Anisotropic magnetic and superconducting properties of aligned weak-ferromagnetic superconductor RuSr$_2$GdCu$_2$O$_8$

H. C. Ku, B. C. Chang, C. H. Hsu, Y. F. Chen, M. F. Tai
Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China
E-mail: hcku@phys.nthu.edu.tw

Abstract. The RuSr$_2$GdCu$_2$O$_8$ Ru-1212 cuprate is a weak-ferromagnetic superconductor with a magnetic ordering of Ru moments at T_N(Ru) = 131 K, a superconducting transition in the CuO$_2$ layers at T_c = 56 K, and a low temperature Gd antiferromagnetic ordering at T_N(Gd) = 2.5 K. The c-axis aligned powder can be achieved at room temperature using the field-rotation method where the tetragonal c-axis is perpendicular to the aligned magnetic field B_a and along the rotation axis. The anisotropic temperature dependence of magnetic susceptibility for the aligned powder down to 2 K indicates weak anisotropy with $\chi_c > \chi_{ab}$ at room temperature due to strong anisotropic Gd contribution and $\chi_c < \chi_{ab}$ below 185 K where strong Ru anisotropic short-range exchange interaction overtakes the Gd contribution. Anisotropic diamagnetic superconducting intragrain shielding signal of aligned microcrystalline powder-in-epoxy below vortex lattice melting temperature at 39 K in 1-G field is much weaker than the intergrain polycrystalline bulk sample signal due to the small grain size ($d \sim 1$-10 μm), long penetration depth ($\lambda_{ab} \sim 0.6$ μm, $\lambda_c \sim 2$ μm) and the two-dimensional (2D) character of CuO$_2$ layers.

1. Introduction
Magnetic superconductivity was reported in the strongly-correlated RuSr$_2$RCu$_2$O$_8$ Ru-1212 cuprate system ($R = \text{Sm, Eu, Gd, Y}$) with the tetragonal space group P4/mmbm [1-5]. The Ru magnetic moments order weak-ferromagnetically (WFM) with ordering temperature T_N(Ru) \sim 130 K. High-T_c superconductivity occurs in the quasi-2D CuO$_2$ bi-layers from doped holes with maximum superconducting transition onset $T_c \sim$ 60 K for $R = \text{Gd}$ and coexists with the WFM order. A structural transition from 2D-like P4/mmbm to 3D-like P4/mmm was observed near $R = \text{Sm}$, along with a metal-insulator transition. No superconductivity can be detected for the Mott insulators $R = \text{Pr and Nd}$.

Since oxygen content is close to eight for the oxygen annealed samples, the variation of T_c indicates a self-doping of electrons from CuO$_2$ layers to RuO$_6$ layers, creating holes in CuO$_2$ layers and conduction electrons in RuO$_6$ layers. The Ru L$_3$-edge X-ray absorption near-edge spectrum (XANES) of RuSr$_2$GdCu$_2$O$_8$ indicates that Ru valence is close to Ru$^{5+}$ ($4d$-t^3_{2g}, $S = 3/2$) but with a small amount (~ 20 %) of Ru$^{4+}$ ($4d$-t^4_{2g}, $S = 1$ in low spin state) or doped electrons [6]. The strong antiferromagnetic superexchange interaction between Ru$^{5+}$ moments is responsible for the basic G-type antiferromagnetic order observed in the neutron diffraction...
study [7]. The weak ferromagnetic component observed from magnetic susceptibility and NMR is probably due to weak-ferromagnetic double-exchange interaction through doped conduction electrons in the metallic RuO$_6$ layers.

![Figure 1](image1.png) **Figure 1.** Powder X-ray diffraction patterns for RuSr$_2$GdCu$_2$O$_8$. (a) random powder, (b) ab-plane aligned along B_a, and (c) c-axis aligned along the rotation axis.

![Figure 2](image2.png) **Figure 2.** The field dependence of paramagnetic moment of RuSr$_2$GdCu$_2$O$_8$ aligned powder up to 7 T at 300 K. Linear paramagnetic magnetic moment.

Since the magnetic and superconducting properties are anisotropic in general, the study of anisotropic physical properties is crucial for this quasi-2D system. In this report, we align the microcrystalline RuSr$_2$GdCu$_2$O$_8$ powder (\sim1-10 μm) in magnetic field to investigate the anisotropic properties.

