Statins’ safety and impact on the clinical outcomes in COVID-19 critically ill patients: A Multicenter, Cohort Study

Khalid Al Sulaiman (✉ alsulaimankh@hotmail.com)
King Abdulaziz Medical City https://orcid.org/0000-0002-5547-2043

Ohoud Aljuhani
King Abdulaziz University

Ghazwa B. Korayem
Princess Nora bint Abdulrahman University: Princess Nourah bint Abdulrahman University

Ali F. Altebainawi
King Khalid hospital

Shmeylan Al Harbi
King Abdulaziz Medical City

Abdulrahman Al Shaya
King Saud bin Abdulaziz University for Health Sciences

Hisham A. Badreldin
King Saud bin Abdulaziz University for Health Sciences

Raed Kensara
King Abdulaziz Medical City

Abdullah Al Harthi
King Abdulaziz Medical City

Jahad Alghamdi
King Abdulaziz Medical City

Ahad Alawad
Princess Noura Bint AbdulRahman University: Princess Nourah bint Abdulrahman University

Rand Alotaibi
Princess Noura Bint AbdulRahman University: Princess Nourah bint Abdulrahman University

Abdullah Kharbosh
Taif University

Hessa Al Muqati
King Abdulaziz Medical City

Abdulmohsen Alhuwahmel
King Saud bin Abdulaziz University for Health Sciences

Mohammed Almusallam
Keywords: COVID-19, SARS-CoV-2, Statin, Critically ill, Intensive Care Units (ICUs), 30-day mortality, in-hospital mortality, pneumonia, pleiotropic effect

Posted Date: December 20th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-828175/v3

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

The cardiovascular complications of Severe Coronavirus Disease 2019 (COVID-19) may be attributed to the hyperinflammatory state leading to increased mortality in patients with COVID-19. Statins are known to have pleiotropic and anti-inflammatory effects and may influence viral transmission along with their cholesterol-lowering activity. Thus, statin therapy is potentially a potent adjuvant therapy in COVID-19 infection. This study investigated the association of statin use on the outcome of critically ill patients with COVID-19.

Methods

A multicenter, retrospective cohort study of all adult critically ill patients with confirmed COVID-19 admitted to Intensive Care Units (ICUs) between March 1, 2020, and March 31, 2021. Eligible patients were classified into two groups based on statin use during ICU stay and were matched with a propensity score based on patient’s age and admission APACHE II and SOFA scores. The primary endpoint was in-hospital mortality, while 30 days Ventilator-free days (VFDs) and ICU complications were secondary endpoints.

Results

A total of 1049 patients were eligible; 502 patients were included after propensity score matching (1:1 ratio). The 30-day (hazard ratio 0.75 (95% CI 0.58, 0.98), *P*=0.03) and in-hospital mortality (hazard ratio 0.69 (95% CI 0.54, 0.89), *P*=0.004) were significantly lower in patients who received statin therapy on multivariable cox proportional hazards regression analysis. Moreover, patients who received statin had a lower risk of hospital-acquired pneumonia (OR 0.48(95% CI 0.32, 0.69), *P*=<0.001), lower levels of markers of inflammation on follow up and no increased risk of liver injury.

Conclusion

The use of statin during ICU stay in COVID-19 critically ill patients may have a beneficial role and survival benefits with a good safety profile.

Introduction
Since the spread of the Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2), leading to Coronavirus Infectious Disease 2019 (COVID-19) in 2019, over four million people have died worldwide [1]. Although the mortality of patients with COVID-19 is usually due to respiratory-related complications [2], growing evidence shows increased morbidity and mortality related to multiorgan failure, including heart and kidney failure [3–5]. These complications are attributed to the overproduction of early response proinflammatory cytokines, causing a systemic hyperinflammatory state in patients with severe COVID-19 [6, 7].

The pre-existence of cardiovascular disease (CVD) or cardiovascular (CV) risk factors has been associated with poor prognosis and increased mortality of hospitalized patients with COVID-19[8, 9]. In critically ill patients with COVID-19, the ICU and in-hospital mortality risks in patients with underlying heart failure were significantly higher, reaching 44.6% and 39%, respectively.[10] The use of statin therapy has been associated with reduced CV risk and CV death in non-COVID-19 patients [11]. Therefore, the international guidelines recommend using statin therapy in patients with atherosclerotic vascular disease (ASCVD) risk factors or existing ASCVD/CVD as primary or secondary prevention or cholesterol-lowering [12–14].

