IMPROVED BOUND ON SETS INCLUDING NO SUNFLOWER WITH THREE PETALS

JUNICHIRO FUKUYAMA

Abstract. A sunflower with k petals, or k-sunflower, is a family of k sets every two of which have a common intersection. Known since 1960, the sunflower conjecture states that a family \(F \) of sets each of cardinality \(m \) includes a k-sunflower if \(|F| \geq c_m^k \) for some \(c_m \in \mathbb{R}_{>0} \) depending only on \(k \). The case \(k = 3 \) of the conjecture was especially emphasized by Erdős, for which Kostochka’s bound \(cm \left(\frac{\log \log m}{\log \log \log m} \right)^m \) on \(|F| \) without a 3-sunflower had been the best-known since 1997 until the recent development to update it to \(c \log m \).

This paper proves with an entirely different combinatorial approach that \(F \) includes three mutually disjoint sets if it satisfies the \(\Gamma \left(cm^{\frac{1}{2} + \delta} \right) \)-condition for any given \(\delta \in (0, 1/2) \). Here \(c \) is a constant depending only on \(\delta \), and the \(\Gamma \)-condition refers to

\[|\{ U : U \in F \text{ and } S \subset U \}| < \left(cm^{\frac{1}{2} + \delta} \right)^{|S|} |F|, \]

for every nonempty set \(S \). This poses an alternative proof of the 3-sunflower bound \(\left(cm^{\frac{1}{2} + \delta} \right)^m \).

1. Motivation and Approach

In this paper we verify the following statement.

Theorem 1.1. For each \(\delta \in (0, 1/2) \), there exists \(c \in \mathbb{R}_{>0} \) such that a family \(F \) of sets each of cardinality \(m \in \mathbb{Z}_{>0} \) includes three mutually disjoint sets if it satisfies the \(\Gamma \left(cm^{\frac{1}{2} + \delta} \right) \)-condition. \(\square \)

This means that \(F \) includes a 3-sunflower if \(|F| > \left(cm^{\frac{1}{2} + \delta} \right)^m \), since for such an \(F \), there exists a set \(S \) with \(|S| < m \) such that the family \(\{ U - S : U \in F \text{ and } S \subset U \} \) satisfies the \(\Gamma \left(cm^{\frac{1}{2} + \delta} \right) \)-condition in the universal set minus \(S \). The claim asymptotically updates Kostochka’s bound \(\Gamma \left(cm^{\frac{1}{2} + \delta} \right) \) that had been the best-known related to the three-petal sunflower problem noted in \([3] \) since 1997, until the recent development \([4] \) to reduce the upper bound to \(c \log m \).

We prove the statement with a new combinatorial theory describing its approach in the rest of the section.

1.1. l-Extension of a Family of m-Sets. Let the universal set \(X \) have cardinality \(n \). Denote a subset of \(X \) by a capital alphabetical letter. It is an \(m \)-set if its cardinality is \(m \). Use the standard notation \([p] := [1, p] \cap \mathbb{Z} \) for \(p \in \mathbb{Z} \), and \(\left(X \right)_m := \)

2010 Mathematics Subject Classification. 05D05: Extremal Set Theory (Primary).
Key words and phrases. sunflower lemma, sunflower conjecture, \(\Delta \)-system.
\{U : U \subset X', |U| = m\} for X' \subset X. For \(F \subset \binom{X}{m} \), we denote \(F[S] := \{U : U \in F, S \subset U\} \).

The family \(F \) satisfies the \(\Gamma(b) \)-condition \((b \in \mathbb{R}_{>0}) \) if \(|F[S]| < b^{-|S|}|F| \) for every nonempty set \(S \).

The \(l \)-extension of \(F \) for \(l \in [n] - [m] \) is defined as
\[
Ext(F, l) := \left\{ T : T \in \binom{X}{l}, \text{ and } \exists U \in F, U \subset T \right\}.
\]

It is shown in \([5]\) that
\[
|Ext(F, l)| \geq \binom{n}{l} \left\{ 1 - m \exp \left[-\frac{(l - m + 1)|F|}{8m!\binom{n}{m}} \right] \right\},
\]
for any \(F \subset \binom{X}{m} \) and \(l \in [n] - [m] \). The result means that an \(n \)-vertex graph \(G \) with \(\binom{n}{2} - k \) edges contains at most \(2^{|F|} \binom{n}{l} \exp \left[-\frac{(l - 1)k}{8m(n - 1)} \right] \) cliques of size \(l \): let the vertex set of \(G \) be \(X \), and \(F \) be the set of non-edges in \(G \) regarded as a family of \(2 \)-sets. Then \(Ext(F, l) \) equals the family of \(l \)-sets each not a clique of size \(l \) in \(G \), which means the claim. Similar facts can be seen for \(m \)-uniform hypergraphs for small \(m \) such as 3.

1.2. Existence of a Bounded Set \(T \) with Dense \(Ext(F[T], l) \). An \((l, \lambda)\)-extension generator of \(F \) is a set \(T \subset X \) such that
\[
|Ext(F[T], l)| \geq \binom{n - |T|}{l - |T|}(1 - e^{-\lambda}),
\]
where \(\lambda \in \mathbb{R}_{>0} \), and \(e = 2.71 \ldots \) is the natural logarithm base. If \(\lambda \) is much larger than a constant, the \(l \)-sets in \(Ext(F[T], l) \) form a vast majority of \(\binom{X}{l}[T] \), the family of \(l \)-sets each containing \(T \).

We have a fact shown in \([6]\).

Theorem 1.2. (Extension Generator Theorem) There exists \(\epsilon \in (0, 1) \) satisfying the following statement: let \(X \) be the universal set of cardinality \(n \), \(m \in [n - 1] \), \(l \in [n] - [m] \), and \(\lambda \in (1, \frac{\epsilon m}{2m}) \). For every nonempty family \(F \subset \binom{X}{m} \), there exists an \((l, \lambda)\)-extension generator \(T \) of \(F \) with \(|T| \leq \left[\ln \binom{n}{m} - \ln |F| \right]/\ln \frac{4}{m^2\lambda} \). \(\square \)

We will also confirm it in Section 2. The theorem could help us understand the structure of \(Ext(F, l) \): for some large family \(F \), we can find bounded sets \(T_1, T_2, \ldots, T_k \) such that \(Ext(F, l) \) is close to \(\bigcup_{i \in [k]} \binom{X}{l}[T_i] \).

In addition, an alternative proof has been given \([6]\) with the theorem that the monotone complexity of detecting cliques in an \(n \)-vertex graph is exponential. For any given polynomial-sized monotone circuit \(C \) for the \(k \)-clique problem \((k = n^\epsilon \) for some constant \(\epsilon \in (0, 1) \)), the proof explicitly constructs a graph containing no \(k \)-clique for which \(C \) returns true. The standard method to show the exponential complexity uses the sunflower lemma or its variant with random vertex coloring \([7, 8]\).
1.3. To Show Theorem [1.1]. Given \(\mathcal{F} \subset \binom{X}{m} \), we first partition \(X \) into equal sized disjoint sets \(X_1, X_2, \ldots, X_r \) (\(r \approx m^{2/r} \)) such that \(\frac{m}{2^r} < |U \cap X_j| < \frac{2m}{r} \) for every \(j \in [r] \) and most \(U \in \mathcal{F} \). Find such \(X_j \) by the claims we show in Section 3. Then we will inductively construct three families \(\mathcal{F}_i \) (\(i \in [3] \)) of \(U \) for each \(j \) such that \(U_i \cap \bigcup_{j' \in [j]} X_{j'} \) are mutually disjoint for any three \(U_i \in \mathcal{F}_i \). The recursive invariant is verified by claims closely related to Theorem 1.2 which we will prove in the following section.

2. Proof of Theorem 1.2 and Other Facts

2.1. A Structural Lemma. Denote \(U \times U \times \cdots \times U \) by \(U^g \) for \(U \subset 2^X \) and \(g \in \mathbb{Z}_{>0} \), also writing

\[
\text{union}(U) = \bigcup_{p=1}^{g} U_p, \quad \text{for } U = (U_1, U_2, \ldots, U_g) \in U^g.
\]

Let \(w : (2^X)^g \to \mathbb{R}_{\geq 0} \) and \(m \in [n] \) be given in addition to \(g \). These define the norm \(\|U\| \) of \(U \) and sparsity \(\kappa(F) \) of \(F \subset \binom{X}{m} \) by

\[
\|U\| = \left[\sum_{U \in U^g} w(U) \right]^\frac{1}{g}, \quad \text{and} \quad \kappa(F) = \ln \left(\frac{n}{m} \right) - \ln \|F\|,
\]

respectively.

Given such an \(F \), and numbers \(l \in [n] - |m| \) and \(j \in \mathbb{Z}_{>0} \), denote

\[
\mathcal{P}_{j,g} = \{ U : U \in F^g, \ |\text{union}(U)| = gm - j \},
\]

\[
\mathcal{D}_g = \left\{ (U, Y) : U \in F^g, \ Y \in \binom{X}{l}, \ \text{union}(U) \subset Y \right\},
\]

\[
\|\mathcal{P}_{j,g}\| = \sum_{U \in \mathcal{P}_{j,g}} w(U), \quad \text{and} \quad \|\mathcal{D}_g\| = \sum_{(U, Y) \in \mathcal{D}_g} w(U),
\]

extending the norm \(\cdot \) for \(\mathcal{P}_{j,g} \) and \(\mathcal{D}_g \), for which we say \(w \) induces \(\cdot \) and also the sparsity \(\kappa \). The family \(F \) satisfies the \(\Gamma_g(b, h) \)-condition on \(\cdot \) \((b, h \in \mathbb{R}_{>0})\) if

\[
\|U\| = \left[\sum_{U \in (U \cap F)^g} w(U) \right]^\frac{1}{g}, \quad \text{for all } U \subset 2^X,
\]

and

\[
\|\mathcal{P}_{j,g}\| < hb^{-j} \|F\|^g, \quad \text{for every } j \in [(g-1)m].
\]

We may drop the subscript \(g \) if it is obvious from the context, so \(\mathcal{P}_{j,g} \) can be written as \(\mathcal{P}_j \), \(\Gamma_g(b, h) \) as \(\Gamma(b, h) \) etc.

In this subsection, we prove the following lemma that is a structural claim we will use to show Theorem 1.1 and to derive Theorem 1.2.

Lemma 2.1. Let

i) \(X \) be the universal set weighted by \(w : (2^X)^g \to \mathbb{R}_{\geq 0} \) for some \(g \in \mathbb{Z}_{\geq 2} \),

ii) \(l \in [n] \), \(m \in [l-1] \), and \(h, \gamma \in \mathbb{R}_{>0} \), such that \(\gamma \) and \(\frac{1}{gm} \) are both sufficiently large,

iii) and \(F \subset \binom{X}{m} \) satisfy the \(\Gamma_g \left(\frac{4m}{\gamma}, h \right) \)-condition on the norm \(\cdot \) induced by \(w \).
Then
\[\|\mathcal{D}_g\| < \left(1 + \frac{h}{g}\right) \binom{n}{l} \binom{l}{m}^g \|\mathcal{F}\|^g. \quad \square \]

Since
\[\|\mathcal{D}_g\| = \sum_{(U,Y) \in \mathcal{D}_g} w(U) = \sum_{Y \in \binom{X}{l}} \sum_{U \in [\mathcal{F} \cap \binom{Y}{m}]} w(U), \]
it means:

Corollary 2.2. For such objects and \(\epsilon \in (0, 1) \), there are \(\lceil (1 - \epsilon) \binom{g}{l} \rceil \) sets \(Y \in \binom{X}{l} \) such that
\[\sum_{U \in [\mathcal{F} \cap \binom{Y}{m}]} w(U) < \frac{1 + h}{\epsilon} \binom{n}{m}^g \sum_{U \in \mathcal{F}_g} w(U). \quad \square \]

Write
\[b = \frac{4\gamma n}{l}, \quad \text{and} \quad v(n') = \binom{n'}{m}^{-g+1} \prod_{p=1}^{g-1} \binom{n' - pm}{m}, \]
for \(n' \in [n] - [gm] \) for the proof. Observe the five remarks.

