Phylogenetic Analysis of the Spider Mite Sub-Family Tetranychinae (Acari: Tetranychidae) Based on the Mitochondrial COI Gene and the 18S and the 5' End of the 28S rRNA Genes Indicates That Several Genera Are Polyphyletic

Tomoko Matsuda¹, Maiko Morishita¹, Norihide Hinomoto², Tetsuo Gotoh¹*

¹ Laboratory of Applied Entomology and Zoology, Faculty of Agriculture, Ibaraki University, Ibaraki, Japan, ² NARO Agricultural Research Center, National Agriculture and Food Research Organization, Ibaraki, Japan

Abstract

The spider mite sub-family Tetranychinae includes many agricultural pests. The internal transcribed spacer (ITS) region of nuclear ribosomal RNA genes and the cytochrome c oxidase subunit I (COI) gene of mitochondrial DNA have been used for species identification and phylogenetic reconstruction within the sub-family Tetranychinae, although they have not always been successful. The 18S and 28S rRNA genes should be more suitable for resolving higher levels of phylogeny, such as tribes or genera of Tetranychinae because these genes evolve more slowly and are made up of conserved regions and divergent domains. Therefore, we used both the 18S (1,825–1,901 bp) and 28S (the 5’ end of 646–743 bp) rRNA genes to infer phylogenetic relationships within the sub-family Tetranychinae with a focus on the tribe Tetranychini. Then, we compared the phylogenetic tree of the 18S and 28S genes with that of the mitochondrial COI gene (618 bp). As observed in previous studies, our phylogeny based on the COI gene was not resolved because of the low bootstrap values for most nodes of the tree. On the other hand, our phylogenetic tree of the 18S and 28S genes revealed several well-supported clades within the sub-family Tetranychinae. The 18S and 28S phylogenetic trees suggest that the tribes Bryobiini, Petrobiini and Eurytetranychini are monophyletic and that the tribe Tetranychini is polyphyletic. At the genus level, six genera for which more than two species were sampled appear to be monophyletic, while four genera (Oligonychus, Tetranychus, Schizotetranychus and Eotetranychus) appear to be polyphyletic. The topology presented here does not fully agree with the current morphology-based taxonomy, so that the diagnostic morphological characters of Tetranychinae need to be reconsidered.

Introduction

The spider mite sub-family Tetranychinae includes some pests that cause serious economic losses throughout the world [1], [2], [3]. The family consists of more than 1,200 species, some of which have a wide host range, whereas others are highly host-specific [4], [5]. For example, Tetranychus urticae Koch, Panonychus citri (McGregor) and Oligonychus coffeee (Nietner), have an especially strong effect on agricultural and horticultural crops, and they are polyphagous. However, these genera also include mono-oligophagous species, such as Tetranychus bambusae Wang & Ma, Panonychus bambusicola Ehara & Gotoh, Oligonychus orthius Rimando, Oligonychus modestus (Banks) and Oligonychus rubi-cundus Ehara which inhabit only gramineous plants.

Although exact species identification is the first step in any biological study, spider mites are difficult to distinguish by morphological characters alone because of their small size (< 0.5 mm) and limited number of diagnostic characters [6], [7], [8]. Therefore, the use of DNA-based methods to identify species has increasingly been used for some genera of the Tetranychinae. For example, Navajas and Boursot [9] showed that T. urticae and Tetranychus turkestanii Ugarov & Nikolskii, which are very closely related species, can be identified by using the internal transcribed spacer 2 (ITS2) region of nuclear ribosomal RNA (rRNA) genes. More recently, Matsuda et al. [10], [11] revealed that almost all species of Japanese Oligonychus (17 of 18 species) and all species of Tetranychus (13 species) can be identified by using the cytochrome c oxidase subunit I (COI) gene of mitochondrial DNA.
Sub-family	Tribe	Genus	Species	Date	Locality	Host plant	Voucher specimen no.	Accession no.	COI	18S	28S
Bryobiinae	Bryobiini	Bryobia	*B. eharai* Pritchard & Keifer	Sept. 11, 2012	Ibaraki, Japan	Chrysanthemum morifolium	0612	–	AB926227	AB926318	
			B. praeftosa Koch	July 27, 2008	Hokkaido, Japan	Trifolium repens	0609	AB981203	AB926228	AB926319	
	Petrobiini	Petrobia	*P. latens* (Müller)	Mar. 30, 2012	Tokushima, Japan	Daucus carota	0482	AB981204	AB926229	AB926320	
	Tetranychina	T. hartii (Eving)		June 11, 2012	Ibaraki, Japan	Oxalis corniculata	0602	–	AB926230	AB926321	
	Eurytetranychina	Eurytetranychoides	*E. japonicus* (Ehara)	Sept. 22, 2010	Tokyo, Japan	Lithocarpus edulis	0493	AB981205	AB926231	AB926322	
	Eutetranychus	*A. firmianae* (Ma & Yuan)		Aug. 7, 2010	Ibaraki, Japan	Firmiana simplex	0405	–	AB926234	AB926325	
	Panonychus	*P. bambusicola* Ehara & Gotoh		June 4, 1989	Hokkaido, Japan	Sasa senanensis	0606	AB981207	AB926235	AB926326	
	Sasanychus	*P. citri* (McGregor)		May 6, 1993	Ibaraki, Japan	Ilex crenata	0226	AB981208	AB926237	AB926328	
	Sasanychus	*P. elongatus* Manson		July 27, 2010	Hangzhou, China	Broussonetia papyrifera	0398	–	AB926238	AB926329	
	Sasanychus	*P. mori* Yokoyama		Apr. 22, 2007	Hokkaido, Japan	Moussiaustralis	0239	AB981209	AB926239	AB926330	
	Sasanychus	*P. osmanthi* Ehara & Gotoh		Nov. 16, 2001	Guilin, China	Osmanthus fragrans	0229	AB981210	AB926240	AB926331	
	Sasanychus	*P. ulmi* (Koch)		Aug. 4, 2010	Hokkaido, Japan	Ulmus davidiana	0407	AB981211	AB926241	AB926332	
Schizotetranychus	S. aktnus (Ehara)			June 23, 1986	Hokkaido, Japan	Sasa senanensis	0605	AB981212	AB926242	AB926333	
	Schizotetranychus	*S. pusullus* Ehara & Gotoh		July 31, 2012	Hokkaido, Japan	Sasa chartacea	0575	AB981213	AB926243	AB926334	
Schizotetranychus	*S. bambusicola* Reck			Aug. 27, 2011	Chiba, Japan	Phyllostachys edulis	0503	AB981214	AB926244	AB926335	
	Schizotetranychus	*S. brevisetosus* Ehara		Oct. 13, 2011	Kochi, Japan	Quercus glauca	0527	AB981215	AB926245	AB926336	
	Schizotetranychus	*S. cercidiphylli* Ehara		Aug. 3, 2010	Hokkaido, Japan	Cercidiphyllum japonicum	0411	AB981216	AB926246	AB926337	
	Schizotetranychus	*S. vitus* Ehara & Ohashi		May 22, 2012	Nara, Japan	Quercus glauca	0549	AB981217	AB926247	AB926338	
	Stigmaeopsis	*S. lepedezae* Beglijarov & Mitrofanov		Aug. 26, 2011	Ibaraki, Japan	Pueraria montana	0515	AB981218	AB926248	AB926339	
	Stigmaeopsis	*S. reki* Ehara		Aug. 4, 2010	Hokkaido, Japan	Sasa senanensis	0408	AB981219	AB926249	AB926340	
	Stigmaeopsis	*S. schizopus* (Zacher)		June 14, 2010	Tokyo, Japan	Salix integra	0532	AB981220	AB926250	AB926341	
	Stigmaeopsis	*S. shii* (Ehara)		June 14, 2010	Tokyo, Japan	Castanea sieboldii	0533	AB981221	AB926251	AB926342	
	Stigmaeopsis	*S. eurialis* Banks		Aug. 7, 2011	Ibaraki, Japan	Pleioblastus chino	0506	AB981222	AB926252	AB926343	
	Stigmaeopsis	*S. longus* (Saito)		June 4, 1989	Hokkaido, Japan	Sasa senanensis	0542	AB981223	AB926253	AB926344	
	Stigmaeopsis	*S. miscanthi* (Saito)		Feb. 16, 2009	Nagasaki, Japan	Miscanthus sinensis	0404	AB981224	AB926254	AB926345	
Table 1. Cont.

