Generation and propagation of entanglement in driven coupled-qubit systems

J Li and G S Paraoanu

Low Temperature Laboratory, Helsinki University of Technology,
PO Box 5100, FIN-02015 TKK, Finland
E-mail: paraoanu@cc.hut.fi

New Journal of Physics 11 (2009) 113020 (13pp)
Received 21 May 2009
Published 10 November 2009
Online at http://www.njp.org/
doi:10.1088/1367-2630/11/11/113020

Abstract. In a bipartite system subject to decoherence from two separate reservoirs, entanglement is typically destroyed faster than where there is a single reservoir. Surprisingly, however, the existence of separate reservoirs can also have a beneficial entangling effect: if the qubits are coupled and driven externally by a classical field, the system ends in a stationary state characterized by a finite degree of entanglement. This phenomenon occurs only in a certain region of the parameter space and the structure of the stationary state has a universal form which does not depend on the initial state or on the specific physical realization of the qubits. We show that the entanglement thus generated can be propagated within a quantum network using simple local unitary operations. We suggest the use of such systems as ‘batteries of entanglement’ in quantum circuits.

Contents

1. Introduction 2
2. Generation of entanglement 2
3. Propagation of entanglement in quantum circuits 7
4. Conclusions 10
Acknowledgments 10
Appendix A. Single-qubit case 10
References 12

1 Author to whom any correspondence should be addressed.
1. Introduction

When two qubits are exposed to uncorrelated weak noise, qualitatively new phenomena, known collectively as sudden death of entanglement, have been predicted theoretically [1, 2] and confirmed experimentally for photons [3] and atoms [4]. These phenomena include the abrupt (rather than exponential) decay of concurrence for certain initial entangled states [1] and the non-additivity of decoherence rates [2]. They indicate that two different environments have a detrimental effect on entanglement, which gets stronger with the addition of external influences, as shown with driven qubits [5] and finite-temperature baths [6]. This differs from the case of a single environment, where the constructive role of decoherence has been known for some time [7]. Other cases in which a single environment can in fact support the occurrence of entanglement have been pointed out in various contexts: for example, if the qubits are allowed to exchange excitations via a third continuously monitored quantum object [8]; if the qubits are driven [9], or dipole-coupled [10], or if the vacuum fluctuations (rotating terms) are not negligible [11].

In this paper, we show that for coupled and driven qubits interacting with two different reservoirs, entanglement can be generated and maintained for long timescales. The existence of this effect does not depend on the specific physical realization of the qubits, but requires the presence of all three ingredients: dissipation, driving and coupling. We show that steady-state generation of entanglement is possible in a region which is outside the range of validity of the secular approximation [12], where the concurrence can reach a maximal universal value (half the inverse of the golden ratio) if a certain simple relation between the driving field and the coupling is established. In a wider quantum-information context, this effect could find applications such as on-demand creation of complex entangled states by manipulating the dissipation [13], a process that could be regarded as a form of adiabatic quantum computing [14]. Here we suggest that, since stationary entanglement is robust under decoherence, independent of the initial state of the qubits, is relatively easy to generate, and has a system-independent value, such systems could be used as ‘entanglement batteries’. We show that, using simple local unitary operations available now for systems such as superconducting qubits, this entanglement can be harvested and further transmitted in a quantum circuit.

2. Generation of entanglement

We consider two qubits of Larmor frequency \(\nu_j \) \((j = 1, 2)\), coupled by a dipole–dipole interaction of strength \(\omega^{xx}(t) \), and irradiated by external monochromatic fields of frequency \(\omega_j \) and vacuum Rabi frequencies \(\Omega_j \). The two states of each qubit are denoted by \(|0\rangle \) and \(|1\rangle \), and for the Bell basis of the two qubits we will use the notation \(|\Psi^\pm\rangle = \frac{1}{\sqrt{2}}(|01\rangle \pm |10\rangle) \) and \(|\Phi^\pm\rangle = \frac{1}{\sqrt{2}}(|00\rangle \pm |11\rangle) \). The dipole–dipole coupling between the qubits can be either direct or result from virtual excitations through a third object, as it is the case in many qubit architectures [15]. In the Schrödinger picture and with \(\hbar = 1 \),

\[
H^{(S)} = \sum_{j=1,2} \frac{\nu_j}{2} \sigma_j^z + \omega^{xx}(t) \sigma_1^x \sigma_2^x + \sum_{j=1,2} \Omega_j \cos(\omega_j t) \sigma_j^x ,
\]

(1)

where, to account for the situation in which the qubits have very different Larmor frequencies [16], we have considered a modulated coupling \(\omega^{xx}(t) = 2\omega^{xx} \cos(\omega_2 - \omega_1) t \). The
dissipation is described by the standard Born–Markov master equation [12],
\[\dot{\rho}^{(S)} = -i[H^{(S)}, \rho^{(S)}] + \mathcal{L}[\rho^{(S)}], \]
where the Liouvillian
\[\mathcal{L}[\rho^{(S)}] = \sum_{j=1,2} \frac{\Gamma_j}{2} \left(2\sigma_j^- \rho^{(S)} \sigma_j^+ - \sigma_j^+ \sigma_j^- \rho^{(S)} - \rho^{(S)} \sigma_j^+ \sigma_j^-\right) \]
models the longitudinal damping of the qubits, and \(\Gamma_j \) is the standard energy relaxation rate.

