Spectroscopic follow-up of statistically selected extremely metal-poor star candidates from GALAH DR3

G. S. Da Costa,1,2∗ M. S. Bessell,1 Thomas Nordlander,1,2 Arvind C. N. Hughes,2,3,4,5 Sven Buder,1,2 A. D. Mackey,1,2, Lee R. Spitler,2,3,4,6 and D. B. Zucker2,3,4

1Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 0200, Australia
2ARC Centre of Excellence for Astrophysics in Three Dimensions (ASTRO-3D), Canberra, ACT 2611, Australia
3School of Mathematical and Physical Sciences, Macquarie University, Sydney, NSW 2019, Australia
4Research Centre in Astronomy, Astrophysics and Astrophotonics, Macquarie University, Sydney, NSW 2019, Australia
5Max Planck Institute for Astronomy, Heidelberg, Germany
6Australian Astronomical Optics, Faculty of Science and Engineering, Macquarie University, Macquarie Park, NSW 2113, Australia

Accepted XXX. Received YYY; in original form ZZZ.

ABSTRACT
The advent of large-scale stellar spectroscopic surveys naturally leads to the implementation of machine learning techniques to isolate, for example, small sub-samples of potentially interesting stars from the full data set. A recent example is the application of the t-SNE statistical method to ~600,000 stellar spectra from the GALAH survey in order to identify a sample of candidate extremely metal-poor (EMP, [Fe/H] ≤ −3) stars. We report the outcome of low-resolution spectroscopic follow-up of 83 GALAH EMP candidates that lack any previous metallicity estimates. Overall, the statistical selection is found to be efficient (~one-third of the candidates have [Fe/H] ≤ −2.75) with low contamination (<10% have [Fe/H] > −2), and with a metallicity distribution function that is consistent with previous work. Five stars are found to have [Fe/H] ≤ −3.0, one of which is a main sequence turnoff star. Two other stars are revealed as likely carbon-enhanced metal-poor (CEMP) stars of type CEMP-s, and a known carbon star is re-identified. The results indicate that the statistical selection approach employed was successful, and therefore it can be applied to forthcoming even larger stellar spectroscopic surveys with the expectation of similar positive outcomes.

Key words: stars: abundances – stars: carbon – stars: Population II – Galaxy: stellar content

1 INTRODUCTION
The most metal-poor stars in the Milky Way are key objects for understanding star formation and chemical enrichment at the earliest epochs in the Galaxy’s evolution (see, e.g., the reviews of Beers & Christlieb 2005; Frebel & Norris 2015). This is because the Big Bang produced only hydrogen, helium and trace amounts of light elements such as lithium: the heavier elements result solely from the evolution of the stars that formed from the original pristine gas, the so-called Population III, or first generation, stars. The supernova explosions of these stars enriched the surrounding gas with their nucleosynthetic products that were then incorporated into the subsequent generations of stars. No genuine Population III star, which would necessarily need to be of sub-solar mass to have survived a Hubble time, has yet been discovered. Nevertheless, the properties of the first generation stars can be investigated through the study of element abundances in second and third generation stars1, stars that are characterized by very low overall abundance compared that of the Sun (e.g., Nordlander et al. 2019; Kielty et al. 2021; Welsh et al. 2021).

The high rate of star formation at early times in the Galaxy’s formation with the accompanying rapid rise in stellar and gas metallicities means that second and third generation stars are extremely rare. The search for, and study of, such stars has nevertheless been an active field for decades. Searches for extremely metal-poor (EMP) stars, which have [Fe/H] ≤ −3.0 (Beers & Christlieb 2005), have employed a variety of techniques (see, e.g., Da Costa et al. 2019, for examples of large scale surveys for EMP stars). They fundamentally fall into one of two categories: searches that target candidates via EMP-specific spectroscopic or photometric characteristics, or searches that seek to identify rarely occurring EMP stars in large scale spectroscopic surveys that have no EMP-specific bias. With the development of highly multiplexed spectrographs and dedicated facilities, large scale spectroscopic datasets that contain ~10⁵–10⁶ objects are now becoming available, with examples including the APOGEE (Ahumada et al. 2020) and GALAH (Buder et al. 2021) surveys. The enormous number of stars in these and other similar surveys, combined with the extreme rarity of EMP stars, necessarily requires the implementation of machine-learning techniques to isolate the likely tiny number of potential EMP candidates in such extensive samples. One such approach is discussed in Hughes et al. (2022) in which the t-SNE (t-distributed stochastic embedding; van der Maaten & Hinton 2008) method is applied to the ~600,000 stellar spectra in Data Release 3.

∗ E-mail: gary.dacosta@anu.edu.au
1 Second generation stars are likely the CEMP-no stars that have substantial overabundances in [C/Fe] coupled with very low iron abundances, while third generation stars are likely those also with very low iron abundances but which lack any significant carbon overabundance, i.e., possess approximately solar [C/Fe] values (e.g., Hansen et al. 2016; Yoon et al. 2019; Norris & Yong 2019).
(DR3) of the GALAH survey (Buder et al. 2021). Other examples of the application of the t-SNE approach to search for metal-poor stars in stellar spectroscopic survey data include Matijević et al. (2017) and Anders et al. (2018). In essence, the t-SNE method reduces high dimensional data to a 2D map where stars with similar characteristics are close together and dissimilar stars are well separated. Consequently, stars that fall near known EMP stars in the t-SNE map are likely EMP candidates.

