A half-discrete Hardy-Hilbert-type inequality related to hyperbolic secant function

Bicheng Yang1* and Qiang Chen2

Abstract
By applying weight functions and technique of real analysis, a half-discrete Hardy-Hilbert-type inequality related to the kernel of hyperbolic secant function and a best possible constant factor are given. The equivalent forms, the operator expressions with the norm, the reverses, and some particular cases are also considered.

MSC: 26D15; 47A07; 37A10

Keywords: Hardy-Hilbert-type inequality; weight function; equivalent form; reverse; operator

1 Introduction
If $p > 1$, $\frac{1}{p} + \frac{1}{q} = 1$, $f(x), g(y) \geq 0$, $f \in L^p(\mathbb{R}_+)$, $g \in L^q(\mathbb{R}_+)$, \(\|f\|_p = \left(\int_0^\infty f^p(x) \, dx \right)^{\frac{1}{p}} > 0 \), and \(\|g\|_q > 0 \), then we have the following Hardy-Hilbert integral inequality [1]:

$$\int_0^\infty \int_0^\infty \frac{f(x)g(y)}{x + y} \, dx \, dy < \frac{\pi}{\sin(\pi/p)} \|f\|_p \|g\|_q,$$

(1)

where, the constant factor $\frac{\pi}{\sin(\pi/p)}$ is the best possible. If $a_m, b_n \geq 0$, $a = \{a_m\}_{m=1}^\infty \in l^p$, $b = \{b_n\}_{n=1}^\infty \in l^q$, \(\|a\|_p = \left(\sum_{m=1}^\infty a_m^p \right)^{\frac{1}{p}} > 0 \), and \(\|b\|_q > 0 \), then we have the following Hardy-Hilbert’s inequality with the same best constant $\frac{\pi}{\sin(\pi/p)}$ [1]:

$$\sum_{m=1}^\infty \sum_{n=1}^\infty a_m b_n \frac{m + n}{m + n} < \frac{\pi}{\sin(\pi/p)} \|a\|_p \|b\|_q.$$

(2)

Inequalities (1) and (2) are important in analysis and its applications (see [1–5]).

Suppose that $\mu_i, \nu_j > 0 (i, j \in \mathbb{N} = \{1, 2, \ldots\})$,

$$U_m := \sum_{i=1}^m \mu_i, \quad V_n := \sum_{j=1}^n \nu_j \quad (m, n \in \mathbb{N}).$$

(3)
Then we have the following inequality ([1], Theorem 321):

$$
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \mu_m^{1/q} \nu_n^{1/p} a_m b_n \frac{1}{U_m + V_n} < \frac{\pi}{\sin(\pi/p)} \|a\|_p \|b\|_q.
$$

Replacing $\mu_m^{1/q} a_m$ and $\nu_n^{1/p} b_n$ by a_m and b_n in (4), respectively, we obtain an equivalent form of (4):

$$
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{a_m b_n}{U_m + V_n} < \frac{\pi}{\sin(\pi/p)} \left(\sum_{m=1}^{\infty} \frac{a_m^p}{\nu_m^{p-1}} \right)^{1/p} \left(\sum_{n=1}^{\infty} b_n^{q} \right)^{1/q}.
$$

For $\mu_i = \nu_j = 1$ $(i,j \in \mathbb{N})$, both (4) and (5) reduce to (2). We call (4) and (5) Hardy-Hilbert-type inequalities.

Note The authors of [1] did not prove that (4) is valid with the best possible constant factor.

In 1998, by introducing an independent parameter $\lambda \in (0,1]$ Yang [6] gave an extension of (1) with the kernel $\frac{1}{(xy)^p}$ for $p = q = 2$. Later, Yang [5] refined [6] by giving extensions of (1) and (2) as follows.

Assuming that $\lambda_1, \lambda_2 \in \mathbb{R}$, $\lambda_1 + \lambda_2 = \lambda$, $k_3(x,y)$ is a nonnegative homogeneous function of degree $-\lambda$ with $k(\lambda) = \int_0^\infty k_3(x,t) t^{\lambda-1} \, dt \in \mathbb{R}_+$, $\phi(x) = x^{p(1-\lambda_1)}$, $\psi(x) = x^{q(1-\lambda_2)-1}$, $f(x), g(y) \geq 0$,

$$
f \in L_{p,\phi}(\mathbb{R}_+), \|f\|_{p,\phi} := \left\{ \int_0^\infty \phi(x) |f(x)|^p \, dx \right\}^{1/p} < \infty,
$$

$$
g \in L_{q,\psi}(\mathbb{R}_+), \|f\|_{p,\phi}, \|g\|_{q,\psi} > 0, \text{ we have}
$$

$$
\int_0^\infty \int_0^\infty k_3(x,y) f(x) g(y) \, dx \, dy < k(\lambda_1) \|f\|_{p,\phi} \|g\|_{q,\psi},
$$

where the constant factor $k(\lambda_1)$ is the best possible. Moreover, if $k_3(x,y)$ keeps finite and $k_3(x,y) x^{\lambda_1-1} (k_3(x,y) y^{\lambda_2-1})$ is decreasing with respect to $x > 0$ ($y > 0$), then for $a_m, b_n \geq 0$,

$$
a \in L_{p,\phi} = \left\{ a; \|a\|_{p,\phi} := \left(\sum_{n=1}^{\infty} \phi(n) |a_n|^p \right)^{1/p} < \infty \right\},
$$

$$
b = \{b_n\}_{n=1}^{\infty} \in L_{q,\psi}, \|a\|_{p,\phi}, \|b\|_{q,\psi} > 0, \text{ we have}
$$

$$
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} k_3(m,n) a_m b_n < k(\lambda_1) \|a\|_{p,\phi} \|b\|_{q,\psi},
$$

where the constant factor $k(\lambda_1)$ is still the best possible.

For $0 < \lambda_1, \lambda_2 \leq 1$ such that $\lambda_1 + \lambda_2 = \lambda$, we set

$$
k_3(x,y) = \frac{1}{(x+y)^\lambda} \quad ((x,y) \in \mathbb{R}_+^2).
Then by (7) we have

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{a_m b_n}{(m+n)^\lambda} < B(\lambda_1, \lambda_2) \|a\|_{p,\phi} \|b\|_{q,\psi},$$

(8)

where the constant $B(\lambda_1, \lambda_2)$ is the best possible, and

$$B(u, v) = \int_0^\infty \frac{1}{(1 + t)^{uv}} t^{u-1} \, dt \quad (u, v > 0)$$

is the beta function. Clearly, for $\lambda = 1$, $\lambda_1 = \frac{1}{q}$, $\lambda_2 = \frac{1}{p}$, inequality (8) reduces to (2).

In 2015, by adding some conditions, Yang [7] gave an extension of (8) and (5) as follows:

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{a_m b_n}{(U_m + V_n)^\lambda} < B(\lambda_1, \lambda_2) \left(\sum_{m=1}^{\infty} \frac{\mu_m^{p(1-\lambda_1)-1}}{\mu_m^p} \right)^\frac{1}{p} \left(\sum_{n=1}^{\infty} \frac{\nu_n^{q(1-\lambda_2)-1}}{\nu_n^q} \right)^\frac{1}{q},$$

(9)

where the constant $B(\lambda_1, \lambda_2)$ is still the best possible.

Some other results including multidimensional Hilbert-type inequalities are provided by [8–25].

About the topic of half-discrete Hilbert-type inequalities with inhomogeneous kernels, Hardy et al. provided a few results in Theorem 351 of [1], but they did not prove that the constant factors are the best possible. However, Yang [26] gave a result with the kernel $\frac{1}{(x + n)^\lambda}$ by introducing a variable and proved that the constant factor is the best possible. In 2011, Yang [27] gave the following half-discrete Hardy-Hilbert’s inequality with the best possible constant factor $B(\lambda_1, \lambda_2)$:

$$\int_0^\infty f(x) \left[\sum_{n=1}^{\infty} \frac{a_n}{(x+n)^\lambda} \right] dx < B(\lambda_1, \lambda_2) \|f\|_{p,\phi} \|a\|_{q,\psi},$$

(10)

where, $\lambda_1 > 0$, $0 < \lambda_2 \leq 1$, $\lambda_1 + \lambda_2 = \lambda$. Zhong and Yang [17, 28–33] investigated several half-discrete Hilbert-type inequalities with particular kernels. Applying weight functions, a half-discrete Hilbert-type inequality with a general homogeneous kernel of degree $-\lambda \in \mathbb{R}$ with the best constant factor $k(\lambda_1)$ is obtained as follows:

$$\int_0^\infty f(x) \sum_{n=1}^{\infty} k(x, n)a_n \, dx < k(\lambda_1) \|f\|_{p,\phi} \|a\|_{q,\psi},$$

(11)

which is an extension of (10) (cf. [34]). At the same time, a half-discrete Hilbert-type inequality with a general inhomogeneous kernel and the best constant factor is given by Yang [35]. In 2012-2014, Yang et al. published three books [36, 37] and [38] for building the theory of half-discrete Hilbert-type inequalities.

In this paper, by applying weight coefficients and technique of real analysis, a half-discrete Hardy-Hilbert-type inequality related to the kernel of hyperbolic secant function and the best possible constant factor is given, which is an extension of (11) for $\lambda = 0$ and a particular kernel. The equivalent forms, the operator expressions with the norm, the reverses, and some particular cases are also considered.
2 Some lemmas

In the following, we make appointment that $\mu_i, \nu_j > 0$ $(i, j \in \mathbb{N})$, U_m and V_n are defined by (3), $\mu(t)$ is a positive continuous function in $\mathbb{R} = (0, \infty)$,

$$U(x) := \int_0^x \mu(t) \, dt < \infty \quad (x \in [0, \infty)),$$

$$v(t) := v_n, \; t \in (n - 1, n] \; (n \in \mathbb{N}),$$

and

$$V(y) := \int_0^y v(t) \, dt \quad (y \in [0, \infty)).$$

$p \neq 0, 1, \frac{1}{p} + \frac{1}{q} = 1, \; \delta \in [-1, 1], f(x), a_n \geq 0 \; (x \in \mathbb{R}, \; n \in \mathbb{N}),$

$$\|f\|_{p, \phi} := \left(\int_0^\infty \Phi_u(x) f^p(x) \, dx \right)^{\frac{1}{p}},$$

$$\|a\|_{q, \psi} = \left(\sum_{n=1}^{\infty} \Psi(n) b_n^q \right)^{\frac{1}{q}},$$

where

$$\Phi_u(x) := \frac{U^{p(1-\sigma)-1}(x)}{\mu^{p-1}(x)}, \quad \Psi(n) := \frac{V_n^{q(1-\sigma)-1}}{V_n^{q-1}} \; (x \in \mathbb{R}, n \in \mathbb{N}).$$

Example 1 For $\rho, \gamma, \sigma > 0, \alpha > -\rho$, sec $h(u) = \frac{2}{e^{u} + e^{-u}}$ $(u > 0)$ is called the hyperbolic secant function (cf. [39]), we set $h(t) = \frac{\sec(h(r^\gamma))}{\alpha t^\gamma}$ $(t \in \mathbb{R})$.

