Profiling of biological and environmental risk factors in immunogenetic subgroups of chronic lymphocytic leukemia - Czech national study

Kamila Stranskaab,*, Karla Plevovaab,*, Hana Skuhrova Francovaa, Hana Skabrahovaa, Magdalena von Jagwitz-Biegnitzb, Lenka Radovaa, Anna Panovskaa, Stanislava Hrobkovaa, Yvona Brychtovaa, Renata Urbanovaa, Lukas Smolejg, Martin Simkovicd, Jana Zuchnickae, Lekaa Mohammovad, Martin Spacék, Jiri Mayera, Sarka Pospisilovab, Michael Doubekab

Aims. This is a nation-wide survey of chronic lymphocytic leukemia (CLL) patients at six large hematology centers in the Czech Republic. The aim was to identify specific populations, social, and health characteristics of CLL subgroups divided according to the immunogenetic features of their B cell receptors (BCRs) and clonality.

Patients and Methods. Questionnaires directed to specific health, social, and environmental conditions were collected in a cohort of 573 CLL patients. For these patients, immunoglobulin heavy chain gene rearrangements were also analyzed in order to gain information about their clonality, IGHV mutational status, and the presence of stereotyped BCRs. Data extracted from the questionnaires were analyzed statistically in the context of immunogenetic features of the cohort.

Results. There were no statistically significant differences in the data collected in the survey between patients with mutated and patients with unmutated IGHV. However, patients with oligoclonal CLL reported health conditions such as hypercholesterolemia, hypertension, herpes simplex, tumors, and also, separately, CLL in 1st degree relatives, more often than their monoclonal counterparts. In patients with stereotyped BCRs, we found more frequent alcohol consumption and gastric infections in subset #1 cases and frequent cholecystectomies and familial CLL in subset #2 cases.

Conclusion. To the best of our knowledge, this study is the first to investigate CLL immunogenetic features and clonality in the context of epidemiological data. We reported statistically significant associations suggesting the influence of certain health and social conditions on a number of clonal populations expanding in CLL and also on characteristic BCR features, especially stereotypy.

Key words: chronic lymphocytic leukemia, B-cell receptor, clonality, questionnaire, patient history, biological risk factor

Received: May 9, 2019; Revised: August 30, 2019; Accepted: September 4, 2019; Available online: September, 26, 2019
https://doi.org/10.5507/bp.2019.046
© 2020 The Authors; https://creativecommons.org/licenses/by/4.0/

INTRODUCTION

Chronic lymphocytic leukemia (CLL) is characterized by extraordinary heterogeneity in clinical presentation, disease course and molecular features of malignant B cells. Many factors influence disease onset and course, some of which are currently used as prognostic or predictive markers. These involve specific chromosomal abnormalities, protein expression levels, gene mutations, epigenetic changes, microRNA deregulation, or molecular features of immunoglobulin (IG) gene rearrangements. In addition to cell-intrinsic features, microenvironment also represents a prominent factor in disease development. Since CLL is a clonal disease of mature B cells, each case can be described by a unique set of IG rearrangements that encode for the B-cell receptor (BCR). In a clinical setting, somatic hypermutation load in the IG heavy chain variable region (IGHV) is routinely examined as this reliably divides patients into two prognosti-
cally distinct groups2,11. Antigen stimulation is generally accepted as a prerequisite for the expansion of clonal B-cell populations. The striking degree of BCR sequence similarity observed between unrelated cases in one-third of patients38 suggests promoting pressure leading to CLL clone selection caused by a shared set of antigen epitopes. In this context, various antigens/epitopes recognized by CLL BCRs have been described. Most of them are auto-antigens presented during apoptosis and inflammation17,19, or surface antigens of stromal cells20,23 and B cells22 but several exogenous bacterial, viral, and fungal antigens have been proposed as well19,23,26. In addition to that, CLL BCRs have been shown to interact in BCR-binding epitopes within Ig heavy and light chain, enabling autonomous BCR signaling27,29. Of note, CLL BCRs with mutated IGHV and those with unmutated IGHV differ in the level of their responsiveness to stimulation, with mutated BCRs showing reduced activation of the signaling response, and also in interactions with antigens, with unmutated BCRs being more polyreactive and more frequently binding autoantigens15,29,30. Furthermore, despite the generally monoclonal nature of the disease, CLL comprising several leukemic clones with different BCRs can be observed in up to a quarter of CLL cases, depending on the detection method used31-33. Expansion of multiple clones in such cases raises the question of whether these clones might proliferate upon chronic stimulation by antigens present in a case.

In line with molecular observations, epidemiological studies showed that prior to diagnosis, CLL patients experience some common infections more frequently than controls34-37. Increased risk of CLL development was also documented for several autoimmune diseases and chronic inflammatory diseases35,36. Notably, chronic stimulation in general (including both autoimmune diseases and chronic infections) in CLL is associated with unfavorable cytogenetics and unmutated IGHV (ref.39). CLL occurrence has also been connected with several occupational and environmental exposures36. Among first-degree relatives of CLL patients, there is an increased risk of the same malignancy or other lymphoproliferative diseases39. To our best knowledge, however, there has been only one epidemiologic study published to date that took into consideration immunogenetic features of the investigated CLL cases39 and no study taking the CLL clonality into account.

