IMPROVED LANGUAGE MODELING BY DECODING THE PAST

Siddhartha Brahma
IBM Research, Almaden, USA
brahma@us.ibm.com

ABSTRACT

Highly regularized LSTMs achieve impressive results on several benchmark datasets in language modeling. We propose a new regularization method based on decoding the last token in the context using the predicted distribution of the next token. This biases the model towards retaining more contextual information, in turn improving its ability to predict the next token. With negligible overhead in the number of parameters and training time, our past decode regularization (PDR) method achieves state-of-the-art word level perplexity on the Penn Treebank (55.6) and WikiText-2 (63.5) datasets and bits-per-character on the Penn Treebank Character (1.169) dataset for character level language modeling. Using dynamic evaluation, we also achieve the first sub 50 perplexity of 49.3 on the Penn Treebank test set.

1 INTRODUCTION

Language modeling is a fundamental task in natural language processing. Given a sequence of tokens, its joint probability distribution can be modeled using the auto-regressive conditional factorization. This leads to a convenient formulation where a language model has to predict the next token given a sequence of tokens as context. Recurrent neural networks are an effective way to compute distributed representations of the context by sequentially operating on the embeddings of the tokens. These representations can then be used to predict the next token as a probability distribution over a fixed vocabulary using a linear decoder followed by Softmax.

Starting from the work of Mikolov et al. (2010), there has been a long list of works that seek to improve language modeling performance using more sophisticated recurrent neural networks (RNNs) (Zaremba et al. (2014); Zilly et al. (2017); Zhou & Le (2016); Mujika et al. (2017)). However, in more recent work vanilla LSTMs (Hochreiter & Schmidhuber (1997)) with relatively large number of parameters have been shown to achieve state-of-the-art performance on several standard benchmark datasets both in word-level and character-level perplexity (Merity et al. (2018a); Melis et al. (2018)). A key component in these models is the use of several forms of regularization e.g. variational dropout on the token embeddings (Gal & Ghahramani (2016)), dropout on the hidden-to-hidden weights in the LSTM (Wan et al. (2013)), norm regularization on the outputs of the LSTM and classical dropout (Srivastava et al. (2014)). By carefully tuning the hyperparameters associated with these regularizers combined with optimization algorithms like NT-ASGD (a variant of the Averaged SGD), it is possible to achieve very good performance. Each of these regularizations address different parts of the LSTM model and are general techniques that could be applied to any other sequence modeling problem.

In this paper, we propose a regularization technique that is specific to language modeling. One unique aspect of language modeling using LSTMs (or any RNN) is that at each time step t, the model takes as input a particular token x_t from a vocabulary W and using the hidden state of the LSTM (which encodes the context till x_t) predicts a probability distribution w_{t+1} on the next token x_{t+1} over the same vocabulary as output. Since x_t can be mapped to a trivial probability distribution over W, this operation can be interpreted as transforming distributions over W (Inan et al. (2016)). Clearly, the output distribution is dependent on and is a function of x_t and the context further in the past and encodes information about it. We ask the following question – How much information is it possible to decode about the input distribution (and hence x_t) from the output distribution w_{t+1}?
In general, it is impossible to decode x_t unambiguously. Even if the language model is perfect and predicts x_{t+1} with probability 1, there could be many tokens preceding it. However, in this case the number of possibilities for x_t will be limited, as dictated by the bigram statistics of the corpus and the language in general. We argue that biasing the language model such that it is possible to decode more information about the past tokens from the predicted next token distribution is beneficial. We incorporate this intuition into a regularization term in the loss function of the language model.

The symmetry in the inputs and outputs of the language model at each step lends itself to a simple decoding operation. It can be cast as a (pseudo) language modeling problem in “reverse”, where the future prediction w_{t+1} acts as the input and the last token x_t acts as the target of prediction. The token embedding matrix and weights of the linear decoder of the main language model can be reused in the past decoding operation. We only need a few extra parameters to model the nonlinear transformation performed by the LSTM, which we do by using a simple stateless layer. We compute the cross-entropy loss between the decoded distribution for the past token and the transformation performed by the LSTM, which we do by using a simple stateless layer. We compute the cross-entropy loss between the decoded distribution for the past token and x_t and add it to the main loss function after suitable weighting. The extra parameters used in the past decoding are discarded during inference time. We call our method Past Decode Regularization or PDR for short.

