A ternary diophantine inequality by primes near to squares

S. I. Dimitrov

2019

Abstract

Let c be fixed with $1 < c < 35/34$. In this paper we prove that for every sufficiently large real number N and a small constant $\varepsilon > 0$, the diophantine inequality

$$|p_1^c + p_2^c + p_3^c - N| < \varepsilon$$

is solvable in primes p_1, p_2, p_3 near to squares.

Keywords: Diophantine inequality; exponential sum; prime.

2010 Math. Subject Classification: 11P55 · 11J25

1 Introduction and statement of the result

In 1952 I. I. Piatetski-Shapiro \[12\] investigated the inequality

$$|p_1^c + p_2^c + \cdots + p_r^c - N| < \varepsilon$$

where $c > 1$ is not an integer, ε is a fixed small positive number, and p_1, \ldots, p_r are primes. He proved the existence of an $H(c)$, depending only on c, such that for all sufficiently large real N, (1) has a solution for $H(c) \leq r$. He established that

$$\limsup_{c \to \infty} \frac{H(c)}{c \log c} \leq 4$$

and also that $H(c) \leq 5$ if $1 < c < 3/2$.

In 1992 Tolev \[14\] showed that (1) has a solution for $r = 3$ and $1 < c < 15/14$. The interval $1 < c < 15/14$ was subsequently improved by several authors \[2, 3, 4, 5, 6, 9, 10\]. The best result up to now belongs to Cai \[5\] with $1 < c < 43/36$.
On the other hand in 1991 Tolev [13] solved the diophantine inequality
\[|\lambda_1 p_1 + \lambda_2 p_2 + \lambda_3 p_3 + \eta| < \varepsilon \]
in primes \(p_1, p_2, p_3 \) near to squares. Here \(\eta \) is real, the constants \(\lambda_1, \lambda_2, \lambda_3 \) satisfy some necessary conditions and \(\varepsilon > 0 \) is a small constant.

More precisely Tolev proved the following theorem

Theorem 1. Suppose that \(\lambda_1, \lambda_2, \lambda_3 \) are non-zero real numbers, not all of the same sign, that \(\eta \) is real, \(\lambda_1/\lambda_2 \) is irrational and \(0 < \tau < 1/8 \). Then there exist infinitely many triples of primes \(p_1, p_2, p_3 \) such that
\[|\lambda_1 p_1 + \lambda_2 p_2 + \lambda_3 p_3 + \eta| < (\max p_j)^{-\tau} \]
and
\[\|\sqrt{p_1}\|, \|\sqrt{p_2}\|, \|\sqrt{p_3}\| < (\max p_j)^{-\frac{(1-8\tau)}{26}} \log^5(\max p_j) \]
(as usual, \(\|\alpha\| \) denotes the distance from \(\alpha \) to the nearest integer).

Proof. See [13]. \(\square \)

Motivated by these results and following the method of Tolev [13] we shall prove the following theorem

Theorem 2. Let \(c \) and \(\tau \) be fixed with \(1 < c < \tau < 35/34 \) and \(\delta > 0 \) be a fixed sufficiently small number. Then for every sufficiently large real number \(N \), the diophantine inequality
\[|p_1^c + p_2^c + p_3^c - N| < N^{-\frac{1}{2}(\tau-c)} \log N \]
is solvable in primes \(p_1, p_2, p_3 \) such that
\[\|\sqrt{p_1}\|, \|\sqrt{p_2}\|, \|\sqrt{p_3}\| < N^{-\frac{1}{12}(\frac{35}{34} - \tau)} + \delta. \]

2 **Notations and lemmas**

Let \(N \) be a sufficiently large positive number. By \(\eta \) we denote an arbitrary small positive number, not the same in all appearances. For positive \(A \) and \(B \) we write \(A \asymp B \) instead of \(A \ll B \ll A \). As usual \(\mu(n) \) is Möbius’ function and \(\tau(n) \) denotes the number of positive divisors of \(n \). The letter \(p \) with or without subscript will always denote prime number. We denote by \(\Lambda(n) \) von Mangoldt’s function. Moreover \(e(y) = e^{2\pi i y} \). As usual, \([y]\) denotes the integer part of \(y \). Let \(c \) and \(\tau \) be fixed with \(1 < c < \tau < 35/34 \). By \(\delta \) we
denote an fixed sufficiently small positive number.

Denote

\[X = (N/2)^{1/c}; \]
\[\varepsilon = X^{c-\tau}; \]
\[r = |\log X|; \]
\[Y = X^{\Delta^{-1}\left(\frac{\tau}{\pi} - \tau\right)}; \]
\[\Delta = Y/5; \]
\[M = \Delta^{-1}r; \]
\[S(\alpha) = \sum_{X/2 < p \leq X} e(\alpha p^c) \log p; \]
\[U(\alpha, m) = \sum_{X/2 < p \leq X} e(\alpha p^c + m\sqrt{p}) \log p. \]

Lemma 1. Let \(r \in \mathbb{N} \). There exists a function \(\chi(t) \) which is \(r \)-times continuously differentiable and 1-periodic with a Fourier series of the form

\[
\chi(t) = \frac{9}{5} Y + \sum_{m = -\infty}^{\infty} g(m)e(mt),
\]

where

\[
|g(m)| \leq \min\left(\frac{1}{\pi|m|}, \frac{1}{\pi|m|}\left(\frac{r}{|m|\Delta}\right)^r\right)
\]

and

\[
\chi(t) = \begin{cases}
1 & \text{if } ||t|| \leq Y - \Delta, \\
0 & \text{if } ||t|| \geq Y, \\
\text{between } 0 \text{ and } 1 \text{ for the other } t.
\end{cases}
\]

Proof. See ([8], p. 14).