Sub-family	Tribe	Genus	Species	Date	Locality	Host plant	Voucher specimen no.	Accession no.			
		S. saharai Saito & Mori		Aug. 5, 2011	Chiba, Japan	Heteroblastus chino	0501	AB981226, AB926256, AB926347			
		S. trilobata Saito & Mori		Oct. 27, 1997	Hokkaido, Japan	Sasa senanensis	0541	AB981227, AB926257, AB926348			
Yeonymys		Y. sappoensis Ebara		Aug. 4, 2010	Hakkoaido, Japan	Sasa senanensis	0406	AB981228, AB926258, AB926349			
Eotetanychus		E. asiaticus Ebara	Mar. 19, 2007	Nagasaki, Japan	Citrus reticulata	0546	AB981229, AB926259, AB926350				
		E. boreus Ebara	June 3, 2010	Chiba, Japan	Armenisca mume	0415 –	AB981226, AB926260, AB926351				
		E. celtis Ebara	Aug. 27, 2011	Chiba, Japan	Aphananthe aspera	0406	AB981227, AB926256, AB926351				
		E. cinnamomea Ebara		Aug. 5, 2011	Chiba, Japan	Cornus controversa	0406	AB981228, AB926259, AB926351			
		E. dissectus Ebara		Aug. 3, 2010	Hokkaido, Japan	Acer pictum	0412	AB981229, AB926260, AB926351			
		E. nomurai Ebara	Aug. 20, 2011	Ibaraki, Japan	Celtis sinensis	0541	AB981226, AB926259, AB926351				
		E. prun if (Oudemans)	Sept. 1, 2012	Ibaraki, Japan	Castanea crenata	0546	AB981229, AB926256, AB926351				
		E. quercifoliace Ebara & Goto		July 6, 2011	Ibaraki, Japan	Quercus serrata	0507	AB981234, AB926267, AB926351			
		E. rubricans Ebara	Sept. 1, 2012	Ibaraki, Japan	Carpinus tschonoskii	0559 –	AB981228, AB926256, AB926351				
		E. smithii Pritchard & Baker	Aug. 14, 2007	Nagasaki, Japan	Rosa multiflora	0545	AB981229, AB926256, AB926351				
		E. spectabilis Ebara	Sept. 7, 2001	Hokkaido, Japan	Acer pictum	0524 –	AB981226, AB926256, AB926351				
		E. sugianisensis (Yokoyama)	Aug. 26, 2011	Ibaraki, Japan	Monus australis	0517	AB981226, AB926256, AB926351				
		E. Harium (Herrmann)	Aug. 3, 2010	Hokkaido, Japan	Alnus hirsuta	0409 –	AB981226, AB926256, AB926351				
		E. yoshimai Ebara & Goto	Aug. 29, 2011	Ibaraki, Japan	Magnolia obovata	0519 –	AB981226, AB926256, AB926351				
		E. yoshii Ebara	Aug. 15, 2011	Hokkaido, Japan	Ulmus davidiana	0528	AB981226, AB926256, AB926351				
		E. uncus Garman	Aug. 3, 2010	Hokkaido, Japan	Betula platyphylla	0413 –	AB981226, AB926256, AB926351				
Oligonychus		O. amiresis Ebara & Goto	July 13, 2005	Ibaraki, Japan	Lithocarpus edulis	0116	AB981226, AB926256, AB926351				
		O. bhuiensis (Hirst)	Dec. 3, 2005	Okinawa, Japan	Magnifera indica	0012	AB981226, AB926256, AB926351				
		O. camelliace Ebara & Goto	May 13, 2000	Fukushima, Japan	Camellia japonica	0008	AB981226, AB926256, AB926351				
		O. castaneae Ebara & Goto	May 5, 2009	Ibaraki, Japan	Castanea crenata	0297	AB981226, AB926256, AB926351				
		O. clavatus (Ebara)	July 28, 2005	Kanagawa, Japan	Pinus thunbergii	0360	AB981226, AB926256, AB926351				
		O. coffeae (Nieter)	May 30, 2005	Okinawa, Japan	Magnifera indica	0078	AB981226, AB926256, AB926351				
		O. gotohi Ebara	July 1, 2007	Ibaraki, Japan	Lithocarpus edulis	0076	AB981226, AB926256, AB926351				
		O. hondensis (Ebara)	Aug. 22, 2009	Aomori, Japan	Cryptomeria japonica	0376	AB981226, AB926256, AB926351				
Sub-family	Tribe	Genus	Species	Date	Locality	Host plant	Voucher specimen no.	Accession no.	COI	18S	28S
------------	-------	-------	---------	------------	-------------------	------------------	--------------------	---------------	------	------	------
O. /lisc (McGregor)				Oct. 30, 2000	Kagoshima, Japan	Camellia sinensis	0081	AB8683640	AB826284	AB826375	
O. karonatus (Ehara)				Aug. 27, 2009	Hokkaido, Japan	Larix kaempferi	0358	AB8683656	AB826285	AB826376	
O. modestus (Banks)				Sept. 9, 2008	Okinawa, Japan	Digiataris ciliaris	0092	AB8683677	AB826286	AB826377	
O. orthus Rimando				July 9, 2009	Okinawa, Japan	Saccharum officinarum	0378	AB8683675	AB826287	AB826378	
O. perditus Pritchard & Baker				Sept. 17, 2008	Kanagawa, Japan	Juniperus sp.	0364	AB8683656	AB826288	AB826379	
O. pustulosus Ehara				Aug. 22, 2009	Aomori, Japan	Cryptomeria japonica	0363	AB8683655	AB826289	AB826380	
O. rubicundus Ehara				Oct. 17, 2008	Kochi, Japan	Miscanthus sinensis	0290	AB8683681	AB826290	AB826381	
O. ununguis (Jacobi)				July 27, 2008	Hokkaido, Japan	Cryptomeria japonica	0088	AB8683664	AB826291	AB826382	
Amphitetranychus A. quercivorus (Ehara & Gotoh)				July 9, 2003	Ibaraki, Japan	Quercus crispula	0610	AB981238	AB826292	AB826383	
Amphitetranychus T. bambusea Wang & Ma				July 5, 2009	Okinawa, Japan	Phyllostachys edulis	0343	AB826294	AB926384		
Tetanychus T. evansi Baker & Pritchard				Nov. 3, 2006	Tokyo, Japan	Salarium nigrum	0210	AB736039	AB826295	AB826386	
Tetanychus T. ezoensis Ehara				Sept. 3, 2008	Ibaraki, Japan	Taxus cuspidata	0281	AB736042	AB826296	AB826387	
Tetanychus T. hulhotensis Ehara, Gotoh & Hong				July 26, 2007	Inner Mongolia Autonomous Region, Mongolia	Zea mays	0201	--	AB826297	AB826388	
T. karazawai Kishida				May 19, 1993	Shizuoka, Japan	Thea sinensis	0158	AB736043	AB826298	AB826389	
T. lombardini Baker & Pritchard				July 10, 2008	Durban, South Africa	Erthrina variegata	0381	--	AB826299	AB826390	
T. ludeni Zacher				Oct. 17, 1995	Ibaraki, Japan	Solidago virgaurea	0189	AB736051	AB826300	AB826391	
T. mactarlani Baker & Pritchard				Sept. 30, 2008	Mymensingh, Bangladesh	Dolichos lablab	0398	--	AB826301	AB826392	
T. mergansier Boudreaux				Apr. 6, 2007	El Talo, Sonora, Mexico	Cucurbita maxima	0225	--	AB826302	AB826393	
T. misumaeensis Ehara & Gotoh				Aug. 23, 2005	Hokkaido, Japan	Apios sp.	0218	AB736054	AB826303	AB826394	
T. neocaledonicus Andre				May 27, 1998	Tokyo, Japan	Morus australis	0192	AB736055	AB826304	AB826395	
T. okinawanus Ehara				June 19, 2003	Okinawa, Japan	Pueraria montana	0208	AB736058	AB826305	AB826396	
T. parakashawae Ehara				June 5, 1993	Ibaraki, Japan	Pueraria montana	0155	AB736060	AB826306	AB826397	
T. phaselus Ehara				June 29, 2000	Ibaraki, Japan	Glycine max	0191	AB736066	AB826307	AB826398	
T. piersci McGregor				Dec. 20, 2007	Okinawa, Japan	Cucumis melo	0014	AB736068	AB826308	AB826399	
T. puerarica Ehara & Gotoh				Oct. 23, 1993	Ibaraki, Japan	Pueraria montana	0203	AB736071	AB826309	AB826400	
T. truncatus Ehara				May 8, 2004	Kyoto, Japan	Solaranum nigrum	0195	AB736075	AB826310	AB826401	
Despite recent advances in DNA-based methods for identifying spider mites, most phylogenetic relationships of sub-families, tribes and genera of the Tetranychinae remain poorly understood, as is reflected by the low support values for most nodes of the phylogenetic trees. However, phylogenetic trees clearly show that the genus *Oligonychus* is polyphyletic. Navajas et al. [12] and Ros and Breeuwer [13] analyzed the phylogeny of Tetranychinae including three *Oligonychus* species (*Oligonychus ununguis* (Jacobi), *Oligonychus platani* (McGregor) and *Oligonychus gossypii* (Zacher)) using the COI gene. Although these three species have the same empodium shape, *O. gossypii*, whose aedeagus curves dorsally, can be easily distinguished from *O. ununguis* and *O. platani* whose aedeagi curve ventrally. In the phylogenetic trees of these two studies, *O. gossypii* clustered more closely with *Tetranychus* species whose aedeagi also curve dorsally, while *O. ununguis* and *O. platani* formed a separate group. Polyphyly in the genus *Oligonychus* was also reported in the ITS2 region [14].

