The pairing Hamiltonian for one pair of identical nucleons bound in a potential well

M.B.Barbaro(1), L.Fortunato(2), A.Molinari(1), M.R.Quaglia(1)
(1) Dipartimento di Fisica Teorica dell’Università di Torino, via P.Giuria 1, I-10125, Torino, Italy
and INFN Sezione di Torino
(2) Dipartimento di Fisica “Galilei” dell’Università di Padova, via Marzolo 8, I-35131, Padova, Italy
and INFN Sezione di Padova

The problem of one pair of identical nucleons sitting in \(N\) single particle levels of a potential well and interacting through the pairing force is treated introducing even Grassmann variables. The eigenvectors are analytically expressed solely in terms of these with coefficients fixed by the eigenvalues and the single particle energies. When the latter are those of an harmonic oscillator well an accurate expression is derived for both the collective eigenvalue and for those trapped in between the single particle levels, for any strength of the pairing interaction and any number of levels. Notably the trapped solutions are labelled through an index upon which they depend parabolically.

We have recently obtained, in the framework of the Grassmann algebra, the analytic expressions of the eigenvalues and the eigenvectors of a system of \(n\) pairs of like-nucleons interacting through the pairing Hamiltonian and sitting in one single-particle level [1].

We extend the analysis to the case of \(N\) single-particle levels, with energies \(e_1, e_2, \cdots e_N\) and angular momenta \(j_1, j_2, \cdots j_N\) (all the \(j\)'s being assumed to be different): here the Hamiltonian, for identical particles, reads

\[
H = \sum_{\nu=1}^{N} e_{\nu} \sum_{m_{\nu}=-j_{\nu}}^{j_{\nu}} \lambda_{j_{\nu},m_{\nu}}^{*} \lambda_{j_{\nu},m_{\nu}} - G \sum_{\mu,\nu=1}^{N} \sum_{m_{\mu}=1/2}^{j_{\mu}} \sum_{m_{\nu}=1/2}^{j_{\nu}} \varphi_{j_{\nu},m_{\nu}}^{*} \varphi_{j_{\nu},m_{\nu}},
\]

where \(\lambda_{jm}\) and \(\lambda_{jm}^{*}\) are the odd (anticommuting, nilpotent) and \(\varphi_{jm}\) the even (commuting, nilpotent) Grassmann variables. The latter is associated with a pair of fermions with vanishing third component of the total angular momentum (\(M=0\)). To start with we confine ourselves to consider one pair only.

Notwithstanding the presence of both the \(\lambda\)'s and the \(\varphi\)'s, the Hamiltonian (1) is diagonalized in the \(2N\) dimensional basis

\[
\Phi_{\nu}^{(0)} = \frac{1}{\sqrt{2}} \left[\sum_{m_{\nu}=1/2}^{j_{\nu}-1} \varphi_{j_{\nu},m_{\nu}} - \sum_{m_{\nu}=1/2}^{j_{\nu}} \varphi_{j_{\nu},m_{\nu}} \right], \quad \nu = 1, \cdots N
\]

which extends the one we have introduced in ref. [1] and describes the two nucleons in the same single-particle level. In (3) \(2\Omega_{\nu} = 2j_{\nu} + 1\) is the degeneracy of the level \(j_{\nu}\).

For one pair, only states with seniority \(v=0\) and \(2\) are allowed. In the basis (3) the eigenvalues of the \(v=2\) states are trivial, whereas for those of the \(v=0\) states one recovers the well-known secular equation

\[
\frac{1}{G} + f(E) = 0 \quad \text{with} \quad f(E) = \sum_{\nu=1}^{N} \frac{\Omega_{\nu}}{E - 2e_{\nu}}.
\]

