Associations between infant fungal and bacterial dysbiosis and childhood atopic wheeze in a nonindustrialized setting

Marie-Claire Arrieta, PhD,a,b,c Andrea Arevalo, MSc,d Leah Stiemmsma, PhD,e,f Pedro Dimitriu, PhD,g
Martha E. Chico, MD,h Soaia Loor, BSc,i Maritza Vaca, MD,i Rozlyn C. T. Boutin, BSc,a Evan Morien, MSc,i
Mingliang Jin, PhD,j Stuart E. Turvey, MBBS, DPhil,k Jens Walter, PhD,l Laura Wegener Parfrey, PhD,i
Philip J. Cooper, PhD,d,h,k and Brett Finlay, PhDb,g,i

Vancouver, British Columbia, and Calgary and Edmonton, Alberta, Canada; Quito, Ecuador; Los Angeles, Calif; and London, United Kingdom

GRAPHICAL ABSTRACT

From "Michael Smith Laboratories and the Department of Microbiology and Immunology, the Department of Microbiology and Immunology, the Departments of Zoology and Botany, and the Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver; the Departments of Physiology and Pharmacology and Pediatrics, University of Calgary; Facultad de Ciencias Medicas de la Salud y la Vida, Universidad Internacional del Ecuador, Quito; the Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver; ¹the Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles; ²Fundacion Ecuatoriana Para Investigacion en Salud, Quito; ³the Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton; and ⁴the Institute of Infection and Immunity, St George’s University of London.

*These authors contributed equally to this work.
a, c: Affiliation at the time of the study. b, c, f: Current affiliation.
Background: Asthma is the most prevalent chronic disease of childhood. Recently, we identified a critical window early in the life of both mice and Canadian infants during which gut microbial changes (dysbiosis) affect asthma development. Given geographic differences in human gut microbiota worldwide, we studied the effects of gut microbial dysbiosis on atopic wheeze in a population living in a distinct developing world environment.

Objective: We sought to determine whether microbial alterations in early infancy are associated with the development of atopic wheeze in a nonindustrialized setting.

Methods: We conducted a case-control study nested within a birth cohort from rural Ecuador in which we identified 27 children with atopic wheeze and 70 healthy control subjects at 5 years of age. We analyzed bacterial and eukaryotic gut microbiota in stool samples collected at 3 months of age using 16S and 18S sequencing. Bacterial metagenomes were predicted from 16S rRNA data by using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States and Genomes ontology. Concentrations of fecal short-chain fatty acids were determined by using gas chromatography.

Results: As previously observed in Canadian infants, microbial dysbiosis at 3 months of age was associated with later development of atopic wheeze. However, the dysbiosis in Ecuadorian babies involved different bacterial taxa, was more pronounced, and also involved several fungal taxa. Predicted metagenomic analysis emphasized significant dysbiosis-associated differences in genes involved in carbohydrate and taurine metabolism. Levels of the fecal short-chain fatty acids acetate and caproate were reduced and increased, respectively, in the 3-month stool samples of children who went on to have atopic wheeze.

Conclusions: Our findings support the importance of fungal and bacterial microbiota during the first 100 days of life on the development of atopic wheeze and provide additional support for considering modulation of the gut microbiome as a primary asthma prevention strategy. (J Allergy Clin Immunol 2018;142:424-34.)

Key words: Asthma, atopy, wheeze, gut microbiome, mycobiome, short-chain fatty acids, nonindustrialized setting

Asthma is a disease of the airways that affects more than 235 million persons worldwide, causing an enormous burden of disease and high economic costs to societies. Asthma has increased dramatically in incidence in industrialized countries since the 1960s, making it the most common chronic disease of childhood. The increase in prevalence has been attributed primarily to environmental alterations rather than changes in genetic susceptibility. Epidemiologic studies have revealed several potentially protective environmental factors, such as growing up on a farm, vaginal birth, breast-feeding, the presence of household pets, birth order, and number of children, as well as an increased risk of asthma being associated with antibiotic use during late pregnancy and the first year of life. The nature of these exposures has led many to hypothesize that microbial alterations (dysbiosis) driven by these factors and leading to modulation of the infant immune response are causally related to the increase in asthma and other atopic diseases.

Previously, we provided strong support for this hypothesis in mice and human subjects, in which we found a critical window early in life during which changes in the gut microbiome are influential in immune dysregulation and can lead to atopy and asthma. Importantly, we identified specific bacterial taxa associated with reduced asthma risk in a prospective longitudinal cohort study of Canadian babies (Canadian Healthy Infant Longitudinal Development [CHILD] study). These microbial taxa were not only associated with disease but also implicated causally in ameliorating experimental asthma in a murine model. A more recent microbiome study in a US pediatric cohort also showed bacterial dysbiosis in 1-month-old infants at high risk of asthma. Interestingly, this study also measured the fecal fungal community and found several fungal taxa also involved in the gut dysbiosis associated with asthma. Traditionally not included in microbiome studies, fungi are important members of the gut microbiome, especially in the first months of life.

Supported by the Canadian Institutes of Health Research (CIHR) and Allergen grants to BFF and the ECUAVIDA cohort by the Wellcome Trust (grant 088602/Z/09/Z). L.T.S. is supported on a T23 Training Grant from the National Institutes of Health (T32CA009142-37). Disclosure of potential conflict of interest: M.-C. Arrieta has received a grant from Allergen Canada and the Canadian Institute for Health Research and is employed by the University of Calgary. L. Stiensma has received grants from the UBC Four Year Fellowship and the National Institutes of Health (T32CA009142), is employed by the University of California Los Angeles, has received royalties from PCTICA/2016/000065 “Bacterial Compositions and Methods of Use Thereof,” and has received travel support from AllerGen Networks Centres of Excellence Travel Award. E. Morien has received a grant from Human Frontiers in Science program (RGY0078/2015). M. Jin is employed as a visiting professor at the University of Alberta. L.W. Parfrey has received grants from the Canadian Institute for Advanced Research, Dalhousie University, and the Human Frontiers in Science Program. P. Cooper has received a grant from the Wellcome Trust and is employed by St George’s University of London. B. Finlay has received grants from Allergen, the Canadian Institute for Health Research, and the Gates Foundation; has a board membership with Microbiome Insights; has consultant arrangements with Commence and Vedanta; and is employed by the University of British Columbia. The rest of the authors declare that they have no relevant conflicts of interest.

Received for publication March 30, 2017; revised July 27, 2017; accepted for publication August 23, 2017.

Available online December 11, 2017.

Corresponding author: Brett Finlay, PhD, Michael Smith Laboratories, #501-2185 East Mall, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada. E-mail: bfinlay@msl.ubc.ca.

The CrossMark symbol notifies online readers when updates have been made to the article such as errata or minor corrections 0091-6749

© 2017 The Authors. Published by Elsevier Inc. on behalf of the American Academy of Allergy, Asthma & Immunology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jaci.2017.08.041
when fungi are present at a much higher diversity than later in life.11

Because asthma rates continue to climb in affluent countries, the less developed regions of the world are now also experiencing increases in asthma prevalence, particularly urban and urbanizing populations. The International Study of Asthma and Allergies in Childhood12,13 reported asthma prevalence worldwide and showed that some of the highest rates were in Latin American countries, such as Peru, Brazil, and Costa Rica. Although this has been taken as evidence against the hygiene hypothesis, rural populations within these countries have lower rates of asthma than urban populations, and rural-to-urban migration and modernization can contribute to increases in asthma prevalence.14

Thus changes in microbial exposure driven by urbanization might help explain regional differences in asthma within Latin America.

