New measurement of the B_s^0 mixing phase and observation of suppressed B_s^0 decays at CDF

Louise Oakes, for the CDF Collaboration

Technische Universität München, Excellence Cluster Universe, Boltzmannstraße 2, D-85748
Garching, Germany
E-mail: loakes@fnal.gov

Abstract. Recent CDF measurements of B_s^0 decay parameters are presented. The CP violating phase β_s has been measured in $B_s^0 \to J/\psi \phi$ decays using 5.2 fb^{-1} integrated luminosity of CDF data. This updated β_s measurement includes the contribution of $B_s^0 \to J/\psi K^+ K^-$ or $B_s^0 \to J/\psi f_0$ events to the signal sample, where the f_0 and non-resonant $K^+ K^-$ are S-wave states. Additional improvements for this update include more than doubling the signal sample, improved selection and particle ID, and fully calibrated flavour tagging for the complete dataset. This measurement shows good agreement with the Standard Model expectation for β_s, with a significance of $<1\sigma$ for deviation from the expected value. In a related analysis, two suppressed B_s^0 decay channels, $B_s^0 \to J/\psi K^*0$ and $B_s^0 \to J/\psi K_s$, have been observed for the first time, in 5.9 fb^{-1} CDF data. Their branching fractions and relative branching ratios are reported. These newly observed channels have the potential for extraction of important CKM parameters including the phase β_s.

1. Introduction

The study of neutral B meson properties can provide important tests of the Standard Model (SM) including constraints on parameters of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. While the B^0 system has been thoroughly investigated by B factories, precision measurements in the B^0_s system are a more recent development, driven largely by the Tevatron experiments. The $B^0_s - \bar{B}^0_s$ system has the potential to yield indirect observations of New Physics (NP), through the presence of non-SM particles in second order weak interaction processes such as flavour mixing. The golden mode for this measurement is $B^0_s \to J/\psi \phi$. The $J/\psi \phi$ final state is common to B_s^0 and \bar{B}_s^0 decays; CP violation occurs in the mixing through interference between decays with and without B^0_s mixing. The phase, β_s, between these two amplitudes is predicted to be close to zero in the SM [1], so a significant excess would be a clear indication of evidence for NP in this channel.

The updated measurement is of particular interest as a published CDF $B_s \to J/\psi \phi$ analysis and a recent update showed deviations from the Standard Model expected value of approximately 2σ [2, 3], and a similar effect was seen in a recent combined Tevatron result [4].

The observation of previously unseen decays $B^0_s \to J/\psi K^*0$ and $B^0_s \to J/\psi K_s$ [5] is also of interest for flavour physics. The $J/\psi K_s$ final state is a CP odd eigenstate, which, with sufficient statistics, could yield a measurement of the pure $B_s^{0\text{H}}$ mass eigenstate lifetime. It has been suggested [6] that this channel could also be used to extract the unitarity angle γ. The decay $B^0_s \to J/\psi K^*0$ has an admixture of CP states for the final state, and could give a measurement
of the CP violating phase β_s analagously to the $B_0^0 \rightarrow J/\psi \phi$ channel. Branching ratios have been measured relative to the equivalent B^0 decays to the same final states.

2. New measurement of B_0^0 mixing phase

2.1. CP violation in $B_s \rightarrow J/\psi \phi$

The flavour eigenstates of B^0_s mesons in the SM are not the same as the mass eigenstates, leading to oscillations between $|B^0_s\rangle = (b s)$ and $|\bar{B}_s^0\rangle = (b \bar{s})$ via the second order weak interactions. The phenomenology of this weak mixing is described by the CKM matrix. The time evolution of the $B^0_s - \bar{B}_s^0$ system is approximated by the Schrödinger equation

$$i\frac{d}{dt} \begin{pmatrix} B^0_s(t) \\ \bar{B}_s^0(t) \end{pmatrix} = \mathcal{H} \begin{pmatrix} B^0_s(t) \\ \bar{B}_s^0(t) \end{pmatrix} = \begin{pmatrix} M_0 & M_{12} \\ M_{12}^* & M_0 \end{pmatrix} \begin{pmatrix} B^0_s(t) \\ \bar{B}_s^0(t) \end{pmatrix} - \frac{i}{2} \begin{pmatrix} \Gamma_0 & \Gamma_{12} \\ \Gamma_{12}^* & \Gamma_0 \end{pmatrix} \begin{pmatrix} B^0_s(t) \\ \bar{B}_s^0(t) \end{pmatrix}$$

