Understanding the Reasons for Deferring ART Among Patients Diagnosed Under the Same-Day-ART Policy in Johannesburg, South Africa

Dorina Onoya1 · Tembeka Sineke1 · Idah Mokhele1 · Jacob Bor2 · Matthew P. Fox1,2,3 · Jacqui Miot1

Accepted: 16 January 2021 / Published online: 3 February 2021 © The Author(s) 2021

Abstract
We aimed to examine the correlates of antiretroviral therapy (ART) deferral to inform ART demand creation and retention interventions for patients diagnosed with HIV during the Universal Test and Treat (UTT) policy in South Africa. We conducted a cohort study enrolling newly diagnosed HIV-positive adults (≥ 18 years), at four primary healthcare clinics in Johannesburg between October 2017 and August 2018. Patients were interviewed immediately after HIV diagnosis, and ART initiation was determined through medical record review up to six-months post-test. ART deferral was defined as not starting ART six months after HIV diagnosis. Participants who were not on ART six-months post-test were traced and interviewed telephonically to determine reasons for ART deferral. Modified Poisson regression was used to evaluate correlates of six-months ART deferral. We adjusted for baseline demographic and clinical factors. We present crude and adjusted risk ratios (aRR) associated with ART deferral. Overall, 99/652 (15.2%) had deferred ART by six months, 20.5% men and 12.2% women. Baseline predictors of ART deferral were older age at diagnosis (adjusted risk ratio (aRR) 1.5 for 30–39.9 vs 18–29.9 years, 95% confidence intervals (CI): 1.0–2.2), disclosure of intentions to test for HIV (aRR 2.2 non-disclosure vs disclosure to a partner/spouse, 95% CI: 1.4–3.6) and HIV testing history (aRR 1.7 for > 12 months vs < 12 months/no prior test, 95% CI: 1.0–2.8). Additionally, having a primary house in another country (aRR 2.1 vs current house, 95% CI: 1.4–3.1) and testing alone (RR 4.6 vs partner/spouse support, 95% CI: 1.2–18.3) predicted ART deferral among men. Among the 43/99 six-months interviews, women (71.4%) were more likely to self-report ART initiation than men (RR 0.4, 95% CI: 0.2–0.8) and participants who relocated within SA (RR 2.1 vs not relocated, 95% CI: 1.2–3.5) were more likely to still not be on ART. Under the treat-all ART policy, nearly 15.2% of study participants deferred ART initiation up to six months after the HIV diagnosis. Our analysis highlighted the need to pay particular attention to patients who show little social preparation for HIV testing and mobile populations.

Keywords Ame-day ART initiation · South Africa · ART deferral

Introduction
South Africa is home to nearly eight million persons living with HIV, with about 4.6 million of these individuals receiving antiretroviral therapy (ART) [1–3]. While this represents an impressive scale-up effort, ART coverage is still below the targeted 90% by 2020, with about 60% of HIV accessing ART in 2019 [3–5].

Early ART uptake is essential to the success of South Africa’s Universal-Test-and-Treat (UTT) policy [6–8]. The more recent adoption of the WHO strategy to initiate patients on ART immediately after HIV diagnosis regardless of CD4 cell count is expected to reduce late-stage ART initiations, thus reducing HIV-related morbidity and mortality.
eligibility in South Africa was CD4 < 200, found that 20% of
A study conducted between 2008 and 2009, when the ART
immediate benefits of starting lifelong HIV treatment [20].
plausible that currently asymptomatic HIV positive patients
pre-ART portion of losses from HIV care. However, it is also
suggest that overt or passive treatment refusal may impact
on early ART uptake and promote early attrition from care
under the SDI policy in South Africa. It is, therefore, essen-
tial to determine the extent of this phenomenon under the
current ART initiation strategy and understand correlates of
treatment readiness to inform better ART demand creation
and retention interventions for newly diagnosed HIV posi-
tive patients.

We aimed to estimate the rate of ART deferral up to six
months after HIV diagnosis among newly diagnosed HIV
positive patients under the SDI protocol in Johannesburg. We also set out to identify predictors of ART deferral among
newly diagnosed HIV positive patients under a UTT protocol
in the Gauteng province, South Africa.

Methods

Study Setting and Design

We conducted a prospective cohort study enrolling newly
diagnosed HIV positive adult (≥ 18 years) participants from
October 2017 to August 2018 at four primary healthcare
clinics (PHCs) in Johannesburg, South Africa. Participant
enrolment co-occurred across sites until the total sample size
was attained.

All participants were enrolled in the study by trained
interviewers via referral from PHC-based lay HIV coun-
sellors, immediately after HIV diagnosis. Participants were
interviewed on the day of enrolment into the study. Par-
ticipants self-reported being newly diagnosed during the
screening process. Enrolled patients with a prior history
of ART were excluded from the analytic dataset. We also
excluded patients who were psychologically unable or too
sick to participate, unwilling to provide consent or planned
to get treatment elsewhere. Additionally, women who were
pregnant at HIV diagnosis were excluded from the study
due to in-pregnancy treatment initiation and care processes
differ from that of non-pregnant women.

Data Collection

Eligible patients who provided written consent completed
a structured baseline questionnaire on the day of HIV diag-
nosis. The questionnaire assessed baseline intention to initi-
ate ART, factors that could affect HIV treatment readiness
including ART acceptability, socioeconomic status, HIV
testing history, food security, experiences with clinic ser-
VICES, alcohol use, HIV knowledge and risk perceptions.
The information sheet and questionnaire were available in
English, Sesotho and isiZulu, which are widely spoken and
understood in Johannesburg.

