Improving the ischemia-reperfusion injury in vascularized composite allotransplantation: Clinical experience and experimental implications

Jiqiang He¹, Umar Zeb Khan¹, Liming Qing¹, Panfeng Wu¹ and Juyu Tang¹,2*

¹Department of Hand and Microsurgery, Xiangya Hospital of Central South University, Changsha, China, ²National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China

Long-time ischemia worsening transplant outcomes in vascularized composite allotransplantation (VCA) is often neglected. Ischemia-reperfusion injury (IRI) is an inevitable event that follows reperfusion after a period of cold static storage. The pathophysiological mechanism activates local inflammation, which is a barrier to allograft long-term immune tolerance. The previous publications have not clearly described the relationship between the tissue damage and ischemia time, nor the rejection grade. In this review, we found that the rejection episodes and rejection grade are usually related to the ischemia time, both in clinical and experimental aspects. Moreover, we summarized the potential therapeutic measures to mitigate the ischemia-reperfusion injury. Compare to static preservation, machine perfusion is a promising method that can keep VCA tissue viability and extend preservation time, which is especially beneficial for the expansion of the donor pool and better MHC-matching.

KEYWORDS ischemia-reperfusion injury (IRI), vascularized composite allotransplantation (VCA), tissue damage, transplant rejection, innate immunity, adaptive immunity

Introduction

The world of reconstructive transplantation is mature (1). The challenges of allograft rejection have focused research on the long-term success of vascularized allograft transplantation (2, 3). Ischemia-reperfusion injury (IRI) is a potential threat to long-term allograft success, which is an inevitable event that follows reperfusion after a period of cold static storage (4, 5). This review summarizes the current clinical and laboratory aspects that discuss the relationship between transplant outcomes and IRI tissue damage.
It can give some implications to reduce the IRI to achieve long-term VCA allograft survival.

Mechanisms of IRI

Ischemia leads to hypoxic anaerobic glycolysis and oxygen consumption, depleting adenosine triphosphate (ATP) and dysregulating ATP-dependent membrane ion exchangers (6, 7), reducing the activity of the Na+/K+/ATPase pump and increasing intracellular sodium concentration (8). Furthermore, the reduction in the intracellular concentration of ATP prevents the regeneration of glutathione, ascorbic acid and tocopherol that take part in detoxifying the metabolites present in the cytosol and the sarcoplasmic membrane. The accumulation of osmotically active particles such as lactate, sodium, inorganic phosphate and creatine leads to cell edema.

Moreover, cellular acidosis can stimulate the antiport Na+/H+ receptors, worsening the sodium overload and affecting the function of other membrane receptors such as the Na+/Ca2+ antiport. The Na+/Ca2+ antiport enables sodium exportation from cells based on the intracellular calcium concentration (9). Cellular hypercalcemia causes the breakdown of sarcoplasmic phospholipids and cytoskeleton protein, alters contractile protein’s efficiency and calcium affinity, and changes the tertiary structure of certain enzymes such as xanthine dehydrogenase to xanthine oxidase (10). These two enzymes have similar functions: the transformation of hypoxanthine in xanthine and xanthine in uric acid. Damage to calcium-dependent receptors increases cytosolic calcium, loss of homeostasis, activation of proteolytic enzymes, cell membrane disruption, and release of free fatty acids. Collectively, this dysfunction manifests as cell apoptosis or necrosis (11–13).

Reperfusion triggers a localized microvascular and systemic reaction, resulting in further tissue damage (14–16). Mitochondria respond to many different types of stress like oxidative and metabolic stresses (17–19). They are the primary source of reactive oxygen species (ROS), a by-product of respiration generated mainly at the electron transport chain complexes I and III (20). Ca2+ overload, with high ROS and Pi, changes mitochondrial membrane permeability and induces the opening of non-selective and high-conductance permeability transition pores (PTP) in the inner mitochondrial membrane (21–23). The PTP further compromises mitochondria’s bioenergetics function and structural integrity, leading to cell death (24–26). The release of ROS, mainly from mitochondria, forms the basis for IRI (27, 28).

How the IRI influences the transplant outcome

Experimental implications

IRI in the skin and subcutaneous tissue

IRI in the skin has been reported in several publications, not only in VCA but also in flap surgery (29–31). Skin and subcutaneous tissue are relatively resistant to the effects of anoxia, and intracellular pH changes are reversible for up to 24 h (32). Donski et al. (33) investigated the effect of cooling on the survival of free flaps in rabbit. They found 86% of flaps that were cooled for 1–3d survived. Meanwhile, other authors concluded that the maximum ischemia time of a rat flap was 6h at normal body temperatures and 48h if cooled (34). Thus, the warm IRI has more serious tissue damage than the cold IRI.

As VCA tissue is usually preserved at 4 °C for 6h, the warm ischemia time in VCA skin and subcutaneous tissue is pretty short. The tissue damage in the skin and subcutaneous tissue can be ignored. However, the IRI should be considered if warm ischemia is >6h or cold ischemia time >24h.

IRI in the skeleton muscle

Compared to the skin, mammalian skeletal muscle is substantially less tolerant to ischemia (35). Irreversible damage to the microcirculation of skeletal muscle in man begins at around 6 h (36). Wagh et al. (37, 38) found that skeletal muscle is much more susceptible to damage from cold (4°C) ischemic storage than skin, with an estimated critical ischemic time for rat gastrocnemius muscle flaps of approximately 16 h compared with approximately 3.5 days for rat epigastric skin flaps. Although measures have been taken to ameliorate the IRI in muscles, lots of results are based on short time warm-ischemia time (39–43). The data for VCA clinical usage is limited.

IRI in the vessel

The endothelium is very sensitive to I/R injuries (44, 45). It is essential to preserve the endothelium because endothelial cells have several vital functions, including controlling vascular tone and local blood flow, modulating coagulation and inflammation, participating in immune response, regulating micro and macromolecules’ movement towards the interstitium, and assisting in angiogenesis (46). Endothelium-dependent vasodilatation is more susceptible to IRI than vasoconstriction and endothelial-independent vasodilatation (47, 48). ROS and tumor necrosis factor-alpha (TNF-α) play a significant role in this process. Reperfusion also induces a critical inflammatory response, characterized by a massive production of free radicals and activation of the complement pathway, leucocytes and neutrophils (49). A little interaction between activated endothelium and neutrophils will result in a significant concentration of activated neutrophils in the interstitium, which release oxygen radicals and proteases, leading to the destruction of cells and the extracellular matrix. The migration of neutrophils from the intravascular bed to the interstitium involves several families of proteins such as selectins (P-selectin and L-selectin), integrins (intracellular adhesion molecule-1), and immunoglobulins (platelet-endothelial cell adhesion molecule-1). Lastly, oxidative stress, cytokine production, and the secondary mitochondrial lesions that occur with reperfusion induce apoptosis in parenchymal cells and the vascular structures.
In addition, vascular endothelial cells are the initial barrier to allograft-activated host immune rejection and are critical in triggering cell-mediated acute rejection (50). It has been found that circulating mitochondria in organ donors with prolonged ischemia may directly activate allograft vascular endothelial cells and promote graft rejection (51–53). Therefore, endothelial cells mediate acute graft rejection after IRI. The targeted intervention of mitochondrial damage in vascular endothelial cells, thereby reducing graft rejection events, has also been a research hot-spot in recent years.

IRI in the nerve

Although much is known, the precise pathophysiology of IRI in the peripheral nerve remains to be elucidated. Microvascular events, which may occur during reperfusion, may be important in amplifying the nerve fiber degeneration that is initiated during ischemia (54). Haruyasu Iida et al. (55) showed that reperfusion induced oxidative damage, which lowered nerve function and increased fiber deterioration, but extending the period of reperfusion to 42 days allowed for fiber regeneration. To reduce oxidative injury, Sang-Jin Shin et al. (56) investigated how inducible nitric oxide synthase (iNOS) inhibition affects the recovery of motor function in the rat sciatic nerve after IRI. Their study indicated that early inhibition of iNOS is vital for IRI reduction or prevention. Franka et al. (57) studied the critical ischemia times of individual tissues of a rat limb isograft. Histomorphometric investigation of the tibial nerve on POD 10 showed the typical signs of Wallerian degeneration that is initiated during ischemia (54). Haruyasu Iida et al. (55) showed that reperfusion induced oxidative damage, which lowered nerve function and increased fiber deterioration, but extending the period of reperfusion to 42 days allowed for fiber regeneration. To reduce oxidative injury, Sang-Jin Shin et al. (56) investigated how inducible nitric oxide synthase (iNOS) inhibition affects the recovery of motor function in the rat sciatic nerve after IRI. Their study indicated that early inhibition of iNOS is vital for IRI reduction or prevention. Franka et al. (57) studied the critical ischemia times of individual tissues of a rat limb isograft. Histomorphometric investigation of the tibial nerve on POD 10 showed the typical signs of Wallerian degeneration in all transplanted animals and the nerve transection groups. The nerve of non-transplanted controls appeared to be normal in shape without signs of injury or cell infiltration. Overall, histopathological scores for nerve damage were significantly higher in the ischemia group than transection group. In general, nerve scores increased proportionally with the duration of ischemia time.

