Supplementary Information for

The domino hexadehydro-Diels–Alder reaction transforms polyynes to benzyynes to naphthynes to anthracynes to tetracyanes (and beyond?)

Xiao Xiao and Thomas R. Hoye*

Department of Chemistry
University of Minnesota
207 Pleasant St. SE
Minneapolis, MN 55455

*Correspondence to: hoye@umn.edu
Table of Contents

I. General experimental protocols .. 4

II. Preparation procedures and characterization data for all new compounds 5
 Poly-ylene substrates .. 6
 Domino-HDDA products .. 31

III. Computational methods and results ... 67
 Distortion of HDDA-benzynes vs naphthyne 67
 Diels–Alder Reactions of HDDA-naphthyne (leading to 25k) and perylene 71
 Possible topological isomers of tetracenes 30 and 31 84
 Model studies of the interconversion between two topological isomers 94
 Calculated and experimental 1H NMR analysis of tetracenes 30 and 31 105
 Possible topological isomers of tetracene 32-H 106
 Possible topological isomers of hexacene 33 117

IV. UV and FL spectra ... 129

V. X-ray data for 25k, 28, and 32-H .. 131

VI. References for Supplementary Information 163

VII. Copies of 1H, 13C NMR, and/or HSQC/HMBC spectra 164

S1	1H/13C	165
S2	1H/13C	167
S4	1H/13C	169
S5	1H/13C	171
S7	1H/13C	173
S8	1H/13C	175
S9	1H/13C	177
S11	1H/13C	179
S12	1H/13C	181
S13	1H/13C	183
S14	1H/13C	185
S15	1H/13C	187
S16	1H/13C	189
S17	1H/13C	191
S18	1H/13C	193
S19	1H/13C	195
S20	1H/13C	197
S21	1H/13C	199
S22	1H/13C	201
S23	1H/13C	203
S24	1H/13C	205
S25	1H/13C	207
S26	1H/13C	209
9	1H/13C	211
12	H/H/C	213
13	H/H/C	215
15	H/H/C	217
16	H/H/C	219
17	H/H/C	221
19	H/H/C/HSQC/HMBC	223
20	H/H/C	227
21	H/H/C	229
22	H/H/C	231
25a	H/H/C	233
25b and 25b'	H/H/C	235
25c	H/H/C	237
25d-major	H/H/C	239
25d-minor	H/H/C	241
25e	H/H/C	243
25f	H/H/C	245
25g-CO	H/HSQC/HMBC	247
25g	H/H/C	250
25h	H/H/C	252
25i	H/H/C	254
25i'	H/H/C	256
25j	H/HSQC/HMBC	258
25k	H/H/C	261
25k' and 25k'	H/H/C	263
25l and 25l'	H/H/C	265
25m	H/H/C	267
25m'	H/H/C	269
25n	H/H/C	271
25n' and 25n'	H/H/C	273
25o	H/H/C	275
25p	H/H/C	277
25q	H/H/C	279
25r	H/H/C	281
25s	H/H/C	283
25t	H/H/C	285
25u	H/H/C	287
25v	H/H/C	289
25v'	H/H/C	291
27	H/H/C/HSQC/HMBC	293
28	H/H/C/HSQC/HMBC	297
29	H/H/C	301
30	H/H/C	303
31	H/H/C	306
32	H/H/C	308
32-H	H/HSQC/HMBC	311
33	H/HSQC/HMBC	315
I. General Experimental Protocols

13C and 1H NMR spectra were measured on Bruker Avance 500 (500 MHz) spectrometers. 1H NMR chemical shifts in CDCl$_3$ are referenced to CHCl$_3$ (δ = 7.26 ppm) or C$_6$H$_6$ (δ = 7.16 ppm). Non-first order multiplets are referred to by the acronym "nfom". Non-first order doublets, often seen for 1,4-disubstituted benzene derivatives, are identified as "nfot". Triplets and doublet of doublets having non-first order character are abbreviated as “nfot” and “nfodd”, respectively. 13C NMR chemical shifts for spectra collected in CDCl$_3$ are referenced to the carbon chemical shift in CDCl$_3$ (δ = 77.16 ppm) or C$_6$D$_6$ (δ = 128.06 ppm). The following format is used to report resonances in the 1H spectra: chemical shift in ppm [multiplicity, coupling constant(s) (J) in Hz, integration to the nearest whole number]. 1H NMR assignments are given by the substructure environment, e.g., OCH$_2$H$_6$. Complex structures are often numbered in the graphic in order to simplify the proton assignment identification. Coupling constant analysis was guided by methods we have described elsewhere.1,2

Infrared spectra were measured on a Midac Corporation Prospect 4000 FT-IR spectrometer in the ATR mode (germanium window) as thin films. Only the most intense and/or diagnostic peaks are reported.

High-resolution mass spectrometry (HRMS) measurements were determined on a Bruker BioTOF II (ESI-TOF) instrument in the electrospray ionization (ESI) mode. PEG was used as an internal standard/calibrant. Samples were introduced as solutions in methanol or a methylene chloride and methanol solvent mixture.

Some polyaromatic compounds were not detected by ESI ionization. For these HRMS were collected on a Thermo Orbitrap Velos in the positive atmospheric pressure chemical ionization (APCI) mode using an external standard (Pierce™ LTQ) with mass accuracy < 3 ppm. Samples were injected directly as dilute solutions (concentration less than 10$^{-6}$ M) in methanol.

UV-Vis absorption spectra were recorded in DCM at a concentration of 10$^{-5}$ M on a Varian Cary 50 Bio UV-Visible Spectrophotometer. Fluorescence data were obtained in DCM at a concentration of 10$^{-7}$ M using a Varian Cary Eclipse Fluorescence Spectrophotometer.

MPLC refers to medium pressure liquid chromatography (ca. 50–100 psi) using columns packed with RediSep Rf Gold® Normal-Phase Silica (Teledyne/ISCO, 20–40 µm, 60 Å pore size). Eluent was delivered with a Waters HPLC pump; a differential refractive index detector (Waters R401) was used to detect the eluted solute. Flash chromatography was performed with columns packed with E. Merck silica gel (230-400 mesh). Thin layer chromatography was done on plastic-backed plates of silica gel; TLC visualization was done by ceric ammonium molybdate staining and/or UV detection.

Reactions performed under anhydrous conditions were done under an atmosphere of nitrogen in flame-dried glassware. Anhydrous toluene, tetrahydrofuran or methylene chloride was collected immediately prior to use after being freshly passed through a column containing activated alumina. The reaction temperatures reported are the temperature of an external heating bath or, for the photo-HDDA reaction, of the air surrounding the reaction tube. Reactions carried out at temperatures higher than the boiling point of the reaction solvent were performed in a screw-capped vial culture tube or vial, sealed with an inert, Teflon®-lined screw cap.
II. Preparation procedures and characterization data for all new compounds

General Procedures A–C.

A. General procedure for the Cadiot–Chodkiewicz cross-coupling reaction

\[
\begin{array}{c}
R^1\equiv \text{H} + R^2\equiv \text{Br} \xrightarrow{\text{CuCl, NH}_2\text{OH•HCl}} R^1\equiv \text{R}^2
\end{array}
\]

To a solution of CuCl (0.050–0.10 equiv with respect to the terminal alkyne substrate) in 30:70 (v:v) nBuNH$_2$·H$_2$O (5.0 mL/mmol with respect to the terminal alkyne substrate) was added an excess of NH$_2$OH•HCl (typically a few crystals) with stirring. The color of this mixture turned from deep blue to colorless immediately, indicating full conversion of Cu(II) to Cu(I). The headspace of the reaction flask was purged with N$_2$. The vessel was sealed with a septum, a nitrogen balloon was attached, and the vessel was cooled in an ice water bath. A solution of the terminal alkyne (1.0 equiv) in CH$_2$Cl$_2$ (ca. 2.5 mL/mmol) was added into the flask via syringe resulting in a yellow, orange, or red suspension, which is indicative for the formation of an alkynyl copper species. After stirring for ca. 5 min, the 1-bromoalkyne (0.90–1.5 equiv) in CH$_2$Cl$_2$ (ca. 2.5 mL/mmol) was added dropwise via syringe over ca. 15 min using a syringe pump. The mixture was then kept stirring at the indicated temperature (0 °C or rt). Typically, the suspension of the alkynyl copper turned clear over the course of 10–100 min, which indicated consumption of the alkynyl copper species. The mixture was quenched by the addition of saturated aqueous NH$_4$Cl and extracted with CH$_2$Cl$_2$. The extracts were dried and concentrated. The crude material was subsequently purified by flash chromatography on silica gel.

B. General procedure for bromination of terminal or TMS-alkyne

\[
\begin{array}{c}
R\equiv \text{H} \quad \text{or} \\
R\equiv \text{TMS} \xrightarrow{\text{NBS, AgNO}_3} \text{Acetone} \quad \text{r.t.} \quad R\equiv \text{Br}
\end{array}
\]

To a stirred solution of terminal alkyne or TMS-protected terminal alkyne (1.0 equiv) and N-bromosuccinimide (NBS, 1.1 equiv) in acetone (0.10 M), powdered AgNO$_3$ (0.10 equiv) was added. After being stirred at room temperature for 1–2 hours (TLC monitoring), an equal volume of hexanes was added to the suspension, and the solid succinimide was removed by filtration through Celite®. Following solvent removal from the filtrate, the crude material was purified by flash chromatography.

C. General procedure for the domino HDDA reaction

The poly-yne precursor (1.0 equiv) and the trapping reagent (typically 1.2–10 equiv) were added to an oven-dried glass vial. The indicated solvent (typically chloroform—the source was amylene-stabilized rather than ethanol-stabilized, since ethanol is known to react with HDDA-benzenes³) was then added to dissolve all the material and arrive at a concentration of the poly-ye of 0.005–0.040 M. The headspace of the reaction vial was purged with a gentle flow of N$_2$ gas and the vial was sealed with a Teflon-lined cap. The reaction mixture was stirred in a heated oil bath held at the indicated temperature. After the poly-ye had disappeared (TLC), the vial was cooled to ambient temperature, the solution was concentrated in vacuo, and the residue was directly subjected to flash column chromatography on silica gel or to MPLC for purification.
A. Procedures for syntheses of and characterization data for poly-yne substrates

Synthesis of 9

Following general procedure A, 1,5-hexadiyne (0.95 mL, 10 mmol), 3-bromoprop-2-yn-1-ol (1.35 g, 10 mmol), CuCl (50 mg, 0.5 mmol), n-butylamine/H$_2$O (v:v, 30:70, 50 mL), and DCM (50 mL) were used to prepare triyne S1. Purification of the crude material by flash chromatography (hexanes:EtOAc 4:1) provided triyne S1 (739 mg, 5.6 mmol, 56%) as a pinkish solid.

1H NMR (500 MHz, CDCl$_3$): δ 4.32 (s, 2H, C$_2$H$_2$OH), 2.53 (nfot, J = 7.3 Hz, 2H, C≡CC≡CCH$_2$), 2.43 (nfd, J = 7.6, 2.6 Hz, 2H, HC≡C(CH)$_2$), 2.04 (t, J = 2.6 Hz, 1H, C≡CH), and 1.71 (br s, 1H, OH).

13C NMR (126 MHz, CDCl$_3$): δ 82.0, 79.3, 74.6, 70.7, 70.0, 65.6, 51.6, 19.5, and 18.4.

IR (neat): 3305, 3269, 3175, 2921, 2252, 1490, 1434, 1353, 1229, 1029, 1008, and 927 cm$^{-1}$.

HRMS (ESI-TOF): Calcd for C$_9$H$_8$AgO$^+$ [M+Ag$^+$] requires 238.9621; found 238.9617.

Mp: 62–64 ºC.

Tetradeca-2,4,8,10-tetrayn-1-yl propiolate (9)
Following general procedure A, triyne S1 (185 mg, 1.4 mmol), 1-bromopentyno (309 mg, 2.1 mmol), CuCl (14 mg, 0.14 mmol), n-butylamine/H$_2$O (v:v, 30:70, 7.0 mL), and DCM (7.0 mL) were used to prepare tetranyne S2. Purification by flash chromatography (hexanes:EtOAc 4:1) afforded tetranyne S2 (263 mg, 1.3 mmol), as a white solid.

1H NMR (500 MHz, CDCl$_3$): δ 4.32 (d, $J = 6.1$ Hz, 2H, CH$_2$OH), 2.54–2.47 (m, 4H, C≡CCH$_2$CH$_2$C≡C), 2.23 (t, $J = 6.9$ Hz, 2H, CH$_2$CH$_2$CH$_3$), 1.67 (t, $J = 6.1$ Hz, 1H, CH$_2$OH), 1.55 (sextet, $J = 7.0$ Hz, 2H, CH$_2$CH$_2$CH$_3$), and 0.98 (t, $J = 6.9$ Hz, 3H, CH$_2$CH$_2$CH$_3$).

13C NMR (126 MHz, CDCl$_3$): δ 79.0, 78.8, 74.6, 74.4, 70.7, 67.0, 65.8, 65.2, 51.6, 21.9, 21.3, 19.5, 19.2, and 13.6.

IR (neat): 3327, 3207, 2961, 2934, 2872, 2254, 1459, 1431, 1353, 1263, 1228, 1027, and 908 cm$^{-1}$.

HRMS (ESI-TOF): Calcd for C$_{14}$H$_{14}$AgO$^+$ [M+Ag$^+$] requires 305.0090; found 305.0085.

Mp: 74–75 °C.

Tetranyne S2 (238 mg, 1.2 mmol), 4-dimethylaminopyridine (DMAP, 17 mg, 0.14 mmol), and propionic acid (124 μL, 2.0 mmol) were dissolved in anhydrous DCM (15 mL) and stirred at 0 °C. N,N'-Dicyclohexylcarbodiimide (DCC*, 402 mg, 1.95 mmol) was added to the solution, after which the headspace of the reaction flask was purged with N$_2$. The resulted brown suspension was warmed to room temperature and stirred for 16 h. The crude reaction mixture was filtered by passing through a short silica plug, concentrated, and purified by flash chromatography (hexanes:EtOAc 8:1) to give pentanyne 9 (217 mg, 0.87 mmol, 68% over two steps) as a colorless solid (pinkish solid when exposed to light).

*CAUTION: DCC is an irritant and can lead to sensitization. Avoid any direct contact with the skin and inhalation.

1H NMR (500 MHz, CDCl$_3$): δ 4.83 (s, 2H, CH$_2$O), 2.95 (s, 1H, C=CH), 2.509 (nfot, $J = 5.0$ Hz, 2H, C≡CCH$_2$CH$_2$C≡C), 2.505 (nfot, $J = 5.2$ Hz, 2H, C≡CCH$_2$CH$_2$C≡C), 2.23 (t, $J = 7.0$ Hz, 2H, CH$_2$CH$_2$CH$_3$), 1.55 (sextet, $J = 7.2$ Hz, 2H, CH$_2$CH$_2$CH$_3$), and 0.98 (t, $J = 7.0$ Hz, 3H, CH$_2$CH$_2$CH$_3$).

13C NMR (126 MHz, CDCl$_3$): δ 151.8, 80.0, 78.9, 76.2, 74.2, 73.9, 72.5, 68.8, 67.0, 65.6, 65.1, 54.1, 21.9, 21.3, 19.4, 19.1, and 13.6.

IR (neat): 3243, 2971, 2936, 2261, 2129, 2117, 1702, 1440, 1430, 1370, 1235, 982, 949, and 761 cm$^{-1}$.

HRMS (ESI-TOF): Calcd for C$_{17}$H$_{14}$NaO$_2$$^+$ [M+Na$^+$] requires 273.0886; found 273.0865.

Mp: 51–52 °C.
Synthesis of 13

To a stirred solution of triyne S1 (528 mg, 4.0 mmol) and imidazole (326 mg, 4.8 mmol) in DCM (10 mL) at 0 °C was added tert-butyldimethylsilyl chloride (TBSCl, 664 mg, 4.4 mmol). The solution was then warmed to room temperature. After being stirred for 16 hours, the reaction mixture was quenched by the addition of saturated aqueous ammonium chloride, and extracted with DCM. The combined organic solution was dried and concentrated, and the crude TBS-ether S3 was directly used in the following step without further purification.

Bromoalkyne S4 was prepared following general procedure B from the crude sample of S3, N-bromosuccinimide (NBS, 712 mg, 4.0 mmol), AgNO3 (68 mg, 0.40 mmol), and acetone (40 mL). Purification by flash chromatography (hexanes:EtOAc 9:1) afforded S4 (1.27 g, 3.9 mmol, 98%) as a white solid.

1H NMR (500 MHz, CDCl3): δ 4.36 (s, 2H, CH2O), 2.51 (br s, 4H, CH2CH2), 0.90 [s, 9H, Si(CH3)2C(CH3)3], and 0.12 [s, 6H, Si(CH3)2C(CH3)3].

13C NMR (126 MHz, CDCl3): δ 78.1, 75.7, 75.4, 69.7, 66.6, 66.2, 52.2, 25.9, 19.4, 19.3, 18.4, and -5.0.

IR (neat): 2955, 2930, 2859, 2255, 1462, 1375, 1259, 1234, 1092, 907, 840, and 781 cm⁻¹.

HRMS (ESI-TOF): Calcd for C15H21AgBrOSi⁺ [M+Ag⁺] requires 430.9590; found 430.9581.

Mp: 142–144 °C.
18-((tert-Butyldimethylsilyl)oxy)octadeca-2,4,8,10,14,16-hexyn-1-ol (S5)

Hexayne S5 was synthesized following general procedure A from triyne S1 (218 mg, 1.65 mmol), bromoalkyne S4 (643 mg, 1.98 mmol), CuCl (16 mg, 0.16 mmol), n-butylamine/H₂O (v:v, 30:70, 8.0 mL), and DCM (8.0 mL). Purification by flash chromatography (hexanes:EtOAc 2:1) provided hexayne S5 (556 mg, 1.48 mmol, 90%) as a white solid.

¹H NMR (500 MHz, CDCl₃): δ 4.36 (s, 2H, CH₂OTBS), 4.32 (br s, 2H, CH₂OH), 2.51 (br s, 8H, CH₂CH₂ and CH₂CH₂), 1.67 (br s, 1H, OH), 0.90 [s, 9H, Si(CH₃)₂C(CH₃)₃], and 0.12 [s, 6H, Si(CH₃)₂C(CH₃)₃].

¹³C NMR (126 MHz, CDCl₃): δ 78.9, 78.1, 75.8, 75.6, 74.7, 70.7, 69.7, 66.7, 66.6, 66.2, 65.9, 52.2, 51.7, 25.9, 19.39, 19.38, 19.3, 19.2, 18.4, and -5.0.

IR (neat): 3353, 2958, 2858, 1432, 1372, 1260, 1234, 1089, 1025, 840, and 780 cm⁻¹.

HRMS (ESI-TOF): Calcd for C₂₄H₂₈NaO₂Si⁺ [M+Na⁺] requires 399.1751; found 399.1754.

Mp: 119–120 °C.

18-((tert-Butyldimethylsilyl)oxy)octadeca-2,4,8,10,14,16-hexyn-1-yl propiolate (13)

Hexayne S5 (226 mg, 0.60 mmol), 4-dimethylaminopyridine (DMAP, 7.0 mg, 0.062 mmol), and propionic acid (56 µL, 0.90 mmol) were dissolved in anhydrous DCM (6.0 mL) and stirred at 0 °C. N,N'-Dicyclohexylcarbodiimide (DCC*, 161 mg, 0.78 mmol) was added to the solution, after
which the headspace of the reaction flask was purged with N₂. The resulting brown suspension was warmed to room temperature and stirred for 16 h. The crude reaction mixture was filtered by passing through a short silica plug, concentrated, and purified by flash chromatography (hexanes:EtOAc 2:1) to give heptayne 13 (218 mg, 0.51 mmol, 85%) as a white solid.

*CAUTION: DCC is an irritant and can lead to sensitization. Avoid any direct contact with the skin and inhalation.

¹H NMR (500 MHz, CDCl₃): δ 4.83 [s, 2H, CH₂O(C=O)], 4.36 (s, 2H, CH₂OTBS), 2.95 (s, 1H, C≡CH), 2.51 (br s, 8H, CH₂CH₂ and CH₂CH₂), 0.90 [s, 9H, Si(CH₃)₂C(CH₃)₃], and 0.12 [s, 6H, Si(CH₃)₂C(CH₃)₃].

¹³C NMR (126 MHz, CDCl₃): δ 151.8, 79.9, 78.1, 76.2 (x2), 75.8, 75.4, 74.0, 72.5, 69.6, 68.9, 66.7, 66.5, 66.2, 65.7, 54.1, 52.2, 25.9, 19.39, 19.36, 19.3, 19.1, 18.4, and -5.0.

IR (neat): 3278, 2954, 2930, 2857, 2260, 2123, 1715, 1432, 1374, 1232, 1092, 840, and 781 cm⁻¹.

HRMS (ESI-TOF): Calcd for C₂₇H₂₈NaO₃Si⁺ [M+Na⁺] requires 451.1700; found 451.1716.

Mp: 68–70 °C.

Synthesis of 17

![Chemical diagram showing the synthetic route to 17](attachment:image.png)
1,4-bis(2-ethynylphenyl)buta-1,3-diyne (S6)

To a stirred solution of TMEDA (0.30 mL, 2.0 mmol) in DCM (25 mL) was added CuI (190 mg, 1.0 mmol) under air. The color of the clear solution quickly turned into deep blue, which indicated the generation of Cu(II) complexes. ((2-ethynylphenyl)ethynyl)trimethylsilane (2.0 g, 10 mmol) was added after the solution was exposed to air for ca. 10 min. The reaction was kept open to air and quenched after 16 hours by passing through a short silica plug (eluted with DCM). The DCM eluent was concentrated, and the crude tetryne S6-TMS (1.9 g) was used in the following step without further purification.

The crude tetryne S6-TMS (1.9 g) was then dissolved in THF (20 mL)/MeOH (80 mL) followed by addition of KF•2H2O (0.94 g, 10 mmol). After being stirred for 16 hours, the reaction was quenched by addition of deionized water and extracted with DCM. The combined organic phase was dried and concentrated. The residue was purified by flash chromatography (hexanes:EtOAc 12:1) to provide tetryne S6 (0.98 g, 3.9 mmol, 78% over two steps). The spectral data were consistent with reported values.

5-(2-((2-Ethynylphenyl)buta-1,3-diyn-1-yl)phenyl)penta-2,4-diy-1-ol (S7)

Pentayne S7 was synthesized following general procedure A from 1,4-bis(2-ethynylphenyl)buta-1,3-diyne (S6) (500 mg, 2.0 mmol), 3-bromoprop-2-yln-1-ol (405 mg, 3.0 mmol), CuCl (20 mg, 0.20 mmol), n-butylamine/H2O (v:v, 30:70, 10 mL), and DCM (10 mL). Purification by flash chromatography (hexanes:EtOAc 2:1) provided pentayne S7 (360 mg, 1.18 mmol, 59%) as an orange oil.

1H NMR (500 MHz, CDCl3): δ 7.58–7.48 (m, 4H, Ho), 7.36–7.29 (m, 4H, Hm), 4.44 (d, J = 6.1 Hz, 2H, CH2OH), 3.45 (s, 1H, C=CH), and 1.66 (t, J = 6.3 Hz, 1H, OH).
\textbf{13C NMR} (126 MHz, CDCl$_3$): δ 133.2, 133.1, 133.0, 132.7, 129.0 (x2), 128.9, 128.6, 125.7, 125.5, 125.0, 124.8, 82.1, 82.0, 81.6, 81.2, 80.5, 78.0, 77.6, 77.4, 76.4, 70.5, and 60.5.

\textbf{IR} (neat): 3340, 3289, 3059, 2860, 2249, 2213, 1474, 1356, 1190, 1084, 1013, 952, and 833 cm$^{-1}$.

\textbf{HRMS} (ESI-TOF): Calcd for C$_{23}$H$_{12}$NaO$^+$ [M+Na$^+$] requires 327.0780; found 327.0777.

5-(2-((2-(Bromoethynyl)phenyl)buta-1,3-diyn-1-yl)phenyl)penta-2,4-diyn-1-ol (S8)

Bromoalkyne S8 was synthesized following general procedure B from pentayne S7 (164 mg, 0.54 mmol), N-bromosuccinimide (NBS, 107 mg, 0.60 mmol), AgNO$_3$ (9 mg, 0.054 mmol), and acetone (10 mL). Purification by flash chromatography (hexanes:EtOAc 3:1) afforded S8 (191 mg, 0.50 mmol, 92%) as a brownish oil.

\textbf{1H NMR} (500 MHz, CDCl$_3$): δ 7.56–7.52 (m, 2H, H$_o$), 7.50 (nfom, 1H, H$_2$ or H$_5$), 7.46 (nfom, 1H, H$_5$ or H$_2$), 7.35–7.30 (m, 4H, H$_m$), 4.44 (s, 2H, CH$_2$OH), and 1.72 (br s, 1H, OH).

\textbf{13C NMR} (126 MHz, CDCl$_3$): δ 133.42, 133.38, 133.2, 132.7, 129.11, 129.08, 129.0, 128.5, 126.4, 125.6, 125.1, 125.0, 82.1, 81.3, 80.6, 78.4, 78.2, 77.7, 77.5, 76.6, 70.7, 55.3, and 51.9.

\textbf{IR} (neat): 3376, 3062, 2962, 2862, 2290, 2196, 1714, 1702, 1588, 1473, 1427, 1160, 1160, 1018, 957, and 832 cm$^{-1}$.

\textbf{HRMS} (ESI-TOF): Calcd for C$_{23}$H$_{11}$BrNaO$^+$ [M+Na$^+$] requires 404.9885; found 404.9869.
5-(2-((2-(4-Methoxyphenyl)buta-1,3-diyne-1-yl)phenyl)buta-1,3-diyne-1-yl)phenyl)penta-2,4-diyne-1-ol (S9)

Hexayne S9 was synthesized following general procedure A from 1-ethynyl-4-methoxybenzene (132 mg, 1.0 mmol), bromoalkyne S8 (171 mg, 0.45 mmol), CuCl (5 mg, 0.050 mmol), n-butylamine/H$_2$O (v:v, 30:70, 5.0 mL), and DCM (5.0 mL). Purification by flash chromatography (hexanes:EtOAc 2:1) provided hexayne S9 (99 mg, 0.23 mmol, 51%) as a light brown oil.

1H NMR (500 MHz, CDCl$_3$): δ 7.58–7.48 (m, 4H, H_o), 7.50 (nfod, $J = 8.9$ Hz, 2H, H_o'), 7.35–7.30 (m, 4H, H_m), 6.86 (nfod, $J = 8.9$ Hz, 2H, H_m'), 4.37 (d, $J = 6.4$ Hz, 2H, CH$_2$OH), 3.82 (s, 3H, OCH$_3$), and 1.62 (t, $J = 6.5$ Hz, 1H, OH).

13C NMR (126 MHz, CDCl$_3$): δ 160.6, 134.4, 133.4, 133.34, 133.32, 133.28, 129.10, 129.07, 129.0, 128.8, 125.7, 125.6, 125.14, 125.13, 114.3, 113.6, 83.6, 82.3, 81.3, 80.9, 79.1, 78.7, 78.3, 78.1, 77.6, 76.5, 73.1, 70.6, 55.5, and 51.8.

IR (neat): 3351, 3059, 2933, 2838, 2209, 2140, 1699, 1602, 1509, 1474, 1440, 1292, 1027, and 826 cm$^{-1}$.

HRMS (ESI-TOF): Calcd for C$_{32}$H$_{18}$NaO$_2^+$ [M+Na$^+$] requires 457.1199; found 457.1192.
5-(2-(2-((4-Methoxyphenyl)buta-1,3-diyn-1-yl)phenyl)buta-1,3-diyn-1-yl)phenyl)penta-2,4-diyn-1-yl propiolate (17)

Hexayne S9 (87 mg, 0.20 mmol), 4-dimethylaminopyridine (DMAP, 2.4 mg, 0.021 mmol), and propiolic acid (19 μL, 0.31 mmol) were dissolved in anhydrous DCM (2.0 mL) and stirred at 0 °C. N,N'-Dicyclohexylcarbodiimide (DCC*, 49 mg, 0.24 mmol) was added to the solution, after which the headspace of the reaction flask was purged with N₂. The resulting brown suspension was warmed to room temperature and stirred for 16 h. The crude reaction mixture was filtered by passage through a short silica plug, the filtrate was concentrated, and the residue was purified by flash chromatography (hexanes:EtOAc 3:1) to give heptayne 17 (59 mg, 0.12 mmol, 60%) as a pale yellow solid.

*CAUTION: DCC is an irritant and can lead to sensitization. Avoid any direct contact with the skin and inhalation.

H NMR (500 MHz, CDCl₃): δ 7.59–7.49 (m, 4H, Hₒ), 7.50 (nfod, J = 8.9 Hz, 2H, Hₒ'), 7.37–7.31 (m, 4H, Hₘ), 6.86 (nfod, J = 8.9 Hz, 2H, Hₘ'), 4.88 [s, 2H, CH₂O(C=O)], 3.82 (s, 3H, OCH₃), and 2.94 (s, 1H, C≡CH).

C NMR (126 MHz, CDCl₃): δ 160.6, 151.8, 134.4, 133.4, 133.47, 133.4, 133.3, 129.4, 129.1, 129.0, 128.8, 125.8, 125.7, 125.1, 124.7, 114.3, 113.7, 83.6, 81.4, 80.7, 79.1, 78.7, 78.5, 78.0, 77.4, 77.1, 76.26⁺, 76.26⁻, 73.9, 73.1, 72.4, 55.5, and 54.2.

IR (neat): 3282, 3065, 2934, 2839, 2242, 2209, 2122, 1721, 1602, 1509, 1474, 1292, 1252, 1208, 1172, 1130, 964, and 873 cm⁻¹.

HRMS (ESI-TOF): Calcd for C₃₅H₁₈NaO₃⁺ [M+Na⁺] requires 509.1148; found 509.1145.

Mₚ: 124–128 °C (with decomposition occurring above ca. 120 °C).
N,N-Bis(12-((tert-butyldimethylsilyl)oxy)dodeca-2,4,8,10-tetrayn-1-yl)methanesulfonamide (20)

Octayne 20 was synthesized following general procedure A from N,N-di(prop-2-yn-1-yl)methanesulfonamide (171 mg, 1.0 mmol), bromoalkyne S4 (715 mg, 2.2 mmol), CuCl (20 mg, 0.20 mmol), n-butylamine/H2O (v:v, 30:70, 5.0 mL), and DCM (5.0 mL). Purification by flash chromatography (hexanes:EtOAc 5:1) provided octayne 20 (352 mg, 0.53 mmol, 53%) as a white solid.

1H NMR (500 MHz, CDCl3): δ 4.36 (s, 4H, CH2O), 4.24 (s, 4H, CH2N), 2.98 (s, 3H, CH3SO2), 2.53 (br s, 8H, CH2CH2), 0.91 [s, 18H, Si(CH3)2C(CH3)3], and 0.12 [s, 12H, Si(CH3)2C(CH3)3].

13C NMR (126 MHz, CDCl3): δ 78.6, 77.7, 75.6, 71.2, 69.6, 69.5, 66.4, 65.8, 52.2, 39.0, 37.6, 25.9, 19.3, 19.2, 18.4, and -5.1.

IR (neat): 2955, 2930, 2857, 2259, 1471, 1426, 1351, 1256, 1231, 1157, 1085, 1006, 964, 900, 838, 815 and 779 cm⁻¹.

HRMS (ESI-TOF): Calcd for C37H49NNaO4Si2⁺ [M+Na⁺] requires 682.2813; found 682.2789.

Mp: 87–88 °C.
Synthesis of S11

1-Ethynyl-2-(phenylbuta-1,3-diyne-1-yl)benzene (S10)

Triyne S10 was prepared following general procedure A from (bromoethynyl)benzene (754 mg, 4.2 mmol), 1,2-diethynylbenzene (580 mg, 5.0 mmol), CuCl (25 mg, 0.25 mmol), \(n\)-butylamine/H\(_2\)O (v:v, 30:70, 25 mL), and DCM (25 mL). Purification by MPLC (hexanes:EtOAc 25:1) provided triyne S10 (532 mg, 2.4 mmol, 56%) as a pale yellow solid. The spectral data of triyne S10 were consistent with reported values\(^5\).

Dimethyl 2,2-bis(5-(2-(phenylbuta-1,3-diyne-1-yl)phenyl)penta-2,4-diyne-1-yl)malonate (S11)

Octayne S11 was prepared following general procedure A from 1-ethynyl-2-(phenylbuta-1,3-diyne-1-yl)benzene (S10) (294 mg, 1.3 mmol), dimethyl 2,2-bis(3-bromoprop-2-yn-1-yl)malonate (220 mg, 0.60 mmol), CuCl (13 mg, 0.13 mmol), \(n\)-butylamine/H\(_2\)O (v:v, 30:70, 5.0 mL), and DCM (5.0 mL). Purification by flash chromatography (hexanes:EtOAc 5:1) provided octayne S11 (308 mg, 0.47 mmol, 78%) as a pale yellow solid.

\(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta\) 7.55 (d, \(J = 7.3\) Hz, 4H, \(H2\')), 7.51 (d, \(J = 7.6\) Hz, 2H, \(H3\) or \(H6\)), 7.48 (d, \(J = 7.6\) Hz, 4H, \(H6\) or \(H3\)), 7.38–7.27 (m, 10H, \(H4\), \(H5\), \(H3\)' and \(H4\)'), 3.80 (s, 6H, \(CO_2CH_3\)), and 3.25 (s, 4H, \(\equiv CC\)H\(_2\)).

\(^13\)C NMR (126 MHz, CDCl\(_3\)): \(\delta\) 168.8, 133.4, 133.2, 132.7, 129.5, 128.90, 128.89, 128.6, 125.7, 125.3, 121.8, 83.2, 79.6, 79.5, 78.2, 78.1, 74.11, 74.10, 68.7, 57.0, 53.6, and 24.6.

IR (neat): 3061, 2955, 2926, 2855, 2244, 2215, 1742, 1478, 1442, 1335, 1304, 1289, 1210, 1068, 1052, 950, 858, and 755 cm\(^{-1}\).

HRMS (ESI-TOF): Calcd for C\(_{47}\)H\(_{28}\)NaO\(_4\)\(^{+}\) [M+Na\(^+\)] requires 679.1880; found 679.1844.

Mp: 80–83 °C.
Synthesis of S14

Following general procedure A, ((2-ethynylphenyl)ethynyl)trimethylsilane (240 mg, 1.2 mmol), 3-bromoprop-2-yn-1-ol (243 mg, 1.8 mmol), CuCl (12 mg, 0.12 mmol), n-butylamine/H$_2$O (v:v, 30:70, 6.0 mL), and DCM (6.0 mL) were used to prepare crude triyne S12-TMS (265 mg, ~1.0 mmol), which was used directly in the subsequent step without flash chromatography.

Bromoalkyne S12 was synthesized following general procedure B from crude S12-TMS (265 mg, ~1.0 mmol), N-bromosuccinimide (NBS, 205 mg, 1.2 mmol), AgNO$_3$ (17 mg, 0.10 mmol), and acetone (10 mL). Purification by flash chromatography (hexanes:EtOAc 4:1) afforded S12 (255 mg, 0.99 mmol, 82% over two steps, containing 3 wt% EtOAc based on integrations in 1H NMR spectrum, 80% corrected yield) as a light brown oil.

1H NMR (500 MHz, CDCl$_3$): δ 7.48 (nfoddd, $J = 7.6, 1.7$ Hz, 1H, H_o or H_o'), 7.44 (nfoddd, $J = 7.6, 1.5$ Hz, 1H, H_o' or H_o), 7.30 (nfoddd, $J = 7.5, 7.5, 1.8$ Hz, 1H, H_m or H_m'), 7.29 (nfoddd, $J = 7.8, 7.8, 1.7$ Hz, 1H, H_m' or H_m), 4.45 (s, 2H, CH_2OH), and 1.75 (br s, 1H, OHO).

13C NMR (126 MHz, CDCl$_3$): δ 133.2, 132.7, 129.1, 128.5, 126.5, 124.6, 81.8, 78.3, 76.9, 76.7, 70.6, 54.9, and 51.9.

IR (neat): 3343, 2925, 2855, 2239, 2196, 1478, 1443, 1356, 1275, 1260, 1182, 1083, 1016, and 757 cm$^{-1}$.

HRMS (ESI-TOF): Calcd for C$_{13}$H$_7^{79}$BrNaO$^+$ [M+Na$^+$] requires 280.9572; found 280.9567.
5-(2-((2-Methoxyphenyl)buta-1,3-diy-1-yl)phenyl)penta-2,4-diy-1-ol (S13)

Tetrayne S13 was prepared following general procedure A from bromoalkyne S12 (181 mg, 0.70 mmol), 1-ethynyl-2-methoxybenzene (111 mg, 0.84 mmol), CuCl (7 mg, 0.070 mmol), n-butylamine/H₂O (v:v, 30:70, 3.5 mL), and DCM (3.5 mL). Purification by flash chromatography (hexanes:EtOAc 2.5:1) provided tetrayne S13 (165 mg, 0.53 mmol, 76%) as a pale yellow oil.

¹H NMR (500 MHz, CDCl₃): δ 7.52 (d, J = 7.4 Hz, 1H, H₆), 7.52 (dd, J = 7.6, 1.9 Hz, 1H, H₉ or H₉’), 7.49 (dd, J = 7.6, 1.9 Hz, 1H, H₉’ or H₉), 7.35 (dd, J = 8.4, 7.6, 1.7 Hz, 1H, H₄), 7.32 (dd, J = 7.5, 7.5 1.7 Hz, 1H, H₆ or H₆’), 7.30 (dd, J = 7.7, 7.7, 1.7 Hz, 1H, H₆’ or H₆), 6.93 (dd, J = 7.6, 0.9 Hz, 1H, H₅), 6.90 (br d, J = 8.3 Hz, 1H, H₃), 4.45 (d, J = 3.7 Hz, 2H, CH₂OH), 3.92 (s, 3H, OCH₃), and 1.68 (t, J = 3.9 Hz, 1H, CH₂OH).

¹³C NMR (126 MHz, CDCl₃): δ 161.6, 134.7, 133.40, 133.39, 131.0, 129.1, 128.8, 125.9, 124.9, 120.7, 111.1, 110.9, 82.0, 80.0, 79.9, 78.6, 77.9, 77.3, 76.8, 70.8, 56.0, and 51.9.

IR (neat): 3355, 3006, 2931, 2837, 2211, 1594, 1573, 1492, 1478, 1463, 1434, 1277, 1258, 1250, 1162, 1117, 1084, 1020, and 754 cm⁻¹.

HRMS (ESI-TOF): Calcd for C₂₂H₁₄NaO₂⁺ [M+Na⁺] requires 333.0886; found 333.0889.

5-(2-((2-Methoxyphenyl)buta-1,3-diy-1-yl)phenyl)penta-2,4-diy-1-yl propiolate (S14)

Tetrayne S13 (124 mg, 0.40 mmol), 4-dimethylaminopyridine (DMAP, 5.0 mg, 0.045 mmol), and propionic acid (37 µL, 0.60 mmol) were dissolved in anhydrous DCM (5.0 mL) and stirred at 0 °C. N,N-Dicyclohexycarbodiimide (DCC*, 90 mg, 0.44 mmol) was added to the solution, after which the headspace of the reaction flask was purged with N₂. The resulting brown
suspension was warmed to room temperature and stirred for 16 h. The crude reaction mixture was filtered by passing through a short silica plug, concentrated, and purified by flash chromatography (hexanes:EtOAc 2:1) to give pentayne \textbf{S14} (135 mg, 0.37 mmol, 93\%) as a yellowish oil.

*CAUTION: DCC is an irritant and can lead to sensitization. Avoid any direct contact with the skin and inhalation.

\textbf{1H NMR} (500 MHz, CDCl$_3$): δ 7.52 (d, $J = 7.9$ Hz, 1H, H6), 7.52 (nfodd, $J = 7.5, 1.7$ Hz, 1H, H_o or H_o'), 7.50 (nfodd, $J = 7.5, 1.7$ Hz, 1H, H_o' or H_o), 7.35 (dd, $J = 8.0, 8.0$ Hz, 1H, H4), 7.33 (nfoddd, $J = 7.6, 7.6, 1.6$ Hz, 1H, H_m or H_m'), 6.93 (dd, $J = 7.5, 7.5$ Hz, 1H, H5), 6.90 (d, $J = 8.4$ Hz, 1H, H3), 4.96 (s, 2H, CH$_2$O), 3.92 (s, 3H, OCH$_3$), and 2.95 (s, 1H, C≡CH).

\textbf{13C NMR} (126 MHz, CDCl$_3$): δ 161.6, 151.8, 134.7, 133.6, 133.4, 131.0, 129.3, 128.8, 126.0, 124.5, 120.7, 111.0, 110.8, 80.0, 79.8, 78.7, 77.8, 77.5, 76.3 (2x), 76.1, 73.9, 72.5, 56.0, and 54.2.

IR (neat): 3284, 3012, 2945, 2838, 2241, 2212, 2122, 1721, 1594, 1493, 1479, 1463, 1434, 1367, 1277, 1259, 1208, 1118, 1022, 961, and 754 cm$^{-1}$.

\textbf{HRMS} (ESI-TOF): Calcd for C$_{25}$H$_{14}$NaO$_3^+$ [M+Na$^+$] requires 385.0835; found 385.0843.

Synthesis of S17

\begin{center}
\includegraphics[width=\textwidth]{synthesis}\end{center}

\textbf{1-Ethynyl-4,5-dimethoxy-2-((4-methoxyphenyl)buta-1,3-diyn-1-yl)benzene (S15)}

Triyne \textbf{S15} was synthesized following general procedure A from 1,2-diethynyl-4,5-dimethoxybenzene (614 mg, 3.3 mmol), 1-(bromoethynyl)-4-methoxybenzene7 (633 mg, 3.0 mmol), CuCl (33 mg, 0.33 mmol), n-butylamine/H$_2$O (v:v, 30:70, 15 mL), and
DCM (15 mL). Purification by flash chromatography (hexanes:EtOAc 5:1) provided triyne **S15** (389 mg, 1.23 mmol, 41%) as a pale yellow solid.

1H NMR (500 MHz, CDCl₃): δ 7.47 (nfod, J = 8.7 Hz, 2H, H₀), 6.97 (s, 1H, H₂ or H₅), 6.95 (s, 1H, H₅ or H₂), 6.86 (nfod, J = 8.7 Hz, 2H, H₆), 3.89 (s, 3H, OCH₃), 3.88 (s, 3H, OCH₃), 3.82 (s, 3H, OCH₃), and 3.32 (s, 1H, C≡CH).

13C NMR (126 MHz, CDCl₃): δ 160.5, 149.7, 149.5, 134.3, 118.8, 118.2, 114.9, 114.9, 114.3, 113.9, 82.8, 82.0, 80.4, 79.5, 76.8, 73.0, 56.2⁺, 56.2⁻, and 55.5.

IR (neat): 3277, 2999, 2937, 2837, 2209, 2141, 1594, 1506, 1462, 1441, 1358, 1291, 1255, 1220, 1190, 1174, 1119, 1032, 851, and 828 cm⁻¹.

HRMS (ESI-TOF): Calcd for C₂₁H₁₆NaO₃⁺ [M+Na⁺] requires 339.0992; found 339.0980.

Mp: 132–135 °C.

1-(Bromoethynyl)-4,5-dimethoxy-2-((4-methoxyphenyl)buta-1,3-diyln-1-yl)benzene (S16)

Bromoalkyne **S16** was synthesized following general procedure B from triyne **S15** (300 mg, 0.95 mmol), N-bromosuccinimide (NBS, 186 mg, 1.0 mmol), AgNO₃ (16 mg, 0.094 mmol), and acetone (10 mL). Purification by flash chromatography (hexanes:EtOAc 4:1) afforded **S16** (350 mg, 0.89 mmol, 93%) as a light orange solid.

1H NMR (500 MHz, CDCl₃): δ 7.49 (nfod, J = 8.8 Hz, 2H, H₀), 6.95 (s, 1H, H₂ or H₅), 6.91 (s, 1H, H₅ or H₂), 6.86 (nfod, J = 8.9 Hz, 2H, H₆), 3.883 (s, 3H, OCH₃), 3.877 (s, 3H, OCH₃), and 3.83 (s, 3H, OCH₃).

13C NMR (126 MHz, CDCl₃): δ 160.5, 149.7, 149.4, 134.3, 119.5, 118.1, 114.9, 114.8, 114.3, 113.9, 82.8, 79.5, 78.6, 76.8, 73.1, 56.2⁺, 56.2⁻, 55.5, and 53.0.

IR (neat): 3005, 2963, 2935, 2911, 2837, 2209, 2140, 1601, 1506, 1462, 1441, 1363, 1254, 1218, 1132, 1016, 860, and 833 cm⁻¹.

HRMS (ESI-TOF): Calcd for C₂₁H₁₅⁷⁹BrNaO₃⁺ [M+Na⁺] requires 417.0097; found 417.0102.

Mp: 117–119 °C.
N-((4,5-Dimethoxy-2-((4-methoxyphenyl)buta-1,3-diyn-1-yl)phenyl)buta-1,3-diyn-1-yl)-4-methyl-N-(2-((trimethylsilyl)ethynyl)phenyl)benzenesulfonamide (S17)

Pentayne S17 was synthesized following general procedure A from N-ethynyl-4-methyl-N-(2-((trimethylsilyl)ethynyl)phenyl)benzenesulfonamide\(^8\) (121 mg, 0.33 mmol), bromoalkyne S16 (120 mg, 0.30 mmol), CuCl (1.6 mg, 0.017 mmol), \(n\)-butylamine/H\(_2\)O (v:v, 30:70, 1.5 mL), and DCM (1.5 mL). Purification by flash chromatography (hexanes:EtOAc 3:1) provided triyne S17 (122 mg, 0.18 mmol, 60%) as a yellow solid.

\(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta\) 7.70 (nfod, J = 8.3 Hz, 2H, \(H_o\)’), 7.455 (nfom, 1H, \(H_3\)’), 7.451 (nfod, J = 8.8, 2H, \(H_o\)), 7.33–7.27 (nfom, 3H, \(H_4\)’, \(H_5\)’ and \(H_6\)’), 6.92 (s, 1H, \(H_2\) or \(H_5\)), 6.88 (s, 1H, \(H_5\) or \(H_2\)), 6.84 (nfod, J = 8.9 Hz, 2H, \(H_m\)’), 3.86 (s, 3H, OC\(_3\)H\(_3\)), 3.84 (s, 3H, OC\(_3\)H\(_3\)), 3.80 (s, 3H, OC\(_3\)H\(_3\)), 2.39 (s, 3H, ArC\(_3\)H\(_3\)), and 0.20 [s, 9H, Si\((\text{CH}_3)_3\)].

\(^1^3\)C NMR (126 MHz, CDCl\(_3\)): \(\delta\) 160.4, 149.6, 149.5, 145.2, 138.3, 134.4, 134.2, 134.0, 129.9, 129.2, 129.1, 128.5, 122.6, 118.9, 118.4, 115.1, 115.0, 114.2, 113.8, 102.3, 99.4, 82.9, 80.3, 79.5, 77.1, 76.9, 74.7, 73.3, 59.1, 56.1, 56.1, 55.4, 21.8, and -0.2.

IR (neat): 3000, 2960, 2933, 2897, 2837, 2229, 2157, 1601, 1508, 1450, 1377, 1255, 1217, 1179, 1124, 1022, and 853 cm\(^{-1}\).

HRMS (ESI-TOF): Calcd for C\(_{41}\)H\(_{35}\)N\(_3\)O\(_2\)SSi\(^+\) [M+Na\(^+\)] requires 704.1897; found 704.1880.

\(\text{Mp: } 70–72 \, ^\circ\text{C}.

Synthesis of S20

\(\text{S10} \xrightarrow{\text{NBS}} \text{S18} \xrightarrow{\text{CuCl}} \text{S19} \xrightarrow{\text{MnO}_2} \text{S20}\)
1-(Bromoethyl)-2-(phenylbuta-1,3-diyn-1-yl)benzene (S18)

Bromoalkyne S18 was synthesized following general procedure B from 1-ethyl-2-(phenylbuta-1,3-diyn-1-yl)benzene (S10) (339 mg, 1.5 mmol), N-bromosuccinimide (NBS, 294 mg, 1.6 mmol), AgNO₃ (26 mg, 0.15 mmol), and acetone (15 mL). Purification by flash chromatography (hexanes:EtOAc 20:1) afforded S18 (407 mg, 1.33 mmol, 89%) as a pale yellow solid.

\[^1\text{H}\ \text{NMR}\ (500\ \text{MHz, CDCl}_3): \delta\ 7.56\ (nfod, J = 8.0\ \text{Hz}, 2\ H, H_2), 7.52\ (nfodd, J = 7.5, 1.6\ \text{Hz}, 1\ H, H_6\text{ or }H_6^{\prime}), 7.47\ (nfodd, J = 7.5, 1.6\ \text{Hz}, 1\ H, H_6^{\prime}\text{ or }H_6), 7.41–7.33\ (m, 3\ H, H3\text{ and }H4),\text{ and }7.31\ (dd, J = 7.5, 7.5\ \text{Hz}, 1\ H, H_m\text{ or }H_m^{\prime}),\text{ and }7.30\ (dd, J = 7.5, 7.5\ \text{Hz}, 1\ H, H_m\text{ or }H_m^{\prime}).\]

\[^{13}\text{C}\ \text{NMR}\ (126\ \text{MHz, CDCl}_3): \delta\ 133.2, 132.8, 132.7, 129.5, 128.9, 128.6, 128.5, 126.3, 125.1, 121.9, 82.9, 79.7, 78.5, 77.8, 74.1,\text{ and }54.9.\]

IR (neat): 3060, 2215, 2196, 1594, 1491, 1476, 1442, 1176, 1098, 1027, 950, 915, and 754 cm⁻¹.

HRMS (ESI-TOF): Calcd for C₁₈H₇₉BrNa⁺ [M+Na⁺] requires 326.9780; found 326.9801.

Mp: 65–67 °C.

