Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Spectrum of environmental surveillance of SARS-CoV-2 fragments: Questions, quests, and conquest
Manish Kumar

Abstract
This work examines the entire spectrum of ‘Environmental Surveillance (EnvSurv)’ of SARS-CoV-2 fragments i.e. the questions, quests, and conquests of the technology since early year 2020. The prime focus of the present work to document the journey with achieved objectives and remaining ambitions associated with the technology. Despite the EnvSurv may be regarded as the techniques, which rather achieved more than expected, will it win the struggle for its existence or lose its way once the pandemic and fear associated with it completely fades. Pertaining to this discussions, major researched topics were investigated, followed by enlisting of ten bullets of the past experiences along with corresponding challenges, and finally key targets for the techniques are enlisted. The article targets to be a simple guide of the journey of EnvSur in terms of its effectiveness for treatment, infectivity, monitoring & estimation (TIME) till date.

Introduction
After several thousand articles on wastewater surveillance for accurately monitoring the COVID-19 pandemic from the expertise interfaces of microbiologist, environmental engineers, data scientists, civil engineers, remote sensing experts, and modelers to integrate their findings on the above topics to etch out the probability of relative environmental risks and human health challenges infected persons based on wastewater surveillance, it is time to have a look on general awareness, learning, policy and mitigation strategies that could be yielded by the technique. While some researchers kept on dealing with effective disinfection methods, analysis and interpretation of the data of RNA count of SARS-CoV-2 virus, predicting near to accurate number of symptotic/asymptotic/incubated patients, possible infection risk due to treated/un-treated wastewater or natural water environment, and issues as well as improvements in current wastewater based epidemiological (WBE) surveillance methodologies; the rest kept on applying the techniques with more and more logical and precise way in new city/community types/country/region/states. Even the absence of wastewater treatment plant could not stop researchers to implement WBE studies in the remote location against all the odds. Figure 1 depicts a simple word cloud of the most used word in the publications pertaining to the domain [1–30, 31–51].

On the other hand, after nearly three years of active experience on WBE applicability, the majority of the limitations have also become evident. Various range of questions are posed on the continuing relevance of the techniques and academic research challenges. In some part of the globe, core researchers are wrapping-up the projects, while in another part, public health organisations and stakeholders are starting it up to convert the generated knowledge into the policy. Under the light of above discussion, this opinion work is taking a look at the questions with which methodologies kicked off amidst the peak of pandemic, followed by what have been major milestones that brought recognition to the techniques, and finally what remains to conquer. The article is expected to help policy makers to take a quick synaptic view that matters the most for policy implementation in the One Health monitoring of the planet Earth.
The argument in support of this belief was the fact that raw wastewater contains the RNA excreted by both symptomatic and asymptomatic individuals; and also its previously proven effectiveness for the monitoring of other enteric viruses, such as poliovirus, hepatitis A, and norovirus. The consensus was global and hence it was globally trusted to perform and have the answer to the question and thus be capable of providing meaningful public health interventions. It leads to the formation of global collaborative to maximise contributions in the fight against COVID-19.

While WBE remain a technique to provide approximation of pandemic trend rather the exact number of infected people in a given community, capability to detect new variants made EnvSur i.e. genomic surveillance an indispensable technique for public health. We all know that had genomic surveillance would have been in place, probably death owing to variant B.1.1.7/ B.1.617, that have been linked to increased transmissibility and an ability to evade immune protection, could have been minimised considerably. Later various mutants like omicron could be identified on time and thus adverse impacts cold be negated on time.

Quests

It is arguably agreed that WBE could outperformed clinical tests, served better on community and watershed scale, understood easily by the general public, health worker and policy makers, exhibited no conflict on its capability to predict a rise of active cases early, proved handy in hotspot zonation, curfew allocation, effectiveness of vaccine drive, as well as actually supplemented the individual testing during the various phases of pandemic. The main quests pertaining to environmental surveillance have been as follows [1–35]:

- Proof of the concept of wastewater surveillance for COVID-19 tracking.
- Profile tracking of active cases through the wastewater loading of SARS-CoV-2 RNA.
- Epidemiological application including the most accepted benefits of early warning.
- Effective in identifying co-occurring indicator pathogens for COVID-19 and likely exposure rates.
- Passenger tracking mainly of international air, and thus provided another line of check.
- Comparison of treatment technologies and their efficacy of SARS-CoV-2 RNA removal.
- Predicted occurrence, ecotoxicological risk and environmentally acquired resistance of antiviral drugs associated with COVID-19 in environmental waters
- Detection of SARS-CoV-2 genetic material in the wastewaters (both effluents, influents, and in between the steps involved in treatment system), in the University campuses, vicinity of COVID-19 isolation centre, in the ambient urban waters, Bay areas, along the sewer network, as well as full scanning of the city.
- WBE based city zonation for pandemic preparedness powered by early warning
- Perspectives of short and long-term temporal variations in SARS-CoV-2-RNA prevalence along the COVID-19 surges and dips.
- Merging of co-infection, antimicrobial and anti-viral resistance along with COVID-19.
- Unravelling the early warning capability of wastewater surveillance for COVID-19 and the variations in lag-time
- Adding an extra layer for the protection of environmental and health security.
- Tracking attenuation and exposure risk following the wastewater mediated discharge of SARS-CoV-2 in natural water bodies.
- Tracking the decay of SARS-CoV-2 RNA along the various wastewater treatment systems.
- Comparisons of sample concentration, detection and data-normalisation techniques.
- Could be applied on surface waters (river, drain, lake).
- Detection of mutations as explicitly proven for the case of Delta/omicron variants of SARS-CoV-2 i.e. effective application of bioinformatics
- Effective in studying the proclivity and consequence of SARS-CoV-2 migration to aquatic environment.
- Potential emergence of antiviral-resistant pandemic viruses via environmental drug exposure of Animal Pools
- Diagnosis, seasonality, environmental fate, prognosis, treatment, transport, transmission, inactivation, anti-viral drug resistance, and epidemiology.
- Perspectives of modelling and monitoring of SARS-CoV-2 in aquatic environment for COVID-19 pandemic
- Assisting the community with online portal on weekly update of genome concentration with accessibility provided to the public and policy makers.
- Effective application of quantitative microbial risk assessment (QMRA) framework.
- Unprecedented precision in identifying a single active case on dormitory scale i.e. highly effective for campuses.
- Capable of predicting pathogen diversity (bacterial/viral) from wastewater in order to establish early sign of WBE as prediction tool.
- Picked and implemented by several concerned authorities and policymakers around the globe for upgradation of existing COVID-19 surveillance in their ward/community/city/campuses/country.

Once we will have a longer valuable time series surveillance data, we will have the following advantages/capabilities:

- Efficacy of vaccination on COVID-19 cases and secondary transmission.
- Further understanding on the robustness in early warning capability of the techniques.
- Capabilities to have better benefits of making WBE data accessible for public.
- Possibility to perform various modelling and simulation to advance the surveillance protocols, as well as the subtle signals like monitoring of co-infections like monkeypox.
- Understanding the potential risk through water-oral route under QMRA framework, and the impact of heavy antibiotic use during COVID-19 treatment on environment
- Ways to provide interactive publicly accessible genome concentrations data on web with various lag to general public, public health workers, policy makers and water managers.
- For various risk evaluation studies and producing higher resolution with signs indicative of temporal variation in COVID-19 patient loadings.

Conquests

Some of the challenges for WBE can be argued as follows [1—30, 31–51]:

- Effect of solid—liquid partitioning and role of biofilm on the final results of WBE.
- Is it possible to have a wrong signal of peak owing to the condition of sink (sludge/biofilm) becoming the source (releases the RNA fragments)?
- What influence different treatment steps will may have on WBE results if sampled water is not raw water?
- Discrepancies among the monitored genes:
 - Which genes Ct value should be considered for gene copy calculation?
 - Does treatment really remove RNA, if yes up to what extent?
- What are the effects of treatment type or STP size on RNA removal or WBE results? Case A: 10 MLD Traditional STP
- What to compare with active/recovered/cumulative COVID-19 cases?
 - S-gene, ORF-gene, N-gene, which is the best for comparisons with active cases or the average.
- Need of coefficient that may convert Ct to gene copies to number of infected person.
 - Will it ever be possible?
 - How would method precision can help in better prediction or take aways of the results.
- Implementation/Application of the obtained information.
- City zonation can help the management?
- Lock-down component especially.
- Seasonality effect on the WBE results especially in monsoon dominated tropical countries is still to observe.
- How to apply in a city with no wastewater treatment facilities or rural areas or in a low sanitation country
- Not detected is just a notion of below detection.
- Can river/drains be monitored for WBE and used as the indicator for regional and national health.
- Economics and real-world problems with WBE.
- What should be the frequency (weekly/monthly) of sampling? How much samples are enough for a city?
- How would catchment size, sewage connections, efficient waste collections will affect the WBE results?
- Regional/case-specific normalisation factor.
- Would WBE be economically worth if used for COVID-19 only? How to include WBE in the policy of a country, province or municipality.
- How to use the early capability of WBE for COVID-19 management. Can online portal of such surveillance be helpful in this regard?
- What further can be derived using long-term weekly resolution of SARS-CoV-2 RNA data?
- What impact (on antibiotic resistance) has been already there due to the unprecedented use of antivirals/antibiotics for the treatment of COVID-19?
- How successful is the vaccine in each community?
- What is the pathogen diversity (viral and bacterial) in the wastewater?

Conclusion

While WBE has established itself as a technique of tomorrow, it must deal with the economics of surveillance by including several other health indicators under its purview. A consensus among the researchers must be there so that WBE can be incorporated at policy scale. It is quite clear that we need a strong surveillance as we cannot afford lose so many lives. Also we never know that what extent of co-infections like monkeypox, black fungus, or after effects like AMR are going to be in the near future. No country should overlook it to have it in place formally. Ignorance can kill, if WBE that subscribes and assists the ethos of ‘One Health’ is not implemented on the core of environmental monitoring. On the other hand, technology will be benefitted from the development of practical guide and pandemic management tools can by integrating the virtues of information technology with early warning capability of wastewater surveillance. Further, a confidence will be spawned through instilling informed understanding among the commons about the efficacy of techniques. It will be then easy to convince government agencies and thus be adopted in the policy of using WBE as a regular environmental monitoring tool.

Editorial disclosure statement

Given his role as Guest Editor, Manish Kumar had no involvement in the peer-review of this article and has no access to information regarding its peer-review. Full responsibility for the editorial process for this article was delegated to Payal Mazumder.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgement

This work is funded by SERB-DST Govt. of India, & Sustainability Cluster of UPES.

References

Papers of particular interest, published within the period of review, have been highlighted as: * of special interest ** of outstanding interest

1. Kucharski A, Russell T, Diamond C, YL-T lancet infectious: undefined. Early dynamics of transmission and control of COVID-19: a mathematical modelling study. Elsevier 2020 [cited 2021 May 23]; Available from: https://www.sciencedirect.com/science/article/pii/S1473309920301444; 2020.

2. Hart OE, Halden RU: Computational analysis of SARS-CoV-2/COVID-19 318 surveillance by wastewater-based epidemiology locally and globally: feasibility, economy, 319 opportunities and challenges. Sci Total Environ 2020, 138875.

3. Kumar M, Joshi M, Patel AK, Joshi CG: Unravelling the early warning capability of wastewater surveillance for COVID-19: a temporal study on SARS-CoV-2 RNA detection and need for the escalation. Environ Res 2021, 110946. This article discussed about early warning of COVID-19 pandemic situation using wastewater and clinical data.

4. Kumblathan T, Liu Y, Uppal GK, Hrudey SE, Li X-F: Wastewater-based epidemiology for community monitoring of SARS-CoV-2: progress and challenges. ACS Environ Au 2021, 1:18–31.

This paper discusses about early warning system using wastewater in developing countries with help of clinical data analysis.

5. Randazzo W, Truchado P, Cuevas-Ferrando E, Simón P, Allende A, Sánchez G: SARS CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area. Water Res 2020, 115942.

6. Mailpepssov D, Arivalan S, Kong M, Griffiths J, Low SL, Chen H, Hapuarachchi HC, Gu X, Lee WL, Alm EJ, et al.: Development of an efficient wastewater testing protocol for high-throughput country-wide SARS-CoV-2 monitoring. Sci Total Environ 2022, 154024.

