Atomic-scale manipulation of single-polaron in a two-dimensional semiconductor

Huiru Liu1,2,9, Aolei Wang3,9, Ping Zhang1,2, Chen Ma1,2, Caiyun Chen1,2, Zijia Liu1,2,4, Yi-Qi Zhang1,2, Baojie Feng1,2,5, Peng Cheng1,2, Ji Zhao3,6,7,8, Lan Chen1,2,4 & Kehui Wu1,2,4,5,6

Received: 16 March 2023
Accepted: 9 June 2023
Published online: 21 June 2023

Polaron is a composite quasiparticle derived from an excess carrier trapped by local lattice distortion, and it has been studied extensively for decades both theoretically and experimentally. However, atomic-scale creation and manipulation of single-polarons in real space have still not been achieved so far, which precludes the atomistic understanding of the properties of polarons as well as their applications. Herein, using scanning tunneling microscopy, we succeeded to create single polarons in a monolayer two-dimensional (2D) semiconductor, CoCl2. Combined with first-principles calculations, two stable polaron configurations, centered at atop and hollow sites, respectively, have been revealed. Remarkably, a series of manipulation progresses — from creation, erasure, to transition — can be accurately implemented on individual polarons. Our results pave the way to understand the physics of polaron at atomic level, and the easy control of single polarons in 2D semiconductor may open the door to 2D polaronics including the data storage.

Polaron has significant influences on the properties of semiconducting materials, such as lattice reconstructions15, carrier mobility16,17, surface adsorption and catalysis18–20, ferromagnetic transition21–23, superconductivity24–26 and other many-body correlation states27–29. The investigations and applications of polaron have been developed as an emerging field in nanotechnology, named as ‘Polaronics’. So far, polarons have been experimentally accessed by various techniques such as Raman30,31, THz

1Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China. 2School of Physical Sciences, University of Chinese Academy of Sciences, 100190 Beijing, China. 3Department of Physics, University of Science and Technology of China, 230026 Hefei, Anhui, China. 4Songshan Lake Materials Laboratory, Dongguan, 523808 Guangdong, China. 5Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, 100871 Beijing, China. 6ICQD/Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026 Hefei, Anhui, China. 7Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh 15260 PA, USA. 8Hefei National Laboratory, University of Science and Technology of China, 230088 Hefei, Anhui, China. 9These authors contributed equally: Huiru Liu, Aolei Wang.

e-mail: zhaojin@ustc.edu.cn; lchen@iphy.ac.cn; khwu@iphy.ac.cn

https://doi.org/10.1038/s41467-023-39361-0
spectroscopy, angle-resolved photoelectron emission spectroscopy, electron paramagnetic resonance, and scanning tunneling microscopy (STM). However, the capability to view, create and manipulate single polarons in real space still remains elusive, which limits the understanding and application of polaronics at atomic scale. Particularly, in previous studies defects or dopants have often been introduced into the system in order to create excess charge in the material, which inevitably resulted in polarons bonded with defects, and hindered the observation of intrinsic properties of polarons. A clean method to study pure polarons is thus highly desirable.

STM is an ideal tool for probing and manipulating local objectives with atomic precision. In this work, we study single polarons in transition metal dichloride CoCl₂, an intrinsic magnetic 2D semiconductor, by STM. Through applying a voltage pulse, we can inject an electron into the monolayer CoCl₂ and create a single electron polaron. It is found that the polarons have two stable forms, labeled as type-I and type-II polarons. First principles calculations indicate that they can be described as spin-polarized electrons bonded to lattice distortions centered at either atop site or hollow site of the surface, respectively. Both types of polarons falls into the small polaron category, and are single spin information carriers. Moreover, the creation and erasure of single polarons, as well as transition between type-I and type-II polarons, can be realized by regulating the voltage pulse. Our work provides an ideal models system to study of intrinsic polaronics based on 2D materials.