We conduct extensive experiments on four benchmark datasets for word level and character level language modeling by combining PDR with existing LSTM based language models and achieve new state-of-the-art performance on three of them.

2 PAST DECODE REGULARIZATION (PDR)

Let $X = (x_1, x_2, \cdots, x_t, \cdots, x_T)$ be a sequence of tokens. In this paper, we will experiment with both word level and character level language modeling. Therefore, tokens can be either words or characters. The joint probability $P(X)$ factorizes into

$$P(X) = \prod_{t=1}^{T} P(x_t | x_1, x_2, \cdots, x_{t-1})$$

Let $c_t = (x_1, x_2, \cdots, x_t)$ denote the context available to the language model for x_{t+1}. Let W denote the vocabulary of tokens, each of which is embedded into a vector of dimension d. Let E denote the token embedding matrix of dimension $|W| \times d$ and e_w denote the embedding of $w \in W$. An LSTM computes a distributed representation of c_t in the form of its output hidden state h_t, which we assume has dimension d as well. The probability that the next token is w can then be calculated using a linear decoder followed by a Softmax layer as

$$P_{\theta}(w | c_t) = \text{Softmax}(h_t^T E + b)|_w = \frac{\exp(h_t e_w^T)}{\sum_{w' \in W} \exp(h_t e_{w'}^T + b_{w'})}$$

where $b_{w'}$ is the entry corresponding to w' in a bias vector b of dimension $|W|$ and $|_w$ represents projection onto w. Here we assume that the weights of the decoder are tied with the token embedding matrix E (Inan et al. (2016); Press & Wolf (2017)). To optimize the parameters of the language model θ, the loss function to be minimized during training is set as the cross-entropy between the predicted distribution $P_{\theta}(w | c_t)$ and the actual token x_{t+1}.

$$L_{CE} = \sum_{t} -\log(P_{\theta}(x_{t+1} | c_t))$$

Note that Eq. 2, when applied to all $w \in W$ produces a $1 \times |W|$ vector w_{t+1}, encapsulating the prediction the language model has about the next token x_{t+1}. Since this is dependent on and conditioned on c_t, w_{t+1} clearly encodes information about it; in particular about the last token x_t in c_t. In turn, it should be possible to infer or decode some limited information about x_t from w_{t+1}. We argue that by biasing the model to be more accurate in recalling information about past tokens, we can help it in predicting the next token better.

To this end, we define the following decoding operation to compute a probability distribution over $w_c \in W$ as the last token in the context.

$$P_{\theta_c}(w_c | w_{t+1}) = \text{Softmax}(f_{\theta_c}(w_{t+1}^T E + b'_{\theta_c}))$$
Here f_{θ_r} is a non-linear function that maps vectors in \mathbb{R}^d to vectors in \mathbb{R}^d and $b'_r(\theta_r)$ is a bias vector of dimension $|W|$, together with parameters θ_r. In effect, we are decoding the past — the last token in the context x_t. This produces a vector w_{t+1} of dimension $1 \times |W|$. The cross-entropy loss with respect to the actual last token x_t can then be computed as

$$L_{\text{PDR}} = \sum_t - \log(P_{\theta_r}(x_t|w_{t+1}))$$

(5)

Here P_{DR} stands for Past Decode Regularization. L_{PDR} captures the extent to which the decoded distribution of tokens differs from the actual tokens x_t in the context. Note the symmetry between Eqs. (2) and (5). The “input” in the latter case is w_{t+1} and the “context” is provided by a nonlinear transformation of $w_{t+1}E$. Different from the former, the context in Eq. (5) does not preserve any state information across time steps as we want to decode only using w_{t+1}. The term $w_{t}E$ can be interpreted as a “soft” token embedding lookup, where the token vector w_{t} is a probability distribution instead of a unit vector.

