On generalized cyclotomic derivations

SAKSHI GUPTA and SURJEET KOUR

Department of Mathematics, Indian Institute of Technology Delhi, Hauz Khas, Delhi 110 016, India
*Corresponding Author.
E-mail: sakshi.gupta2693@gmail.com; koursurjeet@gmail.com

MS received 26 August 2022; revised 24 November 2022; accepted 9 December 2022

Abstract. In this article, we study the field of rational constants and Darboux polynomials of a generalized cyclotomic K-derivation d of $K[X]$. It is shown that d is without Darboux polynomials if and only if $K(X)^d = K$. The result is also studied in the tensor product of polynomial algebras.

Keywords. Darboux polynomial; Jouanolou derivation; cyclotomic derivation.

2010 Mathematics Subject Classification. 12H05, 13N15.

1. Introduction

Throughout this article, K denotes a field of characteristic zero, $K[X] = K[x_1, x_2, \ldots, x_n]$ is the polynomial algebra in n variables over K and $K(X)$ denotes the field of fractions of $K[X]$. Let d be a K-derivation of $K[X]$ and $K[X]^d$ denote the algebra of constants of d. The K-derivation d of $K[X]$ uniquely extends to a K-derivation of $K(X)$ and we continue to denote it by d. $K(X)^d$ represents the field of rational constants of d, that is, $K(X)^d = \{f \in K(X); d(f) = 0\}$ and $K[X]^d \subseteq K(X)^d$.

A non-constant polynomial $f \in K[X]$ is said to be a Darboux polynomial of d if $d(f) = \lambda f$, for some $\lambda \in K[X]$ and in this case λ is called the co-factor of f. We say d is without Darboux polynomials if d has no Darboux polynomials. It is easy to observe that if d is without Darboux polynomials, then $K(X)^d = K$ but the converse of the above statement is not true, in general. One can refer to [1,2] for counter examples. In this paper, we study a class of monomial derivations for which $K(X)^d = K$ if and only if d is without Darboux polynomials. Note that a derivation d of $K[X]$ is said to be a monomial derivation if $d(x_i)$ is a monomial for every $1 \leq i \leq n$.

In [4], Nowicki and Ollagnier studied the Darboux polynomials and field of rational constants of a monomial derivation over the polynomial algebra $K[X]$. For $1 \leq i \leq n$, let $\alpha_i = (\alpha_{i1}, \ldots, \alpha_{in}) \in \mathbb{N}^n$. Consider the monomial derivation d given by $d(x_i) = X^{\alpha_i}$, where X^{α_i} denotes the monomial $x_1^{\alpha_{i1}} \cdots x_n^{\alpha_{in}}$. Then one can associate a matrix A given by $A = [\alpha_{ij}] - I$ with the monomial derivation d. Let w_d denote the determinant of the matrix A. A monomial derivation d is said to be normal if $w_d \neq 0$ and $\alpha_{ii} = 0 \forall 1 \leq i \leq n$. In [4], Nowicki and Ollagnier proved that for a normal derivation d, $K(X)^d = K$ if and only
if \(d \) is without Darboux polynomials. In this article, they also raised a similar question in the case of \(w_d = 0 \). For \(n = 3 \), an independent proof was given to show that the result is true even if \(w_d = 0 \). It was also observed that the idea used to prove the result for \(n = 3 \) case could not be extended further. At the end of the article, they mentioned the following example of monomial derivation \(d \) on \(K[x, y, z, w] \):

\[
d(x) = w^2, \quad d(y) = zw, \quad d(z) = y^2, \quad d(w) = xy,
\]

and raised the same question about the field of constants and Darboux polynomials. Note that for this derivation, \(w_d = 0 \). Our study of the field of constants of monomial derivations is motivated by the aforesaid example.

In this article, we study a large class of monomial derivations for which \(K(X)^d = K \) if and only if \(d \) is without Darboux polynomial. The example mentioned above is a very particular case of our result. Further, our result is independent of the condition \(w_d \neq 0 \).