The unresolved phylogeny among the taxa of the sub-family Tetranychinae based on the COI sequences is probably due to the strongly biased nucleotide composition and the saturation at the third codon positions [13]. Because both the 18S and 28S rRNA genes evolve more slowly and are made up of conserved regions and divergent domains [15], these genes have been used for phylogenetic analyses of higher taxonomic relationships (from “phyla” to “classes” within Ecdysozoa) [16], [17]. In resolving tick genera (Acarina: Ixodida), combining the 18S and 28S rRNA genes provided more detailed relationships than did the 18S gene alone [18], [19]. Therefore, we used both the 18S (1,825–1,901 bp) and 28S (the 5’ end of 646–743 bp) rRNA genes to infer phylogenetic relationships within the sub-family Tetranychinae. Then, we compared the trees based on the 18S and 28S genes with the tree based on the mitochondrial COI gene (618 bp). Another problem in previous studies [12], [13], [14] was that only 16 to 25 species were used for the phylogenetic analyses. Limited taxon sampling can seriously influence the resulting phylogenetic inferences (for reviews, see [20], [21], [22]). Therefore, to assess the phylogenetic relationships among tribes and genera of the sub-family Tetranychinae, we examined a total of 88 strains (15 genera and 4 tribes) most of which were from Japan.