We work in a rotating reference frame, characterized by the transformation \(R = \exp[i(\omega_1 \sigma_i^x + \omega_2 \sigma_i^y)t/2] \). Using the identities \(R \sigma_j^\pm R^\dagger = \sigma_j^\pm \exp(\mp i\omega_j t) \) and eliminating the fast counter-rotating terms via the rotating wave approximation, we obtain a time-independent master equation in the rotating frame,
\[\dot{\rho} = -i[H, \rho] + \mathcal{L}[\rho], \]
with \(\rho = R \rho^{(S)} R^\dagger \), and
\[H \approx \sum_{j=1,2} \left(\frac{\delta_j}{2} \sigma_j^z + \frac{\Omega_j}{2} \sigma_j^x\right) + \frac{\omega^{xx}}{2} \left(\sigma_1^x \sigma_2^x + \sigma_1^y \sigma_2^y\right). \]

Here, \(\delta_j = \nu_j - \omega_j \) are the detunings of the qubits from the corresponding driving frequencies. In order to use the rotating wave approximation, we have taken \(\omega_1, \omega_2, |\omega_1 - \omega_2| \gg \Omega_j, \delta_j, \omega^{xx}, \Gamma_j \). For the case of qubits with close Larmor frequencies, there is no need to modulate the coupling: an effective Hamiltonian of the type equation (5) can be obtained [5, 17] by the same transformations and working at equal driving frequencies \(\omega_1 = \omega_2 \). From now on, we will also refer to the interaction part (containing \(\omega^{xx} \)) of the Hamiltonian equation (5) as \(H^{xx} \) and to the rest as \(H_0 \) (\(H = H_0 + H^{xx} \)).

To explore the entanglement properties of this system, we first solved numerically equation (4) for \(\delta_j = \delta, \Omega_j = \Omega \) and \(\Gamma_j = \Gamma \). The entanglement between the qubits at any time is characterized by Wootters’ concurrence [18], defined as \(\max\{0, C\} \), where \(C = \lambda_1 - \lambda_2 - \lambda_3 - \lambda_4 \), and \(\lambda_i \)'s are the eigenvalues of \(\sqrt{\rho} \sigma^y \sqrt{\rho} \) in decreasing order, with \(\rho \equiv (\sigma^x \otimes \sigma^y) \rho^*(\sigma^y \otimes \sigma^y) \). We find that for most of the values of \(\Omega \) and \(\omega^{xx} \) either sudden death of entanglement or exponential decay of entanglement occurs, depending on the initial state [1]. However, for certain values of the driving field \(\Omega \) and coupling \(\omega^{xx} \) a process of concurrence buildup occurs, as shown in figure 1 for the case of initial Werner states [19], defined as \(\rho_W = [(1-f)/3]I + [(4f - 1)/3] |\Psi^-\rangle \langle \Psi^-| \).

We first note that this effect is qualitatively different from the case of a single reservoir, with Liouvillian superoperator
\[\mathcal{L}_{\text{single}}[\rho] = \frac{\Gamma}{2} \left(2S^- \rho S^+ - S^+ S^- \rho - \rho S^+ S^-\right), \]
with \(S^\pm = \sum_{j=1,2} \sigma_j^\pm \) being collective spin operators. In this situation, the emergence of an entangled steady state via evolution depends on the initial state, as shown in figure 2 where we plotted the time-dependent concurrence for three classes of states: Werner states, Yu–Eberly (YE) states [22] (states of the type \(\rho_{\text{YE}} = (2/3) |\Psi^+\rangle \langle \Psi^+| + (1 - \alpha/3) |11\rangle \langle 11| + (\alpha/3) |00\rangle \langle 00| \)) and states diagonal in the subspace with one excitation, which we denote by \(\rho_{\text{eg-ge}} = (1 - a)|10\rangle \langle 10| + a|01\rangle \langle 01| \). The reason for this is the existence, for common reservoirs, of a decoherence-free subspace; as a result, the amount of entanglement in the asymptotic state depends in general on the projection of the initial state onto this subspace [20]. A number of
effects related to decoherence-free subspaces in interacting qubits have been studied recently; for example, it has been shown how to use the qubit-qubit coupling to effectively produce a low-decoherence subspace even where the qubits have additional separate decoherence channels [21], and how to create a maximally entangled state using suitable measurements on the decay photons [8].

