Medium mass fragments production due to momentum dependent interactions

Sanjeev Kumar and Suneel Kumar

School of Physics and Material Science, Thapar University Patiala-147004, Punjab (India)

Rajeev K. Puri

Department of Physics, Panjab University, Chandigarh (India)

(Dated: April 6, 2010)

The role of system size and momentum dependent effects are analyzed in multifragmentation by simulating symmetric reactions of Ca+Ca, Ni+Ni, Nb+Nb, Xe+Xe, Er+Er, Au+Au, and U+U at incident energies between 50 MeV/nucleon and 1000 MeV/nucleon and over full impact parameter zones. Our detailed study reveals that there exist a system size dependence when reaction is simulated with momentum dependent interactions. This dependence exhibits a mass power law behavior.

PACS numbers: 25.70.Pq, 25.70.-z, 24.10.Lx

I. INTRODUCTION

The last gem in the field of heavy-ion collisions, namely, multifragmentation has always attracted theoreticians as well as experimentalists [1–5]. Primarily due to the several hidden phenomena that need deeper investigations and secondary due to its connection with nuclear equation of state - a question which always has captured a central place in the research of nuclear physics. The knowledge of the nuclear compressibility is not only relevant for the nuclear physics, it is also vital for other branches such as astrophysics. One should, however, note that the compressibility depends not only on the density but also the entire momentum plane. In other words, equation of state apart from the population of nucleons also depends upon their relative velocities. This can also been seen from the optical potential where the trend is just opposite. In a recent study, Singh and Puri [11] predicted a power law for the system size effects in multifragmentation. In their study, a simple static equation of state was used. In view of the above facts, it is challenging to investigate the role of momentum dependent interactions with respect to multifragmentation & see how system size affects the outcome. Our present aim, therefore, is three fold atleast:

(i) to understand the role of momentum dependent interactions in multifragmentation,
(ii) to study the system size effects in the presence of momentum dependent interactions and (iii) to find a scaling to these system size effects.

This study is done within the frame work of quantum molecular dynamics model. The section II deals with the model, section III discuss the results. Our results are summarized in section IV.

II. THE MODEL

The QMD model is a time dependent many-body theoretical approach which is based on the molecular dynamics picture that treats nuclear correlations explicitly. The two dynamical ingredients of the model are the density dependent mean field and the in-medium nucleon-nucleon cross-section [12]. In the QMD model, each nucleon is represented by a Gaussian wave packet characterized by the time dependent parameters in space $\vec{r}_i(t)$ and in momentum $p_i(t)$ [13]. This wave packet can be represented as:

$$\Phi_i(\vec{r}, \vec{p}, t) = \frac{1}{(2\pi L)^{3/4}} \exp\left(-\frac{(\vec{r} - \vec{r}_i(t))^2}{2L}\right) \exp\left(i\vec{p} \cdot \vec{r}/\hbar\right).$$

(1)
Our total interaction potential V_{tot} is a composite of various terms:

$$V_{tot} = V^{loc} + V^{Yukawa} + V^{Coul} + V^{MDI}.$$

with

$$V^{loc} = t_1\delta(r_i^1 - r_j^2) + t_2\delta(r_i^1 - r_j^2)\delta(r_i^1 - r_j^3),$$

$$V^{Yukawa} = t_3\frac{\exp(-|r_i^1 - r_j^2|/m)}{|r_i^1 - r_j^2|/m},$$

and

$$V^{MDI} = t_4 m^2[t_5(p_i - p_j)^2 + 1]\delta(r_i^1 - r_j^2).$$

Here $m = 1.5\text{ fm}, t_3 = -6.66\text{ MeV}, t_4 = 1.57\text{ MeV}$ and $t_5 = 5 \times 10^{-4}\text{ MeV}^{-2}$.

The momentum dependent interactions can be incorporated by parameterizing the momentum dependence of the real part of optical potential [6].

III. RESULTS AND DISCUSSION

We simulated each reaction at various time steps and stored the phase space. This phase space needs to be clustered. In the present study, we clustered the phase space using the minimum spanning tree (MST) method which binds two nucleons in a fragment if their centroids are closer than 4 fm. In other words, we demand:

$$|r_i^1 - r_j^2| \leq 4\text{ fm}.$$

At present, various reactions were simulated with soft and soft momentum dependent (MDI) equations of state (EOS) with compressibility $K = 200\text{MeV}$. A standard energy dependent nucleon -nucleon cross-section due to Cugnon was also used [1]. In brief, we followed the time evolution till the end of the reaction which, in the present study, is 200 fm/c.

