LiV₃O₈ Nanoplates Via Polyacrylamide-assisted Freeze Drying Method and as Cathode Materials for Li-ion Batteries

Lin Li¹,²,*, Wei Zheng¹, Rongfei Zhao¹ and Jinsong Cheng¹

¹School of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China
²School of Chemical Engineering, Guizhou University of Engineering Science, Bijie 551700, China

Abstract. The LiV₃O₈ nanoplates cathode materials was prepared by polyacrylamide-assisted freeze drying method. The annealing temperature affected the agrochemical properties of the LiV₃O₈ nanosheets cathode materials. The LiV₃O₈ nanoplates cathode materials were characterized by XRD, XPS, SEM, TEM, and galvanization charge/discharge profile measurement. The LiV₃O₈ fabricated at 550 °C (LVO550) showed the highest discharge capacity, best agrochemical performance, and high rate capability (after 100th, a reversible discharge capacity up to 223.8 mAh g⁻¹). Benefiting from two dimensional nanoplates structure can provided a larger surface area, shorter lithium ion diffusion path, and maintain stable structure, the LiV₃O₈ nanoplates exhibited excellent rate capability, high reversible capacity and high temperature properties.

1 Introduction

Lithium ion battery (LIBs) have been more and more widely used with pure electric vehicles, hybrid electric vehicles, mobile electronic products, et.al [1]. However, commercialization cathode material of the LiCoO₂ (expensive of the raw material and environmental pollution problems of Co element) and LiFePO₄ (low electrical conductivity) limit the further development and application of LIBs [2]. So the development of low cost, non-toxic, long cycle life of electrode materials become the urgent demand of the LIBs [3]. The LiV₃O₈ layered compounds as a cathode materials, have attracted much attentions, due to good safety, low cost, their high theoretical capacity (~ 280 mAh g⁻¹), and easy preparation [4]. But, the LiV₃O₈ show poor cycle performance in the process of charging and discharging, thus restricting its development and large-scale application, and need further improvement [5]. Several approaches of doping modification, surface coating, and synthesis of specific nanostructures have been deployed to achieve those issues [6]. In these modification methods, synthesis of specific nanostructures can effectively improved the cycle performance, because of the specific nanostructures electrodes provided large contact area with the electrode material/electrolyte and short ions diffusion path [7].

A lot of research results show that the morphology, particle size and crystallinity of electrode materials have a very important influence to cycle performance and rate

* Corresponding author: 404003375@qq.com
The 2D nanoplates can effectively offer larger specific surface area and short electronic transmission path. This is mainly due to the nano effect of the one-dimensional structure, which can improve the electrochemical performance, and the axial microstructures can guarantee the thermodynamic stability [9]. However, because of the LiV3O8 layered structure, the two-dimensional structure of electrode materials were difficultly synthesized. Feng et al. [5] prepared the LiV3O8 via a sol-gel and solid-state method, the LiV3O8 materials display a high reversible capacity. Herein, the LiV3O8 nanosheets were prepared via a polyacrylamide-assisted freeze drying method. The electrochemical performances, structure, and morphology for the LiV3O8 nanoplates have been studied. Compared with the traditional preparation method, the LiV3O8 nanoplates exhibited excellent capacity and high temperature properties.

2 Experimental

0.03 mol of V2O5 and 0.01 mol of LiOH·H2O were added into 80 mL of de-ionized water and stirring, and 0.18 mol of C2H2O4·H2O was added into the mixed solution was vigorously stirred for 2 h, then 2 g polyacrylamide was added into the mixed solution was vigorously stirred for 1.5 h. Afterwards, the process of freeze drying could be briefly shown in ref [10]. The sticky precursors were calcined at 450, 500, 550, and 600 °C for 4 h to obtain the LiV3O8 samples. The as-synthesized oxides were designated as LVO450, LVO500, LVO550, and LVO600.

An SEM (JEOLJSM-7400F, Japan), TEM (JEM-2010, Japan), XPS, and X-ray diffractometer (XRD, D8 Advance, Bruker AXS) were used to detect structure and morphology of the LiV3O8 samples. The typical Electrochemical measurements process of LiV3O8 material could be briefly shown in ref [10].

