Generalized Fourier transform on Chébli-Trimèche hypergroups

Chokri Abdelkefi · Abdessattar Jemai

Received: date / Accepted: date

Abstract In this paper, we prove the Hardy-Littlewood inequality for the generalized Fourier transform on Chébli-Trimèche hypergroups and we study in the particular case of the Jacobi hypergroup the integrability of this transform on Besov-type spaces.

Keywords Chébli-Trimèche hypergroups · Generalized Fourier transform · Jacobi hypergroup · Jacobi function

Mathematics Subject Classification (2000) Primary 47G30 · Secondary 44A15 · 44A35

1 Introduction

We consider the Chébli-Trimèche hypergroup \((\mathbb{R}^+, \ast (A))\) associated with the function \(A\) which depends on a real parameter \(\alpha > -\frac{1}{2}\) (see next section). We prove the Hardy-Littlewood inequality for the generalized Fourier transform \(\mathcal{F}(f)\) of a function \(f\) in \(L^p(\mathbb{R}^+, A(x)dx)\), \(1 < p \leq 2\). Next, inspired by the definition of usual Besov spaces and Besov-Dunkl spaces (see [2, 5]), we define the Besov-type spaces for Chébli-Trimèche hypergroup denoted by \(\mathcal{B}^{p,q}_{\gamma,\alpha}\), as the subspace of functions \(f \in L^p(\mathbb{R}^+, A(x)dx)\) satisfying

\[
\int_0^{+\infty} \left(\frac{\omega_{A,p}(f,x)}{x^\gamma} \right)^q \frac{dx}{x} < +\infty \quad \text{if } q < +\infty
\]

and

\[
\sup_{x \in [0, +\infty]} \frac{\omega_{A,p}(f,x)}{x^\gamma} < +\infty \quad \text{if } q = +\infty,
\]

Chokri Abdelkefi
Department of Mathematics, Preparatory Institute of Engineer Studies of Tunis, 1089 Monfleury Tunis, Tunisia
E-mail: chokri.abdelkefi@ipeit.rnu.tn

Abdessattar Jemai
Department of Mathematics, Faculty of Sciences of Tunis, 1060 Tunis, Tunisia
E-mail: jemai_abdessattar@yahoo.fr
where \(\omega_{A,p}(f,x) = \| \tau_x(f) - f \|_{A,p} \) is the modulus of continuity of first order of \(f \) with \(\tau_x \) the generalized translation operators, \(x \in \mathbb{R}_+ \) (see next section). We establish in the particular case of Jacobi hypergroups further results concerning integrability of the generalized Fourier transform \(\mathcal{F}(f) \) of a function \(f \) when \(f \) belongs to a suitable Besov-type spaces. Analogous results have been obtained for the theory of Dunkl operators in [1, 3, 4].

The contents of this paper are as follows.

In section 2, we collect some results about harmonic analysis on Chébli-Trimèche hypergroups.

In section 3, we prove the Hardy-Littlewood inequality for the generalized Fourier transform on Chébli-Trimèche hypergroups and we study in the particular case of the Jacobi hypergroup the integrability of this transform on Besov-type spaces.

Along this paper we use \(c \) to denote a suitable positive constant which is not necessarily the same in each occurrence. Furthermore, we denote by

- \(\mathbb{C}_{\text{c}}(\mathbb{R}) \) the space of even continuous functions on \(\mathbb{R} \), with compact support.
- \(\mathcal{S}(\mathbb{R}) \) the space of even \(C^\infty \)-functions on \(\mathbb{R} \) with compact support.

2 Preliminaries

In this section, we recall some notations and results about harmonic analysis on Chébli-Trimèche hypergroups and we refer for more details to the articles [6, 9, 11, 12].

Let \(A \) be the Chébli-Trimèche function defined on \(\mathbb{R}_+ \) and satisfying the following conditions.

i) \(A(x) = x^{2\alpha+1} B(x) \), with \(\alpha > -\frac{1}{2} \), and \(B \) an even \(C^\infty \)-function on \(\mathbb{R} \) such that \(B(x) \geq 1 \) for all \(x \in \mathbb{R}_+ \).

ii) \(A \) is increasing and unbounded.

iii) \(\frac{A'}{A} \) is decreasing on \(\mathbb{R}_+^\ast = [0, +\infty] \) and \(\lim_{x\to+\infty} \frac{A'(x)}{A(x)} = 2\rho \geq 0 \).

iv) There exists a constant \(\eta > 0 \) such that for all \(x \in [x_0, +\infty] \), \(x_0 > 0 \), we have

\[
\frac{A'(x)}{A(x)} = \begin{cases}
2\rho + e^{-\eta x} F(x), & \text{if } \rho > 0 \\
\frac{\alpha+1}{2\rho} + e^{-\eta x} F(x), & \text{if } \rho = 0,
\end{cases}
\]

where \(F \) is a \(C^\infty \)-function bounded together with its derivatives.

