Trial watch: STING agonists in cancer therapy

Julie Le Naoura,b,c,d, Laurence Zitvogele,f, Lorenzo Galluzzig,h,u,k, Erika Vacchellia,b,c,d,f, and Guido Kroemera,b,c,d,m,n†

aEquipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM, Centre de Recherche des Cordeliers, Paris, France; bMetabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; cGustave Roussy Cancer Campus, Villejuif, France; dUniversité Paris Sud, Paris Saclay, Medicine Kremlin Bicêtre, France; eEquipe Labellisée Ligue Contre Le Cancer, INSERM, Villejuif, France; fCenter of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France; gDepartment of Radiation Oncology, Weill Cornell Medical College, New York, USA; hSandra and Edward Meyer Cancer Center, New York, USA; iCaryl and Israel Englander Institute for Precision Medicine, New York, USA; jDepartment of Dermatology, Yale School of Medicine, New Haven, CT, USA; kUniversité de Paris, Paris, France; lHôpital Européen Georges Pompidou, AP-HP, Paris, France; mSuzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China; nKarolinska Institute, Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden

ABSTRACT
Stimulator of interferon response cGAMP interactor 1 (STING1, best known as STING) is an endoplasmic reticulum-sessile protein that serves as a signaling hub, receiving input from several pattern recognition receptors, most of which sense ectopic DNA species in the cytosol. In particular, STING ensures the production of type I interferon (IFN) in response to invading DNA viruses, bacterial pathogens, as well as DNA leaking from mitochondria or the nucleus (e.g., in cells exposed to chemotherapy or radiotherapy). As a type I IFN is critical for the initiation of anticancer immune responses, the pharmaceutical industry has generated molecules that directly activate STING for use in oncological indications. Such STING agonists are being tested in clinical trials with the rationale of activating STING in tumor cells or tumor-infiltrating immune cells (including dendritic cells) to elicit immunostimulatory effects, alone or in combination with a range of established chemotherapeutic and immunotherapeutic regimens. In this Trial Watch, we discuss preclinical evidence and accumulating clinical experience shaping the design of Phase I and Phase II trials that evaluate the safety and preliminary efficacy of STING agonists in cancer patients.

Introduction
Stimulator of interferon response cGAMP interactor 1 (STING1, best known as STING) was first described in 2008 as a transmembrane component of the endoplasmic reticulum (ER) that senses cytosolic double-stranded DNA (dsDNA).1–4 This key adaptor protein in innate immune signaling5–8 can be activated by several cytoplasmic DNA sensors9–11 including cyclic GMP-AMP synthase (CGAS),12–15 Z-DNA binding protein 1 (ZBP1, best known as DAI), DEAD-box helicase 41 (DDX41), interferon-gamma-inducible protein 16 (IFI16),16–18 and perhaps protein kinase, DNA-activated, catalytic subunit (PRKDC, best known as DNA-PK).19,20 Among these sensors, CGAS has been studied in an extensive fashion. Mechanically, the accumulation of ectopic dsDNA in the cytosol activates the enzymatic function of CGAS to generate cyclic GMP-AMP (cGAMP),15,24 as well as other cyclic dinucleotides (CDNs)25,26 bind to and activate STING, triggering a signal transduction pathway that culminates in the initiation of interferon regulatory factor 3 (IRF3)- or NF-κB-dependent transcriptional programs.27–30 Notably, CDN-bound STING also stimulates autophagy, an evolutionarily conserved mechanism for the preservation of cellular and organismal homeostasis,31–33 and such a function appears to be more ancient than the initiation of IRF3 and NF-κB transcriptional activity.34

STING is particularly prone to activation in the context of viral or bacterial infection, at least in part reflecting (1) the elevated sensitivity of CGAS for histone-free DNA,35,36 and (2) the direct contribution of bacterial CDNs to STING.25,26 However, STING can also be triggered by the cytosolic accumulation of endogenous DNA of both nuclear37–39 and mitochondrial40–44 origin. Thus, cancer cells undergoing DNA damage and mitochondrial outer membrane permeabilization (MOMP)45 in response to chemotherapy or radiation therapy are likely to secrete type I interferon (IFN) and other STING-dependent cytokines,46–48 although the MOMP-driven activation of apoptotic caspases considerably inhibits the process.49–54 Moreover, dying cancer cells appear to deliver STING-activatory DNA species to dendritic cells (DCs),55–57 which are the key initiators of anticancer immune responses,58–62 at least in some cases via exosome release63 or GAP junctions.64,65

In summary, STING occupies a central role in the activation of tumor-targeting immune responses,5,66,67 which generated considerable attention around the possibility to develop chemical STING agonists for use in oncological indications.68 In
STING signaling in preclinical tumor models

Accumulating preclinical evidence documents the relevance of STING signaling in malignant cells and innate immune effectors of the tumor microenvironment for the initiation of anticancer immunity. Initially, it has been proposed that the engulfment of dying cancer cells by tumor-infiltrating CD8α+ DCs would trigger STING signaling in the latter, culminating in the abundant secretion of type I IFN and consequent activation of autocrine and paracrine pathways supporting the cross-priming of tumor-specific CD8+ cytotoxic T lymphocytes (CTLs). Consistent with this model, Sting1−/− mice are unable to mount efficient T cell immunity against syngeneic melanomas and gliomas, correlating with deficient type I IFN production. Similarly, Goldenticket mice – which harbor a single nucleotide polymorphism in Sting1 (T596A) that mimics the effects of a loss-of-function mutation – cannot establish efficient IFN-dependent immune responses against Listeria monocytogenes. Subsequent works, however, suggested that STING signaling in neoplastic cells, responding to some chemotherapeutics and radiotherapy, when delivered according to optimal doses and fractionation schedules, also contributes to anticancer immunity, at least in some settings. In line with this model, the short-hairpin RNA-mediated depletion of CGAS or STING in mouse mammary carcinoma cells exposed to hypofractionated radiation abolishes their ability to establish a tumor-specific immune response with systemic outreach (so-called ‘abscopal response’) in the presence of an immunostimulatory agent. Moreover, recent data suggest that STING signaling in DCs may also be initiated by CGAS-activatory or STING-activatory molecules that accumulate in cancer cells responding to treatment and are
transferred to DCs via exosomes or GAP junctions. Thus, STING activation in both malignant and immune components of the tumor microenvironment has been linked to superior anticancer immunity in a variety of preclinical tumor models.

Over the past few years, these observations prompted an intense wave of investigation aimed at the identification and development of pharmacological STING agonists for use in cancer patients. Historically, flavone acetic acid (FAA) has been the first of such molecules to be investigated for its anticancer properties, although FAA was not known to trigger STING activation at that time. Indeed, FAA was originally characterized as a vascular-disrupting agent that showed some antitumoral activity against murine colon tumors. Although these results encouraged further testing, FAA failed to display robust anticancer activity in murine tumor models and in Phase I clinical trials. In an attempt to improve efficacy, various modifications were introduced into the molecular structure of FAA, resulting in a battery of derivatives including 5,6-dimethylxanthene-4-acetic acid (DMXAA, also known as ASA404 or vadimezan). Well before the identification of STING, intratumoral or systemic DMXAA administration was shown to exhibit IFN- and tumor necrosis factor (TNF)-dependent anticancer activity against multiple mouse and rat carcinomas, especially (but not exclusively) when tumors were grown in immunocompetent, syngeneic hosts (de facto suggesting to a mode of action not limited to vascular disruption). Moreover, DMXAA turned out to efficiently synergize with various other anticancer regimens in vivo, including (but not limited to): radiotherapy, thermoradiotherapy, radioimmunotherapy, chemotherapy (with a particular emphasis on taxanes), immuno-modulatory drugs such as thalidomide and immunotherapy.

