COOLING FLOW STAR FORMATION AND THE APPARENT STELLAR AGES OF ELLIPTICAL GALAXIES

WILLIAM G. MATTHEWS¹ AND FABRIZIO BRIGHENTI¹,²
Received 1999 September 3; accepted 1999 October 12; published 1999 November 9

ABSTRACT

Simple theoretical arguments indicate that cooled interstellar gas in bright elliptical galaxies forms into a young stellar population having a bottom-heavy but optically luminous initial mass function extending to ~2 M☉. When the colors and spectral features of this young population are combined with those of the underlying old stellar population, the apparent ages are significantly reduced, similar to the relatively young apparent ages observed in many elliptical galaxies. Galactic mergers are not required to resupply young stars. The sensitivity of continuous star formation to L bol and L X/L bol is likely to account for the observed spread in apparent ages among elliptical galaxies. Local star formation is accompanied by enhanced stellar H β equivalent widths, stronger optical emission lines, more thermal X-ray emission, and lower apparent temperatures in the hot gas. The young stars should cause MIL to vary with galactic radius, perturbing the fundamental plane of the old stars alone.

Subject headings: cooling flows — galaxies: elliptical and lenticular, cD — galaxies: evolution — galaxies: ISM — X-rays: galaxies

1. INTRODUCTION

Traditionally, elliptical galaxies have been regarded as ancient stellar systems in which evolutionary processes have been exhausted or completely arrested. However, recent observational and theoretical developments have led to a reassessment of both the ages of the stars in elliptical galaxies and the ages since the stellar system merged into its current configuration. Our objective here is to illustrate the possibly important contribution of the apparent global stellar age in elliptical galaxies due to a population of young, intermediate-mass stars formed from cooled interstellar (cooling flow) gas. We also review the related structural history of elliptical galaxies. The high degree of structural regularity among elliptical galaxies has been used to argue that they were among the first galaxies that formed. Of most interest are the remarkable thinness of the fundamental plane (Djorgovski & Davies 1987; Dressler et al. 1987; Renzini & Ciotti 1993), the tightness of the color-magnitude relation (Bower, Lucey, & Ellis 1992), and the tight correlation between the central Mg2 line strength and the central velocity dispersion (Bower, Lucey, & Ellis 1992), and the tight correlation between & Ciotti 1993), the tightness of the color-magnitude relation (Bender, Burstein, & Faber 1993; Ziegler & Bender 1997), indicating an intimate connection between parameters that characterize chemical and dynamical evolution. The small scatter about these relations is difficult to reproduce if there is a wide range of ages among elliptical galaxies. Moreover, distant elliptical galaxies at redshifts z ≥ 1 exhibit these same strong correlations (Aragon-Salamanca et al. 1993; Ellis et al. 1997; Stanford, Eisenhardt, & Dickinson 1998; van Dokkum et al. 1998b; Barger et al. 1998; Broadhurst & Bouwens 1999) but are brighter overall (van Dokkum & Franx 1996), suggesting an early formation epoch z ≈ 2 for an Ω m = 0.3, Ω λ = 0.7 universe (van Dokkum et al. 1998a).

Set against this conventional picture are a number of recent studies that suggest that most or many elliptical galaxies have formed continuously over time by mergers that introduce morphological disturbances (Schweizer & Seitzer 1992) and new generations of young stars (Kauffmann & Charlot 1998). Some observations of stellar photometric indices (Prugniel, Golev, & Maubon 1999) and deficiencies of E galaxies at redshifts z ≈ 1 (Kauffmann, Charlot, & White 1996) support significant ongoing evolution, particularly for field elliptical galaxies, but other studies at these redshifts indicate a nearly constant E/S0 space density (Im et al. 1996; Franceschini et al. 1998) and old formation ages (Bernardi et al. 1998).

