High epidermal growth factor concentration associated with somatic cell count in milk of cows with subclinical mastitis

AYRIS GOKCEOGLU, GUL FATMA YARIM, NILGUN GULTIKEN*, MURAT YARIM**

Department of Biochemistry, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
*Department of Obstetric and Gynecology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
**Department of Pathology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey

Received 10.12.2019 Accepted 07.02.2020

Gokceoglu A., Yarım G. F., Gultıken N., Yarım M.
High epidermal growth factor concentration associated with somatic cell count in milk of cows with subclinical mastitis

Summary
The aim of this study was to determine the milk epidermal growth factor (EGF) concentration in cows with subclinical mastitis and its relationship with the somatic cell count (SCC). The animal material of this study was composed of 40 lactating cows aged 3-6 years. Subclinical mastitis was diagnosed using the California Mastitis Test and SCC in milk. The study group consisted of 20 cows with SCC > 200,000 cells/ml, and the control group comprised 20 cows with SCC < 200,000 cells/ml. EGF concentration in milk was determined using a bovine-specific enzyme-linked immunosorbent assay (ELISA) kit. The mean EGF concentration was 6.08 ± 2.91 ng/ml in the study group and 2.85 ± 1.87 ng/ml in the control group (P < 0.001). The results also indicated a significant correlation between SCC and EGF concentration in the study group (r = 0.965, P < 0.01). The findings of this study suggest that a milk EGF assay together with SCC could be useful for diagnosing mastitis as well as for monitoring udder health.

Keywords: cow, epidermal growth factor, milk, subclinical mastitis

Subclinical mastitis is considered to be one of important diseases of dairy cows because it results in production losses and low profitability (3, 20, 39, 53). Inflammation of the mammary gland is a major cause of decreased milk yield and reproductive performance, combined with increased veterinary costs (5, 26, 34, 40, 45, 50). The diagnosis of subclinical mastitis is difficult because changes in both the udder and milk are invisible. Therefore, the evaluation of somatic cell counts and laboratory analysis of the composition of udder milk are required to diagnose subclinical mastitis (20, 22, 23, 27, 28, 31, 37, 38, 42, 44).

Epidermal growth factor (EGF) is a 6 kDA protein with 53 amino acids, and its receptors have been found mainly in endothelial, mesodermal, fibroblast and smooth muscle cells. EGF is known to play a role in the development of mammary glands (1, 7, 17, 36, 46, 57). It has been reported that the normal development and homeostasis of the mammary gland are critically dependent on regulated EGF receptor signaling (55). Paracrine activation of stromal EGF receptors is required for ductal morphogenesis of the mammary gland (51). In addition, EGF supplementation was found to modify lymphocyte composition in mesenteric lymph nodes and to contribute to immune maturation in suckling rats (54). A relationship has been demonstrated between EGF and folliculogenesis, embryogenesis, pre-implantation and peri-implantation, as well as a potential growth-promoting effect of that relationship on the implanted embryo and endometrium in various mammalian species, such as cow, sheep, mare, pig, rabbit and cat (8, 14, 18, 21, 25, 32, 52). It has been determined that EGF expression in the bovine mammary gland with mastitis increases due to inflammation, and this increase is thought to be a part of a cellular process and tissue repair (47). An increase in mRNA expression of insulin-like growth factor and vascular endothelial growth factor in mammary gland tissue after experimental infection with Staphylococcus aureus showed that these growth factors play important roles in the

1) This study was supported by the Project Management Office of the Ondokuz Mayis University (Project No. PYO.VET.1904.13.003).
inflammatory process of bovine mastitis (9). However, there is no literature concerning the concentrations of EGF in subclinical mastitis.

The purpose of this study was to evaluate milk EGF concentration in cows with subclinical mastitis and the relationship between EGF concentration and SCC.

