Crystal structure and hydrogen bonding in the water-stabilized proton-transfer salt brucinium 4-aminophenylarsonate tetrahydrate

Graham Smith* and Urs D. Wermuth

Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia. *Correspondence e-mail: g.smith@qut.edu.au

In the structure of the brucinium salt of 4-aminophenylarsonic acid (p-arsanilic acid), systematically 2,3-dimethoxy-10-oxostyrchnidinium 4-aminophenylarsonate tetrahydrate, \(\text{C}_{23}\text{H}_{27}\text{N}_2\text{O}_4\)\[\text{As(C}_6\text{H}_7\text{N})\text{O}_2\text{(OH)}\]•4\(\text{H}_2\text{O}\), the brucinium cations form the characteristic undulating and overlapping head-to-tail layered brucine substructures packed along [010]. The arsanilate anions and the water molecules of solvation are accommodated between the layers and are linked to them through a primary cation N—H⋯O(anion) hydrogen bond, as well as through water O—H⋯O hydrogen bonds to brucinium and arsanilate ions as well as bridging water O-atom acceptors, giving an overall three-dimensional network structure.

1. Chemical context

The \textit{Strychnos} alkaloid base brucine, (2,3-dimethoxystrychnidin-10-one; BRU) has been extensively employed as a resolving agent for chiral organic compounds (Wilen, 1972). With chiral acids, the separation is achieved through proton-transfer to N19 of the styrchnidine cage (\(pK_{a2} = 11.7\); O’Neil, 2001), followed by separation of the resultant crystalline salt products by fractional crystallization. Similar effects are achieved with the essentially identical \textit{Strychnos} alkaloid strychnine but separation efficiency favours brucine. This is probably because of the formation in the crystal of characteristic brucinium host substructures comprising head-to-tail undulating layers of brucine molecules or cations which accommodate selectively the hydrogen-bonded guest molecules in the crystal structure. A characteristic of the substructure is the repeat interval in the layer of ca 12.3 Å along a 21 screw axis in the crystal, which is reflected in the unit-cell dimension, with brucine being predominantly in the monoclinic space group \(P2_1\) or the orthorhombic space group \(P2_12_12_1\) (Smith, Wermuth & White, 2006; Smith, Wermuth, Young & White, 2006).
This example of molecular recognition was described in the early structure determinations of brucinium benzoyl-dalaninate (Gould & Walkinshaw, 1984) and in the structures of the pseudopolymorphic brucinium solvates, brucine–MeOH (1:1) and brucine–EtOH–water (1/1/2) (Glover et al., 1985). The guest molecules are accommodated interstitially within the layers and are commonly accompanied by compatible polar solvent molecules, usually generating high-dimensional hydrogen-bonded crystal structures.

Currently, a large number of structures of brucinium compounds with chiral organic molecules, including both acids and non-acids are known, but in addition those with achiral compounds also feature. Of interest to us have been the structures of brucinium proton-transfer salts with largely simple organic acids, prepared under aqueous alcoholic conditions, the crystalline products being stabilized by solvent molecules. Water-stabilized achiral carboxylate examples include BRU⁺ hydrogen fumarate⁻·1,5H₂O (Dijksma, Gould, Parsons & Walkinshaw, 1998), BRU⁺ dihydrogen citrate⁻·3H₂O (Smith, Wermuth & White, 2005) and BRU⁺ benzoate⁻·3H₂O (Białońska & Ciunik, 2006b).

Other organic acids besides carboxylates may be included among the set but fewer structural examples are known, e.g. sulfonates (BRU⁺ toluene-4-sulfonate⁻·3H₂O; Smith, Wermuth, Healy et al., 2005). However, no brucinium arsonate structures are known, so that the reaction of brucine with 4-aminophenylarsonic acid (p-arsanilic acid) in 2-propanol/water was carried out, resulting in the formation of the crystalline hydrated title salt, C₂₀H₂₁N₂AsO₄⁻·C₆H₄AsNO₃⁻·4H₂O, and the structure is reported herein. The acid has biological significance as an anti-helminth in veterinary applications (Thomas, 1905; Steverding, 2010) and as a monohydrated sodium salt (atroxyl) which had early usage as an anti-syphilitic (Ehrlich & Bertheim, 1907; Bosch & Rosich, 2008). Simple p-arsanilate salt structures are not common in the Cambridge Structural Database (Groom et al., 2016), with only the NH₄⁺ and K⁺ salts (Smith & Wermuth, 2014) and the guanidinium salts (Smith & Wermuth, 2010; Latham et al., 2011) being known.

2. Structural commentary
The asymmetric unit of the title salt comprises a brucinium cation, a p-arsanilate anion A and four water molecules of solvation, (O1W–O4W), all inter-associated through hydrogen bonds (Fig. 1). Protonation has occurred as expected at N₁⁹ of the brucine cage, the invoked Peerdeman (1956) absolute overall Cahn–Ingold stereochemistry of the cation as C₇(−Ⅹ)₁₅C₂₀—H₂₀₁

Figure 1
Molecular configuration and atom-numbering scheme for the brucinium cation, p-arsanilate anion A and the four water molecules of solvation in the asymmetric unit of the title salt. Inter-species hydrogen bonds are shown as dashed lines. Non-H atoms are shown as 40% probability displacement ellipsoids.

Table 1
Hydrogen-bond geometry (Å, °).

