Measles Outbreak among Previously Immunized Adult Healthcare Workers, China, 2015

Zhengyi Zhang, Yuan Zhao, Lili Yang, Changhong Lu, Ying Meng, Xiaoli Guan, Hongjin An, Meizhong Zhang, Wengin Guo, Bo Shang, and Jing Yu

1Department of General Medicine, Lanzhou University Second Hospital, Gansu 730030, China
2Department of Public Health, Lanzhou University Second Hospital, Gansu 730030, China
3Department of Cardiology, Lanzhou University Second Hospital, Gansu 730030, China

Correspondence should be addressed to Jing Yu; yujing2304@126.com

Received 22 January 2016; Revised 15 March 2016; Accepted 27 March 2016

Measles is a highly infectious respiratory disease that occurs worldwide, which mainly causes morbidity and mortality among children. Its causative agent, the measles virus, is a single stranded negative sense RNA virus belonging to the Paramyxoviridae family [1]. The clinical symptoms of measles include high fever, a maculopapular rash, conjunctivitis, cough, and coryza; furthermore, its complications can include pneumonia, blindness, and brain damage [2]. The incubation period of the disease ranges from 6 to 21 days, and its transmission modes include airborne droplet transmission and direct contact with the respiratory secretions of an infected individual or their fomites [2]. An infected individual can disseminate the virus to others 2 days before and 5 days after the onset of their own clinical symptoms. Vaccine immunization has played an important role in preventing, controlling, and eradicating infectious diseases such as poliomyelitis. Since the 1990s, a single dose of liquid measles vaccine has been administered to infants aged >8 months in China [3]. Starting in 1978, a national Expanded Program on Immunization (EPI) was initiated to ensure that all infants received one dose of measles vaccine at the age of 8 months. In 1985, an amended two-dose vaccination schedule was established, in which the first dose of vaccine is administered at the age of 8 months and the second dose at the age of 7 years [4]. In 2005, China took action to eliminate measles in the Western Pacific Region by 2012 (a goal set by the World Health Organization) and changed the age for administration of the second vaccine dose from 7 years to 18 months [5]. Use of the measles vaccine has resulted in substantial reductions in the incidence and mortality of measles worldwide, including China [6]. In addition to the EPI, a nationwide measles Supplementary...
Measures for the Prevention and Control of Nosocomial Measles have been set up as follows. People’s Republic of China on the Prevention and Control of measles according to Guidelines of the People’s Republic of China on the Prevention and Control of Infectious Diseases have been set up as follows.

2. Case Presentation

On March 16, 2015, a patient admitted to the Emergency Department with high fever was diagnosed as having a measles infection. On the day of March 20, 2016, three nurses from Emergency Department who had direct and/or indirect contact with the patient displayed similar clinical signs including fever and rash that were determined to be positive for measles infection. The hospital noticed that it might be a break of measles infection with possibility of nosocomial transmission, and the first case on March 16, 2015, was suspected to be the source of this outbreak. Immediately, a series of measures for the prevention and control of nosocomial measles according to Guidelines of the People’s Republic of China on the Prevention and Control of Infectious Diseases have been set up as follows.

Measures for the Prevention and Control of Nosocomial Measles. Consider the following:

1. Setting up isolation wards in a well-ventilated old building.
2. Enhancing ventilation, isolation, and disinfection measures in isolation areas.
3. Isolating those patients with great transmission potentials including severe-ill patients and students.
4. Providing measles immunization to a total of 2,400 hospital staff.
5. Close monitoring of the measles infected patients, paying much more attention to patients with severe complications, and canceling multidisciplinary team meetings and treatment.

First, the isolation ward was set up with a well-ventilated system to prevent possible transmission among community people and the first patient (case number 1) was hospitalized two weeks before discharge. Second, Emergency Department is the unit with serious and multiple illness in which the healthcare staff from other departments who went to consultation directly or indirectly were exposed to the Emergency Department patients with measles; they were infected with measles and/or spread it to other staff in their departments. Therefore, more medical staffs from other departments with similar symptoms and close contact with the known measles cases were searched. Third, reimmunization probably played important roles in containing measles transmission and a total of 2400 hospital staff were given a measles immunization before March 27, 2015. Since then, new measles case numbers began to decrease and the last two cases were reported on April 4, 2016 (Figure 1). Among 20 patients admitted in isolation wards, only 6 patients were treated. Due to the mild symptoms in most hospital staff patients, they chose to stay home and no new case was reported among those persons contacted with patients who stayed home. The study was approved by Institutional Review Board (IRB) of the Lanzhou University Second Hospital and written patient consent was obtained under Review Board approval number 2015A-077. Verbal consent was obtained from all participants using an information sheet approved by the IRB of the Lanzhou University Second Hospital.

