ASYMPTOTIC STABILITY FOR A CLASS OF METRIPLECTIC SYSTEMS

Petre Birtea, Mihai Boleantu, Mircea Puta, Razvan Micu Tudoran

Abstract

Using the framework of metriplectic systems on \mathbb{R}^n we will describe a constructive geometric method to add a dissipation term to a Hamilton-Poisson system such that any solution starting in a neighborhood of a nonlinear stable equilibrium converges towards a certain invariant set. The dissipation term depends only on the Hamiltonian function and the Casimir functions.

MSC: 37C10, 37C75.

Keywords: dynamical systems, stability theory.

1 Introduction

In an attempt for an unification of the conservative and nonconservative (or dissipative) dynamics, A.N. Kaufman [4] has introduced the notion of metriplectic system. More exactly, let $\{\cdot, \cdot\}$ be a Poisson structure on \mathbb{R}^n with Π the associated matrix i.e., $\Pi = \{x_i, x_j\}$ and $C_1, \ldots, C_k \in C^\infty(\mathbb{R}^n, \mathbb{R})$ a complete set of functionally independent Casimir functions. Let G be a smooth function from \mathbb{R}^n to the vector space of symmetric matrices of type $n \times n$.

Definition 1.1. ([4]) A metriplectic system on \mathbb{R}^n is a system of differential equations of the following type:

$$\dot{x} = \Pi(x) \cdot \nabla H(x) + G(x) \cdot \nabla \varphi(C_1, \ldots, C_k)(x) \quad (1.1)$$

where $H \in C^\infty(\mathbb{R}^n, \mathbb{R})$ and $\varphi \in C^\infty(\mathbb{R}^k, \mathbb{R})$ such that the following conditions hold:

(M1) $\Pi \cdot \nabla C_i = 0, i = 1, k$, i.e. C_i is a Casimir of our Poisson configuration $(\mathbb{R}^n, \{\cdot, \cdot\})$.

(M2) $G \cdot \nabla H = 0$.

(M3) $(\nabla \varphi(C_1, \ldots, C_k))^t \cdot G \cdot \nabla \varphi(C_1, \ldots, C_k) \leq 0$.

1
Remark 1.1. It is not hard to see that:

(i) The derivative of H along the solutions of (1.1) is $\frac{dH}{dt} = 0$, i.e. H is a conserved quantity of the dynamics (1.1).

(ii) The derivative of $\varphi(C_1, \ldots, C_k)$ along the solutions of (1.1) is $\frac{d\varphi(C_1, \ldots, C_k)}{dt} \leq 0$, i.e. $\varphi(C_1, \ldots, C_k)$ plays the role of the "entropy function" for the dynamics (1.1).

\[\square \]

Remark 1.2. The dynamics (1.1) can be viewed as a perturbation of the Hamilton-Poisson system:

\[\dot{x} = \{x, H\}, \]

with the dissipative term $G \cdot \nabla \varphi(C_1, \ldots, C_k)$.

\[\square \]

Metriplectic systems have been extensively studied in connection with mathematical physics problems, see for instance [2], [4], [5], [6] and [8]. In [1] was proven that a certain type of dissipation induces instability. The goal of our paper is to introduces a new type of dissipation, using the formalism of metriplectic systems, in such a way that any solution of (1.1) starting in a small neighborhood of a nonlinear stable equilibrium converges towards a certain invariant set containing the equilibrium. The dissipative part can be interpreted as a set of controls added to the conservative part.

2 A class of metriplectic systems on \mathbb{R}^n

Let $(\mathbb{R}^n, \{\cdot, \cdot\}, H)$ be an Hamilton-Poisson system on \mathbb{R}^n and $C_1, \ldots, C_k \in C^\infty(\mathbb{R}^n, \mathbb{R})$ a complete set of functionally independent Casimir functions of the Poisson vector space $(\mathbb{R}^n, \{\cdot, \cdot\})$. The dynamic is described by the following set of differential equations:

\[\dot{x} = \Pi \cdot \nabla H. \tag{2.1} \]

