Supplementary of *Discovering weaker genetic associations guided by known associations*

Haohan Wang, Michael M. Vanyukov, Eric P. Xing, and Wei Wu

1 Instructions of Using the Software CS-LMM

Download and following the installation instruction at https://github.com/HaohanWang/CS-LMM.

One can also use CS-LMM software as a stand alone script without installation.

Run

```
python cslmm.py --help
```

for usage instructions as following:

Options:

- `-h`, `--help` show this help message and exit

Data Options:

- `-t` FILETYPE choices of input file type
- `-n` FILENAME name of the input file
- `-v` FILEVALIDATED list of the validated markers

Model Options:

- `--lambda=LMBD` the weight of the penalizer. If neither lambda or snum is given, cross validation will be run.
- `--snum=SNUM` the number of targeted variables the model selects. If neither lambda or snum is given, cross validation will be run.
- `-s` Stability selection
- `-q` Run in quiet mode
- `-m` Run without missing genotype imputation

Recommended Usage:

```
python cslmm.py -n data/mice.plink -v knownMarkers.txt --snum 20 -s
```

This command will first fit CS-LMM with the SNPs that are validated to be associated with the phenotype (stored in knownMarkers.txt, an id per line), and then run CS-LMM second phase to select 20 SNPs (together with the known ones) to be associated with the phenotype. The results will be stored in data/snps.132k.output.

Naive Usage

```
python cslmm.py -n data/mice.plink
```

This command does not require the user to specify any arguments. CS-LMM will first conduct Wald test to identify the most significantly associated SNPs and then fit the rest SNPs with the residue of fitting these SNPs. CS-LMM will also perform cross validation to select the appropriate regularization weight.
2 Longer List of Discovered Alcoholism SNPs

We run the our method with the same setting in the main paper except querying for a longer list (200 SNPs) of potential associated SNPs. The method converges with 155 SNPs. The MAF is calculated with the experimental data set.

