An open-label, dose-ranging study of Rolontis, a novel long-acting myeloid growth factor, in breast cancer

Jeffrey L. Vacirca, Arlene Chan, Klára Mezei, Clarence S. Adoo, Zsuzsanna Pápai, Kimberly McGregor, Meena Okera, Zsolt Horváth, László Landherr, Jerzy Hanslik, Steven J. Hager, Emad N. Ibrahim, Makharadze Rostom, Gajanan Bhat, Mi Rim Choi, Guru Reddy, Karen L. Tedesco, Richy Agajanian, István Láng, & Lee S. Schwartzberg

1 New York Cancer Specialists, East Setauket, New York
2 Breast Cancer Research Centre WA and Curtin University, Perth, Western Australia, Australia
3 Szabolcs-Szatmár Bereg County Hospital and University Teaching Hospital, Nyíregyháza, Hungary
4 Arizona Center for Cancer Care, Glendale, Arizona
5 State Health Center, Budapest, Hungary
6 Samaritan Hematology and Oncology Associates, Corvallis, Oregon
7 Adelaide Cancer Centre, Kurralta Park, South Australia, Australia
8 University of Debrecen, Debrecen, Hungary
9 Uzsoki Hospital, Budapest, Hungary
10 Szpital Rejonowy Dzienny Oddzial Chemioterapii, Raciborzu, Poland
11 California Cancer Associates for Research and Excellence, Fresno, California
12 Emad Ibrahim MD, Inc., Redlands, California
13 Cancer Center of Adjara Autonomous Republic, Batumi, Georgia
14 Spectrum Pharmaceuticals, Irvine, California
15 New York Oncology Hematology (US Oncology/McKesson Specialty Health), Albany, New York
16 The Oncology Institute of Hope and Innovation, Downey, California
17 National Institute of Oncology, Budapest, Hungary
18 West Cancer Center, Memphis, Tennessee

Keywords
Breast cancer, eflapegrastim, neutropenia, Rolontis

Correspondence
Lee S. Schwartzberg, West Cancer Center, Memphis, 7945 Wolf River Blvd., Memphis, TN 38138. Tel: 901 683 0055; Fax: 901 685 2969; E-mail: lschwartzberg@westclinic.com

Funding Information
This study was funded by Spectrum Pharmaceuticals, Inc.

Received: 20 October 2017; Revised: 19 December 2017; Accepted: 18 January 2018

Cancer Medicine 2018; 7(5):1660–1669
doi: 10.1002/cam4.1388
Clinical Trials Registry: NCT01724866

Abstract
This randomized, open-label, active-controlled study investigated the safety and efficacy of three doses of Rolontis (eflapegrastim), a novel, long-acting myeloid growth factor, versus pegfilgrastim in breast cancer patients being treated with docetaxel and cyclophosphamide (TC). The primary efficacy endpoint was duration of severe neutropenia (DSN) during the first cycle of treatment. Patients who were candidates for adjuvant/neoadjuvant TC chemotherapy were eligible for participation. TC was administered on Day 1, followed by 45, 135, or 270 μg/kg Rolontis or 6 mg pegfilgrastim on Day 2. Complete blood counts were monitored daily when the absolute neutrophil count (ANC) fell to <1.5 × 10^9/L. Up to four cycles of TC were investigated. The difference in DSN (time from ANC <0.5 × 10^9/L to ANC recovery ≥2.0 × 10^9/L) between the Rolontis and pegfilgrastim groups was −0.28 days (confidence interval [CI]: −0.56, −0.06) at 270 μg/kg, 0.14 days (CI: −0.28, 0.64) at 135 μg/kg, and 0.72 days (CI: 0.19, 1.27) at 45 μg/kg. Noninferiority to pegfilgrastim was demonstrated at 135 μg/kg (P = 0.002) and 270 μg/kg (P < .001), with superiority demonstrated at 270 μg/kg (0.03 days; P = 0.023). The most common treatment-related adverse events (AEs) were bone pain, myalgia, arthralgia, back pain, and elevated white blood cell counts, with similar incidences across groups. All doses of Rolontis were well tolerated, and no new or significant treatment-related toxicities were observed. In Cycle 1, Rolontis demonstrated noninferiority at the 135 μg/kg dose and statistical superiority in DSN at the 270 μg/kg dose when compared to pegfilgrastim.
Introduction

Many effective chemotherapy regimens induce myelosuppressive side effects that can result in treatment delays, dose reductions, and an overall inability to complete treatment, which may compromise clinical outcomes. Myeloid growth factors, a class of biologic agents that regulate the proliferation, differentiation, survival, and activation of cells in the myeloid lineage, are often administered prophylactically to reduce the incidence of severe neutropenia, one of the most common and dose-limiting myelosuppressive side effects of anticancer chemotherapy [1]. Chemotherapy-induced neutropenia can progress to febrile neutropenia, defined as a single temperature >38.3°C (or ≥38.0°C for >1 h) that presents with concurrent grade 3/4 neutropenia (absolute neutrophil count [ANC] ≤1.0 × 10⁹/L) [2, 3]. As patients who develop febrile neutropenia are at risk for hospitalization, additional morbidities and even mortality, mitigation of the severity, and duration of this condition have been shown to improve chemotherapy treatment compliance and, ultimately, patient survival [4, 5].