Participants were followed up via medical record review
from the date of HIV diagnosis for six months or until the
date of transfer/death in the first six months of care. Clinici-
Cal information was collected from participants’ paper-based
electronic routine medical records, including laboratory
test results. Results of baseline laboratory tests (test from
first blood samples) were collected one calendar month after
enrolment because safety laboratory test results are not avail-
able on the day of testing. A telephonic follow-up structured
questionnaire was administered to participants who had not
initiated ART at six months to establish the reasons for ART
deferral/refusal. The questionnaire included an open-ended
question about reasons for ART deferral, for those who self-
reported not being on ART during the interview. Interview-
ers made up to three call attempts, on three different occa-
sions, before classifying a person as “Not found”.
Analytic Variables

The primary outcome was ART deferral (no ART) up to six months after HIV diagnosis. ART deferral percentage was calculated as the number of newly diagnosed HIV infected individuals with no confirmed ART initiation data divided by the total number of newly diagnosed HIV infected individuals who agreed to participate in the study.

We dichotomized participants’ motivation for HIV testing into asymptomatic and symptomatic. Patients who reported testing because of perceived HIV exposure were categorized as asymptomatic. Patients reporting ill-health as the main reason for presenting for HIV testing were regarded as symptomatic. Perceived social support (PSS) was measured using an eight-item scale in which participants indicated their overall satisfaction with available support given in each area (Cronbach’s alpha = 0.61) [24]. Mean scores were categorized as low (< 2), medium (2 to < 3), or high PSS (≥ 3).

We developed a household amenities index assessing participants’ access to 13 desirable household characteristics (flush toilet facilities, electricity, gas energy, brick housing structure, low-medium household density, and food availability), and ownership of durable household assets (television, radio, refrigerator, cellular telephone, landline telephone, microwave oven, and personal computer) (Cronbach’s alpha = 0.79) [25]. Each of the thirteen questions was scored separately on a four-point scale. The total score for the household amenities index ranged from 0 to 1, categorized as low (≤ 4.3), medium (4.4–8.6) or high (≥ 8.7).

Depression was measured using the CES-D 10 scale, a 10-question four-point scale (scores range 0 to 3) that measures general depressive symptoms experienced up to seven days before the interview [26]. The total score ranged from zero to 30, with higher scores reflecting higher depression (Cronbach’s alpha = 0.81). Depression was dichotomized into major depression (total score of ≥ 12) and no major depression (total score < 12) [27, 28].

Concerns about ART were measured using a 12-item questionnaire with a 4-point scale ranging from one (Strongly disagree) to four (Strongly agree) (Cronbach’s alpha = 0.83). Participants were asked to respond to statements indicating concerns about ART including “I worry about the long term effects of Antiretroviral medication”, “I worry that Antiretroviral medication will give me unpleasant side effects” and “I feel healthy, I do not see a need to take Antiretroviral medication”. Mean scores were categorized as low (< 2), medium (2–3) and high ART concerns (≥ 3).

Other socio-demographic factors assessed include age, sex, highest education completed, English literacy, marital status, employment status, whether the patient is the household breadwinner, the number of child dependants and the primary source of income. Factors related to health care access, including healthcare-seeking history, HIV testing history, were also assessed. We also assessed risky sexual behaviours including condom usage at last sex, the number of sexual partners in the previous 12 months and disclosure of intentions to test for HIV, and whether anyone accompanied patients to the testing clinic.

The baseline characteristics of study participants are described using percentages, frequencies, means with standard deviation, and medians with interquartile ranges (IQR) as appropriate. Factors identified with a univariate p-value < 0.1 and apriori factors of ART deferral such as sex and age were included in the adjusted model. The contribution of baseline CD4 cell count in explaining ART deferral was also assessed using Modified Poisson regression models, reporting Risk Ratios (RR) and 95% confidence intervals (95% CI). All statistical analyses were conducted in STATA 14™ (College Station, TX, USA). The study protocol was reviewed and approved by the Human Research Ethics Committee of the University of Witwatersrand (M1704122).

Results

Demographic Characteristics

Of the 708 patients who tested positive during the study period, 703 (99.3%) newly diagnosed patients were successfully referred and screened, 652 (92.7%) were eligible and agreed to participate in the study (Fig. 1). Overall, the median age at HIV diagnosis was 33 years (IQR: 28.0–39.0), and 64.1% of participants were female. The majority (86.0%) had at least a secondary school level of education, 87.5% among women and 83.4% among men. A slightly higher proportion of women (58.9%) reported high levels of English literacy compared to men (47.6%). However, more men (84.0%) reported employment/business as their primary source of income compared to women (51.1%), who were mostly dependent on a partner or family members for financial support.

Overall, 14.1% of participants were married, and 19.5% were not in an active sexual partnership. About a third (31.3%) had at least two sexual partners in the prior year, higher among men (42.1%) than women (25.1%). While 74.4% of the study participants lived with a partner/spouse or family/friends, more men (36.9%) lived alone compared to 18.7% of women.
Baseline Social Support and Health-Seeking Behaviour (Table 1)

Overall, 53.0% had visited a clinic, and 31.6% had also tested for HIV in the prior 12-months. General clinic attendance in the prior year was lower among men (38.2%) than women (61.4%). More women (36.3%) had tested for HIV in the prior year than men (23.2%). Participants’ assessment of their current social support was medium to high (95.3%), but only 62.4% had disclosed their intention to test for HIV and 26.0% were accompanied to the testing site. Overall disclosure of intentions to test for HIV was similar across gender (65.2% among women compared 57.3% of men). Notably, a lower proportion of men (17.7%) had disclosed to family members/friends compared to women (33.1%). However, participants’ baseline intention to start ART was nearly universal at 99.4%, with only 0.6% planning to never start ART, hence the term ART deferral and not refusal. Similarly, 96.3% of participants intended to disclose their HIV positive status (Table 1).

A large proportion of participants were missing baseline CD4 results (50.9%), more so among men (57.3%) than women (47.4%). Among those who tested for CD4, only 22.5% were diagnosed with HIV at CD4 count > 500 cells/µl, more so among women (28.2%) than men (10.0%). Overall, 52.1% of participants expressed moderate concerns about ART, with 47.7% expressing low concerns about ART.

