THE DIFFUSION GEOMETRY OF FIBRE BUNDLES

TINGRAN GAO

Abstract. Kernel-based non-linear dimensionality reduction methods, such as Local Linear Embedding (LLE) and Laplacian Eigenmaps, rely heavily upon pairwise distances or similarity scores, with which one can construct and study a weighted graph associated with the data set. When each individual data object carries structural details, the correspondence relations between these structures provide additional information that can be leveraged for studying the data set using the graph. We generalize Diffusion Maps (DM) in manifold learning and introduce the framework of Horizontal Diffusion Maps (HDM). We model a data set with pairwise structural correspondences as a fibre bundle equipped with a connection. We further demonstrate the advantage of incorporating such additional information and study the asymptotic behavior of HDM on general fibre bundles. In a broader context, HDM reveals the sub-Riemannian structure of high-dimensional data sets, and provides a non-parametric learning framework for data sets with structural correspondences.

CONTENTS

1. Introduction 2
2. Horizontal Diffusion Maps on Fibre Bundles 5
2.1. Fibre Bundles 5
2.2. The Fibre Bundle Assumption for Data Sets 6
2.3. Connections 7
2.4. Horizontal Random Walks on Fibre Bundles 8
2.5. Infinitesimal Generators 11
3. Algorithm 16
3.1. Graph Horizontal Laplacians 16
3.2. Spectral Distances and Embeddings 18
4. Examples: Fibre Bundles with Totally Geodesic Fibres 21
4.1. Heisenberg Group 21
4.2. Tangent Bundles 22
4.3. Unit Tangent Bundles 22
5. Finite Sampling on Unit Tangent Bundles 23
5.1. Sampling Unit Tangent Bundles 23
5.2. Numerical Experiments 28
6. Application to Automated Geometric Morphometrics 31
7. Discussion and Future Work 34
Appendix A. Proofs of Theorem 2.6, Theorem 2.8, and Theorem 2.10 36
Appendix B. Proofs of Theorem 5.4 and Theorem 5.6 44
References 64

Date: February 9, 2016.
Key words and phrases. Diffusion Geometry, Manifold Learning, Laplacian, Fibre Bundles.
1. Introduction

Acquiring complex, massive, and often high-dimensional data sets has become a common practice in many fields of science. While inspiring and stimulating, these data sets can be challenging to analyze or understand efficiently. To gain insight despite the volume and dimension of the data, methods from a wide range of science fields have been brought into the picture, rooted in statistical inference, machine learning, signal processing, to mention just a few.

Among the exploding research interests and directions in data science, the relation between the graph Laplacian [15] and the manifold Laplacian [51] has emerged as a useful guiding principle. Specifically, the field of non-linear dimensionality reduction has witnessed the emergence of a variety of kernel-based spectral techniques, such as Locally Linear Embedding (LLE) [52], ISOMAP [63], Hessian Eigenmaps [22], Local Tangent Space Alignment (LTSA) [73], Diffusion Maps [19], Orientable Diffusion Maps (ODM) [57], Vector Diffusion Maps (VDM) [55], and Schrödinger Eigenmaps [65]. The general practice of these methods is to treat each object (images, texts, shapes, etc.) in the data set as a vertex of a graph, and two “similar” vertices are connected through an edge weighted by their similarity score. The graph is then embedded into a Euclidean space of relatively low dimensionality using the eigenvectors of the graph Laplacian (or its variant) associated with the similarity graph. Built with varying flexibility, these methods provide valuable tools for organizing complex networks and data sets by “learning” the global geometry from the local connectivity and weights.

The Diffusion Map (DM) framework [19, 42, 17, 18, 20, 57, 55] proposes a probabilistic interpretation for graph-Laplacian-based dimensionality reduction algorithms. Under the assumption that the discrete graph is appropriately sampled from a smooth manifold, it assigns transition probabilities from a vertex to each of its neighbors (vertices connected to it) according to the edge weights, thus defining a graph random walk the continuous limit of which is a diffusion process [69, 24] over the underlying manifold. The eigenvalues and eigenvectors of the graph Laplacian, which converge to those of the manifold Laplacian under appropriate assumptions [4, 5], then reveal intrinsic information about the smooth manifold. More precisely, [7] proves that these eigenvectors embed the manifold into an infinite dimensional l^2 space, in such a way that the diffusion distance [19] (rather than the geodesic distance) is preserved. Appropriate truncation of these sequences leads to an embedding of the smooth manifold into a finite dimensional Euclidean space, with small metric distortion.

Under the manifold assumption, [57, 55] recently observed that estimating random walks and diffusion processes on structures associated with the original manifold (as opposed to estimates of diffusion on the manifold itself) are able to handle a wider range of tasks, or obtain improved precision or robustness for tasks considered earlier. For instance, [57] constructed a random walk on the orientation bundle [12, §1.7] associated with the manifold, and translated the detection of orientability into an eigenvector problem, the solution of which reveals the existence of a global section on the orientation bundle; [55] introduced a random walk on the tangent bundle associated with the manifold, and proposed an algorithm that embeds the manifold into an l^2 space using eigen-vector-fields instead of eigenvectors (and thus the name Vector Diffusion Maps (VDM)). In [71] the VDM approach is used, analogously to [7], to embed the manifold into a finite dimensional Euclidean
space. Although the VDM embedding does not reduce the dimensionality as much as standard diffusion embedding methods, it benefits from improved robustness to noise, as illustrated by the analysis of some notoriously noisy data sets [36, 37].

Both [57] and [55] incorporate additional structures into the graph Laplacian framework: in [55] this is an extra orthogonal transformation (estimated from local tangent planes) attached to each weighted edge in the graph; in [57] the edge weights are overwritten with signs determined by this orthogonal transformation. These methods are successful, partly because they incorporate more local geometry (by estimating tangent planes) en route to dimensionality reduction. It is possible to adopt their methodology to tackle problems in much broader contexts, where the local geometric information can be of a different type than tangent spaces. For instance, many data sets carries abundant structural details on each individual object in the data set, such as pixels in an image, vertices/faces on a triangular mesh, or a collection of persistent diagrams [64] representing a shape. Typically, kernel eigenmap methods begin by “abstracting away” these details, encoding only pairwise similarities using a kernel function. The major advantage, like kernel methods in general, is the flexibility (no need to extract explicit features) and efficiency (most kernels are easy to compute); however, in some circumstances, the structural details may themselves be of interest. For example, in the geometry processing problem of analyzing large collections of 3D shapes, it is desirable to enable user exploration of shape variations across the collection, for which reducing each individual shape as a graph vertex completely ignores its spatial configuration. Furthermore, even when sticking to pairwise similarity scores significantly simplifies the data manipulation, the best way to score similarity (or equivalently, craft the kernel function) is not always clear. In practice, the similarity measure is often dictated by practical heuristics, which may be misguided for incompletely understood data.

In this paper, we propose the **Horizontal Diffusion Map (HDM)**, a new graph-based framework for analyzing complex data sets. This method focuses on data sets in which similarity scores between samples can be obtained from “correspondence relations” between sophisticated individual structures carried with each sample. Such data sets occur in many settings. Examples are, e.g., the biological morphology examples in Figure 1 below, or MRI observations of different subjects in psychology (with each subject considered as a sample “point”). In many of these instances, the data acquired is too noisy, has huge degrees of freedom, or contains un-ordered features (as opposed to sequential data). Computing pairwise similarity within such data sets typically requires minimizing some functional over the space of admissible pairwise structural correspondences, and the similarity score between two data points is achieved by an “optimal” correspondence. Figure 1 illustrates two objects from a data set of anatomical surfaces, discretized as triangular meshes; an “optimal” correspondence between the pair is a diffeomorphism between the meshes that minimizes an energy functional whose minimum defines a distance between disk-type surfaces. Often the optimal correspondence encodes substantial information missing from the distance (which is merely a scalar condensed from the diffeomorphism). The HDM framework aims to mine this hidden information from pairwise structural correspondences.

Like ODM and VDM, HDM generalizes the diffusion map framework, but it takes an essentially different path. In this paper, we are most interested in the
Figure 1. An optimal structural correspondence between two lemur teeth illustrated by pushing forward a texture on the left tooth onto the right tooth. This correspondence leads to the Continuous Procrustes Distance [1] between the pair of shapes. HDM utilizes the abundant geometric information in such correspondences.

scenario in which the sample points are themselves manifolds. To provide a mathematical model for such consideration, we first augment the manifold underlying diffusion maps, denoted as M, with extra dimensions. To each point x on M, this augmentation attaches an individual manifold, denoted as F_x; since pairwise correspondences exist between nearby individual manifolds, we assume that around each $x \in M$ there exists an open neighborhood U such that on U the augmented structure “looks like” $U \times F$, the product of U with a “universal template” manifold F. Intuitively, M plays the role of a “parametrization” for the collection of individual manifolds $\{F_x \mid x \in M\}$. Of course, the existence of such a universal template makes sense only if the F_x’s are compatible with each other in some appropriate sense (e.g. each F_x should at least be diffeomorphic to F); however, such compatibility is not uncommon for many data sets of interest, as we shall see in Section 2. This picture of parametrizing a family of manifolds with an underlying manifold is reminiscent of the modern differential geometric concept of a fibre bundle, which played an important role in the development of geometry, topology, and mathematical physics in the past century. Therefore, we shall refer to this geometric object as the underlying fibre bundle of the data set. Adopting the terminology from differential geometry, we call M the base manifold, the universal template manifold F the fibre, and each F_x a fibre at x. The fibre bundle is itself a manifold, denoted as E and referred to as the total manifold.

The probabilistic interpretation of HDM is a random walk on the fibre bundle. In one step, the transition occurs either between points on adjacent but distinct fibres, or within the same fibre. If transitions between distinct fibres depend solely on geometric proximity specified through a metric on the total manifold E, this looks no different from a direct application of diffusion maps on E. In contrast, HDM also incorporates the pairwise correspondences between individual manifolds in the fibre bundle formulation, by requiring transitions between distinct fibres to follow certain directional constraints imposed by correspondences. The resulting random walk is no longer a standard random walk on the total manifold, but rather a “horizontal lift” of a random walk on the base manifold M. Under mild assumptions, its continuous limit is a diffusion process on the total manifold E, infinitesimally
generated by a hypoelliptic differential operator [33]. We can then embed the total manifold into a Euclidean space using the eigenvectors of this partial differential operator; discretely this corresponds to solving for the eigenvectors of a new graph Laplacian, referred to as a sub-Laplacian of the graph. It turns out that, by varying a couple of parameters in its construction, the family of graph sub-Laplacians contains the discrete analogue of several important and informative partial differential operators on the fibre bundle, relating the geometry of the base manifold with that of the total manifold. Our numerical experiments revealed interesting phenomena when embedding the fibre bundle using eigenvectors of these new graph Laplacians.

We note that the idea of studying diffusion processes and random walks on an “augmentation” of the original data set, or extracting information from pairwise structural correspondences between sample points, has appeared elsewhere as well, in several distinct fields (e.g. shape collection analysis [39], manifold alignment [68], and neurogeometry [11]). To our knowledge, HDM is the first theoretical framework that provides the mathematical and statistical foundation for these research directions; in particular, like diffusion maps, HDM enables decoupling the probabilistic treatment of sampling from the geometry of the data set.

This paper is organized as follows: Section 2 formulates the problem and discusses the meaning of the fibre bundle assumption; Section 3 describes the algorithmic construction; Section 5 focuses on the finite sampling theory of HDM on unit tangent bundles; Section 6 shows some numerical experiments; finally we conclude with a brief discussion and propose potentially interesting directions for future work. Note that even though the tangent bundle setting considered in Section 5 is closely related with VDM, the construction of HDM nevertheless differs essentially from VDM; we shall elaborate on this below.

2. Horizontal Diffusion Maps on Fibre Bundles

In this section, we build the theoretical framework of horizontal diffusion maps, and relate it, where appropriate, with practical considerations for data processing.

2.1. Fibre Bundles. The following is a standard definition of fibre bundles [8, 45]:

Definition 2.1 (Fibre Bundle). Let \(\pi : E \to M \) be a smooth map from a total manifold \(E \) to a base manifold \(M \). We call the quadruple \(\mathcal{E} = (E, M, F, \pi) \) a fibre bundle with fibre manifold \(F \) if there is an open cover \(\{U_i\} \) of \(M \) with diffeomorphisms

\[
\phi_i : \pi^{-1}(U_i) \longrightarrow U_i \times F
\]

such that \(\pi : \pi^{-1}(U_i) \to U_i \) is the composition of \(\phi_i \) with projection onto the first factor \(U_i \) in \(U_i \times F \). In other words, the following diagram is commutative:

\[
\begin{array}{ccc}
\pi^{-1}(U_i) & \xrightarrow{\phi_i} & U_i \times F \\
\downarrow & & \downarrow \\
U_i & \xrightarrow{\text{proj}_1} & F
\end{array}
\]

From this definition, it follows immediately that \(\pi^{-1}(x) \) is diffeomorphic to \(F \) for any \(x \in M \). We denote \(F_x \) for \(\pi^{-1}(x) \) and call it the fibre over \(x \in M \). The diffeomorphism \(\phi_i : \pi^{-1}(U_i) \to U_i \times F \) is also known as a local trivialization of the fibre bundle \(\mathcal{E} \) over the open set \(U_i \). Unless otherwise stated, we assume throughout this paper that \(M \) and \(F \) are orientable Riemannian manifolds so the
volume form and integration is well-defined; the dimensions of M, F will be denoted as $d = \dim(M), n = \dim(F)$, respectively.

For our purposes, the base manifold M plays the same role as the manifold that underlies the diffusion maps (i.e., from which data points are sampled). Furthermore, we assume that each data point $x \in M$ carries a manifold structure that is diffeomorphic to a fixed fibre manifold F; the entire data set can thus be interpreted as a collection of instantiations of the fibre F (which can be viewed as a “template”), indexed by points on the base manifold M as $\{F_x : x \in M\}$. From a fibre bundle point of view, it is natural to study the base manifold M using the extra information in the total manifold $E = \cup_{x \in M} F_x$.

As stated in Section 1, we are interested in the scenario where pairwise correspondences exist between fibres; these can easily be incorporated into the fibre bundle framework. Note that it is tempting to model the correspondences locally using the open cover $\{U_i\}$ and local trivializations $\{\phi_i\}$, by considering a correspondence relation between x, y in the same U_i as the diffeomorphism $(\phi_i|_{F_y})^{-1} \circ (\phi_i|_{F_x})$, and extend to points from different open sets by continuity. However, there are at least two caveats for this formulation: first, it requires all pairwise correspondences to be at least bijective, which in practice is often not the case; second, since the fibre bundle is defined through local trivializations, this formulation hard-codes the correspondences into the structure of the fibre bundle, and thus lacks flexibility when we consider the variation of these correspondences on a fixed fibre bundle. Therefore, we shall interpret pairwise correspondences as parallel-transports along geodesics on the base manifold M, generated by a connection (see Section 2.3) on the fibre bundle \mathcal{E}. This interpretation will allow us, in practical applications, to study the (unknown) geometry of M through the connection on \mathcal{E}.

2.2. The Fibre Bundle Assumption for Data Sets. We consider data sets with pairwise similarity scores and structural correspondences. We say that the data set consists of data objects, and each data object contains data points (note that the number of data points contained in each data object may vary). Pairwise structural correspondences exist between data objects with high similarity scores; each correspondence is defined from a source data object (the collection of source data points) to a target data object (the collection of target data points), and can either be a point-to-point map or a “multi-valued map” that associates a source data point with multiple target data points. In the latter case, the correspondence may also assign similarity scores between source and target data points.

Our basic assumptions for the data set can be summarized as follows:

1. Data points lie approximately on a fibre bundle;
2. Data points on the same data object are sampled from the same fibre.

Roughly speaking, a data set satisfies the fibre bundle assumption if the data generation process can be viewed as first drawing fibres from the fibre bundle (equivalent to sampling on the base manifold) and then sampling on each fibre. The fibre bundle assumption admits “inconsistency” of pairwise correspondences as to the nature of the underlying geometry: though pairwise correspondences only exist (or are of high fidelity) between nearby data objects, by knitting together these correspondences along “small hops” one can still build correspondences between far-apart data objects (provided the base manifold is connected); correspondences constructed in this manner are generally inconsistent with each other in the sense
that knitting together correspondences along different paths connecting the same data objects leads to different correspondences. In our framework, this inconsistency would reflect the curvature and holonomy of the connection on the fibre bundle, see Section 2.3.

2.3. Connections. There are different ways to define a connection on a fibre bundle. For the sake of generality, we adopt here the treatment in [45] or [25] from a Riemannian submersion point of view; see also [9, 30] for more detailed discussions.

For any fibre bundle $E = (E, M, F, \pi)$, the bundle projection map $\pi : E \to M$ descends canonically to its differential $d\pi$ between tangent bundles TE and TM, defining linear surjective homomorphisms between tangent planes T_eE and $T_{\pi(e)}M$ for any $e \in E$. We denote VE for the vertical bundle, a sub-bundle of TE defined as the kernel of the differential map $d\pi : TE \to TM$. A horizontal bundle HE is a sub-bundle of TE that is supplementary to VE in the sense that $TE = HE \oplus VE$, or equivalently

$$ T_eE = H_eE \oplus V_eE \quad \text{for all } e \in E. $$

Here H_eE, V_eE stand for the fibres of HE, VE above $e \in E$, respectively; we shall refer to H_eE, V_eE as the horizontal tangent space and vertical tangent space at $e \in E$ for future convenience, and denote

$$ \mathcal{H} : TE \to HE, \quad \mathcal{V} : TE \to VE $$

for the corresponding horizontal projection and vertical projection. Note that although VE is canonically defined, the choice of HE is arbitrary at this point. Since $d\pi|_{H_eE} : H_eE \to T_{\pi(e)}M$ is a linear isomorphism, for any tangent vector $u \in T_{\pi(e)}M$ there exists a unique tangent vector $\bar{u} \in H_eE$ such that $d\pi_e(\bar{u}) = u$; we call \bar{u} the horizontal lift of u. Furthermore, we know from simple ODE theory (and the smoothness of HE) that for any vector field $X \in \Gamma(M, TM)$ there exists a unique horizontal lift $\bar{X} \in \Gamma(E, HE)$ such that $d\pi_e(\bar{X}_e) = X_{\pi(e)}$ for all $e \in E$.

In the rest of this paper, a path $\gamma : [0, T] \to E$ is horizontal if all tangent vectors along γ are in HE. Given a path $c : [0, T] \to M$, a horizontal lift of c is any horizontal path \bar{c} in E that projects to c under the bundle projection π, i.e. $\pi \circ \bar{c} = c$. Again, by horizontally lifting the tangent vector field along the path from TM to HE and solving the ODE system

$$ \frac{d\bar{c}}{dt} = \left(\frac{dc}{dt} \right), \quad t \in [0, T] $$

we can uniquely lift any piecewise smooth path c in M starting at $\pi(e) \in M$ to a horizontal path \bar{c} in E starting at $e \in E$, at least locally around $c(0)$. We call HE an Ehresmann connection [25], or connection hereafter, if any path in M starting at $m \in M$ can be globally horizontally lifted to E with any given initial point $e \in E$ satisfying $e \in \pi^{-1}(m)$. Such a lifting property is guaranteed, for instance, on any Riemannian submersion $\pi : E \to M$ with geodesically complete total space E, in which case the submersion is known to be a locally trivial fibration [32].

We shall focus on Ehresmann connections so that the horizontal lift of any path in M is uniquely determined once the starting point on E is specified. Therefore, given a smooth curve $\gamma : [0, T] \to M$ that connects $\gamma(0)$ to $\gamma(T)$ on M, there exists a smooth map from $F_{\gamma(0)}$ to $F_{\gamma(T)}$ (at least when $\gamma(0)$ and $\gamma(T)$ are sufficiently close), defined as

$$ F_{\gamma(0)} \ni e \mapsto \tilde{\gamma}_e(T) \in F_{\gamma(T)}. $$
where $\tilde{\gamma}_e$ denotes the horizontal lift of γ with starting point p. We call this construction of maps between fibres, obviously depending on the choice of path γ, the parallel transport along γ (with respect to the connection), and denote $P_{yx}^\gamma : F_x \to F_y$ for the parallel transport from fibre F_x to fibre F_y. When γ is a unique geodesic on M that connects x to y, we drop the superscript γ and simply write $P_{yx} : F_x \to F_y$. For future reference, we give the precise definition of the operator P_{yx} here.

Definition 2.2 (Parallel Transport on Fibre Bundles). Let $\mathcal{E} = (E, M, F, \pi)$ be a fibre bundle, $x \in M$, $v \in F_x$, and U a geodesic normal neighborhood of x on the base manifold M. For any $y \in U$, denote the geodesic distance between x and y as $d_M (x, y)$. Let $\gamma : [0, d_M (x, y)] \to M$ be the unique unit-speed geodesic on M connecting x to y, i.e., $\gamma (0) = x, \gamma (d_M (x, y)) = y$; let $\tilde{\gamma}$ be the unique horizontal lift of γ starting at $v \in F_x$, i.e.,

$$
\begin{cases}
\tilde{\gamma}' (t) = \tilde{\gamma} (t), & t \in [0, d_M (x, y)], \\
\tilde{\gamma} (0) = v.
\end{cases}
$$

The parallel-transport of v from x to y, denoted as $P_{yx} v$, is defined as

$$
P_{yx} v = \tilde{\gamma} (d_M (x, y)) \in F_y.
$$

We shall see later that the probabilistic interpretation of HDM (and even VDM) implicitly depends on lifting from the base manifold a path that is continuous but not necessarily smooth. Though this can not be trivially achieved by the ODE-based approach, stochastic differential geometers developed tools appropriate for tackling this technicality (see e.g. [61, §5.1.2]).

2.4. Horizontal Random Walks on Fibre Bundles.

With these technical preparations, we are now ready to define a random walk tailored to the data set with pairwise correspondences. Starting from a point $e \in E$, in one step a random walker is allowed to jump to a neighboring $e' \in E$ only if fibre $F_{\pi(e')}$ is different from $F_{\pi(e)}$; moreover, infinitesimally the jump follows only horizontal directions in $H_{\pi E}$, and the projection of the trajectory on M is piecewise geodesic. More precisely, if the random walker is at $e \in F_x \subset E$ at time step k, it will, at time step $k + 1$, land on its parallel-transport image $P_{yx} (e)$ on fibre $F_y (y \neq x)$. This random walk on the fibre bundle \mathcal{E} can be viewed as “driven” by an underlying random walk on the base manifold M (see Figure 2 for an illustration). Passing to the continuous limit, both random walks on the fibre bundle and the base manifold converge to diffusion processes. For the convenience of exposition, hereafter we refer to the limit diffusion process on the fibre bundle as the horizontal lift of the limit diffusion process on the base manifold. In the Riemannian setting, this construction is reminiscent of the notion of stochastic parallel transport [35, 34] in stochastic differential geometry.

The following is a precise description of the horizontal diffusion processes on the fibre bundle in the language of symmetric Markov semigroups. For clarity, let us assume M and F are both orientable. Let kernel $K : \mathbb{R} \to \mathbb{R}^{\geq 0}$ be a smooth function function compactly supported on the unit interval $[0, 1]$. For bandwidth parameter $\epsilon > 0$ and any pairs of $x, y \in M$, define

$$
K_\epsilon (x, y) = K \left(\frac{d_M (x, y)}{\epsilon} \right),
$$

where $d_M (\cdot, \cdot)$ stands for the geodesic distance on M. Note that $K_\epsilon (\cdot, \cdot)$ is non-zero only if x, y are sufficiently close to each other under the Riemannian metric on M.

due to the compactness of the kernel function K. For any $f \in C^\infty(E)$, define the diffusion operator $H_\epsilon : C^\infty(E) \to C^\infty(E)$ as
\[
H_\epsilon f(x,v) = \int_M K_\epsilon(x,y) f(y,P_{yx}v) \, d\text{vol}_M(y), \quad \forall x \in M, v \in F_x,
\]
where $d\text{vol}_M$ stands for the Riemannian volume element on M. Intuitively, at each point $(x,v) \in E$, H_ϵ averages the value of f on a neighborhood around (x,v) expanded by parallel-transporting (x,v) along geodesics on M. Compared with the diffusion semigroup characterization of a diffusion process on the base manifold, H_ϵ incorporates the extra information provided by the connection.

Variants of H_ϵ that involve the sampling density can be similarly constructed, which is useful since in practice it is difficult to uniformly sample from M. Consider a density function $p \in C^\infty(M)$ with respect to which the samples are generated. For simplicity, assume p is bounded away from zero from below, i.e.,
\[
\int_M p(y) \, d\text{vol}_M(y) = 1 \quad \text{and} \quad p(y) \geq p_0 > 0 \quad \forall y \in M. \tag{2.2}
\]

Similar to the construction of diffusion maps [19], we can decouple the geometry of the manifold from the influence of sampling density by normalizing the integral kernel. To this end, we set
\[
p_\epsilon(x) = \int_M K_\epsilon(x,y) p(y) \, d\text{vol}_M(y)
\]
and denote for any normalization parameter $\alpha \in [0, 1]$
\[
K_\epsilon^{(\alpha)}(x,y) = \frac{K_\epsilon(x,y)}{p_\epsilon^{(\alpha)}(x)p_\epsilon^{(\alpha)}(y)},
\]
then define the horizontal diffusion operator
\[
H_\epsilon^{(\alpha)} f(x,v) = \frac{\int_M K_\epsilon^{(\alpha)}(x,y) f(y,P_{yx}v) p(y) \, d\text{vol}_M(y)}{\int_M K_\epsilon^{(\alpha)}(x,y) p(y) \, d\text{vol}_M(y)}, \quad \forall x \in M, v \in F_x \tag{2.3}
\]
for any \(f \in C^\infty(E) \). As we shall see later, the infinitesimal generator of \(H^{(\alpha)}_\epsilon \) is a second order partial differential operator in which all derivatives, as vector fields on \(E \), are horizontal.

A different practical consideration is that pairwise correspondences can be relaxed from maps to couplings of probability measures when fibres are discretized. Examples for such relaxed pairwise correspondences include the softassign Procrustes matching \([50]\) in medical imaging, the soft maps \([60]\) in geometry processing, the transport plans \([66, 67]\) in optimal transportation, to name just a few. In the HDM framework, these relaxed correspondences also define diffusion processes on the fibre bundle, now consisting of two ingredients: a horizontal lift of a diffusion process on the base manifold, composed with another diffusion process within the fibre. In this setting, it is an interesting question to “learn” the connection from the composition of two diffusion processes; practically, this amounts to “recovering” maps from couplings in a collection of data objects. As we shall see in Section 6, one can also “learn” the structure of the template fibre from the connection. Making an analogy with the terminology manifold learning, we call this type of learning problems fibre learning. Similar to (2.3), we can write the diffusion process considered in fibre learning in the language of Markov semigroups. Let \(K : \mathbb{R}^2 \to \mathbb{R}^\geq_0 \) be a smooth bi-variate function compactly supported on the unit square \([0, 1] \times [0, 1]\), and let \(\epsilon > 0, \delta > 0 \) be bandwidth parameters. Define

\[
K_{\epsilon, \delta} (x, v; y, w) = K \left(\frac{d_M^2 (x, y)}{\epsilon}, \frac{d_{F_y}^2 (P_{yx} v, w)}{\delta} \right)
\]

for \((x, v) \in E, (y, w) \in E\), where \(d_M (\cdot, \cdot), d_{F_y} (\cdot, \cdot)\) are the geodesic distances on \(M, F_y\) respectively. Assume \(p \in C^\infty(E) \) is a density function bounded away from zero from below, i.e.

\[
\int_M \int_{F_y} p(y, w) \, d\text{vol}_{F_y}(w) \, d\text{vol}_M(y) = 1
\]

and

\[
p(y, w) \geq p_0 > 0, \quad \forall (y, w) \in E.
\]

For \(\alpha \in [0, 1] \), if we set

\[
p_{\epsilon, \delta} (x, v) = \int_M \int_{F_y} K_{\epsilon, \delta} (x, v; y, w) \, p(y, w) \, d\text{vol}_{F_y}(w) \, d\text{vol}_M(y),
\]

and

\[
K^{(\alpha)}_{\epsilon, \delta} (x, v; y, w) = \frac{K_{\epsilon, \delta} (x, v; y, w)}{p^{(\alpha)}_{\epsilon, \delta} (x, v) \, p^{(\alpha)}_{\epsilon, \delta} (y, w)},
\]

then the coupled diffusion operator for all \((x, v) \in E\) can be written as

\[
H^{(\alpha)}_{\epsilon, \delta} f (x, v) = \frac{\int_M \int_{F_y} K^{(\alpha)}_{\epsilon, \delta} (x, v; y, w) \, f(y, w) \, p(y, w) \, d\text{vol}_{F_y}(w) \, d\text{vol}_M(y)}{\int_M \int_{F_y} K_{\epsilon, \delta} (x, v; y, w) \, p(y, w) \, d\text{vol}_{F_y}(w) \, d\text{vol}_M(y)}.
\]

The infinitesimal generator of \(H^{(\alpha)}_{\epsilon, \delta} \) has to be considered differently from that of \(H^{(\alpha)}_{\epsilon} \) due to the appearance of two (instead of one) bandwidth parameters \(\epsilon, \delta \). It
turns out that the relative rate with which ϵ and δ approach 0 affects the type of the infinitesimal generator associated with the diffusion process, see Section 2.5.