In this work, we employed a carefully designed questionnaires in a nation-wide survey among CLL patients of six large Czech hematological centers to reveal specific population, social, and health characteristics of subgroups of CLL patients distinguished primarily by their immunogenetic features and clonality. Our aim was to gain insight into antigen stimuli and other influences in individual CLL patients, that could be reflected in the selection and character of IG rearrangement of a leukemic clone.

METHODS

CLL patients

The study was performed on 573 consecutive CLL patients treated or monitored at one of the six large collaborating Czech hematological centers (University Hospital Brno, University Hospital Hradec Králové, General University Hospital Prague, University Hospital Olomouc, University Hospital Pilsen and University Hospital Ostrava) between years 2014–2018. All patients fulfilled the iwCLL/NCI diagnostic criteria for CLL (ref.43), and completed questionnaires and the results of IGH analysis were obtained from all of them. All blood samples and questionnaires were taken after written informed patient’s consent in accordance with the Declaration of Helsinki, under protocols approved by the Ethical Committees of all involved institutions. Standard CLL-related clinical and laboratory parameters (age at diagnosis, sex, time to first treatment, overall survival, clinical stage at diagnosis, cytogenetic aberrations, TP53 mutation status) obtained from the Czech national CLL database CLLCLEAR, where all involved hematological centers contributed, were paired with respective questionnaires.

Analysis of clonal IGH rearrangements

Negative B lymphocyte separation, total RNA isolation, cDNA synthesis, and IGHV mutational status analysis by direct Sanger sequencing were performed for all patients involved in the study as previously described35,38. PCR/Sanger analysis was complemented by IGH fragment analysis and also by subcloning when necessary. Stereotyped BCRs were identified using ARResT/AssignSubsets tool46, enabling assignment to the 19 major stereotyped CLL subsets46.

Analysis of cytogenetic aberrations and TP53 mutations

The presence TP53 mutation was analyzed by Sanger sequencing47 and/or next-generation sequencing48. The hierarchical classification of four common cytogenetic aberrations1 was analyzed by fluorescence in situ hybridization as described elsewhere49,50.

Questionnaires

Questionnaires were filled in with the assistance of a clinician. They were designed to obtain information on basic characteristics of a patient (sex, age, date of birth), social and work history (marital status, number of children, living alone, profession), alcohol consumption and cigarette smoking, personal medical history (metabolic diseases, cardiovascular and respiratory diseases, chronic infections, autoimmune diseases and rheumatic disorders, allergies, surgical history, oncological diseases), and family history (oncological and autoimmune diseases). Most questions on basic patient characteristics and social and work history were open-ended. The rest of the questions had standardized closed-ended answers, either dichotomous (yes/no) with space for specification, or polytomous (alcohol drinking: never, occasionally, regularly; smoking: yes, no, stop-smoker). The questionnaire form is provided in the Supplementary material.
Statistics

Clinical characteristics and data from collected questionnaires were compared between the cohorts of monoclonal CLL and oligoclonal CLL, and their subgroups based on the IGHV mutational status; the most numerous subsets of stereotyped BCRs were compared to a respective monoclonal subgroup (with either mutated, or unmutated IGHV; the exception was the subset #2, which we compared to both monoclonal subgroups separately and also to overall monoclonal cohort, as it contains both mutated and unmutated cases): The two-tailed Mann-Whitney U test and the Kruskal-Wallis test followed by the Dunn post hoc test were used to compare age at diagnosis; log-rank (Mantel-Cox) test and the Wald test were used for the number of children; all other categories were tested by two-tailed Fisher’s exact test. Value $P<0.05$ was considered as a threshold for statistical significance in all comparisons. All analyses were performed in R.

RESULTS

Composition of the cohort and immunogenetic findings

In total, 573 CLL patients, from which both filled questionnaires and IGHV analysis results were collected, were included in the study. The cohort was composed of 343 men and 230 women, with median age at diagnosis 63.6 years (range 33.2–90.3 years). Median TTFT of the cohort was 47.4 months, median OS was 269.6 months. Basic characteristics of the cohort are summarized in Table 1. Three hundred and twenty-two (322) patients filled the questionnaire before first treatment. 229 patients after it.

Analysis of the clonal IGH rearrangements divided patients into several subgroups: whereas 518 patients (90.4%) had a monoclonal form of the disease, in 55 patients (9.6%) more than one clone was detected. Two hundred thirty-nine (239) monoclonal patients had their IGHV mutated (monoM), and 279 unmutated (monoU). In the oligoclonal group of patients, 18 had concordantly mutated clones (oligoM), 16 concordantly unmutated (oligoU), and the remaining 21 patients had coexisting clones with discordant IGHV mutational status (oligoD).