The GALAH data are derived from spectra obtained with the HERMES high resolution spectrograph (Sheinis et al. 2015) at the Anglo-Australian Telescope. In order to accommodate the multi-object capability provided by the 2dF multi-fibre instrument, HERMES spectra are restricted to four fixed wavelength channels (blue: $\lambda 4713–4903\AA$, green: $\lambda 5648–5873\AA$, red: $\lambda 6478–6737\AA$ and IR: $\lambda 7585–7887\AA$) that are optimum for the studying abundances of up to 30 elements in the approximately solar metallicity dwarfs that dominate the GALAH sample (Buder et al. 2021). The consequence of this choice, however, is that GALAH spectra for EMP-stars are largely featureless in the HERMES wavelength channels with the Balmer lines H$\beta$ and H$\alpha$ the only strong features. For this reason Hughes et al. (2022) did not apply the t-SNE approach to the entire available wavelength space. Instead the analysis was restricted to wavelength regions around H$\alpha$ and H$\beta$ plus the intervals $\lambda 4867–4872\AA$ and $\lambda 4887–4892\AA$ that contain the strongest Fe I lines in the HERMES channels. A region ($\lambda 7771.94–7775.39\AA$) from the IR-channel that covers the O I triplet was also included to discriminate against hot stars (Hughes et al. 2022). As discussed in Hughes et al. (2022), the analysis resulted in ~2500 stars (less than 1% of the input sample!) in a “metal-poor island” in the t-SNE 2D map (see Figs 4 and 5 of Hughes et al. 2022). Stellar parameters (T$_{\text{eff}}$, log g, [Fe/H]) were then estimated for these stars via fits of model synthetic spectra to the blue channel data in the vicinity of H$\beta$ and in the regions containing the Fe I lines noted above. The outcome was a set of 54 nominally EMP candidates, i.e. stars for which the estimated abundance satisfies [Fe/H] $\leq$ –3.0; these stars occupy the “upper edge” of the “metal-poor island” in the t-SNE 2D map (see Fig. 6 of Hughes et al. 2022).

Overall, there are three distinct advantages to the approach. First, as outlined in Buder et al. (2021), the GALAH sample is essentially unbiased, as stars are targeted for observation in the GALAH survey via simple selection criteria. These are: all stars with 12.0 < V$_{\text{J}}$ < 14.0 (where V$_{\text{J}}$ is a proxy for the V magnitude calculated from 2MASS photometry, see Buder et al. (2021)), declination < +10° and |b| > 10° in regions of the sky that have at least 400 targets in π square degrees (the field of view of the 2dF multi-fibre instrument). Consequently, the GALAH EMP candidate list will, for example, include candidate EMP main sequence turnoff stars that are excluded in red giant-focussed EMP star searches, such as the SkyMapper EMP program where a colour-cut is used to select against stars warmer than T$_{\text{eff}}$ $\approx$ 5750 K (Da Costa et al. 2019). The potential presence of EMP turnoff stars in the GALAH sample is in fact complimentary to surveys such as the TOPOs survey that specifically targets EMP turnoff stars (Caffau et al. 2013). Detailed study of EMP main sequence stars can provide chemo-dynamical information that adds to that from EMP red giants. Such stars are also important, for example, for the study of the complex behaviour of Li abundances at low [Fe/H] (e.g., Bonifacio et al. 2018).

The second advantage of the nature of the GALAH survey target list is that it will include any carbon-enhanced metal-poor (CEMP) stars meeting the selection criteria. CEMP-stars, especially CEMP-no stars that are not enhanced in s-process elements (see Beers & Christlieb 2005, for CEMP-star type definitions), are increasingly common with decreasing [Fe/H] values, such that for [Fe/H] $\lesssim$ –4.0, essentially all stars are C-rich (see Norris & Yong 2019, and the references therein). The inclusion, or exclusion, of CEMP-stars in photometry-based EMP searches such as the SkyMapper (Da Costa et al. 2019) and Pristine (Starkenburg et al. 2017) programs is a complicated function of [C/Fe], [Fe/H] and effective temperature (and potentially also [O/Fe] and [N/Fe]) that is not easily quantified. However, such selection uncertainties are not an issue with the simple apparent-magnitude selection criteria employed in GALAH.

The third advantage of using the GALAH survey as a potential source of EMP candidates is that any confirmed new EMP stars will, with V $\lesssim$ 14, be relatively easy to study further in great detail. This is in contrast to the majority of EMP stars that are fainter, often significantly so, and hence require substantial resources to study in detail. The relative brightness of any EMP stars in GALAH could allow, for example, the determination of oxygen and nitrogen abundances, which require high-resolution spectra in the near-uv ($\lambda 13100–3200\AA$ for the OH-bands, and $\lambda 3360\AA$ for the NH-bands), abundances for an increased number of neutron-capture elements, and studies of isotopic ratios such as $^{12}$C/$^{13}$C and those of the isotopes of magnesium.

In the following section the selection of the stars targeted for observation is outlined, followed by a description of the observations and analysis procedures. The results are presented in §3 including a discussion of the selection efficiency of the t-SNE approach, and of the metallicity distribution function for the stars observed. A comparison of the spectrophotometric temperatures and surface gravities with those from the GALAH DR3 database is given in §§3.2, while §§3.3 gives information on a small number of noteworthy stars. The final section summarizes the outcomes.

2 SAMPLE DEFINITION AND OBSERVATIONS

A set of statistically selected GALAH DR3 EMP candidates for potential low-resolution spectroscopic follow-up observation, containing 93 stars (after removing one duplicate entry), was provided by Arvind Hughes in August 2021. Using the facilities provided by the Simbad and Vizier databases², 16 of the stars in the list were found to have existing metallicity estimates of sufficient precision (e.g., observed at high dispersion) to exclude them from the follow-up observing program. The remaining 77 candidates lack any existing metallicity information, which includes any [Fe/H] estimates in GALAH DR3, as these are unreliable for [Fe/H] $\lesssim$ –2 because of the limited wavelength coverage of the GALAH spectra. There are, however, a small number of stars in the data set for which metallicity estimates are available from LAMOST DR5 (Luo et al. 2019) and RAVE DR5 (Kunder et al. 2017). All 77 stars in this set, which we will refer to as the “2021 list”, have been observed with the ANU 2.3m telescope (see below).

