Novel Aquaporin Regulatory Mechanisms Revealed by Interactomics

Jorge Bellati, Chloé Champeyroux, Sonia Hem, Valerie Rofidal, Gabriel Krouk, Christophe Maurel, Veronique Santoni

To cite this version:
Jorge Bellati, Chloé Champeyroux, Sonia Hem, Valerie Rofidal, Gabriel Krouk, et al.. Novel Aquaporin Regulatory Mechanisms Revealed by Interactomics. Molecular and Cellular Proteomics, American Society for Biochemistry and Molecular Biology, 2016, 15 (11), mcp.M116.060087. 10.1074/mcp.M116.060087. hal-01382938

HAL Id: hal-01382938
https://hal.archives-ouvertes.fr/hal-01382938
Submitted on 15 Mar 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
PIP1;2 and PIP2;1 are aquaporins that are highly expressed in roots and bring a major contribution to root water transport and its regulation by hormonal and abiotic factors. Interactions between cellular proteins or with other macromolecules contribute to forming molecular machines. Proteins that molecularly interact with PIP1;2 and PIP2;1 were searched to get new insights into regulatory mechanisms of root water transport. For that, an immuno-purification strategy coupled to protein identification and quantification by mass spectrometry (IP-MS) of PIPs was combined with data from the literature, to build thorough PIP1;2 and PIP2;1 interactomes, sharing about 400 interacting proteins. Such interactome revealed PIPs to behave as a platform for recruitment of a wide range of transport activities and provided novel insights into regulation of PIP cellular trafficking by osmotic and oxidative treatments. This work also pointed a role of lipid signaling in PIP function and enhanced our knowledge of protein kinases involved in PIP regulation. In particular we show that 2 members of the receptor-like-kinase (RLK) family (RKL1 (At1g48480) and Feronia (At3g51550)) differentially modulate PIP activity through distinct molecular mechanisms. The overall work opens novel perspectives in understanding PIP regulatory mechanisms and their role in adjustment of plant water status. Molecular & Cellular Proteomics 15: 10.1074/mcp.M116.060087, 3473–3487, 2016.

The absorption of soil water by roots is crucial for plants to maintain their water status. Studies in various plant species have shown that the root water permeability (root hydraulic conductivity; \(L_p\)) is constantly adjusted depending on the developmental stage of the plant, its nutritional or hormonal status, or multiple environmental stimuli (\(1, 2\)). These adjustments depend in large part on the function and regulation of aquaporins, a large class of channel proteins that facilitate the diffusion of water and small neutral solutes across cell membranes (\(2, 3\)). Aquaporins are 25–30 kDa proteins with 6 membrane-spanning domains and five connecting loops (\(A-E\)), the N- and C-terminal tails being exposed to the cytosol (\(4\)). Plant aquaporins show a high multiplicity of isoforms. Thirty-five homologs comprised in four homology subclasses have been identified in Arabidopsis. The plasma membrane intrinsic proteins (PIP) (with 13 isoforms further subdivided in the PIP1 and PIP2 subgroups), and the tonoplastic intrinsic proteins (TIPs) (with 10 homologs) are the most abundant aquaporins in the plasma membrane and the tonoplast, respectively (\(5, 6\)). Two other subclasses include nodulin-26-like proteins (NIPs) and small basic intrinsic proteins (SIPs), with nine and three homologs, respectively (\(5–7\)).

The response of plant roots to environmental and hormonal stimuli is mediated through long-term transcriptional control of aquaporin functions, together with multiple post-translational mechanisms, such as phosphorylation, that affect the activity of aquaporins, their targeting to their destination compartment, or their stability. PIP aquaporins show a conserved phosphorylation site in their first cytosolic loop (loop \(B\)) and, in the case of PIP2 isoforms, multiple phosphorylations in adjacent sites of their C-terminal tail (\(1\)), PhosPhAt database (http://phosphat.mpimp-golm.mpg.de/). Aquaporin phosphorylation is a significant component of plant responses to stresses. For instance, following exposure of Arabidopsis roots to salt (NaCl) or hydrogen peroxide (\(H_2O_2\)), AtPIP2;1 phosphorylation was decreased and increased, respectively (\(8\)). A recent quantitative phosphoproteomic work showed a strong correlation between the level of PIP phosphorylation and \(L_p\), under a wide range of environmental conditions (\(1\)). However, knowledge of the protein kinases (PKs) that phosphorylate aquaporins is still scarce. Two PKs that phosphorylate SoPIP2;1 at Ser\(^{115}\) and Ser\(^{274}\) have been purified from NIP, nodulin-26-like protein; PA, phosphatidic acid; \(P_0\), osmotic water permeability; PIP, plasma membrane intrinsic protein; PK, protein kinase; RLK, receptor-like-kinase; SIP, small basic intrinsic protein; TIP, tonoplasm intrinsic protein; TSPO, tryptophan-rich sensory protein/translocator.
spinach (9). A very recent work revealed that Open stomata 1 (OST1)/Snf1-related PK 2.6 (SnRK2.6), a central PK in guard cell abscisic acid (ABA) signaling, was able to phosphorylate a cytosolic AtPIP2;1 peptide at Ser121, this modification being necessary during ABA-induced stomatal closure (10). Receptor-like-kinases (RLKs) constitute a class of serine/threonine kinases that perceive environmental and extracellular developmental signals and transduce them via their intracellular kinase domain (11). Two RLKs, SIRK1 (At5g10020) and BSK8 (At5g41260), a leucine-rich-repeats (LRR)-RLK and a receptor-like cytoplasmic kinase (RLCK), respectively, were shown to act on PIPs (12, 13). In particular, phosphorylation of five PIPs (AtPIP2;1-2;4, AtPIP2;7) upon stimulation by sucrose of carbon-starved seedlings was reduced in the sirk1 mutant, and SIRK1 was confirmed to phosphorylate AtPIP2;4 at Ser283 and Ser286. A rice RLK (LP2, Os02g40240), was recently shown to interact with three PIPs in vivo (14) but the functional role of this interactions remains unknown.

The identification of cellular interaction partners is fundamental for understanding cellular and physiological processes. In recent years, crucial experimental approaches for protein interaction mapping such as yeast two hybrid or split ubiquitin, have begun to unravel the complex interacting networks of plant proteins (15–18). Analysis of protein complexes through immuno-precipitation (IP) followed by mass spectrometry (MS) (19) is also a widely employed technique because of its high throughput and sensitivity. Most importantly, this technique addresses the properties of protein-protein interactions occurring in the plant. However, suitable controls and quantitative proteomics are required to distinguish between bona fide binders and background contaminants (20).

Data on plant aquaporin interactomes are starting to emerge. Yeast-two hybrid (18) and split-ubiquitin (15, 16) studies have identified, about 200 proteins that seem to interact, with a high confidence, with PIP aquaporins (21) for review. In addition, more focused recent studies have revealed that PIPs can functionally interact with several classes of proteins. For instance, PIP1–PIP2 interactions were shown to be required for in planta trafficking of PIP1s to the plasma membrane (22–24). PIP2s were also shown to functionally interact with syntaxins, a family of proteins involved in vesicle trafficking (25, 26). In addition, the tryptophan-rich sensory protein/translocator (TSPO), a multistress regulator that is transiently induced by osmotic stress, and that is degraded through a selective autophagic pathway, physically interact with AtPIP2;7 (27). PIPs also functionally interact with Rma1H1, a membrane-anchor E3 ubiquitin ligase homolog, to regulate aquaporin levels via ubiquitination (28).

One major objective of the present work was to investigate as a whole the plant PIP1;2 and PIP2;1 interactome. A quantitative IP-MS strategy, together with data from available databases, allowed to build an interconnected PIP network of about 900 proteins. Next, we focused on those protein interaction partners (next called interactants) that show a physical interaction with PIPs. We hypothesized that these interactants may provide novel insights into the molecular regulation of PIP aquaporins. Here, we explore novel functional roles of phospholipases D and RLKs. The latter can have opposite effects on aquaporin activity through specific molecular mechanisms.

EXPERIMENTAL PROCEDURES

Biological Materials and Plant Treatments—Arabidopsis thaliana (Col-0 ecotype) transgenic plants expressing GFP, GFP-PIP2;1, GFP-PIP1;2 under the control of a constitutive 35S promoter were used (29) for proteomic analysis (see below). Arabidopsis seeds were sown in vitro on a MS/2 medium (30) complemented with 1% sucrose, 0.05% MES and 7 g/l agar. Seeds were kept at 4 °C for 48 h and cultivated in vitro during 9 days (16 h light (250 μmol photons/m²/s), 20 °C, 70% relative humidity). The effect of NaCl and H\textsubscript{2}O\textsubscript{2} were studied by bathing plantlets with 100 mM NaCl during 2 h, and 500 μM H\textsubscript{2}O\textsubscript{2} for 20 min, respectively. Additional transgenic plants were used: promAMT1;3:AMT1;3-GFP (31), promPGP4::PGP4-GFP in a ppg4 background (32), promPGP19::GFP-PGP19 (33). Nicotiana tabacum plants were cultivated in soil for 4–6 weeks (8 h light (120 μmol photons/m²/s), 20 °C, 65% relative humidity).