Results and discussion

Growth and characterization of CoCl₂ monolayer

CoCl₂ is a layered material stabilized by weak interlayer van der Waals (vdW) interaction. The atomic structure of CoCl₂ monolayer is shown in Fig. 1d. Each CoCl₂ monolayer consists of a sub-layer of Co atoms sandwiched between two Cl sub-layers. In our experiment, the CoCl₂ monolayer was grown on highly oriented pyrolytic graphite (HOPG) substrate. The STM image in Fig. 1a reveals that the monolayer CoCl₂ grows in a dendritic morphology starting from step edges of HOPG. The height of monolayer CoCl₂ is 480 ± 5 pm, clearly larger than that of HOPG (340 ± 5 pm), as illustrated in Fig. 1a. Such dendritic growth mode can be described in the diffusion limited aggregation framework. The atomic-resolution STM images of the monolayer CoCl₂ surface shown in Fig. 1b, c reveal a triangular lattice with periodicity of 354 ± 2 pm, consistent with the lattice parameters (354.5–355.3 pm) of CoCl₂ single crystal and powder. Moreover, depending on the crystallographic orientation of the CoCl₂ monolayer with respect to the HOPG substrate, different moiré patterns can be found on the surface of CoCl₂ monolayer. For examples, Fig. 1c exhibits a moiré periodicity of about 1.18 nm, whereas there is no moiré modulation in Fig. 1b. More domain boundaries are also shown in Supplementary Fig. 14.

The low temperature (4 K) scanning tunneling spectroscopy (STS) taken on the monolayer CoCl₂ reveals a typical semiconducting band feature with a bandgap ~1.7 eV (Fig. 1e), which slightly shift with different moiré modulation (see Supplementary Fig. 15). The Fermi level is close to the edge of the conduction band, suggesting that the
monolayer CoCl$_2$ is electron-doped. Within the band gap, the d/dV curve exhibits a V shape (inset of Fig. 1e) corresponding to the electronic structure of underlying HOPG. For comparison, we calculated the band structure of monolayer CoCl$_2$ with or without the graphite substrate using density functional theory (DFT). When the graphite substrate is not included in the calculation, the intrinsic band structure of monolayer CoCl$_2$ has a large bandgap (4.1 eV), shown in Supplementary Fig. 11, which is much larger than the experimental value. While with the inclusion of HOPG substrate the bandgap of CoCl$_2$/HOPG dramatically decreased to 2.0 eV (Fig. 1f), qualitatively in good agreement with the experiment. As seen in Fig. 1f, the decreased bandgap is mainly due to the lifting of the valence band maximum (VBM) by states from HOPG, whereas the conduction band is still contributed mainly by the CoCl$_2$ layer (blue flat band around 0.5 eV).

Note that the Dirac cone of HOPG is inside the bandgap, in consistent with the V shape density of states (DOS) in Fig. 1e, but its low DOS seems not affecting the apparent band gap measured in STS. We will come back with more details in the theoretical part.

Manipulation of single polarons

Interestingly, we found a highly reproducible hysteresis-like phenomenon when performing I-V measurements on the CoCl$_2$ monolayer. Sweeping the sample bias between -1.2 V and $+1.1$ V, very often we encounter sudden current jumps around ± 1.0 V, where the smoothly increasing current suddenly becomes smaller (Fig. 2a). We first consider the jump at the positive bias side. As positive sample bias corresponds to electron injection from tip to sample, we infer that the injecting electrons may stimulate a critical process when the bias voltage is above a threshold. To show the effect more clearly, we applied a positive bias of 0.8 V with the feedback loop off, and monitored the tunneling current within a time window. Very often a current jump from high current state to a low current state can be recorded, as indicated in Fig. 2b. Consequently, a dramatic ring-like feature with depressed inner region will appear in the d/dV map taken afterwards at the same position. Note that in order not to disturb the feature during scanning, we scan the surface with a bias lower than the thresholds.
We then consider the current jump in the negative bias side, and we found that it corresponds to the annihilation of the ring-like feature. As shown in Fig. 2c, when applying a negative bias of -1.0 eV while holding the STM tip on top of an existing ring feature, within a time window very often a current jumping from high current state to a low current state can be recorded. Consequently, we find that the ring-like feature has been annihilated from the surface (panel 3 in Fig. 2c).

