Electromagnetic K^+ production on the deuteron with hyperon recoil polarization

K. Miyagawaa, H. Yamamuraa, T. Martb, C. Bennholdc, H. Haberzettlc and W. Glöckled

aDepartment of Applied Physics, Okayama University of Science, 1-1 Ridai-cho, Okayama 700, Japan
bJurusan Fisika, FMIPA, Universitas Indonesia, Depok 16424, Indonesia
cCenter for Nuclear Studies, The George Washington University, Washington, D.C. 20052
dInstitut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum, Germany

Photo- and electroproduction processes of K^+ on the deuteron are investigated theoretically. Modern hyperon-nucleon forces as well as an updated kaon production operator on the nucleon are used. Sizable effects of the hyperon-nucleon final state interaction are seen in various observables. Especially the photoproduction double polarization observable C_z is shown to provide a handle to distinguish different hyperon-nucleon force models.

1. INTRODUCTION

Recent rigorous calculations of light hypernuclei \cite{1} have contributed interesting insight into low-energy properties of the YN interaction above the Λ threshold. However, no clear understanding of the YN interaction has emerged around the Σ threshold. Electro- and photoproduction processes of K^+ on light nuclei offer a unique possibility for studying the YN interaction in the continuum, especially near the Σ threshold. An inclusive $d(e, e'K^+)YN$ experiment has already been performed, and the data for $d(\gamma, K^+YN)$ and $^3\text{He}(\gamma, K^+Y)N$ are being analyzed at TJNAF.

We have analyzed the inclusive $d(\gamma, K^+)$ and exclusive $d(\gamma, K^+\Lambda(\Sigma))$ processes \cite{2}, and report here preliminary results of the electroproduction process $d(e,e'K^+)$. This study aims to investigate the coupled $\Lambda N - \Sigma N$ interaction in the final state and incorporates the modern YN interactions of the Nijmegen group, NSC97f \cite{3} and NSC89 which have been found to give a reasonable binding energy for the hypertriton. Kaon photoproduction on the deuteron is also important since it allows access to the elementary cross sections on the neutron, such as $\gamma + n \rightarrow K^+ + \Sigma^-$, in kinematic regions where final-state interaction effects are small.
2. PHOTOPRODUCTION

![Figure 1](image1.png)

Figure 1. Inclusive $d(\gamma, K^+)$ cross section as a function of kaon lab momentum P_K. The $K^+\Lambda N$ and $K^+\Sigma N$ thresholds are indicated by the arrows.

![Figure 2](image2.png)

Figure 2. Exclusive $d(\gamma, K^+\Lambda)$ cross section for lab momentum $P_K = 870$ MeV/c.

![Figure 3](image3.png)

Figure 3. Double polarization observable C_z for the reaction $d(\gamma, K^+\Lambda)$ at lab momentum $P_K = 870$ MeV/c.
Numerical results of the inclusive $d(\gamma, K^+)$ cross sections, using an updated production operator [4], are shown as a function of lab momentum P_K in Fig. 1. For the details of our theoretical formulation, we refer the reader to Ref. [2]. The incident photon energy is 1.3 GeV, while the outgoing kaon angle is fixed to 1 degree. The two pronounced peaks around $P_K = 945$ and 809 MeV/c are due to the quasifree scattering between photon and one of the nucleons. The results with the final state YN interaction NSC97f are compared to the PWIA results. Sizable FSI effects are seen around both Λ and Σ thresholds, and to a lesser degree at the two quasifree peak positions.

For the same E_γ and θ_K, the exclusive $d(\gamma, K^+\Lambda)n$ cross section and double polarization observable C_z at $P_K = 870$ MeV/c are shown in Figs. 2 and 3, respectively. Figures 4 and 5 depict these observables for $d(\gamma, K^+\Sigma^-)p$ at $P_K = 810$ MeV/c. As indicated in Fig. 1, the former value of P_K is close to the $K^+\Sigma N$ threshold, while the latter one corresponds to the Σ quasifree peak position. While the values for C_z in PWIA are almost 100%, the FSI results show dramatic deviations. Furthermore, the two YN forces of NSC97f and NSC89 become clearly distinguishable for this observable. Experimentally, measuring this observable involves using circularly polarized photons along with detecting the recoil polarization of the hyperon in the final state.

3. ELECTROPRODUCTION

Here we present first preliminary results for the electroproduction process $d(e, e'K^+)$. Two sets of results are shown in Figs. 6 and 7. The incident electron energy E_e and momentum transfer Q^2 in Fig. 6 is set to reproduce the conditions of the recent Hall C experiment at TJLAB [5]. As in the case of the photoproduction $d(\gamma, K^+)$, YN FSI effects are seen near both Λ and Σ threshold. However, in Fig. 6, the FSI has effects in a
Figure 6. Missing mass spectrum for the reaction $d(e,e'K^+)$. Results with the YN final state interaction NSC97f are compared to PWIA results.

Figure 7. Same as Fig. 6, but for $Q^2 = 0.20 \text{ (GeV/c)}^2$, $\theta_e = 17^\circ$.

wide range above the Σ threshold. Figure 7 shows a prominent enhancement around the Σ threshold which is not a simple threshold effect but is caused by a YN t-matrix pole in the complex momentum plane [6].

4. OUTLOOK

We investigate cross sections and hyperon polarization for the K^+ photoproduction on the deuteron, and find large hyperon-nucleon FSI effects in the double polarization observable C_z. Also, in the electroproduction, for suitable Q^2 values, cross sections show a prominent enhancement around the Σ threshold. A systematic analysis for a wide range of kinematics for both photo- and electroproduction processes is in progress. Future studies will investigate final-state interaction effects in kaon photo- and electroproduction on the $A=3$ system.

REFERENCES

1. K. Miyagawa et al., Few-Body Systems Suppl. 12 (2000) 324, nucl-th/0002035; see also E. Hiyama in these proceedings.
2. H. Yamamura et al., Phys. Rev. C 61 (1999) 014001.
3. Th. A. Rijken et al., Phys. Rev. C 59 (1999) 21, and references therein.
4. F.X. Lee et al., nucl-th/9907119; C. Bennhold et al., nucl-th/9909022.
5. J. Reinhold et al., Nucl Phys. A639 (1998) 197c.
6. K. Miyagawa et al., Phys. Rev. C 60 (1999) 024003.