A Case Study of In-House Competition for Ranking Constructive Comments in a News Service

Hayato Kobayashi¹, Hiroaki Taguchi¹, Yoshimune Tabuchi¹, Chahine Koleejan¹, Ken Kobayashi¹, Soichiro Fujita², Kazuma Murao³, Takeshi Masuyama¹, Taichi Yatsuka¹, Manabu Okumura², Satoshi Sekine⁴

¹Yahoo Japan Corporation, ²Tokyo Institute of Technology, ³VISITS Technologies Inc., ⁴RIKEN
Background

- Ranking user comments is important for online news services because comment visibility directly affects the user experience.
- There have been many studies on comment ranking by user feedback.
 - (Hsu+ 2009, Das Sarma + 2010; Brand&V. D. Merwe 2014; Wei+ 2016)
- However, user feedback does not always represent comment quality.

![Figure 1: Comments on Yahoo! JAPAN News for article “Lifting the ban on drinking/smoking at 18.”](image)

(e.g., by position bias)
Fujita et al. (2019) introduced the concept of constructiveness in argument analysis for ranking comments without biased user feedback.

Constructiveness has no correlation with user feedback (Like/Dislikes).

Table 1: Conditions for constructive comments.

Pre	Maintain decency and relevance
Related to article and not libelous	

Main	Represent typical cases of being constructive
Intended to stimulate discussions	
Objective and supported by fact	
New idea, solution, or insight	
User’s unique experience	
This Work

Approach

- Take Fujita et al.’s study one step further towards practical application.
 - Key aspect: Performance improvement by in-house competition.

Contributions

- Report the details of the in-house competition in Yahoo! JAPAN News.
 - 2.73% improvement in performance (NDCG) against the baseline.
- Consider several ensembles of the submitted various models.
 - 0.62% improvement in NDCG against the best single model.
In-House Competition

Task

- Ranking comments based on their constructiveness scores (C-scores).
 - C-score = a graded numeric score representing the level of constructiveness.

Dataset

- 59,120 comments (9,845 articles with about 6 comments).
 - Including 995 long comments (with 126-400 characters).

Evaluation

- NDCG: \(\frac{1}{K} \sum_{k=1}^{K} \text{NDCG}@k \)
 \[
 \text{NDCG}@k = Z_k \sum_{i=1}^{k} \frac{2^{r_i} - 1}{\log_2(i+1)}
 \]
- NDCG-L: NDCG only for the long comments (sub measure).
 - To avoid sloppy methods that determine long comments to be constructive.

Pre	Related to article and not libelous
Main	Intended to stimulate discussions
	Objective and supported by fact
	New idea, solution, or insight
	User’s unique experience

Table 1: Conditions for constructive comments.
Submission Trend

- Number of submissions increased at the beginning of work (where time is more available) and on the day of the deadline.
- 8 individuals submitted:
 - 14 models during the competition period (before the deadline).
 - +4 models after the deadline.
- Total 18 models for research.

Figure 2: Cumulative number of submissions over the competition period.
Performance Increase (%) Compared to Baseline

- Many models performed better than Baseline.
- Highest performance increase was 2.73% by Model-17 for NDCG.
- Use of the leaderboard had a positive effect for participants submitting high-performance models for both measures in the latter half of the competition.

Figure 3: Increase (%) in NDCG (top) and NDCG-L (bottom) for each model compared to Baseline.

Baseline: A linear rankSVM model with features based on term-frequency vectors.
High-performance Models

- **Model-4**: Highest NDCG (before the deadline).
 - A gradient boosting model with features based on pretrained word embeddings.

- **Model-11**: Highest sum of NDCG and NDCG-L.
 - A linear rankSVM model with features based on C-score prediction (= stacking) and the distance between an article and its comment.

- **Model-14**: Highest NDCG-L.
 - A gradient boosting model with features based on maximal substrings and words.

- **Model-17**: Highest NDCG (after the deadline).
 - A variant of the RankNet model (BiLSTM+GCNN) with features based on subwords.
- Prepared 4 simple and 2 recent ensemble methods.
 - Simple methods: ScoreAve, NormAve (2011), RankAve, TopkAve (2009)
 - Recent methods: PostEval (2018), WeightEval (2020)

- **NormAve**: Use the average of the predicted scores of all models after normalizing the scores (Burges+ 2011).

- **WeightEval**: Use the weighted average of the top-k promising predictions (Fujita+ 2020), which is a hybrid of (continuous) majority voting and averaging. (The other methods are omitted due to time constraint.)
Results of Ensemble Models

- WeightEval performed the best for the main measure NDCG.
 - 0.62% improvement against the best single model.

- NormAve is the most promising for practical use (no parameter tuning).

	NDCG	NDCG-L	NDCG@3	Prec@3
Baseline	81.63	86.74	81.09	73.30
Model-4	83.60	82.15	82.79	73.98
Model-11	83.35	88.34	82.93	73.20
Model-14	82.53	**88.77**	81.83	72.86
Model-17	83.86	88.24	83.27	72.01
ScoreAve	83.85	86.66	83.20	73.40
NormAve	84.33	88.41	84.01	**74.11**
RankAve	83.46	88.25	82.92	73.30
TopkAve	84.35	88.35	83.31	73.54
PostEval	84.32	88.64	83.88	73.91
WeightEval	**84.38**	88.30	**84.18**	74.04

Table 2: NDCG variants (%) and precision (%) for (a part of) the submitted models and their ensembles.
- Qualitative evaluation from the perspective of service.
 - 3 service experts ranked the comment lists created by candidate models.
 - Criterion: Which list should be provided as a service?

- Two cases:
 - Baseline vs. naive methods.
 - Baseline vs. submitted models.
 - Service preferred not to use ensemble models because it would be unreasonable to maintain different models.
Baseline vs. Naive Methods

- **Feedback**: Descending/ascending order of number of Likes/Dislikes.
- **Latest**: Descending order of comment date.
- **Length**: Descending order of comment length.

- Baseline (C-score) clearly performed better than the other methods.
- Constructiveness is useful even in human evaluation, while the previous study (Fujita+ 2019) used NDCG only.

	Average Rank
Feedback	2.61
Latest	3.42
Length	2.20
Baseline (C-score)	**1.77**

Table 3: Qualitative evaluation results of Baseline and naive methods (lower ranks are better).
Baseline vs. Submitted Models

- Prepared the four high-performance single models.
 - Model-4 (GBM with word embeddings), Model-11 (rankSVM with stacking), Model-14 (GBM with maximal substrings), Model-17 (RankNet with subwords).

- Best single model (Model-17) also had the best average rank.

- Competition format is effective even in a service-level judgment.

Model	Average Rank
Baseline	3.86
Model-4	3.64
Model-11	3.63
Model-14	3.41
Model-17	**3.11**

Table 4: Qualitative evaluation results of submitted models and Baseline (lower ranks are better).
Conclusion

Summary

- Reported the details of the in-house competition in Yahoo! JAPAN News.
 - 2.73% improvement in performance (NDCG) against the baseline.

Discussion

- Service decision suggests that while an ensemble of different models is promising in an academic sense, it still has challenges in an industrial sense.
 - Model unification/distillation for improving maintainability and latency?
Thank you!