Several growth factors are currently approved or are under clinical development in the United States (US) for the management of chemotherapy-induced neutropenia. Filgrastim (Neupogen®, Amgen, Thousand Oaks, CA) is the methionylated recombinant human granulocyte-colony stimulating factor (G-CSF) expressed in E. coli and is administered as a daily subcutaneous injection (or by intravenous infusion) in conjunction with myelosuppressive chemotherapy to increase the circulating levels of neutrophils and thereby reduce the duration of severe neutropenia [6]. However, a full response to filgrastim requires multiple daily injections due to a short (several hours) half-life. Pegfilgrastim (Neulasta®, Amgen, Thousand Oaks, CA), the polyethylene glycol-conjugated form of G-CSF, is a long-acting myeloid growth factor that is administered subcutaneously (SC) on a more convenient, less frequent dosing schedule (i.e., as a single dose administered once-per-cycle of chemotherapy) and has demonstrated improved reduction of neutropenia over both placebo and filgrastim [7–13]. Two additional (currently not approved in the US) glyco-pegylated growth factors, lippegfilgrastim and balugrastim, as well as a pegfilgrastim biosimilar, LARP2006, have demonstrated noninferiority to pegfilgrastim as once-per-cycle administrations in Phase 3 trials conducted in patients with breast cancer [14, 15].

Rolontis™ (Spectrum Pharmaceuticals, Inc., Henderson, NV) (elagolix, SPI-2012, HM10460A) was developed by conjugating the recombinant human G-CSF analog (17th 65th Ser-G-CSF, no additional N-terminal Met) and the human immunoglobulin G4 Fc fragment via a 3.4 kDa Peg linker to produce a longer-acting G-CSF. In preclinical studies, Rolontis has demonstrated similar in vitro activity and a similar pharmacokinetic (PK) profile compared with pegfilgrastim [16]. The in vivo and clinical potency of Rolontis, however, have been observed to be significantly higher than pegfilgrastim. Pharmacokinetic analysis of Rolontis in vivo revealed a twofold to threefold increase in area under the time-concentration curve (AUC) for ANC compared to pegfilgrastim when administered at similar doses (when comparing the concentration of the G-CSF molecule) in neutropenic mice and rats, normal rats, and monkeys. Furthermore, the duration of severe neutropenia in neutropenic mice and rats was significantly reduced compared to either pegfilgrastim or filgrastim [17, 18].

A randomized, double-blind, placebo-controlled, escalating single-dose study with Rolontis was conducted in 40 healthy Korean subjects. Doses of Rolontis ranged from 5 to 350 μg/kg. Rolontis showed dose-dependent pharmacokinetic properties, and the area under the effect-time curve (AUEC_{\text{\text{max}}}) of both the absolute neutrophil count (ANC) and the CD34+ cell count increased as the dose increased [12].

The current Phase 2 study was designed to evaluate the efficacy and safety of Rolontis at three dose levels, as compared with pegfilgrastim, in patients with breast cancer receiving myelosuppressive docetaxel and cyclophosphamide (TC) chemotherapy. The clinical development of Rolontis is based upon the potential viability of Rolontis as a more potent, long-acting alternative to pegfilgrastim that provides clinical benefits at a lower G-CSF dose.

Materials and Methods

Patient population

This was a randomized, open-label, multicenter, dose-ranging, active-controlled study of Rolontis versus pegfilgrastim in patients aged ≥18 years with breast cancer who were candidates for adjuvant or neoadjuvant treatment with TC chemotherapy (NCT01724866). Other key inclusion criteria included the willingness and ability to provide written informed consent; Eastern Cooperative Oncology Group (ECOG) performance status ≤2; adequate bone marrow function before the start of chemotherapy (ANC ≥1.5 × 10⁹/L, platelet count ≥100 × 10⁹/L, hemoglobin >9 g/dL); creatinine ≤1.5× upper limit of normal (ULN); total bilirubin ≤1.5 mg/dL; aspartate aminotransferase (AST) and/or alanine aminotransferase (ALT) ≤2.5 × ULN; and alkaline phosphatase ≤1.5 × ULN. Key exclusion criteria included a known sensitivity to E. coli-derived products, L-asparaginase, somatropin growth hormone, or recombinant interferon α-2b; an active infection or positive serology for human immunodeficiency virus, hepatitis B or hepatitis C; prior bone marrow or stem cell transplant; major surgery (except for breast surgery related to the
were performed twice weekly. If at any time ANC was defined as ANC <0.5 × 10^9/L (grade 4 per NCI CTCAE) neutropenia (DSN) in Cycle 1, with severe neutropenia the interval from the day of first observation of grade 4 neutropenia to first ANC recovery to ≥2.0 × 10^9/L.