Carefully inspecting the ring-like features, we find there are two types of rings, the apparently bigger one and smaller one under the same scanning parameters, labeled as type-I and type-II features, respectively as shown in Fig. 2c, d. Both of them can be created or erased with bias pulse as discussed above. Moreover, the transition between the two types of polarons can also be realized by precisely regulating the voltage pulse. We can also implement all three kinds of operations sequentially on a single ring. Two examples are shown in Fig. 2e, f, where the green, blue, and yellow arrows represent writing, erasure, and transition operations, respectively. As a demonstration of our capability to manipulate individual ring features, an 'IOP' pattern consisting of 40 rings has been artificially created by successively writing individual rings (Fig. 2g), which means that one can design and implement any artificial patterns with proper manipulation and also suggest the possible application in data storage.

Evidences of electron polarons

In order to understand the origin of the ring-like features in monolayer CoCl$_2$, bias-dependent high-resolution STM images have been recorded on a type-I ring we created. As shown in Fig. 3a, the empty sate STM images (positive bias) of same area reveal a smoothly depressed

Fig. 3 | The bias-dependent feature of polaron in STM images. a Atomic resolution STM images (left panels) and dI/dV maps (right panels) of the same individual polaron. The scanning bias from up to down is 850 mV, 740 mV, 680 mV, 640 mV (empty state) and -500 mV (filled state) with tunneling current 25 pA. Scale bars: 3 nm. b Height profiles along the lines across the features in (a). For a clearer comparison of the change, the height away from the feature is set to be the reference. c dI/dV map along a line across a ring feature. “Hi” and “Lo” in the color scales are the abbreviation of “High” and “Low”. A significant upward bending of conduction band close to the ring center is observed. d dI/dV maps of monolayer CoCl$_2$ with coexisting type-I (lower right) and type-II (upper left) polarons. Scanning parameter: $V_s = 750 \text{ mV}, I = 10 \text{ pA}$. The atomic lattice of monolayer CoCl$_2$ is superimposed on the image, where cobalt and chloride atoms are red and green balls, respectively. The gray points are raw data extracted from isosurface $dI/dV = 1.0 \text{ pS}$, which are fitted with circle equation, and locus (blue solid lines) and geometric center (blue points) of the rings can be given. Scale bar, 3 nm.
feature, while the corresponding dI/dV maps show a ring-like feature with depressed inner region. In contrast, the filled state STM images and dI/dV maps (-500 meV) of same area show a lightly brighter bump, and a lightly darker ring with protruding inner region, respectively. In addition to the dramatic difference of STM images with bias polarity, the bias voltages dependence with the same polarity is also significant. In the empty states, the radius of the features in both the STM images and dI/dV maps gradually shrink as the bias increases, as also seen in the height profiles (Fig. 3b) alone the lines marked in Fig. 3a. Such delocalized features with strong bias dependence in STM/STS images usually originates from the charge-induced band-bending by the screened electric field associated with a charged center, such as point defects, single dopants, and adatoms on semiconductor surfaces. Therefore, the feature we observed here is very likely caused by a local charge. To further confirm this point, STS was measured along a line across the feature. As shown in Fig. 3c, the conduction band is bended upward around the feature, suggesting that there is a negative charge in the center of the feature.