ART Deferral at the Testing Site, Six-Months After HIV Diagnosis (Table 2)

Overall, 99 (15.2%) participants had deferred ART by six months, at the diagnosing clinic. We present crude and adjusted risk ratios (aRR) of baseline factors associated with ART deferral in Table 2. Male gender was associated with higher ART deferral in the crude model.
Table 1 Social and demographic characteristics of newly diagnosed patients with HIV (N = 652)

	Female No	Male No	Total No
Median age at HIV diagnosis, years (IQR)	32 (27.0–38.0)	36 (31.0–42.0)	33 (28.0–39.0)
Age at HIV diagnosis, years			
18–29.99	160 (38.3)	45 (19.2)	205 (31.4)
30–39.99	182 (43.5)	111 (47.4)	293 (44.9)
40+	76 (18.2)	78 (33.3)	154 (23.6)
Education level			
Primary school or less	52 (12.4)	39 (16.7)	91 (14.0)
Some secondary school	243 (58.1)	141 (60.3)	384 (58.9)
≥ Grade 12	123 (29.4)	54 (23.1)	177 (27.1)
English literacy			
I can read very well	245 (58.9)	110 (47)	355 (54.6)
I can read somewhat	132 (31.7)	97 (41.5)	229 (35.2)
I cannot read	39 (9.4)	27 (11.5)	66 (10.2)
Primary source of income/finances			
Paid job, salary or business	212 (51.1)	194 (84.0)	406 (62.8)
Spouse/partner	102 (24.6)	10 (4.3)	112 (17.3)
Parents/relatives/friends/other	101 (24.3)	27 (11.7)	128 (19.8)
Breadwinner of household			
Yes	152 (37.1)	179 (76.8)	331 (51.5)
No	261 (63.7)	54 (23.2)	315 (49.0)
Marital status			
Married	39 (9.4)	53 (22.6)	92 (14.1)
In a relationship (living together)	152 (36.5)	78 (33.3)	230 (35.3)
In a relationship (not living together)	139 (33.3)	63 (26.9)	202 (31.0)
Not in a relationship	87 (20.9)	40 (17.1)	127 (19.5)
Number of sexual partner in the past 12 months			
None	47 (11.5)	17 (7.3)	64 (10.0)
1 partner	260 (63.4)	118 (50.6)	378 (58.8)
≥ 2 partners	103 (25.1)	98 (42.1)	201 (31.3)
Condom use at last sex			
Yes	128 (31.1)	83 (35.6)	211 (32.7)
No	284 (68.9)	150 (64.4)	434 (67.3)
Lives with			
Partner/spouse	181 (49.9)	105 (47.3)	286 (48.9)
Family/friends	114 (31.4)	35 (15.8)	149 (25.5)
Alone	68 (18.7)	82 (36.9)	150 (25.6)
Number of child dependents			
None	222 (54.0)	159 (68.5)	381 (59.3)
1–2 children	145 (35.3)	52 (22.4)	197 (30.6)
≥ 3 children	44 (10.7)	21 (9.1)	65 (10.1)
Primary house			
Current house	144 (35.0)	91 (39.6)	235 (36.7)
Another province/rural	145 (35.3)	80 (34.8)	225 (35.1)
Another country	122 (29.7)	59 (25.7)	181 (28.2)
Housing type			
House/Flat	93 (22.4)	42 (18.1)	135 (20.9)
Cottage/room in backyard	204 (49.2)	102 (44.0)	306 (47.3)
Informal dwelling/shack	118 (28.4)	88 (37.9)	206 (31.8)
Household density			
Low density	112 (27.5)	88 (38.4)	200 (31.4)
Table 1 (continued)