Secondary endpoints assessed for each cycle included the following: (1) time to ANC recovery, defined as the time from chemotherapy administration until an increase in ANC to ≥2.0 × 10^9/L after the expected nadir (date of ANC recovery – date of chemotherapy +1); (2) depth of ANC nadir, defined as the lowest ANC value; (3) time to ANC nadir, defined as the time from chemotherapy administration until the occurrence of the ANC nadir (date of ANC nadir – date of chemotherapy +1); (4) incidence of febrile neutropenia, defined as a temperature of >38.2°C occurring within 1 day of an ANC <0.5 × 10^9/L, and/or a reported AE of febrile neutropenia; and (5) hospitalizations for any reason, including febrile neutropenia.

Blood samples for immunogenicity analysis were collected before the start of each chemotherapy cycle (Day 1) and at the end-of-study visit.

Statistical methods

Sample size estimates were based on a noninferiority design. It was assumed that the pooled standard deviation of DSN for Cycle 1 would be 2.1 days, estimated from previous pegfilgrastim studies [19]. The total planned sample size of 144 patients provided an 80% power to establish noninferiority, based on the one-sided 95% upper confidence limit of the difference in the mean DSN of pooled experimental arms and mean DSN of the control arm being <1 day.

Treatment differences in DSN in Cycle 1 were analyzed using confidence intervals (CIs) calculated based upon 10,000 bootstrap samples stratified by baseline weight (<65 kg, ≥65 kg and ≤75 kg, or >75 kg). Two-sided 95% CIs for the difference in mean DSN between each Rolontis group and the pegfilgrastim group were calculated. Noninferiority was demonstrated if the upper limit of the two-sided 95% CI was <1 day. Two types of P-values were reported: The noninferiority P-value was calculated as two times the proportion of treatment difference >1 in the resampling, and the superiority P-value was calculated as two times the proportion of treatment difference >0 in the resampling.

Descriptive statistics (n, mean, median, and standard deviation) were used for all continuous variables.

Results

Patient population

The study enrolled 148 patients between March 2013 and August 2014 at 27 study sites in six countries (Australia, Georgia, Hungary, Israel, Poland, and the USA); all enrolled patients were included in the safety population (Fig. 1).
The evaluable population comprised 147 patients who received at least one treatment with TC chemotherapy and at least one dose of either pegfilgrastim \((n = 36)\) or Rolontis \((n = 39\) at 45 \(\mu\)g/kg, \(n = 36\) at 135 \(\mu\)g/kg and \(n = 36\) at 270 \(\mu\)g/kg) (Table 1). Demographics and baseline characteristics were generally well balanced across treatment groups, as shown in Table 1. Patient ages ranged from 32 to 77 years, with a median of 59 years. Most patients were female (98%) and White (95%), and the majority (84%) had invasive ductal carcinoma. Disease stage at the time of breast cancer diagnosis was Stage II (57%), Stage I (20%), or Stage III (21%), with two patients (1%) diagnosed as Stage IV. Hormone receptor status was positive for 55% of patients (estrogen receptor +/-progesterone receptor +), 17% of patients had ER+/PR- disease, and 28% of patients had ER-/PR- disease or unknown hormone receptor status. Human epidermal growth factor receptor 2 (HER2) status was positive for 12% of patients, negative for 25% of patients, and unknown for 63% of patients. Most patients (90% overall) had a baseline Eastern Cooperative Oncology Group (ECOG) status of 0, 12 patients (8%) had a performance status of 1, and one patient (1%) had a performance status of 1.

Efficacy

Duration of severe neutropenia

In the 270 \(\mu\)g/kg Rolontis group, severe neutropenia was reported in one patient (3%) and lasted 1 day (Table 2). In the lowest Rolontis dose group (45 \(\mu\)g/kg Rolontis), approximately one-third of patients in (14 patients, 36%) experienced severe neutropenia that lasted between 1 and 5 days. In the 135 \(\mu\)g/kg Rolontis group, seven patients (19%) experienced severe neutropenia, which lasted for 1 to 2 days in six patients (17%) and 7 days in one patient, (3%). In the pegfilgrastim group, five patients (14%) experienced severe neutropenia that lasted for 1–3 days.

