Foliar chemical composition of two oak species grown in a free-air enrichment system with elevated O₃ and CO₂

Cong SHI a, Mitsutoshi KITAO b, Evgenios AGATHOKLEOUS a, Makoto WATANABE c, Hiroyuki TOBITA b, Ken’ichi YAZAKI b, Satoshi KITAOKA b and Takayoshi KOIKE a,†

a Silviculture and Forest Ecological Studies, Hokkaido University, Sapporo 060-8689, Japan
b Forestry and Forest Products Research Institute, Tsukuba 305-8687, Japan
c Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan

Abstract
Ground level ozone (O₃) is rapidly increasing in Asia and penetrates plants via stomata. Atmospheric carbon dioxide (CO₂) has also been increasing in global and in short term may promote plant growth via photosynthetic enhancement. Oaks are representative deciduous broadleaved trees native to northeastern Asia. In this study, we focused on the effects of elevated O₃ and/or CO₂ on leaf nutrients status (phosphorous, nitrogen, potassium, magnesium, etc.) of two oak species: Konara oak (Quercus serrata) and Mizunara oak (Quercus mongolica var. crisplula) to assess their function. We investigated foliar starch and sugar contents and nutrients composition of leaves of 2-year-old oak seedlings grown under elevated O₃ and/or CO₂ in a free air enrichment system. From elements concentration, nitrogen and magnesium may become the major indices in assessing the O₃ effects on these species, and investigation of both of them would be of use in field studies to discriminate O₃ and CO₂ effects, especially under the projected elevated O₃ levels.

Key words: Elevated ozone, Elevated carbon dioxide, Free-air enrichment, Nutrient elements, Oak.

1. Introduction
Recently, tropospheric ozone or ground level ozone (O₃) is continuously increasing in northeastern Asia and reduces vigor and health of forests (e.g. Izuta, 2006; Takigawa et al., 2009; Yamaguchi et al., 2011; Koike et al., 2013). In Asian countries, the emission of precursors for O₃ had been increasing and it is expected to continually increase in the foreseeable future (Solberg et al., 2005; Karnosky et al., 2007; Ohara et al., 2007; Watanabe et al., 2007). As a result, O₃ in Asia, including China and Japan, will be also increasing for at least several decades (e.g. Koike et al., 2013). Thus, O₃ has been regarded as one of the most serious environmental stresses for plants (Matyssek et al., 2012; Agathokleous et al., 2015), concerning with forest decline and tree dieback in East Asia (Izuta and Nakaji, 2003; Izuta, 2006; Watanabe et al., 2005). O₃ concentration usually shows the highest value from spring to summer in northeast Japan (Yamaji et al., 2006).

On the other hand, atmospheric carbon dioxide (CO₂) concentration has been yearly increasing and reached to nearly 400 μmol mol⁻¹ from May 2013 (NOAA, 2014). Elevated CO₂ concentration (eCO₂) may have combined effects with elevated O₃ concentration (eO₃) on the growth and photosynthetic capabilities of representative forest species in Japan (e.g. Matsumura et al., 2005). It is said that eCO₂ can someway compensate the negative effect of high O₃ on growth of deciduous trees related to stomatal closure (Watanabe et al., 2010; Koike et al., 2012). Some researches indeed were carried out on foliar chemical compositions in eO₃ or eCO₂; most of them however mainly focus on the concentrations of nitrogen (N) and carbon (C) (e.g. Baldantoni et al., 2011). Therefore, few data are available for understanding eO₃ and/or eCO₂ effects on woody species in terms of specific nutrient analysis, even though many physiological and morphological functions are directly regulated by nutrients (e.g. Kohno et al., 2005; Izuta, 2006; Kitao et al., 2015).

Konara (Quercus serrata: Qs) and Mizunara (Q. mongolica var. crisplula: Qm) are deciduous oaks, economically and ecologically important in the rural region of Japan (Maruyama and Miyaura, 2007; Watanabe et al., 2014). These are ectomycorrhizal (ECM) trees (e.g. Oh et al., 1995) and flush 1 to 2 times their shoots in the growing season. Although oaks are regarded as O₃ stress tolerant species among 18 woody species in Japan, they are declining in southern Japan (Kohno et al., 2005). Among the 18 species, Qs is relatively sensitive to O₃ compared with Qm (Yamaguchi et al., 2011).

At eCO₂, stomatal conductance (Gs) is reduced, accompanied with an enhanced photosynthetic rate because plants do not need widely open stomata for getting CO₂ (Paoletti and Grulke, 2005; Fares et al., 2014). A reduction in Gs would decrease xylem sap flow via a reduced transpiration. Conversely, eO₃ induces a reduction in Gs but accompanied with a decline in photosynthetic function (Paoletti and Grulke, 2005; Hoshika et al., 2012; 2013). It has also been suggested that eO₃ can affect carbohydrate metabolism and hence to reduce their contents (Slid et al., 2002); yet remains unclear. On the contrary, carbohydrates (e.g. starch and sugar) contents may be increased under eCO₂ treatment mainly due to the elevated starch level (e.g. Keutgen and Chen, 2001; Koike, 2006).

In general, leaf mineral content is determined by the balance between influx via xylem and phloem, and efflux via phloem (e.g. Larcher, 2003). In this context, eO₃ and/or eCO₂ would modify
leaf mineral contents such as macro-elements: phosphorous (P), nitrogen (N), potassium (K), magnesium (Mg) and calcium (Ca) as well as micro-elements: manganese (Mn) via the changes in xylem flow and phloem loading. For instance, concentrations of K, Mg and Mn in leaves are significantly increased under eCO2 (Fangmeier et al., 2002) whereas photosynthetic performance will be depressed under eO3 exposure with decreasing of Mg and Mn (Saul, 1964; Paolletti et al., 2002).