Statins have pleiotropic anti-inflammatory, antithrombotic and immunomodulatory effects which may decrease the endothelial dysfunction and inflammatory dysregulation in patients with COVID-19[15–17]. Part of the anti-inflammatory is ultimately to reduce inflammatory markers such as CRP, as shown in a published CARE study [34]. As a result, the suggested clinical benefit of statin therapy could emerge as early as 30 days after starting treatment, and it is consistent over time [35]. Moreover, statin therapy has been reported to have antiviral activity through immunomodulation and viral replication suppression [18]. These effects of statins suggest that they might have a promising role in indirectly improving the clinical outcomes in patients with COVID-19[23].

Multiple studies reported a decrease in mortality and inflammatory response in patients with COVID-19 using statin therapy [20-21]. In contrast, a systematic review and another national observational study showed no improvement in patients' hospital outcomes and rather an increase in mortality, respectively [19,22]. However, most of the previous studies were general to all hospitalized patients with mild to severe COVID-19, while only limited studies investigated their benefit in critically ill patients with severe COVID-19 [23]. Hence, the benefit of statin therapy use in this population remains questionable. Thus, this study aimed to investigate the association of statin use on the outcome of critically ill patients with COVID-19.
Methods

Study design

This was a multicenter, retrospective cohort study including adults critically ill patients confirmed COVID-19 and admitted to the Intensive care unit (ICU) from March 01, 2020, until March 31, 2021. The study was approved by King Abdullah International Medical Research Center (KAIMRC) in January 2021 (Ref.# NRC21R/015/R). Informed consent from the study patients was waived due to the retrospective observational nature of the study.

Study participants

We included adults (age ≥ 18 years) patients who were admitted to the ICU with confirmed COVID-19. Patients were diagnosed with COVID-19 using Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) nasopharyngeal and/ or throat swabs. Patients were excluded if they were < 18 years old, had ICU length of stay (LOS) ≤ one day, or died or were labeled as "Do-Not-Resuscitate" within 24 hours of ICU admission (Figure 1). Eligible patients were then classified into two groups based on the statin therapy use during ICU stay. Statins were prescribed in the ICU as part of the medication reconciliation process if they had been prescribed in the pre-ICU period or were initiated in the ICU for various indications at the discretion of the ICU treating team and stopped based on physicians’ clinical judgment.

Study setting

The study took place at four hospitals in Saudi Arabia; King Abdulaziz Medical City (Riyadh), King Abdulaziz University Hospital (Jeddah), King Abdullah bin Abdulaziz University Hospital (KAAUH) (Riyadh), and King Salman Specialist Hospital (Hail). We included both tertiary and secondary centers. The selection of these centers were based on the geographic distribution, availability of electronic records and center's willing to participate in the national project. The primary site for this multicenter retrospective study was King Abdulaziz Medical City (Riyadh) which is considered a tertiary care center that include more than 1500 beds. There are more than nine ICU units. KAAUH is a 300- bed secondary teaching hospital that have one medical ICU unit with 28 beds.

Data collection

Each patients’ data were collected and managed using Research Electronic Data Capture (REDCap®) software hosted by King Abdullah International Medical Research Center (KAIMRC). We collected patients’ demographic data, comorbidities, vital signs and laboratory tests, Acute Physiology and Chronic Health Evaluation II (APACHE II), Sequential Organ Failure Assessment (SOFA), and Nutrition Risk in Critically ill (NUTRIC) scores, Glasgow Coma Score (GCS), statin therapy use (type and dose), acute
kidney injury, use of prone positioning, receipt of mechanical ventilation (MV) and MV parameters (e.g., \(\text{PaO}_2/\text{FiO}_2\) ratio, \(\text{FiO}_2\) requirement) within 24 hours of ICU admission. Moreover, renal profile, liver function tests (LFTs), coagulation profile (i.e., INR, aPTT, fibrinogen, D-dimer), and inflammatory markers (Ferritin, procalcitonin and creatine phosphokinase (CPK)) within 24 hours of ICU admission were collected. Tocilizumab and corticosteroids use were recorded for the eligible patients. All patients were followed until they were discharged from the hospital or died during in-hospital stay, whichever occurred first.

Outcomes

The primary endpoint was the in-hospital mortality. The secondary endpoints were 30-day mortality, hospital LOS, ICU LOS, receipt of MV, ventilator-free days (VFDs) at 30 days, and ICU-acquired complications (new onset atrial fibrillation, AKI, liver injury, hospital-acquired pneumonia, and secondary fungal infection).

