Identification of antibacterial substances of *Lactobacillus plantarum* DY-6 for bacteriostatic action

Yin Mao¹,² | Xiaojuan Zhang¹,² | Zhenghong Xu¹,²

¹National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, Wuxi, China
²Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China

Correspondence
Xiaojuan Zhang and Zhenghong Xu, National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 LiHu Road, Wuxi, Jiangsu 214122, China. Emails: xzhang6@163.com (X. Z.); zhenghxu@jiangnan.edu.cn (Z. X.)

Funding information
National First-class Discipline Program of Light Industry Technology and Engineering, Grant/Award Number: LTE2018-24; National Natural Science Foundation of China, Grant/Award Number: 21877053 and 31600044; National Key R&D Program of China, Grant/Award Number: 2019YFA09005502; Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (TAPP); Fundamental Research Funds for the Central Universities, Grant/Award Number: JUSRP51705A

Abstract
The antimicrobial activity of lactic acid bacteria is closely related to its metabolites. Our results showed that *Lactobacillus plantarum* DY-6 had the highest antibacterial activities among the seven bacteria tested in this study. To fully understand the active antimicrobial substances in *L. plantarum* DY-6, the cell-free supernatant (CFS) were analyzed. Our data indicated that the antibacterial effect of the CFS was positively correlated with the growth of the bacteria, and the main antibacterial substances were lactic acid, acetic acid, propionic acid, caprylic acid, and decyl acid. Finally, this study demonstrated that the antibacterial active substance produced by the lactic acid bacteria could destroy the cell membrane structure of the bacteria, causing bacteria to fail to grow and reproduce normally, thereby exerting a bacteriostatic action. Taken together, our current findings would provide an effective method for rapid screening of antimicrobial substances.

KEYWORDS
antibacterial substances, bacteriostatic mechanism, *Lactobacillus plantarum* DY-6, metabolomics, statistical analysis

1 | INTRODUCTION

Lactic acid bacteria have been widely used in food and feed because of their good antibacterial activity and safety. The antibacterial substances in previous studies were mainly organic acids (Reis, Paula, Casarotti, & Penna, 2012), fatty acids (Ogawa et al., 2005), short peptides (Hati, Patel, Sakure, & Mandal, 2017; Muhialdin, Zaiton, & Nazamid, 2018), and other categories. However, different lactic acid bacteria were found to possess specific combinations of antibacterial substances. The antibacterial substances of *Lactobacillus plantarum* LB1 were identified as lactic acid, benzene lactic acid, and formic acid (Rizzello, Cassone, Coda, & Gobbetti, 2011). It was reported that six organic acids, including formic acid, acetic acid, and propionic acid, produced by *Lactobacillus*, inhibited the growth of mold (Corsetti, Gobbetti, Rossi, & Damiani, 1998). Numerous studies have found that fatty acids also have antibacterial properties, such as antibacterial 3-hydroxy fatty acid from *L. plantarum* MiLAB 14 (Schnüer, Sjögren, Kenne, Magnusson, & Broberg, 2003). The 2-hydroxy-4-methyl-n-pentanoic acid in the fermentation broth of *L. plantarum* and *Lactobacillus wiesei* played a key role in inhibiting mildew (Ndagano, Lamoureux, Dortu, Vandermoten,
& Thonart, 2011). And the bacteriocin paracin C produced by L. para-
casei could effectively inhibit Alicyclobacillus (Pei, Yuan, & Yue, 2013).
Though these substances were found to possess crucial antibacterial
activity, due to the diverse metabolites of lactic acid bacteria, the spe-
cific antibacterial mechanism of each strain is deserved to discover.

The antimicrobial mechanisms of lactic acid bacteria were com-
plicated. Some researchers have indicated that the organic acids
produced by the fermentation process could reduce the intracellular
pH by entering the cytoplasm, thus affecting the metabolism of
pathogenic bacteria (Brul & Coote, 1999). In addition to lowering the
intracellular pH, researchers also believed that organic acids could
bind to some components, such as lipopolysaccharides on the cell
membrane, thereby destroying the stability of the membrane and
achieving bacteriostatic action (Gong et al., 2016). Moreover, it
was found that phenyllactic acid could inhibit the protein expres-
sion of filamentous fungi (Ström, Schnürer, & Melin, 2005). The
fatty acid was found to penetrate the pathogenic cells and bind to
its plasma membrane, which then changed the permeability of the
membrane to achieve bacteriostatic action (Bergsson, Arnfinnsson,
Steingrimsson, & Thormar, 2001). Bacteriocin, isolated from lactic
acid bacteria, acts as an antibacterial by destroying the integrity of
the outer membrane of the pathogen (Khalaf et al., 2016).

