Assessment and development of hospital emergency preparedness plan in response to COVID-19 pandemic in Alexandria University Hospitals

Eman Hamdy Basioniy Darwish, Ahmed Maher Ramadan, Wael Nabil Abdelsalam, Afaf Gaber Ibrahim and Nermen Mohamed Tawfiq Foda

*Department of Community Medicine, Faculty of Medicine, University of Alexandria, Alexandria, Egypt; †Department of General Surgery, Faculty of Medicine, University of Alexandria, Alexandria, Egypt

ABSTRACT

Background: The COVID-19 ongoing pandemic is one of the deadliest pandemics in history. It has put a significant strain on healthcare systems and frontline healthcare workers. This study attempted to assess and develop the emergency preparedness of hospitals affiliated to Alexandria University.

Methods: A quasi-Aquasi-experimental design was conducted in three phases; the pre-intervention assessment using a hospital emergency response checklist, then awareness intervention was implemented to provide information on emergency preparedness followed by post-intervention assessment after six-month period following the first phase using the same checklist.

Results: The pre-intervention assessment showed that four hospitals had a good overall preparedness level (75% or more preparedness level), while the rest of the hospitals (7 hospitals) demonstrated a fair overall preparedness level (50% - 75%). All the individual domains have demonstrated a good or fair to good preparedness levels except the recovery domain, which was fair, and the command and control domain, which was poor in the majority of the studied hospitals. The intervention awareness program has led to a significant statistical change in the command and control as well as human resources domain. However, the post-intervention scores of command and control domain remained poor in the majority of the studied hospitals.

1. Introduction

Since December 2019, the world has been in the grip of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the disease it causes, coronavirus disease 2019 (COVID-19), which was initially identified in Wuhan, China [1,2], and has been declared a pandemic by the World Health Organization (WHO) on March 11 2020 [3].

As of October 2021, there have been more than 243 million confirmed cases of COVID-19 including 4.94 million deaths reported worldwide to the WHO [4].

In Egypt, COVID-19 has claimed the lives of over 18,000 out of 323,000 confirmed cases among the Egyptian population [5].

These numbers have left no doubt that the pandemic is putting huge pressure on health systems around the world as seen by overcrowded hospitals and exhausted physicians and nurses struggling to save lives with limited resources [6]. This troubling situation creates a necessity for assessment of health system preparedness in order to implement changes to healthcare delivery based on the lessons learnt during the pandemic [7].

Hospital preparedness for epidemics requires the following: [7–9]

- Adequate command and control, which require the hospitals to establish and implement a Hospital Emergency Risk Management Program as well as an emergency response plan, to ensure effective management of the risks of different emergencies including epidemics. Also, hospital staff should be fully aware of and well trained to carry out their roles in preparing for and responding to different emergencies.
- The internal and external communication lines required for coordination of the overall response to an emergency should be functioning effectively.
- An adequate infection prevention and control program, adequate triage and surveillance systems as well as adequate laboratory services in order to deal with the challenges of an epidemic.
- The capacity to cope with the extra health demands from the epidemic as well as the ability to ensure the continuity of essential health services at the same time as coping with an epidemic through adequate surge capacity.
• Proper logistics management to ensure sufficient amounts of the needed resources.
• Proper human resources management to satisfy the physical, mental, emotional, and social requirements of hospital staff and their families.
• Adequate essential support services to ensure the safety of the hospital, its occupants, uninterrupted delivery of safe food and water and nutritional services, provision of laundry, cleaning services, and waste management services as well as safe effective mortuary services.

This study aims at assessment and development of the emergency preparedness in hospitals affiliated to the University of Alexandria to allow decision-makers to formulate appropriate policies and procedures, determine priorities, allocate proper resources, and implement improvements to ensure that these hospitals are adequately prepared for potential emergency situations.

2. Subjects and methods
2.1. Study design
The study used a quasi-experimental design involving a pre- and post-intervention assessment of hospital emergency preparedness. The study was conducted in three phases: First phase: the pre-intervention assessment using a hospital emergency response checklist; Second phase: awareness intervention was implemented to provide information on how the studied hospitals can fulfill their role in emergency preparedness; and Third phase: the post-intervention assessment was conducted after a six-month period following the first phase using the same checklist.

2.2. Study setting
The study was conducted in all hospitals affiliated to the University of Alexandria including The Main University hospital, El-Shatby Alexandria University Maternity Hospital, El-Shatby Alexandria University Children’s Hospital, El-Hadra University Hospital, El-Mowassat University Hospital, Smouha Emergency and accidents’ University Hospital, Smouha Children’s University Hospital, Borg El-Arab University Hospital, The New University Hospital, The one day services center, and The students’ University Hospital.

