Orientation Dependence of Elastic and Piezoelectric Properties in Rhombohedral BiFeO₃

Gang Jian 1,2,*, Fei Xue 3, Yuhang Guo 1 and Chao Yan 1,*

1 School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China; guoyuhang@just.edu.cn
2 School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
3 Center of Collaboration and Innovation, Jiangxi University of Technology, Nanchang 330098, China; xuefei_work@126.com
* Correspondence: gjian@just.edu.cn (G.J.); chaoyan@just.edu.cn (C.Y.); Tel.: +86-511-8440-7381 (G.J.)

Received: 18 October 2018; Accepted: 30 November 2018; Published: 2 December 2018

Abstract: Through a coordinate transformation approach, crystal orientation dependences of elastic and piezoelectric properties at room temperature have been investigated in a three-dimensional space for rhombohedral bismuth ferrite (BiFeO₃). Elastic constants (stiffnesses) c_{11}', c_{12}', c_{13}' and piezoelectric constants d_{15}', d_{31}', d_{33}' along arbitrary orientations were obtained based on crystalline asymmetry characteristics of $3m$ point group BiFeO₃. Parameters along specific orientations obtaining the largest values were presented. The max $c_{11}' = 213 \times 10^9$ N/m2 could be achieved in planes with $\phi = 0^\circ$ and 90°. The max $c_{12}' = c_{13}' = 132.2 \times 10^9$ N/m2 could be achieved along directions at $\theta = 13^\circ$ and $\theta = 77^\circ$ inside three mirror planes, respectively. The max $d_{15}' = 27.6 \times 10^{-12}$ C/N and the max $d_{33}' = 18 \times 10^{-12}$ C/N could be obtained at $\theta = 0^\circ$, along the spontaneous polarization axis. By adopting optimal directions, the elastic and piezoelectric parameters of BiFeO₃ could be significantly enhanced which shows applications for the growth of BeFeO₃ films with preferred orientations and enhanced properties.

Keywords: bismuth ferrite; orientation dependence; coordinate transformation; elasticity; piezoelectricity

1. Introduction

Bismuth ferrite (BiFeO₃) was first actively pursued as a room temperature single-phase multiferroic material for its coexistence of magnetic order and electric order, high Curie point, and G-type antiferromagnetic Neel point [1–4]. Then, as BiFeO₃ exhibits good ferroelectric and piezoelectric properties, it was also studied as a piezoelectric phase to combine other magnetostrictive phase to form composite multiferroic with tailored properties, such as BiFeO₃-CoFe₂O₄ [5], BiFeO₃-CuFe₂O₄ [6], etc., which shows potential technical applications in multi-state magnetoelectric memories [7], weak magnetic fields detectors [8], and other novel sensors [9,10]. As a lead-free piezoelectric material, BiFeO₃ could be highly applied in piezoelectric MEMS devices because of the spontaneous polarization of as high as 100 µC/cm2 [11] and the high Curie temperature [3]. Besides, BiFeO₃ thin films are reported to have lower dielectric constants than Pb-based piezoelectric materials which could generate high electromechanical coupling abilities [12,13]. On raising piezoelectric constants of BiFeO₃, previous studies were focused on doping transition metals such as Sm, Yb, Ho in A site and Sc, In in B site of BiFeO₃, piezoelectric constants d_{33} of up to ~20–50 pC/N were achieved [14,15]. Most piezoelectrics have asymmetrical crystal structures, which result high anisotropy of parameters of the materials. Piezoelectric thin films with preferred orientations can obtain enhanced or decreased properties compared with grain random distributed materials [16,17]. This also applies to doped
BiFeO$_3$ with unchanged crystal structures. Whether the properties will be enhanced or decreased is strongly determined by asymmetry characteristics of crystal, i.e., the point groups. The crystal structure of BiFeO$_3$ below 1100 K belongs to a rhombohedral system with point group of 3m [18]. It is meaningful to have a precise description of properties-orientation relations to guide further experimental works. In this research, using the coordinate transformation method, we investigated the orientation dependences of elastic and piezoelectric parameters of rhombohedral BiFeO$_3$ with the 3m point group. Precise relations between values of parameters and arbitrary orientations were given, and orientations along which the maximum and minimum of these parameters could be obtained were specified. The result shows applications for the growth of BiFeO$_3$ films with an oriented structure and enhanced properties.

