Entwicklung eines neuen DEM-Kontaktmodells für hygroskopische Schüttgüter

Development of a new DEM contact model for hygroscopic bulk solids

Alexander Haber
Georg Kartnig

Institut für Konstruktionswissenschaften und Technische Logistik
Forschungsbereich: Konstruktionslehre und Fördertechnik
Technische Universität Wien

In dieser Arbeit wird ein Kontaktmodell zur Abbildung von kristallinen Festkörperbrücken in DEM-Simulation vorgestellt und bisherigen sogenannten Bond-Modellen gegenübergestellt. Mit dem Modell sollen sämtliche Zustände eines hygroskopischen Schüttgutes in einem Silo mit einer allgemein gültigen Kalibrierung abgebildet werden. Anhand von Parametervariationen wird das entwickelte Simulationsmodell qualitativ verifiziert. Außerdem wird für die Ermittlung der notwendigen Modellparameter ein Ablauf für eine einfache Kalibrierung vorgeschlagen.

Schlüsselwörter: DEM, kristalline Festkörperbrücken, Bonds, hygroskopisches Schüttgut

In this work, a contact model for the simulation of crystalline solid-state bridges in DEM programs is presented and compared with previous so-called bond models. The aim of the model is to be able to cover all states of a hygroscopic bulk material in a silo with a generally valid calibration. The developed simulation model is verified by a qualitative analysis of a parameter variation. Furthermore, a procedure for an easy calibration of the required model parameters is proposed.

Keywords: DEM, caking, solid-bridges, bonds, hygroscopic bulk solids

1 EINLEITUNG

Hygroskopische Schüttgüter wie das Düngemittel Urea und andere Salze werden nach wie vor überwiegend auf Halde gelagert, da deren Verhalten in Silos immer noch große Herausforderungen birgt. Die damit häufig verbundenen Nachteile wie aufwändige und teilweise mit Radlädern durchgeführte Dosierung und Mischung im „Last In – First Out“ Prinzip führen Jahr für Jahr zu erheblichen wirtschaftlichen Einbußen und zu vermindertem Produktqualität. Die computerunterstützte Analyse des Schüttgutverhaltens mittels diskreter Elemente Methode (DEM) könnte hier Abhilfe schaffen und die notwendigen Daten für die Auslegung prozesssicherer Silos bereitstellen. Allerdings existiert bislang kein geeignetes Kontaktmodell für die Simulation von hygroskopischen Schüttgütern, das die durch Festkörperbrückenbildung erreichte Schüttgüteigenschaft bei unterschiedlichen Betriebsbedingungen wiedergeben kann.

Im Zuge des 14. Fachkolloquiums der WGTL 2018 wurde in [HK18] gezeigt, dass ein DEM-Kontaktmodell für hygroskopische Schüttgüter folgende Eigenschaften abbilden muss, um den kompletten Parameterraum möglicher Betriebsbedingungen mit denselben Materialparametern abzudecken:

- die Festigkeit als Funktion der Feuchtigkeit
- die Festigkeit als Funktion der Zeit
- die Festigkeit als Funktion des Druckes

In diesem Artikel wird der in [HK18] entsprechend Abbildung 1 allgemein vorgestellte Ansatz für ein Simulationsschema zur Berechnung von durch Kristallisation hervorgerufenen Festkörperbrücken konkretisiert und verifiziert. Außerdem wird im Sinne einer Kalibrierung ein einfacher Ablauf zur Ermittlung der benötigten Modellparameter vorgestellt.

2 VORHANDENE DEM-KOHÄSIONSMODELLE FÜR HYGROSKOPISEHE SCHÜTTGÜTER

Für die Entwicklung von Kontaktmodellen für die DEM-Simulation können kohäsive Schüttgüter anhand des Bindungsmechanismus in zwei Gruppen eingeteilt werden. Je nachdem, wie viel Zeit die Ausbildung der zwischen zwei benachbarten Partikeln wirkenden Zugkräfte in Bezug auf die Simulationsdauer benötigt, kann zwischen einem reversiblen und einem irreversiblen Ver-
festigungsmechanismus unterschieden werden: in beiden
Gruppen kann ein Fließen des Schüttgutes nur durch das
Überschreiten der Haftkräfte hervorgerufen werden. Kommt
es zum Fließen eines Schüttgutes mit reversibler
Verfestigung, so bilden sich die entsprechenden Haftkräf-
te kontinuierlich im Laufe der Simulation zwischen den
wechselnden Partikelnachbarn aus. Zu dieser Gruppe ge-
nehmen eine hohes Pulver mit Partikeln im Mikro- und Na-
ometbereich oder feuchtes Schüttgut mit Partikeln bis
deren Strings. Entsprechend der Vielzahl an
Wirkmechanismen gibt es in dieser Gruppe eine große
Bitte an bereits entwickelten Kontaktmodellen, die
unterschiedlich einfach zu implementieren sind, da die Haft-
kräfte in den meisten Fällen lediglich eine Funktion des
Partikelabstandes darstellen.

