Synthesis and Crystal Structures of Novel Glycoluryl Carboxylic Acids Conglomerates

Vladimir V Baranov (✉ ase1313@mail.ru)
Zelinsky Institute of Organic Chemistry RAS
https://orcid.org/0000-0003-4818-7807

Tatyana N Vol’khina
A N Nesmeyanov Institute of Organoelement Compounds RAS

Angelina N Kravchenko
Zelinsky Institute of Organic Chemistry RAS

Research Article

Keywords: Racemates, 2-(Glycoluril)-3-methylbutanoic acid, 4,6-Dimethyl-2-(glycoluril)pentanoic acid, Conglomerats, Crystal structure

Posted Date: November 23rd, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1081238/v1

License: ☑️ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

The two novel conglomerates were obtained by crystallization of racemic \((S)-2-((3aR,6aS)-2,5$-dioxohexahydroimidazo[4,5-d]imidazole-1(2H)-yl)-3$-methylbutanoic acids (racemate I), \((R)-2-((3aR,6aR)-2,5$-dioxohexahydroimidazo[4,5-d]imidazole-1(2H)-yl)pentanoic acids (racemate II), which were synthesized by highly diastereoselective condensation of 4,5-dihydroimidazolidine-2-ones with racemic ureido acids for the first time. The differences in the molecular geometry of I and II are studied by X-ray diffraction that showed them to crystallize as conglomerates in non-centrosymmetric space groups Pna\(_2\)\(_1\) and P2\(_1\)2\(_1\)2\(_1\), respectively.

Introduction

The course of many biological processes is based on molecular recognition, in which various classes of chemical compounds are involved. The processes of crystal formation can serve as models for studying such phenomena in biosystems [1]. In particular, crystallization is used to separate racemic drugs into enantiomers, since it is well known that enantiomers can exhibit different pharmacological activities. It is known that only \((S)\)-thalidomid is a teratogen, \((R)\)-enantiomer is an anti-inflammatory, immunomodulatory, and antiangiogenic properties [2–4]. \((S)\)-Ketamine has an approximately 4-fold greater analgesic potency, compared with \((R)\)-ketamine [5], but only S-isomer is responsible for agitation, hallucination, and restlessness [6]. Only \((S)\)-penicillamine can be used clinically, because of \((R)\)-isomer is excessive toxicity [7]. \((-)-(3aS,6aS)\)-Albicar is stimulating effect on central nervous system (CNS), but \((+)-(3aR,6aR)\)-Albicar is inhibitory effect on CNS [8].

It is known that tetrahydroimidazo[4,5-d]imidazole-2,5(1H,3H)-diones (glycolurils) are capable of forming supramolecular assemblies and supermolecules of varying complexity upon crystallization from different solvents [9–21], which can lead to spontaneous resolution of racemates into enantiomers (conglomerate formation) [22–26]. Some glycolurilcarboxylic acids [16, 17, 20, 21, 24, 25] also have such properties (Fig. 1). The ability to spontaneously resolution racemates into enantiomers is very important for obtaining enantiomerically pure glycolurils with various types of biological activity [8, 27–31]. The ability to spontaneous resolution of racemates into enantiomers is very important for obtaining enantiomerically pure glycolurils with various types of biological activity.

In this work racemates of \((S)-2-((3aS,6aR)\)-, \((R)-2-((3aR,6aS)-\)2,5-dioxohexahydroimidazo[4,5-d]imidazol-1(2H)-yl)-3-methylbutanoic (racemate I), \((S)-2-((3aS,6aS)\)- \((R)-2-((3aR,6aR)-\)4,6-dimethyl-2,5-dioxohexahydroimidazo[4,5-d]imidazol-1(2H)-yl)pentanoic acids (racemate II) were synthesized and their ability to form conglomerates was studied for the first time.

Experimental

General experimental remarks
Melting points were determined in a GALLENKAMP instrument (Sanyo). The IR spectra were recorded on a Bruker “Alpha” spectrometer in the range 400 – 4000 cm\(^{-1}\) (resolution 2 cm\(^{-1}\)). \(^1\)H and \(^13\)C NMR spectra were recorded on a Bruker AM-300 spectrometer (300 and 75 MHz, respectively) in DMSO-\(d_6\) with TMS as internal standard. High resolution mass spectra were recorded on a Bruker MicroTOF II instrument in positive ion mode (capillary voltage 4500 V) using electrospray ionization (ESI) and methanol as a solvent. All reagents including KOCN, urea, 1,3-dimethylurea, glyoxal (aqueous 40%), HCl (aqueous 36.5%), \((R,S)\)-Val (1a), \((R,S)\)-nor-Val (1b) were obtained from commercial sources and used without additional purification. Compound 2a were synthesized according to the literature [32, 33] (Scheme 1).