1-(2-((2-(Phenylbuta-1,3-diyn-1-yl)phenyl)buta-1,3-diyn-1-yl)phenyl)-3-(trimethylsilyl)prop-2-yn-1-ol (S19)

Pentayne S19 was prepared following general procedure A from bromoalkyne S18 (336 mg, 1.1 mmol), 1-(2-ethylphenyl)-3-(trimethylsilyl)prop-2-yn-1-ol⁹ (228 mg, 1.0 mmol), CuCl (5.0 mg, 0.050 mmol), n-butylamine/H₂O (v:v, 30:70, 5.0 mL), and DCM (5.0 mL). Purification by flash chromatography (hexanes:EtOAc 8:1) provided tetrayne S19 (404 mg, 0.90 mmol, 90%) as a light orange solid.

\[^1\text{H}\ \text{NMR}\ (500\ \text{MHz, CDCl}_3): \delta\ 7.74\ (dd, J = 7.9, 1.2\ \text{Hz}, 1\ H, H_o), 7.60–7.54\ (m, 5\ H,\text{ remaining ortho-ArH}), 7.43\ (ddd, J = 7.6, 7.6, 1.3\ \text{Hz}, 1\ H, H_m\text{ or }H_m^{\prime}),\text{ and }7.40–7.31\ (m, 6\ H,\text{ remaining meta and para-ArH}),\text{ and }5.89\ (s, 1\ H, \text{CHOH}), 2.69\ (br\ s, 1\ H, \text{OH})\text{, and }0.23\ [s, 9\ H, \text{Si(CH}_3)_3].\]
13C NMR (126 MHz, CDCl3): \(\delta \) 143.5, 133.8, 133.3, 132.6, 129.9, 129.4, 129.4, 129.1, 128.9, 128.5, 128.4, 127.0, 125.4, 125.2, 121.7, 120.3, 104.3, 91.9, 83.4, 81.0, 80.3, 79.5, 79.2, 78.4, 78.0, 74.1, 63.4, and -0.1.

IR (neat): 3405, 3060, 2961, 2213, 2174, 1475, 1442, 1275, 1250, 1037, 982, 846, and 755 cm\(^{-1}\).

HRMS (ESI-TOF): Calcd for C\(_{32}\)H\(_{24}\)NaOSi\(^+\) [M+Na\(^+\)] requires 475.1489; found 475.1464.

Mp: 97–100 °C.

1-(2-((2-(Phenylbuta-1,3-diyn-1-yl)phenyl)buta-1,3-diyn-1-yl)phenyl)-3-(trimethylsilyl)prop-2-yn-1-one (S20)

Activated manganese dioxide (1.1 g, ~15 equiv.) was added to a stirred solution of pentayne S19 (342 mg, 0.76 mmol) in DCM (8.0 mL). After being stirred for 2 hours, the reaction mixture was filtered by passing through a Celite® plug, the filtrate was concentrated, and the residue was purified by flash chromatography (hexanes:EtOAc 10:1) to provide ketone S20 (331 mg, 0.74 mmol, 97%) as a pale yellow solid.

1H NMR (500 MHz, CDCl3): \(\delta \) 8.12 (dd, \(J = 7.8, 1.3 \) Hz, 1H, \(H_o \)), 7.70 (d, \(J = 7.7, 1.2 \) Hz, 1H, \(H_o' \)), 7.58–7.53 (m, 5H, remaining ortho-\(H \) and \(H_m' \)), 7.48 (ddd, \(J = 7.7, 7.7, 1.3 \) Hz, 1H, \(H_m \)), 7.37–7.31 (m, 5H, remaining meta-\(H \)), and 0.32 [s, 9H, Si(CH\(_3\))\(_3\)].

13C NMR (126 MHz, CDCl3): \(\delta \) 176.5, 139.0, 135.9, 133.43, 133.35, 132.72, 132.70, 131.9, 129.4, 129.1, 129.0, 128.9, 128.5, 125.4, 125.3, 121.8, 121.7, 101.8, 101.5, 83.3, 81.7, 81.3, 80.1, 79.6, 78.5, 78.4, 74.2, and -0.6.

IR (neat): 3061, 2962, 2153, 1649, 1588, 1561, 1475, 1442, 1296, 1251, 1236, 1015, 847, and 754 cm\(^{-1}\).

HRMS (ESI-TOF): Calcd for C\(_{32}\)H\(_{22}\)NaOSi\(^+\) [M+Na\(^+\)] requires 473.1332; found 473.1342.

Mp: 120–126 °C (with decomposition beginning at ca. 108 °C).
Synthesis of S22

1-(2-((4,5-Dimethoxy-2-((4-methoxyphenyl)buta-1,3-diyn-1-yl)phenyl)buta-1,3-diyn-1-yl)phenyl)-3-(trimethylsilyl)prop-2-yn-1-ol (S21)

Pentayne S21 was synthesized following general procedure A from 1-(2-ethynylphenyl)-3-(trimethylsilyl)prop-2-yn-1-ol\(^9\) (205 mg, 0.90 mmol), bromoalkyne S16 (316 mg, 0.80 mmol), CuCl (5.0 mg, 0.050 mmol), \(n\)-butylamine/H\(_2\)O (v:v, 30:70, 5.0 mL), and DCM (5.0 mL). Purification by flash chromatography (hexanes:EtOAc 4:1 to 2:1) provided pentayne S21 (298 mg, 0.55 mmol, 69\%) as an orange oil.

\(^{1}\)H NMR (500 MHz, CDCl\(_3\)): \(\delta\) 7.73 (br d, \(J = 7.8\) Hz, 1H, \(H3'\)), 7.57 (dd, \(J = 7.5, 1.3\) Hz, 1H, \(H6'\)), 7.49 (nfod, \(J = 8.9\) Hz, 2H, \(H_o\)), 7.42 (ddd, \(J = 7.7, 7.7, 1.3\) Hz, 1H, \(H4'\) or \(H5'\)), 7.31 (ddd, \(J = 7.7, 7.7, 1.3\) Hz, 1H, \(H5'\) or \(H4'\)), 6.98 (s, 1H, \(H2\) or \(H5\)), 6.97 (s, 1H, \(H5\) or \(H2\)), 6.85 (nfod, \(J = 8.9\) Hz, 2H, \(H_m\)), 5.89 (br s, 1H, CHO\(_3\)), 3.901 (s, 3H, OCH\(_3\)), 3.895 (s, 3H, OCH\(_3\)), 3.82 (s, 3H, OCH\(_3\)), 2.54 (br s, 1H, CHO\(_3\)), and 0.20 [s, 9H, Si(CH\(_3\))\(_3\)].

\(^{13}\)C NMR (126 MHz, CDCl\(_3\)): \(\delta\) 160.5, 150.0, 149.7, 143.5, 134.3, 133.8, 129.8, 128.5, 127.2, 120.6, 119.0, 118.2, 115.12, 115.10, 114.3, 113.9, 104.2, 92.0, 83.3, 81.5, 79.9, 79.5, 79.3, 77.5, 76.7, 73.1, 63.5, 56.2 (x2), 55.5, and -0.0.

IR (neat): 3495, 3005, 2961, 2837, 2209, 2172, 2144, 1602, 1506, 1463, 1442, 1378, 1290, 1252, 1218, 1140, 1031, 1052, 844, and 760 cm\(^{-1}\).

HRMS (ESI-TOF): Calcd for C\(_{39}\)H\(_{29}\)NaO\(_4\)Si\(^+\) [M+Na\(^+\)] requires 565.1806; found 565.1816.
1-(2-((4,5-Dimethoxy-2-((4-methoxyphenyl)buta-1,3-diyn-1-yl)phenyl)buta-1,3-diyn-1-yl)phenyl)-3-(trimethylsilyl)prop-2-yn-1-one (S22)

Activated manganese dioxide (0.5 g, ~10 equiv.) was added to a stirred solution of pentayne S21 (271 mg, 0.50 mmol) in DCM (5.0 mL). After stirring for 5 hours, the reaction mixture was filtered by passing through a Celite® plug. The filtrate was concentrated to provide ketone S22 (270 mg, 0.50 mmol, quantitative) as a yellow solid, sufficiently pure for characterization and further use.

1H NMR (500 MHz, CDCl₃): δ 8.11 (dd, J = 7.9, 1.1 Hz, 1H, H6'), 7.68 (dd, J = 7.8, 1.0 Hz, 1H, H3'), 7.52 (dd, J = 7.5, 7.5, 1.3 Hz, 1H, H4' or H5'), 7.48 (nfd, J = 8.8 Hz, 2H, H0), 7.46 (ddd, J = 7.7, 7.7, 1.2 Hz, 1H, H5' or H4'), 6.98 (s, 1H, H2 or H5), 6.96 (s, 1H, H5 or H2), 6.84 (nfd, J = 8.7 Hz, 2H, Hm), 3.89 (s, 3H, OCH₃), 3.89 (s, 3H, OCH₃), 3.81 (s, 3H, OCH₃), and 0.31 [s, 9H, Si(CH₃)₃].

13C NMR (126 MHz, CDCl₃): δ 176.5, 160.5, 150.0, 149.7, 139.0, 135.8, 134.3, 132.7, 131.9, 128.8, 121.9, 118.9, 118.4, 115.3, 115.1, 114.2, 113.9, 101.7, 101.5, 83.2, 82.2, 80.9, 80.4, 79.3, 77.5, 77.3, 73.2, 56.2 (x2), 55.4, and -0.6.

IR (neat): 3003, 2957, 2934, 2905, 2835, 2203, 2151, 1648, 1598, 1508, 1377, 1249, 1220, 1019, and 847 cm⁻¹.

HRMS (ESI-TOF): Calcd for C₃₅H₂₈NaO₄Si⁺ [M+Na⁺] requires 563.1649; found 563.1643.

Mp: 145–146 °C.
Synthesis of 29

Following general procedure A, (2-ethylphenyl)ethynyl)trimethylsilane (0.99 g, 5.0 mmol), 1-(bromoethyl)-4-chlorobenzene (1.10 g, 5.1 mmol), CuCl (25 mg, 0.25 mmol), n-butylamine/H$_2$O (v:v, 30:70, 25 mL), and DCM (25 mL) were used to prepare crude triyne S23-TMS (1.60 g, ~4.8 mmol), which was used directly in the subsequent step without purification due to solubility issues.

To a stirred solution of the crude S23-TMS (1.60 g, ~4.8 mmol) and N-bromosuccinimide (NBS, 1.78 g, 10 mmol) in acetone (50 mL) and DCM (50 mL), AgNO$_3$ (85 mg, 0.50 mmol) was added under N$_2$. After stirring for 24 h, the reaction mixture was filtered through a short silica plug, eluted with DCM, and concentrated. Purification by flash chromatography (hexanes:EtOAc 9:1) afforded S23 (1.30 g, 3.83 mmol, 77% over two steps), which contained a trace (less than 1%) of coeluting S23-TMS based on integrations in 1H NMR spectrum (76% corrected yield) as a pale yellow solid.
1H NMR (500 MHz, CDCl₃): δ 7.53–7.43 (m, 4H, Hₐ), and 7.34–7.28 (m, 4H, Hₖ).

13C NMR (126 MHz, CDCl₃): δ 135.6, 133.9, 133.2, 132.8, 129.1, 129.0, 128.5, 126.4, 124.9, 120.4, 81.7, 80.3, 78.4, 77.5, 75.1, and 55.0.

IR (neat): 3060, 2955, 2239, 1487, 1472, 1438, 1205, 1088, 1012, 949, 834, 822 and 809 cm⁻¹.

HRMS (ESI-TOF): Calcd for C₁₈H₂₀Br⁺ [M⁺] requires 444.8543; found 444.8554.

Mp: 88–90 °C.

1-(4-Chlorophenyl)buta-1,3-diyn-1-yl)-2-((2-(2-ethynylphenyl)buta-1,3-diyn-1-yl)phenyl)buta-1,3-diyn-1-yl)benzene (S24)

Following general procedure A, 1,4-bis(2-ethynylphenyl)buta-1,3-diyne (S6) (875 mg, 3.5 mmol), bromoalkyne S23 (1.02 g, 3.0 mmol), CuCl (15 mg, 0.15 mmol), n-butylamine/H₂O (v:v, 30:70, 15 mL), and DCM (15 mL) were used. Purification by flash chromatography (hexanes:EtOAc 8:1) provided heptayne S24 (662 mg, 1.30 mmol, 43%) as a pale yellow solid.

1H NMR (500 MHz, CDCl₃): δ 7.59–7.52 (m, 5H, H₂ and H₃), 7.48 (dd, J = 2.0, 6.7 Hz, 1H, H₆), 7.44 (nfod, J = 8.6 Hz, 2H, H₀'), 7.37–7.31 (m, 4H, Hₘ), 7.29 (m, 2H, H₄ and H₅), 7.27 (nfod, J = 8.6 Hz, 2H, Hₘ'), and 3.39 (s, 1H, =CH).

13C NMR (126 MHz, CDCl₃): δ 135.6, 133.9, 133.54, 133.46, 133.4 (x2), 133.1, 132.7, 129.11 (x2), 129.08, 129.05, 129.01, 128.9, 128.6, 125.9, 125.51, 125.46, 125.44, 125.36, 125.0, 120.3, 82.1 (x2), 81.6, 81.5, 81.2, 81.1, 80.8, 80.1, 78.4, 78.3, 78.2, 77.8, 77.4, and 75.1.

IR (neat): 3288, 3056, 2925, 2855, 2212, 1505, 1488, 1472, 1438, 1205, 1088, 1012, 949, 834, 822 and 809 cm⁻¹.

HRMS (ESI-TOF): Calcd for C₃₈H₇ClNa⁺ [M⁺] requires 531.0911; found 531.0917.

Mp: 140–148 °C (with decomposition > 132 °C).
1-(Bromoethyl)-2-((2-((4-chlorophenyl)buta-1,3-diyn-1-yl)phenyl)buta-1,3-diyn-1-yl)phenyl)buta-1,3-diyn-1-yl)benzene (S25)

To a stirred solution of heptayne S24 (575 mg, 1.1 mmol) and N-bromosuccinimide (NBS, 402 mg, 2.3 mmol) in acetone (11 mL) and DCM (11 mL), AgNO₃ (19 mg, 0.11 mmol) was added under N₂. After stirring for 4 h, the reaction mixture was filtered by passing through a short silica plug, which was then washed with DCM. The filtrate was concentrated and the residue purified by flash chromatography (hexanes:EtOAc 10:1) to afford bromoalkyne S25 (544 mg, 0.93 mmol, 82%) as a yellowish oil.

¹H NMR (500 MHz, CDCl₃): δ 7.60–7.55 (m, 3H, Hₖ), 7.54 (m, 1H, Hₖ'), 7.51 (dd, J = 6.9, 2.1 Hz, 1H, H₃), 7.44 (m, J = 8.5 Hz, 2H, Hₖ), 7.42 (dd, J = 6.6, 2.2 Hz, 1H, H₆), 7.37–7.32 (m, 4H, Hₘ), 7.28 (m, 2H, H₄ and H₅), and 7.26 (m, J = 8.6 Hz, 2H, Hₘ').

¹³C NMR (126 MHz, CDCl₃): δ 135.6, 133.9, 133.53, 133.50, 133.46, 133.4, 133.2, 132.5, 129.11, 129.09, 129.07, 129.05, 129.0, 128.9, 128.4, 126.5, 125.47, 125.47, 125.4, 125.3, 125.0, 120.3, 82.1, 81.4, 81.2, 81.1, 80.8, 80.1, 78.43, 78.37, 78.36, 78.3, 78.2, 77.8, 75.1, and 55.4.

IR (neat): 3062, 2969, 2931, 2215, 2198, 1589, 1490, 1473, 1444, 1400, 1264, 1095, 1010, 950, 830, and 755 cm⁻¹.

HRMS (ESI-TOF): Calcd for C₃₈H₁₆⁷⁹Br³⁵ClNa⁺ [M+Na⁺] requires 609.0016; found 609.0021.
1-(2-((2-((2-((4-Chlorophenyl)b u-ta-1,3-diyn-1-yl)phenyl)b u-ta-1,3-diyn-1-yl)phenyl)b u-ta-1,3-diyn-1-yl)phenyl)b u-ta-1,3-diyn-1-yl)phenyl)-3-(trimethylsilyl)prop-2-yn-1-ol (S26)

Nonayne S26 was synthesized following general procedure A from 1-(2-ethynylphenyl)-3-(trimethylsilyl)prop-2-yn-1-ol (228 mg, 1.0 mmol), bromoalkyne S25 (470 mg, 0.80 mmol), CuCl (5 mg, 0.05 mmol), n-butylamine/H2O (v:v, 30:70, 5.0 mL), and DCM (5.0 mL). Purification by flash chromatography (hexanes:EtOAc 5:1) gave nonayne S26 (426 mg, 0.58 mmol, 73%) as a brown viscous oil.

1H NMR (500 MHz, CDCl3): δ 7.71 (d, J = 7.9 Hz, 1H, H3), 7.61–7.49 (m, 7H, Ho), 7.42 (nfod, J = 8.6 Hz, 2H, H_o'), 7.40 (t, J = 7.7 Hz, 1H, H_m), 7.36–7.26 (m, 7H, H_m), 7.25 (nfod, J = 8.4 Hz, 2H, H_m'), 5.87 (s, 1H, CHO), 2.49 (br s, 1H, OH), and 0.20 [s, 9H, Si(CH3)3].

13C NMR (126 MHz, CDCl3): δ 143.5, 135.5, 133.89, 133.86, 133.57, 133.54, 133.50, 133.4, 133.33, 133.27, 129.9, 129.11, 129.07, 129.03, 129.02, 129.01, 128.9, 128.5 (x2), 127.1, 125.5, 125.41 (x2), 125.35, 125.34, 125.31, 120.5, 120.3, 104.2, 92.1, 82.1, 81.20, 81.19, 81.18, 81.0, 80.4, 80.1, 79.3, 78.45, 78.41, 78.39, 78.35, 78.2, 78.1, 77.4, 75.2, 63.5, and -0.03.

IR (neat): 3483, 3067, 2966, 2212, 2174, 1650, 1560, 1541, 1476, 1252, 1095, 1039, 1016, 981, and 821 cm⁻¹.

HRMS (ESI-TOF): Calcd for C52H3135ClNaOSi⁺ [M+Na⁺] requires 757.1725; found 757.1705.
1-(2-((2-((4-Chlorophenyl)buta-1,3-diyn-1-yl)phenyl)buta-1,3-diyn-1-yl)phenyl)buta-1,3-diyn-1-yl)phenyl)-3-(trimethylsilyl)prop-2-yn-1-one (29)

To a stirred solution of nonayne S26 (351 mg, 0.48 mmol) in DCM (5.0 mL), activated manganese dioxide (1.0 g, ~20 equiv.) was added. After stirring for 4 hours, the reaction mixture was filtered by passing through a Celite® plug and concentrated. Purification of the residue by flash chromatography (hexanes:EtOAc 4:1) provided ketone 29 (279 mg, 0.38 mmol, 79%) as a green solid.

1H NMR (500 MHz, CDCl$_3$): δ 8.07 (d, $J = 7.7$ Hz, 1H, H_6), 7.68 (d, $J = 7.7$ Hz, 1H, H_3), 7.60 (nfodd, $J = 6.6$, 2.6 Hz, 1H, H_0), 7.56 (nfodd, $J = 6.4$, 2.7 Hz, 1H, H_0), 7.54–7.47 (m, 5H, H_o and H_4), 7.44 (dd, $J = 7.8$, 7.8 Hz, 1H, H_5), 7.42 (nfod, $J = 8.4$ Hz, 1H, H_o'), 7.37–7.27 (m, 6H, H_m), 7.25 (nfod, $J = 8.6$ Hz, 2H, H_m'), and 0.32 [s, 9H, Si(CH$_3$)$_3$].

13C NMR (126 MHz, CDCl$_3$): δ 176.4, 138.8, 136.0, 135.5, 133.8, 133.6, 133.5 (x2), 133.39, 133.38, 133.2, 132.7 (x2), 131.8, 129.1, 129.03, 129.02 (x2), 128.98, 128.90, 128.89, 125.5, 125.40, 125.36, 125.32, 125.31, 125.27, 121.7, 120.3, 101.8, 101.5, 82.0, 81.7, 81.4, 81.25, 81.20, 81.17, 81.15, 80.2, 80.1, 78.7, 78.40, 78.36, 78.35, 78.1, 77.4, 75.2, and -0.5.

IR (neat): 3065, 2963, 2855, 2212, 2151, 1653, 1639, 1560, 1476, 1240, 1095, 1016, 955, 827, and 798 cm$^{-1}$.

HRMS (ESI-TOF): Calcd for C$_{52}$H$_{29}$ClNaOSi$^+$ [M+Na$^+$] requires 755.1568; found 755.1577.

Mp: 76–82 ºC (with decomposition > 70 ºC).
B. Procedures for syntheses of and characterization data for domino-HDDA products.

\((\pm)-(1R,4S)-1,4\text{-dimethyl}-11\text{-propyl}-4,5,6,10\text{-tetrahydro}-1,4\text{-epoxyacetanthryleno}[4,5\text{-c}]\text{furan-8(1H)}\text{-one (12)}\)

\[
\begin{align*}
\text{11} & \quad \text{12} \\
\text{9} & \quad \text{12 equiv} \\
\text{Me} & \quad \text{Me} \\
\text{(12 equiv)} & \quad \text{CHCl}_3 \\
\text{130 °C} & \quad 40 \text{ h} \\
& \quad 85\% \\
\end{align*}
\]

Naphthalene 12 was obtained following general procedure C from pentayne 9 (17 mg, 0.068 mmol), 2,5-dimethylfuran (86 \(\mu\)L, 0.8 mmol), and CHCl\(_3\) (3.4 mL). Purification by MPLC (hexanes:EtOAc, 1.5:1) afforded naphthalene 12 (20 mg, 0.058 mmol, 85\%) as a pale yellow viscous oil that turned into an amorphous solid upon storage at ca. -20 °C.

\(^1\text{H} \text{NMR (500 MHz, CDCl}_3\text{): } \delta 7.80 \text{ (s, 1H, ArH)}, 6.78 \text{ (d, } J = 5.2 \text{ Hz, 1H, alkene } H-a\text{), 6.76 \text{ (d, } J = 5.3 \text{ Hz, 1H, alkene } H-b\text{), 5.68 \text{ [d, } J = 15.4 \text{ Hz, 1H, } CH_2\text{H}_5\text{O(C=O)]}, 5.60 \text{ [d, } J = 15.3 \text{ Hz, 1H, } CH_2\text{H}_5\text{O(C=O)]}, 3.54-3.28 \text{ (m, 4H, ArCH}_2\text{CH}_2\text{Ar]), 3.02 \text{ (very br s, 1H, } CH_2\text{H}_5\text{CH}_2\text{CH}_3\text{), 2.75 \text{ (very br s, 1H, } CH_2\text{H}_5\text{CH}_2\text{CH}_3\text{), 2.11 \text{ [s, 3H, bridgehead } CH_3-a\text{], 2.02 \text{ [s, 3H, bridgehead } CH_3-b\text{], 1.59 \text{ (very br s, 1H, } CH_2\text{CH}_2\text{H}_5\text{CH}_3\text{), 1.47 \text{ (very br s, 1H, } CH_2\text{CH}_2\text{H}_5\text{CH}_3\text{), and 1.09 \text{ (t, } J = 7.3 \text{ Hz, 3H, } CH_2\text{CH}_2\text{CH}_3\text{).}}
\]

\(^{13}\text{C} \text{NMR (126 MHz, CDCl}_3\text{): } \delta 172.0, 149.9, 147.9, 146.2, 145.8, 144.8, 143.5, 142.1, 133.7, 128.2, 125.8, 124.9, 115.4, 90.2, 87.7, 70.8, 31.1 \text{ (br), 30.3, 28.0, 26.9 \text{ (br), 18.6, 16.5, and 14.3.}}
\]

\(\text{IR (neat): } 3006, 2975, 2937, 2879, 1755, 1453, 1387, 1360, 1279, 1260, 1148, 1086, 1029, 862, \text{ and 752 cm}^{-1}\).

\(\text{HRMS (ESI-TOF): } \text{Calcd for } C_{23}\text{H}_{32}\text{NaO}_3^+ [M+Na^+] \text{ requires 369.1461; found 369.1454.} \)

\((\pm)-(8S,11R)-7-((tert-Butyldimethylsilyl)oxy)methyl)-5,6,8,11,12,13\text{-hexahydro-8,11-epoxydiencyclopenta}[4,5:11,12]tetraceno[1,2-c][furan-3(1H)]-one (15)\)

\[
\begin{align*}
\text{13} & \quad \text{15} \\
\text{OTBS} & \quad \text{OTBS} \\
\text{(5 equiv)} & \quad \text{HO}_{\text{DCB}} \text{(0.02 M)} \\
\text{130 °C, 24 h} & \quad 88\% \\
\end{align*}
\]

Anthracene 15 was obtained following general procedure C from heptyne 13 (21 mg, 0.049 mmol), furan (18 \(\mu\)L, 0.25 mmol), and ortho-dichlorobenzene (2.5 mL). Purification by MPLC
(hexanes:EtOAc, 1.5:1) afforded the anthracene derivative 15 (21 mg, 0.042 mmol, 86%) as a pale yellow solid.

1H NMR (500 MHz, CDCl₃): δ 7.38 (s, 1H, ArH), 6.96 (dd, J = 5.5, 1.6 Hz, 1H, AlkeneHₐ), 6.95 (dd, J = 5.5, 1.6 Hz, 1H, AlkeneHₖ), 6.18 (br s, 1H, bridgehead CHₖ), 5.83 (br s, 1H, bridgehead CHₖ), 5.521 (d, J = 16.6 Hz, 1H, (C=O)OCHₐHₖ), 5.518 (d, J = 16.6 Hz, 1H, (C=O)OCHₐHₖ), 5.25 (d, J = 12.6 Hz, 1H, TBSOCHₐHₖ), 5.18 (d, J = 12.6 Hz, 1H, TBSOCHₐHₖ), 3.86 (br t, J = 5.8 Hz, 2H, H₅), 3.50–3.40 (m, 5H, H₆, H₁₂, and H₁₃ₐ), 3.37–3.28 (nfom, 1H, H₁₃ₖ), 0.96 [s, 9H, Si(C₃H₇)₃], 0.21 [s, 3H, Si(CH₃)₃(CH₃)₃], and 0.17 [s, 3H, Si(CH₃)₃(CH₃)₃].

13C NMR (126 MHz, CDCl₃): δ 172.3, 149.5, 145.6, 143.7, 142.6, 141.0, 140.6, 140.1, 139.8, 138.6, 135.9, 135.0, 125.9 (x2), 124.0, 119.8, 111.4, 81.4, 80.0, 69.9, 61.9, 32.5, 30.8, 30.5, 28.4, 26.2, 18.6, -4.8, and -4.9.

IR (neat): 2952, 2928, 2855, 1754, 1455, 1392, 1337, 1280, 1258, 1110, 1083, 1015, 870, 832, and 776 cm⁻¹.

HRMS (ESI-TOF): Calcd for C₃₁H₃₂NaO₄Si⁺ [M+Na⁺] requires 519.1962; found 519.1969.

Mp: 260–268 °C (with decomposition > ca. 225 °C).

(±)-Diethyl (8R,11S)-7-(((tert-Butyldimethylsilyl)oxy)methyl)-3-oxo-1,3,5,6,8,11,12,13-octahydro-8,11-epoxydicyclopenta[4,5:11,12]tetraceno[1,2-c]furan-9,10-dicarboxylate (16)

[Diagram of the reaction]

Anthracene 16 was obtained following general procedure C from heptayne 13 (64 mg, 0.15 mmol), diethyl furan-3,4-dicarboxylate (139 uL, 0.75 mmol), and CHCl₃ (7.5 mL). Purification by MPLC (hexanes:EtOAc, 1.2:1) afforded the anthracene derivative 16 (59 mg, 0.092 mmol, 61%) as a yellow solid.

1H NMR (500 MHz, CDCl₃): δ 7.32 (br t, J = 1.5 Hz, 1H, ArH), 6.38 (br s, 1H, bridgehead CHₖ), 6.04 (br s, 1H, bridgehead CHₖ), 5.30 (d, J = 15.8 Hz, 1H, (C=O)OCHₐHₖ), 5.26 (d, J = 15.8 Hz, 1H, (C=O)OCHₐHₖ), 5.20 (d, J = 12.1 Hz, 1H, TBSOCHₐHₖ), 5.17 (d, J = 12.1 Hz, 1H, TBSOCHₐHₖ), 4.30 (q, J = 7.1 Hz, 2H, OCH₂CH₃), 4.29 (q, J = 7.0 Hz, 2H, OCH₂CH₃), 4.16–4.09 (nfom, 1H, H₁₃ₖ), 3.73–3.64 (nfom, 1H, H₁₃ₖ), 3.47–3.22 (m, 6H, H₅, H₆, and H₁₂), 1.36
The rubicene-lactone 19 was obtained following general procedure C from heptayne 17 (19 mg, 0.039 mmol), furan (58 μL, 0.80 mmol), and CHCl₃ (8.0 mL). Purification by flash chromatography (hexanes:EtOAc, 2:1 to 1:1) afforded the rubicene derivative 19 (11 mg, 0.020 mmol, 51%) as a red solid.

1H NMR (500 MHz, CDCl₃): δ 8.10 (s, 1H, H12), 7.96–7.94 (nfom, 1H, H5), 7.94–7.92 (nfom, 1H, H8), 7.78 (d, J = 7.4 Hz, 1H, H13), 7.52–7.47 (m, 2H, H6 and H7), 7.23 (dd, J = 8.4, 2.2 Hz, 1H, H2’α), 7.20 (dd, J = 8.5, 2.3 Hz, 1H, H2’β), 7.19 (dd, J = 7.2, 7.2 Hz, 1H, H14), 7.16 (dd, J = 5.5, 1.7 Hz, 1H, H3), 7.12 (dd, J = 5.5, 1.7 Hz, 1H, H2), 7.08 (dd, J = 8.4, 2.6 Hz, 1H, H3’β), 6.95 (dd, J = 8.4, 2.5 Hz, 1H, H3’α), 6.80 (ddd, J = 8.1, 8.1, 0.8 Hz, 1H, H15), 6.46 (d, J = 1.6 Hz, 1H, H4), 5.97 (d, J = 15.6 Hz, 1H, OCH₃H₀), 5.97 (d, J = 15.6 Hz, 1H, OCH₃H₀), 5.84 (d, J = 8.0 Hz, 1H, H16), 5.76 (d, J = 1.6 Hz, 1H, H1), and 3.92 (s, 3H, OCH₃).

13C NMR (126 MHz, CDCl₃): δ 171.7, 160.0, 154.7, 151.8, 148.7, 145.6, 141.9, 140.5, 140.4, 139.0, 138.5, 138.0, 137.5, 137.1, 132.3, 132.2, 130.8, 128.3, 128.0, 127.9, 127.4, 127.2, 126.5, 123.2, 122.7, 120.7, 120.0, 115.0, 114.8, 113.7, 113.2, 81.5, 80.5, 73.4, and 55.8. A high-quality 1D 13C NMR spectrum not attainable because of limited solubility. The listed values are from the
1D spectrum, supplemented by additional resonances discerned from the HSQC & HMBC 2D spectra.

IR (neat): 2955, 2922, 2852, 1753, 1645, 1605, 1510, 1468, 1440, 1249, 1175, 1032, 874, 768, and 756 cm$^{-1}$.

HRMS (APCI$^+$): Calcd for C$_{39}$H$_{25}$O$_4^+$ [M+H$^+$] requires 555.1591; found 555.1588.

Mp: 340–347 ºC (with decomposition > ca. 275 ºC).

(±)-(6S,9R)-5-(7-((tert-Butyldimethylsilyl)oxy)hepta-3,5-diyne-1-yl)-4-(9-((tert-butyldimethylsil yl)oxy)nona-1,5,7-triyn-1-yl)-2-(methylsulfonyl)-2,3,6,9-tetrahydro-1H-6,9-epoxybenzo[e]is oindole (21)

Isoindoline 21 was synthesized following general procedure C by heating octayne 20 (53 mg, 0.080 mmol) in furan (2.0 mL). Purification by MPLC (hexanes:EtOAc, 2:1) afforded the isoindoline derivative 21 (46 mg, 0.063 mmol, 79%) as a white solid.

1H NMR (500 MHz, CDCl$_3$): δ 7.18 (dd, $J = 5.6, 1.9$ Hz, 1H, alkeneH), 6.98 (dd, $J = 5.6, 1.9$ Hz, 1H, alkeneH'), 5.84 (dd, $J = 1.8, 0.5$ Hz, 1H, bridgehead-H), 5.67 (dd, $J = 1.8, 0.6$ Hz, 1H, bridgehead-H'), 4.74 (dt, $J = 13.3, 1.7$ Hz, 1H, H_1), 4.64 (br t, $J = 1.7$ Hz, 2H, H_3), 4.62 (dt, $J = 13.3, 1.7$ Hz, 1H, H_1), 4.36 (s, 2H, =CCH$_2$O), 4.34 (s, 2H, =C‘CH$_2$O), 3.09 (dt, $J = 13.0, 6.1$ Hz, 1H, ArCH$_2$H$_2$CH$_2$C=), 3.09 (ddd, $J = 13.3, 8.4, 6.2$ Hz, 1H, ArCH$_2$H$_2$CH$_2$C=), 2.88 (s, 3H, SO$_2$CH$_3$), 2.72–2.65 (m, 2H, ArCH$_2$CH$_2$C=), 2.67 (t, $J = 6.6$ Hz, 2H, =CCH$_2$CH$_2$C=), 2.57 (t, $J = 6.7$ Hz, 2H, =CCH$_2$CH$_2$C=), 0.90 [s, 9H, Si(CH$_3$)$_3$], 0.89 [s, 9H, Si(CH$_3$)$_3$], 0.11 [s, 6H, Si(CH$_3$)$_3$], and 0.10 [s, 6H, Si(CH$_3$)$_3$].

13C NMR (126 MHz, CDCl$_3$): δ 148.6, 144.2, 143.0, 141.4, 138.0, 133.6, 127.0, 114.8, 96.2, 81.3, 81.1, 80.0, 78.4, 77.3, 75.4, 75.2, 69.8, 69.6, 66.2, 65.8, 54.0, 52.5, 52.20, 52.18, 35.1, 30.0, 25.89, 25.87, 20.1, 19.8, 19.5, 18.36, 18.36, and -5.1 (x2).

IR (neat): 3019, 2954, 2929, 2893, 2857, 2255, 1471, 1463, 1365, 1321, 1256, 1146, 1086, 964, 838, 778, and 758 cm$^{-1}$.

HRMS (ESI-TOF): Calcd for C$_{41}$H$_{53}$NNaO$_2$SSi$_2^+$ [M+Na$^+$] requires 750.3075; found 750.3085.

Mp: 105–110 ºC (with decomposition > ca. 100 ºC).
Naphthalene 22 was synthesized following general procedure C from octayne 20 (53 mg, 0.080 mmol), furan (17 μL, 0.24 mmol), and CHCl₃ (8.0 mL). Purification by MPLC (hexanes:EtOAc, 2:1) afforded the naphthalene derivative 22 (50 mg, 0.069 mmol, 86%) as a white solid.

¹H NMR (500 MHz, CDCl₃): δ 6.99 (dd, J = 5.6, 1.5 Hz, 1H, alkeneH), 6.98 (dd, J = 5.6, 1.5 Hz, 1H, alkeneH'), 6.02 (d, J = 1.3 Hz, 1H, bridgehead-H), 5.83 (d, J = 1.3 Hz, 1H, bridgehead-H'), 5.22 (br t, J = 2.5 Hz, 2H, MsNCH₂), 4.92 (d, J = 12.1 Hz, 1H, ArCH₃HbO), 4.89 (d, J = 12.1 Hz, 1H, ArCH₃HbO'), 4.39 (s, 2H, ≡CC₂CH₂O), 4.89 (d, J = 12.1 Hz, 1H, ArCH₃HbO'), 4.81 (br t, J = 2.6 Hz, 2H, MsNCH₂'), 4.39 (s, 2H, ≡CC₂CH₂O), 3.40 – 3.18 (m, 4H, ArCH₃HbO'), 2.87 (s, 3H, SO₂CH₃), 2.75 (t, J = 7.1 Hz, 2H, ≡CC₂CH₂C'-), 2.65 (t, J = 7.2 Hz, 2H, ≡CC₂CH₂C'-), 0.95 [s, 9H, SiC(CH₃)₃j], 0.92 [s, 9H, SiC(CH₃)₃j], 0.20 [s, 3H, Si(CH₃)a(CH₃)b], 0.16 [s, 3H, Si(CH₃)a(CH₃)b], and 0.14 [s, 6H, Si(CH₃)₂].

¹³C NMR (126 MHz, CDCl₃): δ 149.6, 148.0, 141.6, 141.5, 139.0, 138.1, 136.9, 136.6, 132.1, 124.7, 124.1, 110.9, 95.1, 81.2, 80.5, 78.6, 77.6, 75.2, 69.7, 66.1, 60.9, 55.3, 54.0, 52.2, 34.5, 30.5, 28.0, 26.1, 25.9, 20.0, 19.6, 18.43, 18.38, -4.9, -5.0, and -5.1 (x2).

IR (neat): 3015, 2953, 2929, 2886, 2856, 2259, 1471, 1463, 1361, 1339, 1255, 1155, 1081, 960, 874, 839, 779, and 757 cm⁻¹.

HRMS (ESI-TOF): Calcd for C₄₁H₅₃NNaO₂SSi₂⁺ [M+Na⁺] requires 750.3075; found 750.3093. **Mp:** 166–170 °C (with decomposition > ca. 160 °C).
Fluoranthene 25a was obtained following general procedure C from octayne S11 (26 mg, 0.040 mmol), furan (14 μL, 0.19 mmol), and CHCl₃ (2.0 mL). Purification by flash chromatography (hexanes:EtOAc, 2:1) afforded fluoranthene 25a (26 mg, 0.036 mmol, 90%) as a yellow solid. Alternatively, fluoranthene 25a was obtained by a photochemical HDDA procedure. Pentayne S11 (26 mg, 0.040 mmol), furan (14 μL, 0.19 mmol), and CHCl₃ (2.0 mL) was added to a quartz tube and irradiated at 300 nm for 1 h at room temperature. Purification by flash chromatography (hexanes:EtOAc, 2:1) afforded fluoranthene 25a (20 mg, 0.027 mmol, 67%) as a yellow solid.

¹H NMR (500 MHz, CDCl₃): δ 8.78 (br d, J = 7.6 Hz, 1H, H10), 7.86 (br d, J = 7.5 Hz, 1H, H13), 7.72 (dd, J = 7.8, 1.0 Hz, 1H, H2' or H5'), 7.64 (dd, J = 7.7, 1.0 Hz, 1H, H5' or H2'), 7.56–7.29 (m, 13H, ArH), 7.24–7.21 (nfom, 1H, H-Ph para), 7.06 (dd, J = 5.5, 1.8 Hz, 1H, H2), 6.99 (dd, J = 5.5, 1.9 Hz, 1H, H3), 6.36 (dd, J = 1.8, 0.7 Hz, 1H, H1), 5.48 (dd, J = 1.9, 0.7 Hz, 1H, H4), 3.93 (d, J = 17.0 Hz, 1H, H8a), 3.92 (d, J = 17.0 Hz, 1H, H8b), 3.64 (s, 3H, OCH₃), 3.60 (s, 3H, OCH₃), 3.21 (d, J = 17.3 Hz, 1H, H6a), and 3.04 (d, J = 17.2 Hz, 1H, H6b).

¹³C NMR (126 MHz, CDCl₃): δ 172.14, 172.08, 147.5, 143.2, 142.5, 141.1, 139.8, 139.6, 138.7, 137.5, 137.4, 136.2, 133.6, 132.9, 132.7, 131.9, 130.9, 130.0, 129.5, 129.4, 129.1, 128.64, 128.58, 128.55, 128.47, 128.46, 128.3, 127.8, 127.5, 126.6, 124.6, 124.2, 123.8, 122.4, 121.9, 113.3, 97.1, 90.9, 83.5, 81.1, 80.7, 80.3, 78.4, 74.3, 60.0, 52.99, 52.97, 41.6, and 40.4.

IR (neat): 3056, 3018, 2951, 2843, 2214, 1735, 1481, 1442, 1433, 1257, 1200, 1163, 1072, 872, 830, and 754 cm⁻¹.

HRMS (ESI-TOF): Calcd for C₅₁H₃₂NaO₅⁺ [M+Na⁺] requires 747.2142; found 747.2153.

Mp: 145–150 °C.
Fluoranthenes 25b and 25b’ were obtained following general procedure C from pentayne S14 (20 mg, 0.055 mmol), furan (20 μL, 0.28 mmol), and CHCl₃ (2.8 mL). Purification by flash column chromatography (hexanes:EtOAc:DCM, 3:1:1) afforded the fluoranthenes as a 1.2:1 coeluting mixture (21 mg, 0.050 mmol, 90%, a pale yellow solid containing 4wt% DCM based on the ¹H NMR spectrum, 86% corrected yield).

Major isomer

¹H NMR (500 MHz, CDCl₃): δ 8.22 (s, 1H, H9), 7.93 (d, J = 7.1 Hz, 1H, H10 or H13), 7.89 (d, J = 7.0 Hz, 1H, H13 or H10), 7.55 (dd, J = 8.2, 8.2 Hz, 1H, H4’), 7.47–7.43 (m, 2H, H11 and H12), 7.35 (d, J = 7.3 Hz, 1H, H6’), 7.17 (dd, J = 7.2, 7.2 Hz, 1H, H5’), 7.15–7.09 (m, 2H, H2 and H3’), 7.00 (d, J = 5.4 Hz, 1H, H3), 6.38 (s, 1H, H1), 5.54 (s, 1H, H4), 4.88 (d, J = 16.8 Hz, 1H, OCH₃H₆), 4.66 (d, J = 16.8 Hz, 1H, OCH₃H₆), and 3.74 (s, 3H, OCH₃).

Minor isomer

¹H NMR (500 MHz, CDCl₃): δ 8.22 (s, 1H, H9), 7.93 (d, J = 7.1 Hz, 1H, H10 or H13), 7.89 (d, J = 7.0 Hz, 1H, H13 or H10), 7.55 (dd, J = 8.2, 8.2 Hz, 1H, H4’), 7.47–7.43 (m, 2H, H11 and H12), 7.15–7.09 (m, 3H, H2, H5’, and H6’), 7.07 (d, J = 7.1 Hz, 1H, H3’), 7.04 (d, J = 5.5 Hz, 1H, H3), 6.38 (s, 1H, H1), 5.51 (s, 1H, H4), 4.86 (d, J = 16.8 Hz, 1H, OCH₃H₆), 4.69 (d, J = 16.8 Hz, 1H, OCH₃H₆), and 3.76 (s, 3H, OCH₃).

¹³C NMR (126 MHz, CDCl₃): δ 171.91, 171.86, 157.2, 157.0, 148.8, 148.4, 146.5, 146.4, 143.52, 143.50, 143.0, 142.8, 141.2, 140.9, 139.4, 139.3, 139.1, 139.0, 138.0, 137.9, 136.0, 135.8, 131.5, 131.05, 131.03, 130.96, 128.51, 128.50, 128.41, 128.39, 128.38, 128.2, 126.8, 126.5, 126.2, 126.1, 125.8, 125.2, 123.22, 123.16, 122.93, 122.92, 122.2 (x2), 121.3, 121.2, 115.42, 115.39, 111.6, 111.4, 81.0, 80.9, 80.7, 80.6, 70.0, 69.8, 55.8, and 55.6.

(signals from both diastereoisomers)

IR (neat): 3066, 3015, 2938, 2836, 1753, 1578, 1492, 1439, 1351, 1255, 1239, 1063, 1022, 1017, 871, and 753 cm⁻¹.
HRMS (ESI-TOF): Calcd for C_{29}H_{18}NaO_4^+ [M+Na^+] requires 453.1097; found 453.1106.

Mp: 263–282 °C (mixture of diastereoisomers, with decomposition > ca. 250 °C).

(±)-tert-Butyl
10-oxo-15-phenyl-9-(trimethylsilyl)-4,10-dihydro-1H,1,4-epiminobenzo[a]indeno[2,1-e]aceanthrylene-16-carboxylate (25c)

Fluoranthene 25c was obtained following general procedure C from pentayne S20 (23 mg, 0.051 mmol), N-Boc-pyrrole (42 mg, 0.25 mmol), and CHCl_3 (2.6 mL). Purification by MPLC (hexanes:EtOAc, 4:1) afforded fluoranthene 25c (31 mg, 0.050 mmol, 98%) as a bright orange solid.

^1H NMR (500 MHz, CDCl_3): δ 7.96 (d, J = 7.3 Hz, 1H, H5 or H8), 7.94 (d, J = 7.7 Hz, 1H, H8 or H5), 7.65 (very br s, 1H, H11), 7.56–7.45 (m, 4H, PhH_{ortho}, H6, and H7), 7.44–7.36 (m, 3H, PhH_{meta+para}), 7.08–6.99 (br m, 2H, H2 and H3), 6.98 (dd, J = 7.4, 7.4 Hz, 1H, H12), 6.75 (ddd, J = 7.6, 7.6, 1.1 Hz, 1H, H13), 6.19 (br s, 1H, H4), 5.72 (very br s, 1H, H1), 5.60 (d, J = 7.7 Hz, 1H, H14), 1.34 [br s, 9H, C(CH_3)_3], and 0.57 [s, 9H, Si(CH_3)_3].

^13C NMR (126 MHz, CDCl_3) δ 195.5, 155.1 (br), 148.0, 147.1, 144.2, 143.9 (br), 142.0, 141.9, 140.5, 139.8 (br), 138.4, 137.3, 136.0, 134.0, 133.6, 131.2, 130.1, 129.4 (br), 129.2, 128.3, 127.8, 127.7, 127.1, 126.4, 125.8 (br), 124.1, 122.9, 122.4 (br), 81.4, 65.1 (br), 64.3 (br), 28.2, and 2.0 (two resonances for sp^2-hybridized carbons not discernable, presumably due to Boc-rotation).

IR (neat): 3061, 2976, 2931, 2901, 1704, 1692, 1474, 1463, 1444, 1409, 1368, 1330, 1251, 1160, 1087, 929, 908, 846, and 758 cm\(^{-1}\).

HRMS (ESI-TOF): Calcd for C_{41}H_{35}NNaO_5Si^+ [M+Na^+] requires 640.2278; found 640.2270.

Mp: 125–128 °C.
(±)-(1R,4S,5R)-2,3-Dichloro-5-(2-methoxyphenyl)-4,6-dihydro-1,4-ethenobenzo[1,2]aceanthryleno[4,5-c]furan-8(1H)-one (25d) and
(±)-(1R,4S,5S)-2,3-Dichloro-5-(2-methoxyphenyl)-4,6-dihydro-1,4-ethenobenzo[1,2]aceanthryleno[4,5-c]furan-8(1H)-one (25d’)

Fluoranthenes 25d and 25d’ were obtained following general procedure C from pentayne S14 (36 mg, 0.10 mmol) and ortho-dichlorobenzene (5.0 mL). Purification by MPLC (hexanes:EtOAc, 2:1), in order of elution, the closely eluting minor and the major isomers, each containing a small amount of the other. Recrystallization of each from DCM/MeOH afforded the fluoranthenes, each as a pale yellow solid (12 mg, 0.024 mmol, 24%; and 15 mg, 0.029 mmol, 29%, both containing 2wt% DCM based on the 1H NMR spectra, 24% and 28% corrected yield, respectively).

Major isomer (slower eluting)

1H NMR (500 MHz, CDCl₃): δ 8.25 (s, 1H, H9), 8.19 (d, J = 7.6 Hz, 1H, H13), 7.97 (d, J = 7.6 Hz, 1H, H10), 7.60 (dd, J = 8.3, 8.3 Hz, 1H, H4’), 7.51 (dd, J = 7.6, 7.6 Hz, 1H, H11 or H12), 7.46 (dd, J = 7.6, 7.6 Hz, 1H, H12 or H11), 7.29 (d, J = 7.3 Hz, 1H, H6’), 7.21 (dd, J = 7.3, 7.3 Hz, 1H, H5’), 7.14 (d, J = 8.3 Hz, 1H, H3’), 7.07 (dd, J = 6.4, 6.4 Hz, 1H, H15), 6.92 (dd, J = 6.4, 6.4 Hz, 1H, H14), 5.77 (d, J = 6.2 Hz, 1H, H1), 4.69 (d, J = 17.0 Hz, 1H, OCH₃H₉), 4.68 (d, J = 17.0 Hz, 1H, OCH₃H₉), 4.67 (d, J = 6.2 Hz, 1H, H4), and 3.72 (s, 3H, OC₃H₃).

13C NMR (126 MHz, CDCl₃): δ 171.9, 157.3, 146.6, 144.8, 140.7, 139.0, 138.9, 138.7, 137.3, 136.0, 134.9, 134.8, 131.9, 131.1, 129.2, 128.69, 128.67, 128.3, 126.2, 125.6, 123.2, 122.6, 122.2, 121.5, 115.2, 111.5, 69.8, 55.7, 53.3, and 52.6 (one aromatic carbon resonance not discernable).

IR (neat): 3083, 3056, 2956, 2929, 2852, 1755, 1579, 1556, 1492, 1470, 1440, 1350, 1242, 1201, 1100, 1066, 892, 793, and 759 cm⁻¹.

HRMS (ESI-TOF): Calcd for C₃₄H₁₈³⁵Cl₅NaO₃³⁵Cl⁺ [M+Na⁺] requires 531.0525; found 531.0519.

Mp: decomposition > ca. 320 °C.

Minor isomer (faster eluting)

1H NMR (500 MHz, CDCl₃): δ 8.25 (s, 1H, H9), 8.20 (d, J = 7.6 Hz, 1H, H13), 7.98 (d, J = 7.6 Hz, 1H, H10), 7.62–7.58 (nfom, 1H, H4’), 7.51 (ddd, J = 7.5, 7.5, 1.1 Hz, 1H, H11 or H12), 7.47
(dd, $J = 7.6, 7.6, 1.1$ Hz, 1H, H12 or H11), 7.163 (dd, $J = 7.3, 7.3$ Hz, 1H, H5'), 7.156 (d, $J = 8.2$ Hz, 1H, H3'), 7.150 (d, $J = 7.8$ Hz, 1H, H6'), 7.07 (ddd, $J = 6.5, 6.5, 1.6$ Hz, 1H, H15), 6.91 (ddd, $J = 6.6, 6.6, 1.6$ Hz, 1H, H14), 5.77 (dd, $J = 6.0, 1.6$ Hz, 1H, H1), 4.72 (d, $J = 16.9$ Hz, 1H, OCH3H6), 4.64 (d, $J = 6.0, 1.6$ Hz, 1H, H4), 4.63 (d, $J = 17.1$ Hz, 1H, OCH2H6), and 3.72 (s, 3H, OCH3).