3 Result and discussion

Figure.1 showed the XRD patterns of the those LiV3O8 samples. The diffraction peaks can be indexed to LiV3O8 (JCPDS No.72-1193). And the identified diffraction peaks at 50.8°, 42.1°, 40.9°, 40.3°, 30.7°, 28.5°, 26.1°, 23.3°, 15.6°, and 13.8° can be well assigned to (020), (203), (-205), (-301), (103), (-111), (-202), (003), (002), and (100) planes of the layer structure LiV3O8. These samples exhibit sharp diffraction peaks, indicating the well crystallization. XPS experiments were performed to identify the chemical composition and the oxidation states of the LVO550 sample in Fig. 1c. The complete XPS spectra indicate the existence of Li, O, and V elements. The two peak at 516.9 and 524.4 eV corresponds to V 2p3/2 and V 2p1/2, respectively. The O 1s peak at 529.7 eV for V-O and Li-O bonds.
The 2D nanoplates can effectively offer larger specific surface area and short electronic transmission path. This is mainly due to the nano effect of the one-dimensional structure, which improves the electrochemical performance, and the axial microstructures guarantee the thermodynamic stability. However, because of the LiV₃O₈ layered structure, the two-dimensional structure of electrode materials was difficultly synthesized. Feng et al. prepared the LiV₃O₈ via a sol-gel and solid-state method, and the LiV₃O₈ materials displayed a high reversible capacity. Herein, the LiV₃O₈ nanosheets were prepared via a polyacrylamide-assisted freeze drying method. The electrochemical performances, structure, and morphology for the LiV₃O₈ nanoplates have been studied. Compared with the traditional preparation method, the LiV₃O₈ nanoplates exhibited excellent capacity and high temperature properties.

2 Experimental

0.03 mol of V₂O₅ and 0.01 mol of LiOH·H₂O were added into 80 mL of de-ionized water and stirred, and 0.18 mol of C₂H₂O₄·H₂O was added into the mixed solution, which was vigorously stirred for 2 h, then 2 g polyacrylamide was added into the mixed solution and vigorously stirred for 1.5 h. Afterwards, the process of freeze drying could be briefly shown in ref [10]. The sticky precursors were calcined at 450, 500, 550, and 600 °C for 4 h to obtain the LiV₃O₈ samples. The as-synthesized oxides were designated as LVO450, LVO500, LVO550, and LVO650.

An SEM (JEOLJSM-7400F, Japan), TEM (JEM-2010, Japan), XPS, and X-ray diffractometer (XRD, D8 Advance, Bruker AXS) were used to detect the structure and morphology of the LiV₃O₈ samples. The typical electrochemical measurements process of LiV₃O₈ material could be briefly shown in ref [10].

3 Result and discussion

Figure 1 showed the XRD patterns of the LiV₃O₈ samples. The diffraction peaks can be indexed to LiV₃O₈ (JCPDS No.72-1193). The identified diffraction peaks at 50.8°, 42.1°, 40.9°, 40.3°, 30.7°, 28.5°, 26.1°, 23.3°, 15.6°, and 13.8° can be well assigned to (020), (203), (−205), (−301), (103), (−111), (−202), (003), (002), and (100) planes of the layer structure LiV₃O₈. These samples exhibit sharp diffraction peaks, indicating good crystallization. XPS experiments were performed to identify the chemical composition and the oxidation states of the LVO550 sample in Fig. 1c. The complete XPS spectra indicate the existence of Li, O, and V elements. The two peaks at 516.9 and 524.4 eV correspond to V 2p₃/₂ and V 2p₁/₂, respectively. The O 1s peak at 529.7 eV for V-O and Li-O bonds.

