BMJ Open

Sex difference in coronavirus disease (COVID-19): a systematic review and meta-analysis

Biruk Beletew Abate 1,1 Ayelign Mengesha Kassie 1,1 Mesfin Wudu Kassaw 1,1 Teshome Gebremeskel Aragie 1 Setamlak Adane Masresha 2

ABSTRACT

Objective To assess the sex difference in the prevalence of COVID-19 confirmed cases.

Design Systematic review and meta-analysis.

Setting PubMed, Cochrane Library and Google Scholar were searched for related information. The authors developed a data extraction form on an Excel sheet and the following data from eligible studies were extracted: author, country, sample size, number of female patients and number of male patients. Using STATA V.14 for analysis, the authors pooled the overall prevalence of men and/or women using a random-effect meta-analysis model. The authors examined the heterogeneity in effect size using Q statistics and I2 statistics. Subgroup and sensitivity analyses were performed. Publication bias was also checked.

Participants Studies on COVID-19 confirmed cases were included.

Intervention Sex (male/female) of COVID-19 confirmed cases was considered.

Primary and secondary outcome measures The primary outcome was prevalence of COVID-19 among men and women.

Results A total of 57 studies with 221 195 participants were used in the analysis. The pooled prevalence of COVID-19 among men was found to be 55.00 (51.43–56.58, I2=99.5%, p<0.001). Sensitivity analysis showed the findings were not dependent on a single study. Moreover, a funnel plot showed symmetrical distribution. Egger’s regression test p value was not significant, which indicates absence of publication bias in both outcomes.

Conclusions The prevalence of symptomatic COVID-19 was found to be higher in men than in women. The high prevalence of smoking and alcohol consumption contributed to the high prevalence of COVID-19 among men. Additional studies on the discrepancies in severity and mortality rate due to COVID-19 among men and women and the associated factors are recommended.

BACKGROUND

COVID-19, first identified in Wuhan, China in late 2019, has rapidly evolved and has resulted in a pandemic by the first quarter of 2020, as indicated by the substantial rise in the number of cases and the fast geographical spread of the disease.1–4 The WHO announced that the official name of the 2019 novel coronavirus is coronavirus disease (COVID-19).5 6 The virus has been named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by the International Committee on Taxonomy of Viruses.7 COVID-19 was declared by the WHO a public health emergency of international concern on 30 January 2020.8 COVID-19 affects people differently, in terms of infection with SARS-CoV-2 and in mortality rate.9 10

Susceptibility to symptomatic COVID-19 seems to be associated with age, biological sex and comorbidities.11 Although COVID-19 causes mild illness in a majority of cases, severe illness requiring hospital admission is not uncommon.12 Moreover, it has the potential to trigger a life-threatening critical illness, characterised by respiratory failure, circulatory shock, sepsis or other organ failure, requiring intensive care.13 14 According to Global Health 5050 data, the number of COVID-19 confirmed cases and the death rate due to the disease are high among men in different countries.15–17

A report in The Lancet and Global Health 5050 summary show that sex-disaggregated data are essential to understanding the distribution of risk, infection and disease in the population, and the extent to which sex and gender affect clinical outcomes.18 Moreover, knowing the degree to which outbreaks affect

Strengths and limitations of this study

► We used a prespecified protocol for search strategy and data abstraction.
► We used internationally accepted tools for critical appraisal to assess the quality of individual studies.
► Due to inclusion of studies published only in English, language bias is likely.
► Most of the included studies were from China due to lack of literature from other countries that reported on the outcome of interest.

To cite: Abate BB, Kassie AM, Kassaw MW, et al. Sex difference in coronavirus disease (COVID-19): a systematic review and meta-analysis. BMJ Open 2020;10:e040129. doi:10.1136/bmjopen-2020-040129

► Prepublication history and additional material for this paper are available online. To view these files, please visit the journal online (http://dx.doi.org/10.1136/bmjopen-2020-040129).

Received 06 May 2020
Revised 10 August 2020
Accepted 11 August 2020

© Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

1Nursing, Woldia University, Woldia, Amhara, Ethiopia
2College of Health Sciences, Department of Public Health, Woldia University, Woldia, Amhara, Ethiopia

Correspondence to Dr Biruk Beletew Abate; birukkelemb@gmail.com

Check for updates
women and men in different ways is an important step in generating effective, equitable policies and interventions. Since the emergence of COVID-19 in Wuhan, China in December 2019, it has quickly spread across China and numerous other countries. To date, COVID-19 has affected more than 193 countries, with 2,733,591 confirmed cases, including 191,185 deaths and 751,404 recoveries. While some previously published papers have shown sex variations, the findings are not conclusive due to inconsistencies in the prevalence of COVID-19 among men and women. Moreover, there is a lack of systematic review and meta-analysis that provides a worldwide clear picture of sex variations in the risk for COVID-19. Hence, this systematic review and meta-analysis was conducted to assess the pooled prevalence of COVID-19 among men and women.

