Functional ADA Polymorphism Increases Sleep Depth and Reduces Vigilant Attention in Humans

Valérie Bachmann1,2, Federica Klaus1, Sereina Bodenmann1, Nikolaus Schäfer3, Peter Brugger2,4, Susanne Huber5, Wolfgang Berger2,3 and Hans-Peter Landolt1,2

1Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland, 2Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland, 3Institute of Medical Molecular Genetics, University of Zurich, Schwerzenbach, Switzerland, 4Department of Neurology, University Hospital Zurich, Zurich, Switzerland and 5Clinical Psychology and Psychotherapy Lab, University of Zurich, Switzerland

Homeostatically regulated slow-wave oscillations in non-rapid eye movement (REM) sleep may reflect synaptic changes across the sleep–wake continuum and the restorative function of sleep. The nonsynonymous c.22G>A polymorphism (rs73598374) of adenosine deaminase (ADA) reduces the conversion of adenosine to inosine and predicts baseline differences in sleep slow-wave oscillations. We hypothesized that this polymorphism affects cognitive functions, and investigated whether it modulates electroencephalogram (EEG), behavioral, subjective, and biochemical responses to sleep deprivation. Attention, learning, memory, and executive functioning were quantified in healthy adults. Right-handed carriers of the variant allele (G/A genotype, n = 29) performed worse on the d2 attention task than G/G homozygotes (n = 191). To test whether this difference reflects elevated homeostatic sleep pressure, sleep and sleep EEG before and after sleep deprivation were studied in 2 prospectively matched groups of G/A and G/G genotype subjects. Deep sleep and EEG 0.75- to 1.5-Hz oscillations in non-REM sleep were significantly higher in G/A than in G/G genotype. Moreover, attention and vigor were reduced, whereas waking EEG alpha activity (8.5–12 Hz), sleepiness, fatigue, and α-amylase in saliva were enhanced. These convergent data demonstrate that genetic reduction of ADA activity elevates sleep pressure and plays a key role in sleep and waking quality in humans.

Keywords: adenosine deaminase, cognitive performance, plasticity, slow-wave sleep, synaptic homeostasis

Introduction

Sleep homeostasis refers to the general principle that elevated sleep need following sleep loss is counteracted by prolonged sleep duration and, especially, by enhanced sleep intensity (Borbély 1980, 1982; Daan et al. 1984). A highly predictable and reliable marker of non-rapid eye movement (REM) sleep intensity is the prevalence of slow-wave oscillations in the electroencephalogram (EEG). Accumulating evidence indicates that EEG slow-wave oscillations in non-REM sleep are causally linked to local synaptic processes, which reflect the duration and quality of prior wakefulness (Rao et al. 2007; Massimini et al. 2009). Homer 1a, brain-derived neurotrophic factor (BDNF), and other molecular markers of brain plasticity were recently suggested to play causal roles in sleep homeostasis (Maret et al. 2007; Faraguna et al. 2008).

Slow (delta)-wave oscillations characterizing deep non-REM sleep consist at the cellular level of rhythmic alternations in the membrane potential of cortical neurons between a hyperpolarized down-state and a depolarized up-state (Steriade et al. 1993). Given their tight homeostatic regulation (Bersagliere and Achermann 2010), slow waves are thought to be essential for the functions of sleep, which may include synaptic homeostasis, learning, and consolidation of memories (Tononi and Cirelli 2006; Diekelmann and Born 2010). In support of these views, pharmacological and electrical induction of slow-wave oscillations during sleep may potentiate memories and reduce the detrimental consequences of sleep restriction on cognitive performance (Marshall et al. 2006; Walsh et al. 2006, 2010). In contrast, sleep deprivation and experimental slow-wave suppression may impair many cognitive abilities such as attention, perceptual processing and learning, hippocampal activation, and memory encoding (Aeschbach et al. 2008; Landsness et al. 2009; Tomasi et al. 2009; Van Der Werf et al. 2009).

The molecular and neurochemical bases of sleep homeostasis, and the relationships between waking brain activity and sleep slow-wave oscillations are poorly understood. However, adenosine and its receptors play a well-established role in sleep homeostasis (Basheer et al. 2004; Landolt 2008). Moreover, in vitro data show that, for example, the facilitatory action of BDNF on long-term potentiation (LTP) requires endogenous adenosine. More specifically, enhanced LTP by BDNF in hippocampal slices was prevented when adenosine was removed with the adenosine metabolizing enzyme adenosine deaminase (ADA) (Fontinha et al. 2008). Thus, it is possible that BDNF and the adenosine neuromodulator system interact to mediate the consequences of neural activity during wakefulness on the homeostatic regulation of non-REM sleep.