Specific health conditions are frequent in oligoclonal CLL

In the next step, we compared questionnaire findings between monoclonal and oligoclonal CLL cases (Table 2, Supplementary Table 2). No statistically significant differences in clinical parameters of the groups were noted with the only exception of patient age at diagnosis – oligoclonal CLL cases were typically older (median age at diagnosis 65.7 vs 63.3 years, $P=0.03577$). Interestingly, several health conditions were more frequent in oligoclonal cases. Patients with oligoclonal CLL more often reported hypercholesterolemia ($P=0.0047$), hypertension ($P=0.01442$), herpes simplex ($P=0.33195$), and tumors in 1st degree family relatives ($P=0.03278$) - the latter retained statistical significance even when limited to CLL only ($P=0.02104$).

When categorized according to the IGHV mutational status, as expected, oligoM and monoU cases showed similar clinico-biological behavior to their monoclonal counterparts. Considering the questionnaire data, oligoM cases featured increased frequency of non-smokers compared to oligoU group ($P=0.0209$), and compared to both monoU and monoM groups they frequently reported hypertension ($P=0.025; P=0.0249$) and hematological diseases in family ($P=0.0347; P=0.0402$; when limited to CLL: $P=0.0312; P=0.079$). In oligoU group there were no significant differences compared to both monoU and monoM. Patients from oligoD group reported hypercholesterolemia the most often among all other groups tested (vs monoM $P=0.00084$; vs monoU $P=0.00007$; vs oligoM $P=0.0549$; vs oligoU $P=0.0233$).

Stereotyped CLL subsets are associated with specific medical conditions

We also investigated whether the presence of stereotyped BCRs associates with specific biological features in the tested cohort. Subset #1 patients more often reported occasional alcohol consumption ($P=0.02749$) and less abstinence ($P=0.01379$) compared to the rest of monoU CLL. Interestingly, this observation was accompanied by more chronic infections of the digestive system, in-
Table 1. Basic clinico-biological characteristics of the cohort.

	all	mono	oligo	monoU	monoM	oligoU	oligoM	oligoD	s1	s2										
	N	%	N	%	N	%	N	%	N	%										
Cases	573		518		55		279		239											
Age at dg [y]	63.6		63.3		65.7		64.0		62.7											
Male/female ratio	1.49		1.50		1.39		1.79		1.23											
TTFT [mo]	47.4		47.2		62.3		23.0		97.0											
Stage at dg (Rai):																				
low risk	181	44.1 %	161	43.3 %	20	53 %	69	33.5 %	92	55.4 %										
intermediate risk	185	45.1 %	170	45.7 %	15	39 %	105	51.0 %	65	39.2 %										
high risk	44	10.7 %	41	11.0 %	3	8 %	32	15.5 %	9	5.4 %										
Hierarchical FISH:																				
del(13q)	218	39.6 %	198	39.7 %	20	39 %	66	24.8 %	132	56.7 %										
normal	134	24.4 %	121	24.2 %	13	25 %	61	22.9 %	60	25.8 %										
trisomy 12	70	12.7 %	63	12.6 %	7	14 %	40	15.0 %	23	9.9 %										
del(11q)	94	17.1 %	85	17.0 %	9	18 %	74	27.8 %	11	4.7 %										
del(7p)	34	6.2 %	32	6.4 %	2	4 %	25	9.4 %	7	3.0 %										
Tp53 mutations at dg (>10%)	31	6.6 %	28	6.5 %	3	8 %	20	8.3 %	8	4.3 %	1	8 %	1	8 %	1	7 %	3	19 %	1	7 %
Tp53 mutations overall (>0.2%)	94	24.7 %	87	25.4 %	7	19 %	67	33.7 %	20	13.9 %	4	33 %	2	15 %	1	8 %	5	36 %	3	25 %

mono – monoclonal CLL; oligo – oligoclonal CLL; U – unmutated IGHV; M – mutated IGHV; D – discordant hypermutation status between coexisting clones; s1 – stereotyped BCR subset #1; s2 – stereotyped BCR subset #2; N – number of cases in a category; dg – time of diagnosis.
Table 2. Results of the statistical analysis - \(P \) values; only categories with statistically significant results and only statistically significant \(P \) values are shown. Grey shading shows the comparisons where a group B has shorter TIFT / OS, higher age at dg, or higher incidence of a tested feature. For detailed information about all categories tested see Supplementary Tables 1 and 2.