Our goal is to construct explicitly a dissipative perturbation, i.e., to determine effectively a matrix $g = [g^i_j]$ such the perturbed system:

\[\dot{x} = \Pi \cdot \nabla H + G \cdot \nabla \varphi(C_1, \ldots, C_k) \]

to be a metriplectic system.
Denote with $\partial_i H \overset{def}{=} \frac{\partial H}{\partial x_i}$ and $\partial_i C_j \overset{def}{=} \frac{\partial C_j}{\partial x_i}$. The matrix $G = [g^{ij}]$ given below satisfies all the conditions from the definition of a metriplectic system

$$
G = \begin{bmatrix}
- \sum_{i=1, i \neq 1}^{n} (\partial_i H)^2 & \partial_1 H \partial_2 H & \ldots & \partial_1 H \partial_n H \\
\partial_1 H \partial_2 H & - \sum_{i=1, i \neq 2}^{n} (\partial_i H)^2 & \ldots & \partial_2 H \partial_n H \\
\vdots & \vdots & \ddots & \vdots \\
\partial_1 H \partial_n H & \partial_2 H \partial_n H & \ldots & - \sum_{i=1, i \neq n}^{n} (\partial_i H)^2
\end{bmatrix} \tag{2.2}
$$

Indeed, we have that the j-component of the vector field $G \cdot \nabla H$ is given by

$$(G \cdot \nabla H)_j = \sum_{i \neq j}^{n} (\partial_i H)^2 \partial_j H + (- \sum_{i \neq j}^{n} (\partial_i H)^2) \partial_j H = 0.$$

Consequently, condition $(M2)$ is satisfied.

In the case when in the dissipation term we take only one Casimir function we have the following computation,

$$(\nabla C) \cdot G \cdot \nabla C = \sum_{j=1}^{n} \partial_j C (G \cdot \nabla C)_j = \sum_{j=1}^{n} \partial_j \left(\sum_{i \neq j}^{n} (\partial_i H \partial_j H - (\partial_i H)^2 \partial_j C) \right) = \partial_1 C \partial_2 H (\partial_2 C \partial_1 H - \partial_1 C \partial_2 H) + \cdots + \partial_i C \partial_n H (\partial_n C \partial_i H - \partial_i C \partial_n H) + \partial_2 C \partial_1 H (\partial_1 C \partial_2 H - \partial_2 C \partial_1 H) + \cdots + \partial_2 C \partial_n H (\partial_n C \partial_2 H - \partial_2 C \partial_n H) + \cdots + \partial_n C \partial_1 H (\partial_1 C \partial_n H - \partial_n C \partial_1 H) + \cdots + \partial_n C \partial_{n-1} H (\partial_{n-1} C \partial_n H - \partial_n C \partial_{n-1} H).$$

Regrouping the terms we obtain the desired inequality which proves that condition $(M3)$ is also satisfied,

$$(\nabla C) \cdot G \cdot \nabla C = -(\partial_1 C \partial_2 H - \partial_2 C \partial_1 H)^2 \quad - (\partial_1 C \partial_3 H - \partial_3 C \partial_1 H)^2 \quad \ldots \quad - (\partial_1 C \partial_n H - \partial_n C \partial_1 H)^2$$

$$\quad -(\partial_2 C \partial_3 H - \partial_3 C \partial_2 H)^2 \quad \ldots \quad - (\partial_2 C \partial_n H - \partial_n C \partial_2 H)^2$$

$$\quad \cdots$$

$$\quad - (\partial_{n-1} C \partial_n H - \partial_n C \partial_{n-1} H)^2 \\ \leq 0. \tag{2.3}$$
Remark 2.1. The above inequality is an equality iff \(dH \wedge dC = 0 \). Consequently, we obtain equality in \(\tilde{C} := \varphi(C_1,\ldots,C_k) \) of the complete set of functionally independent Casimir functions \(C_1,\ldots,C_k \) we obtain a new Casimir function \(\tilde{C} \) and consequently,

\[
(\nabla \varphi(C_1,\ldots,C_k))^t \cdot G \cdot \nabla \varphi(C_1,\ldots,C_k) = (\nabla \tilde{C})^t \cdot G \cdot \nabla \tilde{C} \leq 0
\]

with equality iff \(\nabla H \) and \(\nabla \varphi(C_1,\ldots,C_k) \) are linearly dependent. \(\square \)

