Abstract. We study the trajectories of a solution X_t to an Itô stochastic differential equation in \mathbb{R}^d, as the process passes between two disjoint open sets, A and B. These segments of the trajectory are called transition paths or reactive trajectories, and they are of interest in the study of chemical reactions and thermally activated processes. In that context, the sets A and B represent reactant and product states. Our main results describe the probability law of these transition paths in terms of a transition path process Y_t, which is a strong solution to an auxiliary SDE having a singular drift term. We also show that statistics of the transition path process may be recovered by empirical sampling of the original process X_t. As an application of these ideas, we prove various representation formulas for statistics of the transition paths. We also identify the density and current of transition paths. Our results fit into the framework of the transition path theory by E and Vanden-Eijnden.

1. Introduction

In this article we study solutions $X_t \in \mathbb{R}^d$ of the Itô stochastic differential equation

$$\text{d}X_t = b(X_t) \text{d}t + \sqrt{2} \sigma(X_t) \text{d}W_t,$$

where (W_t, \mathcal{F}_t^W) is a standard Brownian motion in \mathbb{R}^d, defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. This diffusion process in \mathbb{R}^d has generator

$$Lu = \text{tr}(a \nabla^2 u) + b \cdot \nabla u,$$

where $a := \sigma \sigma^T$ is a symmetric matrix. We suppose that $a(x)$ is smooth, uniformly positive definite, and bounded:

$$\lambda|\xi|^2 \leq \langle \xi, a(x)\xi \rangle \leq \Lambda|\xi|^2, \quad \forall \xi \in \mathbb{R}^d, \quad \forall x \in \mathbb{R}^d$$

holds for some $\Lambda > \lambda > 0$. We suppose the vector field $b(x)$ is smooth and satisfies conditions that guarantee the ergodicity of the Markov process X_t and the existence of a unique invariant probability distribution $\rho(x) > 0$ satisfying the adjoint equation

$$(1.2) \quad L^*\rho = (a_{ij}(x)\rho(x))_{x_i x_j} - \nabla \cdot (b(x)\rho(x)) = 0.$$

For example, this will be the case if

$$\limsup_{m \to +\infty} \sup_{|x|=m} x \cdot b(x) < -r$$

with $r > 1 + (d/2)$ [Ver97].

Suppose that $A, B \subset \mathbb{R}^d$ are two bounded open sets with smooth boundary and such that \bar{A} and \bar{B} are disjoint. Because the process is ergodic, X_t will visit both A and B infinitely often. Inspired by the transition path theory developed by E and Vanden-Eijnden [EVE06, MSVE06]

Date: February 6, 2014.

We are grateful to Weinan E, Jonathan Mattingly, and Eric Vanden-Eijnden for helpful discussions.
(see also the review article [EVE10]), our main interest is in those segments of the trajectory \(t \mapsto X_t \) which pass from \(A \) to \(B \). These transition paths and are defined precisely as follows. First, for \(k \geq 0 \), define the hitting times \(\tau_{A,k}^+ \) and \(\tau_{B,k}^+ \) inductively by
\[
\tau_{A,0}^+ = \inf \{ t \geq 0 \mid X_t \in \bar{A} \},
\tau_{B,0}^+ = \inf \{ t > \tau_{A,0}^+ \mid X_t \in \bar{B} \},
\]
and for \(k \geq 0 \),
\[
\tau_{A,k+1}^+ = \inf \{ t > \tau_{B,k}^+ \mid X_t \in \bar{A} \},
\tau_{B,k+1}^+ = \inf \{ t > \tau_{A,k+1}^+ \mid X_t \in \bar{B} \}.
\]
We will call these the entrance times. Then define the exit times
\[
\tau_{A,k}^- = \sup \{ t < \tau_{B,k}^+ \mid X_t \in \bar{A} \},
\tau_{B,k}^- = \sup \{ t < \tau_{A,k+1}^+ \mid X_t \in \bar{B} \}.
\]
These times are all finite with probability one, and \(\tau_{A,k}^+ \leq \tau_{A,k}^- \leq \tau_{B,k}^- \leq \tau_{A,k+1}^+ \) for all \(k \geq 0 \) (see Figure 1). If \(t \in [\tau_{A,k}^-, \tau_{B,k}^+] \) for some \(k \), we say that the path \(X_t \) is \(A \to B \) reactive. Let \(\Theta = (A \cup B)^C \), and hence \(\partial \Theta = \partial A \cup \partial B \). For \(k \in \mathbb{N} \), the continuous process \(Y_k : [0, \infty) \to \Theta \) defined by
\[
Y_t^k = X_{(t+\tau_{A,k}^-)^+} \wedge \tau_{B,k}^+
\]
is the \(k \)th \(A \to B \) reactive trajectory or transition path. Observe that \(Y_0^k = X_{\tau_{A,k}^-} \in \partial A \), and that \(Y_t^k = X_{\tau_{B,k}^+} \in \partial B \) for all \(t \geq \tau_{B,k}^- - \tau_{A,k}^- \), and that \(Y_t^k \in \Theta \) for all \(t \in (0, \tau_{B,k}^- - \tau_{A,k}^-) \).

Figure 1. Illustration of a trajectory with entrance and exit times. The transition path from \(A \) to \(B \) is marked in red.

Our main results describe the probability law of these transition paths in terms of a transition path process, which is a strong solution to an auxiliary stochastic differential equation. In particular, empirical samples of the reactive portions of \(X_t \) may be regarded as sampling from the transition path process. The motivation comes from the study of chemical reactions.
and thermally activated processes where understanding these reactive trajectories are crucial [DBG02, BCDG02]. In these applications, the domains A and B are usually chosen as regions in configurational space corresponding to reactant and product states. Mathematically, our results fit into the framework of the transition path theory [EVE10, EVE06, MSVE06].

Having identified the transition path process, we can compute statistics of the transition paths by sampling directly from the transition path SDE, rather than using acceptance/rejection methods or very long-time integration on the original SDE. Of course, this assumes knowledge of the committor function, which is non-trivial. In any case, our results might be used to analyze methods of sampling reactive trajectories.

We will now describe our main results and their relation to other works. Proofs are deferred to later sections.

1.1. The transition path process. Our definition of the transition path process is motivated by the Doob h-transform as follows. Let τ_A and τ_B denote the first hitting time of X_t to the sets A and B, respectively:

\[
\tau_A = \inf \{ t \geq 0 \mid X_t \in \bar{A} \},
\]

\[
\tau_B = \inf \{ t \geq 0 \mid X_t \in \bar{B} \}.
\]

Let $q(x) \geq 0$ be the forward committor function:

\[
q(x) = P(\tau_A > \tau_B \mid X_0 = x),
\]

which satisfies $Lq(x) = 0$ for $x \in \Theta = (\bar{A} \cup \bar{B})^C$ and

\[
q(x) = \begin{cases}
0, & x \in \bar{A}, \\
1, & x \in \bar{B}.
\end{cases}
\]

By the maximum principle, $q(x) > 0$ for all $x \in \Theta$. By the Hopf lemma we also have

\[
\sup_{x \in \partial A} \hat{n}(x) \cdot \nabla q(x) < 0,
\]

\[
\inf_{x \in \partial B} \hat{n}(x) \cdot \nabla q(x) > 0,
\]

where $\hat{n}(x)$ will denote the unit normal exterior to Θ (pointing into A and B). For $x \in \Theta$, consider the stopped process $X_{t \wedge \tau_A \wedge \tau_B}$ with $X_0 = x$, and let P_x denote the corresponding measure on $\mathcal{X} = C([0, \infty))$:

\[
P_x(U) = P(X \in U \mid X_0 = x), \quad \forall U \in \mathcal{B}
\]

where \mathcal{B} is the Borel σ-algebra on \mathcal{X}. If Λ_{AB} denotes the event that $\tau_A > \tau_B$, the measure Q^q_x on $(\mathcal{X}, \mathcal{B})$ defined by

\[
\frac{dQ^q_x}{dP_x} = \frac{\mathbb{1}_{\Lambda_{AB}}}{P_x(\Lambda_{AB})} = \frac{\mathbb{1}_{\Lambda_{AB}}}{q(x)}
\]

is absolutely continuous with respect to P_x, if $x \in \Theta$. By the Doob h-transform (see e.g. [Day92, Pin95, Theorem 7.2.2]), we know that Q^q_x defines a diffusion process Y_t on $C([0, \infty))$ with generator:

\[
L^q f = \frac{1}{q} L(qf) = \text{tr}(a \nabla^2 f) + (b \cdot \nabla f) + \frac{2a \nabla q}{q} \cdot \nabla f = Lf + \frac{2a \nabla q}{q} \cdot \nabla f.
\]

So, the effect of conditioning on the event $\tau_B < \tau_A$ is to introduce an additional drift term.
This observation suggests that the $A \to B$ reactive trajectories should have the same law as a solution to the SDE
\begin{equation}
 dY_t = \left(b(Y_t) + \frac{2a(Y_t)\nabla q(Y_t)}{q(Y_t)} \right) dt + \sqrt{2} \sigma(Y_t) d\hat{W}_t,
\end{equation}
originating at a point $Y_0 = y_0 \in \partial A$ and terminating at a point in ∂B. While the SDE (1.9) admits strong solutions for $y_0 \in \Theta$ since $q(x) > 0$ in Θ, the drift term becomes singular at the boundary of A, where q vanishes. Our first result is the following theorem which shows that there is still a unique strong solution to this SDE even for initial condition lying in ∂A. For convenience, let us define the vector field
\begin{equation}
 K(y) = \left(b(y) + \frac{2a(y)\nabla q(y)}{q(y)} \right).
\end{equation}

Theorem 1.1. Let $(\hat{W}, \hat{\mathcal{F}})$ be a standard Brownian motion in \mathbb{R}^d, defined on a probability space $(\hat{\Omega}, \hat{\mathcal{F}}, \hat{Q})$. Let $\xi : \hat{\Omega} \rightarrow \hat{\Theta}$ be a random variable defined on the same probability space and independent of \hat{W}. There is a unique, continuous process $Y_t : [0, \infty) \rightarrow \hat{\Theta}$ which is adapted to the augmented filtration $\hat{\mathcal{F}}_t$ and satisfying the following, \hat{Q}-almost surely:
\begin{equation}
 Y_t = \xi + \int_0^{\tau_B} K(Y_s) \, ds + \int_0^{\tau_B} \sqrt{2} \sigma(Y_s) \, d\hat{W}_s, \quad t \geq 0
\end{equation}
where
\[\tau_B = \inf\{ t > 0 \mid Y_t \in \hat{B} \}. \]
Moreover, $Y_t \notin \hat{\Lambda}$ for all $t > 0$.

The augmented filtration is defined in the usual way, $\hat{\mathcal{F}}_t$ being the σ-algebra generated by $\hat{\mathcal{F}}_t, Y_0$, and the appropriate collection of null sets so that $\hat{\mathcal{F}}_t$ is both left- and right- continuous. We will use \hat{E} to denote expectation with respect to the probability measure \hat{Q}.

Observe that if $d = 1$, $\sigma = 1/\sqrt{2}$ is constant, and $b \equiv 0$, then $q(x)$ is a linear function, and (1.9) corresponds to a Bessel process of dimension 3. For example, if $A = (-\infty, 0)$, $B = (1, \infty)$, we have
\begin{equation}
 dY_t = \frac{1}{Y_t} dt + d\hat{W}_t,
\end{equation}
and the function $Z_t = (Y_t)^2$ satisfies the degenerate diffusion equation
\begin{equation}
 dZ_t = 3 dt + 2\sqrt{Z_t} d\hat{W}_t.
\end{equation}
In this simple case, existence and uniqueness of a strong solution starting at $Y_0 = 0$ can be shown using arguments involving Brownian local time (see [RY99, KS91]). However, those arguments are not applicable to the more general setting we consider here. The work most closely related to Theorem 1.1 in a higher dimensional setting may be that of DeBlaisie [DeB04] who proved pathwise uniqueness for certain SDEs having diffusion coefficients that degenerate like $\sqrt{d(Z_t)}$ where $d(z)$ is the distance to the domain boundary (as in (1.12)). In an earlier work, Athreya, Barlow, Bass, and Perkins [ABBP92] proved uniqueness for the martingale problem associated with a similarly degenerate diffusion in a positive orthant in \mathbb{R}^d. Nevertheless, those analyses do not apply to the case (1.9) considered here.

Our next result is the following theorem which shows that the law of the reactive trajectories is that of the process Y_t with appropriate initial condition. For this reason, we will call the process Y_t the transition path process.
Theorem 1.2. Let X_t satisfy the SDE (1.1). Let Y^k denote the k^{th} $A \rightarrow B$ reactive trajectory defined by (1.3). Let Y be defined as in Theorem 1.1. Then for any bounded and continuous functional $F : C([0,\infty)) \rightarrow \mathbb{R}$, we have

$$
\mathbb{E}[F(Y^k)] = \mathbb{E}\left[F(Y) \mid Y_0 \sim X_{\tau_{A,k}}^{-}\right].
$$

The processes X_t and Y^k_t are defined on a probability space that is different from the one on which Y_t is defined. The notation $Y_0 \sim X_{\tau_{A,k}}^{-}$ used in Theorem 1.2 means that Y_0 has the same law as $X_{\tau_{A,k}}^{-}$, meaning $\mathbb{P}(Y_0 \in U) = \mathbb{P}(X_{\tau_{A,k}}^{-} \in U)$ for any Borel set $U \subset \mathbb{R}^d$.

1.2. Reactive exit and entrance distributions. The distribution of the random points $X_{\tau_{A,k}}^{-}$ will depend in the initial condition X_0. From the point of view of sampling the transition paths, however, there is a very natural distribution to consider for Y_0. To motivate this distribution formally, let $h > 0$ and consider the regularized hitting times

$$
\tau_{A,h} = \inf \{t \geq h \mid X_t \in \bar{A}\}
$$

and

$$
\tau_{B,h} = \inf \{t \geq h \mid X_t \in \bar{B}\},
$$

where X_t satisfies (1.1). Then define

$$
q_h(x) = \mathbb{P}(\tau_{A,h} > \tau_{B,h} \mid X_0 = x).
$$

This is the probability that at some time $s \in [0,h]$, the path X_t starting from $x \in \partial A$ becomes a transition path, not returning to \bar{A} before hitting \bar{B}. With this in mind, the quantity

$$
\eta_{A,h}(x) = h^{-1}\rho(x)\mathbb{P}(\tau_{A,h} > \tau_{B,h} \mid X_0 = x) = h^{-1}\rho(x)q_h(x),
$$

may be interpreted as a rate at which transition paths exit A, when the system is in equilibrium. Therefore, a natural choice for an initial distribution for $Y_0 \in \partial A$ is:

$$
\eta_A(x) = \lim_{h \rightarrow 0} \eta_{A,h}.
$$

By the Markov property, we have

$$
q_h(x) = \int_{\mathbb{R}^d} \mathbb{P}(\tau_A > \tau_B \mid X_0 = y)\rho(h,x,y)\,dy = \mathbb{E}[q(X_h) \mid X_0 = x]
$$

where $\rho(t,x,\cdot)$ is the density for X_t, given $X_0 = x$. Therefore, for any $x \in \partial A$ we have

$$
\lim_{h \rightarrow 0} h^{-1}q_h(x) = \lim_{h \rightarrow 0} h^{-1}\mathbb{E}[q(X_h) - q(X_0) \mid X_0 = x] = Lq(x),
$$

in the sense of distributions, although q is not C^2 on $\partial \Theta = \partial A \cup \partial B$. Hence $\eta_{A,h}(x) \rightarrow \eta_A(x) = \rho(x)Lq(x)$ for $x \in \partial A$. The distribution Lq is supported on $\partial \Theta$. If ϕ is a smooth test function supported on a set $B_r(x)$, a small neighborhood of $x \in \partial A$, then we have

$$
\langle Lq, \phi \rangle = \int_{\mathbb{R}^d} q(x)L^*\phi(x)\,dx
$$

$$
= \int_{B_r(x) \cap \Theta} Lq(x)\phi(x)\,dx + \int_{(\partial A) \cap B_r(x)} \left(q\hat{n} \cdot \text{div}(a\phi) - (\hat{n} \cdot a\nabla q)\phi + q\hat{n} \cdot b\phi\right)\,d\sigma_A(x)
$$

where $\hat{n}(x)$ is the unit normal vector exterior to Θ, and $d\sigma_A$ is the surface measure on ∂A. Since $q = 0$ on ∂A and $Lq = 0$ on Θ, this implies,

$$
\langle Lq, \phi \rangle = -\int_{(\partial A) \cap B_r(x)} \phi \hat{n} \cdot a\nabla q\,d\sigma_A(x).
$$
That is (after a similar calculation for points on ∂B),

\[(1.16) \quad Lq(x) = -\nabla \cdot (\nabla q(x)) d\sigma_A(x) - \nabla \cdot (\nabla q(x)) d\sigma_B(x),\]

in the sense of distributions. Restricting on ∂A, we get

\[(1.17) \quad \eta_A = -\rho(x)\nabla \cdot (\nabla q(x)) d\sigma_A(x).\]

By switching the role of A and B in the above discussion, it is also natural to define a measure on ∂B as

\[(1.18) \quad \eta_B = \rho(x)\nabla \cdot (\nabla q(x)) d\sigma_B(x).\]

Note that $1 - q$ gives the forward committor function for the transition from B to A and that $Lq(x) = \eta_A(dx) - \eta_B(dx)$. Although the distributions η_A and η_B are positive (by (1.17)), they need not be probability distributions. Nevertheless, the mass of the two measures is the same.

