Expression of ROS-responsive genes and transcription factors after metabolic formation of H$_2$O$_2$ in chloroplasts

Salma Balazadeh1†, Nils Jaspert2†, Muhammad Arif1, Bemd Mueller-Roeber1 and Veronica G. Maurino2*

1 Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
2 Plant Molecular Physiology and Biotechnology, Center of Excellence on Plant Sciences, Heinrich-Heine-University, Düsseldorf, Germany

*Correspondence: Veronica G. Maurino, Entwicklungs- und Molekularbiologie der Pflanzen, Heinrich-Heine-Universität, Universitätsstraße 1, 40225 Düsseldorf, Germany. e-mail: veronica.maurino@uni-duesseldorf.de
†These authors equally contributed to this work.

INTRODUCTION
Photosynthetic organisms are confronted with reactive oxygen species (ROS), such as singlet oxygen (1O$_2$), the superoxide anion radical (O$_2^{-}$), the hydroxyl radical (OH·), and hydrogen peroxide (H$_2$O$_2$), which may cause oxidative stress and damage to important biological molecules (Apel and Hirt, 2004; Møller et al., 2007). Plants in their natural environments are often exposed to sudden increases in light intensity, which results in the absorption of excitation energy in excess of that required for metabolism. In chloroplasts, when absorbed energy is in excess at photosystem II (PSII), O$_2$ is produced during the Mehler reaction by Fd-NADPH oxidase at PSI and is dismutated by superoxide dismutase (SOD) to H$_2$O$_2$ (Ort and Baker, 2002; Asada, 2006). The photorespiratory pathway consumes photosynthetic reducing energy and produces H$_2$O$_2$ in the peroxisomes through the action of glycolate oxidase (GO) (Maurino and Peterhansel, 2010). H$_2$O$_2$ is also produced during a variety of different reactions under stress conditions, often through the detoxification of 1O$_2$ and O$_2^{-}$. The generated H$_2$O$_2$ is scavenged by different antioxidant/enzyme reactions: the ascorbate and glutathione cycles, ascorbate peroxidase (APX), catalase, and peroxiredoxin (PRX) (Tripathi et al., 2009).

ROS generated in the chloroplast have been implicated as triggers of signaling pathways that influence expression of nuclear-encoded genes, which may initiate responses such as cell death or acclimation depending on the degree of the stress (Karpinski et al., 1999; Fryer et al., 2003; Op den Camp et al., 2003; Danon et al., 2005). H$_2$O$_2$ can take part in signaling acting as messenger either directly (e.g., by reversibly modifying critical thiol groups in target proteins; Neill et al., 2002) or by using an oxidized product as a secondary messenger (Møller et al., 2007). The H$_2$O$_2$-scavenging enzymes APX and dehydroascorbate reductase (DHAR) may act as highly efficient initiators of oxidative signaling by generating transient bursts of reduced glutathione. This in consequence triggers glutaredoxin-mediated protein oxidation (Neill et al., 2002). Crosstalk between redox pools of different cellular compartments, possibly transmitted by a redox shift in cellular components, has also been suggested to be important for control of the expression of nuclear genes (Baier and Dietz, 2005; Leister, 2005). A generalized model of H$_2$O$_2$ signal transduction pathways suggests that H$_2$O$_2$ may also directly oxidize transcription factors (TFs) in either the cytosol or the nucleus. Alternatively, H$_2$O$_2$-mediated activation of a signaling protein such as a protein kinase may activate TFs (Mittler...
et al., 2004; Miao et al., 2007). TFs would interact with cognate H$_2$O$_2$-response elements in target gene promoters thereby modulating gene expression (Foyer and Noctor, 2005). Recently, Moller and Sweetlove (2010) put forward the hypothesis that H$_2$O$_2$ itself is unlikely to be the signaling molecule that selectively regulates nuclear-encoded chloroplastic genes but rather that oxidized peptides deriving from proteolysis of oxidized proteins would act as second messengers during retrograde ROS signaling. On the other hand, using spin trapping EPR spectroscopy in addition to chemical assays (employing Amplex Red reagent), Mubarakshina et al. (2010) showed that 5% of the H$_2$O$_2$ produced inside chloroplasts at high light intensities can actually be detected outside the organelles. This process may involve the pass of H$_2$O$_2$ through aquaporins (Bienert et al., 2007) and might be sufficient to trigger signaling processes outside the chloroplasts.

Desikan et al. (2001) showed that approximately 1% of the transcriptome was altered in H$_2$O$_2$-treated Arabidopsis thaliana (A. thaliana) cell cultures. Although H$_2$O$_2$-responsive promoters have been identified (Desikan et al., 2001), specific H$_2$O$_2$-regulatory DNA sequences and their cognate TFs have not been isolated and characterized. In more recent studies genes involved in H$_2$O$_2$ signal transduction have been identified or proposed, including mitogen-activated protein kinases (MAPKs), various TFs of e.g., the NAC, ZAT, and WRKY families, miRNAs and others (Van Breusegem et al., 2008; Li et al., 2011; Petrov and Van Breusegem, 2012). Moreover, using genome-wide analysis of catalase deficient A. thaliana, H$_2$O$_2$ was inferred to regulate the expression of genes encoding specific small heat shock proteins, several TFs and candidate regulatory proteins (Vandenabeele et al., 2004; Vanderauwera et al., 2005).

To date, it is not known to which extent the chemical specificity of the ROS and the cellular compartment of their release may contribute to the multiplicity of responses that occur in plants. A major challenge is to dissect the genetic networks that control ROS signaling and to assess specific and common responses toward different types of ROS signals. To this end, the molecular, biochemical and physiological responses of A. thaliana to elevated in planta levels of H$_2$O$_2$ were and are being investigated in various types of model systems including mutants altered in the ROS scavenging machinery (Maurino and Flügge, 2008). However, the analysis of dynamic physiological processes using (knock-out) mutants may not always be straightforward, especially when compensatory cellular mechanisms are induced. With respect to ROS-related mutants, changing the balance of scavenging enzymes may induce compensatory mechanisms such that signaling and oxidative damage effects may not be easily separated. Moreover, invasive experimental setups like the application of oxidative stress-causing agents may induce a non-specific oxidative stress that acts throughout the cell and triggers additional responses that may complicate the analysis of ROS signal transduction pathways (Maurino and Flügge, 2008). We have recently developed a tool to functionally dissect the action of plastid-generated H$_2$O$_2$, using plants overexpressing GO in plastids (GO plants; Fahrenstich et al., 2008). During photosynthesis, the oxygenase activity of ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) produces glycolate 2-phosphate within the chloroplasts, which is then dephosphorylated to glycolate by phosphoglycolate phosphatase (Maurino and Peterhansel, 2010). In GO plants, glycolate is oxidized to glyoxylate by the plastidic GO, with the parallel production of H$_2$O$_2$. When growing under moderate photon fluxes and ambient CO$_2$ concentration (photosynthetic conditions) the GO plants remain smaller than the wild type, presenting a reduced rosette diameter and yellowish leaves due to H$_2$O$_2$ accumulation (Fahrenstich et al., 2008). In contrast, in non-photosynthetic conditions (e.g., at high CO$_2$ concentration) the oxygenase activity of RubisCO is abolished and thus, the metabolic flux through GO is suppressed, allowing GO plants to grow like wild type (Fahrenstich et al., 2008). Transferring GO plants from high to ambient CO$_2$ concentration specifically induces H$_2$O$_2$ formation in the chloroplasts (Fahrenstich et al., 2008). These properties permit the modulation of plastidic produced H$_2$O$_2$ levels by changing light intensity and/or CO$_2$ levels (Maurino and Flügge, 2008). Moreover, H$_2$O$_2$ is specifically generated without a concomitant accumulation of superoxide or singlet oxygen, which are common precursors of H$_2$O$_2$ during ROS generation in chloroplasts. A similar experimental set-up was employed in previous studies using catalase null mutants in which the production of peroxisomal H$_2$O$_2$ is induced by changing the conditions of plant growth from non-photosynthetic to photosynthetic conditions (e.g., high light intensity) (Dat et al., 2000; Vandenabeele et al., 2004; Vanderauwera et al., 2005). The metabolic production of H$_2$O$_2$ may avoid the pleiotropic effects discussed above but it cannot be ruled out that ROS-unrelated pleiotropic reactions may occur in both approaches due to abrupt changes in CO$_2$ level or light intensity.

In this work we attempted to identify genes strongly responding to an abrupt production of H$_2$O$_2$ in chloroplasts of A. thaliana. To this end we tested the expression changes of 187 nuclear-encoded ROS-responsive genes and 1880 TFs, using quantitative real-time (qRT)-PCR (Czechowski et al., 2004; Balazadeh et al., 2008; Wu et al., 2012) upon transfer of high CO$_2$-grown GO and wild-type (WT) plants to ambient CO$_2$ concentration. Our data revealed a rapid and coordinated expression response of ROS-affected genes of specific functional networks in GO including an early induction of indole glucosinolate and camalexin biosynthesis genes and an up-regulation of a group of genes involved in the regulation of proanthocyanidin and anthocyanin biosynthesis. Moreover, the upregulation of expression of TF and TF-interacting proteins affecting development (e.g., cell division, stem branching, flowering time, flower development) would impact growth and reproductive capacity, resulting in altered development under conditions that promote the formation of H$_2$O$_2$.

MATERIALS AND METHODS

PLANT MATERIAL

Arabidopsis thaliana (L.) Heynh. ecotype Columbia-0 (Col-0, wild-type) constitutively expressing glycolate oxidase (GO, At3g14420) in the plastids (GO plants) under the cauliflower mosaic virus 35S promoter were generated in our previous work (Fahrenstich et al., 2008). In these plants to direct the expression of GO to the chloroplasts the stromal targeting presequence from
Arabidopsis thaliana phosphoglucomutase (At5g51820) was used (Fahnenstich et al., 2008). WT and GO transgenic plants were grown in pots containing 3 parts of soil (Gebr. Patzer KG, Sinntal-Jossa, Germany) and one part of vermiculite (Basalt Feuerfest, Linz, Austria) under a 16 h-light/8 h-dark regime at photosynthetically active photon flux densities (PPFD) of 75 µmol quanta m−2 s−1 at 22°C day/18°C night temperatures and a CO2 concentration of 3000 ppm. After 3 weeks of growth plants were transferred to ambient CO2 concentration (380 ppm) and the same PPFD. Whole rosettes were harvested at different time points after transfer, immediately frozen in liquid nitrogen and stored at −80°C until use for RNA isolation and H2O2 measurements.

ISOLATION OF RNA AND REAL-TIME PCR ANALYSIS

For the large-scale qRT-PCR analysis, total RNA was extracted from 100 mg leaves (fresh weight) using RNasy Plant Mini kit (Qiagen, Valencia, USA) according to the manufacturer’s protocol. DNase I digestion was performed on 20–30 µg of total RNA using TURBO DNase Kit (Ambion, Cambridgeshire, UK) according to manufacturer’s instructions. RNA integrity was checked on 1% (w/v) agarose gels and concentration measured with a Nanodrop ND-1000 spectrophotometer before and after DNase treatment. Absence of genomic DNA was confirmed subsequently by quantitative PCR using primers that amplify an intron sequence of the gene At5g65080 (forward 5′-TTTTTTGCCCCCTTCCAATC-3′ and reverse 5′-ATCTTCCGCCAACACATGTC-3′). First-strand cDNA was synthesized from 8 µg to 10 µg of total RNA using RevertAid™ First Strand cDNA Synthesis Kit (Fermentas, St. Leon-Rot, Germany) following the manufacturer’s protocol. The efficiency of cDNA synthesis was estimated by qRT-PCR using two different primer sets annealing to the 5′ and 3′ ends, respectively, of a control gene (At3g26650, GAPDH, glyceraldehyde-3-phosphate dehydrogenase). Primer sequences were as follows: for GAPDH3′, forward 5′-TTGTTGACACAGGTCACCGG-3′ and reverse 5′-AACCTGCTGTCATGGAA-3′; for GAPDH5′, forward 5′-TCTCGATCTCAATTTGCCAAA-3′ and reverse 5′-CGAAAACTGTGATTCGCCATC-3′. Transcript levels of each gene were normalized to ACTIN2 (At3g18780) transcript abundance (forward 5′-TCCCTCAGCAGCATTCCAGACG-3′ and reverse 5′-AAGGATTCCTGTGACCCTGCTAC-3′). A total of 187 ROS-responsive genes (Wu et al., 2012) and 1880 TFs (Czechowski et al., 2004; Balazadeh et al., 2008) were processed in parallel. PCR reactions were run on an ABI PRISM 7900HT sequence detection system (Applied Biosystems, Darmstadt, Germany), and amplification products were visualized using SYBR Green (Applied Biosystems).

H2O2 MEASUREMENTS

Levels of H2O2 were determined using the Amplex® Red Technology (Life Technologies, Darmstadt, Germany) following the manufacturer’s instructions. Amplex Red (N-acetyl-3,7-dihydroxyphenoxazine) reacts with H2O2 in the presence of horseradish peroxidase and forms the fluorescent product resorufin. For the determinations, 100 mg leaves (fresh weight) were ground in liquid nitrogen into a fine powder and resuspended with 0.15 mL extraction buffer prepared as indicated by the manufacturer. This suspension was centrifuged at 4°C at 13,000 rpm for 15 min. Five µL of the supernatant, 45 µL distilled water and 50 µL of Amplex® Red solution were added to a microtitre plate. After 30 min incubation in the dark fluorescence was measured by excitation at 560 nm and emission reads at 590 nm. A calibration curve was established with known H2O2 concentrations.

