Prediction performance analysis of neural network models for an electrical discharge turning process

Kumaresh Dey · Kanak Kalita · Shankar Chakraborty

Received: 2 June 2022 / Accepted: 20 July 2022 / Published online: 11 August 2022
© The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature 2022

Abstract
In many of the modern-day manufacturing industries, electrical discharge machining (EDM) now appears as an effective non-traditional material removal process for generating intricate shape geometries on various hard-to-cut work materials to meet the ever-increasing demands of higher dimensional accuracy and better surface quality. Development of an appropriate prediction model for any of the EDM processes is quite difficult due to complex material removal mechanism, and dynamic interactions between the input parameters and responses. To address the problem, this paper proposes development and deployment of five neural network models, i.e. feed forward neural network, convolutional neural network, recurrent neural network, general regression neural network and long short term memory-based recurrent neural network as effective prediction tools for an electrical discharge turning (EDT) process. The EDT is a variant of EDM process involving removal of material from cylindrical workpieces. The input parameters for the considered EDT process are magnetic field, pulse current, pulse duration and angular velocity, whereas, the responses are material removal rate and overcut. Several statistical error metrics, like R^2, adjusted R^2 (R^2_{adj}), root mean square error and relative root mean square error are employed to compare the prediction accuracy of all the investigated neural network models. Based on a past experimental dataset, it is observed that long short term memory-based recurrent neural network provides more accurate prediction of both the responses under consideration. On the other hand, general regression neural network is noticed to be extremely robust having highly repetitive prediction performance.

Keywords Electrical discharge turning · Prediction · Neural network · Response · Statistical error metric

1 Introduction
Electrical discharge machining (EDM) is a non-traditional method of material removal based on erosive action of pulsating current which has been extensively utilized in tool and die making, automobile, aerospace and medical industries due to its ability to generate complex shapes and thin-wall configurations on many of the high-strength-temperature-resistant alloys, metal matrix composites and electrically conductive ceramics. This process is mostly suited to machine flat workpieces while creating a predefined hole/cavity which would be a projection of the tool profile [1]. It has several advantages, like suitability to machine very small workpieces, attainment of close tolerances, no burr formation, generation of no residual stress etc. On the other hand, it also suffers from many disadvantages, like low material removal rate (MRR), formation of heat affected zone and recast layer etc.

Several modifications to the EDM process, including rotary EDM, magnetic field-assisted EDM, ultrasonic-assisted EDM and so on, have been proposed in recent decades to enhance its machining performance. Electrical discharge turning (EDT) is another variant of EDM process, mainly employed to remove material from cylindrical workpieces. There are only a few research studies available in the literature leading to performance analysis and characterization of EDT processes [2]. Based on Taguchi methodology, Matoorian et al. [3] attempted to study the influences of intensity, pulse-on time, pulse-off time, voltage, servo and rotational speed on MRR. It was observed that the derived optimal combination of the EDT parameters would result in...
higher MRR value. Gohil and Puri [4] optimized an EDT process using grey relational analysis, and concluded that an optimal parametric intermix of pulse-on time $= 5 \mu s$, peak current $= 5 \text{ A}$, gap voltage $= 40 \text{ V}$, spindle speed $= 40 \text{ rpm}$ and no flushing pressure would result in achieving the most desired values of both MRR and surface roughness (SR). Gohil and Puri [5] also performed statistical study including variance and regression analysis of MRR and SR during EDT of titanium alloy. Srivastava et al. [6] investigated the effect of rotational speed on surface integrity involving various parameters, like SR, morphology of the recast layer, microhardness variation, and formation of residual stresses on the machined surface as well as subsurface during EDT operation. Extensive studies were conducted to explore the effects of several EDT parameters, i.e. magnetic flux density, discharge current, pulse-on time and rotational speed on MRR, overcut (OC), SR and recast layer thickness [7, 8]. Rehman et al. [9] noticed that MRR, OC, SR, recast layer thickness and hardness would be significantly affected by magnetic flux density, current, pulse time and spindle speed during EDT operation of die steel AISI D2 material. With the help of magnetic field assistance, MRR and hardness had increased by 56 and 38%, respectively, whereas, there had been 31, 43 and 47% reductions in OC, SR and recast layer thickness respectively. Other research studies include EDT using strip electrode [10], EDT in presence of ultrasonic vibration [11] and many more.

It has been noticed that EDT has a complex material removal mechanism due to involvement of several input parameters and conflicting responses, and dynamic interactions between them. Development of an appropriate prediction model for EDT would help in studying the process behavior and envisaging the tentative values of the responses for given sets of input parameters. Nowadays, for prediction of responses in any of the machining processes, applications of different techniques of machine learning and deep learning have become quite popular. Neural networks (NNs) serve the basic purpose of such deep learning techniques. Because of their tolerance to modest input errors, NNs are more advantageous than any other prediction tool. Different types of NNs are now available and have been researched about. The most popular NNs include feed forward neural network (FNN), convolutional neural network (CNN), recurrent neural network (RNN), general regression neural network (GRNN), RNN with long short term memory (LSTM) and many more. The FNN is based on simple mathematical calculations and quicker because it does not involve any logical rule [12, 13]. The FNN is commonly used on random dataset where it is hard to perform feature engineering and find patterns in the input–output relation. Examples of FNN applications include electrical load demand forecasting [14], predicting parameters responsible for COVID-19 outbreak [15], fault classification in rotating machines [16], optimization and prediction of responses of different machining processes [17–20] and many more. The CNN is mainly responsible for image processing and computer vision [21–24] revolution in the world. The key benefit of CNN over its predecessors is its capability to automatically recognize significant features without the need for human intervention, making it the most widely utilized NN model [25]. The RNN is one of the prime choices for prediction of sequence-based dataset, such as natural language processing [26–28] and time series prediction [29–31]. However, it is also effective in prediction and analysis of responses of different machining processes [32, 33]. The LSTM is a special kind of RNN, capable of learning long-term dependencies [34, 35]. Along with its natural language processing capability, LSTM has been proven to be an effective tool for acoustic modeling [36], trajectory prediction [37] and correlation analysis [38]. Meanwhile, a GRNN may converge to the optimal regression surface with more sample aggregations, and has non-linear mapping capability and rapid learning rate [39]. The prediction results of GRNN can be satisfactory even if the training samples are small, and can it also deal with unstable data [40].