Corroborating initial findings, the intratumoral or systemic administration of DMXAA or other STING agonists, alone or combined with other therapeutic agents, have ultimately been attributed pronounced therapeutic effects in numerous murine models of fibrosarcoma, glioma, melanoma, as well as breast, colorectal and prostate carcinoma. Moreover, various CDNs have been shown to boost the therapeutic activity of anticancer vaccines in a variety of tumor models, including (1) mouse 4T1 triple-negative mammary carcinomas treated with a Listeria monocytogenes-based vaccine; (2) mouse B16 melanomas treated with the TRIVAX vaccine, which consists of synthetic peptides, the Toll-like receptor 3 (TLR3) agonist polyinosinic-polycytidylic acid (poly(I:C)) and co-stimulatory antibodies targeting CD40, or the STINGVAX vaccine, a cellular vaccine engineered to secrete colony-stimulating factor 2 (CSF2, best known as GM-CSF), plus an immune checkpoint blocker targeting programmed cell death 1 (PDCD1, best known as PD-1), and (3) mouse CT26 colorectal carcinoma treated with the STINGVAX vaccine plus a PD-1 blocker.

However, natural CDNs are rapidly degraded by circulating and cell-bound enzymes, including ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), calling for the development of molecules with improved stability for clinical applications. Novel STING agonists developed to circumvent the limited half-life of natural CDNs include both CDN derivatives (e.g., GSK 532 and CDN-unrelated agents (e.g., TTI-10001, CRD5500 and amidobenzimidazole derivatives)). In vitro, GSK 532 can induce cytokine responses in human peripheral blood mononuclear cells (PBMCs) bearing various STING haplotypes, which is not the case of DMXAA and all natural CDNs. Intratumoral administration of GSK 532 mediated robust anticancer effects against CT26 colorectal carcinomas growing in immunocompetent syngeneic mice, culminating with the eradication of existing lesions and the establishment of protective immunity against rechallenge with the same cancer cell line. Such an antitumor effect was largely compromised after CD8 T cell depletion, further corroborating the ability of GSK 532 to initiate adaptive anticancer immunity. Intratumoral TTI-10001 administration induced the expression of various pro-inflammatory cytokines along with T cell activation in mice bearing MC38 colorectal carcinomas or A20 B-cell lymphoma, culminating with disease eradication in a significant fraction of animals. CRD5500 (also called LB-061) administered intratumorally or systemically induced tumor regression in BALB/c mice bearing syngeneic CT26 colorectal tumors engineered to express human STING, a therapeutic effect that was further increased when mice concomitantly received an immune checkpoint blocker. Finally, intravenous administration of an amidobenzimidazole (ABZI)-based compound to immuno-competent mice bearing syngeneic colorectal cancers resulted in complete and long-lasting disease control.

Additional lines of evidence supported the potential benefit of (re)activating STING for cancer therapy. For instance, the tumor suppressor MUS81 structure-specific endonuclease subunit (MUS81) has been shown to promote cytosolic DNA accumulation in prostate cancer cells, ultimately activating a STING-dependent program for cancer immunosurveillance. Along similar lines, the oncogene E7 from human papillomavirus (HPV) and E1A from adenovirus inhibit CGAS-STING signaling to subvert antiviral immunity in the host, which eventually facilitate malignant transformation. Finally, STING and/or CGAS expression is silenced by epigenetic mechanisms in various cancer types including colorectal tumors, further supporting the advantage obtained by developing neoplasms as a consequence of STING inactivation. Taken together, these preclinical findings provide robust grounds for testing STING agonists in cancer patients.

STING agonists as cancer therapeutics

DMXAA

Arguably, DMXAA is the best characterized of all STING agonists, largely reflecting its capacity to induce apoptosis in endothelial cells and hence the initial development of DMXAA as a STING-unrelated vascular-disrupting agent. When this Trial Watch was being redacted (April 2020), official sources listed only 18 clinical trials that investigate the safety and therapeutic profile of DMXAA in cancer patients (source www.clinicaltrials.gov (Table 1)).

DMXAA has preferentially been tested in patients with solid tumors, mainly in cohorts of individuals with advanced or
chemorefractory neoplasms. The Phase I trial NCT00863733, aiming to evaluate pharmacodynamics, pharmacokinetics, toxicity and preliminary antitumor efficacy of DMXAA, demonstrated a good safety profile and tolerability over a large range of doses.144 Notably, neither this study nor another Phase I clinical trial conducted in the United Kingdom documented significant degrees of myelosuppression in patients receiving DMXAA intravenously,145 pointing to DMXAA as to a good combinatorial partner for conventional chemotherapy. Nevertheless, additional investigations were required to elucidate the therapeutic potential of the compound.

Two other Phase I clinical trials (NCT00856336 and NCT00003697) tested intravenous DMXAA as a single agent in patients with various solid tumors, demonstrating some benefits only at doses higher than the ones generally tested in the clinic.146 Moreover, these studies confirmed that DMXAA perturbed retinal function, consistent with the inhibition of phosphodiesterases.146,147 Alongside, the tolerability, safety, efficacy and pharmacokinetics of DMXAA, combined with the microtubular poison docetaxel148,149 have been tested in Japanese patients affected by advanced or recurrent solid tumors.150,151 This Phase I clinical study (NCT01285453) proved that DMXAA plus docetaxel are generally well tolerated, documenting only Grade 1–2 adverse events including constipation, decreased appetite, alopecia, fatigue and neutropenia.150 These results led to the design of a Phase III clinical study (ATTRACT-2)145 testing DMXAA plus docetaxel as a second-line therapy for advanced non-small cell lung carcinoma (NSCLC).143 Unfortunately, the ATTRACT-2 trial has been prematurely terminated for undisclosed reasons probably linked to preliminary efficacy.152,153 A similar Phase II study was conducted in 70 patients affected by hormone-refractory metastatic prostate cancer (NCT00111618), demonstrating good safety and some degree of clinical activity.154 In the context of NSCLC, an additional Phase I trial (NCT00674102) aimed at investigating the safety and efficacy of DMXAA combined with carboplatin and paclitaxel in patients affected by squamous or non-squamous NSCLC.155 Despite some limitations, such as the restricted number of patients, DMXAA was associated with comparable safety and efficacy independent from the tumor histology, thus allowing for the inclusion of all patients in a Phase II expansion assay (NCT00832494). Additionally, this combinatorial chemotherapeutical regimen has been tested as first-line chemotherapy in a Phase II trial (NCT01057342) enrolling patients affected by

Agonist	Indications	Status	Phase	Route	Co-therapy	NCT Number
ADU-S100	Advanced solid tumors	Active not	I	i.t.	Combined with anti-CTLA4 mAb	NCT02675439
	Lymphoma	recruiting			Combined with anti-PD1 mAb	NCT03172936
BMS-986301	Advanced solid tumors	Recruiting	II	i.t.	Combined with pembrolizumab	NCT00397141
DMXAA	Advanced urothelial carcinoma	Withdrawn	II	i.v.	Combined with docetaxel	NCT01071928
	Advanced solid tumors	Completed	I	n.s.	Combined with docetaxel	NCT01285453
		Terminated	I	i.v.	As single agent	NCT00299701
					Combined with carboplatin + paclitaxel or docetaxel	NCT001240642
Advanced tumors	Terminated	I	n.s.		Combined with taxane-based chemotherapy	NCT01290380
NSCLC	Completed	I	i.v.		Combined with carboplatin and paclitaxel	NCT00674102
Prostate cancer	Terminated	III	i.v.		Combined with carboplatin and paclitaxel	NCT00738387
Refractory solid tumors	Completed	I	i.v.		Combined with carboplatin and paclitaxel	NCT00662597
SCLC	Completed	II	i.v.		Combined with carboplatin and paclitaxel	NCT00111618
Solid tumors	Completed	I	i.v.		Combined with carboplatin, cetuximab and paclitaxel	NCT01031212
E7766	Advanced solid tumors	Recruiting	I	i.t.	As single agent	NCT04144140
	Bladder cancer	Not yet	I	i.v.	As single agent	NCT04109002
GSK3745417	Advanced solid tumors	Recruiting	I	i.v.	As single agent or combined with pembrolizumab	NCT03843359
MK-1454	Advanced solid tumors	Recruiting	I	i.t.	As single agent	NCT03010176
	Lymphoma	Recruiting	I	i.t.	As single agent or combined with pembrolizumab	NCT04238666
	HNSCC	Recruiting	II	i.t.	As single agent	NCT03249792
					Combined with pembrolizum and paclitaxel	NCT00003697
MK-2118	Advanced solid tumors	Recruiting	I	i.t.	As single agent	NCT03249792
	Lymphoma	Recruiting	I	i.t.	As single agent	NCT00063733
SB11285	Advanced solid tumors	Recruiting	I	i.t.	As single agent	NCT04096638

