FEIGIN-ODESSKII BRACKETS, SYZYGIES, AND CREMONA TRANSFORMATIONS

ALEXANDER POLISHCHUK

Abstract. We identify Feigin-Odesskii brackets \(q_{n,1}(C) \), associated with a normal elliptic curve of degree \(n \), \(C \subset \mathbb{P}^{n-1} \), with the skew-symmetric \(n \times n \) matrix of quadratic forms introduced by Fisher in [7] in connection with some minimal free resolutions related to the secant varieties of \(C \). On the other hand, we show that for odd \(n \), the generators of the ideal of the secant variety of \(C \) of codimension 3 give a Cremona transformation of \(\mathbb{P}^{n-1} \), generalizing the quadro-cubic Cremona transformation of \(\mathbb{P}^4 \). We identify this transformation with the one considered in [13] and find explicit formulas for the inverse transformation.

1. Introduction

Let \(C \subset \mathbb{P}^{n-1} = \mathbb{P}(V) \) be an elliptic normal curve of degree \(n \geq 3 \) over a field \(k \) of characteristic 0. With \(C \) one can associate canonically (up to rescaling) a Poisson bracket \(q_{n,1}(C) \) on the ambient projective space \(\mathbb{P}(V) \). Namely, if \(L = \mathcal{O}(1)|_C \), a line bundle of degree \(n \) on \(C \), then we can identify \(\mathbb{P}(V) \) with \(\mathbb{P}H^0(C, L)^* \cong \mathbb{P}\text{Ext}^1(L, \mathcal{O}) \) (where we used Serre duality on \(C \)). Now there is a natural Poisson bracket on the projective space \(\mathbb{P}\text{Ext}^1(L, \mathcal{O}) \) described in [5] and [14].

The Poisson brackets \(q_{n,1}(C) \) correspond to quadratic brackets on \(V \) arising as semi-classical limit of Feigin-Odesskii elliptic algebras (see [4]). The Poisson geometry of \(q_{n,1}(C) \) has been well studied (see e.g., [5], [13], [14], [10], [12], [15], [8], [9]). In particular, it is known that for odd \(n \) the stratification of \(\mathbb{P}^{n-1} \) by the rank of this Poisson bracket is related to the secant varieties of \(C \).

The first goal of the present work is to establish a direct relation of \(q_{n,1}(C) \) with a certain skew-symmetric matrix of quadratic forms \(\Omega \) related to the secant varieties of \(C \), introduced and studied by Fisher in [7].

Assume first that \(n \) is odd and let \(r = (n-1)/2 \). Then as is well known the secant variety \(\text{Sec}^r C \) is a hypersurface of degree \(n \) in \(\mathbb{P}^{n-1} \). Let \(F(x_1, \ldots, x_n) = 0 \) be its equation (of degree \(n \)). Then Fisher showed in [7] that the module of syzygies between the partial

Supported in part by the NSF grant DMS-2001224, and within the framework of the HSE University Basic Research Program and by the Russian Academic Excellence Project ‘5-100’.
derivatives \((\frac{\partial F}{\partial x_1}, \ldots, \frac{\partial F}{\partial x_n}) \) is generated by the relations

\[
\sum_i \frac{\partial F}{\partial x_i} \Omega_{ij} = 0,
\]

for a unique (up to rescaling) skew-symmetric \(n \times n \) matrix of quadratic forms \(\Omega \) (see Sec. 2.3 for details).

In the case when \(n \) is even, we set \(r = (n - 2)/2 \). Then the secant variety \(\text{Sec}^r C \) is a complete intersection of codimension 2 given by \(F_1 = F_2 = 0 \), where \(\text{deg}(F_1) = \text{deg}(F_2) = r + 1 \). In this case the \(n \times n \) skew-symmetric matrix of quadratic forms \(\Omega \) is characterized by the condition that the relations

\[
\sum_i \frac{\partial F_a}{\partial x_i} \Omega_{ij} = 0,
\]

where \(a = 1, 2 \),

generate the module of syzygies between the columns of the \(2 \times n \) matrix \((\frac{\partial F_a}{\partial x_j}) \).

Theorem A. (i) The formula \(\{x_i, x_j\} = \Omega_{ij} \) defines a Poisson bracket on \(V \) such that the induced Poisson bracket on \(\mathbb{P}(V) \) is \(q_{n,1}(C) \) (up to rescaling).

(ii) If \(n \) is odd then \(\{x_i, F\} = 0 \) for every \(i \). If \(n \) is even then \(\{x_i, F_1\} = \{x_i, F_2\} = 0 \) for every \(i \).