A dose-effect trend in the mean DSN in Cycle 1 was observed across the three doses of Rolontis with the DSN decreasing with increasing dose: 1.03 days at 45 \(\mu\)g/kg, 0.44 days at 135 \(\mu\)g/kg, and 0.03 days at 270 \(\mu\)g/kg. The difference in Cycle 1 DSN between the Rolontis groups and the pegfilgrastim group was −0.28 days (CI: −0.56, −0.06) at 270 \(\mu\)g/kg of Rolontis, 0.14 days (CI: −0.28,
0.64) at 135 μg/kg of Rolontis, and 0.72 days (CI: 0.19, 1.27) at 45 μg/kg of Rolontis (Table 2). The upper limit of the two-sided 95% CI for the difference was >1 day for the 45 μg/kg group, but <1 day for the 135 μg/kg and 270 μg/kg groups. Noninferiority to pegfilgrastim was demonstrated for the 135 μg/kg (P = 0.002) and 270 μg/kg (P < 0.001) Rolontis groups, but not for the 45 μg/kg Rolontis group (P = 0.781).

Table 1. Demographics and other baseline characteristics (evaluable population).

Rolontis dose	Pegfilgrastim	Total (N = 147)			
	45 μg/kg (n = 39)	135 μg/kg (n = 36)	270 μg/kg (n = 36)	6 mg (n = 36)	
Age (years)					
Median (range)	62 (33–77)	59 (32–74)	57 (38–77)	61 (35–77)	59 (32–77)
Gender, n (%)					
Female	39 (100)	35 (97)	34 (94)	36 (100)	144 (98)
Male	0 (0)	1 (3)	2 (6)	0 (0)	3 (2)
Race, n (%)					
White	36 (92)	36 (100)	35 (97)	32 (89)	139 (95)
Black or African-American	2 (5)	0 (0)	0 (0)	0 (0)	2 (1)
Other	1 (3)	0 (0)	1 (3)	4 (11)0	6 (4)
ECOG PS, n (%)					
0 (fully active)	33 (85)	32 (89)	35 (97)	33 (92)	133 (90)
1 (restricted)	5 (13)	4 (11)	1 (3)	2 (6)	12 (8)
2 (ambulatory)	1 (3)	0 (0)	0 (0)	0 (0)	1 (1)
Missing	0 (0)	0 (0)	0 (0)	1 (3)	1 (1)
Disease Stage, n (%)					
I	8 (21)	7 (19)	6 (17)	9 (25)	30 (20)
IIA	12 (31)	12 (33)	13 (36)	10 (28)	47 (32)
IIB	8 (21)	11 (31)	11 (31)	7 (19)	37 (25)
III	6 (15)	3 (8)	2 (6)	6 (17)	17 (12)
IIIB	3 (8)	3 (8)	2 (6)	1 (3)	9 (6)
IIIC	2 (5)	0 (0)	2 (6)	1 (3)	5 (3)
IV	0 (0)	0 (0)	0 (0)	2 (6)	2 (1)
WHO Classification, n (%)					
Invasive ductal carcinoma	31 (79)	27 (75)	32 (89)	33 (92)	123 (84)
Invasive lobular carcinoma	3 (8)	3 (8)	0 (0)	2 (6)	8 (5)
Carcinoma with metaplasia	1 (3)	0 (0)	0 (0)	0 (0)	1 (1)
Medullary carcinoma	0 (0)	1 (3)	0 (0)	0 (0)	1 (1)
Other	4 (10)	5 (14)	4 (11)	1 (3)	14 (10)
HER2 Status, n (%)					
HER2+	1 (3)	7 (19)	6 (17)	3 (8)	17 (12)
HER2−	9 (23)	9 (25)	9 (25)	10 (28)	37 (25)
Unknown	29 (74)	20 (56)	21 (58)	23 (64)	94 (64)

ECOG, Eastern Cooperative Oncology Group; PS, performance status; SD, standard deviation; WHO, World Health Organization.

Absolute neutrophil count

The changes in median ANC over time were biphasic and were similar in all four treatment groups during all four cycles. In Cycle 1, the ANC nadir occurred at approximately Day 6 to Day 9, with two separate peaks with the first peak observed on Day 3 and the second peak observed between Days 10 and 13 (Fig. 2A). In all treatment groups, the ANC peak on Day 3 increased in each cycle and reached a maximum by Cycle 3. The ANC values in patients receiving the two higher doses of Rolontis, 135 and 270 μg/kg, were higher than the values in patients receiving pegfilgrastim on most days during each cycle. Patients receiving 45 μg/kg of Rolontis showed slightly lower ANC values than patients on pegfilgrastim during the first half of each cycle but the values were similar in the second half of each cycle.
For patients whose ANC decreased below $2.0 \times 10^9/L$ in Cycle 1, the median time to ANC recovery in the 45 μg/kg Rolontis group (Day 10) was significantly longer than in the pegfilgrastim arm (Day 9; $P = 0.002$; hazard ratio [HR] 1.4) (Table 3). No significant differences from the pegfilgrastim group in median time to ANC recovery in Cycle 1 were observed in the 135 μg/kg Rolontis group (Day 8.5; $P = 0.711$; HR 0.9), and the median time to ANC recovery was significantly shorter in the 270 μg/kg Rolontis group (Day 8; $P = 0.028$; HR 0.3) compared to the pegfilgrastim group. In Cycles 2 through 4, only the median time to ANC recovery in the 45 μg/kg Rolontis group (Day 11, Cycle 4) was significantly different from the pegfilgrastim group (Day 10; $P = 0.009$; HR 1.4).