Adenosine kinase (ADK) and ADA contribute to the regulation of extracellular adenosine levels (Fredholm et al. 2005). Not only ADK (Palchykova et al. 2010) but also ADA may be involved in homeostatic sleep–wake regulation. Converging genetic and pharmacological studies in mice and rats indicate an important role for Ada in regulating the buildup of non-REM sleep need during prolonged wakefulness, as well as non-REM sleep intensity (Franken et al. 2001; Okada et al. 2003). In humans, a functional G>A transition at nucleotide position 22 of the coding sequence of the ADA gene (c.22G>A; rs73598374) is associated with enhanced slow-wave activity in baseline sleep (Réty et al. 2005). While these data suggest that this genetic variation increases non-REM sleep pressure, the answers to the questions whether it also affects cognitive performance and sleep homeostasis are unknown.

Heterozygous G/A allele carriers of ADA show reduced ADA enzymatic activity (Battistuzzi et al. 1981; Riksen et al. 2008)
and may have higher endogenous adenosine levels than homozygous G/G genotype subjects (Hirschhorn et al. 1994). We investigated the functional consequences of the c.22G>A polymorphism of ADA in 220 healthy volunteers, and systematically recorded self-reported sleep–wake habits and quantified cognitive abilities including attention, learning, memory, and executive functioning. In a subsequent case–control study in 22 healthy adults, 4-week rest–activity patterns and homeostatic sleep–wake regulation were studied by quantifying neurophysiological, behavioral, subjective, and biochemical responses to a night without sleep. Based on the previous findings, we hypothesized that the G/A genotype subjects would exhibit higher sleep pressure and habitually sleep longer, show more slow-wave sleep and slow-wave activity, and be more strongly affected by sleep deprivation than the G/G homozygotes.

Materials and Methods

Subject Recruitment and Genotyping

The Cantonal ethics committee for research on human subjects reviewed and approved the study protocol and all experimental procedures. They were conducted according to the principles of the Declaration of Helsinki. All participants provided written informed consent.

One hundred twenty-seven men and 118 women were genotyped. The prevalence of the G/A genotype was roughly 13% (31/245), whereas 87% had the G/G genotype (214/245) and no individual with A/A genotype was present. These genotype frequencies are in accordance with previous findings in a healthy Italian population (Persico et al. 2000). Self-reported sleep–wake habits, attention, learning, memory, and executive performance were systematically quantified. Because we were also interested in lateralized cognitive functions (see Supplementary Table 1) and right-handedness guarantees a uniform degree of functional lateralization, only the data of right-handed individuals (n = 220) were analyzed. Among the G/A genotype subjects, 5 healthy women and 6 healthy men (all Swiss or German) willing to participate in a sleep deprivation study were recruited for the laboratory experiment. They were prospectively matched with 11 G/G homozygotes with regard to sex, age, years of education, habitual alcohol and caffeine intake, body mass index, trait anxiety, diurnal preference, and daytime sleepiness (see Supplementary Table 2). Women were matched with respect to the phase in the menstrual cycle (follicular phase, luteal phase). All participants reported to have no alcohol and caffeine intake, body mass index, trait anxiety, diurnal preference, and daytime sleepiness in accordance with previous findings in a healthy Italian population (Persico et al., 2000), and to wear a wrist activity monitor on the nondominant arm, and occasionally take a walk outside the laboratory. They received normal meals 3 times a day, prepared either in the university cafeteria or by themselves in a kitchen adjacent to the laboratory. The last night (24:00-10:00) served as recovery night from sleep deprivation.

Laboratory Study to Examine Homeostatic Sleep–Wake Regulation

All participants of the laboratory study were polysomnographically screened in the sleep lab, to exclude poor sleep efficiency and unrecognized preexisting sleep disorders.

The experimental protocol consisted of 4 nights and 2 days in the sleep laboratory. The first and second nights (24:00-08:00) served as adaptation and baseline, respectively. The subsequent 2 days and 1 night, subjects were not allowed to sleep. During the 40-h prolonged wakefulness, they were constantly supervised by members of the research team. Subjects were free to read, study, play games, watch movies, and occasionally take a walk outside the laboratory. They received normal meals 3 times a day, prepared either in the university cafeteria or by themselves in a kitchen adjacent to the laboratory. The last night (24:00-10:00) served as recovery night from sleep deprivation.

Pre-study Procedures

For 2 weeks prior to the study, volunteers were asked to abstain from all sources of caffeine (coffee, tea, cola drinks, chocolate, and energy drinks), to wear a wrist activity monitor on the nondominant arm, and to keep a sleep–wake diary. For 3 days before and during the study, all subjects had to also abstain from alcohol and to maintain regular 8:16-h sleep–wake cycles. Bedtimes were scheduled from 24:00 to 08:00. When not adhering to the directives, subjects were excluded from the study. The smokers were asked to write down the number of cigarettes per day (not more than ~10 cigarettes per day were allowed). During the study, the 2 pairs of smokers were allowed to smoke at the same predefined times, in order to avoid withdrawal.

