The influence of ultraviolet reflectance differs between conspicuous aposematic signals in neotropical butterflies and poison frogs

Justin Yeager | James B. Barnett

INTRODUCTION

Our contemporary understanding of the evolution of bright and conspicuous color patterns is rooted in the work of the early pioneers of evolutionary themes such as natural selection. Charles Darwin developed the theory of sexual selection to explain the presence of conspicuous ornamentation, but realized it could not account for the presence of bright colors in nonreproductive Lepidopteran larvae.
Aposematic and sexually selected color patterns are highly diverse, but such signals are often characterized by high visual contrast both between pattern components within an organism, and to the background against which the organism is viewed (Andersson, 1994; Ruxton et al., 2012). Brighter and more conspicuous signals are commonly associated with more potent defenses and greater reproductive fitness, such that predators are more easily deterred (Aronsson & Gamberale-Stille, 2008; Forsman & Herrström, 2004; Forsman & Merilaita, 1999; Halpin et al., 2020; Prudic et al., 2006; Stevens et al., 2010), rivals are more wary, and potential mates more interested when signals are highly contrasting (Andersson, 1994; Endler, 1983; Ryan & Keddy-Hector, 1992; Svensson & Wong, 2011).

High signal contrast can be achieved via two interconnected visual pathways: achromatic contrast (luminance/brightness) and chromatic contrast (hue/saturation). In vertebrates, achromatic contrast is measured as a single intensity value received by long-wave sensitive photoreceptors, whereas hue is perceived through opponent processing by two or more photoreceptors that differ in their peak wavelength sensitivity (Kelber & Osorio, 2010; Vorobyev & Osorio, 1998). Consequently, different colors contribute to visual contrast in different ways: Longwave colors (e.g., red, orange, and yellow) contribute to both achromatic and chromatic contrast, whereas shortwave colors (e.g., blue and ultraviolet (UV)) only significantly affect chromatic contrast (Stevens & Ruxton, 2012; Umbers, 2013).

For this reason, conspicuous signals frequently generate high visual contrast by combining bright long wavelength colors with low luminance black (Stevens & Ruxton, 2012). Short wavelength colors, including UV, can also create high contrast and are occasionally incorporated into seemingly conspicuous signals (Umbers, 2013). However, evidence for the efficacy of UV in aposematic signals has been mixed, with no compelling confirmation that naturally occurring UV signals are effective at deterring predators despite some evidence that UV signals can be learned (Lyytinen et al., 2001; Werner et al., 2012, 2014, 2014). Moreover, rather than preventing attacks UV-containing (UV+) signals can instead deflect attacks to more expendable body parts (Olofsson et al., 2010), or they may actually increase predation risk (Lyytinen et al., 2004). Despite the discovery of UV reflectance attracting much attention, perhaps due to our own inability to perceive such signals, we currently lack a complete understanding of if, or to what extent, UV reflectance contributes to aposematic signaling.

In the Neotropics two independent, and completely unrelated, radiations of bright conspicuous colors have drawn much scientific attention: the heliconian butterflies (Heliconiinae; Nymphalidae) and the poison frogs (Dendrobatidae; Anura). Both groups are found in similar rainforest habitats, are highly toxic, are at risk from similar predatory taxa, and have become renowned for their high diversity of species and bright colors (Merrill et al., 2015; Stynoski et al., 2015), including the presence of UV in their conspicuous signals (Briscoe et al., 2010; Yeager & Barnett, 2020).

The heliconian butterflies, especially the specious genus Heliconius, have been extensively studied in relation to color patterns that both warn predators of their potent toxins and signal important identifying information to conspecifics (Merrill et al., 2015). Complex mimicry systems have evolved to exploit predator avoidance learning, and subtle visual cues are used by conspecifics to identify potential mates (Bybee et al., 2012; Dell’Aglio et al., 2018; Merrill et al., 2015). The butterflies are potential prey to a diversity of predators, including insectivorous birds and lizards, many of which have vision sensitive to UV reflectance (Dell’Aglio et al., 2018). Similarly, the butterflies themselves are also able to see ultraviolet with some species having evolved two UV-sensitive photoreceptors that allow for fine-scale discrimination of UV wavelengths (Briscoe et al., 2010; Finkbeiner & Briscoe, 2020). For example, female Heliconius erato have a functionally pentachromatic (cone peak sensitivities λ_{max}) of 355 nm, 390 nm, 470 nm, 555 nm, and 600 nm) visual system (McCulloch et al., 2016). The evolution of duplicate UV-sensitive opsins is constrained to the genus Heliconius and appears to have co-evolved with the presence of specific UV-reflecting yellow pigments which are predicted to be important in directing social behaviors between both conspecifics and heterospecifics (Briscoe et al., 2010).

