Enhanced Antioxidant Activity in *Streptococcus thermophilus* by High-Level Expression of Superoxide Dismutase

Linghui Kong1, Zhiqiang Xiong1, Xin Song1, Yongjun Xia1, Hui Zhang1, Ying Yang2 and Lianzhong Ai1*

1 Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China, 2 Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China

Superoxide dismutase (SOD) plays an essential role in eliminating oxidative damage of lactic acid bacteria. *Streptococcus thermophilus*, an important probiotic lactic acid bacterium, often inevitably suffers from various oxidative stress during dairy fermentation. In this study, to confer high-level oxidative resistance, the *sod* gene from *Lactobacillus casei* was heterologous expressed in *S. thermophilus* S-3 using our previous constructed native constitutive promoter library. The enzyme activity of SOD was significantly enhanced in engineered *S. thermophilus* by promoter #14 (2070 U/mg). Furthermore, the strategy of multi-copy *sod*-expressing cassettes was employed to improve SOD activity. The maximum activity (2750 U/mg) was obtained by the two-copy *sod* recombinant, which was 1.5-fold higher than that of one-copy recombinant. In addition, the survival rate of multi-copy *sod* recombinants was increased about 97-fold with 3.5 mmol/L H$_2$O$_2$ treatment. To our knowledge, this is the first report of multi-copy *sod* gene expression in *S. thermophilus*, which exerts a positive effect on coping with oxidative stress to enhance the potential of industrial application.

Keywords: *Streptococcus thermophilus*, superoxide dismutase, native constitutive promoter, multicopy gene expression, oxidative stress

INTRODUCTION

Under normal physiological conditions, cells can generate a massive amount of reactive oxygen species (ROS) during metabolism in the presence of oxygen. ROS including superoxide (O$_2^-$), hydroxyl radical (HO*), and hydrogen peroxide (H$_2$O$_2$) may cause lipid peroxidation, cell membrane damage, inflammation, and autoimmune diseases (Li et al., 2019). Superoxide dismutase (SOD) is one of the major antioxidant enzymes responsible for protecting the cells against the harmful effects of ROS (Figure 1). SODs are usually grouped on the basis of metal content such as CuSOD, MnSOD, and FeSOD. FeSOD and MnSOD are belonging to a homologous group and playing an important role in the living organism (Russo Krauss et al., 2015). Superoxide dismutase (SOD) is one of the major antioxidant enzymes responsible for protecting the cells against the harmful effects of ROS (Figure 1). SODs are usually grouped on the basis of metal content such as CuSOD, MnSOD, and FeSOD. FeSOD and MnSOD are belonging to a homologous group and playing an important role in the living organism (Russo Krauss et al., 2015). Some lactic acid bacteria (LAB) possess cambialistic SOD, which can bind and exchange Fe or Mn in the active site and show substantial but different activity (De Vendittis et al., 2010). *Streptococcus thermophilus* AO54 and LMG 18311 contain a single MnSOD which are not sensitive to H$_2$O$_2$
treatment in the presence of high Mn concentration (Andrus et al., 2003; De Vendittis et al., 2012). Serata et al. (2018) found a correlation between SOD activity and Mn concentration in Lactobacillus casei Shirota. Thus, enhancing SOD expression is an efficient method to reduce oxidative stress in living cells. For example, heterologous expression of SOD can significantly improve the tolerance toward H$_2$O$_2$ stress in LAB such as Bifidobacterium longum, L. casei, and L. rhamnosus (An et al., 2011; Lin et al., 2016).

S. thermophilus is one of the homofermentative LAB commonly used in food fermentation including yogurt and cheese, which helps food safety, taste, and quality (Sorensen et al., 2016). Furthermore, it has latent beneficial effects on human health, such as promoting lactose digestion, modulating gut microbiota, alleviating intestinal disorder, and lowering blood pressure and cholesterol (Zhai et al., 2020). *S. thermophilus* is inevitably exposed to various environmental pressures during food production and beverage consumption. Accordingly, tolerance to oxidative stress is critical for the survival of *S. thermophilus*. So far, there are limited studies on SOD expression for improving antioxidant activity in *S. thermophilus*.

S. thermophilus S-3 was isolated from traditional dairy products by our laboratory. It can utilize galactose, which is an ideal property of LAB (Xiong et al., 2019a). Exopolysaccharide produced by S-3 effectively improves the viscosity and taste of yogurt (Xu et al., 2018). In our previous study, a set of constitutive promoters with different strengths was mined by the analysis of RNA and genome sequencing in S-3 (Kong et al., 2019; Xiong et al., 2019b). In this study, a native constitutive promoter library and multi-copy strategy were used to improve enzyme activity of SOD and the survival under H$_2$O$_2$ stress in S-3. Our results provide protection strategy for *S. thermophilus* or other LAB from oxidative damage.