2.5. **Infinitesimal Generators.** Assume (M, g^M) is a d-dimensional Riemannian manifold, and denote ∇^M for the canonical Levi-Civita connection on M. The *Laplace-Beltrami operator* on M, or *Laplacian* for short, is the analogy of the usual Laplace operator on the Euclidean space defined by

$$\Delta_M f(x) = \text{Trace} \nabla^M \nabla f(x)$$

for all $f \in C^\infty(M), x \in M$. For an orthonormal local frame $\{X_1, \cdots, X_d\}$ near $x \in M$, Δ_M can also be written as

$$\Delta_M f(x) = \sum_{j=1}^d g^M \left(\nabla_{X_j}^M, \nabla f, X_j \right)(x)$$

(2.8)

$$= \sum_{j=1}^d X_j^2 f(x) - \left(\sum_{j=1}^d \nabla_{X_j}^M X_j(x) \right) f(x).$$

If we further pick the frame to be geodesic, then $\nabla_{X_j}^M X_k(x) = 0$ for all $1 \leq j, k \leq d$ and thus Δ_M takes the following sum-of-squares form

$$\Delta_M f(x) = \sum_{j=1}^d X_j^2 f(x).$$

(2.9)

The infinitesimal generator of the horizontal diffusion (2.3) turns out to be a differential operator on E that is a “horizontal lift” of Δ_M in a sense to be made clear later in this section. To characterize this infinitesimal generator, let us first introduce a Riemannian metric on E that is adapted to the connection HE. For any $x \in M$, recall from Section 2.1 that F_x (the fibre at point $x \in M$) is a Riemannian submanifold of E, thus vertical tangent vectors at $e \in \pi^{-1}(x)$ can be canonically identified with tangent vectors to F_x; if each F_x is equipped with a Riemannian metric g^{F_x}, we define for any $U, V \in V_eE$

$$g^E(U, V) = g^{F_x}(U, V).$$

(2.10)

For any $X, Y \in H_eE$, by the linear isomorphism between H_eE and T_eM we define

$$g^E(X, Y) = g^M(d\pi_e(X), d\pi_e(Y))$$

(2.11)

where g^M stands for the Riemannian metric on M. Finally, impose orthogonality between H_eE and V_eE by setting for any $X \in H_eE, U \in V_eE$

$$g^E(X, U) = 0.$$

(2.12)

The smoothness of g^E with respect to $e \in E$ follows from the smoothness of g^M and g^{F_x}. In other words, g^E is constructed so as to make the decomposition $TE = HE \oplus VE$ orthogonal. Some authors [10, 3] abbreviate this construction as

$$g^E = g^M \oplus g^F.$$

(2.13)

For future convenience, let us use superscripts to denote the horizontal and vertical components of tangent vectors to E, i.e. for any $Z \in T_eE$

$$Z = Z^H + Z^V.$$
where $Z^H \in H\tau E$, $Z^V \in V\tau E$ are uniquely determined due to the direct sum decomposition $T\tau E = H\tau E \oplus V\tau E$. Thus for any $W, Z \in T\tau E$

\[g^E(W, Z) = g^M(d\pi_e(W^H), d\pi_e(Z^H)) + g^{E(e)}(W^V, Z^V). \]

We also write the horizontal and vertical components of the gradient of any smooth function $f \in C^\infty(E)$ as

\[\nabla^H f := (\nabla f)^H, \quad \nabla^V f := (\nabla f)^V. \]

Let ∇^E denote the Levi-Civita connection with respect to g^E. Define the rough horizontal Laplacian Δ_H on E for $f \in C^\infty(E)$ as the following second order partial differential operator:

\[\Delta_H f(e) = \text{Trace} \left(\nabla^E \nabla^H f \right)^H(e) \quad \text{for all } e \in E. \]

Let $\{\bar{X}_1, \cdots, \bar{X}_d\}$ be the horizontal lift of an orthonormal frame $\{X_1, \cdots, X_d\}$ near $\pi(e) = x \in M$. Since $g^E(\bar{X}_j, \bar{X}_k) = g^M(X_j, X_k)$ for $1 \leq j, k \leq d$, the tangent vectors $\bar{X}_1(e'), \ldots, \bar{X}_d(e')$ form an orthonormal basis for $H_{e'}E$ for all e' sufficiently close to e. We can write (2.15) in terms of these horizontally lifted vector fields as

\[\Delta_H f(e) = \sum_{j=1}^d g^E(\nabla^E_{\bar{X}_j} \nabla^H f, \bar{X}_j)(e) \]

\[= \sum_{j=1}^d \bar{X}_j^2 f(e) - \left(\sum_{j=1}^d \left(\nabla^E_{\bar{X}_j} \bar{X}_j \right)^H \right) f(e). \]

Loosely speaking, Δ_H is the “horizontal lift” of Δ_M from M to E, since (2.16) can be obtained from (2.8) by replacing each X_j with its horizontal lift \bar{X}_j and noting that $\left(\nabla^E_{X_j} X_j \right)^H$ is the horizontal lift of $\nabla^M_{X_j} X_j$ (see e.g. [32, Proposition 3.1]). More precisely, for any $g \in C^\infty(M)$, denote $\bar{g} = g \circ \pi \in C^\infty(E)$, then for any $e \in E$ and $x = \pi(e) \in M$ we have

\[\Delta_M g(x) = \Delta_H \bar{g}(e). \]

Remark 2.3. When $E = O(M)$ is the frame bundle of M, the rough horizontal Laplacian Δ_H coincides with the Bochner horizontal Laplacian $\Delta_{O(M)}$ in stochastic differential geometry [34, Chapter 3]. The classical Eells-Elworthy-Malliavin approach intrinsically defines a Brownian motion on manifolds as a horizontal Brownian motion on $O(M)$ generated by $\Delta_{O(M)}$.

Remark 2.4. In general, the rough horizontal Laplacian Δ_H differs from the concept of “horizontal Laplacian” commonly seen in sub-Riemannian geometry by a mean curvature term [3, 6]; the two types of horizontal Laplacian coincide only when the fibres of E are minimal submanifolds of E. In fact, for any $f \in C^\infty(E)$, the Laplace-Beltrami operator on E with respect to g^E splits into two parts

\[\Delta_E f = \text{Trace} \nabla^E \nabla f = \text{Trace} \nabla^E \nabla^H f + \text{Trace} \nabla^E \nabla^V f \]

Define the horizontal Laplacian Δ^H_E and the vertical Laplacian Δ^V_E as

\[\Delta^H_E f := \text{Trace} \nabla^E \nabla^H f, \quad \Delta^V_E f := \text{Trace} \nabla^E \nabla^V f, \]

then

\[\Delta_E = \Delta^H_E + \Delta^V_E. \]
Recalling the definition of Δ_H from (2.15), we have
\[
\Delta_E^H f = \text{Trace } (\nabla^E \nabla^H f)^H + \text{Trace } (\nabla^E \nabla^H f)^V
= \Delta_H f + \text{Trace } (\nabla^E \nabla^H f)^V
\]
and $\Delta_E^H = \Delta_H$ if and only if
\[
\text{Trace } (\nabla^E \nabla^H f)^V = 0 \quad \text{for all } f \in C^\infty (E)
\]
which turns out to be equivalent to the requirement that F_x are minimal submanifolds of E for all $x \in M$. This holds, for instance, when all fibres of the Riemannian submersion $\pi : E \to M$ are totally geodesic, a scenario of great theoretic interest since it implies that all fibres are isometric [32]; we do not make such an assumption in the HDM framework since this particularly simple case is obviously too restricted for practical purposes.

Remark 2.5. For any $x \in M$ and $e \in \pi^{-1} (x)$, if $\{X_1, \cdots, X_d\}$ is a geodesic frame on M near x, then the horizontal lifts $\{\bar{X}_1, \cdots, \bar{X}_d\}$ near e also constitute a “horizontal geodesic frame” in the sense that
\[
\left(\nabla^E \bar{X}_j \bar{X}_k \right)^H (e) = 0, \quad \text{for all } 1 \leq j, k \leq d,
\]
which simplifies (2.16) into a sum-of-squares form analogous to (2.9)
\[
(2.20) \quad \Delta_H f (e) = \sum_{j=1}^d \bar{X}_j^2 f (e) \quad \text{for all } f \in C^\infty (E).
\]

We are now ready to present the first main theorem of this paper concerning the infinitesimal generator of the horizontal diffusion operator $H^{(\alpha)}$ defined in (2.3). The proof of Theorem 2.6 can be found in Appendix A.

Theorem 2.6. Suppose $\sigma = (E, M, F, \pi)$ is a fibre bundle, M is a smooth Riemannian manifold without boundary, and E is equipped with the Riemannian metric (2.13). For any $f \in C^\infty (E)$ and $(x, v) \in E$,
\[
(2.21) \quad \lim_{\epsilon \to 0} \frac{H^{(\alpha)}_E f (x, v) - f (x, v)}{\epsilon} = \frac{m_2}{2m_0} \left[\Delta_H (f \bar{p}^{1-\alpha} - f \Delta_H \bar{p}^{1-\alpha}) (x, v) \right],
\]
where m_0, m_2 are positive constants depending only on the base manifold M and the kernel K, Δ_H is the rough horizontal Laplacian on E defined in (2.15), and $\bar{p} = p \circ \pi \in C^\infty (E)$.

Corollary 2.7. Under the same assumptions as in Theorem 2.6, when $\alpha = 1$,
\[
(2.22) \quad \lim_{\epsilon \to 0} \frac{H^{(1)}_E f (x, v) - f (x, v)}{\epsilon} = \frac{m_2}{2m_0} \Delta_H f (x, v).
\]

Before moving on to the infinitesimal generator of the coupled diffusion operator $H^{(\alpha)}_{E, \delta}$, we make the observation that the vertical Laplacian Δ^V_E, which turns out to characterize the “vertical component” of the coupled diffusion operator $H^{(\alpha)}_{E, \delta}$ on the fibre bundle, coincides with the Laplace-Beltrami operator on each fibre F_x. More precisely, for any $f \in C^\infty (E)$ and $e \in E$,
\[
(2.23) \quad \Delta_E^V f (e) = \left[\Delta_{F_{\pi (e)}} (f \mid F_{\pi (e)}) \right] (e)
= \text{Trace } (\nabla^E \nabla^V f)^V.
\]
At first glance, this is a bit surprising since one might expect a mean curvature term in Δ^V_E from (2.18) (as is the case for Δ^H_E):

$$\Delta^V_E f = \text{Trace } \nabla^E \nabla^V f = \text{Trace } (\nabla^E \nabla^V f)^H + \text{Trace } (\nabla^E \nabla^V f)^V.$$

However, the first trace term in (2.24) vanishes for the following reason. Let $\{X_1, \cdots, X_d\}$ be a local horizontal orthonormal frame around $e \in E$, and $\{U_1, \cdots, U_n\}$ a local vertical orthonormal frame (recall that $\dim (F) = n$); $\{X_1, \cdots, X_d, U_1, \cdots, U_n\}$ is then a local orthonormal frame on E. We have

$$\text{Trace } (\nabla^E \nabla^V f)^H = \sum_{j=1}^d \langle (\nabla^E_{X_j} \nabla^V f)^H, X_j \rangle + \sum_{k=1}^n \langle (\nabla^E_{U_k} \nabla^V f)^H, U_k \rangle$$

$$= \sum_{j=1}^d \langle (\nabla^E_{X_j} \nabla^V f)^H, X_j \rangle = \sum_{j=1}^d \langle \nabla^E_{X_j} \nabla^V f, X_j \rangle = -\langle \nabla^V f, \nabla^E_{X_j} X_j \rangle$$

$$= \langle \nabla^V f, \sum_{j=1}^d \nabla^E_{X_j} X_j \rangle = \langle \nabla^V f, \sum_{j=1}^d \left(\nabla^E_{X_j} X_j \right)^V \rangle = 0,$$

where the last equality follows from [47, Lemma 2]:

$$\left(\nabla^E_{X_j} X_j \right)^V = \frac{1}{2} \langle [X_j, X_j] \rangle^V = 0 \quad \text{for all } 1 \leq j \leq d.$$

We are now ready to characterize the infinitesimal generator of the coupled diffusion operator $H^{(\alpha)}_{\epsilon, \delta}$. The generator depends on the relative speed at which the two bandwidth parameters ϵ, δ approach 0.

Theorem 2.8. Suppose $\mathcal{E} = (E, M, F, \pi)$ is a fibre bundle, M is a smooth Riemannian manifold without boundary, and E is equipped with the Riemannian metric (2.13). For any $f \in C^\infty (E)$ and $(x, v) \in E$, if $\delta = O(\epsilon)$ as $\epsilon \to 0$, then

$$H^{(\alpha)}_{\epsilon, \delta} f (x, v) = f (x, v) + \frac{m_{21}}{2m_0} \left[\Delta_H \left(f p^{1-\alpha} \right) - f \Delta_H p^{1-\alpha} \right] (x, v)$$

$$+ \frac{\delta m_{22}}{2m_0} \left[\Delta^V_E \left(f p^{1-\alpha} \right) - f \Delta^V_E p^{1-\alpha} \right] (x, v) + O (\epsilon^2 + \epsilon \delta + \delta^2),$$

where m_0, m_{21}, m_{22} are positive constants depending only on the total manifold E and the kernel K, Δ_H is the rough horizontal Laplacian on E defined in (2.15), and Δ^V_E is the vertical Laplacian of the fibre bundle \mathcal{E} defined in (2.18).

For a proof of Theorem 2.8, see Appendix A. Note that in the distribution sense Theorem 2.6 can be interpreted as the limit of Theorem 2.8 with $\delta = o(\epsilon)$. From a different point of view, Theorem 2.8 can also be interpreted as [19, Theorem 2] applied on a fibre bundle (E, M, F, π) with a family of varying Riemannian metrics

$$g_{\delta/\epsilon}^E = g^M \oplus \frac{\delta}{\epsilon} g^F,$$

which is known as the **canonical variation** in the literature of Riemannian submer- sion [9, §9.G][30, §2.7.5]. If $\delta/\epsilon \to 0$, then the rescaled metric

$$\frac{\epsilon}{\delta} g_{\delta/\epsilon}^E = \frac{\epsilon}{\delta} g^M \oplus g^F$$

is said to approach its adiabatic limit [44, 10].
Corollary 2.9. Under the same assumptions as in Theorem 2.8, if the limit of the ratio \(\delta/\epsilon\) exists and is finite, i.e.,

\[
\rho := \lim_{\epsilon \to 0} \frac{\delta}{\epsilon} < \infty,
\]

then

\[
\lim_{\epsilon \to 0} \frac{H^{(a)}_{\epsilon,\delta} f(x,v) - f(x,v)}{\epsilon} = \frac{1}{2} \left[L_\rho \left(f p^{1-a} \right) - f L_\rho p^{1-a} \right] (x,v)
\]

where \(L_\rho\) is a second order partial differential operator on \(E\) given by

\[
L_\rho = \frac{m_{21}}{m_0} \Delta_H + \rho \frac{m_{22}}{m_0} \Delta_V.
\]

In particular, if \(m_{21} = \rho m_{22}\) and \(\pi : E \to M\) is a harmonic map, then \(L = c \Delta_E\) where \(\Delta_E\) is the Laplace-Beltrami operator on \(E\) and \(c\) a multiplicative constant. In addition, if \(\alpha = 1\), then

\[
\lim_{\epsilon \to 0} \frac{H^{(1)}_{\epsilon,\delta} f(x,v) - f(x,v)}{\epsilon} = \frac{c}{2} \Delta_E f(x,v).
\]

Proof. If \(\pi : E \to M\) is a harmonic map, the fibres of \(\pi\) are minimal submanifolds of \(E\) (vice versa, see e.g. [30, Lemma 2.2.4]) and \(\Delta_H = \Delta_E\) (see Remark 2.4). \(\square\)

In order to state the result for the case when the ratio \(\delta/\epsilon\) is not asymptotically bounded as \(\epsilon \to 0\), let us define the fibre average of any function \(f \in C^\infty(E)\) as

\[
\langle f \rangle (x) = \int_{F_x} f(x,v) \, d\text{vol}_{F_x}(v)
\]

whenever the integral converges. If \(\langle f \rangle (x)\) exists for all \(x \in M\) (e.g. when the fibre is compact or \(f\) is integrable), obviously \(\langle f \rangle \in C^\infty(M)\).

Consider now the probability density function \(p\) in the definition of \(H^{(a)}_{\epsilon,\delta}\). The fibre average \(\langle p \rangle\) is a probability density function on \(M\), since

\[
\int_M \langle p \rangle (x) \, d\text{vol}_M(x) = \int_M \int_{F_x} p(x,v) \, d\text{vol}_{F_x}(v) \, d\text{vol}_M(x) = 1.
\]

Note that \(\langle p \rangle\) is bounded away from 0 from below according to our assumption (2.6). We can thus divide \(p\) by \(\langle p \rangle\) and define the conditional probability density function on \(E\) as

\[
p(v | x) := \frac{p(x,v)}{\langle p \rangle (x)}.
\]

The name comes from the observation that \(p(v | x)\) defines a probability density function when restricted to a single fibre:

\[
\int_{F_x} p(v | x) \, d\text{vol}_{F_x}(v) = \frac{\int_{F_x} p(x,v) \, d\text{vol}_{F_x}(v)}{\langle p \rangle (x)} = 1.
\]

The last piece of notation we need for Theorem 2.10 is

\[
\langle f \rangle_p (x) := \int_{F_x} f(x,v) p(v | x) \, d\text{vol}_{F_x}(v),
\]

for any function \(f \in C^\infty(E)\). We shall refer to \(\langle f \rangle_p\) as the fibre average of \(f\) with respect to the probability density function \(p\).
Theorem 2.10. Suppose $\mathcal{E} = (E, M, F, \pi)$ is a fibre bundle, M is a smooth Riemannian manifold without boundary, and E is equipped with the Riemannian metric (2.13). Define $\gamma := \delta / \epsilon$ (equivalently $\delta = \gamma \epsilon$). For any $f \in C^\infty(E)$ and $(x, v) \in E$, as $\epsilon \to 0$,

$$
\lim_{\gamma \to \infty} H^{(\alpha)}_{\epsilon, \gamma \epsilon} f (x, v) = (f)_p (x) + \epsilon \frac{m'_2}{2m'_0} [\Delta_M \left((f)_p (p)^{1-\alpha} \right) - (f)_p \Delta_M (p)^{1-\alpha}] (x) + O (\epsilon^2),
$$

where m'_0, m'_2 are positive constants depending only on the base manifold M and the kernel K, Δ_M is the Laplace-Beltrami operator on M, (p) is the fibre average of the probability density function p, and $(f)_p$ is the fibre average of f with respect to the density p. In particular, if $\alpha = 1$, then

$$
\lim_{\gamma \to \infty} H^{(1)}_{\epsilon, \gamma \epsilon} f (x, v) = (f)_p (x) + \epsilon \frac{m'_2}{2m'_0} \Delta_M (f)_p + O (\epsilon^2).
$$

The proof of Theorem 2.10 can be found in Appendix A. Intuitively, Theorem 2.10 states that if the vertical bandwidth parameter $\delta \to \infty$ then the coupled diffusion operator contains little information about the fibres. Comparing Theorem 2.10 with Theorem 2.8, one can see that in general

$$
\lim_{\gamma \to \infty} \lim_{\epsilon \to 0} H^{(\alpha)}_{\epsilon, \gamma \epsilon} f (x, v) - f (x, v) \neq \lim_{\gamma \to \infty} \lim_{\epsilon \to 0} H^{(\alpha)}_{\epsilon, \gamma \epsilon} f (x, v) - f (x, v),
$$

thus an asymptotic expansion of $H^{(\alpha)}_{\epsilon, \gamma \epsilon} f (x, v)$ for small ϵ, δ is not well-defined without careful consideration of the behavior of δ / ϵ if it is not asymptotically bounded.

3. Algorithm

In this section, we describe the unsupervised learning framework of HDM that extracts feature information in a data set with pairwise similarity and structural correspondences, based on the geometric intuition explained in Section 2.

3.1. Graph Horizontal Laplacians. The data set considered in the HDM learning framework is a triplet (X, ρ, G), where

1. The total data set X can be partitioned into a collection of data objects X_1, \cdots, X_n

$$
X = \bigcup_{j=1}^n X_j, \quad X_j \cap X_k = \emptyset \text{ for all } 1 \leq j \neq k \leq n,
$$

where each data object X_j is referred to as the j-th fibre of X, which contains κ_j data points

$$
X_j = \{x_{j,1}, x_{j,2}, \cdots, x_{j,\kappa_j}\}.
$$

We call the collection of fibres the base data set

$$
\mathcal{B} = \{X_1, X_2, \cdots, X_n\},
$$

and let $\pi : X \to \mathcal{B}$ be the canonical projection from X to \mathcal{B}

$$
\pi : X \to \mathcal{B}
$$

$$
x_{j,k} \mapsto X_j, \quad 1 \leq j \leq n, 1 \leq k \leq \kappa_j.
$$
Denote the total number of points in \mathcal{X} as
$$\kappa = \kappa_1 + \kappa_2 + \cdots + \kappa_n.$$ (2) The mutual similarity measure $\rho : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}_{\geq 0}$ is a symmetric non-negative function that vanishes on each fibre, i.e.
$$\rho(\xi, \eta) \geq 0, \quad \rho(\xi, \eta) = \rho(\eta, \xi) \quad \forall \xi, \eta \in \mathcal{X}$$ and
$$\rho(\xi, \eta) = 0 \quad \text{if} \quad \xi, \eta \in X_j \quad \text{for some} \ 1 \leq j \leq n.$$ For simplicity of notation, we denote the restriction of ρ on $X_i \times X_j$ as
$$\rho_{ij}(s, t) := \rho(x_{i,s}, x_{j,t}) \quad \forall x_{i,s} \in X_i, x_{j,t} \in X_j.$$ In words, ρ_{ij} is an $\kappa_i \times \kappa_j$ matrix on \mathbb{R}, to which we will refer as the mutual similarity matrix between X_i and X_j. Note that $\rho_{ij} = 0$ if $i = j$.

(3) The affinity graph $G = (V, E)$ has κ vertices, with each $v_{i,s}$ corresponding to a point $x_{i,s} \in \mathcal{X}$. Without loss of generality, assume G is connected. (In our applications, each $x_{i,s}$ is typically connected to several $x_{j,t}$'s on neighboring fibres.) If there is an edge between $v_{i,s}$ and $v_{j,t}$ in G, then $x_{i,s}$ is a neighbor of $x_{j,t}$ (and $x_{j,t}$ is a neighbor of $x_{i,s}$). Moreover, we also call X_i a neighbor of X_j (and similarly X_j a neighbor of X_i) if there is an edge in G linking one point in X_i with one point in X_j; this terminology implicitly defines a graph $G_B = (V_B, E_B)$, where vertices of V_B are in one-to-one correspondences with fibres of \mathcal{X}, and E_B encodes the neighborhood relations between pairs of fibres. G_B will be called as the base affinity graph.

Let $W \in \mathbb{R}^{\kappa \times \kappa}$ be the weighted adjacency matrix of the graph G, i.e., W is a block matrix in which the (i,j)-th block is ρ_{ij}. The (s, t) entry in W_{ij} stands for the edge weight $\rho_{ij}(s, t)$ between $v_{i,s}$ and $v_{j,t}$. Since $\rho_{ij} = \rho_{ij}^\top$, W is a symmetric matrix. Let D be the $\kappa \times \kappa$ diagonal matrix in which the j-th diagonal entry equals to the j-th row sum of W. We define the graph horizontal Laplacian for the triplet (\mathcal{X}, ρ, G) as the weighted graph Laplacian of G with edge weights W, i.e.

$$L^H := D - W.$$ (3.1)
Since G is connected, the diagonal elements of D are all non-zero. Thus D is invertible and we can define the random-walk and normalized version of L^H:

$$L^H_{rw} := D^{-1}L^H = I - D^{-1}W,$$ (3.2) $$L^H_n := D^{-1/2}L^H D^{-1/2} = I - D^{-1/2}WD^{-1/2}.$$ (3.3)

Following [19], we can also repeat these constructions on a renormalized graph of G by setting for some $\alpha \in [0, 1]$

$$W_\alpha := D^{-\alpha}WD^{-\alpha}$$ (3.4)
and constructing the graph horizontal Laplacians from W_α instead of W. More precisely, let D_α be the $\kappa \times \kappa$ diagonal matrix in which the j-th diagonal entry equals to the j-th row sum of W_α, and set

$$L^H_\alpha := D_\alpha - W_\alpha,$$ (3.5) $$L^H_{\alpha, rw} := D^{-1}_{\alpha}L^H_{\alpha} = I - D^{-1}_{\alpha}W_\alpha,$$ (3.6) $$L^H_{\alpha, n} := D^{-1/2}_{\alpha}L^H_{\alpha} D^{-1/2}_{\alpha} = I - D^{-1/2}_{\alpha}W_\alpha D^{-1/2}_{\alpha}.$$ (3.7)
3.2. Spectral Distances and Embeddings. Spectral distances are defined via the eigen-decompositions of graph Laplacians. Since $L_{\alpha,w}^H$ differs from $L_{\alpha,s}^H$ only by a similarity transformation

$$L_{\alpha,s}^H = D_\alpha^{1/2} L_{\alpha,s}^H D_\alpha^{-1/2},$$

the two Laplacians have essentially the same eigen-decomposition. We shall focus on $L_{\alpha,s}^H$ for the rest of this section due to its computational advantage as a real symmetric matrix.

Any right eigenvector $v \in \mathbb{R}^\kappa$ of $L_{\alpha,s}^H$ defines a function on the vertices of G. By the construction of $L_{\alpha,s}^H$, the length-κ vector v, when written as the concatenation of n segments of length $\kappa_1, \cdots, \kappa_n$ respectively, defines a function on each of the n fibres X_1, \cdots, X_n. We assume eigenvectors are always column vectors, and write

$$v = \left(v_1^T, \cdots, v_n^T \right)^T$$

where each column vector $v_j \in \mathbb{R}^{\kappa_j}$ defines a function on the fibre X_j. Now let

$$\lambda_0 \leq \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_{\kappa-1}$$

be the κ eigenvalues of $L_{\alpha,s}^H$ in ascending order, and denote the eigenvector corresponding to eigenvalue λ_j as v_j. By the connectivity assumption for G, we know from spectral graph theory [15] that $\lambda_0 = 0$, $\lambda_0 < \lambda_1$, and v_0 is a constant multiple of the column vector with all entries equal to 1; we have thus

$$0 = \lambda_0 < \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_{\kappa-1}.$$

By the spectral decomposition of $L_{\alpha,s}^H$,

$$(3.8) \quad L_{\alpha,s}^H = \sum_{l=0}^{\kappa-1} \lambda_l v_l v_l^T,$$

and for any fixed diffusion time $t \in \mathbb{R}_{>0}$,

$$(3.9) \quad (L_{\alpha,s}^H)^t = \sum_{l=0}^{\kappa-1} \lambda_l^t v_l v_l^T,$$

with the (i,j)-th block

$$(3.10) \quad \left((L_{\alpha,s}^H)^t \right)_{ij} = \sum_{l=0}^{\kappa-1} \lambda_l^t v_{[i]} v_{[j]}^T.$$
In general, this block is not a square matrix. Its Frobenius norm can be computed as

$$
\left\| \left((L^H_{\alpha, \ast})^t \right)_{ij} \right\|_F^2 = \text{Tr} \left[\left((L^H_{\alpha, \ast})^t \right)_{ij} \left((L^H_{\alpha, \ast})^t \right)_{ij} \right]
$$

(3.11)

$$
= \text{Tr} \left[\sum_{l,m=0}^{\kappa-1} \lambda_l^t \lambda_m^t v_{ij}^l v_{ij}^m \right]
= \sum_{l,m=0}^{\kappa-1} \lambda_l^t \lambda_m^t v_{ij}^l v_{ij}^m.
$$

Define the *horizontal base diffusion map* (HBDM) as

$$
V^t : \mathcal{B} \rightarrow \mathbb{R}^{\kappa^2}
$$

(3.12)

$$
X_j \mapsto \left(\lambda_l^{t/2} \lambda_m^{t/2} v_{ij}^l v_{ij}^m \right)_{0 \leq l, m \leq \kappa-1}
$$

with which

$$
\left\| \left((L^H_{\alpha, \ast})^t \right)_{ij} \right\|_F^2 = \langle V^t (X_i), V^t (X_j) \rangle,
$$

(3.13)

where $\langle \cdot, \cdot \rangle$ is the standard Euclidean inner product on \mathbb{R}^{κ^2}. Furthermore, we define the *horizontal base diffusion distance* (HBDD) on \mathcal{B} as

$$
d_{\text{HBDM}, t} (X_i, X_j) = \| V^t (X_i) - V^t (X_j) \|
$$

(3.14)

$$
= \left\{ \langle V^t (X_i), V^t (X_i) \rangle + \langle V^t (X_j), V^t (X_j) \rangle - 2 \langle V^t (X_i), V^t (X_j) \rangle \right\}^{\frac{1}{2}}.
$$

From a learning point of view, the map $V^t : \mathcal{B} \rightarrow \mathbb{R}^{\kappa^2}$ is equivalent to the unsupervised features learned from the data set with structural correspondences. Note also that HBDM embeds the base data set \mathcal{B} into a Euclidean space of dimension κ^2, which is of much higher dimensionality than the size of the original data set. In practice, however, one often truncates the spectrum of graph Laplacians, thus embedding the data set into a Euclidean of reduced dimensionality. In our numerical experiments and applications (see Section 5 and Section 6), we found it is usually sufficient to retain the first $O(\sqrt{\kappa})$ to $O(\kappa)$ eigenvalues. Even though this truncation still involves higher spatial complexity than diffusion maps, our results show that HBDM significantly outperforms DM for our purposes; we thus believe that the high-dimensional embedding is a modest price to pay for extracting the hidden information in the structural correspondences.

When the base data set \mathcal{B} is sampled from the tangent bundle of a Riemannian manifold M, HBDM is closely related to the vector diffusion maps [55]. In fact, if we drop the constraint $\rho \geq 0$ for the moment, let $\kappa_j = d$ for all $1 \leq j \leq n$, and set for each edge $(v_i, v_j) \in E_B$

$$
\rho_{ij} = w_{ij} O_{ij}, \text{ where } w_{ij} \geq 0 \text{ and } O_{ij} \text{ is } d \times d \text{ orthogonal,}
$$
Theorem, HBDM on the tangent bundle TM whereas VDM is defined only for vector and principal bundles. Of course, HBDM can be applied to much more general fibre bundles, whereas VDM is defined only for vector and principal bundles.

