Tumor and Constitutional Sequencing for Neurofibromatosis Type 1

Schuyler Tong, MD1; W. Patrick Devine, MD, PhD2,3; and Joseph T. Shieh, MD, PhD3,4

abstract

PURPOSE NF1 variants in tumors are important to recognize, as multiple mechanisms may give rise to biallelic variants. Both deletions and copy-neutral loss of heterozygosity (LOH) are potential mechanisms of NF1 loss, distinct from point mutations, and additional genes altered may drive different tumor types. This study investigates whether tumors from individuals with neurofibromatosis type 1 (NF1) demonstrate additional gene variants and detects NF1 second hits using paired germline and somatic sequencing. In addition, rare tumor types in NF1 may also be characterized by tumor sequencing.

MATERIALS AND METHODS Sequences of 529 cancer driver genes were analyzed in 6,381 tumors, yielding 391 NF1-mutated tumors in which NF1 LOH analysis was performed. Driver genes were evaluated by tumor type including malignant peripheral nerve sheath tumors and gliomas.

RESULTS NF1 LOH was seen in 133 of 391 tumor samples in the cohort. Individuals with NF1 had more prevalent copy-neutral LOH ($P < .0001$), suggesting somatic intrachromosomal recombination. Osteosarcoma in NF1 also had NF1 LOH and additional p53 alteration. NF1 second hit data from tumors were informative for inferring deleteriousness of missense variants that were conflicting in ClinVar, potentially helping to add to NF1 annotation. Although criteria for evaluating germline and somatic variants are different, deleterious effects on NF1 function may be shared.

CONCLUSION Sequencing of NF1-associated tumors demonstrated a spectrum of second hits in NF1 and the prevalence of copy-neutral LOH. Future work may be aimed at further understanding of LOH mechanisms and strategies to mitigate tumor risk.

JCO Precis Oncol 6:e2100540. © 2022 by American Society of Clinical Oncology
Creative Commons Attribution Non-Commercial No Derivatives 4.0 License

INTRODUCTION

Neurofibromatosis type 1 (NF1) is a common condition occurring in approximately 1 in 3,000 individuals.1 Individuals with NF1 have an increased risk for tumor development with a predilection for specific subtypes compared with those without.2,3 Some tumors, however, can be phenotypically similar. Malignant peripheral nerve sheath tumor (MPNST) is a well-known malignancy associated with NF1, but MPNST can also be unrelated to NF1.4 NF1 variants are seen in malignancies such as gliomas, but NF1 variants may also lead to tumors that are not classically described in NF1.5,6 Molecular characterization of tumors is therefore key to elucidating genetic origins underlying tumors. Loss of heterozygosity (LOH) occurs in NF1-related tumors and can occur via a deletion mechanism or through mitotic recombination, resulting in copy-neutral LOH.7,8 Copy-neutral LOH has been seen in manifestations associated with NF1 including dystrophic scoliosis, tibial pseudarthrosis, juvenile myelomonocytic leukemia, and glomus tumors, suggesting that the somatic change has widespread implications.9-13 Several unanswered questions remain, despite significant work in the field: What underlies the LOH observed? Are there strategies to mitigate second hits in NF1 or to understand the role of comutated genes? To characterize tumor-related genes in NF1-related tumors, large multigene sequencing platforms can be used to identify mutated NF1 and possible homozygosity, suggesting potential opportunities to identify NF1 loss and alterations in other oncogenes/tumor suppressors in tissue. If tumor sequencing and normal sequencing are performed simultaneously, variants detected can be reasonably identified in their sequence of occurrence.14-16 Applied to a cohort of tumors, such sequencing can yield variants, genes, and potentially mutation mechanisms underlying tumor pathophysiology, particularly in tumors with limited burden of pathogenic variants. The data may also help with inferring pathogenicity attributed to variants in tumor and germline.17-20 The study presents paired sequencing from samples from individuals with NF1, analyzes types of tumors

ASSOCIATED CONTENT

Appendix

Author affiliations and support information (if applicable) appear at the end of this article.

Accepted on April 11, 2022 and published at ascopubs.org/journal/ po on May 18, 2022:
DOI https://doi.org/10. 1200/PO.21.00540