Vectors and Constructs—All constructs were obtained using Gateway cloning technology (Invitrogen) according to the manufacturer’s instructions. The cDNAs of RKL1 (At1g48480), RKL902 (At3g17840), Feronia (At3g51550), PLD\textalpha (At4g35790), PLD\textgamma (At4g18505), and NTL3 (At5g06320) were amplified by PCR using the primers described in supplemental Table S1 followed by a second PCR with the primers Atb1 or Atb1’ and Atb2 or Atb2’ (supplemental Table S1) allowing the addition of attB recombination sites and cloned into a pDONOR 207 vector using a Gateway® BP Clonase enzyme mix (Invitrogen). Annexin4 clone (At2g38750) was obtained from ARBC (U15576 clone). For FLIM experiments, cDNAs were transferred into binary destination vectors pGWBS and pGW6 (Dr. Nakagawa, Shimane University, Matsue, Japan) to allow fusion of eGFP at the C- and N terminus of the proteins of interest, respectively, by using a Gateway® LR Clonase enzyme mix (Invitrogen). To fuse mRFP at the N terminus of the proteins, cDNAs were transferred into a pB7WGR2 vector. GFP- and mCherry- tagged PIP2;1 are described in (34, 35). A. tumefaciens strain GV3101 was transformed with the constructs of interest, selected for resistance toward rifampicin (50 mg/l), gentamycin (25 mg/l), and kanamycin (50 mg/l) in the case of pGWBS, and for resistance toward spectinomycin (100 mg/l) in the case of pB7WGR2 vector. For oocytes experiments, cDNAs were transferred into a xenopus oocyte expression vector pGEM-GWC using a Gateway® LR Clonase enzyme mix (Invitrogen) and E. Coli strain DH\textalpha was transformed and selected for ampicillin (50 mg/l) resistance.

Immunopurification—IP of GFP-tagged proteins was performed at 4 °C from 9 day-old plantlets. Plantlets were treated with 1% formaldehyde for 15 min under gentle shaking. Formaldehyde was then washed with the addition of 300 μM glycine under continuous shaking. After for 30 min, plantlets were rinsed twice with phosphate-buffered saline (4 mM KH\textsubscript{2}PO\textsubscript{4}, 16 mM Na\textsubscript{2}HPO\textsubscript{4}, 115 mM NaCl, pH 7.4). One to two grams of roots were collected, chopped with a scalpel in the presence of 2.1 ml/g fresh weight (FW) of a buffer made of NaCl 300 mM, Triton X-100 1% (w/v), Na deoxycholate 0.5% (w/v), SDS 0.1% (w/v), Tris-HCl 100 mM pH 8, leupeptin 2 μM, DTT 5 mM, AEBSF 1 mM, and then potterised. After centrifugation at 10,000 x g for 15 min, the supernatant was again centrifuged in the same conditions.

IP was performed from the supernatant with an antibody against GFP using a μMACSTM anti-GFP Microbeads kit (Miltenyi Biotec, Paris, France) according to manufacturer’s conditions. Briefly,
sample was incubated at 4 °C for 1h with a volume equivalent to 35 μg/g FW of an anti-GFP Microbeads solution. The sample was then loaded onto μMACS columns that were previously conditioned with 200 μl of a lysis buffer (NaCl 150 mM, Triton X-100 1% (v/v), Tris-HCl 50 mM pH 8). After 4 washings with 200 μl of a buffer made of NaCl 150 mM and Igepal CA-630 1% (v/v) and an additional washing step with 100 μl of Tris-HCl 20 mM pH 7.5, proteins were eluted with 50 μl of elution buffer (Tris-HCl 50 mM pH 6.8, DTT 50 mM, SDS 1% (v/v), EDTA 1 mM, bromophenol blue 0.005% (v/v), glyceral 10% (v/v)). Formaldehyde fixation was reversed by heating eluted proteins at 100 °C during 20 min.

Protein Digestion—In-solution reductions/alkylations were performed simultaneously with detergent removing by the filter-aided digestion overnight at 37 °C. Peptides were formed simultaneously with detergent removing by the filter-aided digestion. Trypsin (Sequencing Grade endolysin-C (Sequencing Grade Modified, Promega, Madison, WI) digestion 3 h at 37 °C followed by a trypsin (Sequencing Grade) digestion overnight at 37 °C. Peptides were eluted by step elutions with 50 mM ammonium bicarbonate, followed by 50% acetonitrile and then 0.5 M NaCl. Peptides were desalted on C18 columns (Sep-Pak® Vac1C18 cartridge 3cc, Waters, Guyancourt, France). After solvent evaporation, peptides were resuspended in 2% formic acid.

Experimental Design and Statistical Rational for Protein Identification and Quantification by Mass Spectrometry—The protein digests were analyzed using a Q-TOF mass spectrometer (Maxis Impact; Bruker Daltonik GmbH, Bremen, Germany), interfaced with a nano-HPLC U3000 system (Thermo Scientific, Waltham, MA). Samples were concentrated with a pre-column (Thermo Scientific, C18 PepMap100, 300 μm × 5 mm, 5 μm, 100 A) at a flow rate of 20 μl/min using 0.1% formic acid. After preconcentration, peptides were separated with a reversed-phase capillary column (Thermo Scientific, C18 PepMap100, 75 μm × 250 mm, 3 μm, 100 A) at a flow rate of 0.3 μl/min using two steps gradient (8% to 28% acetonitrile in 40 min, then 28% to 42% in 10 min), and eluted directly into the mass spectrometer. Proteins were identified by MS/MS by information-dependent acquisition of fragmentation spectra of multiple charged peptides. Up to twenty data-dependent MS/MS spectra were acquired in positive ion mode. MS/MS raw data were analyzed using Bruker Compass Data Analysis software (Automatic Engine Version 4.1 (Build 359)) to generate the peak lists. The non-redundant Arabidopsis protein database (TAIR10, version 20110823, 35386 entries, http://www.arabidopsis.org) was locally queried using X!Tandem search engine (version 2013.09.01, http://www.thegpm.org/tandem/) with the following parameters: trypsin as enzyme, 1 allowed missed cleavage, carbamidomethylation of cystein as fixed modification and N-terminal acetylation of protein, deamidation of asparagine and glutamine, N-terminal-pyroglutamylation of glutamine and glutamate, oxidation of methionine, phosphorylation of serine, threonine and tyrosine, and methylation of glutamate and asparagine as variable modifications. Mass tolerance was set to 10 ppm on full scans and 0.05 Da for fragment ions. Identified proteins were filtered and grouped using the XTandem pipeline v3.3.1 (http://ppasso.inra.fr/bioinfo/xtandempipeline/). Identified proteins were filtered according to the following criteria: at least two different trypsin peptides with an E value below 0.05 and a protein E value smaller than 0.025 were required. Using the above criteria, the rate of false peptide sequence assignment and false protein identification as determined by the “decoy database” function implemented in XTandem pipeline was lower than 1.5 and 5%, respectively. The XTandem grouping function allows to take into account redundancy and proteins with at least one common peptide were grouped. Within each group, proteins with at least one specific peptide relative to other members of the group were reported as subgroups. Relative label-free quantification was carried out with the MassChroQ software (version 2.1) based on extracted ion chromatograms (37). The detection threshold was set at a minimal and maximal value of 3000 and 5000, respectively. Data were filtered to remove (1) unreliable peptides for which standard deviation of retention time was above 15 s, (2) peptides shared within several proteins, and (3) quantified peptides in less than 3 biological replicates. Normalization was performed to take into account putative global quantitative variations between LC-MS runs. Normalized peptide areas were calculated by dividing the area value of each peptide by the sum of all peptide area values within each LC-MS run. The quantification of a protein relied on the quantification of the sum of its peptides. A Student t test (p value < 0.05) allowed to determine the significant change in abundance. Then, we also considered proteins identified with a unique peptide provided that this peptide showed a significant quantitative variation within treatments. The mass spectrometry proteomics data have been deposited in Proticdb (38): http://moulion.inra.fr/protic/pipinteractome (login: pipinteractome; password: review).