Lemma 1.3. The measures η_A and η_B satisfy $\eta_A(\partial A) = \eta_B(\partial B)$. That is,

\[(1.19) \quad \int_{\partial A} \rho(x)\nabla \cdot (\nabla q(x)) d\sigma_A(x) + \int_{\partial B} \rho(x)\nabla \cdot (\nabla q(x)) d\sigma_B(x) = 0.\]

This computation motivates us to define

\[(1.20) \quad \eta_A^\nu(dx) = \frac{1}{\nu} \eta_A(dx) = -\frac{1}{\nu} \rho(x)\nabla \cdot (\nabla q(x)) d\sigma_A(x),\]

\[(1.21) \quad \eta_B^\nu(dx) = \frac{1}{\nu} \eta_B(dx) = \frac{1}{\nu} \rho(x)\nabla \cdot (\nabla q(x)) d\sigma_B(x),\]

We call these distributions the **reactive exit distribution** on ∂A and on ∂B, respectively. The constant ν is a normalizing constant so that η_A^ν and η_B^ν define probability measures on ∂A and ∂B. By Lemma 1.3 the normalizing constant is the same for both measures. Our next result relates the reactive exit distribution on ∂A to the **empirical reactive exit distribution** on ∂A, defined by

\[(1.22) \quad \mu_{A,N}^- = \frac{1}{N} \sum_{k=0}^{N-1} \delta_{X_{r_{A,k}}^-} (x).\]

Proposition 1.4. Let $\mu_{A,N}^-$ be the empirical reactive exit distribution on ∂A defined by (1.22). Then $\mu_{A,N}^-$ converges weakly to η_A^ν as $N \to \infty$. That is, for any continuous and bounded $f : \partial A \to \mathbb{R}$

\[
\lim_{N \to \infty} \int_{\partial A} f(x) d\mu_{A,N}^-(x) = \int_{\partial A} f(x) d\eta_A^\nu(x)
\]

holds \mathbb{P}-almost surely.

A similar statement holds for the reactive exit distribution on ∂B and the empirical distribution of the points $X_{r_{B,k}}^-$. The reactive exit distribution $\eta_A^\nu(dx)$ is related to the equilibrium measure $\nu_{A,B}(dx)$ in the potential theory for diffusion processes [Szn98, BEGK 04, BGK05]. In fact, the committor function q is known as the equilibrium potential in those works, and the equilibrium measure $\nu_{A,B}(dx)$ is given by Lq restricted on ∂A. Specifically, we have

\[(1.23) \quad \eta_A^\nu(dx) = \frac{1}{\nu} \rho(x)\nu_{A,B}(dx).\]

To the best of our knowledge, Proposition 1.4 for the first time characterizes the equilibrium measure from a dynamic perspective.
We also identify the limit of the empirical reactive entrance distribution on ∂B, defined as

$$\mu_{B,N}^+ = \frac{1}{N} \sum_{k=0}^{N-1} \delta_{X_{\tau_{B,k}}^+} (x).$$

To describe its limit as $N \to \infty$, let us denote by \tilde{L} the adjoint of L in $L^2(\mathbb{R}^d, \rho(x)dx)$, given by

$$\tilde{L}u = -b \cdot \nabla u + \frac{2}{\rho} \text{div}(a\rho) \cdot \nabla u + \text{tr}(a \nabla^2 u).$$

This corresponds to the generator of the time-reversed process $t \mapsto X_{T-t}$ [HP86]. Note that $\tilde{L} = L$ if the SDE (1.1) is reversible, i.e. L is self-adjoint in $L^2(\mathbb{R}^d, \rho(x)dx)$. In addition to the forward committor function $q(x)$ (recall (1.5)), we also define the backward committor function $\tilde{q}(x)$ to be the unique solution of

$$\tilde{L}\tilde{q} = 0, \quad x \in \Theta$$

with boundary condition

$$\tilde{q}(x) = \begin{cases} 1, & x \in \partial A \\ 0, & x \in \partial B. \end{cases}$$

In terms of \tilde{q}, we define the reactive entrance distribution on ∂B as

$$\eta_B^+(dx) = -\frac{1}{\nu} \rho(x) \hat{n}(x) \cdot a(x) \nabla \tilde{q}(x) d\sigma_B(x)$$

and analogously the reactive entrance distribution on ∂A

$$\eta_A^+(dx) = \frac{1}{\nu} \rho(x) \hat{n}(x) \cdot a(x) \nabla \tilde{q}(x) d\sigma_A(x).$$

Again, ν is a normalizing constant so that these are probability measures; ν is the same as the constant in (1.20). The following proposition justifies the definition of the reactive entrance distribution.

Proposition 1.5. Let $\mu_{B,N}^+$ be the empirical reactive entrance distribution on ∂B defined by (1.24). Then $\mu_{B,N}^+$ converges weakly to η_B^+ as $N \to \infty$. That is, for any continuous and bounded $f : \partial B \to \mathbb{R}$

$$\lim_{N \to \infty} \int_{\partial B} f(x) d\mu_{B,N}^+ (x) = \int_{\partial B} f(x) d\eta_B^+ (x)$$

holds \mathbb{P}-almost surely.

A similar statement holds for the reactive entrance distribution on ∂A and the empirical distribution of the points $X_{\tau_{A,k}}^+$.

Remark 1.6. If the SDE (1.1) is reversible, we have $\tilde{q} = 1 - q$, and hence $\eta_A^+(dx) = \eta_A^-(dx)$ and $\eta_B^+(dx) = \eta_B^-(dx)$.

In view of Proposition 1.4, η_A^- is a natural choice for the distribution of Y_0. With this choice, the transition path process Y_t characterizes the empirical distribution of $A \to B$ reactive trajectories, as the next theorem shows:
Theorem 1.7. Let X_t satisfy the SDE (1.1). Let Y^k denote the $k^{th} A \to B$ reactive trajectory defined by (1.3). Let Y be the unique process defined by Theorem 1.1 with initial distribution $Y_0 \sim \eta_A(dx)$ on ∂A defined by (1.20), and let Q_{η_A} denote the law of this process on $X = C(\mathbb{R})$. Then for any $F \in L^1(X, B, Q_{\eta_A})$, the limit
\[
\lim_{N \to \infty} \frac{1}{N} \sum_{k=0}^{N-1} F(Y^k) = \hat{E}[F(Y)]
\]
holds \mathbb{P}-almost surely.

In particular, the limit $\hat{E}[F(Y)]$ is independent of X_0. Using Theorem 1.7, several interesting statistics of the transition paths can be expressed in terms of the quantities we have defined. Actually, Proposition 1.4 is an immediate corollary of Theorem 1.7, by choosing $F(Y^k) = f(Y^0_k)$, so we will not give a separate proof of Proposition 1.4.

1.3. Reaction rate. Let N_T be the number of $A \to B$ reactive trajectories up to time T:
\[
N_T = 1 + \max_k \{ k \geq 0 \mid \tau_{B,k} < T \}.
\]
The reaction rate ν_R is defined by the limit
\[
\nu_R = \lim_{T \to \infty} \frac{N_T}{T} = \lim_{k \to \infty} \frac{k}{\tau_{B,k}^+},
\]
and it is the rate of the transition from A to B. Also, the limits
\[
T_{AB} := \lim_{N \to \infty} \frac{1}{N} \sum_{k=0}^{N-1} (\tau_{B,k}^+ - \tau_{A,k}^+)
\]
and
\[
T_{BA} := \lim_{N \to \infty} \frac{1}{N} \sum_{k=0}^{N-1} (\tau_{A,k+1}^+ - \tau_{B,k}^+)
\]
are the expected reaction times from $A \to B$ and $B \to A$, respectively. The reaction rate from $A \to B$ and $B \to A$ are then given by $k_{AB} = T_{AB}^{-1}$ and $k_{BA} = T_{BA}^{-1}$. Another interesting quantity is the expected crossover time from $A \to B$
\[
C_{AB} := \lim_{N \to \infty} \frac{1}{N} \sum_{k=0}^{N-1} (\tau_{B,k}^+ - \tau_{A,k}^-),
\]
which is the typical duration of the $A \to B$ reactive intervals. Observe that $C_{AB} < T_{AB}$. Similarly, we define
\[
C_{BA} := \lim_{N \to \infty} \frac{1}{N} \sum_{k=0}^{N-1} (\tau_{A,k+1}^+ - \tau_{B,k}^-).
\]
The next result identifies these limits in terms of the committor functions and the reactive exit and entrance distributions.
Proposition 1.8. The limits (1.28), (1.29), (1.30), (1.31), and (1.32) hold \mathbb{P}-almost surely, and

$$\nu_R = \nu = \int_{\mathbb{R}^d} \rho(x) \nabla q(x) \cdot a(x) \nabla q(x) \, dx.$$

$$T_{AB} = \int_{\partial A} \eta_A^+(dx)u_B(x) = \frac{1}{\nu_R} \int_{\mathbb{R}^d} \rho(x) \bar{q}(x) \, dx.$$

$$T_{BA} = \int_{\partial B} \eta_B^+(dx)u_A(x) = \frac{1}{\nu_R} \int_{\mathbb{R}^d} \rho(x)(1-\bar{q}(x)) \, dx.$$

$$C_{AB} = \int_{\partial A} \eta_A^-(dx)v_B(x) = \frac{1}{\nu_R} \int_{\mathbb{R}^d} \rho(x)q(x)\bar{q}(x) \, dx.$$

$$C_{BA} = \int_{\partial B} \eta_B^-(dx)v_A(x) = \frac{1}{\nu_R} \int_{\mathbb{R}^d} \rho(x)(1-q(x))(1-\bar{q}(x)) \, dx.$$

Here $u_B(x) = \mathbb{E}[\tau_B^X \mid X_0 = x]$ is the mean first hitting time of X_t to \overline{B}, and $v_B(x) = \mathbb{E}[\tau_B^Y \mid Y_0 = x]$ is the mean first hitting time of Y_t to \overline{B}. Similarly, if q is replaced by $(1-q)$ in the definition of Y, then $v_A(x) = \mathbb{E}[\tau_A^Y \mid Y_0 = x]$. Recall that ν is the normalizing factor for the reactive exit and entrance distributions.

The formula for ν_R, T_{AB}, and T_{BA} were obtained in [EVE06]. We also note that the crossover time for the transition path process in one dimension was recently studied by [CGLM12].

1.4. Density of transition paths. We now consider the distribution ρ_R as defined in [EVE06]:

$$(1.33) \quad \rho_R(z) = \lim_{T \to \infty} \frac{1}{NT} \int_0^T \delta(z-X_t)\mathbb{I}_R(t) \, dt, \quad z \in \Theta,$$

where R is the random set of times at which X_t is reactive:

$$R = \bigcup_{k=0}^\infty [\tau_{A,k}^-, \tau_{B,k}^+] .$$

This distribution on Θ can be viewed as the density of transition paths. By Proposition 1.8 and Theorem 1.7 we can describe ρ_R in terms of the transition density for Y_t. Specifically, for any continuous and bounded function $f : \mathbb{R}^d \to \mathbb{R}$, we have

$$\int_\Theta f(z) \rho_R(z) \, dz = \nu_R \lim_{T \to \infty} \frac{1}{NT} \int_0^T f(X_t)\mathbb{I}_R(t) \, dt$$

$$= \nu_R \lim_{N \to \infty} \frac{1}{N} \sum_{k=0}^{N-1} \int_{\tau_{B,k}^-}^{\tau_{A,k}^+} f(Y_t^k) \, dt$$

$$= \nu_R \mathbb{E} \left[\int_0^{t_B} f(Y_t) \, dt \mid Y_0 \sim \eta_{A}^- \right]$$

$$= \nu_R \int_0^{t_B} \int_{\Theta} Q_R(t, \eta_{A}^-, z) f(z) \, dz \, dt.$$

Here $Q_R(t, \eta_{A}^-, z)$ is the density of Y_t, with $Y_0 \sim \eta_{A}^-$, and killed at ∂B

$$(1.34) \quad Q_R(t, \eta_{A}^-, z) = Q(Y_t \in dz, t < t_B \mid Y_0 \sim \eta_{A}^-),$$

and t_B is the first hitting time of Y_t to \overline{B}. Hence, for $z \in \Theta$,

$$(1.35) \quad \rho_R(z) = \nu_R \int_0^{t_B} Q_R(t, \eta_{A}^-, z) \, dt.$$
Proposition 1.9. For all \(z \in \Theta \),

\[
\rho_R(z) = \rho(z)q(z)\bar{q}(z).
\]

This formula for \(\rho_R \) was first derived in [Hum04, EVE06].

1.5. **Current of transition paths.** The density \(Q_R(t, \eta^-_A, z) \) satisfies the adjoint equation

\[
\frac{\partial}{\partial t}Q_R(t, \eta^-_A, z) = (L^q)^*Q_R(t, \eta^-_A, z), \quad z \in \Theta
\]

where \((L^q)^*\) is the adjoint of \(L^q \):

\[
(L^q)^*u = \sum_{i,j}(a_{ij}(z)u(z))_{izj} - \sum_i (K_i(z)u(z))_{zi}
\]

and \(K \) is defined by (1.10). Integrating from \(t = 0 \) to \(t = \infty \) we see that \(\rho_R(z) \) satisfies

\[
(L^q)^*\rho_R(z) = 0, \quad z \in \Theta.
\]

In divergence form, this equation is

\[
\nabla_z \cdot J_R(z) = 0,
\]

where the vector field

\[
J_R(z) = \rho_R(z)\left(b(z) - \frac{2a\nabla q(z)}{q(z)}\right) + \text{div}(a(z)\rho_R(z))
\]

\[
= \left(b(z)\rho(z) - \text{div}(a(z)\rho(z))\right)q(z)\bar{q}(z) + \rho(z)a(z)\left(q(z)\nabla q(z) - q(z)\nabla \bar{q}(z)\right).
\]

is continuous over \(\Theta \). The vector field \(J_R(z) \), identified in [EVE06], may be regarded as the current of transition paths (see Remark 1.13). Observe that if the SDE (1.1) is reversible, we have \(\bar{q} = 1 - q \) and

\[
b(z)\rho(z) - \text{div}(a(z)\rho(z)) = 0,
\]

and hence the current given by (1.38) simplifies to

\[
J_R(z) = \rho(z)a(z)\nabla q(z).
\]

This was observed already in [EVE06].

On the boundary, the current (1.38) is related to the reactive exit and entrance distributions.

Proposition 1.10. We have

\[
J_R = \rho a\nabla q \text{ on } \partial A, \quad \text{and} \quad J_R = -\rho a\nabla \bar{q}, \text{ on } \partial B,
\]

and hence,

\[
\eta^-_A(dx) = -\nu_R^{-1}\hat{n}(x) \cdot J_R(x) \, d\sigma_A(x) \quad \text{and} \quad \eta^+_B(dx) = \nu_R^{-1}\hat{n}(x) \cdot J_R(x) \, d\sigma_B(x).
\]

As an immediate corollary, we have an additional formula for the reaction rate.

