Election vs. Selection: Two Ways of Finding the Largest Node in a Graph

Avery Miller1, Andrzej Pelc1,*

1 Université du Québec en Outaouais, Gatineau, Canada.
E-mails: avery@averymiller.ca, pelc@uqo.ca

Abstract

Finding the node with the largest label in a labeled network, modeled as an undirected connected graph, is one of the fundamental problems in distributed computing. This is the way in which leader election is usually solved. We consider two distinct tasks in which the largest-labeled node is found deterministically. In selection, this node has to output 1 and all other nodes have to output 0. In election, the other nodes must additionally learn the largest label (everybody has to know who is the elected leader). Our aim is to compare the difficulty of these two seemingly similar tasks executed under stringent running time constraints. The measure of difficulty is the amount of information that nodes of the network must initially possess, in order to solve the given task in an imposed amount of time. Following the standard framework of algorithms with advice, this information (a single binary string) is provided to all nodes at the start by an oracle knowing the entire graph. The length of this string is called the size of advice.

The paradigm of algorithms with advice has a far-reaching importance in the realm of network algorithms. Lower bounds on the size of advice give us impossibility results based strictly on the amount of initial knowledge outlined in a model’s description. This more general approach should be contrasted with traditional results that focus on specific kinds of information available to nodes, such as the size, diameter, or maximum node degree.

Consider the class of n-node graphs with any diameter $diam \leq D$, for some integer D. If time is larger than $diam$, then both tasks can be solved without advice. For the task of election, we show that if time is smaller than $diam$, then the optimal size of advice is $\Theta(\log n)$, and if time is exactly $diam$, then the optimal size of advice is $\Theta(\log D)$. For the task of selection, the situation changes dramatically, even within the class of rings. Indeed, for the class of rings, we show that, if time is $O(diam^\epsilon)$, for any $\epsilon < 1$, then the optimal size of advice is $\Theta(\log D)$, and, if time is $\Theta(diam)$ (and at most $diam$) then this optimal size is $\Theta(\log.log D)$. Thus there is an exponential increase of difficulty (measured by the size of advice) between selection in time $O(diam^\epsilon)$, for any $\epsilon < 1$, and selection in time $\Theta(diam)$. As for the comparison between election and selection, our results show that, perhaps surprisingly, while for small time, the difficulty of these two tasks on rings is similar, for time $\Theta(diam)$ the difficulty of election (measured by the size of advice) is exponentially larger than that of selection.

Keywords: election, selection, maximum finding, advice, deterministic distributed algorithm, time.

*Partially supported by NSERC discovery grant and by the Research Chair in Distributed Computing at the Université du Québec en Outaouais.
1 Introduction

Background. Finding the node with the largest label in a labeled network is one of the fundamental problems in distributed computing. This is the way in which leader election is usually solved. (In leader election, one node of a network has to become a leader and all other nodes have to become non-leaders). In fact, to the best of our knowledge, all existing leader election algorithms performed in labeled networks choose, as leader, the node with the largest label or the node with the smallest label [30]. The classic problem of leader election first appeared in the study of local area token ring networks [29], where, at all times, exactly one node (the owner of a circulating token) has the right to initiate communication. When the token is accidentally lost, a leader is elected as the initial owner of the token.

Model and Problem Description. The network is modeled as an undirected connected graph with \(n \) labeled nodes and with diameter \(\text{diam} \) at most \(D \). We denote by \(\text{diam}(G) \) the diameter of graph \(G \). Labels are drawn from the set of integers \(\{1, \ldots, L\} \), where \(L \) is polynomial in \(n \). Each node has a distinct label. Initially each node knows its label and its degree. The node with the largest label in a graph will be called its largest node.

We use the extensively studied \(\text{LOCAL} \) communication model [33]. In this model, communication proceeds in synchronous rounds and all nodes start simultaneously. In each round, each node can exchange arbitrary messages with all of its neighbours and perform arbitrary local computations. For any \(r \geq 0 \) and any node \(v \), we use \(K(r, v) \) to denote the knowledge acquired by \(v \) within \(r \) rounds. Thus, \(K(r, v) \) consists of the subgraph induced by all nodes at distance at most \(r \) from \(v \), except for the edges joining nodes at distance exactly \(r \) from \(v \), and of degrees (in the entire graph) of all nodes at distance exactly \(r \) from \(v \). Hence, if no additional knowledge is provided \(\text{a priori} \) to the nodes, the decisions of \(v \) in round \(r \) in any deterministic algorithm are a function of \(K(r, v) \). We denote by \(\lambda(r, v) \) the set of labels of nodes in the subgraph induced by all nodes at distance at most \(r \) from \(v \). The time of a task is the minimum number of rounds sufficient to complete it by all nodes.

It is well known that the synchronous process of the \(\text{LOCAL} \) model can be simulated in an asynchronous network. This can be achieved by defining for each node separately its asynchronous round \(i \); in this round, a node performs local computations, then sends messages stamped \(i \) to all neighbours, and waits until it gets messages stamped \(i \) from all neighbours. To make this work, every node is required to send at least one (possibly empty) message with each stamp, until termination. All of our results can be translated for asynchronous networks by replacing “time of completing a task” by “the maximum number of asynchronous rounds to complete it, taken over all nodes”.

We consider two distinct tasks in which the largest node is found deterministically. In selection, this node has to output 1 and all other nodes have to output 0. In election, all nodes must output the largest label. Note that in election all nodes perform selection and additionally learn the identity of the largest node. Both variations are useful in different applications. In the aforementioned application of recovering a lost token, selection is enough, as the chosen node will be the only one to get a single token and then the token will be passed from node to node. In this case, other nodes do not need to know the identity of the chosen leader. The situation is different if all nodes must agree on a label of one of the nodes, e.g., to use it later as a common parameter for further computations. Then the full strength of election is needed. Likewise, learning the largest label by all nodes is important when labels carry some additional information apart from the identities of nodes, e.g., some values obtained by sensors located in nodes. Our results also remain valid in such situations, as long as the “informative label” can be represented as an integer polynomial in \(n \).

Our aim is to compare the difficulty of the two seemingly similar tasks of selection and election.
executed under stringent running time constraints. The measure of difficulty is the amount of information that nodes of the network must initially possess in order to solve the given task in an imposed amount of time. Following the standard framework of algorithms with advice, see, e.g., [11, 12, 13, 16, 19, 24, 32], this information (a single binary string) is provided to all nodes at the start by an oracle knowing the entire graph. The length of this string is called the size of advice.

The paradigm of algorithms with advice has a far-reaching importance in the realm of network algorithms. Establishing a tight bound on the minimum size of advice sufficient to accomplish a given task permits to rule out entire classes of algorithms and thus focus only on possible candidates. For example, if we prove that \(\Theta(\log n) \) bits of advice are needed to perform a certain task in \(n \)-node graphs, this rules out all potential algorithms that can work using only some linear upper bound on the size of the network, as such an upper bound could be given to the nodes using \(\Theta(\log \log n) \) bits by providing them with \([\log n]\). Lower bounds on the size of advice give us impossibility results based strictly on the amount of initial knowledge outlined in a model’s description. This more general approach should be contrasted with traditional results that focus on specific kinds of information available to nodes, such as the size, diameter, or maximum node degree.

Our results. Consider the class of \(n \)-node graphs with any diameter \(\text{diam} \leq D \), for some integer \(D \). First observe that if time is larger than \(\text{diam} \), then both tasks can be solved without advice, as nodes learn the entire network and **learn that they have learned it**. Thus they can just choose the maximum of all labels seen.

For the task of **election**, we show that if time is smaller than \(\text{diam} \), then the optimal size of advice is \(\Theta(\log n) \), and if time is exactly \(\text{diam} \), then the optimal size of advice is \(\Theta(\log D) \). Here our contribution consists in proving two lower bounds on the size of advice. We prove one lower bound by exhibiting, for any positive integers \(D < n \), networks of size \(\Theta(n) \) and diameter \(\Theta(D) \), for which \(\Omega(\log n) \) bits of advice are needed for election in time below \(\text{diam} \). To prove the other lower bound, we present, for any positive integer \(D \), networks of diameter \(\text{diam} \leq D \) for which \(\Omega(\log D) \) bits of advice are needed for election in time exactly \(\text{diam} \). These lower bounds are clearly tight, as even for time 0, \(O(\log n) \) bits of advice are enough to provide the largest label in the network, and, for time \(\text{diam} \) – when nodes know the entire network, but they do not know that they know it – \(O(\log D) \) bits of advice are enough to give the diameter \(\text{diam} \) to all nodes and thus reassure them that they have seen everything. In this case, they can safely choose the maximum of all labels seen.

Hence, a high-level statement of our results for election is the following. If time is too small for all nodes to see everything, then no more efficient help in election is possible than just giving the largest label. If time is sufficient for all nodes to see everything, but too small for them to realize that they do, i.e., the time is exactly \(\text{diam} \), then no more efficient help in election is possible than providing \(\text{diam} \), which supplies nodes with the missing certainty that they have seen everything.