We also denote

\[
H(\alpha) = \sum_{X/2 < p \leq X} \chi(\sqrt{p})e(\alpha p^c) \log p;
\]

\[
V(\alpha) = \sum_{m = -\infty}^{\infty} g(m)U(\alpha, m).
\]
Further we need the function $A(x)$ used by Baker and Harman \([1]\). It is continuous and integrable on the real line such that

$$A(x) \leq \chi_{[-1,1]}(x). \quad (15)$$

Further, if we write

$$\hat{A}(\alpha) = \int_{-\infty}^{\infty} A(x)e(-\alpha x)dx,$$

then

$$\hat{A}(\alpha) = 0 \quad \text{for} \quad |\alpha| \geq \mu,$$

where μ is a constant. Therefore if

$$P = \frac{\mu}{\varepsilon}, \quad (16)$$

then

$$\hat{A}(\varepsilon \alpha) = 0 \quad \text{for} \quad |\alpha| \geq P. \quad (17)$$

Lemma 2. Let $1 < c < 15/14$. Then

$$\int_{-\infty}^{\infty} S^3(\alpha)e(-N\alpha)\hat{A}(\varepsilon \alpha) d\alpha \gg X^{3-c}. \quad (18)$$

Proof. Arguing as in \([1]\) and \([14]\) we obtain the lower bound \((18)\). \(\square\)

Lemma 3. (Van der Corput) Let $k \geq 2$, $K = 2^{k-1}$ and $f(x)$ be a real-valued function with k continuous derivatives in $[a,b]$ such that

$$|f^{(k)}(x)| \asymp \lambda, \quad \text{uniformly in} \quad x \in [a,b].$$

Then

$$\left| \sum_{a < n \leq b} e(f(n)) \right| \ll (b-a)^{\lambda^{1/2}} \left(1 - \frac{Q}{P} \right)^{-\lambda^{1/2}} + (b-a)^{1/2} \lambda^{-1/2}. \quad (19)$$

Proof. See \((8), \text{Ch. 1, Th. 5}\). \(\square\)

Lemma 4. For any complex numbers $a(n)$ we have

$$\left| \sum_{a < n \leq b} a(n) \right|^2 \leq \left(1 + \frac{b-a}{Q} \right) \sum_{|q| \leq Q} \left(1 - \frac{|q|}{Q} \right) \sum_{a < n, n+q \leq b} a(n+q)a(n),$$

where Q is any positive integer.
Proof. See (7, Lemma 8.17).

Lemma 5. For the sum denoted by (8) we have

\[\int_{-P}^{P} |S(\alpha)|^2 d\alpha \ll PX \log^3 X. \]

Proof. See (14, Lemma 7).

Lemma 6. For the sum denoted by (14) we have

\[\int_{-P}^{P} |V(\alpha)|^2 d\alpha \ll PX \log^5 X. \]

Proof. On the one hand

\[\int_{-P}^{P} |V(\alpha)|^2 d\alpha \ll P \int_{0}^{1} |V(\alpha)|^2 d\alpha. \]

On the other hand arguing as in (13, Lemma 5), (14, Lemma 7) and using (4), (6), (7), (11) we obtain

\[\int_{0}^{1} |V(\alpha)|^2 d\alpha = \sum_{|m_1|, |m_2| > 0} g(m_1)g(m_2) \]
\[\times \sum_{X/2 < p_1, p_2 \leq X} e(m_1 \sqrt{p_1} - m_2 \sqrt{p_2}) \log p_1 \log p_2 \int_{0}^{1} \alpha(p_1^c - p_2^c) d\alpha \]
\[\ll \sum_{|m_1|, |m_2| > 0} |g(m_1)| |g(m_2)| \sum_{X/2 < p_1, p_2 \leq X} \log p_1 \log p_2 \int_{0}^{1} \alpha(p_1^c - p_2^c) d\alpha \]
\[\ll X \log^3 X \sum_{|m_1|, |m_2| > 0} |g(m_1)| |g(m_2)| \]
\[= X \log^3 X \left(\sum_{|m| > 0} |g(m)|^2 + \sum_{|m_1|, |m_2| < M} |g(m_1)| |g(m_2)| \right. \]
\[+ \sum_{0 < m_1 \leq M, |m_2| > M} |g(m_1)| |g(m_2)| + \sum_{|m_1|, |m_2| > M} |g(m_1)| |g(m_2)| \)

\[= X \log^3 X \left(\sum_{|m| > 0} |g(m)|^2 + \sum_{|m_1|, |m_2| < M} |g(m_1)| |g(m_2)| \right. \]
\[+ \sum_{0 < m_1 \leq M, |m_2| > M} |g(m_1)| |g(m_2)| + \sum_{|m_1|, |m_2| > M} |g(m_1)| |g(m_2)| \)

\[+ \sum_{0 < m_1 \leq M, |m_2| > M} |g(m_1)| |g(m_2)| + \sum_{|m_1|, |m_2| > M} |g(m_1)| |g(m_2)| \)
\[\ll X \log^3 X \left(\sum_{|m| > 0} \frac{1}{m^2} + \sum_{0 < |m_1|, |m_2| < M} \frac{1}{|m_1| \cdot |m_2|} \right) \\
\quad + \sum_{0 < |m_1| \leq M, |m_2| > M} \frac{1}{|m_1|} |g(m_2)| + \sum_{|m_1|, |m_2| > M} |g(m_1)| \cdot |g(m_2)| \right) \ll X \log^3 X \left(\log^2 X + \left(\frac{r}{\pi M \Delta} \right)^r \log X + \left(\frac{r}{\pi M \Delta} \right)^{2r} \right) \\
\ll X \log^3 X \left(\log^2 X + \frac{\log X}{X} + \frac{1}{X^2} \right) \ll X \log^5 X. \tag{20} \]