We add $\lambda_{\text{PDR}}L_{\text{PDR}}$ to the loss function in Eq. (3) as a regularization term, where λ_{PDR} is a positive weighting coefficient, to construct the following new loss function for the language model.

$$L = L_{\text{CE}} + \lambda_{\text{PDR}}L_{\text{PDR}}$$

(6)

Thus equivalently PDR can also be viewed as a method of defining an augmented loss function for language modeling. The choice of λ_{PDR} dictates the degree to which we want the language model to incorporate our inductive bias i.e. decodability of the last token in the context. If it is too large, the model will fail to predict the next token, which is its primary task. If it is zero or too small, the model will retain less information about the last token which hampers its predictive performance. In practice, we choose λ_{PDR} by a search based on validation set performance.

Note that the trainable parameters θ_r associated with PDR are used only during training to bias the language model and are not used at inference time. This also means that it is important to control the complexity of the non-linear function f_{θ_r} so as not to overly bias the training. As a simple choice, we use a single fully connected layer of size d followed by a Tanh nonlinearity as f_{θ_r}. This introduces few extra parameters and a small increase in training time as compared to a model not using PDR.

3 Experiments

We present extensive experimental results to show the efficacy of using PDR for language modeling on four standard benchmark datasets — two each for word level and character level language modeling. For word level language modeling, we evaluate our method on the Penn Tree Bank (PTB) (Mikolov et al. (2010)) and the WikiText-2 (WT2) (Merity et al. (2016)) dataset. For character level language modeling, we use the Penn TreeBank Character (PTBC) (Mikolov et al. (2010)) dataset and the Hutter Prize Wikipedia Prize (Hutter (2018)) (also known as Enwik8) dataset. Key statistics for these datasets is presented in Table 1.

	PTB	WT2	PTBC	enwik8
Tokens	888K	70.4K	205M	90M
Vocab	10K	33.3K	205	205

Table 1: Statistics of the language modeling benchmark data sets.

As mentioned in the introduction, some of the best existing results on these datasets are obtained by using relatively large LSTMs and using extensive regularization techniques (Merity et al. (2018a,b)). We apply our regularization technique to these models, the so called AWD-LSTM. We largely follow their experimental procedure and incorporate their dropouts and regularizations in our experiments. The relative contribution of these existing techniques and PDR will be analyzed later in the paper in Section 6. Each token is embedded using a token embedding matrix (initialized randomly and updated during training) with embedding dimension d. We use a 3-layer LSTM, where the hidden dimension of the last layer or the output dimension is also d. This facilitates the use of weight...
tying between the decoder layer and the token embedding matrix. The PDR regularization term is computed according to Eq. (4) and Eq. (5). We call our model AWD-LSTM+PDR.

For completeness, we briefly mention the set of dropouts and regularizations reused from AWD-LSTM in our experiments. They are the following:

1. Embedding dropout – Variational or locked dropout applied to the token embedding matrix.
2. Word dropout – Dropout applied to entire tokens.
3. LSTM layer dropout – Dropout between layers of the LSTM.
4. LSTM weight dropout – Dropout applied to the hidden-to-hidden connections in the LSTM.
5. LSTM output dropout – Dropout applied to the final output of the LSTM.
6. Alpha/beta regularization – Activation and temporal activation regularization applied to the LSTM states.
7. Weight decay – L2 regularization on the parameters of the model.

Note that these regularizations are applied to the input, hidden state and output of the LSTM and can be used in any sequence modeling task. Our proposed regularization PDR is specific to language modeling and acts on the predicted next-token distribution.

In addition to the 7 hyperparameters associated with the techniques above, PDR also has an associated weighting coefficient λ_{PDR}. For our experiments, we set $\lambda_{PDR} = 0.001$ which is determined by a coarse search on the PTB and WT2 validation sets. For the remaining ones, we perform light hyperparameter search in the vicinity of those reported for AWD-LSTM.

For both PTB and WT2, we use a 3-layered LSTM with 1150, 1150 and 400 hidden dimensions. The token (in this case word) embedding dimension is set to $d = 400$. For training the models, we follow the same procedure as AWD-LSTM i.e. a combination of SGD and NT-ASGD, with an initial learning rate set to 30. The model is first trained for 750 epochs followed by fine-tuning. The batch size for PTB is set to 40 and that for WT2 is set to 80.