A) \(\mathcal{P}_j = \emptyset \) if \(j > (g - 1)m \), so
\[\|\mathcal{D}\| = \sum_{Y \in \binom{X}{l}} \sum_{U \in \binom{Y}{m}} w(U) = \sum_{Y \in \binom{X}{l}} \left\| \binom{Y}{m} \right\|^g = \sum_{j=0}^{(g-1)m} \|\mathcal{P}_j\| \binom{n - gm + j}{l - gm + j}, \]
\[< h \sum_{j=1}^{(g-1)m} b^{-j} \binom{n}{m}^g e^{-g\kappa(\mathcal{F})} \binom{n - gm + j}{l - gm + j}, \]
by the \(\Gamma_g(b, h) \)-condition of \(\mathcal{F} \), and \(\|\mathcal{F}\|^g = \binom{n}{m}^g e^{-g\kappa(\mathcal{F})}. \)

B) \(v(l) \leq v(n) \), since
\[\prod_{i=0}^{m-1} \frac{1 - pm}{1 - \frac{pm}{n-i}} \leq 1, \quad \text{for} \ p \in [g - 1], \]
\[\Rightarrow \frac{(l-pm)}{(l-1)} \frac{\binom{l}{m}}{\binom{n}{m}} \leq 1, \quad \Rightarrow \frac{v(l)}{v(n)} \leq 1. \]
C) By the identity \(\binom{x}{m} \binom{x-z}{y} = \binom{x}{y} \binom{x-y}{m} \),
\[
\binom{n}{m}^g \binom{n - gm}{l - gm} = \frac{1}{v(n)} \binom{n - gm}{l - gm} \prod_{p=0}^{g-1} \binom{n - pm}{m}
\]
\[= \frac{(l-(g-1)m)^m}{v(n)} \binom{n - (g-1)m}{l - (g-1)m} \prod_{p=0}^{g-2} \binom{n - pm}{m} \]
\[= \frac{(l-(g-1)m)(l-(g-2)m)^m}{v(n)} \binom{n - (g-2)m}{l - (g-2)m} \prod_{p=0}^{g-3} \binom{n - pm}{m} \]
\[= \ldots = \prod_{p=0}^{g-1} \frac{\binom{n-(pm)}{m}}{v(n)} \binom{n}{l} \]
\[= \frac{v(l)}{v(n)} \binom{n}{l} \binom{l}{m}^g \leq \binom{n}{l} \binom{l}{m}^g. \]

D) So,
\[
\|P_0\| \binom{n - gm}{l - gm} \leq \|P\| \binom{n - gm}{l - gm} = \binom{n}{m}^g \binom{n - gm}{l - gm} e^{-g\kappa(F)} \]
\[\leq \binom{n}{l} \binom{l}{m}^g e^{-g\kappa(F)}. \]

E) For each \(j \in [(g-1)m] \),
\[
\binom{n - gm + j}{l - gm + j} = \binom{n - gm}{l - gm} \prod_{i=0}^{j-1} \binom{n - gm + i}{l - gm + i} < \binom{2n}{l} \binom{l}{m}^g \]
since \(l \) and \(n \) are both sufficiently larger than \(gm \).
\(\Box \)

It suffices to show by the remarks that
\[
(2.1) \quad \|D\| < 1 + h \sum_{j=1}^{(g-1)m} (2\gamma)^{-j} \binom{n}{l} \binom{l}{m}^g e^{-g\kappa(F)},
\]
as its RHS is less than \(\frac{(1 + \frac{1}{2})^g (\frac{1}{m})^g}{(\frac{1}{m})^g} \sum_{U \in \mathcal{F}, w(U)} \). We see from A), C) and E) that
\[
\sum_{j=1}^{(g-1)m} \|P_j\| \binom{n - gm + j}{l - gm + j}
\]
\[< h \sum_{j=1}^{(g-1)m} b^{-j} \binom{n}{m}^g e^{-g\kappa(F)} \binom{n - gm + j}{l - gm + j}
\]
\[< he^{-g\kappa(F)} \binom{n}{m}^g \binom{n - gm}{l - gm} \sum_{j=1}^{(g-1)m} (2\gamma)^{-j}
\]
\[\leq he^{-g\kappa(F)} \binom{n}{l} \binom{l}{m}^g \sum_{j=1}^{(g-1)m} (2\gamma)^{-j}. \]

Also by D), (2.1) is confirmed completing the proof of Lemma (2.1).
Lemma 2.4. Let any $F \tilde{\rightarrow} \text{primitive with } \epsilon$ sufficiently small.

Theorem 2.3. Let X be primitively weighted inducing the norm $\| \cdot \|$ for every sufficiently small $\epsilon \in (0, 1)$, and $F \subset \binom{X}{m}$ satisfying the $\Gamma_2 \left(\frac{m}{2^{m}}, 1 \right)$-condition on $\| \cdot \|$ for some $l \in [n]$, $m \in [l]$, and $\gamma \in [e^{-2}, lm^{-1}]$, there are $\binom{n}{m} (1 - \epsilon)$ sets $Y \in \binom{X}{m}$ such that

$$\left(1 - \sqrt{\frac{2}{\epsilon \gamma}} \frac{l}{m} \right) \| F \| < \left(\frac{Y}{m} \right) < \left(1 + \sqrt{\frac{2}{\epsilon \gamma}} \frac{l}{m} \right) \| F \| . \quad \square$$

The rest of this subsection proves the theorem. Given such ϵ, m, l, γ and F, use the same D and P_l as Section 2.1. Find the following remarks.

F) Let the weight w of X be primitive with \tilde{w}, then

$$\| G \| = \sum_{V \in G} \tilde{w}(U), \quad \text{for any } G \subset 2^X,$$

since $\sum_{V \in G} \tilde{w}(U)^2 = \sum_{U \in G^2} w(U) = \| G \|^2$.

G) By this linearity of the norm $\| \cdot \|$ for primitive weight,

$$\sum_{Y \in \binom{X}{m}} \left(\frac{Y}{m} \right) = \| F \| \left(n - m \right) = \left(\frac{n}{m} \right) \left(\frac{n - m}{l - m} \right) e^{-\kappa(F)} = \left(\frac{n}{l} \right) \left(\frac{l}{m} \right) e^{-\kappa(F)}.$$

H) $\| D \| = \sum_{Y \in \binom{X}{m}} \left(\frac{Y}{m} \right)^2 > 0$, since

$$\| D \| = \sum_{j=0}^{m} \| P_j \| \left(\frac{n - 2m + j}{l - 2m + j} \right) < \sum_{j=0}^{m} h b^{-j} \| F \|^2 \left(\frac{n - 2m + j}{l - 2m + j} \right)$$

as in A). So $\| F \| > 0$ meaning $\| D \| > 0$ by definition.

I) By (2.1) for $g = 2$,

$$\| D \| < \frac{e^{-2\kappa(F)}}{1 - (2\gamma)^{-1}} \left(\frac{n}{m} \right) \left(\frac{l}{m} \right)^2 . \quad \square$$

We find another property on $\| D \|$ below. The statement is general holding for any F that meets the conditions.

Lemma 2.4. Let

i) X be primitively weighted by $\left(2^X \right)^2 \rightarrow \mathbb{R}_{\geq 0}$ inducing the norm $\| \cdot \|$,

ii) $l \in [n]$, $m \in [l]$, $t \in \mathbb{R}_{\geq 0}$,

iii) $F \subset \binom{X}{m}$ such that

$$0 < \| D \| \leq t \left(\frac{n}{l} \right) \left(\frac{l}{m} \right)^2 e^{-2\kappa(F)},$$

iv) and $u, v \in \mathbb{R}_{\geq 0}$ with

$$u < 1, \quad u \left(\frac{n}{l} \right) \in \mathbb{Z}, \quad \text{and} \quad t < 1 + \frac{u(v - 1)^2}{1 - u}.$$
The two statements hold.

a) If \(v \geq 1 \), more than \((1-u)(\binom{n}{l}) \) sets \(Y \in \binom{X}{l} \) satisfy \(\|Y_m\| < v(l_m) e^{-\kappa(F)} \).
b) If \(v \leq 1 \), more than \((1-u)(\binom{n}{l}) \) sets \(Y \in \binom{X}{l} \) satisfy \(\|Y_m\| > v(l_m) e^{-\kappa(F)} \).

Proof. a): Put
\[
z = e^{-\kappa(F)}, \quad \text{and} \quad x_j = \|Y_j\|,
\]
where \(Y_j \) is the \(j \)-th \(l \)-set in \(\binom{X}{l} \). Suppose to the contrary that \(x_j \geq vz(l_m) \) if \(1 \leq j \leq u(n) \).

Noting \(\sum_{1 \leq j \leq u(n)} x_j = z(l_m) > 0 \) from \(G \) and \(\|D\| > 0 \), let \(y \in (0,1) \) satisfy
\[
\sum_{1 \leq j \leq u(n)} x_j = yz(l_m)(l_m),
\]
so \(y \geq uv \). Find that
\[
\sum_{1 \leq j \leq u(n)} x_j^2 \geq \left[\frac{yz(l_m)}{u(n)} \right]^2 \frac{u(n)}{l_m} = \frac{y^2z^2}{u} \binom{n}{l_m}^2,
\]
and
\[
\sum_{u(n) < j \leq \binom{n}{l}} x_j^2 \geq \left(1 - y \right) \binom{n}{l_m}^2 \left(1 - u \right) \binom{n}{l_m}^2 = \frac{1 - y^2}{1 - u} \binom{n}{l_m}^2,
\]
meaning
\[
(2.2) \quad \|D\| = \sum_{Y \in \binom{n}{l}} \|Y_m\|^2 \geq fz^2(l_m)^2, \quad \text{where} \quad f = \frac{y^2}{u} + \frac{(1 - y^2)}{1 - u},
\]
From \(y \geq uv \geq u \),
\[
(2.3) \quad f \geq uv^2 + \frac{(1 - uv^2)}{1 - u} = 1 + \frac{u(v - 1)^2}{1 - u} > t.
\]
This contradicts the given condition proving a).

b): Suppose \(x_j \leq vz(l_m) \) if \(1 \leq j \leq u(n) \). Use the same \(y \) and \(f \) so \(y \leq uv \) and (2.2). These also imply (2.3) producing the same contradiction. Thus b). \(\square \)

Set
\[
t = \frac{1}{1 - (2\gamma)^{-1}}, \quad u = \frac{\binom{n}{l}}{\binom{n}{l}}, \quad v = 1 + \frac{u}{(\frac{n}{2})^{\gamma} \sqrt{\gamma}}, \quad \text{and} \quad v' = 1 - \frac{u}{(\frac{n}{2})^{\gamma} \sqrt{\gamma}}.
\]
Then
\[
1 + \frac{u(v - 1)^2}{1 - u} = 1 + \frac{u(v' - 1)^2}{1 - u} = 1 + \gamma^{-1} \frac{u^3}{(\frac{n}{2})^{3} (1 - u)} > t,
\]
since \(u > \frac{\gamma}{2} - e^2 \) from \(\epsilon^2 \leq \gamma \leq \binom{n}{l} \). Here \(l < n \) is assumed as the theorem is trivially true if \(l = n \). By 1) and Lemma 2.4,
\[
v'(l_m) e^{-\kappa(F)} < \|Y_m\| < v(l_m) e^{-\kappa(F)},
\]
for some \((1 - 2n) \binom{n}{l} \) sets \(Y \in \binom{X}{l} \). As \(e^{-\kappa(F)} = \|F\| \binom{n}{m}^{-1} \), this means there are \([\binom{n}{l} (1 - \epsilon) \) sets \(Y \in \binom{X}{l} \) such that

\[
\left(1 - \sqrt{\frac{2}{e\gamma}} \right) \binom{m}{n} \|F\| < \left\| \binom{Y}{m} \right\| < \left(1 + \sqrt{\frac{2}{e\gamma}} \right) \binom{m}{n} \|F\|,
\]

completing the proof of Theorem \ref{thm:2.3}.