Poison frogs have similarly become a model system for understanding the interplay between aposematic and sexually selected signals (Stynoski et al., 2015). Brighter and more contrasting colors offer greater protection from predators (Dreher et al., 2015; Maan & Cummings, 2012), are more intimidating to rivals (Crothers & Cummings, 2015; Crothers et al., 2011; Galeano & Harms, 2016), and are favored by potential mates (Dreher et al., 2017; Maan & Cummings, 2008; Maan & Cummings, 2009). Poison frogs, like heliconian butterflies, are at risk from a wide range of UV-sensitive predators, including birds, snakes, and lizards (Alvarado et al., 2013; Dreher et al., 2015; de Laruza & Font, 2014; Lenger et al., 2014; Maan & Cummings, 2012; Master, 1998; Santos & Cannatella, 2011; Saporito et al., 2007; Siddiqi et al., 2004; Willink et al., 2013). However, unlike the butterflies, poison frogs are not known to possess UV-sensitive vision. The one well-described poison frog visual system being that of Oophaga pumilio, which has trichromatic vision (λ_{max} of 466 nm, 489 nm, and 561 nm) that both lacks a UV-sensitive cone and has a lens that filters out UV wavelengths (Siddiqi et al., 2004; Yovanovich et al., 2020).

Despite many similarities in color diversity, chemical defense, the visual environment, and the predator community, ultraviolet reflective colors are relatively common in heliconian butterflies but seemingly rare in poison frogs (Briscoe et al., 2010; Bybee et al., 2012; Yeager & Barnett, 2020). Indeed, we recently described the first example of UV reflectance in poison frogs, from an Ecuadorian population of Oophaga sylvatica. We found that although UV showed up brightly in photographs, it added little to internal color pattern contrast in this population (Yeager & Barnett, 2020). Here, we expand these previous...
findings to describe UV reflectance in two more species of poison frog (Ameerega bilinguis and Epipedobates tricolor). We compare the contribution of UV to signal contrast between these two dendrobatid frogs and five species of heliconian butterflies and then discuss the importance of predator versus conspecific vision in light of an extensive literature on heliconian butterflies, to point to potential explanations for the evolution of UV reflectance in these frogs.

2 METHODS

2.1 Photography

We photographed two species of Neotropical poison frog (Ameerega bilinguis and Epipedobates tricolor “Cielito” morph, Dendrobatidae) and five species of Neotropical aposematic butterfly (Eueides isabella, Heliconius atthis, H. erato, H. ismenius, and two subspecies of H. melpomene, Nymphalidae). The frogs (A. bilinguis = 5; E. tricolor = 4) were photographed at the WIKIRI Selva Viva/Centro Jambatu (Quito, Ecuador) and the butterflies (E. isabella = 4, H. atthis = 2, H. erato = 2, H. ismenius = 2, H. melpomene aglaope = 2, H. melpomene plessen = 2) were photographed at the Mariposas de Mindo—Butterfly Garden (Mindo, Ecuador). We also refer to recently published data on a UV reflective population of O. sylvatica (“Lita” morph) that was photographed in the wild (Yeager & Barnett, 2020).

