Abstract

In physical education class, the movement of the human body requires multiple joints to cooperate, and a multi-link system coupling is presented. In the teaching of physical education curriculum, the impact of the force received by students jumping up and down shows the characteristics of the non-linear system of physics and mathematics. Aiming at the movement process of jumping up and down, we established a joint mathematical equation model of the motion state of the human lower limb joints. We use a non-linear system to solve the mathematical model of the joint force coupling problem of the human body jumping up and down.

Keywords: Physical education; exercise coupling model; lower limb system; landing moment; mathematical model

AMS 2010 codes: 70H20.

1 Introduction

Analyzing human movement from biomechanical characteristics is a multi-link chain system characteristic. Different joints play different roles in this multi-link limb chain. At present, there is not much research on the multi-joint motion chain of the lower limbs, and the mechanism of motion control is not precise. The kinematic characteristics of the knee joint when the human body falls from a height are important factors that affect the ground reaction force. The impact at the moment of landing is a complex physical process, and the human body is viscoelastic [1]. Therefore, the human body has a series of dynamic responses to the impact at the moment of landing. This article attempts to use the dominant joint decomposition theory to establish a collaborative mathematical model of the lower limb system at the moment of landing. This article hopes that the conclusions drawn in the thesis will provide a theoretical basis for analyzing the complex motion mechanism of lower limbs.

Tao Pang†

Hunan Communication Polytechnic, ChangSha, 410132, China

Submitted by Juan Luis García Guirao
Received April 12th 2021
Accepted July 7th 2021
Available online July 27th 2021

†Corresponding author.
Email address: pangtao3260@126.com

doi:10.2478/amns.2021.2.00022
2 Mathematical model of the foot and ankle joint at the moment of human landing

The thesis defines the moment when the foot and ankle joints are in two states during the moment when the human body lands from a height to land (using a single foot as the research object). The first state is when the toe touches the ground, and the second state is when the foot is flat [2]. The moment the toe touches the environment comes from the muscle Achilles tendon force. For the ankle system, it is the longitudinal internal force F, and on the vertical plane $F_1 + F_G = mg + F_G$ and $F_1 = mg$.

$$\begin{align*}
F_1 &= mg \\
F_1 l_1 \sin \alpha_1 &= F l_1 \cos \alpha_1 \\
F_G l_2 \sin \alpha_2 &= F l_2 \cos \alpha_2
\end{align*}$$

(1)

We put together formula (1) to get a mathematical model of the moment the toe touches the ground

$$\begin{align*}
F_1 &= mg \\
F &= F_1 \tan \alpha_1 \\
F_G &= F / \tan \alpha_2
\end{align*}$$

(2)

Fig. 1 Schematic diagram of the human body landing from the toe touching the ground to the foot lying flat.

For the second state, the foot is always flat, assuming that the human body maintains a balanced and static condition $F_1 + F_2 = mg$. Decomposing from the moment of the ankle joint we get:

$$\begin{align*}
F_1 l_1 \sin \alpha_1 &= F l_1 \cos \alpha_1 \\
F_2 l_2 \sin \alpha_2 &= F l_2 \cos \alpha_2
\end{align*}$$

(3)

Organize formula (2) to get

$$\begin{align*}
F_1 &= F / \tan \alpha_1 \\
F_2 &= F / \tan \alpha_2
\end{align*}$$

(4)

From this we get the mathematical model of the human foot and ankle joint

$$\begin{align*}
F_1 + F_2 &= mg \\
F_1 &= F / \tan \alpha_1 \\
F_2 &= F / \tan \alpha_2
\end{align*}$$

(5)

From model (2) and formula (5), the joint mathematical model of the ankle joint of the human body at the moment of landing impact is obtained. F_1 is the ground reaction force at the forefoot (forefoot). F_2 is the ground...
reaction force at the back of the foot (heel). m is the weight of the human body. g is the acceleration due to gravity. F is the resultant force of the longitudinal structure. l_1 The length from the sole to the center of the ankle joint. l_2 The distance from the sole of the back of the foot to the center of the ankle joint. α_1 is the angle between the line between the sole of the forefoot and the center of the ankle common and the vertical (y) direction. α_2 is the angle between the line from the sole of the back of the foot to the center of the ankle joint and the straight movement (y).