The intestinal microbiome differs by geographic location, which is likely explained by differences in diet, lifestyle, and environmental exposures.15 Not surprisingly, the limited data available on the microbiome of Latin Americans show notable differences between the gut microbiome from this part of the world and North American or European populations.15,16 Given what we have reported previously in Canadian infants, we explored whether similar patterns can be observed in a geographically distinct population with similar reported rates of asthma prevalence to Canada (approximately 10% of the population).17

To do this, we completed a case-control study nested within a birth cohort from a rural district in a tropical coastal region of Ecuador, in which we selected children who had atopic wheeze at 5 years of age and healthy control subjects. We compared the bacterial and fungal microbiomes and levels of short-chain fatty acids (SCFAs) as a measure of bacterial carbohydrate metabolism in fecal samples collected at 3 months and contrasted our findings with those obtained from a Canadian cohort. Here we show that bacterial and fungal dysbiosis can be detected in early life in babies who go on to have atopic wheeze in later childhood in a nonindustrialized setting.

METHODS
Study design

We conducted a case-control study nested within the ECUA VIDA birth cohort study designed to study prospectively the effects of early-life parasite infections on the development of atopy and allergic diseases. The cohort of 2404 newborns was recruited between 2006 and 2009 in the public hospital serving the rural district of Quinindé, Esmeraldas Province, a tropical region of coastal Ecuador. Detailed information for the cohort is provided elsewhere.18 Cases and control subjects were selected from children with a stool sample collected at 3 months of age. As outlined in more detail below, cases were defined as children with maternally reported wheeze in the previous 12 months at 5 years of age and with evidence of atopy based on a positive skin prick test response. Healthy control subjects were a random sample of children with no previous history of wheeze and no evidence of atopy at 5 years of age selected by using the sample option in Stata 11 software (StataCorp, College Station, Tex). The study protocols were approved by the Ethics Committees of the Hospital Pedro Vicente Maldonado and Universidad San Francisco, Quito, Ecuador. The study is registered as an observational study (IRSCNTN41239086). Informed written consent was obtained from the child’s mother.

Data collection and study procedures

Data on wheezing were collected by using maternal questionnaires administered by a trained physician (M.E.C. and M.V.). Wheeze was defined as any episode of reported wheeze during the previous 12 months. Other data were collected by using periodic questionnaires administered during the first 2 weeks of life and then at 7 and 13 months. Blood was collected at 7 and 13 months and analyzed for eosinophil counts by using standard methods. Stool samples were collected from the child at 3 months and analyzed by using microscopic methods, as previously described.17 An aliquot was stored at −80°C until analysis.

Atope was measured based on skin prick test reactivity at 5 years of age using 9 common allergen extracts (Greer Laboratories, Lenoir, NC): Dermatophagoides pteronyssinus/S. furaria mix, American cockroach (Periplaneta americana), cat, dog, grass pollen (9 southern grass mix), fungi, egg, milk, peanut, with positive histamine and negative saline controls. A positive reaction was defined as a mean wheal diameter of at least 3 mm greater than that elicited by the saline control, and a positive skin prick test response was defined as a positive reaction to any of the allergens tested. No children were taking antihistamines at the time of skin testing.

Microbial community analysis

Extraction and amplicon preparation. DNA was extracted from approximately 50 mg of stool. Samples were mechanically lysed by using Mo Bio dry bead tubes (Mo Bio Laboratories, San Diego, Calif) and the FastPrep Homogenizer (FastPrep Instrument; MP Biomedicals, Santa Ana, Calif) before DNA extraction with the Qiagen DNA Stool Mini Kit (Qiagen, Hilden, Germany). All samples were amplified by means of PCR in triplicate by using barcoded primer pairs flanking the V4 region of the 16S gene with the forward primer 5′-GTGCGGCAAGCMGCCGCGTTAA-3′ and the reverse primer 5′-GACTACHVGGGTATCTAAAT-3′, as previously described.20

16S. Each 50 µL of PCR contained 22 µL of water, 25 µL of TopTag Master Mix, 0.5 µL of each forward and reverse barcoded primer, and 2 µL of template DNA. The PCR program consisted of an initial DNA denaturation step at 95°C for 5 minutes, 25 cycles of DNA denaturation at 95°C for 1 minute, an annealing step at 50°C for 1 minute, an elongation step at 72°C for 1 minute, and a final elongation step at 72°C for 7 minutes. Controls without template DNA were included to ensure that no contamination occurred. Amplicons were run on a 2% agarose gel to ensure adequate amplification. Amplicons displaying bands at approximately 250 bp were purified with the Illumina GFX PCR DNA Purification Kit (GE Healthcare, Fairfield, Conn).

Purified samples were diluted 1:50 and quantified with PicoGreen (Invitrogen, Carlsbad, Calif) in the Tecan M200 (excitation at 480 nm and emission at 520 nm).

18S. DNA was sent to Integrated Microbiome Resource at Dalhousie University (Halifax, Nova Scotia, Canada) for amplification and sequencing. The 18S gene was amplified with the primers E572F (5′-CYGGTAATTCAGCCTC-3′) and E1009R (5′-AYGGTATCTATCRCTTCYTG-3′), and the reaction included a PNA blocking primer to reduce amplification of mammalian sequences (5′-TCCTAATCATGCCCTCAG-3′). Amplification was done in duplicate, with one reaction using undiluted DNA and one reaction using DNA diluted 1:10 in PCR water. Amplification was done according to previously described protocols.21

Sequencing. 16S. Each PCR pool was analyzed on the Agilent Bioanalyzer (Agilent Technologies, Santa Clara, Calif) by using the High Sensitivity DS DNA assay to determine approximate library fragment size and to verify library integrity. Pooled library concentrations are determined by using the KAPA Library Quantification Kit (Illumina, San Diego, Calif). Library pools are diluted to 4 nmol/L and denatured into single strands by using fresh 0.2 N NaOH. The final library loading concentration is 8 pmol/L, with an additional PhiX spike-in of 20%. The amplicon library is sequenced on the MiSeq by using the SMiseq 500 Cycle V2 Reagent Kit (250 × 2).

18S. PCR products were visualized on E-Gels (Thermo Fisher Scientific, Waltham, Mass). The PCR product was quantified with the Invitrogen Qubit with PicoGreen and pooled at equal concentrations, according to the method of Comeau et al.21 PhiX was spiked in at 5%, and the resulting library was sequenced at Dalhousie University on the Illumina MiSeq with the SMiseq 500 Cycle V2 Reagent Kit (250 × 2).
Bioinformatics. Sequences were preprocessed, denoised, and quality filtered by size using Mothur MiSeq SOP (16S)23 or QIME (18S).24 Demultiplexed reads were trimmed to a uniform length of 250 bp by using the FastX Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/) and clustered into operational taxonomic units (OTUs) by using the Minimum Entropy Decomposition (MED) method,24 as implemented in the Oligotyping microbial analysis software package.25 MED is used to perform de novo taxonomic clustering with Shannon entropy to separate biologically meaningful patterns of nucleotide diversity from sequencing noise; processed data are partitioned into phylogenetically homogenous units (MED nodes) for downstream bacterial diversity analyses. This analysis was carried out with the minimum substantive abundance parameter (-M) set at 250 reads. All other parameters were run with default settings; the maximum variation allowed per node (-V) was automatically set at 3 nucleotides.

