Research Article

Genetic Association and Expression Correlation between Colony-Stimulating Factor 1 Gene Encoding M-CSF and Adult-Onset Still’s Disease

Yi-Ming Chen,1,2,3 Wei-Ting Hung,1,4 Wan-Chun Chang,5 Chia-Wei Hsieh,1,3 Wen-Hung Chung,5,6,7,8 Joung-Liang Lan,9,10,11 Ning-Rong Gung,9 Yun-Shien Lee,12 Der-Yuan Chen9,10,13 and Shuen-Iu Hung5,6,7,8,14

1Division of Allergy, Immunology and Rheumatology, Department of Medical Research, Taichung Veterans General Hospital, 407 Taichung, Taiwan
2Faculty of Medicine, National Yang Ming University, 112 Taipei, Taiwan
3Ph.D. Program in Translational Medicine, National Chung Hsing University, 402 Taichung, Taiwan
4Institute of Clinical Medicine, National Yang Ming University, 112 Taipei, Taiwan
5Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Linkou Chang Gung Hospital, 333 Taoyuan, Taiwan
6School of Medicine, Chang Gung University, 333 Taoyuan, Taiwan
7Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Linkou, 333 Taoyuan, Taiwan
8Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, 204 Keelung, Taiwan
9Rheumatology and Immunology Center, China Medical University Hospital, 404 Taichung, Taiwan
10School of Medicine, China Medical University, 404 Taichung, Taiwan
11Rheumatic Diseases Research Laboratory, Rheumatology and Immunology Center, China Medical University Hospital, 404 Taichung, Taiwan
12Department of Biotechnology, Ming Chuan University, 333 Taoyuan, Taiwan
13Translational Medicine Laboratory, Rheumatology and Immunology Center, China Medical University Hospital, 404 Taichung, Taiwan
14Institute of Pharmacology, National Yang-Ming University, 112 Taipei, Taiwan

Correspondence should be addressed to Der-Yuan Chen; dychen1957@gmail.com and Shuen-Iu Hung; hungshueniu@gmail.com

Received 9 December 2019; Accepted 21 January 2020; Published 14 February 2020

Academic Editor: Francesca Santilli

Copyright © 2020 Yi-Ming Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Adult-onset Still’s disease (AOSD) is a rare and inflammatory disorder characterized by spiking fever, rash, arthritis, and multisystemic involvement. HLA has been shown to be associated with AOSD; however, it could not explain the innate immunity and autoinflammatory characteristics of AOSD. To assess the genetic susceptibility of AOSD, we conducted a genome-wide association study (GWAS) on a cohort of 70 AOSD cases and 688 controls following a replication study of 36 cases and 200 controls and meta-analysis. The plasma concentrations of associated gene product were determined. The GWAS, replication, and combined sample analysis confirmed that SNP rs11102024 on 5′-upstream of CSF1 encoding macrophage colony-stimulating factor (M-CSF) was associated with AOSD (P = 1.20 × 10^{-8}, OR (95% CI): 3.28 (2.25–4.79)). Plasma levels of M-CSF increased in AOSD patients (n = 82, median: 9.31 pg/mL), particularly in the cases with activity score ≥ 6 (n = 42, 10.94 pg/mL), compared to the healthy donors (n = 68, 5.31 pg/mL) (P < 0.0001). Patients carrying rs11102024TT genotype had higher M-CSF levels (median: 20.28 pg/mL) than those with AA genotype (6.82 pg/mL) (P < 0.0001) or AT genotype (11.61 pg/mL) (P = 0.027). Patients with systemic pattern outcome were associated with elevated M-CSF and frequently observed in TT carriers. Our data suggest that genetic variants near CSF1 are associated with AOSD and the rs11102024 T allele...
links to higher M-CSF levels and systemic outcome. These results provide a promising initiative for the early intervention and therapeutic target of AOSD. Further investigation is needed to have better understandings and the clinical implementation of genetic variants nearby CSF1 in AOSD.

1. Introduction

Adult-onset Still’s disease (AOSD) is an inflammatory disorder characterized by spiking fever, macular rash, leukocytosis, arthritis, variable multisystem involvement, and increase of acute phase reactants [1, 2]. It is a rare disease with crude prevalence of only 1-2 cases in 100,000-1 million annually [3, 4]. The clinical features and disease progression of AOSD vary considerably. In severe cases, AOSD may lead to permanent joint destruction, organomegaly, lymphadenopathy, serositis, and aseptic meningitis [5–7]. Due to its characteristics and predominate dysregulation of innate immunity, AOSD has been considered an autoinflammatory disease [8, 9]. Standard treatments for AOSD include corticosteroids as the first-line treatment, the use of nonsteroidal anti-inflammatory drugs (NSAIDs), and disease-modifying antirheumatic drugs (DMARDs) to manage the clinical symptoms [6, 10, 11]. Nevertheless, AOSD still lacks effective therapeutics, as its etiology and pathophysiology remain unclear [12].