2. Methods

The Curie point and the antiferromagnetic Neel point of BiFeO$_3$ are 1100 [3] and 640 K [4], respectively. Below the Curie point, BiFeO$_3$ is a member of rhombohedral crystal system with point group of 3m [18]. For this type of crystal, the asymmetrical characteristics lie in such a way that it has a threefold rotation axis along the c-axis (also the spontaneous polarization axis, displacements of Bi relative to O in rhombohedral BiFeO$_3$ [19,20], also can be denoted as [111]-axis using coordinate with oxygen octahedra in perovskite Bi framework) and three mirror planes which are 120° apart (two of them are parallel to a- and b-axes, respectively). Because of $\alpha = \beta = 90^\circ$ and $\gamma = 120^\circ$ for rhombohedral BiFeO$_3$ crystal, the physical orthogonal coordinate system does not coincide rightly with a-, b-, and c-axes. The chosen coordinate system in this study is as follows: X-axis and Z-axis are chosen along a-axis and c-axis (i.e., $X \parallel a$, $Z \parallel c$), respectively; Y-axis is determined by using the right-hand rule, which is perpendicular to a-axis and at a 30° angle with b-axis (Figure 1).

![Figure 1. Illustration of the crystal structure of BiFeO$_3$ (R3C space group, 3m point group). Lattice constants: $a = b = 0.56$ nm, $c = 1.395$ nm; $a = \beta = 90^\circ$, $\gamma = 120^\circ$. The chosen crystallographic coordinate system: $X \parallel a$, $Z \parallel c$, $Y \perp a$. The angle between Y and b-axis is 30°.](image)

To determine the anisotropy of properties originating from asymmetry of crystals, we use the coordinate system transformation method that is related to transforming the property tensors to obtain values in any arbitrary direction. It contains two-step rotations to reach a desired direction from the original coordinate system. Firstly, rotation through a clockwise angle ϕ about the Z-axis,
the original orthogonal coordinates \(XYZ\) can be changed into a new coordinates \(X'Y'Z'\) (\(Z' \parallel Z\)); secondly, rotation through a clockwise angle \(\theta\) about the \(X'\)-axis; the coordinate system \(X'Y'Z'\) can be changed into another set of coordinates \(X''Y''Z''\) (\(X'' \parallel X\)). The transformation matrices \(A_Z\) and \(A_X\) corresponding to the first and the second rotations are

\[
A_Z = \begin{pmatrix}
\cos \phi & \sin \phi & 0 \\
-\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{pmatrix}
\]

\[
A_X = \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \theta & \sin \theta \\
0 & -\sin \theta & \cos \theta
\end{pmatrix}
\]

\(N\) and \(M\) are \([6 \times 6]\) bond strain transformation matrices. \(a_{ij}\) represents the element in row \(i\) and column \(j\) in transformation matrices \(A\), the matrices \(N\) and \(M\) are

\[
N = \begin{pmatrix}
a_{11}^2 & a_{12}^2 & a_{13}^2 & a_{12}a_{13} & a_{13}a_{11} & a_{11}a_{12} \\
a_{12}^2 & a_{22}^2 & a_{23}^2 & a_{22}a_{23} & a_{23}a_{21} & a_{21}a_{22} \\
a_{13}^2 & a_{23}^2 & a_{33}^2 & a_{23}a_{33} & a_{33}a_{31} & a_{31}a_{32} \\
a_{12}a_{13} & a_{22}a_{23} & a_{23}a_{33} & a_{23}a_{21} + a_{33}a_{21} & a_{21}a_{22} + a_{31}a_{22} \\
a_{13}a_{11} & a_{23}a_{12} & a_{33}a_{13} & a_{23}a_{11} + a_{33}a_{21} & a_{31}a_{12} + a_{31}a_{32} \\
a_{11}a_{12} & a_{12}a_{22} & a_{13}a_{23} & a_{13}a_{21} + a_{23}a_{11} & a_{11}a_{22} + a_{21}a_{12}
\end{pmatrix}
\]