Synthesis of 4,5-dihydroxy-1,3-dimethylimidazolidin-2-ones (2b+2`b) (Scheme 2)

The solution of KOH in H\(_2\)O (1 M) was added to the solution of 1,3-dimethylurea (13.2 g, 0.15 mol) in 40% aqueous glyoxal (17.2 mL, 0.15 mol) to pH 11. The reaction mixture was heated with stirring to 50 – 55°C, incubated for 5 h and evaporated to dryness. Resulting solid was triturated with acetone. The mixture 2b (trans-isomer) + 2`b (cis-isomer) (ratio 15:1) was filtered off and dry at the air.

Light beige solid, yield 95% (20.80 g), mp 141 – 143°C. \(^1\)H NMR: (300 MHz, DMSO-\(d_6\)) \(\delta\) 2.62 (s, 6H, Me (2`b)), 2.66 (s, 6H, Me (2b)), 4.53 (s, 2H, CH-CH (2b)), 4.74 (s, 2H, CH-CH (2`b)), 5.76 – 5.97 (br.s, 2H, OH (2b)), 6.14 – 6.62 (br.s, 2H, OH (2b)) [34].

General procedure for the synthesis of compounds 3a,b (Scheme 1, Scheme 2)

KCNO (8.505 g, 0.105 mol) by portionwise slowly was added to boiling solution (\(R,S\))-Val 1a (11.7 g, 0.1 mol) or (\(R,S\))-nor-Val 1b (11.7 g, 0.1 mol) in 200 mL of H\(_2\)O and refluxed for 20 min. The reaction mixture was cold to 10°C at the ice bath and (10.6 mL, 35%) hydrochloric acid was added dropwise to pH 1. Obtained white powder of product 3a or 3b was filtered off and washed with 10 mL H\(_2\)O and dried at the air.

3-Methyl-2-ureidobutanoic acid (3a)

White powder, yield 91% (14.56 g), mp 175-177°C (176°C [35]). IR (KBr) \(\nu\) = 3455, 3353, 3297, 1689, 1633, 1575, 1469, 1401, 1309, 1175, 1164, 1136, 1102, 1011, 971, 929, 902, 777, 723, 595, 581, 516 cm\(^{-1}\). \(^1\)H NMR: (300 MHz, DMSO-\(d_6\)) \(\delta\) 0.84 (d, 3H, \(^3\)J = 6.8 Hz, Me), 0.88 (d, 3H, \(^3\)J = 6.8 Hz, Me), 1.91 – 2.09 (m, 1H, CH), 4.00 (dd, 1H, \(^2\)J = 8.6 Hz, \(^3\)J = 5.0 Hz, CH), 5.62 (c, 1H, NH), 6.21 (d, 2H, \(^3\)J = 8.7 Hz, NH\(_2\)). \(^13\)C NMR: (75 MHz, DMSO-\(d_6\)) \(\delta\) 17.68, 19.19 (Me), 30.33, 57.48 (CH), 158.63 (C=O), 174.17 (COOH). HRMS (ESI): \(m/z\) calcd for C\(_6\)H\(_{12}\)N\(_2\)O\(_3\)+H\(^+\): 161.0921. Found: 161.0915; calcd for C\(_6\)H\(_{12}\)N\(_2\)O\(_3\)+Na\(^+\): 183.0740. Found: 183.0740.

2-Ureidopentanoic acid (3b)
White powder, yield 89% (14.24 g), mp 170-172°C (164°C [36]). IR (KBr) υ = 3450, 3293, 1694, 1636, 1560, 1468, 1450, 1405, 1382, 1366, 1309, 1293, 1256, 1218, 1165, 1128, 1096, 1056, 996, 921, 838, 779, 747, 726, 677, 619, 572 cm⁻¹. ¹H NMR: (300 MHz, DMSO-d₆) δ 0.85 (t, 3H, J = 7.2 Hz, Me), 1.20 – 1.36 (m, 2H, CH₂), 1.43 – 1.65 (m, 2H, CH₂), 3.97 – 4.07 (m, 1H, CH), 5.60 (s, 2H, NH₂), 6.35 (d, 1H, J = 8.0 Hz, NH).