Results

Mitochondrial COI gene

We obtained the COI sequences of 38 strains determined in this study (Table 1) and 30 strains from previously published data [10], [11]. The COI sequences contained no insertions or deletions. After alignment, the COI fragment had 618 nucleotides, of which 282 were parsimony-informative sites (File S1). The AT contents of the COI sequences of the tetranychid mites were very high (75.5%), especially at the 3rd codon position (93.0%). Chi-square tests revealed no significant heterogeneity in the first and second codon positions of the COI sequences, but significant heterogeneity at third codon positions (Figure 1). Similar high AT contents have been observed in previous studies of tetranychid mites [10], [11], [12], [13].

A phylogenetic tree of the sub-family Tetranychinae based on the COI gene is shown in Figure 2. Among the eight genera for which more than two strains were sampled, four genera (*Panonychus*, *Sasanychus*, *Stigmaeopsis* and *Amphitetranychus*) appear to be monophyletic with >80 bootstrap values, while the other four (*Oligonychus*, *Tetranychus*, *Schizotetranychus* and *Eoetetranychus*) are polyphyletic. The four monophyletic genera are in clades 8, 3, 5 and 2, respectively (Figure 2). As was observed in previous studies, *Oligonychus* species whose aedeagus curves...
ventrally (clade 7) can be easily distinguished from *Oligonychus biharensis* (Hirst), *O*. modestus, *O*. orthius and *O*. rubinclus whose aedeagi curve dorsally. Although *Schizotetranychus* and *Eotetranychus* are scattered across the tree, some species formed well-supported clades. *Schizotetranychus bambusae* Reck & *Schizotetranychus recki* Ehara clustered with *Sasanychus* and *Yezonychus* species (clade 4). The clade including *Schizotetranychus cercidiphylli* Ehara, *Eotetranychus asiaticus* Ehara and *Eotetranychus cornicola* Ehara are supported with high bootstrap value (clade 6: bootstrap value (BP) = 88). The COI tree also shows monophyly of closely related species that morphologically and molecularly resemble each other, such as *P*. citri and *Panonychus osmanthus* Ehara & Gotoh [23], [24] (clade 9) and *T*. urticae and *T*. turkestani [9] (clade 1). These results are consistent with the 18S and 28S topologies described below. However, the COI phylogeny was not resolved and the deep-level relationships were especially unresolved, as shown by the low bootstrap values (Figure 2), as was observed in previous studies [12], [13]. The deep-level phylogeny of the sub-family Tetranychinae was also not resolved in the Bayesian tree (data not shown).

18S and 28S rRNA genes

We determined the 18S and the 5′ end of the 28S rRNA sequences of all 68 strains used in this study (Table 1). The lengths of the 18S sequences obtained were 1,825–1,901 bp. The 18S and 28S sequences contained a number of gaps (insertions and deletions). After alignment and deletion of the ambiguous part of the aligned data, the final length was 1,863 bp, containing 495 parsimony-informative sites. The lengths of the 28S sequences were 646–743 bp, with a final length of 671 bp, containing 201 parsimony-informative sites. The aligned sequences before and after deleting the ambiguous parts are shown in Supporting Information (Files S2–S4). Chi-square tests revealed no significant heterogeneity in the nucleotide composition of the 18S and 28S sequences (Figure 3).