For the PTBC dataset, we use a 3-layered LSTM with 1000, 1000 and 200 hidden dimensions. The character embedding dimension is $d = 200$ and we use the Adam optimizer (Kingma & Ba (2015)) with a learning rate of 2.7e-3 which is decreased by a factor of 10 at epochs 300 and 400 out of a total of 500 epochs. For the Enwik8 dataset, we use a LSTM with 1850, 1850 and 400 hidden dimensions. The characters are embedded in $d = 400$ dimensions and we use the Adam optimizer with a learning rate of 1e-3 which is decreased by a factor of 10 at epochs 25 and 35, out of a total of 50 epochs. For each of the datasets, AWD-LSTM+PDR has less than 1% more parameters than the corresponding AWD-LSTM model during training only. The maximum time overhead due to the additional computation is less than 3%.

4 RESULTS ON WORD LEVEL LANGUAGE MODELING

4.1 Penn Treebank

Table 2 shows the results on PTB. Our method (AWD-LSTM+PDR) achieves a perplexity of 55.6 on the PTB test set, which improves on the current state-of-the-art (AWD-LSTM) by an absolute 1.7 points. The advantages of better information retention due to PDR is passed on when combined with a continuous cache pointer (Grave et al. (2016)), where our method yields an absolute improvement of 1.2 over AWD-LSTM. Notably, when coupled with dynamic evaluation (Krause et al. (2018)), the perplexity is decreased further of 49.3. To the best of our knowledge, ours is the first method to achieve a sub 50 perplexity on the PTB test set without the use of multiple softmaxes (Yang et al. (2017)). Note that, for both cache pointer and dynamic evaluation, we coarsely tune the associated hyperparameters on the validation set. PTB is a restrictive dataset with a vocabulary of 10K words. Achieving good perplexity requires considerable regularization. The fact that PDR can improve upon existing heavily regularized models is empirical evidence of its distinctive nature and its effectiveness in improving language models.
Table 2: Perplexities on the Penn Treebank (PTB) test set. Values in parentheses shows improvement over current state-of-the-art. The number of parameters during training is 24.4M.

Table 2

Model	#Params	Valid	Test
Zaremba et al. (2014) – LSTM	20M	86.2	82.7
Gal & Ghahramani (2016) – Variational LSTM (MC)	20M	-	78.6
Kim et al. (2016) – CharCNN	19M	-	78.9
Inan et al. (2016) – Tied Variational LSTM + augmented loss	24M	75.7	73.2
Zilly et al. (2017) – Variational RHN	23M	67.9	65.4
Zoph & Le (2016) – NAS Cell	25M	-	64.0
Melis et al. (2018) – 4-layer skip connection LSTM	24M	60.9	58.3
Sate-of-the-art Methods			
Merity et al. (2018a) – AWD-LSTM w/o finetune	24.2M	60.7	58.8
Merity et al. (2018a) – AWD-LSTM	24.2M	60.0	57.3
Merity et al. (2018a) – AWD-LSTM + continuous cache pointer	24.2M	53.9	52.8
Krause et al. (2018) – AWD-LSTM + dynamic evaluation	24.2M	51.6	51.1
Our Method			
AWD-LSTM+PDR w/o finetune	24.2M	60.4	58.0
AWD-LSTM+PDR	24.2M	57.9	55.6 (-1.7)
AWD-LSTM+PDR + continuous cache pointer	24.2M	52.4	51.6 (-1.2)
AWD-LSTM+PDR + dynamic evaluation	24.2M	50.1	49.3 (-1.8)

Table 3: Perplexities on WikiText-2 (WT2) test set. Values in parentheses shows improvement over current state-of-the-art. The number of parameters during training is 33.8M.