2. The main result

Let \(s \) be a non-negative integer. A derivation \(d \) on \(K[X] \) is said to be homogeneous of degree \(s \), if

\[
d(A^m) \subseteq d(A^{m+s}) \quad \forall \ m \geq 1,
\]

where \(A^m \) is the \(K \)-subspace of all the homogeneous polynomials of degree \(m \). In particular, a monomial derivation \(d \) on \(K[X] \) is homogeneous of degree \(s \) if for each \(1 \leq i \leq n \), \(d(x_i) \)'s are monomials of total degree \(s + 1 \).

For a homogeneous \(K \)-derivation \(d \) of \(K[X] \), the following is a well known result ([5] Lemma 2.1).

Lemma 2.1. Let \(d \) be a homogeneous \(K \)-derivation of \(K[X] \) of degree \(s \). If \(f \in K[X] \) is a Darboux polynomial of \(d \) with the co-factor \(\lambda \), then \(\lambda \) is a homogeneous polynomial of degree \(s \) and all the homogeneous components of \(f \) are also Darboux polynomials with the same co-factor \(\lambda \).

Before proceeding further, we fix some notations and give some more definitions. Let \(n \geq 2 \) be a positive integer. A derivation \(d \) of \(K[X] \) is called cyclotomic if, for \(1 \leq i \leq n-1 \), \(d(x_i) = x_{i+1} \) and \(d(x_n) = x_1 \). In the same line we have defined the generalized cyclotomic derivation. Let \(S = \{x_1, \ldots, x_n\} \) denote the set of \(n \)-variables, \(K[S] \) be the \(K \)-algebra generated by \(S \) and \(k > 1 \) be a positive integer. A monomial derivation \(d \) of \(K[S] \) is said to be a generalized cyclotomic derivation if we can split \(S \) into mutually disjoint \(k \) parts (say \(S_i, \ 1 \leq i \leq k \), \(k \in \mathbb{N} \) and \(2 \leq k \leq n \)) such that \(d(S_i) \subseteq K[S_{i+1}] \) for \(1 \leq i \leq k-1 \) and \(d(S_k) \subseteq K[S_1] \), where \(K[S_i] \) denotes the \(K \)-algebra generated by \(S_i \).

Let us redefine the variables as \(S_i = \{x_{i,1}, \ldots, x_{i,t_i}\} \) for \(1 \leq i \leq k \) and take \(S = \cup S_i \). Then we have the following.

DEFINITION 2.2

A derivation \(d \) of \(K[S] \) is said to be generalized cyclotomic derivation if

\[
d(x_{i,j}) = \alpha_{i,j,1} x_{i+1,1}^{r_{i+1,1}} \cdots x_{i+1,t_i+1}^{r_{i+1,t_i+1}} \quad \forall \ 1 \leq j \leq t_i, \ 1 \leq i \leq k-1
\]
and
\[d(x_{k,j}) = x_{1,1}^{\alpha_{k,j,1}} x_{1,2}^{\alpha_{k,j,2}} \cdots x_{1,t_i}^{\alpha_{k,j,t_i}} \quad \forall \ 1 \leq j \leq t_k, \]
where \(\alpha_{k,j,l} \) for every \(1 \leq j \leq t_i, 1 \leq l \leq t_{i+1}, 1 \leq i \leq k - 1 \) and \(\alpha_{k,j,l} \) for every \(1 \leq j \leq t_k, 1 \leq l \leq t_1 \) are non negative integers.

Let \(s \) be a positive integer. We say \(d \) is homogeneous generalized cyclotomic derivation of degree \(s - 1 \) if \(d(x_{ij}) \) are monomials of total degree \(s \). Now we state our main result.

Theorem 2.3. Let \(d \) be a homogeneous generalized cyclotomic derivation of \(K[S] \) of degree \(s - 1 \) as defined above. Then \(d \) is without Darboux polynomials if and only if \(K[S]^d = K \).