Phylogenetic trees based on a single gene were not as well resolved as phylogenetic trees based on the combined 18S and 28S data sets. Therefore, only the combined data set was used for the ML and Bayesian analyses. The 18S and 28S trees suggest that the tribes Bryobiini and Petrobiini of the sub-family Bryobiinae, which were used as outgroups, are both monophyletic (Figures 4A and 5A, clades 22 and 23). Within the Tetranychinae, Clade 15 is composed of species of Eurytetranychini, and clades 12, 17 and 20 are composed of species of Tetranychini (Figures 4A and 5A). Among the 10 genera for which more than two strains were sampled, six genera (*Bryobia*, *Aponychus*, *Panonychus*, *Sasanychus*, *Stigmaeopsis* and *Amphitetranychus*), appear to be monophyletic with >95 bootstrap values and 1.00 posterior probabilities, while four genera (*Oligonychus*, *Tetranychus*, *Schizotetranychus* and *Eotetranychus*) are polyphyletic. The monophyletic genera are in clades 22, 14, 5, 7, 17 and 21, respectively (Figures 4A–4D and 5A–5D). Species of the genus *Oligonychus* are separated into 2 clades (clades 1 and 19), with the *Tetranychus* species included in clade 19 (Figures 4B, 4D, 5B and 5D). *Schizotetranychus* species, with the exception of *S*. *cercidiphylli*, are separated into 3 clades (clades 3, 4 and 9), with the *Sasanychus* and *Yezonychus* species included in clade 9 (Figures 4B and 5B). In the ML tree (Figures 4B–4C), *S*. *cercidiphylli* and *Eotetranychus* species, with the exception of *Eotetranychus uchidai* Ehara, are paraphyletic with respect to clade 10. *E. uchidai* forms a sister group with *Panonychus*, *Sasanychus*, *Schizotetranychus* and *Yezonychus* species (Figure 4B, clade 8). In the Bayesian tree (Figures 5B–5C), a well-supported clade consisting of *S*. *cercidiphylli* and *Eotetranychus* species, with the exception of *E. uchidai*

![Figure 1. Base compositions of the codons of the mitochondrial COI gene. (A) All codon positions, (B) 1st codon position, (C) 2nd codon position, (D) 3rd codon position, averaged over all 68 mite strains used in this study. Error bars depict range. Results of the homogeneity test are given for each codon position. doi:10.1371/journal.pone.0108672.g001](Fig1.png)
clade 10: Bayesian posterior probabilities (BPP) = 0.96) clustered with clade 8.

As was observed in the COI tree, the 18S and 28S trees also show the monophyly of \textit{P. citri} and \textit{P. osmanthi} which are closely related species (Figures 4B and 5B, clade 6). \textit{S. cercidiphylli} forms a well-supported clade with four \textit{Eotetranychus} species (\textit{E. asiaticus}, \textit{Eotetranychus borus} Ehara, \textit{E. cornicola} and \textit{Eotetranychus toyoshimai} Ehara & Gotoh) in both ML and Bayesian trees (Figures 4C and 5C, clade 11; BP/BPP = 93/1.00). On the other hand, closely related \textit{Eotetranychus} species (\textit{E. pruni} Oudemans, \textit{E. querci} Reeves and \textit{E. uncatus} Garman), which have long, flagellate and undulate aedeagi [25], did not cluster together in either tree (Figures 4C and 5C).
Phylogeny of Tetranychidae Based on rDNA

Discussion

Only a few studies have examined the molecular phylogeny of the sub-family Tetranychinae, and they often used genes or regions that had limited discriminating ability. As observed in previous studies, our tree based on the COI gene did not resolve deep-level phylogeny because of the low bootstrap values for deep nodes of tree (Figure 2). Therefore, we used the 18S and 28S rRNA genes for phylogenetic analyses because of their better discriminating ability. Indeed, our phylogenetic tree of the 18S and 28S sequences revealed several well-supported clades, allowing us to consider the phylogenetic relationships among the sub-family Tetranychinae.

Our phylogenetic trees based on the 18S and 28S rRNA genes suggest that the tribes Bryobiini and Petrobiini of the sub-family Bryobiinae are both monophyletic, but the tribe Tetranychini is polyphyletic because the monophyletic clade of Eurytetranychini is placed inside Tetranychini (Figures 4A and 5A). At the generic level, 4 genera (Oligonychus, Tetranychus, Schizotetranychus and Eotetranychus) are polyphyletic. The phylogenetic tree separates the Oligonychus species into two clades (Figures 4B, 4D, 5B and 5D, clades 1 and 19). That is, the two clades comprising the genus Oligonychus coincide with their morphology based on the direction of curvature of the aedeagus. These results are in agreement with our COI phylogeny (Figure 2) and previous phylogenies based on the COI gene and ITS2 region [10], [12], [13], [14]. Although phylogenies based on the COI gene and ITS2 region could not establish the exact phylogenetic positions of the two clades of Oligonychus, our tree suggests that species whose aedeagi curve ventrally form a sister group with some of the Schizotetranychus species (Figures 4B and 5B, clade 2) and species whose aedeagi curve dorsally are more closely related to Tetranychus species whose aedeagi also curve dorsally (Figures 4D and 5D, clade 19). Though Oligonychus and Tetranychus can be distinguished by their empodium shape, our phylogenetic trees reveal that the shape of the aedeagi can help to discriminate these two genera.

Species of the genus Schizotetranychus and Eotetranychus appear to be polyphyletic within clade 12 (Figures 4B–4C and 5B–5C). Puzzlingly, S. cerdiciphylly and E. uchidai are separated from other congeneric species in the tree. The placement of Eotetranychus species is different between the ML and Bayesian trees. In the ML tree (Figures 4B–4C), we could not establish the exact phylogenetic position of the species of Eotetranychus which are paraphyletic respect to clade 10 because bootstrap values are relatively low. On the other hand, in the Bayesian tree (Figure 5C), S. cerdiciphylly and the Eotetranychus species, with the exception of E. uchidai, clustered into a well-supported clade (clade 10: BPP = 0.96). Similarly, the phylogenetic position of the genus Stigmaeopsis is resolved in the Bayesian analysis but not in the ML analysis. In the ML tree (Figure 4C), Stigmaeopsis species (clade 17) clustered with clade 13, which includes the Eurytetranychini species and some of the Tetranychini species, but the topology is not well supported (clade 16: BP = 50). In the Bayesian tree (Figure 5C), Stigmaeopsis species (clade 17) clustered with clade 13 with high Bayesian posterior probabilities (clade 16: BPP = 0.91). Although our data suggests that the Bayesian tree (Figures 4A–4D) is better supported than the ML tree (Figures 4A–4D), it is common knowledge that posterior probabilities are generally higher than bootstrap values [26].