Recently, technological breakthroughs in metabolomics have al-
lowed for progress in the research of metabolic pathways of lactic acid
bacteria, as well as the monitoring and optimization of the fermenta-
tion processes. GC-MS was used to evaluate the changes of flavor sub-
stances in Lactobacillus plantarum during the fermentation of kimchi, and the
quality of kimchi could be controlled effectively (Park et al., 2016). The
1H-NMR technique was used to analyze metabolites in fermented soybe-
ans milk prepared by Bifidobacterium and Streptococcus, the factors
influencing free radical scavenging activity of fermented soybean milk
were expounded (Yang et al., 2009). Lactobacillus plantarum DY-6 was
found to have strong antibacterial activity; however, its antibacterial
mechanism is not clear. Therefore, the antibacterial substances were
evaluated and predicted by metabolomics, and the mechanism of anti-
microbial substances was also explored in this study. We used GC-MS
and statistical methods to seek potential antibacterial substances and
found that the bacterial substances of L. plantarum DY-6 were
mainly organic acids and fatty acids, among which lactic acid and acetic
acid showed excellent bacteriostatic activity. We also found that the
antibacterial substances inhibited the growth of bacteria by destroying
the stability of the cell membrane of pathogenic bacteria. The antibac-
terial substances could be quickly predicted by analyzing the metabo-
lites produced by lactic acid bacteria and statistical analysis.

2 | MATERIALS AND METHODS

2.1 | Strains and media

Lactobacillus plantarum DY-6 (CCTCC2017138), L. casei DY2
(CCTCC2017303), L. rhamnose DY4 (CCTCC2017279) and
Pediococcus acidilactici DY5 (CCTCC2017280) were obtained from
the China Center for Type Culture Collection. L. rhamnose DY3,
L. plantarum DY1 and L. plantarum DY7 were preserved in our labora-
tory. All strains of lactic acid bacteria were cultured in deMan Rogosa
Sharpe broth (Khalaf et al., 2016) at 37°C for 48 hr. The Escherichia
coli ATCC25922, Staphylococcus aureus ATCC25923 and Salmonella
typhimurium ATCC14028 were cultured in LB broth at 37°C for 24 hr.

2.2 | Preparation of CFS

Lactobacillus plantarum DY-6 was firstly incubated in MRS broth
at 37°C for 24 hr. Bacterial culture broth was then centrifuged at
10,000 g for 15 min. CFS was filtered before use. Concentration of
the supernatant was achieved by freeze-drying.

2.3 | The determination of antibacterial ability

Petri dishes, Oxford cups, and other materials were sterilized in an au-
toclave before use. Firstly, the bacterial suspension (10⁶ cfu/ml) was
coated evenly on Luria-Bertani agar medium prepared in a Petri dish.
Then, oxord cups were placed on the surfaces of the cultures, and
CFS was added by dripping. Finally, the Petri dishes with the Oxford
cups were incubated at 37°C for 18 hr, and the diameter of the bacte-
ria inhibiting loop was evaluated to indicate the antibacterial activity
of the different samples (Wang, Zheng, Li, Wu, & Xiao, 2017).

2.4 | Effects of temperature, pH, and enzyme on
antibacterial activity

The antibacterial activities of CFS after the treatment of tempera-
ture, pH, and enzymes were determined by the Oxford cup method.
CFS was treated for 30 min at temperatures of −20, 4, 30, 60, 80,
100, and 121°C, respectively. The change of antibacterial activity
of CFS was tested. The pH value of CFS was adjusted to 2.0, 3.0,
4.0, 5.0, 6.0, 7.0, and 8.0 with 1 M HCl and 1 M NaOH and adjusted
back to the initial pH of CFS after maintaining the pH for 1 hr. The
antibacterial activity of CFS was then detected.

Separate CFS samples were treated with trypsin, pepsin, or pro-
teinase K. The enzyme solution was adjusted to a concentration of
1 g/L and adjusted to the optimum pH for the enzyme: pepsin (2.0),
trypsin (7.0), and proteinase K (7.5). The enzyme solution and the
supernatant were mixed in equal volumes, and the antibacterial ac-
tivity was measured. Before evaluating the antibacterial activity, the
pH value of CFS was readjusted to the initial pH. The CFS without
enzyme treatment was served as a control.