The corresponding eigenvectors are

\[
\psi_{v=2}(\Phi^{*}) = \sqrt{1 - \frac{1}{\Omega_{\nu}}} \left\{ \left[\Phi_{\nu}^{(1)} \right]^{*} - \frac{1}{\sqrt{\Omega_{\nu} - 1}} \left[\Phi_{\nu}^{(0)} \right]^{*} \right\}
\]

and

\footnote{If a single particle level with \(j_{\nu} = 1/2\) (\(\Omega_{\nu} = 1\)) is present, the dimension of the basis is actually \(2N - 1\), because, obviously, \(\Phi_{\nu}^{(0)}\) is identically zero.}
\[\psi_{v=0}^{(\nu)}(\Phi^*) = \sum_{\mu=1}^{N} w_{\mu}^{(\nu)} \sqrt{\Omega_{\mu}} - 1 \left\{ [\Phi_{\mu}^{(0)}]^* + \frac{1}{\sqrt{\Omega_{\mu}}} [\Phi_{\mu}^{(1)}]^* \right\}, \]

(6)

with \(\nu = 1, \cdots N \), the coefficients \(w_{\mu}^{(\nu)} \) fulfilling the system of equations

\[\left(E^{(\nu)} - 2e_{\mu} \right) w_{\mu}^{(\nu)} + G \sum_{\sigma=1}^{N} \Omega_{\sigma} w_{\sigma}^{(\nu)} = 0. \]

(7)

The above system is easily solved and yields the noticeable formula (see also [4])

\[w_{\mu}^{(\nu)} = \frac{E^{(\nu)} - 2e_{\mu} w_{\mu}^{(\nu)}}{E^{(\nu)} - 2e_{\nu}}. \]

(8)

which shows that for a given set of single-particle energies the \(v=0 \) eigenvectors are fixed by the corresponding eigenvalues. When \(G \) is large \([4]\) develops a collective solution with large \(E \) : hence the associated \(w_{\mu} \) tend to become all equal and correspond to a coherent superposition of the so-called \(s \)-quasibosons. On the other hand, in the limit \(G \to 0 \), where \(E \simeq 2e_{\nu} \), only one component of the basis, i.e. the \(\nu \)-th one, survives in the wavefunction of the “trapped” states.

In general the eigenvalues (and hence the eigenvectors) of (1) stem from an interplay between the single-particle energies and degeneracies. Of course this interplay can be numerically explored. Here we pursue the scope analytically, when the \(e_{\nu} \) and the \(\Omega_{\nu} \) are available. One of the few cases where this occurs is for the harmonic oscillator well, where

\[e_{N} = \left(N + \frac{3}{2} \right) \hbar \omega \quad \text{and} \quad \Omega_{N} = \frac{1}{2} (N+1)(N+2), \quad N = 0, \cdots, \infty. \]

(9)

Accordingly the secular equation (4), for \(N \) levels, becomes

\[\sum_{N=0}^{N-1} \frac{(N+1)(N+2)}{2N+3 - \tilde{E}} = \frac{1}{\tilde{G}} \]

(10)

where \(\tilde{G} = G/2\hbar \omega \) and the energies are measured in units of \(\hbar \omega \) (\(2\tilde{e}_{N} = 2N + 3 \)).

FIG. 1. The figure shows the solutions \(\tilde{E} \) of Eq.(10), for \(N=6 \) (upper curves) and 8 (lower curves), as functions of \(\tilde{G} \). One can see that with the harmonic oscillator well each trapped solution \(E_{N} \) for \(\tilde{G} > 0.1 \) tends approximatively to the single particle energy \(2\tilde{e}_{N} \).

In Fig.1 the numerical solutions of (10) are displayed for \(N=6 \) and 8 versus \(\tilde{G} \). Remarkably, the dependence upon \(\tilde{G} \) is seen to be lost for \(\tilde{G} \geq 0.1 \). Furthermore in this regime the trapped solutions are mildly depending upon by \(N \).