13C NMR (126 MHz, CDCl3): δ 171.9, 157.5, 146.6, 144.9, 140.7, 139.0, 138.9, 138.83, 138.76, 137.6, 136.3, 134.8, 134.7, 131.2 (x2), 129.2, 128.7, 128.5, 128.3, 126.2, 125.6, 123.2, 122.5, 122.3, 121.2, 115.2, 111.4, 69.8, 55.7, 53.3, and 52.7.

IR (neat): 3083, 3053, 2927, 2855, 1748, 1728, 1653, 1543, 1477, 1417, 1378, 1350, 1256, 1241, 1176, 1149, 1103, 1067, 980, 870, and 763 cm$^{-1}$.

HRMS (ESI-TOF): Calcd for C31H1835Cl35ClNaO3$^+$ [M+Na$^+$] requires 531.0525; found 531.0515.

Mp: decomposition > ca. 280 °C.

13-(((tert-Butyldimethylsilyl)oxy)methyl)-4-((9-((tert-butyldimethylsilyl)oxy)nona-1,5,7-triyne-1-yl)-2-(methylsulfonyl)-2,3,5,6,7,12-hexahydro-1H-7,12-[1,2]benzenonaphtho[2',3';4,5]indeno[7,1-e]jisoindole (25e)

![Reaction Diagram]

Triptycene 25e was synthesized following general procedure C from octyne 20 (33 mg, 0.050 mmol), anthracene (45 mg, 0.25 mmol), and CHCl3 (2.5 mL). Purification by gradient flash chromatography (hexanes, removing excess anthracene, to DCM) followed by MPLC (hexanes:EtOAc, 3:1) afforded the triptycene derivative 25e (33 mg, 0.039 mmol, 78%) as a pale yellow solid.

1H NMR (500 MHz, CDCl3): δ 7.45–7.41 (m, 4H, ArHortho), 7.07–7.02 (m, 4H, ArHmeta), 5.91 (s, 1H, bridgehead-H), 5.56 (s, 1H, bridgehead-H'), 5.25 (br t, $J = 2.4$ Hz, 2H, MsNCH2), 5.12 (s, 2H, ArCH2O), 4.79 (br t, $J = 2.5$ Hz, 2H, MsNCH2'), 4.38 (s, 2H, $=$CCH2O), 3.52–3.48 (m, 2H, ArCH2CH2Ar'), 3.40–3.36 (m, 2H, ArCH2CH2Ar'), 2.80 (s, 3H, SO2CH3), 2.71 (t, $J = 7.1$ Hz, 2H, $=$CCH2CH2C'=), 2.62 (t, $J = 7.0$ Hz, 2H, $=$CCH2CH2C'), 2.10 [s, 9H, SiC(CH3)3], 0.91 [s, 9H, SiC(CH3)3], 0.38 [s, 6H, Si(CH3)2], and 0.13 [s, 6H, Si(CH3)2].
13C NMR (126 MHz, CDCl$_3$): δ 150.1, 146.1, 144.6, 144.3, 139.5, 138.0, 137.8, 135.9, 127.3, 125.8, 125.71, 125.69, 124.6, 124.2, 123.7, 110.0, 94.7, 78.6, 77.7, 75.2, 69.7, 66.1, 59.1, 55.7, 54.1, 52.3, 50.9, 50.8, 34.4, 30.1, 28.5, 26.2, 25.9, 20.0, 19.6, 18.5, 18.4, -4.8, and -5.0.

IR (neat): 3015, 2954, 2928, 2888, 2856, 2261, 1471, 1461, 1362, 1340, 1255, 1156, 1082, 839, 776, and 755 cm$^{-1}$.

HRMS (ESI-TOF): Calcd for C$_{51}$H$_{59}$NNaO$_4$S$_{2}$ $^+\left[\text{M+Na}^+\right]$ requires 860.3596; found 860.3613.

Mp: 124–128 °C.

Dimethyl
1,2,3,4,5-Pentaphenyl-9-((2-(phenylbuta-1,3-diyn-1-yl)phenyl)ethynyl)-6,8-dihydro-7H-benzo[a]cyclopenta[e]aceanthrylene-7,7-dicarboxylate (25f)

Fluoranthe 25f was obtained following general procedure C from octayne S11 (2 mg, 0.040 mmol), 2,3,4,5-tetraphenylecyclopenta-2,4-dien-1-one (46 mg, 0.12 mmol), and CHCl$_3$ (4.0 mL).

Purification by flash chromatography (hexanes:EtxOAc, 10:1, to hexanes:EtxOAc:DCM, 8:1:1) afforded fluoranthene 25f (37 mg, 0.037 mmol, 92%) as a bright red solid.

1H NMR (500 MHz, CDCl$_3$): δ 8.71 (d, $J = 7.6$ Hz, 1H, $H10$), 7.73 (d, $J = 7.6$ Hz, 1H, $H2'$ or H5'), 7.65 (d, $J = 7.6$ Hz, 1H, $H5'$ or H2'), 7.46–7.28 (m, 7H, ArH), 7.23–7.15 (m, 3H, ArH), 7.08–6.87 (m, 11H, ArH), 6.83–6.66 (m, 7H, ArH), 6.64–6.55 (m, 5H, ArH), 6.36–6.32 (m, 2H, ArH), 3.92 (s, 2H, H8), 3.59 (s, 6H, OCH$_3$), and 2.77 (s, 2H, H6).

13C NMR (126 MHz, CDCl$_3$): δ 172.2, 142.7, 141.7, 141.32, 141.29, 140.7, 140.4, 140.2, 140.1, 139.8, 139.5, 138.8, 138.7, 137.2, 135.7, 135.6, 135.2, 133.6, 133.3, 133.1, 133.0, 132.7, 132.6, 132.2, 131.60, 131.56, 131.2, 130.1, 129.3, 129.1, 128.7, 128.4, 127.3, 126.9, 126.84, 126.75, 126.64, 126.57, 126.39$, 126.39$, 126.3, 126.2, 126.0, 125.4, 125.1, 124.6, 124.3, 122.7, 121.9, 112.9, 97.9, 91.5, 83.5, 80.3, 78.4, 74.4, 59.5, 52.8, 41.9, and 40.5. (one aromatic signal was not discernible)

IR (neat): 3056, 3015, 2951, 2918, 2843, 2214, 1736, 1492, 1480, 1441, 1255, 1199, 1165, 1073, 1027, and 753 cm$^{-1}$.

HRMS (APCI$^+$): Calcd for C$_{75}$H$_{49}$O$_4$ $^+\left[\text{M+H}^+\right]$ requires 1013.3625; found 1013.3597.

Mp: 176–178 °C.
(±)-Dimethyl 3,18,20-Triphenyl-27-(2-(phenylbuta-1,3-diyin-1-yl)phenyl)ethynyl)-nonacyclo[19.13.1.0^{2,19}.0^{4,17}.0^{5,10}.0^{11,16}.0^{22,26}.0^{28,35}.0^{29,34}]pentatriaconta-1,3,5(10),6,8,11(16),12,14,17,19,21(35),22(26),27,29(34),30,32-hexadecaene-24,24-dicarboxylate (25g)

Fluoranthe-n-ketone 25g-CO was obtained following general procedure C from octayne S11 (26 mg, 0.040 mmol), 1,3-diphenyl-2H-cyclopenta[1]phenanthren-2-one\(^\text{12}\) (26) (76 mg, 0.20 mmol), and CHCl\(_3\) (4.0 mL). One deviation for this HDDA reaction was to keep the reaction vessel in the dark to avoid light-induced autoxidation of cyclopentadienone 26\(^\text{13}\). Purification by flash chromatography (hexanes:EtOAc, 10:1 to 4:1) afforded fluoranthe 25g-CO (31 mg, 0.030 mmol, 75%) as a yellow solid.

A stirred suspension of fluoranthe 25g-CO (20 mg, 0.019 mmol) in \(\text{o-DCB}\) (1.9 mL) in a glass vial sealed with Teflon-lined cap was placed in an oil bath held at 180 °C. The initial suspension quickly turned to a homogeneous solution and the vial was heated for 24 h. During the process, the color of the solution was changed from bright yellow to red. After being allowed to cool to room temperature, the solution was directly purified by flash chromatography (4:1 hexanes: EtOAc), which afforded the tetracene 25g (16 mg, 0.016 mmol, 81%) as a bright red solid.

Alternatively, tetracene 25g was obtained by directly heating a thin film of fluoranthe 25g-CO (5.0 mg, 0.0048 mmol) under a N\(_2\) atmosphere in a sand bath held at 250 °C for 1 h. After being allowed to cool to room temperature, the crude material was purified by flash chromatography (hexanes: EtOAc, 4:1) that afforded tetracene 25g (3.0 mg, 0.0030 mmol, 62%) as a bright red solid.

Data for 25g-CO

\(^1\text{H NMR}\) (500 MHz, CDCl\(_3\)): \(\delta\) 8.78 (d, \(J = 7.5\) Hz, 1H, \(H15\)), 8.75 (d, \(J = 8.1\) Hz, 1H, \(H4\) or H5), 8.74 (d, \(J = 8.0\) Hz, 1H, \(H5\) or H4), 8.52 (dd, \(J = 8.4, 0.8\) Hz, 1H, \(H1\) or H8), 8.20 (d, \(J = 8.4, 0.7\) Hz, 1H, \(H8\) or H1), 7.89 (br d, \(J = 7.7\) Hz, 1H, Ph\(_{\text{ortho}}\)), 7.78 (br d, \(J = 7.6\) Hz, 1H, Ph\(_{\text{ortho}}\)), 7.73 (nfod, \(J = 7.3\) Hz, 1H, Ph\(_{\text{ortho}}\)), 7.69–7.65 (m, 2H, Ph\(_{\text{ortho}}\) and \(H2\)), 7.63–7.59 (m, 2H, Ph\(_{\text{ortho}}\)), 7.52–7.27 (m, 18H, Ar\(_{\text{H}}\)), 7.17 (ddd, \(J = 7.6, 7.6, 0.8\) Hz, 1H, \(H3'\) or \(H4'\)), 7.15–7.11 (m, 3H, Ar\(_{\text{H}}\)), 7.11 (ddd, \(J = 7.7, 7.7, 1.0\) Hz, 1H, \(H17\)), 6.84 (br d, \(J = 7.6\) Hz, 1H,
$H18$, 3.86 (d, J = 17.3 Hz, 1H, $H13_a$), 3.79 (d, J = 17.3 Hz, 1H, $H13_b$), 3.63 (s, 3H, OCH$_3$), 3.40 (s, 3H, OCH$_3$), 3.26 (d, J = 17.7 Hz, 1H, $H11_a$), and 2.30 (d, J = 17.7 Hz, 1H, $H11_b$).

13C NMR (126 MHz, CDCl$_3$): δ 171.9, 143.4, 141.1, 140.6, 139.5, 138.3, 137.2, 136.6, 135.5, 133.8, 133.3, 133.0, 132.7, 132.4, 132.2, 131.7, 131.3, 131.1, 130.9, 130.4, 130.0, 128.7, 128.6, 128.43, 128.38, 128.2, 128.0, 127.8, 127.2, 127.0, 126.83, 126.82, 126.7, 126.5, 125.9, 125.0, 124.2, 123.4, 122.9, 121.8, 113.7, 97.8, 83.3, 79.9, 69.0, 67.5, 60.0, 52.2, 52.0, 41.3, and 39.6. Quality 1D 13C NMR spectrum not attainable because of limited solubility. The listed values are from HSQC & HMBC 2D spectra, but many resonances are either not well resolved or absent because of being buried deeper in the core of the structure.

IR (neat): 3057, 3034, 2951, 2921, 2843, 2214, 1802, 1736, 1499, 1482, 1446, 1461, 1255, 1200, 1164, 1073, and 754 cm$^{-1}$.

HRMS (APCI$^+$): Calcd for C$_{76}$H$_{46}$O$_5$$^+$ [M$^+$] requires 1038.3340; found 1038.3331.

Mp: 300–308 ºC (color change from yellow to red observed > ca. 260 ºC).

Data for 25g

1H NMR (500 MHz, CDCl$_3$): δ 8.71 (d, J = 7.6 Hz, 1H, $H15$), 8.09 (d, J = 8.0 Hz, 2H, $H4$ and $H5$), 7.74 (br d, J = 7.5 Hz, 1H, PhH$_{ortho}$), 7.71 (br d, J = 7.6 Hz, 1H, PhH$_{ortho}$), 7.66 (br d, J = 7.6 Hz, 1H, PhH$_{ortho}$), 7.46–7.42 (m, 3H, ArH), 7.41–7.34 (m, 4H, ArH), 7.33–7.24 (m, 5H, ArH), 7.21 (dd, J = 7.5, 7.5 Hz, 1H, ArH), 7.16 (dd, J = 7.7, 7.7 Hz, 1H, ArH), 7.11–6.95 (m, 6H, ArH), 6.88 (dd, J = 7.7, 7.7 Hz, 1H, ArH), 6.86–6.80 (m, 3H, ArH), 6.76–6.71 (m, 2H, ArH), 6.68 (dd, J = 7.6, 7.6 Hz, 1H, ArH), 6.52 (br d, J = 8.3 Hz, 2H, $H1$ and $H8$), 6.31 (d, J = 7.8 Hz, 1H, $H18$), 3.98 (d, J = 17.1 Hz, 1H, $H13a$), 3.90 (d, J = 17.1 Hz, 1H, $H13b$), 3.65 (s, 3H, OCH$_3$), 3.51 (s, 3H, OCH$_3$), 3.34 (d, J = 17.7 Hz, 1H, $H11a$), and 2.44 (d, J = 17.6 Hz, 1H, $H11b$). The twist in the dibenzotetracene14 renders the two pairs of methylene protons and the methyl groups inequivalent (diastereotopic).

13C NMR (126 MHz, CDCl$_3$): δ 172.2, 142.5, 141.8, 141.6, 140.9, 140.4, 138.6, 138.5, 137.5, 136.6, 135.7, 135.5, 134.4, 134.0, 133.67, 133.65, 133.22, 133.20, 133.0, 132.9, 132.74, 132.66, 132.6, 132.2, 131.9, 131.8, 131.6, 131.4, 131.0, 130.4, 129.7, 129.6, 129.4, 129.2, 129.1, 128.98, 128.96, 128.92, 128.7, 128.5, 128.3, 128.0, 127.4, 127.2, 126.91 (br), 126.90, 126.87, 126.69, 126.68, 126.6, 126.42, 126.36, 126.1, 125.8, 124.3, 123.72, 123.67, 122.8, 121.9, 113.0, 97.9, 91.5, 83.5, 80.3, 78.4, 74.4, 59.6, 52.9, 42.4, and 40.6. The twist in the dibenzotetracene14 renders all six of the carbons in each of the three non-terminal phenyl groups inequivalent.

IR (neat): 3059, 3025, 2952, 2927, 1736, 1599, 1492, 1480, 1443, 1253, 1200, 1168, 1074, 818, and 754 cm$^{-1}$.

HRMS (APCI$^+$): Calcd for C$_{75}$H$_{46}$O$_4$$^+$ [M$^+$] requires 1010.3391; found 1010.3394.

Mp: 306–310 ºC.
(±)-6,7-Dimethoxy-15-(4-methoxyphenyl)-14-tosyl-9-(trimethylsilyl)-14H-benzo[3,4]fluoren o[1,9-ab]carbazole (25h)

Carbazole 25h was synthesized following general procedure C from pentayne S17 (34 mg, 0.050 mmol), 2-pyrone (12 μL, 0.15 mmol), and CHCl₃ (5.0 mL). Purification by MPLC (hexanes:EtOAc, 2:1) afforded carbazole 25h (26 mg, 0.039 mmol, 78%) as a red solid.

¹H NMR (500 MHz, CDCl₃): δ 8.76 (br d, J = 8.6 Hz, 1H, H4), 8.42 (br d, J = 8.9 Hz, 1H, H1), 8.20 (s, 1H, H9), 8.17 (br s, 1H, SO₂-Ar ortho-a), 8.00 (s, 1H, H5), 7.90 (s, 1H, SO₂-Ar ortho-b and meta-b), 7.60 (s, 1H, H8), 7.48 (br dd, J = 8.4, 8.4 Hz, 1H, H2), 7.31 (br dd, J = 7.5, 7.5 Hz, 1H, H11 or H12), 7.29 (br s, 1H, SO₂-Ar meta-a), 7.26 (br dd, J = 7.6, 7.6 Hz, 1H, H12 or H11), 6.87 (br s, 2H, SO₂-Ar ortho-b and meta-b), 6.64 (br d, J = 7.9 Hz, 2H, MeO-Ar meta), 4.19 (s, 3H, OCH₃), 4.11(s, 3H, OCH₃), 3.99 (s, 3H, OCH₃), and 2.09 (s, 3H, SO₂-ArCH₃).

¹³C NMR (126 MHz, CDCl₃): δ 159.3, 149.6, 148.7, 143.7, 142.2, 139.2, 137.25, 137.22, 134.7, 133.8, 131.42, 131.40, 131.37, 131.33, 131.0, 130.9, 130.6, 129.4 (br), 129.3, 129.1, 128.22 (br), 128.20, 127.4, 127.1, 126.4, 125.7, 125.4, 124.0, 121.9, 119.62 (br), 119.38, 119.35, 111.8, 108.2, 105.4, 56.8, 56.5, 55.6, and 21.5 (one aromatic carbon resonance not discernable).

IR (neat): 3000, 2955, 2832, 1604, 1509, 1421, 1389, 1361, 1289, 1242, 1209, 1170, 1152, 1085, 1033, 908, and 763 cm⁻¹.

HRMS (APCI⁺): Calcd for C₄₂H₃₂N₀₅S⁺ [M+H⁺] requires 662.1996; found 662.1982.

Mp: 204–208 °C.
Methyl 10-Oxo-15-phenyl-9-(trimethylsilyl)-10H-benzo[a]indeno[2,1-e]aceanthrylene-3-carboxylate (25i) and

Methyl 10-Oxo-15-phenyl-9-(trimethylsilyl)-10H-benzo[a]indeno[2,1-e]aceanthrylene-2-carboxylate (25i’)

Anthracene 25i and 25i’ were obtained following general procedure C from pentayne S20 (45 mg, 0.10 mmol), methyl coumalate (46 mg, 0.30 mmol), and CHCl₃ (5 mL). Purification by MPLC (hexanes:EtOAc, 4:1) afforded, in order of elution, anthracenes 25i and 25i’ each as a dark red amorphous solid (35 mg, 0.062 mmol, 62%; and 18 mg, 0.032 mmol, 32%, respectively). Their ratio was 2.0:1 based on the ¹H NMR spectrum of the crude reaction mixture.

Major isomer 25i (faster eluting)

¹H NMR (500 MHz, CDCl₃): δ 9.36 (s, 1H, H4), 8.21 (d, J = 7.7 Hz, 1H, H5), 8.03 (d, J = 9.3 Hz, 1H, H2), 7.90 (d, J = 7.4 Hz, 1H, H8), 7.84 (d, J = 9.3 Hz, 1H, H1), 7.50 (dd, J = 7.4, 7.4 Hz, 1H, H6), 7.46–7.33 (m, 7H, PhH3, H11, and H7), 6.94 (dd, J = 7.3, 3.7 Hz, 1H, H12), 6.68 (dd, J = 7.6, 7.6 Hz, 1H, H13), 5.30 (d, J = 7.7 Hz, 1H, H14), 4.09 (s, 3H, OCH3), and 0.52 [s, 9H, Si(CH3)]₃.

¹³C NMR (126 MHz, CDCl₃): δ 195.8, 167.0, 148.8, 145.5, 144.2, 141.2, 140.5, 140.0, 139.2, 138.7, 135.0, 134.6, 134.3, 133.8, 133.6, 133.2, 132.9, 129.3, 128.8, 128.8, 128.7, 128.5, 128.4, 127.7, 127.6, 126.4, 126.4, 125.4, 124.9, 124.4, 124.1, 122.7, 52.7, and 2.0.

IR (neat): 3059, 2951, 2900, 1721, 1706, 1605, 1462, 1441, 1299, 1264, 1247, 1193, 1100, 909, 847, and 765 cm⁻¹.

HRMS (APCI⁺): Calcd for C₃₇H₂₅O₃Si⁺ [M-CH₃⁺] requires 545.1567; found 545.1573.

Minor isomer 25i’ (slower eluting)

¹H NMR (500 MHz, CDCl₃): δ 8.93 (d, J = 1.3 Hz, 1H, H1), 8.74 (d, J = 9.0 Hz, 1H, H4), 8.25 (d, J = 7.7 Hz, 1H, H5), 8.16 (dd, J = 8.9, 1.5 Hz, 1H, H3), 7.97 (d, J = 7.6 Hz, 1H, H8), 7.58–7.52 (m, 5H, PhH3), 7.44 (dd, J = 7.5, 7.5, 1.1 Hz, 1H, H6), 7.42 (dd, J = 7.4, 1.2 Hz, 1H, H11), 7.38 (dd, J = 7.5, 7.5, 0.8 Hz, 1H, H7), 6.97 (dd, J = 7.6, 7.6, 0.7 Hz, 1H, H12), 6.73 (dd, J = 7.6, 7.6, 1.3 Hz, 1H, H13), 5.44 (d, J = 7.7 Hz, 1H, H14), 3.96 (s, 3H, OCH3), and 0.55 [s, 9H, Si(CH3)]₃.
13C NMR (126 MHz, CDCl$_3$): δ 195.8, 167.1, 148.5, 145.8, 144.4, 141.5, 140.9, 140.8, 139.8, 139.2, 136.0, 135.7, 133.8, 133.3, 133.04, 133.00, 132.4, 131.8, 131.1, 129.2, 129.0, 128.4, 127.8, 127.1, 126.9, 126.6, 126.4, 125.0, 124.8, 124.7, 123.9, 122.8, 52.5, and 2.0.

IR (neat): 3065, 2952, 2899, 1721, 1706, 1557, 1441, 1299, 1274, 1241, 1194, 1086, 862, 844, and 767 cm$^{-1}$.

HRMS (APCI$^+$): Calcd for C$_{37}$H$_{25}$O$_2$ [M+H$^+$] requires 501.1849; found 501.1838.

$\text{M}p$: decomposes $> \text{ca. 240} \, ^\circ\text{C}$.

9-Propyl-14,15-dihydrocyclopenta[4,5]dinaphtho[2′,1′,8′:6,7,8;1′′,2′′:9,10,11]tetraceno[1,2-c]furan-12(10H)-one (25j)

Anthracenoperylene 25j were obtained following general procedure C from pentayne 9 (25 mg, 0.10 mmol), perylene (76 mg, 0.30 mmol), and CHCl$_3$ (20 mL). Purification by flash column chromatography (hexanes:DCM, 1:1) followed by recrystallization DCM/MeOH afforded anthracenoperylene 25j (28 mg, 0.056 mmol, 56%, containing 4 wt% DCM, 54% corrected yield) as an orange solid, which slowly decomposed under air and ambient light. The sample was stored in the dark and kept at -20 °C.

1H NMR (500 MHz, CDCl$_3$): δ 9.08 (d, $J = 9.2$ Hz, 1H, H8 or H16), 8.81 (d, $J = 7.7$ Hz, 1H, H3 or H4), 8.79 (d, $J = 7.7$ Hz, 1H, H4 or H3), 8.51 (d, $J = 9.0$ Hz, 1H, H16 or H8), 8.19 (d, $J = 8.8$ Hz, 1H, H7 or H17), 8.12 (d, $J = 7.6$ Hz, 1H, H1 or H6), 8.08 (d, $J = 7.5$ Hz, 1H, H6 or H1), 8.00 (d, $J = 8.7$ Hz, 1H, H17 or H7), 7.92 (dd, $J = 7.8$, 7.8 Hz, 1H, H2 or H5), 7.91 (dd, $J = 7.9$, 7.9 Hz, 1H, H5 or H2), 7.75 (s, 1H, H13) 5.99 (br s, 2H, OCH$_2$), 4.45 (br s, 2H, H15), 4.03 (very br s, 2H, CH$_2$CH$_2$CH$_3$), 3.71 (br s, 2H, CH$_2$), 1.22 (br m, 2H, CH$_2$CH$_2$CH$_3$), and 0.55 (t, $J = 7.3$ Hz, 3H, CH$_2$CH$_2$CH$_3$).

13C NMR (126 MHz, CDCl$_3$): Limited solubility properties prevented the collection of a high enough quality 1-D or 2-D 13C spectral data set. The following are resonances that could be observed with confidence: δ 132.6, 132.1, 130.9, 129.8, 127.6, 127.1, 127.0 (x2 in HSQC), 126.2, 125.3, 125.2, 124.8, 120.9, 120.5, 112.5, 71.5, 37.5, 36.8, 31.0, 27.4, and 13.7. (15 aromatic C and 1 carbonyl were not observed).

IR (neat): 2969, 2928, 2873, 1755, 1654, 1581, 1563, 1461, 1441, 1359, 1266, 1176, 1100, 850, and 821 cm$^{-1}$.

HRMS (APCI$^+$): Calcd for C$_{37}$H$_{25}$O$_2$ $^+$ [M+H$^+$] requires 501.1849; found 501.1838.
(±)-(7R,18bR)-18-Phenyl-12-(trimethylsilyl)-7,18b-ethenodibenzo[ij,pq]diindeno[1,2-a:1',2', 3'-de]pentaphen-13(7H)-one (25k) and
(±)-(7S,18dS)-8-Phenyl-14-(trimethylsilyl)-7,18d-ethenodibenzo[ij,pq]diindeno[2,1-c:1',2',3' -uv]pentaphen-13(7H)-one (25k')

The fused fluorenone derivatives 25k and 25k' were obtained following general procedure C from pentayne S20 (22 mg, 0.049 mmol), perylene (38 mg, 0.15 mmol), and CHCl₃ (10 mL). Purification by flash column chromatography (hexanes:DCM, 2:1) afforded fluorenones 25k and 25k' as a 2.0:1 co-eluting mixture, containing minor impurities (21 mg, 0.030 mmol, ~61%), as judged from its ¹H NMR spectrum. A pristine sample of the mixture of 25k and 25k' was acquired by recrystallization from DCM/MeOH (15 mg, 0.021 mmol, 44%, as a red solid). A single crystal of the major isomer 25k suitable for X-ray diffraction analysis was grown by slow evaporation at ambient temperature of a toluene solution of the mixture (CCDC deposition number: 1818244).

Major isomer 25k

¹H NMR (500 MHz, CDCl₃): δ 8.47 (d, J = 7.5 Hz, 1H, H8), 8.19 (d, J = 7.0 Hz, 1H, H3), 7.98 (dd, J = 8.0, 0.8 Hz, 1H, H11), 7.96 (d, J = 7.8 Hz, 1H, H1), 7.78 (d, J = 7.8 Hz, 1H, H4), 7.60 (dd, J = 7.9, 7.4 Hz, 1H, H5), 7.508 (ddd, J = 7.6, 7.6, 0.9 Hz, 1H, H9 or H10), 7.507 (dd, J = 7.2, 0.6 Hz, 1H, H6), 7.43 (dd, J = 7.9, 1.1 Hz, 1H, H21), 7.41 (dd, J = 7.6, 7.6, 0.9 Hz, 1H, H10 or H9), 7.31 (dd, J = 7.0, 0.8 Hz, 1H, H14), 7.27 (dd, J = 7.8, 7.2 Hz, 1H, H2), 7.26 (dd, J = 6.8, 6.8 Hz, 1H, H23), 7.04 (br d, J = 7.2 Hz, 1H, PhH₉₀ᵗₐ₉), 6.95 (dd, J = 7.2, 1.3 Hz, 1H, H19), 6.91 (dd, J = 7.5, 7.5 Hz, 1H, H20), 6.85 (br dd, J = 7.3, 7.3 Hz, 1H, PhH₉₂₉), 6.82 (dd, J = 6.9, 1.5 Hz, 1H, H22), 6.81 (br t, J = 7.2, 1.3 Hz, 1H, PhH₉₂₉), 6.73 (dd, J = 7.7, 7.7, 0.7 Hz, 1H, H15), 6.48 (br d, J = 7.2 Hz, 1H, PhH₉₀ᵗₐ₉), 6.38 (dd, J = 6.6, 1.5 Hz, 1H, bridgehead-H), 6.36 (ddd, J = 7.7, 7.7, 1.3 Hz, 1H, H16), 6.10 (br dd, J = 7.3, 7.3 Hz, 1H, PhH₉₂₉), 4.78 (d, J = 7.8 Hz, 1H, H17), and 0.55 [s, 9H, Si(CH₃)₃]. The inequivalency of the protons on the phenyl substituent indicate that rotation about the Ph–Ar bond is slow on the NMR time-scale.

¹³C NMR (126 MHz, CDCl₃): δ 195.6, 150.8, 146.2, 145.8, 145.5, 145.1, 144.9, 143.5, 141.8, 140.4, 140.2, 139.6, 138.6, 137.1, 136.6, 135.9, 135.5, 134.8, 133.7, 133.3, 133.1, 132.3, 131.9, 130.8, 129.4, 129.2, 128.6, 128.5, 128.4, 127.8, 127.6, 127.2, 127.04, 126.98, 126.9, 126.8, 126.6, 126.4, 126.2, 125.8, 125.0, 123.4, 123.1, 122.4, 120.1, 119.4, 56.1, 47.1, and 2.0.
IR (neat): 3052, 3026, 2926, 2853, 1704, 1607, 1463, 1443, 1401, 1381, 1249, 1207, 843, and 764 cm⁻¹.

HRMS (APCI⁺): Calcd for C₅₁H₃₁OSi⁺ [M-CH₃⁺] requires 687.2139; found 687.2131.

Mp: 298–301 °C.

Minor isomer 25k’ (deduced from mixture)

H NMR (500 MHz, CDCl₃): δ 8.18 (d, J = 7.2 Hz, 1H, H3), 8.03 (d, J = 8.2, 0.9 Hz, 1H, H21), 8.00 (d, J = 8.1 Hz, 1H, H1), 7.89 (dd, J = 8.0, 0.8 Hz, 1H, H4), 7.73 (dd, J = 7.4, 1.1 Hz, 1H, H19), 7.66 (dd, J = 8.0, 7.4 Hz, 1H, H2), 7.66–7.55 (m, 6H, PhH₅ and H15), 7.54 (dd, J = 8.0, 7.4 Hz, 1H, H20), 7.43 (dd, J = 7.7, 0.9 Hz, 1H, H12), 7.23 (dd, J = 7.2, 1.0 Hz, 1H, H6), 7.20 (dd, J = 7.3, 7.3 Hz, 1H, H5), 7.06 (dd, J = 6.8, 6.8 Hz, 1H, H23), 6.96 (ddd, J = 7.5, 7.5, 0.6 Hz, 1H, H11), 6.94 (ddd, J = 7.4, 7.4, 0.7 Hz, 1H, H16), 6.91 (dd, J = 6.9, 1.5 Hz, 1H, H22), 6.73 (ddd, J = 7.7, 7.7, 1.3 Hz, 1H, H10), 6.34 (ddd, J = 7.7, 7.7, 1.1 Hz, 1H, H17), 5.63 (dd, J = 6.6, 1.5 Hz, 1H, bridgehead-H7), 5.45 (d, J = 7.7 Hz, 1H, H9), 4.84 (d, J = 7.9 Hz, 1H, H18), and 0.49 [s, 9H, Si(CH₃)₃].

C NMR (126 MHz, CDCl₃): δ 195.8, 149.5, 147.5, 146.5, 146.0, 145.7, 144.9, 143.1, 142.2, 141.1, 140.0, 138.84, 138.76, 138.6, 136.9, 134.5, 133.9, 133.7, 133.4, 133.0, 132.5, 132.0, 129.8, 129.5, 129.4, 129.1, 129.0, 128.9, 128.6, 128.2, 128.1, 127.9, 127.4, 127.0, 126.8, 126.5, 126.3, 125.5, 125.3, 125.2, 124.4, 122.9, 122.8, 120.0, 119.6, 55.8, 48.7, and 2.1.

IR (neat): 3052, 2950, 2924, 2852, 1704, 1603, 1462, 1444, 1399, 1377, 1248, 1200, 1083, 844, and 765 cm⁻¹. (of the mixture)

HRMS (APCI⁺): Calcd for C₅₁H₃₁OSi⁺ [M-CH₃⁺] requires 687.2139; found 687.2131. (of the mixture)

Mp: 260–288 °C (of the mixture).
7-Oxo-1-propyl-4,5,7,9-tetrahydroacenaphtho[4,5-c]furan-3-yl acetate (25l) and 7-Oxo-1-propyl-4,5,7,9-tetrahydroacenaphtho[4,5-c]furan-2-yl acetate (25l’)

Naphthalenes 25l and 25l’ were obtained following general procedure C from pentayne 9 (25 mg, 0.10 mmol), acetic acid (300 μL, 5.0 mmol), and CHCl₃ (5.0 mL). Purification by MPLC (hexanes:EtOAc, 2:1) afforded naphthalene 25l and 25l’ (20 mg, 0.065 mmol, 65%, as a pale yellow solid) as a 1:1.3 coeluting mixture.

25l (major)

¹H NMR (500 MHz, CDCl₃): δ 7.60 (s, 1H, H6), 7.19 (s, 1H, H3), 5.67 [s, 2H, CH₂O(C=O)], 3.47–3.39 (m, 4H, ArCH₂CH₂Ar), 2.73 (t, J = 7.7 Hz, 2H, CH₂CH₂CH₃), 2.40 [s, 3H, O(C=O)CH₃], 1.57 (sextet, J = 7.7 Hz, 2H, CH₂CH₂CH₃), and 1.06 (t, J = 7.5 Hz, 3H, CH₂CH₂CH₃).

25l’ (minor)

¹H NMR (500 MHz, CDCl₃): δ 7.60 (s, 1H, H6), 7.13 (s, 1H, H2), 5.67 [s, 2H, CH₂O(C=O)], 3.47–3.39 (m, 2H, H5), 3.32–3.28 (m, 2H, H4), 2.86 (t, J = 7.7 Hz, 2H, CH₂CH₂CH₃), 2.38 [s, 3H, O(C=O)CH₃], 1.71 (sextet, J = 7.6 Hz, 2H, CH₂CH₂CH₃), and 1.07 (t, J = 7.4 Hz, 3H, CH₂CH₂CH₃).

¹³C NMR (126 MHz, CDCl₃): δ 171.9, 171.8, 170.0, 168.7, 149.7, 149.3, 148.9, 146.2, 145.1, 145.0, 142.7, 142.3, 141.4, 138.4, 134.4, 126.4, 126.3, 126.0, 125.4, 124.4, 123.7, 119.0, 114.7, 114.2, 70.7, 70.6, 35.8, 30.5, 30.11, 30.06, 30.01, 28.3, 24.9, 24.8, 21.1, 21.0, 14.4, and 14.0 (signals from both regioisomers)

IR (neat): 2961, 2932, 2874, 1755, 1611, 1450, 1422, 1364, 1345, 1203, 1182, 1106, 1071, 1040, 909, and 778 cm⁻¹.

HRMS (ESI-TOF): Calcd for C₁₀H₁₈NaO₄⁺ [M+Na⁺] requires 333.1097; found 333.1098.

Mp: 158–172 °C (mixture of regioisomers).
4-((9-Oxo-1-phenyl-8-(trimethylsilyl)-9H-indeno[2,1-b]fluoranthen-2-yl)thio)butyl acetate (25m) and
4-((9-Oxo-1-phenyl-8-(trimethylsilyl)-9H-indeno[2,1-b]fluoranthen-3-yl)thio)butyl acetate (25m’)

Fluoranthenes 25m and 25m’ were obtained following general procedure C from pentayne S20 (50 mg, 0.11 mmol) and tetrahydrothiophene (12 µL, 0.14 mmol), acetic acid (33 µL, 0.55 mmol), and benzene (11 mL). Purification by MPLC (hexanes:EtOAc, 5:1) afforded, in order of elution, fluoranthenes 25m and 25m’, each as an orange-red solid (21 mg, 0.035 mmol, 32%; and 39 mg, 0.065 mmol, 59%).

Minor isomer 25m (faster eluting)

\(^1\)H NMR (500 MHz, CDCl\textsubscript{3}): \(\delta\) 7.99 (s, 1H, \(H3\)), 7.90 (nfom, 1H, \(H4\)), 7.83 (nfom, 1H, \(H7\)), 7.52 (d, \(J = 7.0\) Hz, 2H, Ph\textsubscript{ortho}), 7.48–7.43 (m, 4H, Ph\textsubscript{meta+para} and \(H10\)), 7.38–7.35 (m, 2H, \(H5\) and \(H6\)), 6.97 (ddd, \(J = 7.4, 7.4, 0.6\) Hz, 1H, \(H11\)), 6.73 (ddd, \(J = 7.7, 7.7, 1.3\) Hz, 1H, \(H12\)), 5.47 (d, \(J = 7.8\) Hz, 1H, \(H13\)), 3.98 (t, \(J = 6.0\) Hz, 2H, \(CH_2\text{OAc}\)), 2.92 (t, \(J = 6.9\) Hz, 2H, \(SCH_2\)), 1.96 [s, 3H, O(C=O)\(CH_3\)], 1.66–1.57 (m, 4H, \(CCH_2\text{CH}_2\text{C}\)), and 0.56 [s, 9H, Si(\(CH_3\))\textsubscript{3}].

\(^1\)3C NMR (126 MHz, CDCl\textsubscript{3}): \(\delta\) 195.6, 171.2, 147.7, 144.4, 143.9, 142.4, 140.5, 139.8, 139.4, 138.6, 138.3, 137.1, 136.2, 135.4, 133.8, 133.5, 132.4, 128.6, 128.5, 127.8, 127.7, 127.5, 127.0, 126.4, 125.3, 122.9, 121.8, 120.9, 63.9, 34.4, 27.8, 25.5, 21.0, and 2.0.

IR (neat): 3059, 2951, 2902, 1737, 1706, 1604, 1462, 1445, 1381, 1239, 1088, 1042, 908, 843, and 765 cm-1.

HRMS (ESI-TOF): Calcd for C\textsubscript{38}H\textsubscript{34}NaO\textsubscript{3}SSi+ [M+Na+] requires 621.1890; found 621.1901.

Mp: 56–59 °C.

Major isomer 25m’ (slower eluting)

\(^1\)H NMR (500 MHz, CDCl\textsubscript{3}): \(\delta\) 8.38 (d, \(J = 7.6\) Hz, 1H, \(H4\)), 7.93 (d, \(J = 7.4\) Hz, 1H, \(H7\)), 7.56–7.53 (nfom, 2H, Ph\textsubscript{ortho}), 7.52 (s, 1H, \(H2\)), 7.46 (d, \(J = 7.4\) Hz, 1H, \(H10\)), 7.46–7.43 (m, 3H, Ph\textsubscript{meta+para}), 7.40 (ddd, \(J = 7.5, 7.5, 1.2\) Hz, 1H, \(H5\)), 7.35 (ddd, \(J = 7.5, 7.5, 1.2\) Hz, 1H, \(H6\)), 6.98 (ddd, \(J = 7.4, 7.4, 0.8\) Hz, 1H, \(H11\)), 6.74 (ddd, \(J = 7.6, 7.6, 1.3\) Hz, 1H, \(H12\)), 5.60 (d, \(J =
7.7 Hz, 1H, H13), 4.12 (t, J = 6.1 Hz, 2H, CH2OAc), 3.25 (t, J = 6.8 Hz, 2H, SCH2), 2.00 [s, 3H, O(C=O)CH3], 1.94–1.84 (m, 4H, CCH2CH2C), and 0.59 [s, 9H, Si(CH3)3].

13C NMR (126 MHz, CDCl3): δ 195.4, 171.2, 146.5, 143.8, 143.8, 142.3, 140.7, 140.3, 139.5, 139.4, 138.3, 136.4, 135.6, 133.9, 133.39, 133.36, 131.0, 130.2, 129.3, 128.4, 127.9 (x2), 126.5, 126.1, 125.9, 122.82, 122.80, 63.9, 32.5, 28.0, 26.0, 21.0, and 2.0.

IR (neat): 3063, 2954, 2899, 1737, 1704, 1561, 1445, 1403, 1234, 1199, 1076, 1043, 949, 914, 859, 842, and 765 cm⁻¹.

HRMS (ESI-TOF): Calcd for C38H34NaO3SSi+[M+Na+] requires 621.1890; found 621.1894.

Mp: 74–77 ºC.

Dimethyl
1-Morpholino-3-phenyl-7-((2-(phenylbuta-1,3-diyin-1-yl)phenyl)ethyl)-4,6-dihydro-5H-cyclopenda[b]fluoranthene-5,5-dicarboxylate (25n)

Dimethyl
2-Morpholino-3-phenyl-7-((2-(phenylbuta-1,3-diyin-1-yl)phenyl)ethyl)-4,6-dihydro-5H-cyclopenda[b]fluoranthene-5,5-dicarboxylate (25n′)

Fluoranthenes 25n and 25n’ were obtained following general procedure C from octayne S11 (33 mg, 0.050 mmol), morpholine (13 μL, 0.15 mmol), and CHCl3 (2.5 mL). Purification by MPLC (hexanes:EtOAc, 3:1) afforded fluoranthene 25n and 25n’ as a 4.5:1 coeluting mixture (36 mg, 0.048 mmol, 96%, as a yellow solid). A pure sample of just the major regioisomer 25n (24 mg, 0.032 mmol, 64%) was isolated by recrystallization from DCM/MeOH.

Data for the major isomer (25n)

1H NMR (500 MHz, CDCl3): δ 8.70 (d, J = 7.6 Hz, 1H, H8), 7.85 (br d, J = 7.4 Hz, 1H, H11), 7.81 (s, 1H, H1), 7.71 (dd, J = 7.8, 1.0 Hz, 1H, H2’ or H5’), 7.64 (dd, J = 7.7, 1.0 Hz, 1H, H5’ or H2’), 7.50 (ddd, J = 7.6, 7.6, 1.0 Hz, 1H, H9 or H10), 7.48–7.40 (m, 6H, ArH), 7.39–7.28 (m, 7H, ArH), 3.91 (s, 2H, H6), 3.61 (s, 6H, OCH3), 3.46 (br t, J = 4.3 Hz, 4H, OCH2), 3.03 (s, 2H, H4), and 2.93 (br t, J = 4.5 Hz, 4H, NCH2).
13C NMR (126 MHz, CDCl$_3$): δ 172.2, 151.8, 142.7, 139.4, 139.0, 138.9, 137.7, 137.5, 135.8, 134.1, 133.6, 132.9, 132.7, 131.0, 130.0, 129.4, 129.1, 128.63, 128.62, 128.5, 127.9, 127.7, 127.53, 127.49, 126.7, 124.2, 123.8, 121.9, 120.9, 114.5, 112.5, 96.9, 91.0, 83.5, 80.4, 78.4, 74.4, 67.3, 59.7, 52.9, 52.8, 41.8, and 40.5.

IR (neat): 3058, 2952, 2851, 2813, 2214, 1736, 1609, 1480, 1442, 1370, 1260, 1199, 1166, 1113, 1069, and 755 cm$^{-1}$.

HRMS (ESI-TOF): Calcd for C$_{51}$H$_{37}$NNaO$_5^+$ [M+Na$^+$] requires 766.2564; found 766.2541.

Mp: 134–139 °C.

Data for the major isomer (25n’, extracted from mixture)

1H NMR (500 MHz, CDCl$_3$): δ 8.82 (d, $J = 7.6$ Hz, 1H, $H8$), 7.94 (d, $J = 7.5$ Hz, 1H, $H11$), 7.74 (dd, $J = 7.8$, 1.0 Hz, 1H, $H2’$ or $H5’$), 7.65 (dd, $J = 7.7$, 1.0 Hz, 1H, $H5’$ or $H2’$), 7.52–7.28 (m, 14H, Ar H), 7.23 (s, 1H, $H2$), 4.03 (br t, $J = 4.5$ Hz, 4H, OCH$_2$), 3.96 (s, 2H, $H6$), 3.62 (s, 6H, OCH$_3$), 3.29 (br t, $J = 4.4$ Hz, 4H, NCH$_2$), and 3.19 (s, 2H, $H4$).

13C NMR (126 MHz, CDCl$_3$): δ 172.2, 147.5, 141.8, 141.7, 140.8, 138.0, 137.8, 136.7, 135.6, 134.6, 133.67, 133.64, 133.0, 132.7, 129.7, 129.1, 128.7, 128.5, 128.2, 128.0, 127.5, 127.3, 126.6, 125.4, 124.3, 123.7, 123.6, 123.2, 121.9, 117.2, 113.7, 100.1, 97.4, 91.2, 83.5, 80.3, 74.4, 67.4, 60.0, 53.0, 52.4, 47.4, and 42.0.

IR (neat): 3059, 2953, 2853, 2812, 2218, 1735, 1694, 1616, 1455, 1372, 1260, 1200, 1167, 1114, 1070, 838, and 757 cm$^{-1}$. (from the mixture of regioisomers)

HRMS (ESI-TOF): Calcd for C$_{51}$H$_{37}$NNaO$_5^+$ [M+Na$^+$] requires 766.2564; found 766.2552. (obtained from the mixture of regioisomers)

Mp: 117–128 °C (of the mixture of regioisomers).

(±)-(6cS,7R,10S,10aR)-11-Propyl-5,6,6c,7,8,9,10a-octahydro-7,10-methanobenzo[3′,4′]cyclobuta[1′,2′:7,8]acenaphtho[4,5-c]furan-3(1H)-one (25o)

Naphthalene 25o was obtained following general procedure C from pentayne 9 (25 mg, 0.10 mmol), norbornene (94 mg, 1.0 mmol), and CHCl$_3$ (5.0 mL). Purification by MPLC (hexanes:EtOAc, 2.5:1) afforded naphthalene 25o (22 mg, 0.064 mmol, 64%) as a white solid.
Ethyl 9-Oxo-14-phenyl-8-(trimethylsilyl)-3,9-dihydroindeno[1',2':2,3]fluoreno[1,9-fg]indazole-1-carboxylate (25p)

Fluoranthene 25p was obtained following general procedure C from pentayne S20 (22 mg, 0.049 mmol), ethyl 2-diazoacetate (18 µL, 90 wt%, 0.15 mmol), and CHCl₃ (2.4 mL). Purification by flash column chromatography (hexanes:EtOAc, 2:1 to 1:1) afforded fluoranthene 25p (24 mg, 0.042 mmol, 86%) as a red solid.

1H NMR (500 MHz, CDCl₃): δ 7.53 (s, 1H, Ar>H), 5.67 [s, 2H, CH₂O(C=O)], 3.41 (br t, J = 6.5 Hz, 2H, ArCH₂CH₂Ar), 3.37 (br d, J = 3.9 Hz, 1H, ArRCHCRAr), 3.28 (br d, J = 3.8 Hz, 1H, ArRCHCRAr), 3.26 (br t, J = 6.4 Hz, 2H, ArCH₂CH₂Ar), 2.75 (dt, J = 13.8, 7.7 Hz, 1H, CH₃H₃CH₂CH₃), 2.74 (dt, J = 13.9, 7.8 Hz, 1H, CH₃H₃CH₂CH₃), 2.42 [br s, 2H, bridgehead methines-a and b], 1.68–1.59 (m, 4H, CH₂H₃CH₂H₃ and CH₂H₃CH₂H₃), 1.30–1.25 (m, 2H, CH₃H₃CH₂H₃), 1.08 (t, J = 7.3 Hz, 3H, CH₃H₃CH₂CH₃), 1.04 (br d, J = 10.2 Hz, 1H, bridge CH₃H₃), and 0.92 (br d, J = 10.2 Hz, 1H, bridge CH₃H₃).

13C NMR (126 MHz, CDCl₃): δ 172.5, 148.4, 147.8, 144.7, 142.6, 141.6, 137.2, 128.3, 125.8, 124.0, 112.8, 70.8, 50.4, 48.8, 37.3, 36.6, 32.6, 31.8, 30.5, 28.0, 27.9, 27.8, 25.6, and 14.6.

IR (neat): 2952, 2871, 1756, 1649, 1449, 1424, 1395, 1355, 1293, 1220, 1178, 1162, 1100, 1019, 961, 911, 870, and 753 cm⁻¹.

HRMS (ESI-TOF): Calcd for C₂₄H₂₄NaO₂⁺ [M+Na⁺] requires 367.1669; found 367.1674.

Mp: 167–170 °C.
IR (neat): 3298, 3064, 2954, 2926, 2854, 1728, 1707, 1604, 1462, 1436, 1387, 1262, 1248, 1135, 1044, 959, 848, and 765 cm\(^{-1}\).

HRMS (ESI-TOF): Calcd for C\(_{36}\)H\(_{28}\)N\(_2\)O\(_3\)Si\(^+\) [M+Na\(^+\)] requires 587.1761; found 587.1770.

Mp: decomposition > ca. 160 \(^\circ\)C.

(±)-2,3-Dichloro-5,6-dimethoxy-1-(4-methoxyphenyl)-13-tosyl-8-(trimethylsilyl)-13H-fluoreno[1,9-ab]carbazole (25q)

![Chemical Structure](image)

Carbazole 25q was synthesized following general procedure C from pentayne S17 (23 mg, 0.033 mmol), Li\(_2\)CuCl\(_4\) (0.1 mL, 1 M in THF, 0.10 mmol), and anhydrous THF (3.2 mL). Purification by MPLC (hexanes:EtOAc, 3:1) afforded the carbazole derivative 25q (17 mg, 0.023 mmol, 68%) as a red solid.

