Integrability of Invariant Geodesic Flows on
n-Symmetric Spaces

Božidar Jovanović
Mathematical Institute, Serbian Academy of Sciences and Arts
Kneza Mihaila 36, 11000 Belgrade, Serbia

Abstract
In this paper, by modifying the argument shift method, we prove Liouville integrability of geodesic flows of normal metrics (invariant Einstein metrics) on the Ledger-Obata n-symmetric spaces $K^n/\text{diag}(K)$, where K is a semisimple (respectively, simple) compact Lie group.

Keywords: noncommutative and commutative integrability, invariant polynomials, translation of argument, homogeneous spaces, Einstein metrics

MSC: 70H06, 37J35, 53D25

1 Introduction

Invariant Geodesic Flows. We study integrability of G-invariant geodesic flows on a class of homogeneous spaces

$$Q = G/H, \quad G = \underbrace{K \times \cdots \times K}_n, \quad H = \text{diag}(K) = \{(g, \ldots, g) \mid g \in K\} \quad (1)$$

where K is a compact connected semisimple Lie group. The homogeneous space Q is diffeomorphic to the direct product K^{n-1}, however as a G-homogeneous space it is a basic example of a n-symmetric Riemannian space, see Ledger and Obata [9].

Let $\mathfrak{g} = \mathfrak{t}^n = \mathfrak{t}_1 \oplus \mathfrak{t}_2 \oplus \cdots \oplus \mathfrak{t}_n$, $\mathfrak{h} = \{(x, \ldots, x) \mid x \in \mathfrak{t}\}$, \mathfrak{t} be the Lie algebras of G, H and K, respectively ($\mathfrak{t}_i \cong \mathfrak{t}$ is the i-th factor). For simplicity, both negative Killing forms on \mathfrak{g} and \mathfrak{t} will be denoted by $\langle \cdot, \cdot \rangle$. Let

$$\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{v}, \quad \mathfrak{v} = \{x = (x_1, \ldots, x_n) \in \mathfrak{t}^n \mid x_1 + \cdots + x_n = 0\} \quad (2)$$

be the orthogonal decomposition with respect to the Killing form.

The linear subspace \mathfrak{v} can be naturally identified with $T_{\rho(e)}Q$, where $\rho : G \to Q = G/H$ is the canonical projection. Then G-invariant metrics on Q, via
restrictions to $T_p(c)Q \cong \mathfrak{v}$, are in one-to-one correspondence with Ad_H-invariant scalar products (e.g., see [1])

$$ (\cdot, \cdot)_v = (I(\cdot), \cdot), \quad I : \mathfrak{v} \to \mathfrak{v}, \quad I \circ \text{Ad}_h = I \circ \text{Ad}_h, \quad h \in H. \quad (3) $$

The negative Killing form itself defines normal (or standard) metric ds^2. Note that, in the case when K is a simple group, the normal G-invariant metric on Q is Einstein (see Wang and Ziller [22]). Besides, Nikonorov proved that, up to the isometry and homothety, the homogeneous space Q for $n = 3$ ($n \geq 4$) admits exactly (respectively, at least) two G-invariant Einstein metrics [17].

General Setting. Let \mathcal{F} be a collection of functions closed under the Poisson bracket on a Poisson manifold $(M, \{\cdot, \cdot\})$ and let Λ be the Poisson bivector related to $\{\cdot, \cdot\}$. Consider the linear space $F_x \subset T_x^*M$ spanned by differentials of functions in \mathcal{F}. Suppose that the numbers $\text{dim } F_x$ and $\text{dim ker } \Lambda|_{F_x}$ are constant almost everywhere on M and denote them by $\text{ddim } \mathcal{F}$ and $\text{dind } \mathcal{F}$, respectively (differential dimension and differential index of \mathcal{F}). The set \mathcal{F} is called complete if: $\text{ddim } \mathcal{F} + \text{dind } \mathcal{F} = \text{dim } M + \text{corank } \{\cdot, \cdot\}$. It is complete at $x \in M$ if $\text{dim } F_x + \text{dim ker } \Lambda|_{F_x} = \text{dim } M + \text{ker } \Lambda$, i.e., F_x is isotropic: $F^0_x \subset F_x, \quad F^0_x = \{\xi \in T_x^*M \mid \Lambda_x(\xi, F_x) = 0\}$.

The Hamiltonian system $\dot{f} = \{f, h\}$ is completely integrable in the non-commutative sense if it possesses a complete set of first integrals \mathcal{F}. Then (under compactness condition) M is almost everywhere foliated by $(\text{dind } \mathcal{F} - \text{corank } \{\cdot, \cdot\})$-dimensional invariant tori. As in the Liouville theorem, the Hamiltonian flow restricted to regular invariant tori is quasi-periodic (see [16, 13]). Mishchenko and Fomenko stated the conjecture that non-commutative integrable systems are integrable in the usual commutative sense by means of integrals that belong to the same functional class as the original non-commutative integrals [13]. In the analytic case, when \mathcal{F} is a finite-dimensional Lie algebra, the conjecture has been proved by Sadetov [20]. The conjecture is also proved in C^∞-smooth case for infinite-dimensional algebras (see [4]).

Now, let $Q = G/H$ be a homogeneous space of a compact Lie group G, $\Phi : T^*Q \to \mathfrak{g}^*$ be the momentum mapping of the natural G-action on T^*Q, $\mathcal{F}_1 = \Phi^*(\mathbb{R}[\mathfrak{g}])$ be the set of Noether’s functions and \mathcal{F}_2 be the set of G-invariant functions, polynomial in momenta. Both \mathcal{F}_1 and \mathcal{F}_2 are Lie subalgebras of $(C^\infty(T^*Q), \{\cdot, \cdot\})$, where $\{\cdot, \cdot\}$ is the canonical Poisson bracket. From Noether’s theorem we have $\{\mathcal{F}_1, \mathcal{F}_2\} = 0$. Also $\mathcal{F}_1 + \mathcal{F}_2$ is a complete set of functions on T^*Q (see Bolsinov and Jovanović [3, 5]).