Representative sequences were classified by clustering against the Greengenes database at 97% similarity (16S)26 or SILVA123 at 99% similarity (18S).27 The 16S data set was filtered to remove mitochondria and chloroplast sequences. The 18S data set was filtered to remove mammalian sequences, plants, and all OTUs present in fewer than 3 samples. After filtering, a cutoff of 1000 reads per sample was applied. All 16S samples passed the cutoff. In the 18S data set many samples had fewer than 1000 sequences per sample after filtering. Thus 10 samples from atopic patients with Wheeze (AWs) and 22 control samples were retained for statistical analysis of the 18S data set. It is important to apply this sequencing cutoff because a low number of sequences might be a consequence of amplification or sequencing artifacts that might not reflect a real microbial community and will not provide enough statistical power for analysis. Singleton OTUs and any OTUs present less than 3 times among all samples were removed from both the 16S and 18S analyses. We constructed a phylogenetic tree for Pichia species by first extracting sequences from the aligned 99% SILVA 123 data set that corresponded to the genus Pichia or to the family Pichiaceae with RAxML.28 The short Illumina reads were then aligned to the SILVA 123 data set by using PyNAST29 and placed in the reference Pichia species tree by using the maximum likelihood RAxML evolutionary placement algorithm.30

Quantitative PCR
Quantitative PCR (qPCR) was performed on genomic DNA isolated from stools by using the QIAamp Fast DNA Stool Mini Kit (QIAGEN) to validate the high-throughput sequencing results. After extraction, all DNA concentrations were measured with the Quant-iT PicoGreen dsDNA Assay Kit (Thermo Fisher Scientific), and template DNA was used in the qPCR reactions. Demultiplexed reads were trimmed to a uniform length of 250 bp by using the FastX Toolkit, and sequence data were filtered to remove mitochondrial DNA and chloroplast DNA from the reads. The reads were then aligned to the SILVA database using the BIOM Community Analysis package.31

Phylogenetic Decomposition Script (PHD) was used to cluster the reads into operational taxonomic units (OTUs) based on 97% nucleotide identity. The OTUs were then classified against the SILVA database using the RDP classifier. The relative abundance of each OTU was calculated using the phyloseq package.36

Phylogenetic Investigation of Communities by Reconstruction of Unobserved States
We used Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt)37 to generate a profile of putative functions (through metagenomic prediction) from the 16S rRNA OTU data. Predicted metagenomes from all samples were categorized by function at Kyoto Encyclopedia of Genes and Genome orthology level 3. To test for significant differences in functional category abundances between the AW and control samples, we used the Welch test implementation of STAMP.38 We also tested for differentially abundant predicted genes with DESeq234 under default settings. DESeq2 estimates variance and mean dependence in count data from high-throughput data sets and tests for a differential expression based on a model using negative binomial distribution. The test statistics’ P values were adjusted for multiple testing by using the procedure of Benjamini and Hochberg (false discovery rate threshold, 5%).

SCFA analysis
Infants’ fecal samples were combined with 25% phosphoric acid, vortexed, and centrifuged until a clear supernatant was obtained. Supernatants were submitted for gas chromatography to the Department of Agricultural, Food and Nutritional Science of the University of Alberta (Edmonton, Alberta, Canada). Samples were analyzed, as previously described,35 with modifications. Briefly, samples were combined with 4-methyl-valeric acid as an internal standard, and 0.2 mL was injected into the Bruker SCION 45S gas chromatograph by using a Stabilwax-DA 30-mm × 0.53-mm × 0.5-μm column (Restek, Bellefonte, Pa). A standard solution containing acetic acid, propionic acid, isobutyric acid, butyric acid, isovaleric acid, valeric acid, and caproic acid, combined with internal standard, was injected in every run.

Programmable temperature vaporization injector and flame ionization detector temperatures were held at 250°C for the entire run. The oven was started at 80°C and immediately ramped to 210°C at 45°C/min, where it was held for 5.11 minutes. Total run time was 8.00 minutes. Helium was used at a constant flow of 20.00 mL/min. Sample concentrations were normalized to the wet weight of feces.

Statistical analysis
Differences in frequencies in categorical and continuous variables between cases and control subjects were evaluated by using χ2 and Mann-Whitney tests, respectively. The Fisher exact test was used for the reduced sample available for fungal sequencing analysis. We assessed fecal microbial diversity and relative abundance of bacterial and fungal taxa by using phyloseq,36 along with additional R-based computational tools37-42 in Rstudio software. Principal coordinates analysis was conducted by using phyloseq (Bray-Curtis as distance metric) and statistically confirmed with permutational multivariate ANOVA. The Cha01 index was calculated by using phyloseq and statistically confirmed with the Mann-Whitney test.
(GraphPad Prism software, version 5c; GraphPad Software, La Jolla, Calif). The R packages DESeq234 and multivariate association with linear models (MaAsLin)43 were used to calculate differentially abundant OTUs between the control and AW samples. From the available metadata, the following covariates were forced into the MaAsLin model based on significant associations with the 5-year AW phenotype and on previously reported associations with asthma or with microbiome shifts: antibiotic use during pregnancy or the first year of life, duration of antibiotic use during pregnancy or the first year of life, mode of delivery, household potable water, number of respiratory tract infections during the first year of life, eosinophilia at 7 months, and number of diarrheal episodes during the first year of life. All ecological measurements, except for the Chao1 index, were performed on the 100 most abundant OTUs after normalizing OTUs for relative abundance, which represent 98.14% and 99.83% of total OTUs in the 16S and 18S data sets, respectively.

RESULTS

Study subject characteristics: AWs and control subjects

From 1066 stool samples collected from infants in the ECUAVIDA cohort at 3 months of age with follow-up data at 5 years of age (2090), we identified 27 AWs and a random sample of 70 healthy control subjects with no history of wheeze and no atopy at 5 years. The required sample size for microbiome analysis was determined by using MetSizeR, a software package designed to estimate sample size for high-throughput experiments. Assuming at least 100 parameters measured and that 10% would differ significantly between cases and control subjects, a sample size of 24 was required to maintain a false discovery rate of less than 0.05. Characteristics of AWs and control subjects are shown in Table I. Most variables were distributed similarly between the two groups with the exceptions of mode of delivery (caesarean delivery: 37% for AWs vs 16% for control subjects, P = .022) and number of documented acute respiratory tract infections, which were more frequent in AWs compared with control subjects (P = .011). There were no significant differences with respect to baseline characteristics between AWs included in this analysis and those not included for lack of a 3-month stool sample (see Table E1 in this article’s Online Repository at www.jacionline.org).

Bacterial and fungal alterations associated with AW phenotype

As expected, the gut microbiome between 3-month-olds in the Canadian CHILD Study and ECUAVIDA study differed substantially (see Fig E2 in this article’s Online Repository at www.jacionline.org). In line with what we reported previously in Canadian infants, the AW phenotype did not explain any significant changes in α or β bacterial diversity (Mann-Whitney and permutational multivariate ANOVA, respectively; see Fig E3, A and B, in this article’s Online Repository at www.jacionline.org). In addition to the bacterial profile, we also sequenced the V4 region of the 18S rRNA gene to obtain a profile of the intestinal eukaryotic microbiome in these infants. After subtracting plant and human sequences, our analysis found only sequences of fungal origin in the fecal microbiome of these 3-month-old babies. In this data set many samples had fewer than 1000 sequences per sample after applying filtering steps, which prompted their removal from the data set. Thus only 10 AW and 22 control samples were retained for statistical analysis of the 18S data set. However, AWs and control subjects used for fungal sequence analysis were reasonably representative of the original case and control samples (see Table E2 in this article’s Online Repository at www.jacionline.org). Similar to the 16S analysis, no significant differences were found in fungal α or β diversity between infants with atopic wheeze and control subjects (see Fig E3, C and D). Despite the