Data Analysis and Protein Interaction Networks—The subcellular localization of interactants was predicted with SUBAcon server (http://suba.plantenergy.uwa.edu.au/) and the number of transmembrane domains was estimated with Aramemnon (http://aramemnon.botanik.uni-koeln.de/). The functional classification of interactants according to Gene Ontology (GO) annotation, and enrichment in interactants with regards to the Arabidopsis genome were performed with Panther server (http://pantherdb.org/) (39). Protein-protein interaction data were obtained from plant interactome databases including results from a yeast two hybrid approach (18) (Arabidopsis Interactome Mapping Consortium, 2011) and from Split-ubiquitin approaches (15, 16) to build a network including PIP interactants identified in the present work together with the reported interactants of these PIP interactants. Protein-protein interaction networks were visualized using Cytoscape (40). Networks were analyzed using the Cytoscape 2.8.2 Molecular Complex Detection (MCODE) plugin (41) to detect clusters (i.e. densely connected regions) that are predictive of functional protein complexes. The parameters used for MCODE to generate the clusters were as follows: loops included, degree cut-off of 2, deletion of single connected nodes from the cluster (haircut option disabled), expansion of the cluster by one neighbor shell (fluff option enabled), node density cut-off of 0.1, node score cut-off of 0.2, k-core of 2, and maximum depth of the network equal to 100.

Fluorescence Lifetime Imaging Microscopy (FLIM)—For transient expression in leaves, 4- to 6-week-old tobacco (N. tabacum cv SR1) plants were infiltrated with Agrobacterium tumefaciens strain GV3101 with the desired construct as described previously (42) and exhibiting an optical density at 600 nm between 0.025 and 0.05. Infiltration was performed at an induced wound in leaves to facilitate the transformation. In the case of multiple transformations, transformed agrobacteria were mixed. Tobacco plants were kept in the same culture condition during transient expression. Tobacco epidermal cells were observed on a portion of ~25 mm² of transformed leaf 72 h after infiltration. FRET (Förster resonance energy transfer) and FLIM measurements were obtained with a multiphoton confocal microscope (ZEISS LSM 780, Göttingen, Germany) by the so-called TCSPC (Time Correlated Single Photon Counting) method (43). GFP was excited at 920 nm with a pulsed infra-red laser Ti:Saphir (Chameleon ULTRA II, COHER-ENT) for 3 min. The emitted fluorescence was detected by a detector HPM-100 Hybrid (Hamamatsu R10467–40 GaAsP) in descanned photon counting (43). GFP was excited at 920 nm with a pulsed infra-red laser Ti:Saphir (Chameleon ULTRA II, COHER-ENT) for 3 min. The emitted fluorescence was detected by a detector HPM-100 Hybrid (Hamamatsu R10467–40 GaAsP) in descanned photon counting.
performed by tested couples. For each repetition, 5 to 10 images were obtained and analyzed. From the fluorescence intensity images, the decay curves were calculated per pixel and fitted with either a mono- or double-exponential decay model using the SPImage software (http://www.becker-hickl.de/software/tcspc/software/tcspcspecial.htm). The mono-exponential model function was applied for donor samples with only GFP present. For samples containing two fluorophores, GFP/mCherry or GFP/RFP, a double-exponential model function was used without fixing any parameter. The lifetime of GFP expressed alone and the lifetime of GFP co-expressed with mCherry or mRFP were compared using Student’s t test, by grouping all the repetitions for the same couple. The FRET efficiency is calculated according to the following formula: FRET = 1- (GFP lifetime in the presence of mCherry/RFP)/(GFP lifetime expressed alone).

Oocyte Expression—cRNA production, expression in Xenopus laevis oocytes, and osmotic water permeability (Pf) measurements were performed as previously described (44).

RESULTS

Interactomics Methodology—We used an IP method coupled to protein identification by MS to characterize proteins copurifying with PIP1;2 and PIP2;1 (further referred to as PIP1;2 and PIP2;1 interactants). Root extracts were prepared from transgenic plants expressing GFP-PIP2;1 or GFP-PIP1;2 under the control of a 35S promoter and paramagnetic anti-GFP microbeads were used to purify the fusion proteins and their interacting proteins. This approach was performed in plants grown in standard conditions or treated with salt (100 mM NaCl, 2h) or hydrogen peroxide (500 μM H2O2, 20 min), two treatments described to inhibit aquaporin activity and root water transport (34, 45). Aquaporins are hydrophobic membrane proteins that require detergents for solubilization. However, these detergents may not be compatible with a proper recovery of interacting proteins. To circumvent this problem, plant tissues were treated with formaldehyde (46) to cross-link protein complexes in vivo. A protein was considered as a genuine PIP interactant when it was identified in at least 3 over 4 replicates with at least two significant different peptides (see methods). In addition, an IP-MS/MS from plants expressing 35S::GFP allowed to identify 22 GFP interactants that were removed from the initial lists of PIP2;1 and PIP1;2 interactants (supplemental Table S2). Overall, a total of 436 and 388 proteins were identified as putative interactants of PIP1;2 and PIP2;1, respectively (supplemental Tables S3, S4), taken into account all plant physiological treatments.

The identification of similar proteins with independent PPI methodologies can be used to validate true interactants. Previous yeast two-hybrid (http://interactome.dfci.harvard.edu/A_thaliana; Arabidopsis interactome mapping consortium 2011, (18)) and split-ubiquitin approaches (www.associomics.org, (15, 16)) identified as a whole, 29 and 35 proteins interacting with PIP1;2 and PIP2;1, respectively (supplemental Table S5). Three and five of these PIP1;2 and PIP2;1 interactants, respectively, were also identified in the present work. Among them, five are PIPs (24) whereas others correspond to a Ca2+-ATPase, and sugar or phosphate transporters. This comparative analysis confirms the usually low overlap between binary approaches and whole protein complex analysis (47). A reverse IP-MS strategy was used to confirm the interaction between PIP2;1 and PIP1;2 and a few selected interactants using transgenic plants expressing promAMT1;3::AMT1;3-GFP (31, 48), promPGP4::PGP4-GFP in a pgp4 background (32), and promPGP19::PGP19-GFP (49). A total of 282, 22, and 31 proteins were identified in the interactomes of AMT1;3, PGP4, and PGP19, respectively (supplemental Tables S6, S7). The bait itself and both PIP1;2 and PIP2;1 were recovered in each interactome, thereby supporting the relevance of IP-MS to identify PIP interactants.

PIP Interaction Network—PIP1;2 and PIP2;1 shared about 80% of their interactants (Fig. 1A). Given such a high similarity between the two interactomes, all interactants were further considered as defining a “PIP interactome.” One third of them exhibited at least one transmembrane domain (http://aramemnon.botanik.uni-koeln.de/) (supplemental Table S3) and the remaining are soluble proteins possibly bound to membranes. Indeed, 32 and 8% of PIP interactants are predicted to localize to the plasma membrane and endoplasmic reticulum, respectively (http://suba.plantenergy.uwa.edu.au/) (supplemental Table S3). Thus, the PIP2;1 and PIP1;2 interactomes are somewhat enriched in proteins sitting in the same subcellular compartments as their bait. According to Gene Ontology annotation (http://pantherdb.org/), almost 90% of assigned accessions had catalytic activities, binding activities and belonged to proteins contributing to structural integrity of cellular complexes and to transport activity (Fig. 1B). These functions are clearly over-represented when compared with the Arabidopsis genome (Fig. 1B). As for biological processes, metabolic process and localization (Fig. 1C) were predominant, the latter being mostly enriched through the term “vesicle-mediated transport” (Fig. 1C).

Several previous studies pointed to an enrichment of plasma membrane proteins in microdomains according to abiotic, biotic, and chemical treatments (50–53). Interestingly, 22% of PIP interactants (n = 106) were shown to be enriched in microdomains in these studies (supplemental Table S3). In addition, PIP interactome contained 38 PKs (supplemental Table S3) including 23 RLKs and 6 calcium-dependent PKs.

Assuming that interacting proteins contribute to similar molecular functions or cellular processes, we next built a network including all PIP interactants identified in the present work or in previous Y2H (18) and Split-Ub approaches (15–17). Hubs are proteins showing multiple protein interactions that may be generated by lowly specific individual interactions (16). Thus, interactants of hub proteins with more than 70 interactants were removed, to prevent corruption of the PIP network with low-affinity interactions. The final network consists of 883 proteins linked by 1620 edges (supplemental Table S8, supplemental Fig. S1). In addition, five main clusters were iden-
Clustering 1, 2, and 3 comprise aquaporins, transporters, and GTPases, respectively, that were already pinpointed in Fig. 1 as enriched molecular functions. Clusters 4 and 5 grouped proteins from exocyst complex or involved in brassinosteroid (BR) signaling, respectively (Fig. 2; supplemental Table S8). The exocyst complex comprises 8 subunits engaged in docking and tethering of secretory vesicles, providing a spatial and temporal regulation of exocytosis (54, 55). BRs are phytohormones that regulate plant growth and development. Thus, this clustering analysis points to novel functional features of the PIP interactome.