Material and methods

Animals and study design. A total of 40 lactating cows aged 3 to 6 years were used in the study. The study group consisted of 20 cows with subclinical mastitis, and the control group was made up of 20 clinically healthy and CMT-negative cows with no apparent abnormalities in the udder or milk (CMT). Subclinical mastitis was diagnosed by a California Mastitis Test on the basis of the somatic cell count (SCC) in milk. The study group included 20 cows with SCC > 200,000 cells/ml, and the control group included 20 cows with SCC < 200,000 cells/ml. Milk samples were collected from each quarter of every cow into glass tubes of 10 ml for SCC and into plastic vials of 10 ml for ELISA analysis.

Counting of somatic cells. Somatic cells in raw milk were counted by the direct microscopic method (30). Briefly, a 10 ml milk sample taken into a glass tube was centrifuged at 3000 rpm for 10 minutes. After the fatty layer had been removed, the tube was inverted and allowed to stand for 20 minutes. Sediment at the bottom of the tube was carefully removed and spread over a microscope slide with a drop of saline. Slides, dried at the laboratory ambient temperature, were stained with 0.2% toluidine blue. A drop of immersion oil was dripped carefully onto the slide, and somatic cells were counted within about 20 random microscope fields, and the mean cell number in 1 ml of milk was calculated as presented in Table 1.

Separation of milk serum. The method of Alais (2) was used to obtain milk serum. One millilitre of 0.3% chymosin was added to 10 ml of raw milk, which was then maintained for 20 minutes in a water bath at 37°C for clotting. After 80 minutes, separated milk serum was filtered into tubes and centrifuged at 3000 rpm for 5 minutes. After centrifugation, the fatty layer was removed, and clear milk serum was obtained.

Analysis of EGF concentrations. The concentrations of EGF in milk serum were determined using a bovine-specific enzyme-linked immunosorbent assay (ELISA) kit (MBS706122, MyBioSource, Inc. San Diego, CA, USA) according to a procedure recommended by the manufacturer. Analysis was performed concurrently in duplicate. The absorbance of each plate was determined with a microplate reader (Infinite F50, Tecan Austria GmbH, Austria), and EGF concentrations were calculated.

Statistical analysis. The results were analyzed with a statistical package program (SPSS Statistics V21.0, IBM Corporation, Armonk, NY). Group differences for EGF were determined using the Mann-Whitney U test, and the results were presented as mean ± standard deviation. Pearson’s correlation was calculated to determine the relationship between the somatic cell count and EGF concentration.

Results and discussion

Milk serum EGF concentrations for the study and control groups are shown in Figure 1. The EGF concentration amounted to 6.08 ± 2.91 ng/ml (from 2.09 ng/ml to 10.75 ng/ml) in the study group and 2.85 ± 1.87 ng/ml (from 0.33 ng/ml to 8.43 ng/ml) in the control group. The mean milk serum EGF concentration in the study group was higher than that in the control group (P < 0.001). In addition, a significant correlation was found between milk EGF concentration and SCC in the study group (r = 0.965, P < 0.01) (Fig. 2).

Economic consequences of subclinical mastitis due to changes in milk quality and quantity are a major

![Fig. 1. EGF concentration in milk serum of the groups](image1)

Explanation: * P < 0.001, Mann-Whitney U test

![Fig. 2. Correlation between milk EGF concentration and SCC in the study group](image2)

Explanations: r = 0.965, P < 0.01, Pearson’s correlation

Mean cell number	Evaluation	Cell number per ml
1-5	+	< 200,000
6-20	++	> 200,000
> 20	+++	< 1,000,000

Tab. 1. Evaluation of somatic cell count
problem in the dairy industry (3, 4, 20, 24, 26, 39, 50, 53). Early diagnosis of subclinical mastitis and close monitoring of affected cows is of great importance to control the disease in the herd (33). The inflammatory process of mastitis should be well understood in order to develop more effective treatment strategies. EGF has receptors in healthy mammary glands and plays a role in the development of mammary tissue by stimulating DNA synthesis (47). Therefore, evaluation of the EGF level could be an alternative diagnostic method.