GENE EXPRESSION NETWORK ANALYSIS

The two genes that were most strongly induced under photorespiratory conditions in GO plants at the 0.5 and 6 h time points (At3g02840 and At1g17180, respectively) were used as baits to identify globally coexpressed genes using the ATTED-II database (http://atted.jp), which allows evaluating genes that are coexpressed under five experimental conditions (tissue, abiostress, biotic stress, hormones, and light conditions) (Obayashi et al., 2009).

RESULTS AND DISCUSSION

INDUCTION OF H2O2 FORMATION IN GO PLANTS

The production of H2O2 in leaves of plants overexpressing GO in the plastids (Fahnenstich et al., 2008) was analyzed after activation of photorespiration by transferring high CO2-grown plants to ambient-CO2 conditions. As shown in Table 1, higher levels of H2O2 were determined in GO than in WT plants at 0.5 and 4 h after transfer while GO and WT plants maintained under non-photorespiratory conditions (3000 ppm CO2) showed similar H2O2 levels at both time points (Table 1). Note, that as the measurements were performed using whole-leaf extracts the expected differences in chloroplastic H2O2 levels between GO and WT plants under photorespiratory condition may be higher than determined here.

EXPRESSION PROFILING OF ROS MARKER GENES IN GO AND WILD-TYPE PLANTS AFTER THE INDUCTION OF H2O2 FORMATION IN CHLOROPLASTS

To study the impact of an abrupt production of H2O2 in chloroplasts on nuclear gene expression, we analyzed transcript level changes of 187 ROS-responsive genes using a previously established qRT-PCR platform (detailed in Wu et al., 2012). The genes

Table 1	Levels of H2O2 measured in whole rosettes (µmol/g FW) after shifting high CO2-grown wild-type and GO plants to ambient CO2 concentration for 0.5 and 4 h.			
Time	High CO2	Ambient CO2	High CO2	Ambient CO2
----------	----------	-------------	----------	-------------
0.5 h	2.4 ± 0.2	2.3 ± 0.2	2.5 ± 0.4	2.7 ± 0.1
4 h	2.5 ± 0.3	3.0 ± 0.3	2.6 ± 0.2	3.4 ± 0.0

Samples from control plants maintained in high CO2 were processed in parallel. Values indicate the mean ± SE of three independent samples and those set in bold face indicate significant differences to the corresponding wild-type value calculated by Student's t-test (P < 0.05). WT, wild type.
included in the platform were chosen from published reports and our own experiments and represent four different groups that were already shown to be rapidly induced by (1) superoxide radical (O$_2^-$; 18 genes), (2) singlet oxygen (11O$_2$; 22 genes), (3) H$_2$O$_2$ (53 genes), or (4) different types of ROS (general ROS-responsive genes; 94 in total).

Gene expression was analyzed in whole rosettes of 3-week-old WT and GO plants at 0.5, 4, 6, and 12 h after shifting high-CO$_2$-grown plants (non-photorespiratory condition) to ambient CO$_2$ concentration (photorespiratory condition). Expression profiling was performed in two biological replicates and log-fold change (log2 FC) ratios of expression changes were calculated for GO and WT plants by comparing gene expression levels before and after the CO$_2$ concentration shift. A total of 131 genes were expressed in all examined samples (Table A1 in Appendix). The remaining 56 genes did not yield detectable PCR amplicons, indicating no or marginal expression under our experimental conditions.

Considering a 3-fold expression difference cut-off, 120 genes displayed differential expression in GO and/or WT plants upon transfer from high to ambient CO$_2$ concentration; the vast majority of the affected genes (116 in total) were up-regulated, and only four genes were down-regulated (Figure 1, Table A1 in Appendix). Most noticeably, expression of 58 genes was induced in GO plants already within 0.5 h after the transfer to ambient CO$_2$ condition, whilst only a single gene was induced in the wild type at the same time point (Figure 1). Importantly, however, many genes showed also high expression in the wild type at later time points after the CO$_2$ concentration shift, but the expressional changes were in most cases more pronounced in GO than WT plants (Figure 1, and section “Early Induction of Indole Glucosinolate and Camalexin Biosynthesis Genes in GO Plants”). Thus, our data indicate that similar sets of ROS-responsive genes responded to the CO$_2$ shift in GO and WT plants; however, the dynamics of the transcriptional responses were clearly different in the two types of plants, being faster and more prominent in the GO plants.

EARLY INDUCTION OF INDOLE GLUCOSINOLATE AND CAMALEXIN BIOSYNTHESIS GENES IN GO PLANTS

To identify transcripts responsive to metabolically produced H$_2$O$_2$ we focused our analysis on the 0.5- and 6-h time points. Genes were considered differentially expressed when the fold change was more than 3-fold (log$_2$ \geq 1.56).

At 0.5 h after shifting plants to ambient CO$_2$ concentration, 58 of the 131 expressed genes were induced in GO plants by more than 3-fold, whilst in the wild type the expression change was less than 3-fold, suggesting that these genes participate in early signaling steps triggered by the production of H$_2$O$_2$ under photorespiratory conditions (Table 2). After 6 h, seven of these genes showed WT levels of expression (below 3-fold), while 29 were further overexpressed only in GO (Table 2). Although at 6 h after transfer to ambient CO$_2$ the expression fold-change (FC) of the remaining 22 genes was higher than 3 in both, GO and WT plants, the expression change between GO and WT (FC$_{GO}$/FC$_{WT}$) was higher than 2 for 16 of these genes (Table 2), indicating that their higher expression in GO plants was triggered by the elevated levels of H$_2$O$_2$.

Later responding genes, which were affected only after 6 h under photorespiratory conditions, were also identified. From the 23 genes that showed an expression change of above 3-fold in GO, 13 were only induced in GO, while 10 genes were induced in both, GO and WT. The FC ratio in GO and WT (FC$_{GO}$/FC$_{WT}$) was above 2 for the 10 genes (Table 3), indicating that their expression in GO plants is controlled by the higher levels of H$_2$O$_2$, similar to the early-responsive genes.

0.5 h (ambient CO$_2$/high CO$_2$)	4 h (ambient CO$_2$/high CO$_2$)
WT 1 up GO 58 up WT 0 down GO 0 down	WT 50 up GO 62 up WT 4 down GO 0 down
6 h (ambient CO$_2$/high CO$_2$)	12 h (ambient CO$_2$/high CO$_2$)
WT 47 up GO 91 up WT 2 down GO 0 down	WT 104 up GO 100 up WT 0 down GO 0 down

FIGURE 1 | Venn diagram of the number of ROS-responsive genes differentially expressed in wild-type and GO plants at different time points (0.5, 4, 6, and 12 h) after the transfer of plants grown at high CO$_2$ concentration (3000 ppm) to ambient CO$_2$ concentration (380 ppm).
Table 2 | ROS-responsive genes (58 in total) the expression of which was enhanced by more than 3-fold in GO plants 0.5 h after shifting plants grown at high CO₂ concentration (3000 ppm) to ambient CO₂ concentration (380 ppm).

AGI	0.5 h	6 h	Annotation
	FC₀₅	FC₀₆	FC₀₆/FC₀₅
UP-REGULATED IN GO AT 0.5 H			
At1g69890	1.3	15.9	12.0
At2g40000*	0.9	10.2	11.2
At2g18210	1.0	8.4	8.2
At1g18570	1.2	6.8	5.7
At1g21100	1.6	6.9	4.2
At5g64310	1.2	3.8	3.1
At5g28630	1.4	4.0	2.9
UP-REGULATED IN GO AT 0.5 H AND 6 H CHANGE IN GENE EXPRESSION IN WT AT 6 H < 3			
At3g02840*	1.1	79.3	71.2
At2g37430*	0.9	53.3	62.7
At1g05575*	1.5	45.6	29.9
At2g38470	1.4	31.5	22.3
At4g17490	1.5	21.5	14.7
At5g47230	1.3	17.4	13.8
At1g66060	1.3	17.5	13.2
At2g32030	1.3	16.4	12.2
At2g26530*	1.2	13.3	10.7
At1g21120	1.0	9.9	10.3
At1g35210	1.1	11.2	10.2
At3g55980*	1.4	14.3	10.1
At2g33710	1.0	7.5	7.7
At2g25735*	1.8	10.8	5.9
At5g54490	1.5	7.8	5.3
At1g19020*	1.8	9.3	5.1
At5g51190	1.4	6.8	4.9
At3g02800*	1.1	5.0	4.5
At5g64905	1.4	6.0	4.4
At1g76600*	1.4	5.8	4.3
At3g23230	2.2	9.4	4.2
At1g59950	1.3	5.2	4.1
At4g18880*	1.6	6.5	4.0
At2g41640	1.1	4.0	3.7
At1g28190*	1.1	3.9	3.5
At5g57220	2.8	9.1	3.3
At1g26380*	1.2	3.4	3.0
At2g31945	1.3	3.5	2.7
At4g11280	1.5	3.0	2.0
CHANGE IN GENE EXPRESSION IN WT AT 6 H > 3			
At1g80840	1.1	38.0	35.4
At5g04340*	0.8	27.5	32.6
At2g22880	1.7	50.8	29.4
At1g27730	1.1	30.1	26.8
At5g27420	1.2	32.7	26.3
At1g61340	1.5	24.3	16.3
At5g59820	1.0	14.3	14.1
At5g24110*	1.0	13.3	13.8
At4g24570	1.4	18.8	13.6

(Continued)
Table 2 | Continued

AGI	0.5 h	6 h	Annotation				
	FCWT	FCGO/FCWT	FCWT	FCGO/FCWT			
At3g10930	1.7	19.0	11.5	8.5	38.8	4.6	Protein of unknown function
At3g25250	1.5	17.3	11.4	11.1	153.6	13.8	Putative protein kinase (AGC2/OXI1)
At4g39670	1.3	14.3	10.7	31.7	184.9	5.8	Sphingosine transfer protein; accelerated death 11 (ACD11)
At1g77450	0.8	7.3	9.5	5.6	6.9	1.2	NAC-type transcription factor (ANAC032)
At1g72520	1.7	15.7	9.3	4.8	9.7	2.0	Lipoygenase (LOX4)
At3g486850	1.9	14.8	7.6	6.2	7.4	1.2	14a-related protein of unknown function
At4g21390	1.8	13.0	7.0	6.5	28.9	4.4	Putative S-domain-type receptor protein kinase
At5g63790*	0.8	5.4	7.0	3.1	11.1	3.6	NAC-type transcription factor (ANAC102)
At4g37370	1.4	7.0	5.0	2.8	67.5	24.1	Cytochrome P450 monooxygenase (CYP81D8)
At1g63720	1.5	5.0	3.2	3.1	6.1	1.9	Hydroxyproline-rich glycoprotein family protein
At2g18690	1.4	4.4	3.0	6.6	24.7	3.7	Protein of unknown function
At1g5340*	1.2	3.4	2.7	4.3	7.9	2.0	Protein of unknown function
At1g57630	1.4	3.4	2.4	20.2	36.0	1.8	Protein of unknown function

Genes are listed according to the difference of the expression change between GO and wild-type (WT) plants (FCGO/FCWT) at 0.5 h. FCGO/FCWT values higher than 2 are shown in bold face. AGI: gene identification number given by the Arabidopsis Genome Initiative. Genes also induced in catalase loss-of-function mutants are highlighted with an asterisk (*) (Inzé et al., 2012). Genes included in the same gene coexpression network of At3g02840 (putative U-box-type E3 ubiquitin ligase) are highlighted in bold face (http://atted.jp; Obayashi et al., 2009). The gene annotation was retrieved from TAIR (http://arabidopsis.org/index.jsp).

The most highly up-regulated gene in GO plants at 0.5 h after induction of H$_2$O$_2$ production was At3g02840 (encoding a putative U-box-type E3 ubiquitin ligase, known to respond immediately-early to fungal elicitation) (Table 2). We used the ATTED-II database (http://atted.jp; Obayashi et al., 2009) to discover genes coexpressed with At3g02840 and observed that 45 of the 58 genes induced at 0.5 h after induction of H$_2$O$_2$ production cluster together (Table 2), indicating that metabolically produced H$_2$O$_2$ in GO plants induces the coordinate expression of functionally related genes. A similar analysis using the most highly expressed gene at 6 h after induction of H$_2$O$_2$ production (At1g17180, encoding glutathione S-transferase Tau 25) indicated that another group of eight genes are coordinately expressed in GO plants at this later time point (Table 3).

