FUNDAMENTAL GROUP OF NON-SINGULAR LOCUS OF LAURICELLA’S F_C

TOMOHIDE TERASOMA

Abstract. In this paper, we give a set of generators and relations of the fundamental group $\pi_1(Y_n)$ of the non-singular locus Y_n of Lauricella’s hypergeometric function F_C.

Contents

1. Introduction and motivation 1
2. Recall of a result of Salvetti 3
3. F_C-hyperplane arrangement 5
 3.1. The arrangement \mathcal{H}_n 5
 3.2. Group action 5
 3.3. Cell complex for the quotient space 6
 3.4. Relations for type 1 and type 2 7
 3.5. Definition of γ_i and their relations 8
4. Fundamental relation 9
 4.1. Main theorem 9
 4.2. Simplification 10
References 11

1. INTRODUCTION AND MOTIVATION

The Lauricella hypergeometric function $F^{(n)}_C$ of n variable defined by

$$F^{(n)}_C(a, b; c_1, \ldots, c_n; z_1, \ldots, z_n) = \sum_{m_1, \ldots, m_n \in \mathbb{Z}_{\geq 0}} \frac{(a, m_1 + \cdots + m_n)(b, m_1 + \cdots + m_n) z_1^{m_1} \cdots z_n^{m_n}}{(c_1, m_1) \cdots (c_n, m_n) m_1! \cdots m_n!},$$

and has the following integral expression ([G]):

$$(\text{const.}) \int \prod_{k=1}^n t_k^{-c_k} \cdot (1 - \sum_{k=1}^n t_k) \sum_{k=1}^n c_k - a - n \cdot (1 - \sum_{k=1}^n \frac{z_k}{t_k})^{-b} dt_1 \cdots dt_n.$$
Using Cayley technique [GKZ], the function $F_C^{(n)}$ is locally holomorphic on $(z_i) \in (\mathbb{C}^\times)^n$ if the toric hypersurface
\[
\{((t_i), \lambda) \in (\mathbb{C}^\times)^{n+1} \mid \lambda(1 - \sum_{k=1}^{n} t_k) + (1 - \sum_{k=1}^{n} \frac{z_i}{t_k}) = 0\}
\]
is non-degenerate for Newton polyhedra. For non-degeneracy condition, see [T].

Since the non-degeneracy condition for a proper Newton polyhedra is equal to the smoothness of the varieties
\[
\{\lambda(1 + \sum_{i \in I} t_i) + \sum_{j \in J} a_j t_j = 0\},
\]
\[
\{\lambda(\sum_{i \in I} t_i) + 1 + \sum_{j \in J} a_j t_j = 0\}
\]
for $I, J \subset \{1, \ldots, n\}$ and $I \cap J = \emptyset$. Therefore the non-degeneracy condition is equivalent to the smoothness to the open face. Using Jacobian criterion, the singular locus is defined by
\[
1 - \sum_{k=1}^{n} t_k = 0, \\
\lambda - \frac{z_i}{t_i} = 0, \\
\lambda(1 - \sum_{k=1}^{n} t_k) + (1 - \sum_{k=1}^{n} \frac{z_i}{t_k}) = 0.
\]

By setting $\mu^2 = \lambda, x_i^2 = z_i$, and using the first and the second equations, μ is obtained by
\[
t_i \mu = \epsilon_i x_i, \quad \mu - \sum_{i=1}^{n} \epsilon_i x_i = \mu(1 - \sum_{i=1}^{n} t_i) = 0.
\]
Here $\epsilon_i \in \{-1, 1\}$. Again, using the first and the second equations, the third equation is equal to
\[
0 = 1 - \sum_{i=1}^{n} \frac{x_i^2}{t_i} = 1 - \lambda \sum_{i=1}^{n} t_i = 1 - \lambda = (1 + \mu)(1 - \mu)
\]
\[
= (1 + \sum_{i=1}^{n} \epsilon_i x_i)(1 - \sum_{i=1}^{n} \epsilon_i x_i).
\]

Therefore under the μ_2^n-covering map,
\[
\mathbb{C}^n = \{(x_1, \ldots, x_n) \mid (x_i) \mapsto (x_i^2) \in \mathbb{C}^n = \{(z_1, \ldots, z_n)\}\}
\]
the pull back Y_n of Y_n is given by
\[
Y_n = \{(x_i) \mid \prod_{k=1}^{n} x_k \prod_{\epsilon_i \in \{-1, 1\}}(1 - \sum_{i=1}^{n} \epsilon_i x_i) \neq 0\}.
\]

See also [HT]. Therefore $Y_n \subset \{(z_1, \ldots, z_n)\}$ is isomorphic to Y_n/μ_2^n.