The proposed pathomechanisms of AOSD involve the dysregulation of the immune system [13, 14], interaction between host and environment factors [15–17], and genetic susceptibility [18–21]. Important laboratory characteristics of AOSD are leukocytosis with predominance of neutrophils and the increase of proinflammatory cytokines, including IL-1β, IL-6, IL-18, TNF-α, and IFNγ, but with negative testing for rheumatoid factor (RF) and autoantibodies [14, 22, 23]. In particular, macrophage activation is a clinic feature of AOSD [14, 24]. High levels of macrophage colony-stimulating factor (M-CSF), a critical growth factor for macrophage differentiation and activation, have been observed in the plasma of AOSD patients [22, 25, 26]. The heterogeneous phenotypes and biosignature of AOSD imply the potential involvement of complex genetic predisposition.

Most of the previous genetic studies on AOSD revealed association with variants on human leukocyte antigen (HLA) class I and II regions, such as HLA-BW35, HLA-DRB1*15 and HLA-DRB1*04 [19, 20]. However, the association was inconsistent and controversial among the various studies of different populations [27, 28]. In addition, the results of genetic studies did not link to the pathogenesis, and none of them have been associated with AOSD disease outcomes [14, 28]. Here, we enrolled 106 patients and 888 population controls and applied GWAS discovery and subsequent replication analysis to investigate the genetic susceptibility of AOSD. We explored the correlation between the identified genetic risk factor(s) and disease severity or outcomes and examined the functional implication of the associated genetic variants in AOSD.

2. Materials and Methods

2.1. Patient and Public Involvement. This study was carried out following the rules of the Declaration of Helsinki of 1975, which was revised in 2013. This study was approved by the ethics committee of the Institutional Review Board (IRB) of Taichung Veterans General Hospital (C/F13321), and the written consent was obtained from each participant. We enrolled a total of 106 AOSD patients fulfilling the Yamaguchi criteria [29] between January 2010 and December 2015. Patients with infections, malignancies, or other rheumatic diseases were excluded. The disease activity of AOSD was assessed with a modified Pouchot score described by Rau et al. [23]. According to the proposed classification of disease courses of AOSD [9], the AOSD patients with follow-up at least one year were classified into two patterns of disease outcomes: (i) the “systemic pattern” that includes the monocyclic and the polycyclic form and (ii) the “chronic articular pattern” (persistent arthritis involving at least one joint destruction and lasting longer than 6 months) [30]. All of the AOSD patients were unrelated Han Chinese. Seventy of them were randomly selected as the case group in the GWAS discovery cohort.

We recruited 924 ethnically and geographically matched healthy subjects as the population controls from a biobank under a nationwide population study, which comprises 9,980 Han Chinese descendants [31]. There was no self-report of rheumatic diseases among the recruited controls from Taiwan, where 98% of the population is made up of Han Chinese. Of the 924 population controls, we randomly obtained 724 controls for the GWAS discovery cohort and the rest of 200 individuals were for the replication cohort, which was an independent analysis conducted by 36 AOSD cases versus 200 population controls to validate the statistically significant SNPs derived from the initial GWAS results.

2.2. Genotyping and Quality Controls in the Genome-Wide Scan. Genomic DNA was extracted from the peripheral blood of the enrolled subjects using Flexi Gene DNA kits (Qiagen, Hilden, Germany). We performed GWAS on the samples obtained from 70 AOSD cases and 724 population controls using the Affymetrix SNPs Array 6.0 platform (Santa Clara, CA, USA), which is composed of 909,622 SNPs [31]. Briefly, 200 ng of genomic DNA of each sample was PCR amplified, fragmented, precipitated, and resuspended in the appropriate hybridization buffer. After hybridization, the BeadChip oligonucleotides were extended by a single-labeled base, which were detected by fluorescence imaging with an Affymetrix Bead Array Reader. Normalized bead intensity data obtained for each sample were loaded into the Affymetrix SNP Array 6.0 software, which converts the fluorescence intensities into SNP genotypes. The genotype calls were generated using the Birdseed method (Birdseed v2) with Affymetrix Power Tools (version, apt-1.10.2).

We analyzed the GWAS data by the software Plink (v1.90b5) using logistic regression modeling with covariates: sex, and ancestry-specific principal components (i.e., PC1,
2.3. Replication Analysis and Targeted Gene Sequencing. For the replication study, we applied TaqMan assays (Thermo Fisher Scientific, CA, USA) or direct sequencing on the associated SNPs revealed by the initial GWAS using an independent sample set of 36 AOSD cases and 200 population controls. The oligonucleotide primers for polymerase chain reaction (PCR) amplification of the SNP rs11102024 near CSF1 gene are forward primer: 5′-TCTATTGCAATTGGG CATATT-3′, and reverse primer: 5′-TCATTAGCCCTCAACTCA-3′, and those for SNP rs9636107 near TCF4 gene are forward primer: 5′-GCTGGTGTTTTGTGCATATT-3′, and reverse primer: 5′-CCTGCTGGTGTTTTGTGCATATT-3′. The PCR reaction was performed in three steps: 3 min at 95°C; then 40 cycles of 20 seconds at 95°C, 30 seconds at 58°C, and 30 seconds at 72°C, followed by 7 minutes at 72°C.