To capture reflectance values across an ecologically relevant spectrum, we took calibrated photographs in both human-visible (VIS = -400–700 nm) and ultraviolet wavelengths (UV = -300–400 nm), following methods outlined in Yeager and Barnett (2020). In short, we took all digital images using a tripod-mounted, UV-sensitive, full-spectrum quartz converted Canon EOS 7D that was combined with a metal body NIKKOR EL 80-mm lens. For human-visible spectra, we fitted the lens with a Baader UV-IR blocking filter (allowing transmission of 320–680 nm), and for the UV photographs, we fitted a Baader UV pass filter (allowing transmission of 320–380 nm). We photographed each subject in both human-visible and UV spectra, we fitted the lens with a Baader UV-IR blocking filter (allowing transmission of 320–680 nm), and for the UV photographs, we fitted the lens with a Baader UV pass filter (allowing transmission of 320–380 nm). We photographed each subject in both human-visible and UV wavelengths, under natural downwelling illumination that was representative of the covered canopy forests where both butterflies and frogs occur. All images were saved in RAW format and included a 10% and a 77% reflectance standard that allowed for color calibration and scaling.

2.2 Image processing

We used the MICA toolbox in ImageJ v1.52k to calibrate, align, and combine our paired VIS and UV photographs into a series of multispectral images (Schneider et al., 2012; Troscianko & Stevens, 2015). We used the 10% and 77% reflectance standards to standardize the images, and each of the photo pairs was aligned manually. We then manually selected regions of interest (ROIs), from each multispectral image, by selecting up to six of the strongest UV-reflecting regions (UV+), and up to six similarly sized and shaped adjacent regions that did not reflect UV (UV−). These ROIs were selected to assess the role of UV reflectance specifically rather than to represent all aspects of the color pattern.

For the butterflies, we selected ROIs from the undersides of both the forewings and hindwings as these regions will be visible to both predators and conspecifics, and where most species had the greatest UV reflectance. In the frogs, the location of the UV-reflecting regions was more variable but was limited to dorsal, lateral, and inguinal regions which would similarly be visible to avian predators. All ROIs were also chosen to avoid regions of specular reflectance (see Figure 1 for species-specific UV reflectance regions).

2.3 Visual modeling

To investigate how the presence of UV reflectance affects visual contrast between adjacent UV+ and UV− regions, we compared the responses of a UV-sensitive visual model to those of a VIS-sensitive visual model (Troscianko & Stevens, 2015; Yeager & Barnett, 2020). In order to control for all non-UV-sensitive components of visual perception, these models were both generated using the UV-sensitive, tetrachromatic, vision of the Eurasian blue tit (Cyanistes caeruleus, Paridae). The blue tit has single-cone λmax of 573 nm (LWS), 508 nm (MWS), 413 nm (SWS), and double cones with λmax of 565 nm (D) (Hart et al., 2000). The UV-sensitive model included the LWS, MWS, SWS, and UVS cones spanning 300–700 nm, whereas the VIS-sensitive model used the LWS, MWS, and SWS cones (excluding the UVS cone), to cover 400–700 nm. We also included the response of the D cone, which is not sensitive to UV light, in both visual models.

We converted each multispectral image into relative cone capture rates using the MICA toolbox in ImageJ v1.52k (Schneider et al., 2012; Troscianko & Stevens, 2015). Visual contrast was calculated as “just noticeable differences” (JNDs) using the receptor noise-limited model (Vorobyev & Osorio, 1998). A JND of 1 represents the theoretical visual discrimination threshold below which two colors cannot be distinguished (Vorobyev & Osorio, 1998). Conversely, JNDs >3 are increasingly more easily discernable (Vorobyev & Osorio, 1998). We calculated chromatic (hue) contrast from the responses of the single cones and calculated achromatic (luminance) contrast from the response of the double cone (Hart et al., 2000; Vorobyev & Osorio, 1998). In both cases, we used Weber fractions of 0.05 (Hart et al., 2000; Troscianko & Stevens, 2015; Vorobyev & Osorio, 1998). We hypothesized that if UV reflectance is an important component of the signal, chromatic contrast would be perceivably higher in the UV-sensitive model than in the VIS-sensitive model (Yeager & Barnett, 2020).

3 RESULTS

We found that in all instances visual contrast between adjacent UV+ and UV− color patches was high, with JND values well above the
conservative discrimination threshold (JND = 3, Table 1). However, when comparing between UV-sensitive and VIS-sensitive models, we found that although achromatic contrast was nearly identical between the two models, there were differences in chromatic contrast (Table 1). For all comparisons, chromatic contrast was higher in the UV-sensitive model, although the magnitude of the effect varied by taxa. Moreover, when considering each species/subspecies individually, we found that the magnitude of the difference between UV and VIS models was very high for butterflies but comparatively low for frogs in both relative and absolute terms (Figure 1, Table 1).