2.5 | Determination of organic acids

Organic acids were detected using a Hitachi High-Performance
Liquid Chromatograph equipped with a UV absorption detector.
Ion chromatography was performed using an organic acid column. The mobile phase was 5 mM sulfuric acid solution at a flow rate of 0.6 ml/min and a column temperature of 50°C. The content of various organic acids was calculated according to the peak time and peak area (Zhao et al., 2018).

2.6 | GC-MS analysis of the metabolites

Cultures of *L. plantarum* DY-6 were harvested during the platform period and centrifuged at 14,000 g for 15 min. The CFS was extracted with ethyl acetate. The extraction phase was dried by a nitrogen blower and derivatized at 85°C in 5 μl pyridine and 50 μl of N,O-bis trimethylsilyl trifluoroacetamide for 20 min (Park et al., 2016).

One microliter of the derivatized sample was injected into a series 8000 GC on a TG-5 column (30 m × 0.25 mm × 0.25 μm) with a split injection of 1:5. Helium was used as the carrier gas with a flow rate of 1 ml/min. The initial column temperature was 40°C, which was maintained for 2 min. The temperature was then increased from 40 to 280°C at a rate of 10°C/min. The source temperature was set to 280°C and the interface temperature was 300°C. Electron impact (EI) spectra were obtained at 70 eV.

2.7 | Multivariate statistical analysis

All GC-selected peaks were searched and identified using the NIST Mass Spectral Library (Tao & Zhang, 2010), and the peak area normalization method was used to calculate the relative percentage of each component. The collected data were processed using Simca14.1 software for principal component analysis (PCA) to observe the total metabolic differences (Becerra, Odermatt, & Nopens, 2013; Xu et al., 2016).

2.8 | Effect of CFS on the growth curve of indicator bacterium

Two milliliters of *E. coli* suspension was added to 100 ml LB medium, and 2 ml sterile water was added as a control group at the initial stage of the culture. To the test group, 2 ml CFS was added, which was concentrated by 15 times at the initial stage of the culture. Other experimental groups had 2 ml of CFS added to the samples, which was concentrated 15 times after *E. coli* was cultured for 2, 4, 6, and 8 hr. A growth curve was produced for *E. coli* after treatment with CFS.

2.9 | Effect of CFS on the content of soluble total sugar in indicator bacterial liquid

The content of total soluble sugar in the indicator bacterial solution was determined following the anthrone method (John, Barnett, & Miller, 2010). A suspension of *E. coli* was added in 1 g/L glucose solution, and CFS with a volume fraction of 2%, which was concentrated 10 times, was added to the experimental group. An equal amount of sterile water was added as a blank control. After treatment at 37°C for 0, 2, 4, 6, 8, 10, and 12 hr, the solution was centrifuged for 5 min at 5,000 g to obtain supernatant. The total soluble sugar of the supernatant was detected.

3 | RESULTS

3.1 | Comparison of the antibacterial activities of different lactic acid bacteria

The antibacterial abilities of seven lactic acid bacteria were determined (Table 1). According to the bacteriostasis of each strain on *E. coli*, *S. aureus* and *S. typhimurium*, among the seven bacteria indicated in Table 1, *L. plantarum* DY-6 has the highest antibacterial activities; thus, it was selected for the next round of experiments. Besides, the results also indicated that all the three *L. plantarum* strains had excellent antibacterial activities (Table 1).

Strain number	Indicator organism	*Escherichia coli*	*Salmonella*	*Staphylococcus aureus*
L. plantarum DY1	12.89 ± 0.21	15.93 ± 0.22	15.70 ± 0.41	
L. casei DY2	10.25 ± 0.23	10.72 ± 0.37	12.10 ± 0.29	
L. rhamnose DY3	13.43 ± 0.39	11.57 ± 0.26	13.83 ± 0.35	
L. rhamnose DY4	13.22 ± 0.14	12.20 ± 0.30	13.55 ± 0.38	
P. acidilactici DY5	12.81 ± 0.22	11.60 ± 0.34	13.77 ± 0.22	
L. plantarum DY6	15.32 ± 0.28	13.18 ± 0.19	16.08 ± 0.31	
L. plantarum DY7	13.79 ± 0.33	12.40 ± 0.48	14.21 ± 0.17	

aData are presented as the mean value ± standard deviation of three measurements.
E. coli as an indicator strain. The data indicated that the temperature below 100°C had no significant effect on the antibacterial ability, while it was notably decreased when the temperature reached up to 121°C (Figure S1A). The supernatant only had antibacterial activity under acidic conditions, and it was gradually reduced from pH 2.0, (Figure S1B). In the present study, pepsin, trypsin, and proteinase K enzymes were used to treat the supernatant, and it was found that these enzymes had little effect on the antibacterial activity, indicating that the protein in the supernatant had little effect on antibacterial activity (Table 2).