In the study of monodromy of hypergeometric function of type F_C, it is a basic problem to give an expression of the fundamental group of Y_n. The
The fundamental group of the non-singular locus of Lauricella’s F_C generator and relations of the fundamental group for $n = 2$ and $n = 3$ is determined in [GK]. We prove the following presentation of the fundamental group which is conjectured in [GK].

Theorem 1.1 (Main Theorem, see Theorem 4.1 and Proposition 4.2). The fundamental group of Y_n is generated by elements $\Gamma_0, \Gamma_1, \ldots, \Gamma_n$ with the relations

$$[\Gamma_i, \Gamma_j] = 1, \quad (1 \leq i, j \leq n), \quad (\Gamma_0 \Gamma_i)^2 = (\Gamma_i \Gamma_0)^2, \quad (1 \leq i \leq n),$$

and

$$[M(I)^{-1}\Gamma_0 M(I), M(J)^{-1}\Gamma_0 M(J)] = 1$$

for all subsets I and J of $\{1, \ldots, n\}$ satisfying $I \cap J = \emptyset, I \neq \emptyset, J \neq \emptyset$ and $\#I + \#J \leq n - 1$. Here we set $M(I) = \prod_{i \in I} \Gamma_i$.

For the proof of this theorem, we use a cell complex constructed by Salvetti [S], which is homotopic to the complement of a hyperplane arrangement in \mathbb{C}^N and stable under a group action. The author is grateful for discussions with Y. Goto and K. Matsumoto in “Workshop on Special Varieties in Tambara, 2017”, in Tambara International Seminar House.

2. **Recall of a result of Salvetti**

We recall a construction of 2-skeleton of a cell complex which is homotopic to the complement of real hyperplane arrangement. A finite set $\mathcal{H} = \{H_i\}_{i \in I}$ of complex hyperplanes in \mathbb{C}^n is called a hyperplane arrangement. In this paper, we are interested in the topological space

$$Y = Y(\mathcal{H}) = \mathbb{C}^n - \bigcup_{i \in I} H_i.$$

A hyperplane arrangement is called a real hyperplane arrangement if the defining equations of H_i is defined over \mathbb{R} for all $i \in I$. For a real hyperplane arrangement \mathcal{H}, we set $H_i, \mathbb{R} = H_i \cap \mathbb{R}^n$. The set $\{H_i, \mathbb{R}\}_{i \in I}$ is denoted by \mathcal{H}_R. A subset of \mathbb{R}^n which can be obtained by the intersection of finite number of H_i, \mathbb{R}’s is simply called a linear subset of \mathcal{H}_R. As a special case, the total space \mathbb{R}^n is an n-dimensional linear subset. Let L be an i-dimensional linear subset of \mathcal{H}_R. A connected component of the complement of the union of proper linear subsets of L in \mathbb{R}^n is called an i-chamber of \mathcal{H}_R and the set of i-chambers is denoted by $\text{Ch}_i(\mathcal{H}_R)$. Each i-chamber is a convex set.

We define the dual cell complex of \mathcal{H}_R as follows. For each i-dimensional chamber σ, we choose a vertex v_σ in the interior of σ. The set of 0-cell of the dual cell complex is given by $D_{\sigma} = v_\sigma$, where σ is an n-chamber.

Let τ be an $(n - 1)$-chamber. Then there exist exactly two n-chambers τ_1 and τ_2 such that $\overline{\tau_i} \supset \tau$ for $i = 1, 2$. Here $\overline{\tau}$ is the closure of τ in \mathbb{R}^n. We consider 1-cell D_τ by considering the union of segments $\Delta(v_{\tau_1}, v_\tau)$ and $\Delta(v_{\tau_2}, v_\tau)$. We continue this procedure to define 2-cell D_σ attached to $(n - 2)$-dimensional chamber as follows. If σ_1, σ_2 and σ are $n, (n - 1)$ and $(n - 2)$-chambers, such that

$$\overline{\sigma_1} \supset \overline{\sigma_2} \supset \overline{\sigma},$$
A sequence $F = F(\sigma_1, \sigma_2, \sigma)$ as above is called a (descending) flag of length 3. The triangle $\Delta(v_{\sigma_1}, v_{\sigma_2}, v_{\sigma})$ is called the dual flag F^* of F. The union of dual flags containing v_{σ} is called the 2-dimensional dual cell D_{σ} of σ.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{dual_cell.png}
\caption{Dual cell}
\end{figure}