¹³C NMR: (75 MHz, DMSO-d₆) δ 14.05 (Me), 18.90, 34.42 (CH₂), 52.63 (CH), 159.38 (C=O), 175.52 (COOH). HRMS (EI): m/z calcd for C₆H₁₂N₂O₃⁺H⁺: 161.0921. Found: 161.0927; calcd for C₆H₁₂N₂O₃⁺Na⁺: 183.0740. Found: 183.0752.

Synthesis of racemate I and compound 4a (Scheme 1)

The hydrochloric acid (0.3 mL, 36% aqueous solution) was added to the suspension of racemic 3-methyl-2-ureidobutanoic acid 3a (1.60 g, 0.01 mol) and DHI 2a (1.18 g, 0.01 mol) in the mixture of H₂O (10 mL) and i-PrOH (10 mL). The reaction mixture was refluxed for 2 h, cooled at r.t., left for 48 h, filtered the solid I. The hydantoin crystals 4a were isolated from the filtrate and crystallized from H₂O.

The crystals I were obtained by crystallization from MeOH.

(S)-2-((3aS,6aR)- and (R)-2-((3aR,6aS)-(2,5-dioxohexahydroimidazo[4,5-d]imidazol-1(2H)-yl)-3-methylbutanoic acid (I)

Colorless crystals, yield 16% (0.39 g), mp 261-263°C (MeOH). IR (KBr) υ = 3396, 3276, 3081, 1746, 1722, 1662, 1490, 14561388, 1349, 1295, 1266, 1247, 1206, 1174, 1133, 1116, 999, 977, 924, 908, 885, 861, 817, 777, 761, 713, 626, 531 cm⁻¹. ¹H NMR: (300 MHz, DMSO-d₆) δ 0.85 (t, 3H, J = 6.8 Hz, Me), 0.92 (t, 3H, J = 6.9 Hz, Me), 2.11 – 2.20 (m, 1H, CH), 3.92 (d, 1H, J = 9.6 Hz, CH), 5.28 (d, 1H, J = 8.3 Hz, CH), 5.52 (d, 1H, J = 8.4 Hz, CH), 7.31 (s, 1H, NH), 7.39 (s, 1H, NH), 7.54 (s, 1H, NH), 12.20 – 13.30 (br.s, 1H, COOH). ¹³C NMR: (75 MHz, DMSO-d₆) δ 19.64, 19.84 (Me), 27.75, 61.01, 62.68, 67.19 (CH), 159.43, 161.28 (C=O), 172.14 (COOH). HRMS (EI): m/z calcd for C₉H₁₄N₄O₄⁺H⁺: 243.1088; found: 243.1088; calcd for C₉H₁₄N₄O₄⁺Na⁺: 265.0907; found: 265.0906.

5-Isopropylimidazolidine-2,4-dione (4a)

Colorless needle crystals, yield 78% (1.11 g), mp 145 - 146°C (H₂O:i-PrOH (1:1)) (145 – 146 °C (H₂O))[37], ¹H NMR: (300 MHz, DMSO-d₆) δ 0.80 (d, 3H, J = 6.8 Hz, Me), 0.94 (d, 3H, J = 7.0 Hz, Me), 1.91 – 2.09 (m, 1H, CH(i-Pr)), 3.91 (dd, 1H, J = 3.5 Hz, J = 1.4 Hz, CH), 7.90 (s, 1H, NH), 10.52 – 10.68 (br.s, 1H, NH).

Synthesis of racemate II and compound 4b (Scheme 2)

The hydrochloric acid (0.3 mL, 35% aqueous solution) was added to the suspension of racemic 2-ureidopentanoic acid 3b (1.60 g, 0.01 mol) and DHI 2b (1.46 g, 0.01 mol) in the mixture of H₂O (10 mL) and i-PrOH (10 mL). The reaction mixture was refluxed for 2 h, cooled at r.t., left for 48 h, filtered the
crystals of hydantoin 4b. The filtrate was lefted for 48 h at r.t.. The formed precipitate II was filtered. The crystals II were obtained by crystallization from H₂O:i-PrOH (1:1).