Note that part (ii) is stated in [11, Sec. 5] (see also [10]).

Assume now that \(n \) is odd and \(n \geq 5 \). Our second result gives an explicit formula for the Poisson birational transformation from \((\mathbb{P}^{n-1}, q_{n,1}(C)) \) to \((\mathbb{P}^{n-1}, q_{n,(n-1)/2}(C)) \) constructed in [14]. Recall that for any relatively prime \((n, k) \), the Feigin-Odesskii bracket \(q_{n,k}(C) \) is a natural Poisson bracket on \(\mathbb{P}^{n-1} = \mathbb{P} \text{Ext}^1(V, \mathcal{O}) \), where \(V \) is a stable bundle of rank \(k \) and degree \(n \) on \(C \) (see [5], [14]).

Let us start with a line bundle \(L = \mathcal{O}(1)|_C \) of degree \(n \), and let \(V_0 \) be the unique stable bundle of rank 2 with \(\det(V_0) = L \) (it exists since \(n \) is odd). In [14] we constructed a natural birational map (a Cremona transformation)

\[
\phi : \mathbb{P}^{n-1} = \mathbb{P} \text{Ext}^1(\mathcal{O}, L) \dashrightarrow \mathbb{P} H^0(C, V_0) = \mathbb{P}^{n-1}
\]

by observing that for a generic extension

\[
0 \to \mathcal{O} \to E \to L \to 0
\]

the bundle \(E \) is stable, so there is an isomorphism \(E \simeq V_0 \), unique up to rescaling. Hence, from the above extension we get a nonzero section of \(V_0 \), well defined up to rescaling. Furthermore, we showed in [14] that \(\phi \) is compatible with Poisson structures, where \(\mathbb{P} H^0(C, V_0) \) is equipped with a natural Poisson bracket \(q \), such that there exists a Poisson isomorphism

\[
(\mathbb{P} H^0(C, V_0), q) \simeq (\mathbb{P} \text{Ext}^1(V, \mathcal{O}), q_{n,r}(C)),
\]

where \(V \) is a stable bundle of degree \(n \) and rank \(r = (n - 1)/2 \).

Now let us look at the variety \(\text{Sec}^{r-1} C \) of codimension 3 in \(\mathbb{P}^{n-1} \). It is known that its homogeneous ideal is generated by \(n \) forms \((p_1, \ldots, p_n) \) of degree \(r \).
Theorem B. The above birational map \(\phi : \mathbb{P}^{n-1} \to \mathbb{P}^{n-1} \) is given by
\[
(x_1 : \ldots : x_n) \mapsto (p_1(x) : \ldots : p_n(x)).
\]
The inverse is given by
\[
(y_1 : \ldots : y_n) \mapsto (f_1(y) : \ldots : f_n(y)),
\]
where \(f_i \) are certain homogeneous polynomials of degree \(n - 2 \).

For example, when \(n = 5 \), we have \(r = 2 \) and \((p_1, \ldots, p_5) \) are the quadrics generating the ideal of \(C \) in \(\mathbb{P}^4 \). The corresponding Cremona transformation of \(\mathbb{P}^4 \) is well known classically as quadro-cubic Cremona transformation (see [17]). The polynomials \((p_1, \ldots, p_n) \) can be computed as (signed) submaximal pfaffians of a skew-symmetric \(n \times n \) matrix of linear forms \(\Phi \), called the Klein matrix in [6]. For a Heisenberg invariant curve \(C \), there is a simple formula for \(\Phi \) (see [6, Prop. 3.7]). We also give a recipe for computing the polynomials \(f_i \) in terms of \(\Phi \).

Corollary C. For \(r \geq 2 \), any hypersurface of degree \(r \) in \(\mathbb{P}^{2r} \) containing \(\text{Sec}^{r-1} C \), where \(C \subset \mathbb{P}^{2r} \) is an elliptic normal curve, is rational.

Indeed, the corresponding birational map \(\phi \) induces a birational map from such a hypersurface to a hyperplane in \(\mathbb{P}^{2r} \).

Acknowledgment. This paper was inspired by a discussion with Volodya Rubtsov in 2017 and by his paper [16], where the Feigin-Odesskii brackets \(q_{5,1}(C) \) and the corresponding quadro-cubic Cremona transformations of \(\mathbb{P}^4 \) are studied. I am very grateful to Volodya for sharing his insights on Feigin-Odesskii brackets and for drawing my attention to the works [6], [7] on secant varieties of normal elliptic curves.