\(^1\)H NMR (500 MHz, CDCl\(_3\)): δ 8.11 (br dd, J = 8.5, 1.5 Hz, 1H, SO\(_2\)-Ar\(_{ortho}\)), 8.05 (s, 1H, H4), 7.82 (d, J = 8.0 Hz, 1H, H12), 7.60 (d, J = 7.8 Hz, 1H, H9), 7.53 (s, 1H, H7), 7.26 (ddd, J = 7.8, 7.8, 0.9 Hz, 1H, H10 or H11), 7.20 (br dd, J = 8.5, 2.2 Hz, 1H, SO\(_2\)-Ar\(_{meta}\)), 7.18 (ddd, J = 7.7, 7.7, 1.0 Hz, 1H, H11 or H10), 6.80 (br dd, J = 8.4, 2.3 Hz, 1H, SO\(_2\)-Ar\(_{ortho}\)), 6.69 (br dd, J = 8.4, 2.3 Hz, 1H, SO\(_2\)-Ar\(_{meta}\)), 6.65 (nfod, J = 8.2 Hz, 2H, MeO-ArH\(_{meta}\)), 6.50 (nfod, J = 8.3 Hz, 2H, MeO-ArH\(_{ortho}\)), 4.10 (s, 3H, OCH\(_3\)), 4.06 (s, 3H, OCH\(_3\)), 3.94 (s, 3H, OCH\(_3\)), 2.10 (s, 3H, SO\(_2\)-ArCH\(_3\)), and 0.47 [s, 9H, Si(\(\text{CH}_3\))\(_3\)].

\(^13\)C NMR (126 MHz, CDCl\(_3\)): δ 159.2, 149.1, 148.5, 145.2, 143.9, 141.8, 138.5, 137.5, 136.2 (br), 135.6, 134.0, 133.2, 132.74, 132.67 (br), 132.5, 131.6, 131.1, 130.6, 130.5, 128.2, 127.3, 127.2, 126.2, 124.3, 123.7, 122.6, 119.2, 112.4, 111.9, 110.0, 107.8, 56.3, 56.2, 55.3, 21.3, and 2.5 (one aromatic carbon resonance not discernable).

IR (neat): 2997, 2955, 2902, 2834, 1607, 1576, 1513, 1482, 1466, 1439, 1375, 1291, 1276, 1249, 1210, 1171, 1090, 1068, 1033, 838, 821, and 762 cm\(^{-1}\).

HRMS (APCI\(^+\)): Calcd for C\(_{41}\)H\(_{36}\)Cl\(_3\)NO\(_3\)SSi\(^+\) [M+H\(^+\)] requires 752.1455; found 752.1415.

Mp: 231–235 \(^\circ\)C.
Naphthalene 25r was synthesized following general procedure C from octayne 20 (33 mg, 0.050 mmol), (iodoethynyl)benzene15 (25 mg, 0.11 mmol), and anhydrous CH\(_3\)CN (2.5 mL). The reaction mixture was quenched with saturated ammonium chloride and extracted with DCM. The combined organic phase was concentrated, the residue was re-dissolved in DCM, and the product was precipitated by addition of MeOH. The diiodonaphthalene 25r (39 mg, 0.042 mmol, 85\%) was obtained as a white solid by filtration and washing with additional MeOH.

\(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta\) 5.22 (br t, \(J = 2.5\) Hz, 2H, MsNCH\(_2\)), 5.20 (s, 2H, ArC\(_2\)H\(_2\)), 4.79 (br t, \(J = 2.6\) Hz, 2H, MsNCH\(_2\)^'), 4.37 (s, 2H, =CCH\(_2\)O), 3.32–3.27 (nfom, 2H, ArC\(_2\)H\(_2\)CH\(_2\)Ar'), 3.24–3.19 (nfom, 2H, ArCH\(_2\)C\(_2\)H\(_2\)Ar'), 2.86 (s, 3H, SO\(_2\)CH\(_3\)), 2.74 (t, \(J = 6.6\) Hz, 2H, =CCH\(_2\)CH\(_2\)C'^), 2.65 (t, \(J = 6.8\) Hz, 2H, =CCH\(_2\)CH\(_2\)C'^), 0.91 [s, 9H, SiC(CH\(_3\))\(_3\)], 0.89 [s, 9H, SiC(CH\(_3\))\(_3\)], 0.25 [s, 6H, Si(C(CH\(_3\)))\(_2\)], and 0.11 [s, 6H, Si(C(CH\(_3\)))\(_2\)].

\(^{13}\)C NMR (126 MHz, CDCl\(_3\)): \(\delta\) 154.5, 151.5, 139.0, 139.0, 137.3, 127.3, 125.5, 118.4, 112.6, 103.8, 96.4, 78.5, 77.0, 75.4, 72.6, 69.7, 66.3, 55.8, 54.2, 52.2, 40.3, 35.0, 28.8, 26.1, 25.9, 19.9, 19.7, 18.41, 18.36, -4.6, and -5.0.

IR (neat): 2954, 2929, 2894, 2857, 2257, 1471, 1463, 1364, 1331, 1255, 1157, 1083, 1058, 953, 837, 776, and 752 cm\(^{-1}\).

HRMS (APCI\(^{+}\)): Caled for C\(_{37}\)H\(_{53}\)I\(_2\)N\(_2\)O\(_4\)Si\(_2\)\(^{+}\) [M+NH\(_4\)]\(^{+}\) requires 931.1348; found 931.1344.

Mp: 202–205 °C.
1-Phenyl-8-(trimethylsilyl)-9H-indeno[2,1-b]fluoranthen-9-one (25s)

Fluoranthene 25s was obtained following general procedure C from pentayne S20 (40 mg, 0.089 mmol), cyclooctane (2.2 mL), and CHCl₃ (2.2 mL). Purification by MPLC (hexanes:EtOAc, 9:1) afforded fluoranthene 25s (35 mg, 0.077 mmol, 87%) as an orange-red solid.

¹H NMR (500 MHz, CDCl₃): δ 7.913 (d, J = 7.3 Hz, 1H, H3), 7.93–7.89 (nfom, 1H, H4 or H7), 7.83–7.79 (nfom, 1H, H7 or H4), 7.64 (d, J = 7.3 Hz, 1H, H2), 7.55–7.51 (nfom, 2H, PhHortho), 7.47 (dd, J = 7.2, 0.8 Hz, 1H, H10), 7.45–7.41 (m, 3H, PhHortho+meta), 7.37–7.32 (m, 2H, H5 and H6), 6.99 (dd, J = 7.4, 7.4, 0.8 Hz, 1H, H11), 6.76 (dd, J = 7.6, 7.6, 1.3 Hz, 1H, H12), 5.64 (br d, J = 7.7 Hz, 1H, H13), and 0.60 [s, 9H, Si(CH₃)₃].

¹³C NMR (126 MHz, CDCl₃): δ 195.6, 147.6, 144.1, 144.0, 142.8, 141.0, 140.7, 139.9, 139.8, 137.9, 136.6, 135.9, 133.7, 133.5, 132.2, 130.2, 129.2, 128.0, 127.87, 127.85, 127.1, 126.3, 126.0, 124.8, 122.9, 121.3, 121.0, and 2.0.

IR (neat): 3054, 3027, 2951, 2897, 1706, 1603, 1463, 1413, 1393, 1263, 1248, 895, 841, and 763 cm⁻¹.

HRMS (APCI⁺): Calcd for C₃₁H₂₁OSi⁺ [M-CH₃⁺] requires 437.1356; found 437.1352.

Mp: 234–236 °C.

5,6-Dimethoxy-1-(4-methoxyphenyl)-8-(trimethylsilyl)-9H-indeno[2,1-b]fluoranthen-9-one (25t)

Fluoranthene 25t was obtained following general procedure C from pentayne S22 (81 mg, 0.15 mmol), cyclooctane (3.8 mL), and CHCl₃ (3.8 mL). Purification by MPLC (hexanes:EtOAc, 2:1) afforded fluoranthene 25t (64 mg, 0.12 mmol, 79%) as a red solid.
1H NMR (500 MHz, CDCl3): δ 7.75 (d, J = 7.2 Hz, 1H, H3), 7.53 (d, J = 7.2 Hz, 1H, H2), 7.46 (s, 1H, H4), 7.45 (d, J = 7.0 Hz, 1H, H10), 7.42 (nfod, J = 8.7 Hz, 2H, H_o), 7.30 (s, 1H, H7), 6.98 (dd, J = 7.2, 7.2 Hz, 1H, H11), 6.96 (nfod, J = 8.6 Hz, 2H, H_m), 6.81 (ddd, J = 7.6, 7.6, 1.2 Hz, 1H, H12), 5.74 (br d, J = 7.7 Hz, 1H, H13), 4.03 (s, 3H, OCH3), 4.02 (s, 3H, OCH3), 3.85 (s, 3H, OCH3), and 0.60 [s, 9H, Si(CH3)3].

13C NMR (126 MHz, CDCl3): δ 195.6, 159.9, 149.4, 148.3, 147.8, 144.1, 143.7, 140.8, 139.8, 137.8, 136.3, 135.5, 134.1, 133.7, 133.6, 133.4, 132.7, 131.7, 131.3, 127.7, 126.1, 124.8, 122.8, 120.6, 114.6, 110.2, 104.3, 56.30, 56.27, 55.6, and 2.0.

IR (neat): 3059, 3000, 2953, 2901, 2834, 1704, 1606, 1513, 1484, 1460, 1440, 1383, 1279, 1248, 1210, 1175, 1039, 893, 831, and 760 cm⁻¹.

HRMS (APCI⁺): Calcd for C34H27O4Si+ [M-CH3⁺] requires 527.1673; found 527.1671.

Mp: 260–262 °C.

5,6-Dimethoxy-1-(4-methoxyphenyl)-2,3-bis(phenylthio)-8-(trimethylsilyl)-9H-indeno[2,1-b]fluoranthen-9-one (25u)

Fluoranthenone 25u was obtained following general procedure C from pentayne S22 (40 mg, 0.075 mmol), diphenyl disulfide (82 mg, 0.38 mmol), and CHCl3 (3.8 mL). Purification by MPLC (hexanes:EtOAc, 4:1) afforded fluoranthenone 25u (53 mg, 0.070 mmol, 93%) as a red solid.

1H NMR (500 MHz, CDCl3): δ 8.02 (s, 1H, H4), 7.48 (d, J = 7.2 Hz, 1H, H10), 7.43 (s, 1H, H7), 7.41 (d, J = 8.0 Hz, 2H, H_o), 7.14 (t, J = 7.5 Hz, 2H, A-PhHmeta), 7.11–7.03 (m, 5H, A-PhHortho, H11, and B-PhHmeta), 7.00 (tt, J = 7.6, 2.3 Hz, 2H, PhHpara), 6.90 (d, J = 7.6 Hz, 2H, B-PhHortho), 6.86 (d, J = 8.1 Hz, 2H, H_m), 6.83 (dd, J = 7.6, 7.6 Hz, 1H, H12), 5.73 (d, J = 7.8 Hz, 1H, H13), 3.99 (s, 3H, OCH3), 3.81 (s, 3H, OCH3), 3.76 (s, 3H, OCH3), and 0.61 [s, 9H, Si(CH3)3].

13C NMR (126 MHz, CDCl3): δ 195.4, 160.3, 149.0, 148.6, 147.7, 145.6, 144.3, 144.0, 142.4, 141.9, 139.9, 139.6, 138.4, 137.7, 135.4, 134.3, 134.0, 133.9, 133.8, 133.3, 133.2, 132.4, 129.2, 128.9, 127.8, 127.4, 127.4, 126.8, 125.7, 125.6, 125.4, 123.0, 113.5, 109.5, 109.4, 56.2, 56.1, 55.6, and 2.1.

IR (neat): 3003, 2945, 2834, 1706, 1606, 1578, 1511, 1478, 1460, 1438, 1375, 1283, 1247, 1207, 1176, 1024, 846, and 764 cm⁻¹.

HRMS (APCI⁺): Calcd for C46H35O4S2Si+ [M-CH3⁺] requires 743.1741; found 743.1735.
Mp: 135–138 °C.

5,6-Dimethoxy-1-(4-methoxyphenyl)-2,3-bis(phenylselanyl)-8-(trimethylsilyl)-9H-indeno[2,1-b]fluoranthen-9-one (25v) and 7,8-Dimethoxy-16-(4-methoxyphenyl)-10-(trimethylsilyl)-11H-benzo[b]indeno[1',2':4,5]fluorantheno[2,1-d]selenophen-11-one (25v')

Fluoranthenes 25v and 25v' were obtained following general procedure C from pentayne S22 (54 mg, 0.10 mmol), diphenyl diselenide (47 mg, 0.15 mmol), and toluene (5.0 mL). The crude solid mixture was triturated with hexanes:DCM (2:1) three times (ca. 5 mL each). The remaining solid (25v') was collected and shown to be quite pure (1H NMR). The initial wash solutions were concentrated and the residue was purified by MPLC (hexanes:EtOAc:DCM, 6:1:1) to give fluoranthene 25v (30 mg, 0.035 mmol, 35%) as a dark red solid followed by additional 25v', which was combined with the initial portion to give 29 mg (0.042 mmol, 42%) as a bright red solid.

Minor product 25v (faster eluting)

1H NMR (500 MHz, CDCl3): δ 7.98 (s, 1H, H4), 7.47 (d, J = 7.1 Hz, 1H, H10), 7.41 (s, 1H, H7), 7.37 (d, J = 8.0 Hz, 2H, H6), 7.16 (d, J = 7.5 Hz, 2H, A-PhH_ortho), 7.10–7.02 (m, 8H, B-PhH_ortho, and PhH_meta_para), 6.99 (dd, J = 7.5, 7.5 Hz, 1H, H11), 6.85 (d, J = 8.2 Hz, 2H, Hm), 6.82 (dd, J = 7.6, 7.6 Hz, 1H, H12), 5.75 (d, J = 7.8 Hz, 1H, H13), 3.98 (s, 3H, OCH3), 3.83 (s, 3H, OCH3), 3.72 (s, 3H, OCH3), and 0.60 [s, 9H, Si(CH3)3].

13C NMR (126 MHz, CDCl3): δ 195.4, 160.3, 148.6, 148.4, 147.4, 144.4, 144.1, 144.0, 142.3, 142.2, 141.2, 138.6, 135.7, 135.4, 134.8, 134.3, 134.0, 133.8, 133.6, 133.4, 133.2, 132.7, 130.6, 129.5, 129.2, 128.7, 127.7, 126.9, 126.4, 125.5, 122.9, 113.6, 109.45, 109.40, 56.1, 56.0, 55.6, and 2.2. (one resonance for an sp^2-C not discernable)

IR (neat): 3062, 2996, 2951, 2902, 2832, 1706, 1605, 1578, 1511, 1475, 1461, 1438, 1372, 1282, 1249, 1206, 1176, 843, and 761 cm⁻¹.

HRMS (APCI): Calcd for C_{46}H_{35}O_{4}^{80}Se_{80}SeSi^{+} [M-CH_{3}] requires 839.0630; found 839.0627.

Mp: decomposition > ca. 130 °C.

Major product 25v' (slower eluting)
The crude reaction mixture was directly subjected to flash chromatography (hexanes:EtOAc, 3:1), and the oxidized anthracene derivative 27 (6.9 mg, 11 μmol, 57%) was obtained as a brownish solid.

1H NMR (500 MHz, CDCl3): δ 7.90 (s, 1H, H4), 7.67 (d, J = 5.5 Hz, 1H, H6), 7.18 (d, J = 5.4 Hz, 1H, H13), 7.14 (d, J = 5.4 Hz, 1H, H12), 7.06 (d, J = 5.5 Hz, 1H, H5), 6.48 (d, J = 1.1 Hz, 1H, H11), 6.30 (d, J = 1.1 Hz, 1H, H8), 5.81 [d, J = 16.3 Hz, 1H, CH2H5O(C=O)], 5.76 [d, J = 16.3 Hz, 1H, CH2H5O(C=O)], 5.48 (d, J = 12.9 Hz, 1H, CH2H5OTBS), 5.34 (d, J = 12.9 Hz, 1H, CH2H5OTBS), 4.30 (q, J = 7.1 Hz, 2H, OCH2CH3), 4.28 (q, J = 7.2 Hz, 2H, OCH2CH3), 1.34 (t, J = 7.1 Hz, 3H, OCH2CH3), 1.33 (t, J = 7.0 Hz, 3H, OCH2CH3), 0.92 [s, 9H, Si(CH3)3], 0.27 [s, 3H, Si(CH3)2(CH3)3], and 0.07 [s, 3H, Si(CH3)2(CH3)3].
IR (neat): 2953, 2928, 2857, 1764, 1736, 1634, 1470, 1445, 1370, 1258, 1212, 1104, 1078, 1019, 853, 841, and 780 cm\(^{-1}\).

HRMS (APCI\(^{+}\)): Calcd for C\(_{37}H_{37}O_{8}Si\)^{+} [M+H\(^{+}\)] requires 637.2252; found 637.2242.

Mp: amorphous, decomposition > ca. 280 °C.

2-Phenylspiro[indenol[2,1-b]fluoranthene-9,9’-xanthene] (28)

To a stirred solution of the fluoranthene-ketone 25s (32 mg, 0.071 mmol) in o-DCB (5.2 mL), methanesulfonic acid (1.8 mL) was added dropwise under a nitrogen atmosphere. This reaction mixture was heated at 80 °C for 30 min, at which time phenol (66 mg, 0.70 mmol) was added, again under nitrogen. The temperature was raised to 150 °C and kept for 24 hours. The reaction mixture was quenched by addition of deionized water, extracted with DCM (x3), dried, and concentrated. Purification by step-gradient flash chromatography [hexanes:EtOAc, 10:1] afforded the spirocyclic xanthene 28 (20 mg, 0.038 mmol, 54%) as a yellow solid. A single crystal suitable for X-ray diffraction analysis was obtained by slow evaporation of a solution of 28 in toluene (CCDC deposition number: 1818243).

\(^1H\) NMR (500 MHz, CDCl\(_3\)): \(\delta\) 8.79 (d, \(J = 0.9\) Hz, 1H, \(H1\)), 8.40 (d, \(J = 7.8\) Hz, 1H, \(H13\)), 8.21 (d, \(J = 0.9\) Hz, 1H, \(H3\)), 7.91 (d, \(J = 7.2\) Hz, 1H, \(H4\)), 7.88 (dd, \(J = 8.0, 1.0\) Hz, 2H, \(H_o\)), 7.714 (d, \(J = 7.4\) Hz, 1H, \(H7\)), 7.706 (s, 1H, \(H8\)), 7.61 (dd, \(J = 7.6, 7.6\) Hz, 2H, \(H_{m}\)), 7.50 (tt, \(J = 7.4, 1.1\) Hz, 1H, \(H_p\)), 7.49–7.45 (nfom, 1H, \(H12\)), 7.34 (ddd, \(J = 7.5, 7.5, 1.2\) Hz, 1H, \(H5\)), 7.300 (ddd, \(J = 7.3, 7.3, 1.1\) Hz, 1H, \(H6\)), 7.296 (dd, \(J = 8.3, 1.2\) Hz, 2H, \(H4^{'})\), 7.27–7.25 (m, 2H, \(H11\) and \(H10\)), 7.23 (ddd, \(J = 8.5, 7.1, 1.5\) Hz, 2H, \(H3^{'})\), 6.77 (ddd, \(J = 8.1, 7.2, 1.3\) Hz, 2H, \(H2^{'})\), and 6.51 (dd, \(J = 8.0, 1.5\) Hz, 2H, \(H1^{'})\).

\(^{13}C\) NMR (126 MHz, CDCl\(_3\)): \(\delta\) 157.4, 156.8, 151.8, 142.8, 142.4, 140.3, 139.8, 139.4, 138.4, 138.0, 135.7, 132.5, 129.2, 128.5, 128.23, 128.20, 128.12, 128.07, 128.0, 127.8, 127.77, 126.1, 125.9, 123.6, 123.0, 122.9, 121.9, 121.6, 120.4, 118.6, 117.1, 116.9, and 54.7.

IR (neat): 3085, 3065, 3054, 3038, 1601, 1572, 1479, 1458, 1443, 1312, 1287, 1245, 1152, 1125, 882, and 752 cm\(^{-1}\).

HRMS (APCI\(^{+}\)): Calcd for C\(_{41}H_{25}O^{-}\) [M+H\(^{-}\)] requires 533.1900; found 533.1908.

Mp: > 350 °C (sublimation > ca. 300 °C).
(±)-15-(4-Chlorophenyl)-16,21-dihydro-6H-16,21-[1,2]benzenoindenophthal[2,3-n]rubicen-6-one (31) via
(±)-15-(4-Chlorophenyl)-5-(trimethylsilyl)-16,21-dihydro-6H-16,21-[1,2]benzenoindenophthal[2,3-n]rubicen-6-one (30)

Tetracene 30 was obtained following general procedure C from nonayne 29 (73 mg, 0.10 mmol), anthracene (107 mg, 0.60 mmol), and CHCl₃ (10 mL). Purification by flash chromatography (hexanes to hexanes:EtOAc, 40:1) followed by washing of the solid with cold MeOH afforded tetracene 30 (80 mg, 0.088 mmol, 88%) as an amorphous dark green solid. Tetracene 30 exists as an interconverting diastereomeric mixture, and the ratio of the two isomers is determined by ¹H NMR analysis (1.8:1 in CDCl₃, and 1:1.3 in d⁶-benzene).

See computational analysis of ¹H NMR spectral data: “Calculated and experimental ¹H NMR analysis of tetracenes 30 and 31”, page 105

IR (neat): 3066, 2922, 2853, 1708, 1601, 1482, 1459, 1450, 1407, 1219, 1193, 1092, 1016, 938, and 770 cm⁻¹.

Because the complexity of the NMR spectra of 30 due to the presence of a mixture of topological isomers that interconverted rapidly on the laboratory time-scale, rendering them inseparable, and because it also ionized poorly by ESI or APCI, the compound was converted directly into the desilylated derivative 31, which was fully characterized.
To a stirred solution of tetracene 30 (80 mg, 0.088 mmol) in CHCl₃ (10 mL), methanesulfonic acid (28 μL, 0.43 mmol) was added and the solution was stirred for 3 hours. The reaction was quenched by the addition of deionized water, extracted with DCM (x3), and dried. The crude material was passed through a short silica plug (DCM), concentrated in vacuo, and rinsed with MeOH. Tetracene 31 (71 mg, 0.085 mmol, 96%) was obtained as an amorphous dark green solid by simple filtration to remove the MeOH without any further purification. Tetracene 31 exists also as a diastereomeric mixture, but the ratio of the two isomers in CDCl₃ is changed to 47:1. Multiple attempts to grow crystals from various solvents and solvent pairs failed to yield a single crystal, always resulting in amorphous solid.

¹H NMR (500 MHz, CDCl₃): δ 8.59 (d, J = 7.6 Hz, 1H, H22), 8.14 (s, 1H, H5), 8.06 (d, J = 7.7 Hz, 1H, H4), 7.85 (d, J = 7.4 Hz, 1H, H25), 7.82 (d, J = 6.9 Hz, 1H, H1), 7.80 (dd, J = 8.2, 2.2 Hz, 1H, Cl-ArH), 7.75 (d, J = 7.6 Hz, 1H, ArHₘ), 7.71 (dd, J = 8.0, 1.9 Hz, 1H, Cl-ArH), 7.68–7.63 (m, 3H, ArH), 7.62–7.58 (m, 2H, ArH), 7.53 (ddd, J = 7.6, 7.6, 0.7 Hz, 1H, ArHₘ), 7.40–7.37 (nfom, 1H, ArH), 7.35 (dd, J = 8.0, 1.9 Hz, 1H, Cl-ArH), 7.29 (ddd, J = 7.5, 7.5, 0.9 Hz, 1H, ArHₘ), 7.28 (ddd, J = 7.6, 7.6, 1.2 Hz, 1H, ArHₘ), 7.25 (dd, J = 7.7, 1.1 Hz, 1H, ArHₘ), 7.211 (ddd, J = 7.8, 7.8, 1.1 Hz, 1H, ArHₘ), 7.208 (ddd, J = 7.4, 7.4, 1.2 Hz, 1H, ArHₘ), 7.19–7.16 (m, 2H, ArH), 7.15 (ddd, J = 7.5, 7.5, 1.2 Hz, 1H, ArHₘ), 7.10 (ddd, J = 7.4, 7.4, 1.1 Hz, 1H, ArHₘ), 6.90 (ddd, J = 7.6, 7.6, 0.6 Hz, 1H, H12), 6.65 (ddd, J = 7.9, 7.9, 1.0 Hz, 1H, H13), 6.61 (s, 1H, bridgehead-Hₖ), 5.67 (d, J = 7.9 Hz, 1H, H14), and 5.66 (s, 1H, bridgehead-Hₐ).

¹³C NMR (126 MHz, CDCl₃): δ 194.3, 145.8, 145.6, 145.2, 143.5, 143.2, 143.0, 142.8, 140.7, 140.4, 139.9, 139.8, 139.6, 139.51, 139.46, 139.34, 139.27, 138.3, 138.0, 137.1, 136.9, 136.3, 136.1, 134.7, 134.2, 134.0, 133.9, 133.8, 133.6, 133.2, 133.1, 132.7, 132.1, 132.0, 130.9, 129.9, 129.6, 129.0, 128.8, 128.2, 127.9, 127.5, 127.43, 127.35, 127.24, 127.16, 126.9, 126.8, 126.6, 126.6, 126.4, 125.6, 124.5, 124.2, 123.6, 123.3, 121.4, 120.7, 119.8, 119.1, 114.6, 51.4, and 50.3.

IR (neat): 3066, 2924, 2852, 1708, 1603, 1482, 1459, 1450, 1407, 1264, 1193, 1092, 1016, and 938, and 759 cm⁻¹.

HRMS (APCI⁺): Calcd for C₆₃H₃₂³⁵ClO⁺ [M+H⁺] requires 839.2136; found 839.2140.
(±)-(16R,25S)-15-(4-Chlorophenyl)-16,25-diphenyl-5-(trimethylsilyl)-16,25-dihydro-6H-16,25-methanoindeno[1',2':2,3]fluoreno[9,1-ab]triphenyleno[2,3-n]rubicene-6,30-dione (32), (±)-(16R,25S)-15-(4-Chlorophenyl)-16,25-diphenyl-16,25-dihydro-6H-16,25-methanoindeno[1',2':2,3]fluoreno[9,1-ab]triphenyleno[2,3-n]rubicene-6,30-dione (32-H), and (±)-15-(4-Chlorophenyl)-16,25-diphenyl-6H-indeno[1',2':2,3]fluoreno[9,1-ab]triphenyleno[2,3-n]rubicen-6-one (33)

Tetracene 32 was obtained following general procedure C from nonayne 29 (73 mg, 0.10 mmol), 1,3-diphenyl-2H-cyclopenta[l]phenanthren-2-one12 (191 mg, 0.50 mmol), and CHCl₃ (10 mL). One deviation was that the reaction vessel was kept in the dark to avoid light-induced autoxidation of the trapping agent, 1,3-diphenyl-2H-cyclopenta[l]phenanthren-2-one.13 Purification by flash chromatography (hexanes:EtOAc:DCM, 40:1:1, to toluene:DCM, 10:1) followed by precipitation from DCM/MeOH afforded tetracene 32 (67 mg, 0.060 mmol, 60%) as an amorphous dark green solid. Tetracene 32 exists as an interconverting diastereomeric mixture, and the ratio of the two isomers was determined by NMR analysis (4:1 in CDCl₃, and 8:1 in d⁶-benzene).

¹H NMR (500 MHz, C₆D₆): δ 9.02 (d, J = 8.3 Hz, 0.9H, ArH₀), 8.98 (d, J = 8.4 Hz, 0.1H, ArH₀), 8.84 (d, J = 8.3 Hz, 0.9H, ArH₀), 8.78 (d, J = 8.4 Hz, 0.1H, ArH₀), 8.64 (d, J = 8.3 Hz, 0.9H, ArH₀), 8.61 (d, J = 8.3 Hz, 0.1H, ArH₀), 8.55 (d, J = 8.3 Hz, 0.9H, ArH₀), 8.52 (d, J = 8.3 Hz, 0.1H, ArH₀), 8.45 (d, J = 8.2 Hz, 0.1H, ArH₀), 8.39–8.34 (m, 1H, ArH), 8.30 (d, J = 7.5 Hz, 1H,
To a stirred solution of tetracene 32 (20 mg, 18 µmol) in CHCl₃ (2.0 mL), methanesulfonic acid (5.8 µL, 0.090 mmol) was added. The reaction flask was evacuated and back-filled with N₂ three times and then heated at 50 °C. After full consumption of the starting material (as indicated by TLC, 4 hours), the reaction was quenched by addition of deionized water and extracted with DCM (x3). The combined organic layer was dried and concentrated. The crude dark green solid 32-H was directly used in the following step without further purification. Tetracene 32-H exists as an interconverting diastereomeric mixture, and the ratio of the two isomers was determined by NMR analysis (5:1 in CDCl₃, and 3:1 in d₆-benzene). (See computational analysis of ⁱH NMR spectral data: “Possible topological isomers of tetracene 32-H,” page 106.)

A single crystal suitable for X-ray diffraction analysis was obtained by slow evaporation of the solution of crude 32-H in EtOAc/DCM. Only one topological isomer is present in the crystal (CCDC deposition number: 1818245).

Supplementary Information

\(^1\)H NMR (500 MHz, C\(_6\)D\(_6\)): \(\delta\) 9.02 (d, \(J = 8.2\) Hz, 0.3H, ArH\(_o\)), 8.96 (d, \(J = 8.5\) Hz, 1H, ArH\(_o\)), 8.83 (d, \(J = 8.4\) Hz, 0.3H, ArH\(_o\)), 8.68 (d, \(J = 8.4\) Hz, 1H, ArH\(_o\)), 8.64 (d, \(J = 8.3\) Hz, 0.3H, ArH\(_o\)), 8.59 (d, \(J = 8.2\) Hz, 1H, ArH\(_o\)), 8.55 (d, \(J = 8.3\) Hz, 0.3H, ArH\(_o\)), 8.51 (d, \(J = 8.2\) Hz, 1H, ArH\(_o\)), 8.30–8.24 (m, 2.3H, ArH), 8.22 (s, 0.3H, H5), 8.19 (d, \(J = 7.1\) Hz, 1H, ArH\(_o\)), 8.18 (s, 1H, H5), 8.05 (d, \(J = 7.5\) Hz, 0.3H, ArH\(_o\)), 7.97 (d, \(J = 7.2\) Hz, 0.3H, ArH\(_o\)), 7.96 (d, \(J = 7.2\) Hz, 0.3H, ArH\(_o\)), 7.92 (d, \(J = 7.5\) Hz, 1H, ArH\(_o\)), 7.74 (d, \(J = 7.4\) Hz, 1H, ArH\(_o\)), 7.79–7.71 (m, 2H, ArH), 7.63 (d, \(J = 7.0\) Hz, 0.3H, ArH\(_o\)), 7.58 (dd, \(J = 7.5\), 0.9 Hz, 1H, ArH\(_o\)), 7.57–7.32 (m, 11H, ArH), 7.25–7.20 (m, 3.3H, ArH), 7.11–7.01 (m, 7.3H, ArH), 6.99–6.89 (m, 4.3H, ArH), 6.85–6.73 (m, 3.3H, ArH), 6.72–6.67 (m, 3H, ArH), 6.65 (ddd, \(J = 7.5\), 7.5, 1.3 Hz, 1H, H13), 6.56 (dd, \(J = 7.8\), 7.8 Hz, 0.3H, H13), 5.81 (d, \(J = 8.1\) Hz, 0.3H, H14), and 5.77 (d, \(J = 7.9\) Hz, 1H, H14). The crystal contains EtOAc and DCM that are difficult to remove.

\(^1\)C NMR (126 MHz, C\(_6\)D\(_6\)): \(\delta\) 193.9, 193.2,145.8, 145.5, 145.1, 141.2, 140.9, 140.4, 140.2, 140.0, 139.8, 139.1, 138.7, 137.9, 137.6, 137.1, 136.5, 136.1, 135.3, 134.2, 133.8, 133.3, 132.8, 132.7, 131.6, 131.4, 131.1, 130.8, 130.7, 130.5, 129.7, 129.5, 129.3, 128.7, 128.6 (x2), 128.4 (x2), 128.3, 128.2, 128.1 (x2), 128.0 (x2), 127.7, 127.6 (x2), 127.5 (x2), 127.4, 127.2, 127.0 (x2), 126.9 (x2), 126.8 (x2), 126.7, 126.6 (x2), 126.5, 126.4, 126.1, 125.7, 125.3, 124.0, 123.9 (x2), 123.6, 123.3, 123.1, 121.7, 115.3, 115.0, and 68.1. The crystal contains EtOAc and DCM that are difficult to remove. Data are from HSQC (non-highlighted) & HMBC (highlighted) data sets due to limited solubility. The structure of 32-H is further supported by its single crystal X-ray diffraction analysis (see page 150).

IR (neat): 3052, 3013, 2925, 2855, 1793, 1713, 1601, 1460, 1450, 1409, 1264, 1124, 1092, 845, and 759 cm\(^{-1}\).

HRMS (APCI\(^+\)): Calcd for C\(_{78}\)H\(_{40}\)ClO\(_2\)\(^+\) [M+H\(^+\)] requires 1043.2711; found 1043.2713.

Mp: > 350 °C (color change > ca. 270 °C).

The crude material was suspended in anhydrous o-DCB (2.0 mL). The reaction vessel was evacuated and back-flushed with N\(_2\) three times and then heated at 180 °C (became a homogeneous solution) for 24 hours. Purification by directly subjecting to flash chromatography (hexanes:EtOAc, 50:1 to 20:1) followed by precipitation from DCM/MeOH afforded dibenzohexacene 33 (13 mg, 13 \(\mu\)mol, 73%) as a cherry-red amorphous solid. Dibenzohexacene 33 exists also as a diastereomeric mixture, the ratio of the two isomers is 1:1.1 in CDCl\(_3\), and 1:1.4 in d\(^6\)-benzene. (See computational analysis of \(^1\)H NMR spectral data.: “Possible topological isomers of hexacene 33”, page 117)

\(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta\) 8.20 (s, 0.5H, H5), 8.18 (s, 0.5H, H5), 8.14–8.02 (m, 3H, ArH), 7.99 (dd, \(J = 7.1\), 7.1 Hz, 1H, ArH\(_m\)), 7.91 (dd, \(J = 7.8\), 7.8 Hz, 1H, ArH\(_m\)), 7.84 (d, \(J = 7.8\) Hz, 0.5H, ArH\(_m\)), 7.84 (d, \(J = 7.5\) Hz, 0.5H, ArH\(_m\)), 7.71 (d, \(J = 7.2\) Hz, 1H, ArH\(_m\)), 7.67 (dd, \(J = 8.1\), 8.1 Hz, 1H, ArH\(_m\)), 7.55 (d, \(J = 8.3\) Hz, 0.5H, ArH\(_o\)), 7.49–7.28 (m, 9H, ArH), 7.25–7.19 (m, 2H, ArH), 7.12 (d, \(J = 8.3\) Hz, 0.5H, ArH\(_o\)), 7.08 (d, \(J = 8.0\) Hz, 0.5H, ArH\(_o\)), 7.06–6.83 (m, 6.5H, ArH), 6.83–6.72 (m, 3.5H, ArH), 6.72–6.64 (m, 2H, ArH), 6.63–6.57 (m, 1H, ArH), 6.54 (dd, \(J = 7.8\), 7.8 Hz, 0.5H, H13), 6.48 (dd, \(J = 7.7\), 7.7 Hz, 0.5H, H13), 6.45 (d, \(J = 8.1\) Hz, 0.5H, H17),...
6.392 (d, $J = 7.6$ Hz, 0.5H, $H26$), 6.388 (d, $J = 7.9$ Hz, 0.5H, $H26$), 5.52 (d, $J = 7.8$ Hz, 0.5H, $H14$), and 5.41 (d, $J = 7.9$ Hz, 0.5H, $H14$).

1H NMR (500 MHz, C$_6$D$_6$): δ 8.323 (d, $J = 7.7$ Hz, 0.4H, ArH_o), 8.318 (d, $J = 7.4$ Hz, 0.6H, ArH_o), 8.21 (d, $J = 7.7$ Hz, 0.6H, ArH_o), 8.18 (s, 0.6H, $H5$), 8.13 (s, 0.4H, $H5$), 8.06 (d, $J = 7.5$ Hz, 0.4H, ArH_o), 8.00 (d, $J = 7.3$ Hz, 0.6H, ArH_o), 7.95–7.89 (m, 2.4H, ArH), 7.78 (d, $J = 7.2$ Hz, 0.6H, ArH_o), 7.75 (d, $J = 7.8$ Hz, 0.6H, ArH_o), 7.62 (dd, $J = 7.2$, 7.2 Hz, 1H, ArH_m), 7.57–7.48 (m, 2.6H, ArH), 7.45 (d, $J = 8.1$ Hz, 0.6H, ArH_o), 7.37 (d, $J = 7.4$ Hz, 0.4H, ArH_o), 7.26 (d, $J = 8.1$ Hz, 0.9H, ArH_o, overlapped with solvent), 7.10–7.01 (m, 5.8H, ArH), 6.98 (dd, $J = 7.3$, 7.3 Hz, 1H, ArH_m), 6.95–6.81 (m, 4H, ArH), 6.80–6.45 (m, 14.4H, ArH), 6.37 (d, $J = 7.8$ Hz, 0.4H, $H26$), 5.82 (d, $J = 7.9$ Hz, 0.4H, $H14$), and 5.72 (d, $J = 7.9$ Hz, 0.6H, $H14$).

13C NMR (126 MHz, CDC$_3$): δ 194.4, 145.7, 145.5, 145.1, 144.9, 141.6, 141.1, 141.0, 140.8, 140.3, 140.1, 139.8, 139.5, 139.3, 138.9, 138.7, 138.5, 138.3, 138.1, 138.0, 137.7, 137.4, 136.8, 134.6, 134.2, 134.0, 133.6 (x2), 133.4, 133.1, 132.9, 132.5, 132.3, 131.9, 131.0, 130.8, 130.1, 129.9, 129.4, 129.0 (x2), 128.8, 128.6, 128.3 (x2), 128.2, 128.0 (x2), 127.8, 127.6 (x2), 127.3 (x2), 127.2, 127.1, 127.0 (x2), 126.8, 126.5, 126.4, 126.3, 126.2, 126.0 (x2), 125.5, 125.4, 125.0, 124.8, 123.9, 123.6, 121.3, 121.0, and 114.6 (x2). Data are from HSQC (non-highlighted) & HMBC (highlighted) data sets.

IR (neat): 2956, 2923, 2852, 1712, 1668, 1646, 1598, 1465, 1405, 1259, 1087, 1015, 801, and 760 cm$^{-1}$.

HRMS (APCI$^+$): Calcd for C$_{77}$H$_{39}$ClO$^+$ [M$^+$] requires 1014.2684; found 1014.2688.
III. Computational methods

The DFT calculations were performed using Gaussian 0916. The geometry of each structure (including the transition states) was optimized at the B3LYP17/6-31G(d) level of theory in the gas phase. The nature of the optimized structure was verified by frequency calculation (298K, at the same level of theory). For complex tetracene and hexacene derivatives, single point calculations were done at the B3LYP-D3BJ18,19/6-31G(d,p) level of theory with SMD20 (chloroform) solvation model to obtain more accurate results. NMR calculations were done at the WP0421/cc-pvdz level of theory with SMD(chloroform) for the already optimized structures from the above methods. Listed on the following pages are the zero-point correction, thermal correction to Gibbs free energy, the sum of the electronic and thermal free energies, and the Cartesian coordinates at B3LYP/6-31G(d), for each structure. For the tetracene and hexacene derivatives, electronic energy at SMD(chloroform)/B3LYP-D3BJ/6-31G(d,p) is also included. The three dimensional views of all the transition states and several global minimum structures were visualized using CYLview22.

Supplementary Figure 1. Distortion of HDDA-benzynes vs -naphthynes.

benz-1

Zero-point correction = 0.274922 (Hartree/Particle)

Thermal correction to Gibbs Free Energy = 0.231147

Sum of electronic and thermal Free Energies = -1021.848746

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)	
	1	6	0.000000	
	2	6	0.000000	
	3	6	0.000000	
	4	6	0.000000	
	5	6	0.000000	
	6	6	0.000000	
	7	6	0.000000	
	8	6	0.000000	
	9	6	0.000000	
	10	8	0.000000	
	11	6	0.000000	
	12	14	0.000000	
	13	6	0.000000	
	14	6	0.000000	
	15	6	0.000000	
	16	6	0.000000	
Number	Atomic Type	X	Y	Z
--------	-------------	-------	-------	-------
0.433990 (Hartree/Particle)	3.292666	-1.538641		
0.376156	1.951693	-1.560628		
-1596.931775	0.927302	-1.157358		
-2.049415	1.266205	-0.708355		
-1.664072	2.620913	-0.733937		
-2.515023	3.636276	-1.136128		
-0.216839	2.712574	-0.404146		
0.239713	1.310183	-0.128791		
-0.864629	0.452589	-0.290211		
-0.675546	0.962578	-0.172379		
0.696560	-1.338628	-0.271695		
1.813470	-0.449096	-0.167122		
1.595363	0.910127	0.083373		
0.470237	3.721277	-0.460815		
2.876035	2.104555	0.903426		
3.959982	1.098888	2.097782		
3.909208	3.018480	-0.390755		
2.018718	3.324428	2.074206		
-1.688882	-2.015697	-0.008430		
-1.089372	-3.238596	-0.207361		
0.118220	-3.565342	-0.343369		
1.176058	-2.692680	-0.370729		
-3.073695	-1.853039	0.469408		
-3.399786	-0.917932	1.466757		
-4.700827	-0.832098	1.958398		
-5.698083	-1.676002	1.465353		
-5.382807	-2.618640	0.483069		
-4.081566	-2.711902	-0.004533		
Supplementary Information

benz-2

Zero-point correction = 0.199110 (Hartree/Particle)

Thermal correction to Gibbs Free Energy = 0.158427

Sum of electronic and thermal Free Energies = -866.104187

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	6	0	2.040976	0.997750	0.000000
2	6	0	1.570692	-0.167037	0.000000
3	6	0	0.336507	-0.784862	0.000000
4	6	0	-0.625870	0.270983	0.000000
5	6	0	-0.235104	1.617183	0.000000
6	6	0	1.107423	2.032514	0.000000
7	6	0	1.140281	3.534267	0.000000
8	8	0	-0.245434	3.927223	0.000000
9	6	0	-1.083976	2.832026	0.000000
10	8	0	-2.284164	2.939766	0.000000
11	14	0	-0.077242	-2.639802	0.000000
12	6	0	-1.083976	-3.029040	1.551308
13	6	0	-1.083976	-3.029040	-1.551308
14	6	0	1.556163	-3.585870	0.000000
15	1	0	-1.687004	0.032068	0.000000
16	1	0	1.624146	3.954988	-0.889250
17	1	0	1.624146	3.954988	0.889250
18	1	0	-1.355345	-4.091436	1.581968
19	1	0	-0.517814	-2.802874	2.462085
naph-2

Center Number	Atomic Number	Atomic Type	Coordinates (Å)
1	6	0	-0.225558 -0.236264 0.000403
2	6	0	0.713491 -1.321656 0.000508
3	6	0	2.127798 -1.72122 0.000391
4	6	0	2.678468 0.086147 -0.00053
5	6	0	1.772079 1.72839 0.00053
6	6	0	0.395513 1.047585 0.000388
7	6	0	-0.183583 2.44302 0.000606
8	1	0	-0.788572 2.663231 -0.886677
9	1	0	-0.787683 2.663245 0.888494
10	6	0	2.122552 2.690673 -0.000240
11	8	0	0.946646 3.326405 0.000113
12	8	0	3.206043 3.139068 -0.000669
13	6	0	2.779114 2.546902 0.000671
14	6	0	1.595265 3.573286 -0.000906
15	1	0	1.625116 -4.230097 0.876464
16	1	0	1.625223 -4.227423 -0.880289
17	1	0	3.748040 0.274458 -0.000461
18	1	0	3.423065 2.679471 -0.876322
19	1	0	3.420554 2.679878 0.879473
20	6	0	0.359207 2.707333 0.00004
21	6	0	-1.003052 2.839116 -0.000532
22	6	0	-1.824701 1.882483 -0.000270
23	6	0	-1.654712 0.521664 -0.000135
24	6	0	-2.745540 0.520415 -0.001026
25	6	0	-4.156345 -0.082891 0.00025
26	6	0	-5.258836 0.978732 -0.000963
27	1	0	-4.264815 -0.736516 -0.873390
28	1	0	-5.192497 1.626419 0.881884
29	1	0	-2.632216 1.176659 0.874199
30	1	0	-2.634312 1.172556 -0.879653
31	1	0	-4.263651 -0.730378 0.882172
32	1	0	-5.193777 1.619953 -0.888606
33	1	0	-6.251332 0.515289 0.001463
Supplementary Figure 2. Diels–Alder reactions of the HDDA-naphthyne (leading to 25k) and perylene.

perylene

Zero-point correction = 0.254519 (Hartree/Particle)
Thermal correction to Gibbs Free Energy = 0.214999
Sum of electronic and thermal Free Energies = -769.191121

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
		X	Y	Z	
1	6	0	-1.479583	-2.427562	0.000440
2	6	0	-0.738292	-1.249871	0.000132
3	6	0	0.738275	-1.249871	0.000132
4	6	0	1.479622	-2.427542	-0.000119
5	6	0	-1.439419	0.000015	-0.000047
6	6	0	-0.738308	1.249961	0.000065
7	6	0	0.738300	1.249976	0.000167
8	6	0	1.439407	0.000010	-0.000001
9	6	0	-2.874689	-0.000017	-0.000202
10	6	0	-3.575683	1.232509	-0.000336
11	6	0	-2.886193	2.422691	-0.000197
12	6	0	-1.479681	2.427567	0.000033
13	6	0	1.479658	2.427575	0.000331
14	6	0	2.886187	2.422696	0.000221
15	6	0	3.575676	1.232534	-0.000075
16	6	0	2.874695	-0.000025	-0.000151
17	6	0	3.575633	-1.232541	-0.000262
TS1

One imaginary frequency:
-275.43 cm⁻¹

Zero-point correction= 0.689638 (Hartree/Particle)

Thermal correction to Gibbs Free Energy= 0.614663

Sum of electronic and thermal Free Energies= -2366.088604

Center Number	Atomic Number	Atomic Type	X	Y	Z
1	6	0	-4.595185	4.644160	1.950915
2	6	0	-3.207658	4.672330	1.818652
3	6	0	-2.491160	3.585474	1.289862
4	6	0	-3.184791	2.453163	0.868584
5	6	0	-4.582163	2.427833	1.054672
6	6	0	-5.297305	3.490401	1.579504
7	6	0	-5.082898	1.069310	0.731266
8	6	0	-3.890158	0.277365	0.294825
9	6	0	-2.757087	1.112544	0.340555
10	6	0	-1.474115	0.556949	-0.004077
11	6	0	-1.465779	-0.864594	0.026655
12	6	0	-2.625518	-1.698796	0.106214
13	6	0	-3.898908	-1.129114	0.046618
14	8	0	-6.225972	0.666319	0.893558
15	14	0	-5.483828	-2.031330	-0.589231
TS2

One imaginary frequency: \(-282.18\) cm\(^{-1}\)

Zero-point correction= 0.689133 (Hartree/Particle)

Sum of electronic and zero-point Energies= -2366.015353

Sum of electronic and thermal Free Energies= -2366.091213

Center Number	Atomic Number	Atomic Type	X	Y	Z
1	6	0	6.577811	-1.427856	1.470849
2	8	0	5.483183	-2.518983	-1.089846
3	6	0	7.188111	0.371184	-0.844221
4	6	0	6.142765	1.441684	1.989757
5	6	0	4.184350	0.042841	0.017611
6	6	0	3.581696	-1.219738	-0.270263
7	6	0	4.295147	-2.416924	-0.818970
8	6	0	3.244707	-3.430536	-1.107129
9	6	0	3.396321	-4.679990	-1.684301
10	6	0	2.242325	-5.417615	-1.979944
11	6	0	0.986337	-4.867818	-1.721282
12	6	0	0.841842	-3.596131	-1.142470
13	6	0	1.985588	-2.876217	-0.804857
14	6	0	2.200995	-1.500051	-0.256325
----	-----	----	------------	------------	------------
15	6	0	1.278968	-0.474708	0.120704
16	6	0	1.862536	0.821950	0.107490
17	6	0	3.263980	1.097704	0.045821
18	6	0	3.388035	2.574061	0.051959
19	6	0	4.480553	3.413270	-0.162809
20	6	0	4.305551	4.801466	-0.136962
21	6	0	3.044730	5.355702	0.094083
22	6	0	1.928678	4.529483	0.259635
23	6	0	2.088552	3.145057	0.211913
24	6	0	1.122996	2.043045	0.246394
25	6	0	-0.231272	1.813392	0.341894
26	6	0	-0.785509	0.647166	0.480599
27	6	0	-1.37286	-0.572348	0.476247
28	6	0	-1.546235	3.458125	0.000680
29	6	0	-2.354144	2.869368	-1.039027
30	6	0	-3.391423	1.971710	-0.659337
31	6	0	-3.639347	1.753045	0.741435
32	6	0	-2.062728	3.511062	1.311717
33	6	0	-3.069945	2.638360	1.678258
34	6	0	-2.094388	3.108981	-2.400388
35	6	0	-2.862730	2.487705	-3.367935
36	6	0	-3.890654	1.608132	-3.001575
37	6	0	-4.176513	1.328972	-1.664635
38	6	0	-5.253180	0.406815	-1.257749
39	6	0	-6.092199	-0.213558	-2.179048
40	6	0	-7.094821	-1.116702	-1.781797
41	6	0	-7.268341	-1.421972	-0.451075
42	6	0	-6.445068	-0.818549	0.533289
43	6	0	-6.603137	-1.129837	1.908295
44	6	0	-5.790509	-0.548671	2.856039
45	6	0	-4.809080	0.380821	2.470769
46	6	0	-4.630449	0.746185	1.138883
47	6	0	-5.436020	0.118804	0.133435
48	6	0	-0.791686	-1.801700	0.976388
49	6	0	-2.142751	-2.051755	0.678832
50	6	0	-2.790522	-3.174857	1.188254
51	6	0	-2.104675	-4.065280	2.018969
52	6	0	-0.767728	-3.818977	2.337527
53	6	0	-0.116732	-2.699104	1.822375
54	14	0	6.024526	0.157989	0.589973
55	1	0	4.390436	-5.056451	-1.908720
56	1	0	2.323006	-6.404762	-2.426445
57	1	0	0.092082	-5.430389	-1.976634
58	1	0	-0.150547	-3.199385	-0.975444
59	1	0	5.463086	3.003818	-0.366985
60	1	0	5.160880	5.451555	-0.299489
61	1	0	2.924897	6.435136	0.129564
62	1	0	0.953281	4.974993	0.428698
63	1	0	5.792970	-1.806859	2.137200
64	1	0	-0.805178	4.186650	-0.309720
65	1	0	7.445993	-1.190434	2.099218
66	1	0	6.853125	-2.227495	0.782590
67	1	0	-1.589865	4.146013	2.055278
68	1	0	-3.406004	2.619929	2.708641
69	1	0	-1.288992	3.783364	-2.678572
70	1	0	-2.672547	2.676374	-4.420712
71	1	0	-4.464708	1.137745	-3.791935
TS3