During Cycle 1, the median depth of the ANC nadir was 6.2 × 10^9/L for the 270 μg/kg Rolontis group, 3.0 × 10^9/L for the 135 μg/kg Rolontis group, 0.8 × 10^9/L for the 45 μg/kg Rolontis group, and 3.0 × 10^9/L for the pegfilgrastim group. The depth of ANC nadir in the 270 μg/kg Rolontis group was significantly higher than in the pegfilgrastim arm in Cycle 1 ($P = 0.002$), Cycle 2 ($P = 0.027$), and Cycle 4 ($P = 0.005$). The median time to ANC nadir in Cycle 1 was 7 days for the 135 and 270 μg/kg Rolontis groups, 8 days for the 45 μg/kg Rolontis group, and 7.5 days for the pegfilgrastim group, with similar ANC nadir depth and time results patterns observed during Cycles 2 through 4.

Febrile neutropenia

The incidence of febrile neutropenia was low in all treatment groups across all cycles and was reported in Table 2.

Table 2. Duration of severe neutropenia (evaluable population).

DSN (days)	Rolontis dose	Pegfilgrastim		
	45 μg/kg (n = 39)	135 μg/kg (n = 36)	270 μg/kg (n = 36)	6 mg (n = 36)
Cycle 1				
0 days, n (%)	25 (64)	29 (81)	35 (97)	31 (86)
1 day, n (%)	1 (3)	3 (8)	1 (3)	1 (3)
2 days, n (%)	5 (13)	3 (8)	0	2 (6)
3 days, n (%)	5 (13)	0	0	2 (6)
≥4 days, n (%)	3 (8)*	1 (3)*	0	0
n	39	36	36	36
Mean ± SD (days)	1.03 ± 1.55	0.44 ± 1.28	0.03 ± 0.17	0.31 ± 0.82
Difference with pegfilgrastim	0.72	0.14	−0.28	
95% CI	(0.19, 1.27)	(−0.28, 0.64)	(−0.56, 0.06)	
Noninferiority P-value	0.296	0.002	<0.001	
Superiority P-value	0.006	0.528	0.023	
Cycle 2				
0 days, n (%)	39	34	34	36
Mean ± SD (days)	0.46 ± 1.02	0.12 ± 0.48	0.03 ± 0.17	0.08 ± 0.37
Difference with pegfilgrastim	0.38	0.04	−0.05	
95% CI	(0.06, 0.74)	(−0.16, 0.24)	(−0.19, 0.06)	
Noninferiority P-value	0.001	<0.001	<0.001	
Superiority P-value	0.019	0.649	0.563	
Cycle 3				
0 days, n (%)	38	32	34	36
Mean ± SD (days)	0.45 ± 1.13	0.16 ± 0.63	0.15 ± 0.61	0.14 ± 0.59
Difference with pegfilgrastim	0.31	0.02	0.01	
95% CI	(−0.07, 0.72)	(−0.27, 0.30)	(−0.27, 0.28)	
Noninferiority P-value	0.002	<0.001	<0.001	
Superiority P-value	0.126	0.882	0.899	
Cycle 4				
0 days, n (%)	38	32	33	35
Mean ± SD (days)	1.05 ± 4.58	0.19 ± 0.74	0.09 ± 0.52	0.11 ± 0.40
Difference with pegfilgrastim	0.94	0.07	−0.02	
95% CI	(−0.01, 2.47)	(−0.17, 0.38)	(−0.23, 0.22)	
Noninferiority P-value	0.781	<0.001	<0.001	
Superiority P-value	0.061	0.605	0.848	

CI, confidence interval; DSN, duration of severe neutropenia; SD, standard deviation. Median DSN was 0 for all treatment groups in all cycles.

