Two new asexual genera and six new asexual species in the family Microthyriaceae (Dothideomycetes, Ascomycota) from China

Min Qiao¹, Hua Zheng¹,², Ji-Shu Guo¹,², Rafael F. Castañeda-Ruiz³, Jian-Ping Xu¹,⁴, Jie Peng¹,², Ke-Qin Zhang¹, Ze-Fen Yu¹

¹ Laboratory for Conservation and Utilization of Bio-resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, China ² School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China ³ Instituto de Investigaciones Fundamentales en Agricultura Tropical “Alejandro de Humboldt” (INIFAT), 17200, La Habana, Cuba ⁴ Department of Biology, McMaster University, Hamilton, Ontario, L8S 4K1, Canada

Corresponding author: Zefen Yu (zfyu@ynu.edu.cn)

Academic editor: Xinlei Fan | Received 29 June 2021 | Accepted 9 November 2021 | Published 29 November 2021

Citation: Qiao M, Zheng H, Guo J-S, Castañeda-Ruiz RF, Xu J-P, Peng J, Zhang K-Q, Yu Z-F (2021) Two new asexual genera and six new asexual species in the family Microthyriaceae (Dothideomycetes, Ascomycota) from China. MycoKeys 85: 1–30. https://doi.org/10.3897/mycokeys.85.70829

Abstract

The family Microthyriaceae is represented by relatively few mycelial cultures and DNA sequences; as a result, the taxonomy and classification of this group of organisms remain poorly understood. During the investigation of the diversity of aquatic hyphomycetes from southern China, several isolates were collected. These isolates were cultured and sequenced and a BLAST search of its LSU sequences against data in GenBank revealed that the closest related taxa are in the genus Microthyrium. Phylogenetic analyses, based on the combined sequence data from the internal transcribed spacers (ITS) and the large subunit (LSU), revealed that these isolates represent eight new taxa in Microthyriaceae, including two new genera, Antidactylaria gen. nov. and Isthmomyces gen. nov. and six new species, Antidactylaria minifimbriata sp. nov., Isthmomyces oxysporus sp. nov., I. dissimilis sp. nov., I. macrosporus sp. nov., Triscelophorus anisopterioides sp. nov. and T. sinensis sp. nov. These new taxa are described, illustrated for their morphologies and compared with similar taxa. In addition, two new combinations are proposed in this family.

Keywords

Aquatic hyphomycetes, asexual genera, Microthyriaceae, phylogeny
Introduction

The family Microthyriaceae (Microthyrales, Dothideomycetes) was established by Saccardo (1883), containing foliar epiphytes and saprobes on dead leaves and stems (Wu et al. 2011a). This family is characterised by having superficial, flattened thyriothecia, with cells of the upper wall radiating in a parallel arrangement from the central ostiole opening; the ostiole may or may not be surrounded by setae. Ascii are fusiform or obclavate to cylindro-clavate, bitunicate and fissitunicate and ascospores are two-celled, hyaline to brown often with ciliate appendages (Ashton 2009; Wu et al. 2011a; Hyde et al. 2013). Ashton et al. (2009) estimated that there were 54 genera and 278 species in the family. In a subsequent series of papers, Wu et al. (2010, 2011a, b, c 2014) revised Microthyriaceae by examining the generic type species and restricted Microthyriaceae to the species with morphological characteristics similar to Microthyrium Desm. Based on morphological characteristics, 11 genera and about 230 species were listed in this family (Wijayawardene et al. 2014), but in a subsequent outline of Ascomycota, only nine genera were accepted (Wijayawardene et al. 2018a). Recent studies accepted 11 genera in this family (Hongsanan et al. 2020; Wijayawardene et al. 2020).

Microthyriaceae have been poorly studied and there are few DNA sequences in public databases for this group of fungi. In the expanded multigene phylogeny of the Dothideomycetes, Microthyriaceae was not included because of the paucity of DNA sequences (Schoch et al. 2006). In the class-wide phylogenetic assessment of Dothideomycetes, Schoch et al. (2009) included Microthyriaceae, based on Microthyrium microscopicum Desm. (type species of Microthyriaceae). One major contributing reason for the absence of DNA sequences is that few living cultures are available. As a result, researchers might have assumed that many of these species were obligate parasites and could not be cultured (Wu et al. 2011a). Later, Hongsanan et al. (2014) isolated cultures of Chaetothyriothecium elegans Hongsanan & K.D. Hyde and Tumidispora shoreae Hongsanan & K.D. Hyde (Ariyawansa et al. 2015), but failed to observe anamorphs of the two species. Wu et al. (2014) tried to isolate fresh cultures of Microthyrium propagulensis H.X. Wu & K.D. Hyde, but did not observe the germination of ascospores. Based on these situations, asexual genera of Microthyriaceae were recorded only from the literature. Before Wu revised Microthyriaceae, Asterostomula Theiss. and seven other genera were described as asexual morphs (Hyde et al. 2011; Wijayawardene et al. 2012). With the exclusion of many genera from Microthyriaceae (Wu et al. 2010, 2011a, b, c), only Hansfordiella S. Hughes was retained as an asexual genus in Microthyriaceae (Wijayawardene et al. 2018a), but this connection was not confirmed by molecular data because sequences of Hansfordiella were unavailable. Moreover, Hansfordiella was recorded as the asexual state of Trichothyrium Speg., which belongs to Trichothyriaceae (Ashton 2009; Hyde et al. 2011, 2013; Wijayawardene et al. 2012, 2017).

In the early 1990s, molecular methods, in particular DNA sequence data, provided opportunities for phylogenetic inference and have made a significant impact on the taxonomy and classification of fungi (Shenoy et al. 2007). More importantly,
sequence analysis can potentially place an asexual-state taxon within an order or even link it with a teleomorph genus without having to observe the latter (e.g. in Berbee and Taylor 2001). The linkages between asexual and sexual genera have accumulated during implementation of the “One fungus: One name” concept, allowing the asexual genera to be placed in a natural biological framework of fungi (Wijayawardene et al. 2014, 2018a; Maharachchikumbura et al. 2015). However, the phylogenetic position of about 1530 genera in Ascomycota still remains incertae sedis (Wijayawardene et al. 2018a).

Aquatic hyphomycetes colonise allochthonous organic matter in fresh waters and are closely involved in the decomposition and conversion of biopolymers in aquatic habitats (Brlocher 1992). They are a polyphyletic group of fungi, mainly consisting of asexual morphs of Ascomycota and Basidiomycota, which have been identified, based on conidium morphology and conidiogenesis (Belliveau and Barlocher 2005). Molecular approaches applied to phylogeny of aquatic hyphomycetes place some genera in a defined class and found multiple origins of aquatic hyphomycetes. Specifically, seven strains (five species) of Tetracladium De Wild. showed close relationships to the Ascomycete orders Onygenales, Erysiphales and Leotiales (Nikolcheva 2002), but subsequently, Baschien (2006) found Tetracladium located in Leotiomycetes, based on combined ITS and 28S analyses. Besides, studies of 31 species of aquatic hyphomycetes placed the majority (74%) within the Leotiomycetes (Belliveau and Barlocher 2005; Campbell et al. 2006). Duarte et al. (2015) constructed an ITS phylogenetic tree for 79 aquatic hyphomycetes, and found Tricladium Ingold and Triscelophorus Ingold are not monophyletic. Of course, with the availability of more and more reference sequences and the establishment of backbone trees of some classes, new aquatic hyphomycetes related to monophyly have been published with confirmed phylogenetic positions (Pratibha et al. 2015; Liu et al. 2016; Su et al. 2016; Qiao et al. 2018a; Wijayawardene et al. 2018a). Although these studies promoted phylogenetic development of aquatic hyphomycetes, the phylogenetic positions of most aquatic hyphomycetes have not been determined at the family level (Wijayawardene et al. 2018a).

In recent years, we have investigated the diversity and phylogeny of aquatic hyphomycetes from southern China which is a hot spot of world biodiversity, such as Yunnan, Sichuan, Guizhou, Guangdong and Hainan Provinces. Many new species collected from these regions have been described (Yang et al. 2011, 2012; Bai et al. 2013; Li et al. 2013, 2014; Guo et al. 2015, 2019; Qiao et al. 2017a, b, 2018b, 2019a, b, c, 2020; Peng et al. 2016; Yu et al. 2019; Zheng et al. 2020a, 2021a). In addition, several interesting isolates were collected. These isolates were cultured and sequenced and a BLAST search of its LSU sequences against data in GenBank revealed that the closest related taxa are in the genus Microthyrium. Based on the phylogenetic analysis combined with the internal transcribed spacers (ITS) and the large subunit (LSU) gene sequences and morphological features, two new genera and six new species are proposed within Microthyriaceae. In addition, we also collected Isthmolongispora quadricellularis isolates and describe and illustrate it here.
Methods

Collection of samples, fungal isolation and morphological characterisation

Submerged leaves were collected from streams in Guangdong, Hainan Provinces and Tibet region. Samples were preserved in zip-locked plastic bags, labelled and transported to the laboratory at 4 °C. Each leaf was cut into several 3–4 × 4–5 cm-sized fragments, then these fragments were incubated on corn meal agar (CMA; 20 g cornmeal, 18 g agar, 40 mg streptomycin, 30 mg ampicillin, 1 litre distilled water) plates for 5 days at room temperature. Individual conidia were isolated using a sterilised toothpick under a BX51 microscope and cultivated on CMA plates. Morphological characteristics were observed from cultures growing on CMA and potato dextrose agar plates (PDA; 200 g potato, 20 g dextrose, 18 g agar, 1 litre distilled water) after incubation at 25 °C for one week. Microscopic photographs coming from CMA medium were taken with an Olympus BX51 microscope connected to a DP controller digital camera.