We recall the construction of the 2-skeleton X_2 of the cell complex X after Salvetti [S], which is homotopy equivalent to the space $Y = Y(\mathcal{H})$. The set $C_0(X)$ of 0-cell in X is the set $\{\widetilde{D}_{\sigma}\}_{\sigma \in \text{Ch}_n}$ of the copy \widetilde{D}_{σ} of D_{σ}.

The set $C_1(X)$ of 1-cell consists of $\widetilde{D}_{\sigma, \tau}$ for $\sigma \in \text{Ch}_n, \tau \in \text{Ch}_{n-1}$ such that $\overline{\sigma} \supset \tau$. The n-chamber lying on the opposite side of σ with respect to the $(n-1)$-chamber τ is denoted by $\rho_{\tau}(\sigma)$. The attaching map $\partial \widetilde{D}_{\sigma, \tau} \to X_0$ is given by connecting two points σ and $\rho_{\tau}(\sigma)$. The 1-cell $\widetilde{D}_{\sigma, \tau}$ is called an arrow from σ to $\rho_{\tau}(\sigma)$. The composite of several arrows compatible with the directions is called an oriented path.

The set $C_2(X)$ of 2-cell consists of $\widetilde{D}_{\sigma, \tau}$ for $\sigma \in \text{Ch}_n, \tau \in \text{Ch}_{n-2}$ such that $\overline{\sigma} \supset \tau$. The n-chamber lying on the opposite side of σ with respect to the $(n-2)$-chamber τ is denoted by $\rho_{\tau}(\sigma)$ and the vertex in $\rho_{\tau}(\sigma)$ is denoted by $\rho_{\tau}(v_{\sigma})$ (see Figure 2). Then there exist exactly two shortest paths from v_{σ} to $\rho_{\tau}(v_{\sigma})$. The attaching map $\partial \widetilde{D}_{\sigma, \tau} \to X_1$ is given by bounding the two shortest paths from v_{σ} to $\rho_{\tau}(v_{\sigma})$ (see Figure 2).

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{relations.png}
\caption{Relations}
\end{figure}
Proposition 2.1 (Salvetti). The natural inclusion $X_2 \to Y$ induces an isomorphism of fundamental groups

$$\pi_1(X_2) \to \pi_1(Y).$$

As a consequence, the fundamental groupoid is generated by $\tilde{D}_{\tau_1,\tau_2}$ for $\tau_1 \in \text{Ch}_n, \tau_2 \in \text{Ch}_{n-1}, \overline{\tau_1} \supset \overline{\tau_2}$, and the relation is given by $\tilde{D}_{\sigma_1,\sigma_2}$ for $\sigma_1 \in \text{Ch}_n, \sigma_2 \in \text{Ch}_{n-2}, \overline{\sigma_1} \supset \overline{\sigma_2}$.

3. F_C-hyperplane arrangement

3.1. The arrangement \mathcal{H}_n. For an element $\epsilon = (\epsilon_1, \ldots, \epsilon_n) \in \{-1,1\}^n$, we define a hyperplane H_ϵ by

$$H_\epsilon : \epsilon_1 x_1 + \cdots + \epsilon_n x_n = 1.$$

We define n-dimensional F_C-arrangement \mathcal{H}_n by the union of the set of hyperplanes $\{H_\epsilon\}$ $(\epsilon \in \{-1,1\}^n)$ and that of coordinate hyperplanes

$$L_i : x_i = 0, \quad (i = 1, \ldots, n).$$

The following proposition is used to classify $(n-2)$-chambers in \mathcal{H}_n.

Proposition 3.1. (1) Let $\epsilon, \epsilon' \in \{-1,1\}^n$ such that $\# \{i \mid \epsilon_i \neq \epsilon'_i\} \geq 2$ and set

$$H_{\epsilon,\epsilon'} = H_\epsilon \cap H_{\epsilon'}.$$

A hyperplane in \mathcal{H} containing $H_{\epsilon,\epsilon'}$ is equal to H_ϵ or $H_{\epsilon'}$.

