ABSTRACT: Recent investigations of two-dimensional (2D) hybrid organic–inorganic halide perovskites (HHPs) indicate that their optical and electronic properties are dominated by strong coupling to thermal fluctuations. While the optical properties of 2D-HHPs have been extensively studied, a comprehensive understanding of electron–phonon interactions is limited because little is known about their structural dynamics. This is partially because the unit cells of 2D-HHPs contain many atoms. Therefore, the thermal fluctuations are complex and difficult to elucidate in detail. To overcome this challenge, we use polarization-orientation Raman spectroscopy and ab initio calculations to compare the structural dynamics of the prototypical 2D-HHPs [(BA)2PbI4 and (PhE)2PbI4] to their three-dimensional (3D) counterpart, MAPbI3. Comparison to the simpler, 3D MAPbI3 crystal shows clear similarities with the structural dynamics of (BA)2PbI4 and (PhE)2PbI4 across a wide temperature range. The analogy between the 3D and 2D crystals allows us to isolate the effect of the organic cation on the structural dynamics of the inorganic scaffold of the 2D-HHPs. Furthermore, using this approach, we uncover the mechanism of the order–disorder phase transition of (BA)2PbI4 (274 K) and show that it involves relaxation of octahedral tilting coupled to anharmonic thermal fluctuations. These anharmonic fluctuations are important because they induce charge carrier localization and affect the optoelectronic performance of these materials.

KEYWORDS: 2D perovskites, polarization-orientation, Raman, anharmonicity, phase transition, octahedral tilt, (C4H9NH3)2PbI4
(BA)_2PbI_4 and (PhE)_2PbI_4 were reported, and modes have been assigned to particular ionic displacements. 24,36–40 First-principles molecular dynamics simulations have shown large rotational and conformational freedom of the organic cations; however, the motions of the optically active inorganic layer were not included in these studies. 5,42

Contrary to the aforementioned 2D-HHPs, the structural dynamics of their three-dimensional (3D) counterpart, methylammonium lead iodide (MAPbI_3), was extensively studied. 43–57 Specifically, we have recently elucidated the microscopic mechanism that leads to strong anharmonicity in MAPbI_3. 58

Since (BA)_2PbI_4, (PhE)_2PbI_4, and MAPbI_3 all comprise the same metal-halide corner-sharing octahedra, it is likely that the structural dynamics of 2D-HHPs and their 3D counterpart are related. Therefore, we present a study in which we investigate the structural dynamics of (BA)_2PbI_4 and (PhE)_2PbI_4 by comparing them with MAPbI_3. We use polarization-orientation (PO) Raman scattering and ab initio calculations to extract the vibrational symmetries of 2D-HHPs at low temperature. The results reveal striking similarities between the 2D and 3D crystals. Furthermore, we probe the variation of the structural dynamics with temperature across the phase transition of (BA)_2PbI_4. By comparing MAPbI_3 and (BA)_2PbI_4, we suggest that the phase transition of the latter at 274 K occurs via an unlocking of anharmonic octahedral tilting motion, coupled to atomic displacements along the stacking direction. This means that despite the well-defined average structure of (BA)_2PbI_4 at room temperature (as extracted from X-ray diffraction), 20 the octahedra are constantly fluctuating between different tilted configurations. These fluctuations occur on the picosecond time scale and can strongly interact with charge carriers and excitons.

RESULTS AND DISCUSSION

Crystal Structure. Single crystals of (BA)_2PbI_4 and (PhE)_2PbI_4 were synthesized according to previously reported procedures 16,30,59,60 (for detailed description, see the Methods section). We start our analysis by comparing the structure of the crystals as refined from single-crystal X-ray diffraction (XRD) at 100 K (i.e., low-temperature phase of all crystals). 61,62 Figure 1 shows the crystal structure of MAPbI_3, (left), (BA)_2PbI_4 (center), and (PhE)_2PbI_4 (right). In the low-temperature phase, MAPbI_3 and (BA)_2PbI_4 are both orthorhombic (Pnma and Pnca space groups, respectively), while (PhE)_2PbI_4 is triclinic (P1). The alignment and corrugation of the lead iodide octahedra are similar in all crystals, although they are modified by the interactions with the organic ammonium ions between the octahedra (for structural data, see Section S2 in the Supporting Information, SI). 40,54,63,64 (PhE)_2PbI_4 exhibits strong van der Waals interactions between the conjugated rings, forcing the structure to lower symmetry.

Figure 2 shows the unpolarized Raman spectra (summing over all excitation polarizations) of (BA)_2PbI_4 (blue traces), (PhE)_2PbI_4 (green traces), and MAPbI_3 (red traces) at selected temperatures. At 80 K, the observed spectra are similar for all three crystals with respect to both number and frequency of the peaks. The intensity ratios between the peaks differ, due to different scattering cross sections. As a consequence, the peaks at ~30 cm⁻¹ and above 60 cm⁻¹ in the spectrum of (BA)_2PbI_4 are much lower in intensity (for the list of frequencies, see Table S5 in the SI). As temperature decreases to 10 K, the peaks of MAPbI_3, (BA)_2PbI_4, and (PhE)_2PbI_4 were measured perpendicular to the (001) plane, while MAPbI_3 was measured perpendicular to the (101) plane (see ref 66). We limit ourselves to low-frequency vibrations (~150 cm⁻¹) because only they carry information about lattice modes.

Effect of Organic Cation on Structural Dynamics. To uncover the effect of the organic cation on the structural dynamics of the inorganic scaffold, we probe the structural dynamics using Raman scattering. (BA)_2PbI_4 and (PhE)_2PbI_4 were measured perpendicular to the (001) plane, while MAPbI_3 was measured perpendicular to the (101) plane (see ref 66). We limit ourselves to low-frequency vibrations (~150 cm⁻¹) because only they carry information about lattice modes.

Figure 2 shows the unpolarized Raman spectra (summing over all excitation polarizations) of (BA)_2PbI_4 (blue traces), (PhE)_2PbI_4 (green traces), and MAPbI_3 (red traces) at selected temperatures. At 80 K, the observed spectra are similar for all three crystals with respect to both number and frequency of the peaks. The intensity ratios between the peaks differ, due to different scattering cross sections. As a consequence, the peaks at ~30 cm⁻¹ and above 60 cm⁻¹ in the spectrum of (BA)_2PbI_4 are much lower in intensity (for the list of frequencies, see Table S5 in the SI). As temperature decreases to 10 K, the peaks of MAPbI_3, (BA)_2PbI_4, and (PhE)_2PbI_4 were measured perpendicular to the (001) plane, while MAPbI_3 was measured perpendicular to the (101) plane (see ref 66). We limit ourselves to low-frequency vibrations (~150 cm⁻¹) because only they carry information about lattice modes.
weak van der Waals interactions, while in (PhE)\textsubscript{2}PbI\textsubscript{4} the interactions are stronger due to the conjugated molecules. As the strength of interaction increases, the organic molecule imposes more constraints on the structure33,69 which results in lower symmetry.