From these, it is hypothesized that eO3 and/or eCO2 may alter the balance of water-soluble nutrients such as K, Mg, Mn, through change in Qs. It was also expected that foliar nutrients balance in 2 oaks would be altered due to eO3 effects. Especially, Qs may have big changes in some nutrient elements due to relatively higher O3 sensitivity as compared with Qm (Yamaguchi et al., 2011).

To address these hypotheses, we focused on the nutrients composition and also carbohydrate accumulation in 2 oak species grown under free-air enrichment of eO3 and/or eCO2. Based on findings of the changes in starch and sugar as well as 6 nutrient elements (P, N, K, Mg, Mn and Ca), we discuss the representative elements and starch in relation to growth traits in the 2 oaks grown under eO3 and/or eCO2, and hence investigate indices for understanding the effects of eO3 and eCO2 in these oaks in such future environmental conditions.

2. Materials and methods

2.1 Plant Materials

Two-year-old seedlings of Konara oak (Quercus serrata Murray: Qs) and Mizunara oak (Quercus mongolica Fisch. ex Ledeb. var. crispa (Blume) Ohashi: Qm) were obtained from near Tsukuba, and planted in the nursery (soil pH= about 5.5) of Forestry and Forest Products Research Institute (FFPRI) in Tsukuba, near Tokyo. They were planted at 50 cm interval from each other. Generally, these deciduous oak species cover most parts of Japan and their varieties are also dominant in cool temperate regions of China and Korean peninsula (Menitsky, 2005). Konara oak is one of the most common and widely distributed oak tree species in East Asian temperate forests; Mizunara oak is also typical species in the mixed broadleaf/conifer forests native to the cool-temperate of northeastern Asia (Nakashizuka and Iida, 1995).

2.2 Free-air enrichment system

The free-air enrichment system was located at the experimental nursery of FFPRI in Tsukuba, near Tokyo, Japan (36°00’N, 140°08’E, 20 m a.s.l.). The mean annual precipitation and temperature was 1396 mm yr⁻¹ and 14.0℃ respectively. The mean annual precipitation and temperature (36°00’N, 140°08’E, 20 m a.s.l.) was 1396 mm yr⁻¹ and 14.0℃. The system was installed with 4 factorial combination treatments of elevated O3 (eO3) and/or elevated CO2 (eCO2) as follow: ambient (control), eO3, eCO2, eO3 and eCO2 (each frame size was 3.0 m × 3.0 m × 2.0 m) constructed by DALTON Ltd. Co. (Tokyo). Totally 12 plots were installed with 3 replicates for each treatment. Elevated O3 (eO3) concentration was 2 times higher than the ambient level and eCO2 concentration was controlled about 550 μmol mol⁻¹ in order to simulate 2060 projections (IPCC, 2007). Mean 10th daytime (from 7:00-17:00) O3 concentration during the experimental period was 30.2 ± 0.4 and 52.2 ± 2.1 nmol mol⁻¹ (mean ± SD) for ambient and eO3, respectively. Meanwhile, mean 10th daytime (from 7:00-17:00) CO2 concentration during the experimental period was 377 ± 2.9 and 546 ± 21.3 μmol mol⁻¹ for ambient and eCO2, respectively (Kitao et al., 2015).

O3 was generated from an ozone generator (Model PZ2A; Kofloc, Kyoto, Japan) and eO3 (2 times of ambient) was released from a tubing system suspended throughout the plot. CO2 was provided by AIR WATER INC. (Osaka, Japan) from liquid CO2. An O3 analyzer (Model EG-3000F; Ebara Jitsugyo Co. Ltd., Kanagawa, Japan) and an O3 monitor (Model 205; 2B Technologies, Boulder, Colorado) were used to control and monitor the O3 concentration. In addition, CO2 concentration was monitored with both a Carbon Dioxide Probe (Model GMP343; Vaisala, Helsinki, Finland) and an infrared CO2 analyzer (Model LI-820; LI-COR Inc., Lincoln, Nebraska) (Kita et al., 2015). The 2 oak seedlings were grown for one growing season, from beginning of April to the end of October in 2011 under the treatment combinations. Each plot had 6 seedlings of each oak species (i.e. 6 Qs and 6 Qm, totally 12 seedlings).

2.3 Measurements

After 2 to 4 months’ treatment with eO3 and/or eCO2, 3rd or 4th leaves (counted from the shoot tip) were sampled. As a shoot developmental patterns, either Qm or Qs was classified as a flush type shoot growth (e.g. Kikuzawa, 1983). However, oaks normally flush 2-3 times in one growing season. Therefore, first-flush leaves in May and the first- and second-flush leaves in August were sampled from 2 to 4 different plants in each plot in order to be chemically analyzed. After harvest, leaf greenness was assessed for the fresh sampled leaves by a greenness meter (SPAD 502, Minolta, Osaka, Japan). SPAD readings are closely related to total amount of chlorophyll and nitrogen (N) content of a leaf (Uddling et al., 2007). Hereafter, leaves were dried at 80℃ for at least 5 days.

N concentration was determined by the combustion method with a NC analyzer (NC-900, Sumica, Osaka, Japan) for ambient and eCO2, respectively. Meanwhile, foliar elements of oaks in elevated O3 and/or CO2 were analyzed for each treatment were averaged in order to provide the sample for ambient and eCO2, respectively (Kitao et al., 2015).

Sugar content was determined by the phenol-sulfuric acid method (Dubois et al., 1956).

The dried leaf samples were digested to glucose with amyloglucosidase solution (Kabeya and Sakai, 2003) and the starch concentration was determined with Wako Autokit Glucose afterwards (439-90901, Wako Pure Chemical Industries, Ltd., Osaka, Japan). Since leaf starch content is significantly increased in eCO2 treatment (e.g. Koike, 2006), concentrations of the 6 elements are shown on the basis of leaf dry matter subtracting non-structural carbohydrates (starch + sugar) as net values.