2.3. Deriving Theorem \ref{thm:1.2}. Given an \(F\), let us assume for a while that \(X\) is primitively weighted with \(\tilde{w} : U \mapsto |F[U]| \). The norm of \(G \subset 2^X\) and sparsity of \(F\) in this default case are

\[
\|G\| = \sum_{U \in G} |F[U]|, \quad \text{and} \quad \kappa(F) = \ln \binom{n}{m} - \ln |F|,
\]

respectively, by the linearity of \(\| \cdot \|\). The latter depends on \(X\) as well as \(|F|\). Generalize the default sparsity to any uniform family \(G \in \binom{X'}{m'}\) of \(m'\)-sets in the universal set \(X' \subset X\) (\(m' \in \{X'\}\)) to write \(\kappa(G) = \ln \binom{|X'|}{m'} - \ln |G|\).

Remarks.

J) The notation could be useful to express \(\ln |G|\): for example, \(|T| \leq \kappa(F) / \ln \frac{d}{\sqrt{n-m}}\)

for Theorem \ref{thm:1.2} and \(\kappa(F_X) < \kappa(F) + m\) in Lemma \ref{lem:3.3} we will see in the next section.

K) As we use on the bottom of the subsection, the same definition can apply to the projection \(G_m'\) of \(G\) onto \(X'\), i.e., \(G_m' = \{U \cap X' : U \in G, |U \cap X'| = m'\}\).

L) \(\kappa(Ext(F, l)) \leq \kappa(F)\) for \(l \leq [n] - [m]\). For there are \(|F| \binom{n-m}{l} = \binom{n}{m} e^{-\kappa(F)} \binom{n-m}{l} = \binom{n}{l} e^{-\kappa(F)}\) set pairs \((S, T)\) such that \(S \in F, T \in \binom{X}{l}\) and \(S \subset T\). This means

\[
|Ext(F, l)| \geq \binom{n}{l} e^{-\kappa(F)}
\]

leading to the claim.

M) Join a \(p\)-set \(P\) to \(X\) such that \(P \cap X = \emptyset\). The sparsity of \(Ext(F, m + p)\) in the universal set \(X \cup P\) at most \(\kappa(F)\) in \(X\) since

\[
|Ext(F, m + p)| \geq \sum_{j=0}^{p} \binom{n}{m + j} e^{-\kappa(F)} \binom{p}{p - j} = \binom{n + p}{m + p} e^{-\kappa(F)}.
\]

N) The following lemma is proven in \cite{3} and Appendix 1.

Lemma 2.5. For \(F \subset \binom{X}{m}\) such that \(m \leq \frac{n}{2}\),

\[
\kappa \left[\binom{X}{2m} - Ext(F, 2m) \right] \geq 2\kappa \left[\binom{X}{m} - F \right]. \quad \square
\]

Assume \(|F| > b^m\) for some \(b \in \mathbb{R}_{\geq 1}\). There exists \(T \subset X\) such that \(|T| < m\), \(|F[T]| \geq |F|b^{-|T|}\), and \(|F[T \cup S]| < b^{-|T \cup S|}\) for any nonempty \(S \subset X - T\). We use such a family \(F[T]\) projected onto the universal set \(X - T\) in place of \(F\) in our proof of Theorem \ref{thm:1.1}. Observe that the \(F\) satisfies not only the \(\Gamma(b)\)-condition, but also the \(\Gamma_2 (bm^{-1}, 1)\)-condition on \(\| \cdot \|\) since

\[
\|P_j\| = \sum_{\{U_{1}, U_{2} \in F \atop U_{1} \cap U_{2} = \emptyset\}} \tilde{w}(U_{1}) \tilde{w}(U_{2}) \leq \sum_{S \in \binom{X}{m}} |F[S]|^2 < |F|^2 \binom{m}{j} b^{-j},
\]

for each \(j \in [m]\).

By Theorem \ref{thm:2.3}.
Corollary 2.6. Let X be the universal set of cardinality n, $m \in [n-1]$, $l \in [n]-[m]$ and $\gamma \in \mathbb{R}_{>0}$ be sufficiently large not exceeding $\frac{1}{m}$. For any $\mathcal{F} \subset \binom{X}{m}$ satisfying the $\Gamma\left(\frac{4\gamma mn}{l}\right)$-condition, there are $\left(\binom{n}{j} \left(1 - \frac{2}{\sqrt{\lambda}}\right)\right)$ sets $Y \in \binom{X}{\gamma}$ such that

$$\frac{(\binom{n}{m}|\mathcal{F}|}{(\binom{n}{m})} \left(1 - \frac{1}{\sqrt{\lambda}}\right) < |\mathcal{F} \cap \binom{Y}{m}| < \frac{(\binom{n}{m}|\mathcal{F}|}{(\binom{n}{m})} \left(1 + \frac{1}{\sqrt{\lambda}}\right).$$

□

We show Theorem 1.2 from the corollary. Given m,l,λ, sufficiently small ϵ, and \mathcal{F} as the statement, set

$$l_0 = \left[\frac{l\sqrt{\epsilon}}{\lambda}\right], \quad \gamma = \frac{1}{\sqrt{\epsilon}}, \quad \text{and} \quad b = \frac{4\gamma mn}{l_0}.$$

Then γ is sufficiently large and less than $\frac{1}{m}$ since $1 < \lambda < \frac{1}{m}$.

There exists a set T such that $|T| \leq \kappa(\mathcal{F})/\ln \frac{d}{mX}$ and $\mathcal{F}[T]$ satisfies the $\Gamma(b)$-condition in $X - T$: because the cardinality j of such T satisfies

$$\left(\binom{n}{m} e^{-\kappa(\mathcal{F})} b^{-j} = |\mathcal{F}| b^{-j} \leq |\mathcal{F}[T]| \leq \left(\binom{n-j}{m-j}\right),
\Rightarrow b^{-j} \left(\binom{n}{m}\right)^{-j} \leq b^{-j} \prod_{j'=0}^{j-1} \frac{n-j}{m-j} = \left(\frac{\binom{n}{m}}{\binom{n-j}{m-j}}\right)b^{-j} \leq e^{\kappa(\mathcal{F})},
\Rightarrow j \leq \frac{\kappa(\mathcal{F})}{\ln \frac{d}{mX}}.$$

Assume $j < m$, otherwise the desired claim is trivially true.

Apply Corollary 2.6 to $\mathcal{F}[T]$ in the universal set $X - T$ noting $\frac{l_0}{m^2} \leq \frac{l_0 - j}{(m-j)^2}$ and $b \geq \frac{4\gamma(m-j)(n-j)}{l_{0-j}}$. We see

$$|\text{Ext}(\mathcal{F}[T], l_0)| > \left(\binom{n-j}{l_0-j} \left(1 - \frac{2}{\sqrt{\lambda}}\right)\right),$$

from which

$$|\text{Ext}(\mathcal{F}[T], l)| > \left(\binom{n-j}{l-j} \left(1 - e^{-\lambda}\right)\right),$$

proving Theorem 1.2. The truth of the last inequality is due to Lemma 2.5 as $\frac{l_0 - j}{l_{0-j}} \geq \lambda^{-1/2}$, it means

$$\kappa \left[\left(\binom{X}{l}\right)[T] - \text{Ext}(\mathcal{F}[T], l)\right] \geq 2^{\left|\log_2 \frac{l_{0-j}}{l_{0-j}}\right|} \kappa \left[\left(\binom{X}{l_0}\right)[T] - \text{Ext}(\mathcal{F}[T], l_0)\right] > \lambda,$$

in the universal set $X - T$ leading to the inequality.

3. Splitting the Universal Set

Given $m \in [n]$ with $m|n$ and $q \in [m]$, let

$$d = \frac{nq}{m}, \quad \text{and} \quad r = \left\lfloor \frac{m}{q} \right\rfloor.$$

Assume for a while

$$r \in \mathbb{Z}_{\geq 2}, \quad \Rightarrow d = \frac{n}{r},$$
Denote
\[\mathcal{X}_j := \{(X_1, X_2, \ldots, X_j) : X_i \text{ are mutually disjoint } d\text{-sets}\}, \]
for \(j \in [r] \). Call an element of \(\mathcal{X}_r \) \(r \)-split of \(X \) noting the given \(q \) decides \(r \).

When a \(j \) is also given, define
\[\mathcal{F}_X = \{ U : U \in \mathcal{F}, \text{ and } |U \cap X_i| = q \text{ for every } i \in [j]\}. \]
for \(\mathcal{F} \subset \binom{\mathbf{X}}{m} \) and \(X \in \mathcal{X}_j \), and
\[T_{\mathcal{F}, j} := \{(U, X) : X \in \mathcal{X}_j \text{ and } U \in \mathcal{F}_X\}. \]
Let \(X \) be primitively weighted with \(\hat{w} : 2^X \to \mathbb{R}_{\geq 0} \), inducing the norm \(\| \cdot \| \) and sparsity \(\kappa \). Extend \(\| \cdot \| \) to write
\[\| T_{\mathcal{F}, j} \| = \sum_{(U, X) \in T_{\mathcal{F}, j}} \hat{w}(U). \]
For \(j = 0 \), let \(\mathcal{X}_0 = \{\emptyset\} \) and \(\mathcal{F}_\emptyset = \mathcal{F} \) so \(\| T_{\mathcal{F}, 0} \| = \| \mathcal{F} \| \). Assume \(\| \mathcal{F} \| > 0 \).

Prove the following lemma.

Lemma 3.1.
\[\| T_{\mathcal{F}, j} \| = \binom{d}{q}^j \binom{n - dj}{m - qj} e^{-\kappa(\mathcal{F})} \prod_{i=0}^{j-1} \binom{n - di}{d}, \]
for every \(j \in [0, r) \cap \mathbb{Z} \) and \(\mathcal{F} \subset \binom{\mathbf{X}}{m} \).

Proof. We show the claim by induction on \(j \) with the trivial basis \(j = 0 \). Assume true for \(j \) and prove for \(j + 1 \). Fix any \(X = (X_1, X_2, \ldots, X_j) \in \mathcal{X}_j \) putting
\[X' = X - \bigcup_{i=1}^{j} X_i, \quad n' = |X'|, \quad m' = m - jq, \quad \text{and} \quad \gamma_X = \frac{\| \mathcal{F}_X \|}{\binom{d}{q}^j \binom{n'}{m'}}. \]
Also write \(X' = (X_1, X_2, \ldots, X_j, X_{j+1}) \), for a \(d \)-set \(X_{j+1} \in \binom{\mathbf{X}}{d} \).