MATERIALS AND METHODS

Bacterial Strains and Growth Condition

Bacteria and plasmids used in this study are listed in Table 1. *Escherichia coli* Top10 was grown in Luria-Bertani (LB) medium at 37°C. *S. thermophilus* S-3 was cultured in M17 medium supplemented with 2% lactose (LM17) at 37°C. When required, erythromycin (10 µg/mL for *S. thermophilus*) and kanamycin (50 µg/mL for *E. coli*) were added.

Plasmid Construction

All primers used in this study are listed in Table 2. All molecular manipulations were carried out using standard cloning techniques (Kong et al., 2019). The DNA fragment of SOD was amplified from *L. casei* by PCR using a pair of primer SOD_LC2W-F71/SOD_LC2W-R97 and inserted into pKLH71 and pKLH81 (digestion by BamHI and BglII) to obtain pKLH295 and pKLH303, respectively, by the ClonExpress MultiS one-step cloning kit (Vazyme, Nanjing, China). As the above method, the gene of *sod* was cloned into pKLH73-pKLH79 and pKLH86-pKLH88 containing different promoters by digestion of BamHI and EcoRI (Kong et al., 2019), yielding the plasmids pKLH296-pKLH302 and pKLH304-pKLH306. Promoters name and sequence are listed in Supplementary Table 1.
S. thermophilus Detection of SOD Activity in for RT-qPCR experiment. 2019b). Three independent biological replicates were performed using 2 RT-qPCR are listed in kit (Takara). The primers of Nanodrop2000. The cDNA prepared with PrimeScriptRT reagent 24 h and total RNA was extracted with a Trizol kit (Takara). The quantification and integrity of RNA were determined by method with CT application solution, 20 µL of enzyme working fluid, and 20 µL of enzyme solution was incubated at 37°C for 20 min, and measured using spectrophotometry at 450 nm. The concentration of total protein was determined by modified Bradford reagent (12000 × g, 2 min, 4°C). The supernatants were collected as a reference gene (Xiong et al., 2019). The samples were suspended in PBS (pH 7.0) for ultrasonic pretreatment (BRANSON S-450D, United States; pulse on 4 s, pulse off 6 s, total time 40 min), and cell debris were removed by centrifugation (12000 × g, 2 min, 4°C). The supernatants were collected as enzyme solution. SOD activity was determined using a WST-1 SOD assay kit (Nanjing Jian Cheng Co., China) according to manufacturer recommendation. A mixture of 200 µL substrate application solution, 20 µL of enzyme working fluid, and 20 µL of enzyme solution was incubated at 37°C for 20 min, and measured using spectrophotometry at 450 nm. The concentration of total protein was determined by modified Bradford reagent (Sangon Biotech, China) using bovine serum albumin as the standard. One unit (U/mg) of SOD activity was defined as the amount of enzyme per mg of total protein corresponding to the SOD inhibition rate reaching 50% in the reaction system (Kong et al., 2019).

Promoter #14 and SOD (pKLH167-ske-F/ske1717-SOD-R) were amplified from pKLH167 and ligated into the backbone of pKLH167 using a pair of primer pKLH167-ske-F/pKLH167-ske-R, yielding pKLH337. Then, promoter #14 and SOD were amplified from pKLH167 and ligated into the backbone of pKLH337, yielding pKLH341. Finally, the promoter #14 and SOD were digested by SacI and inserted into plasmid pKLH341 to create pKLH344.

RNA Preparations and Real-Time Quantitative PCR Analysis
The cells of S. thermophilus recombinants were collected at 24 h and total RNA was extracted with a Trizol kit (Takara). The quantification and integrity of RNA were determined by Nanodrop2000. The cDNA prepared with PrimeScriptRT reagent kit (Takara) was used as a template for RT-qPCR. RT-qPCR was performed using SYBR Premix Ex Taq (Takara). The primers of RT-qPCR are listed in Table 2. The data of each gene was analyzed using 2−ΔΔCT method with recA as a reference gene (Xiong et al., 2019b). Three independent biological replicates were performed for RT-qPCR experiment.