Group A:	mono	monoM	oligo	oligoM	oligoU	oligoD	oligoD	s1	s2	s2	s2	s1	s3	s14	s99	s202		
Group B:	n.s.	n.s.	<0.0001	0.0035	0.00025	n.s.	n.s.	0.00627	0.0455	n.s.	n.s.	0.02977	n.s.	<0.00001	n.s.	n.s.	n.s.	n.s.
TIFT	n.s.	n.s.	<0.00001	n.s.	n.s.	n.s.	n.s.	0.00047	n.s.									
Age at dg	0.03577	0.00888	n.s.	n.s.	n.s.	n.s.	0.00515	n.s.	n.s.	0.04081	n.s.	0.01351	n.s.	n.s.	n.s.	0.04035	n.s.	0.3105
Male sex	n.s.	0.0477	n.s.															
Low risk Rai stage	n.s.	0.00003	n.s.															
Intermediate risk Rai stage	0.0278	n.s.																
High risk Rai stage	n.s.	0.00239	n.s.															
del(17p)	n.s.	0.00524	n.s.															
del(11q)	n.s.	<0.00001	n.s.	0.00336	n.s.	0.0102	n.s.	0.00365	n.s.	0.0493	n.s.							
Trisomy 12	n.s.	0.02417	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.										
del(11q)	n.s.	<0.00001	n.s.	0.00229	n.s.	0.0183	n.s.											
TP53 mut at dg (>10%)	n.s.																	
TP53 mut at dg (>0.2%)	0.02	n.s.																
TP53 mut overall (>10%)	0.00296	n.s.																
TP53 mut overall (>0.2%)	0.00003	n.s.																
Living alone	n.s.																	
Children born - women only	n.s.																	
Non-smokers	n.s.	n.s.	0.0209	n.s.	0.0375	0.0112	n.s.											
Alcohol abstinence	n.s.																	
Alcohol occasionally	0.01442	n.s.	0.025	0.249	n.s.													
High blood pressure	n.s.	n.s.	n.s.	0.0084	0.0007	0.0233	n.s.											
Low blood pressure	n.s.																	
Hypercholesterolemia	n.s.																	
Herpes simplex	n.s.																	
Gastritis, stomach ulcers	n.s.																	
Cholecystectomy	n.s.																	
Tonsillectomy/appendectomy	n.s.																	
Parents/siblings with tumor	0.04803	n.s.																
Tumor in 1st degree relatives	0.03278	n.s.																
Hematooncology disease in 1st degree relatives	n.s.																	
CLL in 1st degree relatives	0.02104	n.s.																

n.s. = not significant; n.a. = not assessed due to zero number of positive cases.
cluding gastritis and stomach ulcers in subset #1 patients ($P=0.01047$).

Subset #2 patients tended to undergo cholecystectomies more often than other CLL patients (vs all mono $P=0.04371$; vs monoU $P=0.0423$; vs monoM $P=0.0905$). They also had a high prevalence of CLL among their relatives (vs all mono $P=0.02803$; vs monoU $P=0.2018$; vs monoM $P=0.06327$).

In less abundant CLL stereotyped subsets in our cohort, we identified the following differences: Four of 5 subset #202 patients reported living alone ($P=0.00523$), the same number reported hypercholesterolemia ($P=0.03671$), and albeit non-significant, all cases of this subset reported hypertension ($P=0.06651$). All patients of subset #99 were women ($P=0.01588$). Three out of the 4 reported rheumatic disorders (not significant: $P=0.05002$); significant differences were observed in high blood pressure with 2 out of the 4 patients reporting hypotension ($P=0.0296$) and none of them hypertension ($P=0.04052$). All cases of subset #14 reported tonsilectomies and/or appendix surgery ($P=0.0308$). No statistically significant difference in patient history data was observed for stereotyped subset #3.

DISCUSSION

In the present study, we aimed to elucidate which environmental, lifestyle, health and other factors might influence CLL clonal selection with respect to specific features of CLL BCRs. For this purpose, we surveyed 573 CLL patients monitored in six large hematology centers across the Czech Republic. The distributed questionnaire contained mostly questions with dichotomic answers to facilitate easy responding, and afterwards, straightforward processing of the data. Nevertheless, during the extraction of data from the questionnaires, we faced issues caused by question misunderstanding or inadequate knowledge of patients’ and their family members’ health conditions, resulting in a potential burden of subjective responses which we tried to reduce by further investigation of patients’ clinical records and direct surveying the patients and their accompanying relatives. Furthermore, some questions were eventually excluded from the final analysis as we did not collect enough valid data. This issue mainly concerned patient vaccination and childhood illnesses as these were the categories which patients mostly did not remember. Still we believe that our study has provided valuable insight into the real world CLL population and their native environment.

In the published data it is widely appreciated that specific environmental stimuli, social habits, and health conditions are present in CLL patients with increased occurrence compared to healthy age-matched controls. On the other hand, to our best knowledge, no study has been published that would investigate the correlation of patient CLL immunogenetic features of their clonotypic BCR with patient history data. There are a handful of studies which touched upon a comparison of IGHV mutated and unmutated CLL subgroups. A similar study focusing on CLL clonality and the presence of stereotyped BCR subsets has not been published to date. In this respect our study attempts to fill the gap in the current knowledge about CLL clonal selection and onset.