Patients with clinical symptoms including fever, rash, and/or conjunctivitis were defined as suspected measles cases. Between March 16 and April 4, 2015, both serum and throat swab samples were gathered from 102 suspected measles cases and then tested for measles virus IgM using IgM ELISA test kit (Zhuhai SEZ Haitai Biological Pharmaceuticals Co., Ltd., Zhuhai, China) and for measles virus RNA using a real-time reverse transcription PCR kit (Jiangsu BioPerfectus Technologies Co., Ltd., Jiangsu, China). Finally, 60 suspected measles cases were confirmed as the diagnosis of measles infection among whom there were 51 (85.00%) cases positive for measles IgM, 50 (83.33%) for measles virus RNA, and 41 (68.33%) for both measles IgM and virus RNA. Among the 60 positive cases, 39 (65.00%) and 21 (35.00%) were in female and male patients, respectively. Seven cases (11.66%) were aged 1–18 years, 50 cases (83.33%) were aged 21–40 years, and 3 cases (5.01%) were aged >40 years (Table 1). There were 31 (51.66%) nurses, 11 (18.33%) hospital staff members, 7 (11.66%) doctors, 1 (1.69%) medic, and the remaining 10 (16.66%) hospital patients (Table 1). Thus 83.33% of measles cases were healthcare workers. The majority of cases displayed one or more of the following symptoms: Koplik spots in 36 patients (60%), catarh in 51 patients (85%), and conjunctivitis in 50 patients (83.3%). Only a few patients had severe symptoms, which included pneumonia in 2 patients.
Table 1: Summary of cases diagnosed with measles in the outbreak.

Gender	
Female (n, %)	39 (65.00%)
Male (n, %)	21 (35.00%)

Age	
1–18 years (n, %)	7 (11.66%)
19–40 years (n, %)	50 (83.33%)
>40 years (n, %)	3 (5.01%)

Prevalent location of the measles	
New building of the hospital (n, %)	60 (100%)
Old building of the hospital (n, %)	0 (0.00%)

Occupation	
Nurse (n, %)	31 (51.66%)
Staff (n, %)	11 (18.33%)
Clinical patient (n, %)	10 (16.66%)
Doctor (n, %)	7 (11.66%)
Medic (n, %)	1 (1.69%)

Vaccination history	
Vaccination (n, %)	44 (73.33%)
Unknown (n, %)	12 (20.00%)
No vaccination (n, %)	4 (6.67%)

Positive rate of the test method	
MV IgM (n, %)	51 (85.00%)
MV PCR (n, %)	50 (83.33%)
Both (n, %)	41 (68.33%)

Clinical manifestation	
Koplik spots (n, %)	36 (60.00%)
Catarrh (n, %)	51 (85.00%)
Conjunctivitis (n, %)	50 (83.33%)
Complication (n, %)	2 (3.33%)
Pneumonia (n, %)	1 (1.67%)
Laryngitis (n, %)	6 (10.00%)

(3.3%) and liver dysfunction in 6 patients (10%) (Tables 1 and 2).