Moreover, the prepared dried leaf samples were then digested by nitric acid, hydrogen peroxide method and the concentrations of projected elements (P, K, Mg, Mn, and Ca) of the treated leaf samples were measured with an Inductively Coupled Plasma Mass Spectrometry (ICP-MS; IRIS/IRIS Advantage ICAP, Thermo Fisher Scientific Inc., Massachusetts, U.S.A.) analysis.

2.4 Statistical analysis

The defined threshold level of significance for rejection of the null hypothesis was set at α=0.05. The values of each species and for each treatment were averaged in order to provide the sample estimate for the actual replicate. The data of each parameter were standardized to have a mean equal to 0 and a standard deviation equal to 1; this procedure allows a fair inter-comparison and minimizes the heterogeneity (Saitanis et al., 2014; 2015). All the standardized data were subjected to split-plot general linear model analysis.
The purpose of the presentation of the data, we present the net values (as shown in above); the results of the GLM are shown in Table 1. Since the responses to the gas treatments were not dependent on the leaf types (except starch contents) or the combination of “leaf type” and “species”, the data are represented only for the interactions: Gas × Species and Leaf × Species (Tables 2 and 3, respectively): the differences were marked based on the Tukey range, post-hoc tests. The Cohen’s d (Cohen, 1977) was calculated for the concentrations of starch, sugar, P, N, K, Mg, Mn and Ca, independently from leaf types and species.

A principal component analysis (PCA) with varimax rotation (Kaiser, 1958) was conducted using the pooled data of the 2 species. The gas treatments were used as the classification criteria in assessing the relationships among them and the nutrients. PCA was conducted in order to reduce the dimensionality of the data matrix, avoid redundancy, and highlight relationships (Abdi and Williams, 2010). The continuity of the variables and the number of elements observed were bigger than the number of the original variables. Data were processed and analyzed using MS EXCEL 2010 and STATISTICA v.10 software.

3. Results

Table 1 indicates that the 3 leaf types (“Leaf”) (first-flushed in May and first- and second-flushed in August) had significantly affected carbohydrates and nutrient element contents and SPAD. Leaf starch and N, K, Mg, Mn and Ca contents were significantly affected by the gas treatments (“Gas”) which included ambient air, eO3, eCO2, and e(O3+CO2). Moreover, species (“Species”) as well as interaction of Leaf × Species were found to have significant effects on leaf N, Mg, Mn and SPAD. Meanwhile, the interactions of Gas × Species, starch and leaf K, Mn were found to be significant. As for the species difference in non-structural carbohydrates and these elements, Table 1 shows that N, Mg and Mn were significantly different between species. No significant effect was observed on either Leaf × Gas or Leaf × Gas × Species interactions for mineral nutrients; only starch was observed to be significantly affected by the interaction of Leaf × Gas.

Starch concentrations were significantly decreased by eO3 treatments as compared with control (Table 2). Meanwhile, starch was significantly increased by both eCO2 and e(O3+CO2). For Qm, although there was no significant difference on starch at eO3, we observed that starch was 14% lower at eO3 but significantly recovered by 78% from eO3 to e(O3+CO2). This recovery was smaller than that of Qs (which is 110%). Apparently, with eCO2 and e(O3+CO2) treatments in both oaks, N concentration was significantly decreased while starch content was significantly increased. Sugar concentrations were significantly decreased in the 2nd flush of both oaks in August (Table 3). Starch and P concentrations were significantly decreased; however leaf N and K concentrations were significantly increased in August at the 1st or 2nd flush for both oaks.

Foliar Mg, Mn and Ca were significantly decreased by eO3 treatments (Table 2). The decrease in Mg was clearly found in Qs. We found that Mg concentration in both types of leaves of Qs was higher than that of Qm (Table 3). For 2 oaks, the 1st flush leaves had higher Mg concentration compared with the 2nd flush leaves. For Qm, Mg was decreased from May to August at the 1st flush, and also it was significantly lower at the 2nd flush. For Qs, Mg was not changed from May to the 1st flush in August, but was significantly lower at the 2nd flush.

In the contrast, for both Qm and Qs, Mn concentration was significantly increased at the 1st flush in August and had significantly higher value than at the 2nd flush. As for foliar Ca concentration
for both oaks, it was significantly increased at the 1st flush but was significantly lower at the 2nd flush in August. No difference in Ca was found between species.

SPAD values did not significantly differ among the 4 treatments (Table 2), whereas SPAD values of Qs were significantly higher than those of Qm at eO2. Given that they were not different at ambient air, it can be stated that eO3 had higher effect on leaf greenness of Qm than that of Qs. Based on Table 3, SPAD values were significantly increased at both the 1st and 2nd flush in August. At the 1st flush in August, SPAD value of Qs was significantly increased while at the 2nd flush, Qm’s was significantly higher.

Principal component analysis (PCA) was conducted in order to identify elements associated with gas treatments and screen the studied variables as indices in assessing the gas treatment effects on the 2 oaks (Fig. 1). PC1 and PC2 explained 100% of variance and PC1 can be considered as the major axis, with 54% explanation of the total variance. Factor loading is a coefficient which is related to the correlation with the principal components. Loadings range from –1 to 1, and values close to –1 or 1 indicate that the factor strongly affects the variable. Values close to 0 indicate weak effect of the factor on the variable. High loading reflect the high correlation of the relevant variables with the principal component.