One imaginary frequency:
-266.65 cm⁻¹

Zero-point correction = 0.689343 (Hartree/Particle)
Thermal correction to Gibbs Free Energy = 0.614117
Sum of electronic and thermal Free Energies = -2366.089891

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
1	6	0	3.980204 5.197103 -0.060134		
2	8	0	5.767175 2.215483 -0.081867		
3	6	0	4.614632 3.392850 2.411290		
4	6	0	1.893369 4.505066 2.174854		
5	6	0	2.715558 2.295777 0.137239		
6	6	0	3.564256 1.161339 -0.046151		
7	6	0	5.055168 1.223673 -0.152459		
8	6	0	5.505259 -0.148664 -0.498594		
9	6	0	6.793854 -0.576557 -0.766924		
10	6	0	6.977755 -1.893191 -1.208903		
11	6	0	5.866271 -2.712984 -1.399867		
12	6	0	4.561531 -2.265733 -1.131840		
13	6	0	4.372125 -0.974173 -0.644826		
---	---	---	---	---	---
14	6	0	3.152988	-0.158189	-0.324952
15	6	0	1.748499	-0.453541	-0.362681
16	6	0	0.945282	0.716053	-0.454672
17	6	0	1.394879	2.059444	-0.255282
18	6	0	0.218746	2.927136	-0.507876
19	6	0	0.093486	4.308192	-0.658888
20	6	0	-1.156482	4.856244	-0.970376
21	6	0	-2.274224	4.036457	-1.150417
22	6	0	-2.156473	2.646449	-1.051911
23	6	0	-0.914995	2.097900	-0.744293
24	6	0	-0.471837	0.704277	-0.674470
25	6	0	-1.019811	-0.552211	-0.742073
26	6	0	-0.298596	-1.619466	-0.562102
27	6	0	1.060879	-1.746879	-0.345722
28	6	0	-3.591843	-1.559049	-0.864941
29	6	0	-3.368074	-1.875450	0.524838
30	6	0	-2.370749	-2.835745	0.846446
31	6	0	-1.604234	-3.405384	-0.231968
32	6	0	-3.110251	-2.453388	-1.846523
33	6	0	-4.116712	-1.249395	1.563061
34	6	0	-3.837716	-1.610719	2.882590
35	6	0	-2.848189	-2.552314	3.195416
36	6	0	-2.112590	-3.156699	2.191602
37	6	0	1.709890	-3.025196	0.035256
38	6	0	2.430370	-3.126334	1.236476
39	6	0	3.008148	-4.335842	1.621690
40	6	0	2.878487	-5.467379	0.814311
41	6	0	2.161906	-5.382348	-0.382082
42	6	0	1.580281	-4.173756	-0.765460
43	14	0	3.322519	3.855193	1.100442
44	6	0	-4.543134	-0.489640	-1.204060
45	6	0	-5.321575	0.113216	-0.163551
46	6	0	-5.151637	-0.259255	1.209639
47	6	0	-6.290743	1.112004	-0.509404
48	6	0	-7.086594	1.690656	0.508856
49	6	0	-6.925470	1.311443	1.819870
50	6	0	-5.963051	0.344328	2.164621
51	6	0	-4.708222	0.048958	-2.513833
52	6	0	-5.651444	0.940230	-2.845960
53	6	0	-6.436700	1.503676	-1.865025
54	1	0	4.281821	6.084527	0.510226
55	1	0	4.858443	4.821517	-0.594658
56	1	0	3.240033	5.513989	-0.803901
57	1	0	4.642823	4.187986	3.167472
58	1	0	4.338576	2.466168	2.929865
59	1	0	5.616642	3.266272	2.000191
60	1	0	0.991755	4.821169	1.649045
61	1	0	1.598913	3.736546	2.900576
62	1	0	2.264113	5.363452	2.750732
63	1	0	7.626777	0.110739	-0.647737
64	1	0	7.975300	-2.266535	-1.422716
65	1	0	6.003481	-3.724999	-1.772136
66	1	0	3.731983	-2.931737	-1.319433
67	1	0	0.953412	4.961527	-0.561158
68	1	0	-1.253108	5.932854	-1.083150
69	1	0	-3.237293	4.479510	-1.389676
70	1	0	-3.012676	2.003154	-1.228701
25k-bay

![25k-bay diagram](image)

Zero-point correction: 0.693890 (Hartree/Particle)
Thermal correction to Gibbs Free Energy: 0.622353
Sum of electronic and thermal Free Energies: -2366.160079

Center Number	Atomic Number	Atomic Type	X	Y	Z
1	6	0	-0.854167	-4.15971	0.022842
2	1	0	-3.468946	-2.375119	-2.866674
3	1	0	-4.386007	-1.156004	3.700015
4	1	0	-2.661244	-2.802768	4.235938
5	1	0	-1.335863	-3.879227	2.427561
6	1	0	2.530370	-2.250057	1.870120
7	1	0	3.561263	-4.393789	2.555336
8	1	0	3.332250	-6.408187	1.113693
9	1	0	2.059949	-6.256453	-1.020119
10	1	0	-7.821422	2.448737	-3.01585
11	1	0	-7.536279	1.755183	2.601129
12	1	0	-5.864889	0.075790	3.210427
13	1	0	-4.082015	-0.453530	-3.30185
14	1	0	-5.751472	-0.453530	-3.30185
15	1	0	-7.172577	2.264548	-2.112856
16	6	0	-2.143318	-3.387266	-1.532327
17	6	0	-0.993428	-0.872737	-0.228801
22	6	0	0.207020	-1.557496	-0.384257
23	6	0	-2.271652	1.339074	0.050901
24	6	0	-3.542720	0.512977	0.076076
25	6	0	-3.559741	-0.833246	-0.089282
26	6	0	-2.306631	-1.641425	-0.316480
27	6	0	-4.789373	1.232223	0.205738
28	6	0	-6.023374	0.600196	-0.096865
29	6	0	-6.037108	-0.849034	-0.255653
30	6	0	-4.812250	-1.548086	-0.113258
31	6	0	-4.775269	2.565144	0.711101
32	6	0	-5.955820	3.298939	0.733747
33	6	0	-7.153915	2.725107	0.279838
34	6	0	-7.194151	1.394003	-0.100494
35	6	0	-7.219880	-1.608421	-0.415081
36	6	0	-7.195004	-2.990991	-0.332203
37	6	0	-6.000849	-3.756845	-0.32005
38	6	0	-4.809247	-2.959875	0.087247
39	6	0	-3.572991	-3.557104	0.598718
40	6	0	-2.399151	-2.912156	0.521547
41	6	0	-2.374848	2.384736	1.158846
42	6	0	-3.542132	3.012939	1.359826
43	6	0	0.292968	2.750260	0.031249
44	6	0	0.924309	3.348972	1.133154
45	6	0	0.929534	4.734786	1.289041
46	6	0	0.311368	5.550703	0.339669
47	6	0	-0.307605	4.969977	-0.769238
48	6	0	-0.315537	3.583256	-0.921290
49	6	0	1.981660	-3.094284	-0.491240
50	6	0	0.573775	-2.967691	-0.672321
51	6	0	-0.150612	-4.042744	-1.191674
52	6	0	0.509085	-5.238055	-1.498669
53	6	0	1.887465	-5.358606	-1.317778
54	6	0	2.631230	-4.280644	-0.829056
55	1	0	6.010662	5.188179	-1.655535
56	1	0	3.574211	5.416612	-2.055479
57	1	0	2.013469	3.631403	-1.476961
58	1	0	6.897768	3.021095	-0.707331
59	1	0	5.011081	-4.269970	2.688687
60	1	0	3.520966	-3.329729	2.780148
61	1	0	3.743911	-4.500390	1.478999
62	1	0	7.146286	-3.680927	0.504057
63	1	0	5.990312	-3.682801	-0.836443
64	1	0	6.982596	-2.245668	-0.526083
65	1	0	6.443423	-2.029266	3.203370
66	1	0	6.638360	-0.605159	2.158946
67	1	0	5.159289	-0.821937	3.114978
68	1	0	-5.952404	4.311801	1.129439
69	1	0	-8.067521	3.313437	0.278405
70	1	0	-8.147125	0.953228	-0.373426
71	1	0	-8.170038	-1.108208	-0.570458
72	1	0	-8.117549	-3.553544	-0.446911
73	1	0	-6.009476	-4.740577	0.133297
74	1	0	-3.650567	-4.507910	1.122024
75	1	0	-1.506147	-3.307299	0.990355
76	1	0	-1.498512	2.655121	1.730467
77	1	0	-3.617683	3.820758	2.084653
78	1	0	1.404351	2.718590	1.876455
Zero-point correction= 0.693374 (Hartree/Particle)
Thermal correction to Gibbs Free Energy= 0.621572
Sum of electronic and thermal Free Energies= -2366.161343

Center Number	Atomic Number	Atomic Type	X	Y	Z
1	6	0	5.940188	-1.580716	1.976591
2	8	0	5.160606	-2.749488	-0.679824
3	6	0	7.070367	0.074257	-0.430319
4	6	0	5.801065	1.363558	2.124098
5	6	0	3.937932	-0.064779	0.076728
6	6	0	3.262535	-1.277414	-0.243692
7	6	0	3.955595	-2.543775	-0.636769
8	6	0	2.894226	-3.470534	-1.093795
9	6	0	3.055467	-4.727765	-1.651422
10	6	0	1.927705	-5.372001	-2.174163
11	6	0	0.697206	-4.716426	-2.153937
12	6	0	0.547321	-3.439110	-1.589847
13	6	0	1.650061	-2.811585	-1.015826
14	6	0	1.871027	-1.448637	-0.417935
15	6	0	1.003153	-0.339348	-0.117337
16	6	0	1.696551	0.889835	-0.081311
17	6	0	3.111823	1.056057	-0.049278
18	6	0	3.356633	2.507715	-0.152191
19	6	0	4.533825	3.223643	-0.368610
20	6	0	4.480738	4.612312	-0.517066
21	6	0	3.256456	5.281146	-0.468198
22	6	0	2.063717	4.570695	-0.298347
23	6	0	2.101044	3.183517	-0.152369
24	6	0	1.044637	2.154752	-0.043177
25	6	0	-0.318523	2.172151	0.122054
26	6	0	-1.047098	0.945183	0.336435
27	6	0	-0.430177	-0.297743	0.160123
28	6	0	-1.173108	3.433516	0.197512
29	6	0	-2.341220	3.199802	-0.749585
---	---	---	---	---	
30	6	0	-3.086534	2.063972	
31	6	0	-2.537598	1.291276	
32	6	0	-1.721664	3.441296	
33	6	0	-2.396311	2.336852	
34	6	0	-2.687348	3.982408	
35	6	0	-3.812512	3.621400	
36	6	0	-4.572452	2.512087	
37	6	0	-4.228827	1.704571	
38	6	0	-5.049551	0.568072	
39	6	0	-6.194717	0.165022	
40	6	0	-5.049551	0.568072	
41	6	0	-6.729098	-1.472777	
42	6	0	-5.557969	-1.117720	
43	6	0	-4.090481	-1.432227	
44	6	0	-3.221195	-0.452563	
45	6	0	-3.483638	0.199037	
46	6	0	-4.685140	0.061129	
47	6	0	-5.043959	-5.176780	
48	6	0	-2.013733	-3.631631	
49	6	0	-1.149454	-1.591796	
50	6	0	-2.242526	-0.081200	
51	6	0	-2.427693	-0.408146	
52	6	0	-1.343330	-3.747848	
53	6	0	-0.709328	-2.515199	
54	14	0	5.700033	-0.061129	
55	1	0	4.043959	-5.176780	
56	1	0	2.013733	-3.631631	
57	1	0	0.901257	-1.591796	
58	1	0	-0.422443	-2.966615	
59	1	0	5.486392	2.712210	
60	1	0	5.397947	5.170665	
61	1	0	3.223160	-6.360915	
62	1	0	1.127565	5.117417	
63	1	0	5.050602	-1.762618	
64	1	0	-0.617671	4.333074	
65	1	0	6.772629	-1.383423	
66	1	0	6.159028	-2.490141	
67	1	0	-1.538177	4.269672	
68	1	0	-2.870719	2.141854	
69	1	0	-2.103183	4.860773	
70	1	0	-4.105669	-2.221119	
71	1	0	5.108422	2.284193	
72	1	0	6.962274	0.958934	
73	1	0	7.057014	-0.811349	
74	1	0	8.053308	0.130933	
75	1	0	5.711807	2.374352	
76	1	0	6.769059	1.292662	
77	1	0	5.023781	1.242736	
78	1	0	-6.477579	0.647526	
79	1	0	-7.920180	-1.135321	
80	1	0	-7.377450	-2.245749	
81	1	0	-5.911464	-2.524608	
82	1	0	-3.843363	-1.927748	
83	1	0	-2.308297	-0.218739	
84	1	0	-2.584112	-1.241793	
85	1	0	-3.723965	-3.418111	
86	1	0	-2.920718	-5.043271	
Zero-point correction= 0.693648 (Hartree/Particle)
Thermal correction to Gibbs Free Energy= 0.621484
Sum of electronic and thermal Free Energies= -2366.165926

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)
1	6	0	3.678339
2	6	0	5.544538
3	6	0	6.470407
4	6	0	4.906723
5	6	0	2.536214
6	6	0	3.396243
7	6	0	4.862861
8	6	0	5.308896
9	6	0	6.59632
10	6	0	7.40373
11	6	0	5.639436
12	6	0	4.362616
13	6	0	4.191717
14	6	0	2.993873
15	6	0	1.607214
16	6	0	0.744172
17	6	0	1.186685
18	6	0	-0.015557
19	6	0	-0.142452
20	6	0	-1.413498
21	6	0	-2.544791
22	6	0	-2.424369
23	6	0	-1.161266
24	6	0	-0.691291
25	6	0	-1.255249
26	6	0	-0.408354
27	6	0	0.973851
28	6	0	-2.736012
29	6	0	-3.170340
30	6	0	-2.333044
31	6	0	-1.221921
32	6	0	-2.628703
33	6	0	-4.296983
34	6	0	-4.528727
35	6	0	-3.678415
36	6	0	-2.573008
37	6	0	1.755113

25k
38	6	0	2.556615	2.974271	-1.400826
39	6	0	3.277581	4.103960	-1.787598
40	6	0	3.213484	5.273918	-1.029369
41	6	0	2.421896	5.305621	0.120674
42	6	0	1.701010	4.175285	0.506143
43	14	0	3.205116	-3.789335	-1.400826
44	6	0	-3.721386	0.106654	1.283434
45	6	0	-4.906629	-0.206143	0.547959
46	6	0	-5.202625	0.384548	-0.731450
47	6	0	-5.821274	-1.166438	1.011109
48	6	0	-6.990401	-1.519548	0.376481
49	6	0	-7.242688	-0.955447	-0.850379
50	6	0	-6.353696	-0.008375	-1.396714
51	6	0	-3.759720	-0.490354	2.511170
52	6	0	-4.399911	-1.425546	3.053729
53	6	0	-5.539655	-1.758559	2.359531
54	1	0	4.017707	-6.085922	-0.682641
55	1	0	4.501425	-4.919678	0.563563
56	1	0	2.852014	-5.567270	0.545385
57	1	0	4.749964	-4.027206	-3.142618
58	1	0	4.511918	-2.315454	-2.787405
59	1	0	5.619337	-3.270396	-1.789407
60	1	0	2.326462	-5.131064	-3.106912
61	1	0	0.937532	-4.628899	-2.133852
62	1	0	1.727803	-3.475071	-3.209566
63	1	0	7.389807	-0.282482	1.185983
64	1	0	7.716842	2.061875	2.062322
65	1	0	5.762981	3.577518	2.217409
66	1	0	3.537667	2.870923	1.480057
67	1	0	0.736064	-4.845697	0.084691
68	1	0	-1.516520	-5.869872	0.157347
69	1	0	-3.536758	-4.416747	0.165870
70	1	0	-3.322210	-1.986256	0.225751
71	1	0	-0.609626	3.964493	-0.247919
72	1	0	-3.178813	2.217284	2.728638
73	1	0	-5.388367	1.869484	-3.095353
74	1	0	-3.884379	3.644368	-3.836407
75	1	0	-1.922811	4.318091	-2.447932
76	1	0	2.607559	2.069250	-1.998925
77	1	0	3.890124	4.068856	-2.684540
78	1	0	3.776564	6.153129	-1.330307
79	1	0	2.369863	6.208905	0.723037
80	1	0	1.108042	4.199494	1.416865
81	1	0	-7.674614	-2.245691	0.808165
82	1	0	-8.135480	-1.230719	-1.407668
83	1	0	-6.593991	0.420458	-2.363371
84	1	0	-2.589331	-0.247432	3.059637
85	1	0	-4.186165	-1.884560	4.014820
86	1	0	-6.242751	-2.483085	2.762993
87	6	0	-1.876287	3.320602	1.423706
88	1	0	-1.700517	4.212371	2.017540
Supplementary Figure 3. Possible isomers of tetracenes 30 and 31.
Zero-point correction
0.837102 (Hartree/Particle)

Thermal correction to Gibbs Free Energy
0.752119

Sum of electronic and thermal Free Energies
-3362.773751

E[SMD(chloroform)/B3LYP-D3BJ/6-31G**//B3LYP/6-31G*] = -3363.99058853

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
1	6	0	3.177308 0.593641 0.346652		
2	6	0	3.241594 -0.799123 0.026771		
3	6	0	4.452330 -1.469086 -0.380755		
4	6	0	5.654842 -0.770911 -0.455052		
5	6	0	5.615692 0.492584 0.236846		
6	6	0	4.462426 1.159189 0.652819		
7	6	0	1.886690 1.157866 0.294107		
8	6	0	0.755082 0.295969 0.258676		
9	6	0	0.845866 -1.139598 0.271206		
10	6	0	2.132694 -1.662249 -0.039817		
11	6	0	-0.462041 1.050646 0.208005		
12	6	0	-1.690445 0.338926 0.161566		
13	6	0	-1.571878 -1.055372 0.474501		
14	6	0	-0.376603 -1.790715 0.578376		
15	6	0	-3.044366 0.807095 -0.124142		
16	6	0	-4.107223 -0.060730 0.065357		
17	6	0	-3.954876 -1.409360 0.559362		
18	6	0	-2.695969 -1.909539 0.752253		
19	6	0	4.843768 2.289003 1.549683		
20	6	0	6.249477 2.345882 1.610058		
21	6	0	6.801483 1.210338 0.817355		
22	6	0	6.924656 3.248050 2.412758		
23	6	0	6.168305 4.131249 3.198143		
24	6	0	4.775728 4.054005 3.184294		
25	6	0	4.098021 3.127810 2.372359		
26	8	0	7.975174 0.877844 0.760407		
27	14	0	7.166824 -1.235141 -1.562464		
28	6	0	8.388540 -2.356818 -0.651692		
29	6	0	6.529922 -2.026861 -3.169282		
30	6	0	8.034628 0.323693 -2.203549		
31	6	0	4.046387 -2.852969 -0.701052		
32	6	0	2.632250 -2.956589 -0.536829		
	6	0	1.975402	-4.132644	-0.898951
---	----	----	----------	-----------	------------
34	6	0	2.726085	-5.237020	-1.318417
35	6	0	4.119217	-5.172480	-1.364581
36	6	0	4.784239	-3.978744	-1.058364
37	6	0	1.376505	2.528192	0.207589
38	6	0	-0.051646	2.478414	0.217899
39	6	0	2.045701	3.742163	0.065889
40	6	0	1.312935	4.933516	0.049681
41	6	0	-0.073589	4.899319	0.184742
42	6	0	-0.758686	3.679727	0.261899
43	6	0	-0.727090	-3.120451	1.100923
44	6	0	-2.147976	-3.204380	1.192539
45	6	0	-2.744242	-4.349353	1.717721
46	6	0	-1.937854	-5.398090	2.174034
47	6	0	-0.546213	-5.293696	2.130261
48	6	0	0.066700	-4.153097	1.602530
49	6	0	-5.580582	0.237416	-0.269928
50	6	0	-5.288104	-2.149852	0.691072
51	6	0	-6.031199	-0.855298	-1.237453
52	6	0	-5.880680	-2.149220	-0.717364
53	6	0	-6.349776	0.022814	1.031632
54	6	0	-6.185494	-1.269100	1.556328
55	6	0	-6.544559	-0.667648	-2.515989
56	6	0	-6.911753	-1.784731	-3.276699
57	6	0	-6.760543	-3.071594	-2.758583
58	6	0	-6.239350	-3.259943	-1.472423
59	6	0	-6.810026	-1.630937	2.744529
60	6	0	-7.609751	-0.694167	3.410974
61	6	0	-7.775808	0.589048	2.888812
62	6	0	-7.142790	0.953879	1.693958
63	1	0	8.010715	3.247059	2.439117
64	1	0	6.665466	4.857106	3.835245
65	1	0	4.195845	4.716020	3.821940
66	1	0	3.016767	3.073601	2.405163
67	1	0	7.933227	-3.288107	-0.296025
68	1	0	9.226822	-2.623396	-1.307268
69	1	0	8.792995	-1.825892	0.216292
70	1	0	7.395008	-2.242772	-3.810210
71	1	0	5.953776	-2.947295	-3.067386
72	1	0	5.904482	-1.305042	-3.709254
73	1	0	7.309068	1.075978	-2.537302
74	1	0	8.636714	0.048810	-3.079188
75	1	0	8.688911	0.786648	-1.464005
76	1	0	0.895284	-4.209028	-0.856656
77	1	0	2.215744	-6.155472	-1.595222
78	1	0	4.694784	-6.047822	-1.652726
79	1	0	5.866614	-3.944512	-1.100109
80	1	0	3.125043	3.770169	-0.026745
81	1	0	1.830096	5.883160	-0.055700
82	1	0	-0.640974	5.825619	0.209485
83	1	0	-1.833619	3.693760	0.353806
84	1	0	-3.821641	-4.436295	1.806084
85	1	0	-2.402052	-6.289552	2.586837
86	1	0	0.069733	-6.099750	2.519410
87	1	0	1.147275	-4.072813	1.600081
88	1	0	-5.731096	1.232125	-0.683976
89	1	0	-5.179529	-3.155773	1.092565
Supplementary Information

Number	Atomic Number	Atomic Type	Coordinates (Angstroms)
90	1	0	-6.659455 0.335067 -2.920616
91	1	0	-7.315754 -1.646777 -4.275947
92	1	0	-7.047024 -3.933530 -3.355033
93	1	0	-6.117645 -4.262817 -1.070123
94	1	0	-6.681238 -2.630937 3.151921
95	1	0	-8.103684 -0.970341 4.338563
96	1	0	-8.400459 1.309660 3.409701
97	1	0	-7.276288 1.952793 1.285016
98	6	0	-3.303190 2.127926 -0.765146
99	6	0	-2.741007 2.424374 -2.015865
100	6	0	-4.148112 3.082299 -0.174565
101	6	0	-3.005256 3.632311 -2.659185
102	1	0	-2.088253 1.699768 -2.493050
103	6	0	-4.421021 4.296759 -0.804014
104	1	0	-4.581916 2.879612 0.800839
105	6	0	-3.844604 4.561274 -2.045993
106	1	0	-2.565279 3.851589 -3.626169
107	1	0	-5.068165 5.031092 -0.335877
108	17	0	-4.183522 6.088095 -2.849721

30b

Zero-point correction= 0.836831 (Hartree/Particle)
Thermal correction to Gibbs Free Energy= 0.751684
Sum of electronic and thermal Free Energies= -3362.774470
E[SMD(chloroform)/B3LYP-D3BJ/6-31G***/B3LYP/6-31G*]= -3363.99043582

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)			
1	6	0	-5.818728 5.226099 1.135360			
2	6	0	-4.433806 5.064827 1.110592			
3	6	0	-3.840182 3.848780 0.729186			
4	6	0	-4.661149 2.791766 0.346456			
5	6	0	-6.057903 2.953459 0.432002			
6	6	0	-6.651224 4.144629 0.810837			
7	6	0	-6.700055 1.627156 0.218134			
8	6	0	-5.578225 0.655631 -0.019015			
9	6	0	-4.377400 1.371281 -0.018118			
10	6	0	-3.137650 0.661035 -0.184794			
11	6	0	-3.250195 -0.738798 0.091521			
12	6	0	-4.50484	-1.428274	0.247763	
13	6	0	-5.705270	-0.777160	-0.021799	
14	8	0	-7.892484	1.381733	0.316944	
15	6	0	-1.837896	1.116078	-0.488415	
16	6	0	-0.736783	0.222091	-0.349473	
17	6	0	-0.859600	-1.191078	-0.098142	
18	6	0	-2.170826	-1.641735	0.211796	
19	6	0	0.496198	0.925466	-0.534652	
20	6	0	1.705644	0.231849	-0.294723	
21	6	0	1.564201	-1.191915	-0.277688	
22	6	0	0.336115	-1.913990	-0.271272	
23	6	0	3.054504	0.750821	-0.100277	
24	6	0	4.106899	-0.146913	-0.035027	
25	6	0	3.942689	-1.572898	-0.205902	
26	6	0	2.682969	-2.093997	-0.331968	
27	6	0	-4.160483	-2.782138	0.720573	
28	6	0	-2.738647	-2.895865	0.740888	
29	6	0	-2.138874	-3.978972	1.384722	
30	6	0	-2.943043	-4.978865	1.943224	
31	6	0	-4.334504	-4.881097	1.898600	
32	6	0	-4.947696	-3.769669	1.308909	
33	6	0	-1.291966	2.363010	-1.040045	
34	6	0	0.132609	2.266799	-1.039285	
35	6	0	-1.925863	3.424801	-1.684102	
36	6	0	-1.155214	4.435932	-2.267920	
37	6	0	0.236800	4.362815	-2.239131	
38	6	0	0.884274	3.273558	-1.643862	
39	6	0	0.702819	-3.322724	-0.530494	
40	6	0	2.125749	-3.442222	-0.531677	
41	6	0	2.722831	4.670882	-0.806950	
42	6	0	1.919296	-5.774878	-1.112451	
43	6	0	0.531055	-5.643300	-1.172855	
44	6	0	-0.082876	-4.418654	-0.892026	
45	1	0	-6.250146	6.177738	1.432270	
46	1	0	-3.792263	5.892644	1.400942	
47	1	0	-2.762279	3.750747	0.748107	
48	1	0	-7.733887	4.217273	0.873110	
49	1	0	-1.061644	-4.041565	1.478756	
50	1	0	-2.474849	-5.824601	2.439428	
51	1	0	-4.947843	-5.651766	2.357357	
52	1	0	-6.025815	-3.664787	1.357936	
53	1	0	-3.006295	3.462370	-1.757117	
54	1	0	-1.647980	5.267241	-2.764471	
55	1	0	0.831359	5.141558	-2.708932	
56	1	0	1.962182	3.211831	-1.690851	
57	1	0	3.801363	-4.784378	-0.819592	
58	1	0	2.384347	-6.732241	-1.330996	
59	1	0	-0.082374	-6.495642	-1.451809	
60	1	0	-1.158571	-4.326388	-0.974396	
61	14	0	-7.331458	-1.651454	-0.580829	
62	6	0	-8.530975	-1.927913	0.859905	
63	1	0	-8.851653	-0.965273	1.265329	
64	1	0	-9.421938	-2.466011	0.508828	
65	1	0	-8.085802	-2.512602	1.669357	
66	6	0	-6.892702	-3.296941	-1.424832	
67	1	0	-6.186904	-3.126596	-2.247005	
68	1	0	-6.465260	-4.066384	-0.779682	
---	---	---	---	---	---	---
69	1	0	-7.810056	-3.706285	-1.868203	
70	6	0	-8.139197	-0.657939	-1.977224	
71	1	0	-8.599838	0.267218	-1.628463	
72	1	0	-7.409883	-0.409807	-2.758349	
73	1	0	-8.915708	-1.276286	-2.445689	
74	6	0	5.573938	0.205563	0.271147	
75	6	0	5.268514	-2.337596	-0.114931	
76	6	0	6.380074	-0.317324	-0.915990	
77	6	0	5.972317	-0.635027	1.482587	
78	6	0	6.207310	-1.694239	-1.129639	
79	6	0	5.813006	-2.013031	1.274292	
80	6	0	6.863058	-2.331299	-2.177033	
81	6	0	7.213507	0.423217	-1.747439	
82	6	0	6.125652	-2.920064	2.280342	
83	6	0	6.448176	-0.159104	2.699325	
84	6	0	6.769166	-1.071137	3.712431	
85	6	0	6.609180	-2.441742	3.504474	
86	6	0	7.702848	-1.586124	-3.014216	
87	6	0	7.877849	-0.218533	-2.800290	
88	1	0	8.533737	0.352641	-3.451714	
89	1	0	8.221146	-2.077660	-3.833008	
90	1	0	7.354580	1.488208	-1.577625	
91	1	0	6.727961	-3.397284	-2.344267	
92	1	0	5.997467	-3.987813	2.119481	
93	1	0	6.569320	0.909106	2.862530	
94	1	0	7.143906	-0.707702	4.665451	
95	1	0	6.859801	-3.143166	4.295633	
96	1	0	5.730342	1.268317	0.445778	
97	1	0	5.150328	-3.408551	-0.272068	
98	6	0	3.295321	2.196648	0.169377	
99	6	0	2.636516	2.839848	1.228547	
100	6	0	4.203956	2.946554	-0.596649	
101	6	0	2.871537	4.182660	1.518371	
102	1	0	1.933005	2.280517	1.837511	
103	6	0	4.448919	4.291386	-0.321191	
104	1	0	4.709895	2.475723	-1.435125	
105	6	0	3.777968	4.899674	0.738916	
106	1	0	2.358670	4.668305	2.341755	
107	1	0	5.145960	4.862985	-0.924994	
108	17	0	4.079616	6.594617	1.096169	
31a

Zero-point correction = 0.734710 (Hartree/Particle)
Thermal correction to Gibbs Free Energy = 0.658095
Sum of electronic and thermal Free Energies = -2954.205557

E[SMD(chloroform)/B3LYP-D3BJ/6-31G**/B3LYP/6-31G*] = -2955.28315654

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
	Atomic Number		X	Y	Z
1	6	0	3.915321	0.074451	-0.029364
2	6	0	3.803720	-1.299300	-0.427259
3	6	0	4.910032	-2.092439	-0.877858
4	6	0	6.177411	-1.561818	-0.854546
5	6	0	6.323410	-0.278553	-0.281197
6	6	0	5.270151	0.514482	0.182583
7	6	0	2.678054	0.759672	0.031236
8	6	0	1.468362	0.009657	0.042072
9	6	0	2.911899	-2.049447	-0.42076
10	6	0	0.327159	0.875828	0.126310
11	6	0	-0.965780	0.287709	0.134681
12	6	0	-0.965436	-1.131539	0.345822
13	6	0	0.154114	-1.980603	0.306588
14	6	0	-2.285852	0.898779	-0.011891
15	6	0	-3.412500	0.123164	0.205686
16	6	0	-3.359593	-1.268274	0.591001
17	6	0	-2.146308	-1.897208	0.646952
18	6	0	5.860590	1.640133	0.967824
19	6	0	7.264832	1.601913	0.820390
20	6	0	7.623741	0.401938	0.008152
21	6	0	8.104083	2.489761	1.470083
22	6	0	7.530415	-1.268274	0.591001
23	6	0	6.150229	3.453768	2.525917
24	6	0	5.303074	2.551205	1.860360
25	6	0	8.735218	0.028827	-0.326073
26	8	0	4.357349	-3.375111	-1.320978
27	6	0	2.949070	-3.348292	-1.095662
28	6	0	2.162285	-4.01262	-1.564127
29	6	0	2.780269	-5.491077	-2.190345
30	6	0	4.165910	-5.532227	-2.363579
31	6	0	4.963647	-4.463393	-1.938053
32	6	0	2.294104	2.173882	0.033016
33	6	0	0.873652	2.256202	0.168389
34	6	0	3.057077	3.327074	-0.140563
35	6	0	2.442696	4.580576	-0.049882
36	6	0	1.079123	4.668524	0.221532
37	6	0	0.291732	3.514069	0.322290
38	6	0	-0.288662	-3.312223	0.745664
39	6	0	-1.700765	-3.270457	0.941540
40	6	0	-2.369676	-4.398004	1.414406
41	6	0	-1.641857	-5.555093	1.714300
42	6	0	-0.253668	-5.578893	1.566568
43	6	0	0.431445	4.457021	1.089948
44	6	0	-4.870158	0.582160	0.012057
45	6	0	-4.746004	-1.889183	0.777479
46	6	0	-5.496244	-0.385823	-0.990000
47	6	0	-5.436824	-1.724540	-0.575348
---	---	---	---------	---------	---------
49	6	0	-5.558618	0.340170	1.353366
50	6	0	-5.485676	-0.997932	1.771596
51	6	0	-6.080671	-0.053009	-2.207098
52	6	0	-6.610659	-1.069049	-3.012090
53	6	0	-6.549766	-2.400589	-2.599066
54	6	0	-5.957457	-2.735485	-1.375030
55	6	0	-6.055207	-1.390478	2.977613
56	6	0	-6.708079	-0.437346	3.769131
57	6	0	-6.610671	-0.997932	1.771596
58	6	0	-6.205888	1.287369	2.139526
59	1	0	9.179398	2.422166	1.330593
60	1	0	8.161167	4.154596	2.849975
61	1	0	5.714601	4.169236	3.218301
62	1	0	4.237597	2.570881	2.054546
63	1	0	1.083748	-4.381059	-1.461583
64	1	0	2.167562	-6.311830	-2.532038
65	1	0	4.625911	-6.388559	-2.849133
66	1	0	6.037590	-4.478812	-2.105669
67	1	0	4.118804	3.261642	-0.343784
68	1	0	3.035668	5.481685	-0.179305
69	1	0	0.606786	5.640745	0.332137
70	1	0	-0.763855	3.622487	0.515921
71	1	0	-3.441498	-4.392872	1.579649
72	1	0	-2.162661	-6.433324	2.085876
73	1	0	0.304057	-6.472314	1.833518
74	1	0	1.511386	-4.479105	1.004768
75	1	0	-4.952273	1.615636	-0.317588
76	1	0	-4.707506	-2.928471	1.098596
77	1	0	-6.125609	0.984257	-2.30253
78	1	0	-7.070899	-0.817332	-3.963707
79	1	0	-6.962816	-3.183308	-3.229523
80	1	0	-5.906625	-3.773405	-1.054833
81	1	0	-5.997426	-2.426657	3.302465
82	1	0	-7.158681	-0.736964	4.711381
83	1	0	-7.295109	1.625584	3.970289
84	1	0	-6.269280	2.322760	1.812858
85	6	0	-2.464404	2.279544	-0.545243
86	6	0	-1.982329	2.607838	-1.821016
87	6	0	-3.159065	3.264858	0.175802
88	6	0	-2.177727	3.877075	-2.363036
89	1	0	-1.445657	1.860359	-2.397324
90	6	0	-3.361709	4.540175	-0.351405
91	1	0	-3.529376	3.035322	1.171256
92	6	0	-2.866589	4.835590	-1.621314
93	1	0	-1.799714	4.120863	-3.350128
94	1	0	-3.892377	5.297345	0.216335
95	17	0	-3.116784	6.440054	-2.295770
96	1	0	7.060180	-2.098053	-1.191531
31b
Zero-point correction= 0.734795 (Hartree/Particle)
Thermal correction to Gibbs Free Energy= 0.658549
Sum of electronic and thermal Free Energies -2954.202263
E[SMD(chloroform)/B3LYP-D3BJ/6-31G**//B3LYP/6-31G*] = -2955.27993275

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	6	0	-7.332946	4.038733	0.695137
2	6	0	-5.941462	4.108454	0.752706
3	6	0	-5.135813	2.990329	0.476143
4	6	0	-5.745768	1.791055	0.117763
5	6	0	-7.157230	1.720320	0.131189
6	6	0	-7.956420	2.817869	0.398269
7	6	0	-7.561687	0.292199	-0.012761
8	6	0	-6.277907	-0.471659	-0.082392
9	6	0	-5.203819	0.420461	-0.143900
10	6	0	-3.867772	-0.102615	-0.288719
11	6	0	-3.757006	-1.514108	-0.045436
12	6	0	-4.884035	-2.378962	0.147867
13	6	0	-6.156721	-1.872448	0.039376
14	8	0	-2.644665	0.544899	-0.576008
15	6	0	-1.422596	-0.173727	-0.426741
16	6	0	-1.326353	-1.596822	-0.215559
17	6	0	-2.555730	-2.254300	0.056438
18	6	0	-0.309246	0.216540	-0.300883
19	6	0	1.070681	-1.211450	-0.328128
20	6	0	-0.007757	-2.113116	-0.383346
21	6	0	2.230723	0.935434	-0.053205
22	6	0	3.409524	0.212609	0.018312
23	6	0	3.476861	-1.215438	-0.198970
24	6	0	2.319322	-1.923652	-0.379042
25	6	0	-4.358130	-3.697090	0.501442
26	6	0	-2.935424	-3.609047	0.515559
27	6	0	-2.198824	-4.665210	1.054946
28	6	0	-2.864503	-5.825282	1.470247
29	6	0	-4.254007	-5.933653	1.373468
30	6	0	-5.012868	-4.856541	0.902575
31	6	0	-2.282889	1.865901	-1.108568
32	6	0	-0.861786	1.994660	-1.060251
33	6	0	-3.050909	2.812890	-1.784551
34	6	0	-2.429191	3.936020	-2.341374
35	6	0	-1.046326	4.088103	-2.254543
36	6	0	-0.257000	3.112069	-1.634125
37	6	0	0.563459	-3.436557	-0.689840
38	6	0	1.987068	-3.332673	-0.646969
39	6	0	2.777611	-4.438359	-0.953994
40	6	0	2.166678	-5.637180	-1.337997
41	6	0	0.777552	-5.718879	-1.447004
42	6	0	-0.028998	-4.620017	-1.134285
43	6	0	-7.930959	4.919785	0.909712
44	6	0	-5.461968	5.045017	1.024841
45	6	0	-4.059662	3.075071	0.555378
46	6	0	-9.037807	2.713362	0.401114
---	---	---	---	---	---
49	1	0	-1.124186	-4.596302	1.168216
50	1	0	-2.287101	-6.648955	1.881294
51	1	0	-4.750826	-6.844491	1.695948
52	1	0	-6.098048	-4.915956	0.880959
53	1	0	-4.118557	2.675707	-1.905249
54	1	0	-3.028403	4.677516	-2.862476
55	1	0	-0.565828	4.954317	-2.701109
56	1	0	0.818071	3.222736	-1.640248
57	1	0	3.028403	4.677516	-2.862476
58	1	0	0.565828	4.954317	-2.701109
59	1	0	0.818071	3.222736	-1.640248
60	1	0	-1.102556	-4.689486	-1.257659
61	6	0	4.794818	0.781887	0.373922
62	6	0	4.902244	-1.763866	-0.095592
63	6	0	5.697878	0.433148	-0.807436
64	6	0	5.296454	-0.025509	1.569493
65	6	0	5.749624	-0.945864	-1.066672
66	6	0	5.361840	-1.403606	1.316317
67	6	0	6.515135	-1.435795	-2.118730
68	6	0	6.417084	1.323617	-1.597579
69	6	0	5.793894	-2.283140	2.302448
70	6	0	5.666663	0.478693	2.811410
71	6	0	6.107790	-0.404650	3.804528
72	6	0	6.171067	-1.775632	3.551977
73	6	0	7.239582	-0.539521	-2.914429
74	6	0	7.192095	0.830503	-2.654828
75	1	0	7.759830	1.519630	-3.274144
76	1	0	7.842355	-0.915021	-3.736801
77	1	0	6.384148	2.391265	-1.392706
78	1	0	6.552801	-2.503433	-2.321812
79	1	0	5.839344	-3.351757	2.106552
80	1	0	5.614808	1.546681	3.009105
81	1	0	6.401305	-0.018659	4.776955
82	1	0	6.513648	-2.454724	4.327991
83	1	0	4.775743	1.849345	0.584621
84	1	0	4.962325	-2.833817	-0.287283
85	1	0	2.231070	2.392140	0.260690
86	1	0	1.450269	2.890585	1.315117
87	1	0	3.028172	3.299298	-0.458060
88	1	0	1.461296	4.244265	1.646517
89	1	0	0.829371	2.208750	1.888036
90	1	0	3.048366	4.656998	-0.141036
91	1	0	3.624315	2.939730	-1.292363
92	1	0	2.261981	5.118923	0.913613
93	1	0	0.856556	4.617570	2.466137
94	1	0	3.660866	5.349855	-0.708403
95	17	0	2.281189	6.828561	1.323285
96	1	0	-7.054250	-2.478659	0.125416
Supplementary Figure 4. Model studies for the kinetic barrier between two isomers of tetracene 30.

model-1

Zero-point correction = 0.322761 (Hartree/Particle)
Thermal correction to Gibbs Free Energy = 0.277117
Sum of electronic and thermal Free Energies = -1112.280718

\[
E[\text{SMD(chloroform/3LYP-D3BJ/6-31G**/B3LYP/6-31G*)]}] = -1112.72710428
\]

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)	X	Y	Z
	6	0		3.993096	-2.337936	0.633102
2	6	0		2.622390	-2.022436	0.343135
3	6	0		2.312106	-0.655583	0.174217
4	6	0		3.297307	0.374455	0.212051
5	6	0		4.598700	0.040111	0.501270
6	6	0		4.931079	-1.333496	0.720887
7	6	0		1.580635	-2.926594	0.125740
8	6	0		0.271841	-2.477982	-0.129613
9	6	0		-0.062896	-1.046685	-0.114470
10	6	0		1.029691	-0.142935	-0.099922
11	6	0		-0.740667	-3.446765	-0.424226
12	6	0		-2.040933	-3.078175	-0.650839
13	6	0		-2.386172	-1.728250	-0.444385
14	6	0		-1.464579	-0.740906	-0.110745
15	6	0		-3.767912	-1.155136	-0.433202
16	6	0		2.604800	1.613845	-0.160927
17	6	0		1.231003	1.297453	-0.398514
18	6	0		-2.233946	0.463965	0.335436
TS-model-1

One imaginary frequency= -162.97 cm\(^{-1}\)

Zero-point correction= 0.321896 (Hartree/Particle)

Thermal correction to Gibbs Free Energy= 0.276632

Sum of electronic and thermal Free Energies= -1112.246318

E[SMD(chloroform)/B3LYP-D3BJ/6-31G/**B3LYP/6-31G**]** = -1112.69169415

Center	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	6	0	-3.06084	0.232396	0.091075
2	6	0	0.401799	2.268473	-0.961926
3	6	0	0.907138	2.894080	-0.391452
4	6	0	-4.588455	1.139567	0.448822
5	6	0	-4.199659	2.318582	1.102187
6	6	0	-2.855391	2.531670	1.404872
7	6	0	-1.861870	1.60792	1.035451
8	6	0	4.284169	-3.375517	0.775185
9	6	0	5.382555	0.791456	0.553483
10	6	0	5.963721	-1.586827	0.944931
11	6	0	1.771734	-3.997311	0.132575
12	6	0	-0.444989	-4.491691	-0.470196
13	6	0	-0.622784	2.040900	-1.22937
14	6	0	0.255694	4.306854	-1.632958
15	6	0	2.605330	4.875363	-1.088176
16	6	0	4.140618	3.127732	-0.204368
17	6	0	-5.632377	0.917427	0.245547
18	6	0	-4.945800	3.050765	1.397424
19	6	0	-2.562860	3.427634	1.946031
20	6	0	-0.830325	1.793229	1.307583
21	6	0	-2.813506	-3.797884	-0.903559
22	6	0	-4.798849	-1.721393	-0.752992

![Diagram of TS-model-1](image-url)
Supplementary Information

model-2

Zero-point correction= 0.359606 (Hartree/Particle)
Thermal correction to Gibbs Free Energy= 0.313340
Sum of electronic and thermal Free Energies= -1152.552823

\[
E_{\text{SMD(chloroform)}/B3LYP-3D3J/6-31G**}/B3LYP/6-31G*] = -1153.05407134
\]

Center	Atomic Number	Atomic Number	Type	Coordinates (Angstroms)		
				X	Y	Z
1	6	6	0	3.685721	-2.974324	0.654251
2	6	6	0	2.416684	-2.357789	0.398021
3	6	6	0	2.414811	-0.954005	0.205215
4	6	6	0	3.615696	-0.179884	0.182540
5	6	6	0	4.812786	-0.801307	0.440095
6	6	6	0	4.829995	-2.212462	0.687175
7	6	6	0	1.191766	-2.999689	0.229236
8	6	6	0	0.000036	-2.268583	-0.000006
9	6	6	0	0.000024	-0.785747	0.000066
---	---	---	---	---	---	---
10	6	0	1.281336	-0.166384	-0.047633	
11	6	0	-1.191699	-2.999698	-0.229308	
12	6	0	-2.416606	-2.357812	-0.398087	
13	6	0	-2.414748	-0.954014	-0.205303	
14	6	0	-1.281324	-0.166394	0.047667	
15	6	0	-3.685650	-2.974381	-0.654267	
16	6	0	-4.829947	-2.212567	-0.687088	
17	6	0	-4.812768	-0.801407	-0.439964	
18	6	0	-3.615681	-0.179936	-0.182551	
19	6	0	3.216527	1.176028	-0.208274	
20	6	0	1.798994	1.178985	-0.398467	
21	6	0	-1.799014	1.178971	0.398498	
22	6	0	-3.216552	1.175968	0.208311	
23	6	0	1.199246	2.299000	-0.977242	
24	6	0	1.979845	3.423843	-1.271993	
25	6	0	3.352637	3.437735	-1.014720	
26	6	0	3.981661	2.301316	-0.494512	
27	6	0	-3.981723	2.301249	0.494474	
28	6	0	-3.352747	3.437701	1.014667	
29	6	0	-1.979962	3.423847	1.271968	
30	6	0	-1.199315	2.299032	0.977229	
31	1	0	3.734961	-4.048498	0.813886	
32	1	0	5.750304	-0.250869	0.446064	
33	1	0	5.785046	-2.691268	0.885623	
34	1	0	1.133672	-4.085641	0.255018	
35	1	0	-1.133576	-4.085647	-0.255157	
36	1	0	-3.734849	-4.048548	-0.813957	
37	1	0	-5.789996	-2.691392	-0.885498	
38	1	0	-5.750315	-0.251016	-0.445805	
39	1	0	0.142415	2.305158	-1.213559	
40	1	0	1.506137	4.295254	-1.716192	
41	1	0	3.939326	4.322670	-1.245723	
42	1	0	5.058183	2.291515	-0.341954	
43	1	0	-5.058239	2.291412	0.341877	
44	1	0	-3.939465	4.322626	1.245637	
45	1	0	-1.506282	4.295279	1.716158	
46	1	0	-0.142496	2.305237	1.213591	
TS-model-2

One imaginary frequency = -207.41 cm⁻¹
Zero-point correction = 0.358628 (Hartree/Particle)
Thermal correction to Gibbs Free Energy = 0.312569
Sum of electronic and thermal Free Energies = -1152.520596

E[SMD(chloroform)/B3LYP-D3BJ/6-31G***/B3LYP/6-31G***] = -1153.02046026

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)
	1	6	-3.614552 -3.107381 -0.033625
	2	6	-2.402021 -2.377319 0.188172
	3	6	-2.417942 -0.969467 0.052988
	4	6	-3.624874 -0.309765 -0.328411
	5	6	-4.768268 -1.029639 -0.574249
	6	6	-4.756559 -2.448691 -0.413986
	7	6	-1.173253 -2.927315 0.494285
	8	6	0.000158 2.139973 0.503908
	9	6	0.000038 0.644200 0.379597
	10	6	-1.335029 -0.073322 0.255821
	11	6	1.173743 -2.927080 0.495082
	12	6	2.402513 -2.376964 0.189215
	13	6	2.418123 -0.969187 0.053205
	14	6	1.335051 -0.073172 0.255683
	15	6	3.615282 -3.106854 -0.031858
	16	6	4.757212 -2.448097 -0.412331
	17	6	4.768583 -1.029143 -0.573528
	18	6	3.624962 -0.309402 -0.328366
	19	6	-3.339431 1.112843 -0.298004
	20	6	-1.992768 1.284833 0.154125
	21	6	1.992561 1.285047 0.153523
	22	6	3.339157 1.113154 -0.298834
	23	6	-1.650112 2.580153 0.539105
	24	6	-2.515936 3.660064 0.332282
	25	6	-3.776403 3.477293 -0.233214
	26	6	-4.203087 2.180363 -0.519685
	27	6	4.202484 2.180819 -0.521108
	28	6	3.775490 3.477752 -0.235091
	29	6	2.515181 3.660430 0.330793
	30	6	1.649699 2.580374 0.538265
	31	1	-3.608754 -4.187662 0.086911
30b-model

Zero-point correction= 0.618060 (Hartree/Particle)
Thermal correction to Gibbs Free Energy= 0.551298
Sum of electronic and thermal Free Energies= -2173.320153

