A master autoantigen-ome links alternative splicing, female predilection, and COVID-19 to autoimmune diseases

Julia Y. Wanga, **, Michael W. Roehrla, 1, Victor B. Roehrla, Michael H. Roehrlb, c, d, *

a Curandis, New York, NY, USA
b Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
c Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
d Weill Cornell Medicine BCMB Graduate Program in Biomedical Sciences, New York, NY, USA

ARTICLE INFO

Keywords:
SARS-CoV-2
COVID-19
Autoantigens
Autoimmunity
Alternative Splicing
Autoantibodies
Autoimmune Diseases

ABSTRACT

Chronic and debilitating autoimmune sequelae pose a grave concern for the post-COVID-19 pandemic era. Based on our discovery that the glycosaminoglycan dermatan sulfate (DS) displays peculiar affinity to apoptotic cells and autoantigens (autoAgs) and that DS-autoAg complexes cooperatively stimulate autoreactive B1 cell responses, we compiled a database of 751 candidate autoAgs from six human cell types. At least 657 of these have been found to be affected by SARS-CoV-2 infection based on currently available multi-omic COVID data, and at least 400 are confirmed targets of autoantibodies in a wide array of autoimmune diseases and cancer. The autoantigen-ome is significantly associated with various processes in viral infections, such as translation, protein processing, and vesicle transport. Interestingly, the coding genes of autoAgs predominantly contain multiple exons with many possible alternative splicing variants, short transcripts, and short UTR lengths. These observations and the finding that numerous autoAgs involved in RNA-splicing showed altered expression in viral infections suggest that viruses exploit alternative splicing to reprogram host cell machinery to ensure viral replication and survival. While each cell type gives rise to a unique pool of autoAgs, 39 common autoAgs associated with cell stress and apoptosis were identified from all six cell types, with several being known markers of systemic autoimmune diseases. In particular, the common autoAg UBA1 that catalyzes the first step in ubiquitination is encoded by an X-chromosome escape gene. Given its essential function in apoptotic cell clearance and that X-inactivation escape tends to increase with aging, UBA1 dysfunction can therefore predispose aging women to autoimmune disorders. In summary, we propose a model of how viral infections lead to extensive molecular alterations and host cell death, autoimmune reactions facilitated by autoAg-DS complexes, and ultimately autoimmune diseases. Overall, this master autoantigen-ome provides a molecular guide for investigating the myriad of autoimmune sequelae to COVID-19 and clues to the rare adverse effects of the currently available mRNA and viral vector-based COVID vaccines.

1. Introduction

Autoimmune disorders could be an important feature of the disease manifestations of COVID-19 and long-COVID syndromes [1]. Based on the insights we gained from numerous COVID-related autoantigens (autoAgs) and their associated cellular process and pathways [2–6], we propose a model to explain how viral infections in general and SARS-CoV-2 in particular can lead to a wide array of autoimmune diseases (Fig. 1). We illustrate how viral infections lead to extensive molecular alterations in the host cell, host cell death and tissue injury, autoimmune reactions, and the eventual development of autoimmune diseases.

During infections, opportunistic viruses have to hijack the host cell machinery in order to transcribe and translate the viral genes, synthesize viral proteins with correct polypeptide folding and post-translational modifications, and assemble viral particles. At the same time, viruses
have to manipulate the host’s immune defense to avoid elimination. This intricate host-virus symbiosis is accomplished by extensive alterations of host molecules and reprogramming of host molecular networks. The infected host cells undergo extreme stress and ultimately die, which releases altered molecules (i.e., potential autoAgs) that the immune system may recognize as non-self. In response, the host also synthesizes a cascade of molecules such as dermatan sulfate (DS) to facilitate wound healing and dead cell clearance.

We have discovered previously that DS possesses peculiar affinity for apoptotic cells and their released autoAgs [7–10]. DS, a major component of the extracellular matrix and connective tissue, is increasingly expressed during tissue injury and accumulates in wound areas [2,11]. Because of their affinity, DS and autoAgs form macromolecular complexes which cooperatively activate autoreactive B1 cells. AutoAg-DS complexes may activate B1 cells via a dual binding mode, i.e., with autoAg binding to the variable region of the B1 cell’s autoBCR and DS binding to the heavy chain of the autoBCR. Upon entering B1 cells, DS may regulate immunoglobulin (Ig) production by engaging the Ig-processing complex in the endoplasmic reticulum and the transcription factor GTF2I necessary for Ig gene expression [9,10]. AutoAg-DS affinity therefore defines a unifying biochemical and immunological property of autoAgs: any self-molecule possessing DS-affinity has a high propensity to become autoantigenic, and this has led to the identification of numerous autoAgs [8,12–14].

To gain a better understanding of autoimmune sequelae due to COVID-19, we present a master autoantigen atlas of over 750 potential autoAgs identified from six human cell types [2,3,5,6,8,12]. These autoAgs show significant correlation with pathways and processes that are crucial in viral infection and mRNA vaccine action, reveal common autoAgs associated with apoptosis and cell stress which may serve as markers for systemic autoimmune diseases, and provide a detailed molecular map for understanding and for investigating diverse autoimmune sequelae of COVID-19 and potential rare side-effects to viral vector- and mRNA-based vaccines. For the first time, we reveal intriguing features of autoAgs and their coding genes. Furthermore, we discuss how UBA1 (or UBE1, ubiquitin-like modifier-activating enzyme

Fig. 1. A model of how viral infections lead to autoimmune diseases. Viral infections induce extensive host molecular changes, cell death, and tissue damage. AutoAgs shed from apoptotic cells form affinity complexes with DS that is overexpressed in the wound area. Cooperative binding of DS-autoAg complexes to autoBCRs activate autoreactive B1 cells. Once internalized via autoBCR, DS engages Ig-processing complexes in the ER and GTF2I in the nucleus to facilitate Ig production. Activated B1 cells secrete autoantibodies, which then leads to autoimmune diseases. It is currently not established whether B1 cells also present autoAgs to autoreactive T-cells.
Potential autoAgs were identified by DS-affinity from protein extracts from six human cell lines as previously described, including HFL1 fetal lung fibroblasts [2], A549 lung epithelial cells [3], HS-Sultan B-lymphoblasts [5], Wil2-NS B-lymphoblasts [8], Jurkat T-lymphoblasts [6], and Hep-2 carcinoma cells [12].

2.2. Autoantigen literature text mining

Each DS-affinity protein was verified as to whether it is a target of autoantibodies by an extensive literature search on PubMed. Search keywords included the MeSH keyword “autoantibodies”; the protein name or its gene symbol, or alternative names and symbols. Only proteins for which specific autoantibodies are reported in PubMed-listed journal articles were considered “confirmed” or “known” autoAgs in this study.

2.3. COVID data comparison

DS-affinity proteins were compared with currently available COVID-19 multi-omic data compiled in the Coronascape database [15–36]. These data have been obtained with proteomics, phosphoproteomics, interactome and ubiquitome studies, and RNA-seq techniques. Up- and/or down-regulated proteins or genes were identified by comparing cells infected vs. uninfected by SARS-CoV-2 or COVID-19 patients vs. healthy controls. Similarity searches were conducted to identify DS-affinity proteins that are similar to those found up- and/or down-regulated in the viral infection at any omic level.

2.4. Protein network analysis

Protein-protein interactions were analyzed with STRING [37]. Interactions include both direct physical interaction and indirect functional associations, which are derived from genomic context predictions, high-throughput lab experiments, co-expression, automated text mining, and previous knowledge in databases. Each interaction is annotated with a confidence score between 0 (lowest) and 1 (highest), indicating the likelihood of an interaction to be true. Enrichment of pathways and processes were analyzed with Metascape [15], which utilize various ontological sources such as KEGG Pathway, GO Biological Process, Reactome Gene Sets, and Canonical Pathways. All genes in the genome were used as the enrichment background. Terms with a p value <0.01, a minimum count of 3, and an enrichment factor (ratio between the observed counts and the counts expected by chance) >1.5 were grouped into clusters based on their membership similarities. The most statistically significant term within a cluster was chosen to represent the cluster.

2.5. Gene characteristic analysis

Gene characteristics were analyzed with ShinyGO [38]. ShinyGO is based on a large annotation database derived from Ensembl and STRING-db. The characteristics of the genes for the groups of autoAgs in this study were compared with the rest in the genome. Chi-squared and Student’s t-tests were run to see if the autoAg genes had special characteristics when compared with all other genes in the human genome.

3. Results and discussion

3.1. The master autoantigen-ome

To understand the diversity of autoimmune diseases, we were curious to know how many autoAgs possibly exist. A total of 751 potential autoAgs were identified (Table 1) when we combined all DS-affinity autoAgs profiled from six human cell lines, namely, HFL1 fetal lung fibroblasts, Hep2 fibroblasts, A549 lung epithelial cells, HS-Sultan and Wil2-NS B-lymphoblasts, and Jurkat T-lymphoblasts. Extensive literature searches confirmed that at least 400 of these proteins (53.3%) have been reported as targets of autoantibodies in a wide variety of autoimmune diseases and cancer (see autoAg confirmation references in Table 1). The majority of unconfirmed or putative autoAgs are isoforms of or structurally similar to reported autoAgs and are yet-to-confirmed autoAgs. For example, 56 ribosomal proteins were identified by DS-affinity, but only 22 are thus far confirmed autoAgs; but given their structural similarity and shared epitopes, it is likely that most if not all of the 56 ribosomal proteins are likely true autoAgs awaiting further confirmation.

The master autoantigen-ome contains clusters of protein families, including 56 ribosomal proteins, 27 proteasome subunits, 19 heterogeneous ribonucleoproteins, 17 splicing factors, 17 ATP-dependent RNA helicase subunits, 16 eukaryotic translation initiation factors, 16 histones, 16 aminoacyl-tRNA synthases, 12 heat shock proteins, 9 elongation factors, 9 small nuclear ribonucleoproteins, 8 T-complex protein 1 subunits, and 7 14-3-3 proteins. In addition, there are multiple isoforms of numerous proteins, such as actin, tropomyosin, myosin, collagen, tubulin, and annexin.

The 751 confirmed and putative autoAgs are highly connected and have significantly more interactions than what would be expected for a random set of proteins of similar size drawn from the genome (exhibiting 6936 interactions vs. 3596 expected with the highest confidence level cutoff; enrichment p value <1.0e-16) as per protein-protein interaction analysis in STRING [37] (Fig. 2). The 400 confirmed autoAgs also form a similar, strong interacting network (exhibiting 2758 interactions vs. 1269 expected; enrichment p value <1.0e-16) (Fig. 3). The tight connections within the autoAg network suggest that these proteins are biologically connected, and given that they are all identified by DS-affinity, the autoAg protein networks offer a glimpse of the biological roles and functions of DS that await further investigation.

The 751-protein master autoantigen-ome is significantly associated with many biological processes and pathways, most notably translation, RNA processing, RNA splicing, protein folding, vesicle-mediated transport, chromosome organization, regulation of cell death, and apoptosis (Figs. 2 and 4). The 400 confirmed autoAgs are similarly significantly associated with the same processes and pathways (Fig. 3). In addition, these proteins are associated with numerous other processes, e.g., mRNA metabolic process, peptide metabolic process, establishment of localization in the cell, intracellular transport, interspecies interaction between organisms, viral process (infection and virulence), symbiotic process, and response to stress (Figs. 2–4). Hierarchical clustering [39] of the top 50 enriched Gene Ontology Biological Processes reveals RNA processing, particularly RNA splicing, to be the most noticeable (Fig. 4).

3.2. The COVID-19 autoantigen-ome

To find out how many autoAgs in the autoantigen-ome are potentially affected by SARS-CoV-2 infection, we looked for them in currently available multi-omic COVID data compiled by Coronascape [15–36]. Remarkably, 657 (87.5%) of the 751-member master autoantigen-ome are found to be affected in SARS-CoV-2 infection (Table 1 and Supplemental Table 1). Among them, 109 proteins were found up-regulated only, 176 were found down-regulated only, and 343 were found both up- and down-regulated at protein and/or RNA levels in virally infected cells or COVID-19 patients (Table 1). In addition, 191
P	Gene	Protein Description	Cell line	SARS-CoV-2 infection	DS affinity	Ref.								
			HFL1	HS-Sultan	Wil2	A549	Jurkat	Hbip-2	u	d	interact.	hi	low	
5	A2M	Alpha-2-macroglobulin	+	+			d							[1]
6	AARS	Alanine-tRNA ligase, AARS1	+	+			u	d						[2]
15	ACLY	ATP-citrate synthase	+	+										[3]
4	ACTA1	Actin, alpha skeletal muscle	+	u			d							[4]
10	ACTA2	Actin, aortic smooth muscle	+	+			+	u						[5]
8	ACT8	Actin, cytoplasmic 1	+	+			+	u						[6]
7	ACTBL2	Beta-actin-like protein	+	+			+	u						[6]
2	ACTBL3	Putative beta-actin-like protein 3, kappa actin, POTERP	+	+			+	u						
6	ACTC1	Actin, alpha cardiac muscle	+	d			u	d						[7]
4	ACTG1	Actin, cytoplasmic 2	+	+			u	d						[8]
28	ACTN1	Alpha-actinin-1	+	+			+	u						[9]
22	ACTN4	Alpha-actinin-4	+	+			+	u						[5]
2	ACTR2	Actin-related protein 2	+	u			d							[10]
2	ACTR3	Actin-related protein 3	+	u			d							[11]
2	ADSS2	Adenosuccinase synthetase isozyme 2, ADSS	+	+										[12]
3	AFP	Alpha-fetoprotein	+	+			u	d						[13]
2	AGRN	Agrin	+	u			d							[14]
15	AHCY	Adenosylhomocysteinase, SAHH	+	+			u	d						[15]
4	AHSA1	Activator of 90 kDa heat shock protein ATPase homolog 1	+	+			u	d						[16]
2	AHSG	Alpha-2-HS-glycoprotein, FETUA	+	+			u	d						[17]
5	AKR1B1	Aldo-keto reductase family 1 member B1	+	+			u	d	Orf3					[18]
15	AHCY	Adenosylhomocysteinase, SAHH	+	+			u	d						[19]
5	AHCY	Adenosylhomocysteinase, SAHH	+	+			u	d						[20]
10	ALB	Albumin	+	+			u	d						[21]
5	ALDH1A1	Delta-1-pyrroline-5-carboxylate synthetase	+	+			u	d						[22]
23	ALDH1A1	Retinal dehydrogenase 1	+	+			u	d						[23]
5	ALDH2	Aldehyde dehydrogenase, mitochondrial	+	u			d							[24]
5	ALDH3A1	Aldehyde dehydrogenase 3, ALDH3	+	+			u	d						[25]
9	ALDOA	Fructose-bisphosphate aldolase A	+	+			u	d						[26]
4	ALDOC	Fructose-bisphosphate aldolase C	+	+			u	d						[27]
3	ALFP	Alkaline phosphatase, placental type precursor	+	+			u	d						[28]
10	ANP32A	Acidic leucine-rich nuclear phosphoprotein 32 member A	+	+			u	d						[29]
13	ANP32B	ANP 32 family member B	+	+			+	u						[30]
3	ANP32C	ANP 32 family member C, PP32R1	+	+			u	d						[31]
4	ANP32E	ANP 32 family member E	+	+			u	d	Orf9c					[32]
15	ANXA2	Annexin A2	+	+			u	d						[33]
6	ARHGDIA	Rho-GTPase-activating protein 1	+	+			u	d						[34]
8	ARHGDIB	Rho-GDP-dissociation inhibitor 2	+	+			d							[35]
3	ARPC2	Actin-related protein 2/3 complex subunit 2	+	+			d							[36]

(continued on next page)
Table 1 (continued)

P	Gene	Protein	Cell line	SARS-CoV-2 infection	DS affinity	Ref.
7	ASMTL	N-Acetylsertotonin O-methyltransferase-like protein	HFL1	+	+	+
2	ASNS	Glutamine-dependent asparagine synthetase		+	+	+
4	ASPH	Aspartyl/asparaginyl beta-hydroxylase	HFL1	+	+	+
14	ATIC	Bifunctional purine biosynthesis protein, PURH	HFL1	+	+	+
2	ATP2A2	Sarcomplasmic/ER calcium ATPase 2	HFL1	+	+	+
13	ATP5F1B	ATP synthase subunit beta, mitochondrial, ATP5B	HFL1	+	+	+
3	ATXN10	Ataxin-10, Spinocerebellar ataxia type 10 protein	HFL1	+	+	+
2	BACH1	Brain acid soluble protein 1 (Neuronal axonal membrane protein NAP22)	HFL1	+	+	+
3	BCAT1	Branched chain amino acid aminotransferase	HFL1	+	+	+
2	BCCIP	BRCA2 and CDKN1A-interacting protein	HFL1	+	+	+
2	BGN	Biglycan	HFL1	+	+	+
3	BRIX1	Ribosome biogenesis protein BRX1 homolog	HFL1	+	+	+
2	BSG	Bascin, CD147	HFL1	+	+	+
3	BTF3	Transcription factor BTF3, NACB	HFL1	+	+	+
2	BZWP	Basic leucine zipper and W2 domain-containing 1	HFL1	+	+	+
3	BZWP2	Basic leucine zipper and W2 domain-containing 2	HFL1	+	+	+
7	C1QB1	Complement C1q-binding protein	HFL1	+	+	+
7	CALD1	Caldesmon	HFL1	+	+	+
8	CALM1	Calmodulin-1	HFL1	+	+	+
5	CALM2	Calmodulin-2	HFL1	+	+	+
2	CALM3	Calmodulin-3	HFL1	+	+	+
19	CALR	Calreticulin	HFL1	+	+	+
2	CALU	Calumenin	HFL1	+	+	+
15	CAND1	Cullin-associated NEDD8-dissociated protein 1	HFL1	+	+	+
7	CANX	Calnexin	HFL1	+	+	+
9	CAP1	Adenyl cyclase-associated protein 1	HFL1	+	+	+
5	CAPN1	Calpain-1 catalytic subunit	HFL1	+	+	+
5	CAPN2	Calpain-2 catalytic subunit	HFL1	+	+	+
3	CAPN3	Calpain small subunit 1	HFL1	+	+	+
3	CAPR1	Caprin-1	HFL1	+	+	+
3	CAPZA1	F-actin-capping protein subunit alpha-1	HFL1	+	+	+
3	CAPZA2	F-actin-capping protein subunit beta	HFL1	+	+	+
8	CAVIN1	Caveoleae-associated protein 1, PTRF	HFL1	+	+	+
3	CBX1	Chromobox protein homolog 1	HFL1	+	+	+
3	CBX3	Chromobox protein homolog 3	HFL1	+	+	+
3	CCDC6	Coiled-coil domain-containing protein 6	HFL1	+	+	+
12	CCT2	T-complex protein 1 subunit beta	HFL1	+	+	+
12	CCT3	T-complex protein 1 subunit gamma	HFL1	+	+	+
6	CCT4	T-complex protein 1 subunit delta	HFL1	+	+	+
10	CCT5	T-complex protein 1 subunit epsilon	HFL1	+	+	+
7	CCT6A	T-complex protein 1 subunit zeta	HFL1	+	+	+
9	CCT7	T-complex protein 1 subunit eta	HFL1	+	+	+
20	CCT8	T-complex protein 1 subunit theta	HFL1	+	+	+
4	CD248	Endosialin	HFL1	+	+	+
Table 1 (continued)

