Structure, stability and function of 5-chlorouracil modified A:U and G:U base pairs

Amritraj Patra1, Joel Harp1, Pradeep S. Pallan1, Linlin Zhao1, Mikhail Abramov2, Piet Herdewijn2,3 and Martin Egli1,*

1Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA, 2Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium and 3Institute of Systems and Synthetic Biology, University of Évry-Val-d’Essonne, 5 Rue Henri Desbruère, 91030 Évry Cedex, France

ABSTRACT

The thymine analog 5-chlorouridine, first reported in the 1950s as an effective mutagen, clastogen and toxicant as well as an effective inducer of sister-chromatid exchange. Recently, the first microorganism with a chemically different genome was reported; the selected Escherichia coli strain relies on the four building blocks 5-chloro-2′-deoxyuridine (ClU), A, C and G instead of the standard T, A, C, G alphabet [Marlière, P., Patrouix, J., Döring, V., Herdewijn, P., Tricot, S., Cruveiller, S., Bouzon, M. and Mutzel, R. (2011) Chemical evolution of a bacterium’s genome. Angew. Chem. Int. Ed., 50, 7109–7114]. The residual fraction of T in the DNA of adapted bacteria was <2% and the switch from T to ClU was accompanied by a massive number of mutations, including >1500 A to G or G to A transitions in a culture. The former is most likely due to wobble base pairing between ClU and G, which may be more common for ClU than T. To identify potential changes in the geometries of base pairs and duplexes as a result of replacement of T by ClU, we determined four crystal structures of a B-form DNA dodecamer duplex containing ClU:A or ClU:G base pairs. The structures reveal nearly identical geometries of these pairs compared with T:A or T:G, respectively, and no consequences for stability and cleavage by an endonuclease (EcoRI). The lack of significant changes in the geometry of ClU:A and ClU:G base pairs relative to the corresponding native pairs is consistent with the sustained unlimited self-reproduction of E. coli strains with virtually complete T→ClU genome substitution.

INTRODUCTION

Uracil analogs with halogen substitution at the 5-position represent an important class of compounds with regard to their mutagenic activity (1). Such analogs were first synthesized in the 1950s as potential anti-tumor agents (2,3). The 5-fluorouracil (FU) analog is a well-known anti-cancer drug for treatment of human malignancies (4). 5-Chlorouracil and 5-bromouracil (ClU and BrU, respectively) are associated with inflammation and are considered to be carcinogenic (5). 5-Iodouracil (IU) was shown to have lethal and mutagenic effects on bacteriophage T4 (6). Halogenated uracil residues are expected to exhibit base pairing properties in double-stranded nucleic acids that are closely related to those of thymine, thus involving complementary pairs with A or wobble pairs with G that are stabilized via Watson–Crick (W–C) hydrogen bonds. However, substitution at the 5-position of uracil can substantially alter the physical (electronic) and chemical properties of the nucleobase, as evidenced by changes in the UV spectra and the values of the pKa (7). The effects of incorporation of FU into DNA on the structure and dynamics of the latter have been studied quite extensively, arguably as a result of the interesting pharmacological properties of this U analog as an anti-cancer agent (8–10). Interest in other halouracil analogs was primarily focused on their use as radiosensitizing agents in human cancers. BrU and IU were shown to be more effective in killing tumor cells using ionizing radiation (11,12). However, ClU, though an effective mutagen, clastogen and toxicant, as well as an effective inducer of sister-chromatid exchange, is not as sensitive to ionizing radiation as other thymine analogs (3). The relative lack of interest in ClU may explain the fact that a thorough investigation of the impact of the replacement of T with ClU on the base pairing geometry and duplex conformation using structural tools is presently lacking.
Marlière et al. (13) recently evolved genomic DNA composed of the three canonical bases A, C and G and the artificial base ClU in an Escherichia coli strain lacking thymidylate synthase and requiring exogenous T. Selection over 25 weeks in a specially developed cultivation device yielded descendants that grew essentially with only ClU instead of T. The DNA of adapted bacteria contained 90% ClU and 10% T and this residual fraction was forced to <2% by disrupting the trmA gene for tRNA U54 methyltransferase.

The above pioneering study prompted us to analyze the base pair geometries of ClU with A and G in more detail. To date, no crystallographic study of a DNA duplex comprising ClU:A or ClU:G base pairs has been reported. A nuclear magnetic resonance (NMR) investigation by Theruvathu et al. (14) did not bring to light any substantial difference in the geometries of ClU:A and T:A base pairs. Also, the geometries of ClU:G and T:G wobble pairs exhibited similar geometries (15). In another study, the stacking patterns of a halogenated (F, Cl or Br) uridine overhang at the 3' terminus of an octamer RNA:DNA hybrid duplex were analyzed in presence of rhodium or iridium hexamine salt (16). The crystal structures with ClU and BrU were similar in that the dangling ends were located atop the terminal base pair, whereas FU was ejected from the helical stack.