At 200 K, MAPbI\textsubscript{3} completes a phase transition to its tetragonal phase (162 K, \textit{I/4mcm}),58 and the Raman spectrum is significantly broadened (we reported on this phase transition elsewhere),58 while the spectra of (BA)\textsubscript{2}PbI\textsubscript{4} and (PhE)\textsubscript{2}PbI\textsubscript{4} remain relatively sharp and resolved. Once \(T \) rises to 300 K, (BA)\textsubscript{2}PbI\textsubscript{4} has also completed a structural phase transition (274 K, \textit{Pbca}),20,21 and its Raman spectrum is strikingly similar to that of MAPbI\textsubscript{3} at the same temperature. Both exhibit broad features that are centered around 25 cm-1 and a pronounced shoulder around 47 cm-1. (PhE)\textsubscript{2}PbI\textsubscript{4} does not exhibit a phase transition, and indeed, its Raman spectrum remains relatively sharp and resolved, even at higher temperatures (for temperature-dependent Raman spectra, see Figure S3 in the SI).

At low temperatures, the organic cation limits the atomic motions of the inorganic network through its intermolecular interactions and causes mode splitting. As temperature increases and intermolecular interactions soften, the structural dynamics of (BA)\textsubscript{2}PbI\textsubscript{4}, (PhE)\textsubscript{2}PbI\textsubscript{4}, and MAPbI\textsubscript{3} become comparable. In light of the structural and spectral similarities, we turn to investigate further the structural dynamics of (BA)\textsubscript{2}PbI\textsubscript{4} and MAPbI\textsubscript{3} using PO Raman scattering, which allows us to assign mode symmetries and investigate the anharmonic behavior of modes.70 Henceforth, we focus on (BA)\textsubscript{2}PbI\textsubscript{4} deferring detailed consideration of (PhE)\textsubscript{2}PbI\textsubscript{4} to future work. The low-symmetry and complex Raman spectra of (PhE)\textsubscript{2}PbI\textsubscript{4} at low temperatures hinder the extraction of meaningful conclusions.

Symmetry Assignment and Anharmonic Behavior via PO Raman Scattering. In a previous study, we used PO Raman scattering and \textit{ab initio} molecular dynamics to provide a microscopic picture of the thermal fluctuations of MAPbI\textsubscript{3} in the tetragonal phase at 300 K.58 We showed that the broad Raman spectra are a result of strongly anharmonic octahedral tilting that continuously increases with temperature. The similarities between the spectra of MAPbI\textsubscript{3} and (BA)\textsubscript{2}PbI\textsubscript{4} in both the room-temperature and low-temperature phases prompted us to investigate whether the anharmonic octahedral tilting that governs the dynamics and phase transitions in MAPbI\textsubscript{3} are also present in (BA)\textsubscript{2}PbI\textsubscript{4}. To do so, we conducted temperature-dependent PO Raman measurements on (BA)\textsubscript{2}PbI\textsubscript{4} and compared them with those of MAPbI\textsubscript{3}. The details of the PO Raman measurements and analysis are discussed in Section S5 in the SI. Briefly, the crystal (oriented perpendicular to the (001) plane) is excited by plane-polarized laser light. The scattered light is then filtered by another polarizer (analyzer) oriented parallel or perpendicular to the incident light polarization. This PO Raman measurement is repeated after each incremental rotation (10\textdegree) of the incident light polarization. This PO Raman measurement is repeated after each incremental rotation (10\textdegree) of the incident light polarization.

Since the spectra at 10 K are well resolved, we can use the measured data to assign individual peaks to normal modes and extract the Raman tensor for each mode. Figure 3a,b is contour plots of the PO Raman spectra of (BA)\textsubscript{2}PbI\textsubscript{4} at 10 K in the tetragonal configuration. (The spectra in Figure 3b were recalculated from data previously reported by us.66 For detailed description and plots of the perpendicular configuration, see Figure S5 and Section S7 in the SI.) The top panels of Figure 3a,b presents the corresponding unpolarized Raman spectra of (BA)\textsubscript{2}PbI\textsubscript{4} at 10 K compared to that calculated from DFPT, showing excellent agreement.
Figure 3a,b represent the intensity angular dependence (PO dependence) of each mode. This PO dependence is dictated by the Raman tensor corresponding to the irreducible representation of each mode. To extract the Raman tensor of each peak, we first fit each individual spectrum to the product of the Bose–Einstein distribution and a multipseudo-Voigt line-shape (for more details, see Section S6 in the SI). We use a pseudo-Voigt line-shape instead of the commonly used damped Lorentz oscillators model because the widths of the peaks at 10 K approach our system resolution, resulting in inhomogeneous broadening which cannot be captured by the Lorentz oscillator line-shape.

We then calculate the integrated intensity of each mode as a function of excitation polarization angle. Finally, we extract the Raman tensor components by fitting the integrated intensity, of both parallel and perpendicular configurations simultaneously, to the modified Placzek equation given by

\[I \propto |\hat{J}R\hat{J}|^2 \]

where \(\hat{e} \) and \(\hat{e}' \) are the polarization vectors of the incident and scattered light, respectively. \(R \) is the Raman tensor, and \(J \) is the Jones matrix, introduced to account for birefringence effects due to anisotropy in the crystal structure. The \(\hat{e} \) and \(\hat{e}' \) are either parallel or perpendicular to one another, depending on the measurement configuration.

The form of the Raman tensor, as well as the number of expected Raman-active modes, is extracted by performing factor-group analysis to the relevant space group (orthorhombic, \(Pbc\alpha \)). This analysis is based on the harmonic and rigid-body approximations. Under the harmonic approximation, we assume no mode coupling, and each normal mode corresponds to a single irreducible representation of the factor group. Under the rigid-body approximation, we treat the organic molecules as rigid spheres with no internal motions.

