Comment on “Fault-Tolerate Quantum Private Comparison Based on GHZ States and ECC”

Sai Ji · Fang Wang · Wen-Jie Liu · Chao Liu · Hai-Bin Wang

Received: 26 March 2014 / Accepted: date

Abstract A two-party quantum private comparison scheme using GHZ states and error-correcting code (ECC) was introduced in Li et al.’s paper [Int. J. Theor. Phys. 52: 2818-2815, 2013], which holds the capability of fault-tolerate and could be performed in a none-ideal scenario. However, this study points out there exists a fatal loophole under a special attack, namely the twice-Hadamard-CNOT attack. A malicious party may intercept the other’s particles, firstly executes the Hadamard operations on these intercepted particles and his (her) own ones respectively, and then sequentially performs twice CNOT operations on them and the auxiliary particles prepared in advance. As a result, the secret input will be revealed without being detected through measuring the auxiliary particles. For resisting this special attack, an improvement is proposed by applying a permutation operator before TP sends the particle sequences to all the participants.

Keywords Quantum private comparison · GHZ state · twice-Hadamard-CNOT attack · Improvement

1 Introduction

Since quantum mechanics principles are introduced into cryptography, quantum cryptography attracts more and more attention. Due to the characteristic of quantum unconditional security, many quantum cryptography protocols, such as quantum key distribution (QKD) [1-3], quantum direct communication (QDC) [4-7], quantum secret sharing (QSS) [8-10], quantum teleportation (QT) [11,12], have been proposed to solve various secure problems.

S. Ji · W.-J. Liu (Corresponding author)
Jiangsu Engineering Center of Network Monitoring, Nanjing University of Information Science & Technology, Nanjing 210044, China
E-mail: wenjie@163.com

S. Ji · F. Wang · W.-J. Liu · C. Liu · H.-B. Wang
School of Computer and Software, Nanjing University of Information Science & Technology, Nanjing 210044, China
Recently, quantum private comparison (QPC) has become an important branch in quantum cryptography. Based on the properties of quantum mechanics, the participants can determine whether their secret inputs are equal or not without disclosing their own secrets to each other. In 2009, Yang et al. [13] put forward a pioneering QPC scheme based on Bell states and a hash function. Since then, a large number of QPC protocols utilizing the entangled states, such as EPR pairs, GHZ state, etc., have been proposed [14-23].

However, these QPC protocols [13-23] are feasible in the ideal scenario but not secure in practical scenario where faults (including noise and error) are existent in the quantum channel and measurement. In order to solve the problem, in 2013, Li et al. [24] present a novel QPC scheme based on GHZ states and error-correcting code (ECC) against noise. But, through analyzing Li et al.’s QPC scheme, we find it is insecure under a special attack, called the twice-Hadamard-CNOT attack. To be specific, if any malicious party performed the twice-Hadamard-CNOT attack, he (she) can get another’s secret input, which goes against the QPC’s principles [25]. In order to fix the loophole, a simple solution by adopting a permutation operator before TP distributes the particles to the participants, is proposed.

The rest of this paper is constructed as follows. At first, Li et al.’s QPC protocol is briefly reviewed in Sect. 2. And in Sect. 3, we analyze the security of Li et al.’s QPC protocol by introducing the twice-Hadamard-CNOT attack, and give an improvement to fix the problem. Finally, a short collusion is drawn in Sect. 4.

2 Review of Li et al.’s QPC protocol

In the Ref. [24], in order to guarantee the QPC protocols secure in the practical scenario, Li et al. present a new two-party QPC scheme by using error-correcting code. The whole protocol consists of eight steps as below.

(1) Alice, Bob and Calvin prepare a \([m, n]\) error-correcting code which uses \(m\) bits codeword to encode \(n\) bits word and can correct \(l\) error bits in codeword with the error-correcting function \(D(x^m)\) according to the fault rate of the noise scenario. We suppose the error-correcting code’s generator matrix is \(G\), and check matrix is \(Q\). Then they encode \(X = (x_0, x_1, \ldots, x_{n-1})\) and \(Y = (y_0, y_1, \ldots, y_{n-1})\) to \(X’ = (x’_0, x’_1, \ldots, x’_{m-1})\) and \(Y’ = (y’_0, y’_1, \ldots, y’_{m-1})\) with the generator matrix \(G\), respectively. There are

\[
X’ = X \cdot G, \quad (1)
\]
\[
Y’ = Y \cdot G. \quad (2)
\]

