Antioxidant and Cytotoxic Activity of Red Sandal Mediated Silver Nanoparticles: An *In-vitro* Study

M. Gajapriya a, S. Balaji Ganesh b*¥ and S. Rajesh Kumar c#

a Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai-600077, Tamil Nadu, India.

b Department of Periodontics, Saveetha Dental College and Hospitals Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai-600077, Tamil Nadu, India.

c Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai-600077, Tamil Nadu, India.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JPRI/2021/v33i61A35703

Open Peer Review History:
This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/77886

Received 20 October 2021
Accepted 27 December 2021
Published 28 December 2021

ABSTRACT

Background: Nanoparticles, or matter ranging between 1 and 100 nm size, are of immense value in nowadays technological ventures, in all fields. Besides, if made of biodegradable materials, the preparation supports sustained drug release for a long time. Green chemistry is thus incorporated in nanotechnology. Red Sandalwood, commonly known as Raktachandan, is a tree that is native and endemic to India. The aim of this study is to evaluate the antioxidant and cytotoxic activity of red sandal mediated silver nanoparticles (AgNP).

Materials and Methods: This study involves the synthesis of silver nanoparticles (AgNP) incorporating red sandal. Here the preparation of red sandal incorporated AgNP was followed by a test for its antioxidant activity using DPPH assay by incubating the red sandal mediated silver nanoparticles solution for 30 mins, later the reduction in the quantity of DPPH free radicals was assessed dependent on the absorbance at 517 MN. BHT was employed as control and the percentage of inhibition was determined and cytotoxicity using brine shrimps. To that 10 nauplii were added slowly to each concentration. Then the red sandal mediated silver nanoparticles were

*a Senior Lecturer;
*¥Associate Professor;
*Corresponding author: E-mail: balajiganeshs.sdc@saveetha.com;
added according to the concentration level. The plates were incubated for 24 hours. After 24hrs, noted for the number of live nauplii’s present.

Results: The red sandal mediated silver nanoparticle has considerably efficient antioxidant activity at high concentrations (50 μL). The red sandal mediated silver nanoparticle has considerably efficient cytotoxic activity at low concentrations (5 μL).

Conclusion: From the present study, it can be concluded that red sandal mediated silver nanoparticles have a considerably moderate cytotoxic and antioxidant activity at high concentrations.

Keywords: Red sandal; medicinal plant; antioxidant; cytotoxicity; green synthesis.

1. **INTRODUCTION**

Nowadays, the development of efficient green chemistry methods for synthesis of metal nanoparticles has become a major focus of researchers. It was investigated in order to find an eco-friendly technique for production of well-characterized nanoparticles. Among all other organisms, plants seem to be the best and are suitable for biosynthesis of nanoparticles [1]. Plant-mediated synthesis of nanoparticles is a green chemistry approach that connects nanotechnology with plants [2]. Nanotechnology involves the synthesis and application of materials having one of the dimensions in the range of 1–100 nm [3]. Materials in the nano dimensions (1–100 nm) have a remarkable difference in the properties compared to the same material in bulk.

Bio-molecules from various plant components and microbial species have been used as potential agents for the synthesis of silver nanoparticles (AgNPs) [4]. In recent years, silver nanoparticles (AgNps) have received enormous attention due to its extraordinary defense activity against a wide range of microorganisms and also due to the appearance of drug resistance against commonly used antibiotics [5]. The AgNPs had antibiotic activity against Gram-positive bacteria like *Staphylococcus aureus* and *Bacillus cereus* and Gram-negative bacteria like *Escherichia coli* and *Pseudomonas aeruginosa* and fungi like *Candida glabrata*, *Candida albicans*, and *Cryptococcus neoformans* so it is a agent for site-specific medication [6].