The Hamiltonian function H_0 of the normal metric ds^2 is a Casimir function within \mathcal{F}_2, so it Poisson commute both with \mathcal{F}_1 and \mathcal{F}_2. Thus the geodesic flow of the normal metric is completely integrable in the non-commutative sense by means of analytic functions, polynomial in momenta.

Integrable Pairs. Within the class of Noether’s integrals \mathcal{F}_1, for example by using the argument translation method [12], one can always construct a complete commutative subset of function $\mathcal{F}^0 \subset \mathcal{F}_1 \quad (\text{ddim } \mathcal{F}^0 = \frac{1}{2}(\text{ddim } \mathcal{F}_1 + \text{dind } \mathcal{F}_1))$.

Thus, for the case of the geodesic flow of the normal metric, the Mishchenko-Fomenko conjecture reduces to the construction of a complete commutative subset $F \subset F_2$:
\[
\text{ddim } F = \frac{1}{2} (\text{ddim } F_2 + \text{dind } F_2) .
\]
Indeed, from the completeness of $F_1 + F_2$ it follows that $F^0 + F$ is a complete commutative set on T^*Q (see [2, 3]).

If the required subset $F \subset F_2$ exist, we say that (G, H) is an integrable pair. In [4] the conjecture is stated that all pairs (G, H) are integrable. If (G, H) is a spherical pair, in particular if G/H is a symmetric space, the algebra F_2 is already commutative. In this case we need only Noether’s integrals F_1 to integrate the geodesic flow (see Mishchenko [11], Brailov [6] and Mikityuk [14]). There are several known classes of integrable pairs (see [3, 5, 15, 8]) but the general problem rest still unsolved. For a related problem on the integrability of geodesic flows on homogeneous spaces of noncompact Lie groups see, e.g., [7, 10].

Results and Outline of the Paper. Let $Q = G/H$ be the Ledger-Obata n-symmetric space (1). By using the flag of subalgebras
\[
g_1 = \mathfrak{k}_1 \subset g_2 = \mathfrak{k}_1 \oplus \mathfrak{k}_2 \subset \cdots \subset g_n = g = \mathfrak{k}_1 \oplus \cdots \oplus \mathfrak{k}_n ,
\]
we modify the argument shift method to construct a complete set of polynomials on g with respect to the usual Lie-Poisson bracket (Theorem 2, Section 2). It allows us to find a complete commutative subset of polynomials within F_2 (Theorem 3, Corollary 2, Section 2) implying:

Theorem 1 The geodesic flow of the normal metric on the Ledger-Obata n-symmetric space (1) is Liouville integrable by means of analytic integrals, polynomial in momenta.

As a corollary, the complete commutative integrability of the geodesic flows of invariant Einstein metrics constructed by Nikonov [17] (Corollary 3, Section 3) is obtained.

2 Liouville Integrability of Geodesic Flows

H-invariant Euler Equations. Consider the left trivialization $T^*G \cong g \times G$, where the identification $g^* \cong g$ is given by (\cdot, \cdot). Let $\hat{I} : g \to g$ be a positive definite operator which defines left-invariant metric ds^2_I on G.

The left G-reduction of the geodesic flow of the metric ds^2_I is described by the Euler equations on $g^* \cong g$:
\[
\dot{x}_i = [x_i, \xi], \quad \xi_i = \nabla x \hat{h}(x_1, \ldots, x_n) = \text{pr}_{\xi_i} \hat{A}(x_1, \ldots, x_n), \quad i = 1, \ldots, n ,
\]
where $\hat{h} = \frac{1}{2}(\hat{A}(x), x)$ is the Hamiltonian, $\hat{A} = \hat{I}^{-1}$ and pr_{ξ_i} is the projection to i-th factor: $\text{pr}_{\xi_i}(x_1, \ldots, x_n) = x_i$.

3
The Euler equations are Hamiltonian with respect to the Lie-Poisson bracket (the product of the Lie-Poisson brackets on factors t_i):

$$\{f, g\}(x_1, \ldots, x_n) = -\sum_{i=1}^{n} (x_i, [\nabla_{x_i} f, \nabla_{x_i} g]).$$

(7)

The right H-action on T^*G is Hamiltonian with momentum mapping, in the left-trivialization, given by

$$\mu(x) = x_1 + \cdots + x_n.$$

(8)

The geodesic flow is invariant with respect to the right H-action if and only if the Hamiltonian \hat{T} is Ad_H-invariant, i.e.,

$$\langle [x, h], \hat{T}(x) \rangle = 0 \iff \text{pr}_\mathfrak{h}[\hat{T}(x), x] = 0 \iff \sum_{i=1}^{n} [\text{pr}_{t_i}, \hat{T}(x), x_i] = 0,$$

where we used

$$\text{pr}_\mathfrak{h}(x_1, \ldots, x_n) = \frac{1}{n}(x_1 + \cdots + x_n, \ldots, x_1 + \cdots + x_n).$$

(9)

If the Hamiltonian \hat{h} is Ad_H-invariant, then the momentum μ is preserved by geodesic flow and we can perform the symplectic reduction of the flow to $\mu^{-1}(0)/H \cong T^*Q$. The reduced flow is the geodesic flow of a G-invariant submersion metric on Q.

Contrary, for a given Ad_H-invariant positive definite operator $I : \mathfrak{v} \to \mathfrak{v}$, let ds^2 be a G-invariant metric defined by [3]. It can be seen as a submersion metric of an appropriate left G-invariant and right H-invariant metric ds^2_k, simply by taking

$$\hat{I}(x) = s \cdot \text{pr}_\mathfrak{g}(x) + I \text{pr}_\mathfrak{h}(x), \quad x \in \mathfrak{g},$$

where $s > 0$.