Proof.

\((\Rightarrow)\) Easy to prove.

\((\Leftarrow)\) Assume that \(K[S]^d = K \). Suppose \(d \) has a Darboux polynomial \(f \) such that \(d(f) = \lambda f \). Then by Lemma 2.1, we may assume that \(f \) is homogeneous of degree \(s - 1 \). Write \(\lambda \) as
\[
\lambda = \sum_{1 \leq i \leq k} a_\beta X_1^{\beta_1} X_2^{\beta_2} \cdots X_k^{\beta_k},
\]
where \(X_i^{\beta_i} \) denotes the monomial \(x_{i,1}^{\beta_{i,1}} \cdots x_{i,t_i}^{\beta_{i,t_i}} \) and \(|\beta_i| = \sum_{j=1}^{t_i} \beta_{i,j} \) for \(1 \leq i \leq k \).

Let \(N = (1 + s + s^2 + \cdots + s^{k-1}) \) and let \(\xi \) be the primitive \(N \)-th root of unity. For \(0 \leq i \leq k - 1 \), define \(q_i = \sum_{j=0}^{i} s^j \). Observe that \(q_{k-1} = N \). Consider a \(K \)-automorphism \(\sigma \) of \(K[S] \) given by
\[
\sigma(x_{k-i,j}) = \xi^{q_i} x_{k-i,j} \quad \forall \ 1 \leq j \leq t_{k-i}.
\]
Moreover,
\[
\sigma^{-1} d \sigma(x_{k-i,j}) = \sigma^{-1} d(\xi^{q_i} x_{k-i,j})
\]
\[
= \xi^{q_i} \sigma^{-1} d(x_{k-i,j})
\]
\[
= \xi^{q_i} \sigma^{-1} \left(x_{k-i+1,1}^{\alpha_{k-i+1,1}} x_{k-i+1,2}^{\alpha_{k-i+1,2}} \cdots x_{k-i+1,t_{k-i+1}}^{\alpha_{k-i+1,t_{k-i+1}}} \right)
\]
\[
= \xi^{q_i} e^{-q_i-1} \left(\alpha_{k-i+1,1}^{\alpha_{k-i+1,1}} + \cdots + \alpha_{k-i+1,t_{k-i+1}}^{\alpha_{k-i+1,t_{k-i+1}}} \right) d(x_{k-i,j})
\]
\[
= \xi^{q_i} e^{-s(q_i-1)} d(x_{k-i,j})
\]
\[
= \xi d(x_{k-i,j}).
\]

Therefore, we have \(\sigma^{-1} d \sigma = \xi d \). Let \(F = \prod_{i=0}^{N-1} \sigma^i(f) \). Clearly, \(F \) is not a constant polynomial. Furthermore,
\[
d(F) = d \left(\prod_{i=0}^{N-1} \sigma^i(f) \right)
\]
\[
\begin{align*}
&= \sum_{i=0}^{N-1} \sigma^0(f) \cdots d(\sigma^i(f)) \cdots \sigma^{N-1}(f) \\
&= \sum_{i=0}^{N-1} \sigma^0(f) \cdots \xi^i \sigma^i d(f) \cdots \sigma^{N-1}(f) \\
&= \sum_{i=0}^{N-1} \sigma^0(f) \cdots \xi^i \sigma^i(\lambda f) \cdots \sigma^{N-1}(f) \\
&= \left(\sum_{i=0}^{N-1} \xi^i \sigma^i(\lambda) \right) \sigma^0(f) \cdots \sigma^{N-1}(f), \\
&= \Lambda F,
\end{align*}
\]

where \(\Lambda = \sum_{i=0}^{N-1} \xi^i \sigma^i(\lambda). \)