D—H···A	D—H	H···A	D···A	D—H···A
N₁⁹—H₁¹⁹—O₁₂A	0.91 (4)	1.72 (4)	2.610 (3)	168 (4)
N₄₄—H₄₄A—O₄₄W	0.89 (3)	2.46 (4)	3.291 (5)	155 (4)
N₄₄—H₄₄A—O₃₃W	0.90 (3)	2.25 (3)	3.137 (6)	169 (4)
O₁₃A—H₁₃₆A—O₁₁₄W	0.90 (4)	1.67 (4)	2.546 (3)	165 (4)
O₁₆W—H₁₆₁W—O₂₅	0.90 (4)	1.95 (4)	2.843 (4)	175 (3)
O₁₆W—H₁₆₂W—O₂₅W	0.90 (3)	1.87 (4)	2.760 (5)	168 (4)
O₂₆W—H₂₆₁W—O₁₂A	0.90 (3)	2.11 (3)	2.945 (4)	153 (4)
O₂₆W—H₂₆₂W—O₁₁₄W	0.89 (3)	2.07 (4)	2.915 (4)	158 (5)
O₃₆W—H₃₆₁W—O₂₅	0.91 (4)	2.06 (4)	2.922 (4)	159 (3)
O₃₆W—H₃₆₂W—O₄₄W	0.91 (3)	1.91 (3)	2.791 (4)	164 (3)
O₄₄W—H₄₄₁W—O₁₁₄W	0.90 (4)	1.88 (4)	2.770 (5)	172 (5)
O₄₄W—H₄₄₂W—O₁₂A	0.89 (4)	1.91 (4)	2.802 (4)	174 (5)
C₁₄—H₁₄—O₃₃W	1.00	2.52	3.363 (4)	142
C₁₅—H₁₅₁W—O₁₁₄W	0.99	2.60	3.561 (4)	165
C₁₈—H₁₈₁W—O₂₅	0.99	2.58	3.422 (5)	143
C₂₀—H₂₀₁—O₁₁₄W	0.99	2.41	3.388 (4)	170
C₂₀—H₂₀₂—O₁₃₄W	0.99	2.43	3.229 (4)	137

Symmetry codes: (i) x−½, y+½, z−½; (ii) x+½, y+½, z+½; (iii) −x, y−½, z−½; (iv) x+½, y+½, z+½; (v) −x+½, y−½, z+½; (vi) x+½, −y+½, −z+½; (vii) −x+1, y, −z+½; (viii) −x+1, y, −z−½.
3. Supramolecular features

The brucinium cations form into the previously described undulating sheet–host substructures which are considered to be the reason for the molecular recognition peculiar to brucine (Gould & Walkinshaw, 1984; Gould et al., 1985; Dijksma, Gould, Parsons & Walkinshaw, 1998; Dijksma, Gould, Parsons, Taylor & Walkinshaw, 1998; Oshikawa et al., 2002; Białońska & Ciunik, 2004). In the title salt, these substructures extend along the b-axis direction, with the previously described 2_1 propagation of the brucinium cations along the ca 12.3 Å axis (Fig. 2). The p-arsanilate anions and the water molecules occupy the interstitial spaces in the structure. The protonated N19 atom of the cation gives a single hydrogen-bonding interaction with a p-arsanilate oxygen acceptor (O12A) while two of the solvent water molecules (O1W and O3W) form hydrogen bonds with the...

Figure 2
The undulating brucinium sheet substructures in the unit cell of the title salt, less the inter-sheet anion and water molecules, viewed down a. All H atoms except that of the protonated N19 atom have also been removed.

Figure 3
A perspective view of the packing in the unit cell, viewed along the approximate a-axial direction, showing the associated anions and the water molecules in the interstitial regions of the brucinium layered substructures, with hydrogen-bonding interactions shown as dashed lines.
carbonyl O25 atom of the brucinium cation (Table 1). Within the inter-sheet channels, the p-arsanilate anions are linked head-to-head through an O13A—H···O11A bond while both H atoms of the amine group form hydrogen bonds with water molecules O3W and O4W. The water molecules O2W and O4A are further linked to the p-arsanilate O-atom O12A with O2W also linked to O11A. Water molecules O3W and O4W give inter-water hydrogen bonds and together with a number of inter-molecular C—H···O interactions (Table 1) result in an overall three-dimensional network structure (Fig. 3).

4. Database survey

Interstitial water molecules are present in the structures of the brucine pseudo-polymorphic structures, e.g. the common tetrahydrate form and the 5.2 hydrate (Smith et al., 2006a) and the dihydrate (Smith et al., 2007), as well as the mixed solvates BRU–EtOH–H2O (1/1/2) (Glover et al., 1985) and BRU–i-PrOH–H2O (1/1/2) (Białońska & Ciunik, 2004). A large number of water-stabilized brucinium salts of acids are known: with the inorganic sulfate (BRU)2SO4(7H2O) (Białońska & Ciunik, 2005) and most commonly with aromatic carboxylates, e.g. the benzoate (a trihydrate; Białońska & Ciunik, 2006b); the 4-nitrobenzoate (a dihydrate; Białońska & Ciunik, 2007); the 3,5-dinitrobenzoate (a dihydrate; Białońska & Ciunik, 2006a); the 3,5-dinitrosalicylate (a monohydrate; Smith et al., 2006a); the phthalate (a monohydrate; Krishnan, Gayathri, Sivakumar, Gunasekaran & Anbalagen, 2013); the hydrogen isophthalate (a trihydrate; Smith, Wermuth, Young & White, 2006); the hydrogen 3-nitrophthalate (a dihydrate; Smith, Wermuth, Young & Healy, 2005) and the picraminobenzoate (a monohydrate; Smith & Wermuth, 2011).

Aliphatic carboxylate examples are: with hydrogen oxalate (a dihydrate; Krishnan, Gayathri, Sivakumar, Chakkaravathi & Anbalagen, 2013); with hydrogen fumarate (a sesquihydrate; Dijksma, Gould, Parsons & Walkinshaw, 1998); with hydrogen (S)-malate (a pentahydrate; Smith, Wermuth & White, 2006); with dihydrogen citrate (a trihydrate; Smith, Wermuth & White, 2005); with L-glycerate (a 4.75 hydrate; Białońska et al., 2005) and with hydrogen cis-cyclohexane-1,2-dicarboxylate (a dihydrate; Smith et al., 2012). Some sulfonate salts are also known, e.g. with toluene-4-sulfonate (a trihydrate; Smith, Wermuth, Healy et al., 2005); with 3-carboxy-4-hydroxybenzenesulfonate (a pentahydrate; Smith et al., 2006b) and with biphenyl-4,4’-disulfonate (a hexahydrate; Smith et al., 2010).