Outcome definition(s)

- The 30-day mortality was defined as a death occurring for any cause within 30 days of the admission date during hospital stay; patients who were discharged from the hospital alive were presumed to be survived. All patients were followed until they were discharged from the hospital or died during the in-hospital stay, whichever occurred first.
- Ventilator-free days (VFDs) at 30 days were calculated as the following: if the patients die within 30 days of MV, the VFDs = 0, VFDs = 30 – days after MV initiation (if patient survived and was successfully liberated from MV), and VFDs = 0 if the patient is on MV for >30 days.
- Acute kidney injury (AKI) was defined as a sudden decrease of renal function within 48 hours, defined by an increase in absolute SCr of at least 26.5 \(\mu\text{mol/L}\) (0.3 mg/dL) or by a percentage increase in \(\text{SCr} \geq 50\%\) (1.5× baseline value) during ICU stay\[24\].
- Acute liver injury was defined as alanine aminotransferase (ALT) exceeding three times the upper limit of normal or double in patients with elevated baseline ALT during the ICU stay.
- Hospital-acquired pneumonia was defined as pneumonia that occurs \(> 48\) hours after admission and did not appear to be incubating at the time of admission\[25\].
- Secondary fungal infection was identified through the blood, urine, wound, drainage, cerebrospinal fluid, and/or respiratory cultures. The fungal growth was considered significant if the growth was \(\geq 100,000\) colony forming units (CFUs)/ml in sputum or endotracheal aspiration, \(\geq 10,000\) CFUs of single organism/ml in bronchoalveolar lavage or \(\geq 1000\) CFUs of single organism/ml in protected specimen brushes. Additionally, urinary cultures were considered significant if showing a growth \(\geq 100,000\) CFUs/ml of no more than two species of microorganisms. Cultures were excluded if the laboratory reported them as a "contaminant sample."\[26, 27\]
Respiratory failure was defined as either low arterial carbon dioxide tension (PaCO₂) or hypoxemic respiratory failure (PaO₂ < 60 mm Hg with a normal or hypercapnic respiratory failure (PaCO₂ > 50 mm Hg) that requires mechanical ventilation.

Statistical analysis

We presented numerical variables (continuous variables) as mean and standard deviation (SD), or median and lower quartile (Q1) and upper quartile (Q3), as appropriate and categorical variables as number (percentage). The normality assumptions were assessed for all numerical variables using a statistical test (i.e., Shapiro–Wilk test) and graphical representation (i.e., histograms and Q-Q plots). Model fit assessed using the Hosmer-Lemeshow goodness-of-fit test.

Baseline characteristics and outcome variables were compared between the two study groups. For categorical variables, we used the Chi-square or Fisher’s exact test. We compared the normally distributed continuous variables using student t-test and other non-normally distributed continuous variables with the Mann-Whitney U test. Multivariable Cox proportional hazards regression analyses were performed for the 30-day and in-hospital mortality. Proportionality assumption was assessed before fitting the cox model. Visual assessment was performed to assess the assumption by plotting log(-log) plot and also by testing the correlation of scaled Schoenfeld residuals with rank-ordered time. Additionally, Kaplan-Meier (KM) plots were generated for these outcomes. Multivariable regression analysis and negative binomial regression were used for the other outcomes considered in this study. Regression analysis was done by considering PS score as one of the covariates in the model. The odds ratios (OR), hazard ratio (HR), or estimates with the 95% confidence intervals (CI) were reported as appropriate. No imputation was made for missing data as the cohort of patients in our study was not derived from random selection. We considered a P value of < 0.05 statistically significant and used SAS version 9.4 for all statistical analyses.

Propensity score matching procedure (Proc PS match) (SAS, Cary, NC) was used to match patients who received statin therapy (active group) to patients who did not (control group) based on patient’s age and baseline severity scores (APACHE II and SOFA scores) within 24 hours of ICU admission. A greedy nearest neighbor matching method was used in which one patient who received statin therapy (active) group matched with one patient who did not (control), which eventually produced the smallest within-pair difference among all available pairs with treated patients. Patients were matched only if the difference in the logits of the propensity scores for pairs of patients from the two groups was less than or equal to 0.5 times the pooled estimate of the standard deviation.
Results

A total of 1049 patients met our inclusion criteria. Of these patients, 279 (26.6 %) patients received statins during ICU stay. After propensity score matching, 502 patients were included (1:1 ratio) according to the selected criteria. The majority of the patients (86.4 %) received statin as a continuation due to underlying coexisting illness (e.g., DLP, IHD). Only twenty patients (8.6 %) required statin discontinuation during ICU stay, most often due to rhabdomyolysis (9 patients), followed by liver damage (8 patients). Atorvastatin (81.3 %) with a median dose of 20 mg was the most often used statin, followed by Rosuvastatin (14.1 %) with a median dose of 20 mg.