In addition to handling the base data set \mathcal{B}, HBDM is also capable of embedding the total data set \mathcal{X} into Euclidean spaces. Define for each diffusion time $t \in \mathbb{R}^+$ the horizontal diffusion map (HDM)

$$H^t : \mathcal{X} \rightarrow \mathbb{R}^{n-1}$$

(3.15)$$x_{i,s} \mapsto \left(\lambda_1^t v_{1[j]}(s), \lambda_2^t v_{2[j]}(s), \ldots, \lambda_{\kappa-1}^t v_{(\kappa-1)[j]}(s)\right).$$

where $v_{[j]}(s)$ is the s-th entry of the j-th segment of the l-th eigenvector, with $j = 1, \ldots, n, s = 1, \ldots, \kappa$. We could also have written

$$v_{[j]}(s) = v_l(s_j + s), \quad \text{where } s_1 = 0 \text{ and } s_j = \sum_{p=1}^{j-1} \kappa_p \text{ for } j \geq 2.$$

Following a similar argument as in [19], we can define the horizontal diffusion distance (HDD) on \mathcal{X} as

$$d_{\text{HDM},t}(x_{i,s}, x_{j,t}) = \|H^t(x_{i,s}) - H^t(x_{j,t})\|.$$

(3.16)

As it stands, H^t embeds the total data set \mathcal{X} into a Euclidean space preserving the horizontal diffusion distance on \mathcal{X}. Moreover, this embedding automatically suggests a global registration for all fibres that respects the mutual similarity measure ρ; similar ideas was already implicit in [39]. For simplicity of notation, let us write

$$H^t_j := H^t | X_j$$

for the restriction of H^t to fibre X_j, and call this the j-th component of H^t. Up to scaling, the components of H^t bring the fibres of \mathcal{X} to a common “template”, such that points $x_{i,s}$ and $x_{j,t}$ with a high similarity measure $\rho_{ij}(s,t)$ tend to be close to each other in the embedded Euclidean space. One can then reconstruct pairwise structural correspondences between fibres X_i, X_j in the embedded Euclidean space, now between the embedded point clouds in \mathbb{R}^κ. With appropriate truncation of the spectrum of the graph horizontal Laplacian, these reconstructed structural correspondences are the “denoised version” of the original correspondences. Moreover, recalling that each X_j is sampled from some manifold F_j, one can often estimate a template fibre $F \subset \mathbb{R}^m$ from the embedded images

$$H^t_1(X_1), \ldots, H^t_n(X_n),$$

and extend (by interpolation) H^t_j from a discrete correspondence to a continuous bijective map from F_j to F, then build correspondence maps between an arbitrary pair X_i, X_j by composing (the interpolated continuous maps) H^t_i with $(H^t_j)^{-1}$. Pairwise correspondences reconstructed in this manner are globally consistent, since
they all go through the common template manifold \(F \). We shall see in Section 6 an application of HDM and HDD to a data set of shapes in geometric morphometrics.

4. Examples: Fibre Bundles with Totally Geodesic Fibres

In this section, we consider horizontal and coupled diffusion operators on a few classical examples. All fibre bundles in this section are Riemannian submersion with totally geodesic fibres, for which, as explained in Remark 2.4, the rough horizontal Laplacian \(\Delta^H \) equals to the horizontal Laplacian \(\Delta^H_E \). See [3][9, \S 9.F] for more details about Riemannian submersions with totally geodesic fibres.

4.1. Heisenberg Group. The Heisenberg group

\[\mathbb{H}^{2n+1} = \{ (x, y, z) \in \mathbb{R}^{2n+1} | x \in \mathbb{R}^n, y \in \mathbb{R}^n, z \in \mathbb{R} \} \]

is essentially \(\mathbb{R}^{2n+1} \) endowed with the following group structure:

\[(x_1, y_1, z_1) \cdot (x_2, y_2, z_2) = \left(x_1 + x_2, y_1 + y_2, z_1 + z_2 + \frac{1}{2} (x_1 \cdot y_2 - x_2 \cdot y_1) \right). \]

The projection

\[\pi : \mathbb{H}^{2n+1} \longrightarrow \mathbb{R}^2 \]

\[(x, y, z) \longmapsto (x, y) \]

is a Riemannian submersion with totally geodesic fibres [3]. Since \(\mathbb{H}^{2n+1} \) is complete, it follows from [32, Theorem 1] that \((\mathbb{H}^{2n+1}, \mathbb{R}^2, \mathbb{R}, \pi) \) is a fibre bundle. In fact, \(\mathbb{H}^{2n+1} \) is a Lie group, and its Lie algebra of left invariant vector fields at \((x, y, z) \) is spanned by

\[\frac{\partial}{\partial z}, \frac{\partial}{\partial x_j} - \frac{1}{2} y_j \frac{\partial}{\partial z}, \frac{\partial}{\partial y_j} - \frac{1}{2} x_j \frac{\partial}{\partial z}, \quad j = 1, \cdots, n. \]

These invariant vector fields define a connection on \(\mathbb{H}^{2n+1} \) in the sense of Ehresmann [25]. The horizontal and vertical Laplacians on \(\mathbb{H}^{2n+1} \) with respect to this connection are

\[\Delta^H_{\mathbb{H}^{2n+1}} = \sum_{j=1}^{n} \left[\frac{\partial^2}{\partial x_j^2} + \frac{\partial^2}{\partial y_j^2} + \frac{1}{4} \left(x_j^2 + y_j^2 \right) \frac{\partial^2}{\partial z^2} - y_j \frac{\partial^2}{\partial x_j \partial z} + x_j \frac{\partial^2}{\partial y_j \partial z} \right], \]

\[\Delta^V_{\mathbb{H}^{2n+1}} = \frac{\partial^2}{\partial z^2}. \]

By Theorem 2.8, for any \(f \in C^\infty (\mathbb{H}^{2n+1}) \), if \(\delta = O (\epsilon) \),

\[H^{(\alpha)}_{\epsilon, \delta} f (x, v) = f (x, v) + \epsilon \frac{m_{21}}{2m_0} \left[\Delta^H_{\mathbb{H}^{2n+1}} (fp^{1-\alpha}) - fp^{1-\alpha} \right] (x, v) \]

\[+ \delta \frac{m_{22}}{2m_0} \left[\Delta^V_{\mathbb{H}^{2n+1}} (fp^{1-\alpha}) - fp^{1-\alpha} \right] (x, v) + O (\epsilon^2 + \epsilon \delta + \delta^2). \]

When \(n = 1 \), this is consistent with the conclusion obtained in [28, Chapter 4].
4.2. **Tangent Bundles.** Tangent bundles play an important role in Riemannian geometry. For a closed d-dimensional Riemannian manifold (M, g), its tangent bundle TM is defined as

$$TM = \prod_{x \in M} T_x M$$

equipped with a natural smooth structure (see e.g. [21]). In a local coordinate chart $(U; x_1, \ldots, x_d)$ of M, $\{E_j = \partial/\partial x_j \mid 1 \leq j \leq d\}$ is a local frame on M, and we write $v \in T_x M$ as $v = v_j E_j(x)$.

A local trivialization on U can be chosen as

$$(x, v) \mapsto (x_1, \ldots, x_d, v_1, \ldots, v_d), \quad \forall x \in U, v \in T_x M,$$

and the corresponding basis for $T_{(x, v)} TM$ can be written as

$$\left\{ \frac{\partial}{\partial x_1}\big|_{(x,v)}, \ldots, \frac{\partial}{\partial x_d}\big|_{(x,v)}, \frac{\partial}{\partial v_1}\big|_{(x,v)}, \ldots, \frac{\partial}{\partial v_d}\big|_{(x,v)} \right\}.$$

Let $\Gamma^\beta_{\alpha j}$ be the connection coefficients of the Levi-Civita connection on M. The horizontal subbundle of TTM determined by this connection is

$$HTM := \bigcap_{(x, v) \in TM} HT_{(x,v)} M$$

$$= \bigcap_{(x, v) \in TM} \operatorname{span} \left\{ \frac{\partial}{\partial x_j}\big|_{(x,v)} - \Gamma^\beta_{\alpha j} (x) v_\alpha \frac{\partial}{\partial v_\beta}\big|_{(x,v)}, \quad j = 1 \cdots d \right\}.\]$$

The metric (2.13) on TM given by this construction is the Sasaki metric [53, 54]. The horizontal and vertical Laplacians acts on any $f \in C^\infty (TM)$ as

$$\Delta^H_{TM} f (x,v) = \frac{1}{\sqrt{g(x)}} \left(\frac{\partial}{\partial x_j} - \Gamma^\beta_{\alpha j} (x) v_\alpha \frac{\partial}{\partial v_\beta} \right) \left[\sqrt{g(x)} g^{jk} (x) \left(\frac{\partial f}{\partial x_k} - \Gamma^\beta_{\alpha k} (x) v_\alpha \frac{\partial f}{\partial v_\beta} \right) \right]$$

$$\Delta^V_{TM} f (x,v) = \frac{1}{\sqrt{g(x)}} \frac{\partial}{\partial v_j} \left(\sqrt{g(x)} g^{jk} (x) \frac{\partial f}{\partial v_k} \right) = g^{jk} (x) \frac{\partial^2 f}{\partial v_j \partial v_k}.$$

According to Theorem 2.8, for any $f \in C^\infty (TM)$, if $\delta = O(\varepsilon)$,

$$H^{(\alpha)}_{e, \delta} f (x,v) = f (x,v) + \varepsilon \frac{m_{21}}{2m_0} \left[\Delta^H_{TM} \left(f p^{1-\alpha} - f \Delta^H_{TM} p^{1-\alpha} \right) (x,v) \right]$$

$$+ \delta \frac{m_{22}}{2m_0} \left[\Delta^V_{TM} \left(f p^{1-\alpha} - f \Delta^V_{TM} p^{1-\alpha} \right) (x,v) \right] = O (\varepsilon^2 + \varepsilon \delta + \delta^2).$$

This is consistent with the conclusion obtained in [28, Chapter 3].

4.3. **Unit Tangent Bundles.** The unit tangent bundle of a Riemannian manifold (M, g) is a subbundle of TM defined as

$$UTM := \prod_{x \in M} S_x, \quad S_x := \{ v \in T_x M \mid g_x (v,v) = 1 \} \subset T_x M.$$

In particular, UTM is a hypersurface of TM equipped with a metric induced from TM. The volume form on UTM with respect to the induced metric

$$d\Theta (x,v) = d\text{vol}_{S_x} (v) \text{dvol}_M (x).$$
is often known as the Liouville measure or the kinematic density \cite[Chapter VII]{14}. It is the only invariant measure on UTM under geodesic flows. The coupled diffusion operator on UTM can be written with the Liouville measure:

\[
H_{\epsilon, \delta}^{(\alpha)} f(x, v) = \frac{\int_{UTM} K_{\epsilon, \delta}^{(\alpha)}(x, v; y, w) f(y, w) p(y, w) \, d\Theta(y, w)}{\int_{UTM} K_{\epsilon, \delta}^{(\alpha)}(x, v; y, w) p(y, w) \, d\Theta(y, w)}, \quad \forall f \in C^\infty(UTM).
\]

The horizontal and vertical Laplacians on UTM can be defined from \(\Delta_H^{UTM}\) and \(\Delta_V^{UTM}\) by extending \(f \in C^\infty(UTM)\) to \(C^\infty(TM)\) and restricting the result back to UTM. Therefore, for any \(f \in C^\infty(TM)\), if \(\delta = O(\epsilon)\),

\[
H_{\epsilon, \delta}^{(\alpha)} f(x, v) = f(x, v) + \epsilon \frac{m_{21}}{2m_0} \left[\Delta_H^{UTM} \left(fp^{1-\alpha} \right) - f \Delta_H^{UTM} p^{1-\alpha} \right](x, v) + \delta \frac{m_{22}}{2m_0} \left[\Delta_V^{UTM} \left(fp^{1-\alpha} \right) - f \Delta_V^{UTM} p^{1-\alpha} \right](x, v) + O(\epsilon^2 + \epsilon \delta + \delta^2).
\]

This is consistent with the conclusion obtained in \cite[Chapter 3]{28}.

The unit tangent bundle is of special interest since UTM is a compact Riemannian manifold whenever \(M\) is compact, enabling finite sampling and numerically validating Theorem 2.8 and Theorem 2.10. We present in Section 5 a numerical experiment on SO(3), the unit tangent bundle of the standard two-dimensional sphere in \(\mathbb{R}^3\), along with an analysis of sampling errors on general unit tangent bundles.

5. Finite Sampling on Unit Tangent Bundles

Though the theory of HDM on tangent and unit tangent bundles are parallel to each other, in practice it is much easier to sample from the unit tangent bundle since it is compact whenever the base manifold is. We thus study the behavior of HDM on unit tangent bundles under finite sampling. In this section, we first consider sampling without noise, i.e. where we sample exactly on unit tangent bundles; next, we study the case where the tangent spaces are empirically estimated from samples on the base manifold. The latter scenario is a proof-of-concept for applying HDM to general fibre bundles in practical situations where data representing each fibre are often acquired with noise. The proofs of Theorem 5.4 and Theorem 5.6 can be found in Appendix B. In Section 5.2, we shall demonstrate a numerical experiment on SO(3) (the unit tangent bundle of the 2-sphere in \(\mathbb{R}^3\)) that address the two sampling strategies. Throughout this section, recall from Remark 2.4 that \(\Delta_H = \Delta_{UTM}^{H}\) since the fibres of UTM are totally geodesic.

5.1. Sampling Unit Tangent Bundles.

5.1.1. Sampling without Noise. We begin with some assumptions and definitions. Assumption 5.1 includes our technical assumptions, and Assumption 5.2 specifies the noiseless sampling strategy.

Assumption 5.1.

1. \(\iota : M \hookrightarrow \mathbb{R}^D\) is an isometric embedding of a \(d\)-dimensional closed Riemannian manifold into \(\mathbb{R}^D\), with \(D \gg d\).
2. Let the bi-variate smooth kernel function \(K : \mathbb{R}^2 \to \mathbb{R}^{\geq 0}\) be compactly supported within the unit square \([0, 1] \times [0, 1]\). The partial derivatives \(\partial_1 K, \partial_2 K\) are therefore automatically compactly supported on the unit square as well. (In fact, a similar result still holds if \(K\) and its first order derivatives...
decay faster at infinity than any inverse polynomials; to avoid technicalities and focus on demonstrating the idea, we use compactly supported \(K \).

Assumption 5.2. The \((N_B \times N_F)\) data points

\[
x_{1,1}, \quad x_{1,2}, \ldots, \quad x_{1,N_F} \\
x_{2,1}, \quad x_{2,2}, \ldots, \quad x_{2,N_F} \\
\vdots \\
x_{N_B,1}, \quad x_{N_B,2}, \ldots, \quad x_{N_B,N_F}
\]

are sampled from \(UTM \) with respect to a probability density function \(p(x,v) \) satisfying (2.6), following a two-step strategy: (i) sample \(N_B \) points \(\xi_1, \ldots, \xi_{N_B} \) i.i.d. on \(M \) with respect to \(\langle p \rangle \), the fibre average of \(p \) on \(M \); (ii) sample \(N_F \) points \(x_{j,1}, \ldots, x_{j,N_F} \) on \(S_{\xi_j} \) with respect to \(p(\cdot | \xi_j) \), the conditional probability density.

Definition 5.3.

(1) For \(\epsilon > 0, \delta > 0 \) and \(1 \leq i,j \leq N_B, 1 \leq r,s \leq N_F \), define

\[
\hat{K}_{\epsilon,\delta}(x_{i,r},x_{j,s}) = \begin{cases}
K \left(\frac{\|\xi_i - \xi_j\|^2}{\epsilon}, \frac{\|P_{\xi_i,\xi_j}x_{i,r} - x_{j,s}\|^2}{\delta} \right), & i \neq j, \\
0, & i = j.
\end{cases}
\]

where \(P_{\xi_i,\xi_j} : S_{\xi_i} \to S_{\xi_j} \) is the parallel transport from \(S_{\xi_i} \) to \(S_{\xi_j} \). Note the difference between \(\hat{K}_{\epsilon,\delta} \) and \(K_{\epsilon,\delta} \) defined in (2.4): \(\hat{K}_{\epsilon,\delta} \) uses Euclidean distance while \(K_{\epsilon,\delta} \) uses geodesic distance.

(2) For \(0 \leq \alpha \leq 1 \), define

\[
\hat{p}_{\epsilon,\delta}(x_{i,r}) = \sum_{j=1}^{N_B} \sum_{s=1}^{N_F} \hat{K}_{\epsilon,\delta}(x_{i,r},x_{j,s})
\]

and the \textit{empirical \(\alpha \)-normalized kernel} \(\hat{K}_{\epsilon,\delta}^\alpha \)

\[
\hat{K}_{\epsilon,\delta}^\alpha(x_{i,r},x_{j,s}) = \frac{\hat{K}_{\epsilon,\delta}(x_{i,r},x_{j,s})}{\hat{p}_{\epsilon,\delta}(x_{i,r}) \hat{p}_{\epsilon,\delta}(x_{j,s})}, \quad 1 \leq i,j \leq N_B, 1 \leq r,s \leq N_F.
\]

(3) For \(0 \leq \alpha \leq 1 \) and \(f \in C^\infty(UTM) \), denote the \textit{\(\alpha \)-normalized empirical horizontal diffusion operator} by

\[
\hat{H}_{\epsilon,\delta}^\alpha f(x_{i,r}) = \frac{\sum_{j=1}^{N_B} \sum_{s=1}^{N_F} \hat{K}_{\epsilon,\delta}^\alpha(x_{i,r},x_{j,s}) f(x_{j,s})}{\sum_{j=1}^{N_B} \sum_{s=1}^{N_F} \hat{K}_{\epsilon,\delta}(x_{i,r},x_{j,s})}.
\]

Theorem 5.4 (Finite Sampling without Noise). Under Assumption 5.1 and Assumption 5.2, if

(i) \(\delta = O(\epsilon) \) as \(\epsilon \to 0; \)

(ii) \(\lim_{N_B \to \infty} \frac{N_F}{N_B} = \rho \in (0, \infty) \),
then for any \(x_{i,r} \) with \(1 \leq i \leq N_B \) and \(1 \leq r \leq N_F \), as \(\epsilon \to 0 \) (and thus \(\delta \to 0 \)), with high probability

\[
H^{\alpha}_{\epsilon,\delta} f (x_{i,r}) = f(x_{i,r}) + \epsilon \frac{m_1}{2m_0} \left[\frac{\Delta_H \left[f^{1-\alpha} \right] (x_{i,r})}{p^{1-\alpha}(x_{i,r})} - f(x_{i,r}) \frac{\Delta_H p^{1-\alpha}(x_{i,r})}{p^{1-\alpha}(x_{i,r})} \right] \\
+ \delta \frac{m_2}{2m_0} \left[\frac{\Delta_{UTM} V^{1-\alpha} \left[f^{1-\alpha} \right] (x_{i,r})}{p^{1-\alpha}(x_{i,r})} - f(x_{i,r}) \frac{\Delta_{UTM} p^{1-\alpha}(x_{i,r})}{p^{1-\alpha}(x_{i,r})} \right] \\
+ O \left(\epsilon^2 + \delta^2 + \theta_*^{-1} N_B^{-\frac{1}{2}} \epsilon^{-\frac{d}{4}} \right),
\]

where

\[
\theta_* = 1 - \frac{1}{1 + \epsilon \gamma \frac{d-1}{2} \sqrt{\frac{N_F}{N_B}}}
\]

We give a proof of Theorem 5.4 in Appendix B.

5.1.2. Sampling from Empirical Tangent Spaces. In practice, it has been shown in [55] that, under the manifold assumption, a local PCA procedure can be used for estimating tangent spaces from a point cloud; we are using PCA here as a procedure that determines the dimension of a local good linear approximation to the manifold, and also, conveniently, provides a good basis, which can be viewed as a basis for each tangent plane. To sample on these tangent spaces, it suffices to repeatedly sample coordinate coefficients from a fixed standard unit sphere; each sample can be interpreted as giving the coordinates of a point (approximately) on the tangent space. Parallel-transport will take the corresponding point that truly lies on the tangent space at \(\xi \) to the tangent space at \(\zeta \), another point on the manifold. This new tangent space is, however, again known only approximately; points in this approximate space are characterized by coordinates with respect to the local PCA basis at \(\zeta \). We can thus express the whole (approximate) parallel-transport procedure by maps between coordinates with respect to PCA basis at \(\xi \) to sets of coordinates at \(\zeta \); these changes of coordinates incorporate information on the choices of basis at each end as well as on the parallel-transport itself.

Let us now describe this in more detail, setting up notations along the way. Throughout this section, Assumption 5.1 still holds. Let \(\{\xi_1, \ldots, \xi_{N_B}\} \) be a collection of i.i.d. samples from \(M \); then the local PCA procedure can be summarized as follows: for any \(\xi_j, 1 \leq j \leq N_B \), let \(\xi_{j_1}, \ldots, \xi_{j_k} \) be its \(k \) nearest neighboring points. Then

\[
X_j = [\xi_{j_1} - \xi_j, \ldots, \xi_{j_k} - \xi_j]
\]

is a \(D \times k \) matrix. Let \(K_{PCA} \) be a positive monotonic decreasing function supported on the unit interval, e.g. the Epanechnikov kernel [26]

\[
K_{PCA} (u) = (1 - u^2) \chi_{[0,1]},
\]

where \(\chi \) is the indicator function. Fix a scale parameter \(\epsilon_{PCA} > 0 \), let \(D_j \) be the \(k \times k \) diagonal matrix

\[
D_j = \text{diag} \left(\sqrt{K_{PCA} \left(\frac{||\xi_j - \xi_{j_1}||}{\epsilon_{PCA}} \right)}, \ldots, \sqrt{K_{PCA} \left(\frac{||\xi_j - \xi_{j_k}||}{\epsilon_{PCA}} \right)} \right)
\]
and carry out the singular value decomposition (SVD) of matrix X_jD_j as

$$X_jD_j = U_j\Sigma_j V_j^\top.$$

An estimated basis B_j for the local tangent plane at ξ_j is formed by the first d left singular vectors (corresponding to the d largest singular values in Σ_j), arranged into a matrix as follows:

$$B_j = \begin{bmatrix} u_j^{(1)}, \cdots, u_j^{(d)} \end{bmatrix} \in \mathbb{R}^{D \times d}.$$

Note that the intrinsic dimension d is generally not known a priori. The authors of [55] proposed a procedure that first estimates local dimensions from the decay of singular values in Σ_j and then sets d to be the median of all local dimensions; [43] proposed a different approach based on multi-scale singular value decomposition.

Once a pair of estimated bases B_i, B_j is obtained for neighboring points ξ_i, ξ_j, one estimates a parallel-transport from $T_{\xi_i}M$ to $T_{\xi_j}M$ as

$$O_{ji} := \arg\min_{O \in O(d)} \| O - B_j^\top B_i \|_{HS},$$

where $\| \cdot \|_{HS}$ is the Hilbert-Schmidt norm. Though this minimization problem is non-convex, it has an efficient closed-form solution via the SVD of $B_j^\top B_i$, namely

$$O_{ji} = UV^\top,$$

where $B_j^\top B_i = U\Sigma V^\top$ is the SVD of $B_j^\top B_i$.

It is worth noting that O_{ji} depends on the bases; it operates on the coordinates of tangent vectors under B_i and B_j, as explained above. O_{ji} approximates the true parallel-transport P_{ξ_j,ξ_i} (composed with the bases-expansions) with an error of $O(\epsilon_{PCA})$, in the sense of [55, Lemma B.1].

We summarize our sampling strategy for this section (with some new notations) in the following definition.

Definition 5.5. (1) Let $\{\xi_1, \cdots, \xi_{N_B}\}$ be a collection of samples from the base manifold M, i.i.d. with respect to some probability density function $\bar{p} \in C^\infty(M)$. For each ξ_j, $1 \leq j \leq N_B$, sample N_F points uniformly from the $(d-1)$-dimensional standard unit sphere S^{d-1} in \mathbb{R}^d, and denote the set of samples as $\mathcal{C}_j = \{c_{j,1}, \cdots, c_{j,N_F}\}$, where each $c_{j,s}$ is a $d \times 1$ column vector. Using the basis B_j estimated from the local PCA procedure, each $c_{j,s}$ corresponds to an “approximate tangent vector at ξ_j”, denoted as

$$\tau_{j,s} := B_j c_{j,s}.$$

We use the notation \mathcal{S}_j for the unit sphere in the estimated tangent space (i.e., the column space of B_j). Note that the $\tau_{j,1}, \cdots, \tau_{j,N_F}$ are uniformly distributed on \mathcal{S}_j.

(2) By [55, lemma B.1], for any B_j there exists a $D \times d$ matrix Q_j, such that the columns of Q_j constitutes an orthonormal basis for $\iota_* T_{\xi_j} M$ and

$$\| B_j - Q_j \|_{HS} = O(\epsilon_{PCA}).$$

We define the tangent projection from $\iota_* S_{\xi_j}$ to the estimated tangent plane as

$$\tau_{j,s} \mapsto \tilde{\tau}_{j,s} = \frac{Q_j Q_j^\top \tau_{j,s}}{\|Q_j Q_j^\top \tau_{j,s}\|}.$$
This map is well-defined for sufficiently small ϵ_{PCA}, and then it is an isometry. Its inverse is given by

$$\tau_{j,s} \mapsto \tau_{j,s} = \frac{B_j B_j^T \tau_{j,s}}{\|B_j B_j^T \tau_{j,s}\|}.$$

Note that we have

$$\|\tau_{j,s} - \tau_{j,s}\| \leq C \epsilon_{\text{PCA}}$$

for some constant $C > 0$ independent of indices j, s. Since we sample each \mathcal{S}_j uniformly and the projection map $\tau_{j,s} \mapsto \bar{\tau}_{j,s}$ is an isometry, the points $\{\tau_{j,1}, \cdots, \tau_{j,N_F}\}$ are also uniformly distributed on S_{ξ_j}. The points

$$\tau_{1,1}, \tau_{1,2}, \cdots, \tau_{1,N_F}$$
$$\tau_{2,1}, \tau_{2,2}, \cdots, \tau_{2,N_F}$$
$$\vdots$$
$$\tau_{N_B,1}, \tau_{N_B,2}, \cdots, \tau_{N_B,N_F}$$

are therefore distributed on UTM according to a joint probability density function p on UTM defined as

$$p(x,v) = p(x), \forall (x,v) \in UTM.$$

As in Assumption 5.2, we assume p satisfies (2.6), i.e.,

$$0 < p_m \leq p(x,v) = p(x) \leq p_M < \infty, \forall (x,v) \in UTM$$

for positive constants p_m, p_M.

(3) For $\epsilon > 0$, $\delta > 0$ and $1 \leq i, j \leq N_B$, $1 \leq r, s \leq N_F$, define

$$\mathcal{K}_{\epsilon,\delta}(\tau_{i,r}, \tau_{j,s}) = \begin{cases} K \left(\frac{\|\xi_i - \xi_j\|}{\epsilon}, \frac{\|O_{ji} c_{i,r} - c_{j,s}\|}{\delta} \right), & i \neq j, \\ 0, & i = j. \end{cases}$$

where O_{ji} is the estimated parallel-transport from $T_{\xi_i} M$ to $T_{\xi_i} M$.

(4) For $0 \leq \alpha \leq 1$, define

$$\hat{q}_{\epsilon,\delta}(\tau_{i,r}) = \sum_{j=1}^{N_B} \sum_{s=1}^{N_F} \mathcal{K}_{\epsilon,\delta}(\tau_{i,r}, \tau_{j,s})$$

and

$$\mathcal{K}_{\epsilon,\delta}^{\alpha}(\tau_{i,r}, \tau_{j,s}) = \frac{\mathcal{K}_{\epsilon,\delta}(\tau_{i,r}, \tau_{j,s})}{\hat{q}_{\epsilon,\delta}(\tau_{i,r}) \hat{q}_{\epsilon,\delta}(\tau_{j,s})}, \quad 1 \leq i, j \leq N_B, 1 \leq r, s \leq N_F.$$

(5) For $0 \leq \alpha \leq 1$ and $f \in C^\infty(UTM)$, denote

$$\mathcal{H}_{\epsilon,\delta}^{\alpha} f (\tau_{i,r}) = \sum_{j=1}^{N_B} \sum_{s=1}^{N_F} \mathcal{K}_{\epsilon,\delta}^{\alpha}(\tau_{i,r}, \tau_{j,s}) f(\tau_{j,s}).$$

Theorem 5.6 (Finite Sampling from Empirical Tangent Planes). In addition to Assumption 5.1, suppose

(i) $\epsilon_{\text{PCA}} = O \left(N_B^{-\frac{\alpha}{1+\alpha}} \right)$ as $N_B \to \infty$;
(ii) As \(\epsilon \to 0, \delta = O(\epsilon) \) and \(\delta \gg \left(\epsilon_{\text{PCA}} + \epsilon^2 \right) \);

(iii) \[
\lim_{N_B \to \infty} \frac{N_F}{N_B} = \rho \in (0, \infty).
\]

Then for any \(\tau_{i,r} \) with \(1 \leq i \leq N_B \) and \(1 \leq r \leq N_F \), as \(\epsilon \to 0 \) (and thus \(\delta \to 0 \)), with high probability

\[
(5.2)
\]

\[
\mathcal{H}_{\epsilon, \delta} f(\tau_{i,r}) = f(\bar{\tau}_{i,r}) + \epsilon \frac{m_{21}}{2m_0} \left[\Delta^{UTM}_H \left[f p^{1-\alpha} \right](\tau_{i,r}) \right] \left[\frac{p^{1-\alpha}(\tau_{i,r})}{\alpha} \right] + \delta \frac{m_{22}}{2m_0} \left[\Delta^{V}_{\tau} \left[f p^{1-\alpha} \right](\tau_{i,r}) \right] \left[\frac{p^{1-\alpha}(\tau_{i,r})}{\alpha} \right] \]

\[
+ O(\epsilon^2 + \epsilon \delta + \delta^2 + \theta_*^{-1} N_B^{-\frac{1}{2}} \epsilon - \frac{4}{4} + \delta^{-1} \left(\epsilon_{\text{PCA}} + \epsilon^2 \right)),
\]

where

\[
\theta_* = 1 - \frac{1}{1 + \epsilon \delta} \sqrt{\frac{N_F}{N_B}}.
\]

We give a proof of Theorem 5.6 in Appendix B.

5.2. Numerical Experiments. In this section, we consider a numerical experiment on SO(3), the special linear group of dimension 3, realized as the unit tangent bundle of the standard sphere \(S^2 \) in \(\mathbb{R}^3 \). We shall compare both sampling strategies covered in Section 5.1.