2.4. Determination of Plasma Levels of Macrophage Colony-Stimulating Factor (M-CSF). The plasma samples of 82 patients with AOSD were collected at the active status of the disease, and the patients received corticosteroids and/or the nonsteroidal anti-inflammatory drugs (NSAIDs). Besides, the disease-modifying antirheumatic drugs (DMARDs) had also been prescribed for the patients, which included methotrexate (patients number (n) = 74), hydroxychloroquine (n = 66), cyclosporine (n = 30), sulfasalazine (n = 18), and azathioprine (n = 10). Levels of plasma M-CSF were determined on the samples from these 82 active AOSD patients and 68 population controls using enzyme-linked immunosorbent assay (ELISA) according to the manufacturer's instructions (Ray-Biotech Inc., GA, USA).

2.5. Statistical Analysis. For the GWAS, we conducted the statistical analysis for the associations by comparing the allele frequencies between AOSD cases and population controls. The SNP association was examined by Fisher’s exact test and rank-ordered according to the lowest P value. All the P values were two-tailed. The corrected Pc values were adjusted using Bonferroni’s correction for multiple comparisons (645,983 for GWAS SNPs), and Pc value for genomewide significance should be <7.8 × 10⁻⁸ (0.05/645,983). The odds ratios (OR) were calculated using Haldane’s modification [33]. Levels of plasma M-CSF in the different groups were compared by the nonparametric Mann-Whitney U test. The differences in the frequencies of significant alleles among AOSD patients with different courses of disease outcomes were examined using Fisher’s exact test. The correlation coefficient was obtained by nonparametric Spearman’s rank correlation test. A probability of less than 0.05 was considered to be significant.

3. Results

3.1. Clinical Characteristics of AOSD Patients. The demographic data, clinical characteristics, and laboratory findings of 106 patients with adult-onset Still’s disease (AOSD) are shown in Table 1. The mean age of the patients is 42.9 years (standard deviation (SD): 15.0), and the proportion of females is 67.9%. The presence of spiking fevers (≥39°C) is observed in 102 (96.2%) cases, evanescent rash in 94 (88.7%) cases, arthralgia or arthritis in 78 (73.6%) cases, sord throat in 74 (69.8%) cases, liver dysfunction in 42 (39.6%) cases, lymphadenopathy in 39 (36.8%) cases, and hepatosplenomegaly shown by sonography in 14 (13.2%) cases, respectively. The mean of white blood cell count in the 102 patients is observed as 16,205 ± 11673 cells/microliter (SD: 11673), platelet count as 16205 ± 11673 cells/microliter (SD: 11673), CRP values (mean ± SD, mg/dL) 351.5 ± 151.0, ESR values (mean ± SD, mm/1st hour) 78.4 ± 36.6, CRP levels (mean ± SD, mg/dL) 10.2 ± 7.8, Ferritin levels (mean ± SD, μg/L) 8989 ± 15328, and clinical activity score (mean ± SD) 5.48 ± 1.11.

Characteristics*	AOSD patients
Age at study entry (mean ± SD, years)	42.9 ± 15.0
Females, n (%)	72 (67.9%)
Fever (≥39°C), n (%)	102 (96.2%)
Evanescent rash, n (%)	94 (88.7%)
Arthralgia or arthritis, n (%)	78 (73.6%)
Sore throat, n (%)	74 (69.8%)
Liver dysfunction, n (%)	42 (39.6%)
Lymphadenopathy, n (%)	39 (36.8%)
Hepatosplenomegaly, n (%)	14 (13.2%)
White blood cell count (mean ± SD, cells/microliter)	16205 ± 11673
Platelet count (mean ± SD, ×10³/cumm)	351.5 ± 151.0
ESR values (mean ± SD, mm/1st hour)	78.4 ± 36.6
CRP levels (mean ± SD, mg/dL)	10.2 ± 7.8
Ferritin levels (mean ± SD, μg/L)	8989 ± 15328
Clinical activity score (mean ± SD)	5.48 ± 1.11

*Data are presented as the mean ± standard deviation (SD) or number (percentage). Liver dysfunction was defined as alanine aminotransferase (ALT) level ≥ 40 IU/L. ESR: erythrocyte sedimentation rate; CRP: C-reactive protein.