Highest loading on PC1 had the variables starch, N, Mn and Ca (whose factor loading are 0.980, 0.977, 0.962 and 0.907, respectively), explaining 22.3, 22.2, 21.5 and 19.1%, respectively, of the variance of this factor. On the other hand, high loading on PC2 had the variables sugar, P, K and Mg (whose factor loading are 0.993, 0.989, 0.902 and 0.761, respectively), explaining 26.7, 26.5, 22.0 and 15.7%, respectively. Thus, the other highly intercorrelated group of variables is that of sugar, P, K and Mg. eO3 and e(O3+ CO2) contributes 58.9 and 39.1% to PC1, respectively, while eCO2 and e(O3+ CO2) contribute 64.7 and 27.6%, respectively, to PC2.

4. Discussion

As Gs is usually reduced by eCO2 (e.g. Norby and Zak, 2011), plants have higher water use efficiency and lower O3 uptake (e.g. Koike et al., 2012), which may change the absorption of water-soluble elements with aging of leaves (Hoshika et al., 2013).

Ambiant	Elevated O3	Pooled		
Qm	Qs	Qm	Qs	
Starch	42.85±(26.10)	25.62±(19.70)	49.90±(22.89)	25.62±(19.70)
Sugar	69.39±(9.42)	66.94±(6.75)	68.17±(8.05)	68.17±(8.05)
P	1.17±(0.53)	1.07±(0.47)	1.12±(0.49)	1.12±(0.49)
N	2.01±(0.28)	1.77±(0.19)	1.89±(0.26)	1.89±(0.26)
K	7.59±(1.22)	7.20±(1.19)	7.34±(1.19)	7.34±(1.19)
Mg	2.44±(0.31)	4.03±(3.16)	3.24±(1.26)	3.24±(1.26)
Mn	0.32±(0.13)	0.17±(0.04)	0.25±(0.12)	0.25±(0.12)
Ca	21.33±(7.82)	18.67±(4.82)	20.00±(6.45)	20.00±(6.45)
SPAD	34.16±(4.27)	34.90±(2.75)	34.53±(3.51)	34.53±(3.51)

Elevated CO2	Elevated (O3+CO2)					
Qm	Qs	Pooled	Qm	Qs	Pooled	
Starch	88.88±(37.21)	77.45±(37.23)	83.17±(36.59)	65.37±(35.16)	79.34±(19.97)	72.36±(28.65)
Sugar	72.39±(5.97)	65.66±(6.65)	69.03±(7.04)	69.57±(8.10)	65.30±(7.04)	67.44±(7.68)
P	1.30±(0.42)	1.20±(0.54)	1.25±(0.47)	1.21±(0.68)	0.81±(0.43)	1.01±(0.59)
N	1.61±(0.23)	1.60±(0.19)	1.60±(0.21)	1.64±(0.17)	1.57±(0.15)	1.60±(0.16)
K	6.63±(0.96)	7.12±(1.13)	6.88±(1.05)	8.51±(1.06)	6.79±(1.28)	7.65±(1.44)
Mg	2.11±(0.33)	3.56±(1.21)	2.83±(1.14)	2.11±(0.55)	4.14±(1.23)	3.13±(1.39)
Mn	0.26±(0.07)	0.21±(0.06)	0.23±(0.07)	0.25±(0.07)	0.16±(0.04)	0.21±(0.07)
Ca	19.54±(9.21)	18.63±(6.18)	19.09±(7.62)	18.03±(8.03)	19.47±(7.38)	18.75±(7.52)
SPAD	32.06±(5.24)	34.32±(2.43)	33.19±(4.13)	30.54±(5.04)	34.81±(2.40)	32.68±(4.41)

Note: Since foliar starch contents were significantly increased in elevated-CO2-grown seedlings, the concentrations of P, N, K, Mg, Mn, and Ca are shown on the basis of leaf dry matter subtracting non-structural carbohydrates (starch + sugar).
Table 3. Mean net values (± SD) of the concentrations (mg g⁻¹ dry mass) of starch and sugar, P, N, K, Mg, Mn, Ca and the readings of SPAD (arbitrary units) in the 3 types of leaves, independently of the gas treatment (Leaf × Species). The values are shown separately for the species *Q. mongolica* (*Qm*) and *Q. serrata* (*Qs*) and pooled for both species (pooled = main effects of the leaf type). Comparisons were made within each line of the table (i.e. each variable). The lowercase letters above the mean values indicate the significant differences among the 3 types of leaves of the pooled data while the uppercase indicate the differences among the 3 types of leaves for the *Qm* and *Qs*. The results of each variable obtained by one GLM analysis or a Tukey range, Post-hoc test, after significant results of the GLM analysis, based on standardized data. Means within each variable marked with different letter differ statistically significantly at a level of significance α=0.05.

Species	1st flush leaves - May	1st flush leaves - August	2nd flush leaves - August							
	Qm	Qs	Pooled	Qm	Qs	Pooled	Qm	Qs	Pooled	
Starch	93.60±	89.61±	(27.43)	91.60±	37.56B	46.57B	42.07B	44.17B	52.33B	48.25B
Sugar	73.94±	71.45±	(6.09)	72.70±	72.22A	66.48A	69.35A	63.57A	62.23A	62.90B
P	1.60±	1.42±	(0.15)	1.51±	1.34±	0.96±	1.15±	0.88±	0.84±	0.86±
N	1.64±	1.76AB	(0.19)	1.70±	1.73±	1.58±	1.66±	1.97±	1.71±	1.84±
K	7.12AB	6.30B	(0.98)	6.71±	8.18A	7.21AB	7.69B	7.79A	8.22A	8.01B
Mg	2.61±	4.36B	(0.21)	3.48±	2.03BC	4.36B	3.19±	1.89±	2.41AC	2.15B
Mn	0.22±	0.14B	(0.03)	0.18±	0.36C	0.20AB	0.28±	0.22±	0.16AB	0.19±
Ca	11.59A	13.18B	(2.55)	12.38±	26.56C	22.88C	24.72²	18.11B	17.76AB	17.94B
SPAD	27.75A	32.47C	(2.12)	30.11A	30.89A	36.68A	33.78A	36.21D	35.05CD	35.63B

Note: Since foliar starch contents were significantly increased in elevated-CO₂-grown seedlings, the concentrations of P, N, K, Mg, Mn, and Ca are shown on the basis of leaf dry matter subtracting non-structural carbohydrates (starch + sugar).