Detection of SOD Activity in S. thermophilus Recombinants
The sod plasmids pKLH161-pKLH165, pKLH167-pKLH168, and pKLH295-pKLH306 as well as the control plasmid pKLH32 (without sod) were transformed into S-3 by electroporation. S. thermophilus transformants were harvested at 24 h. The transformants were cultivated for 24 h at 37°C and harvested by centrifugation at 8000 × g for 2 min at 4°C. The samples were suspended in PBS (pH 7.0) for ultrasonic pretreatment (BRANSON S-450D, United States; pulse on 4 s, pulse off 6 s, total time 40 min), and cell debris were removed by centrifugation (12000 × g, 2 min, 4°C). The supernatants were collected as enzyme solution. SOD activity was determined using a WST-1 SOD assay kit (Nanjing Jian Cheng Co., China) according to manufacturer recommendation. A mixture of 200 µL substrate application solution, 20 µL of enzyme working fluid, and 20 µL of enzyme solution was incubated at 37°C for 20 min, and measured using spectrophotometry at 450 nm. The concentration of total protein was determined by modified Bradford reagent (Sangon Biotech, China) using bovine serum albumin as the standard. One unit (U/mg) of SOD activity was defined as the amount of enzyme per mg of total protein corresponding to the SOD inhibition rate reaching 50% in the reaction system (Kong et al., 2019).

Growth of S. thermophilus Under Oxidative Stress Conditions
The multi-copy sod recombinants were cultured in LM17 medium containing erythromycin at 37°C for 12 h. Then the seeds were inoculated (3% v/v) into fresh LM17 medium broth

Table 1: Strains and plasmids used in this work.

Strains	Description	Sources
E. coli Top10	Host for cloning	Our lab
S. thermophilus S-3	Wild type	Our lab
L. casei LC2W	The source of SOD	Our lab
Plasmids		
pKLH2	pIB184 derived, carrying Kan' from pnCL03	Our lab
pKLH296	pKLH32 derived, for overexpression of sod under the #1 promoter	This study
pKLH296	pKLH32 derived, for overexpression of sod under the #2 promoter	This study
pKLH297	pKLH32 derived, for overexpression of sod under the #3 promoter	This study
pKLH298	pKLH32 derived, for overexpression of sod under the #4 promoter	This study
pKLH299	pKLH32 derived, for overexpression of sod under the #5 promoter	This study
pKLH300	pKLH32 derived, for overexpression of sod under the #6 promoter	This study
pKLH301	pKLH32 derived, for overexpression of sod under the #7 promoter	This study
pKLH302	pKLH32 derived, for overexpression of sod under the #8 promoter	This study
pKLH303	pKLH32 derived, for overexpression of sod under the #10 promoter	This study
pKLH304	pKLH32 derived, for overexpression of sod under the #15 promoter	This study
pKLH305	pKLH32 derived, for overexpression of sod under the #18 promoter	This study
pKLH306	pKLH32 derived, for overexpression of sod under the #17 promoter	This study
pKLH161	pKLH32 derived, for overexpression of sod under the #9 promoter	Kong et al., 2019
pKLH162	pKLH32 derived, for overexpression of sod under the #11 promoter	Kong et al., 2019
pKLH163	pKLH32 derived, for overexpression of sod under the #12 promoter	Kong et al., 2019
pKLH164	pKLH32 derived, for overexpression of sod under the #13 promoter	Kong et al., 2019
pKLH165	pKLH32 derived, for overexpression of sod under the #14 promoter	Kong et al., 2019
pKLH167	pKLH32 derived, for overexpression of sod under the #18 promoter	Kong et al., 2019
pKLH168	pKLH32 derived, for overexpression of sod under the P52 promoter	Kong et al., 2019
pKLH337	Derived from pKLH167, for overexpression of sod.	This study
pKLH341	Derived from pKLH337, for overexpression of sod.	This study
pKLH344	pKLH341 digested by SacI, for overexpression of sod.	This study
TABLE 2 | Oligonucleotides used in this study.