It can be noticed that all the above-mentioned NN models have very limited applications as effective prediction tools in machining processes. No application of any of the considered NNs has been found in the domain of EDT process. Thus, this paper focuses on the applications of five different NN models in the form of FNN, CNN, RNN, LSTM and GRNN in accurately predicting the responses of an EDT process. Based on a past experimental data of EDT process, the prediction performance of all these NNs is validated with the help of four statistical error metrics, i.e. R-squared (R^2), adjusted R-squared (R^2_{adj}), root mean square error (RMSE) and relative root mean square error (RRMSE). To the best of the authors’ knowledge, this type of comprehensive comparative analysis of prediction performance of different NN models is unique in the area of EDT process.

Typically, the past researchers in the field of EDT process have relied on simple statistical methods, like response surface methodology (RSM) for its computational modeling, and deriving the functional relationships between the input parameters and process outputs. The application RSM technique is also restricted by the pre-specified fixed form selected a priori to the modeling step. Thus, there remains a major gap in capturing all the nonlinearity and complexity of the EDT process. Applications of NN models can effectively bridge this gap while including a variety of activation functions that can easily deal with high nonlinearity and complexity in the experimental data. Unlike RSM technique, carefully calibrated NN models do not require any secondary statistical step, like analysis of variance and term elimination method to robustify the model. A comprehensive comparison of various NN models would thus be quite useful to the future researches in justifying their usage. Additionally, as compared to other powerful methods, like gene expres-
sion programming, NN models have immense parallelism [41], thereby making them highly efficient in predicting the process characteristics and envisaging the response values. Compared to similar neuron-based methods, like adaptive neuro-fuzzy inference system (ANFIS), NN models are generally faster to train and deploy [42].

This paper is structured as follows: Sect. 2 briefly introduces details of all the considered NN models along with the statistical error metrics. Applications of these NN models to an EDT process are enumerated in Sect. 3. Section 4 deals with prediction performance analysis of the NN models and conclusions are drawn in Sect. 5.

2 Neural network models

2.1 Feed forward neural network (FNN)

An FNN is a mathematical model that is inspired by the biological NNs’ functional features. An NN is usually made up of a group of artificial neurons that work together to interpret data in a connectionist manner. In general, an FNN is an adaptive system that adjusts its structure in response to external or internal data that flow over the network during the learning process. Figure 1 provides the general representation of an FNN. In this figure, the NN has one input layer with four neurons, one hidden layer having five neurons and one output layer with one neuron. Information from the input layer combined with appropriate weights move to the hidden layer where the information coming from different neurons are accumulated and the most weighted information is passed to the output layer. This whole process does not send back any information to the previous neurons for feedback, information move only in forward direction. So, this NN is called FNN.

2.2 Convolutional neural network (CNN)

The CNN is a deep learning model for data processing with a grid pattern, such as photographs. It is inspired by the organization of animal’s visual cortex [21, 22], and meant to learn spatial hierarchies of characteristics, from low- to high-level patterns, automatically and adaptively. A typical CNN is usually made up of three types of layer (or building blocks), i.e. convolution, pooling and fully connected layers. The first two layers (convolution and pooling) extract features, whereas, the third one which is a fully linked layer, transfers those features into final output, such as classification. The convolution layer is an important component of CNN, consisting of a stack of mathematical operations, like convolution, which is a specific sort of linear operation. A CNN can effectively analyze one-dimensional (forecasting, regression), two-dimensional (picture pattern recognition) or three-dimensional (MRI, CT scan analysis) datasets. In this paper, for predicting the response values of an EDT process, one-dimensional CNN (1D CNN) is employed. Figure 2 exhibits a simple representation of the CNN model. The first layer in this model is an input layer represented by 1D arrays. Each array is a representation of one data point. The second layer is a 1D convolutional layer. Each block of the array represents the imputation of several input layers or input features. The next layer is a flattened layer where the layers of convolutional 1D are flattened into one single array. The most important imputed data from the flattened layer is finally obtained in the output layer.

2.3 Recurrent neural network (RNN)

A RNN is a type of NN in which nodes form a directed or undirected graph along a temporal axis. As a result, it can display temporal dynamic behavior of a given system. The RNN, which is based on FNN, can process variable length sequences of inputs using their internal state (memory). The term ‘RNN’ is employed to describe a type of network with an infinite impulse response, whereas, ‘CNN’ is considered to represent a type of network having a limited
An infinite impulse recurrent network is a directed cyclic graph that cannot be unrolled and replaced with a strictly FNN. On the other hand, a finite impulse recurrent network is a directed acyclic graph that can be unrolled and replaced with a strictly FNN. Figure 3 is the flowchart representation of a traditional RNN process, as developed by Zhang et al. [32]. The computational process of the traditional RNN can be explained using the following equation:

\[h^{<t>} = \sigma \left(W x^{<t>} + U h^{<t-1>} + b \right) \]

where \(x^{<t>} \) is the input data at time step \(t \), \(h^{<t-1>} \) is the information from the previous cell, \(W \) and \(U \) are the weight matrices, \(b \) is the bias vector, and \(\sigma \) is the activation function. The computational result \(h^{<t>} \) is entered into the next cell. This cycle goes on until all the determined epochs are run.

2.4 RNN with long short term memory (LSTM)

The LSTM has a RNN architecture that is artificial in nature. The LSTM has feedback connections, unlike normal FNNs. It can effectively deal with not only individual data points (such as photos), but also complete data streams (like speeches or videos). A typical LSTM model usually consists of a cell, an input gate, an output gate and a forget gate. These three gates control the flow of information into and out of the cell, and the cell remembers values across arbitrary time intervals.

Figure 4 provides the simple representation of an LSTM cell. The input value \(x_t \) after being concatenated to the previous cell output \(h_{t-1} \) first moves through the tanh layer. The input is then passed through an input gate which is activated by sigmoid function (\(\sigma \)). In the next step, it passes through a forget gate loop where the internal state variable \(s_t \), lagged by one time step (\(s_{t-1} \)), is added to the input data to develop an effective layer of recurrence. Through this process, the network learns to decide which state of variables should be remembered or forgotten. Finally, there is a tanh squashing function, whose output is controlled by an output gate. This gate determines which values are actually permitted as cell output \(h_t \).

2.5 General regression neural network (GRNN)

The GRNN is a memory-based FNN which is a combination of radial basis function network (RBFN) and probabilistic neural network (PNN). The GRNN asymptotically converges to the ideal regression surface as the number of training samples increases. The GRNN has a unique property in that it does not require iterative training, in addition to having a solid statistical foundation. The GRNN training is a one-pass technique, unlike the most prevalent error-back-propagation (EBP) algorithm, which trains multilayer feed forward networks iteratively. Furthermore, the GRNN formulation has only one free parameter that can be tuned quickly. As a result, when compared to EBP-based training, GRNN trains itself in much less time.