\[
M = \begin{pmatrix}
a_{11}^2 & a_{12}^2 & a_{13}^2 & 2a_{12}a_{13} & 2a_{11}a_{12} & 2a_{11}a_{12} \\
a_{12}^2 & a_{22}^2 & a_{23}^2 & 2a_{22}a_{23} & 2a_{21}a_{22} & 2a_{21}a_{22} \\
a_{13}^2 & a_{23}^2 & a_{33}^2 & 2a_{23}a_{33} & 2a_{31}a_{32} & 2a_{31}a_{32} \\
a_{12}a_{13} & a_{22}a_{23} & a_{23}a_{33} & a_{23}a_{21} + a_{33}a_{21} & a_{21}a_{22} + a_{31}a_{22} \\
a_{13}a_{11} & a_{23}a_{12} & a_{33}a_{13} & a_{23}a_{11} + a_{33}a_{21} & a_{31}a_{12} + a_{31}a_{32} \\
a_{11}a_{12} & a_{12}a_{22} & a_{13}a_{23} & a_{13}a_{21} + a_{23}a_{11} & a_{11}a_{22} + a_{21}a_{12}
\end{pmatrix}
\]

The elastic constants, including the compliance \(s_{ij}\) (i, j = 1–6) (m²/N) and the stiffness \(c_{ij}\) (i, j = 1–6) (N/m²), are defined by Hooke’s Law containing the relations between the strain \(x\) and the stress \(X\), (\(x\) = (\(s\)) \((X)\) and \((X) = (c)\) \((x)\). The piezoelectric coefficient \(d_{ij}\) (i = 1–3, j = 1–6) (C/N), relates polarization \(P\), to stress \(X\) in the relation of \((P) = (d)\) \((X)\). For a three-dimensional space coordinate system, all physical quantities are presented in matrix forms. Matrices of elastic stiffnesses \(c_{ij}\) and piezoelectric constants \(d_{ij}\) are presented in \([6 \times 6]\) and \([3 \times 6]\) rank tensors, respectively. According to Euler’s rotation laws, physical quantity matrices in a new orientation are obtained by two-step product operations with transformation matrices \(A\), \(N\), and \(M\) [21,22].

\[
(c') = M_X \cdot M_Z \cdot (c) \cdot M_Y^T \cdot M_X^T
\]

\[
(d') = A_X \cdot A_Z \cdot (d) \cdot N_Z^T \cdot N_X^T
\]

The symbols ‘”’ and ‘’ represent parameters in the new coordinate system and transpose matrix, respectively. The key to calculate Equations (5) and (6) is using the right original matrices (at \(\theta = \phi = 0^\circ\)) which are obtained from Neumann’s principle changing with different point groups. The original matrices of \((c)\) and \((d)\) for \(3m\) point group can be obtained from Ref. [20]. The elastic stiffnesses \(c_{ij}\) of BiFeO₃ at room temperature were obtained from Refs. [23,24]. The piezoelectric constants \(d_{ij}\) of BiFeO₃ at room temperature were obtained from Refs. [24,25]. Three-dimensional and two-dimensional representation graphs of parameters were drawn using Maple 18, a mathematical software program.
3. Results and Discussion

In both three-dimensional and two-dimensional graphs, the distance between a point and the original point represents the absolute value of the relative physical quantity in the relative direction. Orientational dependences of elastic constants c_{ij} were obtained by calculating (c') in Equation (5) using data of five independent elastic constants (c_{11}, c_{12}, c_{13}, c_{33}, and c_{44}) for rhombohedral BiFeO$_3$. Figure 2a shows the three-dimensional representation of the first term elastic constant c_{11}'. In the geometry in Figure 2a, moderate changes of c_{11}' could be observed with rhombohedral BiFeO$_3$ crystal rotating to different (θ, ϕ). The max $c_{11}' = 213 \times 10^9$ N/m2 is along $\phi = 0^\circ$ and 90° (also see Figure 2b); while the min $c_{11}' = 188 \times 10^9$ N/m2 is along $\phi = 45^\circ$ and 135° with a 11.7% decrease from the maximum. It also indicates that along principle axes of rhombohedral BiFeO$_3$, the max c_{11}' could be obtained.

