High nerve density in breast cancer is associated with poor patient outcome

Dong Li
Shanxi Bethune Hospital

Li Na Hu
Shanxi Bethune Hospital

Ting La
The University of Newcastle

Li Yuan Wei
Shanxi Bethune Hospital

Xiao Jun Zhang
Shanxi Bethune Hospital

Zhen Hua Zhang
Shanxi Bethune Hospital

Jun Xing
Shanxi Bethune Hospital

Li Wang
Zhengzhou University

Si Min Zheng
Shanxi Bethune Hospital

Ruo Qi Li
Shanxi Bethune Hospital

Qin Zhu
Shanxi Bethune Hospital

Rick F. Thorne
The University of Newcastle

Hubert Hondermarck
The University of Newcastle

Li Li
Shanxi Bethune Hospital

Xu Dong Zhang
xu.zhang@newcastle.edu.au
The University of Newcastle
https://orcid.org/0000-0001-9457-8003

Jin Nan Gao
Shanxi Bethune Hospital
Abstract

Background: Active crosstalk between the nervous system and breast cancer cells as well as other cell types within the tumour microenvironment has been experimentally demonstrated in vitro and in animal models. However, low frequencies of peripheral nerve presence in human breast cancers reported in previous studies (~30% of cases) potentially negate a major role of the nervous system in breast cancer development and progression. This study aimed to better define the incidence of nerves within human breast cancers and to delineate associations with clinicopathological features.

Methods: Immunohistochemical staining was conducted in formalin-fixed paraffin-embedded breast cancer tissue sections using antibodies against the pan-neuronal markers protein gene product 9.5 (PGP9.5) and growth-associated protein 43 (GAP-43), and the sympathetic nerve-specific marker tyrosine hydroxylase (TH). Nerve trunks (comprised of many nerve fibres/axons) and isolated nerve fibres (positively stained cells with or without typical morphology of axons outside definable nerve trunks) were quantitated. The chi-squared test was used to determine the associations between nerve trunk or isolated nerve fibre counts and clinicopathological parameters. The Log-rank test was used to compare differences in patient progression-free survival (PFS) and overall survival (OS). A multivariate analysis was performed according to the Cox Proportional Hazards Model to assess independent prognostic factors.

Results: Nerve trunks and isolated nerve fibres were detected in 75% and 77% of breast cancers, respectively. The overall frequency of peripheral nerves in breast cancers was 85%, a markedly higher proportion than reported previously. Of note, most nerves present in breast cancers were of the sympathetic origin (positive for TH). While high density of nerve trunks or isolated nerve fibres was associated with poor PFS and OS of patients, high nerve trunk density appeared also to predict poor patient PFS independently of lymph node metastasis.

Conclusions: Innervation of breast cancers is a common event correlated with poor patient outcomes. These findings support the notion that the nervous system plays an active role in breast cancer pathogenesis.

Background

Perineural invasion (PNI), a process in which cancer cells grow around existing nerves and/or invade the perineural space of nerves, has long been known to be associated with metastasis and poor patient outcomes in many cancer types [1–4]. However, the active crosstalk between the nervous system and cancer cells as well as other types of cells in the tumour microenvironment has not been appreciated until recently [4–6]. On one hand, neurotransmitters and growth factors secreted by nerves activate signal pathways that promote cancer cell proliferation, invasion and metastasis [4–7]. On the other hand, cancer cells produce neurotrophins that stimulate neural invasion of the tumour microenvironment [4–7].
Moreover, signals generated by nerves can modulate the tumour microenvironment through regulating angiogenesis and infiltrating immune cells [4, 5].

Through secreting neurotrophins such as nerve growth factor (NGF), breast cancer cells induce neurite outgrowth of neuronal cells in vitro [8–11]. Indeed, denervation causes regression of established breast cancer in ex vivo models [12], providing direct evidence that nerve supply is necessary for breast cancer growth. Consistently, chronic neural activity can be recorded within the tumour mass of mouse breast cancer models [13]. Of interest, sympathetic and parasympathetic nerves appear to have opposite effects on breast cancer growth [14]: sympathetic neurostimulation accelerates, whereas parasympathetic neurostimulation decelerates the progression of both human breast cancer xenografts and spontaneous breast cancer models in mice [14]. Intriguing clinical evidence supporting the role of the sympathetic nervous system in breast cancer also comes from several population-based studies involving beta blockers, competitive antagonists that block interactions between epinephrine and norepinephrine with adrenergic beta receptors, reducing breast cancer progression and improving patient outcomes [15–17].

Despite these advances in understanding of the role of the nervous system in breast cancer progression, information about innervation of human breast cancers in vivo is still limited. The reported incidence of nerves in breast cancers varied widely and was generally low, with frequencies ranging from 28–61% [8, 18, 19], potentially negating a major role of the nervous system in this disease. Moreover, whether nerve fibre innervation of breast cancers is associated with patient outcomes remains unclear [8, 18, 19]. In view of these, we have carried out immunohistochemistry (IHC) analysis of breast cancer innervation in a patient cohort. Here we report that both nerve trunks that are comprised of many nerve fibres/axons and isolated nerve fibres are present in a markedly larger proportion of breast cancers than previously described, and that high density of nerve trunks or isolated nerve fibres is associated with poor patient progression-free survival (PFS) and overall survival (OS). Moreover, we demonstrate that high nerve trunk density is potentially a predictor of poor patient PFS independently of lymph node involvement. Our results also reveal that nerves infiltrating breast cancers are predominantly of the sympathetic origin.