Rank	SNP	Chr	Chr Position	Allele	MAF	GENE
1	rs1789891	4	99329261	A/C	0.1593	ADH1B
2	rs7590720	2	216033934	A/G	0.2859	PECR
3	rs2835872	21	37654969	A/G	0.252	KCNJ6
4	rs4478858	1	31411077	A/G	0.4413	SERINC2
5	rs2851300	4	99358666	C/T	0.3303	ADH1C
6	rs598	4	99339631	A/G/T	0.3303	ADH1C
7	rs1789924	4	99353128	C/T	0.3303	
8	rs10483038	21	37652468	C/T	0.252	KCNJ6
9	rs1344694	2	216028913	G/T	0.3185	PECR
10	rs4147536	4	99317954	G/T	0.2977	ADH1B
11	rs12482570	21	37705474	A/G	0.2846	KCNJ6
12	rs857975	21	37629310	A/C	0.2833	KCNJ6
13	rs4147544	4	99213356	A/G	0.4504	ADH6
14	rs2835853	21	37642589	A/C	0.2572	KCNJ6
15	rs717859	21	37640499	A/G	0.2572	KCNJ6
16	rs702860	21	37636326	A/G	0.2572	KCNJ6
17	rs11499823	4	99353591	C/T	0.1175	ADH1C
18	rs2835910	21	37713603	C/T	0.2963	KCNJ6
19	rs435398	4	99231767	A/G	0.254	KCNJ6
20	rs2187483	4	99212945	A/C	0.3838	ADH6
21	rs2835831	21	37614930	C/T	0.299	
22	rs702859	21	37625398	C/T	0.2728	KCNJ6
23	rs705648	2	216069068	C/T	0.2572	PECR
24	rs857978	21	37625823	C/T	0.2924	KCNJ6
25	rs6833176	4	99210005	C/G	0.3903	ADH6
26	rs1769835	21	37665333	C/T	0.394	KCNJ6
27	rs10047085	1	31429570	A/G	0.4034	SERINC2
28	rs934153	2	216025780	A/G	0.3094	
29	rs1399591	21	37681653	A/G	0.4896	KCNJ6
30	rs4371638	4	76519113	C/T	0.4086	SHROOM3
31	rs11576621	1	31322612	A/G	0.4099	ZCCHC17
32	rs1566691	1	31299602	C/T	0.4099	ZCCHC17
33	rs1159918	4	99321851	G/T	0.4726	ADH1B
34	rs493972	1	31266009	A/G	0.406	SNRNP40
35	rs12121165	1	31252694	A/G	0.406	
36	rs7523438	1	31315465	A/G	0.3956	ZCCHC17
37	rs858008	21	37693326	C/T	0.4634	KCNJ6
38	rs1229976	4	99280920	C/T	0.1932	ADH1A
39	rs4147545	4	99207595	A/G	0.3995	ADH6
40	rs3857224	4	99208527	C/T	0.3903	ADH6
41	rs1372679	4	99383372	C/T	0.0927	
42	rs12562824	1	31382034	A/G	0.2141	
43	rs1372680	4	99383387	A/C	0.107	
44	rs1614972	4	99336997	C/T	0.3812	ADH1C
45	rs494391	1	31360858	G/T	0.2128	FABP3
46	rs1995885	1	31382626	A/G	0.2128	UKN
47	rs4147547	4	99206153	A/C	0.342	ADH6
48	rs6663779	1	31362679	C/T	0.201	FABP3
49	rs777057	1	105548693	A/C	0.4399	UKN
50	rs6719499	2	79966259	A/G	0.2924	CTNNA2
Rank	SNP	Chr	Chr Position	Allele	MAF	GENE
------	--------	-----	--------------	--------	---------	----------
51	rs17548312	2	216086523	A/G	0.1997	TMEM169
52	rs9621631	22	330701070	C/T	0.3538	
53	rs1316509	1	31507154	C/T	0.4778	
54	rs2071122	X	153786451	A/G	0.3238	IDH3G
55	rs7585163	2	205028448	A/G/T	0.4948	PARD3B
56	rs4763707	12	11561719	A/G	0.4452	
57	rs1006841	17	66637120	A/C/T	0.4465	PRKCA
58	rs6425766	1	31542070	A/G	0.3956	
59	rs877447	17	66630414	A/G	0.4517	PRKCA
60	rs4773200	13	110503673	C/T	0.4269	COL4A2
61	rs3828541	4	99121110	A/G	0.3956	
62	rs2835886	21	37668039	C/T	0.483	KCNJ6
63	rs1008542	21	37668258	A/G	0.4843	KCNJ6
64	rs10521391	X	79267137	C/T	0.3003	
65	rs4813720	20	4816762	A/G	0.3655	RASSF2
66	rs4819853	22	20012236	A/G	0.3225	ARVCF
67	rs9389206	6	134704614	A/G	0.3525	
68	rs10914420	1	31511748	A/G	0.4347	
69	rs17670486	3	114339565	C/T	0.3486	ZBTB20
70	rs7061782	X	32884194	C/T	0.3982	DMD
71	rs6139039	20	3230045	A/G	0.3747	SLC4A11
72	rs7324140	13	105281349	C/T	0.2911	
73	rs694372	18	351113	A/C	0.4099	COLEC12
74	rs6435660	2	211707213	C/T	0.4843	ERBB4
75	rs2153275	1	31523051	C/T	0.4778	
76	rs6659255	1	31396821	C/T	0.1606	
77	rs4828534	X	16824789	A/G	0.4373	TXLNG
