Tan, B. G., Wellesley, F. C., Savery, N. J., & Szczelkun, M. D. (2016). Length heterogeneity at conserved sequence block 2 in human mitochondrial DNA acts as a rheostat for RNA polymerase POLRMT activity. *Nucleic Acids Research, 44*(16), 7817-7829. https://doi.org/10.1093/nar/gkw648

Publisher's PDF, also known as Version of record

License (if available): CC BY

Link to published version (if available): 10.1093/nar/gkw648

Link to publication record in Explore Bristol Research

PDF-document

This is the final published version of the article (version of record). It first appeared online via Oxford University Press at http://dx.doi.org/10.1093/nar/gkw648. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/
Supplementary Information to:

Length heterogeneity at conserved sequence block 2 in human mitochondrial DNA acts as a rheostat for RNA polymerase POLRMT activity

Benedict G. Tan, Frederick C. Wellesley, Nigel J. Savery* and Mark D. Szczelkun*

DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
Supplementary Figure S1: DNA and Protein Sequences.

A. Protein sequence of human POLRMT with mitochondrial signal peptide removed (aa 41-1230) and a N-terminal His\(_6\) tag. Additional amino acids are highlighted in grey. B. Protein sequence of human TFAM with mitochondrial signal peptide removed (aa 43-246) and a N-terminal His\(_6\) tag. Additional amino acids are highlighted in grey. C. Protein sequence of human TEFM with mitochondrial signal peptide removed (aa 36-360) and a C-terminal His\(_6\) tag. Additional amino acids are highlighted in grey. D. Escherichia coli codon-optimised hTEFM gene sequence in pET24b-TEFM.
Insertion of SpeI site into KpnI site

placSpe1 CGGATAACTAGTTGGAGCGTAC
placSpe2 GCTCCAACTAGTTATCCGGTAC

NCR primers with Spe1 sites

NCRSpeF GCATGACTAGTCACCAGTCTTGTAAACC
NCRSpeR CCTAGACTAGTCTAAGAGCTAATAG

DM of RPE1 mtDNA to make pGC-NCR(rCRS)

C2301Ts GATGTCTGTGTGGAAAGTGCTGTGCAGACATTCA
C2301Tas TGAATGTCTGCACACGGCGACTTCCACACAGACATC
G2412As TGAACGTAGGTGCGATAAATAATAGGATGAGGCAGG
G2412Aas CCTGCCCTACATCTATTATATCGACCTACGTTCA
G2614As GGCTATTTAGCGCTTTATGACGCTGAGTTACAAGACCC
G2614Aas GGTTCCTACTCTGGTATCAGCTAAAGCTAAATAGCC
A2941Gs ACTTGCTTGTAAGCATGGGGAGGGTTTTGATGT
A2941Gas ACATCAAAACCCCTCCCCATGCTTACAGCAAGT
del2252s CAGAAGCGGGGAGGGGTTTT
del2252as AAACCCCTCCCCGCTTCTG

Supplementary Figure S2: Primers pairs used for cloning of NCR of the human mtDNA from RPE1 cells and the subsequent site-directed mutagenesis to produce the rCRS.

Numbers in the primer names indicate the position on the RPE1 mtDNA rather than the numbering of the rCRS.
Supplementary Figure S3: Primers pair combinations used for site-directed mutagenesis (SDM).

Primers pairs used to produce the adenine-interrupted discontinuous (A) CSB2 variants or continuous CSB2 variants (B). Primer sequences in C.
CSB2 G>A
CSB2G>AF AAAAAAATTTTGTTGGAATTTTTGTTATGATGTCTG
CSB2G>AR TTTTTGCTTCTGCGCAGCAGCTTAAACACAC

CSB2 ΔTP1
TP1delF ATGATGCTCTGTGAAAGTGGCTGTGCAG
TPMutR TTTCCACAAACCCCTCCCCCG

CSB2 G>A ΔTP1
TP1delF ATGATGCTCTGTGAAAGTGGCTGTGCAG
CSB2G>AR2 TTTTATTTTTTTTTTTTTGCTTCTGGCCACAGACAC

TP1 mutant (UC)3
TP1UC3F TCTCTCGTTATGATGTCTGTGTGGAAAGTGGCTGTGCAG
TPMutR TTTCCACAAACCCCTCCCCCG

TP1 mutant A6
TP1MutA6F AAAAAAGTTATGATGTCTGTGTGGAAAGTGGCTGTGCAG
TPMutR TTTCCACAAACCCCTCCCCCG

G9AG8 spacer AAA spacer
aaaF AAAAAATTTGTTGGAATTTTTGTTATGATGTCTG
G9AG8R CCCCCCTCCCCCTCCCTCCGTTCG6CCACAGACAC

G9AG8 spacer CGT spacer
cgtF CGTTTTTGTGGAATTTTTGTATGATGTCTG
G9AG8R CCCCCCTCCCCCTCCCTCCGTTCG6CCACAGACAC

G10AG7 spacer AAA spacer
aaaF AAAAAATTTGTTGGAATTTTTGTATGATGTCTG
G10AG7R CCCCCCTCCCCCTCCCTCCGTTCG6CCACAGACAC

G10AG7 spacer CGT spacer
cgtF CGTTTTTGTGGAATTTTTGTATGATGTCTG
G10AG7R CCCCCCTCCCCCTCCCTCCGTTCG6CCACAGACAC

G9AG6 Middle A mutation A>C
G9CG6F CGGGGGGTGTGGAATTTTTTTGTATGATGTCTG
CSB2n9R CCCCCCCGCTTTCTGCGCAGCACTTAAACACAC

G9AG6 Middle A mutation A>T
G9TG6F TGGGGGGGTGTGGAATTTTTTTGTATGATGTCTG
CSB2n9R CCCCCCCGCTTTCTGCGCAGCACTTAAACACAC

Supplementary Figure S4: Primers pair combinations used for site-directed mutagenesis to produce the CSB2 variants and downstream mutants as indicated.
Supplementary Figure S5: Transcription assays of CSB 2 variants.