Table 3

Model	#Params	Valid	Test
Inan et al. (2016) – Variational LSTM + augmented loss	28M	91.5	87.0
Melis et al. (2018) – 4-layer skip connection LSTM	24M	69.1	65.9
Sate-of-the-art Methods			
Merity et al. (2018a) – AWD-LSTM w/o finetune	33.6M	69.1	66.0
Merity et al. (2018a) – AWD-LSTM	33.6M	68.6	65.8
Merity et al. (2018a) – AWD-LSTM + continuous cache pointer	33.6M	53.8	52.0
Krause et al. (2018) – AWD-LSTM + dynamic evaluation	33.6M	46.4	44.3
Our Method			
AWD-LSTM+PDR w/o finetune	33.6M	68.5	65.6
AWD-LSTM+PDR	33.6M	**66.5**	**63.5 (-2.3)**
AWD-LSTM+PDR + continuous cache pointer	33.6M	51.5	49.6 (-2.4)
AWD-LSTM+PDR + dynamic evaluation	33.6M	**44.6**	**42.6 (-1.7)**

4.2 **WikiText-2**

Table 3 shows the perplexities achieved by AWD-LSTM+PDR on WT2. This dataset is considerably more complex than PTB with a vocabulary of more than 33K words. Our method improves over the current state-of-the-art by a significant 2.3 points, achieving a perplexity of 63.5. The gains are maintained with the use of cache pointer (2.4) and with the use of dynamic evaluation (1.7).

5 **RESULTS ON CHARACTER LEVEL LANGUAGE MODELING**

The results on PTBC are shown in Table 2. Our method achieves a bits-per-character (BPC) performance of 1.169 on the PTBC test set, improving on the current state-of-the-art by 0.006 or 0.5%. It is notable that even with this highly processed dataset and a small vocabulary of only 51 tokens, our method does improve on already highly regularized models. Finally, we present results on Enwik8 in
Table 4: Bits-per-character on the PTBC test set.

Model	#Params	Test
Krueger et al. (2016) – Zoneout LSTM	-	1.27
Chung et al. (2016) – HM-LSTM	-	1.24
Ha et al. (2016) – HyperLSTM	14.4M	1.219
Zoph & Le (2016) – NAS Cell	16.3M	1.214
Mujika et al. (2017) – FS-LSTM-4	6.5M	1.193
Merity et al. (2018b) – AWD-LSTM	13.8M	1.175
Our Method		
AWD-LSTM+PDR	13.8M	1.169 (-0.006)

Table 5: Bits-per-character on Enwik8 test set.

Model	#Params	Test
Ha et al. (2016) – HyperLSTM	27M	1.340
Chung et al. (2016) – HM-LSTM	35M	1.32
Rocki et al. (2016) – SD Zoneout	64M	1.31
Zilly et al. (2017) – RHN (depth 10)	21M	1.30
Zilly et al. (2017) – Large RHN	46M	1.270
Mujika et al. (2017) – FS-LSTM-4	27M	1.277
Mujika et al. (2017) – Large FS-LSTM-4	47M	1.245
Merity et al. (2018b) – AWD-LSTM	47M	1.232
Our Method		
AWD-LSTM (Ours)	47M	1.257
AWD-LSTM+PDR	47M	1.245 (-0.012)

Table 5. AWD-LSTM+PDR achieves 1.245 BPC. This is 0.012 or about 1% less than the 1.257 BPC achieved by AWD-LSTM in our experiments (with the hyperparameters from Merity et al. (2018b)).

6 ANALYSIS OF PDR

In this section, we analyze PDR by probing its performance in several ways and comparing it with current state-of-the-art models that do not use PDR.

6.1 A VALID REGULARIZATION

	PTB Valid	WT2 Valid
AWD-LSTM (NoReg)	108.6	142.7
AWD-LSTM (NoReg) + PDR	106.2	137.6

Table 6: Validation perplexities for AWD-LSTM without any regularization and with only PDR.

To verify that indeed PDR can act as a form of regularization, we perform the following experiment. We take the models for PTB and WT2 and turn off all dropouts and regularization and compare its performance with only PDR turned on. The results, as shown in Table 5 validate the premise of PDR. The model with only PDR turned on achieves 2.4 and 5.1 better validation perplexity on PTB and WT2 as compared to the model without any regularization. Thus, biasing the LSTM by decoding the distribution of past tokens from the predicted next-token distribution can indeed act as a regularizer leading to better generalization performance.