3. Discussion

The results of a recent study of measles infections in China indicated that measles usually occurred in young unvaccinated children [7]; however, the measles outbreak in our hospital mainly involved adults aged between 20 and 40 years. Surprisingly, 44 of the 60 infected patients (73.33%) had received a single dose measles vaccination during their childhood, and only one patient (1.67%) received a second immunization at the age of 18 years. Thus while >70% of the patients had been previously immunized against measles, they remained susceptible to infection with the measles virus. This finding suggests that the level of protection provided by a single measles immunization may drop to baseline and cease to protect against the disease. The possibility of one-dose primary vaccine failure in the patients that led to their susceptibility to measles cannot be excluded. Moreover, two previous studies reported that measles outbreaks in Beijing and Hangzhou mainly occurred among people aged >15 years. However, 87.6% and 66.7% of the adults infected in those two outbreaks, respectively, had unknown vaccination histories [8, 9]. More importantly, several measures should be immediately taken to prevent and control measles infection and transmission in hospitals. These measures include increasing the room ventilation in all departments, promptly isolating suspected cases from other patients, establishing a program for evaluating the measles immune status of all hospital healthcare workers, and providing a second vaccination when appropriate and all measles-susceptible individuals should be vaccinated immediately following contact with a suspected case of measles [10].

4. Conclusion

In summary, our study reports a measles outbreak that occurred among adult healthcare workers who were previously underimmunized against measles. It highlights that healthcare workers need to be fully vaccinated through a 2-dose measles vaccine program, which could greatly prevent nosocomial outbreak of measles. Equally important, fever clinics should be separated from other divisions in the hospital. Vigilant attention should be paid to the patients with the clinical fever and rash symptoms and early isolation and definite diagnosis of the measles suspected medical staff patients to avoid a possible nosocomial transmission of measles infection.

Disclosure

Dr. Zhang is the director of the Department of General Medicine, Lanzhou University Second Hospital, Gansu, China. His research interest is cardiovascular disease.

Competing Interests

The authors declare that there are no competing interests regarding the publication of this paper.

Authors’ Contributions

All authors read and approved the final paper. Zhengyi Zhang, Yuan Zhao, and Jing Yu conceived and designed the experiments. Zhengyi Zhang, Yuan Zhao, Lili Yang, Changhong Lu, Ying Meng, Xiaoli Guan, and Hongjin An performed the experiments. Zhengyi Zhang, Yuan Zhao, Meizhong Zhang, Wenqin Guo, and Jing Yu analyzed the data. Zhengyi Zhang, Yuan Zhao, and Jing Yu wrote the paper. Zhengyi Zhang and Yuan Zhao contributed equally to this work.
Table 2: General information and clinical manifestations of measles patients.