From this model, the longitudinal structural force of the foot can be calculated [3]. For the soles of the same size, the lower the arch (flat feet), the greater the angle between α_1 and α_2. The greater the longitudinal structural stress acting on the sole that maintains the integrity of the turn. This causes excessive pressure on the connective tissue of the plantar, and the clinical response is to cause plantar fascia disease. The moment the toe touches the ground, the force on the longitudinal arch structure increases significantly. At the same time, a significant internal pressure occurs at the Achilles tendon inside the ankle system. At this time, people with plantar fascia pain will adapt to the pathological condition.

3 Mathematical model of knee and hip system at the moment of impact of human landing

According to the leading joint decomposition theory, we disassemble the common knee axis. We assume that both the hip joint and the knee joint rotate shaft structures around the center [4]. The direction of the axis of rotation is perpendicular to the forward direction. The mathematical model of the knee joint is as follows:

$$
\begin{align*}
F_C \cos \theta_C &= m_C \alpha_C \cos \varphi_C \\
F_C \sin \theta_C &= m_C \alpha_C \sin \varphi_C + m_C g
\end{align*}
$$

Fig. 2 Schematic diagram of the force on the lower limb system at the moment of landing.

The mathematical model of the hip joint obtained by inverse dynamics is as follows:

$$
\begin{align*}
-F_C \cos \theta_C + F_D \cos \theta_D &= m_D \alpha_D \cos \varphi_D \\
-F_C \sin \theta_C + F_D \sin \theta_D &= m_D \alpha_D \sin \varphi_D + m_D g
\end{align*}
$$
We can obtain the combined mathematical model of the knee joint and hip joint torque from the angular movement of the calf around the knee joint

\[
\begin{align*}
M_C - m_C g C \cos \beta_C &= (I_C + m_C l_C^2) \alpha_C \\
M_D - M_C - m_D g D \cos \beta_D &= (I_D + m_D l_D^2) \alpha_D
\end{align*}
\]

(8)

\(F_C,F_D\) is the resultant force on the knee joint and hip joint, respectively. \(\theta_C, \theta_D\) is the angle between the knee joint and hip joint force and the horizontal direction \((x)\), respectively. \(M_C,M_D\) is the resultant moment on the knee joint and hip joint, respectively. \(m_C,m_D\) is the mass of calf and thigh, respectively. \(\alpha_C,\alpha_D\) is the angular acceleration of the knee joint and hip joint, respectively. \(I_C,I_D\) is the moment of inertia of the calf and thigh, respectively. \(g\) is the acceleration of gravity. The combined torque represents the movement of the joint flexor muscles [5]. Since the human body is a complex structure, muscle contraction causes it to produce a resultant moment.

4 Analysis of the mathematical model of the human body’s lower limb system motion coupling problem based on the Hamilton system

We assume \(f = \partial_\theta f\) and \(f' = \partial_{\varepsilon} f\), considering the dynamic coupling problem, that is, the Lagrange function is:

\[
L(\varepsilon) = \frac{F(R-r)}{2r^2} \varepsilon^2 + \frac{G}{2} \left((\varepsilon'')^2 + (\varepsilon')^2 + 2 \mu \beta \varepsilon + 2(1 - \mu) (\varepsilon')^2 \right) + \frac{N_r}{2} (\varepsilon')^2 - N_s a \varepsilon' \varepsilon
\]

(9)

We use the space coordinate to simulate the time coordinate \(t\), according to the Hamilton variational principle:

\[
\delta \int \left\{ \frac{F(R-r)}{2r^2} \varepsilon^2 + \frac{G}{2} \left((\varepsilon'')^2 + (\varepsilon')^2 + 2 \mu \beta \varepsilon + 2(1 - \mu) (\varepsilon')^2 \right) + \frac{N_r}{2} (\varepsilon')^2 - N_s a \varepsilon' \varepsilon \right\} rd\theta dx = 0
\]