2. Preliminaries

2.1. Quadratic Poisson brackets. Let \(V \) be a vector space of dimension \(n \). By a quadratic Poisson bracket on \(V \) we mean a Poisson structure on the algebra \(S(V^*) \) compatible with the grading, i.e., such that the Poisson brackets of linear forms are given by homogeneous quadratic forms. Equivalently, the corresponding bivector on \(V \) has to be homogeneous (i.e., preserved by the natural \(\mathbb{G}_m \)-action). It is well known that every such bracket induces a Poisson bracket on the projective space \(\mathbb{P}(V) \) and that every Poisson bracket on \(\mathbb{P}(V) \) comes from a quadratic Poisson bracket on \(V \), not necessarily unique (see [1], [13]).

Different liftings of a bivector on \(\mathbb{P}(V) \) to a homogeneous bivector on \(V \) differ by bivectors on \(V \) of the form \(\langle x, y \rangle = A(x)y - A(y)x \), where \(x, y \in V^* \), for some linear operator \(A : V^* \to V^* \). This easily implies that different liftings of a Poisson bracket \(\Pi \) on \(\mathbb{P}(V) \) to quadratic Poisson brackets on \(V \) are numbered by Poisson vector fields for \(\Pi \) on \(\mathbb{P}(V) \), i.e., global vector fields on \(\mathbb{P}(V) \) preserving \(\Pi \).

The following simple criterion is helpful in identifying a lifting of a Poisson bracket on \(\mathbb{P}(V) \) to a quadratic Poisson bracket on \(V \).

Lemma 2.1.1. Let \(\{ \cdot, \cdot \} \) be a homogeneous bivector on \(V \), inducing a Poisson bracket on \(\mathbb{P}(V) \). Assume that there exists a nonzero homogeneous polynomial \(F \in S^d V^* \) of positive
degree \(d\) such that \(\{x, F\} = 0\) for every \(x \in V^*\). Then \(\{\cdot, \cdot\}\) is a Poisson bracket, i.e., it satisfies the Jacobi identity.

Proof. Set \(J(x, y, z) := \{(x, y), z\} + \{(y, z), x\} + \{(z, x), y\}\). First, let us check that \(J(x, y, z) = 0\) for all \(x, y, z \in S^d V^*\). Indeed, \(x/F, y/F\) and \(z/F\) are local functions on \(\mathbb{P}(V)\), so we know that

\[
J\left(\frac{x}{F}, \frac{y}{F}, \frac{z}{F}\right) = 0.
\]

Furthermore, since \(\{x, F\} = \{y, F\} = \{z, F\} = 0\), we get \(\frac{x}{F}, \frac{y}{F}, \frac{z}{F}\), etc., hence,

\[
J\left(\frac{x}{F}, \frac{y}{F}, \frac{z}{F}\right) = \frac{J(x, y, z)}{F^3}.
\]

Thus, we get that \(J(x, y, z) = 0\) for all \(x, y, z \in S^d V^*\).

Hence, if \(x, y, z\) are in \(V^*\) then we have \(J(x^d, x^{d-1}y, x^{d-1}z) = 0\). Now the vanishing of \(J(x, y, z)\) follows from the formal identity

\[
J(x^d, x^{d-1}y, x^{d-1}z) = dx^{3d-3}J(x, y, z).
\]

\[\square\]

2.2. **Formula for Feigin-Odesskii bracket.** Let us recall the formula for the Poisson bivector \(\Pi = q_{n,1}(C)\) on \(\mathbb{P}\text{Ext}^1(L, \mathcal{O}) \simeq \mathbb{P}H^0(C, L)^*\) in terms of Szegö kernel, established in [9] (equivalent formulas are also stated in [10] and in [12]).

Let \(p \in C\) be a point, and let us fix a trivialization of \(\omega_C\). The Szegö kernel is the unique section \(S \in H^0(C \times C, \mathcal{O}(p) \boxtimes \mathcal{O}(p)(\Delta))\) such that \(\text{Res}_\Delta(S) = 1\) and \(S(y, x) = -S(x, y)\). If \(C\) is identified with a plane cubic \(y^2 = P(x)\) and the trivializing global differential is \(dx/2y\), then one has

\[
S = \frac{y_1 + y_2}{x_2 - x_1}
\]

(see [9] Sec. 5.1.2]).