	Female	Male	Total		
Med density					
No	181 (44.4)	99 (43.2)	280 (44.0)		
High density	115 (28.2)	42 (18.3)	157 (24.6)		
Duration at current house					
Less than 1 year	89 (21.4)	34 (14.6)	123 (19.0)		
1–5 years	145 (34.9)	67 (28.8)	212 (32.7)		
More than 5 years	182 (43.8)	132 (56.7)	314 (48.4)		
Recent clinic attendance (any reason)					
Never	40 (9.7)	67 (28.8)	107 (16.6)		
≤ 12 months	89 (38.2)	342 (53.0)	431 (67.4)		
> 12 months	119 (33.0)	96 (28.8)	215 (32.7)		
HIV testing history					
≤ 12 months ago	149 (36.3)	54 (23.2)	203 (31.6)		
> 12 months ago	202 (49.1)	85 (36.5)	287 (44.6)		
Never tested for HIV before current test	60 (14.6)	93 (39.9)	153 (23.8)		
Reason for seeking an HIV testing					
Just to know	86 (20.9)	26 (11.2)	112 (17.4)		
Current or previous HIV risk	48 (11.7)	48 (20.7)	96 (14.9)		
Experiencing symptoms	277 (67.4)	158 (68.1)	435 (67.6)		
Perceived social support (PSS)					
Med to high PSS	391 (95.1)	221 (95.7)	612 (95.3)		
Low PSS	20 (4.9)	10 (4.3)	30 (4.7)		
Disclosed intention to test for HIV					
Partner/spouse	132 (32.1)	92 (39.7)	224 (34.8)		
Family/friends/other	136 (33.1)	41 (17.7)	177 (27.5)		
No one	143 (34.8)	99 (42.7)	242 (37.6)		
Support at clinic for latest HIV test					
Partner/spouse	37 (9.0)	39 (16.8)	76 (11.8)		
Family	54 (13.1)	9 (3.9)	63 (9.8)		
Other	22 (5.4)	6 (2.6)	28 (4.4)		
No one	298 (72.5)	178 (76.7)	476 (74.0)		
Intention to disclose HIV test result					
Yes	395 (96.3)	223 (96.5)	618 (96.3)		
No	15 (3.7)	8 (3.5)	24 (3.7)		
Intention to start ART					
Yes	406 (99.3)	225 (99.6)	631 (99.4)		
No	3 (0.7)	1 (0.4)	4 (0.6)		
Depression					
No depression	372 (91.0)	205 (91.1)	577 (91.0)		
Major depression	37 (9.0)	20 (8.9)	57 (9.0)		
Concerns regarding ART					
Low	197 (47.9)	110 (47.4)	307 (47.7)		
Medium	214 (52.1)	121 (52.2)	335 (52.1)		
High	0	1 (0.4)	1 (0.2)		
Baseline CD4 count					
< 350	120 (28.7)	71 (30.3)	191 (29.3)		
350–500	38 (9.1)	19 (8.1)	57 (8.7)		
> 500	62 (14.8)	10 (4.3)	72 (11.0)		
Missing	198 (47.4)	134 (57.3)	332 (50.9)		
	Not initiated on ART (n=99)	RR	95% CI	RR	95% CI
----------------------	-----------------------------	--------	--------------	--------	--------------
	No. (%)	RR	95% CI	RR	95% CI
Sex					
Female	51 (12.2)	1		1	
Male	48 (20.5)	1.7	(1.2–2.4)	1.1	(0.8–1.6)
Age at HIV diagnosis. years					
18–29.9	21 (10.2)	1		1	
30–39.9	57 (19.5)	1.9	(1.2–3.0)	1.5	(1.0–2.2)
40+	21 (13.6)	1.3	(0.8–2.3)	1.2	(0.8–2.0)
Marital status					
Married	19 (20.7)	1			
In a relationship (living together)	28 (12.2)	0.6	(0.3–1.0)		
In a relationship (not living together)	31 (15.3)	0.7	(0.4–1.2)		
Not in a relationship	21 (16.5)	0.8	(0.5–1.4)		
Education level					
Primary school or less	16 (17.6)	1			
Some secondary school	64 (16.7)	0.9	(0.6–1.6)		
≥Grade 12	19 (10.7)	0.6	(0.3–1.1)		
English literacy					
I can read very well	44 (12.4)	1		1	
I can read somewhat	43 (18.8)	1.5	(1–2.0)	1.2	(0.9–1.7)
I cannot read	12 (18.2)	1.5	(0.8–2.6)	0.9	(0.5–1.6)
Primary house					
Current house	22 (9.4)	1		1	
Another province/rural	34 (15.1)	1.6	(0.9–2.7)	1.6	(1.1–2.3)
Another country	41 (22.7)	2.4	(1.5–3.9)	2.1	(1.4–3.1)
Primary source of income/finances					
Paid job, salary or business	63 (15.5)	1			
Spouse/partner	15 (13.4)	0.9	(0.5–1.5)		
Parents/relatives/friends/other	18 (14.1)	0.9	(0.6–1.5)		
Breadwinner of household					
Yes	50 (15.1)	1			
No	47 (14.9)	1.0	(0.7–1.4)		
Lives with					
Partner/spouse	37 (12.9)	1			
Family/friends	24 (16.1)	1.2	(0.8–2.0)		
Alone	25 (16.7)	1.3	(0.8–2.1)		
Number of child dependents					
None	55 (14.4)	1			
1–2 children	17 (14.0)	1.0	(0.6–1.6)		
≥3 children	27 (18.0)	1.2	(0.8–1.9)		
Last visit to any health provider					
Never	21 (19.6)	1			
Within a year	51 (14.9)	0.8	(0.5–1.2)		
More than a year ago	25 (12.8)	0.6	(0.4–1.1)		
Ever visited current clinic					
Yes	37 (14.3)	1			
No	39 (13.9)	1.0	(0.6–1.5)		
Last HIV test before current test					
≤12 months ago	19 (9.4)	1		1	
>12 months ago	49 (17.1)	1.8	(1.1–3.0)	1.3	(0.9–2.0)
(RR 1.7, 95% CI: 1.2–2.4) but not in the adjusted model, including baseline CD4 count. Half of the sample were missing baseline CD4 count, and participants who were missing CD4 count were three times more likely to defer ART than those who had CD4 data (aRR 3.0, 95% CI: 2.0–4.4). There was no difference between CD4 categories in the risk of ART deferral. Missing a baseline CD4 count was not random as, men were more likely to lack baseline CD4 data compared to women (aRR 1.2, 95% CI: 1.0–1.4). Additionally, having tested for HIV more than 12 months prior was associated with missing baseline CD4 data (aRR 1.3 vs < 12 months, 95% CI: 1.1–1.6).

Participants who were 30–39 years old were 50% more likely to defer ART compared to the younger (18–30 years) group (aRR 1.5, 95% CI: 1.0–2.2). However, men were also older than women at testing (RR 1.72 for men being

Table 2 (continued)	Not initiated on ART (n=99)	RR	RR
	No. (%)	95% CI	95% CI
Never tested for HIV before current test	27 (17.6)	1.9 (1.1–3.3)	1.3 (0.8–2.0)
Condom use at last sex			
Yes	35 (16.6)	1	
No	62 (14.3)	0.9 (0.6–1.3)	
Number of sexual partner in the past 12 months			
None	9 (14.1)	1	
1 partner	59 (15.6)	1.1 (0.6–2.1)	
2+ partners	29 (14.4)	1.1 (0.5–2.1)	
Reason for seeking an HIV testing			
Just to know	10 (8.9)	1	1
Current or previous HIV risk	11 (11.5)	1.3 (0.6–2.9)	1.0 (0.5–2.0)
Experiencing symptoms	73 (18.0)	2.0 (1.1–3.8)	1.2 (0.7–2.0)
Depression			
No depression	81 (14.0)	1	
Major depression	12 (21.1)	1.5 (0.9–2.6)	
Perceived social support			
Medium to high	90 (14.7)	1	
Low	4 (13.3)	0.9 (0.4–2.3)	
Intention to disclose			
Yes	91 (14.7)	1	
No	3 (12.5)	0.8 (0.3–2.5)	
Disclosed intention to test			
partner/spouse	21 (9.4)	1	1
Family/friends/other	16 (9.0)	1.0 (0.5–1.8)	1.1 (0.7–1.9)
No one	58 (24)	2.6 (1.6–4.1)	1.9 (1.3–2.8)
Concerns regarding ART			
Low	54 (17.6)	1	
Medium	68 (20.3)	1.2 (0.8–1.6)	
High	1 (100)	–	
Support at clinic for latest HIV test			
Partner/spouse	8 (10.5)	1	
Family/other	14 (15.4)	1.5 (0.6–3.3)	
No one	73 (15.3)	1.5 (0.7–2.9)	
Baseline CD4			
< 350	18 (9.4)	1	
350–500	6 (10.5)	1.1 (0.5–2.7)	1.3 (0.6–3.1)
> 500	4 (5.6)	0.6 (0.2–1.7)	0.7 (0.2–2.0)
Missing	98 (29.5)	3.1 (2.0–5.0)	3.0 (1.8–4.7)
30–39 years old vs 18–30 years, 95% CI: 1.3–2.3; RR 2.3 for being ≥ 40 vs 18–30 years, 95% CI: 1.7–3.2).