Primers	Sequences (5’-3’)
SOD_LC2W-F71	aagggagatggtaggtaggacGCAGACTTTTGTGGCCAGATT-TACC
SOD_LC2W-F73	tagggggactgaggaagttgccACTGACTTTTGTGGCCAGATT-TACC
SOD_LC2W-F74	gaggagctcctcaaggtcGACAGACTTTTGTGGCCAGATT-TACC
SOD_LC2W-F75	tagggagctcGacgagttgccACTGACTTTTGTGGCCAGATT-TACC
SOD_LC2W-F76	aagggagatggtaggtaggacGCAGACTTTTGTGGCCAGATT-TACC
SOD_LC2W-F77	taagggagatggtaggtaggacGCAGACTTTTGTGGCCAGATT-TACC
SOD_LC2W-F79	tagagatctgaggaagttgccACTGACTTTTGTGGCCAGATT-TACC
SOD_LC2W-F81	aagggagatggtaggtaggacGCAGACTTTTGTGGCCAGATT-TACC
SOD_LC2W-F87	pKLH314-SOD-R ttatcgatagatctcgagctcTCAGGCGTTTGTATCGGGAT
SOD_LC2W-F88	pKLH314-SOD-F gatacaaacgcctgagagctcAAAGATATTTAAAAAGAGTGAG-AB
SOD_LC2W-F71	ske1717-SOD-R gatctcgagctctagaattcTCAGGCGTTTGTATCGGGAT
SOD_LC2W-F73	ske1717-SOD-F gatacaaacgcctgagagctcAAAGATATTTAAAAAGAGTGAG-AB
SOD_LC2W-F74	pKLH167-ske-R tcaggcgtttgtatcggg
SOD_LC2W-F75	pKLH167-ske-F gaattctagagctcgagatctatcg
SOD_LC2W-F76	ske1717-SOD-R gatctcgagctctagaattcTCAGGCGTTTGTATCGGGAT
SOD_LC2W-F77	ske1717-SOD-F gatacaaacgcctgagagctcAAAGATATTTAAAAAGAGTGAG-AB
SOD_LC2W-F79	pKLH337-ske-R aagtgattagtcaaagaatggtgatgacaattg
SOD_LC2W-F81	pKLH337-ske-F aagcttatcgatagatctTCAGGCGTTTGTATCGGGAT
SOD_LC2W-F87	pKLH337-ske-R aagtgattagtcaaagaatggtgatgacaattg
SOD_LC2W-F88	pKLH337-ske-F aagcttatcgatagatctTCAGGCGTTTGTATCGGGAT
SOD_LC2W-F71	pKLH344-ske-R aagtgattagtcaaagaatggtgatgacaattg
SOD_LC2W-F73	pKLH344-ske-F aagcttatcgatagatctTCAGGCGTTTGTATCGGGAT
SOD_LC2W-F74	pKLH344-ske-R aagtgattagtcaaagaatggtgatgacaattg
SOD_LC2W-F75	pKLH344-ske-F aagcttatcgatagatctTCAGGCGTTTGTATCGGGAT
SOD_LC2W-F76	pKLH344-ske-F aagcttatcgatagatctTCAGGCGTTTGTATCGGGAT
SOD_LC2W-F77	pKLH344-ske-F aagcttatcgatagatctTCAGGCGTTTGTATCGGGAT
SOD_LC2W-F79	pKLH344-ske-F aagcttatcgatagatctTCAGGCGTTTGTATCGGGAT
SOD_LC2W-F81	pKLH344-ske-F aagcttatcgatagatctTCAGGCGTTTGTATCGGGAT
SOD_LC2W-F87	pKLH344-ske-F aagcttatcgatagatctTCAGGCGTTTGTATCGGGAT
SOD_LC2W-F88	pKLH344-ske-F aagcttatcgatagatctTCAGGCGTTTGTATCGGGAT

supplemented with H₂O₂ (1 and 2.5 mmol/L) to determine their growth under aerobic conditions, respectively. Furthermore, colony-forming units per milliliter (CFU/mL) was obtained by taking 10 μL stationary phase cultures (10-fold serial dilutions) on LM17 plate containing H₂O₂ (3.5 mmol/L) at 37°C for 48 h (anaerobic conditions), respectively.

RESULTS AND DISCUSSION

Heterologous Expression of SOD Using Native Constitutive Promoter Library in *S. thermophilus*

The food-grade *S. thermophilus* is a facultative anaerobic bacterium and often exposed to oxygen stress during the fermentation of yogurt or meat products. SOD has demonstrated to protect LAB from oxidative stress (Chang and Hassan, 1997; Zhai et al., 2020). Expression of the *sod* from *L. casei* (*sod-lc*) has significantly increased the activity of SOD and superoxide radical scavenging activity in *E. coli* (Liu et al., 2011). Additionally, the functional gene from *L. casei* could be more suitable for heterologous expression in *S. thermophilus* because *L. casei* and *S. thermophilus* are belonging to the group of LAB. Thus, to enhance SOD activity in *S. thermophilus* (S-3), we selected *sod-lc* for heterologous expression using our previous constructed native constitutive promoter library (Kong et al., 2019). The strength of 18 promoters including 7 strong promoters (#6, #9, #11, #12, #13, #14, and #18) and 11 weak promoters (#1–#5, #10, and #15–#17) were detected in Supplementary Table 1.

