РОЛЬ КОНСТИТУЦИИ ЧЕЛОВЕКА В ФОРМИРОВАНИИ ДЕФИЦИТА И ИЗБЫТКА МАССЫ ТЕЛА У ДЕТЕЙ РАЗЛИЧНОГО ВОЗРАСТА
© В.О. Еркудов 1, А.П. Пуговкин 1, А.Я. Волков 2, О.И. Мусаева 2, Т.Н. Сляпцова 3, М.В. Чистякова 3, С.С. Рогозин 3, М.А. Пахомова 1, А.А. Кравцова 1
1 Федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный педиатрический медицинский университет» Министерства здравоохранения Российской Федерации, Санкт-Петербург;
2 Санкт-Петербургское государственное бюджетное учреждение здравоохранения «Городская поликлиника № 109», детское поликлиническое отделение № 3, Санкт-Петербург;
3 Государственное бюджетное образовательное учреждение средняя общеобразовательная школа № 225 Адмиралтейского района Санкт-Петербурга

Для цитирования: Еркудов В.О., Пуговкин А.П., Волков А.Я., и др. Роль конституции человека в формировании дефицита и избытка массы тела у детей различного возраста // Педиатр. – 2020. – Т. 11. – № 2. – С. 33–42. https://doi.org/10.17816/PED11233-42

В настоящее время характеристики взаимоотношений конституции человека и отклонений массы тела в узкой группе испытуемых с учетом их пола, возраста, региона проживания и конкретного типа дефицита или избытка веса тела не описаны достаточно полно. Цель данной работы — сравнительный анализ количества и определение частоты встречаемости выраженного дефицита, дефицита условно нормальной массы тела, предожирения и ожирения у детей младшего школьного возраста и подростков с лепто-, мезо- и гиперсомным соматотипом. Методы. Всего в работе приняли участие 274 человека. Из них 130 детей младшего школьного возраста от 7 до 9 лет (64 мальчика и 66 девочек), а также 142 подростка в возрасте от 14 до 17 лет (65 мальчиков и 77 девочек). Всем детям определяли соматотип по методике И.И. Саливон и В.А. Мельник и рассчитывали индекс массы тела. Сравнение количества детей с различными отклонениями массы тела с лепто-, мезо- и гиперсомным телосложением проводилось с применением точного критерия Фишера для таблиц сопряженности 3 × 5.

Результат. У мальчиков и девочек младшего школьного возраста с лепто- (мальчики — 90 %, девочки — 76 %) и мезосомным (мальчики — 62 %, девочки — 81 %) типом телосложения выявлен преимущественно недостаток массы тела, а в подростковом возрасте это отклонение имеет место у 37 % юношей и 15 % девушек с лептосомным соматотипом. Испытуемые мужского пола с гиперсомным типом конституции формируют ожирение и избыток массы тела только к подростковому возрасту. При этом 40 % девочек школьного возраста с данным соматотипом имеют ожирение уже в младшем школьном возрасте, которое в 100 % случаев сохраняется до пубертатного периода. Выводы. Полученные результаты могут быть полезны для составления индивидуальных рекомендаций по ведению детей с патологией обмена веществ на догоспитальном этапе, поскольку коррекцию избытка и недостатка массы тела необходимо осуществить до вступления ребенка в процесс полового созревания.

Ключевые слова: конституция человека; соматотип; дефицит массы тела; избыток массы тела; дети.

THE ROLE OF HUMAN CONSTITUTIONAL TYPE IN FORMING OF BODYMASS EXCESS AND DEFICITE IN CHILDREN OF VARIOUS AGES
© V.O. Erkudov 1, A.P. Pugovkin 1, A.J. Volkov 2, O.I. Musaeva 2, T.N. Slyaptsova 3, M.V. Chistyakova 3, S.S. Rogozin 2, M.A. Pakhomova 1, A.A. Kravtsova 1
1 St. Petersburg State Pediatric Medical University, Ministry of Healthcare of the Russian Federation, Saint Petersburg, Russia;
2 Saint Petersburg District Polyclinic No. 109, Children’s Polyclinic department No. 3, Saint Petersburg, Russia;
3 School No. 225 of Admiralteysky District of Saint Petersburg, Saint Petersburg, Russia

For citation: Erkudov VO, Pugovkin AP, Volkov AJ, et al. The role of human constitutional type in forming of bodymass excess and deficite in children of various ages. Pediatrician (St. Petersburg). 2020;11(2):33-42. https://doi.org/10.17816/PEDI11233-42

Received: 10.02.2020
Revised: 23.03.2020
Accepted: 24.04.2020

https://doi.org/10.17816/PED11233-42
Nowadays there are no decisive descriptions of constitutional features and body mass deviations in a narrow group taking into consideration their sex, age, habitation region, and a concrete type of body mass deficit or excess. The present study focuses at comparative assessment of number and frequency of pronounced deficit, deficit, nominally normal body mass, preobesity and obesity in junior schoolchildren and adolescents with lepto-, meso- and hypersomal somatotype. All in all 274 persons took part in the study, 130 of junior schoolchildren aged 7 to 9 years (64 boys and 66 girls) as well as 142 adolescents 14–17 years old (65 boys and 77 girls). Somatotype was determined in all children with the help of I.I. Salivon and V.A. Melnik’s method, as well as body mass index was calculated. Comparing the number of children with various deviations of body mass in case of lepto- meso- and hypersomal somatotype was accomplished with the help of precise Fisher’s criterion for conjugated features tables $3 \times 5$. In boys and girls of junior school age with leptosomal (boys – 62%, girls – 81%) somatotype body mass deficit was predominant, while in adolescents with leptosomal somatotype body mass deficit was found in 37% boys and 15% of girls. Hypersomal boys form obesity and excessive body mass when they enter adolescence. On the other hand 40% girls of junior school age with hypersomal somatotype are already obese and 100% of them preserve obesity till puberty. The results of the study may be useful for specifying individual recommendations for children with metabolic pathology at pre-hospital stage for correction of both excess and deficit of body mass should be made prior to entering puberty.