Now, let us do the precise calculation for \(\Lambda. \) If we look at the \(m \)-th term in the sum, we have

\[
\begin{align*}
\xi^m \sigma^m(\lambda) &= \xi^m \sigma^m \left[\sum_{1 \leq l \leq k} \sum_{|\beta_l| = s-1} a_\beta \sigma^m(X_{\beta_1}^{l_1} \cdots X_{\beta_k}^{l_k}) \right] \\
&= \xi^m \left[\sum_{1 \leq l \leq k} \sum_{|\beta_l| = s-1} a_\beta \sigma^m(X_{\beta_1}^{l_1} \cdots X_{\beta_k}^{l_k}) \right] \\
&= \xi^m \left[\sum_{1 \leq l \leq k} \sum_{|\beta_l| = s-1} a_\beta \left(\prod_{l=1}^{k} \sigma^m(X_{l_{11}}^{\beta_{l1}}) \cdots \sigma^m(X_{l_{1l}}^{\beta_{ll}}) \right) X_{1}^{p_{l1}} X_{2}^{p_{l2}} \cdots X_{k}^{p_{lk}} \right],
\end{align*}
\]

where \(p_l = \beta_{l1} + \cdots + \beta_{ll} \) for all \(1 \leq l \leq k. \) Therefore,

\[
\begin{align*}
\xi^m \sigma^m(\lambda) &= \xi^m \left[\sum_{1 \leq l \leq k} \sum_{|\beta_l| = s-1} a_\beta \xi^{m \left(\sum_{i=1}^{l} \frac{1}{q_i} - 1 \right)} X_{1}^{\beta_{l1}} X_{2}^{\beta_{l2}} \cdots X_{k}^{\beta_{lk}} \right].
\end{align*}
\]
Observe that \(q_{k-1} = N \) and \(\xi^N = 1 \), therefore the above equation reduces to

\[
\xi^m \sigma^m(\lambda) = \xi^m \sum_{1 \leq i \leq k} a_{\beta} \xi^{m\left(\sum_{l=2}^{i} p_l q_{l-1}\right)} X_{1}^{\beta_{1}} X_{2}^{\beta_{2}} \cdots X_{k}^{\beta_{k}}
\]

where \(\delta = \sum_{l=2}^{k} p_l q_{l-1} \). More precisely,

\[
\delta = \sum_{l=2}^{k} q_{k-l} p_l
\]

\[
= \sum_{l=2}^{k} \left(\sum_{j=0}^{k-l} s^j \right) (\beta_{l,1} + \cdots + \beta_{l,t_l})
\]

\[
= \sum_{l=0}^{k-2} s^l (\beta_{2,1} + \cdots + \beta_{2,t_2} + \cdots + \beta_{k,1} + \cdots + \beta_{k-l,t_{k-l}})
\]

\[
\leq \sum_{l=0}^{k-2} s^l (s - 1) = s^{k-1} - 1.
\]

This implies that \(0 < 1 + \delta \leq s^{k-1} < N \). Therefore, \(\xi^{1+\delta} \neq 1 \). Hence

\[
\Lambda = \sum_{m=0}^{N-1} \left[\sum_{1 \leq i \leq k} \xi^{m(\delta+1)} a_{\beta} X_{1}^{\beta_{1}} X_{2}^{\beta_{2}} \cdots X_{k}^{\beta_{k}} \right]
\]

\[
= \sum_{1 \leq i \leq k} \left(\sum_{m=0}^{N-1} \xi^{m(\delta+1)} \right) a_{\beta} X_{1}^{\beta_{1}} X_{2}^{\beta_{2}} \cdots X_{k}^{\beta_{k}}
\]

\[
= \sum_{1 \leq i \leq k} \left(\frac{1 - \xi^{N(\delta+1)}}{1 - \xi^{\delta+1}} \right) a_{\beta} X_{1}^{\beta_{1}} X_{2}^{\beta_{2}} \cdots X_{k}^{\beta_{k}}
\]

\[
= 0.
\]

Therefore, \(d(F) = \Lambda F = 0 \). In other words, \(F \in K(S)^d \), a contradiction. \(\square \)

Remark 2.4. From Theorem 2.3, we can prove that the monomial derivation \(d \) of \(K[x, y, z, w] \) defined by

\[
d(x) = w^2, \ d(y) = zw, \ d(z) = y^2, \ d(w) = xy
\]
in [4] has no Darboux polynomials if and only if $K(x, y, z, w)^d = K$.