(S)-2-((3a S,6aS)-, (R)-2-((3a R, 6aR)-4,6-dimethyl-2,5-dioxohexahyroidomidazo[4,5-d]imidazol-1(2H)-yl)pentanoic acids (II)

Colorless crystals, yield 7% (0.19 g), mp 240-242°C. IR (KBr) ν = 3369, 1710, 1649, 1502, 1467, 1413, 1397, 1371, 1314, 1259, 1190, 1171, 1100, 1083, 1038, 986, 940, 890, 865, 810, 787, 762, 733, 697, 671, 637, 620, 579, 553 cm⁻¹. ¹H NMR: (300 MHz, DMSO-d₆) δ 0.90 (t, 3H, ³J = 7.3 Hz, Me), 1.22 – 1.42 (m, 2H, CH₂), 1.83 – 2.03 (m, 2H, CH₂), 2.67 (s, 3H, Me), 2.77 (s, 3H, Me), 4.03 (dd, 1H, ²J = 10.0 Hz, ³J = 5.2 Hz, CH), 5.14 (s, 2H, CH-CH), 7.77 (s, 1H, NH), 12.55 – 13.80 (br.s, 1H, COOH). ¹³C NMR: (75 MHz, DMSO-d₆) δ 13.63, 27.86, 29.82 (Me), 19.34, 30.22 (CH₂), 55.99, 66.17, 72.14 (CH), 158.36, 160.03 (C=O), 173.02 (COOH). HRMS (EI): m/z calcd for C₁₁H₁₈N₄O₄+H⁺: 271.1401; found: 271.1398; calcd for C₁₁H₁₈N₄O₄+Na⁺: 293.1220; found: 293.1216.

5-Propylimidazolidine-2,4-dione (4b)

Colorless needle crystals, yield 71% (1.01 g), mp 137 – 138°C (H₂O:i-PrOH (1:1)) (136 – 137 °C (EtOH)) [39], ¹H NMR: (300 MHz, DMSO-d₆) δ 0.89 (t, 3H, ³J = 7.3 Hz, Me), 1.28 – 1.40 (m, 2H, CH₂), 1.42 – 1.57 (m, 1H, CH₂), 1.59 – 1.70 (m, 1H, CH₂), 3.96 – 4.03 (m, 1H, CH), 7.97 (s, 1H, NH), 10.60 (s, 1H, NH).[40]

X-ray data collection and refinement

X-ray diffraction data for I and II were collected at 120 K with a Bruker APEXII DUO CCD diffractometer, using the graphite monochromated Mo-Kα radiation (l = 0.71073 Å). Using Olex2 [41], the structures were solved with the ShelXT structure solution program [42] using Intrinsic Phasing and refined with XL refinement package [43] using Least Squares minimisation. Hydrogen atoms of OH and NH groups were located in difference Fourier synthesis. Positions of other hydrogen atoms were calculated, and they all were refined in the isotropic approximation in the riding model. Crystal data and structure refinement parameters for the three crystallosolvates are given in Table 1. CCDC 2089267 and 2089265 contain the supplementary crystallographic data for I and II, respectively.

Table 1 Crystal data and structure refinement parameters for I and II.
Results And Discussion

Synthesis

It is known that 4,5-dihydroxyimidazilidine-2-ones (DHI) exist in the form of two isomers, which differ in the cis- and trans-arrangement of hydroxy groups at the C (4) and C (5) atoms relative to the plane of the imidazolidine ring [32]. They are obtained by diastereoselective reactions of ureas with α-dicarbonyl compounds. The ratio of diastereomers is determined from the integral intensity of signals from the protons of CH-CH groups in the ¹H NMR spectra [44].

Starting compound 2a (trans-isomer) were synthesized highly diastereoselective from urea 40% aqueous glyoxal according to the literature [32, 33] (Scheme 1). The mixture (2b+2'b) (ratio 15:1 correspondingly)
was prepared from 1,3-dimethylurea and 40% aqueous glyoxal (Scheme 2). The synthesis of racemic 2-ureidoalkyl acids 3a,b were carried out from (R,S)-Val (1a), (R,S)-nor-Val (1b) and KCNO (Schemes 1,2). Racemate I was synthesized by highly diastereoselective cyclocondensation of DHI 2a with racemic 3-methyl-2-ureidobutanoic acid 3a (Scheme 1). Racemate II was prepared by interaction of compounds (2b+2‘b) and racemic 2-ureidopentanoic acid 3b. Earlier a similar approach to obtain enantiomerically pure (S)-2-((3aS,6aR)-glycoluril-3-methylbutanoic acid and 4,5-dimethyl-2-glycolurilpentanoic acid was used [45, 46]. Moreover the relative configuration of chiral centers has not been established in last acid [46]. Hydantoins 4a,b were obtained of intramolecular cyclization of Nα-carbamoylamino acids 3a,b (Schemes 1,2).