At this point, one should consider whether this charge center is associated with a surface defect, a sub-surface shallow donor, or a polaron. It is very important that the polaron can be created in arbitrary position set by the STM tip (proven by the artificial “IOP” pattern), meaning that it is impossible to be an existing defect or shallow donor state. In case of existing defects or shallow donors their positions are fixed, and only these specific positions can be charged. Moreover, our high-resolution STM images show perfectly continuous atomic lattice without surface defects before and after the writing process (the bottom panels of Fig. 3a), thus precludes the possibility that a surface defect may be created by the STM tip (for examples an adatom or cluster dropped from the STM tip, or surface atom picked up by the tip to leave a vacancy). The features also be found in bilayer CoCl$_2$ film, as shown in Supplementary Fig. 18, further rules out the contribution from the defect located at the interface of CoCl$_2$/HOPG. Moreover, another important observation in our experiment is the hopping of the features under tip perturbation, often occurring during STM scanning as shown in Supplementary Fig. 12. In order to understand the hopping dynamics of polarons, we have performed first-principles simulations (see Supplementary Fig. 13). The results show the hopping barriers of type-I and type-II polarons are 117 and 72 meV, respectively, which indicate that the polarons can hop easily under tip perturbations. Therefore, in order to obtain a stable STM image of the feature under investigation, the scanning conditions need to be set to minimize the tip perturbation (small bias voltage and tunneling current). Finally, a locally trapped charge in a defect-less lattice, with possible migration, unambiguously coincides with the concept of polaron, which will be further corroborated by our theoretical calculations that will be discussed in the following context.

Two types of electron polarons

As we mentioned above, we found two types of features with different apparent radius in STM images, named as type-I and type-II. Figure 3d provides more details of the two types of polarons in the atomic resolution dI/dV map at 750 meV, clearly showing the ring-like feature with different radius (3.8 nm for type-I and 3.0 nm for type-II). The inclusion of the two types of polarons in the same image allows us to determine their precise registry with respect to the CoCl$_2$ lattice, by superimposing the atomic model of CoCl$_2$ on the dI/dV map. We find that the centers of two types of polarons are located at different lattice sites: Type-I polaron is centered on the atop site, whereas that of type-II polaron is centered on the hollow site of the surface Cl layer, as indicated by the blue points. Additionally, in our experiments, type-I polarons are more common than type-II polarons, suggesting that type-I polarons should be slightly more stable than type-II in energy.

It should be emphasized that the size of the depression or ring-like feature (typically a few nanometers) does not represent the size of polaron itself which is defined by the size of the distorted region of the lattice. Instead, it corresponds to the spatial extent of the static charge-induced surface band bending. The band-bending modifies the effective tunneling barrier, and produces the dominant features in STM images and dI/dV maps. To prove this and to explain the STM images, we performed simulation of the electrostatic potential around the two types of polarons (the method is shown in Part. I of Supplemental Materials), and the results shown in Supplementary Fig. 2 are qualitatively in good agreement with experiments. On the other hand, the structural models obtained by first-principles calculations for both type-I and type-II polarons show only local lattice distortions with sizes comparable to the lattice constant of CoCl$_2$. And thus, both of them fall into the small polaron category, as will be discussed in the next session.