Phylogenetic trees can be used to assess associations between spider mites and their host plants [13]. In the ML and Bayesian trees (Figures 4D and 5D), Olgonychus and Tetranychus species inhabiting graminaceous plants (O. orthius, O. modestus, O. rubicundus and T. bambusae) clustered separately from other species and formed a monophyletic clade (Figures 4D and 5D, clade 18). Clade 4 includes Schizoetetranychus brevisetosus Ehara, Schizoetetranychus gilicus Ehara & Ohashi and Schizoetetranychus shii (Ehara) which inhabit fagaceous plants (Figures 4B and 5B). Clade 9 include species irrespective of genus, which inhabit bamboo plants, Sasanychus akaitasus (Ehara), Sasanychus pusillus Ehara & Gotoh, S. bambusae, S. recki and Yezonychus sapporoensis Ehara (Figures 4B and 5B). All Stigmaeopsis species inhabiting graminaceous plants are separated from other Tetranychini species and appear to be monophyletic (Figures 4C and 5C, clade 17). These results indicate that the phylogenetic relationships of some species of spider mites are closely linked with their host plant, as reported in other phytophagous arthropods [27], [28], [29].

We consider the phylogenies of the Tetranychinae based on the 18S and 28S rRNA genes to be a major improvement over previous phylogenies because they reveal several well-supported clades that were not distinguished by phylogenetic relationships based on the COI gene and ITS2 region. Our finding that the tribe Tetranychini and four genera (Oligonychus, Tetranychus, Schizotetranychus and Eotetranychus) are polyphyletic indicates that the diagnostic morphological characters of tribes and genera of Tetranychidae need to be reconsidered. Although we examined a large number of species in this study, most of them were collected in Japan. Analyzing a number of undescribed genera remaining throughout the world may help achieve a deeper understanding of the phylogenetic relationships among the family.
Tetranychinae. In addition, a large number of nuclear genes need to be examined to resolve poorly understood relationships in the ML tree (Figures 4A–4D), such as the phylogenetic positions of the genera *Eotetranychus* and *Stigmaeopsis*.

Materials and Methods

Mites

Eighty-four strains representing 12 genera and two tribes in Tetranychinae, were used in this study and four strains of the tribes *Bryobiini* and *Petriobiini* of the sub-family *Bryoibiinae* (Acari: Tetranychidae) were used as outgroups (Table 1). Mite samples that could be reared in the laboratory were maintained on leaf discs of common bean leaves (*Phaseolus vulgaris* L.), mulberry leaves (*Morus bombycis* Koidz.) or the original host plants placed on a water-saturated polyurethane mat in a plastic dish (90 mm diameter, 20 mm depth) at 25°C under a 16L:8D photoperiod until analysis. Samples that could not be maintained in the laboratory and samples that were imported from abroad were preserved in 99.5% ethanol for molecular analyses and 70% ethanol.

Figure 4. Maximum likelihood (ML) phylogenetic tree of the sub-family Tetranychinae based on the 18S and 28S rRNA genes using the GTR Gamma model. Bootstrap values (>50%) based on 1,000 replications are indicated at nodes. Each operational taxonomic unit is indicated by the voucher specimen no. and scientific name. Black circles with numbers indicate the clade no. which corresponds with the article. The tree is divided into three sections: (A) The entire tree, (B) Tetranychini-1, (C) Tetranychini-1, Eurytetranychini and Tetranychini-2 and (D) Tetranychini-3. doi:10.1371/journal.pone.0108672.g004
ethanol for morphological identification. Specimens were mounted in Hoyer’s medium and identified under phase-contrast and differential interference-contrast microscopes. Voucher specimens are preserved at the Laboratory of Applied Entomology and Zoology, Faculty of Agriculture, Ibaraki University under the serial voucher specimen numbers (Table 1).

DNA extraction, amplification, cloning and sequencing

Total DNA was extracted from the whole body of each female individual by using a Wizard Genomic DNA Purification Kit (Promega). Live female individuals for DNA samples and female individuals for voucher specimen were obtained from the same leaf discs. A few of the strains could not be maintained in the laboratory. For these strains, DNA samples were obtained from ethanol-preserved female individuals. The PCR primers are given in Table 2. The mitochondrial COI fragments were amplified using primer sets C1-J-1718 \[30\] and COI REVA \[8\] for species of 12 genera (Bryobia, Petrobia, Eurytetranychoides, Aponychus, Panonychus, Sasanychus, Schizotetranychus, Yezonychus, Eotetra-nychus, Oligonychus, Amphitetranychus and Tetranychus) and primer sets C1-J-1718-stig and COI REVA-stig for species of the genus Stigmaeopsis. COI sequences for Oligonychus and Tetra-

Figure 5. Bayesian phylogenetic tree of the sub-family Tetranychinae based on the 18S and 28S rRNA genes using the GTR Gamma model. Bayesian posterior probabilities (\(>0.50\)) are indicated at nodes. Each operational taxonomic unit is indicated by the voucher specimen no. and scientific name. Black circles with numbers indicate the clad no. which corresponds with the article. The tree is divided into three sections: (A) The entire tree, (B) Tetranychini-1, (C) Tetranychini-1, Eurytetranychini and Tetranychini-2 and (D) Tetranychini-3.

doi:10.1371/journal.pone.0108672.g005
Data analysis

PCR amplification was performed with the following profile: 3 min at 94°C, followed by 35 cycles of 1 min at 94°C, 1 min at 45°C for COI, 60°C for 28S and 65°C for 18S and 1.5 min at 72°C. An additional 10 min at 72°C was allowed for last strand elongation. The resultant DNA solutions were purified by using MinElute PCR Purification Kit (Qiagen) and sequenced directly. Sequencing was carried out using the sequencing primers (Table 2) with a BigDye Terminator Cycle Sequencing Kit v.3.1 (Applied Biosystems) and on an ABI 3130xl automated sequencer.