For the recombinants of *S. thermophilus* (Figure 2A), the activities of SOD were increased 1.1–2.2 folds compared with the control strain S-3/pKLH332 (empty plasmid) under constitutive promoters with different strength (Figure 2B). Strong promoters (#11 and #14) markedly increased 2.2-fold of SOD activity compared with that of the control. The highest enzyme activity of SOD was 2070 U/mg. Interestingly, overexpression of *sod* by weak promoters (#2, #4, and #15) also significantly enhanced 1.95, 1.93, and 2.12 folds of enzymatic activity. It might be attributed that the ribosomal binding sites of these promoters are more suitable for SOD expression. These results showed that 8 recombinant strains using promoters #2, #4, #9, #11, #13, #14, #15, and #18 were superior to the currently reported highest SOD activity (1500 U/mg) of *S. thermophilus* CRL807 (Del Carmen et al., 2014). Our previous study found a higher activity of SOD by promoter #14 in comparison with promoter #11 in *S. thermophilus* and *L. casei* (Kong et al., 2019). Therefore, we selected promoter #14 for further fine-tuning *sod* expression.

Effect of Multi-Copy sod-Expression Cassettes in *S. thermophilus*

Multi-copy expression cassette is an important strategy to significantly enhance the expression of recombinant proteins (Zhu et al., 2009). Wang et al. (2014) applied this strategy to achieve the maximum yield at the three copies of *Bmk1* gene, which improved 2.09-fold compared with the control. However, an optimal gene copy number should be considered because of metabolic burden by protein overexpression (Rawsthorne et al., 2006). In some cases, it results in reducing the expression of protein by further increasing gene copy number. Here, multi-copy expression cassette was used to further enhance the expression of SOD. One to four copies of *sod-lc* gene expression were constructed under promoter #14 (Figure 3A), which one to four copy number recombinants named as S-3/pKLH167, S-3/pKLH337, S-3/pKLH341, and S-3/pKLH344. The maximum activity of SOD was obtained by S-3/pKLH337 (2750 U/mg), which improved 1.45-fold compared with that of S-3/pKLH167 (Figure 3B). SOD activity of S-3/pKLH337 was ~1.8-fold higher than that (1500 U/mg) of *S. thermophilus* CRL807 (Del Carmen et al., 2014). SOD activities of S-3/pKLH341 and S-3/pKLH344 were also significantly increased 1.34 and 1.32 folds, respectively. Due to metabolic burden caused by protein overexpression, SOD...
Expression does not increase indefinitely with an increase in copy number. Shu et al. (2016) had a similar result that two copies of expression cassette achieved the highest activity of serine protease, not the four copies. It suggested that the multi-copy strategy is efficient for the expression of SOD and other functional proteins.

Due to the highest expression of SOD in two copies recombinant, the relationship between gene copy number and transcription change were evaluated by RT-qPCR. The expression of sod in all multi-copy recombinants were remarkably increased >2000-fold at the transcriptional level compared with the empty plasmid strain (Figure 3C). Gene expression of sod were increased 3.9, 5.2, and 5.9-fold in multi-copy recombinants S-3/pKLH337, S-3/pKLH341, and S-3/pKLH344 compared to one copy S-3/pKLH167. It indicated that gene copy number has strongly correlated with the level of sod expression, not SOD activity. Our result was similar to the report by Shu et al. (2016) that higher gene copy number increased gene expression but not protein expression level.

Some bacteria possess cambialistic SOD capable of function with Fe or Mn in the active site (De Vendittis et al., 2010). The metal cofactor Mn and Fe are critical for SOD activity (Russo Krauss et al., 2015). To assess the effect of metal ions on SOD activity, we added 1 mmol/L Fe or Mn in the culture medium of S. thermophilus recombinants. The addition of Mn increased SOD activity of S-3/pKLH337 by 1.7-fold, up to 4723 U/mg (Table 3). In particular, SOD activity of S-3/pKLH337 was also 4.7-fold higher than that of control strain (S-3/pKLH32). However, addition of Fe resulted in 31% and 22% decrease of SOD activity in S-3/pKLH32 and S-3/pKLH337, respectively. It is consistent with the result by Chang and Hassan (1997) that Fe inhibits enzymatic activity of
SOD. Russo Krauss et al. (2015) showed that Mn-bound form of SOD from *S. thermophilus* has a significantly higher enzymatic catalysis with respect to the Fe form. Our results suggested that SOD in *S. thermophilus* is more preferred to Mn, which significantly improved enzyme activity.