Let us consider now the metriplectic system (1.1) where \(G \) is given by the relation (2.2). Then we can define in a canonical way two vector fields on \(\mathbb{R}^n \), namely:

\[
\xi_\Pi = \Pi \cdot \nabla H
\]

and

\[
\xi = \Pi \cdot \nabla H + G \cdot \nabla \varphi(C_1,\ldots,C_k).
\]

Proposition 2.1. Let \((\mathbb{R}^n, \Pi, H) \) be an Hamilton-Poisson system. If \(x_0 \in \mathbb{R}^n \) is an equilibrium state of the vector field \(\xi \), i.e., \(\xi(x_0) = 0 \) then \(x_0 \) is an equilibrium state of the vector field \(\xi_\Pi \).

Proof. Indeed, \(\xi(x_0) = 0 \) implies that

\[
(\nabla \varphi(C_1,\ldots,C_k)(x_0))^t \xi(x_0) = 0,
\]

and so

\[
(\nabla \varphi(C_1,\ldots,C_k)(x_0))^t \Pi(x_0) \nabla H(x_0) + (\nabla \varphi(C_1,\ldots,C_k)(x_0))^t G(x_0) \nabla \varphi(C_1,\ldots,C_k)(x_0) = 0.
\]

This is equivalent (since \(\nabla \varphi(C_1,\ldots,C_k) \) is a Casimir we have \((\nabla \varphi(C_1,\ldots,C_k)(x_0))^t \Pi(x_0) \nabla H(x_0) = 0 \) with

\[
(\nabla \varphi(C_1,\ldots,C_k)(x_0))^t G(x_0) \nabla \varphi(C_1,\ldots,C_k)(x_0) = 0.
\]

This leads us immediately via Remark 2.1 to

\[
\nabla H(x_0) = \lambda \nabla \varphi(C_1,\ldots,C_k)(x_0)
\]

for some \(\lambda \in \mathbb{R}^n \). Therefore

\[
\xi_\Pi(x_0) = \Pi(x_0) \nabla H(x_0) = \lambda \Pi(x_0) \nabla \varphi(C_1,\ldots,C_k)(x_0) = 0
\]

as required. \(\square \)
Proposition 2.2. Let (\mathbb{R}^n, Π, H) be an Hamilton-Poisson system. Let $x_0 \in \mathbb{R}^n$ be an equilibrium point of the vector field ξ_Π. If there exists a function $\varphi \in C^\infty(\mathbb{R}^k, \mathbb{R})$ such that $\nabla \varphi(C_1, \ldots, C_k)(x_0)$ and $\nabla H(x_0)$ are linear dependent then x_0 is an equilibrium point of the vector field
\[
\xi = \Pi \cdot \nabla H + G \nabla \varphi(C_1, \ldots, C_k).
\]

Proof. Indeed, if
\[
\xi_\Pi(x_0) = 0,
\]
then we have also that
\[
\Pi(x_0) \cdot \nabla H(x_0) = 0
\]
and consequently we have two possibilities:

(i) $\nabla H(x_0) = 0$. This implies (see the construction of G) the equality
\[
G(x_0) = 0
\]
and then
\[
G(x_0) \cdot \nabla \varphi(C_1, \ldots, C_k)(x_0) = 0.
\]
Therefore
\[
\xi(x_0) = 0.
\]

(ii) $\Pi(x_0) \cdot \nabla H(x_0) = 0$ and $\nabla H(x_0) \neq 0$. By hypothesis we obtain
\[
G(x_0) \cdot \nabla \varphi(C_1, \ldots, C_k)(x_0) = \lambda G(x_0) \nabla H(x_0)
\]
\[
= 0
\]
and we can conclude that
\[
\xi(x_0) = 0
\]
as required.

Corollary 2.3. The set $E := \{x \in \mathbb{R}^n | \nabla H(x) \text{ and } \nabla \varphi(C_1, \ldots, C_k)(x) \text{ are linearly dependent}\}$ is a set of equilibrium points for both vector fields ξ_Π and ξ.