2. Results and Discussion

The stoichiometric RuSr$_2$GdCu$_2$O$_8$ bulk sample was synthesized by the standard solid-state reactions. High-purity RuO$_2$ (99.99 %), SrCO$_3$ (99.9 %), Gd$_2$O$_3$ (99.99 %) and CuO (99.99 %) preheated powders with the nominal composition ratio of Ru: Sr: Gd: Cu = 1:2:1:2 were well mixed and calcined at 960°C in air for 16 hours. The calcined powders were then pressed into pellets and sintered in flowing O$_2$ gas at 1015°C for 10 hours to form Sr$_2$GdRuO$_6$ and Cu$_2$O precursors. The sintered pellets were then heated at 1060-1065°C in flowing O$_2$ gas for 7 days to form the Ru-1212 phase and slowly furnace cooled to room temperature with a rate of 15°C per hour.

For field alignment at room temperature, RuSr$_2$GdCu$_2$O$_8$ powders with an average microcrystalline grain size of 1-10 μm were mixed with epoxy (4-hour curing time) in a quartz tube ($\phi = 8$ mm) with the powder:epoxy ratio of 1:5. The quartz tube was placed in a 0.9 T electromagnet and rotated at the speed of 10 rpm with the rotation axis perpendicular to the aligned magnetic field B_a. The tetragonal ab-plane of the aligned powder is aligned along B_a. Since c-axis can be in any direction within the plane perpendicular to B_a, the rotation perpendicular to B_a forces the microcrystalline c-axis to have no choice but to be aligned along the rotation axis.

The powder X-ray diffraction patterns for RuSr$_2$GdCu$_2$O$_8$ random powder, partially ab-plane aligned along B_a, and partially c-axis aligned along the rotation axis are shown collectively in figure 1. For ab-plane aligned along B_a, enhanced ($hk0$) diffraction lines are observed. For c-axis aligned along the rotation axis, enhanced (00l) diffraction lines are observed.

Magnetic moment and susceptibility data were collected with a Quantum Design 1-T μ-metal shielded MPMS2 or a 7-T MPMS superconducting quantum interference device (SQUID)
magnetometer from 2 K to room temperature. Figure 2 shows the field dependence of paramagnetic moment of RuSr$_2$GdCu$_2$O$_8$ aligned powder up to 7 T at 300 K. Since ab-plane is aligned along the aligned field at room temperature, magnetic anisotropy of $\chi_{ab} > \chi_{c}$ at 300 K is expected. However, 300 K data show weak magnetic anisotropy with linear paramagnetic magnetic moment $m_{ab} \sim 0.95 m_c$ or susceptibility $\chi = m / B_a$ with $\chi_{ab} < \chi_{c}$.

The temperature dependence of logarithmic molar magnetic susceptibility of RuSr$_2$GdCu$_2$O$_8$ aligned powder in 1-T applied magnetic field is shown in figure 3. A crossover of $\chi_{ab} < \chi_{c}$ at 300 K and $\chi_{ab} > \chi_{c}$ at lower temperature was observed around 185 K, with a weak-ferromagnetic ordering temperature $T_N (\text{Ru}) = 131$ K.

The magnetic anisotropy of $\chi_{ab} < \chi_{c}$ observed at 300 K is mainly due to the contribution of magnetic Gd$^{3+}$ ions ($J = 7/2$). The anisotropy of $\chi_{ab}(\text{Gd}) < \chi_{c}(\text{Gd})$ is from the tetragonal GdO$_8$ cage with anisotropic g-factor $g_{ab} < g_c$, but with little $4f$ wavefunction overlap with the neighbor oxygen 2p orbital.