Variable	AWs (n = 27)	Control subjects (n = 70)	P value
Child			
Sex			
Male	13 (48%)	32 (46%)	.829
Female	14 (52%)	38 (54%)	
Breast-feeding			
No	1 (4%)	1 (1%)	.494
Yes	26 (96%)	69 (89%)	
Period breast-feeding (mo)			
Median (range)	13 (4-20)	12 (3-24)	.510
Type of delivery			
Vaginal	17 (63%)	59 (84%)	.022
Caesarean	10 (37%)	11 (16%)	
Birth order			
First	9 (33%)	23 (33%)	.964
Second to third	11 (41%)	27 (39%)	
2Fourth	7 (26%)	20 (28%)	
Household			
Maternal educational status			
Illiterate	1 (4%)	7 (10%)	.119
Primary complete	21 (78%)	41 (59%)	
Secondary complete	5 (18%)	22 (31%)	
Socioeconomic level			
Low	10 (37%)	26 (37%)	.994
Medium	9 (33%)	24 (34%)	
High	8 (30%)	20 (29%)	
Agricultural activities			
No	13 (48%)	34 (49%)	.970
Yes	14 (52%)	36 (51%)	
Potable water			
No	15 (56%)	52 (74%)	.074
Yes	12 (44%)	18 (26%)	
Bathroom			
Latrine/field	18 (67%)	44 (63%)	.992
WC	9 (33%)	26 (37%)	
Antibiotics and infections			
Antibiotics			
Maternal antibiotics in pregnancy			
No	9 (33%)	35 (50%)	.139
Yes	18 (67%)	35 (50%)	
Period (d)			
Median (IQR)	10 (3-21)	7 (1-48)	.113
During first year of life (courses)			
0	14 (52%)	41 (59%)	.196
1	11 (41%)	17 (24%)	
2-4	2 (7%)	12 (17%)	
Infections during first year			
Acute respiratory (episodes)			.011
0	0 (0%)	2 (3%)	
1	3 (26%)	35 (50%)	
2	11 (41%)	27 (38%)	
3-5	9 (33%)	6 (9%)	
Acute diarrhea			.929
No	13 (48%)	33 (47%)	
Yes	14 (52%)	37 (53%)	

Text in boldface denotes statistical significance (P < .05). IQR, Interquartile range.
lack of broad microbial community shifts between AWs and control subjects, several OTUs of bacteria (Fig 1) and especially fungi (Fig 2) were found to be differentially abundant by using DESeq2, a method of differential analysis of high-throughput sequencing data based on a model of negative binomial distribution. Among the observed bacterial alterations were 2 OTUs identified as *Veillonella* species, 3 OTUs identified a *Streptococcus* species, 1 OTU identified as *Bacteroides* species, 1 OTU identified as *Ruminococcus gnavus*, and 1 OTU identified as *Bifidobacterium* species (DESeq2; *P* < .05, Wald test and false discovery rate). Interestingly, 5 of these OTUs were among the top 10 most abundant bacterial OTUs in the data set. Notably, more than twice number of fungal OTUs (19) were significantly different between AWs and control subjects compared with bacterial OTUs, with 7 of them identified as the yeast *P. kudriavzevii* (Fig 2, B). The larger differences in the fungal versus bacterial microbiome were also evident in relative abundance plots of the top 100 most abundant bacterial and fungal taxa, organized by genus (Figs 1, A, and 2, A). Additionally, we found several correlations between bacterial and fungal OTUs, suggesting potential ecologic synergistic and antagonistic associations occurring in the infant gut (see Fig E4 in this article’s Online Repository at www.jacionline.org).

Given extensive metadata collected in this cohort, we captured the effect of the gut microbiome on the atopic wheeze phenotype (used as a surrogate for asthma risk) while controlling for potential confounding using MaAsLin. MaAsLin is a multivariate linear modeling tool with boosting that tests for associations between specific microbial taxa and continuous and/or Boolean metadata. In microbiome studies certain variables, such as diet, age, and sample origin, can have large effects on microbiome composition. Thus it is important to subtract their influence from the potential effect caused by other metadata in the study, such as the phenotype. With MaAsLin, we found a significant association between most of the differential taxa obtained through DESeq2 analysis and atopic wheeze, including the bacterial genera *Bifidobacterium*, *Streptococcus*, and *Veillonella*, as well as the fungi *P. kudriavzevii*, *Saccharomyces*, and *Saccharomycetales* (see Tables E3 and E4 in this article’s Online Repository at www.jacionline.org), supporting the strong association between these microbial changes and the phenotype. By using both statistical approaches, it was evident that fungal alterations were more marked than bacterial dysbiosis.

Because of the strength of the association between the yeast *P. kudriavzevii* and atopic wheeze risk, we validated the
sequencing result using maximum likelihood to place individual sequences assigned as *P. kudriavzevii* into a phylogenetic tree of all sequences assigned to *Pichia* species yeast in the reference database and found that all of the OTUs fell within the *P. kudriavzevii* clade (see Fig E5 in this article’s Online Repository at www.jacionline.org). We further validated this result by designing and optimizing specific primers for this yeast. Using qPCR on all AW and control samples, we confirmed the increased prevalence of *Pichia* species in the stool of 3-month-old babies who went on to have atopic wheeze in this
Ecuadorian cohort (Fig 3, A). Although there is overlap in values between groups, almost a third of child AWs (8/27) had a higher abundance of \(P. kudriavzevii \) than the highest abundance among control subjects (\(P < .001 \)). In addition, we found that AW samples contained a higher proportion of fungal reads over all eukaryotic reads (Fig 3, B). To confirm this bioinformatic observation, we quantified total fungal 18S rRNA gene copies using qPCR in all samples. Notably, we found a small yet significant increase in 18S rRNA gene copies in the AW samples (Fig 3, C), suggesting that fungi are overrepresented in the gut microbiome of babies who go on to have atopic wheeze.

Functional microbiome alterations in babies who had atopic wheeze

To determine the functional potential of the bacterial dysbiosis detected by using 16S sequencing, we predicted the microbiome

FIG 3. Fungus-specific qPCR and Illumina sequence data. A, qPCR quantification (standard curve method) of \(P. kudriavzevii \) in feces of 3-month-old infants from the ECUAVIDA study (control subjects, 68; AWs, 27). B, Relative abundance of fungal reads over the total number of eukaryotic reads from 18S data set. Only samples with more than 1000 sequences after filtering were included in the 18S high-throughput sequencing analysis (control subjects, 23; AWs, 10). C, qPCR quantification (standard curve method) of fungus-specific 18S copies in feces of 3-month-old infants from the ECUAVIDA study (control subjects, 68; AWs, 27). In Fig 3, A and C, graphs are based on a logarithmic scale. All graphs show Mann-Whitney tests: *\(P < .05 \) and **\(P < .001 \).

FIG 4. Concentration of the 6 most abundant SCFAs in feces of infants with atopic wheeze and control infants at 3 months of age measured by using gas chromatography and normalized to feces wet weight. Acetate (A), butyrate (B), propionate (C), isobutyrate (D), valerate (E), and caproate (F). (AWs, 27; control subjects, 70; *\(P < .05 \) and **\(P < .01 \), Mann-Whitney test).
metagenome using PICRUSt.²² PICRUSt is a computational method that predicts functional composition based on the 16S rRNA gene content and copy number and reference bacterial genomes. By comparing the predicted genetic composition between the 2 groups, we found taurine and hypotaurine metabolism, polyketide sugar unit biosynthesis, and carbohydrate digestion and absorption pathways were decreased in AWs (Welch t test, see Fig E6 in this article’s Online Repository at www.jacionline.org).

We investigated further the predicted change in bacterial carbohydrate metabolism by measuring SCFA concentrations in feces. Similar to what we found in babies from the CHILD study, there was a significant decrease in acetate concentrations in the stool of babies in the ECUAVIDA study who went on to have atopic wheeze (Fig 4, A), suggesting similar gut bacterial fermentation patterns between the 2 populations. In addition, we detected an increase in caproate levels associated with the AW phenotype in this cohort (Fig 4, F).