The pure cultures and dried cultures were deposited in the Herbarium of the Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming (YMF) and the China General Microbiological Culture Collection Center (CGMCC).

DNA extraction, PCR amplification and sequencing

Genomic DNA was extracted from fresh mycelia grown on PDA at 25 °C as described by Turner et al. (1997). Fragments of the internal transcribed spacers (ITS) and the large subunit nuclear ribosomal RNA gene (LSU rRNA) were amplified with the following primer pairs: ITS4 and ITS5 for ITS (White et al. 1990) and LROR/LR7 (Vilgalys and Hester 1990), respectively. Each 25 μl PCR reaction volume consisted of 12.5 μl T5 Super PCR Mix (Beijing TsingKe Biotech Co., Ltd., Beijing, China), 1 μl of forward primer (10 μM), 1 μl of reverse primer (10 μM), 1μl DNA template, 5 μl of PCR buffer and 4.5 μl sterile water. The PCR thermal cycle programmes for the amplifications of these three DNA fragments followed those described in Su et al. (2016). PCR products were visualised on 1% agarose gel stained with Goldview (Geneshun Biotech, China) with D2000 DNA ladder (Realtimes Biotech, Beijing, China) and were then purified using a commercial Kit (Biotek Biotechnology Co., Ltd., Beijing, China). DNA forward and reverse sequencing was performed with a LI-COR 4000L automatic sequencer with the same primers, using a Thermo Sequenase-kit as described by Kindermann et al. (1998). Finally, these new obtained sequences were deposited in the GenBank database at the National Center for Bio-technology Information (NCBI) and the accession numbers are listed in Table 1.
Two new genera and six new species in the family Microthyriaceae

Table 1. Species, strains and their corresponding GenBank accession numbers of sequences used for phylogenetic analyses. Newly-generated sequences are in bold.

Name	Strain	GenBank accession number
Antidactylaria ampulliforma	CBS223.59	MH869386 MH857845
Antidactylaria ampulliforma	P004	EU107302
Antidactylaria ampulliforma	P038	EU107303
Antidactylaria minifimbriata	CGMCC 3.18825 = YMF 1.04578	MK577808 MK569506
Chaetothyriothecium elegans	CPC 21375	KF268420
Hamatipospora phuquocensis	VICCF 1219	LC064073 LC064074
Helioccephala elegans	MUCL 39003	HQ333478 HQ333478
Helioccephala gracilis	MUCL 41200	HQ333479 HQ333479
Helioccephala natarajanii	MUCL 45745	HQ333480 HQ333480
Helioccephala zimbabweensis	MUCL 40019	HQ333481 HQ333481
Isthmomyces dissimilis	CGMCC 3.18826 = YMF 1.04604	MK577811 MF740794
Isthmomyces lanceatus	CBS 622.66	MH870563 MH858897
Isthmomyces lanceatus	YMF 1.04514	MK577813 MK577895
Isthmomyces lanceatus	CGMCC 3.18827	MK577814 MK577896
Isthmomyces macrosporus	YMF 1.04518 = CGMCC 3.18824 = YMF 1.04794	MK577812 MF740796
Isthmomyces oxyxyporus	CGMCC 3.18821 = YMF 1.04513	MK577810 MF740793
Lichenopeltella pinophylla	CBS 143816	MG844152
Microthyrium buxicola	MFLUCC 15-0212	KT306551
Microthyrium buxicola	MFLUCC 15-0213	KT306552
Microthyrium chimonense	HKAS 92487	KY911453
Microthyrium fici-septicae	NCYUCC 19-0038	MW063251
Microthyrium fici-septicae	MFLUCC 20-0174	MW063252
Microthyrium ilicinum	CBS 143808	MG844151
Microthyrium macrosporum	CBS 143810	MG844159
Microthyrium microsporicum	CBS 115976	GU301846
Microthyrium propagulensis	IFRD 9037	KU948098
Natispusilla decoropora	AF236-1	HM196369
Natispusilla naponense	AF217-1	HM196371
Neanuningtea eucalypti	CBS 143173	MG386031 MG386031
Neocoleobasidium agapanthi	CPC 28778	KY173517 KY173426
Ochoconis dracaeae	CPC 26115	KX228334 KX228283
Parazalerion indica	CBS 125443	MH874977 MH863483
Phaeotrichum benjaminsii	CBS 541.72	AY004340 MH860561
Pseudomicrothyrium thailandicum	MFLU 14-0286	MT741680
Pseudopenidiella gallaecia	CBS 121796	LT984843 LT984842
Pseudopenidiella piceae	CBS 131453	JX069852 JX069868
Schismatomma decolorens	DUKE 47570	AY548815 AY548808
Scolioconidium tropicae	CBS 380.87	KF156102
Sympoventuria capensis	CBS 120136	KF156104 DQ885906
Trichodelitschia bisporula	CBS 262.69	GU348996 MH859305
Triscelophorus anisopteroides	CGMCC 3.18978 = YMF 1.04267	MK577818 MK569511
Triscelophorus monoporus	CBS 440.54	MH868925
Triscelophorus sinensis	YMF 1.04065	MK577820 MK569513
Tumidiporia shoreae	MFLUCC 12-0409	KT314073
Tumidiporia shoreae	MFLUCC 14-0574	KT314074
Venturia inaequalis	CBS 594.70	GU301879 KF156040
Zelosperisporium ficusicola	MFLUCC 15-0221	KT387733
Zelosperisporium hyphopodioides	CBS 218.95	EU035442 EU035442
Zelosperisporium siamense	IFRDCC 2194	JQ036228
Sequence alignment and phylogenetic analysis

Preliminary searches with newly-generated LSU and ITS gene sequences of these isolates against National Center for Biotechnology Information (NCBI) by the Basic Local Alignment Search Tool (BLAST) determined species closely related to our isolates. Based on this information, sequences of ITS and LSU were downloaded from Microthyriaceae and four sister orders belonging to Dothideomycetes, including 48 strains representing 35 species (Table 1), according to recent studies (Hongsanan et al. 2020; Iturrieta-González et al. 2020). *Schismatomma decolorans* (Erichsen) Clauzade & Vězda was used as the outgroup taxon.

For Microthyriaceae, the phylogenetic analysis was based on the combined ITS and LSU sequences. DNA sequence data of ITS and LSU were aligned using Clustal X 1.83 (Thompson et al. 1997) with the default parameters, then the consensus sequences were manually adjusted and linked through BioEdit v.7.0 (Hall 1999). Manual gap adjustments were carried out to improve the alignment and ambiguously-aligned regions were also excluded. We finally obtained the combined sequence matrix (Fasta file) generated by BioEdit v.7.0, containing 1119 nucleotide positions from two genes and the matrix was uploaded to TreeBASE (www.treebase.org; accession number: S28086). Bayesian Inference (BI) and Maximum Likelihood (ML) were used in this study for phylogenetic analyses. BI analysis was conducted with MrBayes v.3.2.2 (Ronquist et al. 2012) with NEXUS files converted by MEGA6 (Tamura et al. 2013). The Akaike Information Criterion (AIC) implemented in jModelTest 2.0 (Posada 2008) was used to select the best fit models after likelihood score calculations were done. GTR+F+I+G4 was estimated as the best-fit model under the output strategy of AIC. The parameters used were two simultaneous runs of 1,000,000 generations, four Markov chains, sampled every 500 generations. The 50% majority-rule consensus tree and posterior probability values (PP) were calculated after discarding the first 25% of the samples. ML analysis was computed by RAxML (Stamatakis 2006), using the GTR-GAMMA model. Maximum Likelihood bootstrap proportions (MLBP) were computed with 1000 replicates. Trees were visualised in FigTree 1.4.3 (http://tree.bio.ed.ac.uk/software/Figtree/, June 2021). Bayesian Inference posterior probabilities (BIPP) ≥ 0.9 and Maximum Likelihood bootstrap proportions (MLBP) ≥ 70% are indicated at nodes.

