Identification of Single Nucleotide Polymorphism Markers in the Laccase Gene of Shiitake Mushrooms (Lentinula edodes)

Ki-Hwan Kim¹, Kang-Hyeon Ka², Ji Hyoun Kang³, Sangil Kim⁴, Jung Won Lee⁵, Bong-Kyun Jeon⁷, Jung-Kuk Yun⁶, Sang Rul Park⁵* and Hyuk Je Lee⁷*

¹Bionics, Seoul 135-757, Korea
²Korea Forest Research Institute, Seoul 130-712, Korea
³Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz 78457, Germany
⁴Estuarine & Coastal Ecology Laboratory, Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Korea
⁵Smarteome Co., Suwon 441-853, Korea
⁶Department of Medicine, Graduate School, Chungbuk National University, Cheongju 362-763, Korea
⁷Department of Biological Science, College of Science and Engineering, Sangji University, Wonju 220-702, Korea

Abstract We identified single nucleotide polymorphism (SNP) markers in the laccase gene to establish a line-diagnostic system for shiitake mushrooms. A total of 89 fungal isolates representing four lines, including Korean registered, Korean wild type, Chinese, and Japanese lines, were analyzed. The results suggest that SNP markers in the laccase gene can be useful for line typing in shiitake mushrooms.

Keywords Laccase gene, Lentinula edodes, Mushroom, Shiitake, SNP
Table 1. PCR primer pairs and sequencing primer pairs for the *Letinula edodes* laccase gene

Purpose	Name	Sequences	mer	Ta (°C)
PCR, sequencing	Lac-forward	5'-ATG CTT CCC TTC GTT TCT TCT-3'	21	52
PCR, sequencing	Lac-reverse	5'-TCA AGG TAA TTG AGC AGG GGT-3'	21	52
Sequencing	Lac-internal 1	5'-ATC CCG AGC GAC CTG AAT-3'	18	50
Sequencing	Lac-internal 2	5'-AAG GGT GCA GCA TCG ATT-3'	18	50
Sequencing	Lac-internal 3	5'-TTT CTT TGA CCC TAC TGC-3'	18	50

Ta is annealing temperature.

The primer pairs designed to amplify the LELCC gene were based on its open reading frame.

Table 2. TaqMan probes for SNP genotyping of the *Letinula edodes* laccase gene

Probe name	Primer and TaqMan probe sequences
SNP1	VIC→ATC ATC ATA TCT GTAT CAT TT (5→3)
SNP2	FAM→TCC ATG TTC TCT CAT ATG T
SNP3	VIC→CTG AGC CCC TGT TTG A
SNP4	FAM→CTG ATC CAC GGT CAG CAT A
SNP5	VIC→AAA AGT TGT GAT TGT CAT C (3→5)
SNP6	FAM→AAG TGT TGA TAG GCA TCC
SNP7	VIC→CTG GCG TGG TGT TGA
SNP8	FAM→CTG GCG TGG TGT TGA
SNP9	VIC→ACT GCT GTG GGA CA

Each allele specific TaqMan probe is labeled with a reporter dye at the 5’ end.

VIC dye is linked to the 5’ end of the allele 1 probe.

FAM dye is linked to the 5’ end of the allele 2 probe.
genotyped in an ABI StepOnePlus Real-Time PCR System (Applied Biosystems) using the following conditions: an initial denaturation of 10 min at 95°C, and 40 cycles of 92°C for 15 sec and 60°C for 1 min. StepOnePlus software ver. 2.0 (Applied Biosystems) was used to detect the fluorescence generated from each sample and to perform an automatic or a manual determination of SNP type for each assay.

In order to quantify SNP variation within four shiitake lines, we calculated genetic parameters such as expected heterozygosity (H_e), observed heterozygosity (H_o), polymorphism information content (PIC) [17], and Hardy-Weinberg equilibrium (HWE) p-values using PowerMarker ver. 3.25 [18]. The p-values for HWE were adjusted using the sequential Bonferroni correction [19]. Allelic and genotypic frequencies were calculated for the samples analyzed. The genetic variability of the sample as a whole was estimated as described for each of the four lines.