Bei Schüttgütern mit irreversiblen Verfestigungsme-
chanismus bildet sich bei Überschreitung der Haftkräfte
jedoch nicht gleich wieder eine Haftkraft zum nächsten
Partikel aus. Die hierfür entwickelten Modelle werden
auß Bond-Modelle genannt und werden beispielsweise
für Schüttgüter mit chemischen Verbindungen und Sinter-
brücken oder für hygroskopische Schüttgüter mit kristalli-
nen Festkörperbrücken wie Urea eingesetzt. Die Imple-
mentierung in DEM-Programmen ist etwas aufwändiger,
da zusätzlich zur Ermittlung einer etwaigen Haftkraft zu-
ächst berücksichtigt werden muss, ob zwischen zwei be-
nachbarten Partikeln noch eine aufrechte Verbindung be-
steht oder diese bereits gebrochen ist. Es sei angemerkt,
that der Begriff irreversibel lediglich für die in DEM-
Simulationen übliche Simulationszeit zutreffend ist. Im
Sinne der Zeitverfestigung kann es bei entsprechenden re-
alen Lagerzeiten trotz vorhergehendem Bruch zu einer er-
neuten Ausbildung der Haftkräfte kommen.

Eine in DEM-Programmen häufig verwendete Im-
plementierung eines Bond-Modells ist jene für Felsgestein
nach Poisson und Cundall [PC04]. Die hierfür benötig-
ten Eingabeparameter sind in Tabelle 1 dargestellt.

Obwohl Bond-Modelle für hygroskopische Schüttgü-
ter geeignet scheinen, sind diese für die industrielle An-
wendung zur Auslegung eines Silos für beispielsweise
Urea dennoch kaum einsetzbar, da die Festigkeit von kris-
tallinen Festkörperbrücken im Gegensatz zum ursprüngli-
chen Anwendungsgebiet nach [PC04] sehr stark von der
Lagerdauer und der dabei vorliegenden Feuchtigkeit ab-
hängig ist. Die ohnehin aufwändige Kalibrierung der Mo-
delle, insbesondere des Bond-Radius, muss damit bei va-
riierenden Betriebsbedingungen jedes Mal erneut
durchgeführt werden. Des Weiteren wird der Bond-Radius und damit die Festigkeit zwischen allen Par-
Tabelle 1. Eingabeparameter klassisches Modell mit Bonds

Partikelvariable	Formelzeichen	Einheit
Partikel Durchmesser	d_p	m
Dichte	ρ	kg/m³
E-Modul	E	N/m²
Poissonzahl	ν	-
Stoßzahl	e	-
Gleitreibungswert	μ	-
Rollreibungswert	μ_r	-
Bond-Parameter		
Bond-Radius	r_B	m
Bond-Reichweite	a_{max}	m
Bond-Normalsteifigkeit	k_N	N/m²
Bond-Tangentialsteifigkeit	k_T	N/m²
Bruch-Normalspannung	σ_{max}	N/m²
Bruch-Tangentialspannung	τ_{max}	N/m²
Zeitpunkt der Erstellung	t_{create}	s

Im Folgenden wird daher ein Bond-Modell vorge-
| Artikel is protected by German copyright law |
3 ENTWICKLUNG EINES BOND-MODELLS FÜR HYGROSOPISCHE SCHÜTTGÜTER

Das Prinzip des neuen Bond-Modells wurde bereits in [HK18], siehe Abbildung 1, beschrieben und beruht auf den physikalischen Vorgängen, die für die Entstehung einer kristallinen Festkörperbrücke verantwortlich sind. In groben Zügen reihen sich diese wie folgt aneinander:

1) Feuchtigkeitssatztausch zwischen den Partikeln und der Umgebung über die Partikeloberflächen
2) Bildung von Flüssigkeitsbrücken an den Kontaktstellen durch Kapillarkräfte
3) Lösung des kristallinen Partikelfeststoffes
4) Entstehung von kristallinen Festkörperbrücken durch vollständige Verdampfung oder lokale Übersättigung und Kristallwachstum

Die Zeitskala für die Punkte 3) und 4) ist dabei um ein Vielfaches größer als die für die Punkte 1) und 2). Für detaillierte Informationen siehe beispielsweise [HK18] oder [KWB11].

