other hand, if a scale larger than $1 h^{-1}$ Mpc is taken, the number of collapsed objects is not enough to account for the observed LAE number. Hence, 1σ density fluctuations are favorable to explain the observations.

3.4 ACF of LAEs at $3 < z < 6$

By assuming the best fit model ($\delta_{\text{min}} = 1.7$ and $\delta_{\text{max}} = 1.75$), we can predict ACFs of LAEs at higher redshifts. In
Fig. 4, the prediction of ACFs at redshifts of 3.1, 4.0, 5.0, and 6.0 are presented. A biased galaxy formation model is also presented, where the number of objects is scaled as to be the same as that in the best fit model. δ_{min} of biased galaxy formation model in each redshift is $\delta_{\text{min}} = 4.2$ at $z = 4$, $\delta_{\text{min}} = 3.5$ at $z = 5$, and $\delta_{\text{min}} = 2.8$ at $z = 6$, respectively. As seen in this figure, the ACF of best fit model approaches to that of biased galaxy formation model at higher redshifts. In other words, a larger fraction of collapsed objects shine as LAEs at higher redshifts. But, it is worth noting that there is still noticeable difference between the best fit model and a biased galaxy formation model even at $z = 6$. It implies that a certain fraction has been already extinguished, so that they are not detected as LAEs.

4 SUMMARY

To account for the recently discovered large-scale structure of LAEs at $z = 3.1$ (Hayashino et al. 2004), we have introduced a novel picture for LAEs by focusing on the lifetime of emitters. We have simulated the spatial distributions of collapsed objects by generating random Gaussian fluctuations based on the truncated Zel’dovich approximation in the ΛCDM cosmology. We have found that a conventional biased galaxy formation model is not reconciled with the observed correlation function of LAEs. If highest peaks above $\delta = 1.75$ are cut and mild peaks between $\delta = 1.7$ and $\delta = 1.75$ are regarded as LAEs, the clustering properties including two-point angular correlation function agree quite well with the observation. Lyα luminosities also match those of observed LAEs. The growth time from $\delta = 1.7$ to $\delta = 1.75$ can be translated into the lifetime of LAEs, which is assessed to be $(6.7 \pm 0.6) \times 10^7$ yr. A fluctuation with $\delta = 1.7$ corresponds to an object that just collapses at the redshift. Thus, LAEs are thought to be in the early evolutionary phase of galaxies, consistently with a recent theoretical prediction (Mori & Umemura 2006). We have also predicted the correlation function at redshift higher than 3 in the picture of short-lived LAEs. It is suggested that a certain fraction of young galaxies have already ended the LAE phase even at redshift $z = 6$.

ACKNOWLEDGMENTS

We are grateful to T. Hayashino, Y. Matsuda and R. Yamauchi for offering valuable information and helpful comments. This work was supported in part by Grants-in-Aid, Specially Promoted Research 16002003 from MEXT in Japan.

REFERENCES

Cowie, L. L., Hu E. M., 1998, AJ, 115, 1319
Darson, et al., 2004, ApJ, 617, 707
Fioc, M., Rocca-Volmerange, B., 1997, A&A, 326, 950
Hamana, T., Ouchi M., Shimasaku, K., Kayo, I., Suto, Y., 2004, MNRAS, 347, 813
Hayashino, T. et al., 2004, ApJ, 245, 208
Hu, E. M., Cowie, L. L., McMahon, R. G., 1998, ApJ, 502, L99
Hu, E. M., McMahon, R. G., Cowie, L. L., 1999, ApJ, 522, L9
Hu, E. M., Cowie, L. L., McMahon, R. G., Capak, P., Iwamuro, F., Kneib, J.-P., Maihara, T., Motohara K., 2002, ApJ, 568, L75
Kauffmann, G., Nusser, A., Steinmetz, M., 1997, MNRAS, 286, 795
Kauffmann, G., Colberg, J. M., Diaferio, A., White, S. D. M., 1999, MNRAS, 307, 529
Matsuda Y., et al., 2004, AJ, 128, 569
Matsuda Y., et al., 2005, ApJ, 634, L125
Mori, M., Umemura, M., 2006, NewAR, 50, 199
Mori, M., Umemura, M., 2006, Nature, 440, 644
Ouchi, M. et al., 2003, ApJ, 582, 60
Ouchi, M. et al., 2004, ApJ, 611, 660
Ouchi, M. et al., 2005, ApJ, 620, L1
Peacock, J. A., 1998, "Cosmological Physics" (Cambridge University Press; Cambridge)
Peebles, P. J. E., 1980, ”The Large-Scale Structure in the Universe” (Princeton University Press; Princeton)
Shimasaku K., et al., 2003, ApJ, 586, L111
Sathyaprakash, B. S., Sahni, V., Munshi, D., Pogosyan, D., Melott, A. L., 1995, MNRAS, 275, 463
Spergel, D. N., et al., 2003, ApJS, 148, 175
Steidel, C. C., Adelberger, K. L., Shapley, A. E., Pettini, M., Dickinson, M., Giavalisco, M., 2000, ApJ, 532, 170
Shapley, A. E., Steidel, C. C., Adelberger, K. L., Giavalisco, M., Dickinson, M., & Pettini, M., 2001, ApJ, 562, 95
van Breukelen C., Jarvis M. J., Venemans B. P., 2005, MNRAS, 359, 895
Venemans, B. P. G. et al., 2005, A&A, 431, 793
Zehavi I., et al., 2002, ApJ, 571, 172

This paper has been typeset from a \TeX/\LaTeX file prepared by the author.