Symulacje ewakuacji w modelu BIM

Andrzej Szymon Borkowski

STRESZCZENIE:
Technologia BIM (Modelowanie informacji o budynku) jest coraz bardziej popularna w procesie projektowania oraz realizacji inwestycji kubaturowych i infrastrukturalnych. Polskie pracownie projektowe gotują projekty wykonawcze wysokiej jakości, wykorzystując nowoczesne narzędzia BIM, generując tym samym więcej korzyści dla zamawiającego czy inwestora. Podstawową zaletą projektu wykonanego w technologii BIM jest model trójwymiarowy. Posiadanie dobrego i dokładnego modelu trójwymiarowego umożliwia przeprowadzanie na nim różnych analiz, w tym ważnych symulacji ewakuacji ludności z projektowanego budynku lub budowli. Celem artykułu była analiza rozwiązań dostępnych w aplikacjach BIM w zakresie bezpieczeństwa w czasie eksploatacji projektowanego budynku biurowego. W niniejszym artykule przedstawiono możliwości wykorzystania technologii BIM do tworzenia takiej symulacji, analiz różnych wariantów oraz dokumentacji z nią związanej.

SŁOWA KLUCZOWE:
technologia BIM; modelowanie informacji o budynku; symulacje ewakuacji, bezpieczeństwo eksploatacji

1. Wprowadzenie

Modelowanie informacji o budynku (BIM), jako jeden z najnowszych trendów w budownictwie, szybko staje się kluczowym podejściem do cyfrowej integracji wymaganych informacji do projektowania, budowy i zarządzania obiektem. Dotychczas w badaniach udokumentowano zastosowania i zalety korzystania z narzędzi oraz procesów BIM w projektowaniu i budowie budynków [1]. Praktyka w zakresie projektowania pokazuje, że budowanie modelu trójwymiarowego (BIM3D) wraz z ewentualnie kolejnymi poziomami (BIM4D, 5D, 6D etc.) daje zdecydowanie więcej korzyści zamawiającemu/inwestorowi niż tradycyjny projekt wykonany w technologii CAD. Budowane i dostarczane modele BIM powinny być użyteczne i spełniać oczekiwania interesariuszy oraz zapewniać interoperacyjność [2]. Aby model BIM był 'dobyty' i spełniał oczekiwanie użytkowników, pliki modelu muszą być 'higieniczne', tzn. podczas pracy z modelem należy przestrzegać pewnych reguł oraz dobrych praktyk. Model BIM powinien zapewnić dostęp do informacji, która jest aktualna, kompletna, czytelna, dostępna, chroniona i łatwa w modyfikacji [3]. Dobry model BIM (często nazywany cyfrowym bliźniakiem budynku) może posłużyć jako podstawa do wielu analiz (statyczno-dynamicznych, wytrzymałościowych czy środowiskowych).

Zaangażowanie branży budowlanej w BIM jest przede wszystkim wykorzystywane jako wspólna platforma wymiany informacji między wieloma projektantami, specjalistami, dostawcami i innymi interesariuszami procesu inwestycyjnego. Dzięki wykorzystaniu technologii BIM w projektowaniu powstaje wirtualny model obiektu, który może być poddany różnorodnym analizom jeszcze przed rozpoczęciem procesu inwestycyjnego w celu np.: lokalizacji ewentualnych kolizji projektowych lub wykonawczych, optymalizacji kosztów związanych z późniejszą
A.S. Borkowski

eksploatacją obiektu [4]. Jedną z ważnych analiz, często definiowaną jako poziom BIM8D, jest analiza ścieżek ewakuacyjnych z projektowanego budynku. Ewakuacje ludzi z budynków przeprowadza się na skutek powstania sytuacji niebezpiecznych rozmaitego rodzaju, np. wybuchu pożaru, eksplozji gazu, zamachu terrorystycznego czy wybuchu [5]. Symulacje wykonane w aplikacjach BIM oparte na modelach trójwymiarowych umożliwiają określenie wielu ważnych parametrów ewakuacji budynków o dowolnych wnętrzach (takich jak np. całkowity czas ewakuacji, długość dojścia do wyjścia ewakuacyjnego), a także wizualizacje tego procesu w wybranych miejscach w budynku, co przedstawiono w artykule.

2. Symulacje ewakuacji

2.1. Wstawianie punktów

W oprogramowaniu BIM, np. aplikacji Autodesk Revit, dostępne są narzędzia typu „Ścieżka przejścia”. Narzędzie to umożliwia wykonanie analizy odległości pomiędzy dwoma wybranymi miejscami w modelu trójwymiarowym. Do przeanalizowania danej ścieżki ewakuacji umieszcza się punkty poprzez wskazanie miejsca początkowego (miejsce ewakuacji) i miejsca końcowego (wyjście lub miejsce zbiórki). Potencjalna ścieżka ewakuacji generowana jest na podstawie analizy modelu trójwymiarowego, który oparty jest głównie na elementach modelu (tzw. komponentach), które z kolei traktowane są jako przeszkody dla osób ewakuowanych. Wygenerowana ścieżka przejścia będzie omijać komponenty znajdujące się w strefie przeprowadzonej analizy i będzie uwzględniać najkrótszą drogę między miejscem początkowym a końcowym. Wymieniona funkcja może zostać wykorzystana nie tylko do analizy długości dojścia ewakuacyjnego lub przejścia ewakuacyjnego, ale również do obliczenia czasu potrzebnego do opuszczenia danej kondygnacji czy budynku.

