Characterization of the complete mitochondrial genome and phylogenetic status of a recently described species of Mountain Dragon, Diploderma vela (Reptilia: Squamata: Agamidae), from the upper Lantsang valley in west China

Yayong Wu, Ke Li, Feng Wang, Qin Liu and Bo Cai

The mountain dragon, Diploderma vela, is an endemic valley lizard that inhabits the upper Lantsang Valley in West China. In this study, we sequenced the complete mitochondrial genome of a male individual of D. vela using next-generation sequencing methodologies. The complete mitogenome is 16,432 bp in length and contains one noncoding control regions, 13 protein-coding, 22 transfer RNA and two ribosomal RNA genes. The mitogenome content and structure of D. vela was consistent with the previously published representatives of the family. A Bayesian phylogenetic analysis using the complete mitochondrial genomes of Agamidae fully resolved D. vela in the Draconinae, a result consistent with previous investigations. This study provides bioinformatic data for better understanding the evolution and the phylogenetic history of the mountain dragon.

The complete mitochondrial genomes of D. vela was 16,432 bp in length, comprising one non-coding control region (CR), 13 protein-coding genes (PCGs), two ribosomal RNA genes, and 22 transfer RNA genes (tRNA), while lacking origin of light-strand replication (OL). The mitogenome base-pair is AT biased (58.8%) with 34.8% for A, 28.1% for C, 13.1% for G and 23.9% for T. Most genes were located on the heavy strand (H-strand) with the exception of ND6 and eight tRNA genes (tRNA-Glu, Ala, Asn, Cys, Tyr, Ser(UJC), Glu, and Pro). The mean length of tRNA genes was 68 bp, the shortest and the longest were tRNA-Cys gene (54 bp) and tRNA-Leu (75 bp), respectively. The mean length of PCGs was 865 bp, the shortest and the longest were ATP8 gene (162 bp) and ND5 (1779 bp), respectively. Most PCGs initiated with ATG except for ND2, ND5, and ATP8, and TAG (ND2 and ND6), while the other six genes ended with the incomplete stop codon, TA/T (COX2, ATP6, COX3, ND3, ND4, and Cytb). The mitogenome content and structure of D. vela was consistent with the previously identified based on Wang et al. (2015). The specimen and the liver tissue using Trelief Animal Genomic DNA Kit (Tsingke, Jia-Tang, lijt@cib.ac.cn). Total genomic DNA was extracted from the herpetological collection, Chengdu Institute of Biology, Chinese Academy of Science (http://herpmuseum.cib.ac.cn, Li Jia-Tang, lijt@cib.ac.cn). Total genomic DNA was extracted from liver tissue using Trelief Animal Genomic DNA Kit (Tsingke, Beijing, China) following the manufacturer’s instruction with minor modification. The complete mitochondrial DNA sequence was analyzed on an Illumina HiSeq 2000 platform. Genes were assembled and annotated with the SPAdes v3.11.0 (Bankevich et al. 2012) and MITOS web server (Bernt et al. 2013), respectively. The mitogenome was submitted to GenBank under the accession number MW788326. All sampling activities were conducted in accordance with the Guidelines of Animal Ethics published by the Chengdu Institute of Biology.

The complete mitochondrial genomes of D. vela was 16,432 bp in length, comprising one non-coding control region (CR), 13 protein-coding genes (PCGs), two ribosomal RNA genes, and 22 transfer RNA genes (tRNA), while lacking origin of light-strand replication (OL). The mitogenome base-pair is AT biased (58.8%) with 34.8% for A, 28.1% for C, 13.1% for G and 23.9% for T. Most genes were located on the heavy strand (H-strand) with the exception of ND6 and eight tRNA genes (tRNA-Glu, Ala, Asn, Cys, Tyr, Ser(UJC), Glu, and Pro). The mean length of tRNA genes was 68 bp, the shortest and the longest were tRNA-Cys gene (54 bp) and tRNA-Leu (75 bp), respectively. The mean length of PCGs was 865 bp, the shortest and the longest were ATP8 gene (162 bp) and ND5 (1779 bp), respectively. Most PCGs initiated with ATG except for ATP8 and ND5, both started with GTG. Seven PCGs terminated with complete stop codons, TAA (ND4L, ND5), AGG(ND1), AGA (COX1), CAC (ATP8), and TAG (ND2 and ND6), while the other six genes ended with the incomplete stop codon, TA/T (COX2, ATP6, COX3, ND3, ND4, and Cytb). The mitogenome content and structure of D. vela was consistent with the previously identified based on Wang et al. (2015). The specimen and the liver tissue using Trelief Animal Genomic DNA Kit (Tsingke, Jia-Tang, lijt@cib.ac.cn). Total genomic DNA was extracted from the herpetological collection, Chengdu Institute of Biology, Chinese Academy of Science (http://herpmuseum.cib.ac.cn, Li Jia-Tang, lijt@cib.ac.cn). Total genomic DNA was extracted from liver tissue using Trelief Animal Genomic DNA Kit (Tsingke, Beijing, China) following the manufacturer’s instruction with minor modification. The complete mitochondrial DNA sequence was analyzed on an Illumina HiSeq 2000 platform. Genes were assembled and annotated with the SPAdes v3.11.0 (Bankevich et al. 2012) and MITOS web server (Bernt et al. 2013), respectively. The mitogenome was submitted to GenBank under the accession number MW788326. All sampling activities were conducted in accordance with the Guidelines of Animal Ethics published by the Chengdu Institute of Biology.