The whole collected cohort was representative of the general CLL population. In monoclonal CLL cases surveyed in this study we observed all differences in clinical and laboratory parameters that are expected between IGHV mutated and unmutated subgroups. Considering questionnaire data obtained for the subgroups we did not find any statistically significant differences. We observed only a weak, statistically insignificant association between unmutated IGHV and the occurrence of autoimmune diseases. This association is partly in agreement with observation by Vanura et al. (ref. 2) who found increased frequency of autoimmune diseases in female CLL patients with unmutated IGHV. Analysis of larger cohort would be needed to confirm the association. Nevertheless, overall, our findings indicate that extrinsic stimuli likely do not affect to a large extent whether IGHV mutated or unmutated clone would expand.

Further, we focused on clonality in our CLL cohort. We collected 55 CLL cases with oligoclonal disease (9.6% of the cohort) which was sufficient for statistical analysis of patient history data. In published studies, oligoclonal CLL has been observed in 2 to 24.4% of cases, depending on the detection method used. Prognostication of these oligoclonal cases may be challenging, especially in cases of coexisting clones with discordant IGHV mutational status, and in this area, only limited work has so far been reported. For the IGHV rearrangement analysis within the current study, we used Sanger sequencing which has typically lower detection rate of multiple rearrangements. From this point of view, capturing nearly 10% of oligoclonal cases in our cohort is quite high but still within an acceptable range. We did not find any differences concerning clinical and laboratory status between oligoclonal and monoclonal cases with the exception of age at diagnosis. This observation confirms the results of our previous studies on oligoclonal CLL (ref.). Admittedly there was a partial overlap between the cohorts but the difference in age stayed significant even after adding new cases from other workplaces included in the present cohort.

In agreement with other studies, we observed concordant IGHV mutational status of coexisting clones in almost two-thirds of oligoclonal cases (34/55; 62%). The remarkably high occurrence of concordant IGHV mutational status in oligoclonal cases suggests that coexisting clones experienced the same or similar influences affecting their development. According to the recent evidence, shared epitope reactivity or origin from a common cellular progenitor might be such influences. Here we found health conditions, such as hypercholesterolemia, hypertension, herpes simplex, and tumors in 1 st degree relatives, more frequent in oligoclonal cases than the monoclonal ones. Out of these only hypercholesterolemia was reported to precede a CLL diagnosis with a higher prevalence compared with control subjects. Particularly, the higher prevalence of CLL in the families...
of our oligoclonal CLL cases poses an interesting basis for further investigation of shared antigenic stimuli and possible genetic background in CLL families. An observation indicative of similar findings was also gained in monoclonal B lymphocytosis where a high occurrence of monoclonal cases was noted.

Finally, stereotyped BCR subsets were reported to share many clinico-biological features, for example, the presence of prognostically relevant gene mutations and cytogenetic aberrations, or clinical aggressiveness of the disease. Thus, we were interested in whether this clinical similarity might be reflected in common extrinsic influences. The number of stereotyped BCR subsets in our cohort precluded extensive analyses of this phenomenon, however, still for subsets #1 and #2 we collected enough cases and obtained results worth further interest. Namely, subset #1 patients more often reported occasional alcohol consumption compared to the rest of monoU CLL and also more chronic infections of the digestive system which can create an antigenic pressure due to chronic inflammation known mainly from other lymphoid malignancies. In subset #2 patients, we observed frequent cholecystectomies more often than in other CLL patients and high prevalence of CLL in their families. All these observations have not been reported previously and represent novel findings of our study. The last subset worth mentioning is subset #99 with unmutated IGHV1 rearrangements consisting exclusively of women wherein the majority of subjects reported rheumatoid diseases, markedly reminiscent of female patients with unmutated IGHV and autoimmune conditions reported elsewhere.

CONCLUSIONS

Thorough analysis of both biological features and clinical course in each CLL case facilitates a more personalized approach in patient care and enables the formation of homogeneous patients’ groups for answering many important clinical and research questions. To our knowledge, our study is the first to investigate CLL immunogenetic features and clonality in the context of patient history data. We reported several statistically significant associations suggesting the influence of certain health and social conditions on a number of clonal populations expanded in CLL. Specifically, patients with oligoclonal CLL reported hypercholesterolemia, hypertension, herpes simplex, and tumors (and separately also CLL) in 1st degree relatives more often than patients with monoclonal disease. With regards to stereotyped BCR, subset #1 patients often reported occasional alcohol consumption and chronic infections of the digestive system, and subset #2 patients underwent cholecystectomies more often than other CLL patients. Our study only refers to potential relationships of the given conditions to CLL immunogenetic subgroups, which needs to be validated further. However, it may form the basis for future epidemiological studies that would clarify conclusively the observed associations.

ABBREVIATIONS

CLL, Chronic lymphocytic leukemia; BCR, B cell receptor; mono, monoclonal; oligo, oligoclonal; Ig, Immunoglobulin; IGHV, Ig heavy chain variable region; U, Unmutated; M, Mutated; D, Discordant; TTFT, Time to first treatment; OS, Overall survival.