DISCUSSION

We found that our sample of heliconian butterflies and poison frogs all reflected detectable quantities of ultraviolet light. When comparing between VIS- and UV-sensitive visual models, this UV reflectance had a negligible effect on achromatic contrast but did affect chromatic contrast, to varying degrees. The visual signals of heliconian butterflies and poison frogs have both evolved under the influence of UV-sensitive predators for the purpose of mitigating predation risk via aposematism. However, we found that UV reflectance from butterfly color patterns had a much greater effect on enhancing chromatic contrast, both in terms of absolute (change in JNDS) and in terms of proportional (percent increase due to the addition of UV) change, than was recorded from the color patterns of either of the poison frog species.

Many heliconian butterflies have evolved highly contrasting signals that contain a significant amount of UV light. However, despite high contrast, and likely being visible to potential predators, UV reflectance does not appear to play an important role in predator aversion (Dell’Aglio et al., 2018; Finkbeiner et al., 2017). The most compelling selection-based explanation for the evolution of UV+ signals comes from their potential use(s) for sexual selection in the genus *Heliconius*, where UV+ 3-hydroxy-DL-kynurenine (3-OHK) yellow pigments coincide with the duplication of UVS opsin genes (Briscoe et al., 2010). These signals have, therefore, co-evolved with complex UV-sensitive visual systems that allow heliconian butterflies to tune into UV reflectance for both mate choice and species recognition (Briscoe et al., 2010; Bybee et al., 2012; Finkbeiner et al., 2014, 2017). Visual discrimination that potentially plays an important role in preventing intergeneric hybridization between mimetic *Heliconius* and *Eueides* butterflies (Finkbeiner et al., 2017).

Indeed, all *Heliconius* species have duplicated UV coding opsin genes, and certain clades of *Heliconius* (such as *H. erato*, UV contrast shown in Figure 1e) can respond differently to different UV wavelengths. Yet even in these clades, such behavior appears limited to females, highlighting the role of sex-specific selection in the evolutionary ecology of heliconian UV signaling (Finkbeiner & Briscoe, 2020; McCulloch et al., 2016).

In comparison, UV reflectance in poison frogs appears to only have a small effect on pattern contrast, and its utility, if any, remains unknown (Yeager & Barnett, 2020). Although color can be an important intraspecific signal for poison frogs (Maan & Cummings, 2009; Yang et al., 2019), the lack of UV-sensitive photoreceptors in the dendrobatid visual system means that it is unlikely that ultraviolet reflectance has evolved in response to mating preferences or intraspecific recognition. Importantly, however, visual perception...
Yeager and Barnett have only characterized for *O. pumilio* chromatic contrast, our approach allows us to estimate the relative importance of these wavelengths to signal design. That said, it is important to note that the presence of UV reflectance within a species that lacks UV reflectance (Chaves-Acuña et al., 2020; Maan & Cummings, 2009; Siddiqi et al., 2004; Summers et al., 1999). Therefore, although UV-sensitive photoreceptors are unlikely, we cannot conclusively rule out the presence of UV-sensitive vision in other dendrobatid species. Moreover, as strong UV reflectance does not appear to affect predation risk in artificial targets (Lyytinen et al., 2001) or heliconian butterflies (Finkbeiner et al., 2017), it also seems improbable that the comparatively weak UV reflectance observed in poison frogs would be an important contribution to aposematic signals. Indeed, where UV reflectance has been reported in poison frogs pattern contrast remains high when UV is excluded, and other color pattern combinations that lack UV have both been found to result in greater visual contrast (Yeager & Barnett, 2020) and to be more likely to be avoided by avian predators (Lawrence & Noonan, 2018).