(2) For an element $\epsilon \in \{-1,1\}^n$ and an integer i with $1 \leq i \leq n$, we set

$$H_{\epsilon,i} = H_\epsilon \cap L_i.$$

A hyperplane in \mathcal{H} containing $H_{\epsilon,i}$ is equal to L_i, H_ϵ or $H_{g(i)\epsilon}$. Here

$$g(i)(\epsilon_1, \ldots, \epsilon_n) = (\epsilon_1, \ldots, \epsilon_i, \ldots, \epsilon_n).$$

(3) Let i, j be distinct integers such that $1 \leq i, j \leq n$ and set

$$H_{i,j} = L_i \cap L_j.$$

A hyperplane in \mathcal{H} containing $H_{i,j}$ is equal to L_i or L_j.

3.2. Group action. On the space Y, the group $\mu_2^n = \{1, -1\}^n$ acts by

$$g : \mathbb{C}^n \to \mathbb{C}^n : (x_1, \ldots, x_n) \mapsto (g_1 x_1, \ldots, g_n x_n)$$

for $g = (g_1, \ldots, g_n) \in \mu_2^n$. The group μ_2^n acts on the sets Ch_i. We can choose the set of vertex $\{v_\sigma\}_{\sigma \in \text{Ch}_i}$ so that they are stable under the action of μ_2^n.

Lemma 3.2. On the topological space X_2, the action of the group μ_2^n on X_2 is cell-wise and fixed point free.

Proof. The group acts on Ch_n freely. Therefore it acts freely on the set of 0, 1 and 2-cells. \qed
3.3. Cell complex for the quotient space. We consider topological space \(\overline{X_2} = X_2/\mu_2^n \). Then \(\overline{X_2} \) is a cell complex. We have the following proposition.

Proposition 3.3. The natural map \(\pi_1(\overline{X_2}) \to \pi_1(Y/\mu_2^n) \) is an isomorphism.

We describe the cell complex \(\overline{X_2} \) in this subsection. We set \(R_{>0} = \{ x \in \mathbb{R} \mid x > 0 \} \), \(R_{\geq 0} = \{ x \in \mathbb{R} \mid x \geq 0 \} \).

The subset of \(i \)-chambers in \(Ch_i \) contained in \(R_{\geq 0} \) is denoted by \(Ch_i \).

The set \(C_0(\overline{X}) \) of 0-cells in \(\overline{X} \) is identified with \(\{ \tilde{D}_\sigma \mid \sigma \in \overline{Ch}_n \} \). There are the following two kinds of 1-cells in \(\overline{X} \): The image of \(\tilde{D}_{\sigma,\tau} \) such that

1. (type 1, non-closed one cell) \(\tau \subset H_\epsilon, (\epsilon \in \{-1, 1\}^n) \).
2. (type 2, closed one cell) \(\tau \subset L_i, (1 \leq i \leq n) \).

There are three kinds of 2-cells in \(\overline{X_2} \): The image of \(\tilde{D}_{\sigma,\tau} \) such that

1. (type 1, interior disc) \(\tau \subset H_\epsilon \cap H_\epsilon' \).
2. (type 2, boundary disc) \(\tau \subset H_\epsilon \cap L_i \).
3. (type 3, coordinate disc) \(\tau \subset L_i \cap L_j \).

Definition 3.4. Let \(\sigma \) be an element in \(\overline{Ch}_n \). We define height \(h(v_\sigma) \) of \(v_\sigma = \tilde{D}_\sigma \) by the number of hyperplanes of the form \(H_\epsilon (\epsilon \in \{-1, 1\}^n) \) separating 0 and \(v_\sigma \). The number \(h(v_\sigma) \) is also denoted by \(h(\sigma) \).

Proposition 3.5.

1. A interior disc (type 1) is attached to four 1-cells and contains four 0-cells. The shape of height is as follows.
2. A boundary disc (type 2) is attached to six 1-cells and contains three 0-cells.
3. A coordinate disc (type 3) is attached to two 1-cells and contains one 0-cells.