Participants who tested more than 12 months before study enrolment were more likely to defer ART compared to those who tested more recently (aRR 1.7, 95% CI: 1.0–2.8). However, recent risk behaviour such as unprotected sex and multiple sexual partnerships in the prior 12 months did not predict ART uptake. Also, participants who did not disclose their intention to test for HIV (aRR 2.2 for non-disclosure vs disclosure to a partner/spouse, 95% CI: 1.4–3.6) were more likely to defer HIV treatment.

Although 52.1% participants expressed moderate concerns about ART, the association between reported concerns about ART with ART deferral was weak and imprecise (aRR 1.2 for moderate vs low, 95% CI: 0.9–2.3). Participants who reported having a primary house outside South Africa were twice more likely to defer ART compared to local participants (aRR 2.1, 95% CI: 1.0–4.6).

Baseline Predictors of ART Deferral Among Newly Diagnosed Male Participants (Table 3)

In the analysis restricted to male participants, reporting only crude associations due to the small sample size (n = 234), older age at HIV diagnosis remained an important predictor of ART deferral. Social preparations for testing such as telling a partner about intentions to test (RR 3.3 for not disclosing vs telling a partner, 95% CI: 1.7–6.6) and having support at the testing site (RR 4.6 no support vs being accompanied by a partner, 95% CI: 1.2–18.3) were important predictors of ART deferral among men. Similarly, men who lived with family/friends rather than a partner/spouse (RR 2.1, 95% CI: 1.0–4.0) and those who had never tested before (RR 1.9 vs < 12 months, 95% CI: 1.1–3.3) or tested more than 12-months prior (RR 1.8 vs < 12 months, 95% CI: 1.1–3.0) were more likely to defer ART.

While employment status did not predict ART deferral, being the household breadwinner was associated with a higher risk of not starting ART (RR 1.7, 95% CI: 1.0–2.9). Also, those who lived in temporary homes (RR 2.8 when the primary house is in another country vs the current house, 95% CI: 1.4–5.4) were more likely to defer ART.

Reason for Deferring ART Initiation Among Newly Diagnosed Participants (Table 4)

Of the 99 (15.2%) participants who did not take-up ART at the testing site, 54 (54.5%) were successfully traced at six-months post-test. Of the 54 traced participants, two were deceased, nine refused to be interviewed, and 43 (43.4%) completed the follow-up telephonic interview. Among those interviewed, 27 (62.8%) reported having started ART, half (51.9%) of these reported having started ART at the diagnosing site. Women (71.4%) were more likely to self-report ART initiation than men (26.9%, RR 0.4 men vs women, 95% CI: 0.2–0.8). Among those interviewed at six months, relocation to other provinces within South Africa was the main reason for not starting ART (RR 2.1 vs no move, 95% CI: 1.2–3.5). Only three (7.7%) of those interviewed at six months reported high ART concerns. ART concerns did not influence participants’ decision to start ART (RR 0.9 for medium vs low concerns, 95% CI: 0.6–1.4).

Open-ended questions provided qualitative reasons for ART deferral from the 16 interviewed participants who had not started ART. As highlighted by the quotes below, important barriers to ART were high mobility, uncertainties about the procedure for initiating or continuing treatment when the process was interrupted by a move or other social circumstances.

“I have not started my medication yet. I had an emergency in my home country, lost my son in Zimbabwe and was there for five months. I left the country before they could initiate me on treatment, but I am now back but currently in Durban.” – Male participant.

“I moved back home to Bulawayo (Zimbabwe) because my mother was sick, after starting ART, but how will I continue with my treatment now that I have moved?”—Female participant.

“I have not started ART because I was sick and hospitalized and then moved back home to recuperate. I have just moved back to my current house recently.” – Female participant.

Discussion

This is one of the first studies to explore reasons for ART deferral under the new same-day ART initiation policy in South Africa. Overall, 15.2% of participants had deferred ART by at least six months, 20.5% for men and 12.2% for women. The substantial decline in ART deferral among patients who tested for HIV is consistent with the previous findings in South Africa [1–3]. Although facility-based studies show substantial improvement in linkage to ART, national estimates still show much lower ART coverage, indicating a large gap in linkage to ART among patients tested at primary care facilities compared to total tested, including community-based testing [1–3, 29–31]. Further improvements in the linkage to ART and retention in HIV care of individuals who access HIV testing services at community sites will likely have a more significant impact on overall national ART initiation figures and the achievement of the UNAIDS targets [12].
Table 3 Baseline predictors of ART deferral among newly diagnosed male patients