To give a Poisson bivector \(\Pi\) we need to specify for each \(\phi \in H^0(L)^*\) a skew-symmetric form \(\Pi_\phi\) on the cotangent space

\[
T^*_\phi \mathbb{P}H^0(L)^* \simeq \ker(\phi) \subset H^0(L).
\]

This form is given by the formula (see [9] Lem. 2.1, Prop. 5.8])

\[
\Pi_\phi(s_1 \wedge s_2) = \pm \langle \tilde{\phi} \otimes \tilde{\phi}, S \cdot (s_1 \boxtimes s_2 - s_2 \boxtimes s_1) \rangle,
\]

(2.1)

for \(s_1, s_2 \in \ker(\phi)\). Here we consider \(H^0(L)\) as a subspace in \(H^0(L(p))\) and denote by \(\tilde{\phi}\) any extension of \(\phi\) to a functional on \(H^0(L(p))\). Further, we view \(s_1 \boxtimes s_2 - s_2 \boxtimes s_1\) as a section of \(L \boxtimes L\) on \(C \times C\), vanishing on the diagonal. Hence, the product \(S \cdot (s_1 \boxtimes s_2 - s_2 \boxtimes s_1)\) is a global section of \(L(p) \boxtimes L(p)\).

The fact that the right-hand side of (2.1) does not depend on a choice of \(\tilde{\phi}\) follows from the existence of a linear operator \(D : H^0(L) \rightarrow H^0(L(p))\) such that for any \(s_1, s_2 \in H^0(L)\) one has

\[
S \cdot (s_1 \boxtimes s_2 - s_2 \boxtimes s_1) + D\{s_1, s_2\} \in H^0(L) \otimes H^0(L),
\]

where
\[D\{s_1, s_2\} := s_1 \otimes D(s_2) + D(s_2) \otimes s_1 - s_2 \otimes D(s_1) - D(s_1) \otimes s_2 \]

(so \(D \) cancels the poles at \(p \)). The existence of such \(D \) was first observed in [10] (see also [12] and [9] Sec. 5.3). For \(s_1, s_2 \in \ker(\phi) \) this allows to rewrite the formula (2.1) as

\[\Pi_\phi(s_1 \wedge s_2) = \pm \langle \phi \otimes \phi, S \cdot (s_1 \otimes s_2 - s_2 \otimes s_1 + D\{s_1, s_2\}) \rangle. \]

(2.2)

2.3. Secant varieties and syzygies. Let us recall some results of Fisher in [6] and [7] on secant varieties of a normal elliptic curve \(C \subset \mathbb{P}^{n-1} \).

First, assume that \(n \) is odd, and set \(r = (n - 1)/2 \). The variety \(\text{Sec}^r C \) is a hypersurface in \(\mathbb{P}^{n-1} \) given by \(F = 0 \), where \(\deg(F) = n \). The first result, [7, Thm. 1.1(i)] gives a form of the minimal free resolution of the ideal \((\partial F, \ldots, \partial F) \). Namely, there is a unique skew-symmetric \(n \times n \) matrix \(\Omega \) of quadratic forms, such that the following complex is exact, where \(R = k[x_1, \ldots, x_n] \):

\[0 \to R(-2n) \xrightarrow{\nabla^T} R(-n - 1)^n \xrightarrow{\Omega} R(-n + 1)^n \xrightarrow{\nabla} R, \]

(2.3)

where \(\nabla = (\frac{\partial F}{\partial x_1}, \ldots, \frac{\partial F}{\partial x_n}) \). Note that the fact that this is a complex corresponds to the identity (1.1).

In the case when \(n \) is even, let us set \(r = (n - 2)/2 \). Then the variety \(\text{Sec}^r C \) is a complete intersection of codimension 2 given by \(F_1 = F_2 = 0 \), where \(\deg(F_i) = r + 1 \) (see [2, Sec. 8], [7, Thm. 9.1]). Now setting

\[\nabla = \left(\begin{array}{ccc} \frac{\partial F_1}{\partial x_1} & \cdots & \frac{\partial F_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_2}{\partial x_1} & \cdots & \frac{\partial F_2}{\partial x_n} \end{array} \right), \]

the statement of [7, Thm. 1.1(ii)] is that there is a unique skew-symmetric \(n \times n \) matrix \(\Omega \) of quadratic forms, such that the following complex is exact:

\[0 \to R(-n)^2 \xrightarrow{\nabla^T} R(-r - 1)^n \xrightarrow{\Omega} R(-r)^n \xrightarrow{\nabla} R^2. \]

(2.4)

Again, the fact that this is a complex corresponds to the identities (1.2).