The general network flow of a GRNN architecture is exhibited in Fig. 5. This architecture consists of four layers, i.e. input layer, pattern layer, summation layer and output layer. Each pattern unit corresponds to a single training sample. The chance of an input vector fitting into a pattern unit is estimated by each pattern unit. The pattern layer’s neurons are organized into \(k \) groups (to be decided by the model itself), one for each category. The RBF kernel is employed by \(i \)th pattern neuron in \(k \)th group to compute its output. The neurons of summation layer compute the approximation of the conditional class probability function through a combination of previously computed densities.

Typically, in NN models, hidden layer(s) is the bridge between the input and output layers. Its main function is to perform nonlinear transformations of the inputs. The hidden layers are responsible for carrying out bulk of the ‘mathematical mapping’. Though hidden layers are extremely common in NN models, their use and architecture vary depending on the use case. In this paper, pilot tests are carried out to select the best architecture for each of the five NN models.
used. Thus, the number of hidden layers is different from one another in FNN, CNN, RNN, LSTM and GRNN models.

2.6 Statistical error metrics

In order to validate the prediction performance of FNN, CNN, RNN, LSTM and GRNN models, four statistical error metrics, i.e. R^2, R^2_{adj}, RMSE and RRMSE are considered in this paper. The corresponding mathematical expressions of all these metrics are provided as below:

\[
R^2 = 1 - \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2}.
\]

(2)

where y_i represents the actual value of i^{th} observation, \hat{y}_i denotes the predicted value of i^{th} observation, \bar{y} is the mean of all the observations and n is the number of observations. The R^2_{adj} is the modified version of R^2 which considers number of predictors (independent variables) in the model. It has been noticed that increasing number of terms in a model may lead to higher R^2 value \[43\]. To overcome this problem, R^2_{adj} is taken into account to highlight the percentage of dependent variable variation that can be explained by its relationship with one or more predictor variables, considering the number of predictors in the model. It represents fitness of the model and adjusts for the number of terms in the model. Its value should be always less than or equal to R^2. The R^2_{adj} value can be calculated using the following equation:

\[
R^2_{\text{adj}} = 1 - \frac{(1 - R^2)(n - 1)}{n - p - 1}.
\]

(3)

where p denotes the number of independent variables in the model. On the other hand, RMSE and RRMSE can be estimated employing the following expressions:

\[
\text{RMSE} = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \hat{y})^2}{n}}
\]

(4)

\[
\text{RRMSE} = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \hat{y})^2}{n \times \sum_{i=1}^{n} \hat{y}_i^2}}
\]

(5)

3 Neural network-based prediction of EDT responses

It has already been mentioned that the objective of this paper focuses on applications of five NN models, i.e. FNN, CNN, RNN, LSTM and GRNN for predicting the responses of an EDT process, and comparing their prediction performance using four statistical error metrics. For this purpose, the experimental dataset of Jadidi et al. \[7\] is considered here. On a TEHRAN EKRAM machine modified by a spindle to perform turning operation to produce sharp edge grooves, Jadidi et al. \[7\] performed 81 experiments to study the effects of magnetic field (M) (in T), pulse current (Ip) (in A), pulse duration (Ton) (in μs) and angular velocity (N) (in rpm) on volumetric MRR (in mm3/min) and OC (in μm). The EDT operation was performed on round bars of AISI D2 alloy steel with dimensions of 200 mm in length and 20 mm in diameter. A rectangular-shaped pure copper tool (6 mm thickness, and 30 mm width and length) was employed as the electrode. During the experiments, all the input EDT parameters were varied at three different levels, i.e. pulse current (5, 10 and 15 A), pulse duration (600, 800 and 1000 μs), magnetic field density (0, 0.2 and 0.4 T) and angular velocity (50, 150 and 250 rpm). Table 1 depicts the experimental dataset and the measured response values. The detailed working principle along with the actual photograph of the EDT process can be available in \[7\].

3.1 Data sampling

The application of any of the NN models starts with a set of training data. The efficiency and effectiveness of an NN model entirely depends on how well it has been trained with the appropriate dataset. The training dataset should be so selected that it would adequately highlight all the features of the design space under consideration. Therefore, there should be no bias in selecting a particular dataset. In this paper, among the 81 experimental runs of the EDT process, 65 observations are randomly chosen for training and developing all the NN models, and the remaining observations are treated as testing data points to validate the prediction perfor-
Exp. No.	M	Ip	Ton	N	MRR	OC	Exp. No.	M	Ip	Ton	N	MRR	OC
1	0	5	600	50	231	113	0.2	10	800	250	433	92	
2	0	5	600	150	241	103	0.2	10	1000	50	405	143	
3	0	5	600	250	245	88	0.2	10	1000	150	411	131	
4	0	800	50	308	135	45	0.2	10	1000	250	415	112	
5	0	800	150	315	123	46	0.2	15	600	50	381	109	
6	0	800	250	303	105	47	0.2	15	600	150	397	99	
7	0	1000	50	283	163	48	0.2	15	600	50	405	85	
8	0	1000	150	288	149	49	0.2	15	800	50	508	130	
9	0	1000	250	303	105	47	0.2	15	800	150	520	118	
10	0	1000	300	124	51	0.2	15	800	150	500	101		
11	0	1000	150	113	52	0.2	15	800	150	468	157		
12	0	1000	318	97	53	0.2	15	1000	50	475	143		
13	0	1000	400	148	54	0.2	15	1000	150	479	122		
14	0	1000	410	135	55	0.4	5	600	50	323	68		
15	0	1000	394	115	56	0.4	5	600	150	373	62		
16	0	1000	368	179	57	0.4	5	600	250	343	53		
17	0	1000	374	164	58	0.4	5	800	50	431	81		
18	0	1000	377	140	59	0.4	5	800	150	441	74		
19	0	1500	50	346	136	60	0.4	5	800	250	424	63	
20	0	1500	361	124	61	0.4	5	1000	50	396	98		
21	0	1500	250	368	106	62	0.4	5	1000	150	403	89	
22	0	1500	462	162	63	0.4	5	1000	250	406	76		
23	0	1500	473	148	64	0.4	5	1000	50	420	74		
24	0	1500	455	126	65	0.4	10	600	150	438	68		
25	0	1500	425	196	66	0.4	10	600	250	445	58		
26	0	1500	432	179	67	0.4	10	800	50	560	89		
27	0	1500	435	152	68	0.4	10	800	150	574	81		
28	0.2	600	50	254	90	69	0.4	10	800	250	552	69	
29	0.2	600	150	265	82	70	0.4	10	1000	50	515	107	
30	0.2	600	250	270	70	71	0.4	10	1000	150	524	98	
31	0.2	800	50	339	108	72	0.4	10	1000	250	528	84	
32	0.2	800	150	347	98	73	0.4	15	600	50	484	82	
33	0.2	800	250	333	84	74	0.4	15	600	150	505	74	
34	0.2	1000	50	311	130	75	0.4	15	600	250	515	84	
35	0.2	1000	150	317	119	76	0.4	15	800	50	647	97	
36	0.2	1000	250	319	102	77	0.4	15	800	150	662	89	
37	0.2	600	50	330	99	78	0.4	15	800	250	637	76	
38	0.2	600	150	344	90	79	0.4	15	1000	50	595	118	
39	0.2	600	250	350	78	80	0.4	15	1000	150	605	107	
40	0.2	800	50	440	118	81	0.4	15	1000	250	609	91	
41	0.2	800	150	451	108								

It is worthwhile to mention here that the same sets of training and testing data are considered for comparative analysis of the prediction performance of all the NN models.