We now return to the case of two reservoirs. Entanglement generation occurs only in a certain region of the parameter space: in figure 3, we have plotted the concurrence for a long timescale evolution $t \gg \Omega^{-1}, \Gamma^{-1}$. The maximum value of the concurrence is reached at resonance ($\delta = 0$) and it increases slowly with Ω/Γ and ω^{xx}/Γ. Although intuitively one might expect that increasing either the coupling or the pumping strength would increase the steady-state concurrence, this is not the case: both the ratios Ω/Γ and ω^{xx}/Γ are important, showing that all three processes (coupling, pumping and decoherence) contribute to this effect. It also means that the secular approximation [12] is not valid in the region of the parameter space where the effect occurs.

New Journal of Physics 11 (2009) 113020 (http://www.njp.org/)

Figure 1. Time evolution of the concurrence for a Werner state, with the system parameters $\Omega = 2\Gamma$ and $\omega^{xx} = 5\Gamma$.

Figure 2. Concurrence evolution for (left) YE states, for (middle) Werner states, and for (right) eg–ge states. For all the plots, $\omega^{xx} = 10\Gamma$ and $\Omega = 1.5\Gamma$.
To get some insight into the mechanism responsible for the generation of steady-state concurrence, we will take a perturbative approach: if there is no coupling between the two qubits, then in the stationary regime the bipartite system is described by the separable density matrix $\rho^{(\infty)}_1 \rho^{(\infty)}_2$. Consider a single qubit j under constant on-resonance driving: in the rotating frame, the master equation is simply

$$\dot{\rho}_j = -\frac{i}{2} \{\sigma^x, \rho_j\} + \frac{\Gamma}{2} (2\sigma^- \rho_j \sigma^+ - \sigma^+ \sigma^- \rho_j - \rho_j \sigma^+ \sigma^-),$$

and the steady state is (see appendix A)

$$\rho_j^{(\infty)} = \frac{1}{\Gamma^2 + 2\Omega^2} \begin{pmatrix} \Omega^2 & i\Omega\Gamma \\ -i\Omega\Gamma & \Gamma^2 + \Omega^2 \end{pmatrix}.$$

We now aim at finding the first-order contribution in $\omega^{xx}/\Gamma \ll 1$ to the density matrix and the concurrence. We write the solution as $\rho^{(\infty)} = \rho_1^{(\infty)} \rho_2^{(\infty)} + \rho^{xx}$, where, in order to ensure a unit value for $\rho^{(\infty)}$, we search for a traceless density matrix ρ^{xx}, which satisfies the equation $-i[H_0, \rho^{xx}] - i[H^{xx}, \rho_1^{(\infty)} \rho_2^{(\infty)}] + C \rho^{xx} = 0$. Here, we neglect the second-order contribution in ω^{xx}/Γ coming from the commutator $[H^{xx}, \rho^{xx}]$. With the notation $\rho_{jk,lm}^{xx} = \langle jk | \rho^{xx} | lm \rangle$, we find that ρ^{xx} has matrix elements $\rho_{11,00}^{xx} = \rho_{00,11}^{xx} = 2i\Omega^2 \Gamma \omega^{xx}/(\Gamma^2 + 2\Omega^2)^2$, $\rho_{10,00}^{xx} = \rho_{00,10}^{xx} = \rho_{01,00}^{xx} = \rho_{00,01}^{xx} = 2\Omega^2 \omega^{xx}/(\Gamma^2 + 2\Omega^2)^2$ and the rest zero. The quantity C associated with the density matrix $\rho_1^{(\infty)} \rho_2^{(\infty)} + \rho^{xx}$ is $C = 2\Omega^2 (2\omega^{xx}/\Gamma - \Omega^2)(\Gamma^2 + 2\Omega^2)^{-2}$, and we have checked that it gives excellent fits to the numerical results in the region where $\omega^{xx}/\Gamma \ll 1$ for both negative and positive values of C; it also predicts that C will become positive for $\omega^{xx} = \Omega^2/2\Gamma$, in agreement with the exact result derived below equation (10).

Although in the region of interest (finite, large concurrence) the problem is clearly non-perturbative, the perturbative solution serves as a heuristic guide to find the stationary...
density matrix that solves equation (4) under the condition \(\dot{\rho} = 0 \). Note that this condition implies solving for the 15 unknown real entries of \(\dot{\rho} = 0 \). Surprisingly, although the algebraic calculations are rather complicated, at resonance we find a simple solution for \(\rho^{(\infty)} \)

\[
\rho^{(\infty)} = \frac{(\Gamma^2+2\Omega^2)^2}{[(\Gamma^2+2\Omega^2)^2+4\omega^{xx}\Gamma^2]^2} \left(\rho_1^{(\infty)} \rho_2^{(\infty)} + \rho^{xx} \right) + \frac{\Gamma^2\omega^{xx}}{[(\Gamma^2+2\Omega^2)^2+4\omega^{xx}\Gamma^2]^2} (1-\sigma_z^{(1)})(1-\sigma_z^{(2)}).
\]