Growth factors are believed to be important in the inflammatory process in the mammary tissue (9, 47). They participate in the normal development of the mammary gland by controlling growth and differentiation (7, 11, 48). However, there is no study concerning changes in milk EGF during subclinical mastitis. EGF precursor arises in the alveolar cells of lactating mammary gland and is transferred to the cell membrane (6). In addition, it has been reported that mutation in EGF receptors leads to impairment in lactation and in the development of the mammary gland (16). The number of EGF receptors increases during pregnancy in the cow (49). The concentration of EGF in goat milk was found to be influenced by the pregnancy and lactation status (10). The milk EGF was shown to stimulate the differentiation of intestinal epithelial cells in suckling animals (15) and contribute to the repair of mucosa (12, 29, 43, 56). The contents of breast EGF may be influenced by lactation periods and maternal diet (35). It has been postulated that maternal colostrum and milk are the main sources of EGF for developing intestinal mucosa (13, 41). Besides, EGF expression in the mammary tissue of mastitis cows was reported to be increased, and it is believed to have a potential role in tissue repair and the cellular process during mastitis (47). Similarly, our study revealed that milk EGF concentration in cows suffering from subclinical mastitis was higher than that in healthy ones. A significant positive correlation was determined between the milk SCC and EGF of cows with subclinical mastitis, and this significance suggests a role of EGF in the inflammatory process in the mammary gland. To the best of our knowledge, this is the first study showing association between increased EGF concentration and SCC in milk during subclinical bovine mastitis. In our study, milk EGF concentration and SCC were positively correlated, and this finding suggests that a milk EGF assay could be a useful tool for the diagnosis of mastitis, as well as for monitoring udder health.