To compare the geometries of ClU:A and ClU:G base pairs with those of the corresponding T:A and T:G pairs, respectively, and to examine possible effects of these artificial pairs on the conformation of duplex DNA, we determined crystal structures of four Dickerson–Drew Dodecamer (DDD) B-form duplexes containing two ClU:A pairs [[d(CGCGAAT{ClU}TCGCG)]2; ClU7, or two ClU:G base pairs [[d(CGCGAAT{ClU}TCGCG)]2; ClU8], four ClU:A pairs [[d(CGCGAAT{ClU}TCGCG)]2; ClU7, or two ClU:G base pairs [[d(CGCGAAT{ClU}TCGCG)]2; ClU9] in complex with Bacillus halodurans RNase H (BhRNase H) at resolutions between 1.5 and 1.7 A. Crystals grown for the duplexes alone were not of diffraction-quality and we therefore resorted to using RNase H as a scaffold. DNA duplexes act as inhibitors of RNase H (17) and the enzyme binds double-stranded DNA non-specifically and without perturbing the structure of the central T:A region of the duplex (18), thus not compromising our geometric analysis of ClU:A or ClU:G pairs (the latter being adjacent to the four central T:A pairs).

Our structures reveal nearly identical geometries of the ClU:A and ClU:G base pairs compared with T:A and T:G, respectively. In line with the structural similarities, UV melting experiments of DNA duplexes with ClU pairs uncovered only very minor consequences of the replacement of T by ClU opposite A or G relative to the parent duplexes with T:A or T:G pairs, respectively. These observations regarding structure and stability were mirrored at the level of function. Thus, the restriction endonuclease EcoRI did not display a preference in its ability to recognize and cleave the natural recognition sequence G/AA(ClU)TC or G/AATT(ClU)C.

MATERIALS AND METHODS

Protein expression and purification

Bacillus halodurans genomic DNA was purchased from American Type Culture Collection (ATCC, Manassas, VA, USA). The Asp132→Asn mutant of BhRNase H (Met58 to Lys196) was expressed in E. coli and purified as described previously (18). The protein solution was concentrated to 25 mg/ml.

Synthesis of 5'-O-dimethoxytrityl-5-chloro-2'-deoxyuridine, 3'-(2-cyanoethyl)-(N,N-diisopropyl)-phosphoramidite and incorporation of CIU into oligonucleotides

To a colorless solution of 5-chloro-2'-deoxyuridine (19) (600 mg, 2.28 mmol) in pyridine (20 ml), 4,4'-dimethoxytrityl chloride (930 mg, 2.75 mmol) was added and one portion at room temperature (RT). The reaction mixture was stirred for 12 h and turned to a yellow–orange color. After the starting material had disappeared, the reaction mixture was cooled in an ice bath, methanol (1 ml) was added and the reaction mixture was concentrated and co-evaporated twice with toluene. The residue was dissolved in dichloromethane, washed with H2O, dried over Na2SO4 and purified by column chromatography on silica gel to yield 5'-O-dimethoxytrityl-5-chloro-2'-deoxyuridine (1.08 g, 84%). This compound (1.08 g, 1.91 mmol) was dissolved in dichloromethane (10 ml) and cooled in an ice bath. N,N-Diisopropylethylamine (1.5 ml, 8.76 mmol) and 2-cyanoethyl N,N-diisopropylchlorophosphoramidite (0.58 ml, 2.6 mmol) were added. The reaction solution was stirred for 30 min at RT. Upon completion, the reaction mixture was concentrated and co-evaporated twice with toluene. The crude material was purified by column chromatography on silica gel to yield 5'-O-dimethoxytrityl-5-chloro-2'-deoxyuridine (1.0 g, 68%). 31P NMR (CDCl3, 25°C): δ = 149.08, 148.7. High-resolution mass spectrometry (HRMS) calculated for C39H46ClN4O8P, [MH +] 765.2794, found 765.2820.

All four ClU-modified, high-pressure liquid chromatography-purified DDD oligonucleotides were purchased from Trilink (San Diego, CA, USA). The DNAs were annealed and mixed with the protein at 1:2.1 molar ratio in the presence of 5 mM MgCl2.