Baseline Predictors	Not initiated on ART (n = 48)	RR	95% CI
Age at HIV diagnosis, years			
18–29.99	5 (11.1)	1	
30–39.99	29 (26.1)	2.4	1.0–5.7
40+	14 (17.9)	1.6	0.6–4.2
Marital status			
Married	12 (22.6)	1	
In a relationship (living together)	12 (15.4)	0.7	0.3–1.4
In a relationship (not living together)	15 (23.8)	1.1	0.5–2.0
Not in a relationship	9 (22.5)	0.9	0.5–2.1
Education level			
Primary school or less	11 (28.2)	1	
Some secondary school	29 (20.6)	0.7	0.4–1.3
≥ Grade 12	8 (14.8)	0.5	0.2–1.2
English literacy			
I can read very well	18 (16.4)	1	
I can read somewhat	22 (22.7)	1.4	0.8–2.4
I cannot read	8 (29.6)	1.8	0.9–3.7
Primary house			
Current house	11 (12.1)	1	
Another province/rural	16 (20.0)	1.7	0.8–3.4
Another country	20 (33.9)	2.8	1.4–5.4
Primary source of income/finances			
Paid job salary or business	38 (19.6)	1	
Spouse/partner	2 (20.0)	0.9	0.3–3.7
Parents/relatives/friends/other	6 (22.2)	1.1	0.5–2.4
Breadwinner of household			
Yes	31 (17.3)	1	
No	16 (29.6)	1.7	1.0–2.9
Lives with			
Partner/spouse	16 (15.2)	1	
Family/friends	11 (31.4)	2.1	1.0–4.0
Alone	16 (19.5)	1.3	0.7–2.4
Number of child dependents			
None	29 (18.2)	1	
1–2 children	9 (28.1)	1.5	0.8–2.9
≥3 children	10 (23.3)	1.3	0.7–2.4
Last visit to any health provider			
Never	16 (23.9)	1	
Within a year	17 (19.1)	0.8	0.4–1.5
More than a year	14 (18.2)	0.8	0.4–1.4
Ever visited current clinic			
Yes	13 (17.6)	1	
No	18 (19.6)	1.1	0.6–2.1
Last HIV test before current test			
≤ 12 months ago	9 (16.7)	1	
> 12 months ago	21 (24.7)	1.8	1.1–3.0
Never tested for HIV before current test	16 (17.2)	1.9	1.1–3.3
Condom use at last sex			
Yes	17 (20.5)	1	
Although SDI policy was implemented at all health facilities in South Africa, implementation varied between study sites, possibly due to variations in facilities and provider challenges [32]. It is also possible that the limited policy implementation guidance, early on, led to slow assimilation of the UTT and SDI policies [33]. There is, therefore, a need for further engagement to address the challenges that patients and health providers are facing to increase ART uptake and retention in care.

A key finding of this study is that disclosure of plans to get an HIV test and even being accompanied at the testing site reduced ART deferral. Disclosure of one’s intention to test for HIV is a vital step in paving the way for the eventual disclosure of the HIV test results and long-term ART adherence. These preparatory steps allow individuals to address concerns about confidentiality, partner and community-level HIV stigma before the receipt of an HIV positive diagnosis [34]. These factors were particularly important among male participants and may be essential intervention targets to decrease the proportion of undiagnosed patients and improve linkage and retention of male patients [35]. Similarly, patients’ familiarity with clinic processes and established healthcare-seeking behavior among men may promote early HIV testing and linkage to ART. In addition to the
effect of migration and mobility on the risk of disengagement from care, work commitment for breadwinners, HIV disclosure to family members as well as social preparations for HIV care are essential in patient linkage and retention in HIV care [36, 37]. Similar to other studies in South Africa, participants who deferred ART by six months were generally older at HIV diagnosis compared to those who started ART, male and of non-South African origin [37, 38]. The potential for migration and mobility was a particularly important predictor of not starting ART, among both male and female participants [37, 38].

While employment status did not predict ART deferral, males participants who were primary household income earners were at higher risk of not starting ART [37–41]. Migration often varies by region, affecting more men than women. Labour-related mobility is associated with increased risk of HIV acquisition among both men and women. [38]. Language barriers and poor communication about healthcare administrative processes in the host country commonly hinder the retention of migrants in ART programs [39–41]. Our findings, therefore, echo previous calls for an integrated health information system to accommodate patient mobility needs and facilitate access to care [36].

Previous studies reported a 20% ART deferral rate among ART eligible patients diagnosed under the CD4 < 350 policy [21]. Although the proportion of participants diagnosed with CD4 > 350 was marginally higher during the SDI policy than under previous ART guidelines; the majority still test at CD4 counts below 350 cell/µl [42]. The reduced dependence on CD4 test results for ART initiation under the UTT and SDI policies may have inadvertently resulted in a reduced availability of baseline CD4 results, as nearly half of the participants were missing baseline CD4 data in their clinic files [37]. However, as observed before UTT, participants who did not engage with post-HIV diagnosis processes such as providing blood for baseline tests were by far more likely to defer ART [17, 18, 31].

Table 4 Predictors of self-reported ART deferral at six-months post-test among participants with no documented ART at the diagnosing clinic

Women	Men	Total	No ART at six months	
	N=24	N=19	N=43	RR (95 % CI)
	n (%)	n (%)	n (%)	
Did you move from your house in the last 6 months?				
Yes	14 (58.3)	12 (63.2)	26 (60.5)	1.6 (0.9–2.7)
No	10 (41.7)	7 (36.8)	17 (39.5)	1
New location of those who moved				
Yes, other country	1 (5.0)	1 (5.9)	2 (5.4)	1.1 (0.2–4.7)
Yes, other province in SA	3 (15.0)	0	3 (8.1)	2.1 (1.2–3.5)
Yes, other town/suburb in Gauteng	6 (30.0)	9 (52.9)	15 (40.5)	1.4 (0.8–2.7)
No relocation	10 (50.0)	7 (41.2)	17 (48.6)	1
Self-reported ART start at six months				
Yes	20 (83.3)	7 (36.8)	27 (62.8)	
No	4 (16.7)	12 (63.2)	16 (37.2)	
ART start at six months at diagnosing clinic				
Yes	10 (50.0)	4 (57.1)	14 (51.9)	
No	10 (50.0)	3 (42.9)	13 (48.1)	
ART concerns at six months				
High ART concerns	1 (5.0)	2 (10.5)	3 (7.7)	0.5 (0.1–2.4)
Medium ART concerns	9 (45.0)	12 (63.2)	21 (53.8)	0.9 (0.6–1.4)
Low ART concerns	10 (50.0)	5 (26.3)	15 (38.5)	
Depression at six months				
No depression	12 (92.3)	12 (92.3)	24 (92.3)	1
Major depression	1 (7.7)	1 (7.7)	2 (7.7)	0.8 (0.2–3.4)
Perceived social support at six months				
Low	4 (26.7)	3 (23.1)	7 (25.0)	1
Medium	11 (73.3)	10 (76.9)	21 (75.0)	0.9 (0.5–1.6)
Limitation

These study results are limited to the geographic location of the participating primary care facilities. The inclusion of patients who test within non-clinical community settings may have provided more clarity on the reason for ART deferral among diagnosed HIV positive patients who do not link to ART at the local clinic. Also, we only included four facilities in the Johannesburg sub-district A, which may not necessarily reflect the variability in ART deferral and its determinants in South Africa. While the open-ended questions on reasons for ART deferral provided some insight, an appropriately powered study targeting patients who have deferred ART is needed to further inform supportive interventions.