The age of stars in elliptical galaxies has also been questioned, but progress has been confounded by the age-metallicity conspiracy: youthful, metal-rich and old, metal-poor populations are nearly indistinguishable (Worthey 1994, 1996). However, Lick observers have demonstrated that Balmer absorption lines can partially break this age-metallicity degeneracy (Gonzalez 1993; Faber et al. 1995; Trager 1997). By comparing the H β equivalent width (index) and a Mg + Fe photometric index with expectations from Worthey’s evolutionary models, Gonzalez (1993) found a wide range of apparent ages in a sample of 40 (mostly field) elliptical galaxies for which the mean age is only 8 ± 3 Gyr. In addition, stars in the inner regions of these galaxies (r ≈ r e/8) are about 3 Gyr younger (and more metal-rich) than those at larger radii. These stellar ages are inconsistent with those of 13–15 Gyr, which were formerly thought to be more likely. The age spread is larger for elliptical galaxies of lower luminosity. Most of the H β equivalent width is contributed by F and G dwarf stars near the main-sequence turnoff.

2. CONTINUOUS STAR FORMATION

In a series of recent papers, we have presented detailed models of the evolution of elliptical galaxies with an emphasis on the gasdynamics of the hot interstellar gas (e.g., Brighenti & Mathews 1999a, 1999b). Galactic stars are assumed to form at t*, = 1 Gyr, and the de Vaucouleurs structure of the large elliptical galaxies is constructed at t*, = 2 Gyr. Our calculations successfully reproduce currently observed interstellar (cooling flow) density, temperature, and (iron) abundance profiles in massive elliptical galaxies with a minimum of adjustable parameters.

The global rate that interstellar gas cools can be estimated by dividing the observed (bolometric) X-ray luminosity L X by
the enthalpy per gram of the gas, \(M = (2 \mu m_p/5kT)L_x \approx 2.5 M_\odot \text{ yr}^{-1} \), where \(T = 1.3 \times 10^7 \text{ K} \) is typical of large elliptical galaxies (\(m_p = \text{proton mass}; \mu = 0.62 = \text{molecular weight} \)). The total mass of gas that cools over cosmic time, several \(10^{10} M_\odot \), is only about 4\%-5\% of the total baryonic mass currently in stars.

Two of the most perplexing and long-standing problems concerning galactic cooling flows are (1) determining where cooling to low temperatures actually occurs in the galaxies and (2) determining the final physical disposition of the cooled gas. The dropout or cooling of interstellar gas must occur over a substantial volume of the inner galaxy, but the radial mass profile of cooled gas cannot be predicted from first principles since it depends critically on entropy fluctuations acquired during a variety of complex processes (stellar mass loss, supernovae explosions, magnetic field variations, etc.). To accommodate this uncertainty, we have considered a variety of cooling dropout models in which the hot gas is assumed to cool at a rate \(\left(\frac{\partial \rho}{\partial t} \right)_\text{cool} = -q(r)\rho/L_x \), where \(t_\text{cool} = 5m_pkT/2\mu \Lambda \) is the local (constant pressure) cooling time and \(q(r) \) is an adjustable dropout function (Brighenti & Mathews 1999b). We compare computed interstellar properties with currently

\(t_\odot = 13 \text{ Gyr} \) observed interstellar gas in the luminous elliptical galaxy NGC 4472. Most of these models are unacceptable because the radial distributions of X-ray surface brightness \(\Sigma_X(r) \), gas density \(n(r) \), or temperature \(T(r) \) disagree with profiles observed in this galaxy. Among the models considered, the simple constant \(q(r) = 1 \) model gave the best results, although the agreement with observed \(\Sigma_X(r) \) was still not perfect; we consider this model again here to estimate the mass dropout in NGC 4472.

Regarding the second perplexing and long-standing problem, it has long been speculated that the end product of the cooled gas is low-mass, nonluminous stars (Fabian, Nulsen, & Canizares 1982; Thomas 1986; Cowie & Binney 1977; Vedder, Trester, & Canizares 1988; Sarazin & Ashe 1989; Ferland, Fabian, & Johnstone 1994). We have recently reconsidered the star formation process in elliptical galaxy cooling flows and have concluded that the mass of stars in the dropout stellar population probably extends to \(\sim 2 M_\odot \); i.e., the dropout population is optically luminous (Mathews & Brighenti 1999a).