JCO Precis Oncol 6:e2100540. © 2022 by American Society of Clinical Oncology

Creative Commons Attribution Non-Commercial No Derivatives 4.0 License

INTRODUCTION

Neurofibromatosis type 1 (NF1) is a common condition occurring in approximately 1 in 3,000 individuals.1 Individuals with NF1 have an increased risk for tumor development with a predilection for specific subtypes compared with those without.2,3 Some tumors, however, can be phenotypically similar. Malignant peripheral nerve sheath tumor (MPNST) is a well-known malignancy associated with NF1, but MPNST can also be unrelated to NF1.4 NF1 variants are seen in malignancies such as gliomas, but NF1 variants may also lead to tumors that are not classically described in NF1.5,6 Molecular characterization of tumors is therefore key to elucidating genetic origins underlying tumors. Loss of heterozygosity (LOH) occurs in NF1-related tumors and can occur via a deletion mechanism or through mitotic recombination, resulting in copy-neutral LOH.7,8 Copy-neutral LOH has been seen in manifestations associated with NF1 including dystrophic scoliosis, tibial pseudarthrosis, juvenile myelomonocytic leukemia, and glomus tumors, suggesting that the somatic change has widespread implications.9-13 Several unanswered questions remain, despite significant work in the field: What underlies the LOH observed? Are there strategies to mitigate second hits in NF1 or to understand the role of comutated genes? To characterize tumor-related genes in NF1-related tumors, large multigene sequencing platforms can be used to identify mutated NF1 and possible homozygosity, suggesting potential opportunities to identify NF1 loss and alterations in other oncogenes/tumor suppressors in tissue. If tumor sequencing and normal sequencing are performed simultaneously, variants detected can be reasonably identified in their sequence of occurrence.14-16 Applied to a cohort of tumors, such sequencing can yield variants, genes, and potentially mutation mechanisms underlying tumor pathophysiology, particularly in tumors with limited burden of pathogenic variants. The data may also help with inferring pathogenicity attributed to variants in tumor and germline.17-20 The study presents paired sequencing from samples from individuals with NF1, analyzes types of tumors
Individuals with neurofibromatosis type 1 (NF1) are at increased risk for tumor development. Multiple mechanisms may lead to biallelic inactivation that drives these tumors. This study analyzed somatic and germline samples to determine the landscape of variation and the spectrum of second hits in NF1.

Knowledge Generated

Data from multigene sequencing demonstrated that the most prevalent type of second hit in tumors from individuals with constitutional NF1 was copy-neutral loss of heterozygosity. NF1 variant annotation may benefit from analysis of paired normal-tumor data, including for osteosarcoma, a tumor rarely seen with NF1.

Relevance

Understanding of the mechanism of second hit acquisition in NF1 will be important for devising therapeutic and prophylactic strategies. With expanded use of tumor-normal sequencing, large amounts of data can be leveraged to understand pathogenesis and to interpret germline variants with conflicting or uncertain pathogenicity.

MATERIALS AND METHODS

Genetic Evaluation of Tumors

Tumors were evaluated from 2015 to 2021, including a total of 6,168 tumors. Genomic DNA was extracted from formalin-fixed, paraffin-embedded tissue. Capture-based next-generation sequencing was performed at the UCSF Clinical Cancer Genomics Laboratory using an assay (UCSF500) that targets the coding region of 529 cancer-related genes and selects introns from approximately 40 genes. Copy number variants were detected and visualized using Integrated Genome Viewer and Nexus Copy Number. Tumor samples contained at least 25% of tumor in samples with a standard quality read depth of 500x. Three hundred ninety-one tumors had a pathogenic or likely pathogenic (P/LP) NF1 variant including nonsense, frameshift insertion or deletion, and splice donor/acceptor variants, and these were reviewed manually and compared with COSMIC,20 ClinVar,21 and gnomAD.22 Missense variants were additionally annotated using several prediction tools including Combined Annotation-Dependent Depletion (CADD) scores.23 Matched tumor-normal samples were paired from tumor and peripheral blood or buccal swab including 130 cases with matched tumor and normal samples, including 21 cases with germline NF1 and 109 without germline NF1. Two hundred sixty-one cases were tumor-only submissions, and these tumors had NF1 variants without immediate germline information. Nineteen additional cases were added on the basis of clinically diagnosed NF1 cases or cases where another genetic test demonstrated a P/LP NF1 germline alteration. The median variant allele frequency (VAF) in tumor for NF1 germline cases was 0.77 ± 0.19. In addition to NF1, comutated genes were also required to be P/LP with interpretation on the basis of standard laboratory criteria. Comutated variants had a median VAF of 0.35 ± 0.20. The Cancer Genome Atlas (TCGA) was examined for variant and tumor type comparisons.23-25

Mutation/LOH

Data corresponding to NF1 status were obtained from medical and genetic testing and the laboratory reports. Cases were analyzed for LOH at NF1 (NM_001042492) and for other variants in any of the 529 genes. Copy-neutral LOH was assessed on the basis of the allelic ratio of polymorphic single nucleotide polymorphisms (SNPs) across 17q by the clinical laboratory team. The 133 cases that had LOH were categorized as LOH because of deletion or copy-neutral LOH, and these had higher median VAF compared with samples without LOH (P < .0001, Mann-Whitney U). Copy-neutral LOH status was determined according to technical laboratory guidance.26 The status was also verified by a second laboratory genetic review of allele frequency and copy number.