Review question

The review question for this systematic review and meta-analysis is whether men are more susceptible to acquiring symptomatic COVID-19.

METHODS

Search strategy

This systematic review and meta-analysis identified studies that showed data on the proportion of men and women among COVID-19 confirmed cases. We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines to search electronic databases, presented in online supplemental file 1. We retrieved studies from Google Scholar, PubMed, Scopus, Web of Science, Cochrane Library, Research Gate and institutional repositories, as described in detail previously. The search included keywords which are combinations of population, condition/outcome and context. A snowball search for references of relevant papers was also performed. The following were the search terms and phrases included: ‘Novel coronavirus’, ‘Novel coronavirus 2019’, ‘2019 nCoV’, ‘COVID-19’, ‘Wuhan coronavirus’, ‘Wuhan pneumonia’ and ‘SARS-CoV-2’. Articles published in the English language from 1 January 2020 were considered. The search concluded on 27 March 2020, and four different researchers independently evaluated the search results. Using these key terms, the following search map was applied: (prevalence OR proportion OR magnitude) AND (Male OR Female) AND (Novel coronavirus OR Novel coronavirus 2019 OR 2019 nCoV OR COVID-19 OR Wuhan coronavirus OR Wuhan pneumonia OR SARS-CoV-2) AND COVID-19 confirmed patients, on PubMed database (online supplemental table S1). Thus, the PubMed search combines #1 AND #2 AND #3 AND #4, as shown in online supplemental table S1. The search date was from January 2000 to December 2019.

Study selection and screening

The retrieved studies were exported to EndNote V.8 reference managers to remove duplicate studies, as described in detail previously. Two investigators (BBA and AMK) independently screened the selected studies using the article’s title and abstract before retrieval of the full text. We used prespecified inclusion criteria to further screen full-text articles. Disagreements were discussed during a consensus meeting, and if necessary including the third and fourth researchers (MWA and TGA) to make the final decision on the studies to be included in the systematic review and meta-analysis.

Inclusion and exclusion criteria

Studies that reported on the proportion of men and/or women among confirmed patients with COVID-19 and published in the English language were included. Studies that did not report on the prevalence of men and/or women among confirmed patients with COVID-19 were excluded. Studies without abstract and/or full text, anonymous reports, editorials, and qualitative studies were excluded from the analysis. Prevalence was defined as the proportion of men and/or women among COVID-19 confirmed cases within a specific population, multiplied by 100.

Patient and public involvement

Patients or the public were not involved in the design, conduct, or reporting, or dissemination plans of our research.

Quality assessment

Using the Joanna Briggs Institute (JBI) Quality Appraisal Checklist, the authors appraised the quality of included studies. The papers were split among a team of four reviewers. Each paper was then assessed by two reviewers and any disagreements were discussed with the third and fourth reviewers. A study was considered as low risk or of good quality when it scored 4 and above, whereas a study that scored 3 and below was considered high risk or of poor quality, as described in detail previously (online supplemental table S2).

Data extraction

The authors developed a data extraction form on an Excel sheet and the following data from eligible studies were extracted: author, country, sample size, number of female patients and number of male patients, as described in detail previously. The data extraction sheet was piloted using four random papers, and it was adjusted after the template was piloted, as described in detail previously. Two of the authors extracted data in collaboration using the extraction form. The third and fourth authors independently checked the correctness of data. Any disagreements between the reviewers were resolved through discussions with third and fourth reviewers, as described in detail previously. Mistyping of data was resolved by crosschecking the included papers. Definitions of cases were as follows: (1) confirmed case: detection of SARS-CoV-2 nucleic acid in a clinical specimen; (2) possible case: any person with at least one of the following symptoms: cough, fever, shortness of breath,
or sudden onset of anosmia, ageusia or dysgeusia; and (3) probable case: any person with at least one of the following symptoms: cough, fever, shortness of breath, or sudden onset of anosmia, ageusia or dysgeusia, with close contact with a confirmed COVID-19 case in the 14 days prior to onset of symptom or having been a resident or a staff member in the 14 days prior to onset of symptoms in a residential institution for vulnerable people where ongoing COVID-19 transmission has been confirmed.