P	Gene	Protein	Cell line	SARS-Cov-2 infection	DS affinity	Ref.
7	CDC17	Hsp90 co-chaperone Cdc37	HFL1	u d	+	
3	CDK11A	Cyclin-dependent kinase 11A, CDC2L2	HS-Sultan	u	+	
3	CEBPZ	CCAAT/enhancer-binding protein zeta	u d	+	+	[53]
2	CFL1	Cofilin-1, CFL	u d	+	+	[53]
4	CKAP4	Cytoskeleton-associated protein 4, P63	+	u d	+	[54]
8	CKB	Creatine kinase B-type	u d	+	+	[55]
7	CLIC1	Chloride intracellular channel protein 1	+	u d	+	[56]
2	CLIC4	Chloride intracellular channel protein 4	d	+	+	[57]
51	CLTC	Clathrin heavy chain 1	d	+	+	[56]
4	CLTCL1	Clathrin heavy chain 2	+	+	+	[57]
4	CLUH	Clustered mitochondria protein homolog (mRNA-binding)	d	+	+	[57]
2	CMPK1	UMP-CMP kinase	+	d	+	
3	CNDP2	Cytosolic non-specific dipeptidase	+	u	Orf3	Orf10
3	CNPZ2	Protein canopy homolog	+	+	d	Orf3a
13	COL12A1	Collagen type XII alpha-1 chain	+	u d	+	[58]
45	COL1A1	Collagen type I alpha-1 chain	+	u d	+	[59]
37	COL1A2	Collagen type I-alpha-2 chain	+	u d	+	[60]
2	COL2A1	Collagen type II-alpha-1 chain	+	u d	+	[61]
12	COL3A1	Collagen type III-alpha-1 chain	+	u d	+	[62]
3	COL5A1	Collagen type V alpha 1	+	d	Orf8	Orf6
6	COL6A1	Collagen type VI-alpha-1 chain	+	u d	+	[63]
4	COL6A2	Collagen type VI-alpha-2 chain	d			
29	COL6A3	Collagen type VI-alpha-3 chain	d			
2	COPA	Coatamer subunit alpha	+	+	d	[64]
2	COPB1	Coatamer subunit beta	+	d	Nsp7	Nsp16
5	COPB2	Coatamer subunit beta’	+	u	+	[65]
2	COPD	Coatamer subunit delta, ARCN1	+	d	Orf3b	Orf6
2	COPG1	Coatamer subunit gamma-1	+	E		[39]
2	COPZ1	Coatamer subunit zeta-1	+	d	+	
12	CORO1A	Coronin-1A	+	u	+	[67]
3	CORO1C	Coronin-1C	+			
3	CPNE1	Copine-1	+			
4	CPNE3	Copine-3	+	+	u d	
4	CRK	Proto-oncogene c-Crk	+	u d	Nsp12	Nsp14
5	CRTAP	Cartilage-associated protein, F3H5	+	d	+	
3	CS	Citrate synthase, mitochondrial	+	u d	E	[3]
4	CSK	Tyrosine-protein kinase CSK	+	d	+	[68]
3	CSNK2A1	Casein kinase 2, alpha 1	+			
4	CSPG4	Chondroitin sulfate proteoglycan 4	+	d	Orf7b	S
4	CTCFL	High mobility group box 1 pseudogene 1,	+			[70]
2	CTRB9	RNA polymerase-associated protein CTR9 homolog	+	u d	Orf9c	
3	CTSL	Cathepsin B, APP secretase	+	u	Orf9c	
2	CTSD	Cathepsin D	+	u d	+	[71]
2	CUTA	Protein Cota	+	u d	+	
6	DAP3	28S ribosomal protein S29, mitochondrion, MRPS29	+			
6	DARS	Aspartate-tRNA ligase, DARS1	+			[72]
2	DNB1	Drebirin 1	+	u d	+	[73]
4	DCAP1	DDB1- and CUL4-associated factor 1, VPRBP	+	u d	+	
3	DCK	Deoxycytidine kinase	+			
3	DCPN	Decorin	+	d	+	[74]
2	DCTN1	Dynactin subunit 1, 150 KDa Dynactin-associated protein	+	d	+	[75]
5	DCTN2	Dynactin subunit 2	+		Orf6	
3	DCTP1	dCTP pyrophosphatase 1	+		Orf9b	
28	DDR1	DNA damage-binding protein 1	+	+	u d	[57]
3	DDX17	ATP-dependent RNA helicase DDX17	+	u d	+	[53]
7	DDX18	ATP-dependent RNA helicase DDX18	+	u	+	

(continued on next page)
P	Gene	Protein	Cell line	SARS-CoV-2 infection	DS affinity	Ref.
5	DDX21	Nuclear RNA helicase 2	+ +	u d	N	+ [76]
4	DDX27	ATP-dependent RNA helicase DDX27	+	+	+	+ [76]
3	DDX30	ATP-dependent RNA helicase DDX30	+	+		+ [76]
7	DDX39A	ATP-dependent RNA helicase DDX39A	+ +	+	+	+ [76]
5	DDX9B	Spliceosome RNA helicase BAT1	+ +	+	+	+ [76]
4	DDX5	ATP-dependent RNA helicase, p68	+ +	+	+	+ [76]
16	DDX9	ATP-dependent RNA helicase A, DDX9	+ +	+	+	+ [76]
2	DEK	Protein DEK	+	+		+ [76]
12	DHX15	Pre-mRNA-splicing factor ATP-dependent RNA helicase	+ +	+	+	+ [76]
4	DHX36	ATP-dependent RNA helicase DHX36	+	+		+ [76]
5	DIABLO	Second mitochondria-derived activator of caspase	+ +	+	+	+ [76]
4	DKC1	H/ACA ribonucleoprotein complex subunit B	+	+		+ [76]
2	DLD	Dihydrolipoyl dehydrogenase, mitochondrial	+	+		+ [76]
2	DLST	Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex	+	+		+ [76]
2	DNAJB11	DnaJ homolog subfamily C member 8	+	+		+ [76]
2	DNAJC8	DnaJ homolog subfamily C member 8	+	+		+ [76]
2	DMP1	Dihydropyrimidinase-related protein	+	+		+ [76]
2	DRG1	DEK protein	+	+		+ [76]
5	DTU	Deoxuryridine 5′-triphosphate nucleotidohydrolase, mitochondrial	+	+		+ [76]
5	DYNCH1	Dynein cytoplasmic 1 heavy chain	+	+		+ [76]
3	DYNCL2	Dynein cytoplasmic 1 intermediate chain	+	+		+ [76]
3	ERB2	Probable RNA-processing protein, EBNA1BP2	+	+		+ [76]
4	ECH1	Delta(3,5)-delta(2,4)-dienoyl-CoA isomerase	+	+		+ [76]
2	EEF1A1	Elongation factor 1-alfa 1	+	+		+ [76]
4	EEF1A2	Elongation factor 1-alfa 2	+	+		+ [76]
2	EEF1B2	Elongation factor 1-beta 2	+	+		+ [76]
5	EEF1D	Elongation factor 1-delta	+	+		+ [76]
10	EEF1G	Elongation factor 1-gamma	+	+		+ [76]
17	EEF2	Elongation factor 2	+	+		+ [76]
16	EFTUD2	116 kDa US snRNP component, SNRP116	+	+		+ [76]
4	EIF2B	ELAV domain-containing protein 2	+	+		+ [76]
3	EIF2A	Eukaryotic translation initiation factor 2 subunit 1,	+	+		+ [76]
10	EIF2A	Eukaryotic translation initiation factor 2 subunit 1,	+	+		+ [76]
9	EIF3B	Eukaryotic translation initiation factor 3 subunit B	+	+		+ [76]
2	EIF3C	Eukaryotic translation initiation factor 3 subunit C	+	+		+ [76]
3	EIF3CL	Eukaryotic translation initiation factor 3 subunit C-like protein	+	+		+ [76]
5	EIF3E	Eukaryotic translation initiation factor 3 subunit E	+	+		+ [76]
4	EIF3F	Eukaryotic translation initiation factor 3 subunit F	+	+		+ [76]
2	EIF3G	Eukaryotic translation initiation factor 3 subunit G	+	+		+ [76]
2	EIF3H	Eukaryotic translation initiation factor 3 subunit I	+	+		+ [76]
10	EIF3I	Eukaryotic translation initiation factor 3 subunit I	+	+		+ [76]
19	EIF4A1	Eukaryotic initiation factor 4A-1, DDX2A	+	+		+ [76]
8	EIF4A3	Eukaryotic initiation factor 4A-III, DDX48	+	+		+ [76]
4	EIF4G1	Eukaryotic translation initiation factor 4 gamma 1	+	+		+ [76]
2	EIF4G2	Eukaryotic translation initiation factor 4 gamma 2	+	+		+ [76]
2	EIF5	Eukaryotic translation initiation factor 5	+	+		+ [76]
5	EIF5A	Eukaryotic translation initiation factor 5A-1	+	+		+ [76]
2	EIF5A2	Eukaryotic translation initiation factor 5A-2	+	+		+ [76]
2	EIF5B	Eukaryotic translation initiation factor 5b (elf-5b) (translation initiation factor i-2)	+	+		+ [76]
3	EIF6	Eukaryotic translation initiation factor 6	+	+		+ [76]
4	ELAVL1	ELAV-like protein	+	+		+ [76]
2	ELOB	Transcription elongation factor B, TCEB2	+	+		+ [76]
2	EMG1	Ribosomal RNA small subunit methyltransferase	+	+		+ [76]
12	ENO1	Alpha-enolase	+	+		+ [76]
7	ENO2	Gamma-enolase	+	+		+ [76]
2	ENO3	Enolase-phosphatase EI	+	+		+ [76]
6	EPHX1	Epoxide hydrolase	+	+		+ [76]
4	ERO1A	Endoplasmic oxidoreductin-1-like protein, ERO1L	+	+		+ [76]
6	ERP44	Endoplasmic reticulum resident protein ERP44	+	+		+ [76]

(continued on next page)
P	Gene	Protein	Cell line	SARS-Cov-2 infection	DS affinity	Ref.					
8	ESYT1	Extended synaptotagmin-1, FAM62A	+	+	E +	[101]					
4	ETF1	Eukaryotic peptide chain release factor subunit 1	+		u	+					
2	EWSR1	EWS RNA-binding protein	+		u	d	+				
14	EZR	Ezrin	+	+	+	+	+	[102]			
3	FARS8	Phenylalanine-tRNA ligase beta subunit	+		+	+	[103]				
19	FASN	Fatty acid synthase	+	+	+	+	+	[104]			
2	FERMT3	Fermitin family homolog 3	+		u	d	+				
8	FKB10	FK506-binding protein 10	+		+	Nsp8					
11	FKBP4	Peptidyl-prolyl cis-trans isomerase FKB4, FKB-P52	+	+	+	+	Nsp12	[106]			
2	FKBP5	Peptidyl-prolyl cis-trans isomerase FKB5 (FK506-binding protein)	+	+	+	+	+				
4	FKBP9	FK506-binding protein 9	+		+	d	+				
43	FLNA	Filamin-A	+	+	+	+	+	[107]			
25	FLNB	Filamin-B	+		+	u	+	[57]			
24	FLNC	Filamin-C	+	+	u	d	+	+	[108]		
23	FN1	Fibronectin	+	u	d	+	[109]				
3	FSTL1	Follistatin-related protein	+		u	d	+	[110]			
2	FTH1	Ferritin heavy chain	+	+	u	d	+	[110]			
2	FUBP1	Far upstream element-binding protein 1	+	u	d	+	+	[111]			
10	G6PD	Glucose-6-phosphate 1-dehydrogenase	+	+	+	u	d	+	[44]		
15	GANAB	Neutral alpha-glucosidase A8	+	+	+	+	+	+	[112]		
6	GAPDH	Glyceraldehyde-3-phosphate dehydrogenase	+	+	+	+	+	+	[113]		
2	GAR1	H/ACA ribonucleoprotein complex subunit 1	+		+	+	+				
4	GARS	Glycine-RNA ligase, GARS1	+		u	d	+	+	[114]		
2	GART	Trifunctional purine biosynthetic protein	+		d	Nsp15	+	+			
2	GBE1	1,4-alpha-glucan-branching enzyme	+	+	+	u	+	+			
4	GCLC	Glutamate-cysteine ligase catalytic subunit	+	+		+	Orf3	+	+		
8	GDI1	Rab GDP dissociation inhibitor alpha	+	+	u	d	+	+	+	[115]	
10	GDI2	Rab GDP dissociation inhibitor beta	+	+	+	u	d	Nsp12	+	+	[116]
2	GGCT	Gamma-glutamylcysteine-transferase, cytochrome c-releasing factor 21	+		u	+	+				
3	GLO1	Lactoylglutathione lyase	+	+	d	Orf3	+	+	[117]		
3	GLRX3	Glutaredoxin 3, Thioredoxin-like 2	+	+	+	d	Nsp6	+	+	[118]	
10	GLUD1	Glutamate dehydrogenase 1, mitochondrial	+	+	+	+	+	+	[119]		
2	GMFB	Glia maturation factor, beta	+	+	+	u	+	+			
2	GPALPP1	Lipopolysaccharide-specific response protein 7	+	+	+	+	+	+			
5	GPC1	Glycophosphatidylinositol-anchored protein	+	+	d	+	+	+			
2	GPI	Glucose-6-phosphate isomerase	+	u	d	E	+	+	[120]		
4	GRWD1	Glutamate-rich WD repeat-containing protein 1	+	+	+	+	+	+			
16	GSN	Gelsolin	+		u	d	+	+	[16]		
3	GSTP1	Eukaryotic peptide chain release factor GTTP-binding subunit ERF3A	+	+	+	+	+	+			
3	GSS	Glutathione synthetase	+		d	+	+	+			
6	GSTP1	Glutathione S-transferase	+	+	u	d	+	[121]			
4	GT2J	General transcription factor II-J	+	+	u	d	+	+	[25]		
3	H1-1	Histone H1.1, H1F1, HIST1H1A, H1FNT	+	+	u	d	+	+	[122]		
2	H1F0	Histone H1.0, H1FV, H1-0	+	u	d	Nsp8	+	+			

(continued on next page)
P	Gene	Protein	Cell line	SARS-Cov-2 infection	DS interaction	Ref.						
			HFL1	HS-367	Wil2	A549	Jurkat	HBP-2	d	u	hi	low
3	H2AFV	Histone H2A.V, H2AZ2	+	+	+	u	d	+	[123]			
11	H2AFY	Core histone macro-H2A.1, MACROH2A1	+	+	+	u	d	+	[124]			
4	H2AFY2	Cor2 histone macro-H2A.2, MACROH2A2	+	+	+	u	d	+	[124]			
14	HADHA	Trifunctional enzyme subunit alpha, mitochondrial	+	+	+	u	d	+	+			
3	HARS	Histidyl-tRNA synthetase, cytoplasmal	+	+	+	u	d	+	[41]			
5	HDGF	Hepatoma-derived growth factor, HMGI12	+	+	+	u	d	+	[125]			
2	HDBP	Vigilin, High density lipoprotein binding protein	+	+	+	u	d	N	+			
4	HEATR1	HEAT repeat-containing protein 1	+	+	+	u	d	+	+			
2	HEBP2	Heme-binding protein 2	+	+	+	u	d	+	+			
5	HEXB	Beta-hexamisidase subunit beta	+	+	+	d	u	+	+			
6	HIST1H1B	Histone H1.5, H1F5, H1-5	+	+	+	u	d	+	[126]			
6	HIST1H1C	Histone H1.2, H1F2, H1-2	+	+	+	u	d	+	[127]			
5	HIST1H2A	Histone H2A type 1-A, H2AFR, H2AC1	+	+	+	u	d	+	[128]			
5	HIST1H2A	Histone H2A type 1-B, H2AFM, H2AC4	+	+	+	u	d	+	[122]			
5	HIST1H2B	Histone H2B type 1-B, H2BFF, H2BC3	+	+	+	u	d	+	[129]			
12	HIST1H2B1	Histone H2B type 1-L, H2BFC, H2BC13	+	+	+	u	d	+	[130]			
5	HIST2H2A	Histone H2B type 2-E, H2BC21	+	+	+	u	d	+	[131]			
5	HIST2H3A	Histone H3.2, H3C15	+	+	+	u	d	+	[132]			
5	HIST3H3	Histone H3.1t, H3F3, H3-4	+	+	+	u	d	+	[122]			
14	HIST4H4	Histone H4, H4C1	+	+	+	u	d	+	[133]			
10	HMGB1	High mobility group protein 1	+	+	+	u	d	+	[134]			
3	HMCG3	Hydroxymethylglutaryl-CoA synthase, cytoplasmic	+	+	+	u	d	+	+			
2	HMGN1	Non-histone chromosomal protein HMGI14	+	+	+	u	d	+	[135]			
4	HNRNPA1	Heterogeneous nuclear ribonucleoprotein A1	+	+	+	u	d	+	[126]			
8	HNRNPA2B1	hnRNP A2/B1	+	+	+	u	d	+	[136]			
2	HNRNPA3	hnRNP A3	+	+	+	u	d	+	[137]			
2	HNRNPA4	hnRNP A/B	+	+	+	u	d	+	[136]			
3	HNRNPB	hnRNP C1/C2	+	+	+	u	d	+	[138]			
7	HNRNPC	hnRNP C-like 1	+	+	+	u	d	+	[139]			
5	HNRNPD	hnRNP D, AUF1	+	+	+	u	d	+	[140]			
5	HNRNPDL	hnRNP D-like	+	+	+	u	d	+	[141]			
5	HNRNPF	hnRNP F	+	+	+	u	d	+	[142]			
2	HNRNPH1	hnRNP H1	+	+	+	u	d	+	[143]			
2	HNRNPH3	hnRNP H3	+	+	+	u	d	+	[144]			
9	HNRNPK	hnRNP K	+	+	+	u	d	+	[145]			
3	HNRNPM	hnRNP M	+	+	+	u	d	+	[146]			
6	HNRNPQ	hnRNP Q, SYNCRIP	+	+	+	u	d	+	[147]			
7	HNRNPQ	hnRNP R	+	+	+	u	d	+	[148]			
5	HNRNPY	hnRNP U (scaffold attachment factor A)	+	+	+	u	d	+	[149]			
4	HNRNPUL1	hnRNP U-like protein 1	+	+	+	u	d	+	[150]			
4	HNRNPUL2	hnRNP U-like protein 2	+	+	+	u	d	+	[151]			
6	HPRT1	Hypoxanthine-guanine phosphoribosyltransferase	+	+	+	u	d	+	[152]			
38	HSP90AA1	Heat shock protein 90-alpha	+	+	+	u	d	+	[147]			
6	HSP90AA2	Heat shock protein 90-alpha A2	+	+	+	u	d	+	[148]			
16	HSP90AB1	Heat shock protein HSP 90-beta	+	+	+	u	d	N	[151]			
31	HSP90B1	Endoplasmic, GRP94	+	+	+	u	d	Orf3a	+			
7	HSP1A1	Heat shock 70 kDa protein 1A	+	+	+	u	d	+	N			
4	HSP1A1	Heat shock 70 kDa protein 1-like, HSP70T	+	+	+	u	d	+	[154]			
14	HSP2A	Heat shock 70 kDa protein 2	+	+	+	u	d	+	[155]			
35	HSP4A	Heat shock 70 kDa protein 4	+	+	+	u	d	E	[156]			
13	HSP4A	Endoplasmic reticulum chaperone BIP, GRP78	+	+	+	u	d	+	[157]			
4	HSP4A	Endoplasmic reticulum chaperone BIP, GRP78	+	+	+	u	d	+	[158]			