Results

Phylogenetic analyses

The phylogenetic tree, based on a combined sequence of the LSU and ITS, indicated that eight isolates belong to the Microthyriaceae (Fig. 1). After detailed observations of morphological features, these isolates were considered as six new species and one known species. In this tree, five isolates grouped with *Isthmolongispora lanceata* CBS 622.66 with
Two new genera and six new species in the family Microthyriaceae

good support (MLBP/BIPP = 100%/1.0). Combined with morphological differences, we proposed the new genus *Isthmomyces* to accommodate the three new species, designated as *I. dissimilis*, *I. macrosporus* and *I. oxysporus* and a new combination *I. lanceatus*. Two isolates, which clustered with *Triscelophorus monosporus* CBS 440.54 (MLBP/BIPP = 91%/1.0), were considered as two new *Triscelophorus* species, designated as *Triscelophorus anisopteriodeus* and *T. sinensis*. The isolate YMF 1.04578 is phylogenetically close to *Isthmolongispora ampulliformis* (MLBP/BIPP = 77%/0.96). Considering morphological characters, we proposed a new genus *Antidactylaria* to accommodate the new species *A. minifimbriata* and the new combination *A. ampulliforma*.

Figure 1. Phylogenetic tree generated by the Maximum Likelihood (ML) analysis using combined sequences of the nuclear large subunit (LSU) and the internal transcribed spacers (ITS) gene. Bootstrap support values for ML over 70% and Bayesian posterior probabilities greater than 0.9 are indicated above or below the nodes as MLBP/BIPP. *Schismatomma decolorans* strain DUKE 47570 is used as the outgroup. Novel species are indicated in bold.
Taxonomy

Microthyriaceae Sacc., Syll. fung. (Abellini) 2: 658 (1883).
MycoBank No: 81008

Description. Hyde et al. 2013.

Type genus. Microthyrium Desm., Annls Sci. Nat., Bot., sér. 2 15: 137 (1841).

Notes. Microthyriales only contains a single family Microthyriaceae, based on morphology and phylogeny. Currently, eleven genera are accepted in Microthyriaceae, including three asexual genera (Hongsanan et al. 2020; Wijayawardene et al. 2020). The asexual morph of this family is characterised by having micronematous or macronematous, unbranched or branched, septate conidiophores, mono- to polyblastic, determinate or sympodial, clavate, subcylindrical, ampulliform or ovoid conidiogenous cells and solitary or in branched chains, acrogenous or acrobeurogenous, aseptate to multi-septate conidia. In this study, we erected two new asexual genera, Antidactylaria and Isthmomyces and recognised six new asexual species in Microthyriaceae, based on DNA sequences at two gene fragments. In addition, two new combinations are proposed in Microthyriaceae combined morphology and phylogeny.

Antidactylaria Z.F. Yu, M. Qiao & R.F. Castañeda, gen. nov.
Index Fungorum number: IF555876
Facesoffungi Number No: FoF05734

Etymology. Greek, Anti, meaning against, Latin, dactylaria, referring to the genus Dactylaria.

Description. Asexual morph hyphomycetous. Mycelium superficial and immersed. Conidiophores macronematous, erect, unbranched, septate, hyaline, sometimes reduced to conidiogenous cells. Conidiogenous cells denticulate, polyblastic, sympodial elongated, integrated, terminal determinate or indeterminate, hyaline. Conidial secession rhexolytic. Conidia solitary, acrogenous, narrow obclavate, cylindrical to fusiform, navicular, attenuate towards the apex, rostrate, unicellular or septate, hyaline or sub-hyaline, smooth-walled, with a minute basal frill. Sexual state: unknown.

Type species. Antidactylaria minifimbriata Z.F. Yu, M. Qiao & R.F. Castañeda.

Notes. Antidactylaria is superficially similar to the genus Dactylaria Sacc. in morphology. The genus Dactylaria, typified with D. purpurella (Sacc.) Sacc., is characterised by unbranched, septate, hyaline or pigmented conidiophores, denticulate, integrated, mostly terminal, sympodially extending conidiogenous cells and cylindrical, fusiform, filiform, ellipsoid, clavate, obclavate, unicellular or septate, hyaline or pale pigmented conidia that are liberated with schizolytic secession (Goh and Hyde 1997; Paulus et al. 2003; Seifert et al. 2011). However, the rhexolytic conidial secession, observed in Antidactylaria, is absent in Dactylaria. Paulus et al. (2003) discussed the conidiogenous event as an important criterion for generic delimitation. In addition,
Two new genera and six new species in the family Microthyriaceae

Phylogeny analysis showed that *Antidactylaria* species belong to Microthyriales, while *Dactylaria* species belong to Helotiales.

Antidactylaria ampulliforma (de Hoog & Hennebert) Z.F. Yu, M. Qiao & R.F. Castañeda, comb. nov.
MycoBank No: 108094

Isthmolongispora ampulliformis (Tubaki) de Hoog & Hennebert, Proc. K. Ned. Akad. Wet., Ser. C, Biol. Med. Sci. 86(3): 346 (1983)

Diplorhinotrichum ampulliforme Tubaki, J. Hattori bot. Lab. 20: 159 (1958)

Description. Matsush. 1975

Notes. *Antidactylaria ampulliforma* was originally isolated by Tubaki from leaves of *Cocos nucifera* and was described as *Diplorhinotrichum* species (Tubaki 1958). In 1983, de Hoog and Hennebert included it in the genus *Isthmolongispora* after examining its morphological character. In this study, *A. ampulliforma* is phylogenetically close to *A. minifimbriata* and they are very similar in morphology. Therefore, we assigned it in the newly-established genus *Antidactylaria* as a new combination.

Antidactylaria minifimbriata Z.F. Yu, M. Qiao & R.F. Castañeda, sp. nov.
Index Fungorum number: IF556121
Facesoffungi Number No: FoF05735
Figs 2, 9a

Etymology. Latin, mini, meaning very small, minute, fimbriata, referring to edged, delicately toothed, fringe or frill that remained on the conidial base after rhexolytic secession.

Description. Asexual morph hyphomycetous. Colonies on CMA white to rosy buff, reverse buff, attaining 2.7 cm diam. after 20 days at 25 °C. Mycelium partly superficial, partly immersed, composed of branched, slender, septate, hyaline, smooth-walled hyphae. Conidiophores semi-macronematous, mononematous, cylindrical, straight or slightly flexuous, unbranched, 0–1(–2)-septate, hyaline or pale brown, smooth, sometimes reduced to conidiogenous cells. Conidiogenous cells polyblastic, sympodial elongated, terminal, denticulate, denticles cylindrical, minute fringed. Conidia solitary, acrogenous, narrow obclavate, cylindrical to fusiform, attenuate, rostrate or caudate towards the apex, 27.7–40 × 2.5–3.3 μm, rostrum 10–19 × 1–1.8 μm, 2-septate, hyaline to subhyaline, smooth-walled, with a minute basal frill. Sexual state: unknown.

Type. CHINA, Hainan Province, Diaoluoshan National Forest Park, on submerged leaves, April 2014, Z.F Yu. Holotype YMF 1.04578, preserved in a metabolically-inactive state (deep freezing) in the Conservation and Utilization of Bio-Resources in Yunnan. Ex-type culture CGMCC 3.18825.
Notes. Morphologically, *Antidactylaria minifimbriata* is similar to *A. ampulliforma* (= *Isthmolongispora ampulliformis*) in conidial shape, but can be easily distinguished from it by having wider conidia (2.5–3.3 vs. 2.0–2.5 μm) and longer rostrum (10.0–19.0 vs. 6.0–10.0 μm) (Yen et al. 2017).

Isthmomyces Z. F. Yu, M. Qiao & R. F. Castañeda, gen. nov.

Index Fungorum number: IF556126
Facesoffungi Number No: FoF05740

Etymology. Latin, *isthmus*, Greek (isthmós, “neck”) meaning a narrow cellular structure that connects two larger bodies or cells, Greek, *myces*, referring to fungus.
Description. Asexual morph hyphomycetous. Mycelium superficial and immersed. Conidiophores macronematous, mononematous, erect, unbranched, smooth, pale brown or hyaline, septate, sometimes reduced to conidiogenous cells. Conidiogenous cells polyblastic, denticulate, integrated, terminal, sympodial extended. Conidial secession schizolytic. Conidia acrogenous, isthmosporous, composed two cellular isthmic-segment obclavate, clavate, pyriform, obpyriform, lageniform, subulate fusiform to navicular to lanceolate, unicellular or septate, smooth, hyaline, connected by a very narrow, distinct or inconspicuous isthmus. Sexual state: unknown.

Type species. Isthmomyces oxysporus Z.F. Yu, M. Qiao & R.F. Castañeda.

Notes. Isthmomyces is similar to the genus Isthmolongispora Matsush. in morphology. Isthmolongispora was established with I. intermedia Matsush. as type species (Matsushima 1971). The genus is characterised by denticulate, sympodially-extending conidiogenous cells and isthmospore conidia made of two or several cellular structures, which are connected by very narrow isthmuses. In this study, specimens with two and more cellular isthmic-segments were collected, respectively. Phylogenetic analysis inferred from two loci showed that our isolates grouped together with Isthmomyces lanceatus (Isthmolongispora lanceata) in Microthyriaceae. Combining morphological character and phylogenetic analysis, we finally erected the new genus Isthmomyces to accommodate these isolates and I. lanceata.