Next, in the case when \(n \) is odd, we will use the following description of the minimal free resolution of the ideal of \(\text{Sec}^{r-1} C \) in \(R[x_1, \ldots, x_n] \), where \(r = (n - 1)/2 \) (see [6, Sec. 4]). This ideal is generated by \(n \) linearly independent forms of degree \(r \), \((p_1, \ldots, p_n) \), and there exists a unique skew-symmetric \(n \times n \) matrix of linear forms \(\Phi \) such that the following complex is exact:

\[0 \to R(-n) \xrightarrow{\nabla^T} R(-r - 1)^n \xrightarrow{\Phi} R(-r)^n \xrightarrow{\Phi^T} R, \]

(2.5)

where \(p = (p_1, \ldots, p_n) \).

Furthermore, we will use the following description of \(\Phi \), which is called Klein matrix in [6]. Let \(V_0 \) be the unique stable bundle on \(C \) with \(\det(V_0) \simeq L = \mathcal{O}(1)|_C \). Then identifying the space of linear forms on \(\mathbb{P}^{n-1} \) with \(H^0(C, L) \), the skew-symmetric matrix \(\Phi \) corresponds to the natural \(H^0(C, L) \)-valued skew-symmetric pairing on \(H^0(C, V_0) \),

\[\Phi : \bigwedge^2 H^0(C, V_0) \to H^0(C, \det(V_0)) \simeq H^0(C, L). \]

(2.6)
Remark 2.3.1. Both complexes (2.3) and (2.5) for odd \(n \) are examples of Buchsbaum-Eisenbud pfaffian presentations of the corresponding Gorenstein ideals of height 3 (see [3]). In particular, the generators of the ideal \((\frac{\partial F}{\partial x_i}) \) in the former case and \(p_i \) in the latter case, are equal to the (signed) submaximal pfaffians of the corresponding skew-symmetric matrix (\(\Omega \) in the former case and \(\Phi \) in the latter case).

Remark 2.3.2. The fact that the submaximal pfaffians \((p_i) \) vanish on \(\text{Sec}^{r-1} C \subset \mathbb{P}H^0(C,L)^* \) means that for \(\xi \in \text{Sec}^{r-1} C \) the skew-symmetric form \(\Phi_\xi \) on \(H^0(C,V_0) \) has rank \(\leq n-3 \). This can be explained geometrically as follows. A point \(\xi \in \text{Sec}^{r-1} C \) corresponds to a functional that factors as \(H^0(C,L) \to H^0(C,L|_D) \to k \), where \(D \) is an effective divisor of degree \(r-1 \) on \(C \). But then the 3-dimensional subspace \(H^0(C,V_0(-D)) \subset H^0(C,V_0) \) is in the kernel of \(\Phi_\xi \).

2.4. Skew-symmetric matrices of linear forms. Let \(A \) and \(B \) be a pair of \(n \)-dimensional vector spaces, and let \(\Phi \in \wedge^2 A^* \otimes B \). Typically one views \(\Phi \) as a skew-symmetric matrix of linear forms on \(B^* \). However, \(\Phi \) also gives a linear map \(\nu_\Phi : A \to B \otimes A^* \), so we can view it as an \(n \times n \) matrix of linear forms on \(A \).

More precisely, consider the polynomial algebra \(R = S^*(A^*) \). Then we can view \(\nu_\Phi \) as an \(R \)-valued linear map \(A \to B \otimes R \), and consider the corresponding matrix of minors,

\[
\bigwedge^{n-1}(\nu_\Phi) : \bigwedge^{n-1} A \to \bigwedge^{n-1} B \otimes R
\]

with entries in \(S^{n-1}(A^*) \subset R \).

Lemma 2.4.1. (i) Consider the composed map

\[
\sigma(\Phi) : A^* \xrightarrow{\sim} \det(A)^* \otimes \bigwedge^{n-1}(A) \xrightarrow{\text{id} \otimes \bigwedge^{n-1}(\nu_\Phi)} \det(A)^* \otimes \bigwedge^{n-1}(B) \otimes R \\
\simeq \det(A)^* \otimes \det(B) \otimes B^* \otimes R.
\]

Then for every \(\xi \in A^* \), the element \(\sigma(\Phi)(\xi) \) (of the target \(R \)-module) is divisible by \(\xi \).

(ii) There exists a unique element

\[
\sigma_{n-2}(\Phi) \in \det(A)^* \otimes \det(B) \otimes B^* \otimes S^{n-2}(A^*),
\]

such that

\[
\sigma(\Phi)(\xi) = \sigma_{n-2}(\Phi) \cdot \xi
\]

(where the product is in \(R \)).

(iii) Viewing \(\sigma_{n-2}(\Phi) \) as a \(\det(A)^* \otimes \det(B) \otimes R \)-valued linear form on \(B \), we have

\[
\sigma_{n-2}(\Phi) \circ \nu_\Phi = 0
\]

as a \(\det(A)^* \otimes \det(B) \otimes R \)-valued linear form on \(A \).