Synthesis of results
We transported the data to STATA V.14 for analysis after extracting the data in an Excel sheet, considering the reported prevalence of men and women. We pooled the overall prevalence of men and/or women using a random-effect meta-analysis model. We examined the heterogeneity in effect size using Q statistics and I² statistics. In this study, an I² statistic value of 0 indicates true homogeneity, whereas values of 25%, 50% and 75% represented low, moderate and high heterogeneity, respectively. Subgroup analysis was performed by study country and sample size. Sensitivity analysis was employed to examine the effect of a single study on the overall estimation. Publication bias was checked by a funnel plot and more objectively through Egger’s regression test.

RESULTS
Study selection
A total of 2574 studies were identified using electronic search (databases, n=2560; other sources, n=12). After removal of duplicates, a total of 1352 articles remained (1222 duplicates). Finally, 86 studies were screened for full-text review, and 57 articles (n=221 195 patients) were selected for analysis (figure 1). The citation manager automatically identifies duplicates and creates a separate group among the imported references which can be deleted. For different citations of the same paper, we screened and de-duplicated the citations by hand and recorded them on a Microsoft Excel spreadsheet after assessment of whether they have the same author, title, publication date, volume, issue, sample size and so on. The duplicate one was then removed.

Characteristics of the included studies
A total of 57 studies were included in the systematic review and meta-analysis.1 10 13 14 24 29–75 All studies were published in 2020, with sample size ranging from 976 to 78 77146 (table 1).

Meta-analysis
Prevalence of COVID-19 among men
All studies (n=57) with a total of 221 195 patients reported on the proportion of men and women with COVID-19.1 10 13 14 24 29–75 The prevalence of COVID-19 among men ranges from 37.5 in Liu et al32 to 77.08 in Chen et al.58 Random-effects model analysis from these studies revealed that the pooled prevalence of COVID-19 confirmed cases was 55.00 (51.43–56.58, I²=99.5%, p<0.001) (figure 2).

Subgroup analysis of COVID-19 confirmed cases among men
A subgroup analysis was performed through stratification by country, province, sample size and quality score. Based on this, the prevalence of COVID-19 was found to be 55.99 (51.99–59.99), 39.21 (34.85–43.84), 59.80 (59.16–60.44), 37.77 (36.31–39.24) and 50.00 (26.90–73.10) in China, Africa, Italy, Korea and Singapore, respectively (table 2 and online supplemental figure 1).

Figure 1
PRISMA flow diagram shows the results of the search and the reasons for exclusion. PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses.
Table 1 Characteristics of included studies of men and women among COVID-19 confirmed cases

Sr no	Author	Country	Study period	Sample size	Male	Female	Quality score	Reference
1	Li et al	China	January–February	83	44	39	6/9	29
2	Liu et al	China	11–20 January	12	8	4	9/9	30
3	Li et al	China	23 January–8 February	109	59	50	6/9	31
4	Liu et al	China	January–February	40	15	25	8/9	32
5	Wu et al	China	22 January–14 February	80	39	41	8/9	33
6	Xu et al	China	10–26 January	62	36	26	8/9	34
7	Xu et al	China	January–February	50	29	21	6/9	35
8	Yao et al	China	1 January–7 February	195	115	80	8/9	36
9	Young et al	China	22–31 January	18	9	9	6/9	37
10	Zhang et al	China	16 January–3 February	140	71	69	8/9	38
11	Zhang et al	China	18 January–3 February	9	5	4	7/9	39
12	Zhao et al	China	16 January–3 February	101	56	45	8/9	40
13	Zhu et al	China	1 December–15 February	12	8	4	7/9	41
14	Yanping et al	China	February 2020	44 672	22 981	21 691	8/9	42
15	Guan et al	China	February 2020	1099	640	459	7/9	43
16	WHO Africa	Africa	March 2020	482	189	177	7/9	44
17	Huang et al	China	January 2020	41	30	11	7/9	45
18	Chen et al	China	December 2020	99	67	32	6/9	46
19	Wang et al	China	March 2020	138	75	63	7/9	47
20	Kaiyuan et al	China	February 2020	507	281	201	6/9	48
21	Giwa and Desai	China	March 2020	78 771	57 482	21 289	9/9	49
22	Qian et al	China	March 2020	91	37	54	8/9	50
23	Livingston and Bucher	Italy	March 2020	22 512	13 462	9050	7/9	51
24	Wang et al	China	March 2020	110	48	62	6/9	52
25	KSID Korea	Korea	February 2020	4212	1591	2621	9/9	53
26	Su and Lai	China	March 2020	10	7	3	6/9	54
27	Dowd et al	China	March 2020	59 600	30 000	29 600	8/9	55
28	Kui et al	China	March 2020	137	61	76	8/9	56
29	Deng et al	China	March 2020	33	17	16	8/9	57
30	Dong et al	China	March 2020	135	72	63	6/9	58
31	Xiaoibo et al	China	March 2020	52	35	17	8/9	59
32	Zhou et al	China	March 2020	191	119	72	6/9	60
33	Wu et al	China	March 2020	297	147	150	8/9	61
34	Gao and Xia	China	January–February 2020	213	108	105	7/9	62
35	Chen et al	China	February 2020	291	145	146	8/9	63
36	Zhang et al	China	December 2019	221	108	113	7/9	64
37	Wu et al	China	March 2020	21	10	11	8/9	65
38	Cao et al	China	February 2020	128	60	68	7/9	66
39	Chung et al	China	March 2020	20	13	7	7/9	67
40	Xiao et al	China	March 2020	73	41	32	7/9	68
41	Qi et al	China	January–February 2020	267	149	118	6/9	69
42	Liang et al	China	February 2020	1590	911	679	7/9	70
43	Wang et al	China	February 2020	55	22	23	6/9	71
44	Easom et al	UK	April 2020	68	32	36	9/9	72
45	Mizumoto et al	Japan	March 2020	634	321	313	8/9	73

