CONDUCTORS OF ℓ-ADIC REPRESENTATIONS

DOUGLAS ULMER

Abstract. We give two formulas for the Artin conductor of an ℓ-adic representation of the Weil group of a local field of residue characteristic $p \neq \ell$. Both formulas are surely well known, but seem not to appear in completely satisfactory form in the literature.

1. Introduction

Our aim in this note is to fill a small gap in the literature by giving two formulas for the Artin conductor of an ℓ-adic representation of the Galois group of a non-archimedean local field of residue characteristic $p \neq \ell$, see Theorem 1 in Section 7. Both are surely well-known, and we make no claim of priority, but neither seems to appear in completely satisfactory form in the literature. We hope having a clear reference will be useful to the community. See below for more details on antecedents.

Throughout, F will be a non-archimedean local field with residue field of characteristic p and cardinality q. We write \overline{F} for a separable closure of F, G_F for the Galois group $\text{Gal}(\overline{F}/F)$, and Φ for a geometric Frobenius element, i.e., an element of G_F which induces the q^{-1}-power Frobenius automorphism of the residue field of \overline{F}. We write W_F for the Weil group of F, the subgroup of G_F inducing integral powers of the q-power Frobenius on the residue field, and we write I_F for the inertia subgroup of G_F, the subgroup acting as the identity on the residue field.

Let ℓ be a prime number distinct from p and let E be a finite extension of \mathbb{Q}_ℓ, the ℓ-adic numbers. Let

$$\rho_\ell : W_F \to \text{GL}_n(E)$$

be a continuous representation where $\text{GL}_n(E)$ is given the topology induced by the metric (ℓ-adic) topology on E. We are concerned with (the exponent of) the Artin conductor of ρ_ℓ, which we denote $a(\rho_\ell)$ and call simply the conductor.

The conductor of a representation ρ of W_F depends only on the restriction of ρ to the inertia group I_F, and it is defined in the first instance (e.g., in [Ser79, Ch. VI]) only for representations which factor through finite quotients of W_F. Since the image of an ℓ-adic representation restricted to inertia need not be finite, further discussion is required. In the canonical references [Del73] and [Tat79], the conductor is defined rather indirectly in terms of Weil-Deligne representations. (See Section 4 below for the definition.) Luckily, it may also be calculated directly in terms of ρ_ℓ.

Our main result, Theorem 1 below, gives two expressions for $a(\rho_\ell)$ in terms of simple invariants of ρ_ℓ and conductors of representations whose restriction to inertia has finite image. The first appears in [Tat79], but unfortunately there is a typographical error there. The second appears in the as-yet unpublished lecture
notes [Wie12], but this reference does not include a proof that the formula agrees with the definition given in [Del73].

After setting up the necessary definitions and notation in Sections 2 through 6 we give the statement and (easy) proof of Theorem 1 in Section 7. Section 8 gives an application which was our original motivation for thinking about this question.

The notes [Wie12] were pointed out to us by Romyar Sharifi after we re-discovered the second formula in Theorem 1, and we thank him for this reference. We also thank David Rohrlich for his comments and encouragement.

2. Ramification groups

In this section, we review the lower and upper ramification filtrations on Galois groups. See [Ser79, Ch. IV] for more details.

Let K be a finite Galois extension of F with group $G = \text{Gal}(K/F)$. We write \mathcal{O}_K for the ring of integers of K, π_K for a generator of the maximal ideal of \mathcal{O}_K, and v_K for the valuation of K with $v_K(\pi_K) = 1$.

The ramification filtration on G in the lower numbering is defined by the requirement that

$$
\sigma \in G_i \iff v_K(\sigma(x) - x) \geq i + 1 \quad \forall x \in \mathcal{O}_K
$$

for i an integer ≥ -1. Clearly $G_{-1} = G$, G_0 is the inertia subgroup of G, and $G_i = 0$ for all sufficiently large i. By convention, if $r \geq -1$ is a real number, we set $G_r = G_i$ where i is the smallest integer $\geq r$.