Demographic and Clinical Characteristics

The majority of the included patients in both arms were male (68.9 %) with a mean age of 61.6 (SD +14.79). The predominant underlying comorbidities were diabetes mellitus (59.0 %), followed by hypertension (55.2 %) and dyslipidemia (19.3 %). There were some notable differences between the two groups before propensity score matching. Following the propensity score matching based on patient’s age and baseline severity scores (APACHE II and SOFA scores), most of these baseline and demographic characteristics were similar between the two groups. Summary of the patients’ baseline characteristics is available in the (Additional file-1).

30-day and in-hospital mortality

In a crude analysis, there was no significant difference in the 30-day mortality (44.2 % vs. 49.2 %, \(P = 0.27 \)) or in-hospital mortality (46.8 % vs. 53.0 %, \(P = 0.57 \)) between the statin and the control group, respectively (Table 1). However, using the cox proportional hazards regression analysis, patients who received statin had a lower 30-day mortality (HR 0.75 (95% CI 0.58, 0.98)), \(P =0.03 \) as well as in-hospital mortality (HR 0.69 (95% CI 0.54, 0.89, \(P =0.004 \))) compared with the control group (Table 1). The overall survival probabilities were higher during hospital stay among patients who received statin therapy before and after propensity score-matched (Figure 2).

Ventilator free days and Length of stay

During the ICU stay, the mean ventilator-free days (VFD) was 10.6 days (±12.2) and 10.2 days (±12.3) in patients who received statin therapy compared to the control group respectively; however, it was not significant between the two groups (beta coefficient : 0.03 (95% CI -0.38, 0.45), \(P = 0.87 \)). On the flip side, among those who survived during ICU stay, we observed that critically ill patients who received statin had
a longer ICU length of stay (LOS) and hospital LOS with a (beta coefficient 0.24 (95% CI 0.07, 0.42), P=0.007)), and (beta coefficient 0.39 (95% CI 0.21, 0.58), P<0.0001 respectively)) (Table 1).

Complications during ICU stay

Complications during ICU stay were reported in (Table 2). During ICU stay, we observed that patients who received statin were shown to have statistically significantly lower odds of hospital-acquired pneumonia (bacterial or fungal) (OR 0.48(95% CI 0.32, 0.69), P= 0.001)). On the other hand, statin users have a higher odd for secondary fungal infection (OR 2.48(95% CI 1.44, 4.24), P= 0.001) compared with the control group (Table 2).

Follow-up biomarkers during ICU stay

The follow-up biomarkers such as D-dimer (p-value <0.001), and inflammatory markers such as procalcitonin (p-value <0.001), and total WBC count (p-value 0.04) were significantly lower during ICU stay in patients who received statin compared with the control group. In contrast, creatine phosphokinase (CPK) and ferritin levels were similar among the groups, as described in Table 2.

Discussion

In this retrospective, multicenter study, we investigated the impact of statin’s use on the outcome of critically ill patients with COVID-19. Additionally, we evaluated the statins’ possible effects on the ICU-acquired complications, including safety outcomes. After using cox proportional hazards regression analysis, patients who received statins had a lower 30-day mortality (P=0.03) as well as in-hospital mortality (P=0.004). Also, patients who received statins were associated with lower hospital-acquired pneumonia and inflammatory markers with no statistically significant difference in liver injury (P=0.05).

This study demonstrated that statin therapy in ICU patients with COVID-19 was associated with reduced risks of 30-day and all-cause in-hospital mortality. This benefit of statin might be attributed to its pleiotropic anti-inflammatory properties reducing the CRP levels and interleukin 6[28]. These inflammatory markers are known to increase during COVID-19 disease and increase the risk of mortality [28]. In addition, statins have an antioxidant effect and improves endothelial dysfunction, which might help decrease the CV events due to the hyper-coagulopathy status during the course of COVID-19[28]. Theoretically, statins may help reduce the cytokine storm that is usually associated with the poor prognosis of patients infected with COVID-19 [17]. Similar to our findings, a meta-analysis conducted by
Kow et al. reported a significant reduction in fatal or severe COVID-19 disease with the use of statins [17]. However, not all the included studies in this meta-analysis had critically ill patients in their study population [21]. On the other hand, another meta-analysis by Scheen et al. and an observational study by Russo et al. showed that the use of statins was not associated with mortality benefits in patients with COVID-19. [29, 30] This variation from our findings might be related to the differences in the population included in the previous studies, however our study only focuses on critically ill patients with severe COVID-19. [22, 30].