Algebra of G-invariant functions on T^*Q. The algebra \mathcal{F}_2 of G-invariant functions on T^*Q, polynomial in momenta, can be identified with $\mathbb{R}[\mathfrak{v}]^H$ (Ad_H-invariant polynomials on \mathfrak{v}). Within this identification, the Hamiltonian of the metric ds_j^2 is given by $h(x) = \frac{1}{2}\langle Ax, x \rangle$, $A = I^{-1}$, while the Hamiltonian of the normal metric ds_0^2 is simply $h_0(x) = \frac{1}{2}\langle x, x \rangle$. Further, the canonical Poisson bracket on T^*Q corresponds to the restriction of the Lie-Poisson bracket (7) to $\mathbb{R}[\mathfrak{v}]^H$ (see Thimm [21]):

$$\{f, g\}_\mathfrak{v}(x) = -\langle x, [\nabla_f(x), \nabla g(x)] \rangle, \quad f, g : \mathfrak{v} \to \mathbb{R}.$$

(10)

Let \mathfrak{g}_x, \mathfrak{h}_x and \mathfrak{t}_x, be isotropy algebras of x and x_i in \mathfrak{g}, \mathfrak{h} and \mathfrak{t}.

Consider the space $\mathfrak{j}_x \subset \mathfrak{v}$ spanned by gradients of all polynomials in $\mathbb{R}[\mathfrak{v}]^H$. For a generic point $x \in \mathfrak{v}$ we have (see [3] [15]):

$$\mathfrak{j}_x = ([x, h]^{-1})^\perp \cap \mathfrak{v} = \{\eta \in \mathfrak{v} | \langle \eta, [x, h] \rangle = 0 \} = \{\eta \in \mathfrak{v} | [x, \eta] \subset \mathfrak{v}\}.$$

$$\mathfrak{j}_x = \{(\xi_1, \ldots, \xi_n) \in \mathfrak{g} | \sum_{i=1}^{n} \xi_i = 0, \quad \sum_{i=1}^{n} [x_i, \xi_i] = 0\}. $$

The Poisson bracket (10) on the algebra \(\mathbb{R}[v]^H \) corresponds to the restriction of the Lie-Poisson bivector
\[
\Lambda_x = \lambda_{x_1} \times \cdots \times \lambda_{x_n} : \mathfrak{g} \times \mathfrak{g} \to \mathbb{R},
\]
\[
\lambda_{\xi} : \mathfrak{k} \times \mathfrak{k} \to \mathbb{R}, \quad \lambda_{\xi}(\eta_1, \eta_2) = -\langle \xi, [\eta_1, \eta_2] \rangle, \quad \xi, \eta_1, \eta_2 \in \mathfrak{k}
\]
to \(j_x \). Denote this restriction by \(\bar{\Lambda} \). Note that the kernel of \(\bar{\Lambda} \) is [5]:
\[
\ker \bar{\Lambda} = \text{pr}_v \ker \Lambda \supset \text{pr}_v \mathfrak{g} = \text{pr}_v(\mathfrak{k}_{x_1}, \ldots, \mathfrak{k}_{x_n}) \subset j_x.
\]
Here, for simplicity, the gradient operator with respect to the restriction of \(\langle \cdot, \cdot \rangle \) to \(v \) is also denoted by \(\nabla \).

Note that (10) is a Poisson bracket within \(\mathbb{R}[v]^H \), while it is an almost-Poisson bracket within the algebra of polynomials on \(v \) (it does not satisfies the Jacobi identity).

We have the following simple basic statement.

Lemma 1 The differential dimension and index of \(\mathbb{R}[v]^H \) are given by:
\[
\text{ddim } \mathbb{R}[v]^H = (n - 2) \dim K, \quad \text{dind } \mathbb{R}[v]^H = n \dim K.
\]

Proof. The differential dimension of \(\mathbb{R}[v]^H \) is equal to the codimension of a generic orbit \(\text{Ad}_H(x) \) within \(v \), that is \(\text{ddim } \mathbb{R}[v]^H = \dim j_x = \dim v - \dim H + \dim \mathfrak{h}_x \), for a generic \(x \in v \). Since
\[
\dim \mathfrak{h}_x = \dim (\mathfrak{k}_{x_1} \cap \cdots \cap \mathfrak{k}_{x_n}) = 0,
\]
for a generic \(x \in v \), we obtain the first relation in (12). On the other side, from (13) we get
\[
\text{dind } \mathbb{R}[v]^H = \dim \ker \bar{\Lambda}_x = \dim \text{pr}_v \mathfrak{g}_x = \dim \mathfrak{g}_x - \dim \mathfrak{h}_x
\]
\[
= \dim \mathfrak{g}_x = \dim \mathfrak{k}_{x_1} + \cdots + \dim \mathfrak{k}_{x_n} = n \dim K,
\]
for a generic \(x \in v \). □

Let \(\mathbb{R}[\mathfrak{k}]^K \) be the algebra of \(\text{Ad}_K \)-invariant polynomials on \(\mathfrak{k} \). It is generated by \(r = \dim K \)-invariant homogeneous polynomials \(f_1, \ldots, f_r \). The algebra of \(\text{Ad}_G \)-invariant polynomials on \(\mathfrak{g} \) is then generated by \(n \dim K \) polynomials
\[
Z = \{ f_\alpha^i = f_\alpha \circ \text{pr}_{\mathfrak{k}_i} \mid i = 1, \ldots, n, \alpha = 1, \ldots, r \}
\]
and the restrictions of invariants \(Z \) to \(v \) give \(n \dim K \) independent Casimir functions of \(\mathbb{R}[v]^H \).

Translation of Argument and Flag of Subalgebras. Mishchenko and Fomenko showed that the set of polynomials induced from the invariants by shifting the argument \(A = \{ f_{\alpha, k}^\alpha(x) \mid k = 1, \ldots, \deg f_\alpha, \alpha = 1, \ldots, r \} \),
\[
f_{\alpha, t}^\alpha(x) = f_\alpha(x + ta) = \sum_{k=0}^{\deg f_\alpha} f_{\alpha, k}^\alpha(x)t^k,
\]

is a complete commutative set on \mathfrak{k}:

$$\text{ddim } \mathcal{A} = \frac{1}{2}(\dim \mathcal{K} + \text{rank } \mathcal{K}),$$ \hspace{1cm} (14)

for a generic $a \in \mathfrak{t}$ (see [12], [2], [19]). As was already mentioned, the argument shift method allows us to construct a complete commutative subalgebra in \mathcal{F}_1. Now we shall modify the method, by using the flag of subalgebras (5) to use it to construct such a subalgebra within \mathcal{F}_2.