*4 days (n = 1); 5 days (n = 2); †7 days (n = 1).
two patients (6%) in the pegfilgrastim group compared with one patient (3%) each in the Rolontis 135 and 270 µg/kg groups and three patients (8%) in the 45 µg/kg group. The incidents of FN in the 135 and 270 µg/kg Rolontis groups and in two of the patients in the 45 µg/kg Rolontis group occurred in Cycle 1. One patient in the 45 µg/kg Rolontis group experienced FN in both Cycle 2 and Cycle 3, and one of the patients in the pegfilgrastim group experienced FN in Cycle 3 and the other in Cycle 4. The overall rate of hospitalizations across all cycles (8%) was also similar across treatment groups, with the highest incidence observed in the pegfilgrastim

![Figure 2](https://example.com/figure2.png)

Figure 2. Median absolute neutrophil count by treatment over time (evaluable population). Absolute neutrophil count in patients treated with 45, 135, and 270 µg/kg Rolontis or pegfilgrastim by treatment group in (A) Cycle 1, (B) Cycle 2, (C) Cycle 3, and (D) Cycle 4.

Table 3. Absolute neutrophil count in cycle 1 (evaluable population).

DSN (days)	Rolontis dose	Pegfilgrastim		
	45 µg/kg (n = 39)	135 µg/kg (n = 36)	270 µg/kg (n = 36)	6 mg (n = 36)
Cycle 1				
Depth of ANC Nadir				
n	39	36	36	36
Median Depth (× 10^9/L)	0.8	3.0	6.2	3.0
Min, Max (× 10^9/L)	0.0, 9.0	0.1, 14.1	0.2, 21.0	0.0, 9.1
Ratio to Pegfilgrastim (95% CI)	0.4	1.0	2.5	2.5
P-value Time to ANC Recovery (Days)	0.008	0.911	0.002	–
Time to ANC Nadir				
Median (95%CI) (× 10^9/L)	8.0 (7–8)	7.0 (nc)	7.0 (7–8)	7.5 (7–16)
Time to ANC Recovery (Days)				
n	29	14	6	14
Median Time to ANC Recovery (95% CI)	10.0 (10–11)	8.5 (8–9)	8.0 (7–9)	9.0 (8–10)
HR to Pegfilgrastim (95% CI)	1.4 (1.1–1.8)	0.9 (0.6–1.4)	0.3 (0.1–0.9)	–
P-value	0.002	0.711	0.028	–

CI, confidence interval; DSN, duration of severe neutropenia; SD, standard deviation.
group (five patients, 14%) and the lowest incidence observed in the Rolontis 270 μg/kg group (one patient, 3%). Three patients in the 45 μg/kg Rolontis group were hospitalized, but only one patient was hospitalized due to febrile neutropenia. No statistically significant differences in either febrile neutropenia incidence or hospitalizations were observed between any Rolontis dose level and pegfilgrastim.

Adverse events

Most patients experienced treatment-emergent adverse events (TEAEs) and the incidence of TEAEs was similar between treatment groups (Table 4). More Grade 3–4 TEAEs were reported in the 45 μg/kg Rolontis group than in the other treatment groups. The most commonly reported TEAEs were fatigue, alopecia, nausea, diarrhea, and bone pain. Treatment-related TEAEs were reported in >50% of patients in all treatment groups. The most frequently reported treatment-related TEAE in all four treatment groups was bone pain, which was reported in more than 20% of patients in all four treatment groups (Table 5). No patients discontinued from the study due to treatment-related AEs. No clinically meaningful differences in TEAEs (incidence or type) were observed overall or for individual events across Rolontis dose levels or between treatment types. Serious adverse events (SAEs) were reported for 13% of patients across cohorts, with treatment-related SAEs observed only in the pegfilgrastim group (Table 4). Few patients required treatment discontinuation for AEs, none of which were considered treatment-related, and no disease progression patient deaths or events were reported.

Immunogenicity

Serum samples from 143 patients were tested for antidrug antibodies (ADA) to Rolontis and G-CSF. No neutralizing antibodies against Rolontis or G-CSF were detected in patients administered Rolontis in this study.

Discussion

Prophylactic administration of myeloid growth factors has become standard treatment to reduce the incidence of chemotherapy-induced severe neutropenia, particularly recommended for therapies associated with a ≥20% risk of febrile neutropenia due to both chemotherapy regimen and individual patient risk factors [1, 3, 20]. Rolontis is being developed as a novel long-acting form of G-CSF.
that has a distinct structure compared to pegfilgrastim and may represent a more potent new G-CSF that delivers improved clinical efficacy.

The primary objective of the current open-label, multicenter, dose-ranging, active-controlled study was to evaluate three different dose levels of Rolontis on the DSN (time from ANC <0.5 × 10⁹/L to ANC ≥2.0 × 10⁹/L) during Cycle 1 of treatment in patients with breast cancer who were receiving adjuvant or neoadjuvant TC chemotherapy. Several Phase 3 randomized, blinded studies conducted with other novel long-acting myeloid growth factors or a pegfilgrastim biosimilar investigated the same endpoint in patients with breast cancer receiving myelosuppressive chemotherapy. These studies suggested other long-acting growth factors could have similar effects on the duration of DSN in Cycle 1 of TC therapy [14, 15, 21].