Maximizing visual contrast is not necessarily the goal of aposematic signals, and two patterns can be visually distinct (e.g., different combinations of colors) while being equally contrasting. However, by quantifying the contribution of UV to achromatic and chromatic contrast, our approach allows us to estimate the relative importance of these wavelengths to signal design. That said, it is important to note that the presence of UV reflectance within a color pattern does not equate to UV serving an explicit function; and depending on context UV reflectance could act as aposematism, camouflage, sexual signaling, thermoregulation, or protection from solar radiation (Umbers, 2013). Moreover, pigments and structural colors will interact with light beyond the wavelengths visible to observers, and reflectance characteristics outside of the visible range may evolve without direct selection. For example, selection for very high reflectance across 400–700 nm would very plausibly, as a by-product, also produce significant reflectance in the near ultraviolet (350–400 nm) and near infrared (700–750 nm).

We cannot, therefore, definitively state a function for ultraviolet reflectance in poison frogs, if indeed there is a function. However, by directly comparing the characteristics of frog coloring to the well-known UV signals of heliconian butterflies, we can provide guidance and set potential expectations for future research on poison frogs. Firstly, we believe that it is important to characterize the visual systems of a greater diversity of dendrobatid species considering the impressive diversity of intra- and interspecific color patterns, where some species reflect UV and many well-studied species apparently do not. Secondly, behavioral trials both with potential predators and conspecifics are needed to examine whether observers respond differently to UV+ and UV− signals under natural lighting conditions. More widely, we also believe that the role of UV reflectance in aposematic signaling deserves more attention, or perhaps publication bias against nonsignificant findings needs to be addressed. Finally, we add further evidence in support of previous cautions regarding the over interpretation of function in animal coloration, such as those reported for UV reflectance in bird coloring (Stevens & Cuthill, 2007), and specifically suggest that neutral evolutionary processes may be more common in shaping animal color patterns than currently acknowledged.

Here, we investigated the degree to which UV reflectance affected the visual contrast of conspicuous signals given the recent discovery of UV reflectance in aposematic poison frogs (Yeager & Barnett, 2020) which we compare to UV reflectance in aposematic butterflies. UV is known to play an important role in intraspecific communication in heliconian butterflies, and we found that UV

| TABLE 1 Chromatic and achromatic contrast from the VIS- and UV-sensitive visual models (JND means ± SE), and the absolute and relative (%) difference in mean contrast between VIS and UV models (* Oophaga sylvatica (Lita locality) data from Yeager & Barnett (2020)) |
| --- | --- | --- | --- |
| **Chromatic contrast** | **Achromatic contrast** |
| **Poison frogs** | **VIS model** | **UV model** | **Difference (%)** | **VIS model** | **UV model** | **Difference (%)** |
| **Ameerega bilinguis** | 16.40 ± 4.24 | 19.71 ± 2.97 | 3.31 (20.18%) | 50.63 ± 2.57 | 50.69 ± 2.59 | 0.06 (0.12%) |
| **Epipedobates tricolor** (Cielito morph) | 6.21 ± 0.91 | 6.87 ± 1.29 | 0.66 (10.63%) | 78.63 ± 4.81 | 78.55 ± 4.87 | −0.08 (−0.10%) |
| **Oophaga sylvatica** (Lita morph) * | 24.96 ± 5.05 | 32.39 ± 6.76 | 7.43 (29.77%) | 26.22 ± 4.29 | 26.45 ± 4.30 | 0.23 (0.88%) |
| **Heliconiinae butterflies** | | | | | | |
| **Eueides isabella** | 13.47 ± 1.89 | 24.99 ± 0.73 | 11.52 (85.52%) | 74.30 ± 1.97 | 74.71 ± 1.97 | 0.41 (0.55%) |
| **Heliconius atthis** | 15.28 ± 3.94 | 28.25 ± 1.01 | 12.97 (84.88%) | 58.26 ± 7.77 | 58.72 ± 7.92 | 0.46 (0.79%) |
| **Heliconius erato** | 6.68 ± 2.98 | 20.74 ± 3.98 | 14.06 (210.48%) | 59.99 ± 9.34 | 60.30 ± 9.37 | 0.31 (0.52%) |
| **Heliconius ismenius** | 36.91 ± 3.48 | 49.50 ± 1.35 | 12.59 (34.11%) | 37.21 ± 9.38 | 37.37 ± 9.42 | 0.16 (0.43%) |
| **Heliconius melpomene aglaope** | 5.84 ± 4.52 | 12.06 ± 5.88 | 6.22 (106.51%) | 65.30 ± 6.22 | 65.50 ± 6.28 | 0.20 (0.31%) |
| **Heliconius melpomene plessen** | 7.18 ± 4.35 | 15.00 ± 2.68 | 7.82 (108.91%) | 89.90 ± 4.49 | 90.19 ± 4.40 | 0.29 (0.32%) |
had a correspondingly large effect on increasing the chromatic contrast of butterfly coloration. Conversely, poison frogs are not known to perceive UV light, and UV reflectance had a comparatively small effect on signal contrast. These data support the notion that UV reflectance does not necessarily have a special role in aposematic signal design and has likely evolved neutrally in many poison frogs (Yeager & Barnett, 2020); however, much remains unknown.