W celu wytyczenia ścieżki dojścia do wyjścia ewakuacyjnego można kliknąć na środek otworu drzwiowego (rys. 1) lub w innym miejscu pomieszczenia, wstawiając miejsce początkowe ścieżki. Podobnie wstawia się inne miejsca jako wyjścia końcowe z danej kondygnacji lub prowadzące do wyjścia z budynku.

Po dodaniu wymienionych miejsc aplikacja Revit generuje potencjalną trasę ścieżki przejścia, naładowując na rżut siatkę ortogonalną, gdzie wielkość siatki jest stała (0,2 metra). Każda komórka

Rys. 1. Wstawienie punktu
Symulacje ewakuacji w modelu BIM

otrzymuje wartość odzwierciedlającą odległość od miejsca końcowego badanej ścieżki. Komórki traktowane jako przeszkody są usuwane z listy analizowanych komórek, tym samym ścieżka może mieć inny przebieg niż pierwotnie zakładano. Obliczona ścieżka trasy tworzy węzły w punktach środkowych komórek wzdłuż najkrótszej ścieżki, jednocześnie omijając przeszkody w postaci elementów modelu, np. drzwi, krzesła (rys. 2).

Rys. 2. Ścieżka dojścia z miejsca pracy do najbliższego wyjścia ewakuacyjnego

Eksploatacja budynków użyteczności publicznej (galerie handlowe, uczelnie, placówki ochrony zdrowia etc.) oraz budynków biurowych wymaga zapewnienia bezpieczeństwa przebywających w nim osób. W tym celu opracowuje się specjalne procedury postępowania na wypadek powstania zagrożeń zdrowia lub życia przebywających w nich ludzi. Ważnym aspektem tych procedur jest opracowanie w budynkach oznaczonych dróg i planów ewakuacyjnych poszczególnych kondygnacji. Rzuty wszystkich kondygnacji (lub schematy) powinny być dostępne dla służb ratunkowych (straż pożarnej, policji), a drogi ewakuacyjne powinny być odpowiednio oznakowane w budynkach/budowlach. Zagrożenie w postaci pożaru/wybuchu/ataku może powodować stany paniki wśród ewakuowanych, tym samym jasna i czytelna informacja w postaci znaków i planów dróg ewakuacji wydaje się być oczywista dla wszystkich.

2.2. Generowanie trasy ścieżki przejścia

Trasy ścieżki przejścia można generować dla kilkunastu czy nawet kilkudziesięciu pomieszczeń z zachowaniem czytelności danego schematu kondygnacji (rys. 3). Przy generowaniu ścieżek aplikacja Revit omija węzły na ścieżce o 0,3 m od przeszkód, uwzględniając wartość 0,25 m dla promieni ciała oraz 0,05 m dla zapewnienia swobody ruchu. Wymienionych wartości nie można zmienić. W panelu Właściwości danej ścieżki można odczytać czas niezbędny do pokonania danej trasy. Obliczenia uwzględniają prędkość „ spacerową” (3 mile na godzinę, czyli około 4,828 kilometra na godzinę). Wartości prędkości „ spacerowej” również nie można zmienić.

Aplikacje BIM podczas analiz tego typu domyślnie nie uznają za przeszkody elementy ukrytego w widokach, wyburzonych, znajdujących się w innych etapach czy elementów tzw. podrysu. Niektóre aplikacje BIM umożliwiają również wprowadzanie na plany odpowiednich symboli związanych z normami z zakresu ochrony i ewakuacji w razie pożaru (ISO 23601, ISO 7010: 2011).

Rys. 3. Wbudowane w model ścieżki pokazana z użyciem aplikacji Revit.
Rys. 3. Ścieżki dojścia do najbliższych wyjść ewakuacyjnych na poziomie piętra budynku biurowego

2.3. Dokumentacja wyników

Zestawienia ilości/cech to podstawowe tabele, które pojawiają się na etapie projektowania koncepcyjnego i architektonicznego. Są niezbędne do tworzenia kolejnych elementów dokumentacji, takich jak przedmiary, kosztorysy, czy na dalszym etapie oferty. W celu sprawdzenia oraz przeanalizowania długości poszczególnych tworzy się zestawienia, które pokazują dokładne wartości długości ścieżki lub czasu niezbędnego do dojścia ewakuacyjnego. Tabela 1 przedstawia długość tras na poziomie piętra oraz czas niezbędny do przejścia danej trasy. Formatowanie warunkowe dostępne w aplikacjach typu BIM umożliwia filtrowanie zestawień według wybranych kryteriów. W tabeli 1 w ten sposób zaznaczono rekordy, gdzie długość trasy do najbliższego wyjścia ewakuacyjnego jest większa niż 10 m. W ten sposób można je również wyświetlać w wybranych widokach lub na schematach kondygnacji.

