BIHARMONIC HYPERSURFACES
WITH BOUNDED MEAN CURVATURE

SHUN MAETA

(Communicated by Ken Ono)

Abstract. We consider a complete biharmonic hypersurface with nowhere zero mean curvature vector field \(\phi : (M^m, g) \rightarrow (S^{m+1}, h) \) in a sphere. If the squared norm of the second fundamental form \(B \) is bounded from above by \(m \), and \(\int_M H^{-p} dv_g \) < \(\infty \), for some \(0 < p < \infty \), then the mean curvature is constant. This is an affirmative partial answer to the BMO conjecture for biharmonic submanifolds.

1. Introduction

The problem of biharmonic maps was suggested in 1964 by J. Eells and J. H. Sampson (cf. [8] and [9] (see also [6] and [7])). Biharmonic maps are a generalization of harmonic maps. As is well known, harmonic maps have been applied into various fields in differential geometry. However there are non-existence results for harmonic maps. Therefore a generalization of harmonic maps is an important subject.

G. Y. Jiang [11] considered biharmonic submanifolds, and gave some examples of non-minimal biharmonic submanifolds in a unit sphere \(S^{m+1} \) as follows:

\[S^k \left(\frac{1}{\sqrt{2}} \right) \times S^{m-k} \left(\frac{1}{\sqrt{2}} \right), \]

where the integer \(k \) satisfies \(0 \leq k \leq m \), and \(k \neq \frac{m}{2} \).

There are many studies of biharmonic submanifolds in spheres. Interestingly, these studies suggest the following BMO conjecture which was introduced by Balmuš, Montaldo and Oniciuc (cf. [3]).

Conjecture 1 (BMO conjecture). Any biharmonic submanifold in spheres has constant mean curvature.

On the other hand, since there is no assumption of completeness for submanifolds in the BMO conjecture, in a sense it is a problem in local differential geometry. The author reformulated the BMO conjecture into a problem in global differential geometry (cf. [17]).

Conjecture 2. Any complete biharmonic submanifold in spheres has constant mean curvature.
Remark 1.1. Interestingly, Z.-P. Wang and Y.-L. Ou considered biharmonic Riemannian submersions from a sphere and got non-existence results (cf. [21]).

There are affirmative partial answers to the BMO conjecture, if \(M \) is one of the following:

(i) A compact hypersurface with nowhere zero mean curvature vector field and \(|B|^2 \geq m \) or \(|B|^2 \leq m \), where \(|B|^2 \) is the squared norm of the second fundamental form (cf. [5], [2]).

(ii) An orientable Dupin hypersurface (cf. [2]).

(iii) A compact submanifold with \(|H| \geq 1 \) (cf. [4]; see also [17]).

(iv) A complete submanifold with \(|H| \geq 1 \) and the Ricci curvature of \(M \) is bounded from below (cf. [17]).

In [17], the author showed the following.

Theorem 1.2 ([17]). Let \(\phi : (M^m, g) \to (S^{m+1}, h) \) be a complete biharmonic hypersurface in a sphere. If the mean curvature \(H \geq 1 \), and
\[
\int_M (H^2 - 1)^p \, dv_g < \infty,
\]
for some \(0 < p < \infty \), then \(H \) is 1.

Here we remark that the author obtained some affirmative partial answers to the BMO conjecture under more general situations. Since we gave an affirmative partial answer to the BMO conjecture under the assumption \(H \geq 1 \) in Theorem 1.2 in this paper, we consider \(0 < H \leq 1 \).

Before proving our main theorem, we show the following theorem.

Theorem 1.3. Let \(\phi : (M^m, g) \to (N^{m+1}, h) \) be a complete non-positive biminimal hypersurface. Assume that the mean curvature \(H \) satisfies \(0 < H \leq 1 \). We also assume that \(|B|^2 \leq \text{Ric}^N(\xi, \xi) \), where \(B \) is the second fundamental form of \(M \) in \(N \), \(\text{Ric}^N \) is the Ricci curvature of \(N \), and \(\xi \) is the unit normal vector field on \(M \). If
\[
\int_M H^{-p} \, dv_g < \infty,
\]
for some \(0 < p < \infty \), then \(H \) is constant.

Remark 1.4. If we assume \(\int_M H^{-p} \, dv_g < \infty \) and \(\int_M H^{-(p+\varepsilon)} \, dv_g < \infty \), for some \(\varepsilon > 0 \) and \(0 < p < \infty \), then we don’t need \(H \leq 1 \).

