Some New Multiplicative Geometric-Arithmetic Indices

V.R. KULLI

Department of Mathematics Gulbarga University, Gulbarga 585106, India
Corresponding Author Email: vrkulli@gmail.com
http://dx.doi.org/10.22147/jusps-A/290201

Acceptance Date 24th Dec., 2016, Online Publication Date 2nd Jan., 2017

Abstract

In this paper, we propose some new topological indices: second, third, fourth and fifth multiplicative geometric-arithmetic indices of a molecular graph. A topological index is a numeric quantity from the structural graph of a molecule. Here, we compute the fifth multiplicative geometric arithmetic index of line graphs of subdivision graphs of 2D-lattice, nanotube and nanotorus of $TUC_4C_8[p,q]$.

Key words: molecular graph, fifth multiplicative geometric-arithmetic index, nanostructures.

Mathematics Subject Classification: 05C05, 05C12, 05C35.

1. Introduction

In this paper, we consider only finite, simple and connected graph with a vertex set $V(G)$ and an edge set $E(G)$. A molecular graph or a chemical graph is a simple graph related to the structure of a chemical compound. Each vertex of a chemical graph represents an atom of the molecule and its edges to the bonds between atoms. A topological index is a numerical parameter mathematically derived from the graph structure. These indices are useful for establishing correlation between the structure of a molecular compound and its physico-chemical properties, see 1.

The degree $d_G(v)$ of a vertex v is the number of vertices adjacent to v. Let $S_G(v)$ denote the sum of degrees of all vertices adjacent to a vertex v. The line graph $L(G)$ of a graph G is the graph whose vertex set corresponds to the edges of G such that two vertices of $L(G)$ are adjacent if the corresponding edges of G are adjacent. The subdivision graph $S(G)$ of a graph G is the graph obtained from G by replacing each of its edges by a path of length two. We refer to $^2, ^3$ for undefined term and notation.

We need the following results

Lemma 13. Let G be a (p, q) graph. Then $L(G)$ has q vertices and $\frac{1}{2} \sum_{i=1}^{p} d_G(u_i)^2 - q$ edges.

Lemma 23. Let G be a (p, q) graph. Then $S(G)$ has $p+q$ vertices and $2q$ edges.

One of the well-known and widely used topological index is the product connectivity index or Randić index
introduced by Randić in4.

Motivated by the definition of the product connectivity index and its wide applications, Kulli [5] introduced the first multiplicative geometric-arithmetic index of a graph G and it is defined as

$$GA_1 II (G) = \prod_{uv \in E(G)} \frac{2 \sqrt{d_G(u)d_G(v)}}{d_G(u) + d_G(v)}.$$

Recently many other multiplicative indices were studied, for example, in 6,7,8,9,10,11,12,13,14.

Motivated by the definition of the first multiplicative geometric-arithmetic index and by previous research on topological indices, we now propose the second, third, fourth and fifth multiplicative geometric-arithmetic indices of a graph as follows:

The second multiplicative geometric-arithmetic index of a graph G is defined as

$$GA_2 II (G) = \prod_{uv \in E(G)} \frac{2 \sqrt{n_u n_v}}{n_u + n_v}$$

where the number n_u of vertices of G lying closer to the vertex u than to the vertex v for the edge uv of a graph G.

The third multiplicative geometric-arithmetic index of a graph G is defined as

$$GA_3 II (G) = \prod_{uv \in E(G)} \frac{2 \sqrt{m_u m_v}}{m_u + m_v}$$

where the number m_u of edges of G lying closer to the vertex u than to the vertex v for the edge uv of a graph G.

The fourth multiplicative geometric-arithmetic index of a graph G is defined as

$$GA_4 II (G) = \prod_{uv \in E(G)} \frac{2 \sqrt{\varepsilon(u) \varepsilon(v)}}{\varepsilon(u) + \varepsilon(v)}$$

where the number $\varepsilon(u)$ is the eccentricity of all vertices adjacent to a vertex u.