We consider the Chébli-Trimèche hypergroup \((\mathbb{R}_+, \ast(A)) \) associated with the function \(A \). We note that it is commutative with neutral element 0 and the identity mapping is the involution. The Haar measure \(m \) on \((\mathbb{R}_+, \ast(A)) \) is absolutely continuous with respect to the Lebesgue measure and can be chosen to have the Lebesgue density \(A \).

Remark 1 If \(A(x) = 2^\rho (\sinh x)^{2\alpha+1} (\cosh x)^{2\beta+1} \), with \(\alpha \geq \beta \geq -\frac{1}{2}, \alpha \neq -\frac{1}{2} \) and \(\rho = \alpha + \beta + 1 \), \((\mathbb{R}_+, \ast(A)) \) is called the Jacobi hypergroup.

Let \(\Delta \) be the differential operator on \(\mathbb{R}_+^\ast \) given by

\[
\Delta = \frac{d^2}{dx^2} + \frac{A'(x)}{A(x)} \frac{d}{dx}.
\]

The solution \(\varphi_{\lambda}, \lambda \in \mathbb{C}, \) of the differential equation

\[
\begin{cases}
\Delta u(x) = -(\lambda^2 + \rho^2) u(x), \\
u(0) = 1, \frac{d}{dx} u(0) = 0,
\end{cases}
\]
is multiplicative on \((\mathbb{R}_+, * (A))\) in the sense that
\[
\forall x, y \in \mathbb{R}_+, \int_{\mathbb{R}_+} \varphi_\lambda(t) \, d(\delta_x * \delta_y)(t) = \varphi_\lambda(x) \varphi_\lambda(y),
\]
where \(\delta_x\) is the point mass at \(x\) and \(\delta_x * \delta_y\) is a probability measure which is absolutely continuous with respect to the measure \(m\) and satisfies
\[
\text{supp} \, \delta_x * \delta_y = [|x - y|, |x + y|].
\]

We list some known properties of the characters \(\varphi_\lambda\) of the hypergroups.

i) For each \(\lambda \in \mathbb{C}\), the function \(x \mapsto \varphi_\lambda(x)\) is an even \(C^\infty\)-function on \(\mathbb{R}\) and for each \(x \in \mathbb{R}_+\), the function \(\lambda \mapsto \varphi_\lambda(x)\) is an entire function on \(\mathbb{C}\).

ii) For every \(\lambda \in \mathbb{C}\), the function \(\varphi_\lambda\) admits the integral representation
\[
\forall x \in \mathbb{R}_+, \quad \varphi_\lambda(x) = \int_0^\infty K(x, y) \cos(\lambda y) \, dy.
\]

Where \(K(x, .)\) is a positive even \(C^\infty\)-function on \([-x, x]\) with support in \([-x, x]\).

Remark 2 In the Jacobi hypergroup (see Remark 1), we have for all \(x \in \mathbb{R}_+\) and \(\lambda \in \mathbb{C}\),
\[
\varphi_\lambda(x) = \varphi_\lambda^\alpha(x) = 2F_1\left(\frac{1}{2}(\rho - i\lambda), \frac{1}{2}(\rho + i\lambda), \alpha + 1; -\sin^2 x\right),
\]
where \(2F_1\) is the Gauss hypergeometric function (see [9]). The function \(\varphi_\lambda^\alpha(x)\) is the Jacobi function and it satisfies for all \(\lambda \in \mathbb{R}\) and \(t \in \mathbb{R}_+^\ast\)
\[
|1 - \varphi_\lambda^\alpha(t)| \geq c \min\{1, \lambda t^2\}, \quad (1)
\]
where \(c\) is constant which depends only on \(\alpha\) and \(\beta\) (see [7, 8]).