2.3. Data collection
2.3.1. Study tool
Data were collected by the researcher using a Hospital emergency preparedness checklist, which was adapted from the WHO Hospital readiness checklist for COVID-19 [10] and the Comprehensive Hospital Preparedness Checklist for Coronavirus Disease 2019 (COVID-19) of the CDC (Center for Disease Control and prevention) [11] by adding some questions from the latter to the former as follows: 5 items were added to the command and control domain, 3 items to the infection prevention and control domain, 3 items to the communication domain, and the 5 items of the recovery domain.

Data obtained included:

1. Description of the studied hospitals.
2. Data related to hospital emergency preparedness including the following domains:

 • Command and control (three items for the Incident Management System +7 other items).
 • Surge capacity (eight items).
 • Infection prevention and control including practices related to operating rooms (18 items+ 7 separate items for infection control regarding operating on COVID-19 patients).
 • Triage (13 items).
 • Human resources (10 items).
 • Continuity of essential health services and patient care (three items).
 • Surveillance system (seven items)
 • Communications (internal and external) (11 items).
 • Logistics and management of supplies (four items).
 • Laboratory services (five items).
 • Essential support services (four items)
 • Recovery (five items)

The score of each item ranged from 0 to 2. If the item is present and functioning, it was given a score of two. If the item is pending/inadequate/present but not functioning, it was given one. If the item is not present/not done, it was given zero.

As regard the Incident Management System, it includes the presence of a complete activated emergency response plan, the presence of a complete trained Incident Command Team, and the presence of an adequate Emergency Coordination Center (ECC). These three items are part of the items included in the command and control domain. However, these are presented separately because of their importance.

2.4. The awareness intervention strategy

• The program was one session for every hospital held one week after the first assessment.
• The attendees included hospital staff consisting of Hospital director or deputy director, some physicians, some nurses including infection control nurse, safety and security officer, one or more of the Logistics staff, Finance chef, Human
services director and Personnel from the laboratory and/or radiology and/or pharmacy representing ancillary services as well as a facilitator (the researcher) and two supervisors.
- Each session lasted about 2 hours and took place in private halls in the studied hospitals.
- The purpose of this program is to provide information on how the studied hospitals can fulfill their role in emergency preparedness, emphasizing that most of the actions required to prepare for epidemics apply or can be adapted to other emergencies, such as mass casualties due to transport crashes, geological or chemical disasters, and so on.
- The intervention was a prepared curriculum based on the WHO guide for hospital preparedness for epidemics [8] delivered in the form of power point and printed material.
- This curriculum included guidelines for preparedness and response activities regarding the studied domains.
- Assessment of the impact of this program was intended to be after a six-month period (post-intervention survey).

2.5. Data analysis

- The monthly Bed Occupancy (in Table 1) was calculated using the following formula: Bed Occupancy/month = Total number of inpatient days in a month/(Available beds x Number of days (30)) x 100
- Because the number of items in the different domains was not equal, a percent score for each domain was calculated and categorized as follows: poor (<50%), fair (50% – <75%), and good (≥75%). Then, the overall preparedness level for each hospital was calculated by summation of the raw scores of all domains and categorized in the same way as individual domains.
- Statistical analysis was performed using SPSS (Statistical Package for Social Sciences) version 22 (IBM Corp. Released 2012. IBM SPSS Statistics for Windows, version 22.0. Armonk, NY: IBM Corp). Variables were presented using numbers and percent for qualitative variables and mean and standard deviation for quantitative variables. The appropriate test of statistical significance (Wilcoxon signed rank test) was used to compare the scores of the pre- and post-intervention assessment. A 0.05 level of significance was used for interpretation of results.

3. Results

Table 1 shows that the highest number of beds was in The Main University Hospital (1270). The hospitals with the highest average bed occupancy per month were El-Shatby Alexandria University Maternity Hospital and The Students’ University Hospital (70% each). The highest number of Intensive Care Unit (ICU) beds was in The Main University Hospital (160 beds). The highest average number of isolations (for COVID-19 patients) per month was in The New University Hospital (60 isolations). All hospitals had microbiology laboratories except Smouha University Hospitals where the lab is present but not functioning.

The One day services center was excluded from the description because it is not intended for inpatient care (it serves outpatient clinics and surgical operations with discharge on the same day). Also, it does not have its own microbiology laboratory.

