Data Article

Calculation of statistic estimates of kinetic parameters from substrate uncompetitive inhibition equation using the median method

Pedro L. Valenciaa,*, Carolina Astudillo-Castrob, Diego Gajardoc, Sebastián Floresc

a Department of Chemical and Environmental Engineering, Universidad Técnica Federico Santa María, PO Box 110-V, Valparaíso, Chile
b Escuela de Alimentos, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
c Department of Mathematics, Universidad Técnica Federico Santa María, Valparaíso, Chile

Article info

Article history:
Received 21 January 2017
Received in revised form 21 February 2017
Accepted 6 March 2017
Available online 11 March 2017

Keywords:
Direct linear plot
Median method
Substrate inhibition
Kinetic constants estimation

Abstract

We provide initial rate data from enzymatic reaction experiments and this processing to estimate the kinetic parameters from the substrate uncompetitive inhibition equation using the median method published by Eisenthal and Cornish-Bowden (Cornish-Bowden and Eisenthal, 1974; Eisenthal and Cornish-Bowden, 1974). The method was denominated the direct linear plot and consists in the calculation of the median from a dataset of kinetic parameters V_{max} and K_m from the Michaelis–Menten equation. In this opportunity we present the procedure to apply the direct linear plot to the substrate uncompetitive inhibition equation; a three-parameter equation. The median method is characterized for its robustness and its insensitivity to outlier. The calculations are presented in an Excel datasheet and a computational algorithm was developed in the free software Python. The kinetic parameters of the substrate uncompetitive inhibition equation V_{max}, K_m and K_s were calculated using three experimental points from the dataset formed by 13 experimental points. All the 286 combinations were calculated. The dataset of kinetic parameters resulting from this combinatorial was used to calculate the
median which corresponds to the statistic estimator of the real kinetic parameters. A comparative statistical analyses between the median method and the least squares was published in Valencia et al. [3].
© 2017 Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications Table
Subject area
More specific subject area
Type of data
How data was acquired
Data format
Experimental factors
Data source location

Value of the data

- The data and calculations involved in the application of the direct linear plot to a three-parameter equation were described.
- The data arisen from this application was explicitly exposed and procedures explained.
- The data allows to visualize the advantages of the direct linear plot when applied to complex equations.
-Datasheets and algorithms can be used to generate new data and analysis to compare the direct linear plot with other estimation methods.

1. **Data description**

The raw data consists in initial rates from enzymatic reaction considering the substrate uncompetitive inhibition equation. This data was generated through simulation of the initial rate calculated from the substrate uncompetitive inhibition equation adding a relative error from a normal distribution with standard deviation 0.5. The analyzed data was a list of kinetic parameters V_{max}, K_m and K_s obtained using the direct linear plot method [1,2]. The resulting data was the statistic estimators of V_{max}, K_m and K_s calculated from the median of the previous list.
2. Experimental design and methods

2.1. Calculation of initial rates

The dataset of initial reaction rates was obtained calculating v_i from Eq. (1) using the substrate concentrations displayed in Table 1.

$$v_i = \frac{V_{max}S_i}{K_m + S_i + S_i^2K_s(1+\varepsilon_i)}$$

A normal error distribution was used to simulate and add the experimental error to each value of initial rate. The real values of kinetic constants were $V_{max} = 1$, $K_m = 1$ and $K_s = 100$. The standard deviation of the normal distribution of error was 0.5. The resulting dataset with the initial rate values is shown in Table 1 and plotted in Fig 1. It is important to notice that different datasets are obtained every time the calculations are done due to the aleatory condition of error.

\(n\)	\(S_0\)	\(v_0\)
1	0.1	0.092
2	0.2	0.162
3	0.4	0.279
4	0.6	0.370
5	1.0	0.487
6	2.0	0.649
7	3.0	0.708
8	6.0	0.824
9	10	0.830
10	20	0.791
11	50	0.642
12	100	0.497
13	200	0.329

Fig. 1. Initial rate versus substrate concentration dataset calculated from the substrate uncompetitive inhibition equation (points) and model curves with estimated kinetic constants from direct (black line) and inverse (red line) calculation of K_s.