(1)

where the M and Γ matrices describe the mass and decays of the system. The mass eigenstates can be obtained by diagonalising \mathcal{H}, giving:

$$|B^H_s\rangle = p|B^0_s\rangle - q|\bar{B}_s^0\rangle$$

(2)

and

$$|B^L_s\rangle = p|B^0_s\rangle + q|\bar{B}_s^0\rangle$$

(3)

where $|q/p| = 1$ in the case of no CP violation in mixing, as predicted in the $J/\psi \phi$ channel. The indices H and L label the heavy and light eigenstates respectively. The mass difference, Δm_s, between the heavy and light states is proportional to the frequency of B^0_s mixing and is approximately equal to $2|\Gamma_{12}|$. The mass eigenstates have a small but non negligible lifetime difference, which can be described in terms of the decay width difference

$$\Delta \Gamma_s = \Gamma_L - \Gamma_H \approx 2|\Gamma_{12}| \cos(2\phi_s)$$

(4)

where the CP violating phase is defined as $\phi_s = \text{arg}(-M_{12}/\Gamma_{12})$ and the mean decay width $\Gamma_0 = 1/\tau_s$. The SM predicts ϕ_s^{SM} to be of order 0.004, and it would be expected to increase in the presence of NP.

The full angular and time dependent equations for the measurement of $B^0_s \rightarrow J/\psi \phi$, including the addition of the S-wave KK component are detailed in [8].

The relative phase, β_s, between decays of a B^0_s meson to $J/\psi \phi$ directly, and after mixing to \bar{B}_s^0, is defined in the SM as

$$\beta_s^{SM} = \text{arg} \left(\frac{-V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*} \right) \approx 0.02$$

(5)

A New Physics phase, contributing to the weak mixing diagrams in the neutral B^0_s system would introduce a new physics phase ϕ_s^{NP} to β_s such that the measured value would be $2\beta_s = 2\beta_s^{SM} - \phi_s^{NP}$. The same NP phase would enhance ϕ_s, giving $\phi_s = \phi_s^{SM} + \phi_s^{NP}$. As both β_s^{SM} and ϕ_s^{SM} are predicted to be close to zero, the NP phase would dominate, and the measured phase would be $2\beta_s \approx -\phi_s \approx \phi_s^{NP}$. This approximation is valid given the current experimental resolution, but future high precision measurements may be able to distinguish between these quantities.

2.2. Experimental strategy

The decay $B^0_s \rightarrow J/\psi(\rightarrow \mu^+\mu^-)\phi(\rightarrow K^+K^-)$ is fully reconstructed from events which pass the di-muon trigger. A Neural Network (NN) selection procedure [9] is used to reconstruct ~ 6500 signal events in 5.2^{-1} of data. The NN is trained on background events from the B^0_s mass side bands, and MC signal events. The NN output for these training samples is shown in Figure 1.
For this updated analysis, rather than using a standard $S/\sqrt{S+B}$ figure of merit, the NN cut is optimised by selecting the cut value which minimises the statistical error on β_s in pseudo experiments. This, along with a full re-calibration of particle identification information from dE/dx and Time of Flight (TOF), has lead to a $B_s^0 \rightarrow J/\psi \phi$ signal yield of more than twice that in the previous 2.8 fb^{-1} data sample [3]. Figure 1 shows the $B_s^0 \rightarrow J/\psi \phi$ mass distribution after selection.

Figure 1. [left] B_s^0 mass distribution for CDF 5.2 fb$^{-1}$ data sample, fitted with a single Gaussian for the signal and a line to describe the background component. [right] NN training: output for signal and background events.

The final state is an admixture of CP odd and even states, which can be separated according to their angular momentum. The total angular momentum of the $J/\psi \phi$ state can be $L = 0, 1, 2$, and the CP of the state is $(-1)^L$, so the $L = 0, 2$ states are CP even, and the $L = 1$ state is CP odd. These CP states can be separated using the angular distribution of the four final state particles, the muons and kaons from the decay of the J/ψ and ϕ. The transversity basis [10] is used to define the angular dependence of the final state, where the relative directions of the four particles can be described in terms of three transversity angles, $\{\cos \theta_T, \phi_T, \cos \psi_T\}$ which are defined by the direction of the decaying J/ψ and ϕ mesons. In the transversity basis, the decay amplitude can be separated into three components which represent different linear polarisation states. The CP even states correspond to the vector mesons either being longitudinally polarised, or transverse to their direction of motion and parallel to each other (0, ||), for the CP odd state the mesons are transversely polarised with respect to their direction of motion, and perpendicular to each other (⊥). The amplitudes of these states are $A_0, A_||$ and A_\perp respectively. The use of the transversity basis to separate the CP odd and even states in this way means that the measurement is sensitive to the CP violating phase with or without flavour tagging information for the initial state.