Crystallization and structure determination

Crystallization experiments were performed by the sitting drop vapor diffusion technique at 4°C using a sparse matrix screen (Hampton Research, Aliso Viejo, CA, USA) (20). A quantity of 1 ml complex solution was mixed with 1 ml of reservoir solution and equilibrated against 40 ml reservoir wells. Crystals appeared in droplets containing 0.2 M magnesium acetate, 0.1 M sodium cacodylate (pH 6.5) and 20% (w/v) PEG 8000 within 2–3 days. Crystals were mounted in nylon loops, cryo-protected in reservoir solution containing 20% glycerol and frozen in liquid nitrogen. Diffraction data were collected using either a Mar225 or Mar300 CCD detector on the 21-ID F/D beam lines of the Life
Sciences Collaborative Access Team (LS-CAT) at the Advanced Photon Source, Argonne National Laboratory (Argonne, IL, USA). Data were integrated and scaled with the program HKL2000 (21). The structures were determined by the Molecular Replacement technique using the program MOLREP (22,23) and the BhRNase H structure with PDB ID code 3D0P (protein alone) as the search model. Initial refinement was carried out with the program REFMAC (24) and DNA duplexes were then gradually built into the electron density, 2–3 bp at a time, followed by further refinement. Manual rebuilding was performed with the program COOT (25). Water molecules and metal ions were added gradually and isotropic/Translation Libration Screw-motion (TLS) refinement was continued with the program PHENIX (26). A summary of crystallographic parameters is provided in Table 1. Helical parameters were calculated with the program CURVES (27). Illustrations were generated with the program UCSF Chimera (28).

UV thermal melting

Melting of each oligonucleotide (~7.5 µM duplex concentration) was performed in 10 mM sodium phosphate, pH 7.4 and 0.1 mM EDTA in the presence of 150 mM NaCl. Absorbance versus temperature profiles were measured with a Varian Cary 300 spectrophotometer at 260 nm wavelength and 1-cm path length at heating or cooling rates of 0.5°C/min. Melting temperatures were determined with Varian Cary UV Tm Analysis software and are averages of the maxima of the first derivative of the 95-point smoothed curves from heating and cooling experiments. The final Tm values are based on six independent measurements. Hyperchromicities were determined by calculating the difference of absorbance between high- and low-temperature baselines and dividing by the absorbance of the low-temperature baseline.

Cleavage assays

Cleavage assays with EcoRI were conducted following a previous protocol (29) with modifications. Briefly, 5 µM 32P-labeled DNA was incubated at 37°C with EcoRI buffer and 20 U of EcoRI (high fidelity; New England Biolabs, Ipswich, MA, USA) in a volume of 10 µl, with final concentrations of 50 mM potassium acetate, 20 mM Tris–acetate, pH 7.5, 10 mM magnesium acetate and 1 mM dithiothreitol. Reactions were started by adding EcoRI and were stopped by removing an aliquot of 1 µl reaction mixture at various times and adding it to 9 µl of 20 mM EDTA (pH 9.0) in 95% (v/v) formamide, followed by 20% PAGE analysis.

Coordinates

Final coordinates and structure factors for all four dodecamers have been deposited in the Protein Data Bank (http://www.rcsb.org). The PDB ID codes are 4HUF (ClU7), 4HTU (ClU8), 4HUG (ClU7/8) and 4HUE (ClU9).

RESULTS

Overall structures of the ClU-modified DDD:RNase H complexes

To gain a better understanding of the potential structural change due to the replacement of the thymine 5-methyl group by chlorine, we selected the DDD B-form DNA as a template and synthesized four modified DDDs with ClU either located opposite A (ClU7, ClU8, ClU7/8) or opposite G (ClU9). We used crystals of these modified DDDs in complex with BhRNase H to study the geometries of ClU:A and ClU:G pairs as the crystals of the oligonucleotides alone were not of sufficient quality for a detailed structural analysis. In the crystal of the

| Table 1. Crystal data, data collection parameters and structure refinement statistics |
|---------------------------------|--------|--------|--------|--------|
| Structure/duplex | ClU8 | ClU9 | ClU7 | ClU7/8 |
| Space group | P212121 |
| Cell dimensions | | | | |
| a (Å) | 64.08 | 64.36 | 64.19 | 63.83 |
| b (Å) | 64.76 | 64.81 | 64.75 | 64.64 |
| c (Å) | 116.47 | 116.62 | 116.47 | 116.29 |
| Data collection | | | | |
| Wave length (Å) | 35.88–1.49 | 33.28–1.56 | 33.22–1.69 | 43.23–1.64 |
| Unique reflections (outer shell) 77514 (3752) | 68234 (3339) | 54372 (2620) | 59446 (2888) |
| Completeness (outer shell) (%) 96.9 (95.1) | 97.3 (96.6) | 98.3 (97.3) | 99.7 (99.3) |
| R-merge (outer shell) 0.071 (0.824) | 0.082 (0.800) | 0.061 (0.675) | 0.072 (0.674) |
| 1/σ(I) (outer shell) 27.3 (2.5) | 19.8 (2.1) | 29.8 (2.9) | 26.7 (3.0) |
| Refinement | | | | |
| Working set reflections 74662 | 68154 | 54301 | 59370 |
| Test set reflections 3759 | 3453 | 2766 | 2996 |
| R-work/R-free 0.196/0.223 | 0.197/0.226 | 0.202/0.237 | 0.197/0.220 |
| No. of protein/DNA atoms 2244/896 | 2203/897 | 2192/833 | 2215/833 |
| No. H2O/Mg2+/ligands 476/2/4 | 523/2/4 | 375/2/4 | 341/2/4 |
| Average B-factors 30.18 | 33.43 | 27.80 | 27.96 |
| RMSD bonds (Å) 0.009 | 0.009 | 0.008 | 0.008 |
| RMSD angles (°) 1.4 | 1.3 | 1.3 | 1.4 |
native DDD bound to RNaseH studied earlier (18), protein–DNA contacts in the complex were limited to the backbone of the C:G tracts (underlined) at both ends: CGCGAATTCGCG. Thus, we expected base pairing in the central GAATTC region where we replaced T opposite either A or G by ClU not to be affected by binding of RNase H (Figure 1).