In this study red sandal is used, it is a valuable tree associated with Indian culture. A lot of medicinal plants, traditionally used for thousands of years, are present in a group of herbal preparations of the Indian traditional health care system [7]. Red Sandalwood (*Pterocarpus santalinus* L.) belonging to the Family Fabaceae, is one of the most valuable medicinal plant species [8]. Red Sandalwood, commonly known as Rakta chandan, is a tree that is native and endemic to India [9]. Red sandals have been reported as antioxidative, anti-diabetic, antimicrobial, anticancer, anti-inflammatory properties as well as protective effects on the respiratory system, liver, nervous system and gastric mucosa [10]. In the traditional system of medicine, this red sandal is attributed various medicinal properties and has been used in treating eye diseases, mental aberrations, and ulcers [11]. Currently available synthetic antioxidants like butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), tertiary butylated hydroquinone and gallic acid esters, have been suspected to cause or prompt negative health effects [12]. Many plant extracts have shown antioxidant properties but generally nowadays there is still a demand to find more information concerning the antioxidant potential of plant species [13]. Benzofuran compounds isolated from heartwood of red sandal showed cytotoxicity against Ca9-22 cancer cells with a lethal dose value [14]. Therefore it would be of interest to know the antioxidants and cytotoxic activity of red sandal mediated silver nanoparticles. Hence the aim of the study was to assess the antioxidant and cytotoxic activity of red sandal mediated silver nanoparticles.

2. **MATERIALS AND METHODS**

2.1 **Synthesis of AgNP**

To 100ml water, add 1g of red sandal powder and the mixture was heated for 15 – 20 min and filtered. Then 1 mM silver was added to the heated mixture and placed in the orbital shaker. The solution was later placed on the magnetic stirrer for nanoparticle synthesis. The colour change was observed visually and photographs were recorded (Figs. 1 and 2).
Fig. 1. Synthesis of nanoparticle

Fig. 2. Visual observation of the red sandal mediated silver nanoparticles

2.2 Assessment of Antioxidant Activity

DPPH assay was used to test the antioxidant activity of red sandal mediated silver nanoparticles (Fig. 3). 10 μL, 20 μL, 30 μL, 40 μL and 50 μL of red sandal mediated silver nanoparticles was mixed with 1 ml of 0.1 mM DPPH in methanol and 450 μL of 50mM Tris HCl buffer (pH 7.4) incubated for 30 minutes. Later the reduction in the quantity of DPPH free radicals was assessed dependent on the absorbance at 517 MN. BHT was employed as control. The percentage of inhibition was determined from the following equation.

\[
\% \text{ of inhibition} = \frac{(\text{Absorbance of control} - \text{Absorbance of test sample} \times 100)}{\text{Absorbance of control}}
\]

2.3 Assessment of Cytotoxic Activity

2 g of iodine free salt was weighed and dissolved in 200 ml of distilled water. 6 wells of ELISA plate were taken and 10-12 ml of saline water was filled. To that 10 nauplii were added slowly to each well 5 μL, 10 μL, 25 μL, 40 μL, 80 μL and control. Then the red sandal mediated silver nanoparticles were added according to the concentration level. The plates were incubated

Fig. 3. DPPH assay used to assess the antioxidant activity
419

Fig. 4. Wells with nauplii for assessment of cytotoxic activity

for 24 hours. After 24 hrs, the Elisa plate was observed and noted for the number of live nauplii’s present (Fig. 4).

3. RESULTS

The antioxidant activity of red sandal mediated silver nanoparticles was demonstrated using DPPH assay. The role of antioxidants is to scavenge free radicals. Descriptive statistics was used. The [Fig. 5] graph depicts antioxidant activity of red sandal mediated silver nanoparticles. The results indicated a considerably efficient activity at high concentrations of red sandal mediated silver nanoparticles (50 μL). The test for cytotoxic properties was assessed using brine shrimps. Ten nauplii were placed in each of 6 wells with one standard and the remaining with nanoparticle concentrations 5 μL, 10 μL, 25 μL, 40 μL, and 80 μL. The results indicated a considerably efficient activity at low concentration (5 μL) [Fig. 6].