Single-crystal X-ray diffraction

The study of crystallization processes for the production of conglomerates is an important task in crystal chemistry. This nature-like process is widely used to obtain enantiomerically pure compounds [47]. Therefore, we investigated the crystallization of racemates I and II from H$_2$O, MeOH, i-PrOH and a mixture of H$_2$O:i-PrOH. Single crystals I and II were obtained from a mixture of H$_2$O:i-PrOH (in a 1:1 ratio) and from MeOH, respectively. Their X-ray diffraction analysis (Fig. 2) showed them to crystallize as conglomerates in non-centrosymmetric space groups Pna2$_1$ and P2$_1$2$_1$2$_1$ with two and one symmetry-independent molecules, respectively. Owing to the different substituents at the carbon atom C(5), the isopropyl or the propyl group, these compounds features an important difference in their molecular geometry, which is the rotation of the COOH group relative to the bond C(2)-C(5). The corresponding torsion angle N(1)C(5)C(6)O(3) being much higher in I (76.0(4) and 77.3(4)° in its two symmetrically-independent molecules) than in II (23.6(3)°) may be attributed to the steric effect of the bulky isopropyl group in the former compound.

Two extra methyl groups at the nitrogen atoms in II results in its supramolecular organization being different from one in I. In both cases, the main structural motif is an infinite chain (Fig. 3) formed by a hydrogen bond between the hydroxyl group and one of the carboxy groups of the heterocyclic core (O...O 2.596(5) and 2.557(2) Å, OHO 173.8(2) and 171.64(11)° in I и II, respectively). In I, they hold together different symmetry-independent molecules that alternate to produce a 3D-framework through hydrogen bonds of three NH groups (N...O 2.779(6) – 3.013(5) Å, NHO 149.1(3) – 176.6(3)°) and oxygen atoms of the carboxy groups. In II, however, the only NH group is hydrogen-bonded to the oxygen atom of the COOH functionality (N...O 3.089(3) Å, NHO 149.52(12)°), thereby additionally stabilizing the above infinite chains.

Conclusions

Thus racemates (S)-2-((3aS,6aR)- and (R)-2-((3aR,6aS)-2,5-dioxohexahydroimidazo[4,5-d]imidazole-1(2H)-yl)-3-methylbutanoic acids (I), (R)-2-(3aR,6aR)- and (S)-2-((3aS,6aS)-4,6-dimethyl-2,5-dioxohexahydroimidazo[4,5-d]imidazole-1(2H)-yl)pentanoic acids (II) were synthesized by highly diastereoselective condensation of 4,5-dihydroxyimidazolidine-2-ones with ureido acids for the first time.
Two new conglomerates (as gauged by space groups Pna2\textsubscript{1} and P2\textsubscript{1}2\textsubscript{1}2\textsubscript{1}) were identified by X-ray diffraction among the crystallization products of the racemates I and II. The key difference between these two compounds, which is the different rotation of the COOH group relative to the bond C(2)-C(5), may be attributed to the steric effect of the bulky isopropyl group in I.

Declarations

Supplementary Information The online version contains supplementary material available at

Acknowledgements Not applicable.

Author contribution The authors of the current manuscript Vladimir V. Baranov, Tatyana N. Vol'khina and Angelina N. Kravchenko contributed equally to this work. All authors read and approved the final manuscript.

Data Availability The structures have been deposited at the Cambridge Crystallographic Data Center with the reference CCDC numbers 2089267, 2089265; they also contain the supplementary crystallographic data. These data can be obtained free of charge from the CCDC via http://www.ccdc.cam.ac.uk/

The online version of this article contains electronic supplementary material (ESM) on IR, NMR, and HRMS data for all new compounds.

Code availability Not applicable.

Conflict of interest The authors declare no competing interests.

References

1. Lehn JM (1995) Supramolecular chemistry. Concept and perspectives. Weinheim: Wiley-VCH.

2. Satyanarayana B, Krishna PM, Ramachndran D (2011) A novel and efficient synthesis of thalidomide. Int J ChemTech Res 3(1):234-237.

3. Muller GW, Konnecke WE, Smith AM, Khetani VD (1999) A concise two-step synthesis of thalidomide. Org Process Res Dev 3(2):139-140. https://doi.org/10.1021/op980201b

4. Franks ME, Macpherson GR, Figg WD (2004) Thalidomide. Lancet 363(9423):1802-1811. https://doi.org/10.1016/S0140-6736(04)16308-3

5. Li Y, Coller JK, Hutchinson MR, Klein K, Zanger UM, Stanley NJ, Somogyi AA (2013) The CYP2B6*6 allele significantly alters the N-demethylation of ketamine enantiomers in vitro. Drug Metab Dispos 41(6):1264-1272. https://doi.org/10.1124/dmd.113.051631
6. Yokoyama R, Matsumoto S, Nomura S, Higaki T, Yokoyama T, Kiyooka SI (1995) Enantioselective construction of nitrogen-substituted quaternary carbon centers adjacent to the carbonyl group in the cyclohexane ring: first asymmetric synthesis of anesthetic (S)-ketamine with high selectivity. Tetrahedron 65(27):5181-5191. https://doi.org/10.1016/j.tet.2009.05.004