Table 2 illustrates the presence and functioning of different components of the Incident Management System (IMS) in the studied hospitals. The table shows that most of the studied hospitals had an Emergency Response Plan (72.73%). One fourth (25.0%) of these hospitals had an activated plan,
while only 12.5% had a complete plan and none of these hospitals (0%) had a plan that was both complete and activated.

Slightly more than half the studied hospitals (54.55%) had an Incident Command Team. One third of these hospitals (33.33%) had a trained team, while only 16.67% of them had a complete team that included all members. Only one hospital had a complete trained team (16.67%).

27.27% of the studied hospitals had Emergency Coordination Centers (ECCs). However, none of these ECCs were adequate.

Table 3 shows that four hospitals had a good overall preparedness level, while the rest of the hospitals demonstrated a fair overall preparedness level at the pre-intervention assessment.

The majority of studied hospitals had a poor level of command and control preparedness.

Most of the studied hospitals (seven hospitals) had a good level of communication preparedness, while the rest of the hospitals showed a fair preparedness level.

Most of the studied hospitals had fair levels of surge capacity preparedness, a good level of human resources preparedness, and a fair level of recovery preparedness.

Six of the studied hospitals had a good level of logistics preparedness, while the rest of the hospitals showed a fair preparedness level.

All the studied hospitals had a good level of infection prevention and control, triage, surveillance, continuity of essential services, and essential support services preparedness.

Four hospitals allowed operating on suspected or confirmed COVID-19 patients, and they all had a good level of infection control in operating rooms.

All the studied hospitals had a good level of laboratory services preparedness except The One day services center, which did not have a laboratory of its own.

Table 4 shows that three hospitals demonstrated no change in their percent scores. These hospitals were El-Shatby Alexandria University Children’s Hospital, The New University Hospital, and The One day services center. On the other hand, the rest of the hospitals showed an increase in the percent scores of one or more domains as follows:

- The main university hospital has shown some improvement in the percent scores of command and control, surge capacity, infection prevention and control, continuity of essential services, and recovery domains.
- El-Shatby Alexandria University Maternity Hospital and El-Hadara University Hospital demonstrated an increase in the percent score of only one domain, the command and control domain.
- El-Mowassat University Hospital had three domains showing an increase in their percent scores, the infection prevention and control, triage and human resources domains.
- Smouha Emergency and accidents’ University Hospital has demonstrated an increase in the percent scores of command and control and triage domains.
- Smouha Children’s University Hospital demonstrated an increase in the percent score of only one domain, the human resources domain.

Table 5 shows that only two domains showed a significant difference between the pre- and post-intervention percent scores, command and control as well as human resources.

As regard the command and control, the pre-intervention percent scores had a median of 20.0 and an interquartile range from 10.0 to 25.0, while the post-intervention percent scores had a median of 25.0 and an interquartile range from 15.0 to 35.0. This difference was statistically significant where \(Z = -2.124 \) and \(P = 0.027 \).

Concerning the human resources domain, the pre-intervention percent scores had a median of 80.0 and an interquartile range from 75.0 to 85.0, while the post-intervention percent scores had a median of 85.0 and an interquartile range from 80.0 to 85.0. This difference was statistically significant where \(Z = -2.00 \) and \(P = 0.0.0.046 \).
Table 3. Level of preparedness of the studied hospitals based on the pre-intervention percent scores.

Hospital	Command control	Surge prevention and control	Infection control regarding COVID-19 patients	Triage	Human resources	Continuity of essential services	Surveillance	Communications	Logistics	Laboratory services	Essential support services	Recovery	Total score and category	
The Main University Hospital	20.0	68.75	86.11	100.0	76.92	85.0	83.33	92.86	77.27	87.5	100.0	100.0	60.0	77.62
El-Shatby Alexandria Hospital	Poor	Fair	Good	Good	Good	Good	Good	Good	Good	Good	Good	Fair	Good	Good
El-Shatby Maternity Hospital	Poor	Fair	Good	92.86	80.0	100.0	83.33	92.86	72.72	62.5	100.0	100.0	60.0	80.0
University Hospital University Children's	Poor	Fair	Good	92.31	80.0	100.0	83.33	92.86	72.72	62.5	100.0	100.0	50.0	69.05
El-Hadara University Hospital	20.0	81.25	97.22	92.86	84.62	90.0	100.0	92.86	72.72	75.0	100.0	100.0	80.0	81.90
El-Mowassat University Hospital	Poor	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good
Accidents' University Hospital	Poor	Fair	Good	92.86	80.0	100.0	83.33	92.86	72.72	62.5	100.0	100.0	70.0	75.24
Smouha Children's Hospital	10.0	50.0	94.44	84.62	80.0	83.33	92.86	72.72	62.5	100.0	100.0	100.0	60.0	70.95
Borg El-Arab University Hospital	Poor	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good
Hospital	Fair	Fair	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good
The New University Hospital	15.0	87.5	94.44	92.31	75.0	100.0	92.86	77.27	75.0	100.0	100.0	100.0	60.0	74.92
The One day services center	Poor	62.5	88.88	80.77	75.0	100.0	92.86	72.72	62.5	--	100.0	60.0	63.81	Fair
The students' University Hospital	Poor	81.25	94.44	92.31	75.0	100.0	92.86	77.27	75.0	100.0	87.5	60.0	73.80	Fair
Hospital	Poor	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Fair