E[SMD(chloroform)/B3LYP-D3BJ/6-31G***/B3LYP/6-31G*]= -2174.19761186

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)			
			X	Y	Z	
1	6	0	4.999423	4.247700	-1.413477	
2	6	0	3.627150	4.481962	-1.494018	
3	6	0	2.689641	3.520734	-1.076944	
4	6	0	3.151027	2.317268	-0.551289	
5	6	0	4.538428	2.074074	-0.530566	
6	6	0	5.468244	3.011914	-0.943014	
7	6	0	4.761059	0.646851	-0.168602	
8	6	0	3.396072	0.054174	0.043634	
9	6	0	2.452790	1.073124	-0.109526	
10	6	0	1.053598	0.756747	0.005024	
11	6	0	0.777725	-0.638191	-0.163390	
12	6	0	1.791387	-1.662196	-0.162566	
13	6	0	3.108302	-1.350832	0.161920	
14	6	0	5.836759	0.068924	-0.149132	
15	6	0	-0.075529	1.581951	0.173511	
16	6	0	-1.378089	1.021575	0.012583	
17	6	0	-1.651486	-0.388320	-0.137733	
18	6	0	-0.504020	-1.210949	-0.311870	
19	6	0	-2.363578	2.054215	0.062865	
20	6	0	-3.709606	1.716231	-0.211602	
21	6	0	-3.976805	0.311751	-0.144789	
22	6	0	-3.029593	-0.727700	-0.020985	
23	6	0	-4.839954	2.564639	-0.530730	
24	6	0	-6.098818	1.996039	-0.594061	
25	6	0	-6.362190	0.617175	-0.359116	
26	6	0	-5.302836	-0.224270	0.144086	
27	6	0	1.105268	-2.903172	-0.567441	
28	6	0	-0.285099	-2.615650	-0.705392	
29	6	0	-1.124605	-3.538791	-1.329932	
30	6	0	-0.605039	-4.769747	1.746901	
31	6	0	0.749176	-5.063312	-1.582466	
---	---	---	---	---	---	---
32	6	0	1.614063	-4.120138	-1.015143	
33	6	0	-0.271351	2.976494	0.594272	
34	6	0	-1.665135	3.276080	0.504404	
35	6	0	0.601499	3.876532	1.203948	
36	6	0	0.115744	5.105207	1.665549	
37	6	0	-1.240384	5.410894	1.558469	
38	6	0	-2.136598	4.491845	0.999337	
39	6	0	-3.794967	-1.962021	0.261054	
40	6	0	-5.183062	-1.656804	0.139308	
41	6	0	-6.154773	-2.620061	0.384033	
42	6	0	-5.755536	-3.897554	0.794022	
43	6	0	-4.401671	-4.184313	0.983289	
44	6	0	-3.416645	-3.222689	0.727640	
45	1	0	5.701204	5.009403	-1.740856	
46	1	0	3.266961	5.424835	-1.897024	
47	1	0	1.631490	3.725014	-1.179920	
48	1	0	6.527896	2.773991	-0.919336	
49	1	0	-6.937516	2.638005	-0.854558	
50	1	0	-7.386474	0.254683	-0.390554	
51	1	0	-2.164962	-3.304319	-1.518492	
52	1	0	-1.261355	-5.489924	-2.227750	
53	1	0	1.145374	-6.012846	-1.931669	
54	1	0	2.677742	-4.326558	-0.974189	
55	1	0	1.645584	3.625254	1.347436	
56	1	0	0.797577	5.808679	2.135188	
57	1	0	-1.616498	6.354459	1.944375	
58	1	0	-3.193565	4.720037	1.005333	
59	1	0	-7.210633	-2.380499	0.284984	
60	1	0	-6.504119	-4.696662	0.992518	
61	1	0	-4.103614	-5.165277	1.343307	
62	1	0	-2.376058	-3.460816	0.909335	
63	14	0	4.377165	-2.586865	0.926651	
64	6	0	5.539020	-3.322785	-0.372594	
65	1	0	6.148018	-2.529823	-0.816870	
66	1	0	6.214018	-4.054015	0.089496	
67	1	0	5.000451	-3.831968	-1.180326	
68	6	0	3.429976	-3.953162	1.846431	
69	1	0	2.755820	-3.513471	2.591591	
70	1	0	2.836943	-4.625046	1.223717	
71	1	0	4.160200	-4.563837	2.393502	
72	6	0	5.342930	-1.724016	2.309944	
73	1	0	6.080383	-1.014726	1.931647	
74	1	0	4.666174	-1.192142	2.990068	
75	1	0	5.865557	-2.484513	2.904235	
76	6	0	-4.702110	4.023389	-0.908116	
77	1	0	-4.944033	4.695714	-0.075391	
78	1	0	-3.694892	4.266821	-1.252224	
79	1	0	-5.400400	4.263381	-1.716973	

Supplementary Information

30a-model

Zero-point correction= 0.618220 (Hartree/Particle)
Thermal correction to Gibbs Free Energy= 0.551080
Sum of electronic and thermal Free Energies= -2173.320167

\[\text{E[SMD(chloroform)/B3LYP-D3BJ/6-31G**/B3LYP/6-31G*]} = -2174.19753741 \]

Center Number	Atomic Number	Atomic Type	Coordinates (Ångstroms)			
			X	Y	Z	
1	6	0	-4.539457	4.043840	2.534923	
2	6	0	-3.170244	4.262984	2.384767	
3	6	0	-2.354299	3.363141	1.676979	
4	6	0	-2.941635	2.243399	1.095952	
5	6	0	-4.315765	2.010491	1.297133	
6	6	0	-5.124184	2.885590	2.000524	
7	6	0	-4.643902	0.652514	0.776604	
8	6	0	-3.367380	0.107691	0.199591	
9	6	0	-2.373026	1.071064	0.369259	
10	6	0	-1.015050	0.744364	0.029306	
11	6	0	-0.779777	-0.665533	-0.041511	
12	6	0	-1.830348	-1.642082	-0.202050	
13	6	0	-3.162875	-1.242759	-0.261196	
14	8	0	-5.708770	0.070271	0.909454	
15	6	0	0.104924	1.550245	-0.252012	
16	6	0	1.401451	0.960177	-0.255506	
17	6	0	1.642896	-0.436612	0.006258	
18	6	0	0.489271	-1.269086	-0.079776	
19	6	0	2.403994	1.937848	-0.547958	
20	6	0	3.761598	1.517973	-0.590980	
21	6	0	3.981201	0.204169	-0.057863	
22	6	0	2.996915	-0.748333	0.283961	
23	6	0	4.953164	2.194905	-1.073654	
24	6	0	6.190137	1.620786	-0.840622	
25	6	0	6.386832	0.386352	-0.164116	
26	6	0	5.282064	-0.329643	0.210125	
27	6	0	-1.139948	-2.942181	-0.333396	
28	6	0	0.267798	-2.708554	-0.304557	
29	6	0	1.151599	-3.760963	-0.543554	
30	6	0	0.648760	-5.057438	-0.701255	
31	6	0	-0.721606	-5.303293	-0.610930	
32	6	0	-1.621397	-4.245329	-0.430412	
33	6	0	0.279699	2.957022	-0.621131	
34	6	0	1.680145	3.218827	-0.737738	
35	6	0	-0.655728	3.949747	-0.905869	
36	6	0	-0.217510	5.246273	-1.195843	
37	6	0	1.144871	5.539385	-1.184350	
38	6	0	2.093265	4.532919	-0.960070	
39	6	0	3.690747	-1.869686	0.947344	
40	6	0	5.091582	-1.621177	0.876473	
41	6	0	6.003390	-2.493119	1.460552	
42	6	0	5.523316	-3.610848	2.153342	
43	6	0	4.148546	-3.829598	2.275541	
44	6	0	3.224629	-2.960807	1.682340	
45	1	0	-5.145987	4.756101	3.086938	
46	1	0	-2.715909	5.142904	2.832455	
47	1	0	-1.289283	3.546255	1.603617	
48	1	0	-6.176823	2.658759	2.144468	
---	---	---	---	---	---	---
49	1	0	7.068814	2.136441	-1.221264	
50	1	0	7.396063	0.017378	-0.006502	
51	1	0	2.218402	-3.586016	-0.607392	
52	1	0	1.337009	-5.878611	-0.881687	
53	1	0	-1.098763	-6.318656	-0.696108	
54	1	0	-2.683192	-4.452371	-0.369014	
55	1	0	-1.716303	3.727060	-0.899466	
56	1	0	-0.943513	6.024704	-1.412970	
57	1	0	1.483979	6.555797	-1.365102	
58	1	0	3.138222	4.801072	-0.955435	
59	1	0	7.071966	-2.301491	1.402090	
60	1	0	6.224094	-4.298970	2.618115	
61	1	0	3.787094	-4.680860	2.845953	
62	1	0	2.162545	-3.135643	1.808694	
63	14	0	-4.599111	-2.228520	-1.095791	
64	6	0	-3.904143	-3.119265	-2.624765	
65	1	0	-3.566876	-2.372606	-3.354677	
66	1	0	-3.076006	-3.808421	-2.454798	
67	1	0	-4.718491	-3.683681	-3.098113	
68	6	0	-5.429484	-3.418964	0.118157	
69	1	0	-5.904568	-2.846986	0.922327	
70	1	0	-6.209323	-4.001855	-0.387658	
71	1	0	-4.728713	-4.125246	0.577154	
72	6	0	-5.879417	-1.057283	-1.858980	
73	1	0	-6.595142	-0.674682	-1.130296	
74	1	0	-5.398324	-0.200253	-2.346355	
75	1	0	-6.428016	-1.602737	-2.637569	
76	6	0	4.932954	3.448684	-1.918688	
77	1	0	4.025156	3.526760	-2.520480	
78	1	0	5.020881	4.361491	-1.316320	
79	1	0	5.787276	3.442826	-2.603139	
TS-model

![TS-model Diagram]

One imaginary frequency = \(-194.99 \text{ cm}^{-1}\)

Zero-point correction = 0.616806 (Hartree/Particle)

Thermal correction to Gibbs Free Energy = 0.549784

Sum of electronic and thermal Free Energies = -2173.290468

E[SMD(chloroform)/B3LYP-D3BJ/6-31G**/*B3LYP/6-31G*] = -2174.16667084

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)					
1	6	0	-4.148789, -4.88194, -2.061165					
2	6	0	-2.799776, -4.623894, -1.735535					
3	6	0	-2.081762, -3.584332, -1.118400					
4	6	0	-2.746776, -2.401575, -0.809027					
5	6	0	-4.098282, -2.264853, -1.183335					
6	6	0	-4.809933, -3.278979, -1.799002					
7	6	0	-4.519931, -0.858567, -0.930078					
8	6	0	-3.327637, -0.171650, -0.327161					
9	6	0	-2.292150, -1.097138, -0.239836					
10	6	0	-0.994964, -0.654558, 0.188411					
11	6	0	-0.775862, 0.755200, 0.124114					
12	6	0	-1.881055, 1.672043, -0.017685					
13	6	0	-3.202870, 1.235194, -0.061824					
14	8	0	-5.585217, -0.357506, -1.254560					
15	6	0	0.106673, -1.392369, 0.620270					
16	6	0	1.401060, -0.796224, 0.545424					
17	6	0	1.681153, 0.615907, 0.321794					
18	6	0	0.468038, 1.426589, 0.287529					
19	6	0	2.352043, -1.866786, 0.619212					
20	6	0	3.618236, -1.651655, 0.052823					
21	6	0	3.914584, -0.269626, -0.175659					
22	6	0	3.091988, 0.869589, 0.088104					
23	6	0	4.583895, -2.632772, -0.409942					
24	6	0	5.757743, -2.189260, -0.984350					
25	6	0	6.077339, -0.817270, -1.141581					
26	6	0	5.165034, 0.121862, -0.742071					
27	6	0	-1.286785, 3.005124, -0.000219					
28	6	0	0.104782, 2.878451, 0.289889					
29	6	0	0.789776, 4.054208, 0.581952					
30	6	0	0.192457, 5.307187, 0.407084					
31	6	0	-1.114164, 5.411037, -0.062527					
			32	6	0	-1.864604	4.247184	-0.247980
---	---	---	-----	-----	----	-----------	----------	-----------
33	6	0	0.259228	-2.750019	1.142097			
34	6	0	1.649428	-3.040471	1.170628			
35	6	0	-0.665458	-3.610648	1.730940			
36	6	0	-0.206717	-4.780869	2.345043			
37	6	0	1.160479	-5.059782	2.399420			
38	6	0	2.094869	-4.187345	1.827838			
39	6	0	4.006316	-0.133323				
40	6	0	5.210546	-0.733489				
41	6	0	6.254963	-1.099601				
42	6	0	6.164348	-0.816033				
43	6	0	1.649428	-3.040471	1.170628			
44	6	0	5.210546	1.571618	-0.733489			
45	1	0	-4.678549	-5.308386	-2.537121			
46	1	0	-2.282402	-5.550408	-1.970245			
47	1	0	-1.029209	-3.716373	-0.904535			
48	1	0	-5.846912	-3.121292	-2.081921			
49	1	0	6.462501	-2.928972	-1.356205			
50	1	0	7.021958	-0.532664	-1.597477			
51	1	0	1.775612	4.020521	0.995748			
52	1	0	0.767036	6.201801	0.631043			
53	1	0	-1.559390	6.389317	-0.250159			
54	1	0	-2.893703	4.314790	-0.580986			
55	1	0	-1.723083	-3.369486	1.737518			
56	1	0	-0.917634	-5.458297	2.809658			
57	1	0	1.509979	-5.951450	2.912615			
58	1	0	3.151292	-4.393795	1.941213			
59	1	0	7.145342	2.005128	-1.571510			
60	1	0	6.968231	4.451692	-1.095189			
61	1	0	5.007268	5.287999	0.190937			
62	1	0	3.242314	3.794793	0.873583			
63	14	0	-4.759003	2.253471	0.471563			
64	6	0	-4.279589	3.469944	1.851379			
65	1	0	-3.844509	2.921412	2.696027			
66	1	0	-3.582299	4.263461	1.580830			
67	1	0	-5.200777	3.942848	2.216873			
68	6	0	-5.584193	3.130565	-0.987691			
69	1	0	-5.935401	2.386189	-1.709456			
70	1	0	-6.452600	3.706182	-0.643616			
71	1	0	-4.914063	3.821067	-1.512124			
72	6	0	-5.996334	1.117729	1.353345			
73	1	0	-6.595563	0.521200	0.664534			
74	1	0	-5.489611	0.435213	2.046918			
75	1	0	-6.672190	1.740930	1.952732			
76	6	0	4.342411	-4.124544	-0.394174			
77	1	0	4.644729	-4.586558	0.553318			
78	1	0	3.293696	-4.378768	-0.562272			
79	1	0	4.935656	-4.601198	-1.180724			
Supplementary Figure 5. Calculated vs experimental 1H NMR chemical shift of selected, unambiguously assigned resonances in tetracenes 30a, 30b and 31.
Supplementary Figure 6. Possible topological isomers of tetracene 32-H.

32-Ha
3	6	0	5.974179	-2.447835	0.548520	
4	6	0	7.259583	-1.965050	0.485878	
5	6	0	7.421068	-0.603257	0.142590	
6	6	0	6.371183	0.297279	-0.050291	
7	6	0	6.941921	1.564926	-0.592391	
8	6	0	8.349609	1.452632	-0.601591	
9	6	0	8.721323	0.087705	-0.120758	
10	6	0	9.169354	2.454275	-1.090683	
11	6	0	8.568308	3.610670	-1.610617	
12	6	0	7.177844	3.715876	-1.647090	
13	6	0	6.350247	2.696093	-1.146667	
14	8	0	9.839505	-0.380222	0.009197	
15	6	0	3.817861	0.577384	0.332335	
16	6	0	2.578213	-0.110780	0.218015	
17	6	0	2.456249	-1.537281	0.076623	
18	6	0	3.650525	-2.263183	0.365893	
19	6	0	1.480342	0.809084	0.322712	
20	6	0	0.181271	0.350683	-0.034713	
21	6	0	0.090151	-1.057035	-0.302683	
22	6	0	1.156268	-1.980995	-0.213221	
23	6	0	-1.050930	1.124442	0.213221	
24	6	0	-2.222761	0.460586	-0.545072	
25	6	0	-2.280417	-0.986268	-0.755901	
26	6	0	-1.138986	-1.740311	-0.637589	
27	6	0	-3.697109	0.988371	-0.697366	
28	6	0	-4.418231	0.333874	0.515931	
29	6	0	-4.414494	-1.038724	0.335169	
30	6	0	-3.752176	-1.368341	-1.020776	
31	6	0	-4.900431	0.918839	1.743867	
32	6	0	-5.424327	0.046333	2.752686	
33	6	0	-5.338339	-1.399285	2.587410	
34	6	0	-4.785582	-1.945090	1.388275	
35	6	0	5.398171	-3.752290	0.881325	
36	6	0	3.977403	-3.635283	0.815501	
37	6	0	3.189807	-4.684775	1.292192	
38	6	0	3.807356	-5.859155	1.740323	
39	6	0	5.198007	-5.990549	1.734142	
40	6	0	6.004233	-4.925014	1.317716	
41	6	0	3.508387	1.933518	0.783251	
42	6	0	2.087300	2.072988	0.832918	
43	6	0	4.347211	2.899102	1.337920	
44	6	0	3.790469	4.030280	1.942101	
45	6	0	2.406577	4.157559	2.029767	
46	6	0	1.557491	3.178694	1.497013	
47	6	0	0.623485	-3.276198	-0.710429	
48	6	0	-0.791514	-3.164322	-0.831064	
49	6	0	-1.543547	-4.302390	-1.122629	
50	6	0	-0.893106	-5.077786	-1.408496	
51	6	0	0.499993	-5.574631	-1.430695	
52	6	0	1.265309	-4.458655	-1.081831	
53	6	0	-0.078824	2.346572	1.257174	
54	6	0	-4.178473	-2.516315	-1.909501	
55	6	0	-4.884795	2.313486	2.001610	
56	6	0	-5.397183	2.842680	3.170011	
57	6	0	-5.957618	1.991897	4.135808	
58	6	0	-5.963684	0.626880	3.925183	
59	6	0	-5.723046	-2.297701	3.611217	
---	---	---	---	---	---	---
60	6	0	-5.538391	-3.661486	3.489853	
61	6	0	-4.938316	-4.188532	2.334028	
62	6	0	-4.571739	-3.343317	1.306290	
63	6	0	-5.418710	-3.148599	-1.750021	
64	6	0	-5.873441	-4.078262	-2.687181	
65	6	0	-5.110166	-4.371044	-3.816642	
66	6	0	-3.893248	-3.714506	-4.008925	
67	6	0	-3.439531	-2.790008	-3.071029	
68	6	0	-3.284083	2.951045	-2.240418	
69	6	0	-3.705785	4.101689	-2.903407	
70	6	0	-4.954718	4.657141	-2.624679	
71	6	0	-5.786116	4.027980	-1.699503	
72	6	0	-5.358896	2.876421	-1.037390	
73	6	0	-1.024839	2.612106	-0.125135	
74	6	0	-1.759878	3.298627	0.848794	
75	6	0	-0.270233	3.360378	-1.040700	
76	6	0	-1.762632	4.692479	0.904468	
77	6	0	-0.264105	4.752565	-1.002536	
78	6	0	-1.016391	5.409144	-0.029046	
79	17	0	-1.012915	7.166415	0.028845	
80	6	0	-4.158044	-0.058448	-1.743540	
81	8	0	-4.671798	0.097616	-2.811200	
82	1	0	8.139516	-2.582081	0.645548	
83	1	0	10.248230	2.326805	-1.082349	
84	1	0	9.183535	4.415522	-2.002571	
85	1	0	6.718611	4.602473	-2.076140	
86	1	0	5.273118	2.801127	-1.201116	
87	1	0	2.110958	-4.597820	1.333730	
88	1	0	3.190622	-6.675151	2.107153	
89	1	0	5.657401	-6.912231	2.080351	
90	1	0	7.087420	-5.005960	1.360192	
91	1	0	5.421536	2.759469	1.342551	
92	1	0	4.439893	4.784840	2.377065	
93	1	0	1.969328	5.014156	2.535234	
94	1	0	0.494794	3.285695	1.643656	
95	1	0	-2.621773	-4.267277	-1.164456	
96	1	0	-1.485058	-6.387073	-1.646886	
97	1	0	0.997715	-6.499265	-1.709882	
98	1	0	2.345524	-4.518996	-1.103175	
99	1	0	-4.480803	2.983055	1.256450	
100	1	0	-5.375227	3.916845	3.331937	
101	1	0	-6.379645	2.401000	5.049464	
102	1	0	-6.393635	-0.008235	4.690496	
103	1	0	-6.153235	-1.918299	4.530419	
104	1	0	-5.838478	-4.321142	4.299274	
105	1	0	-4.756929	-5.256159	2.248615	
106	1	0	-4.099371	-3.754740	0.424877	
107	1	0	-6.041605	-2.913953	-0.893845	
108	1	0	-6.833736	-4.563613	-2.534683	
109	1	0	-5.465373	-5.092850	-4.547108	
110	1	0	-3.295987	-3.916516	-4.893815	
111	1	0	-2.496051	-2.793331	-3.237777	
112	1	0	-2.329591	2.510631	-2.502261	
113	1	0	-3.059070	4.556281	-3.648977	
114	1	0	-5.284127	5.555732	-3.139076	
115	1	0	-6.778362	4.422405	-1.497169	
116	1	0	-6.039727	2.381719	-0.353591	
Xiao and Hoye: Domino-HDDA

Supplementary Information

Zero-point correction= 0.917888 (Hartree/Particle)
Thermal correction to Gibbs Free Energy= 0.827844
Sum of electronic and thermal Free Energies= -3605.640953
E[SMD(chloroform)/B3LYP-D3BJ/6-31G**//B3LYP/6-31G*] = -3607.00767700

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)																
	X	Y	Z																
1	-5.030370	-0.087140	0.070329																
2	-4.961611	1.251713	-0.440688																
3	-6.108050	2.021543	-0.827324																
4	-7.365995	1.504168	-0.632085																
5	-7.450983	0.269579	0.050818																
6	-6.355771	-0.494384	0.462808																
7	-6.860720	-1.541619	1.401717																
8	-8.272655	-1.501459	1.401620																
9	-8.714355	-0.370769	0.532950																
10	-9.038833	-2.318467	2.214436																
11	-8.378292	-3.197111	3.086070																
12	-6.984590	-3.203411	3.140680																
13	-6.212351	-2.373515	2.309945																
14	-9.854299	-0.014326	0.288942																
15	-3.794455	-0.776960	0.052585																
16	-2.588609	-0.042230	-0.132177																
17	-2.543575	1.381181	-0.327241																
18	-3.781549	1.986904	-0.664763																
19	-1.443153	-0.905830	0.099264																
20	-0.158477	-0.325662	-0.312720																
21	-0.134864	1.103261	-0.203101																
22	-1.256790	1.946800	-0.152497																
23	1.130068	-0.966013	-0.585950																
24	2.278523	-0.184947	-0.591359																
25	2.265978	1.245863	-0.279704																
26	1.071321	1.886658	-0.069783																
27	3.783895	-0.573294	-0.815949																
28	4.403787	-0.398959	0.599073																
---	---	---	---	---															
29	6	0	4.322339	0.939168	0.945217														
30	6	0	3.725494	1.735727	-0.238491														
31	6	0	4.877025	-1.383760	1.542513														
32	6	0	5.286764	-0.938534	2.841316														
33	6	0	-5.602992	3.270169	-1.405202														
34	6	0	-4.179390	3.249843	-1.319485														
35	6	0	-3.442697	4.276407	-1.911050														
36	6	0	-4.120146	5.334110	-2.530588														
37	6	0	-5.516181	5.368500	-2.574168														
38	6	0	-6.267658	4.326419	-2.018020														
39	6	0	-3.411854	-2.186603	0.150343														
40	6	0	-1.984762	-2.268940	0.153623														
41	6	0	-4.190061	-3.342224	0.176267														
42	6	0	-3.573335	-4.584775	0.355385														
43	6	0	-2.192093	-4.654975	0.520528														
44	6	0	-0.787005	5.542879	1.057518														
45	6	0	-1.492661	-4.418253	0.620632														
46	6	0	-0.786351	3.286738	0.210974														
47	6	0	-1.323662	4.386147	0.725358														
48	6	0	-0.607411	5.527911	1.103147														
49	6	0	-0.787005	5.542879	1.057518														
50	6	0	-1.105774	3.506666	0.210974														
51	6	0	-1.492661	-4.418253	0.620632														
52	6	0	-1.323662	4.386147	0.725358														
53	6	0	-0.607411	5.527911	1.103147														
54	6	0	-0.787005	5.542879	1.057518														
55	6	0	-1.105774	3.506666	0.210974														
56	6	0	-0.607411	5.527911	1.103147														
57	6	0	-0.787005	5.542879	1.057518														
58	6	0	-1.105774	3.506666	0.210974														
59	6	0	-0.607411	5.527911	1.103147														
60	6	0	-0.787005	5.542879	1.057518														
61	6	0	-1.105774	3.506666	0.210974														
62	6	0	-0.607411	5.527911	1.103147														
63	6	0	-0.787005	5.542879	1.057518														
64	6	0	-1.105774	3.506666	0.210974														
65	6	0	-0.607411	5.527911	1.103147														
66	6	0	-0.787005	5.542879	1.057518														
67	1	0	-10.122786	-2.251574	2.184948														
68	1	0	-8.950101	-3.851617	3.737683														
69	1	0	-6.478383	-3.857632	3.845008														
70	1	0	-5.132532	-2.385946	2.392534														
71	1	0	-2.359047	4.260506	-1.905105														
72	1	0	-3.547233	6.135151	-2.989742														
73	1	0	-6.022366	6.199833	-3.056951														
74	1	0	-7.352880	4.338330	-2.079861														
75	1	0	-5.265624	-3.285677	0.063760														
76	1	0	-4.176787	-5.487787	0.382286														
77	1	0	-1.712806	-6.111893	0.707550														
78	1	0	-3.293882	-3.605038	0.527729														
79	1	0	2.402298	4.395750	0.789407														
80	1	0	1.148709	6.403062	1.451752														
81	1	0	-1.332109	6.426236	1.378675														
82	1	0	-2.576172	4.423496	0.622337														
83	1	0	4.651562	-3.121182	0.274867														
84	1	0	5.529002	-4.728371	1.894711														
85	1	0	6.321047	-3.938048	4.131882														
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
86	1	0	6.158814	-1.579564	4.719241														
87	1	0	2.522583	3.432604	-1.984951														
88	1	0	3.320341	5.613844	-2.798911														
89	1	0	5.424815	6.596236	-1.896660														
90	1	0	6.732140	5.330797	-0.195883														
91	1	0	5.939274	3.146781	0.605755														
92	1	0	2.518905	-1.444263	-3.077767														
93	1	0	3.390679	-2.901389	-4.853545														
94	1	0	5.677706	-3.873093	-4.670013														
95	1	0	7.086268	-3.304523	-2.693882														
96	1	0	6.206651	-1.850062	-0.923135														
97	6	0	1.178288	-2.407771	-0.954488														
98	6	0	1.932554	-3.327300	-0.215280														
99	6	0	0.467097	-2.875145	-2.070398														
100	6	0	1.995979	-4.671784	-0.580623														
101	6	0	2.453039	-2.995887	0.675733														
102	6	0	0.523580	-4.212961	-2.453151														
103	1	0	-0.134434	-2.182302	-2.651437														
104	6	0	1.293316	-5.102669	-1.704280														
105	1	0	2.578528	-5.376921	0.002926														
106	1	0	-0.026261	-4.564488	-3.319601														
107	17	0	1.367939	-6.794417	-2.176831														
108	1	0	-8.279448	2.021639	-0.911772														
109	6	0	4.253541	0.803913	-1.361702														
110	8	0	4.846436	1.072972	-2.363409														
111	6	0	5.107825	0.455171	3.227779														
112	6	0	5.377238	0.911250	4.540349														
113	6	0	4.587620	1.393409	2.284069														
114	6	0	5.119188	2.212403	4.926310														
115	1	0	5.775624	0.226676	5.279575														
116	6	0	4.301523	2.717182	2.716292														
117	6	0	4.559621	3.118085	4.009767														
118	1	0	5.331714	2.526064	5.944550														
119	1	0	3.860942	3.410408	-2.019227														
120	1	0	4.323809	4.133169	4.316407														

32-Hc

Zero-point correction= 0.917716 (Hartree/Particle)
Thermal correction to Gibbs Free Energy= 0.827487
Sum of electronic and thermal Free Energies= -3605.640491
E[SMD(chloroform)/B3LYP-D3BJ/6-31G***/B3LYP/6-31G*]= -3607.00581805

Atomic Coordinates (Angstroms)

Center Number	Atomic Number	Atomic Type	X	Y	Z
1	6	0	-5.014190	0.195510	0.419211
2	6	0	-4.895314	1.597163	0.126490
3	6	0	-6.017129	2.478693	-0.015360
4	6	0	-7.288652	1.998678	0.186296
5	6	0	-7.425750	0.604383	0.358557
6	6	0	-6.365700	-0.305777	0.382805
7	6	0	-6.946004	-1.674587	0.209807
8	6	0	-8.354142	-1.576529	0.279120
9	6	0	-8.724359	-0.136603	0.394821
10	6	0	-9.187006	-2.667741	0.105290
11	6	0	-8.603959	-3.911594	-0.313988
12	6	0	-7.219781	-4.011657	0.372913
13	6	0	-2.459580	1.628363	0.112710
14	8	0	-9.840873	0.347786	0.464625
15	6	0	-3.786697	-0.467799	0.642907
16	6	0	-2.565471	0.216309	0.394821
17	6	0	-2.459580	1.628363	0.112710
18	6	0	-3.691027	2.309963	-0.075421
19	6	0	-1.461509	-0.692559	0.453597
20	6	0	-0.188249	-0.231362	0.032007
21	6	0	-0.071061	1.192958	0.007149
22	6	0	-1.122177	2.114641	0.158366
23	6	0	1.000131	-0.997833	-0.331662
24	6	0	2.175557	-0.306970	-0.593924
25	6	0	2.296435	1.141405	-0.411336
26	6	0	1.192493	1.885022	-0.073779
27	6	0	3.589576	-0.818999	-1.031066
28	6	0	4.467006	-0.585114	0.230545
29	6	0	4.524624	0.776980	0.471171
30	6	0	3.767709	1.525702	-0.651714
31	6	0	5.721250	0.407260	2.591430
32	6	0	5.072668	1.307858	1.690929
33	6	0	-5.491162	3.779457	-0.429067
34	6	0	-4.073795	3.665140	-0.529641
35	6	0	-3.351208	4.704355	-1.118566
36	6	0	-4.020473	5.871441	-1.507214
37	6	0	-5.400392	6.003882	-1.333149
38	6	0	-6.148443	4.945846	-0.805217
39	6	0	-3.409783	-1.768003	1.211919
40	6	0	-1.997463	-1.926293	1.072183
41	6	0	-4.145200	-2.658849	1.992395
42	6	0	-3.503518	-3.754897	2.579231
43	6	0	-2.130345	-3.931034	2.418362
44	6	0	-1.371547	-3.011330	1.684263
45	6	0	-0.505788	3.419455	0.431865
46	6	0	0.906706	3.294303	0.269817
47	6	0	1.733330	4.374940	0.572007
48	6	0	1.171384	5.564038	1.050321
49	6	0	-0.204629	5.666715	1.256170
50	6	0	-1.048606	4.592981	0.957545
51	6	0	3.801838	-1.969494	-1.996449
52	6	0	4.190631	2.881891	-1.174908
53	6	0	6.273527	0.938786	3.781405
54	6	0	6.168704	2.279443	4.097778
			5.485267	3.152088	3.234810
---	---	---	---------	---------	---------
56	6	0	4.950893	2.670855	2.056936
57	6	0	5.498354	3.354104	-0.992385
58	6	0	5.932858	4.521842	-1.620490
59	6	0	5.076563	5.227156	-2.465705
60	6	0	3.786843	4.743998	-2.689270
61	6	0	3.353494	3.578776	-2.059126
62	6	0	2.820343	-2.303990	-2.938106
63	6	0	3.074816	-3.830955	-4.051923
64	6	0	5.076563	-5.227156	-3.159027
65	6	0	3.786843	-4.743998	-2.689270
66	6	0	3.353494	-3.578776	-2.059126
67	1	0	-10.264576	-2.542106	0.163296
68	1	0	-9.229153	-4.788339	-0.320527
69	1	0	-6.773981	-4.968067	-0.574043
70	1	0	-5.311504	-3.009592	-0.269778
71	1	0	-2.285203	4.617938	1.285768
72	1	0	-3.454015	-6.919759	-1.636723
73	1	0	-7.229047	5.025824	-0.718635
74	1	0	-5.200785	-2.495223	2.172312
75	1	0	-4.077222	-4.452858	3.182587
76	1	0	-1.630868	-4.771845	2.891707
77	1	0	-0.299893	-3.138484	1.630941
78	1	0	2.804926	4.308278	0.447044
79	1	0	1.820531	6.402885	1.285768
80	1	0	-0.626507	6.580508	1.665616
81	1	0	-2.110511	4.669602	1.156435
82	1	0	6.776612	0.284542	4.483406
83	1	0	6.598776	2.651194	5.023617
84	1	0	5.370992	4.201007	3.493107
85	1	0	4.419029	3.346248	1.402180
86	1	0	6.188428	2.806388	-0.359828
87	1	0	6.948171	4.871632	-1.453883
88	1	0	5.414884	6.135923	-2.956032
89	1	0	3.114493	5.269818	-3.361680
90	1	0	2.353269	3.208333	-2.257131
91	1	0	1.850237	-1.824202	-2.895714
92	1	0	2.287921	-3.485446	-4.651244
93	1	0	4.529028	-4.558206	-4.834448
94	1	0	6.332028	-3.889460	-3.24869
95	1	0	5.884543	-2.232601	-1.492062
96	1	0	0.889819	-2.474226	-0.489867
97	6	0	1.719195	-3.346935	0.226180
98	6	0	-0.064891	-3.028333	-1.357403
99	6	0	1.618808	-4.729497	0.076015
100	6	0	2.433534	-2.942386	0.933762
101	6	0	-0.725023	-2.372332	-1.916829
102	6	0	-0.74964	-4.406433	-1.524441
103	1	0	-2.262478	-5.395122	0.641442
104	6	0	-0.910804	-4.824806	-2.202833
105	1	0	0.537594	-6.989947	-1.005696
106	6	0	5.745799	-1.019917	2.297370
107	6	0	6.391692	-1.942320	3.154651
108	6	0	5.063963	-1.529223	1.144936
Zero-point correction= 0.917576 (Hartree/Particle)
Thermal correction to Gibbs Free Energy= 0.826715
Sum of electronic and thermal Free Energies= -3605.635070
E[SMD(chloroform)/B3LYP-D3BJ/6-31G**//B3LYP/6-31G*] = -3606.99749159

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)												
			X	Y	Z										
1	6	0	4.918286	0.407813	-0.333788										
2	6	0	4.660961	1.772565	0.038704										
3	6	0	5.689502	2.700392	0.409556										
4	6	0	7.007443	2.316903	0.348528										
5	6	0	7.264253	0.952102	0.097274										
6	6	0	6.282621	-0.014839	-0.133120										
7	6	0	6.926570	-1.354972	0.038125										
8	6	0	8.322143	-1.169372	0.163907										
9	6	0	8.604704	0.294650	0.189860										
10	6	0	9.196424	-2.218455	0.386930										
11	6	0	8.665725	-3.509873	0.522057										
12	6	0	7.285246	-3.699257	0.470506										
13	6	0	8.403230	-2.629385	0.239474										
14	8	0	9.684194	0.849452	0.303292										
15	6	0	3.783868	-0.305743	-0.779772										
16	6	0	2.498193	0.302004	-0.670200										
17	6	0	2.251009	1.679867	-0.328005										
18	6	0	3.392992	2.397673	0.122546										
19	6	0	1.482406	-0.655435	-0.968440										
20	6	0	0.133092	-0.290484	-0.800752										
21	6	0	-0.089369	1.115522	-0.729223										
22	6	0	0.906069	2.097841	-0.568020										
23	6	0	-1.027848	-1.167631	-0.690152										
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
24	6	0	-2.274772	-0.587619	-0.842801										
25	6	0	-2.473585	0.865935	-0.939895										
26	6	0	-1.397613	1.715984	-0.825364										
27	6	0	-3.688439	-1.217033	-0.706041										
28	6	0	-4.176332	-0.674744	0.658117										
29	6	0	-4.367475	0.692086	0.550762										
30	6	0	-3.995784	1.133071	-0.890540										
31	6	0	-4.947044	0.832626	2.939539										
32	6	0	-4.688092	1.497403	1.698380										
33	6	0	5.024403	3.919918	0.866464										
34	6	0	3.618003	3.712521	0.764945										
35	6	0	2.736407	4.622912	1.379909										
36	6	0	3.285497	5.771866	1.980856										
37	6	0	4.661971	6.010077	1.994672										
38	6	0	5.544039	5.069768	1.451052										
39	6	0	3.571310	-1.601962	-1.445423										
40	6	0	2.165699	-1.837188	-1.517481										
41	6	0	4.450650	-2.434209	-2.136498										
42	6	0	3.950180	-3.543739	-2.828841										
43	6	0	2.579129	-3.794814	-2.866388										
44	6	0	1.680065	-2.929442	-2.231257										
45	6	0	0.236393	3.397313	-0.729369										
46	6	0	-1.173864	3.178595	-0.802980										
47	6	0	-2.032965	4.271672	-0.901748										
48	6	0	-1.502629	5.562160	-1.018103										
49	6	0	-0.123352	5.760062	-1.065949										
50	6	0	0.752165	4.678867	-0.923669										
51	6	0	-4.043032	-2.581669	-1.262667										
52	6	0	-4.643440	2.284747	-1.626140										
53	6	0	-5.339397	1.622362	4.046335										
54	6	0	-5.420717	2.999373	3.966658										
55	6	0	-5.090832	3.653241	2.767765										
56	6	0	-4.733869	2.912831	1.658677										
57	6	0	-5.929960	2.728439	-1.289585										
58	6	0	-6.592723	3.666020	-2.082463										
59	6	0	-5.992976	4.157603	-3.242036										
60	6	0	-4.729581	3.692364	-3.609212										
61	6	0	-4.067559	2.757954	-2.814351										
62	6	0	-3.528103	-2.941666	-2.519338										
63	6	0	-3.956231	-4.094071	-3.173725										
64	6	0	-4.933620	-4.906643	-2.594513										
65	6	0	-5.491735	-4.533412	-1.373707										
66	6	0	-5.063987	-3.373124	-0.723397										
67	1	0	10.261549	-2.026205	0.481135										
68	1	0	9.324356	-4.355478	0.698267										
69	1	0	6.873936	-4.693959	0.620312										
70	1	0	5.335922	-2.809356	0.233567										
71	1	0	1.688418	4.447994	1.411106										
72	1	0	2.610707	6.482574	2.450221										
73	1	0	5.052110	6.910753	2.460494										
74	1	0	6.618413	5.221646	1.516036										
75	1	0	5.511738	-2.218790	-2.166831										
76	1	0	4.637201	-4.195722	-3.361108										
77	1	0	2.198527	-4.646622	-3.423299										
78	1	0	0.615998	-3.093327	-2.335240										
79	1	0	-3.104724	4.138782	-0.925152										
80	1	0	-2.177956	6.408914	-1.103798										
81 1 0 0.279446 6.758489 -1.212822
82 1 0 1.821172 4.841563 -0.974859
83 1 0 -5.569307 1.147768 2.710065
84 1 0 -5.720200 3.574234 4.838605
85 1 0 -5.115743 4.737768 2.710065
86 1 0 -4.480581 3.423534 0.739911
87 1 0 -6.422965 2.336613 -0.406109
88 1 0 -7.585449 4.002218 -1.795421
89 1 0 -6.510090 4.886345 -3.860295
90 1 0 -4.256914 4.051717 -4.519218
91 1 0 -3.088774 2.397148 -3.115371
92 1 0 -2.785387 -2.304565 -2.992562
93 1 0 -3.536247 -4.349042 -4.143202
94 1 0 -5.270325 -5.807005 -3.101033
95 1 0 -6.25099 -5.137267 -0.923546
96 1 0 -5.542040 -3.085830 0.205646
97 6 0 -0.801714 -2.515135 -0.058513
98 6 0 -0.236783 -2.499203 1.231500
99 6 0 -1.10745 -3.764465 -0.614005
100 6 0 -0.004231 -3.671401 1.946017
101 1 0 0.013865 -1.548044 1.690502
102 6 0 -0.87955 -4.949931 0.086768
103 1 0 -1.524244 -3.832361 -1.608889
104 6 0 -0.332751 -4.894828 1.365306
105 1 0 0.421798 -3.634404 2.942927
106 1 0 -1.122742 -5.906376 -0.363733
107 17 0 -0.049736 -6.385162 2.256497
108 1 0 7.837690 2.983127 0.565842
109 6 0 -4.451265 -0.176438 -1.575363
110 8 0 -5.182308 -0.341115 -2.506459
111 6 0 -4.719667 -0.602953 3.057588
112 6 0 -4.859236 -1.286560 4.289106
113 6 0 -4.255338 -1.346709 1.927036
114 6 0 -4.506161 -2.615231 4.427621
115 1 0 -5.231251 -0.759899 5.160092
116 6 0 -3.850613 -2.692863 2.109742
117 6 0 -3.971577 -3.318290 3.334539
118 1 0 -4.620038 -3.106396 5.390081
119 1 0 -3.425719 -3.236176 1.275863
120 1 0 -3.648481 -4.348886 3.449823

Supplementary Figure 7. Possible topological isomers of tetracene 33.
Zero-point correction= 0.906440 (Hartree/Particle)
Thermal correction to Gibbs Free Energy= 0.817421
Sum of electronic and thermal Free Energies= -3492.340244

E[SMD(chloroform)/B3LYP-D3BJ/6-31G**/*B3LYP/6-31G*] = -3493.68486378

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	6	0	-5.048154	0.020552	-0.025014
2	6	0	-4.918194	-1.149077	0.798889
3	6	0	-6.022837	-1.792643	1.450161
4	6	0	-7.300279	-1.343215	1.219336
5	6	0	-7.455123	-0.321120	0.254896
6	6	0	-6.404826	0.315967	-0.410584
7	6	0	-6.991115	1.100476	-1.538764
8	6	0	-8.398786	1.061348	-1.428480
9	6	0	-8.759500	0.179841	-0.278855
10	6	0	-9.233269	1.655063	-2.358893
11	6	0	-8.649718	2.295046	-3.462735
12	6	0	-7.263413	2.288780	-3.615847
13	6	0	-6.421215	1.686490	-2.665313
14	6	0	-9.873700	-0.104516	0.126211
15	6	0	-3.829702	0.699011	-0.259769
16	6	0	-2.60090	0.033781	0.023805
17	6	0	-2.508229	-1.303424	0.558036
18	6	0	-3.713160	-1.800995	1.123753
19	6	0	-1.483931	0.871788	-0.282538
20	6	0	-0.176388	0.365755	-0.031206
21	6	0	-0.124424	-1.057414	0.164413
22	6	0	-1.227836	-1.895163	0.426146
23	6	0	1.092732	1.039245	0.100136
24	6	0	2.271705	0.268347	0.166762
25	6	0	2.268834	-1.142255	-0.225881
26	6	0	1.067600	-1.826737	-0.003825
27	6	0	3.544879	0.749143	0.712781
28	6	0	4.707778	0.098082	0.345876
29	6	0	4.637132	-0.878558	-0.742134
30	6	0	3.476870	-1.627827	-0.873704
31	6	0	6.034501	0.206555	0.999959
32	6	0	7.197951	-0.106796	0.250408
33	6	0	7.061462	-0.460055	-1.171264
34	6	0	5.804449	-0.910868	-1.647530
35	6	0	-5.457797	-2.844240	2.299784
36	6	0	-4.043233	-2.842756	2.117858
37	6	0	-3.249344	-3.661844	2.921686
38	6	0	-3.864457	-4.513424	3.848021
39	6	0	-5.254388	-4.544177	3.986642
40	6	0	-6.060874	-3.696918	3.217357
41	6	0	-3.477995	2.047973	-0.716627
42	6	0	-2.054170	2.134323	-0.807074
43	6	0	-4.268178	3.164652	-0.982969
44	6	0	-3.669882	4.331401	-1.472575
45	6	0	-2.295416	4.369677	-1.699155
46	6	0	-1.483043	3.280117	-1.359160
47	6	0	-0.735719	-3.277055	0.387965
48	6	0	0.671018	-3.241585	0.141269
49	6	0	1.395751	-4.432050	0.128421
50	6	0	0.721987	-5.651107	0.266640
51	6	0	-0.666044	-5.686915	0.406717
52	6	0	-1.402579	-4.499353	0.470187
53	6	0	3.530604	1.796712	1.779596
54	6	0	3.424628	-2.831704	-1.750137
55	6	0	6.180500	0.477299	2.374798
56	6	0	7.429339	0.484965	2.984447
57	6	0	8.575228	0.208346	2.235311
58	6	0	8.451369	-0.094816	0.885466
59	6	0	8.139563	-0.361844	-2.067214
60	6	0	7.997564	-0.696872	-3.407913
61	6	0	6.754927	-1.123859	-3.884895
62	6	0	5.675787	-1.221337	-3.016266
63	6	0	4.399128	-3.838222	-1.627850
64	6	0	4.373722	-4.961976	-2.451059
65	6	0	3.374818	-5.101503	-3.417733
66	6	0	2.400960	-4.110312	-3.549815
67	6	0	2.423023	-2.987976	-2.721974
68	6	0	4.290638	2.970719	1.673333
69	6	0	4.313534	3.901296	2.710675
70	6	0	3.584118	3.670966	3.879306
71	6	0	2.823430	2.506202	3.998253
72	6	0	2.792087	1.580808	2.955168
73	1	0	-10.311291	1.597462	-2.236926
74	1	0	-9.276439	2.770926	-4.211544
75	1	0	-6.818560	2.752283	-4.492393
76	1	0	-5.349742	1.679255	-2.824103
77	1	0	-2.168408	-3.639010	2.845882
78	1	0	-3.246707	-5.153226	4.472384
79	1	0	-5.711898	-5.214864	4.708670
80	1	0	-7.139733	-3.695338	3.350764
81	1	0	-5.338129	3.138523	-0.817632
82	1	0	-4.284615	5.201232	-1.686894
83	1	0	-1.836802	5.261404	-2.117344
84	1	0	-0.417780	3.348737	-1.524675
85	1	0	2.469054	-4.429857	-0.006020
86	1	0	1.289425	-6.577457	0.242745
87	1	0	-1.181875	-6.640851	0.475174
88	1	0	-2.479339	-4.536831	0.583210
89	1	0	5.303808	0.657744	2.981206
Zero-point correction = 0.906522 (Hartree/Particle)
Thermal correction to Gibbs Free Energy = 0.817867
Sum of electronic and thermal Free Energies = -3492.339623

E[SMD(chloroform)/B3LYP-D3BJ/6-31G**]/B3LYP/6-31G* = -3493.68475591

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
1	6	0	X: -5.042808 Y: 0.118327 Z: -0.094384		
---	---	---	---	---	
2	6	0	-4.927263	1.539767 0.066999	
3	6	0	-6.058866	2.421703 0.110901	
4	6	0	-7.329159	1.898643 0.124383	
5	6	0	-7.446489	0.489608 0.156966	
6	6	0	-6.371686	-0.399006 0.090978	
7	6	0	-6.888200	-1.770793 0.373004	
8	6	0	-8.295278	-2.812734 0.475005	
9	6	0	-8.717427	-0.280456 0.324912	
10	6	0	-9.068587	-2.812734 0.775842	
11	6	0	-8.418948	-4.035077 1.005500	
12	6	0	-7.026765	-4.103256 0.953073	
13	6	0	-6.246635	-2.975565 0.644509	
14	8	0	-9.849557	0.170962 0.356283	
15	6	0	-3.840908	-0.514574 -0.475019	
16	6	0	-2.606067	0.171832 -0.282289	
17	6	0	-2.498770	1.545069 0.154880	
18	6	0	-3.726677	2.273862 0.115972	
19	6	0	-1.509022	-0.683151 -0.619471	
20	6	0	-0.193532	-0.263818 -0.271905	
21	6	0	-0.104186	1.087403 0.211926	
22	6	0	-1.187087	1.962226 0.478435	
23	6	0	1.035756	-1.021851 -0.199353	
24	6	0	2.241860	-0.363352 0.120385	
25	6	0	2.321904	1.094655 0.119829	
26	6	0	1.131664	1.766023 0.417501	
27	6	0	3.461387	-1.036473 0.584070	
28	6	0	4.670234	-0.374477 0.465480	
29	6	0	4.708897	0.871534 -0.301826	
30	6	0	3.586051	1.686567 -0.274221	
31	6	0	5.951394	-0.735154 1.120486	
32	6	0	7.170087	-0.291354 0.547544	
33	6	0	7.136296	0.462112 -0.715328	
34	6	0	5.931693	1.105201 -1.095677	
35	6	0	-5.528410	3.785692 0.070127	
36	6	0	-4.104214	3.702434 0.032001	
37	6	0	-3.365165	4.863187 -0.203179	
38	6	0	-4.030202	6.090895 -0.313910	
39	6	0	-5.420681	6.170589 -0.208936	
40	6	0	-6.181072	5.009027 -0.310140	
41	6	0	-3.529597	-1.750726 -1.195573	
42	6	0	-2.109632	-1.849151 -1.314756	
43	6	0	-4.366716	-2.618412 -1.895712	
44	6	0	-3.806108	-3.613054 -2.703584	
45	6	0	-2.422210	-3.702039 -2.840945	
46	6	0	-1.573495	-2.815127 -2.166159	
47	6	0	-0.613069	3.155587 1.115514	
48	6	0	0.807940	3.070896 1.015630	
49	6	0	1.609551	4.028526 1.635259	
50	6	0	1.007240	5.062891 2.358963	
51	6	0	-0.380886	5.117907 2.499783	
52	6	0	-1.196385	4.156780 1.893475	
53	6	0	3.344107	-2.323335 1.337426	
54	6	0	3.630972	3.102568 -0.737811	
55	6	0	6.006068	-1.384112 2.373623	
56	6	0	7.215198	-1.631938 3.012352	
57	6	0	8.414197	-1.225614 2.422980	
58	6	0	8.382389	-0.552221 1.208757	
59	6	0	8.263312	0.567914 -1.548020	
60	6	0	8.220249	1.291964 -2.732770	
61	6	0	7.030170	1.916429 -3.117674	
---	---	---	-----------------	-----------------	-----------------
62	6	0	5.903397	1.816290	-2.312375
63	6	0	4.619950	3.974503	-0.249291
64	6	0	4.682258	5.298404	-0.678940
65	6	0	3.759660	5.778088	-1.611604
66	6	0	2.773412	4.923261	-2.106543
67	6	0	2.706488	3.599980	-1.671063
68	6	0	2.576126	-2.367785	2.513149
69	6	0	2.517755	-3.528608	3.284238
70	6	0	3.215682	-4.670345	2.885539
71	6	0	3.972524	-4.641020	1.712124
72	6	0	4.040124	-3.476300	0.948578
73	1	0	-10.148552	-2.718564	0.847650
74	1	0	-8.997018	-4.923300	1.243941
75	1	0	-6.528130	-5.046447	1.160051
76	1	0	-5.166405	-3.056565	0.625505
77	1	0	-2.887009	4.826061	-0.314636
78	1	0	-3.450799	6.992636	-0.492804
79	1	0	-5.916923	7.133587	-0.291608
80	1	0	-7.266282	5.062557	0.003569
81	1	0	-5.443369	-2.505858	1.848853
82	1	0	-4.455026	-4.291459	-3.250440
83	1	0	-1.988043	-4.453178	-3.495010
84	1	0	-0.509548	-2.879621	-2.341781
85	1	0	2.689342	3.967992	1.581570
86	1	0	1.631070	5.810957	2.840633
87	1	0	-0.834955	5.901324	3.100482
88	1	0	-2.267854	4.183227	2.050127
89	1	0	5.089847	-1.674193	2.867869
90	1	0	7.217591	-2.125511	3.980273
91	1	0	9.363504	-1.407249	2.919484
92	1	0	9.311287	-0.186863	0.783212
93	1	0	9.177793	0.049360	-1.279049
94	1	0	9.102782	1.352724	-3.363758
95	1	0	6.974671	2.463354	-4.054786
96	1	0	4.979340	2.274114	-2.641223
97	1	0	5.339571	3.604751	0.475412
98	1	0	5.451237	5.956869	-0.283628
99	1	0	3.807765	6.810329	-1.947649
100	1	0	5.251907	5.286245	-2.833672
101	1	0	1.937243	2.942059	-2.063775
102	1	0	2.037107	-1.478977	2.829564
103	1	0	1.928355	-3.539892	4.197569
104	1	0	3.168765	-5.576906	3.482899
105	1	0	4.513349	-5.527050	1.390636
106	1	0	4.637590	-3.455759	0.042331
107	1	0	1.065820	-2.484344	-0.474523
108	1	0	0.321422	-3.404889	0.276500
109	1	0	1.852010	-2.969389	-1.532658
110	1	0	0.361303	-4.766932	-0.009778
111	1	0	-0.287087	-3.053555	1.103402
112	1	0	1.889493	-4.327714	-1.844186
113	1	0	2.431980	-2.269988	-2.127653
114	1	0	1.142192	-5.217075	-1.073804
115	1	0	-0.209819	-5.473676	0.582458
116	1	0	2.489100	-4.692170	-2.670358
117	1	0	1.186681	-6.935704	-1.448065
118	1	0	-8.227901	2.508332	0.155544
Zero-point correction= 0.906539 (Hartree/Particle)
Thermal correction to Gibbs Free Energy= 0.817806
Sum of electronic and thermal Free Energies= -3492.323772