It should be noted that \(n \) could be exponential in \(D \), as in hypercubes, or \(D \) can even be constant with respect to arbitrarily large \(n \). Thus, our results for election show that, for some networks, there is an exponential (or even larger) gap of difficulty of election (measured by the size of advice) between time smaller than \(\text{diam} \) and time exactly \(\text{diam} \). Another such huge gap is between time \(\text{diam} \), when advice of size \(\Theta(\log D) \) is optimal, and time larger than \(\text{diam} \), when 0 advice is enough. These gaps could be called intra-task jumps in difficulty for election with respect to time.

For the task of **selection**, the situation changes dramatically, even within the class of rings. Indeed, for the class of rings, we show that, if time is \(O(\text{diam}^\epsilon) \), for any \(\epsilon < 1 \), then the optimal size of advice is \(\Theta(\log D) \), and, if time is \(\Theta(\text{diam}) \) (and at most \(\text{diam} \)) then this optimal size is \(\Theta(\log \log D) \). Here our contribution is three-fold. For selection in time \(O(\text{diam}^\epsilon) \), for any \(\epsilon < 1 \), we exhibit, for any positive integer \(D \), a class of rings with diameter at most \(D \) which requires advice of size \(\Omega(\log D) \). As before, this lower bound is tight, even for time 0. Further, for selection in
time at most $\alpha \cdot \text{diam}$, for $\alpha \leq 1$, we construct a class of rings with diameter $\text{diam} \leq D$ which requires advice of size $\Omega(\log \log D)$. At first glance, it might seem that this lower bound is too weak. Indeed, providing either the diameter or the largest label, which are both natural choices of advice, would not give a tight upper bound, as this may require $\Theta(\log D)$ bits. However, we use a more sophisticated idea that permits us to construct a very compact advice (of matching size $O(\log \log D)$) and we design a selection algorithm, working for all rings of diameter $\text{diam} \leq D$ in time at most $\alpha \cdot \text{diam}$, for which this advice is enough.

Thus there is an exponential increase of difficulty (measured by the size of advice) between selection in time $O(\text{diam}^\epsilon)$, for any $\epsilon < 1$, and selection in time $\Theta(\text{diam})$. As in the case of election, another huge increase of difficulty occurs between time diam and time larger than diam. These gaps could be called intra-task jumps of difficulty for selection with respect to time.

As for the comparison between election and selection, our results show that, perhaps surprisingly, while for small time, the difficulty of these two tasks on rings is similar, for time $\Theta(\text{diam})$ the difficulty of election (measured by the size of advice) is exponentially larger than that of selection, even for the class of rings. While both in selection and in election the unique leader having the maximum label is chosen, these tasks differ in how widely this label is known. It follows from our results that, if linear time (not larger than the diameter) is available, then the increase of difficulty (in terms of advice) of making this knowledge widely known is exponential. This could be called the inter-task jump of difficulty between election and selection.

Figure 1 provides a summary of our results.

Election for diam ≤ D

Time	Advice
> diam	0
diam	$\Theta(\log D)$
< diam	$\Theta(\log n)$

Selection for diam ≤ D

Time	Advice
> diam	0
$\alpha \cdot \text{diam}$, $0 < \alpha \leq 1$	$\Theta(\log \log D)$
diam^ϵ, $\epsilon < 1$	$\Theta(\log D)$

: denotes an intra-task jump

: denotes an inter-task jump

Related work. The leader election problem was introduced in [29]. This problem has been extensively studied in the scenario adopted in the present paper, i.e., where all nodes have distinct labels. As far as we know, this task was always solved by finding either the node with the largest or that with the smallest label. Leader election was first studied for rings. A synchronous algorithm based on label comparisons and using $O(n \log n)$ messages was given in [23]. It was proved in [17] that this complexity is optimal for comparison-based algorithms. On the other hand, the authors showed an algorithm using a linear number of messages but requiring very large running time. An asynchronous algorithm using $O(n \log n)$ messages was given, e.g., in [34], and the optimality of this message complexity was shown in [7]. Deterministic leader election in radio networks has been studied, e.g., in [25, 28, 31], as well as randomized leader election, e.g., in [36]. In [22], the leader
election problem was approached in a model based on mobile agents for networks with labeled nodes.

Many authors [2, 3, 4, 6, 37, 38] studied leader election in anonymous networks. In particular, [5, 38] characterize message-passing networks in which leader election can be achieved when nodes are anonymous. Characterizations of feasible instances for leader election were provided in [9, 10]. Memory needed for leader election in unlabeled networks was studied in [19].

Providing nodes or agents with arbitrary kinds of information that can be used to perform network tasks more efficiently has previously been proposed in [1, 8, 11, 12, 13, 14, 15, 16, 19, 20, 21, 24, 26, 27, 32, 35]. This approach was referred to as algorithms with advice. The advice is given either to nodes of the network or to mobile agents performing some network task. In the first case, instead of advice, the term informative labeling schemes is sometimes used, if (unlike in our scenario) different nodes can get different information.

Several authors studied the minimum size of advice required to solve network problems in an efficient way. In [27], given a distributed representation of a solution for a problem, the authors investigated the number of bits of communication needed to verify the legality of the represented solution. In [14], the authors compared the minimum size of advice required to solve two information dissemination problems using a linear number of messages. In [16], it was shown that advice of constant size given to the nodes enables the distributed construction of a minimum spanning tree in logarithmic time. In [12], the advice paradigm was used for online problems. In [13], the authors established lower bounds on the size of advice needed to beat time $\Theta(\log^* n)$ for 3-coloring unoriented trees. In the case of [32], the issue was not efficiency but feasibility: it was shown that $\Theta(n \log n)$ is the minimum size of advice required to perform monotone connected graph clearing. In [24], the authors studied radio networks for which it is possible to perform centralized broadcasting in constant time. They proved that constant time is achievable with $O(n)$ bits of advice in such networks, while $o(n)$ bits are not enough. In [20], the authors studied the problem of topology recognition with advice given to nodes. To the best of our knowledge, the problems of leader election or maximum finding with advice have never been studied before.

2 Election

Notice that in order to perform election in a graph G in time larger than its diameter, no advice is needed. Indeed, after time $\text{diam}(G) + 1$, all nodes know the labels of all other nodes, and they are aware that they have this knowledge. This is because, in round $\text{diam}(G) + 1$, no messages containing new labels are received by any node. So, it suffices for all nodes to output the largest of the labels that they have seen up until round $\text{diam}(G) + 1$.

Our first result shows that, if election time is no more than the diameter of the graph, then the size of advice must be at least logarithmic in the diameter. This demonstrates a dramatic difference between the difficulty of election in time $\text{diam}(G)$ and election in time $\text{diam}(G) + 1$, measured by the minimum size of advice.

Theorem 2.1 Consider any algorithm A such that, for every graph G, algorithm A solves election within $\text{diam}(G)$ rounds. For every integer $D \geq 2$, there exists a ring of diameter at most D for which algorithm A requires advice of size $\Omega(\log D)$.

Proof. Fix any integer $D \geq 2$. We will show a stronger statement: at least D different advice strings are needed in order to solve election within $\text{diam}(G)$ rounds for rings G with diameter at most D. The high-level idea of the proof is to first construct a particular sequence of D rings
of increasing sizes, each with a different largest label. With few advice strings, two such rings get the same advice. We show that there is a node in these two rings which acquires the same knowledge when executing algorithm A, and hence has to elect the same node in both rings, which is a contradiction.

To obtain a contradiction, assume that $D - 1$ different advice strings suffice. Consider a ring R of diameter D whose node labels form the sequence $(1, 2, \ldots, D + 1, 2D + 1, 2D, \ldots, D + 2)$ (see Figure 2). For each $k \in \{1, \ldots, D\}$, define R_k^1 to be the ring obtained from R by taking the subgraph induced by the nodes at distance at most k from node 1 and adding an edge between nodes $k + 1$ and $D + k + 1$ (see Figure 2). First, note that, for each $k \in \{1, \ldots, D\}$, the diameter of R_k^1 is k, and, the largest node in R_k^1 has label $D + k + 1$. The correctness of A implies that, when A is executed at a node in R_k^1, it must halt within k rounds and output $D + k + 1$. Next, by the Pigeonhole Principle, there exist $i, j \in \{1, \ldots, D\}$ with $i < j$ such that the same advice string is provided to nodes of both R_i^1 and R_j^1 when they execute A. When executed at node 1 in R_i^1, algorithm A halts in some round $r \leq diam(R_i^1) = i$ and outputs $D + i + 1$. We show that, when executed at node 1 in R_j^1, algorithm A also halts in round r and outputs $D + i + 1$. Indeed, the algorithm is provided with the same advice string for both R_i^1 and R_j^1, and, $K(r, 1)$ in R_i^1 is equal to $K(r, 1)$ in R_j^1. This contradicts the correctness of A since, for the ring R_j^1, there is a node with label $D + j + 1 > D + i + 1$. To conclude, notice that, since at least D different advice strings are needed for the class of rings of diameter at most D, the size of advice must be $\Omega(\log D)$ for at least one of these rings.