ALEXANDRIA JOURNAL OF MEDICINE
Table 4. Level of preparedness of the studied hospitals based on the post-intervention percent scores.

	Command and control	Surge prevention and control	Infection control regarding patients	Triage	Human resources	Continuity of essential services	Surveillance	Communications	Logistics	Laboratory services	Essential support services	Recovery	Total score and category	
The Main University Hospital	30.0	81.25	88.86	100.0	76.92	85.0	100.0	92.86	77.27	87.5	Good	100.0	70.0	80.95
El-Shatby Alexandria Hospital	35.0	62.50	97.22	100.0	84.62	80.0	100.0	92.86	77.27	62.5	Fair	100.0	60.0	80.95
University Maternity Hospital	Poor	Fair	Good			Good	Good	Good	Good	Good	Good	Fair	Good	80.95
University Children's Hospital	100.0	56.25	94.44	--	84.62	80.0	83.33	92.86	72.72	62.5	Good	100.0	50.0	69.05
El-Hadara University Hospital	25.0	81.25	97.22	92.86	84.62	90.0	100.0	92.86	72.72	75.0	Good	100.0	80.0	82.38
Hospital	Poor	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	80.95
Mowassat University Hospital	25.0	56.25	94.44	--	84.62	75.0	83.33	92.86	77.27	62.5	Good	100.0	50.0	70.48
Hospital	Poor	56.25	Good			Good	Good	Good	Good	Fair	Fair	Fair	Fair	Fair
Smouha Emergency and Infectious	35.0	50.00	97.22	92.86	84.62	80.0	83.33	92.86	68.18	50.0	Good	100.0	100.0	77.62
Hospital	Poor	Fair	Good	Good	Good	Good	Fair	Good	Fair	Good	Good	Good	Good	Fair
Students' University Hospital	Poor	62.50	97.22	--	84.62	90.0	100.0	92.86	77.27	75.0	60.0	Good	Good	80.95
Hospital	20.0	81.25	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Fair
4. Discussion

In the present study, 72.73% of the studied hospitals had Emergency Response Plans. Different findings were reported by Ingrassia et al. [12] where all the studied hospitals had adopted a disaster management plan, all of which were appropriately developed by an authorized hospital committee.

As regards the Incident Command Teams, the present study showed that 54.55% of the studied hospitals had Incident Command Teams. Meanwhile, the study by Norman D et al. [13] found that 27.3% of the studied health facilities had disaster response teams.

These differences can be related to provision of training, integration of knowledge and expertise into a practical framework for coordinating emergency response, the will of the administrative bodies, and the presence of a powerful supervisory authority to regularly evaluate the degree of emergency preparedness in the different hospitals.

The overall pre-intervention percent scores of preparedness of the studied hospitals in the present study indicated that four hospitals had a good overall preparedness and the rest had a fair overall preparedness. These findings are in agreement with the findings of Ingrassia et al. [12], while contrasting the findings of Khan et al. in Saudi Arabia [14] which reported a low preparedness level in all of the studied hospitals.

The differences in hospitals’ preparedness can be explained by their degree of success in adopting standardized guidelines and implementing strategies of emergency preparedness as well as allocation of financial resources.

Data from the current study showed that the majority of the studied hospitals had poor command and control preparedness level at the pre-intervention assessment. This finding is consistent with the finding of Khan A et al. [14] where they demonstrated an unacceptable level of command and control (corresponding to poor) in the studied hospitals. These findings could be related to the presence and functioning of the Incident Management System, which is the core of the command and control domain.