Crystals diffracted to resolutions between 1.5 and 1.7 Å and belong to space group $P2_12_12_1$ (Table 1). The structures were solved by the molecular replacement technique using the protein portion of the complex between RNase H and the native DDD (18) as the search model. All four crystals of the complexes with ClU-modified DDDs are isomorphous (Table 1). However, unlike in the structure of the complex between RNase H and the native DDD where the duplex sits on a dyad and the asymmetric unit contained two protein molecules and two DNA single strands, crystals of the complexes with CIU-modified DDDs feature two independent complexes consisting of RNase H bound to a duplex (Figure 1A and B). The first of these displays clear electron density around all nucleotides, whereas in the second, the density around the DNA is only partially resolved and either three or four base pairs at one end of the duplex are missing in the individual complex crystals (Figure 1B and C). Similarly, two (ClU7 crystal structure) and three N-terminal amino acids (ClU7/8 crystal structure) in the RNase H molecules from the second complex could not be resolved in the electron density maps. Examples of the quality of the final electron density are shown in Figure 2 and Supplementary Figures S1–S3.

Inspection of the lattice interactions in the structures of the complexes reveals the origin of the diminished order of four base pairs in the second duplex. Three RNase H molecules interact with the duplex from the first complex, whereby two proteins cradle one end and a loop entailing residues T90, G91, and E92 of a third is stacked against the terminal base pair at the other end (Figure 1A). In contrast, the second duplex only exhibits interactions with RNase molecules at one end, with the other not being stabilized by protein contacts and jutting out into the solvent (Figure 1B). The comparison between the orientations of RNase H molecules around the two independent duplexes reveals similar positions of the
ApApTpClU tetramer in the ClU8 duplex, and phosphorus and chlorine, respectively.

A five-residue stretch of sugar-phosphate backbones is contacted by amino acids (P3 by T104, S147 and C171; T4 by R126, P177 and L179; and S4 by I64 and L179) forming hydrophobic interactions with the base and sugar moieties, respectively, of nucleotide C1 (Figures 1A and 3). In the case of the second complex where the symmetry-related RNase H molecule adopts a somewhat different orientation (Figure 1A, gray RNase H b# versus Figure 1B, magenta RNase H a#), amino acids establishing contacts with the terminal base pair include K143, N170 and T173 (Figure 1B). However, neither duplex 1 nor duplex 2 in the four crystal structures exhibits interactions between RNase H and A or CIU/T nucleotides from the central tetramer.

Geometry of CIU:A and CIU:G base pairs

A central question that we wanted to address with our structural studies is whether there are any changes in the pairing modes and/or geometries of CIU:A and CIU:G base pairs relative to the native T:A and T:G pairs, respectively. Analysis of the duplexes containing either two or four CIU:A pairs reveals that they are of the standard W–C type with formation of two hydrogen bonds. Comparison between the geometries of CIU:A and T:A pairs by superimposing the CIU7 and CIU8 duplexes (Figure 4A) or the CIU7/8 and native DDD (31) duplexes (Figure 4C) demonstrates that replacing the methyl group of T by chlorine is of little consequence. Except for the methyl group carbon and chlorine, whose positions deviate somewhat as a result of the longer C–Cl bond relative to C–CH₃, the CIU:A and T:A pairs nearly overlap. Similarly, like T:G the CIU:G pair adopts the familiar wobble geometry, with G and CIU being shifted into the minor and major grooves, respectively, under formation of two hydrogen bonds (Figure 4B). As with the CIU:A and T:A pairs, the superimposition of the CIU9 duplex and a DDD featuring T:G pairs (32) illustrates the nearly identical geometries of the two pairs. Moreover, calculated geometric parameters for these duplexes (27), including rise, twist, x- and y-displacement, etc. (see the Supplementary Material) confirm that chlorine attached at the 5-position of thymine in place of a methyl group does not trigger a substantial difference in either pairing behavior or base pair geometry.