To examine if the observed SNPs represent synonymous (silent) or non-synonymous (replacement) substitutions, the full-length sequence of the LELCC gene for each shiitake line was prepared in a single contig created according to the international unit base (IUB) code by multiple sequence alignment using Clustal W. We also translated the nucleotide sequences of the LELCC gene contigs into amino acid

![Fig. 1. Allelic discrimination plot using allele specific probes for the *Letinula edodes* laccase gene. Red color indicates a GG homozygote that was labeled with fluorescent VIC, blue color indicates a CC homozygote that was labeled with fluorescent FAM, and green color indicates a GC heterozygote that was labeled with both fluorescent VIC and FAM. ■, negative control; ×, undetermined.](image)

Table 3. Genotype frequencies at eight SNP markers in four different lines of shiitake (*Letinula edodes*)

Probe locus	Korea registered 20 lines	Korea wild type 29 line	Japan 20 lines	China 20 lines
SNP1	H_e 0.79 0.36	H_e 0.24 0.27	H_e 0.71 0.35	H_e 0.76 0.38
Probe name	SNP type	H_o 0.07	H_k 0.42	H_k 0.12
SNP2	G 0.21	G 0.69	G 0.29	G 0.12
SNP3	G 0.68 0.38	G 0.18	G 0.59 0.37	G 0.11 0.37
SNP4	G 0.16	G 0.14	G 0.12	G 0.12
SNP5	G 0.58 0.38	G 0.30	G 0.61 0.36	G 0.08
SNP6	G 0.42	G 0.28	G 0.32	G 0.11
SNP7	G 0.53	G 0.62	T 0.58	T 0.33
SNP8	G 0.05	G 0.10	A 0.42 0.28	A 0.17
SNP9	G 0.29 0.32	A 0.20	A 0.76 0.36	A 0.81 0.37
SNP10	A 0.16	A 0.51	A 0.24	A 0.13
SNP11	G 0.34 0.30	G 0.76	G 0.24	G 0.06
SNP12	A 0.16	A 0.56	A 0.34 0.36	A 0.05
SNP13	GA 0.45 0.28	AA 0.55	GA 0.69 0.35	GA 0.80 0.38
SNP14	GA 0.79 0.37	AA 0.31	GA 0.31	GA 0.10
SNP15	GA 0.16	AA 0.51	GA 0.05	AA 0.10

H_o, homozygote frequency; H_e, heterozygote frequency; PIC, polymorphism information content: number of polymorphic loci/total number of loci analyzed; SNP, single nucleotide polymorphism; -, value zero.
Table 4. Summary statistic of SNP markers from pooled lines of shiitake

SNP locus	H_e	H_s	HWE χ^2	F_{IS}	F_{IT}	F_{ST}
SNP 1	0.5733	0.4488	0.0084	−0.33	−0.33	0.060
SNP 2	0.5652	0.4962	0.3338	−0.13	−0.13	0.001
SNP 3	0.5797	0.4873	0.1500	−0.21	−0.22	0.034
SNP 4	0.5970	0.4972	0.0782	−0.19	−0.19	−0.003
SNP 5	0.4444	0.4132	0.7706	−0.07	−0.07	0.0003
SNP 6	0.6579	0.4830	0.0020	−0.38	−0.38	0.0174
SNP 7	0.6506	0.4738	0.0011	−0.42	−0.42	0.0442
SNP 9	0.6567	0.4598	0.0005	−0.48	−0.48	0.0484
Mean	0.5906	0.4699	−0.28	−0.25	−0.25	0.0256

SNP, single nucleotide polymorphism.

H_e: observed heterozygosity is the proportion of heterozygous individuals in the population.

H_s: expected heterozygosity is defined as the probability that two randomly chosen alleles from the population are different.

HWE: probability estimated from likelihood ratio (G2) tests for Hardy-Weinberg equilibrium at each locus. Significance levels at $\alpha = 0.05$, 0.01, and 0.001 are indicated by ** and ***, respectively. ns, non-significance.

F-statistics describe the amount of inbreeding-like effects within subpopulation (F_{IS}), among subpopulations (F_{IT}), and within the entire population (F_{ST}).

sequences in accordance with open reading frame identification.

We successfully recovered a total of 2,249 bp sequences of the partial LELCC gene from all 89 samples of the four shiitake lines (GenBank accession No. HQ662226–HQ662271). From our alignment of the sequences from all shiitake lines, we identified the nucleotide positions of SNPs (Supplementary Fig. 1). Although our analyses yielded a total of 48 SNPs, we restricted to only 10 SNP markers (SNP 1 to SNP 10) based on the accuracy, amount of within-line polymorphism (i.e., frequency), and designed TaqMan probes.