Expanded surge capacity is essential to meet the extra demand for clinical care during a potential emergency. In the present study, the pre-intervention percent scores indicated a fair to good surge capacity preparedness.
These results were similar to the findings reported by Ingrassia et al. [12] and Khan A et al. [14] where they both reported moderate surge capacity preparedness.

Data from the current study indicate that the human resources domain has shown a good preparedness level in the majority of hospitals, whereas the logistics domain has demonstrated a fair to good preparedness level; meanwhile, the findings of Hojat M [15] demonstrated a moderate level of preparedness as regard both human resources and logistics.

Monitoring adherence to infection prevention and control (IPC) measures is an essential part of the response to epidemics/pandemics. The findings of the pre-intervention assessment have shown a good IPC preparedness level at all the studied hospitals. This finding is inconsistent with that reported by a study conducted in Egypt in 2018 [16] to evaluate the preparedness level of Ismailia city hospitals and primary healthcare centers, where the infection control preparedness was moderate in hospitals and low in primary healthcare centers.

This disparity is attributed mainly to the availability of personal protective equipment and the difference in provision of training and supervision to the staff.

As regard the triage domain, the present study revealed a good level of triage preparedness at all the studied hospitals. A similar finding was reported by Ingrassia et al. [12] where the majority of the studied hospitals showed a sufficient level of preparedness to perform triage. The reported findings are most probably related to providing triage space, trained medical personnel, and all necessary resources.

Concerning the surveillance domain, the present study found a good level of surveillance preparedness at all the studied hospitals. A different finding was reported by Tiruneh et al. [17] where most of the studied hospitals demonstrated poor surveillance preparedness. This difference may be related to the level of training of health personnel responsible for surveillance activities, the level of supervision over these activities as well as the adequacy of laboratory services where the current study found a good level of laboratory services in the majority of the studied hospitals, whereas Tiruneh et al. [17] reported a poor level of laboratory services preparedness.

A well-planned hospital emergency response plan should have mechanisms to provide and maintain essential hospital services and the resources needed for the continuity of these vital services.

Communication mechanisms are one of the biggest challenges facing by healthcare systems during emergencies. The findings of the present study revealed fair to good communication preparedness. This finding is inconsistent with the finding of Tiruneh A. et al. [17] where the majority of the studied hospitals had poor communication preparedness. This difference could be related to availability of different communication means and the ease of communication between the staff inside the facility and between the facility and other facilities or authorities.

The present study found that only two domains demonstrated a significant change after the intervention, command and control and human resources.

Similar findings were reported in the study by Khan A et al. [14] and Beyramijam M et al. [18] while contrasting the finding of Delshad V et al. [19] where the intervention program failed to achieve a significant change in these domains.

This difference may be related to how the studied hospitals could benefit from these programs by translating the knowledge gained into a genuine effort to develop and upgrade their preparedness regarding these domains as well as the feasibility of conducting a change, i.e., some changes need extra financial resources and/or time and/ or collaboration and agreements.

4.1. Limitations of the study

The time constraint was the main challenge faced in this study where hospital emergency preparedness would have been better if more time was available (more than 6 months) especially when considering the fact that the study was conducted at the time when the pandemic was overburdening the health system of the studied hospitals.

5. Conclusion and recommendation

The pre-intervention assessment has shown that the overall preparedness level of the studied hospitals was fair to good. The awareness intervention program has succeeded in inducing a significant change in command and control as well as human resources domains. However, the command and control domain was still poor in the majority of the studied hospitals.

Based on the findings of the current study, the main recommendations include establishing complete Emergency Response Plans or development of the existing plans and activation of these plans according to the time and/or geographic proximity of the situation, establishing complete well-trained Incident command teams or development of the existing teams, deploying medical supplies upon activation of the Emergency Response Plan and planning for enough stock, developing adequate recovery plans as part of the Emergency Response Plan, and considering the appropriate timing for its activation.

Disclosure statement

No potential conflict of interest was reported by the author(s).
Notes on contributors

Eman Handy Basinyo Darwish, Master degree of public health, preventive and social medicine, Assistant lecturer of community medicine, community medicine depart. faculty of medicine, Alexandria University.

Prof. Dr. Ahmed Maher Ramadan, is professors (MD) of community medicine, community medicine depart. faculty of med. Alexandria Uni.

Prof. Dr. Wael Nabil Abdelsalam, is professor (MD) of General Surgery, General Surgery depart. faculty of med. Alex. Un

Prof. Dr. Afaf Gaber Ibrahim, is professors (MD) of community medicine, community medicine depart. faculty of med. Alexandria Uni.