For every \(p \in [1, +\infty]\), we denote by \(L^p_{\alpha}(\mathbb{R}_+)\) the space \(L^p(\mathbb{R}_+, |A(x)| \, dx)\) and by \(L^p_{\lambda}(\mathbb{R}_+)\) the space \(L^p(\mathbb{R}_+, \frac{dx}{|A(x)|^p})\) where \(|c(\lambda)|^{-2}\) is an even continuous function on \(\mathbb{R}\), satisfying the estimates: There exist positive constants \(k, k_1, k_2\) such that

i) If \(\rho = 0\) and \(\alpha > 0\) then
\[
k_1 |\lambda|^{2\alpha + 1} \leq |c(\lambda)|^{-2} \leq k_2 |\lambda|^{2\alpha + 1}, \quad \lambda \in \mathbb{C}. \quad (2)
\]

ii) If \(\rho > 0\) and \(\alpha > -\frac{1}{2}\) then
\[
k_1 |\lambda|^{2\alpha + 1} \leq |c(\lambda)|^{-2} \leq k_2 |\lambda|^{2\alpha + 1}, \quad \lambda \in \mathbb{C}, \, |\lambda| > k, \quad (3)
\]

and
\[
k_1 |\lambda|^2 \leq |c(\lambda)|^{-2} \leq k_2 |\lambda|^2, \quad \lambda \in \mathbb{C}, \, |\lambda| \leq k. \quad (4)
\]

We use \(\|\cdot\|_{\lambda, p}\) and \(\|\cdot\|_{\alpha, p}\) as a shorthand respectively of \(\|\cdot\|_{L^p_{\alpha}(\mathbb{R}_+)}\) and \(\|\cdot\|_{L^p_{\lambda}(\mathbb{R}_+)}\).

For \(f \in L^1_{\lambda}(\mathbb{R}_+)\) the generalized Fourier transform of \(f\) is given by
\[
\mathcal{F}(f)(\lambda) = \int_{\mathbb{R}_+} f(x) \varphi_\lambda(x) A(x) \, dx.
\]
The generalized Fourier transform satisfies the following properties.
i) For $f \in L^1_A(\mathbb{R}+)\), we have

$$\|F(f)\|_{\mathcal{C}} \leq \|f\|_{A,1}$$ \hspace{1cm} (5)$$

ii) For f in $L^1_A(\mathbb{R}+)\) such that $F(f)$ belongs to $L^1_{\mathcal{C}}(\mathbb{R}+)$, we have the following inversion formula for the transform F

$$f(x) = \int_{\mathbb{R}+} F(f)(\lambda)\phi_{\lambda}(x) \frac{d\lambda}{|c(\lambda)|^2}, a.e.$$

iii) (Plancherel formula) For all $f \in \mathcal{D}_\ast(\mathbb{R})\,

$$\int_{\mathbb{R}+} |f(x)|^2A(x)dx = \int_{\mathbb{R}+} |F(\lambda)|^2 \frac{d\lambda}{|c(\lambda)|^2}. \hspace{1cm} (6)$$

The transform F can be uniquely extended to an isometric isomorphism from $L^2_A(\mathbb{R}+)$ onto $L^2_{\mathcal{C}}(\mathbb{R}+)$. For $1 \leq p \leq 2$, we denote by p' the conjugate of p. From (2.5), (2.6) and the Marcinkiewicz interpolation theorem (see [10]), we obtain for $f \in L^p_A(\mathbb{R}+)\)

$$F(f) \in L^{p'}_{\mathcal{C}}(\mathbb{R}+). \hspace{1cm} (7)$$

For $x \in \mathbb{R}+$ and $f \in C_{\ast,\ast}(\mathbb{R})\), the generalized x-translate of f is defined by

$$\forall y \in \mathbb{R}+, \quad \tau_x f(y) = \int_{\mathbb{R}+} f(t)d(\delta_x * \delta_y)(t),$$

and we have $\tau_x f(0) = f(x)$. The generalized translation operators $\tau_x, x \in \mathbb{R}+$, satisfy the following properties.

i) For all $x, y \in \mathbb{R}+$ and $\lambda \in \mathbb{C}$, we have the product formula

$$\tau_x \phi_{\lambda}(y) = \phi_{\lambda}(x)\phi_{\lambda}(y).$$

ii) For $f \in \mathcal{D}_\ast(\mathbb{R})$ and $x \in \mathbb{R}+$, the function $y \mapsto \tau_x f(y)$ belongs to $\mathcal{D}_\ast(\mathbb{R})$ and we have

$$\forall \lambda \in \mathbb{R}+, \quad F(\tau_x f)(\lambda) = \phi_{\lambda}(x)F f(\lambda). \hspace{1cm} (8)$$

iii) Let $f \in L^p_{\mathcal{C}}(\mathbb{R}+), \ p \in [1, +\infty]$. For all $x \in \mathbb{R}+$, the function $\tau_x f$ belongs to $L^p_A(\mathbb{R}+), \ p \in [1, +\infty]$, and we have

$$\|\tau_x f\|_{A,p} \leq \|f\|_{A,p}. $$
3 Generalized Fourier transform

Throughout this section, κ refers to the constant obtained in (3) and (4) from the estimates of $|c(\lambda)|^{-2}$.