This solution preserves the structure of the perturbative case—note that the role of the second term is just to ensure that \(\text{Tr}\rho^{(\infty)} = 1 \), due to the appearance of the prefactor in front of \(\rho_1^{(\infty)} \rho_2^{(\infty)} + \rho^{xx} \) in the first term. Similarly, \(C \) can be calculated analytically and the result resembles the non-perturbative case,

\[
C = 2\Omega^2 \frac{2\omega^{xx} \Gamma - \Omega^2}{(\Gamma^2 + 2\Omega^2)^2 + 4\omega^{xx}\Gamma^2}.
\]

The crossover between the region of finite steady-state concurrence and the region of zero concurrence is given by the parabola

\[
\omega_0^{xx} = \frac{\Omega^2}{2\Gamma},
\]

and the concurrence reaches a maximum value of

\[
C_{\text{max}} = \frac{\Omega^2}{\Omega^2 + \sqrt{\Omega^2 + (\Gamma^2 + 2\Omega^2)^2}},
\]

for

\[
\omega_{\text{max}}^{xx} = \frac{\Omega^2}{2\Gamma} + \frac{1}{2\Gamma} \sqrt{(2\Omega^2 + \Gamma^2)^2 + \Omega^4}.
\]

At large values of the driving field \(\Omega/\Gamma \gg 1 \), we obtain a maximum concurrence of \(1/(1 + \sqrt{5}) = 0.309 \) (which incidentally is half of the inverse of the golden ratio), a result which we have confirmed numerically; the density matrix corresponding to this concurrence is

\[
\rho_{\text{max}}^{(\infty)} = \frac{1}{2\sqrt{5}(2\sqrt{5} + 1)} I + \frac{1}{2\sqrt{5}} \begin{pmatrix} 0 & 0 & 0 & i \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -i & 0 & 0 & 1 + \sqrt{5} \end{pmatrix}.
\]

In the case of finite detuning, the calculations are more involved but it is still possible to obtain analytical expressions. We find for \(C \)

\[
C = \frac{2\Omega^2}{\mathcal{N}^4} \left(2\omega^{xx} |\Gamma| - \Omega^2 \right),
\]

where

\[
\mathcal{N} = \left((|\Gamma|^2 + 2\Omega^2)^2 + 4\omega^{xx} |\Gamma|^2 (\omega^{xx} + 2\delta) \right)^{1/4},
\]

and \(\hat{\Gamma} = \Gamma + 2i\delta \). The fidelities with respect to the Bell basis also have simple forms

\[
F(|\psi^\pm\rangle, \rho^{(\infty)}) = \mathcal{N}^{-2} \sqrt{2} |\hat{\Gamma}|^2 + \Omega^2, \quad F(|\psi^\pm\rangle, \rho^{(\infty)}) = \mathcal{N}^{-2} N^{-2}, \quad F(|\phi^\pm\rangle, \rho^{(\infty)}) = \sqrt{1/2 - \Omega^2N^{-4}(2\Gamma^2 + \Omega^2 + 4\delta \omega^{xx})} \quad \text{and} \quad F(|\phi^-\rangle, \rho^{(\infty)}) = \sqrt{1/2 - \Omega^2N^{-4}(2\Gamma^2 + \Omega^2 + 4\delta \omega^{xx})}.
\]

In figure 4, we plot the fidelities at resonance for various \(\Omega \)s.

The analysis above shows that the mechanism of generating entanglement is related to the existence of off-diagonal matrix elements (single-qubit coherences) in \(\rho_j^{(\infty)} \); these get coupled.

New Journal of Physics 11 (2009) 113020 (http://www.njp.org/)
by the interaction (as shown by the existence of linear terms in Γ and Ω in ρ^{xx}). It is interesting to note that the role of driving is solely to pump energy in the system: the source can be a classical one and perfect coherence is not a strong requirement either. Indeed, if the qubits are driven by incoherent sources of components k, $\sum_k \Omega^{(k)} \cos(\omega_j t + \varphi^{(k)}) (\sigma_1^- + \sigma_2^+)$, then the same formula for the concurrence equation (14) can be obtained, with $\Omega = |\sum_k \Omega^{(k)} \exp(i\varphi^{(k)})|$, and, as long as this quantity is not exactly zero, the effect described above will be obtained.

3. Propagation of entanglement in quantum circuits

We now show that designing quantum circuits to harvest and propagate this stationary entanglement at places where it is needed in a quantum processor is possible using a tunable Jaynes–Cummings interaction, a technology already available, for example in the field of superconducting qubits\footnote{For a general-level introduction in the field of superconducting qubits, see e.g. [23].} [24]. Such schemes are of general interest for entanglement distribution between the nodes of a quantum networks [25]. Since entanglement can be regarded as a resource for processing information, such a circuit could effectively work as an ‘entanglement battery’: when entangled fields are needed in other parts of the processor, it would be enough to outcouple them using (for example) two transmission lines, similar to standard voltage or current sources, as shown schematically in figure 5.

