Two-nucleon momentum distribution and correlation in $A = 6$ systems

To cite this article: W Horiuchi and Y Suzuki 2008 J. Phys.: Conf. Ser. 111 012023

View the article online for updates and enhancements.

Related content
- Excitation and charged particle decay of the analog of the dipole resonance in the alpha cluster of ^6Li
 H Akimune, Y Banishou, H Ikemizu et al.
- ^6He quasi-free scattering off clusters in ^6Li
 D Miljani, M Milin, S Cherubini et al.
- Probing the structure of halo nuclei
 IJ Thompson and the Russian-Nordic-British Theory (RNBT) Collaboration
Two-nucleon momentum distribution and correlation in $A=6$ systems

W Horiuchi1 and Y Suzuki2

1Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
2Department of Physics, and Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan

E-mail: horiuchi@nt.sc.niigata-u.ac.jp

Abstract. The momentum distribution reflects the two-nucleon correlation in nuclei. The momentum distribution for the valence nucleons is calculated for both 6He and 6Li in a three-body model of $\alpha+N+N$. The ground state solution for the three-body Hamiltonian is obtained accurately using correlated basis functions. The distribution depends on the type of the N-N interaction. With use of a realistic potential, the 6He momentum distribution exhibits a dip around 2 fm-1 characteristic of S-wave motion. In contrast to this, the 6Li momentum distribution is similar to that of the deuteron; no dip appears because it is filled with the D-wave component arising from the tensor force.

1. Introduction

The correlation in nuclei plays an important role in binding a Borromean three-body system which has no pairwise bound states. An experiment using the technique of intensity interferometry [1] has been done in order to extract the spatial correlation function of the two neutrons in the halo nuclei such as 6He, 11Li and 14Be. In this experiment the momenta of the two neutrons and the core nucleus are measured after the dissociation of the halo nucleus. Another experiment concerning the two-nucleon correlation has been done by Piecetzky \textit{et al.} [2]. The experiment measures the two-nucleon momentum distribution in two-nucleon knock out processes, 12C($e,e'n\!p$), 12C($e,e'n\!p$). R. Shiavilla \textit{et al.} have calculated the two-nucleon momentum distributions of the ground states of nuclei with mass number $A \leq 8$ [3].

Recently, an experiment has been performed at RIKEN to probe the spatial correlation in 6He and 6Li from the relative momentum distribution of the valence nucleons [4]. The basic idea of this experiment is to utilize the well-established one-nucleon exchange process, 6He(p, dn)α, 6Li$(p$, dp)α. Since the reaction process is simple, the experiment expected to give information sensitive to the nucleon correlation.

The momentum distribution is one of the candidates which enables one to get information on the nucleon-nucleon correlation. A theoretical analysis of the momentum distribution in 6He and 6Li should be important to understand the physics involved in the experiment. In this report, we show the momentum distribution between the valence nucleons in 6He and 6Li and its comparison with use of an effective force and realistic one as N-N potential [5].
2. Three-body calculation

The wave functions for ^6He and ^6Li are determined from variational calculations for the core(α particle)+N+N three-body system which is specified by the Hamiltonian

$$H = T_r + T_R + U_1 + U_2 + v_{12}.$$ \noindent (1)

The subscripts of the kinetic energies T stand for the relative distance vector r between the two nucleons, and the relative distance vector R from the α particle to the center of mass of the two nucleons. The potential U_i is the N-α potential and v_{12} is the N-N potential. The α particle is treated as a structureless particle, but its compositeness is taken into account through the elimination of redundant states as explained below.

As the two-nucleon potential v_{12}, we use a realistic potential, G3RS potential [6], which contains central, spin-orbit and tensor terms. To show the importance of the correlation clearly, we employ an effective potential model to compare results of calculation with the realistic potential model. We use the Minnesota potential [7] (MN) which has only central terms and a mild short-ranged repulsion as the effective potential. This potential renormalizes the effect of the tensor force into the central force and reproduces the binding energy and the root mean square radius of the deuteron.