From (19) and (20) it follows the assertion in the lemma. \[\square \]

Lemma 7. For the sum denoted by (14) the upper bound

\[\max_{|\alpha| \leq P} |V(\alpha)| \ll \left(M^{1/2} X^{7/12} + M^{1/6} X^{3/4} + X^{11/12} + P^{1/16} X^{2c+29} \right. \]
\[\quad + P^{-3/16} M^{1/4} X^{\frac{33c-66}{32}} + P^{-1/16} M^{1/12} X^{\frac{31c-26}{32}} \left. \right) X^\eta \] \tag{21}

holds.

Proof. Bearing in mind (4), (6), (7), (9), (11) and (14) we write

\[|V(\alpha)| \ll \sum_{0 < |m| \leq M} \frac{1}{|m|} |U(\alpha, m)| + X \sum_{|m| > M} |g(m)| \]
\[\ll \sum_{0 < |m| \leq M} \frac{1}{|m|} |U(\alpha, m)| + \left(\frac{r}{\pi M \Delta} \right)^r X \]
\[\ll \sum_{0 < |m| \leq M} \frac{1}{|m|} |U(\alpha, m)| + 1. \tag{22} \]

In order to prove the lemma we have to find the upper bound of the sum \(U(\alpha, m) \) denoted by (9). Our argument is a modification of Petrov’s and Tolev’s \[\text{[11]} \] argument.

Assume that \(m > 0 \). For \(m < 0 \) the proof is analogous.

We denote

\[\psi(t) = \alpha t^c + m \sqrt{t}. \tag{23} \]
\[f(d, l) = \psi(dl) = \alpha (dl)^c + m \sqrt{dl}. \tag{24} \]
It is clear that
\[U(\alpha, m) = \sum_{X/2 < n \leq X} \Lambda(n)e(\alpha n^c + m\sqrt{n}) + O(X^{1/2}). \]

Using Vaughan’s identity (see [15]) we get
\[U(\alpha, m) = U_1 - U_2 - U_3 - U_4 + O(X^{1/2}), \tag{25} \]
where
\[U_1 = \sum_{d \leq X^{1/3}} \mu(d) \sum_{X/2d < l \leq X/d} (\log l)e(f(d, l)), \tag{26} \]
\[U_2 = \sum_{d \leq X^{1/3}} c(d) \sum_{X/2d < l \leq X/d} e(f(d, l)), \tag{27} \]
\[U_3 = \sum_{X^{1/3} < d \leq X^{2/3}} c(d) \sum_{X/2d < l \leq X/d} e(f(d, l)), \tag{28} \]
\[U_4 = \sum_{X/2 < dl \leq X} \sum_{d > X^{1/3}, l > X^{1/3}} a(d)\Lambda(l)e(f(d, l)), \tag{29} \]
and where
\[|c(d)| \leq \log d, \quad |a(d)| \leq \tau(d). \tag{30} \]

Estimation of \(U_1 \) and \(U_2 \)

Consider first \(U_2 \) defined by (27). Bearing in mind (24) we find
\[f''_{ll}(d, l) = \gamma_1 - \gamma_2, \tag{31} \]
where
\[\gamma_1 = d^2\alpha c(c - 1)(dl)^{c-2}, \quad \gamma_2 = \frac{1}{4}md^2(dl)^{-3/2}. \tag{32} \]
From (32) and the restriction
\[X/2 < dl \leq X \tag{33} \]
we obtain
\[|\gamma_1| \asymp |\alpha|d^2X^{c-2}, \quad |\gamma_2| \asymp md^2X^{-3/2}. \tag{34} \]

On the one hand from (31) and (34) we conclude that there exists sufficiently small constant \(h_0 > 0 \) such that if \(|\alpha| \leq h_0mX^{1/2-c}, \) then \(|f''_{ll}(d, l)| \asymp md^2X^{-3/2}. \)

On the other hand from (31) and (34) it follows that there exists sufficiently large constant \(H_0 > 0 \) such that if \(|\alpha| \geq H_0mX^{1/2-c}, \) then \(|f''_{ll}(d, l)| \asymp |\alpha|d^2X^{c-2}. \)
Consider several cases.