Corollary 1.11. Let \(S \) be a set with smooth boundary that contains \(A \) and separates \(A \) and \(B \), we have

\[
\nu_R = \int_{\partial S} \hat{n}(x) \cdot J_R(x) \, d\sigma_S(x),
\]

where \(\hat{n} \) is the unit normal vector exterior to \(S \).
The current J_R generates a (deterministic) flow in Θ stopped at ∂B:

$$
\frac{dZ^z_t}{dt} = J_R(Z^z_t), \quad \text{for } 0 \leq t \leq t_B, \quad Z^z_0 = z
$$

where $t_B = t_B(z)$ is the time at which Z_t reaches ∂B. As J_R is divergence free in Θ, $J_R \cdot \mathbf{n} < 0$ on ∂A, and $J_R \cdot \mathbf{n} > 0$ on ∂B, $t_B(z)$ is finite for any $z \in \Theta$. The flow naturally defines a map $\Phi_{J_R} : \partial A \to \partial B$: given any point $z \in \partial A$, we define

$$
\Phi_{J_R}(z) = Z^z_{t_B} \in \partial B.
$$

Proposition 1.12. For any $f \in C^1(\mathbb{R}^d)$,

$$
\int_{\partial B} f(x)\eta_B^+(dx) - \int_{\partial A} f(x)\eta_A^-(dx) = \frac{1}{\nu_R} \int_\Theta J_R \cdot \nabla f \, dx.
$$

In particular,

$$
\Phi_{J_R,*}(\eta_A^-) = \eta_B^+,
$$

where $\Phi_{J_R,*}(\eta_A^-)$ is the pushforward of the measure η_A^- by the map Φ_{J_R}.

Hence, J_R characterizes “the flow of reactive trajectories” from A to B.

Remark 1.13. Note that by Proposition 1.4 and Proposition 1.5, the left hand side of (1.42) is equal, \mathbb{P}-almost surely, to the limit

$$
\lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} (f(X_{r^+_{B,n}}) - f(X_{r^-_{A,n}})).
$$

If X_t was differentiable, we would have

$$
\lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} (f(X_{r^+_{B,n}}) - f(X_{r^-_{A,n}})) = \lim_{T \to \infty} \frac{1}{\nu_R} \int_0^T 1_{R(t)} \frac{d}{dt} f(X_t) \, dt = \int_\Theta \mathbf{1}_{\mathbb{R}}(\mu) \cdot \mathbf{1}_{\mathbb{R}} \frac{d}{dt} f(x) \, dx.
$$

Combining this with Proposition 1.12, we arrive at a formal characterization of J_R

$$
J_R = \lim_{T \to \infty} \frac{1}{T} \int_0^T \dot{X}_t \delta(x - X_t) 1_R(t) \, dt.
$$

This formal expression was used in [EVE06] to define J_R.

1.6. Related work. As we have mentioned, our work is closely related to the transition path theory developed by E and Vanden-Eijnden [EVE06, MSVE06, EVE10], which is a framework for studying the transition paths. In particular, based on the committor function, formula for reaction rate, density and current of transition paths were obtained in [EVE06]. Our main motivation is to understand the probability law of the transition paths. The main results Theorem 1.1, Theorem 1.2 and Theorem 1.3 identify an SDE which characterizes the law of the transition paths in $C([0, \infty))$. Therefore, as an application of these results, we are able to give rigorous proofs for the formula for reaction rate, density and current of transition paths in [EVE06]. We note that in the discrete case, a generator analogous to (1.8) was also proposed very recently in [VE13] for Markov jumping processes.

The transition paths start at ∂A and terminate at ∂B, and hence they can be viewed as paths of a bridge process between A and B. In this perspective, our work is related to the
conditional path sampling for SDEs studied in [SVW04, RVE05, HSVW05, HSV07]. In those works, stochastic partial differential equations were proposed to sample SDE paths with fixed end points. However, the paths considered were different from the transition paths as their time duration is fixed a priori. It would be interesting to explore SPDE-based sampling strategies for the transition path process identified in Theorem 1.1.

Let us also point out that in the work we present here we do not assume that the noise σ is small, as is the case in the asymptotic results of [BEGK04, BGK05, CGLM12], which we have mentioned already, and also in some other works, such as the large deviation theory of Freidlin and Wentzell [FW84].

The rest of the paper is organized as follows. Theorem 1.1 and Theorem 1.2 are proved in Section 2. In Section 3 we prove Lemma 1.3, Proposition 1.5, and Theorem 1.7 related to the reactive entrance and exit distributions. As we have mentioned, Proposition 1.4 follows immediately from Theorem 1.7, so we do not give a separate proof of it. Proposition 1.8, Proposition 1.9, Proposition 1.10, Corollary 1.11, and Proposition 1.12 are proved in Section 4.

2. The Transition Path Process

Proof of Theorem 1.1. Without loss of generality, we prove the theorem in the case that ξ = y_0 is a single point in Θ. The interesting aspect of the theorem is that y_0 is allowed to be on ∂Θ, since the drift term is singular at ∂Θ. If we assume that y_0 ∈ Θ, then existence of a unique strong solution up to the time τ_A ∧ τ_B follows from standard arguments, since K(y) is Lipschitz continuous in the interior of Θ. That is, if y_0 ∈ Θ, there is a unique, continuous ̂F_t-adapted process Y_t which satisfies

\[Y_t = y_0 + \int_0^{t \wedge (\tau_A \wedge \tau_B)} K(Y_s) \, ds + \int_0^{t \wedge (\tau_A \wedge \tau_B)} \sqrt{2} \sigma(Y_s) \, d\hat{W}_s, \quad t \geq 0. \]

Moreover, if y_0 ∈ Θ, then we must have τ_A > τ_B > 0 almost surely. This follows from an argument similar to the proof of [KS91, Proposition 3.3.22, p. 161]. Specifically, we consider the process z_t = 1/q(Y_t) ∈ ℝ, which satisfies

\[z_{t \wedge \tau} = z_0 - \int_0^{t \wedge \tau} \sqrt{2}(z_s)^2 \nabla q \cdot \sigma \, d\hat{W}_s \]

where τ = τ_B ∧ τ_e with τ_e = inf{t > 0 | q(Y_t) = ϵ}. Since τ < ∞ with probability one, we have

\[z_0 = \hat{E}[z_{t \wedge \tau}] = \frac{1}{q(\epsilon)} Q(\tau_e < \tau_B) + Q(\tau_e > \tau_B). \]

Hence \(Q(\tau_e < \tau_B) \leq q(\epsilon)(z_0 - 1) \). So, \(Q(\tau_A < \tau_B) \leq \lim_{\epsilon \to 0} Q(\tau_e < \tau_B) = 0. \)

Now suppose y_0 ∈ ∂A. In consideration of the comments above, it suffices to prove the desired result with τ_B replaced by τ_r, the first hitting time to ∂B_r(y_0) ∩ Θ, where B_r(y_0) is a ball of radius r > 0 centered at y_0. Thus, we want to prove existence and pathwise uniqueness of a continuous ̂F_t-adapted process Y_t : [0, ∞) → Θ satisfying

\[Y_t = y_0 + \int_0^{t \wedge \tau_r} K(Y_s) \, ds + \int_0^{t \wedge \tau_r} \sqrt{2} \sigma(Y_s) \, d\hat{W}_s, \]

where

\[\tau_r = \inf \{ t \geq 0 \mid Y_t \in \partial B_r(y_0) \cap \Theta \}. \]
It will be very useful to define a new coordinate system in the set $B^+_r(y_0) = B_r(y_0) \cap \Theta$ and to consider the problem in these new coordinates. For $r > 0$ small enough we can define a C^3 map $(h^{(1)}(y), \ldots, h^{(d-1)}(y), q(y)) : B^+_r(y_0) \to \mathbb{R}^{d-1} \times [0, \infty)$, such that the scalar functions $h^{(i)}(y) : B^+_r(y_0) \to \mathbb{R}$ satisfy

$$\langle \nabla h^{(i)}(y), a(y) \nabla q(y) \rangle = 0, \quad \forall \ y \in B^+_r(y_0), \quad i = 1, \ldots, d-1.$$ (2.3)

Furthermore, the map may be constructed so that it is invertible on its range and that the inverse is C^3. The existence of such a map follows from the regularity of ∂A, the regularity of q, and the fact that $\langle \hat{n}, a \nabla q \rangle \neq 0$ on ∂A by (1.7).

For two initial points $x_1, x_2 \in \Theta$, let $Y^{x_1}_t$ and $Y^{x_2}_t$ denote the unique solutions to (2.1) with $Y_0^{x_1} = x_1$ and $Y_0^{x_2} = x_2$ respectively. That is,

$$Y^x_t = x + \int_0^{t \wedge \tau^x_B} K(Y^x_s) \, ds + \int_0^{t \wedge \tau^x_B} \sqrt{2} \sigma(Y^x_s) \, d\hat{W}_s, \quad t \geq 0,$$ (2.4)

where τ^x_B is the first hitting time of Y^x_t to ∂B. Changing to the coordinate system defined by $(h^{(1)}(y), \ldots, h^{(d-1)}(y), q(y))$, we denote

$$(h_{1,t}, q_{1,t}) = (h(Y^{x_1}_t), q(Y^{x_1}_t)) \quad \text{and} \quad (h_{2,t}, q_{2,t}) = (h(Y^{x_2}_t), q(Y^{x_2}_t)).$$

Let τ^1_r and τ^2_r denote the first hitting times of $Y^{x_1}_t$ and $Y^{x_2}_t$ to the set $\partial B_r(y_0) \cap \Theta$. The processes $(h_{1,t}, q_{1,t})$ and $(h_{2,t}, q_{2,t})$ are well-defined up to the times τ^1_r and τ^2_r, respectively.

We can control the difference between $(h_{1,t}, q_{1,t})$ and $(h_{2,t}, q_{2,t})$:

Lemma 2.1. There is a constant C such that for all $x_1, x_2 \in B_{r/2}(y_0) \cap \Theta$

$$\mathbb{E} \left[\max_{t \in [0, T]} |q_{1,t \wedge \tau} - q_{2,t \wedge \tau}|^2 \right] \leq C|x_1 - x_2|^2,$$

and

$$\mathbb{E} \left[\max_{t \in [0, T]} |h_{1,t \wedge \tau} - h_{2,t \wedge \tau}|^2 \right] \leq C|x_1 - x_2|,$$

where $\tau = \tau^1_r \wedge \tau^2_r$.

The proof of Lemma 2.1 will be postponed. One immediate corollary is the following.

Corollary 2.2. There is a constant C such that for all $x_1, x_2 \in B_{r/2}(y_0) \cap \Theta$

$$\mathbb{P} \left(\max_{0 \leq t \leq \tau} |Y^{x_1}_t - Y^{x_2}_t| > \alpha \right) \leq C\alpha^{-2}|x_1 - x_2|^{1/2}, \quad \forall \ \alpha > 0,$$ (2.5)

where $\tau = \tau^1_r \wedge \tau^2_r$.

Proof. On the closed set $\{ z \in \mathbb{R}^d \mid z = (h(y), q(y)), \ y \in B^+_r(y_0) \}$, the map $y \mapsto (h(y), q(y))$ is invertible with a continuously differentiable inverse. Hence there is a constant C, depending only on the map $y \mapsto (h(y), q(y))$ such that

$$|Y^{x_1}_t - Y^{x_2}_t| \leq C (|h_{1,t} - h_{2,t}| + |q_{1,t} - q_{2,t}|), \quad \forall \ t \in [0, \tau].$$

By combining this bound with Chebychev’s inequality and Lemma 2.1 we obtain (2.5). \qed
Now suppose \(y_0 \in \partial A \). Let \(\{x_n\}_{n=1}^\infty \subset \Theta \) be a given sequence such that \(x_n \to y_0 \) as \(n \to \infty \). For each \(n \), define \(Y_t^{x_n} \) by (2.4), and let \(\tau^n_r \) denote the first hitting time of \(Y_t^{x_n} \) to \(\partial B_r(y_0) \cap \Theta \). We may choose the points \(x_n \) so that \(|x_n - y_0| \leq 25^{-n} \). Define \(\hat{\tau}^n = \tau^{n+1}_r \land \tau^n_r \). Applying Corollary 2.2 we conclude

\[
Q\left(\max_{0\leq t\leq (T\land \hat{\tau}^n)} |Y_t^{x_{n+1}} - Y_t^{x_n}| > 2^{-n} \right) \leq C2^{2n}5^{-n}.
\]

Therefore, by the Borel-Cantelli lemma, the series

\[
\sum_{n=1}^\infty \max_{0\leq t\leq (T\land \hat{\tau}^n)} |Y_t^{x_{n+1}} - Y_t^{x_n}| < \infty
\]

with probability one. Let us define

\[
(2.6) \quad \tau_r = \liminf_{n\to\infty} \tau^n_r = \liminf_{n\to\infty} \hat{\tau}^n.
\]

We will prove that \(\tau_r \) is positive:

Lemma 2.3. For all \(r > 0 \) sufficiently small, \(Q(\tau_r > 0) = 1 \).

In view of (2.6) and Lemma 2.3 we conclude that there must be a continuous process \(Y_t \) such that, with probability one,

\[
Y_t^{x_n} \to Y_t
\]

uniformly on compact subsets of \([0, \tau_r] \), as \(n \to \infty \). Let us define

\[
(2.7) \quad \tau_{r/2} = \inf\{ t \geq 0 \mid Y_t \in \partial B_{r/2}(y_0) \cap \Theta \}.
\]

Lemma 2.4. For all \(r > 0 \) sufficiently small, \(Q(\tau_{r/2} \in (0, \tau_r)) = 1 \), and \(\tau_{r/2} \) is stopping time with respect to \(\hat{\mathcal{F}}_t \).

We will postpone the proof of Lemma 2.3 and Lemma 2.4. Since \(\tau_{r/2} < \tau_r \), \(Y_t^{x_n} \to Y_t \) uniformly on \([0, \tau_{r/2}]\). Let us now replace \(Y_t \) by the stopped process \(Y_t\land \tau_{r/2} \). Since each \(Y_t^{x_n} \) is \(\hat{\mathcal{F}}_t \)-adapted, so is the limit \(Y_t \). We claim that \(Y_t \) satisfies

\[
(2.9) \quad Y_t = y_0 + \int_0^{t \land \tau_{r/2}} K(Y_s) \, dW_s + \int_0^{t \land \tau_{r/2}} \sqrt{2} \sigma(Y_s) \, d\hat{W}_s, \quad t \geq 0.
\]

Since \(Y_t^{x_n} \to Y_t \) uniformly on \([0, \tau_{r/2}]\), we have \((q(Y_t^{x_n}), h(Y_t^{x_n})) \to (q(Y_t), h(Y_t))\) uniformly on \([0, \tau_{r/2}]\), and \((q_t, h_t) = (q(Y_t), h(Y_t))\) satisfies

\[
(2.10) \quad h_t = h_0 + \int_0^{t \land \tau_{r/2}} f(q_s, h_s) \, ds + \int_0^{t \land \tau_{r/2}} m(q_s, h_s) \, d\hat{W}_s,
\]

and

\[
(2.11) \quad q_t - \int_0^{t \land \tau_{r/2}} g(q_s, h_s) \, d\hat{W}_s = \lim_{n \to \infty} \int_0^{t \land \tau^n_{r/2}} \frac{\left| g(q_{s_n}^{x_n}, h_{s_n}^{x_n}) \right|^2}{q_{s_n}^{x_n}} \, ds.
\]

for all \(t \in [0, \tau_{r/2}] \), where \((q_t^{x_n}, h_t^{x_n}) = (q(Y_t^{x_n}), h(Y_t^{x_n}))\). (Recall \(q_0 = 0 \).) Since \(q_{s_n}^{x_n} > 0 \), the last limit can be bounded below using Fatou’s lemma:

\[
(2.12) \quad q_t - \int_0^{t \land \tau_{r/2}} g(q_s, h_s) \cdot d\hat{W}_s \geq \liminf_{n \to \infty} \int_0^{t \land \tau^n_{r/2}} \frac{\left| g(q_{s_n}^{x_n}, h_{s_n}^{x_n}) \right|^2}{q_{s_n}^{x_n}} \, ds = \int_0^{t \land \tau_{r/2}} \frac{|g(q_s, h_s)|^2}{q_s} \, ds.
\]
Recall that $|g(q_s, h_2)|^2 \geq C_r > 0$. In particular, with probability one, the random set $H = \{s \in [0, \bar{\tau}_r/2] \mid q_s = 0\}$ must have zero Lebesgue measure; if that were not the case, then we would have

$$- \int_0^{t \wedge \bar{\tau}_r/2} g(q_s, h_s) \cdot d\hat{W}_s = +\infty,$$

for all t in a set of positive Lebesgue measure, an event which happens with zero probability. Therefore, by Fubini’s theorem,

$$0 = \mathbb{E} \int_0^T \mathbb{I}_H(s) \, ds = \int_0^T \mathbb{Q}(s < \bar{\tau}_r/2, q_s = 0) \, ds$$

which implies that $\mathbb{Q}(s < \bar{\tau}_r/2, q_s = 0) = 0$ for almost every $s \geq 0$. Since $\bar{\tau}_r/2 > 0$ almost surely, this implies that we may choose a deterministic sequence of times $t_n \in (0, 1/n]$ such that, almost surely, $q_{t_n} > 0$ for n sufficiently large. By then applying the same argument as when $y_0 \in \Theta$, we conclude that $q_t > 0$ for all $t > t_n$. Hence, $q_t > 0$ for all $t > 0$ must hold with probability one.

