POT1 and Damage Response Malfunction Trigger Acquisition of Somatic Activating Mutations in the VEGF Pathway in Cardiac Angiosarcomas

Oriol Calvete, PhD; Pablo García-Pavia, MD; Fernando Domínguez, MD; Lluc Mosteiro, PhD; Lucía Pérez-Cabornero, PhD; Diego Cantalapiedra, PhD; Esther Zorio, MD; Teresa Ramón y Cajal, MD; Maria G. Crespo-Leiro, MD; Alex Teulé, PhD; Conxi Lázaro, PhD; Manuel M. Morente, MD; Miguel Urioste, MD; Javier Benítez, PhD

Background—Mutations in the POT1 gene explain abnormally long telomeres and multiple tumors including cardiac angiosarcomas (CAS). However, the link between long telomeres and tumorigenesis is poorly understood.

Methods and Results—Here, we have studied the somatic landscape of 3 different angiosarcoma patients with mutations in the POT1 gene to further investigate this tumorigenesis process. In addition, the genetic landscape of 7 CAS patients without mutations in the POT1 gene has been studied. Patients with CAS and nonfunctional POT1 did not repress ATR (ataxia telangiectasia RAD3-related)–dependent DNA damage signaling and showed a constitutive increase of cell cycle arrest and somatic activating mutations in the VEGF (vascular endothelial growth factor)/angiogenesis pathway (KDR gene). The same observation was made in POT1 mutation carriers with tumors different from CAS and also in CAS patients without mutations in the POT1 gene but with mutations in other genes involved in DNA damage signaling.

Conclusions—Inhibition of POT1 function and damage-response malfunction activated DNA damage signaling and increased cell cycle arrest as well as interfered with apoptosis, which would permit acquisition of somatic mutations in the VEGF/angiogenesis pathway that drives tumor formation. Therapies based on the inhibition of damage signaling in asymptomatic carriers may diminish defects on cell cycle arrest and thus prevent the apoptosis deregulation that leads to the acquisition of driver mutations. (J Am Heart Assoc. 2019;8:e012875. DOI: 10.1161/JAHA.119.012875.)

Key Words: cardiac angiosarcoma • cell cycle arrest • damage response • POT1 • VEGF/angiogenesis pathway

The Li-Fraumeni syndrome is an autosomal dominant syndrome representing a genetic predisposition to a wide spectrum of tumors and is typically linked to mutations of the TP53 tumor suppressor gene.1 Li-Fraumeni-like families have a similar clinical presentation, but Li-Fraumeni-like syndrome is less frequently associated with mutations in the TP53 gene. Recently, we studied different Li-Fraumeni-like families with multiple tumors including various cases of cardiac angiosarcoma (CAS), which is the most common and most aggressive type of primary malignant neoplasm of the heart in adults.2 Patients affected with CAS are generally diagnosed at advanced stages with very poor prognosis and...
Clinical Perspective

What Is New?

- In this study we describe how mutations in the \(\text{POT1} \) gene, which explain long telomeres, correlate with cell cycle arrest increase in angiosarcoma patients.
- The same increase was observed in other cardiac angiosarcoma patients even without mutations in the \(\text{POT1} \) gene but in the damaged response signaling.
- This malfunction would bypass the apoptosis mechanism and would trigger the acquisition of somatic activating mutations in the angiogenesis pathway.

What Are the Clinical Implications?

- Our results suggest that the use of angiogenesis inhibitors might regulate the tumor progression; however, targeting ATM/ATR (ataxia telangiectasia mutated/RAD3-related) activity would rescue the cell cycle control and would prevent the acquisition of somatic driver mutations in patients affected with angiosarcoma tumors and asymptomatic patients carrying \(\text{POT1} \) mutations.

short survival rates (5-year survival rate of 14%). The genetic landscape that determines the tumorigenic process of angiosarcomas (AS) is poorly understood and not well established.4,5 Previous studies by our group uncovered a deleterious missense mutation in the \(\text{POT1} \) gene (c.349C>T [p.Arg117Cys], pathogenic, Li-Fraumeni-like syndrome/CAS, autosomal dominant)6 causing AS in 4 families (3 in cardiac tissue and 1 in breast).6 Germline mutations in the \(\text{POT1} \) gene have also been related with the development of other familial cancer types.7-12 \(\text{POT1} \) is a component of the so-called shelterin complex, which is involved in telomere elongation in germline and stem cells (Figure 1A).13 In normal conditions the shelterin complex protects telomere cap ends in somatic cells by preventing access of the telomerase to chromosome ends.14 The shelterin complex also masks single-stranded telomeres from the DNA damage response, thereby preventing the activation of ATM (ataxia telangiectasia mutated) and ATR (ataxia telangiectasia RAD3-related) to avoid cell cycle arrest through \(\text{POT1} \) and TPP1 (Figure 1B).15 \(\text{TPP1} \) (which is also called \(\text{ACD} \) gene) anchors the telomere by \(\text{POT1} \) and TRF1 (telomeric repeat binding factor 1) proteins. When telomeres are critically short, the shelterin complex does not prevent activation of the ATM and ATR response, which can drive the cell to senescence and apoptosis (Figure 1C).

Our previous studies demonstrated that cardiac angiosarcoma patients carrying the \(\text{POT1} \) p.Arg117Cys mutation showed abnormally long telomeres due to the lack of repression of telomerase, which led to increased fragility and damage.6 Other described \(\text{POT1} \) mutations associated with risk of developing familial glioma and familial melanoma tumors also led to abnormally long and fragile telomeres.7 However, the link between telomere instability and tumorigenesis is not well understood. In addition, studies of the biological pathways involved in the progression of angiosarcomas are very scarce. Recently, next-generation sequencing studies uncovered somatic alterations in the VEGF/PLCG1 pathway in cardiac angiosarcoma16,17 and driver mutations in the PI3K/AKT/mTOR and MEK pathways in angiosarcomas other than cardiac,18-21 but these studies did not distinguish between constitutive and somatic mutations and did not clarify the genetics and underlying mechanisms.

In order to understand how telomere instability links the angiosarcoma process, in the present work we studied somatic events in different angiosarcoma patients carrying the \(\text{POT1} \) p.Arg117Cys mutation described in Calvete et al6; 2 patients (F1 and F3) affected with CAS and 1 patient (F2) with 2 tumors, a breast AS and a papillary thyroid tumor. In addition, we studied the genetic and molecular somatic landscape that drives tumor progression in 7 patients with sporadic CAS tumors (NT1-NT3 and T1 to T4) who did not carry mutations in the \(\text{POT1} \) gene.

Methods

The data, methods used in the analysis, and materials used to conduct the research are available to any researcher for purposes of reproducing the results or replicating the procedure.

Ethics Statement

Institutional Review Board approval was obtained; the ethics committee of the CNIO, the Institute of Health Carlos III, and SaludMadrid (Autonomous Community of Madrid) approved this study (CS9679). Informed consent was received from participants before inclusion in the study.

Patients

Formalin-fixed paraffin-embedded (FFPE) tissue samples from 10 patients were selected. The 3 familial angiosarcoma individuals carrying the \(\text{POT1} \) p.Arg117Cys mutation were selected from Calvete et al.6 Seven FFPE tissue samples from individuals affected with sporadic CAS not carrying mutations in the \(\text{POT1} \) gene were also selected: 3 FFPE tissue sections contained normal (N) and tumor (T) tissue (NT1, NT2 and NT3), and the other 4 FFPE sections contained only tumor tissue (T1 to T4).
Genomic DNA was extracted from FFPE tissue samples and from fixed tissue slides (microdissection) using the DNeasy Blood & Tissue Kit (Cat No. 69504, Qiagen, Hilden, Germany) following the manufacturer’s instructions. Histology of hematoxylin and eosin–stained sections of the tissues was assessed by a pathologist (M.M.).

Immunohistochemistry

FFPE blocks were cut into 5-μm-thick sections for immunohistochemistry (IHC) studies. The cell cycle in normal tissue was tested with anti-p21 (WAF1) from Merck (Darmstadt, Germany; Ref MABE325), anti-p27 (57/Kip1) from BD Biosciences (Franklin Lakes, NJ; Ref 610242), and anti–phospho-histone γH2AX (Ser139) from Millipore (Burlington, MA; Ref 05-636) antibodies. Activation of the VEGF-angiogenesis pathway was assessed with two different antibodies against phosphorylated (activated) proteins: anti–phospho-p44/42-MAPK (ERK1/2) and anti–phospho-S6 ribosomal protein (Ser235/236) from Cell Signaling Technology (Danvers, MA; Refs 9101 and 2211, respectively). Both the absence of staining and excess nonspecific staining were considered as negative staining. Staining was considered separately in normal (N) and tumor (T) tissues. IHC controls were performed by using normal tissue from biopsies of healthy individuals.

Samples

Genomic DNA was extracted from FFPE tissue samples and from fixed tissue slides (microdissection) using the DNeasy Blood & Tissue Kit (Cat No. 69504, Qiagen, Hilden, Germany) following the manufacturer’s instructions. Histology of hematoxylin and eosin–stained sections of the tissues was assessed by a pathologist (M.M.).

Whole Exome Sequencing and Bioinformatics Pipelines

Exomes from selected tissues were captured and enriched using the SureSelect Human All Exon Kit (78 Mb) (Agilent Technologies, Santa Clara, CA). Enriched samples were paired-end sequenced on an Illumina Genome Analyzer II sequencing platform using 2 lanes per sample and generating 101 base-pair long reads. FASTQ files of short reads were aligned using the BWA algorithm to the GRCh37/hg19 reference genome.

GATK-based variant calling was performed for aligned reads considering DP (Read Depth) values of >30 and Quality-by-Depth scores for a variant confidence of >1.00. A total of 92.28% (ranging from 91.70% to 92.16%) of the variants that were well aligned and annotated passed the quality and coverage filters. Strict filtering for only well-defined variants by quality controls, and those not included in repeat regions were included to prevent false positives. Tumor
variants (<10% alternative variant allele frequency) and those with low coverage (<6x), were discarded.

Only quality-filtered variants affecting coding sequences of canonical transcripts (nonsynonymous, essential splice site, frame shift or gain/loss of stops) were taken into account. Variant type annotation, population statistics, disease-specific sequence databases, and in silico predictive algorithms were according to AMCG standards and guidelines. Variants with a minor allele frequency of <0.01 and <0.05 (dbSNP130, HapMap, or 1000 Genomes) were considered for stringent and relaxed filtering, respectively. Their potential damaging effect was assessed using the VEP script software package (including Sift, Polyphen and Condel damage predictors). Stringent filtering only considered the variants annotated as pathogenic by all damage predictors. Whole-exome sequencing data have been deposited in the ArrayExpress public database under accession number E-MTAB-7999 (available at https://www.ebi.ac.uk/fg/annotare/).

Variants found in DNA blood samples and variants found in common between paired normal/tumor tissues were considered as constitutional. Variants found only in tumor tissue were considered somatic variants. Constitutional variants were validated in DNA from blood and normal tissue samples, and somatic variants were validated in DNA from tissue samples (tumor) by Sanger sequencing.

Pathway Enrichment Analyses

Two different software packages were used for independent assessments of the gene set analyses. Data were analyzed with Qiagen’s Ingenuity Pathway Analysis (IPA, Qiagen, Redwood City, CA www.qiagen.com/ingenuity) and ConsensusPathDB (available at http://cpdb.molgen.mpg.de/). Overrepresentation analysis of the gene set list was performed with a minimum overlap of 4 genes with the pathway database set size and a P-value cutoff of 0.001. Induced network module analysis without intermediate nodes and considering high-confidence binary protein and genetic/gene regulatory interactions were also evaluated.

Trusight Tumor 170 Panel and IBM Watson Study

Resequencing of tumor DNA from FFPE tissue samples was performed with TruSight Tumor 170 from Illumina (San Diego, CA), a novel sequencing platform that predicts the most probable variant causing the pathology and provides suggestions for translating the data to the clinic. The sequencing of the hybrid capture was run on the HiSeq 2500 System. The captured gene content in the TruSight Tumor 170 Assay, data sheet, and specifications are available at https://www.illumina.com. Low variant quality of <20 and low depth (<100 for variant calls and <250 for reference call filters) were considered. Variants were supported with >7 reads and filtered by frequency (minor allele frequency <0.05). The copy number variation call was calculated for the fold-change results for each gene. Variants were classified and analyzed later by the IBM Watson for Genomics platform, which searches electronic medical databases to find information that may be relevant to a particular genomic sequence (available at https://www.ibm.com/watson/).