NF1 germline cases were also analyzed for somatic tumor missense NF1 variants; somatic variants were compared with ClinVar annotation. Eight missense variants in NF1 were identified for review; four variants in tumor-only samples could not be further analyzed. D2632G carries a likely pathogenic interpretation on the basis of one submission in ClinVar with a germline R192*; the variants were too far apart to determine phase. I2615V was not annotated in ClinVar and was seen in a tumor with copy-neutral LOH and a germline splice variant. G629R and S82F were second NF1 hits in tumor. The VAF in tumor for G629R and S82F was 0.27 and 0.82, respectively.
Data and Statistics

Genetic data were visualized using the ComplexHeatmap package in R. Analyses were performed using R version 4.0.3.

Ethics Declaration

This study was reviewed and approved by the University of California—San Francisco Institution Review Board (IRB, 20-33093). Informed consent was not required. It was not practicable to contact all the cases with tumors in this retrospective study. The research data were deidentified.

RESULTS

NF1 Alterations in Tumor Samples

Of 6,168 tumor samples, 391 tumors harbored P/LP NF1 variants. Forty tumors were from individuals with constitutional NF1. The nervous system and skin were the most common anatomic sites for the NF1-altered tumors (Appendix Tables A1 and A2). There were 369 unique coding variants leading to 294 protein alterations. 85.4% were nonsense, frameshift insertion/deletion, or splice acceptor/donor variants, and 11.7% were pathogenic missense variants. Recurrent mutated sites affected NF1 residues Y2285, n = 19, and F1247, n = 18, which we confirmed as recurrent sites in the TCGA database. One hundred sixty-two NF1 variants were not previously reported in variant databases.

Sequencing of Tumors from Individuals With NF1 Also Demonstrates Osteosarcoma

Tumors from individuals with NF1 included known tumor types, including MPNST, glioma, and gastrointestinal stromal cell tumor; however, a case of osteosarcoma was also observed. Osteosarcoma in individuals with NF1 has been reported infrequently (Table 1). Furthermore, sequencing of the osteosarcoma tumor demonstrated somatic copy-neutral LOH of NF1, in addition to somatic TP53 and NOTCH3 variants. The germline splice acceptor NF1 VAF was 0.48 in the germline and 0.82 in tumor, consistent with biallelic mutation in tumor.

Commutations seen in these tumors included CDKN2A/2B deletion (37.5% of cases), TP53 mutation (17.5%), and ATRX (12.5%). Three cases had PTEN pathogenic variants. One case that did not have an identifiable second NF1 variant had pathogenic variants in TP53 and PTEN. Few instances of pathogenic variants in genes downstream of NF1 in the RAS signaling pathway (PIK3CA, PTPN11, PIK3R1, and RAF1) were noted.

Copy-Neutral LOH is Common in Tumors From Individuals With NF1

Patterns of NF1 loss were observed including copy-neutral LOH and NF1 focal deletion/chromosomal loss. 76% of individuals with constitutional NF1 had tumors that displayed copy-neutral LOH, and 24% had loss/deletion. The results suggested a predominance of copy-neutral LOH in the NF1 cohort here. For tumors that did not have NF1 germline, 24% of tumors had copy-neutral LOH and 76% had copy loss—deletion (Table 2). Of 351 nongermline-altered NF1 tumors, 204 had a second hit documented. Small protein-altering NF1 variants represented the second hit in 13 of 38 germline cases, and 96 of 204 nongermline cases had two or more NF1 protein-altering variants without a copy number variant (P = .2, two-proportion z test).

TABLE 1. Reports of Patients With NF1 and Osteosarcoma

Year/Citation	Age, Years	Sex	NF1	Site of Osteosarcoma	Other Tumors	Treatment Notes for Other Tumors
201339	17	Male	+	R distal femur	None	NA
201330	17	Male	+	Femur	MPNST	s/p surgery
200931	37	Male	+	Distal femur	None	NA
200931	21	Male	+	Proximal humerus	None	NA
200931	34	Female	+	Proximal tibia	None	NA
200931	25	Female	+	Distal femur	Spindle cell	s/p chemotherapy, amputation
200632	29	Female	+	Proximal femur	MPNST	s/p chemotherapy, surgery
200233	50	Female	+	Ramus of left mandible	Parathyroid adenoma	NA

Abbreviations: MPNST, malignant peripheral nerve sheath tumor; NA, not available; s/p, status post.
TABLE 2. Patterns of Second Hit in NF1-Altered Tumors

Type of Second Hit	NF1 Germline Cases (n = 38), No. (%)	NF1 Nongermline Cases (n = 204), No. (%)
Copy-neutral LOHa	19 (48)	26 (13)
Loss—deletionb	6 (15)	82 (40)
Small protein-altering variantc	13 (37)	96 (47)

Abbreviations: LOH, loss of heterozygosity; NF1, neurofibromatosis type 1.

aTwo-sided \(P < .0001 \), two-proportion \(z \) test.
bTwo-sided \(P = .007 \), two-proportion \(z \) test.
cTwo-sided \(P = .9 \), two-proportion \(z \) test.