3.2. Genome-Wide Scan of AOSD. We first conducted a GWAS using samples of 70 AOSD patients and 724 controls. After the QC process, 36 controls were removed, and 645,983 variants and 758 samples (including 70 cases and 688
population controls) passed the filters. The mean call rate is 98.3%. The SNPs on sex chromosomes were excluded from the GWAS analysis. The principal component analysis (PCA) map showed that there is no difference in the distribution of ancestry among AOSD cases and population controls (Supplemental Figure 1). A quantile-quantile plot of the test statistics was used for quality control and revealed that the population matching was successful (Supplemental Figure 2). The genomic inflation factor (λG) [34] is 1.05, suggesting that the population structure of our GWAS is generally acceptable.

When comparing the allele frequencies of the 645,983 SNPs of 70 AOSD cases and 688 population controls, no SNP reached the threshold of genome-wide significance (Pc < 7.8 × 10^-8). Given AOSD is a rare disease and small sample size used in this study, we set the cut off P value as 1 × 10^-6 and the top 4 significant SNPs with highly suggestive association are shown in Figure 1 and Table 2. Of these 4 SNPs, two SNPs (rs35910146 and rs6948305) are on the upstream of pseudogenes, and rs9636107 does not match Hardy-Weinberg equilibrium (P = 0.03) in the dataset of 688 population controls (Table 2). The SNP rs11102024 on 5′-upstream of CSF1 (colony-stimulating factor 1) gene encoding for M-CSF (macrophage colony-stimulating factor) on chromosome 1p13 showed significant association with AOSD (P = 3.70 × 10^-7, OR (95% CI): 3.27 (2.07–5.17)) (Table 2). By comparison, the association strength between SNPs on HLA regions and AOSD was weaker than that of variants near CSF1 gene (Supplemental Table 1).

3.3. Replication, Meta-Analysis, and Linkage Disequilibrium of Variants near CSF1 Gene. We used the samples of an independent cohort (36 AOSD cases and 200 controls) to replicate the association. Among the 4 SNPs discovered by GWAS, only SNP rs11102024 near CSF1 displayed significant association with AOSD (P = 0.022, OR (95% CI) = 2.47 (1.20–5.08)) (Table 3). The meta-analysis of the two datasets from the initial GWAS and replication revealed that the P value of the heterogeneity test between studies (I2) was 0.36, suggesting that there was no difference between both studies (P value of the heterogeneity test > 0.05) (Figure 2, Table 3). Subsequently, we performed combined sample analysis using the genotyping data of 106 AOSD cases and 888 population controls, and the SNP rs11102024 showed strong association with AOSD (P = 1.20 × 10^-8, OR (95% CI): 3.28 (2.25–4.79)) (Table 3, Figure 2). We used the genetic dataset of East Asian population of the 1,000 genome project for linkage disequilibrium (LD) analysis and identified 11 SNPs having strong LD with rs11102024 (r^2 > 0.7) (Supplemental Table 2, Supplemental Figure 3). We also sequenced the CSF1 gene; however, there were no missense SNPs with significant association with AOSD (data not shown).

3.4. Increased Plasma M-CSF Levels in AOSD Patients and Correlation with the Activity Score of the Disease. We hypothesized that genetic variant near CSF1 might have an impact on the disease progress/outcome of AOSD. We determined the plasma levels of M-CSF in 82 patients who had available plasma samples. Significantly higher levels of plasma M-CSF were detected in AOSD patients (median 9.31 pg/mL, inter-quartile range (IQR) 6.21–16.91 pg/mL) compared with the healthy controls (n = 68) (median 5.31 pg/mL, IQR 4.12–6.85 pg/mL) (nonparametric Mann-Whitney U test, P < 0.0001) (Figure 3(a)). Moreover, significantly higher M-CSF levels were detected in the AOSD patients with activity score ≥ 6 (n = 42; median 10.94 pg/mL; IQR 6.73–20.23 pg/mL), compared to those with activity score between 3 and 5 (n = 40; 7.68 pg/mL; IQR 5.88–11.38 pg/mL) (Figure 3(b)).

3.5. Correlation of Plasma M-CSF Levels, the Genotypes of CSF1, and Disease Outcome of AOSD. The AOSD patients (n = 82) were divided into three groups according to the genotype of rs11102024. The highest M-CSF levels were observed in AOSD patients carrying the TT genotype (n = 10; median: 20.28 pg/mL; IQR 16.78–33.86 pg/mL) compared with the carriers of AA genotype (n = 55; median: 6.82 pg/mL; IQR 5.88–10.79 pg/mL) (nonparametric Mann-Whitney U test, P < 0.0001) and AT genotype (n = 17; median: 11.61 pg/mL; IQR 8.47–19.98 pg/mL) (P = 0.027), respectively (Figure 3(c)). Furthermore, AOSD patients carrying the rs11102024 TT genotype displayed significantly higher M-CSF expressions (n = 10; median: 20.28 pg/mL; IQR 16.78–33.86 pg/mL) than those with AA/AT genotypes (n = 72; 7.95 pg/mL, IQR 6.03–12.73 pg/mL) (P < 0.0001) (Figure 3(d)).