Impact of SOD on Oxidative Stress Resistance in *S. thermophilus*

Overexpression of SOD increases the survival rate of *B. longum* NCC2705 under 2.5 mmol/L H$_2$O$_2$ stress during long-term cold storage (Zuo et al., 2014). Bruno-Barcena et al. (2004) found that the expression of *sod* in *L. gasseri* and *L. acidophilus* could protect against H$_2$O$_2$ (1.4 mmol/L) and increase their growth rate by 30% and 100%, respectively. The effect of SOD on H$_2$O$_2$ tolerance were investigated in our *sod*-overexpressing recombinants. Under aerobic condition, SOD overexpression boosted the growth of S-3/pKLH167, S-3/pKLH337, S-3/pKLH341, and S-3/pKLH344 with 1 mmol/L H$_2$O$_2$ treatment compared with the control strain S-3/pKLH32 (Figure 4A). Multi-copy *sod* recombinants S-3/pKLH337, S-3/pKLH341, and S-3/pKLH344 were able to withstand higher concentration (2.5 mmol/L) of H$_2$O$_2$ (Figure 4B). Our recombinants showed higher tolerance to H$_2$O$_2$ in comparison with other LAB such as *L. plantarum* and *Pediococcus pentosaceus* (Lin et al., 2018).

Oxidative stress resistance was further investigated by the survival rate under anaerobic condition. Significant difference of the survival was observed between the recombinants and the control. The survival rate of S-3/pKLH167, S-3/pKLH337, S-3/pKLH341, and S-3/pKLH344 were 73, 90, 83, and 81%, respectively, which were higher than that of wild-type (55%) under 3.5 mmol/L H$_2$O$_2$ (Figure 4C). The viable cells of S-3/pKLH337 was 9.5 and 97 folds higher than that of

TABLE 3 | Effects of Mn or Fe supplement on SOD activity in engineered *S. thermophilus* S-3.

Strain	Metal supplement	SOD (U/mg) ± SD
S-3/pKLH32	None	1013.1 ± 36.9
	1 mmol/L Mn	1530.1 ± 43.2
	1 mmol/L Fe	702.6 ± 23.8
S-3/pKLH337	None	2651.4 ± 85.8
	1 mmol/L Mn	4723.0 ± 99.5
	1 mmol/L Fe	2065.8 ± 64.6

FIGURE 3 | Expression of multi-copy sod in *S. thermophilus* S-3. Construction of vectors with increasing copy of the *sod* expression cassette (A). Analysis of the enzyme activity of superoxide dismutase (SOD) in recombinants (B). Analysis of the transcriptional level by RT-qPCR in recombinants (C). The error bars show the standard deviations from three independent replicates. *P* < 0.05, **P** < 0.01.
Survival of *S. thermophilus* strains under oxidative stress. Effect of superoxide dismutase (SOD) expression on cell growth of recombinant strains (one to four SOD copy numbers) under 1 mmol/L (A) and 2.5 mmol/L H$_2$O$_2$ treatment (B). Symbols: ○, Control; ▲, S-3/pKLH167; ■, S-3/pKLH337; ●, pKLH341; and ●, pKLH344. Viable cells under 3.5 mmol/L H$_2$O$_2$ treatment under anaerobic conditions (C). ▲, pKLH167; ■, pKLH337; ●, pKLH341; and ●, pKLH344; and ○, Control. *P < 0.05, **P < 0.01.

S-3/pKLH167 and S-3/pKLH32, respectively, which has the strongest antioxidant capacity among all strains. It suggested that multi-copy sod expression remarkably increases the viability of *S. thermophilus* under H$_2$O$_2$ stress. This is the first report on combining constitutive promoter library and multi-copy strategy to enhance antioxidative ability in *S. thermophilus* and other LAB.
For dairy fermentation, microorganisms lacking SOD is more susceptible to oxidative stress. Andrus et al. (2003) found that SOD is essential for the growth of *S. thermophilus* AO54 under oxidative stress. *S. thermophilus* with sod deficiency cannot grow aerobically. Lin et al. (2016) reported that adequacy activity of SOD might enhance resistance to H$_2$O$_2$ (2 mmol/L) and protect *lactobacillus* from oxidative stress. Bruno-Barcena et al. (2004) found that overexpression of SOD increases the growth rate from 40% to 70% compared with the wild type in *L. gasseri* under 1.4 mmol/L H$_2$O$_2$ stress. Compared with these strains, our multi-copy strains showed stronger tolerance to H$_2$O$_2$ (anaerobic 3.5 mmol/L and aerobic 2.5 mmol/L), indicating marked improvement of antioxidant capacity. Our result also suggested that SOD expression in LAB has great application potential in food industry.