For completeness, we note that the on-line version of Table 2 in Hughes et al. (2022) lists instead 53 distinct GALAH DR3 EMP candidates (the duplicate is repeated), Four of the stars have high dispersion [Fe/H] estimates (see Table 1 of Hughes et al. 2022), while again using the facilities of the Simbad and Vizier databases, there are an additional three stars in the list possessing high dispersion metallicity determinations (see Table 1). In addition, star GALAH DR3 ID 180126003201229 is most likely a highly reddened OB-star, as it is included as such in the catalogues of Mohr-Smith et al. (2017)²

² http://simbad.cds.unistra.fr/simbad/ Wenger et al. (2000), https://vizier.cds.unistra.fr/viz-bin/VizieR Ochsenbein et al. (2000)
and Zari et al. (2021). The Gaia DR3 catalogue (Gaia Collaboration et al. 2022) lists $T_{\text{eff}} = 15270$ K, log $g = 3.51$ for the star. It was observed as part of the auxiliary programs in GALAH and, since it lies at $b = -0.085^\circ$, it is strictly not part of the GALAH DR3 sample. This star and those with existing high dispersion metallicity estimates have been excluded, leaving 45 stars, which we will refer to as the “Table 2” list of GALAH EMP candidates. Of these 45 candidates, all but six are included in the “2021 list”; however, all six of these stars have also been observed at the 2.3m telescope. We therefore have observations of all 77 candidates in the “2021 list” and of all 45 candidates in the “Table 2 list” for a total sample of 83 stars with 2.3m telescope observations. Given the large degree of overlap between the two samples we will mostly focus on results from the combined sample of 83 stars with 2.3m telescope observations.

The observations were carried out between August 2021 and August 2022 with the ANU 2.3m telescope at Siding Spring Observatory, using the WiFiES integral field spectrograph (Dopita et al. 2010). The B3000 grating was employed with the blue camera to obtain resolution $R = 3000$ spectra that cover the wavelength range $\lambda 3400 - 5800\,\text{Å}$. Exposure times were set to obtain a signal-to-noise ratio (S/N) of at least 20 per pixel at the H and K lines of Ca ii. The integral field nature of the WiFiES instrument enabled useful spectra to be obtained even in poor seeing conditions. In these respects the observations are completely consistent with those described in Da Costa et al. (2019) for the SkyMapper search for EMP stars. Indeed some of the galah DR3 EMP candidates had already been observed in the skyMapper EMP program.

The raw observed spectra were extracted, sky-subtracted and wavelength-calibrated, and then flux-calibrated via observations of a number of well-established flux standards (see Da Costa et al. 2019, for a more detailed discussion of the flux-calibration process). In particular, all stars are observed with the atmospheric dispersion direction parallel to the IFU slits to minimize flux loss, and the use of an IFU spectrograph minimizes any seeing losses. Two or more observations of at least four flux standards are conducted each night. We find that the (relative) absolute flux calibration is stable on timescales of nights to months. In particular, the slope from $\lambda 4000$ to $5800\,\text{Å}$ in the fluxed spectra is very well defined. This slope is sensitive to both effective temperature and gravity for an assumed reddening.

The fitTER code (see Norris et al. 2013, for a description) was used to determine the best estimate of $T_{\text{eff}}$, log $g$ and [Fe/H] for each star via a comparison of the observed fluxes with those from a set of model atmospheres, given an (iterated if necessary) estimate of the star’s reddening. Details of the fitting procedure are described in Da Costa et al. (2019). The only significant change from Da Costa et al. (2019) is that instead of MARCS 1D model atmosphere fluxes (Gustafsson et al. 2008), we have used an extension of the grid of model fluxes discussed in Nordlander et al. (2019). Specifically, for giants (log $g \leq 3.5$) the models employ $v_{\text{mic}} = 2$ km s$^{-1}$ and are computed in spherical symmetry, while for dwarfs $v_{\text{mic}} = 1$ km s$^{-1}$ and plane-parallel symmetry is used. As noted in Nordlander et al. (2019), atomic lines in the model spectra are a selection from VALD3 (Ryabchikova et al. 2015), with molecular lines primarily from Brooke et al. (2013, 2014), Masseron et al. (2014), Ram et al. (2014) and Sneden et al. (2014). Examples of the spectrophotometric fits are shown in Fig. 5 of Da Costa et al. (2019). The temperatures, gravities and metallicities derived from the spectrophotometric fits will be designated $T_{\text{eff}} \, 2.3m$, log $g \, 2.3m$ and [Fe/H]$_{2.3m}$, respectively.

The $T_{\text{eff}} \, 2.3m$, log $g \, 2.3m$ and [Fe/H]$_{2.3m}$ values are quantized at the $\pm 25$ K, $\pm 0.125$ dex and $\pm 0.125$ dex level, and the best-fit parameters are generally well determined since the stars are relatively bright. Consequently, the uncertainty in the appropriate reddening value is frequently the largest contributor to the uncertainty in the derived temperature; errors arising from uncertainty in the flux calibration are generally less significant. Overall, we estimate that typical uncertainties are $\pm 100$ K, $0.3 - 0.35$ dex and $0.25 - 0.3$ dex in $T_{\text{eff}}\, 2.3m$, log $g \, 2.3m$ and [Fe/H]$_{2.3m}$, respectively. Finally, we note that region in the vicinity of the G-band (CH) at $\lambda \approx 4300\,\text{Å}$ was excluded from the fit if the observed band strength deviated substantially from the model spectrum, which is computed with [C/Fe] = 0 dex. Since only 3 of the GALAH EMP candidates are found to have strong CH-features (see §3.3), the [Fe/H]$_{2.3m}$ values for the bulk of the sample, given the 0.25 – 0.3 dex uncertainty, are not affected by the assumption of a solar [C/Fe] ratio. For the C-rich stars, it is possible that the large non-solar [C/Fe] values affect the structure of the stellar atmospheres compared to [C/Fe] = 0 models, but the size of any effect on [Fe/H]$_{2.3m}$ is not easily quantified. It is possible that the [Fe/H]$_{2.3m}$ values for these 3 stars are uncertain by an additional 0.25 – 0.3 dex.