Regarding the disease outcome, 64 of 82 AOSD patients had the systemic pattern, and 18 cases had the chronic articular pattern. Significantly higher M-CSF levels were observed in AOSD patients with the systemic pattern (median 10.79 pg/mL, IQR 6.40–18.53 pg/mL) compared to those with the chronic articular pattern (6.23 pg/mL, IQR 4.37–8.41 pg/mL) (P = 0.0007) (Figure 3(e)). In addition, the
Table 2: Association between the top 4 significant SNPs and AOSD in the initial GWAS screen.

rs ID	Nearby gene	Chromosome position	Location	Minor allele	AOSD cases (n = 70) Genotype AA/AB/BB MAF	Controls (n = 688) Genotype AA/AB/BB MAF	P value 1 (95% CI)	Odds ratio 1 (95% CI)	HWE 2	Call rate 3
rs11102024	CSF1	1:110431514	5′UTR	T	47/14/9	587/97/3	3.70×10^{-7}	3.27 (2.07~5.17)	0.64	99.9%
rs35910146	RPL3P8 (pseudogene)	7:109659225	Upstream	T	28/33/8	468/186/15	1.33×10^{-7}	3.11 (2.04~4.75)	0.49	97.4%
rs6948305	LOC100419782 (pseudogene)	7:109757108	Upstream	G	30/32/8	477/197/14	6.43×10^{-7}	2.93 (1.92~4.47)	0.22	100%
rs9636107	TCF4	18:53200117	Intron	G	35/30/5	525/159/4	6.87×10^{-7}	3.35 (2.08~5.40)	0.03	100%

The genomic coordinates are based on NCBI Human Genome Build 37 (GRCh37). Gene ID: CSF1 (colony-stimulating factor 1; NCBI Entrez Gene 1435), RPL3P8 (ribosomal protein L3 pseudogene 8; NCBI Entrez Gene 646620), LOC100419782 (zinc finger protein 717 pseudogene; NCBI Entrez Gene 100419782), and TCF4 (transcription factor 4; NCBI Entrez Gene 6925). MAF: minor allele frequency; 95% CI: 95% confidence interval; 5′UTR: 5′ untranslated region. 1P values and odds ratio were derived with a logistic regression model adjusted by sex and principal components (PCs) in 70 AOSD cases and 688 population controls. 2Hardy-Weinberg equilibrium (HWE). 3Call rate is for overall samples (70 AOSD and 688 controls).
Table 3: Association of rs11102024 with adult-onset Still’s disease (AOSD) in the GWAS discovery, replication, and combined sample analyses.

SNP	Allele	MAF of cases	MAF of controls	P value¹	Odds ratio¹ (95% CI)	MAF of cases	MAF of controls	P value²	Odds ratio² (95% CI)	P value²	Odds ratio² (95% CI)	HWE³	P_{het}⁴
rs11102024	A/T	22.9	7.5	3.70 × 10⁻⁷	3.27 (2.07–5.17)	16.7	7.5	0.022	2.47 (1.20–5.08)	1.20 × 10⁻⁸	3.28 (2.25–4.79)	0.33	0.36

MAF: minor allele frequency; OR: odds ratio; 95% CI: 95% confidence interval. ¹P value and odds ratio were derived by logistic regression adjusted with sex and principal components (PCs) from the GWAS discovery result. ²P values were calculated by Fisher’s exact test for the risk allele. ³Hardy-Weinberg equilibrium (HWE); P values for 888 controls from the general population. ⁴P_{het}: P value of the heterogeneity test between studies.
AOSD patients with the systemic pattern accounted for 80% of the rs11102024 TT genotype carriers, comparing to only 20% with the chronic articular pattern.

4. Discussion

AOSD possesses similar clinical presentations with rheumatoid arthritis (RA); however, AOSD does not have RF or significant memorial lymphocyte involvement, and the genetic susceptibility revealed by this study showing no similarity with that of rheumatoid arthritis [35]. Consistent with the previous study, we did not find association between AOSD and **MEFV** gene mutations [36–38] or other genetic mutations of monogenic autoinflammatory disorders [39, 40].

The clinical course of AOSD can be divided into two main patterns with different prognoses: systemic pattern (monophasic or polycyclic) and chronic articular pattern. The systemic pattern is characterized by predominantly systemic features including fever, rash, serositis, and organomegaly with or without articular symptomatology. By comparison, the chronic articular pattern is characterized by the severe articular manifestations mimicking rheumatoid arthritis. In this study, we observed higher plasma levels of M-CSF in AOSD patients whose activity score ≥ 6, cases with systemic pattern, or carriers with rs11102024 TT genotype. These data suggest that rs11102024 T allele, which is highly associated with M-CSF plasma levels, could be used to predict the severity and system symptoms in the early phase of AOSD and act as a promising genetic marker for early intervention to improve AOSD outcome.