Let

$$\mathcal{B} = \mathcal{B}_1 + \mathcal{B}_2 + \cdots + \mathcal{B}_{n-1} + \mathcal{Z},$$

$$\mathcal{B}_i = \{ f^\alpha_{i,k}(x) \mid k = 1, \ldots, \text{deg } f^\alpha, \alpha = 1, \ldots, r \},$$

where polynomials $f^\alpha_{i,k}(x)$ are defined by:

$$f^\alpha_{i,k}(x_1, \ldots, x_n) = f^\alpha(x_1 + \cdots + x_i + tx_{i+1}) = \sum_{k=0}^{\text{deg } f^\alpha} f^\alpha_{i,k}(x_1, \ldots, x_n)t^k. \hspace{1cm} (15)$$

Theorem 2

(i) The set \mathcal{B} is a commutative set of Ad_H-invariant polynomials on \mathfrak{g}.

(ii) The set $\mathcal{B} + \mu^*(\mathfrak{r}[\mathfrak{r}])$ is a complete set of polynomials on \mathfrak{g}. In particular, if \mathcal{A} is any complete commutative set on \mathfrak{t}, then $\mathcal{B} + \mu^*(\mathcal{A})$ will be a complete commutative set on \mathfrak{g}.

Proof. Step 1. The polynomial in \mathcal{B} are Ad_H-invariant. Indeed, let $h = (k, \ldots, k) \in H$. Then

$$f^\alpha_{i,t}(\text{Ad}_h(x)) = f^\alpha(\text{Ad}_k(x_1) + \cdots + \text{Ad}_k(x_i) + t \text{Ad}_k(x_{i+1}))$$

$$= f^\alpha(\text{Ad}_k(x_1 + \cdots + x_i + tx_{i+1}))$$

$$= f^\alpha(x_1 + \cdots + x_i + tx_{i+1}) = f^\alpha_{i,t}(x).$$

Step 2. The set \mathcal{B} is involutive. Take polynomials $f^\alpha_{i,t_1}(x)$ and $f^\beta_{j,t_2}(x)$ given by (15).

Let $\nabla f^\alpha = \nabla f^\alpha|_{x_1 + \cdots + x_i + t_1 x_{i+1}}$ and $\nabla f^\beta = \nabla f^\beta|_{x_1 + \cdots + x_j + t_2 x_{j+1}}$. Then $[\nabla f^\alpha, x_1 + \cdots + x_i + t_1 x_{i+1}] = 0$, $[\nabla f^\beta, x_1 + \cdots + x_j + t_2 x_{j+1}] = 0$ and

$$\nabla f^\alpha_{i,t_1}(x) = \left(\nabla f^\alpha, \ldots, \nabla f^\alpha, t_1 \nabla f^\alpha, 0, \ldots, 0\right), \hspace{1cm} (16)$$

$$\nabla f^\beta_{j,t_2}(x) = \left(\nabla f^\beta, \ldots, \nabla f^\beta, t_2 \nabla f^\beta, 0, \ldots, 0\right). \hspace{1cm} (17)$$

First, consider the case $i < j$. We have

$$\{ f^\alpha_{i,t_1}, f^\beta_{j,t_2} \}(x) = -\langle x_1, \nabla f^\alpha, \nabla f^\beta \rangle - \cdots - \langle x_i, \nabla f^\alpha, \nabla f^\beta \rangle$$

$$-t_1 \langle x_{i+1}, \nabla f^\alpha, \nabla f^\beta \rangle$$

$$= -\langle x_1 + \cdots + x_i + t_1 x_{i+1}, \nabla f^\alpha, \nabla f^\beta \rangle$$

$$= \langle \nabla f^\alpha, x_1 + \cdots + x_i + t_1 x_{i+1}, \nabla f^\beta \rangle = 0.$$
Now, let $i = j$. Then we have

\[
\{f^\alpha_{i,t_1}, f^\beta_{i,t_2}\}(x) = -\langle x_1 + \cdots + x_i, [\nabla f^\alpha, \nabla f^\beta] \rangle \\
- t_1 t_2 (x_{i+1}, [\nabla f^\alpha, \nabla f^\beta]) \\
= -\langle x_1 + \cdots + x_i + t_1 x_{i+1}, [\nabla f^\alpha, \nabla f^\beta] \rangle \\
+ t_1 (x_{i+1}, [\nabla f^\alpha, \nabla f^\beta]) \\
- t_1 (x_1 + \cdots + x_i + t_2 x_{i+1}, [\nabla f^\alpha, \nabla f^\beta]) \\
+ t_1 (x_1 + \cdots + x_i, [\nabla f^\alpha, \nabla f^\beta]) \\
= t_1 (x_1 + \cdots + x_i + x_{i+1}, [\nabla f^\alpha, \nabla f^\beta]).
\]

In the same way:

\[
\{f^\alpha_{i,t_1}, f^\beta_{i,t_2}\}(x) = t_2 (x_1 + \cdots + x_i + x_{i+1}, [\nabla f^\alpha, \nabla f^\beta]).
\]

Therefore $\{f^\alpha_{i,t_1}, f^\beta_{i,t_2}\} = 0$ for $t_1 \neq t_2$ and taking the limit $t_1 \to t_2$, we get

\[
\{f^\alpha_{i,t_1}, f^\beta_{i,t_2}\} = 0
\]

for all t_1, t_2. It follows that $\{B, B\} = 0$. Item (i) is proved.