Table 2 shows, for the first five stars, the Gaia DR3 Source identifier (Gaia Collaboration et al. 2016, 2022), the Gaia DR3 identifier (Buder et al. 2021), the Gaia DR3 J2000 right ascension (RA) and declination (Dec), the G-magnitude and B$_{p}$–R$_{p}$ colour (also from Gaia DR3) for each star together with the $T_{\text{eff}} \, 2.3m$, log $g \, 2.3m$, [Fe/H]$_{2.3m}$ and reddening values E(B–V)$_{2.3m}$ from the spectrophotometric fits to the observed spectra. The full list of these parameters for all 83 stars with 2.3m observations is available in the online supplementary material.

3 RESULTS

3.1 Selection efficiency and the Metallicity Distribution

Overall the t-SNE statistical selection approach discussed in Hughes et al. (2022) has proved to be quite successful in identifying metal-poor stars. Of the 83 candidates in the combined sample with spectrophotometric metallicity estimates from the 2.3m observations, only 6 have [Fe/H]$_{2.3m} > -2.0$ for a small false positive or contamination rate of 7 ± 3 per cent. This indicates an efficient selection process, indeed the contamination rate is similar to that for the SkyMapper search for EMP stars, which also has a contamination rate of 7% (Da Costa et al. 2019). Further, the contamination rate does not appear to depend on stellar type: all 17 main sequence turnoff star candidates selected have [Fe/H]$_{2.3m} \leq -2.0$ dex. Further, approximately one-third of the candidates have [Fe/H]$_{2.3m} \leq -2.75$, which is again broadly consistent with the SkyMapper search where the fraction of candidates with [Fe/H]$_{2.3m} \leq -2.75$ is $\approx 40\%$ (Da Costa et al. 2019). However, only five of the 83 stars observed have sufficiently low [Fe/H]$_{2.3m}$ values to be considered likely genuine EMP stars, i.e., [Fe/H]$_{2.3m} \leq -3.0$; four of these stars are red giants and one is a main sequence turnoff star. The red giant star with the lowest abundance has [Fe/H]$_{2.3m} = -3.5$; details of this star and for others of interest are given in §3.3.

The low return of genuine EMP candidates (5/83 or $\approx 6\%$) seems at first a disappointing outcome, but in fact, given the small sample size and the extreme rarity of EMP stars, such an outcome is not unexpected. We illustrate this as follows. In Fig. 1 we show the metallicity distribution function (MDF) of all the GALAH candidates with 2.3m spectra, i.e., including the main sequence turnoff stars, and compare it to the MDF for the much larger sample of stars observed in the SkyMapper program (Da Costa et al. 2019, and unpublished). In both cases the [Fe/H]$_{2.3m}$ values have been binned in increments of 0.25 dex, and we note that because of the colour selection employed (Da Costa et al. 2019), the SkyMapper sample is giant-focussed;
main sequence turnoff stars are excluded. The GALAH candidate distribution has been truncated to that for the SkyMapper sample by comparing the numbers of stars in the two samples with \([\text{Fe/H}]_{2.3m} \leq -2.25\) dex. Despite the small number of stars in the current sample, it is evident that the MDF for the GALAH candidates is consistent with that for the SkyMapper sample and with the MDF slope of \(-1.5\) for \(-4.0 \leq [\text{Fe/H}]_{2.3m} \leq -2.75\) (Da Costa et al. 2019; Yong et al. 2021).

Given the normalization, the SkyMapper MDF predicts that the GALAH sample of 83 stars should have had 13 EMP (i.e., \([\text{Fe/H}]_{2.3m} \leq -3\) stars, whereas only 5 have been detected. Assuming the standard deviation for the number of stars in a given metallicity range follows Poisson statistics (i.e., \(\sigma(n) = \sqrt{n}\)), this 5 stars observed versus 13 stars predicted difference is 1.9\(\times\) the combined \(\sigma\) and so not significant. The normalization also predicts less than one candidate below \([\text{Fe/H}]_{2.3m} = -3.5\), so the lack of any such star is not surprising. Finally, with only 17 main sequence turnoff stars in the full candidate sample, it is not possible to draw any definitive conclusions, but the MDF for these stars alone is consistent with that for the remainder of the sample.

For completeness, we note that when considering only the 45 stars with 2.3m spectrophotometry that are in the “Table 2” list (Hughes et al. 2022), the selection efficiency is somewhat improved; only two stars have \([\text{Fe/H}]_{2.3m} > -2.0\) for a 4 \(\pm\) 3% contamination rate (cf. 7 \(\pm\) 3% for the full set) while 19 have \([\text{Fe/H}]_{2.3m} \leq -2.75\), or 42 \(\pm\) 10% (cf. 31 \(\pm\) 6%). All 5 probable genuine EMP stars are in the “Table 2” list for a return of 11 \(\pm\) 5% versus 6 \(\pm\) 3% for the full set of observed stars. While the differences are relatively minor, the set of candidates in Table 2 of Hughes et al. (2022) is an improvement over the candidate list originally supplied. We should also not lose sight of the fact that the t-SNE statistical approach did re-identify \(\sim\)20 very and extremely metal-poor stars that were previously known, in addition to those used to identify the “metal-poor island” in the t-SNE 2D map. The statistical approach is therefore very efficient at selecting EMP candidates.