Fig. 1. PIP1;2 and PIP2;1 interactomes. A, number of PIP1;2 and PIP2;1 interactants. B, molecular functions characterizing PIP interactants and overrepresented in PIP interactome by comparison to the Arabidopsis genome (http://pantherdb.org/,(39)). Enriched molecular functions with p value < 0.05 are shown. Revigo (http://revigo.irb.hr/) was used to summarize molecular functions and enriched ones related to transport activity are shown in black. C, biological processes characterizing PIP interactants and over-represented in PIP interactome by comparison to the Arabidopsis genome (http://pantherdb.org/,(39)). Enriched biological processes with p value < 0.05 and an enrichment factor > 3 are shown. Enriched biological processes analyzed using Revigo and related to vesicle-mediated transport and cellular component biogenesis are shown in black and gray, respectively.
Fig. 2. Clustering analysis of PIP network. The MCODE plugin of Cytoscape (41) was used to distinguish 5 major clusters in the PIP network. Corresponding AGI numbers can be found in supplemental Table S8. AGI of proteins are represented by nodes in a color-code way: Blue: interactants identified in the present work with no quantitative variations upon treatments. Red: interactants identified in the present work with quantitative variations upon treatments. Gray: interactants of PIP interactants that are reported in databases. Solid line: data from (18); dashed line: data from (15, 16).
A label-free quantitative mass spectrometry approach was used to measure the variations in abundance of PIP1;2 and PIP2;1 interactants, according to NaCl and H2O2 treatments.Forty-nine and 12 proteins of the PIP1;2 and PIP2;1 interactomes, respectively, responded to NaCl (supplemental Table S3, supplemental Table S4) whereas 39 and 38, respectively, showed an altered abundance, in response to H2O2 (supplemental Table S3, supplemental Table S4C, S4E). PIP networks were built considering all PIP interactants with variations in abundance according to H2O2 (H-network) and NaCl (N-network) treatments, and revealed 243 proteins and 182 connected proteins, respectively (supplemental Table S8, supplemental Fig. S2A, S2B). Interestingly, according to GO annotation, those PIP interactants were enriched in vesicle-mediated transport process (GO:0016192) (supplemental Table S9) suggesting that the two treatments rather interfere with PIP cellular trafficking.

Physical Interaction Between Interactants and PIP2;1 —With the objective of identifying proteins that physically act on PIP2;1 function, we selected a subset of plasma membrane localized-proteins, based on their biological function, quantitative variations according to H2O2 and NaCl treatments, putative enrichment in microdomains, or presence in a specific cluster. Putative physical interactions with PIP2;1 were then investigated using FLIM. The prevalence of RLKs (56) in PIP interactome made us consider three of them. RKL1 (At1g48480) and RKL902 (At3g17840) are close homologs belonging to the LRRIII-RLK family. Expression of RLK902 in root tips and lateral primordia suggests a role in cell proliferation (57). Feronia (At3g51550) is a well-described RLK that...
fine-tunes cell growth by controlling apoplastic pH (58) and ROS (59, 60), thereby balancing wall rigidity for cell integrity and flexibility for cell expansion. These are the reasons why RKL1, RLK902, and Feronia were selected despite their abundance was not altered by H₂O₂ and NaCl treatments. Phospholipases D (PLDs) fulfil diverse roles in lipid metabolism and cellular regulation (61, 62). Here, we selected PLDδ (At4g35790) and PLDγ1 (At4g11850) that show quantitative variations according to treatments (supplemental Table S3) and are present in cluster 2 of PIP interactome (Fig. 2). Annexin4 (At2g38750) that belongs to the same cluster as PLDs was also selected. In animals, annexins associate with membrane phospholipids and facilitate fusion of cytoplasmic vesicles with the plasma membrane (63) and one of these (annexin A2) mediates c-AMP-induced trafficking of Aquaporin-2 in the collecting duct (64). Finally, we also selected HIR3 because of its localization in microdomains (51, 53) and NHL3 because of its high degree of protein connection (19 proteins including 3 PIPs) (supplemental Fig. S3).

FLIM analyses were performed in tobacco leaf epidermal cells that transiently expressed the two putative interacting partners tagged with GFP and mCherry- or RFP, respectively (Table I, Fig. 3). Physical interactions were assessed based on a significant p value (<0.01), whatever the FRET efficiency. Well established homo-tetrameric interactions of PIPs homologs (24) were used as positive controls. Thus, PIP2;1 fused to GFP showed strong interaction with PIP2;1 fused to RFP and mCherry (Table I, Fig. 3). Negative controls were obtained from coexpression of PIP2;1 fused to GFP with soluble RFP and with HIR3 (At3g01290) that is an anchored membrane protein (Table I, Fig. 3). Whereas no relevant physical interaction could be detected between PIP2;1 and Annexin4, a significant physical interaction was revealed between PIP2;1 and 3 RLKs (RKL1, RLK902, and Feronia), two PLDs (PLDδ and PLDγ1), and NHL3 (At5g06320) (Table I, Fig. 3).

RKL1, RLK902, and Feronia Modulate PIP2;1 Intrinsic Water Transport Activity—With regard to their putative PK function, RKL1, RLK902, and Feronia were chosen for further investigating a functional role on PIP2;1 activity, using coexpression in X. laevis oocytes. Expression of PIP2;1 alone conferred, with respect to native oocytes, an 8-fold increase in cell osmotic water permeability (Pf) (supplemental Fig. S4A, S4B). Coexpression of PIP2;1 with RKL1 and not with RLK902 resulted in a further increase in Pf by 50% (Fig. 4A,4B, supplemental Fig. S4A, S4B). Three phosphorylation sites have been described in PIP2;1, at Ser121, Ser280, and Ser283 (1, 4, 8). The Pf of oocytes expressing a PIP2;1 form with Ser-to-Ala mutations at positions 280 and 283 (Ser280Ala-Ser283Ala) was almost similar to Pf of oocytes expressing wild-type PIP2;1 (Fig. 4A, 4B). In addition, coexpression of RKL1 with PIP2;1 Ser280Ala-Ser283Ala resulted in a similar stimulation of Pf as with wild-type PIP2;1 (supplemental Fig. S4A). These results suggest that phosphorylation of PIP2;1 at Ser280 and Ser283 does not contribute to PIP2;1 activity in oocytes, and, in particular, to its enhancement upon coexpression with RKL1. One hypothesis is that Ser121, a residue described to be involved in aquaporin gating could be the target of RKL1. However punctual mutations of Ser121, to an Ala or Asp residue, led to inactive PIP2;1, thereby preventing to test this hypothesis.

By contrast to RKL1, coexpression of PIP2;1 with Feronia resulted, with respect to oocytes expressing PIP2;1 alone, in
a decrease in P_i by 60% (Fig. 5). Lys565 is a residue located in the catalytic domain of Feronia. Punctual mutation of Lys565 to an Arg (Lys565Arg), or deletion of the C terminus of Feronia were shown to abolish its kinase activity (65). When coexpressed with PIP2;1, these mutated forms of Feronia failed to interfere with the water transport activity of the aquaporin (Fig. 5A). These results suggest that Feronia inhibits PIP2;1-mediated water transport through its PK activity. To investigate PIP2;1 residues that would be targeted by Feronia, we coexpressed the latter with forms of PIP2;1 carrying individual or combined mutations of Ser280 and Ser283 to Ala or Asp (Fig. 5B, supplemental Fig. S5). For all PIP2;1 forms carrying individual mutations, coexpression with Feronia resulted in a decrease in P_i by 15% to 38%, whereas wild-type PIP2;1 showed an inhibition by 45%. In addition, Feronia did not alter the P_i of oocytes expressing a Ser280Ala-Ser283Ala form of PIP2;1 whereas the Ser280Asp-Ser283Asp form showed a residual inhibition (Fig. 5B). These results indicate that Feronia possibly acts through Ser280 and Ser283, but not exclusively through one of these residues. Furthermore, phosphodeficient mutations of both Ser280 and Ser283 appeared to fully prevent the inhibitory effect of Feronia whereas phosphomimetic mutations would allow partial inhibition.

Functional Interaction Between Feronia and PIP2;1—We then tested the hypothesis that phosphorylation at the C terminus of PIP2;1 could by itself favor interaction of Feronia with PIP2;1. FLIM analyses were performed in leaf epidermal cells that transiently expressed Feronia-GFP alone and in combination with RFP-PIP2;1, either wild-type or with Ser280 and Ser283 mutations to Ala (PIP2;1 Ser280Ala-Ser283Ala) or Asp (PIP2;1 Ser280Asp-Ser283Asp) (Table II, Fig. 6). The WT and all mutated forms significantly interacted with Feronia. A statistical analysis revealed, however, that interactions between Feronia and the wild-type or Ser280Ala-Ser283Ala forms of PIP2;1 were weaker (p value 0.391) than the interaction between Feronia and the Ser280Asp-Ser283Asp form (p value 0.039). These results suggest that interaction of Feronia with PIP2;1 can occur, independent of its inhibitory effects and that the PK would preferentially interact with the phosphorylated form of PIP2;1.