We define spanning complex which is a slight generalization of spanning tree. A 1-cell \(\tilde{D}_{\sigma,\tau} \) is called a spanning 1-cell if it is type 1 and \(h(\sigma) + 1 = h(\rho(\tau)) \), i.e. \(\rho(\tau) \) is farer from the origin than \(\sigma \). A 2-cell \(\tilde{D}_{\sigma,\tau} \) is called a spanning 2-cell if it is type 1 and \(h(\sigma) \) is the smallest among vertices contained in \(D_\tau \). The union of spanning 1 and 2-cells forms a sub cell complex \(S \) of \(\overline{X_2} \). The complex \(S \) is called the spanning complex of \(\overline{X_2} \).

Lemma 3.6. The spanning complex \(S \) is simply connected.

Proof. It is identified with a 2-skeleton of the dual cell complex of \(R_{>0}^n \) which is simply connected. \(\square \)

We define \(X_2^{(s)} \) by obtaining contracting a subset \(S \subset \overline{X_2} \) to a point \(s \). By the above proposition, we have

Proposition 3.7. The natural map

\[\pi_1(\overline{X_2}) \to \pi_1(\overline{X_2}^{(s)}, s) \]

is an isomorphism.
Definition 3.8. A 1-cell $\widetilde{D}_{\sigma,\tau}$ in \overline{X}_2 is called a generator if it is
(1) type 1 and not spanning, or
(2) type 2.

A generator defines a closed path in $\overline{X}_2^{(s)}$. Then the set of generator
generates the group $\pi_1(\overline{X}_2^{(s)})$.

3.4. Relations for type 1 and type 2.

3.4.1. Type 1 relation. First, we consider a type 1 2-cells $\widetilde{D}_{\sigma,\tau}$ in \overline{X} with
$\tau \subset H_\epsilon \cap H_{\epsilon'}$. The arrows a, b, c and d are spanning 1-cells and a, b, c and d
define elements in $\pi_1(\overline{X}_2^{(s)}, s)$. Their relations are given as

$$a = c, \quad b = d, \quad ab = ba.$$

3.4.2. Type 2 relation. Next we consider a type 2 2-cells $\widetilde{D}_{\sigma,\tau}$ in \overline{X} as in
Figure 4. The arrows \overline{b} and \overline{c} are spanning 1-cells and reduced to one point

in $\overline{X}_2^{(s)}$. We consider a $(n - 2)$-chamber τ contained in L_i. The relations
beginning from $v_1 = v_{\sigma_1}, v_2 = v_{\sigma_2}$ and $v_3 = v_{\sigma_3}$ are the following:

$$\partial \widetilde{D}_{\sigma_1, \tau} : a = d.$$
\[\partial \widetilde{D}_{\sigma_2, \tau} : ba = dc, \]
\[\partial \widetilde{D}_{\sigma_3, \tau} : cba = dcb. \]

We can easily check the following proposition.

Proposition 3.9. The above relations are equivalent to
\[(3.2) \quad d = a, \quad c = a^{-1} ba, \quad (ab)^2 = (ba)^2. \]

We consider the above situation and set \(\epsilon = (\epsilon_1, \ldots, \epsilon_n) \) and \(\epsilon' = (\epsilon'_1, \ldots, \epsilon'_n) \). Here \(\epsilon' = g^{(i)}(\epsilon) \) where \(g^{(i)} \) is defined as (3.1). By the definition of height, \(v_1 \) is the closest vertex from the origin. Therefore we have \(\epsilon_j = \epsilon'_j \) if \(j \neq i \) and \(\epsilon_i = 1 \) and \(\epsilon'_i = -1 \).

3.5. Definition of \(\gamma_i \) and their relations.

In this subsection, we define \(\gamma_i \) and study their relations.

Definition 3.10. We define \(\gamma_i = \widetilde{D}_{\sigma_i, \tau_i} \) for \(i = 0, 1, \ldots, n \) where
\[\sigma_0 = \{ (x_i) \in \mathbb{R}^n \mid x_i > 0 \quad (0 \leq i \leq n), \quad \sum x_i < 1 \}, \]
\[\tau_0 = \{ (x_i) \in \mathbb{R}^n \mid x_i > 0 \quad (0 \leq i \leq n), \quad \sum x_i = 1 \}, \]
\[\tau_i = \{ (x_i) \in \mathbb{R}^n \mid x_i > 0 \quad (0 \leq j \leq n, j \neq i), \quad \sum x_i < 1, \quad x_i = 0 \}. \]

Actually \(\sigma_0 \) is a chamber since if \(x = (x_1, \ldots, x_n) \in \sigma_0 \) and \(\epsilon \neq (1, \ldots, 1) \) then
\[\sum_i \epsilon x_i < \sum_i x_i < 1, \]
and the point \(x \) is not contained in \(H_{\epsilon, \mathbb{R}} \).