78	rs2835906	21	37710501	C/T	0.4922	KCNJ6
79	rs10493047	1	31268929	C/T	0.1462	SNRP40
80	rs2127514	X	16868457	A/C	0.3708	RBBP7
81	rs8142672	22	33073044	C/T	0.2676	
82	rs2702235	X	16244450	A/G	0.406	
83	rs5033262	X	133075157	C/T	0.3943	USP26
84	rs1296431	X	44447517	A/G	0.2115	
85	rs6548551	3	78293141	A/G	0.3799	
86	rs2835908	21	37712186	A/C	0.3225	KCNJ6
87	rs4699748	4	99400285	A/G	0.1397	
88	rs3851675	12	131604382	A/G	0.4191	
89	rs3850163	X	28427519	G/T	0.2781	
90	rs6675688	X	3071482	A/G	0.3368	
91	rs17409	X	144907362	A/C	0.3916	
92	rs10500899	11	21173899	C/T	0.3838	NELL1
93	rs400532	13	110502283	A/C	0.3512	COL4A2
94	rs726102	11	10262430	C/T	0.4843	SBF2
95	rs11042702	11	10266440	A/G	0.4817	SBF2
96	rs6425760	1	31522526	A/G	0.4504	
97	rs2406669	X	33349241	G/T	0.4151	
98	rs7544003	1	31216240	C/T	0.4974	NKAIN1
99	rs7520468	1	31215964	A/G	0.4974	NKAIN1
100	rs542255	2	79969609	G/T	0.1997	CTNNA2
Rank	SNP	Chr	Chr Position	Allele	MAF	GENE
------	--------------	-----	--------------	--------	------	-------
101	rs3915250	X	16305241	A/G	0.3629	
102	rs651595	X	123427505	A/G	0.4478	GRIA3
103	rs710312	11	10121565	A/G	0.483	SBF2
104	rs1243748	14	97700062	A/G	0.3655	
105	rs4939881	18	49635362	C/T	0.436	
106	rs951317	3	106839534	G/T	0.3916	
107	rs3015363	13	105251988	A/G	0.4961	
108	rs4597056	11	10269375	C/T	0.4804	SBF2
109	rs6657902	1	31525181	A/G	0.489	
110	rs1482455	6	63987927	C/T	0.3668	EYS
111	rs4938648	11	111464549	C/T	0.3016	BTG4
112	rs5928243	X	33351227	C/T	0.3838	
113	rs1945321	11	21174633	A/C	0.3799	NELL1
114	rs791243	10	1832159	C/T	0.4883	
115	rs10798852	1	31448483	A/G	0.3564	
116	rs10500898	11	21173805	C/T	0.4008	NELL1
117	rs951545	1	31371817	C/T	0.1632	FABP3
118	rs7661978	4	99363041	C/T	0.2389	
119	rs4827630	X	145221632	G/T	0.4961	
120	rs5919813	11	145219102	C/T	0.4961	
121	rs4364664	8	70092861	C/T	0.4569	
122	rs672056	1	31215263	C/T	0.423	NKAIN1
123	rs12319239	12	131608059	G/T	0.4883	
124	rs10833470	11	21168479	A/C	0.3642	NELL1
125	rs1038316	6	64002975	A/G	0.3668	EYS
126	rs2800881	1	111591287	C/T	0.3394	RAP1A
127	rs4806146	19	35380084	G/T	0.4869	
128	rs7942024	11	21170582	C/T	0.376	NELL1
129	rs8081512	17	66712747	A/G	0.4373	PRKCA
130	rs1884299	X	47310637	C/T	0.2833	
131	rs6760872	2	205066041	C/T	0.2924	PARD3B
132	rs5925062	X	151843727	C/T	0.4321	
133	rs4462057	X	132718462	A/G	0.4648	HS6ST2
134	rs2035256	5	80700812	A/G	0.4465	MSH3
135	rs6475768	9	23953635	C/T	0.4452	
136	rs440424	X	105618188	A/G	0.4178	IL1RAPL2
137	rs828704	2	216128878	A/C	0.1789	XRCC5
138	rs1955161	4	55788079	C/T	0.4204	
139	rs10057578	5	164986585	C/T	0.3943	
140	rs3908999	13	107700502	C/T	0.3473	FAM155A
141	rs1105289	11	132770460	C/T	0.3916	OPCM1
142	rs1042026	4	99307308	A/G	0.2467	ADH1B
143	rs10500896	11	21169469	C/T	0.376	NELL1
144	rs6680246	1	31214811	A/G	0.4974	NKAIN1
145	rs9344218	6	81681242	G/T	0.4856	
146	rs12072863	1	83362589	A/G	0.4687	
147	rs4519409	18	25142112	A/C	0.3551	ZNF521
148	rs5962542	X	105536509	A/G	0.4883	IL1RAPL2
149	rs4661617	1	15267169	C/T	0.3225	FHAD1
150	rs10955035	8	37881097	A/G	0.4504	RAB11FIP1
151	rs1106431	1	18038890	A/G	0.2689	
152	rs6936438	6	64009770	C/T	0.3877	EYS
153	rs17457845	1	105655139	A/C	0.483	
154	rs1736646	X	79340998	C/T	0.4112	
155	rs9873496	3	106314579	C/T	0.4008	
3 Longer List of Discovered Alzheimer’s SNPs