3.2 Comparison with GALAH DR3 parameters

In Fig. 2 we show a comparison of the effective temperatures derived from the spectrophotometric fits with the temperatures listed in the GALAH DR3 database for all the stars with 2.3m observations. One star, GALAH DR3 ID 140116004301131, has a listed GALAH DR3 \(T_{\text{eff}}\) value that is clearly significantly different (860 K cooler)

Table 2. Properties of the GALAH stars observed at the ANU 2.3m telescope. Columns are Gaia DR3 source ID, GALAH DR3 identifier, RA and Dec (J2000), Gaia DR3 G mag and Bp–Rp colour, and the effective temperature \(T_{\text{eff}}\), surface gravity \(g_{23m}\), and metallicity \([\text{Fe/H}]_{2.3m}\) from the spectrophotometric fits. Complete table available in the online supplementary material.

| Gaia DR3 Source | GALAH DR3 ID | RA (J2000) | Dec (J2000) | G mag | Bp–Rp mag | \(T_{\text{eff}}\) 2.3m K | log \(g_{23m}\) cgs | [Fe/H]_{2.3m} dex | E(B–V)_{2.3m} mag |
|----------------|-------------|------------|-------------|-------|-----------|-------------------|----------------|-----------------|-----------------|
| 497323403324026588 | 1611180026001383 | 00 06 06.68 | -51 32 40.6 | 12.874 | 0.937 | 5175 | 2.250 | -2.250 | 0.01 |
| 4709807060817381248 | 170805005101087 | 00 53 07.82 | -63 45 01.5 | 13.421 | 0.896 | 5325 | 2.875 | -2.250 | 0.02 |
| 467850412655821952 | 150903002402109 | 04 14 16.25 | -60 09 04.8 | 12.857 | 1.054 | 4950 | 1.625 | -2.500 | 0.04 |
| 467909587989727872 | 150904002402348 | 04 19 20.01 | -58 40 42.4 | 12.321 | 0.954 | 5350 | 2.125 | -2.750 | 0.02 |
| 467509209379082496 | 161011003401196 | 04 22 53.12 | -65 22 31.4 | 13.575 | 1.077 | 4975 | 2.000 | -2.750 | 0.02 |

Note: The \(T_{\text{eff}}\) 2.3m, log \(g_{23m}\) and [Fe/H]_{2.3m} values listed are the best-fit values from the spectrophotometric fitting process. The values are quantized at the \(\pm 0.125\) dex and \(\pm 0.125\) dex level but this does not indicate that the parameters are accurate to this level of precision.

Figure 1. A comparison of the metallicity distribution function for all GALAH candidates with 2.3m spectrophotometry (red circles) with that for the SkyMapper sample (Da Costa et al. 2019, and unpublished), shown as black star symbols. The GALAH numbers have been normalized to the SkyMapper numbers by using the number of stars with [Fe/H]_{2.3m} \(\leq -2.25\) dex. Error bars are calculated assuming Poisson statistics for the actual star numbers, with the normalization applied to the GALAH \(\pm 0.1\) error values. Since the two most metal-poor metallicities bins for the GALAH candidates each contain only one star, the lower error bar strictly extends to \(-\infty\), but has been truncated. The blue dashed line has a slope of \(-1.5\). The three open star symbols are all C-rich objects.
from the value (5000 K) derived from the 2.3m spectrophotometry. For the remaining 82 stars the mean difference in $T_{\text{eff}}$, in the sense (GALAH DR3 – 2.3m) is $-101$ K with a standard deviation of 135 K. For these predominantly metal-poor stars, the GALAH DR3 $T_{\text{eff}}$ values are set primarily by 1D model atmosphere fits to the H$\alpha$ and H$\beta$ line profiles (see Buder et al. 2021), while the spectrophotometric temperatures are primarily set by the Balmer continuum slope (after correction for reddening; see the discussion in Da Costa et al. 2019).

The consistency of the two temperature scales is then reassuring, modulo the small systematic offset. We note, however, that in Fig. 2, beyond $T_{\text{eff}} 2.3m \approx 6200$ K, the GALAH DR3 $T_{\text{eff}}$ values for the sample tend to be systematically underestimated relative to the spectrophotometric temperatures. It is unclear why this is the case though it may be related to the continuum normalization of the GALAH spectra (Buder, 2022, priv. comm.).

As regards uncertainties, although the 2.3m spectrophotometric $T_{\text{eff}} 2.3m$ values are quantized at the 25 K level, in practice uncertainty in the adopted reddening and in the fitting process means that the actual uncertainties in the spectrophotometric $T_{\text{eff}} 2.3m$ values are of order 100 K. If that’s the case, then the standard deviation of the differences would imply that the GALAH DR3 temperatures for these metal-poor stars also have uncertainties of order 100 K. Reassuringly, excluding the star with GALAH DR3 ID 160530003301334 for which there is no entry in the GALAH DR3 database for the error in $T_{\text{eff}}$ (or for the error in log $g$), as well as star 140116004301131, the mean GALAH DR3 $T_{\text{eff}}$ error for the remaining 81 stars is $104$ K with a standard deviation of $22$ K. In a similar fashion, we show in Fig. 3 a comparison of the surface gravities (log $g_{2.3m}$) derived from the 2.3m spectrophotometry with those given in the GALAH DR3 database (log $g_{\text{GALAH DR3}}$). The log $g_{2.3m}$ values are primarily set, for a given $T_{\text{eff}} 2.3m$ and assumed reddening, by the model spectral fits to the Balmer jump in the observed spectrum (see the discussion in Da Costa et al. 2019). No assumption regarding the distance to the star is required. On the other hand, the GALAH DR3 surface gravities are estimated (see Buder et al. 2021) by applying bolometric corrections, appropriate for the adopted temperatures, to the reddening corrected 2MASS $K$ magnitudes. Stellar masses then are estimated from appropriate isochrones, and crucially, luminosities are calculated by adopting the distances estimated from Gaia DR2 parallax measurements as described in Bailes-Jones et al. (2018). Given the relatively apparent magnitude cutoff for the GALAH sample ($V \approx 14$), this approach generally works well for the dwarfs that dominate the GALAH sample (see Buder et al. 2021) as these stars are relatively nearby with well-determined parallaxes. However, this approach could result in significant uncertainty in the derived log $g_{\text{GALAH DR3}}$ values for luminous red giants that are likely to be at significant distances and whose parallaxes may well be uncertain (see, e.g., the discussion in Cordini et al. 2021).