Factor-group analysis predicts 48 Raman-active lattice modes for \((BA)_2PbI_4\), of which 24 scatter light polarized in the (001) plane, that is, 12 \(A_g \) modes and 12 \(B_{1g} \) modes, with the corresponding Raman tensors:

\[
R_{A_g} = \begin{pmatrix} a & d & e \\ 0 & b & f \\ 0 & 0 & c \end{pmatrix}, \quad R_{B_{1g}} = \begin{pmatrix} 0 & d & 0 \\ d & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}
\]

(2)

Two distinct dependencies are observed for the \(A_g \) and \(B_{1g} \) modes of \((BA)_2PbI_4\) in the parallel configuration, as can be seen in Figure 3c,d. The former (26 cm\(^{-1}\)) exhibits two peaks with 180° periodicity, while the latter (58 cm\(^{-1}\)), shifted by 45°, exhibits one peak with 90° periodicity (for mode assignments, see Figure S6 and Table S5 in the SI). A similar distinction was previously observed in the PO Raman of MAPbI\(_3\). It is noteworthy that the observed PO of \((BA)_2PbI_4\) is not fully captured by our model. Specifically, contrary to the observation in MAPbI\(_3\), the intensity of each peak does not vanish at the minima (Figure 3c,d). This discrepancy indicates that either the rigid-body and/or the harmonic approximations are not fully valid for \((BA)_2PbI_4\). To explore this further, we first explore relaxing the rigid-body approximation. The internal motions of the organic molecules cannot be neglected, and the actual space group of the crystal has lower symmetry than that extracted from XRD measurements. To address the lower symmetry, we repeat our analysis with a completely general Raman tensor:

\[
R = \begin{pmatrix} a & d & e \\ d & b & f \\ e & f & c \end{pmatrix}
\]

(3)

We find that the PO dependencies of \((BA)_2PbI_4\) could not be reproduced accurately even with a completely general tensor (dashed line in Figure 3c,d).

We suggest two possible explanations for the observation. The first is that the nonvanishing intensity at the minima indicates that both the harmonic and the rigid body approximations are not valid for \((BA)_2PbI_4\). The second is the formation of small domains in the crystal, which are smaller than our spatial resolution, induced by strain, due to the temperature gradients and different thermal expansion coefficients of the crystal and thermal contacts. Scattering from domains of different orientations would result in the observed nonvanishing intensity. Measurements at different spots on the crystal show a higher intensity ratio between the minima and maxima, as we move closer to the thermal contacts. This supports the claim of microdomains formation.

We now turn to focus on the structural dynamics of \((BA)_2PbI_4\) and MAPbI\(_3\). The detailed comparison and real-space assignments are given in the Table S6 in the SI. Despite the large contribution of organic cations, the modes’ symmetries and real-space assignments are strikingly similar, highlighting the intimate relationship between the structural dynamics of 2D and 3D lead iodide HHPs.

Structural Dynamics in the High-Temperature Phase.

We have established that the structural dynamics of the low-temperature phases of \((BA)_2PbI_4\) and MAPbI\(_3\) are closely related. We now turn to focus on the structural dynamics of \((BA)_2PbI_4\) at room temperature. Figure 4a presents the PO Raman spectra, in the parallel configuration (perpendicular configurations presented in Figure S7 in the SI), just above and below the phase transition, at 300 and 260 K. The top panel shows the unpolarized spectra. It should be noted that there is a known hysteresis in the phase transition temperature of \((BA)_2PbI_4\). Nevertheless, the same XRD crystal structure and the same trend in the Raman spectra were observed (around the phase transition temperature) when heating or cooling the crystal across the phase transition.

The crystal structures above and below the phase transition are both orthorhombic with the same space group, \(Pbca \). In the high-temperature phase, we observe some reduction in octahedral corrugation angles. The angle between the butylammonium cations and the Pb–I plane approaches 90°.
mechanism, which will be discussed later. Nevertheless, the similar PO dependencies and frequencies occur. Scattering from di-

The Raman active modes in (BA)$_2$PbI$_4$ are nondegenerate, and the lack of change in space-group during the phase transition pose the question of the origin of these modes. To that end, we follow the temperature evolution and symmetry of the modes from 10 K (for mode assignment across the temperature range, see Table S5 in the SI). This is an important finding because XRD measurements show that the average crystal structure has changed (Figures 1b and 4a). The Raman measurements provide additional insight, showing that the main change in the phase transition is a dynamic change where the thermal fluctuations become strongly damped (i.e. broad peaks), soft (i.e. peaks shift to lower frequencies), and thus, strongly anharmonic. Therefore, we now turn to elucidating the mechanism of the phase transition.

Mechanism of Phase Transition in (BA)$_2$PbI$_4$. We recently reported the mechanism of the orthorhombic-to-tetragonal phase transition in MAPbI$_3$. Our main conclusions were that two types of motions are causing the phase transition: the orientational unlocking of the $[\text{CH}_3\text{NH}_3]^+$ ions and large amplitude octahedral tilting that continuously increases with temperature. It was previously reported that the phase transition of (BA)$_2$PbI$_4$ is also related to an order–disorder transition of the organic molecules. However, the role of the octahedral tilting was not explored. In Figure 5a, we compare the abrupt change in the Raman spectra of (BA)$_2$PbI$_4$ and MAPbI$_3$ due to the phase transition. The blue and red traces are the unpolarized Raman spectra below and above the phase transition, respectively. The change in the Raman spectra at the phase transition in (BA)$_2$PbI$_4$ and MAPbI$_3$ is similar. This similarity leads us to suggest that, also in (BA)$_2$PbI$_4$, the mechanism for the phase transition involves unlocking of large amplitude, anharmonic octahedral tilting. This means that similar to MAPbI$_3$ and other halide perovskites, the high-temperature phase of (BA)$_2$PbI$_4$ has the relaxational octahedral tilting activated, and the structure is in a steady state in which it visits different octahedral tilting orientations. Figure 5b presents the order–disorder phase transition mechanism as the population of a double-well potential, where each represents a different tilting orientation. According to the order–disorder phase transition mechanism (dashed line in Figure 5b), we would expect the time-averaged structure to be untilted. However, the finite tilt angle observed in Figure 4a suggests an additional displacive component to the phase transition. We interpret the displacive component as an asymmetry in the double-well as presented and the interlayer spacing increases (for structural data, see Table S4 in the SI). These slight differences have been shown to have a significant effect on the electronic properties of (BA)$_2$PbI$_4$.