Keywords: constitution type; somatotype; body mass deficit; body mass excess; children.

ВВЕДЕНИЕ

Изучение факторов, способствующих формированию и дальнейшему возрастному развитию как ожирения, так и недостатка массы тела, является общемедицинской проблемой, требующей детальной проработки [2, 15, 22, 32]. Вместе с тем, учитывая полиэтиологическую природу указанных состояний, представление о соотношении конституции человека и отклонений массы тела пока что остается не до конца сформированным. Конституция человека является индивидуально-типологическим маркером развития и функционального состояния человека, поскольку не только определяет форму тела и физический облик субъекта, но и связана с особенностями функциональной реактивности организма [28], анатомическим строением внутренних органов [8] и системой крови [9]. Тип телосложения, несомненно, связан с ожирением: давно известно, что избыточная масса тела характерна для гиперстеников [13]. Данный факт был подтвержден нами в совре-менных работах [10]. Однако возрастные аспекты взаимосвязи конституции человека и отклонений массы тела остаются не достаточно изученными. Результаты подобных исследований могут быть полезны в отношении создания и развития принципов динамического наблюдения за физическим состоянием современных школьников различного возраста в норме и при патологии обмена веществ [13, 14].

Цель данной работы — сравнительный анализ количества и определение частоты встречаемости выраженного дефицита, дефицита условно нормальной массы тела, предожирения и ожирения у детей младшего школьного возраста и подростков с лептосомным, мезосомным и гиперсомным соматотипом.

МАТЕРИАЛЫ И МЕТОДЫ

Работа проводилась во время планового профилактического осмотра детей, который осуществлялся согласно приказу № 514н от 10.08.2017 «О порядке проведения профилактических медицинских осмотров несовершеннолетних» в детском поликлиническом отделении № 3 СПбГУЗ «Городская поликлиника № 109». Все участники исследования подписывали «Добровольное информированное согласие на проведение профилактических осмотров и обработку персональных данных». Всего в работе приняли участие 274 человека. Из них 130 детей младшего школьного возраста от 7 лет до 9 лет 11 месяцев и 29 дней (64 мальчика и 66 девочек), а также 142 подростка в возрасте от 14 лет до 17 лет 11 месяцев и 29 дней (65 мальчиков и 77 девочек). Все детям определяли соматотип по методике, предложенной И.И. Саливон и В.А. Мельник [20]. Применение данного способа предполагает определение лепто-, мезо- и гиперсомного типа телосложения на основании измерения 12 антропометрических параметров. Верхушечную длину тела оценивали с использованием напольного медицинского ростомера РМ2-«Диакомс» (ООО «Диакомс», Россия) с точностью измерения до 5 мм. Массу тела измеряли на электронных медицинских весах ВЭМ-150-«Масса-К» (ЗАО «Масса-К», Россия) с точностью измерения до 50 г. Величину кожного складочного биотита измеряли с помощью толстостенного циклатора (НПФ «Артемидия»), Россия) с точностью измерения до 1 мм. Толщину жировых складок измеряли кали-
пером (Slim Guide Caliper, Китай) с пистолетной рукояткой и оттравированной пружиной для создании одинакового давления на обе стороны жировой складки (10 г на мм²) с точностью измерения до 0,5 мм. Обхваты в наиболее узких местах предплечья, над запястьем, и голенью, над лодыžками, измеряли скользящим циркулем (ООО «Аргентум», Россия) с точностью измерений до 1 мм. Ширину эпифизов плеча и бедра, измеряли с применением сантиметровой ленты.

У всех испытуемых производили расчет индекса массы тела (ИМТ), который является общепринятой методикой для определения типа ее отклонения [7, 30, 32]. Величину ИМТ 15,99 и менее расценивали как выраженный дефицит массы тела (ВДМТ); 16–18,49 — дефицит массы тела (ДМТ); 18,5–24,99 — условная норма; 25–29,99 — предожирение; 30 и более — ожирение [30, 32].

Сравнение отклонений массы тела, определяемых ИМТ, а также сравнение частоты встречаемости различных соматотипов у детей младшего школьного возраста и подростков проводилось оценкой однородности распределения различных соматотипов у детей различных возрастных групп, а также распределения выраженного дефицита, дефицита нормальной и избыточной массы тела, ожирения у детей с лепто-, мезо- и гиперсомным телосложением. Для этого использовался точный критерий Фишера для таблиц сопряженности признаков 3 × 5 и 3 × 2 с вычислением доли детей с тем или иным отклонением массы тела. Статистически значимыми считали результаты при \( p < 0,05 \). Вычисления производились с применением встроенных функций Excel из прикладного пакета Microsoft Office 2010 и алгоритма статистической обработки данных StatXact-8 с программной оболочкой Cytel Studio version 8.0.0 [28, 31]. Все данные представлены в виде средних значений доли отклонения массы тела и указаны верхняя и нижняя граница 96 % доверительного интервала отклонения массы тела (\( \mu (L.L.; U.L. 95\% CI) \)).

Результаты и обсуждение

Анализ данных показал, что распределение различных соматотипов у детей младшего школьного возраста и подростков однородно и не отличается как у мальчиков, так и у девочек (табл. 1), на что указывают полученные значения \( p \). Это означает, что количественных отличий детей с лепто-, мезо- и гиперсомным соматотипом не выявлено в настоящем исследовании.