5.2.1. Sampling without Noise. In the first step, we uniformly sample \(N_B = 2,000 \) points \(\{\xi_1, \cdots, \xi_{N_B}\} \) on the unit sphere \(S^2 \), and find for each sample point the \(K_B = 100 \) nearest neighbors in the point cloud. Next, we sample \(N_F = 50 \) vectors of unit length tangent to the unit sphere at each sample point (which in this case is a circle), thus collecting a total of \(N_B \times N_F = 100,000 \) points on \(UTS^2 = SO(3) \), denoted as

\[
\{x_{j,s} \mid 1 \leq j \leq N_B, 1 \leq s \leq N_F\}.
\]

The horizontal diffusion matrix \(H \) is then constructed as an \(N_B \times N_B \) block matrix with block size \(N_F \times N_F \), and \(H_{ij} \) (the \((i,j)\)-th block of \(H \)) is non-zero only if the sample points \(\xi_i, \xi_j \) are each among the \(K_B \)-nearest neighbors of the other; when \(H_{ij} \) is non-zero, its \((r,s)\)-entry \((1 \leq r, s \leq N_F)\) is non-zero only if \(P_{\xi_i, \xi_j, x_{i,r}} \) and \(x_{j,s} \) are each among the \(K_F = 50 \) nearest neighbors of the other, and in that case

\[
H_{ij}(r, s) = \exp \left(-\frac{\|\xi_i - \xi_j\|^2}{\epsilon} \right) \exp \left(-\frac{\|P_{\xi_i, \xi_j, x_{i,r}} - x_{j,s}\|^2}{\delta} \right)
\]

\[
= \exp \left[-\left(\frac{\|\xi_i - \xi_j\|^2}{\epsilon} + \frac{\|P_{\xi_i, \xi_j, x_{i,r}} - x_{j,s}\|^2}{\delta} \right) \right],
\]

where the choices of \(\epsilon, \delta \) will be explained below. Note that for the unit sphere \(S^2 \) the parallel-transport from \(T_{\xi_i} S^2 \) to \(T_{\xi_j} S^2 \) can be explicitly constructed as a rotation
along the axis $\xi_i \times \xi_j$. Finally, we form the α-normalized horizontal diffusion matrix H_α by
\begin{equation}
(H_\alpha)_{ij} (r, s) = \left(\sum_{l=1}^{N_B} \sum_{m=1}^{N_F} H_{il} (r, m) \right) \left(\sum_{k=1}^{N_B} \sum_{n=1}^{N_F} H_{jk} (r, n) \right)^\alpha,
\end{equation}
and solve the eigenvalue problem
\begin{equation}
\left(D^{-\frac{1}{2}} H_\alpha D^{-\frac{1}{2}} \right) U = U \Lambda
\end{equation}
where D is the $(N_B N_F) \times (N_B N_F)$ diagonal matrix with entry (k, k) equal to the k-th column sum of H_α:
\begin{equation}
D (k, k) = \sum_{v=1}^{N_B N_F} H_\alpha (k, v),
\end{equation}
and Λ is a diagonal matrix of the same dimensions. Throughout this experiment, we fix $\alpha = 1$, $\epsilon = 0.2$ and choose various values of δ ranging from 0.0005 to 50, and observe the spacing of the eigenvalues stored in Λ.

The purpose of this experiment is to investigate the influence of the ratio $\gamma = \delta / \epsilon$ on the spectral behavior of graph horizontal Laplacians. As shown in Figure 3, the spacing in the spectrum of these graph horizontal Laplacians follow patterns similar to the multiplicities of the eigenvalues of corresponding Laplacians on $SO(3)$ (governed by the relative size of δ and ϵ). In Figure 3(a), $\delta \ll \epsilon$, hence the graph horizontal Laplacian approximates the horizontal Laplacian on $SO(3)$ (according to Theorem 2.8 and Corollary 2.9), in which the smallest eigenvalues have multiplicities 1, 6, 13, \cdots; in Figure 3(b), $\delta = \mathcal{O}(\epsilon)$, hence the graph horizontal Laplacian approximates the total Laplacian on $SO(3)$ (again, according to Theorem 2.8 and Corollary 2.9), with eigenvalue multiplicities 1, 9, 25, \cdots; in Figure 3(c), $\delta \gg \epsilon$, hence the graph horizontal Laplacian approximates the Laplacian on the base manifold S^2 (according to Theorem 2.10), with eigenvalue multiplicities 1, 3, 5, \cdots). Note that in Figure 3(c) we fixed ϵ and pushed δ to infinity, which essentially corresponds to the limit process in (2.31) rather than (2.21). Moreover, if in each figure we divide the sequence of eigenvalues by the smallest non-zero eigenvalue, the resulting sequence coincides with the list of eigenvalues of the corresponding manifold Laplacian up to numerical error. For a description of the spectrum of these partial differential operators, see [62, Chapter 2].

5.2.2. Sampling from Empirical Tangent Spaces. Similar to sampling without noise, we uniformly sample N_B points $\{\xi_1, \cdots, \xi_{N_B}\}$ on the unit sphere in the first step, then construct the K_B-nearest-neighbor-graph for the point cloud with $K_B = 100$; the only difference is that here $N_B = 4,000$. (This finer discretization is necessary since we know from Theorem 5.6 and Theorem 5.4 that sampling from empirically estimated tangent spaces results in a slower convergence rate for HDM on unit tangent bundles. For the same reason we choose a larger N_F, see below.) Next, we perform local PCA (with $K_{PCA}(u) = e^{-5u^2} \chi_{[0,1]}$) in the K_B-neighborhood around each sample point ξ_i, and solve for O_{ij} from the local PCA bases B_i, B_j whenever ξ_i, ξ_j are among the K_B-nearest-neighbors of each other. We then sample $N_F = 100$ points from the standard unit circle S^1 in \mathbb{R}^2 for each ξ_j, and denote them as $\{c_{j,s} \mid 1 \leq j \leq N_B, 1 \leq s \leq N_F\}$.

\begin{equation}
(H_\alpha)_{ij} (r, s) = \left(\sum_{l=1}^{N_B} \sum_{m=1}^{N_F} H_{il} (r, m) \right) \left(\sum_{k=1}^{N_B} \sum_{n=1}^{N_F} H_{jk} (r, n) \right)^\alpha,
\end{equation}
Figure 3. Bar plots of the smallest 36 eigenvalues of $I - D^{-1}H_\alpha$ with $\alpha = 1, \epsilon = 0.2$, and varying δ values (sampling without noise).

Left: When $\delta \ll \epsilon$, $H_{\epsilon,\delta}^1$ approximates the heat kernel of $\Delta^H_{\text{SO}(3)}$, of which the multiplicities of largest eigenvalues are 1, 6, 13, ···;

Middle: When $\delta \approx \epsilon$, $H_{\epsilon,\delta}^1$ approximates the heat kernel of $\Delta_{\text{SO}(3)}$, of which the multiplicities of largest eigenvalues are 1, 9, 25, ···;

Right: When $\delta \gg \epsilon$, $H_{\epsilon,\delta}^1$ approximates the heat kernel of Δ_{S^2}, of which the multiplicities of largest eigenvalues are 1, 3, 5, ···.

The block construction of the horizontal diffusion matrix H is similar to the noiseless case, but with non-zero $H_{ij} (r, s)$ replaced with

$$H_{ij} (r, s) = \exp \left(-\frac{\|\xi_i - \xi_j\|^2}{\epsilon} \right) \exp \left(-\frac{\|O_{ji} c_{i,r} - c_{j,s}\|^2}{\delta} \right)$$

(5.6)

$$= \exp \left[-\left(\frac{\|\xi_i - \xi_j\|^2}{\epsilon} + \frac{\|O_{ji} c_{i,r} - c_{j,s}\|^2}{\delta} \right) \right].$$

Finally, we construct H_α as in (5.4), set $\alpha = 1$, and solve the same generalized eigenvalue problems (5.5) with fixed $\epsilon = 0.2$ and varying δ. As shown in Figure 4, the spacing of the spectrum of graph horizontal Laplacians is quite similar to what was obtained in sampling without noise.

Figure 4. Bar plots of the smallest 36 eigenvalues of $I - D^{-1}H_\alpha$ with $\alpha = 1, \epsilon = 0.2$, and varying δ values (sampling from empirical tangent spaces). The multiplicities of the eigenvalues are explained as in Figure 3.
6. Application to Automated Geometric Morphometrics

The HDM framework can be applied to any data set with pairwise structural correspondences. In many applications, such structural correspondences are readily available through a registration procedure, and have been used to compute similarity scores or distances between objects of interest. In this section, we sketch the application of HDM to automated geometric morphometrics. In a nutshell, this is an unsupervised learning problem with heterogeneous or unorganized data, for which feature engineering is particularly difficult; moreover, it is hard to apply kernel methods due to the lack of an informative kernel function. We expect problems arising from machine learning, pattern recognition, and computer vision facing similar difficulties to benefit from the proposed approach. A more comprehensive description of this application is in preparation.

Geometric morphometrics is the quantitative analysis of shape variation and their correlation with other traits for biological organisms. For instance, it is often of interest to geometric morphometricians to understand quantitatively the amount of the shape variation explained by geometric features within a collection of shapes. They typically select equal numbers of consistently homologous landmark points on each surface [46], corresponding to a mental model of a latent “template”, of which every individual shape is an instantiation. In statistical shape analysis, this landmark-based approach is developed in the framework of Procrustes analysis [23]. Obviously, such an analysis is limited by the knowledge of landmark placement. From a mathematical point of view, extracting a limited number of landmarks from a continuous surface inevitably loses geometric information, unless when the shapes under consideration are solely determined by the landmarks (e.g. polygonal shapes, as considered in [38][27]), which is rarely the case for geometric morphometricians in biology; from a practical point of view, the requirement that an equal number of landmarks must be chosen on each shape is sometimes unrealistic due to the complex evolutionary and developmental process. Moreover, manually placing landmarks on each shape among a large collection is a tedious task, and the skill to perform it “correctly” typically requires years of professional training; even then the “correctness” or the number of landmarks one should fix for a collection of shapes can be subject to debate among experts.

The digitized morphological data set contains hundreds of triangular meshes (see Figure 5) of diverse size, topology, and quality, each representing an anatomical surface reconstructed from MicroCT images. In [1], the authors introduced Continuous Procrustes Distance (CPD) between surfaces with disk-type topology, and used conformal parameterization (uniformization) to design a fast algorithm that computes automatically (without landmarks) distances between pairs of morphological surfaces that would be at least as effective, for species discrimination, as Procrustes distances computed from user-defined landmarks [13]. Upon computing a distance between pairs of surfaces, the algorithm in [1] minimize an energy functional depending on the pair, over an admissible set of correspondence maps; the distance is indeed the value of the functional at the optimal correspondence map (Figure 1). This approach has recently been followed by other authors as well [40].

Detailed inspection of the optimal correspondence maps generated from the algorithm [1] showed that some of them presented serious anomalies, such as reversed alignments of the anteroposterior/buccolingual axes [29]. It may seem surprising that the algorithms, despite sometimes producing these erroneous maps,
nevertheless were sufficiently successful in capturing sample geometry to achieve the success rate reported in [13]. As we extend the algorithm in [1] in different directions, the correspondence maps became an important explicit goal of the algorithm, as opposed to an interesting by-product. While CPD automates the traditional Procrustes analysis, the optimal correspondence maps parallel the landmark-identification procedure performed mentally by geometric morphometricians. Moreover, these maps provide detailed information about correlations, often not fully retained when an energy functional summarizes a similarity measure, between functional or developmental regions on different shapes.

HDM is a natural algorithmic framework for unsupervised learning from structural correspondences maps. In this section, we apply HDM to a data set consisting of 50 discretized triangular meshes of the second mandibular molar of prosimian primates and nonprimate close relatives. The 50 meshes are evenly divided into 5 genus groups: *Alouatta*, *Ateles*, *Brachyteles*, *Callicebus*, and *Saimiri*; each mesh contains about 5,000 vertices and 10,000 faces. We compute first all pairwise CPD and correspondence maps, then all pairwise Horizontal Base Diffusion Distance (HBDD) from the distances and maps. The 50×50 distance matrices are finally embedded into \mathbb{R}^3 for comparison via multi-dimensional scaling (MDS).

The HBDD is constructed from CPD as follows. For each pair of triangular meshes S_i, S_j in the data set, denote their CPD as d_{ij}, and the optimal correspondence from S_i to S_j as f_{ij}. Note that $d_{ij} = d_{ji}$ and $f_{ij} = f_{ji}^{-1}$. In the first step, we discretize each surface area measure $\mu_j = d\text{vol}_{S_j}$ into a linear combination of Dirac delta measures supported on vertices of S_j, where each vertex of S_j is assigned $1/3$ of the surface area of its one-ring neighborhood. We then soften each bijective smooth map f_{ij} into a transport plan matrix w_{ij}, the s-th row of which records the transition probability from vertex $x_{i,s}$ of S_i to each vertex on S_j; moreover, the specific softening we choose here allows each $x_{i,s}$ to jump (in one step) only to the three vertices of the unique triangular face on S_j that contains $f_{ij}(x_{i,s})$. If $x_{j,r}$ is

1. It is conceivable that $f_{ij}(x_{i,s})$ could fall on the edge shared by two triangles in S_j, or even on a vertex of S_j shared by more than 2 triangles. While this rarely happens in practice, in our implementation for this application we resolve such conflicts by assigning $f_{ij}(x_{i,s})$ randomly to any of the qualified triangles. This is because we express $f_{ij}(x_{i,s})$ as a barycentric combination
a vertex on S_j that can be reached from $x_{i,s}$ in one step of the random walk, we set the transition probability between $x_{i,s}$ and $x_{j,r}$ proportional to

$$\exp\left(-\frac{\|f_{ij}(x_{i,s}) - x_{j,r}\|^2}{\epsilon_F}\right),$$

where ϵ_F is a prescribed positive constant playing the role of the vertical bandwidth parameter δ in (2.7). For this specific data set, we choose $\epsilon_F = 0.001$ which is the order of magnitude of the average distance between adjacent vertices on each mesh in the data set. Next, we construct the horizontal diffusion matrix H as a 50×50 block matrix, with block (i,j)

$$H(i,j) = \begin{cases} \exp\left(-\frac{d_{ij}^2}{\epsilon_B}\right) \cdot w_{ij} & \text{if } S_j \text{ is within the } N_B\text{-neighborhood of } S_i, \\ 0 & \text{otherwise.} \end{cases}$$

We chose for this data set $N_B = 4$ and $\epsilon_B = 0.03$. These parameters are picked empirically, where 0.03 is usually the maximum CPD between surfaces that belong to the same species group. We then construct the normalized graph horizontal Laplacian L^H_{hv} from H, as in (3.7), and solve for its largest 100 eigenvalues and corresponding eigenvectors. From this eigen-decomposition we compute the horizontal base diffusion map (HBDM) as in (3.12), obtaining an embedding of the data set into $\mathbb{R}^{(100 \times 2)} = \mathbb{R}^{4950}$. Though this embedding is still high dimensional, it is only $1/3$ of the original dimensionality (approximately $5000 \times 3 = 15000$). The HBDD between each pair S_i, S_j is then defined as the Euclidean distance between their images embedded in \mathbb{R}^{4950}, as in (3.14). For comparison, we also embed the standard Diffusion Distance matrix in to \mathbb{R}^3 using MDS. As shown in Figure 6, HBDD demonstrates the most clear pattern of species clusters among the three distances. It is even more interesting to notice that HBDD reflects the dietary groups within the data set (see Figure 7): folivores Alouatta (red) and Brachyteles (green) are adjacent to each other in the rightmost panel of Figure 6, so are frugivores Ateles (blue) and Callicebus (purple); the insectivore Saimiri (yellow) is far from the other herbivorous groups.

![Figure 6. Embeddings of CPD (left), DM (middle), and HBDD (right) matrices into \mathbb{R}^3 using Multi-dimensional Scaling (MDS).](image-url)
Figure 7. Phylogeny of the 5 species groups *Alouatta*, *Ateles*, *Brachyteles*, *Callicebus*, and *Saimiri*. HBDD (see Figure 6) reflects the dietary categories but not the phylogeny.

For applications in geometric morphometrics, a major advantage of HDM over persistence-diagram-based methods is the morphological interpretability. This interpretability amounts to a globally consistent manner to identify corresponding regions on each shape in the data set and is potentially useful for subsequent studies of the evolutionary and developmental history. In standard morphologists’ practice, such correspondences are assessed visually and manually; recent progress in techniques for generating and analyzing digital representations led to major advances [72, 70, 49] but still require input anatomical landmarks from the user. In contrast, by spectral clustering on the point cloud embedded into \mathbb{R}^100 by HDM, we can easily obtain a globally consistent segmentation for all surfaces, see Figure 8.

7. Discussion and Future Work

This paper introduced horizontal diffusion maps (HDM), a novel semi-supervised learning framework for the analysis and organization of a class of complex data sets, in which individual structures at each data point carry abundant information that can not be easily abstracted away by a pairwise similarity measure. We also introduced the fibre bundle assumption, a generalization of the manifold assumption, and showed that under this assumption HDM provides embeddings for both the base and the total manifold; furthermore, the flexibility of the HDM framework enables us to view VDM and the standard diffusion maps (DM) as special cases. The rest of the paper focused on analyzing the asymptotic behavior of HDM, with convergence rate estimated for finite sampling on unit tangent bundles. These results provide the mathematical foundation for HDM on fibre bundles, and motivate further studies concerning both wider applicability and deeper mathematical understanding of the algorithmic framework. We conclude this paper by listing a few potential directions for further exploration.

1) **Spectral Convergence of HDM.** The convergence results in this paper are point-wise; as in [5, 58], we believe that it is possible to show the convergence of the eigenvalues and eigenvectors of the graph horizontal Laplacians to the eigenvalues and eigenvectors of the manifold horizontal Laplacians, thus establishing the mathematical foundation for the spectral analysis of the HDM framework. Moreover, the horizontal diffusion maps differ from diffusion maps and vector
Figure 8. Automated landmarking: consistent segmentation of 50 lemur teeth by spectral clustering in the Euclidean space to which HDM embeds. From the top row to the bottom row: Alouatta, Ateles, Brachytes, Callicebus, Saimiri.

diffusion maps in that the fibres tend to be registered to a common “template”, which, to our knowledge, is a new phenomenon addressed here for the first time.

2) Spectral Clustering and Cheeger-Type Inequalities. An important application of graph Laplacian is spectral clustering (graph partitioning). In a simple case, for a connected graph, the eigenvector corresponding to the smallest positive eigenvalue of the graph Laplacian partitions the graph vertices into two similarly sized subsets, in such a way that the number of edges across the subsets is as small as possible. In spectral graph theory [15], the classical Cheeger’s Inequality provides upper and lower bounds for the performance of the partition; recently, [2] established similar results for the graph connection Laplacian, the central object of VDM. We believe that similar inequalities can be established for graph horizontal Laplacians as well, with potentially more interesting behavior of the eigenvectors. For instance, we observed in practice that the eigenvector corresponding to the smallest positive eigenvalue of the graph horizontal Laplacian stably partitions all the fibres in a globally consistent manner.

3) Multiscale Analysis and Hierarchical Coarse-Graining. Multiscale representation of massive, complex data sets based on similarity graphs is an interesting and fruitful application of diffusion operators [41, 20]. Based on HDM, one can build a similar theory for data sets possessing fibre bundle structures, providing a natural framework for coarse-graining that is meaningful (or even possible) only when performed simultaneously on the base and fibre manifolds. Moreover, since the horizontal diffusion matrix is often of high dimensionality, an efficient approach to store and compute its powers will significantly improve the applicability of the HDM algorithm. We thus expect to develop a theory of
horizontal diffusion wavelets and investigate their performance on real data sets with underlying fibre bundle structures.

Appendix A. Proofs of Theorem 2.6, Theorem 2.8, and Theorem 2.10

Throughout this appendix we assume the Einstein summation convention unless otherwise specified. Our starting point is the following lemma, in reminiscent of [19, Lemma 8] and [55, Lemma B.10].

Lemma A.1. Let $\Phi : \mathbb{R} \rightarrow \mathbb{R}$ be a smooth function compactly supported in $[0, 1]$. Assume M is a d-dimensional compact Riemannian manifold without boundary, with injectivity radius $\text{Inj} (M) > 0$. For any $\epsilon > 0$, define kernel function

$$
\Phi_\epsilon (x, y) = \Phi \left(\frac{d_M^2 (x, y)}{\epsilon} \right)
$$

on $M \times M$, where $d_M^2 (\cdot, \cdot)$ is the geodesic distance on M. For sufficiently small ϵ satisfying $0 \leq \epsilon \leq \sqrt{\text{Inj} (M)}$, the integral operator associated with kernel Φ_ϵ

$$
(\Phi_\epsilon g) (x) := \int_M \Phi_\epsilon (x, y) g (y) \, d\text{vol}_M (y)
$$

has the following asymptotic expansion as $\epsilon \to 0$:

$$
(\Phi_\epsilon g) (x) = \epsilon^2 \left[m_0 g (x) + \epsilon^2 \frac{m_2}{2} \left(\Delta_M g (x) - \frac{1}{3} \text{Scal}_M (x) g (x) \right) + O (\epsilon^2) \right],
$$

where m_0, m_2 are constants that depend on the moments of Φ and the dimension d of the Riemannian manifold M, Δ_M is the Laplace-Beltrami operator on M, and $\text{Scal}_M (x)$ is the scalar curvature of M at x.

Proof. Consider geodesic normal coordinates near $x \in M$. Let $\{e_1, \cdots, e_d\}$ be an orthonormal basis for $T_x M$, (s_1, \cdots, s_d) the geodesic normal coordinates, and write $r = d_M (x, y)$. Then $r^2 = s_1^2 + \cdots + s_d^2$. Note that

$$
\int_M \Phi_\epsilon (x, y) g (y) \, d\text{vol}_M (y) = \int_{B_{\epsilon r} (x)} \Phi \left(\frac{d_M^2 (x, y)}{\epsilon} \right) g (y) \, d\text{vol}_M (y)
$$

(A.4)

$$
= \int_{B_{\epsilon r} (0)} \Phi \left(\frac{r^2}{\epsilon^2} \right) \tilde{g} (s) \, d\text{vol}_M (s)
$$

where

$$
\tilde{g} (s) = \tilde{g} (s_1, \cdots, s_d) = g \circ \exp_x (s_1 e_1 + \cdots + s_d e_d),
$$

$$
d\text{vol}_M (s) = d\text{vol}_M (s_1, \cdots, s_d) = d\text{vol}_M (\exp_x (s_1 e_1 + \cdots + s_d e_d)) .
$$

By a further change of variables

$$
\tilde{s}_1 = \frac{s_1}{\sqrt{\epsilon}}, \cdots, \tilde{s}_d = \frac{s_d}{\sqrt{\epsilon}}; \quad \tilde{r} = \frac{r}{\sqrt{\epsilon}},
$$

we have

$$
\int_{B_{\epsilon r} (0)} \Phi \left(\frac{r^2}{\epsilon} \right) \tilde{g} (s) \, d\text{vol}_M (s) = \int_{B_1 (0)} \Phi \left(\tilde{r}^2 \right) \tilde{g} (\sqrt{\epsilon} \tilde{s}) \, d\text{vol}_M (\sqrt{\epsilon} \tilde{s}).
$$

(A.6)

On the other hand, in geodesic normal coordinates the Riemannian volume form has asymptotic expansion (see e.g. [48])

$$
d\text{vol}_M (s_1, \cdots, s_d) = \left[1 - \frac{1}{6} R_{kk} (x) s_k s_\ell + O (r^3) \right] ds_1 \cdots ds_d
$$

(A.7)
where \(R_{k\ell} \) is the Ricci curvature tensor

\[
R_{k\ell} (x) = g^{ij} R_{kij\ell} (x).
\]

Thus

\[
d\text{vol}_M \left(\sqrt{\epsilon} \, s_1, \ldots, \sqrt{\epsilon} \, s_d \right) = \left[1 - \frac{\epsilon}{6} R_{k\ell} (x) \, s_k s_\ell + O \left(\epsilon^{3/2} \epsilon^3 \right) \right] \cdot \epsilon^{d/2} \, ds_1 \cdots ds_d.
\]

In the meanwhile, the Taylor expansion of \(g (s) \) near \(x \) reads

\[
g (s) = g (0) + \frac{\partial g}{\partial s_j} (0) \, s_j + \frac{1}{2} \frac{\partial^2 g}{\partial s_k \partial s_\ell} (0) \, s_k s_\ell + O \left(\epsilon^3 \right)
\]

and thus

\[
g (\sqrt{\epsilon} \, s) = g (x) + \sqrt{\epsilon} \cdot \frac{\partial g}{\partial s_j} (0) \, s_j + \epsilon \cdot \frac{1}{2} \frac{\partial^2 g}{\partial s_k \partial s_\ell} (0) \, s_k s_\ell + O \left(\epsilon^{3/2} \epsilon^3 \right).
\]

By the symmetry of the kernel and the domain of integration \(B_1 (0) \),

\[
\int_{B_1 (0)} \Phi (\bar{r}^2) \, \hat{s}_j d\bar{s}_1 \cdots d\bar{s}_d = 0 \quad \text{for all } 1 \leq j \leq d,
\]

(A.10)

\[
\int_{B_1 (0)} \Phi (\bar{r}^2) \, \hat{s}_k \hat{s}_\ell d\bar{s}_1 \cdots d\bar{s}_d = 0 \quad \text{for all } 1 \leq k \neq \ell \leq d.
\]

Combining (A.4)–(A.10), we have

\[
\int_M \Phi (x, y) \, g (y) \, d\text{vol}_M (y) = \int_{B_1 (0)} \Phi (\bar{r}^2) \, g (\sqrt{\epsilon} \, \hat{s}_1, \ldots, \sqrt{\epsilon} \, \hat{s}_d) \, d\text{vol}_M (\sqrt{\epsilon} \, \hat{s})
\]

\[
= \epsilon^{d/2} \left[g (x) \int_{B_1 (0)} \Phi (\bar{r}^2) \, d\bar{s} + \epsilon \sum_{k=1}^d \left(\frac{\partial^2 g}{\partial \hat{s}_k^2} (0) - \frac{1}{3} g (x) \, R_{k\ell} (x) \right) \int_{B_1 (0)} \Phi (\bar{r}^2) \, \hat{s}_k d\bar{s}
\]

\[
+ O \left(\epsilon^{3/2} \right) \right].
\]

Note that \(O \left(\epsilon^{3/2} \right) \) term vanishes again by symmetry (the same argument given in [56, §2] applies). Define constants

\[
m_0 := \int_{B_1 (0)} \Phi (\bar{r}^2) \, d\bar{s}_1 \cdots d\bar{s}_d = \omega^{d-1} \int_0^1 \Phi (\bar{r}^2) \, \bar{r}^{d-1} \, d\bar{r},
\]

(A.11)

\[
m_2 := \int_{B_1 (0)} \Phi (\bar{r}^2) \, (\hat{s}_k)^2 \, d\bar{s}_1 \cdots d\bar{s}_d \quad \text{for any } k \in \{1, \ldots, d\}.
\]

Then

\[
\int_M \Phi (x, y) \, g (y) \, d\text{vol}_M (y)
\]

\[
= \epsilon^{d/2} \left[m_0 g (x) + \epsilon \frac{m_2}{2} \left(\Delta_M g (x) - \frac{1}{3} \text{Scal}_M (x) \, g (x) \right) + O \left(\epsilon^{3/2} \right) \right],
\]

where we used the fact that in geodesic normal coordinates

\[
\sum_{k=1}^d \frac{\partial^2 g}{\partial \hat{s}_k^2} (0) = \Delta_M g (x), \quad \sum_{k=1}^d R_{kk} (x) = \text{Scal}_M (x).
\]

\[\square\]
Before applying Lemma A.1 to compute the infinitesimal generators of $H_{e,d}^{(a)}$ and $H_{e,d}^{(a)}$, we need more local information about $f(x, P_{y,v})$ near (x, v). To this end, let $\{X_1, \cdots, X_d\}$ be a local geodesic frame on U at x, and denote $\{\tilde{X}_1, \cdots, \tilde{X}_d\}$ for the horizontal lift of this frame; in addition, let $\{V_1, \cdots, V_n\}$ be vertical vector fields on E such that

$$\{\tilde{X}_1(e), \cdots, \tilde{X}_d(e), V_1(e), \cdots, V_n(e)\}$$

constitutes an orthonormal basis for all e in a sufficiently small neighborhood of (x, v) contained in $\pi^{-1}(U)$. Write $\{\theta^1, \cdots, \theta^d, \phi^1, \cdots, \phi^n\}$ for the 1-forms dual to the vector fields $\{\tilde{X}_1, \cdots, \tilde{X}_d, V_1, \cdots, V_n\}$, i.e.,

$$\theta^j(\tilde{X}_k) = \delta^j_k, \quad \theta^j(V_l) = 0,$$

$$\phi^m(\tilde{X}_k) = 0, \quad \phi^m(V_l) = \delta^m_l,$$

for all $1 \leq j, k \leq d$, $1 \leq \ell, m \leq n$.

