Using molecular dynamic simulations to describe the solid-liquid phase transition of lead nanoparticles with different nano-geometries

Ruochen Sun, Zhichao Feng, Song Gao, Pingan Liu, Hui Qi and Naimeng Song

1 College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin City, Heilongjiang Province, People’s Republic of China
2 Hua An Industry Group Co., Ltd, Qiqihar City, Heilongjiang Province, People’s Republic of China
3 Key Laboratory of Dual Dielectric Power Technology, Hebei Hanguang Industry Co., Ltd., Handan City, Hebei Province, People’s Republic of China

E-mail: songnaimeng@hrbeu.edu.cn

Keywords: molecular dynamic simulations, lead, nanoparticles, phase transition, nano

Abstract

In this study, three lead (Pb) nanoparticles, including cone, sphere and cylinder, are modeled and melted using molecular dynamic (MD) simulations. The choice of initial geometries mainly affects the initial and middle stages of phase transition. Initially, the melting point of the cone model is much lower than other two models. This is because the transition of the cone model is induced by its sharp edge, which is prone to be melted. Then, the transition of all models keeps toward the centre of mass. Meanwhile, cone and cylinder models are deformed into spheres. The deforming rate is higher than transition. Finally, all three models were fully melted into the shape of the spheres. Therefore, initial Pb nano-geometries do not affect the final stage of the phase transition.

1. Introduction

As a critical non-ferrous metal material, lead (Pb) is broadly applied in medical, mechanical and energy storage products [1]. For example, the Pb battery has been applied as a utility energy source for the automotive industry [2]. However, many pieces of research pointed out that Pb is also a potential threat to human health, such as urinary, cardiovascular and neurologic diseases [3].

In decades, the nano-sized Pb particle also has attracted researchers’ concern. D L Zhang et al reported that the Pb nanoparticles were precipitated from Pb/Al solid solution at 325 °C–380 °C [4]. Xiao Ming Chen et al found that the melting of the Pb nanoparticles surface brought the peak of internal particle friction [5]. Sunil K. Karna et al measured that the magnetic moment of icosahedral Pb particles with 7 nm was about 140 times larger than that of Face Centered Cubic (FCC) Pb particles with 6 nm [6]. Anna Moros et al analyzed the melting point and enthalpy of Pb nanoparticles, which were embedded with aluminum polycrystalline [7]. Seyed Hossein Hosseinia prepared the nanocomposite with Pb nanoparticles [8]. Sadhasivam Thangarasu et al developed the Pb-carbon hybrid battery using Pb nanoparticles [9].

In terms of the melting behaviours of Pb nanoparticles, molecular dynamic (MD) simulations could be a credible researching approach. Previously, MD simulations were applied to describe phase transitions of various metals, such as Ir/Rh nanoalloys [10], Al nanoparticles [11–13], bulk Al [14], Ag57Cu13 nanoalloy [15], Fe [16, 17], W [18], Ta [19], Li [20], Au-Pd nanoalloys [21], Pd34Pt14 nanoalloy [22], Zr68Pd32 nanowires [23], Ag nanoparticles [24], Nb (1 1 0) nanofilm [25], Fe-Ni-Cr nanoparticles [26] and so on. In this study, we are mainly focused on the melting process of Pb nanoparticles. The initial aim of this investigation was not only about the phase transition of Pb nanoparticle itself, but also the difference caused by various nano-geometries.
2. Method: MD simulations

As figure 1 shows, three initial models, including sphere, cylinder and cone, were built for the present study. In which, their lattice constant was 4.95 Å, and the type of crystal was FCC. Totally, there were 17265, 26256, and 9060 Pb atoms in those models respectively. Then, all three models were placed at the centre of a 40×40×40 nm³ simulation box with periodical boundaries respectively. After a 1 ns release process at 300 K, all models were linearly heated until 800 K in 1 ns, which means that the set heating rate was about 500 K ns⁻¹. With Nose [27]/Hoover [28] thermostat theory, the entire heating process was linearly controlled by the canonical

Table 1. Summary of all programs applied in this study.

Software	Version	Usage	Citation
LAMMPS	64bit-15Apr2020	MD simulations platform	[30]
VMD	1.9.3	Atomic structural analysis	[31]
OVITO	3.0.1	Rendering the configuration	[32]

Figure 1. The configuration of three initial models.

Figure 2. The system potential energy of three models.
Figure 3. The MSD plot of three models.

Figure 4. Evaluation of atomic displacements during phase transitions.
ensemble (NVT). The timestep of all above simulations was 1 fs, and the temperature damping parameter was 100 fs.

In this MD simulation study, an Embedded-Atom Method (EAM) force field was utilized to describe the atomic interactions. This EAM force field was developed and trained by Kun Wang et al [29]. Additionally, all programs used in this investigation and article are listed in table 1 below.