All-Night Polysomnography

Polysomnographic recordings including EEG, bipolar electrocrocogram (EOG), mental electromyogram (EMG), and electrocardiogram (ECG) were continuously conducted during all experimental nights, with REMbrandt DataLab (version 8; Embla Systems, Broomfield, CO) and the polygraphic analyzer Artisan (Micromed, Mogliano Veneto, Italy). Analog signals were conditioned by a high-pass filter (EEG: ~3 dB at 0.15 Hz; EOG: 10 Hz; EMG: 1 Hz) and an anti-aliasing low-pass filter (~3 dB at 67.2 Hz), digitized, and transmitted via fiber optic cables to a personal computer. Data were sampled with a frequency of 256 Hz. The EEG was recorded from 1 referential (C3A2) and 8 bipolar derivations along the left and right anterior-posterior axes. The data derived from the C3A2 derivation are reported here.

Sleep stages (Rechtschaffen and Kales 1968) were visually scored for 20-s epochs with REMbrandt Analysis Manager (version 8; Embla Systems, Broomfield, CO) and the polygraphic analyzer Artisan (Micromed, Mogliano Veneto, Italy). Analog signals were conditioned by a high-pass filter (EEG: ~3 dB at 0.15 Hz; EOG: 10 Hz; EMG: 1 Hz) and an anti-aliasing low-pass filter (~3 dB at 67.2 Hz), digitized, and transmitted via fiber optic cables to a personal computer. Data were sampled with a frequency of 256 Hz. The EEG was recorded from 1 referential (C3A2) and 8 bipolar derivations along the left and right anterior-posterior axes. The data derived from the C3A2 derivation are reported here.
Alpha-amylase Activity in Saliva

Subjects received oral instructions and performed 1 training session on a computer screen, subjects had to press a button with their right hand when a digital millisecond counter started to scroll in the center of the screen. The software e-Prime (Psychology Software Tools Inc., Pittsburgh, PA) was used to implement the task on a PC, using a version of the Stanford Sleepiness Scale (Sturm and Clarenbach 1997). Subjective sleepiness, vigor, depression, and anger were also quantified at 16:45 h (first assessment at 08:10 after the baseline night). Subjective sleepiness was quantified using the version of the Stanford Sleepiness Scale (Sturm and Clarenbach 1997).

Psychomotor Vigilance Task

All participants completed at 3-h intervals during extended wakefulness fourteen 10-min sessions of the psychomotor vigilance task (PVT) (Durmer and Dinges 2005). The task was implemented on a PC, using the software e-Prime (Psychology Software Tools Inc., Pittsburgh, PA). When a digital millisecond counter started to scroll in the center of the computer screen, subjects had to press a button with their right forefinger on a response box connected to the PC. In each session, 100 stimuli were presented (random interstimulus intervals: 2-10 s). Subjects received oral instructions and performed 1 training session on the evening prior to the adaptation night.

Alpha-amylase Activity in Saliva

Saliva samples (Salivertes, Sarstedt, Nümbrecht, Germany) were collected at 2-h intervals throughout prolonged wakefulness, starting at 08:00 after the baseline night. Salivary α-amylase activity (SAA), an indirect marker of sympathoadrenal activity (van Stegeren et al. 2006) and a recently proposed biomarker of sleep drive (Seugnet et al. 2006), was determined according to previously reported procedures (Nater et al. 2007).

Data Analyses and Statistics

Cognitive performance, habitual sleep duration, sleep architecture, sleep and waking EEG, subjective sleepiness, mood states, sustained vigilant attention, and SAA in baseline and during/after sleep deprivation were analyzed in G/A and G/G genotype subjects. All statistical analyses were performed with SAS 9.1.3 software (SAS Institute, Cary, NC). Variables that were not normally distributed (absolute EEG power values and response lapses on the PVT) were transformed to approximate a normal distribution. Two- and 3-way mixed-model analyses of variance (ANOVAs) with the between-subjects factor "gender" (female, male) and the within-subjects factors "genotype" (G/A, G/G), "condition" (baseline, recovery/deprivation), "non-REM sleep episode" (1-4), "session" (14 assessments during prolonged waking), or "time" (7 time points of SAA determination) were performed. The significance level was set at α < 0.05. If not stated otherwise, only significant effects of factors and interactions are mentioned. Paired and unpaired, 2-tailed t-tests to localize differences within and between groups were only performed when the respective main effects and/or interactions of the ANOVA were significant.

Results

The c.22G>A Polymorphism of ADA Modulates Focused Attention

Performance on various tasks reflecting learning, memory, and executive functioning was similar in G/A and G/G genotypes of ADA (see Supplementary Table 1). Nevertheless, analysis of the d2 attention task in 29 G/A and 191 G/G genotype subjects with right-hand dominance revealed that the G/A genotype processed roughly 30 items less than the G/G genotype (503 ± 12.6 vs. 534 ± 5.3, P < 0.04). This genotype-dependent difference reflects reduced speed in the G/A genotype and was also present in the participants of the laboratory experiment (see below). In contrast, the number of commission and omission errors did not differ between the groups.