Let $\varphi : [-1, \infty) \to [-1, \infty)$ be the continuous, piecewise linear function with $\varphi(-1) = -1$, slope 1 on $[-1,0)$, and slope $1/[G_0 : G_i]$ on $(i - 1, i)$. Let $\psi = \varphi^{-1}$, the inverse function. The upper numbering of the ramification filtration on G is given by

$$
G^\varphi = G_{\varphi(s)} \quad \text{and} \quad G^{\psi(r)} = G_r.
$$

Note that the breaks in the upper numbering (i.e., the values s so that $G^{s+\epsilon} \neq G^s$ for all $\epsilon > 0$) are in general rational numbers, not necessarily integers.

The upper numbering is adapted to quotients in the following sense: if L/F is a Galois extension with $L \subset K$ and $H = \text{Gal}(L/F)$, so that H is a quotient of G, then the upper numbering satisfies

$$
H^s = \text{Im}(G^s \to H).
$$

This property allows us to define a ramification filtration on $G_F = \text{Gal}(\overline{F}/F)$ by declaring that

$$
G_F^s = \{ \sigma \in G_F \mid \sigma|_K \in \text{Gal}(K/F)^s \quad \forall K \}\}
$$

where K runs through all finite Galois extensions of F. Clearly we have $G_F^{-1} = G_F$ and $G_F^0 = I_F$.

We define

$$
G_F^{\geq 0} = \cup_{\epsilon > 0} G_F^\epsilon
$$

where the union is over all positive real numbers ϵ. We also write P_F for $G_F^{> 0}$ and call this the wild inertia group of F. It is known to be a pro-p group and the quotient I_F/P_F is isomorphic as a profinite group to $\prod_{\ell \neq p} \mathbb{Z}_\ell$.

3. Conductors

In this section we review the definition of the Artin conductor of a representation of $G = \text{Gal}(K/F)$ where K/F is a finite Galois extension. See [Ser79, Ch. VI] for more details.

Let $\rho: G \to \text{GL}_n(E)$ be a representation where E is a field of characteristic zero. We write V for the space where ρ acts, namely E^n, and for a subgroup H of G we write V^H for the invariants under H:

$$V^H = \{ v \in V \mid \rho(h)(v) = v \ \forall h \in H \}. $$

Recall the ramification subgroups G_i of the previous section. For a subspace W of V, we write $\text{codim} W$ for the codimension of W in V, i.e., $\dim V - \dim W$. With these notations, we define the Artin conductor of ρ as

$$a(\rho) := \sum_{i=0}^{\infty} \text{codim} V^{G_i} \frac{[G_0 : G_i]}{[G_0 : G_i]}. $$

Note that this is in fact a finite sum and that it depends only on the restriction of ρ to G_0 the inertia subgroup of G. It true but not at all obvious that $a(\rho)$ is an integer; see [Ser79, Ch. VI, §2, Thm. 1'].

Because the definition of $a(\rho)$ depends only on ρ restricted to inertia, we may extend it to representations ρ which are only assumed to have finite image after restriction to inertia.

We give two alternate expressions for $a(\rho)$ which will be useful in what follows. First, we have

$$a(\rho) = \int_{-1}^{\infty} \text{codim} V^{G_r} \frac{[G_0 : G_r]}{[G_0 : G_r]} dr$$

because the integrand is constant on intervals $(i - 1, i)$ and the corresponding Riemann sum for the integral is exactly the sum defining $a(\rho)$. Second,

$$a(\rho) = \int_{-1}^{\infty} \text{codim} V^{G_s} ds.$$

This follows from the previous expression and the definition of the function φ relating the upper and lower numberings. Indeed, if $s = \varphi(r)$, then $ds = \varphi'(r) dr$ and $\varphi'(r) = 1/[G_0 : G_i]$ for $r \in (i - 1, i)$.

This last formula for $a(\rho)$ turns out to be best as it generalizes telle quelle to ℓ-adic representations. It also makes evident the fact that if ρ factors through $H = \text{Gal}(L/F)$ for some subextension $L \subset K$, then the conductor of ρ as a representation of G is the same as the its conductor as a representation of H.