Figure 2. (a) Schematic diagram of elastic stiffness c_{11} by the experimental data of BiFeO$_3$; (b) elastic stiffness c_{11} of BiFeO$_3$ in XOZ plane (also applies to YOZ plane, unit GPa).

Figure 3a shows the three-dimensional representation of the second term elastic stiffness c_{12}' of rhombohedral BiFeO$_3$. The geometry exhibits rotation symmetry in that by rotating through the Z-axis about 120° it coincides with each other, and by rotating through the Z-axis about 60° the rotated and original shapes are axisymmetric about the Z-axis. This is because to the symmetry elements of rhombohedral BiFeO$_3$ are three mirror-planes 120° apart from each other. Figure 3b shows the cross-section plots of c_{12} in XOZ plane at $\theta = 0^\circ$ or 120°. Plot in Figure 3c at $\phi = 60^\circ$ is axisymmetric with the plot of Figure 3b about the Z-axis. The max $c_{12}' = 132.3 \times 10^9$ N/m2 can be obtained at $\theta = 13^\circ$ when $\phi = 0^\circ$ and 120°, $\theta = -13^\circ$ when $\phi = 60^\circ$. This indicates the three maximums exist in the mirror plane of rhombohedral BiFeO$_3$, but they are at an angle to the spontaneous polarization axis. The min $c_{12}' = 49 \times 10^9$ N/m2 can be obtained at $\theta = -77^\circ$.

Figure 4a shows the three-dimensional representation of the second term elastic stiffness c_{13}' of rhombohedral BiFeO$_3$. Unlike c_{12}', large c_{13}' is found along the transverse directions, rather than the longitudinal directions. Symmetrical lobes of c_{13}' also are along mirror planes, as shown in Figure 4b,c. The max $c_{13}' = 132 \times 10^9$ N/m2 can be obtained at θ of 77° inside mirror planes. The min $c_{13}' = 44.6 \times 10^9$ N/m2 can be obtained at θ of -13°. Values of c_{11}', c_{12}', and c_{13}' of rhombohedral BiFeO$_3$ along several chosen orientations are shown in Table 1.
Orientational dependences of piezoelectric constants d_{ij}' were obtained by calculating (d') in Equation (6) using data of four independent elastic constants (d_{15}, d_{22}, d_{31}, and d_{33}) for rhombohedral BiFeO$_3$. Figure 5a shows the three-dimensional representation of shear piezoelectric constant d_{15}'. There are three pairs of lobes in the geometry shape of d_{15}'. Each pairs are along mirror planes of $3m$ BiFeO$_3$, and two components of each pairs are centro symmetric to the origin point. d_{15}' with large values could be obtained along orientations inside the lobes and it tends to be zero outside these lobes showing very evident spatial anisotropy. Figure 5b shows a cross-sectional plot of piezoelectric constant d_{15}' at $\phi = 0^\circ$, 120°, and 240° (Figure 5c is the relative plot at $\phi = 60^\circ$). The max $d_{15}' \approx 27.6 \times 10^{-12}$ C/N could be obtained at $\theta = 69^\circ$ inside mirror planes.
The cross-sectional two-dimensional plots in Materials 2018, 11, x FOR PEER REVIEW 7 of 10 and the max $d_{31}' = 4.5 \times 10^{-12}$ C/N along the [001]-axis. Notably, the transverse piezoelectric constant d_{31}' tends to be small along the spontaneous polarization axis ([001]-axis in this study). The result is in accordance with transverse piezoelectric stress constant values e_{31} (unit C/m², $c = d \cdot c$, where d and c are piezoelectric constant and elastic stiffness, respectively) of epitaxial BiFeO$_3$ films with various preferred orientations, e_{31} along the spontaneous polarization axis and at a tilt 54.7° were −1.3 and −3.5 C/m², respectively, which is also about three times larger [26].

Figure 5. (a) Schematic diagram of piezoelectric constant d_{15} by the experimental data of BiFeO$_3$; (b) piezoelectric constant d_{15} of BiFeO$_3$ in XOZ plane at $\phi = 0°$; (c) piezoelectric constant d_{15} of BiFeO$_3$ in X'OZ plane at $\phi = 60°$ (unit 10^{-12} C/N).