According to Yamaguchi et al. (2011) and Kitao et al. (2015), Gs was relatively higher in *Qm* than in *Qs*. The decrease of Mg, Mn and Ca in eO₃ in both species, maybe because of declined photosynthetic function and low Gs which were induced by eO₃ (Yamaguchi et al., 2011; Kitao et al., 2015), as was also found in Siebold’s beech sapling during young stage of leaf until late-July (Hoshika et al., 2012; 2013).

Carbohydrates (e.g. starch and sugar) are produced by green plants served as storage products of energy (e.g. Keutgen and Chen, 2001; Koike, 2006). An increase of starch at eO₃ has also been observed in our study in coincidence with many researches’ results (e.g. Norby and Zak, 2011). This may be attributed to a feedback mechanism which reduces the sucrose synthesis in the cytosol; as a result, triose phosphate is exported from the chloroplast, finally stimulating starch accumulation in the chloroplast (Sharkey, 1985; Katty et al., 2005). Net photosynthetic rate was decreased by eO₂ but this reduction was slightly recovered by e(O₂+CO₂) at the 1st flush and by eO₃ at the 2nd flush for *Qm*; while it was increased by e(O₂+CO₂) for *Qs* during the entire flush time (Kitao et al., 2015). These trends have suggested that *Qs* may have higher ability for the recover from O₃ damages and may be more tolerant to eO₂ than *Qm* under eCO₂ based on the summary made by Kohno et al. (2005) and Yamaguchi et al. (2011).

No significant effects were observed in foliar P concentration at eO₃ for both species at the present study, which was in agreement with the results of Wang et al. (2015). Although we hypothesized that leaf P would be increased under eCO₂ since the acquisition of P is strongly affected by physiological condition of host plants through the morphological and the physiological properties of rhizosphere (Adalsteinsson et al., 1994; Ruiz et al., 1996; Kayama et al., 2005; Kayama and Yamanaka, 2014; Wang et al., 2015), there was no difference in leaf P at eCO₂. This was also supported by Conroy (1992), indicating the view that eCO₂ increased the P demand of leaves. As one of the most actively sources for carbohydrates, leaves may prefer the photosynthetic carbon reduction cycle at eCO₂ (Fangmeier et al., 1997).

On the other hand, P concentration was significantly decreased in August for both oaks at the 1st flush leaves and the values continued to be significantly decreased at the 2nd flush of leaves most likely due to P consumption by the leaf flushing. This change is also supported by general trend: P is an essential component of cellular membranes and nucleic acid and is recognized as a significant element for energy storage and transfer (Raghothama, 1999;
As one of the most important macro-nutrients, N is the major component of protein and various enzymes, which importantly affects not only energy reserves but also the process of photosynthesis (Marschner, 2012). eO3 did not significantly affect leaf N for both Qm and Qs. This result is consistent with previous results from former researches with other tree species like holm oak (e.g. Baldantoni et al., 2011; Matyssek and Sandermann, 2003). Foliar N concentration is decreased due to the reduced demand for N in eCO2 (e.g. Rogers et al., 1993). At eCO2 and e(O3+CO2) treatments, oaks did not require to accumulate much N because of enriched CO2 environment (Norby and Zak, 2011). This result was supported by some other researches; such as a potato variety (Fangmeier et al., 2002) and larch species (Koike et al., 2012). The reduced N concentration under eCO2 may be also attributed to the limitation in nutrients supplies from soil. In addition, the markedly increased leaf N of Qm at the 2nd flush in August could be due to the physiological or morphological enhancement of roots (Eguchi et al., 2008) driven by relatively higher net photosynthetic rate (Kitao et al., 2015), which promote N absorption.

Although K is not a direct component of a plant body, it regulates the translocation of photosynthates in sap of plants. High level of K may accelerate the various functions in photosynthesis, such as net carbon exchange, phloem loading, metabolic conversion of sucrose, etc. (Conti and Geiger, 1982). Despite the fact that some previous researches indicated eO3 and eCO2 treatment decreased foliar K in potato and beech (e.g. Fangmeier et al., 2002; Thomas et al., 2006), what we found in this study (Table 2) is in consistence with Wang et al. (2015) where leaf K was not clearly different at eO3 and eCO2 from that grown under ambient. It was possibly because the decreased photosynthetic rate (Kitao et al., 2015) was somehow offset by the enhanced phyto-hormones induced by eO3 or eCO2 (Yong et al., 2000; Winwood et al., 2007; Matyssek et al., 2012), thereby regulating the foliar K independent with the specific gas treatments. Moreover, the high leaf K in August, both the 1st and 2nd flush, was likely connected with remobilisable stored water or with succulence so that K may be accumulated in vacuoles (Von Willert et al., 1992; Cornelissen et al., 1997).

P, K and Mg are known to be water soluble mobile in the phloem and easily re-translocated from older to younger leaves (Marschner, 2012). Mg is the central atom of chlorophyll pigment and essential for the ribosomes aggregation. Therefore, Mg is usually considered as an indicator of leaf greenness and many physiological functions (Shaul, 2002; Teklic et al., 2009). In the present study, the lower result of leaf Mg at eO3 may also be associated with eO3 accelerated leaf senescence (e.g. Fuhrer et al., 1990; Fangmeier et al., 2002) and reduction of water use efficiency induced by stomatal sluggishness at eO3 (Hoshika et al., 2015). For the eO3 treatment and the 1st flush leaves in both May and August, SPAD readings of Qs were significantly higher than that of Qm, which are consistent with the higher leaf Mg observed in the leaves of Qs. Leaf Mg of Qs was significantly decreased by eO3, which may result from the relatively higher susceptibility of Qs to eO3 (Yamaguchi et al., 2011).