Next, we plot histograms of the negative log-likelihoods of the correct context tokens \(x_t \) in the past decoded vector \(w_t \) computed using our best models on the PTB and WT2 validation sets in Fig.
Indeed, for both the datasets, the NLL values are significantly peaked near 0, which means that the past decoding operation is able to decode significant amount of information about the last token in the context.

To investigate the effect on PDR due to changing hyperparameters, we pick 60 sets of random hyperparameters in the vicinity of those reported by Merity et al. (2018a) and compute the validation set perplexity after training (without finetuning) on PTB, for both AWD-LSTM+PDR and AWD-LSTM. Their histograms are plotted in Fig. 1(b). The perplexities for models with PDR are distributed slightly to the left of those without PDR. There appears to be more instances of perplexities in the higher range for models without PDR. Note that there are certainly hyperparameter settings where adding PDR leads to lower validation complexity, as is generally the case for any regularization method.

6.2 Comparison with AWD-LSTM

To show the qualitative difference between AWD-LSTM+PDR and AWD-LSTM, we compare their respective best models. In Fig. 2(a), we plot a histogram of the entropy of the predicted next token distribution w_{t+1} for all the tokens in the validation set of PTB. The distributions for the two models is slightly different, with some identifiable patterns. The use of PDR has the effect of reducing the
Table 7: Ablation experiments on the PTB and WT2 validation sets.

Model	PTB Valid	Test	WT2 Valid	Test
AWD-LSTM+PDR	57.9	55.6	66.5	63.5
– finetune	60.4	58.0	68.5	65.6
– LSTM output dropout	67.6	65.4	75.4	72.1
– LSTM layer dropout	68.1	65.8	73.7	70.4
– embedding dropout	63.9	61.4	77.1	73.6
– word dropout	62.9	60.5	70.4	67.4
– LSTM weight dropout	68.4	65.8	79.0	75.5
– alpha/beta regularization	63.0	60.4	74.0	70.7
– weight decay	64.7	61.4	72.5	68.9
– past decoding regularization (PDR)	60.5	57.7	69.5	66.4

entropy of the predicted distribution when it is in the higher range of 8 and above, pushing it into the range of 5-8. This shows that one way PDR biases the language model is by reducing the entropy of the predicted next token distribution. Indeed, one way to reduce the cross-entropy between x_t and w_{t+1} is by making w_{t+1} less spread out in Eq.(5). This tends to benefits the language model when the predictions are correct.

We also compare the training curves for the two models in Fig.2(b) on PTB. Although the two models use slightly different hyperparameters, the regularization effect of PDR is apparent with a lower validation perplexity but higher training perplexity. The corresponding trends shown in Fig.2 for WT2 have similar characteristics.

6.3 ABLATION STUDIES

We perform a set of ablation experiments on the best AWD-LSTM+PDR models for PTB and WT2 to understand the relative contribution of PDR and the other regularizations used in the model. The results are shown in Table 7. In both cases, PDR has a significant effect in decreasing the validation set performance, albeit lesser than the other forms of regularization. This is not surprising as PDR does not influence the LSTM directly.

7 RELATED WORK

Our method builds on the work of using sophisticated regularization techniques to train LSTMs for language modeling. In particular, the AWD-LSTM model achieves state-of-the-art performance on the four datasets considered in this paper [Merity et al. (2018a,b)]. The work of [Melis et al. (2018)] also achieves similar results with highly regularized LSTMs. While most of the regularization techniques are applied directly to the LSTM, we use the predicted next token distribution. The symmetry in the inputs and outputs of a language model is also exploited in weight tying [Inan et al. (2016); Press & Wolf (2017)] when the token embedding dimension and LSTM output dimension are equal. Our method can be used with untied weights as well. Regularizing the training of an LSTM by combining the main objective function with auxiliary tasks has been successfully applied to several tasks in NLP (Radford et al. (2018); Rei (2017)). In fact, a popular choice for the auxiliary task is language modeling itself. This in turn is related to multi-task learning (Collobert & Weston (2008)).