In contrary to our findings, a randomized controlled trial (INSPIRATION-S trial) presented in the American College of Cardiology (ACC 2021) comparing atorvastatin 20 mg daily vs. placebo showed that initiating statin in critically ill patients with COVID-19 was not associated with mortality benefits. [31] However, they included only the new initiation of statin therapy compared to our study in which the majority of our population were long term statins users. The prolonged anti-inflammatory effect of statins might play a major effect on reducing the levels of inflammatory markers such as CRP only included new initiation of statin therapy and they excluded patients who use statins prior to the admission. As a result, the suggested clinical benefit of statin therapy could emerge as early as 30 days after starting treatment and it is consistent over time. [34] Thus, prolonged statin use prior to admission might lessen the severity of cytokines storm and its complications.

We found that the use of statins was not associated with any significant reduction in MVFD or in preventing respiratory failures that require MV eventually. Contrary to our findings, a preliminary study in non-ICU patients demonstrated a significant reduction in the risk of MV in patients using statin among patients infected with COVID-19 [32].

Interestingly, patients who received statin have lower odds of pneumonia. This finding is consistent with previous data which could be related to a proposed antibacterial effect for statins[36,37,38]. On the other hand, we observed that critically ill patients who received statins had significantly longer ICU and hospital LOS. The higher survival rate could explain the prolonged ICU and hospital LOS in our cohort in the statins group. Another explanation, the more prolonged ICU and hospital LOS may be secondary to higher odds of secondary fungal infection in patients who received statin therapy.

Besides the observed survival benefits in our study with statins therapy use in critically ill patients with COVID-19, we did not report any safety concerns related to statins' side effects or complications. Even though earlier reports from a cohort of 1099 patients with COVID-19 from China showed that up to 39.4% had AST >40 U/L and 28.1% had ALT >40 U/L, and most of these elevations occurred in critical COVID-19
cases[33]. We did not find any significant differences in liver injury among the statins and non-statins critically ill groups with COVID-19. Statin showed a good safety profile in our cohort. Still, its use might be hindered by clinicians’ reluctance to utilize it in critically ill patients with COVID-19 due to (liver injury, myotoxicity, and rhabdomyolysis-related kidney injury). Therefore, continuing statin therapy as primary or secondary prevention is advisable prior to ICU admission and during ICU stay unless contraindicated.

We believe that our multicenter cohort study is one of few studies that evaluated statins’ clinical and safety outcomes in COVID-19 critically ill patients using propensity score matching and multiple regression analysis to minimize the bias. Nevertheless, we also determined some limitations in our study. The retrospective nature of our study may have been affected by missing documentation that could be translated to unmeasured confounders. Also, the medication history use before admission might be affected by limited reconciliation during COVID-19 pandemics. Even though we observed mortality benefits, we did not assess the long-term benefit of statin use after COVID-19 survival. Thus a large randomized controlled trial is needed to investigate the efficacy and safety of statin use in critically ill patients with COVID-19.

Conclusion

Statin use during ICU stay in COVID19 critically ill patients was associated with lower mortality risk with no safety concerns. The continuation or the initiation of statin therapy during the ICU stay in patients with COVID-19 might be a reasonable approach unless statins are contraindicated. The result of this multicenter retrospective study motivates prospective clinical studies to confirm our findings.

Declarations

Acknowledgments

We would like to thank all the investigators who participated in this project from the Saudi critical care pharmacy research (SCAPE) platform.

Author contributions

All authors contributed to data collections, analysis, drafted, revised, and approved the final version of the manuscript.

Funding

None.

Availability of data and material
The datasets used and/or analyzed during the current study are available from corresponding author on reasonable request.

Ethics approval and consent to participate

The study was approved in January 2021 by King Abdullah International Medical Research Center Institutional Review Board, Riyadh, Saudi Arabia ((Ref. # NRC21R/015/R). Participants’ confidentiality was strictly observed throughout the study by using anonymous unique serial number for each subject and restricting data only to the investigators. Informed consent was not required due to the research's method as per the policy of the governmental and local research center.

Consent for publication

Not applicable.

Competing interests

No author has a conflict of interest in this study.