Recently, Inzé et al. (2012) listed the 85 most strongly H$_2$O$_2$-responsive genes in catalase loss-of-function mutants shifted from low- to high-light conditions, where H$_2$O$_2$ is produced in peroxisomes by the action of photosynthetic GOs. Interestingly, 23 of the 81 genes, which changed their expression in the GO plants were also differentially expressed in catalase loss-of-function mutants (Tables 2 and 3), indicating that they respond to enhanced levels of H$_2$O$_2$ independent of the site of its generation; the remaining genes may then represent candidates preferentially responsive to H$_2$O$_2$ produced in chloroplasts. Many of the genes up-regulated in GO plants encode proteins or TFs of currently unknown specific functions. Interestingly, however, several of the early-responsive genes are involved in tryptophan-derived biosynthesis of the phytoanticipins camalexin and indole glucosinolates, i.e., secondary metabolites that have antifungal and insect-deterring functions (Kliebenstein et al., 2001; Bednarek et al., 2009). These genes encode (1) the transcription factor WRKY33 (At2g38470), which is involved in controlling camalexin biosynthesis (Birkenbihl et al., 2012); (2) the Myb-type transcription factor HIG1/MYB51 (At1g18570) involved in the positive regulation of indole glucosinolate biosynthesis by activating several target genes (Gigolashvili et al., 2007); (3) the O-methyltransferases IGMT1 (At1g21100) and IGMT2 (At1g21120), which catalyze the transfer of a methyl group to the hydroxy indole glucosinolate hydroxyindol-3-ylmethylglucosinolate (4 and 1OH-13M, respectively) to form methoxyindol-3-ylmethylglucosinolate (4 and 1MO-13M, respectively) (Pfalz et al., 2011); and (4) cytochrome P450 monooxygenase CYP81F2 (At5g57220), that is essential for the pathogen-induced accumulation of 4-methoxyindol-3-ylmethylglucosinolate (4MI3G) (Bednarek et al., 2009). Our data thus show the early induction of indole glucosinolate and camalexin biosynthesis genes in GO plants after metabolic formation of H$_2$O$_2$ through the activation of genes encoding enzymes involved in intermediate metabolite conversions and of TFs that act on several target genes of these biosynthetic pathways.

TRANSCRIPTION FACTOR PROFILING

To understand the potential effects of overexpression of GO in chloroplasts on the nuclear transcriptional program, we next broadened our analysis by testing the expression of 1880 TFs using a highly sensitive quantitative real-time PCR (qRT-PCR) platform (Czechowski et al., 2004; Balazadeh et al., 2008). Considering the data obtained from the profiling of the ROS-responsive genes, we analyzed the expression at 0.5 h after induction of H$_2$O$_2$ production to capture the early-responsive TFs. Expression profiling was performed in two biological replicates and log-fold change (log2 FC) ratios of expression changes were calculated for GO and WT plants by comparing gene expression levels before and after the transfer of plants grown at high CO$_2$ to ambient CO$_2$.

Balazadeh et al (2012) *Transcriptional modulation by chloroplastically produced H$_2$O$_2*"
Table 3 | ROS-responsive genes (23 in total) the expression of which was enhanced more than 3-fold in GO plants 6 h after shifting plants grown at high CO2 concentration to ambient CO2 concentration.

AGI	0.5 h	6 h	Annotation	
	FCWT	FCGO	FCGO/FCWT	Annotation
At1g26420	1.5	1.6	1.1	2.4 17.6 7.3 Putative reticuline dehydrogenase
At2g15480	1.0	2.8	2.8	1.2 7.2 6.0 UDP-dependent glycosyl transferase (UGT73B5)
At1g10040	1.2	1.8	1.5	2.1 10.4 5.0 Putative hydrolyase
At2g29490	0.7	1.9	2.8	2.3 10.4 4.5 Tau glutathione S-transferase (GSTU1)
At5g46080	1.1	1.9	1.8	1.2 3.7 3.1 Putative protein kinase
At1g08020	1.2	1.5	1.3	2.5 7.8 3.1 Cinnamyl CoA reductase, involved in lignin biosynthesis
At3g09140	1.2	0.8	0.7	1.2 3.2 2.7 Putative pectin acetylenesterase
At2g29600*	1.1	1.1	1.2	1.5 3.8 2.5 HSP20-type protein (HSP17B-CI); unknown function
At4g22530*	1.3	0.8	0.7	2.4 5.9 2.4 Putative methyltransferase
At4g15975	1.7	1.3	0.7	1.6 3.7 2.4 Putative ubiquitin ligase (RRE4/ATL17)
At2g38340	1.0	0.7	0.7	2.7 6.1 2.2 Putative AP2-type transcription factor (DREB2E)
At3g13790	1.3	1.3	1.1	2.5 5.0 2.0 Putative cell wall invertase (CwlINV1)
At1g76070	1.2	2.6	2.2	1.6 3.3 2.0 Protein of unknown function
At1g17180	0.6	0.9	1.4	7.5 104.0 13.8 Tau glutathione S-transferase (GSTU28)
At1g15520	1.2	0.8	0.7	12.4 111.9 9.0 ABC transporter (ABCG40/PDR12)
At1g17170	1.0	1.3	1.4	5.7 40.4 7.0 Tau glutathione S-transferase (GSTU24)
At1g74360	1.0	2.2	2.2	4.2 14.2 3.4 Putative LRR-type receptor protein kinase
At2g38250*	1.2	1.7	1.4	4.4 13.7 3.1 Putative thiexil-type transcription factor
At5g51060	1.3	1.0	0.7	14.4 40.0 3.1 Respiratory burst oxidase homolog (AtRBOHC/RHD2)
At5g20230	1.5	2.8	1.8	9.9 28.3 2.9 Senescence associated gene (BCB/SAG14)
At2g41380	1.1	1.2	1.1	9.6 21.2 2.2 Putative S-adenosyl-L-methionine-dependent methyltransferase
At1g13340	1.0	2.1	2.0	3.4 6.8 2.0 Protein of unknown function
At5g48850	1.1	0.8	0.7	3.3 7.4 2.2 Protein of unknown function (ATSD11)

Genes are listed according to the difference of the expression change between GO and wild-type (WT) plants (FCGO/FCWT) at 6 h. FCGO/FCWT values higher than 2 are shown in bold face. AGI: gene identification number given by the Arabidopsis Genome Initiative. Genes also induced in catalase loss-of-function mutants are highlighted with an asterisk (*) (Finiz et al., 2012). Genes included in the same gene coexpression network of At1g17180 (GSTU28) are highlighted in bold face (http://atted.jp; Obayashi et al., 2009). The gene annotation was retrieved from TAIR (http://arabidopsis.org/index.jsp).

TFs most strongly responding to H2O2 were identified by comparing their expression FC in GO and WT plants. A TF was considered differentially expressed when the FC in GO was more than 3-fold (log2 ≥ 1.56) and less than 2-fold in the wild type (log2 ≥ 1.0) (Table 4). Analysis of transcript profiles revealed that the expression of 1449 genes, representing 77% of all TF genes tested, could be detected (Table A2 in Appendix). The remaining 23% (431 of the 1880 TFs) did not yield detectable PCR amplicons, indicating no or very weak expression in the tested material.

At 0.5 h after shifting plants to ambient CO2 concentration, 78 of the 1449 genes were induced more than 3-fold in GO plants, whereas in WT plants the expression changes of the same genes were less than 2-fold (Table 4). Using published data the involvement/participation of the TFs in specific biological processes (Table 4) could be assessed, which allowed the classification of the TFs into five functional groups (FG) enriched with specific gene ontology categories (Figure 2). FG1 contains TFs involved in the regulation of proanthocyanidin and anthocyanin biosynthesis (Table 4 and Figure 2). The TFs TT8 and MYB75 affecting the gene expression of dihydroflavonol 4-reductase (Debeaujon et al., 2003) are included in this FG. FG2 contains TFs affecting developmental processes like lateral root formation (GATA23), flowering (FD1, ANAC089, TEM2 and SNZ), shoot branching (MYB2 and BRC2), senescence (ANAC092/ORE1) and cell division (ANAC068 and HAT4) (Table 4 and Figure 2). The activation of these TFs in GO plants would result in altered growth and flowering (see below and Fahnstenich et al., 2008). FG3 includes TFs and TF-interacting proteins negatively regulating jasmonate (JA) signaling (JAZ7, JAZ8, JAZ9, JAZ10, WRKY50, and WRKY51; Chico et al., 2008; Staswick, 2009; Gao et al., 2011) (Table 4 and Figure 2). JAZ proteins bind directly to the key transcription factor MYC2 and thereby prevent JA-dependent gene transcription (Chini et al., 2007; Pauwels et al., 2010). At the same time JAZ genes are rapidly induced by JA and some are MYC2-regulated. This feedback loop regulation would provide a rapid on and off switch of the pathway involving JA. Transcriptional activation of JAZ genes was found to occur in response to several biotic...
Table 4 | Transcription factors the expression of which was enhanced by more than 3-fold in GO plants, but less than 2-fold in wild-type plants 0.5 h after shifting plants grown at high CO₂ concentration to ambient CO₂ concentration.

AGI	0.5 h after transfer to ambient CO₂	Gene family	Annotation	Function	FG
Atg19G1790	0.2	26.9	176.5	AP2/EREBP RAP2.11 Modulates response to low potassium	4
Atg56200	0.1	14.5	169.0	C2H2 C1-48-01 Unknown function	5
Atg523460	1.3	123.7	92.9	B3 B3 Unknown function	5
Atg909820	0.8	34.4	45.5	bHLH TT8 Regulation of proanthocyanidin and anthocyanin	1
				biosynthesis; affects dihydroflavonol 4-reductase gene	
				expression.	
Atg937430	1.9	80.4	43.3	C2H2 ZAT11 Unknown function	5
Atg934660	0.4	6.5	17.5	MADS AGL105 Unknown function	5
Atg902050	0.4	6.3	16.8	GeBP – Indirect regulation of cytokinin response genes	2
Atg926930	0.7	9.6	13.5	C2C2(Zn)GATA GATA-23 Controls lateral root founder cell	2
				specification	
Atg926930	0.4	4.6	13.0	MYB MYG97 Unknown function	5
Atg948000	1.3	13.8	11.1	MYB MYB112 Unknown function	5
Atg51190	1.9	18.5	9.9	AP2/EREBP – Unknown function	5
Atg543540	0.4	3.2	8.8	C2H2 C1-41-Af-03 Unknown function	5
Atg555990	1.9	15.7	8.4	C3H SZF1 Regulates salt stress responses	4
Atg74080	0.5	4.0	8.3	MYB MYB122 Activator of the indole glucosinolate biosynthesis	4
Atg966880	0.6	5.1	8.1	bZIP bZIP8 Unknown function	5
Atg935900	1.0	7.5	8.0	bZIP bZIP14/FD-1 Required for regulation of flowering	2
Atg930135	0.8	5.9	7.6	ZIM JAZ8 Represses jasmonate-regulated growth and defense	3
				responses	
Atg930135	0.6	4.6	7.5	CHP-rich – Intracellular signal transduction, oxidation-reduction	4
				process, response to chitin	
Atg143210	1.2	8.8	7.5	AP2/EREBP RAP2.6 Regulation of development	2
Atg926170	0.8	6.3	7.5	WRKY WRKY65 Repression of jasmonate-mediated signaling	3
Atg929280	0.8	5.5	7.2	WRKY WRKY65 Unknown function	5
Atg75540	0.8	5.2	6.8	C2C2(Zn)CO STH2 Positive regulation of photomorphogenesis	4
Atg233710	1.9	11.4	5.9	AP2/EREBP ERP112 Unknown function	5
Atg301600	0.6	3.6	5.8	NAC ANAC044 Unknown function	5
Atg97850	1.4	8.2	5.7	MADS AGL101 Unknown function	5
Atg901380	0.9	5.3	5.7	Trihelix – Unknown function	5
Atg95130	1.2	6.4	5.5	C2H2 C2-1B-03 Unknown function	5
Atg923260	1.0	5.4	5.5	MADS AGL32/TT16 Regulates proanthocyanidin biosynthesis	1
Atg115580	0.9	4.6	5.4	ACH2/VP1 AP2/B3-like Seed development	2
Atg36770	0.8	4.5	5.3	bHLH – Unknown function	5
Atg851110	0.6	3.2	5.1	C2H2 C2-1B-01 Unknown function	5
Atg247190	1.2	6.0	4.9	MYB MYB2 Inhibits cytokinin-mediated branching at late stages	2
				of development	
Atg952260	1.0	4.7	4.8	MYB MYB19 Unknown function	5
Atg939610	1.1	5.5	4.8	NAC ANAC092/ORE1 Regulator of leaf senescence	2
Atg418880	1.6	7.4	4.6	HSF HsfA4a/HSF21 Unknown function	5

(Continued)
and abiotic challenges (Yan et al., 2007). JAZ proteins would also exert their effects on post-wound inhibition of vegetative growth in A. thaliana (Yan et al., 2007) and as repressors of necrosis and/or programmed cell death during development in tobacco (Oh et al., 2012). In GO plants, the action of JAZ genes together with those of FG2 would impact growth and reproductive capacity, resulting in altered development under conditions that promote the formation of H₂O₂. FG4 includes TFs with diverse functions in plant defense and signaling, e.g., activators of tryptophan-derived biosynthesis of camalexin (JUB1/ANAC042) and indole glucosinolates (MYB122), as well as regulators of photomorphogenesis (STH2) (Table 4 and Figure 2). The early activation of camalexin and indole glucosinolate biosynthesis was also observed in the analysis performed with the ROS-responsive gene platform (Table 1). Finally, FG5 includes TFs with currently unknown functions (Table 4 and Figure 2).
Balazadeh et al. Transcriptional modulation by chloroplastically produced H$_2$O$_2$

FIGURE 2 | Pie chart representation of the five functional groups (FG) of early H$_2$O$_2$-responsive TFs in GO plants. FG5 includes genes for which a distinct biological function has not been reported yet.