The c.22G>A Polymorphism of ADA Does Not Affect Habitual Sleep Duration

The Munich Chronotype Questionnaire suggested similar sleep length on work days and leisure days in G/A (n = 29) and G/G (n = 191) genotypes (Pall > 0.4, data not shown). Four-week rest-activity monitoring in the participants of the laboratory study confirmed this notion. Irrespective of genotype, habitual sleep duration equaled roughly 7.6-7.7 h when averaged over work and leisure days (see Supplementary Table 3).

The c.22G>A Polymorphism of ADA Predicts Individual Differences in Slow-Wave Sleep

Both genotype groups showed normal sleep architecture, including short sleep latency and high sleep efficiency in the baseline night (see Supplementary Table 4). Nevertheless, corroborating our previous finding (Rétey et al. 2005), the G/A genotype subjects spent more time in slow-wave sleep than the G/G genotype subjects (123.9 ± 7.2 vs. 100.3 ± 6.1 min, P < 0.001).

Sleep episode duration, total sleep time, sleep efficiency, and slow-wave sleep increased in the recovery night after sleep loss when compared with the baseline night. On the contrary, sleep latency, wakefulness after sleep onset, stage 1, stage 2, and REM sleep were reduced. These sleep loss-induced changes in sleep architecture were independent of genotype (see Supplementary Table 4).

The c.22G>A Polymorphism of ADA Predicts Higher EEG Slow-Wave Activity in Non-REM Sleep

To draw conclusions about possible differences in sleep homeostasis between the genotypes, quantitative EEG analyses in sleep and wakefulness are mandatory. Slow-wave (0.75–1.5 Hz)
oscillatory activity in non-REM sleep was higher in G/A genotype than in G/G genotype, in both baseline and recovery nights (Fig. 1A). As a physiological marker of sleep homeostasis, slow-wave activity was highest in the first non-REM sleep episode and declined in the course of the night when sleep pressure dissipated (Fig. 2). This time course and the rebound after sleep loss were similar in both genotypes. The data suggest that the c.22G>A polymorphism of ADA does not interfere with the dynamics of sleep homeostasis. Nevertheless, the G/A genotype appears to exhibit higher overt sleep pressure than the G/G genotype. Supporting this hypothesis, the “relative” rebound in the first non-REM sleep episode was significantly smaller in A allele carriers than in G/G homozygotes (33.3 ± 7.7 vs. 52.8 ± 6.9 %, P < 0.05).

The c.22G>A Polymorphism of ADA Predicts Higher EEG Theta/Alpha Activity in Non-REM Sleep, REM Sleep, and Wakefulness

The genotype-dependent differences in non-REM sleep were not restricted to the slow-wave range, but also included theta and alpha oscillations. Irrespective of normal (baseline night) or elevated (recovery night) sleep pressure, the G/A genotype subjects exhibited higher activity in the entire 6.25-10 Hz band when compared with the G/G genotype subjects (Fig. 1A). Suggesting that this difference reflects altered EEG generating mechanisms rather than a genotype-specific difference in sleep–wake regulation, similar changes were also present in REM sleep (Fig. 1B, 7–12.5 Hz), as well as in wakefulness (Fig. 1C, 8.5–12 Hz). To examine whether the c.22G>A polymorphism of ADA affects homeostatic and circadian influences on EEG alpha oscillations in waking (Cajochen et al. 2002), the time course of activity in the 8.5– to 12-Hz range during extended wakefulness was quantified in G/A and G/G genotypes. Consistent with the conclusion that this genetic variation does not affect the dynamics of sleep–wake regulation, the genotype-dependent difference in alpha activity persisted throughout sleep deprivation and was not modulated by increasing time awake (Fig. 3A).

The c.22G>A Polymorphism of ADA Predicts Higher Sleepiness During Sleep Deprivation

Previous work suggested that increased alpha activity in waking EEG with eyes open may be associated with higher subjective sleepiness, and reduced alertness and sustained attention (Oken et al. 2006). Investigating the evolution of subjective sleepiness during sleep deprivation showed that sleepiness increased in both groups with prolonged time awake and was also modulated by circadian influences. The G/A genotypes, however, were sleepier than the G/G genotypes, particularly after the night without sleep (Fig. 3B). This conclusion was corroborated by the POMS. While sleep loss reduced subjective state in both groups, fatigue was higher and vigor was lower in the G/A genotype than the G/G genotype (Fig. 4). In contrast, the other POMS subscales were not affected by either sleep deprivation or genotype (data not shown).