Fig. 3 shows that the two surface gravity estimates are, in fact, well correlated but with the GALAH DR3 values systematically higher than the log $g_{2.3m}$ estimates. The mean difference in log $g$, in the sense (GALAH DR3 – 2.3m) is 0.27 with a standard deviation of 0.36 dex for the 83 stars in the full sample. As for the $T_{\text{eff}}$ values, the origin of the systematic offset in the log $g$ values is unclear. The spectrophotometric log $g_{2.3m}$ values are quantized at the 0.125 dex level but a realistic estimate of the uncertainty in the values is $0.3 – 0.35$ dex. This value comes from (Da Costa et al. 2019) and is the dispersion in log $g_{2.3m}$ at fixed $T_{\text{eff}} 2.3m$ about a metal-poor RGB isochrone for the SkyMapper EMP star sample. In principle therefore, the uncertainties in the log $g_{2.3m}$ values could be responsible for the entire scatter in the log $g$ differences. However, the same could be said for the GALAH DR3 values as the average error in the log $g$ values listed in the GALAH DR3 database for these stars is 0.30 with a standard deviation of 0.12 dex. There is, nevertheless, some indication that the likely larger distances and therefore larger uncertainties in the GALAH DR3 log $g$ values for the red giants do play a role. For the 17 stars in Fig. 3 with log $g$ exceeding 3.0, i.e., subgiants and main sequence turnoff stars, the standard deviation of the differences is 0.30 dex, whereas for the 66 stars with log $g \leq 3.0$, i.e., the giants, the standard deviation of the differences is significantly larger at 0.37 dex. The mean offset, however, remains essentially unchanged (0.24 vs 0.28).

3.3 Stars of interest

In Fig. 4 we show the 2.3m spectra for two of the five candidates found to be likely genuine EMP stars, i.e., [Fe/H]$_{2.3m} \leq -3.0$. Star GALAH DR3 ID 170412004902987 is evidently an EMP main sequence turnoff star with $T_{\text{eff}} 2.3m = 6475$ K, log $g_{2.3m} = 4.0$ and [Fe/H]$_{2.3m} = -3.00$. For comparison, the GALAH DR3 database en-
try for this star gives consistent values, namely $T_{\text{eff}} = 6374$ K and $g = 4.26$. The second star depicted in Fig. 4 is the most metal-poor object in the set of 2.3m observations. This star is GALAH DR3 ID 160328004201328 and it is evidently an EMP red giant with the spectrophotometric fitting process yielding $T_{\text{eff}} = 4900$ K, $g = 1.875$ and $\text{[Fe/H]}_{2.3m} = -3.50$. Again we emphasize that values given are those of the spectrophotometric fit and that the listed precision does not imply comparable accuracy in the parameters. The GALAH DR3 database entry for this star gives $T_{\text{eff}} = 4931$ K and $g = 0.50$, values again consistent with the 2.3m determinations. We note that the other three probable EMP stars in the observed are red giants: these are GALAH DR3 ID 160514003301102 with $T_{\text{eff}} = 4500$ K, $g = 1.00$ and $\text{[Fe/H]}_{2.3m} = -3.00$, 160328004201370 with $T_{\text{eff}} = 4500$ K, $g = 1.375$ and $\text{[Fe/H]}_{2.3m} = -3.125$ and 140312003501132 with $T_{\text{eff}} = 4725$ K, $g = 0.625$ and $\text{[Fe/H]}_{2.3m} = -3.25$. The GALAH DR3 database entries for these stars are again consistent with the 2.3m values, namely: $T_{\text{eff}} = 4275$ K, $g = 1.11$, $T_{\text{eff}} = 4517$ K, $g = 1.13$, and $T_{\text{eff}} = 4387$ K, $g = 1.19$, respectively.

There are three other stars in the sample worthy of note. These are GALAH DR3 IDs 171208002602224, 170515005101325 and 160519003601381 whose 2.3m spectra are shown in the panels of Fig. 5. All of these stars, which are in Table 2 of Hughes et al. (2022), are evidently significantly enhanced in carbon. Initial spectrum synthesis calculations, employing the same approach as outlined in §3.4 of Da Costa et al. (2019), reveal that for both 171208002602224 and 170515005101325, $\text{[C/Fe]} = +0.8$ dex. The synthetic spectra (see Nordlander et al. 2019, for details) were calculated using a 1D, LTE approximation with the atmospheric parameters derived from the 2.3m spectra$^4$, and were convolved to match the resolution of the 2.3m spectra. Using the definition of Aoki et al. (2007), and noting that in each case $\text{[Fe/H]} < -2.0$, the stars qualify as CEMP stars.