Here each of the reaction $^{40}_{20}\text{Ca} + ^{40}_{20}\text{Ca}, ^{58}_{28}\text{Ni} + ^{58}_{28}\text{Ni}, ^{41}_{31}\text{Bi} + ^{54}_{31}\text{Xe} + ^{131}_{54}\text{Xe}, ^{238}_{92}\text{U} + ^{197}_{79}\text{Au}$ was simulated for 100 events at incident energies between 50 and 1000 MeV/nucleon using different collision geometries. By using the symmetric (colliding) nuclei, system size effects can be analyzed without varying the asymmetry (and excitation energy) of the system. It is worth mentioning that the experimental studies by the MSU mini ball and ALADIN [2, 20] groups, varied the asymmetry of the reaction whereas plastic ball [21] and FOPI experiments [22] are performed for the symmetric colliding nuclei only. In the following, we first discuss the time evolution of different reactions and then shall address the question of momentum dependent interactions and system size effects.

A. Time evolution

The density of the environment surrounding the nucleons of a fragment plays crucial role in deciding the physical process behind their formation. In fig[1] we display the average density $\langle \rho / \rho_0 \rangle$ reached in a typical reaction as a function of the time. The average nucleonic density $\langle \rho / \rho_0 \rangle$ is calculated as [18]

$$\langle \rho / \rho_0 \rangle = \frac{1}{A_T + A_P} \sum_{i=1}^{A_T + A_P} \frac{1}{(2\pi\hbar)^{3/2}} e^{-\left(\sum_{j=1}^{A_T} r_i^j \cdot r_j^i - 2L\right)^2/2L},$$

with r_i^j and r_j^i being the position coordinates of i^{th} and j^{th} nucleons, respectively. We here display the average density at incident energies of 50 and 400 MeV/nucleon. In addition, two colliding geometries corresponding to $\hat{b} = 0$ and $\hat{b} = 0.6$ are also taken. The reaction (at low incident energies) preserves most of the initial correlations and hence only a small change in the density profile occurs. This trend turns to a sharp decrease at higher incident energies. This is due to the fact that higher incident energies lead to highly unstable compressed zone which, does not sustain for a long time and as a result fast emission of nucleons occurs.

A similar trend is also seen for the collision profile which has a direct relation with the density reached in a reaction.

Let us now turn towards multifragmentation. In fig[2] we display the heaviest fragment A_{max} survived in a reaction. The medium mass fragments (MMF’s), defined as $5 \leq A \leq 9$, are displayed in fig[3]. The top panel in both figures is for 50 MeV/nucleon, whereas bottom
FIG. 1: (Color online) Average density \(\langle \rho/\rho_0 \rangle \) as a function of the time. The top panel is at 50 MeV/nucleon, where bottom panel represents the reaction at 400 MeV/nucleon. The left and right hand sides represent, respectively, the central collision \(\hat{b} = 0 \) and peripheral collision \(\hat{b} = 0.6 \). All reactions represent symmetric colliding nuclei \(X + X \), where \(X \) represents the reacting elements.

panel is at 400 MeV/nucleon. The time evolution of the fragments reveals many interesting points: The heaviest fragment \(A_{\text{max}} \) survived in the reaction of heavier systems struggles for a longer time. The soft momentum dependent (SMD) equation of state destroy most of the nucleon-nucleon correlations, therefore, \(A_{\text{max}} \) obtained with SMD EOS is lighter than corresponding soft equation of state \([11] \). Consequently, there is an enhanced emission of the free nucleons, LMF’s (light mass fragments) and MMF’s. We also see an appreciable enhancement in the nucleonic emission (not shown here) at all incident energies and impact parameters. For heavier systems, emission of nucleons continues till the end of the reaction. This is due to the finite collisions happening at the later stage as well as due to the longer reaction time at these incident energies.

It takes longer time for \(A_{\text{max}} \) in heavy systems to be stabilized compared to lighter nuclei, where saturation time for \(A_{\text{max}} \) is much less. The excited \(A_{\text{max}} \) in heavier system continues to emit the nucleons till the end of the reaction. This time is, however, much shorter in lighter nuclei.

The multiplicity of MMF’s has a different story to tell. We now see more fragments in central collisions at 50 MeV/nucleon compared to peripheral collisions. As we

FIG. 2: (Color online) Same as fig.1 but for the time evolution of the heaviest fragment \(A_{\text{max}} \) as a function of the time. The shaded area corresponds to density higher than normal nuclear matter density \(\rho_0 \).

FIG. 3: (Color online) Same as in fig.1 but for the time evolution of multiplicity of MMF’s.
increase the energy, the MMF’s production decreases considerably. This is valid for the central collisions only. The peripheral collisions yield almost same MMF’s. As noted in ref. 11, the static soft EOS is not able to break the initial correlations among the nucleons in peripheral collisions. As soon as momentum dependence is taken into account, the initial correlations among the nucleons are destroyed, resulting in large number of MMF’s. The simple static EOS fails to transfer the energy from the participant to spectator matter. In other words, MDI suppresses the production of free nucleons and LMF’s while the production of MMF’s is enhanced. Overall, we observe enhancement in the multiplicity of medium mass fragments with MDI compared to static equation of state.