Continued
The pooled prevalence of COVID-19 among men in Wuhan, Shanghai, Hubei, Zhonghua, outside China, Zhejiang, Shenzhen, Jiangsu and Chongqing was 72.05 (95% CI 71.71 to 72.35, I²=96.6, p=0.00), 51.01 (95% CI 44.05 to 57.97), 50.40 (95% CI 50.1 to 50.80, I²=66.7, p=0.001), 54.07 (95% CI 51.63 to 56.51, I²=37.9, p=0.139), 53.17 (95% CI 52.81 to 53.53, I²=99.4, p=0.00), 46.45 (95% CI 39.10 to 53.81, I²=99.4, p=0.00), 63.52 (95% CI 51.64 to 75.40, I²=0.0, p=0.796), 44.84 (95% CI 35.99 to 53.68, I²=29, p=0.235) and 52.20 (95% CI 47.95 to 56.44, I²=65.1, p=0.09), respectively (table 2 and online supplemental figure 2).

With regard to quality score, the pooled prevalence of COVID-19 among men in studies which scored greater than or equal to 7 on the JBI Quality Appraisal Checklist was 53.66 (95% CI 49.23 to 58.09, I²=99.5, p=0.00), and 56.79 (95% CI 52.79 to 60.99, I²=94.7, p=0.00) among studies that scored less than 7 (table 2 and online supplemental figure 3).

With regard to sample size, the pooled prevalence of COVID-19 among men in studies with sample size greater than or equal to 848 was 53.86 (95% CI 47.09 to 60.63, I²=99.9, p=0.00) and 54.96 (95% CI 52.35 to 57.57, I²=64.5, p=0.00) among studies that scored less than 7 from the JBI Quality Appraisal Checklist (table 2 and online supplemental figure 4).

Sensitivity analysis
We employed a leave-one-out sensitivity analysis to identify the impact of individual research on the pooled prevalence of severe illness among COVID-19 confirmed cases. This sensitivity analysis showed that our findings were not dependent on a single study. Our pooled estimated prevalence of severe illness varied between 22.83 (19.12–26.53) in Li et al and 25.0 (19.87–30.13) in Yanping et al after deletion of a single study (figure 3).

Publication bias
We also checked for publication bias and a funnel plot showed symmetrical distribution. Egger’s regression test p value was 0.599. Both the symmetric funnel plot and the insignificant p value (<0.05) indicate absence of publication bias.

Meta-regression
Univariate meta-regression analyses revealed that the prevalence of smoking was found to be high among men. This contributed to the high prevalence of COVID-19 among men (p=0.002). Comorbidities such as hypertension (0.042), diabetes mellitus (0.012), chronic respiratory disease (0.021) and cardiovascular disease (0.001) were also found to be higher among men, and these significantly increased the prevalence of COVID-19. A higher proportion of severe/critical illness (0.003) and death (0.001) was also observed among men (table 3).