Ca is a cellular-level second messenger in signal transduction between the environment and plant responses in terms of development and growth (Marschner, 2012). Mn as one of the co-factors together with Ca and chlorine, promote the water oxidation occurrence in the photosynthetic oxygen evolution (Yachandra et al., 1993; Kitao et al., 1998). Foliar Mn showed the same trend as found in Ca. Leaf mineral content is determined by the balance...
between influx via xylem and phloem, and efflux via phloem (e.g. Larcher, 2003). As Mn and Ca are transported from roots to leaves through xylem but poorly mobile in phloem (e.g. Riesen and Feller, 2005; Marschner, 2012), cumulative transpiration flux through stomata would be proportional to leaf Mn concentration (Kitao et al., 2001). In addition, as new flush leaves were developed on the old leaves axles, the nutrient retranslocation of newly flushed leaves were likely great influenced by the nutrient content of old leaves (e.g. Dickson, 1989). Leaf Mn and Ca at the 1st flush in August were significantly higher than those in May, which is consistent with the low mobility of Mn and Ca (Kitao et al., 2001). Leaf Mn and Ca at the 2nd flush, however, had significantly lower values compared with the 1st flush in August. One of the possible reasons is that stomata may become fairly tough until late August as stomata closed (late August as stomata closed).

Eventually, to understand the dynamics of mineral nutrients mobility in the phloem, demands from young developing tissues especially under the projected high CO2 levels. A positive association of old leaves flushed leaves were likely great influenced by the nutrient content of newly flushed leaves were likely great influenced by the nutrient content of old leaves (e.g. Dickson, 1989). Leaf Mn and Ca at the 1st flush in August were significantly higher than those in May, which is consistent with the low mobility of Mn and Ca (Kitao et al., 2001). Leaf Mn and Ca at the 2nd flush, however, had significantly lower values compared with the 1st flush in August. One of the possible reasons is that stomata may become fairly tough until late August as stomata closed (late August as stomata closed).

Acknowledgements

We thank the financial support in part by the Grant-in-aid (JSPS-TypeB 26292075, HokREST and ERTDF-B1105 to T.K.) and Dr. Toshio Watanabe of Plant Nutrient Laboratory of Hokkaido University for the guidance of elements analysis with ICP. Thanks are also due to Dr. Masahiro Yamaguchi for invaluable discussion on species difference.

References

Abdi, H., and Williams, L. J., 2010: Principal component analysis. John Wiley & Sons, Inc. WIREs Computational Statistics, 2, 433–459.

Adalsteinsson, S., Schjorring, J. K., and Jensén, P., 1994: Regulation of phosphate influx in winter wheat: root-shoot phosphorus interactions. Journal of Plant Physiology, 143, 681–686.

Agathokleous, E., Saitanis, C. J., and Koike, T., 2015: Tropospheric O3, the nightmare of wild plants: a review study. Journal of Agricultural Meteorology, 71, 142–152.

Baldantoni, D., Fagnano, M., and Alfani, A., 2011: Tropospheric ozone effects on chemical composition and decomposition rate of Quercus ilex L. leaves. Science of the Total Environment, 409, 979–984.

Cohen, J., 1977: Statistical Power Analysis for the Behavioral Sciences, Academic Press, New York, pp 474.

Conroy, J. P., 1992: Influence of elevated atmospheric CO2 concentration on plant nutrition. Australian Journal of Botany, 40, 445–456.

Conti, T. R., and Geiger, D. R., 1982: Potassium nutrition and translocation in sugar beet. Plant Physiology, 70, 168–172.

Cornelissen, J. H. C., Werger, M. J. A., Castro-Diez, P., van Rrehenen, J. W. A., and Rowland, A. P., 1997: Foliar nutrients in relation to growth, allocation and leaf traits in seedlings of a wide range of woody plant species and types. Oecologia, 111, 460–469.

Crawley, M. J., 2005: Statistics: An Introduction using R, Wiley, Tokyo, pp. 342.

Dickson, R. E., 1989: Carbon and nitrogen allocation in trees. Annales des Sciences Forestières, 46, 631–647.

Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F., 1956: Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350–356.

Eguchi, N., Karatsu, K., Udca, T., Funada, R., Takagi, K., Hiura, T., Sasa, K., and Koike, T., 2008: Photosynthetic responses of birch and alder saplings grown in a free air CO2 enrichment system in northern Japan. Trees, 22, 437–447.

Fangmeier, A., De Temmerman, L., Black, C., Persson, K., and Vorne, V., 2002: Effects of elevated CO2 and/or ozone on nutrient concentrations and nutrient uptake of potatoes. European Journal of Agronomy, 17, 353–368.

Fangmeier, A., Grütters, U., Högy, P., Vermehren, B., and Jäger, H. J., 1997: Effect of elevated CO2, nitrogen supply and tropospheric ozone on spring wheat- II. Nutrients (N, P, K, S, Ca, Mg, Fe, Mn, Zn). Environmental Pollution, 96, 43–59.

Fares, S., Savi, F., Muller, J., Matteucci, G., and Paolotti, E., 2014: Simultaneous measurements of above and below canopy ozone fluxes help partitioning ozone deposition between its various sinks in a Mediterranean oak forest. Agricultural and Forest Meteorology, 198–199, 181–191.