Распределение отклонений массы тела, определяемых ИМТ, а также частоты встречаемости различного типа телосложения у детей с различными типами конституции при выбранном уровне значимости различно. В настоящей работе показаны конституциональные особенности распределения различных соматотипов массы тела у детей разного возраста.

| Соматотип / Somatotype | Лептосомный / Leptosomic | Мезосомный / Mesosomic | Гиперсомный / Hypersomic |
|------------------------|--------------------------|------------------------|-------------------------|
| Младший школьный возраст / Primary school boys | 0,47 (0,32; 0,62) | 0,45 (0,31; 0,60) | 0,08 (0,02; 0,19) |
| Подростки / Male teenagers | 0,57 (0,42; 0,72) | 0,34 (0,20; 0,49) | 0,09 (0,03; 0,20) |
| Младший школьный возраст / Primary school girls | 0,52 (0,36; 0,66) | 0,41 (0,27; 0,56) | 0,08 (0,02; 0,19) |
| Подростки / Female teenagers | 0,70 (0,57; 0,82) | 0,26 (0,15; 0,39) | 0,04 (0,007; 0,12) |

Примечание. Распределение различных соматотипов: у мальчиков — \( p = 0,3969 \); у девочек — \( p = 0,0705 \). Note. The distribution of different somatotypes: in boys — \( p = 0,3969 \); in girls — \( p = 0,0705 \).
Отклонения массы тела, определяемые по индексу массы тела, у мальчиков младшего школьного и подросткового возраста с различными соматотипами (μ (L.L.; U.L. 95% CI))

| Отклонение массы тела / Body weight deviation | ВДМТ / Severe underweight | ДМТ / Body weight deficiency | «Нормальная» масса тела / «Normal» body weight | Избыточная масса тела / Overweight | Ожирение / Obesity |
|-----------------------------------------------|---------------------------|-----------------------------|-----------------------------------------------|----------------------------------|---------------------|
| Лептосомный / Leptosomic                    | 0,68 (0,44; 0,85)         | 0,23 (0,08; 0,46)           | 0,097 (0,01; 0,31)                            | 0 (0; 0,15)                     | 0 (0; 0,15)         |
| Мезосомный / Mesosomic                      | 0,25 (0,08; 0,46)         | 0,37 (0,16; 0,61)           | 0,40 (0,20; 0,65)                            | 0 (0; 0,16)                     | 0 (0; 0,16)         |
| Гиперсомный / Hypersomic                    | 0 (0; 0,60)               | 0 (0; 0,60)                 | 1,00 (0,40; 1,00)                            | 0 (0; 0,60)                     | 0 (0; 0,60)         |

| Распределение отклонения массы тела у юношей подросткового возраста с различными соматотипами / Distribution of body mass deviation in male teenagers with different somatotypes |
|-----------------------------------------------|---------------------------|-----------------------------|-----------------------------------------------|----------------------------------|---------------------|
| Лептосомный / Leptosomic                    | 0,02 (0,0002; 0,15)       | 0,35 (0,18; 0,55)           | 0,63 (0,43; 0,79)                            | 0 (0; 0,10)                     | 0 (0; 0,10)         |
| Мезосомный / Mesosomic                      | 0 (0; 0,19)               | 0,05 (0,0005; 0,27)         | 0,81 (0,55; 0,96)                            | 0,14 (0,02; 0,40)               | 0 (0; 0,19)         |
| Гиперсомный / Hypersomic                    | 0 (0; 0,54)               | 0 (0; 0,54)                 | 0 (0; 0,54)                                  | 0,83 (0,29; 0,998)              | 0,17 (0,002; 0,71)  |

Примечание. Распределение отклонения массы тела у мальчиков младшего школьного возраста с различными соматотипами: \( p = 0,0001532 \). Распределение отклонения массы тела у юношей подросткового возраста с различными соматотипами: \( p = 2,811 \times 10^{-6} \). ВМДТ — выраженный дефицит массы тела, ДМТ — дефицит массы тела. Note. Distribution of body mass deviation in boys of primary school with different somatotypes: \( p = 0,0001532 \). Distribution of body mass deviation in teenagers with different somatotypes \( p = 2,811 \times 10^{-6} \).
ОТМЕЧАТЬ, ЧТО ПЕРЕКАРМЛИВАНИЕ ДЕТей БЕЛОКОВОЙ ПИЩЕЙ В ПЕРИОД СТАНОВЛЕНИЯ ФУНКЦИЙ ЖИРОВОЙ ТКАНИ ПРИВОДИТ К УПРУЖЕНИЮ СОДЕРЖАНИЯ АМИНОКИСЛОТ В КРОВИ, ГИПЕРИНСУЛИНЕМИИ, И, КАК СЛЕДСТВИЕ, ПОВЫШЕННОЙ ПРОЛИФЕРАЦИИ АДИПОЦИТОВ [6, 30, 23, 24]. РЕЗУЛЬТАТЫ ДАННОЙ РАБОТЫ МОГУТ БЫТЬ КОСВЕННЫМ СВИДЕТЕЛЬСТВОМ РОЛИ РАЦИОНАЛЬНОГО ПИТАНИЯ МЛАДШИХ ШКОЛЬНИКОВ ДЛЯ ПРЕДУПРЕЖДЕНИЯ РАЗВИТИЯ ДЕФИЦИТА МАССЫ ТЕЛА В ПОДРОСТКОВОМ ВОЗРАСТЕ У ДЕТЕЙ С ЛЕПТОСОМНЫМ ТИПОМ ТЕЛОСЛОЖЕНИЯ И ОЖИРЕНИЯ У ДЕТЕЙ С ГИПЕРСОМНЫМ СОМАТИОМ.