As for the N-α potential U_i, we adopt a parity-dependent phenomenological potential [8], abbreviated as KKNN, which contains the central and spin-orbit components, and reproduces very well the low-energy N-α scattering phase shifts of S and P waves. The Coulomb potential for p-α is taken into account. The KKNN potential is deep enough to have an S-wave bound state which should be removed because no bound states exist for ^6He and ^6Li. The elimination is carried out by imposing that the trial wave function to be orthogonal to the $0s_{1/2}$ bound state of the KKNN potential [12].

Trial wave functions for the ground states of ^6He and ^6Li are expressed, in LS coupling scheme, as a combination of explicitly correlated Gaussians:

$$\Psi_{JM} = \sum_{i=1}^{K} C_i \Psi_{JM}(\Lambda_i, A_i, u_i),$$ \noindent (2)

with the basis function

$$\Psi_{JM}(\Lambda=(LS), A, u, x) = (1 - P_{12}) \left\{ e^{-1/2Ax} \left[\mathcal{V}_L(\tilde{u}x)\chi_{S}(1, 2) \right]_{JM} \eta_{TM}T_r(1, 2) \right\}.$$ \noindent (3)

Here the permutation P_{12} ensures the antisymmetry of the valence nucleons. We note that the basis function of Eq. (3) has a definite parity $(-1)^L$. As the ground states of ^6He and ^6Li have a positive parity, this basis function cannot be used for $L=1$. We need to extend the basis function to make it possible to include $L=1$ and a positive parity. This is made possible by replacing $\mathcal{V}_{LMr}(\tilde{u}x)$ by $[\mathcal{V}_L(\tilde{u}x)\chi_{1}(u'x)]_{LMr}$ [11]. For the case of two nucleons with $L=1$, this replacement results in a new basis function

$$\Psi_{JM}(\Lambda=(1S), A, x) = (1 - P_{12}) \left\{ e^{-1/2Ax} \left[\mathcal{V}_1(x_1)\chi_{S}(1, 2) \right]_{JM} \eta_{TM}T_r(1, 2) \right\}.$$ \noindent (4)

The basis function is specified by a set of nonlinear parameters, the orbital and spin angular momenta $\Lambda=(LS)$, a 2×2 positive-definite, symmetric matrix A, and a 2×1 matrix u. The symbol $\tilde{\cdot}$ indicates the transpose of a matrix, and the square bracket $[\ldots]$ denotes the angular momentum coupling. The short-hand notation $\tilde{A}Ax$ stands for $A_{11}x_1^2 + 2A_{12}x_1x_2 + A_{22}x_2^2$, where the coordinates x_1 and x_2, are the distance vectors of the valence nucleons from the α particle. The cross term $A_{12}x_1x_2$ describes explicitly the two-nucleon correlation, which is vital to obtain a precise solution in a relatively small basis dimension [9]. The angular part of the basis function
is expressed by the solid spherical harmonics, \(Y_{LM}(\hat{u} \mathbf{x}) = |\hat{u} \mathbf{x}| L Y_{LM}(\hat{u} \mathbf{x}) \), specified by a global vector \(\hat{u} \mathbf{x} = u_1 \mathbf{x}_1 + u_2 \mathbf{x}_2 \). The ratio of \(u_1 \) to \(u_2 \) characterizes the coordinate which is responsible for the rotation of the system [9, 10]. The isospin part of the system is expressed by \(\eta_{T \Phi} \).

The set of \(\Lambda = (LS) \) included in the present calculation are \((LS)=(00), (11)\) for \(^6\)He \((J^T = 0^+)\) and \((LS)=(01), (10), (11), (21)\) for \(^6\)Li \((J^T = 1^+)\). Here the basis function is given by Eq. (3) for even \(L \) and by Eq. (4) for odd \(L \), respectively.