AGI	0.5 h after transfer to ambient CO$_2$	Gene family	Annotation	Function
At3g02310	47.1/0.12/38.08	MADS	SEP2/AGL4	Flower and ovule development
At3g13850	2.0/0.02/129.5	AS2 (LOB) I	ASL30/LBD22	Unknown function
At4g00260	21.6/0.23/92.1	B3	MEE45	Maternal effect embryo arrest 45
At4g27330	2.4/0.03/78.6	NZZ	NZZ/SPL	Controls stamen identity
At1g54760	11.6/0.31/37.6	MADS	AGL85	Unknown function
At3g60460	4.6/0.26/17.9	MYB	DUO1	Plays essential role in sperm cell specification
At2g45650	3.4/0.20/17.3	MADS	AGL6/RSB1	Involved in axillary bud formation; control of flowering time and lateral organ development
At5g26950	2.0/0.17/12.2	MADS	AGL93	Unknown function
At3g15170	1.9/0.16/11.9	NAC	ANAC054/CUC1	Shoot apical meristem formation and auxin-mediated lateral root formation; formation of organ boundary
At5g58280	0.8/0.15/5.3	B3	–	Unknown function
At5g15800	1.0/0.21/5.0	MADS	SEP1/AGL2	Involved in flower and ovule development
At3g56660	1.3/0.26/5.0	bZIP	bZIP49	Unknown function
At5g23000	0.6/0.18/3.3	MYB	MYB37/RAX1	Regulates axillary meristem formation; earliest spatial marker for future axillary meristems

Table 5 | Transcription factors the expression of which was reduced by more than 3-fold in GO plants 0.5 h after shifting plants grown at high CO$_2$ concentration to ambient CO$_2$ concentration.

Genes are listed according to the difference of the expression change between wild-type (WT) and GO plants (FC$_{WT}$/FC$_{GO}$). A function was described for a gene when its involvement in a biological process/function was experimentally backed up as described in PubMed (www.ncbi.nlm.nih.gov/pubmed) or TAIR (http://arabidopsis.org/index.jsp).
The analysis of the transcript profiles at 0.5 h after induction of H$_2$O$_2$ production in GO plants (Table A2 in Appendix) also revealed a group of 13 genes that are down-regulated in GO relative to WT plants (Table 5). The function of five of these genes is currently unknown, but interestingly, the remaining eight genes positively control developmental processes. The down-regulation of expression of these TFs in GO plants together with the up-regulation of expression of TFs negatively affecting development (see FG2, Table 3) would act in concert to arrest growth and especially to delay the transition from the vegetative to the reproductive phase. Consistently, our previous results showed that GO plants growing under photorespiratory conditions are smaller than WT plants, presenting a reduced rosette diameter and a delay in flowering time (Fahnenstich et al., 2008).

CONCLUDING REMARKS

The metabolic induction of H$_2$O$_2$ formation in chloroplasts of GO plants under photorespiratory conditions triggered a faster and more prominent transcriptional response of ROS-responsive genes in these plants than in wild type. The changes of the transcriptional activities observed in GO plants early after induction of H$_2$O$_2$ production in chloroplasts suggest the establishment of responses that resemble those occurring at early times after wounding or herbivore attack, where H$_2$O$_2$ is also produced (Orozco-Cardenas and Ryan, 1999). These responses include (1) the retardation of development, which in part would be linked to JA signaling, and (2) the production of the phytoanticipins indole glucosinolates and camalexin. As in the case of herbivore attack, the retardation of development such as reductions in growth and reproduction observed in GO plants could be regarded as a strategy to allow more resource allocation to support defense and tolerance responses (Zavala and Baldwin, 2006). The data also suggest that signals for the early induction of indole glucosinolates and camalexin biosynthesis genes in GO plants through H$_2$O$_2$ may originate in chloroplasts as these genes showed no modified expression in catalase loss-of-function mutants (Inzé et al., 2012).

ACKNOWLEDGMENTS

Financial support was provided by the Deutsche Forschungsgemeinschaft (DFG) through grant MA 2379/11-1 to Veronica G. Maurino, and through grant MU 1199/14-1 (FOR 948) to Bernd Mueller-Roehrer.

REFERENCES

Apel, K., and Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373–399.

Asada, K. (2006). Production and scavenging of reactive oxygen species in chloroplasts and their function. Plant Physiol. 141, 391–396.

Baier, M., and Dietz, K.-J. (2005). Chloroplasts as source and target of cellular redox regulation: a discussion on chloroplast redox signals in context of plant physiology. J. Exp. Bot. 56, 1449–1462.

Balazadeh, S., Riope-Pachón, D. M., and Mueller-Roeder, B. (2008). Transcription factors regulating leaf senescence in Arabidopsis thaliana. Plant Biol. 1, 63–75.

Bednarek, P., Pielewiska-Bednarek, M., Svatos, A., Schneider, B., Doubsky, J., Mansurova, M., et al. (2009). A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science 323, 101–106.

Bienert, G. P., Møller, I. M., Kristiansen, J. K., et al. (2007). Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J. Biol. Chem. 282, 1183–1192.

Birkenbihl, R. P., Diezel, C., and Somssich, I. E. (2012). Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection. Plant Physiol. 159, 266–285.

Caldana, C., Scheible, W. R., Mueller-Roeder, B., and Ruzicic, S. (2007). A quantitative RT-PCR platform for high-throughput expression profiling of 2500 rice transcription factors. Plant Meth. 3, 486–494.

Chico, J. M., Chini, A., Fonseca, S., and Solano, R. (2008). JAZ repressors set the rhythm in jasmonate signaling. Curr. Opin. Plant Biol. 11, 373–399.

Chini, A., Fonseca, S., Fernandez, G., Adie, B., Chico, J. M., Lorenzo, O., et al. (2007). The JAZ family of repressors is the missing link in jasmonate signaling. Nature 448, 666–671.

Czechowski, T., Bari, R. P., Stitt, M., Scheible, W. R., and Udvardy, M. K. (2004). Real-time RT-PCR profiling of over 1400 Arabidopsis transcription factors: unprecedented sensitivity reveals novel root- and shoot-specific genes. Plant J. 38, 366–379.

Dat, J., Vandenabeele, S., Vranova, E., Van Montagu, M., Inzé, D., and Van Breusegem, F. (2000). Dual action of the active oxygen species during plant stress responses. Cell Mol. Life Sci. 57, 779–795.

Danon, A., Miersch, O., Felix, G., Camp, R. G., and Apel, K. (2005). Concurrent activation of cell death-regulating signalling pathways by singlet oxygen in Arabidopsis thaliana. Plant J. 41, 68–80.

Debeaujon, I., Nes, N., Perez, P., Devic, M., Grandjean, O., Caboche, M., et al. (2003). Proanthocyanidin-accumulating cells in Arabidopsis testa: regulation of differentiation and role in seed development. Plant Cell 15, 2514–2531.

Desikan, R., Mackerness, S., Hancock, andNeill, S. J. (2001). Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol. 127, 159–172.

Fahnenstich, H., Scarpeci, T. E., Valle, E. M., Flügge, U. I., and Maurino, V. G. (2008). Generation of H$_2$O$_2$ in chloroplasts of Arabidopsis thaliana overexpressing glycolate oxidase as an inducible system to study oxidative stress. Plant Physiol. 148, 719–729.

Foyer, C. H., and Noctor, G. (2005). Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17, 1866–1875.

Fryer, M. J., Ball, L., Oxborough, K., Karpinski, S., Mullineaux, P. M., and Baker, N. R. (2003). Control of ascorbate peroxidase 2 expression by hydrogen peroxide and leaf water status during excess light stress reveals a functional organisation of Arabidopsis leaves. Plant J. 33, 691–705.

Gao, Z., Chung, E. H., Eitas, T. K., and Dangl, J. L. (2011). Plant intracellular innate immune receptor Resistance to Pseudomonas syringae pv: maculicola 1 (RPM1) is activated at, and functions on, the plasma membrane. Proc. Natl. Acad. Sci. U.S.A. 89, 4019.

Gigolashvili, T., Yatusevich, R., Berger, B., Müller, C., and Flügge, U. I. (2007). The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana. Plant J. 51, 247–261.

Inzé, A., Vandenauwera, S., Hoerberchts, F. A., Vandorpe, M., Van Gaever, T., and Van Breusegem, F. (2012). A subcellular localization compendium of hydrogen peroxide-induced proteins. Plant Cell Environ. 35, 308–320.

Karpinski, S., Reynolds, H., Karpinska, B., Winglee, G., Creissen, G., and Mullineaux, P. (1999). Systemic signalling and acclimation in response to excess excitation energy in Arabidopsis. Science 239, 654–657.

Kleibenstein, D. J., Kroymann, J., Brown, P., Figuth, A., Pedersen, D., Gesheruzon, J., et al. (2001). Genetic control of natural variation in Arabidopsis glucosinolate accumulation. Plant Physiol. 126, 811–825.

Leister, D. (2005). Genomics-based dissection of the cross-talk of chloroplasts with the nucleus and mitochondria in Arabidopsis. Gene 354, 110–116.

Li, T., Li, H., Zhang, Y. X., and Liu, J. Y. (2011). Identification and analysis of seven H$_2$O$_2$-responsive miRNAs and 32 new miRNAs in the seedlings of rice (Oryza sativa L. ssp. indica). Nucleic Acids Res. 39, 2821–2833.

Maurino, V. G., and Flügge, U. I. (2008). Experimental systems to assess the effects of reactive oxygen

www.frontiersin.org

November 2012 | Volume 3 | Article 234 | 11
In Arabidopsis. Nucleic Acids Res. 37, 987–991.
Oh, Y., Baldwin, I. T., and Galis, I. (2012). NaA1Z regulates a subset of defense responses against herbivores and spontaneous leaf necrosis in Nicotiana attenuata plants. Plant Physiol. 159, 769–788.

Op den Camp, R. G. L., Przybyla, D., Ochsenbein, C., Laloë, C., Kim, C., Danon, A., et al. (2003). Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis. Plant Cell 15, 2320–2332.

Orozco-Cardenas, M., and Ryan, C. A. (1999). Hydrogen peroxide is generated systemically in plant leaves by wounding and system via the octadecanoid pathway. Proc. Natl. Acad. Sci. U.S.A. 96, 6553–6557.

Ort, D. R., and Baker, N. R. (2002). A protective role for O2 as an alternative electron sink in photosynthesis? Curr. Opin. Plant Biol. 5, 193–198.

Pauwels, L., Barbero, G. F., Gerirnck, J., Tilleman, S., Gruenewald, W., Perez, A. C., et al. (2010). NINJA connects the co-repressor TOLESS to jasmonate signalling. Nature 464, 788–791.

Petrov, V. D., and Van Breusegem, F. (2012). Hydrogen peroxide—a central hub for information flow in plant cells. AoB Plants. 2012, pl014. doi:10.1093/aobpla/pls014

Pfalz, M., Mikkelsen, M. D., Bednarek, P., Olsen, C. E., Halkier, B. A., and Kroymann, J. (2011). Metabolic engineering in Nicotiana benthamiana reveals key enzyme functions in Arabidopsis indole glucosinolate modification. Plant Cell 23, 716–729.

Staswick, P. E. (2009). The tryptophan conjugates of jasmonic and indole-3-acetic acids are endogenous auxin inhibitors. Plant Physiol. 150, 1310–1321.

Tripathi, B. N., Bhatt, I., and Dietz, K. J. (2009). Peroxiredoxins: a less studied component of hydrogen peroxide detoxification in photosynthetic organisms. Protoplasma 235, 3–15.

Van Breusegem, F., Bailey-Serres, J., and Mittler, R. (2008). Unraveling the tapestry of networks involving reactive oxygen species in plants. Plant Physiol. 147, 978–984.

Vandenabeele, S., Vanderauwera, S., Vuylsteke, M., Rombouts, S., Langebenthal, C., Seidlitz, H. K., et al. (2004). Catalase deficiency drastically affects gene expression induced by high light in Arabidopsis thaliana. Plant J. 39, 45–58.

Vanderauwera, S., Zimmermann, P., Rombouts, S., Vandenabeele, S., Langebenthal, C., Gruissem, W., et al. (2005). Genome-wide analysis of hydrogen peroxide-regulated gene expression in Arabidopsis reveals a high light-induced transcriptional cluster involved in anthocyanin biosynthesis. Plant Physiol. 139, 806–821.

Wu, A., Allu, A. D., Garapati, P., Siddiqui, H., Dortay, H., Zanor, M.-I., et al. (2012). JUNGBRUNNEN1, a reactive oxygen species-responsive NAC transcription factor, regulates longevity in Arabidopsis. Plant Cell 24, 482–506.

Yan, Y., Stolz, S., Chetelat, A., Reymond, P., Pagni, M., Dubugnon, L., et al. (2007). A downstream mediator in the growth repression limb of the jasmonate pathway. Plant Cell 19, 2470–2483.

Zavala, J. A., and Baldwin, I. T. (2006). Jasmonic acid signalling and herbivore resistance traits constrain regrowth after herbivore attack in Nicotiana attenuata. Plant Cell Environ. 29, 1751–1760.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 17 August 2012; accepted: 01 October 2012; published online: 01 November 2012.

Citation: Balazadeh S, Jaspert N, Arif M, Mueller-Roeber B and Maurino VG (2012) Expression of ROS-responsive genes and transcription factors after metabolic formation of H2O2 in chloroplasts. Front. Plant Sci. 3:234. doi: 10.3389/fpls.2012.00234

This article was submitted to Frontiers in Plant Physiology, a specialty of Frontiers in Plant Science.