Table 1 depicts the antioxidant activity of red sandal mediated silver nanoparticles. At 10μL Standard value is 76.56 and AgNP value is 42, at 20μL standard value is 78.52 and AgNP value is 42.4, at 30μL standard value is 85.63 and AgNP value is 44.7, at 40μL standard value is 88.68 and AgNP value is 52, at 50μL standard value is 93.15 and AgNP value is 52.7. Table 2 depicts the cytotoxic activity of red sandal mediated silver nanoparticles. At 5μL 10 nauplii were alive in day 1 and day 2, at 10 μL 10 nauplii were alive in day 1 whereas only 9 nauplii were alive in day 2, at 25 μL 10 nauplii were alive in day 1 whereas only 7 nauplii were alive in day 2, at 40 μL 10 nauplii were alive in day 1 whereas only 7 nauplii were alive in day 2, at 80 μL 10 nauplii were alive in day 1 whereas only 7 nauplii were alive in day 2 and in control 10 nauplii were alive in day 1 and day 2.

Table 1. Depicts the antioxidant activity of red sandal mediated silver nanoparticles

Concentration(μL)	Standard	AgNP
10 μL	76.56	42
20 μL	78.52	42.4
30 μL	85.63	44.7
40 μL	88.68	52
50 μL	93.15	52.7

Table 2. Depicts the cytotoxic activity of red sandal mediated silver nanoparticles

Concentration(μL)	Day 1	Day 2
5 μL	10	10
10 μL	10	9
25 μL	10	7
40 μL	10	7
80 μL	10	7
Control	10	10
Fig. 5. Depicts the antioxidant activity of red sandal mediated silver nanoparticles. The x axis is a concentration in μL while the Y axis is representative of the percentage of inhibition. Blue denotes the standard and orange denotes the AgNP. The red sandal mediated silver nanoparticle has considerably efficient antioxidant activity at high concentrations (50 μL).

Fig. 6. Depicts the cytotoxic activity of red sandal mediated silver nanoparticles. The x axis is a concentration in μL while the Y axis is representative of the number of nauplii. Blue denotes day 1 and orange denotes day 2. The red sandal mediated silver nanoparticle has considerably efficient cytotoxic activity at low concentrations (5 μL).

4. DISCUSSION

Our team has extensive knowledge and research experience that has translated into high quality publications [15–34]. Pterocarpus santalinoides is one of the important natural materials yielding red colour for a variety of applications. The common name of Pterocarpus santalinoides is red sandal wood. The plant has significant importance in traditional medicine for its ethnomedicinal value. The plant had been investigated for pharmacological activities as it has high medicinal value.

For the evaluation of antioxidant capacity, the highest percentage of inhibition at 50 μl was 52.7 which was presented in the form of a graph in comparison with the percentage inhibition of the standard (BHT) used. This can be concluded that with increase in concentration, the percentage inhibition of Red sandal mediated silver nanoparticles is increased but it remains less than the percentage inhibition of standard ascorbic acid. Hence red sandal mediated silver nanoparticles possess better antioxidant capacity but it is less effective when compared to the antioxidant property of the standard used. The synonymous study carried by Mona Hamelian et.al performed the similar DPPH assay with BTH as standard and established the same result which adds evidence to our study and exists as a supporting study [35]. Another supporting study by Enemali MO et al., also performed DPPH assay for antioxidant determination. Total
phenolic content was estimated ensuring the significant antioxidant capacity in red sandal and thus adds evidence to our present study [36].