DISCUSSION

PIP Interactome: A Platform Regrouping a Wide Range of Transport Activities—PIP1;2 and PIP2;1, which are among the most highly expressed PIPs in both roots and leaves (66), bring a major contribution to root water transport and its regulation by hormonal and abiotic factors (67, 68). The objective of this work was to increase our knowledge of proteins that molecularly and functionally interact with PIP1;2 and PIP2;1 to get new insights into regulatory mechanisms of root water transport. For that, we used plants overexpressing PIP1;2 and PIP2;1 fused to GFP. These plants do not exhibit any particular growth phenotype when compared with wild-type plants. Such constructs were also shown to be functionally relevant ones across several studies: these constructs were used to show that stimulus-induced downregulation of...
root water transport involves reactive oxygen species-activated cell signaling and PIP internalization (45). Another study, revealed, using these constructs, that endoplasmic reticulum-retained PIP2;1-GFP may interact with other PIP aquaporins to hamper their trafficking to the plasma membrane, contributing to inhibition of root cell hydraulic conductivity (69). Finally, the use of these constructs for single-molecule analysis of PIP2;1 dynamics and membrane partitioning allowed to

Table II

Characterization of FRET interaction between Feronia and PIP2;1. Average lifetimes of GFP fusion proteins expressed alone or together with mRFP-tagged PIP2;1 and corresponding S.E. PIP2;1 was either wild-type (WT) or with double punctual mutations of Ser280 and Ser283 in Ala (PIP2;1-AA) or in Asp (PIP2;1-DD). N and n correspond to the number of independent experiments and cells measured respectively.

Donor	Acceptor	r (ps) ± S.E.	FRET efficiency	N/n	p (t-test)
Feronia-GFP	-	2395 ± 6	-	4/19	-
Feronia-GFP	RFP-PIP2;1-WT	2276 ± 11	5%	4/17	2.10 × 10^{-11}
Feronia-GFP	RFP-PIP2;1-AA	2288 ± 10	4%	4/21	9.31 × 10^{-11}
Feronia-GFP	RFP-PIP2;1-DD	2227 ± 19	7%	4/19	8.45 × 10^{-10}
Feronia-GFP	RFP	2418 ± 19	1%	1/5	0.12
and PIP2;1, thereby validating the IP-MS strategy (supplementary AMT1;3 fused to GFP, we were able to pull down PIP1;2 interactants based on the availability of plants expressing control. Reverse IPs were performed to validate the initial IP putative PIP interactants still remained, even after using this interactions of unwanted proteins with GFP. A high number of work, a plant line overexpressing GFP was used to discard using recombinant fusion proteins as a bait. In the present formaldehyde-mediated protein cross-linking that recently emerged as an additional means for preserving cellular protein targets. To circumvent this problem, we used a buffer made of lowly concentrated detergents, allowing the extraction of membrane proteins with reduced dissociation of interactants from the membrane bait. In addition, we used of of identified PIP interactants, the present work constitutes the similar protein partners. Finally, because of the high number mutually interact. Thus, the high similarity between PIP1;2 and PIP2;1 interactomes may reflect a in vivo physical assembly between PIP1;2 and PIP2;1. Because the two aquaporins have similar functions, it is also not surprising that they share similar protein partners. Finally, because of the high number of identified PIP interactants, the present work constitutes the first thorough PIP interactome. This may be because of the use of in vivo crosslinking strategy that allowed to identify indirect and physical interactants of PIPs.

Because of their high complexity, the two PIP interactomes were then analyzed through sequential bioinformatical steps. These included a classification of interactants according to their molecular function, an analysis of enrichment in GO terms, and a network clustering study. The two first steps pointed to four characteristic molecular functions (Fig. 1B), mainly including transport and catalytic activities. A large body of evidence supports the existence of membrane microdomains in plants, in as diverse contexts as cell-to-cell interactions, stress, polarized growth, and membrane transport (74). Interestingly, more than 20% of PIP interactants have been described as enriched in microdomains (supplementary Table S3) although 33% have a transmembrane transport activity (not shown). Under resting conditions, PIP2;1 shows constitutive cycling from the plasma membrane via clathrin-mediated endocytosis, whereas under salt stress conditions, the protein follows an additional clathrin-independent internalization route (70), which is associated with flotillins, a marker of membrane microdomains (75). Thus, the PIP interactome may highlight a partitioning of aquaporins in several types of microdomains to ensure transport activities or trafficking at specific submembrane locations.

A network clustering procedure also revealed molecular functions that appear to be tightly connected to PIPs. These include the exocyst complex, in relation to the trafficking processes, BR signaling and GTPases. BR may control aquaporin activity (76) and induce genes involved in water transport, cell-wall organization, and biogenesis in relation to root cell elongation (77). Another link is H$_2$O$_2$, which inhibits aquaporin activity (45) and the production of which seems to be critical for BR-induced stress tolerance in plants (78–81). In the present work, we showed that the abundance of one component of BR cluster (At3g09840) in the PIP interactome was decreased upon H$_2$O$_2$ treatment (supplementary Table S3). In addition, the hormonal network related to auxin and BRs appeared to be affected by PIP downregulation in poplar leaf (82). Thus, we hypothesize that BR signaling pathways could be linked to regulation of PIP function in roots.

Regulation of PIP Trafficking—Osmotic stresses induce a partial internalization of PIPs (34, 83) leading to a reduced abundance of PIPs at the root cell surface, which may contribute to a decrease of root water permeability. In addition, stimulus-induced PIP trafficking can be counteracted by reactive oxygen species (ROS) scavengers, in agreement with the central role played by ROS in stress and hormonal signal-
In particular, a recent work identified from diverse physiological pathways have been identified as membrane or cytoskeleton (86). More than 30 plant proteins alter their localization, enzymatic activity, or interactions with lipid signaling molecule. It often directly binds to proteins to deliver glycerol to the latter, for synthesis of phosphatidylglycerol, a lipid messenger regulating keratinocyte proliferation and differentiation (85). In plants, PLDs and their enzymatic product phosphatidic acid (PA) play roles in cellular responses to hormonal and abiotic stimuli, as well as in plant-microbial interactions and plant defense against bacterial and fungal pathogens (62). PA is therefore regarded as a universal lipid signaling molecule. It often directly binds to proteins to alter their localization, enzymatic activity, or interactions with membrane or cytoskeleton (86). More than 30 plant proteins from diverse physiological pathways have been identified as PA targets and the list is still being extended (62, for review). In particular, a recent work identified AtPIP2;1 and AtPIP2;2 as PA-binding (87) but the functional effects of these interactions remain to be elucidated. Additionally, AtPLDδ is required for ABA-induced stomatal closure, acting downstream of \(H_2O_2 \) and nitric oxide in the ABA signaling pathway (88). Here, we showed that, in roots, the quantity of PLDδ in the PIP2;1 and PIP1;2 interactome decreased upon \(H_2O_2 \) treatment (supplemental Table S3). Thus, we hypothesize that a reduced physical interaction between PLDδ and PIP2;1 upon \(H_2O_2 \) treatment would result in a decreased PA binding to PIP2;1, thereby altering PIP2;1 function. Such a role for lipid signaling in PIP2;1 function is consistent with the suggested role of lipid-mediated signaling in the transduction of stress signals arising from the soil (89).

Differential Roles of Receptor-like Kinases in PIP Function—The PKs known to act on PIPs include two PKs phosphorylating spinach SoPIP2;1 at Ser\(^{280}\) and Ser\(^{283}\) of AtPIP2;1 (1, 8) whereas phosphorylation of Ser\(^{283}\) interferes with trafficking of internalized PIPs to spherical bodies (8). In the present work, quantitative analysis of PIP interactome revealed that \(H_2O_2 \) and NaCl treatments preferentially modify the abundance of interactants involved in vesicle-mediated trafficking (supplemental Table S9). These results support the previously described role of proteins such as syntaxins and clathrin in aquaporin regulation and point to additional protein partners acting on PIP trafficking.