Results

Angiosarcoma Patients Carrying the POT1 p.Arg117Cys Mutation

Constitutional Effect in Normal Tissue of POT1 p.Arg117Cys Mutation Carriers

In normal conditions the POT1 protein represses downstream activation of the DNA damage response at telomeres in somatic cells (Figure 1B). The POT1 p.Arg117Cys protein shows a reduced capacity to bind telomeres and TPP1 and may affect the regulation of the damage response. Damage response activation leads to cell cycle arrest, replicative senescence, and apoptosis (Figure 1C). In order to decipher the putative effect of POT1 malfunction, patient tissues were stained with anti-P-γH2AX (DNA damage marker) and anti-p21 and anti-p27 antibodies (inhibitors of CDK1/2 to arrest the cell cycle). IHC studies were carried out in normal (N) tissues of patients from the families carrying the constitutional POT1 p.Arg117Cys mutation studied in Calvete et al: 2 patients (F1 and F3) affected with CAS and 1 patient (F2) with 1 breast AS and 1 papillary thyroid tumor.

Increased IHC staining with anti-p21, -p27, and -P-γH2AX antibodies was observed in N tissues of all studied patients in comparison with the corresponding N tissues from healthy non–mutation carriers (Table 1 and Figure 2A). Therefore, the reduced binding to telomeres and to TPP1 by the POT1 p.Arg117Cys protein correlates with activation of damage response signaling mediated by p21 and p27 (Figure 1D).

Somatic Events in POT1 p.Arg117Cys Mutation Carriers

To evaluate possible somatic events in affected individuals carrying the POT1 p.Arg117Cys mutation that might lead to the formation of AS, the exomes of normal (N) and tumor (T) tissues of the F1 and F2 individuals were sequenced. Variants found in T tissue but not in N tissue were considered to be somatic (Table S1). In patient F1 (CAS), 46 filtered somatic variants were found in T but not in N cardiac tissue (Table 2) including an in-frame deletion in the KDR gene (p.Asn704del), which encodes VEGF receptor 2 (VEGFR2), which belongs to the VEGF-angiogenesis signaling pathway (Figure 3A and 3B).

Regarding the F2 individual, only 13 filtered somatic variants were found in the T tissue of the breast AS
Table 1. Total Cases and Number of Variants Found in the Whole Exome Sequencing

Individual	Pathology	Tissue	Variant Calling	Filtered Variants	Somatic Variants*	Constitutional Variants†
POT1 p.Arg117Cys carriers						
F1	CAS	T	1095	46	NA†	
F2	Papillary thyroid	T	100 506	1294	5	NA†
Breast AS	T	93 496	1276	13	NA†	
Without mutations in the *POT1* gene						
NT1	Sporadic CAS	T	102 560	1266	62	1032
NT2	Sporadic CAS	T	100 120	1231	36	1101
NT3	Sporadic CAS	T	97 233	704	37	1180

Only T tissue available‡	Individual	Pathology	Tissue	Variant Calling	Filtered Variants	Stringent Filtering
T1	Sporadic CAS	T	93 374	1181	315	
T2	Sporadic CAS	T	95 492	1274	403	
T3	Sporadic CAS	T	104 545	1328	443	
T4	Sporadic CAS	T	93 859	1233	361	

CAS indicates cardiac angiosarcoma; N, normal tissue; NA†, not applicable (*POT1* p.Arg117Cys carriers from Calvete et al [2015]); T, tumor tissue.

*Variants found in tumor tissue that were not found in normal tissue.
†Variants found in normal tissue that were not found in tumor tissue.
‡Individuals with only T tissue sequenced.

(Table S1). Two of them were variants annotated in the genes *PLCG1* (p.Leu752Val) and *PIK3CA* (p.Arg88Gln) belonging to the VEGF-angiogenesis pathway and previously described to be involved in different angiosarcomas and primary breast cancer.26 Another 5 somatic variants were found in the papillary thyroid T tissue from the same individual (Table S1). Three of these belonged to the VEGF-angiogenesis pathway (*PIK3R6* [p.Arg59Lys], *RASSF1* [p.Arg227His], and *BRAF* [p.Val600Glu]). Overall, 32/52 (62%) of the somatic missenses were C:G>T:A changes (Table S1). Genes with mutations are shown in the angiogenesis pathway depicted in Figure 3.

Finally, only cardiac tumor tissue from patient F3 (CAS) was sequenced (Table 2). A total of 297 filtered variants were found in the tumor tissue of this patient (Table S2), including another mutation in the *KDR* gene (pThr771Arg). Overall, 60% of the somatic variants found in patient F3 were annotated as C:G>T:A changes (Table S2).

Thus, somatic mutations in the VEGF signaling pathway were found in the tumor tissues of all affected individuals carrying the *POT1* p.Arg117Cys germ line mutation. Interestingly, both studied CAS patients had mutations in *KDR*, which activates VEGF signaling to regulate angiogenesis by the MAPK/ERK and AKT/PI3K pathways (Figure 3A and 3B). MAPK/ERK regulates proliferation activity, while AKT/PI3K promotes protein synthesis. Interestingly, both molecular activities regulate the cell cycle by inhibiting senescence promotion (Figure 3C). In order to test the putative effects of the mutations found in the VEGF angiogenesis pathway, we studied the MAPK/ERK and AKT/PI3K molecular pathways by IHC with antibodies against the activated (phosphorylated) forms of ERK and S6, respectively (Figure 3A and 3B). All angiosarcomas (CAS and the breast AS tumors) did not stain with anti–P-ERK but were positively stained (>70%) with the anti–P-S6 antibody. However, papillary thyroid tumor tissue stained with both antibodies (Table 1 and Figure 2B).

In summary, somatic activating mutations of the VEGF-angiogenesis pathway were found in all studied tumor tissues of *POT1*-mutated patients independently of the tumor type (cardiac, breast, and thyroid). Somatic mutations in the *KDR* gene were found in both CAS patients (F1 and F3). In addition, positive P-S6 staining was observed in all angiosarcomas with somatic mutations in the *KDR* (CAS) and *PI3K* (breast AS) genes (AKT/PI3K pathway). The papillary tumor (F2), which had a mutation in the MAPK/ERK signaling pathway (*BRAF* gene), was stained with both anti–P-ERK and anti-PS6 antibodies (Figures 2B and 3).

Sporadic Cardiac Angiosarcoma Patients Without Mutations in the *POT1* Gene

To assess the whole genetic landscape of CAS tumors, another 7 patients with sporadic CAS tumors who were not
Figure 2. Immunohistochemical staining. A, Tissue stress was tested in normal tissue of carriers of the POT1 p.Arg117Cys (p.R117C) mutation and carriers of mutations in the damage response-signaling pathway (sporadic CAS) in comparison with the corresponding normal tissue without mutations (wild type). Above: Wild-type cardiac and thyroid tissues from healthy controls without mutations. Below: normal tissue of individual NT2 (sporadic CAS individual with constitutional mutations in the ATR, ATM, and TP53BP genes) and normal tissue of individual F2 (papillary thyroid tumor with POT1 p.R117C mutation) as representative examples (see Table 2 for all studied individuals). Increased cell cycle arrest was observed in the normal tissue of both patients. Black arrowheads show some of the stained nuclei. Detailed fields (10×) are also shown. Scale bar (in black): 100 μm. B, IHC staining with anti–P-ERK and anti–P-S6 antibodies in tumor tissues. Tumor tissues from carriers (F1 and F2) and noncarriers (T1 and NT2) of the POT1 p.R117C mutation compared with a normal tissue section (negative staining) are shown as examples (see Table 2 for all studied individuals). Three tumors from the 2 patients (F1 and F2) carrying the POT1 p.R117C mutation are shown: both angiosarcomas (CAS tumor tissue from F1 and breast AS from patient F2) only showed immunoreactivity with anti–P-S6 antibody, while the papillary thyroid tumor (patient F2) also showed immunoreactivity with anti–P-ERK antibody. Two staining patterns were observed in sporadic CAS patients without mutations in the POT1 gene: tissue from patient T1 only showed immunoreactivity with anti–P-S6, whereas tissue from patient NT2 (sporadic CAS) was stained with both anti–P-S6 and anti–P-ERK antibodies. Scale bar (in black): 100 μm. AS indicates angiosarcoma; CAS, cardiac angiosarcoma; N, normal tissue; T, tumor tissue.
carrying mutations in the *POT1* gene were studied. Normal (N) and tumor (T) cardiac tissues were available from 3 sporadic CAS individuals (NT1, NT2, and NT3), whereas only tumor tissue was available from the other 4 CAS individuals (T1 to T4). We found 1032, 1101, and 1180 constitutional variants in cardiac tissue for the NT1, NT2, and NT3 CAS individuals, respectively; 62, 36, and 37 somatic variants were found for individuals NT1, NT2, and NT3, respectively (Table 2).

Regarding the 4 tumor samples of which only T tissue was available, no distinction could be made between constitutional and somatic variants. We found 1181, 1274, 1328, and 1233 variants in the T tissue of patients T1, T2, T3, and T4, respectively (Table 2).

To further delineate the genetic landscape of sporadic CAS tumors, the genes encompassing filtered variants were grouped into 2 different pathway enrichment analyses. The first set included genes with constitutional (found in both N and T tissues from cases NT1, NT2, and NT3) and all genes with variants from the other 4 CAS individuals with only the tumor tissue sequenced (constitutional or somatic) (2501 unique genes in total); the second set included the genes with somatic variants (only present in T tissue) from cases with N and T tissue (NT1, NT2, and NT3) and again all genes with variants from the other 4 CAS individuals with only the sequenced T tissue cases (T1 to T4) (1522 unique genes in total).

Constitutional Events in Normal Tissue in Sporadic CAS

This study revealed that the most represented pathway and the pathway with the major number of genes were the “Sustainability of p53 pathway” (genes *ATM, TP53, and RFWD2*) (*P* value 0.003) and the “Repair modulation pathway” (genes *ATR, ATM, TP53, RFWD2, SIRT7, BRCA2, CDK8, UBE2D1, WRN, PMS2, BRIP1, TP53BP2, and APC2*) (*P* value 0.00022), respectively (Table S3). Mutations in genes from these pathways were found in all 7 sporadic CAS individuals (Figure 4). These genes belong to the damage response signaling pathway and may deregulate the cell cycle in the same manner as previously observed for the *POT1* mutation carriers. Thus, N cardiac tissue from the sporadic CAS individuals (NT series) was also stained with anti–P-γH2AX, anti-p21, and anti-p27 antibodies. Positive staining was also observed in N tissue of sporadic CAS individuals (Table 1), which correlated with cell cycle deregulation as observed in familial angiosarcomas (*POT1* p.Arg117Cys mutation carriers). Therefore, the familial angiosarcomas (*POT1* p.Arg117Cys carriers) and sporadic CAS patients behaved in a similar way regarding cell cycle arrest regulation.

Somatic Events in Tumor Tissue in Sporadic CAS

A second pathway enrichment analysis was performed with the gene set including the somatic variants found in T tissues of sporadic CAS individuals (see above). This enrichment analysis revealed that the most represented pathway was the “gf-hypoxia and angiogenesis” pathway (Biocarta: 16.7%) (*P* value 0.00557). The pathway with the major number of affected genes was the “Signaling by VEGF” pathway (Reactome, 24 genes) (*P* value 0.00101) (Table S3). Both enrichment analyses corresponded with the VEGF-angiogenesis pathway. Genes with mutations are shown in the angiogenesis pathway of Figure 3. Mutations in genes from these pathways were found in all 7 sporadic CAS individuals (Figure 4). Activation of the MAPK/ERK and AKT-PI3K pathways was studied by IHC with anti–P-ERK and anti–P-S6 antibodies, respectively.

Tumors of all studied sporadic CAS individuals (NT and T series) stained positive with anti-PS6 antibodies, which demonstrates that somatic mutations were activating the VEGF-angiogenesis pathway (Table 1). Especially intense staining was also observed in the endothelial lining of blood vessels. However, not all tissues from individuals affected with sporadic CAS stained with anti-PERK antibody. Tissue of

Mutation	Sample	Pathology	Tissue	N Tissue	γH2AX	p21	p27	Mutations in VEGF-Angiogenesis Pathway	T Tissue	P-ERK	P-S6*
POT1	F1	CAS	Cardiac (N+T)	+	+	+		KDR	-	+	
p.Arg117Cys	F2	Breast AS	Breast T	NA	NA	NA		PI3K	-	+	
			Thyroid (N+T)	+	+	+		BRAF	+	+	
DR genes	NT2	CAS	Cardiac (N+T)	+	+	+		VEGF2/RAS-MAPK	+	+	
T1	CAS	Cardiac (T)	NA	NA	NA		Akt-PI3K	-	+		
T3	CAS	Cardiac (T)	NA	NA	NA		Ras-MAPK/Akt-PI3K	+	+		
T4	CAS	Cardiac (T)	NA	NA	NA		VEGF/Akt-PI3K	+	+		

*Indicates overexpression; −, no expression; CAS, cardiac angiosarcoma; DR, damage response; N, normal; NA, tissue not available; T, tumor.