Note that the lower bound established in Theorem 2.1 is tight. Indeed, to achieve election in time $diam(G)$ for any graph G, it is enough to provide the value of $diam(G)$ to the nodes of the graph and have each node elect the node with the largest label it has seen up until round $diam(G)$. Hence we have the following corollary for the class of graphs of diameter at most D.

Corollary 2.1 The optimal size of advice to complete election in any graph in time at most equal to its diameter is $\Theta(\log D)$.
polynomial in n. The following result shows that this size of advice cannot be improved for election in any time below the diameter. This result, when compared to Corollary 2.1, again shows the dramatic difference in the difficulty of election (measured by the minimum size of advice) but now between times $\text{diam}(G) - 1$ and $\text{diam}(G)$.

Theorem 2.2 Consider any positive integers $D < \tilde{n}$. There exists $n \in \Theta(\tilde{n})$ such that, for any election algorithm A in which every execution halts within $D - 1$ rounds, there exists an n-node graph of diameter D for which the size of advice needed by A is $\Omega(\log n)$.

Proof. The high-level idea of the proof is the following. We first construct a family of “ring-like” graphs. For a given number of advice strings, we obtain a lower bound on the number of such graphs for which the same advice is given. On the other hand, an upper bound on this number is obtained by exploiting the fact that no node can see the entire graph within $D - 1$ rounds. Comparing these bounds gives the desired bound on the size of advice.

Let n be the smallest integer greater than \tilde{n} that is divisible by $2D$ (and note that $n \in \Theta(\tilde{n})$).

Consider a family \mathcal{C} of n^3 pairwise disjoint sets, each of size $\frac{n}{2D}$. In particular, let $\mathcal{C} = \{C_0, \ldots, C_{n^3-1}\}$, where $C_i = \{\frac{n}{2D} + 1, \ldots, \frac{n(i+1)}{2D}\}$.

We construct a family \mathcal{G} of n-node graphs. Each graph in \mathcal{G} is obtained by first choosing an arbitrary sequence of $2D$ sets from \mathcal{C}, say (H_0, \ldots, H_{2D-1}). The nodes of the graph are the elements of these sets (which are integers), and this induces a natural labeling of the nodes. Next, for each $j \in \{0, \ldots, 2D - 1\}$, add all edges between pairs of elements of the set H_j, as well as all edges between every element in H_j and every element in H_{j+1} (where the indices are taken modulo $2D$). In other words, each graph in \mathcal{G} is a “fat ring”, as illustrated in Figure 3. We uniquely identify each graph in \mathcal{G} by its sequence of sets (H_0, \ldots, H_{2D-1}), where the node x with the smallest label belongs to the set H_0, and H_1 contains the smallest neighbour of x outside of H_0. The size of \mathcal{G} is calculated in the following claim.

![Figure 3: A “fat ring” with $D = 3$ and $n = 18$.](image)

Claim 1 $|\mathcal{G}| = \left(\frac{n^3}{2D}\right)(2D - 1)!/2.$

6
To prove the claim, first note that the number of sequences \((H_0, \ldots, H_{2D-1}) \) consisting of \(2D \) distinct sets from \(\mathcal{C} \) is \(\binom{n^3}{2D}(2D)! \). To count the number of such sequences belonging to \(\mathcal{G} \), we first divide this integer by \(2D \) to eliminate those sequences in which \(H_0 \) does not contain the smallest label. Then, we divide the result by 2 to eliminate those sequences in which the labels in \(H_{2D-1} \) are smaller than those in \(H_1 \). This completes the proof of the claim.

Next, let \(b \) be the maximum number of advice bits provided to \(\mathcal{A} \), taken over all graphs in \(\mathcal{G} \). By the Pigeonhole Principle, there exists a family \(S \) of at least \(\frac{|\mathcal{G}|}{2^b} \) graphs in \(\mathcal{G} \) such that the algorithm receives the same advice string when executed on each graph in \(S \). The following claim will be used to find an upper bound on the size of \(S \).

Claim 2 Consider two graphs from \(S \), say \(S_1 = (A_0, \ldots, A_{2D-1}) \) and \(S_2 = (B_0, \ldots, B_{2D-1}) \). Suppose that, for some \(i \in \{0, \ldots, 2D - 1\} \), algorithm \(\mathcal{A} \) elects a node from set \(A_i \) when executed on \(S_1 \) and elects a node from set \(B_i \) when executed on \(S_2 \). If \(A_j = B_j \) for each \(j \neq i \), then \(A_i = B_i \).

To prove the claim, let \(k = i + D \pmod{2D} \). Since \(A_j = B_j \) for all \(j \neq i \), it follows that each node \(v \in A_k \) is also an element of \(B_k \), and, moreover, for each such \(v \), knowledge \(K(D - 1, v) \) in \(S_1 \) is equal to knowledge \(K(D - 1, v) \) in \(S_2 \). The nodes of \(A_k \) output some label \(\ell \) at the end of the execution of \(\mathcal{A} \) on \(S_1 \). Since we assumed that every execution of \(\mathcal{A} \) halts within \(D - 1 \) rounds, and the same advice is given for \(S_1 \) and \(S_2 \), the nodes of \(B_k \) also output label \(\ell \) at the end of execution of \(\mathcal{A} \) on \(S_2 \). Since \(\mathcal{A} \) elects a node from \(A_i \) when executed on \(S_1 \) and elects a node from \(B_i \) when executed on \(S_2 \), it follows that \(\ell \) is a label that appears in both \(A_i \) and \(B_i \). As the sets in \(\mathcal{C} \) are pairwise disjoint, it follows that \(A_i = B_i \). This concludes the proof of the claim.

Using Claim 2, we now obtain an upper bound on the size of \(S \). In particular, for each \(i \in \{0, \ldots, 2D - 1\} \), consider the subfamily of graphs \((H_0, \ldots, H_{2D-1}) \) in \(S \) such that algorithm \(\mathcal{A} \) elects a node from \(H_i \). By the claim, for each choice of the \(2D - 1 \) sets \(H_0, \ldots, H_{i-1}, H_{i+1}, \ldots, H_{2D-1} \), there is exactly one set \(H_i \) such that \((H_0, \ldots, H_{2D-1}) \) belongs to \(S \). The number of such choices is bounded above by \((n^3)(n^3 - 1)\cdots(n^3 - 2D + 2) = \binom{n^3}{2D-1}(2D - 1)! \). Since this is true for all \(2D \) possible values for \(i \), we get that \(|S| \leq 2D\binom{n^3}{2D-1}(2D - 1)! \). Comparing this upper bound to our lower bound on \(|S| \), it follows from Claim 1 that \(2D\binom{n^3}{2D-1}(2D - 1)! \geq \frac{\binom{n^3}{2D-1}(2D - 1)!}{2^b} \). Re-arranging this inequality, we get that \(2^b \geq \frac{\binom{n^3}{2D-1}}{4D\binom{n^3}{2D-1}} = \frac{n^3 - 2D + 1}{8D^2} \in \Omega(n) \), and hence \(b \in \Omega(\log n) \). \(\square \)

Hence we have the following corollary.

Corollary 2.2 The optimal size of advice to complete election in any graph in time less than its diameter is \(\Theta(\log n) \).

3 Selection

In this section, we study the selection problem for the class of rings. It turns out that significant differences between election and selection can be exhibited already for this class. As in the case of election, and for the same reasons, selection in time larger than the diameter can be accomplished without any advice. Hence, in the rest of the section, we consider selection in time at most equal to the diameter. For any ring \(R \) and any selection algorithm \(\mathcal{A} \), denote by \(\text{adv}_A(R) \) the advice string provided to all nodes in \(R \) when they execute algorithm \(\mathcal{A} \). Denote by \(\text{max}_A(R) \) the node
that outputs 1 in the execution of algorithm A on ring R. We first look at selection algorithms working in time at most $\alpha \cdot \text{diam}(R)$, for any ring R and any constant $0 < \alpha \leq 1$.

3.1 Selection in time linear in the diameter

We start with the lower bound on the size of advice needed by any selection algorithm working in time equal to the diameter of the ring. This lower bound shows that, for any positive integer D, there exists a ring with diameter at most D for which such an algorithm requires $\Omega(\log \log D)$ bits of advice. Of course, this implies the same lower bound on the size of advice for selection in any smaller time.

The following theorem provides our first lower bound on the size of advice for selection.

Theorem 3.1 Consider any selection algorithm A such that, for any ring R, algorithm A halts within $\text{diam}(R)$ rounds. For every positive integer D, there exists a ring R of diameter at most D for which algorithm A requires advice of size $\Omega(\log \log D)$.

Proof. At a high level we consider a “rings-into-bins” problem, in which each bin represents a distinct advice string. We recursively construct sets of rings, such that the rings constructed at a given recursion level cannot be put into the same bin as previously-constructed rings. We continue the construction long enough to run out of bins. With few bins, the number of levels of recursion is sufficiently small to keep the diameters of the constructed rings bounded by D.

The following claim will be used to show that a particular ring that we construct will cause algorithm A to fail. We will use the following chopping operation in our constructions. For any selection algorithm A and any ring R of odd size, we define the chop of R, denoted by chop(R), to be the path obtained from R by removing the edge between the two nodes at distance $\text{diam}(R)$ from max$_A(R)$ (see Figure 4(a)).