As discussed for the low-temperature phase, factor-group analysis predicts 24 Raman-active modes for the high temperature phase, 12 A_g and 12 B_1g. However, unlike for the low-temperature phase, the number of observed peaks in Figure 4b,c is considerably smaller, and the shape of the Raman spectrum in Figure 4b is significantly different. The relatively well-defined modes of the lower-temperature phase are replaced by broad overlapping features which are harder to distinguish. Therefore, spectral deconvolution into damped Lorentz oscillators becomes very challenging.

To overcome this challenge, we make use of the similarity to the spectra below the phase transition temperature, as in Figure 4c. We begin by assigning all the modes below the phase transition. To that end, we follow the temperature evolution and symmetry of the modes from 10 K (for more PO Raman spectra, see Figure S7 in the SI) and assign all the observed modes at 260 K. Then, we compare the spectral features and their PO dependencies to those at 300 K (Figure 4a,b and Figure S7 in the SI) and assign the modes above the phase transition. The most pronounced change in the spectra, due to the phase transition, is the broadening of low-frequency A_g modes with a significant octahedral tilting component around the crystallographic b axis.

Interestingly, three weak, low-frequency A_g modes, observed at 300 K, could not be directly assigned to modes of the low-temperature phase. These modes exhibit the same PO dependence as the A_g modes adjacent to them (see Figure S8 in the SI). The higher number of A_g modes in this low-frequency range at the high-temperature phase, their PO dependencies, and the lack of change in space-group during the phase transition pose the question of the origin of these modes. The Raman active modes in (BA)$_2$PbI$_4$ are nondegenerate, therefore mode splitting due to degeneracy removal cannot occur. Scattering from different domains would not account for the frequency shift of the modes, while stress related scattering would be more prominent in the low-temperature phase. Nevertheless, the similar PO dependencies and frequencies suggest that these modes and their adjacents originate from a very similar atomic motion. We propose that these modes are actually the same and are a signature of the phase transition mechanism, which will be discussed later.
during phase transition. As mentioned earlier, according to drastic broadening of the peaks observed in the Raman spectra through thermal factors and would not be apparent in the XRD bias between the wells in the potential. (BA)\textsubscript{2}PbI\textsubscript{4} below (blue traces) and above (red traces) the phase transition. The measurements' temperatures are indicated above the traces, and the spectra are offset for clarity. (b) Illustration of asymmetric double-well potential of (BA)\textsubscript{2}PbI\textsubscript{4} due to the hydrogen bonding. The dashed line is the conventional symmetric double well. Above 274 K, the relaxational octahedral rotation is activated, and both wells are populated, but the average structure has a finite tilt angle. (c) Illustration of the hydrogen bonds in the low-temperature phase of (BA)\textsubscript{2}PbI\textsubscript{4}. The lower kinetic energy combined with stronger hydrogen bonds locks the structure with a large octahedral tilting angle. (d) Illustration of the hydrogen bonds in high-temperature (BA)\textsubscript{2}PbI\textsubscript{4}. The relaxational octahedral rotation is activated at this phase, but the hydrogen bonding to the BA molecules makes the relaxational rotation asymmetric.

in Figure 5b. This asymmetry is caused by the hydrogen bonding between [NH\textsubscript{3}+] group and the iodides. Unlike the isolated MA molecules in MAPbI\textsubscript{3} where a “free” rotation is allowed, the BA molecules have a preferred configuration due to their intermolecular interactions. This orientation results in an anisotropic bonding network with the iodides, even at the high-temperature phase. Figure 5c,d illustrates the hydrogen-bonding network in the low- and high-temperature phases, respectively. Such anisotropic bonding imposes a bias on the double-well. Therefore, the low-temperature phase is locked in a large tilting angle due to the lower kinetic energy, while the high-temperature phase exhibits a smaller but finite tilting angle as well. Another indication for the biased double-well potential is the extra A\textsubscript{1g} modes, observed in the high-temperature phase, unassociated uniquely to modes of the low-temperature phase (marked peaks in Figure 4b). These modes exhibit the same PO dependence as their adjacent A\textsubscript{1g} modes, suggesting they originate from the same motion in a different low-temperature phase, that is, a different well. The energy-shift between the adjacent A\textsubscript{1g} modes is a result of the bias between the wells in the potential.

On the other hand, like in MAPbI\textsubscript{3}, the relaxational octahedral rotation is coupled to the vibrational modes at the Γ point, effectively damping them and leading to the drastic broadening of the peaks observed in the Raman spectra during phase transition.39 As mentioned earlier, according to our mode assignment, these are mainly low-frequency A\textsubscript{1g} modes with a significant octahedral tilting component around the crystallographic b axis. This type of disorder manifests itself in XRD through thermal factors and would not be apparent in the refined structure (Figure 4a). This is due to the elastic scattering nature of XRD, which gives a higher significance to the average structure over other configurations. The presence of large-amplitude anharmonic octahedral tilting is also important for the optoelectronic properties of the crystals. These large lattice motions can stabilize localized electronic excited states and are likely to reduce the charge carrier mobility of the materials.7,94–97 These fluctuations also contribute to the screening of point defects,98,99 and it is of interest to examine in the future whether the optically/electronically active defect density decreases in the high-temperature phase of (BA)\textsubscript{2}PbI\textsubscript{4} compared to the low-temperature phase.

CONCLUSIONS

We used temperature-dependent PO Raman scattering and DFPT calculations to show the intimate relationship between the structural dynamics of the 2D halide perovskites (BA)\textsubscript{2}PbI\textsubscript{4} and (PhE)\textsubscript{2}PbI\textsubscript{4} and their 3D counterpart MAPbI\textsubscript{3}. They exhibit similar Raman mode frequencies and atomic motions related to the inorganic framework, which are split by the intermolecular interactions of the organic cation. These relationships can be extended to other 2D-HHPs and their 3D counterparts and assist in the design of complex optoelectronic devices.

Additionally, we revealed the mechanism for the phase transition of (BA)\textsubscript{2}PbI\textsubscript{4}, showing that it involves the relaxational motion of anharmonic octahedral tilting coupled to octahedral tilting around the b axis. Our interpretation suggests a mixed displacive and order–disorder phase transition, that is, a biased double-well potential. This is a clear indication of temperature-activated anharmonicity in 2D-HHPs which can directly confer temperature dependence on the optoelectronic properties and electron–phonon interactions observed in these materials.

METHODS

Synthesis. Materials and Precursors. PbO (99%), phosphinic acid (50% w in H\textsubscript{2}O), 2-phenethylamine (99%), and n-butylamine (99.5%) were purchased from Merck, hydriodic acid (stabilizer free, 57% w in H\textsubscript{2}O) was purchased from Holland Moran, and diethyl ether (BHT stabilized) was purchased from Bio-Lab Chemicals. The reagents were used without further treatment.