Although aware that the solutions of (10) cannot, in general, be algebraically expressed (for \(N \geq 5 \)), we explore whether the simple ansatz
\[\bar{E}_N = a\bar{N}^2 + b\bar{N} + c \quad \bar{N} = 0, \ldots, \bar{N} - 2 \]

(11)

provides a good representation of the trapped solutions (the collective solution \(\bar{E}_c \) will be separately treated). To fix the coefficients \(a, b \) and \(c \), we recast (10) in the polynomial form

\[\bar{E}^N + a_1\bar{E}^{N-1} + a_2\bar{E}^{N-2} + \cdots + a_{N-1}\bar{E} + a_N = 0, \]

(12)

finding for the first three coefficients the expressions

\[a_1 = \frac{1}{3}N(N + 2)[\bar{G}(N + 1) - 3] \]

(13)

\[a_2 = \frac{1}{6}N(N - 1)[-\bar{G}(N + 1)(N + 2)(2N + 3) + 3N^2 + 11N + 11] \]

(14)

\[a_3 = \frac{1}{90}N(N - 1)(N^2 - 4)[\bar{G}(N + 1)(15N^2 + 40N + 27) - 15(N^2 + 3N + 3)] . \]

(15)

Then the first three Viete equations, namely

\[\sum_{N=0}^{N-2} \bar{E}_N = -a_1 - \bar{E}_c \]

(16)

\[\sum_{N=0}^{N-2} \bar{E}_N^2 = a_1^2 - 2a_2 - \bar{E}_c^2 \]

(17)

\[\sum_{N=0}^{N-2} \bar{E}_N^3 = -3a_3 - a_1(a_1^2 - 3a_2) - \bar{E}_c^3 , \]

(18)

yield a non-linear system in the unknowns \(a, b \) and \(c \), if \(\bar{E}_c \) is known. This system can be solved by expressing, via eq. (10), \(c \) as a function of \(a \) and \(b \)

\[c(a, b) = -\frac{1}{N - 1}\left\{ \bar{E}_c + \frac{b}{2}(N - 1)(N - 2) + \frac{a}{6}(N - 1)(N - 2)(2N - 3) \right. \]

\[+ \frac{1}{3}N(N + 2)\left[\bar{G}(N + 1) - 3 \right] \right\} . \]

(19)

In turn (19), inserted into (17), yields \(b \) as a function of \(a \). One finds

\[b(a) = -\frac{15a(N^4 - 6N^3 + 13N^2 - 12N + 4) + \sqrt{\Delta}}{15(N - 1)^2(N - 2)} \]

(20)

with

\[\Delta = -15(N - 1)^2(N - 2)\left\{ a^2(N - 1)^2(N - 1)(N - 2)(N - 3) \right. \]

\[+ 20\left[9\bar{E}_c^2 + 6\bar{E}_c(N + 2)(\bar{G}N + \bar{G} - 3) - 3(N^3 - 4N^2 - 13N - 11) \right. \]

\[- \bar{G}^2N(N - 2)(N + 1)^2(N + 2)^2 + 3\bar{G}(N + 1)(N + 2)(N^2 - 4N - 3) \right\} . \]

(21)

Finally, from (18), a cumbersome equation for \(a \) follows, not reported here. While (16) and (17) are easily solved analytically, the non-linear equation (18) for \(a \) can only be solved numerically and admits, in general, several solutions. The one appropriate for our problem is selected by requiring that the trapped energies lie in between the single-particle levels of the harmonic oscillators. Moreover, it should be pointed out that, owing to the high degree of non-linearity of (18), this solution turns out to be extremely sensitive to the collective energy \(E_c \), especially when \(\bar{G} \) is large.

Hence an accurate expression for the collective energy is needed. We look for the latter in the domain of small \(\bar{G} \) (say \(\bar{G} = 0.05 - 0.1 \)), as it follows from the empirical determination of \(G \) in atomic nuclei and from the experimental nuclear single-particle levels [1].