DISCUSSION
This systematic review and meta-analysis was conducted to assess the sex difference in acquiring COVID-19. Fifty-seven studies were included in the final analysis. This systematic review and meta-analysis revealed that the pooled prevalence of COVID-19 confirmed cases among men and women was 55.00 (51.43–56.58, I²=99.5%, p<0.001) and 45.00 (41.42–48.57), respectively. This indicates COVID-19 is more prevalent in men than in women.

Similar finding was reported in other studies. A study in Ontario, Canada showed that men were more likely to test positive. In Pakistan 72% of COVID-19 cases were male. According to Global Health 5050 data, the number of COVID-19 confirmed cases and the death rate due to the disease are high among men in different countries.
This might be because behavioural factors and roles which increase the risk of acquiring COVID-19 tend to be more common among men. Men are more involved in various risky behaviours, such as alcohol consumption, being involved in key activities during burial rites, and working in basic sectors and occupations that require them to continue being active, to work outside their homes and to interact with other people even during the containment phase (eg, food or pharmacy manufacturing and sales, agriculture or food production and distribution, transportation, and security). Because of this, men mostly do not stay at home, and sit together with other people and remove their mask to drink and smoke. This increased level of exposure predisposes men to a high risk of acquiring COVID-19. In China 50% of men smoke, and because it is considered not acceptable for women to smoke only 2% of them do so. Smoking is associated with adverse

Figure 2 Forest plot showing the pooled prevalence of COVID-19 confirmed cases among men. ES, Estimate.
outcomes of COVID-19. For instance, the combined results of five studies showed that smokers were 1.4 times more likely than non-smokers to have severe symptoms of COVID-19. Smoking is also related to a higher expression of ACE2 (the receptor for SARS-CoV-2), which might be the reason for the higher prevalence of COVID-19 in this subgroup of patients.

Men tended to develop more symptomatic and serious disease than women, according to the clinical classification of severity. Similar incidence occurred during the previous coronavirus epidemics: men had worse outcomes of illness from severe acute respiratory syndrome and a higher risk of dying from the Middle East respiratory syndrome. Biological sex variation is said to be one of the reasons for the sex discrepancy in COVID-19 cases, severity and mortality. Women are in general able to mount a more vigorous immune response to infections and vaccinations. Previous studies on coronaviruses in mice have suggested that oestrogen may have a protective role. Oestrogens suppress the escalation phase of the immune response that leads to increased cytokine release. Authors also showed that female mice treated with an oestrogen receptor antagonist died at close to the same rate as male mice.

The X chromosome is known to contain the largest number of immune-related genes in the whole genome. With their XX chromosome, women have a double copy of key immune genes compared with a single copy in XY in men. This boost extends both to the general reaction to infections (the innate response) and to the more specific response to microbes, including antibody formation (adaptive immunity). Thus women’s immune systems are generally more responsive to infections. This might mean women are able to tackle the novel coronavirus more effectively, but this has not yet been proven.

Table 2: Subgroup analysis of the pooled prevalence of COVID-19 by country, province, quality score and sample size.

Study omitted	Coef.	[95% Conf. Interval]
Cheng J et al	0.732	1.451 – 2.029
Xu et al	0.738	1.362 – 2.076
Liu F et al	0.738	1.362 – 2.076
Xia et al	0.738	1.362 – 2.076
Wang et al	0.738	1.362 – 2.076
Wu et al	0.738	1.362 – 2.076
Xiao et al	0.738	1.362 – 2.076
Gao F et al	0.738	1.362 – 2.076
Gao J et al	0.738	1.362 – 2.076
Gao Q et al	0.738	1.362 – 2.076
Guan et al	0.738	1.362 – 2.076
Tian et al	0.738	1.362 – 2.076
Tien S et al	0.738	1.362 – 2.076
Vamping et al	0.738	1.362 – 2.076
Qi D et al	0.738	1.362 – 2.076
Wang et al	0.738	1.362 – 2.076
Wu et al	0.738	1.362 – 2.076
Li et al	0.738	1.362 – 2.076
Xu et al	0.738	1.362 – 2.076
Wang et al	0.738	1.362 – 2.076
Wu et al	0.738	1.362 – 2.076
Livingston et al	0.738	1.362 – 2.076
Li et al	0.738	1.362 – 2.076
Chen et al	0.738	1.362 – 2.076
Huang et al	0.738	1.362 – 2.076
Wu et al	0.738	1.362 – 2.076
Young et al	0.738	1.362 – 2.076
Zhang et al	0.738	1.362 – 2.076
Zhang et al	0.738	1.362 – 2.076
Chen et al	0.738	1.362 – 2.076
Liu et al	0.738	1.362 – 2.076
Chen et al	0.738	1.362 – 2.076
Zhou et al	0.738	1.362 – 2.076
Liu et al	0.738	1.362 – 2.076
Yang et al	0.738	1.362 – 2.076