Star 171208002602224 is HE 0520–5012 and is a known carbon star, as it is in the Christlieb et al. (2001) catalogue of faint high latitude carbon stars. However, it lacks any previous metallicity estimate prior to the value $\text{[Fe/H]} = -2.125$ derived here. Given the strength of the CN-bands at $\lambda 3883$ and $\lambda 4215$Å in the 2.3m spectrum, it is likely that this star is strongly enhanced in nitrogen as well as in carbon.

We show in Fig. 6 the outcomes of detailed synthetic spectrum fits in which the best-fit value of $\text{[C/Fe]}$, and of $\text{[N/Fe]}$ for 171208002602224, has been determined by $\chi^2$-minimization for the comparison between the observed and the synthetic spectra. For 160519003601381 and 170515005101325 the model atmosphere parameters were those from the 2.3m spectrophotometry, and the synthetic spectra were calculated with $\text{[N/Fe]} = 0$. The resulting $\text{[C/Fe]}$ values are $+0.8 \pm 0.2$ and $+1.1 \pm 0.2$, respectively, confirming the initial estimates. The case for 171208002602224 is more complex because of the large abundances of C and N. The fit shown for this star employs $T_{\text{eff}} = 4450$ K, some $-300$ K hotter than the 2.3m spectrophotometric determination. Similarly, the $g$ value is 0.25 lower at 0.75, while the $\text{[Fe/H]}$ value is unchanged. Given the probable complex nature of the atmosphere of this star, these differences in atmospheric parameters are likely within the uncertainties in the parameters. The best-fit shown is for $\text{[C/Fe]} = +1.3$ and $\text{[N/Fe]} = +1.9$; both values are likely uncertain at the $\pm 0.3$ level.

Stars 170515005101325 and 160519003601381 are likely the first CEMP- $s$ stars identified in the GALAH DR3 dataset as both stars show enhanced abundances for $s$-process elements in the GALAH DR3 database. Specifically, for 170515005101325, $\text{[Y/Fe]} = 0.38 \pm 0.13$, $\text{[Ba/Fe]} = 1.16 \pm 0.09$, $\text{[Nd/Fe]} = 1.46 \pm 0.14$ but there is no measurement for $\text{[Eu/Fe]}$. For 160519003601381, $\text{[Y/Fe]} = 0.26 \pm 0.19$, $\text{[Ba/Fe]} = 1.35 \pm 0.10$, $\text{[La/Fe]} = 1.59 \pm 0.18$ and there is only a weak upper limit for $\text{[Eu/Fe]}$ ($\text{[Eu/Fe]} < 1.8$). It is likely that both stars are CEMP- $s$ stars but confirmation of the classification requires a measurement of $\text{[Eu/Fe]}$, as the CEMP- $s$ classification requires $\text{[Ba/Fe]} > 1.0$ and $\text{[Ba/Eu]} > +0.5$ dex (e.g., Beers & Christlieb 2005). For star 171208002602224 no information is given in the GALAH DR3 database for any neutron-capture elements. The occurrence of these C-rich stars in the sample of EMP candidates with 2.3m observations confirms that the underlying t-SNE selection process is not affected by the C-rich (or not) nature of the stars, which is not surprising since there are no strong carbon features in the wavelengths covered by the GALAH spectra.

The high $\text{[C/Fe]}$ and $\text{[s/Fe]}$ abundances in CEMP- $s$ stars are generally thought to have their origin in mass-transfer from an asymptotic giant branch (AGB) star in a binary system (e.g., Ryan et al. 2005), where the AGB star is now a white dwarf. Judging by the $\text{[Ba/Fe]}$ versus $\text{[Fe/H]}$ panel in Fig. 21 of Buder et al. (2021), and requiring $\text{[Ba/Fe]} \geq +1$ and $\text{[Fe/H]} \lesssim -2.0$, it appears likely that there are a small number of additional CEMP- $s$ candidates in the GALAH DR3 sample. Such a sample could be readily followed-up with low-resolution spectroscopy to confirm the CEMP nature (although $\text{[Eu/Fe]}$ measurements would still be required for a definite classification).

$^4$ The GALAH DR3 parameters for these stars are $T_{\text{eff}} = 4089$, 5048 and 5375 K, and $g = 1.33$, 2.17 and 1.50, respectively.
We also note that the one of the “Value-Added Catalogues” to the GALAH DR3 release contains the kinematics of the GALAH stars (see Buder et al. 2021, for details). The majority of the stars considered here have (when the kinematic information is available) kinematics consistent with membership of the “inner halo”, i.e., \( s_{\text{max}} \) (maximum height above the plane) greater than \(-2\) kpc and \( R_{\text{ap}} \leq 12\) kpc. Stars 160514003301102 ([Fe/H] \(_{2.3\text{m}} = -3.0\)) and 170515005101325 (CEMP-\(s\) candidate) have retrograde orbits.

### 4 CONCLUSIONS

In this study we have followed up with low resolution spectroscopy a number of candidate extremely metal-poor stars (i.e., [Fe/H] \(\leq -3.0\)) identified in the GALAH DR3 database. The observed spectra provide values of \(T_{\text{eff}}\), \(\log g\) \(_{2.3\text{m}}\) and [Fe/H] \(_{2.3\text{m}}\) for the candidates, which were identified from among the \(~600,000\) stars with GALAH DR3 spectra through the application of the t-SNE statistical method (Hughes et al. 2022). The statistical approach highlights candidate metal-poor stars, which are revealed as making up less than 1% of the total sample, and the most promising EMP candidates are then identified via model synthetic spectral fitting to narrow wavelength intervals in the HERMES blue channel spectra (Hughes et al. 2022). The approach has been successful both in (re-)identifying known metal-poor stars and in flagging candidates for confirmation via low resolution spectroscopy.