Step 3. For a generic x_1, \ldots, x_i, due to the Mishchenko-Fomenko shifting of argument method, the set of polynomials B_i, considered as polynomials in variable x_{i+1}, form a complete set on \mathfrak{k}_{i+1} with respect to the corresponding Lie-Poisson bracket. Therefore

\[
\dim \text{pr}_{i+1} B_{i,x} = \frac{1}{2} (\dim K + \text{rank } K), \quad B_{i,x} = \text{span} \{\nabla f^\alpha_{i,k}(x)\}, \quad \text{(18)}
\]

for a generic $x \in \mathfrak{g}$.

Let B_x be the linear space spanned by gradients of polynomial in B at $x \in \mathfrak{g}$. From (18) we get

\[
\dim B_x \geq \text{rank } K + \dim \text{pr}_{i+1} B_{i,x} + \cdots + \dim \text{pr}_{n} B_{n-1,x} \\
\quad \geq \text{rank } K + \frac{n-1}{2} (\dim K + \text{rank } K), \quad \text{(19)}
\]

where we used that B contains invariants in variable x_1. Thus $\text{ddim } B \geq \frac{1}{2}((n-1) \dim K + (n+1) \text{ rank } K)$.

Step 4. Fix a generic $(n \dim K - n \text{ rank } K)$-dimensional adjoint orbit

\[
\mathcal{O} = \text{Ad}_G(x_1, \ldots, x_n) = \mathcal{O}_1(x_1) \times \cdots \times \mathcal{O}_n(x_n), \quad \mathcal{O}_i(x_i) = \text{Ad}_K(x_i),
\]

such that (13) holds. This means that the action of $H = \text{diag}(K)$ is locally free.

The orbit \mathcal{O} with the Konstant-Kirillov symplectic form ω is a symplectic leaf in $(\mathfrak{g}, \{\cdot,\cdot\})$. The Ad_H-action, restricted to \mathcal{O}, is Hamiltonian with the momentum mapping (9) (e.g., see [13]).
The algebra of H-invariant and Noether’s functions $C^\infty_H(O) + \mu^*(C^\infty(\mathfrak{k}))$ is a complete algebra on (O, ω) and

\[
\begin{align*}
\operatorname{ddim} C^\infty_H(O) &= (n-1) \dim K - n \rank K, \\
\operatorname{ddim} \mu^*(C^\infty(\mathfrak{k})) &= \dim K \\
\operatorname{ddim} (C^\infty_H(O) + \mu^*(C^\infty(\mathfrak{k}))) &= n \dim K - (n+1) \rank K \\
\operatorname{dind} C^\infty_H(O) &= \operatorname{dind} \mu^*(C^\infty(\mathfrak{k})) = \rank K \\
\operatorname{dind} (C^\infty_H(O) + \mu^*(C^\infty(\mathfrak{k}))) &= \rank K
\end{align*}
\]

(see Theorem 2.1 and Remark 2.1 in [4], where we used that a generic AdK-orbit in $\mu(O)$ is regular and that the AdH-action is locally free at a generic point $x \in O$). In particular, a commutative set $C \subset C^\infty_H(O)$ is a complete subset if

\[
\operatorname{ddim} C = \frac{1}{2} (\operatorname{ddim} C^\infty_H(O) + \operatorname{dind} C^\infty_H(O)) = \frac{n-1}{2} (\dim K - \rank K). \tag{20}
\]

Let $C = \{f|_O \mid f \in \mathcal{B}\}$. The invariants Z restricted to O are constants, so we have

\[
\operatorname{ddim} C = \operatorname{ddim} \mathcal{B} - n \rank K \geq \frac{1}{2} ((n-1) \dim K - (n-1) \rank K). \tag{21}
\]

From (20), we get that C is a complete commutative subset of $C^\infty_H(O)$. In particular, inequalities in (19) and (21) are equalities.

Since the set of $\mathcal{B} + \mu^* (\mathbb{R}[\mathfrak{k}])$ is a complete set restricted to a generic symplectic leaf (O, ω), it is a complete set on $(\mathfrak{g}, \{\cdot, \cdot\})$. This completeness the proof. □

By using Theorem 2 we obtain the following integrable model. Consider a left-invariant metric on G defined by the Hamiltonian function

\[
\hat{h}_{s,t} = \sum_{i=1}^{n-1} \frac{1}{2} \left(s_i^2(x_1 + \cdots + x_i) + t_i x_{i+1}, s_i(x_1 + \cdots + x_i) + t_i x_{i+1}, \right), \tag{22}
\]

where parameters s_i, t_i are chosen such that \hat{h} is a positive definite Hamiltonian of the left-invariant metric.

Corollary 1 *The Euler equations on \mathfrak{g} determined with Hamiltonian (22)*

\[
\begin{align*}
\dot{x}_1 &= [x_1, \sum_{i=1}^{n-1} \left(s_i^2(x_1 + \cdots + x_i) + t_i s_i x_{i+1}\right)], \\
\dot{x}_k &= [x_k, s_{k-1} t_{k-1} (x_1 + \cdots + x_{k-1}) + \sum_{i=k}^{n-1} \left(s_i^2(x_1 + \cdots + x_i) + t_i s_i x_{i+1}\right)], \\
\dot{x}_n &= [x_n, s_{n-1} t_{n-1} (x_1 + \cdots + x_{n-1})], \quad k = 2, \ldots, n-1
\end{align*}
\]

are completely integrable.
Lemma 2 3 If f and g are Ad_H-invariant polynomials on g and \{f, g\} = 0, then \{f|_v, g|_v\}_v = 0, where \{\cdot, \cdot\}_v is the bracket given by 10.

Let \mathcal{F} be the set of polynomials, obtained by restriction of polynomials in \mathcal{B} to \mathfrak{v}.

Theorem 3 The set \mathcal{F} is a complete commutative subset of \mathbb{R}[\mathfrak{v}]^H.