As cold gas collects at a cooling site, it becomes gravitationally unstable at this limiting mass, setting a firm upper mass limit \(m_\odot \) on the initial mass function (IMF) for stars forming in the central regions of massive elliptical galaxies. The upper mass limit on the (bottom-heavy) IMF increases only modestly with galactic radius (\(\sim 4 M_\odot \) at \(r \approx r_c \)) and is almost independent of time during the evolution of the cooling flow for redshifts \(z \leq 1 \).

Additional support for the formation of optically luminous stars in galactic cooling flows is provided by the thinness of the fundamental plane. For agreement with observed X-ray surface brightness distributions in elliptical galaxies, most of the mass of cooled gas is concentrated well within \(r_c \) where the relatively small dropout mass can contribute substantially to the central mass and mass-to-light ratio determined from stellar velocities. If the dropout stellar population is assumed to be nonluminous, Mathews & Brighenti (1999b) have shown that the variation of dark dropout mass among elliptical galaxies causes large, undesirable shifts in the fundamental plane that are incompatible with its observed thinness. However, these perturbations on the fundamental plane may be lessened or removed if the dropout stars are luminous.

3. \(L_\beta \text{ B–V, AND } H\beta \)

Star formation in elliptical galaxies is efficient in the sense that the total mass of both \(\text{H II} \text{ gas and cold neutral or molecular gas at any time is much less than the total mass of gas that has cooled. Therefore, the star formation rate (} \Psi_{\text{SFR}} \text{) in NGC 4472 is equal to the instantaneous rate that hot interstellar gas cools by radiative losses. The total accumulated mass that has cooled in NGC 4472 since } t = 2 \text{ Gyr, } M_\text{SFR}(t), \text{ and } \Psi_{\text{SFR}} = \frac{dM_\text{SFR}}{dt} \text{ are shown in Figure 1a}; \text{ these are based on the } q = 1 \text{ model that best fits the X-ray observations of NGC 4472 (Brighenti & Mathews 1999b). The mass dropout } M_\text{SFR}(r,t_\text{c}) \text{ at } t_\text{c} = 13 \text{ Gyr for this model occurs mostly in } r \approx r_c, \text{ and the total dropout mass is } M_\text{SFR}(t_\text{c}) = 4.7 \times 10^{10} M_\odot \text{. This is much less than the total current stellar mass in NGC 4472, } M_* = 7.26 \times 10^{11} M_\odot, \text{ determined with } M/L_\beta = 9.2. \text{ For the purpose of illustration, we assume that the old galactic stars can be approximated as a single-burst stellar population having a Salpeter IMF from } m_\odot = 0.1 \text{ to } m_\odot = 125 M_\odot. \text{ By contrast, the younger dropout stellar population with variable SFR, } \Psi_{\text{SFR}}(t), \text{ is assumed to have a Salpeter IMF from} \)
where \(L_{B,\text{do}}(t) \) is the single-burst \(B \)-band luminosity per unit solar mass. The luminosity of the background, old single-burst population is \(L_{B,\text{old}}(t) = f_m \mu M_s L_{B,\text{do}}(t) \), where \(f_m \) is a coefficient of order unity that must be adjusted for agreement with the observed \(B \)-band luminosity of NGC 4472 (see below).

The evolution of \(B \)-band luminosities and \(B-V \) colors is illustrated in Figures 1b and 1c for each stellar population and for their combined radiation. For reference, the redshift \(z = 1 \) is shown at time \(t = 6.19 \) Gyr (assuming \(H_0 = 65 \) km s \(^{-1}\), \(\Omega_m = 0.3 \), and \(\Omega_k = 0.7 \)). We have chosen \(f_m = 1.35 \) so that the total \(B \)-band luminosity \(L_{B,\text{tot}} = L_{B,\text{do}} + L_{B,\text{old}} \) is \(7.89 \times 10^{10} \) \(L_{B,\odot} \), which is appropriate for NGC 4472 at a distance of \(d = 17 \) Mpc. Although the dropout population currently contributes about 15% of the total \(B \)-band light \(L_{B,\text{do}}(t) = 1.2 \times 10^{10} \) \(L_{B,\odot} \), its fractional contribution to the galactic light is quite constant for redshifts \(z \leq 1 \). The combined dropout + old population is only slightly bluer [by \(b(B-V) \sim 0.03 \)] than the old population, and this difference is essentially constant for \(z \leq 1 \). Formally, the \(B-V \) of the combined population indicates an age \(\sim 8.5 \) Gyr that is less than that of the old population alone (12 Gyr), but because of the age-metallicity degeneracy, age differences cannot be unambiguously determined from small color variations.