(2) Calvin prepares \(m\) triplet GHZ states all in

\[
|\psi\rangle_{CAB} = \frac{1}{\sqrt{2}}(|000\rangle + |111\rangle)_{CAB} = \frac{1}{2}(|++\rangle + |+-\rangle + |--\rangle + |--\rangle + |++\rangle + |+-\rangle)_{CAB},
\]

where \(|0\rangle\) and \(|1\rangle\) are measured in \(Z\) basis, \(|+\rangle\) and \(|-\rangle\) are measured in \(X\) basis, and \(|\pm\rangle = \frac{1}{\sqrt{2}}(|0\rangle \pm |1\rangle\). Calvin divides these \(m\) GHZ states into three sequences \(S_A, S_B\) and \(S_C\), which includes the first, the second, and the third particles of all GHZ states, respectively.
(3) Calvin prepares some decoy photons prepared in states $|0\rangle$, $|1\rangle$, $|+\rangle$, $|−\rangle$ in random. He inserts these decoy photons in S_A and S_B at random positions to form sequences S_A^* and S_B^* respectively. Calvin retains the quantum sequence S_C and sends the sequence S_A^* to Alice, S_B^* to Bob.

(4) When Alice and Bob receive S_A^* and S_B^*, Calvin announces the positions and measurement base of these decoy photons. Alice and Bob measure them in the same base and announce their outcome. If the error rate exceeds a rational threshold, Calvin aborts the protocol and restarts from Step (1). Otherwise, there is no eavesdropper, and the protocol continues to the next step.

(5) Alice and Bob recover S_A and S_B respectively by discarding the decoy photons. Then Alice, Bob and Calvin measure S_A, S_B and S_C, respectively. If the measurement result is $|+\rangle$ ($|−\rangle$), then they encode it as the classical bit 0 (1). Thus, each of Alice, Bob and Calvin will obtain m bits from S_A, S_B and S_C, respectively. We denote each of them as k_A^i, k_B^i and k_C^i ($i=0,1,...,m-1$).

(6) Alice and Bob calculate $x''_i = k_A^i \oplus x'_i$ and $y''_i = k_B^i \oplus y'_i$. They announce $X'' = (x''_0, x''_1, ..., x''_{m-1})$ and $Y'' = (y''_0, y''_1, ..., y''_{m-1})$ to Calvin.

(7) Calvin calculates $c'_i = k_C^i \oplus x''_i \oplus y''_i$, and gets m bits sequence $C' = (c'_0, c'_1, ..., c'_{m-1})$.

(8) Then Calvin uses the check matrix Q to check whether the number of error bits exceeds the threshold l. If it does, Calvin aborts the protocol and restarts from Step (1). Otherwise, he gets n bits sequence C^* by decoding C' with error-correcting function $D(C')$. If there is at least one bit 1 in C^*, Calvin announces $X \neq Y$. Otherwise, he announces $X = Y$.

In Ref. [24], the authors claimed the scheme was secure even in the practical scenario. However, we will show how a malicious party gets the other’s secret input by launching the twice-Hadamard-CNOT attack in the next section.

3 Twice-Hadamard-CNOT attack on Li et al.’s QPC protocol and the improvement

3.1 Twice-Hadamard-CNOT attack on Li et al.’s QPC protocol

As analyzed in Ref.[24], due to the decoy photons adopted in the Li et al.’s QPC protocol, some well-known attacks, such as intercept-resend attack, measurement-resend attack, and entanglement-resend attack, can be detected via the checking mechanism. Unfortunately, we find Li et al.’s QPC protocol cannot resist a special attack, i.e., the twice-Hadamard-CNOT attack. To be specific, if any party (Alice or Bob) performs the twice-Hadamard-CNOT attack, he/she can get the other’s secret input. The detailed procedure of the twice-Hadamard-CNOT attack is depicted as follows.

Without loss of generality, we suppose Bob is malicious, who wants to get Alice’s secret input. At first, Bob prepares m auxiliary particles all in the state $|0\rangle$, then, the GHZ state and an auxiliary particle compose a composite system:

$$|\eta\rangle = |\psi\rangle_{CAB}|0\rangle_e$$

$$= \frac{1}{\sqrt{2}}(|0000\rangle + |1110\rangle)_{CABe}$$

$$= \frac{1}{2}(|++00\rangle + |++-0\rangle + |+-0-\rangle + |-+0+\rangle + |−-0+\rangle + |-+0−\rangle)_{CABe},$$

(4)
where the subscript C, A, B represent the particles in the hand of Calvin, Alice, Bob, respectively, and the subscript e represents the auxiliary particle.