7. Westhaus S, Weber F-A, Schiwy S, Linnemann V, Brinkmann M, Widera M, Grave C, Janke A, Hollett H, Wintgens T, et al.: Detection of SARS-CoV-2 in raw and treated wastewater in Germany – suitability for COVID-19 surveillance and potential transmission risks. Sci Total Environ 2021, 141750.

8. Agrawal S, Orschler L, Tavazzzi S, Greither R, Gawlik BM, Lackner S: Genome sequencing of wastewater confirms the arrival of the SARS-CoV-2 Omicron variant at Frankfurt
This paper successfully confirmed Omicron variant from airport wastewater sample that was similar to clinical sample variants in specific area.

This article discusses the wastewater surveillance from market places with simple wastewater method.

This paper discusses the use of hospital wastewater for tracing patient numbers correlated with hospitalized patient numbers.

This paper discusses the first detection of SARS-CoV-2 genetic material in the vicinity of COVID-19 isolation Centre in Bangladesh: variation along the sewer network.

This article reports the first detection of SARS-CoV-2 viral RNA in wastewater and their trends with the reported was same as clinical cases.

First detection of SARS-CoV-2 genetic material in the vicinity of COVID-19 isolation Centre in Bangalore: variation along the sewer network.

This article reports the first detection of SARS-CoV-2 delta variant in wastewater a month prior to the first COVID-19 case in Ahmedabad (India).

This study clinical samples were used for extraction control.

This study clinical samples were used for extraction control.

Acquired insights from the long-term surveillance of SARS-CoV-2 RNA for COVID-19 monitoring: The case of Monterey Metropolitan Area (Mexico).

This article reports the first detection of SARS-CoV-2 genetic materials from Bangladesh and the viral gene copies were similar with isolation center patient number. In this study clinical samples were used for extraction control.

 Genetic sequencing detected the SARS-CoV-2 delta variant in wastewater a month prior to the first COVID-19 case in Ahmedabad (India).

Acquired insights from the long-term surveillance of SARS-CoV-2 RNA for COVID-19 monitoring: The case of Monterey Metropolitan Area (Mexico).

This article reports the first detection of SARS-CoV-2 genetic materials from Bangladesh and the viral gene copies were similar with isolation center patient number. In this study clinical samples were used for extraction control.

 First detection of SARS-CoV-2 genetic material in the vicinity of COVID-19 isolation Centre in Bangalore: variation along the sewer network.

This article reports the first detection of SARS-CoV-2 genetic material in the vicinity of COVID-19 isolation Centre in Bangladesh: variation along the sewer network.

 This article reports the first detection of SARS-CoV-2 genetic material in the vicinity of COVID-19 isolation Centre in Bangladesh: variation along the sewer network.

This article reports the first detection of SARS-CoV-2 genetic material in the vicinity of COVID-19 isolation Centre in Bangladesh: variation along the sewer network.

This article highlights the use of wastewater samples for SARS-CoV-2 surveillance and showed how the generic materials in untreated wastewater can be used as a indicator for prediction of the number of patients.

This article highlights the use of wastewater samples for SARS-CoV-2 surveillance and showed how the generic materials in untreated wastewater can be used as a indicator for prediction of the number of patients.

This article highlights the use of wastewater samples for SARS-CoV-2 surveillance and showed how the generic materials in untreated wastewater can be used as a indicator for prediction of the number of patients.

This article highlights the use of wastewater samples for SARS-CoV-2 surveillance and showed how the generic materials in untreated wastewater can be used as a indicator for prediction of the number of patients.

This article highlights the use of wastewater samples for SARS-CoV-2 surveillance and showed how the generic materials in untreated wastewater can be used as a indicator for prediction of the number of patients.

This article highlights the use of wastewater samples for SARS-CoV-2 surveillance and showed how the generic materials in untreated wastewater can be used as a indicator for prediction of the number of patients.

This article highlights the use of wastewater samples for SARS-CoV-2 surveillance and showed how the generic materials in untreated wastewater can be used as a indicator for prediction of the number of patients.

This article highlights the use of wastewater samples for SARS-CoV-2 surveillance and showed how the generic materials in untreated wastewater can be used as a indicator for prediction of the number of patients.