Proof. For an arbitrary point $y \in E$ we have
\[
\Pi(y) \cdot \nabla H(y) = \lambda \Pi(y) \cdot \nabla \varphi(C_1, \ldots, C_k)(y) = 0,
\]
which shows that y is a equilibrium point for the vector field ξ_Π. Proposition 2.2 implies that y is also an equilibrium point for the vector field ξ.

5
3 Metriplectic systems and asymptotic stability

For the beginning let us briefly recall some definitions of stability for a dynamical system on \mathbb{R}^n

$$\dot{x} = f(x),$$ (3.1)

where $f \in C^\infty(\mathbb{R}^n, \mathbb{R}^n)$.

Definition 3.1. An equilibrium point x_e is stable if for any small neighborhood U of x_e there is a neighborhood V of x_e, $V \subset U$ such that if initially $x(0)$ is in V, then $x(t) \in U$ for all $t > 0$. If in addition we have:

$$\lim_{t \to \infty} x(t) = x_e$$

then x_e is called asymptotically stable.

For studying more complicated asymptotic behavior we need to introduce the notion of ω-limit set. Let ϕ^t be the flow defined by equation (3.1). The ω-limit set of x is $\omega(x) := \{y \in \mathbb{R}^n | \exists t_1, t_2, \ldots \to \infty \text{ s.t. } \phi(t_k, x) \to y \text{ as } k \to \infty\}$. The ω-limit sets have the following properties that we will use later. For more details see Robinson [9].

(i) If $\phi(t, x) = y$ for some $t \in \mathbb{R}$, then $\omega(x) = \omega(y)$.

(ii) $\omega(x)$ is a closed subset and both positively and negatively invariant (contain complete orbits).

Next we will prove a version of LaSalle’s Theorem. For a more general result see the original work of LaSalle [2].

Theorem 3.1. Let x_0 be an equilibrium point for (3.1) and U a small compact neighborhood of x_0. Suppose there exists $L : U \to \mathbb{R}$ a C^1 differentiable function with $L(x) > 0$, $L(x_0) = 0$ and $\dot{L}(x) \leq 0$. Let E be the set of all points in U where $\dot{L}(x) = 0$. Let M be the largest invariant set in E. Then there exists a small neighborhood $V \subset U$ such that $\omega(x) \subset M$ for all $x \in V$.

Proof. The conditions of the theorem ensures the stability of x_0. There is a small compact neighborhood U of x_0 and a smaller neighborhood $V \subset U$ such that $\phi(t, x) \in U$ for any $x \in V$ and $t \geq 0$. As U is closed we also have $\omega(x) \subset U$.

Let $x \in V$ and $y \in \omega(x)$ be arbitrarily chosen. Since $\dot{L}(\phi(t, x)) \leq 0$ we have that $L(\phi(t, x))$ is a nonincreasing function of t. Because L is a positive bounded function on U and $\phi(t, x)$ remains for all time in U we have $\lim_{t \to \infty} L(\phi(t, x)) = l$, where $0 \leq l < \infty$. As $y \in \omega(x)$ and L is continuous we obtain
that $L(y) = l$. The invariance of $\omega(x)$ shows that $L(\phi(t,y)) = l$ and consequently $\dot{L}(\phi(t,y)) = 0$ for all $t \in \mathbb{R}$. Hence $y \in E$ and so $\omega(x) \subset E$. As $\omega(x)$ is invariant implies that $\omega(x) \subset M$.

The following is the main result of this paper.

Theorem 3.2. Let (\mathbb{R}^n, Π, H) be a Hamilton-Poisson system and $x_0 \in \mathbb{R}^n$ an equilibrium state for the dynamic

$$
\dot{x} = \Pi(x) \cdot \nabla H(x).
$$

(3.2)

Suppose that there exists a function $\varphi \in C^\infty(\mathbb{R}^k; \mathbb{R})$, where k equals the number of functionally independent Casimirs for the Poisson structure Π, such that

(i) $\delta H_{\varphi}(x_e) = 0$

(ii) $\delta^2 H_{\varphi}(x_e)$ is positive definite,

where

$$H_{\varphi}(x) = H(x) + \varphi(C_1(x), \ldots, C_k(x))$$

with $C_1, \ldots, C_k \in C^\infty(\mathbb{R}^n; \mathbb{R})$ a set of functionally independent Casimirs of Π.