Figure 6 shows the three-dimensional representation of longitudinal piezoelectric constant d_{33}' of rhombohedral BiFeO$_3$. Symmetrical lobes of d_{33}' also can be found along mirror planes. The max $d_{33}' = 18 \times 10^{-12}$ C/N could be obtained at $\theta = 0°$ along the spontaneous polarization axis. The cross-sectional two-dimensional plots in X'OZ planes are shown in Figure 7b,c. The value of d_{33}' along [100] and [010] is 13×10^{-12} C/N. The result in this study is quite in accordance with d_{33} value.

Figure 6. Schematic diagram of piezoelectric constant d_{31} by the experimental data of BiFeO$_3$ (unit 10^{-12} C/N).
of BiFeO$_3$ crystal measured by Raman scattering, which is $d_{33} = 16 \times 10^{-12}$ C/N [27]. For epitaxial BiFeO$_3$ films, because of another measurement method applied (i.e., piezoelectric force microscopy, PFM) and strain from the substrates, values of d_{33} of epitaxial BiFeO$_3$ films tend to be larger, in a range of $20–60 \times 10^{-12}$ C/N. However, experimental results showed epitaxial BiFeO$_3$ films with oriented structure has about four times the enhancement of longitudinal piezoelectric constant compared with polycrystalline BiFeO$_3$ films [28,29], which are generally in line with our results. Values of d_{33}', d_{31}', and d_{33}'' of rhombohedral BiFeO$_3$ along several chosen orientations are summarized in Table 1.

![Figure 7](image-url)

Figure 7. (a) Schematic diagram of piezoelectric constant d_{33} by the experimental data of BiFeO$_3$; (b) piezoelectric constant d_{33} of BiFeO$_3$ in XOZ plane at $\phi = 0^\circ$; (c) piezoelectric constant d_{33} of BiFeO$_3$ in X'OZ plane at $\phi = 60^\circ$ (unit 10^{-12} C/N).

Table 1. Comparison of elastic stiffness c_{ij} (GPa) and piezoelectric constant d_{ij} (10^{-12} C/N) and their extremums along chosen orientations among BiFeO$_3$ ($3m$), tetragonal BaTiO$_3$ ($4mm$), and KNbO$_3$ ($m2m$) [28,29] $^\#$.

Crystal $[\{nkl\}]$	[100]	[010]	[001]	Max	Min	Crystal $[\{nkl\}]$	[100]	[010]	[001]	Max	Min
$^{bf}c_{11}'$	213	188	213	188	271	$^{bt}c_{11}'$	271	271	271	271	271
$^{bf}c_{12}'$	49	49	111	132	44.6	$^{bt}c_{12}'$	152	152	179	179	152
$^{bf}c_{33}'$	111	111	49	132	44.6						
$^{bt}d_{15}'$	25.9	0	9.8	27.6	0	$^{bt}d_{15}'$	392	392	0	392	0
$^{bt}d_{31}'$	11.9	0	4.5	12.67	0	$^{bt}d_{31}'$	0	0	34.5	0	34.5
$^{bf}d_{33}'$	13	13	18	18	0	$^{bt}d_{33}'$	20	20	85.6	20	20
						$^{bt}d_{33}'$	0	29.3	59.3	0	

$^\#$ The symbols BF, BT, and KN represent BiFeO$_3$, BaTiO$_3$, and KNbO$_3$, respectively.

From the orientation dependences of elastic and piezoelectric parameters investigated in this study, it can be found that the spatial anisotropy of c_{ij} and d_{ij} are related closely with the asymmetrical characteristics of rhombohedral BiFeO$_3$ crystal with the $3m$ point group. As there is a rotation axis that is also the c-axis, several parameters tend to produce extreme values along this direction: c_{11} and d_{33} have the max values while d_{15} and d_{31} have the min values. Also, as there are three mirror planes locate at $\phi = 0^\circ$, 60° (240°), and 120°, respectively (see Figure 8a–c, also denoting them with Miller index of (010), (110), and (100), respectively), the main lobes of several parameters are along the mirror planes: c_{12}, c_{13}, and all piezoelectric constants investigated. It also should be noted that Maxima directions are at a certain angle with the main crystalline axes, which may be attributed to the intrinsic lattice effects, which also appear in other piezoelectrics like BaTiO$_3$ [30] and LiNbO$_3$ [31]. The values of these parameters along arbitrary orientations were given in this study (some are listed in Table 1),
which provides precise predictions for values of parameters with changing orientations. Table 1 also indicates that as a lead-free piezoelectric material, BiFeO$_3$ has smaller elastic stiffnesses (larger elastic compliances) than tetragonal BaTiO$_3$, and it has piezoelectric constants in the same level with those of KNbO$_3$ [32,33]. Furthermore, the largest values of these parameters were given in this study, which shows applications for the growth of BiFeO$_3$ films with oriented structure and enhanced properties.