The mean Cycle 1 DSNs observed with Rolontis in the current study were comparable or lower than what was demonstrated for pegfilgrastim. At the two higher doses of Rolontis studied, the mean Cycle 1 DSNs were statistically noninferior to pegfilgrastim, and the Cycle 1 DSN with the 270 μg/kg Rolontis dose was statistically superior to pegfilgrastim (P = 0.023). In Cycles 2, 3, and 4, the DSN with 135 μg/kg Rolontis and 270 μg/kg Rolontis were noninferior to pegfilgrastim and the DSN with 45 μg/kg Rolontis was noninferior to pegfilgrastim in Cycles 2 and 3.

In Cycle 1, the majority of the evaluable population, both overall and in each group, did not experience any severe neutropenia, with the highest proportion of patients experiencing severe neutropenia in the Rolontis 45 μg/kg group (36%) along with the 135 μg/kg (19%) and 270 μg/kg Rolontis were noninferior to pegfilgrastim and the DSN with 45 μg/kg Rolontis was noninferior to pegfilgrastim in Cycles 2 and 3. No trends in TEAE incidences were reported in the 45 μg/kg Rolontis group (28% and 33%, respectively) than any other group, likely due to suboptimal dose level, which is consistent with the longer DSN, lower ANC levels, and deeper ANC nadir observed in this low Rolontis dose group. No neutralizing antibodies against Rolontis or G-CSF were detected in patients administered Rolontis in this study.

Rolontis is being further investigated in two currently ongoing randomized, Phase 3 trials. The results from this study show that the dose range of 135-270 μg/kg was both efficacious and safe. Based on these results, a dose of 13.2 mg/0.6 mL/dose, equivalent to 3.6 mg G-CSF, was selected for the Phase 3 development program. This dose is equivalent to approximately 176 μg/kg for a 75 kg patient and is being administered in two ongoing Phase 3 studies with Rolontis.

The results from this study indicate that Rolontis, a novel long-acting G-CSF, conferred comparable efficacy benefits to pegfilgrastim on duration of severe neutropenia and presented no new safety concerns when administered to patients with breast cancer receiving docetaxel and cyclophosphamide as adjuvant or neoadjuvant chemotherapy.

Acknowledgments

We are grateful to L. Lozano and Biomedical Communications, Inc. for providing medical writing support. This study was funded by Spectrum Pharmaceuticals, Inc.

Conflict of Interest

Drs Vacirca, Chan, Mezei, Adoo, Papai, McGregor, Okera, Horvath, Landherr, Hanslik, Hager, Ibrahim, Rostom, Tedesco, Agajanian, Lang, and Schwartzberg have disclosed no conflicts of interest. Drs. Bhat, Choi, and Reddy are employees of Spectrum Pharmaceuticals, Inc.

References

1. Crawford, J., D. C. Dale, and G. H. Lyman. 2004. Chemotherapy-induced neutropenia: risks, consequences,
and new directions for its management. Cancer 100:228–237.

2. US Department of Health and Human Services. Common Terminology Criteria for Adverse Events (CTCAE) Version 4.0. Published 28 May 2009. Available at: https://evs.nci.nih.gov/ftp1/CTCAE/CTCAE_4.03_2010-06-14_QuickReference_5x7.pdf (accessed 8 November 2016).

3. Aapro, M. S., J. Bohlius, D. A. Cameron, L. Dal Lago, J. P. Donnelly, N. Kearney, et al. 2011. 2010 update of EORTC guidelines for the use of granulocyte-colony stimulating factor to reduce the incidence of chemotherapy-induced febrile neutropenia in adult patients with lymphoproliferative disorders and solid tumours. Eur. J. Cancer 47:8–32.

4. Ghidini, M., J. C. Hahne, F. Trevisani, S. Panni, M. Ratti, L. Toppo, et al. 2016. New developments in the treatment of chemotherapy-induced neutropenia: focus on balugrastim. Ther. Clin. Risk Manag. 12:1009–1015.

5. Kuderer, N. M., D. C. Dale, J. Crawford, L. E. Cosler, and G. H. Lyman. 2006. Mortality, morbidity, and cost associated with febrile neutropenia in adult cancer patients. Cancer 106:2258–2266.

6. Neupogen Package Insert. 2013.

7. Green, M. D., H. Koelbl, J. Baselga, A. Galid, V. Guillem, P. Gascon, et al. 2003. A randomized double-blind multicenter phase III study of fixed-dose single-administration pegfilgrastim versus daily filgrastim in patients receiving myelosuppressive chemotherapy. Ann. Oncol. 14:29–35.