IRI in the bone

Compared to most other organs, the bone’s IRI is poorly understood, particularly from a mechanistic perspective. However, IRI of the bone is considered to occur in various diseases/situations (58–61), such as vascular disruption or compression, fractures, limb replantation/allotransplantation, and thromboembolic disorders. Moreover, some systemic diseases such as sickle cell anemia, Caisson disease, and Cushing’s disease may initiate IRI in the bone (62–64).

As systemic diseases influence many organs, it’s hard to investigate the mechanism of reperfusion injury in bones. Thus, bone IRI has been studied by interrupting blood supply through vascular compression (clamping) or dissection. In these studies, limb or bone graft replantation/transplantation was performed after preserving the limbs/grafts at 0 – 4 °C or room temperature (21 –25°C) (65–68). The studies concluded that significant retardation of bone growth/development occurs when critical ischemia lasts between 3 to 7 h at 37 °C. But the critical ischemia time increases with decreasing temperature. In some studies, even cold ischemia time (0 – 5 °C) of 25 h and above have been found to be tolerated (69).

The fact that therapy with antioxidants resulted in considerable protection proves that reperfusion injury of the bone, or extra injury during the reperfusion period, occurs (70). This reiterates the protective function of antioxidants against ROS. ROS can only be formed in the presence of O2, which means upon reperfusion. The available results, however, suggest some similarities to the mechanisms of IRI of other organs, such as the involvement of ROS (71, 72).

From a review of the literature, we have summarized the following critical ischemia time of VCA tissues (Table 1):

Many papers reported the IRI tissue damage in VCA. We briefly introduce the tissue damage in different types of VCA tissue. The lack of blood supply does not damage all tissues in the allografts to the same degree; some tissues are more susceptible than others. Those damaged tissues may release some molecules and activate the innate immune response, which is a barrier to long-term allograft survival (5, 73–75). In this review, we are not only focused on the relationship between the IRI and tissue damage but also discuss the relationship between IRI and transplant rejection caused by tissue damage (Table 2).

Clinical experience

Ischemia is clinically an inevitable factor following donor organ procurement, cold preservation, and implantation. Though its specific role in VCA is occasionally underappreciated, the IRI can affect graft survival, function, and rejection. However, there is a paucity of studies examining IRI in VCA clinical usage. The experience in re-transplantation has opened a window for us to know the critical ischemia time related to VCA. The recommended ischemia times compatible with reliable success in replantation are 6 h of warm and 12 h of cold ischemia for major replants, although successful replantations have been reported after longer ischemia times (86–89). The ischemia time is largely influenced by skeleton muscle and causes it even more susceptible to IRI. Besides tissue damage, the literature in SOT has clearly demonstrated that IRI is a potent activator of the immune system and subsequently leads to occur rejection episodes. These clinical findings have also been

Tissue	Warm	Cold
skin and subcutaneous tissue	4–6h	up to 12h
muscle	<2h	8h
nerve	8h	24h
vessel	6h	12h
bone	<3h	24h
tested in VCA. Based on the presence of a more aggressive diffuse lymphocytic infiltration and disruption of tissue architecture, Pradka et al. (90) showed that skin and muscle exposed to 3 h of ischemia had significantly higher rejection scores than when exposed to 1 h of ischemia.

To sum up, the IRI in VCA has the following effect on the graft and body.

Graft survival

Insult to the endothelium leads to an upregulation in the expression of bioactive agents (such as endothelin and thromboxane) and suppresses the release of nitric oxide (NO), increasing vascular tone. The presence of free radical accumulation, endothelial edema, and platelet activation can result in the cessation of blood flow through the graft. Thus, graft survival is threatened by IRI (91, 92).

Tissue damage

Muscle and nerve dysfunction in the donor limb has a significant impact even if the graft survives since their physiological integrity is crucial for maintaining physical function. We clearly described the IRI tissue damage in experimental implications. The muscle tissue is sensitive to the IRI, then the skin and subcutaneous, bone is more tolerant to IRI (93–95). However, the muscle normal structure and functional recovery are very important to the VCA surgical outcomes. Besides, the neuromuscular junctions are most sensitive to ischemia (96). Since most organs are still preserved in static preservation, muscle tissue

TABLE 2 Relationship between IRI and tissue damage or transplant rejection.

Year	Author	Species	Model	Ischemia time	Preservation solution	Follow up	Conclusion
2009	Pradka, S. P (76)	Rat	Allogeneic vascularized epigastric flaps	1h or 3 h WI	Heparinized saline solution	POD 6	Skin and muscle demonstrated increased acute rejection of allotransplants with increased subcritical ischemic time
2010	Xiao, B (77)	Rat	Allogeneic vascularized groin flaps	0h, 6h, 12h, 18h, or 24 h CI	University of Wisconsin	POD 2-8	Prolonged ischemia has a deleterious effect on allograft survival
2010	Fumiaki Shimazu (78)	Rat	Allogeneic vascularized groin flaps	1h or 6 h WI	N/A	POD 14	Longer ischemic time induces more severe rejection against allo-transplanted tissue compared with the shorter one
2012	Villamaria, C. Y (79)	Swine	Gracilis musculocutaneous flap	1 h CI or 3 h CI	Heparinized saline solution	POD 1 to POD 14	Skeletal muscle tissue injury (LDH, CK, and AST) showed ischemia period-dependent response
2014	Hautz (80)	Rat	Syngeneic hindlimb transplantation	2 h CI or 10 h CI or 30 h CI	Saline or Histidine-tryptophan-ketoglutarate, or University of Wisconsin	POD 10	Severe inflammation and tissue damage are observed after prolonged cold ischemia in muscle and nerve
2016	Bonastre, J (81)	Rat	Allogeneic orthotopic hindlimb transplantation model	7h CI	Heparinized saline solution	2 months	An association between cold ischemia and chronic rejection was observed in experimental vascularized composite allotransplantation
2017	Datta, N (82)	Mouse	Allogeneic orthotopic hindlimb transplantation model	1h or 6 h CI	University of Wisconsin	POD 1 to POD 3	Prolonged cold ischemia triggers progressive IRI with vascular endothelial damage
2017	Messner, F (57)	Rat	Syngeneic hindlimb transplantation	2 h CI or 6 h CI, or 10 h CI	Saline or Histidine-tryptophan-ketoglutarate, or HTK-, or TiProtec	POD 10	Muscle and nerve injury was significantly aggravated after prolonged cold ischemia
2017	Fries, C. A (83)	Swine	Gracilis musculocutaneous flap	3h CI	Heparinized saline solution or CI esterase inhibitor	POD 1 to POD 14	ClInhibitor is protective of IRI and may have utility in vascularized composite allotransplantation
2018	Robbins, N (84)	Swine	Heterotopic myocutaneous flap (autotransplants and allotransplants)	5 h CI or 14 h CI, 17h machine perfusion	University of Wisconsin	14 days for autotransplants and 60 days for allotransplants	Machine perfusion protects ischemic damage and chronic rejection following allotransplantation in the porcine model
2020	Gok, E (85)	Rat	Syngeneic hindlimb transplantation	6h h WI or 6 h CI	Histidine-tryptophan-ketoglutarate	12 weeks	Limb allotransplant suffer from irreversible muscle damage without circulation by 4 h and have functional deficits on cold ischemia at 6 h

IRI, ischemia-reperfusion injury; h, hours; CI, cold ischemia; WI, warm ischemia; POD, postoperative day; N/A, not available.
is more sensitive to IRI than other organs, and it is not easy to regenerate after IRI, reducing IRI tissue damage has a positive effect on the functional recovery of VCA.

Graft rejection

As it is well known, there are 3 necessary steps for graft rejection. Step 1: Leukocyte infiltration (endothelial cells dysfunction, P-selectin and L-selectin, intercellular adhesion molecule-1, platelet-endothelial cell adhesion molecule-1). Step 2: Leukocyte activation (local inflammation). Step 3: Target organ (effective T cells and cytokines producing). Injured tissues activate the immune system by releasing damage-associated molecular patterns, which are endogenous molecules that mediate cellular injury. Their release upregulates endothelial adhesion molecules, migration of leukocytes into the graft and complement activation. This localized inflammatory response hampers the development of tolerance (97, 98). This explains why post-transplant graft dysfunction and rejection are proportional to the intensity and duration of IRI (Figure 1). Thus, ameliorating the IRI in VCA may reduce the incidence of VCA rejection (99).