The similarities observed at the level of individual base pairs extend to the overall conformations of the dodecamer duplexes. As mentioned above, RNase H molecules in the crystal structures of the complexes with CIU-modified DDDs contact the duplexes exclusively in the CG portions, either at both ends (duplex 1, Figure 1A) or at only one end (duplex 2, Figure 1B). As a result, a hallmark of the DDD, the narrow A-tract minor groove remains largely unaffected by the interactions with the protein (Figure 5). Introduction of T:G mismatches at the border of the A-tract results in a wider minor groove in the CIU9 and G:T DDDs at the location of the mismatch pairs. However, replacement of T by CIU has no obvious effect on the change in groove width. The depth of the minor groove along the entire dodecamer exhibits much less variation compared with the width and neither G:T mismatch pairs nor CIU:A/G pairs cause any significant changes relative to the native DDD (Figure 5).

Thermodynamic stability of CIU-modified duplexes

To examine whether replacement of T by CIU affects duplex stability, we carried out UV melting studies with the native DDD, a DDD with T:G mismatches and all four CIU-modified DDDs (Table 2). The melting temperatures for duplexes with two (CIU7, CIU8) or four CIU:A pairs (CIU7/8) vary only slightly and are similar to the T_{m} of the native DDD. Insertion of T:G mismatches is
accompanied by a steep drop in the stability that is similar for the duplex featuring two ClU:G pairs (ClU9). Overall, these data argue against an either stabilizing or destabilizing effect of the ClU nucleotide analog in B-form DNA.

EcoRI cleavage assays with ClU-modified DDDs

The EcoRI endonuclease recognizes the self-complementary hexamer 5′-GjAATTC-3′:3′-CTTAAjG-5′ and cleaves between G and A (j) under formation of...
sticky ends with 5′-overhangs. We carried out cleavage assays with the restriction enzyme and CIU-modified DDDs, as well as the native DDD and a DDD with T:G mismatch pairs as reference duplexes (Figure 6). As expected, T:G and CIU:G mismatches abrogated cleavage. Conversely, the native DDD and all three modified duplexes with CIU:A pairs were cleaved by EcoRI without obvious effects of the CIU modification in terms of the time course of cleavage.

DISCUSSION

Our investigation of the structure, stability and function of DNA duplexes with CIU in place of T was motivated by the recently demonstrated genome-wide transliteration of T with CIU in *E. coli* by combining tight metabolic selection and long-term automated cultivation of bacterial populations (13). Among nucleobases, only thymine is unique to DNA and the fact that its metabolism is separated from RNA biosynthesis provides an opportunity to replace it *in vivo* by starvation and exogenous introduction of unnatural alternatives (33). Incorporation of 5-halogenopyrimidines into DNA was established decades ago (34). Among the analogs with fluoro-, bromo-, chloro- or iodo-substituents, CIU exhibits the closest likeness to T (14), is readily converted to the nucleoside triphosphate in the cell (35) and lacks the photolabile behavior of BrU and IU (36). Starting from an *E. coli* strain lacking thymidylate synthase and furnishing exogenous CIU instead of T, 25 weeks of selection in a cultivation device yielded a strain with A, G, C and 90% CIU and 10% T in its genome (13). Through additional disruption of the tRNA U54 methyltransferase gene, the CIU content was further reduced to <2%. This T→CIU transliteration was accompanied by more than 1500 A to G and G to A transitions in a particular culture, whereby the former was about twice as common. The frequency of these transitions suggests that CIU is prone to mispairing with G, although it is not clear whether CIU:G resembles the T:G pair in the wobble configuration with two hydrogen bonds or whether the mismatch pair exhibits a different hydrogen bonding pattern as a consequence of subtle changes in pKₐ, dipole moment and/or hydration of the chlorouracil base compared with thymine (15).

We selected the DDD B-form DNA as a template to analyze the base pairing behavior of CIU opposite either A or G by X-ray crystallography. Because crystals of the DNAs alone did not diffract to high resolution, we decided to determine the structures of their complexes with *Bh* RNase H. We previously found that crystals of complexes between the endonuclease and the native DDD or chemically modified DDDs diffract X-rays to resolutions of around 1.5 Å (18,29,37). Indeed, all crystals of complexes with CIU-modified DDDs diffracted to better than 1.7 Å resolution (Table 1). Two of the complexes feature duplexes with two T:A pairs replaced by CIU:A (ClU7 and ClU8) and a third contains a duplex with all four T:A pairs in the central A-tract of the DDD replaced by CIU:A (ClU7/8). A fourth complex is between *Bh* RNase H and a DDD in which two CIU:G pairs

Table 2. UV-melting temperatures of the native DDD, CIU-modified DDDs and a DDD with T:G mismatches

Duplex	DDD	ClU7	ClU8	ClU7/8	ClU9	T:G DDD
	Tₘ (°C)					
Hyperchromicity (%)	15.5	14.3	15.7	15.6	16.3	

![Figure 5. Minor groove widths (solid lines) and depths (dashed lines) in CIU-modified DDD duplexes in complex with RNase H compared with native DDD d(CGCGAATTCGCG) [PDB ID 436D; (31)] and a DDD d(CGCGAATTGCG) with T:G mismatch pairs [underlined, PDB ID 113D; (32)]. All parameters were calculated with the program Curves (27).](image-url)