Table 2: Effects of various proteinase on antibacterial activity after enzyme treatment

Enzyme	Inhibition zone (mm)
Controlb	14.10 ± 0.21
Trypsin	13.82 ± 0.26
Pepsin	13.71 ± 0.38
Proteinase K	13.90 ± 0.50

aData are presented as the mean value ± standard deviation of three measurements.

bFermentation supernatant without enzyme treatment.

3.3 Differential metabolite analysis in CFS

Lactobacillus plantarum DY-6 entered the logarithmic growth phase from 4 hr, and its growth began to plateau after 24 hr. During this process, the antibacterial activity of CFS was enhanced with the time increase (Figure 1). At the initial stage (0–4 hr), CFS showed no obvious antibacterial activity, and then, it was significantly improved. The antibacterial activity tended to be stable after 24 hr (Figure 1), indicating that the antibacterial effect of the CFS was positively correlated with the growth of the bacteria.

A PCA was used to analyze the sample data of different fermentation times. In this study, the entire fermentation process was divided into eight time periods according to their distance,
and the farther apart, and the higher the degree of separation. Throughout the model, it was found that different time periods had a certain separation trend (Figure 2). Three groups of significantly different samples (0 and 8 hr; 8 and 16 hr; and 16 and 48 hr) were selected for analysis in combination with the antibacterial activity of different time periods (Figure 1) and the separation of each stage under this model (Figure 3a–c). Among the three selected groups, the two time periods in each group had a
good separation trend and showed a large inhibition of bacteriostatic activity.

The OPLS-DA model was used to screen metabolites with significant changes between samples. Each dot in the figure represented a metabolite. The further the point in the figure from the center was, the more significant the change in this metabolite was. Differential variables were initially identified by selecting a variable with a VIP value >1 (marked in red in the Figure 4a–c).
By analyzing the three groups of samples, thirteen types of metabolites which might have antibacterial activities were obtained, among which acid substances accounted for the vast majority (a total of nine types) (Figure 5). The other four substances were aroma substances from the fermentation process, but the content of these substances was low. Therefore, it was speculated that acidic substances played a major role on antibacterial activity in CFS.

In Figure 5, the contents of lactic acid, acetic acid, propionic acid, decanoic acid, and octanoic acid were relatively higher than that of other acidic substance, and they all showed antibacterial activity against *E. coli*, among which lactic acid and acetic acid showed superior bacteriostatic activity. Then, the above five antibacterial substances were compounded, and the antibacterial activity of the mixture was found to be similar with that of CFS, suggesting that these five substances were the main antibacterial substances in CFS.

3.4 | Effect of CFS on the growth of indicator bacteria

The growth of *E. coli* was significantly affected, even did not grow, when CFS was added around 0–4 hr (Figure 6). However, the concentration of the cells differed little from that of the control group when CFS was added around 6–8 hr (Figure 6). The reason for the inhibition around 0–4 hr might be that the acidic growth environment derived from the addition of CFS, thus affecting the normal growth. And adding CFS had little effect when *E. coli* entered the late logarithmic phase after 6 hr.

3.5 | Effect of CFS on total sugar content in indicator bacteria

Carbohydrates were the primary carbon source of microorganisms. When the membrane structure was destroyed, the cell contents
Among them, lactic acid, acetic acid, propionic acid, and other substances were found in CFS using GC-MS combined with multivariate statistics. Among them, lactic acid, acetic acid, propionic acid, and decyl acid exhibited good antibacterial activity. The antibacterial activity of CFS mainly came from these five substances. Others metabolites, such as phenyllactic acid and citric acid, have previously been shown to have antibacterial activity (Ning et al., 2017; Su et al., 2010), but their content in CFS was too low to achieve antimicrobial effect. Next, the effect of antibacterial substances on the growth of E. coli was explored. Antibacterial substances have an obvious inhibitory effect on the growth of E. coli and destroyed the stability of the membrane, causing the leakage of its cell contents, thus affecting the normal growth of bacteria.