ACKNOWLEDGMENTS
We thank WIKIRI Selva Viva and Centro Jambatu, and the Mariposas de Mindo for allowing us access to photograph specimens and assistance with identifications. Ministerio del Ambiente, Ecuador, for research permission (permit number: 014-2019-IC-FLO-DNB/MA) and the Universidad de Las Américas, Quito, Ecuador, for financial support (grant number: FGE_JY.20.13).

CONFLICT OF INTEREST
None declared.

AUTHOR CONTRIBUTIONS
Justin Yeager: Conceptualization (equal); Data curation (lead); Formal analysis (equal); Funding acquisition (lead); Investigation (equal); Methodology (equal); Project administration (equal); Writing- original draft (equal); Writing- review & editing (equal).

James Barnett: Conceptualization (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Project administration (equal); Writing- review & editing (equal).

DATA AVAILABILITY STATEMENT
Data have been deposited in Dryad https://datadryad.org/stash/share/TTJXGEF6y2UJFtRrT12HyFMX4Nzl3mDdEkiGWZ5Dw7A.

REFERENCES
Alvarado, J. B., Alvarez, A., & Saporito, R. A. (2013). Oophaga pumilio (strawberry poison frog) predation. Herpetological Review, 44, 298.

Andersson, M. (1994). Sexual selection. Princeton University Press.

Arónsson, M., & Gambarale-Stillé, G. (2008). Domestic chicks primarily attend to colour, not pattern, when learning an aposematic coloration. Animal Behaviour, 75, 417–423. https://doi.org/10.1016/j.anbehav.2007.05.006

Briscoe, A. D., Bybee, S. M., Bernard, G. D., Yuan, F., Sison-Mangus, M. P., Reed, R. D., Warren, A. D., Llorente-Bousquets, J., & Chiao, C. C. (2010). Positive selection of a duplicated UV-sensitive visual pigment coincides with wing pigment evolution in Heliconius butterflies. Proceedings of the National Academy of Sciences, 107, 3628–3633.

Bybee, S. M., Yuan, F., Ramstetter, M. D., Llorente-Bousquets, J., Reed, R. D., Osorio, D., & Briscoe, A. D. (2012). UV photoreceptors and UV-yellow wing pigments in heliconius butterflies allow a color signal to serve both mimicry and intraspecific communication. The American Naturalist, 179, 38–51.

Caro, T. (2017). Wallace on coloration: Contemporary perspective and unresolved insights. Trends in Ecology & Evolution, 32, 23–30. https://doi.org/10.1016/j.tree.2016.10.003

Caro, T., & Ruxton, G. (2019). Aposematism: Unpacking the defences. Trends in Ecology & Evolution, 34, 595–604. https://doi.org/10.1016/j.tree.2019.02.015

Chaves-Acuña, W., Sandoval, L., Bitton, P.-P., Barrantes, G., & García-Rodriguez, A. (2020). Conspecific and predator perception of the red Oophaga pumilio morph from the Central Caribbean of Costa Rica. Journal of Herpetology, 54, 361–370, 310.