Representative mini-gels from *in vitro* transcription assays using the CSB 2 variants as indicated by the key. The G10AG2 substrate (lane key #55) was originally included in our *in vitro* mini gel assays but was subsequently excluded from further analysis.
Supplementary Figure S6: Quantification of the effect of length heterogeneity on transcription product levels.

A. Total TP levels measured from transcription assays using the CSB 2 variants quantified from mini-gels as indicated by the key in Supplementary Figure S5 \((N = 3, \text{ error bars S.D.})\). The red line represents a basal TP level of \((\text{grey box are the S.D.})\), as measured in the absence of quadruplex formation where stalling is driven by the downstream poly-T tract alone (see G>A substrate in Figure 6). B-D. TP1, TP2 and TP3 levels, as indicated, measured separately from
transcription assays using the CSB 2 variants as indicated by the key in Supplementary Figure SS (N = 3, error bars S.D.). The red lines represents basal TP levels (grey boxes are the S.D.), as measured in the absence of quadruplex formation where termination is driven solely by the downstream poly-T tract (Figure 6). Note the different y-axes scales.
Supplementary Figure S7: TP3 products are dependent on elongated, discontinuous G-tracts and are located within the second G-run.

A. Plot of TP1 levels versus with TP2 or TP3 levels on the same CSB 2 variant (data from Supplementary Figure S6B-D). The dotted shapes indicate two groups of variants (G5AG9-G5AG11 and G6AG8-G6AG11) where there is a marked increase in the amount of TP2 produced relative to TP3. The appearance of the TP3 products above 3% appears to correlate with longer discontinuous CSB 2 variants of 16-18 guanines that in turn produce relatively high levels of total TP1. In comparison, TP2 products above 3% were observed with shorter discontinuous sequences (as low as 14 guanines). B-C. Percentages of TP3 (panel B) or TP2 (Panel C) as a function of position of the adenine (defined in Figure 3A) for discontinuous G-tracts of 9 to 17 residues. Data taken from Supplementary Figure S6C, D (N = 3, error bars
S.D.). Maximum TP3 formation for the 15-17 guanine sequences required that the adenine was located centrally at -1. Given that continuous sequences do not produce TP3 above background regardless of length (Figure 4 and 5), it appears that this product may absolutely require the adenine. For TP2 products there is a less clear relationship with the adenine position since the data error is more significant. Since TP2 bands were also observed with continuous sequences (Figure 5C), the adenine is not absolutely required to generate this product. C. Mapping the position of TP3. Scanned and normalised data from the sequencing gels in Supplementary Figure S9 and S11 is shown alongside data from Figure 5. As in Figure 5, the data was aligned to the 3’ terminal guanine of the G-tracts. The data is grouped according to the total number of guanines. Numbers in brackets are the average TP percentages from Figure 2D and Supplementary Figure S6A. For all sequences the positions of the TP1 and TP2 products align closely. The positions of the main TP3 bands were located 3-6 bp 5’ to the end of the G-tract. However, the rules governing the exact location of the main band are not clear, since they vary with both adenine position and number of guanines.
Supplementary Figure S8: Separation of CSB 2 transcription products using a sequencing gel.

A full sequencing gel (left) and a magnified portion showing the TP region (right) for products from transcription reactions on DNA where the first G-run was fixed at either seven or eight guanines and the second G-run varied as indicated. Approximate positions of TP1, TP2 and TP3 are indicated. The rCRS \(^{47}\) is shown, with the variable G-tract in red. Because length heterogeneity causes a change in distance between the transcription start site and the sequences downstream of the G-tract, transcription products that terminate at the same site on different substrates can have different lengths. For example, because TP1 and TP2 map to regions downstream of the G-tract, as the length of the second G-run increases, these bands
move up the gel (i.e., the transcripts become longer). This is shown by the diamonds symbols which represent the sequences T\textsubscript{287}TGTTA\textsubscript{282} (TP1) and G\textsubscript{296}G\textsubscript{295} (TP2) of the rCRS. The TP3 bands map to the second G-run and are more static (for example, relative to the 100 nt marker which aligns with the first G-run). Because of these relative differences in size of the products, in Figures 5, 6 and 7 we scanned the intensity of each sequencing lane and aligned the data to the final guanine of the G-tract, allowing direct comparison of the locations of the downstream products.
Supplementary Figure S9: Complete sequencing gels from Figure 5.

Panels A-C correspond to panels in Figure 5A-C.
Supplementary Figure S10: Complete sequencing and mini-gels from Figure 7.

A. Sequencing gel corresponding to scanned data in Figure 6B. B. Sequencing gel corresponding to Figure 6C. C. Representative mini-gel from in vitro transcription assay on the substrates in Figure 6C.
Supplementary Figure S11: Complete sequencing gels showing some of the variants in Supplementary Figure S7D not presented elsewhere.