Furthermore, traced participants may have been more inclined to engage about their healthcare-seeking patterns, and may have reported initiating ART because it was a desirable study outcome. Further studies are needed to understand barriers to ART uptake among patients who cannot be contacted and those who make no attempt to visit a PHC after HIV testing. A majority of those who could not be traced could have also been silent refusals or changed clinics for ART initiation. However, South African currently lack a unique patient identifier, and HIV management data are not stored in a networked information system, limiting inter-clinic patient searches.

Conclusion

Under the treat-all ART policy, 15% of the study participants defer ART initiation up to six months after the HIV diagnosis. Our analysis highlighted the need to pay particular attention to patients who show little social preparation for HIV testing and mobile populations. These factors should be considered in interventions aiming to improve earlier linkage ART among patients who attend primary care facilities in South Africa.

Acknowledgements We extend our gratitude to the data collection team (Julia Mogwasi, Jan Maobela, Nokukhanya Mhlanga, Vinolia Njinkelanga, Zoleka Luvuno, Nonlanhla Tshabalala) for their diligent support during the study implementation. Additionally, our sincere thanks go to the City of Johannesburg and the staff of participating clinics for accommodating the study. While the open-ended questions on reasons for ART deferral provided some insight, an appropriately powered study targeting patients who have deferred ART is needed to further inform supportive interventions.

Funding This study was made possible by the generous support of the American People and the President’s Emergency Plan for AIDS Relief (PEPFAR) through US Agency for International Development (USAID) under the terms of Cooperative Agreements AID-674-A-12-00029 and 72067419CA00004 to Health Economics and Epidemiology Research Office (DO, TS, IM, JM and the data team) and under the terms of Cooperative Agreement 674-A-08-09-00018-00 to Boston University (MF&JB). DO, JB and TS were also supported by the grant 1R01AI152149-01 from the National Institute of Health (NIH). The contents are the responsibility of the authors and do not necessarily reflect the views of the NIH, PEPFAR, USAID or the United States Government. The funders had no role in the study design, collection, analysis and interpretation of the data, in manuscript preparation or the decision to publish.

Compliance with Ethical Standards

Conflicts of interest The authors have declared that no competing interests exist.

Ethical Approval All participants provided written consent for all data collection procedures. The study protocol was approved by the Human Research Ethics Committee of the University of Witwatersrand (Clearance certificate M1704122).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. UNAIDS. Global AIDS update 2016. Geneva, Switzerland: World Health Organization Library; 2016.
2. HSRC. The fifth south african national HIV prevalence incidence behaviour and communication survey 2017. Pretoria: HSRC; 2018.
3. South African National Department of Health (SA-NDoH). National department of health annual report 2018/2019. Pretoria; SA-NDoH; 2019.
4. UNAIDS 2018 Country factsheets: South Africa. AIDSinfo 2018. https://www.unaids.org/en/regionscountries/countries/southafrica. Accessed 05 Nov 2020.
5. UNAIDS 2019 Global AIDS Update 2019. https://www.unaid s.org/sites/default/files/media_asset/2019-global-AIDS-updat e_en.pdf. Accessed 05 Nov 2020.
6. Rosen S, Fox MP, Larson BA, et al. Accelerating the uptake and timing of antiretroviral therapy initiation in sub-saharan Africa: an operations research agenda. PLoS Med. 2016;13(8):e1002106.
7. Cohen MS, Chen YQ, McCauley M, et al. Prevention of HIV-1 infection with early antiretroviral therapy. N Engl J Med. 2011;365(6):493–505.
8. Boyer S, Iwuji C, Gosset A, et al. Factors associated with antiretroviral treatment initiation amongst HIV-positive individuals.
linked to care within a universal test and treat programme: early findings of the ANRS 12249 TasP trial in rural South Africa. AIDS Care. 2016;28(sup3):39–51.

9. SA-NDoH. National policy on HIV pre-exposure prophylaxis (PrEP) and test and treat (T&T). Pretoria: SA-NDoH; 2016.

10. Motsoaledi A 2016 Debate on the health budget vote. Pretoria https://www.gov.za/speeches/debate-health-budget-vote-national-assembly-10-may-2016-dr-aaron-motsoaledi-minister-health. Accessed 05 Nov 2020.

11. SA-NDoH circular 2016 Implementation of the universal test and treat strategy for HIV positive patients and differentiated care for stable patients. Pretoria https://sahivosc.org/Files/22%2016%20Circular%20UTT%20%2016%20Decongestion%20CCM%20Directorate.pdf. Accessed 05 Nov 2020.

12. SA-NDoH. Fast tracking implementation of the 90–90–90 strategy for HIV through implementation of the test and treat (TT) policy for same-day antiretroviral therapy (ART) initiation for positive patients. Pretoria: SA-NDoH; 2017.

13. WHO. Consolidated guidelines for the use antiretroviral drugs for treating and preventing HIV infection: recommendations for a public health approach. 2nd ed. Geneva: WHO; 2016.

14. Nachega JB, Uthman OA, Del Rio C, Mugavero MJ, Rees H, Mills EJ. Addressing the achilles’ heel in the HIV care continuum for the success of a test-and-treat strategy to achieve an AIDS-free generation. Clin Infect Dis. 2014;59(suppl 1):S21–7.

15. Labhardt ND, Ringer I, Lejone TI, et al. Same day ART initiation versus clinic-based pre-ART assessment and counselling for individuals newly tested HIV-positive during community-based HIV testing in rural lesotho—a randomized controlled trial (CASCADE trial). BMC Public Health. 2016;16(1):329.