Claim 1 Consider any selection algorithm A such that, for any ring R, algorithm A halts within $\text{diam}(R)$ rounds. Consider two disjoint rings R_1, R_2 of odd size such that $\text{adv}_A(R_1) = \text{adv}_A(R_2)$. For any ring R_3 that contains chop(R_1) and chop(R_2) as subgraphs such that $\text{adv}_A(R_3) = \text{adv}_A(R_1) = \text{adv}_A(R_2)$, two distinct nodes in R_3 output 1 when executing A.

In order to prove the claim, consider the execution of A by the nodes of R_3. Using the definition of chop(R_1), it can be shown that knowledge $K(\text{diam}(R_1), \text{max}_A(R_1))$ in R_3 is equal to knowledge $K(\text{diam}(R_1), \text{max}_A(R_1))$ in R_1. Therefore, the execution of A at node max$_A(R_1)$ in R_3 halts in round $\text{diam}(R_1)$, and max$_A(R_1)$ outputs 1. Similarly, the execution of A at node max$_A(R_2)$ in R_3 halts in round $\text{diam}(R_2)$, and max$_A(R_2)$ outputs 1. Since R_1 and R_2 are disjoint, we have that max$_A(R_1) \neq \text{max}_A(R_2)$. Hence, two distinct nodes in R_3 output 1 when executing A. This proves the claim.

It is enough to prove the theorem for sufficiently large D. Fix any integer $D \geq 2^{27}$ and set the label space to be $\{1, \ldots, 2D\}$. To obtain a contradiction, assume that $A < \sqrt{\log D}$ different advice strings suffice.

Form a family \mathcal{T} of $2^A!$ disjoint sequences of integers, each of size 3. More specifically, let $\mathcal{T} = \{(3i, 3i + 1, 3i + 2) : i \in \{0, \ldots, 2^A! - 1\}\}$. Let $\mathcal{E} = \{3(2^A!) + 1, 3(2^A!) + 2, \ldots, 4(2^A!)\}$. Note that \mathcal{E} is a set of integer labels, each of which is larger than all labels that belong to sequences in \mathcal{T}. To verify that we have enough labels to define these sets, note that the largest label $\ell = 4(2^A!) < 4(2^{\log D})!$. Using the inequality $\log n! \leq (n+1) \log (n+1) + 1$, we get that $\log \ell < 2 + \sqrt{\log D} + (\sqrt{\log D} + 1) \log (\sqrt{\log D} + 1) + 3 + \sqrt{\log D} + \log (\sqrt{\log D} + 1) + \log (\sqrt{\log D} + 1)$. 8
When $D \geq 2^{27}$, one can verify that $\log(\sqrt{\log D} + 1) < \sqrt{\log D}$, and $3 + \sqrt{\log D} + \sqrt[3]{\log D} + \sqrt[6]{\log D} < \log D$, so $\log \ell < \log D$. It follows that $\ell < D < L$.

Next, we construct a special family R of rings of diameter at most D. We will add rings to R by following a procedure that we will describe shortly. Each new ring that we add to R will be the result of at most one ‘gluing’ operation, denoted by glue(R_1, R_2), that takes two disjoint odd-sized rings R_1, R_2 and forms a new odd-sized ring R_3. More specifically, the ith gluing operation takes two disjoint odd-sized rings R_1 and R_2 and forms the new ring defined as follows: construct paths chop(R_1) and chop(R_2), add a new edge between the leaf of chop(R_1) with smaller label and the leaf of chop(R_2) with smaller label, add a new node with label $3(2^i A!) + i$, and add edges from this new node to the two remaining leaves. The gluing operation is illustrated in Figure 4(b). The additional node is introduced so that the resulting ring has an odd number of nodes. Note that this additional node’s label comes from E, which ensures that the new ring formed by a gluing operation does not contain duplicate labels. Further, note that, due to the dependence of the additional node’s label on i, no two gluing operations introduce additional nodes with the same label.

We now describe the procedure for adding rings to R. In stage 1, we consider the set G_1 of 3-cliques obtained from each sequence in T by identifying each integer with a node and adding all edges between them. We take a subset $H_1 \subseteq G_1$ of size at least $2^A(A-1)!$ such that the same advice string is provided to the algorithm for each ring in H_1. The rings in H_1 are added to R, which concludes stage 1. In each stage $j \in \{2, \ldots, A\}$, we consider the set H_{j-1} of rings that were added to R in stage $j-1$. The elements of H_{j-1} are partitioned into $|H_{j-1}|/2$ pairs of rings in an arbitrary way. For each such pair R_1, R_2, we perform glue(R_1, R_2). Define G_j to be the set of all of the resulting rings. We take a subset $H_j \subseteq G_j$ of size at least $|G_j|/(A-j+1)$ such that the same advice string is provided to the algorithm for each ring in H_j. The rings in H_j are added to R, which concludes stage j. This concludes the construction of R.

It is not immediately clear that this construction can always be carried out. In particular, in order to define H_j in each stage $j \in \{1, \ldots, A\}$, there must exist $|G_j|/(A-j+1)$ rings in G_j such that the same advice string is provided to the algorithm for each. To prove this fact, and to obtain the desired contradiction to prove the theorem, we will use the following two claims.

Claim 2 Consider any $k \in \{1, \ldots, A\}$ and any ring $R \in H_k$. For every $j < k$, there exists a ring
\(Q_j \in H_j \) such that \(\text{chop}(R) \) contains \(\text{chop}(Q_j) \) as a subgraph.

To prove the claim, we proceed by induction on \(k \). The case where \(k = 1 \) is trivial. Next, assume that, for some \(k \in \{1, \ldots, A\} \) and any ring \(R \in H_k \), for every \(j < k \), there exists a ring \(Q_j \in H_j \) such that \(\text{chop}(R) \) contains \(\text{chop}(Q_j) \) as a subgraph. We now prove that, for any \(R \in H_{k+1} \), there exists a ring \(Q_k \in H_k \) such that \(\text{chop}(R) \) contains \(\text{chop}(Q_k) \) as a subgraph. By construction, \(R = \text{glue}(R_1, R_2) \) for some disjoint rings \(R_1, R_2 \in H_k \). By the definition of the gluing operation, \(R \) contains both \(\text{chop}(R_1) \) and \(\text{chop}(R_2) \) as disjoint subgraphs. Since \(\text{chop}(R) \) has one fewer edge than \(R \), at least one of \(\text{chop}(R_1) \) and \(\text{chop}(R_2) \) is a subgraph of \(\text{chop}(R) \). By induction, this proves Claim 2.

Claim 3 Consider any \(j, k \in \{1, \ldots, A\} \) with \(j < k \). For any ring \(W \in H_k \), there exist disjoint \(P_j, Q_j \in H_j \) such that \(W \) contains \(\text{chop}(P_j) \) and \(\text{chop}(Q_j) \) as subgraphs.

To prove the claim, note that, by our construction, \(W = \text{glue}(R_1, R_2) \) for some disjoint \(R_1, R_2 \in H_{k-1} \). It follows that \(\text{chop}(R_1) \) and \(\text{chop}(R_2) \) are disjoint subgraphs of \(W \). If \(j = k - 1 \), setting \(P_j = R_1 \) and \(Q_j = R_2 \) satisfies the statement of the claim. If \(j < k - 1 \), then, by Claim 2, there exists a ring \(P_j \in H_j \) such that \(\text{chop}(R_1) \) contains \(\text{chop}(P_j) \) as a subgraph. Similarly, there exists a ring \(Q_j \in H_j \) such that \(\text{chop}(R_2) \) contains \(\text{chop}(Q_j) \) as a subgraph. Note that, since \(R_1 \) and \(R_2 \) are disjoint, it follows that \(\text{chop}(P_j) \) and \(\text{chop}(Q_j) \) are disjoint, so \(P_j \) and \(Q_j \) are disjoint. Thus, \(P_j \) and \(Q_j \) satisfy the statement of the claim, which concludes its proof.

We now show that, in any fixed stage of the above construction of \(\mathcal{R} \), the advice string that is provided for the rings added to \(\mathcal{R} \) in this stage is different than the advice strings provided for the rings added to \(\mathcal{R} \) in all previous stages.

Claim 4 Consider any \(j, k \in \{1, \ldots, A\} \) with \(j < k \). For any ring \(W_1 \in H_j \) and any ring \(W_2 \in H_k \), we have \(\text{adv}_A(W_1) \neq \text{adv}_A(W_2) \).

To prove the claim, notice that, by Claim 3, there exist disjoint \(P_j, Q_j \in H_j \) such that \(W_2 \) contains \(\text{chop}(P_j) \) and \(\text{chop}(Q_j) \) as subgraphs. Recall that the algorithm is provided the same advice string for all graphs in \(H_j \), so \(\text{adv}_A(P_j) = \text{adv}_A(Q_j) = \text{adv}_A(W_1) \). By Claim 1 and the correctness of \(A \), it follows that \(\text{adv}_A(W_2) \neq \text{adv}_A(P_j) \). Hence, \(\text{adv}_A(W_2) \neq \text{adv}_A(W_1) \), which completes the proof of Claim 4.