Abbreviations: HNSCC, head and neck squamous cell carcinoma; i.t., intratumorally; i.v., intravenously; mAb, monoclonal antibody; n.s., not specified, NSCLC, non-small cell lung carcinoma; s.c., subcutaneously; SCLC, small cell lung carcinoma.

Table 1. Clinical trials testing STING agonists in oncological indications.
advanced squamous small cell lung carcinoma (SCLC). This study was prematurely stopped due to lack of efficacy based on progression-free survival.

Thus, the addition of DMXAA to conventional chemotherapeutic agents with immunostimulatory effects has been consistently associated with poor preliminary efficacy or an increased rate of adverse reactions, as demonstrated by the consistent failure of prematurely terminated clinical trials (8 out of 18). In most such cases, DMXAA was combined with taxanes (docetaxel or paclitaxel) alone (NCT01290380 and NCT00738387) or in the context of carboplatin-based chemotherapy (NCT01240642, NCT00674102, NCT00662597 and NCT01299415), in patients with non-selected, advanced or chemorefractory solid tumors (NCT01285453, NCT01299701, NCT01278849, NCT01240642, NCT01290380, NCT01278758, NCT00856336, NCT01031212), or in a restricted oncological indication such as NSCLC (NCT00738387 and NCT00662597) or SCLC (NCT01057342). Two additional clinical assays testing DMXAA in cancer patients are currently listed as “withdrawn” (source www.clinicaltrials.gov). The first of such trials intended to test intravenous DMXAA as second-line chemotherapy in combination with docetaxel in patients affected by advanced urothelial carcinoma (NCT01071928). The second of such studies aimed to test DMXAA plus carboplatin, paclitaxel and the endothelial growth factor receptor (EGFR)-targeting agent cetuximab in patients with chemorefractory solid tumors (NCT01031212). Importantly, recent structure-function studies of mouse and human STING demonstrated that DMXAA does not bind to human STING, but only to its mouse counterparts,161,162 likely explaining the limited activity documented in clinical testing. That said, DMXAA appears to potently inhibit phosphodiesterases, which has been invoked to explain its vascular-disrupting properties.146,147 As phosphodiesterase inhibition is expected to favor the accumulation of endogenous CDNs, at least to some extent, whether the (limited) therapeutic effects of DMXAA are entirely STING-independent remains to be elucidated.

Other STING agonists in clinical evaluation

At least 15 different STING agonists other than DMXAA have been developed to circumvent the limited efficacy of the latter. E7766, belonging to a novel class of macrocyclic-bridged STING agonists (MBSAs) is the only STING agonist currently being tested in cancer patients as a standalone intravenous intervention. In particular, the tolerability, safety and preliminary activity of this molecule have been investigated in patients with advanced solid tumors or lymphomas (NCT04144140) as well as in individuals affected by non-muscle invasive bladder cancer (NCT04109902). Both these Phase I clinical studies forecast one dose-escalation part and a second dose-expansion phase. GSX3745176 is currently being tested as monotherapy or combined with the PD-1 blocking antibody pembrolizumab,165 in patients with advanced, refractory/relapsed solid tumors (NCT03843359, NCT03010176) or lymphomas (NCT03010176). Preliminary results suggest that this combinatorial regimen is safe and mediates some clinical activity.166 MK-1454 is being tested in patients with metastatic or unresectable, recurrent head and neck squamous cell carcinoma (HNSCC) (NCT04220866), while MK-2118 administered i.t. or s.c. (together with pembrolizumab) is being investigated in individuals affected by advanced/metastatic solid tumor or lymphomas (NCT03249792). ADU-S100 (also known as MIW815) is currently being tested in combination with pembrolizumab for CD274 (PD-L1)-positive recurrent or metastatic HNSCC patients (NCT03937141), as well in individuals with advanced solid tumors concomitantly receiving a PD-1 blocker other than pembrolizumab (NCT03172936) or the cytotoxic T-lymphocyte associated protein 4 (CTLA4) blocker ipilimumab (NCT02675439). Preliminary results from NCT03172936 suggest that the combination of ADU-S100 plus the PD-1 blocker spartalizumab is well tolerated and mediates some clinical activity in patients with solid tumors, particularly PD-1-naive triple-negative breast cancer168 and PD-1-relapsed/refractory melanoma.167,169,170 The success of this regimen might have a particular positive impact on melanoma patients refractory to PD-1 blockers.171-173 The PD-1 blocker nivolumab is also being tested in combination with the STING agonist SB11285 in subjects with advanced solid tumors (NCT04096638). Only one clinical trial, enrolling patients with advanced solid tumors (NCT03956680), evaluated the safety and preliminary efficacy of ipilimumab and nivolumab together,175-178 co-administered with the STING agonist BMS-986301.

Indirect STING activation by cancer therapies

Accumulating preclinical and clinical evidence demonstrates that numerous anticancer agents currently employed in the clinical practice or under clinical development can activate CGAS-STING signaling downstream of the accumulation of endogenous DNA in the cytosol, which may potentially provide an underestimated contribution to therapeutic efficacy. Among others, these agents include (1) radiation therapy, at least when administered according to optimal dose and fractionation schedules that do not favor the upregulation of the dsDNA-degrading enzyme three prime repair exonuclease 1 (TREX1),146,55,63,179-181 (2) molecules that cause DNA damage, such as cisplatin and topoisomerase inhibitors like etoposide, or compromise the DNA damage response, including the clinically employed poly(ADP)-ribose polymerase 1 (PARP) inhibitor olaparib, as well as experimental inhibitors of ATR serine/threonine kinase (ATR),191 or cause mitotic disturbances, such as paclitaxel and other taxanes.

Taken together, these observations suggest that several commonly used anticancer agents trigger STING-dependent cytokine responses. Besides contributing to therapeutic efficacy (at least to some degree), such responses may be actionable therapeutically, and hence need to be taken under attention consideration when combinatorial regimens are conceived.

Concluding remarks

Mounting preclinical and clinical evidence suggests that carefully designed agonists of human STING (as well as molecules that trigger STING signaling in an indirect fashion) activate therapeutically relevant type I IFN-dependent responses in cancer or immune cells, in particular DCs. Although to the
best of our knowledge no Phase III registration studies have yet been launched, several completed and ongoing Phase II studies have detected signs of clinical activity for STING agonists, though at the cost of non-negligible side effects. It will be interesting to learn whether mechanism-linked undesired effects can be minimized by favoring intratumoral over systemic delivery routes and whether this procedure would induce clinically exploitable systemic responses. If so, STING agonists may have a bright future.