By applying Theorem 1.3 we can show our main theorem:

Theorem 1.5. Let \(\phi : (M^m, g) \to (S^{m+1}, h) \) be a complete biharmonic hypersurface with nowhere zero mean curvature vector field in a sphere. If \(|B|^2 \leq m \), and
\[
\int_M H^{-p} \, dv_g < \infty,
\]
for some \(0 < p < \infty \), then \(H \) is constant.

Theorem 1.5 is an affirmative partial answer to the BMO conjecture.

In this paper, we assume that the mean curvature vector field is nowhere zero. The remaining sections are organized as follows. Section 2 contains some necessary definitions and preliminary geometric results. In section 3 we prove Theorem 1.3 and Theorem 1.5.
2. Preliminaries

In this section, we shall give the definitions of biharmonic hypersurfaces and biminimal hypersurfaces.

The problem of biharmonic maps was suggested in 1964 by J. Eells and J. H. Sampson (cf. [8] and [9] (see also [6] and [7])). Biharmonic maps are critical points of the bi-energy functional

\[E_2(\phi) = \frac{1}{2} \int_M |\tau(\phi)|^2 dv_g, \]

on the space of smooth maps \(\phi : (M^m, g) \to (N^n, h) \) between two Riemannian manifolds \((M^m, g)\) and \((N^n, h)\). \(\nabla \) and \(\nabla^N \) denote the Levi-Civita connections on \((M, g)\) and \((N, h)\), respectively. \(\nabla \) denotes the induced connection on \(\phi^{-1}TN \). In 1986, G. Y. Jiang [11] derived the first and the second variational formulas of the bi-energy and studied biharmonic maps. The Euler-Lagrange equation of \(E_2 \) is

\[\tau_2(\phi) = -\Delta^\phi \tau(\phi) - \sum_{i=1}^m R^N(\tau(\phi), d\phi(e_i))d\phi(e_i) = 0, \]

where \(\{e_i\}_{i=1}^m \) is an orthonormal frame field on \(M \), \(\Delta^\phi := \sum_{i=1}^m (\nabla_{e_i} \nabla_{e_i} - \nabla_{\nabla_{e_i} e_i}) \), \(\tau(\phi) \) = Trace \(\nabla d\phi \) is the tension field and \(R^N \) is the Riemannian curvature tensor of \((N, h)\) given by \(R^N(X, Y)Z = \nabla^N_X \nabla^N_Y Z - \nabla^N_Y \nabla^N_X Z - \nabla^N_{[X,Y]} Z \) for \(X, Y, Z \in \mathfrak{X}(N) \). \(\tau_2(\phi) \) is called the bi-tension field of \(\phi \). A map \(\phi : (M, g) \to (N, h) \) is called a biharmonic map if \(\tau_2(\phi) = 0 \).

Let \(M \) be an \(m \)-dimensional immersed submanifold in \((N^{m+1}, h)\), \(\phi : (M^m, g) \to (N^{m+1}, h) \) its immersion and \(g \) its induced Riemannian metric. The Gauss and Weingarten formulas are given by

\[\nabla_X Y = \nabla_X Y + B(X, Y), \quad X, Y \in \mathfrak{X}(M), \]

\[\nabla_X^N \xi = -A_\xi X, \quad X \in \mathfrak{X}(M), \quad \xi \in \mathfrak{X}(M)^\perp, \]

where \(B \) is the second fundamental form of \(M \) in \(N \), \(A_\xi \) is the shape operator for a unit normal vector field \(\xi \) on \(M \). It is well known that \(B \) and \(A \) are related by

\[\langle B(X, Y), \xi \rangle = \langle A_\xi X, Y \rangle. \]

For any \(x \in M \), let \(\{e_1, \cdots, e_m, \xi\} \) be an orthonormal basis of \(N \) at \(x \) such that \(\{e_1, \cdots, e_m\} \) is an orthonormal basis of \(T_x M \). The mean curvature vector field \(\mathbf{H} \) of \(M \) at \(x \) is given by

\[\mathbf{H}(x) = \frac{1}{m} \sum_{i=1}^m B(e_i, e_i). \]