Although there are three types of magnetic moments in this magnetic superconductor: Ru$^{5+}$ ($S = 3/2$) with doped electrons or Ru$^{4+}$ ($S = 1$), Cu$^{2+}$ ($S = 1/2$) with doped holes, and Gd$^{3+}$ moment ($J = 7/2$), not all moments have the same contribution in powder alignment. In the aligned magnetic field, anisotropic orbital wavefunction is tied to the spin direction, and a strong spin-orbital related short-range anisotropic exchange interaction at 300 K should dominate the magnetic alignment. In the present case, it is believed that Ru moment with the strong short-range anisotropic double-exchange/superexchange interaction along the ab-plane due to the Jahn-Teller distortion of RuO$_6$ octahedron with $\chi_{ab}(\text{Ru}) > \chi_{c}(\text{Ru})$ is the dominant factor for ab-plane alignment along B$_a$ at 300 K. The shorter Ru-O(1) bond length in the tetragonal ab-basal plane provides strong $4d_{xy}(\text{Ru})$-$2p_{yz/yz}(\text{O}(1))$-$4d_{xy}(\text{Ru})$ wavefunction overlap. This exchange interaction increases with decreasing temperature, and eventually total $\chi_{ab} > \chi_{c}$ was observed below 185 K as expected. The weak-ferromagnetic state below 131 K is due to the long range order of this anisotropic double-exchange/superexchange interaction.

The reciprocal molar magnetic susceptibility $1/\chi_{ab}$ and $1/\chi_{c}$ of RuSr$_2$GdCu$_2$O$_8$ aligned powder are shown in figure 4. A Curie-Weiss behavior $\chi = C/(T - \theta_p)$ was observed in the high temperature paramagnetic region above 200 K with a Curie-Weiss intercept $\theta_p = 60$ K and the effective magnetic moment $\mu^c_{eff} = 7.44 \mu_B$ per formula unit along the c-axis, and $\mu^ab_{eff} = 7.26 \mu_B$ per formula unit along the ab-plane. Diamagnetic superconducting transition $T_c(\text{dia})$ at 39 K and Gd ordering temperature $T_N(\text{Gd}) = 2.5$ K are not clearly shown in this plot.
Low temperature, low field (1-G field-cooled (FC) and zero-field-cooled (ZFC)) anisotropic magnetic and superconducting properties of RuSr$_2$GdCu$_2$O$_8$ aligned powder are shown in figure 5. All data show a clear T_N(Ru) at 131 K with χ_{ab} > χ_c in the weak-ferromagnetic state. In the superconducting state, diamagnetic vortex melting temperature T_c(dia) = 39 K and spontaneous vortex state temperature T_{SVS} = 30 K are clearly observed. The antiferromagnetic T_N(Gd) order is observed at 2.5 K.

The electrical resistivity data in figure 6 indicates a high superconducting onset temperature of 56 K, with a much lower T_c(zero) = T_c(dia) at the vortex melting temperature of 39 K. Anisotropic diamagnetic superconducting intragrain shielding signal of aligned powder in epoxy is much weaker than the intergrain bulk sample signal due to the small powder size (d ~ 1-10 μm), long penetration depth (λ_{ab} ~ 0.6 μm, λ_c ~ 2 μm) and the two-dimensional (2D) character of CuO$_2$ layers. Slightly larger diamagnetic signal for random powder is probably due to partially intergrain shielding through partial grain contact.

Acknowledgments

This work was supported by the National Science Council of R.O.C. under contract Nos. NSC95-2112-M-007-056-MY3 and NSC95-2112-M-032-002.

3. References

[1] Bauernfeind L, Widder W and Braun H F, 1995 *Physica C* 254, 151
[2] Bernhard C, Tallon J L, Niedermayer C, Blasius T, Golnik A, Briecher E, Kremer R K, Noakes D R, Stronach C E and Ansaldo E J, 1999 *Phys. Rev. B* 59, 14099
[3] Chu C W, Xue Y Y, Tsui S, Cmaidalka J, Heilman A K, Lorenz B and Meng R L, 2000 *Physica C* 335, 231
[4] Tokunaga Y, Kotegawa H, Ishida K, Kitaoka Y, Takagiwa H and Akimitsu J, 2001 *Phys. Rev. Lett.* 86, 5767
[5] Yang C Y, Chang B C, Ku H C and Hsu Y Y, 2005 *Phys. Rev. B* 72, 174508, and references cited therein.
[6] Chang B C, Yang C Y, Hsu Y Y, Lin B N and Ku H C, 2006 *AIP Proceedings of LT24*, 850, 677
[7] Jorgensen J D, Chmaissem O, Shaked H, Short S, Klamut P W, Dabrowski B and Tallon J L, 2001 *Phys. Rev. B* 63, 054440