The fifth multiplicative geometric-arithmetic index of a graph G is defined as

$$GA_5 II (G) = \prod_{uv \in E(G)} \frac{2 \sqrt{S_G(u) S_G(v)}}{S_G(u) + S_G(v)}$$

where $S_G(u) = \sum_{uv \in E(G)} d_G(v)$.

In 14, Todeshine \textit{et al.} introduced the first and second multiplicative Zagreb indices of a graph G and they are defined as

$$II_1 (G) = \prod_{u \in V(G)} d_G(u)^2, \quad II_2 (G) = \prod_{u \in V(G)} d_G(u)d_G(v)$$

In 15 the first multiplicative Zagreb index is defined as

$$II^*_1 (G) = \prod_{uv \in E(G)} \left[d_G(u) + d_G(v) \right].$$

We now define a new version of multiplicative Zagreb indices as follows.

$$II_1^2 (G) = \prod_{u \in V(G)} n_u^2, \quad II_2^2 (G) = \prod_{u \in V(G)} n_u n_v, \quad II^*_1 (G) = \prod_{uv \in E(G)} (n_u + n_v).$$

Also we define a new version of multiplicative Zagreb indices as follows:

$$II_1^3 (G) = \prod_{u \in V(G)} m_u^2, \quad II_2^3 (G) = \prod_{u \in V(G)} m_u m_v, \quad II^*_1 (G) = \prod_{uv \in E(G)} (m_u + m_v).$$

We define another version of multiplicative Zagreb indices as follows:
Some New Multiplicative Geometric-Arithmetic Indices.

\[II^G_1 = \prod_{u \in V(G)} e(u)^2, \quad II^G_2 = \prod_{u \in V(G)} e(u) e(v), \quad II^G_v = \prod_{u \in E(G)} \left[e(u) + e(v) \right]. \]

We also define another version of multiplicative Zagreb indices as follows:

\[II^S_1 = \prod_{u \in V(G)} S_G(u)^2, \quad II^S_2 = \prod_{u \in V(G)} S_G(u) S_G(v), \quad II^S_v = \prod_{u \in E(G)} \left[S_G(u) + S_G(v) \right]. \]

In this paper, we determine the fifth multiplicative geometric arithmetic index of line graphs of subgraph graphs of 2D-lattice, nanotube and nanotorus of TUC[C_4,p,q].

2. 2D-lattice, nanotube, nanotorus of TUC[C_4,p,q]:

We consider the graph of 2D-lattice nanotube and nanotorus of TUC[C_4,p,q] where p and q denote the number of squares in a row and the number of rows of squares respectively. These graphs are shown in Figure 1.

![Figure 1](image1.png)

(a) 2D-lattice of TUC[C_4,p,q] (b) TUC[C_4,p,q] nanotube (c) TUC[C_4,p,q] nanotorus

By algebraic method, we get |V(G)| = 4pq, |E(G)| = 6pq - p - q; |V(H)| = 4pq, |E(H)| = 6pq - p, |V(K)| = 4pq, |E(K)| = 6pq.

3. Results for 2D-Lattice of TUC[C_4,p,q]:

The line graph of the subdivision graph of 2D-lattice of TUC[C_4,p,q] is shown Figure 2(b).

![Figure 2](image2.png)

(a) subdivision graph of 2D-lattice of TUC[C_4,p,q] (b) line graph of the subdivision graph of TUC[C_4,p,q]

Theorem 1. Let G be the line graph of the subdivision graph of 2D-lattice of TUC[C_4,p,q]. Then

\[GA, II(G) = \left(\frac{4\sqrt{5}}{9} \right)^4 \times \left(\frac{4\sqrt{10}}{13} \right)^4 \times \left(\frac{12\sqrt{2}}{17} \right)^4 \quad \text{if } p > 1, q > 1, \]

\[= \left(\frac{4\sqrt{5}}{9} \right)^4 \times \left(\frac{4\sqrt{13}}{10} \right)^4 \times \left(\frac{12\sqrt{2}}{17} \right)^4 \quad \text{if } p > 1, q = 1. \]

Proof: The 2D-lattice of TUC[C_4,p,q] is a graph G with 4pq vertices and 6pq - p - q edges. By Lemma 2, the subdivision graph of 2D-lattice of TUC[C_4,p,q] is a graph with 10pq - p - q vertices and 2(6pq - p - q) edges. Thus by Lemma 1, G has 2(6pq - p - q) vertices and 8pq - 5p - 5q edges. It is easy to see that the vertices of G are either of degree 2 or 3, see Figure 2. Therefore we have partition of the edge set of G as follows.
Table 1. Edge partition of G with $p>1$ and $q>1$.