Isthmomyces dissimilis Z. F. Yu, M. Qiao & R. F. Castañeda, sp. nov.
Index Fungorum number: IF556129
Facesoffungi Number No: FoF05743
Figs 3, 9b

Etymology. Latin, dissimilis, referring to the variation of the conidial shape related to the generic concept of the genus.

Description. Asexual morph hyphomycetous. Colonies on CMA white to dark salmon, reverse pale yellow, attaining 2.5 cm diam. after 20 days at 25 °C. Mycelium superficial or immersed, composed of branched, septate, brown, hyphae. Conidiophores macronematous, mononematous, erect, straight, unbranched or slightly branched, 0–1-septate, smooth, subhyaline13.8–51 × 2.3–3.2 μm. Conidiogenous cells polyblastic, ampulliform to cylindrical, sympodial extended, integrated, terminal, subhyaline. Conidia acrogenous, isthmospore, with inconspicuous isthmus, (isthmus mostly reduced to being constricted at the septa) subhyaline, guttulate, smooth, composed of 2–3-cellular isthmic-segments, more or less symmetrical: A) the larger isthmospore with 2-cellular isthmic-segments: i) basal isthmic-segment cylindrical-fusiform, truncate below, 1–3 septate, 35–60 × 4–4.5 μm, ii) apical isthmic-segment fusiform, rounded at the tip, 0–2 septate, 17–36.5 × 4–4.5 μm; total long 70–95 μm. B) the smaller isthmospore with 2-cellular isthmic-segments: i) basal isthmic-segment cylindrical-fusiform, truncate below, 0–1 septate, 23–33 × 3.5–4.5 μm; ii) apical isthmic-segment fusiform,
rounded at the tip, 0–1 septate, 17–22 × 3.5–4.5 μm; total long 47–57 μm. C) isthmospore with 3-cellular isthmic-segments: i) basal isthmic-segment fusiform, truncate below, 2–3-septate, 18.5–38.5 × 2.8–5.0 μm; ii) central isthmic-segment cylindrical-fusiform, 2–3-septate, 20.1–44.5 × 3.0–6.2 μm; iii) apical isthmic-

Figure 3. *Isthmomyces dissimilis* (Holotype YMF 1.04604) **a** the larger isthmospore with 2-cellular isthmic-segments **b** the smaller isthmospore with 2-cellular isthmic-segments **c** isthmospores with 3-cellular isthmic-segments **d** conidiogenous cell and developing conidia. Scale bars: 10 μm (**a–d**).
Two new genera and six new species in the family Microthyriaceae

Isthmomyces lanceatus (de Hoog & Hennebert) Z. F. Yu & R. F. Castañeda, comb. nov.

Index Fungorum number: IF556158
Facesoffungi Number No: FoF05757
Figs 4, 9c

Isthmolongispora lanceata de Hoog & Hennebert, Proc. K. Ned. Akad.Wet., Ser. C, Biol. Med. Sci. 86(3): 343 (1983).

Description. Asexual morph hyphomycetous. Colonies on CMA white to dark salmon, reverse pale brown, attaining about 2 cm diam. after 20 days at 25 °C. Mycelium partly superficial, partly immersed, composed of branched, septate, slender, hyaline hyphae. Conidiophores macronematous, mononematous, cylindrical, erect, straight, unbranched, 0–1-septate, smooth, hyaline, up to 30 μm long, 3–3.5 μm wide. Conidiogenous cells polyblastic, cylindrical, denticulate, sympodial extended, integrated, terminal, hyaline. Blastoconidia isthmospore, somewhat fusiform, hyaline or subhyaline, smooth, thin-walled, 21.3–39.7 μm long, strongly constricted at the median septum, narrow, tiny, made of two cellular isthmic-segments: i) basal isthmic-segment narrow-clavate, sometimes cylindrical-clavate, truncated at the base, unicellular, 0–1-septate, 12.5–18.5 × 3.0–4.8 μm; ii) apical isthmic-segment broadly obclavate, obspathulate, rounded at the tip, unicellular, 0–1-septate, 13.0–30.0 × 2.3–3.8 μm. Arthroconidia often formed in the aerial mycelium, disarticulated from fertile hyphae. Sexual state: unknown.

Type. CHINA, Tibet, Nanyigou Scenic Area, on submerged leaves, October 2016, Z.F. Yu, YMF 1.04794 = CGMCC 3.18827. CHINA, Yunnan Province, Jade Dragon Snow Mountain, on submerged leaves, September 2015, J. Peng, YMF 1.04514.

Notes. Isthmomyces lanceatus was first isolated by Beverwijk from leaf of Castanea vesca in steam (Hoog and Hennebert 1983). However, the taxonomic status of this species was Ascomycota incertae sedis. In this study, this is the first report of I. lanceatus isolated from Asia. Morphologically, the conidia of our isolates are larger than the holotype CBS 622.66. Our phylogenetic analysis of combined LSU and ITS sequences reveals that the phylogenetic position of I. lanceatus is in Microthyriaceae and I. lanceatus is close to I. dissimilis in this tree.
Isthmomyces macrosporus Z. F. Yu, M. Qiao & R. F. Castañeda, sp. nov.

Index Fungorum number: IF556128
Facesoffungi Number No: FoF05742
Figs 5, 9d

Etymology. Greek, *macrosporus*, referring to the large, great conidia.

Description. Asexual morph hyphomycetous. *Colonies* on PDA amber to fawn, reverse fawn, attaining 2 cm diam. after 20 days at 25 °C. *Mycelium* mostly immersed, composed of branched, septate, slender, colourless hyphae. *Conidiophores* macronematous, mononematous, cylindrical, erect, straight, unbranched, 0–1-septate, smooth, pale brown, 25–35 × 3.0–3.5 μm. *Conidiogenous cells* polyblastic, cylindrical, denticulate, sympodial extended, integrated, terminal, pale brown or subhyaline. *Conidia* acrogenous, isthmospore, long fusiform, hyaline, smooth, 36.5–73.0 μm long, strongly constricted at the conspicuous, narrow, tiny central isthmus, sometime not differentiated, composed of two cellular isthmic-segments: i) basal isthmic-segment clavate, truncated at the base, 1-septate, hyaline or subhyaline, smooth, 19.2–31.1 ×

![Figure 4. Isthmomyces lanceatus (YMF 1.04794) a conidia b conidiophores and conidiogenous cells. Scale bars: 10 μm (a, b). The arrow indicates septum inside isthmic-segments.](image-url)
Two new genera and six new species in the family Microthyriaceae

4.5–6.7 μm; ii) apical isthmic-segment 0–1-septate, narrow obclavate, sometimes sub-obspathulate, rounded at the tip, unicellular, guttulate, hyaline or subhyaline, smooth, 21.1–42.0 × 3.3–5.4 μm. Sexual state: unknown.

Type. **China,** Hainan Province, Limu Mountain National Conservation Area, on submerged leaves, April 2015, J. Peng. Holotype YMF 1.04518, preserved in a

Figure 5. *Isthmonyces macroporus* (Holotype YMF 1.04518) **a** conidia **b** conidiophore with conidia under low objective **c** conidiophore and conidiogenous cell **d** conidiophore and developing conidia. Scale bars: 10 μm (**a, c, d**); 50 μm (**b**).
metabolically-inactive state (deep freezing) in the Conservation and Utilization of Bio-
Resources in Yunnan. Ex-type culture CGMCC 3.18824.

Notes. Phylogenetically, *Isthmomyces macrosporus* is close to *I. dissimilis* and *I. lanceatus*. However, *I. macrosporus* is different from all species within this genus by having larger conidia, obviously brown conidiophores and few denticulate conidiogenous cells (Hoog and Hennebert 1983).

Isthmomyces oxysporus Z. F. Yu, M. Qiao & R. F. Castaña, sp. nov.
Index Fungorum number: IF556127
Facesoffungi Number: FoF05741
Figs 6, 9e

Etymology. Greek, *oxys*, meaning sharp, keen, *sporum*, referring to the conidia.

Description. Asexual morph hyphomycetous. Colonies on CMA pale mouse grey to dark mouse grey, reverse olivaceous-grey, attaining about 2 cm diam. after 20 days at 25 °C. Mycelium mostly immersed, composed of branched, septate, subhyaline to hyaline hyphae. Conidiophores macronematous, mononematous, cylindrical, erect, smooth, 0–1-septate, subhyaline to hyaline, mostly reduced to conidiogenous cells, up to 30 μm long, 2.5–3 μm wide, arising from the creeping hyphae. Conidiogenous cells polyblastic, cylindrical, denticulate, integrated, terminal, sympodial extended, hyaline. Conidia isthmospore, fusiform, hyaline, smooth, 20.5–25.5 μm long, strongly constricted at the narrow, tiny central isthmus, composed of two cellular isthmic-segments: i) basal isthmic-segment broadly clavate to clavate, unicellular, hyaline 9.7–13 × 2.0–4.0 μm; ii) apical isthmic-segment narrow obclavate to obclavate, obpyriform or rarely lecythiform, unicellular, hyaline, 9.0–13.0 × 2.0–3.0 μm. Sexual state: unknown.