Развитие конституционально-обусловленного ожирения, несомненно, имеет генетический компонент [1, 5, 13, 22, 24–26]. ДАВНО ИЗВЕСТНО [13] И ПОДТВЕРЖДАЕТСЯ СОВРЕМЕННЫМИ ИССЛЕДОВАНИЯМИ [24], ЧТО ПРИ НАЛИЧИИ ИЗБЫТКА МАССЫ ТЕЛА У ОТЦА ИЛИ МАТЕРИ РИСК ВОЗНИКНОВЕНИЯ ТАКИХ ЖЕ ПРОБЛЕМ У РЕБЕНКА ДОСТИГАЕТ 80 % [24]. СЕЙЧАС ВЫЯВЛЕНО БОЛЕЕ 1000 ГЕНОВ, АССОЦИРОВАННЫХ С ОЖИРЕНИЕМ, СОЗДАЮЩИХ ПОРОГОВЫЙ ЭФФЕКТ ВЛИЯНИЯ: ЗАБОЛЕВАНИЕ ВОЗНИКАЕТ ТОГДА, КОГДА БУДЕТ ДОСТИГНУТЬ МИНИМАЛЬНЫЙ КРИТИЧЕСКИЙ УРОВЕНЬ ИХ ВЗАИМОДЕЙСТВИЯ [24]. ОБЩЕПРИНЯТО, ЧТО СВОЕОБРАЗНЫМ МАРКЕРОМ ЭТОЙ ПАТОЛОГИИ ЯВЛЯЕТСЯ ПОЛИМОРФИЗМ ГЕНА РЕЦЕПТОРА ЛЕПТИНА (LEPR) [2, 11, 18, 21, 29, 33] И, В МЕНЬШЕЙ СТЕПЕНИ, ПРООПИОМЕЛАНКОРТИНА (MC4R) [18]. СоСОГЛАСНО СОВРЕМЕННЫМ ПРЕДСТАВЛЕНИЯМ, НЕСОМЕНА РОЛЬ ГЕНЕТИЧЕСКИХ ФАКТОРОВ В ФОРМИРОВАНИИ СОМАТИЯ [36]. КРОМЕ ЭТОГО, ВЫЯВЛЯЕТСЯ ВЗАИМОСВЯЗЬ МЕЖДУ ПОЛИМОРФИЗМОМ LEPR И MC4R И СОМАТИОМ ЧЕЛОВЕКА [35]. Следовательно, возможно предположить, что у детей с ожирением и гиперсомным типом телосложения рецептор LEPR становится мало чувствителен к лептину, снижающему возбудимость центров аппетита в гипоталамусе, активирующих симпатическое влияние на жировую ткань, способствующему расщеплению жира в адипоцитах и вызывающему апоптоз [22, 29]. Соответственно, у них имеет место гиперлептинемия, которая коррелирует с ИМТ [21, 35] и имеет гендерные отличия: у девушек в пубертате она прогрессивно нарастает, у юношей компенсируется [33].

Например, в девочках младшего школьного возраста с лептосомным типом телосложения ожирение (Ожирение / Obesity) значительно меньше (0,04; 0,003; 0,15), чем у девочек подросткового возраста с гиперсомным типом телосложения (0,33; 0,003; 0,94).

Таблица 3 / Table 3

| Отклонение массы тела / Body weight deviation | ВДМТ / Severe underweight | ДМТ / Body weight deficiency | «Нормальная» масса тела / «Normal» body weight | Предожирение / Overweight | Ожирение / Obesity |
|------------------------------|--------------------------|----------------------------|-----------------------------------------------|----------------------------|---------------------|
| Лептосомный / Leptosomic     | 0,47 (0,26; 0,68)        | 0,29 (0,13; 0,52)         | 0,24 (0,09; 0,45)                              | 0 (0; 0,14)                | 0 (0; 0,14)         |
| Мезосомный / Mesosomic       | 0,37 (0,17; 0,62)        | 0,44 (0,22; 0,70)         | 0,19 (0,05; 0,42)                              | 0 (0; 0,17)                | 0 (0; 0,17)         |
| Гиперсомный / Hypersomic     | 0,20 (0,002; 0,78)       | 0 (0; 0,60)               | 0,40 (0,03; 0,89)                              | 0,40 (0,03; 0,89)          | 0 (0; 0,60)         |

Распределение отклонения массы тела у девочек младшего школьного возраста с различными соматотипами / Distribution of body mass deviation in girls of primary school with different somatotypes: p = 0,0137.

Распределение отклонения массы тела у девушек подросткового возраста с различными соматотипами / Distribution of body mass deviation in female teenagers with different somatotypes: p = 0,011.
объем жировой ткани является конституционально-зависимым признаком [13], в том числе и по причине единства жировой и соединительной ткани, которая, по представлениям А.А. Богомольца, определяет тип конституции [3]. Увеличение количества жировой ткани при первичном ожирении у сопряженного с ним соматотипа, вероятно, является следствием совместного влияния усиленной экспрессии гена дифференцировки адионцитов PPAR-γ [30] и нарушением регуляции и функций инсулина [13]. Увеличение влияния PPAR-γ, как правило, развивается по механизму компенсации в связи с фетоплацентарной недостаточностью в перинатальном периоде развития [30].

Чувствительность жировых клеток к инсулину обратно пропорциональна их размеру, что связывает соматотип и инсулинорезистентность и, как следствие, гиперинсулинемию [13]. Увеличение концентрации инсулина в крови приводит к гипертрофии адионцитов без увеличения их количества [13]. На эндотелии капилляров микроциркуляторного русла жировой ткани находится избыточно активная у лиц с первичным ожирением и соответствующим соматотипом тканевой липазы [13, 22]. Ее активность не уменьшается после снижения веса [22]. Обнаружена связь полиморфизма гена тканевой липазы с избыточной массой тела [22]. Этот фермент расщепляет липиды и хиломикроны с образованием неэстерифицированных жирных кислот, которые конкурируют с глюкозой за транспортные системы в скелетных мышцах [13, 22]. Нарастает гипергликемия, вызывающая еще большее увеличение концентрации инсулина, который регулирует образование новых адипоцитов, развивается гиперплазическое ожирение [13, 22].