Case 1a.

\[H_0mX^{1/2-c} \leq |\alpha| \leq P. \tag{35} \]

We remind that in this case \(|f''_l(d,l)| \asymp |\alpha|d^2X^{c-2} \) and using Lemma 3 for \(k = 2 \) we get

\[
\sum_{X/2d < l \leq X/d} e(f(d,l)) \ll \frac{X}{d} \left(|\alpha|d^2X^{c-2}\right)^{1/2} \left(|\alpha|d^2X^{c-2}\right)^{-1/2} \\
= |\alpha|^{1/2}X^{c/2} + |\alpha|^{-1/2}d^{-1}X^{1-c/2}. \tag{36}
\]

From (27), (30), (35) and (36) it follows

\[U_2 \ll \left(P^{1/2}X^{3c+2/6} + m^{-1/2}X^{3/4}\right) \log^2 X. \tag{37} \]

Case 2a.

\[h_0mX^{1/2-c} < \alpha < H_0mX^{1/2-c}. \tag{38} \]

By (24) we find

\[f'''_{ll}(d,l) = d^3\alpha c(c-1)(c-2)(dl)^c - 3/8d^3m(dl)^{-5/2}. \tag{39} \]

The formulas (31), (32) and (39) give us

\[(c-2)f''_l(d,l) - lf'''_{ll}(d,l) = \frac{1-2c}{8}d^2(dl)^{-3/2}m. \tag{40} \]

From (33) and (40) we obtain

\[|(c-2)f''_l(d,l) - lf'''_{ll}(d,l)| \asymp md^2X^{-3/2}. \]

The above implies that there exists \(\alpha_0 > 0 \), such that for every \(l \in (X/2d, X/d) \) at least one of the following inequalities is fulfilled:

\[|f''_l(d,l)| \geq \alpha_0md^2X^{-3/2}. \tag{41} \]

\[|f'''_{ll}(d,l)| \geq \alpha_0md^3X^{-5/2}. \tag{42} \]

Let us consider the equation

\[f'''_{ll}(d,l) = 0. \tag{43} \]

From (39) it is tantamount to

\[3m(dl)^{1/2-c} - 8\alpha c(c-1)(c-2) = 0. \tag{44} \]
It is easy to see that the equation (44) has at most 1 solution $Z \in (X^{1/2-c}, (X/2)^{1/2-c}]$. Consequently the equation (43) has at most 1 solution in real numbers $l \in (X/2d, X/d]$. According to Rolle’s Theorem if C does not depend on l then the equation $f''_u(d, l) = C$ has at most 2 solution in real numbers $l \in (X/2d, X/d]$. Therefore the equation $|f''_u(d, l)| = \alpha_0md^2X^{-3/2}$ has at most 4 solution in real numbers $l \in (X/2d, X/d]$. From these consideration it follows that the interval $(X/2d, X/d]$ can be divided into at most 5 intervals such that if J is one of them, then at least one of the following assertions holds:

The inequality (44) is fulfilled for all $l \in J$. \hspace{1cm} (45)

The inequality (42) is fulfilled for all $l \in J$. \hspace{1cm} (46)

On the other hand from (31), (33), (34), (38) and (39) we get

\[|f''_u(d, l)| \ll md^2X^{-3/2}, \quad |f'''_u(d, l)| \ll md^3X^{-5/2}. \] \hspace{1cm} (47)

Bearing in mind (45) – (47) we conclude that the interval $(X/2d, X/d]$ can be divided into at most 5 intervals such that if J is one of them, then at least one of the following statements is fulfilled:

\[|f''_u(d, l)| \asymp md^2X^{-3/2} \quad \text{uniformly for} \quad l \in J. \] \hspace{1cm} (48)

\[|f'''_u(d, l)| \asymp md^3X^{-5/2} \quad \text{uniformly for} \quad l \in J. \] \hspace{1cm} (49)

If (48) holds, then we use Lemma 3 for $k = 2$ and obtain

\[\sum_{l \in J} e(f(d, l)) \ll \frac{X}{d} \left(\frac{md^2X^{-3/2}}{X^{1/4}} + \left(\frac{md^2X^{-3/2}}{X^{1/4}}\right)^{-1/2}\right)^{1/2} + \left(\frac{md^2X^{-3/2}}{X^{1/4}}\right)^{-1/2} \ll m^{1/2}d^{-1/2}X^{7/12} + m^{-1/2}d^{-1}X^{11/12}. \] \hspace{1cm} (50)

If (49) is fulfilled, then we use Lemma 3 for $k = 3$ and find

\[\sum_{l \in J} e(f(d, l)) \ll \frac{X}{d} \left(m^3d^3X^{-5/2} \right)^{1/6} + \left(\frac{X}{d}\right)^{1/2} \left(m^3d^3X^{-5/2}\right)^{-1/6} \ll m^{1/6}d^{1/2}X^{7/12} + m^{-1/6}d^{-1}X^{11/12}. \] \hspace{1cm} (51)

From (50) and (51) it follows

\[\sum_{X/2d < l \leq X/d} e(f(d, l)) \ll m^{1/2}d^{-1/2}X^{7/12} + m^{-1/2}d^{-1}X^{11/12} \] \hspace{1cm} (52)
Bearing in mind (27) and (52) we get

\[U_2 \ll \left(m^{1/2} X^{7/12} + m^{1/6} X^{3/4} + m^{-1/6} X^{11/12} \right) \log^2 X. \] (53)

Case 3a.

\[|\alpha| \leq h_0 m X^{1/2-c}. \] (54)

We recall that in this case \(|f''_l(d, l)| \approx m d^2 X^{-3/2} \) and using Lemma 3 for \(k = 2 \) we obtain

\[\sum_{X/2d < l \leq X/d} e(f(d, l)) \ll m^{1/2} X^{1/4} + m^{-1/2} d^{-1} X^{3/4}. \] (55)

Using (27) and (55) we find

\[U_2 \ll \left(m^{1/2} X^{7/12} + m^{-1/2} X^{3/4} \right) \log^2 X. \] (56)

Case 4a.

\[-H_0 m X^{1/2-c} < \alpha < -h_0 m X^{1/2-c}. \] (57)