Copyright © 2012 Balazadeh, Jaspert, Arif, Mueller-Roeber and Maurino. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.
APPENDIX

Table A1 | Expression profile of 131 ROS-responsive genes in wild-type (WT) and GO plants after transferring seedlings to ambient CO₂ concentration.

AGI	0.5 h WT	0.5 h GO	4 h WT	4 h GO	6 h WT	6 h GO	12 h WT	12 h GO
At1g02450	1.64	0.53	2.04	1.21	4.35	2.28	4.78	2.50
At1g05340	0.31	1.77	1.81	2.40	2.10	2.98	6.07	4.71
At1g05575	0.61	5.51	-1.36	1.90	-0.95	2.11	3.67	2.46
At1g10040	0.21	0.85	1.27	1.05	1.06	3.38	4.88	3.04
At1g13340	0.07	1.07	1.64	1.37	1.78	2.77	3.92	3.92
At1g14040	0.20	0.05	0.37	-0.24	0.42	0.28	1.54	0.51
At1g14200	-0.37	-0.58	-0.20	-1.26	0.38	0.52	1.92	1.20
At1g15520	0.22	-0.24	4.12	3.10	3.64	6.81	8.06	5.72
At1g16030	0.34	-0.29	0.11	0.71	0.18	0.13	0.95	0.22
At1g17170	-0.06	0.39	2.44	2.31	2.52	5.34	8.73	7.58
At1g17180	-0.65	-0.18	2.77	2.79	2.91	6.70	8.30	6.36
At1g18570	0.26	2.76	-1.48	-0.37	-0.53	1.33	3.99	2.48
At1g19020	0.87	3.21	0.34	1.88	0.93	4.79	6.83	5.94
At1g21100	0.72	2.78	-1.31	0.21	-0.56	0.61	1.18	1.88
At1g21120	-0.06	3.31	0.51	1.19	-0.47	3.99	4.94	3.88
At1g22400	0.08	-0.51	-0.53	-0.80	0.23	0.31	2.96	2.64
At1g26380	0.20	1.78	0.44	1.10	1.04	5.28	6.15	5.05
At1g26420	0.62	0.69	0.20	1.21	1.26	4.14	5.88	5.17
At1g27730	0.17	4.91	2.63	3.85	2.58	4.81	4.55	4.42
At1g28190	0.13	1.95	0.88	1.70	1.28	2.49	4.54	3.45
At1g35210	0.12	3.48	1.42	2.99	1.56	3.85	4.89	3.67
At1g35230	0.86	1.16	3.10	3.56	4.79	5.14	5.71	4.79
At1g53540	1.07	-0.58	3.69	2.64	1.84	0.61	3.25	2.09
At1g54050	-0.32	-0.27	1.45	0.96	0.99	0.38	-0.94	-0.35
At1g57630	0.50	1.78	3.52	3.63	4.34	5.17	7.31	5.93
At1g59990	0.34	2.37	-0.49	1.78	0.45	2.38	4.38	3.47
At1g61340	0.58	4.60	3.49	4.09	2.73	3.39	3.14	2.37
At1g61820	1.12	-0.18	0.36	-0.31	0.44	1.35	0.67	-0.26
At1g62300	0.81	1.45	1.78	2.26	2.80	3.71	4.75	4.20
At1g63720	0.63	2.31	1.45	1.89	1.65	2.61	4.47	3.77
At1g66060	0.40	4.13	0.65	1.31	1.45	2.35	3.48	3.19
At1g69890	0.40	3.99	-0.98	0.72	0.30	1.17	2.46	1.52
At1g72520	0.76	3.97	2.97	2.83	2.25	3.28	2.90	2.46
At1g73010	-1.19	-0.41	3.01	0.07	2.30	0.83	0.28	-0.72
At1g74310	-0.20	0.23	0.36	-1.58	-0.38	-0.02	0.93	0.89
At1g74360	-0.03	1.13	1.65	1.64	2.06	3.83	4.91	4.33
At1g74590	0.04	-0.20	0.60	0.27	0.58	0.26	2.51	1.39
At1g76070	0.21	1.38	0.63	1.49	0.71	1.72	2.85	2.14
At1g76600	0.44	2.54	0.51	2.42	0.81	3.45	5.35	4.45
At1g77450	-0.38	2.87	3.24	2.02	2.49	2.79	3.49	2.98
At1g80820	0.21	0.59	2.97	2.05	1.34	2.97	2.65	2.13
At1g80840	0.10	5.25	1.19	3.41	2.45	5.82	7.28	6.96
At2g15480	0.00	1.47	0.06	0.79	0.25	2.84	5.35	4.26
At2g18210	0.05	3.07	0.43	0.96	0.17	1.55	0.61	0.22
At2g18690	0.59	2.15	2.04	2.34	2.73	4.62	6.05	5.59
At2g20560	-0.17	0.21	0.92	-0.31	-0.15	0.05	2.15	1.16
At2g22470	0.09	-0.19	2.37	1.46	2.77	1.30	1.04	1.13

(Continued)
AGI	log2 FCh
At2g22880	0.79
At2g24540	0.42
At2g25735	0.86
At2g26150	-0.59
At2g26530	0.32
At2g29490	-0.54
At2g29500	-0.04
At2g31945	0.40
At2g32030	0.42
At2g32120	0.46
At2g33710	-0.04
At2g34730	-0.23
At2g38250	0.25
At2g38340	-0.07
At2g38470	0.50
At2g40000	-0.14
At2g41380	0.19
At2g41640	0.12
At2g43820	0.50
At2g47000	0.15
At3g02800	0.14
At3g02840	0.16
At3g09270	0.63
At3g09350	-0.39
At3g09410	0.28
At3g10320	-0.36
At3g10930	0.72
At3g11840	1.19
At3g12580	1.37
At3g13790	0.33
At3g15960	0.61
At3g16530	0.75
At3g17690	0.46
At3g23230	1.17
At3g24500	-0.21
At3g25250	0.60
At3g26830	0.15
At3g29210	0.46
At3g46230	0.47
At3g48650	0.96
At3g49580	-0.33
At3g53230	0.98
At3g55980	0.51
At4g11280	0.62
At4g12400	0.07
At4g15975	0.79
At4g17490	0.54
At4g18880	0.71
At4g21390	0.88
At4g21990	-0.31

(Continued)
AGI	log2 FCh	0.5 h WT	0.5 h GO	4 h WT	4 h GO	6 h WT	6 h GO	12 h WT	12 h GO
At4g22530	0.38	0.47	1.22	1.28	2.57	5.23	3.65		
At4g24160	0.26	0.81	0.44	0.42	0.93	1.16	2.30	1.45	
At4g24380	0.35	1.30	1.66	2.38	1.72	1.98	1.16	1.32	
At4g24570	0.47	4.23	0.83	1.58	1.84	1.74	3.07	2.49	
At4g37370	0.49	2.81	1.93	3.87	1.49	6.08	7.75	6.09	
At4g39670	0.42	3.84	4.90	4.92	4.99	7.53	7.85	7.52	
At5g04340	-0.25	4.78	3.28	3.13	2.87	3.10	5.35	4.22	
At5g05730	0.52	0.78	1.40	2.23	0.49	1.27	2.95	1.99	
At5g12020	0.23	-0.51	5.32	2.84	4.18	2.59	3.09	4.15	
At5g12030	-0.18	0.07	3.39	1.03	1.22	1.97	2.90	3.00	
At5g14700	0.19	1.14	2.48	2.11	1.59	1.74	1.49	0.80	
At5g14730	0.43	0.40	-2.54	0.66	-1.85	1.42	3.48	2.00	
At5g20230	0.60	1.47	2.40	3.33	3.30	4.82	6.06	5.41	
At5g24110	-0.06	3.73	3.44	2.57	1.70	6.51	5.79	5.52	
At5g25450	0.56	0.10	0.28	0.71	-0.36	0.63	3.48	1.90	
At5g26220	0.28	-0.92	3.63	3.72	3.07	3.70	1.03	2.45	
At5g27420	0.31	5.03	1.59	2.62	1.58	3.90	5.10	4.47	
At5g28630	0.49	2.02	-2.90	-1.34	-1.83	-1.21	0.61	-0.72	
At5g35320	-0.22	-0.13	0.67	-0.22	0.35	0.34	1.39	0.90	
At5g46080	0.08	0.91	0.12	0.83	0.24	1.88	2.22	1.80	
At5g47230	0.33	4.12	-0.05	2.21	0.55	2.13	3.61	2.44	
At5g48570	0.33	-0.17	0.75	-0.27	-0.33	0.15	1.24	0.09	
At5g49850	0.08	-0.39	1.07	1.52	1.74	2.90	-0.01	-0.41	
At5g50060	0.40	-0.06	3.50	1.86	3.84	5.46	3.43	3.85	
At5g51190	0.48	2.77	0.08	2.40	0.88	2.31	3.88	2.30	
At5g51440	0.34	-0.29	0.65	1.16	-0.44	3.85	7.36	6.33	
At5g52640	0.06	-0.18	0.96	-0.98	0.22	1.21	2.80	2.26	
At5g54490	0.56	2.96	0.57	2.85	0.59	2.05	4.01	3.20	
At5g57220	1.48	3.18	-1.68	0.44	-1.37	2.76	4.81	3.61	
At5g59820	0.03	3.84	2.65	4.19	2.19	5.95	5.87	4.99	
At5g63790	-0.37	2.42	1.55	1.69	1.63	3.47	3.56	3.23	
At5g64310	0.29	1.92	1.58	1.13	1.61	0.13	0.53	0.54	
At5g64510	-0.16	0.22	1.38	0.09	0.88	0.80	1.18	1.12	
At5g64905	0.44	2.58	1.89	2.56	1.04	5.04	6.27	4.05	

Numbers indicate log2 fold-change (FCh) expression ratio of genes after transferring plants to ambient CO₂ concentration compared to high CO₂ concentration. Values are means of two biological replicates.
Table A2 | Numbers indicate log2 fold-change (FCh) expression ratio of genes after transferring plants to ambient CO₂ concentration compared to high CO₂ concentration.

AGI	Gene family	log2 FCh	0.5 h WT	0.5 h GO
At1g01030	ABI3/VP1	0.74	0.97	
At3g16280	AP2/EREBP	0.34	0.49	
At2g16770	AP2/EREBP	0.28	0.61	
At2g30470	ABI3/VP1	−0.01	−0.02	
At2g30310	AP2/EREBP	0.82	0.98	
At2g36080	ABI3/VP1	0.53	1.08	
At2g46870	ABI3/VP1	−0.03	−0.16	
At2g311580	ABI3/VP1	−0.23	2.19	
At3g23230	AP2/EREBP	1.28	4.67	
At3g25730	AP2/EREBP	0.05	0.61	
At3g69170	ABI3/VP1	−0.11	0.10	
At3g25890	AP2/EREBP	0.18	0.54	
At4g01500	ABI3/VP1	0.92	0.50	
At3g50260	AP2/EREBP	4.28	4.54	
At4g15560	ABI3/VP1	−1.81	−3.72	
At5g54320	AP2/EREBP	0.63	0.32	
At5g60450	ARF	0.02	−0.28	
At3g18990	B3	−0.02	0.53	
At5g62000	ARF	0.38	0.47	
At3g46770	B3	−1.55	0.31	
At1g04880	ARID	0.01	−0.59	
At5g53310	B3	−0.46	0.31	
At1g20910	ARID	0.22	0.32	
At4g00260	B3	4.43	−2.09	
At4g01580	B3	−0.21	0.06	
At1g76110	ARID	0.00	0.43	
At1g76510	ARID	0.03	0.81	
At4g31620	B3	1.67	−0.99	
At2g60400	ARID	0.14	0.29	
At3g13350	ARID	−0.31	0.31	
At3g43240	ARID	−0.01	0.03	
At4g31650	B3	−0.28	−0.17	
At4g32010	ABI3/VP1	0.36	0.21	
At5g06250	ABI3/VP1	−0.53	−0.16	
At3g57600	AP2/EREBP	0.24	0.25	
At1g14510	Alfin	0.10	0.17	
At3g60490	AP2/EREBP	0.06	1.23	
At2g02470	Alfin	0.29	0.45	
At3g61630	AP2/EREBP	0.88	0.94	
At3g11200	Alfin	−0.15	0.33	
At4g06746	AP2/EREBP	1.76	3.06	
At3g42790	Alfin	−0.01	0.42	
At4g11140	AP2/EREBP	−0.16	−0.03	
At5g05610	Alfin	0.10	0.51	
At4g13040	AP2/EREBP	0.29	0.88	
At5g20510	Alfin	−0.54	0.10	
At5g26210	Alfin	−0.11	0.58	
At4g16750	AP2/EREBP	−0.56	1.55	