3
For this scope we start by realizing that $\tilde{E}_c(0,N)=3$ and $\tilde{E}_c(\tilde{G}_0,N)=0$, being

$$\tilde{G}_0 = \left[\sum_{N=0}^{N-1} \frac{(N+1)(N+2)}{(2N+3)} \right]^{-1}. \tag{22}$$

Moreover

$$\frac{\partial \tilde{E}_c(\tilde{G},N)}{\partial \tilde{G}} \bigg|_{\tilde{G}=0} = -2 \tag{23}$$

and

$$\frac{\partial \tilde{E}_c(\tilde{G},N)}{\partial \tilde{G}} \bigg|_{\tilde{G}=\tilde{G}_0} = - \left[\sum_{N=0}^{N-1} \frac{(N+1)(N+2)}{2N+3} \right]^2 \left[\sum_{N=0}^{N-1} \frac{(N+1)(N+2)}{(2N+3)^2} \right]^{-1}. \tag{24}$$

The above constraints are fulfilled by the cubic function (in \tilde{G})

$$\tilde{E}_c^{(0)}(\tilde{G},N) = 3 - 2\tilde{G} - \left[9 + \left(\frac{\partial \tilde{E}_c}{\partial \tilde{G}} \bigg|_{\tilde{G}=0} - 4 \right) \tilde{G}_0 \right] \tilde{G}^2 \tilde{G}_0 + \left[6 + \left(\frac{\partial \tilde{E}_c}{\partial \tilde{G}} \bigg|_{\tilde{G}=0} - 2 \right) \tilde{G}_0 \right] \tilde{G}^3 \tilde{G}_0, \tag{25}$$

which thus provides an excellent representation of the collective energy (see Table 1). If an even better \tilde{E}_c is wished, one can proceed perturbatively setting

$$\tilde{E}_c = \tilde{E}_c^{(0)} + \delta \tag{26}$$

and expanding in the very small parameter $\delta/M(N)$ where

$$M(N) = 2N + 3 - \tilde{E}_c^{(0)}. \tag{27}$$

One thus gets the recursive relation

$$\tilde{E}_c^{(k+1)} = \tilde{E}_c^{(k)} + \left[\frac{1}{\tilde{G}} - \sum_{N=0}^{N-1} \frac{(N+1)(N+2)}{2N+3 - \tilde{E}_c^{(k)}} \right] \left[\left(N-1 \right) \left(N+1 \right) \left(2N+3 - \tilde{E}_c^{(k)} \right)^2 \right]^{-1}. \tag{28}$$

The energies provided by (28) fastly converge to the exact solution, as shown in Table 1, but, as above mentioned, a high precision is required, which obtains after 4 iterations.

N	$E_c^{(0)}$	$E_c^{(1)}$	$E_c^{(2)}$	$E_c^{(3)}$	$E_c^{(4)}$	$E_c^{(5)}$
2	2.87617	2.88394	2.88439	2.88438	2.88438	2.88438
3	2.81180	2.87628	2.86196	2.86014	2.86012	2.86012
4	2.70198	2.89185	2.84845	2.82471	2.82056	2.82046
5	2.53580	2.86975	2.80333	2.75484	2.74104	2.74028
6	2.24594	2.63571	2.54951	2.52958	2.52886	2.52886
7	1.61587	1.84837	1.83108	1.83094	1.83094	1.83094
8	-1.34714	-1.36135	-1.36135	-1.36135	-1.36135	-1.36135

N	$E_c^{(0)}$	$E_c^{(1)}$	$E_c^{(2)}$	$E_c^{(3)}$	$E_c^{(4)}$	$E_c^{(5)}$
2	2.70571	2.72972	2.72822	2.72822	2.72822	2.72822
3	2.45586	2.61626	2.58336	2.58335	2.58335	2.58335
4	1.96617	2.21918	2.18238	2.18238	2.18238	2.18238
5	0.919942	1.00125	1.00000	1.00000	1.00000	1.00000
6	-1.66966	-1.47625	-1.48025	-1.48025	-1.48025	-1.48025
7	-8.37559	-4.88888	-5.44566	-5.44568	-5.44568	-5.44568
8	-24.4931	-3.26859	-10.7011	-11.0491	-11.0546	-11.0546