Tabela 1
Zestawienie ścieżek dojścia do najbliższych wyjść ewakuacyjnych

Poziom	Długość	Czas
Poziom1	3.47 m	2.6 s
Poziom1	3.75 m	2.8 s
Poziom1	4.64 m	3.5 s
Poziom1	5.45 m	4.1 s
Poziom1	9.88 m	4.4 s
Poziom1	7.15 m	5.3 s
Poziom1	7.39 m	5.5 s
Poziom1	8.07 m	6.0 s
Poziom1	8.21 m	6.1 s
Poziom1	8.61 m	6.4 s
Poziom1	9.95 m	7.3 s
Poziom1	9.91 m	7.4 s
Poziom1	10.43 m	7.8 s
Poziom1	10.88 m	8.2 s
Poziom1	11.39 m	8.4 s
Poziom1	12.45 m	9.3 s
Poziom1	12.85 m	9.6 s
Poziom1	12.95 m	9.7 s
Poziom1	13.91 m	10.3 s
Poziom1	14.04 m	10.6 s
Poziom1	14.34 m	10.7 s
Poziom1	15.47 m	11.5 s
Podsumowując, w aplikacjach typu BIM można:
• sporządzanie i przygotowywanie do wydruku plany lub schematy ewakuacji na podstawie rzutów poszczególnych kondygnacji budynku,
• automatycznie tworzyć legendy z opisem użytych obiektów i symboli,
• filtrować zestawienia z wykorzystaniem formatowania warunkowego,
• wykorzystywać symbole z bibliotek symboli i tablic, zgodne z normami branżowymi,
• automatyzować funkcje zaznaczania wybranych dróg ewakuacyjnych.

3. Wnioski

Wykorzystanie możliwości modelu BIM oraz narzędzi do symulacji ewakuacji w aplikacjach typu BIM niesie ze sobą wiele zalet zarówno dla projektanta, jak i zarządzającego budynkiem. Zbudowany model trójwymiarowy budynku oraz generowane na jego podstawie ścieżki trasy dojścia mogą zostać wykorzystane przy projektowaniu budynku, jego planowanej modernizacji czy rozbudowie. Zastosowanie dostępnych narzędzi przy wykorzystaniu wiedzy specjalistycznej z zakresu BHP oraz po poż. zapewnia maksymalne wykorzystanie danych do wygenerowania jak największej ilości informacji, które mogą zostać następnie wykorzystane w dalszych pracach z modelem lub podczas realizacji inwestycji. Na koniec należy podkreślić, że wykorzystanie technologii BIM w projektowaniu niesie ze sobą zdecydowanie więcej korzyści i zalet niż tradycyjne projektowanie.

Literatura
[1] Kasznia D., Magiera J., Wierzbicki P., BIM w praktyce. Standardy, wdrożenie, case study, Wydawnictwo Naukowe PWN, Warszawa, Polska, 2017.
[2] Werner W.A., Kacprzyk Z., BIM Procedury inwestycyjno-budowlane. Podstawy BIM, Oficyna Wydawnicza Polcen, Warszawa, Polska, 2019.
[3] Borkowski A.S., File Hygiene and BIM Models Restrictions, Trends in Civil Engineering and Its Architecture 2019, 3, 430-435.
[4] Nawrot J., Wykorzystanie technologii BIM w procesie eksploatacji budynku, Zeszyty Naukowe Politechniki Częstochowskiej 2018, seria Budownictwo 24, 249-254.
[5] Kościński R., Grabowski A., Matematyczne modelowanie i badania symulacyjne zachowania się ludzi podczas ewakuacji z budynków, Bezpieczeństwo Pracy – Nauka i Praktyka 2013, 1, 20-25.

Evacuation simulations in the BIM model

ABSTRACT:
BIM technology (Building Information Modeling) is increasingly used in the design and implementation of cubature and infrastructure investments. Polish designed offices are made possible by high-quality executive designs produced using modern BIM tools, thus generating increased benefits for the client or investor. The basic advantage of a project made using BIM technology is the three-dimensional model. Having a good and accurate three-dimensional model makes carrying out analysis on the project more effective, including the running of important simulations for the evacuation of people from the designed building. The aim of the paper was to analyse available solutions in BIM applications in regards to safety during the operation of the designed office building. This paper presents how BIM technology can be used to create such simulations, and to review various variants and related documentation.

KEYWORDS:
BIM technology; building information modeling; evacuation simulations, operational safety