(i) Setting $u = \rho t^\gamma$, we find

$$k(\sigma) := \int_0^\infty \frac{\sec h(\rho t^\gamma)}{e^{\rho t^\gamma}} t^{\sigma-1} \, dt$$

$$= \frac{1}{\gamma \rho^{\sigma/\gamma}} \int_0^\infty \frac{\sec h(u)}{e^{\frac{u}{\rho}}} u^{\sigma/\rho-1} \, du$$

$$= \frac{2}{\gamma \rho^{\sigma/\gamma}} \int_0^\infty \frac{e^{-u/\rho} u^{\sigma-1}}{e^{u} + e^{-u}} \, du$$

$$= \frac{2}{\gamma \rho^{\sigma/\gamma}} \int_0^\infty \frac{e^{-(u/\rho+1)u} u^{\sigma-1}}{1 + e^{-2u}} \, du$$

$$= \frac{2}{\gamma \rho^{\sigma/\gamma}} \sum_{k=0}^{\infty} (-1)^k e^{-(2k+\frac{\sigma}{\rho}+1)u} u^{\sigma-1} \, du$$

$$= \frac{2}{\gamma \rho^{\sigma/\gamma}} \sum_{k=0}^{\infty} \left[e^{-(4k+\frac{\sigma}{\rho}+1)u} - e^{-(4k+2+\frac{\sigma}{\rho})u} \right] u^{\sigma-1} \, du.$$

By the Lebesgue term-by-term theorem (see [39]), setting $v = (2k + \frac{\sigma}{\rho} + 1)u$, we have

$$k(\sigma) := \int_0^\infty \frac{\sec h(\rho t^\gamma)}{e^{\rho t^\gamma}} t^{\sigma-1} \, dt$$

$$= \frac{2}{\gamma \rho^{\sigma/\gamma}} \sum_{k=0}^{\infty} \int_0^\infty \left[e^{-(4k+\frac{\sigma}{\rho}+1)u} - e^{-(4k+2+\frac{\sigma}{\rho})u} \right] u^{\sigma-1} \, du$$

$$= \frac{2}{\gamma \rho^{\sigma/\gamma}} \sum_{k=0}^{\infty} (-1)^k \int_0^\infty e^{-(2k+\frac{\sigma}{\rho}+1)u} u^{\sigma-1} \, du$$

$$= \frac{2}{\gamma \rho^{\sigma/\gamma}} \sum_{k=0}^{\infty} (-1)^k \int_0^\infty e^{-v} v^{\sigma-1} \, dv.$$
\begin{align*}
&= \frac{2\Gamma\left(\frac{2}{\gamma}\right)}{\gamma(2\rho)^{\sigma/\gamma}} \sum_{k=0}^{\infty} \frac{(-1)^k}{(k + \frac{2\rho}{\gamma})^{\sigma/\gamma}} \\
&= \frac{2\Gamma\left(\frac{2}{\gamma}\right)}{\gamma(2\rho)^{\sigma/\gamma}} \xi\left(\frac{\alpha + \rho}{\gamma}, \frac{2\rho}{\gamma}\right) \in \mathbb{R},
\end{align*}

where \(\xi(s,a) := \sum_{k=0}^{\infty} \frac{(-1)^k}{(k + a)^s} \) \((s,a > 0)\) and

\[\Gamma(y) := \int_{0}^{\infty} e^{-y} y^{\rho-1} dy \quad (y > 0) \]

is the gamma function (see [40]).

In particular, for \(\alpha = \rho > 0 \) and \(\gamma = \sigma \), we have \(h(t) = \frac{\sec h(\rho t^\gamma)}{\rho t^\gamma} \) and \(k(\sigma) = \frac{\ln 2}{\alpha \rho} \) for \(\alpha = 0 \) and \(\gamma = \sigma \), we find \(h(t) = \sec h(\rho t^\gamma) \) and \(k(\sigma) = \frac{\pi}{\rho} \).

(ii) We have \(\frac{1}{e^{x} + e^{-x}} > 0 \) and \(\frac{1}{e^{x} + e^{-x}} \gamma = -\frac{e^{x} - e^{-x}}{(e^{x} + e^{-x})^2} < 0 \) for \(u > 0 \). If \(g(u) > 0 \) and \(g'(u) < 0 \), then for \(\gamma > 0 \), \(g(\rho t^\gamma) > 0 \), \(\frac{d}{dt}g(\rho t^\gamma) = \rho t^{\gamma-1}g'(\rho t^\gamma) < 0 \); for \(\gamma = 0 \), \(g(V(y)) > 0 \), \(\frac{d}{dy}g(V(y)) = g'(V(y))v_{\alpha} < 0 \) \((y \in (n-1, n))\).

If \(g_{i}(u) > 0 \) and \(g'_{i}(u) < 0 \) \((i = 1, 2)\), then we find for \(u > 0 \),

\[g_{1}(u)g_{2}(u) > 0, \quad (g_{1}(u)g_{2}(u))' = g'_{1}(u)g_{2}(u) + g_{1}(u)g'_{2}(u) < 0. \]

(iii) Therefore, for \(\rho, \gamma, \sigma > 0 \), \(\alpha > - \rho \) \((\alpha \geq 0)\), we have \(h(t) > 0 \) and \(h'(t) < 0 \) with \(k(\sigma) \in \mathbb{R}_{+} \), and then for \(c > 0 \) and \(n \in \mathbb{N} \), adding \(\sigma \leq 1 \), we have

\[h(cV(y))V^{\sigma-1}(y) > 0, \quad \frac{d}{dy}h(cV(y))V^{\sigma-1}(y) < 0 \quad (y \in (n-1, n)). \]

Lemma 1 If \(g(t) (> 0) \) is decreasing in \(\mathbb{R} \), and strictly decreasing in \([n_{0}, \infty) \) \((n_{0} \in \mathbb{N})\) and satisfies \(\int_{1}^{\infty} g(t) dt \in \mathbb{R}_{+} \), then we have

\[\int_{1}^{\infty} g(t) dt < \sum_{n=1}^{\infty} g(n) < \int_{0}^{\infty} g(t) dt. \]

Proof Since we have

\[\int_{1}^{\infty} g(t) dt \leq g(n) \leq \int_{n-1}^{n} g(t) dt \quad (n = 1, \ldots, n_{0}), \]

\[\int_{n_{0}+1}^{\infty} g(t) dt < g(n_{0} + 1) < \int_{n_{0}}^{\infty} g(t) dt, \]

it follows that

\[0 < \int_{1}^{n_{0}+2} g(t) dt < \sum_{n=1}^{n_{0}+1} g(n) < \sum_{n=1}^{n_{0}+1} \int_{n-1}^{n} g(t) dt = \int_{1}^{n_{0}+1} g(t) dt < \infty. \]

In the same way, we still have

\[0 < \int_{n_{0}+2}^{\infty} g(t) dt \leq \sum_{n=n_{0}+2}^{\infty} g(n) \leq \int_{n_{0}+1}^{\infty} g(t) dt < \infty. \]

Hence, adding these two inequalities, we have (13). \(\square \)
Lemma 2. For $\gamma > 0$, $\alpha > -\rho$ ($\alpha \geq 0$), and $0 < \sigma \leq 1$, define the following weight coefficients:

$$
\omega_2(\sigma, x) := \sum_{n=1}^{\infty} \frac{\sec h(\rho(U^\delta(x)V_n)^{\nu})}{e^{\rho(U^\delta(x)V_n)}} \frac{U^{1-\sigma}(x)}{V_n^{1-\sigma}}, \quad x \in \mathbb{R}_+,
$$

(14)

$$
\sigma_3(\sigma, n) := \int_0^{\infty} \frac{\sec h(\rho(U^\delta(x)V_n)^{\nu})}{e^{\rho(U^\delta(x)V_n)}} \frac{V_n^{\sigma} \mu(x)}{U^{1-\sigma}(x)} \, dx, \quad n \in \mathbb{N}.
$$

(15)

Then, we have the following inequalities:

$$
\omega_2(\sigma, x) < k(\sigma) \quad (x \in \mathbb{R}_+),
$$

(16)

$$
\sigma_3(\sigma, n) \leq k(\sigma) \quad (n \in \mathbb{N}),
$$

(17)

where $k(\sigma)$ is defined in (12).

Proof. Since $V_n = V(n)$ and $V'(t) = v_n$ for $t \in (n - 1, n)$, by Example 1(iii) and the proof of Lemma 1 we have

$$
\sec h(\rho(U^\delta(x)V_n)^{\nu})v_n
= \frac{\sec h(\rho(U^\delta(x)V(n))^{\nu})}{e^{\rho(U^\delta(x)V(n))^{\nu}}} \frac{V'(t)}{V^{1-\sigma}(t)} \, dt \quad (n \in \mathbb{N}),
$$

$$
\omega_2(\sigma, x) < \sum_{n=1}^{\infty} \int_{n-1}^{n} \frac{\sec h(\rho(U^\delta(x)V(t))^{\nu})}{e^{\rho(U^\delta(x)V(t))^{\nu}}} \frac{U^{1-\sigma}(x)V'(t)}{V^{1-\sigma}(t)} \, dt
= \int_0^{\infty} \frac{\sec h(\rho(U^\delta(x)V(t))^{\nu})}{e^{\rho(U^\delta(x)V(t))^{\nu}}} \frac{U^{1-\sigma}(x)V'(t)}{V^{1-\sigma}(t)} \, dt.
$$

Setting $u = U^\delta(x)V(t)$, by (12) we find

$$
\omega_2(\sigma, x) < \int_{0}^{U^\delta(x)V(\infty)} \frac{\sec h(\rho u^\nu)}{e^{\rho u^\nu}} \frac{U^{1-\sigma}(x)}{(uU^{1-\sigma}(x))^{1-\sigma}} \, du
\leq \int_{0}^{\infty} \frac{\sec h(\rho u^\nu)}{e^{\rho u^\nu}} u^{\sigma-1} \, du
= k(\sigma).
$$

Hence, (16) follows.

Setting $u = V_nU^\delta(x)$ in (15), we find $du = \delta V_nU^{k-1}(x)\mu(x) \, dx$ and

$$
\sigma_3(\sigma, n) = \frac{1}{\delta} \int_{V_nU^\delta(0)}^{V_nU^\delta(\infty)} \frac{\sec h(\rho u^\nu)}{e^{\rho u^\nu}} \frac{V_n^{\sigma} \mu(x)}{(V_n^{1-\sigma}(u))^{1-\sigma}} \, du
= \frac{1}{\delta} \int_{V_nU^\delta(0)}^{V_nU^\delta(\infty)} \frac{\sec h(\rho u^\nu)}{e^{\rho u^\nu}} u^{\sigma-1} \, du.
$$
If $\delta = 1$, then
\[
\sigma_1(\sigma, n) = \int_{0}^{V_n U(\infty)} \frac{\text{sec}(\rho u^\gamma)}{e^{\alpha u^\gamma}} u^{\alpha - 1} du \leq \int_{0}^{\infty} \frac{\text{sec}(\rho u^\gamma)}{e^{\alpha u^\gamma}} u^{\alpha - 1} du;
\]
if $\delta = -1$, then
\[
\sigma_{-1}(\sigma, n) = -\int_{\infty}^{V_n U^{-1}(\infty)} \frac{\text{sec}(\rho u^\gamma)}{e^{\alpha u^\gamma}} u^{\alpha - 1} du \leq \int_{0}^{\infty} \frac{\text{sec}(\rho u^\gamma)}{e^{\alpha u^\gamma}} u^{\alpha - 1} du.
\]
Then by (12) we have (17).

Remark 1 We do not need $\sigma \leq 1$ to obtain (17). If $U(\infty) = \infty$, then we have
\[
\sigma_b(\sigma, n) = k(\sigma) \quad (n \in \mathbb{N}).
\] (18)

For example, set $\mu(t) = \frac{1}{(1+t)^\beta} \quad (t > 0; 0 \leq \beta \leq 1)$. Then, for $x \geq 0$, we find
\[
U(x) = \int_{0}^{x} \frac{dt}{(1+t)^\beta} = \begin{cases}
\frac{(1+x)^{1-\beta}-1}{1-\beta}, & 0 \leq \beta < 1, \quad < \infty, \\
\ln(1+x), & \beta = 1
\end{cases}
\]
and $U(\infty) = \int_{0}^{\infty} \frac{dt}{(1+t)^\beta} = \infty$.