The cytotoxic activity of red sandal mediated silver nanoparticles shows that all the introduced shrimps were alive in the control whereas in the well of 5μl of nanoparticles, 10 shrimps were alive. However in the well with a concentration of 80 μl of nanoparticles only 7 shrimps were alive after 24 hours. Thus it is evident that there is no significant cytotoxicity in red sandal mediated silver nanoparticles. Similar study by Kumar P et al showed that AgNPs have shown better cytotoxic effects which is synonymous with our study [37]. The Red sandal mediated silver nanoparticles (AgNP) are used in many biomedical and pharmacological applications. The limitations of the study was that the study focused only in vitro set up. To utilize it for human use, further in vivo studies have to be conducted.

5. CONCLUSION

From the present study, it can be concluded that red sandal mediated silver nanoparticles have a considerably moderate cytotoxic and antioxidant activity at high concentrations [38-51]. This can be used for further investigations in employing them as less biotoxic alternatives to already existing chemically synthesised biomaterials.

CONSENT

It is not applicable.

ETHICAL APPROVAL

It is not applicable.

ACKNOWLEDGEMENT

The authors are thankful to saveetha dental college for providing a platform to conduct the study.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Duan H, Wang D, Li Y. Green chemistry for nanoparticle synthesis. Chem Soc Rev. 2015 Aug 21;44(16):5778–92.
2. Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small. 2008 Jan;4(1):26–49.
3. Eastoe J, Hollamby MJ, Hudson L. Recent advances in nanoparticle synthesis with reversed micelles. Adv Colloid Interface Sci. 2006 Dec 21;128-130:5–15.
4. Mullfinger J, Solomon SD, Bahadory M, Jeyarajasingam AV, Rutkowski SA, Boritz C. Synthesis and Study of Silver Nanoparticles. J Chem Educ. 2007 Feb 1;84(2):322.
5. Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009 Jan;27(1):76–83.
6. Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine. 2007 Mar;3(1):95–101.
7. van Wyk B-E, Wink M. Medicinal Plants of the World. CABI. 2018:519.
8. Vedavathy S. Cultivation of endemic Red Sanders for International trade. Nat Prod Radiance [Internet]; 2004 Apr. [Cited 2021 May 24]. Available: http://nopr.niscair.res.in/handle/123456789/9403
9. Arockiasamy S, Ignacimuthu S, Melchias G. Influence of growth regulators and explant type on in vitro shoot propagation and rooting of red sandal wood (Pterocarpus santalinus L.). Indian J Exp Biol. 2000 Dec;38(12):1270–3.
10. Chaturani GDG, Subasinghe S, Jayatilleke MP, Mapalana K, Lanka S. In vitro establishment, germination and growth performance of Red sandal wood (Pterocarpus santalinus L.). Trop Agric Res Ext. 2006;9:116–30.
11. Walpola BC, Subasinghe S, Yoon M-H, Kodituwakku Kankanange Indika Upali Arunakumara. Pterocarpus santalinus Linn. f. (Rath handun): A review of its botany, uses, phytochemistry and pharmacology. Hanguk Ungyong Saengmyong Hwahakhoe Chi. 2011 Aug 1;54(4):495–500.
12. Arokiyaraj S, Martin S, Perinbam K, Arockianathan PM, Beatrice V. Free radical scavenging activity and HPTLC finger print of Pterocarpus santalinus L.--- in vitro study. Indian J Sci Technol. 2008;1(7):1–7.
13. Liao K, Yin M. Individual and combined antioxidant effects of seven phenolic agents in human erythrocyte membrane
ghosts and phosphatidylcholine liposome systems: Importance of the partition coefficient. J Agric Food Chem. 2000 Jun;48(6):2266–70.

14. Keshavamurthy M, Srinath BS, Rai VR. Phytochemicals-mediated green synthesis of gold nanoparticles using *Pterocarpus santalinus* L. (Red Sanders) bark extract and their antimicrobial properties. Part Sci Technol. 2018 Oct 3;36(7):785–90.

15. Ramesh A, Varghese S, Jayakumar ND, Malaiappan S. Comparative estimation of sulfiredoxin levels between chronic periodontitis and healthy patients - A case-control study. J Periodontol. 2018 Oct;89(10):1241–8.