Acknowledgement: Supported by Research Grant AZV 15-30015A of Ministry of Health, Czech Republic. All rights reserved. The authors thank Barbara Vonkova for questionnaire translation and Francesco Daniel Muto for language editing throughout the whole manuscript.

Author contributions: KP, MD: designed questionnaires; LS, MSm, MSp, RU, JZ, LM, AP, SH, YB, JM, MD: provided samples, clinical data, and collected questionnaires; HSK: administered questionnaires; KS, MvJB: performed immunogenetic analyses; KS, LR: performed statistical analyses; KS, KP: wrote the manuscript; SP, MD: revised manuscript; KP, SP, MD: supervised the study.

Conflict of interest statement: The authors state that there are no conflicts of interest regarding the publication of this article.

REFERENCES

1. Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L, Dohner K, Bentz M, Lichter P. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 2000;343(26):1910-6.
2. Damle RN, Wasil T, Fais F, Ghiotto F, Valetto A, Lijnen SL, Buchbinder A, Budman D, Dittmar K, Klotz J, Lichtman M, Shulman P, Vinciguerra VP, Rai KR, Ferrarini M, Chiorazzi N. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 1999;94(6):1840-7.
3. Rassenti LZ, Huyhn L, Toy TL, Chen L, Keating MJ, Gribben JG, Neuberg DS, Flinn IW, Rai KR, Byrd JC, Kay NE, Greaves A, Weiss A, Kipps TJ. ZAP-70 compared with immunoglobulin heavy-chain gene mutation status as a predictor of disease progression in chronic lymphocytic leukemia. N Engl J Med 2004;351(9):893-901.
4. Robertson LE, Plunkett W, McConnell K, Keating MJ, McDonnell TJ. Bcl-2 expression in chronic lymphocytic leukemia and its correlation with the induction of apoptosis and clinical outcome. Leukemia 1996;10(3):456-9.
5. Ferreira PG, Jares P, Rico D, Gomez-Lopez G, Martinez-Trillos A, Villamor N, Ecker S, Gonzalez-Perez A, Knowles DG, Monlorg J, Johnson R, Quesada V, Djebali S, Papasaikas P, Lopez-Guerra M, Golomer D, Royo C, Cazuela M, Pinyol M, Clot G, Aymerich M, Rozman M, Kulis M, Tamborero D, Gouin A, Blanc J, Gut M, Gut I, Puente XS, Pisano DG, Martin-Subero JJ, Lopez-Bigas N, Lopez-Guerrero A, Valencia A, Lopez-Otin C, Campo E, Guigo R. Transcriptome characterization by RNA sequencing identifies a major molecular and clinical subdivision in chronic lymphocytic leukemia. Genome Res 2014;24(2):212-26.
6. Oscier DG, Rose-Zerilli MJ, Winkelmann N, de Castro D, Gomez B, Forster J, Parker H, Parker A, Gardiner A, Collins A, Els M, Cross NC, Catsovsky D, Strefford JC. The clinical significance of NOTCH1 and SF3B1 mutations in the UK LRF CLL4 trial. Blood 2013;121(3):468-75.
7. Rossi D, Rasi S, Spina V, Brusca R, Monti S, Ciardullo C, Deambrogio C, Khaihianian H, Serra R, Bertoni F, Forconi F, Laurenti L, Marasca R, Dal Bo M, Rossi PM, Bollini P, Nomdedeu J, Del Poeta G, Gatelli V, Pasqualucci L, Rabanad R, Foà R, Dalla-Favera R, Gaidano G. Integrated mutational and cytogenetic analysis identifies new prognostic subgroups in chronic lymphocytic leukemia. Blood 2013;121(8):1403-12.
8. Zenz T, Eichhorst B, Busch R, Denzel T, Habe S, Winkler D, Buhrer A, Eidelmann J, Bergmann M, Hopfnger G, Hensel M, Hallek M, Dohner H, Stilgenbauer S. TP53 mutation and survival in chronic lymphocytic leukemia. J Clin Oncol 2010;28(29):4473-9.
9. Rossi D, Cardillo C, Spina V, Gaidano G. Molecular bases of chronic lymphocytic leukemia in light of new treatments. Immunol Lett 2013;155(1-2):51-5.
10. Guieze R, Wu CJ. Genomic and epigenomic heterogeneity in chronic lymphocytic leukemia. Blood 2015;126(4):445-53.
11. Balatti V, Pekarky Y, Croce CM. Role of microRNA in chronic lymphocytic leukemia onset and progression. J Hematol Oncol 2015 Oct 18:5;8.