Materials And Methods

Patients and tissue specimens

The archival formalin-fixed paraffin-embedded (FFPE) breast cancer tissue blocks from 126 female patients (median age 50, ranging from 26 to 81) who underwent surgery at the Department of Breast Surgery of Shanxi Bethune Hospital, Taiyuan, China, during the period from March 2012 to December 2014 were retrieved from the Department of Pathology of the hospital. Hematoxylin and eosin (H&E) stained sections of all 126 cases were reviewed and pathological diagnoses were confirmed by two independent pathologists (LN Hu and L Li). Estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) positivity was determined using immunohistochemistry (IHC) at the time of pathological examination of surgical specimens and the results were retrieved from medical records. The clinicopathological characteristics of the patients are
included in Tables 1 and Supplementary Tables 1–6. All included patients were regularly followed up for a minimal 66-month period. The study was approved by the Human Ethics Review Committee of Shanxi Bethune Hospital. Informed consents were obtained from all patients during their hospitalization.
Table 1
The relationship between the density of nerve fibres and clinicopathological parameters in breast cancer (the high quartile nerve fibre count as the cut-off)

Parameter	Low nerve fibre counts (n = 92)	High nerve fibre counts (n = 34)	\(p\)-valuea
Tumor sizeb			0.1837
1 (n = 56)	45 (80.4%)	11 (19.6%)	
2 (n = 61)	42 (68.9%)	19 (31.1%)	
3 (n = 4)	3 (75.0%)	1 (25.0%)	
4 (n = 5)	2 (40.0%)	3 (60.0%)	
Patient agec			0.0865
50\(\leq\) (n = 64)	51 (79.7%)	13 (20.3%)	
50\(>\) (n = 62)	41 (66.1%)	21 (33.9%)	
Lymph node involvementd			0.0312
0 (n = 71)	56 (78.9%)	15 (21.1%)	
1 (n = 31)	24 (77.4%)	7 (22.6%)	
2 (n = 10)	6 (60.0%)	4 (40.0%)	
3 (n = 14)	6 (42.9%)	8 (57.1%)	
HER2e			0.4858
HER2 - (n = 91)	68 (74.7%)	23 (25.3%)	
HER2 + (n = 35)	24 (68.6%)	11 (31.4%)	
ERe			0.4304
ER - (n = 44)	34 (77.3%)	10 (22.7%)	
ER + (n = 82)	58 (70.7%)	24 (29.3%)	
PRe			0.8779
PR - (n = 57)	42 (73.7%)	15 (26.3%)	
PR + (n = 69)	50 (72.5%)	19 (27.5%)	
Molecular subtypef			0.7351
Luminal A (n = 69)	50 (72.5%)	19 (27.5%)	
Parameter	Low nerve fibre counts (n = 92)	High nerve fibre counts (n = 34)	p-valuea
-----------------------------------	---------------------------------	---------------------------------	--------------
Luminal B (n = 15)	10 (66.7%)	5 (33.3%)	0.4957
HER-2 positive (n = 20)	14 (70.0%)	6 (30.0%)	
Triple negative (n = 22)	18 (81.8%)	4 (18.2%)	
Pathological subtyped			0.0235
IDC (n = 116)	85 (73.3%)	31 (26.7%)	
ILC (n = 6)	5 (83.3%)	1 (16.7%)	
Others (n = 4)	2 (50.0%)	2 (50.0%)	
Menopause			0.0065
Pre-menopause (n = 69)	56 (81.2%)	13 (18.8%)	
Post-menopause (n = 57)	36 (63.2%)	21 (36.8%)	
The age of menarcheh			
≤ 15 (n = 73)	60 (82.2%)	13 (17.8%)	
> 15 (n = 53)	32 (60.4%)	21 (39.6%)	

aChi-squared test, a P value ≤ 0.05 was considered statistically significant.

bTumor sizes were scored according to the TNM staging system.

cPatients were arbitrarily divide into two groups according to the median age at diagnosis age 50.

dLymph node involvement was scored according to the TNM staging system.

eHER2, ER and PR positivity defined using immunohistochemistry was recorded in the pathological report of surgically removed breast cancer tissues.

fMolecular subtypes were defined as luminal A: ER + and/or PR+/HER2-; luminal B: ER + and/or PR+/HER2+; HER2+; TNBC: ER-/PR-/HER2-.

gIDC: Invasive ductal carcinomas; ILC: Invasive lobular carcinomas; Others including micropapillary carcinomas, metaplastic carcinomas and mucinous adenocarcinomas.

hPatients were arbitrarily divided into two groups according to the median age of menarche age 15.

Immunohistochemistry (Ihc) And Assessment Of Ihc Staining
Serial four-micrometre-thick sections were prepared from each FFPE tissue block before deparaffinization and rehydration following standard procedures. Heat induced epitope retrieval was carried out in a citrate-based low pH buffer (Vector Laboratories) using a decloaking chamber (Biocare) at 95°C for 20 min. IHC was then carried out using an automated immunohistochemistry system (Ventana BenchMark XT, Roche, Switzerland). Briefly, endogenous peroxidase activity was blocked with 0.03% hydrogen peroxidase and Fc receptors blocked with 10% normal horse serum. Antibodies (Abs) and controls were purchased from Abcam (Abcam, Shanghai, China), including rabbit anti-human protein gene product 9.5 (PGP9.5) monoclonal Ab (Cat: ab108986), rabbit anti-human growth associated protein 43 (GAP43) monoclonal Ab (Cat: ab75810), rabbit anti-human tyrosine hydroxylase (TH) polyclonal Ab (Cat: ab75875) and non-immune rabbit IgG control (Cat: ab188776). ImmPRESS HRP anti-rabbit IgG (peroxidase) (Cat: NC9294174) was then applied, and staining revealed with DAB peroxidase substrate solution (Cat: 34002). Sections were finally counterstained with Harris hematoxylin (Cat: ab220365).