Das Bond-Modell wird erst zu einem vom Nutzer gewählten Zeitpunkt t_{create} wirksam. Zum diesem Zeitpunkt liegt damit eine zufällige Schüttung mit entsprechenden Partikelabständen a vor. Nun werden zunächst anhand der vorgegebenen Feuchtigkeit S temporäre Flüssigkeitsbrückenradien berechnet, aus denen in weiterer Folge entsprechend der Lagerdauer $t_{storage}$ Bond-Radien ermittelt werden. Die hierfür benötigten Parameter sind in Tabelle 2 zusammengefasst.

Tabelle 2. Eingabeparameter hygroskopisches Bond-Modell
Feuchte-Parameter
Feuchtigkeit
Schüttgut-Porosität
Randwinkel
Bond-Reichweite

Zeit-Parameter	Formelzeichen	Einheit
Zeitpunkt der Erstellung	t_{create}	s
Kristallisationsparameter	t_{delt}	h
Lagerdauer	$t_{storage}$	h

Feststoff-Parameter	Formelzeichen	Einheit
Bond-Normalsteifigkeit	k_N	N/m²
Bond-Tangentialsteifigkeit	k_T	N/m³
Bruch-Normalspannung	σ_{max}	N/m²
Bruch-Tangentialspannung	τ_{max}	N/m²

3.1 BERECHNUNG DER FLÜSSIGKEITSBRÜCKENRADIEN

In Abhängigkeit von der Flüssigkeitsmenge, die in einem Schüttgut enthalten ist, können unterschiedliche Verteilungsarten der Flüssigkeit zwischen den Partikeln unterschieden werden. Die Flüssigkeitsmenge wird dafür in Bezug auf das Porenvolumen durch die Feuchtigkeit S ausgedrückt.

$$ S = \frac{V_{flüssig}}{V_{poren}} = \frac{V_{flüssig}}{\varepsilon \cdot V_{gesamt}} \quad \text{mit} \quad \varepsilon = \frac{V_{poren}}{V_{gesamt}} \quad (1) $$

Darin beschreibt ε die Porosität der Schüttung. Im sogenannten „pendular-state“, dem Bereich von $S_{min} < S < 0,08$, treten die Flüssigkeitsbrücken ausschließlich in Form von ringförmigen Einzelbrücken auf, siehe Abbildung 2. Die minimale Feuchtigkeit, bei der das Schüttgut seine kohäsiven Eigenschaften verliert, wird in [LSB12] mit $S_{min} = 0,002$ angegeben. Im „funicular-state“ $0,08 < S < 0,24$ kommt es allmählich zur Vereinigung einzelner Brücken zu komplexeren Strukturen. Obwohl die globale Verbindung der Flüssigkeitsbrücken in beiden Fällen durch die Poren unterbrochen ist, kann Flüssigkeit entlang der Partikeloberflächen über Kanäle im Größenbereich der Rauheit ausgetauscht werden [LSB12].

Abbildung 2. Verteilungsarten nach Feuchtigkeit [WCM17]

Im Gleichgewichtszustand gleichen sich dennoch die Kapillardrücke durch Flüssigkeitssatztausch in sämtlichen Flüssigkeitsbrücken aneinander an [Sch15]. Der Einfluss der Oberflächenspannung und der Erdbeschleunigung wird dabei vernachlässigt. Nach Pietsch und Rumpf [PR67] lassen sich sowohl die Radien, die Volumina als auch die Kapillardrücke der Flüssigkeitsbrücken bei bekanntem Partikeldurchmesser d_p, Partikelabstand a, Füllungswinkel β und dem Randwinkel δ berechnen, siehe Abbildung 3. Bei vollkommener Benetzung wird der Randwinkel $\delta = 0^\circ$ und die Flüssigkeitsbrücken schließen tangential an die Partikel an.

Abbildung 3. Flüssigkeitsbrückenmodell [PR67]
Um einen Zielwert für den Kapillardruck in Abhängigkeit von der Feuchtigkeit zu erhalten, mit dem in weiterer Folge die lokalen Flüssigkeitsbrückenradien des Gleichgewichtszustandes ermittelt werden können, wird zunächst ein mittlerer Füllungswinkel $\bar{\beta}$ mit Hilfe der in [WR99] präsentierten empirischen Gleichung berechnet:

$$\bar{\beta} = \arcsin \left[\frac{S \varepsilon^2}{(0,36 - 1/\varepsilon C_a C_\delta)^{1/4}} \right]$$ \hspace{1cm} (3)