By previous subsection, we have
\[(3.3) \quad [\gamma_i, \gamma_j] = 1, \quad (1 \leq i, j \leq n), \]
\[(\gamma_0 \gamma_i)^2 = (\gamma_i \gamma_0)^2, \quad (1 \leq i \leq n). \]

Proposition 3.11.

1. Under the notation of figure 1, we have \(a = \gamma_i \) in \(\pi_1(\overline{X_2(s)}) \).

2. Let \(\tau_1 \) and \(\tau_2 \) be two elements in \(\overline{\mathcal{C}ln}_{n-1} \) contained a common hyperplane \(H_{\epsilon, \mathbb{R}} \). Suppose that 1-cells \(\widetilde{D}_{\sigma_1, \tau_1} \) and \(\widetilde{D}_{\sigma_2, \tau_2} \) are generators. Then the paths obtained by them are homotopic to each other. These paths defines a common element in \(\pi_1(\overline{X_2(s)}), s \) which is denoted by \(\gamma_\epsilon \).

3. For \(\epsilon \in \{-1, 1\}^n, \epsilon \neq (-1, \ldots, -1) \), we set
\[S(\epsilon) = \{ i \mid 1 \leq i \leq n, \epsilon_i = -1 \}, \quad m_\epsilon = \prod_{i \in S(\epsilon)} \gamma_i. \]

Then we have
\[(3.4) \quad \gamma_\epsilon = m_\epsilon^{-1} \gamma_0 m_\epsilon. \]
Proof. (1) We use the first relation (3.2) iteratively and have the statement.
(2) This follows from the relations obtained by a type 1 2-cells. (3) Let \(\epsilon \) be an element in \(\{-1,1\}^n \) and \(\epsilon \neq (-1, \ldots, -1) \). We set \(S(\epsilon) = \{i_1, \ldots, i_k\} \). We consider a chain \(\epsilon^{(0)}, \ldots, \epsilon^{(k)} \in \{-1,1\}^n \) defined by
\[
\epsilon^{(0)} = (1, \ldots, 1), \epsilon^{(1)} = g^{(i_1)}(\epsilon^{(0)}), \epsilon^{(2)} = g^{(i_2)}(\epsilon^{(1)}), \ldots, \epsilon^{(k)} = g^{(i_k)}(\epsilon^{(k-1)}).
\]
Then \(\epsilon^{(k)} = \epsilon \).

Lemma 3.12. \(H_{\epsilon(j)} \cap R^+ \neq \emptyset \), \(j = 0, \ldots, k \) and
\[
H_{\epsilon(j)} \cap H_{\epsilon(j-1)} \cap \{(x_l) \in R^n | x_l > 0 \text{ for } l \neq i_j\} \neq \emptyset \quad (i = 1, \ldots, k).
\]

Proof of Lemma 3.12. By descending induction, it is enough to prove the lemma for \(j = k \). We set \(\epsilon^{(k)} = (\epsilon_1, \ldots, \epsilon_n) \). First statement holds since \(\epsilon_j = 1 \) for some \(j \). We prove the second statement. Since \(\epsilon_i = -1 \), there exists \(j \neq i_k \) such that \(\epsilon_j = 1 \). Therefore the equation
\[
x_{i_k} = 0, \epsilon_1 x_1 + \cdots + \epsilon_k x_k + \cdots + \epsilon_n x_n = 1.
\]
has a solution satisfying \(x_l > 0 \) for \(l \neq i_j \).

By applying the second relation in (3.2) iteratively, we have statement (3). □

Using Proposition 3.11 (3) and the relation of type 1, we have the following theorem.

Theorem 3.13. We have
\[
[m_{\epsilon}^{-1} \gamma_0 m_{\epsilon}, m_{\epsilon'}^{-1} \gamma_0 m_{\epsilon'}] = 1.
\]
for \(\epsilon, \epsilon' \in \{-1,1\}^n \) and \(H_{\epsilon,R} \cap H_{\epsilon',R} \cap R^+ \neq \emptyset \).

4. FUNDAMENTAL RELATION

4.1. Main theorem. In this section, we prove the following theorem.

Theorem 4.1. The relations (3.3) and (3.5) are fundamental relations for \(\pi_1(X_2^{(s)}, s) \) with generators \(\gamma_0 \) and \(\gamma_i \) \((1 \leq i \leq n) \).