3.2 Model architecture

For each NN model under consideration, the corresponding model architecture is built with different types and number of layers having varying number of nodes. Although it is quite obvious that a greater number of layers and more
nodes in each layer would eventually increase the model accuracy, but every NN architecture is developed in this paper keeping in mind the optimal computational effort. For having an unbiased comparison among the NN models, their architectures are kept the same for both the responses (MRR and OC).

3.2.1 FNN

For developing a predictive FNN model, a sequence of one input layer, two dense layers and one output layer is taken. Dense layers are the hidden layers with 100 and 30 nodes respectively. Each layer is activated by the rectified linear activation unit (ReLU) function, which can be mathematically expressed using Eq. (6), where \(y \) is the output of ReLU and \(x \) is the input to that function. During compilation, adaptive moment estimation (AdaM) optimization process is considered with mean square error (MSE) as the loss function. The AdaM optimizer involves a combination of two gradient descent methodologies; one is momentum, which takes into consideration the ‘exponentially weighted average’ and accelerates the gradient descent, and another one is root mean square propagation, which implements the concept of decaying or exponential moving average of partial gradients. The FNN model is run over 5000 epochs. Figure 6 shows the architectural diagram of the developed FNN model.

\[
\frac{\partial f}{\partial x} = \begin{cases}
1 & \text{if } x \geq 0; \\
0 & \text{else}
\end{cases}
\] (6)

3.2.2 CNN

The CNN architecture also consists of one input layer, two hidden layers and one output layer. Between the two hidden layers, one is convolutional one-dimensional (Conv1D) layer with 100 nodes. The Conv1D layer is activated using ReLU function. Another hidden layer is a flattened layer, which converts the 100 output arrays coming from the nodes of Conv1D layer into a single one-dimensional array. The AdaM optimizer is adopted here with MSE as the loss function during the compilation process. This model is run over 5000 epochs. Figure 7 depicts the architectural diagram of the CNN model.

3.2.3 RNN

The RNN architecture is built with one input layer, one hidden layer and one output layer. The hidden layer is a simple RNN layer with 100 nodes. The RNN layer is activated by sigmoid activation function which can be represented using Eq. (7), where \(S(x) \) denotes the sigmoid function and \(x \) is the input to that function. During model training, MSE is treated as the loss function and AdaM as the optimizer. This model
Fig. 8 RNN architecture for model training

is also trained over 5000 epochs. The architectural diagram of RNN model is portrayed in Fig. 8.

\[S(x) = \frac{1}{1 + e^{-x}} \]

(7)

3.2.4 LSTM

For developing the corresponding LSTM model, a sequence of one input, one hidden and one output layers is considered in this paper. The hidden layer is an LSTM layer with 100 nodes. Figure 9 shows the developed LSTM architecture. The hidden layer is activated by tanh function. During compilation, AdaM optimization process is taken into account along with MSE as the loss function. This model is also run over 5000 epochs.

3.2.5 GRNN

The developed GRNN model consists of four layers, i.e. one input layer, one pattern layer, one summation layer and an output layer. In the pattern layer, which is based on RBF kernel, 100 nodes are taken. The bandwidth standard deviation parameter for the kernel is treated as 5.

Gradient search approach is employed to minimize the loss function and to find out the local minimum of the cost function, limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS-B) algorithm is adopted. In Fig. 10, the developed GRNN architecture is presented.