The complete mitochondrial genomes of D. vela was 16,432 bp in length, comprising one non-coding control region (CR), 13 protein-coding genes (PCGs), two ribosomal RNA genes, and 22 transfer RNA genes (tRNA), while lacking origin of light-strand replication (OL). The mitogenome base-pair is AT biased (58.8%) with 34.8% for A, 28.1% for C, 13.1% for G and 23.9% for T. Most genes were located on the heavy strand (H-strand) with the exception of ND6 and eight tRNA genes (tRNA-Glu, Ala, Asn, Cys, Tyr, Ser(UJC), Glu, and Pro). The mean length of tRNA genes was 68 bp, the shortest and the longest were tRNA-Cys gene (54 bp) and tRNA-Leu (75 bp), respectively. The mean length of PCGs was 865 bp, the shortest and the longest were ATP8 gene (162 bp) and ND5 (1779 bp), respectively. Most PCGs initiated with ATG except for ATP8 and ND5, both started with GTG. Seven PCGs terminated with complete stop codons, TAA (ND4L, ND5), AGG(ND1), AGA (COX1), CAC (ATP8), and TAG (ND2 and ND6), while the other six genes ended with the incomplete stop codon, TA/T (COX2, ATP6, COX3, ND3, ND4, and Cytb). The mitogenome content and structure of D. vela was consistent with the previously
Phylogenetic analysis based on nucleotide sequences of 13 PCGs of *D. vela* with the other 17 species of Agamidae, both Uromastycinae (*Uromastyx benti*) and Leiolepidinae (*Leiolepis belliana*) were designated as outgroups based on published higher-level phylogenetic studies of squamate reptiles (Pyron et al. 2013). Bayesian phylogenetic tree using the GTR + I + G substitution model indicated that *D. vela* was closely related to its congeners, fully resolved in the subfamily Draconinae (PP 1.00) (Figure 1). The overall phylogenetic relationships among Agamidae were consistent with previous studies (Wang et al. 2019a). This study provides a valuable mitogenome resource for better understanding the molecular evolution and phylogenetic relationships of *D. vela*, and serves as a reference for the establishment of conservation strategies and measures.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the National Natural Science Foundation of China [Grant No. 31801980 to WYY], Sichuan Science and Technology Plan Project [Grant No. 2020YJ0126 to WYY], and Scientific Research Foundation of Yibin University [Grant No. 2019QD13 to WYY].

Data availability statement

The data that support the findings of this study are openly available in NCBI (National Center for Biotechnology Information) with GenBank Accession No. MW788326 (https://www.ncbi.nlm.nih.gov/nuccore/MW788326) and DRYAD (Dryad Digital Repository) with the unique DOI (doi:10.5061/dryad.qj2bvqgb).
References

Bernt M, Donath A, Juhling F, Externbrink F, Florentz C, Fritzsch G, Putz J, Middendorf M, Stadler PF. 2013. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol. 69(2): 313–319.

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prijibelski AD, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 19(5):455–477.

Huang W, Luo H, Luo S, Huang A, Ni Q, Yao Y, Xu H, Zeng B, Li Y, Wei Z, et al. 2019. The complete mitogenome of the splendid japalure *Japalura splendidia* (Squamata, Agamidae). Mitochondrial DNA Part B. 4(2):2641–2642.

Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol. 33(7):1870–1874.

Li Y, Wang Y, Bai Y, Lv Y, Xiong J. 2021. Mitochondrial genome of *Diploderma micangshanense* and its implications for phylogeny of the genus Diploderma. Mitochondrial DNA Part B. 6(3):798–802.

Liu J, Yu J, Zhou M, Yang J. 2019. Complete mitochondrial genome of *Japalura flaviceps*: deep insights into the phylogeny and gene rearrangements of Agamidae species. Int J Biol Macromol. 125:423–431.

Nylander JAA. 2004. MrModeltest v2. program distributed by the author. Evolutionary Biology Centre, Uppsala University. https://github.com/nylander.

Pyron RA, Burbrink FT, Wiens JJ. 2013. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol Biol. 13:93 doi:10.1186/1471-2148-13-93. PMC: 23627680

Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 61(3):539–542.

Uetz P, Freed P, Hosek J. 2020. The reptile database. [accessed 2019 Nov 9]. http://www.reptile-database.org.

Wang K, Che J, Lin SM, Deepak V, Aniruddha DR, Jiang K, Jin JQ, Chen HM, Siler CD. 2019a. Multilocus phylogeny and revised classification for mountain dragons of the genus *Japalura sl*. (Reptilia: Agamidae: Draconinae) from Asia. Zool J Linn Soc. 185(1): 246–267.

Wang K, Jiang K, Pan G, Hoo M, Siler CD, Che J. 2015. A new species of *Japalura* (Squamata: Sauria: Agamidae) from upper Lancang (Mekong) valley of eastern Tibet, China. Asian Herpetol Res. 6(3): 159–168.

Wang K, Jiang K, Ren J, Zou D, Wu J, Che J, Siler CD. 2019b. A new species of Dwarf *Japalura sensu lato* (Reptilia: Squamata: Agamidae) from the upper Mekong River in Eastern Tibet, China, with notes on morphological variation, distribution, and conservation of two congeners along the same river. Zootaxa. 4544(4): 505–522.