In the following lemma, we prove the Hardy-Littlewood inequality for the Fourier transform.

Lemma 1 For $f \in L_A^p(\mathbb{R}^+)$, $1 < p \leq 2$, one has
\[
\int_{\mathbb{R}^+} (g(x))^{p-2} |\mathcal{F}(f)(x)|^p \frac{dx}{|c(x)|^2} \leq c \|f\|_{A,p}^p
\]
(9)

where
i) $g(x) = x^{2(\alpha+1)}$ if $\rho = 0$ and $\alpha > 0$.
ii) $g(x) = \begin{cases} x^{2(\alpha+1)} & \text{for } x > k \\ x^3 & \text{for } x \leq k \end{cases}$ if $\rho > 0$ and $\alpha > -\frac{1}{2}$

where k refers to the constant obtained from the estimates of $|c(x)|^{-2}$.

Proof For $f \in L_A^p(\mathbb{R}^+)$, $1 \leq p \leq 2$, we consider the operator
\[L(f)(x) = g(x)\mathcal{F}(f)(x), x \in \mathbb{R}^+. \]

For every $f \in L_A^2(\mathbb{R}^+)$, we have from (6)
\[
\left(\int_{\mathbb{R}^+} |L(f)(x)|^2 \frac{dx}{(g(x))^2|c(x)|^2} \right)^{\frac{1}{2}} = \|\mathcal{F}(f)\|_{l^2} = \|f\|_{A,2},
\]

hence L is an operator of strong-type $(2, 2)$ between the spaces $(\mathbb{R}^+, A(x)dx)$ and $(\mathbb{R}^+, \frac{dx}{(g(x))^2|c(x)|^2})$.

i) Assume $\rho = 0$, $\alpha > 0$ and $g(x) = x^{2(\alpha+1)}$. For $\lambda \in [0, +\infty]$, $f \in L_A^1(\mathbb{R}^+)$ and using (2) and (5), we can write
\[
\int_{\{|x| > \lambda\}} \frac{dx}{(g(x))^2|c(x)|^2} = \int_{\{|x| > \lambda\}} \frac{dx}{x^{4(\alpha+1)}|c(x)|^2} \leq c \int_{\{x > \lambda\}} \frac{x^{2\alpha+1}}{x^{4(\alpha+1)}}dx \\
\leq c \frac{\|f\|_{A,1}}{\lambda}
\]

It yields that L is of weak-type $(1, 1)$ between the spaces under consideration.

By the Marcinkiewicz interpolation theorem (see [10]), we can assert that L is an operator of strong-type (p, p), $1 < p \leq 2$ between the spaces $(\mathbb{R}^+, A(x)dx)$ and $(\mathbb{R}^+, \frac{dx}{(g(x))^2|c(x)|^2})$.

We conclude that
\[
\int_{\mathbb{R}^+} |L(f)(x)|^p \frac{dx}{(g(x))^2|c(x)|^2} = \int_{\mathbb{R}^+} |g(x)|^{p-2} |\mathcal{F}(f)(x)|^p \frac{dx}{|c(x)|^2} \leq c \|f\|_{A,p}^p,
\]

which proves the result.

ii) Suppose now $\rho > 0$, $\alpha > -\frac{1}{2}$ and $g(x) = \begin{cases} x^{2(\alpha+1)} & \text{for } x > k \\ x^3 & \text{for } x \leq k \end{cases}$.
where k is the constant obtained in (3) and (4) from the estimates of $|c(\lambda)|^{-2}$. Let $\lambda \in [0, +\infty[$ and $f \in L^p_\alpha(\mathbb{R}_+)$, by (3), (4) and (5), we have

$$
\int_{\{x \in \mathbb{R}_+: |L(f)(x)| > \lambda\}} \frac{dx}{(g(x))^2|c(x)|^2} \leq \int_{\{x \in \mathbb{R}_+: |g(x)| > \frac{1}{(g_\alpha(x))^2}\}} \frac{dx}{(g(x))^2|c(x)|^2}
$$