We also run our method for 200 potential associated SNPs in Alzheimer’s disease. The method reports 161 SNPs. The MAF is calculated with the experimental data set. The last column indicates whether this SNP has been reported in GWAS Catalog previously.

Rank	SNP	Chr	Chr Position	Allele	MAF	GENE					
1	rs2075650	19	44892361	A/G	0.1824	APOE					
2	rs157580	19	44892008	A/G	0.2657	TOMM40					
3	rs10027926	4	3412926	A/G	0.1407	RGS12					
4	rs12641089	4	3418112	A/G	0.137	RGS12					
5	rs3088231	4	3420483	A/G	0.1324	RGS12					
6	rs10512523	17	69044918	A/G	0.2806	ABCA9					
7	rs4076949	1	234066398	C/T	0.1787	SLC35F3					
8	rs874418	4	3440341	C/T	0.1889	HGFAC					
9	rs6842419	4	3475571	A/G	0.1602	DOK7					
10	rs16844383	4	3445515	C/T	0.213	HGFAC					
11	rs12131508	1	234017192	A/G	0.1676	SLC35F3					
12	rs12506821	4	3282832	C/T	0.1556						
13	rs11485175	1	222437867	C/T	0.2296						
14	rs584507	10	6489787	C/T	0.2398	PRKCQ					
15	rs12563892	1	216818263	C/T	0.3037	ESRRG					
16	rs6446731	4	3283023	A/G	0.2639						
17	rs7984051	13	70233816	A/G	0.2481						
18	rs2327771	20	13295733	A/G	0.2898	ISM1					
19	rs7548651	1	234012811	G/T	0.2	SLC35F3					
20	rs4330674	8	133209258	C/T	0.237	WISP1					
21	rs16885750	5	56578981	C/T	0.1167	C5orf67					
22	rs938412	3	188571268	C/T	0.3093	LPP					
23	rs4421636	1	76319707	C/T	0.2556	ST6GALNAC3					
24	rs10818118	9	118163681	C/T	0.25						
25	rs11754527	6	3819181	A/G	0.2907						
26	rs10238983	7	34859660	C/T	0.2213	NPSR1					
27	rs7109505	11	36267201	A/C	0.3259						
28	rs7938549	11	41542213	A/G	0.2694						
29	rs2063370	7	118641792	C/T	0.2546						
30	rs9485288	6	148377370	C/T	0.2722	SASH1					
31	rs743067	21	13797857	A/G	0.2333						
32	rs11771057	7	118635827	C/T	0.2556						
33	rs6341343	2	236139534	C/T	0.3259						
34	rs993900	7	85376623	A/G	0.212						
35	rs9636594	21	14756349	G/T	0.262						
36	rs155106	2	181486624	A/C	0.2546	ITGA4					
37	rs2618609	1	237502558	C/T	0.2926	RYR2					
38	rs7793626	7	89158933	C/T	0.2528	ZNF804B					
39	rs1361714	1	85494472	A/G	0.2546	DDAH1					
40	rs9675039	17	25367	A/G	0.2694	METRNL					
41	rs2843964	21	37062324	C/T	0.2556						
42	rs4922579	11	32114889	C/T	0.2519						
43	rs1557092	1	225768216	C/T	0.2741						
44	rs241430	6	4234296	A/G	0.2694	TAP2					
45	rs10871741	18	57168327	A/G	0.3						
46	rs13228264	7	89183079	A/G	0.2528	ZNF804B					
47	rs2822892	21	14749815	A/G	0.263						
48	rs9493157	6	131968016	C/T	0.2065						
49	rs2816764	14	49374888	A/G	0.1861						
50	rs11868097	17	69065756	A/G	0.2685	ABCA6					
Rank	SNP	Chr	Chr Position	Allele	MAF	GENE					
------	-------	-----	--------------	--------	------	---------					
51	rs957628	12	107585075	A/G	0.2028	BTBD11					
52	rs8019294	14	49408385	C/T	0.188						
53	rs8008868	14	49407040	A/G	0.188						
54	rs2296973	13	46892645	G/T	0.2972	HTR2A					
55	rs10091244	8	55931370	G/T	0.2944	LYN					
56	rs10838176	11	43810001	A/G	0.2731	HSD17B12					
57	rs7145145	14	36110723	A/G	0.2741						
58	rs16844364	4	3436915	A/G	0.2185	RGS12					
59	rs5507451	18	41938555	C/G/T	0.3037						
60	rs6972870	7	118682257	A/G	0.2491						
61	rs7694863	4	12538363	A/G	0.1981						
62	rs12812221	12	56925551	A/C	0.1583	SDR9C7					
63	rs16863792	2	176417262	A/G	0.2389						
64	rs6129693	21	40852633	A/C	0.2667						
65	rs553949	12	107587838	G/T	0.2056	BTBD11					
66	rs562850	7	105705670	A/G	0.1648	ATXN7L1					
67	rs963281	2	85380430	A/G	0.2102						
68	rs2833249	21	31064490	C/T	0.3056						
69	rs7689954	4	40449376	C/T	0.2754	RBM47					
70	rs937737	10	113410345	A/C	0.2296						
71	rs9862823	3	179747969	C/T	0.263	USP13					
72	rs2805425	1	237507256	A/G	0.2722	RYR2					
73	rs6601501	8	10678315	C/T	0.1954	C8orf74					
74	rs7668784	4	3337310	G/T	0.2167	RGS12					
75	rs851677	4	12550828	A/G	0.1991						
76	rs7965820	12	3122980	G/T	0.2046	TSPAN9					
77	rs1353825	9	16056228	A/C	0.2472	CCDC171					
78	rs9458813	7	274437557	C/T	0.236	USP13					
79	rs6025871	20	57890561	C/T	0.2926						
80	rs2921325	11	7080185	C/T	0.3278	SHANK2					
81	rs949513	8	4134454	C/T	0.3028						
82	rs1035285	12	30960528	A/G	0.2963	TSPAN11					
83	rs9288486	2	214064740	C/T	0.2981	SPAG16					
84	rs2135411	3	30073622	C/T	0.2731						
85	rs997758	9	9052137	A/G	0.2463						
86	rs803410	6	150832368	C/T	0.2648	PLEKHG1					
87	rs4121647	18	42115421	C/T	0.3009						
88	rs6774841	3	40576047	C/T	0.2769						
89	rs9529708	13	70237755	A/G	0.2463						
90	rs12324301	15	100246287	A/G	0.1685	ADAMTS17					
91	rs701851	10	93417944	C/T	0.2	MYOF					
92	rs1887826	13	70232417	C/T	0.2352						