In this case again \(|f''_l(d, l)| \approx m d^2 X^{-3/2} \). Consequently

\[U_2 \ll \left(m^{1/2} X^{7/12} + m^{-1/2} X^{3/4} \right) \log^2 X. \] (58)

From (37), (53), (56) and (58) it follows

\[U_2 \ll \left(m^{1/2} X^{7/12} + m^{1/6} X^{3/4} + m^{-1/6} X^{11/12} + P^{1/2} X^{3k+2} \right) \log^2 X. \] (59)

In order to estimate \(U_1 \) defined by (26) we apply Abel’s transformation. Then arguing as in the estimation of \(U_2 \) we get

\[U_1 \ll \left(m^{1/2} X^{7/12} + m^{1/6} X^{3/4} + m^{-1/6} X^{11/12} + P^{1/2} X^{3k+2} \right) \log^2 X. \] (60)

Estimation of \(U_3 \) and \(U_4 \)

Consider first \(U_4 \) defined by (29). We have

\[U_4 \ll |U_5| \log X, \] (61)

where

\[U_5 = \sum_{L<d\leq2L} b(l) \sum_{D<d\leq2D} a(d) e(f(d, l)) \] (62)

and where

\[a(d) \ll X^n, \quad b(l) \ll X^n, \quad X^{1/3} \ll D \ll X^{1/2} \ll L \ll X^{2/3}, \quad DL \asymp X. \] (63)
Using (62), (63) and Cauchy’s inequality we obtain

\[|U_5|^2 \ll X^\eta L \sum_{L < d \leq 2L} \left| \sum_{D_1 < d \leq D_2} a(d) e(f(d, l)) \right|^2, \quad (64) \]

where

\[D_1 = \max \left\{ D, X \frac{L}{2l} \right\}, \quad D_2 = \min \left\{ \frac{X}{l}, 2D \right\}. \quad (65) \]

Now from (63) – (65) and Lemma 4 with \(Q \) such that \(Q \leq D \) we find

\[|U_5|^2 \ll X^\eta \sum_{L < d \leq 2L} \frac{D}{Q} \sum_{|q| \leq Q} \left(1 - \frac{|q|}{Q} \right) \left| \sum_{D_1 < d \leq D_2} \sum_{D_1 < d + q \leq D_2} a(d + q) \overline{a(d)} e(f(d + q, l) - f(d, l)) \right| \]

\[\ll \left(\frac{(LD)^2}{Q} + \frac{LD}{Q} \sum_{0 < |q| \leq Q} \sum_{D_1 < d \leq D_2} \sum_{D_1 < d + q \leq D_2} e(g_{d,q}(l)) \right) X^\eta, \quad (67) \]

where

\[L_1 = \max \left\{ L, \frac{X}{2d}, \frac{X}{2d + q} \right\}, \quad L_2 = \min \left\{ 2L, \frac{X}{d}, \frac{X}{d + q} \right\} \quad (68) \]

and

\[g(l) = g_{d,q}(l) = f(d + q, l) - f(d, l). \quad (69) \]

It is not hard to see that the sum over negative \(q \) in formula (67) is equal to the sum over positive \(q \). Thus

\[|U_5|^2 \ll \left(\frac{(LD)^2}{Q} + \frac{LD}{Q} \sum_{1 \leq q \leq Q} \sum_{D_1 < d \leq D - q} \sum_{L_1 < l \leq L_2} e(g_{d,q}(l)) \right) X^\eta. \quad (70) \]

Consider the function \(g(l) \). From (23), (24) and (69) it follows

\[g(l) = \int_d^{d+q} f'(l, t) \, dt = \int_d^{d+q} l \psi'(tl) \, dt. \]

Hence

\[g''(l) = \int_d^{d+q} 2t \psi''(tl) + lt^2 \psi'''(tl) \, dt. \quad (71) \]
Bearing in mind (23) and (71) we obtain

\[g''(l) = \int_{d}^{d+q} \left(\Psi_1(t,l) - \Psi_2(t,l) \right) dt, \]

(72)

where

\[\Psi_1(t,l) = \alpha c^2 (c-1) t^{c-1} l^{c-2}, \quad \Psi_2(t,l) = \frac{m}{8} t^{-1/2} l^{-3/2}. \]

(73)

If \(t \in [d, d+q] \), then

\[tl \approx X. \]

(74)

From (73) and (74) we get

\[|\Psi_1(t,l)| \approx |\alpha| d^2 X^{c-2}, \quad |\Psi_2(t,l)| \approx m d X^{-3/2}. \]

(75)

On the one hand from (72) and (75) we conclude that there exists sufficiently small constant \(h_1 > 0 \) such that if \(|\alpha| \leq h_1 m X^{1/2-c} \), then \(|g''(l)| \approx q |\alpha| d X^{c-2} \).

On the other hand from (72) and (75) it follows that there exists sufficiently large constant \(H_1 > 0 \) such that if \(|\alpha| \geq H_1 m X^{1/2-c} \), then \(|g''(l)| \approx q |\alpha| d X^{c-2} \).

Consider several cases.