In Step (3), when Calvin sends the sequence S_A^* to Alice, Bob may intercept S_A^* and execute a Hardmard (H) operation on every particle in S_A^*, to form sequence S_A^{**}. Then, he performs a controlled-NOT (CNOT) operation C_{Ae} on every particle in S_A^{**} and the corresponding auxiliary particle e. Here, the particle in S_A^{**} is the control qubit, while particle e is the target qubit. After that, Bob performs another H operation on every particle in S_A^{**} in order to restore sequence S_A^{***} to S_A^*, and sends S_A^* to Alice. What should be noted is that the transmitting sequence S_A^* remains unchanged.

Since Calvin announces the decoy photons’ positions in Step (4), Bob can discard the auxiliary particles e which correspond to the decoy photons in S_A^*. And in Step (5), after Bob recovers S_B by discarding the decoy photons, he executes an H operation on every particle in S_B to form sequence S_B^{**}. Then Bob performs a CNOT operation C_{Be} on every particle (control particle) in S_B^{**} and the corresponding auxiliary particle e (target particle). After that, he performs a H operation on every particle in S_B^{**}, which aims to restore S_B^{*} to S_B, and every auxiliary particle, respectively. Now, the state of the composite system is changed into

$$|\eta\rangle = \frac{1}{2}(|++\rangle_{CE}|++\rangle_{AB} + |−−\rangle_{CE}|++\rangle_{AB}).$$

From Eq.(5), a rule can be concluded: if e is $|+\rangle$, particle A and particle B are in the same state; and if e is $|−\rangle$, they are in the different states.

After Alice announces $X^* = (x_0^*, x_1^*, \ldots, x_{m−1}^*)$ in Step (6), Bob measures them in the X basis, and get the measurement result $k_i^B (i = 0, 1, \ldots, m−1)$. According to k_i^B and the rule from Eq.(5), Bob can obtain Alice’s states $k_i^A (i = 0, 1, \ldots, m−1)$. Since X^* has been announced by Alice, Bob can calculate $x_i^A = k_i^A \oplus x_i^B$, that is to say, he can get Alice’s secret input x_i^A.

For sake of clearness, the above procedure of the twice-Hadamard-CNOT attack can be intuitively demonstrated by the following figure (See Fig. 1).

3.2 The improvement

In order to fix the loophole of Li et al.’s QPC protocol, we meliorate it by applying a permutation operator before TP sends the particle sequences to all the participants. To be specific, Step (3), Step (4) and Step (5) in the original protocol need to be revised as follows.

(3)* Calvin prepares two group r-length decoy photons sequences at random in $\{|+, −\rangle, |0, 1\rangle\}$, namely R_A, R_B, and concatenates them with S_A (S_B) to form an extended sequence $S_A^* = R_A \| S_A$ ($S_B^* = R_B \| S_B$), respectively. Then Calvin applies a permutation operator $Π_{(r+m)}$ on S_A^* (S_B^*) to create a new sequence $Π_{(r+m)} S_A^* = S_A^{**}$ ($Π_{(r+m)} S_B^* = S_B^{**}$), and sends the new sequence S_A^{**} to Alice, S_B^{**} to Bob.

(4)* When Alice and Bob receive S_A^{**} and S_B^{**}, Calvin announces the coordinates of the decoy qubits $Π_r$ ($Π_r \subset Π_{(r+m)}$) send by him, and the corresponding measurement bases. Note that Calvin does not disclose the actual order of
Comment on “Fault-Tolerate Quantum Private Comparison Based on...”

Alice

Bob

H

H

 auxiliary particle

\[|0\rangle_s \]

Calvin

\[|\psi\rangle_{CAB} \]

\[|\eta\rangle \]

Fig. 1 The circuit diagram of the process of twice-Hadmard-CNOT attack. Here, \(|\psi\rangle_{CAB} \) is a GHZ state in the state \((|000\rangle + |111\rangle)/\sqrt{2} \) shared by Calvin, Alice and Bob. \(H \) is Hadmard operation, and \(\underbrace{\text{\textbf{\small{\textbf{H}}}}}_{\text{\textbf{\small{\textbf{H}}}}} \) represents the controlled-NOT gate in which the top line denotes the control qubit, the bottom line the target qubit.

the message qubits. Then Alice and Bob measure these decoy qubits in the same bases and announce their outcomes. If the error rate exceeds a rational threshold, Calvin aborts the protocol and restarts from Step (1); otherwise, there is no eavesdropper, and the protocol continues to the next step.