The bacteriostatic action of lactic acid bacteria involves various metabolites. For example, acetic acid, formic acid, propionic acid, and butyric acid produced from lactic acid bacteria had a synergistic effect on molds (Su et al., 2010), and phenyllactic acid derived from the culture of L. plantarum IMAU10014 was found to have bacteriostasis effects (Wang et al., 2012). Other antibacterial substances isolated from L. plantarum, such as 3-hydroxydecanoic acid and decanoic acid, had good antibacterial activity on fungi (Guo et al., 2012). Several antibacterial bacteriocins have also been previously isolated and extracted (Camargo, Todorov, Chihib, Drider, & Nero, 2018; Kaškonienė et al., 2017; Langa, Arqués, Medina, & Landete, 2017). In addition, hydrogen peroxide and other substances produced during the fermentation process were also shown to have antibacterial activity (Atanasova, Moncheva, & Ivanova, 2014; Castillo et al., 2002).

The antibacterial mechanisms of organic acids in metabolites were extensively studied. The common mechanism was to inhibit the stability of the membrane or reduce the intracellular pH, thereby affecting the metabolic activities of pathogenic bacteria, achieving inhibition. The bacteriostatic mechanism of fatty acids produced during fermentation was similar to that of organic acids. The bacteriocin activity could increase the permeability of cell membranes, causing leakage of various ions in the cells and consumption of energy substances, and finally resulting in the death of pathogenic bacteria. Recently, Piewngam et al. (2018) found that lipopeptides produced by Bacillus could affect the quorum sensing system of the antigen body and then interfere with their colonization to achieve bacteriostatic action, which also provided a new perspective to study the bacteriostatic action of lactic acid bacteria.

To summarize, the bacteriostatic action of lactic acid bacteria was closely related to its metabolites, and the metabolites of different lactic acid bacteria are different. We could infer the possible bacteriostatic substances by analyzing the total metabolites of lactic acid bacteria. We were able to accurately identify the antibacterial products, which provided a good foundation to study the antibacterial effect of lactic acid bacteria.

A strain of L. plantarum DY-6 with excellent antibacterial activity was studied. The antimicrobial activity of L. plantarum DY-6 is closely related to its metabolites. The main antibacterial

FIGURE 7 Effect of CFS on total soluble sugar in E. coli suspension. CFS with a volume fraction of 2% was concentrated for 10 times and then was added to the experimental group. After treatment at 37°C for 0, 2, 4, 6, 8, 10, and 12 hr, the solution was centrifuged for 5 min at 5,000 g to obtain their supernatants. The total sugar content of E. coli was determined at the indicated time.

4 | DISCUSSION

In this study, we compared the antibacterial activity of lactic acid bacteria from different sample sources and found that L. plantarum DY-6 had excellent antibacterial activity. Lactobacillus plantarum DY-6 had a broad spectrum of inhibition, which could effectively inhibit E. coli, S. aureus, and Salmonella. The antibacterial properties of the fermentation supernatant were also investigated. The antibacterial substance had good thermal stability and antibacterial activity under acidic conditions. In addition, after the treatment with proteinase K, pepsin, and trypsin, the antibacterial activity did not change significantly, indicating that the protein substance played a limited role of antibacterial activity in CFS.

It was found that the antibacterial activity was closely related to the growth of the L. plantarum DY-6. Thirteen different metabolites were found in CFS using GC-MS combined with multivariate statistics. Among them, lactic acid, acetic acid, propionic acid, caprylic acid, and decyl acid exhibited good antibacterial activity. The antibacterial activity of CFS mainly came from these five substances. Others metabolites, such as phenyllactic acid and citric acid, have previously been shown to have antibacterial activity (Ning et al., 2017; Su et al., 2010), but their content in CFS was too low to achieve antimicrobial effect. Next, the effect of antibacterial substances on the growth of E. coli was explored. Antibacterial substances have an obvious inhibitory effect on the growth of E. coli and destroyed the stability of the membrane, causing the leakage of its cell contents, thus affecting the normal growth of bacteria.

The bacteriostatic action of lactic acid bacteria involves various metabolites. For example, acetic acid, formic acid, propionic acid, and butyric acid produced from lactic acid bacteria had a synergistic effect on molds (Su et al., 2010), and phenyllactic acid derived from the culture of L. plantarum IMAU10014 was found to have bacteriostasis effects (Wang et al., 2012). Other antibacterial substances isolated from L. plantarum, such as 3-hydroxydecanoic acid and decanoic acid, had good antibacterial activity on fungi (Guo et al., 2012). Several antibacterial bacteriocins have also been previously isolated and extracted (Camargo, Todorov, Chihib, Drider, & Nero, 2018; Kaškonienė et al., 2017; Langa, Arqués, Medina, & Landete, 2017). In addition, hydrogen peroxide and other substances produced during the fermentation process were also shown to have antibacterial activity (Atanasova, Moncheva, & Ivanova, 2014; Castillo et al., 2002).