(Continued)
AGI	Gene family	log2 FCh	0.5 h WT	0.5 h GO
At3g13880	AS2 (LOB) I	1.00	0.00	6.02
At1g10120	bHLH	−0.24	−0.09	1.02
At3g26620	AS2 (LOB) I	0.44	0.01	1.02
At1g10610	bHLH	−0.31	−0.23	1.02
At3g27650	AS2 (LOB) I	0.08	0.01	1.02
At1g12860	bHLH	−0.38	0.00	1.02
At1g22985	AP2/EREBP	−0.01	0.73	1.02
At4g39780	AP2/EREBP	1.31	0.13	1.02
At5g05410	AP2/EREBP	2.04	2.95	1.02
At1g25560	AP2/EREBP	−0.64	0.28	1.02
At5g07580	AP2/EREBP	−1.35	−0.87	1.02
At5g10510	AP2/EREBP	0.85	−0.42	1.02
At1g28360	AP2/EREBP	1.36	0.58	1.02
At5g11190	AP2/EREBP	−0.20	0.58	1.02
At5g28370	AP2/EREBP	4.77	0.69	1.02
At5g11590	AP2/EREBP	0.72	1.28	1.02
At1g33760	AP2/EREBP	2.49	3.60	1.02
At5g13330	AP2/EREBP	0.32	0.69	1.02
At1g36060	AP2/EREBP	1.26	0.89	1.02
At5g13910	AP2/EREBP	−0.26	−0.58	1.02
At4g31360	AP2/EREBP	0.23	3.13	1.02
At4g48830	AP2/EREBP	−2.15	−0.73	1.02
At4g46768	AP2/EREBP	1.17	1.07	1.02
At5g27940	AS2 (LOB) I	−0.16	0.39	1.02
At1g18400	bHLH	−0.34	0.85	1.02
At1g22490	bHLH	0.09	0.48	1.02
At3g50510	AS2 (LOB) I	−0.42	−0.90	1.02
At4g0210	AS2 (LOB) I	−0.04	−0.62	1.02
At1g26260	bHLH	0.27	0.61	1.02
At4g02220	AS2 (LOB) I	0.19	0.64	1.02
At1g27660	bHLH	−0.17	0.58	1.02
At4g22700	AS2 (LOB) I	2.94	6.51	1.02
At1g29950	bHLH	−0.04	0.21	1.02
At5g63090	AS2 (LOB) I	−0.61	1.16	1.02
At1g31050	bHLH	−0.13	0.66	1.02
At1g32640	bHLH	1.91	2.86	1.02
At1g35460	bHLH	0.12	0.70	1.02
At5g19790	AP2/EREBP	−2.72	4.75	1.02
At1g50640	AP2/EREBP	1.59	1.23	1.02
At5g25190	AP2/EREBP	0.01	0.99	1.02
At5g25390	AP2/EREBP	−1.43	1.04	1.02
At5g25810	AP2/EREBP	−0.56	0.18	1.02
At1g53170	AP2/EREBP	2.63	3.00	1.02
At1g53910	AP2/EREBP	0.13	0.61	1.02
At5g44210	AP2/EREBP	1.55	1.59	1.02
At5g47220	AP2/EREBP	1.15	2.75	1.02
At1g63040	AP2/EREBP	1.40	1.52	1.02
At5g47230	AP2/EREBP	3.45	4.94	1.02
At1g64380	AP2/EREBP	4.20	4.16	1.02
At1g68550	AP2/EREBP	0.10	−0.13	1.02

(Continued)
Table A2 | Continued

AGI	Gene family	log2 FCh	0.5 h WT	0.5 h GO
At3g04730	Aux/IAA	−0.10	0.48	
At3g15540	Aux/IAA	−0.25	0.47	
At2g18300	bHLH	−0.68	0.05	
At3g16500	Aux/IAA	0.10	0.71	
At2g20095	bHLH	−0.12	−0.12	
At3g17600	Aux/IAA	−0.27	1.57	
At2g20180	bHLH	−0.53	−0.23	
At3g23030	Aux/IAA	0.77	1.83	
At3g23050	Aux/IAA	−0.39	0.82	
At5g67180	AP2/EREBP	−0.23	−0.32	
At2g20880	AP2/EREBP	5.11	7.22	
At5g67190	AP2/EREBP	0.53	1.47	
At2g22200	AP2/EREBP	2.28	3.07	
At1g19220	ARF	0.14	−0.07	
At2g23340	AP2/EREBP	0.86	0.80	
At1g19860	ARF	0.49	−0.37	
At2g25820	AP2/EREBP	0.00	1.42	
At1g30330	ARF	−0.01	0.08	
At2g28550	AP2/EREBP	0.34	0.56	
At2g31230	AP2/EREBP	0.80	1.51	
At2g33710	AP2/EREBP	0.95	3.51	
At2g35700	AP2/EREBP	0.17	0.93	
At2g38340	AP2/EREBP	0.45	−0.20	
At2g39250	AP2/EREBP	0.76	1.64	
At3g62100	Aux/IAA	0.32	0.57	
At2g22770	bHLH	−0.12	0.93	
At1g14560	Aux/IAA	−0.28	0.76	
At2g24260	bHLH	0.79	0.38	
At4g14560	Aux/IAA	0.83	1.05	
At2g27230	bHLH	−0.04	0.21	
At4g28640	Aux/IAA	−0.11	0.17	
At2g28160	bHLH	−0.42	0.10	
At4g29080	Aux/IAA	−0.18	0.62	
At4g32280	Aux/IAA	−1.14	0.38	
At5g25890	Aux/IAA	0.21	1.03	
At2g31220	bHLH	−0.84	−0.45	
At5g43700	Aux/IAA	−0.45	0.70	
At3g13280	bHLH	0.10	0.00	
At5g05670	Aux/IAA	−0.05	0.63	
At2g40200	bHLH	−0.23	−0.03	
At1g16640	B3	0.06	0.46	
At2g41130	bHLH	0.08	1.11	
At2g41240	bHLH	−0.57	−0.87	
At1g59750	ARF	0.07	0.03	
At2g41710	AP2/EREBP	0.18	0.38	
At2g28350	ARF	−0.62	−0.35	
At2g44840	AP2/EREBP	3.55	6.34	
At2g33860	ARF	0.69	−1.21	
At2g44940	AP2/EREBP	−1.71	0.13	
At2g46530	ARF	0.16	0.35	

(Continued)
AGI	Gene family	log2 FCh	0.5 h WT	0.5 h GO
At2g31380	C2C2(Zn) CO-like	0.59	0.81	
At2g33500	C2C2(Zn) CO-like	0.11	0.65	
At1g91930	C2H2	0.09	0.61	
At2g47890	C2C2(Zn) CO-like	1.09	0.50	
At1g02030	C2H2	0.55	0.82	
At1g02040	C2H2	−0.50	0.39	
At3g97650	C2C2(Zn) CO-like	0.87	1.08	
At1g03840	C2H2	−0.66	−0.15	
At3g21150	C2C2(Zn) CO-like	2.51	2.93	
At1g64445	C2H2	2.53	0.68	
At3g21880	C2C2(Zn) CO-like	2.16	2.79	
At1g04990	C2H2	0.57	0.90	
At3g21890	C2C2(Zn) CO-like	2.59	3.55	
At1g08290	C2H2	0.59	0.38	
At1g11490	C2H2	−0.51	0.33	
At3g26744	bHLH	0.13	0.20	
At1g45249	bZIP	0.80	1.01	
At3g47640	bHLH	0.72	0.81	
At1g09720	bZIP	0.49	0.83	
At1g58110	bZIP	0.45	0.86	
At3g56220	bHLH	−1.25	0.07	
At1g68640	bZIP	−1.16	0.31	
At3g56770	bHLH	−0.24	2.17	
At1g68880	bZIP	−0.67	2.34	
At3g56970	bHLH	0.11	0.05	
At1g75390	bZIP	−0.43	−0.27	
At3g56980	bHLH	0.00	−1.18	
At1g77920	bZIP	−0.42	1.26	
At3g57800	bHLH	−0.13	0.19	
At2g04038	bZIP	−0.54	−0.49	
At3g59060	bHLH	0.26	0.45	
At3g61960	bHLH	−0.02	−0.58	
At3g62090	bHLH	−1.46	1.29	
At2g13150	bZIP	0.01	1.62	
At4g27310	C2C2(Zn) CO-like	0.45	0.48	
At4g38960	C2C2(Zn) CO-like	0.48	1.05	
At1g14580	C2H2	2.14	0.20	
At4g39070	C2C2(Zn) CO-like	0.25	1.79	
At1g24825	C2H2	−0.61	0.31	
At5g15840	C2C2(Zn) CO-like	0.78	0.61	
At1g24630	C2H2	−0.54	0.33	
At5g18580	C2C2(Zn) CO-like	0.53	1.05	
At1g25250	C2H2	0.37	0.91	
At5g24930	C2C2(Zn) CO-like	0.28	0.89	
At1g26590	C2H2	−1.62	0.50	
At5g48250	C2C2(Zn) CO-like	−0.69	0.48	
At1g26610	C2H2	0.12	1.22	
At5g64470	C2C2(Zn) CO-like	1.52	1.54	
At1g27730	C2H2	0.82	5.18	
At5g57660	C2C2(Zn) CO-like	0.19	0.82	

(Continued)
Table A2 | Continued

AGI	Gene family	log2 FCh	0.5 h WT	0.5 h GO
At2g46270	bZIP	1.20	1.64	
At3g10800	bZIP	0.40	0.74	
At4g25410	bHLH	−0.12	0.27	
At3g12250	bZIP	0.20	0.05	
At4g28790	bHLH	−0.73	0.03	
At3g17609	bZIP	0.95	1.16	
At3g19290	bZIP	0.69	0.77	
At4g29100	bHLH	0.23	0.41	
At4g29930	bHLH	0.81	1.31	
At4g30180	bHLH	−0.72	1.33	
At3g51600	bZIP	0.19	0.90	
At4g30980	bHLH	1.72	0.14	
At3g54620	bZIP	0.29	0.62	
At3g21270	C2C2(Zn) DOF	−0.33	0.48	
At1g68480	C2H2	1.49	−0.70	
At3g45610	C2C2(Zn) DOF	0.40	0.68	
At1g72050	C2H2	0.28	0.53	
At3g47500	C2C2(Zn) DOF	0.49	0.82	
At1g75710	C2H2	0.00	0.15	
At3g50410	C2C2(Zn) DOF	−0.05	0.48	
At3g52440	C2C2(Zn) DOF	1.88	5.20	
At2g01940	C2H2	−0.65	0.35	
At3g55370	C2C2(Zn) DOF	0.29	0.63	
At2g02070	C2H2	1.78	0.18	
At3g61850	C2C2(Zn) DOF	−0.38	0.07	
At2g02080	C2H2	0.73	0.09	
At4g00940	C2C2(Zn) DOF	−0.37	0.42	
At2g24500	C2H2	0.08	0.74	
At3g56660	bZIP	0.37	−1.96	
At4g34530	bHLH	0.09	0.38	
At3g56850	bZIP	0.60	0.69	
At3g36060	bHLH	0.04	0.50	
At3g58120	bZIP	−1.52	−0.95	
At4g36540	bHLH	−0.04	0.55	
At3g62420	bZIP	−0.33	0.61	
At4g36930	bHLH	0.44	−0.33	
At4g01120	bZIP	0.23	0.87	
At4g26240	bZIP	−0.01	0.50	
At4g34000	bZIP	1.11	1.02	
At5g01310	bHLH	0.43	0.70	
At4g34590	bZIP	−0.18	0.39	
At4g35040	bZIP	−0.47	0.57	
At5g08130	bHLH	1.02	0.38	
At4g35900	bZIP	−0.08	2.91	
At5g09460	bHLH	−0.34	0.36	
At4g36730	bZIP	0.26	0.51	
At4g37730	bZIP	0.45	0.62	
At4g24060	C2C2(Zn) DOF	−0.08	0.64	
At2g26940	C2H2	0.02	0.88	
At4g38000	C2C2(Zn) DOF	−0.99	1.49	

(Continued)
Table A2	Continued			
AGI	Gene family	log2 FCh	0.5 h WT	0.5 h GO
At3g10470	C2H2	0.41	−0.30	
At3g13810	C2H2	0.29	1.00	
At3g50870	C2C2(Zn) GATA	0.44	−0.02	
At3g14740	C2H2	0.23	0.41	
At3g51080	C2C2(Zn) GATA	0.43	0.39	
At3g19580	C2H2	2.44	2.95	
At5g50010	bHLH	−0.53	0.99	
At5g50915	bHLH	0.50	1.15	
At5g51780	bHLH	0.72	2.43	
At5g44080	bZIP	0.05	0.31	
At5g51790	bHLH	−0.57	0.21	
At5g49450	bZIP	−0.04	1.02	
At5g60830	bZIP	2.50	1.55	
At5g54680	bHLH	0.45	0.44	
At5g65210	bZIP	−0.10	0.17	
At5g56960	bHLH	2.39	3.26	
At1g19350	BZR	0.89	0.72	
At5g57150	bHLH	0.27	0.55	
At1g75080	BZR	1.20	0.95	
At1g78700	BZR	1.74	0.50	
At5g61270	bHLH	0.44	0.46	
At3g50750	BZR	−0.10	0.34	
At5g61270	bHLH	0.28	0.85	
At4g18890	BZR	0.53	0.42	
At5g64340	bHLH	−0.31	−0.18	
At3g54810	C2C2(Zn) GATA	−0.02	−0.20	
At5g60530	C2C2(Zn) GATA	−0.45	0.31	
At4g17570	C2C2(Zn) GATA	−0.05	0.49	
At4g24470	C2C2(Zn) GATA	0.48	0.09	
At4g26150	C2C2(Zn) GATA	0.65	0.37	
At3g47470	C2H2	0.06	0.23	
At4g32890	C2C2(Zn) GATA	0.18	−0.17	
At3g45260	C2H2	−0.02	0.11	
At4g34880	C2C2(Zn) GATA	0.23	0.40	
At4g36240	C2C2(Zn) GATA	0.02	0.26	
At3g46080	C2H2	1.17	3.27	
At4g36620	C2C2(Zn) GATA	0.51	0.01	
At3g46090	C2H2	2.29	3.65	
At5g25830	C2C2(Zn) GATA	−0.11	−0.10	
At3g47890	C2H2	−0.01	0.20	
At5g26930	C2C2(Zn) GATA	−0.49	3.26	
At3g49930	C2H2	0.75	0.06	
At5g47140	C2C2(Zn) GATA	0.04	0.70	
At5g50700	C2H2	−0.32	1.30	
At5g65320	bHLH	−0.83	−0.16	
At1g06040	C2C2(Zn) CO-like	0.05	0.86	
At5g65640	bHLH	0.04	0.79	
At1g25440	C2C2(Zn) CO-like	−0.45	0.31	
At5g67060	bHLH	−0.44	0.21	