(5) Alice and Bob discard their decoy photons, and denote the left qubits in their hands as \(S'_{A} \) and \(S'_{B} \), respectively. Then Alice, Bob and Calvin measure \(S'_{A} \), \(S'_{B} \) and \(S_{C} \) in the \(X \) basis, respectively, and obtain \(m \) bits, \(k_{A}^{i} \), \(k_{B}^{i} \) and \(k_{C}^{i} \) (\(i=0,1,...,m-1 \)), respectively. After they have completed measurement operation, Calvin immediately announces the actual order of the message qubits \(\Pi_{m} \) (\(\Pi_{m} \subset \Pi_{r+\text{m}} \)). Using this information, Alice (Bob) can rearrange \(k_{A}^{i} \) (\(k_{B}^{i} \)) in correspondence with the original order of \(S_{A} \) (\(S_{B} \)).

Let us examine the security of our improvement under the twice-Hadmard-CNOT attack. Similarly, we suppose the malicious Bob aims to get Alice’s secret input. In Step (3)\(^*\), since Calvin disrupts the sequences \(S_{A} \) and \(S_{B} \) by using \(\Pi_{r+\text{m}} \), it means the order of transmitted sequences \(S'_{A} \), \(S'_{B} \) is fully disturbed. And after discarding the decoy qubits \(R_{A} \) and \(R_{B} \) in Step (5)\(^*\), Alice and Bob can only get \(S'_{A} \) and \(S'_{B} \), and cannot recover the original sequences \(S_{A} \) and \(S_{B} \) because that \(\Pi_{m} \) is only known by Calvin. So, even if Bob launches the twice-Hadmard-CNOT attack, he cannot get the final state \(|\eta\rangle = \frac{1}{2}(|++\rangle + |--\rangle)_{AB} + |--\rangle + |++\rangle)_{AB} \). That is to say, Bob cannot get the correlations between Alice’s and Bob’s qubits by measuring the auxiliary particles \(e \).

For simplicity, we take a simple two-bit private comparisonas example without considering error-correcting code and the decoy photos. In the case, suppose Alice’s input is 10, Bob’s input is 11, and Calvin prepares two GHZ states all in the state
input without being detected. For avoiding this loophole, we adopt the permuta-
i.e., if one participant Bob launches this attack, he (she) can get the other’s secret
party QPC protocol, and find it cannot resist the twice-Hadma rd-CNOT attack,
another’s secret input. In this paper, we firstly review and analyze Li et al.’s two-
antee any participant only knows his (her) own secret input without obtaining
In all the QPC protocols, in order to ensure the protocol’s security, we must guar-

4 Conclusion

In all the QPC protocols, in order to ensure the protocol’s security, we must guarantee any participant only knows his (her) own secret input without obtaining another’s secret input. In this paper, we firstly review and analyze Li et al.’s two-party QPC protocol, and find it cannot resist the twice-Hadmand-CNOT attack, i.e., if one participant Bob launches this attack, he (she) can get the other’s secret input without being detected. For avoiding this loophole, we adopt the permutation operator to rearranges the quantum sequences sent to Alice and Bob from Charlie. The delicate analysis shows the security of our improvement can be guaranteed well and truly.
Acknowledgments

This work is supported by the National Nature Science Foundation of China (Grant Nos. 61103235, 61373131 and 61373016), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and State Key Laboratory of Software Engineering, Wuhan University (SKLSE2012-09-41).