For each \(U \in \mathcal{F}_X \), there are \(\binom{m'}{q} \binom{n' - m'}{d - q} \) sets \(X_{j+1} \in \binom{\mathbf{X}}{d} \) such that \(|U \cap X_{j+1}| = q \). So the sum of \(\hat{w}(U) \) for \((U, X') \in T_{\mathcal{F}, j+1} \) constrained by the fixed \(X \) is
\[\binom{m'}{q} \binom{n' - m'}{d - q} \| \mathcal{F}_X \| = \binom{m'}{q} \binom{n' - m'}{d - q} \gamma_X \binom{d}{q}^j \binom{n'}{m'}. \]
\[= \binom{n'}{q} \binom{n' - q}{m' - q} \binom{n' - m'}{d - q} \gamma_X \binom{d}{q}^j. \]
Here
\[\binom{n'}{q} \binom{n' - q}{m' - q} \binom{n' - m'}{d - q} = \frac{(n' - q)!}{(m' - q)!((d - q)!(n - m' - d + q)!} = \binom{n' - q}{d} \binom{n' - d}{m' - q}. \]
So the above equals
\[\binom{n'}{q} \binom{n' - q}{m' - q} \binom{n' - d}{m' - q} \gamma_X \binom{d}{q}^j \binom{n'}{m'}. \]
Note \(n' \geq m' + d - q \) from \(\frac{m'}{q} = r \geq j + 1 \) and \(n' = n - dj \).
By induction hypothesis,
\[\sum_{X \in \mathcal{X}_j} \|\mathcal{F}_X\| = \|\mathcal{T}_{\mathcal{F},j}\| = \left(\frac{d}{q}\right)^{j} \frac{n^r}{m^r} e^{-\kappa(\mathcal{F})} \prod_{i=0}^{j-1} \left(\frac{n-di}{d}\right), \]

\[\Rightarrow \sum_{X \in \mathcal{X}_j} \gamma_X = e^{-\kappa(\mathcal{F})} \prod_{i=0}^{j-1} \left(\frac{n-di}{d}\right). \]

Hence,
\[\|\mathcal{T}_{\mathcal{F},j+1}\| = \sum_{X \in \mathcal{X}_j} \gamma_X \left(\frac{d}{q}\right)^{j+1} \frac{n'-d}{m'-q} \frac{m'}{q} \left(\frac{n'}{d}\right) \]
\[= \left(\frac{d}{q}\right)^{j+1} \frac{n-d(j+1)}{m-q(j+1)} e^{-\kappa(\mathcal{F})} \prod_{i=0}^{j} \left(\frac{n-di}{d}\right), \]

proving the induction step. The lemma follows. \(\square\)

It means \(\|\mathcal{T}_{\mathcal{F},r-1}\| = \left(\frac{d}{q}\right)^r e^{-\kappa(\mathcal{F})} |\mathcal{X}_{r-1}|. \) By the natural bijection between \(\mathcal{X}_{r-1} \) and \(\mathcal{X}_r, \)
\[\sum_{X \in \mathcal{X}_r} \|\mathcal{F}_X\| = \|\mathcal{T}_{\mathcal{F},r}\| = \left(\frac{d}{q}\right)^r e^{-\kappa(\mathcal{F})} |\mathcal{X}_r| = \frac{\left(\frac{d}{q}\right)^r \|\mathcal{F}\|}{\binom{n}{m}} |\mathcal{X}_r| \]

Considering the case \(r = 1 \) as well, we have:

Corollary 3.2. Let \(X \) be primitively weighted inducing the norm \(\| \cdot \| \). Given \(m \in [n] \) and \(q \in [m] \), let \(r = m/q \) and \(d = n/r \) be both positive integers. For a family \(\mathcal{F} \subseteq \binom{X}{m} \) with \(\|\mathcal{F}\| > 0 \), there exists an \(r \)-split \(X \) of \(X \) such that \(\|\mathcal{F}_X\| \geq \left(\frac{d}{q}\right)^r \|\mathcal{F}\| \binom{n}{m}. \) \(\square\)

Note that if \(q \) does not divide \(m \) where \(|U \cap \mathcal{X}_r| = q' \in [q, 2q] \cap \mathbb{Z} \) for \(U \in \mathcal{F} \), some \(X \) meets \(\|\mathcal{F}_X\| \geq \left(\frac{d}{q}\right)^{r-1} \frac{n-q-r-1}{q'} \binom{n-r}{m}. \) by the same argument. For \(q = 1 \):

Corollary 3.3. For a universal set \(X \) primitively weighted inducing the sparsity \(\kappa \), and any family \(\mathcal{F} \subseteq \binom{X}{m} \) with \(m/n \) and finite \(\kappa(\mathcal{F}) \), there exists an \(m \)-split \(X \) of \(X \) such that \(\kappa(\mathcal{F}_X) < \kappa(\mathcal{F}) + m \).

Proof. Since \(\kappa(\mathcal{F}_X) \leq \ln \binom{n}{m} - \ln \left(\frac{m}{n}\right)^m e^{-\kappa(\mathcal{F})} \big/ \frac{n}{m} \leq \kappa(\mathcal{F}) + m \) by the standard estimate of a binomial coefficient that is also derived in Appendix 2. \(\square\)

Let us now focus on the first case \(j = 1 \) of the lemma. Relax the constraints on \(q \) and \(d \) to see the following statement.

Corollary 3.4. Let \(X \) be primitively weighted inducing \(\| \cdot \| \), \(m, d \in [n] \) and \(q \in [0, m] \cap \mathbb{Z} \) such that \(n-d-m+q \geq 0 \). For each \(\mathcal{F} \subseteq \binom{X}{m} \) and \(\epsilon \in (0, 1) \), there exist no more than \(\left\lfloor \frac{\epsilon n^m}{m!} \right\rfloor \) sets \(X_1 \in \binom{X}{m} \) each with
\[\|\mathcal{F}_{X_1}\| > \frac{(m-d-q)/d}{\\epsilon(n/m)} \|\mathcal{F}\|, \] where \(X = (X_1) \).
4. Proof of Theorem \[\text{111} \]

We prove the theorem in this section. Given \(F \subset \binom{X}{m} \) and a sufficiently small \(\delta \in (0, 1/2) \) by the statement, let

\[
\epsilon = e^{-1/\delta}, \quad g = \left[e^{1/\epsilon} \right], \quad c = e^{\epsilon}, \quad \text{and} \quad b_x = e^{\epsilon} m^{\frac{1}{2} + \delta},
\]

assuming \(F \) satisfies the \(\Gamma(b_x) \)-condition. WLOG \(m > e^c \), otherwise \(F \) includes three mutually disjoint sets similarly to the proof of the sunflower lemma \[\text{9} \]: select any \(U_1 \in F \) eliminating all sets in \(F \) that intersect with \(U_1 \). By the \(\Gamma(b_x) \)-condition with \(b_x > 3m \), this removes less than a third of the original \(F \). Find \(U_2 \) and \(U_3 \) in the remaining \(F \) similarly, and the obtained three are mutually disjoint.

Further let

\[
z = \left\lfloor \log_2 m^{(1-\delta)/2} \right\rfloor, \quad r = 2^z, \quad \text{and} \quad q = \frac{m}{r}.
\]

Assume \(n = |X| \) is larger than \(m^4 \) and divisible by \(mr \). Otherwise add some extra elements to \(X \).

4.1. Preprocess. On such objects, we first perform our initial construction. Prove a recursive statement.

Lemma 4.1. Let

i) \(j \in [0, z] \cap \mathbb{Z} \), \(\delta_j = \sum_{j=0}^{j} \left(2^{-j} m \right)^{\frac{1}{2} + \epsilon} \),

ii) \(X' \in \binom{X}{2^{-j} n} \), weighted primitively inducing the norm \(\| \cdot \| \),

iii) and \(G \subset 2^{X'} \) such that \(\|G\| > 0 \), and \(|U| - 2^{-j} m < \delta_j \) for every \(U \in G \).

There exists an \(2^{z-j} \)-split \(X = (X_1, X_2, \ldots, X_{2^{z-j}}) \) of \(X' \), and \(G' \subset G \) such that

\[
\|G'\| > \left(1 - 4^{1-j} e^{-m^c} \right) \|G\|, \quad \text{and} \quad |U \cap X_{j'}| - 2^{-j} m < \delta_z,
\]

for every \(j' \in [2^{z-j}] \) and \(U \in G' \).

Proof. Proof by induction on \(j \) with the trivial basis \(j = z \). Assume true for \(j + 1 \) and prove true for \(j \).

Let

\[
G_{m_1, m_2, Y} = \{ U : U \in G, \ |U \cap Y| = m_1, \ \text{and} \ |U \cap X' - Y| = m_2 \},
\]

for each \(Y \in \binom{X'}{m_1/2} \), and \(m_1, m_2 \in [m] \) with \(|m_1 + m_2 - 2^{-j} m| < \delta_j \). By Corollary \[\text{3.4} \] there are no more than \(m^{-3} \binom{|X'|}{m_1/2} \binom{|X'|}{m_2} \) sets \(Y \) such that

\[
\|G_{m_1, m_2, Y}\| > \frac{m^3 \binom{|X'|}{m_1/2} \binom{|X'|}{m_2}}{\binom{|X'|}{m_1 + m_2}} \|G\|.
\]
We also have
\[
\ln \left(\left(\frac{|X'_1|}{m_1} \right)^2 \left(\frac{|X'_2|}{m_2} \right)^2 \right) < -\left(\frac{m_1}{2(m_1 + m_2)} \right)^2 < -m^{\epsilon + \epsilon'},
\]
if \(m_1 - m_2 > m^{-\epsilon}(m_1 + m_2)^{2/1 + \epsilon}, \)
by Lemma A.3, since \(m_1 + m_2 > 2^{-z+1}m - \delta_j > m^{1/2}. \)

For every possible combination of \(m_i \), exclude all \(Y \) with (4.1) from consideration. Fix any one remaining \(Y \), and all \(G_{m_1,m_2,Y} \) meet \((1.1) \). Delete from \(G \) the union of \(G_{m_1,m_2,Y} \) each with \(|m_1 - m_2| > m^{-\epsilon}(m_1 + m_2)^{2/1 + \epsilon}. \) Then
- this reduces \(\|G\| \) only by its \(e^{-m^a} \) or less,
- and \(|m_i - 2^{-j-1}m| < \delta_j + 1 \) for each remaining \(G_{m_1,m_2,Y} \) and \(i \in [2] \), since \(m_1 + m_2 - 2^{-j}m < \delta_j \) and \(|m_1 - m_2| \leq m^{-\epsilon}(m_1 + m_2)^{2/1 + \epsilon}. \)

Now we obtain recursive solutions in both \(Y \) and \(X' - Y \). Weight \(Y \) primitively with \(U \to |F[U]| \). Apply \(G_1 = \{U \cap Y : U \in G\} \) to the induction hypothesis to obtain a \(2^{z-j-1}\)-split \(X_1 = (X_1, X_2, \ldots, X_{2^{z-j-1}}) \) of \(Y \) and subfamily \(G' \subset G \) such that \(\|G'\| > (1 - 4^{z-j}e^{-m^a}) \|G\| \), and \(|U \cap X_j - 2^{-z}m| < \delta_z \) for every \(j' \in [2^{z-j-1}] \) and \(U \in G' \).