93	rs2381181	9	4938231	C/T	0.2056						
94	rs1970980	7	87081035	A/C	0.2824						
95	rs6950509	7	85412696	C/T	0.2074						
96	rs2067613	3	176189553	A/G	0.2806						
97	rs12628419	22	43318248	C/T	0.3556	SCUBE1					
98	rs2225163	9	14592181	A/C	0.2611	ZDHHC21					
99	rs10829413	10	128470056	A/G	0.2806						
Rank	SNP	Chr	Chr Position	Allele	MAF	GENE					
------	--------	-----	--------------	--------	-------	--------					
101	rs2959025	8	104467051	A/G	0.2907	DPYS					
102	rs2049974	22	36546275	A/G	0.2963						
103	rs6802186	3	131715414	C/T	0.3241	CPNE4					
104	rs9542210	13	70191895	C/T	0.2435						
105	rs1999749	10	118452644	G/T	0.2537						
106	rs1312924	4	179412951	A/G	0.2907						
107	rs778865	7	118707579	C/T	0.2546						
108	rs4832047	2	16524127	A/G	0.2852						
109	rs2306238	1	237550802	C/T	0.1954	RYR2					
110	rs3102817	7	69079064	G/T	0.2796						
111	rs4628411	X	23212530	C/T	0.3852	PTCHD1-AS					
112	rs794776	6	15288523	A/G	0.4	JARID2					
113	rs4709859	17	1994525	A/G	0.2333	RTN4L1					
114	rs4868126	5	171856464	G/T	0.2639						
115	rs9321247	6	130685553	A/G	0.2546						
116	rs9532412	13	39657777	C/T	0.2935	COG6					
117	rs6933963	6	124749771	A/C	0.2491	NKAIN2					
118	rs1557627	22	19689683	C/T	0.2398						
119	rs7824502	8	82033529	A/G	0.2991						
120	rs1241079	18	35550963	C/T	0.2704						
121	rs10930731	2	176437961	A/G	0.25						
122	rs1443363	9	90068632	C/T	0.2481						
123	rs1571447	9	90068632	A/G	0.2481						
124	rs9514356	13	105079562	C/T	0.3676						
125	rs236476	6	36722929	A/G	0.2926	RAB44					
126	rs241433	6	4230271	G/T	0.2657	TAP2					
127	rs2176507	1	223420891	C/T	0.2861						
128	rs17712902	7	39427027	C/T	0.0954	POU6F2					
129	rs4894505	3	176203095	G/T	0.2796						
130	rs9290704	3	102441660	G/T	0.2667	ZPLD1					
131	rs1683250	15	35468738	C/T	0.2407	DPH6					
132	rs4391047	4	12581256	C/T	0.2099						
133	rs1145768	6	90860827	C/T	0.2583						
134	rs11033542	11	36303411	A/G	0.2991	PRR5L					
135	rs12040106	1	223434046	G/T	0.2861						
136	rs12046563	1	42671608	A/G	0.2333	PPIH					
137	rs2833251	21	31067781	A/G	0.3074						
138	rs208807	20	38870495	A/G	0.2593	PPP1R16B					
139	rs925351	7	118660335	A/G	0.2528						
140	rs9297040	6	17583603	C/T	0.237						
141	rs4974035	3	40558900	A/G	0.2704						
142	rs803401	6	150838493	A/G	0.2759	PLEKHG1					
143	rs7583955	2	230168571	A/C	0.2389	SP110					
144	rs12087818	1	33219782	C/T	0.2991	PCNX2					
145	rs2997977	1	237506067	A/G	0.2787	RYR2					
146	rs7146832	14	49420604	A/C	0.2056						
147	rs9573412	13	74542953	C/T	0.3111						
148	rs236137	20	5099498	C/T	0.2852	CHGB					
149	rs17163831	1	223335650	A/G	0.2898	SUSD4					
150	rs2032088	21	37105029	A/G	0.2769	TTC3					
Rank	SNP	Chr	Chr Position	Allele	MAF	GENE					
------	---------	-----	--------------	--------	-------	-------					
151	rs2236620	22	116884	C/T	0.2704	SLC2A11					
152	rs2805468	1	237557810	A/G	0.2426	RYR2					
153	rs1941526	18	42072974	A/G	0.3	PIK3C3					
154	rs9598129	13	33806509	C/T	0.1481						
155	rs10910030	1	2104244	C/T	0.2972	PRKCZ					
156	rs2689753	7	118606625	C/T	0.2528						
157	rs12883776	14	56264412	A/G	0.2657	PELI2					
158	rs6781787	3	22120073	A/C	0.2241	ZNF385D					
159	rs17271519	3	1294712	A/G	0.2657	CNTN6					
160	rs10111769	8	21101244	C/T	0.2815						
161	rs15653	2	16550241	A/G	0.2944	FAM49A					
h	MAP	Coe.	Wald	Lasso	AL	PL	LMM	SparseLMM	MLMM	FarmCPU	CS-LMM
-------	------	------	------	-------	-----	-----	------	------------	------	---------	--------
0.1	0.005	5	0	0	0	0	0	0.012	0.012	0	0
	0.005	10	0	0	0	0	0	0.012	0.012	0	0
	0.005	25	0	0	0	0	0	0.012	0.012	0	0
	0.01	5	0	0	0	0	0	0.012	0.012	0	0
	0.01	10	0	0	0	0	0	0.012	0.012	0	0
	0.01	25	0	0	0	0	0	0.012	0.012	0	0
	0.005	5	0	0	0	0	0.014	0.013	0.013	0	0.027
	0.005	10	0	0	0	0	0.013	0.013	0.013	0	0.027
	0.005	25	0	0	0.022	0	0.040	0.012	0.012	0	0.028
	0.01	5	0	0	0	0	0.012	0.013	0.013	0	0.028
	0.01	10	0	0	0	0	0.014	0.013	0.012	0	0.028
	0.01	25	0	0	0.012	0	0.038	0.012	0.012	0	0.029
	0.005	5	0.007	0	0	0	0.008	0.019	0.007	0.013	0.036
	0.005	10	0.007	0	0	0	0.018	0.027	0.007	0.013	0.033
	0.005	25	0.008	0	0	0	0.031	0.061	0.007	0.007	0.084
	0.01	5	0.007	0	0	0	0.008	0.035	0.007	0.013	0.036
	0.01	10	0.007	0	0	0	0.017	0.045	0.007	0.013	0.049
	0.01	25	0.027	0	0	0	0.035	0.076	0.007	0.013	0.077
	0.005	5	0.101	0	0	0	0.077	0.027	0.013	0	0.078
	0.005	10	0	0	0	0	0.078	0.013	0.027	0	0.062
	0.005	25	0	0	0.023	0	0.105	0.013	0.013	0	0.103
	0.01	5	0.045	0	0	0	0.075	0.027	0.014	0	0.061
	0.01	10	0	0	0	0	0.072	0.013	0.014	0	0.065
	0.01	25	0	0	0.012	0	0.097	0.027	0.013	0	0.099