(Continued)
Table A2 | Continued

AGI	Gene family	log2 FCh	0.5 h WT	0.5 h GO
At1g62990	HB	0.07	0.92	
At4g13640	GARP-G2-like	0.27	0.30	
At1g69780	HB	−0.93	0.70	
At1g70920	HB	0.28	1.29	
At4g28610	GARP-G2-like	0.50	0.62	
At1g73360	HB	−0.50	0.20	
At4g37180	GARP-G2-like	0.53	1.36	
At1g75410	HB	0.09	0.62	
At5g05090	GARP-G2-like	−0.21	0.30	
At5g06800	GARP-G2-like	0.46	0.73	
At1g79840	HB	−0.06	0.26	
At5g16580	GARP-G2-like	−0.68	−0.18	
At2g01430	C2H2	0.89	−0.31	
At5g03510	C2H2	−0.33	−0.01	
At5g35340	CCAAT-HAP3	−1.44	2.69	
At5g03740	C2H2	0.13	0.28	
At4g14540	CCAAT-HAP3	−0.19	0.56	
At5g04340	C2H2	3.93	5.44	
At5g47640	CCAAT-HAP3	0.91	1.44	
At5g04390	C2H2	−0.65	−1.44	
At5g47670	CCAAT-HAP3	0.54	−0.21	
At1g07980	CCAAT-HAP5	0.06	0.39	
At1g08970	CCAAT-HAP5	0.23	0.74	
At5g06650	C2H2	0.41	−0.09	
At1g54830	CCAAT-HAP5	0.67	0.82	
At5g09740	C2H2	0.15	0.51	
At1g56170	CCAAT-HAP5	0.58	0.90	
At5g10970	C2H2	−1.15	−0.37	
At3g12480	CCAAT-HAP5	0.65	0.46	
At3g48590	CCAAT-HAP5	0.52	0.54	
At5g14140	C2H2	−0.05	1.09	
At5g27910	CCAAT-HAP5	−1.06	1.11	
At5g38140	CCAAT-HAP5	−0.17	−0.05	
At5g18240	GARP-G2-like	0.09	0.67	
At5g29000	GARP-G2-like	0.10	0.92	
At2g02540	HB	0.05	0.06	
At5g42630	GARP-G2-like	−1.15	0.23	
At2g16400	HB	0.65	0.56	
At5g44190	GARP-G2-like	0.01	0.22	
At5g45580	GARP-G2-like	−0.96	0.18	
At2g18550	HB	−1.44	1.14	
At5g59570	GARP-G2-like	0.60	0.87	
At2g22430	HB	1.79	1.63	
At2g22800	GeBP	0.69	0.49	
At1g4810	GeBP	−0.70	0.32	
At2g23760	HB	0.03	0.55	
At1g61730	GeBP	0.28	0.49	
At2g27990	HB	−1.10	0.32	
At2g28610	HB	−0.64	0.68	
At2g25650	GeBP	−0.03	0.63	

(Continued)
AGI	Gene family	log2 FCh	0.5 h WT	0.5 h GO
At5g56200	C2H2	−3.54	3.86	
At6g02470	E2F/DP	−0.34	1.65	
At6g57520	C2H2	−1.45	−0.52	
At6g53415	E2F/DP	0.41	0.22	
At6g9820	C2H2	1.49	4.74	
At6g14960	E2F/DP	1.08	0.27	
At1g05055	General Transcription	0.47	0.27	
At3g19510	HB	−0.08	0.11	
At4g26170	General Transcription	−0.18	0.70	
At3g95530	HB	1.86	2.55	
At1g01160	GIF	0.22	0.35	
At4g00850	GIF	0.69	1.16	
At6g28640	GIF	−0.23	0.13	
At1g07520	GRAS	1.57	2.32	
At3g56560	HB	1.09	2.02	
At1g07530	GRAS	0.23	0.71	
At3g60390	HB	0.53	1.21	
At1g14920	GRAS	0.18	−0.11	
At3g61150	HB	0.73	0.72	
At1g21450	GRAS	0.23	1.07	
At3g61890	HB	1.26	1.68	
At1g50420	GRAS	0.21	0.69	
At1g50600	GRAS	0.17	0.95	
At4g00730	GRAS	0.50	0.57	
At5g60470	C2H2	−0.13	1.25	
At5g22220	E2F/DP	0.47	0.72	
At1g73730	EIL	1.23	0.52	
At5g63280	C2H2	−0.03	0.21	
At2g27050	EIL	−0.16	0.35	
At5g54610	C2H2	−0.18	0.82	
At3g20770	EIL	0.08	0.88	
At5g66730	C2H2	0.28	0.22	
At5g7450	C2H2	2.15	3.36	
At1g32360	C3H	0.19	0.70	
At1g60700	FHA	−0.01	0.07	
At1g68200	C3H	0.27	0.51	
At2g19810	C3H	0.75	1.30	
At3g07220	FHA	0.37	0.45	
At2g25900	C3H	−0.44	0.97	
At3g07260	FHA	−0.25	4.25	
At3g55430	C3H	0.11	0.74	
At3g54350	FHA	0.28	0.42	
At1g55580	GRAS	−0.24	−1.77	
At4g01520	HB	0.88	1.90	
At1g63100	GRAS	−0.14	−0.04	
At4g01550	HB	−0.43	1.47	
At1g66350	GRAS	−0.06	0.34	
At4g02560	HB	0.48	0.40	
At2g01570	GRAS	0.21	0.34	
At4g03250	HB	0.32	0.63	

(Continued)
Table A2 | Continued

AGI	Gene family	log2 FCh	0.5 h WT	0.5 h GO
At5g48150	GRAS	0.42	0.67	
At5g02030	HB	0.12	0.55	
At5g52510	GRAS	0.08	0.98	
At5g03790	HB	−0.21	0.18	
At5g06420	C3H	−0.39	0.04	
At1g14600	GARP-G2-like	0.32	0.97	
At5g06770	C3H	0.55	0.30	
At1g25550	GARP-G2-like	1.12	1.73	
At5g07600	C3H	0.17	1.35	
At1g32240	GARP-G2-like	0.08	0.67	
At4g35570	HMG	0.40		
At1g49560	GARP-G2-like	−0.29	0.60	
At6g12860	C3H	1.02	0.22	
At1g88700	GARP-G2-like	0.47	1.19	
At5g44260	C3H	−0.37	−0.47	
At1g69580	GARP-G2-like	0.03	0.48	
At5g58620	C3H	1.06	1.15	
At1g79430	GARP-G2-like	0.39	0.03	
At4g16150	CAMTA	0.23	1.05	
At2g01060	GARP-G2-like	0.56	0.68	
At1g67310	CAMTA	0.52	0.74	
At2g02060	GARP-G2-like	0.25	0.47	
At1g67910	CAMTA	0.33	0.68	
At2g03500	GARP-G2-like	0.93	−0.19	
At2g22300	CAMTA	0.44	1.20	
At2g20400	GARP-G2-like	0.26	0.40	
At2g22900	CAMTA	−0.41	0.60	
At2g20570	GARP-G2-like	0.51	0.46	
At5g59450	GRAS	1.21	1.78	
At5g66770	GRAS	−0.12	−0.01	
At5g06710	HB	−0.66	0.31	
At2g06200	GRF	−1.16	−1.07	
At5g11060	HB	0.00	0.76	
At2g22840	GRF	0.20	−0.25	
At6g11270	HB	0.13	0.33	
At2g36400	GRF	0.03	0.56	
At5g15150	HB	−1.34	−0.12	
At2g45480	GRF	−0.05	−0.23	
At3g13960	GRF	0.16	0.03	
At3g52910	GRF	−0.03	0.64	
At5g19520	HB	−1.33	1.17	
At4g24150	GRF	0.35	0.22	
At5g25220	HB	0.55	1.12	
At4g37740	GRF	0.97	−0.01	
At5g53660	GRF	−1.00	1.00	
At5g46880	HB	1.22	0.16	
At1g05230	HB	0.28	0.17	
At5g06990	HB	0.21	0.33	
At3g16940	CAMTA	1.12	1.06	
At2g38300	GARP-G2-like	0.10	0.95	

(Continued)
AGI	Gene family	log2 FCh 0.5 h WT	log2 FCh 0.5 h GO
At4g11250	MADS	3.71	2.40
At5g02320	MYB	0.03	0.74
At5g03780	MYB	−0.17	0.43
At1g73410	MYB	0.81	−0.27
At5g04110	MYB	0.04	0.24
At1g74080	MYB	−1.03	2.02
At5g06100	MYB	0.33	0.38
At1g74430	MYB	−0.15	1.02
At5g06110	MYB	0.30	0.61
At1g74650	MYB	−0.10	0.98
At5g07690	MYB	−0.55	0.45
At1g79180	MYB	0.43	1.73
At5g07700	MYB	−0.27	0.92
At2g02820	MYB	−0.09	0.79
At5g10280	MYB	0.85	0.40
At2g03470	MYB	−0.26	0.94
At5g11510	MYB	0.34	0.01
At3g51910	HSF	0.45	0.79
At4g11880	MADS	−1.34	0.22
At4g18960	MADS	−0.27	−0.42
At4g16600	HSF	0.41	0.50
At4g22950	MADS	−0.32	−0.37
At4g13980	HSF	−0.12	0.47
At4g24540	MADS	0.11	0.42
At4g17600	HSF	0.15	0.65
At4g36590	MADS	−1.41	1.10
At4g17750	HSF	0.42	0.38
At4g37940	MADS	−0.17	1.43
At4g18880	HSF	0.70	2.89
At5g10140	MADS	−1.26	0.83
At4g36990	HSF	0.06	1.02
At5g13790	MADS	−0.09	0.52
At5g03720	HSF	0.69	1.22
At5g15800	MADS	0.06	−2.27
At5g16820	HSF	0.53	0.95
At5g20240	MADS	−1.28	−3.08
At2g16720	MYB	0.32	1.27
At5g14750	MYB	−1.85	0.49
At2g23290	MYB	−1.90	−1.21
At5g15310	MYB	0.05	0.29
At5g16600	MYB	0.75	0.84
At5g16770	MYB	0.76	−0.23
At5g17800	MYB	−0.71	−0.65
At2g31180	MYB	−0.09	1.35
At5g18620	MYB	0.93	−1.05
At5g23000	MYB	−0.74	−2.44
At2g33610	MYB	−0.16	0.22
At5g23650	MYB	0.40	−0.73
At2g36890	MYB	−0.40	1.54
At5g26660	MYB	−0.40	1.47

(Continued)
Table A2 | Continued

AGI	Gene family	log2 FCh	0.5 h WT	0.5 h GO
At1g01060	MADS	−0.07	0.94	
At1g02880	MADS	1.09	0.89	
At1g08500	MYB	−0.72	−0.10	
At1g50500	MYB	2.33	5.47	
At1g09370	MYB	0.32	0.47	
At1g10113	MYB	−0.54	−0.73	
At1g11440	MYB	0.67	0.76	
At1g01380	MYB	0.94	1.21	
At1g01450	MYB	−0.14	1.07	
At1g01420	MYB	−0.22	0.34	
At1g12560	MYB	0.20	0.13	
At1g00320	MYB	0.21	1.80	
At1g02470	MYB	1.39	2.19	
At1g12820	MYB	−0.50	−0.05	
At1g06230	MYB	0.79	1.02	
At1g3540	MYB	0.80	1.04	
At1g07320	MYB	0.70	1.61	
At1g18750	MADS	0.75	0.66	
At1g22590	MADS	0.89	0.28	
At1g60440	MADS	−0.25	0.00	
At1g24260	MADS	−0.54	−0.31	
At1g06910	MADS	0.69	0.02	
At1g02165	MADS	−1.47	−1.31	
At1g28450	MADS	−1.54	1.09	
At1g05050	MADS	0.05	0.25	
At1g28460	MADS	−0.17	1.43	
At1g05060	MADS	0.51	0.20	
At1g29960	MADS	−0.15	0.61	
At1g50800	MADS	0.62	−0.97	
At2g42880	MADS	−0.05	0.84	
At3g24500	MADS	−0.19	0.35	
At3g53520	MADS	−0.12	0.63	
At1g01600	MYB	0.19	0.95	
At1g18100	MYB	0.27	0.44	
At1g01380	MYB	−0.22	0.91	
At3g22350	MYB	2.02	4.29	
At1g01520	MYB	1.62	1.67	
At1g09770	MYB	0.41	0.38	
At1g27220	MYB	−1.04	−0.13	
At1g15720	MYB	0.34	0.39	
At1g17460	MYB	0.71	0.61	
At3g27810	MYB	0.79	1.76	
At3g27920	MYB	0.15	0.47	
At1g18330	MYB	−0.49	−0.63	
At1g19000	MYB	−0.21	1.13	
At3g28910	MYB	0.20	0.99	
At1g49950	MYB	−0.08	0.73	
At1g70000	MYB	−0.29	0.22	
At1g71030	MYB	−0.27	0.77	
At1g33070	MADS	0.19	1.12	