If an isometric immersion \(\phi : (M^m, g) \to (N^{m+1}, h) \) is biharmonic, then \(M \) is called a biharmonic hypersurface in \(N \). In this case, we remark that the tension field \(\tau(\phi) \) of \(\phi \) is written as \(\tau(\phi) = m\mathbf{H} \). The necessary and sufficient condition for \(M \) in \(N \) to be biharmonic is the following:

\[\Delta^\phi \mathbf{H} + \sum_{i=1}^m R^N(\mathbf{H}, d\phi(e_i))d\phi(e_i) = 0. \]
From (2.6), the necessary and sufficient condition for $\phi : (M^m, g) \to (N^{m+1}, h)$ to be a biharmonic hypersurface is as follows (cf. [19]):

\begin{equation}
\Delta H - H |A|^2 + H \text{Ric}^N(\xi, \xi) = 0,
\end{equation}

(2.7)

\begin{equation}
2A(\text{grad} H) + \frac{1}{2} m \text{grad} H^2 - 2H(\text{Ric}^N(\xi))^T = 0.
\end{equation}

(2.8)

Remark 2.1. Biharmonic hypersurfaces satisfy an overdetermined problem (see [12]).

If an isometric immersion $\phi : (M^m, g) \to (N^{m+1}, h)$ satisfies

\begin{equation}
\Delta H - H |A|^2 + H \text{Ric}^N(\xi, \xi) = \lambda H \quad \text{(for some } \lambda \in \mathbb{R}),
\end{equation}

(2.9)

then M is called a biminimal hypersurface. Biminimal hypersurfaces were introduced by E. Loubeau and S. Montaldo (cf. [13]). We call a biminimal hypersurface free biminimal if it satisfies the biminimal condition for $\lambda = 0$. If M is a biminimal hypersurface with $\lambda \leq 0$ in N, then M is called a non-positive biminimal hypersurface in N.

Remark 2.2. We remark that every biharmonic hypersurface is free biminimal.

3. Proof of Theorem 1.3 and Theorem 1.5

In this section, we will prove our main theorem. To prove our main theorem, we will use Petersen-Wylie’s Yau-Naber Liouville theorem (cf. [20], [18] and [22]). The Liouville type theorem is a strong tool for biharmonic submanifolds (cf. [1], [14], [15] and [16]).

Theorem 3.1 ([20]). Let (M, g) be a manifold with finite h-volume: $\int_M e^{-h}dv_g < \infty$. If u is a smooth function in $L^2(e^{-h}dv_g)$ which is bounded below such that $\Delta_h u \geq 0$, then u is constant.

We prove Theorem 1.3.

Proof of Theorem 1.3. Let $\varepsilon > 0$ be small enough. One can easily compute

\begin{equation}
\Delta H^{-\varepsilon} = \varepsilon(\varepsilon + 1)H^{-\varepsilon-2}\langle \nabla H \rangle^2 - \varepsilon H^{-\varepsilon-1}\Delta H
\end{equation}

(3.1)

\begin{equation}
= \varepsilon(\varepsilon + 1)H^{-\varepsilon-2}\langle \nabla H \rangle^2 - \varepsilon H^{-\varepsilon} |A|^2 + \varepsilon H^{-\varepsilon} \text{Ric}^N(\xi, \xi) - \lambda \varepsilon H^{-\varepsilon},
\end{equation}

and

\begin{equation}
\nabla \nabla h H^{-\varepsilon} = -\varepsilon H^{-\varepsilon-1}\langle \nabla h, \nabla H \rangle,
\end{equation}

(3.2)

where for the second line of (3.1), we used (2.9). Thus we have

\begin{equation}
\Delta_h H^{-\varepsilon} = \varepsilon(\varepsilon + 1)H^{-\varepsilon-2}\langle \nabla H \rangle^2 - \varepsilon H^{-\varepsilon} |A|^2 + \varepsilon H^{-\varepsilon} \text{Ric}^N(\xi, \xi)
\end{equation}

(3.3)

\begin{equation}
- \lambda \varepsilon H^{-\varepsilon} + \varepsilon H^{-\varepsilon-1}\langle \nabla h, \nabla H \rangle.
\end{equation}

Set $h = \log H^{(p-1)}$. Since we have
\[\nabla h = (p - 1) \frac{\nabla H}{H}, \]

one can obtain that
\[\varepsilon H^{-(\varepsilon+2)} \left\{ (\varepsilon + 1)|\nabla H|^2 + H \langle \nabla h, \nabla H \rangle \right\} \]
\[= \varepsilon (\varepsilon + p) H^{-(\varepsilon+2)} |\nabla H|^2 \geq 0. \]