(continued on next page)
P	Gene	Protein	Cell line	SARS-CoV-2 infection	DS	Ref.
7	HYOU1	Hypoxia up-regulated protein	+	u	d	[159]
4	IDE	Insulin-degrading enzyme	+	u	d	[160]
2	IDH3A	Isocitrate dehydrogenase [NAD] subunit alpha, mitochondrial	+			
2	IGBP1	Immunoglobulin-binding protein 1	+	u	d	[166]
7	IL18	Interleukin-18	+	u	d	[53]
6	ILF2	Interleukin enhancer-binding factor 2	+	+	u	[170]
6	ILF3	Interleukin enhancer-binding factor 3	+	+	u	[171]
2	IMPDH2	Inosine-5'-monophosphate dehydrogenase 2 (imp dehydrogenase 2) (impdh-ii)	+		d	[162]
7	IPO5	Importin-5, KPNB3, RANBP5	+	+		[162]
3	IPO7	Importin-7, RANBP7	+		Nsp6	Orf9c
13	IQGAP1	Ras GTPase-activating-like protein IQGAP1	+	+	+	[164]
2	IRQG	Immunity-related GTPase family Q protein	+		u	[165]
4	ITGB1	Integrin beta-1	+	u	d	[167]
2	IWS1	Protein IWS1 homolog	+			
4	KARS	Lysyl-tRNA synthetase	+	+		[168]
3	KHSRP	Far upstream element-binding protein 2 (KH-type splicing regulatory protein), FUBP2	+		Nsp7	[166]
2	KPNA2	Importin subunit alpha-1	+		d	Orf6
2	KPNA3	Importin subunit alpha-4	+			
11	KPNB1	Importin subunit beta-1	+	+	+	[162]
2	KRR1	KRR1 small subunit processome component homolog, HIV-1 Rev-binding protein	+		d	[167]
10	KTN1	Kinectin	+			Orf6
2	KYNU	Kynureninase	+			Orf3
7	LAMB1	Laminin subunit beta-1	+		d	[169]
5	LAMC1	Laminin subunit gamma-1	+			[170]
2	LAMP2	Lysosome-associated membrane glycoprotein 2	+	u	d	[171]
2	LARS	Leucyl-tRNA synthetase, cytoplasmic	+			[166]
8	LDHA	L-Lactate dehydrogenase A chain	+		u	Nsp12
10	LDHB	L-Lactate dehydrogenase B chain	+		u	Nsp12
2	LE01	RNA polymerase-associated protein LE01	+		u	[174]
5	LGALS1	Galectin-1	+		u	
23	LMNA	Prelamin-A/C	+	+	u	Nsp13
8	LMNB1	Lamin-B1	+	+	+	[176]
7	LMNB2	Lamin-B2	+	+	u	[177]
16	LRPPRC	Leucine-rich PPR motif-containing protein	+	+	+	[178]
2	LSM2	U6 snRNA-associated Sm-like protein Lsm2	+			
2	LSM6	U6 snRNA-associated Sm-like protein Lsm6	+			
2	LSM8	U6 snRNA-associated Sm-like protein Lsm8	+			
2	MAGOHB	Protein mago nashi homolog	+		u	
3	MANBA	Beta-mannosidase	+			
3	MAP1B	Microtubule-associated protein 1B	+		u	[179]
6	MAPRE1	Microtubule-associated protein RP/EB family member	+			Orf3
2	MARCKS	Myristoylated alanine-rich c-kinase substrate (marcks) (protein kinase c substrate, 80 kda protein, light chain) (pkcl)	+	u	d	[39]
2	MARS	Methionine-tRNA ligase, MARS1	+		d	[39]
9	MCM2	DNA replication licensing factor MCM2	+	+	+	[180]
7	MCM3	DNA replication licensing factor MCM3	+	+	+	[39]

(continued on next page)
P	Gene	Protein	Cell line	SARS-Cov-2 infection	DS affinity	Ref.				
5	MCM4	DNA replication licensing factor MCM4	+	+	+	u	d	+	[180]	
3	MCM5	DNA replication licensing factor MCM5	+	+	+	u	d	+	[180]	
9	MCM6	DNA replication licensing factor MCM6	+	+	+	+	u	d	+	[39]
2	MDH1	Malate dehydrogenase, cytoplasmic	+	d	E	+				
3	ME2	Malate dehydrogenase, mitochondrial	+	+	+	u	d	+	[25]	
10	MOV10	Putative helicase, Moloney leukemia virus 10 protein	+	+	+	u	d	E	+	[181]
5	MRPL1	39S ribosomal protein L1, mitochondrial	+	+	+	u	d	+	[182]	
3	MRPL13	39S ribosomal protein L13, mitochondrial	+	+	+	u	d	+	[182]	
2	MRPL15	39S ribosomal protein L15, mitochondrial	+	+	+	u	d	+	[183]	
2	MRPL17	39S ribosomal protein L17, mitochondrial	+	+	+	u	d	+	[183]	
2	MRPL18	39S ribosomal protein L18, mitochondrial	+	+	+	u	d	+	[183]	
4	MRPL19	39S ribosomal protein L19, mitochondrial	+	+	+	Orf8	+			
2	MRPL2	39S ribosomal protein L2, mitochondrial	+	+	+	d	Orf6	+		
2	MRPL23	39S ribosomal protein L23, mitochondrial	+	+	+	Orf6	+			
5	MRPL37	39S ribosomal protein L37, mitochondrial	+	+	+	u	d	+	[183]	
3	MRPL38	39S ribosomal protein L38, mitochondrial	+	+	+	u	d	+	[183]	
2	MRPL39	39S ribosomal protein L39, mitochondrial	+	+	+	Orf8	+			
2	MRPL45	39S ribosomal protein L45, mitochondrial	+	+	+	Orf6	+			
2	MRPL49	39S ribosomal protein L49, mitochondrial	+	+	+	Orf6	+			
4	MRPS22	28S ribosomal protein S22, mitochondrial	+	+	+	Orf6	+			
4	MRPS23	28S ribosomal protein S23, mitochondrial	+	+	+	Orf6	+			
6	MRPS27	28S ribosomal protein S27, mitochondrial	+	+	+	Nsp9	+			
2	MRPS28	28S ribosomal protein S28, mitochondrial, MRPS35	+	+	+	Orf6	+			
2	MRPS30	28S ribosomal protein S30, mitochondrial	+	+	+	Orf6	+			
2	MRPS34	28S ribosomal protein S34, mitochondrial	+	+	+	Orf6	+			
3	MRPS9	28S ribosomal protein S9, mitochondrial	+	+	+	Orf6	+			
2	MRPS9	28S ribosomal protein S9, mitochondrial	+	+	+	Orf6	+			
6	MSN	Moesin	+	+	+	u	Nsp6	+	[181]	
21	MVP	Major vault protein	+	+	+	u	d	+	[182]	
4	MORA5	Matrix remodeling-associated protein 5	+	+	+	u	d	+	[182]	
16	MYBBP1A	Myb-binding protein 1A	+	+	+	u	d	+	[183]	
2	MYG1	UFP0160 protein MYG1, mitochondrial, C12orf10	+	+	+	u	d	+	[183]	
2	MYH10	Myosin-10	+	+	+	u	d	+	[184]	
43	MYH9	Myosin-9	+	+	+	u	d	+	[184]	
3	MYL6	Myosin light chain 6	+	+	+	u	d	+	[185]	
3	MYL7	Myosin light chain kinase, smooth muscle	+	+	+	u	d	+	[185]	
3	MYO1C	Unconventional myosin-Ic, MYO1E	+	+	+	u	d	+	[185]	
4	MZB1	Marginal zone B- and B1-cell-specific protein (Proapoptotic caspase adapter protein, plasma cell-induced resident protein)	+	+	+	u	d	+	[185]	
3	NAA15	N-alpha-acetyltransferase 15, NatA auxiliary subunit (NMDA receptor-regulated protein, NARG1)	+	+	+	u	d	+	[186]	
2	NAA25	N-alpha-acetyltransferase 25, NatB auxiliary subunit (TPR repeat-containing protein C12orf30)	+	+	+	u	d	+	[186]	
4	NACA	Nascent polypeptide associated complex subunit alpha	+	+	+	u	d	+	[186]	
7	NAP1L1	Nucleosome assembly protein 1-like 1	+	+	+	u	d	+	[187]	
7	NAP1L4	Nucleosome assembly protein 1-like 4	+	+	+	u	d	+	[187]	
5	NARS	Asparagine-tRNA ligase, cytoplasmic, NARS1	+	+	+	u	d	+	[188]	
6	NASP	Nuclear autoantigenic sperm protein	+	+	+	u	d	+	[189]	
23	NCL	Nucleolin	+	+	+	u	d	+	[189]	
2	NES	Nestin	+	+	+	u	d	+	[189]	
2	NEU1	Sialidase-1	+	+	+	u	d	Orf8	+	[190]
3	NEXN	Nexin F-actin binding protein	+	+	+	u	d	+	[191]	
2	NFU1	HIRA interacting protein 5	+	+	+	u	d	+	[192]	
8	NME1	Nucleoside diphosphate kinase A, RMRP	+	+	+	u	d	+	[192]	
3	NME2	Nucleoside diphosphate kinase 2, NM23	+	+	+	u	d	+	[192]	

(continued on next page)
P	Gene	Protein	Cell line	SARS-CoV-2 infection	DS affinity	Ref.							
			HIF11	HS-Sultan	Wil2	A549	Jurkat	HBP-2	u	d	interact.	hi	low
2	NMT1	Glycylpeptide N-tetradeoxyanoyltransferase 1	+	+	+								
2	NMT2	Glycylpeptide N-tetradeoxyanoyltransferase 2	+	d	+								
2	NOC2L	Nucleolar complex protein 2 homolog	+	+	d								
7	NOLC1	Nucleolar phosphoprotein p130 (nucleolar and coiled-body phosphoprotein 1)	+	u	d								
9	NOP2	Probable 28S rRNA (cytosine(4447)-C(5))-methyltransferase	+	u	+								
15	NPEPPS	Puromycin-sensitive aminopeptidase, metalloprotease MP100	+	+									
7	NPM1	Nucleophosphin (nucleolar phosphoprotein, numarin)	+	+	+	u	d	Orf9c	+				
2	NRCAM	Neuronal cell adhesion molecule	+	+	+								
3	NSFL1C	NSFL1 cofactor p47	+	u	+								
8	NUDC	Nuclear distribution C, Dynine complex regulator	+	+	d	Nsp12	+						
4	NUDT21	Cleavage and polyadenylation specificity factor 5	+	+	d								
2	NUDT3	Diphosphoinositol polyphosphate phosphohydrolase	+										
4	NUDT5	Nudix hydrolase 5	+	+	+	d							
3	NUMA1	Nuclear mitotic apparatus protein 1	+		+								
2	OLA1	Obg-like ATPase 1	+										
2	OTUB1	Ubiquitin thioesterase protein OTUB1	+	+									
5	P3H1	Basement membrane chondroitin sulfate proteinoglycan	+										
2	P3H3	Prolyl 3-hydroxylase 3, LEPREL2	+										
2	P3H4	ER protein SC65, nucleolar autoantigen No55	+										
2	P4HA2	Prolyl 4-hydroxylase subunit alpha-2	+										
18	P4HB	Protein disulfide-isomerase	+	+	+	u	d	Nsp7	Orf13b	+			
14	PA2G4	Proliferation-associated protein 2G4	+	+	+	u	d	Orf13b	+				
22	PABPC1	Poly(A)-binding protein 1	+	+	+	d	N	+	[199]				
9	PABPC3	Poly(A)-binding protein 3	+	+	+	d	+	+	[197]				
16	PABPC4	Poly(A)-binding protein 4, APP1	+	+	+	d	N	+	+	[200]			
4	PAF1	RNA polymerase II-associated factor 1 homolog	+	+	+	d	+	+	+	[202]			
2	PAFAH1B2	Platelet-activating factor acetylhydrolase IB subunit beta	+	+	u	d	+	+	+	[203]			
3	PAFAH1B3	Platelet-activating factor acetylhydrolase IB subunit gamma	+	+	u	Nsp12	+	Nsp12	Orf13b	+			
6	PAICS	Multifunctional protein ADE2	+										
2	PARP1	Poly (ADP-ribose) polymerase	+										
3	PARVA	Alpha-parvin	+										
8	PCNA	Proliferating cell nuclear antigen	+	+	+	u	d	M	Orf13b	+			
2	PDCD10	Programmed cell death protein	+	+	+	u	+	Orf8	Orf9c	+			
21	PDIAS3	Protein disulfide-isomerase A3	+	+	+	u	d	M	Orf13b	+			
34	PDIAS4	Protein disulfide-isomerase A4	+	+	+	u	d	Nsp16	Nsp15	+			
10	PDIAS6	Protein disulfide-isomerase A6	+	+	+	u	d	Nsp7	Nsp15	Orf10			
6	PELP1	Prolin-, glutamic acid-, leucine-rich protein 1	+	+	+	d	+	+	+	[204]			
2	PES1	Pencalidlo homolog	+	+	+	d	+	+	+	[205]			
7	PFAS	Formylglycinamide ribonucleotide amidotransferase	+	+				Nsp7	Nsp12	+			
3	PFB2	Proline- and glutamic acid-amino acid decarboxylating	+	+	+	d	+	+	+	[206]			
4	PGAM1	Phosphoglycerate mutase 1	+	+	+	Nsp12	+	+	+	[207]			
4	PGAM2	Phosphoglycerate mutase 2	+	+	+	u	d		+	[180]			
9	PGD	6-Phosphogluconate dehydrogenase, decarboxylating	+							+			
3	PGLS	6-Phosphogluconolactonase	+					+	+	[208]			
3	PHGDH	D-3-Phosphoglycerate dehydrogenase	+					+	+	[209]			
P	Gene	Protein	Cell line	SARS-CoV-2 infection	DS affinity	Ref.							
----	-------	--	-----------	----------------------	-------------	------							
			HFL1	HS-Sultan	Wil2	Jurkat	HEP-2	u	d	interact.	hi	low	
2	PLA2G4A	Cytosolic phospholipase a2	+	+	+								
10	PLCG2	1-phosphatidylinositol-4,5-bisphosphate	+	+	u	+							
2	PLD3	Phospholipase D3, 5′-3′ exonuclease PLD3	+	u	d	Nsp2							
						Nsp3							
						Nsp5							
						Orf6							
						Orf7b							
						Orf8							
						Orf10							
91	PLEC	Plectin-1, PLEC1	+	+	u	+	+						
5	PLOD1	Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 1	+		d	+							
5	PLOD3	Multifunctional procollagen lysine hydroxylase and glycosyltransferase 1H3	+		+	+							
2	PLS1	Plastin-1	+		d	+							
30	PLS2	Plastin-2, LCP1	+	+	+	+	u	d					
6	PLS3	Plastin-3	+		+	u	d						
2	PMP2B	Mitochondrial-processing peptidase subunit beta	+		+	d	M						
2	POP1	Ribonucleases P/MRP protein subunit POP1	+		u	+	+						
3	POR	NADPH-cytochrome P450 reductase	+			u	d						
91	PLEC	Plectin-1, PLEC1	+										
5	PLOD1	Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 1	+										
5	PLOD3	Multifunctional procollagen lysine hydroxylase and glycosyltransferase 1H3	+										
2	PLS1	Plastin-1	+										
30	PLS2	Plastin-2, LCP1	+	+	+	+	u	d					
6	PLS3	Plastin-3	+			u	d						
2	PMP2B	Mitochondrial-processing peptidase subunit beta	+			u	d						
2	POP1	Ribonucleases P/MRP protein subunit POP1	+			u	d						
3	POR	NADPH-cytochrome P450 reductase	+			u	d						
91	PLEC	Plectin-1, PLEC1	+										
5	PLOD1	Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 1	+										
5	PLOD3	Multifunctional procollagen lysine hydroxylase and glycosyltransferase 1H3	+										
2	PLS1	Plastin-1	+										
30	PLS2	Plastin-2, LCP1	+	+	+	+	u	d					
6	PLS3	Plastin-3	+			u	d						
2	PMP2B	Mitochondrial-processing peptidase subunit beta	+			u	d						
2	POP1	Ribonucleases P/MRP protein subunit POP1	+			u	d						
3	POR	NADPH-cytochrome P450 reductase	+			u	d						