We define \(G \) as a group generated by \(\Gamma_0 \) and \(\Gamma_i \) \((1 \leq i \leq n) \) with the relations
\[
[\Gamma_i, \Gamma_j] = 1, \quad (1 \leq i, j \leq n),
\]
\[
(\Gamma_0 \Gamma_i)^2 = (\Gamma_i \Gamma_0)^2 \quad (1 \leq i \leq n),
\]
and
\[
[M_{\epsilon}^{-1} \Gamma_0 M_{\epsilon}, M_{\epsilon'}^{-1} \Gamma_0 M_{\epsilon'}] = 1.
\]
for \(H_{\epsilon,R} \cap H_{\epsilon',R} \cap R^+ \neq \emptyset \). Here we set \(M_{\epsilon} = \prod_{i \in S(\epsilon)} \Gamma_i \). We define group homomorphisms
\[
\varphi : G \to \pi_1(X_2^{(s)}, s) \quad \text{and} \quad \psi : \pi_1(X_2^{(s)}, s) \to G,
\]
which are inverse to each other.
4.1.1. The definition of φ. We define φ by $\varphi(\Gamma_i) = \gamma_i$ for $i = 0, 1, \ldots, n$. We check that fundamental relations of G are satisfied in $\pi_1(\overline{X}_2(s), s)$. The relation (4.1) is satisfied by the definition of φ. By the definition of φ, we have

$$\varphi(M^{-1}_\epsilon \Gamma_0 M_\epsilon) = m^{-1}_\epsilon \gamma_0 m_\epsilon.$$

Thus the relation (4.2) is satisfied by Theorem 3.13.

4.1.2. The definition of ψ. The group $\pi_1(\overline{X}_2(s), s)$ is generated by type 1 non-spanning arrow $\gamma_{\epsilon, \tau}$ and type 2 generators $\gamma_{i, \tau}$ with the relation of type 1, type 2 and type 3 relations. We set

$$\psi(\gamma_{\epsilon, \tau}) = M^{-1}_\epsilon \Gamma_0 M_\epsilon, \quad \psi(\gamma_{i, \tau}) = \Gamma_i.$$

Type 1 and type 3 relation are satisfied by the fundamental relations of G. The first relations of (3.2) is easy to check. The second relation is obtained by the relation between ϵ and $g(\epsilon)$. We check the third relation of (3.2) by using $\psi(a) = \Gamma_i, \psi(b) = M^{-1}_\epsilon \Gamma_0 M_\epsilon$. Since Γ_i and M_ϵ are commutative in G, we have

$$\psi(abab) = \Gamma_i \cdot M^{-1}_\epsilon \Gamma_0 M_\epsilon \cdot \Gamma_i \cdot M^{-1}_\epsilon \Gamma_0 M_\epsilon = M^{-1}_\epsilon \Gamma_0 \Gamma_i \Gamma_0 M_\epsilon$$

and

$$\psi(baba) = M^{-1}_\epsilon \Gamma_0 M_\epsilon \cdot \Gamma_i \cdot M^{-1}_\epsilon \Gamma_0 M_\epsilon \cdot \Gamma_i = M^{-1}_\epsilon \Gamma_0 \Gamma_i \Gamma_0 \Gamma_i M_\epsilon.$$

Thus we have the equality $\psi(abab) = \psi(baba)$. Thus the homomorphism ψ is well defined.

Proof of Theorem 4.1. By the definition of φ and ψ, we see that the homomorphisms ψ and φ are inverse to each other. \hfill \square

4.2. Simplification. We modify the relation of (4.2) and get the simpler form cited in [GK]. By Theorem 3.11 and the following proposition, we get Main Theorem 1.1.

Proposition 4.2. For a subset I of $\{1, \ldots, n\}$ we set $M(I) = \prod_{i \in I} \Gamma_i$. Under the relation (4.1), the relation (4.2) for $H_\epsilon R \cap H_{\epsilon'} R \cap R_{\geq 0}^n \neq \emptyset$ is equivalent to the following set of relations.

$$[M(I)^{-1} \Gamma_0 M(I), M(J)^{-1} \Gamma_0 M(J)] = 1$$

for all I, J satisfying $I \cap J = \emptyset, I \neq \emptyset, J \neq \emptyset$ and $\#I + \#J \leq n - 1$.