References

1. World Health Organization WHO Coronavirus (COVID-19) Dashboard. https://covid19.who.int/. Accessed 18 Jul 2021

2. Elezkurtaj S, Greuel S, Ihlow J, et al (2021) Causes of death and comorbidities in hospitalized patients with COVID-19. Scientific Reports 11:. https://doi.org/10.1038/s41598-021-82862-5

3. Ma L, Song K, Huang Y (2021) Coronavirus Disease-2019 (COVID-19) and Cardiovascular Complications. Journal of Cardiothoracic and Vascular Anesthesia 35:. https://doi.org/10.1053/j.jvca.2020.04.041

4. Guo T, Fan Y, Chen M, et al (2020) Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19). JAMA Cardiology 5:. https://doi.org/10.1001/jamacardio.2020.1017

5. Zhou F, Yu T, Du R, et al (2020) Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet 395:1054–1062. https://doi.org/10.1016/S0140-6736(20)30566-3

6. Que Y, Hu C, Wan K, et al (2021) Cytokine release syndrome in COVID-19: a major mechanism of morbidity and mortality. International Reviews of Immunology

7. Wenjun W, Xiaqing L, Sipei W, et al (2020) The definition and risks of cytokine release syndrome-like in 11 COVID-19-infected pneumonia critically ill patients: Disease characteristics and retrospective
analysis. medRxiv. https://doi.org/10.1101/2020.02.26.20026989

8. Inciardi RM, Adamo M, Lupi L, et al (2020) Characteristics and outcomes of patients hospitalized for COVID-19 and cardiac disease in Northern Italy. European Heart Journal 41:. https://doi.org/10.1093/eurheartj/ehaa388

9. Mehra MR, Desai SS, Kuy S, et al (2020) Cardiovascular Disease, Drug Therapy, and Mortality in Covid-19. New England Journal of Medicine 382:. https://doi.org/10.1056/NEJMoA2007621

10. Saleh K bin, Hafiz A, Alsulaiman K, et al (2021) Clinical characteristics and outcomes of patients with heart failure admitted to the intensive care unit with coronavirus disease 2019 (COVID-19): A multicenter cohort study. American Heart Journal Plus: Cardiology Research and Practice 7:. https://doi.org/10.1016/j.ahjo.2021.100033

11. Chou R, Dana T, Blazina I, et al (2016) Statins for Prevention of Cardiovascular Disease in Adults. JAMA 316:. https://doi.org/10.1001/jama.2015.15629

12. Mach F, Baigent C, Catapano AL, et al (2020) 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. European Heart Journal 41:. https://doi.org/10.1093/eurheartj/ehz455

13. Grundy SM, Stone NJ, Bailey AL, et al (2019) 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 139:. https://doi.org/10.1161/CIR.0000000000000624

14. Arnett DK, Blumenthal RS, Albert MA, et al (2019) 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 140:. https://doi.org/10.1161/CIR.0000000000000678

15. Oesterle A, Laufs U, Liao JK (2017) Pleiotropic Effects of Statins on the Cardiovascular System. Circulation Research 120:. https://doi.org/10.1161/CIRCRESAHA.116.308537

16. Bikdeli B, Madhavan M v., Gupta A, et al (2020) Pharmacological Agents Targeting Thromboinflammation in COVID-19: Review and Implications for Future Research. Thrombosis and Haemostasis 120:. https://doi.org/10.1055/s-0040-1713152

17. Lee KCH, Sewa DW, Phua GC (2020) Potential role of statins in COVID-19. International Journal of Infectious Diseases 96:. https://doi.org/10.1016/j.ijid.2020.05.115

18. Gorabi AM, Kiaie N, Bianconi V, et al (2020) Antiviral effects of statins. Progress in Lipid Research 79:. https://doi.org/10.1016/j.plipres.2020.101054
19. Cariou B, Goronfot T, Rimbert A, et al (2021) Routine use of statins and increased COVID-19 related mortality in inpatients with type 2 diabetes: Results from the CORONADO study. Diabetes & Metabolism 47:. https://doi.org/10.1016/j.diabet.2020.10.001

20. Zhang X-J, Qin J-J, Cheng X, et al (2020) In-Hospital Use of Statins Is Associated with a Reduced Risk of Mortality among Individuals with COVID-19. Cell Metabolism 32:. https://doi.org/10.1016/j.cmet.2020.06.015

21. Kow CS, Hasan SS (2020) Meta-analysis of Effect of Statins in Patients with COVID-19. The American Journal of Cardiology 134:. https://doi.org/10.1016/j.amjcard.2020.08.004

22. Hariyanto TI, Kurniawan A (2020) Statin therapy did not improve the in-hospital outcome of coronavirus disease 2019 (COVID-19) infection. Diabetes & Metabolic Syndrome: Clinical Research & Reviews 14:. https://doi.org/10.1016/j.dsx.2020.08.023