Pb precursor was prepared by dissolving PbO in a mixture of hydriodic acid and phosphinic acid, on a hot-plate set to 110 °C, under magnetic stirring, to a clear yellow solution.

Organic precursor was prepared in a separate beaker in an ice bath, by reacting the amine solution (1:1 molar ratio to Pb) with high excess of hydriodic acid, while stirring.

(PhE)\textsubscript{2}PbI\textsubscript{4} Single Crystals. Single crystals were synthesized by adding the phenethylamine precursor solution dropwise to the Pb precursor solution. Orange powder was immediately observed in the vial. The magnetic stirring was continued until the solution was clear yellow again. Hydriodic acid was added dropwise (≈1 mL) to speed up the dissolution. The stirring was stopped, and the beaker was capped, placed in a silicon-oil-bath system, and cooled to room temperature at a rate of 2 K/h. The orange plate-like crystals were further quenched in an ice bath, vacuum filtered, washed with diethyl ether, and dried at 90 °C in a vacuum oven for 24 h prior to use.

(PhE)\textsubscript{2}PbI\textsubscript{4} Single Crystals. Single crystals were synthesized by adding the butylamine precursor solution dropwise to the Pb precursor solution. Orange powder was observed in the vial by the end of the addition. The vial was then capped, and the hot-plate temperature was increased to 140 °C. The magnetic stirring was continued until the solution was clear yellow. After additional ≈20 min, the magnetic stirrer was removed, and the beaker was placed...
capped in a silicon-oil bath system preheated to 105 °C and cooled to room temperature, at a rate of 1 K/h. The oil bath was covered with aluminum foil to maintain uniform temperature. The orange plate-like crystals of (BA)$_2$PbI$_4$ were collected from the bottom of the beaker by evacuating the supernatant and dried gently and thoroughly with a blotting paper. The crystals were then further evacuated overnight in a glovebox’s antichamber and stored in an N$_2$-filled glovebox or a desiccator.

Exact molar ratios between the materials can be found in Table S1 in the SI.

Single Crystal X-ray Diffraction. Description of the X-ray diffraction measurements as well detailed results and structures can be found in the SI.

Raman Scattering. Raman scattering experiments were conducted in a home-built backscattering setup using a 1.58 eV CW pumped-diode laser (Toptica Inc., USA) and a 1.16 eV CW Nd:YAG laser (Coherent Inc., USA) with 1 mW excitation power (for detailed description of the system and measurement, see Section S5 in the SI).

(BA)$_2$PbI$_4$ and (PhE)$_2$PbI$_4$ crystals were mechanically exfoliated prior to use.

DFPT Calculation. The nonresonant Raman tensor is evaluated by DFPT according to the method reported in ref.66 The structure is a $\sqrt{2} \times \sqrt{2} \times 2$ supercell, as resolved by experiments. The lattice parameters are taken as $(8.28 \, \text{Å}, 8.94 \, \text{Å}, 25.44 \, \text{Å})$ with a $4 \times 4 \times 2$ k-mesh. All atomic positions are relaxed before any further calculation.

The norm-conserving pseudopotential is used with the generalized gradient approximation in combination with the Grimme-d3 van der Waals correction.103 The convergence parameters are the same as those in ref.66. All the first-principles calculations are carried out with the Quantum Espresso program.

ASSOCIATED CONTENT

1. **Supporting Information**

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsnano.1c02022.

Further synthesis description, XRD measurements information, temperature-dependent and PO Raman spectra, computational details, and modes correlation (PDF)

The crystal structure of (BA)$_2$PbI$_4$ at the low temperature phase $(100 \, \text{K}, \text{Pbca})$, from single crystal XRD. Deposited to the Cambridge Crystallographic Data Center, deposition number CSD 2018893 (CIF)

The crystal structure of (BA)$_2$PbI$_4$ at the low temperature phase, just below the phase transition $(270 \, \text{K}, \text{Pbca})$, from single crystal XRD. Deposited to the Cambridge Crystallographic Data Center, deposition number CSD 2018894 (CIF)

The crystal structure of (BA)$_2$PbI$_4$ at the high temperature phase $(293 \, \text{K}, \text{Pbca})$, from single crystal XRD. Deposited to the Cambridge Crystallographic Data Center, deposition number CSD 20118895 (CIF)

The crystal structure of (PhE)$_2$PbI$_4$ at 100 K (P1), from single crystal XRD. Deposited to the Cambridge Crystallographic Data Center, deposition number CSD 2018896 (CIF)

The crystal structure of (PhE)$_2$PbI$_4$ at 100 K (P1), from single crystal XRD. Deposited to the Cambridge Crystallographic Data Center, deposition number CSD 2018897 (CIF)

The crystal structure of (PhE)$_2$PbI$_4$ at 400 K (P1), from single crystal XRD. Deposited to the Cambridge Crystallographic Data Center, deposition number CSD 2018898 (CIF)

AUTHOR INFORMATION

Corresponding Author

Omer Yaffe – Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel; orcid.org/0000-0003-4114-7968; Email: Omer.Yaffe@weizmann.ac.il

Authors

Matan Menahem – Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel; orcid.org/0000-0003-3888-2240

Zhenbang Dai – Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States; orcid.org/0000-0003-3304-6008

Sigalit Aharon – Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel

Rituraj Sharma – Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel

Maor Asher – Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel; orcid.org/0000-0002-7529-2242

Yael Diskin-Posner – Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel; orcid.org/0000-0002-9008-8477

Roman Korobko – Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel; orcid.org/0000-0002-0936-0200

Andrew M. Rappe – Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States; orcid.org/0000-0003-4620-6496

Complete contact information is available at: https://pubs.acs.org/doi/10.1021/acsnano.1c02022

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Tsachi Livneh (NRC) for fruitful discussions and Dr. Lior Segev (WIS) for developing the Raman software. O.Y. acknowledges funding from ISF(1861/17), BSF (grant no. 2016650), ERC (850041 - ANHARMONIC). Z.D. acknowledges support from the US National Science Foundation, under grant DMR-1719353. A.M.R. acknowledges support from the Office of Naval Research under grant N00014-20-1-2701. The authors acknowledge computational support from the High-Performance Computing Modernization Office of the US Department of Defense.

REFERENCES

(1) Chen, Y.; Sun, Y.; Peng, J.; Tang, J.; Zheng, K.; Liang, Z. 2D Ruddlesden–Popper Perovskites for Optoelectronics. Adv. Mater. 2018, 30, 1703487.