При избыточной массе тела и, вероятно, гиперсомом соматотипе имеет место снижение активности тканевой липазы жировой ткани [22], уменьшение ее реактивности на адреналин и симпатические влияния, вероятно, вследствие полиморфизма генов, контролирующих β₃-адренорецепторы жировой ткани, приводящего к изменению их функции [5].

Дефицит массы тела у детей достоверно сопряжен с рядом хронических заболеваний [12, 17, 19, 27] и является своеобразным «маркером» их развития во взрослом периоде [34]. Так, например, патология желудочно-кишечного тракта встречается при недостаточности массы тела в 80 % случаев [12].

В настоящем исследовании показано, что дети разного возраста с лептосомным телосложением имеют недостаток веса тела, что хорошо согласуется с данными литературы [17, 19]. Этот факт может быть объяснен представлением об астении (лептосомии) как маркере замедленного роста и развития человека [14], в противовес с гиперстенней (гиперсомиемией) — явлению усиления анатомических процессов [28]. Приведенные данные могут иметь значение для прогнозирования заболеваемости ребенка впубертате. Кроме того, эти результаты могут быть полезны для составления индивидуальных рекомендаций ведения таких детей на догоспитальном этапе, поскольку коррекцию избыточной массы тела необходимо осуществить до вступления ребенка в процесс полового созревания. Кроме того, дефицит веса имеет значение для наблюдения за состоянием здоровья юношей врачами допризывной комиссии [12].

**Выводы**

1. Основываясь на результатах настоящей работы, можно предположить, что соматотипирование у детей младшего школьного возраста открывает возможность с высокой степенью вероятности предсказать развитие первичного ожирения или недостатка массы тела в пубертатном периоде.

2. Доказана взаимосвязь того или иного отклонения массы тела у обследованных подростков и детей младшего школьного возраста с типом телосложения.

3. Наличие гиперсомного соматотипа у ребенка в допубертатном периоде позволяет предсказать развитие у него избыточной массы тела в подростковом возрасте и с большой долей вероятности судить о его образе жизни, особенностях метаболизма, генетическом и гормональном статусе.

4. Для детей с лептосомным типом телосложения, в особенностях юношей, характерна тенденция к недостатку массы тела.

**Литература**

1. Бардымова Т.П., Михалева О.Г., Березина М.В. Современный взгляд на проблему ожирения // Acta Biomedica Scientifica. – 2011. – № 5. – С. 203–206. [Bardymova TP, Mikhaleva OG, Berezina MV. Modern View On The Problem Of Obesity. Bull Vost Sib Naucn Sent. 2011(5):203-206. (In Russ.)]

2. Беляева И.А., Намазова-Баранова Л.С., Тури TV, и др. Значение грудного вскармливания в профилактике отдаленных нарушений метаболизма: обзор литературы // Педиатрическая фармакология. – 2015. – Т. 12. – № 1. – С. 52–58. [Belyaeva IA, Namazova-Baranova LS, Turti TV, et al. Role of Breast-feeding in Preventing Long-Term Metabolic Disorders: Review. Pediatric pharmacology. 2015;12(1):52-58. (In Russ.)]
3. Богомолец А.А. Введение в учение о конституциях и диатезах. — М.: Издательство Наркомздрава РСФСР, 1928. — 230 с. [Bogomolets AA. Vvedenie v uchenie o konstitutsiyakh i diatezakh. Moscow: Izdatel'stvo Narkomzdrava RSFSR; 1928. 230 p. (In Russ.)]

4. Бокарева Н.А., Милушкина О.Ю., Овчинникова З.А., и др. Гигиеническая оценка влияния организаци и образовательного процесса на физическое развитие школьников г. Москвы // Вестник Российского государственного медицинского университета. — 2016. — № 3. — С. 63–69. [Bokareva NA, Milushkina OYu, Ovchinnikova ZA, et al. Impact of learning environments on the physical development of Moscow schoolchildren: hygiene aspects. Bulletin of RSMU. 2016;(3):63-69. (In Russ.)]

5. Григорьев К.И., Князев Ю.А. Ожирение — теория и практика. Татика медицинского работника // Медицинская сестра. — 2006. — № 8. — С. 2–7. [Grigor'ev KI, Knyazev YuA. Ozhirenie — teoriya i praktika. Taktika meditsinskogo rabotnika. Med Sestra. 2006;(8):2-7. (In Russ.)]

6. Денисов М.Ю., Коваленко М.А., Петрущенко О.И., Шведкина Е.Ю. Оценка взаимосвязи некоторых факторов риска развития ожирения у детей раннего возраста // Вестник Новосибирского государственного университета. Серия: Биология, клиническая медицина. — 2012. — Т. 10. — № 1. — С. 115–121. [Denisov MYu, Kovarenko MA, Petrusenko Ol, Shvedkina EYu. Estimation of interrelation of some risk factors of development of obesity at children of early age. Vestnik NGU. Seriia biologiya, klinicheskoi meditsina. 2012;10(1):115-121. (In Russ.)]

7. Еркудов В.О., Пуговкин А.П., Волков А.Я., и др. Конституциональное разнообразие размеров внутренних органов у подростков // Российский вестник перинатологии и педиатрии. — 2019. — Т. 64. — № 2. — С. 94–99. [Erkudov VO, Pugovkin AP, Volkov AYa, et al. Constitutional diversity in the dimensions of internal organs of teenagers. Russian Bulletin of Perinatology and Pediatrics. 2019;64(2):94-99. (In Russ.)].