Systemic reperfusion injury

Reperfusion injury may lead to systemic metabolic changes and the release of oxidized free radicals in patients, leading to cellular oxidative stress, systemic inflammatory response, multiple organ failure, and eventually death. Based on current arm replantation experiences, there is a chance of local or systemic complications, such as sepsis, remote organ failure, hyperkalemia, or acidemia (100–104). Thus, the systemic reperfusion injury should be seriously evaluated prior to VCA surgery (105).

Strategies to reduce IRI

Over the past 20 years, a variety of drugs and interventions have been reported in clinical and basic research to alleviate IRI. Many treatment methods are based on limb IRI models, limb autograft models, and limb replantation. These interventions have shown good therapeutic effects, and the research results are worthy of reference by VCA. Table 3 summarizes the most commonly used treatments to reduce IRI, which include adenosine agonists, endothelin antagonists, antioxidants, complement activation inhibitors, apoptosis inhibitors, anti-inflammatory and proangiogenic, metabolic inhibitors, bioactive gases, traditional Chinese medicine, cell-based therapy, etc.

Despite the aforementioned therapeutic substances, the maneuver of postconditioning or remote postconditioning are effective therapies targeting IRI (142–145). Importantly, these strategies are simple, safe, and at least relatively harmless. Although the clinical trials of ischemic preconditioning or remote ischemic preconditioning have demonstrated favorable results in cardiac, hepatic, and pulmonary surgery, large, randomized, multi-center trials are required to verify the efficacy of these interventions in human skeletal muscle and skin. Recently, cutting-edge techniques have shown promising results, especially in muscle tissue preservation. The following paragraph describes these exciting methods.

Cryopreservation

Cryopreservation aims to slow the deterioration of graft tissue by reducing the rate of metabolism (146–149). This requires
Group	Substances category	Author, Year	Treatment drug	Ischemia method	Species	Number	Ischemia time	Reperfusion time	Skeleton muscle included
I	Adenosine agonist, endothelin antagonist, prostaglandin	Rowlands, 1999	prostaglandins (PG) E1, E2	Hindlimb IRI model	SD rats	82	Warm 6h	4h	Yes
		Luyt, Charles-Edouard, 2000	mixed ETA/B receptor antagonist, LU 132532	Hindlimb IRI model	Lewis rats	33	N/A	5h, 5d, 14d	Yes
		Herbert, K. J, 2001	Bosentan	Hindlimb IRI model	SD rats	47	Warm 120 min	90min, 24h	Yes
		Jan Fräßdorf, 2006	Prostaglandin E1	Hindlimb IRI model	Rabbits	64	Warm 45 min and 3h	2h, 3h	Yes
		Zheng Jingang, 2007	Edenosine A1, A2A, and A3 receptors	Hindlimb IRI model	C57BL6	32	Warm 90 min	24h	Yes
II	Complement inhibitor	Claudia Duehrkop, 2013	C1-inh	Hindlimb IRI model	Wistar rats	25	Warm 3h	24h	Yes
		C. Anton Fries, 2016	C1-inh	Free musculocutaneous flap model	Swine	12	Cold 3h	1d, 2d, 7d, 14d	Yes
		Shengye Zhang, 2018	C1-inh	Hindlimb IRI model	Wistar rats	28	Warm 2h	24h	Yes
		Inmaculada Massa, 2021	C1-inh	Superficial caudal epigastric skin flaps	Wistar rats	50	Warm 8h	7d	No
III	Antioxidant	Cengiz Bolcal, 2007	N-acetylcysteine, β-glucan, and coenzyme Q10	Hindlimb IRI model	New Zealand white rabbits	44	Warm 1h	3h	Yes
		Bradley D Medling, 2010	Vitamin E	Gracilis Muscle Flap Model	Wistar rats	12	Warm 4h	24h	Yes
		Gudrun Avci, 2012	Curcumin	Hindlimb IRI model	Wistar rats	40	Warm 4h	2h	Yes
		Gan Muneuchi, 2013	D-allose	Abdominal skin island flap	Wistar rats	110	Warm 8h	8h	No
		Xu Dong, 2014	Dexamethasone	Hindlimb IRI model	Wistar rats	40	Warm 4h	2h	Yes
		Yin, Zhuming, 2016	Recombinant human thioredoxin-1	Dorsal lateral thoracic artery pedicled island skin flaps	CD-1 mice	98	Warm 2h, 4h, 6h, 8h, 10h, and 12 h	24h	No
		Mircafer Seyid, 2021	Ceruloplasmin	Epi gastric island flaps	SD rats	32	Warm 6h	24h	No
IV	Anti-apoptosis	Kexin Song, 2015	Methane-rich saline	Abdominal skin flap	SD rats	N/A	Warm 6h	72h	No
		Yedong Cheng, 2016	Pterostilbene	Hindlimb IRI model	SD rats	N/A	Warm 4h	4h	Yes
		Dawei Xin, 2020	LXA4	Abdominal skin flap	Wistar rats	54	Warm 8h	12h, 24h, 48h	No
V	Anti-inflammatory angiogenesis	Elizabeth W Zhang, 2015	Activated protein C	Gracilis muscle flap	SD rats	60	Warm 4h	1h, 4h, 18h, 24h	Yes
		Dong Kyun Rah, 2017	Platelet-Rich Plasma	Lateral thoracic artery island flaps	C57BL6	30	Warm 4h	1d, 3d, 5d, 7d, 10d	No

(Continued)
freezing of the graft to temperatures below 0°C and offers the possibility of storage for many weeks. To preserve tissue viability by cryopreservation, careful control of the rate of cooling is necessary, as well as the addition of cryoprotectants to prevent intracellular ice crystal formation (150–152). Several studies have described the applicability of preserving single-cell systems, blood vessels, cutaneous tissues, bones, and nervous tissues by cryopreservation (153–155). In 2008, Rinker et al. (156) preserved rat epigastric flaps at −140°C for 2 weeks. The authors then performed isointransplantation using the flaps, which remained viable for up to 60 days, maintaining normal pigmentation and hair growth, and showing no histological signs of inflammation or necrosis. Arav et al. (157, 158) performed the first directional freezing and vitrification to preserve a syngeneic heterotopic rat hindlimb for 7 days. They demonstrated that myocytes, blood vessels, and skin layers of the hindlimb remained histologically viable 3 days after transplantation. Studies on the effects of cryopreservation on human VCA grafts are currently lacking. Although long-term VCA graft storage is possible with cryopreservation, it is still challenging to establish a standard preservation guideline because different tissues respond differently to freezing, thawing, and cryoprotectants (159).

Therapeutic substances category	Author, Year	Treatment drug	Ischemia method	Species	Number	Ischemia time	Reperfusion time	Skeleton muscle included
Group VI Reduce metabolic	Sun-Young Nam, 2018 (126)	NecroX-5	Abdominal skin flap	SD rats	20	Warm 7h	24h	No
Group VII Traditional chinese medicine	Henderson, Peter W, 2010 (127)	Hydrogen Sulfide	Hindlimb IRI model	C57BL6	42	Warm 3h	3h	Yes
Group VIII Bioactive gases	Gang Zhao, 2018 (128)	Irisin	Dorsal island skin flap	SD rats	48	Warm 6h	7d	No
Group IX Cell based treatment or Mitochondrial transplantation	Gang Chen, 2018 (129)	Iuteolin	Abdominal skin flap	SD rats	18	Warm 4h	7d	No
Group VIII Bioactive gases	Huwen Ren, 2018 (130)	Polysaccharide Peptide	Dorsal lateral thoracic artery pedicled island skin flaps	CD-1 mice	80	Warm 4h	24h, 7d	No
Group VIII Bioactive gases	Yijia Xiang, 2018 (131)	Salvianolic acid	Hindlimb IRI model	SD rats	60	Warm 6h	24h	Yes
Group VIII Bioactive gases	Yan Zhao, 2019 (132)	epigallocatechin gallate	Hindlimb IRI model	SD rats	30	Warm 4h	6h	Yes
Group VIII Bioactive gases	Joon Pio Hong, 2003 (133)	Hyperbaric Oxygen	Abdominal skin flap	SD rats	100	Warm 3h	24h	No
Group VIII Bioactive gases	Aurelia Bihari, 2017 (134)	Carbon monoxide-releasing molecules	Hindlimb IRI model	Wistar rats	14	Warm 2h	1.5h	Yes
Group VIII Bioactive gases	Cagdas Elsurer, 2018 (135)	Oxone	Pectoralis muscle flap	Wistar rats	28	Warm 3h	7d	Yes
Group VIII Bioactive gases	Hao Cui, 2020 (136)	Nitric oxide (NO)	Rectangular island flap	Wistar rats	24	Warm 10h	12h	No
Group VIII Bioactive gases	Jian Tong, 2021 (137)	Hydrogen Gas	Hindlimb IRI model	C57BL/6	24	Warm 3h	4h	Yes
Group IX Cell based treatment or Mitochondrial transplantation	David W Hammers, 2015 (138)	Anti-inflammatory macrophages	Hindlimb IRI model	C57BL/6	21	Warm 2h	3d, 5d	Yes
Group IX Cell based treatment or Mitochondrial transplantation	Alberto Ballestin, 2018 (139)	Adipose-Derived Stem Cells	Superficial caudal epigastric skin flaps	Wistar rats	28	Warm 8h	7d	No
Group IX Cell based treatment or Mitochondrial transplantation	Yun Bai, 2018 (140)	Adipose mesenchymal stem cell-derived exosomes	Superficial inferior epigastric vessels	SD rats	18	Warm 6h	5d	No
Group IX Cell based treatment or Mitochondrial transplantation	Arzoo Orfany, 2020 (141)	Mitochondrial transplantation	Hindlimb IRI model	C57BL/6	48	Warm 2h	24h	Yes