(continued on next page)
Table 1

P	Gene	Protein	Cell line	SARS-CoV-2 infection	DS affinity	Ref.		
			HFL1	HS-Sultan	Nil2	A549	Jurkat	HEp-2
9	PSMD11	Proteasome 265 non-ATPase regulatory subunit 11	+	+	u	d	+	Nsp7
3	PSMD12	265 protease non-ATPase regulatory subunit 12	+	+	d	+	[224]	
3	PSMD13	Proteasome 265 non-ATPase subunit 13	+	+	d	+		
8	PSMD14	265 protease non-ATPase regulatory subunit 14	+	+	+	d		
8	PSMD3	265 protease non-ATPase regulatory subunit 3	+	+	d	+		
9	PSMD6	265 protease non-ATPase regulatory subunit 6	+	+	d	+		
2	PSMD7	265 protease non-ATPase regulatory subunit 7	+	+	u	d		
11	PSME1	Proteasome activator complex subunit 1	+	u	Nsp15	+		
8	PSME2	Proteasome activator complex subunit 2	+	u	+	+		
4	PSME3	Proteasome activator complex subunit 3	+	+	d	Nsp16	+	[225]
2	PSPI	Phosphoserine phosphatase	+	+	+	+		
6	PTBP1	Polypyrimidine tract-binding protein, hnRNP I	+	+	u	d	+	[226]
2	PTBP3	Polypyrimidine tract-binding protein, ROD1	+	+	u	d	+	[226]
16	PTCD3	Pentatricopeptide repeat-containing protein 3, mitochondrial, MRPS39	+	+	+			
2	PTGES3	Prostaglandin E synthase 3 (telomerase-binding protein p23) (hsp90 co-chaperone) (progerin)	+	+	+		d	
4	PTMA	Prothymosin alpha	+	+	+	+		
2	PTPN6	Tyrosine-protein phosphatase non-receptor type 6	+	+	u	d		
2	PUB60	Poly(U)-binding-spooling factor PUB60	+	+	u	+		
16	PUM1	Pumilio homolog 1	+	+	d	+		
3	PURA	Transcriptional activator protein Pur-alpha	+	+	u	d		
2	PUS1	tRNA pseudouridine synthase A	+	+				
2	PZP	Pregnancy zone protein, alpha-2-macroglobulin like	+	+	d	+		[229]
4	QARS	Bifunctional glutamate/proline-tRNA ligase, EPRS, EPRS1	+	+	+		d	[166]
3	RAB1A	Ras-related protein Rab-1A	+	+	d	Nsp7	Orf3	Orf7b
5	RAB7A	Ras-related protein Rab-7A	+	+	u	d	+	
3	RAD23A	UV excision repair protein RAD23 homolog A	+	+	d	+		[230]
5	RAD23B	UV excision repair protein RAD23 homolog B	+	+	u	d	Orf3a	Orf7b
6	RALY	RNA binding protein, autoantigen p542	+	+	d	+		Orf9c
3	RANBP1	Ran-specific GTPase-activating protein	+	+	u	d	+	Orf9c
2	RANBP6	Ran-binding protein 6	+	+	d	Orf7a		
2	RANGAP1	Ran GTPase-activating protein 1	+	+	d	+		[163]
3	RARS	Arginyl-tRNA synthetase, cytoplasmic, RARS1	+	+	u	+		[39]
5	RBBP4	Chromosome assembly factor 1 subunit C	+	+	d	+		[232]
3	RBBP7	Histone-binding protein Rbbp7	+	+	u	d		
2	RBM3	Putative RNA-binding protein 3	+	+	u	Orf8		
3	RBM8A	RNA-binding protein 8A	+	+				
2	RBMX2	RNA-binding motif protein X-linked-like-2	+	+				
2	RCL3	Reticulocalbin-3	+	+				
8	RDX	Radixin	+	+	+			
2	RME2	RecQ-mediated genome instability protein 2	+	+	u	d	+	[233]
3	RNPEP	Arginine aminopeptidase, APB	+	+			Orf3	
2	RNPS1	RNA-binding protein with serine-rich domain 1	+	+	u	d		
4	RO52	E3 ubiquitin-protein ligase TRIM21 (Ro/SS-A), TRIM21	+	+	u	d	+	
4	RO60	60kDa SS-A/Ro ribonucleoprotein	+	+	u	d	+	[234]
3	RPA3	Replication protein A 14 kDa subunit	+	+		+		[235]
3	RPF2	Ribosome production factor 2 homolog, BXDC1	+	+		+		
2	RPL10A	60s ribosomal protein L10a	+	+				
2	RPL11	60s ribosomal protein L11	+	+	u	d	+	
4	RPL12	60s ribosomal protein L12	+	+	u	d	+	[236]
2	RPL15	60s ribosomal protein L15	+	+	+	d		
3	RPL18	60s ribosomal protein L18	+	+	+	d		
2	RPL22	60s ribosomal protein L22	+	+	+	d		[93]
2	RPL23A	Ribosomal protein L23a	+	u			Orf9b	
2	RPL26L1	60s ribosomal protein L26-like 1, RPL26P1	+	+	Orf9b			
3	RPL3	60s ribosomal protein L3 (hiv-1 tar mna-binding protein b)	+	u	d			

(continued on next page)
P	Gene	Protein	Cell line	SARS-Cov-2 infection	DS affinity	Ref.
2	RPL31	60S ribosomal protein L31		u		
2	RPL35A	60S ribosomal protein L35a		u		
2	RPL4	60S ribosomal protein L4		u		
17	RPL5	60S ribosomal protein L5		+	+	[238]
11	RPL6	60S ribosomal protein L6		u	d	[180]
9	RPL7	60S ribosomal protein L7, RPL7P32		+	+	[93]
4	RPL7A	60S ribosomal protein L7A		u	d	[237]
2	RPL8	60S ribosomal protein L8		u	d	[163]
8	RPLP0	60S acidic ribosomal protein P0		+	+	[239]
2	RPLP1	60S acidic ribosomal protein P1		u	d	[240]
4	RPLP2	60S acidic ribosomal protein P2		+	+	[240]
2	RPS15A	40S ribosomal protein S15a		+		
3	RPS18	40S ribosomal protein S18		+	u	
3	RPS19	40S ribosomal protein S19		+		d
3	RPS2	40S ribosomal protein S2		+		
3	RPS25	40S ribosomal protein S25		+		u
3	RPS27A	Ubiquitin-40S ribosomal protein S27a, UBA80, UBBCP1		+		u
6	RPS3	40S ribosomal protein S3		+		u
3	RPS3A	40S ribosomal protein S3a		+		u
3	RPS4X	40S ribosomal protein S4, X isomor		+		d
3	RPS6	40S ribosomal protein S6		+		u
3	RPS7	40S ribosomal protein S7		+		u
8	RPS8	40S ribosomal protein S8		+		u
5	RPS9	40S ribosomal protein S9		+		d
5	RPSA	40S ribosomal protein S9a		+		d
13	RRPBP1	Ribosome-binding protein 1		+		u
11	RRP12	RRP12-like protein		+		d
4	RRP9	U3 small nuclear RNA-interacting protein 2		+		u
4	RRS1	Ribosome biogenesis regulatory protein homolog		+		u
5	RSL1D1	Ribosomal L1 domain-containing protein 1		+		u
6	RUVBL1	RuvB-like 1, tata box-binding protein-interacting protein		+		u
5	RUVBL2	RuvB-like 2		+		d
2	SARS	Serine-tRNA ligase, cytoplasmic, SARS1		+		u
4	SEPH81	Selenide, water dikinase		+		d
2	SEPT11	Septin-11		+		d
2	SEPT2	Septin-2, NEDD5, DIF6		+		u
3	SEPT7	Septin-7		+		d
5	SERPINB1	Leukocyte elastase inhibitor		+		u
4	SERPINB6	Serpin B6, peptidase inhibitor 6		+		u
8	SERPINB9	Serpin B9		+		d
2	SERPINC1	Antithrombin-III		+		u
3	SERPINE1	Plasminogen activator inhibitor 1		+		u
4	SERPINH1	Serpin H1, HSP47		+		d
6	SET	SET nucleic proto-oncogene (Inhibitor of granzyme A-activated DNase, HLA-DR-associated protein II)		+		d
2	SF3A3	Splicing factor 3 subunit 1 (spliceosome-associated protein 114) (sap 114) (cfaln120)		+		d
12	SF3B1	Splicing factor 3B subunit 1		+		u
13	SF3B3	Splicing factor 3B subunit 3, SAP130		+		u
8	SFN	14-3-3 protein sigma, Stratifin		+		u
3	SFPQ	Splicing factor, proline- and glutamine-rich		+		u
3	SGT1	Small glutamine-rich tetractipeptide repeat-containing protein alpha		+		u
3	SH3BGRIL3	SH3 domain-binding glutamic acid-rich-like protein 3		+		d
2	SHMT1	Serine hydroxymethyltransferase, cytosolic		+		d
9	SHMT2	Serine hydroxymethyltransferase, mitochondrial		+		d
2	SKP1	S-phase kinase-associated protein 1		+		u
2	SLC1A5	Neutral amino acid transporter B, Simian type D		+		u
2	SLC2A1	HepG2 glucose transporter, GLUT1		+		d
17	SLC2A2	4F2 cell-surface antigen heavy chain, CD98		+		u

(continued on next page)
P	Gene	Protein	Cell line	SARS-CoV-2 infection	DS affinity	Ref.
			HIF1, HS- Sultan	Wil2, A549, Jurkat, HEP2		
2	SLBP	SRA stem-loop-interacting RNA-binding protein, mitochondrial	+	d		
4	SMS	Spermine synthase	+			
9	SND1	Staphylococcal nuclease domain-containing	+ + +	d	Orf3	
15	SNRNPS00	U5 small nuclear ribonucleoprotein 200 kDa helicase	+ + +			
3	SNRNPS70	U1 small nuclear ribonucleoprotein 70 kDa	+ + + +	d		[256]
3	SNRPB	SRA stem-loop-interacting RNA-binding protein, mitochondrial	+ + + +			
2	SNRP2	Small nuclear ribonucleoprotein Sm D1	+ + +			[257]
4	SNRPD2	Small nuclear ribonucleoprotein Sm D2	+ + +			[258]
2	SNRPD3	Small nuclear ribonucleoprotein Sm D3	+ + +			[259]
2	SNRPF	Small nuclear ribonucleoprotein E	+ + +			[260]
2	SNRPG	Small nuclear ribonucleoprotein G, PBSCG	+ + +			[261]
2	SOD1	Superoxide dismutase (Cu–Zn)	N			[262]
11	SSBP	Lupus la protein (sjoegren syndrome type b antigen) (La/SSB)	+ + +	N		[263]
2	SRP68	Signal recognition particle 68 kda protein	+			[264]
2	SRP72	Signal recognition particle 72 kda protein	+			[265]
2	SRP9	Signal recognition particle 9 kda protein	+			[266]
2	SRRT	Arsinite-resistance protein 2	+			[267]
5	SRSF1	Serine/argin-rich splicing factor 1	+ + +			[268]
2	SRSF11	Arginine/serine-rich splicing factor 11, SRSF11	+ + +			[269]
3	SRSF2	Arginine/serine-rich splicing factor 2, SRSF2	+ + +			[270]
2	SRSF3	Serine/argin-rich splicing factor 3, SRSF3	+ + +			[271]
4	SRSF4	Splicing factor, arginine/serine-rich 4 (srlp75)	+			[272]
2	SRSF5	Serine/argin-rich splicing factor 5, SRSF5	+ + +			[273]
2	SRSF6	Splicing factor, arginine/serine-rich 6	+ + +			[274]
3	SRSF7	Serine/argin-rich splicing factor 7, SRSF7	+ + + +			[275]
2	SRSF8	Serine/argin-rich splicing factor 8	+ + +			[276]
11	SSN	Lupus la protein (sjoegren syndrome type b antigen) (La/SSB)	+ + +			[277]
9	SSBP	Single-stranded DNA-binding protein, mitochondrial	+ + +			[278]
8	SSRP	Spermatid perinuclear RNA-binding protein, mitochondrial	+ + +			[279]
2	STBP	Spermatid perinuclear RNA-binding protein, mitochondrial	+			[280]
4	SUB1	Activated RNA polymerase II transcriptional coactivator p15 (PC4, RPO2TC1)	+ + +			[281]
2	SUGT1	Protein SGT1 homolog (Suppressor of G2 allele of SKP1 homolog)	+			[282]
2	SUMO1	Small ubiquitin-related modifier	+			[283]
9	SUPT16H	FACT complex subunit SPT16	+ + +			[284]
2	SUPT5H	Transcription elongation factor SPT5	+			[285]
2	SWAP70	Switch-associated protein 70	+			[286]
11	TALD01	Transaldolase	+			[287]
3	TCA	Tubulin-specific chaperone A	+			[288]
3	TCLA1	T-cell leukemia/lymphoma protein 1A	+ + +			[289]
7	TCP1	T-complex protein 1 subunit alpha (tcp-1-alpha) (ctt-alpha)	+ + +			[290]
4	TEX1	Testis-expressed protein 10	+			[291]
3	TFG	TRK-fused gene protein	+			[292]
4	TGM2	Protein-glutamine gamma-glutamyltransferase 2	+			[293]
9	THBS1	Thrombospondin-1	+			[294]

(continued on next page)
P	Gene	Protein	Cell line	SARS-CoV-2 infection	DS affinity	Ref.
			HFL1	HS-Sultan		
			Wil2	Jurkat		
			A549	HEP-2		
			u	d	interact.	hi
						low
29	TLN1	Talin-1	+	+		
4	TLN2	Talin-2	+	u		
6	TNC	Tenascin C	+	d		
5	TNPO1	Transportin-1, KPNB2				
3	TOTP	DNA topoisomerase 1 (Scl 70)	+	+	+	
5	TP53H	Quinone oxidoreductase	+	u		
3	TPDS2L	Tumor protein ID54	+	u	d	
2	TPH1	Trisphosphate isomerase	+			
16	TLN1	Talin-1	+	+		
4	TLN2	Talin-2	+	u		
6	TNC	Tenascin C	+	d		
5	TNPO1	Transportin-1, KPNB2				
3	TOTP	DNA topoisomerase 1 (Scl 70)	+	+	+	
5	TP53H	Quinone oxidoreductase	+	u		
3	TPDS2L	Tumor protein ID54	+	u	d	
2	TPH1	Trisphosphate isomerase	+			
16	TLN1	Talin-1	+	+		
4	TLN2	Talin-2	+	u		
6	TNC	Tenascin C	+	d		
5	TNPO1	Transportin-1, KPNB2				
3	TOTP	DNA topoisomerase 1 (Scl 70)	+	+		
5	TP53H	Quinone oxidoreductase	+	u		
3	TPDS2L	Tumor protein ID54	+	u		

(continued on next page)
P	Gene	Protein	Cell line	SARS-CoV-2 infection	DS affinity	Ref.			
4	XPO1	Exportin-1	HS-Sultan	+	+	Nsp4 Orf7a			
10	XPO2	Exportin-2, CAS, CSEIL	+	d	+				
5	XPO1	Exportin-T (trn exportin) (exportin{trna})	+	+	u	Orf7a			
32	XRC5	ATP-dependent DNA helicase 2 subunit 2, Ku80	+	+	+	+	+	[299]	
30	XRC6	ATP-dependent DNA helicase 2 subunit 1, Ku70	+	+	+	+	+	[299]	
6	YARS	Tyrosine-tRNA ligase, cytoplasmic, YARS1	+	+	+	+	+	[300]	
3	YBX1	Y-box-binding protein 1	+	+	+	+	+	[301]	
6	YBX3	Y-box-binding protein 3	+	+	+	+	+	[302]	
12	YWHAH	14-3-3 protein beta/alpha	+	+	+	+	+	[253]	
15	YWHAE	14-3-3 protein epsilon	+	+	+	+	+	+	[253]
18	YWHAG	14-3-3 protein gamma	+	+	+	+	+	[253]	
7	YWHAH	14-3-3 protein eta	+	+	+	+	+	+	[303]
6	YWHAQ	14-3-3 protein theta	+	+	+	+	+	+	[242]
7	YWHAZ	14-3-3 protein zeta/delta	+	+	+	+	+	+	[304]
2	ZPR1	Zinc finger protein ZPR1	+	+	+	+	+	[305]	

Columns from left to right: P (the largest number of peptides identified for a protein by mass spectrometry for all cell lines), gene symbol, protein name, cell lines (HSF1: fetal lung fibroblast, HS-Sultan B lymphoblast, WiI2-NS B-lymphoblast, A549 lung epithelial cell, Jurkat T-lymphoblast, HEP-2 fibroblast), SARS-CoV-2 infection (up-regulated, down-regulated, interactome of specific viral protein), dermatan sulfate (DS) affinity (high affinity: eluted from DS-affinity resins with 1.0 M NaCl; low affinity: eluted with 0.4–0.6 M NaCl). Ref. (representative paper reporting autoantibodies specific for the autoAg protein). Highlighted in red: common (shared) autoAgs found in all 6 cell lines.

References for Table 1.

[1] D. Saunders, S. T. Nakajima, S. N. Rai, J. Pan, C. Gercel-Taylor, D. D. Taylor. Alterations in antibody subclass immune reactivity to tubophast-derived fetal fibronectin and x2-macroglobulin in women with pregnancy loss. Am J Reprod Immunol, 2012;68:438-49.

[2] C. C. Bunn, R. M. Bernstein, M. B. Mathews. Autoantibodies against alanyl-tRNA synthetase and tRNAAla coexist and are associated with myositis. The Journal of experimental medicine, 1986;163:1281-91.

[3] A. Petrohl, G. Nagy, S. Bosze, F. Hudecz, E. Ziirös, G. Paragh et al. Detection of citrate synthase-reacting autoantibodies after heart transplantation: an epitope mapping study. Transplant international: official journal of the European Society for Organ Transplantation, 2005;17:834-40.

[4] M. Capello, J. V. Vykovakul, H. Katakama, L. E. Bantis, H. Wang, D. L. Kundnani et al. Exosomes harbor B cell targets in pancreatic adenocarcinoma and exert decoy function against complement-mediated cytotoxicity. Nature communications, 2019;10:2954.