Specialized architectures like Recurrent Highway Networks (Zilly et al. (2017)) and NAS (Zoph & Le (2016)) have been successfully used to achieve competitive performance in language modeling. The former one makes the hidden-to-hidden transition function more complex allowing for more refined information flow. Such architectures are especially important for character level language modeling where strong results have been shown using Fast-Slow RNNs [Mujika et al. (2017)], a two level architecture where the slowly changing recurrent network tries to capture more long range dependencies. The use of historical information can greatly help language models deal with long range dependencies as shown by (Merity et al. (2016); Krause et al. (2018)). Finally, the
recent work of (Yang et al. (2017)) uses multiple Softmax functions to address the low rank problem of the decoding layer matrices.

REFERENCES

Junyoung Chung, Sungjin Ahn, and Yoshua Bengio. Hierarchical multiscale recurrent neural networks. CoRR, abs/1609.01704, 2016.

Ronan Collobert and Jason Weston. A unified architecture for natural language processing: deep neural networks with multitask learning. In ICML, 2008.

Yarin Gal and Zoubin Ghahramani. A theoretically grounded application of dropout in recurrent neural networks. In NIPS, 2016.

Edouard Grave, Armand Joulin, and Nicolas Usunier. Improving neural language models with a continuous cache. CoRR, abs/1612.04426, 2016.

David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks. CoRR, abs/1609.09106, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780, 1997. URL https://doi.org/10.1162/neco.1997.9.8.1735

M. Hutter. The human knowledge compression contest. 2018. URL http://prize.hutter1.net

Hakan Inan, Khashayar Khosravi, and Richard Socher. Tying word vectors and word classifiers: A loss framework for language modeling. CoRR, abs/1611.01462, 2016.

Yoon Kim, Yacine Jernite, David A Sontag, and Alexander M. Rush. Character-aware neural language models. In AAAI, 2016.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015. URL http://arxiv.org/abs/1412.6980

Ben Krause, Emmanuel Kahembwe, Iain Murray, and Steve Renals. Dynamic evaluation of neural sequence models. In ICML, 2018. URL http://proceedings.mlr.press/v80/krause18a.html

David Krueger, Tegan Maharaj, János Kramár, Mohammad Pezeshki, Nicolas Ballas, Nan Rosemary Ke, Anirudh Goyal, Yoshua Bengio, Hugo Larochelle, Aaron C. Courville, and Christopher Joseph Pal. Zoneout: Regularizing rnns by randomly preserving hidden activations. CoRR, abs/1606.01305, 2016.

Gábor Melis, Chris Dyer, and Phil Blunsom. On the state of the art of evaluation in neural language models. In ICLR, 2018. URL http://arxiv.org/abs/1707.05589

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture models. CoRR, abs/1609.07843, 2016.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing LSTM language models. In ICLR, 2018a. URL http://arxiv.org/abs/1708.02182

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. An analysis of neural language modeling at multiple scales. CoRR, abs/1803.08240, 2018b.

Tomas Mikolov, Martin Karafiát, Lukás Burget, Jan Cernocký, and Sanjeev Khudanpur. Recurrent neural network based language model. In INTERSPEECH, 2010.

Asier Mujika, Florian Meier, and Angelika Steger. Fast-slow recurrent neural networks. In NIPS, 2017.

Ofir Press and Lior Wolf. Using the output embedding to improve language models. In EACL, 2017.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language understanding by generative pre-training. 2018.
Marek Rei. Semi-supervised multitask learning for sequence labeling. In *ACL*, 2017.

Kamil Rocki, Tomasz Kornuta, and Tegan Maharaj. Surprisal-driven zoneout. *CoRR*, abs/1610.07675, 2016.

Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting. *Journal of Machine Learning Research*, 15:1929–1958, 2014.

Li Wan, Matthew D. Zeiler, Sixin Zhang, Yann LeCun, and Rob Fergus. Regularization of neural networks using dropconnect. In *ICML*, 2013.

Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and William W. Cohen. Breaking the softmax bottleneck: A high-rank rnn language model. *CoRR*, abs/1711.03953, 2017.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network regularization. *CoRR*, abs/1409.2329, 2014.

Julian G. Zilly, Rupesh Kumar Srivastava, Jan Koutník, and Jürgen Schmidhuber. Recurrent highway networks. In *ICML*, 2017.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. *CoRR*, abs/1611.01578, 2016.