8. Еркудов В.О., Скрипченко Н.В., Заславский Д.В., и др. Значение конституциональных факторов в развитии дефицита и избыточной массы тела у подростков // Вопросы практической педиатрии. — 2019. — Т. 14. — № 4. — С. 21–29. [Erkudov VO, Skripchenko NV, Zaslavskiy DV, et al. Role of constitutional factors in the development of underweight and overweight in adolescents. Problems of practical pediatrics. 2019;14(4):21-29. (In Russ.)]

9. Еркудов В.О., Волков А.Я., Пуговкин А.П., Мусаева О.И. Конституциональные особенности клеточного состава крови у подростков и юношей // Морфология. — 2018. — Т. 154. — № 5. — С. 50–56. [Erkudov VO, Volkov AYa, Pugovkin AP, Musaeva OI. Constitutional Characteristics Of The Blood Cell Composition In Male Teenagers. Morfologiya. 2018;154(5):50-56. (In Russ.)]

10. Еркудов В.О., Пуговкин А.П., Волков А.Я., и др. Гендерные различия размеров внутренних органов у 17-летних подростков с различными соматотипами // Педиатр. — 2017. — Т. 8. — № 5. — С. 67–73. [Erkudov VO, Pugovkin AP, Volkov AY, et al. Gender differences in the normative dimensions of internal organs of 17-years teenagers with differentosomatotypic characteristics. Pediatrician (St. Petersburg). 2017;8(5):67-73. (In Russ.)].

11. Ивлеева К.Д., Рычкова Л.В., Шенеман Е.А., Байрова Т.А. Полиморфный локус Q223R гена LEPR и ожирение // Бюллетень восточно-сибирского научного центра сибирского отделения российской академии медицинских наук. — 2016. — Т. 1. — № 5. — С. 170–174. [Ivleeva KD, Rychkova LV, Sheneman EA, Bairova TA. Q223R polymorphism of the LEPR and obesity. Bull Vost Sib Naucn Sent. 2016;1(5):170-174. (In Russ.)]

12. Катаева И.В., Шульга И.М., Безроднова С.М. Дефицит массы тела и патология органов пищеварения у юношей-подростков, подлежащих постановке на первичный воинский учет // Экология человека. — 2008. — № 3. — С. 14–17. [Kataeva IV, Shul'ga IM, Bezrodnova SM. Body mass deficiency and digestive organs' pathology in boys-adolescents subject to be registered in military recruitment offices. Ecology, human. 2008;(3):14-17. (In Russ.)]

13. Клиорин А.И. Ожирение в детском возрасте. 2-е изд., исправленное и дополненное. — Л.: Медицина, Ленинградское отделение; 1989. — 164 с. [Kliorin AI. Ozhirenie v detskom vozraste. 2-e izd., ispravlennoe i dopolnennoe. Leningrad: Meditsina, Leningradskoe otdelenie; 1989. 164 p. (In Russ.)]

14. Клиорин А.И., Четцов В.П. Биологические проблемы учения о конституциях человека. — Л.: Наука; 1979. — 254 с. [Kliorin AI, Chetsov VP. Biologicheskie problemy ucheniya o konstitutsiyakh cheloveka. Leningrad: Nauka; 1979. 254 p. (In Russ.)]

15. Красноперова О.И., Смирнова Е.Н., Чистоусова Г.В., и др. Факторы, способствующие формированию ожирения у детей и подростков // Ожирение и метаболизм. — 2013. — Т. 10. — № 1. — С. 18–21. [Krasnoperoeva OI, Smirnova EN, Chistousova GV, et al. Determinants of obesity in children and adolescents. Obesity and metabolism. 2013;10(1):18-21. (In Russ.)].

16. Мельник В.А. Лонгитудинальное исследование изменений телосложения школьников г. Гомеля в период полового созревания // Вестник Московского университета. Серия 23: Антропология. — 2016. — № 1. — С. 86–92.
17. Ненартович И.А., Жерносек В.Ф. Индекс массы тела у детей с бронхиальной астмой при наличии структурных изменений лёгких // Медицинский журнал. – 2014. – № 4. – С. 92–97. [Nenartovich IA, Zhernosek VF. Body mass index in children with asthma and lung structure pathology. Med Zhurnal. 2014;4(4):92-97. (In Russ.)]

18. Панков Ю.А. Мутации в ключевых генах, контролирующих развитие ожирения и сахарного диабета // Молекулярная биология. – 2013. – Т. 47. – № 1. – С. 38. [Pankov YuA. Major gene mutations associated with obesity and diabetes mellitus. Mol Biol (Mosk). 2013;47(1):38. (In Russ.)]

19. Рябиченко Т.И., Скосырева Г.А., Карцева Т.В. Состояние репродуктивного здоровья девочек-подростков с дефицитом массы тела // Вестник Новосибирского государственного университета. Серия: Биология, клиническая медицина. – 2011. – Т. 9. – № 2. – С. 44–47. [Ryabichenko TI, Skosyreva GA, Kartseva TV. Condition Of Reproductive Health Of Girls Of Teenagers With Deficiency Of Hypotrophy. Biologia, klinicheskaia meditsina. 2011;9(2):44-47. (In Russ.)]

20. Саливон И.И., Мельник В.А. Способ определения составом тела (жировым, мышечным, костным) у детей с экзогенно-конституциональным ожирением // Весці Нацыянальнай акадэміі навук Беларусі. Серыя: Медыцына. – 2011. – № 1. – С. 93–98. [Salivon II, Mel’nik VA. Method of defining human constitution type by the complex of anthropometric parameters. Kurskiya nauchno-prakticheskii vestnik "Chelovek i ego zdorove". 2015;(1):93-98. (In Russ.)]