Case 1b.

\[H_1 m X^{1/2-c} \leq |\alpha| \leq P. \]

(76)

We recall that the constant \(H_1 \) is chosen in such a way, that if \(|\alpha| \geq H_1 m X^{1/2-c} \), then uniformly for \(l \in (L_1, L_2) \) we have \(|g''(l)| \approx q |\alpha| d X^{c-2} \). Using (63), (68) and applying Lemma 3 for \(k = 2 \) we find

\[\sum_{L_1 < l \leq L_2} e(g(l)) \ll L (q |\alpha| d X^{c-2})^{1/2} + (q |\alpha| d X^{c-2})^{-1/2} \]

\[= L q^{1/2} |\alpha|^{1/2} d^{1/2} X^{c/2-1} + q^{-1/2} |\alpha|^{-1/2} d^{-1/2} X^{1-c/2}. \]

(77)

From (63), (70), (76) and (77) it follows

\[U_5 \ll (X Q^{-1/2} + P^{1/4} X^{2k+5} Q^{1/4} + m^{-1/4} X Q^{-1/4}) X^\eta. \]

(78)

Case 2b.

\[h_1 m X^{1/2-c} < |\alpha| < H_1 m X^{1/2-c}. \]

(79)

The formulas (72) and (73) give us

\[g''(l) = \int_{d}^{d+q} \left(\Phi_1(t,l) + \Phi_2(t,l) \right) dt, \]

(80)
where
\[\Phi_1(t, l) = \alpha c^2(c - 1)(c - 2)t^{c-1}l^{-3}, \quad \Phi_2(t, l) = \frac{3m}{16} t^{-1/2}l^{-5/2}. \] (81)

From (72), (73), (80) and (81) it follows
\[(c - 2)g''(l) - lg'''(l) = \frac{7 - 2c}{16} m \int l(t) t^{3/2} dt. \] (82)

Using (74) and (82) we obtain
\[|(c - 2)g''(l) - lg'''(l)| \approx qmdX^{-3/2}. \]

Consequently there exists \(\alpha_1 > 0 \), such that for every \(l \in (L_1, L_2] \) at least one of the following inequalities holds:
\[|g''(l)| \geq \alpha_1 qmdX^{-3/2}. \] (83)
\[|g'''(l)| \geq \alpha_1 qmd^2X^{-5/2}. \] (84)

Consider the equation
\[g'''(l) = 0. \] (85)

From (80) and (81) we get
\[\alpha c(c - 1)(c - 2)[(d + q)c - d^c]t^{c-3} - \frac{3m}{8}[(d + q)^{1/2} - d^{1/2}]l^{-5/2} = 0 \] (86)
which is equivalent to
\[tc^{1/2} = \frac{3m[(d + q)^{1/2} - d^{1/2}]}{8\alpha c(c - 1)(c - 2)[(d + q)c - d^c]}. \] (87)

It is not hard to see that the equation (87) has at most 1 solution \(Z \in (L_1^{c-1/2}, L_2^{c-1/2}] \).

Therefore the equation (85) has at most 1 solution in real numbers \(l \in (L_1, L_2] \). According to Rolle’s Theorem if \(C \) does not depend on \(l \) then the equation \(g''(l) = C \) has at most 2 solution in real numbers \(l \in (L_1, L_2] \). Therefore the equation \(|g''(l)| = \alpha_1 qmd^2X^{-3/2} \) has at most 4 solution in real numbers \(l \in (L_1, L_2] \). From these consideration it follows that the interval \((L_1, L_2] \) can be divided into at most 5 intervals such that if \(J \) is one of them, then at least one of the following statements holds:

The inequality (83) is fulfilled for all \(l \in J \). (88)

The inequality (84) is fulfilled for all \(l \in J \). (89)
Using (72), (74), (75), (79), (80) and (81) we find
\[|g''(l)| \ll qmdX^{-3/2}, \quad |g''(l)| \ll qmd^2X^{-5/2}. \tag{90} \]

From (88) – (90) it follows that the interval \((L_1, L_2]\) can be divided into at most 5 intervals such that if \(J\) is one of them, then at least one of the following assertions is fulfilled:
\[|g''(l)| \asymp qmdX^{-3/2} \quad \text{uniformly for} \quad l \in J. \tag{91} \]
\[|g''(l)| \asymp qmd^2X^{-5/2} \quad \text{uniformly for} \quad l \in J. \tag{92} \]

If (91) is fulfilled, then we use Lemma 3 for \(k = 2\) and get
\[
\sum_{l \in J} e(g(l)) \ll L(qmdX^{-3/2})^{1/2} + (qmdX^{-3/2})^{-1/2} \\
= Lq^{1/2}m^{1/2}d^{1/2}X^{-3/4} + q^{-1/2}m^{-1/2}d^{-1/2}X^{3/4}. \tag{93} \]

If (92) holds, then we use Lemma 3 for \(k = 3\) and obtain
\[
\sum_{l \in J} e(g(l)) \ll L(qmd^2X^{-5/2})^{1/6} + L^{1/2}(qmd^2X^{-5/2})^{-1/6} \\
= Lq^{1/6}m^{1/6}d^{1/3}X^{-5/12} + L^{1/2}q^{-1/6}m^{-1/6}d^{-1/3}X^{5/12}. \tag{94} \]

From (93) and (94) it follows
\[
\sum_{L_1 < l \leq L_2} e(g(l)) \ll Lq^{1/2}m^{1/2}d^{1/2}X^{-3/4} + q^{-1/2}m^{-1/2}d^{-1/2}X^{3/4} \\
+ Lq^{1/6}m^{1/6}d^{1/3}X^{-5/12} + L^{1/2}q^{-1/6}m^{-1/6}d^{-1/3}X^{5/12}. \tag{95} \]