Since q_t is continuous, we now know that for any $\epsilon > 0$,

$$\min_{t > \epsilon} q_t > 0,$$

holds with probability one. In particular,

$$\liminf_{n \to \infty} \min_{t > \epsilon} q_{t_n} > 0,$$

so that

$$\lim_{n \to \infty} \int_{\epsilon}^{t \wedge \tau_n} \frac{|g(q_{t_n}, h_{t_n})|^2}{q_{t_n}^2} \, ds = \int_{\epsilon}^{t \wedge \bar{\tau}_r/2} \frac{|g(q_s, h_s)|^2}{q_s} \, ds,$$

almost surely. Since q_t is continuous at $t = 0$, we also know that

$$\lim_{\epsilon \to 0} \lim_{n \to \infty} \int_0^{t \wedge \tau_n \wedge \epsilon} \frac{|g(q_{t_n}, h_{t_n})|^2}{q_{t_n}^2} \, ds = \lim_{\epsilon \to 0} \left(q_{\epsilon} - \int_{\epsilon}^{t \wedge \bar{\tau}_r/2 \wedge \epsilon} g(q_s, h_s) \cdot d\hat{W}_s \right) = 0$$

almost surely. Returning to (2.11), we now conclude that

$$q_{t} - \int_0^{t \wedge \bar{\tau}_r/2} g(q_s, h_s) \cdot d\hat{W}_s = \lim_{\epsilon \to 0} \lim_{n \to \infty} \int_0^{t \wedge \tau_n \wedge \epsilon} \frac{|g(q_{t_n}, h_{t_n})|^2}{q_{t_n}^2} \, ds$$

$$+ \lim_{\epsilon \to 0} \lim_{n \to \infty} \int_{\epsilon}^{t \wedge \tau_n} \frac{|g(q_{t_n}, h_{t_n})|^2}{q_{t_n}^2} \, ds$$

$$= \lim_{\epsilon \to 0} \int_{\epsilon}^{t \wedge \bar{\tau}_r/2} \frac{|g(q_s, h_s)|^2}{q_s} \, ds$$

$$= \int_0^{t \wedge \bar{\tau}_r/2} \frac{|g(q_s, h_s)|^2}{q_s} \, ds$$

holds with probability one. Equation (2.9) for Y_t now follows from (2.10) and (2.13) by changing coordinates.

Except for the proofs of Lemma 2.1, Lemma 2.3, and Lemma 2.4, we have now established existence of a strong solution Y_t to (2.2) (with σ replaced by $r/2$). The uniqueness of the solution follows by the same arguments. Suppose that Y^1_t and Y^2_t both solve (2.2) with the same Brownian motion and the same initial point $Y^1_0 = Y^2_0 = y_0$. Then Corollary 2.2 implies that, \mathbb{Q} almost surely, $Y^1_t = Y^2_t$ for all $t \in [0, \tau^1_r \wedge \tau^2_r]$ where τ^1_r and τ^2_r are the corresponding hitting times to $\partial B_r(y_0) \cap \Theta$. In particular, $\tau^1_r = \tau^2_r$. This proves pathwise uniqueness. \(\square\)

We now prove Lemma 2.1, Lemma 2.3, and Lemma 2.4 to complete the proof of Theorem 1.1.
Proof of Lemma 2.1. By Itô’s formula the process \((h_1, q_1) = (h_{1,t}, q_{1,t})\) satisfies
\[
\begin{align*}
 dh_1 &= f(q_1, h_1)\,dt + m(q_1, h_1)\,d\hat{W}_t, \\
 dq_1 &= \frac{|g(q_1, h_1)|^2}{q_1}\,dt + g(q_1, h_1)\cdot d\hat{W}_t,
\end{align*}
\]
for \(0 \leq t \leq \tau^1_r\), where the functions \(g = \sqrt{2}(\nabla q)^T\sigma \in \mathbb{R}^d\), \(f = Lh \in \mathbb{R}^{d-1}\), and \(m = \sqrt{2}(\nabla h)^T\sigma \in \mathbb{R}^{(d-1) \times d}\), are all Lipschitz continuous in their arguments over \(B^1_r\). Similarly, \((h_2, q_2) = (h_{2,t}, q_{2,t})\) satisfies
\[
\begin{align*}
 dh_2 &= f(q_2, h_2)\,dt + m(q_2, h_2)\,d\hat{W}_t, \\
 dq_2 &= \frac{|g(q_2, h_2)|^2}{q_2}\,dt + g(q_2, h_2)\cdot d\hat{W}_t,
\end{align*}
\]
for \(0 \leq t \leq \tau^2_r\). Notice that the choice of coordinates satisfying (2.3) has eliminated a potentially singular drift term in the equations for \(h_{1,t}\) and \(h_{2,t}\). On the other hand, the drift term in the equations for \(q_1\) and \(q_2\) blows up near the boundary \(q = 0\). Indeed, if \(r > 0\) is small enough, by (1.7) there is a constant \(C_r > 0\) such that
\[
\inf_{y \in B^1_r} 2(hq(y), a(y)\nabla q(y)) \geq 2\lambda \inf_{y \in B^1_r} |\nabla q(y)| \geq C_r.
\]
Hence,
\[
|g(h_{1,t}, q_{1,t})|^2 = 2(hq(Y_t^{x_1}), a(Y_t^{x_1})\nabla q(Y_t^{x_1})) \geq 2\lambda \inf_{y \in B^1_r} |\nabla q(y)| \geq C_r > 0.
\]
Letting \(\tau = \tau^1_r \land \tau^2_r\) and using (2.14) and (2.16), we compute
\[
\begin{align*}
 d|h_1 - h_2|^2 &= 2(h_1 - h_2)^T(f(q_1, h_1) - f(q_2, h_2))\,dt \\
 &\quad + 2(h_1 - h_2)^T(m(q_1, h_1) - m(q_2, h_2))\,d\hat{W}_t \\
 &\quad + \text{tr}((m(q_1, h_1) - m(q_2, h_2))(m(q_1, h_1) - m(q_2, h_2))^T)\,dt
\end{align*}
\]
for \(0 \leq t \leq \tau\). In particular,
\[
\begin{align*}
 \hat{E}[|h_{1,t\land \tau} - h_{2,t\land \tau}|^2] &\leq C \int_0^\tau \hat{E}[|h_{1,s} - h_{2,s}|^2]\,ds \\
 &\quad + C \int_0^\tau \hat{E}[|h_{1,s} - h_{2,s}|^2]\,ds + C|x_1 - x_2|,
\end{align*}
\]
(2.20)
holds for all \(t \geq 0\).

From (2.15) and (2.17) we also compute
\[
\begin{align*}
 d(q_1 - q_2)^2 &= 2(q_1 - q_2)\,d(q_1 - q_2) + |g_1 - g_2|^2\,dt \\
 &= 2(q_1 - q_2)\left(\frac{|q_1|^2}{q_1} - \frac{|g_2|^2}{q_2}\right)\,dt \\
 &\quad + 2(q_1 - q_2)(g_1 - g_2)\cdot d\hat{W}_t + |g_1 - g_2|^2\,dt
\end{align*}
\]
(2.21)
for $0 \leq t \leq \tau$, where we have used the notation $g_1 = g(q_1, h_1)$ and $g_2 = g(q_2, h_2)$. We claim that there is a constant C, depending only on r, such that

\begin{equation}
2(q_1 - q_2) \left(\frac{|g_1|^2}{q_1} - \frac{|g_2|^2}{q_2} \right) \leq C(|q_1 - q_2|^2 + |h_1 - h_2|^2)
\end{equation}

holds for all $t \leq \tau$, with probability one. Both sides of (2.22) are invariant when (q_1, h_1) and (q_2, h_2) are interchanged. So, we may assume $q_1 \leq q_2$ without loss of generality. We consider the following two possibilities. First, suppose that

\begin{equation}
0 \leq q_1 |g_1|^2 - |g_2|^2 \leq (q_2 - q_1)|g_1|^2.
\end{equation}

Using this and $q_1 \leq q_2$ we have

\begin{equation}
2(q_1 - q_2) \left(\frac{|g_1|^2}{q_1} - \frac{|g_2|^2}{q_2} \right) = 2(q_1 - q_2) \left(\frac{|g_1|^2}{q_1 q_2} - \frac{|g_2|^2}{q_2} \right) = 2(q_1 - q_2) \left(\frac{|g_1|^2}{q_1 q_2} - \frac{|g_2|^2}{q_2} \right) = 2(q_1 - q_2) \left(\frac{(q_2 - q_1)|g_1|^2 - q_1(|g_2|^2 - |g_1|^2)}{q_1 q_2} \right)
\end{equation}

\begin{equation}
\leq 0.
\end{equation}

The other possibility is

\begin{equation}
0 \leq (q_2 - q_1)|g_1|^2 \leq q_1 |g_1|^2 - |g_2|^2.
\end{equation}

In this case, we have (also using $q_1 \leq q_2$)

\begin{equation}
2(q_1 - q_2) \left(\frac{|g_1|^2}{q_1} - \frac{|g_2|^2}{q_2} \right) = 2(q_1 - q_2) \left(\frac{|g_1|^2}{q_1 q_2} - \frac{|g_2|^2}{q_2} \right) = 2(q_1 - q_2) \left(\frac{(q_2 - q_1)|g_1|^2 - q_1(|g_2|^2 - |g_1|^2)}{q_1 q_2} \right)
\end{equation}

\begin{equation}
\leq -2(q_1 - q_2) \left(\frac{|g_2|^2 - |g_1|^2}{q_1 q_2} \right) \leq 2 \left| q_1 - q_2 \right| \left| q_2 \right|^2 - |g_1|^2 \leq 2 \left| q_1 - q_2 \right| \left| g_2 \right|^2 - |g_1|^2 \leq 2 \left(\frac{|g_2|^2 - |g_1|^2|^2}{|g_1|^2} \right).
\end{equation}

Therefore, since $|g_1| \geq C_r > 0$ (by 2.19), we must have

\[2(q_1 - q_2) \left(\frac{|g_1|^2}{q_1} - \frac{|g_2|^2}{q_2} \right) \leq 2C_r^{-2} \left(|g_2|^2 - |g_1|^2 \right)^2 \leq C(|q_1 - q_2|^2 + |h_1 - h_2|^2). \]

where $C > 0$ depends only on r. This establishes (2.22).
Returning to (2.21) and controlling the first term on the right hand side of (2.21) with (2.22), we conclude that
\[
\hat{E} \left[(q_{1,t\wedge \tau} - q_{2,t\wedge \tau})^2 \right] \leq C \int_0^t \hat{E} \left[|I_{[0,\tau]}(s)(q_{1,s} - q_{2,s})|^2 \right] ds \\
+ C \int_0^t \hat{E} \left[|I_{[0,\tau]}(s)|h_{1,s} - h_{2,s}|^2 \right] ds + C|x_1 - x_2|,
\]
(2.27)
\[
\leq C \int_0^t \hat{E} \left[(q_{1,s\wedge \tau} - q_{2,s\wedge \tau})^2 \right] ds \\
+ C \int_0^t \hat{E} \left[|h_{1,s\wedge \tau} - h_{2,s\wedge \tau}|^2 \right] ds + C|x_1 - x_2|.
\]
By combining (2.20) and (2.27) and applying Gronwall’s inequality, we conclude that
\[
\hat{E} \left[|h_{1,t\wedge \tau} - h_{2,t\wedge \tau}|^2 \right] + \hat{E} \left[(q_{1,t\wedge \tau} - q_{2,t\wedge \tau})^2 \right] \leq C|x_1 - x_2| (1 + te^{Ct}), \quad t \geq 0.
\]
Using (2.21) and (2.22) we also obtain
\[
\hat{E} \left[\max_{t \in [0,T]} (q_{1,t\wedge \tau} - q_{2,t\wedge \tau})^2 \right] \leq C \int_0^T \hat{E} [(q_{1,s\wedge \tau} - q_{2,s\wedge \tau})^2] ds \\
+ C \int_0^T \hat{E} [|h_{1,s\wedge \tau} - h_{2,s\wedge \tau}|^2] ds + C|x_1 - x_2| \\
+ \hat{E} \left[\max_{t \in [0,T]} V_t \right]
\]
(2.29)
where \(V_t\) is the martingale
\[
V_t = \int_0^{t\wedge \tau} 2(q_1 - q_2)(g_1 - g_2) \cdot d\hat{W}_s.
\]
By the Burkholder-Davis-Gundy inequality (e.g. [RY99 Sec IV.4]) and (2.28), we have
\[
\hat{E} \left[\max_{t \in [0,T]} V_t \right] \leq C \left(\int_0^T \hat{E} [(q_{1,s\wedge \tau} - q_{2,s\wedge \tau})^2] ds \right)^{1/2} \leq C_T|x_1 - x_2|^{1/2}.
\]
This, together with (2.28) and (2.29), gives us
\[
\hat{E} \left[\max_{t \in [0,T]} (q_{1,t\wedge \tau} - q_{2,t\wedge \tau})^2 \right] \leq C_T|x_1 - x_2|^{1/2}.
\]
Similar arguments for \(h_1 - h_2\) lead to
\[
\hat{E} \left[\max_{t \in [0,T]} |h_{1,t\wedge \tau} - h_{2,t\wedge \tau}|^2 \right] \leq C_T|x_1 - x_2|.
\]
\[\square\]

Proof of Lemma 2.3 Suppose \(\tau_r = 0\) holds with probability \(\epsilon > 0\). Because of (2.6) we may choose \(m\) sufficiently large so that
\[
\sum_{n=0}^{\infty} \max_{0 \leq t \leq (T\wedge T^n)} |Y_t^{x_n+1} - Y_t^{x_n}| < r/4
\]
holds with probability at least $1 - \epsilon/2$. Therefore, with probability at least $\epsilon/2$ we have both $\tau_r = 0$ and

\[(2.30) \quad \liminf_{n \to \infty} |Y_{\tau_r}^x - Y_{\tau_r}^y| \leq r/4.\]

Recall that $|Y_0^x - y_0| \leq 25^{-m}$. Let m be larger, if necessary, so that $25^{-m} \leq r/4$. This and \[(2.30)\] imply that

\[
\liminf_{n \to \infty} |Y_{\tau_r}^x - y_0| = \liminf_{n \to \infty} \left(|Y_{\tau_r}^x - Y_{\tau_r}^x| + |Y_{\tau_r}^x - y_0| \right) \leq r/4 + 25^{-m} \leq r/2
\]

holds with probability at least $\epsilon/2$. However, this contradicts the fact that $Y_{\tau_r}^x \in \partial B_r(y_0)$ for all n. Hence, we must have $\tau_r > 0$ with probability one.

\[\Box\]

Proof of Lemma 2.4. The fact that $\tilde{\tau}_{r/2} > 0$ with probability one follows from an argument very similar to the proof of Lemma 2.3. The fact that $\tilde{\tau}_{r/2} < \tau_r$ will follow by showing that

\[(2.31) \quad \limsup_{t < \tau_r} |Y_t - y_0| \geq r\]

holds with probability one. First, suppose that $\tau_r^n < \tau_r$ and that

\[\tau_r^n = \inf_{k \geq n} \tau_r^k\]

