We report an unusual case of KS with small stature secondary to growth hormone (GH) deficiency. This case is described from within a North African population of the Mediterranean region of North Africa.

The patient was a young male, eldest of three siblings; with history of infertility in his paternal uncle; child of a consanguineous marriage with uneventful gestation, normal delivery, and good postbirth adaptation, imprecise size at birth, and no delayed psychomotor acquisitions.

The patient had a history of gastroesophageal reflux, and asthma that responded to treatment after the age of 7 years. GH deficiency was isolated and confirmed by two dynamic tests (insulin — hypoglycemia tolerance test and clonidine) with normal hypothalamic magnetic resonance imaging (MRI). GH supplementation using recombinant GH was advocated, while gonadotropin treatment was deferred.

Small size in children or adolescents should not eliminate the diagnosis of Klinefelter syndrome — on the contrary, the presence of any associated sign (brain maturation, delay in puberty, aggressiveness) should encourage one to request a karyotype for the diagnosis and appropriate care of any case of KS that can be associated with GH deficiency, or which is in a variant form (isochromosome Xq, 49,XXXXY).

Key words: Growth hormone (GH) deficiency, Klinefelter syndrome (KS), short stature

In 1942 Klinefelter, Albright, and Reifenstein described Klinefelter syndrome (KS) as the association of small firm testes with hyalinized seminiferous tubules, gynecomastia, elevated gonadotropins, and azoospermia.[1] Seventeen years later in 1959 Jacobs related this syndrome to the presence of an extra X chromosome with a 47,XXY karyotype. It is one of the most common chromosomal aberrations with a prevalence of about 1/660 male births,[2] thus representing the most common genetic cause of hypogonadism and male infertility, with 11% of patients with azoospermia presenting a case of KS.[3] Although tall stature is very characteristic of KS, some cases associated with small size have been described.[4-12] We report an unusual case of KS with small stature secondary to growth hormone (GH) deficiency. This case is described from within a North African population of the Mediterranean region of North Africa.

The patient was a young male, eldest of three siblings; with history of infertility in his paternal uncle; child of a consanguineous marriage with uneventful gestation, normal delivery, and good postbirth adaptation, imprecise size at birth, and no delayed psychomotor acquisitions.

The patient had a history of gastroesophageal reflux, and asthma that responded to treatment after the age of 7 years. The parents were consulted after onset of aggressiveness and absence seizures in the patient around the age of 16, associated with persistent stunted growth.

On physical examination, the patient weighed 31 kg [<−3 SD].
standard deviation (SD)), had a height of 1.54 m (<-2.8 SD on presumed growth curve), presenting macroskemia with bitrochanteric diameter greater than biacromial diameter without midline defects.

The patient showed signs of puberty (Tanner stage II), with intrascrotal testes measuring 2.5 cm × 1.5 cm for the right and 2.3 cm × 1.5 cm for the left testis; penis length of 6.5 cm × 2 cm; urinary meatus in place; hair Tanner stage III-IV, axillary hair less developed; painful stage II bilateral gynecomastia without galactorrhea or nodule or even axillary lymphadenopathy. In addition, the patient showed no clinical signs of hypercorticism or thyroid dysfunction. Physical examination, especially cardiovascular, lumbar and neurologic, were unremarkable.

Faced with the clinical presentation mentioned above, laboratory investigations were performed to ascertain the cause of persistent stunted growth. The results were as follows.

The bone age was estimated at 10 years (6-year differential with calendar age); malabsorption test, celiac disease serology, thyroid function tests as well 8 AM blood cortisol level showed normal results.

Insulin-like growth factor-1 (IGF1) was decreased to 156 μg/L while normal rates are comprised between 188 and 510; GH deficiency was confirmed by two dynamic tests: The insulin tolerance test and found lower than 3.33 ng/ml and clonidine demonstrated a peak at 0.166 ng/mL.

Magnetic resonance imaging (MRI) did not reveal pituitary gland hypoplasia or any associated hypothalamic malformation.

The exploration of the gonadotropic axis highlighted high gonadotropin levels with normal testosterone: follicle-stimulating hormone (FSH) 16.57 mIU/mL (Tanner stage 0.4-2.8) (age: 0.6-4.8 years); luteinizing hormone (LH): 3.60 mIU/mL (Tanner 0.4-1.9) (age: 0.9-2); testosterone: 5.3 ng/mL (Tanner 0.2-3) (age: 1.2-7); estradiol: 11 pg/mL (ages 6-27); and prolactin: 14.37 ng/L (age: 1-17).