![Figure 6. PAGE assay of EcoRI cleavage experiments with CIU-modified DDDs, the native DDD d(CGCGAATTTCGCG) and the DDD d(CGCGAATTTGCG) with T:G mismatch pairs (underlined).](image-url)
bracket the central T:A tract. The first three structures illustrate that CIU:A and T:A pairs adopt nearly identical configurations with two hydrogen bonds (Figures 2, 4A and 4C), thus confirming the earlier observations based on the structure of a B-form DNA duplex with CIU:A pairs analyzed by solution NMR (14). Similarly, the geometry of CIU:G mismatch pairs in the structure of the fourth complex closely resembles that of the T:G pair in the structure of the B-form duplex of the same sequence (32) (Figure 4B). Crystals of the RNase H complexes were grown at near neutral pH (6.5) and the wobble configuration with two hydrogen bonds confirms previous reports of the similarity of the CIU:G and T:G pairs as analyzed by NMR in solution (15).

The similarities at the level of conformation indicate that chlorine appears to closely mimic the methyl substituent of thymine. Indeed, when both bond length and van der Waals radius are taken into account, the two substituents exhibit very similar steric properties. The length of the C(5)-Cl bond is clearly longer than that of the C(5)-CH₃ bond (1.73 Å versus 1.5 Å, respectively), but the van der Waals radius of a methyl group (2 Å) exceeds that of chlorine (1.75 Å) by roughly the same amount. Thus, the two substituents will be nearly indistinguishable for a protein probing the major groove of a B-form duplex. Indeed, we demonstrate here that EcoRI cuts the CIU7-, CIU8- and CIU7/8 DDDs with two or more Ts in the recognition site replaced by CIU (Figure 6). Conversely, replacing the C:G pairs in the target sequence with either T:G or CIU:G mismatches abolishes cleavage by EcoRI. Chlorine not only mimics the native methyl substituent of thymine, thus allowing CIU:A pairs to evade recognition by enzymes, but replacement of T opposite A by CIU does not lead to any obvious changes in the thermodynamic stability of B-form DNA (Table 2). Also, T:G and CIU:G mismatch pairs result in very similar losses of stability. The stability data support the notion that chlorine and methyl at the 5-position of uracil are basically interchangeable. Although chlorine can, in principle, participate in halogen bonds (38), the observed distances between chlorine and phosphate oxygens in the CIU-modified DDD structures are all clearly above the sum of the van der Waals radii for Cl and O (3.27 Å): minimum 5.09 Å, maximum 6.23 Å and average 5.49 Å. Chlorine atoms are also poorly hydrated and the shortest contact between a chlorine and water in our structures is 3.71 Å and thus not indicative of a hydrogen bond. Similar melting temperatures established for the native DDD and the CIU-modified DDDs are also inconsistent with differential polarizations of the thymine and chlorouracil nucleobases as this should affect stacking and thus stability.

The similarity between CIU and T in terms of pairing properties, conformation and duplex stability helps rationalize the successful outcome of the in vivo evolution of E. coli strains that rely on a CIU, A, C, G alphabet instead of T, A, C, G (13). It is unlikely that a similar success could be achieved with the FU or BrU analogs that exhibit more significant steric and stereoelectronic deviations from T compared with CIU. Although we found in one instance (EcoRI) that an enzyme appeared to ignore the switch from a methyl group to chlorine in the major groove, T → CIU base substitution changes groove geometry and electrostatics in a subtle fashion and may affect nucleic acid recognition by proteins involved in replication and transcription. Indeed, in vitro kinetic assays of DNA polymerization using human polymerase β and E. coli DNA polymerase I exo’ Klenow fragment with templates containing either CIU or T showed facilitated incorporation of dGTP opposite CIU compared with T, particularly at increased values of pH (i.e. 9.0) (39). A high mutation rate is important for the evolutionary process and the massive number of A → G mutations seen in the adaptation of E. coli to CIU in place of T is consistent with facile formation of the CIU:G wobble pair.

ACCESSION NUMBERS

4HUF (CIU7), 4HTU (CIU8), 4HUG (CIU7/8), and 4HUE (CIU9).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online: Supplementary Tables 1–6 and Supplementary Figures 1–4.

ACKNOWLEDGEMENTS

P.H. is indebted to KU Leuven, FWO and ERC for financial support. We are grateful to Dr. Z. Wawrzak, Northwestern University, for assistance with X-ray diffraction data collection.

FUNDING

Funding for open access charge: US National Institutes of Health [R01 GM55237 to M.E.].

Conflict of interest statement. None declared.