Diese Gleichung liefert einen expliziten Zusammenhang für $\bar{\beta} = f(S, \varepsilon, a, \delta)$ mit den Korrekturfunktionen C_a und C_δ, die für $a = 0$ und $\delta = 0$ weggelassen werden können:

$$C_a = 1 + 6 \frac{a}{d_p}$$ \hspace{1cm} (4)
$$C_\delta = 1 + 1,1 \sin \delta$$ \hspace{1cm} (5)

Für monodisperses Schüttgut in einem Bereich $0,05 \leq S \leq 0,3$ steht Gl. (3) in guter Übereinstimmung mit dem allgemeinen Modell nach Pietsch und Rumph, mit dem $\bar{\beta}$ nicht in expliziter Form darstellbar ist. Da mehrere DEM-Simulationen gezeigt haben, dass für den mittleren Partikelabstand $\bar{\alpha}$ trotz der Berücksichtigung benachbarter Partikel ohne Durchdringung im Allgemeinen $\bar{\alpha} \leq 0$ gilt, wird der Korrekturfaktor C_a für die Berechnung von $\bar{\beta}$ nicht berücksichtigt.

Entsprechend der Young-Laplace-Gleichung

$$p_K = \gamma_l \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$$ \hspace{1cm} (6)

mit der Oberflächenspannung der Flüssigkeit γ_l und den dafür benötigten Radien nach [PR67]

$$R_1 = \frac{d_p (1 - \cos \beta) + a}{2 \cos (\beta + \delta)}$$ \hspace{1cm} (7)

$$R_2 = \frac{d_p \sin \beta + R_1[\sin (\beta + \delta) - 1]}{2}$$ \hspace{1cm} (8)

kann schließlich der dimensionslose positive kapillare Unterdruck F_{pk} berechnet werden, wenn R_2 mit negativem Vorzeichen in Gl. (6) eingesetzt wird:

$$F_{pk} = \frac{d_p}{\gamma_l}$$ \hspace{1cm} (9)

Die Oberflächenspannung der Flüssigkeit γ_l muss damit nicht ermittelt werden.

In weiterer Folge sollen für den ermittelten dimensionslosen Kapillardruck F_{pk} die lokalen Füllungswinkel β und Flüssigkeitsbrückenradien R_2 in Abhängigkeit vom Partikelabstand a berechnet werden.

Da eine explizite Gleichung für β nach Pietsch und Rumph [PR67] nicht möglich ist, wäre es naheliegend, Gl. (3) für die Berechnung der lokalen Füllungswinkel heranzuziehen. Abbildung 4 zeigt jedoch, dass zwischen der analytischen Gleichung und der empirischen Gleichung bei Verwendung des Korrekturfaktors C_a nach Gl. (4) keine hinreichende Übereinstimmung besteht.

![Abbildung 4. Abhängigkeit des Füllungswinkels vom Abstandverhältnis a/dp [-]](https://example.com/ab4.png)

Wie in Abbildung 4 ersichtlich, kann die analytische Funktion hingegen sehr gut durch folgende kubische Funktion approximiert:

$$\frac{a}{d_p} = A \bar{\beta}^3 + B \bar{\beta}^2 + C \bar{\beta}$$ \hspace{1cm} (10)

Darin werden die Koeffizienten durch empirische Gleichungen in Abhängigkeit von F_{pk} ermittelt:

$$A = 2,1 \cdot 10^{-9} F_{pk}^2 + 4 \cdot 10^{-7} F_{pk} - 2,2 \cdot 10^{-6}$$ \hspace{1cm} (11)

$$B = -10^{-7} F_{pk}^3 + 3,6 \cdot 10^{-6} F_{pk}^2 - 6 \cdot 10^{-5} F_{pk} - 4 \cdot 10^{-5}$$ \hspace{1cm} (12)

$$C = [3,5 \cdot 10^{-5} F_{pk}^2 - 0,0097] e^{\left(\frac{a}{\varepsilon d_p} + 1\right)} - [2,1 \cdot 10^{-9} F_{pk}^2 - 2,1 \cdot 10^{-9} F_{pk}^2 - 0,0084] e^{\left(\frac{a}{\varepsilon d_p}\right)}$$ \hspace{1cm} (13)

Durch Umformung wird Gl. (10) zunächst als reduzierte kubische Gleichung ohne quadratisches Glied angeschrieben und anschließend durch Anwendung der cardanischen Formeln nach β [°] aufgelöst.