4 Prediction performance analysis

4.1 Performance analysis using experimental dataset

All the developed NN models with the specific architectures and parameters, mentioned in Sub-Sect. 3.2, are now trained on the past experimental dataset over the pre-defined epochs. After training, the corresponding predicted values of MRR and OC responses are obtained, as shown in Tables 2, 3 respectively. In Fig. 11, the scatter plots between the target and predicted MRR values for both the training and testing datasets are provided. This figure reveals that for MRR, there are excellent agreements between the target and predicted values for both the training and testing data. Based on Fig. 11, it can be unveiled that for prediction of MRR, LSTM has the best results as all the target versus predicted data points are nearly positioned along the diagonal identity line. Almost all the MRR values predicted by different NN models are within the ± 20% error bounds with respect to the actual. To further analyze the prediction pattern of various NN models, the normality of residuals is analyzed in Fig. 12. The residuals of FNN, CNN and LSTM appear to follow normality assumption better than the other two NN models. The residuals of RNN are left-skewed indicating that it is more likely to overpredict the response. This is also evident from the comparison of the mean (\(\mu \)) of the residuals. The GRNN
Exp. No.	Target FNN	CNN	RNN	GRNN	LSTM	Exp. No.	Target FNN	CNN	RNN	GRNN	LSTM			
Exp. No.	Target	FNN	CNN	RNN	GRNN	LSTM	Exp. No.	Target	FNN	CNN	RNN	GRNN	LSTM	
---------	--------	--------	--------	--------	--------	-------	---------	--------	--------	--------	--------	--------	-------	
23	473	441.6089	445.2768	472.1294	473	465.158	64	420	463.0616	490.8338	433.0352	403.5	415.0911	
24	455	443.2077	454.0099	458.4851	455	462.3222	65	438	471.1336	490.4475	451.2133	437.9998	426.8229	
25	425	459.8849	440.5154	434.6253	425	422.8334	66	445	453.5775	437.8876	447.585	444.9998	434.9218	
26	432	461.4838	440.8075	443.1791	432	432.9521	67	560	517.6382	545.4392	560.531	559.9999	554.272	
27	435	463.0826	441.0996	438.8657	434.9999	434.8688	68	574	515.0923	545.8732	569.3662	574	571.9506	
28	254	289.4057	298.6721	278.1001	277	256.4423	69	552	514.7343	559.6365	559.3177	551.9997	556.8716	
29	265	291.0046	298.1467	290.4476	265.0002	266.3912	70	515	518.4727	527.3013	541.0726	546.9464	505.5234	
30	270	272.2703	294.3777	300.5333	270.0001	268.824	71	524	515.9268	527.7189	546.7112	523.9997	524.5939	
31	339	309.2806	346.4592	377.103	339.0001	337.0804	72	528	513.3809	528.1364	542.8898	527.9999	521.7757	
32	347	310.8795	346.4688	385.7106	315.0007	341.7346	73	484	479.7213	505.6108	498.6324	483.9998	479.0403	
33	333	328.4267	350.8888	373.2826	333.0003	338.134	74	505	487.7932	505.2244	519.2001	504.9999	502.5916	
34	311	329.1555	334.6184	331.4263	311.0003	312.8942	75	515	484.2672	458.06	511.4446	445	509.8736	
35	317	330.7544	335.3602	342.7874	367.0552	319.8819	76	647	599.0868	622.4588	649.5006	646.9996	627.1984	
36	319	332.3532	336.1021	337.1532	319.0001	317.415	77	662	607.1587	622.9064	656.4434	546.7412	629.381	
37	330	377.9568	372.0195	332.7023	340.1118	329.098	78	637	614.5477	635.8134	638.0488	636.9996	620.2736	
38	344	386.0287	371.4942	348.2987	344	343.7427	79	595	626.921	618.8296	603.0941	594.9998	603.1805	
39	350	356.5101	367.9689	357.0338	344.8068	349.3522	80	605	624.3751	619.2471	610.6132	604.9996	615.7647	
40	440	398.5565	425.6302	456.0275	452.0208	430.1285	81	609	621.8291	619.6647	600.5006	591.342	604.7985	
41	451	400.1553	426.372	459.2618	501.2143	443.736								
Exp. No.	Target	FNN	CNN	RNN	GRNN	LSTM	Exp. No.	Target	FNN	CNN	RNN	GRNN	LSTM	
----------	--------	----------	----------	----------	----------	----------	----------	--------	----------	----------	----------	----------	----------	
1	113	119.1732	117.1817	118.7867	113	113.3572	42	92	94.5168	93.43893	94.20787	92	91.58872	
2	103	105.4071	102.9344	103.5098	103	103.6932	43	143	142.0636	140.6329	148.8281	143.0001	141.5845	
3	88	91.64101	93.2215	94.12621	87.9996	88.23135	44	131	128.2975	129.4192	133.5659	131	129.6714	
4	135	139.1878	136.5541	142.8677	134.9999	134.5466	45	112	114.5314	113.4675	118.3068	112	110.5894	
5	123	125.4217	123.9434	127.6086	123	123.2369	46	109	111.9031	110.6315	112.4175	109	108.7342	
6	105	111.6556	108.8373	112.4053	105	104.6459	47	99	98.13701	96.38415	97.15841	99	99.78037	
7	163	159.2023	155.9231	166.9667	162.9999	163.1688	48	85	84.3709	86.67123	83.98773	106	84.92549	
8	149	145.4362	144.7093	151.7076	149	147.9738	49	130	131.9177	131.1046	136.5165	130	129.5996	
9	127	131.6701	128.7576	136.4485	126.9999	126.6402	50	118	118.1516	118.4938	121.2573	118.0001	118.6681	
10	124	129.0418	128.8575	130.5592	124	124.2958	51	101	104.3855	103.3877	105.9983	101	100.6499	
11	113	115.2757	114.6102	115.3001	90	114.0981	52	157	151.9322	151.7542	160.6207	157	157.5365	
12	97	101.5096	104.8973	101.7745	97	96.91842	53	143	138.1661	140.5404	145.3563	143	142.584	
13	148	149.0564	149.4253	154.6581	148	148.2501	54	122	124.4	124.5888	130.0972	121.5	122.0401	
14	135	135.2902	136.8145	139.3991	135	135.4655	55	68	65.1587	64.97232	63.2821	68	68.77152	
15	115	121.5241	121.7084	124.14	115	116.2149	56	62	51.39259	50.72502	55.3672	62.00004	64.75293	
16	179	169.0709	168.9024	178.7593	178.9999	175.2614	57	53	37.62647	41.0121	51.83048	53.00003	56.00575	
17	164	155.3048	157.6887	163.498	163.9999	164.646	58	81	85.17326	84.3447	83.00337	81.00005	81.20598	
18	140	141.5387	141.737	148.2388	139.9999	139.8717	59	74	71.40714	71.73396	74.88757	83.84985	75.80059	
19	136	138.9104	138.9019	142.3496	135.9999	136.4606	60	63	57.64103	56.62787	68.40468	63.00004	65.40933	
20	124	125.1443	124.6546	127.0905	124	124.7663	61	98	105.1878	103.7137	107.1042	98.00006	98.43254	
21	106	111.3782	114.9416	111.8516	106	106.9143	62	89	91.42169	92.49994	94.40794	89	90.66702	
22	162	158.9249	159.375	166.4484	161.9999	162.7376	63	76	77.65557	76.54825	86.49302	102	77.99039	
Exp. No.	Target	FNN	CNN	RNN	GRNN	LSTM	Exp. No.	Target	FNN	CNN	RNN	GRNN	LSTM	
---------	--------	-----------	-----------	-----------	-----------	-----------	---------	--------	-----------	-----------	-----------	-----------	-----------	---------
23	148	145.1588	146.7642	151.1895	147.9999	147.8719	64	74	75.0278	72.74953	70.69492	70.69492	76.72082	73.79083
24	126	131.3927	131.6581	135.9305	125.9999	127.0482	65	68	61.26116	58.50222	60.12483	68.00004	69.19202	
25	196	178.9395	180.0246	190.5519	195.9999	179.142	66	58	47.49505	48.7893	55.12465	58	59.20315	
26	179	165.1734	168.8108	175.2884	178.9999	175.6008	67	89	95.04182	93.31722	94.79379	89	88.2756	
27	152	151.4073	152.8592	160.0293	152	152.4515	68	81	81.27572	80.70649	79.6452	81	81.74551	
28	90	92.16597	89.01103	88.83662	90.5	89.6367	69	69	67.5096	65.6004	71.82796	69.00005	70.6964	
29	82	78.39986	74.76373	73.57761	82	83.08086	70	107	115.0564	112.7944	118.8968	143	107.473	
30	70	64.63374	65.05081	68.69128	70	72.38254	71	98	101.2903	101.5807	103.6338	98.00007	98.45018	
31	108	112.1805	108.3834	112.9356	108	107.5831	72	84	87.52415	85.629	91.25066	84.00006	83.30798	
32	98	98.4144	95.77267	97.67657	123	98.93671	73	82	84.89585	82.36105	82.48532	82.00005	81.37911	
33	84	84.64829	80.66657	83.15662	84	84.7815	74	74	71.12974	68.11375	67.26267	74	75.45749	
34	130	132.1951	127.7524	137.0354	130	129.0288	75	84	57.36362	58.40083	58.55273	61.25697	64.85317	
35	119	118.429	116.5387	121.7754	119	118.8686	76	97	104.9104	102.8342	106.5853	97.00007	96.9202	
36	102	104.6628	100.587	106.5164	102.0001	100.5181	77	89	91.14429	90.22343	91.32515	118	89.96214	
37	99	102.0345	100.5881	100.627	124	98.36054	78	76	77.37817	75.11734	76.48792	76.00005	77.01233	
38	90	88.26843	86.34076	85.36806	89.99996	90.67656	79	118	124.925	123.4838	130.6894	118.0001	117.432	
39	78	74.50232	76.62785	76.33949	77.5	78.28259	80	107	111.1588	112.27	115.4242	107.0001	108.1045	
40	118	122.0491	121.1558	124.726	118.5	117.8336	81	91	97.39272	96.31836	100.1652	91	90.71896	
41	108	108.283	108.545	109.4669	108	108.085	108							
has unusually higher number of residuals in the near zero zone indicating that it has most probably ‘memorized’ some of the data. This has led to extremely high residuals in the ‘non-memorized’ data points causing large deviation of the residuals from normality.