16. Paramasivam A, Priyadharsini JV, Raghunandhakumar S, Elumalai P. A novel COVID-19 and its effects on cardiovascular disease. Hypertens Res. 2020 Jul;43(7):729–30.

17. S G, T G, K V, Faleh A A, Sukumaran A, P N S. Development of 3D scaffolds using nanochitosan/silk-fibroin/hyaluronic acid biomaterials for tissue engineering applications. Int J Biol Macromol. 2018 Dec;120(PT A):876–85.

18. Del Fabbro M, Karanxha L, Panda S, Bucchi C, Nadathur Doraiswamy J, Sankari M, et al. Autologous platelet concentrates for treating periodontal infrabony defects. Cochrane Database Syst Rev. 2018 Nov 26;11:CD0011423.

19. Paramasivam A, Vijayashree Priyadharsini J. MitomiRs: new emerging microRNAs in mitochondrial dysfunction and cardiovascular disease. Hypertens Res. 2020 Aug;43(8):851–3.

20. Jayaseelan VP, Arumugam P. Dissecting the theranostic potential of exosomes in autoimmune disorders. Cell Mol Immunol. 2019 Dec;16(12):935–6.

21. Vellappally S, Al Kheraif AA, Divakar DD, Basavarajappa S, Anil S, Fouad H. Tooth implant prosthetics using ultra low power and low cost crystalline carbon bio-tooth sensor with hybridized data acquisition algorithm. Comput Commun. 2019 Dec 15;148:176–84.

22. Vellappally S, Al Kheraif AA, Anil S, Assery MK, Kumar KA, Divakar DD. Analyzing Relationship between Patient and Doctor in Public Dental Health using Particle Memetic Multivariable Logistic Regression Analysis Approach (MLRA2). J Med Syst. 2018 Aug 29;42(10):183.

23. Varghese SS, Ramesh A, Veeraiyan DN. Blended Module-Based Teaching in Biostatistics and Research Methodology: A Retrospective Study with Postgraduate Dental Students. J Dent Educ. 2019 Apr;83(4):445–50.

24. Venkatesan J, Singh SK, Anil S, Kim S-K, Shim MS. Preparation, Characterization and Biological Applications of Biosynthesized Silver Nanoparticles with Chitosan-Fucoidan Coating. Molecules [Internet]. 2018 Jun 12;23(6). Available: http://dx.doi.org/10.3390/molecules23061429

25. Alsobait SA, Al Ajlan R, Mitwalli H, Aburaisi N, Mahmood A, Muthurangan M, et al. Cytotoxicity of different concentrations of three root canal sealers on human mesenchymal stem cells. Biomolecules [Internet]. 2018 Aug 1;8(3). Available: http://dx.doi.org/10.3390/biom8030068

26. Venkatesan J, Rekha PD, Anil S, Bhatnagar I, Sudha PN, Dechsakulwatana C, et al. Hydroxyapatite from Cuttlefish Bone: Isolation, Characterizations, and Applications. Biotechnol Bioprocess Eng. 2018 Aug 1;23(4):383–93.

27. Vellappally S, Al Kheraif AA, Anil S, Wahba AA. IoT medical tooth mounted sensor for monitoring teeth and food level using bacterial optimization along with adaptive deep learning neural network. Measurement. 2019 Mar 1;135:672–7.

28. PradeepKumar AR, Shemesh H, Nivedhitha MS, Hashir MMJ, Arockiam S, Uma Maheswari TN, et al. Diagnosis of Vertical Root Fractures by Cone-beam Computed Tomography in Root-filled Teeth with Confirmation by Direct Visualization: A Systematic Review and Meta-Analysis. J Endod. 2021 Aug;47(8):1198–214.