Lemma 3 If $\gamma, \rho > 0, \alpha > -\rho \quad (0 \leq \sigma \leq 1), \quad \nu_0 \in \mathbb{N}$ such that $v_n \geq v_{n+1} \quad (n \in \{n_0, n_0 + 1, \ldots\})$, and $V(\infty) = \infty$. Moreover, then
(i) for $x \in \mathbb{R}$, we have
\[
k(\sigma)(1 - \theta_b(\sigma, x)) < \omega_b(\sigma, x),
\] (19)
where $\theta_b(\sigma, x) = O((U(x))^{b\rho}) \in (0, 1)$;
(ii) for any $b > 0$, we have
\[
\sum_{n=1}^{\infty} \frac{V_n}{V_{n+b}} = \frac{1}{b} \left(\frac{1}{V_{n_0}} + bO(1) \right).
\] (20)

Proof By Example 1(iii) we have
\[
\omega_b(\sigma, x) = \sum_{n=1}^{\infty} \frac{\text{sec}(\rho(U^{b}(x)V_n)^{\gamma})}{e^{\alpha(U^{b}(x)V_n)^{\gamma}}} \frac{U^{b\sigma}(x)v_n}{V_n^{1-\sigma}}
\]
\[
\geq \sum_{n=n_0}^{\infty} \int_{n}^{n+1} \frac{\text{sec}(\rho(U^{b}(x)V(n))^{\gamma})}{e^{\alpha(U^{b}(x)V(n))^{\gamma}}} \frac{U^{b\sigma}(x)v_{n+1}}{(V(n))^{1-\sigma}} dt
\]
\[
\times \sum_{n=n_0}^{\infty} \int_{n}^{n+1} \frac{\text{sec}(\rho(U^{b}(x)V(t))^{\gamma})}{e^{\alpha(U^{b}(x)V(t))^{\gamma}}} \frac{U^{b\sigma}(x)V(t)}{(V(t))^{1-\sigma}} dt
\]
\[
= \int_{n_0}^{\infty} \frac{\text{sec}(\rho(U^{b}(x)V(t))^{\gamma})}{e^{\alpha(U^{b}(x)V(t))^{\gamma}}} \frac{U^{b\sigma}(x)V(t)}{(V(t))^{1-\sigma}} dt.
\]
Setting $u = \Omega^p(x)V(t)$, in view of $V(\infty) = \infty$, by (12) we find

\[
\omega_d(\sigma, x) > \int_{\Omega^p(x)V_{n_0}}^\infty \frac{\sec h\left(\frac{\sigma u^\sigma}{e^{a u^\sigma}}\right)}{e^{a u^\sigma}} du
\]

\[
= k(\sigma) - \int_{0}^{\Omega^p(x)V_{n_0}} \frac{\sec h\left(\frac{\sigma u^\sigma}{e^{a u^\sigma}}\right)}{e^{a u^\sigma}} u^{\sigma - 1} du = k(\sigma)(1 - \theta_{\delta}(\sigma, x)),
\]

\[
\theta_{\delta}(\sigma, x) := \frac{1}{k(\sigma)} \int_{0}^{\Omega^p(x)V_{n_0}} \frac{\sec h\left(\frac{\sigma u^\sigma}{e^{a u^\sigma}}\right)}{e^{a u^\sigma}} u^{\sigma - 1} du \in (0, 1).
\]

Since $F(u) = \frac{\sec h\left(\frac{\sigma u^\sigma}{e^{a u^\sigma}}\right)}{e^{a u^\sigma}}$ is continuous in $(0, \infty)$ and satisfies $F(u) \to 1$ ($u \to 0^+$), $F(u) \to 0$ ($u \to \infty$), there exists a constant $L > 0$ such that $F(u) \leq L$, namely, $\frac{\sec h\left(\frac{\sigma u^\sigma}{e^{a u^\sigma}}\right)}{e^{a u^\sigma}} \leq L$ ($u \in (0, \infty)$). Hence, we find

\[
0 < \theta_{\delta}(\sigma, x) \leq \frac{L}{k(\sigma)} \int_{0}^{\Omega^p(x)V_{n_0}} u^{\sigma - 1} du = \frac{L(\Omega^p(x)V_{n_0})^\sigma}{k(\sigma)\sigma},
\]

and then (19) follows.

For $b > 0$, we find

\[
\sum_{n=1}^{\infty} \frac{v_{n+b}}{V_{n+b}} = \sum_{n=1}^{n_0} \frac{v_{n+b}}{V_{n+b}} + \sum_{n=n_0+1}^{\infty} \frac{v_{n}}{V_{n+b}(n)} < \sum_{n=1}^{n_0} \frac{v_{n+b}}{V_{n+b}} + \sum_{n=n_0+1}^{\infty} \int_{n-1}^{n} V'(x) \frac{dV(x)}{V_{n+b}(x)}
\]

\[
= \sum_{n=1}^{n_0} \frac{v_{n+b}}{V_{n+b}} + \int_{n_0}^{\infty} \frac{dV(x)}{V_{n+b}(x)} = \sum_{n=1}^{n_0} \frac{v_{n}}{V_{n+b}} + \frac{1}{b V_{n_0}}
\]

\[
= \frac{1}{b} \left(\sum_{n=1}^{n_0} \frac{v_{n}}{V_{n+b}} \right).
\]

\[
\sum_{n=1}^{\infty} \frac{v_{n+b}}{V_{n+b}} \geq \sum_{n=n_0}^{\infty} \int_{n}^{n+1} \frac{v_{n+1}}{V_{n+b}(n)} dx > \sum_{n=n_0}^{\infty} \int_{n}^{n+1} \frac{V'(x)}{V_{n+b}(x)} dx
\]

\[
= \int_{n_0}^{\infty} \frac{dV(x)}{V_{n_0+b}(x)} = \frac{1}{b V_{n_0+b}^b}.
\]

Hence, we have (20).

\[\square\]

Note For example, $v_n = \frac{1}{n^\beta}$ ($n \in \mathbb{N}; 0 \leq \beta \leq 1$) satisfies the conditions of Lemma 3 (for $n_0 = 1$).

3 Main results and operator expressions

Theorem 1 If $\gamma, \rho > 0$, $\alpha > -\rho$ ($\alpha \geq 0$), $0 < \sigma \leq 1$, $k(\sigma)$ is defined in by (12), then for $p > 1$, $0 < \|f\|_{p, \Phi_1}, \|a\|_{q, \Psi} < \infty$, we have the following equivalent inequalities:

\[
I := \sum_{n=1}^{\infty} \int_{0}^{\infty} \frac{\sec h\left(\frac{\rho (U^p(x)V_{n})^\gamma}{e^{a (U^p(x)V_{n})^\rho}}\right)}{e^{a (U^p(x)V_{n})^\rho}} a_n f(x) dx < k(\sigma)\|f\|_{p, \Phi_1}\|a\|_{q, \Psi},
\]
By Hölder’s inequality with weight (see [41]), we have

\[J_1 := \sum_{n=1}^{\infty} \frac{v_n}{V_n^{1/\sigma}} \left[\int_0^{\infty} \frac{\sec h(\rho(U^1(x)V_n)^{\gamma})}{e^{\theta(U^1(x)V_n)^{\gamma}}} f(x) \, dx \right]^p \]

\[< k(\sigma) \| f \|_{p, \psi}, \quad (22) \]

\[J_2 := \left\{ \int_0^{\infty} \frac{\mu(x)}{U^{1-\theta\sigma}(x)} \left[\sum_{n=1}^{\infty} \frac{\sec h(\rho(U^1(x)V_n)^{\gamma})}{e^{\theta(U^1(x)V_n)^{\gamma}}} a_n \right]^q \, dx \right\}^{1/q} \]

\[< k(\sigma) \| a \|_{q, \psi}. \quad (23) \]

Proof By Hölder’s inequality with weight (see [41]), we have

\[\left[\int_0^{\infty} \frac{\sec h(\rho(U^1(x)V_n)^{\gamma})}{e^{\theta(U^1(x)V_n)^{\gamma}}} f(x) \, dx \right]^p \]

\[= \left[\int_0^{\infty} \frac{\sec h(\rho(U^1(x)V_n)^{\gamma})}{e^{\theta(U^1(x)V_n)^{\gamma}}} \left(\frac{U^{1-\theta\sigma}(x)f(x)}{V_n^{1-\theta\sigma}(x)} \right) \mu^{\frac{1}{1-\theta\sigma}}(x) \, dx \right]^p \]

\[\leq \int_0^{\infty} \frac{\sec h(\rho(U^1(x)V_n)^{\gamma})}{e^{\theta(U^1(x)V_n)^{\gamma}}} \left(\frac{U^{1-\theta\sigma}(x)f(x)}{V_n^{1-\theta\sigma}(x)} \right) \mu^{\frac{1}{1-\theta\sigma}}(x) \, dx \]

\[\times \left[\int_0^{\infty} \frac{\sec h(\rho(U^1(x)V_n)^{\gamma})}{e^{\theta(U^1(x)V_n)^{\gamma}}} V_n^{1-\sigma} \mu^{\frac{1}{1-\sigma}}(x) \right] \rho^{\frac{1}{\sigma}}(x) \]

\[\left(\frac{U^{1-\theta\sigma}(x)f(x)}{V_n^{1-\theta\sigma}(x)} \right) \mu^{\frac{1}{1-\theta\sigma}}(x) \, dx. \quad (24) \]

In view of (17) and the Lebesgue term-by-term integration theorem (see [42]), we find

\[J_1 \leq (k(\sigma))^\frac{1}{\sigma} \left[\sum_{n=1}^{\infty} \int_0^{\infty} \frac{\sec h(\rho(U^1(x)V_n)^{\gamma})}{e^{\theta(U^1(x)V_n)^{\gamma}}} U^{1-\theta\sigma}(x)f(x) \, dx \right]^{\frac{1}{1-\sigma}} \]

\[= (k(\sigma))^\frac{1}{\sigma} \left[\int_0^{\infty} \sum_{n=1}^{\infty} \frac{\sec h(\rho(U^1(x)V_n)^{\gamma})}{e^{\theta(U^1(x)V_n)^{\gamma}}} U^{1-\theta\sigma}(x)V_n f(x) \, dx \right]^{\frac{1}{1-\sigma}} \]

\[= (k(\sigma))^\frac{1}{\sigma} \left[\int_0^{\infty} \omega_3(b, x) U^{1-\theta\sigma}(x) \frac{f(x)}{\mu^{\frac{1}{1-\sigma}}(x)} \right]^{\frac{1}{\sigma}} \quad (25) \]

Then by (16) we have (22).

By Hölder’s inequality (see [41]) we have

\[I = \sum_{n=1}^{\infty} \frac{v_n}{V_n^{1/\sigma}} \left[\int_0^{\infty} \frac{\sec h(\rho(U^1(x)V_n)^{\gamma})}{e^{\theta(U^1(x)V_n)^{\gamma}}} f(x) \, dx \right] \left(\frac{V_n^{1/\sigma} a_n}{v_n^{\frac{1}{\sigma}}} \right) \]

\[\leq J_1 \| a \|_{q, \psi}, \quad (26) \]

Then by (22) we have (21). On the other hand, assuming that (21) is valid, we set

\[a_n := \frac{v_n}{V_n^{1/\sigma}} \left[\int_0^{\infty} \frac{\sec h(\rho(U^1(x)V_n)^{\gamma})}{e^{\theta(U^1(x)V_n)^{\gamma}}} f(x) \, dx \right]^{p-1}, \quad n \in \mathbb{N}.\]
Then we find \(f_1^p = \|a\|_{q,p}^q \). If \(J_1 = 0 \), then (22) is trivially valid; if \(J_1 = \infty \), then (22) keeps impossible. Suppose that \(0 < J_1 < \infty \). By (21) we have

\[
\|a\|_{q,p}^q = f_1^p = I < k(\sigma)\|f\|_{p,\Phi_2} \|a\|_{q,p}, \quad \|a\|_{q,p}^{q-1} = J_1 < k(\sigma)\|f\|_{p,\Phi_2},
\]

and then (22) follows, which is equivalent to (21).