Acknowledgments
LG is supported by a Breakthrough Level 2 grant from the US Department of Defense (DoD), Breast Cancer Research Program (BRCP) (#BC180476P1), by the 2019 Laura Zisskin Prize in Translational Research (#ZP-6177, PI: Formenti) from the Stand Up to Cancer (SU2C), by a Mantle Cell Lymphoma Research Initiative (MCL-RI, PI: Chen-Kiang) grant from the Leukemia and Lymphoma Society (LLS), by a startup grant from the Dept. of Radiation Oncology at Weill Cornell (HTE); Institut Universitaire de France; LeDucq Foundation; the LabEx Oncobiome; Fondation Carrefour; High-end Foreign Expert Program in China (GDW20171100085), Institut National du Cancer (INCa); Inserm (New York, US), by a Rapid Response Grant from the Chen-Kiang) grant from the Leukemia and Lymphoma Society (LLS), by a Mantle Cell Lymphoma Research Initiative (MCL-RI, PI: Formenti, SU2C), by a Breakthrough Level 2 grant from the US Department of Defense (DoD), Breast Cancer Research Program (BRCP) (#BC180476P1), by the 2019 Laura Zisskin Prize in Translational Research (#ZP-6177, PI: Formenti) from the Stand Up to Cancer (SU2C), by a Mantle Cell Lymphoma Research Initiative (MCL-RI, PI: Chen-Kiang) grant from the Leukemia and Lymphoma Society (LLS), by a startup grant from the Dept. of Radiation Oncology at Weill Cornell (HTE); Institut Universitaire de France; LeDucq Foundation; the LabEx Oncobiome; Fondation Carrefour; High-end Foreign Expert Program in China (GDW20171100085), Institut National du Cancer (INCa); Inserm (New York, US), by a Rapid Response Grant from the Chen-Kiang) grant from the Leukemia and Lymphoma Society (LLS), by a Mantle Cell Lymphoma Research Initiative (MCL-RI, PI: Formenti); Fondation Carrefour; High-end Foreign Expert Program in China (GDW20171100085), Institut National du Cancer (INCa); Inserm (New York, US), by a Rapid Response Grant from the

References
1. Ishikawa H, Barber GN. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature. 2008;455:674–678. doi:10.1038/nature07317.
2. Vanpouille-Box C, Hoffmann JA, Galluzzi L. Pharmacological modulation of nucleic acid sensors - therapeutic potential and persisting obstacles. Nat Rev Drug Discov. 2019;18:845–867. doi:10.1038/s41573-019-0043-2.
3. Palusdon SR, Bowie AG. Immune sensing of DNA. Immunity. 2013;38:870–880. doi:10.1016/j.immuni.2013.05.004.
4. Abe T, Harashima A, Xia T, Konno H, Konno K, Morales A, Ahn J, Gutman D, Barber GN. STING recognition of cytosolic DNA instigates cellular defense. Mol Cell. 2013;50:5–15. doi:10.1016/j.molcel.2013.01.039.
5. Barber GN. STING: infection, inflammation and cancer. Nat Rev Immunol. 2015;15:760–770. doi:10.1038/nri3921.
6. Chen Q, Sun L, Chen ZJ. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat Immunol. 2016;17:1142–1149. doi:10.1038/ni.3558.
7. Galluzzi L, Vanpouille-Box C, Bakhoun SF, Demaria S. Snapshot: cGAS-STING signaling. Cell. 2018;173:276–e1. doi:10.1016/j.cell.2018.03.015.
8. Vanpouille-Box C, Galluzzi L. Nucleic acid sensing at the interface between innate and adaptive immunity. Int Rev Cell Mol Biol. 2019;345:ix–xiii.

ORCID
Julie Le Naour http://orcid.org/0000-0002-3749-2171
Laurence Zitvogel http://orcid.org/0000-0001-8010-0594
Guido Kroemer http://orcid.org/0000-0002-9334-4405

http://orcid.org/0000-0002-3749-2171
http://orcid.org/0000-0001-8010-0594
http://orcid.org/0000-0002-9334-4405
STING-independent DNA sensing pathway. Sci Immunol. 2020;5(43):eaau2419. doi:10.1126/sciimmunol.aba4219.

24. Gao P, Ascano M, Wu Y, Bachtet W, Gaffney BL, Zillinger T, Seganov A, Liu Y, Jones R, Hartmann G, et al. Cyclic (G(2',5'))pA(3',5')p is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell. 2013;153:1094–1107. doi:10.1016/j.cell.2013.04.046.

25. Burdette DL, Monroe KM, Sotelo-Troha K, Iwig JS, Eckert B, Hyodo M, Hayakawa Y, Vance RE. STING is a direct innate immune sensor of cyclic di-GMP. Nature. 2011;478(7370):515–518. doi:10.1038/nature10429.

26. Dey B, Dey RJ, Cheung LS, Pokkali S, Guo H, Lee JH, Bishai WR. Cytosolic-DNA-mediated, STING-dependent autophagy-independent functions of the endoplasmic reticulum. J Virol. 2014;88:3328–3341. doi:10.1128/JVI.00377-14.

27. Ishikawa H, Ma Z, Barber GN. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature. 2009;461:788–792. doi:10.1038/nature08476.

28. Bakhoum SF, Ngo B, Laughney AM, Cavaiola J, Murphy CJ, Ly P, Shah P, Sriman RK, Watkins TKB, Taunk NK, et al. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature. 2018;553:467–472. doi:10.1038/s41598-018-23280-7.

29. Abe T, Barber GN. Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-kappaB activation through TBK1. J Virol. 2014;88:3328–3341. doi:10.1128/JVI.00377-14.

30. Ishikawa H, Ma Z, Barber GN. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature. 2009;461:788–792. doi:10.1038/nature08476.

31. Galluzzi L, Green DR. Autophagy-independent functions of the autophagy machinery. Cell. 2019;177:1682–1699. doi:10.1016/j.cell.2019.05.026.

32. Anderson CM, Macleod KF. Autophagy and cancer cell metabolism. Int Rev Cell Mol Biol. 2019;347:145–190.

33. Rybstein MD, Bravo-San Pedro JM, Kroemer G, Galluzzi L. DNA damage in cells. PLoS Pathog. 2017;13(5):e1006337. doi:10.1371/journal.ppat.1006337.

34. Rybstein MD, Bravo-San Pedro JM, Kroemer G, Galluzzi L. The cytoplasmic DNA sensor cGAS promotes mitotic cell death. Cell. 2019;178:302–315 e23. doi:10.1016/j.cell.2019.05.035.

35. Porporato PE, Filigheddu N, Pedro JMB, Kroemer G, Galluzzi L. DNA damage promotes radiation-induced type I interferon production. Cell. 2014;159:1549–1577. doi:10.1016/j.cell.2014.11.037.

36. McArthur K, Metcalf D, Lane RM, Cambier JC, Herold MJ, van Delft M, Bedoui S, Lessene G, Ritchie M, et al. Apoptotic caspases cut down the immunogenicity of mtDNA-mediated STING-mediated type I IFN production. Cell. 2014;159:1549–1562. doi:10.1016/j.cell.2014.11.036.

37. Rodriguez-Ruiz ME, Buque A, Hensler M, Chen J, Bloy N, Petroini G, Sato A, Yamazaki T, Fucikova J, Galluzzi L, et al. Apoptotic caspases inhibit abscopal responses to radiation and identify a new prognostic biomarker for breast cancer patients. Oncotarget. 2019;10(11):e165596. doi:10.22417/oncoimmunology.v8i11.1655964.

38. Buque A, Rodriguez-Ruiz ME, Fucikova J, Galluzzi L. Apoptotic caspases cut down the immunogenicity of radiation. Oncotarget. 2019;8(16):1655364. doi:10.18632/oncotarget.26166.