DISCUSSION

In the present study we explored the association between gut bacterial and fungal dysbiosis in infancy and the development of atopic wheeze in later childhood in a representative sample of an Ecuadorian birth cohort (ECUAVIDA), which has studied a population living in a rural district in a tropical nonindustrialized country. This represents a distinct environment from all previous studies of the effects of the microbiome on asthma development done in developed settings. In agreement with previous analyses from Canadian,⁻⁸ and US¹¹ birth cohorts, our findings provide further confirmation of the presence of a microbial signature in the first 100 days of life associated with pediatric risk. A direct comparison between these new findings and the dysbiosis present in the Canadian CHILD study is not entirely possible because of differences in study design. In the CHILD study atopic wheeze was defined at 1 year of age, whereas this study measured atopic wheezing at 5 years as a surrogate for asthma risk. However, the observed differences in gut dysbiosis associated with the risk of atopic wheezing in both cohorts could also originate from differences in gut microbial composition, given that the microbiome of babies in ECUAVIDA differed substantially from that in age-matched Canadian babies in the CHILD study. As has been shown previously,₉ modernization processes (or westernization) strongly affect the human gut microbiome. Although this study was not designed to study the factors that lead to such differences, the humid warm weather in this region and less hygienic conditions are likely to increase exposures to microbes, including those that cause childhood infectious diseases, which might affect health and modify the infant microbiome.¹⁴,⁴⁵

The differences in the gut microbiome detected in this cohort yielded important information. First, the microbial signature associated with atopic wheeze in these infants was more pronounced than in the Canadian cohort. In addition, except for Veillonella species, the bacterial dysbiosis associated with atopic wheezing in this cohort involved different taxa to those detected in the Canadian study. Despite major compositional differences associated with atopic wheezing between the Canadian and Ecuadorian cohorts, we found important metabolic similarities between the 2 cohorts. Notably, a decrease in fecal acetate in atopic infants with wheeze was a common finding in the 2 populations, suggesting that alterations in fermentative patterns that led to a decrease in acetate production might be a common feature associated with atopic wheezing. A reduction in carbohydrate metabolism predicted by PICRUSt also supports the association between SCFA production and atopic wheeze. Acetate,⁴⁶ butyrate,⁴⁷ and propionate⁴⁶ have been shown to stimulate regulatory T-cell proliferation and attenuate allergy-associated Th2 immune responses.⁴⁸ Given our data in 2 very different cohorts, fecal acetate levels reductions should be studied further in larger longitudinal cohorts as a possible biomarker of asthma risk in young babies.

Prompted by the results from a recent study in US infants,¹¹ we profiled the eukaryotic microbiome of the Ecuadorian babies using the 18S rRNA marker gene and a custom-annotated taxonomic database. Interestingly, after removing mammalian and plant-derived sequences, only fungal sequences remained in the data set. Given that we have successfully detected other eukaryotic commensals using the same methodological approach in adult human cohorts (data not shown), this finding indicates that the eukaryotic microbiome in early life consists mainly of fungi, at least in this population. Filamentous fungi and yeasts are common members of the normal gut microbiome, although in a much smaller proportion than bacteria.⁴⁹ However, it has been reported that during the first 3 months of life, they are present at a significantly higher diversity than later in life.¹¹ Furthermore, their role in immune regulation and asthma development has been documented previously in relevant models of murine lung inflammation. In particular, modulation of the mycobiome has been shown to increase the severity of murine lung inflammation.⁵⁰ Moreover, antibiotic-induced blooms of Candida species were associated with increased experimental murine lung inflammation.⁵¹,⁵² This effect has been shown to be mediated by Candida species–produced prostaglandin E₂.⁵³-⁵⁵ An arachidonic acid derivative known play an important role in orchestrating immune interactions relevant in asthmatic patients.

Among the 19 fungal OTUs associated with the AW phenotype (twice as many as the differential bacterial OTUs detected), 7 of them corresponded to the yeast P kudriavzevi. The robustness of the statistical association between this yeast and the AW phenotype prompted us to further validate and confirm its taxonomic identity bioinformatically and through qPCR, especially given the reduced sample size used in the 18S sequencing analysis. We note that there is sufficient variation in this 18S region to identify Pichia species and distinguish between relatives.⁵⁶ P kudriavzevi has been described as a commensal member of the gut mycobiome,⁵⁷ and to our knowledge, this is the first report of this species implicated in gut microbial dysbiosis associated with atopic disease. Notably, qPCR analysis in all the samples detected not only an increase in P kudriavzevi but also an increase in fungi-specific 18S gene copies, suggesting, also for the first time, that fungal overrepresentation in the infant gut microbiome is associated positively with the development of atopic wheeze. However, given the size of the sample studied and the small but significant differences detected in fungal gene copies and reads, caution should be taken when extrapolating these findings to other populations. These findings should be replicated in other human cohorts before considering gut fungal overrepresentation, as associated with asthma risk.

Evidently, fungal dysbiosis was more pronounced than bacterial dysbiosis in this study. Thus the role of P kudriavzevi and other yeasts should be explored in mechanistic studies using animal models. In addition to being important members of the gut microbiome, fungal species can experience an ecological
advantage over bacteria after antibiotic treatment, a very strong risk factor associated with asthma development in most human cohorts. 3

Collectively, these data support our previously proposed concept of a critical window in early life during which microbial dysbiosis can be detected in strong association with a subsequent allergic phenotype predictive of asthma. 4 The nature of this dysbiosis appears to reflect the microbiome composition in a given population, prompting additional analysis in prospective studies around the world and inclusion of fungal analyses in all microbial surveys. Optimized biomarker studies of the microbial taxa and the metabolites involved in regional asthma-associated dysbiosis could help identify infants at risk of asthma before symptoms occur, as well as provide a scientific rationale for future therapeutic strategies aimed at restoring an altered infant gut microbiome.

We thank the ECUAVIDA study for their dedicated work and the cohort mothers and children for their continuing participation. We acknowledge also the directors and staff of the Hospital Padre Alberto Buffoni in Quininde, Esmeraldas Province. Finally, we thank Carlos Sandoval, Matthew Lemay, Evan Morien, Heidi Britton, Miriam Nieves, and Lisa Nikolai for technical assistance.

Clinical implications: Our findings support the importance of early-life infant gut microbial dysbiosis in the development of atopic wheeze and could be used for the development of novel asthma primary prevention strategies through modification of the microbiome in early life.