MPNST NF1-Altered and Non-NF1-Altered

MPNST was also analyzed, and LOH was examined (Fig 2). Eleven MPNSTs were observed; five had constitutional NF1, four did not have NF1 variants identified, and two were unknown. LOH was commonly observed in MPNST associated with constitutional NF1 (57% \(v \) 0% in non-NF1 MPNST). NF1 comutations included CDKN2A/2B deletion and TP53 mutation. Non-NF1 MPNST had one case with CDKN2A/2B deletion and one case with a TP53 structural rearrangement, in support of the role of these genes in MPNST.34,35 The PRC2 genes including EED and SUZ12 were sporadically altered, as has been described.36 Non–NF1-related MPNST did not have any recurrent variants. Three of the seven NF1-related MPNST cases lacked a second hit NF1.

Tumors From Individuals With NF1 Occur at Younger Age

Among NF1-altered tumors, we could compare tumors from individuals with constitutional NF1 germline versus those without. In individuals with germline NF1, tumors tended to have fewer pathogenic mutations compared with tumors from individuals who did not have germline NF1 (3.3 ± 1.4 pathogenic mutations versus 5.3 ± 3.7 pathogenic mutations). The mean age at which tumors were sent for sequencing was 22.7 ± 16.5 years for NF1 germline cases versus 51.9 ± 22.0 years. The total number of pathogenic mutations was not correlated with age in germline or somatic cases overall (\(P = .89 \)). Ki67 staining correlated with higher-grade tumors, but did not correlate with LOH status.

Second Hit Missense Variants in NF1 Tumors May Provide Support for Deleteriousness

Although the majority of NF1 variants are predicted to lead to loss of function, missense variants are more difficult to predict. In the context of an NF1-related tumor with relatively limited pathogenic comutations, somatic missense NF1 variants may represent a driver event or stochastic coincidence. For tumor missense variants found in combination with an NF1 germline variant, there were four somatic missense variants in the data. In agreement with ClinVar, G629D had multiple annotations of pathogenicity with a CADD score of 32, suggesting germline and tumor deleteriousness. The variant was seen in combination with a germline splice acceptor variant. Two other missense variants, D2632G and I2615V, were of unclear significance after similar analyses. S82F demonstrates conflicting evidence of pathogenicity in ClinVar although the two recent entries suggest that the variant is pathogenic. The S82F variant was seen in a tumor with a germline NF1 deletion and had a CADD score of 32. This missense variant with the germline deletion supports the pathogenic role of S82F. Should these variants be found as germline variants, they may similarly confer deleteriousness and be associated with tumor risk.

DISCUSSION

Previous large sequencing efforts with NGS technology of tumor cohorts have revealed germline variants; however, cases of NF1 were rare, with fewer than 10 cases in each of these studies.37-39 In this study, we present data on tumors...
from 40 individuals with NF1 profiled on a multigene sequencing platform. Past sequencing efforts on tumors in NF1 have described specific tumor types, such as atypical neurofibroma (ANF) and MPNST. CDKN2A/2B deletion appears to be as a molecular event differentiating ANF and MPNST, and biallelic deletions were more common in MPNST compared with ANF.36 TP53 variants have also been noted in MPNST, and in vivo data support a synergistic role for such mutations.34,35 More recently, the molecular landscape of glioma in individuals with NF1 has been described and often involves genetic alterations in TP53; also, lesions in CDKN2A/2B were noted to be prevalent.40 The cohort of NF1 tumors in this study further supports the importance of TP53 and CDKN2A/2B in the tumorigenesis.

LOH was prevalent, and our data from tumors in NF1 support that copy-neutral LOH is more common compared with deletion. Copy-neutral LOH is thought to involve mitotic recombination, a process that is known to occur in tumors but that may occur in the general population. Studies investigating the landscape of structural genomic variation in degradation have noted that copy-neutral uniparental disomy represented 48% of mosaic events detected in a control population with increasing prevalence with age and most common on chromosomes 9 and 14.41-43 80% of the events were telomeric on the p or q arm. Only three events were detected in NF1. In studies of NF1, mitotic recombination in NF1 tended to be centromeric; although copy-neutral LOH is likely seen in the general population, the specific location does not seem to mirror the profile in patients with NF1. The mechanism driving copy-neutral LOH has not been fully elucidated. Studies have suggested that BRCA2, DNA-protein kinase, and POLQ may suppress inter-homolog recombination although these findings were not specific to copy-neutral LOH at the NF1 locus.44 Biallelic inactivation of homologous recombination repair genes has further been linked to genome-wide LOH.45 Copy-neutral LOH has also been documented in tumor suppressors including TSC1/2, BRCA1/2, and TP53 in other tumors as well, emphasizing this mechanism in tumorigenesis.46,47