5. Synthesis and crystallization

The title compound was synthesized by heating together under reflux for 10 min, 1 mmol quantities of brucine tetrahydrate and 4-aminophenylarsonic acid in 50 mL of 80% 2-propanol/water. After concentration to ca 30 mL, partial room-temperature evaporation of the hot-filtered solution gave thin colourless crystal plates of the title compound from which a specimen was cleaved for the X-ray analysis.

Table 2

Property	Value
Crystal data	(C9H25N2O4)[As(C6H7NO3(OH)]4H2O
Chemical formula	(C9H25N2O4)[As(C6H7NO3(OH)]4H2O
M_w	683.58
Crystal system, space group	Orthorhombic, P2₁2₁2₁
Temperature (K)	298.15
a, b, c (Å)	7.6553 (3), 12.3238 (5), 31.960 (2)
V (Å³)	3015.2 (3)
Radiation type	Mo Kα
μ (mm⁻¹)	1.19
Crystal size (mm)	0.36 × 0.34 × 0.10

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms potentially involved in hydrogen-bonding interactions were located by difference methods but their positional parameters were constrained in the refinement with N—H and O—H = 0.90 Å, and with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O). Other H atoms were included in the refinement at calculated positions [C—H(aromatic) = 0.95 Å and C—H (aliphatic) = 0.97–1.00 Å] and treated as riding with H atoms treated by a mixture of independent and constrained refinement

Acknowledgements

The authors acknowledge support from the Science and Engineering Faculty, Queensland University of Technology.

References

Altomare, A., Cascarano, G., Giaconavazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
Białonśka, A. & Ciunik, Z. (2004). *Acta Cryst.* C60, o853–o855.

Białonśka, A. & Ciunik, Z. (2005). *Acta Cryst.* E61, o4222–o4224.

Białonśka, A. & Ciunik, Z. (2006a). *Acta Cryst.* C62, o450–o453.

Białonśka, A. & Ciunik, Z. (2006b). *Acta Cryst.* E62, o5817–o5819.

Białonśka, A. & Ciunik, Z. (2007). *Acta Cryst.* C63, o120–o122.

Białonśka, A., Ciunik, Z., Popek, T. & Lis, T. (2005). *Acta Cryst.* C61, o88–o91.

Bosch, F. & Rosich, L. (2008). *Pharmacology,* 82, 171–179.

Dijksma, F. J. J., Gould, R. O., Parsons, S., Taylor, J. & Walkinshaw, M. D. (1998). *Chem. Commun.* pp. 745–746.

Dijksma, F. J. J., Gould, R. O., Parsons, S. & Walkinshaw, M. D. (1998). *Acta Cryst.* C54, 1948–1951.

Ehrlich, P. & Bertheim, A. (1907). *Berichte,* pp. 3292–3297.

Farrugia, L. J. (2012). *J. Appl. Cryst.* 45, 849–854.

Flack, H. D. (1983). *Acta Cryst.* A39, 876–881.

Glover, S. S. B., Gould, R. O. & Walkinshaw, M. D. (1985). *Acta Cryst.* C41, 990–994.

Gould, R. O., Kelly, R. & Walkinshaw, M. D. (1985). *J. Chem. Soc.* Perkin Trans. 2, pp. 847–852.

Gould, R. O. & Walkinshaw, M. D. (1984). *J. Am. Chem. Soc.* 106, 7840–7842.

Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). *Acta Cryst.* B72, 171–179.

Krishnan, P., Gayathri, K., Sivakumar, N., Chakkavarthi, G. & Anbalagan, G. (2013). *Acta Cryst.* E69, o659.

Krishnan, P., Gayathri, K., Sivakumar, N., Gunasekaran, B. & Anbalagan, G. (2013). *Acta Cryst.* E69, o870.

Latham, K., Downs, J. E., Rix, C. J. & White, J. M. (2011). *J. Mol. Struct.* 987, 74–85.

O'Neil, M. J. (2001). Editor. *The Merck Index,* 13th ed., p. 243. Whitehouse Station, NJ: Merck and Co., Inc.

Oshikawa, T., Pochamroen, S., Takai, N., Ida, N., Takemoto, T. & Yamashita, M. (2002). *Heterocycl. Commun.* 8, 271–274.

Peerdeman, A. F. (1956). *Acta Cryst.* 9, 824.

Rigaku OD (2015). *CrysAlis PRO.* Rigaku Oxford Diffraction Ltd, Yarnton, England.

Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122.

Smith, G. & Wermuth, U. D. (2010). *Acta Cryst.* E66, o1893–o1894.

Smith, G. & Wermuth, U. D. (2011). *Acta Cryst.* C67, o334–o336.

Smith, G. & Wermuth, U. D. (2014). *Acta Cryst.* C70, 738–741.

Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2006a). *Acta Cryst.* C62, o203–o207.

Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2006b). *Aust. J. Chem.* 59, 321–328.

Smith, G., Wermuth, U. D., Healy, P. C., Young, D. J. & White, J. M. (2005). *Acta Cryst.* E61, o2646–o2648.

Smith, G., Wermuth, U. D. & White, J. M. (2005). *Acta Cryst.* C61, o621–o624.

Smith, G., Wermuth, U. D. & White, J. M. (2006). *Acta Cryst.* C62, o353–o357.

Smith, G., Wermuth, U. D. & White, J. M. (2007). *Acta Cryst.* C63, o489–o492.

Smith, G., Wermuth, U. D. & Williams, M. L. (2012). *J. Chem. Crystallogr.* 42, 555–559.

Smith, G., Wermuth, U. D. & Young, D. J. (2010). *J. Chem. Crystallogr.* 40, 520–525.