(2) Cortecchia, D.; Yin, J.; Petrozza, A.; Soci, C. White Light Emission in Low-Dimensional Perovskites. J. Mater. Chem. C 2019, 7, 4956.

(3) Mitzi, D. B.; Chondroudis, K.; Kagan, C. R. Organic-Inorganic Electronics. IBM J. Res. Dev. 2001, 45, 29.

(4) Tang, Y.; Cao, X.; Chi, Q. Two-Dimensional Halide Perovskites for Emerging New-Generation Photodetectors. In Two-Dimensional Materials for Photodetector; InTechOpen: London, 2018; pp 75–101.

(5) Mitzi, D. B. Organic-Inorganic Perovskite Structures. In Synthesis, Structure, and Properties of Organic-Inorganic Perovskites
and Related Materials, Progress in Inorganic Chemistry; John Wiley & Sons, Ltd: Yorktown Heights, NY, 1999; Vol. 48, pp 14–57, 1st ed.
(6) Saparov, B.; Mitzi, D. B. Organic-Inorganic Perovskites: Structural Versatility for Functional Materials Design. Chem. Rev. 2016, 116, 4558.
(7) Traoré, B.; Pedesseau, L.; Assam, L.; Che, X.; Blancan, J. C.; Tsai, H.; Nie, W.; Stoumpos, C. C.; Kanatzidis, M. G.; Tretiak, S.; Mohite, A. D.; Even, J.; Kepenekian, M.; Katan, C. Composite Nature of Layered Hybrid Perovskites: Assessment on Quantum and Dielectric Confinements and Band Alignment. ACS Nano 2018, 12, 3321.
(8) Mao, L.; Stoumpos, C. C.; Kanatzidis, M. G. Two-Dimensional Hybrid Halide Perovskites: Principles and Promises. J. Am. Chem. Soc. 2019, 141, 1171.
(9) Mauck, C. M.; Tisdale, W. A. Excitons in 2D Organic–Inorganic Halide Perovskites. Trends Chem. 2019, 1, 380.
(10) Straus, D. B.; Kagan, C. R. Electrons, Excitons, and Phonons in Two-Dimensional Hybrid Perovskites: Connecting Structural, Optical, and Electronic Properties. J. Phys. Chem. Lett. 2018, 9, 1434.
(11) Even, J.; Pedesseau, L.; Katan, C. Understanding Quantum Confinement of Charge Carriers in Layered 2D Hybrid Perovskites. ChemPhysChem 2014, 15, 3733.
(12) Hong, X.; Ishihara, T.; Nurmiokko, A. V. Dielectric Confinement Effect on Excitons in PbI2-Based Layered Semiconductors. Phys. Rev. B: Condens. Matter Mater. Phys. 1992, 45, 6961.
(13) Takeoka, Y.; Asai, K.; Rikukawa, M.; Sanui, K. Systematic Studies on Chain Lengths, Halide Species, and Well Thicknesses for Lead Halide Layered Perovskite Thin Films. Bull. Chem. Soc. Jpn. 2006, 79, 1607.
(14) Tanaka, K.; Takahashi, T.; Kondo, T.; Umebayashi, T.; Asai, K.; Ema, K. Image Charge Effect on Two-Dimensional Excitons in an Inorganic-Organic Quantum-Well Crystal. Phys. Rev. B: Condens. Matter Mater. Phys. 2005, 71, 045312 DOI: 10.1103/PhysRevB.71.045312.
(15) Guo, L.; Zhao, D.; Zhai, X.; Gan, X.; Liu, H. Synthesis and Characterization of Layered Perovskite-Type Organic-Inorganic Hybrids (Cs2n−xNH3)x(CH3NH3)3−xPbI1+3x (n = 5–10, m = 1,2). J. Wuhan Univ. Technol., Mater. Sci. Ed. 2017, 32, 205.
(16) Stoumpos, C. C.; Cao, D. H.; Clark, D. J.; Young, J.; Rondinelli, J. M.; Jang, J. I.; Hupp, J. T.; Kanatzidis, M. G. Ruddlesden-Popper Hybrid Lead Iodide Perovskites 2D Homologous Semiconductors. Chem. Mater. 2016, 28, 2852.
(17) Yafik, O.; Chernikov, A.; Norman, Z. M.; Zhong, Y.; Velauthapillai, A.; Van Der Zande, A. M.; Owen, J. S.; Heinz, T. F. Excitons in Ultrathin Organic-Inorganic Perovskite Crystals. Phys. Rev. B: Condens. Matter Mater. Phys. 2015, 92, 045414.
(18) Dammak, T.; Koubaa, M.; Boukhedaden, K.; Boughzala, H.; Mlayah, A.; Abid, Y. Two-Dimensional Excitons and Photoluminescence Properties of the Organic/Inorganic (4-FC6H4C2H4NH3)2PbI4 Nanomaterial. J. Phys. Chem. C 2009, 113, 19305.
(19) Zhang, Q.; Chu, L.; Zhou, F.; Ji, W.; Eda, G. Excitonic Properties of Chemically Synthesized 2D Organic–Inorganic Hybrid Perovskite Nanoshets. Adv. Mater. 2018, 30, 1704055.
(20) Billing, D. G.; Lemmerer, A. Synthesis, Characterization and Phase Transitions in the Inorganic–Organized Perovskite-Type Hybrids [(C6H13NH3)xPbI1+y](x = 4, 5 and 6. Acta Crystallogr., Sect. B: Struct. Sci. 2007, 63, 735.
(21) Cortecchia, D.; Neutzner, S.; Yin, J.; Salim, T.; Srimathkandada, A. R.; Bruno, A.; Lam, Y. M.; Marti-Rujas, J.; Petrozza, A.; Soci, C. Structure-Controlled Optical Thermoresponce in Ruddlesden-Popper Layered Perovskites. APL Mater. 2018, 6, 114207.
(22) Gauthron, K.; Lauret, J. S.; Doyennette, L.; Lanty, G.; Chouteiry, A. E.; Zhang, S. J.; Largeau, L.; Mauguin, O.; Bloch, J.; Deleporte, E. Optical Spectroscopy of Two-Dimensional Layered (C6H5C2H4-NH3)2-PbI4 Perovskite. Opt. Express 2010, 18, 5912.
(23) Kitazawa, N.; Aono, M.; Watanabe, Y. Temperature-Dependent Time-Resolved Photoluminescence of (C6H5C2H4-NH3)2PbX4 (X = Br and I). Mater. Chem. Phys. 2012, 134, 875.
(40) Thouin, F.; Valverde-Chavez, D. A.; Quarti, C.; Cortecchia, D.; Bargiela, I.; Beljonne, D.; Petrozza, A.; Silva, C.; Smrits, Kandada, A. R. Phonon Coherences Reveal the Polaronic Character of Excitons in Two-Dimensional Lead-Halide Perovskites. Nat. Mater. 2019, 18, 349.