The c.22G>A Polymorphism of ADA Predicts Reduced Sustained Attention During Sleep Deprivation

Performance on the PVT is a sensitive measure of sustained vigilant attention. Reaction times (RTs) and number of response lapses (RT > 500 ms) on the PVT were impaired by sleep loss in both ADA genotypes. However, consistent with increased EEG alpha activity and elevated subjective sleepiness, G/A genotype subjects performed consistently slower and produced more lapses than G/G genotype subjects throughout prolonged wakefulness (Fig. 3C, D). Importantly, the magnitude of the difference between the genotypes was large, comparable with the effects of 1 night without sleep. The data confirm that tonic alertness is impaired in healthy individuals with genetically reduced adenosine metabolism.

To further support this conclusion, performance on the d2 attention task was separately examined in the participants of the laboratory experiment. Corroborating the finding in the entire study sample, the G/A genotype processed significantly fewer items than the G/G genotype (Fig. 5). This difference reflects reduced speed on the d2 task.

![Figure 1. The functional c.22G>A polymorphism of ADA modulates EEG activity in non-REM sleep, REM sleep, and wakefulness. EEG power density (C3A2 derivation) between 0 and 20 Hz in the G/A genotype (n = 11) was expressed as a percentage of the corresponding values in the G/G genotype (n = 11; horizontal dashed line at 100%). Data in non-REM (A) (stages 2–4) and REM sleep (B) represent all-night values in baseline (white symbols) and recovery nights (black symbols). In the waking EEG (C), averaged power over five 5-min recordings at 8 AM, 11 AM, 2 PM, 5 PM, and 8 PM on day 1 (baseline, white squares) and day 2 (deprivation, black squares) during prolonged wakefulness is represented. Geometric means are plotted for each 0.25-Hz bin in non-REM and REM sleep, and for each 0.5-Hz bin in wakefulness. Black triangles denote a significant effect of “genotype” (F1,10 = 4.2, P < 0.05) of a 2-way mixed-model ANOVA with the within-subject factors “genotype” (G/A, G/G) and “condition” (baseline, recovery/deprivation).]
The c.22G>A Polymorphism of ADA Predicts Elevated α-Amylase Activity in Saliva

To investigate whether the c.22G>A polymorphism of ADA also affects a recently proposed biomarker of sleep drive (Seugnet et al. 2006), we quantified sAA throughout prolonged wakefulness. We found a pronounced diurnal variation, with highest values in the afternoon and lowest values early at night. Interestingly, sAA in the G/A genotype was significantly higher than in the G/G genotype (Fig. 6). These biochemical data are consistent with our neurophysiological, subjective, and behavioral findings, and support the conclusion that the G/A genotype of ADA is associated with elevated sleep pressure.

Discussion

This study demonstrates that healthy adults with genetically reduced ADA activity (G/A genotype) exhibit higher non-REM sleep pressure than individuals with unimpaired ADA activity (G/G genotype). The carriers of the variant allele have more slow-wave sleep, show enhanced brain oscillatory activity within 0.75–1.5 and 6–10 Hz in non-REM sleep (stages 2–4). In contrast, it does not affect the time course and the sleep loss–induced rebound of EEG slow-wave oscillations after sleep deprivation. Mean delta activity in G/A (left panel) and G/G genotypes (right panel) in non-REM sleep episodes 1–4 in baseline (gray bars) and recovery nights (black bars) is plotted. Error bars represent 1 standard error of the mean (n = 11). Three-way mixed-model ANOVA with the within-subject factors “genotype” (G/A, G/G), “condition” (baseline, recovery), and “non-REM sleep episode” (1–4) confirmed the significant effect of genotype: (f1,44.2 = 8.8, P < 0.005). **P < 0.01 (recovery vs. baseline; paired 2-tailed t-test); ***P < 0.001 (recovery vs. baseline; paired 2-tailed t-test).

The functional c.22G>A polymorphism of ADA predicts higher low-delta activity (C3A2 derivation, power within 0.75–1.5 Hz) in non-REM sleep (stages 2–4). In contrast, it does not affect the time course and the sleep loss–induced rebound of EEG slow-wave oscillations after sleep deprivation. Mean delta activity in G/A (left panel) and G/G genotypes (right panel) in non-REM sleep episodes 1–4 in baseline (gray bars) and recovery nights (black bars) is plotted. Error bars represent 1 standard error of the mean (n = 11). Three-way mixed-model ANOVA with the within-subject factors “genotype” (G/A, G/G), “condition” (baseline, recovery), and “non-REM sleep episode” (1–4) confirmed the significant effect of genotype: (f1,44.2 = 8.8, P < 0.005). **P < 0.01 (recovery vs. baseline; paired 2-tailed t-test); ***P < 0.001 (recovery vs. baseline; paired 2-tailed t-test).