Crothers, L. R., & Cummings, M. E. (2015). A multifunctional warning signal behaves as an agonistic status signal in a poison frog. Behavioral Ecology, 26, 560–568. https://doi.org/10.1093/beheco/aru231

Crothers, L., Gering, E., & Cummings, M. (2011). Aposematic signal variation predicts male-male interactions in a polymorphic poison frog. Evolution, 65, 599–605. https://doi.org/10.1111/j.1558-5646.2010.01154.x

Darwin, C. (1871). The Decent of Man, and selection in relation to sex. John Murray.

de Lanuza, G. P. I., & Font, E. (2014). Ultraviolet vision in lacertid lizards: Evidence from retinal structure, eye transmittance, SWS1 visual pigment genes and behaviour. The Journal of Experimental Biology, 217, 2899–2909. https://doi.org/10.1242/jeb.104281

Dell’Aglio, D. D., Troscianko, J., McMillan, W. O., Stevens, M., & Jiggins, C. D. (2018). The appearance of mimetic Heliconius butterflies to predators and conspecifics. Evolution, 72, 2156–2166.

Dreher, C. E., Cummings, M. E., & Pröhl, H. (2015). An Analysis of predator selection to affect aposematic coloration in a poison frog species. PLoS One, 10, e0130571. https://doi.org/10.1371/journal.pone.0130571

Dreher, C. E., Rodríguez, A., Cummings, M. E., & Pröhl, H. (2017). Mating status correlates with dorsal brightness in some but not all poison frog populations. Ecology and Evolution, 7, 10503–10512. https://doi.org/10.1002/ece3.3531

Endler, J. A. (1983). Natural and sexual selection on color patterns in poeciliid fishes. Environmental Biology of Fishes, 9, 173–190. https://doi.org/10.1007/BF00690861

Finkbeiner, S. D., & Briscoe, A. D. (2020). True UV color vision in a butterfly fly with two UV opsins. bioRxiv. 2020.2021.2014.382507

Finkbeiner, S. D., Briscoe, A. D., & Reed, R. D. (2014). Warning signals are seductive: relative contributions of color and pattern to predator avoidance and mate attraction in Heliconius butterflies. Evolution, 68, 3410–3420.

Finkbeiner, S. D., Fishman, D. A., Osorio, D., & Briscoe, A. D. (2017). Ultraviolet and yellow reflectance but not fluorescence is important for visual discrimination of conspecifics by Heliconius erato. The Journal of Experimental Biology, 220, 1267–1276.

Forsman, A., & Herrström, J. (2004). Asymmetry in size, shape, and color impairs the protective value of conspicuous color patterns. Behavioral Ecology, 15, 141–147. https://doi.org/10.1093/beheco/arg092

Forsman, A., & Merilaita, S. (1999). Fearful symmetry: Pattern size and asymmetry affects aposematic signal efficacy. Evolutionary Ecology, 13, 131–140. https://doi.org/10.1023/A:1006630911975

Galeano, S. P., & Harms, K. E. (2016). Coloration in the polymorphic frog Oophaga pumilio associates with level of aggressiveness in intraspecific and interspecific behavioral interactions. Behavioral Ecology and Sociobiology, 70, 83–97. https://doi.org/10.1007/s00265-015-0207-5

Halpin, C. G., Penacchio, Ö., Lovell, P. G., Cuthill, I. C., Harris, J. M., Skelhorn, J., & Rowe, C. (2020). Pattern contrast influences wariness with naive predators towards aposematic patterns. Scientific Reports, 10, 9246. https://doi.org/10.1038/s41598-020-65754-y

Hart, N. S., Partridge, J. C., Cuthill, I. C., & Bennett, A. T. D. (2000). Visual pigments, oil droplets, ocular media and cone photoreceptor distribution in two species of passerine bird: The blue tit
Yeager, J., & Barnett, J. B. (2020). Ultraviolet components offer minimal contrast enhancement to an aposematic signal. *Ecology and Evolution, 10*, 13576–13582. https://doi.org/10.1002/ece3.6969

Yovanovich, C. A. M., Pierotti, M. E. R., Kelber, A., Jorgewich-Cohen, G., Ibáñez, R., & Grant, T. (2020). Lens transmittance shapes ultraviolet sensitivity in the eyes of frogs from diverse ecological and phylogenetic backgrounds. *Proceedings of the Royal Society B: Biological Sciences, 287*(1918), 20192253.

How to cite this article: Yeager, J., & Barnett, J. B. (2021). The influence of ultraviolet reflectance differs between conspicuous aposematic signals in neotropical butterflies and poison frogs. *Ecology and Evolution, 11*, 13633–13640. https://doi.org/10.1002/ece3.7942