(iv) Assume that \(\Phi(a,?) : A \to B \) has rank \(\geq n-1 \) for some \(a \in A \). Then \(\sigma_{n-2}(\Phi)(a) \neq 0 \).

Proof. (i) Let us think of \(\nu_\Phi \) as a \(\text{Hom}(A,B) \)-valued function on \(A \). Then \(\sigma(\Phi)(\xi) \) is given by the \((n-1) \times (n-1)\)-minors of the corresponding \(\text{Hom}(\langle \xi \rangle^+,B) \)-valued function on \(A \),

\[
\nu_{\Phi,\xi} : \langle \xi \rangle^+ \to B \otimes A^*,
\]
where we use the restriction from A to the hyperplane $\langle \xi \rangle^\perp \subset A$. The condition that all $n \times n$-minors of $\nu_{\Phi, \xi}$ are divisible by ξ is equivalent to the condition that for every $a \in \langle \xi \rangle^\perp$, the induced linear map

$$\nu_{\Phi, \xi, a} : \langle \xi \rangle^\perp \to B$$

has rank $< n - 1$. It is enough to check that for $a \neq 0$, the map $\nu_{\Phi, \xi, a}$ has nonzero kernel. But this follows from the identity

$$\nu_{\Phi, \xi, a}(a) = 0$$

which holds by the skew-symmetry of Φ.

(ii) Note that the target of $\sigma(\Phi)$ is a free R-module. Thus, it is enough to prove that if a linear map $\sigma : A^* \to R = S(A^*)$ has the property that $\sigma(\xi)$ is divisible by ξ for every $\xi \in A^*$, then $\sigma(\xi) = f \cdot \xi$ for a fixed polynomial $f \in R$.

Indeed, assume that for every $\xi \neq 0$, we have

$$\sigma(\xi) = f_\xi \cdot \xi$$

for some $f_\xi \in R$. We need to check that $f_{\xi_1} = f_{\xi_2}$ for a linearly independent pair $\xi_1, \xi_2 \in A^*$. For any $c \in k^*$ we have

$$\sigma(\xi_1 + c\xi_2) = f_{\xi_1} \xi_1 + f_{\xi_2} \xi_2 = f_c(\xi_1 + c\xi_2),$$

where $f_c := f_{\xi_1 + c\xi_2}$. This implies that $(f_c - f_{\xi_1})\xi_1$ is divisible by ξ_2, so we can write

$$f_c = f_{\xi_1} + f\xi_2.$$

From this we get

$$f_{\xi_2} - f_{\xi_1} = (c^{-1}x_1 + x_2) \cdot f,$$

so $f_{\xi_2} - f_{\xi_1}$ is divisible by $c^{-1}x_1 + x_2$. Since k is infinite, this implies that $f_{\xi_2} - f_{\xi_1} = 0$.

(iii) We use again the fact that for a nonzero $\xi \in A^*$, $\sigma(\Phi)(\xi)$, which is an R-valued functional on B, is given by $\wedge^{n-1}(\Phi|_{\langle \xi \rangle^\perp})$, where we consider the restriction

$$\Phi|_{\langle \xi \rangle^\perp} : \langle \xi \rangle^\perp \to B \otimes R,$$

where $\dim(\langle \xi \rangle^\perp) = n - 1$. It follows that the composition

$$\langle \xi \rangle^\perp \xrightarrow{\Phi} B \otimes R \xrightarrow{\sigma(\Phi)(\xi)} \det(A)^* \otimes \det(B) \otimes R$$

is zero. By part (ii) this implies that the composition

$$\sigma_{n-2}(\Phi) \circ \Phi : A \to \det(A)^* \otimes \det(B) \otimes R$$

has zero restriction to $\langle \xi \rangle^\perp$ for every $\xi \neq 0$. Hence, this composition is zero.

(iv) The assumption implies that $\sigma(\Phi)(a) \neq 0$. Now the assertion follows from (ii). \square
3. Proofs

3.1. Proof of Theorem A. Working over an algebraic closure of k, we can assume that $L = \mathcal{O}(np)$ for a point $p \in C$. In this case Fisher gives the following explicit description of the matrix

$$\Omega : \bigwedge^2 H^0(C, L) \to S^2 H^0(C, L)$$

in [7 Sec. 5]. For $s_1, s_2 \in H^0(C, L)$ and $\phi \in H^0(C, L)^*$, one has

$$\frac{1}{n} \Omega(s_1, s_2)(\phi) = [S \cdot (s_1 \boxtimes s_2 - s_2 \boxtimes s_1)](\phi, \phi) + \mathcal{D}\{s_1, s_2\}(\phi, \phi),$$

for some operator $\mathcal{D} : H^0(C, \mathcal{O}(np)) \to H^0(C, \mathcal{O}((n + 1)p))$ (which is given up to rescaling by $f \mapsto df/\omega$, where ω is a global differential on C).