16. MacCarthy S, Hoffmann M, Ferguson L, et al. The HIV care cascade: models, measures and moving forward. J Int AIDS Soc. 2015;18(1):19395. https://doi.org/10.7448/IAS.18.1.19395.PMID:25735869;PMC-ID:PMC4348400.

17. Lahuerta M, Lima J, Nuwagaba-Biribonwoha H, et al. Factors associated with late antiretroviral therapy initiation among adults in mozambique. PLoS ONE. 2012;7(5):e37125.

18. Geng EH, Nash D, Kambugu A, et al. Retention in care among HIV-infected patients in resource-limited settings: emerging insights and new directions. Curr HIV/AIDS Rep. 2010;7(4):234–44.

19. Kigozi IM, Dobkin LM, Martin JN, et al. Late-disease stage at presentation to an HIV clinic in the era of free antiretroviral therapy in sub-saharan Africa. J Acquir Immune Defic Syndr. 2009;52(2):280–9.

20. Fox MP. Are we shifting attrition downstream in the HIV cascade? Lancet HIV. 2016;3(12):e554–5.

21. Katz IT, Essien T, Marinda ET, et al. Antiretroviral refusal among newly diagnosed HIV-infected adults in soweto, South Africa. AIDS. 2011;25(17):2177–81.

22. Katz IT, Bangsberg DR. Cascade of refusal—what does it mean for the future of treatment as prevention in sub-saharan Africa? Curr HIV/AIDS Rep. 2016;13(2):125–30.

23. Plazy M, Farouki KE, Iwuji C, et al. Access to HIV care in the context of universal test and treat: challenges within the ANRS 12249 TasP cluster-randomized trial in rural South Africa. J Int AIDS Soc. 2016;19(1):20913.

24. Sarason IG, Sarason BR, Shearin EN, Pierce GR. A brief measure of social support: practical and theoretical implications. J Pers Soc Relat. 1987;4(4):497–510.

25. Wabiri N, Tafta N. Socio-economic inequality and HIV in South Africa. BMC Public Health. 2013;13(1):1037.

26. Baron EC, Davies T, Lund C. Validation of the 10-item centre for epidemiological studies depression scale (CES-D-10) in Zulu, Xhosa and Afrikaans populations in South Africa. BMC Psychiatry. 2017;17(1):6.

27. Andresen EM, Malmgren JA, Carter WB, Patrick DL. Screening for depression in well older adults: evaluation of a short form of the CES-D. Am J Prev Med. 1994;10(2):77–84.

28. Zhang W, O’Brien N, Forrest JT, et al. Validating a shortened depression scale (10 item CES-D) among HIV-positive people in British Columbia, Canada. PLoS ONE. 2012;7(7):e40793.

29. HSRC. The fifth South African National HIV prevalence incidence behaviour and communication survey 2017: HIV impact assessment summary report. Cape Town: HSRC; 2018.

30. Ross J, Sinayobye JD, Yotebieng M, et al. Early outcomes after implementation of treatment in Rwanda: an interrupted time series study. J Int AIDS Soc. 2019;22(4):e25279.

31. Onyoha D, Simeke T, Hendrickson C, et al. Impact of the test and treat policy on delays in antiretroviral therapy initiation among adult HIV positive patients from six clinics in Johannesburg, South Africa: results from a prospective cohort study. BMJ Open. 2020;10(3):e030228.

32. Plazy M, Perriat D, Gumede D, et al. Implementing universal HIV treatment in a high HIV prevalence and rural South African setting—Field experiences and recommendations of health care providers. PLoS ONE. 2017;12(11):e0186883.

33. Orange E 2018 Assessing health policy implementation in South Africa: case study of HIV universal test and treat research works https://digital.library.washington.edu/researchworks/handle/1773/47115. Accessed 05 Nov 2020.

34. Musheke M, Ntalasha H, Gari S, et al. A systematic review of qualitative findings on factors enabling and deterring uptake of HIV testing in Sub-Saharan Africa. BMC Public Health. 2013;13(1):220.

35. Vandermael A, de Oliveira T, Tanser F, Bärnighausen T, Herbeck JT. High percentage of undiagnosed HIV cases within a hyper-endemic South African community: a population-based study. J Epidemiol Community Health. 2018;72(2):168–72.

36. Hoddinott G, Myburgh H, de Villiers L, et al. Households, fluidity, and HIV service delivery in Zambia and South Africa – an exploratory analysis of longitudinal qualitative data from the HPTN 071 (PopART) trial. J Int AIDS Soc. 2018;21(45):e25135.

37. Dorward J, Mabuto T, Charalambous S, Fielding KL, Hoffmann CJ. Factors associated with poor linkage to HIV care in South Africa: secondary analysis of data from the Thol‘impo trial. JAIDS. 2017;76(5):453–60.

38. Camlin CS, Akullian A, Neilands TB, et al. Gendered dimensions of population mobility associated with HIV across three epidemics in rural Eastern Africa. Health and Place. 2019;57:339–51.

39. Tanser F, Bärnighausen T, Vandermael A, Dobra A. HIV treatment cascade in migrants and mobile populations. Curr Opin HIV AIDS. 2015;10(6):430–8.

40. Farel CE, Dennis AM. Why everyone (almost) with HIV needs to be on treatment: a review of the critical data. Infect Dis Clin. 2019;33(3):663–79.

41. Larmarange J, Diallo MH, McGrath N, et al. The impact of population density on the population HIV care cascade: results from the ANRS 12249 treatment as prevention trial in rural KwaZulu-Natal (South Africa). J Int AIDS Soc. 2018;21(45):e25128.

42. Lilian RR, Rees K, Mabitsi M, McIntyre JA, Struthers HE, Peters RPH. Baseline CD4 and mortality trends in the South African human immunodeficiency virus programme: analysis of routine data. South Afr J HIV Med. 2019;20(1):10. https://doi.org/10.4102/sajhivmed.v20i1.963.