7. Ishak R, Abbas O (2013) Penicillamine revisited: historic overview and review of the clinical uses and cutaneous adverse effects. Am J Clin Dermatol 14(3):223-233. https://doi.org/10.1007/s40257-013-0022-z

8. Anikina LV, Vikharev YuB, Baranov VV, Malyshev OR, Kravchenko AN (2018) Preparative synthesis and pharmacological activity of Albicar racemate and enantiomers. Mendeleev Commun 28:317-319. https://doi.org/10.1016/j.mencom.2018.05.030

9. Karnoukhova VA, Baranov VV, Vologzhanina AV, Kravchenko AN, Fedyanin IV (2021) Self-organization of 1,6-dialkyl-3α,6a-diphenylglycolurils in the crystalline state. Cryst Eng Comm 23:4312-4319. https://doi.org/10.1039/D1CE00434D

10. Baranov VV, Antonova MM, Nelyubina YuV, Kolotyrkina NG, Zanin IE, Kravchenko AN, Makhova NN (2014) Regioselective synthesis of 2,8-disubstituted 1,5-diphenylglycolurils. Mendeleev Commun 24(3):173-175. https://doi.org/10.1016/j.mencom.2014.04.017

11. Baranov VV, Baganova AA, Chikunov IE, Karnoukhova VA, Kravchenko AN (2019) Unexpected formation of novel two-component gels comprising of glycoluril carboxylic acid amides and imidazole: Synthesis and morphology. Tetrahedron Lett 60(17):1174-1178. https://doi.org/10.1016/j.tetlet.2019.03.053

12. Kravchenko AN, Baranov VV, Gaziava GA, Chikunov IE, Nelyubina YuV (2014) Regioselective reactions of N-(carboxyalkyl)-and N-(aminoethyl) ureas with glyoxal and 1,2-dioxo-1,2-diphenylethane. Russ Chem Bull 63(2):416-421. https://doi.org/10.1007/s11172-014-0446-5

13. Baranov VV, Nelyubina YuV, Kravchenko AN, Kolotyrkina NG, Biriuikova KA (2015) New access to thioglycolurils by condensation of 4,5-dihydroxyimidazolidin-2-ones(thiones) with HSCN. Tetrahedron Lett 56(44):6085–6088. http://dx.doi.org/10.1016/j.tetlet.2015.09.071

14. Baranov VV, Antonova MM, Nelyubina YuV, Kolotyrkina NG, Kravchenko AN (2017) New Method for the Synthesis of 1-Substituted (3α,6a)-Diarylglycolurils. Synlett 28(6):669-672. http://dx.doi.org/10.1055/s-0036-1588932

15. Wu A, Fettinger JC, Isaacs L (2002) Glycoluril derivatives form hydrogen bonded tapes rather than cucurbit[n]uril congeners. Tetrahedron 58(49):9769-9777. https://doi.org/10.1016/S0040-4020(02)01307-8
16. Johnson DW, Palmer LC, Hof F, Iovine P M, Rebek J (2002) New supramolecular organization for a glycoluril: chiral hydrogen-bonded ribbons. Chem Commun 2228-2229. https://doi.org/10.1039/B206648C

17. She NF, Meng XG, Gao M, Wu AX, Isaacs L (2008) Tetrameric molecular bowl assembled from glycoluril building blocks. Chem Commun (27):3133-3135. https://doi.org/10.1039/B800785C

18. Johnson DW, Hof F, Palmer LC, Martín T, Obst U, Rebek J (2003) Glycoluril ribbons tethered by complementary hydrogen bonds. Chem Commun (14):1638-1639. https://doi.org/10.1039/B303508E

19. Moon K, Chen WZ, Ren T, Kaifer AE (2003) A unique hydrogen bonding network in the crystal structure of 3a,6a-diphenylglycoluril. Cryst Eng Comm 5(79):451-453. https://doi.org/10.1039/B313267F

20. Kölbl M, Menger FM (2001) Hierarchical structure of a self-assembled xerogel. Chem Commun (3):275-276. https://doi.org/10.1039/B008046M