Then by \[(2.30)\] we have

\[|Y_{\tau_r^n}^x - y_0| \geq |Y_{\tau_r^n}^x - Y_{\tau_r^n}^x| - |Y_{\tau_r^n}^x - y_0| = r - |Y_{\tau_r^n}^x - Y_{\tau_r^n}^x| = r - R(n),\]

where $R(n)$ is the series remainder

\[R(n) = \sum_{k=n}^{\infty} \max_{0 \leq j \leq \tau_r^n} |Y_{\tau_r^n}^{x_{j+1}} - Y_{\tau_r^n}^{x_j}|\]

which converges to zero, with probability one, as $n \to \infty$. So, with probability one, if there is an increasing sequence of such times $\tau_r^n \nearrow \tau_r$ as $j \to \infty$, we see that \[(2.31)\] must hold. On the other hand, suppose there is no such sequence. Then we must have $\tau_r^n \geq \tau_r$ for n sufficiently large. Hence $Y_{\tau_r^n}^x$ must converge to Y_t uniformly on the closed interval $[0, \tau_r]$. Suppose $\tau_r^n \geq \tau_r$ and $\tau_r^n = \sup_{k \geq n} \tau_r^k$. Then for all $k \geq n$, we have

\[
|Y_{\tau_r^n}^x - y_0| \geq |Y_{\tau_r^n}^{x_k} - y_0| - |Y_{\tau_r^n}^{x_k} - y_0| \\
= r - |Y_{\tau_r^n}^{x_k} - Y_{\tau_r^n}^{x_k}| \geq r - M(n).
\]

Therefore, since $Y_{\tau_r^n}^x$ is continuous on $[0, \tau_r^n]$ and since $\tau_r = \liminf_{k \geq 0} \tau_r^k$, we have

\[|Y_{\tau_r^n}^x - y_0| \geq r - M(n).\]

Since $Y_{\tau_r^n}^x \to Y_{\tau_r}$ in this case and Y_t is continuous on $[0, \tau_r]$, then with probability one, this case also implies that \[(2.31)\] holds. Having established that $0 < \tilde{\tau}_{r/2} < \tau_r$ we conclude that $Y_{\tau_r}^x \to Y_t$ uniformly on $[0, \tau_r/2]$. Since each $Y_{\tau_r}^x$ is \mathcal{F}_t-adapted, so is the limit Y_t. In particular, $\tau_r/2$ is a stopping time.

\[\Box\]
Remark 2.5. Let us point out that if \(y_0 \in \partial A \) and \(T > 0 \) is sufficiently small, the equation

\[
Y(t) = y_0 + \int_0^t K(Y(s)) \, ds, \quad t \in [0, T].
\]

has a unique solution satisfying \(Y(t) \in \Theta \) for all \(t \in (0, T] \). Indeed, let \(z(t) \) solve the ODE

\[
z'(t) = 2a(z(t)) \nabla q(z(t)) + q(z(t))b(z(t))
\]

for \(t \in [0, T] \), with \(z(0) = y_0 \). For sufficiently small \(T \), \(z(s) \in \Theta \) for \(t \in (0, T] \). Hence \(q(z(s)) > 0 \) for \(t \in (0, T] \) and the function \(F(t) = \int_0^t q(z(s)) \, ds \) is invertible. Now, it is easy to check that the function \(\tilde{Y}(t) = z(F^{-1}(t)) \) is continuous on \([0, T]\) and satisfies (2.32). Moreover, \(\tilde{Y}(t) \in \Theta \) for all \(t \in (0, T] \). In fact,

\[
\tilde{Y}(t) \sim y_0 + 2\sqrt{t} \frac{a(y_0) \nabla q(y_0)}{(\nabla q(y_0), a(y_0) \nabla q(y_0))^{1/2}}
\]

for small \(t \).

We state and prove two properties of the transition path process, which will be used later.

Proposition 2.6. Let \(F \) be a bounded and continuous functional on \(C([0, \infty)) \). Define

\[
g(x) = \bar{E}[F(Y) \mid Y_0 = x]
\]

where \(Y_t \) satisfies (1.1). Then \(g \in C(\bar{\Theta}) \).

Proof. Suppose that \(\{x_n\}_{n=1}^\infty \subset \bar{\Theta} \) and that \(x_n \to x \in \bar{\Theta} \) as \(n \to \infty \). We claim that there must be a subsequence \(\{x_{n_j}\}_{j=1}^\infty \) such that, \(\mathbb{Q}\)-almost surely,

\[
\lim_{j \to \infty} F(Y^j) = F(Y),
\]

where \(Y^j \) satisfies (1.1) with \(Y^j_0 = x_{n_j} \), and \(Y_t \) satisfies (1.1) with \(Y_0 = x \). Since \(F \) is bounded and continuous on \(C([0, \infty)) \), the dominated convergence theorem then implies that

\[
\lim_{j \to \infty} g(x_{n_j}) = \lim_{j \to \infty} \bar{E}[F(Y) \mid Y_0 = x_{n_j}] = \bar{E}[F(Y) \mid Y_0 = x] = g(x).
\]

Since the limit is independent of the subsequence, this implies that \(g(x) \) is continuous.

To establish (2.33), we must show that \(Y^j \to Y_t \) uniformly on compact subsets of \([0, \infty)\). This follows from Corollary 2.2, as in the proof of Theorem 1.1. \(\square \)

Proposition 2.7. For any \(R > 0 \), there are constants \(k_1, k_2 > 0 \) such that

\[
\mathbb{Q}(Y_t \in \Theta \mid Y_0 = x) \leq k_1 e^{-k_2 t}
\]

holds for all \(t \geq 0 \) and \(x \in \bar{\Theta} \), \(|x| < R \).

Proof. If \(x \in \Theta \), then by the Doob h-transform, we know that

\[
\mathbb{Q}(Y_t \in \Theta \mid Y_0 = x) = \frac{\mathbb{P}(X_s \in \Theta \forall s \in [0, t], \tau_B < \tau_A \mid X_0 = x)}{\mathbb{P}(\tau_B < \tau_A \mid X_0 = x)} \leq \frac{\mathbb{P}(X_s \in \Theta \forall s \in [0, t] \mid X_0 = x) \wedge \mathbb{P}(\tau_B < \tau_A \mid X_0 = x)}{\mathbb{P}(\tau_B < \tau_A \mid X_0 = x)} \leq \frac{\mathbb{P}(X_s \in \Theta \forall s \in [0, t] \mid X_0 = x) \wedge q(x)}{q(x)}.
\]
Since the process X_t is ergodic, there must be constants C_1, C_2 such that
\[\mathbb{P}(X_s \in \Theta \forall s \in [0, t] \mid X_0 = x) = \mathbb{P}(X_s \notin \bar{A} \cup B \forall s \in [0, t] \mid X_0 = x) \leq C_1 e^{-C_2 t} \]
for all $|x| \leq R$, $t > 0$. So, for any $\epsilon > 0$,
\[Q(Y_t \in \Theta \mid Y_0 = x) \leq \frac{C_1 e^{-C_2 t} \wedge \epsilon}{\epsilon} \]
holds for all $t > 0$ and $x \in \{x \in \Theta \mid |x| \leq R, q(x) \geq \epsilon\}$.

The bound (2.34) does not include points near ∂A, where $q(x) < \epsilon$. Fix $\epsilon \in (0, 1)$ and define the set $S = \{x \in \Theta \mid q(x) < \epsilon\} \cup \bar{A}$. If ϵ is small enough, this set is bounded and we may assume $|x| < R$ for all $x \in S$. Suppose $Y_0 = x$ with $x \in S \cap \Theta$. Let $q_t = q(Y_t)$, which satisfies
\[q_t = q_0 + \int_0^t \frac{|g(Y_s)|^2}{q_s} \, ds + \int_0^t g(Y_s) \, d\tilde{W}_s \]
where $g(y) = \sqrt{2}(\nabla q(y))^T \sigma(y)$. By (1.7) we know that if $\epsilon > 0$ is small enough, there is a constant $C_\epsilon > 0$ such that $|g(y)|^2 \geq C_\epsilon$ for all $y \in S \cap \Theta$. Therefore, if $Y_t \in S \cap \Theta$ for all $t \in [0, T]$, we must have $q_t \leq \epsilon$ for all $t \in [0, T]$ and
\[q_t \geq \int_0^t \frac{C_\epsilon}{q_s} \, ds + \int_0^t g(Y_s) \, d\tilde{W}_s \geq t \epsilon^{-1} C_\epsilon + \int_0^t g(Y_s) \, d\tilde{W}_s \]
for all $t \in [0, T]$. This happens only if the martingale $M_t = \int_0^t g(Y_s) \, d\tilde{W}_s$ satisfies
\[M_t \leq \epsilon - t \epsilon^{-1} C_\epsilon, \quad t \in [0, T]. \]
To control the probability of this event, for any $\alpha > 0$, $\beta > 0$, $T > 0$, Chebychev's inequality implies
\[Q(M_T \leq -\alpha T) \leq e^{-\beta \alpha T \mathbb{E}[e^{-\beta M_T}]} \leq e^{-\beta \alpha T \mathbb{E} \left[\exp \left(\frac{\beta^2}{2} \int_0^T |g|^2 \, ds \right) \right]} \leq e^{-\beta \alpha T + \frac{\beta^2}{2} \|g\|_{L^2}^2 T}. \]
By choosing $\beta = \alpha/\|g\|_{L^2}^2$, we have $Q(M_T \leq -\alpha T) \leq e^{-\alpha^2 C_4 T}$. Hence there is a constant C_4 such that
\[Q(Y_t \in \bar{S} \cap \Theta, \forall t \in [0, T] \mid Y_0 = x) \leq e^{-\epsilon^2 C_4 T} \]
holds for all $T > 1$ and $x \in \bar{S} \cap \Theta$.

Now we combine (2.34) and (2.35). Let $\tau_S = \inf\{t > 0 \mid Y_t \in \partial S\}$. By (2.35) we have $Q(\tau_S > t/2 \mid Y_0 = x) \leq e^{-C_5 t}$ holds for all $x \in \bar{S} \cap \Theta$. Therefore, since τ_S is a stopping time, we conclude that
\[Q(Y_t \in \Theta \mid Y_0 \in x) \leq Q(Y_t \in \Theta, \tau_S < t/2 \mid Y_0 \in x) + e^{-C_5 t} \]
\[\leq \sup_{y \in \partial S} Q(Y_{t/2} \in \Theta \mid Y_0 \in y) + e^{-C_5 t} \]
\[\leq \frac{C_1 e^{-C_2 t} \wedge \epsilon}{\epsilon} + e^{-C_5 t}. \]
for all $x \in \bar{S} \cap \Theta$. \hfill \Box

Proof of Theorem 1.2: Since τ^+_A, n is a stopping time, it suffices to prove the result for $n = 0$. Fix $\epsilon > 0$ and let $S \supset \bar{A}$ be the open set
\[S = \{x \in \Theta \mid q(x) < \epsilon\} \cup \bar{A}. \]
For $\epsilon > 0$ small, this is a bounded set that separates A and B. The boundary ∂S is an isosurface for $q: q(x) = \epsilon$ for $x \in \partial S$. As $\epsilon \to 0$, S shrinks to A, and the Hausdorff distance $d_H(\partial S, \partial A)$ is $O(\epsilon)$ (because of (1.7)).

Recalling that $\tau_{A,0}^+ = \inf\{t \geq 0 \mid X_t \in \overline{A}\}$, we define

$$r_{S,0} = \inf\{t > \tau_{A,0}^+ \mid X_t \in \partial S\}.$$

which is a stopping time with respect to \mathcal{F}_t. Then for $k \geq 0$, we define inductively the stopping times (see Figure 2)

$$r_{A,k} = \inf\{t > r_{S,k} \mid X_t \in \overline{A}\},$$

$$r_{B,k} = \inf\{t > r_{S,k} \mid X_t \in \overline{B}\},$$

$$r_{S,k+1} = \inf\{t > r_{A,k} \mid X_t \in \partial S\}.$$

Observe that $r_{S,k} < r_{A,k} < r_{S,k+1}$, although it is possible that $r_{B,k} = r_{B,k+1}$. Let $r_{AB,k} = r_{A,k} \land r_{B,k}$, which is finite with probability one. We also define the random time

$$\tau_{S,j} = \inf\{t > \tau_{A,j}^- \mid X_t \in \partial S\}.$$

![Figure 2.](image)

(Left panel) The set S and random times $\tau_{S,j}$. (Right panel) Zoom-in of the boxed region together with stopping times $r_{S,k}$ and $r_{A,k}$.

Although $\tau_{S,j}$ is not a stopping time with respect to \mathcal{F}_t, the relation

$$\{r_{S,k} \mid k \geq 0, \ r_{B,k} < r_{A,k}\} = \{\tau_{S,j}\}_{j=0}^\infty$$

holds \mathbb{P}-almost surely.

Now, let

$$Y_t^0 = X_{(t+\tau_{A,0})^+\tau_{B,0}^+}, \quad t \geq 0,$$

and let $h_0 = \tau_{S,0}^+ - \tau_{A,0}^-$. Since F is bounded and continuous, and since $h_0 \to 0$ (\mathbb{P} almost surely) as $\epsilon \to 0$, we have

$$\mathbb{E}[F(X_{t+\tau_{A,0}^-})] = \mathbb{E}[F(Y_t^0)] = \lim_{\epsilon \to 0} \mathbb{E}[F(Y_t^{0+h_0})].$$

We will show that

$$\lim_{\epsilon \to 0} \mathbb{E}[F(Y_t^{0+h_0})] = \mathbb{E}[g(X_{\tau_{A,0}^-})]$$

where $g(x) = \mathbb{E}[F(Y) \mid Y_0 = x]$.

Let M be the unique (random) integer such that
\[\tau_{S,0} = r_{S,M}. \]
Equivalently, $M = \min\{k \geq 0 \mid r_{B,k} < r_{A,k}\}$. Since $r_{B,k} > r_{A,k}$ for all $k < M$, we have
\begin{equation}
F(Y^0_{+h_0}) = \sum_{k=0}^M F(X_{+r_{S,k}})_{r_{B,k}<r_{A,k}} = \sum_{k=0}^\infty F(X_{+r_{S,k}})_{r_{B,k}<r_{A,k}, k \leq M}.
\end{equation}
Observe that the event $\{k \leq M\}$ coincides with the event that $r_{B,j} > r_{A,j}$ for all $j < k$, so the event $\{k \leq M\}$ is measurable with respect to $\mathcal{F}_{r_{S,k}}$. Therefore, we have
\[
\mathbb{E}[F(Y^0_{+h_0})] = \sum_{k=0}^\infty \mathbb{E} \left[F(X_{+r_{S,k}})_{r_{B,k}<r_{A,k}, k \leq M} \right]
= \sum_{k=0}^\infty \mathbb{E} \left[\mathbb{E}[F(X_{+r_{S,k}})_{r_{B,k}<r_{A,k}, k \leq M} \mid \mathcal{F}_{r_{S,k}}] \right]
= \sum_{k=0}^\infty \mathbb{E} \left[\mathbb{I}_{k \leq M} \mathbb{E}[F(X_{+r_{S,k}})_{r_{B,k}<r_{A,k}} \mid \mathcal{F}_{r_{S,k}}] \right]
= \sum_{k=0}^\infty \mathbb{E} \left[\mathbb{I}_{k \leq M} f(X_{r_{S,k}}) \right],
\]
where
\[f(x) = \mathbb{E}[F(X_{+r_{S,k}})_{r_{B,k}<r_{A,k}} \mid X_0 = x] = q(x) \hat{\mathbb{E}}[F(Y) \mid Y_0 = x]. \]
The last equality follows from the Doob h-transform (since $x \in \partial S \subset \Theta$ here). Since $q(x) = \epsilon$ for all $x \in \partial S$, this means
\begin{equation}
\mathbb{E}[F(Y^0_{+h_0})] = \epsilon \mathbb{E} \left[\sum_{k=0}^M g(X_{r_{S,k}}) \right]
\end{equation}
where $g(x) = \hat{\mathbb{E}}[F(Y) \mid Y_0 = x]$. Note that the random integer M depends on ϵ.