N/A, not available.
Machine perfusion

The aim of machine perfusion is to preserve organ viability by supplying oxygen and nutrients and removing metabolic by-products (160–163). This way, grafts are preserved extracorporeally for extended periods, thereby significantly increasing their geographic accessibility (164–166). Grafts can be preserved under a variety of perfusion temperatures (167); these include hypothermic (0°C–12°C), mid-thermic (13°C–24°C), sub-normothermic (25°C–34°C), and normothermic (35°C–38°C) conditions. Studies utilizing small and large animal VCA models have shown that machine perfusion can effectively preserve transplant tissue for up to 24 hours (Table 4)(173, 187–191). Human limbs were preserved by Werner et al. (181) for 24 h using plasma-based sub-normothermic machine perfusion. After being preserved for 24 hours, the grafts were still functional and continued to respond to neuromuscular electrostimulation while exhibiting no evidence of myocyte damage.

Although recent studies have demonstrated the capability of machine perfusion in preserving graft tissue for an extended period (171, 192), some challenges still exist, such as (1) a paucity of studies utilizing allografts, (2) the absence of long-term follow-up data, and (3) lack of consensus on ideal temperature or perfusate for use in clinical settings. With the development of science and technology, machine perfusion combined with cryopreservation, CRISPR/Cas 9, stem cell therapy, siRNA, etc, to achieve in vitro editing of donor organs and modify the immunogenicity of donors, which can reduce IRI and immune rejection of the graft, and help the long-term survival of the graft (193–197).

TABLE 4 Machine perfusion in VCA.

Year	Author	Species	Model	N	Perfusion solution	Perfusion time	Perfusion temperature	Oxygenation	Outcomes
2022	Rezaei, M. et al	Human	Upper extremities	20	Oxygenated red blood cell-based solution	41.6 ± 9.4hr	Normothermic (38°C)	Yes	MP overcome the limitations of SCS extending preservation times, enabling limb quality assessment, and allowing limb reconditioning before transplantation.
2022	Goutard M. et al	Rat	Hindlimb	60	Modified Steen solution	3hr	Mid-thermic (21°C)	Yes	The use of MP for vascularized composite allografts could extend the preservation time and limit cold ischemia induce injury.
2022	Figueroa, A. et al	Swine	Forelimb	24	Polymerized HBOC-201	22.5 ± 1.7hr	Normothermic (38°C)	Yes	MP with HBOC-201 could support isolated limb physiology, metabolism, and function.
2022	Burlage, L.C. et al	Rat	Hindlimb	74	Acellular oxygen carrier HBOC-201	6hr	Mid-thermic (21°C)	Yes	Six hours MP using an acellular oxygen carrier HBOC-201 results in superior tissue preservation compared to SCS.
2021	Kruijt, A. S. et al	Swine	Forelimb	24	UW solution	16hr	Hypothermic (8°C-10°C)	No	In-vivo muscle contraction was well preserved after 18 h machine perfusion compared to short SCS.
2021	Amin, K. R. et al	Swine	Forelimb	35	Matched blood	6hr	Normothermic (38°C)	Yes	MP resulted in superior graft preservation and less reperfusion injury compared with the SCS.
2020	Said, S. A. et al	Swine	Forelimb	3	HBOC-201	21.3 ± 2.1hr	Normothermic (39.8°C)	Yes	MP could preserve muscle contractility and mitochondrial structure compared to SCS.
2020	Haug, V. et al	Human	Upper extremities	6	Steen solution	24hr	Hypothermic (10°C)	Yes	MP with an oxygenated acellular Steen solution can extend the extracorporeal preservation time compared to SCS.
2020	Haug, V. et al	Swine	Forelimb	10	Dextran-enriched Phoxilium, Steen, or Phoxilium	12hr	Hypothermic (10°C or 4°C)	Yes	MP has been shown to be a promising alternative to (SCS for preservation of vascularized composite allotransplantation.
2020	Fahradryan, V. et al	Swine	Forelimb	10	Colloid solution containing washed RBCs	12-44hr	Normothermic (38°C)	Yes	Extended normothermic MP is a feasible option for preservation of amputated limbs.

(Continued)
Summary

Our retrospective review found that IRI not only causes tissue damage but also increases acute and chronic rejection events, with consistent results in organ transplantation and VCA. However, VCA contains different tissue components, and muscle is a highly metabolically active tissue that is most susceptible to reperfusion injury. The traditional static preservation method has been unable to meet clinical needs. Long-term cold ischemia causes great muscle damage, which is extremely detrimental to the functional recovery of VCA.

Advances in science and technology, such as cryopreservation technology, machine perfusion technology, etc, have significantly prolonged the preservation time of VCA. These effects are significantly better than static preservation. However, these technologies still need to be further improved, and certain consensus should be reached to standardize their clinical usage.

Future

Although VCA surgery is a life-improving, non-life-saving surgery, the ethics of surgery are still subject to academic controversy. The current focus of controversy is how to achieve a balance between patient cost and benefit. In order to improve the quality of life, patients need to take immunosuppressive drugs for a long time, and the side effects of these drugs greatly limit their clinical application. Recently, with the continuous deepening of basic research, the immune tolerance program of VCA has been successfully established in mice (198–201). But there are
still many hurdles in translating it into large animals, even primates (202). IRI is one of the important factors that threaten the immune tolerance of VCA. In addition, improving the IRI could break geographic boundaries, expand the donor pool, increase organ utilization, and achieve better MHC-matching. At present, there are still few studies on IRI, and the pathophysiological mechanism of its tissue injury still needs to be further studied.

Author contributions

JH wrote the article and made the figure. UK, LQ, PW and JT proofread the manuscript. JT reviewed the article. All authors contributed to the article and approved the submitted version.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