Let G be the matrix defined by (2.2) then there exist a small closed and bounded neighborhood U of the equilibrium state x_e of the corresponding metriplectic system

$$
\dot{x} = \Pi(x) \cdot \nabla H(x) + G(x) \cdot \nabla \varphi(C_1, \ldots, C_k)(x)
$$

(3.3)

and a neighborhood $V \subset U$ such that every solution of (3.3) starting in V approaches $U \cap E$ as $t \to \infty$, where $E := \{x \in \mathbb{R}^n| \nabla H(x) \text{ and } \nabla \varphi(C_1, \ldots, C_k)(x) \text{ are linearly dependent}\}$.

Proof. First we have to prove that x_e is an equilibrium point for the dynamics (3.3). This is guarantied by Proposition 2.2.

Next we will prove that under the hypothesis of the theorem the function $L \in C^\infty(\mathbb{R}^n, \mathbb{R})$ given by

$$L(x) \overset{def}{=} H_{\varphi}(x) - H_{\varphi}(x_e)$$

is a Lyapunov function for the dynamic (3.3). More exactly, using the hypothesis and Remark 2.1 we obtain that there exists a closed and bounded neighborhood U of the critical point x_e such that

(i) $L(x_e) = 0$.

(ii) $L(x) > 0$, $(\forall) x \in U, x \neq x_e$
(iii) \(\dot{L}(x) \leq 0, \forall x \in U, \)

which implies that \(x_e \) is a stable equilibrium point for (3.3).

By Remark 2.1 we have that \(E \) equals the set of all points where \(\dot{L}(x) = 0 \). Using Corollary 2.3 we have that the largest invariant subset in \(E \) for (3.3) equals \(E \).

We showed that all the conditions of the Theorem 3.1 are satisfied and so we obtain the desired result.

\[\square \]

Remark 3.1. The above result tells us in fact how to built in an effective way a set controls which locally asymptotically stabilize a nonlinear stable equilibrium state of a given Hamilton-Poisson dynamics.

\[\square \]

4 Examples

It is well known that Euler’s angular momentum equations of the free rigid body can be written on \(\mathbb{R}^3 \) in the following form:

\[
\begin{align*}
\dot{x}_1 &= a_1 x_2 x_3 \\
\dot{x}_2 &= a_2 x_1 x_3 \\
\dot{x}_3 &= a_3 x_1 x_2
\end{align*}
\]

where

\[
a_1 = \frac{1}{I_3} - \frac{1}{I_2}; \quad a_2 = \frac{1}{I_3} - \frac{1}{I_1}; \quad a_3 = \frac{1}{I_2} - \frac{1}{I_1};
\]

\(I_1, I_2, I_3 \) being the components of the inertia tensor and we suppose as usually that

\[I_1 > I_2 > I_3 > 0. \]

The equations (4.1) have the following Hamilton-Poisson realization:

\[
((so(3))^* \approx \mathbb{R}^3, \{\cdot, \cdot\}_-, H)
\]

where \(\{\cdot, \cdot\}_- \) is minus-Lie-Poisson structure on \((so(3))^* \approx \mathbb{R}^3\), generated by the matrix:

\[
\mathbf{\Pi}_- = \begin{bmatrix}
0 & -x_3 & x_2 \\
x_3 & 0 & -x_1 \\
-x_2 & x_1 & 0
\end{bmatrix}
\]

8
and the Hamiltonian H is given by:

$$H(x_1, x_2, x_3) = \frac{1}{2} \left(\frac{x_2^2}{I_1} + \frac{x_2^2}{I_2} + \frac{x_3^2}{I_3} \right). \quad (4.2)$$

It is not hard to see that the function $C \in C^\infty(\mathbb{R}^3, \mathbb{R})$ given by:

$$C(x_1, x_2, x_3) = \frac{1}{2} (x_1^2 + x_2^2 + x_3^2) \quad (4.3)$$

is a Casimir of our configuration ($(so(3))^* \approx \mathbb{R}^3, \{\cdot, \cdot\}_\mathbb{L}$).