Type. CHINA, Hainan Province, Diaoluo Mountain Natural Reserve, on submerged leaves, August 2015, J. Peng. Holotype YMF 1.04513, preserved in a metabolically-inactive state (deep freezing) in the Conservation and Utilization of Bio-Resources in Yunnan. Ex-type culture CGMCC 3.18821.

Notes. Morphologically, *Isthmomyces oxysporus* resembles *Isthmolongispora asymetrica* Aramb. & Cabello in having both tapering isthmic-segment ends, but *I. asymetrica* has asymmetrical conidia, in which the basal isthmic-segment is longer (17–20 μm long) (Arambarri et al. 1987). Besides, *I. oxysporus* is somewhat similar to *I. rotundata* Matsush. in conidial sizes, but the apical isthmic-segments in *I. rotundatus* are rounded at the tip (Matsushima 1987).

Triscelophorus Ingold, Trans. Br. mycol. Soc. 26(3–4): 151 (1943).
MycoBank No: 10320

Description. Ingold 1943.
Two new genera and six new species in the family Microthyriaceae

Type species. *Triscelophorus monosporus* Ingold, Trans. Br. mycol. Soc. 26(3–4): 152 (1943).

Notes. *Triscelophorus* was established by Ingold, with *T. monosporus* as type species (Ingold 1943). The genus is characterised by macronematous, mononematous, erect, straight or flexuous, sometimes sinuate, septate, unbranched or sparingly branched, hyaline, smooth conidiophores. The conidiogenous cells are monoblastic, sometimes sympodially extended, integrated, hyaline that produce a solitary, acrogenous, septate, stauropore composed of a main axis and 3 or more branches verticillate arranged from the basal cell of the main axis (Ingold 1943; Seifert et al. 2011). Duarte et al. (2015) found that *Triscelophorus* was polyphyletic, based on ITS analysis, but our phylogenetic analysis, based on two-loci and ITS, showed the genus should be monophyletic. For more details, refer to Discussion.

Figure 6. *Isthmomyces oxysporus* (Holotype YMF 1.04513) **a** conidia **b** conidiophores and conidiogenous cells. Scale bars: 10 μm (**a**, **b**).
Triscelophorus anisopteriodeus Z. F. Yu, M. Qiao & R. F. Castañeda, sp. nov.

Index Fungorum number: IF556148
Facesoffungi Number No: FoF05747
Figs 7, 9f

Etymology. Latin, *anisopteriodeus*, referring to the resemblance of the conidial body to an adult of *Anisoptera* sp.

Description. Asexual morph hyphomycetous. *Colonies* on CMA, attaining about 1 cm diam. after 20 days at 25 °C, light smoky grey. Reverse smoky grey. *Mycelium* superficial and immersed, composed of branched, septate, hyaline hyphae. *Conidiophores* macronematous, mononematous, cylindrical, erect, flexuous, unbranched, smooth, hyaline, up to 20–110 μm long. *Conidiogenous cells* monoblastic, cylindrical, terminal, integrated, determinate, smooth, hyaline. *Conidia* solitary, acrogenous, staurospore, septate, composed of a main axis and 2–4 lateral branches: i) the main axis elongate obclavate, 2–4-septate, straight, smooth, hyaline, 31.2–48 × 3–5.2 μm; ii) 2–4-lateral branches obclavate to broad obclavate, straight, smooth, hyaline, all arising divergent, unequal, from the basal cell of the main axis: ii a) upper two lateral branches, 2–3-septate, 8.2–38.7 × 2.5–4.8 μm, more or less opposite, arranged just below the supra-basal septum; ii b) lower lateral branches, 0–1-septate, 14–20 × 5–5.5 μm, sequential opposite arranged near the middle of the basal cell. Sexual state: unknown.

Type. China, Hainan Province, Limu Mountain Nature Reserve, on submerged leaves, April 2015, J. Peng. Holotype YMF 1.04267, preserved in a metabolically-inactive state (deep freezing) in the Conservation and Utilization of Bio-Resources in Yunnan. Ex-type culture CGMCC 3.18978.

Notes. *Triscelophorus anisopteriodeus* is differentiated from other known *Triscelophorus* like a dragonfly-shape (Seifert et al. 2011). Four lateral branches are not arising from the same level at the basal cell of main axis. Two shorter ones are lower and two longer ones are upper. Amongst conidia of *Triscelophorus* spp., three lateral branches are often growing in a whorl, while 2 lateral branches are in pairs. Four lateral branches in pairs in *T. anisopteriodeus* make it easily recognisable. Morphologically, *T. anisopteriodeus* is similar to *Triramulispora duobinibrachiata* K. Ando in conidial shape, but *T. anisopteriodeus* has larger size of conidia (main axis: 31.2–48 × 3–5.2 vs. 19–36 × 2.5–3.5 μm) and more septa in branches (Ando 1993).

Triscelophorus sinensis Z. F. Yu, M. Qiao & R. F. Castañeda, sp. nov.

Index Fungorum number: IF558520
Figs 8, 9g

Etymology. Latin, *sinensis*, referring to the country of origin, China.

Description. Asexual morph hyphomycetous. *Colonies* on CMA, attaining about 1 cm diam. after 20 days at 25 °C, pale mouse grey to dark mouse grey. *Mycelium* superficial and immersed, composed of branched, septate, hyaline hyphae. *Conidiophores*
Two new genera and six new species in the family Microthyriaceae

Macronematous, mononematous, lateral or terminal, cylindrical, erect, flexuous, separate, smooth, hyaline, up to 12–38 μm long, 1.0–2.4 μm wide. Conidiogenous cells monoblastic, cylindrical, terminal, integrated, determinate, smooth, hyaline. Conidia solitary, acrogenous, staurospore, septate, composed of a main axis and 2–3 lateral branches: i) the main axis obclavate, 2(–3)-septate, slightly constricted at the septa, straight, smooth, hyaline, 17.5–30.0 × 3.5–5.0 μm; ii) 2–3-lateral branches obclavate, (0–)1-septate, slightly constricted at the septa, straight, smooth, hyaline, 8.5–21.0 × 3.0–4.5 μm, arising from the basal cell of the main axis arranged in a regular or irregular verticillate. Sexual state: unknown.

Type. China, Guangdong Province, Guangzhou, on submerged leaves, September 2011, G.Z. Yang. Holotype YMF 1.04065, preserved in a metabolically-inactive state (deep freezing) in the Conservation and Utilization of Bio-Resources in Yunnan.

Figure 7. *Triscelophorus anisopteriodeus* (Holotype YMF 1.04267) a, c conidia b conidiophores with conidia. Scale bars: 10 μm (a–c).
Notes. In morphology, *Triscelophorus sinensis* is somewhat similar to *T. ponapensis* in conidia, both having 2–3 lateral arms (Matsushima 1981). However, *T. ponapensis* has shorter (main axis: 12–26 μm; lateral arms: 8–15 μm) and more septate (main axis: 2–4-septate; lateral arms: 1–4-septate) conidia.

Isthmolongispora quadricellularia Matsush., Icon. microfung. Matsush. lect. (Kobe): 90 (1975).
MycoBank No: 315952
Fig. 10

Description. Asexual morph hyphomycetous. Colonies on CMA white, gradually turning brown, reverse white to pale brown, attaining about 2.5 cm diam. after 20 days at 25 °C. Mycelium partly superficial, partly immersed, composed of branched, septate, slender, hyaline hyphae. Conidiophores macronematous, mononematous, cylindrical, erect, straight, unbranched, aseptate, smooth, hyaline, 3.9–9.0 × 2.0–3.2 μm.
Two new genera and six new species in the family Microthyriaceae

Conidiogenous cells short, terminal, cylindrical, denticulate, integrated, hyaline. Conidia solitary, smooth, beaded, tapering towards both ends, 4–7-celled, generally 5–6-celled, hyaline, 44–88 × 3.5–5.0 μm. Sexual state: unknown.

Type. China, Hainan Province, Jianfengling National Nature Reserve, on submerged leaves, Jun 2011, G.Z. Yang, YMF 1.04794, YMF 1.04011, YMF 1.04016, YMF 1.04019, preserved in a metabolically-inactive state (deep freezing) in the Conservation and Utilization of Bio-Resources in Yunnan.