Primer name	Sequence	Application	References	
COI	Forward	5’-GGAGGATTTTGGAAATTTGAGTATTGTTCC-3’	PCR amplification & sequencing	Simon et al. [30]
COI REVA	Reverse	5’-GATAAACGTAATGAAGATGCTAC-3’	PCR amplification & sequencing	Gotoh et al. [8]
C1-J-1718	Forward	5’-GGAGGTTTTTGGATTGGTTATGCC-3’	PCR amplification & sequencing	This study
COI REVA-stig	Reverse	5’-GAAGAATCAATAGAAATGACCAC-3’	PCR amplification & sequencing	This study

18S

Primer name	Sequence	Application	References	
18S-1F	Forward	5’-ACCGCGATTTTGGACATCAATACATTT-3’	PCR amplification & sequencing	This study
18S-2F	Forward	5’-TTGCTCTGAGCGGACGAT-3’	Sequencing	This study
18S-2R	Reverse	5’-ACCCCAAGTTGCGACTAAATC-3’	Sequencing	This study
18S-3R	Reverse	5’-TCCAATGAATCTGTGAATGAT-3’	Sequencing	This study
18S-8R	Reverse	5’-TCTGTGTTATCGGAATATCA-3’	Sequencing	This study
18S-9F	Forward	5’-AGCTCGGAAAACACAGTTT-3’	Sequencing	This study
18S-9R	Reverse	5’-AGGCCATACACACCTGTATT-3’	Sequencing	This study
18S-10F	Forward	5’-AGTTGGTGAGTGGATGCTGTGTT-3’	Sequencing	This study
18S-10R	Reverse	5’-ACAAGGGCCAGGACGTATCAA-3’	PCR amplification & sequencing	This study

28S

Primer name	Sequence	Application	References	
28v-5’	Forward	5’-AAGGTAAGCCAAATGCCTC-3’	PCR amplification & sequencing	Hillis and Dixon [31], Palumbi [32]
28v-3’	Reverse	5’-AGTAAGGAAACTAACC-3’	PCR amplification & sequencing	Hillis and Dixon [31], Palumbi [32]

Supporting Information

- **Table S2.** Primers used in polymerase chain reaction amplification and sequencing of the mitochondrial COI gene and the 18S and 28S rRNA genes.

Information Criterion (AIC) using the program Kakusan4 [38]. The RAxML search was executed for the best-scoring ML tree in one single program run (the ‘-i a’ option) instead of the default maximum parsimony-starting tree. Statistical support was evaluated with 1,000 rapid bootstrap inferences. The MrBayes5D analyses were implemented with two parallel runs of 10 million generations each and using one cold and two incrementally heated Markov chains and sampling every 100 steps. Tracer v.1.6 [39] was used to assess if the search had reached stationarity and to check whether the sample sizes for each parameter (ESS>100) were adequate. The first 10% of the trees were discarded as burn-in and the consensus tree with Bayesian posterior probabilities was constructed based on the trees sampled after the burn-in.

Supporting Information

- **File S1** Aligned COI sequences in FASTA format. (ZIP)
- **File S2** Aligned 18S sequences in FASTA format. (ZIP)
- **File S3** Aligned 28S sequences in FASTA format. (ZIP)
- **File S4** Aligned 18S sequences after deleting the ambiguous parts in FASTA format. (ZIP)
- **File S5** Aligned 28S sequences after deleting the ambiguous parts in FASTA format. (ZIP)
Acknowledgments

We are specifically thankful to Drs. K. Iishi and T. Kozaki for their help in data analyses. We are very grateful to Drs. Y. Kitashima, K. Ito, H. Kishimoto, S. Ohno and Y. Sato and M. Arimoto, M. Kakizaki, T. Kamata, M. Minamishima and A. Okada for collecting spider mites. We also thank to A. Miyagi and Y. Shimizu for assistance with rearing the spider mites.