Taking into account (63), (70) and (95) we find
\[
U_5 \ll (XQ^{-1/2} + m^{1/4}X^{3/4}Q^{1/4} + m^{-1/4}XQ^{-1/4} \\
+ m^{1/12}X^{7/8}Q^{1/12} + m^{-1/12}XQ^{-1/12})X^\eta. \tag{96} \]

Case 3b.
\[|\alpha| \leq h_1mX^{1/2-c}. \tag{97} \]

We have chosen the constant \(h_1\) in such a way, that from (72), (74), (75) and (97) it follows that \(|g''(l)| \asymp qmdX^{-3/2}\) uniformly for \(l \in (L_1, L_2].\) Applying Lemma 3 for \(k = 2\) we get
\[
\sum_{L_1 < l \leq L_2} e(g(l)) \ll Lq^{1/2}m^{1/2}d^{1/2}X^{-3/4} + q^{-1/2}m^{-1/2}d^{-1/2}X^{3/4}. \tag{98} \]
From (70) and (98) we obtain
\[U_5 \ll (XQ^{-1/2} + m^{1/4}X^{3/4}Q^{1/4} + m^{-1/4}XQ^{-1/4})X^\eta. \]
(99)

Case 4b.
\[-H_1mX^{1/2-c} < \alpha < -h_1mX^{1/2-c}.\]
(100)

In this case \(|g''(l)| \asymp qmdX^{-3/2}|. Arguing in a similar way we find
\[U_5 \ll (XQ^{-1/2} + m^{1/4}X^{3/4}Q^{1/4} + m^{-1/4}XQ^{-1/4})X^\eta. \]
(101)

From (61), (78), (96), (99) and (101) we get
\[U_4 \ll \left(XQ^{-1/2} + P^{1/4}X^{2c+5/8}Q^{1/4} + m^{1/4}X^{3/4}Q^{1/4} + m^{-1/4}XQ^{-1/4}
+ m^{1/12}X^{7/8}Q^{1/12} + m^{-1/12}XQ^{-1/12} \right)X^\eta. \]
(102)

Arguing as in the estimation of \(U_4\) we obtain
\[U_3 \ll \left(XQ^{-1/2} + P^{1/4}X^{2c+5/8}Q^{1/4} + m^{1/4}X^{3/4}Q^{1/4} + m^{-1/4}XQ^{-1/4}
+ m^{1/12}X^{7/8}Q^{1/12} + m^{-1/12}XQ^{-1/12} \right)X^\eta. \]
(103)

Summarizing (25), (59), (60), (102) and (103) we conclude that for \(|\alpha| \leq P\) and any integer \(m \neq 0\) the estimation
\[|U(\alpha, m)| \ll \left(m^{1/2}X^{7/12} + m^{1/6}X^{3/4} + m^{-1/6}X^{11/12} + XQ^{-1/2}
+ P^{1/4}X^{2c+5/8}Q^{1/4} + m^{1/4}X^{3/4}Q^{1/4} + m^{-1/4}XQ^{-1/4}
+ m^{1/12}X^{7/8}Q^{1/12} + m^{-1/12}XQ^{-1/12} \right)X^\eta \]
(104)

holds.

We substitute the expression (104) for \(U(\alpha, m)\) in (22) and find
\[\max_{|\alpha| \leq P} |V(\alpha)| \ll \left(M^{1/2}X^{7/12} + M^{1/6}X^{3/4} + X^{11/12} + XQ^{-1/2}
+ P^{1/4}X^{2c+5/8}Q^{1/4} + M^{1/4}X^{3/4}Q^{1/4} + XQ^{-1/4}
+ M^{1/12}X^{7/8}Q^{1/12} + XQ^{-1/12} \right)X^\eta. \]
(105)

We choose
\[Q = \left[P^{3/4}X^{\frac{9-6c}{8}} \right]. \]
(106)

The direct verification assures us that the condition (66) is fulfilled.

Bearing in mind (105) and (106) we obtain the estimation (21).
3 Proof of the Theorem

Consider the sum
\[
\Gamma(X) = \sum_{X/2 < p_1, p_2, p_3 \leq X \atop |p_1^c + p_2^c + p_3^c - N| < \varepsilon} \prod_{j=1}^{3} \chi(\sqrt{p_j}) \log p_j \int_{-\infty}^{\infty} e((p_1^c + p_2^c + p_3^c - N)\alpha) \hat{A}(\varepsilon \alpha) \, d\alpha.
\] (107)

The theorem will be proved if we show that \(\Gamma(X) \to \infty \) as \(X \to \infty \).

Consider the integrals
\[
I_1 = \int_{-\infty}^{\infty} H^3(\alpha) e(-N\alpha) \hat{A}(\varepsilon \alpha) \, d\alpha
\] (108)
\[
I = \int_{-\infty}^{\infty} S^3(\alpha) e(-N\alpha) \hat{A}(\varepsilon \alpha) \, d\alpha.
\] (109)

On the one hand from (12), (13), (15), (107) and (108) it follows
\[
I_1 = \sum_{X/2 < p_1, p_2, p_3 \leq X} \prod_{j=1}^{3} \chi(\sqrt{p_j}) \log p_j \int_{-\infty}^{\infty} e((p_1^c + p_2^c + p_3^c - N)\alpha) \hat{A}(\varepsilon \alpha) \, d\alpha
\]
\[
= \sum_{X/2 < p_1, p_2, p_3 \leq X} \prod_{j=1}^{3} \chi(\sqrt{p_j}) (\log p_j) \varepsilon^{-1} A((p_1^c + p_2^c + p_3^c - N)\varepsilon^{-1}) \leq \varepsilon^{-1} \Gamma(X).
\] (110)