To search for good basis functions, we use the stochastic variational method (SVM) [9]. The SVM increases the basis dimension one by one by testing a number of candidates that are chosen randomly. The candidates are actually generated by giving random numbers to the parameters chosen from physically important multi-dimensional parameter space. The SVM works efficiently to take care of both the short-range repulsion of the realistic force and the elimination of the redundant states.

To calculate the momentum distribution, we introduce the Wigner distribution function

\[
W(\mathbf{r}, \mathbf{k}) = \frac{1}{(2\pi)^{2.5}} \frac{1}{1 + \sum_M} \left\langle \Psi_{JM} \left| r + \frac{s}{2} \hat{R} \right\rangle \left\langle r - \frac{s}{2} \hat{R} \right| \Psi_{JM} \right\rangle_{ST} e^{i \mathbf{k} \cdot \mathbf{d} \mathbf{r}} \, ds. \tag{5}
\]

Here \(\langle \ldots \rangle_{ST} \) indicates that the integration is to be performed over the spin and isospin coordinates. The density and momentum distributions are expressed as follows

\[
\rho(\mathbf{r}) = \int W(\mathbf{r}, \mathbf{k}) d\mathbf{k}, \quad \rho(\mathbf{k}) = \int W(\mathbf{r}, \mathbf{k}) d\mathbf{r}. \tag{6}
\]

3. Results

Full calculations which couple all possible \(\Lambda \) channels give the results listed in Table 1. The table shows the binding energies, the contribution of tensor force and the distance between the valence nucleons. The binding energy does not strongly depend on the potential models, but the constitutions from each term of the Hamiltonian is different. For the case of realistic force, the tensor component is quite large in \(^6\)He and deuteron. Large \(N-N \) distance shows a halo structure in \(^6\)He and agrees with the \(N-N \) distance estimated by the intensity interferometry experiment [1]. In \(^6\)Li, the distance between the valence nucleons is smaller than that of deuteron. Attraction from the core makes the deuteron in \(^6\)Li smaller than free deuteron. The common lack of the binding energy of the G3RS potential can be explained by at least three effects: One is the deficiency of the attraction in the \(D \) and \(F \) waves of the KKN potential [13, 14]. Next is the effect of three-body forces [15] and the third is the distortion of the \(\alpha \) core [16].

Force	\(^6\)He	\(^6\)Li	\(d \)			
Energy [MeV]	\(-0.421\)	\(-0.460\)	\(-3.91\)	\(-3.31\)	\(-2.20\)	\(-2.28\)
Tensor [MeV]	\(-0.107\)	\(-12.3\)	\(-11.5\)			
\(N-N \) distance [fm]	\(5.05\)	\(4.86\)	\(3.48\)	\(3.58\)	\(3.90\)	\(3.96\)

Table 1. The ground state properties of \(^6\)He, \(^6\)Li and deuteron.

3.1. Density distribution

Figure 1 plots the density distributions \(\rho(\mathbf{r}) \) (normalized to unity) of the two-nucleon relative motion in \(^6\)He, \(^6\)Li and the deuteron. The densities calculated using the G3RS potential (right panel) show central dips due to the short-ranged repulsion, but beyond \(r=1.5 \) fm they are similar to those calculated with the MN potential (left panel). The density of \(^6\)He reaches furthest in the distance, and as its result the density around \(r=1-2 \) fm is considerably smaller than that of \(^6\)Li. Comparing the densities between \(^6\)Li and the deuteron, we see that the \(np \) relative motion in \(^6\)Li shrinks compared to that of the deuteron (See also Table 1).
3.2. **Momentum distribution**

It is well-known that the momentum distribution of the \(np \) relative motion in the deuteron shows different behavior in the \(S \)- and \(D \)-wave contributions. As displayed in the right panel of Fig. 2, the \(S \)-wave contribution to the momentum distribution is peaked at lower momentum and has a dip at \(k \sim 2 \text{ fm}^{-1} \). The \(D \)-wave component of the deuteron, however, fills the dip in spite of the small \(D \) state probability, 4.8\% in the G3RS potential. This characteristics of the distribution is supported by experiment. In contrast to this, the momentum distribution (left panel) obtained with the MN potential does show a dip because it has no \(D \)-wave component, and in addition the momentum distribution decreases rapidly with increasing \(k \) because the short-ranged repulsion is not as strong as the G3RS potential. To compare with experiment at \(k \) higher than 2 \(\text{ fm}^{-1} \), however, it is important to include effect of the \(\Delta \) excitation.