A Role for Lipid Signaling in PIP Function—IP-MS studies do not allow to distinguish between proteins that physically or indirectly interact with the bait. With the objective of focusing on physical PIP interactants, we applied the FLIM technology to eight PIP interactants selected according to their molecular function, their quantitative variations according to \(H_2O_2 \) and NaCl treatments, their putative enrichment in microdomains or their presence in a specific cluster. Among them, Annexin4 and HIR3 did not show any physical interaction with PIP2;1 (Fig. 3, Table I). By contrast, members of phospholipase D and RLK families as well as NHL3 showed a physical interaction with PIP2;1. Multiple lines of evidence indicate that, in humans, Aquaporin-3 (AQP3) and phospholipase D both contribute to skin function. AQP3 co-localizes with phospholipase D2 in caveolin-rich membrane micro-domains, the former delivering glycerol to the latter, for synthesis of phosphatidylglycerol, a lipid messenger regulating keratinocyte proliferation and differentiation (85). In plants, PLDs and their enzymatic product phosphatidic acid (PA) play roles in cellular responses to hormonal and abiotic stimuli, as well as in plant-microbial interactions and plant defense against bacterial and fungal pathogens (62). PA is therefore regarded as a universal lipid signaling molecule. It often directly binds to proteins to alter their localization, enzymatic activity, or interactions with membrane or cytoskeleton (86). More than 30 plant proteins from diverse physiological pathways have been identified as PA targets and the list is still being extended (62, for review). In particular, a recent work identified AtPIP2;1 and AtPIP2;2 as PA-binding (87) but the functional effects of these interactions remain to be elucidated. Additionally, AtPLDδ is required for ABA-induced stomatal closure, acting downstream of \(H_2O_2 \) and nitric oxide in the ABA signaling pathway (88). Here, we showed that, in roots, the quantity of PLDδ in the PIP2;1 and PIP1;2 interactome decreased upon \(H_2O_2 \) treatment (supplemental Table S3). Thus, we hypothesize that a reduced physical interaction between PLDδ and PIP2;1 upon \(H_2O_2 \) treatment would result in a decreased PA binding to PIP2;1, thereby altering PIP2;1 function. Such a role for lipid signaling in PIP2;1 function is consistent with the suggested role of lipid-mediated signaling in the transduction of stress signals arising from the soil (89).
ylation. Functional analysis of PIP2;1 punctual mutants showed that inhibitory effect of Feronia was not individually mediated through Ser280 or Ser283 (Fig. 5). By contrast, a double phospho-deficient form (Ser280Ala-Ser283Ala) but not a double phospho-mimetic form (Ser280Asp-Ser283Asp) of PIP2;1 had become resistant to the inhibitory effect of Feronia (Fig. 5B). Thus, the combined phosphorylation of these two sites may favor the inhibitory action of Feronia. We do not believe that Ser280 and Ser283 serve as phosphorylation sites for Feronia. We rather showed that binding of Feronia to PIP2;1 may be favored by their combined phosphorylation (Fig. 6, Table II). Because phosphorylation of both Ser280 and Ser283 is supposed to lead to PIP2;1 activation, the mechanism by which Feronia inhibits aquaporin activity remains unknown. Once it is bound to PIP2;1 C-terminal tail, Feronia may phosphorylate its partner at an unknown site, that would in turn inhibit PIP2;1 activity. Alternatively, Feronia binding to PIP2;1 may favor the recruitment and/or phosphorylation of a protein phosphatase that would dephosphorylate PIP2;1, thereby reducing its activity. These hypotheses deserve additional experiments.

In conclusion, the present work provides the most complete interactome of PIPs so far described in plant. It reveals that PIPs behave as a platform for recruitment of a wide range of transport activities. The work also brings additional insights into the regulation of PIP cellular trafficking by osmotic and oxidative treatments. Finally, it pinpoint a role for lipid signaling in PIP function and enhances our knowledge of PKs involved in PIP regulation. In particular, we show that two members of the RLK family differentially modulate PIP function, although the molecular mechanisms involved still deserve additional experiments. The overall work opens novel perspectives in understanding mechanisms involved in PIP regulation and adjustment of plant water status.

Acknowledgments—We thank the Mass Spectrometry Proteomics Platform (MSPP) for its technical support regarding proteomics experiments, Carine Alcon and Sylvain Rossi for their technical help in FLIM measurements performed on MRI (Montpellier Rio Imaging platform, Montpellier), Cécile Fizames and Olivier Langelli for bioinformatic assistance.

* This work was supported by a research contract with Syngenta.

† To whom correspondence should be addressed: Biochimie et Physiologie Moléculaire des Plantes, INRA, 2 place Viala, Montpellier, Cécile Fizames and Olivier Langelli for biinformatic assistance.

REFERENCES

1. Di Pietro, M., Vialaret, J., Li G-W, Hem, S., Prado, K., Rossignol, M., Maurel, C., and Santoni, V. (2013) Functional characterization of PIP2;1 in response to salt stress. *Nature* 435, 688–694

2. Maurel, C., Verdoucq, L., Luu D-T, and Santoni, V. (2008) Plant aquaporins: membrane channels with multiple integrated functions. *Annu. Rev. Plant Biol.* 59, 595–624

3. Kaldenhoff, R., Ribas-Carbo, M., Flexas, J., Loisolo, C., Heckwolf, M., and Uehlein, N. (2008) Aquaporins and plant water balance. *Plant Cell Environ.* 31, 658–666

4. Tornroth-Horsefield, S., Wang, Y., Hedfalk, K., Johanson, U., Karlsson, M., Tajkhorshid, E., Neutze, R., and Kjellbon, P. (2006) Structural mechanism of plant aquaporin gating. *Nature* 440, 688–694

5. Johanson, U., and Gustavsson, S. (2002) A new subfamily of major intrinsic proteins in plants. *Curr. Opin. Plant Biol.* 15, 458–461

6. Quigley, F., Rosenberg, J.M., Shachar-Hill, Y., and Bohnert, H. J. (2002) From genome to function: the Arabidopsis aquaporins. *Genome Biol.* 3, 1–17

7. Ishikawa, F., Suga, S., Umura, T., Sato, M. H., and Maeshima, M. (2005) Novel type aquaporins SIPs are mainly localized to the ER membrane and show cell-specific expression in Arabidopsis thaliana. *Fedibs Lett.* 579, 5814–5820

8. Wu, F., Hem, S., Boudet, J., Viennois, J., Sommerer, N., Rossignol, R., Maurel, C., and Santoni, V. (2008) Multiple phosphorylations in the C-terminal tail of plant plasma membrane aquaporins. Role in sub-cellular trafficking of AtPIP2;1 in response to salt stress. *Mol. Cell. Proteomics* 7, 1019–1030

9. Sjøvall-Larsen, S., Alexandersson, E., Johansson, I., Karlsson, M., Johanson, U., and Kjellbon, P. (2006) Purification and characterization of two protein kinases acting on the aquaporin SoPIP2;1. *Biochim. Biophys. Acta* 1758, 1157–1164

10. Grondin, A., Rodrigues, O., Verdoucq, L., Merlot, S., Leonhardt, N., and Maurel, C. (2015) Aquaporins contribute to ABA-triggered stomatal closure through OST1-mediated phosphorylation. *Plant Cell* 27, 1–11

11. Morillo, S. A., and Tax, F. E. (2006) Functional analysis of receptor-like kinases in monocots and dicots. *Curr. Opin. Plant Biol.* 9, 460–469

12. Nittler, T., Fuglsang, A. T., Palmgren, M. G., Frommer, W. B., and Schulze, W. X. (2007) Temporal analysis of sucrose-induced phosphorylation changes in plasma membrane proteins of Arabidopsis. *Mol. Cell. Proteomics* 6, 1711–1726

13. Wu, X. N., Sanchez-Rodriguez, C., Pertl-Obermeyer, H., Obermeyer, G., and Schulze, W. X. (2013) Sucrose-induced receptor kinase SIRK1 regulates plasma membrane aquaporins in Arabidopsis. *Mol. Cell. Proteomics* 12, 2856–2873

14. Wu, F. Q., Sheng, P. K., Tan, J. J., Chen, X. L., Lu, G. W., Ma, W. W., Heng, Y. Q., Lin, Q. B., Zhu, S. S., Wang, J. L., Wang, J., Guo, X. P., Zhang, X., Lei, C. L., and Wan, J. M. (2015) Plasma membrane receptor-like kinase leaf panic 2 acts downstream of the drought and salt tolerance transcription factor to regulate drought sensitivity in rice. *J. Exp. Bot.* 66, 271–281

15. Chen, J., Lalonde, S., Obrdlik, P., Noorani Vatani, A., Parsa, S. A., Vilarino, C., Revuelta, J. L., Frommer, W. B., and Rhee, S. Y. (2012) Uncovering Arabidopsis membrane protein interactome enriched in transporters using mating-based split ubiquitin assays and classification models. *Front. Plant Sci.* 3, 124

16. Jones, A. M., Xuan, Y. H., Xu, M., Wang, R. S., Ho, C. H., Lei, C. L., Takeda, K., Su, Z. G., Dong, Q. F., Assmann, S. M., Chen, J., Kwak, J. M., Schroeder, J. I., Albert, R., Rhee, S. Y., and Frommer, W. B. (2014) Border control - A membrane-linked interactome of Arabidopsis. *Science* 344, 711–716

17. Lalonde, S., Sero, A., Pratelli, R., Pilot, G., Chen, J., Sardi, M. I., Parsa, S. A., Kim, D. Y., Acharya, B. R., Stein, E. V., Hu, H. C., Villiers, F., Takeda, K., Yang, Y., Han, Y. S., et al. (2010) A membrane protein/signaling protein interaction network for Arabidopsis version AMPv2. *Front. Physiol.* 1, 24