(10)

We double-integrate the formula (2) to get:

\[
\delta \int \int \left\{ \frac{F(R-r)}{2r^2} \varepsilon^2 + \frac{G}{2} \left((\varepsilon'')^2 + (\varepsilon')^2 + 2 \mu \beta \varepsilon + 2(1 - \mu) (\varepsilon')^2 \right) + \frac{N_r}{2} (\varepsilon')^2 - N_s a \varepsilon' \varepsilon \right\} rd\theta dx = 0
\]

(11)

We set the initial variable \(q = \{\varepsilon, -\varepsilon\}\) and the dual variable \(p = \{p_1, p_2\}\). \(p_1 = Q_\theta = -D(\varepsilon'' + \varepsilon), p_2 = (M_r + M_\theta) / [1 + (R-r)] = -D(\varepsilon'' + \varepsilon), p_1\) is the equivalent shear force in the \(\theta\) direction and \(p_2\) is the comparable torsional moment in the \(\theta\) order [6]. The Hamilton function that we use the initial variable and the dual variable to express is:

\[
M(q,p) = p^T q - L(q,p) = -\frac{F(R-r)}{2r^2} \varepsilon^2 + \frac{1}{2G} p_2^2 + p_1 \varepsilon + p_2 \varepsilon'' - \frac{N_r}{2} (\varepsilon')^2 + N_s a \varepsilon' \varepsilon
\]

(12)

The Hamilton equation is described as follows:

\[
\begin{pmatrix}
\begin{bmatrix}
\dot{\varepsilon} \\
-\dot{\varepsilon}
\end{bmatrix} \\
\begin{bmatrix}
\dot{p}_1 \\
\dot{p}_2
\end{bmatrix}
\end{pmatrix} = \begin{bmatrix}
0 & -1 & 0 & 0 \\
\partial^2_\varepsilon & 0 & 0 & 1/D \\
-\delta M / \delta \varepsilon & \partial^2_\varepsilon & -N_s a \partial_\varepsilon \varepsilon & 0 - \partial^2_\varepsilon \\
\delta M / \delta \varepsilon & \partial^2_\varepsilon & N_s a \partial_\varepsilon \varepsilon & 0 & 1 & 0
\end{bmatrix} \begin{pmatrix}
\varepsilon \\
\begin{bmatrix}
-p_2 \\
p_1
\end{bmatrix}
\end{pmatrix}
\]

(13)
We abbreviate formula (13) as:

\[\dot{\psi} = H\psi \] \hspace{1cm} (14)

The entire state vector:

\[\psi = \{q^T, p^T\} = \{\varepsilon, -\dot{\varepsilon}, p_1, p_2\} \] \hspace{1cm} (15)

The operator matrix is:

\[
M = \begin{bmatrix}
0 & -1 & 0 & 0 \\
\partial_\varepsilon^2 & 0 & 0 & 1/G \\
\frac{E(R-r)}{r^2} + N_\theta \partial_\varepsilon & -N_\varepsilon \partial_\varepsilon \varepsilon & 0 & -\partial_\varepsilon^2 \\
N_\varepsilon \partial_\varepsilon & 0 & 1 & 0
\end{bmatrix}
\] \hspace{1cm} (16)

The identity matrix is expressed as

\[J = \begin{bmatrix} 0 & I_2 \\ -I_2 & 0 \end{bmatrix} \] \hspace{1cm} (17)

We have

\[\langle \psi_1, \psi_2 \rangle = \int_0^{x_c} \psi_1 J \psi_2 dx \] \hspace{1cm} (18)

\[\psi = \{\varepsilon, -\varepsilon, p_1, p_2\} \] forms a symplectic space vector. In the linear Hamilton system, we use the generalized variable separation method to make

\[\psi(x, \theta) = \phi(x) e^{\lambda \theta} \] \hspace{1cm} (19)