If γ is a unit speed geodesic on M starting at x, recall from Definition 2.2 that $t \mapsto P_{\gamma(t),x}v$ is the unique horizontal lift of γ with starting point $v \in F_x$, i.e.,

$$\bar{\gamma}(t) = P_{\gamma(t),x}v.$$

Since $\bar{\gamma}$ is horizontal, $\phi^m(\bar{\gamma}'(t)) = 0$ for all $1 \leq m \leq n$ and thus (adopting Einstein summation convention)

$$\bar{\gamma}'(t) = \theta^j(\bar{\gamma}'(t)) \bar{X}_j(t).$$

Here, as well as in the rest of this appendix, we set

$$X_j(t) = X_j(\gamma(t)), \quad \bar{X}_j(t) = \bar{X}_j(\gamma(t)).$$

By [32, Proposition 3.1], $\bar{\gamma}(t)$ is a geodesic on E, thus

$$0 = \nabla^E_{\bar{\gamma}'(t)} \bar{\gamma}'(t) = \frac{d}{dt}\left[\theta^j(\bar{\gamma}'(t))\right] \bar{X}_j(t) + \theta^j(\bar{\gamma}'(t)) \theta^k(\bar{\gamma}'(t)) \nabla^E_{\bar{X}_k(t)} \bar{X}_j(t),$$

which implies

$$\frac{d}{dt}\left[\theta^j(\bar{\gamma}'(t))\right] \bar{X}_j(t) = -\theta^j(\bar{\gamma}'(t)) \theta^k(\bar{\gamma}'(t)) \nabla^E_{\bar{X}_k(t)} \bar{X}_j(t).$$

In particular, the right hand side of (A.13) is horizontal. It follows that

$$\frac{d}{dt}\left[\theta^j(\bar{\gamma}'(t))\right] \bar{X}_j(t) = -\theta^j(\bar{\gamma}'(t)) \theta^k(\bar{\gamma}'(t)) \mathcal{H} \nabla^E_{\bar{X}_k(t)} \bar{X}_j(t)$$

$$= -\theta^j(\bar{\gamma}'(t)) \theta^k(\bar{\gamma}'(t)) \left(\nabla^E_{\bar{X}_k(t)} \bar{X}_j(t), \bar{X}_i(t)\right)_{\bar{\gamma}(t)} \bar{X}_i(t)$$

$$= -\theta^j(\bar{\gamma}'(t)) \theta^k(\bar{\gamma}'(t)) \left(\nabla^M_{X_k(t)} X_j(t), X_i(t)\right)_{\gamma(t)} X_i(t),$$

where \mathcal{H} is the horizontal projection as defined in (2.1). By linear independence,

$$\frac{d}{dt}\left[\theta^j(\bar{\gamma}'(t))\right] = -\theta^i(\bar{\gamma}'(t)) \theta^k(\bar{\gamma}'(t)) \Gamma^j_{ik}(\gamma(t)),$$

where Γ^j_{ik} are the connection coefficients for the frame $\{X_1, \cdots, X_d\}$ on M

$$\Gamma^j_{ik} = \left(\nabla^M_{X_k} X_j, X_i\right), \quad \forall 1 \leq i, j, k \leq d.$$

Setting $t = 0$ in (A.14) to get

$$\frac{d}{dt}\bigg|_{t=0}\left[\theta^j(\bar{\gamma}'(t))\right] = -\theta^i(\bar{\gamma}'(0)) \theta^k(\bar{\gamma}'(0)) \Gamma^j_{ik}(\gamma(0)) = 0$$

where $\Gamma^j_{ik}(x) = 0$ since we picked $\{X_j \mid 1 \leq j \leq d\}$ as a geodesic frame at x.

Now for any \(f \in C^\infty (E) \) write
\[
 f (t) := f \left(\bar{\gamma} (t) \right) = f \left(\gamma (t), P_{\gamma (t), x} \right).
\]
Using (A.12) and (A.15), the first and second derivatives of \(f (t) \) at \(t = 0 \) can be written as
\[
 f' (0) = \theta^j (\bar{\gamma}' (0)) \bar{X}_j f (0),
\]
\[
 f'' (0) = \frac{d}{dt} \Big|_{t=0} \left[\theta^j (\bar{\gamma}' (t)) \right] \bar{X}_j f (t) + \theta^i (\bar{\gamma}' (0)) \theta^k (\bar{\gamma}' (0)) \bar{X}_k \bar{X}_j f (0)
 = \theta^i (\bar{\gamma}' (0)) \theta^k (\bar{\gamma}' (0)) \bar{X}_k \bar{X}_j f (0).
\]
Furthermore, if we denote \(\pi^* : \Lambda^* M \to \Lambda^* E \) for the pullback map, and write \(\{ \psi^j \mid 1 \leq j \leq d \} \) for the dual 1-forms to the geodesic frame \(\{ X_j \mid 1 \leq j \leq d \} \) on \(M \), then \(\theta^j = \pi^* \psi^j \) for all \(1 \leq j \leq d \) and
\[
 \theta^j (\bar{\gamma}' (0)) = \pi^* \psi^j (\bar{\gamma}' (0)) = \psi^j (\bar{\gamma}' (0)).
\]
Thus \(\{ \theta^1 (\bar{\gamma}' (0)), \ldots, \theta^d (\bar{\gamma}' (0)) \} \) is \(\gamma' (0) \) represented in the geodesic normal coordinate system associated with the geodesic frame \(\{ X_j \mid 1 \leq j \leq d \} \). If we write \(\sigma_j = \theta^j (\bar{\gamma} (0)) \) and \(s_j (t) = t \sigma_j \) for all \(j = 1, \ldots, d \), then \(\sum_{j=1}^d \sigma_j^2 = 1 \) and \((s_1, \ldots, s_d) \) are the geodesic coordinates of \(\gamma (t) \) on \(M \) with respect to the geodesic frame \(\{ X_j \mid 1 \leq j \leq d \} \). With this notation,
\[
 f' (0) = \sigma_j \bar{X}_j f (0),
\]
\[
 f'' (0) = \sigma_j \sigma_k \bar{X}_j \bar{X}_k f (0).
\]
Using (A.12), (A.15), and \(f'' (t) \), it is straightforward to compute the third order derivative of \(f \) at \(t = 0 \):
\[
 f''' (0) = \sigma_j \sigma_k \sigma_l \bar{X}_j \bar{X}_k \bar{X}_l f (0),
\]
hence the Taylor expansion of \(f (t) \) near \(t = 0 \) is
\[
 f (t) = f (0) + tf' (0) + \frac{t^2}{2} f'' (0) + \frac{t^3}{6} f''' (0) + O (t^4)
 = f (x, v) + t \sigma_j \bar{X}_j f (x, v) + \frac{t^2}{2} \sigma_i \sigma_k \bar{X}_i \bar{X}_k f (x, v) + \frac{t^3}{6} \sigma_i \sigma_j \sigma_k \bar{X}_i \bar{X}_j \bar{X}_k f (x, v) + O (t^4).
\]
This expansion immediately leads to the following lemma:

Lemma A.2. Following Lemma A.1, let \(P_{yx} : F_x \to F_y \) be as defined in Definition 2.2. For any \(f \in C^\infty (E) \) and \(v \in F_x \), as \(\epsilon \to 0 \),
\[
 \int_M \Phi_\epsilon (x, y) f (y, P_{yx} v) \, d \text{vol}_M (y)
 = \epsilon^\frac{d}{2} \left\{ m_0 f (x, v) + \epsilon \frac{m_2}{2} \left[\Delta_H f (x, v) - \frac{1}{3} \text{Scal}^M (x) f (x, v) \right] + O (\epsilon^2) \right\},
\]
where \(m_0, m_2 \) are constants, \(\text{Scal}^M (x) \) is the scalar curvature of \(M \) at \(x \), and \(\Delta_H \) is the rough horizontal Laplacian on \(E \) defined in (2.15).

Proof. Let \(U \subset M \) be a geodesic normal neighborhood around \(x \in M \), and \(\epsilon \) sufficiently small that any point in \(U \) can be connected to \(x \) with a geodesic of
length less than $\epsilon^{1/2}$. Let $\{X_j \mid 1 \leq j \leq d\}$ be a geodesic frame on E, s_1, \ldots, s_d geodesic normal coordinates on U with respect to this geodesic frame, and

$$r > 0, \quad r^2 = \sum_{j=1}^d s_j^2, \quad \sigma_j = \frac{s_j}{r} \quad \text{for all } 1 \leq j \leq d.$$

Following the proof of Lemma A.1, let \tilde{s}_j, \tilde{r} be as defined in (A.5) and use (A.16) in place of (A.12),

$$\int_M \Phi_{\epsilon} (x, y) f (y, P_{yx} v) \text{dvol}_M (y) = \int_{B_{1(0)}} \Phi (\tilde{r}^2) \tilde{f} (\sqrt{\epsilon} \tilde{s}, v) \text{dvol}_M (\sqrt{\epsilon} \tilde{s})$$

$$= f (x, v) \int_{B_{1(0)}} \Phi (\tilde{r}^2) \text{dvol}_M (\sqrt{\epsilon} \tilde{s}) + \epsilon^2 \tilde{X}_j f (x, v) \int_{B_{1(0)}} \tilde{s}_j \Phi (\tilde{r}^2) \text{dvol}_M (\sqrt{\epsilon} \tilde{s})$$

$$+ \frac{\epsilon^2}{2} \tilde{X}_j \tilde{X}_k f (x, v) \int_{B_{1(0)}} \tilde{s}_j \tilde{s}_k \Phi (\tilde{r}^2) \text{dvol}_M (\sqrt{\epsilon} \tilde{s})$$

$$+ \frac{\epsilon^2}{6} \tilde{X}_j \tilde{X}_j \tilde{X}_k f (x, v) \int_{B_{1(0)}} \tilde{s}_j \tilde{s}_j \tilde{s}_k \Phi (\tilde{r}^2) \text{dvol}_M (\sqrt{\epsilon} \tilde{s}) + O (\epsilon^2).$$

Again by symmetry of these integrals and (A.7), this reduces to

$$\epsilon^2 \left[m_0 f (x, v) - \frac{\epsilon}{6} m_2 \text{Scal}^M (x) f (x, v) + \frac{\epsilon}{2} m_2 \sum_{k=1}^d \tilde{X}_k^2 f (x, v) + O (\epsilon^2) \right]$$

$$= \epsilon^2 \left[m_0 f (x, v) + \frac{m_2}{2} \left(\Delta_H f (x, v) - \frac{1}{3} \text{Scal}^M (x) f (x, v) \right) + O (\epsilon^2) \right],$$

where m_0, m_2 are constants defined in (A.11), and

$$\sum_{k=1}^d \tilde{X}_k^2 f (x, v) = \Delta_H f (x, v)$$

as explained in (2.20). \hfill \square

We are now ready to give the proof of Theorem 2.6.

Proof of Theorem 2.6. By the definition of $H_{\epsilon}^{(\alpha)}$ in (2.3), for any $f \in C^\infty (E)$,

$$H_{\epsilon}^{(\alpha)} f (x, v) = \frac{\int_M K_{\epsilon}^{(\alpha)} (x, y) f (y, P_{yx} v) p_{\epsilon} (y) \text{dvol}_M (y)}{\int_M K_{\epsilon}^{(\alpha)} (x, y) p (y) \text{dvol}_M (y)}$$

$$= \frac{\int_M K_{\epsilon} (x, y) f (y, P_{yx} v) p_{\epsilon}^{-\alpha} (y) \text{dvol}_M (y)}{\int_M K_{\epsilon} (x, y) p (y) p_{\epsilon}^{-\alpha} (y) \text{dvol}_M (y)}.$$

By Lemma A.1,

$$p_{\epsilon} (y) = \int_M K_{\epsilon} (x, y) p (\eta) \text{dvol}_M (\eta)$$

$$= \epsilon^2 \left\{ m_0 p (y) + \frac{m_2}{2} \left(\Delta_M p (y) - \frac{1}{3} \text{Scal}^M (y) p (y) \right) + O (\epsilon^2) \right\}.$$
Using this expansion of p_ϵ and applying Lemma A.1 to the denominator of $H_\epsilon^{(\alpha)}$,
\[
\int_M K_\epsilon (x, y) p(y) p_\epsilon^{-\alpha}(y) \, d\text{vol}_M(y)
= \epsilon^{\frac{(1-\alpha)d}{2}} m_0^{-\alpha} \left[m_0 p^{1-\alpha}(x) + \frac{\epsilon m_2}{2} \left(\Delta_M p^{1-\alpha}(x) - \frac{1}{3} \text{Scal}_M(x) p^{1-\alpha}(x) \right)
- \frac{\alpha m_2}{2} \left(\Delta_M p(x) - \frac{1}{3} \text{Scal}_M(x) p(x) \right) + O(\epsilon^2) \right].
\]

Similarly, apply Lemma A.2 to the numerator of $H_\epsilon^{(\alpha)}$ to get
\[
\int_M K_\epsilon (x, y) f(y, P_{yx}v) p(y) p_\epsilon^{-\alpha}(y) \, d\text{vol}_M(y)
= \epsilon^{\frac{(1-\alpha)d}{2}} m_0^{-\alpha} \left\{ m_0 \left(f \bar{p}^{1-\alpha} \right)(x, v) + \frac{\epsilon m_2}{2} \left[\Delta_H \left(f \bar{p}^{1-\alpha} \right)(x, v) - \frac{1}{3} \text{Scal}_M(x) \left(f \bar{p}^{1-\alpha} \right)(x, v) \right]
- \frac{\alpha m_2}{2} f(x, v) p^{-\alpha}(x) \left(\Delta_M p(x) - \frac{1}{3} \text{Scal}_M(x) p(x) \right) + O(\epsilon^2) \right\},
\]
Noting that $\bar{p} = p \circ \pi$ and by (2.17)
\[
\Delta_H \bar{p}^{1-\alpha} = \Delta_M p^{1-\alpha},
\]
a direct computation (plus assumption (2.2) for the density p) concludes
\[
H_\epsilon^{(\alpha)} f(x, v) = f(x, v) + \frac{\epsilon m_2}{2 m_0} \left[\Delta_H \left(f \bar{p}^{1-\alpha} \right) - f \Delta_H \bar{p}^{1-\alpha} \right](x, v) + O(\epsilon^2),
\]
whence (2.21) follows. \qed

We now turn to the proof of Theorem 2.8. The basic idea is to apply Lemma A.1 and Lemma A.2 repeatedly in both vertical and horizontal directions.

Lemma A.3. Suppose $\mathcal{E} = (E, M, F, \pi)$ is a fibre bundle, M is a smooth closed Riemannian manifold with $\text{Inj}(M) > 0$, and E equipped with the Riemannian metric (2.13). Assume $\dim M = d$ and $\dim F = n$. Let $K_{\epsilon, \delta}$ be defined as in (2.4) with $\epsilon \in \left(0, \text{Inj}(M)^2\right)$, $\delta = O(\epsilon)$. For any function $f \in C^\infty(E)$,
\[
\int_M \int_{F_y} K_{\epsilon, \delta} (x, v; y, w) f(y, w) \, d\text{vol}_{F_y}(w) \, d\text{vol}_M(y)
= \epsilon^2 \delta^2 \left\{ m_0 f(x, v) + \frac{\epsilon m_{21}}{2} \left(\Delta_H f(x, v) - \frac{1}{3} \text{Scal}_M(x) f(x, v) \right)
+ \delta \frac{m_{22}}{2} \left(\Delta_E f(x, v) - \frac{1}{3} \text{Scal}_{F_x}(v) f(x, v) \right) + O(\epsilon^2 + \epsilon \delta + \delta^2) \right\},
\]
where m_0, m_{21}, m_{22} are positive constants depending only on the kernel K and the fibre bundle, Scal_M, Scal_{F_x} are scalar curvatures of M, F_x respectively, and Δ_H, Δ_E are defined in (2.15) and (2.18).
Proof. By definition of $K_{\epsilon, \delta}$,
\[
\int_M \int_{F_y} K_{\epsilon, \delta} (x, v; y, w) f (y, w) \, d\text{vol}_F (w) \, d\text{vol}_M (y)
\]
\[
= \int_M \int_{F_y} K \left(\frac{d^2_M (x, y)}{\epsilon}, \frac{d^2_{F_y} (p, q)}{\delta} \right) f (y, w) \, d\text{vol}_F (w) \, d\text{vol}_M (y).
\]
For any fixed $y \in M$, apply Lemma A.1 to the inner integral over F_y with
\[
\Phi (p, q) = K \left(\frac{d^2_M (x, y)}{\epsilon}, \frac{d^2_{F_y} (p, q)}{\delta} \right)
\]
then the constants m_0, m_2 will depend on $d^2_M (x, y) / \epsilon$. More specifically, if we set
\[
M_0 \left(r^2 \right) = \int_{B^*_1 (0)} K \left(r^2, \rho^2 \right) d\theta_1 \cdots d\theta_n, \quad M_2 \left(r^2 \right) = \int_{B^*_1 (0)} \theta_1^2 K \left(r^2, \rho^2 \right) d\theta_1 \cdots d\theta_n,
\]
\[
M_3 \left(r^2 \right) = \int_{B^*_1 (0)} \theta_1^4 K \left(r^2, \rho^2 \right) d\theta_1 \cdots d\theta_n, \quad \text{where } \rho^2 = \sum_{j=1}^n \theta_j^2
\]
and recall from (2.23) that $\Delta_V \Phi$ coincides with Δ_{F_y} if one restricts a smooth function in $C^\infty (E)$ to F_y, then Lemma A.1 leads to
\[
\int_{F_y} K_{\epsilon, \delta} (x, v; y, w) f (y, w) \, d\text{vol}_F (w)
\]
\[
= \delta^2 \left\{ M_0 \left(\frac{d^2_M (x, y)}{\epsilon} \right) f (y, P_{y,x} v) + \frac{\delta}{2} M_2 \left(\frac{d^2_M (x, y)}{\epsilon} \right) \times \right.
\]
\[
\left[\Delta_V \Phi (y, P_{y,x} v) - \frac{1}{3} \text{Scal}^{F_y} (P_{y,x} v) f (y, P_{y,x} v) \right] + O \left(\delta^2 M_3 \left(\frac{d^2_M (x, y)}{\epsilon} \right) \right) \}
\]
Now integrate over M and apply Lemma A.2 multiple times:
\[
\int_M M_0 \left(\frac{d^2_M (x, y)}{\epsilon} \right) f (y, P_{y,x} v) \, d\text{vol}_M (y)
\]
\[
= \epsilon^2 \left\{ m_0 f (x, v) + \epsilon m_{21} \left(\Delta_H f (x, v) - \frac{1}{3} \text{Scal}^M (x) f (x, v) \right) + O (\epsilon^2) \right\},
\]
\[
\int_M M_2 \left(\frac{d^2_M (x, y)}{\epsilon} \right) \left[\Delta_V f (y, P_{y,x} v) - \frac{1}{3} \text{Scal}^{F_y} (P_{y,x} v) f (y, P_{y,x} v) \right] \, d\text{vol}_M (y)
\]
\[
= \epsilon^2 \left\{ m_{21} \left[\Delta_V f (x, v) - \frac{1}{3} \text{Scal}^{F_y} (v) f (x, v) \right] + O (\epsilon) \right\},
\]
where the constants m_0, m_{21}, m_{22} are determined by (writing $r^2 = \sum_{j=1}^d s_j^2$)
\[
m_0 = \int_{B^*_1 (0)} M_0 (r^2) \, ds_1 \cdots ds_d,
\]
\[
m_{21} = \int_{B^*_1 (0)} M_2 (r^2) s_j^2 \, ds_1 \cdots ds_d, \quad m_{22} = \int_{B^*_1 (0)} M_2 (r^2) \, ds_1 \cdots ds_d.
\]
Therefore
\[
\int_M \int_{F_y} K_{\epsilon, \delta} (x, v; y, w) f (y, w) \, d\text{vol}_F (w) \, d\text{vol}_M (y)
\]
\[\begin{align*}
&= \epsilon^2 \delta^2 \left\{ m_0 f(x,v) + \epsilon \frac{m_{21}}{2} \left(\Delta_H f(x,v) - \frac{1}{3} \text{Scal}^M (x) f(x,v) \right) \\
&\quad + \delta \frac{m_{22}}{2} \left(\Delta_E^\alpha f(x,v) - \frac{1}{3} \text{Scal}^F (v) f(x,v) \right) + O(\epsilon^2 + \epsilon \delta + \delta^2) \right\}.
\end{align*} \]

Proof of Theorem 2.8. Note that

(A.19)

\[H^{(\alpha)}_{e,\delta} f(x,v) = \frac{\int_M \int_{F_y} K^{(\alpha)}_{e,\delta} (x,v;y,w) f(y,w) p(y,w) \, d\text{vol}_{F_y} (w) \, d\text{vol}_M (y)}{\int_M \int_{F_y} K^{(\alpha)}_{e,\delta} (x,v;y,w) p(y,w) \, d\text{vol}_{F_y} (w) \, d\text{vol}_M (y)} \]

Applying Lemma A.3 to \(p_{e,\delta} \) to get

\[p_{e,\delta} (y,w) = \epsilon^2 \delta^2 \left\{ m_0 p(y,w) + \epsilon \frac{m_{21}}{2} \left(\Delta_H p(y,w) - \frac{1}{3} \text{Scal}^M (y) p(y,w) \right) \\
\quad + \delta \frac{m_{22}}{2} \left(\Delta_E^\alpha p(y,w) - \frac{1}{3} \text{Scal}^F (w) p(y,w) \right) + O(\epsilon^2 + \epsilon \delta + \delta^2) \right\}. \]

Using this and applying Lemma A.1, Lemma A.2 to the denominator and numerator of (A.19) respectively:

\[\begin{align*}
\int_M \int_{F_y} K_{e,\delta} (x,v;y,w) p_{e,\delta}^{-\alpha} (y,w) p(y,w) \, d\text{vol}_{F_y} (w) \, d\text{vol}_M (y) \\
&= \epsilon \frac{m_{21}}{2m_0} \left(\frac{\Delta_H p^{-\alpha} (x,v)}{p^{-\alpha} (x,v)} - \frac{1}{3} \text{Scal}^M (x) \right) \\
&\quad + \frac{m_{22}}{2m_0} \left(\frac{\Delta_E^\alpha p^{-\alpha} (x,v)}{p^{-\alpha} (x,v)} - \frac{1}{3} \text{Scal}^F (x) \right) - \epsilon \frac{m_{21}}{2m_0} \left(\frac{\Delta_H p (x,v)}{p (x,v)} - \frac{1}{3} \text{Scal}^M (x) \right) \\
&\quad - \frac{m_{22}}{2m_0} \left(- \frac{\Delta_E^\alpha p (x,v)}{p (x,v)} - \frac{1}{3} \text{Scal}^F (w) \right) + O(\epsilon^2 + \epsilon \delta + \delta^2) \right\},
\end{align*} \]

\[\begin{align*}
\int_M \int_{F_y} K_{e,\delta} (x,v;y,w) f(y,w) p_{e,\delta}^{-\alpha} (y,w) p(y,w) \, d\text{vol}_{F_y} (w) \, d\text{vol}_M (y) \\
&= \epsilon \frac{m_{21}}{2m_0} \left(\frac{\Delta_H (fp^{-\alpha}) (x,v)}{(fp^{-\alpha}) (x,v)} - \frac{1}{3} \text{Scal}^M (x) \right) \\
&\quad + \frac{m_{22}}{2m_0} \left(\frac{\Delta_E^\alpha (fp^{-\alpha}) (x,v)}{(fp^{-\alpha}) (x,v)} - \frac{1}{3} \text{Scal}^F (x) \right) - \epsilon \frac{m_{21}}{2m_0} \left(\frac{\Delta_H p (x,v)}{p (x,v)} - \frac{1}{3} \text{Scal}^M (x) \right) \\
&\quad - \frac{m_{22}}{2m_0} \left(\frac{\Delta_E^\alpha p (x,v)}{p (x,v)} - \frac{1}{3} \text{Scal}^F (w) \right) + O(\epsilon^2 + \epsilon \delta + \delta^2) \right\}.
\end{align*} \]
Combining these two expansions, a direct computation concludes

\[
H_{\epsilon,\delta}^{(\alpha)} f(x,v) = f(x,v) + \epsilon m_2 \left[\frac{\Delta_M (f p^{1-\alpha}) - f \Delta_M p^{1-\alpha}}{p^{1-\alpha}} \right] (x,v)
\]

\[
+ \delta m_2 \left[\frac{\Delta_M (f p^{1-\alpha}) - f \Delta_M p^{1-\alpha}}{p^{1-\alpha}} \right] (x,v) + O (\epsilon^2 + \epsilon \delta + \delta^2).
\]

Proof of Theorem 2.10. Since \(P_{y,x} v \) does not depend on \(\gamma \),

\[
\lim_{\gamma \to \infty} p_{\gamma,\epsilon,\gamma} f(x,v) = \lim_{\gamma \to \infty} \int_M \int_{F_{y}} K \left(\frac{d^2 y}{\gamma}, \frac{d^2 w}{\gamma \epsilon}, \frac{d^2 p_{y,x} v}{\gamma \epsilon} \right) p(y,w) dvol(w) dvol_M(y)
\]

\[
= \int_M K \left(\frac{d^2 y}{\epsilon}, 0 \right) \left[\int_{F_{y}} p(y,w) dvol(w) \right] dvol_M(y).
\]

Define

\[
K_{\epsilon} (x,y) = K \left(\frac{d^2 y}{\epsilon}, 0 \right), \quad K_{\epsilon}^{(\alpha)} (x,y) = \frac{K_{\epsilon} (x,y)}{\langle p \rangle^{\alpha} \langle p \rangle^{\alpha}}.
\]

By direct computation,

(A.20)

\[
\lim_{\gamma \to \infty} H_{\epsilon,\gamma}^{(\alpha)} f(x,v) = \frac{\int_M K_{\epsilon}^{(\alpha)} (x,y) \left[\int_{F_{y}} f(y,w) \frac{p(y,w)}{\langle p \rangle} dvol(w) \right] \langle p \rangle (y) dvol_M(y)}{\int_M K_{\epsilon}^{(\alpha)} (x,y) \langle p \rangle (y) dvol_M(y)}
\]

\[
= \frac{\int_M K_{\epsilon}^{(\alpha)} (x,y) \langle f \rangle_p (y) \langle p \rangle (y) dvol_M(y)}{\int_M K_{\epsilon}^{(\alpha)} (x,y) \langle p \rangle (y) dvol_M(y)}
\]

By [19, Theorem 2], as \(\epsilon \to 0 \)

(A.21)

\[
\lim_{\gamma \to \infty} H_{\epsilon,\gamma}^{(\alpha)} f(x,v) = \langle f \rangle_p (x) + \epsilon m'_2 \left[\Delta_M \left(\langle f \rangle_p \langle p \rangle^{1-\alpha} \right) - \langle f \rangle_{p^{1-\alpha}} \right] (x) + O (\epsilon^2),
\]

where

\[
m'_2 = \int_{B_2^d (0)} K(r^2) ds \cdots ds, \quad m'_2 = \int_{B_2^d (0)} K(r^2) s^2 ds \cdots ds.
\]

Appendix B. Proofs of Theorem 5.4 and Theorem 5.6

In this appendix, we prove the two finite sampling theorems on unit tangent bundles in Section 5, following the paths paved by [4, 31, 56, 55]. Recall from
Section 4.3 that for any $f \in C^\infty(UTM)$
\[
H_{\epsilon,\delta}^{(\alpha)} f(x,v) = \frac{\int_{UTM} K_{\epsilon,\delta}^{(\alpha)}(x,v;y,w) f(y,w) p(y,w) \, d\Theta(y,w)}{\int_{UTM} K_{\epsilon,\delta}^{(\alpha)}(x,v;y,w) p(y,w) \, d\Theta(y,w)},
\]
where $d\Theta(x,v) = dvols_{S_x}dvol_M(v)$ is the Liouville measure. Since S_x is a unit ball in T_xM, we shall also write $d\sigma_x = dvol_{S_x}$ for convenience.

B.0.3. Sampling without Noise. The following lemma builds the bridge between the geodesic distance on the manifold and the Euclidean distance in the ambient space.

Lemma B.1. Let $\iota : M \rightarrow \mathbb{R}^D$ be an isometric embedding of the smooth d-dimensional closed Riemannian manifold M into \mathbb{R}^D. For any $x,y \in M$ such that $d_M(x,y) < \text{Inj}(M)$, we have
\[
(\text{B.1}) \quad d_M^2(x,y) = \|\iota(x) - \iota(y)\|^2 + \frac{1}{12} d_M^4(x,y) \|\Pi(\theta,\theta)\|^2 + O(d_M^5(x,y)),
\]
where $\theta \in T_xM, \|\theta\|_x = 1$ comes from the geodesic polar coordinates of y in a geodesic normal neighborhood of x: $y = \exp_x r\theta, \, r = d_M(x,y)$.

Proof. See [59, Proposition 6].

For proving Theorem 5.4, it is convenient to introduce the “Euclidean distance version” of the diffusion operators introduced in Section 2.4. Note that in Definition 5.3 the hat “$\hat{\cdot}$” is used for empirical quantities; for the remainder of this appendix, the tilde “$\tilde{\cdot}$” will be used for quantities in the definition of $H_{\epsilon,\delta}^{(\alpha)}$ and $H_{\epsilon,\delta}^{(\alpha)}$ with Euclidean distance in place of geodesic distance. For instance,
\[
\tilde{K}_{\epsilon,\delta}(x,v;y,w) = K\left(\frac{\|x-y\|^2}{\epsilon}, \frac{\|P_{y,x}v - w\|^2}{\delta}\right),
\]
\[
\tilde{p}_{\epsilon,\delta}(x,v) = \int_{UTM} \tilde{K}_{\epsilon,\delta}(x,v;y,w) p(y,w) \, d\Theta(y,w),
\]
\[
\tilde{K}_{\epsilon,\delta}^{(\alpha)}(x,v;y,w) = \frac{\tilde{K}_{\epsilon,\delta}(x,v;y,w)}{\tilde{p}_{\epsilon,\delta}(x,v) \tilde{p}_{\epsilon,\delta}^{(\alpha)}(y,w)},
\]
and eventually
\[
\tilde{H}_{\epsilon,\delta}^{(\alpha)} f(x,v) = \frac{\int_{UTM} \tilde{K}_{\epsilon,\delta}^{(\alpha)}(x,v;y,w) f(y,w) p(y,w) \, d\Theta(y,w)}{\int_{UTM} \tilde{K}_{\epsilon,\delta}^{(\alpha)}(x,v;y,w) p(y,w) \, d\Theta(y,w)}.
\]

The next step is to establish an asymptotic expansion of type (2.25) for $\tilde{H}_{\epsilon,\delta}^{(\alpha)}$. We deduce the following Lemma B.2, the “Euclidean distance version” of Lemma A.1, from Lemma B.1 and Lemma A.1 itself.