In einem Bereich von $0,1 \leq F_{pk} \leq 18$ wird mit den angegebenen Gl. (10)-(13) entsprechend Abbildung 5 eine sehr gute Näherung für Gl. (6) bzw. (9) erreicht. Der für den dimensionslosen Kapillardruck F_{pk} angegebene Bereich deckt bei einer für Schüttgüter realistischen Porosität von $\varepsilon \approx 0,3 - 0,5$ den gesamten Gültigkeitsbereich der Feuchtigkeit von $0,05 \leq S \leq 0,3$ ab. Der Feuchtigkeitsbereich wird durch das zugrunde liegende Modell der
ringförmigen Einzelbrücken beschränkt. Da die Approximation derzeit keine Abhängigkeit vom Randwinkel \(\delta \) enthält, gilt diese ausschließlich für \(\delta = 0 \).

Abbildung 5. Vergleich des Kennfeldes \(f(F_{pk}, \beta, a/d_p) \) nach [PR67] und mittels kubischer Funktion im Gültigkeitsbereich des entwickelten Kontaktmodells

Mit den so ermittelten lokalen Füllungswinkeln können nach Gl. (8) die Flüssigkeitsbrückenradien \(R_2 \) berechnet werden.

3.2 Berechnung der Bond-Radien

Ausgehend von den ermittelten Flüssigkeitsbrückenradien und der zu untersuchenden Lagerdauer können mit Hilfe des Zeitparameters \(t_{63} \) nach Tomas [Tom97] die Bond-Radien \(R_B \) berechnet werden:

\[
R_B = R_2 \cdot \left[1 - e^{-\left(\frac{t_{storage}}{t_{63}} \right)} \right]
\]

(14)

Das Kristallisationswachstum wird nach Gl. (14) durch den Kehrwert der Exponentialfunktion bestimmt. Darin beschreibt \(t_{63} \) jene Zeit, bei der der Kristallisationsfortschritt 63\% beträgt. Bei sehr langer Lagerdauer entspricht der Bond-Radius dem Flüssigkeitsbrückenradius. Je nach Löschlichkeit \(L \) des Feststoffes in der Flüssigkeit entsteht während der Kristallisation ein mehr oder weniger poröser Bond-Querschnitt. Diesem Umstand wird durch die Kalibrierung der Bruchspannung entsprechend Kapitel 4 Rechnung getragen. Da die Löschlichkeit stark temperaturabhängig sein kann (siehe Tabelle 3), ist auch eine direkte Erfassung dieses Parameters in Gl. (14) möglich:

\[
R_B = L \cdot R_2 \cdot \left[1 - e^{-\left(\frac{t_{storage}}{t_{63}} \right)} \right]
\]

(15)

Tabelle 3. Löschlichkeit von Urea in Wasser in Abhängigkeit von der Temperatur

Temperatur °C	0	20	40	60	80	100
\(L \) [g/g]	0,65	1,07	1,65	2,53	4,05	7,40

Die kalibrierte Bond-Bruchspannung nimmt bei Verwendung von Gl. (15) statt Gl. (14) einen anderen Wert an und deren Temperaturabhängigkeit wird durch die Löschlichkeit im Modell berücksichtigt.

4 Kalibrierung der Modellparameter

Für die Durchführung einer DEM-Simulation mit dem vorgestellten Kontaktmodell müssen grundsätzlich die in Tabelle 2 genannten Parameter eingestellt werden. Im Vergleich zu den Parametern in Tabelle 1 muss nun die Feuchtigkeit \(S \) und die Lagerdauer \(t_{storage} \) angegeben werden, statt direkt den unbekannten Bond-Radius zu definieren.

Die Feuchtigkeit des Schüttgutes kann mittels sogenannter Sorptionsisothermen aus der relativen Luftfeuchtigkeit \(RH \) und der Umgebungstemperatur \(T_U \) ermittelt werden. Ein Beispiel für einige Werte der Sorptionsisotherme von Urea bei 25°C zeigt Tabelle 4.

Tabelle 4. Werte der Sorptionsisotherme für Urea bei 25°C

relative Luftfeuchtigkeit \(RH \) [%]	12	33	53	76	92	97
\(X \) [%]	0,09	0,11	0,11	0,67	49,37	58,50

Darin ist \(X \) die meist für Sorptionsisothermen verwendete massenbezogene Materialfeuchte

\[
X = \frac{m(\text{flüssig})}{m(\text{Partikel,trocken})}
\]

(16)

die leicht in die als Input-Parameter benötigte Feuchtigkeit \(S \) umgerechnet werden kann:

\[
S = X \cdot \left(1 - \frac{\rho(\text{Partikel})}{\rho(\text{flüssig})} \right) \cdot \epsilon
\]

(17)

Der typische Verlauf der Sorptionsisothermen nach Tabelle 4 zeigt zunächst eine sehr geringe adsorbierte Feuchtigkeitsmenge und einen starken Anstieg der Feuchtigkeit ab einer kritischen relativen Luftfeuchtigkeit \(CRH \).