The antibacterial mechanisms of organic acids in metabolites were extensively studied. The common mechanism was to inhibit the stability of the membrane or reduce the intracellular pH, thereby affecting the metabolic activities of pathogenic bacteria, achieving inhibition. The bacteriostatic mechanism of fatty acids produced during fermentation was similar to that of organic acids. The bacteriocin activity could increase the permeability of cell membranes, causing leakage of various ions in the cells and consumption of energy substances, and finally resulting in the death of pathogenic bacteria. Recently, Piewngam et al. (2018) found that lipopeptides produced by Bacillus could affect the quorum sensing system of the antigen body and then interfere with their colonization to achieve bacteriostatic action, which also provided a new perspective to study the bacteriostatic action of lactic acid bacteria.

To summarize, the bacteriostatic action of lactic acid bacteria was closely related to its metabolites, and the metabolites of different lactic acid bacteria are different. We could infer the possible bacteriostatic substances by analyzing the total metabolites of lactic acid bacteria. We were able to accurately identify the antibacterial products, which provided a good foundation to study the antibacterial effect of lactic acid bacteria.

5 | CONCLUSIONS

A strain of L. plantarum DY-6 with excellent antibacterial activity was studied. The antimicrobial activity of L. plantarum DY-6 is closely related to its metabolites. The main antibacterial
substances were found to be lactic acid, acetic acid, propionic acid, caprylic acid, and decyl acid. The active antibacterial substances produced by the lactic acid bacteria destroyed the cell membrane structure of the bacteria, causing bacteria to fail to grow and reproduce normally, thereby exerting bacteriostatic action. This study provides an effective method for rapid screening of antimicrobial substances.

ACKNOWLEDGMENTS
This work was funded by grants from the National Key R&D Program of China (2019YFA09005502), the National Natural Science Foundation of China (21877053 and 31600044), the National First-class Discipline Program of Light Industry Technology and Engineering (LITE2018-24), the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (TAPP), and the Fundamental Research Funds for the Central Universities (JUSRP51705A).

CONFLICT OF INTEREST
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

ORCID
Xiaojuan Zhang https://orcid.org/0000-0002-2076-1670

REFERENCES
Atanasova, J., Moncheva, P., & Ivanova, I. (2014). Proteolytic and antimicrobial activity of lactic acid bacteria grown in goat milk. Biotechnology & Biotechnological Equipment, 28, 1073–1078. https://doi.org/10.1080/13102818.2014.971487

Becerra, V., Odermatt, J., & Nopens, M. (2013). Identification and classification of glucose-based polysaccharides by applying Py-GC/MS and SIMCA. Journal of Analytical and Applied Pyrolysis, 103, 42–51. https://doi.org/10.1016/j.jaap.2012.12.018

Bergsson, G., Arnfinnsson, J., Steingrimsson, Ö., & Thormar, H. (2001). In vitro killing of Candida albicans by fatty acids and monoglycerides. Antimicrobial Agents and Chemotherapy, 45, 3209–3212. https://doi.org/10.1128/AAC.45.11.3209-3212.2001

Brul, S., & Coote, P. (1999). Preservative agents in foods mode of action and microbial resistance mechanisms. International Journal of Food Microbiology, 50, 1–17. https://doi.org/10.1016/S0168-1605(99)00072-0

Camargo, A. C., Todorov, S. D., Chihib, N. E., Drider, D., & Nero, L. A. (2018). Lactic acid bacteria (LAB) and their bacteriocins as alternative biotechnological tools to control Listeria monocytogenes biofilms in food processing facilities. Molecular Biotechnology, 60, 1–15. https://doi.org/10.1007/s12033-018-0108-1

Castillo, U. F., Strobel, G. A., Ford, E. J., Hess, W. M., Porter, H., Jensen, J. B., … Yaver, D. (2002). Munomucins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedy nigricans. Microbiology, 148, 2675–2685. https://doi.org/10.1099/00221287-148-9-2675

Corsetti, A., Gobbetti, M., Rossi, J., & Damiani, P. (1998). Antimould activity of sourdough lactic acid bacteria: Identification of a mixture of organic acids produced by Lactobacillus sanfrancisco CB1. Applied Microbiology & Biotechnology, 1998(50), 253–256. https://doi.org/10.1007/s002530051285