1. Shores JT, Imbriglia JE, Lee WP. The current state of hand transplantation. J Handb Surg (2011) 36(11):862–9. doi: 10.1016/j.jhsa.2011.09.001
2. Giannis D, Moris D, Cendales LC. Costimulation blockade in vascularized composite allotransplantation. Front Immunol (2020) 11:54186. doi: 10.3389/fimmu.2020.54186
3. Angelis MR, Cheng HY, Lai PC, Hsuh YH, Lin CH, Lin CH. Cell therapy in vascularized composite allotransplantation. Biomed J (2022) 45(3):454–64. doi: 10.1016/bj.2022.01.005
4. Nakamura K, Kageyama S, Kupiec-Weglinski JW. Innate immunity in ischemia-reperfusion injury and graft rejection. Curr Opin Organ Transplant (2019) 24(6):687–93. doi: 10.1097/MOT.0000000000000709
5. Zhao H, Alam A, Soo AP, George AJT, Ma D. Ischemia-reperfusion injury reduces long term renal graft survival: Mechanism and beyond. ElBioMedicine (2018) 28:31–42. doi: 10.1016/j.elthem.2018.01.025
6. Fernandez AF, Liu Y, Ginet V, Shi M, Nah J, Zou Z, et al. Interaction between the autophagy protein beclin 1 and Na+,K+-ATPase during starvation, exercise, and ischemia. JCI Insight (2020) 5(1). doi: 10.1172/jci.insight.133282
7. Kalogeris T, Baines CP, Krenz M, Korthuis RJ. Ischemia/Reperfusion. Compr Physiol (2016) 7(1):113–70. doi: 10.1002/cphy.c160006
8. Wang R, Wang M, He S, Sun G, Sun X. Targeting calcium homeostasis in myocardial ischemia/Reperfusion injury: An overview of regulatory mechanisms and therapeutic reagents. Front Pharmacol (2020) 11:2336. doi: 10.3389/fphar.2020.00872
9. Pittas K, Vrachatis DA, Angelidis C, Tsoucalas S, Giannopoulos G, Deterakis S. The role of calcium handling mechanisms in reperfusion injury. Curr Pharm design (2018) 24(34):4077–89. doi: 10.2174/138161282466618022802984
10. Talaie T, DiChiaccio L, Prasad NK, Pasrija C, Julliand W, Kaczorowski DJ, et al. Ischemia-reperfusion injury in the transplanted lung: A literature review. Transplant Direct (2022) 7(2):e652. doi: 10.1097/TXD.0000000000001104
11. Pefanis A, Ierino FL, Murphy JM, Cowan PJ. Regulated necrosis in kidney ischemia-reperfusion injury. Kidney Int (2019) 96(2):291–301. doi: 10.1016/j.kint.2019.02.009
12. Philippounek C, Aniort J, Garroutte C, Kemeny JL, Heng AE. Ischemia reperfusion injury in kidney transplantation: A case report. Med (Baltimore) (2018) 97(2):e13650. doi: 10.1097/MD.0000000000013650
13. Wu MY, Yang GT, Liao WT, Tsai AP, Cheng YL, Cheng PW, et al. Current mechanistic concepts in ischemia and reperfusion injury. Cell Physiol Biochem (2018) 46(4):1650–67. doi: 10.1159/000489241
14. Ali M, Pham A, Wang X, Wolfram J, Pham S. Extracellular vesicles for treatment of solid organ ischemia–reperfusion injury. Am J Transplant (2020) 20(12):3294–307. doi: 10.1111/ajt.16164
15. Jimenez-Castro MB, Cornide-Petronio ME, Gracia-Sancho J, Peralta C. Inflammamso-mediated inflammation in liver ischemia-reperfusion injury. Cells-Basel (2019) 8(10):1311. doi: 10.3390/cells8101311
16. Yang W, Chen J, Meng Y, Chen Z, Yang J. Novel targets for treating ischemia-reperfusion injury in the liver. Int J Mol Sci (2018) 19(5):1302. doi: 10.3390/ijms19051302
17. Yu L, Xiong X, Wu X, Ye Y, Jian Z, Zhi Z, et al. Targeting oxidative stress and inflammation to prevent ischemia-reperfusion injury. Front Mol Neurosci (2020) 13:28. doi: 10.3389/fnmol.2020.00028
18. Cadenas S. ROS. And redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. Free Radicl Biol Med (2018) 117:76–89. doi: 10.1016/j.freeradbiomed.2018.01.028
19. Wang J, Zhou H. Mitochondrial quality control mechanisms as molecular targets in cardiac ischemia–reperfusion injury. Acta Pharm Sin B (2020) 10(10):1866–79. doi: 10.1016/j.aphb.2020.03.004
20. Chen Q, Younus M, Thompson J, Hu Y, Hollander JM, Lesniewski EL. Intermediate metabolism and fatty acid oxidation: novel targets of electron transport chain-driven injury during ischemia and reperfusion. Am J Physiol Heart Circ Physiol (2018) 314(4):H787–95. doi: 10.1152/ajpheart.00531.2017
21. Hurst S, Gonnor F, Dia M, Crola Da Silva C, Gomez L, Sheu SS. Phosphorylation of cyclophilin d at serine 191 regulates mitochondrial permeability transition pore opening and cell death after ischemia-reperfusion. Cell Death Dis (2020) 11:8. doi: 10.1038/s41419-020-02864-5
22. Parks RJ, Murphy E, Liu JC. Mitochondrial permeability transition pore and calcium handling. In: Mitochondrial bioenergetics. Springer (2018). p. 187–96.
23. Zhang H, Yan Q, Wang X, Chen X, Chen Y, Du J, et al. The role of mitochondria in liver ischemia-reperfusion injury: From aspects of mitochondrial oxidative stress, mitochondrial fission, mitochondrial membrane permeable transport pore formation, mitochondria, and mitochondria-related protective measures. Oxid Med Cell Longevity (2021) 2021:6670579. doi: 10.1155/2021/6670579
24. Sun T, Ding W, Xu T, Ao X, Yu T, Li M, et al. Parkin regulates programmed necrosis and myocardial Ischemia/Reperfusion injury by targeting cyclophilin-d. Antioxid Redox Signal (2019) 31(16):1177–93. doi: 10.1089/ars.2019.7774
25. Panel M, Ruiz I, Brillet R, Laffod F, Teixeira-Clerc F, Nguyen CT, et al. Small-molecule inhibitors of cyclophilins block opening of the mitochondrial permeability transition pore and protect mice from hepatic Ischemia/Reperfusion injury. Gastroenterology (2019) 157(5):1368–82. doi: 10.1053/j.gastro.2019.07.026
26. Zhao Y, Guo Y, Chen Y, Liu S, Wu N, Jia D. Curculigoside attenuates myocardial ischemia--reperfusion injury by inhibiting the opening of the mitochondrial permeability transition pore. Int J Mol Sci (2020) 45(5):1514–24.
27. Thiele JR, Zeller J, Kiefer J, Braig D, Kreuzaler S, Lenz Y, et al. A conformational change in c-reactive protein enhances leucocyte recruitment and reactive oxygen species generation in Ischemia/Reperfusion injury. Front Immunol (2019) 8:675. doi: 10.3389/fimmu.2018.00675
28. Chen W, Li D. Reactive oxygen species (ROS)-responsive nanomedicine for solving ischemia-reperfusion injury. Front Chem (2020) 8:732. doi: 10.3389/fchem.2020.00732
endoplasmic reticulum stress on endothelial ischemia-reperfusion injury in kidney transplantation: Preclinical investigations in pig and mouse.

Enhanced protection of the renal vascular endothelium improves early outcome in rats after sciatic nerve ischemia and reperfusion. J Hand Surg (2005) 30(4):826–35. doi:10.1016/j.jhsa.2005.03.019.

He et al. Tissue inflammation and local damage in skeletal muscles of mitochondrial permeability on endothelial cell immunogenicity in transplantation. J Am Soc Nephrol (2018) 29(12):4688–98. doi:10.1681/ASN.2018041571.

Messner F, Hautz T, Amb K, Aebi H. Ischaemia-reperfusion injury of the renal medulla: a functional role of the mitochondrial permeability transition. Ann N Y Acad Sci (1999) 880:240–9. doi:10.1111/j.1749-6632.1999.tb56656.x.

Ballestin A, Casado JG, Abellan E, Vela FJ, Campos JL, Martinez-Chacon G, et al. Pre-clinical rat model for the study of ischemia-reperfusion injury in microsurgical hindlimb pulse. J Microsurg (1980) 33(3):353–60. doi:10.1002/micr.1920020303.

Kerrigan CL, Daniel RK. Critical ischemia time and the failing skin flap. Plast Reconstr Surg (1982) 69(5):986–9. doi:10.1097/00006534-198210000-00014.

Koyokaya T, Tsujii M, Inoue T, Nakamura T, Sudo A. Inhibitory effect of edazone on systemic inflammation and local damage in skeletal muscles following long-term ischemia to murine hind limb. J Orthop Surg (Hong Kong) (1999) 27(3):23094949901974470. doi:10.1016/1098-2752(99)00279-9.

Li RW, Deng Y, Pham HN, Weiss S, Chen M, Smith PN. Riluzole protects against skeletal muscle ischemia-reperfusion injury in a porcine model. Injury (2020) 51(2):178–84. doi:10.1016/j.injury.2019.12.030.

Furuhappe H, Itou T, Kakuuchi M, Yasuda T, Kamikobujo Y, Yasuda S, et al. Differential regulation of damage-associated molecular pattern release in a mouse model of skeletal muscle ischemia/reperfusion injury. Front Immunol (2021) 12:628822. doi:10.3389/fimmu.2021.628822.

Messner F, Thurner M, Muller J, Blumer M, Hofmann J, Marksteiner R, et al. Myogenic progenitor cell transplantation for muscle regeneration following hindlimb ischemia and reperfusion. Stem Cell Res Ther (2012) 3(1):136. doi:10.1186/s13287-012-0208-w.

Tu H, Zhang D, Qian J, Barksdale AN, Pipinos II, Patel KP, et al. A pre-clinical model for the study of cardiac ischemia-reperfusion injury in a murine hindlimb model of vascularized composite allograft transplantation. Transplant Direct (2021) 8(1):e1251. doi:10.1002/tdx.100014.

He et al. Critical ischemia time and the failing skin flap. Plast Reconstr Surg (1982) 69(5):986–9. doi:10.1097/00006534-198210000-00014.