Proof. According to Theorem 2 and Lemma 2, the set \mathcal{F} is commutative. Further, from (4) and Lemma 1, it is complete if and only if

\[\text{ddim } \mathcal{F} = \frac{1}{2}((n - 2) \dim K + n \rank K). \quad (23) \]

Since

\[\text{dim } \mathcal{F}_x = \dim \mathcal{B}_x - \dim (\mathcal{B}_x \cap \mathfrak{h}). \quad (24) \]

The relation (18) is satisfied for a generic \(x \in \mathfrak{v} \) and \(i < n - 1 \), while for \(i = n - 1 \) it does not hold. Indeed, from \(x_1 + \cdots + x_n = 0 \), we get that \(f_{n-1,i}^\alpha(x) = f^\alpha((1-t)x_n) = (1-t)^\deg f^\alpha(x_n) \). Thus

\[\dim \mathcal{B}_x \geq \rank K + \dim \pr_{t_{n-1}} B_{1,x} + \cdots + \dim \pr_{t_1} B_{n-2,x} + \rank K \]

\[= 2 \rank K + \frac{n - 2}{2} (\dim K + \rank K), \quad (25) \]

for a generic \(x \in \mathfrak{v} \).

On the other hand, it is obvious that

\[\dim (\mathcal{B}_x \cap \mathfrak{h}) \leq \dim (\text{span}\{\nabla f^\alpha(x_n) | \alpha = 1, \ldots, \rank K\}) = \rank K. \quad (26) \]

Combining (25), (24) and (26) we get

\[\dim \mathcal{F}_x \geq \frac{1}{2}((n - 2) \dim K + n \rank K), \quad (27) \]

for a generic \(x \in \mathfrak{v} \). According to (23) we have ddim \(\mathcal{F} \leq \frac{1}{2}((n - 2) \dim K + n \rank K) \), i.e., the relation (27) is an equality. \(\square \)

Let \(h_{s,t} \) be the restriction of the Hamiltonian (22) to \(\mathfrak{v} \) and \(ds^2_{s,t} \) be the corresponding \(G \)-invariant submersion metric on \(Q = G/H \).

Corollary 2 The geodesic flow of the metric \(ds^2_{s,t} \) is completely integrable. The complete commutative set of analytic functions, polynomial in momenta is

\[\{\tau(f_{i,k}^\alpha|_{\mathfrak{v}}), \tau(f_{i}^\alpha|_{\mathfrak{v}}), \Phi^*(f_{i,k}^\alpha|_{\mathfrak{v}}) | i = 1, \ldots, n - 1, k = 1, \ldots, \deg f^\alpha, \alpha = 1, \ldots, r\}. \]
Here τ denotes the bijection $\mathbb{R}[v]^H \to \mathcal{F}_2$, $\Phi : T^*Q \to \mathfrak{g}^*$ is the momentum mapping of the canonical G-action,

$$f^\alpha(x_i + t a_i) = \sum_{k=0}^{\deg f^\alpha} f_{a_i}^{\alpha, k}(x_1, \ldots, x_n) t^k$$

and $a_i \in \mathfrak{k}$, $i = 1, \ldots, n$ are in generic position. That is, $\{f_{a_i}^{\alpha, k}\}$ is a complete commutative set on \mathfrak{g} induced from the invariants by the argument translation with $a = (a_1, \ldots, a_n)$.

Gaudin Type Systems on $G = K_n$.

Consider the Hamiltonian

$$\hat{h}_a(x) = \frac{1}{2} \left\langle \frac{1}{a_1} x_1 + \cdots + \frac{1}{a_n} x_n, \frac{1}{a_1} x_1 + \cdots + \frac{1}{a_n} x_n \right\rangle.$$

The corresponding Euler equations on $\mathfrak{g} = \mathfrak{k}^n$ are

$$\dot{x}_i = \sum_{j=1}^{n} \frac{1}{a_i a_j} [x_i, x_j], \quad i = 1, \ldots, n. \quad (28)$$

Following [18], we refer to system (28) as a Gaudin type system on \mathfrak{k}^n (the Gaudin system is originally defined for $\mathfrak{k} = \mathfrak{su}(2)$). The system is H-invariant, so the momentum mapping (8) is conserved along the flow. By using the pencil of compatible Poisson brackets (e.g., see Bolsinov [2]) defined by the Lie-Poisson bivector (11) and the bivector

$$\hat{\Lambda}_x = a_1 \lambda_{x_1} \times \cdots \times a_n \lambda_{x_n} : \mathfrak{g} \times \mathfrak{g} \to \mathbb{R},$$

Panasyuk proved the integrability of equations (28) restricted to admissible adjoint orbits $\mathcal{O} = \text{Ad}_G(x_1, \ldots, x_n)$ for a generic value of parameters $a = (a_1, \ldots, a_n)$ [18]. The complete algebra of integrals is $\mathcal{P} + \mu^* (\mathbb{R}[\mathfrak{k}])$, where

$$\mathcal{P} = \left\{ \left. f \left(\frac{x_1}{t_1 + a_1 t_2} + \cdots + \frac{x_n}{t_1 + a_n t_2} \right) \right| t_1, t_2 \in \mathbb{R}, t_1^2 + t_2^2 \neq 0, f \in \mathbb{R}[\mathfrak{k}] \right\}.$$

The set \mathcal{P} is commutative. It could be proved that the set of polynomials, obtained by the restriction of polynomials in \mathcal{P} to \mathfrak{v} is a complete commutative subset of $\mathbb{R}[v]^H$.

3 Einstein Metrics

Recall that the Riemannian manifold (Q, g) is called Einstein if the Ricci curvature $\text{Ric}(g)$ satisfies the equation $\text{Ric}(g) = C \cdot g$, for some constant C [11].