The angular analysis is combined with time development and mass dependence in a multivariate likelihood fit. In the simplest case, the fit without flavour tagging information, the likelihood function has a four fold ambiguity under the transformations $\{\beta_s, \Delta \Gamma, \phi_||, \phi_\perp\} \leftrightarrow \{\pi/2 - \beta_s, -\Delta \Gamma, 2\pi - \phi_||, \pi - \phi_\perp\}$ and $\beta_s \leftrightarrow -\beta_s$, where the strong phases are defined in terms of the transversity amplitudes, $\phi_|| \equiv arg(A_|| A^*_0)$ and $\phi_\perp \equiv arg(A_\perp A^*_0)$.
2.3. Flavour tagging
By flavour tagging the initial B^0_s meson, the time development of B^0 and \bar{B}^0 states can be followed separately, which removes the insensitivity to the sign of β_s and $\Delta\Gamma$. This reduces the ambiguity to two points. The flavour of the decaying B meson is tagged using a combination of opposite side (OST) and same side (SST) tagging algorithms. The OST tags on the b quark content of a B meson from the same production vertex as the candidate B^0_s, the SST tags according to the s quark content of a kaon produced with the candidate.

For this updated analysis, the SST has been re-calibrated for the full sample on data through a B^0_s mixing measurement [11]. This technique uses the fact that a measured mixing amplitude of ≈ 1 means that the tagger accurately assesses its performance, and an amplitude >1 or <1 implies an under or over estimation of its power, respectively.

This calibration uses the modes:

$$
B^0_s \rightarrow D^- \pi^+, D_s^- \rightarrow \phi \pi^-, \phi \rightarrow K^+ K^-
$$

$$
B^0_s \rightarrow D^- \pi^+, D_s^- \rightarrow K^+ K^-, K^* \rightarrow K^+ \pi^-
$$

$$
B^0_s \rightarrow D^- \pi^+, D_s^- \rightarrow \pi^- \pi^- \pi^+
$$

The first channel accounts for about 50% of the statistics, the yield for this channel is shown in Figure 2.

The amplitude measured for this calibration is $A = 0.94 \pm 0.15$ (stat.) ± 0.13 (syst.), shown in Figure 2. The mixing frequency, $\Delta m_s = 17.79 \pm 0.07$ ps$^{-1}$, with statistical errors only, is in good agreement with the CDF published measurement.

![Figure 2](image.png)

2.4. S-wave KK component
It has been suggested [12] that a potential contamination of the signal ϕ meson by S-wave f_0 or non-resonant KK of $\sim 10\%$ could bias the measurement of β_s towards the SM value. This
latest CDF analysis includes the S-wave component in the full angular and time-dependent analysis. Both the f_0 and non-resonant KK components are considered flat in mass within the small selection window, and the ϕ meson mass is modelled by an asymmetric relativistic Breit Wigner; however this mass is integrated over in the fit function and is not used in the fit. The $J/\psi K^+ K^−$ or $J/\psi f_0$ final state is a pure CP odd state, and thus follows the time dependence of the CP odd component of the $B^0_s \rightarrow J/\psi \phi$ decay.

A preliminary study of the S-wave contamination of the ϕ meson signal was carried out by studying the invariant KK mass distribution, giving no strong indication of a large additional component, as shown in Figure 3.

![Figure 3](image_url)

Figure 3. The B^0_s mass is plotted (left) with a loose ϕ mass cut window, which allows contamination from $B^0 \rightarrow J/\psi K^*$ misreconstructed as $B^0_s \rightarrow J/\psi \phi$, this reflection component is fitted with a MC template, the signal B^0_s mass is fitted with a Gaussian and the combinatorial background with a line.