We show that the construction of \(\mathcal{R} \) can always be carried out.

Claim 5 For all \(k \in \{1, \ldots, A\} \), in stage \(k \) of the construction, there exist at least \(|G_k|/(A-k+1) \) rings in \(G_k \) such that the same advice string is provided to the algorithm for each of them.

To prove the claim, first note that, for \(k = 1 \), there are \(A \) different strings that could be used as advice for rings in \(G_1 \). So, by the Pigeonhole Principle, there are at least \(|G_1|/A \) rings in \(G_1 \) such that the same advice string is provided to the algorithm for each of them. Next, for any \(k \in \{2, \ldots, A\} \), Claim 4 implies that there are \(k-1 \) strings that are not provided to the algorithm as advice for rings in \(G_k \). Namely, there are at most \(A - k + 1 \) different strings used as advice for rings in \(G_k \). By the Pigeonhole Principle, there are at least \(|G_k|/(A-k+1) \) rings in \(G_k \) such that the same advice string is provided to the algorithm for each of them, which proves the claim.

The following claim implies that \(|H_j| \geq 2 \), for all \(j \leq A \). Later, we will use two rings from some \(H_j \) to obtain the desired contradiction needed to complete the proof of the theorem.

Claim 6 For all \(j \in \{1, \ldots, A\} \), at the end of stage \(j \), \(|H_j| \geq 2^{A-j+1}(A-j)! \).
We prove the claim by induction on j. When $j = 1$, we have $|G_1| = |T| = 2^A A!$. By Claim 5, there exist at least $|G_1|/A = 2^A (A-1)!$ rings in G_1 such that the same advice string is provided to the algorithm for each of them. This implies that $|H_1| \geq 2^A(A-1)!$, as required. As induction hypothesis, assume that, at the end of some stage $j \in \{1, \ldots, A-1\}$, $|H_j| \geq 2^A (A-j)!$. In stage $j+1$, let H_j be partitioned into pairs and G_{j+1} consists of one (glued) ring for each such pair. Thus, $|G_{j+1}| = 2^{A-j} (A-j)!$. By Claim 5, there exist at least $|G_{j+1}|/(A-j) = 2^{A-j} (A-j-1)!$ rings in G_{j+1} such that the same advice string is provided to the algorithm for each of them. This implies that $|H_{j+1}| \geq 2^{A-j} (A-j-1)!$, as required. This concludes the proof of Claim 6.

Finally, we construct a ring X on which algorithm A fails. Note that the rings in R all have node labels from the sets T and E, and we proved that the largest integer in these sets is less than D. Thus, the rings in R all have node labels from the range $\{1, \ldots, D\}$. To construct X, we take any two (disjoint) rings $R_1, R_2 \in H_A$ (which exist by Claim 6) and form a ring X consisting of the concatenation of paths $\text{chop}(R_1)$, $\text{chop}(R_2)$, and the path of D nodes with labels $D + 1, \ldots, 2D$. Recall that, in the construction, all rings in H_j, for any fixed $j \leq A$, get the same advice string. By Claim 4, each of the A distinct advice strings is used for rings in some H_j. Therefore, there exists a stage j such that the advice provided for all graphs in H_j is the string $\text{adv}_A(X)$. By Claim 2, there exists a ring $P_j \in H_j$ such that $\text{chop}(R_1)$ contains $\text{chop}(P_j)$ as a subgraph, and, there exists a ring $Q_j \in H_j$ such that $\text{chop}(R_2)$ contains $\text{chop}(Q_j)$. It follows that X contains $\text{chop}(P_j)$ and $\text{chop}(Q_j)$ as subgraphs, and $\text{adv}_A(X) = \text{adv}_A(P_j) = \text{adv}_A(Q_j)$. By Claim 1, when algorithm A is executed by the nodes of ring X, two distinct nodes output 1, which contradicts the correctness of A. Note that the size of X is at least D and at most $2D$, which implies that the size of the label space is linear in the size of X. The obtained contradiction was due to the assumption that $A < \sqrt{\log D}$. Hence the number A of different advice strings is at least $\sqrt{\log D}$, which implies that the size of advice is $\Omega(\log \log D)$ for some ring of diameter at most D.

Since imposing less time cannot make the selection task easier, we have the following corollary.

Corollary 3.1 For any constant $\alpha \leq 1$, consider any selection algorithm A such that, for any ring R, algorithm A halts within $\alpha \cdot \text{diam}(R)$ rounds. For every positive integer D, there exists a ring R of diameter at most D for which algorithm A requires advice of size $\Omega(\log \log D)$.

We now establish an upper bound on the size of advice that matches the lower bound from Theorem 3.1. Let D be any positive integer and let L be a power of 2. We consider algorithms that solve selection on the class of rings with diameter at most D and labels from $\{1, \ldots, L\}$. Recall that we assume that L is polynomial in the size of the ring, and hence also in D.

In order to prove the upper bound, we propose a family of selection algorithms such that, for each fixed $\alpha \in (0, 1]$, there is an algorithm in the family that takes $O(\log \log D)$ bits of advice, and, for each ring R, halts within $\alpha \cdot \text{diam}(R)$ rounds.

We start with an informal description of the algorithm and the advice for any fixed $\alpha \in (0, 1]$. The algorithm consists of two stages, and the advice consists of two substrings A_1 and A_2.

For any ring R, the substring A_1 of the advice is the binary representation of the integer $a_1 = \lfloor \log(\text{diam}(R)) \rfloor$. The size of this advice is $O(\log \log D)$. Note that $2^{a_1} \leq \text{diam}(R) < 2^{a_1+1}$.

In stage 1 of the algorithm the nodes perform $r = \lfloor \alpha 2^{a_1} \rfloor$ communication rounds, after which each node v has acquired knowledge $K(r, v)$. Next, each node v checks if its own label is the largest of the labels it has seen within r communication rounds, i.e., the largest in the set $\lambda(r, v)$. If not, then v outputs 0 and halts immediately. Let C_R be the set of candidate nodes, i.e., nodes v whose label is the largest in $\lambda(r, v)$. Clearly, the largest node in R is in C_R, and every node knows if it belongs to C_R. Nodes in C_R proceed to the next stage of the algorithm.
In stage 2 of the algorithm, each node in \(C_R \) determines whether or not it is the largest node in \(R \), without using any further communication rounds. This is achieved using \(A_2 \), the second substring of the advice, which we now describe.

Let \(\mathcal{V} \) be the family of sets of labels which contain all labels in \(C_R \) and no larger labels. At a high level, we construct an integer colouring \(F \) of the family \(\mathcal{V} \) such that, for any \(V \in \mathcal{V} \), when the colour \(F(V) \) is given as advice to candidate nodes, each of them can determine, without any communication, whether or not it is the candidate node with the largest label. Call such a colouring discriminatory. Substring \(A_2 \) of the advice will be \(F(V) \) for some \(V \in \mathcal{V} \) and some discriminatory colouring \(F \) of \(\mathcal{V} \). (We cannot simply use \(F(C_R) \) because our colouring \(F \) will be defined on sets of fixed size, and sets of candidate nodes for different rings do not have to be of equal size.) Using \(A_2 \), the candidate nodes solve selection among themselves. This concludes the high-level description of the algorithm.

The main difficulty of the algorithm is finding a discriminatory colouring \(F \). For example, bijections are trivially discriminatory, as nodes could deduce the set \(V \) in \(\mathcal{V} \) to which it belongs. Indeed, the colouring must use few colours, otherwise the advice would be too large. We will be able to construct a discriminatory colouring with few colours using the fact that the number of candidate nodes is bounded by a constant that depends only on \(\alpha \), as given in the following lemma.

Lemma 3.1 \(1 \leq |C_R| < 8/\alpha \).

Proof. First note that \(|C_R| \geq 1 \) since the largest node \(v \) in \(R \) also has the largest label in \(\lambda(r,v) \). If \(\text{diam}(R) < 2/\alpha \), then \(|C_R| \) is at most the number of nodes in \(R \), i.e., at most \(2 \cdot \text{diam}(R) + 1 \), which is at most \(5/\alpha \). Hence we may assume that \(\text{diam}(R) \geq 2/\alpha \). Next, note that there cannot be two candidate nodes \(v_1, v_2 \) such that the distance between them is at most \(r \). Indeed, if \(v_1 \in \lambda(r,v_1) \) and \(v_2 \in \lambda(r,v_1) \), then the node in \(\{v_1,v_2\} \) with smaller label will not be a candidate. Since the number of nodes in \(R \) is \(2 \cdot \text{diam}(R) < 2^{a_1+2} \), it follows that the number of candidate nodes is less than \((2^{a_1+2})/r = (2^{a_1+2})/([\alpha 2^{a_1}]) \). Since \(\text{diam}(R) \geq 2/\alpha \) and \(a_1 = \lfloor \log(\text{diam}(R)) \rfloor \), it can be shown that \((2^{a_1+2})/([\alpha 2^{a_1}]) \) is at most \((2^{a_1+2})/(\alpha 2^{a_1-1}) = 8/\alpha \). This completes the proof of the lemma.