(Continued)
Table A2 | Continued

AGI	Gene family	log2 FCh	0.5 h WT	0.5 h GO
At3g11280	MYB-related	−0.04	0.62	
At4g01680	MYB	−0.95	0.94	
At3g16350	MYB-related	1.18	0.64	
At4g01980	MYB	1.15	−0.75	
At3g24870	MYB-related	−0.34	0.16	
At4g05100	MYB	1.03	2.63	
At3g49850	MYB-related	−0.32	0.38	
At4g09460	MYB	0.75	1.86	
At4g01060	MYB-related	−0.77	0.32	
At4g12350	MYB	1.00	0.22	
At4g01280	MYB-related	0.45	0.96	
At4g16420	MYB	0.12	0.48	
At4g11440	MYB-related	0.16	0.67	
At4g36570	MYB-related	−0.93	0.12	
At4g17785	MYB	0.95	1.66	
At4g39250	MYB-related	1.23	−0.59	
At5g01200	MYB-related	−0.30	0.17	
At1g48000	MYB	0.32	3.79	
At1g49010	MYB	0.04	−0.22	
At2g26880	MADS	1.64	0.81	
At1g56650	MYB	−0.73	3.60	
At2g28700	MADS	−1.04	1.44	
At1g57560	MYB	0.14	1.31	
At2g34440	MADS	0.35	0.09	
At1g58220	MYB	0.97	0.51	
At1g63910	MYB	0.06	−0.06	
At2g42830	MADS	−2.35	−1.26	
At1g66230	MYB	−0.64	0.17	
At2g45650	MADS	1.77	−2.34	
At2g45660	MADS	0.07	0.45	
At1g66380	MYB	0.89	5.32	
At3g02310	MADS	5.56	−3.02	
At1g66390	MYB	0.04	−0.20	
At4g21440	MYB	1.72	2.48	
At6g28240	MYB-related	−0.12	0.57	
At4g22680	MYB	0.57	1.29	
At5g04760	MYB-related	0.64	1.18	
At5g05790	MYB-related	−0.26	0.39	
At4g26930	MYB	−1.50	2.20	
At5g08520	MYB-related	0.58	−0.03	
At4g28110	MYB	1.18	2.55	
At5g17300	MYB-related	0.42	1.05	
At4g32730	MYB	0.83	0.08	
At5g37260	MYB-related	2.68	3.28	
At4g34990	MYB	0.24	0.09	
At5g52660	MYB-related	0.73	1.50	
At4g37260	MYB	0.31	1.47	
At5g53200	MYB-related	0.34	0.57	
At5g56840	MYB-related	−0.33	0.62	
At4g38620	MYB	0.41	0.47	

(Continued)
AGI	Gene family	log2 FCh	0.5 h WT	0.5 h GO
At2g23320	WRKY	2.07	3.14	
At5g3160	TAZ	2.00	2.10	
At2g24570	WRKY	0.55	0.82	
At5g5480	TAZ	−0.44	1.05	
At2g25000	WRKY	−0.33	0.07	
At1g30210	TCP	−0.05	0.41	
At2g30250	WRKY	0.63	2.13	
At1g35560	TCP	0.03	0.91	
At3g30950	WRKY	−0.44	0.40	
At1g53230	TCP	0.24	0.83	
At1g58100	TCP	0.14	0.37	
At2g37260	WRKY	−0.50	0.63	
At1g67260	TCP	−2.70	−0.70	
At2g38470	WRKY	1.50	5.33	
At1g68800	TCP	−0.10	1.83	
At2g40740	WRKY	0.70	−0.15	
At1g69690	TCP	−0.80	0.28	
At2g40750	WRKY	0.49	0.37	
At1g72010	TCP	0.43	0.61	
At2g47450	WRKY	−1.08	0.27	
At2g31070	TCP	0.01	0.02	
At1g54330	NAC	−0.82	0.42	
At2g43500	NIN-like	0.60	0.64	
At1g56010	NAC	−0.50	0.39	
At2g43500	NIN-like	0.46	0.49	
At2g59580	NIN-like	−0.41	0.14	
At2g41020	NIN-like	0.79	0.45	
At2g35270	NIN-like	0.54	0.54	
At4g35600	NIN-like	0.71	0.81	
At1g62700	NAC	0.10	1.52	
At1g64105	NAC	−0.07	0.47	
At1g65910	NAC	0.50	0.67	
At2g47330	NZZ	1.25	−5.05	
At2g37000	TCP	0.43	0.10	
At2g46400	WRKY	1.44	4.82	
At2g45800	WRKY	−0.06	−0.07	
At2g47260	WRKY	0.30	0.53	
At2g41500	TCP	−0.14	1.23	
At2g41080	WRKY	−0.10	1.38	
At3g15030	TCP	−0.20	−0.06	
At2g30200	WRKY	0.53	1.93	
At2g30470	WRKY	−0.07	0.62	
At2g27010	TCP	0.50	1.13	
At2g56400	WRKY	0.86	1.42	
At2g58710	WRKY	0.79	0.92	
At3g47620	TCP	0.33	0.89	
At4g18390	TCP	0.17	0.44	
At4g12650	WRKY	2.23	2.87	
At4g08070	TCP	0.09	0.22	
At4g01720	WRKY	2.13	1.22	

(Continued)
Table A2 | Continued

AGI	Gene family	log2 FCh
At3g04070	NAC	−0.45 0.76
At1g21000	PLATZ	0.65 1.67
At1g31040	PLATZ	−1.87 0.25
At3g04420	NAC	−0.17 0.64
At1g32700	PLATZ	−0.16 1.10
At1g43000	PLATZ	2.53 3.44
At2g04080	Trihelix	0.88 0.14
At1g76580	PLATZ	1.42 1.77
At3g10490	NAC	0.81 0.07
At2g27930	PLATZ	1.89 1.39
At3g10500	NAC	0.26 0.94
At3g60670	PLATZ	−0.09 0.31
At3g15170	NAC	0.95 −2.63
At4g17900	PLATZ	1.01 1.84
At2g35640	Trihelix	2.40 2.93
At5g01900	WRKYGTT	1.78 5.60
At2g38250	Trihelix	0.84 0.37
At5g07100	WRKY	2.13 1.12
At2g47370	Trihelix	0.14 0.61
At3g01560	Trihelix	1.10 0.47
At5g22570	WRKY	0.59 1.16
At3g10040	Trihelix	−1.27 −0.35
At5g24110	WRKY	1.46 4.27
At3g11100	Trihelix	−0.20 0.44
At5g26170	WRKY	−0.25 2.65
At3g14180	Trihelix	0.07 0.81
At5g28850	WRKY	−0.01 −0.61
At3g19020	Trihelix	1.43 1.18
At3g24490	Trihelix	−0.22 0.42
At5g43290	WRKY	0.27 0.87
At3g24860	Trihelix	−0.07 0.35
At5g45050	WRKY	0.37 0.28
At3g25990	Trihelix	0.10 0.31
At5g45270	WRKY	0.76 0.96
At3g15500	NAC	2.51 3.62
At5g46710	PLATZ	1.85 2.23
At3g15510	NAC	0.51 0.57
At3g17730	NAC	0.40 1.19
At4g02020	Polycomb Group (PcG)	0.28 0.50
At3g29035	NAC	−0.40 1.40
At4g16845	Polycomb Group (PcG)	−0.08 0.09
At5g1230	Polycomb Group (PcG)	0.26 0.22
At3g27700	RRM-containing	0.52 0.78
At4g01540	NAC	0.33 2.07
At3g47120	RRM-containing	0.11 0.39
At4g27410	NAC	1.65 3.18
At2g37120	S1Fa-like	−1.00 0.63
At4g28500	NAC	−0.19 −0.07
At3g53370	S1Fa-like	0.11 0.66
At4g28530	NAC	−0.38 0.93

Table A2 | Continued

AGI	Gene family	log2 FCh		
A11g02065	SBP	0.44 −0.72		
A3g54390	Trihelix	−0.39 −0.11		
A5g4350	WRKY	0.26 1.24		
A3g58630	Trihelix	0.00 0.16		
A5g49520	WRKY	1.74 2.73		
A4g17050	Trihelix	−0.24 0.41		
A5g52830	WRKY	0.93 1.22		
A4g31270	Trihelix	−0.37 0.59		
A5g56270	WRKY	−0.06 −0.03		
A5g01380	Trihelix	−0.10 2.40		
A5g64810	WRKY	0.78 2.26		
A5g03680	Trihelix	−0.41 0.87		
A11g14440	ZF-HD	−0.18 −0.17		
A5g05550	Trihelix	−0.01 0.38		
A11g14687	ZF-HD	0.06 0.36		
A5g14540	Trihelix	3.11 0.00		
A5g28300	Trihelix	−0.18 −0.58		
A11g74660	ZF-HD	−0.26 0.00		
A5g38560	Trihelix	0.48 0.69		
A11g75240	ZF-HD	−0.45 −0.13		
A11g74660	Trihelix	0.02 0.15		
A2g02540	ZF-HD	−0.10 0.60		
A5g63430	Trihelix	0.35 0.47		
A2g18350	ZF-HD	0.34 0.27		
A4g35680	NAC	0.59 0.36		
A11g20980	SBP	0.39 0.60		
A4g36160	NAC	0.08 1.12		
A11g27360	SBP	0.91 0.64		
A5g04400	NAC	1.31 1.79		
A11g27370	SBP	0.56 0.01		
A5g04410	NAC	0.21 0.52		
A11g53160	SBP	−0.51 −0.46		
A5g07680	NAC	−0.71 −0.44		
A11g69170	SBP	−0.24 0.19		
A5g08790	NAC	1.56 1.81		
A2g33810	SBP	−0.01 0.12		
A5g09330	NAC	0.76 0.34		
A2g42200	SBP	−0.45 −0.37		
A5g13180	NAC	−0.45 0.17		
A2g47070	SBP	0.22 0.60		
A5g14000	NAC	−0.57 −0.15		
A3g15270	SBP	−0.51 −0.35		
A3g57920	SBP	0.27 −0.36		
A5g17260	NAC	0.22 0.79		
A3g60030	SBP	0.22 0.30		
A5g18270	NAC	0.31 0.84		
A5g18830	SBP	0.04 0.26		
A11g16070	TUB	−0.19 −0.25		
A3g28920	ZF-HD	0.06 0.23		
A11g25280	TUB	0.80 0.36		
AGI	Gene family	log2 FCh	0.5 h WT	0.5 h GO
-----------	-------------	----------	----------	----------
At3g50890	ZF-HD	−0.47	−0.58	
At4g24660	ZF-HD	−0.36	−0.01	
At1g47270	TUB	0.35	0.68	
At5g15210	ZF-HD	−0.12	0.01	
At5g39760	ZF-HD	0.84	0.07	
At5g42780	ZF-HD	−0.17	−0.33	
At1g76900	TUB	1.50	0.46	
At2g18280	TUB	0.19	0.55	
At5g65410	ZF-HD	1.11	0.15	
At2g47900	TUB	1.25	0.11	
At1g17380	ZIM	1.91	3.30	
At3g06380	TUB	−0.02	0.64	
At1g19180	ZIM	2.60	4.54	
At5g18680	TUB	−0.10	0.44	
At1g30135	ZIM	−0.37	2.56	
At1g48500	ZIM	1.18	0.17	
At5g18300	NAC	−0.83	−0.13	
At5g43270	SBP	−0.64	−0.77	
At5g22290	NAC	0.28	1.92	
At5g50570	SPB	0.26	1.42	
At5g22380	NAC	3.76	4.76	
At5g50670	SPB	0.30	0.91	
At5g24590	NAC	1.15	1.53	
At1g05830	SET-domain	0.18	−0.06	
At5g39610	NAC	0.19	2.46	
At2g16650	SET-domain	0.27	0.57	
At5g39820	NAC	1.91	0.05	
At4g27910	SET-domain	0.29	0.60	
At5g41410	NAC	0.08	−0.03	
At4g30860	SET-domain	−0.13	0.71	
At5g09790	SET-domain	0.48	0.50	
At5g24330	SET-domain	−0.05	0.27	
At5g46590	NAC	0.08	1.50	
At5g53430	SET-domain	0.30	0.17	
At4g28190	ULT	−0.26	0.02	
At1g70700	ZIM	0.14	1.73	
At1g28520	VOZ	0.32	0.75	
At1g72450	ZIM	−0.27	1.16	
At2g42400	VOZ	0.24	0.44	
At1g74950	ZIM	0.27	0.93	
At2g34600	ZIM	−1.53	3.07	
At3g17860	ZIM	0.10	1.25	
At1g29280	WRKY	−0.40	2.45	
At3g43440	ZIM	0.15	0.16	
At1g29860	WRKY	−0.16	1.03	
At4g14713	ZIM	0.94	−0.11	
At4g14720	ZIM	−0.01	0.21	
At4g32570	ZIM	0.50	0.50	
At1g62300	WRKY	2.04	2.08	
At5g13220	ZIM	0.10	1.75	
At5g20900	ZIM	0.22	1.13	

Values are means of two biological replicates.