REFERENCES

1. Lindahl,T. (1993) Instability and decay of the primary structure of DNA. *Nature*, 362, 709–715.
2. Heidelberger,C., Chaudhuri,N.K., Danneberg,P., Mooren,D. and Griesback,L. (1957) Fluorinated pyrimidines, a new class of tumor-inhibitory compounds. *Nature*, 179, 663–666.
3. Morris,S.M. (1993) The genetic toxicology of 5-fluoropyrimidines and 5-chlorouracil. *Mutat. Res.*, 297, 39–51.
4. Longley,D.B., Harkin,D.P. and Johnston,P.G. (2003) 5-Fluorouracil: Mechanisms of action and clinical strategies. *Nat. Rev. Cancer*, 3, 330–338.
5. Henderson,J.P., Byun,J., Takeshita,J. and Heinecke,J.W. (2003) Phagocytes produce 5-chlorouracil and 5-bromouracil, two mutagenic products of myeloperoxidase, in human inflammatory tissue. *J. Biol. Chem.*, 278, 23522–23528.
6. Byrd,D.M. and Prusoff,W.H. (1975) Multiplicity reactivation of 5 iodouracil substituted, nonviable bacteriophage T4d8. *Antimicrob. Agents Chemother.*, 8, 588–593.
7. Jang,Y.H., Sowers,L.C., Cagin,T. and Goddard,W.A. III (2001) First principles calculation of pKa values for 5-substituted uracils. *J. Phys. Chem. A*, 105, 274–280.
8. Coll,M., Saal,D., Frederick,C.A., Aymami,J., Rich,A. and Wang,A.H.J. (1989) Effects of 5-fluorouracil-guanine base pairs in Z-DNA: molecular and crystal structure of d(CGCGFG). Nucleic Acids Res., 17, 911–923.

9. Lukin,M. and de los Santos,C. (2006) NMR structures of damaged DNA. Chem. Rev., 106, 607–686.

10. Parker,J.B. and Stivers,J.T. (2011) Dynamics of uracil and 5-fluorouracil in DNA. Biochemistry, 50, 612–617.

11. Kinsella,T.J. (1996) An approach to the radiosensitization of human tumors. Cancer J. Sci. Am., 2, 184–193.

12. Saif,M.F., Cheng,T.-C., Berk,G. and Kinsella,T.J. (2007) IPdR: A screening method for crystallization of proteins. Acta Crystallogr. D Biol. Crystallogr., 63, 7539–7546.

13. Theruvathu,J.A., Kim,C.H., Rogstad,D.K., Neidigh,J.W. and Darwanto,A. (2009) Defining the structure of irregular nucleic acids: conventions and principles. J. Biomol. Struct. Dyn., 6, 655–667.

14. Theruvathu,J.A., Kim,C.H., Rogstad,D.K., Neidigh,J.W. and Darwanto,A. (2009) Base-pairing configuration and stability of an oligonucleotide duplex containing a 5-chlorouracil-adenine base pair. Biochemistry, 48, 7539–7546.

15. Theruvathu,J.A., Kim,C.H., Darwanto,A., Neidigh,J.W. and Sowers,L.C. (2009) pH-dependent configurations of a 5-chlorouracil-guanine base pair. Biochemistry, 48, 11312–11318.

16. Rui,E.K. and Kim,J.N. (1989) The oxidative chlorination of 5-chlorouracil-guanine base pair. Biochemistry, 28, 1609–1613.

17. Lima,W.F. and Crooke,S.T. (1997) Binding affinity and specificity of a non-specific enzyme-dsDNA complex. Biochemistry, 36, 390–398.

18. Dunn,D.B. and Smith,J.D. (1957) Effects of 5-halogenated uracils on the growth of Escherichia coli and their incorporation into deoxyribonucleic acids. Biochem. J., 67, 494–506.

19. Hunter,W.N., Brown,T., Kneale,G., Anand,N.N., Rabinovich,D. and Kennard,O. (1987) The structure of guanosine-thymidine mismatches in B-DNA at 2.5-Å resolution. J. Mol. Biol., 192, 962–970.

20. Novotny,M., Gaidamakov,S.A., Crouch,R.J. and Yang,W. (2005) Crystal structures of RNase H bound to an RNA/DNA hybrid: substrate specificity and metal-dependent catalysis. Cell, 121, 1005–1016.

21. Tereshko,V., Minasov,G. and Egli,M. (1999) The Dickerson-Drew B-DNA dodecamer revisited - at atomic resolution. J. Am. Chem. Soc., 121, 470–471.

22. Jancarik,J. and Kim,S.H. (1991) Sparse matrix sampling: a novel oral radiosensitizer. Expert. Opin. Investig. Drugs, 16, 1415–1424.

23. Kornberg,A. and Baker,T. (1992) DNA Replication II, 3rd edn. W. H. Freeman, New York.

24. Willis,M.C., Hicke,B.J., Uhlenbeck,O.C., Cech,T.R. and Koch,T.H. (1993) Photocrosslinking of 5-iodouracil-substituted RNA and DNA to proteins. Science, 262, 1255–1257.