Again by Hölder’s inequality with weight we have

\[
\left[\sum_{n=1}^{\infty} \sec h(\rho(U^\delta(x)V_n)^r) \right]^q \leq \left[\sum_{n=1}^{\infty} \sec h(\rho(U^\delta(x)V_n)^r) \left(\frac{U^{1-\delta}(x)V_n^{1-\delta}}{V_n^{1-\delta}} \right) d_n \right]^q
\]

\[
= \left[\sum_{n=1}^{\infty} \sec h(\rho(U^\delta(x)V_n)^r) \frac{V_n^{1-\delta}}{U^{1-\delta}(x)V_n^{1-\delta}} d_n \right]^{q-1}
\]

\[
\times \sum_{n=1}^{\infty} \sec h(\rho(U^\delta(x)V_n)^r) \frac{V_n^{1-\delta}}{U^{1-\delta}(x)V_n^{1-\delta}} d_n
\]

\[
= \frac{(\omega_\delta(\sigma,x))^{q-1}}{U^{1-\delta}(x)\mu(x)} \sum_{n=1}^{\infty} \sec h(\rho(U^\delta(x)V_n)^r) \frac{V_n^{1-\delta}}{U^{1-\delta}(x)V_n^{1-\delta}} - d_n^q.
\]

Then by (16) and the Lebesgue term-by-term integration theorem it follows that

\[
J_2 < (k(\sigma))^{\frac{1}{q}} \left\{ \int_0^\infty \sum_{n=1}^{\infty} \sec h(\rho(U^\delta(x)V_n)^r) \frac{V_n^{1-\delta}}{U^{1-\delta}(x)V_n^{1-\delta}} \mu(x) dx \right\}^{\frac{1}{q}}
\]

\[
= (k(\sigma))^{\frac{1}{q}} \left\{ \sum_{n=1}^{\infty} \int_0^\infty \sec h(\rho(U^\delta(x)V_n)^r) \frac{V_n^{1-\delta}}{U^{1-\delta}(x)V_n^{1-\delta}} \mu(x) dx \right\}^{\frac{1}{q}}
\]

\[
= (k(\sigma))^{\frac{1}{q}} \left\{ \sum_{n=1}^{\infty} \sigma_\delta(\sigma,n) \frac{V_n^{q(1-\sigma)-1}}{q^{-1} - d_n^q} \right\}^{\frac{1}{q}}.
\]

Then by (17) we have (23).

By Hölder’s inequality we have

\[
I = \int_0^\infty \left(\frac{U^{1-\delta}(x)}{\mu(x)} f(x) \right) \left[\frac{\mu^{\frac{1}{q}}(x)}{U^{1-\delta}(x)} \sum_{n=1}^{\infty} \sec h(\rho(U^\delta(x)V_n)^r) d_n \right] dx
\]

\[
\leq \|f\|_{p,\Phi_2} J_2.
\]

Then by (23) we have (21). On the other hand, assuming that (23) is valid, we set

\[
f(x) := \frac{\mu(x)}{U^{1-q\delta}(x)} \left[\sum_{n=1}^{\infty} \sec h(\rho(U^\delta(x)V_n)^r) \frac{V_n^{1-\delta}}{U^{1-\delta}(x)V_n^{1-\delta}} d_n \right]^{q-1}, \quad x \in \mathbb{R}_+.
\]
Then we find $f^2 = \|f\|_{p,\Phi(J)}^p$. If $f_2 = 0$, then (23) is trivially valid; if $f_2 = \infty$, then (23) keeps impossible. Suppose that $0 < f_2 < \infty$. By (21) we have

$$\|f\|_{p,\Phi(J)}^p = f_2^p = I < k(\sigma) \|f\|_{p,\Phi(J)} \|a\|_{q,\Psi}, \quad \|f\|_{p,\Phi(J)}^{p-1} = f_2 < k(\sigma) \|a\|_{q,\Psi},$$

and then (23) follows, which is equivalent to (21).

Therefore, (21), (22), and (23) are equivalent.

\[\square\]

Theorem 2 With the assumptions of Theorem 1, if there exists $n_0 \in \mathbb{N}$ such that $v_n \geq v_{n+1}$ ($n \in \{n_0, n_0 + 1, \ldots\}$) and $U(\infty) = V(\infty) = \infty$, then the constant factor $k(\sigma)$ in (21), (22), and (23) is the best possible.

Proof For $\varepsilon \in (0, q\sigma)$, we set $\bar{\sigma} = \sigma - \frac{\varepsilon}{q}$ and $\tilde{f} = \tilde{f}(x), x \in \mathbb{R}, \tilde{a} = [\tilde{a}_n]_{n=1}^\infty$,

$$\tilde{f}(x) = \begin{cases} U^{\sigma - 1}(x) \mu(x), & 0 < x^\frac{1}{\sigma} \leq 1, \\ 0, & x^\frac{1}{\sigma} > 0, \end{cases}$$

$$\tilde{a}_n = V_n^{\sigma - 1} v_n = V_n^{\sigma - \frac{\varepsilon}{q} - 1} v_n, \quad n \in \mathbb{N}. \quad (31)$$

Then for $\delta = \pm 1$, since $U(\infty) = \infty$, we find

$$\int_{\{x: 0 < x^\delta \leq 1\}} \frac{\mu(x)}{U^{1 - \delta}(x)} \, dx = \frac{1}{\varepsilon} U^{-\delta}(1). \quad (32)$$

By (20), (32), and (19) we obtain

$$\|\tilde{f}\|_{p,\Phi(J)} \|\tilde{a}\|_{q,\Psi} = \left(\int_{\{x: 0 < x^\delta \leq 1\}} \frac{\mu(x) \, dx}{U^{1 - \delta}(x)} \right) \left(\sum_{n=1}^{\infty} \frac{v_n}{V_n^{\sigma}} \right)^{\frac{1}{q}} \quad \|\tilde{f}\|_{p,\Phi(J)}^{\frac{p}{q}} = \frac{1}{\varepsilon} U^{-\delta}(1) \left(\frac{1}{v_{n_0}} + \varepsilon O(1) \right)^{\frac{1}{q}}, \quad (33)$$

$$\tilde{I} := \int_{\{x: 0 < x^\delta \leq 1\}} \sum_{n=1}^{\infty} \text{sec} \left(\rho \left(U^\delta(x) V_n^\gamma \right)^{-1} \right) \frac{\mu(x)}{U^{1 - \delta}(x)} U^{\delta (\sigma - \delta)}(x) \, dx$$

$$= \int_{\{x: 0 < x^\delta \leq 1\}} \sum_{n=1}^{\infty} \text{sec} \left(\rho \left(U^\delta(x) V_n^\gamma \right)^{-1} \right) \frac{\mu(x)}{U^{1 - \delta}(x)} (1 - O((U(x))^{\frac{\varepsilon}{q} - 1})) \, dx$$

$$= k(\tilde{\sigma}) \int_{\{x: 0 < x^\delta \leq 1\}} (1 - \theta_{\delta}(\tilde{\sigma}, x)) \frac{\mu(x)}{U^{1 - \delta}(x)} \, dx$$

$$= k(\tilde{\sigma}) \int_{\{x: 0 < x^\delta \leq 1\}} \left(1 - O\left(U(x)^{\frac{\varepsilon}{q} - 1} \right) \right) \frac{\mu(x)}{U^{1 - \delta}(x)} \, dx$$

$$= k(\tilde{\sigma}) \left[\int_{\{x: 0 < x^\delta \leq 1\}} \frac{\mu(x)}{U^{1 - \delta}(x)} \, dx - \int_{\{x: 0 < x^\delta \leq 1\}} O\left(\frac{\mu(x)}{U^{1 - \delta}(x)} \right) \, dx \right]$$

$$= \frac{1}{\varepsilon} k \left(\sigma - \frac{\varepsilon}{q} \right) U^{\delta}(1) - \varepsilon O(1).$$
If there exists a positive constant $K \leq k(\sigma)$ such that (21) is valid when replacing $k(\sigma)$ by K, then, in particular, by the Lebesgue term-by-term integration theorem we have $\epsilon \tilde{I} < \epsilon K \|f\|_{p,\Phi_2} \|\tilde{a}\|_{q,\Psi}$, namely,

$$k \left(\sigma - \frac{\epsilon}{q} \right) \left(U^{\epsilon_2} \left(1 - \epsilon O(1) \right) \right) < K \cdot U^{\Psi} \left(1 - \epsilon O(1) \right) \left(\frac{1}{V_{a_0}} + \epsilon O(1) \right)^{\frac{1}{q}}.$$

It follows that $k(\sigma) \leq K$ ($\epsilon \to 0^+)$). Hence, $K = k(\sigma)$ is the best possible constant factor of (21).

The constant factor $k(\sigma)$ in (22) ((23)) is still the best possible. Otherwise, we would reach a contradiction by (26) ((29)) that the constant factor in (21) is not the best possible. □

For $p > 1$, we find $\Psi^{1-p}(n) = \frac{\nu n}{\nu^2 + p^2}$ ($n \in \mathbb{N}$), $\Phi_\delta^{1-q}(x) = \frac{\mu(x)}{U^{1-q}(x)}$ ($x \in \mathbb{R}$) and define the following real normed spaces:

$$L_{p,\Phi_2}(\mathbb{R}) = \{ f : f = f(x), x \in \mathbb{R}, \| f \|_{p,\Phi_2} < \infty \},$$

$$L^q_{\Psi}(\mathbb{R}) = \{ a; a = \{ a_n \}_{n=1}^\infty, \| a \|_{q,\Psi} < \infty \},$$

$$L_{q,\Phi_\delta}(\mathbb{R}) = \{ h; h = h(x), x \in \mathbb{R}, \| h \|_{q,\Phi_\delta} < \infty \},$$

$$L_{p,\Psi^{1-p}} = \{ c; c = \{ c_n \}_{n=1}^\infty, \| c \|_{p,\Psi^{1-p}} < \infty \}.$$

Assuming that $f \in L_{p,\Phi_2}(\mathbb{R})$ and setting

$$c = \{ c_n \}_{n=1}^\infty, \quad c_n := \int_0^\infty \sec h(\rho(U^k(x)V_n)^q) \frac{\mu(x)}{e^{\alpha(U^k(x)V_n)^q}} f(x) \, dx, \quad n \in \mathbb{N},$$

we can rewrite (22) as $\| c \|_{p,\Psi^{1-p}} < k(\sigma) \| f \|_{p,\Phi_2} < \infty$, namely, $c \in L_{p,\Psi^{1-p}}$.

Definition 1 Define a half-discrete Hardy-Hilbert-type operator $T_1 : L_{p,\Phi_2}(\mathbb{R}) \to L_{p,\Psi^{1-p}}$ as follows: For any $f \in L_{p,\Phi_2}(\mathbb{R})$, the exists a unique representation $T_1 f = c \in L_{p,\Psi^{1-p}}$. We define the formal inner product of $T_1 f$ and $a = \{ a_n \}_{n=1}^\infty \in L_{q,\Psi}$ as follows:

$$(T_1 f, a) := \sum_{n=1}^\infty \int_0^\infty \sec h(\rho(U^k(x)V_n)^q) \frac{\mu(x)}{e^{\alpha(U^k(x)V_n)^q}} f(x) \, dx \, a_n.$$

Then we can rewrite (21) and (22) as follows:

$$(T_1 f, a) < k(\sigma) \| f \|_{p,\Phi_2} \| a \|_{q,\Psi},$$

$$\| T_1 f \|_{p,\Psi^{1-p}} < k(\sigma) \| f \|_{p,\Phi_2},$$

$$\| T_1 \| := \sup_{f \in L_{p,\Phi_2}(\mathbb{R}), \| f \|_{p,\Phi_2} < \infty} \frac{\| T_1 f \|_{p,\Psi^{1-p}}}{\| f \|_{p,\Phi_2}}.$$
Then by (36) it follows that \(\| T_1 \| \leq k(\sigma) \). Since by Theorem 2 the constant factor in (36) is the best possible, we have

\[
\| T_1 \| = k(\sigma) = \frac{2\Gamma(\frac{\gamma}{\gamma})}{\gamma(2\rho)^{\gamma/\gamma}} \left(\frac{\sigma \cdot \alpha + \rho}{\gamma \cdot 2\rho} \right).
\]

(37)

Assuming that \(a = \{a_n\}_{n=1}^\infty \in L_{\Psi_1} \) and setting

\[
h(x) := \sum_{n=1}^\infty \frac{\sec h(\rho (U^k(x) V_n)^{\gamma})}{e^{\rho (U^k(x) V_n)^{\gamma}}} a_n, \quad x \in \mathbb{R}_+,
\]

we can rewrite (23) as \(\| h \|_{q, \Phi_1^{\lambda-q}} < k(\sigma) \| a \|_{q, \Psi_1} < \infty \), namely, \(h \in L_{\Psi_1} \).