Let A_j denote the event $\{j < M\}$, which occurs if and only if $r_{A,k} < r_{B,k}$ for all $k \in \{0, 1, \ldots, j\}$. Since $q(x) = \epsilon$ for all $x \in \partial S$, the event A_j is independent of $X_{r_{S,j}} \in \partial S$. Moreover, $P(A_j) = (1 - \epsilon)^{j+1}$, since
\[
P(A_j) = \mathbb{E} \left[\prod_{k=0}^j \mathbb{I}_{r_{A,k} < r_{B,k}} \right]
= \mathbb{E} \left[\prod_{k=0}^{j-1} \mathbb{I}_{r_{A,k} < r_{B,k}} \mathbb{E}[\mathbb{I}_{r_{A,j} < r_{B,j}} \mid \mathcal{F}_{r_{S,j}}] \right]
= (1 - \epsilon)P(A_{j-1}).
\]
Similarly, $P(M = j) = \epsilon(1 - \epsilon)^j$. Now we evaluate (2.39):
\[
\mathbb{E}[F(Y^0_{+h_0})] = \epsilon \mathbb{E}[g(X_{r_{S,0}})] + \epsilon \mathbb{E} \left[\sum_{k=1}^M g(X_{r_{S,k}}) \right]
= \epsilon \mathbb{E}[g(X_{r_{S,0}})] + \epsilon \mathbb{E} \left[\sum_{j=0}^\infty \mathbb{I}_{A_j} g(X_{r_{S,j+1}}) \right].
\]
\[\begin{align*}
&= \epsilon \mathbb{E}[g(X_{rS,0})] + \epsilon \sum_{j=0}^{\infty} \mathbb{E} \left[\mathbb{I}_{A_j} g(X_{rS,j+1}) \right] \\
&= \epsilon \mathbb{E}[g(X_{rS,0})] + \epsilon \sum_{j=0}^{\infty} \mathbb{P}(A_j) \mathbb{E} \left[g(X_{rS,j+1}) \right] \\
&= \epsilon \mathbb{E}[g(X_{rS,0})] + \epsilon \sum_{j=0}^{\infty} (1 - \epsilon)^j \mathbb{E} \left[g(X_{rS,j}) \right] \\
&= \sum_{j=0}^{\infty} (1 - \epsilon)^j \mathbb{E} \left[g(X_{rS,j}) \right] \\
&= \sum_{j=0}^{\infty} \mathbb{P}(M = j) \mathbb{E} \left[g(X_{rS,j}) \right] = \mathbb{E} \left[g(X_{rS,0}) \right].
\end{align*}\]

Now let \(\epsilon \to 0 \). Since \(g(x) \) is bounded and is continuous up to \(\partial A \) by Proposition 2.6, we have (by the dominated convergence theorem)

\[\lim_{\epsilon \to 0} \mathbb{E}[g(X_{rS,0})] = \mathbb{E}[\lim_{\epsilon \to 0} g(X_{rS,0})] = \mathbb{E}[g(X_{rA,0})].\]

\[\square\]

3. Reactive Exit and Entrance Distributions

Proof of Lemma 1.3. The equality (1.19) is equivalent to

\[\int_{\partial \Theta} \rho(x) \mathbf{n}(x) \cdot a(x) \nabla q(x) \, d\sigma_\Theta(x) = 0.\]

Using (1.16), it is then equivalent to

\[\langle \rho, Lq \rangle = \langle L^* \rho, q \rangle = 0,\]

which is obvious. \(\square\)

Before proving Proposition 1.5 we will need establish some properties of the entrance and exit distributions and of the harmonic measure associated with the generator \(L \). These results will also be used later in the paper. First, using integration by parts, we have

Lemma 3.1. Let \(D \subset \mathbb{R}^d \) be open with smooth boundary. Let \(\phi, \psi \in C^2(D) \cap C^1(\bar{D}) \) and bounded. Then

\[\int_D \rho(x) \left(\phi(x)L\psi(x) - \psi(x)\tilde{L}\phi(x) \right) \, dx = \int_{\partial D} \rho(x) b \cdot \mathbf{n}(x) \phi(x) \psi(x) \, d\sigma_D(x) \]

\[+ \int_{\partial D} \rho(x) \phi(x) \tilde{\mathbf{n}}(x) \cdot a \nabla \psi(x) - \psi(x) \tilde{\mathbf{n}}(x) \cdot \text{div}(a(x) \rho(x) \phi(x)) \, d\sigma_D(x),\]

where \(\mathbf{n}(x) \) is the exterior normal vector at \(x \in \partial D \).
metastability). The harmonic measure $H_D(x, dy)$ is given by the Poisson kernel corresponding to the boundary value problem

\[
Lu(x) = 0, \quad x \in D, \\
u(x) = f(x), \quad x \in \partial D.
\]

Therefore, for $f \in C(\partial D)$,

\[
u(x) = \int_{\partial D} H_D(x, dy)f(y),
\]
is the unique solution to (3.2). Similarly, the harmonic measure $\tilde{H}_D(x, dy)$ corresponds to the generator \tilde{L} (recall (1.25)). For the boundary value problem

\[
\tilde{Lu}(x) = 0, \quad x \in D, \\
\tilde{u}(x) = f(x), \quad x \in \partial D,
\]
the solution is given by

\[
\tilde{u}(x) = \int_{\partial D} \tilde{H}_D(x, dy)f(y).
\]

The harmonic measures have a probabilistic interpretation: $H_D(x, dy)$ (resp. $\tilde{H}_D(x, dy)$) gives the probability that the process associated with the generator L (resp. \tilde{L}) first strikes the boundary ∂D at dy after starting at x. In particular,

\[q(x) = H_D(x, \partial B) \quad \text{and} \quad \tilde{q}(x) = \tilde{H}_D(x, \partial A).
\]

We also define the harmonic measures for the conditioned processes as

\[
H_{\Theta}^q(x, dy) = \frac{q(y)}{q(x)}H_{\Theta}(x, dy).
\]

For $x \in \Theta$ this is a measure on ∂B. For $x \in \partial A$ where $q(x) = 0$, we may define $H_{\Theta}^q(x, dy)$ through a limit:

\[
H_{\Theta}^q(x, dy) = \lim_{x' \to x} \frac{q(y)}{q(x)}H_{\Theta}(x, dy) = \frac{\tilde{n}(x) \cdot a(x)\nabla_x H_{\Theta}(x, dy)}{\tilde{n}(x) \cdot a(x)\nabla_x q(x)}, \quad x \in \partial A.
\]

Recall that $q(y) = 1$ for $y \in \partial B$.

Recall the reactive exit and entrance measures $\eta_{\Gamma}^-, \eta_{\Gamma}^+$, η_{Γ}^- and η_{Γ}^+. They are connected by harmonic measures as follows:

Proposition 3.2.

\[
\int_{\partial A} \eta_{\Gamma}^-(dx)H_{\Theta}^q(x, dy) = \eta_{\Gamma}^+(dy),
\]

\[
\int_{\partial A} \eta_{\Gamma}^+(dx)H_{\Theta}^q(x, dy) = \eta_{\Gamma}^+(dy),
\]

\[
\int_{\partial B} \eta_{\Gamma}^+(dx)H_{\Theta}^q(x, dy) = \eta_{\Gamma}^+(dy).
\]
Proof. We prove (3.8) first. If \(f \in C(\partial B) \), let \(u_f(x) \) solve \(Lu = 0 \) in \(\Theta \) with

\[
(3.11) \quad u = \begin{cases} f(x), & x \in \partial B, \\ 0, & x \in \partial A. \end{cases}
\]

Hence \(u(x)q(x) = 0 \) on \(\partial \Theta \). By applying (3.11) with \(\phi(x) = q(x) \) and \(\psi(x) = u_f(x) \), we obtain

\[
\int_{\partial A} \rho(x)\tilde{n}(x) \cdot a(x) \nabla u_f(x) \, d\sigma_A(x) = \int_{\partial B} f(x)\tilde{n}(x) \cdot \nabla a(x) \rho(x)q(x) \, d\sigma_B(x)
\]

(3.12)

\[\int_{\partial B} f(x) \rho(x)\tilde{n}(x) \cdot a(x) \nabla q(x) \, d\sigma_B(x) = -\int_{\partial B} f(x)\eta^+_B(dx) \]

From (3.7) and (1.20), we see that for all \(x \in \partial A \),

\[
\int_{\partial A} \eta_A(dx) H^g_{\Theta}(x,dy) = -\int_{\partial A} \rho(x)\tilde{n}(x) \cdot a(x) \nabla_x H_{\Theta}(x,dy) \, d\sigma_A(x).
\]

Hence for any \(f \in C(\partial B) \), we have

\[
\int_{\partial B} \left(\int_{\partial A} \eta_A(dx) H^g_{\Theta}(x,dy) \right) f(y) = -\int_{\partial B} \int_{\partial A} \rho(x)\tilde{n}(x) \cdot a(x) \nabla_x (f(y) H_{\Theta}(x,dy)) \, d\sigma_A(x)
\]

\[= -\int_{\partial A} \rho(x)\tilde{n}(x) \cdot a(x) \nabla_x \left(\int_{\partial B} H_{\Theta}(x,dy) f(y) \right) \, d\sigma_A(x)
\]

\[= -\int_{\partial A} \rho(x)\tilde{n}(x) \cdot a(x) \nabla_x u_f(x) \, dx.
\]

Combining this with (3.12), we conclude that

\[
\int_{\partial B} \left(\int_{\partial A} \eta_A(dx) H^g_{\Theta}(x,dy) \right) f(y) = \int_{\partial B} f(x)\eta^+_B(dx) , \quad \forall f \in C(\partial B),
\]

which proves (3.8).

To prove (3.3), let \(\psi \) solve \(L\psi = 0 \) for \(x \in \tilde{B}^C \) with \(\psi = f \) on \(\partial B \). Then by (3.1) with \(\phi = 1 - \tilde{q} \), we have

\[
\int_{\partial A} \eta_A(dx)\psi(x) = \int_{\partial A} \rho(x)\tilde{n}(x) \cdot a(x) \nabla q(x)\psi(x) \, d\sigma_A(x)
\]

\[= -\int_{\partial A} \rho(x)\tilde{n}(x) \cdot a(x) \nabla (1 - \tilde{q}(x))\psi(x) \, d\sigma_A(x)
\]

\[= -\int_{\partial A} \psi(x)\tilde{n}(x) \cdot \nabla (a\rho(1 - \tilde{q})) \, d\sigma_A(x) \quad \text{(since } 1 - \tilde{q} = 0 \text{ on } \partial A)\]

\[= \int_{\partial B} f\tilde{n} \cdot \nabla (a\rho(1 - \tilde{q})) \, d\sigma_B(x) - \int_{\partial B} f\rho b \cdot \tilde{n} \, d\sigma_B(x)
\]

\[-\int_{\partial B} \rho\tilde{n} \cdot a \nabla \psi \, d\sigma_B(x).
\]

Applying (3.1) with the function \(\phi \equiv 1 \), we also find that

\[0 = -\int_{\partial B} f\tilde{n} \cdot \nabla (a\rho) \, d\sigma_B(x) + \int_{\partial B} f\rho b \cdot \tilde{n} \, d\sigma_B(x) + \int_{\partial B} \rho\tilde{n} \cdot a \nabla \psi \, d\sigma_B(x).
\]
Therefore, since \(1 - \tilde{q} = 1\) on \(\partial B\), we conclude that
\[
\int_{\partial A} \eta_A^+(dx) \psi(x) = \int_{\partial B} f\hat{n} \cdot \text{div}(a\rho(1 - \tilde{q})) d\sigma_B(x) - \int_{\partial B} f\hat{n} \cdot \text{div}(a\rho) d\sigma_B(x)
\]
\[
= \int_{\partial B} f\rho\hat{n} \cdot a\nabla(1 - \tilde{q}) d\sigma_B(x)
\]
\[
= -\int_{\partial B} f\rho\hat{n} \cdot a\nabla\tilde{q} d\sigma_B(x) = \int_{\partial A} f\eta_B^+(dx).
\]
We arrive at (3.9) noting that
\[
\psi(x) = \int_{\partial B} H_{BC}(x, dy) f(y).
\]
We omit the proof of (3.10) which is analogous to that of (3.9) by switching the role of \(A\) and \(B\).
\[\square\]

By combining (3.9) and (3.10) we immediately obtain the following:

Corollary 3.3. Let \(P_B(x, dy)\) be the probability transition kernel
\[
P_B(x, dy) = \int_{\partial A} H_{AC}(x, dz) H_{BC}(z, dy), \quad x, y \in \partial B
\]
on \(\partial B\), and let \(P_A(x, dy)\) be the probability transition kernel
\[
P_A(x, dy) = \int_{\partial B} H_{BC}(x, dz) H_{AC}(z, dy), \quad x, y \in \partial A
\]
on \(\partial A\). Then
\[
\int_{x \in \partial B} \eta_B^+(dx) P_B(x, dy) = \eta_B^+(dy).
\]
and
\[
\int_{x \in \partial A} \eta_A^+(dx) P_A(x, dy) = \eta_A^-(dy).
\]
That is, \(\eta_B^+\) and \(\eta_A^+\) are invariant under \(P_B\) and \(P_A\), respectively.

We are ready to return to the proof of Proposition 1.5.

Proof of Proposition 1.5. We first verify that \(\eta_B^+\) is a probability measure. Taking \(\psi = q\) and \(\phi = \tilde{q}\) in (3.11), we obtain using the boundary conditions of \(q\) and \(\tilde{q}\) on \(\partial A\) and \(\partial B\),
\[
\eta_A^-(\partial A) = \frac{1}{\nu} \int_{\partial A} \rho\hat{n} \cdot a\nabla q d\sigma_A = \frac{1}{\nu} \int_{\partial B} \hat{n} \cdot \text{div}(a\rho\tilde{q}) d\sigma_B
\]
\[
= \frac{1}{\nu} \int_{\partial B} \hat{n} \cdot a\rho\nabla\tilde{q} d\sigma_B = \eta_B^+(\partial B).
\]
This shows that \(\eta_B^+(\partial B) = 1\) and \(\nu\) is the correct normalization constant.

Let \(g\) be a positive continuous function on \(\partial B\). Define for \(x \notin \bar{B}\),
\[
u(x) = \mathbb{E} \left[g(X_{\tau_B}) \mid X_0 = x \right].
\]
Hence \(u\) satisfies the equation
\[
\begin{align*}
Lu(x) &= 0, \quad x \in \bar{B}^c; \\
u(x) &= g(x), \quad x \in \partial B.
\end{align*}
\]
Let $H_{B^c}(x,dy)$ be the harmonic measure (the measure of the first hitting point on B for the process starting at x). We have

\[(3.15) \quad u(x) = \int_{\partial B} H_{B^c}(x,dy)g(y).\]

By the maximum principle, $u > 0$ in B^c. By the Harnack inequality and the compactness of ∂A, we have

\[(3.16) \quad \sup_{x \in \partial A} u(x) \leq C \inf_{x \in \partial A} u(x),\]

where the constant $C > 0$ only depends on the elliptic constants of a; in particular, C is independent of g. Therefore, we obtain for any $x, x' \in \partial A, y \in \partial B$

\[(3.17) \quad 0 < C^{-1} \leq H_{B^c}(x,dy)/H_{B^c}(x',dy) \leq C < \infty.\]

If we define

\[(3.18) \quad \nu(dy) = \inf_{x \in \partial A} H_{B^c}(x,dy),\]

then $\nu(dy) > 0$ on ∂B and

\[(3.19) \quad H_{B^c}(x,dy) \geq C^{-1}\nu(dy)\]

for any $x \in \partial A$.

Consider the Markov chain given by $\{X_{t,A,n}\}_{t=0}^{\infty}$ on ∂B. Let P_B denote its transition kernel, given by

\[(3.20) \quad P_B(y,dy') = \int_{\partial A} H_{A^c}(y,dx)H_{B^c}(x,dy').\]

By (3.19), P_B satisfies Doeblin’s condition:

\[(3.21) \quad P_B(y,dy') \geq C^{-1}\int_{\partial A} H_{A^c}(y,dx)\nu(dy') = C^{-1}\nu(dy').\]

Therefore, P_B has a unique invariant measure. By Corollary 3.3, this invariant measure is given by η_B^+. The convergence in Proposition 1.5 now follows (see e.g. [MT09]).

\[\square\]

Proof of Theorem 1.7. Consider the family of processes

$X_{t,A,n} = X_{t+\tau_{A,n}^+} \setminus \tau_{B,n}^+$.