Based on the already-achieved qubit manipulation protocols in these quantum computing architectures, we consider a circuit design in which the qubits are coupled to each other and also to two sections of two coplanar waveguides (or striplines) used as resonating cavities. Then, after the system reaches the stationary state, and for a short time $\tau \ll \omega^{xx} \Gamma^{-1}, \Omega^{-1}$, we couple simultaneously the qubits 1 and 2 to the modes a and b, respectively, of the two cavities. Alternatively, a tunable interqubit coupling can be used to turn off ω^{xx} [26]. The coupling strength (vacuum Rabi frequency) g of each qubit–resonator system is chosen so that $g \gg \omega^{xx}, \Gamma, \Omega$. Then the effective Hamiltonian describing the oscillations between a qubit and its corresponding cavity is, in the rotating frame, of the Jaynes–Cummings type ($g(a^* \sigma^-_1 + a^- \sigma^+_1)$ for the first qubit, and $g(b^* \sigma^-_2 + b^- \sigma^+_2)$ for the second one).
The dynamic evolution is, under the conditions specified above, such that vacuum Rabi oscillation between the qubits and the respective resonators occurs, which can be described in a simple way as follows:

\[|1_1, 0_a\rangle \rightarrow \cos(g\tau)|1_1, 0_a\rangle - i\sin(g\tau)|0_1, 1_a\rangle, \]

(16)

\[|0_1, 0_a\rangle \rightarrow |0_1, 0_a\rangle, \]

(17)

\[|1_2, 0_b\rangle \rightarrow \cos(g\tau)|1_2, 0_b\rangle - i\sin(g\tau)|0_2, 1_b\rangle, \]

(18)

\[|0_2, 0_b\rangle \rightarrow |0_2, 0_b\rangle, \]

(19)

where for clarity we have introduced the subscripts 1 and 2 to denote the two qubits. We see that for \(g\tau = \pi/2 \) this transformation realizes two independent \(\pi/2 \) rotations in the two-dimensional subspaces spanned by \(|0_1, 1_a\rangle, |1_1, 0_a\rangle \) and \(|0_2, 1_b\rangle, |1_2, 0_b\rangle \), respectively. As a result, a maximally entangled state, for example \(|\Psi^+\rangle \), will be transferred after a time \(\tau \) into a photonic Bell state

\[|\Psi^+\rangle \otimes |0_a, 0_b\rangle \rightarrow -i|0_1, 0_2\rangle \otimes \frac{1}{\sqrt{2}}(|1_a, 0_b\rangle + |0_a, 1_b\rangle), \]

(20)

where \(|1_a\rangle \) and \(|0_a\rangle \) are the two states of the cavity \(a \) and similarly for \(b \). In general, for an arbitrary \(\tau \), the density matrix in the photon basis \{\(|1_a, 1_b\rangle, |1_a, 0_b\rangle, |0_a, 1_b\rangle, |0_a, 0_b\rangle \} can be obtained by applying the transformation equation (16)–(19) and tracing out the qubits’ degrees of freedom. The result is

\[
\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & (1/2) \sin^2 g\tau & (1/2) \cos^2 g\tau & 0 \\
0 & (1/2) \sin^2 g\tau & (1/2) \cos^2 g\tau & 0 \\
0 & 0 & 0 & \cos^2 g\tau
\end{pmatrix},
\]

(21)

with concurrence \(C \) given by \(C = \sin^2 g\tau \).
We now apply the same procedure for the general case in which the initial density matrix is the steady-state solution for two interacting qubits and two independent reservoirs. If we denote the elements of this matrix by $\rho_{jk,lm}^{(\text{transmitted})} = \langle j_a k_b | \hat{\rho}^{(\text{transmitted})} | l_a, m_b \rangle$, where $j, k, l, m \in \{0, 1\}$, we find, after a qubit–resonator coupling time τ and after tracing out the qubits, the following density matrix elements (we give only the values of the nine independent elements, the rest can be found from $\text{Tr}(\rho^{(\text{transmitted})}) = 1$ and $\rho_{jk,lm}^{(\text{transmitted})} = -\rho_{lm,jk}^{(\text{transmitted})}$) in the photon basis $\{|1_a, 1_b\rangle, |1_a, 0_b\rangle, |0_a, 1_b\rangle, |0_a, 0_b\rangle\}$:

\[
\begin{align*}
\rho_{11,11}^{(\text{transmitted})} &= (\sin g \tau)^4 \rho_{11,11}^{(\infty)}, \\
\rho_{11,10}^{(\text{transmitted})} &= -i(\sin g \tau)^3 \rho_{11,10}^{(\infty)}, \\
\rho_{11,01}^{(\text{transmitted})} &= -i(\sin g \tau)^3 \rho_{11,01}^{(\infty)}, \\
\rho_{11,00}^{(\text{transmitted})} &= -(\sin g \tau)^2 \rho_{11,00}^{(\infty)}, \\
\rho_{10,10}^{(\text{transmitted})} &= (\sin g \tau)^2 \rho_{10,10}^{(\infty)} + (\sin g \tau)^2 (\cos g \tau)^2 \rho_{11,11}^{(\infty)}, \\
\rho_{10,01}^{(\text{transmitted})} &= (\sin g \tau)^2 \rho_{10,01}^{(\infty)}, \\
\rho_{10,00}^{(\text{transmitted})} &= -i(\sin g \tau)^2 \rho_{10,00}^{(\infty)} - i(\sin g \tau)(\cos g \tau)^2 \rho_{11,01}^{(\infty)}, \\
\rho_{01,01}^{(\text{transmitted})} &= (\sin g \tau)^2 \rho_{01,01}^{(\infty)} + (\sin g \tau)^2 (\cos g \tau)^2 \rho_{11,11}^{(\infty)}, \\
\rho_{01,00}^{(\text{transmitted})} &= -i(\sin g \tau)^2 \rho_{01,00}^{(\infty)} - i(\sin g \tau)(\cos g \tau)^2 \rho_{11,10}^{(\infty)}.
\end{align*}
\]

The concurrence corresponding to this density matrix is plotted in figure 6 for various qubit–resonator coupling times. We also note that an interesting property of the procedure described above is that, if the input is a density matrix in the x-form (nonzero elements only on the diagonal and counterdiagonal [1–5]), the transmitted density matrix is also in the x-form.
We find, after a qubit–resonator coupling time \(g\tau = \pi/2 \), and after tracing out the qubits, the following density matrix in the photon basis \(\{|1_a 1_b \rangle, |1_a 0_b \rangle, |0_a 1_b \rangle, |0_a 0_b \rangle \} \),

\[
\rho_{\text{transmitted}}^{j,k,l,m} = (-1)^{j+k} j^{j+k+l+m} \rho_{\text{transmitted}}^{\infty,j,k,l,m}.
\]

This density matrix has the same concurrence as the initial one; in fact, it is identical to the initial qubit–qubit density matrix up to the local transformations \(|0_a \rangle \rightarrow |0_a \rangle, |1_a \rangle \rightarrow -i|1_a \rangle \), and the same is true for photon \(b \). These are phase quantum gates, and—if the exact form of the steady-state density matrix needs to be recovered—can be implemented by a global redefinition of the phase and two separate \(\pi \) rotations around the \(z \)-axis, \(\exp[-i \pi \exp[-i \pi(\sigma_z^a + \sigma_z^b)/2] \).

Repeating this procedure with further circuit elements, entangled pairs can be outcoupled and processed in various parts of a quantum processor [27], where they can be distilled [28] to maximally entangled states (used for example in quantum gates), or they can be used directly for tasks that do not require highly entangled states, such as quantum catalysis, making possible certain local transformations and enhancing distillation algorithms [29]. Also, we suggest that since \(\rho_{\text{max}}^{\infty} \) from equation (13) is relatively easy to achieve and has a universal form (independent of any qubit parameter or physical realization), it can also serve as a standard of entanglement for quantum networks. In other words, since entanglement is a measurable quantity, it should have an associated metrological standard: one can go further and speculate that the value of concurrence of 0.309 could then play the same role in metrology as other numbers do for the corresponding physical quantities (e.g. the temperature of the triple point of water, the value of the transition frequency between the two hyperfine states of Cs-133 atoms in atomic clocks, etc).

4. Conclusions

In conclusion, we have shown that entanglement emerges in a certain region of the parameter space of driven, coupled qubits interacting with separate reservoirs; we give analytical results characterizing the stationary entanglement, and we show how to further propagate this entanglement in a quantum network.

Acknowledgments

This work was supported by the Academy of Finland (Academy Research Fellowship 00857 and project numbers 129896 and 118122).

Note added. After this work was completed we became aware of similar entanglement production effects in a number of systems under specific non-equilibrium conditions, for example in double quantum dots interacting via a bosonic environment and exposed to distinct fermionic baths [30]; in interacting spin gases under a random process, which projects the particles on a specified state [31]; in qubits with tunable Larmor frequencies and interaction strengths [32]; in coupled electromagnetic fields and spin chains at stochastic resonance [33]; and in coupled polaritons [34].

Appendix A. Single-qubit case

Here we review the case of one qubit under dissipation. The rotating-frame single-qubit density matrix \(\rho_j \) can be parameterized on the Bloch sphere,

\[
\rho_j = \frac{1}{2} (I + \vec{r} \vec{\sigma}),
\]

\[\text{New Journal of Physics 11 (2009) 113020 (http://www.njp.org/)}\]
where \(\vec{r} \) is the Bloch vector of components \((r_x, r_y, r_z) \), the norm of which indicates the purity of the state, \(\text{Tr} \rho_j^2 = (1 + |\vec{r}|^2)/2 \). The decoherence is described by equation (7),

\[
\dot{\rho}_j = -\frac{i\Omega}{2} [\sigma^x, \rho_j] + \frac{\Gamma}{2} \left(2\sigma^- \rho_j \sigma^+ - \sigma^+ \sigma^- \rho_j - \rho_j \sigma^+ \sigma^- \right).
\]

\begin{equation}
\text{(A.2)}
\end{equation}

From equations (A.1) and (A.2) we obtain the following kinetic equation for the components of the Bloch vector,

\[
\dot{r}_x = \Omega r_y - \Gamma (1 + r_z), \quad \dot{r}_y = -\frac{\Gamma}{2} r_y - \Omega r_z, \quad \dot{r}_z = -\frac{\Gamma}{2} r_x.
\]