3. Results and discussion

3.1. Energy and displacement

Above all, the solid-liquid phase transition is evaluated by the plots of system potential energy. As shown in figure 2, the entire heating simulations bring up the potential energy of the three models. Along with the appearance of phase transition, all three plots show the jump of potential energy in various degrees. It seems that the vertical deviation of the potential energy jump represents the extent of transition, and the horizontal position of jump represents the melting point of the nanoparticle. Therefore, the cone-like Pb model has the lowest melting point and extent of transition. Despite the absolute value of energy, sphere and cylinder models show a similar transition process. In order to further confirm the transition temperatures, Mean Square Displacement (MSD) of three models are plotted as figure 3. In which, the extent of atomic movement could be represented by the slope of plots. The displacement of Pb atoms is accelerated with the happening of phase transition. It is obtained that the melting point of the cone model is about 560 K, while both cylinder and sphere models are melted at about 640 K. This result is in good agreement with figure 2. Comparing with the melting point of tabulated bulk Pb [7], the value for the cone-like model is obviously declined.
Furthermore, the distribution of atomic displacement during transition is analyzed as well. Figures 4(a)–(c) are plotted for cone, sphere and cylinder models respectively. While scanning vertically, a peak of displacement appeared at the top, bottom and middle of the cone. This is because the deformation started from both edges to the center. Similarly, cylinder model shows two peaks toward the centre. As an isotropy geometry, the distribution for the sphere model is almost equal. Additionally, figure 4(d) shows that the value distribution of the sphere model is more narrow than the anisotropy cylinder model.

3.2. Morphology and microstructure
In this section, the phase transition process of each model is discussed according to the particle configuration and crystal style identifications. Figures 5–7 illustrate the melting process of cone, sphere and cylinder models, respectively. In those figures, the left column is the overall morphology, and the right column is the cross-section of nanoparticle with 1 nm thick. The transition is demonstrated by the decline of Pb atoms in FCC style lattice. Whatever the initial nano-geometry was, the melted Pb nanoparticles are finally formed as irregular spheres with high kinetics.

Generally, all three models have shown an inward transition process. Due to the vertically asymmetric microstructure, the melting of the cone model was prone to start at the sharp edge. So the melting point of which was lower than other models. Then, the liquid phase spread to the core of the nanoparticle. Although the upper edge melted earlier than the bottom, it doesn’t mean that the upper half of nanoparticle melted earlier as well. The observed final region with solid phase is still on the mass centre of the melted cone model. Next, the sphere model shows the lowest change in nano-geometry during the transition. Different from the cone model, there is no clear starting site of sphere melting. The liquid phase spreads to the core of the sphere from all 360 degrees.
Finally, the transition of the cylinder model is similar to the sphere model. According to the cross-section of the cylinder, the spread rate of the liquid phase in each direction is equal as well. Additionally, the deformation of the cylinder and cone models make them deform into the spheres, so the final stage of all models are accurately the same. Therefore, the deformation rates are higher than the spread of the liquid phase. They have different beginnings, but the same ending.

4. Conclusion

MD simulations have been performed to investigate the critical effect of initial geometry on Pb nanoparticle transitions. The rank order of their melting points is cone < sphere = cylinder. The decline of cone melting temperature is induced by its sharp edge. On contrast, sphere and cylinder models are melted simultaneously from their surface. All models experience an inward transition process. Associated with the enlarging of the liquid phase, cone and cylinder models are deformed into spheres. Before fully melted, those models have been the same on shapes. To some extent, the final stage of the cone and cylinder could also be considered as the melting of the sphere. As an isotropy nano-geometry, the change of sphere model during transition is too little to be directly observed. Despite the sharp edge of the cone, the spread rates of the liquid phase from all directions are almost equal. At last, the phase transition of all models ended at the mass centre of the final spheres.

Figure 7. The phase transition process of the cylinder model.
Acknowledgments
This work was financially supported by Fundamental Research Funds for Central Universities (3072020CFT0203).

Data availability statement
The data that support the findings of this study are available upon reasonable request from the authors.