References

1. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of IEEE International conference on Computers, Systems and Signal Processing Bangalore, New York, pp. 175-179. Bangalore, India, (1984)
2. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A. 65, 032302 (2002). doi:10.1103/PhysRevA.65.032302
3. Moroder, T., Curty, M., Lim, C.C.W., Thinh, L.P., Zhidun, H., Gisin, N.: Security of Distributed-Phase-Reference Quantum Key Distribution. Phys. Rev. Lett. 109, 260501 (2012)
4. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A. 68, 042317 (2003). doi:10.1103/PhysRevA.68.042317
5. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A. 69, 052319 (2004). doi:10.1103/PhysRevA.69.052319
6. Liu, W.J., Chen, H.W., Li, Z.Q., Liu, Z.H.: Efficient quantum secure direct communication with authentication. Chinese Physics Letters. 25, 2354-2357 (2008).
7. Liu, W.J., Chen, H.W., Ma, T.H., Li, Z.Q., Liu, Z.H., Hu, W.B.: An efficient deterministic secure quantum communication scheme based on cluster states and identity authentication. Chin. Phys. B. 18, 4105-4109 (2009). doi:10.1088/1674-1056/18/10/007
8. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648-651 (1999). doi:10.1103/PhysRevLett.83.648
9. Xu, J., Chen, H.W., Liu, W.J., Liu, Z.H.: Selection of unitary operations in quantum secret sharing without entanglement. Sci. China Inf. Sci. 54, 1837-1842 (2011). doi:10.1007/s11432-011-4240-9
10. Wang, H.B., Huang, Y.G., Fang, X., Gu, B., Fu, D.S.: High-Capacity Three-Party Quantum Secret Sharing with Single Photons in Both the Polarization and the Spatial-Mode Degrees of Freedom. Int. J. Theor. Phys. 52, 1043-1051 (2013). doi:10.1007/s10773-012-1418-x
11. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575-579 (1997).
12. Furusawa, A., Sorensen, J.J., Braunstein, S.L., Fuchs, C.A., Kimble, H.J., Polzik, E.S.: Unconditional quantum teleportation. Science 282, 706-709 (1998). doi:10.1126/science.282.5389.706
13. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A: Math. Theor. 42, 055305 (2009). doi:10.1088/1751-8113/42/5/055305
14. Chen, X.B., Xu, G., Niu, X.X., Wen, Q.Y., Yang, Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 285, 1561-1565 (2010). doi:10.1016/j.optcom.2009.11.085
15. Jia, H.Y., Wen, Q.Y., Li, Y.B., Gao, F.: Quantum Private Comparison Using Genuine Four-Particle Entangled States. Int. J. Theor. Phys. 51, 1187-1194 (2012). doi:10.1007/s10773-011-0994-5
16. Liu, W., Wang, Y.B.: Quantum Private Comparison Based on GHZ Entangled States. Int. J. Theor. Phys. 51, 3596-3604 (2012). doi:10.1007/s10773-012-1246-z
17. Liu, W., Wang, Y.B., Cui, W.: Quantum Private Comparison Protocol Based on Bell Entangled States. Commun. Theor. Phys. 57, 583-588 (2012). doi:10.1088/0253-6102/57/4/11
18. Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11, 373-384 (2012). doi:10.1007/s11128-011-0251-0
19. Sun, Z.W., Long, D.Y.: Quantum Private Comparison Protocol Based on Cluster States. Int. J. Theor. Phys. 52, 212-218 (2013). doi:10.1007/s10773-012-1321-5
20. Lin, J., Yang, C.-W., Hwang, T.: Quantum private comparison of equality protocol without a third party. Quantum Inf. Process. 13, 239-247 (2014). doi:10.1007/s11128-013-0645-2
21. Liu, W.J., Liu, C., Liu, Z.H., Liu, J.F., Geng, H.T.: Same Initial States Attack in Yang et al.’s Quantum Private Comparison Protocol and the Improvement. Int. J. Theor. Phys. 53, 271-276 (2014). doi:10.1007/s10773-013-1807-9
22. Liu, W.J., Liu, C., Chen, H.W., Liu, Z.H., Yuan, M.X., Lu, J.S.: IMPROVEMENT ON “AN EFFICIENT PROTOCOL FOR THE QUANTUM PRIVATE COMPARISON OF EQUALITY WITH W STATE”. Int. J. Quantum Inf. 0, 1450001 (2014). doi:10.1142/S0219749914500014
23. Liu, W.J., Liu, C., Wang, H.b., Liu, J.F., Wang, F., Yuan, X.M.: Secure Quantum Private Comparison of Equality Based on Asymmetric W State. Int. J. Theor. Phys., 1-10 (2014). doi:10.1007/s10773-013-1079-3
24. Li, Y.B., Wang, T.Y., Chen, H.Y., Li, M.D., Yang, Y.T.: Fault-Tolerate Quantum Private Comparison Based on GHZ States and ECC. Int. J. Theor. Phys. 52, 2818-2825 (2013). doi:10.1007/s10773-013-1573-8
25. Liu, W.J., Liu, C., Wang, H.B., Jia, T.T.: Quantum Private Comparison: A Review. IETE Tech. Rev. 30, 439-445 (2013). doi:10.4103/0256-4602.123129