30. Spach DS, Mucic RC, Pasculle AW, Shoemaker WC, Spach D, Shires P, et al. Ischemia-reperfusion injury in a rat microvascular skin free flap model: A histological, genetic and blood flow study. Plast Reconstr Surg (2018) 131(12):e209624. doi:10.1093/journal.pone.0209624.

31. Krag AE, Hvas CL, Kiel BJ, Eschen GT, Hvas AM. Local and systemic coagulation marker response to musculocutaneous flap ischemia-reperfusion injury and remote ischemic conditioning. An experimental study in a porcine model. Microsurg (2018) 38(6):690–7. doi:10.1002/micr.30287.

32. Serafin D, Lessner CR, Muller RY, Georgiade NG. Transcutaneous PO2 monitoring for assessing viability and predicting survival of skin flaps: experimental and clinical correlations. J Microsurg (1981) 2(3):165–78. doi:10.1002/micr.1920020303.

33. Donskia PK, Franklin JD, Hurley JV, O'Brien RM. The effects of cooling on experimental free flap survival. Br J Plast Surg (1983) 36:353–60. doi:10.1002/1098-2752(1983)23:5<353::AID-BJPS280>3.0.CO;2-X.

34. Cooley BC, Hansen FC, Dellen AL. The effect of temperature on tolerance to ischemia in experimental free flaps. J Microsurg (1981) 1(3):11–4. doi:10.1002/micr.200203015.

35. Thomas RM, Matkar HA. Effects of ischemia on the hind limb of the rat. Am J Physiol (1975) 235(1):113–31.

36. Eriksson E, Anderson WA, Replogle RL. Effects of prolonged ischemia on muscle microcirculation in the cat. Surg Forum (1974) 25:254–5.

37. Wagh M, Pantazi G, Romero R, Hurley JV, Morrison WA, Knight KR. Cold storage of rat skeletal muscle flaps and pre-ischemic perfusion with modified UW solution. Microsurg (2000) 20(7):343–9. doi:10.1002/1098-2752(2000)20:7<343:AID-MICR3.0.CO;2-C.

38. Krrigan CL, Daniel RK. Critical ischemia time and the failing skin flap. Plast Reconstr Surg (1982) 69(5):986–9. doi:10.1097/00006534-198210000-00014.

39. Yokoyama T, Tsujii M, Inoue T, Nakamura T, Sudo A. Inhibitory effect of edazone on systemic inflammation and local damage in skeletal muscles following long-term ischemia to murine hind limb. J Orthop Surg (Hong Kong) (1999) 27(3):23094949901974470. doi:10.1016/1098-2752(99)00279-9.

40. Li RW, Deng Y, Pham HN, Weiss S, Chen M, Smith PN. Riluzole protects against skeletal muscle ischemia-reperfusion injury in a porcine model. Injury (2020) 51(2):178–84. doi:10.1016/j.injury.2019.12.030.

41. Furuhappe H, Itou T, Kakuuchi M, Yasuda T, Kamikobujo Y, Yasuda S, et al. Differential regulation of damage-associated molecular pattern release in a mouse model of skeletal muscle ischemia/reperfusion injury. Front Immunol (2021) 12:628822. doi:10.3389/fimmu.2021.628822.

42. Messner F, Thurner M, Muller J, Blumer M, Hofmann J, Marksteiner R, et al. Myogenic progenitor cell transplantation for muscle regeneration following hindlimb ischemia and reperfusion. Stem Cell Res Ther (2012) 3(1):136. doi:10.1186/s13287-012-0208-w.

43. Yu T, Zhang D, Qian J, Barksdale AN, Pipinos II, Patel KP, et al. Comparison of acute mouse hindlimb injuries between tourniquet- and femoral artery ligation-induced ischemia-reperfusion injury. J Surg Res (2021) 12(1):3217–26. doi:10.1016/j.jss.2021.09.002.

44. Yang Q, He GW, Underwood MJ, Yu CM. Cellular and molecular mechanisms of endothelial ischemia/reperfusion injury: perspectives and implications for posts ischemic myocardial protection. Am J Trans (2018) 8(2):765–77.

45. Wang J, Toan S, Zhou H. New insights into the role of mitochondria in cardiovacular ischemia/reperfusion injury. Angiogenesis (2008) 23(3):299–314. doi:10.1007/s10456-020-09720-2.

46. Nordling S, Brannstrom J, Carlsson F, Lu B, Salvaris E, Wanders A, et al. Prolonged forearm ischemia attenuates endothelium-dependent vasodilatation and cardiac microvascular ischemia/reperfusion injury. Plast Reconstr Surg (2019) 144(3):679–84. doi:10.1097/PRS.0000000000006978.

47. Messner F, Hautz T, Blumer M, Hofmann J, Marksteiner R, et al. Myogenic progenitor cell transplantation for muscle regeneration following hindlimb ischemia and reperfusion. Stem Cell Res Ther (2012) 3(1):136. doi:10.1186/s13287-012-0208-w.

48. Aboe Bakkar Z, Fullerton J, Gates PE, Jackson SR, Jones AM, Bond B, et al. Prolonged forearm ischemia attenuates endothelium-dependent vasodilatation and plasma nitric oxide metabolites in overweight-middle aged men. Eur J Appl Physiol (2018) 118(8):1565–72. doi:10.1007/s00421-018-3886-z.

49. Wang Y, Liu Y. Neutrophil-induced liver injury and interactions between neutrophils and liver sinusoidal endothelial cells. Inflammation (2021) 44(4):1246–6. doi:10.1007/s10751-021-04142-x.
effects of C1 inhibitor on endothelial cell activation in a rat hindlimb ischemia-reperfusion injury model. J Vasc Surg (2012) 56(3):684–91. doi:10.1016/j.jvs.2012.01.072

10. Koul AR, Chaudhary A, Khaled VM, Vinodan P, Kartheek V, Thiyagarajah K, et al. Can cannabinoids improve the outcome of a rat hindlimb ischemia-reperfusion injury model? Exp Ther Med (2018) 15(6):7370–5. doi:10.3892/etm.2018.6417

11. Zhang S, Yu J, Shi J, Liu M, Su H, Li F, et al. Minimizing ischemia reperfusion injury in xenotransplantation. JAMA Surg (2018) 153(1):55–62. doi:10.1001/jamasurg.2017.5041

12. Nieuwenhuis-Moeke GJ, Pischke SE, Sanders JSF, Pol RA, Struys MA, Sanders JSF, et al. Nrf2 signaling. Niacin reduces lower extremity ischemia/reperfusion injury in the swine model. J Surg Res (2018) 224:229–37. doi:10.1016/j.jss.2018.03.015

13. Niu CC, Zhao XB, Su YM, Li Y, Su H, Luo Z, et al. Potential therapeutic role of increased collagen I expression in a rat hindlimb ischemia-reperfusion injury model. J Surg Res (2018) 222:159–66. doi:10.1016/j.jss.2017.12.029

14. Paschall LA, Lagging A, Takeuchi T, Sato K, Kato M, Yamasaki T, et al. Role of Nrf2 in the pathogenesis of ischemia-reperfusion injury. Am J Surg (2018) 215(2):214–21. doi:10.1016/j.amjsurg.2017.12.029

15. Patil FM, Connolly MR, Cox TM, Calhoun A, Pollock F, Markmann JF, et al. Minimizing ischemia reperfusion injury in xenotransplantation. Front Immunol (2021) 12:681504. doi:10.3389/fimmu.2021.681504

16. McCutcheon C, Hennessy B. Systemic reperfusion injury during arm replantation requiring intraproductive amputation. Anaesthesia Intensive Care (2009) 37(1):1–13. doi:10.1111/j.1395-6231.2008.00346.x

17. Yassin MM, Harkin DW, Barros D’sa AA, Halliday MJ, Rowlands BJ. Lower limb ischemia-reperfusion injury triggers a systemic inflammatory response and multiple organ dysfunction. World J Surg (2002) 26(1):115–22. doi:10.1007/s00268-001-0169-2

18. Steinau H-U. Major limb replantation and postischemic syndrome: investigation of acute ischemia-induced myopathy and reperfusion injury. Springer Science & Business Media (2013).