![Diagram](image)

Figure 8. Crystalline planes of BiFeO$_3$ at various rotation angles: (a) $\phi = 0^\circ$, along a- and c-axes, Miller index (010)-plane; (b) $\phi = 60^\circ$, along c-axis, Miller index (1(-1)0)-plane; (c) $\phi = 120^\circ$, along b- and c-axes, Miller index (100)-plane. The three planes are also the three mirror symmetry planes.

4. Conclusions

Using the coordinate transformation method, the elastic and piezoelectric parameters at room temperature of rhombohedral BiFeO$_3$ with the $3m$ point group along arbitrary orientations have been investigated. Several conclusions were obtained through this study:

1. The max elastic stiffness $c_{11}' = 213 \times 10^9$ N/m2 lies in planes with $\phi = 0^\circ$ and 90°. The max elastic stiffness $c_{12}' = c_{13}' = 132.2 \times 10^9$ N/m2 lie in directions at $\theta = 13^\circ$ and $\theta = 77^\circ$ inside three mirror planes, respectively.

2. The max piezoelectric constant $d_{15}' = 27.6 \times 10^{-12}$ C/N and the max piezoelectric constant $d_{33}' = 12.67 \times 10^{-12}$ C/N could both be obtained at $\theta = 69^\circ$ inside three mirror planes. The max piezoelectric constant $d_{33}' = 18 \times 10^{-12}$ C/N could be obtained at $\theta = 0^\circ$, along the spontaneous polarization axis.

3. The elastic and piezoelectric parameters of BiFeO$_3$ along arbitrary orientations were presented, and by adopting optimal directions these parameters could be significantly enhanced, which shows applications for the growth of BeFeO$_3$ films with oriented structures and enhanced properties.

Author Contributions: Conceptualization, G.J. and Y.G.; Methodology, FX.; Formal Analysis, C.Y.; Writing-Original Draft Preparation, G.J.; Writing-Review & Editing, G.J.

Funding: This research was funded by the National Natural Science Foundations of China (No. 51873083), the Opening Project of State Key Laboratory of Polymer Materials Engineering (Sichuan University) (No. sklpme2018-4-27), the Six Talent Peaks Project in Jiangsu Province (No. 2015-XCL-028), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX17_1831, SJCX18_0759) and Natural Science Foundation of Jiangsu Province in China (grant number BK20140517).

Acknowledgments: This work was supported by the National Natural Science Foundations of China (No. 51873083), the Opening Project of State Key Laboratory of Polymer Materials Engineering (Sichuan University) (No. sklpme2018-4-27), the Six Talent Peaks Project in Jiangsu Province (No. 2015-XCL-028), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX17_1831, SJCX18_0759) and Natural Science Foundation of Jiangsu Province in China (grant number BK20140517).
Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Zhu, J.; Yin, Z.; Fu, Z.; Zhao, Y.; Zhang, X.; Liu, X.; You, J.; Li, X.; Meng, J.; Liu, H.; et al. Epitaxial integration of tetragonal BiFeO₃ with silicon for nonvolatile memory applications. J. Crys. Growth 1998, 459, 178–184. [CrossRef]

2. Lu, J.; Günther, A.; Schrettle, F.; Mayr, F.; Krohns, S.; Lunkenheimer, P.; Pimenov, A.; Travkin, V.D.; Mukhin, A.A.; Loidl, A. On the room temperature multiferroic BiFeO₃: Magnetic, dielectric and thermal properties. Eur. Phys. J. B 2010, 75, 451–460. [CrossRef]