29. R H, Ramani P, Tilakaratne WM, Sukumaran G, Ramasubramanian A, Krishnan RP. Critical appraisal of different triggering pathways for the pathobiology of pemphigus vulgaris-A review. Oral Dis [Internet]. 2021 Jun 21. Available: http://dx.doi.org/10.1111/odi.13937

30. Ezhillarasan D, Lakshmi T, Subha M, Deepak Nallasamy V, Raghunandhakumar S. The ambiguous role of sirtuins in head and neck squamous cell carcinoma. Oral Dis [Internet]; 2021 Feb 11.
31. Sarode SC, Gondivkar S, Sarode GS, Gadbail A, Yuwanati M. Hybrid oral potentially malignant disorder: A neglected fact in oral submucous fibrosis. Oral Oncol. 2021 Jun 16;105390.

32. Kavarthapu A, Gurumoorthy K. Linking chronic periodontitis and oral cancer: A review. Oral Oncol. 2021 Jun 14;105375.

33. Vellappally S, Abdullah Al-Kheraif A, Anil S, Basavarajappa S, Hassanein AS. Maintaining patient oral health by using a xeno-genetic spiking neural network. J Ambient Intell Humaniz Comput [Internet]; 2018 Dec 14. Available:https://doi.org/10.1007/s12652-018-1166-8

34. Aldhuwayhi S, Mallineni SK, Sakhamuri S, Thakare AA, Mallineni S, Sajja R, et al. Covid-19 Knowledge and Perceptions Among Dental Specialists: A Cross-Sectional Online Questionnaire Survey. Risk Manag Healthc Policy. 2021 Jul 7;14:2851–61.

35. Hamelain M, Zangeneh MM, Shahmohammadi A, Varmira K, Veisi H. Pistacia atlantica leaf extract mediated synthesis of silver nanoparticles and their antioxidant, cytotoxicity, and antibacterial effects under in vitro condition. Appl Organomet Chem [Internet]. 2020 Jan;34(1). Available:https://onlinelibrary.wiley.com/doi/10.1002/aoc.5278

36. Enemali MO, Udedi SC, Ubajoji Kl, Haruna GS, Augustine E. Modulatory effect of leaf extracts of Pterocarpus santalinoides Hook F. (Red sandal wood) Onacetaminophen-induced Hepatotoxicity in Albino Rats; 2019. Available:https://www.researchgate.net/profile/Haruna-Sunday/publication/334989268_MODULATORY_EFFECT_OF_LEAF_EXTRACTS_OF_Pterocarpus_santalainoides_HOOK_F_RED_SANDAL_WOOD_ONACETAMINOPHEN-INDUCED_HEPATOTOXICITY_IN_ALBINO_RATS/links/5d49533092851cd046a5a28b/MODULATORY-EFFECT-OF-LEAF-EXTRACTS-OF-Pterocarpus-santalinoides-HOOK-F-RED-SANDAL-WOOD-ONACETAMINOPHEN-INDUCED-HEPATOTOXICITY-IN-ALBINO-RATS.pdf

37. Kumar P, Selvi SS, Praba AL, Selvaraj M, Rani LM, Suganthi P, et al. Antibacterial activity and in-vitro cytotoxicity assay against brine shrimp using silver nanoparticles synthesized from Sargassum ilicifolium. Digest Journal of Nanomaterials and Biostructures. 2012;1(7):4447-55.

38. Danda AK. Comparison of a single noncompression miniplate versus 2 noncompression miniplates in the treatment of mandibular angle fractures: a prospective, randomized clinical trial. J Oral Maxillofac Surg. 2010 Jul;68(7):1565–7.