The identity of positively stained nerves was readily confirmed by comparison with serial sections applied with the non-immune rabbit IgG control. The counts of nerve trunks (comprised of many nerve fibres/axons) and isolated nerve fibres (positively stained cells with or without typical morphology of axons outside definable nerve trunks; hereafter referred to as nerve fibres for simplicity) were derived at high (×400) magnification from 10 random fields using an Olympus BLISS High-Definition Virtual Microscope (Olympus, Japan). Each slide was examined by two independent pathologists and counts of nerve trunks and isolated nerve fibres, respectively, were recorded as averages.

Statistical analysis

Statistical analysis was carried out using GraphPad Prism 9 and IBM SPSS Statistics 27. Progression-free survival (PFS) and overall survival (OS) were calculated using the Kaplan-Meier univariate estimates. Differences in PFS and OS between patients with high or low nerve fibre/trunk numbers upon various cut-offs were compared using the Log-rank (Mantel-Cox) test. The univariate analysis was followed by multivariate analysis according to the Cox Proportional Hazards Model to assess independent prognostic factors. The correlation between GAP43 and PGP9.5 or TH and PGP9.5 staining were compared using simple linear regression. Simple unadjusted associations between nerve trunks and nerve fibres and other pathological variables were performed using the chi-squared (χ^2) test. A P value < 0.05 was considered statistically significant.

Results

Breast cancers are frequently innervated by nerve trunks and isolated nerve fibres

We initially carried out studies in FFPE breast cancer tissue sections from 50 patients using immunohistochemistry with Abs against the two pan-neuronal makers, PGP9.5 and GAP43 [20, 21]. The
results showed that both Abs identified nerve trunks and fibres with identical patterns and frequencies, although PGP9.5 staining intensity was commonly weaker, albeit moderately, than GAP43 (Fig. 1A). Nerve trunks were present in 38 cases (76%), whereas nerve fibres, 39 cases (78%). There was virtually perfect correlation between the counts of nerve trunks and fibres stained by the two Abs (Fig. 1B). We thus employed only the anti-PGP9.5 Ab for further investigation.

We extended the IHC study using the anti-PGP9.5 Ab to a total of 126 breast cancers. Nerve trunks were detected in 95 (75%) cases, and nerve fibres in 98 (77%) cases. The presence of nerve trunks, fibres or the co-existence of nerve trunks and fibres occurred in 107 cases (85%), demonstrating that innervation of breast cancer is a common event. Nerve fibres were most frequently observed around cancer cell nests or alongside blood vessels in the tumour stroma (Fig. 2A-D), consistent with previous results [8]. Noticeably, nerve fibres infiltrating into cancer cell nests were also observed (Fig. 2E), supporting the notion that cancer cells chemoattract nerve fibres to support their malignancy [4–6].

To further characterise the nerve trunks and nerve fibres identified, we stained breast cancer tissue sections from 20 patients that were positive for PGP9.5 using an anti-tyrosine hydroxylase (TH) Ab, a marker of sympathetic neurons [22]. Indeed, most nerve trunks and fibres positive for PGP9.5 were also positive for TH (Fig. 3A & B). The counts of nerve trunks identified by the anti-PGP9.5 Ab were positively correlated with those identified with the anti-TH Ab (Fig. 3B). Similarly, TH-positive nerve fibre counts were correlated with those positive for PGP9.5. Thus, nerves present in breast cancers are predominantly of the sympathetic origin.

Nerve presence in breast cancer is associated with poor patient PFS

To test for associations between nerve presence and other clinicopathological characteristics, we classified the 126 breast cancers into nerve positive and nerve negative groups, i.e. cases containing nerve trunks or fibres, alone or in combination, or cases lacking nerve trunks and fibres. Chi-squared analysis showed that there were no significant differences in the frequencies of nerves among breast cancers of different clinicopathological groups defined by tumour size, lymph node involvement, pathological and molecular subtype, patient age, and menopausal status (Supplementary Table 1). Similarly, no significant differences were found in the frequencies of nerves among breast cancers with and without estrogen receptor (ER), progestogen receptor, or HER2 expression (Supplementary Table 1). Interestingly, nerves were present more frequently in breast cancers of patients with relatively late menarche (Supplementary Table 1). The presence of nerves was observed in 79.5% of breast cancers of patients with menarche occurring before or at age 15 (the median age at menarche of the 126 patients), whereas 92.5% of breast cancers from those with late menarche exhibited nerve presence ($P = 0.0441$) (Supplementary Table 1).

We then analysed whether nerve presence is associated with patient outcomes. The Log-rank test revealed that the presence of nerves is significantly related to poor PFS of patients [hazard ratio (HR) = 4.064, 95% confidence interval (CI) = 1.813 to 9.111, $P = 0.0351$] (Fig. 4A). However, it was not
significantly associated with patient OS, although there was a consistent trend that patients with breast cancers containing nerves had shorter OS (HR = 4.378, 95% CI = 1.406 to 13.13, \(P = 0.1136 \)) (Fig. 4B).

High nerve fibre density is associated poor patient PFS and OS in breast cancer

We next asked whether the presence of nerve fibres alone is associated with breast cancer patient outcomes. When the 126 breast cancers were classified into nerve fibre positive and negative groups, it was found that patients with breast cancers displaying nerve fibres tended to have poorer PFS (HR = 2.401, 95% CI = 1.188 to 4.850, \(P = 0.0567 \)) and OS (HR = 3.367, 95% CI = 1.298 to 8.734, \(P = 0.0806 \)), although the differences were not statistically significant (Figs. 5A & B).