39. Ning X, Wang Y, Jing M, Sha M, Lv M, Gao P, Zhang R, Huang X, Feng J-M, Jiang Z, et al. Apoptotic caspases promote mtDNA-induced STING-mediated type I interferon production via the cleavage of cGAS, MAVS, and IRF3. Mol Cell. 2019;74:19–31 e7. doi:10.1016/j.molcel.2019.02.013.

40. Han C, Liu Z, Zhang Y, Shen A, Dong C, Zhang A, Moore C, Ren Z, Lu C, Cao X, et al. Tumor cells suppress radiation-induced immunity by hijacking caspase 9 signaling. Nat Immunol. 2020;21(5):546–554. doi:10.1038/s41590-020-0641-5.

41. Deng L, Liang H, Xu M, Yang X, Burnette B, Arina A, Li X-D, Mauceri H, Beckett M, Durga T, et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. J Immunother Cancer. 2020;8(1):e000547. doi:10.1002/ijc3.13624.

42. Rabinovitch PS, Rabinovitch HP, Sato A, Fucikova J, Galluzzi L, et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature. 2015;520(7548):553–557. doi:10.1038/nature14156.

43. Corrales L, Gajewski TF. Molecular pathways: targeting the stimulator of interferon genes (STING) in the immunotherapy of cancer. Clin Cancer Res. 2015;21:4774–4779. doi:10.1158/1078-0432.CCR-15-1362.

44. Rongvaux A, Jackson R, Harman CC, Li T, West AP, de Zoete MR, Wu Y, Yordy B, Lakhani S, Kuan C-Y, et al. Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell. 2014;159:1563–1577. doi:10.1016/j.cell.2014.11.037.

45. White MJ, McArthur K, Metcalf D, Lane RM, Cambier JC, Herold MJ, van Delft M, Bedoui S, Lessene G, Ritchie M, et al. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell. 2014;159:1549–1562. doi:10.1016/j.cell.2014.11.036.

46. Rodriguez-Ruiz ME, Buque A, Hensler M, Chen J, Bloy N, Petroini G, Sato A, Yamazaki T, Fucikova J, Galluzzi L, et al. Apoptotic caspases inhibit abscopal responses to radiation and identify a new prognostic biomarker for breast cancer patients. Oncotarget. 2019;10(11):e165596. doi:10.22417/oncoimmunology.v8i11.1655964.

47. West AP, Krouy-Hanold W, Staron M, Tal MC, Pineda CM, Lang SM, Bestwick M, Duguay BA, Raimundo N, MacDuff DA, et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature. 2015;520(7548):553–557. doi:10.1038/nature14156.

48. Corrales L, Gajewski TF. Molecular pathways: targeting the stimulator of interferon genes (STING) in the immunotherapy of cancer. Clin Cancer Res. 2015;21:4774–4779. doi:10.1158/1078-0432.CCR-15-1362.
60. Martinek J, Wu TC, Cadena D, Banchereau J, Palucka K. Interplay between dendritic cells and cancer cells. Int Rev Cell Mol Biol. 2019;348:179–215.

61. Woo SR, Corrales L, Gajewski TF. Innate immune recognition of cancer. Annu Rev Immunol. 2015;33:445–474. doi: 10.1146/annurev-immunol-032414-112043.

62. Gajewski TF, Corrales L, Williams J, Horton B, Sivan A, Spranger S. Cancer immunotherapy targets based on understanding the T cell-inflamed versus non-T cell-inflamed tumor microenvironment. Adv Exp Med Biol. 2017;1036:19–31.

63. Diamond JM, Vanpouille-Box C, Spada S, Rudquist NP, Chapman JR, Ueberheide BM, Pilones KA, Sarfraz Y, Formenti SC, Demaria S, et al. Exosomes shuttle TREC1-sensitive IFN-stimulatory dsDNA from irradiated cancer cells to DCs. Cancer Immunol Res. 2018;6:910–920. doi: 10.1158/2326-6066.CIR-17-0581.

64. Schadt L, Sparano C, Schweiger NA, Silina K, Cecconi V, Lucchiari G, Yagit A, Guggisberg E, Saba S, Nascakova Z, et al. Cancer-cell-intrinsic cGAS expression mediates tumor immunogenicity. Cell Rep. 2019;29(5):1236–48 e7. doi: 10.1016/j.celrep.2019.09.065.

65. Torralba D, Baixaui F, Villarroya-Beltr C, Fernandez-Delgado I, Latorre-Pellier A, Acin-Perez R, Martin-Cofres NB, Jaso-Tamame AL, Ibaroa S, Jorge J, et al. Priming of dendritic cells by DNA-containing extracellular vesicles from activated T cells through antigen-driven contacts. Nat Commun. 2018;9(1):2658. doi: 10.1038/s41467-018-05079-7.

66. Corrales L, Glickman LH, McWhirter SM, Kanne DB, Sivick KE, Katibah GE, Woo S-R, Lemmens E, Banda T, Leong J, et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep. 2015;11(7):1018–1030. doi: 10.1016/j.celrep.2015.04.031.

67. Zhu Y, An X, Zhang X, Qiao Y, Zheng T, Li X. STING: a master regulator in the cancer-immunity cycle. Mol Cancer. 2019;18:152. doi: 10.1186/s12943-019-1087-y.

68. Medler T, Patel JM, Alice A, Baird JR, Hu HM, Gough MJ. Activating the nucleic acid-sensing machinery for antimicrobial activity. Int Rev Cell Mol Biol. 2019;344:173–214.

69. Humbert M, Hugas S. Warming up the tumor microenvironment in order to enhance immunogenicity. Oncogene Immunol. 2019;8:e1510710. doi: 10.1016/j.2326-6066.CIR-14-0099.18.

70. Xiao Z, Locasale JW, Dai Z. Metabolism in the tumor microenvironment: insights from single-cell analysis. Oncoimmunology. 2019;8:e1523097. doi: 10.1080/2162402X.2018.1546069.

71. Yang M, Du W, Yi L, Wu S, He C, Zhai W, Yue C, Sun R, Menk Xiao Z, Locasale JW, Dai Z. Carcinogenesis. 2019;15:405–414. doi: 10.1038/nm.3845.

72. Dunn GP, Bruce AT, Sheehan KC, Shankaran V, Upaluri R, Bui JD, Diamond MS, Koebel CM, Arthur C, White JM, Schreiber RD. A critical function for type I interferons in cancer immunoeediting. Nat Immunol. 2005;6:722–729. doi: 10.1038/ni1213.

73. Leyk I, Idojaga J. The versatile plasmacytoid dendritic cell: function, heterogeneity, and plasticity. Int Rev Cell Mol Biol. 2019;349:177–211.

74. Liu J, Rozenman EA, O’Donnell JS, Allen S, Fanchi L, Smyth MJ, Blank CU, Teng MWL. Batf3(+): DCs and type I IFN are critical for the efficacy of neoadjuvant cancer immunotherapy. Oncoimmunology. 2018;7:e1546068. doi: 10.1080/2162402X.2018.1546068.

75. Ohskuri T, Ghosh A, Kosaka A, Zhu J, Ikeura M, David M, Watkins SC, Sarkar SN, Okada H. STING contributes to antiglioma immunity via triggering type I IFN signals in the tumor microenvironment. Cancer Immunol Res. 2014;2(12):1199–1208. doi: 10.1158/2326-6066.CIR-14-0099.

76. Sauer JD, Sotelo-Troha K, von Molltke J, Monroe RM, Rae CS, Brubaker SW, Hyodo M, Hayakawa Y, Woodward JJ, Portnoy DA, et al. The N-ethyl-N-nitrosourea-induced goldenticket mouse mutant reveals an essential function of sting in the in vivo interferon response to listeria monocytogenes and cyclic dinucleotides. Infect Immun. 2011;79:688–694. doi: 10.1128/IAI.00999-10.