TABLE 1. Comparison between the exact $E_c^{(c)}$ and the approximate $\tilde{E}_c^{(k)}$ [eq.(25) and eq.(28)] collective energies for some values of \mathcal{N} and $\tilde{G}=0.05$ and 0.1.
Formula (28) yields \tilde{E}_c also when \tilde{G} is large. Here however the analogous of (24) follows by expanding Eq. (10) in the parameter $(2N + 3)/\tilde{E}$. One thus gets for collective energy, expanded up to terms $1/\tilde{G}$, the expression

$$
\tilde{E}^{(0)}_c = -\frac{\tilde{G}}{3} N(N+1)(N+2) + \frac{3}{2}(N+1) - \frac{9(N-1)(N+3)}{20N(N+1)(N+2)} \frac{1}{\tilde{G}}.
$$

(29)

The above, when inserted in (28), yields results as accurate as those obtained in the domain of small \tilde{G}.

With the collective energy fixed, the coefficients a, b and c can be found. We quote in Table 2, as an example, our predictions for the eigenvalues of the pairing hamiltonian for one pair in the $N = 5$ case, using as input (29) when $\tilde{G} = 1$ and $\tilde{G} = 5$ and (25) when $\tilde{G} = 0.05$ and $\tilde{G} = 0.1$. Our results are seen to agree with the exact ones obtained via the numerical solution of (10) to better than 0.27%. This occurs as well for all the cases we have explored. Thus the simple ansatz (11) is remarkably accurate. Furthermore the solutions (11), when \tilde{G} is large, scale in \tilde{G}. Indeed, in this condition, the right-hand sides of the Vieta equations (16-18) are easily seen to be \tilde{G}-independent when the collective solution is given by (29).

\tilde{G}	0.05	0.1	1	5				
N	$E_S^{(e)}$	$E_S^{(app)}$	$E_S^{(e)}$	$E_S^{(app)}$	$E_S^{(e)}$	$E_S^{(app)}$	$E_S^{(e)}$	$E_S^{(app)}$
0	4.2872	4.2812	3.4245	3.4266	3.1583	3.1601	3.1493	3.1510
1	6.0892	6.1056	5.6302	5.6237	5.3673	5.3621	5.3524	5.3472
2	8.1171	8.1021	7.8422	7.8485	7.6136	7.6190	7.5965	7.6015
3	10.266	10.271	10.103	10.101	9.9314	9.9297	9.9157	9.9140

TABLE II. Comparison between exact (e) “trapped” solutions of Eq.(10) and approximate (app) ones, obtained from the ansatz (11) for $N = 5$ levels. The coefficients (a, b, c) of the parabola are ($0.086,1.738,4.281$) when $\tilde{G} = 0.05$, ($0.014,2.183,3.427$) when $\tilde{G} = 0.1$, ($0.027,2.175,3.160$) when $\tilde{G} = 1$ and ($0.029,2.167,3.151$) when $\tilde{G} = 5$.

In conclusion, although the pairing problem can be, of course, solved numerically, yet we believe that our semi-analytical solution might be of some help for treating the situation when n pairs, sitting in an harmonic oscillator well, are present. Also interesting appears the extension of the present analysis to the situation where the pair is made out of a neutron and a proton, particularly when these are in an isospin singlet state [6]. In this case indeed the partners, in order to feel the pairing interaction, are forced to seat in different shells, at least $2\hbar\omega$ apart. Whether in these conditions our semi-analytical solution holds valid as well and a collective mode eventually develops is an issue we are currently exploring.

[1] M.B. Barbaro, A. Molinari, F. Palumbo and M.R. Quaglia, Phys. Lett. B 476, 477 (2000).
[2] M.B. Barbaro, A. Molinari and F. Palumbo, Nucl. Phys. B 487, 492 (1997).
[3] D.J. Rowe, “Nuclear Collective Motion”, Metuen and Co. Ltd. (1970).
[4] R.W. Richardson and N. Sherman, Nucl. Phys. 52, 221 (1964).
[5] A. de-Shalit and H. Feshbach, “Theoretical Nuclear Physics” Vol.1 “Nuclear Structure”, John Wiley & Sons (1990).
[6] E. Garrido, P. Sarriguren, E. Moya de Guerra, U. Lombardo, P. Schuck and H.J. Schulze, Phys. Rev C 63, (2001) 037304.