Similarly, when the cases were stratified using the median of nerve fibre counts as cut-off, there were no significant differences between breast cancers containing high and low densities of nerve fibres for either PFS (HR = 1.293, 95% CI = 0.7062 to 2.369, \(P = 0.4033 \)) or OS (HR = 1.656, 95% CI = 0.7309 to 3.751, \(P = 0.2319 \)) between patients with breast cancers containing high and low densities of nerve fibres (Figs. 5C & D). Nonetheless, when the high quartile of nerve fibre counts was chosen as the cut-off, the high occurrence of denser nerve fibres was associated with significantly worse PFS (HR = 1.988, 95% CI = 0.976 to 4.051, \(P = 0.0266 \)) and OS (HR = 2.916, 95% CI = 1.119 to 602, \(P = 0.0070 \)) (Figs. 5E & F). Therefore, high nerve fibre density in breast cancer is associated with compromised patient PFS and OS.

We also analysed the relationship between nerve fibre presence and other clinicopathological characteristics. The occurrence of nerve fibres was not associated with tumour size, lymph node involvement, pathological and molecular subtype, patient age, and menopausal status, estrogen and progesterone receptor statuses, HER2 positivity and age of menarche (Supplementary Table 2). However, when cases were stratified into high and low nerve fibre groups using a median nerve fibre count cut-off, later menarche compared to early menarche patients (at or before age 15) displayed higher nerve fibre densities in breast cancer tissues (62.3% versus 42.5%, respectively; \(P = 0.0282 \)) (Supplementary Table 3). Intriguingly, ER positive breast cancers appeared to have significantly more nerve fibres than non-ER cases (\(P = 0.0176 \)) (Supplementary Table 3).

Analyses performed using the high quartile nerve fibre counts as the cut-off showed that a significantly larger proportion of patients with late menarche exhibited higher density of nerve fibres compared with those with early menarche (\(P = 0.0065 \)) (Table 1). Furthermore, breast cancers with increased lymph node involvement displayed a higher density of nerve fibres (\(P = 0.0312 \)) (Table 1). Only 21.1% of breast cancers without lymph node involvement displayed high density of nerve fibres compared with 57.1% of N3-staged breast cancers (Table 1).

High nerve trunk density is associated with poor patient PFS and OS in breast cancer

While there was a clear trend between nerve fibres and patient outcomes (Fig. 5), analyses stratified by nerve trunks alone indicated their presence was significantly related to patient PFS (HR = 2.755, 95% CI = 1.395 to 5.439, \(P = 0.0258 \)) and OS (HR = 3.845, 95% CI = 1.528 to 9.674, \(P = 0.0494 \)) (Figs. 6A & B). No
statistically significant differences were seen in either PFS or OS when cases were analysed as high or low nerve trunk counts based on median counts as the cut-off (PFS HR = 1.822, 95% CI = 0.9917 to 3.348, \(P = 0.0517 \) and OS HR = 1.601, 95% CI = 0.7040 to 3.643, \(P = 0.2574 \)) (Figs. 6C & D). Nevertheless, the same tendency remained that patients with breast cancers containing more nerve trunks had worse outcomes. Indeed, setting the high quartile of nerve trunk counts as the cut-off, the association between high nerve trunk density and poorer patient PFS was significant (HR = 2.684, 95% CI = 1.235 to 5.834, \(P = 0.0011 \)), with the trend of association with OS almost reaching statistical significance (HR = 2.274, 95% CI = 0.8023 to 6.445, \(P = 0.0530 \)) (Figs. 6E & F).

Analysis of the relationship between nerve trunks and other clinicopathological characteristics indicated nerve trunks were present in a larger proportion of breast cancers cases with late (86.8%) compared to early menarche (67.1%) (\(P = 0.0114 \)) (Supplementary Table 4). Notably, more breast cancers from post-menopausal patients (84.2%) showed nerve trunk presence than those from pre-menopausal patients (68.1%) (\(P = 0.0368 \)) (Supplementary Table 4). However, there were no significant differences in the frequency of nerve trunks among breast cancers grouped according to tumour size, lymph node involvement, pathological and molecular subtype, patient age, and estrogen and progestogen receptor status (Supplementary Table 4). Analysis of the data using cut-off values according to either median or high quartile nerve trunk counts showed no significant differences amongst the different clinicopathological variables (Supplementary Tables 5 & 6).

High nerve trunk density in breast cancer may predict poorer patient PFS independently of lymph node involvement

Based on the preceding findings, we assessed the value of nerve fibre and trunk innervation as an independent predictive factor of breast cancer outcomes, directly comparing this with lymph node involvement, the strongest known prognostic factor in breast cancer [23–25]. Strikingly, the high density of nerve trunks defined using the high quartile of nerve trunk counts in breast cancers appeared to predict poorer patient PFS (HR = 2.281, 95% CI = 1.209 to 4.301, \(P = 0.011 \)) independently of lymph node involvement (HR = 1.667, 95% CI = 1.279 to 2.172, \(P = 0.000 \)), although it did not appear to be associated with OS (Table 2). In contrast, nerve fibre or trunk presence, high nerve fibre density defined using the median or high quartile of counts as the cut-off, or high nerve trunk density defined using the median of counts as the cut-off, did not appear to have an independent prognostic significance.