For use later we note that the first term in the sum for $a(\rho)$ and the first part of the integrals for it are all equal:

$$\int_{-1}^{0} \text{codim} V^{G_r} ds = \int_{-1}^{0} \frac{\text{codim} V^{G_r}}{[G_0 : G_r]} dr = \text{codim} V^{G_0} = \text{codim} V^{I_F} \quad (3.1)$$

4. Weil-Deligne representations

In this section we review (with the minimum of details) the notion of a Weil-Deligne representation. See [Del73, §8] or [Tat79, 4.1] for more details, and [Roh94] for a motivated introduction aimed at arithmetic geometers.

We write $\| \cdot \|$ for the homomorphism $W_F \to \mathbb{Q}$ which sends Φ to q^{-1} and which is trivial on I_F.

Let \(V \) be a vector space over a field of characteristic 0. We define a Weil-Deligne representation of \(W_F \) on \(V \) as a pair \((\rho, N)\) where \(\rho : W_F \to \text{GL}(V)\) is a homomorphism continuous with respect to the trivial topology on \(V \) and \(N : V \to V \) is an endomorphism satisfying

\[
\rho(w)N\rho(w)^{-1} = ||w||N.
\]

Continuity of \(\rho\) implies that is has finite image restricted to inertia, and the displayed formula implies that \(N \) is nilpotent (because its eigenvalues are stable under multiplication by \(q \)).

Because \(\rho\) has finite image when restricted to \(I_F \), its conductor is defined by the formulas of the preceding section. We define the Artin conductor of a Weil-Deligne representation \((\rho, N)\) as

\[
a(\rho, N) := a(\rho) + \dim V^{I_F} - \dim V_N^{I_F}.
\]

Here \(V_N \) is the kernel of \(N \) on \(V \), so that

\[
V_N^{I_F} = \{ v \in V | N(v) = 0, \rho(w)(v) = v \forall w \in I_F \}.
\]

5. \(\ell \)-adic representations

We define an \(\ell \)-adic representation to be a continuous homomorphism

\[
\rho_\ell : W_F \to \text{GL}_n(E)
\]

where \(E \) is a finite extension of \(\mathbb{Q}_\ell \) and \(\text{GL}_n(E) \) is given the \(\ell \)-adic topology. A primary source is of such representations is \(\ell \)-adic cohomology. More precisely, if \(X \) is a variety over \(F \), then the \(\ell \)-adic étale cohomology groups \(H^i(X \times \overline{F}, \mathbb{Q}_\ell) \) (and variants) are equipped with continuous actions of \(G_F \) and we may restrict to \(W_F \) to obtain \(\ell \)-adic representations as defined above.

Because \(P_F \) is a pro-\(p \) group and \(I_F/P_F \cong \prod_{\ell \neq p} \mathbb{Z}_\ell \), there is a non-zero homomorphism \(t_\ell : I_F \to \mathbb{Q}_\ell \) which is unique up to a scalar. It satisfies \(t_\ell(w\sigma w^{-1}) = ||w||t_\ell(\sigma) \) for all \(w \in W_F \).

The structure of the inertia group \(I_F \) briefly alluded to above leads to a description of the behavior of \(\rho_\ell \) restricted to \(I_F \). Namely, the Proposition of [ST68, App.], attributed to Grothendieck, says that there is a unique nilpotent linear transformation \(N : E^n \to E^n \) such that for all \(\sigma \) in some finite index subgroup of \(I_F \)

\[
\rho_\ell(\sigma) = \exp(t_\ell(\sigma)N)
\]

as automorphisms of \(E^n \). Here \(\exp \) is defined by the usual series \(1+ x + x^2/2! + \cdots \) and \(\exp(t_\ell(\sigma)N) \) is in fact a finite sum because \(N \) is nilpotent.