The momentum distributions of \(^6\text{He}, \(^6\text{Li} \) and the deuteron are compared in Fig. 3 for the G3RS (right panel) and MN (left panel) potentials. The realistic potential of G3RS gives the momentum distributions characterized as follows: The momentum distribution of \(^6\text{Li} \) is very similar to that of the deuteron, but the one of \(^6\text{He} \) differs from them, showing a clear dip at \(k \sim 2 \text{ fm}^{-1} \). These features are understood from the difference in the partial wave contents of the \(N-N \) relative motion; \(^6\text{Li} \) contains the \(D \)-wave component as the deuteron does, whereas \(^6\text{He} \) is dominated by the \(S \)-wave component. The most distinctive difference between \(^6\text{He} \) and \(^6\text{Li} \) appears around \(k \sim 2 \text{ fm}^{-1} \). If the measurement of the momentum distribution is made in this region, one can learn the role of the tensor force acting between the valence nucleons, provided that the \(\Delta \) excitation is still not so important. R. Shiavilla \(et \) \textit{al.} have calculated the two-nucleon momentum distributions of the ground states of nuclei [3]. They have considered the momentum distributions averaged over all the \(np \) or \(pp \) pairs in the nuclei, while we have calculated the momentum distribution for the valence nucleons in \(^6\text{He} \) and \(^6\text{Li} \). In spite of these differences, both calculations show similar results concerning the dominance of \(np \) distribution over \(nn \) (or \(pp \)) distribution, particularly in the region of \(k=2 \text{ fm}^{-1} \), and the important role of the tensor force which lead to those characteristics.
3.3. Uncorrelated basis

The correlated motion of the valence nucleons reflects on the two-nucleon correlation function

$$\rho(x_1, x_2, \theta) = \frac{1}{2J+1} \sum_M \langle \Psi_{JM} | x_1 x_2 \rangle \langle x_1 x_2 | \Psi_{JM} \rangle_{ST}.$$ \hspace{1cm} (7)

Figure 4 (left panel) displays the contour maps of $8\pi^2 x^4 \sin \theta \rho(x, x, \theta)$ for 6He calculated from the G3RS potential. The MN potential gives similar map. We clearly see asymmetric patterns with two distinct peaks.

To clarify the importance of the correlation, we examine the function $\rho(x_1, x_2, \theta)$ which is generated from an “uncorrelated” basis function Φ for 6He. For this purpose we take a combination of the two p-shell harmonic-oscillator functions, $\Phi = \sqrt{T - C^2} | S = 0 \rangle + C | S = 1 \rangle$. Here the shell model is extended to allow for different size parameters for both the components. The parameters are determined so as to maximize the overlap, $|\langle \Phi | \Psi_{00} \rangle|^2$, with the 6He ground-state wave function Ψ_{00} obtained using the G3RS potential. The maximum value of $|\langle \Phi | \Psi_{00} \rangle|^2$ is 0.75. The simple wave function Φ has a surprisingly large overlap with the realistic wave function Ψ_{00}. Though the overlap is fairly large, Φ includes no correlated configurations and indeed the energy calculated with Φ is high (8.77 MeV). The two-nucleon correlation function $\rho(x_1, x_2, \theta)$ calculated from Φ becomes a function of $\cos^2 \theta$, so that function multiplied by $8\pi^2 x^4 \sin \theta$ is symmetric with respect to $\theta=90^\circ$. See Fig. 4. An asymmetry with respect to $\theta=90^\circ$ would indicate the presence of correlation in the $A=6$ nuclei. Comparing the left panel with right one in Fig. 4, we learn that the two-nucleon interaction enhances the asymmetric pattern.