Smith, G., Wermuth, U. D., Young, D. J. & Healy, P. C. (2005). *Acta Cryst.* E61, o2008–o2011.

Smith, G., Wermuth, U. D., Young, D. J. & White, J. M. (2006). *Acta Cryst.* E62, o1553–o1555.

Spek, A. L. (2009). *Acta Cryst.* D65, 148–155.

Steverding, D. (2010). *Parasites Vectors,* 3, 15.

Thomas, H. W. (1905). *Proc. Roy. Soc. B: Biol. Sci.* 76, 589–591.

Wilen, S. H. (1972). *Tables of Resolving Agents and Optical Resolutions,* edited by E. N. Eliel, pp. 68–71. London: University of Notre Dame.
Crystal structure and hydrogen bonding in the water-stabilized proton-transfer salt brucinium 4-aminophenylarsonate tetrahydrate

Graham Smith and Urs D. Wermuth

Computing details
Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

2,3-Dimethoxy-10-oxostrychnidinium 4-aminophenylarsonate tetrahydrate

Crystal data

\[
(C_{23}H_{27}N_2O_4)[\text{As}(C_6H_7N)O_2(OH)] \cdot 4\text{H}_2\text{O}
\]

\[
M_r = 683.58
\]

Orthorhombic, \(P\overline{2}_12_12_1\)

Hall symbol: \(P\ 2\ ac\ 2ab\)

\(a = 7.6553\ (3)\ \text{Å}\)

\(b = 12.3238\ (5)\ \text{Å}\)

\(c = 31.960\ (2)\ \text{Å}\)

\(V = 3015.2\ (3)\ \text{Å}^3\)

\(Z = 4\)

\(F(000) = 1432\)

\(D_\text{c} = 1.506\ \text{Mg m}^{-3}\)

Mo \(K\alpha\) radiation, \(\lambda = 0.71073\ \text{Å}\)

Cell parameters from 2822 reflections

\(\theta = 3.4-27.9\degree\)

\(\mu = 1.19\ \text{mm}^{-1}\)

\(T = 200\ \text{K}\)

Plate, colourless

\(0.36 \times 0.34 \times 0.10\ \text{mm}\)

Data collection

Oxford Diffraction Gemini-S CCD-detector diffractometer

Radiation source: Enhance (Mo) X-ray source

Graphite monochromator

Detector resolution: 16.077 pixels mm\(^{-1}\)

\(\omega\) scans

Absorption correction: multi-scan

\(\text{(CrysAlis PRO; Rigaku OD, 2015)}\)

\(T\min = 0.811, \ T\max = 0.980\)

Refinement

Refinement on \(F^2\)

Least-squares matrix: full

\(R[F^2 > 2\sigma(F^2)] = 0.048\)

\(wR(F^2) = 0.096\)

\(S = 1.05\)

6980 reflections

433 parameters

14 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement
$w = 1/\sigma^2(F_o^2) + (0.0414P^2 + 0.2011P)$
where $P = (F_o^2 + 2F_c^2)/3$

$\Delta/\sigma_{max} = 0.001$
$\Delta\rho_{max} = 0.55 \text{ e} \AA^{-3}$

$\Delta\rho_{min} = -0.46 \text{ e} \AA^{-3}$

Absolute structure: Flack (1983), 3672 Friedel pairs

Absolute structure parameter: $-0.005 (9)$

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2, conventional R-factors R are based on F, with F set to zero for negative F^2. The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

| Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^2) |
|---|---|---|---|---|
| O2 | 0.2664 (3) | 0.56076 (19) | 0.24172 (7) | 0.0288 (8) |
| O3 | 0.2324 (3) | 0.44912 (19) | 0.17363 (7) | 0.0251 (7) |
| O24 | 0.2010 (3) | $-0.13571 (17)$ | 0.32202 (7) | 0.0224 (7) |
| O25 | 0.2193 (4) | 0.0496 (2) | 0.19539 (7) | 0.0336 (9) |
| N9 | 0.1591 (3) | 0.1193 (2) | 0.25929 (8) | 0.0192 (7) |
| N19 | 0.1326 (4) | 0.2044 (2) | 0.39973 (8) | 0.0220 (8) |
| C1 | 0.2107 (4) | 0.4025 (3) | 0.28549 (10) | 0.0220 (10) |
| C2 | 0.2316 (4) | 0.4525 (3) | 0.24709 (10) | 0.0206 (10) |
| C3 | 0.2176 (4) | 0.3914 (3) | 0.21006 (10) | 0.0200 (9) |
| C4 | 0.1912 (4) | 0.2806 (2) | 0.21125 (9) | 0.0192 (9) |
| C5 | 0.1762 (5) | 0.2319 (2) | 0.25023 (10) | 0.0186 (9) |
| C6 | 0.1822 (5) | 0.2909 (3) | 0.28690 (9) | 0.0200 (9) |
| C7 | 0.1402 (4) | 0.2196 (3) | 0.32382 (10) | 0.0194 (9) |
| C8 | 0.1639 (4) | 0.1035 (3) | 0.30544 (9) | 0.0178 (9) |
| C10 | 0.2084 (5) | 0.0380 (3) | 0.23349 (10) | 0.0224 (10) |
| C11 | 0.2482 (5) | $-0.0701 (3)$ | 0.25362 (11) | 0.0244 (11) |
| C12 | 0.3195 (5) | $-0.0703 (3)$ | 0.29876 (10) | 0.0216 (10) |
| C13 | 0.3369 (4) | 0.0468 (3) | 0.31477 (9) | 0.0173 (9) |
| C14 | 0.3946 (4) | 0.0634 (3) | 0.36027 (10) | 0.0208 (10) |
| C15 | 0.4243 (4) | 0.1858 (3) | 0.36540 (11) | 0.0217 (10) |
| C16 | 0.2486 (5) | 0.2415 (3) | 0.36351 (10) | 0.0215 (10) |
| C17 | $-0.0479 (4)$ | 0.2361 (3) | 0.33974 (11) | 0.0236 (11) |
| C18 | $-0.0461 (4)$ | 0.1812 (3) | 0.38190 (10) | 0.0236 (10) |
| C20 | 0.2066 (5) | 0.1088 (3) | 0.42293 (9) | 0.0234 (10) |
| C21 | 0.2646 (4) | 0.0242 (3) | 0.39246 (10) | 0.0221 (10) |
| C22 | 0.2076 (5) | $-0.0761 (3)$ | 0.39424 (10) | 0.0235 (10) |
| C23 | 0.2581 (5) | $-0.1618 (3)$ | 0.36323 (11) | 0.0269 (11) |
| C25 | 0.2845 (6) | 0.6248 (3) | 0.27850 (12) | 0.0400 (14) |
| C26 | 0.2222 (4) | 0.3880 (3) | 0.13581 (10) | 0.0263 (10) |
| As1A | 0.18853 (4) | 0.38087 (2) | 0.50015 (1) | 0.0194 (1) |
| O11A | 0.0706 (3) | 0.2967 (2) | 0.52906 (7) | 0.0288 (8) |
| O12A | 0.1351 (3) | 0.37219 (19) | 0.44956 (7) | 0.0256 (7) |
Atom	x	y	z	Ueq
O13A	0.4046 (3)	0.3544 (2)	0.50798 (9)	0.0361 (9)
N4A	0.1284 (6)	0.8469 (3)	0.55939 (14)	0.0526 (15)
C1A	0.1723 (5)	0.5265 (2)	0.51885 (9)	0.0213 (9)
C2A	0.0081 (5)	0.5733 (3)	0.52485 (11)	0.0277 (11)
C3A	-0.0043 (6)	0.6792 (3)	0.53827 (11)	0.0320 (12)
C4A	0.1423 (6)	0.7411 (3)	0.54628 (12)	0.0314 (13)
C5A	0.3047 (6)	0.6939 (3)	0.53962 (11)	0.0324 (11)
C6A	0.3193 (5)	0.5885 (3)	0.52554 (10)	0.0271 (10)
O1W	0.4311 (4)	-0.0600 (3)	0.13578 (10)	0.0461 (11)
O2W	-0.2441 (4)	0.3881 (3)	0.43528 (11)	0.0521 (11)
O3W	0.4514 (4)	0.8770 (3)	0.61869 (11)	0.0587 (12)
O4W	0.2795 (4)	0.5374 (3)	0.40023 (10)	0.0511 (11)
H1	0.21570	0.44380	0.31060	0.0260*
H4	0.18370	0.23920	0.18630	0.0230*
H8	0.06440	0.05630	0.31430	0.0210*
H12	0.43720	-0.10550	0.29900	0.0260*
H13	0.42710	0.08270	0.29690	0.0210*
H14	0.50800	0.02480	0.36480	0.0250*
H16	0.26740	0.32150	0.36610	0.0260*
H19	0.122 (6)	0.258 (3)	0.4190 (11)	0.0620*
H22	0.13050	-0.09540	0.41630	0.0280*
H111	0.33410	-0.10810	0.23570	0.0290*
H112	0.13960	-0.11370	0.25330	0.0290*
H151	0.48150	0.20080	0.39260	0.0260*
H152	0.50090	0.21300	0.34270	0.0260*
H171	-0.07610	0.31420	0.34240	0.0280*
H172	-0.13360	0.20150	0.32080	0.0280*
H181	-0.06470	0.10210	0.37890	0.0280*
H182	-0.13850	0.21120	0.40020	0.0280*
H201	0.30700	0.13230	0.44020	0.0280*
H202	0.11670	0.07810	0.44180	0.0280*
H231	0.38680	-0.17010	0.36320	0.0320*
H232	0.20630	-0.23190	0.37180	0.0320*
H251	0.30870	0.70020	0.27070	0.0600*
H252	0.38120	0.59660	0.29540	0.0600*
H253	0.17600	0.62160	0.29470	0.0600*
H261	0.23380	0.43690	0.11180	0.0390*
H262	0.10930	0.35070	0.13440	0.0390*
H263	0.31660	0.33430	0.13520	0.0390*
H2A	-0.09470	0.53230	0.51970	0.0330*
H3A	-0.11650	0.71040	0.54210	0.0390*
H5A	0.40740	0.73490	0.54490	0.0390*
H6A	0.43160	0.55850	0.52040	0.0330*
H13A	0.445 (6)	0.298 (3)	0.4931 (13)	0.0770*
H41A	0.022 (3)	0.876 (4)	0.5617 (15)	0.0620*
H42A	0.227 (3)	0.861 (4)	0.5735 (13)	0.0620*
H11W	0.360 (5)	-0.029 (4)	0.1548 (10)	0.0770*
H12W	0.358 (5)	-0.071 (4)	0.1141 (10)	0.0770*
Atomic displacement parameters (Å²)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O2	0.0412 (17)	0.0165 (12)	0.0288 (13)	−0.0036 (11)	0.0025 (12)	−0.0002 (10)
O3	0.0292 (13)	0.0255 (13)	0.0207 (12)	−0.0021 (11)	0.0027 (10)	0.0008 (10)
O24	0.0244 (12)	0.0185 (11)	0.0243 (11)	−0.0011 (11)	−0.0001 (11)	0.0000 (9)
O25	0.0533 (19)	0.0281 (14)	0.0195 (12)	0.0026 (14)	0.0064 (13)	0.0055 (10)
N9	0.0226 (14)	0.0182 (12)	0.0168 (12)	0.0001 (13)	−0.0003 (11)	−0.0035 (11)
N19	0.0261 (15)	0.0230 (15)	0.0169 (14)	−0.0009 (12)	0.0011 (12)	−0.0052 (12)
C1	0.0251 (19)	0.0207 (17)	0.0203 (16)	0.0005 (14)	−0.0011 (15)	−0.0087 (13)
C2	0.0181 (18)	0.0173 (16)	0.0263 (18)	0.0022 (13)	0.0011 (15)	0.0004 (14)
C3	0.0169 (17)	0.0247 (17)	0.0183 (15)	−0.0004 (15)	0.0021 (13)	0.0018 (14)
C4	0.0200 (16)	0.0229 (16)	0.0148 (14)	−0.0001 (15)	0.0007 (15)	−0.0046 (12)
C5	0.0196 (17)	0.0181 (15)	0.0181 (15)	0.0014 (14)	−0.0008 (15)	−0.0012 (12)
C6	0.0196 (16)	0.0213 (15)	0.0192 (15)	0.0022 (15)	0.0023 (15)	0.0000 (13)
C7	0.0228 (17)	0.0176 (16)	0.0177 (16)	0.0017 (13)	0.0007 (14)	−0.0031 (13)
C8	0.0193 (16)	0.0188 (16)	0.0153 (14)	−0.0002 (14)	0.0004 (13)	−0.0039 (12)
C10	0.0214 (18)	0.0235 (17)	0.0224 (17)	−0.0025 (16)	0.0005 (16)	−0.0059 (14)
C11	0.030 (2)	0.0184 (17)	0.0248 (18)	0.0021 (14)	−0.0014 (16)	−0.0066 (14)
C12	0.0204 (17)	0.0190 (16)	0.0255 (17)	0.0035 (16)	0.0024 (16)	−0.0047 (13)
C13	0.0137 (16)	0.0175 (15)	0.0208 (16)	−0.0005 (13)	0.0031 (13)	−0.0038 (12)
C14	0.0164 (17)	0.0248 (18)	0.0211 (17)	0.0020 (14)	−0.0029 (14)	−0.0028 (14)
C15	0.0210 (18)	0.0250 (18)	0.0192 (17)	−0.0039 (15)	−0.0021 (15)	−0.0058 (15)
C16	0.0291 (18)	0.0173 (16)	0.0182 (16)	−0.0043 (13)	0.0024 (15)	−0.0043 (13)
C17	0.0249 (19)	0.0242 (19)	0.0216 (17)	0.0053 (15)	0.0030 (15)	−0.0054 (14)
C18	0.0186 (17)	0.0283 (19)	0.0239 (18)	0.0018 (15)	0.0061 (15)	−0.0032 (15)
C20	0.0289 (18)	0.0239 (17)	0.0175 (15)	−0.0004 (17)	−0.0029 (15)	0.0001 (14)
C21	0.0204 (17)	0.0257 (18)	0.0201 (16)	0.0025 (14)	−0.0065 (14)	0.0003 (14)
C22	0.0229 (18)	0.0272 (17)	0.0205 (16)	0.0019 (15)	−0.0026 (16)	0.0032 (13)
C23	0.0284 (19)	0.0210 (17)	0.0314 (19)	−0.0009 (14)	−0.0039 (16)	0.0031 (15)
C25	0.062 (3)	0.0220 (19)	0.036 (2)	−0.004 (2)	−0.002 (2)	−0.0032 (17)
C26	0.0268 (19)	0.0317 (19)	0.0204 (15)	0.0005 (17)	−0.0019 (14)	0.0030 (16)
As1A	0.0219 (2)	0.0175 (1)	0.0187 (1)	−0.0005 (1)	0.0006 (2)	−0.0038 (2)
O11A	0.0363 (15)	0.0273 (13)	0.0229 (12)	−0.0063 (12)	0.0047 (11)	−0.0041 (11)
O12A	0.0368 (14)	0.0204 (12)	0.0197 (11)	0.0008 (11)	0.0016 (10)	−0.0054 (10)
O13A	0.0239 (12)	0.0339 (14)	0.0505 (19)	0.0038 (11)	−0.0055 (13)	−0.0178 (13)
N4A	0.060 (3)	0.0279 (19)	0.070 (3)	0.0095 (18)	−0.011 (2)	−0.0174 (18)
C1A	0.0328 (19)	0.0171 (15)	0.0139 (15)	−0.0015 (15)	0.0001 (16)	−0.0007 (12)
C2A	0.0270 (19)	0.0250 (19)	0.031 (2)	0.0009 (15)	0.0045 (17)	−0.0009 (16)
C3A	0.042 (2)	0.026 (2)	0.028 (2)	0.0090 (17)	0.0073 (18)	0.0008 (16)
C4A	0.048 (3)	0.0208 (18)	0.0254 (18)	0.0027 (17)	−0.0018 (18)	0.0023 (15)
Geometric parameters (Å, °)