The tumor subtypes represented tumors commonly associated with NF1. Rare tumors such as osteosarcoma in NF1 are of interest as osteosarcoma has been reported in NF1 and can be challenging to treat.29-33 Of eight cases of osteosarcoma, two were postsurgery and chemotherapy at a site of a previous malignancy. None of the literature cases had genomic characterization of tumors to our knowledge. The DKFZ Pediatric Pan-Cancer collection of genomic characterization has 42 cases of osteosarcoma, but none of these have NF1 alteration. One study estimated an increased prevalence of osteosarcoma in individuals with NF1 compared with control; however, further data are needed to make further estimates.3 Therefore, the molecular data presented here may represent a unique report of NGS from osteosarcoma, NF1 alteration and those without.

Among cases of MPNST, two subcategories are evident: those with NF1 alteration and those without. TP53, EED, SUZ12, and CDKN2A2B deletions were seen in the data set. Furthermore, among NF1-altered MPNST, not all cases demonstrated a second hit in NF1. Compared with TCGA...
data, this study has a similar number of NF1-altered MPNST cases (8 of 11 vs 6 of 14 on TCGA). In the TCGA data set, 3 of 6 demonstrated two NF1 lesions. Previous analysis of germline and somatic variations in NF1 in MPNST revealed large deletions including the NF1 locus in 91% of their cohort. Their data set also had 2 cases with NF1 germline without evidence of a second hit.50 and early studies had identified TP53 loss in some cases that lacked a second NF1 hit.51 Although MPNST is a key risk lesion for patients with NF1, a second hit in NF1 is not always identified.

NGS may also contribute to the interpretation of NF1 variant deleteriousness. For example, missense variants can be challenging to annotate (eg, ClinVar has 293 conflicting and 3,106 VUS in NF1). The study here evaluated NF1 variants that occurred somatically as second hits in the context of germline NF1 variants. Could this information potentially be applied to the variant’s germline variant classification criteria? Current American College of Medical Genetics and Genomics classification allows for determination of pathogenicity of variants on the basis of functional studies.52 The increasing information from genomic studies of paired tumor and normal samples may represent an avenue of assessment of variants given a proper context, that is, if a change can be considered a potential driver and phenomena such as hypermutation are absent.

At this time, tumor-only testing is more common compared with paired germline and tumor testing, in part due to costs and insurance. Tumor-only testing has advantages but has limitations in terms of inferring germline status from VAF.53 The data presented here highlight another potential benefit of paired testing: improving variant interpretation of not only somatic but also corresponding germline variation.

This study has a number of limitations. As data are from a tertiary center, the cohort may be enriched for specific types of tumors or cases that may harbor certain types of genetic changes. Brain tumors represent the most common tumors in the data set, which could also affect the variants observed. Although the platform has a sequencing depth of > 500x, it is largely limited to coding regions, and therefore, intron or promoter variants that could affect the gene are not specifically detected. The resolution of copy number calling is also limited by probe density. NF1 variants were also unphased, which is a limitation to interpretation of small variants, eg, whether these are in cis or trans. Age in our study was time of panel sequencing, which may be delayed relative to surgical resection or diagnosis.

The results add to the data on NF1-altered tumors, particularly tumors that arise in the context of individuals with NF1. The sample size and analysis of LOH emphasize the importance of copy-neutral heterozygosity in these tumors. Osteosarcoma, a tumor type not traditionally thought to be NF1-related, appears to be mechanistically related to double hits in NF1. This tumor in addition to others reported in the cohort here shows a spectrum of second alterations in the context of NF1 germline that favor copy-neutral LOH rather than deletion in lesions with limited genetic variation. Future studies on paired normal tissue and tumor may be able to provide further guidance on mechanisms to target in potential therapeutic strategies.

AFFILIATIONS

1Division of Hematology/Oncology, Pediatrics, Benioff Children’s Hospital Oakland, University of California San Francisco, San Francisco, CA

2Department of Pathology, University of California San Francisco, San Francisco, CA

3Institute for Human Genetics, University of California San Francisco, San Francisco, CA

4Division of Medical Genetics, Pediatrics, Benioff Children’s Hospital, University of California San Francisco, San Francisco, CA

CORRESPONDING AUTHOR

Joseph T. Shieh, MD, PhD, University of California San Francisco, 550 16th St, Mail Code 0706, San Francisco, CA 94143; e-mail: joseph.shieh2@ucsf.edu.

SUPPORT

UCSF Marcus Precision Medicine award.

DATA SHARING STATEMENT

All data are available upon request. Further methods are also available by contacting the laboratory.