2.5. Results

It is currently not possible to quote a point value for the phase β_s, without adding external constraints, due to the symmetries in the likelihood function and the non-Gaussian error distribution for β_s. Instead the results are presented as frequentist likelihood contours; a profile-likelihood ratio ordering technique is used to ensure full coverage. Figure 4 shows the likelihood contours in the $\beta_s − \Delta \Gamma$ plane. The confidence interval for $\beta_s^{J/\psi \phi}$ at the 68% confidence level is $[0.02, 0.52] \cup [1.08, 1.55]$ and at the 95% confidence level, $[−\pi/2, −1.44] \cup [−0.13, 0.68] \cup [0.89, \pi/2]$.

The upper limit on the fraction of the S-wave KK (f_0) component in the $B^0_s \rightarrow J/\psi \phi$ signal was measured to be $<6.7\%$ at the 95% confidence level.

In the hypothesis of no CP violation ($\beta_s = 0$), the values of the B^0_s lifetime, $\tau_s = 1.53 ± 0.025$ (stat.)$± 0.01$ (syst.) ps, decay width difference $\Delta \Gamma_s = 0.075 ± 0.035$ (stat.)$± 0.01$ (syst.) ps$^{-1}$, the transversity amplitudes, $|A_\parallel|^2 = 0.231 ± 0.014$ (stat.)$± 0.015$ (syst.) and $|A_\perp|^2 = 0.524 ± 0.013$ (stat.)$± 0.015$ (syst.) and the strong phase $\phi_\perp = 2.95 ± 0.64$ (stat.)$± 0.07$ (syst.) are determined [13] from the flavour tagged fit.
3. Observation of suppressed B^0_s decays
The branching ratios for the suppressed decays $B^0_s \to J/\psi K^{*0}$ and $B^0_s \to J/\psi K_0$ are measured relative to the more common B^0 decays in the same channels, using the relation [5]:

$$
\frac{\mathcal{B}(B^0_s \to J/\psi K)}{\mathcal{B}(B^0 \to J/\psi K)} = A_{rel} \times f_d/f_s \times \frac{N(B^0_s \to J/\psi K)}{N(B^0 \to J/\psi K)}
$$

where K is K_0^0 or K^{*0}. A_{rel} is the relative acceptance measured from MC and f_d/f_s is the ratio of fragmentation fractions, taken from a combination of CDF measurements and PDG values.

3.1. Experimental technique
This analysis uses 5.9 fb$^{-1}$ integrated luminosity of CDF data collected with the di-muon trigger. From the enhanced sample of $J/\psi \to \mu\mu$ events, $B^0 \to J/\psi K^{*0}$ and $B^0 \to J/\psi K_0^0$ decays are reconstructed. The signal selection is optimised for these B^0 decays then applied to the B^0_s channel. Selection for the $J/\psi K^{*0}$ channel is carried out using rectangular cuts, optimised on the quantity $S/(1.5 + \sqrt{B})$. The $J/\psi K_0^0$ channel is selected using a Neural Network (NN) as the B^0_s contribution is expected to be smaller in this decay, making good combinatorial background suppression essential. In a binned likelihood fit, the B^0 mass distributions are modelled with a three Gaussian template taken from Monte Carlo, and an identical template is used for the B^0_s mass with the mean shifted appropriately.

3.2. Results
Figure 5 shows the invariant mass distributions for the $B^0_s \to J/\psi K_0$ and $B^0_s \to J/\psi K^{*0}$ channels. The $B^0_s \to J/\psi K_0$ channel is observed with a significance of 1.72σ over the null hypothesis, the $B^0_s \to J/\psi K^{*0}$ channel with 8.0σ.

The ratios of branching fractions for the B^0_s channels with respect to the reference B^0 decays are:

$$
\frac{\mathcal{B}(B^0_s \to J/\psi K^{*0})}{\mathcal{B}(B^0 \to J/\psi K^{*0})} = (0.062 \pm 0.009 \text{ (stat.)} \pm 0.025 \text{ (syst.)} \pm 0.008 \text{ (frag.)})
$$
Both the CDF [3] and DØ [14] experiments have previously produced measurements of the $\text{B}^0_\text{s} \to J/\psi K^*$ component of the signal fraction in the fit. Additionally, results from the $\text{B}^0_\text{s} \to J/\psi K^*$ measurement from the CDF experiment shows good agreement with the Standard Model expected value, with a p-value of 44%, equivalent to a deviation of 0.8 σ.