P.L. Valencia et al. / Data in Brief 11 (2017) 567–571
2.2. Estimation of kinetic constants

The dataset in Table 1 was used to calculate the kinetic constants V_{max}, K_m, and K_s of Eq. (1) using the following equations for each constant.

\[
V_{\text{max}} = \frac{v_1 v_2 v_3 \left(\frac{S_1}{S_2} - \frac{S_2}{S_1} + \frac{S_1}{S_3} - \frac{S_3}{S_1} + \frac{S_2}{S_3} - \frac{S_3}{S_2} \right)}{v_1 v_2 \left(\frac{S_1}{S_2} - \frac{S_2}{S_1} + v_1 v_3 \left(\frac{S_1}{S_3} - \frac{S_3}{S_1} + v_2 v_3 \left(\frac{S_2}{S_3} - \frac{S_3}{S_2} \right) \right) \right)}
\]

(2)

\[
K_m = \frac{v_1 v_2 (S_2 - S_1) + v_1 v_3 (S_1 - S_3) + v_2 v_3 (S_3 - S_2)}{v_1 v_2 \left(\frac{S_1}{S_2} - \frac{S_2}{S_1} + v_1 v_3 \left(\frac{S_1}{S_3} - \frac{S_3}{S_1} + v_2 v_3 \left(\frac{S_2}{S_3} - \frac{S_3}{S_2} \right) \right) \right)}
\]

(3)

\[
K_s = \frac{v_1 v_2 \left(\frac{S_1}{S_2} - \frac{S_2}{S_1} + v_1 v_3 \left(\frac{S_1}{S_3} - \frac{S_3}{S_1} + v_2 v_3 \left(\frac{S_2}{S_3} - \frac{S_3}{S_2} \right) \right) \right)}{v_1 v_2 \left(\frac{1}{S_1} - \frac{1}{S_2} + v_1 v_3 \left(\frac{1}{S_3} - \frac{1}{S_1} + v_2 v_3 \left(\frac{1}{S_2} - \frac{1}{S_3} \right) \right) \right)}
\]

(4)

A data list consisting of 286 values for each kinetic constant was obtained from Eqs. (2–4). In the case of K_s, the calculation can be made from Eq. (4) or from the inverse of Eq. (4). The difference between both methods is explained in the article Valencia et al. [3]. An incomplete list of results is shown in Table 2. The complete dataset can be found in Supplementary material in the file Median method.xlsx.

The estimated parameters for the kinetic constants of the substrate uncompetitive inhibition equation were obtained from the median of each parameter. The median can be calculated automatically with the function Median in Excel. The median estimators of the kinetic constants are listed in Table 3 along with the estimators obtained from the least-squares method.

An algorithm was developed in the free software Python to calculate the median estimator of V_{max}, K_m, and K_s from a dataset of initial rate versus substrate concentration can be found in Supplementary material in the file python.rar.

Table 2

Dataset (partial) of estimated kinetic constants V_{max}, K_m and K_s calculated from Eqs. (2–4).

n	S_1	S_2	S_3	v_1	v_2	v_3	V_{max}	K_m	K_s	$1/K_s$
1	200	100	50	0.330	0.497	0.642	1.145	8.816	82.3	0.0121
2	200	100	20	0.330	0.497	0.791	1.043	2.071	92.9	0.0107
3	200	100	10	0.330	0.497	0.830	1.032	1.372	94.2	0.0106
...
284	0.600	0.400	0.200	0.370	0.279	0.163	0.896	0.909	−6.28	−0.159
285	0.600	0.400	0.100	0.370	0.279	0.092	0.720	0.684	−3.08	−0.324
286	0.400	0.200	0.100	0.279	0.163	0.092	0.517	0.468	−1.26	−0.796

Table 3

Statistic estimators of the kinetic constants of the substrate uncompetitive inhibition equation.

Kinetic constant	Median estimator	Least-squares estimator
V_{max}	0.984	0.996
K_m	1.000	1.028
K_s	98.73	98.57
K_s from $1/K_s$	101.9	−

P.L. Valencia et al. / Data in Brief 11 (2017) 567–571
Acknowledgements

The authors Pedro Valencia and Carolina Astudillo-Castro want to thank the financial support from FONDECYT/Regular Project 1161293. Pedro Valencia wants to thank the financial support from USM Project 216.12.2.

Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2017.03.013.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2017.03.013.

References

[1] A. Cornish-Bowden, R. Eisenthal, Statistical considerations in the estimation of enzyme kinetic parameters by the direct plot and other methods, Biochem. J. 139 (1974) 721–730.
[2] R. Eisenthal, A. Cornish-Bowden, The direct linear plot: a new graphical procedure for estimating enzyme kinetic parameters, Biochem. J. 139 (1974) 715–720.
[3] P. Valencia, C. Astudillo-Castro, D. Gajardo, S. Flores, Application of the median method to estimate the kinetic constants of substrate uncompetitive inhibition equation, J. Theor. Biol. 418 (2017) 122–128.