Die Porosität \(\epsilon \) kann vielfach aus den Ergebnissen einer ersten Simulation ohne Bonds gewonnen werden. Falls die in der Simulation gewählte Partikelgröße nicht der realen Korngröße entspricht, ist dies jedoch nicht möglich und der Parameter \(\epsilon \) muss kalibriert werden. Auf diesen Fall wird hier nicht näher eingegangen. Eine mögliche Vorgehensweise für dessen Kalibrierung könnte jedoch ein abschließender Vergleich des berechneten Flüssigkeitsbrückenvolumens mit der eingestellten Feuchtigkeit entsprechend Gl. (1) sein.

Für den Randwinkel \(\delta \) muss dessen physikalischer Wert entsprechend der Benetzbarkeit des Schüttgutes mit
der umgebenden Flüssigkeit ermittelt werden. Eine Kalibrierung ist daher nicht erforderlich.

Für die Bond-Reichweite a_{max} kann ein relativ großer Wert gewählt werden. Da bei der Auswahl der richtigen Lösung der kubischen Gleichung keine unphysikalischen Ergebnisse zugelassen werden, wird auch bei einem großen Wert für a_{max} keine Flüssigkeitsbrücke erzeugt, wenn der Kapillardruck bei diesem Abstand nicht den gewünschten Zielwert erreicht. In diesem Sinne legt a_{max} lediglich die Reichweite möglicher Kontaktpartner fest. Für viele Fälle kann a_{max} in einem Bereich von $0.02 \leq a_{\text{max}}/d_F \leq 0.05$ gewählt werden.

Der Zeitpunkt für die Erstellung der Bonds t_{create} wird vom Nutzer anhand des Simulationsablaufs so gewählt, dass die Partikelpackung davor zur Ruhe gekommen ist und die kinetische Energie null ist.

Da kristalline Festkörperbrücken aus demselben Material bestehen wie die Partikel selbst, können für die Bond-Steifigkeiten k_N und k_T dieselben Steifigkeitseinstellungen wie beim kohäsionslosen Partikel-Kontaktmodell verwendet werden. Für den Fall, dass der E-Modul für die Quantifizierung der Partikelsteifigkeit verwendet wird, kann dieser mit

$$k = \frac{E}{L_0}$$ \hspace{1cm} (18)

mit

$$L_0 \approx d_F \quad \text{für} \quad k_N \quad \text{und}$$ \hspace{1cm} (19)

$$L_0 \approx 2R_B \quad \text{für} \quad k_T$$ \hspace{1cm} (20)

in die benötigte Steifigkeit pro Flächeneinheit [N/m²] umgerechnet werden.

Schließlich verbleibenden aus Tabelle 2 die Bruchspannungen σ_{max} bzw. τ_{max} und der Kristallisationsparameter t_{63} für die Kalibrierung. Da Untersuchungen an Einzelkörnern wie in [WKB06] oder [KWB11] im Allgemeinen sehr aufwändig sind, wird hier auf den einachsigen Druckversuch entsprechend Abbildung 6 zurückgegriffen, der zweimal durchgeführt werden muss. Dazu wird das Probenmaterial in beiden Fällen in Bezug auf Feuchtigkeit und Temperatur gleich vorbereitet. Anschließend werden die Proben durch Druck von oben vorkomprimiert und in einer Klimakammer unter definierten Bedingungen gelagert. Anschließend werden die Wände der meist zylindrischen Probengeometrie entfernt und die Probe wird durch Belastung von oben zerdrückt. Anhand der maximal auftretenden Kraft und dem Querschnitt der Probe wird die Druckfestigkeit σ_c bestimmt.

Die erste Probe wird so lange gelagert, dass der Kristallisationsprozess abgeschlossen ist und mit weiterem Lagerdauer entsprechend Abbildung 7 keine weitere Zu-nahme der Druckfestigkeit zu erwarten ist. Der bei t_1 ermittelte Festigkeitswert σ_1 dient zur Kalibrierung der maximalen Bruchspannungen σ_{max} und τ_{max}.