3. Ren, X.; Fan, H.; Zhao, Y.; Liu, Z. Flexible lead-free BiFeO₃/PDMS-based nanogenerator as piezoelectric energy harvester. ACS Appl. Mater. Interface 2011, 8, 26190–26197. [CrossRef] [PubMed]

4. Sobhan, M.; Xu, Q.; Katoch, A.; Anariba1, F.; Kim, S.S.; Wu, P.O. Multiferroic behavior and impedance spectroscopy of bilayered BiFeO₃/CoFe₂O₄ thin films. J. Appl. Phys. 2009, 105, 759. [CrossRef]

5. Kumar, M.; Yadav, K.L. Synthesis of nanocrystalline xCuFe₂O₄-(1-x)BiFeO₃ magnetoelectric composite by chemical method. Mater. Lett. 2007, 61, 2089–2092. [CrossRef]

6. Nan, C.W.; Bichurin, M.I.; Dong, S.X.; Viehland, D.; Srinivasan, G. Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. J. Appl. Phys. 2008, 103, 031101. [CrossRef]

7. Zhao, T.; Scholl, A.; Zavalichell, F.; Lee, K.; Barry, M.; Doran, A.; Cruz, M.P.; Chu, Y.H.; Ederer, C.; Spaldin, N.A.; et al. Electrical control of antiferromagnetic domains in multiferroic BiFeO₃ films at room temperature. Nat. Mater. 2006, 5, 823–829. [CrossRef]

8. Park, J.; Wang, J. Multiferroic behavior and impedance spectroscopy of bilayered BiFeO₃/CoFe₂O₄ thin films. J. Appl. Phys. 2011, 109, 2010, 759. [CrossRef]

9. Park, T.J.; Papaeftymiou, G.C.; Viescas, A.J.; Moodenbaugh, A.R.; Wong, S.S. Size-dependent magnetic properties of single-crystalline multiferroic BiFeO₃ nanoparticles. Nano Lett. 2017, 7, 766–772. [CrossRef]

10. Palkar, V.R.; John, J.; Pinto, R. Observation of saturated polarization and dielectric anomaly in magnetoelectric BiFeO₃ thin films. Appl. Phys. Lett. 2002, 80, 1628. [CrossRef]

11. Shvartsman, V.V.; Kleemann, W.; Haumont, R.; Kreisel, J. Large bulk polarization and regular domain structure in ceramic BiFeO₃. Appl. Phys. Lett. 2007, 90, 172115. [CrossRef]

12. Zhang, J.X.; Xiang, B.; He, Q.; Seidel, J.; Zeches, R.J.; Yu, P.; Yang, S.Y.; Wang, C.H.; Chu, Y.H.; Martin, L.W.; et al. Large field-induced strains in a lead-free piezoelectric material. Nat. Nanotechnol. 2011, 6, 98–102. [CrossRef] [PubMed]

13. Kanno, I.; Kotera, H.; Wasa, K. Measurement of transverse piezoelectric properties of PZT thin films. Sens. Actuators A Phys. 2003, 107, 68–74. [CrossRef]

14. Zheng, T.; Wu, J. Effects of site engineering and doped element types on piezoelectric and dielectric properties of bismuth ferrite lead-free ceramics. J. Mater. Chem. C 2015, 3, 11326–11334. [CrossRef]

15. Xue, X.; Tan, G.; Ren, H.; Xia, A. Structural, electric and multiferroic properties of Sm-doped BiFeO₃ thin films prepared by the sol-gel process. Ceram. Int. 2013, 39, 6223–6228. [CrossRef]

16. Park, S.E.; Shrout, T.R. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 1997, 82, 1804. [CrossRef]

17. Sabolsky, E.M.; James, A.R.; Kwon, S.; Trolier-McKinstry, S.; Messing, G.L. Piezoelectric properties of <001> textured Pb(Mg₁/₃Nb₂/₃)O₃–PbTiO₃ ceramics. Appl. Phys. Lett. 2001, 78, 2551–2553. [CrossRef]

18. Kumar, A.; Rai, R.C.; Podrza, N.J.; Denev, S.; Ramirez, M.; Chu, Y.H.; Martin, L.W.; Ihlefeld, J.; Heeg, T.; Schubert, J.; et al. Linear and nonlinear optical properties of BiFeO₃. Appl. Phys. Lett. 2008, 92, 121915. [CrossRef]