The total H\(\beta \) equivalent width of both populations is

\[
\text{EW}_{\beta,\text{tot}}(t) = \frac{\langle \text{EW}_{\beta,\text{do}} \rangle_{\text{tot}}(t) + f_m \langle \text{EW}_{\beta,\text{old}} \rangle_{\text{tot}} L_{B,\text{old}}(t)}{L_{B,\text{do}}(t) + f_m L_{B,\text{old}}(t)},
\]

where

\[
\langle \text{EW}_{\beta,\text{do}} \rangle_{\text{tot}} = \int_0^{t_\ast} \Psi(t) L_{B,\text{do}}(t) \text{d}t.
\]

Here \(\text{EW}_{\beta,\text{do}} \) and \(\text{EW}_{\beta,\text{old}} \) are the single-burst H\(\beta \) equivalent widths for the old and dropout populations, respectively. The factor \(f'_m(R) \) is the ratio of light from the old to dropout population within projected radius \(R \) normalized to the total ratio of old to dropout light; generally, we assume \(f'_m = 1 \), corresponding to viewing the total light from both populations.

As an illustration, we use single-burst \(\text{EW}_{\beta}(t) \) from the 1999 Bruzual-Charlot (BC99) tables that are appropriate to the IMF of each population. As shown in Figure 2, the dropout population (with \(f'_m = 1 \)) reduces the apparent age of the old population by \(\sim 5 \) Gyr; i.e., \(\text{EW}_{\beta,\text{do}}(t) \approx \text{EW}_{\beta,\text{do}}(t_\ast - 5 \text{ Gyr}) \), in agreement with observations that correlate bluer colors with stronger H\(\beta \) (Forbes & Ponman 1999). For smaller \(f'_m = 1/2 \), which corresponds to viewing NGC 4472 within \(r_c \), the apparent age is reduced by \(\sim 8.5 \) Gyr. Actual observations of galactic cores view a fraction of both populations; i.e., the apparent H\(\beta \) age is aperture-dependent. For \(m_\ast \geq 2 \), \(\text{EW}_{\beta,\text{do}}(t) \) and \(\text{EW}_{\beta,\text{do}}(t_\ast) \) are insensitive to \(m_\ast \); i.e., the single-burst variations of \(\text{EW}_{\beta,\text{do}} \) and \(\text{EW}_{\beta,\text{old}} \) are nearly identical. We also used the population code available at Worthey’s website\(^3\) to determine both \(\text{EW}_{\beta,\text{do}}(t_c) \) and \((B-V)\text{do}(t_c) \) for a Salpeter dropout IMF from \(m_\ast = 0.2 \) to \(m_\ast = 10 \) \(M_\odot \). For this model, the H\(\beta \) and \((B-V) \) ages are 8.5 and 9.5 Gyr, respectively, with \(f'_m = 1 \). These age uncertainties are consistent with (\(\sim 35\% \)) errors that are inherent in population-synthesis procedures (Charlot, Worthey, & Bressan 1996; Worthey 1996).

Clearly, however, the contribution of cooling dropout stars to the spectra of elliptical galaxies can explain the relatively young ages inferred from H\(\beta \) observed in some elliptical galaxies, even if the underlying stars are very old.

4. FURTHER DISCUSSION

All massive elliptical galaxies contain cooling interstellar gas, and so no comparisons with gas-free galaxies can be made. However, since the cooling flow mass dropout is centrally concentrated within \(r_c \), the equivalent width of H\(\beta \), \(\text{EW}_{\beta} \), should increase toward galactic centers, in agreement with the observations of Gonzalez (1993). Dropout star formation should be accompanied by an ensemble of additional observations at small galactic radii: H\(\beta \) in emission from cooling clouds, enhanced X-ray surface brightness due to dense, locally cooling regions, and lower apparent X-ray temperatures that (with hydrostatic equilibrium) indicate interior masses less than the known stellar mass. Such mass discrepancies within \(\sim 0.1 r_c \) are apparent in X-ray observations of bright Virgo elliptical galaxies (Brighenti & Mathews 1997a). Some fraction of the total optical light (\(\sim 15\% \) in Fig. 1) in E galaxies comes from the dropout population with \((\text{MIL})_{\text{do}} \approx 4 < (\text{MIL})_{\text{old}} \). Therefore, \((\text{MIL})_d \) should vary with galactic radius and produce a shift away from the fundamental plane defined by the old stars alone.