Combined 20.738 1.451 – 2.029
Moreover, the above-listed behavioural factors, such as smoking and alcohol consumption, tend to be more common among men, and these behaviours predispose men to cardiac and respiratory diseases. This may also explain the overall higher mortality rate among men. A systematic review and meta-analysis revealed that comorbid diseases such as respiratory system disease, hypertension and cardiovascular disease are risk factors for death.

CONCLUSIONS

The prevalence of symptomatic COVID-19 was found to be higher in men than in women. The high prevalence of smoking and alcohol consumption contributed to the high prevalence of COVID-19 among men, along with occupational exposures which prevent men from staying at home, as well as sitting together with other people and removing their mask to drink and smoke. This increased level of exposure predisposes men to a high risk of acquiring COVID-19, making it more prevalent among men. Smoking and drinking alcohol reduce overall health and therefore make an individual more susceptible to symptomatic COVID-19 infection. Although there has been a rapid surge in research in response to the COVID-19 outbreak, additional studies with regard to discrepancies in severe illness and mortality due to COVID-19 among men and women and the factors that determine exposure, severity and mortality due to COVID-19 are recommended.

Table 3 Meta-regression analysis showing factors which have an effect on sex difference in COVID-19

Variable	Event	Total	Male	Studies	Male (%)	Female (%)	P value
Smoking	2863	11 590	8693	19	75	25	0.002
Comorbidities							
Hypertension	46 546	169 694	101 410	46	59.7	40.3	0.042
Diabetes mellitus	24 773	176 952	125 768	48	71.1	28.9	0.012
Chronic respiratory disease	15 883	171 707	135 902	36	79	21	0.021
Cardiovascular disease	4352	174 085	152 276	39	81.7	18.3	0.001
Patient condition							
Severe/critical illness	38 128	158 870	105 322	49	66.3	33.7	0.003
Death	699 028	158 870	125 322	46	78.8	21.2	0.001

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement All data relevant to the study are included in the article or uploaded as supplementary information. The data sets analysed in the current study are available from the corresponding author upon reasonable request.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs

Biruk Beletew Abate http://orcid.org/0000-0003-0833-2504
Ayelign Mengesha Kassie http://orcid.org/0000-0003-1595-9390
Mesfin Wudu Kassaw http://orcid.org/0000-0002-6327-7723

REFERENCES

1. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497–506.
2. Ong SWX, Tan YK, Chia PY, et al. Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA 2020;323:1610–2.
3. Jiang X, Rayner S, Luo M-H, Luo Min-Hua. Does SARS-CoV-2 has a longer incubation period than SARS and MERS? J Med Virol 2020;92:476–8.
4. Li R, Pei S, Chen B, et al. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2). Science 2020;368:489–93.
5. Thompson R. Pandemic potential of 2019-nCoV. Lancet Infect Dis 2020;20:280.
6. Callisher C, Carroll D, Colwell R, et al. Statement in support of the scientists, public health professionals, and medical professionals of China combatting COVID-19. Lancet 2020;395:e42–3.
7. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 2020;5:536-544.
8. Zou X, Chen K, Zou J, et al. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med 2020;14:185–92.
9. Lai C-C, Shih T-P, W-C K, et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and corona virus disease-2019 (COVID-19): the epidemic and the challenges. Int J Antimicrob Agents 2020.
10. Xu X-W, Wu X-X, Jiang X-G, et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-CoV-2) outside of Wuhan, China: retrospective case series. BMJ 2020;368:m606.
11. Fehr AR, Channappanavar R, Perlman S. Middle East respiratory syndrome: emergence of a pathogenic human coronavirus. Annu Rev Med 2017;68:387–99.
Zhao W, Zhong Z, Xie X, et al. Relation between chest CT findings and clinical conditions of coronavirus disease (COVID-19) pneumonia: a multicenter study. *AJR Am J Roentgenol* 2020;214:1072–7.

Zhu Z, Tai, Thomas Chai X, et al. Comparison of heart failure and 2019 novel coronavirus pneumonia in chest CT features and clinical characteristics. *Zhonghua xin xue Guang Bing za zhi* 2020;48.