(41) Kang, J.; Wang, L. W. Dynamic Disorder and Potential Fluctuation in Two-Dimensional Perovskite. J. Phys. Chem. Lett. 2017, 8, 3875.

(42) Naik, V. V.; Vasudevan, S. Melting of an Anchored Bilayer: Molecular Dynamics Simulations of the Structural Transition in \((\text{C}_n\text{H}_{2n+1}\text{NH}_3)\text{PbI}_4\) (\(n = 12, 14, 16, 18\)). J. Phys. Chem. C 2010, 114, 4536.

(43) Brivio, F.; Frost, J. M.; Skelton, J. M.; Jackson, A. J.; Weber, O. J.; Weller, M. T.; Goni, A. R.; Leguy, A. M. A.; Barnes, P. R. F.; Walsh, A. Lattice Dynamics and Vibrational Spectra of the Orthorhombic, Tetragonal, and Cubic Phases of Methylammonium Lead Iodide. Phys. Rev. B: Condens. Matter Mater. Phys. 2015, 92, 144308.

(44) Chen, T.; Foley, B. J.; Ipek, B.; Tyagi, M.; Copley, J. R. D.; Brown, C. M.; Choi, J. J.; Lee, S. H. Rotational Dynamics of Organic Cations in \((\text{CH}_3\text{NH}_3)^+\text{PbI}_4^-\) Perovskite. Phys. Chem. Chem. Phys. 2015, 17, 31278.

(45) Goehry, C.; Nemes, G. A.; Manolescu, C. Collective Behavior of Molecular Dipoles in \((\text{CH}_3\text{NH}_3)^+\text{PbI}_4^-\). J. Phys. Chem. C 2015, 119, 19674.

(46) Ivanovska, T.; Quarti, C.; Grancini, G.; Petrozza, A.; De Angelis, F.; Milani, A.; Ruani, G. Vibrational Response of Methylammonium Lead Iodide: From Cation Dynamics to Phonon–Phonon Interactions. ChemSusChem 2009, 2, 9, 2994.

(47) Leguy, A. M. A.; Frost, J. M.; McMahon, A. P.; Sakai, V. G.; Kockelmann, W.; Law, C.; Li, X.; Foglia, F.; Walsh, A.; O’Regan, B. C.; Nelson, J.; Cabral, J. T.; Barnes, P. R. F. The Dynamics of Methylammonium Ions in Hybrid Organic–Inorganic Perovskite Solar Cells. Nat. Commun. 2015, 6, 7780.

(48) Leguy, A. M. A.; Goni, A. R.; Frost, J. M.; Skelton, J. M.; Brivio, F.; Rodriguez-Martinez, X.; Weber, O. J.; Pallipurath, A.; Alonso, M. I.; Campoy-Quiles, M.; Weller, M. T.; Nelson, J.; Walsh, A.; Barnes, P. R. F. Dynamic Disorder, Phonon Lifetimes, and the Assignment of Modes to the Vibrational Spectra of Methylammonium Lead Halide Perovskites. Phys. Chem. Chem. Phys. 2016, 18, 27051.

(49) Mattoni, A.; Filippetti, A.; Saba, M. I.; Caddeo, C.; Delugas, P. Temperature Evolution of Methylammonium Trihalide Vibrations at the Atomic Scale. J. Phys. Chem. Lett. 2016, 7, 529.

(50) Mayers, M.; Tan, L. Z.; Egger, D. A.; Rappe, A. M.; Reichman, D. R. How Lattice and Charge Fluctuations Control Carrier Dynamics in Halide Perovskites. Nano Lett. 2018, 18, 8041.

(51) Nakada, K.; Matsumoto, Y.; Shimoi, Y.; Yamada, K.; Furukawa, Y. Temperature-Dependent Evolution of Raman Spectra of Methylammonium Lead Halide Perovskites, \((\text{CH}_3\text{NH}_3)\text{PbI}_4^-\). J. Chem. Phys. 2019, 126, 094701.

(52) Pérez-Osorio, M. A.; Lin, Q.; Phillips, R. T.; Milot, R. L.; Herz, L. M.; Johnston, M. B.; Giustino, F. Raman Spectrum of the Organic-Inorganic Halide Perovskite \((\text{CH}_3\text{NH}_3)\text{PbI}_4^-\) from First Principles and High-Resolution Low-Temperature Raman Measurements. J. Phys. Chem. C 2018, 122, 21703.

(53) Pérez-Osorio, M. A.; Milot, R. L.; Filip, M. R.; Patel, J. B.; Herz, L. M.; Johnston, M. B.; Giustino, F. Vibrational Properties of the Organic-Inorganic Halide Perovskite \((\text{CH}_3\text{NH}_3)\text{PbI}_4^-\) from Theory and Experiment: Factor Group Analysis, First-Principles Calculations, and Low-Temperature Infrared Spectra. J. Phys. Chem. C 2015, 119, 25703.

(54) Quarti, C.; Grancini, G.; Mosconi, E.; Bruno, P. O.; Ball, J. M.; Leoti, M. M.; Snait, H. J.; Petrozza, A.; De Angelis, F. The Raman Spectrum of the \((\text{CH}_3\text{NH}_3)\text{PbI}_4^-\) Hybrid Perovskite: Interplay of Theory and Experiment. J. Phys. Chem. Lett. 2014, 5, 279.

(55) Weller, M. T.; Weaver, O. J.; Henry, P. F.; Di Pummo, A. M.; Hansen, T. C. Complete Structure and Cation Orientation in the Perovskite Photovoltaic Methylammonium Lead Iodide between 100 and 352 K. Chem. Commun. 2015, 51, 4180.
Popper Perovskites. Transition-Induced Carrier Mass Enhancement in 2D Ruddlesden-Popper Perovskites Using Structural Templating. M. Raman Tensor Elements of β-Ga$_2$O$_3$. Sci. Rep. 2016, 6, 35964 DOI: 10.1038/srep35964.