77. Hansen K, Prabakaran T, Laustsen A, Jorgensen SE, Rahbaek SH, Jensen SB, Nielsen R, Leber HJ, Decker T, Horan KA, et al. Listeria monocytogenes induces IFNβ expression through an IFNβ1, cGAS- and STING-dependent pathway. Embryo J. 2014;33:1654–1666. doi: 10.15252/embj.201488029.

78. Deutsch E, Chargin C, Galluzzi L, Kroemer G. Optimising efficacy and reducing toxicity of antitumor cancer immunotherapy. Lancet Oncol. 2020;21:e652–e63. doi: 10.1016/S1470-4247(19)30171-8.

79. Ko EC, Benjamin KT, Formenti SC. Generating antitumor immunity by targeted radiation therapy: role of dose and fractionation. Adv Radiat Oncol. 2018;3:486–493. doi: 10.1158/2162-402X.2018.08.021.

80. Krombach J, Hennel R, Nix B, Orth M, Schroeder S, Ernert A, Schuster J, Zuchtriegel G, Reichel CA, Bierschenk S, et al. Priming anti-tumor immunity by radiotherapy: dying tumor cell-derived DAMPs trigger endothelial cell activation and recruitment of myeloid cells. Oncoimmunology. 2019;8:e1523097. doi: 10.1080/2162402X.2018.1523097.

81. Ngwa W, Irabor OC, Schoenfeld JD, Hesser J, Demaria S, Formenti SC. Using immunotherapy to boost the abscopal effect. Nat Rev Cancer. 2018;18:313–322. doi: 10.1038/nrc.2018.6.

82. Mohamad O, Diaz-Leon A, Schroder S, Leiker A, Christie A, Zhang-Velten E, et al. Safety and efficacy of concurrent immune checkpoint inhibitors and hypofractionated body radiotherapy. Oncoimmunology. 2018;7:e440168.

83. Fridman WH, Zitvogel L, Sautes-Fridman C, Kroemer G. The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol. 2017;14:717–734. doi: 10.1038/nrclinonc.2017.101.

84. Galluzzi L, Chan TA, Kroemer G, Wolchok JD, Lopez-Soto A. The hallmarks of successful anticancer immunotherapy. Sci Transl Med. 2018;10:doi: 10.1126/scitranslmed.aat7807.

85. Caulfiels A, Van Liit S, Garcia G, Buihnck J, Paul F, Gerlo S, Van der Heyden J, Bordat Y, Cattegou D, De Caucer L, et al. A safe and highly efficient tumor-targeted type I interferon immunotherapy depends on the tumor microenvironment. Oncoimmunology. 2018;7:e1398876. doi: 10.1080/2162402X.2017.1398876.

86. Su T, Zhang Y, Valerie K, Wang XY, Lin S, Zhu G. STING activation in cancer immunotherapy. Theraonistics. 2019;9:7759–7771. doi: 10.7150/thno.37574.

87. Wu JJ, Zhao L, Hu HG, Li WY. Agonists and inhibitors of the STING pathway: potential agents for immunotherapy. Med Res Rev. 2020;40:1117–1141. doi: 10.1002/med.21649.

88. Plowman J, Narayanan VL, Dykes D, Szarvasi E, Briet P, Bhardwaj N. Dendritic cell subsets and checkpoint inhibitors and hypofractionated body radiotherapy. Oncoimmunology. 2019;7:e440168.

89. Mario J, Le Naour ET AL.
110. Ching LM, Browne WL, Tchernegovski R, Gregory T, Baguley BC, Palmer BD. Interaction of thalidomide, phthalimide analogues of thalidomide and pentoxyfylline with the anti-tumour agent 5,6-dimethylxanthenone-4-acetic acid: concomitant reduction of serum tumour necrosis factor-alpha and enhancement of anti-tumour activity. Br J Cancer. 1998;78:336–343. doi: 10.1038/bjc.1998.455.

111. Cao Z, Joseph WR, Browne WL, Mountjoy KG, Palmer BD, Baguley BC, Ching LM. Thalidomide increases both intra-tumoural tumour necrosis factor-alpha production and anti-tumour activity in response to 5,6-dimethylxanthenone-4-acetic acid. Br J Cancer. 1999;79:716–723. doi: 10.1038/sj.bjc.6900415.

112. Kanwar JR, Kanwar RK, Pandey S, Ching LM, Krissansen GW. Vascular attack by 5,6-dimethylxanthenone-4-acetic acid combined with 571 (CD80)-mediated immunotherapy overcomes immune resistance and leads to the eradication of large tumors and multiple tumor foci. Cancer Res. 2001;61:1948–1956.

113. Demaria O, De Gassart A, Coso S, Gestermann N, Di Domizio J, Flatz L, Gaide O, Michelmin O, Hwu P, Petrova TV, et al. STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity. Proc Natl Acad Sci U S A. 2015;112:15408–15413. doi: 10.1073/pnas.152832112.

114. Chandra D, Quispe-Tintaya W, Jahangir A, Asafu-Adjei D, Ramos I, Sintim HO, Zhou J, Hayakawa Y, Karalis DKR, Greaveme C, et al. STING ligand c-di-GMP improves cancer vaccination against metastatic breast cancer. Cancer Immunol Res. 2014;2(9):901–910. doi: 10.1159/2326-6066.CIR-13-0123.

115. Cheng N, Watkins-Schultz R, Jenkins RD, David CN, Johnson BM, Montgomery SA, Peine KJ, Darr BB, Yuan H, McKinnon KP, et al. A nanoparticle-incorporated STING activator enhances antitumor immunity in PD-L1-insensitive models of triple-negative breast cancer. JCI Insight. 2018;3. doi: 10.1172/jci.insight.120638.

116. Yang H, Lee WS, Kong SJ, Kim CG, Kim JH, Chang SK, Kim S, Gion HJ, Kim C, et al. STING activation reprograms tumor vasculatures and synergizes with VEGFR2 blockade. J Clin Invest. 2019;130:4350–4364. doi: 10.1172/JCI125413.

117. Weiss JM, Guerin MV, Regnier F, Renault G, Calvy-Fauroux I, et al. The STING agonist DMXAA triggers a cooperation between T lymphocytes and myeloid cells that leads to tumor regression. Oncoimmunology. 2017;6(10).doi: 10.1080/2162402X.2017.1346765.

118. Zhu Q, Man SM, Gurung P, Liu Z, Vogel P, Lamkanfi M, Kanneganti TD. Cutting edge: STING mediates protection against colorectal tumorigenesis by governing the magnitude of intestinal inflammation. J Immunol. 2014;193(10):4779–4782. doi: 10.4049/jimmunol.1402051.

119. Agar CR, Reilly MJ, Nicholas C, Bartkowiak T, Jaiswal AR, Curran MA. Intratumoral STING activation with T-cell checkpoint modulation generates systemic antitumor immunity. Cancer Immunol Res. 2017;5:676–684. doi: 10.1158/2326-6066.CIR-17-0049.

120. Gravelkamp C, Chandra D. Targeting STING pathways for the treatment of cancer. Oncoimmunology. 2015;4(12). doi: 10.48863. doi: 10.4161/2162402X.2014.988463.

121. Kim SH, Castro F, Gonzalez D, Maciag PC, Paterson Y, Gravelkamp C. Mage-b vaccine delivered by recombinant Listeria monocytogenes is highly effective against breast cancer metastases. Br J Cancer. 2008;99(5):741–749. doi: 10.1038/sj.bjc.6604526.

122. Bauer JD, Perrye S, Archer KA, Burke TP, Hanson B, Lauer P, Portnoy DA. Listeria monocytogenes engineered to activate the STING receptor enhances antitumor immunity in PD-L1-insensitive models of triple-negative breast cancer. JCI Insight. 2018;3. doi: 10.1172/jci.insight.125413.