B. Final state fragment distribution

As we know, measurements are always done at the end of the reaction. The reaction time is chosen to be \(t = 200 \text{ fm/c} \). It is based on the fact that directed flow saturates by this time. Therefore, it will be of interest to see whether the final state fragment distribution has momentum and system size dependence or not. We display in fig 4 the reduced multiplicity (multiplicity/nucleon) of medium mass fragments (MMF’s). In experimental observations (e.g. FOPI and ALADIN), the nuclear matter is divided into spectator and participant parts 23. In our calculations, this division is made by splitting the reaction into different impact parameter zones that can be related with the spectators/participant matter. The top panel in fig 4 displays the multiplicity of MMF’s at 50 and 100 MeV/nucleon, whereas bottom panel is at 600 and 1000 MeV/nucleon, respectively. The middle panel represents the outcomes at 200 and 400 MeV/nucleon. Each window of the panel contains four different curves that correspond, respectively, to the scaled impact parameter values of \(\hat{b} = 0.0, 0.3, 0.6, 0.9 \). The wide range of incident energy between 50 and 1000 MeV/nucleon and impact parameter between zero and \(b_{\text{max}} \) gives opportunity to study the different dynamics emerging at low, intermediate and higher energies.

The energy received by the target in peripheral collisions is not enough to excite the matter above the Fermi level, resulting in fewer light fragments. As a result, emission of heavier fragments takes place. Irrespective of the incident energy and impact parameter, the multiplicity of medium mass fragments \((5 \leq A \leq 9) \) scales with the size of the projectile that can be parametrized by a power law of the form \(C(A_P)^\tau \); \(A_P \) is the mass of

\[E = 50 \text{ MeV/nucleon} \]
\[E = 100 \text{ MeV/nucleon} \]
\[E = 200 \text{ MeV/nucleon} \]
\[E = 400 \text{ MeV/nucleon} \]
\[E = 600 \text{ MeV/nucleon} \]
\[E = 1000 \text{ MeV/nucleon} \]

\[A \text{ Projectile} \]

\[\tau \text{ Parameter} \]

\[\text{Incident Energy (MeV/nucleon)} \]

\[\text{MMF multiplicity/ nucleon} \]

\[\text{A}_{\text{Projectile}} \]

\[\text{Parameter} \]

\[\text{Incident Energy (MeV/nucleon)} \]

\[\text{MMF multiplicity/ nucleon} \]

\[\text{A}_{\text{Projectile}} \]

\[\text{Parameter} \]

\[\text{Incident Energy (MeV/nucleon)} \]

\[\text{MMF multiplicity/ nucleon} \]

\[\text{A}_{\text{Projectile}} \]

\[\text{Parameter} \]

\[\text{Incident Energy (MeV/nucleon)} \]
the projectile. The values of C and τ depends on the size of fragments as well as on the incident energy and impact parameter of the reaction.

In fig. 5, we plot the power law parameter τ as a function of incident energy and impact parameter. Although, no unique dependence occurs for τ, we can correlate some of its values. No physical correlation can be extracted for the central collisions. This is perhaps due to the complete destruction of initial correlations, moreover, as a result, even no collective flow has been observed in central collisions [24].

IV. CONCLUSION

We have studied the role of momentum dependent interactions in fragmentation by systematically analyzing various reactions at incident energies between 50 and 1000 MeV/nucleon and over full geometrical overlap. The inclusion of momentum dependent interactions leads to less freeze out density in all colliding systems. This happens due to repulsive nature of momentum dependent interactions. The system size effects are found to vary with reaction parameters and incident energies. The multiplicity of medium mass fragments can be parametrized in terms of a power law. This is true for a wide range of impact parameters and incident energies considered here. However, the parameter τ does not have unique value.

Acknowledgments

This work has been supported by the Grant no. 03(1062)/06/ EMR-II, from the Council of Scientific and Industrial Research (CSIR) New Delhi, Govt. of India.