Comparing the above formula for Ω with (2.2) we immediately deduce that the bivector on \mathbb{P}^{n-1} induced by Ω is $q_{n,1}(C)$, up to rescaling.

In the case n is odd we have

$$\{F, x_j\} = \sum_i \frac{\partial F}{\partial x_i} \{x_i, x_j\} = \sum_i \frac{\partial F}{\partial x_i} \Omega_{ij} = 0$$

by (1.1). Hence, the assertion of the theorem follows in this case from Lemma 2.1.1.

Similarly, in the case n is even, we deduce from (1.2) that

$$\{F_1, x_j\} = \{F_2, x_j\} = 0.$$

3.2. Proof of Theorem B. We start with the following description of

$$\phi^{-1} : \mathbb{P} H^0(C, V_0) \longrightarrow \mathbb{P} \text{Ext}^1(\mathcal{O}, L) \simeq \mathbb{P} H^0(C, L)^*.$$

Given a generic global section $s \in H^0(C, V_0)$, the corresponding map $s : \mathcal{O} \to V_0$ is an embedding of a subbundle, and we have a canonical identification of $V_0/s(\mathcal{O})$ with $\det(V_0) = L$. Hence, we get an extension of L by \mathcal{O}. Note that the Serre duality isomorphism $\text{Ext}^1(\mathcal{O}, L) \simeq H^0(C, L)^*$ associates with an extension

$$0 \to \mathcal{O} \to E \to L \to 0$$

the corresponding coboundary homomorphism $H^0(C, L) \to H^1(C, \mathcal{O}) \simeq k$. The exact sequence of cohomology shows that the kernel of this homomorphism coincides with the image of the map $H^0(C, E) \to H^0(C, L)$.

Thus, ϕ^{-1} associates with a generic $s \in H^0(C, V_0)$ the unique functional $\xi \in H^0(C, L)^*$ (up to rescaling), such that $\ker(\xi)$ is equal to the image of the map

$$d_s : H^0(C, V_0) \to H^0(C, V_0/s(\mathcal{O})) \simeq H^0(C, L).$$

Recall that an isomorphism $\alpha_s : V_0/s(\mathcal{O}) \overset{\sim}{\longrightarrow} L$ induces an isomorphism

$$\beta_s : \det(V_0) \overset{\sim}{\longrightarrow} L : s \wedge x \mapsto \alpha(x).$$

Note that β_s does not depend on s up to rescaling.

Thus, up to rescaling, the map d_s can be identified with the map

$$\Phi(s, ?) : H^0(C, V_0) \to H^0(C, L),$$
where Φ is the Klein matrix (2.6). In other words, $\xi = \phi^{-1}(s)$ is characterized by the condition

$$\ker(\xi) = \operatorname{im} \Phi(s, ?).$$

Let us set $A := H^0(C, V_0)$ and $B := H^0(C, L)$ for brevity (note that B is the space of linear forms on our projective space $\mathbb{P}^{n-1} = \mathbb{P}H^0(C, L)^*$), so that Φ can be viewed as a skew-symmetric linear map

$$\Phi : A \rightarrow A^* \otimes B.$$

We showed above that the birational map

$$\phi^{-1} : \mathbb{P}A \dashrightarrow \mathbb{P}B^*$$

sends a generic a to the unique functional b^* (up to rescaling) such that b^* vanishes on the image of $\Phi(a, ?) : A \rightarrow B$. Now we recall that with Φ we can associate canonically (up to rescaling) an element $\sigma_{n-2}(\Phi) \in B^* \otimes S^{n-2}(A^*)$, such that the composition

$$A \xrightarrow{\Phi(a, ?)} B \xrightarrow{\sigma_{n-2}(\Phi)(a)} k$$

is zero (see Lemma 2.4.1). Furthermore, since $\Phi(a, ?)$ has rank $n - 1$ for generic a, we have $\sigma_{n-2}(\Phi)(a) \neq 0$ for such a (see Lemma 2.4.1(iv)). This implies that