8. Holmes, F. A., S. E. Jones, J. O’Shaughnessy, S. Vukelja, T. George, M. Savin, et al. 2002. Comparable efficacy and safety profiles of once-per-cycle pegfilgrastim and daily injection filgrastim in chemotherapy-induced neutropenia: a multicenter phase-identifying study in women with breast cancer. Ann. Oncol. 13:903–909.

9. Holmes, F. A., J. A. O’Shaughnessy, S. Vukelja, S. E. Jones, J. Shogan, M. Savin, et al. 2002. Blinded, randomized, multicenter study to evaluate single administration pegfilgrastim once per cycle versus daily filgrastim as an adjunct to chemotherapy in patients with high-risk stage II or stage III/IV breast cancer. J. Clin. Oncol. 20:727–731.

10. Mey, U. J., A. Maier, I. G. Schmidt-Wolf, C. Ziske, H. Forstbauer, G. A. Banat, et al. 2007. Pegfilgrastim as hematopoietic support for dose-dense chemoimmunotherapy with R-CHOP-14 as first-line therapy in elderly patients with diffuse large B cell lymphoma. Support. Care Cancer 15:877–884.

11. Pinto, L., Z. Liu, Q. Doan, M. Bernal, R. Dubois, and G. Lyman. 2007. Comparison of pegfilgrastim with filgrastim on febrile neutropenia, grade IV neutropenia and bone pain: a meta-analysis of randomized controlled trials. Curr. Med. Res. Opin. 23:2283–2295.

12. Vogel, C. L., M. Z. Wojtukiewicz, R. R. Carroll, S. A. Tjulandin, L. J. Barajas-Figueroa, B. L. Wiens, et al. 2005. First and subsequent cycle use of pegfilgrastim prevents febrile neutropenia in patients with breast cancer: a multicenter, double-blind, placebo-controlled phase III study. J. Clin. Oncol. 23:1178–1184.

13. Yang, B. B., A. Kido, and A. Shibata. 2007. Serum pegfilgrastim concentrations during recovery of absolute neutrophil count in patients with cancer receiving pegfilgrastim after chemotherapy. Pharmacotherapy 27:1387–1393.

14. Bondarenko, I., O. A. Gladkov, R. Elsaesser, A. Buchner, and P. Bias. 2013. Efficacy and safety of lipoepegfilgrastim versus pegfilgrastim: a randomized, multicenter, active-control phase 3 trial in patients with breast cancer receiving doxorubicin/docetaxel chemotherapy. BMC Cancer 13:386.

15. Gladkov, O., V. Moiseyenko, I. N. Bondarenko, Y. Shparyk, S. Barash, L. Adar, et al. 2016. A Phase III Study of Balugrastim Versus Pegfilgrastim in Breast Cancer Patients Receiving Chemotherapy With Doxorubicin and Docetaxel. Oncologist 21:7–15.

16. Kwon, S. C. Determination of binding affinity between G-CSF receptor and HM10460A. Hanmi Research Center, 10 Sep 2008. Report No.: EF080910. (Not Published).

17. Kim, Y. H. In vivo Efficacy Study of HM10460A, Long-Acting G-CSF, in Neutropenic Mouse Model. Hanmi Research Center, 29 Jun 2007. Report No.: Dvo-07-031. (Not Published).

18. Kim, Y. H. Pharmacodynamic Study of HM10460A in Neutropenic Rats. Hanmi Research Center, 05 Jun 2008. Report No.: Dvo-08-004/052. (Not Published).

19. Neulasta, F. D. A. Medical Review of NDA Application Number 125031/0, 2002.

20. National Comprehensive Cancer Network. Myeloid Growth Factors (Version 1, 2015). Available at http://www.nccn.org/professionals/physician_gls/pdf/myeloid_growth.pdf (accessed 22 September 2015).

21. Blackwell, K., R. Donskih, C. M. Jones, A. Nixon, M. J. Vidal, R. Nakov, et al. 2016. A comparison of proposed biosimilar LA-EP2006 and reference pegfilgrastim for the prevention of neutropenia in patients with early-stage breast cancer receiving myelosuppressive adjuvant or neoadjuvant chemotherapy: pegfilgrastim randomized oncology (Supportive Care) Trial to Evaluate Comparative Treatment (PROTECT-2), a Phase III, Randomized. Double-Blind Trial. Oncologist. 21:789–794.

22. Volovat, C., O. A. Gladkov, I. M. Bondarenko, S. Barash, A. Buchner, P. Bias, et al. 2014. Efficacy and safety of balugrastim compared with pegfilgrastim in patients with breast cancer receiving chemotherapy. Clin. Breast Cancer 14:101–108.