21. Солнцева А.В., Аксенова Е.А., Сукало А.В., и др. Полиморфизм гена рецептора лептина и изменения показателей лептинемии у детей с экзогенно-конституциональным ожирением // Вестник Медицинского университета. Серия: Антропология. – 2016;23:86-92. [Solntseva AV, Aksenova EA, Sukalo AV, et al. Leptin receptor gene polymorphism and leptinemia changes in children with adiposity. Proceedings of the National Academy of Sciences of Belarus. Medical sciences series. 2011;1(1):76-97. (In Russ.)]

22. Строев Ю.И., Чурилов Л.П., Бельгов А.Ю., Чернова Л.А. Ожирение у подростков. – СПб.: Медицина ЭЛБИ, 2006. – 216 с. [Stroev Yul, Churilov LP, Bel’gov AYu, Chernova LA. Ozhirenie u podrostkov. Saint Petersburg: Medkniha ELBI; 2006. 216 p. (In Russ.)]

23. Трашков А.П., Панченко А.В., Каюкова Е.С., и др. Лейкемия Р-388 у мышей линии CDF1 как тест-система опухоль-ассоциированного неоангиогенеза и гиперкоагуляции // Бюллетень экспериментальной биологии и медицины. – 2014. – Т. 158. – № 10. – С. 500–502. [Trashkov AP, Panchenko AV, Kayukova ES, et al. Leykemiya R-388 u myshey linii CDF1 kak test-sistema opukhol’-assotsiirovannogo neoangiogeneza i giperkoagulyatsii. Biull Eksp Biol Med. 2014;158(10):500-502. (In Russ.)]

24. Трашков А.П., Васильев А.Л., Коваленко А.Л., Тагиров Н.С. Метаболическая терапия мочевенной болезни на различных моделях поражения почек у крыс // Экспериментальная и клиническая фармакология. – 2015. – Т. 78. – № 3. – С. 17–21. [Trashkov AP, Vasil’ev AG, Kovalenko AL, Tagirov NS. Metabolic therapy of nephrolithiasis in two different rat models of kidney disease. Eksp Klin Farmakol. 2015;78(3):17-21. (In Russ.)]

25. Туркина Т.И., Шербо С.Н., Талицкий В.В. Некоторые вопросы генетики ожирения и метаболизма у детей и подростков // Медицинский альфавит. – 2017. – Т. 1. – № 6. – С. 5–8. [Turkina TI, Shcherbo SN, Talitskiy VV. On some aspects of obesity and metabolism genetics in children and adolescents. Meditsinskii alfavit. 2017;1(6):5-8. (In Russ.)]

26. Струков Д.В., Александрович Ю.С., Васильев А.Г. Актуальные проблемы сепсиса и септического шока // Педиатр. – 2014. – Т. 5. – № 2. – С. 81–87. [Strukov DV, Aleksandrovich YuS, Vasilev AG. Actual aspects of sepsis and septic shock. Pediatrician (St. Petersburg). 2014;5(2): 81-87. (In Russ.)]. https://doi.org/10.17816/PED5281-87.

27. Файзуллина Р.А., Киясова Л.М. Состояние вегетативной нервной системы у подростков с хроническим гастродуоденитом и дефицитом массы тела // Практическая медицина. – 2015. – Т. 119. – № 3. – С. 128–131. [Fayzullina RA, Kiyasova LM. State of the vegetative nervous system in adolescents with chronic gastro-duodenitis and underweight. Prakticheskaya meditsina. 2015;119(3):128-131. (In Russ.)]

28. Феллова В.В., Феллова Ю.А., Казакова Т.В., и др. Изменение активности ферментов основных метаболических путей лимфоцитов крови при пищевой нагрузке у девушек с разным компонентным составом тела (жировым, мышечным, костным) // Бюллетень экспериментальной биологии и медицины. – 2015. – Т. 159. – № 3. – С. 285–289. [Fefelova VV, Fefelova YuA, Kazakova TV, et al. Effect of Food Load on Activities of Enzymes of the Main Metabolic Pathways in Blood Lymphocytes in Girls with Different Anthropometric Parameters. Biull Eksp Biol Med. 2015;159(3):285-289. (In Russ.)]

29. Фильченков А.А., Залесский В.Н. Лептин, адипоциты, метаболизм и гиперкоагуляция // Бюллетень экспериментальной биологии и медицины. – 2007. – Т. 1. – № 6. – С. 30–37. [Fil’chenkov AA, Zalesskiy VN. Leptin, adipocytes, and hypercoagulation. Rossiiiskii bioterapevticheskii zhurnal. 2007;6(3):30-37. (In Russ.)]
30. Ходжиева М.В., Скворцова В.А., Боровик Т.Э., и др. Современные взгляды на развитие избыточной массы тела и ожирения у детей. Часть I // Педиатрическая фармакология. – 2015. – Т. 12. – № 5. – С. 573–578. [Khodzhieva MV, Skvortsova VA, Borovik TE, et al. Contemporary Views on Development of Excess Body Weight and Obesity in Children. Part I. Pediatric pharma- cology. 2015;12(5):573-578. (In Russ.)]

31. Хромов-Борисов Н.Н. Биостатистические программы свободного доступа // Травматология и ортопедия России. – 2015. – № 4. – С. 154–159. [Khrmov-Bo- risov NN. Free biostatistical software. Traumatology and Orthopedics of Russia. 2015;(4):154-159. (In Russ.)] https://doi.org/10.21823/2311-2905-2015-0-4-154-159.

32. Щербакова М.Ю., Порядина Г.И., Ковалева Е.А. Проблема ожирения в детском возрасте // Экспериментальная и клиническая гастроэнтерология. – 2010. – № 7. – С. 74–82. [Shcherbakova MYu, Poryadina GI, Kovaleva EA. Problema ozhireniya v detskom vozraste. Eksp Klin Gastroenterol. 2010;(7):74-82. (In Russ.)]