23. Bikdeli B, Talasaz AH, Rashidi F, et al (2020) Intermediate versus standard-dose prophylactic anticoagulation and statin therapy versus placebo in critically-ill patients with COVID-19: Rationale and design of the INSPIRATION/INSPIRATION-S studies. Thrombosis Research 196:. https://doi.org/10.1016/j.thromres.2020.09.027

24. Lin C-Y (2012) Acute kidney injury classification: AKIN and RIFLE criteria in critical patients. World Journal of Critical Care Medicine 1:40. https://doi.org/10.5492/wjccm.v1.i2.40

25. American Thoracic Society Documents (2005) Guidelines for the Management of Adults with Hospital-acquired, Ventilator-associated, and Healthcare-associated Pneumonia. American Journal of Respiratory and Critical Care Medicine 171:. https://doi.org/10.1164/rccm.200405-644ST

26. Aleidan FAS, Alkhelaifi H, Alsenaid A, et al (2021) Incidence and risk factors of carbapenem-resistant Enterobacteriaceae infection in intensive care units: a matched case–control study. Expert Review of Anti-infective Therapy 19:393–398. https://doi.org/10.1080/14787210.2020.1822736

27. Koenig SM, Truwit JD (2006) Ventilator-Associated Pneumonia: Diagnosis, Treatment, and Prevention. Clinical Microbiology Reviews 19:. https://doi.org/10.1128/CMR.00051-05

28. Davignon J (2004) Beneficial Cardiovascular Pleiotropic Effects of Statins. Circulation 109:. https://doi.org/10.1161/01.CIR.0000131517.20177.5a

29. Scheen AJ (2021) Statins and clinical outcomes with COVID-19: Meta-analyses of observational studies. Diabetes & Metabolism 47:. https://doi.org/10.1016/j.diabet.2020.101220

30. Russo V, Silverio A, Scudiero F, et al (2021) Preadmission Statin Therapy and Clinical Outcome in Hospitalized Patients With COVID-19: An Italian Multicenter Observational Study. Journal of Cardiovascular Pharmacology 78:. https://doi.org/10.1097/FJC.0000000000001041
31. Bavry Anthony A. (2021) Intermediate Versus Standard-Dose Prophylactic Anticoagulation in Critically Ill Patients With COVID-19 - INSPIRATION-S. https://www.acc.org/latest-in-cardiology/clinical-trials/2021/05/14/03/14/inspiration-s. Accessed 1 Aug 2021

32. Song SL, Hays SB, Panton CE, et al (2020) Statin Use Is Associated with Decreased Risk of Invasive Mechanical Ventilation in COVID-19 Patients: A Preliminary Study. Pathogens 9:. https://doi.org/10.3390/pathogens9090759

33. Guan W, Ni Z, Hu Y, et al (2020) Clinical Characteristics of Coronavirus Disease 2019 in China. New England Journal of Medicine 382:1708–1720. https://doi.org/10.1056/nejmoa2002032

34. Ridker PM, Rifai N, Pfeffer MA, Sacks F, Braunwald E. Long-term effects of pravastatin on plasma concentration of C-reactive protein. The Cholesterol and Recurrent Events (CARE) Investigators. Circulation. 1999;100(3):230-235. doi:10.1161/01.cir.100.3.230

35. Charo IF, Taub R. Anti-inflammatory therapeutics for the treatment of atherosclerosis. Nat Rev Drug Discov. 2011;10(5):365-376. doi:10.1038/nrd3444

36. Masadeh M, Mhaidat N, Alzoubi K, Al-Azzam S, Alnasser Z. Antibacterial activity of statins: a comparative study of atorvastatin, simvastatin, and rosuvastatin. Ann Clin Microbiol Antimicrob. 2012;11:13. Published 2012 May 7. doi:10.1186/1476-0711-11-13

37. Ko HHT, Lareu RR, Dix BR, Hughes JD. Statins: antimicrobial resistance breakers or makers?. PeerJ. 2017;5:e3952. Published 2017 Oct 24. doi:10.7717/peerj.3952

38. S. Jerwood, J. Cohen, Unexpected antimicrobial effect of statins, Journal of Antimicrobial Chemotherapy, Volume 61, Issue 2, February 2008, Pages 362–364, https://doi.org/10.1093/jac/dkm496