References
1. Accornero P., Martignani, Miretti S., Starvaggi Cucuzza L., Baratta M.: Epidermal growth factor and hepatocyte growth factor receptors collaborate to induce multiple biological responses in bovine mammary epithelial cells. J. Dairy Sci. 2009, 92, 3667-3675.
2. Alais C.: Science du lait. Principes des techniques laitieres. Ed. Sep. Paris 1974, p. 636-665.
3. Aleshk M. O., Ismail Z. B., Awawdeh M. S., Shatnawi S.: Effects of intra-mammary infusion of sage (Salvia officinalis) essential oil on milk somatic cell count, milk composition parameters and selected hematology and serum biochemical parameters in Awassi sheep with subclinical mastitis. Vet. World 2017, 10, 895-900.
4. Awaile M. M., Dowdutha G. B., Avinash Kumar Chauhan B. N., Kamani D. R., Modi C. M., Patel B. H. Podd S. K.: Bovine mastitis: a threat to economy. Open Access Scientific Reports 2012, 1, 295.
5. Borne B. H. van den, Van Schaik G., Lam T. J., Nielen M.: Therapeutic effects of antimicrobial treatment during lactation of recently acquired bovine subclinical mastitis: two linked randomized field trials. J. Dairy Sci. 2010, 93, 218-233.
6. Brown C. F., Tong C. T., Pentecost B. T., Diugustine R. P.: Epidermal growth factor precursor in mouse lactating mammary gland alveolar cells. Mol. Endocrinol. 1989, 7, 1077-1083.
7. Coller R. J., Mcgrath M. F., Butty J. C., Zurfluh L. L.: Regulation of bovine mammary gland growth by peptide hormones: involvement of receptors, growth factors and binding proteins. Livest. Prod. Sci. 1993, 35, 21-33.
8. Corps A. N., Bridge L. D., Littlewood C. J., Brown K. D.: Receptors for epidermal growth factor and insulin-like growth factor I on preimplantation trophoderm of the pig. Development 1990, 110, 221-227.
9. Dallard B. E., Ruffino V., Helfel S., Calvino L. E.: Effect of a biological response modifier on expression of growth factors and cellular proliferation at drying off. J. Dairy Sci. 2007, 90, 2229-2240.
10. Dehnhard M., Claus R., Mune O., Weiler U.: Couse of epidermal growth factor (EGF) and insulin-like growth factor I (IGF-I) in mammary secretions of the goat during end-pregnancy and early lactation. J. Vet. Med. A. Physiol. Pathol. Clin. Med. 2000, 47, 533-540.
11. Dembinski T. C., Shiu R. P. C.: Growth factors in mammary gland development and function. In: The Mammary Gland: Development, Regulation and Function, pp. 355-373 Eds MC Neville and CW Daniel. Plenum Publishing Corp., New York, London 1987.
12. Duh G., Mouri N., Warburton D., Thomas D. W.: EGF regulates early embryonic mouse gut development in chemically defined organ culture. Pediatr. Res. 2000, 48, 794-802.
13. Dvonak B., Fitteh C. C., Williams C. S., Hurst N. M., Schanen R. J.: Increased epidermal growth factor levels in human milk of mothers with extremely premature infants. Pediatr. Res. 2003, 54, 15-19.
14. Fischer B., Rose-Hellekant T. A., Sheffield L. G., Bertics P. J., Bavister B. D.: Binding of epidermal growth factor and transforming growth factor-a in mamalian preimplantation embryos. Thriogenologie 1994, 4, 879-887.
15. Forget-Fournadine C., Garaud J. C., Nis-Enzo E., Raul F.: Epidermal growth factor and the maturation of intestinal sucrase in sucking rats. Am. J. Physiol. 1993, 265, 459-466.
16. Fowler K. J., Walker F., Alexander W., Hibbs M. L., Nice E. C., Bohmer R. M., Mann G. B., Thumwood C., Magrillo R., Dunks J. A.: A mutation in the epidermal growth factor receptor in wavy-2 mice has a profound effect on receptor biochemistry that results in impaired lactation. PNAS 1995, 92, 1465-1469.
17. Fu N. Y., Rios A. C., Pal B., Soetanto R., Lunt A.T., Liu K., Beck T., Best S. A., Vaillant F., Bouillet P., Strasser A., Preiss T., Smyth G. K., Lindeman G. J., Vissader J. E.: EGF-mediated induction of McI-1 at the switch to lactation is essential for alveolar cell survival. Nat. Cell Biol. 2015, 17, 365-375.
18. Ghribi-Hamrouche N., Chène N., Guillomot M., Marial J.: Localization and characterization of EGF/EGF-alpha receptors on peri-implantation trophoblast in sheep. J. Reprod. Fertil. 1993, 98, 385-392.
19. Goencales J. L., Cue R. I., Botaro B. G., Horst J. A., Valloto A. A., Santos M. V.: Milk losses associated with somatic cell counts by parity and stage of lactation. J. Dairy Sci. 2018, 101, 4357-4366.
20. Goencales J. L., Tomazi T., Burreiro J. R., Beuron D. C., Arcari M. A., Lee S. H., Martin C. M., Araigo Junior J. P., dos Santos M. V.: Effects of bovine subclinical mastitis caused by Corynebacterium spp. on somatic cell count, milk yield and composition by comparing contralateral quarters. Vet. J. 2016, 209, 87-92.
21. Gorise F., Jegouenov K., Meyer H. H.: Epidermal growth factor and epidermal growth factor receptor in the ovary of the domestic cat (Felis catus). J. Reprod. Fertil. 1996, 106, 117-124.
22. Grönlund U., Hallén Sandgren C., Persson Waller K.: Haptoglobin and serum amyloid A in milk from dairy cows with chronic sub-clinical mastitis. Vet. Res. 2005, 36, 191-198.
23. Haghtgara S., Kawat K., Anri A., Nagahata H.: Lactoferrin concentrations in milk from normal and subclinical mastitic cows. J. Vet. Med. Sci. 2003, 65, 319-323.
24. Halasa T., Nielen M., De Roos A. P., Van Hoorne R., de Jong G., Lam T. J., van Werven T., Hogeveen H.: Production loss due to new subclinical mastitis in Dutch dairy cows estimated with a test-day model. J. Dairy Sci. 2009, 92, 599-606.
25. Hofmann G. E., Anderson T. L.: Immunohistochemical localization of epidermal growth factor receptor during implantation in the rabbit. Am. J. Obstet. Gynecol. 1990, 162, 857-841.
26. Huips K., De Vliegher S., Lam T., Hogueven H.: Cost estimation of heifer mastitis in early lactation by stochastic modelling. Vet. Microbiol. 2009, 134, 121-127.