[5] P. V. Mande, F. R. Parikh, I. Hinduja, K. Zaveri, R. Vaidya, R. Gajbhiye et al. Identification and validation of candidate biomarkers involved in human ovarian autoimmunity. Reprod Biomed Online, 2011;23:471-83.

[6] J. J. van Beers, C. M. Schwarte, J. Stammen-Vogelzangs, E. Oosterink, B. Bozic, G. J. Pruijn. The rheumatoid arthritis synovial fluid citrullinome reveals novel citrullinated epitopes in apolipoprotein E, myeloid nuclear differentiation antigen, and beta-actin. Arthritis and rheumatism, 2013;65:69-80.

[7] D. Chatterjee, M. Pieroni, M. Fatah, F. Charpentier, K. S. Cunningham, D. A. Spears et al. An autoantibody profile detects Brugada syndrome and identifies abnormally expressed myocardial proteins. European heart journal, 2020;41:2389-90.

[8] E. Vainio, G. M. Lenoir, R. M. Franklin. Autoantibodies in three populations of Burkitt’s lymphoma patients. Clinical and experimental immunology, 1983;54:387-96.

[9] C. Hanrot-Sailou, I. Segalen, Y. Le Meur, P. Youinou, Y. Renaudineau. Glomerular antibodies in lupus nephritis. Clin Rev Allergy Immunol, 2011;40:151-8.

[10] C. P. Moritz, Y. Tholance, O. Stoevesandt, K. Ferraud, J. P. Camdessanché, J. C. Antoine. CIDP Antibodies Target Junction Proteins and Identify Patient Subgroups: An Autoantigenomic Approach. Neurology(R) neuroimmunology & neuroinflammation, 2021;8:4.

[11] R. Rucksaken, O. Haanon, P. Pinlaor, C. Pairojkul, S. Roytrakul, P. Yongvanit et al. Plasma IgG autoantibody against actin-related protein 3 in liver fluke Opisthorchis viverrini infection. Parasite immunology, 2015;37:340-8.

[12] R. Bei, G. J. Miziewjski. Alpha-fetoprotein is an autoantigen in hepatocellular carcinoma and juvenile Batten disease. Frontiers in bioscience (Landmark edition), 1998;3:1299-309.

[13] M. H. Rivner, B. M. Quares, J. X. Pan, Z. Yu, J. F. Howard, Jr., A. Corse et al. Clinical features of LRP4/agrin-antibody-positive myasthenia gravis: A multicenter study. Muscle & nerve, 2020;52:333-43.

[14] H. Maejima, R. Nagashio, K. Yanagita, Y. Hamada, A. Ohno, Y. Sato et al. Identification of anti-retinal antibodies in patients with age-related macular degeneration. Experimental and molecular pathology, 2012;93:193-9.
[38x54] J. Y. Wang et al.

[38x93] oral and/or genital and skin lichen planus. Journal of oral pathology and medicine: official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology, 2010;39

[38x112] transforming growth factor beta pathway in patients with systemic sclerosis. Arthritis research and therapy, 2011;13:R874.

[38x140] anti-Tr/DNER, other antibodies, diagnostic pitfalls, summary and outlook. Journal of neuroinflammation, 2015;12:168.

[38x153] identification of new autoantibody specificities directed at proteins involved in the cell cycle, mitotic spindle and cytokinesis. Journal of autoimmunity, 2015;61:2177-90.

[38x211] identification of target antigens of antifibroblast antibodies in pulmonary arterial hypertension. Clinical and translational immunology, 2020;9(11):101.

[38x246] antibodies to the endoplasmic reticulum-resident chaperones calnexin, BiP and GRP78. Arthritis research and therapy, 2009;11:2255-63.

[38x265] Kidney International, 1998;54:34-44.

[38x268] 314-

[38x283] 33-34.

[38x322] autoimmune cerebellar ataxia. Part 3: Anti-Yo/CDR2, anti-Nb/AP3B2, PCA-2, anti-Tr/DNER, other antibodies, diagnostic pitfalls, summary and outlook. Journal of neuroinflammation, 2015;12:168.

[38x332] 191-7.

[38x341] 1982-95.e14.

[38x353] 509-17.

[38x370] 191-7.

[38x377] 522-7.

[38x399] 5178-88.

[38x402] 982-95.e14.

[38x421] 22002-18.

[38x446] 5178-88.

[38x466] 522-7.

[38x485] 982-95.e14.

[38x493] 982-95.e14.

[38x496] 522-7.

[38x513] proliferative lupus erythematosus. Rheumatol Int, 2012;32:1335-42.

[38x546] 1012-20.

[38x564] 'Medusa head ataxia': the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 3: Anti-Yo/CDR2, anti-Nb/AP3B2, PCA-2, anti-Tr/DNER, other antibodies, diagnostic pitfalls, summary and outlook. Journal of neuroinflammation, 2015;12:168.

[38x580] 2011;10:5037-48.

[38x600] 522-7.

[38x623] 522-7.

[38x638] 3335-44.

[38x657] 1012-20.

[38x676] 3996-4019.

[38x698] 3335-44.

[38x730] 2177-90.

[38x752] Journal of Translational Autoimmunity 5 (2022) 100147

[38x755] N. M. Bhat, C. M. Adams, Y. Chen, M. M. Bieber, N. N. Teng. Identification of Cell Surface Straight Chain Poly-N-Acetyl-Lactosamine Bearing Protein Ligands for VH4-34-34 Natural IgM Antibodies. Journal of Immunology (Baltimore, Md: 1950), 2015;195:5178-88.

[38x780] 1914:199-71.

[38x800] 237-33.

[38x823] 2008:177:1128-34.

[38x846] 337:2255-63.

[38x869] 337:2255-63.

[38x892] 337:2255-63.

[38x915] 337:2255-63.

[38x938] 337:2255-63.

[38x961] 337:2255-63.

[38x984] 337:2255-63.

[38x1007] J. Y. Wang et al.

[38x1030] J. Y. Wang et al.
[106] B. L. Nabors, H. M. Furneach, P. H. King. HuR, a novel target of anti-Hu antibodies, is expressed in non-neural tissues. Journal of neuroimmunology, 1998;92:152-9.

[107] S. Moscat, F. Pratesi, A. Sabbatini, D. Chimenti, M. Scavuzzo, R. Passatino et al. Surface expression of a glycolytic enzyme, alpha-enolase, recognized by autoantibodies in connective tissue disorders. Eur J Immunol, 2000;30:3575-84.

[108] D. A. O’Dwyer, V. Clifford, A. Hall, R. Smith, P. J. Robinson, P. A. Cronin. Pituitary autoantibodies in lymphocytic hypophysitis target both gamma- and alpha-Enolase - a link with pregnancy? Archives of physiology and biochemistry, 2002;110:94-8.

[109] T. Akatsuka, N. Kobayashi, T. Ishikawa, T. Saito, M. Shindo, M. Yamada et al. Autoantibody response to microsomal epoxide hydrolase in hepatitis C and A. Journal of autoimmunity, 2007;28:7-18.

[110] M. Garranzo-Asensio, P. San Segundo-Acosta, C. Povés, M. J. Fernández-Acenero, J. Martínez-Users, A. Montero-Calle et al. Identification of tumor-associated antigens with diagnostic value of colorectal cancer by in-depth immunomic and seroproteomic analysis. Journal of proteomics, 2020;214:103,635.

[111] C. Leveque, T. Hoshino, P. David, Y. Shoji-Kasaï, K. Leys, A. Omoiri et al. The synaptic vesicle protein synaptotagmin associates with calcium channels and is a putative Lambert-Eaton myasthenic syndrome antigen. Proceedings of the National Academy of Sciences of the United States of America, 1992;89:3625-9.

[112] M. Capello, P. Cappello, F. C. Linty, R. Chiarle, I. Spreduti, A. Novarino et al. Autoantibodies to Ezrin are an early sign of pancreatic cancer in humans and in genetically engineered mouse models. Journal of hematology & oncology, 2013;6:65.

[113] Z. Betteridge, H. Gnanawarden, J. North, J. Slinn, N. McHugh. Anti-synthetase syndrome: a new autoantibody to phenylalanyl transfer RNA synthetase (anti-Zo) associated with polymyositis and interstitial pneumonia. Rheumatology (Oxford, England), 2007;46:1005-8.

[114] C. K. Heo, M. K. Woo, D. Y. Yu, J. Y. Lee, J. S. Yoo, H. S. Yoo et al. Identification of autoantibody against fatty acid synthase in hepatocellular carcinoma mouse model and its application to diagnosis of HCC. Int J Oncol, 2010;36:1453-9.

[115] S. Forti, M. J. Scanlan, A. Invernizzi, F. Castiglioni, S. Popa, R. Agresti et al. Identification of breast cancer-restricted antigens by antibody screening of SKBR3 cDNA library using a preselected patient’s serum. Breast cancer research and treatment, 2002;73:245-56.

[116] C. Desmetz, C. Bacou-Mollelli, P. Rochaix, P. J. Lamy, A. Kramar, P. Rouanet et al. Identification of a novel panel of serum autoantibodies associated with the presence of in situ carcinoma of the breast in younger women. Clinical cancer research: an official journal of the American Association for Cancer Research, 2009;15:4733-41.

[117] J. Kambhieh-Mila, V. Sterzer, H. Celik, O. Khorraramshahi, R. Fadl Hassan Mohaf, A. Salama. Identification of novel autoantigens via mass spectrometry-based antibody-mediated identification of autoantigens (MS-AMIDA) using immune thrombocytopenic purpura (ITP) as a model disease. Journal of proteomics, 2017;157:59-70.

[118] M. Adachi-Hayama, A. Adachi, N. Shinozaki, T. Matsutani, T. Hiwasa, M. Takiguchi et al. Circulating anti-filamin C autoantibody as a potential serum biomarker for low-grade gliomas. BMC Cancer, 2014;14:452.

[119] W. Y. Wang, C. W. Twu, Y. C. Liu, H. H. Lin, C. J. Chen, J. C. Lin. Fibronectin promotes nasopharyngeal cancer cell motility and proliferation. Biomed Pharmacothero, 2019;109:1772-84.

[120] X. Dong, M. Yang, H. Sun, J. Lü, Z. Zheng, Z. Li et al. Combined measurement of CA 15-3 with novel autoantibodies improves diagnostic accuracy for breast cancer. Onco Targets Ther, 2013;6:273-9.

[121] A. Regent, H. Dibi, K. H. Ly, C. Agard, M. C. Tamby, N. Tanama et al. Identification of target antigens of anti-endothelial cell and anti-vascular smooth muscle cell antibodies in patients with giant cell arteritis: a proteomic approach. Arthritis research & therapy, 2011;13:R107.

[122] Y. Kit, M. Starykovych, M. Vajrachyova, J. Lenco, D. Zastavna, R. Stoika. Detection of novel auto-antigens in patients with recurrent miscarriage: description of an approach and preliminary findings. Croat Med J, 2014;55:259-64.

[123] F. Delunaro, D. Soldati, V. Bellisario, A. Berry, S. Camerini, M. Cresceni et al. Anti-GAPDH Autoantibodies as a Potent Diagnostic and Potential Biomarker of Neuropsychiatric Diseases. Arthritis & rheumatology (Hoboken, N.J), 2016;68:2708-16.

[124] F. Schneider, S. A. Yousen, D. B, K. F. Gibson, C. V. Oddis, R. Aragaval. Pulmonary pathologic manifestations of anti-glycyl-1rRNA synthetase (anti-EJ)-related inflammatory myopathy. Journal of clinical pathology, 2014;67:678-83.

[125] A. Kiyota, S. Iwama, Y. Sugimura, S. Takeuchi, H. Takagi, N. Ikawa et al. Identification of the novel autoantigen candidate Rab GDP dissociation inhibitor alpha in isolated adrenocorticotropin deficiency. Endocrine journal, 2015;62:153-60.

[126] O. Massa, M. Alessio, L. Russo, G. Nardo, V. Bonetto, F. Bertuzzi et al. Serological Proteome Analysis (SERPA) as a tool for the identification of new candidate autoantigens in type 1 diabetes. Journal of proteomics, 2013;82:263-73.

[127] L. Carlson, G. Ronquist, B. O. Nilsson, A. Larsson. Dominant prostate specific immunogens for sperm-agglutinating autoantibodies of infertile men. Journal of andrology, 2004;25:699-705.

[128] J. M. Chung, Y. Jung, Y. P. Kim, J. Song, S. Kim, J. Y. Kim et al. Identification of the Thioredoxin-Like 2 Autoantibody as a Specific Biomarker for Triple-Negative Breast Cancer. Journal of breast cancer, 2018;21:87-90.

[129] P. V. Belousov, M. A. Afanasyeva, E. O. Guborovtsova, A. V. Bogolyubova, A. N. Uvarova, L. V. Putyaeva et al. Multi-dimensional immunoproteomics coupled with in vivo recapitulation of oncogenic NRAS(Q61R) identifies diagnostically relevant autoantibody biomarkers in thyroid neoplasia. Cancer letters, 2019;467:96-106.

[130] Y. Muraki, I. Matsumoto, Y. Chino, T. Hayashi, Y. Chino, T. Hayashi et al. Glucose-6-phosphate isomerase variants play a key role in the generation of anti-GPI antibodies: possible mechanism of diagnosis of diabetes. Biochemical and biophysical research communications, 2014;568:273-9.

[131] A. Kiyota, S. Iwama, Y. Sugimura, S. Takeuchi, H. Takagi, N. Ikawa et al. Identification of the novel autoantigen candidate Rab GDP dissociation inhibitor alpha in isolated adrenocorticotropin deficiency. Endocrine journal, 2015;62:153-60.

[132] O. Massa, M. Alessio, L. Russo, G. Nardo, V. Bonetto, F. Bertuzzi et al. Serological Proteome Analysis (SERPA) as a tool for the identification of new candidate autoantigens in type 1 diabetes. Journal of proteomics, 2013;82:263-73.

[133] L. Carlson, G. Ronquist, B. O. Nilsson, A. Larsson. Dominant prostate specific immunogens for sperm-agglutinating autoantibodies of infertile men. Journal of andrology, 2004;25:699-705.

[134] J. M. Chung, Y. Jung, Y. P. Kim, J. Song, S. Kim, J. Y. Kim et al. Identification of the Thioredoxin-Like 2 Autoantibody as a Specific Biomarker for Triple-Negative Breast Cancer. Journal of breast cancer, 2018;21:87-90.

[135] P. V. Belousov, M. A. Afanasyeva, E. O. Guborovtsova, A. V. Bogolyubova, A. N. Uvarova, L. V. Putyaeva et al. Multi-dimensional immunoproteomics coupled with in vivo recapitulation of oncogenic NRAS(Q61R) identifies diagnostically relevant autoantibody biomarkers in thyroid neoplasia. Cancer letters, 2019;467:96-106.

[136] Y. Muraki, I. Matsumoto, Y. Chino, T. Hayashi, Y. Chino, T. Hayashi et al. Glucose-6-phosphate isomerase variants play a key role in the generation of anti-GPI antibodies: possible mechanism of diagnosis of diabetes. Biochemical and biophysical research communications, 2014;568:273-9.
S. V. Baranova, P. S. Dmitrienok, N. V. Ivanisenko, V. N. Buneva, G. A. Nevinsky. Antibodies to H2a and H2b histones from the sera of HIV-infected patients catalyze site-specific degradation of these histones. Molecular bioSystems, 2017;13:1090-101.

C. C. van Bavel, J. Dieker, S. Muller, J. P. Briand, M. Monestier, J. H. Berdén et al. Apoptosis-associated acetylation on histone H2B is an epitope for lupus autoantibodies. Molecular immunology, 2009;47:511-6.

S. Britton, P. S. Dmitrienok, A. D. Zhukova, N. V. Ivanisenko, E. S. Odiotsova, V. N. Buneva et al. Antibodies against H3 and H4 histones from the sera of HIV-infected patients catalyze site-specific degradation of these histones. Journal of molecular recognition: JMR, 2018;51:e2703.

M. Bruschi, M. Galetti, R. A. Sinico, G. Moroni, A. Bonanni, A. Radice et al. Glomerular Autoimmune Multicomponents of Human Lupus Nephritis In Vivo (2): Planted Antigens. Journal of the American Society of Nephrology: JASN, 2021;26:1905–24.

A. M. Rosenberg, D. M. Cordeiro. Relationship between sex and antibodies to high mobility group proteins 1 and 2 in juvenile idiopathic arthritis. J Rheumatol, 2000;27:2489-93.

J. N. Douglas, L. A. Gardner, H. E. Salapa, M. C. Levin. Antibodies to the RNA Binding Protein Heterogeneous Nuclear Ribonucleoprotein A1 Colocalize to Stress Granules Resulting in Altered RNA and Protein Levels in a Model of Neurodegeneration In Multiple Sclerosis. J Clin Cell Immunol, 2016;7:402.

M. F. Konig, J. T. Giles, P. A. Nigrinovic, F. Andreade. Antibodies to native and citrullinated RAS3 (hnRNP A2/B1) challenge citrullination as the inciting principle underlying loss of tolerance in rheumatoid arthritis. Annals of the rheumatic diseases, 2016;75:2022-8.

S. Siajka, M. Patriniou-Georgoula, P. G. Vlachoyiannopoulos, A. Gualis. Multiple specificities of autoantibodies against hnRNP A/B proteins in systemic rheumatic diseases and as an associated novel autoantigen. Autoimmunity, 2007;40:223-33.

N. H. Heegaard, M. R. Larsen, T. Muncrief, A. Wilk, P. Roepstorff. Heterogeneous nuclear ribonucleoprotein C1/C2 identified as autoantigens by biochemical and mass spectrometric methods. Arthritis research, 2000;2:407-14.

D. Stanek, J. Vencovsky, J. Kafkova, I. Raska. Heterogeneous nuclear RNP C1 and C2 core proteins are targets for an autoantibody found in the serum of a patient with systemic sclerosis and psoriatic arthritis. Arthritis and rheumatism, 1997;40:2172-7.

K. Skriner, W. Hueber, E. Suleymanolgu, E. Hofler, V. Krenn, J. Smolen et al. AUFI, the regulator of tumor necrosis factor alpha messenger RNA decay, is targeted by autoantibodies of patients with systemic rheumatic diseases. Arthritis and rheumatism, 2008;58:511-20.

Y. Zhang, H. Zhao, B. Liu, L. Li, L. Zhang, M. Bao et al. Low Level Antibodies Against Alpha-Tropomyosin Are Associated With Increased Risk of Coronary Heart Disease. Frontiers in pharmacology, 2020;11:1195.