This article highlights the use of wastewater samples for SARS-CoV-2 surveillance and showed how the generic materials in untreated wastewater can be used as a indicator for prediction of the number of patients.

This article highlights the use of wastewater samples for SARS-CoV-2 surveillance and showed how the generic materials in untreated wastewater can be used as a indicator for prediction of the number of patients.

This article highlights the use of wastewater samples for SARS-CoV-2 surveillance and showed how the generic materials in untreated wastewater can be used as a indicator for prediction of the number of patients.

This article highlights the use of wastewater samples for SARS-CoV-2 surveillance and showed how the generic materials in untreated wastewater can be used as a indicator for prediction of the number of patients.

This article highlights the use of wastewater samples for SARS-CoV-2 surveillance and showed how the generic materials in untreated wastewater can be used as a indicator for prediction of the number of patients.

This article highlights the use of wastewater samples for SARS-CoV-2 surveillance and showed how the generic materials in untreated wastewater can be used as a indicator for prediction of the number of patients.

This article highlights the use of wastewater samples for SARS-CoV-2 surveillance and showed how the generic materials in untreated wastewater can be used as a indicator for prediction of the number of patients.

This article highlights the use of wastewater samples for SARS-CoV-2 surveillance and showed how the generic materials in untreated wastewater can be used as a indicator for prediction of the number of patients.

This article highlights the use of wastewater samples for SARS-CoV-2 surveillance and showed how the generic materials in untreated wastewater can be used as a indicator for prediction of the number of patients.

This article highlights the use of wastewater samples for SARS-CoV-2 surveillance and showed how the generic materials in untreated wastewater can be used as a indicator for prediction of the number of patients.

This article highlights the use of wastewater samples for SARS-CoV-2 surveillance and showed how the generic materials in untreated wastewater can be used as a indicator for prediction of the number of patients.

This article highlights the use of wastewater samples for SARS-CoV-2 surveillance and showed how the generic materials in untreated wastewater can be used as a indicator for prediction of the number of patients.

This article highlights the use of wastewater samples for SARS-CoV-2 surveillance and showed how the generic materials in untreated wastewater can be used as a indicator for prediction of the number of patients.

This article highlights the use of wastewater samples for SARS-CoV-2 surveillance and showed how the generic materials in untreated wastewater can be used as a indicator for prediction of the number of patients.

This article highlights the use of wastewater samples for SARS-CoV-2 surveillance and showed how the generic materials in untreated wastewater can be used as a indicator for prediction of the number of patients.

This article highlights the use of wastewater samples for SARS-CoV-2 surveillance and showed how the generic materials in untreated wastewater can be used as a indicator for prediction of the number of patients.

This article highlights the use of wastewater samples for SARS-CoV-2 surveillance and showed how the generic materials in untreated wastewater can be used as a indicator for prediction of the number of patients.

This article highlights the use of wastewater samples for SARS-CoV-2 surveillance and showed how the generic materials in untreated wastewater can be used as a indicator for prediction of the number of patients.