Let $(M_0, 0, 0)$ be an equilibrium point for (4.1). The function $H_\varphi(x) = H(x) + \varphi(C(x))$, where φ is given for instance by

$$\varphi(s) = \left(s - \frac{1}{2}M_0^2 \right)^2 - \frac{s}{I_1},$$

satisfies the conditions (i) and (ii) of Theorem 3.2. In this case the perturbed system (3.3) is given by

$$\begin{cases}
\dot{x}_1 = a_1 x_2 x_3 + x_1 (x_2^2 + x_2^2 + x_3^2) - c (\frac{a_3}{I_2} x_2^2 + \frac{a_2}{I_3} x_3^2) \\
\dot{x}_2 = a_2 x_1 x_3 + x_2 (x_1^2 + x_2^2 + x_3^2) - c (\frac{a_3}{I_1} x_1^2 - \frac{a_1}{I_3} x_3^2) \\
\dot{x}_3 = a_3 x_1 x_2 + x_3 (x_1^2 + x_2^2 + x_3^2) - c (\frac{a_2}{I_1} x_1^2 + \frac{a_1}{I_2} x_2^2)
\end{cases} \quad (4.4)$$

where $c = M_0^2 - \frac{1}{I_1}$.

The set of points in \mathbb{R}^3 where $\nabla H(x)$ and $\nabla \varphi(C(x))$ are linearly dependent is given by

$$E = \{(\lambda, 0, 0)|\lambda \in \mathbb{R}\} \cup \{(0, \lambda, 0)|\lambda \in \mathbb{R}\} \cup \{(0, 0, \lambda)|\lambda \in \mathbb{R}\}.$$

By Theorem 3.2 we obtain that there exists a small closed and bounded neighborhood $U \subset \mathbb{R}^3$ around the equilibrium point $(M_0, 0, 0)$ and $V \subset U$ such that any solution of (4.1) starting in V approaches the set $\{(M_0 + \lambda, 0, 0)|\lambda \in [-\epsilon, \epsilon] \subset \mathbb{R}\}$ as $t \to \infty$.

A similar result with obvious modifications can be also obtain for the equilibrium state $(0, 0, M_0)$, $M_0 \in \mathbb{R}$.

Acknowledgments. Petre Birtea and Mircea Puta were partially supported by the program SCOPES and the Grant CNCSIS 2007/2008 and Razvan Micu Tudoran was partially supported by the program SCOPES and the Grant CNCSIS AT 60/2007.

References

[1] A. M. Bloch, J. Marsden, T. S. Ratiu, *Dissipation induces instability*, Ann. Inst. H. Poincar Anal. Non Lineaire 11 (1994), no. 1, 37–90.
[2] D. Fish, *Dissipative perturbations of 3d Hamiltonian systems*, arXiv: [math-ph/0506047](https://arxiv.org/abs/math-ph/0506047) V1, 18 June 2005.

[3] P. Holmes, J. Jenkins, N. Leonard, *Dynamics of the Kirchhoff equations I: Coincident centers of gravity and buoyancy*, Physics D 118 (1998), 311-342.

[4] A. Kaufman, *Dissipative Hamiltonian systems: A Unifying principle*, Phys. Lett. A 100A (1984), no 8, 419-422.

[5] A. Kaufman, *Lorentz-covariant dissipative Lagrangian systems*, Physics Lett. A 109A (1985), no 3, 87-89.

[6] A. Kaufman, L. Turski, *Canonical-dissipative formulation of relativistic plasma kinetic theory with self-consistent Maxwell field*, Phys. Lett A 120 (1987), no 7, 331-333.

[7] J. P. LaSalle, *The extent of asymptotic stability*, Proc. Acad. Sci. USA, 46 (1960), 363-365.

[8] P.J. Morrison, *A paradigm for joined Hamiltonian and dissipative systems*, Physica 18 D (1986), 410-419.

[9] C. Robinson, *Dynamical systems, Stability, Symbolic Dynamics, and Chaos*, CRC Press, 1995.