Theoretical simulation of polarons

To reveal the underlying physical mechanism of polaron formation, DFT simulations were performed with the CP2K/Quickstep method.45,46 By adding an extra electron into the conduction band minimum (CBM) of monolayer CoCl$_2$ and structure relaxation, we obtained two polarons with or without the initial structure distortions (for more details, see Part. III of Supplemental Materials), and the results are shown in Fig. 4. In Fig. 4a, we plot the spin-polarized projected density of states (PDOS) of first polaron. We have two distinct structure, a localized polaron state emerges in the band gap (labeled as Polaron I), which is at 0.49 eV below the CBM and contributed by Co$_{3d}$ orbitals. For second polaron (labeled as Polaron II), shown in Fig. 4c, the charge trapping by lattice distortion affects the electronic structure more distinctly. Two polaron-induced peaks are formed from 0.31 to 0.64 eV below the CBM. Figure 4b, d give the lattice distortions and charge distribution of CoCl$_2$ for the two types of polarons, and we found the formation of both polarons still preserves the triplet symmetry of system. From the top view, polaron I locates on three Co atoms forming a triangle. The d orbitals of the three Co atoms hybridize with each other and form a bonding orbital, locating in the center of the triangle, and pushes the three Co atoms to the central direction by 0.15–0.22 Å. Then the center localized charge pushes the central Cl atom downward by 0.20 Å, which can be clearly seen from the side view. The three sublayer Cl atoms also move upward by 0.04 Å. More details related to the bond length change can be seen in Supplementary Materials part. III. For polaron II, shown in Fig. 4d, the additional charge locates on one Co atom. And it pushes the six Cl atoms away by less than 0.10 Å. Polaron II is consistent with the property of general electron polarons that it repels surrounding anions, and polaron I shows some difference because the charge locates on three Co atoms and there is orbital hybridization between them, which plays a role in the lattice distortion. According to the PDOS analysis (see Fig. 4a, c), the charge state on the three central Co atoms of polaron I changes from +2.0 to +1.7 e, which is consistent with the excess electron being delocalized on three Co atoms and each of them acquires 0.3 electron. In contrast, for polaron II, the charge state changes from +2.0 to +1.2 e, consistent with a full localization of the excess electron in one Co atom. For polaron I and II, the lattice distortions occur within several unit cells and the range radii are around 5.40 Å and 3.50 Å, respectively, which match to typical small polaron-induced lattice distortions. Note that such small lattice displacement is beyond the spatial resolution limit of STM. For polaron I, the charge density is strongly localized on the center of three Co atoms, whereas the polaron II has the charge concentrated on a single Co atom. These features are in good agreement with the experimental observation of two types of polarons located at atop site and hollow site on the surface. So, we confirm the Polaron I and II are type-I and type-II polarons, respectively.

As we discussed before, the dominant ring-with-depression feature in STM images is due to the electric field- induced band bending. The broader electron distribution of type-I polaron in three Co atoms
Mechanism of the polarons manipulation

To find out the mechanism of polaron manipulation, we statistically analyzed the writing probability as a function of the pulse voltage, as shown in Fig. 5a. In our experiments, the writing probability is defined as ratio of the number of writing events to the number of applied pulses (>100 times) with same energy, current and duration time). When the energy of tunneling electrons is low enough, the writing probability remains almost zero. With the increase of pulse voltage above 800 mV, the ratio of writing events rapidly increases to one, which means nearly 100% possibility of writing for every bias pulsing when electron energy exceeds the threshold value. The Boltzmann fitting gives a threshold voltage about 858 meV at a tunneling junction set by ($V_c = 600$ mV, $I = 25$ pA).

The writing process is directly related to the injection of electron to the conduction band of CoCl$_2$ monolayer on HOPG. We calculated the DOS of CoCl$_2$ monolayer involving the HOPG substrate. As shown in Fig. 3b, the CoCl$_2$ monolayer keeps its insulating property, while the Fermi surface of graphite is located inside the gap of CoCl$_2$. The total DOS near Fermi level shows a V shape, and it starts to deviate from the Dirac cone around −1.5 eV and +0.5 eV, which is well in agreement with our experimental results (Fig. 1e). The calculated energy position of conductive band edge of CoCl$_2$ (520 meV) is smaller than the experimental writing threshold energy (858 meV). The larger threshold voltage in experiment may be due to the formation of the double barrier in the tunneling junction: one is between tip and the surface of CoCl$_2$ monolayer, and the other between the upper and lower surface of CoCl$_2$ monolayer. The actual bias voltage dropped between tip and CoCl$_2$ monolayer is thus smaller than the bias voltage applied to the tunneling junction.