Table 2. High abundance of nerve trunks is a predictive factor of PFS independently of lymph node involvement at surgery (Multivariate Cox regression analysis)

Factors	Progression-free survival	Overall survival		
	HR (95%CI)\(^b\)	\(P \) value\(^a\)	HR (95%CI)\(^b\)	\(P \) value\(^a\)
High nerve trunk counts	2.281 (1.209-4.301)	0.011	1.832 (0.764-4.394)	0.175
Lymph Node involvement	1.667 (1.279-2.172)	0.000	1.848 (1.302-2.623)	0.001
Discussion

Active crosstalk between the nervous system and cancer cells as well as other types of cells in the tumour microenvironment has been experimentally demonstrated in an increasing variety of cancers such as pancreatic, gastric, colon, prostate, ovary, skin and breast cancer [12, 26–33]. However, the varying incidence of innervation in breast cancers, particularly those reports indicating a low frequency, have cast doubts as to whether nerves play a major role in the development and progression of the disease [8, 18, 19]. We demonstrated in this study that nerves are present in 85% of breast cancers, a proportion markedly larger than previously observed [8, 18], indicating that innervation is a common event in breast cancers. The reason between the discrepancy between this and previous studies is not entirely clear, but it is conceivably related to TMAs used in some studies that might underrepresent nerve presence due to inherited bias in sampling tissues [8]. Moreover, we used two independent pan-neuronal makers in our initial study that exhibited virtually the same expression pattern and density, indicating that the high frequency of nerves we observed was not caused by non-specific staining of other types of cells. Our results therefore provide strong evidence supporting the frequent occurrence of neuronal involvement in breast cancer and establish a rational basis for active interactions between the nervous system and human breast cancer.

Different types of nerves may exert cancer type-specific functions [4, 5]. For example, cholinergic signalling generated from parasympathetic nerves inhibits the growth and progression of pancreatic adenocarcinoma and breast cancer but has a strong oncogenic effect on gastric adenocarcinoma [23, 31]. We found that the vast majority of nerves infiltrating into breast cancer tissues are of the sympathetic origin, consistent with the promoting role of sympathetic nerves demonstrated in animal models of breast cancer [14]. In accordance, increased sympathetic nerve density in breast cancers is associated with poor patient prognosis, whereas beta blocker intake inhibits breast cancer progression [14]. Although how sympathetic nerves promote breast cancer progression is not fully understood, their presence has been linked to high expression of immune checkpoint molecules such as PD-1 and PD-L1 in the breast cancer microenvironment [14], pointing to a role sympathetic nerves in regulating the interaction between breast cancer cells and the immune system.

An important finding of this study was that the presence of nerves identified using a pan-neuronal maker was similarly associated with poor PFS of patients. Moreover, our quantitative analysis revealed that when the high quartile of counts was used as the cut-off, high density of nerve trunks or isolated nerve
fibres was associated with poor PFS as well as poor OS of patients. The presence of nerves was previously shown to be associated with lymph node metastasis and consistently we also found that high density of isolated nerve fibres was related to increased lymph node involvement [8]. These results substantiate the role of the nervous system in promoting breast cancer progression and further suggest that pathological assessment of innervation status could provide additional prognostic information. However, this approach would require some practical considerations as nerve trunks may not always be observed due to small size of tumours and bias in sampling of specimens. On the other hand, as we observed in this study, isolated nerve fibres are dispersed throughout breast cancer tissues, either within the tumour stroma or often around or infiltrating into cancer cell nests, mirroring the neurite outgrowth induced by cancer cells in vitro [8]. Nevertheless, the density of nerve trunks but not nerve fibres was found to predict poor patient PFS independently of lymph node involvement, the most powerful prognostic factor in breast cancer [23–25]. This implies that that nerve trunks and not isolated nerve fibres are more strongly associated with breast cancer progression. Indeed, cancer cells use nerves in addition to lymphatics and blood vessels as routes of metastasis and PNI is known to associate with poor outcomes in many cancer types including breast cancer [18, 19].

Another pertinent consideration involves the potential links between cancer neuroscience and psycho-oncology, another rapidly growing interdisciplinary field [35–38]. Many clinical studies have established links between psychological stress and breast cancer progression and treatment resistance, with associations with poor patient prognosis [35–37, 39]. Although the molecular mechanism(s) responsible remains to be fully elucidated, it is known that psychological stress triggers alterations in neuronal secretions [38, 40, 41], whereas a number of neurotransmitters such as dopamine and norepinephrine can regulate the migration of the breast cancer cells [42]. Moreover, stress may stimulate angiogenesis directly through sympathetic nerve activation within the cancer microenvironment [30, 43–45]. Our findings that innervation is common in breast cancer and high nerve density is associated with poor patient outcome support the notion that there is a close association between psychological stress and breast cancer pathogenesis and progression.

It is intriguing that breast cancers from patients with later menarche commonly contain more nerves, implying that these patients may have worse prognosis than those whose menarche occurs at younger age. However, early menarche is a well-established breast cancer risk factor and is also associated with the risk of lymph node metastasis and poor patient prognosis [46, 47]. Similarly, our results showed that ER+ breast cancers displayed higher densities of nerve fibres, implicating worse outcomes of these patients. However, ER+ breast cancer patients tend to have better survival outcomes related to benefits associated with treatment efficacy and the long-term tolerability of endocrine therapy [48, 49]. Moreover, we also found that breast cancers of post-menopausal patients tended to have high densities of nerves, suggestive of poorer prognosis of these patients. Indeed, older breast cancer patients commonly have worse survival than those diagnosed at younger ages [50, 51]. Nevertheless, we did not identify differences in breast cancer innervation among different age groups. What causes these paradoxes is unknown, but our results suggest that the innervation status be considered in stratifying patients in future
studies. Large cohorts of breast cancers need to be analysed to draw more explicit conclusions about the clinical usefulness of qualitative and quantitative analysis of nerve trunks and fibres in breast cancer tissues. Furthermore, it would be interesting to interrogate whether the presence of nerves is associated with breast cancer responses to systematic treatments.