\footnote{Note that here $\tilde{K}_{\epsilon,\delta}^{(\alpha)} = \hat{K}_{\epsilon,\delta}^{(\alpha)}$, but this equality no longer holds in next subsection where $\hat{K}_{\epsilon,\delta}^{(\alpha)}$ is constructed from estimated parallel-transports.}
Lemma B.2. Let $\Phi : \mathbb{R} \to \mathbb{R}$ be a smooth function compactly supported in $[0, 1]$. Assume M is a d-dimensional closed Riemannian manifold isometrically embedded in \mathbb{R}^D, with injectivity radius $\text{Inj}(M) > 0$. For any $\epsilon > 0$, define kernel function

$$\Phi_{\epsilon} (x, y) = \Phi \left(\frac{||x - y||^2}{\epsilon} \right)$$

on $M \times M$, where $\| \cdot \|$ is the Euclidean distance on \mathbb{R}^D. If the parameter ϵ is sufficiently small such that $0 \leq \epsilon \leq \sqrt{\text{Inj}(M)}$, then the integral operator associated with kernel Φ_{ϵ}

$$\left(\Phi_{\epsilon} g \right) (x) := \int_M \Phi_{\epsilon} (x, y) g(y) \, d\text{vol}_M (y)$$

has the following asymptotic expansion as $\epsilon \to 0$

$$\left(\Phi_{\epsilon} g \right) (x) = \epsilon^2 \left[m_0 g(x) + \epsilon \frac{m_2}{2} (\Delta_M g(x) + E(x) g(x)) + O(\epsilon^3) \right],$$

with

$$E(x) = -\frac{1}{3} \text{Scal}_M (x) + \frac{d(d+2)}{12} A(x)$$

where m_0, m_2 are constants that depend on the moments of Φ and the dimension d of the Riemannian manifold M, Δ_M is the Laplace-Beltrami operator on M, $\text{Scal}_M (x)$ is the scalar curvature of M at x, and $A(x)$ is a scalar function on M that only depends on the intrinsic dimension d and the second fundamental form of the isometric embedding $\iota : M \to \mathbb{R}^D$.

Proof. Since we already established Lemma A.1, it suffices to expand the difference

$$\int_M \left[\Phi \left(\frac{||x - y||^2}{\epsilon} \right) - \Phi \left(\frac{d_M^2 (x, y)}{\epsilon} \right) \right] g(y) \, d\text{vol}_M (y).$$

Put y in geodesic polar coordinates in a geodesic normal neighborhood of $x \in M$:

$$y = \exp_x r \theta, \quad \text{with} \quad r = d_M (x, y), \theta \in T_x M, \| \theta \|_x = 1,$$

and denote the geodesic normal coordinates around x as (s_1, \cdots, s_d). By Lemma B.1,

$$||x - y||^2 - d_M^2 (x, y) = -\frac{1}{12} d_M^4 (x, y) \| \Pi(\theta, \theta) \|^2 + O \left(d_M^3 (x, y) \right)$$

thus

$$\Phi \left(\frac{||x - y||^2}{\epsilon} \right) - \Phi \left(\frac{d_M^2 (x, y)}{\epsilon} \right)$$

$$= \Phi' \left(\frac{d_M^2 (x, y)}{\epsilon} \right) \cdot \frac{1}{12 \epsilon} d_M^4 (x, y) \| \Pi(\theta, \theta) \|^2 + O \left(\frac{d_M^3 (x, y)}{\epsilon^2} \right).$$

Recall that Φ is supported on the unit interval, which implies that in (B.5) only those $y \in M$ satisfying $||x - y|| \leq \sqrt{\epsilon}$ or $d_M (x, y) \leq \sqrt{\epsilon}$ are involved. According to Lemma B.1, for sufficiently small $\epsilon > 0$, $||x - y|| \leq \sqrt{\epsilon}$ implies $d_M (x, y) < 2\sqrt{\epsilon}$, thus the higher order error in (B.6) is indeed

$$O \left(\frac{d_M^3 (x, y)}{\epsilon^2} \right) = O \left(\frac{(\sqrt{\epsilon})^3}{\epsilon^2} \right) = O(\epsilon^2).$$
Therefore,
\[(B.7)\]
\[
\int_M \left[\Phi \left(\frac{\|x - y\|^2}{\epsilon} \right) - \Phi \left(\frac{d_M^2(x, y)}{\epsilon} \right) \right] g(y) \, d\text{vol}_M(y)
\]
\[
= -\frac{1}{12\epsilon} \int_M \Phi' \left(\frac{d_M^2(x, y)}{\epsilon} \right) \, d^4\sigma(x, y) \, \|\Pi(\theta, \theta)\|^2 \, g(y) \, d\text{vol}_M(y) + \epsilon^\frac{2}{3} \cdot O\left(\epsilon^2\right)
\]
\[
= -\frac{1}{12\epsilon} \int_M \Phi' \left(\frac{r^2}{\epsilon} \right) \, r^4 \|\Pi(\theta, \theta)\|^2 \, g(y) \, d\text{vol}_M(y) + \epsilon^\frac{2}{3} \cdot O\left(\epsilon^2\right).
\]

In geodesic normal coordinates \((s_1, \ldots, s_d)\),
\[(B.8)\]
\[
\int_M \Phi' \left(\frac{r^2}{\epsilon} \right) \, r^4 \|\Pi(\theta, \theta)\|^2 \, g(y) \, d\text{vol}_M(y)
\]
\[
= \int_{B_{\epsilon_r}(0)} \Phi' \left(\frac{r^2}{\epsilon} \right) \, r^4 \|\Pi(\theta, \theta)\|^2 \, g(s) \left[1 - \frac{1}{6} R_k\ell(x) s_k s_\ell + O\left(\epsilon^3\right) \right] \, ds_1 \cdots ds_d.
\]

Using the Taylor expansion of \(\tilde{g}(s)\) around \(s = 0\) and the symmetry of the integral, \((B.8)\) reduces to
\[
\int_{B_{\epsilon_r}(0)} \Phi' \left(\frac{r^2}{\epsilon} \right) \, r^4 \|\Pi(\theta, \theta)\|^2 \, g(x) \, ds_1 \cdots ds_d
\]
\[
+ \int_{B_{\epsilon_r}(0)} \Phi' \left(\frac{r^2}{\epsilon} \right) \, r^4 \|\Pi(\theta, \theta)\|^2 \, O\left(\epsilon^2\right) \, ds_1 \cdots ds_d
\]
\[
= \epsilon^{\frac{2}{3}} \cdot e^2 g(x) \int_{S_1(0)} \|\Pi(\theta, \theta)\|^2 \, d\theta \int_0^1 \Phi' \left(\frac{r^2}{\epsilon} \right) \, \tilde{r}^{3+d} \, d\tilde{r} + \epsilon^{\frac{2}{3}} \cdot O\left(\epsilon^3\right).
\]

Let \(m_2\) be the constant as in Lemma A.2, \(\omega_{d-1}\) the volume of the standard unit sphere in \(\mathbb{R}^d\). Note that
\[
\omega_{d-1} \int_0^1 \Phi \left(\frac{r^2}{\epsilon} \right) \, \tilde{r}^{d+1} \, d\tilde{r} = \int_{B_1(0)} \Phi \left(\frac{r^2}{\epsilon} \right) \, \tilde{r}^2 \, d\tilde{r}^1 \cdots d\tilde{r}^d = m_2 d.
\]

Let \(A(x)\) be the average of the length of the second fundamental form over the standard unit sphere, i.e.,
\[
A(x) = \frac{1}{\omega_{d-1}} \int_{S_1(0)} \|\Pi(\theta, \theta)\|^2 \, d\theta.
\]

Integrating the term involving \(\Phi' \left(\frac{r^2}{\epsilon} \right)\) by parts to get
\[(B.9)\]
\[
\epsilon^{\frac{2}{3}} \cdot e^2 g(x) \int_{S_1(0)} \|\Pi(\theta, \theta)\|^2 \, d\theta \int_0^1 \Phi' \left(\frac{r^2}{\epsilon} \right) \, \tilde{r}^{3+d} \, d\tilde{r} = -\epsilon^{\frac{2}{3}} \cdot e^2 m_2 \frac{d}{2} (d + 2) \, g(x) \, A(x).
\]

Therefore,
\[
\int_M \left[\Phi \left(\frac{\|x - y\|^2}{\epsilon} \right) - \Phi \left(\frac{d_M^2(x, y)}{\epsilon} \right) \right] g(y) \, d\text{vol}_M(y)
\]
\[
= \epsilon^{\frac{d}{3}} \left[\epsilon^2 m_2 \frac{d}{24} (d + 2) \, A(x) \, g(x) + O\left(\epsilon^2\right) \right],
\]
and thus
\[
\left(\dot{\Phi}_\epsilon g \right) (x) = \epsilon^\frac{d}{2} \left[m_0 g (x) + \epsilon \frac{m_2}{2} (\Delta_M g (x) + E (x) g (x)) + O (\epsilon^2) \right]
\]
where
\[
E (x) := -\frac{1}{3} \text{Scal} (x) + \frac{1}{12} d (d + 2) A (x).
\]

\[\square\]

Remark B.3. The only difference between the conclusions in Lemma B.2 and Lemma A.1 is that the scalar function \(E (x) \) takes the place of the scalar curvature \(\text{Scal}^M (x) \); one can check, essentially by going through the proof of Theorem 2.8, that the proof still works through, due to the cancellation of the terms involving \(\text{Scal}^M \).

In fact, applying Lemma B.2 repeatedly, one has
\[
\int_M \dot{\Phi}_\epsilon (x,y) f (y, P_{y,x}v) d\text{vol}_M (y) = \epsilon^\frac{d}{2} \left\{ m_0 f (x,v) + \epsilon \frac{m_2}{2} [\Delta_H f (x,v) + E_1 (x) f (x,v)] + O (\epsilon^2) \right\},
\]
and
\[
\int_{UM} \dot{K}_{\epsilon,\delta} (x,v; y,w) g (y,w) d\Theta (y,w)
= \epsilon^\frac{d}{2} \delta^{\frac{d-1}{d+2}} \left\{ m_0 g (x,v) + \epsilon \frac{m_2}{2} [\Delta_{UM}^H g (x,v) + E_1 (x) g (x,v)]
+ \delta \frac{m_2}{2} [\Delta_{UM}^V g (x,v) + E_2 \cdot g (x,v)] + O (\epsilon^2 + \delta^2) \right\},
\]
where
\[
E_1 (\xi_i) = -\frac{1}{3} \text{Scal}^M (\xi_i) + \frac{d (d + 2)}{12} \cdot \frac{1}{\omega_{d-1}} \int_{S_{1}(0)} \| \Pi_M (\theta, \theta) \|^2 d\theta
\]
only depends on the scalar curvature \(\text{Scal}^M \) and the second fundamental form \(\Pi_M \) of the base manifold \(M \), at \(\xi \), and
\[
E_2 = -\frac{1}{3} \text{Scal}^S + \frac{(d - 1) (d + 1)}{12} \cdot \frac{1}{\omega_{d-2}} \int_{S_{1}(0)} \| \Pi_S (\theta, \theta) \|^2 d\theta
\]
is a constant because
\[
\text{Scal}^S = (d - 1) (d - 2), \quad \| \Pi_S (\theta, \theta) \|^2 = 1 \quad \text{for any unit tangent vector} \ \theta.
\]
These expansions are essentially the equivalents of Lemma A.2 and Lemma A.3 for \(\dot{K}_{\epsilon,\delta} \). Using (B.10), (B.11) and picking \(\delta = O (\epsilon) \) as \(\epsilon \to 0 \), a version of Theorem 2.8 holds true when \(\dot{K}^{(\alpha)} \) is replaced with \(\dot{K}^{(\alpha)} \), i.e., as \(\epsilon \to 0 \) (and thus \(\delta \to 0 \)),
(B.12)
\[
\dot{H}^{(\alpha)}_{\epsilon,\delta} f (x,v) = f (x,v) + \frac{m_2}{2m_0} \left[\Delta_H \left[f p^{1-\alpha} \right] (x,v) - f (x,v) \frac{\Delta_H p^{1-\alpha} (x,v)}{p^{1-\alpha} (x,v)} \right]
+ \delta \frac{m_2}{2m_0} \left[\Delta_E \left[f p^{1-\alpha} \right] (x,v) - f (x,v) \frac{\Delta_E p^{1-\alpha} (x,v)}{p^{1-\alpha} (x,v)} \right] + O (\epsilon^2 + \epsilon \delta + \delta^2).
\]
As we shall see below, this observation is the key to establishing estimates for the bias error in the proof of Theorem 5.4.

Before we present the proof of Theorem 5.4, we establish a large deviation bound for our two-step sampling strategy. Recall from Assumption 5.2 that we first sample \(N_B\) points \(\xi_1, \cdots, \xi_{N_B}\) i.i.d. with respect to \(\langle p \rangle\) on the base manifold \(M\), then sample \(N_F\) points on each fibre \(S_{\xi_j}\) i.i.d. with respect to \(p (\cdot | \xi_j)\). The resulting \(N_B \times N_F\) points on \(UTM\)

\[
\begin{align*}
x_{1,1}, & \quad x_{1,2}, \quad \cdots, \quad x_{1,N_F} \\
x_{2,1}, & \quad x_{2,2}, \quad \cdots, \quad x_{2,N_F} \\
\vdots & \quad \vdots \quad \cdots \quad \vdots \quad \vdots \\
x_{N_B,1}, & \quad x_{N_B,2}, \quad \cdots, \quad x_{N_B,N_F}
\end{align*}
\]

are generally not i.i.d. sampled from \(UTM\). This forbids applying the Law of Large Numbers directly to quantities that take the form of an average over the entire unit tangent bundle, such as

\[
\frac{1}{N_B N_F} \sum_{j=1}^{N_B} \sum_{s=1}^{N_F} \bar{K}_{\epsilon, \delta} (x_{i,r}, x_{j,s}) f (x_{j,s}) .
\]

However, due to the conditional i.i.d. fibrewise sampling, it makes sense to apply the law of large numbers to average quantities on a fixed fibre, e.g.,

\[
\frac{1}{N_F} \sum_{s=1}^{N_F} \bar{K}_{\epsilon, \delta} (x_{i,r}, x_{j,s}) f (x_{j,s}) \longrightarrow \mathbb{E}_Z \left[\bar{K}_{\epsilon, \delta} (x_{i,r}, (\xi_j, Z)) f (\xi_j, Z) \right],
\]

where \(\mathbb{E}_Z\) stands for the expectation with respect to the “fibre component” of the coordinates of the points on \(S_{\xi_j}\). Explicitly,

\[
\mathbb{E}_Z \left[\bar{K}_{\epsilon, \delta} (x_{i,r}, (\xi_j, \cdot)) f (\xi_j, \cdot) \right] = \int_{S_{\xi_j}} \bar{K}_{\epsilon, \delta} (x_{i,r}, (\xi_j, w)) f (\xi_j, w) p (w | \xi_j) d\sigma_{\xi_j} (w).
\]

Next, note that \(\xi_1, \cdots, \xi_{N_B}\) are i.i.d. sampled from the base manifold \(M\), the partial expectations

\[
\left\{ \mathbb{E}_Z \left[\bar{K}_{\epsilon, \delta} (x_{i,r}, (\xi_j, Z)) f (\xi_j, Z) \right] \right\}_{j=1}^{N_B}
\]

are i.i.d. random variables on \(M\) with respect to \(\langle p \rangle\). Thus

\[
\frac{1}{N_B} \sum_{j=1}^{N_B} \mathbb{E}_Z \left[\bar{K}_{\epsilon, \delta} (x_{i,r}, (\xi_j, Z)) f (\xi_j, Z) \right] \longrightarrow \mathbb{E}_Y \left[\mathbb{E}_Z \left[\bar{K}_{\epsilon, \delta} (x_{i,r}, (Y, Z)) f (Y, Z) \right] \right],
\]

where

\[
\mathbb{E}_Y \left[\mathbb{E}_Z \left[\bar{K}_{\epsilon, \delta} (x_{i,r}, (Y, Z)) f (Y, Z) \right] \right] = \int_M \langle p \rangle (y) \int_{S_{\xi_j}} \bar{K}_{\epsilon, \delta} (x_{i,r}, (\xi_j, w)) f (y, w) p (w | y) d\sigma_y (w) d\text{vol}_M (y)
\]

\[
= \int_M \int_{S_{\xi_j}} \bar{K}_{\epsilon, \delta} (x_{i,r}, (\xi_j, w)) f (y, w) p (y, w) d\sigma_y (w) d\text{vol}_M (y).
\]
This gives
\[
\lim_{N_B \to \infty} \lim_{N_F \to \infty} \frac{1}{N_B N_F} \sum_{j=1}^{N_B} \sum_{s=1}^{N_F} \hat{K}_{\epsilon, \delta} (x_{i,r}, x_{j,s}) f (x_{j,s}) \ni_{M, S_{ij}} \hat{K}_{\epsilon, \delta} (x_{i,r}, (\xi_j, w)) f (y, w) p (y, w) d\sigma_y (w) d\text{vol}_M (y),
\]
in which the two limits on the left hand side do not commute in general. Thus it is natural to consider iterated partial expectations rather than expectation on the entire UTM. From now on, we denote \(E_Y, E_Z\) as \(E_1, E_2\) for simplicity.

Definition B.4. Let \(p\) be a probability density function on UTM, and
\[
\langle p \rangle (x) = \int_{S_{\xi}} p (x, w) d\sigma_x (w), \quad p (v \mid x) = \frac{p (x, v)}{\langle p \rangle (x)}
\]
be as defined in (2.28)-(2.29). For any \(f \in C^\infty (M)\) and \(g \in C^\infty (S_\xi), \xi \in M\), define
\[
\begin{align*}
E_1 f & := \int_M f (y) p (y) d\text{vol}_M (y), \\
E_2^\xi g & := \int_{S_\xi} g (\xi, w) p (w \mid \xi) d\sigma_\xi (w).
\end{align*}
\]

Definition B.5. Let \(p\) be a probability density function on UTM. We call a collection of \(N_B \times N_F\) real-valued random functions
\[
\{X_{j,s} \mid 1 \leq j \leq N_B, 1 \leq s \leq N_F\}
\]
Procrustean with respect to \(p\) on UTM, if
\[
\begin{itemize}
\item[(i)] For each \(1 \leq j \leq N_B\), the subcollection \(\{X_{j,s} \mid 1 \leq s \leq N_F\}\) are i.i.d. on \(S_{\xi_j}\) for some \(\xi_j \in M\), with respect to the conditional probability density \(p (\cdot \mid \xi_j)\);
\item[(ii)] The points \(\{\xi_j \mid 1 \leq j \leq N_B\}\) are i.i.d. on \(M\) with respect to the fibre average density \(\langle p \rangle (\cdot)\).
\end{itemize}

Due to (i), we can drop the dependency of \(X_{j,s}\) with respect to \(s\) and simply write
\[
E_2^\xi X_j := E_2 X_{j,s}, \quad E_2^\xi X_j^2 := E_2 X_{j,s}^2.
\]

Similarly, because of (ii) we can write
\[
E_1 E_2 X := E_1 E_2 X_{j,s}, \quad E_1 \left(E_2 X \right)^2 := E_1 \left(E_2 X_j \right).
\]

Lemma B.6. Let \(\{X_{j,s} \mid 1 \leq j \leq N_B, 1 \leq s \leq N_F\}\) be a collection of Procrustean random functions with respect to some density function \(p\) on UTM. If
\[
|X_{j,s}| \leq M_0, \quad \mathbb{E}_{E_2}^\xi X_j \leq M_1, \quad |E_1 E_2 X| \leq M_2 \quad \text{a.s. for all} \quad 1 \leq j \leq N_B, 1 \leq s \leq N_F,
\]
then for any \(t > 0\) and \(0 < \theta < 1\),
\[
P \left\{ \frac{1}{N_B N_F} \sum_{j=1}^{N_B} \sum_{s=1}^{N_F} X_{j,s} - E_1 E_2 X > t \right\}
\]
\[
\leq \sum_{j=1}^{N_B} \exp \left\{ - \frac{1}{2} \frac{(1 - \theta)^2 N_F t^2}{\mathbb{E}_{E_2}^\xi X_j^2 - \left(\mathbb{E}_{E_2}^\xi X_j \right)^2} + \frac{1}{3} (M_0 + M_1) (1 - \theta) t \right\}
\]
\[
+ \exp \left\{ -\frac{1}{2} \theta^2 N_B t^2 \left[\frac{1}{E_1 (E_2 X)^2 - (E_1 E_2 X)^2} + \frac{1}{3} (M_1 + M_2) \theta t \right] \right\}.
\]

Proof. Note that for any \(\theta \in (0, 1) \)

\[
\mathbb{P} \left\{ \frac{1}{N_B N_F} \sum_{j=1}^{N_B} \sum_{s=1}^{N_F} X_{j,s} - \mathbb{E}_1 \mathbb{E}_2 X > t \right\}
\]

\[
\leq \mathbb{P} \left\{ \frac{1}{N_B N_F} \sum_{j=1}^{N_B} \sum_{s=1}^{N_F} X_{j,s} - \frac{1}{N_B} \sum_{j=1}^{N_B} \mathbb{E}_2 \mathbb{E}_2 X_j > (1 - \theta) t \right\}
\]

\[
+ \mathbb{P} \left\{ \frac{1}{N_B} \sum_{j=1}^{N_B} \mathbb{E}_2 \mathbb{E}_2 X_j - \mathbb{E}_1 \mathbb{E}_2 X > \theta t \right\} =: (I) + (II).
\]

Since

\[
\left| \mathbb{E}_2 \mathbb{E}_2 X_j - \mathbb{E}_1 \mathbb{E}_2 X \right| \leq M_1 + M_2,
\]

by Bernstein’s Inequality [16, §2.2],

\[
(II) = \mathbb{P} \left\{ \sum_{j=1}^{N_B} (\mathbb{E}_2 \mathbb{E}_2 X_j - \mathbb{E}_1 \mathbb{E}_2 X) > \theta N_B t \right\}
\]

\[
\leq \exp \left\{ -\frac{1}{2} \frac{\theta^2 N_B t^2}{\left[\frac{1}{E_1 (E_2 X)^2 - (E_1 E_2 X)^2} + \frac{1}{3} (M_1 + M_2) \theta t \right]} \right\}.
\]

For (I), a union bound plus Bernstein’s Inequality gives

\[
(I) = \mathbb{P} \left\{ \sum_{j=1}^{N_B} \left(\frac{1}{N_F} \sum_{s=1}^{N_F} X_{j,s} - \mathbb{E}_2 \mathbb{E}_2 X_j \right) > (1 - \theta) N_B t \right\}
\]

\[
\leq \sum_{j=1}^{N_B} \mathbb{P} \left\{ \sum_{s=1}^{N_F} (X_{j,s} - \mathbb{E}_2 \mathbb{E}_2 X_j) > (1 - \theta) N_F t \right\}
\]

\[
\leq \sum_{j=1}^{N_B} \exp \left\{ -\frac{1}{2} \frac{(1 - \theta)^2 N_F t^2}{\left[\mathbb{E}_2 X_j^2 - (\mathbb{E}_2 \mathbb{E}_2 X_j)^2 \right] + \frac{1}{3} (M_0 + M_1) (1 - \theta) t} \right\}.
\]

The conclusion follows from combining these two bounds.

Remark B.7. Intuitively, the second term in the bound comes from the sampling error on the base manifold, and is thus independent of \(\delta \) and \(N_F \); the first term in the bound comes from accumulating fibrewise sampling error across all \(N_B \) fibres.
Proof of Theorem 5.4. We first establish the result for $\alpha = 0$. In this case, $\hat{K}^{(0)}_{\epsilon,\delta}(\cdot,\cdot) = \hat{K}_{\epsilon,\delta}(\cdot,\cdot)$, and
\[
\hat{H}^{(0)}_{\epsilon,\delta} f (x_{i,r}) = \frac{\sum_{j=1}^{N_B} \sum_{s=1}^{N_F} \hat{K}_{\epsilon,\delta} (x_{i,r}, x_{j,s}) f (x_{j,s})}{\sum_{j=1}^{N_B} \sum_{s=1}^{N_F} \hat{K}_{\epsilon,\delta} (x_{i,r}, x_{j,s})}
\]
\[
= \frac{1}{N_B N_F} \sum_{j=1}^{N_B} \sum_{s=1}^{N_F} K \left(\frac{\|\xi_i - \xi_j\|^2}{\epsilon}, \frac{\|P_{\xi_i,\xi_j} x_{i,r} - x_{j,s}\|^2}{\delta} \right) f (x_{j,s})
\]
\[
= \frac{1}{N_B N_F} \sum_{j=1}^{N_B} \sum_{s=1}^{N_F} K \left(\frac{\|\xi_i - \xi_j\|^2}{\epsilon}, \frac{\|P_{\xi_i,\xi_j} x_{i,r} - x_{j,s}\|^2}{\delta} \right) .
\]
Since $\{x_{j,s}\}_{s=1}^{N_F}$ are i.i.d. with respect to $p (\cdot | \xi_j)$, by the law of large numbers, for each fixed $j = 1, \cdots, N_B$, as $N_F \to \infty$,
\[
\lim_{N_F \to \infty} \frac{1}{N_F} \sum_{s=1}^{N_F} K \left(\frac{\|\xi_i - \xi_j\|^2}{\epsilon}, \frac{\|P_{\xi_i,\xi_j} x_{i,r} - x_{j,s}\|^2}{\delta} \right) f (x_{j,s})
\]
\[
= \int_{S_{\xi_j}} K \left(\frac{\|\xi_i - \eta\|^2}{\epsilon}, \frac{\|P_{\xi_i,\xi_j} x_{i,r} - \eta\|^2}{\delta} \right) f (\eta) p (\eta | \xi_j) d\sigma_{\xi_j}(\eta),
\]
Note that $\{\xi_j\}_{j=1}^{N_B}$ are i.i.d. with respect to (p), it follows again from the law of large numbers that
\[
\lim_{N_B \to \infty} \frac{1}{N_B} \sum_{j=1}^{N_B} \lim_{N_F \to \infty} \frac{1}{N_F} \sum_{s=1}^{N_F} K \left(\frac{\|\xi_i - \xi_j\|^2}{\epsilon}, \frac{\|P_{\xi_i,\xi_j} x_{i,r} - x_{j,s}\|^2}{\delta} \right) f (x_{j,s})
\]
\[
= \int_{UTM} K \left(\frac{\|\xi_i - \eta\|^2}{\epsilon}, \frac{\|P_{\xi_i,\xi_j} x_{i,r} - \eta\|^2}{\delta} \right) f (\eta) p (\eta | y) d\Theta (y, w),
\]
where we used $p (y, w) = (p) (y) p (w | y)$. For $f \equiv 1$,
\[
\lim_{N_B \to \infty} \frac{1}{N_B} \sum_{j=1}^{N_B} \lim_{N_F \to \infty} \frac{1}{N_F} \sum_{s=1}^{N_F} K \left(\frac{\|\xi_i - \xi_j\|^2}{\epsilon}, \frac{\|P_{\xi_i,\xi_j} x_{i,r} - x_{j,s}\|^2}{\delta} \right)
\]
\[
= \int_{UTM} K \left(\frac{\|\xi_i - \eta\|^2}{\epsilon}, \frac{\|P_{\xi_i,\xi_j} x_{i,r} - \eta\|^2}{\delta} \right) p (\eta | y) d\Theta (y, w).
\]
Therefore,
\[
\lim_{N_B \to \infty} \lim_{N_F \to \infty} \hat{H}^{(0)}_{\epsilon,\delta} f (x_{i,r}) = \hat{H}^{(0)}_{\epsilon,\delta} f (x_{i,r})
\]
\[
= f (x_{i,r}) + \frac{m_2}{2 m_0} \left[\Delta^H_{UTM} f (x_{i,r}) - f (x_{i,r}) \hat{\Delta}^H_{UTM} (x_{i,r}) \right]
\]
\[
+ \delta \frac{m_2}{2 m_0} \left[\Delta^V_{UTM} f (x_{i,r}) - f (x_{i,r}) \hat{\Delta}^V_{UTM} (x_{i,r}) \right] + O (\epsilon^2 + \epsilon \delta + \delta^2).
\]
The last equality makes use of the assumption $\delta = O (\epsilon)$ as $\epsilon \to 0$ and Remark B.3.
This establishes the bias error for the special case $\alpha = 0$ and it remains to estimate.
the variance error. To this end, denote
\[F_{j,s} = \dot{K}_{e,\delta} (x_{i,r}, x_{j,s}) f (x_{j,s}), \quad G_{j,s} = K_{e,\delta} (x_{i,r}, x_{j,s}) \]
for any fixed \(x_{i,r} \in UTM \). Note that \(F_{i,s} = 0, G_{i,s} = 0 \) for all \(s = 1, \cdots, N_F, \) by Definition 5.3 (1); by the compactness of \(UTM \) we have the following trivial bounds uniform in \(j, s \):
\[|F_{j,s}| \leq \|K\|_\infty \|f\|_\infty, \quad |G_{j,s}| \leq \|K\|_\infty. \]
Thus we already have
\[\lim_{N_B \to \infty} \lim_{N_F \to \infty} \dot{H}_{e,\delta}^{(0)} f (x_{i,r}) = \frac{E_1 E_2 F}{E_1 E_2 G}, \]
and would like to estimate
\[p (N_B, N_F, \beta) := \mathbb{P} \left\{ \sum_j \sum_s F_{j,s} - \frac{E_1 E_2 F}{E_1 E_2 G} > \beta \right\} \]
for sufficiently small \(\beta > 0 \). An upper bound for
\[\mathbb{P} \left\{ \sum_j \sum_s F_{j,s} - \frac{E_1 E_2 F}{E_1 E_2 G} < -\beta \right\} \]
can be obtained in a similar manner. Since \(G_{j,s} > 0, \)
\[p (N_B, N_F, \beta) = \mathbb{P} \left\{ \left(\sum_j \sum_s F_{j,s} \right) E_1 E_2 G - \left(\sum_j \sum_s G_{j,s} \right) E_1 E_2 F > \beta \right\} \]
Denote
\[Y_{j,s} := F_{j,s} E_1 E_2 G - G_{j,s} E_1 E_2 F + \beta (E_1 E_2 G - G_{j,s}) E_1 E_2 G, \]
then it is easily verifiable that \(E_1 E_2 Y_{j,s} = 0 \) for all \(1 \leq j \leq N_B, 1 \leq s \leq N_F, \) and
\[p (N_B, N_F, \beta) = \mathbb{P} \left\{ \frac{1}{N_B N_F} \sum_j \sum_s Y_{j,s} > \beta (E_1 E_2 G)^2 \right\}. \]
By Lemma B.6, bounding this quantity reduces to computing various moments. Define
\[X_j := E_2 Y_j, \]
then \(X_1, \cdots, X_{N_B} \) are i.i.d. on \(M \) with respect to \(\langle p \rangle \), and \(E_1 X_j = 0 \) for \(1 \leq j \leq N_B. \) Furthermore, \(X_1, \cdots, X_{N_B} \) are uniformly bounded. To find this bound explicitly, note that
\[|X_j| = |E_2 Y_j| = |(E_2 F_j) E_1 E_2 G - (E_2 G_j) E_1 E_2 F + \beta (E_1 E_2 G - E_2 G_j) E_1 E_2 G| \leq |(E_2 F_j) E_1 E_2 G| + |(E_2 G_j) E_1 E_2 F| + \beta |E_1 E_2 G|^2 + \beta |E_2 G_j| |E_1 E_2 G|, \]
and recall from Lemma B.2 and Remark B.3 that
\[E_1 E_2 F = O (\epsilon \delta^{\frac{d-1}{2}}), \quad E_1 E_2 G = O (\epsilon \delta^{\frac{d-1}{2}}), \]
\[E_2 F_j = O (\delta^{\frac{d+1}{2}}), \quad E_2 G_j = O (\delta^{\frac{d+1}{2}}), \]
and rewrite the upper bound as
\[f \leq \tilde{C} \varepsilon \delta^{d-1} + \beta \left(\varepsilon^2 \delta^{d-1} + \varepsilon \delta^2 \right) \]
where \(\tilde{C} \) is some positive constant depending on the pointwise bounds of \(K, p \), and \(f \). Since we will be mostly interested in small \(\beta > 0 \), let us pick \(\beta = O \left(\varepsilon^2 + \varepsilon \delta + \delta^2 \right) \) and rewrite the upper bound as
\[(B.13) \quad |X_j| \leq C \varepsilon \delta^{d-1}, \quad C = C (\|K\|_\infty , \|f\|_\infty , p, m, M) > 0. \]
We then need to bound \(E_1X_j^2 \). Since
\[E_1X_j^2 = \left[E_1 (E_2 F_j)^2 \right] (E_1 E_2 G)^2 + \left[E_1 (E_2 G_j)^2 \right] (E_1 E_2 F)^2 - 2E_1 [(E_2 F_j) (E_2 G_j)] (E_1 E_2 F) (E_1 E_2 G) + \beta^2 (E_1 E_2 G)^2 \left[E_1 (E_2 G)^2 - (E_1 E_2 G)^2 \right] + 2\beta (E_1 E_2 G) \left[E_1 (E_2 G)^2 E_2 F - (E_1 E_2 G) E_1 (E_2 F_j E_2 G_j) \right], \]
it suffices to compute the first and second moments of \(E_2 F_j, E_2 G_j \) for \(1 \leq j \leq N_B \). By (B.11),
\[E_1E_2 F = \varepsilon^{\frac{d}{2}} \delta^{d-1} \left\{ m_0 [fp] (x_{i,r}) + \frac{m_{21}}{2} (\Delta_{UTM}^H [fp] (x_{i,r}) + E_1 (\xi_i) [fp] (x_{i,r})) + \frac{\delta m_{22}}{2} (\Delta_{UTM}^V [fp] (x_{i,r}) + E_2 [fp] (x_{i,r})) \right\}, \]
\[E_1E_2 G = \varepsilon^{\frac{d}{2}} \delta^{d-1} \left\{ m_0 p (x_{i,r}) + \frac{m_{21}}{2} (\Delta_{UTM}^H p (x_{i,r}) + E_1 (\xi_i) p (x_{i,r})) + \frac{\delta m_{22}}{2} (\Delta_{UTM}^V p (x_{i,r}) + E_2 p (x_{i,r})) \right\}. \]
Using the notation and applying Lemma B.2 once
\[p (v \mid x) = \frac{p (x, v)}{(p) (x)} = \frac{p (x, v)}{(p) \circ \pi (x, v)} = \left[\frac{p}{(p) \circ \pi} \right] (x, v). \]
we have
\[E_2 F_j = \delta^{d-1} \left\{ M_0 \left(\frac{||\xi_i - \xi_j||^2}{\varepsilon} \right) \left[\frac{fp}{(p) \circ \pi} \right] (P_{\xi_i, \xi_j, x_{i,r}}) + \frac{\delta M_2}{2} \left(\frac{||\xi_i - \xi_j||^2}{\varepsilon} \right) \left[\frac{fp}{(p) \circ \pi} \right] + E_2 \cdot \left[\frac{fp}{(p) \circ \pi} \right] (P_{\xi_i, \xi_j, x_{i,r}}) + O (\delta^2) \right\}, \]
where \(M_0 (\cdot) \), \(M_2 (\cdot) \) are functions depending only on the kernel \(K \), as in the proof of Lemma A.3. By a direct computation using Lemma B.2,
\[E_1 (E_2 F_j)^2 = \varepsilon^{\frac{d}{2}} \delta^{d-1} \left\{ m_0 \left[\frac{(fp)^2}{(p) \circ \pi} \right] (x_{i,r}) + \frac{m_{21}'}{2} \left(\Delta_{UTM}^H \left[\frac{(fp)^2}{(p) \circ \pi} \right] (x_{i,r}) + E_1 (\xi_i) \left[\frac{(fp)^2}{(p) \circ \pi} \right] (x_{i,r}) \right) + \frac{\delta m_{22}'}{2} [fp] (x_{i,r}) \left(\Delta_{UTM}^V \left[\frac{fp}{(p) \circ \pi} \right] (x_{i,r}) + E_2 \cdot \left[\frac{fp}{(p) \circ \pi} \right] (x_{i,r}) \right) + O (\varepsilon^2 + \varepsilon \delta + \delta^2) \right\}. \]
where \(m'_0, m'_{21}, m'_{22} \) are positive constants determined by the kernel function \(K \) and dimension \(d
\\n\begin{align*}
\int_{B^2_t(0)} & M_0^2 \; (r^2) \; ds^1 \cdots ds_d, \quad r^2 = \sum_{k=1}^d (s^k)^2, \\
\int_{B^2_t(0)} & M_0 \; (r^2) \; ds^1 \cdots ds_d, \quad \int_{B^2_t(0)} M_0 \; (r^2) \; M_2 \; (r^2) \; ds^1 \cdots ds_d.
\end{align*}