This article highlights the use of wastewater samples for SARS-CoV-2 surveillance and showed how the generic materials in untreated wastewater can be used as a indicator for prediction of the number of patients.
36. Bi P, Wang J, Hiller JE: Weather: driving force behind the transmission of severe acute respiratory syndrome in China? Intern Med J 2007, 37:550–554.
37. Weidhaas J, Aanderud ZT, VanDerslice J, Gaddis EB, Ostermiller J, Hoffman Jamal R, Heck P, Zhang Y, et al.: Correlation of SARS-CoV-2 RNA in wastewater with COVID-19 disease burden in sewersheds. Sci Total Environ 2021, 145790.
38. D’Aoust PM, Graber TE, Mercier E, Montpetit D, Alexandrov I, Neault N, BaigAT, Mayne J, Zhang X, Alain T, et al.: Catching a resurgence: increase in SARS-CoV-2 viral RNA identified in wastewater 48 h before COVID-19 clinical tests and 96 h before hospitalizations. Sci Total Environ 2021, 145319.
39. Zheng X, Deng Y, Xu X, Li S, Zhang Y, Ding J, On HY, Lai JCC, YauCl, Chin AWH, et al.: Comparison of virus concentration methods and RNA extraction methods for SARS576 CoV-2 wastewater surveillance. Sci Total Environ 2022, 153687.
40. Sherchan SP, Shahin S, Ward LM, Tandukar S, Aw TG, Schmitz B, Ahmed W, Kitajima M: First detection of SARS-CoV-2 RNA in wastewater in North America: a study in Louisiana, USA. Sci Total Environ 2020, 140621.
41. Bar-Or I, Weil M, Indenbaum V, Bucris E, Bar-lilan D, Elul M, Levi N, Aguwaev, Cohen Z, Shirazi R, et al.: Detection of SARS-CoV-2 variants by genomic analysis of wastewater samples in Israel. Sci Total Environ 2021, 148002.
42. Ahmed W, Bivins A, Bertsch PM, Bibby K, Choi PM, Farkas K, GyawaliP, Hamilton KA, HaramoteE, Kitajima M, et al.: Surveillance of SARS-CoV-2 RNA in wastewater: methods optimization and quality control are crucial for generating reliable public health information. Curr Opin Environ Sci Health 2020, 17:82–93.
This paper was one of the early paper stressing about the optimization and quality control of WBE.
43. Haramote E, Malia B, Thakali O, Kitajima M: First environmental surveillance for the presence of SARS-CoV-2 RNA in wastewater and river water in Japan. Sci Total Environ 2020, 627, 140405.
Probably the first work that implemented on river. First data from Japan.
44. Gonçalves J, Kortnik T, Mioc V, Trkov M, Bolešič M, Berginc N, ProsencK KotarT, Paragi M: Detection of SARS-CoV-2 RNA in hospital wastewater from a low COVID-19 disease prevalence area. Sci Total Environ 2021:632–633. 143226.
45. Kumar M, Mohapatra S, Mazumder P, Singh A, Honda R, Lin C, Kumar R, Goswami R, Jha PK, Vilhanage M, et al.: Making waves perspectives of modeling and monitoring of SARS-CoV-2 in aquatic environment for COVID-19 pandemic. Curr Pollut Rep 2020, 6:468–479.
46. Albastaki A, Naji M, Lootah R, Almeheiri R, Almulla H, Almarri I, AlreyamiA, Aden A, IghafiR. First confirmed detection of SARS-CoV-2 in untreated municipal and aircraft wastewater in Dubai, UAE: the use of wastewater based epidemiology as an early warning tool to monitor the prevalence of COVID-19. Sci Total Environ 2021, 143350.
47. Amerhe F, Negahban-Azar M, Isazadeh S, Dabiri M, Masihi N, Jahangiri-Rad M, Rafiee M. Sewage systems surveillance for SARS-CoV-2: identification of knowledge gaps, emerging threats, and future research needs. Pathogens 2021:946.
48. Medema G, Heijnen L, Elsinga G, Italianer R, Brouwer A: Presence of SARS Coronavirus-2 RNA in sewage and correlation with reported COVID-19 prevalence in the early stage of the epidemic in The Netherlands. Environ Sci Technol Lett 2020, 7:511–516.
This paper discussed the strength of wastewater to predict patients’ number as early warning tool.
49. Kumar M, Joshi M, Shah AV, Srivastava V, Dave S: Wastewater surveillance-based city zonation for effective COVID-19 pandemic preparedness powered by early warning: a perspectives of temporal variations in SARS-CoV-2 RNA in Ahmedabad, India. Sci Total Environ 2021, 792, 148367.
50. Xiao A, Wu F, Bushman M, Zhang J, Imaev M, Chai PR, et al.: ** Metrics to relate COVID-19 wastewater data to clinical testing dynamics. Water Res 2022:212, 118070.
This article highlighted that the time lag and transfer function analysis of the wastewater data preceded the clinically reported cases in the first wave of the pandemic, but did not serve as a leading indicator in the second wave due to increased testing capacity for case detection and reporting.
51. Bertrand I, Challant J, Jeulin H, Hartard C, Mathieu L, Lopez S: Scientific Interest Group Obépine, Schvoerer E, Courtis S, Gantzzer C: epidemiological surveillance of SARS-CoV-2 by genome quantification in wastewater applied to a city in the northeast of France: Comparison of ultratitration- and protein precipitation-based methods. Int J Hyg Environ Health 2021, 113692.