Conclusions

Our results indicate that innervation of breast cancers is a common event and reveal a correlation between high nerve density in breast cancers and poor patient outcomes. These findings support the notion that the nervous system plays an active role in breast cancer pathogenesis and call for further exploration of approaches to disrupt the effects of nerves on breast cancer cells and the tumour microenvironment for the treatment of the disease.

Abbreviations

PNI
Perineural invasion
NGF
Nerve growth factor
IHC
Immunohistochemistry
PFS
Progression-free survival
OS
Overall survival
FFPE
Formalin-fixed paraffin-embedded
H&E
Hematoxylin and eosin
ER
Estrogen receptor
PR
Progesterone receptor
HER2
Human epidermal growth factor receptor 2
Abs
Antibodies
PGP9.5
Protein gene product 9.5
GAP43
Declarations

Ethical approval and consent to participate

This study was approved by the Human Ethics Review Committee of Shanxi Bethune Hospital, China. Informed consents were obtained from all patients during their hospitalization.

Consent for publication

All authors are aware of the content of the paper and agree to the content and being listed as an author.

Availability of supporting data

Supporting data are available from the corresponding authors on reasonable request.

Competing interests

The authors declare no competing interests.

Funding

This work was supported by the Key Research and Development Plan of Shanxi Province, China, which was funded by Shanxi Science and Technology Department (GrantNo.201903D421025).

Authors' contributions

JNG, XDZ, and LL designed the study. DL, LNH, XJZ. XJ and ZHZ carried out the experiments. DL, TL, LW and LYW performed the statistical analyses. XDZ, DL, TL, RFT and HH prepared the original draft with suggestions from the other authors. All authors interpreted the results and read and approved the final manuscript.

Acknowledgements

Not applicable
References

1. Marchesi F, Piemonti L, Mantovani A, Allavena P. Molecular mechanisms of perineural invasion, a forgotten pathway of dissemination and metastasis. Cytokine Growth Factor Rev. 2010;21(1):77–82.
2. Bapat AA, Hostetter G, Von Hoff DD, Han H. Perineural invasion and associated pain in pancreatic cancer. Nat Rev Cancer. 2011;11(10):695–707.
3. Wang H, Zheng Q, Lu Z, Wang L, Ding L, Xia L, Zhang H, Wang M, Chen Y, Li G. Role of the nervous system in cancers: a review. Cell Death Discov. 2021;7(1):76.
4. Faulkner S, Jobling P, March B, Jiang CC, Hondermarck H. Tumor Neurobiology and the War of Nerves in Cancer. Cancer Discov. 2019;9(6):702–10.
5. Monje M, Borniger JC, D'Silva NJ, Deneen B, Dirks PB, Fattahi F, Frenette PS, Garzia L, Gutmann DH, Hanahan D, et al. Roadmap for the Emerging Field of Cancer Neuroscience. Cell. 2020;181(2):219–22.
6. Boilly B, Faulkner S, Jobling P, Hondermarck H. Nerve Dependence: From Regeneration to Cancer. Cancer Cell. 2017;31(3):342–54.
7. Jobling P, Pundavela J, Oliveira SM, Roselli S, Walker MM, Hondermarck H. Nerve-Cancer Cell Cross-talk: A Novel Promoter of Tumor Progression. Cancer Res. 2015;75(9):1777–81.
8. Pundavela J, Roselli S, Faulkner S, Attia J, Scott RJ, Thorne RF, Forbes JF, Bradshaw RA, Walker MM, Jobling P, et al. Nerve fibres infiltrate the tumor microenvironment and are associated with nerve growth factor production and lymph node invasion in breast cancer. Mol Oncol. 2015;9(8):1626–35.
9. Hondermarck H. Neurotrophins and their receptors in breast cancer. Cytokine Growth Factor Rev. 2012;23(6):357–65.
10. Campbell JP, Karolak MR, Ma Y, Perrien DS, Masood-Campbell SK, Penner NL, Munoz SA, Zijlstra A, Yang X, Sterling JA, et al. Stimulation of host bone marrow stromal cells by sympathetic nerves promotes breast cancer bone metastasis in mice. PLoS Biol. 2012;10(7):e1001363.
11. Adriaenssens E, Vanhecke E, Saule P, Mougel A, Page A, Romon R, Nurcombe V, Le Bourhis X, Hondermarck H. Nerve growth factor is a potential therapeutic target in breast cancer. Cancer Res. 2008;68(2):346–51.
12. Kappos EA, Engels PE, Tremp M, Sieber PK, von Felten S, Madduri S, Meyer Zu Schwabedissen M, Fischmann A, Schaefer DJ, Kalbermatten DF. Denervation leads to volume regression in breast cancer. J Plast Reconstr Aesthet Surg. 2018;71(6):833–9.
13. McCallum GA, Shiralkar J, Suciu D, Covarrubias G, Yu JS, Karathanasis E, Durand DM. Chronic neural activity recorded within breast tumors. Sci Rep. 2020;10(1):14824.
14. Kamiya A, Hayama Y, Kato S, Shimomura A, Shimomura T, Irie K, Kaneko R, Yanagawa Y, Kobayashi K, Ochiya T. Genetic manipulation of autonomic nerve fibre innervation and activity and its effect on breast cancer progression. Nat Neurosci. 2019;22(8):1289–305.
15. Melhem-Bertrandt A, Chavez-Macgregor M, Lei X, Brown EN, Lee RT, Meric-Bernstam F, Sood AK, Conzen SD, Hortobagyi GN, Gonzalez-Angulo AM. Beta-blocker use is associated with improved
relapse-free survival in patients with triple-negative breast cancer. J Clin Oncol. 2011;29(19):2645–52.