12. Bialikas P, Hadzidimitriou A, Sutton LA, Minga E, Agathangelidis A, Nicheltall M, Tsanouas A, Scarfo L, Davis Z, Yan XJ, Shanafelt T, Plevova K, Sandberg Y, Vojdani IV, Boudjoumsa T, Zenuon T, Chatzouli M, Chu CC, Veronese S, Gardiner A, Mansouri L, Smedby KE, Pedersen LB, van Lom K, Giudicelli V, Francova HS, Nguyen-Khac F, Panagiotidou P, Julianus G, Engel L, Angelastopoulos A, LeFranc MP, Facco M, Trentin A, Catherwood M, Monstillo M, Geisler CH, Langerak AW, Pospisilova S, Chiorazzi N, Osiar D, Jelenik DF, Darzentes N, Belesi C, Davi F, Rosenquist R, Ghia P, Stamatopoulos K. Clinical effect of stereotyped B-cell receptor immunoglobulins in chronic lymphocytic leukemia: a retrospective multicentre study. Lancet Haematol 2014;1(2):e74-84.
13. Hambardzumyan D, Gardiner A, Osiar DG, Stevenson FK. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 1999;94(6):1484-58.
14. Herishanu Y, Perez-Galan P, Liu D, Biancotto A, Pittaluga S, Vire B, Baxendale H, Dahle C, Willander K, Tobin G, Backman E, Soderberg I, Duhren-von Minden M, Ubelhart R, Schneider D, Wossning T, Bach MP, Buchner M, Hofman D, Surova E, Follo M, Kohler F, Wardeman H, Zirlik K, Veelken H, Jumaa H. Chronic lymphocytic leukemia is driven by antigen-independent cell-autonomous signalling. Nature 2012;489(7415):309-12.
15. Duhren-von Minden M, Ubelhart R, Schneider D, Wossning T, Bach MP, Buchner M, Hofman D, Surova E, Follo M, Kohler F, Wardeman H, Zirlik K, Veelken H, Jumaa H. Chronic lymphocytic leukemia is driven by antigen-independent cell-autonomous signalling. Nature 2012;489(7415):309-12.
16. Guieze R, Wu CJ. Genomic and epigenomic heterogeneity in chronic lymphocytic leukemia. Blood 2015;126(4):445-53.
17. Agathangelidis A, Darzentes N, Hadzidimitriou A, Brochet X, Murray MP, Langerak AW, Osiar DG, Stamatopoulos K, Ghia P, Degano M. Distinct homotypic B-cell receptor interactions shape the outcome of chronic lymphocytic leukemia. Nat Commun 2017;8:15746.
18. Herve M, Xu K, Ng YS, Wardeman H, Albesiano E, Messmer BT, Chiorazzi N, Meffre E. Unmutated and mutated chronic lymphocytic leukaemias derive from self-reactive B cell precursors despite expressing different antibody reactivity. J Clin Invest 2005;116(6):1636-43.
19. Seiler T, Woelfle M, Yacopoulova S, Catera R, Li W, Hatzi K, Moreno C, Torres M, Paul S, Dohner H, Stilgenbauer S, Kaufman MS, Kolitz JE, Allen SL, Rai KR, Chu CC, Chiorazzi N. Characterization of structurally defined epitopes recognized by monoclonal antibodies produced by chronic lymphocytic leukemia B cells. Blood 2009;114(17):3615-24.
20. Brazdilova K, Plevova K, Skuhrova Francova H, Kockova H, Borsky A, Vojdjan IV, Boudjoumsa T, Duhren-von Minden M, Schneider D, Tasdogan A, Alkhatib A, Agathangelidis A, Ntoufa S, Chiorazzi N, Jumaa H. Stereotyped B-cell receptor immunoglobulins in chronic lymphocytic leukaemia: the InterLymph Non-Hodgkin Lymphoma Collaborative Group. Haematologica 2017;102(10):e394-6.
21. Guieze R, Wu CJ. Genomic and epigenomic heterogeneity in chronic lymphocytic leukemia. Blood 2015;126(4):445-53.
22. Brazdilova K, Plevova K, Skuhrova Francova H, Kockova H, Borsky A, Vojdjan IV, Boudjoumsa T, Duhren-von Minden M, Schneider D, Tasdogan A, Alkhatib A, Agathangelidis A, Ntoufa S, Chiorazzi N, Jumaa H. Stereotyped B-cell receptor immunoglobulins in chronic lymphocytic leukaemia: the InterLymph Non-Hodgkin Lymphoma Collaborative Group. Haematologica 2017;102(10):e394-6.
23. Hambardzumyan D, Gardiner A, Osiar DG, Stevenson FK. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 1999;94(6):1484-58.
24. Herishanu Y, Perez-Galan P, Liu D, Biancotto A, Pittaluga S, Vire B, Baxendale H, Dahle C, Willander K, Tobin G, Backman E, Soderberg I, Duhren-von Minden M, Ubelhart R, Schneider D, Wossning T, Bach MP, Buchner M, Hofman D, Surova E, Follo M, Kohler F, Wardeman H, Zirlik K, Veelken H, Jumaa H. Chronic lymphocytic leukemia is driven by antigen-independent cell-autonomous signalling. Nature 2012;489(7415):309-12.