The observed apparent H\(\beta \) age spread among elliptical galaxies is large: 2–12 Gyr in the Gonzalez (1993) sample, 5–12 Gyr in the Fornax Cluster (Kuntschner & Davies 1998), and 8–12 Gyr in the Coma Cluster (Jorgensen 1999). Such variations can be expected if the cooling dropout profile \(q(r) \) differs among otherwise similar galaxies, represented here with the

\(^3\) See http://astro.sau.edu/~worthey/.
factor f_s. But some of the age variation may arise from comparing elliptical galaxies of greatly different L_μ. Interstellar X-ray emission from elliptical galaxies with $L_\mu \lesssim 3 \times 10^{10}$ is masked by stellar X-rays, but cooling flows still exist in these faster rotating, low-L_μ elliptical galaxies. We have shown (Brighenti & Mathews 1997b) that large cold gas disks may form from cooling flow gas in low-L_μ elliptical galaxies similar to the H i disks observed by Oosterloo, Morganti, & Sadler (1999). Occasional star formation with maximal EW$_b$ (de Jong & Davies 1997) is therefore expected in low-L_μ elliptical galaxies. In luminous elliptical galaxies ($L_\mu \gtrsim 3 \times 10^{10}$), m_μ and EW$_b$ will generally be lower because of isolated star formation in the high-pressure interstellar medium. But L_μ/L_γ varies enormously among bright elliptical galaxies of similar L_μ, and Hβ indices should reflect this same variation since the fraction of mass in the dropout population is proportional to L_μ/L_γ. As expected, elliptical galaxies in Gonzalez’s sample with $L_\mu > 3 \times 10^{10}$ and low L_μ/L_γ—NGC 4649, NGC 7619, and NGC 7626—also appear to be very old (~13 Gyr). However, this interpretation is not entirely straightforward; elliptical galaxies with large L_μ/L_γ also have larger interstellar pressure that may result in $m_\mu < 2$ and lower Hβ indices. Although Hβ ages are insensitive to the IMF of the dropout population for $m_\mu \gtrsim 2.5 M_\odot$, as m_μ approaches $0.8 M_\odot$, EW$_b$ decreases; this is just the range in m_μ anticipated from our model of star formation in luminous elliptical galaxies (Mathews & Brighenti 1999a). The Hβ index may not vary monotonically with L_μ/L_γ.

Although the star formation process described here obviates the need for continued galactic merging to account for the Hβ equivalent widths observed, we do not claim that recent merging in elliptical galaxies is nonexistent or unimportant. We do note, however, that rather few images of elliptical galaxies at small redshift indicate ongoing mergers with gas-rich, star-forming galaxies. But if such regular mergers do generate young stellar populations in elliptical galaxies, it may be possible to detect azimuthal asymmetries in the stellar Hβ that reflect the orbital plane(s) of the newly introduced stars. Young stars formed from cooling flow dropout are expected to be symmetrically disposed in the galactic potential, but their orbits may be more radial with narrower lines than those of the old stellar population.

We are indebted to Stephane Charlot for providing Hβ indices for the two populations considered and to Stuart Norton for helpful advice. Studies of the evolution of hot gas in elliptical galaxies at UC Santa Cruz are supported by NASA grant NAG5-3060 and NSF grant AST 98-02994 for which we are very grateful. F. B. is supported in part by grant MURST-Cofin 98.