Observe that the n^{th} reactive trajectory $t \mapsto Y^n_t$ is a subset of the path $t \mapsto X_{t,A,n}^n$; specifically, $Y^n_t = X_{t+\tau_{A,n}^-,\tau_{A,n}^+}^n$ for all $t \geq 0$. The random sequence of points

$y_n = X_{t,A,n}^0 = X_{\tau_{A,n}^+}^n \in \partial A, \quad n = 0, 1, 2, \ldots$

corresponds to a Markov chain on the state space ∂A with transition kernel

$P_A(x,dy) = \mathbb{P}(y_{n+1} \in dy \mid y_n = x) = \int_{\partial B} H_{B^c}(x,dz)H_{A^c}(z,dy)$.

As shown in the proof of Proposition 1.5, this chain has a unique invariant probability distribution \(\eta_A^+ \) supported on \(\partial A \):
\[
\int_{\partial A} \eta_A^+(dx) P_A(x, dy) = \eta_A^+(dy).
\]

The sequence of processes \(t \mapsto X_{t,n}^A \) corresponds to a Markov chain on the metric space \(\mathcal{X} = C([0, \infty)) \). It can be shown that this is a Harris chain with unique invariant distribution
\[
\mathcal{P}(U) = \int_{\partial A} \eta_A^+(dx) \mathcal{P}_x(U), \quad \forall U \in \mathcal{B}
\]
where \(\mathcal{P}_x \) denotes the law on \((\mathcal{X}, \mathcal{B})\) of the process \(t \mapsto Z_{1 \wedge \tau_B} \) where
\[
dZ_t = b(Z_t) \, dt + \sqrt{2} \sigma(Z_t) \, dW_t, \quad Z_0 = x
\]
and \(\tau_B \) is the first hitting time of \(Z_t \) to \(\bar{B} \). (The uniqueness of \(\mathcal{P} \) follows from the uniqueness of \(\eta_A^+ \) as an invariant distribution for the chain defined by transition kernel \(P_A \) on \(\partial A \)). Therefore (see e.g. [MT09]), for any \(\Phi \in L^1(\mathcal{X}, \mathcal{B}, \mathcal{P}) \) the limit
\[
(3.22) \quad \lim_{N \to \infty} \frac{1}{N} \sum_{k=1}^N \Phi(X_{t,n}^A) = \mathbb{E}[\Phi(Z_{1 \wedge \tau_B}) | Z_0 \sim \eta_A^+]
\]
holds \(\mathbb{P} \)-almost surely.

Using (3.22) we will establish the following relationship between \(\eta_A^+ \) and \(\eta_A^- \).

Lemma 3.4. Let \(X_t \) satisfy the SDE (1.1) with initial distribution \(X_0 \sim \eta_A^+ \) on \(\partial A \). Then for any Borel set \(U \subset \partial A \),
\[
\mathbb{P}(X_{\tau_{A,0}}^- \in U | X_0 \sim \eta_A^+) = \eta_A^-(U) = -\frac{1}{\nu} \int_U \rho(x) \bar{n}(x) \cdot a(x) \nabla q(x) \, d\sigma_A(x).
\]

Proof of Lemma 3.4 Let \(f \in C(\mathbb{R}^d) \) be bounded and non-negative. Then by applying (3.22) to the functional \(\Phi(X) = f(X_{\tau_{S,0}}^-) \), we obtain
\[
\lim_{\epsilon \to 0} \lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} f(X_{\tau_{S,n}}^-) = \lim_{\epsilon \to 0} \mathbb{E}[f(X_{\tau_{S,0}}^-) | X_0 \sim \eta_A^-] = \mathbb{E}[f(X_{\tau_{A,0}}^-) | X_0 \sim \eta_A^-].
\]

We also have,
\[
(3.23) \quad \lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} f(X_{\tau_{S,n}}^-) = \lim_{K \to \infty} \frac{K}{N_K} \lim_{K \to \infty} \frac{1}{K} \sum_{k=0}^{K-1} f(X_{\tau_{S,k}}^-) I_{r_{B,k} < r_{A,k}} = \int_{\partial S} f(x) \zeta_S(dx),
\]
holds \(\mathbb{P} \)-almost surely, where \(N_K = |\{k \in \{0, 1, \ldots, K-1\} | r_{B,k} < r_{A,k}\}| \). Here we have used \(\zeta_S \) to denote the unique invariant distribution (identified below) for the Markov chain defined by \(X_{\tau_{S,k}}^- \) on \(\partial S \). Therefore,
\[
\mathbb{E}[f(X_{\tau_{A,0}}^-) | X_0 \sim \eta_A^-] = \lim_{\epsilon \to 0} \int_{\partial S} f(x) \zeta_S(dx).
\]

We claim that if \(f(x) \) is uniformly continuous in a neighborhood of \(\partial A \), then
\[
(3.24) \quad \lim_{\epsilon \to 0} \int_{\partial S} \zeta_S(dx) f(x) = \int_{\partial A} \eta_A^- (dx) f(x).
\]
First, let us identify the invariant distribution ζ_S. By applying Corollary 3.3 (replacing B by \bar{S}^c) we can identify ζ_S as
\[
\zeta_S(dx) (= \eta^+_S(dx)) = -\frac{1}{\nu} \rho(x) \hat{n}(x) \cdot a(x) \nabla \tilde{q}_S(x) d\sigma_S(x),
\]
where $\hat{n}(x)$ is the exterior normal at $x \in \partial S$, and \tilde{q}_S satisfies $\tilde{L} \tilde{q}_S = 0$ in S with
\[
\tilde{q}_S(x) = \begin{cases} 1, & x \in A \\ 0, & x \in \partial S. \end{cases}
\]

Note that ν is independent of ϵ. Let $\delta > \epsilon$ be small, and suppose that $f(x)$ is continuous on the closed set $\{x \in \Theta \mid 0 \leq q(x) \leq \delta\}$. (This set contains both ∂A and ∂S). A computation similar to (3.12) (replacing B by S) shows that for any such function, we have
\[
\int_{\partial S} \zeta_S(dx) f(x) = -\frac{1}{\nu} \int_{\partial A} \rho(x) \hat{n}(x) \cdot a(x) \nabla u_{f,S}(x) d\sigma_A(x),
\]
where $u_{f,S}$ satisfies $Lu = 0$ in $S \setminus \bar{A}$, and
\[
u u_{f,S}(x) = \begin{cases} f(x), & x \in \partial S \\ 0, & x \in \partial A. \end{cases}
\]

Since $f \geq 0$, we have $u > 0$ in $S \setminus \bar{A}$. Now, let us define
\[
z_{f,S}(x) = \epsilon \frac{u_{f,S}(x)}{q(x)}, \quad x \in \tilde{S} \setminus \bar{A},
\]
which satisfies $L^\delta z = 0$ in $S \setminus \bar{A}$, with $z = f$ on ∂S (recall that $q(x) = \epsilon$ for all $x \in \partial S$). By the boundary Harnack inequality (Banerjee and Chen [BC05]), $z_{f,S}(x)$ is bounded and Hölder continuous on $\tilde{S} \setminus \bar{A}$ (including ∂A). We claim that for any $x_0 \in \partial A$, we have
\[
\lim_{x \to x_0} \nabla u_{f,S}(x) = \epsilon^{-1} z_{f,S}(x_0) \nabla q(x_0).
\]

Since $\nabla u_{f,S}$, ∇q, and $z_{f,S}$ are continuous up to ∂A, this is true if and only if
\[
\lim_{x \to x_0} q(x) \nabla z_{f,S}(x) = 0.
\]

Suppose $q(x) \nabla z_{f,S}(x) \to v \neq 0$ as $x \to x_0 \in \partial A$. Then we must have
\[
\lim_{x \to x_0} \nabla u_{f,S}(x) - z_{f,S}(x) \nabla q(x) = v
\]
so that v must be a multiple of $\hat{n}(x_0)$ (since u and q vanish on ∂A). Thus, we would have
\[
\hat{n}(x_0) \cdot \nabla z_{f,S}(x) \sim (\hat{n}(x_0) \cdot v) q(x)^{-1}
\]
as $x \to x_0 \in \partial A$. If $v \neq 0$, then $(\hat{n}(x_0) \cdot v) \neq 0$, so (3.27) and the fact that $q = 0$ on ∂A would contradict the boundedness of $z_{f,S}(x)$. Therefore, (3.26) must hold.

Combining (3.25) and (3.26), we obtain
\[
\int_{\partial S} \zeta_S(dx) f(x) = -\frac{1}{\nu} \int_{\partial A} \rho(x) \hat{n}(x) \cdot a(x) \nabla q(x) z_{f,S}(x) d\sigma_A(x) = \int_{\partial A} \eta_A(dx) z_{f,S}(x).
\]
Therefore, as $\epsilon \to 0$,
\[
\lim_{\epsilon \to 0} \int_{\partial S} \zeta_S(dx) f(x) = \lim_{\epsilon \to 0} \int_{\partial A} \eta_A(dx) z_{f,S}(x) = \int_{\partial A} \eta_A(dx) f(x).
\]
This establishes (3.24) and completes the proof of Lemma 3.3.
\qed
Now we continue with the proof of Theorem 1.7. We will apply Theorem 1.2. Suppose that $F \in L^1(\mathcal{X}, \mathcal{B}, \mathbb{Q}_\eta^+)$, and define the functional

$$\Phi(X) = F(X_{(\cdot + \tau_A^{-}) \wedge \tau_B^+}).$$

Combining Theorem 1.2 and Lemma 3.4 we see that $\Phi \in L^1(\mathcal{X}, \mathcal{B}, \mathbb{P})$, since

$$\mathbb{P}(\Phi(X) > \alpha) = \mathbb{P}(F(X_{(\cdot + \tau_A^{-}) \wedge \tau_B^+}) > \alpha | X_0 \sim \eta_A^+)$$

$$= \mathbb{Q}(F(Y) > \alpha | Y_0 \sim \eta_A^-) = \mathbb{Q}(F(Y) > \alpha).$$

Therefore,

$$\frac{1}{N} \sum_{k=0}^{N-1} F(Y^k) = \frac{1}{N} \sum_{k=0}^{N-1} F(X^A_{(\cdot + \tau_A^{-}) \wedge \tau_B^+}) = \frac{1}{N} \sum_{k=0}^{N-1} \Phi(X^A_{k}).$$

By (3.22) and Theorem 1.2 we now conclude that the limit

$$\lim_{N \to \infty} \frac{1}{N} \sum_{k=0}^{N-1} F(Y^k) = \mathbb{E}[\Phi(Z_{\wedge \tau_B}) | Z_0 \sim \eta_A^+] = \tilde{\mathbb{E}}[F(Y) | Y_0 \sim \eta_A^-]$$

holds \mathbb{P}-almost surely. This completes the proof of Theorem 1.7.

4. Reaction rate, density and current of transition paths

4.1. Reaction rate.

Proof of Proposition 1.8. Denote τ_B the first hitting time of X_t to \bar{B}. Consider the mean first hitting time

$$u_B(x) = \mathbb{E}[\tau_B | X_0 = x],$$

which satisfies the equation

$$\begin{cases}
Lu_B(x) = -1, & x \in \Theta \\
u_B(x) = 0, & x \in \partial B.
\end{cases}$$

By definition of η_A^+, we have

$$\int_{\partial A} \eta_A^+(dx) u_B(x) = \frac{1}{v} \int_{\partial A} \rho(x) u_B(x) \tilde{n}(x) \cdot a(x) \nabla \bar{q}(x) \, d\sigma_A(x).$$

Observe that

$$\int_{\mathbb{R}^d} \rho(x) \bar{q}(x) \, dx = \int_{B^c} \rho(x) \bar{q}(x) \, dx$$

$$\equiv - \int_{B^c} \rho(x) \bar{q}(x) (Lu_B)(x) \, dx$$

$$= - \int_{A} \rho(x) (Lu_B)(x) \, dx - \int_{\Theta} \rho(x) \bar{q}(x) (Lu_B)(x) \, dx.$$

Using (3.11) with $D = A$, $\phi(x) = 1$ and $\psi(x) = u_B$, we obtain

$$\int_{A} \rho(Lu_B) \, dx = - \int_{\partial A} \rho^b \cdot \tilde{n} u_B \, d\sigma_A(x) - \int_{\partial A} \rho \tilde{n} \cdot a \nabla u_B \, d\sigma_A(x) + \int_{\partial A} u_B \tilde{n} \cdot \text{div}(\rho) \, d\sigma_A(x),$$

$$\int_{B^c} \rho(x) \bar{q}(x) \, dx = \int_{B^c} \rho(x) \bar{q}(x) \, dx.$$
where \(\hat{n} \) is the interior normal vector at \(\partial A \). Apply (3.1) again with \(D = \Theta, \phi = \tilde{q} \) and \(\psi = u_B \),
\[
\int_\Theta \rho \tilde{q} (L u_B) \,dx = \int_{\partial A} \rho \hat{n} \cdot \hat{n} u_B \,d\sigma_A(x) + \int_{\partial A} \rho \nabla u_B \cdot \nabla \sigma_A(x) - \int_{\partial A} u_B \hat{n} \cdot \text{div}(\rho \tilde{q}) \,d\sigma_A(x).
\]
Combining the two with (4.2), we get
\[
\int_{\partial A} \eta^+_A(dx) u_B(x) = \frac{1}{\nu} \int_{\partial A} \rho u_B \hat{n} \cdot a \nabla \sigma_A(x) = \frac{1}{\nu} \int_{\mathbb{R}^d} \rho \tilde{q} \,dx.
\]
Similarly, defining \(u_A(x) \) to be the mean first hitting time of \(X_t \) to \(\tilde{A} \) starting at \(x \), we have
\[
\int_{\partial B} \eta^+_B(dx) u_A(x) = \frac{1}{\nu} \int_{\mathbb{R}^d} \rho (1 - \tilde{q}) \,dx.
\]
Add the integrals together to obtain
\[
\int_{\partial A} \eta^+_A(dx) u_B(x) + \int_{\partial B} \eta^+_B(dx) u_A(x) = \frac{1}{\nu}.
\]

On the other hand, observe that
\[
\frac{1}{\nu_R} = \lim_{N_T \to \infty} \frac{T}{N_T} = \lim_{N_T \to \infty} \frac{1}{N_T} \sum_{n=0}^{N-1} (\tau^+_A,A_{n+1} - \tau^+_A,A_n)
\]
\[
= \lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} (\tau^+_B,n + \tau^+_A,n) + \lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} (\tau^+_A,n + \tau^+_B,n).
\]
As \(N \to \infty \), we have
\[
T_{AB} = \lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} (\tau^+_B,n - \tau^+_A,n) = \mathbb{E} [\tau_B \mid X_0 \sim \eta^+_A] = \int_{\partial A} \eta^+_A(dx) u_B(x),
\]
and similarly
\[
T_{BA} = \lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} (\tau^+_A,n + \tau^+_B,n) = \int_{\partial B} \eta^+_B(dx) u_A(x).
\]
Therefore
\[
\frac{1}{\nu} = \int_{\partial A} \eta^+_A(dx) u_B(x) + \int_{\partial B} \eta^+_B(dx) u_A(x) = \frac{1}{\nu},
\]
or equivalently \(\nu = \nu_R \).