REFERENCES
1. Asher I, Pearce N. Global burden of asthma among children. Int J Tuberc Lung Dis 2014;18:1269-78.
2. Martinez FD, Vercelli D. Asthma. Lancet 2013;382:1360-72.
3. Arrieta MC, St Geme Jr, Arrieta MC, Pimstone NR, Brown EM, Finlay B. The intestinal microbiome in early life: health and disease. Front Immunol 2014;5:427.
4. Rousell SL, Gold MJ, Hartmann M, Woldaras A, M et al. Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep 2012;13:440-7.
5. Rousell SL, Gold MJ, Reynolds LA, Woldaras A, Pimstone NR, Hartmann M et al. Perinatal antibiotic-induced shifts in gut microbiota have differential effects on inflammatory lung diseases. J Allergy Clin Immunol 2015;135:100-9.
6. Rousell SL, Gold MJ, Woldaras A, Hartson L, McNagny KM, Hartmann M. Perinatal antibiotic treatment affects murine microbiota, immune responses and allergic asthma. Gut Microbes 2013;4:158-64.
7. Arrieta MC, St Geme Jr, Arrieta MC, Pimstone NR, Brown EM, Finlay B. The intestinal microbiome in early life: health and disease. Front Immunol 2014;5:427.
8. Rousell SL, Gold MJ, Hartmann M, Pimstone NR, Woldaras A, M et al. Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep 2012;13:440-7.
9. Rousell SL, Gold MJ, Reynolds LA, Woldaras A, Pimstone NR, Hartmann M et al. Perinatal antibiotic-induced shifts in gut microbiota have differential effects on inflammatory lung diseases. J Allergy Clin Immunol 2015;135:100-9.
10. Takaro TK, Scott JA, Allen RW, Anand SS, Becker AB, Belfus AD, et al. The Canadian Healthy Infant Longitudinal Development (CHILD) birth cohort study: assessment of environmental exposures. J Expo Sci Environ Epidemiol 2015;25:580-92.
11. Fujimura KE, Sitnik AR, Hawst S, Lin DL, Leven S, Fadros D, et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med 2016;22:1187-91.
12. The International Study of Asthma and Allergies in Childhood (ISAAC) Steering Committee. Worldwide variation in prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and atopic eczema: ISAAC. Lancet 1998;351:1225-32.
13. Mallo J, Crane J, von Mutius E, Odhiambo J, Keil U, Stewart A, et al. The International Study of Asthma and Allergies in Childhood (ISAAC) Phase Three: a global synthesis. Allergol Immunopathol (Madr) 2013;41:73-85.
14. Cooper PJ, Rodrigues LC, Cruz AA, Barreto ML. Asthma in Latin America: a public health challenge and research opportunity. Allergy 2009;64:5-17.
15. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature 2012;486:222-7.
16. Escobar JS, Klotz B, Valdes BE, Agudelo GM. The gut microbiota of Colombians differs from that of Americans, Europeans and Asians. BMC Microbiol 2014;14:311.
17. Forno E, Gogna M, Cepeda A, Yanez A, Sole D, Cooper P, et al. Asthma in Latin America. Thorax 2013;68:908-99.
18. Cooper PJ, Chico ME, Platts-Mills TA, Rodrigues LC, Strachan DP, Barreto ML. Cohort profile: the Ecuador Life (ECUAVIDA) study in Esmeraldas Province, Ecuador. Int J Epidemiol 2015;44:1517-27.
19. World Health Organization. Parasitic Disease Programme. Diagnostic techniques for intestinal parasitic infections (IPI) applicable to primary health care (PHC) services. Geneva: World Health Organization; 1985.
20. Kozich JJ, Westcott SL, Baxter NR, Highskender SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 2013;79:5112-20.
21. Comeau AM, Douglas GM, Langille MG. Microbiome Helper: a custom and streamlined workflow for microbiome research. mSystems 2017;2.
22. Schloss PD, Westcott SL, Ryabin T, Hall BR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 2009;75:7537-41.
23. Kuczynski J, Stombaugh J, Walters WA, Gonzalez A, Caporaso JG, Knight R. Introducing QIIME to analyze 16S rRNA gene sequences from microbial communities. Curr Protoc Bioinformatics 2011; Chapter 10:Unit 10.7.
24. Eren AM, Morrison HG, Lescault PJ, Revillaud J, Vineis JH, Sogin ML. Minimum entropy decomposition: unsupervised oligotyping for sensitive partitioning of high-throughput marker gene sequences. ISME J 2015;9:968-79.
25. Eren AM, Maignien L, Sul WJ, Murphy LG, Grim SL, Morrison HG, et al. Oligotyping: differentiating between closely related microbial taxa using 16S rRNA gene data. Methods Ecol Evol 2013;4:1111-9.
26. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 2006;72:5069-72.
27. Yilmaz P, Parfrey LW, Yarza P, Gernik J, Pruesse E, Quast C, et al. The SILVA and “All-life species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res 2014;42(Database issue):D643-8.
28. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30:1312-3.
29. Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 2010;26:266-7.
30. Berger SA, Krompass D, Stamatakis A. Performance, accuracy, and Web server for evolutionary placement of short sequence reads under maximum likelihood. Syst Biol 2011;60:291-302.
31. Chemidlin Prevost-Boure N, Christen R, Dequidt S, Mougel C, Lievre M, Jolivet C, et al. Validation and application of a PCR primer set to quantify fungal communities in the soil environment by real-time quantitative PCR. PLoS One 2011;6:e24166.
32. Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 2013;31:814-21.
33. Parks DH, Tyson GW, Hugenholtz P, Beiko RG. STATISTICAL analysis of taxonomic and functional profiles. Bioinformatics 2014;30:3123-4.
34. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014;15:550.
35. Campbell JM, Fahey GC Jr, Wolf BW. Selected indigestible oligosaccharides for intestinal parasitic infections (IPI) applicable to primary health care (PHC) services. Geneva: World Health Organization; 1985.
36. Kuczynski J, Stombaugh J, Walters WA, Gonzalez A, Caporaso JG, Knight R. Introducing QIIME to analyze 16S rRNA gene sequences from microbial communities. Curr Protoc Bioinformatics 2011; Chapter 10:Unit 10.7.
37. Ploner A. Heatplus: Heatmaps with row and/or column covariates and colored dispersion for RNA-seq data with DESeq2. Genome Biol 2014;15:550.
38. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, et al. Vegan: Community Ecology Package. 2013. Available at: https://cran.r-project.org/web/packages/Vegan/index.html.
39. Ploner A. Heatplus: Heatmaps with row and/or column covariates and colored dispersion for RNA-seq data with DESeq2. Genome Biol 2014;15:550.
40. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, et al. Vegan: Community Ecology Package. 2013. Available at: https://cran.r-project.org/web/packages/Vegan/index.html.
41. Ploner A. Heatplus: Heatmaps with row and/or column covariates and colored clusters. 2013. Available at: https://github.com/alexploner/Heatplus.
40. Pollard K, Gilbert HN, Ge Y, Taylor S, Dudoit S. Multiple testing procedures: R multtest Package and Applications to Genomics, in Bioinformatics and Computational Biology Solutions Using R and Bioconductor. Springer; 2005.
41. Wickham H. ggplot2: elegant graphics for data analysis. 2009. Available at: https://ggplot2.org/.
42. Wickham H. The split-apply-combine strategy for data analysis. J Stat Softw 2011;40:1-29.
43. Morgan XC, Tickle TL, Sokol H, Devaney KL, Ward DV, et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol 2012;13:R79.
44. Martínez I, Stegen JC, Maldonado-Gomez MX, Eren AM, Siba PM, Greenhill AR, et al. The gut microbiota of rural Papua New Guineans: composition, diversity patterns, and ecological processes. Cell Rep 2015;11:527-38.
45. Cooper PJ, Rodrigues LC, Barreto ML. Influence of poverty and infection on asthma in Latin America. Curr Opin Allergy Clin Immunol 2012;12:171-8.
46. Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med 2014;20:159-66.
47. Fallani M, Young D, Scott J, Nojin E, Amari S, Adam R, et al. Intestinal microbiota of 6-week-old infants across Europe: geographic influence beyond delivery mode, breast-feeding, and antibiotics. J Pediatr Gastroenterol Nutr 2010;51:77-84.
48. Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 2013;504:451-5.
49. Underhill DM, Iliev ID. The mycobiota: interactions between commensal fungi and the host immune system. Nat Rev Microbiol 2014;14:405-16.
50. Wheeler ML, Limon JJ, Bar AS, Leal CA, Gargus M, Tang J, et al. Immunological consequences of intestinal fungal dysbiosis. Cell Host Microbe 2016;19:865-73.
51. Noverr MC, Falkowski NR, McDonald RA, McKenzie AN, Huffnagle GB. Development of allergic airway disease in mice following antibiotic therapy and fungal microbiota increase: role of host genetics, antigen, and interleukin-13. Infect Immun 2005;73:30-8.
52. Noverr MC, Noggle RM, Toews GB, Huffnagle GB. Role of antibiotics and fungal microbiota in driving pulmonary allergic responses. Infect Immun 2004;72:4996-5003.
53. Erb-Downward JR, Noverr MC. Characterization of prostaglandin E2 production by Candida albicans. Infect Immun 2007;75:3498-505.
54. Kim YG, Udayanga KG, Totsuka N, Weinberg JB, Nunez G, Shibuya A. Gut dysbiosis promotes M2 macrophage polarization and allergic airway inflammation via fungi-induced PGE(2). Cell Host Microbe 2014;15:95-102.
55. Noverr MC, Phare SM, Toews GB, Coffey MJ, Huffnagle GB. Pathogenic yeasts Cryptococcus neoformans and Candida albicans produce immunomodulatory prostaglandins. Infect Immun 2001;69:2957-63.
56. Kurtzman CP, Robnett CJ, Basehoar-Powers E. Phylogenetic relationships among species of Pichia, Issatchenka and Williopsis determined from multigene sequence analysis, and the proposal of Bargibantomyces gen. nov., Lindnera gen. nov. and Wickerhamomyces gen. nov. FEMS Yeast Res 2008;8: 939-54.
57. Madeha IR, Ikram A, Imran M. A preliminary insight of correlation between human fecal microbial diversity and blood lipid profile. Int J Food Sci Nutr 2016;67:865-71.
FIG E1. Standard curves for fungus-specific 18S (A) and *P. kudriavzevii* (B) qPCR reactions. Standard curves were generated by using 1:5 dilutions of a 1 ng/μL stock of 18S amplicons obtained from PCR reactions done with fungus-specific 18S primers (FR1 and FF390) and purified *P. kudriavzevii* template DNA (see the Methods section). DNA concentrations are denoted in logarithmic scale (y-axis) in relation to PCR cycle number (x-axis). Exponential trend lines and equations, as well as R^2 values, are included in each graph.
FIG E2. Relative abundance of the 100 most abundant bacterial OTUs in feces of Canadian versus Ecuadorian 3-month-old infants. *Rectangle colors correspond to the bacterial genera in the legend. Rectangles represent merged OTUs belonging to the same genus. NA, OTUs without genus-level taxonomic assignment.*
FIG E3. Both α (A and C; Chao1 index) and β (B and D; principal coordinates analysis [Bray-Curtis]) bacterial (Fig E3, A and B) and fungal (Fig E3, C and D) diversity in fecal samples from 3-month-old infants who presented with atopic wheeze at 5 years (AW) versus healthy control subjects (CTRL). Sequencing results from all 16S samples and from 33 18S samples (control subjects, 23; AWs, 10) were retained after applying a cutoff of 1000 sequences per sample. The atopic wheeze phenotype did not explain significant changes in these measurements (P = .323 and .676 [Mann-Whitney test and permutational multivariate ANOVA] for Fig E3, A and C, respectively).
FIG E4. Heat map of biweight correlations between the top 100 bacterial (x-axis) and top 100 fungal (y-axis) OTUs in 33 fecal samples (control subjects, 23; AWs, 10) from 3-month-old infants recruited in the ECUAVIDA cohort study. Significant correlation values are denoted with a cross ($P < .05$, false discovery rate).
FIG E5. Phylogenetic placement of *P. kudriavzevii* OTUs within *Pichia* species sequences from the SILVA 123 reference database. 18S ribosomal DNA sequences labeled as *Pichia* species or Pichiaceae in the 99% SILVA reference database were aligned and then used to construct a reference tree with RAxML. OTUs from this study assigned to *Pichia* species were placed in this tree with the RAxML evolutionary placement algorithm. All OTUs cluster within a clade of *P. kudriavzevii*.
FIG E6. PICRUSt-predicted Kyoto Encyclopedia of Genes and Genomes functional categories with significant differences in relative abundance between control subjects and AWs (Welch t test, q values are shown in figure).
TABLE E1. Characteristics of AWs at 5 years comparing those included in the analysis with those excluded from the analysis