19. Leclere FM, Mathys I, Juon B, Franz T, Unglaub F, Vogelin E. Macrophage reperfusion injury hypothesis: is it possible to prevent a second wave of neutrophils? J Cardiovasc Surg (2018) 59(2):239–47. doi:10.23750/jcvs.2018.02.0081

20. Pradka SP, Ong YS, Zhang Y, Davis MR, Baccarani A, Messmer C, et al. Increased signs of acute rejection with ischemic time in a rat musculocutaneous allotransplant model. Transplant Proc (2019) 51(2):531–6. doi:10.1016/j.transproceed.2019.01.021

21. Xiao B, Xia W, Zhang J, Liu B, Guo S. Prolonged cold ischemic time results in increased acute rejection in a rat allotransplantation model. J Surg Res (2010) 164(2):e299–304. doi:10.1016/j.jss.2010.08.012

22. Shimizu F, Okamoto O, Katagiri K, Fujisawa S, Wei FC. Prolonged ischemia increases severity of rejection in skin flap allotransplantation in rats. Microsurg (2010) 30(2):132–7. doi:10.1002/micr.20728

23. Villamaria CY, Rasmussen TE, Spencer JR, Patel S, Davis MR. Microvascular porcine model for the optimization of vascularized composite tissue transplantation. J Surg Res (2012) 178(1):452–9. doi:10.1016/j.jss.2012.03.051

24. Hutz T, Hickethier T, Blumtzer M, Bitsche M, Grahammer J, Hermann M, et al. Histomorphometric evaluation of ischemia-reperfusion injury and the effect of preservation solutions histidine-tryptophan-ketoglutarate and university of Wisconsin in limb transplantation. Transplantation (2014) 98(7):713–20. doi:10.1097/TP.0000000000000300

25. Bonassar J, Landin I, Bolado F, Casado-Sanchez C, Lopez-Coloano E, Duer J. Effect of cold preservation on chronic rejection in a rat hindlimb transplantation model. Plast Reconstr Surg (2016) 138(3):628–37. doi:10.1097/PRS.0000000000002461

26. Dutta N, Devaney SG, Baccarani A, Messmer C, Davis MR. Increased signs of ischemia-reperfusion injury and chronic rejection in a porcine vascularized composite allotransplantation model. Transplantation (2018) 102(Supplement 7):S706. doi:10.1097/TP.0000000000000300

27. Breidenbach WC, et al. Prevention of ischemia-reperfusion injury in pediatric kidney transplantation. Pediatr Transplant (2018) 22(2):e13129. doi:10.1111/petr.13129

28. Pradka SP, Ong YS, Zhang Y, Davis SJ, Baccarani A, Messmer C, et al. Increased signs of acute rejection with ischemic time in a rat musculocutaneous allotransplant model. Transplant Proc (2009) 41(2):531–6. doi:10.1016/j.transproceed.2009.01.021

29. Xiao B, Xia W, Zhang J, Liu B, Guo S. Prolonged cold ischemic time results in increased acute rejection in a rat allotransplantation model. J Surg Res (2010) 164(2):e299–304. doi:10.1016/j.jss.2010.08.012

30. Shinji F, Okamoto O, Katagiri K, Fujisawa S, Wei FC. Prolonged ischemia increases severity of rejection in skin flap allotransplantation in rats. Microsurg (2010) 30(2):132–7. doi:10.1002/micr.20728

31. Villamaria CY, Rasmussen TE, Spencer JR, Patel S, Davis MR. Microvascular porcine model for the optimization of vascularized composite tissue transplantation. J Surg Res (2012) 178(1):452–9. doi:10.1016/j.jss.2012.03.051

32. Hutz T, Hickethier T, Blumtzer M, Bitsche M, Grahammer J, Hermann M, et al. Histomorphometric evaluation of ischemia-reperfusion injury and the effect of preservation solutions histidine-tryptophan-ketoglutarate and university of Wisconsin in limb transplantation. Transplantation (2014) 98(7):713–20. doi:10.1097/TP.0000000000000300

33. Bonassar J, Landin I, Bolado F, Casado-Sanchez C, Lopez-Coloano E, Duer J. Effect of cold preservation on chronic rejection in a rat hindlimb transplantation model. Plast Reconstr Surg (2016) 138(3):628–37. doi:10.1097/PRS.0000000000002461

34. Dutta N, Devaney SG, Baccarani A, Messmer C, Davis MR. Increased signs of ischemia-reperfusion injury and chronic rejection in a porcine vascularized composite allotransplantation model. Transplantation (2018) 102(Supplement 7):S706. doi:10.1097/TP.0000000000000300

35. Pradka SP, Ong YS, Zhang Y, Davis SJ, Baccarani A, Messmer C, et al. Increased signs of acute rejection with ischemic time in a rat musculocutaneous allotransplant model. Transplant Proc (2009) 41(2):531–6. doi:10.1016/j.transproceed.2009.01.021
Meditting BD, Bueno R, Chambers C, Neumeister MW. The effect of vitamin E succinate on ischemia reperfusion injury. Handb (New York NY) (2010) 5(1):64–60. doi:10.1007/978-9965-9

Avci G, kadukughi H, sehritli AO, boisart S, guclu A, Orsal E, et al. Curcumin protects against ischemia/reperfusion injury in rat skeletal muscle. J Surg Res (2012) 172(1):e9–46. doi:10.1016/j.jss.2011.08.021

Nunez G, Hossain A, Yamaguchi F, Ueno M, Tanaka Y, Suzuki S, et al. The role of autocrine NPI-230 in skeletal muscle regeneration. J Appl Physiol (Bethesda Md 1985) (2015) 119:425–44. doi:10.1152/japplphysiol.00766.2014

Dong X, Xing Q, Li Y, Han X, Sun L. Dexmedetomidine protects against skin flap ischemia-reperfusion injury in rats via modulation of antioxidant and anti-inflammatory responses. Front Pharmacol (2019) 10:1605. doi: 10.3389/fphar.2019.01605

Tong J, Zhang Y, Yu P, Liu X, Meng J. Protective effect of hydrogen gas on mouse hind limb ischemia-reperfusion injury. J Surg Res (2021) 266:148–59. doi:10.1016/j.jss.2021.03.046

Hammers DW, Rybalko V, Mersham-Banda M, Hishie PL, Sugli L, farrap RR. Anti-inflammatory macrophages improve skeletal muscle recovery from ischemia-reperfusion injury. J Appl Physiol (Bethesda Md 1985) (2015) 118(6):1067–74. doi:10.1152/japplphysiol.00313.2014

Ballestin A, Casado JG, abellán E, Vela FJ, alvarez V, usón A, et al. Adipose-derived stem cells ameliorate ischemia-reperfusion injury in a rat skin flap model. J Reconstr Microsurg (2018) 34(6):601–9.

Bai Y, Han YD, yan XL, Ren J, zeng Q, li XD, et al. Adipose mesenchymal stem cell-derived exosomes stimulated by hydrogen peroxide enhanced skin flap recovery in ischemia-reperfusion injury. Biochem Biophys Res Commun (2018) 500 (2):310–7. doi:10.1016/j.bbrc.2018.04.063

Orfany A, arriola CG, doulamis IP, Guariento A, Ramirez-Barbieri G, Moskowitzwa K, et al. Mitochondrial transplantation ameliorates acute limb ischemia. J Vasc Surg (2020) 71(3):1014–26. doi:10.1016/j.jvs.2020.03.079

Landman T, Schoon Y, Warfe M, De Leewer FE, Thijssen D. The effect of repeated remote ischemic postconditioning on infarct size in patients with an ischemic stroke (REPOST): study protocol for a randomized clinical trial. Trials (2019) 20(1):167. doi:10.1186/s13063-019-3264-0

Yasojima EY, Domingues RJF, Silva RC, Sousa LFF, Trindade Junior SC. Comparison of remote and local postconditioning against hepatic ischemic-reperfusion injury in rats. Acta Cir Bras (2021) 36(1):e10. doi:10.1590/0103-8639.229892

He B, Su S, yuan G, duan J, zhu W, zhang C. Clinical guideline for vascularized composite tissue cryopreservation. J Tissue Eng Regen Med (2021) 15(6):527–33. doi:10.1002/term.3190

Tian Y, li N, Wang W, li N. Application of cryopreservation technique in the preservation of rat limbs. In: Transplantation proceedings, vol. 2021. Elsevier (2021) p. 2816–9

He B, Su S, lu Y, ren X, dian J, liu X, et al. Effects of cryopreservation and replantation on muscles: Application scope of limb cryopreservation. Ann Surg (2020) 281(3):424–9. doi:10.1097/SLA.0000000000003967

Finger EB, Bischof JC. Cryopreservation by vitrification: a promising approach for transplant organ banking. Curr Opin Organ Transplant (2018) 23 (3):353–60. doi:10.1097/MOT.0000000000000534

Chang T, zhou G. Ice inhibition for cryopreservation: Materials, strategies, and the potential for expanding therapeutic options. Front Neurol (2018) 9:40. doi:10.3389/fneur.2018.00040

Chang T, moses OA, tian C, Wang H, Song L, zhang G. Synergistic ice inhibition effect enhances rapid freezing cryopreservation with low concentration of cryoprotectants. Adv Sci (2021) 8(6):e203387. doi:10.1002/advs.202003387

Fahy GM, Wowk B. Principles of ice-free cryopreservation by vitrification. In: Cryopreservation and freeze-drying protocols. Springer (2021) p. 27–97

Taylor MJ, Weegmann BP, baicu SC, Giwa SE. New approaches to cryopreservation of cells, tissues, and organs. Transfus Med Hemother (2019) 46 (3):197–215. doi:10.1159/000499453

Carrillo GA, Rulkens D, balodis LS, giwa se. Cryopreservation of hepatic tissue. Adv Surg (2021) 54:1–30. doi:10.1016/j.advsurg.2021.01.002

Gall RP, Bartholomew PA, abellán E, Vela FJ, usón A, et al. Adipose-derived stem cells ameliorate ischemia-reperfusion injury in a rat skin flap model. J Reconstr Microsurg (2018) 34(6):601–9.