39. Robert R, Justin Raj C, Krishnan S, Jerome Das S. Growth, theoretical and optical studies on potassium dihydrogen phosphate (KDP) single crystals by modified Sankaranarayanan–Ramasesamy (mSR) method [Internet]. Physica B: Condensed Matter. 2010;405:20–4. Available:http://dx.doi.org/10.1016/j.physb.2009.08.015

40. Krishnan V, Lakshmi T. Bioglass: A novel biocompatible innovation. J Adv Pharm Technol Res. 2013 Apr;4(2):78–83.

41. Soh CL, Narayanan V. Quality of life assessment in patients with dentofacial deformity undergoing orthognathic surgery—A systematic review [Internet]. International Journal of Oral and Maxillofacial Surgery. 2013;42:974–80. Available:http://dx.doi.org/10.1016/j.iomj.2013.03.023

42. Lekha L, Kanmani Raja K, Rajagopal G, Easwaramoorthy D. Schiff base complexes of rare earth metal ions: Synthesis, characterization and catalytic activity for the oxidation of aniline and substituted anilines [Internet]. Journal of Organometallic Chemistry. 2014;753:72–80. Available:http://dx.doi.org/10.1016/j.jorganchem.2013.12.014

43. Dhinesh B, Isaac JoshuaRamesh Lalvani J, Parthasarathy M, Annamalai K. An assessment on performance, emission and combustion characteristics of single cylinder diesel engine powered by Cymbopogon flexuosus biofuel [Internet]. Energy Conversion and Management. 2016;117:466–74. Available:http://dx.doi.org/10.1016/j.enconman.2016.03.049

44. PradeepKumar AR, Shemesh H, Jothilatha S, Vijayabharathi R, Jayalakshmi S, Kishen A. Diagnosis of Vertical Root Fractures in Restored Endodontically Treated Teeth: A Time-dependent
424

Retrospective Cohort Study. J Endod. 2016 Aug;42(8):1175–80.

45. Vijayakumar GNS, Nixon Samuel Vijayakumar G, Devashankar S, Rathnakumari M, Sureshkumar P. Synthesis of electrospun ZnO/CuO nanocomposite fibers and their dielectric and non-linear optic studies [Internet]. Journal of Alloys and Compounds. 2010;507:225–9.
Available:http://dx.doi.org/10.1016/j.jallcom.2010.07.016

46. Kavitha M, Subramanian R, Narayanan R, Udhayabanu V. Solution combustion synthesis and characterization of strontium substituted hydroxyapatite nanocrystals [Internet]. Powder Technology. 2014;253:129–37.
Available:http://dx.doi.org/10.1016/j.powtec.2013.10.045

47. Sahu D, Kannan GM, Vijayaraghavan R. Size-Dependent Effect of Zinc Oxide on Toxicity and Inflammatory Potential of Human Monocytes [Internet]. Journal of Toxicology and Environmental Health, Part A. 2014;77:177–91.
Available:http://dx.doi.org/10.1080/15287394.2013.853224

48. Neelakantan P, Cheng CQ, Mohanraj R, Sriram P, Subbarao C, Sharma S. Antibiofilm activity of three irrigation protocols activated by ultrasonic, diode laser or Er:YAG laser in vitro [Internet]. International Endodontic Journal. 2015;48:602–10.
Available:http://dx.doi.org/10.1111/iej.12354

49. Lekha L, Kanmani Raja K, Rajagopal G, Easwaramoorthy D. Synthesis, spectroscopic characterization and antibacterial studies of lanthanide (III) Schiff base complexes containing N, O donor atoms [Internet]. Journal of Molecular Structure. 2014;1056-1057:307–13.
Available:http://dx.doi.org/10.1016/j.molstruc.2013.10.014

50. Gopalakannan S, Senthivelan T, Ranganathan S. Modeling and Optimization of EDM Process Parameters on Machining of Al 7075-B4C MMC Using RSM [Internet]. Procedia Engineering. 2012;38:685–90.
Available:http://dx.doi.org/10.1016/j.proeng.2012.06.086

51. Parthasarathy M, Isaac Joshua Ramesh Lalvani J, Dhinesh B, Annamalai K. Effect of hydrogen on ethanol-biodiesel blend on performance and emission characteristics of a direct injection diesel engine. Ecotoxicol Environ Saf. 2016 Dec;134(Pt 2):433–9.