*Positive staining in lining epithelium and tissue.

Table 2. Immunohistochemistry Staining Results for the Studied Cases

DOI: 10.1161/JAHA.119.012875
individual T1, who only had mutations in the AKT-PI3K signaling pathway (Table 1), did not stain with anti-P-ERK. The tumors with mutations in the 2 molecular signaling pathways (NT1, NT2, and T4) also stained positive with the 2 antibodies (anti-P-ERK and anti-P-S6) (Table 1). Interestingly, the individual with mutations only in the MAPK/ERK signaling pathway (T3) also stained positive with both antibodies (Table 1). Stained tissues from patients T1 and NT2 are shown in Figure 2B as representative examples.

In summary, all studied individuals with CAS (either familial or sporadic) had mutations (either constitutional or somatic) in normal tissue affecting damage response signaling (Figure 4). IHC with anti-p21 and anti-p27 antibodies confirmed cell cycle arrest deregulation in N tissue that leads to constitutional cell cycle arrest and cessation of cell division (Figure 2A and Table 1). In addition, somatic activating mutations in the VEGF-angiogenesis pathway were found in tumor tissue of familial and sporadic angiosarcomas, independently of the presence of POT1 mutations (Figures 2B and 4; Table 1).

Sequencing Replication With the Truseq170 Panel and IBM Watson for Genomics Platform

A sequencing replication was performed for 2 previously sequenced CAS patients without mutations in the POT1 gene. The Truseq170 panel was run for tumor tissue of the T1 and T4 individuals and analyzed with the IBM Watson for Genomics platform (version 33.148), which is a novel sequencing platform that predicts the most probable variant causing the pathology and provides suggestions for translating the data to the clinic. The Watson for Genomics pipeline revealed 15 variants of unknown significance, 2 alterations without proposed therapies, and only 1 actionable alteration for patient T1 (Table S4). Three variants of unknown significance, 3 alterations with no proposed therapies, and another 3 actionable alterations were described for patient T4 (Table S5). Interestingly, a not previously detected copy number gain was found for the KIT gene in the tumor tissue of patient T1. The gained region is involved in tumor cell proliferation, angiogenesis, and metastatic disease. Only 1 actionable pathway was found in common for both CAS patients. The variants found in the TP53 gene were highlighted as actionable alterations, as previously found in the WES study (TP53 p.Arg175His and TP53 p.Val143Met for patients T1 and T4, respectively).

The single-strand DNA response in telomeres is inactivated by the shelterin complex (Figure 1A and 1B). We previously observed that the POT1 p.Arg117Cys mutation prevented the POT1 protein from binding to TPP1 and forming the OB-fold to bind single-strand DNA, which led to abnormally long telomeres. Here, we observed that abnormal telomere length found in our patients correlates with a genomic instability scenario that, in consequence, activates DNA damage-signaling (γH2AX-positive staining). Individuals carrying the POT1 p.Arg117Cys mutation overexpressed the p21 and p27 proteins in constitutional tissue (Table 1), which correlates with prevention of the repression of ATR signaling and leads to cell cycle arrest (Figure 1D). This increased senescence in nontumor tissue would result in reduced cell cycling and cessation of cell division. A similar mechanism was proposed to explain how short telomeres can lead to vascular senescence and diminished proliferative capacity that involved exhaustion of cell pools in mice.

In addition, tumor tissue of POT1 p.Arg117Cys mutation carriers was studied in order to evaluate the involvement of constitutional cell cycle arrest in tumor progression. On average, 61% of the somatic variants found in these patients were C>G>T:A changes (Tables S1 and S2). At this time we cannot rule out a correlation between this observed bias and a specific mutation signature in these tumors. Megquier et al have established an association with somatic deamination of cytosine to thymine in a large series of angiosarcomas (different from cardiac), which is in agreement with our observation. Somatic mutations in the VEGF-angiogenesis pathway were found in tumor tissue of all individuals (Figure 4). Interestingly, the F1 and F3 individuals (CAS) also had a somatic mutation in the KDR gene, which is involved in VEGF/PLCG1 activation and was described altered in 2 recently studied sporadic CAS cases. In the F2 patient the recurrent somatic mutations PIK3CA p.Arg88Gln and BRAF p.Val600Glu were found in the breast AS and the papillary thyroid tumor, respectively. Twenty-five percent of all breast cancers have somatic mutations in the PIK3CA gene. Specifically, the PIK3CA p.Arg88Gln mutation was described in a primary breast cancer. The somatic mutation BRAF p.Val600Glu is the most common genetic change in papillary thyroid cancers (35.8%). In addition, the
BRAF p.Val600Glu and **PIK3CA** p.Arg88Gln mutations have been described as activators of the angiogenic response.31,32 The somatic mutation **BRAF** p.Val600Glu has also been reported in gliomas33 and melanomas,34 where constitutional mutations in the **POT1** gene were also described.10-12 In summary, individuals with nonfunctional **POT1** did not repress damage signaling (ATR) and showed a constitutive increase of p21 and p27 expression, which is in agreement with cell cycle arrest. In addition, somatic activating mutations in the angiogenesis pathway were acquired. Interestingly, activating somatic mutations in the **KDR** gene were found in both studied patients affected with CAS and carrying a **POT1** germline mutation (F1 and F3). This was also observed in other tissues and tumors different from cardiac angiosarcomas with mutations in the **POT1** gene (thyroid and breast from patient F2), demonstrating that not only in cardiac tissue is there a strong correlation between constitutional senescence mediated by **POT1** malfunction and the acquisition of somatic mutations in the angiogenesis pathway.

Figure 3. VEGF (vascular endothelial growth factor)-angiogenesis signaling and cell cycle regulation pathways. VEGF signaling is a growth factor pathway to stimulate vasculogenesis and angiogenesis. A, MAPK/ERK signaling regulates cell proliferation. B, AKT/PI3K signaling is related to protein synthesis and cell cycle signaling. Locations of anti–P-ERK and anti–P-S6 used in IHC studies are also shown in the pathway (white arrows). C, Damage-signaling pathway. AKT/PI3K signaling inhibits apoptosis, senescence, and cell cycle arrest through inhibition of FOXO, which in turn positively regulates p21 and p27 activity.

Sporadic Cardiac Angiosarcomas Without **POT1 Mutations**

Although in 4 of the 10 patients studied no discrimination between germline and somatic mutations could be made, mutations in the pathways that were affected by the mutation in the **POT1** gene at both the constitutional and the somatic level were also found in these patients.

Studyed CAS individuals without constitutional mutations in the **POT1** gene presented mutations in genes that were involved in damage response signaling (ATM-ATR-TP53) (Figure 4). IHC studies with anti-p21 and anti-p27 antibodies confirmed the damage response activation in all sporadic CAS individuals (Table 1 and Figure 2). Therefore, our results suggest a relation between telomere instability (familial CAS) and altered damage signaling (sporadic CAS) on 1 hand, and increased cell cycle arrest leading to the cessation of cell division on the other. Our observation is in agreement with previous studies in which overexpression of TP53 was detected by immunohistochemistry in 49% of angiosarcoma...
Genetic Landscape of Cardiac Angiosarcomas

Calvete et al

Sporadic CAS

Telomere instability & Damage response	N/T CAS	T CAS
POT1		
ATR		
BRCA1		
BRCA2		
ATM		
RAD51B		
RAD51C		
TP53		
TP53RK		
TB53BP1		
TB53BP2		
APC2		
CDK8		
BRIP1		

VEGF-angiogenesis

KDR		
VEGFA		
FGF22		
DOCK1		
VAV3		
SPTAN1		
SRC		
SOS1		
RASA2/4		
RASGEF1A		
NRAS		
RASGEF1A		
ITGAV		
IQGAP1		
MAP2K1		
MAP2K3		
PPP2R5E		
PTPRQ		
BRAF V600E		
PDK1		
PLCG1		
PRKCC		
NRG2		
PIK3C2G		
PI3K		
RICTOR		
SHOX2		
DUSP8		

- **confirmed constitutional mutation**
- **confirmed somatic mutation**
- **confirmed somatic mutation (less stringent filtering)**
- **Mutation (only tumor tissue studied)**
- **Mutation (only tumor tissue studied) (less stringent filtering)**

DOI: 10.1161/JAHA.119.012875

Journal of the American Heart Association
Constitutional Cell Cycle Arrest May Fuel the Acquisition of Somatic Mutations in the Angiogenesis Pathway in Angiosarcomas

Activation of damage signaling in both familial (POT1 mutations carriers) and sporadic angiosarcomas (ATM-ATR-TP53 mutation carriers) induced constitutional senescence and reduced cell division (Figure 2). Our results strongly suggest a correlation between constitutional cell cycle arrest and the acquired somatic mutations in the VEGF-angiogenesis pathway that drive angiosarcoma formation. Moreover, increased cell cycle arrest due to POT1 malfunction also uncovered somatic angiogenesis activation in tumors other than cardiac angiosarcomas. Damage response signaling and the VEGF-signaling pathway are mutually regulated (Figure 3). Recently, telomere biology and the PI3K pathway (angiogenesis) were also shown to be functionally connected, and phosphorylation activity of the PI3K/AKT pathway was demonstrated to affect telomere stability in vitro. In vitro studies with stem cells from Pot1a knockout mice with increased telomere dysfunction also suggested a correlation with increased proliferation. Our results indicate that the observed cell cycle deregulation may interfere with apoptosis. This bypass of apoptosis would permit the acquisition of somatic mutations. In addition, cells carrying somatic mutations in genes involved in attenuating cell cycle arrest, which depletes progenitor stem cells in nontumor tissues, may undergo positive selection. A bypass of apoptosis was also suggested in studies in which POT1 was inactivated in vitro, and induced genomic instability enabled cancer cells to acquire additional mutations and conferred aggressive behavior. Attenuation of the damage response was suggested to allow tumor cells to bypass the proliferation defect imposed by POT1 inhibition. Therefore, under senescence conditions, activating somatic mutations in the angiogenesis pathway would acquire an important role to replenish the depleted tissue. However, the mutations found in the angiogenesis pathway would contribute to angiosarcoma formation and progression.

Clinical Significance of the Identified Mechanism

Activation of the VEGF-angiogenesis pathway was found in all studied individuals with AS (familial and sporadic). However, our IHC studies revealed 2 different staining patterns that correlated with the location of the somatic mutations (Figure 2). Tumors with mutations in the AKT-PI3K signaling pathway (F1, F2, F3, and T1) were only positively stained with the anti-P-S6 antibody (Table 1 and Figure 4). The individuals with mutations only in the MAPK/ERK signaling pathway (NT1, NT2 and the papillary thyroid tumor of F2) or in both molecular signaling pathways (T3 and T4) were positively stained with both antibodies (Table 1). Therefore, different somatic alterations regarding increased angiogenesis may occur in response to senescence. These results give important clues regarding the diagnosis and classification of angiosarcomas.

Our results also have an important clinical relevance regarding treatment and translational research. Inhibition of angiogenesis may be useful to stop tumor progression. However, angiogenesis inhibition would mitigate the effect of the driving somatic mutations but would not revert cell cycle arrest or the suggested bypass of apoptosis and would therefore not curtail the acquisition of new somatic mutations. Treatment with PI3K inhibitors of patient-derived xenografts also showed increased telomeric DNA damage. Our results suggest that further studies regarding ATM/ATR, damage signaling and cell cycle inhibition activity might lead to recovering cell cycle control and preventing the acquisition of somatic mutations, including in asymptomatic patients carrying POT1 mutations. Regarding this issue, the second
sequencing experiment with the IBM Watson platform also pointed to the damage-signaling pathway as a therapeutic target. Actionable variants in the TP53 gene were highlighted in both studied CAS individuals (T1 and T4). Therefore, although somatic driver variants were found to occur in the angiogenesis pathway, only damage response signaling was found actionable for both studied angiosarcomas (Tables S4 and S5).