K. Op De Beeck, L. Maes, K. Van den Bergh, R. Derua, E. Waerkens, K. Van Steen et al. Heterogeneous nuclear RNP Ls as targets of autoantibodies in systemic rheumatic diseases. Arthritis and rheumatism, 2012;64:213-21.

Y. Kim, N. B. Caberoy, G. Alvarado, J. L. Davis, W. J. Feuer, W. Li. Identification of Hnph3 as an autoantigen for acute anterior uveitis. Clin Immunol, 2011;138:60-6.

L. Yang, M. Fujimoto, H. Murota, S. Serada, M. Fujimoto, H. Honda et al. Proteomic identification of heterogeneous nuclear ribonucleoprotein K as a novel cold-associated autoantigen in patients with secondary Raynaud’s phenomenon. Rheumatology (Oxford, England), 2015;54:349-58.

W. Hassfeld, E. K. Chan, D. A. Mathisson, D. Portman, G. Dreyfuss, G. Steiner et al. Molecular definition of heterogeneous nuclear ribonucleoprotein R (hnRNP R) using autoimmune antibody: immunological relationship with hnRNP. F. Nucleic acids research, 1998;26:439-45.

S. V. Baranova, C. Froment, P. Frit, B. Monsarrat, B. Salles, P. Caloux. Cell nonhomologous end joining capacity controls SAF-A phosphorylation by DNA-PK in response to DNA double-strand breaks inducers. Cell Cycle, 2009;8:3717-22.

L. Harlow, I. O. Rosas, B. R. Gochuico, T. R. Mikuls, F. Delarije, C. V. Oddis et al. Identification of citrullinated hsp90 isoforms as novel autoantigens in rheumatoid arthritis-associated interstitial lung disease. Arthritis and rheumatism, 2013;65:869-79.

H. Y. Qin, J. L. Mahon, M. A. Atkinson, P. Chaturvedi, E. Lee-Chan, B. Singh. Type 1 diabetes alters anti-hsp90 autoantibody isotype. Journal of autoimmunity, 2003;20:237-45.

E. S. Fires, A. K. Choudhury, S. Idcula-Thomas, V. V. Khole. Anti-Hsp90 autoantibodies in sera of infertile women identify a dominant, conserved epitope EP6 (380-389) of HSP90 beta protein. Reprod Biol Endocrinol, 2011;9:16.

S. Suzuki, K. Utugusawa, K. Iwasa, T. Satoh, Y. Nagane, H. Yoshikawa. Autoimmunity to endoplasmic reticulum chaperone GRP94 in myasthenia gravis. Journal of neuroimmunology, 2011;237:87-92.

M. Chen, F. Aosai, H. S. Mun, K. Norose, H. Hata, A. Yano. Anti-Hsp70 autoantibody formation by B-1 cells in Toxoplasma gondii-infected mice. Infect Immun, 2000;68:4893-9.

M. Tishler, Y. Shoenfeld. Anti-heat-shock protein antibodies in rheumatic and autoimmune diseases. Semin Arthritis Rheum, 1996;26:558-63.

Y. Matsuda, Y. Arinuma, T. Nagai, S. Hirohata. Elevation of serum anti-glucose-regulated protein 78 antibodies in neuropsychiatric systemic lupus erythematosus. Lupus Sci Med, 2018;5:e000281.

A. Iannaccone, F. Giorgianni, D. D. New, T. J. Hollingsworth, A. Umfress, A. H. Alhatem et al. Circulating Autoantibodies in Age-Related Macular Degeneration Regeneration Human Macular Tissue Antigens Implicated in Autoimmunity, Immunomodulation, and Protection from Oxidative Stress and Apoptosis. PloS one, 2015;10: e0145323.

D. Papp, Z. Prohaska, J. Kocsis, G. Füst, D. Bánhegyi, D. A. Raynes et al. Development of a sensitive assay for the measurement of antibodies against heat shock protein binding protein 1 (HspBP1): increased levels of anti-HspBP1 IgG are prevalent in HIV infected subjects. Journal of medical virology, 2005;76:464-9.

L. Horvath, L. Cervenak, M. Oroszlan, Z. Prohaska, K. Uray, F. Hudecz et al. Antibodies against different epitopes of heat-shock protein 60 in children with type 1 diabetes mellitus. Immunol Lett, 2002;80:155-62.

H. Fillit, S. Shibata, T. Sasaki, H. Spiera, L. D. Kerr, M. Blake. Autoantibodies to the protein core of vascular basement membrane heparan sulfate proteoglycan in systemic lupus erythematosus. Autoimmunity, 1993;14:243-9.

M. Minohara. [Heat shock protein 105 in multiple sclerosis]. Nippon Rinsho, 2003;61:1317-22.

T. Kobayashi, Y. Yama, T. Uray, E. Hanagi. The increment of anti-ORP150 autoantibody in initial stages of atheroma in high-fat diet fed mice. The Journal of veterinary medical science, 2002;6:177-80.

M. Tumtsetseva, V. Morozova, A. Zakubunin, D. Khorobko, N. Malkova, M. Filipenko et al. Use of the VH6-1 gene segment to code for anti-interleukin-18 autoantibodies in systemic sclerosis. Immunogenetics, 2016;68:237-46.

H. D. Bremer, N. Landegren, S. Jöberg, A. Hallgren, S. Renneker, E. Latteine et al. ILF2 and ILF3 are autoantigens in canine systemic autoimmune disease. Sci Rep, 2018;8:4852.
B virus infection. Clinical and experimental immunology, 2006;144
expressed by activated platelets. European journal of biochemistry, 1997;243
potential human autoantigens by protein macroarrays. PloS one, 2013;8
disorder. J Toxicol Sci, 1994;19
1996;7
1996;39
in the autoimmune response. Proceedings of the National Academy of Sciences of the United States of America, 2003;100
derived from an unimmunized, neonatal Balb/c mouse. Thymus, 1993;21
serological proteome analysis. Toxicology and applied pharmacology, 2009;240
tRNA substrate. FEBS letters, 2001;494
muscle myosin as target antigen for human autoantibodies in patients with
clustering of novel soluble gp130 and detection of its neutralizing autoantibodies in
rheumatoid arthritis. The Journal of clinical investigation, 1993;91
immunochemistry of the multi-enzyme complex of aminoacyl-tRNA synthetases in
and synthetic peptide in a MAP8 format. Appl Microbiol Biotechnol, 2020;104
and endometriotic pathogenic role of laminin-1 autoantibodies. Annals of the
New York Academy of Sciences, 2005;1051:174-84.

J.Y. Wang et al.

1015-24.

A. Becker, N. Ludwig, A. Keller, B. Tackenberg, C. Eienbroker, W. H. Oertel et al. Myasthenia gravis: analysis of serum autoantibody reactivities to
1827

D. B. Ulanet, M. Torbenson, C. V. Dang, L. Casciola-Rosen, A. Rosen. Unique conformation of cancer autoantigen B23 in hepatoma: a mechanism for specificity
192

J. R. Underwood, X. F. Csar, B. A. Veitch, M. T. Hearn. Characterization of the specificity of a naturally-occurring monoclonal anti-thymocyte autoantibody
derived from an unimmunized, neonatal Balb/c mouse. Thymus, 1993;21:199-219.

D. B. Ulanet, M. Torbenson, C. V. Dang, L. Casciola-Rosen, A. Rosen. Unique conformation of cancer autoantigen B23 in hepatoma: a mechanism for specificity
in the autoimmune response. Proceedings of the National Academy of Sciences of the United States of America, 2003;100:12,361-6.

J. J. Devaux, M. Odaka, N. Yuki. Nodal proteins are target antigens in Guillaum-Barre syndrome. Journal of the peripheral nervous system: JPNS, 2012;17:62-71.

L. E. Andrade, E. R. Chan, C. L. Peebles, Y. R. Lopez, Y. Shoenfeld, E. Matsuura. Pregnancy loss and endometriotic pathogenic role of laminin-1 autoantibodies. Annals of the

R. L. Ochs, T. W. Stein, Jr., E. K. Chan, M. Rustu, E. M. Tan. cDNA cloning and characterization of a novel nuclear protein. Molecular biology of the cell, 1996;7:1015-24.

S. Nagayama, T. Yokoi, H. Tanaka, Y. Kawaguchi, T. Shirasaka, T. Kamataki. Occurrence of autoantibody to protein disulfide isomerase in patients with hepatic
disorder. J Toxicol Sci, 1994;19:163-79.

A. Becker, N. Ludwig, A. Keller, B. Tagkkenberg, C. Eienbroker, W. H. Oertel et al. Myasthenia gravis: analysis of serum autoantibody reactivities to 1827
potential human autoantigens by protein macroarrays. PLoS one, 2013;8:e58095.

A. K. Houn, L. Magini, C. Y. Clement, G. L. Reed. Identification and structure of activated-platelet protein-1, a protein with RNA-binding domain motifs that is
expressed by activated platelets. European journal of biochemistry, 1997;243:209-18.

T. C. Hsu, G. J. Tsay, T. Y. Chen, Y. C. Liu, B. S. Yang. Anti-PcNA autoantibodies preferentially recognize C-terminal of PCNA in patients with chronic hepatitis
B virus infection. Clinical and experimental immunology, 2006;144:110-9.
25

J. Y. Wang et al.

phosphorylated serine/arginine splicing factors during apoptosis. Arthritis and rheumatism, 2000;43

nervous system involvement. Lupus, 2010;19

The Journal of biological chemistry, 1998;273

patients with hereditary spherocytosis. Transfusion, 2015;55

hepatitis. Clinical and experimental immunology, 1981;43

sporadic amyotrophic lateral sclerosis. Amyotrophic lateral sclerosis: official publication of the World Federation of Neurology Research Group on Motor Neuron

contain symmetrical dimethylarginines, which form a major B-cell epitope for anti-Sm autoantibodies. The Journal of biological chemistry, 2000;275

rheumatism, 2000;43

serological markers for mixed connective tissue disease. Arthritis Res Ther, 2005;7

Clinical Microbiology, 2009;28

and anti-heat shock protein 70.1 autoantibodies. European journal of clinical microbiology

and associated with anti-melanoma differentiation-associated gene 5 antibody. Journal of autoimmunity, 2017;77

with clinical features in newly diagnosed giant cell arteritis. Rheumatology (Oxford, England), 2017;56

autoantibodies. Arthritis and rheumatism, 2000;43

K. Overzet, T. J. Gensler, S. J. Kim, M. E. Geiger, W. J. van Venrooij, K. M. Pollard et al. Small nucleolar RNP scleroderma autoantigens associate with

N. Iizuka, K. Okamoto, R. Matsushita, M. Kimura, K. Nagai, M. Arito et al. Identification of autoantigens specific for systemic lupus erythematosus with central

H. Imai, E. K. Chan, K. Kiyosawa, X. D. Fu, E. M. Tan. Novel nuclear autoantigen with splicing factor motifs identified with antibody from hepatocellular

M. Satoh, J. Y. Chan, S. J. Ross, A. Ceribelli, I. Cavazzana, F. Franceschini et al. Autoantibodies to survival of motor neuron complex in patients with poly-

J. D. Huntriss, D. S. Latchman, D. G. Williams. Lupus autoantibodies discriminate between the highly homologous Sm polypeptides B/B

D. Hof, K. Cheung, D. J. de Rooij, F. H. van den Hoogen, G. J. Puiduj, W. J. van Venrooij et al. Identification of anti-SF3B1 autoantibody as a diagnostic marker in patients with

Z. Chai, B. Sarcevic, A. Mawson, B. H. Toh. SET-related cell division autoantigen-1 (CDA1) arrests cell growth. J Biol Chem, 2001;276:33,665-74.

H. M. Hwng, C. K. Heo, H. J. Lee, S. S. Kwak, W. H. Lim, J. S. Yoo et al. Identification of anti-SF3B1 autoantibody as a diagnostic marker in patients with

hepatocellular carcinoma. Journal of translational medicine, 2018;16:177.

A. Kistner, M. B. Bigler, K. Glatz, S. B. Egli, F. S. Baldin, F. A. Marquardt et al. Characteristics of autoantibodies targeting 14-3-3 proteins and their association with clinical features in newly diagnosed giant cell arteritis. Rheumatology (Oxford, England), 2017;56:829-34.

Y. Hozumi, R. Nakashima, S. Serada, K. Murakami, Y. Inuma, H. Yoshifuji et al. Splicing factor proline/glutamine-rich is a novel autoantigen of dermatomyositis and associated with anti-melanoma differentiation-associated gene 5 antibody. Journal of autoimmunity, 2017;77:11-22.

B. F. Chumpitazi, L. Bouillet, M. T. Douret, L. Kuhn, J. Garin, J. P. Zarski et al. Biological autoimmunity screening in hepatitis C patients by anti-HepG2 lysate and anti-heat shock protein 70.1 autoantibodies. European journal of clinical microbiology & infectious diseases: official publication of the European Society of Clinical Microbiology, 2009;28:13-37.

M. Kubo, H. Ihn, M. Kuwana, Y. Asano, T. Tamaki, K. Yamane et al. Anti-U5 snRNP antibody as a possible serological marker for scleroderma-polyposisys overlap. Rheumatology (Oxford, England), 2002;41:531-3.

D. Hof, K. Cheung, D. J. de Rooij, F. H. van den Hoogen, G. J. Puiduj, W. J. van Venrooij et al. Autoantibodies specific for apoptotic U1–70K are superior serological markers for mixed connective tissue disease. Arthritis Res Ther, 2005;7:R302-9.

A. M. Abreu-Velez, M. S. Howard, K. Hashimoto, T. Hashimoto. Autoantibodies to sweat glands detected by different methods in serum and in tissue from patients affected by a new variant of endemic pemphigus foliaceus. Archives of dermatological research, 2009;301:711-8.

P. Marguttii, M. Sorice, F. Conti, F. Delunardo, M. Rancaniello, C. Alessandri et al. Screening of autoantibodies to annexin I, 14-3-3 theta and LAMR1 in prediagnostic lung cancer sera. Journal of clinical oncology: official journal of the American Society of Clinical Oncology, 2008;26:5060-6.

J. Y. Wang, B. Hildebrandt, C. Luderscheidt, K. M. Pollard. Human scleroderma sera contain autoantibodies to protein components specific to the U3 small nucleolar RNP complex. Arthritis and rheumatism, 2003;44:218-70.

K. Kaji, N. Fertig, T. A. Medsgjer, Jr., T. Satoh, K. Hoshino, Y. Hanaguchi et al. Autoantibodies to RuvBL1 and RuvBL2: a novel systemic sclerosis-related antibody associated with diffuse cutaneous and skeletal muscle involvement. Arthritis care & research, 2014;66:575-84.

J. D. Pauling, G. Salazar, H. Lu, Z. E. Betteridge, S. Assassi, M. D. Mayes et al. Presence of anti-eukaryotic initiation factor-28, anti-RuvBL1/2 and anti-synthetase antibodies in patients with anti-nuclear antibody negative systemic sclerosis. Rheumatology (Oxford, England), 2018;57:712-7.

A. M. Abreu-Velez, M. S. Howard, K. Hashimoto, T. Hashimoto. Autoantibodies to sweat glands detected by different methods in serum and in tissue from patients affected by a new variant of endemic pemphigus foliaceus. Archives of dermatological research, 2009;301:711-8.

25

K. Elkon, E. Bonfa, R. Llovet, W. Danho, H. Weissbach, N. Brot. Properties of the ribosomal P2 protein autoantigen are similar to those of foreign protein antigens. Proceedings of the National Academy of Sciences of the United States of America, 1988;85:1816-9.

K. Elkon, H. Weissbach, N. Brot. Central nervous system function in system lupus erythematosus. Neurochemical research, 1990;15:401-6.

K. T. Tycowski, M. D. Shu, J. A. Steitz. A small nucleolar RNA is processed from an intron of the human gene encoding ribosomal protein S3. Genes & development, 1993;7:1176-90.

J. Qi, G. Choi, L. Li, H. Wang, S. J. Pitteri, S. R. Pereira-Faca et al. Occurrence of autoantibodies to annexin I, 14-3-3 theta and LAMR1 in prediagnostic lung cancer sera. Journal of clinical oncology: official journal of the American Society of Clinical Oncology, 2008;26:5060-6.

J. Y. Wang, B. Hildebrandt, C. Luderscheidt, K. M. Pollard. Human scleroderma sera contain autoantibodies to protein components specific to the U3 small nucleolar RNP complex. Arthritis and rheumatism, 2003;44:218-70.

K. Kaji, N. Fertig, T. A. Medsgjer, Jr., T. Satoh, K. Hoshino, Y. Hanaguchi et al. Autoantibodies to RuvBL1 and RuvBL2: a novel systemic sclerosis-related antibody associated with diffuse cutaneous and skeletal muscle involvement. Arthritis care & research, 2014;66:575-84.

J. D. Pauling, G. Salazar, H. Lu, Z. E. Betteridge, S. Assassi, M. D. Mayes et al. Presence of anti-eukaryotic initiation factor-28, anti-RuvBL1/2 and anti-synthetase antibodies in patients with anti-nuclear antibody negative systemic sclerosis. Rheumatology (Oxford, England), 2018;57:712-7.

A. M. Abreu-Velez, M. S. Howard, K. Hashimoto, T. Hashimoto. Autoantibodies to sweat glands detected by different methods in serum and in tissue from patients affected by a new variant of endemic pemphigus foliaceus. Archives of dermatological research, 2009;301:711-8.
J.Y. Wang et al.

Large Vessel Vasculitis. Arthritis a major target for autoantibodies in rheumatoid arthritis. Annals of the rheumatic diseases, 2016;75

Myopathies Based on Clinical Manifestations and Myositis-Specific Autoantibodies. JAMA neurology, 2018;75

logical chemistry, 1996;271

munications, 1998;242

patients with arthralgia. Arthritis research developing brain. Translational psychiatry, 2013;3

Shock-Protein YB-1 in Cancer Patients and Healthy Controls. Cancers, 2020;12.

367-71.

2014;13

sclerosis subjects: clinical associations. Medicine (Baltimore), 2016;95

biliary cirrhosis patients with milder disease? Scand J Immunol, 2006;63

lupus erythematosus. Clinical and experimental rheumatology, 2019;37

exacerbated clinical manifestations in systemic lupus erythematosus. Clinical rheumatology, 2018;37:2707-14.