We define what it means for a colouring to be *legal*. It will be shown that a legal colouring known by all nodes is discriminatory. Let \(\beta = [8/\alpha] \).

Definition 3.1 Let \(\mathcal{M}_\beta \) denote the set of all \(\beta \)-tuples of the form \((\ell_0, \ell_1, \ldots, \ell_{\beta-1})\) such that \(\ell_0, \ell_1, \ldots, \ell_{\beta-1} \in \{1, \ldots, L\} \) and \(\ell_0 > \ell_1 > \cdots > \ell_{\beta-1} \). (We identify the tuple \((\ell_0, \ell_1, \ldots, \ell_{\beta-1})\) with the set \(\{\ell_0, \ell_1, \ldots, \ell_{\beta-1}\} \).)

A colouring \(F \) of elements of \(\mathcal{M}_\beta \) by integers is legal if, for each colour \(c \) and each integer \(z \in \{1, \ldots, L\} \), either

1. every \((\ell_0, \ldots, \ell_{\beta-1}) \in \mathcal{M}_\beta \) that contains \(z \) and is coloured \(c \) has \(\ell_0 = z \), or,
2. every \((\ell_0, \ldots, \ell_{\beta-1}) \in \mathcal{M}_\beta \) that contains \(z \) and is coloured \(c \) has \(\ell_0 \neq z \).

Informally, a colouring of sets of labels is legal if, for all sets of a given colour in which a label \(z \) appears, \(z \) is either always the largest label or never the largest label.

Assume that we have a legal colouring \(F \) of \(\mathcal{M}_\beta \) that uses \(O(\log^\beta D) \) colours, and that each node knows \(F \). Using \(F \), we provide a complete description of our algorithm with advice of size \(O(\log \log D) \) and prove that it is correct. We will then describe such a legal colouring \(F \).
Advice Construction, for fixed $\alpha \in (0, 1]$

Input: Ring R with diameter at most D

1: $a_1 := \lfloor \log(\text{diam}(R)) \rfloor$
2: $A_1 :=$ binary representation of a_1
3: $C_R := \{ v \mid \text{node } v \text{ has the largest label in } \lambda([\alpha 2^{a_1}], v) \}$
4: $(\gamma_0, \ldots, \gamma_{|C_R|-1}) :=$ labels of nodes in C_R, sorted in descending order
5: $\beta := \lceil 8/\alpha \rceil$
6: $(\ell_0, \ldots, \ell_{\beta-1}) :=$ a decreasing sequence of labels such that $\ell_0 = \gamma_0$
 and $\{\gamma_1, \ldots, \gamma_{|C_R|-1}\} \subseteq \{\ell_1, \ldots, \ell_{\beta-1}\}$
7: $A_2 :=$ binary representation of $F((\ell_0, \ldots, \ell_{\beta-1}))$
8: Advice := (A_1, A_2)

Algorithm Select at node v with label ℓ, for fixed $\alpha \in (0, 1]$

Input: Advice (A_1, A_2)

1: $a_1 :=$ integer value represented by A_1
2: Acquire knowledge $K(\lfloor \alpha 2^{a_1} \rfloor, v)$ using $\lfloor \alpha 2^{a_1} \rfloor$ communication rounds
3: if ℓ is not the largest label in $\lambda(\lfloor \alpha 2^{a_1} \rfloor, v)$ then
 Output 0 and halt.
4: $a_2 :=$ integer value represented by A_2
5: $\beta := \lceil 8/\alpha \rceil$
6: $\text{Inv} := \{\text{all } \beta\text{-tuples } X \text{ such that } F(X) = a_2\}$
7: if there is a tuple in Inv with first entry equal to ℓ then
 Output 1 and halt.
8: else
9: Output 0 and halt.

In order to complete the description, it remains to construct a legal colouring F that uses $O(\log^3 L)$ colours. Note that, since L is polynomial in D, that the number of colours is indeed $O(\log^3 D)$.

Consider the following mapping $g : M_\beta \rightarrow \{0, \ldots, \log L\}^{\beta-1}$ that maps each $(\ell_0, \ell_1, \ldots, \ell_{\beta-1}) \in M_\beta$ to a $(\beta-1)$-tuple $(a_1, \ldots, a_{\beta-1})$. For each $i \in \{1, \ldots, \beta-1\}$, set a_i to be the largest integer j such that there exists an integer in the range $[\ell_{i-1} + 1, \ldots, \ell_i]$ that is divisible by 2^j. Next, take any bijection f between $\{0, \ldots, \log L\}^{\beta-1}$ and the set $\{0, \ldots, ((\log L) + 1)^{\beta-1} - 1\}$. Define the colouring F of M_β as the composition of g and f. Note that the colouring F uses at most $((\log L) + 1)^{\beta-1}$ colours.

Lemma 3.2 F is a legal colouring of the elements of M_β.

Proof. Consider an arbitrary colour $c \in \{0, \ldots, ((\log L) + 1)^{\beta-1}\}$ and any integer $z \in \{0, \ldots, L\}$. To obtain a contradiction, assume that:

- there exists an element of M_β, say $(x_0, \ldots, x_{\beta-1})$, that contains z, is coloured c, and has $x_0 \neq z$, and,
- there exists an element of M_β, say $(y_0, \ldots, y_{\beta-1})$, that contains z, is coloured c, and has $y_0 = z$.

13
Let \((a_1, \ldots, a_{\beta-1}) = f^{-1}(c)\). Since \((x_0, \ldots, x_{\beta-1})\) contains \(z\) and \(x_0 \neq z\), it follows that \(x_i = z\) for some \(i \in \{1, \ldots, \beta - 1\}\). By the definition of \(g\), we know that the range \([x_0 + 1, \ldots, z]\) contains an integer, say \(z_1\), that is divisible by \(2^{a_1}\), and we know that no integer in this range is divisible by \(2^{a_1} + 1\). Moreover, since \(y_0 = z\), we know that the range \([z + 1, \ldots, y_1]\) contains an integer, say \(z_2\), that is divisible by \(2^{a_2}\), and we know that no integer in this range is divisible by \(2^{a_2} + 1\). It follows that there are two distinct integers \(z_1 < z_2\) in the range \([x_0 + 1, \ldots, y_1]\) that are divisible by \(2^{a_1}\) and that no integer in the range \([x_0 + 1, \ldots, y_1]\) is divisible by \(2^{a_1} + 1\). Since \(z_1 + 2^{a_1}\) is the smallest integer greater than \(z_1\) that is divisible by \(2^{a_1}\), it follows that \(z_1 + 2^{a_1} \in [z_1, \ldots, z_2] \subseteq [x_0 + 1, \ldots, y_1]\), so \(z_1 + 2^{a_1}\) is not divisible by \(2^{a_1} + 1\). Note that, for some positive integer \(q\), we can write \(z_1 + 2^{a_1} = 2^{a_1}(q + 1)\). Since neither \(z_1\) nor \(z_1 + 2^{a_1}\) is divisible by \(2^{a_1} + 1\), it follows that both \(q\) and \(q + 1\) must be odd, a contradiction. □

Theorem 3.2 Consider any fixed \(\alpha \in (0, 1]\) and any positive integer \(D\). For any ring \(R\) with diameter at most \(D\), Algorithm Select solves selection in the ring \(R\) in time \(\alpha \cdot \text{diam}(R)\) and with advice of size \(O(\log \log D)\).

Proof. Notice that Algorithm Select halts within \(\alpha \cdot \text{diam}(R)\) communication rounds. Indeed, by line 2 of the algorithm, every node uses exactly \([\alpha 2^{a_1}]\) communication rounds, and \(2^{a_1} \leq \text{diam}(R)\). Next, note that since \(A_1\) is the binary representation of \([\log(\text{diam}(R))] \leq \log D\), the length of \(A_1\) is \(O(\log \log D)\). Further, recall that \(A_2\) is the binary representation of a colour assigned by \(F\), which uses \(O(\log^\beta \log D)\) colours where \(\beta \in O(1)\). Thus, the length of \(A_2\) is \(O(\log \log D)\), and hence the size of advice is \(O(\log \log D)\).

Finally, we prove the correctness of the algorithm for an arbitrary ring \(R\). First, note that the construction of the advice string can indeed be carried out. In particular, at line 6 in the Advice Construction, the tuple \((\ell_0, \ldots, \ell_{\beta-1})\) exists since, by Lemma 3.1, the number of candidates (and, hence, the value of \(|C_R|\)) is bounded above by \(\beta\). Next, recall that \(V\) is the family of sets of labels which contain all labels in \(C_R\) and no larger labels. The following claim shows that the colouring \(F\) is discriminatory.

Claim 1 For any \(V = (\ell_0, \ldots, \ell_{\beta-1}) \in V\), let \(a_2 = F(V)\). When lines 6 – 11 of Algorithm Select are executed, the largest node in \(C_R\) outputs 1, and all other nodes in \(C_R\) output 0. This proves that colouring \(F\) is discriminatory.