In summary, our current results demonstrate that inhibition of POT1 gene function and damage response malfunction both activate ATR-dependent DNA damage signaling, which increases cell cycle arrest that would diminish cell proliferation in constitutional tissue, and that triggers somatic activating mutations in the angiogenesis pathway in angiosarcomas. Interestingly, our results and the 2 previously studied CAS patients suggest a strong correlation between constitutional mutations in the POT1 gene, somatic activating mutations in the KDR gene, and CAS development. Importantly, the same mechanism was observed in tumor types different from cardiac tumors for patients carrying POT1 mutations and long telomeres (Figure 2). The significance of this mechanism needs to be further evaluated, and it is conceivable that POT1 mutations lead to the same acquired somatic alterations in other tissues and tumor types such as glioma, melanoma, or colorectal cancer. Therefore, mutations found in the POT1 gene and other genes involved in DNA damage-response signaling (ATR/ATM and TP53) in the studied cardiac angiosarcomas correlate with constitutional cell cycle arrest, which would deplete the progenitor cells and trigger tissue stress. This tissue stress would give rise to a bypass of the apoptotic regulation, which permits the acquisition of multiple somatic events. In all studied CAS cases (patients with familial CAS carrying the POT1 mutation and patients with sporadic CAS), somatic activating mutations were found in the angiogenesis pathway, which drives tumor formation. At a translational level, inhibition of angiogenesis might be useful to halt tumor progression. However, inhibition of angiogenesis would not reverse cell cycle arrest or the suggested bypass of apoptosis in constitutional asymptomatic tissue. Instead, the use of ATM/ATR activity inhibitors might restore cell cycle control and prevent the acquisition of somatic mutations.

Acknowledgments

We are grateful to Dr Manuel Serrano from the Tumour Suppression Group (CNIO) for critical revision of the manuscript. We want to acknowledge the patients and the BioComplex of the Complejo Hospitalario Universitario de Santiago (CHUS) (PT17/0015/0002), integrated into the Spanish National Biobanks Network, for their collaboration and Centro Nacional de Análisis Genómico (CNAG) for the technical support with WES data.

Sources of Funding

Benitez’s laboratory is partially funded by Centro de Investigación (CIBERER), Horizon2020 BRIDGES project, and by the Spanish Ministry of Health supported by Federación Española de Enfermedades Raras (FEDER) funds (PI16/00440). Garcia-Pavia’s group is partially supported by the Instituto de Salud Carlos III (ISCIII) (grants CB16/11/00432 and PI14/0967) and by the Spanish Ministry of Economy and Competitiveness (grant SAF2015-71863-REDT). Garcia-Pavia’s and Crespo-Leiro’s groups are supported by FEDER funds. Urioste’s laboratory is funded by Spanish Ministry of Health supported by FEDER fund (PI14/00459).

Disclosures

None.

References

1. Malkin D. Li-Fraumeni syndrome. Genes Cancer. 2011;2:475–484.
2. Butany J, Nair V, Naseemuddin A, Nair GM, Catton C, Yau T. Cardiac tumors: diagnosis and management. Lancet Oncol. 2005;6:219–228.
3. Patel SD, Peterson A, Bartczak A, Lee S, Chojnowski S, Gajewski P, Loukas M. Primary cardiac angiosarcoma—a review. Med Sci Monit. 2014;20:103–109.
4. Casha AR, Davidson LA, Roberts P, Nair RU. Familial angiosarcoma of the heart. J Thorac Cardiovasc Surg. 2002;124:392–394.
5. Keeling JM, Ploner F, Rigier B. Familial cardiac angiosarcoma. Ann Thorac Surg. 2006;82:1576.
6. Calvete O, Martínez P, García-Pavía P, Benítez-Buegla C, Paumard-Hernández B, Fernández V, Domínguez F, Salas C, Romero-Laorden N, García-Donas J, Carrillo J, Perona R, Trivino JC, Andrés R, Cano JM, Rivera B, Alonso-Pulpon L, Setien F, Esteller M, Rodríguez-Perales S, Bougade F, Frebourg T, Urioste M, Blasco MA, Benítez J. A mutation in the POT1 gene is responsible for cardiac angiosarcoma in TP53-negative Li-Fraumeni-like families. Nat Commun. 2015;6:8383.
7. Calvete O, García-Pavía P, Domínguez F, Bougade G, Kunze K, Brauneringer A, Teule A, Lasas A, Ramón y Cajal T, Liort G, Fernández V, Lazaro C, Urioste M, Benítez J. The wide spectrum of POT1 gene variants correlates with multiple cancer types. Eur J Hum Genet. 2017;25:1278–1281.
8. Speedy HE, Kinnersley B, Chubb D, Broderick P, Law PJ, Litchfield K, Jayne S, Dyer MJS, Dearden C, Follows GA, Catovsky D, Houlston RS. Germline mutations in shelterin complex genes are associated with familial chronic lymphocytic leukemia. Blood. 2016;128:2319–2326.
9. Chubb D, Broderick P, Dobbins SE, Frampton M, Kinnersley B, Penagar S, Price A, Ma YP, Sherborne AL, Palles C, Timofeeva MN, Bishop DT, Dunlop MG, Tomlinson I, Houlston RS. Rare disruptive mutations and their contribution to the heritable risk of colorectal cancer. Nat Commun. 2016;7:11883.
10. Bainbridge MN, Armstrong GN, Gramatges MM, Bertuch AA, Jhangiani SN, Doddapaneni H, Lewis L, Tombrrello J, Tsavachidis S, Liu Y, Jalali A, Pion SE, Lau CC, Parsons DW, Claus EB, Bamholtz-Sloan JI, Il'yasova D, Schildkrout J, Ali-Osman F, Sadelzai F, Johansen C, Houlston RS, Jenkins RB, Lachance D, Olson SH, Bernstein JL, Merrell RT, Wrensch MR, Walsh KM, Davis FG, Lair R, Shele S, Alspaugh K, Amos CI, Thompson PA, Muzny DM, Gibbs RA, Melin BS, Bondy ML. Germline mutations in shelterin complex genes are associated with familial glioma. J Nat Cancer Inst. 2014;107:384.
11. Robles-Espinoza CD, Harland M, Ramsay AJ, Aoude LG, Quesada V, Ding Z, Pooley KA, Pritchard AL, Tiffany JC, Petijak M, Palmer JM, Symmons J, Johnstone P, Stark MS, Gartside MG, Snowden H, Montgomery GW, Martin NG, Liu Z, Choi J, Makowski M, Brown KM, Dunning AM, Keane TM, Lopez-Otin C, Gruijs NA, Hayward NK, Bishop DT, Newton-Bishop JA, Adams DJ. POT1 loss-of-function variants predispose to familial melanoma. Nat Genet. 2014;46:476–481.
12. Shi J, Yang XR, Ballew B, Rossumo M, Callista D, Gafniol MC, Ghiorzo P, Bressac-de Paillerets B, Nagore E, Avril MF, Caporaso NE, McMaster ML, Cullen M, Wang Z, Zhang X, Bruno W, Pastorniero L, Queirolo P, Banuls-Roca J, Garcia-Casado Z, Vayasy A, Mohamadi H, Irazalhosseini Y, Foglio M, Jouenne F, Hua X, Hyland PL, Yin J, Vallabhaneni H, Chai W, Minghetti P, Pellegri C,
Genetic Landscape of Cardiac Angiosarcomas

Calvete et al

DOI: 10.1161/JAHA.119.012875

13. Maciejowski J, de Lange T. Telomeres in cancer: tumour suppression and genome instability. Nat Rev Mol Cell Biol. 2017;18:175–186.

14. Martinez P, Blasco MA. Telomere-driven diseases and telomere-targeting therapies. J Cell Biol. 2017;212:875–887.

15. Palm W, de Lange T. How shelterin protects mammalian telomeres. Annu Rev Genet. 2008;42:301–334.

16. Kunze K, Speiker T, Gamberdinger U, Nau K, Berger J, Dreyer T, Sindermann JR, Hoffmeier A, Gattenlohner S, Brauningier A. A recurrent activating PLCG1 mutation in cardiac angiosarcomas increases apoptosis resistance and invasiveness of endothelial cells. Cancer Res. 2014;74:6173–6183.

17. Zhrebker L, Cherni I, Gross LM, Hinshelwood MM, Reese M, Aldrich J, Guileyardo JM, Roberts WC, Craig D, Von Hoff DD, Mennel RG, Carpten JD. Case report: whole exome sequencing of primary cardiac angiosarcoma highlights potential for targeted therapies. BMC Cancer. 2017;17:17.

18. Lahat G, Ohuka AR, Hallevi H, Xiao L, Zou C, Smith KD, Phung TL, Pollock RE, Benjamin R, Hunt KK, Lazar AJ, Lev D. Angiosarcoma: clinical and molecular insights. Ann Surg. 2010;251:1098–1106.

19. Italiano A, Chen CL, Thomas R, Breen M, Bonnet F, Sevenet N, Longy M, Maki RG, Coindre JM, Antonescu CR. Alterations of the p53 and PIK3CA/AKT/mTOR pathways in angiosarcomas: a pattern distinct from other sarcomas with complex genomics. Cancer. 2012;118:5878–5887.

20. Antonescu CR, Yoshida A, Guo T, Chang NE, Zhang L, Agaram NP, Qin LX, Brennan MF, Singer S, Maki RG. KDR activating mutations in human angiosarcomas are sensitive to specific kinase inhibitors. Cancer Res. 2009;69:7175–7179.

21. Behjati S, Tarpey PS, Sheldon H, Martincocena I, Van Loo P, Gundem G, Kulkarni AV, Breker M, Stoffel M, Stratton MR, Futreal PA, Stephens P, Pritchard B, Rios D, Chen Y, Flicek P, Cunningham F. Deriving the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–424.

22. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26:589–595.

23. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde DC, Ramakrishna M, Cooke SL, Pillay N, Voillan HKM, Papaemmanuil E, Koss H, Bunney TD, Hardy C, Joseph OR, Martin S, Mudie L, Butler A, Teague JW, Patil M, Steers G, Cao Y, Gumbs C, Ingram D, Lazar AJ, Little L, Mahadeshwar H, Protopopov A, Al Sanna GA, Seth S, Song X, Tang J, Zhang J, Ravi V, Torres KE, Khatri B, Halai D, Roxanis I, Baumhoer D, Tirabosco R, Amary MF, Boshoff C, McDermott U, Katan M, Stratton MR, Futreal PA, Flanagan AM, Harris A, Campbell PJ. Recurrent PTPRB and PLCG1 mutations in angiosarcoma. Nat Genet. 2014;46:376–379.

24. McLaren W, Pritchard B, Rios D, Chen Y, Flicek P, Cunningham F. Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor. Bioinformatics. 2010;26:2069–2070.

25. Kamburov A, Stelzl U, Lehrach H, Herwig R. The ConsensusPathDB interaction database: 2013 update. Nucleic Acids Res. 2013;41:793–800.

26. Bachman KE, Argani P, Samuels Y, Silliman N, Ptak J, Szabo S, Konishi H, Karakas B, Blair BG, Lin C, Peters BA, Velculescu VE, Park BH. The PIK3CA gene is mutated with high frequency in human breast cancers. Cancer Biol Thera. 2004;3:772–775.

27. Gorenine I, Kavurma M, Scott S, Bennett M. Vascular smooth muscle cell senescence in atherosclerosis. Cardiovasc Res. 2006;72:9–17.

28. Wong LSM, Desebog H, De Boer RA, Van Gilst WH, Van Veldhuisen DJ, Van Der Harst P. Telomere biology in cardiovascular disease: the TERC–/– mouse as a model for heart failure and ageing. Cardiovasc Res. 2009;81:244–252.

29. Megquier K, Turner-Maier J, Swofford R, Kim J-H, Sarver AL, Wang C, Sakhivikumar S, Johnson J, Koltookian M, Lewellen M, Scott MG, Graef AJ, Borst L, Tononoma N, Alfoldi J, Painter C, Thomas R, Karlsson EK, Breen M, Modiano JF, Elvers I, Lindblad-Toh K. Genomic analysis reveals shared genes and pathways in human and canine angiosarcoma. bioRxiv. Available at: https://www.biorxiv.org/content/biorxiv/early/2019/03/15/570879.full.pdf. Accessed March 8, 2019.

30. Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res. 2003;63:1454–1457.

31. Bottos A, Martini M, Di Nicliantonio F, Comunanza V, Maione F, Minassi A, Appendino G, Bussolin F, Bardelli A. Targeting oncogenic serine/threonine-protein kinase BRAF in cancer cells inhibits angiogenesis and abrogates hypoxia. Proc Natl Acad Sci USA. 2012;109:353–359.