Setting \(f \equiv 1 \),
\[
\mathbb{E}_1 \left((\mathbb{E}_2 G_j)^2 \right) = \frac{\delta}{4} \delta^{d-1} \left\{ m'_0 \left[\frac{p^2}{(p) \circ \pi} \right](x_{i,r}) + \frac{m'_{21}}{2} \left(\Delta^H_{\text{UTM}} \left[\frac{p^2}{(p) \circ \pi} \right](x_{i,r}) + \mathbb{E}_1 (\xi_i) \left[\frac{p^2}{(p) \circ \pi} \right](x_{i,r}) \right) \right.
\]
\[
+ \frac{\delta m'_{22}}{2} \left[\frac{p}{(p) \circ \pi} \right] \Delta^V_{\text{UTM}} \left[\frac{p}{(p) \circ \pi} \right](x_{i,r}) \bigg] + E_2 \cdot \left[\frac{p}{(p) \circ \pi} \right](x_{i,r}) + O(\epsilon^2 + \epsilon \delta + \delta^2) \right\}.
\]

Similarly,
\[
\mathbb{E}_1 \left((\mathbb{E}_2 F_j) (\mathbb{E}_2 G_j) \right) = \frac{\delta}{4} \delta^{d-1} \left\{ m'_0 \left[\frac{f p^2}{(p) \circ \pi} \right](x_{i,r}) \right.
\]
\[
+ \frac{\delta m'_{21}}{2} \left(\Delta^H_{\text{UTM}} \left[\frac{f p^2}{(p) \circ \pi} \right](x_{i,r}) + \mathbb{E}_1 (\xi_i) \left[\frac{f p^2}{(p) \circ \pi} \right](x_{i,r}) \right) \right.
\]
\[
+ \frac{\delta m'_{22}}{2} \left[\frac{p}{(p) \circ \pi} \right] \Delta^V_{\text{UTM}} \left[\frac{f p}{(p) \circ \pi} \right](x_{i,r}) \bigg] + \mathbb{E}_2 \cdot \left[\frac{f p^2}{(p) \circ \pi} \right](x_{i,r}) + O(\epsilon^2 + \epsilon \delta + \delta^2) \right\}.
\]

Take \(\beta = O(\epsilon^2 + \epsilon \delta + \delta^2) \) so that \(O(\beta) \) and \(O(\beta^2) \) terms are absorbed into
\[
O \left[\epsilon^{\frac{3d}{4}} \delta^{2(d-1)} \left(\epsilon^2 + \epsilon \delta + \delta^2 \right) \right].
\]

Direct computation using
\[
\Delta^H_{\text{UTM}} (f^2 g) + f^2 \Delta^H_{\text{UTM}} g - 2f \Delta^H_{\text{UTM}} (fg) = 2 \left\| \nabla^H_{\text{UTM}} f \right\|^2 g
\]
gives
\[
\mathbb{E}_1 X_j^2 = \left[\mathbb{E}_1 (\mathbb{E}_2 F_j)^2 \right] (\mathbb{E}_1 \mathbb{E}_2 G) + \left[\mathbb{E}_1 (\mathbb{E}_2 G_j)^2 \right] (\mathbb{E}_1 \mathbb{E}_2 F)^2
\]
\[
- 2 \mathbb{E}_1 \left[\langle (\mathbb{E}_2 F_j) (\mathbb{E}_2 G_j) \rangle (\mathbb{E}_2 G) \right] (\mathbb{E}_1 \mathbb{E}_2 G) + O(\epsilon^2 + \delta^2)
\]
\[
= \frac{\delta}{4} \delta^{2(d-1)} \left\{ \frac{m^2_0 m'_{21}}{w_{d-1}^2} \left[\frac{p^4}{(p) \circ \pi} \right](x_{i,r}) \left\| \nabla^H_{\text{UTM}} f \right\|^2 (x_{i,r}) + O(\epsilon^2 + \epsilon \delta + \delta^2) \right\}
\]
\[
\leq \epsilon^{\frac{3d}{4}} \delta^{2(d-1)} (C' \epsilon + O(\epsilon^2 + \epsilon \delta + \delta^2))
\]

where
\[
C' = \frac{m^2_0 m'_{21} p^4_{\delta}}{w_{d-1}^2 p^\infty} > 0.
\]

Note that \(O(\delta) \) terms do not show up in this bound, intuitively because \(X_j = \mathbb{E}_2 Y_j,s \) is already the expectation along the fibre direction, which "freezes" the variability controlled by the fibrewise bandwidth \(\delta \).
It remains to bound
\[E_{\xi_j}^2 Y_j^2 - \left(E_{\xi_2}^2 Y_j \right)^2 \]
for each \(1 \leq j \leq N_B \). Since we picked \(\beta = O (\epsilon^2 + \epsilon \delta + \delta^2) \),
\[|Y_{j,s}| = |F_{j,s} E_1 E_2 G - G_{j,s} E_1 E_2 F + \beta (E_1 E_2 G - G_{j,s}) E_1 E_2 G| \leq C \epsilon^2 \delta^{\frac{d-4}{2}} \]
where
\[C = C (\|K\|_\infty, \|f\|_\infty, p_m, p_M) \]
is a positive constant. Again taking advantage of \(\beta = O (\epsilon^2 + \epsilon \delta + \delta^2) \), we have
\[E_2 Y_j^2 - (E_2 Y_j)^2 = \left[E_2 F_{j,s} - (E_2 F_j)^2 \right] (E_1 E_2 G)^2 + \left[E_2 G_{j,s} - (E_2 G_j)^2 \right] (E_1 E_2 F)^2 \]
\[+ 2 \left((E_2 F_j) (E_2 G_j) - E_2 (F_{j,s} G_{j,s}) \right) (E_1 E_2 F) (E_1 E_2 G) \]
\[+ O \left(\epsilon^2 \delta^{2(d-1)} (\epsilon^2 + \epsilon \delta + \delta^2) \right) . \]
Note that
\[E_2 F_{j,s}^2 = O \left(\delta^{\frac{d-4}{2}} \right), \quad E_2 G_{j,s}^2 = O \left(\delta^{\frac{d-4}{2}} \right), \quad E_2 [F_{j,s} G_{j,s}] = O \left(\delta^{\frac{d-4}{2}} \right) , \]
but
\[(E_2 F_{j,s})^2 = O \left(\delta^{d-1} \right), \quad (E_2 G_{j,s})^2 = O \left(\delta^{d-1} \right), \quad (E_2 F_j) (E_2 G_j) = O \left(\delta^{d-1} \right) , \]
the leading order term in \(E_2 Y_j^2 - (E_2 Y_j)^2 \) is
\[(E_2 F_{j,s}) (E_1 E_2 G)^2 + (E_2 G_{j,s}) (E_1 E_2 F)^2 - 2 E_2 (F_{j,s} G_{j,s}) (E_1 E_2 F) (E_1 E_2 G) . \]
By Lemma B.2,
\[E_2 F_{j,s}^2 = \delta^{\frac{d-4}{2}} \left\{ \tilde{M}_0 \left[\frac{f^2 p}{(p) \circ \pi} \right] (P_{\xi_j,xi,r}) \right. \]
\[+ \delta \frac{\delta}{2} \tilde{M}_2 \left(\Delta^U_{TM} \left[\frac{f^2 p}{(p) \circ \pi} \right] (P_{\xi_j,xi,r}) + E_2 \cdot \left[\frac{f^2 p}{(p) \circ \pi} \right] \right) (P_{\xi_j,xi,r}) + O (\delta^2) \} . \]
Similarly,
\[E_2 G_{j,s}^2 = \delta^{\frac{d-4}{2}} \left\{ \tilde{M}_0 \left[\frac{p}{(p) \circ \pi} \right] (P_{\xi_j,xi,r}) \right. \]
\[+ \delta \frac{\delta}{2} \tilde{M}_2 \left(\Delta^U_{TM} \left[\frac{p}{(p) \circ \pi} \right] + E_2 \cdot \left[\frac{p}{(p) \circ \pi} \right] \right) (P_{\xi_j,xi,r}) + O (\delta^2) \} , \]
\[E_2 (F_{j,s} G_{j,s}) = \delta^{\frac{d-4}{2}} \left\{ \tilde{M}_0 \left[\frac{f p}{(p) \circ \pi} \right] (P_{\xi_j,xi,r}) \right. \]
\[+ \delta \frac{\delta}{2} \tilde{M}_2 \left(\Delta^U_{TM} \left[\frac{f p}{(p) \circ \pi} \right] + E_2 \cdot \left[\frac{f p}{(p) \circ \pi} \right] \right) (P_{\xi_j,xi,r}) + O (\delta^2) \} . \]

Since the kernel \(K \) is compactly supported and \(f \) is Lipschitz (UTM compact), the difference \(f (P_{\xi_j,xi,r}) - f (x_{i,r}) \) is of order \(O (d_M (\xi_j, \xi_i)) = O (\epsilon^2) \). Thus
\[\left| (E_2 F_{j,s}) (E_1 E_2 G)^2 + (E_2 G_{j,s}) (E_1 E_2 F)^2 - 2 E_2 (F_{j,s} G_{j,s}) (E_1 E_2 F) (E_1 E_2 G) \right| \]
\[\leq C' \epsilon^{\frac{3(d-4)}{2}} + C'' \delta, \quad C' > 0, C'' > 0 \]
and
\[E^2_2 Y_j^2 - \left(E^2_2 Y_j \right)^2 = O \left(\epsilon^d \delta^{-\frac{d+1}{2}} (\epsilon + \delta) \right). \]

If we let \(C'_1, C'_2 \) be constants such that
\[C'_1 \epsilon^{\frac{d}{2}} \delta^{-\frac{d+1}{2}} \leq |E_1 E_2 G| \leq C'_2 \epsilon^{\frac{d}{2}} \delta^{-\frac{d+1}{2}}, \]
then for any \(\theta \in (0,1) \), by \(\beta = O (\epsilon^2 + \epsilon \delta + \delta^2) \) and Lemma B.6,
(B.14)
\[p (N_B, N_F, \beta) \leq \frac{1}{N_B} \exp \left\{ - \left(1 - \theta \right)^2 N_F \epsilon^d \delta^{-\frac{d+1}{2}} \beta^2 \right\} + \exp \left\{ - \frac{\theta^2 N_B \epsilon^{\frac{d}{2}} \beta^2}{C_1 (\epsilon + \delta)} + \frac{O \left(\epsilon^{\frac{d}{2}} (\epsilon^2 + \delta^2) \right)}{C_1 (\epsilon + \delta)} \right\}. \]

As pointed out in Remark B.7, the second term in this bound is the sampling error on the base manifold; the noise error resulted from this term is of the order
\[O \left[\left(N_B \epsilon^{\frac{d}{2}} (1 - \frac{1}{2}) \right) \right] = O \left(N_B^{-\frac{1}{2}} \epsilon^{\frac{d}{2} - \frac{1}{2}} \right), \]
which is in accordance with the convergence rate obtained in [56]. The first term in the bound reflects the accumulated fibrewise sampling error and grows linearly with respect to the number of fibres sampled, but can be reduced as one increases \(N_F \) accordingly (which has an effect of reducing fibrewise sampling errors). The choice of \(\theta \) is important: as \(\theta \) increases from 0 to 1, the first term in the bound decreases but the second term increases. One may wish to pick an “optimal” \(\theta \in (0,1) \), but this does not make sense unless one chooses \(\epsilon, \delta, N_F \) appropriately so as to make the sum of the two terms smaller than 1. Let us consider \(\theta_* \in (0,1) \) satisfying
(B.15)
\[(1 - \theta_*)^2 N_F \epsilon^d \delta^{-\frac{d+1}{2}} = \theta_*^2 N_B \epsilon^{\frac{d}{2}}, \]
or equivalently
(B.16)
\[\epsilon^{\frac{d}{2}} \delta^{-\frac{d+1}{2}} \sqrt{\frac{N_F}{N_B}} = \frac{\theta_*}{1 - \theta_*} \iff \theta_* = \frac{\epsilon^{\frac{d}{2}} \delta^{-\frac{d+1}{2}} \sqrt{\frac{N_F}{N_B}}}{1 + \epsilon^{\frac{d}{2}} \delta^{-\frac{d+1}{2}} \sqrt{\frac{N_F}{N_B}}}. \]

Setting \(\theta = \theta_* \) in (B.14), we have for some \(C > 0 \)
(B.17)
\[p (N_B, N_F, \beta) \leq (N_B + 1) \exp \left\{ - \frac{\theta_*^2 N_B \epsilon^{\frac{d}{2}} \beta^2}{C (\epsilon + \delta)} \right\} = \exp \left\{ - \frac{\theta_*^2 N_B \epsilon^{\frac{d}{2}} \beta^2}{C (\epsilon + \delta)} + \log (N_B + 1) \right\}, \]
Since
\[\lim_{N_B \to \infty} \frac{N_B}{\log N_B} = \infty, \]
for any fixed \(\epsilon, \delta \) we have \(p (N_B, N_F, \beta) \to 0 \) as \(N_B \to \infty \), as long as one increases \(N_F \) accordingly so as to prevent \(\theta_* \) from approaching 0 or 1; for instance, this is the case if the assumption (ii) in Theorem 5.4 is satisfied:
(B.18)
\[\lim_{N_B \to \infty} \frac{N_F}{N_B} = \rho \in (0, \infty). \]

This completes the proof for the pointwise convergence of \(\hat{H}_{\epsilon, \delta}^{(0)} f \) in probability.
We now turn to the general case $\alpha \neq 0$. Recall that

$$
\hat{H}_{\epsilon, \delta}^{(x)} f(x_{i,r}) = \frac{\sum_{j=1}^{N_B} \sum_{s=1}^{N_F} \hat{K}_{\epsilon, \delta}^{(a)}(x_{i,r}, x_{j,s}) f(x_{j,s})}{\sum_{j=1}^{N_B} \sum_{s=1}^{N_F} \hat{K}_{\epsilon, \delta}^{(a)}(x_{i,r}, x_{j,s})} = \frac{\sum_{j=1}^{N_B} \sum_{s=1}^{N_F} \tilde{K}_{\epsilon, \delta}^{(a)}(x_{i,r}, x_{j,s}) f(x_{j,s})}{\sum_{j=1}^{N_B} \sum_{s=1}^{N_F} \tilde{K}_{\epsilon, \delta}^{(a)}(x_{i,r}, x_{j,s})}
$$

where

$$
\hat{p}(x_{j,s}) = \sum_{k=1}^{N_B} \sum_{s=1}^{N_F} \tilde{K}_{\epsilon, \delta}(x_{j,s}, x_{k,t}).
$$

By the law of large numbers,

$$
\lim_{N_B \to \infty} 1_{N_B} \lim_{N_F \to \infty} 1_{N_F} \hat{p}(x_{j,s}) = \int_{UTM} \tilde{K}_{\epsilon, \delta}(x_{i,r}, \eta) p(\eta) d\Theta(\eta)
$$

$$
= \hat{p}(x_{i,r}) = E_1 E_2 \left[\tilde{K}_{\epsilon, \delta}(x_{i,s}, \cdot) \right].
$$

Therefore, as $N_B \to \infty$, $N_F \to \infty$, we expect $\hat{H}_{\epsilon, \delta}^{(x)} f(x_{i,r})$ to converge to

$$
\int_{UTM} \tilde{K}_{\epsilon, \delta}^{(a)}(x_{i,r}, \eta) f(\eta) p(\eta) d\Theta(y,w)
$$

$$
= f(x_{i,r}) + \epsilon \frac{m_1}{2m_0} \left(\frac{\Delta_{UTM}^H [f^{1-\alpha}(x_{i,r})]}{p^{1-\alpha}(x_{i,r})} - f(x_{i,r}) \frac{\Delta_{UTM}^H p^{1-\alpha}(x_{i,r})}{p^{1-\alpha}(x_{i,r})} \right)
$$

$$
+ \delta \frac{m_2}{2m_0} \left(\frac{\Delta_{UTM}^V [f^{1-\alpha}(x_{i,r})]}{p^{1-\alpha}(x_{i,r})} - f(x_{i,r}) \frac{\Delta_{UTM}^V p^{1-\alpha}(x_{i,r})}{p^{1-\alpha}(x_{i,r})} \right) + O(\epsilon^2 + \epsilon \delta + \delta^2),
$$

which gives the same bias error $O(\epsilon^2 + \epsilon \delta + \delta^2)$ as in the $\alpha = 0$ case.

It remains to estimate the variance error. By

$$
\hat{H}_{\epsilon, \delta}^{(x)} f(x_{i,r}) = \frac{\sum_{j=1}^{N_B} \sum_{s=1}^{N_F} \hat{K}_{\epsilon, \delta}(x_{i,r}, x_{j,s}) \tilde{p}_{\epsilon, \delta}^{-\alpha}(x_{j,s}) f(x_{j,s})}{\sum_{j=1}^{N_B} \sum_{s=1}^{N_F} \hat{K}_{\epsilon, \delta}(x_{i,r}, x_{j,s}) \tilde{p}_{\epsilon, \delta}^{-\alpha}(x_{j,s})},
$$

and

$$
\sum_{j=1}^{N_B} \sum_{s=1}^{N_F} \hat{K}_{\epsilon, \delta}(x_{i,r}, x_{j,s}) \tilde{p}_{\epsilon, \delta}^{-\alpha}(x_{j,s}) f(x_{j,s}) - \sum_{j=1}^{N_B} \sum_{s=1}^{N_F} \hat{K}_{\epsilon, \delta}(x_{i,r}, x_{j,s}) \tilde{p}_{\epsilon, \delta}^{-\alpha}(x_{j,s}) f(x_{j,s})
$$

$$
\sum_{j=1}^{N_B} \sum_{s=1}^{N_F} \hat{K}_{\epsilon, \delta}(x_{i,r}, x_{j,s}) \tilde{p}_{\epsilon, \delta}^{-\alpha}(x_{j,s}) f(x_{j,s}) - \sum_{j=1}^{N_B} \sum_{s=1}^{N_F} \hat{K}_{\epsilon, \delta}(x_{i,r}, x_{j,s}) \tilde{p}_{\epsilon, \delta}^{-\alpha}(x_{j,s}) f(x_{j,s})
$$
Our previous proof for the special case adjustment is to replace the kernel \hat{K}_e,δ by K_e,δ but since \tilde{p} We thus estimate the following tail probability instead:

$$A_{(B.19)}$$

then it suffices to estimate the variance error caused by

$$\sum_{j=1}^{N_B} \sum_{s=1}^{N_P} \hat{K}_e,\delta (x_{i,r}, x_{j,s}) \frac{N_B^{(\alpha)} N_F^{(\alpha)} \hat{p}_{e,\delta} (x_{j,s}) - \tilde{p}_{e,\delta} (x_{j,s})}{N_B^\alpha N_F^\alpha \hat{p}_{e,\delta} (x_{j,s})} f (x_{j,s})$$

$$+ \sum_{j=1}^{N_B} \sum_{s=1}^{N_P} \hat{K}_e,\delta (x_{i,r}, x_{j,s}) \frac{N_B^{\alpha} N_F^{\alpha} \hat{p}_{e,\delta} (x_{j,s}) - \tilde{p}_{e,\delta} (x_{j,s})}{N_B^\alpha N_F^\alpha \hat{p}_{e,\delta} (x_{j,s})} f (x_{j,s}) \times$$

$$\left\{ - \sum_{j=1}^{N_B} \sum_{s=1}^{N_P} \hat{K}_e,\delta (x_{i,r}, x_{j,s}) \left[N_B^{\alpha} N_F^{\alpha} \hat{p}_{e,\delta} (x_{j,s}) - \tilde{p}_{e,\delta} (x_{j,s}) \right] \right\}$$

$$=: (A) + (B),$$

thus if we estimate $(A), (B)$ by controlling the error

$$\left[N_B^{\alpha} N_F^{\alpha} \hat{p}_{e,\delta} (x_{j,s}) - \tilde{p}_{e,\delta} (x_{j,s}) \right]$$

then it suffices to estimate the variance error caused by

$$\sum_{j=1}^{N_B} \sum_{s=1}^{N_P} \hat{K}_e,\delta (x_{i,r}, x_{j,s}) \frac{f (x_{j,s})}{\tilde{p}_{e,\delta} (x_{j,s})} \frac{\hat{p}_{e,\delta} (x_{j,s})}{\hat{p}_{e,\delta} (x_{j,s})} \left[\sum_{j=1}^{N_B} \sum_{s=1}^{N_P} \hat{K}_e,\delta (x_{i,r}, x_{j,s}) \left[N_B^{\alpha} N_F^{\alpha} \hat{p}_{e,\delta} (x_{j,s}) - \tilde{p}_{e,\delta} (x_{j,s}) \right] \right]^{-1}.$$

Our previous proof for the special case $\alpha = 0$ can then be applied to $(B.19)$: the only adjustment is to replace the kernel $K_e,\delta (x, y)$ in that proof with the α-normalized kernel

$$\hat{K}_e,\delta (x, y) \frac{\hat{p}_{e,\delta} (x) \hat{p}_{e,\delta} (y)}{\tilde{p}_{e,\delta} (x) \hat{p}_{e,\delta} (y)}.$$

We would like to estimate the tail probability

$$\mathbb{P} \left\{ \frac{1}{N_B N_F} \hat{p}_{e,\delta} (x_{j,s}) - \tilde{p}_{e,\delta} (x_{j,s}) > \beta \right\},$$

but since $\hat{p}_{e,\delta} (x_{j,s}) = O \left(\epsilon^{\frac{\alpha}{2}} \delta^{\frac{\alpha}{2}} \right)$, it is not lower bounded away from 0 as $e, \delta \to 0$. We thus estimate the following tail probability instead:

$$q (N_B, N_F, \beta) := \mathbb{P} \left\{ \frac{1}{N_B N_F} - \epsilon^{\frac{\alpha}{2}} \delta^{-\frac{\alpha}{2}} \hat{p}_{e,\delta} (x_{j,s}) - \epsilon^{\frac{\alpha}{2}} \delta^{-\frac{\alpha}{2}} \tilde{p}_{e,\delta} (x_{j,s}) > \beta \right\}$$

$$= \mathbb{P} \left\{ \frac{1}{N_B N_F} \hat{p}_{e,\delta} (x_{j,s}) - \tilde{p}_{e,\delta} (x_{j,s}) > \epsilon^{\frac{\alpha}{2}} \delta^{-\frac{\alpha}{2}} \beta \right\},$$

where

$$\hat{p}_{e,\delta} (x_{j,s}) = \sum_{k=1}^{N_B} \sum_{t=1}^{N_P} \hat{K}_e,\delta (x_{j,s}, x_{k,t}), \quad \tilde{p}_{e,\delta} (x_{j,s}) = \mathbb{E}_1 \mathbb{E}_2 \left[\hat{K}_e,\delta (x_{j,s}, \cdot) \right].$$
Noting that for some positive constant $C = C (\|K\|_\infty, p_M, p_m, d)$

$$\left|\hat{K}_{\epsilon, \delta} (x_{i,r}, x,s)\right| \leq \|K\|_\infty, \quad \left|E_2 \left[\hat{K}_{\epsilon, \delta} (x_{i,r}, \cdot)\right]\right| \leq C\delta^{\frac{d}{d-1}},$$

$$E_1 E_2 \left[\hat{K}_{\epsilon, \delta} (x_{i,r}, \cdot)\right] \leq C\epsilon^{\frac{d}{d-1}},$$

and by direct computation

$$E_2^2 \left[\hat{K}_{\epsilon, \delta} (x_{i,r}, \cdot)\right]^2 = O \left(\delta^{\frac{d}{d-1}}\right), \quad E_1 \left[E_2 \hat{K}_{\epsilon, \delta} (x_{i,r}, \cdot)\right]^2 = O \left(\epsilon^{\frac{d}{d-1}}\right),$$