S$_G(u), S_G(v)$uv $\in E(G)$	(4, 4)	(4, 5)	(5, 5)	(5, 8)	(8, 9)	(9, 9)
Number of edges	4	8	2(p+q–4)	4(p+q–2)	8(p+q–2)	2(9pq+10)–19(p+q)

Table 2. Edge partition of G with $p>1$ and $q=1$.

S$_G(u), S_G(v)$uv $\in E(G)$	(4, 4)	(4, 5)	(5, 5)	(5, 8)	(8, 8)	(8, 9)	(9, 9)
Number of edges	6	4	2(p–2)	4(p–1)	4(p–1)	p–1	

Case 1. Suppose $p>1$ and $q>1$.

By algebraic method, we obtain $|V_4|=8$, $|V_5|=4(p+q–2)$, $|V_8|=4(p+q–2)$, and $|V_9|=2(6pq+10)–19(p+q)$ in G. Thus the edge partition based on the degree sum of neighbor vertices of each vertex is obtained as given in Table 1.

Case 2. Suppose $p>1$ and $q=1$.

The edge partition based on the degree sum of neighbor vertices of each vertex is obtained as given in Table 2.

4. Results for $TUC_4[p,q]$ nanotube:

The line graph of the subdivision graph of $TUC_4[p,q]$ nanotube is shown in Figure 3(b)
Theorem 2. Let H be the line graph of the subdivision graph of $TUC_4C_8[p,q]$ nanotube. Then

$$GA_{II}(H) = \left(\frac{4\sqrt{10}}{13}\right)^{4p} \times \left(\frac{12\sqrt{2}}{17}\right)^{8p} \times \left(\frac{4\sqrt{10}}{13}\right)^{4p} \times \left(\frac{12\sqrt{2}}{17}\right)^{4p} \times \frac{18pq - 19p}{2}$$

if $p > 1$ and $q > 1$.

Proof: The $TUC_4C_8[p,q]$ nanotube is a graph H with $4pq$ vertices and $6pq - p$ edges. By Lemma 2, the subdivision graph of $TUC_4C_8[p,q]$ nanotube is a graph with $10pq - p$ vertices and $12pq - 2p$ edges. Thus by Lemma 1, H has $12pq - p$ vertices and $18pq - 5p$ edges. We see that in H, there are $4p$ vertices are of degree 2 and remaining all vertices are of degree 3. Therefore we have partition of the edge set of H as follows:

$S_H(u), S_H(v) \in E(H)$	(5, 5)	(5, 8)	(8, 9)	(9, 9)
Number of edges	2p	4p	8p	18pq - 19p

Table 3. Edge partition of H with $p > 1$ and $q > 1$.

| $S_H(u), S_H(v) \in E(H)$ | (5, 5) | (5, 8) | (8, 8) | (8, 9) | (9, 9) |
|---------------------------|-------|-------|-------|-------|
| Number of edges | 2p | 4p | 2p | 4p |

Table 4. Edge partition of H with $p > 1$ and $q = 1$

Case 1: Suppose $p > 1$ and $q > 1$.

By algebraic method, we obtain $|V_u| = 4p, |V_v| = 4p$ and $|V_e| = 2(6pq - 5p)$ in H. Thus the edge partition based on the degree sum of neighbor vertices of each vertex is obtained as given in Table 3.

Case 2. Suppose $p > 1$ and $q = 1$.

The edge partition based on the degree sum of neighbor vertices of each vertex is obtained as given in Table 4.
5. Results for $TUC_C[p,q]$ nanotorus:

The line graph of the subdivision graph of $TUC_C[p,q]$ nanotorus is shown in Figure 4 (b).