32. Pratilas CA, Xing F, Solit DB. Targeting oncogenic BRAF in human cancer. Curr Top Microbial Immunol. 2012;355:83–98.

33. Penman CL, Faulkner C, Lowis SP, Kurian KM. Current understanding of BRAF alterations in diagnosis, prognosis, and therapeutic targeting in pediatric low-grade gliomas. Front Oncol. 2015;5:54.

34. Carlino MS, Long GV, Keeford RF, Rizos H. Targeting oncogenic BRAF and aberrant MAPK activation in the treatment of cutaneous melanoma. Crit Rev Oncol Hematol. 2015;96:385–398.

35. Méndez-Pérez M, Martínez P, Blanco-Aparicio C, Gómez-Casero E, Belen García A, Martínez-Torrecreuadrada J, Palafax M, Cortés J, Serra V, Pastor J, Blasso MA. Modulation of telomere protection by the PI3K/AKT pathway. Nat Commun. 2017;8:1278.

36. Pinzaru AM, Hom RA, Beal A, Phillips AF, Ni E, Cardozo T, Nair N, Choi J, Wuttke DS, Steers G, Sfeir A, Denchi EL. Telomere replication stress induced by POT1 senescence in atherosclerosis. Annu Rev Genet. 2010;46:376–595.

37. Maj E, Papiernik D, Wietryzk J. Antiangiogenic cancer treatment: the great discovery and greater complexity (review). Int J Oncol. 2016;49:1773–1784.
Table S1. Filtered somatic variants found in the WES of \textit{POT1} p.Arg117Cys carriers, one CAS and one breast AS with papillary thyroid cancer.

Genes previously shown to be involved in the corresponding pathology are highlighted in grey.

Pathology	Chr	Gene	Position	REF	ALT	ALT allele fraction	Amino acid change	dbSNP	Cosmic	GMAF	ExAC	
CAS	1	TMEM52	1850627	CAGCGGCAGG	C	0.224	L26del	COSM1167507	-	-	-	
	1	RCC1	28858834	G	A	0.184	G169Asp			-	-	
	1	CELSR2	109792751	C	C	0.432	L17P	rs200277265	COSM1200708	-	-	
	1	NOTCH2	120612234	G	C	0.234	-			-	-	
	1	NOTCH2NL	145248838	A	G	0.232	-	rs20120485	-	-	-	
	1	ARNT	150849103	C	A	0.165	-	rs10305649	0.0289	0.05	-	
	1	LOR	153233990	T	G	0.212	Y189D			-	-	
	2	NRXN1	50765449	C	T	0.346	W735*			-	-	
	2	ANKRD36	97820478	G	A	0.432	c.1260+3D	rs79756591	COSM1632174,	-	-	
	2	RABL2A	114386168	C	T	0.218	-			-	-	
	2	HS6ST1	129075877	G	T	0.214	D87E			-	-	
	2	HS6ST1	129075939	T	A	0.168	K67*	rs20224738	COSM1129578	-	-	
	2	HOXD11	176972061	G	C	0.344	-			-	-	
	2	SPATA3	231861032	TCAGCGCCCTAGCCCTGAATCCACACCA	T	0.188	Q30_Q38del	rs72362780	COSM1406147	-	-	
	2	NGEF	233748132	C	T	0.234	R549H			-	-	
	3	FANCD2	10088266	G	T	0.434	c.1137G>T+3D	rs72492997	-	-	-	
	4	KDR	55968550	CATT	C	0.424	N704del			-	-	
	4	ALB	74280882	G	A	0.546	V397M			-	-	
	4	DSPP	88537069	T	TGATA GCAGC	0.288	S1085_insDSS			-	-	
	Gene	GenBank Accession	Chromosome	Start	End	Mutation Description	rsN	Other Information				
---	---------	--------------------	------------	-------	-----	----------------------	-----	------------------				
4	CENPE	104119549	10	1486	2139	G>C 0.212	-	-				
4	SYNP02	119951749	4	2930	3300	T>C 0.188 R607*	-	-				
4	CBR4	169931326	4	1732	1965	C>G 0.434	-	rs67305871				
6	ATAT1	30595639	4	825	1005	G>C 0.465 G79A	-	-				
6	HLA-DRB5	32497905	6	1069	1131	A>G 0.365 R33*	rs71549219	-				
6	HBS1L	135290447	6	753	845	T>G 0.434 E609D	-	-				
7	ZAN	100385561	5	1707	1829	A>C 0.708	-	COSM1329481, COSM1329482, COSM1329483				
7	TRBV5-5	142148969	11	3327	3386	A>T 0.498 L101*	-	-				
10	ARMC4	28250610	10	1152	1216	A>G 0.370 D425Y	-	-				
10	FGFR2	123325217	10	936	1156	C>T 0.430 c.1111-1	-	-				
11	MUC6	1030228	11	97	132	A>C 0.708 C334G	rs20098033	COSM1603961, 0 COSM1603962				
11	CLCF1	67141148	11	2044	2111	AT>A 0.278	-	-				
11	PDE2A	72301235	11	735	826	CGT>C 0.234 Y252SfsTer74	-	-				
12	DDX11	31237978	12	918	1009	C>T 0.188 R186W	rs74087925	-				
12	PRKAG1	49397570	12	868	982	C>A 0.234 V234F	-	-				
12	KMT2D	49434325	12	721	811	G>A 0.436 R2410*	-	COSM144609, COSM1299436				
12	KMT2D	49444088	12	385	461	GGA>G 0.298 L1094PfsTer20	-	-				
14	ZFP36L1	69256806	14	120	157	T>G 0.436 K154T	-	-				
16	TOX3	52484238	16	1235	1415	G>A 0.186 Q31L	-	-				
16	PSMB10	67970188	16	186	202	G>C 0.688 R58G	COSM139019	-				
17	SHPK	3524660	17	2304	2403	CGGCAT>C 0.444 Ii30_Ai31del	-	-				
19	RHPN2	33490566	19	251	280	G>T 0.212 Q384R	-	-				
19	RHPN2	33490585	19	293	320	G>A 0.388 Q378*	rs78615454	COSM1318333				
22	POTEH	16287784	22	353	402	C>T 0.268 W34*	rs20037519 0	0.006				
22	SRRD	26879946	22	144	169	GGAGGCATC>G 0.160 A133_A39del	rs66831137	-				
X	Gene	Sample Size	Chromosome	Ref	Alt	p-value	SNP	HGNC	Symbol	BeadArray ID	p-value	Symbol
---	-------	-------------	-------------	-----	-----	---------	-----	-------	---------	--------------	---------	---------
3	PIK3CA	Breast AS	178916876	G	A	0.348	R88Q			rs12191328		
4	TRIM2		154217059	G	A	0.656	V461M					
5	EIF4E1B		176070736	G	A	0.655						
7	BRAF	Thyroid	140453136	A	T	0.324	V600E			rs11348802		
11	CBL		119148966	T	G	0.212	C396G			COSM34074		
12	VWF		6103147	T	C	0.214	Y2160C				<0.0001	
13	PARP4		25021323	A	G	0.344	I1039T			rs73172125		COSM147647
15	CSPG4		75982085	C	T	0.156	E441K			rs79463888		COSM1317754
20	PLCG1		39795452	C	G	0.434	L752V					
20	WFDC8		44180670	G	A	0.344	R241C			rs14756052		COSM1027261
3	RASSF1	Papillary	50369082	C	T	0.212	R227H					
6	MDGA1		37606032	C	T	0.234	V909I			COSM1600157		
6	ARID1B		157528658	G	A	0.168	R2168Q				<0.0001	
17	PIK3R6		8741894	C	T	0.254	R59K				<0.0001	
Table S2. Filtered variants found in the WES of F3 patient affected with CAS (*POT1* p.R117C carrier).