COROLLARY 2.5

The Jouanolou derivation d of $K[x_1, x_2, \ldots, x_n]$ defined by

$$d(x_1) = x_2^3, d(x_2) = x_3^5, \ldots, d(x_{n-1}) = x_n^s, d(x_n) = x_1^s,$$

for $s \geq 1$ and $n \geq 2$ has no Darboux polynomials if and only if $K(x_1, x_2, \ldots, x_n)^d = K$.

3. Generalized cyclotomic derivation in tensor product

Let m and n be positive integers. Assume that $K[X] = K[x_1, \ldots, x_n]$ and $K[Y] = K[y_1, \ldots, y_m]$ are polynomial algebras. Then $K[X] \otimes_K K[Y] \cong K[X, Y] = K[x_1, \ldots, x_n, y_1, \ldots, y_m]$ is a polynomial algebra. If d_1 and d_2 are K-derivations of $K[X]$ and $K[Y]$ respectively, then $d = d_1 \otimes 1 + 1 \otimes d_2$, denoted by $d_1 \oplus d_2$ is the K-derivation of $K[X, Y]$ such that $d|K[X] = d_1$ and $d|K[Y] = d_2$.

In [3], Nowicki and Ollagnier studied the Darboux polynomial of the tensor product of polynomial algebras and have proved the following result.

Lemma 3.1 ([3], Corollary 3.2). Let d_1 and d_2 be homogeneous K-derivations of $K[X]$ and $K[Y]$ of degree $s \geq 1$. If d_1 and d_2 are without Darboux polynomials, then $d_1 \oplus d_2$ is also without Darboux polynomials.

Using Lemma 3.1 and our result on generalized cyclotomic derivations, we have the following result.

Theorem 3.2. Let d_1 and d_2 be homogeneous generalized cyclotomic derivations of $K[X]$ and $K[Y]$ of degree $s \geq 1$. Then, $d_1 \oplus d_2$ is without Darboux polynomial if and only if $K(X, Y)^{d_1 \oplus d_2} = K$.

Proof.

(\Rightarrow) Trivial to prove.

(\Leftarrow) Let $K(X, Y)^{d_1 \oplus d_2} = K$. As $K(X)^{d_1} \subseteq K(X, Y)^{d_1 \oplus d_2} = K$, we have $K(X)^{d_1} = K$. Similarly, $K(Y)^{d_2} = K$. Therefore, from Theorem 2.3, d_1 and d_2 are without Darboux polynomials. Then by Lemma 3.1, $d_1 \oplus d_2$ is also without Darboux polynomials.

Acknowledgements

This research is partially supported by DST-INSPIRE Grant IFA-13/MA-30. The first author is financially supported by CSIR, India.

References

[1] Nowicki A, Polynomial derivations and their rings of constants (1994) (Toruń: Uniwersytet Mikolaja Kopernika)
[2] Nowicki A, On the nonexistence of rational first integrals for systems of linear differential equations, *Linear Algebra Appl.* 235 (1996) 107–120

[3] Ollagnier J M and Nowicki A, Constants and Darboux polynomials for tensor products of polynomial algebras with derivations, *Comm. Algebra* 32(1) (2004) 379–389

[4] Ollagnier J M and Nowicki A, Monomial derivations, *Comm. Algebra* 39(9) (2011) 3138–3150

[5] Ollagnier J M, Nowicki A and Strelcyn J-M, On the non-existence of constants of derivations: The proof of a theorem of Jouanolou and its development, *Bull. Sci. Math.* 119 (1995) 195–233

COMMUNICATING EDITOR: Manoj Kumar Keshari