Y. Meng, M. Zhang, X. Zhao, Y. Cheng, R. Jia, Y. Wang et al. Decreased serum thrombospondin-1 and elevation of its autoantibodies are associated with multiple exacerbated clinical manifestations in systemic lupus erythematosus. Clinical rheumatology, 2018;37:2707-14.

M. Muto, M. Mori, T. Hiwasa, M. Takiguchi, Y. Iwadate, A. Uzawa et al. Novel serum autoantibodies against talin1 in multiple sclerosis: Possible pathogenic roles of the antibodies. Journal of neuroimmunology, 2015;284-30-6.

A. Schwezner, X. Jiang, T. R. Mikuls, J. B. Payne, H. R. Sayles, A. M. Quirke et al. Identification of an immunodominant peptide from citrullinated tenasin-C as a major target for autoantibodies in rheumatoid arthritis. Annals of the rheumatic diseases, 2016;75:1876-83.

K. Mariampillai, B. Granger, D. Amelin, M. Guiguet, E. Hachulla, F. Maurier et al. Development of a New Classification System for Idiopathic Inflammatory Myopathies Based on Clinical Manifestations and Myositis-Specific Autoantibodies. JAMA neurology, 2018;75:1528-37.

X. Geng, L. Biancone, H. H. Dai, J. J. Lin, N. Yoshizaki, A. Dasgupta et al. Tropomyosin isoforms in intestinal mucosa: production of autoantibodies to tropomyosin isoforms in ulcerative colitis. Gastroenterology, 1998;114:912-22.

R. Gajbhiye, A. Sonawane, S. Khan, A. Suryawanshi, S. Kadam, N. Warty et al. Identification and validation of novel serum markers for early diagnosis of endometriosis. Hum Reprod, 2012;27:408-17.

A. Kimura, T. Sakurai, M. Yamada, A. Koumura, Y. Hayashi, T. Tanaka et al. Anti-endothelial cell antibodies in patients with cerebral small vessel disease. Curr Neurol Neurosci Res, 2012;9:296-301.

P. Enarson, J. B. Rattner, Y. Du, K. Miyachi, T. Horigome, M. J. Fritzler. Autoantigens of the nuclear pore complex. J Mol Med (Berl), 2004;82:423-33.

K. Lorens, S. Beck, M. M. Keilani, J. Wasielica-Fosdriek, N. Pfeiffer, F. H. Grus. Course of serum autoantibodies in patients after acute-phase closure glaucoma attack. Clinical & experimental ophthalmology, 2017;45:280-29.

X. Zhao, Y. Cheng, Y. Gan, R. Jia, L. Zhu, X. Sun. Anti-tubulin-alpha-1C autoantibody in systemic lupus erythematosus: a novel indicator of disease activity and vasculitis manifestations. Clinical rheumatology, 2018;37:1229-37.

T. Matthews, A. Wolf, P. Soubiran, F. Gros, G. Dighiero. Antitubulin antibodies. II. Natural autoantibodies and induced antibodies recognize different epitopes on the tubulin molecule. Journal of immunology (Baltimore, Md: 1950), 1988;141:3135-41.

A. Kimura, N. Yoshikura, A. Koumura, Y. Hayashi, Y. Kobayashi, I. Kobayashi et al. Identification of target antigens of naturally occurring autoantibodies in cerebrospinal fluid. Journal of proteomics, 2015;128:470-97.

L. Prasannan, D. E. Misek, R. Hinderer, J. Michon, J. D. Geiger, S. M. Hanash. Identification of beta-tubulin isoforms as tumor antigens in neuroblastoma. Clinical cancer research: an official journal of the American Association for Cancer Research, 2000;6:9349-56.

E. B. Stubbs, Jr., M. A. Fisher, G. J. Siegel. Anti-tubulin antibodies in a sensorimotor neuropathy patient alter tubulin polymerization. Acta neuropathologica, 1998;95:302-5.

Y. Muro, Y. Ogawa, Y. Kato, M. Hagiwara. Autoantibody to thioreredox reductase in an ovarian cancer patient. Biochemical and biophysical research communications, 1998;242:267-71.

Z. E. Betteridge, H. Gunawardena, H. Chinoy, J. North, W. E. Ollier, R. G. Cooper et al. Clinical and human leukocyte antigen class II haplotype associations of autoantibodies to small ubiquitin-like modifier enzyme, a dermatomyositis-specific autoantigen target, in UK Caucasian adult-onset myositis. Annals of the rheumatic diseases, 2009;68:1621-5.

A. F. Pluta, W. C. Earnshaw. Specific interaction between human kinetochores protein CENP-C and a nucleolar transcriptional regulator. The Journal of biological chemistry, 1996;271:18,767-74.

X. Li, J. Sun, R. Mu, Y. Gan, G. Wang, J. He et al. The clinical significance of ubiquitin carboxyl hydrolase L1 and its autoantibody in neuropsychiatric systemic lupus erythematosus. Clinical and experimental rheumatology, 2019;37:474-80.

Y. Zhou, J. Cui, H. Du. Autoantibody-targeted TAA's in pancreatic cancer: A comprehensive analysis. Pancreatology, 2019;19:760-8.

K. Miyachi, H. Hosaka, N. Nakamura, H. Miyakawa, T. Mimori, M. Shibata et al. Anti-p97/VP1 antibodies: an autoantibody marker for a subset of primary biliary cirrhosis patients with milder disease? Scand J Gastroenterol, 2006;33:375-82.

F. J. Li, R. Surolia, H. Li, Z. Wang, T. Kulkarni, G. Liu et al. Autoimmunity to Vimentin Is Associated with Outcomes of Patients with Idiopathic Pulmonary Fibrosis. Journal of immunology (Baltimore, Md: 1950), 2017;199:1596-605.

J. Mao, J. Ladd, E. Gad, L. Rastetter, M. M. Johnson, E. Marzban et al. Mining the pre-diagnostic antibody repertoire of TgMMTV-neu mice to identify autoantibodies useful for the early detection of human breast cancer. Journal of translational medicine, 2014;12:121.

E. L. Paley, N. Alexandra, L. Smelansky. Tryptophanyl-tRNA synthetase as a human autoantigen. Immunology letters, 1995;48:99-105.

S. Hoa, M. Hudson, Y. Troyanov, S. Proudman, J. Walker, W. Stevens et al. Single-specificity anti-Ku antibodies in an international cohort of 2140 systemic sclerosis subjects: clinical associations. Medicine (Baltimore), 2016;95:e4713.

M. Mahler, F. W. Miller, M. J. Fritzler. Idiopathic inflammatory myopathies and the anti-synthetase syndrome: a comprehensive review. Autoimmunity reviews, 2014;13:367-71.

R. Morgenroth, C. Reichardt, J. Steffen, S. Busse, R. Frank, H. Heidecke et al. Autoantibody Formation and Mapping of Immunogenic Epitopes against Cold-Shock-Protein YB-1 in Cancer Patients and Healthy Controls. Cancers, 2020;12.

D. Braunschweig, P. Krakowiak, P. Duncanson, R. Boyle, R. L. Hansen, P. Ashwood et al. Autism-specific maternal autoantibodies recognize critical proteins in developing brain. Translational psychiatry, 2013;3:277.

M. H. van Beers-Tas, A. Marotta, M. Boers, W. P. Maksymowych, D. van Schaardenburg. A prospective cohort study of 14:3:3eta in ACAP and/or RF-positive patients with arthritis. Arthritis research & therapy, 2016;18:76.

R. Chakravarti, K. Gupta, M. Swain, B. Willard, J. Scholz, L. G. Svensson et al. 14:3-3 in Thoracic Aortic Aneurysms: Identification of a Novel Autoantigen in Large Vessel Vasculitis. Arthritis & rheumatology (Hoboken, NJ), 2015;67:1913–21.

X. M. Teitsma, J. Deavenport, J. W. G. Jacobs, A. Petho-Schramm, M. E. A. Borm, P. Budde et al. Comprehensive exploratory autoantibody profiling in patients with early rheumatoid arthritis treated with methotrexate or tocilizumab. PloS one, 2020;15:e0241189.
potential autoAgs were found in the interactomes of different SARS-CoV-2 viral component proteins, meaning that they may directly or indirectly interact with the virus.

The 657-member COVID autoantigen-ome is also a highly interacting protein network (Fig. 5). Not surprisingly, these proteins are significantly associated with processes that are crucial in viral infection, e.g., RNA processing, mRNA metabolic process, regulation of mRNA stability, translation, peptide biosynthetic process, protein folding, intracellular transport, vesicle-mediated transport, chromosome organization, regulation of cell death, and apoptosis (Fig. 5). We also analyzed the 109 up-only and the 176 down-only protein networks separately. Both networks are significantly associated with translation, RNA processing and splicing, and the proteasome, which further illustrates that these processes are perturbed by the viral infection (Fig. 6).

Translation is an essential step in viral replication and mRNA vaccine action. DS-affinity identified 19 eukaryotic translation initiation factors, with 15 thus far being confirmed autoAgs (Table 1). In particular, 8 of the 13 subunits of the human eIF3 complex were found in the interactome of the NSP1 protein of SARS-CoV-2, and all 8 are known autoAgs

Fig. 2. The master autoAg-ome of 751 DS-affinity proteins identified from 6 cell types forms a highly interacting connected network. Lines represent protein-protein interactions with the highest confidence cutoff. Colored proteins are associated with translation (104 proteins, red), RNA processing (120 proteins, pink), protein folding (53 proteins, blue), vesicle-mediated transport (141 proteins, green), chromosome organization (76 proteins, yellow), regulation of cell death (110 proteins, dark purple), and apoptosis (46 proteins, brown).
Table 1). eIF3 is essential for the most forms of cap-dependent and cap-independent translation initiation and stimulates nearly all steps of translation initiation, as well as other phases of translation such as recycling. eIF3 functions in a number of prominent human pathogens, e.g., HIV and HCV; and the present finding indicates that eIF3 also functions in SARS-CoV-2 infection.

Among the 657 COVID-affected DS-affinity proteins, 369 (56%) are thus far confirmed autoAgs, accounting for 92% of the 400 confirmed autoAgs of the master autoantigen-ome. This vast number of perturbed autoAgs demonstrates that COVID-19 could lead to a wide variety of autoimmune diseases. For example, 42 autoAgs are associated with the myelin sheath and many are associated with other components of the nervous system, as we have described previously, which may help explain a myriad of neurological symptoms caused by COVID-19 [2]. As another example, 11 autoAgs are related to stress fibers (contractile actin filament bundles consisting of short actin filaments with

![Protein interaction network of the 400 confirmed autoAgs. Lines represent protein-protein interactions with highest confidence. Colored proteins are associated with translation (57 proteins, red), RNA processing (65 proteins, pink), vesicle-mediated transport (89 proteins, green), response to stress (125 proteins, blue), regulation of cell death (74 proteins, amber), and apoptosis (28 proteins, brown).]
alternating polarity) and 25 proteins are associated with myofibrils (contractile elements of skeletal and cardiac muscle), which may explain various muscular and cardiomuscular sequelae of COVID-19.

A few autoAgs also interact with multiple viral proteins of SARS-CoV-2, suggesting that they play important roles in COVID-19 and merit further investigation. For example, ESYT1 and MOV10 interact with 12 viral proteins, CALU interacts with 11, HSPA5 interacts with 9, COPG1 and ARHGAP1 interact with 8, PLD3 and MARCKS interact with 7, and IDE interacts with 6 viral proteins (Table 1). PLD3 (a phospholipase) influences the processing of amyloid-beta precursor protein and is associated with spinocerebellar ataxia and Alzheimer’s disease. IDE (insulin-degrading enzyme) degrades intracellular insulin and is associated with diabetes.

3.3. AutoAg coding gene characteristics and alternative splicing

To further understand the autoantigen-ome, we mapped the coding genes for 751 proteins of the master autoantigen-ome, and they are distributed over all chromosomes (Fig. 7). Since these include both confirmed and putative autoAgs, one may argue that some of the putative autoAgs may not be true and the gene characteristics may not be meaningful. Therefore, we also mapped the genes for the 400 confirmed autoAgs, and they are similarly distributed over all chromosomes (Fig. 7). For both confirmed and putative autoAgs, coding gene prevalence is significantly higher on chromosomes 11, 12, 17, and 19, lower on chromosome 18, and almost absent on chromosome Y (Fig. 7). Various cluster loci are noticeable, e.g., on chromosomes 1, 11, 12, 17, and 19.

Intriguingly, autoAg coding genes contain significantly larger numbers of exons than expected, with the majority containing at least 4 exons (Fig. 8). The number of transcript isoforms per coding gene is also significantly skewed towards higher numbers, and those with ≥6 isoforms are particularly dominant. Furthermore, the lengths of coding sequence, transcript, and 3′ and 5′-UTR of autoAg coding genes are skewed towards shorter sizes relative to the distribution of all coding genes (Fig. 8). We also examined the coding genes of the 400 confirmed autoAgs, and they show similar dominance in higher number of exons and isoforms, shorter transcripts, and shorter 3′-UTR lengths (Fig. 8).

The predominance of multiple exons and transcript variants suggests a role for RNA processing and alternative splicing in the origination of autoAgs. For genes with multiple exons, alternative splicing can yield a range of unique protein isoforms by varying the exon composition.
Curiously, numerous components of the splicing machinery are well-known nuclear autoAgs. In fact, this study identified 120 potential autoAgs associated with RNA processing and 70 potential autoAgs associated with RNA splicing (Table 1 and Figs. 2–3). The majority of these have been found to be affected by SARS-CoV-2 infection (Figs. 5–6).

During splicing, a group of snRNPs (small nuclear ribonucleoproteins) bind to the intron of a newly formed pre-mRNA and splice it to result in a mature mRNA. Ten snRNP autoAgs are identified by DS-affinity, 8 of which have been found to be affected by SARS-CoV-2 infection (Table 1). During splicing, snRNAs undergo conformational rearrangements that are catalyzed by the DEAH/DEAD box superfamily of RNA helicases. 11 such helicases are identified by DS-affinity, and 10 have been found to be affected by the viral infection (Table 1). Serine/arginine-rich splicing factors, such as SRSF1 (also known as alternative splicing factor 1), are sequence-specific splicing factors involved in pre-mRNA splicing. 9 SRSF proteins are identified by DS-affinity, with 7 found to be affected by the viral infection. Seven additional splicing factors are identified by DS-affinity (e.g., poly(U)-binding splicing factor PUF60), with all found to be affected by SARS-CoV-2 infection. Heterogeneous nuclear ribonucleoproteins (hnRNPs) play various roles in gene transcription and post-transcriptional modification of pre-mRNA, e.g., binding pre-mRNAs to render splice sites more or less accessible to the spliceosome and suppressing RNA splicing at a particular exon. 19 hnRNP proteins are identified by DS-affinity, with 17 found affected by SARS-CoV-2 infection.

The large number of autoAgs of the RNA splicing machinery and their involvement in SARS-CoV-2 infection provide support to the notion that viral infections exploit alternative splicing. It is logical to speculate that viruses hijack the splicing machinery to force the host to synthesize virus-beneficial protein isoforms and thereby reprogram the host cellular protein network so that the virus can survive and replicate. It is
also plausible that protein isoforms from virus-induced alternative splicing are recognizable by our immune system as unusual and non-self and hence may trigger an (auto)immune response.

Various studies have reported alternative splicing among autoAgs. For example, an informatics analysis of 45 autoAgs showed that alternative splicing occurred in 100% of the transcripts, which was significantly higher than the ~42% rate observed in a randomly selected set of 9554 gene transcripts. Furthermore, 80% of the transcripts underwent non-canonical alternative splicing, which was significantly higher than the <1% rate in randomly selected human gene transcripts [39]. As another example, Ro52/SSA is one of the autoAg targets strongly associated with the autoimmune responses in mothers whose children have manifestations of neonatal lupus. The gene for full-length Ro52 spans 10 kb of DNA and contains 7 exons, and an alternatively spliced transcript encoding a novel autoAg expressed in the fetal and adult heart has been identified [40]. In a patient with primary Sjögren syndrome, an alternative mRNA variant of the nuclear autoAg La/SSB was found to result from a promoter switch and alternative splicing [41].

3.4. Common autoAgs associated with cell stress and apoptosis

We have consistently found that DS binds apoptotic cells regardless

Fig. 6. COVID-affected autoAgs that are found up-regulated only (A), down-regulated only (B), or interacting with SARS-Cov-2 proteins (C). Note the significant enrichment of proteins associated with translation, RNA processing and splicing, and other processes.
of cell type [7,9]. To figure out which molecules are involved in this affinity, we searched for DS-affinity proteins shared in all 6 human cell lines of this study and found 39 autoAg candidates (Fig. 9). These include 9 ER chaperone complex proteins, 5 14-3-3 proteins, 3 hnRNPs, and 3 tropomyosin proteins. All are known autoAgs except for ANP32A and YWHAB (14-3-3 alpha/beta). Given that ANP32A’s paralog ANP32B and 5 other 14-3-3 isoforms are known autoAgs, it is likely they are also true autoAgs. Remarkably, several classical ANA (antinuclear antibody) autoAgs that define systemic autoimmune diseases are among the autoAgs found in the DS-affinity proteomes of all 6 human cell lines, including histone H1 and H4, SSB/La, XRCC5/Ku80, XRCC6/Ku70, and PCNA. Because these autoAgs are commonly found in apoptotic cells, it is not surprising that autoimmune responses targeting these autoAgs tend to be systemic; in other words, they all are potential markers of systemic autoimmune diseases.

Based on GO Biological Process and Reactome Pathway analysis, 22 of the common autoAgs are associated with cellular responses to stress, 17 are associated with regulation of apoptotic processes, and 8 are

Fig. 7. Distribution of autoAg coding genes by chromosomes. (A) 751 confirmed and putative autoAgs. (B) 400 confirmed autoAgs only.
markers of apoptosis (Fig. 9). Moreover, these common autoAgs are involved in chromosome organization (ANP32A, ANP32B, H1-2, H4, KPNB1, NPM1, PCNA, SET, XRCC5, XRCC6), cytoskeleton organization (ACTN1, CALR, TPM1, TPM3, TPM4, TUBA1C, VIM), and mitochondrial membrane organization (YWHAB, YWHAE, YWHAG, YWHAQ, YWHAZ). These findings reveal that apoptosis is accompanied by reorganization of the nucleus, mitochondria, and cytoskeleton.