4 AUC scores of the main result

We report the AUC scores of the Precision-recall curves in the main manuscript to have a clearer understanding of the comparison of these methods in Table S8. The results demonstrate the strength of our method when heritability is intermediate, consistent with the main message delivered in our manuscript.
5 Simulation over a Larger Range of Settings.

Figure S1 shows the result of a larger range of simulation settings. Figure S2 shows the result when we tune the parameters by mis-specifying the number of associated SNPs as half of the actual number of associated SNPs and Figure S3 shows the result when we mis-specify that number as twice the number of associated SNPs. These figures show that directly tuning the parameter based on the number of associated SNPs selected is a valid and stable manner. More importantly, these figures show that CS-LMM is a promising method even the number of associated SNPs to select is mis-specified.

Figure S1: Simulation results of CS-LMM compared to other models in terms of the precision-recall curve when we query the models for $K = 2k$ SNPs. The x-axis is recall and y-axis is precision.

Figure S2: Simulation results of CS-LMM compared to other models in terms of the precision-recall curve when we query the models for $K = k/2$ SNPs. The x-axis is recall and y-axis is precision.
Figure S3: Simulation results of CS-LMM compared to other models in terms of the precision-recall curve when we query the models for $K = 2k$ SNPs. The x-axis is recall and y-axis is precision.
6 Evaluation of Other Configurations (Different Number of Samples and Different Number of Associated SNPs)

We test the performance of our method compared to other models with different configurations of \(k (k \in \{5, 10, 50\}) \) and \(n (n \in \{250, 500, 1000\}) \) in the situations where coefficient \(e = \{5, 25\} \) and MAF \(m = \{0.005, 0.01\} \). Fig. S4 and Fig. S5 show that our method is superior to other methods in most of these different configurations.
Figure S4: Evaluation of CS-LMM compared to other methods under different configurations of k (k varies in {5, 10, 50} for different e and m). The x-axis is recall and y-axis is precision.
Figure S5: Evaluation of CS-LMM compared to other methods under different configurations of n (n varies in $\{250, 500, 1000\}$ for different e and m). The x-axis is recall and y-axis is precision.
7 Evaluation of Other Configurations (Large Scale Data)

We also tested the performance of CS-LMM in comparison with other methods with large scale data (when there are 10000 samples). As shown in Fig. S6, LMM based methods behave comparably with CS-LMM. CS-LMM still has slight advantages in most cases.

Figure S6: Simulation results of CS-LMM compared to other models in terms of the precision-recall curve when data there are 10000 samples.
8 Other Evaluation Metrics Applied to the Methods

We also evaluate CS-LMM and the competing methods using true positives, false positives and area under ROC (auROC) curves for the simulation experiments illustrated in Figure 2 in the main text. The results are shown in Table 8-Table S12. Note that these methods are evaluated only with unknown SNPs. This is a challenging task considering that other SNPs with stronger coefficients may mask the signals of the unknown SNPs, which explains the reason why many methods, in particular the Lasso and its variants, only perform slightly better than chance in terms of the auROC score.

By looking at the ‘auROC’ column, we can see that CS-LMM has an advantage over the other methods particularly when the cases are more challenging: rare variants with strong effects (Table 8), rare variants with small effects (Table S11), common variants with small effects (Table S12), respectively). As the coefficients and MAFs increase (Table S11 representing the unusual scenario of common variants with large effects), the unknown SNPs have as strong signals as the known SNPs, the Wald test and LMM become comparable and perform even better than CS-LMM in terms of the auROC score. However, it can be seen from the ‘FP’ column, both the Wald test with the FDR control and LMM report too many false positives, making these methods unrealistic in the real life applications. Also, as shown in the ‘FP’ column, CS-LMM outperforms other methods in terms of controlling false positives in most cases. We also notice that MLMM and FarmCPU also behave well in controlling false positives, especially when the signals are very small.
Table S9: The scenario of rare variants with strong effects.