19. Neaton, J.B.; Ederer, C.; Waghmare, U.V.; Spaldin, N.A.; Rabe, K.M. First-principles study of spontaneous polarization in multiferroic BiFeO₃. Phys. Rev. B 2005, 71, 014113. [CrossRef]

20. Lee, J.H.; Oak, M.A.; Choi, H.J.; Sonc, J.Y.; Jang, H.M. Rhombohedral–orthorhombic morphotropic phase boundary in BiFeO₃-based multiferroics: First-principles prediction. J. Mater. Chem. 2012, 22, 1667–1672. [CrossRef]

21. Newnham, R.E. Properties of Materials. Anisotropy, Symmetry, Structure; Oxford University Press: Oxford, UK, 2005.

22. Jian, G.; Wong, C.P. Orientation dependence of magnetoelectric coefficient in BaTiO₃/CoFe₂O₄. AIP Adv. 2017, 7, 075307. [CrossRef]
23. Shang, S.L.; Sheng, G.; Wang, Y.; Chen, L.Q.; Liu, Z.K. Elastic properties of cubic and rhombohedral BiFeO$_3$ from first-principles calculations. *Phys. Rev. B* 2009, *80*, 052102. [CrossRef]

24. Dong, H.; Chen, C.; Wang, S.; Duan, W.; Li, J. Elastic properties of tetragonal BiFeO$_3$ from first-principles calculations. *Appl. Phys. Lett.* 2013, *102*, 182905.

25. Graf, M.; Sepliarsky, M.; Machado, R.; Stachiotti, M.G. Dielectric and piezoelectric properties of BiFeO$_3$ from molecular dynamics simulations. *Solid State Commun.* 2015, *218*, 10–13. [CrossRef]

26. Ujimoto, K.; Yoshimura, T.; Ashida, A.; Fujimura, N. Direct piezoelectric properties of (100) and (111) BiFeO$_3$ epitaxial thin films. *Appl. Phys. Lett.* 2012, *100*, 102901. [CrossRef]

27. Rovillain, P.; Cazayous, M.; Sacuto, A.; Lebeugle, D.; Colson, D. Piezoelectric measurements on BiFeO$_3$ single crystal by Raman scattering. *J. Magn. Magn. Mater.* 2009, *321*, 1699–1701. [CrossRef]

28. Kariya, K.; Yoshimura, T.; Murakami, S.; Fujumura, N. Enhancement of piezoelectric properties of (100)-oriented BiFeO$_3$ films on (100) LaNiO$_3$/Si. *Jpn. J. Appl. Phys.* 2014, *53*, 09PA14. [CrossRef]

29. Kariya, K.; Yoshimura, T.; Murakami, S.; Fujumura, N. Piezoelectric properties of (100) oriented BiFeO$_3$ thin films on LaNiO$_3$. *Jpn. J. Appl. Phys.* 2014, *53*, 08NB02. [CrossRef]

30. Damjanovic, D.; Brem, F.; Setter, N. Crystal orientation dependence of the piezoelectric d$_{33}$ coefficient in tetragonal BaTiO$_3$ as a function of temperature. *Appl. Phys. Lett.* 2002, *80*, 652–654. [CrossRef]

31. Yue, W.; Jian, J.Y. Crystal orientation dependence of piezoelectric properties in LiNbO$_3$ and LiTaO$_3$. *Opt. Mater.* 2003, *23*, 403–408. [CrossRef]

32. Jian, G.; Shao, H.; Zhang, C.; Yan, C.; Zhao, N.; Song, B.; Wong, C.P. Orientation dependence of magnetoelectric coefficient in 1-3-type BaTiO$_3$/CoFe$_2$O$_4$. *J. Magn. Magn. Mater.* 2018, *449*, 263–270. [CrossRef]

33. Wang, Y.; Jiang, Y.J. *Anisotropy of Physical Properties of Materials: Orientation Dependences of Macroscopic Physical Properties of Single Crystals and Polycrystalline Ceramics*; Chemical Industry Press: Beijing, China, 2007.