\(\phi(x) \) is the intrinsic solution, which is a function of x. The Eigen equation is expressed as follows:

\[H\phi = \lambda \phi \] \hspace{1cm} (20)

\[\phi(x) = \phi(x) e^{2\lambda \pi} \] \hspace{1cm} (21)

Among them, when \(\lambda = in(n = 0, \pm 1, \ldots) \), \(n = 0 \) is the eigenvalue \(\lambda = 0 \), the formula (12) becomes \(H\phi = 0 \). At this time, the characteristic equation is

\[\eta^4 - \frac{2n^2}{r^2} \eta^2 + \frac{n^4}{r^4} \frac{E(R-r)}{Dr^4} = 0 \] \hspace{1cm} (22)

\(\phi(x) \) has nothing to do with \(N_\varepsilon \theta \). When \(n \neq 0 \), the eigenvalue \(\lambda_n \neq 0, \phi_n(x) \) is a non-zero eigensolution. If \(\lambda_i + \lambda_j \neq 0 \), then

\[\langle \phi_i, \phi_j \rangle = \int_0^{x_c} \phi_i^T J \phi_j dx = 0 \] \hspace{1cm} (23)

Solutions \(\phi_i \) and \(\phi_j \) have a symplectic orthogonal relationship.

\[\langle \phi_i, \phi_j \rangle = \int_0^{x_c} \phi_i^T J \phi_j dx \neq 0 \] \hspace{1cm} (24)

The relationship between \(\phi_j \) and \(\phi_j \) is symplectic conjugate [7]. The vector space is complete, and any eigenstate vector can be represented by a combination of function eigenvectors.
\[\psi(x, \theta) = \sum_{n=0}^{\infty} \left[a_n \phi_n(x) e^{i n \theta} + b_n \phi - n(x) e^{-i n \theta} \right] \]

We can get this by solving the Eigen equation:

\[\phi_n(x) = \sum_{k=1}^{4} C_k x_k A_k^r(x) = \sum_{k=1}^{4} C_k x_k e^{\eta_k x} \]

\[\begin{bmatrix} \frac{1}{D} \left(r^2 + \eta^2 \right) \left[\frac{n^2}{r} - \frac{2n^2}{r^3} \right] + \frac{2n}{r^2} + \eta + \frac{n^4}{r^4} \frac{E(R-r)}{D} \end{bmatrix} e^{\eta_k x} \]

\[\eta_k, (k = 1, 2, 3, 4) \] is the undetermined Eigen coefficient [8]. The eigenvalue equation of symplectic space is shown below. \(\eta_k, (k = 1, 2, 3, 4) \) is the solution of the Eigen-characteristic equation in symplectic space.

\[\eta^4 + \left(\frac{N_k}{D} - \frac{2n^2}{r^2} \right) \eta^2 + \frac{2nN_x}{D} \eta + \frac{n^4}{r^4} \frac{E(R-r)}{D} = 0 \]

5 Simulation of calculation results of lower limb system at the moment of human landing impact

We simulate the action of the human body jumping from a height of 66 cm. The load is the mechanical parameter that occurs in the dynamic experiment [9]. When the subject is landing from a height, the angle between the extension line of the calf.

\[\text{Fig. 3 Schematic diagram of the simulation of a human body landing from the toe touching the ground to the foot lying flat.} \]

From the simulation results, it can be seen that the knee joint has an excellent cushioning effect on the vertical ground reaction force, and the angular velocity of the hip joint has an advantage in cushioning the horizontal backward reaction force.

We set the unit properties of the material of the parts and the contact between the components. The model setting boundary conditions and loads have been developed. During the simulation, a rotational load was applied to the femur during buckling [10]. We simulate the internal and external rotation of the femur, and the angle of internal and external rotation is gradually increased from 5° to 30°, as shown in Figure 4. We set the measurement parameters and then solve them. The result is shown in Figure 5 [11].

The landing method that reduces the maximum vertical reaction force has a greater degree of joint flexion than the proper landing method [12]. Therefore, the human body delays the cushioning of the landing process by increasing the degree of flexion of the joints and reduces the reaction force of the ground under the state of falling motion-fixed.