Fuhrer, J., Lehnherr, B., Moeri, P. B., Tschannen, W., and Shari-at-Madari, H., 1990: Effect of ozone on the grain composition of spring wheat grown in open-top field chambers. Environmental Pollution, 65, 181–192.

Hoshika, Y., Katata, G., Deushi, M., Watanabe, M., Koike, T., and Paolotti, E., 2015: Ozone-induced stomatal sluggishness changes carbon and water balance of temperate deciduous forests. Scientific Reports, 5, 09871, doi: 10.1038/srep09871.

Hoshika, Y., Watanabe, M., Inada, N., and Koike, T., 2012: Ozone-induced stomatal sluggishness develops progressively in Siebold’s beech (Fagus crenata). Environmental Pollution, 166, 152–156.

Hoshika, Y., Watanabe, M., Inada, N., Mao, Q. Z., and Koike, T., 2013: Model-based analysis of avoidance of ozone stress by stomatal closure in Siebold’s beech (Fagus crenata). Annals of Botany, 112, 1149–1158.

IPCC, 2007: Climate change 2007, mitigation of climate change. Working Group III Contribution to the Fourth Assessment, Report of the intergovernmental Panel on Climate Change.

Izuta, T., 2006: Plants and environmental stresses, Corona publisher, Tokyo, pp. 232. (in Japanese).

Izuta, T., and Nakaji, T., 2003: Effects of high nitrogen load and
ozone on forest tree species. *Eurasian Journal of Forest Research*, 6, 155–170.

Kabeya, D., and Sakai, S., 2003: The Role of Roots and Cotyledons as storage organs in early stages of establishment in *Quercus crispula*: a quantitative analysis of the nonstructural carbohydrate in cotyledons and roots. *Annals of Botany*, 92, 537–545.

Kaiser, H. F., 1958: Best approximation of a common variance factor space. *Working paper, Bureau of Educational Research, University of Illinois, Research Report* No. 25.

Karnosky, D. F., Skelly, J. M., Percy, K. E., and Chappellka, A. H., 2007: Perspectives regarding 50 years of research on effects of tropospheric ozone air pollution on US forests. *Environmental Pollution*, 147, 489–506.

Katny, M. A. C., Hoffmann-Thoma, G., Schriera, A. A., Fangmeier, A., Jager, H.-J., and van Bel, A. J. E., 2005: Increase of photosynthesis and starch in potato under elevated CO$_2$ dependent on leaf age. *Journal of Plant Physiology*, 162, 429–438.

Kayama, M., Quoreshi, A. M., Uemura, S., and Koike, T., 2005: Growth and defence in plants: resource allocation at multiple scales. *Ecological Studies* 220, Springer, Heidelberg, pp. 467.

Matsumura, H., Mikami, C., Sakai, Y., Murayama, K., Izuta, T., Yenekura, T., Miwa, M., and Kohno, Y., 2005: Impacts of elevated O$_3$ and/or CO$_2$ on growth of *Betula platyphylla*, *Betula ermanii*, *Fagus crenata*, *Pinus densiflora* and *Cryptomeria japonica* seedlings. *Journal of Agricultural Meteorology*, 60, 1121–1124.

Matyssek, R., and Sandermann, H., 2003: Impact of Ozone on Trees: An Ecophysiological Perspective. *Progress in Botany*, 64, Springer-Verlag, Heidelberg, pp. 349–404.

Matyssek, R., Schnyder, H., Olbwald, W., Ernst, D., Munch, J.C., and Pretzsch, H. (ed.), 2012: *Growth and defence in plants: resource allocation at multiple scales*. Ecological Studies 220, Springer, Heidelberg, pp. 467.

Menitsky, Y. L., 2005: *Oaks of Asia* (Translated from Russian), Science Publications, Inc., Enfield, New Hampshire, USA, pp. 549.

Nakashizuka, T., and Iida, S., 1995: Composition, dynamics and disturbance regime of temperate deciduous forests in Monsoon Asia. *Vegetatio*, 121, 23–30.

NOAA, 2014: Trends in atmospheric carbon dioxide. http://www.esrl.noaa.gov/gmd/ccgg/trends/#mlo_growth, Accessed on 25th April 2014.

Norby, R. J., and Zak, D. R., 2011: Ecological lessons from Free-Air CO$_2$ Enrichment (FACE) Experiments. *Annual Review of Ecology Evolution and Systematics*, 42, 181–203.

Oh, K. I., Melville, L. H., and Peterson, R. L., 1995: Comparative structural study of *Quercus serrata* and *Q. acutissima* formed by *Pisolithus tinctorius* and *Hebeloma cylindrosporum*. *Trees*, 9, 171–179.

Ohara, T., Akimoto, H., Kurokawa, J., Horii, N., Yamaji, K., Yan, X., and Hayasaka, T., 2007: An Asian emission inventory of anthropogenic emission sources for the period 1980–2020. *Atmospheric Chemistry and Physics*, 7, 4419–4444.

Paolletti, E., and Grukle, N. E., 2005: Does living in elevated CO$_2$ ameliorate tree response to ozone? A review on stomatal responses. *Environmental Pollution*, 137, 483–493.

Paolletti, E., Nali, C., and Lorenzini, G., 2002: Photosynthetic behavior of two Italian clones of European beech (*Fagus sylvatica* Mill.) exposed to ozone. *Phyton*, 42, 149–155.

Raghothama, K. G., 1999: Phosphate acquisition. *Annual Review of Plant Physiology and Plant Molecular Biology*, 50, 665–693.

Ries, O., and Feller, U., 2005: Redistribution of Nickel, Cobalt, Manganese, Zinc, and Cadmium via the phloem in young and maturing wheat. *Journal of Plant Nutrition*, 28, 421–430.