As AOSD is a polygenic autoinflammatory disorder, increasing biologic agents are investigated to target its proinflammatory cytokines, such as IL-1 family (particularly IL-1β and IL-18), IL-6, and TNF-α. Growing evidences and clinical trials indicate that anticytokine biologic agents, e.g., anakinra (interleukin-1 receptor antagonist) [46] and tocilizumab (anti-IL-6 receptor antibody) [47], are becoming plausible therapeutic options for the management of AOSD. Recently, Jaguin et al. reported the phenotypic and genomic markers of M-CSF-generated human macrophages polarized toward M1 or M2 subtype upon the action of lipopolysaccharide and interferon-γ (for M1) or interleukin- (IL-) 4 (for M2) [48]. The ability of human M-CSF-generated macrophages to polarize toward M1 or M2 subtype was associated with enhanced secretion of TNF-α, IL-1β, IL-12p40, CXCL10, and IL-10 (for M1) or CCL22 (for M2) [48]. In addition, Bellora et al. reported that M-CSF could induce the expression of membrane-bound IL-18 in human blood monocytes differentiating toward macrophages [49]. The enhancement of these macrophage-triggered cytokines was frequently observed in AOSD patients [22, 50]. This functional property of M-CSF highlights the innate immunity and subsequent adaptive immune responses implicated in AOSD pathogenesis. In this study, we report that the novel SNP rs11102024

Study or subgroup	AOSD Case	Control	Odds ratio M-H, random, 95% CI	Odds ratio M-H, random, 95% CI		
	Events	Total	Weight			
GWAS discovery cohort	32	140	103	1374	72.7%	3.66 [2.35, 5.69]
Replication cohort	12	72	30	400	27.3%	2.47 [1.20, 5.08]
Total (95% CI)	**212**	**1774**	**100%**	**3.28 [2.25, 4.79]**		

Figure 2: Meta-analysis of the genetic association between rs11102024 and adult-onset Still’s disease (AOSD). M-H: Mantel-Haenszel test.
near CSF1 gene encoding for M-CSF is highly associated with AOSD and links to higher plasma levels of M-CSF, which would be a potential and promising therapeutic target for AOSD.

5. Conclusion

Adult-onset Still's disease (AOSD) is a rare, but systemic inflammatory disorder characterized by spiking fever, rash,
leukocytosis, arthritis, and multisystemic involvement, with increased macrophages and M-CSF. Herein, we identify a novel SNP rs11102024 on the 5′-upstream of CSF1 gene to be significantly associated with AOSD in a GWAS and subsequent replication analysis. Reflecting the function of CSF1, encoding M-CSF which is involved in macrophage differentiation and inflammatory responses, the SNP rs11102024 demonstrated the significant association with plasma M-CSF levels, disease activity, and disease outcome of AOSD. These data suggest that the gene variant rs11102024 nearby CSF1 could be a potential prognostic factor for a disease outcome in AOSD. These results provide a promising initiative to predict and early intervention to improve the treatment and healthcare for AOSD. Further investigation is needed to a better understanding of the pathogenesis of AOSD and clinical implementation for the genetic variants of CSF1.

Abbreviations
AOSD: Adult-onset Still’s disease
CI: Confidence interval
CSF1: Colony-stimulating factor 1
GWAS: Genome-wide association study
ELISA: Enzyme-linked immunosorbent assay
HWE: Hardy-Weinberg equilibrium
LD: Linkage disequilibrium
MAF: Minor allele frequency
M-CSF: Macrophage colony-stimulating factor
OR: Odds ratio
PCA: Principal component analysis
SNP: Single-nucleotide polymorphism
UTR: Untranslated region.

Data Availability
All data relevant to the study are included in the article or uploaded as supplementary information.

Conflicts of Interest
The authors declare no conflict of interest.

Authors’ Contributions
All authors made substantive intellectual contributions to the present study and approved the final manuscript. Y-MC and W-TH contributed equally to this work, designed the study, conceived the study, performed clinical assessment as well as data acquisition, and drafted the manuscript. C-WH performed clinical assessments on study subjects, conducted the analysis of data, and drafted the manuscript. W-HC and J-LL designed the study and performed the data analysis. N-RG, W-CC, and Y-SL conceived the study, obtained the laboratory and genomic data, and performed the analysis. D-YC and S-I H contributed equally to this work, generated the original hypothesis, designed the study, acquired the clinical data and data analysis, and drafted and revised the manuscript.