Variable	Included (n = 27)	Excluded (n = 32)	P value
Child			
Sex			
Male	13 (48%)	21 (66%)	.176
Female	14 (52%)	11 (34%)	
Breast-feeding			
No	1 (4%)	0 (0%)	.280
Yes	26 (96%)	32 (100%)	
Period breast-feeding (mo)			.948
Median (range)	13 (4-20)	13 (10-18)	
Type of delivery			.465
Vaginal	17 (63%)	23 (72%)	
Caesarean	10 (37%)	9 (28%)	
Birth order			.230
First	9 (33%)	6 (19%)	
Second to third	11 (41%)	14 (44%)	
>Fourth	7 (26%)	12 (37%)	
Household			
Maternal educational status			
Illiterate	1 (4%)	4 (12%)	.083
Primary complete	21 (78%)	16 (50%)	
Secondary complete	5 (18%)	12 (38%)	
Socioeconomic level			
Low	10 (37%)	9 (28%)	.529
Medium	9 (33%)	9 (28%)	
High	8 (30%)	14 (44%)	
Agricultural activities			.922
No	13 (48%)	15 (47%)	
Yes	14 (52%)	17 (53%)	
Potable water			.429
No	15 (56%)	21 (66%)	
Yes	12 (44%)	11 (34%)	
Bathroom			.465
Latrine/field	17 (63%)	23 (72%)	
WC	10 (37%)	9 (28%)	
Antibiotics and infections			
Maternal antibiotics in pregnancy			
No	9 (33%)	14 (44%)	.414
Yes	18 (67%)	18 (56%)	
Period (d)			.101
Median (IQR)	10 (3-21)	8 (5-10)	
During first year of life (courses)			.455
0	14 (52%)	18 (56%)	
1	11 (41%)	9 (28%)	
2-4	2 (7%)	5 (16%)	
Infecions during first year			
Acute respiratory (episodes)			.597
0	0 (0%)	2 (6%)	
1	3 (26%)	9 (28%)	
2	11 (41%)	12 (38%)	
3-5	9 (33%)	9 (28%)	
Acute diarrhea			.410
No	13 (48%)	12 (38%)	
Yes	14 (52%)	20 (62%)	

Inclusion in the analysis was based on having a stool sample collected at 3 months of age.

IQR, Interquartile range.
TABLE E2. Characteristics of study subjects in a reduced cohort for whom fungal sequencing data were analyzed

Variable	AWs (n = 10)	Control subjects (n = 22)	P value
Child			
Sex			
Male	7 (70%)	11 (50%)	.253
Female	3 (30%)	11 (50%)	
Breast-feeding			
No	0 (0%)	0 (0%)	—
Yes	10 (100%)	22 (100%)	
Period breast-feeding (mo)			.962
Median (range)	14 (9-16)	13 (12-16)	
Type of delivery			
Vaginal	7 (70%)	18 (82%)	.376
Caesarean	3 (30%)	4 (18%)	
Birth order			
First	5 (50%)	7 (32%)	.412
Second to third	2 (20%)	9 (41%)	
≥Fourth	3 (30%)	6 (27%)	
Household			
Maternal educational status			
Illiterate	0 (0%)	1 (5%)	.358
Primary complete	9 (90%)	14 (64%)	
Secondary complete	1 (10%)	7 (32%)	
Socioeconomic level			
Low	2 (20%)	10 (45%)	.318
Medium	3 (30%)	7 (32%)	
High	5 (50%)	5 (23%)	
Agricultural activities			
No	6 (60%)	10 (45%)	.352
Yes	4 (40%)	12 (55%)	
Potable water			
No	4 (40%)	13 (59%)	.267
Yes	6 (60%)	9 (41%)	
Bathroom			
Latrine/field	8 (80%)	16 (73%)	.512
WC	2 (20%)	6 (27%)	
Antibiotics and infections			
Antibiotics			
Maternal antibiotics in pregnancy			
No	3 (30%)	13 (59%)	.126
Yes	7 (70%)	9 (41%)	
Period (d)			
Median (IQR)	7 (0-9)	0 (0-5)	.109
During first year of life (courses)			
0	7 (70%)	12 (55%)	.631
1	3 (30%)	8 (36%)	
2-4	0 (0%)	3 (13%)	
Infections during first year			
Acute respiratory (episodes)			
0	0 (0%)	1 (5%)	.12
1	3 (30%)	14 (63%)	
2	4 (40%)	6 (27%)	
3-5	3 (30%)	1 (5%)	
Acute diarrhea			
No	5 (50%)	10 (45%)	.81
Yes	5 (50%)	12 (55%)	