Figure 2. The functional c.22G>A polymorphism of ADA predicts higher low-delta activity (C3A2 derivation, power within 0.75–1.5 Hz) in non-REM sleep (stages 2–4). In contrast, it does not affect the time course and the sleep loss–induced rebound of EEG slow-wave oscillations after sleep deprivation. Mean delta activity in G/A (left panel) and G/G genotypes (right panel) in non-REM sleep episodes 1–4 in baseline (gray bars) and recovery nights (black bars) is plotted. Error bars represent 1 standard error of the mean (n = 11). Three-way mixed-model ANOVA with the within-subject factors “genotype” (G/A, G/G), “condition” (baseline, recovery), and “non-REM sleep episode” (1–4) confirmed the significant effect of genotype: (f1,44.2 = 8.8, P < 0.005). **P < 0.01 (recovery vs. baseline; paired 2-tailed t-test); ***P < 0.001 (recovery vs. baseline; paired 2-tailed t-test).
The functional c.22G>A polymorphism of ADA predicts higher EEG alpha activity, elevated subjective sleepiness, and impaired sustained attention during prolonged wakefulness. Starting 15 min after wakening from the baseline night, 14 test sessions at 3-h intervals consisting of 5-min waking EEG recording, subjective sleepiness rating, and testing of sustained attention were completed in each individual. Ticks on the x-axis are rounded to the nearest hour. Black circles: G/A genotype (n = 11); gray circles: G/G genotype (n = 11). Data were analyzed with 2-way mixed-model ANOVA with the within-subject factors “genotype” (G/A, G/G) and “session” (14 assessments during prolonged wake). (A) Throughout prolonged wakefulness, EEG activity in the 8.5- to 12-Hz range was consistently higher in G/A genotype than in G/G allele carriers [genotype: F_{13,189} = 10.9, P < 0.003; session: F_{13,229} = 2.3, P < 0.007; genotype × session interaction: F_{13,189} = 0.2, P > 0.9]. (B) The evolution of subjective sleepiness during sleep deprivation was quantified with the Stanford Sleepness Scale. ANOVA revealed significantly higher sleepiness in the G/A genotype than in the G/G genotype [genotype: F_{1,35} = 6.3, P < 0.02; session: F_{13,155} = 42.1, P < 0.001; genotype × session interaction: F_{13,162} = 1.7, P < 0.08]. The difference becomes evident after the night without sleep. (C) and (D) Sustained attention during prolonged wakefulness was quantified with the PVT. The time courses of speed (1/median RT) and response lapses (RT > 500 ms, commission) were excluded from analyses. The G/A genotype performed significantly worse than the G/G genotype throughout prolonged wake (speed—genotype: F_{1,35} = 15.4, P < 0.001; session: F_{13,229} = 38.6, P < 0.001; genotype × session interaction: F_{13,144} = 0.3, P > 0.9; lapses—genotype: F_{1,66} = 24.5, P < 0.001; session: F_{13,194} = 19.5, P < 0.001; genotype × session interaction: F_{13,144} = 1.1, P > 0.3).

Figure 3. The functional c.22G>A polymorphism of ADA predicts higher EEG alpha activity, elevated subjective sleepiness, and impaired sustained attention during prolonged wakefulness. Starting 15 min after wakening from the baseline night, 14 test sessions at 3-h intervals consisting of 5-min waking EEG recording, subjective sleepiness rating, and testing of sustained attention were completed in each individual. Ticks on the x-axis are rounded to the nearest hour. Black circles: G/A genotype (n = 11); gray circles: G/G genotype (n = 11). Data were analyzed with 2-way mixed-model ANOVA with the within-subject factors “genotype” (G/A, G/G) and “session” (14 assessments during prolonged wake). (A) Throughout prolonged wakefulness, EEG activity in the 8.5- to 12-Hz range was consistently higher in G/A genotype than in G/G allele carriers [genotype: F_{13,189} = 10.9, P < 0.003; session: F_{13,229} = 2.3, P < 0.007; genotype × session interaction: F_{13,189} = 0.2, P > 0.9]. (B) The evolution of subjective sleepiness during sleep deprivation was quantified with the Stanford Sleepness Scale. ANOVA revealed significantly higher sleepiness in the G/A genotype than in the G/G genotype [genotype: F_{1,35} = 6.3, P < 0.02; session: F_{13,155} = 42.1, P < 0.001; genotype × session interaction: F_{13,162} = 1.7, P < 0.08]. The difference becomes evident after the night without sleep. (C) and (D) Sustained attention during prolonged wakefulness was quantified with the PVT. The time courses of speed (1/median RT) and response lapses (RT > 500 ms, commission) were excluded from analyses. The G/A genotype performed significantly worse than the G/G genotype throughout prolonged wake (speed—genotype: F_{1,35} = 15.4, P < 0.001; session: F_{13,229} = 38.6, P < 0.001; genotype × session interaction: F_{13,144} = 0.3, P > 0.9; lapses—genotype: F_{1,66} = 24.5, P < 0.001; session: F_{13,194} = 19.5, P < 0.001; genotype × session interaction: F_{13,144} = 1.1, P > 0.3).
Adenosine and adenosine receptors play a well-established role in sleep homeostasis, this neuromodulatory system could provide a rational target to intensify sleep, for example, in patients with insomnia, shallow sleep, and disturbed vigilance. Apart from possible unrelated unwanted reactions (Landolt 2008), the present genetic study shows that such an approach would likely impair the quality of wakefulness. More specifically, waking functions (e.g., sustained attention) could be reduced to an extent that is similar to the effect of 1 night without sleep. Indeed, with respect to another gene variant possibly involved in sleep–wake regulation, PER3^{5/5} genotype subjects of the circadian clock gene PERIOD-3 not only exhibit more slow-wave sleep and EEG low-frequency activity but are also more impaired by sleep deprivation than PER3^{4/4} homozygotes (Viola et al. 2007). Our findings demonstrate that a similar sleep phenotype can impair waking performance even in well-rested individuals.