The LVO450, LVO500, LVO550, and LVO650 samples were measured via scanning electron microscopy (SEM). The non-uniform size of LVO450 samples can be found in Fig. 2a, low-magnification SEM shows the β-MnO₂ sample is composed of nanoplates (a small amount) and non-uniform nanorods. After high temperature calcination of 550 and 600 °C, compared with the LVO450 sample, those samples maintained the nanoplates morphology (diameters of 0.5-1.0 μm, length of 0.5-2.0 μm), the diameter is increased and the length is shortened. This may be due to the nanorods produced swelling effect along the axis direction with the embedding of Li⁺ in high temperature heat treatment process. As observed in the HRTEM image (in Fig. 2f), the expanded d-spacing (~ 0.22 nm) of (−301/−205) planes of LiV₃O₈ [9]. In addition, Fig. 2e shows a nanoplates morphology of diameters of 500-1000 nm of the LVO550 sample.
To investigate the half-cell performances of the LiV$_3$O$_8$ samples, GCD (galvanostatic charge-discharge) and CV (cyclic voltammograms) were carried out at 100 mAh g$^{-1}$ of 2.0-4.0 V. The first discharge capacity of the LVO600, LVO550, LVO500, and LVO450 were 240, 267, 220, and 292 mAh g$^{-1}$, and the capacity of 170, 224, 187, and 112 mAh g$^{-1}$ after 100 cycle, retention were 70.1, 83.8, 85.0, and 41.7 % from the first cycle, respectively. The rate capability of the LVO600, LVO550, LVO500, and LVO450 electrode is illustrated in Fig. 3 e. Compared with other electrodes, the LVO550 electrode showed specific capacities of 303.7, 223.7, 198.2, 187.9, 169.8, 137.2, 117.6 mAh g$^{-1}$ at 100, 300, 600, 1500, 3000, 6000, and 10000 mA g$^{-1}$, respectively. The LVO550 electrode exhibits higher capacity compare to other electrode indicating faster diffusion of lithium-ion. Outstanding electrochemical properties for the LiV$_3$O$_8$ nanoplates attributed to two dimensional nanoplates structure can provided a larger surface area, shorter lithium ion diffusion path, maintain stable structure, guaranteed the good rate performance [11]. Fig. 3g shows cyclic voltammograms of LVO550 sample. The first cathodic peak appeared at ~ 2.46 V, 2.70 V, 2.76 V, 2.96 V, and 3.63 V, which related to the insertion of Li-ion into the LiV$_3$O$_8$ materials and transform to Li$_{1+x}$V$_3$O$_8$ (x = 0.1-3) couples in the reduction process. And the broad peak appears at ~ 2.42 V, 2.82 V, 2.88 V, and ~ 3.70 V, which is due to the conversion of impurity V$_2$O$_5$ and Li$_{0.3}$V$_2$O$_5$ active phase formation in the oxidation process. In subsequent cycles, no changes of the potentials observed, suggesting the good stability of the LVO550 material. Fig. 3h shows EIS test of the LiV$_3$O$_8$ samples. The result of charge transfer resistance and solid phase diffusion were described to the semicircle and straight line of the EIS cycles. The R$_{ct}$ value of the LVO600, LVO550, LVO500, and LVO450 electrodes are 110Ω, 73 Ω, 89 Ω, and 142 Ω, indicating that LVO550 electrode own lithium ion diffusion and rapid charge transfer with the others sample, indicating that the LVO550 electrode own rapid charge transfer and lithium ion diffusion with the others sample. It is demonstrated that an enhanced cycle performance can be acquired because nanoplates structure can accelerate the electron diffusion and effectively accommodate the volume variation during the discharge/charge process and offer short pathways for the ions as well as electrons [12].
To investigate the half-cell performances of the LiV$_3$O$_8$ samples, GCD (galvanostatic charge-discharge) and CV (cyclic voltammograms) were carried out at 100 mAh g$^{-1}$ of 2.0–4.0 V. The first discharge capacity of LVO600, LVO550, LVO500, and LVO450 were 240, 267, 220, and 292 mAh g$^{-1}$, and the capacity after 100 cycle retention were 70.1, 83.8, 85.0, and 41.7 % from the first cycle, respectively. The rate capability of the LVO600, LVO550, LVO500, and LVO450 electrode is illustrated in Fig. 3 e. Compared with other electrodes, the LVO550 electrode showed specific capacities of 303.7 223.7, 198.2, 187.9, 169.8, 137.2, 117.6 mAh g$^{-1}$ at 100, 300, 600, 1500, 3000, 6000, and 10000 mA g$^{-1}$, respectively. The LVO550 electrode exhibits higher capacity compared to other electrodes indicating faster diffusion of lithium-ion.