Case number	Date of onset	Gender	Age (years)	Occupation	Vaccination history	MV IgM	MV PCR	Koplik spots	Catarh	Conjunctivitis	Pneumonia	Laryngitis	Liver dysfunction
1	Mar. 16	Female	33	ED patient	No	Positive	Positive	Yes	Yes	Yes	Yes	No	Yes
2	Mar. 20	Female	29	ED nurse	Yes	Positive	Positive	Yes	Yes	No	No	Yes	No
3	Mar. 20	Female	27	ED nurse	No	Positive	Positive	Yes	Yes	No	No	No	No
4	Mar. 20	Male	31	ED nurse	Yes	Positive	Positive	Yes	Yes	No	No	No	No
5	Mar. 23	Male	26	Logistical staff	Yes	Positive	Positive	Yes	No	No	No	No	No
6	Mar. 23	Female	25	Surgical nurse	Yes	Positive	Positive	No	Yes	No	No	No	No
7	Mar. 23	Male	36	Logistical staff	Unknown	Positive	Positive	No	Yes	No	No	No	No
8	Mar. 23	Female	31	Surgical nurse	Unknown	Positive	Positive	Yes	No	No	No	No	No
9	Mar. 23	Female	41	Logistical staff	No	Positive	Positive	No	Yes	No	No	No	No
10	Mar. 23	Male	32	Neurological doctor	Unknown	Positive	Positive	No	Yes	No	No	No	No
11	Mar. 23	Female	26	Hematological nurse	Yes	Positive	Positive	Yes	Yes	No	No	No	No
12	Mar. 23	Male	32	Logistical staff	Yes	Positive	Positive	Yes	Yes	No	No	No	No
13	Mar. 23	Male	27	Logistical staff	Yes	Positive	Positive	No	Yes	No	No	No	No
14	Mar. 23	Male	25	Pediatric nurse	Yes	Positive	Positive	Yes	No	No	No	No	No
15	Mar. 23	Male	29	Logistical staff	Yes	Positive	Positive	No	Yes	No	No	No	No
16	Mar. 23	Female	27	Respiratory nurse	Yes	Positive	Positive	Yes	Yes	No	No	No	No
17	Mar. 23	Female	24	Ophthalmological nurse	Yes	Positive	Positive	Yes	Yes	No	No	No	No
18	Mar. 24	Male	27	Logistical staff	Yes	Positive	Positive	No	Yes	No	No	No	No
19	Mar. 24	Male	24	Cardiologynurse	Yes	Positive	Negative	Yes	Yes	No	No	Yes	No
20	Mar. 24	Female	23	Clinic nurse	Yes	Positive	Negative	Yes	Yes	No	No	Yes	No
21	Mar. 24	Female	24	Clinic nurse	Yes	Positive	Negative	Yes	Yes	No	No	Yes	No
22	Mar. 24	Female	25	Clinic nurse	Yes	Positive	Negative	Yes	Yes	No	No	Yes	No
23	Mar. 24	Male	30	Neurological doctor	Yes	Positive	Negative	Yes	No	Yes	No	No	No
24	Mar. 24	Female	22	Surgical nurse	Yes	Positive	Negative	Yes	No	Yes	No	No	No
25	Mar. 24	Female	25	Surgical nurse	Yes	Positive	Negative	Yes	No	Yes	No	No	No
26	Mar. 24	Female	24	Neurological nurse	Yes	Positive	Negative	Yes	Yes	No	No	No	No
27	Mar. 24	Female	25	Surgical nurse	Yes	Positive	Negative	Yes	Yes	No	No	No	No
28	Mar. 24	Male	1	Hematological patient	Yes	Positive	Positive	Yes	Yes	Yes	Yes	Yes	Yes
29	Mar. 25	Female	27	Obstetrical patient	Yes	Positive	Positive	Yes	Yes	No	No	No	Yes
30	Mar. 25	Female	27	ICU nurse	Unknown	Positive	Positive	Yes	No	No	No	No	No
31	Mar. 25	Female	26	Neurosurgical nurse	Yes	Positive	Positive	Yes	No	No	No	No	No
32	Mar. 25	Female	28	Urological nurse	Unknown	Positive	Positive	Yes	Yes	Yes	No	No	No
33	Mar. 25	Female	19	VIP medical nurse	Yes	Positive	Positive	Yes	Yes	Yes	No	No	No
34	Mar. 25	Female	32	Cardiologynurse	Unknown	Positive	Positive	No	Yes	No	No	No	No
35	Mar. 26	Female	13	Pediatric patient	Yes	Positive	Positive	Yes	Yes	Yes	No	No	No
36	Mar. 26	Male	30	Chinese medicine doctor	Unknown	Positive	Positive	Yes	Yes	Yes	No	No	No
37	Mar. 26	Female	27	VIP medical nurse	Yes	Positive	Positive	Yes	No	Yes	No	No	No
38	Mar. 26	Female	26	Cardiologynurse	Yes	Positive	Positive	Yes	Yes	No	No	No	No
39	Mar. 27	Male	16	ED patient	Yes	Positive	Positive	Yes	Yes	No	No	No	No
40	Mar. 27	Male	30	Urological doctor	Unknown	Positive	Positive	Yes	No	No	No	No	No
41	Mar. 27	Female	29	Logistical staff	Yes	Positive	Positive	Yes	Yes	No	No	No	No
42	Mar. 27	Female	21	Medical student	Yes	Negative	Positive	Yes	Yes	No	No	No	No
43	Mar. 27	Male	14	ED patient	Yes	Positive	Positive	Yes	Yes	No	No	No	No
Table 2: Continued.