ORCID iDs

References
[1] Pan D, Li L, Tian X, Wu Y, Cheng N and Yu H 2019 A review on lead slag generation, characteristics, and utilization Resources, Conservation & Recycling 146 40–55
[2] May GJ, Davidson A and Monahov B 2018 Lead batteries for utility energy storage: a review Journal of Energy Storage 15 145–57
[3] Boskabady M, Marefat N, Farkhondeh T, Shakeri F, Farshbaf A and Boskabady M H 2018 The effect of environmental lead exposure on human health and the contribution of inflammatory mechanisms, a review Environ. Int. 120 404–20
[4] Zhang D L and Walker H 2004 Precipitation, melting and solidification of embedded Pb nanoparticles in mechanically milled Al–10 wt.% Pb powders Materials Science and Engineering A 375–377 985–91
[5] Chen X M, Fei G T, Cui P, Zheng K and Zhang R L 2007 Internal friction with the melting of Pb nanoparticles in an Al matrix Phys. Lett. A 363 150–3
[6] Karan S K, Li C Y, Wu C M, Hsu C K, Wang C W and Li W H 2011 Observations of large magnetic moments in icosahedral Pb nanoparticles J. Phys. Chem. C 115 8906–10
[7] Moros A, Ro’ner H and Wilde G 2011 Melting of faceted Pb nanoparticles at reduced latent heat Scr. Mater. 65 883–8
[8] Hosseini S H, Askari M and Ezzati S N 2014 X-ray attenuating nanocomposite based on polyaniline using Pb nanoparticles Synth. Met. 196 68–75
[9] Thangarasan S, Palanisamy G, Roh S-H and Jung H-Y 2020 Nanocoating and interfacial effect of Pb nanoparticles into nanoporous copper as a longer-lifespan negative electrode material for hybrid lead-carbon battery ACS Sustainable Chemistry & Engineering 8 8868–79
[10] Akbarzadeh H and Abbaspour M 2017 Effects of pressure, nanoalloy size, and nanoalloy mole fraction on melting of Ir–Rh nanoalloys using molecular dynamics simulations J. Alloys Compd. 694 1287–94
[11] Alavi S and Thompson D L 2006 Molecular dynamics simulations of the melting of aluminum nanoparticles J. Phys. Chem. A 110 1518–23
[12] Kurian S and Mirzaeifard R 2020 Selective laser melting of aluminum nano-particle powders, a molecular dynamics study Additive Manufacturing 35 101272
[13] Sun R, Liu P, Qi H, Wang W, Lv F and Liu J 2019 Structural and atomic displacement evaluations of aluminium nanoparticle in thermal annealing treatment: an insight through molecular dynamics simulations Mater. Res. Express 6 125009
[14] Shao J L, He A M and Wang P 2018 Atomistic simulations on the dynamic properties of shock and release melting in single crystal Al Comput. Mater. Sci. 151 240–5
[15] Asgari M and Behenejad H 2013 Molecular dynamics simulation of the melting process in $\text{Ag}_27\text{Cu}_{13}$ core–shell nanoalloys Chem. Phys. 423 36–42
[16] Belonoshko A B and Ahuja R 1997 Embedded-atom molecular dynamic study of iron melting Phys. Earth Planet. Inter. 102 171–84
[17] Li K et al 2019 Determination of the accuracy and reliability of molecular dynamics simulations in estimating the melting point of iron: roles of interaction potentials and initial system configurations J. Mol. Liq. 290 111204
[18] Chun-Mei L, Chao X, Yan C, Xiang-Rong C and Ling-Cang C 2017 Molecular dynamics studies of body-centered cubic tungsten during melting under pressure Chin. J. Phys. 55 2468–75
[19] Fan X, Pan D and Li M 2020 Rethinking Lindemann criterion: a molecular dynamics simulation of surface mediated melting Acta Mater. 193 280–90
[20] Li D F, Zhang P, Yan J and Liu H 2011 Melting curve of lithium from quantum molecular-dynamics simulations EPL 95 56004
[21] Li M and Cheng D 2013 Molecular dynamics simulation of the melting behavior of crown-jewel structured Au–Pd nanoalloys J. Phys. Chem. C 117 18946–51
[22] Oderji H Y and Ding H 2011 Determination of melting mechanism of Pd_xPt_y nanoalloy by multiple histogram method via molecular dynamics simulations Chem. Phys. 388 23–30
[23] Sengul S 2020 Evolution of local structure during melting of $\text{Zn}_{50}\text{Pd}_{50}$ nanowires by molecular dynamics simulations Vacuum 174 101917
[24] Wang X, Wang X, Liu M and Wang Y 2019 Melting suspension of Ag nano-particles monitored by molecular dynamics simulation Chem. Phys. 527 110459
[25] Yang X-Y and Wu D 2010 The melting behaviors of the Nb(1 1 0) nanofilm: a molecular dynamics study Appl. Surf. Sci. 256 3197–203
[26] Zhang X, Li B, Liu H X, Zhao G H, Yang Q L, Cheng X M, Wong C H, Zhang Y M and Lim C W J 2019 Atomic simulation of melting and surface segregation of ternary Fe–Ni–Cr nanoalloys Appl. Surf. Sci. 465 871–9
[27] Shuichi N 1984 A unified formulation of the constant temperature molecular dynamics methods J. Chem. Phys. 81 511–9
[28] Hoover W G 1985 Canonical dynamics: equilibrium phase-space distributions William G Hoover 31 1095–7
[29] Wang K, Zhu W, Xiang M, Xu Y, Li G and Chen J 2018 Improved embedded-atom model potentials of Pb at high pressure: application to investigations of plasticity and phase transition under extreme conditions Model. Simul. Mater. Sci. Eng. 27 013001
[30] Plimpton S 1995 Fast parallel algorithms for short-range molecular dynamics J. Comput. Phys. 117 1–19
[31] Humphrey W, Dalke A and Schulten K 1996 VMD: visual molecular dynamics J. Mol. Graphics 14 33–8
[32] Stukowski A 2009 Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool Model. Simul. Mater. Sci. Eng. 18 015012