Definition 2 Define a half-discrete Hardy-Hilbert-type operator \(T_2 : L_{q, \Psi_1} \rightarrow L_{\Phi_1^{\lambda-q}(\mathbb{R}_+)} \) as follows: For any \(a = \{a_n\}_{n=1}^\infty \in L_{\Psi_1} \), there exists a unique representation \(T_2a = h \in L_{\Psi_1} \). We define the formal inner product of \(T_2a \) and \(f \in L_{p, \Phi_1}(\mathbb{R}_+) \) as follows:

\[
(T_2a, f) := \int_0^\infty \left[\sum_{n=1}^\infty \frac{\sec h(\rho (U^k(x) V_n)^{\gamma})}{e^{\rho (U^k(x) V_n)^{\gamma}}} a_n \right] f(x) \, dx.
\]

(38)

Then we can rewrite (21) and (23) as follows:

\[
(T_2a, f) < k(\sigma) \| f \|_{p, \Phi_1} \| a \|_{q, \Psi_1},
\]

(39)

\[
\| T_2a \|_{q, \Phi_1^{\lambda-q}} < k(\sigma) \| a \|_{q, \Psi_1}.
\]

(40)

Define the norm of operator \(T_2 \) as follows:

\[
\| T_2 \| := \sup_{a \in \Psi_1, f \in \Phi_1} \frac{\| T_2a \|_{q, \Phi_1^{\lambda-q}}}{\| a \|_{q, \Psi_1}}.
\]

Then by (40) we find \(\| T_2 \| \leq k(\sigma) \). Since by Theorem 2 the constant factor in (40) is the best possible, we have

\[
\| T_2 \| = k(\sigma) = \frac{2\Gamma(\frac{\gamma}{\gamma})}{\gamma(2\rho)^{\gamma/\gamma}} \left(\frac{\sigma \cdot \alpha + \rho}{\gamma \cdot 2\rho} \right) = \| T_1 \|.
\]

(41)

4 Some equivalent reverse inequalities

In the following, we also set

\[
\tilde{\Phi}_k(x) := (1 - \theta_k(\sigma, x)) \frac{U^{p(1-\sigma)-1}(x)}{\mu^{p-1}(x)} (x \in \mathbb{R}_+).
\]

For \(0 < p < 1 \) or \(p > 0 \), we still use the formal symbols \(\| f \|_{p, \Phi_1} \), \(\| f \|_{p, \Phi_1} \), and \(\| a \|_{q, \Psi_1} \).

Theorem 3 If \(\gamma, \rho > 0, \alpha > -\rho (\alpha \geq 0) \), \(0 < \sigma \leq 1 \), \(k(\sigma) \) is defined in (12), there exists \(n_0 \in \mathbb{N} \) such that \(\nu_0 \geq \nu_{n+1} \) \((n \in \{n_0, n_0, n_0 + 1, \ldots\}) \), and \(U(\infty) = V(\infty) = \infty \), then for \(p < 0, 0 < \)
\[\|f\|_{p, \Phi, \chi} \|a\|_{q, \Psi} < \infty, \text{ we have the following equivalent inequalities with the best possible constant factor } k(\sigma): \]

\[I = \sum_{n=1}^{\infty} \int_{0}^{\infty} \frac{\sec \rho(U(t^2)(V_n))^{\gamma}}{e^{\eta(U(t^2)(V_n))^\rho}} a_n f(x) \, dx > k(\sigma) \|f\|_{p, \Phi, \chi} \|a\|_{q, \Psi}, \quad (42) \]

\[J_1 = \sum_{n=1}^{\infty} \frac{V_n}{V_n^{1-\rho \beta}} \left[\int_{0}^{\infty} \frac{\sec \rho(U(t^2)(V_n))^{\gamma}}{e^{\eta(U(t^2)(V_n))^\rho}} f(x) \, dx \right]^{\rho} > k(\sigma) \|f\|_{p, \Phi, \chi}, \quad (43) \]

\[J_2 = \left\{ \int_{0}^{\infty} \frac{\mu(x)}{U_1-\sigma \rho}(x) \left[\sum_{n=1}^{\infty} \frac{\sec \rho(U((t^2)(V_n))^{\gamma}}{e^{\eta(U(t^2)(V_n))^\rho}} a_n \right]^q \, dx \right\}^{\frac{1}{q}} \]

\[> k(\sigma) \|a\|_{q, \Psi}. \quad (44) \]

Proof By the reverse Hölder inequality with weight (see [41]), since \(p < 0 \), similarly as obtaining (24) and (25), we have

\[\left[\int_{0}^{\infty} \frac{\rho(U(t^2)(V_n))^{\gamma}}{e^{\eta(U(t^2)(V_n))^\rho}} f(x) \, dx \right]^{\rho} \]

\[\leq \frac{(\sigma_3(\sigma, n))^{p-1} V_n^{1-\rho \beta}}{V_n^{1-\rho \beta} V_n} \int_{0}^{\infty} \frac{\rho(U(t^2)(V_n))^{\gamma}}{e^{\eta(U(t^2)(V_n))^\rho}} f(x) \, dx. \]

Then by (18) and the Lebesgue term-by-term integration theorem it follows that

\[J_1 \geq \left(k(\sigma) \right)^\frac{1}{\rho} \left[\sum_{n=1}^{\infty} \int_{0}^{\infty} \frac{\rho(U(t^2)(V_n))^{\gamma}}{e^{\eta(U(t^2)(V_n))^\rho}} U_1^{(1-\rho \beta)(p-1)}(x) V_n f^p(x) \, dx \right]^{\frac{1}{p}} \]

\[= \left(k(\sigma) \right)^\frac{1}{\rho} \left[\int_{0}^{\infty} \omega_3(\sigma, x) \frac{U_1^{(1-\rho \beta)-1}(x)}{\mu^{p-1}(x)} f^p(x) \, dx \right]^{\frac{1}{p}}. \]

Then by (16) we have (43).

By the reverse Hölder inequality we have

\[I = \sum_{n=1}^{\infty} \left[\frac{1}{V_n} \int_{0}^{\infty} \frac{\rho(U(t^2)(V_n))^{\gamma}}{e^{\eta(U(t^2)(V_n))^\rho}} f(x) \, dx \right] \left(\frac{V_n^{1-\rho \beta}}{V_n^{1-\rho \beta}} \frac{a_n}{V_n^\rho} \right) \]

\[\geq J_1 \|a\|_{q, \Psi}. \quad (45) \]

Then by (43) we have (42). On the other hand, assuming that (42) is valid, we set \(a_n \) as in Theorem 1. Then we find \(J_1^\rho = \|a\|_{q, \Psi}^\rho \). If \(J_1 = \infty \), then (43) is trivially valid; if \(J_1 = 0 \), then (43) keeps impossible. Suppose that \(0 < J_1 < \infty \). By (42) it follows that

\[\|a\|_{q, \Psi} = J_1^\rho = I > k(\sigma) \|f\|_{p, \Phi, \chi} \|a\|_{q, \Psi}, \]

\[\|a\|_{q, \Psi} = J_1 > k(\sigma) \|f\|_{p, \Phi, \chi}, \]

and then (43) follows, which is equivalent to (42).
Still by the reverse Hölder inequality with weight, since \(0 < q < 1\), similarly as obtaining (27) and (28), we have
\[
\left[\sum_{n=1}^{\infty} \frac{\sec h(\rho(U^k(x)V_n)^\circ)}{e^{\alpha(\rho(U^k(x)V_n)^\circ)}} a_{n} \right]^q \\
\geq \frac{(\omega_\circ(\sigma, x))^{q-1}}{U^{q\sigma-1}(x)\mu(x)} \sum_{n=1}^{\infty} \frac{\sec h(\rho(U^k(x)V_n)^\circ)}{e^{\alpha(\rho(U^k(x)V_n)^\circ)}} U^{1-\sigma}(x) V_n^{q-1} a_{n}^q.
\]

Then by (16) and the Lebesgue term-by-term integration theorem it follows that
\[
J_2 > (k(\sigma))^\frac{1}{q} \left\{ \int_{0}^{\infty} \left[\frac{\mu^\frac{1}{q}(x)}{U^{\frac{1}{q}-\sigma}(x)} \sum_{n=1}^{\infty} \frac{\sec h(\rho(U^k(x)V_n)^\circ)}{e^{\alpha(\rho(U^k(x)V_n)^\circ)}} a_{n} \right] dx \right\}^{\frac{1}{q}} \\
= (k(\sigma))^{\frac{1}{q}} \left\{ \sum_{n=1}^{\infty} \sigma_\circ(\sigma, n) V_n^{(1-\sigma)-1} - a_{n}^q \right\}^{\frac{1}{q}}.
\]

Then by (18) we have (44).
By the reverse Hölder inequality we have
\[
I = \int_{0}^{\infty} \left(U^{\frac{1}{q}-\sigma}(x) f(x) \right) \left[\frac{\mu^\frac{1}{q}(x)}{U^{\frac{1}{q}-\sigma}(x)} \sum_{n=1}^{\infty} \frac{\sec h(\rho(U^k(x)V_n)^\circ)}{e^{\alpha(\rho(U^k(x)V_n)^\circ)}} a_{n} \right] dx \\
\geq \| f \|_{p, \Phi_3} J_2.
\]

Then by (44) we have (42). On the other hand, assuming that (44) is valid, we set \(f(x)\) as in Theorem 1. Then we find \(J_2^p = \| f \|_{p, \Phi_3}^p\). If \(J_2 = \infty\), then (44) is trivially valid; if \(J_2 = 0\), then (44) keeps impossible. Suppose that \(0 < J_2 < \infty\). By (42) it follows that
\[
\| f \|_{p, \Phi_3} = f_2^p = I > k(\sigma) \| f \|_{p, \Phi_3} \| a \|_{q, \Psi}, \quad \| f \|_{p, \Phi_3} = f_2^p = I > k(\sigma) \| a \|_{q, \Psi},
\]
and then (44) follows, which is equivalent to (42).
Therefore, inequalities (42), (43), and (44) are equivalent.
For \(\varepsilon \in (0, q\sigma)\), we set \(\bar{\sigma} = \sigma - \frac{\varepsilon}{q}\) and \(\tilde{\Phi} = \tilde{\Phi}(x), x \in \mathbb{R}_+, \tilde{a} = \{\tilde{a}_n\}_{n=1}^\infty\),
\[
\tilde{a}_n = \tilde{V}_n^{\bar{\sigma}-1} V_n = \tilde{V}_n^{\sigma-\frac{\varepsilon}{q}-1} V_n, \quad n \in \mathbb{N}.
\]

By (20), (32), and (16) we obtain
\[
\| \tilde{f} \|_{p, \Phi_3} \| \tilde{a} \|_{q, \Psi} = \frac{1}{\varepsilon} U^{\frac{\mu}{\nu}} (1) \left(\frac{1}{V_n^\frac{\mu}{\nu}} + \varepsilon O(1) \right)^{\frac{1}{q}},
\]
\[
I = \sum_{n=1}^{\infty} \left[\int_{0}^{\infty} \frac{\sec h(\rho(U^k(x)V_n)^\circ)}{e^{\alpha(\rho(U^k(x)V_n)^\circ)}} \tilde{a}_{n} \tilde{f}(x) dx \right],
\]
\[
\tilde{f}(x) = \begin{cases}
U^{(\bar{\sigma} + \varepsilon)^{-1}}(x) \mu(x), & 0 < x^\delta \leq 1, \\
0, & x^\delta > 0,
\end{cases}
\]
\[
\tilde{a}_n = \tilde{V}_n^{\bar{\sigma}-1} V_n = \tilde{V}_n^{\sigma-\frac{\varepsilon}{q}-1} V_n, \quad n \in \mathbb{N}.
\]
\[I = \sum_{n=1}^{\infty} \int_{0}^{\infty} \frac{\sec h(\rho(\mathcal{L}^k(x) V_n)^\gamma)}{e^{\rho(\mathcal{L}^k(x) V_n)^\gamma}} a_n f(x) \, dx > k(\sigma) \| f \|_{\mathcal{P}, \Phi_2} \| a \|_{q, \Psi}. \] (47)

\[J_1 = \frac{\sum_{n=1}^{\infty} V_n}{V_n^{p-1}} \left[\int_{0}^{\infty} \frac{\sec h(\rho(\mathcal{L}^k(x) V_n)^\gamma)}{e^{\rho(\mathcal{L}^k(x) V_n)^\gamma}} f(x) \, dx \right]^p > k(\sigma) \| f \|_{\mathcal{P}, \Phi_2}. \] (48)

\[J := \left\{ \int_{0}^{\infty} \frac{(1 - \rho_\sigma(\sigma, x))^{1-q} \mu(x)}{\mathcal{L}^k(\mathcal{L}^k(x) V_n)^\gamma} \left[\sum_{n=1}^{\infty} \frac{\sec h(\rho(\mathcal{L}^k(x) V_n)^\gamma)}{e^{\rho(\mathcal{L}^k(x) V_n)^\gamma}} a_n \right] q x \, dx \right\}^{\frac{1}{q}} > k(\sigma) \| a \|_{q, \Psi}. \] (49)