From Theorem 1.7 it follows immediately that
\[
C_{AB} = \int_{\partial A} \eta^-_A(dx) v_B(x).
\]

Indeed, the functional \(F : Y \to \tau^Y_B \) is in \(L^1(\mathcal{X}, \mathcal{B}, Q_{\eta_A}) \) by Proposition 2.7. The function \(v_B(x) = \tilde{E} [\tau^Y_B \mid Y_0 = x] \) satisfies
\[
L^q v_B = -1, \quad x \in \Theta
\]
with \(v(x) = 0 \) for \(x \in \partial B \). Hence, the function \(w(x) = q(x) v_B(x) \) satisfies \(L w = -q \) for \(x \in \Theta \) with boundary condition \(w(x) = 0 \) for \(x \in \partial \Theta \). Moreover, for \(x_0 \in \partial A \), we have
\[
v_B(x_0) = \lim_{x \to x_0} \frac{w(x)}{q(x)} = \frac{\nabla (x_0) \cdot a(x) \nabla w(x_0)}{\nabla (x_0) \cdot a(x) \nabla q(x_0)}.
\]
Therefore,
\[
\int_{\partial A} \eta_A(x) v_B(x) = -\frac{1}{\nu} \int_{\partial A} \rho(x) \vec{n}(x) \cdot a(x) \nabla w(x) \, d\sigma_A(x).
\]
Now applying (3.1) with \(D = \Theta, \phi = \tilde{q}\) and \(\psi = w\), we have
\[
-\frac{1}{\nu} \int_{\partial A} \rho(x) \vec{n}(x) \cdot a(x) \nabla w(x) \, d\sigma_A(x) = \frac{1}{\nu} \int_{\Theta} \rho(x) \tilde{q}(x) q(x) \, dx.
\]
It remains to show that
\[
\nu = \int_{\mathbb{R}^d} \rho \nabla q \cdot a \nabla q \, dx.
\]
Using integration by parts, we have
\[
\int_{\mathbb{R}^d} \rho \nabla q \cdot a \nabla q \, dx = \int_{\Theta} \rho \nabla \left(q - \frac{1}{2} \right) \cdot a \nabla q \, dx\]
\[
\quad = -\int_{\Theta} \nabla \cdot (\rho a \nabla q) (q - \frac{1}{2}) \, dx + \int_{\partial A} \rho \left(q - \frac{1}{2} \right) \vec{n} \cdot a \nabla q \, d\sigma_A(x)
\quad + \int_{\partial B} \rho \left(q - \frac{1}{2} \right) \vec{n} \cdot a \nabla q \, d\sigma_B(x).
\]
The first term on the right hand side vanishes as
\[
\int_{\Theta} \nabla \cdot (\rho a \nabla q) (q - \frac{1}{2}) \, dx = \int_{\Theta} \left(\rho \text{tr} a \nabla^2 q + \rho b \cdot \nabla q \right) (q - \frac{1}{2}) \, dx
\quad + \frac{1}{2} \int_{\Theta} \left(\text{div}(\rho a) \cdot \nabla - \rho b \nabla \right) (q^2 - q) \, dx
\quad = \int_{\Theta} \rho (Lq) (q - \frac{1}{2}) \, dx - \frac{1}{2} \int_{\Theta} (L^* \rho)(q^2 - q) = 0,
\]
where we have used that \(q^2 - q = 0\) on \(\partial A \cup \partial B\). The conclusion then follows from Lemma 1.3.

4.2. Density of transition paths. We define the Green’s function \(G_{\Theta}\) of the operator \(L\) in \(\Theta\) with Dirichlet boundary condition on \(\partial \Theta\):
\[
\begin{align*}
LG_{\Theta}(x, y) &= -\delta_y(x), \quad x \in \Theta, \\
G_{\Theta}(x, y) &= 0, \quad x \in \partial \Theta.
\end{align*}
\]

The existence of the Green’s function is guaranteed by the ergodicity of \(X_t\) in \(\mathbb{R}^d\), which implies that \(X_t\) is transient in \(\Theta\) (see e.g. [Pin95, Section 4.2]).

Lemma 4.1. Let \(G_{\Theta}\) be the Green’s function of \(L\) in \(\Theta\) with Dirichlet boundary condition on \(\partial \Theta\). We have
\[
G^d_{\Theta}(x, y) \equiv \int_0^\infty Q_R(t, x, y) \, dt = \frac{q(y)G_{\Theta}(x, y)}{q(x)}.
\]

In particular, for \(x \in \partial A, y \in \Theta\)
\[
G^d_{\Theta}(x, y) = \frac{q(y)\vec{n}(x) \cdot a(x) \nabla_x G_{\Theta}(x, y)}{\vec{n}(x) \cdot a(x) \nabla q(x)}.
\]
Proof. Fix $y \in \Theta$. For $x \in \Theta$, (4.4) follows from [Pin95] Proposition 4.2.2. Specifically, the function $G^q_{\Theta}(x, y)$ defined by

$$G^q_{\Theta}(x, y) = \int_0^\infty Q_R(t, x, y) \, dt$$

is related to the Green’s function (4.3) by the formula

$$G^q_{\Theta}(x, y) = \frac{q(y)G_{\Theta}(x, y)}{q(x)}, \quad x, y \in \Theta.$$

Because of the regularity of the coefficients $a(x)$ and $b(x)$, Schauder-type interior and boundary estimates imply that $G(\cdot, y) \in C^{2,\alpha}(\Theta \setminus \{y\})$. Since $G(x, y) = q(x) = 0$ for $x \in \partial A$, the Hopf Lemma implies that for all $x \in \partial A$, $\nabla_x G(x, y)$ is a nonzero multiple of $\vec{n}(x)$. That is, for all $x \in \partial A$, $\nabla_x G(x, y) = r(x)\vec{n}(x)$ for some continuous $r(x) < 0$. The same is true for q. Therefore, $G^q_{\Theta}(x, y)$ is continuous in x up to the boundary $\partial \Theta$ and for $x_0 \in \partial A$,

$$\lim_{x \to x_0, x \in \Theta} G^q_{\Theta}(x, y) = \frac{q(y)\vec{n}(x_0) \cdot a(x_0)\nabla_x G_{\Theta}(x_0, y)}{\vec{n}(x_0) \cdot a(x_0)\nabla q(x_0)}.$$

It remains to show that for $x_0 \in \partial A$,

$$q(y)\vec{n}(x_0) \cdot a(x_0)\nabla_x G_{\Theta}(x_0, y) = \int_0^\infty Q_R(t, x_0, y) \, dt. \tag{4.6}$$

Let $\varphi \geq 0$ be smooth and compactly supported in Θ. By Proposition 2.6, we have

$$\lim_{x \to x_0} \mathbb{E}[\varphi(Y_t) \mid Y_0 = x] = \mathbb{E}[\varphi(Y_t) \mid Y_0 = x_0].$$

Moreover,

$$\mathbb{E}[\varphi(Y_t) \mid Y_0 = x] \leq \|\varphi\|_\infty Q(Y_t \in \Theta \mid Y_0 = x).$$

By Proposition 2.7 for any $R > 0$, there are constants $k_1, k_2 > 0$ such that $Q(Y_t \in \Theta \mid Y_0 = x) \leq k_1 e^{-k_2 t}$ for all $x \in \Theta$, $|x| < R$, $t \geq 0$. Therefore, we have $\mathbb{E}[\varphi(Y_t) \mid Y_0 = x] \leq \|\varphi\|_\infty k_1 e^{-k_2 t}$ so the dominated convergence theorem implies that

$$\lim_{x \to x_0} \int_\Theta G^q_{\Theta}(x, y)\varphi(y) \, dy = \lim_{x \to x_0} \int_0^\infty \mathbb{E}[\varphi(Y_t) \mid Y_0 = x] \, dt \tag{4.7}$$

$$= \int_0^\infty \mathbb{E}[\varphi(Y_t) \mid Y_0 = x_0] \, dt$$

$$= \int_0^\infty \left(\int_\Theta Q(t, x_0, y)\varphi(y) \, dy \right) \, dt.$$

On the other hand, we also have

$$\lim_{x \to x_0} \int_\Theta G^q_{\Theta}(x, y)\varphi(y) \, dy = \int_\Theta \frac{q(y)\vec{n}(x_0) \cdot a(x_0)\nabla_x G_{\Theta}(x_0, y)}{\vec{n}(x_0) \cdot a(x_0)\nabla q(x_0)} \varphi(y) \, dy. \tag{4.8}$$

Therefore, by combining (4.7) and (4.8) we conclude

$$\int_\Theta \frac{q(y)\vec{n}(x_0) \cdot a(x_0)\nabla_x G_{\Theta}(x_0, y)}{\vec{n}(x_0) \cdot a(x_0)\nabla q(x_0)} \varphi(y) \, dy = \int_0^\infty \int_\Theta Q(t, x_0, y)\varphi(y) \, dy \, dt$$

$$= \int_\Theta \left(\int_0^\infty Q(t, x_0, y) \, dt \right) \varphi(y) \, dy.$$

Since φ is arbitrary, this implies (4.6). \qed
Proof of Proposition 4.4. Using Lemma 4.1 and (4.15),
\begin{equation}
\rho_R(z) = \nu_R \int_{\partial A} \eta_A^{-1}(dx) G^0_{\Theta}(x, z).
\end{equation}
Recall the explicit formula of η_A^{-1} in terms of q (1.20), we obtain for $z \in \Theta$
\begin{equation}
\rho_R(z) = -\int_{\partial A} \rho(x) \frac{q(y) \hat{n}(x) \cdot a \nabla x G_\Theta(x, z)}{\hat{n}(x) \cdot a \nabla q(x)} \hat{n}(x) \cdot a \nabla q(x) d\sigma_A(x)
= -q(y) \int_{\partial A} \rho(x) \hat{n}(x) \cdot a \nabla x G_\Theta(x, z) d\sigma_A(x).
\end{equation}
Apply (3.1) by taking $\psi(x) = G_\Theta(x, y)$ and $\phi(x) = \tilde{q}(x)$, we conclude that
\begin{equation}
\rho_R(y) = -q(y) \int_{\partial \Theta} \rho(x) \phi(x) \hat{n}(x) \cdot a \nabla x \psi(x) d\sigma_\Theta(x)
= -q(y) \int_{\partial \Theta} \rho(x) \phi(x) L \psi(x)
= \rho(y) q(y) \tilde{q}(y).
\end{equation}
Here to get the second equality, we have used that $\tilde{L} \tilde{q} = 0$ in Θ and $\psi(x) = 0$ on $\partial \Theta$. \qed

4.3. Current of transition paths.

Proof of Proposition 4.10. It follows from a direct calculation from the definition of J_R as (1.38), noticing that $q = 0, \tilde{q} = 1$ on ∂A, and $q = 1, \tilde{q} = 0$ on ∂B. \qed

Proof of Corollary 4.11. By Proposition 4.10 we have
\begin{equation}
\nu_R = \int_{\partial A} \hat{n}(x) \cdot J_R(x) d\sigma_A(x).
\end{equation}
Hence, it suffices to show that
\begin{equation}
\int_{\partial A} \hat{n}(x) \cdot J_R(x) d\sigma_A(x) + \int_{\partial S} \hat{n}(x) \cdot J_R(x) d\sigma_S(x) = 0,
\end{equation}
which follows from the fact that J_R is divergence free in Θ (see (1.37)). \qed

Proof of Proposition 4.12. Using Proposition 4.10 for the left hand side of (4.42), we obtain
\begin{equation}
\int_{\partial B} f(x) \eta_B^+(dx) - \int_{\partial A} f(x) \eta_A^-(dx) = \frac{1}{\nu_R} \int_{\partial B} f \hat{n} \cdot J_R d\sigma_B + \frac{1}{\nu_R} \int_{\partial A} f \hat{n} \cdot J_R d\sigma_A,
\end{equation}
where \hat{n} is the unit normal exterior to Θ. Equation (4.42) then follows from the divergence theorem.

Now fix any $g \in C^1(\partial B)$, we extend g to $\tilde{\Theta}$ using the flow (1.40): for any $x \in \Theta$, we define
\begin{equation}
g(x) = g(Z^x_{t_B}), \quad \text{with} \quad Z^x_0 = x.
\end{equation}
In particular, for $x \in \partial A$, we have $g(x) = g(\Phi_{J_R}(x))$, in other words,
\begin{equation}
g_{|\partial A} = \Phi_{J_R}^*(g_{|\partial B}).
\end{equation}
By the construction (4.10), for any $x \in \Theta$, $J_R \cdot \nabla g = 0$. Combining with the first part of the Proposition and (4.11), we obtain
\begin{equation}
\int_{\partial B} g(x) \eta_B^+(dx) = \int_{\partial A} \Phi_{J_R}^* g \eta_A^-(dx).
\end{equation}
Therefore, $\Phi_{J_R,\ast}(\eta^-_A) = \eta^+_B$. □

REFERENCES

[ABBP02] S. R. Athreya, M. T. Barlow, R. F. Bass, and E. A. Perkins, Degenerate stochastic differential equations and super-Markov chains, Probab. Theory Relat. Fields 123 (2002), 484–520.

[Bau84] P. Bauman, Positive solutions of elliptic equations in nondivergence form and their adjoints, Ark. Mat. 22 (1984), 153–173.

[BCDG02] P. G. Bolhuis, D. Chandler, C. Dellago, and P. L. Geissler, Transition path sampling: throwing ropes over rough mountain passes, in the dark, Annu. Rev. Phys. Chem. 53 (2002), 291–318.

[BEGK04] A. Bovier, M. Eckhoff, V. Gayrard, and M. Klein, Metastability in reversible diffusion processes I. Sharp asymptotics for capacities and exit times, J. Eur. Math. Soc. 6 (2004), 399–424.

[BGK05] A. Bovier, V. Gayrard, and M. Klein, Metastability in reversible diffusion processes II. Precise asymptotics for small eigenvalues, J. Eur. Math. Soc. 7 (2005), 69–99.

[CGLM12] F. Cerou, A. Guyader, T. Lelievre, and F. Malrieu, On the length of one-dimensional reactive paths, 2012. preprint arXiv:1206.0949.

[CS05] L. Caffarelli and S. Salsa, Geometric approach to free boundary problems, American Mathematical Society, 2005.

[Day92] M. V. Day, Conditional exits for small noise diffusions with characteristic boundary, Ann. Probab. 20 (1992), 1385–1419.

(DBG02) C. Dellago, P. G. Bolhuis, and P. L. Geissler, Transition path sampling, Adv. Chem. Phys. 123 (2002).

[DeB04] D. DeBlassie, Uniqueness for diffusions degenerating at the boundary of a smooth bounded set, Ann. Probab. 32 (2004), 3167–3190.

[EVE06] W. E and E. Vanden-Eijnden, Toward a theory of transition paths, J. Stat. Phys. 123 (2006), 503–523.

[EVE10] , Transition path theory and path-finding algorithms for the study of rare events, Ann. Rev. Phys. Chem. 61 (2010), 391–420.

[FW84] M.I. Freidlin and A.D. Wentzell, Random perturbations of dynamical systems, Springer, 1984.

[HP86] U. G. Haussmann and ´E. Pardoux, Time reversal of diffusions, Ann. Probab. 14 (1986), 1188–1205.

[HSV07] M. Hairer, A. M. Stuart, and J. Voss, Analysis of SPDEs arising in path sampling part II: The nonlinear case, Ann. Appl. Probab. 17 (2007), 1657–1706.

[HSVW05] M. Hairer, A. M. Stuart, J. Voss, and P. Wiberg, Analysis of SPDEs arising in path sampling part I: The Gaussian case, Comm. Math. Sci. 3 (2005), 587–603.

[Hum04] G. Hummer, From transition paths to transitions state and rate coefficients, J. Chem. Phys. 120 (2004), 516–523.

[KS91] I. Karatzas and S. Shreve, Brownian motion and stochastic calculus, 2nd ed., Springer, 1991.

[MSVE06] P. Metzner, C. Schütte, and E. Vanden-Eijnden, Illustration of transition path theory on a collection of simple examples, J. Chem. Phys. (2006), 084110.

[MT09] S. P. Meyn and R. L. Tweedie, Markov chains and stochastic stability, 2nd ed., Cambridge University Press, 2009.

[Pin95] R. G. Pinsky, Positive harmonic functions and diffusion, Cambridge Studies in Advanced Mathematics, vol. 45, Cambridge University Press, 1995.

[RVE05] M. G. Reznikoff and E. Vanden-Eijnden, Invariant measures of stochastic partial differential equations and conditioned diffusions, C. R. Acad. Sci. Paris, Ser. I 340 (2005), 305–308.

[RY99] D. Revuz and M. Yor, Continuous martingales and Brownian motion, Springer, 1999.

[SVW04] A. M. Stuart, J. Voss, and P. Wiberg, Conditional path sampling of SDEs and the Langevin MCMC method, Comm. Math. Sci. 2 (2004), 685–697.

[Szn98] A.-S. Sznitman, Brownian motion, obstacles and random media, Springer, 1998.

[VE13] E. Vanden-Eijnden, Transition path theory, 2013. preprint.

[Ver97] A. Yu. Veretennikov, On polynomial mixing bounds for stochastic differential equations, Stochastic Process. Appl. 70 (1997), 115–127.
Department of Mathematics and Department of Physics, Duke University, Box 90320, Durham, NC 27708, USA

E-mail address: jianfeng@math.duke.edu

Mathematics Department, Duke University, Box 90320, Durham, NC 27708, USA

E-mail address: nolen@math.duke.edu