From now on we assume that K is a simple Lie group. The normal G-invariant metric ds_0^2 on (1) is Einstein (see Proposition 5.5, [22]). Up to the isometry and homothety, the homogeneous space Q for $n = 3$ ($n \geq 4$) admits
exactly (respectively, at least) two G-invariant Einstein metrics that we shall describe below. Let $(\cdot, \cdot)_v$ be an ad$_{h}$-invariant scalar product on v. We can diagonalize $(\cdot, \cdot)_b$ and $(\cdot, \cdot)|_b$ simultaneously (see [17]). Namely, let $\nu = (\nu_1, \ldots, \nu_n) \in \mathbb{R}^n$ be an unit vector and $\xi \in \mathfrak{k}$ be a linear subspace defined by

$$\mathfrak{k}_{\nu} = \{ (\nu_1 \xi, \ldots, \nu_n \xi) | \xi \in \mathfrak{k} \}. \quad (29)$$

There exist $n-1$ orthogonal ad$_{h}$-invariant irreducible submodules $v_1, \ldots, v_{n-1} \subset v$ and $n-1$ positive numbers s_1, \ldots, s_{n-1} such that

$$v = v_1 \oplus v_2 \oplus \cdots \oplus v_{n-1}, \quad v_1 = \mathfrak{k}_{\nu_1}, \ldots, v_{n-1} = \mathfrak{k}_{\nu_{n-1}}$$

and

$$(\cdot, \cdot)_v = s_1(\cdot, \cdot)|_{v_1} \oplus s_2(\cdot, \cdot)|_{v_2} \oplus \cdots \oplus s_{n-1}(\cdot, \cdot)|_{v_{n-1}}, \quad (30)$$

where ν^1, \ldots, ν^{n-1} is the orthonormal base of the hyperplane orthogonal to $(1, \ldots, 1) \in \mathbb{R}^n$. The diagonalization is unique if all s_i are different.

Now, let $ds^2_{p,q}$ be a G-invariant metric defined by the scalar product (30), where

$$\nu^j = \frac{1}{\sqrt{j^2 + j}} (1, \ldots, 1, -j, 0, \ldots, 0), \quad j = 1, \ldots, n-1,$$

$$s_1 = \cdots = s_{n-2} = 1/p, \quad s_{n-1} = 1/q. \quad (31)$$

It is Einstein for $p = n^{1/(n-1)}$, $p^{n-2}q = 1$. Moreover, for $n = 3$, up to isometry and homothety, this is the only G-invariant Einstein metric different from the normal one $p = q = 1$ (see [17]).

Together with the scalar product (30), (31) it is natural to consider its extension to an Ad$_{h}$-invariant scalar product on g

$$(\cdot, \cdot)_g = \frac{1}{s}(\cdot, \cdot)|_b \oplus \frac{1}{p}(\cdot, \cdot)|_{v_1} \oplus \cdots \oplus \frac{1}{p}(\cdot, \cdot)|_{v_{n-2}} \oplus \frac{1}{q}(\cdot, \cdot)|_{v_{n-1}} \quad (32)$$

and the corresponding left-invariant metric $ds^2_{p,q,s}$ on G. Then $ds^2_{p,q}$ can be seen as a submersion metric, induced by $ds^2_{p,q,s}$.

The Hamiltonian of the metric $ds^2_{p,q,s}$, in the left-trivialization, read

$$\hat{h} = \frac{s}{2}(pr_b x, pr_b x) + \frac{p}{2}(x - pr_{v_{n-1}} x, x - pr_{v_{n-1}} x) + \frac{q}{2}(pr_{v_{n-1}} x, pr_{v_{n-1}} x). \quad (33)$$

Note that the orthogonal projection to (29) with respect to the Killing form is given by

$$pr_{\mathfrak{k}_\nu}(x_1, \ldots, x_n) = (\nu_1(x_1 + \cdots + \nu_n x_n), \ldots, \nu_n(x_1 + \cdots + \nu_n x_n)). \quad (34)$$

By using (31) and (34), we easily get:
Lemma 3 \begin{align*}
\hat{h} &= \frac{p}{2} \sum_{k=1}^{n-1} \langle x_k, x_k \rangle + \frac{1}{2} \left(\frac{q n}{n-1} - \frac{p}{n-1} \right) \langle x_n, x_n \rangle \\
&\quad + \frac{1}{2} \left(\frac{s}{n} - \frac{p}{n-1} + \frac{q}{n^2 - n} \right) \langle \mu, \mu \rangle + \left(\frac{p}{n-1} - \frac{q}{n-1} \right) \langle \mu, x_n \rangle
\end{align*}

has the form

where μ is the momentum mapping \begin{align*}
\mu
\end{align*}

The Euler equations with Hamiltonian \begin{align*}

\text{are}
\end{align*}

\begin{equation}
\begin{aligned}
\dot{x}_k &= [x_k, u(x_1 + \cdots + x_{n-1}) + vx_n], \quad k = 1, \ldots, n-1, \\
\dot{x}_n &= [x_n, v(x_1 + \cdots + x_{n-1})],
\end{aligned}
\end{equation}

\begin{equation}
\begin{aligned}
\text{where } u &= s/n - p/(n-1) + q/(n^2 - n) \text{ and } v = s/n - q/n. \text{ In particular, the set } B \text{ is a set of integral of the system (36). Whence, the functions } F \text{ commute with the Hamiltonian } h = \hat{h}|_v \text{ of the metric } ds_{p,q}^2. \text{ Applying Corollary 2 we obtain:}
\end{aligned}
\end{equation}

Corollary 3 \begin{align*}
The geodesic flow of the G-invariant Nikonorov’s Einstein metric on \begin{align*}
\text{on } (1)
\end{align*}

is completely commutatively integrable by means of analytic integrals, polynomial in momenta.
\end{align*}

Note that, restricted to the invariant subspace $v = \mu^{-1}(0)$, the equations \begin{align*}
\text{take the form}
\end{align*}

\begin{equation}
\begin{aligned}
\dot{x}_k &= [x_k, (v - u)x_n], \quad k = 1, \ldots, n-1, \\
\dot{x}_n &= 0, \\
x_1 + \cdots + x_n &= 0
\end{aligned}
\end{equation}

\begin{equation}
\end{equation}

\begin{equation}
\end{equation}

The generic solution of (37) is given by

\begin{equation}
\begin{aligned}
x_k(t) &= \text{Ad}_{\exp(t\xi)} x_k^0, \quad x_k^0 = x_k(0), \\
\xi &= (v - u)(x_1^0 + \cdots + x_{n-1}^0), \quad k = 1, \ldots, n-1,
\end{aligned}
\end{equation}

where $\exp : \mathfrak{k} \to K$ is the exponential mapping.