16. Barron TI, Connolly RM, Sharp L, Bennett K, Visvanathan K. Beta blockers and breast cancer mortality: a population-based study. J Clin Oncol. 2011;29(19):2635–44.

17. Powe DG, Voss MJ, Zänker KS, Habashy HO, Green AR, Ellis IO, Entschladen F. Beta-blocker drug therapy reduces secondary cancer formation in breast cancer and improves cancer specific survival. Oncotarget. 2010;1(7):628–38.

18. Huang D, Su S, Cui X, Shen X, Zeng Y, Wu W, Chen J, Chen F, He C, Liu J, et al. Nerve fibres in breast cancer tissues indicate aggressive tumor progression. Med (Baltim). 2014;93(27):e172.

19. Zhao Q, Yang Y, Liang X, Du G, Liu L, Lu D, Dong J, Han H, Zhang G. The clinicopathological significance of neurogenesis in breast cancer. BMC Cancer. 2014;14:484.

20. Day IN. Enolases and PGP9.5 as tissue-specific markers. Biochem Soc Trans. 1992;20(3):637–42.

21. Benowitz LI, Perrone-Bizzozero NL, Neve RL, Rodriguez W. GAP-43 as a marker for structural plasticity in the mature CNS. Prog Brain Res. 1990;86:309–20.

22. Nagatsu T. Tyrosine hydroxylase: human isoforms, structure and regulation in physiology and pathology. Essays Biochem. 1995;30:15–35.

23. Fisher B, Bauer M, Wickerham DL, Redmond CK, Fisher ER, Cruz AB, Foster R, Gardner B, Lerner H, Margolese R, et al. Relation of number of positive axillary nodes to the prognosis of patients with primary breast cancer. An NSABP update. Cancer. 1983;52(9):1551–7.

24. Chang J, Clark GM, Allred DC, Mohsin S, Chamness G, Elledge RM. Survival of patients with metastatic breast carcinoma: importance of prognostic markers of the primary tumor. Cancer. 2003;97(3):545–53.

25. Largillier R, Ferrero JM, Doyen J, Barriere J, Namer M, Mari V, Courdi A, Hannoun-Levi JM, Ettore F, Birtwisle-Peyrottes I, et al. Prognostic factors in 1,038 women with metastatic breast cancer. Ann Oncol. 2008;19(12):2012–9.

26. Renz BW, Tanaka T, Sunagawa M, Takahashi R, Jiang Z, Macchini M, Dantes Z, Valenti G, White RA, Middelhoff MA, et al. Cholinergic Signaling via Muscarinic Receptors Directly and Indirectly Suppresses Pancreatic Tumorigenesis and Cancer Stemness. Cancer Discov. 2018;8(11):1458–73.

27. Magnon C, Hall SJ, Lin J, Xue X, Gerber L, Freedland SJ, Frenette PS. Autonomic nerve development contributes to prostate cancer progression. Science. 2013;341(6142):1236361.

28. Zhao CM, Hayakawa Y, Kodama Y, Muthupalani S, Westphalen CB, Andersen GT, Flatberg A, Johannessen H, Friedman RA, Renz BW, et al. Denervation suppresses gastric tumorigenesis. Sci Transl Med. 2014;6(250):250ra115.

29. Liebl F, Demir IE, Rosenberg R, Boldis A, Yildiz E, Kujundzic K, Kehl T, Dischl D, Schuster T, Maak M, et al. The severity of neural invasion is associated with shortened survival in colon cancer. Clin Cancer Res. 2013;19(1):50–61.
30. Sloan EK, Priceman SJ, Cox BF, Yu S, Pimentel MA, Tangkanangnukul V, Arevalo JM, Morizono K, Karanikolas BD, Wu L, et al. The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer Res. 2010;70(18):7042–52.

31. Albo D, Akay CL, Marshall CL, Wilks JA, Verstovsek G, Liu H, Agarwal N, Berger DH, Ayala GE. Neurogenesis in colorectal cancer is a marker of aggressive tumor behavior and poor outcomes. Cancer. 2011;117(21):4834–45.

32. Peterson SC, Eberl M, Vagnozzi AN, Belkadi A, Veniaminova NA, Verhaegen ME, Bichakjian CK, Ward NL, Dlugosz AA, Wong SY. Basal cell carcinoma preferentially arises from stem cells within hair follicle and mechanosensory niches. Cell Stem Cell. 2015;16(4):400–12.

33. Allen JK, Armaiz-Pena GN, Nagaraja AS, Sadaoui NC, Ortiz T, Dood R, Ozcan M, Herder DM, Haemmerle M, Gharpure KM, et al. Sustained Adrenergic Signaling Promotes Intratumoral Innervation through BDNF Induction. Cancer Res. 2018;78(12):3233–42.

34. Hayakawa Y, Sakitani K, Konishi M, Asfaha S, Niikura R, Tomita H, Renz BW, Tailor Y, Macchini M, Middelhoff M, et al. Nerve Growth Factor Promotes Gastric Tumorigenesis through Aberrant Cholinergic Signaling. Cancer Cell. 2017;31(1):21–34.