On the other hand, by assumption,
\[\varepsilon H - \varepsilon (\varepsilon + 2) \left\{ \varepsilon (\varepsilon + 1)|\nabla H|^2 + H \langle \nabla h, \nabla H \rangle \right\} \]
\[= \varepsilon (\varepsilon + p) H - \varepsilon (\varepsilon + 2) |\nabla H|^2 \geq 0. \]

On the other hand, by assumption,
\[\varepsilon H^{-(\varepsilon)} (\varepsilon |A|^2 + \text{Ric}_N(\xi, \xi) - \lambda) \]
\[\geq \varepsilon H^{-(\varepsilon)} (-|A|^2 + \text{Ric}_N(\xi, \xi)) \geq 0, \]
where we used \(|B|^2 = |A|^2|.

Since \(h = \log H^{(p-1)} \), by assumption, we have
\[\int_M e^{-h} dv_g = \int_M H^{-(p-1)} dv_g \leq \int_M H^{-p} dv_g < \infty. \]

On the other hand, one can get that
\[\int_M (H^{-\varepsilon})^2 e^{-h} dv_g = \int_M H^{-(p-1+2\varepsilon)} dv_g \leq \int_M H^{-p} dv_g < \infty. \]

Applying Petersen-Wylie’s Yau-Naber Liouville theorem, we obtain \(H^{-\varepsilon} \) is constant. Therefore \(H \) is constant. \(\square \)

Applying Theorem 1.3, one can prove our main theorem (Theorem 1.5).

Proof of Theorem 1.5. Since \(N = S^{m+1}, \text{Ric}_N(\xi, \xi) = m \). By assumption, one can obtain \(|B|^2 \leq m = \text{Ric}_N(\xi, \xi) \). Since \(mH^2 \leq |B|^2, H \leq 1 \) is automatically satisfied. Note that biharmonic hypersurfaces are non-negative biminimal. Applying Theorem 1.3 we obtain \(H \) is constant. \(\square \)

Remark 3.2. We can apply our method to \(p \)-biharmonic submanifolds (cf. [10]). If an isometric immersion \(\phi : (M, g) \to (N, h) \) satisfies
\[\Delta^\phi(|H|^{p-2}H) + R^N(|H|^{p-2}H, d\phi(e_i))d\phi(e_i) = 0, \]
then \(M \) is called a \(p \)-biharmonic submanifold. For \(p \)-biharmonic submanifolds, it is easy to see that we can get the same (similar) results as in the results of biharmonic submanifolds in many cases. (For example, Corollary 3.6, 3.9 in [16], and so on.) In fact, the same argument as in the proof of Theorem 1.3 shows the following result.

Proposition 3.3. Let \(\phi : (M^m, g) \to (N^{m+1}, h) \) be a complete \(p \)-biharmonic hypersurface. Assume that the mean curvature \(H \) satisfies \(0 < H \leq 1 \). We also assume that \(|B|^2 \leq \text{Ric}_N(\xi, \xi) \). If
\[\int_M H^{-q} dv_g < \infty, \]
for some \(0 < q < \infty \), then \(H \) is constant.

Proof. Set \(u = H^{p-1} \). We have only to consider \(\Delta u^{-\varepsilon} \) and \(h = \log u^{\frac{1}{p-1} - \varepsilon} \). \(\square \)

Therefore we give one problem.

Problem 1. Does any (complete) \(p \)-biharmonic submanifold in spheres have constant mean curvature?
ACKNOWLEDGEMENT

The author would like to express his gratitude to the referee for many useful comments and valuable suggestions.

REFERENCES

[1] Kazuo Akutagawa and Shun Maeta, *Biharmonic properly immersed submanifolds in Euclidean spaces*, Geom. Dedicata **164** (2013), 351–355, DOI 10.1007/s10711-012-9778-1. MR3054632

[2] Adina Balcan, Stefano Montaldo, and Cezar Oniciuc, *New results toward the classification of biharmonic submanifolds in S^n*, An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat. **20** (2012), no. 2, 89–114. MR2945959

[3] A. Balcan, S. Montaldo, and C. Oniciuc, *Classification results for biharmonic submanifolds in spheres*, Israel J. Math. **168** (2008), 201–220, DOI 10.1007/s11856-008-1064-4. MR2448058