Prof. Dr Nermin Mohamed Tawfiq Foda, is professors (MD) of community medicine, community medicine depart. faculty of med. Alexandria Uni.

References

[1] Shereen MA, Khan S, Kazmi A, et al. COVID-19 infection: origin, transmission, and characteristics of human coronaviruses. J Adv Res. 2020 Mar 16; 24:91–98.

[2] World Health Organization (WHO). Naming the coronavirus disease (COVID-19) and the virus that causes it [online]. 2020 March cited 2020 Nov 4]; Available from 2020 Nov 4: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-19)-and-the-virus-that-causes-it

[3] World Health Organization (WHO). WHO director-general’s opening remarks at the media briefing on COVID-19 - 11 March 2020 [Online]. 2020 March 11 [cited 2020 Apr 4]; Available from 2020 Apr 4. https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19-11-march-2020

[4] World Health Organization (WHO). WHO coronavirus disease (COVID-19) dashboard [Online]. 2021 Oct 21 cited 2021 Oct 21; Available from 2021 Oct 21: https://covid19.who.int

[5] World Health Organization (WHO). Egypt: WHO corona virus disease dashboard [Online]. 2021 Oct 21 cited 2021 Oct 21; Available from 2021 Oct 21: https://covid19.who.int/region/emro/country/eg

[6] Haleem A, Javad M, Vaishya R. Effects of COVID-19 pandemic in daily life. Curr Med Res Pract. 2020;10(2):78–79.

[7] World Health Organization (WHO). Critical preparedness, readiness and response actions for COVID-19: Interim guidance. [Online]. 2020 Nov cited 2021 Apr 24]; Available from: Critical preparedness, readiness and response actions for COVID-19 (who.int) 2021 Apr 24

[8] World Health Organization. Hospital preparedness for epidemics. Geneva: WHO. 2014.

[9] Leonhardt KK, Keuler M, Safdar N. Ebola preparedness planning and collaboration by two health systems in Wisconsin, September to December 2014. Disaster Med Public Health Prep. 2016;10(4):691–697.

[10] World Health Organization. Hospital readiness checklist for COVID-19. Regional office for Europe: WHO, Copenhagen, Denmark; 2020 Feb.

[11] Centers for Disease Control and Prevention. Comprehensive hospital preparedness checklist for coronavirus disease 2019 (COVID-19) [Online]. 2020 Mar. cited 2020 Apr 24]; Available from 2020 Apr 24: https://www.cdc.gov/coronavirus/2019-ncov/hcp/hcp-hospital-checklist.html

[12] Inggrassia PL, Mangini M, Azzaretto M, et al. Hospital disaster preparedness in Italy: a preliminary study utilizing the World Health Organization Hospital emergency response evaluation toolkit. Minerva Anestesiol. 2016 Dec;82(12):1259–1266.

[13] Norman ID, Aikins M, Binka FN, et al. Hospital all-risk emergency preparedness in Ghana. Ghana Med J. 2012 Mar;46(1):34–42.

[14] Khan A, Alowais J, Nofal A, et al. Assessment of disaster preparedness at general hospitals in Al-Madinah Al-Munawarah Province, Western region of Saudi Arabia: a study of pre intervention and post intervention test scores from 2017 to 2019. Saudi Med J. 2021 May;42 (5):537–542.

[15] Hojat M. Disaster preparedness in hospitals of Jahrom University of medical sciences. J Qazvin Univ Med Sci. 2012;16:72–77.

[16] Abdel-Fatah ZA, Sobhy A, Fiala LE, et al. Evaluation of the national influenza epidemic preparedness plan in Ismailia city hospitals and primary health care centers. Suez Canal Univ Med J. 2018;21(1):31–39.

[17] Tiruneh A, Yetneberk T, Esthete D, et al. A cross-sectional survey of COVID-19 preparedness in governmental hospitals of North-West Ethiopia. SAGE Open Med, United Kingdom; 2021.

[18] Beyramijam M, Rasouli-Ghahfarokhi SM, Fathollahzadeh A, et al. The effect of education and implementation of “National hospital disaster preparedness plan” on an Iranian hospital preparedness: an intervention study. J Educ Health Promot. 2019 Nov 29; 8:215.

[19] Delshad V, Borhani F, Khankeh H, et al. The effect of activating early warning system on Motahari hospital preparedness. J Health Emerg Dis Q. 2015;1:3–8.