Notes. Isthmolongispora quadricellularia was first described by Matsush. in 1975 from Japan. Subsequently, this species has been isolated from leaves many times in Taiwan. However, no sequences of I. quadricellularia are available in the public database. In this study, it is the first time that I. quadricellularia has been isolated from the aquatic environment. In addition, we also submitted sequence data for this species to the public database (SSU: MT507103–105; LSU: MT507107–110; ITS: OL412746–749).

Discussion

China is considered an important reservoir of Asian biodiversity (Myers et al. 2000); it is estimated that this area harbours an inestimable diversity of fungi. In recent years, more and more new genera and species have been identified and classified for the application of phylogenetic analysis and have led to a significant expansion of species in Dothidomycetes (Zheng et al. 2019, 2020b, 2021b; Yang et al. 2021). However, comparatively speaking, aquatic hyphomycetes have been poorly investigated. In recent years, we have
been investigating the diversity of aquatic hyphomycetes from southern China. During this process, several interesting isolates have been collected. After studying in detail, two new asexual genera and six new asexual species have been described in Microthyriaceae. *Triscelophorus* Ingold was established with *T. monosporus* Ingold as type species; now, eight species have been accepted in this genus (Ingold 1943; Wijayawardene et al. 2017). However, the positions of *Triscelophorus* in ordinal and familial levels are still unclear. In this study, two isolates which have similarity to *Triscelophorus* species in morphology were collected. For further study, the two isolates were identified as two new species of *Triscelophorus*, named as *T. anisopteriodeus* and *T. sinensis*. Moreover, phylogenetic analysis of combined LSU and ITS sequences places *Triscelophorus* in Microthyriaceae (Fig. 1).

Isthmolongispora Matsush. was established in 1971 and, so far, eleven species were accepted in this genus (Matsushima 1971; Wijayawardene et al. 2018b, 2020). In this study, ten isolates have similarity to some *Isthmolongispora* species. Of these, four isolates were identified as *Isthmolongispora quadricellularis*, based on morphology. The combined LSU and ITS tree (Fig. 1) showed that the other six isolates formed two clades in Microthyriaceae. Comparing their morphological differences between species of the two clades,

Figure 10. *Isthmolongispora quadricellularia* (YMF 1.04794) **a** conidia **b** conidiophores and conidiogenous cells **c** conidia under low power microscopy. Scale bars: 10 μm (**a, b**); 50 μm (**c**).
Two new genera and six new species in the family Microthyriaceae

Two new genera and six new species in the family Microthyriaceae. We established two new genera *Antidactylaria* and *Isthmomyces*. *Antidactylaria* includes a new species *A. minifimbriata* and a new combination *A. ampulliforma* and is phylogenetically close to two asexual species *Scolecosbasidium tropicum* Matsush. and *Neoscolecosbasidium agapanthi* Crous. *Isthmomyces* includes three new species, *I. dissimilis*, *I. oxysporus* and *I. macrosorum* and a new combination *I. lanceatus*. Phylogenetically, *Isthmomyces* is near to the sexual genus *Microthyrium* and the asexual genus *Neoanungitea*. Although *Isthmomyces* is closely related to *Microthyrium*, their ITS sequence similarity is low, so we cannot determine the connection between them. Based on the two-gene tree, we speculated that *Isthmolongispora* is polyphyletic. So far, at least 14 genera of aquatic hyphomycetes have shown to be polyphyletic using sequence information from a single or two genes (Nikolcheva 2002; Tsui et al. 2006; Baschien 2006; Campbell et al. 2006; Duarte et al. 2015).

With increasingly widespread use of molecular techniques, multi-genes were concatenated to resolve phylogenetic affiliations and taxonomic placements at family or higher ranks. For example, SSU, LSU, *tef1*, *rpb1* and *rpb2* were combined to assess phylogeny (Schoch et al. 2006, 2009; Wijayawardene et al. 2014). However, sequence data and cultures of many aquatic hyphomycetes were unavailable. By 2013, over 300 aquatic hyphomycete species had been described, based on conidia morphology and conidiogenesis. However, fewer than 50 species had published ITS sequences in the International Nucleotide Sequence Database (Duarte et al. 2013). In addition, most of these species with ITS sequences were considered Ascomycota genera are incertae sedis because of the limitations of ITS as a phylogenetic marker for these organisms.

Molecular phylogeny of freshwater fungi in Dothideomycetes has been studied by Shearer et al. (2009) using SSU and LSU for 84 isolates representing 29 genera. The results showed that the majority of freshwater Dothideomycetes belonged to Pleosporomycetidae, including four clades comprised of only freshwater taxa, while the remaining freshwater taxa were distributed amongst other clades. In the largest phylogenetic assessment of Dothideomycetes up to 2009, members of the class from various ecological niches were included and freshwater taxa were in different clades (Schoch et al. 2009). Unfortunately, like other studies, though representative, these two studies of Dothideomycetes and freshwater ascomycetes had very few aquatic asexual genera. In the paper of Shearer et al. (2009), only 10 asexual genera were included, while in the paper of Schoch et al. (2009), only four asexual genera were included (*Monotosporella* S. Hughes and *Beverwykella* Tubaki belonging to Melanommataceae G. Winter, while *Helicomyces* Link and *Helicosporium* Nees belonging to Tubeufiaceae). Amongst the accepted genera of Dothideomycetes, only 11 aquatic or aero-aquatic asexual genera have been described as belonging to different families of the subclass Pleosporomycetidae (Wijayawardene et al. 2014). Our study provides the molecular evidence for asexual aquatic fungi.

Conclusions

This study described two new asexual genera and six new asexual species of aquatic hyphomycetes. Our phylogenetic analyses placed several other aquatic genera in the family Microthyriaceae. Though we failed to connect teleomorphs and anamorphs...
at genus level, our results showed close phylogenetic relationships between aquatic hyphomycetes and Microthyriaceae at the family rank. This study also revealed the importance of obtaining pure cultures of aquatic fungi and multiple gene sequences from them to identify the origins and phylogenetic positions of aquatic hyphomycetes and their relationships with their terrestrial relatives.

Acknowledgements

This work was financed by the National Natural Science Foundation Program of PR China (31770026, 31760012). We are grateful to reviewers for critically reviewing the manuscript and for providing helpful suggestions to improve this paper.

References

Ando K (1993) Three new species of staurosporous hyphomycetes from Japan. Transactions of the Mycological Society of Japan 34(4): 399–408.
Arambarri A, Cabello M, Mengascini A (1987) Systematic study of the Hyphomycetes from Santiago River (Buenos Aires Province, Argentina). Mycotaxon 29: 29–35.
Ariyawansa H, Hyde K, Jayasiri S, Buyck B, Chen XH (2015) Fungal diversity notes 111–252—taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 75(1): 27–274. https://doi.org/10.1007/s13225-015-0346-5
Ashton H (2009) Ainsworth and Bisby’s Dictionary of the Fungi (10th edn.). Reference Reviews 23(5): 42–42. https://doi.org/10.1108/09504120910969104
Bai YL, Li JY, Qiao M, Qian WY, Yang GZ, Yu ZF (2013) Setosynnema yunnanense sp. nov. from submerged decaying leaves. Mycotaxon 125: 81–85. https://doi.org/10.5248/125.81
Baschien CML, Szewzyk U (2006) Phylogeny of selected aquatic hyphomycetes based on morphological and molecular data. Nova Hedwigia 83(3): 311–352. https://doi.org/10.1127/0029-5035/2006/0083-0311
Belliveau MJR, Barlocher F (2005) Molecular evidence confirms multiple origins of aquatic hyphomycetes. Mycological Research 109: 1407–1417. https://doi.org/10.1017/S0953756205004119
Berbee ML, Taylor JW (2001) Fungal molecular evolution: gene trees and geologic time. In: McLaughlin DJ, McLaughlin EG, Lemke PA (Eds) Systematics and evolution. Springer Berlin Heidelberg, The Mycota (A Comprehensive Treatise on Fungi as Experimental Systems for Basic and Applied Research), vol 7B. https://doi.org/10.1007/978-3-662-10189-6_10
Bärlocher F (1992) Research on aquatic hyphomycetes: historical background and overview. In: Bärlocher F (Ed.) The Ecology of Aquatic Hyphomycetes. Springer Berlin Heidelberg, Ecological Studies (Analysis and Synthesis). https://doi.org/10.1007/978-3-642-76855-2_1
Campbell J, Shearer C, Marvanova L (2006) Evolutionary relationships among aquatic anamorphs and teleomorphs: Lemonniera, Margaritispora, and Goniopila. Mycological Research 110(9): 1025–1033. https://doi.org/10.1016/j.mycres.2006.04.012
Two new genera and six new species in the family Microthyriaceae

de Hoog GS, Hennebert GL (1983) Taxonomy of the Dactylaria complex III. A pleomorphic species of Isthmolongispora. Proc Konink Nederland Akad Wetenschappen, Ser C, 86: 343–346.