It follows from this (see [Del73, §8]) that there exists a unique Weil-Deligne representation \((\rho, N)\) on \(V = E^n \) such that for all \(m \in \mathbb{Z} \) and all \(\sigma \in I_F \)

\[
\rho_\ell(\Phi^m \sigma) = \rho(\Phi^m \sigma) \exp(t_\ell(\sigma)N).
\] (5.1)

Conversely, given a Weil-Deligne representation \((\rho, N)\) on \(V \), the displayed formula defines an \(\ell \)-adic representation. This correspondence gives a bijection on isomorphism classes. (The correspondence \(\rho_\ell \leftrightarrow (\rho, N)\) depends on the choices of \(t_\ell \) and \(\Phi \), but after passing to isomorphism classes it is independent of these choices, see [Del73].)

The point of introducing Weil-Deligne representations is that their definition uses only the trivial topology on \(V \), so is convenient for shifting between different ground fields (such as \(\mathbb{Q}_\ell \) for varying \(\ell \) and \(\mathbb{C} \)).
Using this correspondence, we define

$$a(\rho) := a(\rho, N).$$

We note that $\rho(I_F)$ is finite if and only if the corresponding $N = 0$, and in this case the definition above reduces to that of Section 3.

We note also that t_ℓ is trivial on the wild inertia group $P_F = G^1_F$, so ρ_ℓ and ρ are equal on G^1_F.

6. Semi-simplification

Fix an ℓ-adic representation $\rho_\ell : W_F \to \text{GL}_n(E)$ and let (ρ, N) be the corresponding Weil-Deligne representation. To keep the various actions distinct, we adopt the following notation: We write V_ℓ for E^n with its action of W_F via ρ_ℓ, and we write V for E^n with its action of W_F via ρ and its nilpotent endomorphism N.

We will also consider V_{ss} and ρ_{ss}, the semi-simplifications of V_ℓ and ρ_ℓ, defined as the direct sum of the Jordan-Hölder factors of V_ℓ as a W_F module.

We note that ρ restricted to inertia has finite image, so must be semi-simple. On the other hand, equation (5.1) shows that ρ and ρ_ℓ have the same character, which is also the character of ρ_{ss}. It follows that ρ restricted to inertia and ρ_{ss} restricted to inertia are isomorphic representations.

7. Two formulas for $a(\rho_\ell)$

We can now state the main result of this note. The first equality of the theorem is the definition, and the next two are the formulas of the title of this section. The second appears in [Tat79, 4.2.4], but is missing the exponent I_F on the last term. The third appears in [Wie12] as Def. 3.1.27. This reference seems to include everything needed to prove that Def. 3.1.27 agrees with the standard definition, but the proof is not given there.

Theorem 1. Let ρ_ℓ be an ℓ-adic representation of W_F on V_ℓ with corresponding Weil-Deligne representation (ρ, N) on V and semisimplification ρ_{ss} on V_{ss}. Let $a(\rho_\ell)$ be Artin conductor of ρ_ℓ, defined as in Section 3 by

$$a(\rho_\ell) = a(\rho) + \dim V^{IF} - \dim V^{IF}_N. \quad (7.1)$$

Then we have

$$a(\rho_\ell) = a(\rho_{ss}) + \dim V^{IF}_{ss} - \dim V^{IF}_\ell \quad (7.2)$$

and

$$a(\rho_\ell) = \int_{-1}^{\infty} \text{codim} V^G_\ell^* ds. \quad (7.3)$$

Proof. Since ρ and ρ_{ss} are isomorphic when restricted to inertia, $a(\rho) = a(\rho_{ss})$ and $\dim V^{IF} = \dim V^{IF}_{ss}$. On the other hand, it is easy to see from equation (5.1) (with $m = 0$) that $V^{IF}_N = V^{IF}_\ell$. Thus the right hand sides of (7.1) and (7.2) are equal.