Rogers, G. S., Payne, L., Milham, P., and Conroy, J., 1993: Nitrogen and phosphorus requirements of cotton and wheat under changing atmospheric CO$_2$ concentrations. In *Plant Nutrition - from Genetic Engineering to Field Practice* (ed by Barrow, N. J.). Springer Netherlands, pp. 257–260.

Ruiz, J. M., Belakbir, A., and Romero, L., 1996: Foliar level of phosphorus and its bioindicators in *Cucumis melo* grafted plants. A possible effect of rootstocks. *Journal of Plant Physiology*, 149, 400–404.

Saitanis, C., Bari, S. M., Burkey, K. O., Stamatelopoulos, D., and...
Agathokleous, E., 2014: Screening of Bangladeshi winter wheat (Triticum aestivum L.) cultivars for sensitivity to ozone. Environmental Science and Pollution Research, 21, 13560–13571.

Saitanis, C., Lekkas, D. V., Agathokleous, E., and Flouri, F., 2015: Screening agrochemicals as potential protectants of plants against ozone phytotoxicity. Environmental Pollution, 197, 247–255.

Saul, R., 1964: Ozone damage to plants. Annual Review of Phytopathology, 2, 253–266.

Sharkey, T. D., 1985: Photosynthesis in intact leaves of C3 plants: physics, physiology and rate limitations. Botanical Review, 51, 53–105.

Shaul, O., 2002: Magnesium transport and function in plants: the tip of the iceberg. BioMetals, 15, 307–321.

Singh, S. K., Badgujar, G., Reddy, V. R., Fleisher, D. H., and Bunce, J. A., 2013: Carbon dioxide diffusion across stomata and mesophyll and photo-biochemical processes as affected by growth CO₂ and phosphorus nutrition in cotton. Journal of Plant Physiology, 170, 801–813.

Sild, E., Pleijel, H., and Selliden, G., 2002: Elevated ozone (O₃) alters carbohydrate metabolism during grain filling in wheat (Triticum aestivum L.). Agriculture, Ecosystems & Environment, 92, 71–81.

Solberg, S., Derwent, R. G., Hov, O., Langner, J., and Lindskog, A., 2005: European abatement of surface ozone in a global perspective. Ambio, 34, 47–53.

Takigawa, M., Niwano, M., Akimoto, H., Takahashi, M., and Kobayashi, K., 2009: Projection of surface ozone over East Asia in 2020. Journal of Agricultural Meteorology, 65, 161–166.

Tekic, T., Vrataric, M., Sudaric, A., Kovacevic, V., Vukanovic, V., and Bertic, B., 2009: Relationships among chloroplast pigments concentration and chlorophyllmeter readings in soybean under influence of foliar magnesium application. Communications in Soil Science and Plant Analysis, 40, 706–725.

Thomas, V. F. D., Braun, S., and Flückiger, W., 2006: Effects of simultaneous ozone exposure and nitrogen loads on carbohydrate concentrations, biomass, growth, and nutrient concentrations of young beech trees (Fagus sylvatica). Environmental Pollution, 143, 341–354.

Uddling, J., Gelang-Alfredsson, J., Piikki, K., and Pleijel, H., 2007: Evaluating the relationship between leaf chlorophyll concentration and SPAD–502 chlorophyll meter readings. Photosynthesis Research, 91, 37–46.

Von Willert, D. J., Eller, B. M., Werger, M. J. A., Brinckmann, E., and Ihlenfeldt, H. D., 1992: Life strategies of succulents in deserts, with special reference to the Namib desert. Cambridge University Press, Cambridge, UK, pp.368.

Wang, X. N., Qu, L., Mao, Q., Watanabe, M., Hoshika, Y., Koyama, A., Kawaguchi, K., Tamai, Y., and Koike, T., 2015: Ectomycorrhizal colonization and growth of the hybrid larch F1 under elevated CO₂ and O₃. Environmental Pollution, 197, 116–126.

Watanabe, M., Kitaoka, S., Eguchi, N., Watanabe, Y., Satomura, T., Takagi, K., Satoh, F., and Koike, T., 2014: Photosynthetic traits and growth of Quercus mongolica var. crispula sprouts attacked by powdery mildew under free-air CO₂ enrichment. European Journal of Forest Research, 133, 725–733.

Watanabe, M., Umemoto-Yamaguchi, M., Koike, T., and Izuta, T., 2010: Growth and photosynthetic response of Fagus crenata seedlings to ozone and/or elevated carbon dioxide. Landscape and Ecological Engineering, 6, 181–190.

Winwood, J., Price, A. J., and Hanke, D. E., 2007: Effect of long-term free-air ozone fumigation on the cytokinin content of mature beech trees. Plant Biology, 9, 265–278.

Yachandra, V. K., DeRose, V. J., Latimer, M. J., Mukerji, I., Sawyer, K., and Klein, M. P., 1993: Where plants make oxygen: a structural model for the photosynthetic oxygen-evolving manganese cluster. Science, 260, 675–679.

Yamaguchi, M., Watanabe, M., Matsumura, H., Kohno, Y., and Izuta, T., 2011: Experimental studies on the effects of ozone on growth and photosynthetic activity of Japanese forest tree species. Asian Journal of Atmospheric Environment, 5, 65–78.

Yamaji, K., Ohara, T., Uno, I., Tanimoto, H., Kurokawa, J., and Akimoto, H., 2006: Analysis of the seasonal variation of ozone in the boundary layer in East Asia using the Community Multi-scale Air Quality model: What controls surface ozone levels over Japan?. Atmospheric Environment, 40, 1856–1868.

Yong, J. W. H., Latham, D. S., Hocart, C. H., and Farquhar, G. D., 2000: Effect of elevated CO₂ and nitrogen nutrition on cytokinins in the xylem sap and leaves of cotton. Plant Physiology, 124, 767–780.