Proof By the reverse Hölder inequality with weight, since \(0 < p < 1\), similarly as obtaining (24) and (25), we have

\[\left[\int_{0}^{\infty} \frac{\sec h(\rho(\mathcal{L}^k(x) V_n)^\gamma)}{e^{\rho(\mathcal{L}^k(x) V_n)^\gamma}} f(x) \, dx \right]^p \geq \frac{(\sigma_\sigma(\sigma, n))^{p-1}}{V_n^{p-1}} \int_{0}^{\infty} \frac{\sec h(\rho(\mathcal{L}^k(x) V_n)^\gamma)}{e^{\rho(\mathcal{L}^k(x) V_n)^\gamma}} \mathcal{L}^k(\mathcal{L}^k(x) V_n)^\gamma V_n^{-1} \mu^{p-1}(x) f^p(x) \, dx. \]

In view of (18) and the Lebesgue term-by-term integration theorem, we find

\[J_1 \geq (k(\sigma))^\frac{1}{p} \left[\sum_{n=1}^{\infty} \int_{0}^{\infty} \frac{\sec h(\rho(\mathcal{L}^k(x) V_n)^\gamma)}{e^{\rho(\mathcal{L}^k(x) V_n)^\gamma}} \mathcal{L}^k(\mathcal{L}^k(x) V_n)^\gamma V_n^{-1} \mu^{p-1}(x) f^p(x) \, dx \right]^{\frac{1}{p}} = (k(\sigma))^\frac{1}{p} \left[\int_{0}^{\infty} \omega_\sigma(\sigma, x) \frac{\mathcal{L}^k(\mathcal{L}^k(x) V_n)^\gamma V_n^{-1} \mu^{p-1}(x) f^p(x) \, dx \right]^{\frac{1}{p}}. \]

Then by (19) we have (48).
By the reverse Hölder inequality we have

\[
I = \sum_{n=1}^{\infty} \left[\frac{1}{V_n^{\frac{1}{\alpha}}} \int_0^{\infty} \frac{\sec h(\rho(U^\gamma(x) V_n^\gamma))}{\omega(U^\gamma(x) V_n^\gamma)^{\gamma}} f(x) dx \right] \left(\frac{V_n^{\frac{1}{\alpha}} a_n}{V_n^{\frac{1}{\alpha}}} \right) \geq J_1 \|a\|_{q,\psi}.
\]

Then by (48) we have (47). On the other hand, assuming that (47) is valid, we set \(a_n\) as in Theorem 1. Then we find \(J_1 = \|a\|_{q,\psi}^q\). If \(J_1 = \infty\), then (48) is trivially valid; if \(J_1 = 0\), then (48) keeps impossible. Suppose that \(0 < J_1 < \infty\). By (47) it follows that

\[
\|a\|_{q,\psi}^q = J_1 > k(\sigma)\|f\|_{p,\tilde{\psi}_1} \|a\|_{q,\psi}, \quad \|a\|_{q,\psi}^{q-1} = J_1 > k(\sigma)\|f\|_{p,\tilde{\psi}_1},
\]

and then (48) follows, which is equivalent to (47).

Again by the reverse Hölder inequality with weight, since \(q < 0\), we have

\[
\left[\sum_{n=1}^{\infty} \frac{\sec h(\rho(U^\gamma(x) V_n^\gamma))}{\omega(U^\gamma(x) V_n^\gamma)^{\gamma}} a_n \right]^q \leq \frac{(\omega_3(\sigma,x))^{q-1}}{U^{q^\sigma-1}(x)\mu(x)} \sum_{n=1}^{\infty} \frac{\sec h(\rho(U^\gamma(x) V_n^\gamma))}{\omega(U^\gamma(x) V_n^\gamma)^{\gamma}} V_n^{[1-\sigma](q-1)} \mu(x) \frac{1}{U^{1-\sigma}(x) V_n^{q-1}} a_n^q n.
\]

Then by (19) and the Lebesgue term-by-term integration theorem it follows that

\[
J > (k(\sigma))^\frac{1}{q} \left\{ \int_0^{\infty} \left[\sum_{n=1}^{\infty} \frac{\sec h(\rho(U^\gamma(x) V_n^\gamma))}{\omega(U^\gamma(x) V_n^\gamma)^{\gamma}} V_n^{[1-\sigma](q-1)} \mu(x) \frac{1}{U^{1-\sigma}(x) V_n^{q-1}} a_n^q \right] dx \right\} \frac{1}{q} = (k(\sigma))^\frac{1}{q} \left\{ \sum_{n=1}^{\infty} \frac{\sec h(\sigma,x) V_n^{[1-\sigma]-1}}{V_n^{q-1}} a_n^q n \right\} \frac{1}{q}.
\]

Then by (18) we have (49).

By the reverse Hölder inequality we have

\[
I = \int_0^{\infty} \left[(1 - \theta_1(\sigma,x))^\frac{1}{q} U^{\frac{1}{q^\sigma}}(x) \right] \frac{1}{\mu^\frac{1}{q^\sigma}}(x) f(x) dx \times \left[\frac{1}{U^{\frac{1}{q^\sigma}}(x)} \right] \left[\frac{1}{\mu^\frac{1}{q^\sigma}}(x) \right] \sum_{n=1}^{\infty} \frac{\sec h(\rho(U^\gamma(x) V_n^\gamma))}{\omega(U^\gamma(x) V_n^\gamma)^{\gamma}} a_n \] \geq \|f\|_{p,\tilde{\psi}_1}^p J_1. \tag{51}
\]

Then by (49) we have (47). On the other hand, assuming that (47) is valid, we set \(f(x)\) as in Theorem 1. Then we find \(J_1 = \|f\|_{p,\tilde{\psi}_1}^p\). If \(J_1 = \infty\), then (49) is trivially valid; if \(J_1 = 0\), then (49) keeps impossible. Suppose that \(0 < J_1 < \infty\). By (47) it follows that

\[
\|f\|_{p,\tilde{\psi}_1}^p = J_1 > k(\sigma)\|f\|_{p,\tilde{\psi}_1} \|a\|_{q,\psi}, \quad \|f\|_{p,\tilde{\psi}_1}^{p-1} = J_1 > k(\sigma)\|a\|_{q,\psi},
\]

and then (49) follows, which is equivalent to (47).
Therefore, inequalities (47), (48), and (49) are equivalent. For $\varepsilon \in (0, p\sigma)$, we set $\tilde{\sigma} = \sigma + \frac{\varepsilon}{p}$ and $\tilde{f} = \tilde{f}(x), x \in \mathbb{R}, \tilde{a} = \{\tilde{a}_n\}_{n=1}^\infty$,

$$
\tilde{f}(x) = \begin{cases}
U^{\beta-1}(x)\mu(x), & 0 < x^\delta \leq 1, \\
0, & x^\delta > 0,
\end{cases}
$$

$$
\tilde{a}_n = \tilde{V}^\delta_{n-1} v_n = \tilde{V}^\delta_{n-1} v_n, \quad n \in \mathbb{N}.
$$

By (19), (20), and (32) we obtain

$$
\|\tilde{f}\|_{\|\cdot\|_p, \tilde{a}_n} \|\tilde{a}\|_{q, \Psi} = \left[\int_{\{x_{0} \leq x^\delta \leq \leq 1\}} \left(1 - O\left(U(x)\right)\right) \right] \left[\frac{\mu(x) dx}{U^{1-\delta}(x)} \right] \left[\sum_{n=1}^\infty \frac{v_n}{V^{1+\varepsilon}_n} \right] \frac{1}{\epsilon} \left(U^{\delta}(1) - \varepsilon O(1) \right) \frac{1}{\epsilon} + O(1),
$$

$$
\tilde{I} = \sum_{n=1}^\infty \int_0^\infty \frac{\sec h(\rho(U^\delta(x)V_n)^\gamma)}{e^{(\rho(U^\delta(x)V_n)^\gamma)}} \tilde{a}_n \tilde{f}(x) dx
$$

$$
= \sum_{n=1}^\infty \left(\int_{\{x_{0} \leq x^\delta \leq \leq 1\}} \frac{\sec h(\rho(U^\delta(x)V_n)^\gamma)}{e^{(\rho(U^\delta(x)V_n)^\gamma)}} \frac{V_n^\delta \mu(x)}{U^{1-\delta}(x)} dx \right) \frac{v_n}{V^{1+\varepsilon}_n}
$$

$$
\leq \sum_{n=1}^\infty \left(\int_0^\infty \frac{\sec h(\rho(U^\delta(x)V_n)^\gamma)}{e^{(\rho(U^\delta(x)V_n)^\gamma)}} \frac{V_n^\delta \mu(x)}{U^{1-\delta}(x)} dx \right) \frac{v_n}{V^{1+\varepsilon}_n}
$$

$$
= \sum_{n=1}^\infty \sigma_3(\tilde{\sigma}, n) \frac{v_n}{V^{1+\varepsilon}_n} = \tilde{k}(\tilde{\sigma}) \sum_{n=1}^\infty \frac{v_n}{V^{1+\varepsilon}_n}
$$

$$
= \frac{1}{\epsilon} \left[\sigma + \frac{\varepsilon}{p} \right] \left(\frac{1}{V^{1+\varepsilon}_n} + \varepsilon O(1) \right).
$$

If there exists a positive constant $K \geq \tilde{k}(\sigma)$ such that (42) is valid when replacing $k(\sigma)$ by K, then, in particular, we have $\epsilon I > \varepsilon K \|\tilde{f}\|_{p, \tilde{a}_n} \|\tilde{a}\|_{q, \Psi}$, namely,

$$
k \left(\sigma + \frac{\varepsilon}{p} \right) \left(\frac{1}{V^{1+\varepsilon}_n} + \varepsilon O(1) \right) > K \left(U^{\delta}(1) - \varepsilon O(1) \right) \frac{1}{\epsilon} \left(\frac{1}{V^{1+\varepsilon}_n} + \varepsilon O(1) \right)^{\frac{1}{p}}.
$$

It follows that $k(\sigma) \geq K (\varepsilon \rightarrow 0^+)$. Hence, $K = k(\sigma)$ is the best possible constant factor of (47).

The constant factor $k(\sigma)$ in (48) ((49)) is still the best possible. Otherwise, we would reach a contradiction by (50) ((51)) that the constant factor in (47) is not the best possible.

5 Some corollaries

For $\delta = 1$ in Theorems 2-4, we have the following inequalities with inhomogeneous kernel.