Gong, Y., Li, T., Li, S., Jiang, Z., Yang, Y., Huang, J., … Sun, H. (2016). Achieving high yield of lactic acid for antimicrobial characterization in cephalosporin-resistant Lactobacillus by the co-expression of the osphofructokinase and glucokinase. Journal of Microbiology and Biotechnology, 26, 1148–1161. https://doi.org/10.4014/jmb.1601.01043

Guo, J., Brosnan, B., Furey, A., Arendt, E., Murphy, P., & Coffey, A. (2012). Antifungal activity of Lactobacillus against Microsporum canis, Microsporum gypseum and Epidermophyton floccosum. Bioengineered Bugs, 3, 104–113. https://doi.org/10.4161/bbug.19624

Hati, S., Patel, N., Sakure, A., & Mandal, S. (2017). Influence of whey protein concentrate on the production of antibacterial peptides derived from fermented milk by Lactic Acid Bacteria. International Journal of Peptide Research and Therapeutics, 24, 1–12. https://doi.org/10.1007/s10989-017-9596-2

John, A., Barnett, G., & Miller, T. B. (2010). The determination of soluble carbohydrate in dried samples of grass silage by the anthrone method. Journal of the Science of Food and Agriculture, 1, 336–339. https://doi.org/10.1002/jsfa.2740011106

Júnior, N. G. O., Cardoso, M. H., Cândido, E. S., van den Broek, D., de Lange, N., Velikova, N., … de Vries, R. (2018). An acidic model pro-peptide affects the secondary structure, membrane interactions and antimicrobial activity of a crotalcidin fragment. Scientific Reports, 8, 11127–11137. https://doi.org/10.1038/s41598-018-29444-0

Kaškonienė, V., Stankevičius, M., Bimbiraitė-Survilienė, K., Naujokaitytė, G., Šerienė, L., Mulkytė, K., … Maruška, A. (2017). Current state of purification, isolation and analysis of bacteriocins produced by lactic acid bacteria. Applied Microbiology and Biotechnology, 101, 1323–1335. https://doi.org/10.1007/s00253-017-8088-9

Khalaf, H., Nakka, S. S., Sandén, C., Svärd, A., Hultenby, K., Scherbak, N., … Bengtsson, T. (2016). Antibacterial effects of Lactobacillus and bacteriocin PLNC8 αβ on the periodontal pathogen Porphyromonas gingivalis. BMC Microbiology, 16, 180–188. https://doi.org/10.1186/s12866-016-0810-8

Langa, S., Arqués, J. L., Medina, M., & Landete, J. M. (2017). Coproduction of colicin V and lactic acid bacteriocin in Lactococcus and Enterococci strains of biotechnological interest. Journal of Applied Microbiology, 122, 1159–1167. https://doi.org/10.1111/jam.13439

Muhialdin, B. J., Zaiton, H., & Nazamid, S. (2018). In vitro antifungal activity of lactic acid bacteria low molecular peptides against spoilage fungi of bakery products. Annals of Microbiology, 68, 557–567. https://doi.org/10.1007/s13213-018-1363-x

Ndagano, D., Lamoureux, T., Dortu, C., Vandermoten, S., & Thonart, P. (2011). Antifungal activity of 2 lactic acid bacteria of the weissella genus isolated from food. Journal of Food Science, 76, 305–311. https://doi.org/10.1111/j.1750-3841.2011.02257.x

Ning, Y., Yan, A., Yang, K., Wang, Z., Li, X., & Jia, Y. (2017). Antibacterial activity of phenylactic acid against Listeria monocytogenes and Escherichia coli by dual mechanisms. Food Chemistry, 228, 533–540. https://doi.org/10.1016/j.foodchem.2017.01.112

Ogawa, J., Kishino, S., Ando, A., Sugimoto, S., Mihara, K., & Shimizu, S. (2005). Production of conjugated fatty acids by lactic acid bacteria. Journal of Bioscience and Bioengineering., 100, 355–364. https://doi.org/10.1263/jbb.100.355

Park, S. E., Yoo, S. A., Seo, S. H., Lee, K. I., Na, C. S., & Son, H. S. (2016). GC-MS based metabolomics approach of Kimchi for the understanding of Lactobacillus plantarum fermentation characteristics. LWT - Food Science and Technology, 68, 313–321. https://doi.org/10.1016/j.lwt.2015.12.046

Pei, J., Yuan, Y., & Yue, T. (2013). Primary characterization of bacteriocin paracin C-A novel bacteriocin produced by Lactobacillus
paracasei. *Food Control*, 34, 168–176. https://doi.org/10.1016/j.foodcont.2013.03.040