Chr	Gene Symbol	Genomic Position	REF	ALT	Fraction	HGVSp	Existing Variation	GMAF
chr1	KYAT3	88949093	A	T	0.128	ENSP00000260508.4:p.Leu380Gln	rs144984854	0.0006
chr2	ANKRD36	97211741	G	A	0.436	ENSP00000391950.2:p.Val1157Met	rs10194525	0.0006
chr6	HLA-DRB1	32580249	C	G	0.310	ENSP00000353099.5:p.Thr262Arg	rs199727427	0.0006
chr10	EEF1AKM	124774782	C	T	0.168	ENSP00000357829.2:p.Ala98Thr	rs199727427	0.0006
chr13	PARP4	24447185	A	G	0.304	ENSP00000371419.3:p.Ile1039Thr	rs199727427	0.0006
chr17	MYH13	10306461	G	A	0.344	ENSP00000404570.3:p.Arg1822Trp	rs116935297	0.007
chr17	MAP2K3	21300875	G	T	0.456	ENSP00000345083.4:p.Arg94Leu	rs56067280	0.0006
chr18	ANKRD30B	14843024	C	G	0.478	ENSP00000351875.4:p.Pro918Ala	rs180690700	0.0006
chr19	COLGAL1T1	17560463	G	C	0.268	ENSP00000252599.3:p.Leu163Val	rs76429704	0.0006
chr17	VPS13D	12249234	A	C	0.677	ENSP00000478104.1:p.Gln153His	rs11641583	0.0018
chr17	FAM131C	16058547	G	A	0.104	ENSP0000034814.4:p.Arg245Trp	rs77667563	0.0034
chr17	CROCC	16940041	C	G	0.126	ENSP00000364691.4:p.Asp586His	rs9435714	0.0034
chr17	KDF1	26952098	A	G	0.456	ENSP00000319179.5:p.Cys95Arg	rs148853297	0.0034
chr17	PPCS	42456962	A	T	0.546	ENSP00000361642.3:p.Arg133Trp	rs199807362	0.0034
chr17	IPP	45716925	G	A	0.344	ENSP00000379739.3:p.Arg427Cys	rs142095376	0.0002
chr17	PODN	53078994	G	A	0.778	ENSP00000308315.5:p.Arg543His	rs6199355	0.0034
chr17	FAM151A	54619889	C	G	0.128	ENSP00000306888.2:p.Lys79Asn	rs114883650	0.0144
chr17	RBMXL1	88983615	C	G	0.376	ENSP0000046099.1:p.Gly71Ala	rs111779380	0.0004
chr17	TSPAN2	115072962	G	C	0.201	ENSP00000358529.2:p.Gly39Arg	rs147800870	0.0004
chr17	PDE4DIP	149005208	C	T	0.567	ENSP00000358363.4:p.Arg1396Trp	rs2798901	0.0004
chr17	FLG2	152351277	G	A	0.234	ENSP00000373370.4:p.Ser217Phe	rs201200591,COSM896166	0.0004
chr17	CRNN	152409620	A	G	0.198	ENSP00000271835.3:p.Ser488Pro	rs72689400	0.0058
chr17	GPA33	167068982	C	A	0.304	ENSP00000356842.3:p.Val119Phe	rs72689400	0.0058
chr	Gene	Genomic Position	Allele	Minor Allele	Minor Allele Frequency	Protein Change	Reference SNP IDs	p-value
-----	--------	------------------	--------	--------------	------------------------	----------------	-------------------	---------
chr1	KIF14	200592110	T	G	0.567	ENSP00000356319.4:p.Lys928Thr	rs150766596	
chr1	PKP1	201322032	G	A	0.436	ENSP00000263946.3:p.Glu489Lys	rs748085816	
chr1	OBSCN	228350867	C	G	0.128	ENSP00000455507.2:p.Arg702Gly	rs142615706, COSM5042798, COSM5042799, COSM3360727, COSM3360726, COSM3360725	0.0012
chr1	RHOU	228743354	G	A	0.436	ENSP00000355652.3:p.Val131Met	rs142615706	
chr1	EDARADD	236482309	C	T	0.398	ENSP00000352604.2:p.Cys132Tyr	rs142615706	
chr1	OR2T3	248473745	G	A	0.300	ENSP00000356319.4:p.Lys928Thr	rs142615706	
chr1	OR2T34	248573866	G	A	0.126	ENSP00000356319.4:p.Lys928Thr	rs142615706	
chr1	OR2T27	248650526	T	C	1.000	ENSP00000356319.4:p.Lys928Thr	rs142615706	
chr2	MBOAT2	88732994	C	T	0.107	ENSP00000356319.4:p.Lys928Thr	rs34573615	
chr2	ASB3	53765485	G	C	0.243	ENSP00000455507.2:p.Arg702Gly	rs142615706	
chr2	TSPYL6	54255416	G	A	0.778	ENSP00000455507.2:p.Arg702Gly	rs142615706	
chr2	USP34	61278194	G	A	0.166	ENSP00000455507.2:p.Arg702Gly	rs142615706	
chr2	ANKRD36C	95944662	T	A	0.214	ENSP00000455507.2:p.Arg702Gly	rs142615706	
chr2	ASTL	96132701	C	T	0.463	ENSP00000455507.2:p.Arg702Gly	rs142615706	
chr2	NIFK	121732168	C	T	0.184	ENSP00000455507.2:p.Arg702Gly	rs142615706	
chr2	LCT	135817693	T	A	0.564	ENSP00000455507.2:p.Arg702Gly	rs142615706	
chr2	LRP1B	140868259	G	A	0.804	ENSP00000455507.2:p.Arg702Gly	rs142615706	
chr2	NMI	151275501	G	A	0.756	ENSP00000455507.2:p.Arg702Gly	rs142615706	
chr2	SLC39A10	195716880	A	G	0.278	ENSP00000455507.2:p.Arg702Gly	rs142615706	
chr2	TNS1	217882350	A	C	0.674	ENSP00000455507.2:p.Arg702Gly	rs142615706	
chr2	ESPNL	238131340	A	G	0.201	ENSP00000455507.2:p.Arg702Gly	rs142615706	
chr3	FANCD2	10065867	G	C	0.436	ENSP00000455507.2:p.Arg702Gly	rs142615706	
chr3	TTC21A	39138609	G	A	0.678	ENSP00000455507.2:p.Arg702Gly	rs142615706	
chr3	DNAH1	52360039	G	A	0.322	ENSP00000455507.2:p.Arg702Gly	rs142615706	
chr3	ZNF717	75737092	C	T	0.128	ENSP00000455507.2:p.Arg702Gly	rs142615706	
chr3 ZNF717 75737101 G T 0.201 ENSP00000419377.1:p.Pro791His rs79138891								
chr3 ZNF717 75737127 A C 0.128 ENSP00000419377.1:p.His782Gln rs79811623								
chr3 ZNF717 75737622 T A 0.344 ENSP00000419377.1:p.Arg617Ser rs76175438								
chr3 ZNF717 75737840 C T 0.166 ENSP00000419377.1:p.Arg300Cys rs1962893								
chr3 OR5K1 98469710 T C 0.768 ENSP00000373193.2:p.Leu45Ser rs200654905								
chr3 BBX 107716685 C T 0.924 ENSP00000319974.8:p.Arg81Trp rs142400819								
chr3 ARHGEF26 154225981 C G 0.440 ENSP00000348828.4:p.Asn687Lys 0.003								
chr3 GPR149 154428985 G C 0.778 ENSP00000374390.2:p.Pro211Ala rs77408990								
chr3 MUC20 195726080 C G 0.128 ENSP00000417498.3:p.Asp493His rs77408990								
chr3 MUC4 195762138 C A 1.000 ENSP00000417498.3:p.Ala4821Ser CM066583								
chr4 IDUA 987896 C G 0.134 ENSP000004217498.3:p.Thr574Ile 0.0012								
chr4 HTT 3207344 G A 0.310 ENSP00000417498.3:p.Ala4821Ser rs77408990								
chr4 TLR1 38796634 G A 0.780 ENSP00000417498.3:p.Thr574Ile rs5743621								
chr4 KDR 55098758 C G 0.654 ENSP00000417498.3:p.Thr574Ile rs5743621								
chr4 UGT2B15 68670105 T G 0.388 ENSP00000417498.3:p.Thr574Ile rs200638397								
chr4 RUFY3 70806627 C G 0.124 ENSP00000417498.3:p.Thr574Ile rs754675264								
chr4 CCSE1 90308466 G C 0.432 ENSP00000425040.1:p.Ser671Cys rs148775298								
chr4 PDLIM5 94455353 A G 0.567 ENSP00000417498.3:p.Thr574Ile rs754675264								
chr4 UNC5C 95170263 C T 0.128 ENSP00000417498.3:p.Thr574Ile rs34585936								
chr4 QRFPR 121380442 A C 0.214 ENSP00000417498.3:p.Thr574Ile rs34270076								
chr4 CBR4 169002197 C A 0.678 ENSP00000303525.3:p.Val137Phe rs34270076								
chr4 CBR4 169002200 T A 0.455 ENSP00000303525.3:p.Val137Phe rs34270076								
chr5 TLR3 186084674 C A 0.134 ENSP00000419377.1:p.Pro791His rs201540925								
chr5 SLC9A3 488354 C T 0.436 ENSP00000352207.8:p.Asn131Thr rs143027124								
chr5 C5orf49 7831902 T G 0.166 ENSP00000352207.8:p.Asn131Thr rs143027124								
chr5 ADGRV1 90705420 G A 0.124 ENSP00000384582.2:p.Ala2803Thr rs111033530 0.0048								
chr5 MARCH3 126878360 C T 0.356 ENSP00000309141.5:p.Arg143Gln rs138413676								
chr5 LECT2 135951324 C T 0.304 ENSP00000274507.1:p.Gly63Glu rs149560293 0.0068								
chr5 PCDHGA6 141374360 G A 0.256 ENSP00000231501.3:p.Glu93Lys rs200765071								
chr5 SCGB3A2 147881560 G A 0.652 ENSP00000395538.1:p.Gly2822Arg COSM3881739,COSM3881740								
chr5 PCDHGA6 141374360 G A 0.256 ENSP00000231501.3:p.Glu93Lys rs200765071								
chr5 PCDH12 141945665 C T 0.732 ENSP00000274507.1:p.Gly57Asp rs140599638								
chr5 SCGB3A2 147881560 G A 0.652 ENSP00000274507.1:p.Gly57Asp rs140599638 0.0004								
chr5 SLC36A2 151343594 C A 0.224 ENSP00000309141.5:p.Arg143Gln rs77010315,CM086960 0.005								
chr6 GFPT2 180301596 T C 0.364 ENSP00000274507.1:p.Gly63Glu rs149560293								
chr6 HLA 21594616 C G 0.578 ENSP00000231501.3:p.Glu93Lys rs140231408,COSM3697699 0.0066								
chr6 BTN2A2 26392401 G A 0.576 ENSP00000274507.1:p.Gly57Asp rs142803339,COSM3745097 0.0092								
chr6 HLA 32580779 C T 0.128 ENSP00000231501.3:p.Glu93Lys rs3830125								
chr6 HLA 32589669 G C 0.201 ENSP00000231501.3:p.Glu93Lys rs148093782								
chr6 HLA-DQB2 32757848 T C 0.344 ENSP00000231501.3:p.Glu93Lys rs9276572								
chr6 PPIL1 36871822 C G 0.134 ENSP00000231501.3:p.Glu93Lys rs12194408 0.0098								
chr6 PTK7 43130655 C A 0.276 ENSP00000231501.3:p.Glu93Lys rs78949718 0.0028								
chr6 POLR1C 43520104 C T 0.128 ENSP00000231501.3:p.Glu93Lys rs148385032 0.0014								
chr6 DST 56552557 C T 0.128 ENSP00000231501.3:p.Glu93Lys rs775546048								
chr6 TTK 80035318 C T 0.166 ENSP00000231501.3:p.Glu93Lys rs540538876 0.0002								
chr6 PNRC1 89081009 C T 0.124 ENSP00000231501.3:p.Glu93Lys rs2231267 0.0056								
chr6 AMZ1 108953073 C T 0.278 ENSP00000231501.3:p.Glu93Lys rs61741320 0.0132								
chr6 VNN1 132683243 T C 0.128 ENSP00000231501.3:p.Glu93Lys rs567530094 0.0002								
chr6 SHPRH 145922832 G A 0.243 ENSP00000231501.3:p.Glu93Lys rs148401398 0.0014								
chr7 AMZ1 2709683 G T 0.376 ENSP00000385899.2:p.Gly441Arg rs139796765 0.0058								
chr7 SHPRH 3962743 G A 0.455 ENSP00000385899.2:p.Gly441Arg rs139796765 0.0058								
chr7 TNRC18 5309293 C T 0.677 ENSP00000385899.2:p.Gly441Arg COSM3881739,COSM3881740								
chr	Gene	Position	Ref.	Alt.	p-value	Variant ID		
---	---	---	---	---	---	---	---	---
chr7	PSPH	56021118	T	C	0.295	ENSP00000378854.3:p.Asp32Gly		
chr7	GATA1	92456449	C	T	0.184	ENSP00000287957.3:p.Arg233Trp rs34768413 0.007		
chr7	FBXO24	100590263	A	C	0.128	ENSP00000416558.2:p.Glu114Asp rs545357401 0.0002		
chr7	POT1	124863547	G	A	0.457	ENSP00000350249.3:p.Arg117Cys rs780936436 0.0012		
chr7	CPA2	130289628	C	A	0.335	ENSP00000322481.4:p.Leu381Met rs146796996 0.0002		
chr7	TRBV20-1	142627134	A	T	0.310	ENSP00000374917.3:p.Arg24Trp rs34768413		
chr7	GATAD1	92456449	C	T	0.184	ENSP00000287957.3:p.Arg233Trp rs34768413 0.007		
chr7	FBXO24	100590263	A	C	0.128	ENSP00000416558.2:p.Glu114Asp rs545357401 0.0002		
chr7	POT1	124863547	G	A	0.457	ENSP00000350249.3:p.Arg117Cys rs780936436 0.0012		
chr7	CPA2	130289628	C	A	0.335	ENSP00000322481.4:p.Leu381Met rs146796996 0.0002		
chr7	TRBV20-1	142627134	A	T	0.310	ENSP00000374917.3:p.Arg24Trp rs34768413		
chr7	SSPO	149802064	C	T	0.256	ENSP00000485256.1:p.Ser2508Phe rs140977594 0.0056		
chr7	KMT2C	152247922	C	T	0.446	ENSP00000262189.6:p.Gly838Ser COSM4591270		
chr7	MTUS1	17653257	C	G	0.122	ENSP00000308720.7:p.Ile53Asn rs149246646		
chr7	VIPR2	159031954	C	T	0.788	ENSP00000287957.3:p.Arg233Trp rs34768413 0.007		
chr8	SGCZ	14108196	G	A	0.476	ENSP00000371512.1:p.Pro196Leu rs145213189 0.0004		
chr8	MTUS1	17684434	T	G	0.166	ENSP00000262102.6:p.Lys911Thr rs147214125 0.0004		
chr8	CYP7A1	58497114	A	G	0.436	ENSP00000301645.3:p.Leu133Pro rs149246646 0.0004		
chr8	CSPP1	67116017	C	G	0.657	ENSP00000287957.3:p.Arg233Trp rs34768413 0.007		
chr8	NBN	89971232	G	A	0.436	ENSP0000026433.3:p.Arg215Trp rs34768413 0.007		
chr8	PABPC1	100709584	G	A	0.566	ENSP00000313007.5:p.Arg374Cys rs200409148 0.0002		
chr8	PABPC1	100709584	T	C	0.534	ENSP00000313007.5:p.Glu372Gly rs201076736 0.0002		
chr8	PABPC1	100709611	C	A	0.128	ENSP00000313007.5:p.Val365Leu rs202074479 0.0002		
chr8	PABPC1	100709584	T	C	0.534	ENSP00000313007.5:p.Arg215Trp rs34768413 0.007		
chr8	DEPTOR	119965343	G	C	0.122	ENSP00000378854.3:p.Asp32Gly 96724 0.0003		
Chromosome	Gene	Position	Allele	Minor Allele	Risk Allele	Risk Allele Effect	Minor Allele Effect	rsID
------------	------------	------------	--------	--------------	-------------	---------------------	---------------------	------------------
chr9	ADAMTSL	18684733	G	T	0.184	ENSP00000369921.4:p.Ala503Ser	06437	rs149221350
chr9	LINGO2	27949346	A	C	0.345	ENSP00000369328.1:p.Ile442Met		
chr9	SHC3	89042122	G	A	0.304	ENSP00000364995.4:p.Pro422Ser	0771704230,COSM24411	
chr9	OR13C5	104599179	G	A	0.431	ENSP00000363911.2:p.Pro79His	07052570,COSM4163183	
chr9	TRIM32	116698344	G	A	0.128	ENSP00000408292.1:p.Arg201His	113259170	0.0012
chr9	LAMC3	131072789	C	T	0.655	ENSP00000354360.4:p.Ser1124Phe	143563851,COSM4163479	0.001
chr9	GBGT1	133153893	C	T	0.756	ENSP00000367064.4:p.Ala2914Val	45551835,COSM32707	0.0064
chr10	CUBN	16890385	G	A	0.678	ENSP00000363911.2:p.Pro79His	143563851,COSM4163479	0.001
chr10	GPRIN2	46462341	C	A	0.234	ENSP00000363431.1:p.Val348Leu	9426046	0.0012
chr10	GPRIN2	46550598	C	T	0.436	ENSP00000363431.1:p.Val47Met	11204658	
chr10	GPRIN2	46556022	G	C	0.234	ENSP00000363431.1:p.Leu39Val	140823928	0.0038