CONCLUSION

S. thermophilus often suffers from inevitable oxidative stress during food production. To deal with oxidative stress, a heterologous sod was successfully expressed in *S. thermophilus* using a native constitutive promoter library. Moreover, the multi-copy sod strains were constructed and significantly improved the activity of SOD (2750 U/mg), which is the highest enzyme activity reported in *S. thermophilus*. Interestingly, compared with the control, the number of viable cells was markedly enhanced 97-fold by multi-copy sod recombinants. Therefore, it indicated that the multi-copy strategy is a reliable and efficient method for improving oxidative stress resistance in *S. thermophilus*.

REFERENCES

An, H., Zhai, Z., Yin, S., Luo, Y., Han, B., and Hao, Y. (2011). Coexpression of the superoxide dismutase and the catalase provides remarkable oxidative stress resistance in Lactobacillus rhamnosus. *J. Agric. Food Chem.* 59, 3851–3856. doi: 10.1021/jf200251k

Andrus, J. M., Bowen, S. W., Klaenhammer, T. R., and Hassan, H. M. (2003). Molecular characterization and functional analysis of the manganese-containing superoxide dismutase gene (sodA) from Streptococcus thermophilus AO54. *Arch. Biochem. Biophys.* 420, 103–113. doi: 10.1016/j.abb.2003.09.007

Bruno-Barcena, J. M., Andrus, J. M., Libby, S. L., Klaenhammer, T. R., and Hassan, H. M. (2004). Expression of a heterologous manganese superoxide dismutase gene in intestinal lactobacilli provides protection against hydrogen peroxide toxicity. *Appl. Environ. Microbiol.* 70, 4702–4710. doi: 10.1128/AEM.70.8.4702-4710.2004

Chang, S. K., and Hassan, H. M. (1997). Characterization of superoxide dismutase in Streptococcus thermophilus. *Appl. Environ. Microbiol.* 63, 3732–3735. doi: 10.1128/aem.63.9.3732-3735.1997

De Vendittis, A., Amato, M., Mickiewicz, A., Parlato, G., De Angelis, A., Castellano, I., et al. (2010). Regulation of the properties of superoxide dismutase from the dental pathogenic microorganism Streptococcus mutans by iron- and manganese-bound co-factor. *Mol. Biosyst.* 6, 1973–1982. doi: 10.1039/c003557b

De Vendittis, A., Marco, S., Di Maro, A., Chamberry, A., Albino, A., Masullo, M., et al. (2012). Properties of a putative cambialistic superoxide dismutase from the aerotolerant bacterium Streptococcus thermophilus strain LGM 18311. *Protein Pept. Lett.* 19, 333–344. doi: 10.2174/092986612799363127

Del Carmen, S., de Moreno de LeBlanc, A., Martin, R., Chain, F., Langlea, P., Bermudez-Humaran, L. G., et al. (2014). Genetically engineered immunomodulatory Streptococcus thermophilus strains producing antioxidant enzymes exhibit enhanced anti-inflammatory activities. *Appl. Environ. Microbiol.* 80, 869–877. doi: 10.1128/AEM.03296-2004

Kong, L., Xiong, Z., Song, X., Xia, Y., Zhang, N., and Ai, L. (2019). Characterization of A Panel of Strong Constitutive Promoters from Streptococcus thermophilus for Fine-tuning Gene Expression. *ACS Synthetics Biol.* 8, 1469–1472. doi: 10.1021/acsabio.9b00045

Li, X., Qiu, S., Shi, J., Wang, S., Wang, M., Xu, Y., et al. (2019). A new function of copper zinc superoxide dismutase: as a regulatory DNA-binding protein in gene expression in response to intracellular hydrogen peroxide. *Nucleic Acids Res.* 47, 5074–5085. doi: 10.1093/nar/gkz256

Lin, J., Zou, Y., Cao, K., Ma, C., and Chen, Z. (2016). The impact of heterologous catalase expression and superoxide dismutase overexpression on enhancing the oxidative resistance in Lactobacillus casei. *J. Ind. Microbiol. Biotechnol.* 43, 703–711. doi: 10.1007/s10295-016-1752-1758

Lin, X., Xia, Y., Wang, G., Xiong, Z., Zhang, H., Liu, F., et al. (2018). Lactococcus plantarum AR501 Alleviates the Oxidative Stress of D-Galactose-Induced Aging, Mice Liver by Upregulation of Nr2f-Mediated Antioxidant Enzyme Expression. *J. Food Sci.* 83, 1990–1998. doi: 10.1111/1750-3841.14200

Liu, Q., Hang, X., Liu, X., Tan, J., Li, D., and Yang, H. (2011). Cloning and characterization of superoxide dismutase and the catalase provides remarkable oxidative stress resistance in Lactobacillus rhamnosus. *J. Agric. Food Chem.* 59, 3851–3856.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author.