AUTHOR CONTRIBUTIONS

Conception and design: Schuyler Tong, Joseph T. Shieh

Financial support: Joseph T. Shieh

Provision of study material: W. Patrick Devine

Collection and assembly of data: All authors

Data analysis and interpretation: All authors

Manuscript writing: All authors

Final approval of manuscript: All authors

Accountable for all aspects of the work: All authors

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please refer to www.asco.org/rwc or ascopubs.org/author-center.

Open Payments is a public database containing information reported by companies about payments made to US-licensed physicians (Open Payments).

No potential conflicts of interest were reported.

ACKNOWLEDGMENT

We acknowledge the Clinical Cancer Genomics Laboratory at UCSF. We acknowledge the pediatric hematology oncology fellowship program and UCSF Benioff Children’s Hospital Oakland for fostering an environment of learning and discovery.
REFERENCES

1. Evans DG, Howard E, Giblin C, et al: Birth incidence and prevalence of tumor-prone syndromes: Estimates from a UK family genetic register service. Am J Med Genet A 152A:327-332, 2010

2. Korf BR: Malignancy in neurofibromatosis type 1. Oncologist 5:477-485, 2000

3. Landry JP, Schertz KL, Chiang Y-J, et al: Comparison of cancer prevalence in patients with neurofibromatosis type 1 at an Academic Cancer Center vs in the general population from 1985 to 2020. JAMA Netw Open 4:e210945, 2021

4. Miettinen MM, Antonescu CR, Fletcher CDM, et al: Histopathologic evaluation of atypical neurofibromatosus tumors and their transformation into malignant peripheral nerve sheath tumor in neurofibromatosis 1 patients—A consensus overview. Hum Pathol 67:1-10, 2017

5. Miller DT, Freedenberg D, Schorry E, et al: Health supervision for children with neurofibromatosis type 1. Pediatrics 143:e20190660, 2019

6. Stewart DR, Korf BR, Nathanson KL, et al: Care of adults with neurofibromatosis type 1: A clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med 20:671-682, 2018

7. Pemov A, Li H, Patidar R, et al: The primacy of NF1 loss as the driver of tumorigenesis in neurofibromatosis type 1-associated plexiform neurofibromas. Oncogene 36:3168-3177, 2017

8. Serra E, Rosenbaum T, Nadal M, et al: Mitotic recombination effects homozygosity for NF1 germline mutations in neurofibromas. Nat Genet 28:294-296, 2001

9. Garcia-Linares C, Fernandez-Rodriguez J, Tenribas E, et al: Dissecting loss of heterozygosity (LOH) in neurofibromatosis type 1-associated neurofibromas: Importance of copy neutral LOH. Hum Mutat 32:78-90, 2011

10. Margraf RI, VanSant-Webb C, Mao R, et al: NF1 somatic mutation in dystrophic scoliosis. J Mol Neurosci 68:11-18, 2019

11. Stewart DR, Pemov A, Van Loo P, et al: Mitotic recombination of chromosome arm 17q as a cause of loss of heterozygosity of NF1 in neurofibromatosis type 1-associated glomus tumors. Genes Chromosomes Cancer 47:134-147, 2012

12. Stevenson DA, Zhou H, Ashrafii S, et al: Double inactivation of NF1 in tibal pseudarthrosis. Am J Hum Genet 79:143-148, 2006

13. Steinemann D, Arning L, Prabluit I, et al: Mitotic recombination and compound-heterozygous mutations are predominant NF1-inactivating mechanisms in children with juvenile myelomonocytic leukemia and neurofibromatosis type 1. Haematologica 95:320-323, 2010

14. Gutmann DH, McLelland MD, Hussain I, et al: Somatic neurofibromatosis type 1 (NF1) inactivation characterizes NF1-associated pilocytic astrocytoma. Genome Res 23:431-439, 2013

15. Upadhyaaya M, Han S, Conosil C, et al: Characterization of the somatic mutational spectrum of the neurofibromatosis type 1 (NF1) gene in neurofibromatosis patients with benign and malignant tumors. Hum Mutat 23:134-146, 2004

16. Parsons DW, Roy A, Yang Y, et al: Diagnostic yield of clinical tumor and germline whole-exome sequencing for children with solid tumors. JAMA Oncol 2:616-624, 2016

17. Hicks JK, Howard R, Reisman P, et al: Integrating somatic and germline next-generation sequencing into routine clinical oncology practice. JCO Precis Oncol 5:884-895, 2021

18. Dumbrava EI, Brusco L, Daniels M, et al: Expanded analysis of secondary germline findings from matched tumor/normal sequencing identifies additional clinically significant mutations. JCO Precis Oncol 3:11, 2019

19. Ritter DI, Rao S, Kulkarni S, et al: A case for expert curation: An overview of cancer curation in the Clinical Genome Resource (ClinGen). Cold Spring Harb Mol Case Stud 5:a004739, 2019