Acknowledgments
This work was supported in part by grants NSC-101-2314-B-010-030-MY3, 102-2314-B-010-014-MY3, 105-2628-B-010-007-MY3, and 108-2320-B-182A-023-MY3 from the Ministry of Science and Technology, Taiwan; grant TCVGH-YM1030201 from Taichung Veterans General Hospital and National Yang-Ming University; and research grants CIRPG3I0041 and CIRPG3I0021 from Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan. We thank the support of members of the Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Taiwan.

Supplementary Materials
Supplemental Table 1: association between SNPs on HLA region and AOSD. Supplemental Table 2: proxy variants in linkage disequilibrium (LD) with the SNP 11102024. Supplemental Figure 1: a scatter plot of the principal components analysis (PCA) for the two principal components (PC1 and PC2). Supplemental Figure 2: a quantile-quantile plot of the test statistics in a case-control study for AOSD. Supplemental Figure 3: linkage disequilibrium (LD) analysis of SNP rs11102024 in the East Asian (EAS) population. (Supplementary Materials)

References
[1] E. G. Bywaters, "Still's disease in the adult," Annals of the Rheumatic Diseases, vol. 30, no. 2, pp. 121–133, 1971.
[2] B. Fautrel, "Adult-onset Still disease," Best Practice & Research. Clinical Rheumatology, vol. 22, no. 5, pp. 773–792, 2008.
[3] K. J. Evensen and H. C. Nossent, "Epidemiology and outcome of adult-onset Still's disease in Northern Norway," Scandinavian Journal of Rheumatology, vol. 35, no. 1, pp. 48–51, 2006.
[4] Y. F. Asanuma, T. Mimura, H. Tsuibo et al., "Nationwide epidemiological survey of 169 patients with adult still's disease in Japan," Modern Rheumatology, vol. 25, no. 3, pp. 393–400, 2015.
[5] T. Fujii, A. Suwa, T. Mimori, and M. Akizuki, "Chronic arthrits and carpos:metacarpal ratio in Japanese patients with adult Still's disease," The Journal of Rheumatology, vol. 25, no. 12, pp. 2402–2407, 1998.
[6] M. Gerfaud-Valentin, D. Maucort-Boulch, A. Hot et al., "Adult-onset still disease: manifestations, treatment, outcome, and prognostic factors in 57 patients," Medicine, vol. 93, no. 2, pp. 91–99, 2014.
[7] M. Agha-Abbasiou, A. M. Besanci, O. Dike, M. C. Poznansky, and A. Hyat, "Adult-onset still's disease: still a serious health problem (a case report and literature review)," American Journal of Case Reports, vol. 18, pp. 119–124, 2017.
[8] L. Rossi-Semerano and I. Koné-Paut, "Is Still’s Disease an Autoinflammatory Syndrome?," International Journal of Inflammation, vol. 2012, Article ID 480373, 5 pages, 2012.
[9] M. Gerfaud-Valentin, Y. Jamilloux, J. Iwaz, and P. Sève, "Adult-onset Still's disease," Autoimmunity Reviews, vol. 13, no. 7, pp. 708–722, 2014.
[10] Y. Jamiloux, M. Gerfaud-Valentin, T. Henry, and P. Sève, “Treatment of adult-onset Still’s disease: a review,” *Therapeutics and Clinical Risk Management*, vol. 11, pp. 33–43, 2014.

[11] S. Kadavath and P. Efthimiou, “Adult-onset Still’s disease—pathogenesis, clinical manifestations, and new treatment options,” *Annals of Medicine*, vol. 47, no. 1, pp. 6–14, 2015.

[12] T. J. Chen, W. H. Chung, C. B. Chen et al., “Methotrexate-induced epidermal necrosis: a case series of 24 patients,” *Journal of the American Academy of Dermatology*, vol. 77, no. 2, pp. 247–255.e2, 2017.

[13] P. Ruscitti and R. Giacomelli, “Pathogenesis of adult onset Still’s disease: current understanding and new insights,” *Expert Review of Clinical Immunology*, vol. 14, no. 11, pp. 965–976, 2018.

[14] E. Feist, S. Mitrovic, and B. Fautrel, “Mechanisms, biomarkers and targets for adult-onset Still’s disease,” *Nature Reviews Rheumatology*, vol. 14, no. 10, pp. 603–618, 2018.

[15] J. M. Wouters, J. van der Veen, L. B. van de Putte, and D. J. de Rooij, “Adult onset Still’s disease and viral infections,” *Annals of the Rheumatic Diseases*, vol. 47, no. 9, pp. 764–767, 1988.

[16] M. Kawashima, M. Yamamura, M. Tanai et al., “Levels of interleukin-18 and its binding inhibitors in the blood circulation of patients with adult-onset Still’s disease,” *Arthritis and Rheumatism*, vol. 44, no. 3, pp. 550–560, 2001.