25. Minic C, Gounari M, Ubelhart R, Scarfo L, Duhren-von Minden M, Schneider D, Tasdogan A, Alkhatib A, Agathangelidis A, Ntoufa S, Chiorazzi N, Jumaa H. Stereotyped B-cell receptor immunoglobulins in chronic lymphocytic leukaemia: the InterLymph Non-Hodgkin Lymphoma Collaborative Group. Haematologica 2017;102(10):e394-6.
26. Brazdilova K, Plevova K, Skuhrova Francova H, Kockova H, Borsky A, Vojdjan IV, Boudjoumsa T, Duhren-von Minden M, Schneider D, Tasdogan A, Alkhatib A, Agathangelidis A, Ntoufa S, Chiorazzi N, Jumaa H. Stereotyped B-cell receptor immunoglobulins in chronic lymphocytic leukaemia: the InterLymph Non-Hodgkin Lymphoma Collaborative Group. Haematologica 2017;102(10):e394-6.
27. Duhren-von Minden M, Ubelhart R, Schneider D, Wossning T, Bach MP, Buchner M, Hofman D, Surova E, Follo M, Kohler F, Wardeman H, Zirlik K, Veelken H, Jumaa H. Chronic lymphocytic leukemia is driven by antigen-independent cell-autonomous signalling. Nature 2012;489(7415):309-12.
28. Brazdilova K, Plevova K, Skuhrova Francova H, Kockova H, Borsky A, Vojdjan IV, Boudjoumsa T, Duhren-von Minden M, Schneider D, Tasdogan A, Alkhatib A, Agathangelidis A, Ntoufa S, Chiorazzi N, Jumaa H. Stereotyped B-cell receptor immunoglobulins in chronic lymphocytic leukaemia: the InterLymph Non-Hodgkin Lymphoma Collaborative Group. Haematologica 2017;102(10):e394-6.
29. Hambardzumyan D, Gardiner A, Osiar DG, Stevenson FK. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 1999;94(6):1484-58.
30. Herishanu Y, Perez-Galan P, Liu D, Biancotto A, Pittaluga S, Vire B, Baxendale H, Dahle C, Willander K, Tobin G, Backman E, Soderberg I, Duhren-von Minden M, Ubelhart R, Schneider D, Wossning T, Bach MP, Buchner M, Hofman D, Surova E, Follo M, Kohler F, Wardeman H, Zirlik K, Veelken H, Jumaa H. Chronic lymphocytic leukemia is driven by antigen-independent cell-autonomous signalling. Nature 2012;489(7415):309-12.
31. Minic C, Gounari M, Ubelhart R, Scarfo L, Duhren-von Minden M, Schneider D, Tasdogan A, Alkhatib A, Agathangelidis A, Ntoufa S, Chiorazzi N, Jumaa H. Stereotyped B-cell receptor immunoglobulins in chronic lymphocytic leukaemia: the InterLymph Non-Hodgkin Lymphoma Collaborative Group. Haematologica 2017;102(10):e394-6.
32. Brazdilova K, Plevova K, Skuhrova Francova H, Kockova H, Borsky A, Vojdjan IV, Boudjoumsa T, Duhren-von Minden M, Schneider D, Tasdogan A, Alkhatib A, Agathangelidis A, Ntoufa S, Chiorazzi N, Jumaa H. Stereotyped B-cell receptor immunoglobulins in chronic lymphocytic leukaemia: the InterLymph Non-Hodgkin Lymphoma Collaborative Group. Haematologica 2017;102(10):e394-6.
Maffei R, Forconi F, Bertoni F, Zucca E, Agostinelli C, Cabras A, Lucioni M, Martini M, Magni M, Deaglio S, Ladetto M, Nomdedeu JF, Besson C, Ramponi A, Canzonieri V, Paulli M, Marasca R, Larocca LM, Carbone A, Pileri SA, Gattei V, Gaidano G. Stereotyped B-cell receptor is an independent risk factor of chronic lymphocytic leukemia transformation to Richter syndrome. Clin Cancer Res 2009;15(13):4415-22.

65. Sutton LA, Young E, Bialiakas P, Hadzidimitriou A, Moysiadis T, Plevova K, Rossi D, Kminkova J, Stalika E, Pedersen LB, Malcikova J, Agathangelidis A, Davis Z, Mansouri L, Scarfo L, Boudjoghra M, Navarro A, Muggen AF, Yan XJ, Nguyen-Khac F, Larrayoz M, Panagiotidis P, Chiorazzi N, Utoft Niemann C, Belessi C, Campo E, Strefford JC, Langerak AW, Oscier D, Gaidano G, Pospisilova S, Davi F, Ghia P, Stamatopoulos K, Rosenquist R. Different spectra of recurrent gene mutations in subsets of chronic lymphocytic leukemia harboring stereotyped B-cell receptors. Haematologica 2016;101(8):959-67.

66. Santambrogio E, Orsucci L. Helicobacter pylori and hematological disorders. Minerva Gastroenterol Dietol 2019 Apr 16. [Epub ahead of print] doi:10.23736/s1121-421x.19.02580-7.

SUPPLEMENTAL MATERIAL
The online version of this article (doi: 10.5507/bp.2019.046) offers supplemental material.