20. Tate JG, Bamford S, Jubb HC, et al: COSMIC: The Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res 47:D941-D947, 2019

21. Landrum MJ, Lee JM, Benson M, et al: ClinVar: Improving access to variant interpretations and supporting evidence. Nucleic Acids Res 46:D1062-D1067, 2018

22. Garcia-Linares C, Fernandez-Rodriguez J, Tenribas E, et al: Dissecting loss of heterozygosity (LOH) in neurofibromatosis type 1-associated neurofibromas: Importance of copy neutral LOH. Hum Mutat 32:78-90, 2011

23. Landrum MJ, Lee JM, Benson M, et al: ClinVar: Improving access to variant interpretations and supporting evidence. Nucleic Acids Res 46:D1062-D1067, 2018

24. Cerami E, Gao J, Dogrusoz U, et al: The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov 3:401-404, 2012

25. Tate JG, Bamford S, Jubb HC, et al: COSMIC: The Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res 47:D941-D947, 2019

26. Parsons DW, Roy A, Yang Y, et al: Diagnostic yield of clinical tumor and germline whole-exome sequencing for children with solid tumors. JAMA Oncol 2:616-624, 2016

27. Gu Z, Eils R, Schlesner M: Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32:2847-2849, 2016

28. Afsar ÇU, Kara H, Yilmaz Z, et al: Neurofibromatosis type 1: A clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med 20:671-682, 2018

29. Scheurlen J, Beishler J, Gierschik P, et al: NF1 somatic mutation in skeletal dysplasias: A joint consensus recommendation from the American College of Medical Genetics and Genomics (ACMG) and the Cancer Genomics Consortium (CGC). Genet Med 21:1903-1916, 2019

30. Cheuk DK, Chiang AK, Ha SY, et al: Malignancies in Chinese patients with neurofibromatosis type 1. Hong Kong Med J 19:42-49, 2013

31. Afsar ÇU, Kara H, Yilmaz Z, et al: Neurofibromatosis type 1: A clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med 20:671-682, 2018

32. Hatori M, Hosaka M, Watanabe M, et al: Osteosarcoma in a patient with neurofibromatosis type 1. Haematologica 95:320-323, 2010

33. Kozak S, Cunniff CL, TLoch BA, et al: Mitotic recombination effects homozygosity for NF1 germline mutations in neurofibromas. Nat Genet 28:294-296, 2001

34. Vogel KS, Liss W, Sanborn JZ, et al: Mitotic recombination effects homozygosity for NF1 germline mutations in neurofibromas. Nat Genet 28:294-296, 2001

35. Cheuk DK, Chiang AK, Ha SY, et al: Malignancies in Chinese patients with neurofibromatosis type 1. Hong Kong Med J 19:42-49, 2013

36. Pemov A, Hansen NF, Sindiri S, et al: Low mutation burden and frequent loss of CDKN2A/B and SMARCA2, but not PRC2, de

37. Cheuk DK, Chiang AK, Ha SY, et al: Malignancies in Chinese patients with neurofibromatosis type 1. Hong Kong Med J 19:42-49, 2013

38. African CR, Fletcher CDM, et al: Histopathologic evaluation of atypical neurofibromatosus tumors and their transformation into malignant peripheral nerve sheath tumor in neurofibromatosis 1 patients—A consensus overview. Hum Pathol 67:1-10, 2017

39. Miller DT, Freedenberg D, Schorry E, et al: Health supervision for children with neurofibromatosis type 1. Pediatrics 143:e20190660, 2019

40. Machiela MJ, Zhou W, Sampson JN, et al: Characterization of large structural genetic mosaicisms in human autosomes. Am J Hum Genet 96:487-497, 2015