21. Kravchenko AN, Chegaev KYu, Chikunov IE, Belyakov PA, Maksareva EYu, Lyssenko KA, Lebedev OV, Makhova NN (2003) Highly diastereoselective synthesis of 2-monosubstituted 1R,5S(1S,5R)-glycoluril on the basis of S-and R-N-carbamoyl-α-amino acids. Mendeleev Commun 13(6):269-271. https://doi.org/10.1070/MC2003v013n06ABEH001802

22. Kostyanovsky RG, Lyssenko KA, Kadorkina GK, Lebedev OV, Kravchenko AN, Chervin II, Kostyanovsky VR (1998) Chiral glycouril, 2,6-diethyl-2,4,6,8-tetraazabicyclo[3.3.0]octane-3,7-dione: spontaneous resolution, reactivity and absolute configuration. Mendeleev Commun 8(6):231-233. https://doi.org/10.1070/MC1998v008n06ABEH001035

23. Lyssenko KA, Golovanov DG, Kravchenko AN., Chikunov IE, Lebedev OV, Makhova NN (2004) New conglomerate in the series of glycolurils. Mendeleev Commun 14(3):105-107. https://doi.org/10.1070/MC2004v014n03ABEH001886

24. Kravchenko AN, Lyssenko KA, Chikunov IE, Belyakov PA, Il`in MM, Baranov VV, Nelyubina YuV, Davankov VA, Pivina TS, Makhova NN, Antipin My (2009) 4,5-Dihydroxyimidazolidin-2-ones in the α-ureidoalkylation reaction of N-(carboxyalkyl)-, N-(hydroxyalkyl)-, and N-(aminoalkyl)ureas 1. α-Ureidoalkylation of N-(carboxyalkyl)ureas. Russ Chem Bull Int Ed 58(2):395-405. https://doi.org/10.1007/s11172-010-0022-6

25. Gazieva GA, Lozhkin PV, Baranov VV, Nelyubina YuV, Kravchenko AN, Makhova NN (2009) 4,5-Dihydroxyimidazolidin-2-ones in an α-ureidoalkylation reaction of N-(carboxyalkyl), N-(hydroxyalkyl)-, and N-(aminoalkyl)ureas 3. α-Ureidoalkylation of N-[2-(dimethylamino)ethyl]urea. Russ Chem Bull 58(12):2488-2493. http://dx.doi.org/10.1007/s11172-009-0348-0

26. Baranov VV, Galochkin AA, Nelyubina YuV, Kravchenko AN, Makhova NN (2020) Synthesis and Structure of 1-Substituted Semithioglycolurils. Synthesis 52(17):2563-2571. https://doi.org/10.1055/s-
27. Kravchenko AN, Baranov VV, Gazieva GA (2018) Synthesis of glycolurils and their analogues. Russ Chem Rev 87(1):89-108. https://doi.org/10.1070/RCR4763

28. Anikina LV, Gazieva GA, Kravchenko AN (2020) Nootropic activity of N-(2-acetylaminoethyl)glycolurils. Russ Chem Bull Int Ed 69(3):563-566. https://doi.org/10.1007/s11172-020-2799-2

29. Makhova NN, Belen'kii LI, Gazieva GA, Dalinger IL, Konstantinova LS, Kuznetsov VV, Kravchenko AN, Krayushkin MM, Rakitin OA, Starosotnikov AM, Fershat LL, Shevelev SA, Shirinian VZ, Yarovenko VN (2020) Progress in the chemistry of nitrogen-, oxygen- and sulfur-containing heterocyclic systems. Russ Chem Rev 89(1):55-124. https://doi.org/10.1070/RCR4914

30. Kamburg R, US Pat. 20080227838, 2008, Method for neuroprotection with glycoluril derivatives; Chem. Abstr. (2008) 149:347537.

31. Kravchenko AN, Baranov VV, Anikina LV, Vikharev YuB, Bushmarinov IS, Nelyubina YuV (2012) Neuroprotective Activity of (+)-(S)-2-[(1S,5R)-(3,7-Dioxo-2,4,6,8-Tetraazabicyclo[3.3.0]oct-2-yl)]-4-methylthiobutanoic acid. Russ J Bioorg Chem 38:550-557. https://doi.org/10.1134/S106816201205007X

32. Vail SL, Barker RH, Mennitt PG (1965) Formation and Identification of cis- and trans-Dihydroxyimidazolidinones from Ureas and Glyoxal. J Org Chem 30(7):2179-2182. https://doi.org/10.1021/jo01018a015

33. Grillon E, Gallo R, Pierrot M, Boileau J, Wimmer E (1988) Isolation and X-ray structure of the intermediate dihydroxyimidazolidine (DHI) in the synthesis of glycoluril from glyoxal and urea. Tetrahedron Lett 29(9):1015-1016. https://doi.org/10.1016/0040-4039(88)85322-X

34. Spectral data are similar to 1H NMR: (500 MHz, DMSO- d_6) were obtained from John Wiley & Sons, Inc. Spectrum ID: CB3_004186 for compound (CAS RN: 3923-79-3).