[1] J. Aichelin; Phys. Rep. 202, 233 (1991).
[2] C. A. Ogilvie et al., Phys. Rev. Lett. 67, 1214 (1991); M. B. Tsang et al., ibid. 71, 1502 (1993); R. T. de Souza et al., Phys. Lett. B268, 6 (1991); G. F. Peaslee et al., Phys. Rev. C 49, R2271 (1994); C. Williams et al., ibid. 55, R2132 (1997); K. Hagel et al., Phys. Rev. Lett. 68, 2141 (1992); N. T. B. Stone et al., ibid. 78, 2084 (1997); B. Jakobsson et al., Nucl. Phys. A509, 195 (1990); M. Bagemann-Blaich et al., Phys. Rev. C 48, 610 (1993); J. Hubble et al., ibid. 46, R1577 (1992); J. Hubble et al., Z. Phys. A 340, 263 (1991).
[3] B. A. Li and D. H. E. Gross, Nucl. Phys. A554, 257 (1993); H. M. Xu, C. A. Gagliardi, R. E. Tribble, and C. Y. Wong, ibid. 569, 575 (1994); F. Daffin, K. Haglin, and W. Bauer, Phys. Rev. C 54, 1375 (1996); V. De la Mota, F. Sebille, M. Farine, B. Remaud, and P. Schuck, ibid. 46, 677 (1992); G. F. Bertsch and S. D. Gupta, Phys. Rep. 160, 189 (1988).
[4] T. Maruyama, K. Niita, and A. Iwamoto, Prog. Theor. Phys. 98, 87 (1997).
[5] Q. Li, Zhuxia Li, S. Soff, M. Bleicher, and H. Stöcker, J. Phys. G: Nucl. Part. Phys. 32, 151 (2006).
[6] J. Aichelin, A. Rosenhaur, G. Peielt, H. Stöcker, and W. Greiner, Phys. Rev. Lett. 58, 1926 (1987).
[7] S. W. Huang, A. Faessler, G. Q. Li, R. K. Puri, E. Lehmann, D. T. Khoa, and M. A. Matin, Phys. Lett. B299, 41 (1993).
[8] S. Kumar and R. K. Puri, Phys. Rev. C 60, 054607 (1999); Y. K. Vermani and Rajeev K. Puri, Phys. Rev. C (to be submitted); Y. K. Vermani and Rajeev K. Puri, DAE symposium on Nuclear Physics, IIT Roorkee (India), 22-26 December, 2008 (accepted).
[9] J. Singh, S. Kumar, and R. K. Puri, Phys. Rev. C 63, 054603 (2001).
[10] A. D. Sood and R. K. Puri, Eur. Phys. J. A30, 571 (2006).
[11] J. Singh and R. K. Puri, Phys. Rev. C 65, 024602 (2002).
[12] W. Zuo, J. Y. Chen, B. A. Li, P. Y. Luo, and U. Lombardo, High Eng. Phys. and Nucl. Phys. 29, 885 (2005).
[13] B. A. Li, C. B. Das, S. D. Gupta, and C. Gale, Phys. Rev. C 69, 011603 (2004).
[14] J. Y. Chen, W. Zuo, L. Ma, and B. A. Li, Chin. Phys. Lett. 24(1), 76 (2007).
[15] P. Danielewicz, Nucl. Phys. A673, 375 (2000).
[16] M. Colonna, J. Rizzo, P. Comaz, and M. D. Toro, nucl-th/0707.3902; V. Baran, M. Colonna, M. D. Toro, and V. Greco, Phys. Rev. Lett. 86, 4492 (2001); J. Rizzo, M. Colonna, and A. Ono, Phys. Rev. C 76, 024611 (2007).
[17] A. Ono, P. Danielewicz, W. A. Friedman, W. G. Lynch, and M. B. Tsang, Phys. Rev. C 70, 041604(R) (2004).
[18] A. Bohnet, N. Ohtsuka, J. Aichelin, R. Linden, and A. Fasseler, Nucl. Phys. A494, 349 (1989).
[19] P. Carruthers and F. Zachariasen, Rev. Mod. Phys., Vol. 55, No 1, 249 (1983).
[20] D. R. Bowman et al., Phys. Rev. C 46, 1834 (1992).
[21] H. H. Gutbrod, K. H. Kampert, B. W. Kolb, A. M. Poskanzer, H. G. Ritter, and H.R. Schmidt, Z. Phys. A 337, 57 (1990).
[22] B.de Schauenburg et al., GSI Rep. No.98-1, 1997 (unpublished); G. S. Wang et al., ibid. 96-1, 1995 (unpublished); 97-1, 1996 (unpublished); W. Reisdorf et al., ibid. 2000, 1999 (unpublished); W. Reisdorf in Proceedings of the international workshop XXVII on cross properties of nuclei and nuclear excitations, Hirschegg, Austria,1999, edited by H. Feldmeir, J. Knoll, W. Neorenberg and J. Wampach p82.
[23] K. Zbiri, A. Le Fevre, J. Aichelin, W. Reisdorf, and F. Gulminelli, Phys. Rev. C 75, 034612 (2007).
[24] W. Reisdorf et al., Nucl. Phys. A612, 493 (1997).