Replace \(G \) by \(G' \). Similarly construct \(G_2 \subset 2^{X' - Y} \) to obtain a \(2^{z-j-1}\)-split \(X_2 \) of \(X' - Y \) and new \(G' \) that satisfy the two conditions.

Concatenate the two splits \(X_i \) to construct the \(2^{z-j}\)-split \(X \) of \(X' \). As
\[
\left(1 - 4^{z-j}e^{-m^a} \right)^2 \left(1 - e^{-m^a} \right) > \left(1 - 4^{r-j}e^{-m^a} \right),
\]
the obtained \(X \) and \(G' \) meet the two desired conditions. We have proven the induction step completing the proof. \(\square \)

For \(G = F \) in \(X \) weighted primitively with \(U \to |F[U]| \), obtain such an \(r \)-split \(X = (X_1, X_2, \ldots, X_r) \) of \(X \) and \(G' \) by the lemma. Replace \(F \) by \(G' \) and \(b_* \) by \(b_*/2 \), then the new \(F \) satisfies \(|U \cap X_j - \tilde{q}| < \delta_z \) for each \(j \in [r] \) and \(U \in F \), in addition to all the conditions seen above.

We now construct three sets \(C_i \) and subfamilies \(F_i \subset F \) \((i \in [3]) \) by a recursive process with the index \(j \in [r] \): initially set \(C_i = \emptyset \) and \(F_i = F \) for all \(i \). At the beginning of the \(j \)th trial, we are given \(C_i \) and \(F_i \) with \(|C_i| < jqm^{-\epsilon} \), and the \(\Gamma(b_j, 2) \)-condition of \(F_i \), i.e., \(|F_i[S]| < 2b_j^{-1} |F_i| \) for every nonempty \(S \subset X \), where
\[
b_j = \epsilon b_* \left(1 - \frac{1}{r} \right)^{j-1}.
\]

Putting
\[
Q = [(1 - \epsilon)q, (1 + \epsilon)q] \cap \mathbb{Z},
\]
find and fix \(q_{i,j} \in Q \) such that \(|U : U \in F_i, |U \cap X_j| = q_{i,j}| \) is maximum. Also let \(S_i \) be a maximal set in \(X - C_i \) such that \(|F_i[S_i]| \geq b_j^{-1} |F_i| \). Update \(F_i \) and \(C_i \) by
\[
F_i \leftarrow F_i[S_i], \quad \text{and} \quad C_i \leftarrow C_i \cup S_i,
\]
where \(\leftarrow \) represents substitution for update. Let the other two \(F_i' \) \((i' \in [3] - \{i\}) \) exclude \(S_i \), i.e., update them by \(F_i' \leftarrow F_i' \cap (X \setminus S_i) \). Also performing \(j \leftarrow j + 1 \), continue to the next trial if \(j \leq r \). This completes the description of our recursive process.
Right after the update $F_i \leftarrow F_i[S_i]$, we have $|S_i| < qm^{-\epsilon}$ and the $\Gamma(b_j)$-condition of F_i; by the $\Gamma(b_j-1,2)$-condition given at the beginning of the jth trial,

\[
|F_i[S]| < \frac{2(1+\epsilon)q}{b_{j-1}}|F_i| < m \left(1 - \frac{1}{r}\right)^{|S|} b_j^{-|S|}|F_i|,
\]

so $|S_i|$ must be less than $qm^{-\epsilon}$ while the new F_i satisfies the $\Gamma(b_j)$-condition. After excluding S_i of the other two F_i, the family F_i correctly satisfies the $\Gamma(b_j,2)$-condition.

By these, the obtained objects satisfy that:

A) C_i are three mutually disjoint sets each with $|C_i| < m^{1-\epsilon}$,

B) $F_i \subset F[C_i] \cap (X-U_{\ell \in [m]} C_{\ell^i})$ with $|F_i| > m^{-\epsilon} b_j^{-|C_i|}|F|$ and the $\Gamma(b_r,2)$-condition,

C) and $|U \cup X_j| = q_i, j \in \{1,2\}$ and $U \in F_i$. □

4.2. **Recursive Updates on X.** Put $F_{i,0} = F_i$ and $C_{i,0} = C_i$ freeing the variables F_i and C_i. Also update $b_i \leftarrow eb_i$ with which we use the same b_j as above. The families satisfy $|F_{i,0}| > b_i^{m-|C_{i,0}|}$ and the $\Gamma(b_r)$-condition in $X - C_{i,0}$, embedded in X the way C) describes.

We show the following property for every $j \in [r+1]$.

Property Π_j: there exist three mutually disjoint sets $C_i \supset C_{i,0}$ and subfamilies $F_i \subset F_{i,0}$ satisfying the following conditions.

i) $F_i \subset F_{i,0}[C_i] \cap (X-U_{\ell \in [m]} C_{\ell^i})$ such that $|F_i| > \epsilon^{j}(eb_i)^{-|C_{i,0}|} |F_{i,0}|$,

ii) If $j \leq r$,

a) \[
\sum_{u \in [r], m \geq 2} \frac{|F_i[S]|^g}{\frac{b_j^{-g-1} u}{m_u}} < |F_i|^g,
\]

where

\[m_u = (g-1)m, \quad \text{and} \quad Z_j = \bigcup_{p=j}^r X_p - C_i, \]

b) and the $\Gamma(b_j m^{-\epsilon})$-condition of F_i in Z_j,

iii) $U \cap U' \cup \bigcup_{j \in [j-1]} X_{j'} = \emptyset$ for each $U \in F_i$ and $U' \in F_{i'}$ with $i' \in [3] - \{i\}$.

As Π_{r+1}-iii) means three mutually disjoint sets in F_i, our task here is to prove Π_j by induction on j. For the basis $j = 1$, choose $C_i = C_{i,0}$ and $F_i = F_{i,0}$ satisfying Π_1-i) to Π_1-ii). Here Π_1-ii)-a) holds since $\sum_{S \in (X)} |F_i[S]|^g < b_j^{g-1} u \left(\frac{m_u}{u}\right)|F_i|^g$ for every $u \in [m]$, by the $\Gamma(b_*)$-condition of F_i. This confirms the basis.

Assume Π_j and prove Π_{j+1}. When we are given C_i and F_i of Π_j, write for simplicity

\[b = b_j, \quad Z = Z_{j+1}, \quad X_0 = X_j - C_i, \]

\[q_* = q_j - |X_j \cap C_i|, \quad n_* = |X_j|, \quad \text{and} \quad H = \left(\frac{X_*}{q_*}\right). \]

\footnote{We say $G \subset (X)$ satisfies the $\Gamma(b_*)$-condition in $X' \subset X$ if $|G[S]| < b_*^{-|S|} |G|$ for every nonempty $S \subset X'$.}
We may use \(s, t, u \in \mathbb{Z}_{\geq 0} \) as summation/product indices. Obvious floor functions are omitted in the rest of the proof.

The induction step will update \(C_i \) and \(\mathcal{F}_i \) given by \(\Pi_j \), so they satisfy \(\Pi_{j+1} \). We complete it in seven steps.

Step 1. Construct a family \(\mathcal{Y}_i \) of \(Y \in \binom{X^*_i}{n_{v, i}^*} \) such that \(\mathcal{F}_i \cap (X^*_m \cup Y) \) is sufficiently large. Fix each \(i \in [3] \) assuming \(q_\ast > 0 \). Weight \(X_\ast \) by \(w : (2^{X_\ast})^2 \to \mathbb{Z}_{\geq 0} \) primitively with \(V \mapsto |\mathcal{F}_i[V]| \), inducing the norm \(\| \cdot \| \). Then the family \(\mathcal{H} \) satisfies the \(\Gamma_2 \left(\frac{b}{q_\ast m^*}, 1 \right) \)-condition on \(\| \cdot \| \), since

\[
\sum_{V_1, V_2 \in \mathcal{H}} w(V_1, V_2) = \sum_{V_1, V_2 \in \mathcal{H}} |\mathcal{F}_i[V_1]| \cdot |\mathcal{F}_i[V_2]| \leq \sum_{T \in (X^*_i)} |\mathcal{F}_i[T]|^2
\]

\[
< \left| \mathcal{F}_i \right|^2 (bm^-\epsilon)^u \left(\frac{q_\ast}{u} \right) \leq \left(\frac{b}{q_\ast m^*} \right)^{-u} \| \mathcal{H} \|^2,
\]

for each \(u \in [q_\ast] \), by \(\Pi_{j-1}) \)-b) and \(\| \mathcal{H} \| = |\mathcal{F}_i| \).

Apply Theorem 2.3 to \(\mathcal{H} \). There exists a family \(\mathcal{Y}_i \subset \binom{X^*_i}{n_{v, i}^*} \) such that \(|\mathcal{Y}_i| > \binom{n_{v, i}^*}{n_{v, i}^*(1 - \epsilon)} \), and

\[
|\mathcal{F}_{Y, i}| > \frac{\binom{n_{v, i}^*}{q_\ast} \cdot |\mathcal{F}_i| (1 - \epsilon)}{\binom{n_{v, i}^*}{q_\ast}} \text{ for every } Y \in \mathcal{Y}_i,
\]

where \(\mathcal{F}_{Y, i} := \mathcal{F}_i \cap \left(X - X_\ast \cup Y \right) \).

Step 2. With another weight \(w \) on \(X_\ast \), confirm some \(\Gamma_g \)-condition of \(\mathcal{H} \). For each \(i \), skip this step, Steps 3, 4 and 6 if \(j = r + 1 \) or \(q_\ast = 0 \). Denote by \(S \) a subset of \(X_\ast \), and by \(T \) a nonempty subset of \(Z \). Define

\[
w_T : (2^{X^*_i})^g \to \mathbb{R}_{\geq 0}, \quad (V_1, V_2, \ldots, V_g) \mapsto \prod_{t=1}^g |\mathcal{F}_i[V_t \cup T]|^{\frac{1}{b - (g - 1)T}} (|T|)^{\frac{m^*}{|T|}}.
\]

for each \(T \) inducing the norm \(\| \cdot \|_T \). Reset \(w \) and \(\| \cdot \| \) by

\[
w : (2^{X^*_i})^g \to \mathbb{R}_{\geq 0}, \quad V \mapsto \sum_{s \leq u \leq m} w_T(V).
\]

Also denote

\[
w_S, T := \frac{|\mathcal{F}_i[S \cup T]|}{b^{-(1 - \frac{1}{u})T} (m^* |T|)^{\frac{1}{g}}}, \quad \text{for each } S \text{ and } T,
\]

\[
\gamma_T := |\mathcal{F}_i|^{-g} \sum_{s \leq u \leq m} \frac{|\mathcal{F}_i[S \cup T]|^g}{b^{-(g - 1)T} (m^* |T|)} (\frac{m^*}{s^*}), \quad \text{for each } T,
\]

\[
b_g := \left(\frac{b^{1 - \frac{1}{u}}}{2^g m^*} \right)^{\frac{b_g}{m^*}}, \quad b_1 := \frac{b_g}{(g - 1)q_\ast}, \quad \text{and } h := \left(\frac{|\mathcal{F}_i|}{\| \mathcal{H} \|} \right)^g.
\]

This step shows the \(\Gamma_g \left(b_1, h \right) \)-condition of \(\mathcal{H} \) on \(\| \cdot \| \).