Case number	Date of onset	Gender	Age (years)	Occupation	Vaccination history	MV IgM	MV PCR	Koplik spots	Conjunctivitis	Pneumonia	Laryngitis	Liver dysfunction
44	Mar. 27	Male	25	Logistical staff	Yes	Positive	Positive	Yes	Yes	Yes	No	No
45	Mar. 27	Female	27	Cardiology nurse	Yes	Positive	Positive	Yes	Yes	Yes	No	No
46	Mar. 27	Female	38	Logistical staff	Yes	Positive	Positive	No	Yes	Yes	No	No
47	Mar. 27	Male	1	Pediatric patient	Yes	Positive	Positive	No	Yes	Yes	No	No
48	Mar. 27	Female	27	Clinic nurse	Yes	Positive	Positive	No	Yes	Yes	No	No
49	Mar. 27	Female	16	ED patient	Yes	Positive	Positive	Yes	No	No	No	No
50	Mar. 28	Female	22	Neurological nurse	Yes	Positive	Positive	Yes	Yes	Yes	No	No
51	Mar. 28	Male	13	Pediatric patient	Yes	Positive	Positive	Yes	Yes	No	No	No
52	Mar. 28	Female	29	Hematological nurse	Unknown	Positive	Positive	No	Yes	Yes	No	No
53	Mar. 29	Female	43	Logistical staff	No	Positive	Positive	No	Yes	Yes	No	No
54	Mar. 29	Female	27	Pediatric nurse	Yes	Negative	Positive	Yes	Yes	Yes	No	No
55	Mar. 30	Female	38	Nephrology doctor	Unknown	Negative	Positive	Yes	Yes	Yes	No	No
56	Mar. 31	Female	25	Urological nurse	Yes	Negative	Positive	No	No	Yes	Yes	No
57	Apr. 2	Female	47	Logistical staff	Unknown	Negative	Positive	Yes	Yes	Yes	No	No
58	Apr. 2	Female	29	Pediatric nurse	Yes	Negative	Positive	No	Yes	Yes	No	No
59	Apr. 4	Male	32	Logistical staff	Unknown	Negative	Positive	Yes	Yes	Yes	No	No
60	Apr. 4	Female	23	Neurological nurse	Yes	Negative	Positive	No	Yes	Yes	No	No

ED: Emergency Department; ICU: intensive care unit; VIP: very important person.
Acknowledgments

The authors would like to thank staff in Department of Public Health and Department of Medical Affairs for providing data on measles outbreak. Thanks extended to Lanzhou Center for Disease Control and Prevention for technical help on the measles diagnostic assays.

References

[1] T. Duke and C. S. Mgone, "Measles: not just another viral exanthem," The Lancet, vol. 361, no. 9359, pp. 763–773, 2003.
[2] R. T. Perry and N. A. Halsey, “The clinical significance of measles: a review,” Journal of Infectious Diseases, vol. 189, supplement 1, pp. S4–S16, 2004.
[3] C. Ma, Z. An, L. Hao et al., "Progress toward measles elimination in the People's Republic of China, 2000–2009," Journal of Infectious Diseases, vol. 204, no. 1, pp. S447–S454, 2011.
[4] J. Gao, E. Chen, Z. Wang et al., "Epidemic of measles following the nationwide mass immunization campaign," BMC Infectious Diseases, vol. 13, article 139, 2013.
[5] C. Ma, F. Li, X. Zheng et al., "Measles vaccine coverage estimates in an outbreak three years after the nation-wide campaign in China: implications for measles elimination, 2013," BMC Infectious Diseases, vol. 15, article 23, 2015.
[6] De la Santé, “Global reductions in measles mortality 2000–2008 and the risk of measles resurgence,” Weekly Epidemiological Record, vol. 84, no. 49, pp. 509–516, 2009.
[7] C. Ma, L. Hao, Y. Zhang et al., "Monitoring progress towards the elimination of measles in China: an analysis of measles surveillance data," Bulletin of the World Health Organization, vol. 92, no. 5, pp. 340–347, 2014.
[8] M. Chen, Y. Zhang, F. Huang et al., "Endemic and imported measles virus-associated outbreaks among adults, Beijing, China, 2013," Emerging Infectious Diseases, vol. 21, no. 3, pp. 477–479, 2015.
[9] F.-J. Wang, X.-J. Sun, F.-L. Wang, L.-F. Jiang, E.-P. Xu, and J.-F. Guo, "An outbreak of adult measles by nosocomial transmission in a high vaccination coverage community," International Journal of Infectious Diseases, vol. 26, pp. e67–e70, 2014.
[10] E. Botelho-Nevers, P. Gautret, R. Biellik, and P. Brouqui, "Nosocomial transmission of measles: an updated review," Vaccine, vol. 30, no. 27, pp. 3996–4001, 2012.