The last equation has a simple solution, \(r_x(t) = r_x(0)e^{-\Gamma t/2} \). The first two equations can be solved by introducing the notation \(|\xi(t)\rangle = [r_x, r_y]^T \) and \(|\chi\rangle = [-\Gamma, 0] \); we find the equation

\[
\frac{d}{dt} |\xi(t)\rangle = M |\xi(t)\rangle + |\chi\rangle.
\]

\begin{equation}
\text{(A.3)}
\end{equation}

Here, the matrix \(M \) is defined by

\[
M = \begin{pmatrix}
-\Gamma & \Omega \\
-\Omega & -\frac{\Gamma}{2}
\end{pmatrix}.
\]

\begin{equation}
\text{(A.4)}
\end{equation}

and has eigenvalues \(\lambda_{1,2} = (1/4)(-3\Gamma \pm \sqrt{\Gamma^2 - 16\Omega^2}) \) corresponding to (unnormalized) eigenvectors \(|\xi_{1,2}\rangle = [(\Gamma \pm \sqrt{\Gamma^2 - 16\Omega^2})/4\Omega, 1]^T \). The stationary solutions of equation (A.3) are obtained for \(t \gg \Gamma^{-1} \) as \(|\xi^{(\infty)}\rangle = -M^{-1}|\chi\rangle \), resulting in the density matrix equation (8),

\[
\rho_j^{(\infty)} = \begin{pmatrix}
\Omega^2 & -i\Omega \Gamma \\
\Gamma^2 + 2\Omega^2 & \frac{-i\Omega \Gamma}{2} \\
i\Omega \Gamma & \frac{\Gamma^2 + 2\Omega^2}{2}
\end{pmatrix}.
\]

\begin{equation}
\text{(A.5)}
\end{equation}

The elements of this density matrix are shown in figure A.1. In the Bloch sphere representation, the stationary state density matrix is parameterized by \(r_x^{(\infty)} = 0, r_y^{(\infty)} = 2\Omega \Gamma/(2\Omega^2 + \Gamma^2) \) and \(r_z^{(\infty)} = -\Gamma^2/(\Gamma^2 + 2\Omega^2) \), describing a semicircle if radius 1/2 in the \(y-O-z \) plane, \((r_z + 1/2)^2 + r_z^2/2 = 1/4 \) (shown in blue in the Bloch sphere of figure A.1).

Depending on the values of \(\Omega/\Gamma \), the eigenvalues \(\lambda_{1,2} \) can have imaginary parts or can be real, corresponding respectively to underdamped and overdamped dynamics. In the underdamped regime, defined by \(\Omega/\Gamma > 1/4 \), the elements of the density matrix oscillate (Rabi oscillations) before reaching the stationary state; deep in this regime when \(\Omega/\Gamma \gg 1/4 \), we find

\[
\rho_j^{(\infty)} = \begin{pmatrix}
1/2 & -i\Gamma/2\Omega \\
i\Gamma/2\Omega & 1/2
\end{pmatrix}.
\]

\begin{equation}
\text{(A.6)}
\end{equation}

In the overdamped regime defined by \(\Omega/\Gamma < 1/4 \) there are no Rabi oscillations; deep in this regime, when \(\Omega/\Gamma \ll 1/4 \), we can write approximately

\[
\rho_j^{(\infty)} = \begin{pmatrix}
0 & -i\Omega/\Gamma \\
i\Omega/\Gamma & 1
\end{pmatrix}.
\]

\begin{equation}
\text{(A.7)}
\end{equation}

Finally, the critically damped regime occurs at \(\Omega = \Gamma/4 \), and

\[
\rho_j^{(\infty)} = \begin{pmatrix}
1/18 & -i2/9 \\
i2/9 & 17/18
\end{pmatrix}.
\]

\begin{equation}
\text{(A.8)}
\end{equation}
Figure A.1. The elements of the steady state of the single qubit as a function of Ω / Γ (left) and the corresponding representation (semicircle, in blue) on the Bloch sphere (right).

From this, we see that for values of ω_{xx} of the order of Γ the emergence of stationary entangled states depends on having relatively large single-qubit coherences r_y, which happens not far from the critically damped regime (the single-qubit coherence reaches a maximum of $1/2\sqrt{2}$ at $\Omega / \Gamma = 1/\sqrt{2}$). This is due to the fact that the interaction couples the qubits via the off-diagonal terms.