To prove the claim, consider the largest node \(w \in R\). We first show that \(\ell_0\) is equal to \(w\)’s label. Indeed, since \(w\) has the largest label in \(\lambda([\alpha 2^{a_1}], w)\), it follows that \(w \in C_R\). Since \(V\) does not contain labels larger than those in \(C_R\), \(\ell_0\) is equal to \(w\)’s label.

Next, note that, by line 7, \(V \in Inv\). Since \(\ell_0\) is equal to \(w\)’s label, the condition of the if statement at line 8 evaluates to true, so \(w\) outputs 1. Next, consider any node \(v \in C_R\) that is not the largest. Since \(\ell_0\) is not equal to \(v\)’s label and \(F\) is a legal colouring, it follows that no tuple that is coloured \(a_2\) has \(v\)’s label as its first entry. In other words, no tuple in \(Inv\) has \(v\)’s label as its first entry, so the if statement at line 8 evaluates to false, and \(v\) outputs 0. This completes the proof of the claim.

We have shown that, if the nodes in \(C_R\) are provided as advice the value of \(F(V)\) for any \(V \in V\), then lines 6 – 11 of Algorithm Select solve selection among the nodes in \(C_R\). It remains to show that the advice substring \(A_2\) created in the Advice Construction is indeed the binary representation of such an \(F(V)\).

Claim 2 In Advice Construction, \((\ell_0, \ldots, \ell_{\beta-1}) \in V\).
To prove the claim, recall that, by line 4 of the Advice Construction, \((\gamma_0, \ldots, \gamma_{|C_R|-1})\) is the decreasing sequence of labels of nodes in \(C_R\). Consider line 6 of the Advice Construction, and note that the largest element \(\ell_0\) of the tuple \((\ell_0, \ldots, \ell_{\beta-1})\) is equal to \(\gamma_0\), which proves that the labels \(\ell_0, \ldots, \ell_{\beta-1}\) are no larger than those of nodes in \(C_R\). Further, since \(\ell_0 = \gamma_0\) and \(\{\gamma_1, \ldots, \gamma_{|C_R|-1}\} \subseteq \{\ell_1, \ldots, \ell_{\beta-1}\}\), it follows that \((\ell_0, \ldots, \ell_{\beta-1})\) contains all of the labels of nodes in \(C_R\). Therefore, \((\ell_0, \ldots, \ell_{\beta-1}) \in \mathcal{V}\), as claimed.

We can now conclude that Algorithm Select solves selection in the entire ring. Indeed, in lines 1 – 4, each node that learns about the existence of a node with a larger label than itself outputs 0 and halts. The remaining nodes, namely those in \(C_R\) (which necessarily includes the largest node), proceed to lines 5 – 11. From line 7 of the Advice Construction and by Claim 2, line 5 of Algorithm Select assigns to \(a_2\) the value of \(F(V)\) for some \(V \in \mathcal{V}\). Finally, Claim 1 shows that the largest node outputs 1 and all other nodes output 0.

\[\square \]

Corollary 3.1 and Theorem 3.2 imply the following tight bound on the size of advice.

Corollary 3.2 The optimal size of advice to complete selection in any ring in time linear in its diameter (and not exceeding it) is \(\Theta(\log \log D)\).}

3.2 Selection in time \(D^\epsilon\) where \(0 \leq \epsilon < 1\)

We now turn attention to very fast selection for rings of diameter \(D\). Since every such ring has size \(n\) linear in \(D\), and since \(L\) is polynomial in \(n\), selection (and even election) can be accomplished using \(O(\log D)\) bits of advice without any communication by providing the largest label as advice. It turns out that, even when the available time is \(D^\epsilon\), for any constant \(0 \leq \epsilon < 1\), this size of advice is necessary. Compared to Theorem 3.2, this shows that selection in time \(D^\epsilon\) where \(0 \leq \epsilon < 1\), requires exponentially more advice than selection in time \(\Theta(D)\).

Theorem 3.3 For any constant \(0 \leq \epsilon < 1\), any selection algorithm \(A\) for rings of diameter \(D\) that works in time at most \(D^\epsilon\) requires \(\Omega(\log D)\) bits of advice.

Proof. It is enough to consider sufficiently large values of \(D\). Let \(U = \{1, \ldots, 2D - 1\}\), and let \(W = \{2D, \ldots, L\}\). We start by defining a special class of rings, and then proceed to show that algorithm \(A\) requires \(\Omega(\log D)\) bits of advice for this class. For the sake of clarity, we will use the notation \(x = \lceil D^\epsilon \rceil\) and \(y = \lceil D^{1-2\epsilon} \rceil\).

First, we define a set of paths \(P = \{P_1, \ldots, P_y\}\) as follows. Each path consists of \(1 + 2x\) nodes with labels from \(W\), with the middle node of the path having the largest label. More specifically, path \(P_i\) is obtained by considering the path of nodes with labels \(2Di, \ldots, 2Di + 2x\), respectively, and reversing the order of the last \(x + 1\) labels. Formally, for each \(i \in \{1, \ldots, y\}\), let \(P_i\) be the path of nodes whose labels form the sequence \(2Di, \ldots, 2Di + x - 1, 2Di + 2x, 2Di + 2x - 1, \ldots, 2Di + x\).

Next, we define a set \(R\) of rings \(\{R_1, \ldots, R_y\}\). Each ring \(R_i\) will consist of the paths \(P_1, \ldots, P_i \in P\) along with enough nodes with labels from \(U\) to ensure that \(R_i\) has size \(2D\). In order to define the ring \(R_i\), we first construct a path \(J_i\) by taking the paths \(P_1, \ldots, P_i\), and, for each \(j \in \{2, \ldots, i\}\), connecting the last node of path \(P_{j-1}\) with the first node of path \(P_j\). More specifically, \(J_i\) is obtained by taking the union of the paths \(P_1, \ldots, P_i\), and, for each \(j \in \{2, \ldots, i\}\), adding an edge between the nodes with labels \(2Dj - 2D + x\) and \(2Dj\). Next, we construct a path \(K_i\) whose labels form the sequence \(1, \ldots, 2D - |J_i|\). Since the number of nodes in \(J_i\) is at most \(y(1 + 2x)\), which, for sufficiently large \(D\), is strictly less than \(2D\), it follows that path \(K_i\) has at least one node. Finally, the ring \(R_i\) is obtained by joining the paths \(J_i\) and \(K_i\). More specifically, \(R_i\) is obtained by taking
the union of the paths J_i and K_i and adding the edges $\{1, 2Di + x\}$ and $\{2D - |J_i|, 2D\}$. The paths and rings constructed above are illustrated in Figure 5.

The following claim asserts that, in any two rings in \mathcal{R} that contain path P_i as a subgraph, the middle node of this path in both rings acquires the same knowledge when executing algorithm A.

Claim 1 Consider any $i \in \{1, \ldots, y\}$ and any $j \in \{i, \ldots, y\}$. Let v_i be the node in R_i with label $2Di + 2x$ and let v_j be the node in R_j with label $2Di + 2x$. Then, knowledge $K(x, v_i)$ in R_i is equal to knowledge $K(x, v_j)$ in R_j.

To prove the claim, note that, in both R_i and R_j, the node with label $2Di + 2x$ is the middle node of path P_i. Since the path P_i has length $1 + 2x$, it follows that, within x communication rounds, node v_i does not learn about any nodes in R_i outside of P_i. Similarly, node v_j does not learn about any nodes in R_j outside of P_i. This implies that knowledge $K(x, v_i)$ in R_i is equal to knowledge $K(x, v_j)$ in R_j, which completes the proof of the claim.

We proceed to prove the theorem by way of contradiction. Assume that the number of bits of advice needed by algorithm A for the rings in \mathcal{R} is less than $(1 - 2ε) \log D$. It follows that the number of distinct advice strings that are provided to algorithm A for the rings in \mathcal{R} is strictly less than $D^{1-2ε} \leq y$. However, since the class \mathcal{R} consists of y rings (where $y \geq 2$ for sufficiently large D) this means that there exist two rings in \mathcal{R}, say R_a, R_b with $a < b$, such that $\text{adv}_A(R_a) = \text{adv}_A(R_b)$.

First, consider the execution of A by the nodes of ring R_a. Let v_a be the node in R_a with label $2Da + 2x$, and note that v_a is the largest node in R_a. It follows that, in this execution, node v_a outputs 1. Next, consider the execution of A by the nodes of ring R_b. Let v_b be the node in R_b with the label $2Da + 2x$. By Claim 1, $K(x, v_a)$ in R_a is equal to $K(x, v_b)$ in R_b. Moreover, algorithm
A halts within x rounds and $\text{adv}_A(R_a) = \text{adv}_A(R_b)$. It follows that the execution of A by v_a in R_a is identical to the execution of A by v_b in R_b. Hence, v_b outputs 1 in the execution of A in R_b. However, node v_b is not the largest in R_b. Indeed, v_b’s label is $2Da + 2x$, whereas path P_b (and, hence, ring R_b) contains a node labeled $2Db + 2x > 2Da + 2x$. This contradicts the correctness of A. \hfill \Box

Corollary 3.3 For any constant $0 \leq \epsilon < 1$, the optimal size of advice to complete selection in any ring of diameter at most D in time D^ϵ is $\Theta(\log D)$.