27. IDF. Bovine Mastitis: Definition and guidelines for diagnosis. Bull. Int. Dairy Fed. Belgium 1987, No. 211.

28. Jashari R., Piepers S., De Vliegher S.: Evaluation of the composite milk somatic cell count as a predictor of intramammary infection in dairy cattle. J. Dairy Sci. 2016, 99, 9271-9286.

29. Jones M. K., Tomikawa M., Mohajer B., Tarnawski A. S.: Gastrointestinal mucosal regeneration: role of growth factors. Front. Biosci. 1999, 4, 303-309.

30. Kilicoglu C., Alacan E., Igzer H., Akay O., Wiesner H. U.: Extergundersheits-kontrolle von Milchkülen im Gebiet von Ankara (Turkei). Dtsch. Tierarztl. Wochenschr. 1989, 96, 486-488.

31. Kovačević-Vilipović M., Ilić V., Vujčić Z., Donjov B., Stevanov-Pavlović M., Mijučević Z., Božić T.: Serum amyloid A isoforms in serum and milk from cows with Staphylococcus aureus subclinical mastitis. Vet. Immunol. Immunopathol. 2012, 145, 120-128.

32. Leonard S. N., Gerstenberg C., Allen W. R., Stewart F.: Expression of epidermal growth factor and its receptor in equine placental tissues. J. Reprod. Fertil. 1998, 112, 49-57.

33. Leslie K. E., Dingwell R. T.: Mastitis control: where are we and where are we going? [in-] Andrews A. H. (ed.): The Health of Dairy Cattle. Malden, Blackwell Series 2000, p. 370-381.

34. Lichtner J. K., Miller G. Y., Hueston W. D., Dorn C. R.: Signalling through the stromal cell-derived factor-α in human milk of different lactation stages and different regions and its relationship with maternal diet. Food Funct. 2018, 9, 1199-1204.

35. Luetteke N. C., Qiu T. H., Fenton S. E., Troyer K. L., Riedel R. F., Chang A., Malek Dos Reis C. B., Barreiro J. R., Moreno J. F., Porcionato M. A., Santos M. V.: Targeted inactivation of the EGF and amphiregulin genes reveals distinct roles for EGF receptor ligands in mouse mammary gland development. Development 1999, 126, 2739-2750.

36. Malek Dos Reis C. B., Barreiro J. R., Moreno J. F., Porcionato M. A., Santos M. V.: Evaluation of somatic cell count thresholds to detect subclinical mastitis in Gyr cows. J. Dairy Sci. 2011, 94, 4406-4412.

37. Miglio A., Moscati L., Fruganti G., Pela M., Scoccia E., Valiani A., Maresca C.: Use of milk amyloid A in the diagnosis of subclinical mastitis in dairy ewes. J. Dairy Res. 2013, 80, 496-502.

38. Mpatswenumugabo J. P., Bebora L. C., Gitao G. C., Mobegi V. A., Iraguha B., Kamana O., Shumbusho B.: Prevalence of subclinical mastitis and distribution of pathogens in dairy farms of Rubavu and Nyabihu Districts, Rwanda. J. Vet. Med. 2017, 2017, 1-8.

39. Nickerson S. C.: Bovine Mammary Gland: Structure and function relationships to milk production and immunity to mastitis. Agri-Practice 1994, 6, 10-18.

40. Nojiri T., Yoshizato T., Fukami T., Obuma H., Yagi H., Yotsumoto F., Miyamoto S.: Clinical significance of amphiregulin and epidermal growth factor in colostrom. Arch. Gynecol. Obstet. 2012, 286, 643-647.