35. Lippich F (1909) Uramino Acids, II. Ber Dtsch Chem Ges 41:2953-2974.

36. Vacirca F, Ciocca B (1944) Antimicrobial activity of some derivatives of aminovaleric and aminocaproic acids. B I Sieroter Milan 23:99-102.

37. Aspelund H, Waselund H, Waselius P (1967) Resistance of hydantoins and 5-hydroxyhydantoins to alkali. Acta Acad Abo Math Phys 27:18.

38. Spectral data are similar to 1H NMR: (400 MHz, DMSO- d_6) were obtained from "Integrated Spectral Data Base System of Organic Compounds" data were obtained from the National Institute of Advanced Industrial Science and Technology (Japan). Spectrum ID: WHSP43568 for compound (CAS RN: 16935-34-5).
39. McMullen EJ, Henze HR, Wyatt BW (1954) Study of the Bromination of 5-Alkylhydantoins; Conversion of 5-Propylhydantoin into 5-Propylidenehydantoin and 5-(α-Bromopropylidene)-hydantoin. J Am Chem Soc 76(22):5636-5640.

https://doi.org/10.1021/ja01651a011

40. Spectral data are similar to 1H NMR: (408 K, 300 MHz, DMSO-d_6) were obtained from Enamine Ltd. Spectrum ID: Z104495354 for compound (CAS RN: 18227-41-3).

41. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009) OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J Appl Cryst 42(2):339-341. https://doi.org/10.1107/S0021889808042726

42. Sheldrick GM (2015) SHELXT – Integrated space-group and crystal-structure determination. Acta Cryst A 71:3-8. https://doi.org/10.1107/S2053273314026370

43. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Cryst C 71:3-8.https://doi.org/10.1107/S2053273314026370

44. Kravchenko AN, Baranov VV, Nelyubina YV, Gazieva GA, Svitan'ko IV (2012) Diastereoselective synthesis of 4,5-dihydroxyimidazolidin-2-ones (-thiones) and their structure. Russ Chem Bull 61(1):64-73. https://doi.org/10.1007/s11172-012-0010-0

45. Chikunov IE, Kravchenko AN, Belyakov PA, Lyssenko KA, Baranov VV, Lebedev OV, Makhova NN (2004) Synthesis of 1S,5R- and 1R,5S-glycoluriles by diastereospecific α–ureidoalkylation of (S)/(R)-N-carbamoyl-α-amino acids with 4,5-dihydroxyimidazolidin-2-one. Mendeleev Commun 14(6):253-255. http://dx.doi.org/10.1070/MC2004v014n06ABEH002050

46. Baranov VV, Kravchenko AN, Belyakov PA, Makhova NN (2008) New generation of enantiomerically pure N-α-carboxyalkylglycolurils. Mendeleev Commun 2008, 18:96-98. https://doi.org/10.1016/j.mencom.2008.03.016

47. Jacques J, Collet A, Wilen SH (1981) Enantiomers, Racemates and Rasolutions. J. Wiley & Sons, Inc., New York, Chichester, Brisbane, Toronto

Figures
Known examples of conglomerate-forming glycolurilcarboxylic acids. In this work racemates of (S)-2-((3aS,6aR),(R)-2-((3aR,6aS)-(2,5-dioxohexahydroimidazo[4,5-d]imidazol-1(2H)-yl)-3-methylbutanoic (racemate I), (S)-2-((3aS,6aS)-(R)-2-((3aR,6aR)-4,6-dimethyl-2,5-dioxohexahydroimidazo[4,5-d]imidazol-1(2H)-yl)pentanoic acids (racemate II) were synthesized and their ability to form conglomerates was studied for the first time.

Figure 2

General view of I (left) and II (right). Hereinafter, hydrogen atoms except those of OH and NH groups are omitted, and non-hydrogen atoms are shown as thermal ellipsoids at 50% probability level.
Figure 3

Fragments of the crystal packing in I (top) and II (bottom) illustrating the formation of hydrogen-bonded chains along the crystallographic axes b and a, respectively.

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.

- Scheme1.png
- Scheme2.png
- ESI.docx
- I.cif
- II.cif
- checkcifI.pdf
- checkcifII.pdf