4 Conclusion

We established tradeoffs between the time of choosing the largest node in a network and the amount of a priori information (advice) needed to accomplish two variations of this task: election and selection. For the election problem, the tradeoff is complete and tight up to multiplicative constants in the advice size. Moreover, it holds for the class of arbitrary connected graphs. For selection, our results are for the class of rings and a small gap remains in the picture. We proved that in rings with diameter diam at most D, the optimal size of advice is $\Theta(\log D)$ if time is $O(\text{diam}^\epsilon)$ for any $\epsilon < 1$, and that it is $\Theta(\log \log D)$ if time is at most diam. Hence, the first open problem is to establish the optimal size of advice to perform selection for rings when the time is in the small remaining gap, for example, in time $\Theta(\text{diam}/\log \text{diam})$. Another problem is to extend the tradeoff obtained for selection in rings to the class of arbitrary connected graphs. In particular, it would be interesting to investigate whether the optimal advice needed to perform fast selection in graphs of size much larger than the diameter depends on their size (like in the case of election) or on their diameter.

As noted in the introduction, all known leader election algorithms in labeled networks choose as leader either the node with the largest label or that with the smallest label. It is worth noting that the situation is not always symmetric here. For example, the Time Slice algorithm for leader election \cite{30} (which elects the leader using exactly n messages in n-node rings, at the expense of possibly huge time) finds the node with the smallest label, and it does not seem to be possible to convert it directly to finding the node with the largest label. (Of course it is possible to first find the node with the smallest label and then to use this leader to find the node with the largest label, but this takes additional time and communication.) In our case, however, the situation is completely symmetric with respect to the order of labels: our results hold without change, if finding the largest node is replaced by finding the smallest. It is an open question whether they also remain valid if electing the largest node is replaced by general leader election (i.e., the task in which a single arbitrary node becomes the leader, and all other nodes become non-leaders and also learn the identity of the leader) and if selecting the largest node is replaced by general leader selection (i.e., the task in which a single arbitrary node becomes the leader, and all other nodes become non-leaders). Our lower bound for election in time at most the diameter and our algorithms for selection use the ordering in an essential way, and it is not clear if smaller advice would be sufficient to elect or select some arbitrary node in a given time.
References

[1] S. Abiteboul, H. Kaplan, T. Milo, Compact labeling schemes for ancestor queries, Proc. 12th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2001), 547–556.

[2] D. Angluin, Local and global properties in networks of processors. Proc. 12th Annual ACM Symposium on Theory of Computing (STOC 1980), 82–93.

[3] H. Attiya and M. Snir, Better Computing on the Anonymous Ring, Journal of Algorithms 12, (1991), 204-238.

[4] H. Attiya, M. Snir, and M. Warmuth, Computing on an Anonymous Ring, Journal of the ACM 35, (1988), 845-875.

[5] P. Boldi, S. Shammah, S. Vigna, B. Codenotti, P. Gemmell, and J. Simon, Symmetry Breaking in Anonymous Networks: Characterizations. Proc. 4th Israel Symposium on Theory of Computing and Systems, (ISTCS 1996), 16-26.

[6] P. Boldi and S. Vigna, Computing Anonymously with Arbitrary Knowledge, Proc. 18th ACM Symp. on Principles of Distributed Computing (PODC 1999), 181-188.

[7] J.E. Burns, A Formal Model for Message Passing Systems, Tech. Report TR-91, Computer Science Department, Indiana University, Bloomington, September 1980.

[8] S. Caminiti, I. Finocchi, R. Petreschi, Engineering tree labeling schemes: a case study on least common ancestor, Proc. 16th Annual European Symposium on Algorithms (ESA 2008), 234–245.

[9] J. Chalopin, Local Computations on Closed Unlabelled Edges: The Election Problem and the Naming Problem Proc. 31st Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM 2005), 82-91.

[10] J. Chalopin and Y. Métivier, Election and Local Computations on Edges. Proc. Foundations of Software Science and Computation Structures (FoSSaCS 2004), 90-104.

[11] D. Dereniowski, A. Pelc, Drawing maps with advice, Journal of Parallel and Distributed Computing 72 (2012), 132–143.

[12] Y. Emek, P. Fraigniaud, A. Korman, A. Rosen, Online computation with advice, Theoretical Computer Science 412 (2011), 2642–2656.

[13] P. Fraigniaud, C. Gavoille, D. Ilcinkas, A. Pelc, Distributed computing with advice: Information sensitivity of graph coloring, Distributed Computing 21 (2009), 395–403.

[14] P. Fraigniaud, D. Ilcinkas, A. Pelc, Communication algorithms with advice, Journal of Computer and System Sciences 76 (2010), 222–232.

[15] P. Fraigniaud, D. Ilcinkas, A. Pelc, Tree exploration with advice, Information and Computation 206 (2008), 1276–1287.

[16] P. Fraigniaud, A. Korman, E. Lebhar, Local MST computation with short advice, Theory of Computing Systems 47 (2010), 920–933.
[17] G.N. Fredrickson and N.A. Lynch, Electing a Leader in a Synchronous Ring, *Journal of the ACM* 34 (1987), 98-115.

[18] E. Fusco, A. Pelc, How Much Memory is Needed for Leader Election, *Distributed Computing* 24 (2011), 65-78.

[19] E. Fusco, A. Pelc, Trade-offs between the size of advice and broadcasting time in trees, *Algorithmica* 60 (2011), 719–734.

[20] E. Fusco, A. Pelc, R. Petreschi, Use knowledge to learn faster: Topology recognition with advice, Proc. 27th International Symposium on Distributed Computing (DISC 2013), 31-45.

[21] C. Gavoille, D. Peleg, S. Pérennes, R. Raz. Distance labeling in graphs, *Journal of Algorithms* 53 (2004), 85-112.

[22] M.A. Haddar, A.H. Kacem, Y. Métivier, M. Mosbah, and M. Jmaiel, Electing a Leader in the Local Computation Model using Mobile Agents. *Proc. 6th ACS/IEEE International Conference on Computer Systems and Applications (AICCSA 2008)*, 473-480.

[23] D.S. Hirschberg, and J.B. Sinclair, Decentralized Extrema-Finding in Circular Configurations of Processes, *Communications of the ACM* 23 (1980), 627-628.

[24] D. Ilcinkas, D. Kowalski, A. Pelc, Fast radio broadcasting with advice, *Theoretical Computer Science*, 411 (2012), 1544–1557.

[25] T. Jurdzinski, M. Kutyłowski, and J. Zatopianski, Efficient Algorithms for Leader Election in Radio Networks. *Proc., 21st ACM Symp. on Principles of Distributed Computing (PODC 2002)*, 51-57.

[26] M. Katz, N. Katz, A. Korman, D. Peleg, Labeling schemes for flow and connectivity, *SIAM Journal of Computing* 34 (2004), 23–40.

[27] A. Korman, S. Kutten, D. Peleg, Proof labeling schemes, *Distributed Computing* 22 (2010), 215–233.

[28] D. Kowalski, and A. Pelc, Leader Election in Ad Hoc Radio Networks: A Keen Ear Helps, *Proc. 36th International Colloquium on Automata, Languages and Programming (ICALP 2009)*, *LNCS* 5556, 521-533.

[29] G. Le Lann, Distributed Systems - Towards a Formal Approach, *Proc. IFIP Congress*, 1977, 155–160, North Holland.

[30] N.L. Lynch, Distributed algorithms, Morgan Kaufmann Publ. Inc., San Francisco, USA, 1996.

[31] K. Nakano and S. Olariu, Uniform Leader Election Protocols for Radio Networks, *IEEE Transactions on Parallel and Distributed Systems* 13 (2002), 516-526.

[32] N. Nisse, D. Soguet, Graph searching with advice, *Theoretical Computer Science* 410 (2009), 1307–1318.

[33] D. Peleg, Distributed Computing, A Locality-Sensitive Approach, *SIAM Monographs on Discrete Mathematics and Applications*, Philadelphia 2000.
[34] G.L. Peterson, An $O(n \log n)$ Unidirectional Distributed Algorithm for the Circular Extrema Problem, ACM Transactions on Programming Languages and Systems 4 (1982), 758-762.

[35] M. Thorup, U. Zwick, Approximate distance oracles, Journal of the ACM, 52 (2005), 1–24.

[36] D.E. Willard, Log-logarithmic Selection Resolution Protocols in a Multiple Access Channel, SIAM J. on Computing 15 (1986), 468-477.

[37] M. Yamashita and T. Kameda, Electing a Leader when Processor Identity Numbers are not Distinct, Proc. 3rd Workshop on Distributed Algorithms (WDAG 1989), LNCS 392, 303-314.

[38] M. Yamashita and T. Kameda, Computing on Anonymous Networks: Part I - Characterizing the Solvable Cases, IEEE Trans. Parallel and Distributed Systems 7 (1996), 69-89.