25. Vagin,A. and Teplyakov,A. (1997) MOLREP: an automated program for molecular replacement. J. Appl. Crystallogr., 30, 1022–1025.

26. Pettersen,E.F., Goddard,T.D., Huang,C.C., Couch,G.S., Greenblatt,D.M., Meng,E.C. and Ferrin,T.E. (2004) UCSF Chimera, a visualization system for exploratory research and analysis. J. Comp. Chem., 25, 1605–1612.

27. Munch-Petersen,A. (ed.), (1983) Metabolism of Nucleotides, Nucleosides and Nucleobases in Microorganisms. Academic Press, New York.

28. Otwinowski,Z. and Minor,W. (1997) Processing of X-ray diffraction data collected in oscillation mode. Meth. Enzymol., 276, 307–326.

29. Ray,A. and Dauter,Z. (1997) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr., 53, 240–255.

30. Wang,A.H.-J. (1989) Effects of 5-fluorouracil/guanine wobble base pair. Biochemistry, 28, 1609–1613.

31. Tereshko,V., Minasov,G. and Egli,M. (1999) A conformational transition in the structure of a 5-thiomethyl-modified DNA visualized at high resolution. Chem. Commun., 2009, 2017–2019.

32. Theruvathu,J.A., Kim,C.H., Rogstad,D.K., Neidigh,J.W. and Sowers,L.C. (2009) Base-pairing configuration and stability of an oligonucleotide duplex containing a 5-chlorouracil-adenine base pair. Biochemistry, 48, 11312–11318.

33. Hunter,W.N., Brown,T., Kneale,G., Anand,N.N., Rabinovich,D. and Kennard,O. (1987) The structure of guanosine-thymidine mismatches in B-DNA at 2.5-Å resolution. J. Biol. Chem., 262, 9962–9970.

34. Jancarik,J. and Kim,S.H. (1991) Sparse matrix sampling: a novel oral radiosensitizer. Expert. Opin. Investig. Drugs, 16, 1415–1424.

35. Pallan,P.S. and Egli,M. (2009) A conformational transition in the structure of a 5-thiomethyl-modified DNA visualized at high resolution. Chem. Commun., 2009, 2017–2019.

36. Munch-Petersen,A. (ed.), (1983) Metabolism of Nucleotides, Nucleosides and Nucleobases in Microorganisms. Academic Press, New York.

37. Porto-Aguiar,A., Otwinowski,Z., and Minor,W. (1997) Processing of X-ray diffraction data collected in oscillation mode. Meth. Enzymol., 276, 307–326.

38. Pallan,P.S. and Egli,M. (2009) A conformational transition in the structure of a 5-thiomethyl-modified DNA visualized at high resolution. Chem. Commun., 2009, 2017–2019.

39. Greenblatt,D.M., Meng,E.C. and Ferrin,T.E. (2004) UCSF Chimera, a visualization system for exploratory research and analysis. J. Comp. Chem., 25, 1605–1612.

40. Pallan,P.S., Prakash,T.P., Li,F., Eoff,R.L., Manoharan,M. and Egli,M. (2009) A conformational transition in the structure of a 5-thiomethyl-modified DNA visualized at high resolution. Chem. Commun., 2009, 2017–2019.

41. Tereshko,V., Minasov,G. and Egli,M. (1999) The Dickerson-Drew B-DNA dodecamer revisited - at atomic resolution. J. Am. Chem. Soc., 121, 470–471.

42. Hunter,W.N., Brown,T., Kneale,G., Anand,N.N., Rabinovich,D. and Kennard,O. (1987) The structure of guanosine-thymidine mismatches in B-DNA at 2.5-Å resolution. J. Biol. Chem., 262, 9962–9970.

43. Kerms,S., Haeberle,S., and Kollmann,M. (1997) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr., 53, 240–255.

44. Ray,A. and Dauter,Z. (1997) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr., 53, 240–255.

45. Munch-Petersen,A. (ed.), (1983) Metabolism of Nucleotides, Nucleosides and Nucleobases in Microorganisms. Academic Press, New York.

46. Willis,M.C., Hicke,B.J., Uhlenbeck,O.C., Cech,T.R. and Koch,T.H. (1993) Photocrosslinking of 5-iodouracil-substituted RNA and DNA to proteins. Science, 262, 1255–1257.

47. Pallan,P.S. and Egli,M. (2009) A conformational transition in the structure of a 5-thiomethyl-modified DNA visualized at high resolution. Chem. Commun., 2009, 2017–2019.

48. Auflinger,P., Hays,F.A., Westhof,E. and Ho,P.S. (2004) Halogen bonds in biological molecules. Proc. Natl Acad. Sci. USA., 101, 16789–16794.

49. Kim,C.H., Darwanto,A., Theruvathu,J.A., Herring,J.L. and Sowers,L.C. (2010) Polymerase incorporation and miscoding properties of 5-chlorouracil. Chem. Res. Toxicol., 23, 740–748.