REFERENCES

Aragon-Salamanca, A., Ellis, R. S., Couch, W. J., & Carter, D. 1993, MNRAS, 262, 764
Barger, A. J., et al. 1998, ApJ, 501, 522
Bender, R., Burstein, D., & Faber, S. M. 1993, ApJ, 411, 153
Bernardi, M., Renzini, A., da Costa, L. N., Wegner, G., Victoria Alonso, M., Pellegrini, P. S., Rite, C., & Willmer, C. N. A. 1998, ApJ, 508, L143
Bower, R. G., Lucey, J. R., & Ellis, R. S. 1992, MNRAS, 254, 601
Brighenti, F., & Mathews, W. G. 1997a, ApJ, 486, L83
Bruzual, A., & Charlot, S. 1993, MNRAS, 266, 399
Charlot, S., & Bruzual, A. G. 1991, ApJ, 367, 126
Charlot, S., Worthey, G., & Bressan, A. 1996, ApJ, 457, 625
Cowie, L. L., & Bimney, J. 1977, ApJ, 215, 723
de Jong, R. S., & Davies, R. L. 1997, MNRAS, 285, L1
Djorgovski, S., & Davis, M. 1987, ApJ, 313, 59
Dressler, A., Lynden-Bell, D., Burstein, D., Davies, R. L., Faber, S. M., Terlevich, R. J., & Wegner, G. 1987, ApJ, 313, 42
Ellis, R. S., Smail, I., Dressler, A., Couch, W. C., Oemler, A. O., Jr., Butcher, H., & Sharples, R. M. 1997, ApJ, 483, 582
Faber, S. M., Trager, S. C., Gonzalez, J. J., & Worthey, G. 1995, in IAU Symp. 164, Stellar Populations, ed. P. C. van der Kruit & G. Gilmore (Dordrecht: Kluwer), 249
Fabian, A. C., Nulsen, P. E. J., & Canizares, C. R. 1982, MNRAS, 201, 933
Ferland, G. J., Fabian, A. C., & Johnstone, R. M. 1994, MNRAS, 266, 399
Forbes, D. A., & Ponman, T. J. 1999, MNRAS, 309, 623
Franceschini, A., Silva, L., Fasano, G., Granato, G. L., Bressan, A., Arnouts, S., & Danese, L. 1998, ApJ, 506, 600
Gonzalez, J. J. 1993, Ph.D. thesis, Univ. California, Santa Cruz
Im, M., Griffiths, R. E., Ratnatunga, K. U., & Sarajedini, V. L. 1996, ApJ, 461, L79
Jorgensen, I. 1999, MNRAS, in press
Kauffmann, G., & Charlot, S. 1998, MNRAS, 294, 705
Kauffmann, G., Charlot, S., & White, S. D. M. 1996, MNRAS, 283, L117
Kuntschner, H., & Davies, R. L. 1998, MNRAS, 295, L29
Mathews, W. G., & Brighenti, F. 1999a, ApJ, 526, 114
Mathews, W. G., & Brighenti, F. 1999b, ApJ, submitted
Oosterloo, T., Morganti, R., & Sadler, E. 1999, Publ. Astron. Soc. Australia, 16, 280
Prugniel, Ph., Golev, V., & Maubon, G. 1999, A&A, 346, L25
Renzini, A., & Ciotti, L. 1993, ApJ, 416, L49
Sarazin, C. L., & Ash, G. A. 1989, ApJ, 345, 22
Schweizer, F., & Seitzer, P. 1992, AJ, 104, 1039
Stanford, S. A., Eisenhardt, P. R., & Dickinson, M. 1998, ApJ, 492, 461
Thomas, P. A. 1986, MNRAS, 220, 949
Trager, S. C. 1997, Ph.D. thesis, Univ. California, Santa Cruz
van Dokkum, P. G., & Franx, M. 1996, MNRAS, 281, 985
van Dokkum, P. G., Franx, M., Kelson, D. D., & Illingworth, G. D. 1998a, ApJ, 500, 714
van Dokkum, P. G., Franx, M., Kelson, D. D., & Illingworth, G. D. 1998b, ApJ, 504, L17
Vedder, P. W., Trester, J. J., & Canizares, C. R. 1998, ApJ, 332, 725
Worthey, G. 1994, ApJS, 95, 107
Worthey, G. 1996, in IAU Symp. 171, New Light on Galaxy Evolution, ed. R. Bender & R. L. Davies (Dordrecht: Kluwer), 71
Ziegler, B. L., & Bender, R. 1997, MNRAS, 291, 527