18. Braun, P., Carvunis, A. R., Charleotiaux, B., Dreze, M., Ecker, J. R., Hill, D. E., Roth, F. P., Vidal, M., Galii, M., Balunuri, P., Bautista, V., Chen, J. D., Kim, R. C., de los Reyes, C., Gilles, P., Kim, C. J., Matrubutham, U., Mirchandani, J., Olivares, E., Patnaik, S., Quan, R., Ramaswamy, G., Shinn, P., Swaminilligao, G. M., Wu, S., Byrdsong, D., Dricot, A., Duarte, M., Gebreab, F., Gutierrez, B. J., MacWilliams, A., Monachello, D., Mukhtar, M. S., Poulin, M. M., Reichert, P., Romero, V., Tam, S., Waaijer, J., Weiner, E. M., Cusick, M. E., Tasan, M., Yasaki, J., Ahn, Y. Y., Babarasi, A. L., Chen, H. M., Dangi, J. L., Fan, C. Y., Gai, L. T., Ghoshal, G., Hao, T., Lurin, C., Milenkovic, T., Moore, J., Pezviner, S. J., Pruzlin, N., Rabello, S., Rietman, E. A., Rolland, T., Santhanam, B., Schmitz, R. J., Spooner, W., Stein, J., Vanderhaute, J., Ware, D., and Arabidopsis
Interactome Mapping. C. (2011) Evidence for network evolution in an Arabidopsis Interactome map. Science 333, 601–607

19. Dedecker, M., Van Leene, J., and De Jaeger, G. (2015) Unravelling plant molecular machineries through affinity purification coupled to mass spectrometry. Cur. Op. Plant Biol. 24, 1–9

20. Marcilla, M., and Albar, J. P. (2013) Quantitative proteomics: A strategic ally to map protein interaction networks. IUBMB Life 65, 9–16

21. Maurel, C., Boursiac, Y., Luu D-T, Santoni, V., Shahzad, Z., and Verdoucq, L. (2015) Aquaporins in Plants. Physiol. Rev. 95, 1321–1358

22. Chen, W., Yin, X., Wang, L., Tian, J., Yang, R. Y., Liu, D. F., Yu, Z. H., Ma, N., and Gao, J. (2013) Involvement of root aquaporin RpPIP1:1 in ethylene-regulated root expansion through interaction with RhPIP2:1. Plant Mol. Biol. 83, 219–233

23. Li, D. D., Ruan, X. M., Zhang, J., Wu, Y. J., Wang, X. L., and Li, X. B. (2013) Cotton plasma membrane intrinsic protein 2s (PIP2s) selectively interact to regulate their water channel activities and are required for fibre development. New Phytol. 199, 695–707

24. Zelazny, E., Borst, J. W., Muylaert, M., Batoko, H., Hemmings, M. A., and Chaumont, F. (2007) FRET imaging in living maize cells reveals that plasma membrane aquaporins interact to regulate their subcellular localization. Proc. Natl. Acad. Sci. U.S.A. 104, 12359–12364

25. Boursiac, Y., Bumpeche, E., Bienert, G. P., Chevalier, A. S., Errachid, A., Geren, C., Blatt, M. R., and Chaumont, F. (2012) Selective Regulation of Maize Plasma Membrane Aquaporin Trafficking and Activity by the SNARE SYVP121. Plant Cell 24, 3463–3481

26. Hachez, C., Laloux, T., Reinhardt, H., Cazev, D., Degand, H., Geren, C., De Rycke, R., Inze, D., Blatt, M. R., Russinova, E., and Chaumont, F. (2014) Arabidopsis SNARES SYP61 and SYP121 coordinate the trafficking of plasma membrane aquaporin PIP2;7 to modulate the cell membrane water permeability. Plant Cell 26, 3132–3147

27. Hachez, C., Veljanovski, V., Reinhardt, H., Guillaumot, D., Vanhee, C., Chaumont, F., and Batoko, H. (2014) The Arabidopsis abi3 stress-induced STP-related protein reduces cell-surface expression of the aquaporin PIP2;7 through protein-protein interactions and autophagic degradation. Plant Cell 26, 4974–4990

28. Lee, H. K., Cho, S. K., Son, O., Xu, Z., Hwang, I., and Kim, W. T. (2009) Dual light streptavidin-Biotin (LS-B) RING membrane-anchor ES ubiquitin ligase homolog, regulates aquaporin levels via ubiquitination in transgenic Arabidopsis plants. Plant Cell 21, 622–641

29. Cutler, S. R., Ehrhardt, D. W., Griffiths, J. S., and Somerville, C. R. (2000) Random GFP::cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency. Proc. Natl. Acad. Sci. U.S.A. 97, 3718–3723

30. Murawski, L. A., and Sizova, E. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473–497

31. Lima, J. E., Kojima, S., Takahashi, H., and von Wiren, N. (2010) Ammonium triggers lateral root branching in Arabidopsis in an ammonium transporter 1:3-dependent manner. Plant Cell 22, 3621–3633

32. Cho, M., Lee, S. H., and Cho, H. T. (2007) P-glycoprotein4 displays auxin efflux transporter-like activity in Arabidopsis root hairs and tobacco cells. Plant Physiol. 144, 905–915

33. Lewis, D. R., Wu, G. S., Ljung, K., and Spalding, E. P. (2009) Auxin transport into cotyledons and cotyledon growth depend similarly on the ABCB19 multidrug resistance-like transporter. Plant J. 60, 91–101

34. Boursiac, Y., Chen, S., Luu D-T, Sorieu, M., van den Dries, M., and Maurel, C. (2005) Early effects of salinity on water transport in Arabidopsis roots. Molecular and cellular features of aquaporin expression. Plant Physiol. 139, 790–805

35. Wudick, M. M., Li, X., Valentini, V., Geldner, N., Chory, J., Lin, J., Maurel, C., and Boller, T. (2004) Confocal, Multiphoton, and Nonlinear Microscopic Imaging Methods. Vol. 5139 pp. 180–189, Spie-Int Soc Optical Engineering, Bellingham

36. Rojas-Pierce, M., Titapanwaratanakul, B., Sohn, E. J., Fang, F., Larive, C. K., Blakeslee, J., Cheng, Y., Cuttler, S., Peer, W. A., Murphy, A. S., and Raikhel, N. V. (2007) Arabidopsis P-glycoprotein19 participates in the inhibition of gravitropism by gravacin. Chem. Biol. 14, 1353–1367

37. Asaamaa, K., and Sober, A. (2005) Seasonal courses of maximum hydraulic conductance in shoots of six temperate deciduous tree species. Functional Plant Biol. 32, 1077–1087

38. Keinath, N. F., Kierszniowska, S., Lorek, J., Bourdais, G., Kessler, S. A., Shimosato-Asano, H., Grossniklaus, U., Schulze, W. X., Robatzek, S., and Panstruga, R. (2010) PAMP (Pathogen-associated Molecular Pattern)-induced changes in plasma membrane aquaporin PIP1;2 to modulate the cell membrane water permeability. Proc. Natl. Acad. Sci. U.S.A. 107, 497–502

39. Minami, A., Fujikura, M., Furuto, A., Fukao, Y., Yamashita, T., Kamo, M., Kawarazura, Y., and Uemura-Miyake, M. (2009) Alterations in detergent-resistant plasma membrane microdomains in Arabidopsis Baliana during cold acclimation. Plant Cell Physiol. 50, 341–359

40. Wu, H., Rossi, G., and Brenwald, P. (2008) The ghost in the machine: small GTPases as spatial regulators of exocytosis. Trends Cell Biol. 18, 397–404

41. Synyk, L., Sekeres, J., and Zarsky, V. (2014) The exocyst at the interface between cytoskeleton and membranes in eukaryotic cells. Front. Plant Sci. 4, 543

42. Marshall, A., Aalen, R. B., Audenaert, D., Beckman, T., Broadley, M. R., Butenko, M. A., Cano-Delgado, A. I., de Vries, S., Dresselhaus, T., Felix, G., Graham, N. S., Foulkes, J., Granier, C., Greb, T., Grossniklaus, U., Hammond, J. P., Heidstra, R., Hodgman, C., Hothorn, M., Inze, D., Ostergaard, L., Russinova, E., Simon, R., Skirycz, A., Stahl, Y., Zipfel, C., and De Smet, I. (2012) Tackling drought stress: receptor-like kinases present new approaches. Plant Cell 24, 2262–2278

43. Tarutani, Y., Sasaki, A., Yasuda, M., Nakashita, H., Yoshida, S., Yamaguchi, I., and Suzuki, Y. (2004) Identification of three clones which commonly interact with the kinase domains of highly homologous two receptor-like kinases, RLK902 and RLK1. Biosci. Biotech. Biochem. 68, 2581–2587
58. Haruta, M., Sabat, G., Stecker, K., Minkoff, B. B., and Sussman, M. R. (2014) A peptide hormone and its receptor protein kinase regulate plant cell expansion. *Science* **343**, 408–411