$$
\leq \int_{\{x \in \mathbb{R}_+: |g(x)| > \frac{1}{(g_\alpha(x))^2}\}} \frac{dx}{(g(x))^2|c(x)|^2} \leq \int_{\{x \in \mathbb{R}_+: |g(x)| > \frac{1}{(g_\alpha(x))^2}\}} \frac{dx}{(g(x))^2|c(x)|^2}
$$

$$
+ \int_{\{x \in \mathbb{R}_+: |g(x)| > \frac{1}{(g_\alpha(x))^2}\}} \chi_{[k, \infty)} \frac{dx}{(g(x))^2|c(x)|^2}
$$

$$
\leq c \int_{\{x \in \mathbb{R}_+: |g(x)| > \frac{1}{(g_\alpha(x))^2}\}} \frac{dx}{(g(x))^2|c(x)|^2}
$$

$$
\leq c \int_{\{x \in \mathbb{R}_+: |g(x)| > \frac{1}{(g_\alpha(x))^2}\}} \frac{dx}{(g(x))^2|c(x)|^2}
$$

$$
+ \int_{\{x \in \mathbb{R}_+: |g(x)| > \frac{1}{(g_\alpha(x))^2}\}} \frac{dx}{(g(x))^2|c(x)|^2}
$$

Hence L is of weak-type $(1,1)$ between the spaces $(\mathbb{R}_+, A(x)dx)$ and $((\mathbb{R}_+, \frac{dx}{(g(x))^2|c(x)|^2}))$. We conclude by the Marcinkiewicz interpolation theorem that L is of strong-type (p, p), between the spaces under consideration.

It yields, that

$$
\int_{\mathbb{R}_+} |L(f)(x)|^p \frac{dx}{(g(x))^2|c(x)|^2} \leq \int_{\mathbb{R}_+} |g(x)|^{p-2} |\mathcal{F}(f)(x)|^p \frac{dx}{|c(x)|^2}
$$

$$
\leq c \|f\|_{A_p}^p,
$$

thus we obtain the result.

In the following, we study the integrability of the generalized Fourier transform in the Jacobi hypergroup case (see Remarks 1 and 2). For $1 \leq p \leq 2$, we denote by p' the conjugate of p.

Lemma 2 Let $1 \leq p \leq 2$ and $f \in L^p_\alpha(\mathbb{R}_+)$. Then there exists a positive constant c such that for $\delta > 0$, one has

$$
\left(\int_0^{+\infty} \min\{1, (\delta x)^{2p'}\} |\mathcal{F}(f)(x)|^p \frac{dx}{|c(x)|^2} \right)^{\frac{1}{p'}} \leq c \omega_{\alpha,p}(f)(\delta), \quad \text{if } 1 < p \leq 2
$$

and

$$
\text{ess sup}_{x>0} \left(\min\{1, (\delta x)^2\} |\mathcal{F}(f)(x)| \right) \leq c \omega_{\alpha,1}(f)(\delta), \quad \text{if } p = 1.
$$

Proof For $f \in L^p_\alpha(\mathbb{R}_+)$, $1 \leq p \leq 2$, we have by (8)

$$
\mathcal{F}(\tau_\delta(f) - f)(x) = (\phi_\delta - 1)\mathcal{F}(f)(x),
$$

for $\delta > 0$ and a.e $x \in \mathbb{R}_+$. Applying (7), we get

$$
\|\mathcal{F}(\tau_\delta(f) - f)\|_{c,p'} = \left(\int_0^{+\infty} |1 - \phi_\delta(\delta)|^{p'} |\mathcal{F}(f)(x)|^{p'} \frac{dx}{|c(x)|^2} \right)^{\frac{1}{p'}}
$$

$$
\leq c \omega_{\alpha,p}(f)(\delta).
$$

From (1), we obtain our results. Here when $p = 1$, we make the usual modification.
Remark 3

i) In the lemma 2, the gauge on the size of the generalized transform in terms of an integral modulus of continuity of \(f \) gives a quantitative form of the Riemann-Lebesgue lemma:

\[
\left(\int_{-\infty}^{+\infty} |\mathcal{F}(f)(x)|^{p'} \frac{dx}{|x|^2} \right)^{\frac{1}{p'}} \leq c \omega_{\lambda,p}(f)(\delta), \text{ if } 1 < p \leq 2
\]