On the other hand (8), (10), (13), (14), (17), (108) and (109) give us
\[
I_1 = \int_{-\infty}^{\infty} \left(\frac{9}{5} Y S(\alpha) + V(\alpha) \right)^3 e(-N\alpha) \hat{A}(\varepsilon \alpha) \, d\alpha
\]
\[
= \left(\frac{9}{5} Y \right)^3 I + \mathcal{O} \left(Y^2 \int_{-P}^{P} |S^2(\alpha)V(\alpha)| \, d\alpha \right)
\]
\[
+ \mathcal{O} \left(Y \int_{-P}^{P} |S(\alpha)V^2(\alpha)| \, d\alpha \right) + \mathcal{O} \left(\int_{-P}^{P} |V^3(\alpha)| \, d\alpha \right).
\] (111)

We write
\[
\int_{-P}^{P} |S^2(\alpha)V(\alpha)| \, d\alpha \ll \max_{|\alpha| \leq P} |V(\alpha)| \int_{-P}^{P} |S(\alpha)|^2 \, d\alpha.
\] (112)
Applying Cauchy’s inequality we get

\[
\int_{-P}^{P} |S(\alpha)V^2(\alpha)| \, d\alpha \ll \max_{|\alpha| \leq P} |V(\alpha)| \left(\int_{-P}^{P} |S(\alpha)|^2 \, d\alpha \right)^{1/2} \left(\int_{-P}^{P} |V(\alpha)|^2 \, d\alpha \right)^{1/2}.
\]

(113)

Similarly

\[
\int_{-P}^{P} |V(\alpha)|^3 \, d\alpha \ll \max_{|\alpha| \leq P} |V(\alpha)| \int_{-P}^{P} |V(\alpha)|^2 \, d\alpha.
\]

(114)

Using Lemmas 5 6 7 and (111) – (114) we obtain

\[
I_1 = \left(\frac{9}{5} Y \right)^3 I + O \left(\left(PM^{1/2} X^{19/12} + PM^{1/6} X^{7/4} + PX^{23/12} + P^{17/16} X^{2c+61/32} \right) + P^{13/16} M^{1/4} X^{65-6\epsilon} + P^{15/16} M^{1/12} X^{63-2\epsilon} \right) X^{\eta}.
\]

(115)

From (3), (5), (6), (7), (16), (109), (115), Lemma 2 and choosing \(\eta < \delta \) we find

\[
I_1 \gg Y^3 X^{3-c}.
\]

(116)

Finally (110) and (116) give us

\[
\Gamma(X) \gg \varepsilon Y^3 X^{3-c}.
\]

(117)

Bearing in mind (3), (5) and (117) we establish that \(\Gamma(X) \to \infty \) as \(X \to \infty \).

The proof of the Theorem 2 is complete.

References

[1] R. Baker, G. Harman, *Diophantine approximation by prime numbers*, J. Lond. Math. Soc., 25, (1982), 201 – 215.

[2] R. Baker, A. Weingartner, *A ternary diophantine inequality over primes*, Acta Arith., 162, (2014), 159 – 196.

[3] Y. Cai, *On a diophantine inequality involving prime numbers* (in Chinese), Acta Math Sinica, 39, (1996), 733 – 742.

[4] Y. Cai, *On a diophantine inequality involving prime numbers III*, Acta Mathematica Sinica, English Series, 15, (1999), 387 – 394.
[5] Y. Cai, *A ternary Diophantine inequality involving primes*, Int. J. Number Theory, **14**, (2018), 2257 – 2268.

[6] X. Cao, W. Zhai, *A Diophantine inequality with prime numbers*, Acta Math. Sinica, Chinese Series, **45**, (2002), 361 – 370.

[7] H. Iwaniec, E. Kowalski, *Analytic number theory*, Colloquium Publications, **53**, Amer. Math. Soc., (2004).

[8] A. Karatsuba, *Principles of the Analytic Number Theory*, Nauka, Moscow, (1983), (in Russian).

[9] A. Kumchev, T. Nedeva, *On an equation with prime numbers*, Acta Arith., **83**, (1998), 117 – 126.

[10] A. Kumchev, *A diophantine inequality involving prime powers*, Acta Arith., **89**, (1999), 311 – 330.

[11] Z. Petrov, D. Tolev, *On an equation involving fractional powers with one prime and one almost prime variables*, Proceedings of the Steklov Institute of Mathematics, **298**, (2017), 38 – 56.

[12] I. Piatetski-Shapiro, *On a variant of the Waring-Goldbach problem*, Mat. Sb., **30**, (1952), 105 – 120, (in Russian).

[13] D. Tolev, *Diophantine approximations involving primes near squares*, Mathematical Notes of the Academy of Sciences of the USSR, **50**, (1991), 966 – 969.

[14] D. Tolev, *On a diophantine inequality involving prime numbers*, Acta Arith., **61**, (1992), 289 – 306.

[15] R. C. Vaughan, *An elementary method in prime number theory*, Acta Arithmetica, **37**, (1980), 111 – 115.

S. I. Dimitrov
Faculty of Applied Mathematics and Informatics
Technical University of Sofia
8, St.Kliment Ohridski Blvd.
1756 Sofia, BULGARIA
e-mail: sdimitrov@tu-sofia.bg