E[SMD(chloroform)/B3LYP-D3BJ/6-31G***/B3LYP/6-31G*] = -3493.67071520

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	6	0	-5.082874	0.093378	-0.142181
2	6	0	-4.975969	-1.293110	-0.501977
3	6	0	-6.104762	-2.134696	-0.780729
4	6	0	-7.365740	-1.593471	-0.803277
5	6	0	-7.496197	-0.272176	-0.321339
6	6	0	-6.438087	0.524857	0.121734
7	6	0	-7.032699	1.614677	0.961444
8	6	0	-8.437244	1.588544	0.805319
9	6	0	-8.796389	0.407852	-0.030130
10	6	0	-9.281626	2.438125	1.498431
11	6	0	-8.716533	3.334859	2.416967
12	6	0	-7.340490	3.316890	2.641598
13	6	0	-6.488871	2.454596	1.929672
14	6	0	-9.906465	0.035900	-0.370113
15	6	0	-3.850337	0.776966	-0.053280
16	6	0	-2.619076	0.058420	-0.176858
17	6	0	-2.536753	-1.343236	-0.527494
18	6	0	-3.781244	-2.038825	-0.589599
19	6	0	-1.504254	0.928911	0.073901
20	6	0	-0.182009	0.415983	-0.092938
21	6	0	-0.127768	-0.979496	-0.439140
22	6	0	-1.223431	-1.815192	-0.769277
23	6	0	1.107884	1.082093	-0.103973
24	6	0	2.292016	0.318940	-0.182091
25	6	0	2.260301	-1.132361	-0.041229
26	6	0	1.075144	-1.742916	-0.452807
27	6	0	3.621162	0.852687	-0.518925
28	6	0	4.739423	0.131804	-0.140550
29	6	0	4.561845	-1.032882	0.730049
30	6	0	3.398999	-1.774483	0.583354
31	6	0	6.135762	0.342870	-0.604103
32	6	0	7.206014	-0.100219	0.216605
33	6	0	6.909102	-0.721187	1.516749
34	6	0	5.617772	-1.263203	1.734522
35	6	0	-5.600161	-3.500070	-0.903622
36	6	0	-4.190526	-3.461157	-0.692428
37	6	0	-3.518016	-4.662024	-0.457053
38	6	0	-4.211953	-5.874050	-0.563287
39	6	0	-5.573017	-5.902345	-0.875244
40	6	0	-6.282245	-4.705813	-1.025550
41	6	0	-3.497516	2.178123	0.164688
42	6	0	-2.092028	2.252530	0.404440
43	6	0	-4.268573	3.338092	0.113439
44	6	0	-3.702459	4.557342	0.499031
45	6	0	-2.385586	4.594040	0.952264
46	6	0	-1.576326	3.451606	0.898815
47	6	0	-0.645254	-3.051420	-1.323962
48	6	0	0.751075	-3.051793	-1.034476
49	6	0	1.572553	-4.066295	-1.523163
50	6	0	1.017347	-5.066486	-2.327978
51	6	0	-0.332945	-5.023971	-2.680243
52	6	0	-1.165717	-4.009464	-2.195013
53	6	0	3.732141	2.037844	-1.425331
54	6	0	3.261335	-3.149239	1.142834
55	6	0	6.446446	0.845292	-1.883377
56	6	0	7.760541	0.958985	-2.321658
57	6	0	8.116388	0.560959	-1.493209
58	6	0	8.527830	0.025519	-0.243691
59	6	0	7.869846	-0.805283	2.538588
60	6	0	7.581278	-1.416174	3.752483
61	6	0	6.306490	-1.945766	3.973405
62	6	0	5.339835	-1.861670	2.980060
63	6	0	4.244252	-4.118786	0.877306
64	6	0	4.138337	-5.406635	1.398698
65	6	0	3.048987	-5.751450	2.202000
66	6	0	2.065840	-4.798823	2.474812
67	6	0	2.168017	-3.511882	1.947252
68	6	0	3.181467	1.968879	-2.716275
69	6	0	3.354112	3.014583	-3.623034
70	6	0	4.069296	4.154315	-3.249691
71	6	0	4.611010	4.238174	-1.965095
72	6	0	4.448632	3.187235	-1.063581
73	1	0	-10.355733	2.376455	1.347314
74	1	0	-9.350843	4.015290	2.977848
75	1	0	-6.909868	3.976883	3.389985
76	1	0	-5.429538	2.448629	2.150676
77	1	0	-2.472141	-4.671482	-0.180627
78	1	0	-3.678694	-6.805023	-0.390747
79	1	0	-6.091391	-6.853319	-0.961247
80	1	0	-7.355612	-4.719701	-1.196682
81	1	0	-5.302302	3.300106	-0.206079
82	1	0	-4.301480	5.463353	0.473094
83	1	0	-1.959176	5.239282	1.318114
84	1	0	-0.558236	3.524210	1.245055
85	1	0	2.634921	-4.070359	-1.311020
86	1	0	1.653700	-5.858994	-2.712334
87	1	0	-0.742491	-5.773496	-3.351974
88	1	0	-2.198429	-3.963779	-2.516685
89	1	0	5.650259	1.125015	-2.558208
---	---	---	----------	----------	----------
90	1	0	7.960318	1.341666	-3.318714
91	1	0	9.841641	0.639414	-1.830288
92	1	0	9.343711	-0.339307	0.371629
93	1	0	8.847985	-0.359285	2.391254
94	1	0	8.338845	-1.462196	4.530080
95	1	0	6.059385	-2.403829	4.927085
96	1	0	4.345740	-2.240632	3.179678
97	1	0	5.093517	-3.853527	0.254238
98	1	0	4.906604	-6.142319	1.175813
99	1	0	2.965944	-6.755319	2.609594
100	1	0	1.215442	-5.056578	3.100463
101	1	0	1.400408	-2.776699	2.168787
102	1	0	2.630826	1.079844	-3.012124
103	1	0	2.931257	2.937631	-4.621511
104	1	0	4.202827	4.971642	-3.953285
105	1	0	5.163742	5.124094	-1.664248
106	1	0	4.881813	3.252342	-0.070276
107	6	0	1.241517	2.563525	-0.024087
108	6	0	1.868886	3.140061	1.091002
109	6	0	0.771804	3.410415	-1.037562
110	6	0	2.014869	4.522532	1.204288
111	6	0	2.236487	2.497674	1.885830
112	6	0	0.928395	4.791289	-0.950852
113	6	0	0.286784	2.983945	-1.909455
114	6	0	1.544813	5.336539	0.175116
115	6	0	2.490567	4.961989	2.074769
116	6	0	0.571570	5.439656	-1.743653
117	17	0	1.734440	7.082093	0.298126
118	1	0	-8.258152	-2.154388	-1.066403

Zero-point correction

Zero-point correction = 0.906469 (Hartree/Particle)

Thermal correction to Gibbs Free Energy

Thermal correction to Gibbs Free Energy = 0.817405

Sum of electronic and thermal Free Energies

Sum of electronic and thermal Free Energies = -3492.337656

E[SMD(chloroform)/B3LYP-D3BJ/6-31G**//B3LYP/6-31G*] = -3493.6815442

Center Number	Atomic Number	Atomic Type	X	Y	Z
1	6	0	5.011439	0.269724	-0.276037
2	6	0	4.866903	1.567162	0.328231
3	6	0	5.974543	2.389392	0.722067
4	6	0	7.257081	1.973142	0.460115
5	6	0	7.415010	0.657827	-0.028302
6	6	0	6.366457	-0.224617	-0.300356
7	6	0	6.955604	-1.595530	-0.419309
8	6	0	8.364220	-1.480430	-0.416280
9	6	0	8.722090	-0.051015	-0.186667
10	6	0	9.202481	-2.580233	-0.463652
11	6	0	8.623704	-3.857829	-0.486198
12	6	0	7.237229	-3.989846	-0.420576
13	6	0	6.391659	-2.867815	-0.376584
14	8	0	9.834926	0.439993	-0.103314
15	6	0	3.800221	-0.326200	-0.690743
16	6	0	2.562032	0.287644	-0.329521
17	6	0	2.429714	1.612319	0.230881
18	6	0	3.649975	2.215812	0.639982
19	6	0	1.475328	-0.578485	-0.652057
20	6	0	0.172423	-0.195837	-0.242707
21	6	0	0.037665	1.204456	0.037104
22	6	0	1.099413	2.120299	0.194097
23	6	0	-1.012068	-0.989371	-0.048944
24	6	0	-2.235357	-0.330063	0.187621
25	6	0	-2.384091	1.095340	-0.121758
26	6	0	-1.225714	1.873780	0.007225
27	6	0	-3.396196	-0.950910	0.828144
28	6	0	-4.639447	-0.377293	0.636719
29	6	0	-4.769558	0.652287	-0.394889
30	6	0	-3.692823	1.498086	-0.617719
31	6	0	-5.865624	-0.626417	1.430984
32	6	0	-7.130241	-0.367834	0.842267
Row	Num	Cycles	Data	Data	Data
-----	-----	--------	-------	-------	-------
33	6	0	-7.190677	0.060848	-0.563849
34	6	0	-6.035369	0.628219	-1.158953
35	6	0	5.421582	3.548869	1.421648
36	6	0	4.003088	3.412003	1.435166
37	6	0	3.248943	4.258329	2.249942
38	6	0	3.890746	5.286931	2.950649
39	6	0	5.273869	5.463444	2.863461
40	6	0	4.052117	4.580956	2.108398
41	6	0	3.453425	-1.482658	-1.529879
42	6	0	2.039222	-1.670555	-1.467979
43	6	0	4.213933	-2.200628	-2.451982
44	6	0	3.951118	-3.166780	-3.253836
45	6	0	2.221313	-3.385446	-3.159154
46	6	0	1.435769	-2.628040	-2.281819
47	6	0	0.496951	3.461093	0.183468
48	6	0	-0.923858	3.314097	0.118166
49	6	0	-1.735682	4.444872	0.189997
50	6	0	-1.150780	5.715965	0.209035
51	6	0	0.234891	5.860416	0.127067
52	6	0	1.064833	4.734514	0.127067
53	6	0	-3.183152	-2.070315	1.795371
54	6	0	-3.323546	2.726054	-1.450297
55	6	0	-5.823334	-0.976781	2.794804
56	6	0	-6.985138	-1.112522	3.545045
57	6	0	-8.230224	-0.887818	2.952856
58	6	0	-8.293355	-0.508627	1.618065
59	6	0	-8.358881	-0.081911	-1.331732
60	6	0	-8.403436	0.318970	-2.661015
61	6	0	-7.260021	0.858273	-3.257351
62	6	0	-6.094334	1.002879	-2.516348
63	6	0	-4.856998	3.651988	-1.185111
64	6	0	-5.007456	4.794575	-1.968118
65	6	0	-4.140145	5.032183	-3.037387
66	6	0	-3.120104	4.120118	-3.313005
67	6	0	-2.964806	2.980128	-2.524677
68	6	0	-3.884629	-3.280265	1.685442
69	6	0	-3.719534	-4.288990	2.632882
70	6	0	-2.856075	-4.103632	3.714921
71	6	0	-2.151591	-2.904419	3.836470
72	6	0	-2.309004	-1.899791	2.881804
73	1	0	10.279979	-2.441496	-0.454833
74	1	0	9.253189	-4.742307	-0.523295
75	1	0	6.793263	-4.981490	-0.394851
76	1	0	5.321236	-3.008900	-0.300580
77	1	0	2.179232	4.124629	2.354850
78	1	0	3.300248	5.950308	3.576759
79	1	0	5.751790	6.273464	3.410278
80	1	0	7.134228	4.681995	2.086323
81	1	0	5.271989	-2.001599	-2.572432
82	1	0	4.189294	-3.731112	-3.967214
83	1	0	1.744535	-4.128208	-3.792808
84	1	0	0.363838	-2.772764	-2.269247
85	1	0	-2.813399	4.356340	0.206203
86	1	0	-1.788676	6.594628	0.249652
87	1	0	0.678604	6.851614	0.099968
88	1	0	2.138497	4.860175	0.071261
89	1	0	-4.868265	-1.117959	3.281851
		0	-6.916044	-1.374671	4.597162
---	-----	----	-----------	-----------	----------
91	1	0	-9.143050	-0.981761	3.534756
92	1	0	-9.259192	-0.282092	1.178166
93	1	0	-9.235191	-0.545165	-0.890145
94	1	0	-9.316216	0.190649	-3.236247
95	1	0	-7.270593	1.147710	-4.304499
96	1	0	-5.207753	1.389386	-3.002073
97	1	0	-5.532088	3.470318	-0.354000
98	1	0	-5.801977	5.501035	-1.742575
99	1	0	-4.257026	5.922870	-3.648786
100	1	0	-2.440005	4.296750	-4.141937
101	1	0	-2.167685	2.276495	-2.744599
102	1	0	-4.562866	-3.425842	0.850093
103	1	0	-4.266423	-5.221967	2.526110
104	1	0	-2.731573	-4.889031	4.455524
105	1	0	-1.479352	-2.748753	4.676341
106	1	0	-1.763206	-0.965803	2.983554
107	6	0	-0.948031	-2.472894	-0.102159
108	6	0	-1.810551	-3.180231	-0.957376
109	6	0	-0.010451	-3.203599	0.643985
110	6	0	-1.738256	-4.566500	-1.075855
111	1	0	-2.537550	-2.632788	-1.549966
112	6	0	0.065984	-4.590434	0.547157
113	1	0	0.660847	-2.681626	1.318160
114	6	0	-0.797287	-5.261895	-0.317810
115	1	0	-2.401290	-5.101373	-1.747709
116	1	0	0.788259	-5.146767	1.134851
117	17	0	-0.698224	-7.012534	-0.454223
118	1	0	8.139359	2.565605	0.685922
IV. UV & FL data

Supplementary Figure 8. UV-Vis absorption of tetracenes 31, 32, and hexacene 33.

Supplementary Figure 9. UV-Vis absorption of spiroxanthene 28.
Supplementary Figure 10. Fluorescence spectra of spiroxanthene 28.
V. X-ray data for 25k, 28, and 32-H.

Data for 25k (CCDC deposition number: 1818244)

Structure description

The structure with the molecular formula is the one suggested. Solvent of crystallization is found in two different locations, as shown in a figure below. Toluene is found disordered on an inversion center for the first and disordered on a general position near an inversion center for the second. Therefore, there are 1.5 molecules of toluene per asymmetric unit. Reasonable restraints and necessary constraints were included to refine the toluene portion.

Crystal data and structure refinement for 25k.

Property	Value
Empirical formula	C_{62.50}H_{46}OSi
Formula weight	841.08
Temperature	100(2) K
Wavelength	0.71073 Å
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	
a	12.4695(8) Å
b	14.0287(11) Å
c	14.0414(10) Å
Volume	2157.3(3) Å³
Z	2
Density (calculated)	1.295 Mg/m³
Absorption coefficient	0.101 mm⁻¹
F(000)	886
Crystal color, morphology	Orange, Block
Crystal size	0.190 x 0.100 x 0.050 mm³
Theta range for data collection	2.228 to 28.328°
Index ranges	-15 ≤ h ≤ 16, -18 ≤ k ≤ 18, -18 ≤ l ≤ 18
Reflections collected	41477
Independent reflections	10719 [R(int) = 0.0314]
Observed reflections	8864
Completeness to theta = 25.242°	99.9%
Absorption correction Multi-scan
Max. and min. transmission 0.8621 and 0.8270
Refinement method Full-matrix least-squares on F^2
Data / restraints / parameters 10719 / 234 / 671
Goodness-of-fit on F^2 1.036
Final R indices [$I>2\sigma(I)$] $R_1 = 0.0437$, $wR_2 = 0.1098$
R indices (all data) $R_1 = 0.0559$, $wR_2 = 0.1193$
Largest diff. peak and hole 0.593 and -0.359 eÅ$^{-3}$

Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å$^2x 10^3$) for 25k. U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x	y	z	U_{eq}
Si1	5694(1)	9835(1)	7713(1)	17(1)
O1	7634(1)	7732(1)	7959(1)	21(1)
C1	6104(2)	9177(1)	9065(1)	36(1)
C2	6829(1)	10414(1)	6831(1)	26(1)
C3	4394(1)	10904(1)	7864(1)	28(1)
C4	5280(1)	8888(1)	7252(1)	15(1)
C5	5796(1)	7772(1)	7576(1)	14(1)
C6	6997(1)	7288(1)	7843(1)	15(1)
C7	7283(1)	6176(1)	7858(1)	15(1)
C8	8336(1)	5455(1)	7915(1)	19(1)
C9	8439(1)	4481(1)	7811(1)	22(1)
C10	7492(1)	4270(1)	7638(1)	21(1)
C11	6428(1)	5010(1)	7563(1)	17(1)
C12	6316(1)	5974(1)	7684(1)	14(1)
C13	5363(1)	6976(1)	7531(1)	13(1)
C14	4232(1)	7273(1)	7240(1)	14(1)
C15	3841(1)	8376(1)	6738(1)	15(1)
C16	4363(1)	9168(1)	6683(1)	15(1)
C17	3700(1)	10184(1)	6001(1)	16(1)
C18	3928(1)	11172(1)	5538(1)	18(1)
C19	3171(1)	12001(1)	4883(1)	21(1)
C20	2206(1)	11842(1)	4683(1)	21(1)
C21	2002(1)	10839(1)	5094(1)	20(1)
C22	2755(1)	10002(1)	5743(1)	16(1)
C23	2822(1)	8853(1)	6238(1)	15(1)
C24	2130(1)	8225(1)	6345(1)	16(1)
C25	2409(1)	7122(1)	6981(1)	15(1)
C26	3458(1)	6628(1)	7384(1)	14(1)
C27	997(1)	8612(1)	5892(1)	19(1)
C28	1016(1)	7835(1)	5369(1)	18(1)
C29	1194(1)	6785(1)	6039(1)	16(1)
C30	1371(1)	6642(1)	7135(1)	16(1)
C31	141(1)	8438(1)	6832(1)	21(1)
C32	344(1)	7445(1)	7466(1)	20(1)
C33	856(1)	8089(1)	4347(1)	22(1)
C34	846(1)	7274(1)	4007(1)	24(1)
C35	998(1)	6237(1)	4676(1)	21(1)
C36	1191(1)	5964(1)	5713(1)	17(1)
C37	1352(1)	4871(1)	6456(1)	17(1)
C38	1434(1)	4010(1)	6162(1)	21(1)
C39	1540(1)	2980(1)	6884(1)	23(1)
C40	1542(1)	2806(1)	7909(1)	22(1)
C41	1469(1)	3655(1)	8255(1)	19(1)
C42	1485(1)	3480(1)	9312(1)	23(1)
C43	1438(1)	4296(1)	9636(1)	23(1)
C44	1394(1)	5320(1)	8918(1)	20(1)
C45	1402(1)	5531(1)	7877(1)	17(1)
C46	1402(1)	4698(1)	7523(1)	16(1)
C47	3806(1)	5471(1)	7969(1)	14(1)
C48	3891(1)	4739(1)	7488(1)	17(1)
C49	4290(1)	3655(1)	7996(1)	23(1)
C50	4607(1)	3292(1)	8991(1)	28(1)
C51	4495(1)	4009(1)	9489(1)	25(1)
C52	4100(1)	5097(1)	8981(1)	19(1)
C53	1521(3)	8629(3)	9246(2)	33(1)
C54	461(4)	8498(4)	9698(4)	30(1)
C55	-508(4)	9261(3)	9340(3)	37(1)
C56	-437(3)	10177(3)	8487(3)	36(1)
C57	-562(4)	10307(3)	8033(3)	37(1)
C58	1571(4)	9545(4)	8408(3)	30(1)
C59	2582(4)	7802(4)	9678(4)	53(1)
C59'	205(4)	9212(5)	9109(4)	50(1)
C54'	765(6)	8221(7)	9737(8)	63(2)
C55'	1952(5)	7898(5)	9712(4)	51(1)
C56'	2568(4)	8579(4)	9056(3)	43(1)
C57'	2006(5)	9546(6)	8437(5)	43(1)
C58'	832(5)	9891(6)	8448(5)	51(1)
C59'	-1086(5)	9575(5)	9113(5)	61(2)
C60	5044(3)	4335(2)	5125(2)	24(1)
C61	5908(7)	4663(5)	5288(9)	24(1)
C62	5779(3)	5740(3)	5079(3)	37(1)
C63	4793(6)	6471(4)	4724(6)	43(1)
C64	3931(3)	6169(3)	4558(3)	33(1)
C65	4052(7)	5070(5)	4767(9)	24(1)
C66	5164(6)	3188(4)	5338(6)	43(1)
Bond lengths [Å] and angles [°] for 25k.

Bond	Length(Å)	Bond	Length(Å)	Angle(°)
Si1-C2	1.8650(15)	C27-H27	1.0000	
Si1-C1	1.8680(16)	C28-C33	1.3823(19)	
Si1-C3	1.8744(15)	C28-C29	1.3949(19)	
Si1-C4	1.9105(13)	C29-C36	1.3916(18)	
O1-C6	1.2170(16)	C29-C30	1.5262(18)	
C1-H1A	0.9800	C30-C45	1.5108(19)	
C1-H1B	0.9800	C30-C32	1.5455(18)	
C1-H1C	0.9800	C31-C32	1.318(2)	
C2-H2A	0.9800	C31-H31	0.9500	
C2-H2B	0.9800	C32-H32	0.9500	
C2-H2C	0.9800	C33-C34	1.398(2)	
C3-H3A	0.9800	C33-H33	0.9500	
C3-H3B	0.9800	C34-C35	1.382(2)	
C3-H3C	0.9800	C34-H34	0.9500	
C4-C16	1.3922(18)	C35-C36	1.4092(19)	
C4-C5	1.4244(17)	C35-H35	0.9500	
C5-C13	1.4072(17)	C36-C37	1.4736(19)	
C5-C6	1.4960(17)	C37-C38	1.3838(19)	
C6-C7	1.4820(18)	C37-C46	1.4372(18)	
C7-C8	1.3818(18)	C38-C39	1.405(2)	
C7-C12	1.4038(17)	C38-H38A	0.9500	
C8-C9	1.3932(2)	C39-C40	1.367(2)	
C8-H8	0.9500	C39-H39A	0.9500	
C9-C10	1.3861(19)	C40-C41	1.418(2)	
C9-H9	0.9500	C40-H40A	0.9500	
C10-C11	1.4020(18)	C41-C42	1.414(2)	
C10-H10	0.9500	C41-C46	1.4266(19)	
C11-C12	1.3862(18)	C42-C43	1.365(2)	
C11-H11	0.9500	C42-H42A	0.9500	
C12-C13	1.5069(17)	C43-C44	1.404(2)	
C13-C14	1.4357(17)	C43-H43A	0.9500	
C14-C15	1.4059(17)	C44-C45	1.3776(19)	
C14-C26	1.4560(17)	C44-H44A	0.9500	
C15-C23	1.4216(17)	C45-C46	1.4301(18)	
C15-C16	1.4261(17)	C47-C48	1.3943(18)	
C16-C17	1.4784(17)	C47-C52	1.3975(18)	
C17-C18	1.3876(18)	C48-C49	1.3879(19)	
C17-C22	1.4166(18)	C48-H48A	0.9500	
C18-C19	1.3933(19)	C49-C50	1.387(2)	
C18-H18	0.9500	C49-H49A	0.9500	
C19-C20	1.387(2)	C50-C51	1.387(2)	
C19-H19	0.9500	C50-H50A	0.9500	
C20-C21	1.391(2)	C51-C52	1.391(2)	
C20-H20	0.9500	C51-H51A	0.9500	
C21-C22	1.3913(18)	C52-H52A	0.9500	
C21-H21	0.9500	C53-C54	1.387(6)	
C22-C23	1.4792(18)	C53-C58	1.390(5)	
C23-C24	1.3658(18)	C53-C59	1.515(5)	
C24-C25	1.4374(18)	C54-C55	1.374(6)	
C24-C27	1.5193(17)	C54-H54A	0.9500	
C25-C26	1.3930(17)	C55-C56	1.404(5)	
C25-C30	1.5812(17)	C55-H55A	0.9500	
C26-C47	1.4843(17)	C56-C57	1.319(5)	
C27-C28	1.5183(19)	C56-H56A	0.9500	
C27-C31	1.522(2)	C57-C58	1.415(5)	
	Value 1	Value 2	Value 3	
------------------	---------	---------	---------	
C57-H57A	0.9500	C59'-H59E	0.9800	
C58-H58A	0.9500	C59'-H59F	0.9800	
C59-H59A	0.9800	C60-C61	1.380(7)	
C59-H59B	0.9800	C60-C65	1.380(8)	
C59-H59C	0.9800	C60-C66	1.486(5)	
C53'-C58'	1.379(8)	C61-C62	1.390(6)	
C53'-C54'	1.384(8)	C61-H61A	0.9500	
C53'-C59'	1.530(7)	C62-C63	1.372(7)	
C54'-C55'	1.405(9)	C62-H62A	0.9500	
C54'-H54B	0.9500	C63-C64	1.358(7)	
C55'-C56'	1.370(6)	C63-H63A	0.9500	
C55'-H55B	0.9500	C64-C65	1.421(6)	
C56-C57''	1.361(8)	C64-H64A	0.9500	
C56'-H56B	0.9500	C65-H65A	0.9500	
C57'-C58'	1.390(6)	C66-H66A	0.9800	
C57'-H57B	0.9500	C66-H66B	0.9800	
C58'-H58B	0.9500	C66-H66C	0.9800	
C59'-H59D	0.9800	C7-C8-H8	120.7	
C2-Si1-C1	111.06(8)	C9-C10-C11	121.96(13)	
C2-Si1-C3	111.36(7)	C9-C10-H10	119.0	
C1-Si1-C3	101.40(8)	C10-C9-C8	119.35(12)	
C2-Si1-C4	112.36(6)	C10-C9-H9	120.3	
C1-Si1-C4	111.40(7)	C8-C9-H9	120.3	
C3-Si1-C4	108.73(6)	C9-C10-C11	121.96(13)	
Si1-C1-H1A	109.5	C9-C10-H10	119.0	
Si1-C1-H1B	109.5	C11-C10-H10	119.0	
H1A-C1-H1B	109.5	C12-C11-C10	119.01(12)	
Si1-C1-H1C	109.5	C12-C11-H11	120.5	
H1A-C1-H1C	109.5	C10-C11-H11	120.5	
H1B-C1-H1C	109.5	C11-C12-C7	118.32(11)	
Si1-C2-H2A	109.5	C11-C12-C13	132.82(11)	
Si1-C2-H2B	109.5	C7-C12-C13	108.33(11)	
H2A-C2-H2B	109.5	C5-C13-C14	118.47(11)	
Si1-C2-H2C	109.5	C5-C13-C12	107.70(10)	
H2A-C2-H2C	109.5	C14-C13-C12	133.27(11)	
H2B-C2-H2C	109.5	C15-C14-C13	112.24(11)	
Si1-C3-H3A	109.5	C15-C14-C26	117.01(11)	
Si1-C3-H3B	109.5	C13-C14-C26	130.75(11)	
H3A-C3-H3B	109.5	C14-C15-C23	123.26(11)	
Si1-C3-H3C	109.5	C14-C15-C16	126.13(11)	
H3A-C3-H3C	109.5	C23-C15-C16	110.57(11)	
H3B-C3-H3C	109.5	C4-C16-C15	119.86(12)	
C16-C4-C5	112.11(11)	C4-C16-C17	134.27(12)	
C16-C4-Si1	124.79(10)	C15-C16-C17	105.82(11)	
C5-C4-Si1	122.60(9)	C18-C17-C22	119.93(12)	
C13-C5-C4	126.86(11)	C18-C17-C16	130.84(12)	
C13-C5-C6	108.79(11)	C22-C17-C16	108.84(11)	
C4-C5-C6	123.50(11)	C17-C18-C19	119.33(13)	
O1-C6-C7	126.70(12)	C17-C18-H18	120.3	
O1-C6-C5	127.24(12)	C19-C18-H18	120.3	
C7-C6-C5	105.91(10)	C20-C19-C18	120.65(13)	
C8-C7-C12	122.82(12)	C20-C19-H19	119.7	
C8-C7-C6	127.79(12)	C18-C19-H19	119.7	
C12-C7-C6	109.02(11)	C19-C20-C21	120.53(12)	
C7-C8-C9	118.53(12)	C19-C20-H20	119.7	
-------	-------	-------	-------	-------
C21-C20-H20	119.7	C38-C37-C36	122.24(12)	
C20-C21-C22	119.40(13)	C46-C37-C36	118.79(12)	
C20-C21-H21	120.3	C37-C38-C39	121.70(13)	
C22-C21-H21	120.3	C37-C38-H38A	119.1	
C21-C22-C17	119.88(12)	C39-C38-H38A	119.1	
C21-C22-C23	132.50(12)	C40-C39-C38	120.22(13)	
C17-C22-C23	107.57(11)	C40-C39-H39A	119.9	
C24-C23-C15	118.18(12)	C38-C39-H39A	119.9	
C24-C23-C22	134.98(12)	C39-C40-C41	120.61(13)	
C15-C23-C22	106.74(11)	C39-C40-H40A	119.7	
C23-C24-C25	120.52(11)	C41-C40-H40A	119.7	
C23-C24-C27	125.02(12)	C42-C41-C40	120.95(13)	
C25-C24-C27	114.34(11)	C42-C41-C46	119.48(13)	
C26-C25-C24	121.11(11)	C40-C41-C46	119.56(13)	
C26-C25-C30	128.96(11)	C43-C42-C41	120.61(13)	
C24-C25-C30	109.91(10)	C43-C42-H42A	119.7	
C25-C26-C14	118.85(11)	C41-C42-H42A	119.7	
C25-C26-C47	122.27(11)	C42-C43-C44	120.19(13)	
C14-C26-C47	118.87(11)	C42-C43-H43A	119.9	
C28-C27-C24	105.90(10)	C44-C43-H43A	119.9	
C28-C27-C31	107.01(11)	C45-C44-C43	121.61(13)	
C24-C27-C31	104.01(11)	C45-C44-H44A	119.2	
C28-C27-H27	113.0	C43-C44-H44A	119.2	
C24-C27-H27	113.0	C44-C45-C46	119.18(12)	
C31-C27-H27	113.0	C44-C45-C30	119.53(12)	
C33-C28-C29	120.78(13)	C46-C45-C30	121.26(12)	
C33-C28-C27	126.21(13)	C41-C46-C45	118.82(12)	
C29-C28-C27	112.99(12)	C41-C46-C37	118.83(12)	
C36-C29-C28	121.49(12)	C45-C46-C37	122.35(12)	
C36-C29-C30	124.51(12)	C48-C47-C52	119.12(12)	
C28-C29-C30	113.99(11)	C48-C47-C26	119.56(11)	
C45-C30-C29	112.85(11)	C52-C47-C26	121.26(12)	
C45-C30-C32	109.36(11)	C49-C48-C47	120.56(13)	
C29-C30-C32	105.16(10)	C49-C48-H48A	119.7	
C45-C30-C25	120.04(10)	C47-C48-H48A	119.7	
C29-C30-C25	103.49(10)	C50-C49-C48	119.94(14)	
C32-C30-C25	104.69(10)	C50-C49-H49A	120.0	
C32-C31-C27	126.50(12)	C48-C49-H49A	120.0	
C32-C31-H31	123.2	C51-C50-C49	120.03(13)	
C27-C31-H31	123.2	C51-C50-H50A	120.0	
C31-C32-C30	116.24(12)	C49-C50-H50A	120.0	
C31-C32-H32	121.9	C50-C51-C52	120.17(13)	
C30-C32-H32	121.9	C50-C51-H51A	119.9	
C28-C33-C34	118.47(13)	C52-C51-H51A	119.9	
C28-C33-H33	120.8	C51-C52-C47	120.12(13)	
C34-C33-H33	120.8	C51-C52-H52A	119.9	
C35-C34-C33	120.75(13)	C47-C52-H52A	119.9	
C35-C34-H34	119.6	C54-C53-C58	117.9(3)	
C33-C34-H34	119.6	C54-C53-C59	120.3(4)	
C34-C35-C36	121.32(13)	C58-C53-C59	121.8(4)	
C34-C35-H35	119.3	C55-C54-C53	121.0(4)	
C36-C35-H35	119.3	C55-C54-H54A	119.5	
C29-C36-C35	117.15(13)	C53-C54-H54A	119.5	
C29-C36-C37	119.59(12)	C54-C55-C56	120.1(4)	
C35-C36-C37	123.24(12)	C54-C55-H55A	119.9	
C38-C37-C46	118.96(13)	C56-C55-H55A	119.9	
Symmetry transformations used to generate equivalent atoms:

Anisotropic displacement parameters (Å² x 10^3) for 25k.
The anisotropic displacement factor exponent takes the form: \(-2\pi^2 [h^2 a^*2 U_{11} + ... + 2 \ h \ k \ a^* \ b^* \ U_{12}]\)

	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Si1	20(1)	16(1)	19(1)	-7(1)	-4(1)	-7(1)
O1	16(1)	23(1)	28(1)	-10(1)	-4(1)	-8(1)
C1	62(1)	26(1)	26(1)	-7(1)	-16(1)	-13(1)
C2	24(1)	24(1)	33(1)	-11(1)	-1(1)	-12(1)
C3	29(1)	27(1)	34(1)	-20(1)	-2(1)	-6(1)
C4	14(1)	15(1)	17(1)	-7(1)	0(1)	5(1)
C5	13(1)	18(1)	15(1)	-6(1)	-2(1)	-6(1)
C6	14(1)	18(1)	15(1)	-5(1)	-1(1)	-5(1)
C7	14(1)	18(1)	15(1)	-6(1)	-1(1)	-5(1)
C8	13(1)	24(1)	23(1)	-11(1)	-4(1)	-3(1)
C9	14(1)	25(1)	30(1)	-14(1)	-4(1)	1(1)
C10	17(1)	19(1)	29(1)	-13(1)	-3(1)	-2(1)
C11	13(1)	18(1)	22(1)	-9(1)	-2(1)	-4(1)
C12	12(1)	16(1)	13(1)	-5(1)	-1(1)	-3(1)
Index	Value					
-------	-------					
C13	12(1)					
C14	15(1)					
C15	15(1)					
C16	13(1)					
C17	17(1)					
C18	18(1)					
C19	21(1)					
C20	24(1)					
C21	18(1)					
C22	17(1)					
C23	14(1)					
C24	12(1)					
C25	12(1)					
C26	12(1)					
C27	13(1)					
C28	11(1)					
C29	10(1)					
C30	12(1)					
C31	11(1)					
C32	10(1)					
C33	17(1)					
C34	20(1)					
C35	18(1)					
C36	11(1)					
C37	11(1)					
C38	18(1)					
C39	19(1)					
C40	15(1)					
C41	12(1)					
C42	20(1)					
C43	21(1)					
C44	16(1)					
C45	10(1)					
C46	9(1)					
C47	10(1)					
C48	13(1)					
C49	18(1)					
C50	24(1)					
C51	23(1)					
C52	16(1)					
C53	34(2)					
C54	37(2)					
C55	30(2)					
C56	34(2)					
C57	53(2)					
C58	31(3)					
C59	36(2)					
C59'	41(3)					
C60	33(2)					
C61	21(1)					
	x	y	z	U(eq)		
---	-------	-------	-------	-------		
C62	36(2)	48(2)	42(2)	-24(2)	5(1)	-26(2)
C63	64(2)	28(3)	40(1)	-14(2)	5(1)	-18(2)
C64	32(2)	29(2)	26(2)	-3(1)	1(1)	-2(1)
C65	21(1)	34(3)	21(1)	-11(3)	-1(1)	-12(2)
C66	64(2)	28(3)	40(1)	-14(2)	5(1)	-18(2)

Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å^2 x 10^3) for 25k.
Torsion angles [°] for 25k.

| | C16-C4-C5-C13 | C26-C14-C15-C16 | C5-C4-C16-C15 | C13-C5-C6-O1 | C4-C5-C6-O1 | C13-C5-C6-C7 | C5-C6-C7-C8 | C6-C7-C8-C9 | C7-C8-C9-C10 | C8-C9-C10-C11 | C9-C10-C11-C12 | C10-C11-C12-C7 | C10-C11-C12-C13 | C8-C7-C12-C11 | C6-C7-C12-C11 | C8-C7-C12-C13 | C6-C7-C12-C13 | C4-C5-C13-C14 | C6-C5-C13-C14 | C4-C5-C13-C12 | C6-C5-C13-C12 | C11-C12-C13-C5 | C7-C12-C13-C5 | C11-C12-C13-C14 | C7-C12-C13-C14 | C5-C13-C14-C15 | C12-C13-C14-C15 | C5-C13-C14-C26 | C12-C13-C14-C26 | C13-C14-C15-C23 | C26-C14-C15-C23 | C13-C14-C15-C16 |
|----------|----------------|------------------|----------------|---------------|--------------|--------------|-------------|-------------|--------------|----------------|----------------|----------------|----------------|----------------|--------------|----------------|--------------|----------------|----------------|----------------|----------------|---------------|----------------|---------------|
| | -11.56(19) | 167.74(12) | 18.16(17) | -179.11(13) | 10.8(2) | 5.07(14) | -165.01(12) | -179.39(13) | 1.1(2) | -1.1(2) | 1.10(19) | 171.61(13) | 174.62(14) | -0.01(19) | 173.51(11) | -172.69(12) | 0.84(14) | -7.54(19) | 177.20(11) | 165.05(12) | -4.61(14) | 168.81(14) | 2.40(14) | 2.2(2) | 173.44(13) | 18.31(16) | -151.97(13) | -161.38(13) | 28.3(2) |
| | | | | | | | | | | | | | | | | | | | | | 170.32(12) | -9.95(18) | -12.00(18) | |
Compound	Chemical Shifts
C23-C24-C25-C30	169.61(11)
C27-C24-C25-C30	-6.44(15)
C24-C25-C26-C14	6.20(18)
C30-C25-C26-C14	-172.30(11)
C24-C25-C26-C47	-174.75(11)
C30-C25-C26-C47	6.8(2)
C15-C14-C26-C25	2.99(17)
C13-C14-C26-C25	-177.34(12)
C15-C14-C26-C47	-176.10(11)
C13-C14-C26-C47	3.6(2)
C23-C24-C27-C28	131.96(14)
C25-C24-C27-C28	-52.20(15)
C23-C24-C27-C31	-115.25(14)
C25-C24-C27-C31	60.59(14)
C24-C27-C28-C33	-123.48(14)
C31-C27-C28-C33	125.95(14)
C24-C27-C28-C29	57.84(14)
C31-C27-C28-C29	-52.73(14)
C33-C28-C29-C36	-1.6(2)
C27-C28-C29-C36	177.20(11)
C33-C28-C29-C30	179.24(11)
C27-C28-C29-C30	-1.99(15)
C36-C29-C30-C45	-7.03(17)
C28-C29-C30-C45	172.15(11)
C36-C29-C30-C32	-126.16(13)
C28-C29-C30-C32	53.01(14)
C36-C29-C30-C25	124.25(13)
C28-C29-C30-C25	-56.58(13)
C26-C25-C30-C45	5.86(19)
C24-C25-C30-C45	-172.77(11)
C26-C25-C30-C29	-121.01(14)
C24-C25-C30-C29	45.30(13)
C26-C25-C30-C32	129.05(14)
C24-C25-C30-C32	-49.58(13)
C28-C27-C31-C32	55.32(15)
C24-C27-C31-C32	-56.56(15)
C27-C31-C32-C30	-1.80(17)
C45-C30-C32-C31	-173.49(12)
C29-C30-C32-C31	-52.05(15)
C25-C30-C32-C31	56.67(15)
C29-C28-C33-C34	1.7(2)
C27-C28-C33-C34	-176.86(12)
C28-C33-C34-C35	-0.4(2)
C33-C34-C35-C36	-1.2(2)
C28-C29-C36-C35	-0.03(18)
C30-C29-C36-C35	179.08(11)
C28-C29-C36-C37	-178.35(11)
C30-C29-C36-C37	0.76(19)
C34-C35-C36-C29	1.41(19)
C34-C35-C36-C37	179.66(12)
C29-C36-C37-C38	-175.48(12)
C35-C36-C37-C38	6.3(2)
C29-C36-C37-C46	5.85(18)
C35-C36-C37-C46	-172.37(12)
C46-C37-C38-C39	1.39(19)
C36-C37-C38-C39	-177.27(12)
Bond	Energy (deg)
----------------------	--------------
C65-C60-C61-C62	-0.8(18)
C66-C60-C61-C62	179.7(7)
C60-C61-C62-C63	0.8(14)
C61-C62-C63-C64	-0.8(11)
C62-C63-C64-C65	0.8(11)
C61-C60-C65-C64	0.7(18)
C66-C60-C65-C64	-179.8(7)
C63-C64-C65-C60	-0.7(13)
Data for 28 (CCDC deposition number: 1818243)

The structure is the one suggested.

Crystal data and structure refinement for 28.

Property	Value
Empirical formula	C_{41}H_{24}O
Formula weight	532.60
Temperature	100(2) K
Wavelength	0.71073 Å
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	a = 9.7588(7) Å, b = 10.4470(8) Å, c = 14.3087(12) Å
	α = 93.472(3)°, β = 109.324(3)°, γ = 105.408(3)°
Volume	1309.32(18) Å³
Z	2
Density (calculated)	1.351 Mg/m³
Absorption coefficient	0.079 mm⁻¹
F(000)	556
Crystal color, morphology	Yellow, Block
Crystal size	0.240 x 0.130 x 0.110 mm³
Theta range for data collection	2.273 to 28.350°
Index ranges	-13 ≤ h ≤ 13, -13 ≤ k ≤ 13, -18 ≤ l ≤ 19
Reflections collected	24904
Independent reflections	6492 [R(int) = 0.0333]
Observed reflections	5246
Completeness to theta = 25.242°	99.9%
Absorption correction	Multi-scan
Max. and min. transmission	0.7457 and 0.6940
Refinement method	Full-matrix least-squares on F²
Data / restraints / parameters	6492 / 0 / 379
Goodness-of-fit on F²	1.036
Final R indices [I>2sigma(I)]	R1 = 0.0450, wR2 = 0.1069
	R1 = 0.0612, wR2 = 0.1224
Largest diff. peak and hole	0.330 and -0.245 e.Å⁻³

Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å² x 10³) for 28.
U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x	y	z	U_{eq}
O1	5332(1)	-274(1)	1077(1)	25(1)
C1	3806(2)	-535(1)	928(1)	19(1)
C2	2916(2)	-1856(1)	509(1)	24(1)
C3	1386(2)	-2238(1)	360(1)	24(1)
C4	744(2)	-1311(1)	635(1)	24(1)
C5	1643(2)	3(1)	1045(1)	23(1)
C6	3197(1)	424(1)	1192(1)	17(1)
C7	4154	1885(1)	1602(1)	16(1)
C8	3806(2)	2819(1)	872(1)	17(1)
C9	2916(2)	3727(1)	-654(1)	20(1)
C10	1386(2)	360(1)	24(1)	
C11	744(2)	635(1)	24(1)	
C12	3197(1)	1080(2)	1860(1)	28(1)
C13	6318(2)	960(1)	1599(1)	20(1)
C14	3630(2)	2819(1)	872(1)	17(1)
C15	3579(2)	2791(1)	-107(1)	18(1)
C16	3032(2)	3727(1)	-654(1)	20(1)
C17	2536(2)	4657(1)	-223(1)	21(1)
C18	2590(2)	4686(1)	763(1)	20(1)
C19	3141(1)	3758(1)	1319(1)	17(1)
C20	3314(1)	3520(1)	2349(1)	17(1)
C21	3892(1)	2434(1)	2520(1)	17(1)
C22	4217(2)	1924(1)	3435(1)	19(1)
C23	3903(1)	2525(1)	4188(1)	18(1)
C24	4064(2)	2322(1)	5224(1)	20(1)
C25	4743(2)	1501(1)	5820(1)	23(1)
C26	4757(2)	1538(2)	6796(1)	28(1)
C27	4082(2)	2363(2)	7164(1)	30(1)
C28	3416(2)	3209(2)	6576(1)	25(1)
C29	3433(2)	3209(1)	5611(1)	20(1)
C30	2942(1)	4042(1)	4844(1)	18(1)
C31	2338(2)	5092(1)	4806(1)	20(1)
C32	2094(1)	5741(1)	3942(1)	18(1)
C33	2411(1)	5281(1)	3124(1)	18(1)
C34	2978(1)	4161(1)	3126(1)	17(1)
C35	3261(1)	3597(1)	4008(1)	17(1)
C36	1523(2)	6927(1)	3925(1)	20(1)
C37	1835(2)	7770(2)	4818(1)	26(1)
C38	1375(2)	8920(2)	4805(1)	29(1)
C39	579(2)	9247(2)	3902(1)	32(1)
C40	236(2)	8413(2)	3016(1)	33(1)
C41	694(2)	7265(2)	3026(1)	27(1)

Bond lengths [Å] and angles [°] for 28.
Bond	Length (Å)	Bond	Length (Å)
C5-C6	1.3995(18)	C23-C24	1.4716(18)
C5-H5	0.9500	C24-C25	1.3858(19)
C6-C7	1.5222(17)	C24-C29	1.4185(19)
C7-C8	1.5230(17)	C25-C26	1.3901(19)
C7-C21	1.5263(17)	C25-H25	0.9500
C7-C14	1.5308(17)	C26-C27	1.3902(2)
C8-C13	1.3812(19)	C26-H26	0.9500
C8-C9	1.3985(18)	C27-C28	1.3942(2)
C9-C10	1.380(2)	C27-H27	0.9500
C9-H9	0.9500	C28-C29	1.3866(19)
C10-C11	1.390(2)	C28-H28	0.9500
C10-H10	0.9500	C29-C30	1.4765(19)
C11-C12	1.374(2)	C30-C31	1.3725(19)
C11-H11	0.9500	C30-C35	1.4151(18)
C12-C13	1.3958(19)	C31-C32	1.4272(19)
C12-H12	0.9500	C31-H31	0.9500
C14-C15	1.3831(18)	C32-C33	1.3949(18)
C14-C19	1.4047(18)	C32-C36	1.4865(18)
C15-C16	1.3956(18)	C33-C34	1.4208(18)
C15-H15	0.9500	C33-H33	0.9500
C16-C17	1.3899(19)	C34-C35	1.4006(18)
C16-H16	0.9500	C36-C41	1.3972(2)
C17-C18	1.3940(18)	C36-C37	1.4013(19)
C17-H17	0.9500	C37-C38	1.3902(2)
C18-C19	1.3958(18)	C37-H37	0.9500
C18-H18	0.9500	C38-C39	1.3862(2)
C19-C20	1.4715(17)	C38-H38	0.9500
C20-C21	1.3952(18)	C39-C40	1.3822(2)
C20-C34	1.4359(17)	C39-H39	0.9500
C21-C22	1.4130(18)	C40-C41	1.3872(2)
C22-C23	1.3735(18)	C40-H40	0.9500
C22-H22	0.9500	C41-H41	0.9500
C23-C35	1.4190(18)		
Bond	Distance (Å)		
------	--------------		
C15-C14-C7	127.75(11)		
C19-C14-C7	110.61(11)		
C14-C15-C16	118.60(12)		
C14-C15-H15	120.7		
C16-C15-H15	120.7		
C17-C16-C15	120.39(12)		
C17-C16-H16	119.8		
C15-C16-H16	119.8		
C16-C17-C18	120.98(13)		
C16-C17-H17	119.5		
C18-C17-H17	119.5		
C17-C18-C19	119.08(12)		
C17-C18-H18	120.5		
C19-C18-H18	120.5		
C18-C19-C14	119.31(12)		
C18-C19-C20	132.01(12)		
C14-C19-C20	108.68(11)		
C21-C20-C34	119.51(12)		
C21-C20-C19	108.28(11)		
C34-C20-C19	132.20(12)		
C20-C21-C22	124.13(12)		
C20-C21-C7	111.44(11)		
C22-C21-C7	124.42(11)		
C23-C22-C21	117.23(12)		
C23-C22-H22	121.4		
C21-C22-H22	121.4		
C22-C23-C35	119.02(12)		
C22-C23-C24	134.75(12)		
C35-C23-C24	106.22(11)		
C25-C24-C29	120.54(12)		
C25-C24-C23	131.18(12)		
C29-C24-C23	108.22(12)		
C24-C25-C26	118.72(13)		
C24-C25-H25	120.6		
C26-C25-H25	120.6		
C27-C26-C25	120.85(14)		
C27-C26-H26	119.6		
C25-C26-H26	119.6		
C26-C27-C28	120.95(13)		
C26-C27-H27	119.5		
C28-C27-H27	119.5		
C29-C28-C27	118.70(13)		

Symmetry transformations used to generate equivalent atoms:
Anisotropic displacement parameters (Å² x 10³) for 28.
The anisotropic displacement factor exponent takes the form: \(-2\pi²[h^2 a^{*2} U_{11} + ... + 2 h k a^{*} b^{*} U_{12}]\)

	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
O1	20(1)	19(1)	36(1)	-1(1)	10(1)	7(1)
C1	18(1)	19(1)	20(1)	5(1)	7(1)	7(1)
C2	27(1)	17(1)	28(1)	3(1)	9(1)	7(1)
C3	25(1)	17(1)	25(1)	4(1)	5(1)	2(1)
C4	19(1)	24(1)	27(1)	6(1)	7(1)	3(1)
C5	21(1)	22(1)	26(1)	4(1)	10(1)	7(1)
C6	20(1)	16(1)	14(1)	4(1)	6(1)	6(1)
C7	19(1)	15(1)	15(1)	3(1)	7(1)	6(1)
C8	20(1)	18(1)	15(1)	5(1)	7(1)	6(1)
C9	25(1)	23(1)	26(1)	-1(1)	8(1)	3(1)
C10	23(1)	33(1)	29(1)	1(1)	4(1)	-2(1)
C11	17(1)	40(1)	34(1)	11(1)	5(1)	5(1)
C12	22(1)	31(1)	35(1)	9(1)	10(1)	12(1)
C13	20(1)	19(1)	21(1)	5(1)	6(1)	6(1)
C14	18(1)	15(1)	17(1)	3(1)	6(1)	4(1)
C15	21(1)	17(1)	19(1)	2(1)	8(1)	6(1)
C16	25(1)	21(1)	16(1)	4(1)	9(1)	6(1)
C17	27(1)	18(1)	19(1)	5(1)	8(1)	7(1)
C18	25(1)	17(1)	19(1)	3(1)	8(1)	7(1)
C19	19(1)	15(1)	16(1)	2(1)	7(1)	4(1)
C20	18(1)	16(1)	16(1)	2(1)	6(1)	5(1)
C21	20(1)	16(1)	16(1)	2(1)	7(1)	5(1)
C22	23(1)	17(1)	18(1)	4(1)	7(1)	7(1)
C23	20(1)	17(1)	16(1)	3(1)	6(1)	4(1)
C24	23(1)	19(1)	18(1)	2(1)	9(1)	4(1)
C25	30(1)	20(1)	20(1)	4(1)	10(1)	8(1)
C26	41(1)	25(1)	21(1)	8(1)	12(1)	14(1)
C27	48(1)	29(1)	20(1)	8(1)	18(1)	16(1)
C28	36(1)	24(1)	20(1)	5(1)	14(1)	12(1)
C29	23(1)	19(1)	18(1)	3(1)	8(1)	5(1)
C30	19(1)	20(1)	16(1)	2(1)	7(1)	4(1)
C31	22(1)	21(1)	18(1)	2(1)	8(1)	7(1)
C32	17(1)	18(1)	19(1)	1(1)	5(1)	5(1)
C33	18(1)	18(1)	18(1)	3(1)	6(1)	5(1)
C34	17(1)	16(1)	16(1)	1(1)	6(1)	4(1)
C35	18(1)	16(1)	16(1)	2(1)	6(1)	4(1)
C36	20(1)	19(1)	23(1)	2(1)	10(1)	6(1)
C37	25(1)	27(1)	26(1)	-1(1)	9(1)	10(1)
C38	29(1)	26(1)	35(1)	-3(1)	16(1)	10(1)
C39	39(1)	25(1)	44(1)	8(1)	23(1)	18(1)
C40	45(1)	34(1)	33(1)	13(1)	18(1)	24(1)
C41	34(1)	27(1)	25(1)	4(1)	13(1)	15(1)

Hydrogen coordinates (x 10⁴) and isotropic displacement parameters (Å² x 10³) for 28.

	x	y	z	U(eq)
H2	3361	-2490	327	29
Torsion angles [°] for 28.