35. Chida Y, Hamer M, Wardle J, Steptoe A. Do stress-related psychosocial factors contribute to cancer incidence and survival? Nat Clin Pract Oncol. 2008;5(8):466–75.

36. Giese-Davis J, Collie K, Rancourt KM, Neri E, Kraemer HC, Spiegel D. Decrease in depression symptoms is associated with longer survival in patients with metastatic breast cancer: a secondary analysis. J Clin Oncol. 2011;29(4):413–20.

37. Kornblith AB, Herndon JE 2nd, Weiss RB, Zhang C, Zuckerman EL, Rosenberg S, Mertz M, Payne D, Jane Massie M, Holland JF, et al. Long-term adjustment of survivors of early-stage breast carcinoma, 20 years after adjuvant chemotherapy. Cancer. 2003;98(4):679–89.

38. Andersen BL, Farrar WB, Golden-Kreutz DM, Glaser R, Emery CF, Crespin TR, Shapiro CL, Carson WE. Psychological, behavioral, and immune changes after a psychological intervention: a clinical trial. J Clin Oncol. 2004;22(17):3rd. 3570–3580.

39. Su F, Ouyang N, Zhu P, Ouyang N, Jia W, Gong C, Ma X, Xu H, Song E. Psychological stress induces chemoresistance in breast cancer by upregulating mdr1. Biochem Biophys Res Commun. 2005;329(3):888–97.

40. Ulrich-Lai YM, Herman JP. Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci. 2009;10(6):397–409.

41. Thaker PH, Han LY, Kamat AA, Arevalo JM, Takahashi R, Lu C, Jennings NB, Armaiz-Pena G, Bankson JA, Ravoori M, et al. Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat Med. 2006;12(8):939–44.

42. Drell TLt, Joseph J, Lang K, Niggemann B, Zaneker KS, Entschladen F. Effects of neurotransmitters on the chemokinesis and chemotaxis of MDA-MB-468 human breast carcinoma cells. Breast Cancer Res Treat. 2003;80(1):63–70.
43. Zahalka AH, Arnal-Estapé A, Maryanovich M, Nakahara F, Cruz CD, Finley LWS, Frenette PS. Adrenergic nerves activate an angio-metabolic switch in prostate cancer. Science. 2017;358(6361):321–6.

44. Hanoun M, Maryanovich M, Arnal-Estapé A, Frenette PS. Neural regulation of hematopoiesis, inflammation, and cancer. Neuron. 2015;86(2):360–73.

45. Dantzer R. Neuroimmune Interactions: From the Brain to the Immune System and Vice Versa. Physiol Rev. 2018;98(1):477–504.

46. Abubakar M, Sung H, Bcr D, Guida J, Tang TS, Pfeiffer RM, Yang XR. Breast cancer risk factors, survival and recurrence, and tumor molecular subtype: analysis of 3012 women from an indigenous Asian population. Breast Cancer Res. 2018;20(1):114.

47. Key TJ, Verkasalo PK, Banks E. Epidemiology of breast cancer. Lancet Oncol. 2001;2(3):133–40.

48. McAndrew NP, Finn RS. Management of ER positive metastatic breast cancer. Semin Oncol. 2020;47(5):270–7.

49. Bergen ES, Berghoff AS, Medjedovic M, Rudas M, Fitzal F, Bago-Horvath Z, Dieckmann K, Mader RM, Exner R, Gnalt M, et al. Continued Endocrine Therapy Is Associated with Improved Survival in Patients with Breast Cancer Brain Metastases. Clin Cancer Res. 2019;25(9):2737–44.

50. Brandt J, Garne JP, Tengrup I, Manjer J. Age at diagnosis in relation to survival following breast cancer: a cohort study. World J Surg Oncol. 2015;13:33.

51. Tzikas AK, Nemes S, Linderholm BK. A comparison between young and old patients with triple-negative breast cancer: biology, survival and metastatic patterns. Breast Cancer Res Treat. 2020;182(3):643–54.

Figures
Figure 1

IHC staining of PGP9.5 and GAP43 identified nerve trunks and fibres with similar patterns and frequencies in breast cancer tissues. A. Representative microphotographs of IHC staining of PGP9.5 and GAP43 in serial breast cancer tissue sections. Scale bar, 100µm. B. The positive correlation in the counts of nerve trunks (left) or fibres (right) identified by staining of PGP9.5 and GAP43 with IHC (regression analysis).
Figure 2

Representative microphotographs of IHC staining of PGP9.5 showing nerve trunks (A) and nerve fibres around cancer cell nests (B), alongside blood vessels (C), next to adipocytes and infiltrating into cancer nests (D).
Figure 3

Nerve trunks and fibres present in breast cancer tissues are predominantly of the sympathetic nervous system. A. Representative microphotographs of IHC staining of PGP9.5 and TH in serial breast cancer tissue sections. Scale bar, 100µm. B. The positive correlation in the counts of nerve trunks (left) or fibres (right) identified by staining of PGP9.5 and TH using IHC (regression analysis).
Figure 4

Log-rank analysis of the probability of PFS (A) and OS (B) of patients of breast cancers with or without the presence of nerves.
Figure 5

Log-rank analysis of the probability of PFS and OS of patients of breast cancers with or without the presence of nerve fibres (A & B), with high or low densities of nerve fibres defined with the median (C & D) or high quartile (E & F) of nerve fibre counts as the cut-off (C & D).
Figure 6

Log-rank analysis of the probability of PFS and OS of patients of breast cancers with or without the presence of nerve trunks (A & B), with high or low densities of nerve trunks defined with the median (C & D) or high quartile (E & F) of nerve trunk counts as the cut-off (C & D).

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Additionalfile.docx