Furthermore, 37 of the 39 common autoAgs were altered in SARS-CoV-2 infection. Based on GO Biological Process analysis, 13 of these proteins are involved in viral processing, namely, KPNB1, C1QBP, HSP90AB1, NPM1, SYNCRIP, SET, SSB, XRCC5, XRCC6, VCP, VIM, YWHAB, and YWHAE. These findings further support our model of linking viral infection to autoimmunity, with viral infections leading to host cell stress, cell death, autoimmune reactions, and eventually autoimmune diseases (Fig. 1).

3.5. UBA1, X-inactivation escape, and female predilection of autoimmunity

Among the above common autoAgs, UBA1 (or UBE1, ubiquitin-like modifier-activating enzyme 1) plays an essential role in dead cell clearance. UBA1 catalyzes the first step in ubiquitination – the “kiss of death” – that marks cellular proteins for degradation. It has long been speculated that dysregulation of apoptotic pathways and dysfunctional clearance of dead cells are among the main causes of autoimmunity, which is in line with our findings [7,9]. Apoptosis also directly contributes to the maintenance of lymphocyte homeostasis and the deletion of autoreactive cells. Therefore, dysfunction of UBA1 could result in deficient clearance of apoptotic cells and aberrant autoimmunity.

Recently, UBA1 somatic mutations have been linked to a severe adult-onset autoinflammatory disease termed VEXAS syndrome [42]. A somatic mutation affecting methionine-41 in UBA1 results in a loss of...
the canonical cytoplasmic isoform of UBA1 and in the expression of a novel catalytically impaired isoform. Additionally, mutant peripheral blood cells show decreased ubiquitination and activated innate immune pathways.

Strikingly, UBA1 protein expression is found up-regulated at different time points of SARS-CoV-2 infection, whereas two deubiquitinating enzymes, USP9X and USP5, are down-regulated [32] (Supplemental Table 1). Furthermore, among the 657 proteins of the COVID autoantigen-ome, 178 have been found to be affected by ubiquitination (Fig. 10). They are most significantly associated with RNA metabolism and cellular response to stress. In addition, ubiquitination affects proteins involved in signaling by Rho GTPase, RNA splicing, translation, protein folding, nonsense-mediated decay, DNA damage stress-induced senescence, and the cytoskeleton. These findings underline the extensive involvement of ubiquitination in viral infection.

UBA1 is coded by the UBA1 gene located on the X chromosome with no homolog on the Y chromosome, and more importantly, UBA1 can escape X-chromosome inactivation. UBA1 appears to be protected against chromosome-wide transcriptional silencing by a chromatin boundary flanked by histone H3 modifications and CpG hypomethylation [43]. In human female fibroblasts, UBA1 mRNA is detected from both the active and inactive X chromosomes, and UBA1 is expressed in a large panel of somatic cell hybrids retaining inactive X chromosomes [44]. In human endothelial cells from dizygotic twins, UBA1 and a few other X-chromosome encoded proteins are expressed at higher levels in female cells [45]. UBA1 expression is estimated to be ~60% from X-active alleles, 30% biallelic, and 10% from X-inactive alleles [46].

X-linked genes, particularly escape genes, contribute to sex differences. In women, about 15% of X-linked genes are bi-allelically expressed, and expression from the inactive X allele varies from a few percent to near equal to that of the active allele [47]. X-inactivation and escape may enhance phenotypic differences between females and males and may also enhance variability within females due to mosaicism from cells with the X-maternal or X-paternal inactivated and to a variable degree of escape from X-inactivation [47]. Aging, which is associated with telomere shortening, can relax X-inactivation and force global transcriptome alterations [48], which may lead to gene escape and altered expression of UBA1. Therefore, dysfunction of UBA1 due to X-inactivation escape may predispose women, particularly aging women, to increasing dysfunctional regulation of apoptosis and aberrant autoimmunity.

3.6. Considerations for vaccine design based on spike-protein via viral vectors or mRNAs

To understand the various rare but reported side effects from the currently available viral vector- and mRNA-encoded S-protein COVID vaccines, we searched for autoAgs that may interact with the spike protein of SARS-CoV-2 and found 15 autoAg candidates (Table 2). Of these, CALU, ESYT1, MOV10, and MARCKS may also interact with many other SARS-CoV-2 proteins as discussed earlier. Curiously, at least 2 of these are associated with blood clotting problems, and 5 are implicated in neurological disorders (Table 2). For example, CALU (calumenin) is a calcium-binding protein and is expressed in high levels in the heart, placenta, and skeletal muscle. CALU is associated with pharmacodynamics and response to elevated platelet cytosolic Ca^{2+}, platelet degranulation, and Coumarin/Warfarin resistance. Warfarin is an anticoagulant (blood thinner) drug used to treat blood clots such as deep vein thrombosis and pulmonary embolism and to prevent stroke in
people with heart problems such as atrial fibrillation, valvular heart disease or in people with artificial heart valves.

Although largely speculative at present, these potential S-protein-interacting autoAgs may provide partial explanations for the rare hematological, neurological, and muscular side effects reported for the currently available COVID vaccines (Table 2). Although it is known that S proteins are synthesized intracellularly following vaccination with mRNAs or viral vectors, many of the precise molecular steps remain unknown. In particular, how do these newly synthesized S proteins fold and are they glycosylated differently depending on the cell type that takes up the mRNA or the viral vector? How does the newly synthesized S protein interact with other host cell components before being processed (or degraded) and presented to immune cells? For example, could the nascent S proteins interact with CALU or ESYT1 to cause blood clotting problems, could S protein interaction with HSPA5 contribute to fungal infection outbreaks as seen in India? These and many other questions await further investigation. This is of interest because mRNA and vector-based vaccines make use of a variety of cell types in vivo to produce the immunogen, whereas recombinant protein-based vaccines introduce the ex vivo prepared immunogen directly to the immune system.

In addition, this study identified a large number of autoAg

![Fig. 10](image-url)
databases, performed data analyses, and contributed to manuscript
Author contributions

described in this study provide further insights into the genetic origi
4. Conclusions

clearance and protein turnover and the X-linked escape expression of
nation of autoAgs. The significance of ubiquitination in apoptotic cell
viral infection leads to cell stress, apoptosis, and subsequent autoim
CSPG4 Acral lentiginous melanoma, melanoma
SLC1A5 Hartnup disorder, placental choriocarcinoma
PRKCSH Polycystic liver disease
ABHGA1 Noma, Lowe oculocephalorenal syndrome (affects eyes, central nervous system and kidneys)

candidates that are crucial for vector-based or mRNA vaccine action, including translation, RNA processing and metabolism, vesicles and vesicle-mediated transport, and protein processing and transport (Figs. 2–6). For example, the master autoantigen-ome contains 56 ribosomal proteins, 16 eukaryotic translation initiation factors, 16 aminoacyl-tRNA synthases/ligases, and 6 translation elongation factors, all of which are essential actors in translating mRNAs into proteins. There are also many autoAgs related to protein folding and post-translational protein modification, although it is not clear whether the S proteins are folded and post-translationally modified before being processed and presented to immune cells in the currently used mRNA or vector vaccines for COVID-19. These potential autoAgs may confer clues to understanding the observed rare adverse events and should help guide the future development of even safer vaccines.

4. Conclusions

In this report, we compiled a master autoantigen-ome of 751 potential autoAgs, 657 of which are affected in SARS-CoV-2 infection, and 400 of which are confirmed autoAgs in a wide variety of autoimmune diseases and cancer. Our proposed model (Fig. 1) provides a plausible explanation for how a cascade of molecular changes associated with viral infection leads to cell stress, apoptosis, and subsequent autoimmune responses. The large number of autoAgs associated with SARS-CoV-2 infection provides a mechanistic rationale for the close monitoring of autoimmune diseases that may follow the COVID-19 pandemic. In addition, the coding gene characteristics of autoAgs described in this study provide further insights into the genetic origination of autoAgs. The significance of ubiquitination in apoptotic cell clearance and protein turnover and the X-linked escape expression of UBA1 might explain, in part, the predisposition of aging women to autoimmune diseases.

Author contributions

JYW conducted the study and wrote the manuscript. MWR built the databases, performed data analyses, and contributed to manuscript preparation. VBR assisted with the study and performed data analyses. MHR consulted on the study, analyzed data, and edited the manuscript. All authors have approved the manuscript.

Table 2

Disease	Potential SARS-CoV-2 Spike Protein-Interacting AutoAgs
CALU	Warfarin (anti-coagulants for clotting) resistance disease
ESY1	Stormorken syndrome (mild bleeding tendency due to platelet dysfunction, thrombocytopenia, anemia, aplasia, etc.)
MOV10	Viral infection, autism spectrum disorder
MARCKS	Spinocerebellar ataxia 14, barbiturate dependence
HSFBP1	Autosomal recessive spinocerebellar ataxia 16, Sjogren-Larsson syndrome
P53S27A	Machado-Joseph disease (spinocerebellar ataxia type III), spherocytosis type 5
ESR2	Autosomal recessive non-syndromic intellectual disability, neurofibromatosis type II
HSPA5R	Mucormycosis (fungal infection), Wolfram syndrome 1 (diabetes mellitus)
ARHGA1P	Noma, Lowe oculocephalorenal syndrome (affects eyes, central nervous system and kidneys)
MSN	X-linked moesin-associated immunodeficiency, verrucous carcinoma
CSPG4R	Acral lentiginous melanoma, melanoma
SLC1A5R	Hartnup disorder, placental choriocarcinoma
PRKCSHR	Polycystic liver disease
CAVIN1	Lipodystrophy, congenital generalized lipodystrophy
BASPIR	Distal X-linked spinal muscular atrophy, Wilms tumor 1

*Data from the GeneCards database.
37

[16] J.Y. Zhang, X.M. Wang, X. Xing, Z. Xu, C. Zhang, J.W. Song, et al., Single-cell landscape of immunological responses in patients with COVID-19, Nat. Immunol. 21 (2020) 1107–1118.

[17] J.P. Davies, K.M. Almasy, E.F. McDonald, L. Plate, Comparative multiplexed interactomics of SARS-CoV-2 and homologous coronavirus nonstructural proteins identifies unique and shared host-cell dependencies, ACS Infect. Dis. 6 (2020) 3174–3189.

[18] K. Klamm, D. Bojkova, G. Tascher, S. Ciesek, C. Münch, J. Cinatl, Growth factor receptor signaling inhibition prevents SARS-CoV-2 replication, Mol. Cell 80 (2020), 164–174.e4.

[19] J. Sun, F. Ye, A. Wu, R. Yang, M. Pan, J. Sheng, et al., Comparative transcriptome analysis reveals the intensive early stage responses of host cells to SARS-CoV-2 infection, Front. Microbiol. 11 (2020) 593857.

[20] D. Bojkova, K. Klamm, B. Koch, M. Widmer, D. Krause, S. Ciesek, et al., Proteomics of SARS-CoV-2-infected host cells reveals therapy targets, Nature 583 (2020) 469–472.

[21] A.J. Wilk, A. Rastogi, N.Q. Zhao, J. Roque, G.J. Martínez-Colón, J.L. McKechnie, et al., A single-cell atlas of the peripheral immune system in patients with severe COVID-19, Nat. Med. 26 (2020) 1070–1076.

[22] N.A.P. Lieberman, V. Peddu, H. Xie, L. Shrestha, M.L. Huang, M.C. Mears, et al., In vivo antiviral host transcriptional response to SARS-CoV-2 by viral load, sex, and age, PLoS Biol. 18 (2020), e3000849.

[23] L. Riva, S. Yuan, X. Yin, L. Martín-Sancho, N. Matsunaga, L. Pache, et al., Discovery of SARS-CoV-2 antiviral drugs through large-scale compound repurposing, Nature 586 (2020) 113–119.

[24] M. Bouchadou, D. Momen, B. Meyer, K.M. White, V.V. Reszelj, M. Correa Marrero, et al., The global phosphorylation landscape of SARS-CoV-2 infection, Cell 182 (2020) 688–712, e19.

[25] D. Blanco-Melo, B.E. Nilsson-Payant, W.C. Liu, S. Uh, D. Hoagland, R. Moll, et al., Imbalanced host response to SARS-CoV-2 drives development of COVID-19, Cell 181 (2020), 2020.08.28.272955.

[26] B. Shen, X. Yi, Y. Sun, X. Bi, J. Du, C. Zhang, et al., Proteomic and metabolomic characterization of COVID-19 patient sera, Cell 182 (2020) 59–72, e15.

[27] M.M. Lamers, J. Beamer, J. van der Vaart, K. Knoops, J. Puschhof, T.I. Brusgem, et al., SARS-CoV-2 Productively Infected Human Enteroctyes, vol. 369, Science, New York, NY, 2020, pp. 50–54.

[28] D.E. Gordon, G.M. Jiang, M. Bouchadou, J. Xu, K. Obernerr, K.M. White, et al., A SARS-CoV-2 protein interaction map reveals targets for drug repurposing, Nature 583 (2020) 459–468.

[29] X. Yiong, Y. Liu, L. Cao, D. Wang, M. Guo, A. Jiang, et al., Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients, Emerg. Microb. Infect. 9 (2020) 761–778.

[30] A. Vanderheiden, P. Ralfs, T. Chirkova, A.A. Upadhyay, M.G. Zimmerman, J.Y. Wang et al., Multi-proteomics - pan-proteome analysis reveals the intensive early stage responses of host cells to SARS-CoV-2 infection, Front. Microbiol. 11 (2020) 593857.

[31] J.P. Davies, K.M. Almasy, E.F. McDonald, L. Plate, Comparative multiplexed interactomics of SARS-CoV-2 and homologous coronavirus nonstructural proteins identifies unique and shared host-cell dependencies, ACS Infect. Dis. 6 (2020) 3174–3189.

[32] A. Stukalov, V. Girault, V. Grass, V. Bergant, O. Karayel, C. Urban, et al., Multi-level proteomics reveals host-perturbation strategies of SARS-CoV-2 and SARS-CoV, bioRxiv (2020), https://doi.org/10.1101/2020.06.17.156455.

[33] W. Emanuel, M. Kirstin, F. Vedran, D. Asija, G.L. Theresa, A. Roberto, et al., Bulk and single-cell gene expression profiling of SARS-CoV-2 infected human cell lines identifies molecular targets for therapeutic intervention, bioRxiv (2020), https://doi.org/10.1101/2020.05.05.079194/2020.05.05.079194.

[34] Y. Li, Y. Wang, H. Liu, W. Sun, B. Ding, Y. Zhao, et al., Urine proteome of COVID-19 patients, medRxiv : Preprint Server Health Sci. (2020), https://doi.org/10.1016/j.jvi.2020.05.02.20088666.

[35] M. Liao, Y. Liu, J. Yuan, Y. Wen, G. Xu, J. Zhao, et al., Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19, Nat. Med. 26 (2020) 942–944.

[36] E.M.N. Laurent, Y. Sofianatos, A. Komarova, J.-P. Gimeno, P.S. Tehrani, D.-K. Kim, et al., Global BioID-based SARS-CoV-2 proteins proximal interactome unveils novel ties between viral polyprotidues and host factors involved in multiple COVID-19-associated mechanisms, bioRxiv (2020), https://doi.org/10.1101/2020.08.28.272955.

[37] D. Szklarczyk, A.L. Gable, D. Lyon, A. Junge, S. Wyder, J. Huerta-Cepas, et al., STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets, Nucleic Acids Res. 47 (2019) D607–D613.

[38] S.X. Ge, D. Jung, R. Yao, ShinyGO: a graphical gene-set enrichment tool for animals and plants, Bioinformatics 36 (2020) 2628–2629.

[39] B. Ng, F. Yang, D.P. Huston, Y. Yan, Y. Yang, Z. Xiong, et al., Increased noncanonical splicing of autoantigen transcripts provides the structural basis for expression of unorderered epitopes, J. Allergy Clin. Immunol. 114 (2004) 1463–1476.

[40] E.K. Chan, F. Di Donato, J.C. Hamel, C.E. Tseng, J.P. Buyon, 52-kd SS-A/Ro genomic structure and identification of an alternatively spliced transcript encoding a novel leucine zipper-minus autoantigen expressed in fetal and adult heart, J. Exp. Med. 182 (1995) 983–992.

[41] B. Ng, F. Yang, D.P. Huston, Y. Yan, Y. Yang, Z. Xiong, et al., Increased noncanonical splicing of autoantigen transcripts provides the structural basis for expression of unorderored epitopes, J. Allergy Clin. Immunol. 114 (2004) 1463–1476.

[42] M. Bachmann, M. Hilker, D. Grož, G. Tellmann, U. Hake, L. Kater, et al., Different La/SS-B mRNA isoforms are expressed in salivary gland tissue of patients with primary Sjögren’s syndrome, J. Autoimmun. 9 (1996) 757–766.

[43] D.B. Beck, M.A. Ferrada, K.A. Sikora, A.K. Ombrello, J.C. Collins, W. Pei, et al., Somatic mutations in UBA1 and severe adult-onset autoinflammatory disease, N. Engl. J. Med. 383 (2020) 2628–2638.

[44] Y. Goto, H. Kimura, Inactive X chromosome-specific histone H3 modifications and CpG hypomethylation flank a chromatin boundary between an X-inactivated and an escape gene, Nucleic Acids Res. 37 (2009) 7416–7428.

[45] L. Carrel, C.M. Clemson, J.M. Dunn, A.P. Miller, P.A. Hunt, J.B. Lawrence, et al., X inactivation analysis and DNA methylation studies of the ubiquitin activating enzyme E1 and PCTARE1 genes in human and mouse, Hum. Mol. Genet. 5 (1996) 391–401.

[46] E. Witt, M. Lorenz, U. Völker, K. Stangl, E. Hammer, V. Stangl, Sex-specific differences in the intracellular proteome of human endothelial cells from dizygotic twins, J. Proteomics 201 (2019) 48–56.

[47] T. Tutikainen, A.C. Villiani, A. Yen, M.A. Rivas, J.L. Marshall, R. Satija, et al., Landscape of X chromosome inactivation across human tissues, Nature 550 (2017) 244–248.

[48] J.B. Berlethe, F. Yang, J. Xu, L. Carrel, C.M. Disteche, Genes that escape from X inactivation, Hum. Genet. 130 (2011) 237–245.

[49] S. Schoefn, R. Blanco, I. Lopez de Silanes, P. Muñoz, G. Gómez-López, J. M. Flores, et al., Telomere shortening relaxes X chromosome inactivation and forces global transcriptome alterations, in: Proceedings of the National Academy of the United States of America, 106, 2009, pp. 19393–19398.