See the following remarks.
D) For each S and T,
\[
\sum_{(V_1, V_2, \ldots, V_g) \in \mathcal{H}[S]^g} \prod_{i=1}^g |\mathcal{F}_i[V_i \cup T]| = |\mathcal{F}_i[S \cup T]|^g,
\]
so
\[
|\mathcal{H}[S]|^g = \sum_{V \in \mathcal{H}[S]^g} w(V) = \sum_{r \leq s \leq m} \sum_{T \in \binom{\mathcal{S}}{r}} w_T(V) = \sum_{r \leq s \leq m} \sum_{T \in \binom{\mathcal{S}}{r}} |\mathcal{F}_i[S \cup T]|^g.\]

E) $\sum_{r \leq s \leq m} \gamma_T < 1$ by Π_j-ii)-a).

F) For each T,
\[
\sum_{o \leq r \leq s, \quad s \in \binom{\mathcal{S}}{r}} \frac{|\mathcal{H}[S]|^g}{b^{-(g-1)s}(m_*)^s} = \sum_{o \leq r \leq s, \quad s \in \binom{\mathcal{S}}{r}} \sum_{T \in \binom{\mathcal{S}}{s} \cap T} \frac{w_T(V)}{b^{-(g-1)s}(m_*)^s}
\leq \sum_{o \leq r \leq s, \quad s \in \binom{\mathcal{S}}{r}} \frac{|\mathcal{F}_i[S \cup T]|^g}{b^{-(g-1)(s+|T|)}(m_*)^{s+|T|}} = \gamma_T |\mathcal{F}_i|^g.
\]

The inequality holds by D) and
\[
\left(\frac{m_0}{|T|}\right)^s \left(\frac{m_1}{|T|}\right)^{m_0-s} \left(\frac{m_0}{s+|T|}\right)^s \left(\frac{m_0}{|T|}\right)^s \geq \left(\frac{m_0}{s+|T|}\right)^s.
\]

G) h is greater than 1, otherwise
\[
|\mathcal{F}_i|^g \leq |\mathcal{H}|^g = \sum_{o \leq r \leq s, \quad s \in \binom{\mathcal{S}}{r}} \frac{|\mathcal{F}_i[T]|^g}{b^{-(g-1)s}(m_*)^s} < |\mathcal{F}_i|^g,
\]

by D) and Π_j-ii)-a).

H) For each S and T,
\[
w_{S,T} = |\mathcal{H}[S]|_T \leq \frac{\gamma_T}{\mathcal{S}[|S|]} b^{-(1-\frac{1}{\gamma_T})|S|}(m_*)^{\frac{|S|}{m_0}}.
\]
due to F) and
\[
w_{S,T}^g = \frac{|\mathcal{F}_i[S \cup T]|^g}{b^{-(g-1)|T|}(m_*)^{|T|}} = \sum_{V \in \mathcal{H}[S]^g} w_T(V) = |\mathcal{H}[S]|_T^g. \quad \Box
\]

Let us show the Γ_g-condition with the remarks. It suffices to confirm
\[
(4.3) \quad \|P_{s,g}\|_T < \gamma_T b^{-s}(g-1)^{q_*} |\mathcal{F}_i|^g,
\]
for every T and $s \in [(g-1)q_*]$; it is due to E) and
\[
\|P_{s,g}\| = \sum_{V \in P_{s,g}} w(V) = \sum_{V \in P_{s,g}} \sum_{r \leq s \leq m} \sum_{T \in \binom{\mathcal{S}}{r}} w_T(V) = \sum_{r \leq s \leq m} \sum_{T \in \binom{\mathcal{S}}{r}} \|P_{s,g}\|_T.
\]

Here $P_{s,g}$ is defined for \mathcal{H} as in Section 2, i.e.,
\[
(4.4) \quad P_{s,g} = \{V : V \in \mathcal{H}^g, |\text{union}(V)| = gq_* - s\},
\]
for every \(s \geq 0 \). So if we show (4.3) for all \(T \) and \(s \), we have the \(\Gamma_g (b_1, h) \)-condition of \(\mathcal{H} \) on \(\| \cdot \| \).

Fix each \(T \) for the proof. Define

\[
w_{g'} : (2^X)^{g'} \to \mathbb{R}_{\geq 0}, \quad (V_1, V_2, \ldots, V_{g'}) \mapsto \frac{\prod_{i=1}^{g'} |F_i[V_i \cup T]|}{b^{-(1-\frac{1}{s})g'|T|} (m_s)^{\frac{2}{s}}},
\]

for \(g' \in [2, g] \cap \mathbb{Z} \) inducing the norm \(\| \cdot \|_{g'} \). We verify

\[
(4.5) \quad \|P_{s,g'}\|_{g'} < \gamma_{T}^{g'} b_{g'}^{-s} \left(\frac{(g'-1)}{s} \right)^{q_s} |F_i|^{g'},
\]

for every \(g' \) and \(s \), where \(b_{g'} := 2^{g'-g} b_g \), and \(P_{s,g'} \) is given by replacing \(g \) by \(g' \) in (4.4). The case \(g' = g \) means (4.3).

Proof of (4.5) by induction on \(g' \). Fix each \(s \in [(g'-1)q_s] \) for the basis \(g' = 2 \). From H) above,

\[
\|P_{s,2}\|_2 = \sum_{V \in \mathcal{P}_{s,2}} w_2(V) = \sum_{(V_1, V_2) \in \mathcal{P}_{s,2}} \frac{|F_i[V_1 \cup T]| |F_i[V_2 \cup T]|}{b^{-(1-\frac{1}{s})2|T|} (m_s)^{\frac{2}{s}}} \leq \sum_{V_1 \in \mathcal{H}} |F_i[V_1 \cup T]| b^{-(1-\frac{1}{s})|T|} (m_s)^{\frac{2}{s}} \sum_{V_2 \in \mathcal{H} \text{ with } |V_1 \cup V_2| = 2q_s - s} \frac{|F_i[V_2 \cup T]|}{b^{-(1-\frac{1}{s})2|T|} (m_s)^{\frac{2}{s}}} \leq w_{\emptyset, T} \left(\frac{q_s}{s} \right) \max_{S \in \binom{X_s}{2}} w_{S, T} \leq \gamma_T^2 |F_i|^2 b^{-(1-\frac{1}{s})s} m_s^{\frac{2}{s}} \left(\frac{q_s}{s} \right) \leq \gamma_T^2 b^{-s} \left(\frac{q_s}{s} \right) \cdot |F_i|^2,
\]

proving the basis.

Assume true for \(g'-1 \) and prove true for \(g' \). By induction hypothesis,

\[
\sum_{V \in \mathcal{P}_{s,g'-1}} w_{g'-1}(V) = \|P_{s,g'-1}\|_{g'-1} < \gamma_T^{g'-1} b_{g'-1}^{-(1-\frac{1}{s})} \left(\frac{(g'-2)q_s}{s} \right)^{q_s} |F_i|^{g'-1},
\]
for $v \in [(g'-2)q_*]$. Fix any $s \in [(g'-1)q_*]$. Since $P_{v,g'-1} = \emptyset$ if $v > (g'-2)q_*$,
\[
\sum_{v \in \pi} w_{g'-1}(V) \sum_{S \in \text{union}(V)} w_{S,T} \leq \sum_{v \in \min\{s, (g'-2)q_*\}} w_{g'-1}(V) \left(\frac{(g'-1)q_* - v}{s - v} \right) \sum_{S \in \text{union}(V)} w_{S,T}
\]
\[
< \sum_{v=1}^{s} \gamma_T \frac{q_*}{t} b_0^{-v} \left(\frac{(g'-1)q_*}{s} \right) \left| F_i \right|^{g' - 1} \left(\frac{(g'-1)q_* - v}{s - v} \right) \gamma_T \left| F_i \right|^{g' - 1}
\]
\[
< \gamma_T \left(2 b_0 \right)^{-s} \left(\frac{(g'-1)q_*}{s} \right) \left| F_i \right|^{g'} \sum_{v=1}^{s} \left(\frac{s}{v} \right).
\]
The last line is due to $\left(\frac{(g'-2)q_*}{v} \right) \left(\frac{(g'-1)q_* - v}{s - v} \right) < \left(\frac{(g'-1)q_*}{v} \right) \left(\frac{(g'-1)q_* - v}{s - v} \right)$
$= \left(\frac{(g'-1)q_*}{s} \right) \left(\frac{s}{v} \right)$ for every v.

For $v = 0$, we have
\[
\sum_{v \in \pi} w_{g'-1}(V) \leq w_{g',T} \leq \gamma_T \left(2 b_0 \right)^{-s} \left(\frac{(g'-1)q_*}{s} \right) \left| F_i \right|^{g'},
\]
by H), so
\[
\sum_{V \in P_{v,g'}} w_{g'-1}(V) \sum_{S \in \text{union}(V)} w_{S,T} < \gamma_T \left(2 b_0 \right)^{-s} \left(\frac{(g'-1)q_*}{s} \right) \left| F_i \right|^{g'}.
\]
As $w_{S,T} = \sum_{V \in \mathcal{M}[S]} \frac{|F_i[V \cup U]|}{b_0^{-\left(1 - \frac{1}{2}\right)T(i)^{m_*}}} \left(\frac{T(i)}{T} \right)^{\frac{1}{2}}$ for each S, we conclude that
\[
\|P_{s,g'}\|_{g'} = \sum_{V \in P_{s,g'}} w_{g'}(V) = \sum_{V_1,V_2,...,V_{g'} \in P_{s,g'}} \frac{\prod_{v=1}^{g'} |F_i[V_i \cup U]|}{b_0^{-\left(1 - \frac{1}{2}\right)g'|U|^m}} \left(\frac{T(i)}{T} \right)^{\frac{g'}{2}}
\]
\[
\leq \sum_{v \in \pi} w_{g'-1}(V) \sum_{S \in \text{union}(V)} w_{S,T}
\]
\[
< \gamma_T \left(2 b_0 \right)^{-s} \left(\frac{(g'-1)q_*}{s} \right) \left| F_i \right|^{g'} \sum_{v=1}^{s} \left(\frac{s}{v} \right)
\]
\[
= \gamma_T \left(2 b_0 \right)^{-s} \left(\frac{(g'-1)q_*}{s} \right) \left| F_i \right|^{g'},
\]
completing the induction step.

This confirms (5), hence the $\Gamma_g(b_t, h)$-condition of \mathcal{H} on $\| \cdot \|$ as well.

Step 3. Remove Y from \mathcal{Y}_i such that $\sum_{T \in \mathcal{G}(z)} |F_{Y,T}|^g$ is too large for any $u \geq r$.

With the Γ_g-condition meeting
\[
b_t > \frac{4q^{2n_*}}{n_* / 4}, \quad \text{and} \quad h > 1 \text{ from G),}
\]
apply Corollary 2.2 to \(\mathcal{H} \). There are \([1 - \epsilon) \binom{n_*/4}{(n_*/4)}] \) sets \(Y \in \binom{X_*}{n_*/4} \) such that

\[
\sum_{r \leq u \leq m \atop T \in \binom{Z}{1}} b^{-3(r-1)u} \frac{|F_{Y,T}|^g}{b^{-(g-1)u}\binom{n_*/4}{u}} = \sum_{V \in \binom{\mathcal{H} \cap (Y,b)}{1}} w(V) < \frac{(1 + \frac{h}{g})^{\binom{n_*/4}{q_*/4}}}{\epsilon^{\binom{n_*/4}{q_*/4}}} \|\mathcal{H}\|^g < \frac{2^{\binom{n_*/4}{g}}}{\epsilon^{\binom{n_*/4}{g}}} |F_i|^g < \frac{3}{\epsilon} |F_{Y,i}|^g,
\]

since (4.2). As \(b = b_{j+1} (1 - r^{-1})^{-1} \), the inequality means

\[
(4.6) \quad \sum_{r \leq u \leq m \atop T \in \binom{Z}{1}} b^{-3(r-1)u} \frac{|F_{Y,T}|^g}{b^{-(g-1)u}\binom{n_*/4}{u}} < \epsilon |F_{Y,i}|^g.
\]

Delete \(Y \) such that \(-4.6\) from \(\mathcal{Y}_i \). Now the family satisfies \(|\mathcal{Y}_i| > (1 - 2\epsilon) \binom{n_*/4}{(n_*/4)} \), and (4.2) \& (4.6) for every \(Y \in \mathcal{Y}_i \).