Finally, it is worth mentioning the role of HOPG in the formation of polarons. As control experiment, we have performed the same experiments using Au(III) substrate. We found that although perfectly crystalline CoCl$_2$ can be obtained on Au(III), there is no sign of polaron formation in this case (experimental data shown in Supplementary Fig. 19 in Supplementary Materials Part. V). Therefore, HOPG may play important roles in the formation of polarons. On the one hand, the conducting nature of HOPG substrate allows STM and polaron manipulation experiments to be carried out. On the other hand, the low carrier density and weak interaction between CoCl$_2$ layer and the substrate avoids the fast compensation of residual charge in the CoCl$_2$ layer.
Our experiments were carried out in a home-built low-temperature STM/MBE system with a base pressure better than 5 × 10⁻¹⁰ Torr. A clean HOPG substrate was prepared by mechanical exfoliation in air, and annealing at 1000 K in ultrahigh vacuum. The CoCl₂ monolayer were prepared by directly evaporating anhydrous CoCl₂ beads (Sigma, 99.999%) on HOPG substrate kept at room temperature. After growth, the sample was transferred to the STM chamber and measured with a tungsten tip at 4 K. The STS were measured by a lock-in technique, in which an ac voltage of 20 mV and 659 Hz was superimposed on the given sample bias. The STM images and dI/dV maps were all obtained at constant-current mode if not specified.

Methods

Sample fabrication and STM/S characterization

Theoretical calculation based on DFT

The geometry optimization and electronic structure of polarons were performed with the quickstep module of the CP2K program package[50,51] within the Gaussian and Plane Waves (GPW) framework. HSE06[52,53] exchange-correlation functional together with Goedecker–Teter–Hutter (GTH) pseudopotentials[54] was applied. The cutoff and relative cutoff energies of the auxiliary plane wave basis sets were converged to energy differences smaller than 10⁻⁶ hartree/atom. Triple-zeta “MOLOPT” basis sets[55] were used for Co and Cl. The CoCl₂ monolayer was modeled using a hexagonal 6 × 6 supercell with 108 atoms sampled at the Γ point. A vacuum space larger than 25 Å was adopted to avoid any interaction between two adjacent slabs.

The band structure and DOS of CoCl₂ monolayer and CoCl₂/HOPG were preformed using the Fritz-Haber-Institute ab initio molecular simulations (FHI-aims) package[56,57]. A scalar relativistic treatment with the atomic ZORA approximation[58] was included in calculations. We used the “light” setting for numerical atom-centered orbital basis sets in FHI-aims. In our calculations, the CoCl₂/HOPG system was built by depositing a 2 × 2 supercell of monolayer CoCl₂ on a 3 × 3 supercell of 4 layers graphite. The Brillouin zone was sampled by a (48 × 48 × 1) k-point mesh. The lattice mismatch between the CoCl₂ and graphite substrate in the constructed heterostructure was about 4%. We have compared the band structure of free-standing CoCl₂ with and without strain and their difference is negligible (for more detail, see Part. III in the Supplementary Information). The vdW interaction functional using the method of Tkatchenko-Scheffler method with iterative Hirshfeld partitioning[59] was employed in the vdW heterostructure calculations. The structures were relaxed using a Brodzech-Fletcher-Goldfarb-Shanno (BFGS) optimization algorithm until the maximum force on each atom was less than 0.01 eV Å⁻¹. The convergence criteria of 10⁻⁶ eV for the total energy of the systems were used.

Data availability

All data that support the findings of this paper are available from the corresponding authors upon request.