MAF coefficient	model	TP	FP	auROC
0.0001 50	WALD+FDR	0.8	8.5	0.55
	Lasso	0.7	7.7	0.544
	AdaLasso	0.7	7.9	0.506
	PrecisionLasso	0.4	9.0	0.525
0.0005 50	WALD+FDR	0.9	14.4	0.556
	sparse LMM	0.6	8.2	0.55
	MLMM	0.1	7.9	0.506
	FarmCPU	0.1	7.9	0.506
	CS-LMM	0.6	7.3	0.55
0.001 50	WALD+FDR	1.0	1617.8	0.548
	Lasso	0.0	9.9	0.5
	AdaLasso	0.0	9.8	0.5
	PrecisionLasso	0.2	9.4	0.512
0.005 50	WALD+FDR	1.2	38.1	0.575
	sparse LMM	0.9	7.4	0.556
	MLMM	0.1	7.9	0.506
	FarmCPU	0.1	7.9	0.506
	CS-LMM	0.9	7.4	0.556

MAF coefficient	model	TP	FP	auROC
0.0001 25	WALD+FDR	0.7	10.0	0.528
	Lasso	0.0	10.0	0.5
	AdaLasso	0.0	9.8	0.5
	PrecisionLasso	0.3	9.3	0.519
0.0005 25	WALD+FDR	0.5	14.9	0.531
	sparse LMM	0.6	7.3	0.537
	MLMM	0.1	7.9	0.506
	FarmCPU	0.1	7.9	0.506
	CS-LMM	0.8	7.1	0.55

MAF coefficient	model	TP	FP	auROC
0.001 10	WALD+FDR	1.2	10.2	0.55
	Lasso	0.0	10.2	0.5
	AdaLasso	0.0	9.9	0.5
	PrecisionLasso	0.0	9.8	0.5
0.005 10	WALD+FDR	0.2	18.1	0.512
	sparse LMM	0.2	8.2	0.512
	MLMM	0.1	7.9	0.506
	FarmCPU	0.1	7.9	0.506
	CS-LMM	0.4	7.7	0.525

MAF coefficient	model	TP	FP	auROC
0.0001 10	WALD+FDR	0.3	211.1	0.504
	Lasso	0.0	10.2	0.5
	AdaLasso	0.0	9.5	0.5
	PrecisionLasso	0.0	9.2	0.5
0.001 10	WALD+FDR	0.2	39.9	0.519
	Lasso	0.0	10.1	0.5
	AdaLasso	0.0	9.6	0.5
	PrecisionLasso	0.0	9.8	0.5
0.005 10	WALD+FDR	0.2	39.9	0.512
	Lasso	0.0	10.1	0.5
	AdaLasso	0.0	9.6	0.5
	PrecisionLasso	0.0	9.8	0.5

17
Table S10: The scenario of common variants with strong effects.

MAF coefficient	model	TP	FP	auROC
0.01 50	WALD+FDR	2.3	2868.5	0.62
	Lasso	0.0	9.6	0.5
	AdaLasso	0.0	9.8	0.5
	PrecisionLasso	0.0	10.0	0.5
0.05 50	LMM+FDR	2.4	738.9	0.649
	sparseLMM	1.4	7.5	0.587
	MLM	0.1	7.9	0.506
	FormCPU	0.1	7.9	0.506
	CS-LMM	1.7	6.6	0.606
0.1 25	WALD+FDR	4.4	1093.5	0.723
	Lasso	0.0	10.1	0.5
	AdaLasso	0.0	9.9	0.5
	PrecisionLasso	0.0	10.2	0.5
	LMM+FDR	3.3	39.5	0.706
	sparseLMM	2.1	6.9	0.631
	MLM	0.1	7.9	0.506
	FormCPU	0.1	7.9	0.506
	CS-LMM	2.0	5.6	0.625
	WALD+FDR	1.7	352.1	0.573
	Lasso	0.0	10.1	0.5
	AdaLasso	0.0	9.7	0.5
	PrecisionLasso	0.0	10.2	0.5
	LMM+FDR	0.7	56.8	0.543
	sparseLMM	0.6	7.4	0.537
	MLM	0.1	7.9	0.506
	FormCPU	0.1	7.9	0.506
	CS-LMM	0.6	7.3	0.537
0.01 10	WALD+FDR	0.9	3966.7	0.517
	Lasso	0.0	10.5	0.5
	AdaLasso	0.0	9.9	0.5
	PrecisionLasso	0.0	10.1	0.5
	LMM+FDR	0.2	63.2	0.512
	sparseLMM	0.2	6.8	0.575
	MLM	0.1	7.9	0.506
	FormCPU	0.1	7.9	0.506
	CS-LMM	0.5	7.8	0.531
0.05 10	WALD+FDR	2.7	14073.8	0.581
	Lasso	0.0	10.0	0.5
	AdaLasso	0.0	9.8	0.5
	PrecisionLasso	0.0	9.7	0.5
	LMM+FDR	0.3	88.1	0.518
	sparseLMM	0.2	8.2	0.512
	MLM	0.1	7.9	0.506
	FormCPU	0.1	7.9	0.506
	CS-LMM	0.4	7.5	0.535
0.1 10	WALD+FDR	2.3	10893.8	0.581
	Lasso	0.0	9.7	0.5
	AdaLasso	0.0	10.0	0.5
	PrecisionLasso	0.0	9.5	0.5
	LMM+FDR	0.5	46.7	0.531
	sparseLMM	0.4	8.0	0.525
	MLM	0.1	7.9	0.506
	FormCPU	0.1	7.9	0.506
	CS-LMM	0.7	7.6	0.544
Table S11: The scenario of rare variants with small effects.