Conclusions

In conclusion, functional polymorphic variation of ADA in healthy adults distinctly affects non-REM sleep intensity, EEG theta/alpha frequencies in sleep and wakefulness, attention, subjective sleepiness, and α-amylase activity in saliva. These differences do not mirror differences in habitual sleep duration and are robust against the effects of sleep deprivation. Thus, they do not reflect a genotype-dependent alteration in the dynamics of sleep homeostasis. This observation is consistent with recent findings in monozygotic and dizygotic twins, showing that the pronounced genetic influences on the sleep EEG are independent of elevated sleep pressure after sleep loss (De Gennaro et al. 2008). Moreover, as shown in rats (Mackiewicz et al. 2003), Ada enzymatic activity is not affected by sleep deprivation. The data rather suggest an elevated level in overt non-REM sleep propensity in the G/A genotype compared with G/G homozygotes, which may be due to elevated adenosinergic tone at the synapse because of genetically reduced ADA activity. Whether this difference directly underlies the observed phenotypes in sleep and wakefulness, or whether it modulates other molecular systems contributing to the homeostatic regulation of sleep propensity, remains to be elucidated.

Supplementary Material

Supplementary material can be found at: http://www.cercor.oxfordjournals.org/
Notes
We thank Katharina Hefti and Renate Wehrle for their help with data collection, and Roland Dürr and Peter Achermann for providing us with the dedicated software for EEG analyses.

Conflict of Interest: None declared.

References
Aeschbach D, Cutler AJ, Ronda JM. 2008. A role for non-rapid-eye-movement sleep homeostasis in perceptual learning. J Neurosci. 28:2766-2772.

Amzica F, Steriade M. 1998. Electrophysiological correlates of sleep delta waves. Electroencephalograph Clin Neurophysiol. 107:69-83.

Ascherbach D, Cutler AJ, Ronda JM. 2008. A role for non-rapid-eye-movement sleep homeostasis in perceptual learning. J Neurosci. 28:1461-1480.

Hallasa MM, Florian C, Fellin T, Munoz JR, Lee SY, Abel T, Hayden PG, Frank MG. 2009. Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron. 61:213-219.

Hallasa MM, Hayden PG. 2010. Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. Annu Rev Physiol. 72:335-355.

Haydon PG, Cermignano G. 2006. Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev. 86:1009-1031.

Hirschbhorn R, Yang DR, Iatrani A. 1994. An Asp89Asn substitution results in the adenosine deaminase (ADA) genetic polymorphism (ADA 2 allozyme): occurrence on different chromosomeal backgrounds and apparent intragenic crossover. Ann Hum Genet. 58:1-9.

Huang ZL, Qu WM, Eguchi N, Chen JF, Schwarzschild MA, Fredholm BB, Urdie Y, Hayashi O. 2005. Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nat Neurosci. 8:858-859.

Heller R, Ghiardi MF, Massimini M, Tononi G. 2004. Local sleep and learning. Nature. 430:78-81.

Kattler H, Dijk Dij, Borbély AA. 1994. Effect of unilateral somatosensory stimulation prior to sleep on the sleep EEG in humans. J Sleep Res. 3:159-164.

Landolt HP. 2008. Sleep homeostasis: a role for adenosine in humans? Biochem Pharmacol. 75:2070-2079.

Landolt HP, Dijk Dij, Gaus SE, Borbély AA. 1995. Caffeine reduces low-frequency delta activity in the human sleep EEG. Neuropharmacology. 12:229-238.

Luo H, Rethy J, Tzokas K, Gottselig JM, Khatami R, Buckelmiiller I, Achermann P. 2004. Caffeine attenuates waking and sleep electroencephalographic markers of sleep homeostasis in humans. Neuropsychopharmacology. 29:1934-1939.

Landsnes EG, Crupi D, Hulse BK, Peterson MJ, Huber R, Ansari H, Cocn M, Cirelli C, Benca RM, Ghiardli MF, et al. 2009. Sleep-dependent improvement in visuomotor learning: a causal role for slow waves. Sleep. 32:1273-1284.