Lemma B.6 and $\beta = O \left(\epsilon^2 + \epsilon \delta + \delta^2\right)$ gives

$$q (N_B, N_F, \beta) \leq N_B \exp \left\{ -\frac{(1-\theta)^2 N_F\epsilon^d\delta^{d-1}\beta^2}{2C_1\delta^{\frac{d}{d-1}}} + \exp \left\{ -\frac{\theta^2 N_B\epsilon^d\delta^{d-1}\beta^2}{2C_1\epsilon^{\frac{d}{d-1}}} \right\} \right\}$$

for $C_1 > 0$ some constant. A simple union bound gives

$$\mathbb{P} \left(\bigcup_{j,s} \left\{ \left|\frac{1}{N_B N_F} \hat{p}_{\epsilon, \delta} (x_{j,s}) - \hat{p}_{\epsilon, \delta} (x_{j,s})\right| > \epsilon^{\frac{d}{d-1}}\beta \right\} \right)$$

$$\leq N_B N_F \left[N_B \exp \left\{ -\frac{(1-\theta)^2 N_F\epsilon^d\delta^{d-1}\beta^2}{2C_1} \right\} + \exp \left\{ -\frac{\theta^2 N_B\epsilon^d\beta^2}{2C_1} \right\} \right]$$

$$= N_B (N_B + 1) N_F \exp \left\{ -\frac{\theta^2 N_B\epsilon^d\beta^2}{2C_1} \right\} \quad \text{setting } \theta = \theta_\ast \text{ as in (B.15)}.\tag{B.20}$$

We are interested in seeing how this bound compares with the bound in (B.17). As $N_B, N_F \to \infty$, as long as (B.18) holds,

$$\frac{N_B (N_B + 1) N_F \exp \left\{ -\frac{\theta^2 N_B\epsilon^d\beta^2}{2C_1} \right\}}{(N_B + 1) \exp \left\{ -\frac{\theta^2 N_B\epsilon^d\beta^2}{C (\epsilon + \delta)} \right\}}$$

$$= N_B N_F \exp \left\{ -\frac{\theta^2 N_B\epsilon^d\beta^2}{2C_1} \left[\frac{1}{2C_1} - \frac{1}{C (\epsilon + \delta)} \right] \right\} \to \infty \quad \text{for small } \epsilon, \delta,$$

thus the bound in (B.17) is asymptotically negligible compared to the bound in (B.20). This means that when $\alpha \neq 0$ the density estimation in general slows down the convergence rate by a factor $(\epsilon + \delta)^{\frac{d}{d-1}}$, which is consistent with the conclusion for standard diffusion maps on manifolds [31, 55]. Therefore, for probability at least

$$1 - N_B (N_B + 1) N_F \exp \left\{ -\frac{\theta^2 N_B\epsilon^d\beta^2}{2C_1} \right\}$$
we have
\[
\sum_{j=1}^{N_B} \sum_{s=1}^{N_F} \sum_{i=1}^{d} \sum_{r=1}^{d} \left| \frac{\hat{K}_{\epsilon,\delta} (x_{i,r}, x_{j,s})}{\hat{P}^\alpha_{\epsilon,\delta} (x_{i,r}) \hat{P}^\alpha_{\epsilon,\delta} (x_{j,s})} - \hat{H}^{(\alpha)}_{\epsilon,\delta} f (x_{i,r}) \right| \leq \beta
\]
as well as
\[
\left| \frac{1}{N_B N_F} \hat{\nu}_{\epsilon,\delta} (x_{j,s}) - \hat{\nu}_{\epsilon,\delta} (x_{j,s}) \right| \leq \epsilon \frac{d-1}{\epsilon} \beta \quad \text{for all} \quad 1 \leq j \leq N_B, 1 \leq s \leq N_F.
\]
Note that by our assumption
\[0 < p_m \leq p (x, v) \leq p_M < \infty \quad \text{for all} \quad (x, v) \in UTM\]
there exist constants \(C_1, C_2\) such that
\[0 < C_1 < \epsilon \frac{d-1}{\epsilon} \hat{p}_{\epsilon,\delta} (x_{j,s}) < C_2 < \infty.\]
For sufficiently small \(\beta\), we also have
\[0 < C_1 < \frac{1}{N_B N_F} \epsilon \frac{d-1}{\epsilon} \hat{p}_{\epsilon,\delta} (x_{j,s}) < C_2 < \infty.\]

Thus
\[
\left| N_B N_F \hat{p}_{\epsilon,\delta} (x_{j,s}) - \hat{p}_{\epsilon,\delta} (x_{j,s}) \right| \leq \epsilon \frac{d-1}{\epsilon} \beta \cdot \frac{1}{C_1^2 \epsilon^d \epsilon^d} = \frac{\beta}{C_1^2 \epsilon^d \epsilon^d}.
\]
and (A), (B) can be bounded as
\[
| (A) | \leq C_2^\alpha \epsilon \frac{d-1}{\epsilon} \cdot \| f \|_\infty \cdot \alpha \left(\frac{2}{C_2 \epsilon^d \epsilon^d} \right)^{\alpha-1} \beta \cdot \frac{\beta}{C_1^2 \epsilon^d \epsilon^d} = \frac{2^{\alpha-1} \alpha C_2 \| f \|_\infty}{C_1^2} \beta,
\]
\[
| (B) | \leq C_2^{2\alpha} \epsilon \frac{d-1}{\epsilon} \cdot \| f \|_\infty \cdot \alpha \left(\frac{2}{C_2 \epsilon^d \epsilon^d} \right)^{\alpha-1} \beta \cdot \frac{\beta}{C_1^2 \epsilon^d \epsilon^d} = \frac{2^{2\alpha-1} \alpha C_2^{\alpha+1} \| f \|_\infty}{C_1^\alpha} \beta.
\]
Since \(C_1, C_2\) only depend on the kernel function \(K\), the dimension \(d\), and \(p_m, p_M\), these bounds ensures that
\[
\left| \hat{H}_{\epsilon,\delta}^{(\alpha)} f (x_{i,r}) - \hat{H}_{\epsilon,\delta}^{(\alpha)} f (x_{i,r}) \right| < C \beta
\]
with probability at least
\[1 - N_B (N_B + 1) N_F \exp \left\{ - \frac{\theta^2 N_B \beta^2}{2C_1} \right\},\]
where constants \(C, C_1\) only depend on the kernel function \(K\), the dimension \(d\), and \(p_m, p_M\). This establishes the conclusion for all \(\alpha \in [0, 1]. \)

B.0.4. Sampling from Empirical Tangent Spaces. The following two lemmas from [55] provide estimates for the error of approximating parallel-transports from local PCA. We adapted these lemmas to our notation; note that the statements are more compact than their original form since we assume \(M\) is closed.
Lemma B.8. Suppose $K_{\text{PCA}} \in C^2 ([0, 1])$. If $\epsilon_{\text{PCA}} = O \left(N_B^{-\frac{3}{2}} \right)$, then, with high probability, the columns of the $D \times d$ matrix O_i determined by local PCA form an orthonormal basis to a d-dimensional subspace of \mathbb{R}^D that deviates from $t_* T_x M$ by $O \left(\epsilon_{\text{PCA}}^{\frac{3}{2}} \right)$, in the following sense:

\begin{equation}
\min_{O \in O(d)} \| O_i^\top \Theta_i - O \|_{\text{HS}} = O \left(\epsilon_{\text{PCA}}^{\frac{3}{2}} \right) = O \left(N_B^{-\frac{3}{2}} \right),
\end{equation}

where Θ_i is a $D \times d$ matrix whose columns form an orthonormal basis to $t_* T_x M$. Let the minimizer if (B.21) be

\begin{equation}
\hat{O}_i = \arg \min_{O \in O(d)} \| O_i^\top \Theta_i - O \|_F,
\end{equation}

and denote by Q_i the $D \times d$ matrix

\begin{equation}
Q_i := \Theta_i \hat{O}_i^\top,
\end{equation}

The columns of Q_i form an orthonormal basis to $t_* T_x M$, and

\begin{equation}
\| O_i - Q_i \|_F = O \left(\epsilon_{\text{PCA}} \right),
\end{equation}

where $\| \cdot \|_F$ is the matrix Frobenius norm.

Proof. See [55, Lemma B.1].

Lemma B.9. Consider points $x_i, x_j \in M$ such that the geodesic distance between them is $O \left(\epsilon^2 \right)$. For $\epsilon_{\text{PCA}} = O \left(N_B^{-\frac{3}{2}} \right)$, with high probability, O_{ij} approximates P_{x_i, x_j} in the following sense:

\begin{equation}
O_{ij} \tilde{X}_j = \left((t_* P_{x_i, x_j}, X (x_j), u_l (x_i)) \right)_{l=1}^d + O \left(\epsilon_{\text{PCA}}^\frac{3}{2} + \epsilon^2 \right), \quad \text{for all } X \in \Gamma (M, TM),
\end{equation}

where $\{ u_l (x_i) \}_{l=1}^d$ is an orthonormal set determined by local PCA, and

\begin{equation}
\tilde{X}_i \equiv \left((t_* X (x_i), u_l (x_i)) \right)_{l=1}^d \in \mathbb{R}^d.
\end{equation}

Proof. See [55, Theorem B.2].

Proof of Theorem 5.6. By Definition 5.5 (2),

\begin{equation}
O_{ji} c_{i,r} = \frac{O_{ji} B_{i}^\top \tau_{i,r}}{\| B_{i}^\top \tau_{i,r} \|}.
\end{equation}

By Lemma B.9,

\begin{equation}
O_{ji} B_{i}^\top \tau_{i,r} = B_{j}^\top \left(P_{x_j, x_i} \tau_{i,r} \right) + O \left(\epsilon_{\text{PCA}}^\frac{3}{2} + \epsilon^2 \right),
\end{equation}

thus

\begin{equation}
\frac{O_{ji} B_{i}^\top \tau_{i,r}}{\| B_{i}^\top \tau_{i,r} \|} = \frac{B_{j}^\top \left(P_{x_j, x_i} \tau_{i,r} \right)}{\| B_{i}^\top \tau_{i,r} \|} + O \left(\epsilon_{\text{PCA}}^\frac{3}{2} + \epsilon^2 \right),
\end{equation}

where we used $\| B_{j}^\top \left(P_{x_j, x_i} \tau_{i,r} \right) \| \leq \| P_{x_j, x_i} \tau_{i,r} \| = 1$ and

\begin{equation}
\| B_{i}^\top \tau_{i,r} \|_* - 1 = \| B_{i}^\top \tau_{i,r} \|_* - \| Q_{i}^\top \tau_{i,r} \|_* \leq \| B_{i}^\top \tau_{i,r} - Q_{i}^\top \tau_{i,r} \|_* \leq \| B_{i}^\top - Q_{i}^\top \|_F = O \left(\epsilon_{\text{PCA}} \right).
\end{equation}
In fact, noting that we have hence we expect
\[H = \frac{B^{	op}_j (P_{\xi_j, \xi} \bar{T}_{i,r})}{\|B^{	op}_j \bar{T}_{i,r}\|} + O \left(\epsilon_{\text{PCA}}^2 + \epsilon^2 \right) - \frac{B^{	op}_j \bar{T}_{j,s}}{\|B^{	op}_j \bar{T}_{j,s}\|} = P_{\xi_j, \xi} \bar{T}_{i,r} - \bar{T}_{j,s} + O \left(\epsilon_{\text{PCA}}^2 + \epsilon^2 \right), \]
Thus for any function \(g \in C^\infty (\text{UTM}) \) we have
\[\int_{\text{UTM}} \mathcal{K}_{e,\delta} (\tau_{i,r}, \eta) g (\eta) \, d\Theta (\eta) = \int_{\text{UTM}} \tilde{K}_{e,\delta} (\tau_{i,r}, \eta) g (\eta) \, d\Theta (\eta) + \epsilon^2 \delta^{-\frac{d+1}{2}} - 1 O \left(\epsilon_{\text{PCA}}^2 + \epsilon^2 \right). \]
Following the notation used in the proof of Theorem 5.4, by the law of large numbers
\[\lim_{N_B \to \infty} \lim_{N_F \to \infty} \frac{1}{N_B N_F} \hat{q}_{e,\delta} (\tau_{i,r}) = E_1 E_2 \left[\mathcal{K}_{e,\delta} (\tau_{i,r}, \cdot) \right] = E_1 E_2 \left[\tilde{K}_{e,\delta} (\tau_{i,r}, \cdot) \right] + \epsilon^2 \delta^{-\frac{d+1}{2}} - 1 O \left(\epsilon_{\text{PCA}}^2 + \epsilon^2 \right), \]
hence we expect \(\mathcal{K}_{e,\delta}^{(\alpha)} f (\tau_{i,r}) \) to converge to
\[\tilde{H}_{e,\delta}^{(\alpha)} f (\tau_{i,r}) + O \left(\delta^{-1} \left(\epsilon_{\text{PCA}}^2 + \epsilon^2 \right) \right) = f (\tau_{i,r}) + \frac{m_{21}}{2m_0} \left[\frac{\Delta^H_{\text{UTM}} [f p^{1-\alpha} (\tau_{i,r})]}{p^{1-\alpha} (\tau_{i,r})} - f (\tau_{i,r}) \frac{\Delta^V_{\text{UTM}} p^{1-\alpha} (\tau_{i,r})}{p^{1-\alpha} (\tau_{i,r})} \right] \]
\[+ \frac{m_{22}}{2m_0} \left[\frac{\Delta^V_{\text{UTM}} [f p^{1-\alpha} (\tau_{i,r})]}{p^{1-\alpha} (\tau_{i,r})} - f (\tau_{i,r}) \frac{\Delta^V_{\text{UTM}} p^{1-\alpha} (\tau_{i,r})}{p^{1-\alpha} (\tau_{i,r})} \right] \]
\[+ O \left(\epsilon^2 + \epsilon^\delta + \delta^2 \right) + O \left(\delta^{-1} \left(\epsilon_{\text{PCA}}^2 + \epsilon^2 \right) \right). \]
In fact, noting that
\[\frac{1}{\epsilon^2 \delta^{-\frac{d+1}{2}} N_B N_F} \hat{q}_{e,\delta} (\tau_{i,r}) = \frac{1}{\epsilon^2 \delta^{-\frac{d+1}{2}} N_B N_F} \hat{p}_{e,\delta} (\tau_{i,r}, \tau_{j,s}) + O \left(\delta^{-1} \left(\epsilon_{\text{PCA}}^2 + \epsilon^2 \right) \right), \]
we have
\[\epsilon^{\alpha d} \delta^{(d-1) N_B^2 N_F^2} \mathcal{K}_{e,\delta}^{(\alpha)} (\tau_{i,r}, \tau_{j,s}) = \epsilon^{\alpha d} \delta^{(d-1) N_B^2 N_F^2} K_{e,\delta}^{(\alpha)} (\tau_{i,r}, \tau_{j,s}) + O \left(\delta^{-1} \left(\epsilon_{\text{PCA}}^2 + \epsilon^2 \right) \right). \]
Consequently,
\[
\mathcal{H}_{\epsilon, \delta}^{(\alpha)} f (\tau_{i,r}) = \sum_{j=1}^{N_B} \sum_{s=1}^{N_F} \tilde{K}_{\epsilon, \delta}^{(\alpha)} (\tau_{i,r}, \tau_{j,s}) f (\tau_{j,s}) + O \left(\delta^{-1} \left(\epsilon_\text{PCA}^{\frac{3}{2}} + \epsilon^2 \right) \right)
\]

\[
= \hat{H}_{\epsilon, \delta}^{(\alpha)} f (\tau_{i,r}) + O \left(\delta^{-1} \left(\epsilon_\text{PCA}^{\frac{3}{2}} + \epsilon^2 \right) \right).
\]

Under the assumption that
\[
\delta^{-1} \left(\epsilon_\text{PCA}^{\frac{3}{2}} + \epsilon^2 \right) \rightarrow 0 \text{ as } \epsilon \rightarrow 0,
\]
we can apply Theorem 5.4. This completes the proof of Theorem 5.6. \(\square \)

References

[1] Reema Al-Aifari, Ingrid Daubechies, and Yaron Lipman. Continuous Procrustes Distance Between Two Surfaces. *Communications on Pure and Applied Mathematics*, 66(6):934–964, 2013.

[2] Afonso S. Bandeira, Amit Singer, and Daniel A. Spielman. A Cheeger Inequality for the Graph Connection Laplacian. *SIAM Journal on Matrix Analysis and Applications*, 34(4):1611–1630, 2013.

[3] Fabrice Baudoin. Sub-Laplacians and Hypoelliptic Operators on Totally Geodesic Riemannian Foliations. *arXiv preprint arXiv:1410.3268*, 2014.

[4] Mikhail Belkin and Partha Niyogi. Towards a Theoretical Foundation for Laplacian-Based Manifold Methods. In *Learning Theory*, pages 486–500. Springer, 2005.

[5] Mikhail Belkin and Partha Niyogi. Convergence of Laplacian Eigenmaps. *Advances in Neural Information Processing Systems*, 19:129, 2007.

[6] L Bérard and Jean-Pierre Bourguignon. Laplacians and Riemannian Submersions with Totally Geodesic Fibers. *Ill. J. Math*, 26:181–200, 1982.

[7] P. Bérard, G. Besson, and S. Gallot. Embedding Riemannian Manifolds by Their Heat Kernel. *Geometric \\& Functional Analysis GAFA*, 4(4):373–398, 1994.

[8] Nicole Berline, Ezra Getzler, and Michle Vergne. *Heat Kernels and Dirac Operators (Grundlehren Text Editions)*, Springer, 1992 edition.

[9] Arthur L Besse. *Einstein Manifolds*. Springer-Verlag New York, 1982.

[10] Jean-Michel Bismut. Hypoelliptic Laplacian and Bott-Chern Cohomology: A Theorem of Riemann-Roch-Grothendieck in Complex Geometry, volume 305 of *Progress in Mathematics*. Birkhäuser Basel, 2013.

[11] U. Boscain, R. A. Chertovskih, J. P. Gauthier, and A. O. Remizov. Hypoelliptic Diffusion and Human Vision: A Semidiscrete New Twist. *SIAM Journal on Imaging Sciences*, 7(2):669–695, 2014.

[12] Raoul Bott and Loring W Tu. *Differential Forms in Algebraic Topology*, volume 82 of *Graduate Texts in Mathematics*. Springer-Verlag New York, 1982.

[13] Doug M. Boyer, Yaron Lipman, Elizabeth St. Clair, Jesus Puente, Biren A. Patel, Thomas Funkhouser, Jukka Jernvall, and Ingrid Daubechies. Algorithms to Automatically Quantify the Geometric Similarity of Anatomical Surfaces. *Proceedings of the National Academy of Sciences*, 108(45):18221–18226, 2011.

[14] Isaac Chavel. *Riemannian Geometry: a Modern Introduction*. Number 98 in Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2nd edition, 2006.

[15] Fan R.K. Chung. *Spectral Graph Theory*. Number 92 in CBMS Regional Conference Series in Mathematics. American Mathematical Society, 1997.

[16] Fan RK Chung and Linyuan Lu. *Complex Graphs and Networks*, volume 107. American Mathematical Society Providence, 2006.

[17] R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner, and S. W. Zucker. Geometric Diffusions as a Tool for Harmonic Analysis and Structure Definition of Data:
Diffusion Maps. *Proceedings of the National Academy of Sciences of the United States of America*, 102(21):7426–7431, 2005. 1

[18] R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner, and S. W. Zucker. Geometric Diffusions as a Tool for Harmonic Analysis and Structure Definition of Data: Multiscale Methods. *Proceedings of the National Academy of Sciences of the United States of America*, 102(21):7432–7437, 2005. 1

[19] Ronald R. Coifman and Stéphane Lafon. Diffusion Maps. *Applied and Computational Harmonic Analysis*, 21(1):5–30, 2006. Special Issue: Diffusion Maps and Wavelets. 1, 2, 4, 3.1, 3.2, A, A

[20] Ronald R. Coifman and Mauro Maggioni. Diffusion Wavelets. *Applied and Computational Harmonic Analysis*, 21(1):53–94, 2006. Special Issue: Diffusion Maps and Wavelets. 1, 3

[21] Manfredo P Do Carmo. *Riemannian Geometry*. Springer, 1992. 4.2

[22] David L. Donoho and Carrie Grimes. Hessian Eigenmaps: Locally Linear Embedding Techniques for High-Dimensional Data. *Proceedings of the National Academy of Sciences*, 100(10):5591–5596, 2003. 1

[23] Ian L Dryden and Kanti V Mardia. *Statistical Shape Analysis*, volume 4. John Wiley & Sons New York, 1998. 6

[24] Richard Durrett. *Stochastic Calculus: A Practical Introduction*, volume 6. CRC press, 1996. 1

[25] Charles Ehresmann. Les Connexions Infinitésimales dans un Espace Fibré Différentiable. *Sémieraire Bourbaki*, 1:153–168, 1950. 2.3, 2.4, 4.1

[26] Vassiliy A Epanechnikov. Non-parametric Estimation of a Multivariate Probability Density. *Theory of Probability & Its Applications*, 14(1):153–158, 1969. 5.1.2

[27] David Spotts Fry. *Shape Recognition Using Metrics on the Space of Shapes*. PhD thesis, Harvard University, Cambridge, MA, USA, 1993. UMI Order No. GAX94-12337. 6

[28] Tingran Gao. Hypoelliptic Diffusion Maps and Their Applications in Automated Geometric Morphometrics. PhD thesis, Duke University, 2015. 4.1, 4.2, 4.3

[29] Tingran Gao, Gabriel S Yapuncich, Ingrid Daubechies, and Doug M Boyer. Automated Techniques for Comparing Shapes in a Biological Comparative Dataset with High Interspecific Variation: Tradeoffs, Limitations, and Progress. Submitted. 6

[30] Peter B Gilkey, John V Leahy, and Jeonghyeong Park. *Spectral Geometry, Riemannian Submersions, and the Gromov-Lawson Conjecture*, volume 30. CRC Press, 1999. 2.3, 2.5, 2.6

[31] Matthias Hein, Jean-Yves Audibert, and Ulrike Von Luxburg. Graph Laplacians and Their Convergence on Random Neighborhood Graphs. *Journal of Machine Learning Research*, 8:1325–1368, 2007. B, B.0.3

[32] Robert Hermann. A Sufficient Condition that a Mapping of Riemannian Manifolds be a Fibre Bundle. *Proceedings of the American Mathematical Society*, 11(2):236–242, 1960. 2.3, 2.5, 2.4, 4.1, A

[33] Lars Hörmander. Hypoelliptic Second Order Differential Equations. *Acta Mathematica*, 119(1):147–171, 1967. 1

[34] Elton P Hsu. *Stochastic Analysis on Manifolds*, volume 38. American Mathematical Soc., 2002. 2.4, 2.3

[35] Kiyoshi Itô. The Brownian motion and tensor fields on Riemannian manifold. *Proc. Int. Congr. Math., Stockholm*, 1962. 2.4

[36] Noureddine El Karoui and Hau-Tieng Wu. Vector Diffusion Maps and Random Matrices with Random Blocks, 2013. 1

[37] Noureddine El Karoui and Hau-Tieng Wu. Graph Connection Laplacian and Random Matrices with Random Blocks, 2014. 1

[38] David G Kendall. Shape Manifolds, Procrustean Metrics, and Complex Projective Spaces. *Bulletin of the London Mathematical Society*, 16(2):81–121, 1984. 6

[39] Vladimir G. Kim, Wilmot Li, Niloy J. Mitra, Stephen DiVerdi, and Thomas Funkhouser. Exploring Collections of 3D Models Using Fuzzy Correspondences. *ACM Trans. Graph.*, 31(4):54:1–54:11, July 2012. 1, 3.2

[40] Patrice Koehl and Joel Hass. Landmark-free Geometric Methods in Biological Shape Analysis. *Journal of The Royal Society Interface*, 12(113):20150795, 2015. 6

[41] Stephane Lafon and Ann B Lee. Diffusion Maps and Coarse-Graining: A Unified Framework for Dimensionality Reduction, Graph Partitioning, and Data Set Parameterization. *Pattern Analysis and Machine Intelligence, IEEE Transactions on*, 28(9):1393–1403, 2006. 3
[42] Stéphane S Lafon. *Diffusion Maps and Geometric Harmonics*. PhD thesis, Yale University, 2004. 1
[43] Anna V Little, Mauro Maggioni, and Lorenzo Rosasco. Multiscale geometric methods for estimating intrinsic dimension. *Proc. SampTA*, 2011. 5.1.2
[44] Kefeng Liu and Weiping Zhang. Adiabatic limits and foliations. *arXiv preprint math/9912223*, 1999. 2.5
[45] Peter W Michor. *Topics in Differential Geometry*, volume 93. American Mathematical Soc., 2008. 2.1, 2.3
[46] Philipp Mitteroecker and Philipp Gunz. Advances in Geometric Morphometrics. *Evolutionary Biology*, 36(2):235–247, 2009. 6
[47] Barrett O’Neill. The Fundamental Equations of a Submersion. *Michigan Math. J.*, 13(4):459–469, 12 1966. 2.5
[48] Peter Petersen. *Riemannian Geometry*, volume 171 of *Graduate Texts in Mathematics*. Springer Science & Business Media, 2006. A
[49] P David Polly and Norman MacLeod. Locomotion in fossil Carnivora: an application of eigensurface analysis for morphometric comparison of 3D surfaces. *Palaeontologia Electronica*, 11(2):10–13, 2008. 6
[50] Anand Rangarajan, Haili Chui, and Fred L Bookstein. The Softassign Procrustes Matching Algorithm. In *Information Processing in Medical Imaging*, pages 29–42. Springer, 1997. 2.4
[51] Steven Rosenberg. *The Laplacian on a Riemannian Manifold: an introduction to analysis on manifolds*. Number 31 in London Mathematical Society Student Texts. Cambridge University Press, 1997. 1
[52] Sam T. Roweis and Lawrence K. Saul. Nonlinear Dimensionality Reduction by Locally Linear Embedding. *Science*, 290(5500):2323–2326, 2000. 1
[53] Shigeo Sasaki. On the Differential Geometry of Tangent Bundles of Riemannian Manifolds. *Tohoku Math. J. (2)*, 10(3):338–354, 1958. 4.2
[54] Shigeo Sasaki. On the Differential Geometry of Tangent Bundles of Riemannian Manifolds, II. *Tohoku Math. J. (2)*, 14(2):146–155, 1962. 4.2
[55] A. Singer and H.-T. Wu. Vector Diffusion Maps and the Connection Laplacian. *Communications on Pure and Applied Mathematics*, 65(8):1067–1144, 2012. 1, 3.2, 5.1.2, 2, A, B, B.0.3, B.0.4, B.0.4
[56] Amit Singer. From Graph to Manifold Laplacian: The Convergence Rate. *Applied and Computational Harmonic Analysis*, 21(1):128–134, 2006. A, B, B.0.3
[57] Amit Singer and Hau-Tieng Wu. Orientability and Diffusion Maps. *Applied and Computational Harmonic Analysis*, 31(1):44 – 58, 2011. 1
[58] Amit Singer and Hau-tieng Wu. Spectral Convergence of the Connection Laplacian from Random Samples. *arXiv preprint arXiv:1306.1587*, 2013. 1
[59] Oleg G Smolyanov, Heinrich v Weizsacker, and Olaf Wittich. Chernoff’s Theorem and Discrete Time Approximations of Brownian Motion on Manifolds. *Potential Analysis*, 26(1):1–29, 2007. B.0.3
[60] Justin Solomon, Andy Nguyen, Adrian Butscher, Mirela Ben-Chen, and Leonidas Guibas. Soft Maps Between Surfaces. In *Proc. SGP 2012*, 2012. 2.4
[61] Daniel W Stroock. *An Introduction to the Analysis of Paths on a Riemannian Manifold*, volume 74 of *Mathematical Surveys and Monographs*. American Mathematical Soc., 2005. 2.3
[62] Michael Eugene Taylor. *Noncommutative Harmonic Analysis*, volume 22. American Mathematical Soc., 1990. 5.2.1
[63] Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. A Global Geometric Framework for Nonlinear Dimensionality Reduction. *Science*, 290(5500):2319–2323, 2000. 1
[64] Katharine Turner, Sayan Mukherjee, and Doug M. Boyer. Persistent Homology Transform for Modeling Shapes and Surfaces. *Information and Inference*, 2014. 1
[65] Fred A. Velez-Reyes, Miguel; Kruse, editor. *Schroedinger Eigenmaps with Nondiagonal Potentials for Spatial-Spectral Clustering of Hyperspectral Imagery*, volume 9088, 2014. 1
[66] Cédric Villani. *Topics in Optimal Transportation*. Graduate studies in mathematics. American Mathematical Society, 2003. 2.4
[67] Cédric Villani. *Optimal Transport: Old and New*. Grundlehren der mathematischen Wissenschaften. Springer, 2009 edition, November 2008. 2.4
[68] Chang Wang and Sridhar Mahadevan. Manifold Alignment without Correspondence. In *IJCAI*, volume 2, page 3, 2009.

[69] Shinzo Watanabe and Nobuyuki Ikeda. *Stochastic Differential Equations and Diffusion Processes*. Elsevier, 1981.

[70] David F Wiley, Nina Amenta, Dan A Alcantara, Deboshmita Ghosh, Yong Joo Kil, Eric Delson, Will Harcourt-Smith, F James Rohlf, K St John, and Bernd Hamann. Evolutionary Morphing. In *Visualization, 2005. VIS 05. IEEE*, pages 431–438. IEEE, 2005.

[71] Hau-Tieng Wu. Embedding Riemannian Manifolds by the Heat Kernel of the Connection Laplacian. *arXiv preprint arXiv:1305.4232*, 2013.

[72] M. L. Zelditch, D. L. Swiderski, D. H. Sheets, and W. L. Fink. *Geometric Morphometrics for Biologists*. San Diego: Elsevier Academic Press, 2004.

[73] Zhenyue Zhang and Hongyuan Zha. Principal Manifolds and Nonlinear Dimensionality Reduction via Tangent Space Alignment. *SIAM J. Sci. Comput.*, 26(1):313–338, January 2005.

Department of Mathematics, Duke University, Durham, NC 27708-0320

E-mail address: trgao10@math.duke.edu