References

[1] Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404
[2] Yu T and Eberly J H 2006 Phys. Rev. Lett. 97 140403
[3] Almeida M P et al 2007 Science 316 579
 Eberly J H and Yu T 2007 Science 316 555
[4] Laurat J, Choi K S, Deng H, Chou C W and Kimble H J 2007 Phys. Rev. Lett. 99 180504
[5] Li J, Chalapat K and Paraoanu G S 2008 J. Low Temp. Phys. 153 294
[6] Al-Qasimi A and James D F V 2008 Phys. Rev. A 77 012117
[7] Braun D 2002 Phys. Rev. Lett. 89 277901
 Benatti F, Floreanini R and Piani M 2003 Phys. Rev. Lett. 91 070402
[8] Plenio M B, Huelga S F, Beige A and Knight P L 1999 Phys. Rev. A 59 2468
 Li J, Chalapat K and Paraoanu G S 2008 Phys. Rev. B 78 064503
 Li J, Chalapat K and Paraoanu G S 2009 J. Phys.: Conf. Ser. 150 022051
[9] Schneider S and Milburn G J 2002 Phys. Rev. A 65 042107
[10] Ficek Z and Tanaš R 2008 Phys. Rev. A 77 054301
[11] Ng H T and Burnett K 2008 New J. Phys. 10 123014
[12] Puru R R 2001 Mathematical Methods of Quantum Optics (Berlin: Springer)
 Cohen-Tannoudji C, Dupont-Roc J and Grynberg G 1992 Atom–Photon Interactions (New York: Wiley)
[13] Ticozzi F and Viola L 2008 arXiv:0809.0613
 Kraus B, Büchler H P, Diehl S, Kantian A, Micheli A and Zoller P 2008 Phys. Rev. A 78 042397
[14] Verstraete F, Wolf M M and Cirac J I 2009 Nat. Phys. 5 633
[15] Paraoanu G S 2006 Phys. Rev. B 74 140504
Niskanen A O, Harabi K, Yoshihara F, Nakamura Y, Lloyd S and Tsai J S 2007 Science 316 723
Majer J et al 2007 Nature 449 443
Ashhab S, Niskanen A O, Harrabi K, Nakamura Y, Picot T, de Groot P C, Harmans C J, Mooij J E and Nori F 2008 Phys. Rev. B 77 014510
[16] Liu Y X, Wei L F, Tsai J S and Nori F 2006 Phys. Rev. Lett. 96 067003
Bertet P, Harmans C J P M and Mooij J E 2006 Phys. Rev. B 73 064512
Liu Y X, Wei L F, Johansson J R, Tsai J S and Nori F 2007 Phys. Rev. B 76 144518
[17] Li J and Paraoanu G S 2009 Eur. J. Phys. D arXiv:0906.0704
[18] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[19] Werner R F 1989 Phys. Rev. A 40 4277
Bennett C H et al 1996 Phys. Rev. Lett. 76 722
[20] An J-H, Wang S-J and Luo H-G 2007 Physica A 382 753
Ficek Z and Tanaš R 2002 Phys. Rep. 372 369
[21] You J Q, Hu X and Nori F 2005 Phys. Rev. B 72 144529
[22] Yu T and Eberly J H 2007 Quantum Inf. Comput. 7 459
[23] You J Q and Nori F 2005 Phys. Today 58 42
[24] You J Q and Nori F 2003 Phys. Rev. B 68 064509
Blais A, Gambetta J, Wallraff A, Schuster D I, Girvin S M, Devoret M H and Schoelkopf R J 2007 Phys. Rev. A 75 032329
Sillanpää M A, Park J I and Simmonds R W 2007 Nature 449 438
[25] Kraus B and Cirac J I 2004 Phys. Rev. Lett. 92 013602
[26] Wójcik A 2003 Science 301 1182
[27] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[28] Horodecki M, Horodecki P and Horodecki R 1997 Phys. Rev. Lett. 78 574
[29] Jonathan D and Plenio M B 1999 Phys. Rev. Lett. 83 3566
[30] Lambert N, Aguado R and Brandes T 2007 Phys. Rev. B 75 045340
Contreras-Pulido L D and Aguado R 2008 Phys. Rev. B 77 155420
[31] Hartmann L, Dürr W and Briegel H-J 2006 Phys. Rev. A 74 052304
Hartmann L, Dürr W and Briegel H-J 2007 New J. Phys. 9 230
[32] Zhang J, Liu Y-X, Li C-W, Tarn T-J and Nori F 2009 Phys. Rev. A 79 052308
[33] Plenio M B and Huelga S F 2002 Phys. Rev. Lett. 88 197901
Huelga S and Plenio M 2007 Phys. Rev. Lett. 98 170601
[34] Mancini S and Bose S 2004 Phys. Rev. A 70 022307
Mancini S and Wang J 2005 Eur. Phys. J. D 32
Angelakis D G, Bose S and Mancini S 2009 Europhys. Lett. 85 20007

New Journal of Physics 11 (2009) 113020 (http://www.njp.org/)