These latest results benefit from an improved selection and particle ID to take advantage of the full available statistics, updated flavour tagging, and the inclusion of the S-wave $K K$ component of the signal fraction in the fit. Additionally, results from the β_s measurement include the world’s most precise single measurements of the B^0_s lifetime and decay width difference in the hypothesis of no CP violation.

The observation of two suppressed B^0_s decay channels opens up the possibility (in the case of sufficient statistics) of further measurements of CKM parameters, in particular the study of β_s in the decay $\text{B}^0_\text{s} \to J/\psi K^*$, and the potential to measure individually the CP odd $\text{B}^0_\text{s,0H}$ lifetime in the channel $\text{B}^0_\text{s} \to J/\psi K^*$. In the near future, each of the discussed measurements at CDF can be improved by doubling the data samples used, as the integrated luminosity delivered by the Tevatron has already surpassed 10 fb$^{-1}$.

References
[1] Bona, M. et al (UTfit Collaboration) arXiv:hep-ph.0803.0659
[2] T.Aaltonen et al (CDF collaboration) Phys. Rev. Lett. 100, 161802 (2008)
[3] The CDF collaboration, Public Note 9458

Figure 5. Invariant mass distribution, zoomed in signal region, for (left) $\text{B}^0_\text{s} \to J/\psi K^*0$ and (right) $\text{B}^0_\text{s} \to J/\psi K_s$.

$$\frac{\mathcal{B}(\text{B}^0_\text{s} \to J/\psi K^*_s)}{\mathcal{B}(\text{B}^0_\text{s} \to J/\psi K^*_0)} = (0.041 \pm 0.007 \text{ (stat.)} \pm 0.004 \text{ (syst.)} \pm 0.005 \text{ (frag.)})$$

From these, using the PDG values for the branching fractions of the reference B^0 decays, the absolute branching fractions for the B^0_s decays can be calculated as:

$$\mathcal{B}(\text{B}^0_\text{s} \to J/\psi K^0) = (3.5 \pm 0.6 \text{ (stat.)} \pm 0.4 \text{ (syst.)} \pm 0.4 \text{ (frag.)} \pm 0.1 \text{ (norm)}) \times 10^{-5}$$

$$\mathcal{B}(\text{B}^0_\text{s} \to J/\psi K^{*0}) = (8.3 \pm 1.2 \text{ (stat.)} \pm 3.4 \text{ (syst.)} \pm 1.0 \text{ (frag.)} \pm 0.4 \text{ (norm)}) \times 10^{-5}(8)$$

4. Conclusions
Both the CDF [3] and DØ [14] experiments have previously produced measurements of the B^0_s mixing phase β_s, independently and in a combined Tevatron result [4], which indicated a shift of about 2 σ from the Standard Model expectation. The new $\beta_s^{J/\psi}$ measurement from the CDF experiment shows good agreement with the Standard Model expected value, with a p-value of 44%, equivalent to a deviation of 0.8 σ. In the near future, each of the discussed measurements at CDF can be improved by doubling the data samples used, as the integrated luminosity delivered by the Tevatron has already surpassed 10 fb$^{-1}$.

References
[1] Bona, M. et al (UTfit Collaboration) arXiv:hep-ph.0803.0659
[2] T.Aaltonen et al (CDF collaboration) Phys. Rev. Lett. 100, 161802 (2008)
[3] The CDF collaboration, Public Note 9458
[4] http://tevbwg.fnal.gov/results/Summer2009_betas/
[5] The CDF collaboration, Public Note 10708 (2010)
[6] R. Fleischer, Eur. Phys. J. C 10, 299-306, (1999)
[7] A. Abulencia et al (CDF collaboration) *Phys. Rev. Lett.* 97, 242003 (2006)
[8] F. Azfar et al, *JHEP* 1011, 158 (2010), arXiv:1008.4283 (2010)
[9] M. Feindt, A Neural Bayesian Estimator for Conditional Probability Densities, arXiv:physics/0402093.
[10] A. S. Dighe, I. Dunietz and R. Fleischer, *Eur. Phys. J. C* 6, 647 (1999)
[11] The CDF collaboration, Public Note 10108
[12] S. Stone, L. Zhang, *Phys. Rev.* D 79, 074024 (2009), arXiv:0812.2832 (2009)
[13] The CDF collaboration, Public Note 10206 (2010)
[14] The DØ collaboration, DØ Conference Note 5933-conf