59. Duan, Q. H., Kita, D., Johnson, E. A., Aggarwal, M., Gates, L., Wu, H. M., and Cheung, A. Y. (2014) Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabidopsis. *Nature Com.* **5**

60. Duan, Q. H., Kita, D., Li, C., Cheung, A. Y., and Wu, H. M. (2010) FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development. *Proc. Nat. Acad. Sci. (U.S.A.)* **107**, 17821–17826

61. Wang, X. M., Devalah, S. P., Zhang, W. H., and Welti, R. (2006) Signaling functions of phosphatidic acid. *Prog. Lipid Res.* **45**, 250–278

62. Zhao, J. (2015) Phospholipase D and phosphatidic acid in plant defense response: from protein-protein and lipid-protein interactions to hormone signaling. *J. Exp. Bot.* **66**, 1721–1736

63. Rescher, U., and Gerke, V. (2004) Annexins - unique membrane binding proteins with diverse functions. *J. Cell Sci.* **117**, 2631–2639

64. Tamma, G., Procino, G., Mola, M. G., Svelto, M., and Valenti, G. (2008) Signal transduction in plant development. *Plant Cell* **13**, 1780–1789

65. Shih, H. W., Miller, N. D., Dai, C., Spalding, E. P., and Monshausen, G. B. (2014) The receptor-like kinase FERONIA is required for mechanical signal transduction in Arabidopsis seedlings. *Curr. Biol.* **24**, 1887–1892

66. Monneuse, J. M., Sugano, M., Becue, T., Santoni, V., Hem, S., and MR.(2011) Towards the profiling of the Arabidopsis thaliana plasma membrane transportome by targeted proteomics. *Proteomics* **11**, 1789–1797

67. Peret, B., Li, G. W., Zhao, J., Band, L. R., Voss, U., Postaire, O., Luu, D. T., Da Ines, O., Casimiro, I., Lucas, M., Wells, D. M., Lazzerini, L., Nacey, P., King, J. R., Jensen, O. E., Schaffner, A. R., Minkoff, B. B., and Sussman, M. R. (2011) Auxin regulates aquaporin function to facilitate lateral root emergence. *Nat. Cell Biol.* **14**, 991–998

68. Postaire, O., Tournaire-Roux, C., Grondin, A., Bouriasc, Y., Morillon, R., Schaffner, T., and Maurel, C. (2010) A PIP1 aquaporin contributes to hydrostatic pressure-induced water transport in both the root and rosette of Arabidopsis. *Plant Physiol.* **152**, 1418–1430

69. Sorieur, M., Santoni, V., Maurel, C., and Luu, D. T. (2011) Mechanisms and effects of retention of over-expressed aquaporin AtPIP2;1 in the endoplasmic reticulum. *Traffic* **12**, 473–482

70. Li, X. J., Wang, X. H., Yang, Y., Li, R. L., He, Q. H., Fang, X. H., Luu, D. T., Maurel, C., and Lin, J. X. (2011) Single-molecule analysis of PIP2;1 dynamics and partitioning reveals multiple modes of Arabidopsis plasma membrane aquaporin regulation. *Plant Cell* **23**, 3780–3797

71. Toews, J., Rogalski, J. C., Clark, T. J., and Kast, J. (2008) Mass spectrometric identification of formaldehyde-induced peptide modifications under in vivo protein cross-linking conditions. *Anal. Chem.* Acta **618**, 168–183

72. Fetter, K., Van Wilder, V., Moshelion, M., and Chaumont, F. (2004) Interactions between plasma membrane aquaporins modulate their water channel activity. *Plant Cell* **16**, 215–228

73. Temmei, Y., Uchida, S., Hoshino, D., Kanzawa, N., Kuwahara, M., Sasaki, S., and Tsujiya, T. (2005) Water channel activities of *Mimosa pudica* plasma membrane intrinsic proteins are regulated by direct interaction and phosphorylation. *Febbs Let.* **579**, 4417–4422

74. Malinsky, J., Opekarska, M., Grossmann, G., and Tanner, W. (2013) Membrane Microdomains, Rafts, and Detergent-Resistant Membranes in Plants and Fungi. In *Annual Review of Plant Biology*, Vol 64 (Merchant, S. S., ed) Vol 64 pp. 501–529, Annual Reviews, Palo Alto

75. Jarsch, I. K., Konrad, S. S. A., Strati, T. F., Urbanus, S. L., Szymanski, W., Braun, P., Braun, K. H., and Ott, T. (2014) Plasma membranes are subcompartmentalized into a plethora of coexisting and diverse microdomains in *Arabidopsis* and *Nicotiana benthamiana*. *Plant Cell* **26**, 1698–1711

76. Morillon, R., Catterou, M., Sangwan, R. S., Sangwan, B. S., and Lasalles, J. P. (2001) Brassinolide may control aquaporin activities in *Arabidopsis thaliana*. *Planta* **212**, 199–204

77. Chaiwanon, J., and Wang, Z. Y. (2015) Spatiotemporal brassinosteroid signaling and antagonism with auxin in pollen tube growth. *Front. Plant Sci.* **6**, 1–17

78. Choudhary, S. P., Yu, J. Q., Yamaguchi-Shinozaki, K., Shinozaki, K., and Tran, L. S. P. (2012) Benefits of brassinosteroid crosstalk. *Trends Plant Sci.* **17**, 594–605

79. Xia, X. J., Wang, Y. J., Zhou, Y. H., Tao, Y., Mao, W. H., Shi, K., Asami, T., Chen, Z. X., and Yu, J. Q. (2009) Reactive oxygen species are involved in brassinosteroid- induced stress tolerance in cucumber. *Plant Physiol.* **150**, 801–814

80. Zhou, J., Wang, J., Li, X. J., Zhou, Y. H., Shi, K., Chen, Z. X., and Yu, J. Q. (2014) H2O2 mediates the crosstalk of brassinosteroid and abscisic acid in tomato responses to heat and oxidative stresses. *J. Exp. Bot.* **65**, 4371–4383

81. Zhang, A., Zhang, J., Ye, N. H., Cao, J. M., Tan, M. P., Zhang, J. H., and Jiang, M. Y. (2010) ZmMPK5 is required for the NADPH oxidase-mediated self-propagation of apoplastic H2O2 in brassinosteroid-induced antioxidant defence in leaves of maize. *J. Exp. Bot.* **61**, 4399–4411

82. Bi, Z., Merl-Pham, J., Uehlein, N., Zimmer, I., Mühlhans, S., Aichler, M., Walch, A. K., Kallofenhoff, R., Palme, K., Schnitzler, J. P., and Block, K. (2015) RNAi-mediated downregulation of poplar plasma membrane intrinsic proteins (PPIs) changes plasma membrane proteome composition and affects leaf physiology. *J. Proteomics* **128**, 321–332

83. Boggian, Y., Prak, S., Boudet, J., Postaire, O., Lus D-T, Tournaire-Roux, C., Santoni, V., and Maurel, C. (2008) The response of Arabidopsis root water transport to a challenging environment implicates reactive oxygen species and phosphorylation-dependent internalization of aquaporins. *Plant Sig. Behav.* **3**, 1096–1098

84. Tyrell, M., Campanoni, P., Sutter, J. U., Pratelli, R., Paneque, M., Sokolovski, S., and Blatt, M. R. (2007) Selective targeting of plasma membrane and tonoplastic traffic by inhibitory (dominant-negative) SNARE fragments. *Plant J.* **51**, 1089–1115

85. Qin, H. X., Zheng, X. J., Zhong, X. F., Shetty, A. K., Elias, P. M., and Bollag, W. B. (2011) Aquaporin-3 in keratinocytes and skin: Its role and interaction with phospholipase D2. *Arch. Biochem. Biophys.* **508**, 138–143

86. Testerink, C., and Munnik, T. (2011) Molecular, cellular, and physiological responses to phosphatidic acid formation in plants. *J. Exp. Bot.* **62**, 2349–2361

87. Distefano, A. M., Arisz, S. A., Dekker, H. L., Kramer, G., de Koster, C. G., Haring, M. A., Munnik, T., and Testerink, C. (2013) Identification of novel candidate phosphatidic acid-binding proteins involved in the salt-stress response of Arabidopsis thaliana roots. *Biochem. J.* **451**, 343–343

88. Vialaret, J., Di Pietro, M., Hem, S., Maurel, C., Rossignol, M., and Santoni, V. (2014) Phosphorylation dynamics of membrane proteins from *Arabidopsis* roots submitted to salt stress. *Proteomics* **14**, 1058–1070

89. Escobar-Restrepo, J. M., Huck, N., Kessler, S., Gagliardini, V., Gheselinck, J., Yang, W. C., and Grossniklaus, U. (2007) The FERONIA receptor-like kinase mediates male-female interactions during pollen tube reception. *Science* **317**, 656–660

Plant Aquaporin Interactomics

Molecular & Cellular Proteomics 15.11

3487