Bond	Length (Å)	Angle (°)
As1A—O12A	1.671 (2)	
As1A—O13A	1.704 (2)	
As1A—C1A	1.896 (3)	
As1A—O11A	1.657 (2)	
O2—C2	1.371 (4)	
O2—C25	1.423 (4)	
O3—C26	1.426 (4)	
O3—C3	1.369 (4)	
O24—C23	1.425 (4)	
O24—C12	1.423 (4)	
O25—C10	1.229 (4)	
O13A—H13A	0.90 (4)	
O1W—H12W	0.90 (3)	
O1W—H11W	0.90 (4)	
O2W—H22W	0.89 (3)	
O2W—H21W	0.90 (3)	
O3W—H32W	0.91 (3)	
N9—C5	1.424 (4)	
N9—C10	1.351 (4)	
N9—C8	1.488 (4)	
N19—C16	1.529 (4)	
N19—C18	1.509 (4)	
N19—C20	1.503 (4)	
O4W—H42W	0.89 (4)	
O4W—H41W	0.90 (4)	
N19—H19	0.91 (4)	
N4A—C4A	1.374 (5)	
N4A—H41A	0.89 (3)	
N4A—H42A	0.90 (3)	
C1—C2	1.383 (5)	
C1—C6	1.393 (5)	
C2—C3	1.407 (5)	
C3—C4	1.381 (4)	
C4—C5	1.388 (4)	
C5—C6	1.380 (4)	
C6—C7	1.506 (5)	
C7—C17	1.541 (4)	
C7—C16	1.540 (5)	