Mizumoto K, Kagaya K, Zarebski A, et al. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the diamond Princess cruise ship, Yokohama, Japan, 2020. *Euro Surveill* 2020;25.

Cai Q, Huang D, Ou P, et al. COVID-19 in a designated infectious diseases Hospital outside Hubei Province, China. *Allergy* 2020;75:1742–52.

Organization WH. COVID-19 who african region: external situation report 04. 2020.

Kim PS, Reicin AS. Discontinuation of Viroxx. *Lancet* 2005;365:23; 73–7.

Chinazzi M, Davis JT, Ajelli M, et al. The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. *Science* 2020;abab9577.

Giwa A, Desai A. Novel coronavirus COVID-19: an overview for emergency clinicians. *Emerg Med Prat COVID* 2019–2020.

Qian G-Q, Yang N-B, Ding F, et al. Epidemiologic and clinical characteristics of 91 hospitalized patients with COVID-19 in Zhejiang, China: a retrospective multi-centre case series. *medRxiv* 2020.

Livingston E, Bucher K. Coronavirus disease 2019 (COVID-19) in Italy. *JAMA* 2020;323:1335.

Wang Y, Liu Y, Liu L, et al. Clinical outcome of 55 asymptomatic cases at the time of hospital admission infected with 2019 novel coronavirus (SARS-CoV-2) in Shenzhen, China. *J Infect Dis* 2020.

Nicastri E, Petrosillo N, Ascoli Bartoli T, et al. National institute for the infectious diseases "L. Spallanzani", IRCCS. Recommendations for COVID-19 clinical management. *Infect Dis Rep* 2020;12:8543.

Su Y-J, Li Y-C. Correlation of clinical characteristics of coronavirus disease (COVID-19) and severe acute respiratory syndrome (SARS) as experienced in Taiwan. *Travel Med Infect Dis* 2020;36:101625.

Dowd JB, Andriano L, Brazel DM, et al. Demographic science AIDS in understanding the spread and fatality rates of COVID-19. *Proc Natl Acad Sci U S A* 2020;117:9696–8.

Liu K, Fang Y-Y, Deng Y, et al. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province. *Chin Med J* 2020;133:1025–31.

Deng L, Li C, Zeng Q, et al. Arbidol combined with LPV/r versus LPV/r alone against corona virus disease 2019: a retrospective cohort study. *J Infect* 2020;81:1–5.

Dong X, Li J, Bai J, et al. Epidemiological characteristics of confirmed COVID-19 cases in Tianjin. *Zhonghua liu Xing Bing xue za zhi* 2020;41:6384; 42.

Wu Y, Guo W, Liu H, et al. Clinical outcomes of 402 patients with COVID-19 from a single center in Wuhan, China. *J Med Virol* 2020;43.

Gao Q, Xiao F. The epidemiological characteristics of 2019 novel coronavirus diseases (COVID-19) in Jingmen, Hubei, China. *medRxiv* 2020.

Chen X, Zheng F, Geng Y, et al. Epidemiological and clinical features of 291 cases with coronavirus disease 2019 in areas adjacent to Hubei, China: a double-center observational study. *medRxiv* 2020.

Zhang G, Hu C, Luo L, et al. Clinical features and outcomes of 221 patients with COVID-19 in Wuhan, China. *medRxiv* 2020.

Xu Z, Wu W, Jin YB, et al. Key points of clinical and CT imaging features of 2019 novel coronavirus (2019-nCoV) imported pneumonia based on 21 cases analysis. *SSRN Journal* 2020.

Cao M, Zhang D, Wang Y, et al. Clinical features of patients infected with the 2019 novel coronavirus (COVID-19) in Shanghai, China. *medRxiv* 2020.

Chung M, Bernheim A, Mei X, et al. CT imaging features of 2019 novel coronavirus (2019-nCoV). *Radiology* 2020;295:202–7.

Xiao R, Tang M, Zheng X, et al. Evidence for gastrointestinal infection of SARS-CoV-2. *medRxiv* 2020.

Qi D, Yan X, Tang X. Epidemiological and clinical features of 2019-nCoV acute respiratory disease cases in Chongqing municipality, China: a retrospective, descriptive, multiple-center study, 2020.

Liang W, Guan W, Chen R, et al. Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China. *Lancet Oncol* 2020;21:335–7.

Wang Y, Zhou Y, Yang Z, et al. Clinical characteristics of patients with severe pneumonia caused by the 2019 novel coronavirus in Wuhan, China. *medRxiv* 2020.