Zuvor muss der noch unbekannte und bereits für die Kalibrierungssimulationen benötigte Parameter t_{63} bestimmt werden. Dies erfolgt anhand der zweiten Probe nach Abbildung 7, die nur für einige Stunden gelagert wird. Die genaue Lagerzeit t_2 hängt vom Schüttgut und der zugesetzten Flüssigkeit ab. Ziel ist die Bestimmung eines repräsentativen Punktes σ_2 auf der Verfestigungskurve zur Bestimmung von t_{63} mit:

$$t_{63} = -\frac{t_2}{\ln\left(1 - \frac{\sigma_2}{\sigma_1}\right)}$$ \hspace{1cm} (21)

Abbildung 7. Verfestigungskurve für die Kalibrierung des Bond-Modells mittels einachsigen Druckversuches

5 VERIFIKATION UND VALIDIERUNG

Für die Verifikation des entwickelten Kontaktmodells wird ein einachsiger Druckversuch simuliert und die bei unterschiedlichen Lagerdrücken, Feuchtigkeiten und Lagerdauer erreichten Druckfestigkeiten qualitativ bewertet. Dazu werden Partikel mit einem einheitlichen Durchmesser von 6 mm in einen virtuellen Probenzylinder
gefüllt. Der Zylinder hat einen Durchmesser von 61 mm und eine Höhe von 85 mm. Die folgenden Abbildungen zeigen die Ergebnisse dieser Simulationen.

Abbildung 8. Druckfestigkeit in Abhängigkeit von dem Lagerdruck bei \(t_{\text{storage}} = t_{63} \) und \(S = 0,3 \).

Abbildung 9. Druckfestigkeit in Abhängigkeit von der Feuchtigkeit bei 4 kPa und \(t_{\text{storage}} = t_{63} \).

Abbildung 10. Druckfestigkeit in Abhängigkeit von der Lagerdauer bei 4 kPa und \(t_{\text{storage}} = t_{63} \).

Entsprechend Abbildung 8 ist eine Abhängigkeit vom Lagerdruck nur bei sehr geringen Drücken gegeben. Der Grund dafür liegt in der starken Annäherung der Partikel durch Neuanordnung von einer losen Schüttung hin zu einer dichten Packung. Die weitere Annäherung bei höheren Drücken ist dagegen relativ gering. Bei üblichen Silodrücken ist die Abhängigkeit eher gering. Dies deckt sich mit den Beobachtungen von Wahl et al. [WKB06].

Der Verlauf der Druckfestigkeit in Abhängigkeit von der Feuchtigkeit und der Lagerdauer, siehe Abbildung 9 und 10, entsprechen den Erwartungen. Eine detaillierte Validierung durch Vergleichsmessungen steht noch aus.

6 ZUSAMMENFASSUNG UND AUSBlick

Es wurde ein DEM-Kontaktmouldell für hygroskopische Schüttgüter entwickelt. Wesentliches Merkmal ist dessen Abhängigkeit von der Lagerdauer und der Feuchtigkeit. Mit einer einmaligen Kalibrierung kann damit ein für alle Betriebsbedingungen gültiger Parametersatz gefunden werden. Mit Hilfe der vorgestellten Kalibriermethodik können sämtliche benötigte Parameter mit einem einfachen Prüfstand und geringem Aufwand ermittelt werden. Die Verifikation des Modells erfolgte anhand unterschiedlicher Parametervariationen und zeigt ein vielversprechendes Verhalten.

Im nächsten Schritt soll das Modell für unterschiedliche hygroskopische Schüttgüter wie beispielsweise Urea, Zucker, etc. kalibriert werden. Anschließend werden die Simulationsresultate mit umfassenden Messreihen verglichen.

Die weiteren Schritte umfassen außerdem eine Erweiterung des Modells hinsichtlich folgender Punkte:

- Berücksichtigung einer möglichen Partikelgrößenverteilung
- Erfassung von Randwinkeln \(\delta \neq 0^\circ \)
- Abbildung von lokalen Feuchtigkeits- und Temperaturunterschieden

FORMELZEICHEN

\[
\begin{align*}
\alpha & \quad [\text{m}] \quad \text{Partikelabstand} \\
\delta & \quad [\text{m}] \quad \text{Partikeldurchmesser} \\
F_{pk} & \quad [-] \quad \text{dimensionsloser Kapillardruck} \\
k_N & \quad [\text{N/m}^3] \quad \text{Bond-Normalsteifigkeit} \\
k_T & \quad [\text{N/m}^3] \quad \text{Bond-Tangentialsteifigkeit} \\
L & \quad [\text{g/g}] \quad \text{Löslichkeit} \\
p_K & \quad [\text{Pa}] \quad \text{Kapillardruck} \\
R_2 & \quad [\text{m}] \quad \text{Flüssigkeitsbrükenradius} \\
R_B & \quad [\text{m}] \quad \text{Bond-Radius} \\
S & \quad [-] \quad \text{Feuchtigkeit} \\
t_{63} & \quad [\text{h}] \quad \text{Kristallisationsparameter} \\
t_{\text{storage}} & \quad [\text{h}] \quad \text{Lagerdauer} \\
\chi & \quad [\text{g/g}] \quad \text{massenbezogene Materialfeuchte} \\
\beta & \quad [\text{rad}] \quad \text{Füllungswinkel} \\
\tilde{\beta} & \quad [\text{rad}] \quad \text{mittlerer Füllungswinkel} \\
\delta & \quad [\text{rad}] \quad \text{Randwinkel} \\
\varepsilon & \quad [-] \quad \text{Porosität} \\
\sigma_c & \quad [\text{N/m}^2] \quad \text{Druckfestigkeit} \\
\sigma_{\text{max}} & \quad [\text{N/m}^2] \quad \text{Bruch-Normalspannung} \\
\tau_{\text{max}} & \quad [\text{N/m}^2] \quad \text{Bruch-Schubspannung}
\end{align*}
\]
LITERATUR