Acta Cryst. (2016). [E72], 751-755
C7—C8 1.557 (5) C5A—C6A 1.379 (5)
C8—C13 1.527 (5) C2A—H2A 0.9500
C10—C11 1.511 (5) C3A—H3A 0.9500
C11—C12 1.543 (5) C5A—H5A 0.9500
C12—C13 1.537 (5) C6A—H6A 0.9500

O12A—As1A—C1A 110.46 (12) N9—C8—H8 110.00
O13A—As1A—C1A 101.45 (14) C13—C8—H8 110.00
O12A—As1A—O13A 111.55 (13) C12—C11—H11 108.00
O11A—As1A—C1A 112.41 (13) C10—C11—H11 108.00
O11A—As1A—O12A 111.48 (11) C10—C11—H112 108.00
O11A—As1A—O13A 109.09 (12) C11—C12—H12 109.00
C2—O2—C25 117.1 (3) H111—C11—H112 107.00
C3—O3—C26 116.2 (3) C12—C11—H112 108.00
C12—O24—C23 114.5 (3) O24—C12—H12 109.00
As1A—O13A—H13A 114 (3) C13—C12—H12 109.00
H11W—O1W—H12W 102 (3) C11—C12—H12 109.00
H21W—O2W—H22W 108 (5) C8—C13—H13 107.00
H31W—O3W—H32W 100 (4) C12—C13—H13 107.00
C8—N9—C10 120.1 (3) C14—C13—H13 106.00
C5—N9—C10 125.0 (3) C15—C14—H14 109.00
C5—N9—C8 109.1 (2) C21—C14—H14 109.00
C16—N19—C18 107.3 (2) C13—C14—H14 109.00
C16—N19—C20 112.9 (3) H151—C15—H152 109.00
C18—N19—C20 112.3 (3) C16—C15—H151 110.00
H41W—O4W—H42W 104 (4) C16—C15—H152 110.00
C20—N19—H19 106 (2) C14—C15—H151 110.00
C18—N19—H19 108 (3) C14—C15—H152 110.00
C16—N19—H19 110 (3) C15—N16—H16 108.00
H41A—N4A—H42A 130 (4) C15—C16—H16 108.00
C4A—N4A—H42A 106 (3) C7—C16—H16 109.00
C4A—N4A—H41A 119 (3) C7—C17—H171 111.00
C2—C1—C6 119.1 (3) C7—C17—H172 111.00
O2—C2—C1 124.6 (3) C18—C17—H171 111.00
O2—C2—C3 115.5 (3) C18—C17—H172 111.00
C1—C2—C3 120.0 (3) H171—C17—H172 109.00
O3—C3—C2 115.5 (3) H181—C18—H182 109.00
O3—C3—C4 123.3 (3) C17—C18—H182 111.00
C2—C3—C4 121.2 (3) N19—C18—H182 111.00
C3—C4—C5 117.7 (3) C17—C18—H181 111.00
C4—C5—C6 122.1 (3) N19—C18—H181 111.00
N9—C5—C6 127.7 (3) C21—C20—H201 110.00
N9—C5—C4 110.1 (3) N19—C20—H202 110.00
C5—C6—C7 110.5 (3) H201—C20—H202 108.00
C1—C6—C7 129.4 (3) N19—C20—H201 110.00
C1—C6—C5 119.9 (3) C21—C20—H202 110.00
C6—C7—C8 102.5 (3) C23—C22—H22 118.00
C16—C7—C17 102.0 (3) C21—C22—H22 118.00
Bond/Angle	Value 1	Value 2	Value 3
C6—C7—C17	112.4 (3)	O24—C23—H232	109.00
C8—C7—C17	110.8 (3)	O24—C23—H231	109.00
C6—C7—C16	115.4 (3)	H231—C23—H232	108.00
C8—C7—C16	114.1 (3)	C22—C23—H232	109.00
C7—C8—C13	116.6 (3)	C22—C23—H231	109.00
N9—C8—C7	104.5 (3)	H251—C25—H253	109.00
N9—C8—C13	106.0 (2)	H252—C25—H253	110.00
O25—C10—C11	120.7 (3)	H251—C25—H252	109.00
O25—C10—N9	122.5 (3)	O2—C25—H253	109.00
N9—C10—C11	116.8 (3)	O2—C25—H251	110.00
C10—C11—C12	118.1 (3)	O2—C25—H252	109.00
O24—C12—C11	105.3 (3)	O3—C26—H261	110.00
O24—C12—C13	114.4 (3)	O3—C26—H262	109.00
C8—C13—C12	106.8 (3)	O3—C26—H263	109.00
C8—C13—C14	112.0 (3)	O3—C26—H263	109.00
C12—C13—C14	117.8 (3)	O3—C26—H263	109.00
C11—C12—C13	109.9 (3)	O3—C26—H263	109.00
C8—C13—C12	106.8 (3)	O3—C26—H263	109.00
C8—C13—C14	112.0 (3)	O3—C26—H263	109.00
C12—C13—C14	117.8 (3)	O3—C26—H263	109.00
C13—C14—C15	106.0 (3)	O3—C26—H263	109.00
C15—C14—C21	109.8 (3)	As1A—C1A—C2A	119.6 (3)
C13—C14—C21	114.4 (3)	As1A—C1A—C6A	121.4 (3)
C14—C15—C16	108.1 (3)	As1A—C1A—C2A	119.8 (4)
C7—C16—C15	115.7 (3)	As1A—C1A—C6A	121.7 (4)
N19—C16—C7	105.0 (3)	N4A—C4A—C5A	120.9 (4)
N19—C16—C15	110.5 (3)	N4A—C4A—C3A	121.2 (4)
C7—C17—C18	103.1 (3)	C3A—C4A—C5A	117.9 (4)
N19—C18—C17	105.1 (3)	C4A—C5A—C6A	121.1 (4)
N19—C20—C21	109.7 (2)	C1A—C6A—C5A	120.5 (4)
C14—C21—C20	114.6 (3)	C1A—C6A—C5A	120.00
C14—C21—C22	123.4 (3)	C1A—C6A—H2A	120.00
C20—C21—C22	122.0 (3)	C1A—C6A—H2A	120.00
C21—C22—C23	123.3 (3)	C1A—C6A—H2A	120.00
O24—C23—C22	111.9 (3)	C6A—C5A—H5A	119.00
C6—C1—H1	120.00	C4A—C5A—H5A	119.00
C2—C1—H1	120.00	C1A—C6A—H6A	120.00
C5—C4—H4	121.00	C5A—C6A—H6A	120.00
C3—C4—H4	121.00	C5A—C6A—H6A	120.00
Bond/Distance	Value (°/Å)		
---------------	------------		
C12—O24—C23—C22	87.0 (4)		
C23—O24—C12—C11	170.0 (3)		
C8—N9—C5—C6	3.2 (4)		
C8—N9—C5—C4	174.7 (3)		
C5—N9—C10—O25	-24.5 (5)		
C10—N9—C5—C4	22.1 (6)		
C10—N9—C5—C6	-155.9 (3)		
C5—N9—C8—C7	13.4 (3)		
C5—N9—C8—C13	-110.4 (3)		
C10—N9—C8—C7	167.6 (3)		
C10—N9—C8—C13	43.9 (4)		
C8—N9—C10—O25	-174.4 (3)		
C8—N9—C10—C11	6.3 (5)		
C5—N9—C10—C11	156.3 (3)		
C20—N19—C16—C15	-10.7 (4)		
C16—N19—C18—C17	-16.7 (3)		
C18—N19—C16—C7	-9.6 (3)		
C18—N19—C16—C15	-134.9 (3)		
C20—N19—C16—C7	114.7 (3)		
C18—N19—C20—C21	74.2 (3)		
C20—N19—C18—C17	-141.3 (3)		
C16—N19—C20—C21	-47.3 (4)		
C2—C1—C6—C7	-174.0 (3)		
C6—C1—C2—O2	-177.6 (3)		
C6—C1—C2—C3	2.3 (5)		
C2—C1—C6—C5	0.4 (5)		
C1—C2—C3—C4	-3.1 (5)		
O2—C2—C3—O3	-3.0 (4)		
O2—C2—C3—C4	176.9 (3)		
C1—C2—C3—C4	177.1 (3)		
O3—C3—C4—C5	-179.2 (3)		
C2—C3—C4—C5	1.0 (5)		
C3—C4—C5—N9	-176.0 (3)		
C3—C4—C5—C6	1.8 (5)		
N9—C5—C6—C7	-9.0 (4)		
N9—C5—C6—C1	175.6 (3)		
C4—C5—C6—C1	-2.5 (6)		
C4—C5—C6—C7	172.9 (3)		
C5—C6—C7—C16	141.2 (3)		
C1—C6—C7—C8	-168.6 (4)		
C1—C6—C7—C16	-44.0 (5)		
C1—C6—C7—C17	72.5 (5)		
C5—C6—C7—C17	16.6 (4)		
C5—C6—C7—C17	-102.4 (4)		