and

\[
\text{ess sup}_{x \geq \frac{1}{2}} |\mathcal{F}(f)(x)| \leq c \omega_{\lambda,1}(f)(\delta), \text{ if } p = 1.
\]

ii) We will use the following estimates deduced from lemma 2 to establish the integrability of \(\mathcal{F}(f) \) when \(f \) belongs in \(\mathcal{B}^{p,1}_{\alpha} \) for \(1 \leq p \leq 2 \):

\[
\delta^{2p} \left(\int_{0}^{\frac{1}{2}} x^{2p'} |\mathcal{F}(f)(x)|^{p'} \frac{dx}{|x|^2} \right)^{\frac{1}{p'}} \leq c \omega_{\lambda,p}(f)(\delta), \text{ if } 1 < p \leq 2
\]

and

\[
\text{ess sup}_{0 < x < \frac{1}{2}} \left((\delta x)^{2p} |\mathcal{F}(f)(x)| \right) \leq c \omega_{\lambda,1}(f)(\delta), \text{ if } p = 1.
\]

Theorem 1

If \(f \in \mathcal{B}^{p,1}_{\alpha} \cap \mathcal{B}^{p,1}_{\alpha} \) for \(1 < p \leq 2 \), then

\[
\mathcal{F}(f) \in L_{p}^{1}(\mathbb{R}^{+}).
\]

Proof

For \(f \in L_{p}^{1}(\mathbb{R}^{+}) \), \(1 < p \leq 2 \) and \(\delta > 0 \), we can write from (8) and (9)

\[
\int_{\mathbb{R}^{+}} |1 - \varphi_{1}(\delta)|^{p} |\mathcal{F}(\tau_{\delta}(f))(t)|^{p} |g(t)|^{p-2} \frac{dt}{|x(t)|^2} \leq c (\omega_{\lambda,p}(f)(\delta))^{p},
\]

then by (1), we obtain

\[
\delta^{2p} \int_{0}^{\frac{1}{2}} x^{2p} |\mathcal{F}(f)(t)|^{p} |g(t)|^{p-2} \frac{dt}{|x(t)|^2} \leq c (\omega_{\lambda,p}(f)(\delta))^{p}.
\]

From (3) and (4), we have

\[
\int_{0}^{\frac{1}{2}} t |\mathcal{F}(f)(t)| \frac{dt}{|x(t)|^2}
\]

\[
= \int_{0}^{\frac{1}{2}} t |\mathcal{F}(f)(t)| \chi_{[0,\delta]}(t) \frac{dt}{|x(t)|^2} + \int_{0}^{\frac{1}{2}} t |\mathcal{F}(f)(t)| \chi_{\delta,\infty}(t) \frac{dt}{|x(t)|^2}
\]

\[
\leq c \int_{0}^{\frac{1}{2}} t |\mathcal{F}(f)(t)| \chi_{[0,\delta]}(t) |t|^{2} dt + c \int_{0}^{\frac{1}{2}} t |\mathcal{F}(f)(t)| \chi_{\delta,\infty}(t) |t|^{2+1} dt,
\]
by Hölder’s inequality and (12), we have
\[\int_0^\frac{t}{t} |F(f)(t)| \frac{dt}{|c(t)|^2} \]
\[\leq c \left(\int_0^\frac{t}{t} t^{3(p-2)+2p} |F(f)(t)|^p |\chi_{[0,t]}(t)|^2 dt \right)^\frac{1}{p} \left(\int_0^\frac{t}{t} t^{(p-2)} \chi_{[0,t]}(t) dt \right)^\frac{1}{p} \]
\[+ c \left(\int_0^\frac{t}{t} t^{2(\alpha+1)(p-2)+2p} |F(f)(t)|^p |\chi_{[t,\infty]}(t)|^2 dt \right)^\frac{1}{p} \]
\[\times \left(\int_0^\frac{t}{t} t^{(2\alpha+1)(p-2)+2\alpha-1} \chi_{[t,\infty]}(t) dt \right)^\frac{1}{p} \]
\[\leq c \left(\int_0^\frac{t}{t} t^{3(p-2)} |F(f)(t)|^p (g(t))^{p-2} \frac{dt}{|c(t)|^2} \right)^\frac{1}{p} \]
\[\times \left\{ \left(\int_0^\frac{t}{t} t^{2(p-2)} dt \right)^\frac{1}{p} + \left(\int_0^\frac{t}{t} t^{(2\alpha+1)(p-2)+2\alpha-1} dt \right)^\frac{1}{p} \right\} \]
\[\leq c \delta^{-2} \omega_{1,p}(f)(\delta) \left(\frac{1}{\delta^{p-1}} + \frac{1}{\delta^{2(p-2)+1}} \right) \leq c \left(\frac{\omega_{1,p}(f)(\delta)}{\delta^{p-1}} + \frac{\omega_{1,p}(f)(\delta)}{\delta^{2(p-2)+1}} \right).\]