The skeletal muscle system of the lower limb system of the human body immediately reaches a large load during the landing. Therefore, the method used to control the reaction force must be activated before touching...
Fig. 4 Schematic diagram of the momentary load of the human lower limbs landing.

Fig. 5 The stress cloud surrounding the lower limbs of the human body at the moment of landing.

Thus, the muscles of the lower limbs of the human body enter the contraction state before the end of the link chain touches the ground, and the joint chain should be in a flexion state before touching the ground [13].
6 Conclusion

According to the decomposition theory of dominant joints, a joint mathematical model of the lower limb system of the human body is established at the moment of landing. Based on the Hamiltonian system, the mathematical model of the coupling problem of the lower limbs of the human body is analyzed. From the simulation results, it can be known that since the skeletal muscle system reaches a large load immediately when it touches the ground, the method used to control the reaction force must be activated before the ground touches.

References

[1] Trenchev, I., Mavrevski, R., Traykov, M., & Zajmi-Rugova, I. A mathematical model of movement in virtual reality through thoughts. International Journal of Electrical and Computer Engineering (IJECE)., 2020.10(6): 6592-6597
[2] Pastor, D., Campayo-Piernas, M., Pastor, J. T., & Reina, R. A mathematical model for decision-making in the classification of para-athletes with different severity of coordination impairments. Journal of sports sciences.,2019. 37(12): 1403-1410
[3] König, T., Kux, H. J., & Mendes, R. M. Shalstab mathematical model and WorldView-2 satellite images to identification of landslide-susceptible areas. Natural Hazards.,2019. 97(3): 1127-1149.
[4] Bapat, G. M., & Sujatha, S. A Two-Dimensional Mathematical Model to Simulate the Effects of Knee Center Misalignment in Lower-Limb Orthoses. JPO: Journal of Prosthetics and Orthotics.,2021. 33(1): 34-45
[5] Arguello, J. R., Laurent, S., & Clark, A. G. Demographic history of the human commensal Drosophila melanogaster. Genome biology and evolution.,2019. 11(3): 844-854
[6] Paterson, C., Clevers, H., & Bozic, I. Mathematical model of colorectal cancer initiation. Proceedings of the National Academy of Sciences.,2020. 117(34): 20681-20688
[7] Hatanaka, S., & Ishii, N. Proposal and validation of mathematical model for resistance training. The Journal of Physical Fitness and Sports Medicine.,2021. 10(2): 109-118
[8] Fakhrzad, M. B., & Goodarzian, F. A new multi-objective mathematical model for a Citrus supply chain network design: Metaheuristic algorithms. Journal of Optimization in Industrial Engineering.,2021. 14(2): 127-144
[9] Baskonus, H. M., Bulut, H., & Sulaiman, T. A. New complex hyperbolic structures to the long-range wave equation by using sine-gordon expansion method. Applied Mathematics and Nonlinear Sciences, 2019. 4(1): 141-150.
[10] Aidara, S. Anticipated backward doubly stochastic differential equations with non-Lipschitz coefficients. Applied Mathematics and Nonlinear Sciences, 2019. 4(1): 9-20.
[11] Ali, A., Hussain, M., Ghaffar, A., Ali, Z., Nisar, K. S., Alharthi, M. R., & Jamshed, W. Numerical simulations and analysis for mathematical model of avascular tumor growth using Gompertz growth rate function. Alexandria Engineering Journal.,2021. 60(4): 3731-3740
[12] Valnes, L. M., Mitsch, S. K., Ringstad, G., Eide, P. K., Funke, S. W., & Mardal, K. A. Apparent diffusion coefficient estimates based on 24 hours tracer movement support lymphatic transport in human cerebral cortex. Scientific reports.,2020. 10(1): 1-12
[13] Resmawan, R., & Yahya, L. Sensitivity analysis of mathematical model of coronavirus disease (COVID-19) transmission. Cauchy.,2020. 6(2): 91-99