References

1. Dykman, M. I. & Rashba, E. I. The roots of polaron theory. Phys. Today 68, 10–11 (2015).
2. Fröhlich, H. Electrons in lattice fields. Adv. Phys. 3, 325–361 (1954).
3. Fröhlich, H., Pelzer, H. & Zienau, S. XX. Properties of slow electrons in polar materials. Philos. Mag. 41, 221–242 (2009).
4. Holstein, T. Studies of polaron motion. Ann. Phys. 281, 706–724 (2000).
5. Holstein, T. Studies of polaron motion. Ann. Phys. 281, 725–773 (2000).
6. Shluger, A. L., Kantonovich, L. N., Heifets, E. N., Shidlovskaya, E. K. & Grimes, R. W. Theoretical simulation of V centre migration in KCl: I. A quantum-chemical study. J. Phys.: Condens. Matter 4, 7417–7428 (1992).
7. Reticcioli, M., Setvin, M., Schmid, M., Diebold, U. & Franchini, C. Formation and dynamics of small polarons on the rutile TiO2(110) surface. Phys. Rev. B 98, 045306 (2018).
8. Guo, C. et al. Probing nonequilibrium dynamics of photoexcited polarons on a metal-oxide surface with atomic precision. Phys. Rev. Lett. 124, 206801 (2020).
9. Yim, C. M. et al. Engineering polarons at a metal oxide surface. Phys. Rev. Lett. 117, 16402 (2016).
10. Wang, F. et al. Solvated electrons in solids-ferroelectric large polarons in lead halide perovskites. J. Am. Chem. Soc. 143, 5–16 (2021).
11. Tao, W., Zhang, C., Zhou, Q., Zhao, Y. & Zhu, H. Momentarily trapped exciton polaron in two-dimensional lead halide perovskites. Nat. Commun. 12, 1400 (2021).
12. Ghosh, R. & Spano, F. C. Excitons and polarons in organic materials. Acc. Chem. Res. 53, 2201–2211 (2020).
13. Vasilechenko, V., Lechvchenko, S., Perebeinos, V. & Zhugayevych, A. Small polarons in two-dimensional pnictogens: a first-principles study. J. Phys. Chem. Lett. 12, 4674–4680 (2021).
14. Mao, Y. et al. Interfacial polarons in van der Waals heterojunction of monolayer SnSe2 on SrTiO3(001). Nano Lett. 20, 8067–8073 (2020).
15. Reticcioli, M. et al. Polaron-driven surface reconstructions. Phys. Rev. X 7, 031053 (2017).
16. Ye, Y. et al. Research progress of theoretical studies on polarons in cathode materials of lithium-ion batteries. Acta Phys. -Chim. Sin. 37, 2011003 (2021).
17. Ronnow, H. M., Renner, C., Aeppli, G., Kimura, T. & Tokura, Y. Antiferromagnetic–ferromagnetic transition in doped bilayer CrI3. Phys.: Condens. Matter 34, 034401 (2018).
18. Moser, S. et al. Tunable polaronic conduction in anatase TiO2. Phys. Rev. Lett. 110, 196403 (2013).
19. Yang, S., Brant, A. T., Giles, N. C. & Halliburton, L. E. Intrinsinc small polarons in rutile TiO2. Phys. Rev. B 87, 125201 (2013).
20. Setvin, M. et al. Direct view at excess electrons in TiO2 rutile and anatase. Phys. Rev. Lett. 113, 086402 (2014).
21. Franchini, C., Reticcioli, M., Setvin, M. & Diebold, U. Polarons in materials. Nat. Rev. Mater. 6, 560–586 (2021).
22. McGuire, M. Crystal and magnetic structures in layered, transition metal dihalides and trihalides. Crystals 7, 121 (2017).
23. Zhang, Z. & Lagally, M. G. Atomic processes in the early stages of thin-film growth. Science 276, 377–383 (1997).
24. Wilkinson, M. K., Cable, J. W., Wollan, E. O. & Koehler, W. C. Neutron diffraction investigations of the magnetic ordering in FeBr2, CoBr2, FeCl2, and CoCl2. Phys. Rev. 113, 497–507 (1959).
25. Kulish, V. V. & Huang, W. Single-layer metal halides MX2 (X = Cl, Br, I): stability and tunable magnetism from first principles and Monte Carlo simulations. J. Mater. Chem. C 5, 8734–8741 (2017).
26. Grime, H. & Santos, J. A. The structure and colour of anhydrous cobalt chloride, CoO2Cl2, at room and very low temperatures. Z. Krist. 88, 136–141 (1934).
27. Le Quang, T. et al. Band-bending induced by charged defects and edges of atomically thin transition metal dichalcogenide films. 2D Mater. 5, 035034 (2018).
28. Zheng, H., Kroger, J. & Berndt, R. Spectroscopy of single donors at ZnO(0001) surfaces. Phys. Rev. Lett. 108, 076801 (2012).
29. Cui, Y. et al. Surface defects and their impact on the electronic structure of Mo-doped CaO films: an STM and DFT study. Phys. Chem. Chem. Phys. 16, 12764–12772 (2014).
30. Laubsch, A., Urban, K. & Ebert, P. Three- to two-dimensional transition in electrostatic screening of point charges at semiconductor surfaces studied by scanning tunneling microscopy. Phys. Rev. B 80, 245314 (2009).
31. Marczinowski, F., Wiebe, J., Meier, F., Hashimoto, K. & Wiesendanger, R. Effect of charge manipulation on scanning tunneling spectra of single Mn acceptors in InAs. Phys. Rev. B 77, 115318 (2008).
32. Stroscio, J. A., Feenstra, R. M. & Fein, A. P. Local state density and long-range screening of adsorbed oxygen atoms on the GaAs(110) surface. Phys. Rev. Lett. 58, 1668–1671 (1987).
33. Kiraly, B. et al. An orbitally derived single-atom magnetic memory. Nat. Commun. 9, 3904 (2018).
34. Hutter, J., Iannuzzi, M., Schifffmann, F. & VandeVondele, J. CP2K: Atomistic simulations of condensed matter systems. WIREs Comput. Mol. Sci. 4, 15–25 (2014).
35. Kuhne, T. D. et al. CP2K: An electronic structure and molecular dynamics software package—Quickstep: Efficient and accurate electronic structure calculations. J. Chem. Phys. 152, 194103 (2020).
36. Cai, M. et al. Manipulating single excess electrons in monolayer transition metal dihalide. Preprint at https://arxiv.org/abs/2207.04948 (2022).
37. Heyd, J. & Scuseria, G. E. Assessment and validation of a screened Coulomb hybrid density functional. J. Chem. Phys. 120, 7274–7280 (2004).