(77) Knarnt, C.; Sturm, C.; Schmidt-Grund, R.; Grundmann, M. Raman Tensor Formalism for Optically Anisotropic Crystals. Phys. Rev. Lett. 2016, 116, 127401.

(78) Fox, M. Classical Propagation. In Optical Properties of Solids, 2nd ed.; Oxford University Press: New York, 2010; pp 28–58.

(79) Guo, P.; Huang, W.; Stoumpos, C. C.; Mao, L.; Gong, J.; Zeng, L.; Diroll, B. T.; Xia, Y.; Ma, X.; Gosztola, D. J.; Xu, T.; Keterson, J. B.; Bedzyk, M. J.; Facchetti, A.; Marks, T. J.; Kanatzidis, M. G.; Schaller, R. D. Hyperbolic Dispersion Arising from Anisotropic Excitons in Two-Dimensional Perovskites. Phys. Rev. Lett. 2018, 121, 127401.

(80) Li, J.; Ma, J.; Cheng, X.; Liu, Z.; Chen, Y.; Li, D. Anisotropy of Excitons in Two-Dimensional Perovskite Crystals. ACS Nano 2020, 14, 2156.

(81) Dresselhaus, M. S.; Dresselhaus, G.; Jorio, A. Group Theory: Application to the Physics of Condensed Matter, 1st ed.; Springer-Verlag: Berlin Heidelberg, 2008.

(82) Cotton, F. A. Molecular Vibrations. In Chemical Applications of Group Theory, 3rd ed; Wiley-Interscience: New York, 1990; pp 304–347.

(83) Cardona, M.; Guntherodt, G. Resonance Phenomena. In Light Scattering in Solids II - Basic Concepts and Instrumentation, Topics in Applied Physics; Springer-Verlag: Berlin Heidelberg, 1982; Vol. 50.

(84) Amerling, E.; Baniya, S.; LaFalce, E.; Zhang, C.; Vardeny, Z. V.; Whittaker-Brooks, L. Electroabsorption Spectroscopy Studies of (C$_2$H$_5$NH$_3$)$_2$PbI$_4$, Organic-Inorganic Hybrid Perovskite Multiple Quantum Wells. J. Phys. Chem. Lett. 2017, 8, 4557.

(85) Baranowski, M.; Zelenski, S. J.; Kepenekian, M.; Traoré, B.; Urban, J. M.; Surrente, A.; Galkowski, K.; Maude, D. K.; Kuc, A.; Booker, E. P.; Kudrawiec, R.; Stranks, S. D.; Plochocka, P. Phase-Transition-Induced Carrier Mass Enhancement in 2D Ruddlesden-Popper Perovskites. ACS Energy Lett. 2019, 4, 2386.

(86) Knutson, J. L.; Martin, J. D.; Mitzi, D. B. Tuning the Band Gap in Hybrid Tin Iodide Perovskite Semiconductors Using Structural Templating. Inorg. Chem. 2005, 44, 4699.

(87) Barman, S.; Venkataraman, N. V.; Vasudevan, S.; Seshadri, R. Phase Transitions in the Anchored Organic Bilayers of Long-Chain Alkylammonium Lead Iodides (C$_n$H$_{2n+1}$NH$_3$)$_2$PbI$_4$; n = 12, 16, 18. J. Phys. Chem. B 2003, 107, 1875.

(88) Bechtel, J. S.; Thomas, J. C.; Van Der Ven, A. Finite-Temperature Simulation of Anharmonicity and Octahedral Tilting Transitions in Halide Perovskites. Phys. Rev. Mater. 2019, 3, 113605.

(89) Limmer, D. T.; Ginsberg, N. S. Photoinduced Phase Separation in the Lead Halides Is a Polaronic Effect. J. Chem. Phys. 2020, 152, 230901.

(90) Rousseau, M. New Model for the Phase Transitions Due to Octahedra Rotations in the Perovskite Structure. J. Phys., Lett. 1979, 40, 439.

(91) Tyson, T. A.; Gao, W.; Chen, Y. S.; Ghose, S.; Yan, Y. Large Thermal Motion in Halide Perovskites. Sci. Rep. 2017, 7, 9401 DOI: 10.1038/s41598-017-09220-2.

(92) Klarbring, J. Low-Energy Paths for Octahedral Tilting in Inorganic Halide Perovskites. Phys. Rev. B: Condens. Matter Mater. Phys. 2019, 99, 104105.

(93) Armstrong, R. L. Displacive Order-Disorder Crossover in Perovskite and Antifluorite Crystals Undergoing Rotational Phase Transitions. Prog. Nucl. Magn. Reson. Spectros. 1989, 21, 151.

Grozema, F. C. Interconversion between Free Charges and Bound Excitons in 2D Hybrid Lead Halide Perovskites. J. Phys. Chem. C 2017, 121, 26566.

(95) Srimath Kandada, A. R.; Silva, C. Exciton Polarons in Two-Dimensional Hybrid Metal-Halide Perovskites. J. Phys. Chem. Lett. 2020, 11, 3173.

(96) Yin, J.; Li, H.; Cortecchia, D.;umi, C.; Bréday, J. L. Excitonic and Polaronic Properties of 2D Hybrid Organic-Inorganic Perovskites. ACS Energy Lett. 2017, 2, 417.

(97) Zhang, Z.; Fang, W. H.; Long, R.; Prezhdo, O. V. Exciton Dissociation and Suppressed Charge Recombination at 2D Perovskite Edges: Key Roles of Unsatuated Halide Bonds and Thermal Disorder. J. Am. Chem. Soc. 2019, 141, 15557.

(98) Borelli, S. M.; Egger, D. A.; Kronik, L.; Hodes, G.; Cahen, D. Hybrid Organic-Inorganic Perovskites: Low-Cost Semiconductors with Intriguing Charge-Transport Properties. Nat. Rev. Mater. 2016, 1071.

(99) Novoselov, L. V. G. K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666.

(100) Baroni, S.; Giannozzi, P.; Testa, A. Green’s-Function Approach to Linear Response in Solids. Phys. Rev. Lett. 1987, 58, 1861.

(101) Rappe, A. M.; Rabe, K. M.; Kaxiras, E.; Joannopoulos, J. D. Optimized Pseudopotentials. Phys. Rev. B: Condens. Matter Mater. Phys. 1990, 41, 1227.

(102) Percw, J. P.; Burke, K.; Emzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865.

(103) Grimme, S. Semiempirical GGA-Type Density Functional Constructed with a Long-Range Dispersion Correction. J. Comput. Chem. 2006, 27, 1787.