Proof. Throughout this proof we assume the commutativity of $\Gamma_1, \ldots, \Gamma_n$. First we assume the condition (4.3) and prove the relation (4.2). We set $K = S(\epsilon) \cap S(\epsilon')$. By the definition of M_ϵ and the commutativity of Γ_i, the condition (4.2) can be rewrite as

$$[M_\epsilon^{-1} \Gamma_0 M_\epsilon, M_\epsilon^{-1} \Gamma_0 M_\epsilon] = 1.$$
where $M^*_\epsilon = \prod_{i \in S(\epsilon) - K} \Gamma_i$ and $M^*_{\epsilon'} = \prod_{i \in S(\epsilon') - K} \Gamma_i$. This is one of the conditions in (4.3) by setting $I = S(\epsilon) - K$ and $J = S(\epsilon') - K$. We check that I and J satisfies the required conditions. The condition $I \cap J = \emptyset$ is clear. If $M^*_\epsilon = \emptyset$, then $S(\epsilon) \subset S(\epsilon')$ and this contradicts to the condition $H_{\epsilon, R} \cap H_{\epsilon', R} \cap \mathbb{R}^n_{>0} \neq \emptyset$. If $\# I + \# J = n$, then $\epsilon' = -\epsilon$. This also contradicts to the condition for ϵ and ϵ' since $H_{\epsilon, R} \cap H_{-\epsilon, R} = \emptyset$.

Next we assume the condition (4.2) and prove the relation (4.3). Let I and J be subsets in $\{1, \ldots, n\}$ satisfying the condition of (4.3). We define $\epsilon = (\epsilon_1, \ldots, \epsilon_n)$ and $\epsilon' = (\epsilon'_1, \ldots, \epsilon'_n)$ by

$$
\epsilon_i = \begin{cases} 1 & (i \notin I), \\ -1 & (i \in I), \end{cases} \quad \epsilon'_i = \begin{cases} 1 & (i \notin J), \\ -1 & (i \in J). \end{cases}
$$

Then the relation (4.4) becomes the relation (4.3). We check the condition $H_{\epsilon, R} \cap H_{\epsilon', R} \cap \mathbb{R}^n_{>0} \neq \emptyset$. We set $K = \{1, \ldots, n\} - (I \cup J)$. Then we have $K \neq \emptyset$. The system of equations

$$
\begin{align*}
&\sum_{i \notin J} x_i - \sum_{i \in I} x_i = 1, \\
&\sum_{j \notin I} x_j - \sum_{j \in J} x_j = 1
\end{align*}
$$

is equivalent to

$$
\begin{align*}
&\sum_{i \in K} x_i = 1, \\
&\sum_{i \in I} x_i = \sum_{j \in J} x_j.
\end{align*}
$$

Thus it has a solution $x = (x_i) \in \mathbb{R}^n_{>0}$. \qed

References

[OT] P. Orlik, H. Terao Arrangement of hyperplanes, Grundlehren der Mathematischen Wissenschaften, Springer, 1992.

[GK] Y. Goto, J. Kaneko, The fundamental group of the complement of the singular locus of Lauricella’s F_C, arXiv:1710.09594.

[G] Y. Goto, Twisted cycles and twisted period relations for Lauricella’s hypergeometric function F_C, Internat. J. Math. 24 (2013), no. 12, 1350094, 19 pp

[GKZ] I.M. Gel’fand, A. V. Zelevinski, M. M. Kapranov, Equations of hypergeometric type and Newton polyhedra. (Russian) Dokl. Akad. Nauk SSSR 300 (1988), no. 3, 529–534; translation in Soviet Math. Dokl. 37 (1988), no. 3, 678–682

[HT] R. Hattori, N. Takayama, The singular locus of Lauricella’s F_C, J. Math. Soc. Japan, 66(3) (2014), 981-995.

[S] M. Salvetti. Topology of the complement of real hyperplanes in \mathbb{C}^N, Invent. Math., 88(3), 1987, 603–618.

[T] T. Terasoma, Boyarsky principle for D-modules and Loeser’s conjecture. Geometric aspects of Dwork theory. Vol. I, II, 909–930, Walter de Gruyter, Berlin, 2004.

(Terasoma) Graduate school of Mathematical Sciences, The University of Tokyo, Tokyo 153-8914 Japan

E-mail address: terasoma@ms.u-tokyo.ac.jp