Figure 5 compares the momentum distributions of 6He corresponding to the three different wave functions, those obtained with G3RS, MN and the uncorrelated one. Both the G3RS and MN distributions are similar up to the dip region. Beyond $k \sim 2 \text{fm}^{-1}$ the momentum distribution of G3RS surpasses that of MN, which is due to the difference in the short-range correlation. The uncorrelated wave function gives the momentum distribution which is quite different from those of the correlated wave functions even at $k \sim 1 \text{fm}^{-1}$.
4. Summary
To study the correlation and the momentum distribution of the two-nucleon relative motion in the ground states of 6He and 6Li, we have described these states in a three-body model of $\alpha+N+N$ where the α particle is assumed to be an inert core. We used a parity-dependent $\alpha-N$ potential which reproduces the low-energy scattering phase shifts, and two different types of $N-N$ interactions for the two valence nucleons. One is a realistic potential which contains the tensor and spin-orbit forces and the other is an effective potential which includes no tensor component. These were used to compare how much the different $N-N$ potentials affect the correlation and the momentum distribution. We have obtained the solution of the three-body problem by approximating the 6He and 6Li ground state wave functions in terms of a combination of explicitly correlated Gaussian basis functions that provides us with a solution of high accuracy.

The momentum distributions of the $N-N$ relative motion have been compared between 6He and 6Li. The distributions obtained with the effective potential show the pattern characteristic of S-wave dominance and fall rapidly as the momentum increases. In the case of the realistic potential, the momentum distribution in 6Li is very similar to that of the deuteron. That is, both the S- and D-waves contribute to the momentum distribution which monotonically decreases with an increasing momentum. In contrast to this, the 6He momentum distribution is dominated by the S-wave, showing a clear dip at $k \sim 2\text{ fm}^{-1}$. The most prominent difference in their momentum distributions thus shows up around $k=2\text{ fm}^{-1}$. The difference between 6He and 6Li is primarily due to whether or not the tensor force plays an important role of mixing the D-state probability between the $N-N$ relative motion.

References
[1] Marqués F M et al. 2000 Phys. Lett. B476 219
[2] Piasetzky E and Higinbotham D private communication
[3] Schiavilla R et al. 2007 Phys. Rev. Lett. 98 132501
[4] Suda T et al. private communication
[5] Horiuchi W and Suzuki Y 2007 Phys. Rev. C 76 024311
[6] Tamagaki R 1968 Prog. Theor. Phys. 39 91
[7] Thompson R, Lemere M, and Tang Y C 1977 Nucl. Phys. A286 53
[8] Kanada H, Kaneko T, Nagata S, and Nomoto M 1979 Prog. Theor. Phys. 61 1327
[9] Varga K and Suzuki Y 1995 Phys. Rev. C 52 2885; Suzuki Y and Varga K 1998 Stochastic Variational Approach to Quantum-Mechanical Few-Body Problems Lecture notes in physics Vol. m54 Springer Berlin
[10] Suzuki Y, Usukura J, and Varga K 1998 J. Phys. B 31 31; Varga K, Suzuki Y, and Usukura J 1998 Few-Body Systems 24 81
[11] Suzuki Y and Usukura J 2000 Nucl. Instr. and Meth. in Phys. Res. B 171 67
[12] Kukulin V I and Pomerantsev V N 1978 Ann. Phys. 111 330
[13] Aoyama S, Mukai S, Katō K, and Ikeda K 1995 Prog. Theor. Phys. 93 99
[14] Myo T, Katō K, and Ikeda K 2005 Prog. Theor. Phys. 113 763
[15] Pieper S C, Wiringa R B, and Carlson J 2004 Phys. Rev. C 70 054325
[16] Arai K, Suzuki Y, and Lovas R G 1998 Phys. Rev. C 59 1432
[17] Blomqvist K I et al. 1998 Phys. Lett. B424 33