In Fig. 13, the target versus predicted values of OC are presented for both the training and testing data. Here too, except...
GRNN, the OC values predicted by all other NN models are found to be within the ±20% error bounds. Further analysis of the NN models is carried out by inspecting the normality of residuals plots in Fig. 14. Although presence of outliers is detected in all the NN models, RNN is the most left-skewed. The GRNN is found to have extreme deviation from the normality assumption. On the other hand, although, the residual pattern for LSTM is observed to be non-normal, it is inter-
Table 4 Calculated values of different statistical error metrics for MRR and OC

Response	Model	Dataset	R^2	R^2_{adj}	RMSE	RRMSE
MRR	FNN	Test	0.86652	0.817982	5.781077	0.059413545
		Train	0.923498	0.918397	5.324524	0.05442662
		Overall	0.914158	0.90964	5.424152	0.055849182
	CNN	Test	0.905718	0.871433	5.299829	0.060108586
		Train	0.960906	0.9583	4.501822	0.046077734
		Overall	0.95186	0.949326	4.693894	0.049220299
	RNN	Test	0.970145	0.959289	3.975655	0.04343048
		Train	0.969533	0.967501	4.229813	0.042370989
		Overall	0.969633	0.968035	4.18319	0.042819783
	GRNN	Test	0.924896	0.897586	5.00691	0.058453518
		Train	0.945483	0.941849	4.892095	0.047865163
		Overall	0.942109	0.939062	4.915418	0.049818196
	LSTM	Test	0.990544	0.987105	2.98253	0.031526761
		Train	0.994819	0.994474	2.716194	0.026974513
		Overall	0.994118	0.993809	2.775115	0.028046963
	FNN	Test	0.919772	0.890598	2.997723	0.087378542
		Train	0.973504	0.971738	2.225383	0.073491219
		Overall	0.962171	0.96018	2.443214	0.079003216
	CNN	Test	0.923956	0.896304	2.957849	0.085732075
		Train	0.977724	0.976239	2.130928	0.069605591
		Overall	0.966382	0.964613	2.372183	0.075974076
	RNN	Test	0.921414	0.892837	2.982266	0.083574451
		Train	0.96744	0.96527	2.343048	0.072460485
		Overall	0.957736	0.955511	2.511881	0.076549424
	GRNN	Test	0.887396	0.846448	3.262865	0.091782641
		Train	0.936141	0.931884	2.772783	0.092196109
		Overall	0.925873	0.921971	2.890678	0.093227675
	LSTM	Test	0.958372	0.943234	2.544235	0.082863211
		Train	0.99863	0.998538	1.061218	0.035312806
		Overall	0.990132	0.989613	1.746054	0.058172876

It is worthwhile to mention here that for the best NN model, maximum R^2 and R^2_{adj}, and minimum RMSE and RRMSE values are always recommended.

As observed from Table 4 and Fig. 15, for MRR, LSTM has the best prediction performance with the highest R^2 and R^2_{adj} values of 0.9948 and 0.9945 respectively based on the training dataset. The corresponding lowest values of RMSE and RRMSE as 2.7162 and 0.0270 respectively also reassure the same observation. The LSTM is also proven to be the best for prediction of MRR using the testing dataset with R^2, R^2_{adj}, RMSE and RRMSE values as 0.9905, 0.9871, 2.9825 and 0.0315 respectively. When both the training and testing data sets are considered together, LSTM again emerges as the best performing NN model with the corresponding R^2, R^2_{adj}, RMSE and RRMSE values as 0.9905, 0.9871, 2.9825 and 0.0280 respectively. Thus, it performs excellently for all the datasets. Based on R^2 for prediction of MRR, RNN occupies the second position having a value of 0.9701 for...
the testing dataset, followed by GRNN, CNN and FNN. This same ranking of the NN models can also be validated with respect to R^2_{adj} and RMSE values. But when RRMSE values are considered, FNN performs marginally better that CNN, although the prediction performance of RNN and GRNN remains unaltered. Thus, the NN models can be ranked as LSTM-RNN-CNN-GRNN-FNN with respect to their overall prediction performance on MRR, as clearly noticed from Figs. 15 and 16.

For prediction of OC, similar results are also observed. The LSTM has the best prediction accuracy on training data having the maximum R^2 (0.9986), R^2_{adj} (0.9985), and minimum RMSE (1.0612) and RRMSE (0.0353) values. On testing data, LSTM also shows the best prediction performance having R^2, R^2_{adj}, RMSE and RRMSE values as 0.9584, 0.9432, 2.5442 and 0.0829 respectively. With respect to the overall data, its performance is also the best with R^2, R^2_{adj}, RMSE and RRMSE values as 0.9901, 0.9896, 1.7460 and 0.0582 respectively. However, the ranking order of the other NN models is different from that obtained for MRR. On the basis of R^2 values for prediction of OC on testing data, CNN occupies the second position with a R^2 value of 0.9239, followed by RNN, FNN and GRNN having R^2 values as 0.9214, 0.9198 and 0.8874 respectively. The values of R^2_{adj} and RMSE also validate the same results. But, based on RRMSE, RNN occupies the second position with a value of 0.0836, followed by CNN, FNN and GRNN having RRMSE values as 0.0857, 0.0874 and 0.0918 respectively. However, when the prediction performance of all the five NN models is evaluated using the overall data, their ranking order can be derived as LSTM-CNN-RNN-FNN-GRNN. For both MRR
and OC responses, LSTM thus has the best prediction performance based on the considered EDT experimental dataset.