chr10	LHPP	124517198	G	A	0.536	ENSP00000357835.5:p.Asp215Asn	374871777,COSM2021369,COSM2021368	0.0038
chr10	CTBP2	124949430	G	A	0.598	ENSP00000311825.6:p.Gly321Trp	78155918	0.001
chr10	CTBP2	124949542	C	T	0.504	ENSP00000311825.6:p.Leu652Ile	150320719	
chr10	CTBP2	1249494563	A	T	0.544	ENSP00000311825.6:p.Leu39Phe	80025996,COSM5764564,COSM5764563	0.0038
chr10	CTBP2	125002983	T	G	0.346	ENSP00000311825.6:p.Asp652Ala	796433756	
chr10	CTBP2	125003006	T	C	0.310	ENSP00000311825.6:p.Thr605Met	112239066	
chr10	CTBP2	125003010	C	T	0.215	ENSP00000311825.6:p.Arg643Gln	760489730,COSM5620576,COSM5620575	0.0038
chr10	CTBP2	125003036	C	A	0.166	ENSP00000311825.6:p.Lys634Asn	201760950,COSM4441587,COSM4441586	0.0038
chr10	CTBP2	125003065	T	A	0.184	ENSP00000311825.6:p.Ile625Phe	75794788,COSM4144456,COSM4144455	0.0038
chr10	CTBP2	125003091	G	A	0.345	ENSP00000311825.6:p.Ala616Val	3198935	
chr10	CTBP2	125003357	G	A	0.128	ENSP00000311825.6:p.Thr605Met	768573864,COSM2021395,COSM2021394	0.0038
chr10	CTBP2	125003368	G	C	0.267	ENSP00000311825.6:p.Asp601Glu	1058301,COSM5763526,COSM5763525,COSM4675	296,COSM4675295
Chromosome	Gene	Position (bp)	Variant	Minor Allele	Minor Allele Description	Reference SNPs		
------------	------	---------------	---------	--------------	--------------------------	----------------		
chr10	CTBP2	125003410	C	G	0.215	ENSP0000311825.6:p.Glu587Asp	rs74705267,COSM4144460,COSM4144459	
chr10	CTBP2	125003448	G	C	0.166	ENSP0000311825.6:p.Leu575Val	rs3198920	
chr10	CTBP2	125003450	G	A	0.376	ENSP0000311825.6:p.Pro574Leu	rs796256730,COSM5620578,COSM5620577	
chr10	CTBP2	125003460	G	T	0.435	ENSP0000311825.6:p.His571Asn	rs796388243	
chr10	CTBP2	125003466	G	C	0.213	ENSP0000311825.6:p.Pro569Thr	rs368195398	
chr10	CTBP2	125003468	G	T	0.243	ENSP0000311825.6:p.Gly568Val	rs368195398	
chr10	CTBP2	125003470	G	C	0.178	ENSP0000311825.6:p.Asn571Met	rs797010536	
chr11	MUC6	1016961	G	A	0.166	ENSP0000406861.2:p.Thr1947Ile	rs773824783	
chr11	MUC6	1017069	G	A	0.801	ENSP0000406861.2:p.Thr1911Met	rs80333708	
chr11	MUC6	1017183	A	G	0.235	ENSP0000406861.2:p.Pro1873Gln	rs200364398	
chr11	MUC6	1018473	A	T	0.387	ENSP0000406861.2:p.Pro1869Ile	rs747429892	
chr11	OR4C46	54603280	G	A	0.233	ENSP0000332473.1:p.Leu217Pro	rs186749084	
chr11	OR4C46	54603280	G	A	0.233	ENSP0000332473.1:p.Glu217Val	rs747429892	
chr11	OR4C46	54603280	G	A	0.879	ENSP0000329056.1:p.Ser240Phe	rs11246607	
chr11	OR4C46	54603280	G	A	0.787	ENSP0000329056.1:p.Ser240Phe	rs11246607	
chr11	OR9G1	56700722	A	G	0.342	ENSP0000309012.1:p.Tyr112Cys	rs4990194	
chr11	OR9G1	56700892	C	T	0.210	ENSP0000309012.1:p.Arg169Cys	rs11228733	
chr11	OR9G1	56701223	T	A	0.128	ENSP0000309012.1:p.Val279Glu	rs79251113	
chr11	ESSENTIAL	64315848	T	C	0.184	ENSP0000384851.1:p.Leu385Pro	rs201072913	
chr11	ESSENTIAL	64315856	C	T	0.376	ENSP0000384851.1:p.Leu388Phe	rs79204587	
chr11	ESSENTIAL	64315859	C	T	0.435	ENSP0000384851.1:p.Arg389Cys	rs80310817	
chr11	ACTN3	66554587	C	T	0.231	ENSP0000422007.1:p.Pro217Leu	rs370740496	
chr11	NUMA1	72014043	G	A	0.435	ENSP0000377298.3:p.Arg1154Trp	rs61740456	
Chr	Gene	Position	Type	A	G	T	C	Frequency
------	--------	-----------	------	---	---	---	---	-----------
chr11	USP35	78210302	G	A	0.768	ENSP00000431876.1:p.Arg816His	rs75370284	0.0128
chr11	TRIM49C	90041372	C	A	0.465	ENSP00000388299.1:p.Thr394Asn	rs75119043, COSM3998623, COSM3998622	0.0042
chr11	MAML2	96093510	T	C	0.376	ENSP00000434552.1:p.Gly174Asp	rs61749254	0.0078
chr11	SORL1	121496918	G	A	0.346	ENSP00000361452.2:p.Leu164Phe	rs886202	0.0035
chr11	OR8B2	124382854	G	A	0.567	ENSP00000341292.5:p.Leu313Gln	rs28919870	0.0004
chr12	WNK1	827047	T	A	0.234	ENSP00000341292.5:p.Leu313Gln	rs75545535	0.0018
chr12	FOXM1	2858912	G	A	0.128	ENSP00000341292.5:p.Leu313Gln	rs75545535	0.0004
chr12	CRACR2A	3696811	A	C	0.345	ENSP00000341292.5:p.Leu313Gln	rs75545535	0.0004
chr12	KLRC2	10435931	C	G	0.376	ENSP00000341292.5:p.Leu313Gln	rs75545535	0.0004
chr12	TAS2R19	11021703	A	G	0.205	ENSP00000341292.5:p.Leu313Gln	rs75545535	0.0004
chr12	TAS2R19	11031947	G	A	0.345	ENSP00000341292.5:p.Leu313Gln	rs75545535	0.0004
chr12	TAS2R31	11030522	G	A	0.145	ENSP00000341292.5:p.Leu313Gln	rs75545535	0.0004
chr12	TAS2R31	11031043	G	A	0.761	ENSP00000341292.5:p.Leu313Gln	rs75545535	0.0004
chr12	TAS2R31	11031194	G	C	0.304	ENSP00000341292.5:p.Leu313Gln	rs75545535	0.0004
chr12	TAS2R31	11134103	G	C	0.166	ENSP00000341292.5:p.Leu313Gln	rs75545535	0.0004
chr12	PTPRO	15503912	C	G	0.456	ENSP00000341292.5:p.Leu313Gln	rs75545535	0.0004
chr12	CCDC65	48918345	A	G	0.345	ENSP00000341292.5:p.Leu313Gln	rs75545535	0.0004
chr12	TROAP	49331358	G	A	0.545	ENSP00000341292.5:p.Leu313Gln	rs75545535	0.0004
chr12	RDH5	55724028	G	T	0.787	ENSP00000341292.5:p.Leu313Gln	rs75545535	0.0004
chr12	MDM1	68332236	G	C	0.456	ENSP00000341292.5:p.Leu313Gln	rs75545535	0.0004
chr12	LRRIQ1	85153046	A	C	0.476	ENSP00000341292.5:p.Leu313Gln	rs75545535	0.0004
chr12	DNAH10	123916480	C	A	0.675	ENSP00000341292.5:p.Leu313Gln	rs75545535	0.0004
chr13	MPHOSPH	19642121	G	T	0.778	ENSP00000341292.5:p.Leu313Gln	rs75545535	0.0004
chr13	PARP4	24447125	T	C	0.368	ENSP00000341292.5:p.Leu313Gln	rs75545535	0.0004
chr13	PABPC3	25096638	C	T	0.215	ENSP00000341292.5:p.Leu313Gln	rs75545535	0.0004
chr13	PABPC3	25096659	C	G	0.567	ENSP00000341292.5:p.Leu313Gln	rs75545535	0.0004
Chr	Gene	Position	Ref	Alt	p-Value	Ensembl Accession	rs-ID	Custom Notes
-----	----------	----------	-----	-----	---------	------------------	-------	--------------
chr13	PABPC3	25096889	A	G	0.786	ENSP00000281589.3:p.Lys231Glu	rs78826513	
chr13	PABPC3	25096951	G	T	0.745	ENSP00000281589.3:p.Met251Ile	rs75281454	
chr13	PABPC3	25097154	C	T	0.564	ENSP00000281589.3:p.Thr319Ile	rs80261016	
chr13	NEK5	52086336	G	T	0.786	ENSP00000347767.4:p.Met251Ile	rs77466429	
chr13	SLC10A2	103049340	C	T	0.564	ENSP00000347767.4:p.Thr319Ile	rs80261016	
chr14	WIK5	63599636	G	A	0.124	ENSP00000347767.4:p.Met251Ile	rs77466429	
chr14	WDR89	63599677	C	T	0.266	ENSP00000347767.4:p.Thr319Ile	rs80261016	
chr14	SYNE2	64130105	C	A	0.340	ENSP00000347767.4:p.Met251Ile	rs77466429	
chr14	VIPAS39	77453359	C	T	0.675	ENSP00000347767.4:p.Met251Ile	rs77466429	
chr15	TYRO3	41573327	G	T	0.254	ENSP00000347767.4:p.Met251Ile	rs77466429	
chr15	SPATA5L1	45403247	C	G	1.000	ENSP00000347767.4:p.Met251Ile	rs77466429	
chr15	SPATA5L1	45403421	G	T	0.654	ENSP00000347767.4:p.Met251Ile	rs77466429	
chr15	SNX1	41436360	G	A	0.435	ENSP00000347767.4:p.Met251Ile	rs77466429	
chr15	MYO9A	71968075	T	C	0.675	ENSP00000347767.4:p.Met251Ile	rs77466429	
chr16	RPL3L	1947003	C	T	0.532	ENSP00000347767.4:p.Met251Ile	rs77466429	
chr16	ACSM2A	20465673	G	A	0.345	ENSP00000347767.4:p.Met251Ile	rs77466429	
chr16	ACSM3	20775918	T	C	0.546	ENSP00000347767.4:p.Met251Ile	rs77466429	
chr16	OR16-13	33827483	G	T	0.180	ENSP00000347767.4:p.Met251Ile	rs77466429	
chr16	CES1	55828971	C	A	0.184	ENSP00000347767.4:p.Met251Ile	rs77466429	
chr16	ZNF319	57996752	C	A	0.184	ENSP00000347767.4:p.Met251Ile	rs77466429	
chr16	AARS	70252728	T	A	0.215	ENSP00000347767.4:p.Met251Ile	rs77466429	
chr16	CLEC18B	74409592	C	T	0.304	ENSP00000347767.4:p.Met251Ile	rs77466429	
chr16	ZNF469	88437795	G	C	0.128	ENSP00000347767.4:p.Met251Ile	rs77466429	
chr17	ITGAE	3757758	G	A	0.166	ENSP00000347767.4:p.Met251Ile	rs77466429	
Chr	Genes	Position	Ref	Alt	SNP ID	Effect	p-value	
-----	-------	----------	-----	-----	--------	--------	---------	
chr17	CTC1	8232058	G	A	0.678	ENSP00000313759.8:p.Arg744Cys	rs35069886	
chr17	MYH13	10309647	C	G	0.456	ENSP00000404570.3:p.Asp1614His	rs35069886	
chr17	MAP2K3	21300880	C	T	0.765	ENSP00000345083.4:p.Arg96Trp	rs35069886	
chr17	MAP2K3	21304522	C	T	0.678	ENSP00000345083.4:p.Gly145Ser	rs35069886	
chr17	KCNJ12	21415757	G	A	0.234	ENSP000003463778.1:p.Glu139Lys	rs35069886	
chr17	KCNJ12	21417755	G	A	0.345	ENSP000003463778.1:p.Glu139Lys	rs35069886	
chr17	KCNJ12	21416124	G	A	0.212	ENSP000003463778.1:p.Arg261His	rs35069886	
chr17	KCNJ12	21416127	T	G	0.256	ENSP000003463778.1:p.Ile262Ser	rs35069886	
chr17	KCNJ12	21416474	G	A	0.345	ENSP000003463778.1:p.Glu378Lys	rs35069886	
chr17	SPAG5	28578086	T	G	0.348	ENSP00000323300.5:p.Asn1145Thr	rs35069886	
chr17	KRTAP29-1	41302224	A	T	0.678	ENSP00000375148.1:p.Cys210Ser	rs35069886	
chr17	KRT33B	41364989	C	T	0.486	ENSP00000251646.3:p.Arg329His	rs35069886	
chr17	KRT33B	41369498	C	T	0.567	ENSP00000251646.3:p.Glu85Lys	rs35069886	
chr17	ETV4	43528697	G	A	0.278	ENSP00000321835.4:p.Ala426Val	rs35069886	
chr17	KANSL1	46171833	T	G	0.215	ENSP00000387393.3:p.Lys104Thr	rs35069886	
chr17	EPN3	50536971	C	T	0.676	ENSP00000268933.3:p.Arg139Trp	rs35069886	
chr17	ACE	63491216	C	T	0.234	ENSP00000290866.4:p.Thr916Met	rs35069886	
chr17	CSH2	63872181	T	C	0.178	ENSP00000376623.2:p.Glu200Gly	rs35069886	
chr18	PIEZO2	10671669	C	T	0.134	ENSP00000421377.3:p.Arg2706Gln	rs189453524	
chr18	OSBPL1A	24167436	A	G	0.265	ENSP00000320291.3:p.Ser810Pro	rs35069886	
chr19	PODNL1	13934406	C	T	0.234	ENSP00000345175.4:p.Val174Met	rs781238470	
chr19	PALM3	14053817	C	T	0.376	ENSP00000344996.3:p.Asp604Asn	rs78541596,COSM1390897	
chr19	WTIP	34482629	C	T	0.184	ENSP00000466953.2:p.Arg219Trp	rs78541596,COSM1390897	
chr19	ZNF599	34769537	C	T	0.180	ENSP00000338202.6:p.Asp13Asn	rs117610843	
chr19	CYP2A6	40848628	A	T	0.256	ENSP00000301141.4:p.Leu160His	rs1801272,CM980517	
chr19	PPP1R37	45144962	C	T	0.324	ENSP00000246802.4:p.Asp31His	rs78530808	
chr19	NTN5	48664274	G	A	0.102	ENSP00000270235.3:p.Ile280Thr	rs142533877	
chr19	NTN5	48664274	G	A	0.102	ENSP00000270235.3:p.Ile280Thr	rs142533877	
chr19 LILRB2 54279040 G A 0.304 ENSP00000375629.4:p.Leu243Phe COSM1326184								
chr19 LILRA2 54574799 C A 0.356 ENSP00000251377.3:p.Leu141Ile								
chr19 LILRA2 54575019 A G 0.405 ENSP00000251377.3:p.Glu214Gly								
chr19 KIR2DL1 54773491 C A 0.546 ENSP00000336769.5:p.Thr91Lys COSM5712917,COSM5545196,COSM3404605								
chr19 KIR2DL2 54804874 A G 0.645 ENSP00000336769.5:p.Tyr53Cys								
chr19 KIR3DL1 54773534 C A 0.625 ENSP00000336769.5:p.Leu243Phe								
chr19 KIR3DL1 54773491 C A 0.625 ENSP00000336769.5:p.Leu243Phe								
chr19 KIR3DL1 54575019 A G 0.405 ENSP00000251377.3:p.Thr91Lys								
chr19 KIR3DL2 54574799 C A 0.356 ENSP00000251377.3:p.Leu141Ile								
chr19 KIR3DL2 54575019 A G 0.405 ENSP00000251377.3:p.Glu214Gly								
chr20 ANKRD60 58218668 G A 0.564 ENSP00000369747.1:p.Pro289Ser rs41275658								
chr20 LAMA5 62317394 T C 0.678 ENSP00000216962.3:p.Tyr234His rs41275658								
chr20 LAMA5 62317394 T C 0.678 ENSP00000216962.3:p.Tyr234His rs41275658								
chr20 KIAA1671 25029315 A G 0.376 ENSP00000351207.3:p.Lys439Arg								
chr20 CYP2D6 42127526 C T 0.128 ENSP00000353820.5:p.Arg365His rs1058172								
chr20 CYP2D6 42130692 G A 0.166 ENSP00000353820.5:p.Pro34Ser CM90081								
chr20 TUBGCP6 50221169 C T 0.924 ENSP00000248846.5:p.Gly1064Arg rs149231425								
chr20 PLXNB2 50280899 A G 0.184 ENSP00000492273.1:p.Arg241Met								
chrX PAGE1 49689423 T C 1.000 ENSP00000365320.3:p.Gly1064Arg								
chrX PAGE1 49689423 T C 1.000 ENSP00000365320.3:p.Gly1064Arg								
chrX FAM104B 55146247 G C 0.567 ENSP00000360671.4:p.Gly73Ser rs111638770,COSM5461083,COSM5461082,COSM388435								
chrX MED12 71119383 C G 0.215 ENSP00000361933.3:p.Thr37Arg								
chrX RTL9 110450737 G C 1.000 ENSP00000360671.4:p.Gly73Ser rs150383653,COSM4721270								
chrX SLC25A5 119469766 G A 0.345 ENSP00000360671.4:p.Gly73Ser rs134313528								
chrX SLC25A5 119469779 A C 0.204 ENSP00000360671.4:p.Gly73Ser rs134313528								
chrX SLC25A5 119469784 A T 0.184 ENSP00000360671.4:p.Ile79Phe rs14128607								
chr	SLC25A5	119470481	G	C	0.444	ENSP00000360671.4:p.Arg236Pro	rs114413582	
-----	---------	------------	-----	----	-------	-------------------------------	------------	