References

1. Helle W, Sabalis MW (1985) Spider Mites: Their Biology, Natural Enemies and Control. Vol. 1A (World Crop Pests). Amsterdam: Elsevier. 405p.
2. Helle W, Sabalis MW (1985) Spider Mites: Their Biology, Natural Enemies and Control. Vol. 1B (World Crop Pests). Amsterdam: Elsevier. 450p.
3. Zhang ZQ (2003) Mites of greenhouses, identification, biology and control. Wallingford: CABI Publishing. 244 p.
4. Rolland HR, Gutierrez J, Flechtmann CHW (1998) World catalogue of the spider mite family (Acari: Tetranychidae). Leiden: Brill Academic Publishers. 392 p.
5. Migeon A, Dorkeled F (2006–2013) Spider Mites Web: a comprehensive database for the Tetranychidae. Available: http://www.montpellier.inra.fr/CNBPspaweb. Accessed 11 July 2014.
6. Wauthy G, Noti ML, Leponcer M, Bauchau V (1990) Taxa and variations of leg setae and solenidia in Tetranychus urticae (Acari, Prostigmata). Acarologia 39: 233–235.
7. Zhang ZQ, Jacobson RJ (2000) Using adult female morphological characters for differentiating Tetranychus urticae complex (Acari: Tetranychidae) from greenhouse tomato crops in UK. Syst Appl Acarol 3: 69–76.
8. Gotot T, Araki R, Boubou A, Migeon A, Ferragut F, et al. (2009) Evidence of co-sensitivitly between Tetranychus evansi and Tetranychus takayagi (Acari: Prostigmata, Tetranychidae): comments on taxonomic and agricultural aspects. Int J Acarol 35: 485–501.
9. Matuda T, Hinos moto N, Singh RN, Gotot T (2012) Molecular-based identification and phylogeny of Oligonychus species (Acari: Tetranychidae). J Econ Entomol 105: 1043–1050.
10. Matsuda T, Fukumoto C, Hino moto N, Gotot T (2013) DNA-based identification of spider mites: molecular evidence for cryptic species of the genus Tetranychus (Acari: Tetranychidae). J Econ Entomol 106: 463–472.
11. Navajas M, Gutierrez J, Lagual J, Boursot P (1996) Mitochondrial cytchrome oxidase I in tetranychid mites: a comparison between molecular phylogeny and changes of morphological and life history traits. Bull Entomol Res 86: 407–417.
12. Ros VID, Beenuer JAJ (2007) Spider mite (Acari: Tetranychidae) mitochondrial COI phylogeny reviewed: host plant relationships, phylogeography, reproductive parasites and barcoding. Exp Appl Acarol 42: 239–262.
13. Ben-David T, Melamed S, Gerson U, Morin S (2007) ITS2 sequences (18S, ITS1, 5.8S, ITS2, and 28S rDNA) of Tetranychus urticae setae and solenidia in T. urticae. Mol Phylogenet Evol 40: 772–794.
14. Burger TD, Shao R, Beati L, Miller H, Barker SC (2012) Phylogenetic analysis of ticks (Acari: Ixodida) using mitochondrial genomes and nuclear rRNA genes indicates that the genus Amblyomma is polyphyletic. Mol Phylogenet Evol 64: 55–73.
15. Burger TD, Shao R, Barker SC (2013) Phylogenetic analysis of the mitochondrial genomes and nuclear rRNA genes of ticks reveals a deep phylogenetic structure within the genus Haemaphysalis, and further elucidates the polyphyly of the genus Amblyomma with respect to Amblyomma other species (Acari: Tetranychidae, Panonychidae).Ticks Tick Borne Dis 4: 265–274.
16. Hillis DM, O’Grady PM (2012) Use of the gene trees method for inference: first use of nearly complete 28S and 18S rRNA gene sequences to phylogenetic analysis of Acari based on 18S and 28S rDNA. Parasitol Res 111: 2109–2114.
17. Rambaut A, Drummond A (2013) Tracer v1.6. Available: http://tree.bio.ed.ac.uk/software/tracer. Accessed 3 July 2014.
18. Burger TD, Shao R, Beati L, Miller H, Barker SC (2012) Phylogenetic analysis of ticks (Acari: Ixodida) using mitochondrial genomes and nuclear rRNA genes indicates that the genus Amblyomma is polyphyletic. Mol Phylogenet Evol 64: 55–73.
19. Burger TD, Shao R, Barker SC (2013) Phylogenetic analysis of the mitochondrial genomes and nuclear rRNA genes of ticks reveals a deep phylogenetic structure within the genus Haemaphysalis, and further elucidates the polyphyly of the genus Amblyomma with respect to Amblyomma other species (Acari: Tetranychidae, Panonychidae).Ticks Tick Borne Dis 4: 265–274.
20. Hillis DM (1998) Taxonomic sampling, phylogenetic accuracy, and investigator bias. Syst Biol 47: 3–8.
21. Pollock DD, Zweck J, McGuire JA, Hillis DM (2002) Increased taxon sampling is advantageous for phylogenetic inference. Syst Biol 51: 664–671.
22. Heibke SM, Townsend TM, Hillis DM (2006) Resolution of phylogenetic conflict in large data sets by increased taxon sampling. Syst Biol 55: 522–529.
23. Ehara S, Gotoh T (1996) Two New Species of Spider Mites Occurring in Japan (Acari, Tetranychidae). J Acarol Soc Jpn. 11: 17–25.
24. Toda S, Okaike MH, Komazaki S (2000) Interspecific diversity of mitochondrial COI sequences in Japanese Panonychus species (Acari: Tetranychidae). Exp Appl Acarol 24: 821–829.
25. Ehara S (1999) Revision of the spider mite family Tetranychidae of Japan (Acari, Prostigmata). Species Divers 4: 63–141.
26. Klicka J, Voelker G, Spellman GM (2005) A molecular phylogenetic analysis of the “true thrips” (Aves: Thripidae). Mol Phylogenet Evol 34: 846–500.
27. Futyma DJ, Agrawal AA (2009) Macroevolution and the biological diversity of plants and herbivores. Proc Natl Acad Sci USA 106: 18054–18061.
28. Nyman T, Vikberg V, Smith DR, Boe KJ (2010) How common is ecological speciation in plant-feeding insects? A higher’ Nemata perspective. BMC Evol Biol 10: 266.
29. Bennett GM, O’Grady PM (2012) Host-plants shape insect diversity. Phylogeny, origin, and species diversity of native Hawaiian leafhoppers (Cicadelleidae: Neosephalyne). Mol Phylogenet Evol 65: 705–717.
30. Simon C, Frati F, Backenbach A, Crespi B, Liu H, et al. (1994) Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 87: 651–701.
31. Hillis DM, Dixon MT (1991) Ribosomal DNA: molecular evolution and phylogenetic inference. Q Rev Biol 66: 411–453.
32. Palumbi SR (1996) Nucleic acids II: the polymerase chain reaction. In: Hillis DM, Moritz C, Mable BK, editors. Molecular Systematics 2nd ed. Sunderland, MA: Sinauer Associates, Inc. pp. 205–247.
33. Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9: 286–298.
34. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25: 1915–1920.
35. Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (and other methods), version 4.0b10 [computer program]. Sunderland, MA: Sinauer Associates, Inc.
36. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2681–2688.
37. Tanabe AS (2011) Kakusan4 and Aminosan: two programs for comparing nucleotide sequences. Brief Bioinform 12: 437–450.
38. Tanabe AS (2010) Phylogenetic analysis of ticks (Acari: Ixodida) using mitochondrial genomes and nuclear rRNA genes indicates that the genus Amblyomma is polyphyletic. Mol Phylogenet Evol 64: 55–73.
39. Rambaut A, Drummond A (2013) Tracer v1.6. Available: http://tree.bio.ed.ac.uk/software/tracer. Accessed 3 July 2014.

Author Contributions

Conceived and designed the experiments: TM TG. Performed the experiments: TM MM. Analyzed the data: TM NH. Contributed to the writing of the manuscript: TM TG.