Easmon N, Moss P, Barlow G, et al. Sixty-eight consecutive patients assessed for COVID-19 infection: experience from a UK
Open access

regional infectious diseases unit. Influenza Other Respi Viruses 2020;14:374–9.
68 Chen X, Zhao B, Qu Y, et al. Detectable serum SARS-CoV-2 viral load (RNAemia) is closely associated with drastically elevated interleukin 6 (IL-6) level in critically ill COVID-19 patients. medRxiv. 2020.
69 Cheng J, Huang C, Zhang G, et al. Epidemiological characteristics of novel coronavirus pneumonia in Henan. Zhonghua jie he he hu xi za zhi 2020;43:E027.
70 Tian S, Hu N, Lou J, et al. Characteristics of COVID-19 infection in Beijing. J Infect 2020;80:401–6.
71 Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N Engl J Med 2020;382:1199–207.
72 Cao W. Clinical features and laboratory inspection of novel coronavirus pneumonia (COVID-19) in Xiangyang, Hubel. medRxiv. 2020.
73 Wang Y, Li X, Huang C, et al. Clinical features of patients infected with, 2019: 497–506.
74 Jian-ya G. Clinical characteristics of 51 patients discharged from hospital with COVID-19 in Chongqing, China. medRxiv. 2020.
75 Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA 2020;323:1061.
76 Chen H, Guo J, Wang C, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet 2020;395:809–15.
77 Alon TM, Doepke M, Olmstead-Rumsey J, et al. The impact of covid-19 on gender equality. National Bureau of economic research, 2020.
78 Sun P, Lu X, Xu C, et al. Understanding of COVID-19 based on current evidence. J Med Virol 2020;92:548–51.
79 Stail NM, Wu W, Lapointe-Shaw L, et al. Sex-specific differences in COVID-19 testing cases and outcomes: a population-wide study in Ontario, Canada. medRxiv. 2020.
80 Lochlann MN, Lee KA, Sudre CH, et al. Key predictors of attending hospital with COVID19: an association study from the COVID symptom Tracker APP in 2,618,948 individuals. medRxiv. 2020.
81 Adams RB. Gender equality in work and Covid-19 deaths. Covid Economics 2020;16:23–60.
82 Wilsnack RW, Wilsnack SC, Kristjanson AF, et al. Gender and alcohol consumption: patterns from the multinational GENACIS project. Addiction 2009;104:1487–500.
83 Schulte MT, Ramo D, Brown SA. Gender differences in factors influencing alcohol use and drinking progression among adolescents. Clin Psychol Rev 2009;29:535–47.
84 Ely M, Hardy R, Longford NT. Gender differences in the relationship between alcohol consumption and drink problems are largely accounted for by body water. Alcohol and Alcoholism 1999:34:894–902.
85 Vardavas C, Nikitara K. COVID-19 and smoking: a systematic review of the evidence. Tob Induc Dis 2020;18.
86 Cai H. Sex difference and smoking predisposition in patients with COVID-19. Lancet Respir Med 2020;8:e20.
87 Karlberg J, Chong DSY, Lai WYY. Do men have a higher case fatality rate of severe acute respiratory syndrome than women do? Am J Epidemiol 2004;159:229–31.
88 Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol 2016;16:826–38.
89 Wei X, Xiao Y-T, Wang J, et al. Sex differences in severity and mortality among patients with COVID-19: evidence from pooled literature analysis and insights from integrated bioinformatic analysis. arXiv 2020;200313547.
90 Lotter H, Altfeld M. Sex differences in immunity. seminars in immunopathology. Springer, 2019.
91 Taghizadeh-Hesary F, Akbari H. The powerful immune system against powerful COVID-19: a hypothesis, 2020.
92 Cutole M, Sulli A, Seriolo B, et al. Estrogens, the immune response and autoimmunity. Clin Exp Rheumatol 1995;13:217–26.
93 Granó N, Virtanen M, Vahtera J, et al. Impulsivity as a predictor of smoking and alcohol consumption. Pers Individ Dif 2004;37:1693–700.
94 Wong DR, Willett WC, Rimm EB. Smoking, hypertension, alcohol consumption, and risk of abdominal aortic aneurysm in men. Am J Epidemiol 2007;165:838–45.
95 Yang J, Zheng Y, Gou X, et al. Prevalence of comorbidities in the novel Wuhan coronavirus (COVID-19) infection: a systematic review and meta-analysis. Int J Infect Dis 2020;94:91–5.