123. Smith M, Garcia-Martinez E, Pitter MR, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: toll-like receptor agonists in cancer immunotherapy. Oncoimmunology. 2018;7(12). doi: 10.1080/2162402X.2018.1526250.
125. Han X, Vesely MD. Stimulating T cells against cancer with agonist immunostimulatory monocolonal antibodies. Int Rev Cell Mol Biol. 2019;342:1–25.

126. Wang Z, Celis E. STING activator c-di-GMP enhances the anti-tumor effects of peptide vaccines in melanoma-bearing mice. Cancer Immunol Immunother. 2021;64(8):1057–1066. doi:10.1007/s00262-015-1713-5.

127. Koster BD, de Jong TD, van den Hout M, Sluijter BJR, Vuyksteke R, Molenkamp BG, Vosslamber S, van den Tol MP, van den Eertwegh AJM, de Gruijl TD, et al. In the mix: the potential benefits of adding GM-CSF to CpG-B in the local treatment of patients with early-stage melanoma. Oncoimmunology. 2020;9(1):1708066. doi:10.2147/OI2.2015.1708066.

128. Fu J, Kanne DB, Leong M, Glickman LH, McWhirter SM, Cheung FG, Lim W, Tan P, Ngeow J, et al. The DNA amidobenzimidazole STING receptor agonists with systemic antitumor activity. American Association for Cancer Research Annual Meeting 2017.

129. Borrie AE, Maleki Vareki S. T lymphocyte-based cancer immunotherapy. Trends Cell Biol. 2019;29:396–416. doi:10.1016/j.tcb.2019.01.003.

130. Kim YJ. STINGing the tumor’s immune evasion mechanism. Oncoimmunology. 2018;7:e1083673. doi:10.1080/2162402X.2015.1083673.

131. Li L, Yin Q, Kuss P, Maliga Z, Millan JL, Wu H, Mitchison TJ. Hydrolysis of 23’-cGAMP by ENPP1 and design of nonhydrolyzable analogs. Nat Chem. 2014;10:1043–1048. doi:10.1038/nchembio.1661.

132. Yang J, Adam M, Clemens J, Creech K, Schneck J, Pasikanti K, Li L, Yin Q, Kuss P, Maliga Z, Millan JL, Wu H, Mitchison TJ. Characterization of STING activator c-di-GMP enhances the induction of endothelial cell apoptosis by the antivascular agent 5,6-dimethylxanthene-4-acetic acid. Br J Cancer. 2002;86(12):1937–1942. doi:10.1038/sj.bjc.6600368.

133. Baguley BC. Antivascular therapy of cancer: DMXAA. Lancet Oncol. 2003;4:141–148. doi:10.1016/S1470-2045(03)01018-0.

134. Baguley BC, Siemann DW. Temporal aspects of the action of ASA404 (vadimezan; DMXAA). Expert Opin Investig Drugs. 2010;19:1413–1425. doi:10.1517/13543784.2010.529128.

135. Jameson MB, Thompson PI, Baguley BC, Evans BD, Harvey VJ, Porter DJ, McCrystal MR, Small M, Bellenger K, Gumbrell L, et al. Clinical aspects of a phase I trial of 5,6-dimethylxanthene-4-acetic acid (DMXAA), a novel antivascular agent. Br J Cancer. 2003;88(12):1844–1850. doi:10.1038/sj.bjc.6600992.

136. Rustin GJ, Bradley C, Galbraith S, Stratford M, Loadman P, Waller S, Bellenger K, Gumbrell L, Folkes L, Halbert G, et al. A phase I clinical trial of 5,6-dimethylxanthene-4-acetic acid (DMXAA), a novel antivascular agent. Br J Cancer. 2003;88(10):1160–1167. doi:10.1038/sj.bjc.6600885.

137. Jameson MB, Sharp DM, Sissingh JH, Grog CR, Thompson PI, McKeage MJ, Jeffery M, Waller S, Acton G, Green C, et al. Transient retinal effects of 5,6-dimethylxanthene-4-acetic acid (DMXAA, ASA404), an antitumor vascular-disrupting agent in phase I clinical trials. Invest Ophthalmol Vis Sci. 2009;50(6):2553–2559. doi:10.1167/iovs.08-2068.

138. Zhang SH, Zhang Y, Shen J, Zhang S, Chen L, Gu J, Mruk JS, Cheng G, Zhu L, Kunapuli SP, et al. Tumor vascular disrupting agent 5,6-dimethylxanthene-4-acetic acid inhibits platelet activation and thrombosis via inhibition of thromboxane A2 signaling and phosphodiesterase. J Thromb Haemost. 2013;11:1855–1866. doi:10.1111/jth.12362.

139. Vitale I, Galluzzi L, Senovilla L, Criollo A, Jemaa M, Castedo M, Kroemer G. Illicit survival of cancer cells during polyploidization and depolyploidization. Cell Death Differ. 2011;18:1403–1413. doi:10.1038/cdd.2010.145.

140. Perez EA. Microtubule inhibitors: differentiating tubulin-inhibiting agents based on mechanisms of action, clinical activity, and resistance. Mol Cancer Ther. 2009;8(8):2086–2095. doi:10.1158/1535-7186.MCT-09-0366.

141. Daga H, Hida T, Ishikawa S, Shimizu J, Tokunaga S, Horio Y, Kobayashi K, Takeda K. The safety and tolerability of intravenous 5,6-dimethylxanthenone-4-acetic acid (DMXAA) when administered in combination with docetaxel (60 or 75 mg/m2) in Japanese patients with advanced or recurrent solid tumors. Jpn J Clin Oncol. 2011;41(9):1067–1073. doi:10.1093/jjco/hyr110.

142. Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G. Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell. 2015;28:690–714. doi:10.1016/j.ccell.2015.10.012.

143. Aggarwal C, Somaiah N, Simon G. Antiangiogenic agents in the management of non-small cell lung cancer: where do we stand now and where are we headed? Cancer Biol Ther. 2012;13:247–263. doi:10.4161/cbt.19594.

144. Lara PN Jr., Douillard JY, Nakagawa K, von Pawel J, McKeage MJ, Albert I, Losonczy G, Reck M, Heo D-S, Fan X, et al. Randomized phase III placebo-controlled trial of carboplatin and paclitaxel with or without the vascular disrupting agent vadimezan (ASA404) in advanced non-small-cell lung cancer. J Clin Oncol. 2011;29:2965–2971. doi:10.1200/JCO.2011.35.0660.

145. McKeage MJ. The potential of DMXAA (ASA404) in combination with docetaxel in advanced prostate cancer. Expert Opin Investig Drugs. 2008;17:23–29. doi:10.1517/13543784.17.1.23.

146. McKeage MJ, Jameson MB, Investigators ASSG. Comparative outcomes of squamous and non-squamous non-small cell lung cancer (NSCLC) patients in phase II studies of ASA404 (DMXAA) - retrospective analysis of pooled data. J Thorac Dis. 2010;2:199–204. doi:10.3978/j.2072-1439.2010.02.04.1.

147. Qiu Z, Lin A, Li K, Lin W, Wang Q, Wei T, Zhu W, Luo P, Zhang J. A novel mutation panel for predicting etoposide resistance in small-cell lung cancer. Drug Des Devel Ther. 2019;13:2021–2041. doi:10.2147/DDDT.S205633.

148. Michels J, Vitale I, Galluzzi L, Adam J, Olausen KA, Kepp O, Senovilla L, Talhoui L, Guegan J, Enot DP, et al. Cisplatin resistance associated with PARP hyperactivation. Cancer Res. 2013;73(7):2271–2280. doi:10.1158/0008-5472.CAN-12-3000.
158./pyrri A, Burtness B. Targeted therapies: molecular selection for 'smart' study design in lung cancer. Nat Rev Clin Oncol. 2010;7:621–622. doi:10.1038/nrclinonc.2010.156.