Step 4. Further delete some undesired \(Y \) from \(\mathcal{Y}_i \). Reset \(b \) by \(b \leftarrow eb_{j-m^{-\epsilon}} \). Let \(w_T, \| \cdot \|_T, w_{S,T}, \gamma_T, \) and \(b_T \) be the same as Step 2 with the updated \(b \). Also let

\[
w : \mathcal{H}^g \rightarrow \mathbb{R}_{\geq 0}, \quad V \mapsto \sum_{T \in \binom{Z}{1}} w_T(V),
\]

re-defining \(\| \cdot \| \) and \(h = |\mathcal{F}|^g \|\mathcal{H}\|^{-g} \) accordingly.

This just considers \(u = 1 \) instead of all \(u \in [r, m] \cap \mathbb{Z} \). The following statements can be verified similarly to Steps 2 and 3.

- From \(\Pi_j \text{-ii)-b)},

\[
\sum_{s \in \binom{Z}{1}} b^{-3(s-1)u} \frac{|F_{i,T}|^g}{b^{-(g-1)u}\binom{n_*/4}{u}} < |F_i|^g, \quad \Rightarrow \quad \sum_{T \in \binom{Z}{1}} \gamma_T < 1.
\]

- \(h > 1, \) and \(w_{S,T} = \|\mathcal{H}[S]\|_T \) for all \(S \subseteq X_* \) and \(T \in \binom{Z}{1} \).

- \(\mathcal{H} \) satisfies the \(\Gamma_g (b_1, h) \)-condition on \(\| \cdot \| \).

- \(\sum_{T \in \binom{Z}{1}} \frac{|F_{Y,T}|^g}{b^{-(g+1)u}\binom{n_*/4}{u}} < \frac{3}{\epsilon} |F_{Y,i}|^g, \) for more than \(1 - \epsilon \) of all \(Y \in \binom{X_*}{n_*/4} \), meaning

\[
(4.7) \quad |F_{Y,i}|^g < \frac{3}{\epsilon b_{j+1}} |F_{Y,i}|^g, \quad \text{for every } T \in \binom{Z}{1}.
\]
Eliminate all Y with $\neg (4.7)$ from \mathcal{V}.

Step 5. Update \mathcal{F}_i so they satisfy $\Pi_{j+1-i)}$ and $iii)$. The obtained \mathcal{V} is a subfamily of $\binom{X_j}{n_s/4}$ such that $|\mathcal{V}| > \binom{n_s/4}{2} (1 - 3\epsilon), (4.8), \text{ and } (4.6) \land (4.7)$ for every $Y \in \mathcal{V}$.

Extend the $n_s/4$-sets in \mathcal{V} to n'-sets in the universal set X_j where $n' := 3q + |X_j|/4$. Noting Remarks L) and M) of Section 2 with $q_s + n_s/4 < n' < |X_j|/3$, we see the obtained family $\mathcal{V}' := Ext(\mathcal{V}, n')$ has a cardinality at least $\left(\binom{|X_j|}{n_s/4}(1 - 3\epsilon)\right)$. If $q_s = 0$, the same goes for $\mathcal{V}' := \binom{X_j}{n_s/4}$.

Performing the above for the three i, we have

$$\left[\binom{|X_j|}{n'} \left(\frac{|X_j| - n'}{n'} \left(\frac{|X_j| - 2n'}{n'} \left(1 - 9\epsilon\right)\right)\right)\right]$$

triples (Y_1, Y_2, Y_3) such that $Y_i \in \mathcal{V}'_i$, and Y_i are mutually disjoint. Fix such a triple (Y_1, Y_2, Y_3).

Choose any $Y \in \mathcal{V}_i \cap \binom{n_s/4}{2}$ for each i, and update \mathcal{F}_i by $\mathcal{F}_i \leftarrow \mathcal{F}_Y$. By construction so far, the new \mathcal{F}_i satisfy:

I) $\Pi_{j+1-i)$ and $iii)$.
J) If $j \leq r$,

$$\sum_{s \in \binom{\mathcal{V}}{2}} \frac{|\mathcal{F}_i[S]|^g}{b_{(g-1)u}(m_s - v)} < \epsilon|\mathcal{F}_i|^g$$

K) and $|\mathcal{F}_i[T]| < \frac{m_s^{v}}{b_{(g-1)u}|\mathcal{F}_i|}$ for each $T \in \binom{\mathcal{V}}{2}$.

Step 6. Find a set $S \subset Z$ meeting some desired conditions. Reset b by $b \leftarrow b_{j+1}$. Let S denote a subset of Z. Find the maximum $v \in [0, m] \cap Z$ such that

$$(4.8) \sum_{s \in \binom{\mathcal{V}}{2}} \frac{|\mathcal{F}_i[S \cup T]|^g}{b_{(g-1)u}(m_s - v)} \geq |\mathcal{F}_i|^g.$$

There does exist such a v less than r, as (4.8) is true for $v = 0$ and false for $v \geq r$ by J).

Below we show the existence of $S \in \binom{\mathcal{V}}{2}$ satisfying the three conditions.

1) $\sum_{r \leq u \leq m} \frac{|\mathcal{F}_i[S \cup T]|^g}{b_{(g-1)u}(m_s - v)} < \frac{1}{2}|\mathcal{F}_i|^g$.

2) $\sum_{1 \leq u \leq r} \frac{|\mathcal{F}_i[S \cup T]|^g}{b_{(g-1)u}(m_s - v)} < |\mathcal{F}_i|^g$.

3) $|\mathcal{F}_i[S]| > \frac{1}{2b^v}|\mathcal{F}_i|$.

Assume $v > 0$, otherwise these are clearly true by J).

Observe here that

$$\sum_{s \in \binom{\mathcal{V}}{2}} \frac{|\mathcal{F}_i[S]|^g}{b_{(g-1)u}(m_s - v)} \leq 2^{-g+1}|\mathcal{F}_i|^g.$$
similarly to having found $\Pi_{1-ii})$-a) before Step 1. Therefore, if there were no $S \in \binom{Z}{v}$ such that 1) \land 2) \land 3), one of the following would be true:

$$- \sum_{s \in \binom{Z}{v}} \frac{\left| \mathcal{F}_i[S] \right|^g}{b^{-(g-1)v} \binom{m_*}{v}} \geq \frac{1}{3} \left| \mathcal{F}_i \right|^g;$$

$$- \sum_{s \in \binom{Z}{v}} \frac{\left| \mathcal{F}_i[S] \right|^g}{b^{-(g-1)v} \binom{m_*}{v}} \geq \frac{1}{3u} \left| \mathcal{F}_i \right|^g, \text{ for some } u \in [r - 1],$$

where 2)-u means

$$\sum_{T \in \binom{Z - S}{u}} \frac{\left| \mathcal{F}_i[S \cup T] \right|^g}{b^{-(g-1)u} \binom{m_*}{u}} < \frac{1}{2u} \left| \mathcal{F}_i[S] \right|^g.$$

Call the two cases Cases 1 and 2, respectively.

We show a contradiction in Case 1 from

$$\sum_{s \in \binom{Z}{v}} \sum_{r \leq s \leq m} \frac{\left| \mathcal{F}_i[S \cup T] \right|^g}{b^{-(g-1)(v+u)} \binom{m_*}{v+u}}$$

$$= \sum_{s \in \binom{Z}{v}} \frac{1}{b^{-(g-1)v} \binom{m_*}{v}} \sum_{r \leq s \leq m} \frac{\left| \mathcal{F}_i[S \cup T] \right|^g}{b^{-(g-1)u} \binom{m_*-v}{u}}$$

$$\geq \sum_{s \in \binom{Z}{v}} \frac{\left| \mathcal{F}_i[S] \right|^g}{2b^{-(g-1)v} \binom{m_*}{v}}$$

The inequality means

$$\sum_{r \leq s \leq m} \frac{\left| \mathcal{F}_i[S'] \right|^g}{b^{-(g-1)v'} \binom{m_*}{v'}} \geq \frac{1}{6} \left| \mathcal{F}_i \right|^g.$$

See it as follows. Let

$$r_{v'} = \left| \mathcal{F}_i \right|^{-g} \sum_{s \in \binom{Z}{v'}} \frac{\left| \mathcal{F}_i[S'] \right|^g}{b^{-(g-1)v'} \binom{m_*}{v'}},$$

for each $v' \in [r, m] \cap Z$. It satisfies

$$\sum_{s \in \binom{Z}{v}, T \in \binom{Z - S}{u}} \left| \mathcal{F}_i[S \cup T] \right|^g \leq \sum_{s' \in \binom{Z}{v'}} \left| \mathcal{F}_i[S'] \right|^g \binom{v'}{v} \left(\frac{v'}{v} \right)^g = r_{v'} \left| \mathcal{F}_i \right|^g b^{-(g-1)v'} \binom{m_*}{v'} \binom{v'}{v},$$

since there are at most $\binom{v'}{v}$ pairs (S, T) such that $S \cup T$ equals each given $S' \in \binom{Z}{v'}$. Summing up

$$\sum_{s \in \binom{Z}{v}, T \in \binom{Z - S}{u}} \frac{\left| \mathcal{F}_i[S \cup T] \right|^g}{b^{-(g-1)v'} \binom{m_*}{v'}} \binom{v'}{v} \leq r_{v'} \left| \mathcal{F}_i \right|^g.$$
for all v', we see $\neg (1.10) \Rightarrow \neg (1.9)$. Hence (1.10). This contradicts J), so Case 1 is impossible to occur.

Given $u \in [r - 1]$ in Case 2, similarly find
\[
\sum_{s \in \binom{Z}{u}} \sum_{t \in \binom{T^c}{u}} |F_i[T \cup T]|^g b^{-(g-1)(v+u)}(m_v)(v+u)\]
\[
\geq 2^{(g-2)u} \sum_{s' \in \binom{Z}{u}} |F_i[s']|^g b^{-(g-1)v}(m_v) > \left(\frac{2^{g-2}}{3}\right)^u |F_i|^g,
\]
meaning
\[
\sum_{s' \in \binom{Z}{u}} |F_i[s']|^g b^{-(g-1)v}(m_v) > |F_i|^g.
\]
It is against the maximality of v such that (4.8).

For the F_i updated by Step 5, we have proven the existence of $S \subset Z$ such that $|S| < r$ and 1) \land 2) \land 3). Denote it by S_i.

Step 7. Perform the final updates on C_i and F_i for Π_j+1. Let $i = 1$. With the obtained S_i, update C_i by $C_i \leftarrow C_i \cup S_i$ and F_i by $F_i \leftarrow F_i[C_i]$. Then let the other two F_i' ($i' \in [3] \setminus \{i\}$) exclude S_i as we did before in the preprocess with $F_i' \leftarrow F_i \cap (X - S_i)$. By K) and $|S_i| < r$, this could reduce $|F_i'|$ only by a factor greater than $1 - m^{-\delta/2}$, thus $|F_i'|^g$ by one greater than $1 - \epsilon$, affecting the subsequent updates trivially. We note here that the same result at the end of Step 6 holds even if ϵ in J) is replaced by 2ε.