Outstanding electrochemical properties for the LiV$_3$O$_8$ nanoplates attributed to two-dimensional nanoplates structure can provide a larger surface area, shorter lithium ion diffusion path, maintain stable structure, guaranteed the good rate performance [11]. Fig. 3g shows cyclic voltammograms of LVO550 sample. The first cathodic peak appeared at ~2.46 V, 2.70 V, 2.76 V, 2.96 V, and 3.63 V, which related to the insertion of Li-ion into the LiV$_3$O$_8$ materials and transform to Li$_{1+x}$V$_3$O$_8$ (x = 0.1–3) couples in the reduction process. And the broad peak appears at ~ 2.42 V, 2.82 V, 2.88 V, and ~ 3.70 V, which is due to the conversion of impurity V$_2$O$_5$ and Li$_0.3$V$_2$O$_5$ active phase formation in the oxidation process. In subsequent cycles, no changes of the potentials observed, suggesting the good stability of the LVO550 material. Fig. 3h shows EIS test of the LiV$_3$O$_8$ samples. The result of charge transfer resistance and solid phase diffusion were described to the semicircle and straight line of the EIS cycles. The R$_{ct}$ value of the LVO600, LVO550, LVO500, and LVO450 electrodes are 110 Ω, 73 Ω, 89 Ω, and 142 Ω, indicating that LVO550 electrode own lithium ion diffusion and rapid charge transfer with the others sample, indicating that the LVO550 electrode own rapid charge transfer and lithium ion diffusion with the others sample. It is demonstrated that an enhanced cycle performance can be acquired because nanoplates structure can accelerate the electron diffusion and effectively accommodate the volume variation during the discharge/charge process and offer short pathways for the ions as well [12].

### 4. Conclusions

In summary, the LiV$_3$O$_8$ nanoplates cathode materials was prepared by polyacrylamide-assisted freeze drying method. The annealing temperature affected the agrochemical properties of the LiV$_3$O$_8$ nanosheets cathode materials. The LiV$_3$O$_8$ nanoplates cathode materials were characterized by XRD, XPS, SEM, TEM, and galvanization charge/discharge profile measurement. The LiV$_3$O$_8$ fabricated at 550 °C (LVO550) showed the highest discharge capacity, best agrochemical performance, and high rate capability (after 100th, a reversible discharge capacity up to 223.8 mAh g$^{-1}$). Benefiting from two dimensional nanoplates structure can provide a larger surface area, shorter lithium ion diffusion path, and maintain stable structure, the LiV$_3$O$_8$ nanoplates exhibited excellent rate capability, high reversible capacity and high temperature properties.

### Acknowledgments

Financial support provided by the Guizhou Provincial Education Department (KY [2018] 031).
References

[1] W.S. Chen, H.P. Yu, S.Y. Lee, T. Wei, J. Li, Z.J. Fan, Chem. Soc. Rev. 47, 2837 (2018)
[2] X. Guo, G. Zhang, Q. Li, H. Xue, H. Pang, Energy Storage Mater. 15, 171 (2018)
[3] B. Dunn, H. Kamath, J.M. Tarascon, Science 334, 928 (2011)
[4] H. Zheng, Q. Zhang, H. Gao, W. Sun, H.M. Zhao, C.Q. Feng, J.F. Mao, Z.P. Guo, Energy Storage Mater. 22, 128 (2019)
[5] L.L. Feng, W. Zhang, L.N. Xu, D.Z. Li, Y.Y. Zhang, Solid State Sciences 103, 106187 (2020)
[6] H. Baea, Y. Kim, Mater. Adv. 2, 3234 (2021)
[7] J.H. Stansby, N. Sharma, D. Goonetilleke, J. Mater. Chem. A 8, 24833 (2020)
[8] M.S. Ziegler, J.E. Trancik, Energy Environ. Sci. 14, 1635 (2021)
[9] Z. Chen, F. Xu, S. Cao, Z. Li, H. Yang, X. Ai, Y. Cao, Small 13, 18 (2017)
[10] L.P. Wang, L.B. Deng, Y.L. Li, X.Z. Ren, H.W. Mi, L.N. Sun, P.X. Zhang, Y. Gao, Electrochimica Acta 284, 366 (2018)
[11] L.L. Feng, W. Zhang, L.N. Xu, D.Z. Li, Y.Y. Zhang, J. Alloy. Compd. 103, 106187 (2020)
[12] S. Huang, X.L. Wang, Y. Lu, X.M. Jian, X.Y. Zhao, H. Tang, J.B. Cai, C.D. Gu, J.P. Tu, J. Alloy. Compd. 584, 41 (2014)