AUTHOR CONTRIBUTIONS

LA designed the experiments. LK and ZX performed the experiments and wrote the manuscript. XS, YX, HZ, and YY analyzed the results. All the authors read and approved the final manuscript.

FUNDING

This work was supported by the National Natural Science Foundation of China (Grant Nos. 31871776, 31972101, and 31771956), Natural Science Foundation of Shanghai (Grant No. 18ZR1426800), Shanghai Agriculture Applied Technology Development Program (Grant No. 2019-02-08-00-07-F01152), and Shanghai Engineering Research Center of Food Microbiology (Grant No. 19DZ2281100).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb.2020.579804/full#supplementary-material
cambialistic superoxide dismutases. *RSC Adv.* 5, 87876–87887. doi: 10.1039/c5ra13559a

Serata, M., Yasuda, E., and Sako, T. (2018). Effect of superoxide dismutase and manganese on superoxide tolerance in Lactobacillus casei strain Shirota and analysis of multiple manganese transporters. *Biosci. Microbiota. Food Health* 37, 31–38. doi: 10.12938/bmfh.17-018

Shu, M., Shen, W., Yang, S., Wang, X., Wang, F., Wang, Y., et al. (2016). High-level expression and characterization of a novel serine protease in Pichia pastoris by multi-copy integration. *Enzyme Microb. Technol.* 92, 56–66. doi: 10.1016/j.enzmictec.2016.06.007

Sorensen, K. I, Curic-Bawden, M., Junge, M. P., Janzen, T., and Johansen, E. (2016). Enhancing the Sweetness of Yoghurt through Metabolic Remodeling of Carbohydrate Metabolism in Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus. *Appl. Environ. Microbiol.* 82, 3683–3692. doi: 10.1128/AEM.00462-16

Wang, J., Xiong, Z., Yang, Y., Zhao, N., and Wang, Y. (2014). Significant expression of a Chinese scorpion peptide, BmK1, in *Escherichia coli* through promoter engineering and gene dosage strategy. *Biotechnol. Appl. Biochem.* 61, 466–473. doi: 10.1002/bab.1194

Xiong, Z., Kong, L. H., Lai, P. F., Xia, Y. J., Liu, J. C., Li, Q. Y., et al. (2019a). Comparison of gal-lac operons in wild-type galactose-positive and -negative Streptococcus thermophilus by genomics and transcription analysis. *J. Ind. Microbiol. Biotechnol.* 46, 751–758. doi: 10.1007/s10295-019-02145-x

Xiong, Z., Kong, L. H., Lai, P. F., Xia, Y. J., Liu, J. C., Li, Q. Y., et al. (2019b). Genomic and phenotypic analyses of exopolysaccharide biosynthesis in Streptococcus thermophilus S-3. *J. Dairy Sci.* doi: 10.3168/jds.2018-15572

Xu, Z., Guo, Q., Zhang, H., Wu, Y., Hang, X., and Ai, L. (2018). Exopolysaccharide produced by Streptococcus thermophilus S-3: molecular, partial structural and rheological properties. *Carbohydr. Polym.* 8, 1469–1472. doi: 10.1016/j.carbpol.2018.04.014

Zhai, Z., Yang, Y., Wang, H., Wang, G., Ren, F., Li, Z., et al. (2020). Global transcriptomic analysis of Lactobacillus plantarum CAUH2 in response to hydrogen peroxide stress. *Food Microbiol.* 87:103389. doi: 10.1016/j.fm.2019.103389

Zhu, T., Guo, M., Tang, Z., Zhang, M., Zhuang, Y., Chu, J., et al. (2009). Efficient generation of multi-copy strains for optimizing secretory expression of porcine insulin precursor in yeast Pichia pastoris. *J. Appl. Microbiol.* 107, 954–963. doi: 10.1111/j.1365-2672.2009.04279.x

Zuo, F., Yu, R., Feng, X., Khaskheli, G. B., Chen, L., Ma, H., et al. (2014). Combination of heterogeneous catalase and superoxide dismutase protects Bifidobacterium longum strain NCC2705 from oxidative stress. *Appl. Microbiol. Biotechnol.* 98, 7523–7534. doi: 10.1007/s00253-014-5851-z

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

© 2020 Kong, Xiong, Song, Xia, Zhang, Yang and Ai. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.