IQR, Interquartile range.
TABLE E3. Differentially abundant microbial OTUs (false discovery rate < 0.05) between AWs and control subjects calculated by using DESeq2

Variable	Feature	log₂ Fold change	P value (adjusted)	Effect	95% CI
Bacterial features					
Phenotype	Otu4 _ Veillonella	-2.5303623	3.98E-11	Increased	-2.6510012 to -2.4097234
Phenotype	Otu5 _ Streptococcus	4.56211499	3.98E-11	Decreased	4.34260055 to 4.78162944
Phenotype	Otu7 _ Bacteroides	-3.0482054	7.12E-11	Decreased	3.0476741 to 3.50274053
Phenotype	Otu9 _ Streptococcus	2.278997	.00400262	Decreased	2.01960114 to 2.43619825
Phenotype	Otu10 _ Streptococcus	3.27520397	2.04E-05	Decreased	3.0476741 to 3.50274053
Phenotype	Otu18 _ Ruminococcus gnavus	3.6269523	.00162925	Decreased	3.30974875 to 3.94364171
Phenotype	Otu026 _ Veillonella	2.96323589	.00561369	Decreased	2.67680938 to 3.2496624
Phenotype	Otu019 _ Bifidobacterium	-4.510034	2.25E-05	Increased	4.8273551 to 4.1927128
Fungal features					
Phenotype	58 _ Debaryomyces_hansenii	3.28100437	5.64E-05	Increased	2.77607299 to 3.78593574
Phenotype	558 _ Candida_tropicalis	2.89814469	.00031816	Increased	2.39981876 to 3.39710762
Phenotype	638 _ uncultured_fungus_Saccharomycetales	3.2685979	.0015227	Increased	2.73474031 to 3.80497926
Phenotype	639 _ Saccharomycetes	3.3253614	8.21E-05	Increased	2.80805337 to 3.85701891
Phenotype	642 _ uncultured_fungus_Saccharomycetales	4.01492817	6.51E-06	Increased	3.46305197 to 4.56680436
Phenotype	643 _ uncultured_fungus_Saccharomycetales	3.27079498	.0001125	Increased	2.74586052 to 3.79572945
Phenotype	716 _ uncultured_fungus_Saccharomycetales	-3.9866517	7.64E-07	Decreased	-4.4864069 to -3.4868965
Phenotype	717 _ uncultured_fungus_Saccharomycetales	-4.048536	5.97E-07	Decreased	-4.5511721 to -3.5458998
Phenotype	1269 _ uncultured_fungus_Saccharomycetales	3.01162348	.000382	Increased	2.48614246 to 3.5371045
Phenotype	1295 _ uncultured_fungus_Saccharomycetales	3.97293655	.0036181	Increased	3.2849384 to 4.6637926
Phenotype	1328 _ Saccharomyces	-2.2265938	.00135591	Decreased	-2.6572829 to -1.7959046
Phenotype	1529 _ Pichia_kudriavzevii	-6.3822152	2.53E-13	Decreased	-6.9228509 to -5.8416194
Phenotype	1531 _ Pichia_kudriavzevii	-3.421152	2.82E-08	Decreased	-3.8030808 to -3.0392231
Phenotype	1533 _ Pichia_kudriavzevii	-3.4287207	2.23E-08	Decreased	-3.8066674 to -3.048774
Phenotype	1534 _ Pichia_kudriavzevii	-3.6780058	1.55E-08	Decreased	-4.0810328 to -3.2749788
Phenotype	1538 _ Pichia_kudriavzevii	-6.3906936	9.03E-13	Decreased	-6.9451013 to -5.8362859
Phenotype	1539 _ Pichia_kudriavzevii	-3.5008997	3.85E-08	Decreased	-3.8956113 to -3.1061881
Phenotype	1540 _ Pichia_kudriavzevii	-3.61174	1.14E-08	Decreased	-4.0039118 to -3.2195682
Phenotype	1541 _ Pichia_kudriavzevii	-1.7264597	0.0096672	Decreased	-2.0507199 to -1.4021995

P values are corrected for false discovery rate. OTUs in boldface remained statistically significant after controlling for confounding (Table E4).
TABLE E4. Microbial taxa associated with atopic wheezing corrected for major confounding effects known to affect microbiome composition by using MaAsLin

Variable	Feature	Coefficient	P value (adjusted)	q Value	Effect	95% CI
Bacterial features						
Phenotype	Bifidobacterium_179	0.02299582	1.05E-12	8.64E-11	Increased	0.02169825 to 0.0242934
Phenotype	Veillonella_Dispar_132	-0.0092217	.00254641	1.0440262	Decreased	-0.0106249 to -0.0078185
Phenotype	Veillonella_86	-0.007847	.02938598	0.6277335	Decreased	-0.0094878 to -0.0062061
Phenotype	Veillonella_26	-0.0167265	.03077532	0.6277335	Decreased	-0.0201968 to -0.0132562
Phenotype	Streptococcus_135	-0.0050144	.0444958	0.6277335	Decreased	-0.0071267 to -0.0029021
Phenotype	Bifidobacterium_103	0.00845423	.04751864	0.6277335	Increased	0.00639847 to 0.01050998
Fungal features						
Phenotype	Pichia_Kudriavzevii_1538	-0.2039807	.00325965	0.08131335	Decreased	-0.2268391 to 0.28743912
Phenotype	Pichia_Kudriavzevii_1534	-0.035631	.00350364	0.08131335	Decreased	-0.0396671 to 0.05036711
Phenotype	Pichia_Kudriavzevii_1531	-0.0358471	.00431312	0.08131335	Decreased	-0.040034 to 0.05113405
Phenotype	Pichia_Kudriavzevii_1533	-0.0309382	.00490549	0.08131335	Decreased	-0.0346121 to 0.04435211
Phenotype	Pichia_Kudriavzevii_1539	-0.0321617	.00555307	0.08131335	Decreased	-0.0360469 to 0.04634688
Phenotype	Pichia_Kudriavzevii_1541	-0.0250888	.00638293	0.08131335	Decreased	-0.0281781 to 0.0363681
Phenotype	Pichia_Kudriavzevii_1540	-0.0309761	.00694138	0.08131335	Decreased	-0.0348236 to 0.04502356
Phenotype	Saccharomyces_1327	-0.1066187	.0088887	0.09110916	Decreased	-0.1204243 to 0.15702429
Phenotype	Aspergillus_flavus_1703	-0.2422061	.02612342	0.22469852	Decreased	-0.2799263 to 0.37992633
Phenotype	Aspergillus_flavus_1631	-0.2258779	.02740226	0.22469852	Decreased	-0.2615235 to 0.35602348
Phenotype	Saccharomycetales_Uncultured_716	-0.1691154	.05345843	0.26432651	Decreased	-0.1853351 to 0.22833514
Phenotype	Saccharomycetales_Uncultured_717	-0.1835183	.04168681	0.26766654	Decreased	-0.1899307 to 0.20693072
Phenotype	Leotiomycetes_Uncultured_1500	-0.0163321	.04646276	0.26766654	Decreased	-0.0223673 to 0.03836733

Direction of the correlation coefficient is in relation to the control group. *P* values are corrected for false discovery rate. Boldface represents the same OTUs identified as significant by using DESeq2 analysis (see Table E3).