To assess robustness of the derived results, each NN model is trained independently (using different seed values) for \(n \) times and tested \(n \) times. It should be noted that in Table 4 as well as Figs. 15 and 16, the prediction performance measures of only the best models are shown. Figure 17 exhibits the variation in the prediction performance measure (overall \(R^2 \)) after \(n = 10 \) independent trials. The box plots in Fig. 17 provide visually intuitive measurement of the models’ performance on repeated trials. Thus, instead of reporting only standard deviations, these box plots are more powerful tools in visualizing the repeatability characteristics of the models. Naturally, an NN model with high model accuracy as well as low variation spread in repeated trials is better than a model with high model accuracy as well as high variation spread. It can be noticed that in general for both the responses, FNN and LSTM have the highest variations in the predicted results. The variation in repeated trials is found to be the lowest for CNN models. In case of GRNN models for MRR modeling (Fig. 17a), though the variation of GRNN is more than CNN models, the mean and median of \(n \) trials of GRNN are found to be 0.9785 and 0.9829 respectively, which are higher than the best model values of all other NN models. This indicates an extremely high likelihood of GRNN outperforming any randomly chosen NN model among the other considered architectures. Similarly, in case of GRNN models for OC modeling (Fig. 17b), the median of \(n \) trials is estimated to be 0.9773, which is higher than the best model values of all other NN models. It simply means that at least 50% of the developed GRNN models outperform all other NN models.

5 Conclusions

This paper deals with identifying the most suitable NN model for prediction of two responses, i.e. MRR and OC, during EDT operation of AISI D2 alloy based on four input parameters, i.e. magnetic field, pulse current, pulse duration and angular velocity. Five popular NN models, i.e. FNN, CNN, RNN, GRNN and LSTM are developed for both the considered responses, and a detailed comparative analysis of their prediction performance is carried out using four statistical error metrics, i.e. \(R^2 \), \(R^2_{\text{adj}} \), RMSE and RRMSE. It is observed that for both MRR and OC, LSTM emerges out as the best performing NN model with the maximum \(R^2 \) and \(R^2_{\text{adj}} \), and minimum RMSE and RRMSE values. The LSTM incorporates both long term and short term memories to store the most repetitive characteristics during training. This adds more value to back-propagation and can provide more accurate results than simple RNN process. The LSTM helps to overcome vanishing and exploding gradient problems during training, thus providing the most reliable prediction results on both the training and testing data. Furthermore, the prediction performance of CNN and RNN is almost comparable. The FNN, being a basic and random learning NN model, provides moderately satisfactory results. However, although GRNN provides average prediction result, it is noticed that during training, based in its architecture, GRNN learns the data pattern very quickly. Thus, for achieving quicker prediction results, GRNN may be recommended. Additionally, based on repeatability of the prediction performance, GRNN is found to be extremely robust. In this paper, a past experimental dataset containing 81 experimental runs is considered.
to train and test the considered NN models. A better picture may be obtained if a large data repository is developed for the same purpose. As a future scope of this paper, other NN models, like RNN with gated recurrent unit (GRU), RBFN, modular neural network (MNN) or CNN with LSTM etc. may be applied for prediction of responses of the considered EDT process, and their performance may be contrasted with that of the present NN models.

Declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

1. Kumar, V., Diyaley, S., Chakraborty, S.: Teaching-learning-based parametric optimization of an electrical discharge machining process. Facta Univ. Ser. Mech. Eng. **18**(2), 281–300 (2020)
2. Jozić, S., Bajić, D., Dumanić, I., Bagavac, Z.: Optimization for an efficient and highly productive turning process. Rep. Mech. Eng. **2**(1), 212–221 (2021)
3. Matoorian, P., Sulaiman, S., Ahmad, M.M.H.M.: An experimental study for optimization of electrical discharge turning (EDT) process. J. Mater. Process. Technol. **204**, 350–356 (2008)
4. Gohil, V., Puri, Y.M.: Optimization of electrical discharge turning process using Taguchi-grey relational approach. Proc. CIRP **68**, 70–75 (2018)
5. Gohil, V., Puri, Y.M.: Statistical analysis of material removal rate and surface roughness in electrical discharge turning of titanium alloy (Ti-6Al-4V). Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. **232**(9), 1603–1614 (2018)
6. Srivastava, A.K., Nag, A., Dixit, A.R., Hloch, S., Tiwari, S., Scucka, J., Pachauri, P.: Surface integrity in wire-EDM tangential turning of in situ hybrid metal matrix composite A359/B4C/Al2O3. Sci. Eng. Compos. Mater. **26**(1), 122–133 (2019)
7. Jadidi, A., Azhiri, R.B., Teimouri, R.: Electrical discharge turning by assistance of external magnetic field, part I: Study of MRR and dimensional accuracy. Int. J. Lightweight Mater. Manuf. **3**(3), 265–276 (2020)
8. Azhiri, R.B., Jadidi, A., Teimouri, R.: Electrical discharge turning by assistance of external magnetic field, part II: Study of surface integrity. Int. J. Lightweight Mater. Manuf. **3**(3), 305–315 (2020)
9. Rehman, S., Alam, M.M., Alherns, L.M., Alimoradi, A.: Experimental modeling and optimization of magnetic field assisted electrical discharge turning: Applicable for wind power turbine elements. Alex. Eng. J. **60**, 2209–2223 (2021)
10. Song, K.Y., Chung, D.K., Park, M.S., Chu, C.N.: EDM turning using a strip electrode. J. Mater. Process. Technol. **213**(9), 1495–1500 (2013)
11. Azhiri, R.B., Bideskan, A.S., Javidpour, F., Tekiyeh, R.M.: Study on material removal rate, surface quality, and residual stress of AISI D2 tool steel in electrical discharge machining in presence of ultrasonic vibration effect. Int. J. Adv. Manuf. Technol. **101**(9–12), 2849–2860 (2019)
12. Natarajan, K.K., Gokulachandran, J.: Artificial neural network based machining operation selection for prismatic components. Int. J. Adv. Sci. Eng. Inf. Technol. **10**(2), 618–628 (2020)
13. Hinton, G.E., Osindero, S., Teh, Y.-H.: A fast learning algorithm for deep belief nets. Neural Comput. **18**(7), 1527–1554 (2006)
14. Machado, E., Pinto, T., Guedes, V., Morais, H.: Electrical load demand forecasting using feed-forward neural networks. Energies **14**, 7644 (2021)
15. Kumar, A., Sinwar, D., Saini, M.: Study of several key parameters responsible for COVID-19 outbreak using multiple regression analysis and multi-layer feed forward neural network. J. Interdiscip. Math. **24**(1), 53–75 (2021)
16. Alghoul, A., Jamdal, A., Alysouf, I., Bingamil, A., Ali, M., Al Baiti, S.: On the usefulness of pre-processing methods in rotating machines faults classification using artificial neural network. J. Appl. Comput. Mech. **7**(1), 254–261 (2021)
17. Chalisaonkar, R., Kumar, J., Pant, P.: Prediction of machining characteristics of finish cut WEDM process for pure titanium using feed forward back propagation neural network. Mater. Today Proc. **4**(2), 203–212 (2019)
18. Karthikeyan, S., Subbarayan, M.R., Mathan Kumar, P., Beemaraj, R.K., Sivakandan, C.: Computer vision-based surface roughness measurement using artificial neural network. Mater. Today Proc. **60**, 1325–1328 (2022)
19. Sangwan, K.S., Saxena, S., Kant, G.: Optimization of machining parameters to minimize surface roughness using integrated ANN-GA approach. Proc. CIRP **29**, 305–310 (2015)
20. Jampana, V.N.R., Ramana Rao, P.S.V., Sampathkumar, A.: Experimental and thermal investigation on powder mixed EDM using FEM and artificial neural networks. Adv. Mater. Sci. Eng. Article ID 8138294 (2021)
21. Avanzato, R., Bertelli, F.: A CNN-based differential image processing approach for rainfall classification. Adv. Sci. Technol. Eng.Syst. **5**(4), 438–444 (2020)
22. Islam, M.T.: Plant disease detection using CNN model and image processing. Int. J. Eng. Res. Technol. **9**(10), 291–297 (2020)
23. Mahewaradedy, M.T., Vamsi, B.K., Nagamalleswari, T.Y.J.: CNN for image processing to detect weeds using IOT. Int. J. Psychosoc. Rehabil. **24**(8), 1080–1087 (2020)
24. Siddiqua, R., Rahman, S., Uddin, J.: A deep learning-based dengue mosquito detection method using faster R-CNN and image processing techniques. Ann. Emerg. Technol. Comput. **5**(3), 11–23 (2021)
25. Alzubaidi, L., Zhang, J., Humaidi, A.J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M.A., Al-Amidie, M., Farhan, L.: Review of deep learning: concepts CNN architectures, challenges, applications, future directions. J. Big Data **8**, 53 (2021)
26. Lee, H., Song, J.: Understanding recurrent neural network for texts using English-Korean corpora. Commun. Stat. Appl. Methods **27**(3), 313–326 (2020)
27. Al-Shaher, M.A.: A hybrid deep learning and NLP based system to predict the spread of Covid-19 and unexpected side effects on people. Period. Eng. Nat. Sci. **4**(2), 2232–2341 (2020)
28. Gurunath, R., Alahmadi, A.H., Samanta, D., Khan, M.Z., Alahmadi, A.: A novel approach for linguistic steganography evaluation based on artificial neural networks. IEEE Access **9** (2021). https://doi.org/10.1109/ACCESS.2021.3108183
29. Yi, D., Bu, S., Kim, I.: An enhanced algorithm of RNN using trend based on artificial neural networks. IEEE Access **8** (2021). doi.org/10.1109/ACCESS.2021.3108183
30. Zhang, X., Liu, Y., Wu, X., Niu, Z.: Intelligent pulse analysis of meteorological data. Big Data Res. **27**, 11 (2021)
31. Yu, W., Kim, I.Y., Mechefske, C.: Analysis of different RNN autoencoder variants for time series classification and machine prognostics. Mech. Syst. Signal Process. **149**, 107322 (2021)
32. Zhang, X., Liu, Y., Wu, X., Niu, Z.: Intelligent pulse analysis of high-speed electrical discharge machining using different RNNs. J. Intell. Manuf. **31**(4), 937–951 (2020)
33. Lee, W.K., Abdullah, M.D., Ong, P., Abdullah, H., Teo, W.K.: Prediction of flank wear and surface roughness by recurrent neural network in turning process. J. Adv. Manuf. Technol. **15**(1), 55–67 (2021)
34. Hua, Y., Zhao, Z., Li, R., Chen, X., Liu, Z., Zhang, H.: Deep learning with long short-term memory for time series prediction. IEEE Commun. Mag. 57(6), 114–119 (2019)
35. Hochreiter, S., Schmidhuber, J.: Long short term memory. Neural Comput. 9(8), 1735–1780 (1997)
36. Karita, S., Ogawa, A., Delcroix, M., Nakatani, T.: Forward-backward convolutional LSTM for acoustic modeling. In: Proceedings of the Annual Conference of the International Speech Communication Association, Stockholm, Sweden, pp. 1601–1605 (2017)
37. Dai, S., Li, L., Li, Z.: Modeling vehicle interactions via modified LSTM models for trajectory prediction. IEEE Access 7,(2019). https://doi.org/10.1109/ACCESS.2019.2907000
38. Yongsheng, D., Fengshun, J., Jie, Z., Zhikeng, L.: A short-term power output forecasting model based on correlation analysis and ELM-LSTM for distributed PV system. J. Electrical Comput. Eng. Article ID 2051232 (2020)
39. Li, Q., Zhou, S., Wang, Z.: Quantitative risk assessment of explosion rescue by integrating CFD modeling with GRNN. Process Saf. Environ. Prot. 154, 291–305 (2021)
40. Chen, Y., Shen, L., Li, R., Xu, X., Hong, H., Lin, H., Chen, C.: Quantification of interfacial energies associated with membrane fouling in a membrane bioreactor by using BP and GRNN artificial neural networks. J. Colloid Interface Sci. 565, 1–10 (2020)
41. Chen, H.M., Tsai, K.H., Qi, G.Z., Yang, J.C.S., Amini, F.: Neural network for structure control. J. Comput. Civ. Eng. 9(2), 168–176 (1995)
42. Mucha, W.: Comparison of machine learning algorithms for structure state prediction in operational load monitoring. Sensors 20(24), 7087 (2020)
43. Bhattacharya, S., Das, P.P., Chatterjee, P., Chakraborty, S.: Prediction of responses in a sustainable dry turning operation: A comparative analysis. Math. Prob. Eng. (2021). https://doi.org/10.1155/2021/9967970
44. Iglewicz, B., Martinez, J.: Outlier detection using robust measure of scale. J. Stat. Comput. Simul. 15(4), 285–294 (1982)
45. Kalita, K., Dey, P., Halder, S.: Search for accurate RSM metamodels for structural engineering. J. Reinf. Plast. Compos. 38(21–22), 995–1013 (2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.