Using the second integral expression for $a(\rho)$ in Section 3 and equation 8.31, we see that

$$a(\rho_\ell) = \text{codim} V^{IF} + \int_{0}^{\infty} \text{codim} V^G^* ds + \dim V^{IF} - \dim V^{IF}_N$$

$$= \text{codim} V^{IF}_N + \int_{0}^{\infty} \text{codim} V^G^* ds$$
and since $V_{N}^{I} = V_{t}^{I}$ and $\rho = \rho_{t}$ on $G_{F}^{> 0}$, we have
\[
\text{codim } V_{N}^{I} + \int_{0}^{\infty} \text{codim } V_{s}^{G^{s}} \, ds = \text{codim } V_{t}^{I} + \int_{0}^{\infty} \text{codim } V_{s}^{G^{s}} \, ds
\]
\[
= \int_{-1}^{\infty} \text{codim } V_{s}^{G^{s}} \, ds
\]
and thus the right hand sides of (7.1) and (7.3) are equal. This completes the proof of the theorem. □

8. AN APPLICATION TO TWISTING

We give an easy application of the theorem which is the motivation for this work.

Let $\rho_{t} : W_{F} \to \GL_{n}(E)$ be an ℓ-adic representation and let $\chi : W_{F} \to E^{\times}$ be a character of finite order. We say “χ is more deeply ramified than ρ_{t}” if there exists a non-negative real number s such that $\rho_{t}(G_{F}^{s}) = \{\text{id}\}$ and $\chi(G_{F}^{s}) \neq \{\text{id}\}$. In other words, χ is non-trivial further into the ramification filtration than ρ_{t} is. Let s_{0} be the largest number such that χ is non-trivial on $G_{F}^{s_{0}}$. It follows from Section 3 that $a(\chi) = 1 + s_{0}$.

Proposition 1. If χ is more deeply ramified than ρ_{t}, then
\[
a(\rho_{t} \otimes \chi) = \deg(\rho_{t})a(\chi).
\]
Proof. Let V_{t} be the space where W_{F} acts via ρ_{t} and let $V_{t,\chi}$ be the same space where W_{F} acts via $\rho_{t} \otimes \chi$. By the theorem we have
\[
a(\rho_{t} \otimes \chi) = \int_{-1}^{\infty} \text{codim } V_{t,\chi}^{G_{F}^{s}} \, ds.
\]
If $s \leq s_{0}$ then $V_{t,\chi}^{G_{F}^{s}} \subset V_{t}^{G_{F}^{s}}$ and the latter is zero because $\rho_{t}(G_{F}^{s_{0}}) = \{\text{id}\}$ and $\chi(G_{F}^{s_{0}}) \neq \{\text{id}\}$. Thus in this range the integrand is $\dim V_{t} = \deg(\rho_{t})$. On the other hand, if $s > s_{0}$, then $\rho_{t} \otimes \chi(G_{F}^{s}) = \{\text{id}\}$ and the integrand is zero. Thus
\[
\int_{-1}^{\infty} \text{codim } V_{t,\chi}^{G_{F}^{s}} \, ds. = \deg(\rho_{t})(1 + s_{0}) = \deg(\rho_{t})a(\chi)
\]
as desired. □

David Rohrlich points out that under the assumptions that ρ_{t} is irreducible and has finite image, the proposition also follows from \cite{Ser79, p. 103, Ex. 2].

A particularly useful case of the proposition occurs when ρ_{t} is tamely ramified and χ is wildly ramified, e.g., when χ is an Artin-Schreier character.

REFERENCES

[Del73] P. Deligne. Les constantes des équations fonctionnelles des fonctions L. In Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), pages 501–597. Lecture Notes in Math., Vol. 349. Springer, Berlin, 1973.

[Roh94] D. E. Rohrlich. Elliptic curves and the Weil-Deligne group. In Elliptic curves and related topics, volume 4 of CRM Proc. Lecture Notes, pages 125–157. Amer. Math. Soc., Providence, RI, 1994.

[Ser79] J.-P. Serre. Local fields, volume 67 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1979. Translated from the French by Marvin Jay Greenberg.

[ST68] J.-P. Serre and J. Tate. Good reduction of abelian varieties. Ann. of Math. (2), 88:492–517, 1968.
[Tat79] J. T. Tate. Number theoretic background. In Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., XXXIII, pages 3–26. Amer. Math. Soc., Providence, R.I., 1979.

[Wie12] G. Wiese. Galois representations. Version dated 13 February 2012, downloaded from http://math.uni.lu/~wiese/notes/GalRep.pdf, 2012.

School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332

E-mail address: ulmer@math.gatech.edu