CKIP-1 Is an Intrinsic Negative Regulator of T-cell Activation through an Interaction with CARMA1

AUTHOR(S):
Sakamoto, Takashi

CITATION:
Sakamoto, Takashi. CKIP-1 Is an Intrinsic Negative Regulator of T-cell Activation through an Interaction with CARMA1. 京都大学, 2014, 博士(医学)

ISSUE DATE:
2014-05-23

URL:
https://doi.org/10.14989/doctor.k18463

RIGHT:
Sakamoto T, Kobayashi M, Tada K, Shinohara M, Io K, et al. (2014) CKIP-1 Is an Intrinsic Negative Regulator of T-Cell Activation through an Interaction with CARMA1. PLoS ONE 9(1): e85762. doi:10.1371/journal.pone.0085762; c 2014 Sakamoto et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
CKIP-1 Is an Intrinsically Negative Regulator of T Cell Activation through an Interaction with CARMA1（CKIP-1は、CARMA1との相互作用を介して、T細胞活性化を抑制的に制御する）

（論文内容の要旨）

転写因子NF-κBは、リンパ球の活性化や免疫応答において重要性を果たしている。T細胞活性化に関与し、CARMA1-Bcl10-MALT1(CBMI)複体を構成し、その結果NF-κBの活性化を誘導する。NF-κBの活性化に関与する多くの報告がなされているが、その活性化の抑制機序は十分に解明されていない。そこで、遺伝子変異体とそれを相補する遺伝子をクローニングする戦略を用いて、T細胞受容体を介したNF-κB活性化の抑制的制御因子のスクリーニングを行い、casein kinase-2 interacting protein-1（CKIP-1）が、PMA-CD28-NF-κB signalingを抑制することを見出した。

CKIP-1は、NF-κB活性化の抑制的制御因子である。JakStatシグナル伝達のためのCARMA1-Bcl10-MALT1(CBMI)複体を構成し、その結果NF-κB活性化を誘導する。NF-κBの活性化に関心の深い報告がなされているが、その活性化の抑制機序は十分に解明されている。そこで、遺伝子変異体とそれを相補する遺伝子をクローニングする戦略を用いて、T細胞受容体を介したNF-κB活性化の抑制的制御因子のスクリーニングを行い、casein kinase-2 interacting protein-1（CKIP-1）を同定した。CKIP-1はCARMA1と結合し、PKCオシロフとCARMA1との相互作用を阻害することでPKCのCBMI-NF-κB signalingを抑制する効果が示された。

CKIP-1のPleckstrin homology (PH)ドメインが、CARMA1との結合においても、またNF-κB抑制効果においても必要であった。CKIP-1は、TNFαにより誘導されるNF-κB活性は抑制せず、CD3単独やPMA、CD3/CD28により誘導されるNF-κB活性を抑制する一方、CD3/CD28共刺激により誘導されるNF-κB活性を抑制しなかった。JAK1定義において、CD3/CD28共刺激により誘導されるNF-κB活性を抑制した結果、CARMA1-βの一部がlipid raftに局在していたことから、CKIP-1がlipid raftに存在しないことが示され、CD3/CD28共刺激の際にCKIP-1が抑制効果を示す理由と考えられた。

JAK1を用いたLuciferase assayにおいて、CKIP-1は、PMAの核活性型変異体の発現により誘導されるNF-κB活性を抑制したが、より下流のsignaling componentであるCARMA1、Bcl10、IkBα、NF-κBの核発現により誘導されるNF-κB活性を抑制しなかった。次に、CKIP-1をノックダウンすると、PMAの核活性型変異体やCARMA1の発現により誘導されるNF-κB活性を増強した。これらの結果から、CKIP-1はPMA核発現の増幅伝達系路に関与している可能性と考えられた。

以上の研究は、細胞受到体を介したNF-κB活性化の制御機序の解明に貢献し、免疫応答における重要な役割を果たしていると考えることができる。