Mackiewicz M, Nikonenova EV, Zimmerman JE, Galante RJ, Zhang L, Ceter JK, Geiger JD, Pack AI. 2003. Enzymes of adenosine metabolism in the brain: diurnal rhythm and the effect of sleep deprivation. J Neurosci. 23:1761-1770.

Marshall L, Helgardt M, Møløe M, Born J. 2006. Boosting slow oscillations during sleep potentiates memory. Nature. 444:610-613.

Massimini M, Tononi G, Huber R. 2009. Slow waves, synaptic plasticity and information processing: insights from transcranial magnetic stimulation and high-density EEG experiments. Eur J Neurosci. 29:1761-1770.

Nater UM, Rohleder N, Schlotz W, Ehlert U, Kirschbaum C. 2007. Determinants of the diurnal course of salivary alpha-amylase. Psychoneuroendocrinology. 32:392-401.

Okaa T, Mochizuki T, Huang ZL, Eguchi N, Sugita Y, Urdie Y, Hayashi O. 2003. Dominant localization of adenosine deaminase in leptomeninges and involvement of the enzyme in sleep. Biochem Biophys Res Commun. 302:39-44.

Oken BS, Salinsky MC, Elsal SM. 2006. Vigilance, alertness, or sustained attention: physiological basis and measurement. Clin Neurophysiol. 117:1885-1901.

Olej SH, Mothet JP. 2006. Molecular determinants of D-serine-mediated gliotransmission: from release to function. Glia. 54:720-737.

Palchikova S, Winsky-Sommerer R, Shen HY, Boisdon D, Gerling A, Tobler I. 2010. Manipulation of adenosine kinase affects sleep regulation in mice. J Neurosci. 30:13157-13165.
Steriade M, Timofeev I, Grenier F. 2001. Natural waking and sleep states: a view from inside neocortical neurons. J Neurophysiol. 85:1969-1985.

Strauss E, Shermann E, Spreen O. 2006. A compendium of neuropsychological tests. New York: Oxford University Press.

Stroop J. 1935. Studies of interference in serial verbal reactions. J Exp Psychol. 18:643-662.

Sturm A, Clarenbach P. 1997. Schlafstörungen. Stuttgart (NY): Thieme Verlag.

Tasali E, Leproult R, Ehrmann DA, Van Cauter E. 2008. Slow-wave sleep and the risk of type 2 diabetes in humans. Proc Natl Acad Sci U S A. 105:1044-1049.

Timofeev I, Grenier F, Steriade M. 2001. Disfacilitation and active inhibition in the neocortex during the natural sleep-wake cycle: an intracellular study. Proc Natl Acad Sci USA. 98:1924-1929.

Tomasi D, Wang RL, Telang F, Boronikolas V, Jayne MC, Wang GJ, Fowler JS, Volkow ND. 2009. Impairment of attentional networks after 1 night of sleep deprivation. Cereb Cortex. 19:233-240.

Tononi G, Cirelli C. 2006. Sleep function and synaptic homeostasis. Sleep Med Rev. 10:49-62.

Towse JN. 1998. On random generation and the central executive of working memory. Br J Psychol. 89:77-101.

Urade Y, Eguchi N, Qu W-M, Sakata M, Huang ZL, Chen JF, Schwarzschild MA, Fink JS, Hayaishi O. 2003. Sleep regulation in adenosine A2A receptor-deficient mice. Neurology. 61:594-596.

Van Der Werf YD, Altena E, Schoonheim MM, Sanz-Arigita EJ, Vis JC, De Rijke W, Van Someren EJ. 2009. Sleep benefits subsequent hippocampal functioning. Nat Neurosci. 12:122-123.

van Stegeren A, Rohleder N, Everaerd W, Wolf OT. 2006. Salivary alpha amylase as marker for adrenergic activity during stress: effect of betablockade. Psychoneuroendocrinology. 31:137-141.

Viola AU, Archer SN, James LM, Groeger JA, Lo JC, Skene DJ, von Schantz M, Dijk DJ. 2007. PER3 polymorphism predicts sleep structure and waking performance. Curr Biol. 17:613-618.

Walsh JK, Hall-Porter JM, Griffin KS, Dodson ER, Forst EH, Curry DT, Eisenstein RD, Schweitzer PK. 2010. Enhancing slow wave sleep with sodium oxybate reduces the behavioral and physiological impact of sleep loss. Sleep. 33:1217-1225.

Walsh JK, Randaazzo AC, Stone K, Eisenstein R, Feren SD, Kajy S, Dickey P, Roehrs T, Roth T, Schweitzer PK. 2006. Tiagabine is associated with sustained attention during sleep restriction: evidence for the value of slow-wave sleep enhancement? Sleep. 29:433-443.