C13-O1-C1-C6	6.31(19)	C10-C11-C12-C13	-0.5(2)		
C13-O1-C1-C2	-172.20(12)	C1-O1-C13-C8	-9.75(19)		
O1-C1-C2-C3	177.73(13)	C1-O1-C13-C12	170.35(12)		
C6-C1-C2-C3	-0.8(2)	C9-C8-C13-O1	-178.47(13)		
C1-C2-C3-C4	-0.5(2)	C7-C8-C13-O1	2.1(2)		
C2-C3-C4-C5	0.9(2)	C9-C8-C13-C12	1.4(2)		
C3-C4-C5-C6	-0.1(2)	C7-C8-C13-C12	-177.96(13)		
O1-C1-C6-C5	-176.80(12)	C11-C12-C13-O1	179.13(14)		
C2-C1-C6-C5	1.6(2)	C11-C12-C13-C8	-0.8(2)		
O1-C1-C6-C7	4.7(2)	C6-C7-C14-C15	-59.72(16)		
C2-C1-C6-C7	-176.93(12)	C8-C7-C14-C15	63.48(16)		
C4-C5-C6-C1	-1.2(2)	C21-C7-C14-C15	-178.75(12)		
C4-C5-C6-C7	177.40(13)	C6-C7-C14-C19	118.96(12)		
C1-C6-C7-C8	-10.96(17)	C8-C7-C14-C19	-117.83(12)		
C5-C6-C7-C8	170.55(12)	C21-C7-C14-C19	-0.06(13)		
C1-C6-C7-C21	-134.26(13)	C19-C14-C15-C16	0.30(19)		
C5-C6-C7-C21	47.26(16)	C7-C14-C15-C16	178.86(12)		
C1-C6-C7-C14	113.51(13)	C14-C15-C16-C17	-0.66(19)		
C5-C6-C7-C14	-64.98(15)	C15-C16-C17-C18	0.7(2)		
C6-C7-C8-C13	7.77(17)	C16-C17-C18-C19	-0.5(2)		
C21-C7-C8-C13	131.83(13)	C17-C18-C19-C14	0.09(19)		
C14-C7-C8-C13	-116.35(13)	C17-C18-C19-C20	-178.87(13)		
C6-C7-C8-C9	-171.61(12)	C15-C14-C19-C18	-0.02(19)		
C21-C7-C8-C9	-47.54(16)	C7-C14-C19-C18	-178.80(11)		
C14-C7-C8-C9	64.28(16)	C15-C14-C19-C20	179.17(11)		
C13-C8-C9-C10	-0.9(2)	C7-C14-C19-C20	0.39(14)		
C7-C8-C9-C10	178.54(13)	C18-C19-C20-C21	178.46(13)		
C8-C9-C10-C11	-0.3(2)	C14-C19-C20-C21	-0.58(14)		
C9-C10-C11-C12	1.0(2)	C18-C19-C20-C34	-0.1(2)		
Bond	Distance (Å)				
---------------------	--------------				
C14-C19-C20-C34	-179.14(13)				
C34-C20-C21-C22	-1.77(19)				
C19-C20-C21-C22	179.46(12)				
C34-C20-C21-C7	179.32(11)				
C19-C20-C21-C7	0.55(14)				
C6-C7-C21-C20	-118.86(12)				
C8-C7-C21-C20	118.38(12)				
C14-C7-C21-C20	-0.31(13)				
C6-C7-C21-C22	62.23(16)				
C8-C7-C21-C22	-60.52(16)				
C14-C7-C21-C22	-179.21(12)				
C20-C21-C22-C23	1.74(19)				
C7-C21-C22-C23	-179.50(12)				
C21-C22-C23-C35	0.75(18)				
C21-C22-C23-C45	-179.74(13)				
C22-C23-C24-C25	7.0(3)				
C35-C23-C24-C25	-173.48(14)				
C22-C23-C24-C29	-175.90(15)				
C35-C23-C24-C29	3.65(14)				
C29-C24-C25-C26	1.7(2)				
C23-C24-C25-C26	178.54(14)				
C24-C25-C26-C27	1.1(2)				
C25-C26-C27-C28	-2.1(2)				
C26-C27-C28-C29	0.3(2)				
C27-C28-C29-C24	2.4(2)				
C27-C28-C29-C30	-174.68(14)				
C25-C24-C29-C28	-3.5(2)				
C23-C24-C29-C28	179.01(12)				
C25-C24-C29-C30	174.26(12)				
C23-C24-C29-C30	-3.24(15)				
C28-C29-C30-C31	1.2(3)				
C24-C29-C30-C31	-176.16(15)				
C28-C29-C30-C35	178.97(15)				
C24-C29-C30-C35	1.59(14)				
C35-C30-C31-C32	-2.15(19)				
C29-C30-C31-C32	175.38(13)				
C30-C31-C32-C33	2.45(19)				
C30-C31-C32-C36	-176.52(12)				
C31-C32-C33-C34	0.13(19)				
C36-C32-C33-C34	179.09(11)				
C32-C33-C34-C35	-2.82(18)				
C32-C33-C34-C20	177.50(12)				
C21-C20-C34-C35	-0.69(17)				
C19-C20-C34-C35	177.73(12)				
C21-C20-C34-C33	178.99(12)				
C19-C20-C34-C33	-2.6(2)				
C33-C34-C35-C30	3.17(19)				
C20-C34-C35-C30	-177.10(12)				
C33-C34-C35-C23	-176.43(12)				
C20-C34-C35-C23	3.30(19)				
C31-C30-C35-C34	-0.7(2)				
C29-C30-C35-C34	-178.90(12)				
C31-C30-C35-C23	178.93(12)				
C29-C30-C35-C23	0.76(14)				
C22-C23-C35-C34	-3.4(2)				
C24-C23-C35-C34	176.94(12)				
Data for 32-H (CCDC deposition number: 1818245)

Structure description
The structure is the one suggested as a partial ethyl acetate solvate. Very long exposures were used to collect requisite data to qualify as publishable by IUCr standards. PLATON/SQUEEZE was used to remove the effects of poorly resolved solvent. The three-dimensional structure appears to have void spaces that zig-zag through channels to allow solvent to evaporate from the lattice. Please see the CIF for additional details.
Table 1. Crystal data and structure refinement for 32-H.

Property	Value
Empirical formula	C_{78}H_{39}ClO_{2}
Formula weight	1043.54
Temperature	100(2) K
Wavelength	0.71073 Å
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	a = 12.2130(17) Å
	b = 15.407(2) Å
	c = 17.340(3) Å
	α = 64.126(6)°
	β = 75.588(6)°
	γ = 74.110(5)°
Volume	2791.7(8) Å³
Z	2
Density (calculated) 1.241 Mg/m3
Absorption coefficient 0.119 mm$^{-1}$
$F(000)$ 1080
Crystal color, morphology Brown, Plate
Crystal size 0.200 x 0.080 x 0.005 mm3
Theta range for data collection 2.347 to 25.427°
Index ranges $-14 \leq h \leq 14, -18 \leq k \leq 18, -20 \leq l \leq 20$
Reflections collected 50768
Independent reflections 10284 [R(int) = 0.0774]
Observed reflections 6730
Completeness to theta = 25.242° 99.9%
Absorption correction Multi-scan
Max. and min. transmission 0.8620 and 0.7798
Refinement method Full-matrix least-squares on F^2
Data / restraints / parameters 10284 / 0 / 730
Goodness-of-fit on F^2 1.042
Final R indices [$I>2\sigma(I)$] $R1 = 0.0629$, $wR2 = 0.1435$
R indices (all data) $R1 = 0.1025$, $wR2 = 0.1571$
Largest diff. peak and hole 0.474 and -0.355 e.Å$^{-3}$

Table 2. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2x 103) for 32-H. U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x	y	z	U_{eq}
Cl1	8456(1)	6282(1)	3576(1)	41(1)
O1	3272(2)	-1322(2)	8029(2)	61(1)
O2	2590(2)	8828(2)	1029(1)	36(1)
C1	3876(2)	722(2)	6129(2)	29(1)
C2	4996(2)	13(2)	6152(2)	32(1)
C3	5988(2)	40(2)	5554(2)	32(1)
C4	6892(3)	-770(2)	5750(2)	39(1)
C5	6803(3)	-1598(2)	6515(2)	44(1)
C6	5776(3)	-1640(2)	7090(2)	47(1)
C7	4893(3)	-850(2)	6900(2)	37(1)
C8	3695(3)	-740(2)	7354(2)	44(1)
C9	3077(2)	243(2)	6807(2)	34(1)
C10	1884(3)	630(2)	6917(2)	36(1)
C11	1490(2)	1488(2)	6287(2)	29(1)
C12	344(2)	2122(2)	6149(2)	30(1)
C13	-703(2)	2068(2)	6689(2)	35(1)
C14	-1606(2)	2851(2)	6446(2)	37(1)
C15	-1473(2)	3673(2)	5692(2)	35(1)
C16	-431(2)	3738(2)	5133(2)	30(1)
C17	480(2)	2948(2)	5359(2)	27(1)
C18	1710(2)	2843(2)	4980(2)	26(1)
C19	2290(2)	1995(2)	5573(2)	26(1)
C20	3509(2)	1702(2)	5532(2)	26(1)
C21	4125(2)	2448(2)	4954(2)	24(1)
C22	5296(2)	2600(2)	4848(2)	24(1)
C23	6156(2)	2059(2)	5359(2)	26(1)
C24	7217(2)	2346(2)	5107(2)	29(1)
C25	7401(2)	3158(2)	4353(2)	29(1)
C26	6530(2)	3734(2)	3864(2)	25(1)
C27	5440(2)	3491(2)	4127(2)	23(1)
-----	---------	---------	---------	-------
C28	4306(2)	3979(2)	3806(2)	23(1)
C29	3556(2)	3296(2)	4334(2)	23(1)
C30	2363(2)	3465(2)	4264(2)	22(1)
C31	2036(2)	3900(2)	3130(2)	26(1)
C32	1099(2)	4240(2)	3489(2)	23(1)
C33	-392(2)	4198(2)	2496(2)	31(1)
C34	-270(2)	5036(2)	1745(2)	31(1)
C35	543(2)	5588(2)	1608(2)	29(1)
C36	1236(2)	5302(2)	2232(2)	26(1)
C37	2246(2)	4912(2)	2996(2)	22(1)
C38	2751(2)	4880(2)	3705(2)	26(1)
C39	2363(2)	3465(2)	4264(2)	22(1)
C40	3844(2)	4880(2)	3705(2)	26(1)
C41	4357(2)	5752(2)	2647(2)	23(1)
C42	5342(2)	5837(2)	3705(2)	26(1)
C43	6280(2)	5966(2)	3926(2)	29(1)
C44	7252(2)	6140(2)	3315(2)	30(1)
C45	7300(2)	6196(2)	2489(2)	30(1)
C46	6364(2)	6044(2)	2285(2)	27(1)
C47	3837(2)	6477(2)	1957(2)	24(1)
C48	2789(2)	6418(2)	1734(2)	24(1)
C49	2543(2)	7306(2)	895(2)	30(1)
C50	1348(2)	7780(2)	673(2)	34(1)
C51	414(3)	7768(2)	1328(2)	37(1)
C52	-658(3)	8306(2)	1138(2)	46(1)
C53	-801(3)	8884(3)	275(3)	68(1)
C54	124(3)	8912(3)	-373(3)	69(1)
C55	1190(3)	8384(3)	-186(2)	51(1)
C56	3030(2)	8029(2)	1047(2)	24(1)
C57	4235(2)	7429(2)	1236(2)	27(1)
C58	4882(2)	8044(2)	1367(2)	28(1)
C59	4804(2)	8080(2)	2165(2)	33(1)
C60	5360(2)	8680(2)	2265(2)	39(1)
C61	5990(3)	9299(2)	1548(2)	45(1)
C62	6007(2)	9325(2)	748(2)	43(1)
C63	5458(2)	8717(2)	646(2)	36(1)
C64	3582(3)	7074(2)	249(2)	32(1)
C65	3626(3)	6625(2)	-337(2)	41(1)
C66	2650(3)	6435(3)	-458(2)	51(1)
C67	2732(4)	6009(3)	-1041(2)	63(1)
C68	3802(4)	5788(3)	-1488(2)	58(1)
C69	4773(4)	5919(3)	-1350(2)	56(1)
C70	4741(3)	6352(2)	-776(2)	44(1)
C71	5751(3)	6494(2)	-619(2)	44(1)
C72	6868(3)	6238(3)	-1065(2)	57(1)
C73	7832(3)	6387(3)	-919(3)	64(1)
C74	7791(3)	6760(3)	-320(2)	56(1)
C75	6729(3)	7005(2)	135(2)	44(1)
C76	5708(3)	6893(2)	-142(2)	40(1)
C77	4559(3)	7169(2)	430(2)	31(1)
Table 3. Bond lengths [Å] and angles [°] for 32-H.

Bond	Length [Å]	Angle [°]						
C11-C45	1.735(3)							
C1-O8	1.216(4)							
C2-C57	1.190(3)							
C1-C9	1.395(4)							
C1-C20	1.430(4)							
C1-C2	1.495(4)							
C2-C3	1.382(4)							
C2-C7	1.404(4)							
C3-C4	1.397(4)							
C3-H3A	0.9500							
C4-C5	1.389(4)							
C4-H4A	0.9500							
C5-C6	1.391(5)							
C5-H5A	0.9500							
C6-C7	1.364(4)							
C6-H6A	0.9500							
C7-C8	1.483(4)							
C8-C9	1.497(4)							
C9-C10	1.414(4)							
C10-C11	1.351(4)							
C10-H10A	0.9500							
C11-C19	1.438(4)							
C11-C12	1.478(4)							
C12-C13	1.383(4)							
C12-C17	1.416(4)							
C13-C14	1.382(4)							
C13-H13A	0.9500							
C14-C15	1.379(4)							
C14-H14A	0.9500							
C15-C16	1.393(4)							
C15-H15A	0.9500							
C16-C17	1.390(4)							
C16-H16A	0.9500							
C17-C18	1.477(3)							
C18-C19	1.397(4)							
C18-C30	1.408(4)							
C19-C20	1.426(4)							
C20-C21	1.409(4)							
C21-C29	1.412(4)							
C21-C22	1.466(4)							
C22-C23	1.387(4)							
C22-C27	1.415(4)							
C23-C24	1.388(4)							
C23-H23A	0.9500							
C24-C25	1.380(4)							
C24-H24A	0.9500							
C25-C26	1.384(4)							
C25-H25A	0.9500							
C26-C27	1.394(4)							
C26-H26A	0.9500							
C27-C28	1.497(4)							
C28-C40	1.414(4)							
C28-C29	1.434(4)							
C29-C30	1.435(3)							
Bond Lengths (Å)	Bond Angles (°)							
-----------------	-----------------							
1.393(4)	C69-H69A							
0.9500	C70-C71							
1.365(5)	C70-H70A							
0.9500	C71-C72							
1.382(4)	C72-C77							
0.9500	C72-C73							
1.365(4)	C73-C74							
1.443(4)	C73-H73A							
1.385(5)	C74-C75							
1.435(4)	C75-C76							
1.400(5)	C75-H75A							
0.9500	C76-C77							
1.380(5)	C76-H76A							
0.9500	C77-C78							
1.349(5)								
C9-C1-C20	119.3(2)							
C15-C14-C13	121.3(3)							
C9-C1-C2	108.1(2)							
C15-C14-H14A	119.3							
C20-C1-C2	132.4(3)							
C13-C14-H14A	119.3							
C3-C2-C7	119.1(3)							
C14-C15-C16	121.4(3)							
C3-C2-C1	131.8(3)							
C14-C15-H15A	119.3							
C7-C2-C1	108.7(3)							
C16-C15-H15A	119.3							
C2-C3-C4	118.5(3)							
C17-C16-C15	118.0(3)							
C2-C3-H3A	120.7							
C17-C16-H16A	121.0							
C4-C3-H3A	120.7							
C15-C16-H16A	121.0							
C5-C4-C3	121.6(3)							
C16-C17-C12	120.1(2)							
C5-C4-H4A	119.2							
C16-C17-C18	131.0(3)							
C3-C4-H4A	119.2							
C12-C17-C18	108.2(2)							
C4-C5-C6	119.4(3)							
C19-C18-C30	118.5(2)							
C4-C5-H5A	120.3							
C19-C18-C17	107.0(2)							
C6-C5-H5A	120.3							
C30-C18-C17	133.7(2)							
C7-C6-C5	119.0(3)							
C18-C19-C20	125.6(2)							
C7-C6-H6A	120.5							
C18-C19-C11	110.7(2)							
C5-C6-H6A	120.5							
C20-C19-C11	123.4(2)							
C6-C7-C2	122.1(3)							
C21-C20-C19	114.2(2)							
C6-C7-C8	129.6(3)							
C21-C20-C1	131.8(2)							
C2-C7-C8	108.1(3)							
C19-C20-C1	113.8(2)							
O1-C8-C7	128.1(3)							
C20-C21-C29	119.1(2)							
O1-C8-C9	125.7(3)							
C20-C21-C22	134.3(2)							
C7-C8-C9	106.2(3)							
C29-C21-C22	106.5(2)							
C1-C9-C10	124.4(3)							
C23-C22-C27	121.1(2)							
C1-C9-C8	108.3(3)							
C23-C22-C21	130.1(2)							
C10-C9-C8	127.3(3)							
C27-C22-C21	108.6(2)							
C11-C10-C9	117.2(3)							
C22-C23-C24	119.2(3)							
C11-C10-H10A	121.4							
C22-C23-H23A	120.4							
C9-C10-H10A	121.4							
C24-C23-H23A	120.4							
C10-C11-C19	119.7(3)							
C25-C24-C23	119.7(3)							
C10-C11-C12	134.3(3)							
C25-C24-H24A	120.1							
C19-C11-C12	105.9(2)							
C23-C24-H24A	120.1							
C13-C12-C17	120.9(3)							
C24-C25-C26	121.6(2)							
C13-C12-C11	130.7(3)							
C24-C25-H25A	119.2							
C17-C12-C11	108.0(2)							
C26-C25-H25A	119.2							
C14-C13-C12	118.2(3)							
C25-C26-C27	119.8(3)							
C14-C13-H13A	120.9							
C25-C26-H26A	120.1							
C12-C13-H13A	120.9							
	C27-C26-H26A	120.1						
Bond Lengths (Å)	C26-C27-C22	118.0(2)	C26-C27-C28	120.0(3)	C26-C27-C28	117.3(3)	C26-C27-C28	119.9(2)
------------------	-------------	----------	-------------	----------	-------------	----------	-------------	----------
	C26-C27-C28	133.8(2)	C27-C46-C51	123.9(2)	C27-C46-C51	119.1(2)		
	C27-C46-C51	107.9(2)	C27-C46-C51	109.7(2)	C27-C46-C51	117.8(2)	C27-C46-C51	116.0(2)
	C27-C46-C51	109.7(2)	C27-C46-C51	130.2(2)	C27-C46-C51	109.7(2)	C27-C46-C51	109.7(2)
	C27-C46-C51	117.8(2)	C27-C46-C51	107.9(2)	C27-C46-C51	117.8(2)	C27-C46-C51	107.9(2)
	C27-C46-C51	116.0(2)	C27-C46-C51	130.2(2)	C27-C46-C51	116.0(2)	C27-C46-C51	130.2(2)
	C27-C46-C51	109.7(2)	C27-C46-C51	109.7(2)	C27-C46-C51	109.7(2)	C27-C46-C51	109.7(2)
	C27-C46-C51	119.1(2)	C27-C46-C51	123.9(2)	C27-C46-C51	119.1(2)	C27-C46-C51	123.9(2)
	C27-C46-C51	123.0(2)	C27-C46-C51	123.0(2)	C27-C46-C51	123.0(2)	C27-C46-C51	123.0(2)
	C27-C46-C51	123.0(2)	C27-C46-C51	123.0(2)	C27-C46-C51	123.0(2)	C27-C46-C51	123.0(2)
	C27-C46-C51	123.0(2)	C27-C46-C51	123.0(2)	C27-C46-C51	123.0(2)	C27-C46-C51	123.0(2)
	C27-C46-C51	123.0(2)	C27-C46-C51	123.0(2)	C27-C46-C51	123.0(2)	C27-C46-C51	123.0(2)
	C27-C46-C51	123.0(2)	C27-C46-C51	123.0(2)	C27-C46-C51	123.0(2)	C27-C46-C51	123.0(2)

Notes:
1. All bond lengths are given in Ångströms (Å).
2. Values in parentheses indicate the standard deviation.
Table 4. Anisotropic displacement parameters (Å² x 10²) for 32-H. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^* U_{11} + \ldots + 2 h k a^* b^* U_{12}]$

	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
C63-C62-H62A	120.5	58(1)	-26(1)	-10(1)	-6(1)	
C61-C62-H62A	120.5	44(1)	12(1)	0(1)	-12(1)	
C62-C63-C64	121.2(3)	58(1)	-26(1)	-10(1)	-6(1)	
C62-C63-H63A	119.4	12(1)	-6(1)	-12(1)	-5(1)	
C64-C63-H63A	119.4	12(1)	-6(1)	-12(1)	-5(1)	
C63-C64-C59	120.5(3)	58(1)	-26(1)	-10(1)	-6(1)	
C63-C64-H64A	119.8	12(1)	-6(1)	-12(1)	-5(1)	
C59-C64-H64A	119.8	12(1)	-6(1)	-12(1)	-5(1)	
C78-C65-C66	121.7(3)	58(1)	-26(1)	-10(1)	-6(1)	
C78-C65-C50	121.4(3)	58(1)	-26(1)	-10(1)	-6(1)	
C66-C65-C50	121.4(3)	58(1)	-26(1)	-10(1)	-6(1)	
C67-C66-C71	121.0(3)	58(1)	-26(1)	-10(1)	-6(1)	
C67-C66-C65	122.2(3)	58(1)	-26(1)	-10(1)	-6(1)	
C71-C66-C65	116.8(3)	58(1)	-26(1)	-10(1)	-6(1)	
C66-C67-C68	120.2(4)	58(1)	-26(1)	-10(1)	-6(1)	
C66-C67-H67A	119.9	58(1)	-26(1)	-10(1)	-6(1)	
C68-C67-H67A	119.9	58(1)	-26(1)	-10(1)	-6(1)	
C69-C68-C67	118.4(4)	58(1)	-26(1)	-10(1)	-6(1)	
C69-C68-H68A	120.8	58(1)	-26(1)	-10(1)	-6(1)	
C67-C68-H68A	120.8	58(1)	-26(1)	-10(1)	-6(1)	
C70-C69-C68	122.6(4)	58(1)	-26(1)	-10(1)	-6(1)	
C70-C69-H69A	118.7	58(1)	-26(1)	-10(1)	-6(1)	
C68-C69-H69A	118.7	58(1)	-26(1)	-10(1)	-6(1)	
C69-C70-C71	121.4(4)	58(1)	-26(1)	-10(1)	-6(1)	
C69-C70-H70A	119.3	58(1)	-26(1)	-10(1)	-6(1)	

Symmetry transformations used to generate equivalent atoms:
C20	27(1)	24(2)	25(2)	-5(1)	-2(1)	-8(1)
C21	24(1)	24(2)	23(2)	-8(1)	-2(1)	-5(1)
C22	24(1)	26(2)	23(2)	-10(1)	-2(1)	-5(1)
C23	27(1)	22(2)	25(2)	-6(1)	-2(1)	-4(1)
C24	27(2)	30(2)	28(2)	-10(1)	-8(1)	-1(1)
C25	20(1)	36(2)	31(2)	-14(1)	1(1)	-9(1)
C26	22(1)	23(2)	25(2)	-8(1)	-1(1)	-5(1)
C27	24(1)	23(1)	20(1)	-9(1)	1(1)	-3(1)
C28	20(1)	25(2)	24(2)	-12(1)	0(1)	-4(1)
C29	22(1)	21(1)	23(2)	-7(1)	-1(1)	-4(1)
C30	21(1)	20(1)	24(2)	-10(1)	0(1)	-4(1)
C31	21(1)	23(1)	24(2)	-11(1)	1(1)	-2(1)
C32	20(1)	28(2)	24(2)	-13(1)	-1(1)	2(1)
C33	22(1)	27(2)	28(2)	-13(1)	3(1)	-3(1)
C34	23(1)	36(2)	36(2)	-21(2)	-2(1)	-3(1)
C35	24(1)	39(2)	34(2)	-19(2)	-8(1)	-1(1)
C36	29(2)	28(2)	30(2)	-13(1)	-8(1)	2(1)
C37	24(1)	24(2)	28(2)	-13(1)	-3(1)	0(1)
C38	28(1)	21(1)	20(1)	-9(1)	-1(1)	-2(1)
C39	22(1)	21(1)	22(2)	-12(1)	0(1)	-2(1)
C40	21(1)	22(1)	16(1)	-6(1)	2(1)	-5(1)
C41	22(1)	20(1)	22(2)	-9(1)	4(1)	-4(1)
C42	23(1)	15(1)	26(2)	-5(1)	-2(1)	-2(1)
C43	22(1)	23(2)	31(2)	-10(1)	1(1)	-4(1)
C44	30(2)	23(2)	32(2)	-10(1)	-5(1)	-2(1)
C45	23(1)	24(2)	44(2)	-17(1)	-5(1)	-1(1)
C46	24(1)	23(2)	36(2)	-10(1)	3(1)	-4(1)
C47	28(2)	21(1)	24(2)	-4(1)	-4(1)	-4(1)
C48	29(1)	21(1)	19(2)	-9(1)	4(1)	-6(1)
C49	27(1)	22(1)	23(2)	-11(1)	-2(1)	-1(1)
C50	39(2)	25(2)	21(2)	-4(1)	-7(1)	-7(1)
C51	37(2)	30(2)	34(2)	-8(1)	-13(1)	-8(1)
C52	41(2)	31(2)	41(2)	-14(2)	-18(2)	1(1)
C53	38(2)	44(2)	52(2)	-15(2)	-13(2)	-2(2)
C54	47(2)	69(3)	67(3)	-6(2)	-32(2)	4(2)
C55	55(2)	74(3)	48(2)	9(2)	-21(2)	9(2)
C56	46(2)	61(2)	35(2)	-3(2)	-14(2)	-12(2)
C57	24(1)	21(2)	17(1)	-3(1)	1(1)	-3(1)
C58	28(1)	24(2)	21(2)	-6(1)	2(1)	-3(1)
C59	20(1)	23(2)	32(2)	-6(1)	-1(1)	0(1)
C60	27(2)	23(2)	41(2)	-9(1)	2(1)	-6(1)
C61	35(2)	34(2)	48(2)	-14(2)	-5(2)	-9(1)
C62	36(2)	42(2)	58(2)	-16(2)	-9(2)	-14(2)
C63	28(2)	36(2)	51(2)	-2(2)	-1(1)	-15(1)
C64	28(2)	34(2)	33(2)	-2(2)	-5(1)	-4(1)
C65	50(2)	21(2)	17(2)	-3(1)	-2(1)	-3(1)
C66	66(2)	26(2)	24(2)	-5(1)	-6(2)	-6(2)
C67	81(3)	45(2)	28(2)	-8(2)	-2(2)	-27(2)
C68	99(3)	50(2)	47(2)	-19(2)	1(2)	-36(2)
C69	100(3)	47(2)	30(2)	-17(2)	5(2)	-27(2)
C70	86(3)	40(2)	35(2)	-18(2)	0(2)	-3(2)
C71	73(2)	22(2)	21(2)	-8(1)	4(2)	2(2)
C72	56(2)	30(2)	28(2)	-5(2)	-2(2)	8(2)
C73	66(3)	51(2)	29(2)	-13(2)	4(2)	13(2)
C74	51(2)	60(3)	47(2)	-11(2)	3(2)	17(2)
C75	44(2)	56(2)	36(2)	-5(2)	3(2)	8(2)
	C76	34(2)	37(2)	31(2)	l(2)	5(1)	3(1)
C77	54(2)	25(2)	20(2)	-1(1)	5(1)	3(1)	
C78	43(2)	20(2)	19(2)	-4(1)	1(1)	1(1)	

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å^2 x 10^3) for 32-H.

	x	y	z	U(eq)
H3A	6054	596	5023	38
H4A	7585	-753	5349	47
H5A	7437	-2132	6645	53
H6A	5692	-2209	7608	57
H10A	1380	301	7413	44
H13A	-798	1507	7213	42
H14A	-2334	2823	6806	44
H15A	-2104	4207	5552	42
H16A	-346	4304	4612	36
H23A	6021	1500	5876	31
H24A	7814	1984	5452	35
H25A	8144	3325	4166	35
H26A	6675	4293	3350	30
H33A	231	3323	3643	32
H34A	-949	3827	2579	37
H35A	-749	5236	1318	37
H36A	623	6157	1090	35
H43A	4667	5725	4120	32
H44A	6256	5935	4489	35
H46A	7965	6338	2069	36
H47A	6400	6059	1726	32
H52A	519	7382	1916	45
H53A	-1293	8284	1589	56
H54A	-1537	9258	135	81
H55A	20	9306	-959	83
H56A	1826	8427	-639	61
H60A	4353	7679	2656	39
H61A	5315	8672	2823	47
H62A	6402	9698	1614	54
H63A	6404	9770	253	51
H64A	5471	8755	82	44
H67A	1923	6596	-144	62
H68A	2068	5874	-1128	76
H69A	3856	5534	-1910	70
H70A	5494	5714	-1646	68
H73A	6936	5959	-1471	68
H74A	8554	6230	-1240	77
H75A	8475	6849	-220	67
H76A	6694	7253	557	52
Supplementary Information

Table 6. Torsion angles [°] for 32-H.

	C9-C1-C2-C3	C10-C11-C19-C18	C177(3)
C20-C1-C2-C3	-8.4(5)	C12-C11-C19-C18	-4.7(3)
C9-C1-C2-C7	-6.4(3)	C10-C11-C19-C20	-7.3(4)
C20-C1-C2-C7	178.9(3)	C12-C11-C19-C20	170.1(3)
C7-C2-C3-C4	-5.0(4)	C18-C19-C20-C21	14.3(4)
C1-C2-C3-C4	-177.0(3)	C11-C19-C20-C21	-159.6(3)
C2-C3-C4-C5	1.4(4)	C18-C19-C20-C21	-169.5(3)
C3-C4-C5-C6	2.2(5)	C11-C19-C20-C21	16.5(4)
C4-C5-C6-C7	-2.0(5)	C9-C1-C20-C21	160.4(3)
C5-C6-C7-C2	-1.7(5)	C2-C1-C20-C21	-25.4(5)
C5-C6-C7-C8	173.9(3)	C9-C1-C20-C19	-14.9(4)
C3-C2-C7-C6	5.3(5)	C2-C1-C20-C19	159.3(3)
C1-C2-C7-C6	179.0(3)	C19-C20-C21-C29	-15.2(4)
C3-C2-C7-C8	-171.1(3)	C1-C20-C21-C29	169.5(3)
C1-C2-C7-C8	2.6(3)	C19-C20-C21-C22	161.2(3)
C6-C7-C8-O1	4.9(6)	C1-C20-C21-C22	-14.1(5)
C2-C7-C8-O1	-179.0(3)	C20-C21-C22-C23	-6.1(5)
C6-C7-C8-C9	-174.3(3)	C29-C21-C22-C23	170.6(3)
C2-C7-C8-C9	1.8(3)	C20-C21-C22-C27	178.5(3)
C20-C1-C9-C10	5.0(5)	C29-C21-C22-C27	-4.8(3)
C2-C1-C9-C10	-170.5(3)	C27-C22-C23-C24	-6.6(4)
C20-C1-C9-C8	-177.1(3)	C21-C22-C23-C24	178.5(3)
C2-C1-C9-C8	7.4(3)	C22-C23-C24-C25	-0.2(4)
O1-C8-C9-C1	175.0(3)	C23-C24-C25-C26	3.9(4)
C7-C8-C9-C1	-5.8(3)	C24-C25-C26-C27	-0.6(4)
O1-C8-C9-C10	-7.2(6)	C25-C26-C27-C22	-6.1(4)
C7-C8-C9-C10	171.9(3)	C25-C26-C27-C28	174.2(3)
C1-C9-C10-C11	5.0(5)	C23-C22-C27-C26	9.7(4)
C8-C9-C10-C11	-172.4(3)	C21-C22-C27-C26	-174.4(2)
C9-C10-C11-C19	-3.9(4)	C23-C22-C27-C28	-170.5(2)
C9-C10-C11-C12	179.6(3)	C21-C22-C27-C28	5.4(3)
C10-C11-C12-C13	7.1(6)	C26-C27-C28-C40	-5.6(5)
C19-C11-C12-C13	-169.7(3)	C22-C27-C28-C40	174.6(3)
C10-C11-C12-C17	179.1(3)	C26-C27-C28-C29	175.8(3)
C19-C11-C12-C17	2.3(3)	C22-C27-C28-C29	-3.9(3)
C17-C12-C13-C14	-1.4(4)	C20-C21-C29-C28	179.6(2)
C11-C12-C13-C14	169.8(3)	C22-C21-C29-C28	2.3(3)
C12-C13-C14-C15	-0.8(4)	C20-C21-C29-C30	1.5(4)
C13-C14-C15-C16	1.8(4)	C22-C21-C29-C30	-175.7(2)
C14-C15-C16-C17	-0.5(4)	C40-C28-C29-C21	-178.0(2)
C15-C16-C17-C12	-1.7(4)	C27-C28-C29-C21	0.9(3)
C15-C16-C17-C18	-170.4(3)	C40-C28-C29-C30	0.0(4)
C13-C12-C17-C16	2.6(4)	C27-C28-C29-C30	178.9(2)
C11-C12-C17-C16	-170.3(3)	C19-C18-C30-C31	165.6(3)
C13-C12-C17-C18	173.7(3)	C17-C18-C30-C31	-26.4(5)
C11-C12-C17-C18	0.7(3)	C19-C18-C30-C29	-15.4(4)
C16-C17-C18-C19	166.2(3)	C17-C18-C30-C29	152.7(3)
C12-C17-C18-C19	-3.6(3)	C21-C29-C30-C18	14.4(4)
C16-C17-C18-C30	-2.9(5)	C28-C29-C30-C18	-163.4(2)
C12-C17-C18-C30	-172.6(3)	C21-C29-C30-C31	-166.4(3)
C30-C18-C19-C20	1.5(4)	C28-C29-C30-C31	15.8(4)
C17-C18-C19-C20	-169.5(3)	C18-C30-C31-C39	162.2(3)
C30-C18-C19-C11	176.2(2)	C29-C30-C31-C39	-16.8(3)
C17-C18-C19-C11	5.2(3)	C18-C30-C31-C32	-26.1(5)
Bond	Distance (Å)		
-----------------------	--------------		
C59-C60-C61-C62	2.3(4)		
C60-C61-C62-C63	2.4(5)		
C61-C62-C63-C64	-3.1(5)		
C62-C63-C64-C59	-1.0(5)		
C60-C59-C64-C63	5.6(4)		
C58-C59-C64-C63	176.6(3)		
C51-C50-C65-C78	147.2(3)		
C49-C50-C65-C78	-69.7(3)		
C57-C50-C65-C78	29.3(3)		
C51-C50-C65-C66	-45.6(4)		
C49-C50-C65-C66	97.6(3)		
C57-C50-C65-C66	-163.4(3)		
C78-C65-C66-C67	173.3(3)		
C50-C65-C66-C67	7.5(5)		
C78-C65-C66-C71	-4.8(4)		
C50-C65-C66-C71	-170.7(3)		
C71-C66-C67-C68	-2.7(5)		
C65-C66-C67-C68	179.2(3)		
C66-C67-C68-C69	-0.2(5)		
C67-C68-C69-C70	3.7(6)		
C68-C69-C70-C71	-4.2(6)		
C69-C70-C71-C72	179.9(3)		
C69-C70-C71-C66	1.2(5)		
C67-C66-C71-C70	2.2(4)		
C65-C66-C71-C70	-179.6(3)		
C67-C66-C71-C72	-176.5(3)		
C65-C66-C71-C72	1.7(4)		
C70-C71-C72-C77	-177.4(3)		
C66-C71-C72-C77	1.1(5)		
C70-C71-C72-C73	2.5(5)		
C66-C71-C72-C73	-178.9(3)		
C77-C72-C73-C74	0.9(5)		
C71-C72-C73-C74	179.2(3)		
C72-C73-C74-C75	2.0(6)		
C73-C74-C75-C76	-1.1(6)		
C74-C75-C76-C77	-1.0(5)		
C75-C76-C77-C72	2.1(5)		
C75-C76-C77-C78	-178.1(3)		
C71-C72-C77-C76	178.8(3)		
C73-C72-C77-C76	-1.2(4)		
C71-C72-C77-C78	-1.0(4)		
C73-C72-C77-C78	179.0(3)		
C66-C65-C78-C77	5.1(4)		
C50-C65-C78-C77	173.3(2)		
C66-C65-C78-C58	-165.9(2)		
C50-C65-C78-C58	2.3(3)		
C76-C77-C78-C65	178.1(3)		
C72-C77-C78-C65	-2.1(4)		
C76-C77-C78-C58	-12.8(5)		
C72-C77-C78-C58	167.0(3)		
C59-C58-C78-C65	-149.5(3)		
C57-C58-C78-C65	-32.9(3)		
C48-C58-C78-C65	65.4(3)		
C59-C58-C78-C77	40.3(4)		
C57-C58-C78-C77	156.8(3)		
C48-C58-C78-C77	-104.8(3)		
VI. References for Supporting Information

1. Hoye, T. R., Hanson, P. R. & Vyvyan, J. R. A practical guide to first-order multiplet analysis in 1H NMR spectroscopy. *J. Org. Chem.* 59, 4096–4103 (1994).

2. Hoye, T. R. & Zhao, H. A method for easily determining coupling constant (J) values: An addendum to "A practical guide to first-order multiplet analysis in 1H NMR spectroscopy." *J. Org. Chem.* 67, 4014–4016 (2002).

3. Willoughby, P. H. *et al.* Mechanism of the reactions of alcohols with o-benzynes. *J. Am. Chem. Soc.* 136, 13657–13665 (2014).

4. Guo, L., Hrabusa, J. M., Tessier, C. A., Youngs, W. J. & Lattimer, R. Syntheses and crystal structures of strained planar silacyclynes containing a diacetylene unit. *J. Organomet. Chem.* 578, 43–54 (1999).

5. Spence, J. D. *et al.* Syntheses, structure, and reactivity of acyclic enetriyne and enetetrayne derivatives. *Tetrahedron Lett.* 55, 1569–1572 (2014).

6. Nobusue, S. *et al.* Molecular propellers that consist of dehydrobenzo[14]annulene blades. *Chem. Eur. J.* 18, 12814–12824 (2012).

7. Dateer, R. B., Shaibu, B. S. & Liu, R. S. Gold-catalyzed intermolecular [4+2] and [2+2+2] cycloadditions of ynamides with alkenes. *Angew. Chem. Int. Ed.* 51, 113 (2012).

8. Laroche, C., Li, J., Freyer, M. W. & Kerwin, S. M. Coupling reactions of bromoalkynes with imidazoles mediated by copper salts: Synthesis of novel N-alkynylimidazoles. *J. Org. Chem.* 73, 6462–6465 (2008).

9. Suffert, J., Abraham, E., Raeppel, S. & Brückner, R. Synthesis of 5-/10-membered ring analogues of the dienediyne core of neocarzinostatine chromophore by palladium(0)-mediated ring-closure reaction. *Liebigs Ann.* 1996, 447–456 (1996).

10. Lehnherr, D., Alzola, J. M., Lobkovsky, E. B. & Dichtel, W. R. Regioselective synthesis of polyheterohalogenated naphthalenes via the benzannulation of haloalkynes. *Chem. Eur. J.* 21, 18122–18127 (2015).

11. Xu, F., Xiao, X. & Hoye, T. R. Photochemical hexadehydro-Diels–Alder reaction. *J. Am. Chem. Soc.* 139, 8400–8403 (2017).

12. Wooi, G. Y. & White, J. M. Structural manifestations of the cheletropic reaction. *Org. Biomol. Chem.* 3, 972–974 (2005).

13. Dennis, G. D. *et al.* Fused supracyclopentadienyl ligand precursors. Synthesis, structure, and some reactions of 1,3-diphenylcyclopenta[l]phenanthrene-2-one, 1,2,3-triphenylcyclopenta[l]phenanthrene-2-ol, 1-chloro-1,2,3-triphenylcyclopenta[l]phenanthrene,
1-bromo-1,2,3-triphenylcyclopenta[l]phenanthrene, and 1,2,3-triphenyl-1h-cyclopenta[l]phenanthrene. *Aust. J. Chem.* 59, 135–146 (2006).

14 Pascal, R. A. Twisted acenes. *Chem. Rev.* 106, 4809–4819 (2006).

15 Hashmi, A. S. K. *et al.* Scope and limitations of palladium-catalyzed cross-coupling reactions with organogold compounds. *Adv. Synth. Catal.* 352, 1307–1314 (2010).

16 Frisch, M. J. *et al.* *Gaussian 09*, revision C.01; Gaussian Inc.: Wallingford, CT (2010).

17 Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. *Ab initio* calculation of vibrational absorption and circular dichroism spectra using density functional force fields. *J. Phys. Chem.* 98, 11623–11627 (1994).

18 Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate *ab initio* parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. *J. Chem. Phys.* 132, 154104 (2010).

19 Johnson, E. R. & Becke, A. D. A post-Hartree-Fock model of intermolecular interactions: Inclusion of higher-order corrections. *J. Chem. Phys.* 124, 174104 (2006).

20 Marenich, A. V.; Cramer, C. J.; and Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. *J. Phys. Chem. B*, 113, 6378–6396 (2009).

21 Wiitala, K. W., Hoye, T. R. & Cramer, C. J. Hybrid density functional methods empirically optimized for the computation of 13C and 1H chemical shifts in chloroform solution. *J. Chem. Theory Comput.* 2, 1085–1092 (2006).

22 CYLview, 1.0b; Legault, C. Y., Université de Sherbrooke, 2009 (*http://www.cylview.org*).

VII. Copies of 1H, and 13C NMR spectra
Supplementary Information

S1
1H NMR
500 MHz
CDCl$_3$
Supplementary Information

13C NMR
126 MHz
CDCl₃

δ (ppm)

85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5
S7

1H NMR
500 MHz
CDCl$_3$

- 4.45
- 4.44
- 3.45
- 1.67
- 1.64
- 1.26
13C NMR
126 MHz
CDCl$_3$

S17

- Ts
- TMS
- MeO
- OMe

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

f1 (ppm)
^{1}H NMR
500 MHz
CDCl$_3$

13

OTBS

-7.26 CDCl$_3$
-4.83
-4.36
2.95
2.51
2.52
1.54 HDO
9.00
0.12

f1 (ppm)

7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0

2.00 2.18 2.92 3.00 8.37 9.65 6.39

0.00
13C NMR
126 MHz
CDCl$_3$
1H NMR
500 MHz
CDCl$_3$
1H NMR
500 MHz
CDCl$_3$

![NMR Spectrum of Compound 20](image)
Supplementary Information

13C NMR
126 MHz
CDCl$_3$

Diagram of chemical structure with spectral data.
Supplementary Information

13C NMR

126 MHz

CDCl₃

Chemical Shifts:

- 25.0
- 30.0
- 40.0
- 50.0
- 60.0
- 70.0
- 80.0
- 90.0
- 100.0
- 110.0
- 120.0
- 130.0
- 140.0
- 150.0
- 160.0
- 170.0
- 180.0

Eur. J. Org. Chem. 2018, 1054-1071, DOI: 10.1002/ejoc.201701780.
Supplementary Information

\[25f \]

\[^{13}\text{C}\] NMR
126 MHz
CDCl\(_3\)

\[\text{MeO}_2\text{C} \]

\[\text{MeO}_2\text{C} \]

\[\text{Ph} \]

\[\text{Ph} \]

\[\text{Ph} \]

\[\text{Ph} \]
1H NMR
500 MHz
CDCl₃

25i
CO₂Me

TMS
13C NMR
126 MHz
CDCl$_3$
Supplementary Information

1H NMR
500 MHz
CDCl₃
Supplementary Information

1H NMR
500 MHz
CDCl$_3$
13C NMR
126 MHz
CDCl$_3$

25m
Supplementary Information

25m′

1H NMR
500 MHz
CDCl$_3$
Supplementary Information

1H NMR
500 MHz
CDCl₃

25n' +25n

Ph

MeO₂C

N
\(\text{13C NMR} \quad 126 \text{ MHz} \quad \text{CDCl}_3\)
250

13C NMR
126 MHz
CDCl$_3$
1H NMR
500 MHz
CDCl$_3$
1H NMR
500 MHz
CDCl$_3$
30
1H NMR
500 MHz
CDCl$_3$
Supplementary Information

1H NMR
C₆D₆
500 MHz

32-H Cl