Corollary 1 If $\gamma, \rho > 0, \alpha > \rho (\alpha \geq 0), 0 < \sigma \leq 1$, $k(\sigma)$ is indicated by (12), there exists $n_0 \in \mathbb{N}$ such that $v_n \geq v_{n+1} (n \in \{n_0, n_0 + 1, \ldots\})$, and $U(\infty) = V(\infty) = \infty$, then
(i) for $p > 1$, $0 < \|f\|_{\rho, \Phi_1}$, $\|a\|_{q, \Psi} < \infty$, we have the following equivalent inequalities:

\[
\sum_{n=1}^{\infty} \int_{0}^{\infty} \frac{\sec(\rho(U(x)V_n)^\gamma)}{e^{\rho(U(x)V_n)^\gamma}} a_n f(x) \, dx < k(\sigma) \|f\|_{\rho, \Phi_1} \|a\|_{q, \Psi},
\]

(ii) for $p < 0$, $0 < \|f\|_{\rho, \Phi_1}$, and $\|a\|_{q, \Psi} < \infty$, we have the following equivalent inequalities:

\[
\sum_{n=1}^{\infty} \int_{0}^{\infty} \frac{\sec(\rho(U(x)V_n)^\gamma)}{e^{\rho(U(x)V_n)^\gamma}} a_n f(x) \, dx > k(\sigma) \|f\|_{\rho, \Phi_1} \|a\|_{q, \Psi},
\]

(iii) for $0 < p < 1$, $0 < \|f\|_{\rho, \Phi_1}$, and $\|a\|_{q, \Psi} < \infty$, we have the following equivalent inequalities:

\[
\sum_{n=1}^{\infty} \int_{0}^{\infty} \frac{\sec(\rho(U(x)V_n)^\gamma)}{e^{\rho(U(x)V_n)^\gamma}} a_n f(x) \, dx > k(\sigma) \|f\|_{\rho, \Phi_1} \|a\|_{q, \Psi},
\]

\[
\sum_{n=1}^{\infty} \int_{0}^{\infty} \frac{\sec(\rho(U(x)V_n)^\gamma)}{e^{\rho(U(x)V_n)^\gamma}} a_n f(x) \, dx > k(\sigma) \|f\|_{\rho, \Phi_1} \|a\|_{q, \Psi},
\]

The above inequalities are with the best possible constant factor $k(\sigma)$.

For $\delta = -1$ in Theorems 2-4, we have the following inequalities with the homogeneous kernel of degree 0.

Corollary 2 If $\gamma, \rho > 0$, $\alpha > -\rho$ ($\alpha \geq 0$), $0 < \sigma \leq 1$, $k(\sigma)$ is defined in (12), there exists $n_0 \in \mathbb{N}$ such that $\nu_n \geq \nu_{n+1}$ ($n \in \{n_0, n_0 + 1, \ldots\}$), and $U(\infty) = V(\infty) = \infty$, then

(i) for $p > 1$, $0 < \|f\|_{\rho, \Phi_1}$, and $\|a\|_{q, \Psi} < \infty$, we have the following equivalent inequalities:

\[
\sum_{n=1}^{\infty} \int_{0}^{\infty} \frac{\sec(\rho(U(x)V_n)^\gamma)}{e^{\rho(U(x)V_n)^\gamma}} a_n f(x) \, dx < k(\sigma) \|f\|_{\rho, \Phi_1} \|a\|_{q, \Psi},
\]

(ii) for $p < 0$, $0 < \|f\|_{\rho, \Phi_1}$, and $\|a\|_{q, \Psi} < \infty$, we have the following equivalent inequalities:

\[
\sum_{n=1}^{\infty} \int_{0}^{\infty} \frac{\sec(\rho(U(x)V_n)^\gamma)}{e^{\rho(U(x)V_n)^\gamma}} a_n f(x) \, dx > k(\sigma) \|f\|_{\rho, \Phi_1} \|a\|_{q, \Psi},
\]
\[
\left\{ \int_0^\infty \mu(x) \left[\sum_{n=1}^\infty \sec h(\rho(\frac{V_n}{\gamma}y)) a_n \right] \right\}^{\frac{1}{q}} < k(\sigma) \|a\|_{q,\psi}; \tag{63}\n\]

(ii) for \(p < 0, 0 < \|f\|_{p,\phi_1}, \) and \(\|a\|_{q,\psi} < \infty, \) we have the following equivalent inequalities:

\[
\sum_{n=1}^\infty \int_0^\infty \frac{\sec h(\rho(\frac{V_n}{\gamma}y))}{e^{\sigma(\frac{\rho}{\gamma})y}} a_n f(x) \, dx > k(\sigma) \|f\|_{p,\phi_1} \|a\|_{q,\psi}, \tag{64}\n\]

\[
\sum_{n=1}^\infty V_n^{-p\rho} \left[\int_0^\infty \frac{\sec h(\rho(\frac{V_n}{\gamma}y))}{e^{\sigma(\frac{\rho}{\gamma})y}} f(x) \, dx \right]^p > k(\sigma) \|f\|_{p,\phi_1}, \tag{65}\n\]

\[
\left\{ \int_0^\infty \frac{\mu(x)}{e^{\sigma(\frac{\rho}{\gamma})y}} \left[\sum_{n=1}^\infty \frac{\sec h(\rho(\frac{V_n}{\gamma}y))}{e^{\sigma(\frac{\rho}{\gamma})y}} a_n \right] \right\}^{\frac{1}{q}} > k(\sigma) \|a\|_{q,\psi}; \tag{66}\n\]

(iii) for \(0 < p < 1, 0 < \|f\|_{p,\phi_1}, \) and \(\|a\|_{q,\psi} < \infty, \) we have the following equivalent inequalities:

\[
\sum_{n=1}^\infty \int_0^\infty \frac{\sec h(\rho(\frac{V_n}{\gamma}y))}{e^{\sigma(\frac{\rho}{\gamma})y}} a_n f(x) \, dx > k(\sigma) \|f\|_{p,\phi_1} \|a\|_{q,\psi}, \tag{67}\n\]

\[
\sum_{n=1}^\infty V_n^{-p\rho} \left[\int_0^\infty \frac{\sec h(\rho(\frac{V_n}{\gamma}y))}{e^{\sigma(\frac{\rho}{\gamma})y}} f(x) \, dx \right]^p > k(\sigma) \|f\|_{p,\phi_1}, \tag{68}\n\]

\[
\left\{ \int_0^\infty \frac{(1 - \theta_1(\sigma, x))^{1-q} \mu(x)}{e^{\sigma(\frac{\rho}{\gamma})y}} \left[\sum_{n=1}^\infty \frac{\sec h(\rho(\frac{V_n}{\gamma}y))}{e^{\sigma(\frac{\rho}{\gamma})y}} a_n \right] \right\}^{\frac{1}{q}} > k(\sigma) \|a\|_{q,\psi}. \tag{69}\n\]

The above inequalities are with the best possible constant factor \(k(\sigma). \)

For \(\alpha = \rho \) and \(\gamma = \sigma \) in Theorems 2-4, we have the following corollary.

Corollary 3 If \(\rho > 0, 0 < \sigma \leq 1, \) there exists \(n_0 \in \mathbb{N} \) such that \(V_n \geq V_{n+1} \) \((n \in \{n_0, n_0 + 1, \ldots\}), \) and \(U(\infty) = V(\infty) = \infty, \) then

(i) for \(p > 1, 0 < \|f\|_{p,\phi_1}, \|a\|_{q,\psi} \) \(< \infty, \) we have the following equivalent inequalities with the best possible constant factor \(\frac{\ln 2}{\sigma \rho}; \)

\[
\sum_{n=1}^\infty \int_0^\infty \frac{\sec h(\rho(\frac{U(x)V_n}{\gamma})y)}{e^{\sigma(\frac{\rho}{\gamma})y}} a_n f(x) \, dx < \frac{\ln 2}{\sigma \rho} \|f\|_{p,\phi_1} \|a\|_{q,\psi}, \tag{70}\n\]

\[
\sum_{n=1}^\infty V_n^{-p\rho} \left[\int_0^\infty \frac{\sec h(\rho(\frac{U(x)V_n}{\gamma})y)}{e^{\sigma(\frac{\rho}{\gamma})y}} f(x) \, dx \right]^p < \frac{\ln 2}{\sigma \rho} \|f\|_{p,\phi_1}, \tag{71}\n\]

\[
\left\{ \int_0^\infty \frac{\mu(x)}{e^{\sigma(\frac{\rho}{\gamma})y}} \left[\sum_{n=1}^\infty \frac{\sec h(\rho(\frac{U(x)V_n}{\gamma})y)}{e^{\sigma(\frac{\rho}{\gamma})y}} a_n \right] \right\}^{\frac{1}{q}} < \frac{\ln 2}{\sigma \rho} \|a\|_{q,\psi}; \tag{72}\n\]
(ii) for $p < 0$, $0 < \|f\|_{p, a_2}, \|a\|_{q, \Psi} < \infty$, we have the following equivalent inequalities with the best possible constant factor $\ln 2 / \sigma \rho$:

$$\sum_{n=1}^{\infty} \int_{0}^{\infty} \sec h(\rho(U^t(x)V_n)^\sigma) \frac{a_n}{e^{\rho(U^t(x)V_n)^\sigma}} a_n f(x) \, dx > \frac{\ln 2}{\sigma \rho} \|f\|_{p, a_2} \|a\|_{q, \Psi}, \quad (73)$$

$$\sum_{n=1}^{\infty} \frac{v_n}{V_n^{1-p\rho}} \left[\int_{0}^{\infty} \sec h(\rho(U^t(x)V_n)^\sigma) \frac{f(x)}{e^{\rho(U^t(x)V_n)^\sigma}} \, dx \right]^p > \frac{\ln 2}{\sigma \rho} \|f\|_{p, a_2}, \quad (74)$$

$$\left\{ \int_{0}^{\infty} \frac{\mu(x)}{U^{1-q\sigma}} \left[\sum_{n=1}^{\infty} \sec h(\rho(U^t(x)V_n)^\sigma) \frac{a_n}{e^{\rho(U^t(x)V_n)^\sigma}} \right]^q \, dx \right\}^{\frac{1}{q}} > \frac{\ln 2}{\sigma \rho} \|a\|_{q, \Psi}; \quad (75)$$

(iii) for $0 < p < 1$, $0 < \|f\|_{p, a_2}, \|a\|_{q, \Psi} < \infty$, we have the following equivalent inequalities with the best possible constant factor $\ln 2 / \sigma \rho$:

$$\sum_{n=1}^{\infty} \int_{0}^{\infty} \sec h(\rho(U^t(x)V_n)^\sigma) \frac{a_n}{e^{\rho(U^t(x)V_n)^\sigma}} a_n f(x) \, dx > \frac{\ln 2}{\sigma \rho} \|f\|_{p, a_2} \|a\|_{q, \Psi}, \quad (76)$$

$$\sum_{n=1}^{\infty} \frac{v_n}{V_n^{1-p\rho}} \left[\int_{0}^{\infty} \sec h(\rho(U^t(x)V_n)^\sigma) \frac{f(x)}{e^{\rho(U^t(x)V_n)^\sigma}} \, dx \right]^p > \frac{\ln 2}{\sigma \rho} \|f\|_{p, a_2}, \quad (77)$$

$$\left\{ \int_{0}^{\infty} \frac{(1-\theta_2(\sigma, \rho))^1-q \mu(x)}{U^{1-q\sigma}} \left[\sum_{n=1}^{\infty} \sec h(\rho(U^t(x)V_n)^\sigma) \frac{a_n}{e^{\rho(U^t(x)V_n)^\sigma}} \right]^q \, dx \right\}^{\frac{1}{q}} > \frac{\ln 2}{\sigma \rho} \|a\|_{q, \Psi}. \quad (78)$$

For $\alpha = 0$ and $\gamma = \sigma$ in Theorems 2-4, we have the following corollary.