Nature Communications | (2023)14:3690
54. Krukau, A. V., Vydrov, O. A., Izmaylov, A. F. & Scuseria, G. E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 125, 224106 (2006).
55. Goedecker, S., Teter, M. & Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703–1710 (1996).
56. VandeVondele, J. & Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 127, 114105 (2007).
57. Ren, X. et al. Resolution-of-identity approach to Hartree–Fock, hybrid density functionals, RPA, MP2 and GW with numeric atom-centered orbital basis functions. N. J. Phys. 14, 053020 (2012).
58. Yu, V. W.-Z. et al. ELSi: A unified software interface for Kohn–Sham electronic structure solvers. Comput. Phys. Commun. 222, 267–285 (2018).
59. Blum, V. et al. Ab initio molecular simulations with numeric atom-centered orbitals. Comput. Phys. Commun. 180, 2175–2196 (2009).
60. Tkatchenko, A. & Scheffler, M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 102, 073005 (2009).

Acknowledgements
This work was financially supported by the Ministry of Science and Technology (MOST) of China (2021YFA1400500, 2018YFC0202700, 2021YFA1202902), National Natural Science Foundation of China (11825405, 1192780339, 12134019, 11974322, 12125408), the Chinese Academy of Science (XDB30000000, YSBR-OS4). Calculations were performed Hefei Advanced Computing Center, ORISE supercomputing center and Supercomputing Center at USTC.

Author contributions
K.W. and L.C. designed supervised the project. H.L. performed experiments and data analysis. A.W. perform first-principles calculations under the supervision of J.Z. H.L. and K.W. prepared the manuscript with contributions from L.C., A.W., and J.Z. All other authors contributed to the experimental setup and discussion during the research in this project.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplemental material available at https://doi.org/10.1038/s41467-023-39361-0.

Correspondence and requests for materials should be addressed to Jin Zhao, Lan Chen or Kehui Wu.

Peer review information Nature Communications thanks Cesare Franckini, Chi Ming Yim and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Reprints and permissions information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023