Tables

Table 1 The outcomes of critically ill patients with COVID-19 after Propensity score matching
Outcomes	Number of outcomes/Total number of patients	Hazard Ratio (HR) (95%CI)	P-value		
	Control	Statin			
30-day mortality, n (%)Δ	122/248 (49.2)	111/251 (44.2)	0.27^^	0.75 (0.58, 0.98)	0.03
In-hospital mortality, n (%)Δ	132/249 (53.0)	117/250 (46.8)	0.17^^	0.69 (0.54, 0.89)	0.004
Ventilator free days, Mean (SD)	10.2 (±12.3)	10.6 (±12.2)	0.61^	0.03 (-0.38, 0.45)	0.87
ICU Length of Stay (Days), Median (Q1,Q3) &	9.0 (5.0, 14.0)	11.0 (6.0, 19.0)	0.03^	0.24 (0.07, 0.42)	0.007
Hospital Length of Stay (Days), Median (Q1,Q3) &	17.0 (12.0, 28.0)	20.0 (13.0, 33.0)	0.03^	0.39 (0.21, 0.58)	<0.0001

Δ Denominator of the percentage is the total number of patients

& Denominator is patients who survived.

^ Wilcoxon rank sum test is used to calculate the P-value.

^^ Chi-square test is used to calculate the P-value.

$ Cox proportional hazards regression analysis used to calculate HR and p-value.

$* Generalized linear model is used to calculate estimates and p-value.

Table 2 The ICU complications of critically ill patients with COVID-19 during stay
Outcomes	Number of outcomes/Total number of patients	P-value	Odds Ratio (OR) (95%CI)	P-value $	
	Control	Statin			
Respiratory Failure Required MV, n (%) §*	47/85 (55.3)	28/58 (48.3)	0.41^^	0.80 (0.40, 1.59)	0.53
New onset A fib., n (%) Δ ^	25/248 (10.1)	33/238 (13.9)	0.19^^	1.44 (0.83, 2.50)	0.21
Acute kidney injury, n(%)Δ	98/251 (39.0)	100/251 (39.8)	0.85^^	1.03 (0.72, 1.48)	0.87
Liver injury, n(%)Δ	32/251 (12.8)	19/251 (7.6)	0.05^^	0.55 (0.30, 1.01)	0.05
Hospital acquired pneumonia, n(%)Δ	101/251 (40.2)	61/251 (24.3)	<0.001^^	0.48 (0.32, 0.69)	<0.001
Secondary fungal infection, n(%)Δ	29/180 (16.1)	44/137 (32.1)	0.001**	2.48 (1.44, 4.24)	0.001
Follow-up markers (Highest during ICU stay)					
Ferritin level (ug/l), Median (Q1, Q3) Δ	936.9 (466.6, 1650.0)	732.3 (332.0, 2132.1)	0.18	0.18 (-0.06, 0.42)	0.14
D-dimer level (mg/l), Median (Q1, Q3) Δ	4.4 (1.98, 19.6)	3.0 (1.36, 8.15)	<0.001	-3.00 (-3.40, -2.60)	<0.001
Procalcitonin level (ng/ml), Median (Q1, Q3) Δ	0.45 (0.13, 1.76)	0.49 (0.13, 1.58)	0.77	-1.46 (-2.01, -0.91)	<0.001
Creatine phosphokinase (CPK) level (U/l), Median (Q1, Q3) Δ	180.0 (71.0, 544.0)	180.0 (84.0, 540.0)	0.81	-0.07 (-0.37, 0.23)	0.65
Total WBC count (10^9/L), Median (Q1, Q3) Δ	16.5 (11.0, 23.7)	15.3 (11.0, 20.6)	0.13	-0.09 (-0.19, -0.005)	0.04

§* Denominator of the percentage is non-mechanically ventilated patients with 24 hours of ICU admission.

Δ ^ Denominator of the percentage is non-atrial fibrillation as comorbidity.

Δ Denominator of the percentage is the total number of patients

^^ Chi-square test is used to calculate the P-value/** Fisher's Exact test is used to calculate P-value.

^ Wilcoxon rank sum test is used to calculate the P-value.

$ Cox proportional hazards regression analysis used to calculate HR and p-value.
$* \text{ Generalized linear model is used to calculate estimates and p-value.}$

Figures

Figure 1

Critically ill patients with COVID-19 flowchart

- **N= 1087**
- **Exclusion: N= 38**
 - Age < 18 y/o (n=3)
 - ICU length of stay (LOS) was \leq\ one day or death within 24 hours of ICU admission (n=29).
 - No code patients within 24 hours of ICU admission (n=6)
- **N= 1049**
Figure 2

Overall survival plot during the hospital stay after PS matching comparing patients who received statin therapy (251 patients) versus the control group (251 patients).

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Additionalfile1Table1.docx