41. Machiela MJ, Zhou W, Sampson JN, et al: Characterization of large structural genetic mosaicisms in human autosomes. Am J Hum Genet 96:487-497, 2015
42. Jacobs KB, Yeager M, Zhou W, et al: Detectable clonal mosaicism and its relationship to aging and cancer. Nat Genet 44:651-658, 2012
43. Laurie CC, Laurie CA, Rice K, et al: Detectable clonal mosaicism from birth to old age and its relationship to cancer. Nat Genet 44:642-650, 2012
44. Davis L, Khoo KJ, Zhang Y, et al: POLQ suppresses interhomolog recombination and loss of heterozygosity at targeted DNA breaks. Proc Natl Acad Sci USA 117:22900-22909, 2020
45. Westphalen B, Fine AD, Andre F, et al: Pan-cancer analysis of homologous recombination repair-associated gene alterations and genome-wide loss of heterozygosity score. Clin Cancer Res 28:1412-1421, 2021
46. Giannikou K, Malinowska IA, Pugh TJ, et al: Whole exome sequencing identifies TSC1/TSC2 biallelic loss as the primary and sufficient driver event for renal angiomyolipoma development. PLoS Genet 12:e1006242, 2016
47. Zhang X, Sjöblom T: Targeting loss of heterozygosity: A novel paradigm for cancer therapy. Pharmaceuticals (Basel) 14:57, 2021
48. Bishop MW, Janeway KA, Gorlick R: Future directions in the treatment of osteosarcoma. Curr Opin Pediatr 28:26-33, 2016
49. Roberts RD, Lizardo MM, Reed DR, et al: Provocative questions in osteosarcoma basic and translational biology: A report from the Children’s Oncology Group. Cancer 125:3514-3525, 2019
50. Upadhyaya M, Kluwe L, Spurlock G, et al: Germline and somatic NF1 gene mutation spectrum in NF1-associated malignant peripheral nerve sheath tumors (MPNSTs). Hum Mutat 29:74-82, 2008
51. Menon AG, Anderson KM, Riccardi VM, et al: Chromosome 17p deletions and p53 gene mutations associated with the formation of malignant neurofibrosarcomas in von Recklinghausen neurofibromatosis. Proc Natl Acad Sci USA 87:5435-5439, 1990
52. Li MM, Chao E, Esplin ED, et al: Points to consider for reporting of germline variation in patients undergoing tumor testing: A statement of the American College of Medical Genetics and Genomics (ACMG). Genet Med 22:1142-1148, 2020
53. Jalloul N, Gomy I, Stokes S, et al: Germline testing data validate Inferences of mutational status for variants detected from tumor-only sequencing. JCO Precis Oncol 5:1749-1757, 2021
APPENDIX

TABLE A1. Distribution of Cancer Types Among UCSF500 Samples

Anatomic Category	No. of Tumors (n = 6,168)	Tumors With NF1 Pathogenic or Likely Pathogenic Alteration (n = 391)
CNS	2,152	226
Skin	379	39
Unknown primary	585	22
Lung	342	17
Uterus	142	15
Peripheral nerve	81	14
Others	771	13
Ovarian/fallopian	172	13
Soft tissue	154	8
Bladder/urinary tract	120	5
Breast	119	4
Head and neck	58	3
Lymphoid/myeloid	181	3
Bowel	86	2
Thyroid	91	2
Ampulla of vater	6	1
Bone	47	1
Pancreas	82	1
Stomach	5	1
Stomach/esophagus	52	1
Adrenal	11	0
Appendix	5	0
Biliary	26	0
Cervix	10	0
Eye	46	0
Germ	7	0
Kidney	90	0
Liver	24	0
Pleura	6	0
Prostate	79	0
Thymus	3	0
Unknown	234	0
Vagina	2	0

Abbreviation: NF1, neurofibromatosis type 1.
Pathologic Category	NF1-Altered Tumors (n = 391)
Glioblastoma	79
Glioma	72
Astrocytoma	40
Melanoma	33
Others	26
Unknown primary	20
Lung adenocarcinoma	15
Gliosarcoma	10
Uterine cancer	9
Diffuse intrinsic pontine glioma	8
Malignant peripheral nerve sheath tumor	7
Ovarian cancer	7
Neurofibroma	5
Breast cancer	4
Bladder urothelial carcinoma	4
Sarcoma	3
Rosette-forming glioneuronal tumor of the fourth ventricle	3
Spindle cell neoplasm	3
Head and neck squamous cell carcinoma	2
Ganglioglioma	2
Endometrial carcinoma	2
Dysembryoplastic neuroepithelial tumor	2
Colorectal cancer	2
Atypical nevus	2
Adenocarcinoma, NOS	2
Urachal adenocarcinoma	1
Subependymoma	1
Poorly differentiated thyroid cancer	1
Plexiform neurofibroma	1
Pleomorphic xanthoastrocytoma	1
Pheochromocytoma	1
Ovarian epithelial tumor	1
Osteosarcoma	1
Oligodendroglioma	1
Ocular melanoma	1
Neuroepithelial tumor	1
Myeloproliferative neoplasms	1

(Continued in next column)

Pathologic Category	NF1-Altered Tumors (n = 391)
Mucosal melanoma of the urethra	1
Mixed phenotype acute leukemia, T/myeloid, NOS	1
Miscellaneous neuroepithelial tumor	1
Malignant neurocristic neoplasm	1
Lung squamous cell carcinoma	1
Large cell neuroendocrine carcinoma	1
High-grade serous fallopian tube cancer	1
GIST	1
Embryonal rhabdomyosarcoma	1
B-cell lymphoma	1
B-cell acute lymphoid leukemia	1
Atypical teratoid/rhabdoid tumor	1
Anaplastic thyroid cancer	1
Anaplastic oligodendroglioma	1
Anaplastic meningioma	1
Anaplastic ependymoma	1
Ampullary carcinoma	1

Abbreviations: GIST, gastrointestinal stromal cell tumor; NOS, not otherwise specified.