Integrating with respect to \(\delta \) over \(\mathbb{R}_+ \) for \(f \in \mathcal{R}^p_{\gamma,\alpha+1} \cap \mathcal{R}^p_{\gamma,\alpha} \), the double integral is evaluated by interchanging the orders of integration, it yields
\[\int_0^{+\infty} |F(f)(t)| \frac{dt}{|c(t)|^2} < +\infty.\]

This complete the proof.

Theorem 2 Let \(\gamma > 0, 1 \leq p \leq 2 \) and \(f \in \mathcal{R}^p_{\gamma,\alpha}, \) then

i) For \(p \neq 1 \) and \(0 < \gamma \leq \frac{2(\alpha+1)}{p} \), one has
\[F(f) \in L^2_{\gamma}(\mathbb{R}_+) \] provided that \(\frac{2(\alpha+1)p}{2p+2(\alpha+1)(p-1)} < s \leq p' \).

ii) For \(p \neq 1 \) and \(\gamma > \frac{2(\alpha+1)}{p} \), one has
\[F(f) \in L^1_{\gamma}(\mathbb{R}_+).\]

iii) For \(p = 1 \) and \(\gamma > \sup(3,2(\alpha+1)), \) one has
\[F(f) \in L^1_{\gamma}(\mathbb{R}_+).\]

Proof Let \(f \in \mathcal{R}^p_{\gamma,\alpha}, 1 \leq p \leq 2, \)
i) Suppose that \(p \neq 1 \) and \(0 < \gamma \leq \frac{2(\alpha+1)}{p} \). Let \(\frac{2(\alpha+1)p}{2p+2(\alpha+1)(p-1)} < s \leq p' \), we define the function
\[g(t) = \int_k^t |F(f)(x)|^s \frac{dx}{|c(x)|^2}, \quad t > k.\]
By Hölder’s inequality, (4) and (10) we have
\[g(t) \leq \left(\int_k^t |F(f)(x)|^s \frac{dx}{|c(x)|^2} \right)^{\frac{1}{s}} \left(\int_k^t \frac{dx}{|c(x)|^2} \right)^{1-\frac{1}{s}} \]
\[\leq ct^{2s} \left(\omega_{1,p}(f)(t)^{\frac{1}{s}} \right) \left(\int_k^t \frac{dx}{|c(x)|^2} \right)^{1-\frac{1}{s}} \]
\[\leq ct^{2(\gamma+1)} \left(\int_k^t x^{2(\alpha+1)} dx \right)^{1-\frac{1}{s}} \leq ct^{2(\gamma+1)(2(\alpha+1)(1-\frac{1}{s})).\]
Then we get
\[
\int \frac{|\mathcal{F}(f)(x)|^2}{|c(x)|^2} \, dx = \int \frac{x^{-2s}g'(t)}{|c(x)|^2} \, dx
\]
\[
= t^{-2s}g(t) + 2s \int x^{-2s-1}g(x) \, dx
\]
\[
\leq c \left(t^{-\gamma + 2(\alpha + 1)(1-\frac{1}{p})} + \int x^{-\gamma + 2(\alpha + 1)(1-\frac{1}{p})-1} \, dx \right)
\]
\[
\leq c \left(t^{-\gamma + 2(\alpha + 1)(1-\frac{1}{p})} + 1 \right),
\]
it yields that \(\mathcal{F}(f) \in L^p([-k, +\infty[\times \{ \frac{dx}{|c(x)|^2} \}). \) Since \(\mathcal{F}(f) \in L^p([-k, +\infty[\times \{ \frac{dx}{|c(x)|^2} \}) \subset L^1([-k, +\infty[\times \{ \frac{dx}{|c(x)|^2} \}), \) \(\) we deduce that \(\mathcal{F}(f) \) is in \(L^p_1(\mathbb{R}_+). \)

ii) Assume now \(\gamma > \frac{2(\alpha + 1)}{p}. \) For \(p \neq 1, \) by proceeding in the same manner as the proof of i) with \(s = 1, \) we obtain the desired result.