$$\phi^{-1}(a) = \sigma_{n-2}(\Phi)(a)$$

in $\mathbb{P}B^*$. If we choose a basis in B, then $\sigma_{n-2}(\Phi)$ is given by n polynomials (f_1, \ldots, f_n), where $f_i \in S^{n-2}(A^*)$, and we have

$$\phi^{-1}(a) = (f_1(a) : \ldots : f_n(a)).$$

It remains to prove the formula for $\phi : \mathbb{P}B^* \rightarrow \mathbb{P}A$. We can rewrite the complex (2.5) as

$$0 \rightarrow R(-n) \xrightarrow{p^T} A \otimes R(-r - 1) \xrightarrow{\Phi} A^* \otimes R(-r) \xrightarrow{p} R$$

where $R = S^*(B)$. This complex shows that for each $b^* \in B^*$ the specialization $\Phi_{b^*} : A \rightarrow A^*$ satisfies

$$\Phi_{b^*}(p(b^*)^T) = 0,$$

where $p(b^*)^T \in A$.

We need to check that $\phi(b^*) = p(b^*)^T$. Equivalently, setting

$$a := p(b^*)^T,$$

we need to prove that

$$\phi^{-1}(a) = b^*.$$

By the above description of ϕ^{-1}, it is enough to check that b^* annihilates the image of $\Phi(a, ?) : A \rightarrow B$ (since the latter image is a hyperplane in B). In other words, we need to check that $b^* \circ \Phi(a, ?) = 0$. But we have

$$b^* \circ \Phi(a, ?) = \Phi_{b^*}(a) = 0$$

by (3.1). This ends the proof.
REFERENCES

[1] A. Bondal, *Non-commutative deformations and Poisson brackets on projective spaces*, preprint MPI 93-67

[2] H.-Chr. Graf v. Bothmer and K. Hulek, *Geometric syzygies of elliptic normal curves and their secant varieties*, Manuscripta Math. 113 (2004), no. 1, 35–68.

[3] D. A. Buchsbaum, D. Eisenbud, *Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension 3*, Amer. J. Math. 99 (1977), 447–485.

[4] B. L. Feigin, A. V. Odesskii, *Sklyanin's elliptic algebras*, Funct. Anal. Appl. 23 (1989), no. 3, 207–214.

[5] B. L. Feigin, A. V. Odesskii, *Vector bundles on an elliptic curve and Sklyanin algebras*, in *Topics in quantum groups and finite-type invariants*, 65–84, Amer. Math. Soc., Providence, RI, 1998.

[6] T. Fisher, *Pfaffian presentation of elliptic normal curves*, Trans. Am. Math. Soc., 362 (2010), 2525–2540.

[7] T. Fisher, *A formula for the Jacobian of a genus one curve of arbitrary degree*, Algebra Number Theory 12 (2018), 2123–2150.

[8] Z. Hua, A. Polishchuk, *Shifted Poisson structures and moduli spaces of complexes*, Advances in Math. 338 (2018), 991–1037.

[9] Z. Hua, A. Polishchuk, *Elliptic bihamiltonian structures from relative shifted Poisson structures*, [arXiv:2007.12351](https://arxiv.org/abs/2007.12351).

[10] A. Odesskii, *Bihamiltonian elliptic structures*, Mosc. Math. J. 4 (2004), 941–946.

[11] A. Odesskii, *Elliptic algebras*, [arXiv:math/0303021](https://arxiv.org/abs/math/0303021).

[12] A. Odesskii, T. Wolf, *Compatible quadratic Poisson brackets related to a family of elliptic curves*, J. Geom. Phys. 63 (2013), 107–117.

[13] A. Polishchuk, *Algebraic geometry of Poisson brackets*, Journal of Math. Sciences 84 (1997) 1413–1445.

[14] A. Polishchuk, *Poisson structures and birational morphisms associated with bundles on elliptic curves*, IMRN 13 (1998), 683–703.

[15] B. Pym, T. Schedler, *Holonomic Poisson manifolds and deformations of elliptic algebras*, in *Geometry and physics*, Vol. II, 681–703, Oxford Univ. Press, Oxford, 2018.

[16] V. Rubtsov, *Quadro-cubic Cremona transformations and Feigin-Odesskii-Sklyanin algebras with 5 generators*, in *Recent Developments in Integrable Systems and Related Topics of Mathematical Physics: Kezenoi-Am, Russia, 2016*, 75–106, Springer, 2018.

[17] J. G. Semple, *Cremona transformations of space of four dimensions by means of quadrics and the reverse transformations*, Phil. Trans. Royal Soc. London, Series A, 228 (1929), 331–376.

University of Oregon, National Research University Higher School of Economics, and Korea Institute for Advanced Study