41. Nyman A. K., Emanuelsson U., Waller K. P.: Diagnostic test performance of somatic cell count, lactate dehydrogenase, and N-acetyl-β-D-glucosaminidase for detecting dairy cows with intramammary infection. J. Dairy Sci. 2016, 99, 1440-1448.

42. Pollick P. F., Goda T., Colony P. C., Edmond J., Thornburg W., Kurtz M., Koldovsky O.: Effects of enterally fed epidermal growth factor on the small and large intestine of the suckling rat. Regul. Pept. 1987, 17, 121-132.

43. Safi S., Khoshvaghti A., Jafarzadeh S. R., Bolourchi M., Nojiri T., Yoshizato T., Fukami T., Obama H., Yagi H., Yotsumoto F., Miyamoto S.: Effects of enterally fed epidermal growth factor on the small and large intestine of the suckling rat. Regul. Pept. 1987, 17, 121-132.

44. Schrick F. N., Hockett M. E., Saxton A. M., Lewis M. J., Dowlen H. H., Oliver S. P.: Influence of subclinical mastitis during early lactation on reproductive parameters. J. Dairy Sci. 2001, 84, 1407-1412.

45. Sebastian J., Richards R. G., Walker M. P., Wiesen J. F., Zervak X., Dorenbosch B., Hom Y. K., Cunha G. B., DeAugustine R. P.: Activation and function of the epidermal growth factor receptor and erbB-2 during mammary gland morphogenesis. Cell Growth Differ. 1998, 9, 777-785.

46. Shefield L. G.: Mastitis increases growth factor messenger ribonucleic acid in bovine mammary glands. J. Dairy Sci. 1997, 80, 2020-2024.

47. Soriano J. V., Pepper M. S., Nakamura T., Oreci L., Montesano R.: Hepatocyte growth factor stimulates extensive development of branching duct-like structures by cloned mammary gland epithelial cells. J. Cell Sci. 1995, 108, 413-430.

48. Spitzer E., Grosse R.: EGFR receptors on plasma membranes purified from bovine mammary gland of lactating and pregnant animals. Biochem. Int. 1987, 14, 581-588.

49. Steenewold W., Swinkels J., Hogeveen H.: Stochastic modelling to assess economic effects of treatment of chronic subclinical mastitis caused by Streptococcus uberis. J. Dairy Res. 2007, 74, 459-467.

50. Sternlicht M. D., Sunnarborg S. W., Kourous-Mehr H., Yu Y., Lee C., Wib Z.: Mammary ductal morphogenesis requires paracrine activation of stromal EGFR via ADAM17-dependent shedding of epithelial amphiregulin. Development 2005, 132, 3923-3933.

51. Stewart F., Power C. A., Leonard S. N., Allen W. R., Atem L. R., Edwards R. M.: Identification of the horse epidermal growth factor (EGF) coding sequence and its use in monitoring EGFR gene expression in the endometrium of the pregnant mare. J. Mol. Endocrinol. 1994, 12, 341-350.

52. Tesfaye G. Y., Regassa F. G., Kelsey B.: Milk yield and associated economic losses in quarters with subclinical mastitis due to Staphylococcus aureus in Ethiopian crossbred dairy cows. Trop. Anim. Health Prod. 2010, 42, 925-931.

53. Torres-Castro P., Abril-Gil M., Rodríguez-Lagunas M. J., Castell M., Pérez-Cano F. J., Franch A.: TGF-β2, EGF, and FGF21 growth factors present in bovine milk during early lactation. J. Mammary Gland Biol. Neoplasia 2001, 6, 7-21.

54. Warner B. W., Warner B. B.: Role of epidermal growth factor in the pathogenesis of neonatal necrotizing enterocolitis. Semin. Pediatr. Surg. 2005, 4, 175-180.

55. Wiesn J. F., Young P., Werb Z., Cunha G. B.: Signaling through the stromal epidermal growth factor receptor is necessary for mammary ductal development. Development 1999, 126, 335-344.

Corresponding author: Prof. Dr. Gul Fatma Yarim, Department of Biochemistry, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55200, Samsun, Turkey; e-mail: gulyarim@omu.edu.tr