Corollary 4 If $\rho > 0$, $0 < \sigma \leq 1$, there exists $n_0 \in \mathbb{N}$ such that $v_n \geq v_{n+1}$ ($n \in \{n_0, n_0 + 1, \ldots\}$), and $U(\infty) = V(\infty) = \infty$, then

(i) for $p > 1$, $0 < \|f\|_{p, a_2}, \|a\|_{q, \Psi} < \infty$, we have the following equivalent inequalities with the best possible constant factor $\pi / 2\sigma \rho$:

$$\sum_{n=1}^{\infty} \int_{0}^{\infty} \sec h(\rho(U^t(x)V_n)^\sigma) a_n f(x) \, dx < \frac{\pi}{2\sigma \rho} \|f\|_{p, a_2} \|a\|_{q, \Psi}, \quad (79)$$

$$\sum_{n=1}^{\infty} \frac{v_n}{V_n^{1-p\rho}} \left[\int_{0}^{\infty} \sec h(\rho(U^t(x)V_n)^\sigma) f(x) \, dx \right]^p < \frac{\pi}{2\sigma \rho} \|f\|_{p, a_2}, \quad (80)$$

$$\left\{ \int_{0}^{\infty} \frac{\mu(x)}{U^{1-q\sigma}} \left[\sum_{n=1}^{\infty} \sec h(\rho(U^t(x)V_n)^\sigma) a_n \right]^q \, dx \right\}^{\frac{1}{q}} < \frac{\pi}{2\sigma \rho} \|a\|_{q, \Psi}; \quad (81)$$

(ii) for $p < 0$, $0 < \|f\|_{p, a_2}, \|a\|_{q, \Psi} < \infty$, we have the following equivalent inequalities with the best possible constant factor $\pi / 2\sigma \rho$:

$$\sum_{n=1}^{\infty} \int_{0}^{\infty} \sec h(\rho(U^t(x)V_n)^\sigma) a_n f(x) \, dx > \frac{\pi}{2\sigma \rho} \|f\|_{p, a_2} \|a\|_{q, \Psi}, \quad (82)$$
\[
\sum_{n=1}^{\infty} \frac{V_n}{V_{n-1} - \rho(\lambda)} \left[\int_{0}^{\infty} \sec h(\rho(\lambda)(V_n)^\sigma) f(x) \, dx \right]^p > \frac{\pi}{2\sigma \rho} \|f\|_{\rho, \lambda}, \quad (83)
\]

\[
\left\{ \int_{0}^{\infty} \frac{\mu(x)}{U^{\alpha - \rho}(x)} \left[\sum_{n=1}^{\infty} \sec h(\rho(\lambda)(V_n)^\sigma) a_n \right]^q \, dx \right\}^{\frac{1}{q}} > \frac{\pi}{2\sigma \rho} \|a\|_{\alpha, \lambda}; \quad (84)
\]

(iii) for \(0 < p < 1, 0 < \|f\|_{\rho, \lambda}, \) \(\text{and} \) \(\|a\|_{\alpha, \lambda} < \infty, \) we have the following equivalent inequalities with the best possible constant factor \(\frac{\pi}{2\sigma \rho} : \)

\[
\sum_{n=1}^{\infty} \int_{0}^{\infty} \sec h(\rho(\lambda)(V_n)^\sigma) a_n f(x) \, dx > \frac{\pi}{2\sigma \rho} \|f\|_{\rho, \lambda} \|a\|_{\alpha, \lambda}, \quad (85)
\]

\[
\sum_{n=1}^{\infty} \frac{V_n}{V_{n-1} - \rho(\lambda)} \left[\int_{0}^{\infty} \sec h(\rho(\lambda)(V_n)^\sigma) f(x) \, dx \right]^p > \frac{\pi}{2\sigma \rho} \|f\|_{\rho, \lambda}, \quad (86)
\]

\[
\left\{ \int_{0}^{\infty} (1-\theta_n(\sigma, x))^1-\rho \mu(x) \frac{\sum_{n=1}^{\infty} \sec h(\rho(\lambda)(V_n)^\sigma) a_n}{U^{\alpha - q \rho}(x)} \right\}^{\frac{1}{q}} > \frac{\pi}{2\sigma \rho} \|a\|_{\alpha, \lambda}. \quad (87)
\]

Remark 2 For \(\mu(x) = V_n = 1 \) in (52), we have the following inequality with the best possible constant factor \(k(\sigma) : \)

\[
\sum_{n=1}^{\infty} \int_{0}^{\infty} \frac{\sec h(\rho(x^n)^\sigma)}{\rho(x^n)^\sigma} a_n f(x) \, dx < k(\sigma) \left[\int_{0}^{\infty} x^{(1-\rho)(1-\sigma)-1} f_p(x) \, dx \right]^\frac{1}{p} \left[\sum_{n=1}^{\infty} n^{q(1-\rho)(1-\sigma)-1} a_n^q \right]^\frac{1}{q}. \quad (88)
\]

In particular, for \(\delta = 1, \) we have the following inequality with inhomogeneous kernel:

\[
\sum_{n=1}^{\infty} \int_{0}^{\infty} \frac{\sec h(\rho(xn)^\sigma)}{\rho(xn)^\sigma} a_n f(x) \, dx < k(\sigma) \left[\int_{0}^{\infty} x^{(1-\rho)(1-\sigma)-1} f_p(x) \, dx \right]^\frac{1}{p} \left[\sum_{n=1}^{\infty} n^{q(1-\rho)(1-\sigma)-1} a_n^q \right]^\frac{1}{q}; \quad (89)
\]

for \(\delta = -1, \) we have the following inequality with inhomogeneous kernel:

\[
\sum_{n=1}^{\infty} \int_{0}^{\infty} \frac{\sec h(\rho(xn)^\sigma)}{\rho(xn)^\sigma} a_n f(x) \, dx < k(\sigma) \left[\int_{0}^{\infty} x^{(1-\rho)(1-\sigma)-1} f_p(x) \, dx \right]^\frac{1}{p} \left[\sum_{n=1}^{\infty} n^{q(1-\rho)(1-\sigma)-1} a_n^q \right]^\frac{1}{q}. \quad (90)
\]

We still can obtain a large number of other inequalities by using some particular parameters in theorems and corollaries.
Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
BY carried out the mathematical studies, participated in the sequence alignment and drafted the manuscript.
QC participated in the design of the study and performed the numerical analysis. All authors read and approved the final manuscript.

Author details
1Department of Mathematics, Guangdong University of Education, Guangzhou, Guangdong 51003, PR. China.
2Department of Computer Science, Guangdong University of Education, Guangzhou, Guangdong 51003, PR. China.

Acknowledgements
This work is supported by the National Natural Science Foundation of China (No. 61370186) and 2013 Knowledge Construction Special Foundation Item of Guangdong Institution of Higher Learning College and University (No. 2013JUXD140).

Received: 2 July 2015 Accepted: 2 December 2015 Published online: 18 December 2015

References
1. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, Cambridge (1934)
2. Mitrinović, D.S., Pečarić, J., Fink, A.M.: Inequalities Involving Functions and Their Integrals and Derivatives. Kluwer Academic, Boston (1993)
3. Yang, B.C.: Hilbert-Type Integral Inequalities. Bentham Science Publishers, Sharjah (2009)
4. Yang, B.C.: Discrete Hilbert-Type Inequalities. Bentham Science Publishers, Sharjah (2011)
5. Yang, B.C.: The Norm of Operator and Hilbert-Type Inequalities. Science Press, Beijing (2009)
6. Yang, B.C.: On Hilbert’s integral inequality. J. Math. Anal. Appl. 220, 778-785 (1998)
7. Yang, B.C.: An extension of a Hardy-Hilbert-type inequality. J. Guangdong Univ. Educ. 35(3), 1-8 (2015)
8. Yang, B.C., Benetić, I., Krnić, M., Pečarić, J.E.: Generalization of Hilbert and Hardy-Hilbert integral inequalities. Math. Inequal. Appl. 8(2), 259-272 (2005)
9. Krnić, M., Pečarić, J.E.: Hilbert’s inequalities and their reverses. Publ. Math. (Debr.) 67(3-4), 315-331 (2005)
10. Yang, B.C., Rassias, T.M.: On the way of weight coefficient and research for Hilbert-type inequalities. Math. Inequal. Appl. 6(4), 625-658 (2003)
11. Yang, B.C., Rassias, T.M.: On a Hilbert-type integral inequality in the subinterval and its operator expression. Banach J. Math. Anal. 4(2), 100-110 (2010)
12. Azar, L.: On some extensions of Hardy-Hilbert’s inequality and applications. J. Inequal. Appl. 2009, Article ID 546829 (2009)
13. Arpad, B., Choonghong, O.: Best constant for certain multilinear integral operator. J. Inequal. Appl. 2006, Article ID 28582 (2006)
14. Kuang, J.C., Debnath, L.: On Hilbert’s type inequalities on the weighted Orlicz spaces. Pac. J. Appl. Math. 1(1), 95-103 (2007)
15. Zhong, W.Y.: The Hilbert-type integral inequality with a homogeneous kernel of -lambda-degree. J. Inequal. Appl. 2008, Article ID 917392 (2008)
16. Hong, Y.: On Hardy-Hilbert integral inequalities with some parameters. J. Inequal. Pure Appl. Math. 6(4), Article 92 (2005)
17. Zhong, W.Y., Yang, B.C.: On multiple Hardy-Hilbert’s integral inequality with kernel. J. Inequal. Appl. 2007, Article ID 27962 (2007)
18. Yang, B.C., Krnić, M.: On the norm of a multi-dimensional Hilbert-type operator. Sarajevo J. Math. 7(20), 223-243 (2011)
19. Krnić, M., Pečarić, J.E., Vuković, P.: On some higher-dimensional Hilbert’s and Hardy-Hilbert’s type integral inequalities with parameters. Math. Inequal. Appl. 11, 701-716 (2008)
20. Krnić, M., Vuković, P.: On a multidimensional version of the Hilbert-type inequality. Anal. Math. 38, 291-303 (2012)
21. Rassias, M.T., Yang, B.C.: On half-discrete Hilbert’s inequality. Appl. Math. Comput. 220, 75-93 (2013)
22. Rassias, M.T., Yang, B.C.: A multidimensional half-discrete Hilbert-type inequality and the Riemann zeta function. Appl. Math. Comput. 225, 263-277 (2013)
23. Rassias, M.T., Yang, B.C.: On a multidimensional half-discrete Hilbert-type inequality related to the hyperbolic cotangent function. Appl. Math. Comput. 242, 800-813 (2014)
24. Rassias, M.T., Yang, B.C.: On a multidimensional Hilbert-type integral inequality associated to the gamma function. Appl. Math. Comput. 249, 408-418 (2014)
25. Yang, B.C.: On a more accurate multidimensional Hilbert-type inequality with parameters. Math. Inequal. Appl. 18(2), 429-441 (2015)
26. Yang, B.C.: A mixed Hilbert-type inequality with a best constant factor. Int. J. Pure Appl. Math. 20(3), 319-328 (2005)
27. Yang, B.C.: A half-discrete Hilbert-type inequality. J. Guangdong Univ. Educ. 31(5), 1-7 (2011)
28. Zhong, W.Y.: A mixed Hilbert-type inequality and its equivalent forms. J. Guangdong Univ. Educ. 31(5), 18-22 (2011)
29. Zhong, W.Y.: A half discrete Hilbert-type inequality and its equivalent forms. J. Guangdong Univ. Educ. 32(5), 8-12 (2012)
30. Zhong, J.H., Yang, B.C.: An extension of a more accurate Hilbert-type inequality. J. Zhejiang Univ. Sci. Ed. 35(2), 121-124 (2008)
31. Zhong, J.H.: Two classes of half-discrete reverse Hilbert-type inequalities with a non-homogeneous kernel. J. Guangdong Univ. Educ. 32(5), 11-20 (2012)
32. Zhong, W.Y., Yang, B.C.: A best extension of Hilbert inequality involving several parameters. J. Jinan Univ. Nat. Sci. 28(1), 20-23 (2007)
33. Zhong, W.Y., Yang, B.C.: A reverse Hilbert’s type integral inequality with some parameters and the equivalent forms. Pure Appl. Math. 24(2), 401-407 (2008)
34. Yang, BC, Chen, Q: A half-discrete Hilbert-type inequality with a homogeneous kernel and an extension. J. Inequal. Appl. 2011, 124 (2011)
35. Yang, BC: A half-discrete Hilbert-type inequality with a non-homogeneous kernel and two variables. Mediterr. J. Math. 10, 677-692 (2013)
36. Yang, BC: Two Types of Multiple Half-Discrete Hilbert-Type Inequalities. Lambert Academic Publishing, Saarbrücken (2012)
37. Yang, BC: Topics on Half-Discrete Hilbert-Type Inequalities. Lambert Academic Publishing, Saarbrücken (2013)
38. Yang, BC, Debnath, L: Half-Discrete Hilbert-Type Inequalities. World Scientific, Singapore (2014)
39. Zhong, YQ: Introduction to Complex Functions. Higher Education Press, Beijing (2003)
40. Wang, ZQ, Guo, DR: Introduction to Special Functions. Science Press, Beijing (1979)
41. Kuang, JC: Applied Inequalities. Shandong Science Technic Press, Jinan (2004)
42. Kuang, JC: Real Analysis and Functional Analysis. Higher Education Press, Beijing (2014)