MAF coefficient	Model	TP	FP	auROC
0.0001 5	WALD + FDR	0.2	1898.3	0.494
	Lasso	0.0	10.0	0.5
	AdaLasso	0.0	9.5	0.5
	PrecisionLasso	0.0	9.1	0.5
	sparse LMM	0.2	8.6	0.512
	MLMM	0.1	7.9	0.506
	FarmCPU	0.1	7.9	0.506
	CS-LMM	0.3	7.5	0.519
0.001 5	WALD + FDR	0.2	2112.8	0.492
	Lasso	0.0	10.0	0.5
	AdaLasso	0.0	9.5	0.5
	PrecisionLasso	0.0	9.4	0.5
	sparse LMM	0.2	8.2	0.512
	MLMM	0.1	7.9	0.506
	FarmCPU	0.1	7.9	0.506
	CS-LMM	0.3	7.7	0.519
0.005 5	WALD + FDR	0.3	3096.5	0.488
	Lasso	0.0	10.0	0.5
	AdaLasso	0.0	9.5	0.5
	PrecisionLasso	0.0	9.8	0.5
	sparse LMM	0.2	8.3	0.512
	MLMM	0.1	7.9	0.506
	FarmCPU	0.1	7.9	0.506
	CS-LMM	0.3	7.7	0.519
0.0001 1.1	WALD + FDR	0.1	1989.9	0.486
	Lasso	0.0	10.0	0.5
	AdaLasso	0.0	9.5	0.5
	PrecisionLasso	0.0	9.1	0.5
	sparse LMM	0.2	8.6	0.5
	MLMM	0.1	7.9	0.506
	FarmCPU	0.1	7.9	0.506
	CS-LMM	0.3	7.8	0.519
0.005 1.1	WALD + FDR	0.2	2112.8	0.494
	Lasso	0.0	10.0	0.5
	AdaLasso	0.0	9.5	0.5
	PrecisionLasso	0.0	10.0	0.5
	sparse LMM	0.3	8.7	0.5
	MLMM	0.1	7.9	0.506
	FarmCPU	0.1	7.9	0.506
	CS-LMM	0.3	8.3	0.5
Table S12: The scenario of common variants with small effects.

MAF	coefficient	model	TP	FP	auROC
0.01	5	WALD+FDR	0.4	4201.2	0.483
		Lasso	0.0	10.1	0.5
		AdaLasso	0.0	9.6	0.5
		PrecisionLasso	0.0	10.0	0.5
0.05	5	LMM+FDR	0.1	61.7	0.506
		sparse LMM	0.2	7.7	0.512
		MLM	0.1	7.9	0.506
		FarmCPU	0.1	7.9	0.506
		CS-LMM	0.3	7.9	0.519
0.1	5	WALD+FDR	2.0	10284.0	0.515
		Lasso	0.0	10.1	0.5
		AdaLasso	0.0	10.1	0.5
		PrecisionLasso	0.0	10.0	0.5
0.01	1.1	LMM+FDR	0.1	62.8	0.506
		sparse LMM	0.1	8.4	0.506
		MLM	0.1	7.9	0.506
		FarmCPU	0.1	7.9	0.506
		CS-LMM	0.3	7.8	0.519
0.1	1.1	WALD+FDR	2.5	13270.3	0.535
		Lasso	0.0	9.8	0.5
		AdaLasso	0.0	9.8	0.5
		PrecisionLasso	0.0	9.8	0.5
0.05	1.1	LMM+FDR	0.1	62.8	0.499
		sparse LMM	0.0	8.4	0.5
		MLM	0.1	7.9	0.506
		FarmCPU	0.1	7.9	0.506
		CS-LMM	0.5	7.8	0.531
0.1	1.1	WALD+FDR	2.5	13308.3	0.532
		Lasso	0.0	10.0	0.5
		AdaLasso	0.0	9.8	0.5
		PrecisionLasso	0.0	9.8	0.5
0.01	1.1	LMM+FDR	0.0	10.0	0.5
		sparse LMM	0.0	10.0	0.5
		MLM	0.1	7.9	0.506
		FarmCPU	0.1	7.9	0.506
		CS-LMM	0.0	8.3	0.5
0.1	1.1	WALD+FDR	2.5	13308.2	0.518
		Lasso	0.0	9.7	0.5
		AdaLasso	0.0	10.0	0.5
		PrecisionLasso	0.0	9.7	0.5
0.1	1.1	LMM+FDR	0.0	72.8	0.499
		sparse LMM	0.0	8.4	0.5
		MLM	0.1	7.9	0.506
		FarmCPU	0.1	7.9	0.506
		CS-LMM	0.0	8.2	0.5
References