iii) For \(p = 1 \) and \(\gamma > \sup(3, 2(\alpha + 1)). \) By Hölder’s inequality, (3), (4) and (11), we have for \(t > 0 \)
\[
\int \frac{1}{|\mathcal{F}(f)(x)|^2} \, dx \leq \text{ess sup}_{0 < t \leq 1} \frac{1}{x} |\mathcal{F}(f)(x)| \int \frac{1}{x} \frac{dx}{|c(x)|^2}
\]
\[
\leq c t^{-2} \left(\int \frac{1}{x} x \chi_{\{0 \leq x \leq k\}} \frac{dx}{|c(x)|^2} + \int \frac{1}{x} x \chi_{\{x > k\}} \frac{dx}{|c(x)|^2} \right)
\]
\[
\leq c t^{-2} \left[t^{-2} + t^{-(2\alpha + 1)} \right] \leq c \left[t^{-1} + t^{-(\alpha + 1)} \right].
\]

Integration with respect to \(t \) over \((0, 1) \) and applying Fubini’s theorem we obtain
\[
\int_1^{+\infty} \frac{1}{|\mathcal{F}(f)(x)|^2} \, dx \leq c \left(\int_0^1 t^{-(\alpha + 1) - 1} \, dt + \int_1^{+\infty} t^{-2(\alpha + 1) - 1} \, dt \right) < \infty.
\]
Since \(L^\infty(\mathbb{R}_+, \{ \frac{dx}{|c(x)|^2} \}) \subset L^1(\mathbb{R}_+, \{ \frac{dx}{|c(x)|^2} \}), \) \(\) then \(\mathcal{F}(f) \in L^1_1(\mathbb{R}_+). \)

Remark 4 For \(\gamma > \sup(3, 2(\alpha + 1)), \) we can assert from the theorem 2, iii) that \(\mathcal{F}_{\gamma, \alpha}^1 \) is an example of space where we can apply the inversion formula.

Acknowledgements The authors are supported by the DGRST research project 04/UR/15-02 and the program CMCU 10G / 1503.

References
1. C. Abdelkefi and M. Sifi, On the uniform convergence of partial Dunkl integrals in Besov-Dunkl spaces. Fractional Calculus and Applied Analysis Vol. 9, N. 1 (2006), 43-56.
2. C. Abdelkefi and M. Sifi, Characterization of Besov spaces for the Dunkl operator on the real line. Journal of Inequalities in Pure and Applied Mathematics, Vol. 8 (2007), Issue 3, Article 73, 11 pp.
3. C. Abdelkefi and M.Sifi, Further results of integrability for the Dunkl transform. Communication in Mathematical Analysis Vol. 2, N.1 (2007), 29-36.
4. C. Abdelkefi, J. Ph. Anker, F. Sassi and M. Sifi, Besov-type spaces on \(\mathbb{R}^d \) and integrability for the Dunkl transform. Symmetry, Integrability and Geometry: Methods and Applications, SIGMA 5 (2009), 019, 15 pages.
5. O. V. Besov, On a family of function spaces in connection with embeddings and extention, Trudy Mat. Inst. Steklov 60 (1961), 42-81.
6. W.R. Bloom and H. Heyer, Harmonic analysis of probability measures on hypergroups. Walter de Gruyter Berlin-NewYork, 1995.
7. W.O. Bray and M.A. Pinsky, Growth properties of Fourier transform via moduli of continuity. J. Funct. Anal. 255 (2008) 2265-2285.
8. W.O. Bray and M.A. Pinsky, Growth properties of the Fourier transform. arXiv:0910.1115v1 [math.CA] 6 Oct 2009.
9. T.H. Koornwinder, Jacobi functions and analysis on non compact semisimple Lie groups. Special Functions: Group Theoretical Aspects and Applications. (R.A. Askey, T.H. Koornwinder and W. Schempp, eds.) Reidel, Dordrecht, 1984.
10. E.C. Titchmarsh, Introduction to the theory of Fourier integrals, Clarendon Press, Oxford, 1937.
11. K. Trimèche, Generalized Harmonic Analysis and Wavelets Packets. Gordon and Breach Science Publishers (1997).
12. K. Trimèche, Transformation intégrale de Weyl et Théorème de Paley-Wiener associés à un opérateur différentiel singulier sur (0, +∞). J. Math. Pure et Appl., 60, pp. 51-98, 1981.