Table S3. Mutations found in the WES for chromosome/telomere instability and the VEGF-angiogenesis pathway in sporadic CAS sequenced individuals (non-POT1 mutation carriers).

Pathway	Sample	Gene	Genomic position	Reference allele	Alternative allele	ALT Allelic fraction	Amino acid change	dbsnp	MAF
NT1*	TP53BP2	223991119	G	T	0.213	Q229K	rs34683843	0.0467	
NT2*	TP53BP1	43762077	TGGGATAGG	TGG	0.205	PI454-	-	-	
ATM	142215368	GGAAGTAA	-	-	0.215	-	-	-	
NT3*	TP53	7578503	C	T	0.451	V143M	-	-	
T1	TP53BP1	43762077	TGGGATAGG	TGG	0.205	PI454-	-	-	
ATM	142215368	GGAAGTAA	-	-	0.215	-	-	-	
T2	BRCA1	41245120	T	A	0.128	N810Y	rs28897682	0.0279	
ATM	108200982	T	A	A	0.166	H1488Q	-	-	
T3	ATM	108165638	TTTAGGAAT	CTCT	0.423	-1593	-	-	
T4	BRCA1	41245120	T	A	0.128	N810Y	rs28897682	0.0279	
	CDK8	26911760	C	T	0.310	S62L	-	-	
TP53	7578503	C	T	0.376	V143M	-	-		
TP53 RP2	223991119	G	T	0.213	Q229K	rs34683843	0.0467		
ATM	108200982	T	A	A	0.166	H1488Q	-	-	
NT2*; **T3**	ATM	108175462	G	A	0.202	D1853N	rs1801516	0.0788	
Mutations involved in Angiogenesis	Gene	Position	Allele 1	Allele 2	Allele Frequency	SNP ID 1	SNP Frequency 1	SNP ID 2	SNP Frequency 2
-----------------------------------	------	----------	----------	----------	-----------------	---------	----------------	---------	----------------
NT1**	KDR	55979558	C	T	0.184	V297I	rs2305948	0.1310	
	RASA2	141326602	T	C	0.422	rs295322	0.1140		
	DOCK1	128810642	C	T	0.273	rs9418773	0.1230		
	RICTOR	38952300	G	A	0.179	S1042L	rs200988874	0.0005	
	IQGAP1	90996087	G	A	0.189	E415K	rs295322	0.1140	
	SRC	36012590	A	G	0.304	S12G			
	PIK3C2G	18691253	C	T	0.435	rs12315010	0.0389		
	NRAS	115256530	G	T	0.134	Q61K	rs121913254		
	PDK1	2607915	CT	C	0.310				
NT2*	RASA4	102246366	G	A	0.124	R123W	rs139960113	0.0020	
	SHOX2	157823580	TACA	T	0.556	p.77_78del			
NT3*	NRG2	139231255	C	T	0.345	R577H	rs75431091	0.0229	
T1	SPTAN1	131367372	A	G	0.204	N1260S			
	FGF22	640065	C	T	0.256	S47F			
T2	PIK3C2G	18443809	C	A	0.107	A261E	rs7133666	0.0417	
	RASA2	141299289	G	A	0.172	S557N			
	MAP2K1	66736993	G	T	0.243				
	IQGAP1	91025227	T	G	0.435	L1122R			
	VAV3	108145045	C	T	0.172	E732K			
	DUSP8	1579018	T	C	0.234				
T3	PIK3C2G	18473929	C	T	0.432	Q391*			
	RASA2	141328901	G	A	0.134	G839R	rs2228246	0.0952	
	PLCG1	39792063	A	G	0.345	S279G			
	RICTOR	38960053	C	T	0.180	V627I			
	DUSP8	1579306	A	G	0.172				
T4	RASA4	102235804	G	A	0.102	T340I			
	RASA4	102246393	C	T	0.165	E114K			
	ITGAV	187540655	G	A	0.184				
	PTPRQ	81004265	A	C	0.436	E1589D	rs201569993	0.0006	
	PIK3C2G	18656259	C	T	0.174	H1021Y			
Gene	Chromosome	Change	Base 1	Base 2	Frequency	Mutation			
--------	------------	--------	--------	--------	-----------	----------			
PRKCQ	6498721	G	A	0.102	A521V				
SPTANI	131377915	G	A	0.304	R1718H				
MAP2K1	66777404	C	T	0.174	A257V				
VEGFA	43738526	C	G	0.184	A28G				

* Confirmed constitutional ** Confirmed somatic.
Table S4. Actionable variants found in the sequencing experiment with IBM Watson for Genomics platform for T1 patient.

Gene	Actionable variant	Variant evidence (Pubmed)	FDA-approved drug for Angiosarcoma	Other molecules with clinical evidence (NCT)
MSH6	p.Glu1088fs	12019211	Pembrolizumab	Nivolumab (NCT0366819)
TP53	p.Arg175His	8510927; 17401432	-	Adavosertib (NCT01827384)
				Transferrin (NCT02354547)
ARID1A	p.Pro21del	23097632	-	**
ATR	p.Ile774fs	22960745	-	**
NOTCH	p.Pro2415del	15472975*; 25564152*	-	**

NCT: Number of Clinical Trial

* Similar variant within the same domain.

** Compelling preclinical evidence and/or case study reports support the biomarker as being predictive of response to this drug
Table S5. Actionable variants found in the sequencing experiment with IBM Watson for Genomics platform for T4 patient.

Gene	Actionable variant	Variant evidence (Pubmed)	FDA-approved drug for Angiosarcoma	Other molecules with clinical evidence (NCT)
CDK2A	p.Arg99Pro	20340136; 19260062	-	Palbociclib (NCT03239015)
TP53	p.Val143Met	23469205	-	Adavosertib (NCT01827384)
				Transferrin (NCT02354547)
KIT	Amplification	21523721; 17189383; 16166280	Pazopanib (NCT01462630)*	Pazopanib (NCT03628131)
				Imatinib (NCT02461849)
				Nilotinib (NC02379416)

NCT: Number of Clinical Trial
* Phase II study