Ballestin A, Casado JG, abellán E, Vela FJ, alvarez V, usón A, et al. Adipose-derived stem cells ameliorate ischemia-reperfusion injury in a rat skin flap model. J Reconstr Microsurg (2018) 34(6):601–9.
Kidney transplant: A randomized clinical trial. Oxygenated end-hypothermic machine perfusion in expanded criteria donor vascularized composite allografts.

He et al. 10.3389/Frontiersin.org 2019 (178). Krezdorn N, et al. Reduced hypoxia-related genes in porcine limbs in ex vivo hypothermic perfusion versus cold storage. J Surg Res 2018 382:155–94.

Ozon K, Rojas-Pena A, Mendiola BS, Toossi M, Bartlett RH. The effect of ex situ perfusion in a swine model vascularized composite tissue allograft on survival up to 24 hours. J Hand Surg 2016 41(1):3–12.

Ozon K, Rojas-Pena A, Mendiola BS, Byrner B, Toossi M, Bartlett RH. Ex situ limb perfusion system to extend vascularized composite tissue allograft survival in swine. Transplantation 2015 99(10):2095–101.

Matar AJ, Crepeau RL, Mudinger GS, Cetulo CL Jr, Torabi R. Large Animal models of vascularized composite allotransplantation: A review of immune strategies to improve allotransplant outcomes. Front Immunol 2021 12:664577. doi:10.3389/fimmu.2021.664577.

Raza M, Figueroa BS, Orfahl LM, Ordenana C, Brunengraber H, Dazary S, et al. Extracorporeal perfusion in vascularized composite allotransplantation: Current concepts and future prospects. Ann Plast Surg 2018 80(6):669–78. doi:10.1097/SAP.0000000000001477.

Raza M, Figueroa BS, Orfahl LM, Ordenana C, Brunengraber H, Dazary S, et al. Extracorporeal perfusion in vascularized composite allotransplantation: State of the art. Curr Transplant Rep (Orlando) 2019 6(4):265–76. doi:10.1007/s40472-019-00263-0.

Yok G, Kubia MCA, Guy E, Ponder M, Hoerenhoff MJ, Rojas-Pena A, et al. Extracorporeal perfusion using a normothermic machine perfusion system reduces the acute rejection of DCD liver transplantation. Transplantation 2020 100(6):673–6. doi:10.1097/TP.0000000000002810.

Kaltenborn A, Kreuzen M, Hoffmann S, Gutek A, Haestert-Talini K, Voge PM, et al. Ex vivo limb perfusion for traumatic amputation in military medicine. Mil Med Res 2020 7(1):1. doi:10.1186/s40779-020-00250-y.

Tingle SJ, Figueiredo RS, Moore JA, Goodfellow M, Talbot D, Wilson CH. Machine perfusion preservation versus static cold storage for deceased donor kidney transplantation. Cochrane Database Syst Rev 2019 (3):CD016171. doi:10.1002/14651858.CD016171.pub2.

Wang Y, Wang S, Gu C, Xiong Y, Shen H, Liu F, et al. Ex-vivo treatment of allotrafts using adipose-derived stem cells induced prolonged rejection-free survival in an allogenic hind limb transplantation model. Transplantation 2019 103(2015):10.1111/sctj.13802.

Kraft AS, Brouwers K, van Midden D, Zegers H, Koers E, van Alfen N, et al. Successful 18-h acellular extracorporeal perfusion and replantation of porcine arteries - histology versus nerve stimulation. Transpl Int 2021 34(2):365–75. doi:10.1111/tstudio.13802.

Amin KR, Stone JP, Kerr J, Geraghty A, Joseph L, Montero-Fernandez A, et al. Pumping new life into old ideas: Animal models of vascularized composite allotransplantation: A review of immune strategies to improve allotransplant outcomes. Front Immunol 2021 12:664577. doi:10.3389/fimmu.2021.664577.

Anggelia MR, Cheng HY, Chuang WY, Hsieh YH, Wang AYL, Lin CH, et al. Machine perfusion of the art. J Hand Surg 2021 46(2):388–78. doi:10.1016/j.jhsa.2021.03.071.

He et al. 10.3389/Frontiersin.org 2019 (178). Krezdorn N, et al. Reduced hypoxia-related genes in porcine limbs in ex vivo hypothermic perfusion versus cold storage. J Surg Res 2018 382:155–94.

Werner NL, Alhamam F, Rakete SH, Sarver DC, Nicoli B, Pietroksi RE, et al. Ex situ perfusion of human limb allotrafts for 24 hours. Transplantation 2017 103(1):66–74.

Kueckelhaus M, Dermietzel A, Alhelfer M, Ayacit MA, Fischer S, Kreuzen M, et al. Acutal hypothermic extracorporeal perfusion extends allowable ischemia time in a porcine whole limb replantation model. Plast Reconstr Surg 2017 139(4):922e–32e.

Duras EFR, Madajka M, Fratutsch R, Soliman B, Cakmakoglu C, Barnett A, et al. Developing a protocol for normothermic ex situ limb perfusion. Microsurgery 2018 38(2):185–94.

Kueckelhaus M, Pauw F, Dermietzel A, Badras M, Fischer S, Kreuzen N, et al. Extracorporeal perfusion in vascularized composite allotransplantation: Current concepts and future prospects. Ann Plast Surg 2018 80(6):669–78. doi:10.1097/SAP.0000000000001477.

Kueckelhaus M, Pauw F, Dermietzel A, Badras M, Fischer S, Kreuzen N, et al. Extracorporeal perfusion in vascularized composite allotransplantation: Current concepts and future prospects. Ann Plast Surg 2018 80(6):669–78. doi:10.1097/SAP.0000000000001477.

Kueckelhaus M, Pauw F, Dermietzel A, Badras M, Fischer S, Kreuzen N, et al. Extracorporeal perfusion in vascularized composite allotransplantation: Current concepts and future prospects. Ann Plast Surg 2018 80(6):669–78. doi:10.1097/SAP.0000000000001477.

Kueckelhaus M, Pauw F, Dermietzel A, Badras M, Fischer S, Kreuζen N, et al. Extracorporeal perfusion in vascularized composite allotransplantation: Current concepts and future prospects. Ann Plast Surg 2018 80(6):669–78. doi:10.1097/SAP.0000000000001477.

Kueckelhaus M, Pauw F, Dermietzel A, Badras M, Fischer S, Kreuzen N, et al. Extracorporeal perfusion in vascularized composite allotransplantation: Current concepts and future prospects. Ann Plast Surg 2018 80(6):669–78. doi:10.1097/SAP.0000000000001477.

Kueckelhaus M, Pauw F, Dermietzel A, Badras M, Fischer S, Kreuzen N, et al. Extracorporeal perfusion in vascularized composite allotransplantation: Current concepts and future prospects. Ann Plast Surg 2018 80(6):669–78. doi:10.1097/SAP.0000000000001477.

Kueckelhaus M, Pauw F, Dermietzel A, Badras M, Fischer S, Kreuzen N, et al. Extracorporeal perfusion in vascularized composite allotransplantation: Current concepts and future prospects. Ann Plast Surg 2018 80(6):669–78. doi:10.1097/SAP.0000000000001477.
200. Lin CH, Anggelia MR, Cheng HY, Wang AYL, Chuang WY, Lin CH, et al. The intragraft vascularized bone marrow component plays a critical role in tolerance induction after reconstructive transplantation. Cell Mol Immunol (2021) 18(2):363–73.

201. Oh BC, Furtmüller GJ, Fryer ML, Guo Y, Messner F, Krapf J, et al. Vascularized composite allotransplantation combined with costimulation blockade induces mixed chimerism and reveals intrinsic tolerogenic potential. JCI Insight (2020) 5(7).

202. Johnson AC, Huang CA, Mathes DW. Tolerance protocols in Large animal VCA models–comprehensive review. Curr Transplant Rep (2020) 7(4):270–8. doi: 10.1007/s40472-020-00302-1