[4] A. Balcan and C. Oniciuc, *Biharmonic submanifolds with parallel mean curvature vector field in spheres*, J. Math. Anal. Appl. **386** (2012), no. 2, 619–630, DOI 10.1016/j.jmaa.2011.08.019. MR2834772

[5] Jian Hua Chen, *Compact 2-harmonic hypersurfaces in S^{n+1}* (Chinese, with Chinese summary), Acta Math. Sinica **36** (1993), no. 3, 341–347. MR1247088

[6] J. Eells and L. Lemaire, *A report on harmonic maps*, Bull. London Math. Soc. **10** (1978), no. 1, 1–68, DOI 10.1112/blms/10.1.1. MR495450

[7] James Eells and Luc Lemaire, *Selected topics in harmonic maps*, CBMS Regional Conference Series in Mathematics, vol. 50, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1983. MR703510

[8] James Eells Jr. and J. H. Sampson, *Harmonic mappings of Riemannian manifolds*, Amer. J. Math. **86** (1964), 109–160. MR0164306

[9] James Eells Jr. and Joseph H. Sampson, *Variational theory in fibre bundles*, Proc. U.S.-Japan Seminar in Differential Geometry (Kyoto, 1965), Nippon Hyoronsha, Tokyo, 1966, pp. 22–33. MR0216519

[10] Peter Hornung and Roger Moser, *Intrinsically p-biharmonic maps*, Calc. Var. Partial Differential Equations **51** (2014), no. 3-4, 597–620, DOI 10.1007/s00526-013-0688-3. MR3268864

[11] Jiang Guoying, *2-harmonic maps and their first and second variational formulas*, Note Mat. **28** (2009), no. [2008 on verso], suppl. 1, 209–232. Translated from the Chinese by Hajime Urakawa. MR2640582

[12] N. Koiso and H. Urakawa, *Biharmonic submanifolds in a Riemannian manifold*, arXiv:1408.5494v1[mathDG].

[13] E. Loubeau and S. Montaldo, *Biminimal immersions*, Proc. Edinb. Math. Soc. (2) **51** (2008), no. 2, 421–437, DOI 10.1017/S0013091506000393. MR2455916

[14] Yong Luo, *On biharmonic submanifolds in non-positively curved manifolds*, J. Geom. Phys. **88** (2015), 76–87, DOI 10.1016/j.geomphys.2014.11.004. MR3293397

[15] Yong Luo, *Liouville-type theorems on complete manifolds and non-existence of bi-harmonic maps*, J. Geom. Anal. **25** (2015), no. 4, 2436–2449, DOI 10.1007/s12220-014-9521-2. MR3427133

[16] Shun Maeta, *Properly immersed submanifolds in complete Riemannian manifolds*, Adv. Math. **253** (2014), 139–151, DOI 10.1016/j.aim.2013.12.001. MR3148548

[17] S. Maeta, *Biharmonic submanifolds in manifolds with bounded curvature*, Internat. J. Math. (to appear), arXiv:1405.5947 [mathDG].

[18] Aaron Naber, *Noncompact shrinking four solitons with nonnegative curvature*, Int. Math. Res. Not. IMRN (2015), pp. 5229–5258, DOI 10.1093/imrn/rnu002. MR3479180

[19] Ye-Lin Ou, *Biharmonic hypersurfaces in Riemannian manifolds*, Pacific J. Math. **248** (2010), no. 1, 217–232, DOI 10.2140/pjm.2010.248.217. MR2734173

[20] Peter Petersen and William Wylie, *On the classification of gradient Ricci solitons*, Geom. Topol. **14** (2010), no. 4, 2277–2300, DOI 10.2140/gtm.2010.14.2277. MR2740647

[21] Ze-Ping Wang and Ye-Lin Ou, *Biharmonic Riemannian submersions from 3-manifolds*, Math. Z. **269** (2011), no. 3-4, 917–925, DOI 10.1007/s00209-010-0766-6. MR2802270
[22] Shing Tung Yau, *Some function-theoretic properties of complete Riemannian manifold and their applications to geometry*, Indiana Univ. Math. J. **25** (1976), no. 7, 659–670. MR0417452

Department of Mathematics, Shimane University, Nishikawatsu 1060 Matsue, 690-8504, Japan

E-mail address: shun.maeta@gmail.com

E-mail address: maeta@riko.shimane-u.ac.jp