Piewngam, P., Zheng, Y., Nguyen, T. H., Dickey, S. W., Joo, H.-S., Villaruz, A. E., ... Otto, M. (2018). Pathogen elimination by probiotic *Bacillus* via signalling interference. *Nature*, 562, 532–537. https://doi.org/10.1038/s41586-018-0616-y

Reis, J. A., Paula, A. T., Casarotti, S. N., & Penna, A. L. B. (2012). Lactic acid bacteria antimicrobial compounds: Characteristics and applications. *Food Engineering Reviews*, 4, 124–140. https://doi.org/10.1007/s12393-012-9051-2

Rizzello, C. G., Cassone, A., Coda, R., & Gobbetti, M. (2011). Antifungal activity of sourdough fermented wheat germ used as an ingredient for bread making. *Food Chemistry*, 127, 952–959. https://doi.org/10.1016/j.foodchem.2011.01.063

Schnürer, J., Sjögren, J., Kenne, L., Magnusson, J., & Broberg, A. (2003). Antifungal 3-hydroxy fatty acids from *Lactobacillus plantarum* MiLAB 14. *Applied Environmental Microbiology*, 69, 7554–7557. https://doi.org/10.1128/AEM.69.12.7554-7557

Ström, K., Schnürer, J., & Melin, P. (2005). Co-cultivation of antifungal *Lactobacillus plantarum* MiLAB 393 and *Aspergillus nidulans*, evaluation of effects on fungal growth and protein expression. *Fems Microbiology Letters*, 246, 119–124. https://doi.org/10.1016/j.femsle.2005.03.047

Su, F., Zeng, W., Fan, L., Jian, Z., Yang, Z., & Sun, Q. (2010). Antibacterial activity of organic acids in aqueous extracts from pine needles (*Pinus massoniana* Lamb.). *Food Science and Biotechnology*, 19, 35–41. https://doi.org/10.1007/s10068-010-0005-2

Tao, Y. & Zhang, L. (2010). Intensity prediction of typical aroma characters of *Cabernet Sauvignon* wine in Changli County (China). *LWT - Food Science and Technology*, 43, 1550–1556. https://doi.org/10.1016/j.lwt.2010.06.003

Wang, H. K., Yan, Y., Wang, J., Zhang, H., Qi, W., & Liles, M. R. (2012). Production and characterization of antifungal compounds produced by *Lactobacillus plantarum* IMAU10014. *PloS ONE*, 7, e29452. https://doi.org/10.1371/journal.pone.0029452

Wang, Z., Zheng, L., Li, C., Wu, S., & Xiao, Y. (2017). Preparation and antimicrobial activity of sulfopropyl chitosan in an ionic liquid aqueous solution. *Journal of Applied Polymer Science*, 134, 26–33. https://doi.org/10.1002/app.44989

Xu, M., Heidmarsson, S., Olafsdottir, E. S., Buonfiglio, R., Koge, T., & Omarsdottir, S. (2016). Secondary metabolites from cetrarioid lichens: Chemotaxonomy, biological activities and pharmaceutical potential. *Phytomedicine*, 23, 441–459. https://doi.org/10.1016/j.phymed.2016.02.012

Yang, S. O., Kim, S. H., Cho, S., Lee, J. H., Kim, Y. S., & Yun, S. S. (2009). Classification of fermented soymilk during fermentation by 1H NMR coupled with principal component analysis and elucidation of free-radical scavenging activities. *Journal of the Agricultural Chemical Society of Japan*, 73, 1184–1188. https://doi.org/10.1271/bbb.80743

Yao, C., Li, X., Bi, W., & Jiang, C. (2015). Relationship between membrane damage, leakage of intracellular compounds, and inactivation of *Escherichia coli* treated by pressurized CO₂. *Journal of Basic Microbiology*, 54, 858–865. https://doi.org/10.1002/jobm.20120640

Zhao, M., Huang, D., Zhang, X., Koffas, M. A. G., Zhou, J., & Deng, Y. U. (2018). Metabolic engineering of *Escherichia coli* for producing adipic acid through the reverse adipate-degradation pathway. *Metabolic Engineering*, 47, 254–262. https://doi.org/10.1016/j.meten.2018.04.002

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Mao Y, Zhang X, Xu Z. Identification of antibacterial substances of *Lactobacillus plantarum* DY-6 for bacteriostatic action. *Food Sci Nutr*. 2020;8:2854–2863. https://doi.org/10.1002/fsn3.1585