Acknowledgments.

I am greatly thankful to Alexey Bolsinov on useful discussions. This research was supported by the Serbian Ministry of Science Project 144014 Geometry and Topology of Manifolds and Integrable Dynamical Systems.
References

[1] Besse, A.: Einstein Manifolds, Springer, A Series of Modern Surveys in Mathematics, (1987)

[2] Bolsinov, A. V.: Compatible Poisson brackets on Lie algebras and the completeness of families of functions in involution, Izv. Acad. Nauk SSSR, Ser. matem. 55, no.1, 68–92 (1991) (Russian); English translation: Math. USSR-Izv. 38, no.1, 69–90 (1992)

[3] Bolsinov, A. V. and Jovanović, B.: Integrable geodesic flows on homogeneous spaces, Matem. Sbornik 192 (2001), no. 7, 21–40 (Russian); English translation: Sb. Mat. 192 no. 7–8, 951–969, (2001)

[4] Bolsinov, A. V. and Jovanović, B.: Non-commutative integrability, moment map and geodesic flows. Annals of Global Analysis and Geometry 23, no. 4, 305–322 (2003), arXiv: math-ph/0109031

[5] Bolsinov, A. V. and Jovanović, B.: Complete involutive algebras of functions on cotangent bundles of homogeneous spaces. Mathematische Zeitschrift 246 no. 1-2, 213–236 (2004)

[6] Brailov, A. V.: Construction of complete integrable geodesic flows on compact symmetric spaces. Izv. Acad. Nauk SSSR, Ser. matem. 50, no.2, 661-674 (1986) (Russian); English translation: Math. USSR-Izv. 50, no.4, 19-31 (1986)

[7] Butler, L.: Integrable geodesic flows with wild first integrals: the case of two-step nilmanifolds, Ergodic Theory Dynam. Systems 23, no. 3, 771–797 (2003)

[8] Dragović, V. Gajić, B. and Jovanović, B.: Singular Manakov Flows and Geodesic Flows of Homogeneous Spaces of SO(n), Transformation Groups 14, no. 3, 513–530 (2009), arXiv: 0901.2444

[9] Ledger, A.J. and Obata, M.: Affine and Riemannian s-manifolds, J. Differential Geometry 2, 451–459 (1968)

[10] Magazev, A. A.; Shirokov, I. V. Integration of geodesic flows on homogeneous spaces. The case of a wild Lie group. Teoret. Mat. Fiz. 136 (2003), no. 3, 365–379 (Russian); English translation: Theoret. and Math. Phys. 136, no. 3, 1212–1224 (2003)

[11] Mishchenko, A. S.: Integration of geodesic flows on symmetric spaces. Mat. zametki 31, no.2, 257-262 (1982) (Russian); English translation: Math. Notes. 31, No.1-2, 132-134 (1982)

[12] Mishchenko, A. S. and Fomenko, A. T.: Euler equations on finite-dimensional Lie groups. Izv. Acad. Nauk SSSR, Ser. matem. 42, no.2, 396–415 (1978) (Russian); English translation: Math. USSR-Izv. 12, no.2, 371–389 (1978)

[13] Mishchenko, A. S. and Fomenko, A. T.: Generalized Liouville method of integration of Hamiltonian systems. Funkts. Anal. Prilozh. 12, No.2, 46-56 (1978) (Russian); English translation: Funct. Anal. Appl. 12, 113–121 (1978)
[14] Mikityuk, I. V.: On the integrability of invariant Hamiltonian systems with homogeneous configuration spaces. Matem. Sbornik, 129(171), no.4, 514-534 (1986) (Russian); English translation: Math. USSR Sbornik, 57, no.2, 527-547 (1987)

[15] Mykytyuk, I. V. and Panasyuk, A.: Bi-Poisson structures and integrability of geodesic flows on homogeneous spaces, Transformation Groups 9(3), 289–308, (2004)

[16] Nekhoroshev, N. N.: Action-angle variables and their generalization. Tr. Mosk. Mat. O.-va. 26, 181–198, (1972) (Russian); English translation: Trans. Mosc. Math. Soc. 26, 180–198 (1972)

[17] Nikonorov, Yu. G.: Invariant Einstein Metrics on the Ledger-Obata Spaces, Algebra i analiz, 14, no. 3, (2002) (Russian); English translation: St.Petersburg Math. J. 14 no. 3, 487–497 (2002)

[18] Panasyuk, A.: Projection of Jordan bi-Poisson structures that are Kronecker, diagonal actions and the classical Gaudin systems, J. Geom. Phys. 47 379–397, (2003); Erratum: J. Geom. Phys. 49, 116–117, (2004)

[19] Panyushev, D. I. and Yakimova, O. S.: The argument shift method and maximal commutative subalgebras of Poisson algebras. Math. Res. Lett. 15, no. 2, 239–249 (2008); arXiv: math/0702583

[20] Sadetov, S. T.: A proof of the Mishchenko-Fomenko conjecture (1981). Dokl. Akad. Nauk 397, no. 6, 751–754 (2004) (Russian)

[21] Thimm A.: Integrable geodesic flows on homogeneous spaces, Ergod. Th. & Dynam. Sys.,1, 495–517 (1981)

[22] Wang, M and Ziller, W.: On normal homogeneous Einstein manifolds. Ann. Sci. cole Norm. Sup. 18 , no. 4, 563–633, (1985)

[23] Zung, N. T.: Torus actions and integrable systems, In: A.V. Bolsinov, A.T. Fomenko, A.A. Oshemkov (eds.), Topological Methods in the Theory of Integrable Systems 289–328, Cambridge Scientific Publ., (2006), arXiv: math.DS/0407455