Duarte S, Batista D, Barlocher F, Cassio F, Pascoal C (2015) Some new DNA barcodes of aquatic hyphomycete species. Mycoscience 56(1): 102–108. https://doi.org/10.1016/j.myc.2014.04.002

Duarte S, Sahadevan S, Barlocher F, Pascoal C, F Cássio (2013) A decade’s perspective on the impact of DNA sequencing on aquatic hyphomycete research. Fungal Biology Reviews 27(1): 19–24. https://doi.org/10.1016/j.fbr.2013.02.003

Goh TK, Hyde KD (1997) A revision of Dactylaria, with description of D. tunicata sp. nov. from submerged wood in Australia. Mycological Research 101(10): 1265–1272. https://doi.org/10.1017/S0953756297004000

Guo JS, Zhang Z, Qiao M, Yu ZF (2019) Phalangispora sinensis sp. nov. from Yunnan, China and two new members of Wiesneriomycetaceae. International Journal of Systematic and Evolutionary Microbiology 69(10): 3207–3213. https://doi.org/10.1099/ijsem.0.003612

Guo MT, Qiao M, Li JY, Wang W, Yu ZF (2015) Verticicladium hainanensis, a new aquatic hyphomycete. Mycotaxon 130(1): 275–278. https://doi.org/10.5248/130.275

Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.
Min Qiao et al. / MycoKeys 85: 1–30 (2021)

Hyde KD, McKenzie EHC, Ko TW (2011) Towards incorporating anamorphic fungi in a natural classification—checklist and notes for 2010. Mycosphere 2(1): 1–88.

Ingold CT (1943) Triscelophorus monosporus N.Gen., N.SP., an aquatic hyphomycete. Transactions of the British Mycological Society 26(3): 148. [IN144–152, IN144]

Iturrieta-González I, García D, Guarro J, Gené J (2020) Helioccephala variabilis and Pseudopenidiella vietnamensis: two new hyphomycetous species in the Microthyriaceae (Dothideomycetes) from Vietnam. Microorganisms 8: e478. https://doi.org/10.3390/microorganisms8040478

Kindermann J, El-Ayouti Y, Samuels GJ, Kubicek CP (1998) Phylogeny of the genus Trichoderma based on sequence analysis of the internal transcribed spacer region 1 of the rDNA cluster. Fungal Genetics and Biology 24: 298–309. https://doi.org/10.1006/fgbi.1998.1049

Li JY, Qian WY, Qiao M, Bai YL, Yu ZF (2013) A new Drechslerella species from Hainan, China. Mycotaxon 125: 183–188. https://doi.org/10.5248/125.183

Li JY, Qiao M, Peng J, Qian WY, Yang GZ, Yu ZF (2014) Uncispora hainanensis sp. nov. isolated from decayed leaves. Mycotaxon 129(2): 473–476. https://doi.org/10.5248/129.473

Liu JK, Yang J, Maharachchikumbura SSN, McKenzie EHC, Jones EBG, Hyde KD, Liu ZY (2016) Novel chaetothallic hyphomycetes from aquatic habitats. Mycological Progress 15(10–11): 1157–1167. https://doi.org/10.1007/s11557-016-1237-1

Maharachchikumbura SSN, Hyde KD, Jones EGB, McKenzie EHC, Huang SK, Abdcl-Wahab MA, Daranagama DA, Dayarathn M, D’souza MJ, Goonasekara ID, Hongsanan S, Jayawardena RS, Kirk PM, Konta S, Liu JK, Liu ZY, Norphanphoun C, Pang KL, Pccra RH, Scnayayak IC, Shang Q, Shcnoy BD, Xiao Y, Bahkali AH, Kang J, Somrothipol S, Suctrong S, Wen T, Xu J (2015) Towards a natural classification and backbone tree for Sordariomycetes. Fungal Diversity 72(1): 199–301. https://doi.org/10.1007/s13225-015-0331-z

Matsushima T (1971) Microfungi from the Solomon Islands and Papua-New Guinea. Published by author, Kobe.

Matsushima T (1981) Matsushima Mycological Memoirs No. 5. Matsushima Fungus Collection. Published by author, Kobe, 19 pp.

Matsushima T (1987) Matsushima Mycological Memoirs No. 5. Matsushima Fungi Collection. Published by author, Kobe, 100 pp. https://doi.org/10.2307/3807737

Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403(6772): 853–858. https://doi.org/10.1038/35002501

Nikolcheva LGBF (2002) Phylogeny of Tetracladium based on 18S rDNA. Czech Mycology 53: 285–295. https://doi.org/10.33585/cmy.53404

Paulus B, Gadek P, Hyde KD (2003) Two new species of Dactylaria (anamorphic fungi) from Australian rainforests and an update of species in Dactylaria sensu lato. Fungal Diversity 14: 143–156. https://doi.org/10.1002/yea.955

Peng J, Chang D, Huang Y, Yu ZF (2016) Nawawia oviformis sp. nov. from China. Mycotaxon 131(4): 735–738. https://doi.org/10.5248/131.735

Posada D (2008) jModelTest: Phylogenetic model averaging. Molecular Biology and Evolution 25(7): 1253–1256. https://doi.org/10.1093/molbev/msn083

Pratibha J, Nguyen HDT, Mel’nik VA, Bhat DJ, White GP, Seifert KA (2015) Lectotypification, epitypification, and molecular phylogeny of the synnematous hyphomycete
Two new genera and six new species in the family Microthyriaceae

Pseudogliophragma indicum, the second genus in the Wiesneriomycetaceae. Mycosen. 56(4): 387–395. https://doi.org/10.1016/j.myc.2014.12.002

Qiao M, Du X, Bian ZH, Peng J, Yu ZF (2017a) *Ellisembia pseudokaradkensis* sp. nov. from Hainan, China. Mycotaxon 132(4): 813–817. https://doi.org/10.5248/132.813

Qiao M, Guo JS, Tian WG, Yu ZF (2018b) *Ellisembia hainanensis* sp. nov. from Hainan, China. Mycotaxon 133(1): 97–101. https://doi.org/10.5248/133.97

Qiao M, Huang Y, Deng C, Yu ZF (2017b) *Tripodoporus sinense* sp. nov. from China. Mycotaxon 132(3): 513–517. https://doi.org/10.5248/132.513

Qiao M, Li DW, Yu ZF, Zhang K, Castaneda-Ruiz RF (2019a) *Spadicoides matushimae* sp. nov., and *Anisospadicoides* gen. nov. for two atypical *Spadicoides* species. Mycotaxon 134(1): 161–167. https://doi.org/10.5248/134.161

Qiao M, Li WJ, Huang Y, Xu JP, Zhang L, Yu ZF (2018a) *Classicia sinensis*, a new species of Basidiomycetous aquatic hyphomycetes from southwest China. MycoKeys (40): 1–12. https://doi.org/10.3897/mycokeys.40.23828

Qiao M, Tian WG, Castaneda-Ruiz AF, Xu JP, Yu ZF (2019b) Two new species of *Verruconis* from Hainan, China. MycoKeys (48): 41–53. https://doi.org/10.3897/mycokeys.48.32147

Qiao M, Zheng H, Lv RL, Yu ZF (2020) Neodactylariaceae, Neodactylaricaceae (Dothideomycetes, Ascomycota): new order and family, with a new species from China. MycoKeys (73): 69–85. https://doi.org/10.3897/mycokeys.73.54054

Qiao M, Zheng H, Zhang Z, Yu ZF (2019c) *Seychellomyces sinensis* sp. nov. from China. Mycotaxon 134(2): 391–398. https://doi.org/10.5248/134.391

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3): 539–542. https://doi.org/10.1093/sysbio/sys029

Saccardo PA (1883) Sylloge Fungorum (Abellini). Italy, Pavia: 1–815.

Schoch CL, Crous PW, Groenewald ZJ, Boehm EWA, Burgess TL, De Gruyter J, De Hoog GS, Dixon LJ, Grube M, Gueidan C, Harada Y, Hatakeyama S, Hirayama K, Hosoya T, Huhndorf SM, Hyde KD, Jones EBG, Kohlmeyer J, Krüys Å, Li YM, Lücking R, Lumbsch HT, Marvanová L, Mbautshou JS, McVay AH, Miller AN, Mugambi GK, Muggia L, Nelsen MP, Nelson P, Owensby CA, Phillips AJL, Phongpaichit S, Pointing SB, Pujade-Renaud V, Raja HA, Plata ER, Robbertse B, Ruibal C, Sakayaroj J, Sano T, Selbmann L, Shearer CA, Shirouzu T, Slippers B, Suetsrong S, Tanaka K, Volkmann-Kohlmeyer B, Wingfield MJ, Wood AR, Woudenberg JHC, Yonezawa H, Zhang Y, Spatafora JW (2009) A class-wide phylogenetic assessment of Dothideomycetes. Studies in Mycology 64: 1–15. https://doi.org/10.3114/sim.2009.64.01

Schoch CL, Shoemaker RA, Seifert KA, Hambleton S, Spatafora JW, Crous PW (2006) A multi-gene phylogeny of the Dothideomycetes using four nuclear loci. Mycologia 98(6): 1041–1052. https://doi.org/10.3852/mycologia.98.6.1041

Seifert K, Morgan-Jones G, Gams W, Kendrick B (2011) The genera of hyphomycetes. CBS Biodiversity Series 9: 997.