Theorem 3. Let K be the line graph of the subdivision graph of $TUC_C[p,q]$ nanotorus. Then $GA_{I,II}(K) = 1$.

Proof: Let K be the line graph of subdivision graph of $TUC_C[p,q]$ nanotorus with $4pq$ vertices and $6pq$ edges. Then Lemma 2, the subdivision graph of $TUC_C[p,q]$ nanotorus is a graph with $10pq$ vertices and $12pq$ edges. Thus by Lemma 1, K has $12pq$ vertices and $18pq$ edges. We see easily that in K, $|V| = 12pq$ and we have edge partition based on the degree sum of neighbor vertices of each vertex as given in Table 5.

u	v	$uv \in E(K)$
$S_K(u)$	$S_K(v)$	$2\sqrt{9 \times 9}$

Thus $GA_{I,II}(K) = \prod_{uv \in E(K)} \frac{S_K(u)S_K(v)}{S_K(u) + S_K(v)} = (9,9) = 1$.

References

1. N. Trinajstić, Chemical Graph Theory, CRC Press, Boca Raton, FL (1992).
2. V.R. Kulli, College Graph Theory, Vishwa International Publications, Gulbarga, India (2012).
3. F. Harary, Graph Theory, Addison Wesley, Reading, MA (1969).
4. M. Randić, On characterization of molecular branching, *Journal of the American Chemical Society*, 97(23), 6609-6615 (1975).
5. V.R. Kulli, Multiplicative connectivity indices of certain nanotubes, *Annals of Pure and Applied Mathematics*, 12(2) 169-176 (2016).
 DOI: http://dx.doi.org/10.22457/apam.v12n2a8.
6. V.R. Kulli, First multiplicative K Banhatti index and coindex of graphs, *Annals of Pure and Applied Mathematics, 11(2)*, 79-82 (2016).
7. V.R. Kulli, Second multiplicative K Banhatti index and coindex of graphs, *Journal of Computer and Mathematical Sciences, 7(5)*, 254-258 (2016).
8. V.R. Kulli, Multiplicative K hyper-Banhatti indices and coindices of graphs, *International Journal of Mathematical Archive*, 7(6), 60-65 (2016).
9. V.R. Kulli, On multiplicative K-Banhatti and multiplicative K hyper-Banhatti indices of V-Phenylenic nanotubes and nanotorus, *Annals of Pure and Applied Mathematics, 11(2)*, 145-150 (2016).
10. V.R. Kulli, Multiplicative connectivity indices of nanostructures, *Journal of Ultra Scientist of Physical Science, A 29(1)*, (2017) 1-10. DOI: http://dx.doi.org/10.22147/jusps-A290101.
11. V.R. Kulli, General multiplicative Zagreb indices of $TUC_C[m,n]$ and $TUC_C[m,n]$ nanotubes, *International Journal of Fuzzy Mathematical Archive, 11(1)*, 39-43 (2016). http://dx.doi.org/10.22457/ifma.v11n1a6.
12. V.R. Kulli, Multiplicative connectivity indices of $TUC_C[m,n]$ and $TUC_C[m,n]$ nanotubes, *Journal of Computer and Mathematical Sciences, 7(11)*, 599-605 (2016).
13. V.R. Kulli, Some new multiplicative atom bond connectivity indices, *Annals of Pure and Applied Mathematics, 13(1)*, 1-7 (2017).
14. R. Todeshine and V. Consonni, New local vertex invariants and descriptors based on functions of vertex degrees, *MATCH Commun. Math. Comput. Chem.*, 64, 359-372 (2010).
15. M. Eliasi, A. Irammanesh and I. Gutman, Multiplicative versions of first Zagreb index, *MATCH Commun. Math. Comput. Chem.*, 68, 217-230 (2012).
16. S.M. Hosamani, Computing sanskruti index of nanostructures, *J. Appl. Math. Comput*. DOI: 10.1007/s12190-016-1016-9.