Thus, our patient had isolated GH deficiency with normal thyroid function, and bone age tests were normal, while the karyotype was 49,XXXXY/48,XXXY (80%/20%).[6] This syndrome, called Shmid-Fraccaro syndrome, is associated with: small size, intellectual deficit [average intelligence quotient (IQ): 25-50, maximum 80-90; disproportion between verbal IQ which is very low and normal IQ performance], thin skull, hypertelorism, proptalmatism, abnormal sacral vertebrae, vertebral body squaring, scoliosis, thin sternum, and hypoplasia of the rib cage.[6]

Richer et al. reported a case of a 30-year-old male patient, with children, with height lower of 5 cm compared to his father presenting with gynecomastia, small testes, and normal androgen levels. Karyotype analysis demonstrated the aneuploidy 47,Xi(Xq)Y.[7]

Other cases were described that were associated with GH deficiency, as in the Ramesh et al. report of a case of KS in a 3-year-old infant with a micropenis, for which the etiological exploration revealed isolated GH deficiency secondary to an anterior pituitary gland hypoplasia.[8]

Rossodivita et al. and Bahlilo-Curieses et al. also reported a case of KS in a child aged 8 years with cryptorchidism and small stature and another case of KS associated with delayed puberty relating to idiopathic GH deficiency, respectively.

A similar combination (KS + GH deficiency) was also described by Ben-Skowronek et al. and Tori et al. with a yet-unknown underlying mechanism.

Our case clearly illustrates another case of this unusual association of small size with KS, related to GH deficiency, normal MRI, and aneuploidy 47,XXX karyotype.[13]

Finally, small size in children or adolescents should no longer rule out the diagnosis of KS. Instead, the presence of any associated signs (mental retardation, delayed puberty,
aggressiveness) should urge one to request a karyotype as it allows the diagnosis and appropriate management of KS, which can be associated with GH deficiency, or which may be present in other variant forms (isochromosome Xq, 49, XXXXY). Additionally, further studies would be needed to explain these associations.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

References

1. Klinefelter HF, Reifenstein EC, Albright F. Syndrome characterized by gynecomastia, aspermatogenesis without a leydigism and increased excretion of follicle-stimulating hormone. J Clin Endocrinol 1942;2:615-27.
2. Bojesen A, Gravholt CH. Klinefelter syndrome in clinical practice. Nat Clin Pract Urol 2007;4:192-204.
3. Lanfranco F, Kamischke A, Zitzmann M, Nieschlag E. Klinefelter’s syndrome. Lancet 2004;364:273-83.
4. Sultan CH, Lobaccaro JM, Lumbroso S, Missou S, Belon CH, Bost M, et al. Le syndrome de Klinefelter chez l’enfant. Andrologie 1994;4:283-7.
5. Bauduceau B, Mayaudon H, Dupuy O, Desangles F. Syndrome de Klinefelter. EMC Endocr-Nutri 2010;32:E-20.
6. Pépin-Donat M, Sue AL, Despert F. Small size Klinefelter syndrome. Arch Pediatr 2008;15:923-1019.
7. Richer CL, Bleau G, Chapdelaine A, Murer-Orlando M, Lemieux N, Cadotte M. A man with isochromosome Xq Klinefelter syndrome with lack of height increase and normal androgenization. Am J Med Genet 1989;32:42-4.
8. Hadipour F, Shafeghati Y, Bagherizadeh E, Behjati F, Hadipour Z. Fraccaro syndrome: Report of two Iranian cases: An infant and an adult in a family. Acta Med Iran 2013;51:907-9.
9. Ramesh J, Nagasatyavani M, Venkateswarlu J, Nagender J. An unusual combination of Klinefelter syndrome and growth hormone deficiency in a prepubertal child. J Clin Res Pediatr Endocrinol 2014;6:187-9.
10. Rossodivita A, Colabucci F. Short stature in a patient with Klinefelter syndrome and growth hormone deficiency. Am J Med Genet 1994;49:244-6.
11. Bahillo-Curieses MP, Fournier-Carrera M, Morán-López J, Martínez-Sopena MJ. Klinefelter syndrome and short stature: An unusual combination. Endocrine 2011;39:294-5.
12. Beł-Skowronek I, Jaklińska T, Moczybrot M, Szewczyk L. A patient with Klinefelter’s syndrome and growth hormone deficiency. Pediatr Endocrinol Diabetes Metab 2010;16:55-7.
13. Tori C, Roe C. Klinefelter syndrome with partial deficiency of growth hormone. Rev Med Hered 1999;10:50-4.