Set $i = 2$ to perform the same construction, where F_i can exclude S_2 by 2) of Step 6 since it means the $\Gamma (2bm^{-r})$-condition of F_i in Z.

Finally set $i = 3$ to perform the same construction on F_i with the other F_i' excluding S_3. Then the three new C_i and F_i all satisfy Π_j+1: if $j \leq r$, the property Π_j+1-i) is true by I), $|S_i| < r$ and 3) of Step 6. Also ii)-a) holds by 1), and ii)-b) by 2).

This completes our updates proving the induction step $\Pi_j \Rightarrow \Pi_j+1$. We now have Theorem 1.1.

APPENDIX 1: PROOF OF LEMMA 2.5

Lemma 2.5. For $F \subset (X_m)$ such that $m \leq \frac{n}{2}$,
\[
\kappa \left(\binom{X}{2m} - \text{Ext}(F, 2m)\right) \geq 2\kappa \left(\binom{X}{m} - F\right).
\]

Proof. For each $S \in \binom{X_m}{m} - F$ and $j \in [0, m] \cap \mathbb{Z}$, let
\[
F_j = \{T - S : T \in F, |T - S| = j\}.
\]
There exists j such that $\kappa(F_j)$ in the universal set $X - S$ is at most $\kappa(F)$ in X, otherwise
\[
|F| < \sum_{j \geq 0} \binom{m-j}{n-m} \binom{n-m}{j} e^{-\kappa(F)} = \binom{n}{m} e^{-\kappa(F)} = |F|.
\]
Taking $Ext(F_j, m)$ in $X - S$ with Remark A of Sec. 2.3, we see there are $\lceil \binom{n-m}{m} e^{-\kappa(F)} \rceil$ pairs (S, U) such that $U \in \binom{X-S}{m}$ and $S \cup U \in Ext(F, 2m)$ for each $S \in \binom{X}{m} - F$.

Now consider all pairs (S, U) such that S and U are disjoint m-sets, and $S \cup U \in Ext(F, 2m)$. Their total number is at least $\binom{n}{m} \binom{2m}{m} (1-z)^n$ where $z = e^{-\kappa(F)}$.

As a $2m$-set produces at most $\binom{2m}{m}$ pairs (S, U), there are at least $\lceil \binom{n}{m} (1-z^2) \rceil$ sets in $Ext(F, 2m)$. The lemma follows.

\textbf{Appendix 2: Asymptotics of Binomial Coefficients}

Let
\begin{equation}
(A.11) \quad s : (0, 1) \to (0, 1), \quad t \mapsto 1 - \left(1 - \frac{1}{t}\right) \ln(1-t).
\end{equation}

By the Taylor series of $\ln(1-t)$, the function is also expressed as
\begin{equation}
(A.12) \quad s(t) = 1 + \left(1 - \frac{1}{t}\right) \sum_{j \geq 1} \frac{t^j}{j} = 1 + \sum_{j \geq 1} \frac{t^j}{j} - \sum_{j \geq 0} \frac{t^j}{j+1} = \sum_{j \geq 1} \frac{t^j}{j(j+1)}.
\end{equation}

We have the following double inequality.

\textbf{Lemma A.2.} For $x, y \in \mathbb{Z}_{>0}$ such that $x < y$,
\[
\frac{1}{12x+1} - \frac{1}{12y} - \frac{1}{12(x-y)} < z < \frac{1}{12x} - \frac{1}{12y} - \frac{1}{12(x-y) + 1},
\]
where $z = \ln\left(\frac{x}{y}\right) - y \left[\ln \frac{x}{y} + 1 - s\left(\frac{y}{x}\right)\right] - \frac{1}{2} \ln\left\frac{x}{2\pi y(x-y)}\right..$

\textbf{Proof.} Stirling’s approximation in form of double inequality is known as
\[
\sqrt{2\pi n} \left(\frac{n}{e}\right)^n \exp\left(\frac{1}{12n+1}\right) < n! < \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \exp\left(\frac{1}{12n}\right),
\]
for any $n \in \mathbb{Z}_{>0}$ \cite{10}. By this we find
\[
\frac{1}{12x+1} - \frac{1}{12y} - \frac{1}{12(x-y)} < \ln\left(\frac{x}{y}\right) < \frac{1}{12x} - \frac{1}{12y} - \frac{1}{12(x-y) + 1},
\]
where $u = \sqrt{\frac{x}{2\pi y(y-x)} y^y (x-y)^{x-y}}$.

Since $\ln\left(\frac{x}{y}\right)^y y^y (x-y)^{x-y} = y \left[\ln \frac{x}{y} + 1 - s\left(\frac{y}{x}\right)\right]$ by (A.11), it proves the lemma. \hfill \Box

The lemma is useful to approximate $\ln\left(\frac{x}{y}\right)$ by z to an error less than $1/6$. It derives the standard estimate of the binomial coefficient, i.e., \((\frac{x}{y})^y < \left(\frac{ex}{y}\right)^y\), due to $-y s\left(\frac{y}{x}\right) + \frac{1}{10x} < 0$ from (A.12) and $\frac{x}{2\pi y(x-y)} < 1$. So
\[
\left(\frac{x}{y}\right)^y \leq \left(\frac{x}{y}\right)^y < \left(\frac{ex}{y}\right)^y,
\]
for every $x, y \in \mathbb{Z}_{>0}$ with $x \geq y$, as \((\frac{x}{y})^y = \prod_{j=0}^{y-1} \frac{x}{y-j} \geq \left(\frac{x}{y}\right)^y\).

We also have:
Lemma A.3. For \(x \in \mathbb{Z}_{>1}, \ y \in (1, x) \cap \mathbb{Z}, \ x' \in [1, x/2] \cap \mathbb{Z}, \) and \(y' \in [y-1] \) with \(y' > x' + y - x, \)

\[
\ln \left(\frac{x}{y} \right) - \ln \left(\frac{x - x'}{y - y'} \right) \left(\frac{x'}{y'} \right) > \frac{7(y' - x')^2}{8y} + \frac{-1 + \ln 2\pi z}{2},
\]

where \(z = \left(1 - \frac{1}{y} \right) \left(1 - y' \right) \left(1 - \frac{y'}{x} \right) \left(1 - \frac{y}{x} \right)^{-1}. \)

Proof. Apply Lemma A.2 to the three binomial coefficients to see

\[
\ln \left(\frac{x - x'}{y - y'} \right) \left(\frac{x'}{y'} \right) - \ln \left(\frac{x}{y} \right) < u \sum_{j \geq 1} \frac{v_j}{j(j+1)} + \frac{1 + \ln \frac{y}{x}}{2},
\]

where

\[
u_j = \frac{(y - y')^j}{(x - x')^j} + \frac{y^{j+1}}{x^{j+1}},
\]

and

\[
w = \frac{x - x'}{y(y - y')(x - x' - y + y')}, \quad \frac{x'}{y'(x' - y')} \frac{y(x - y)}{x}.
\]

As \(w \leq \frac{1}{z} \) from \(\frac{y}{y'(y - y')} \leq \left(1 - \frac{1}{y} \right)^{-1}, \) it suffices to show

(A.13) \(v_j \geq 0, \) for all \(j \in \mathbb{Z}_{>0}, \)

and

(A.14) \(u < -\frac{7\Delta^2}{8y}, \) where \(\Delta = y' - \frac{x' y}{x}. \)

To see (A.13), put

\[
a = \frac{x'}{x}, \quad t = \frac{y}{y'}, \quad \text{and} \quad f = \frac{(1 - t)^{j+1}}{(1 - a)^j} + \frac{a^{j+1}}{a^j},
\]

for a given \(j. \) Then the desired condition holds if \(f \geq 1 \) for each fixed \(a \in (0,1) \)

and all \(t \in \mathbb{R}_{>0}. \) It is straightforward to check its truth.

We show (A.14) finding that

\[
u = y' \ln \frac{x'y}{xy'} + (y - y') \ln \frac{1 - x'}{1 - x'},
\]

\[
= -\Delta \left(\frac{1}{p} + 1 \right) \ln (1 + p) - \Delta \left(\frac{1}{q} - 1 \right) \ln (1 - q),
\]

where \(p = \frac{x\Delta}{x'y}, \) and \(q = \frac{\Delta}{y(1 - \frac{y}{x})}. \)

Observe facts.

- \(|q| < 1 \Leftrightarrow \frac{2x'}{x} - 1 < \frac{y'}{y} < 1 \) is true by \(x' \leq x/2. \)
- By the Taylor series of the natural logarithm,
 \[
 \left(\frac{1}{p} + 1 \right) \ln (1 + p) = 1 - \sum_{j \geq 1} \frac{(-p)^j}{j(j+1)}, \quad \text{if } |p| < 1,
 \]
 and
 \[
 \left(\frac{1}{q} - 1 \right) \ln (1 - q) = -1 + \sum_{j \geq 1} \frac{q^j}{j(j+1)}, \quad \text{as } |q| < 1,
 \]
- So
 \[
 u = \Delta \sum_{j \geq 1} \frac{(-p)^j}{j(j+1)} - \Delta \sum_{j \geq 1} \frac{q^j}{j(j+1)} < \Delta \left(\frac{-p^2 + p^2}{6} - \frac{q^2}{2} \right) < \Delta^2 \frac{y}{y},
 \]
 if |p| < 1.
- \[
 \left(1 + \frac{1}{p} \right) \ln (1 + p) \geq 2 \ln 2 \text{ if } p \geq 1, \text{ so }
 \]
 \[
 u < (-2 \ln 2 + 1) \Delta - \Delta^2 \frac{y}{2y} < -\frac{7\Delta^2}{8y},
 \]
 since \(\frac{2}{x} = \frac{\Delta}{y} = \frac{\Delta}{y} - \frac{2}{2} \in (0, 1) \).
 Hence (A.14), completing the proof.

References

1. Kostochka, A. V.: A bound of the cardinality of families not containing \(\Delta \)-systems. In: The Mathematics of Paul Erdős, II, pp. 229-235 (1997)
2. Alon, N., Shelpika, A., Umans, C.: On sunflowers and matrix multiplication. Computational Complexity, 22(2), pp. 219-243 (2013)
3. Erdős, P.: On the combinatorial problem which I would most like to see solved. Combinatorica, 1(1), pp. 25-42 (1981)
4. Alweiss, R., Lovett, S., Wu, K., Zhang, J.: Improved bounds for the sunflower lemma. STOC 2020: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pp. 624-630 (2020)
5. Fukuyama, J.: On the extension of an \(m \)-set family. Congressus Numerantium, 173, pp. 35-10, (2005).
6. Fukuyama, J.: An alternative proof of the exponential monotone complexity of the clique function, arXiv:1307.4308, (2013)
7. Razborov, A. A.: Lower bounds on the monotone complexity of some Boolean functions. Dokl. Akad. Nauk SSSR 261(4), pp. 798 - 801 (1985)
8. Alon, N., Boppana, R. B.: The monotone circuit complexity of Boolean functions. Combinatorica, 7, pp. 1-22 (1987)
9. Erdős, P., Rado, R.: Intersection theorems for systems of sets. Journal of the London Mathematical Society, Second Series, 35 (1), pp. 85 - 90 (1960)
10. Robbins, H.: A remark of Stirling’s formula. Amer. Math. Monthly 62, pp. 26-29 (1955)

Departments of Computer Science and Engineering, The Pennsylvania State University, PA 16802, USA
E-mail address: jxf140@psu.edu