Acta Cryst. (2016). E72, 751-755
Hydrogen-bond geometry (Å, º)

D—H···A	D—H	H···A	D···A	D—H···A
N19—H19···O12A	0.91 (4)	1.72 (4)	2.610 (3)	168 (4)
N4A—H41A···O4W	0.89 (3)	2.46 (4)	3.291 (5)	155 (4)
N4A—H42A···O3W	0.90 (3)	2.25 (3)	3.137 (6)	169 (4)
O13A—H13A···O11A	0.90 (4)	1.67 (4)	2.546 (3)	165 (4)
O1W—H11W···O25	0.90 (4)	1.95 (4)	2.843 (4)	175 (3)
O1W—H12W···O2W	0.90 (3)	1.87 (4)	2.760 (5)	168 (4)
O2W—H21W···O12A	0.90 (3)	2.11 (3)	2.945 (4)	153 (4)
O2W—H22W···O11A	0.89 (3)	2.07 (4)	2.915 (4)	158 (5)
O3W—H31W···O25	0.91 (4)	2.06 (4)	2.922 (4)	159 (3)
O3W—H32W···O4W	0.91 (3)	1.91 (3)	2.791 (4)	164 (3)
O4W—H41W···O1W	0.90 (4)	1.88 (4)	2.770 (5)	172 (5)
O4W—H42W···O12A	0.89 (4)	1.91 (4)	2.802 (4)	174 (5)
C4—H4···O25	0.95	2.37	2.900 (4)	115
C6A—H6A···O13A	0.95	2.55	3.011 (4)	110
C8—H8···O24	1.00	2.60	3.009 (4)	104
C14—H14···O3vii	1.00	2.52	3.363 (4)	142
C15—H151···O11A	0.99	2.60	3.561 (4)	165
C18—H182···O2W	0.99	2.58	3.422 (5)	143
C20—H201···O11A	0.99	2.41	3.388 (4)	170
C20—H202···O13A	0.99	2.43	3.229 (4)	137

Symmetry codes: (i) x+1/2, −y+3/2, −z+1; (ii) x+1/2, −y+1/2, −z+1; (iii) −x, y−1/2, −z+1/2; (iv) x−1/2, −y+1/2, −z+1; (v) −x+1/2, −y+1, z+1/2; (vi) x+1/2, −y+3/2, −z+1; (vii) −x+1, y+1/2, −z+1/2; (viii) −x+1, y−1/2, −z+1/2.