[BKW07] Bröckel, U.; Kirsch, R.; Wahl, M.; Feise, H. J.: Formation and strength of solid bridges in bulk solids. Particulate Science and Technology, 2007, 26 (1), S. 23-32

[HK18] Haber, A.; Kartnig, G.: Ansätze zur Berücksichtigung der zeit- und ortsabhängigen Eigenschaften von Festkörperbrücken in DEM-Simulationen. In: Logistics Journal: Proceedings, 2018

[KWB11] Kirsch, R.; Williams, R.; Bröckel, U.; Hammond, R.; Jia, X.: Direct Observation of the Dynamics of Bridge Formation between Urea Prills. In: Industrial & Engineering Chemistry Research, 2011, 50 (20), S. 11728–11733

[LSB12] Lukyanov, A. V.; Sushchikh, M. M.; Baines, M. J.; Theofanous, T. G.: Superfast nonlinear diffusion: Capillary transport in particulate porous media. Physical review letters, 2012, 109(21), S 214501.

[Mee12] Meessen, J. H.: Urea. In: Ullmann’s Encyclopedia of Industrial Chemistry, 2012, S. 657-695

[PC04] Potyondy, D. O.; Cundall, P. A.: A bonded-particle model for rock. In: International journal of rock mechanics and mining sciences, 2004, 41 (8), S. 1329-1364

[PR67] Pietsch, W.; Rumpf, H.: Haftkraft, Kapillardruck, Flüssigkeitsvolumen und Grenzwinkel einer Flüssigkeitsbrücke zwischen zwei Kugeln. In: Chemie Ingenieur Technik, 1967, 39 (15), S. 885-893

[Sch15] Schaber, M.: Flüssigkeitsumverteilung in feuchten Granulaten, Dissertation, Universität des Saarlandes, Fakultät für Naturwissenschaften und Technik, Saarbrücken, 2015

[Tom97] Tomas, J.: Zur Verfestigung von Schüttgütern – Mikroprozesse und Kinetikmodelle. In: Chemie Ingenieur Technik, 1997, 69 (4), S. 455-467

[WKB06] Wahl, M.; Kirsch, R.; Bröckel, U.; Trapp, S.; Bottlinger, M.: Caking of Urea Prills. In: Chemical Engineering & Technology, 2006, 129 (6), S. 674–678

[WBB08] Wahl, M.; Bröckel, U.; Brendel, L.; Feise, H.; Weigl, B.; Röck, M.; Schwedes, J.: Understanding powder caking: Predicting caking strength from individual particle contacts. In: Powder technology, 2008, 188 (2), S. 147-152

[WCM17] Washino, K.; Chan, E. L.; Midou, H.; Tsuji, T.; Tanaka, T.: Tangential viscous force models for pendular liquid bridge of Newtonian fluid between moving particles. In: Chemical Engineering Science, 2017, 174, S. 365-373

[WR99] Weigert, T.; Ripperger, S.: Calculation of the liquid bridge volume and bulk saturation from the half-filling angle. In Particle & Particle Systems Characterization, 1999, 16 (5), S. 238-242

Dipl.-Ing. Alexander Haber, Assistent am Institut für Konstruktionswissenschaften und Technische Logistik an der Technischen Universität Wien

Univ.Prof. Dipl.-Ing. Dr. Georg Kartnig, Professor am Institut für Konstruktionswissenschaften und Technische Logistik, Leiter des Fachbereichs Konstruktionslehre und Fördertechnik an der Technischen Universität Wien

Adresse: Institut für Konstruktionswissenschaften und Technische Logistik, Technische Universität Wien, Getreidemarkt 9/307, 1060 Wien, Österreich

Telefon: +43-1-58801-30743

E-Mail: alexander.e307.haber@tuwien.ac.at, georg.kartnig@tuwien.ac.at