33. Яковенко В.В. Особенности уровня лептина у детей с избыточной массой тела и ожирением // Академический журнал Западной Сибири. – 2013. – Т. 9. – № 1. – С.10–11. [Yakovenko VV. Osobennosti urovnya leptina u detei s izbytochnoj massoy tela i ozhireniem. Akademiches- kiy zhurnal Zapadnoy Sibiri. 2013;9(1):10-11. (In Russ.)]

34. Gunnell DJ, Frankel SJ, Nanchahal K, et al. Childhood obesity and adult cardiovascular mortality: a 57-y follow-up study based on the Boyd Orr cohort. Am J Clin Nutr. 1998;67(6):1111-1118. https://doi. org/10.1093/ajcn/67.6.1111.

35. Lahlou N, Landais P, De Boissieu D, Bougneres PF. Circulating leptin in normal children and during the dynamic phase of juvenile obesity: relation to body fatness, energy metabolism, caloric intake, and sexual dimorphism. Diabetes. 1997;46(6):989-993. https://doi.org/10.2337/diab.46.6.989.

36. Peeters MW, Thomis MA, Loos RJ, et al. Heritability of somatotype components: a multivariate analysis. Int J Obes (Lond). 2007;31(8):1295-1301. https://doi.org/10.1038/sj.ijo.0803575.

**Information about the authors**

Valeriy Olegovich Erkudov — cand. med. наук, старший преподаватель кафедры нормальной физиологии. FGBOU VO СПбГПМУ Минздрава России, Санкт-Петербург. E-mail: verkudov@gmail.ru.

Andrey Petrovich Pugovkin — д-р биол. наук, ст. научн. сотрудник, профессор кафедры нормальной физиологии. FGBOU VO СПбГПМУ Минздрава России, Санкт-Петербург. E-mail: apugovkin@mail.ru.

Alexей Яковлевич Волков — врач, заведующий, детское поликлиническое отделение № 3. СПБГУ «Городская поликлиника № 109», Санкт-Петербург. E-mail: pd3@zdrav.spb.ru.

Оксана Иосифовна Мусаева — врач, заведующая, школьно-дошкольное отделение детского поликлинического отделения № 3. СПБГУ «Городская поликлиника № 109», Санкт-Петербург. E-mail: oksana-musaeva@yandex.ru.

Татьяна Николаевна Стыакова — учитель биологии, замести- тель директора по развитию естественно-научного направ- ления обучения. ГБОУ СОШ № 225 Адмиралтейского района Санкт-Петербурга. E-mail: tanjasl@mail.ru.

Марьяна Владимировна Чистякова — ученица 10 класса. ГБОУ СОШ № 225 Адмиралтейского района Санкт-Пе- тербурга (ЛИМО «Биотоп»), Санкт-Петербург. E-mail: m.chis- styakova714@yandex.ru.

Сергей Степанович Рогозин — старший лаборант кафедры нормальной физиологии. FGBOU VO СПбГПМУ Минздрава России, Санкт-Петербург. E-mail: box.rogozin@yandex.ru.

Mar’jana V. Chistjakova — 10-year Student. School No. 225 of Admiralteysky Region of Saint Peters burg, Russia. E-mail: tanjasl@mail.ru.

Sergei S. Rogozin — Senior Lab. Attendant of Normal Physiology Dept. St. Petersburg State Pediatric Medical University of the Ministry of Healthcare of the Russian Federation, Saint Petersburg, Russia. E-mail: box.rogozin@yandex.ru.

**Information about the authors**

Valery O. Erkudov — MD, PhD, Senior lecturer of Normal Physiology Dept. St. Petersburg State Pediatric Medical University of the Ministry of Healthcare of the Russian Federation, Saint Petersburg, Russia. E-mail: verkudov@gmail.ru.

Andrey P. Pugovkin — PhD, Dr. Biol. Sci., Full Professor of Normal Physiology Dept. St. Petersburg State Pediatric Medical University of the Ministry of Healthcare of the Russian Federation, Saint Petersburg, Russia. E-mail: apugovkin@mail.ru.

Aleksej J. Volkov — Head of Children’s Polyclinic Department No. 3. Saint Petersburg Regional Polyclinic No. 109, Saint Petersburg, Russia. E-mail: pd3@zdrav.spb.ru.

Oksana I. Musaeva — Head of the School-Prechool Depart- ment of Children’s Polyclinic Department No. 3. Saint Petersburg Regional Polyclinic No. 109, Saint Petersburg, Russia. E-mail: oksana-musaeva@yandex.ru.

Tatiana N. Slyaptsova — Teacher of Biology, Vice-director. School No. 225 of Admiralteysky Region of Saint Peters burg, Russia. E-mail: tanjasl@mail.ru.

Mar’jana V. Chistjakova — 10-year Student. School No. 225 of Admiralteysky Region, Saint Petersburg, Russia. E-mail: m.chistjakova714@yandex.ru.

Sergei S. Rogozin — Senior Lab. Attendant of Normal Physiology, St. Petersburg State Pediatric Medical University of the Ministry of Healthcare of the Russian Federation, Saint Petersburg, Russia. E-mail: box.rogozin@yandex.ru.
Мария Александровна Пахомова — ст. научн. сотрудник Научно-исследовательского центра. ФГБОУ ВО СПбГПМУ Минздрава России, Санкт-Петербург. E-mail: mariya.pahomova@mail.ru.

Алефтина Алексеевна Кравцова — канд. биол. наук, доцент кафедры патологической физиологии с курсом иммунопатологии. ФГБОУ ВО СПбГПМУ Минздрава России, Санкт-Петербург. E-mail: aleftinakravcova@mail.ru.