159. de La Motte Rouge T, Galluzzi L, Olausen KA, Zermati Y, Tasdemir E, Robert T, Ripoche H, Lazar V, Dessen P, Harper F, et al. A novel epidermal growth factor receptor inhibitor promotes apoptosis in non-small cell lung cancer cells resistant to erlotinib. Cancer Res. 2007;67(13):6253–6262. doi:10.1158/0008-5472.CAN-07-0538.

160. Kansy BA, Shayan G, Jie H-B, Gibson SP, Lei YL, Brandau S, Lang S, Schmitt NC, Ding F, Lin Y, et al. T cell receptor richness in peripheral blood increases after cetuximab therapy and correlates with therapeutic response. Oncoimmunology. 2018;7(11):e1494112. doi:10.1080/2162402X.2018.1494112.

161. Conlon J, Burdette DL, Sharma S, Bhat N, Thompson M, Jiang Z, Psyrri A, Burtness B. Targeted therapies: molecular selection for T-cell repertoire in the tumor microenvironment and peripheral impact of CTLA-4 blockade and interferon-alpha on clonality of T-cell repertoire in the tumor microenvironment and peripheral blood of metastatic melanoma patients. Oncoimmunology. 2019;8:e1652538. doi:10.1080/2162402X.2019.1652538.

162. Kroemer G, Galluzzi L. Combinatorial immunotherapy with checkpoint blockers solves the problem of metastatic melanoma—an examination sign with a question mark. Oncoimmunology. 2015;4:e1058037. doi:10.1080/2162402X.2015.1058037.

163. Dupont R, Berard E, Puisset F, Comont T, Delord JP, Guimbaud R, Meyer N, Mazieres J, Alric L. The prognostic impact of immune-related adverse events during anti-PD1 treatment in melanoma and non-small cell lung cancer: a real-life retrospective study. Oncoimmunology. 2020;9:1682383. doi:10.1080/2162402X.2019.1682383.

164. Flood BA, Higgs EF, Li S, Luke JJ, Gajewski TF. STING pathway activity. American Association for Cancer Research Annual Meeting 2019.

165. Prantner D, Perkins DJ, Lai W, Williams MS, Sharma S, Fitzgerald KA, Vogel SN, 5,6-dimethyloxanthenone-4-acetic acid (DMXAA) activates stimulator of interferon gene (STING)-dependent innate immune pathways and is regulated by mitochondrial membrane potential. J Biol Chem. 2012;287(47):39776–39788. doi:10.1074/jbc.M112.382896.

166. Endo A, Kim D, Huang K, Hao M, Mathieu S, Choi H, Majumder U, Zhu X, Shen Y, Sanders K, et al. Discovery of E7766: A representative of a novel class of macrocycle-bridged STING agonists (MBSAs) with superior potency and pan-genotypic activity. American Association for Cancer Research Annual Meeting 2019.

167. Harrington KI, Brody J, Ingham M, Strauss J, Cemerski S, Wang M, Tse A, Khilnani A, Marabelle A, Golan T. Preliminary results of the first-in-human (FIH) study of MK-1454, an agonist of stimulator of interferon genes (STING), as monotherapy or in combination with pembrolizumab (pembro) in patients with advanced solid tumors or lymphomas. ESMO. 2018.

168. Pelster MS, Amaria RN. Combined targeted therapy and immunotherapy in melanoma: a review of the impact on the tumor microenvironment and outcomes of early clinical trials. Ther Adv Med Oncol. 2019;11:1758835919830826. doi:10.1177/1758835919830826.

169. Crosby EJ, Wei J, Yang XY, Lei G, Wang T, Liu C-X, Agarwal P, Korman AJ, Morse MA, Gouin K, et al. Complimentary mechanisms of dual checkpoint blockade expand unique T-cell repertoires and activate adaptive anti-tumor immunity in triple-negative breast tumors. Oncoimmunology. 2018;7(5):e1421891. doi:10.1080/2162402X.2017.1421891.

170. Meric-Bernstam F, Kaur Sandhu S, Hamid O, Spreamo A, Kasper S, Dummer R, Shimizu T, Steeghs N, Lewis N, Talluto CC, et al. Phase Ib study of MIW815 (ADU-S100) in combination with spartalizumab (PDR001) in patients (pts) with advanced/metastatic solid tumors or lymphomas. Journal of Clinical Oncology. 2020;38:5270.

171. Bommarmeddy PK, Zloza A, Rabkin SD, Kaufman HL. Oncolytic virus immunotherapy induces immunogenic cell death and overcomes STING deficiency in melanoma. Oncoimmunology. 2019;8:1591875. doi:10.1080/2162402X.2019.1591875.

172. Khunger A, Rytlewski JA, Fields P, Yusko EC, Tarhini AA. The impact of CTLA-4 blockade and interferon-alpha on clonality of T-cell repertoire in the tumor microenvironment and peripheral blood of metastatic melanoma patients. Oncoimmunology. 2019;8:e1652538. doi:10.1080/2162402X.2019.1652538.
186. Wang Z, Chen J, Hu J, Zhang H, Xu F, He W, Wang X, Li M, Lu W, Zeng G, et al. cGAS/STING axis mediates a topoisomerase II inhibitor-induced tumor immunogenicity. J Clin Invest. 2019;130:4850–4862. doi: 10.1172/JCI127471.

187. Chabanon RM, Muirhead G, Krastev DB, Adam J, Morel D, Garrido M, Lamb A, Hénon C, Dorvault N, Rouanne M, et al. PARP inhibition enhances tumor cell-intrinsic immunity in ERCC1-deficient non-small cell lung cancer. J Clin Invest. 2019;129:1211–1228. doi: 10.1172/JCI123319.

188. Ding L, Kim H-J, Wang Q, Kearns M, Jiang T, Ohlson CE, Li BB, Xie S, Liu JF, Stover EH, Ding L, Kim HJ, Wang Q, Kearns M, Jiang T, Ohlson CE, et al. PARP inhibition elicits STING-dependent antitumor immunity in brca1-deficient ovarian cancer. Cell Rep. 2018;25(11):2972–80 e5. doi: 10.1016/j.celrep.2018.11.054.

189. Reislander T, Lombardi EP, Groelly FJ, Miar A, Porru M, Di Vito S, Wright B, Lockstone H, Biroccio A, Harris A, et al. BRCA2 abrogation triggers innate immune responses potentiated by treatment with PARP inhibitors. Nat Commun. 2019;10(1):3143. doi:10.1038/s41467-019-11048-5.

190. Shen J, Zhao W, Ju Z, Wang L, Peng Y, Labrie M, Yap TA, Mills GB, Peng G. PARPi triggers the STING-dependent immune response and enhances the therapeutic efficacy of immune checkpoint blockade independent of BRCA1. Cancer Res. 2019;79(2):311–319. doi:10.1158/0008-5472.CAN-18-1003.

191. Dillon MT, Bergerhoff KF, Pedersen M, Whittock H, Crespo-Rodriguez E, Patern EC, Pearson A, Smith HG, Paget JTE, Patel RR, et al. ATR inhibition potentiates the radiation-induced inflammatory tumor microenvironment. Clin Cancer Res. 2019;25(11):3392–3403. doi: 10.1158/1078-0432.CCR-18-1821.

192. Lohard S, Bourgeois N, Maillet L, Gautier F, Fetiouve A, Lasla H, Nguyen F, Vuillier C, Dumont A, Moreau-Aubry A, et al. STING-dependent paracrine shapes apoptotic priming of breast tumors in response to anti-mitotic treatment. Nat Commun. 2020;11(1):259. doi:10.1038/s41467-019-13689-y.