Shearer CA, Raja HA, Miller AN, Nelson P, Tanaka K, Hirayama K, Marvanova L, Hyde KD, Zhang Y (2009) The molecular phylogeny of freshwater Dothideomycetes. Studies in Mycology 64: 145–153. https://doi.org/10.3114/sim.2009.64.08
Shenoy BD, Jeewon R, Hyde KD (2007) Impact of DNA sequence-data on the taxonomy of anamorphic fungi. Fungal Diversity 26(1): 1–54. https://doi.org/10.1002/yea.1503
Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21): 2688–2690. https://doi.org/10.1093/bioinformatics/btl446
Su HY, Hyde KD, Maharachchikumbura SSN, Ariyawansa HA, Luo ZL, Promputtha I, Tian Q, Lin CG, Shang QJ, Zhao YC (2016) The families Distoseptisporaceae fam. nov., Kirschsteiniotheliaceae, Sporormiaceae and Torulaceae, with new species from freshwater in Yunnan Province. China. Fungal Diversity 80(1): 375–409. https://doi.org/10.1007/s13225-016-0362-0
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology & Evolution 30(12): 2725–2729. https://doi.org/10.1093/molbev/mst197
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25(24): 4876–4882. https://doi.org/10.1093/nar/25.24.4876
Tsui CKM, Sivichai S, Berbee ML (2006) Molecular systematics of Helicoma, Helicomyces and Helicosporium and their teleomorphs inferred from rDNA sequences. Mycologia 98(1): 94–104. https://doi.org/10.3852/mycologia.98.1.94
Tubaki K (1958) Studies on the Japanese hyphomycetes. V. Leaf and stem group with a discussion of the classification of hyphomycetes and their perfect stages. Journal of the Hattori Botanical Laboratory 20: 142–244.
Turner D, Kovacs W, Kuhls K, Lieckfeldt E, Peter B, Arisan-Atac I, Strauss J, Samuels GJ, Börner T, Kubicek CP (1997) Biogeography and phenotypic variation in Trichoderma sect Longibrachiatum and associated Hypocrea species. Mycological Research 101: 449–459. https://doi.org/10.1017/S0953756296002845
Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from Several Cryptococcus Species. Journal of Bacteriology 172(8): 4238–4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990
White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: a Guide to Methods and Applications 18: 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
Wijayawardene NN, McKenzie EHC, Hyde KD (2012) Towards incorporating anamorphic fungi in a natural classification-checklist and notes for 2011. Mycosphere 3(2): 157–228. https://doi.org/10.5943/mycosphere/3/2/5
Wijayawardene NN, Crous PW, Kirk PM, Hawksworth DL, Boonmee S, Braun U, Dai DQ, D’souza MJ, Diederich P, Dissanayake A (2014) Naming and outline of Dothideomycese–2014 including proposals for the protection or suppression of generic names. Fungal Diversity 69: 1–55. https://doi.org/10.1007/s13225-014-0309-2
Wijayawardene NN, Hyde KD, Rajeshkumar KC, Hawksworth DL, Madrid H, Kirk PM, Braun U, Singh RV, Crous PW, Kukwa M, Lücking R, Kurtzman CP, Yurkov A, Haelewaters D, Aptroot A, Lumbsch HT, Timdal E, Eretz D, Etayo J, Phillips AJL, Groenewald JZ, Papizadeh M, Selbmann L, Dayarathne MC, Weerakoon G, Jones EBG, Suetrong S, Tian
Two new genera and six new species in the family Microthyriaceae

Q, Castañeda-Ruiz RF, Bahkali AH, Pang KL, Tanaka K, Dai DQ, Sakayaroj J, Hujslová M, Lombard L, Shenoy BD, Suija A, Maharachchikumbura SSN, Thambugala KM, Wanasinghe DN, Sharma BO, Gaikwad S, Pandit G, Zucconi L, Onofri S, Egidí E, Raja HA, Kodsuber R, Cáceres MES, Pérez-Ortega S, Fiuza PO, Monteiro JS, Vasilyeva LN, Shivas RG, Prieto M, Wedin M, Olariaga I, Lateef AA, Agrawal Y, Fazeli SAS, Amoozegar MA, Zhao GZ, Pfieger WP, Sharma G, Oset M, Abdel-Wahab MA, Takamatsu S, Bensch K, de Silva NI, De Kesel A, Karunarathna A, Boonmee S, Pfister DH, Lu YZ, Luo ZL, Boonyuen N, Daranagama DA, Senanayake IC, Jayasiri SC, Samarakoon MC, Zeng XY, Doilom M, Quijada L, Rampadarath S, Heredia G, Dissanayake AJ, Jayawardana RS, Perera RH, Tang LZ, Phukhamsakda C, Hernández-Restrepo M, Ma X, Tibpromma S, Gusmao LFP, Weerahewa D, Karunarathna SC (2017) Notes for genera: Ascomycota. Fungal Diversity 86(1): 1–594. https://doi.org/10.1007/s13225-017-0386-0

Wijayawardene NN, Hyde KD, Lumbsch HT, Liu JK. Maharachchikumbura SSN, Ekanayaka AH, Tian Q, Phookamsak R (2018a) Outline of Ascomycota: 2017. Fungal Diversity 88(1): 167–263. https://doi.org/10.1007/s13225-018-0394-8

Wijayawardene NN, Hyde KD, McKenzie EHC, Wang Y (2018b) Notes for genera update-Ascomycota: 6822–6917. Mycosphere 9(6): 1222–1234. https://doi.org/10.5943/mycosphere/9/6/11

Wijayawardene NN, Hyde KD, Al-Ani LKT, Tedersoo L, Haelewaters D, Rajeshkumar KC, Zhao RL, Aptroot A, Leontyev DV, Saxena RK, Tokarev YS, Dai DQ, Letcher PM, Stephenson SL, Ertz D, Lumbsch HT, Kukwa M, Issi IV, Madrid H, Phillips AJL, Selbmann L, Pfieger WP, Horváth E, Bensch K, Kirk PM, Kolaríková K, Raja HA, Radek R, Papp V, Dima B, Ma J, Malosso E, Takamatsu S, Rambold G, Gannibal PB, Triebel D, Gautam AK, Avasti S, Suëtrong S, Timdal E, Fryar SC, Delgado G, Réblová M, Doilom M, Dolatabadi S, Pawlowska J, Humber RA, Kodsuber R, Sánchez-Castro I, Goto BT, Silva DKA, de Souza FA, Oehl F, da Silva GA, Silva IR, Błaszkowski J, Jobim K, Maia LC, Barbosa FR, Fiuza PO, Divakar PK, Shenoy BD, Castañeda-Ruiz RF, Somritphol S, Lateef AA, Karunarathna SC, Tibpromma S, Mortier PE, Wanasinghe DN, Phookamsak R, Xu J, Wang Y, Tian F, Alvarado P, Li DW, Kušan I, Matočec N, Maharachchikumbura SSN, Papizadeh M, Heredia G, Wartchow F, Bakhshi M, Boehm E, Youssef N, Hustad VP, Lawrey JD, Santiago ALCMA, Bezerra JDP, Souza-Motta CM, Firmino AL, Tian Q, Houbraken J, Hongsanan S, Tanaka K, Dissanayake AJ, Monteiro JS, Grossart HP, Suija A, Weerakoon G, Earayo J, Tsurykau A, Vázquez V, Mungai P, Damm U, Li QR, Zhang H, Boonmee S, Lu YZ, Becerra AG, Kendrick B, Brealey FQ, Motiejūnaitė J, Sharma B, Khare R, Gaikwad S, Wijesundara DSA, Tang LZ, He MQ, Flakus A, Rodriguez-Flakus P, Zhurbenko MP, McKenzie EHC, Stadler M, Bhat DJ, Liu JK, Raza M, Jeewon R, Nasonova ES, Prieto M, Jyalal RGU, Erdoğan MG, Turkov A, Schnittler M, Schepin ON, Novozhilov YK, Silva-Filho AGS, Liu P, Cavender JC, Kang Y, Mohammad S, Zhang LF, Xu RF, Li YM, Dayaratne MC, Ekanayaka AH, Wen TC, Deng CY, Pereira OL, Navathe S, Hawksworth DL, Fan XL, Dissanayake LS, Kuhnert E, Grossart HP, Thines M (2020) Outline of Fungi and fungus-like taxa. Mycosphere 11(1): 1060–1456. https://doi.org/10.5943/mycosphere/11/1/8

Wu HX, Li YM, Chen H, Hyde KD (2010) Studies on Microthyriaceae: some excluded genera. Mycotaxon 113: 147–156. https://doi.org/10.5248/113.147