Observations of the list of previously unstudied EMP candidates has shown low contamination from metal-richer stars, and a metallicity distribution function consistent with previous work. Five previously unknown probable [Fe/H] \(\leq -3.0\) stars are revealed, four of which are red giants while one is a main sequence turnoff star. The outcome of the statistical approach is clearly limited only by the extreme rarity of EMP stars in surveys, such as GALAH, that are not specifically aimed at finding low metallicity stars. The simple selection criteria of the GALAH survey (and the lack of strong carbon features in the HERMES spectral bands) nevertheless means that EMP candidates selected are not biased by effective temperature or by carbon abundance, biases that can affect other EMP search.
programs. Indeed the low resolution spectroscopy has revealed the first two probable CEMP-s stars in the GALAH sample, as well as re-identifying a known high-latitude carbon star. The relatively bright \((V \leq 14)\) nature of the GALAH stars also means detailed follow-up with full wavelength coverage high dispersion spectrographs would be straightforward.

In essence the results here demonstrate that the statistical approach adopted in Hughes et al. (2022) should be equally productive when applied to forthcoming even larger stellar spectroscopic surveys that will reach fainter magnitudes, such as those proposed with the WEAVE (Dalton et al. 2012, 2020), 4MOST (de Jong et al. 2019) and DESI (Cooper et al. 2022) instruments.

ACKNOWLEDGEMENTS

This research has been supported in part by the Australian Research Council Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D) through project number CE170100013. It has also made use of the SIMBAD database, operated at CDS, Strasbourg, France, and the VizieR catalogue access tool, CDS, Strasbourg, France (DOI: 10.26093/cds/vizier). The original description of the VizieR service was published in 2000, A&AS 143, 23.

This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement.

We acknowledge the traditional owners of the land on which the ANU 2.3m telescope is located, the Gamilaraay people, and pay our respects to elders past, present and emerging.

DATA AVAILABILITY

The underlying data will be shared on reasonable request to the authors.

REFERENCES

Ahumada R., et al., 2020, ApJS, 249, 3
Anders F., Chiappini C., Santiago B. X., Matijević G., Queiroz A. B., Steinmetz M., Guiglion G., 2018, A&A, 619, A125
Aoki W., Beers T. C., Christlieb N., Norris J. E., Ryan S. G., Tsangarides S., 2007, ApJ, 655, 492
Bailer-Jones C. A. L., Rybizki J., Fouesneau M., Mantelet G., Andrae R., 2018, AJ, 156, 58
Barklem P. S., et al., 2005, A&A, 439, 129
Beers T. C., Christlieb N., 2005, ARA&A, 43, 531
Bonifacio P., et al., 2018, A&A, 612, A65
Brooke J. S. A., Bernath P. F., Schmidt T. W., Bacsckay G. B., 2013, J. Quant. Spectrosc. Radiative Transfer, 124, 11
Brooke J. S. A., Bernath P. F., Sneden C., Lucatello S., 2014, ApJS, 211, 5
Dopita M., et al., 2010, Ap&SS, 327, 245
Frebel A., Norris J. E., 2015, ARA&A, 53, 631
Gaia Collaboration et al., 2016, A&A, 595, A1
Gaia Collaboration et al., 2022, arXiv e-prints, p. arXiv:2208.00211
Gustafsson B., Edvardsson B., Eriksson K., Jørgensen U. G., Nordlund Å., Plez B., 2008, A&A, 486, 951
Hansen T. T., Andersen J., Nordström B., Beers T. C., Placco V. M., Yoon J., Buchhave L. A., 2016, A&A, 586, A160
Hughes A. C. N., et al., 2022, ApJL, 930, 47
de Jong R. S., et al., 2019, The Messenger, 175, 3
Kielty C. L., et al., 2021, MNRAS, 506, 1438
Kunder A., et al., 2017, AJ, 153, 75
Luo A. L., Zhao Y. H., Zhao G., et al. 2019, VizieR Online Data Catalog, p. V/164
van der Maaten L., Hinton G., 2008, Journal of Machine Learning Research, 9, 2579
Masseron T., et al., 2014, A&A, 571, A47
Matijević G., et al., 2017, A&A, 603, A19
Mohr-Smith M., et al., 2017, MNRAS, 465, 1807
Nordlander T., et al., 2019, MNRAS, 488, L109
Norris J. E., Yong D., 2019, ApJ, 879, 37
Norris J. E., et al., 2013, ApJ, 762, 25
Ochsenbein F., Bauer P., Marcout J., 2000, A&AS, 143, 23
Onken C. A., et al., 2019, Publ. Astron. Soc. Australia, 36, e033
Ram R. S., Brooke J. S. A., Bernath P. F., Sneden C., Lucatello S., 2014, ApJS, 211, 5
Ryabchikova T., Piskunov N., Kurucz R., Stempels H., Heiter U., Pakhomov Y., Barklem P., 2015, Physica Scripta, 90, 054005
Ryan S. G., Aoki W., Norris J. E., Beers T. C., 2005, ApJ, 635, 349
Sheinis A., et al., 2015, Journal of Astronomical Telescopes, Instruments, and Systems, 1, 035002
Sneden C., Lucatello S., Ram R. S., Brooke J. S. A., Bernath P., 2014, ApJS, 214, 26
Starkenburg E., et al., 2017, MNRAS, 471, 2587
Welsh L., Cooke R., Fumagalli M., 2021, MNRAS, 500, 5214
Wenger M., et al., 2000, A&AS, 143, 9
Yong D., et al., 2019, MNRAS, 507, 4102
Yoon J., Beers T. C., Tian D., Whitten D. D., 2019, ApJ, 878, 97
Zari E., Rix H. W., Frankel N., Xiang M., Poggio E., Drimmel R., Tkachenko A., 2021, A&A, 650, A112
Čotar K., et al., 2019, MNRAS, 483, 3196

This paper has been typeset from a LaTeX file prepared by the author.