[17] T. Sugiyama, K. Kawaguchi, M. Harigai et al., “Association between adult-onset Still’s disease and interleukin-18 gene polymorphisms,” *Genes and Immunity*, vol. 3, no. 7, pp. 394–399, 2002.

[18] M. L. Miller, S. Aaron, J. Jackson et al., “HLA gene frequencies in children and adults with systemic onset juvenile rheumatoid arthritis,” *Arthritis and Rheumatism*, vol. 28, no. 2, pp. 146–150, 1985.

[19] J. M. Wouters, P. Reekers, and L. B. van de Putte, “Adult-onset Still’s disease. Disease course and HLA associations,” *Arthritis and Rheumatism*, vol. 29, no. 3, pp. 415–418, 1986.

[20] C. I. Joung, H. S. Lee, S. W. Lee et al., “Association between HLA-DR B1 and clinical features of adult onset Still’s disease in Korea,” *Clinical and Experimental Rheumatology*, vol. 21, no. 4, pp. 489–492, 2003.

[21] D. Y. Chen, Y. M. Chen, H. H. Chen, C. W. Hsieh, C. C. Lin, and J. L. Lan, “Functional association of interleukin 18 gene -607 (C/A) promoter polymorphisms with disease course in Chinese patients with adult-onset Still’s disease,” *The Journal of Rheumatology*, vol. 36, no. 10, pp. 2284–2289, 2009.

[22] J. H. Choi, C. H. Suh, Y. M. Lee et al., “Serum cytokine profiles in patients with adult onset Still’s disease,” *The Journal of Rheumatology*, vol. 30, no. 11, pp. 2422–2427, 2003.

[23] M. Rau, M. Schiller, S. Krienke, P. Heyder, H. Lorenz, and N. Blank, “Clinical manifestations but not cytokine profiles differentiate adult-onset Still’s disease and sepsis,” *The Journal of Rheumatology*, vol. 37, no. 11, pp. 2369–2376, 2010.

[24] D. Álvarez-Errico, R. Vento-Tormo, and E. Ballestar, “Genetic and epigenetic determinants in autoinflammatory diseases,” *Frontiers in Immunology*, vol. 8, p. 318, 2017.

[25] K. Matsui, T. Tsuchida, K. Hiroishi et al., “High serum level of macrophage-colony stimulating factor (M-CSF) in adult-onset Still’s disease,” *Rheumatology*, vol. 38, no. 5, pp. 477–478, 1999.

[26] J. Maruyama and S. Inokuma, “Cytokine profiles of macrophage activation syndrome associated with rheumatic diseases,” *The Journal of Rheumatology*, vol. 37, no. 5, pp. 967–973, 2010.
from other forms of juvenile idiopathic arthritis: clinical and therapeutic implications,” *Annals of the Rheumatic Diseases*, vol. 76, pp. 906–913, 2017.

[44] S. J. Lin, H. C. Chao, and D. C. Yan, “Different articular outcomes of Still’s disease in Chinese children and adults,” *Clinical Rheumatology*, vol. 19, no. 2, pp. 127–130, 2000.

[45] N. J. Schork, D. Fallin, and J. S. Lanchbury, “Single nucleotide polymorphisms and the future of genetic epidemiology,” *Clinical Genetics*, vol. 58, no. 4, pp. 250–264, 2000.

[46] S. Castañeda, B. Atienza-Mateo, J. L. Martín-Varillas, J. M. Serra López-Matencio, and M. A. González-Gay, “Anakinra for the treatment of adult-onset Still’s disease,” *Expert Review of Clinical Immunology*, vol. 14, no. 12, pp. 979–992, 2018.

[47] S. Castañeda, D. Martínez-Quintanilla, J. L. Martín-Varillas, N. García-Castañeda, B. Atienza-Mateo, and M. A. González-Gay, “Tocilizumab for the treatment of adult-onset Still’s disease,” *Expert Opinion on Biological Therapy*, vol. 19, no. 4, pp. 273–286, 2019.

[48] M. Jaguin, N. Houlbert, O. Fardel, and V. Lecureur, “Polarization profiles of human M-CSF-generated macrophages and comparison of M1-markers in classically activated macrophages from GM-CSF and M-CSF origin,” *Cellular Immunology*, vol. 281, no. 1, pp. 51–61, 2013.

[49] F. Bellora, R. Castriconi, A. Doni et al., “M-CSF induces the expression of a membrane-bound form of IL-18 in a subset of human monocytes differentiating in vitro toward macrophages,” *European Journal of Immunology*, vol. 42, no. 6, pp. 1618–1626, 2012.

[50] D.-Y. Chen, J. L. Lan, F. J. Lin, and T. Y. Hsieh, “Proinflammatory cytokine profiles in sera and pathological tissues of patients with active untreated adult onset Still’s disease,” *The Journal of Rheumatology*, vol. 31, no. 11, pp. 2189–2198, 2004.