Allelic discrimination was accomplished using real-time PCR. The probes for SNP 8 and SNP 10 were excluded from this analysis owing to technical issues (e.g., low reproducibility of PCR). An example of SNP genotyping using the SNP 2 probe is shown in Fig. 1. The red color indicates the GG homozygote, which was labeled by fluorescent VIC, the blue color denotes the CC homozygote, labeled by FAM, and the green color indicates the GC heterozygote, fluorescently labeled by both VIC and FAM. All eighty-nine shiitake lines were genotyped with the eight SNP markers (Supplementary Table 1). The SNP markers we developed allowed the discrimination of 81 out of 89 lines, with only eight lines that could not be distinguished (KFRI 401 = FMRI137, China 482 = Japan 754, China 488 = China 494, China 490 = Japan 812) (see Supplementary Table 1).

We performed statistical analyses on each of the four lines separately (Korean registered lines, Korean wild type lines, Japanese lines, and Chinese lines). The analysis classified genotypes of the LELCC gene by SNP markers and calculated the frequency of each genotype and the PIC values (Table 3). According to this analysis, the mean frequency of heterozygote individuals was 0.76 (Chinese) > 0.68 (Korean registered) > 0.55 (Japanese) > 0.29 (Korean wild type). However, the mean PIC values, which indicate the number of polymorphic loci/total number of loci analyzed, were similar between lines, ranging from 0.32 to 0.37.

To assess genetic diversity across the shiitake lines, we estimated observed heterozygosity (H_e), expected heterozygosity (H_s), HWE p-values, and the amount of inbreeding-like effects within subpopulation (F_{IS}), among subpopulations (F_{IT}), and within the entire population (F_{ST}). The H_e and H_s of all samples pooled were 0.5906 and 0.4699, respectively. The genotypes at four out of eight SNP markers (SNPs 1, 6, 7, 9) were significantly different from Hardy-Weinberg expectations (Table 4), which suggests non-random mating at these markers.

We determined the structure of the LELCC gene by identifying 11 exons and 10 introns, based on the splicing sites (AG/GT) in the sequences (Fig. 2). Among the observed eight SNP markers, SNPs 1, 3, and 9 were located within introns and the other five within exons (Fig. 2). We suggest that SNP 2 located in exon 3, SNP 4 in exon 4, and SNPs 5, 6, and 7 in exon 9 can be good probe candidates for the identification of specimens in the four shiitake lines. GGG (glycine: nonpolar) was converted to GCC (alanine: nonpolar) in SNP 2, and AAT (asparagine: neutral) was converted to TAT (tyrosine: aromatic) in SNP 5. In both cases a purine was substituted by a pyrimidine (G or A to C or T) and the corresponding amino acid was altered, i.e., replacement (nonsynonymous) polymorphisms. In contrast, the remaining polymorphisms were synonymous: GAC (aspartate: negative) converted to GAT (aspartate) in SNP 4, GTG (valine: nonpolar) converted to GTA (valine) in SNP 6, and TTG (leucine: nonpolar) converted to CTG (leucine) in SNP 7.

Until recently, line typing and breeding of shiitake (Lentinula edodes) cultivars have been depended on traditional DNA markers like restriction fragment length polymorphism [20], randomly amplified polymorphism DNA [21], amplified
fragment length polymorphism (AFLP) [4], and microsatellites [22]. However, these markers have limitations in that they often show low levels of reproducibility and usually lack specific genetic information (e.g., AFLP; genetic loci showing DNA polymorphisms are usually unknown). Kim et al. [22] used co-dominant microsatellite DNA markers (GenBank accession No. DQ231475–DQ231479) to discriminate 89 lines of shiitake from East Asia, including Korea, China, and Japan, but they found that precise cultivar typing was difficult because of insufficient genetic information. The SNP markers that we developed here from the laccase gene, a gene known to be functionally important in basidiomycetes, can complement these limitations and allow for more reliable typing of shiitake mushrooms and possibly for cultivar development through marker association selection. It is worth noting that a combined analysis of SNP markers (that were developed for this study) and microsatellites (that were developed in our previous study [22]) allows all 89 shiitake lines to be distinguished.

Moreover, it will be interesting to examine the possible relationships between SNP markers and phenotypic traits, particularly shiitake pigmentation. We found two motifs using MotifFinder software (http://wwwgenome.jp/tools/motif). First, the position of serpin was located between 120 bp and 130 bp at nucleotide sequences and was registered as PS00284 in PROSITE. Second, the position of multicopper oxidase 1 was between 137 bp and 157 bp and was registered as PS00079 in PROSITE. Serpins are a group of proteins with similar structures and were first identified as a set of protease inhibitors. The acronym “serpin” was coined because many serpins inhibit chymotrypsin-like serine proteases (serine protease inhibitors) [23]. A single fungal serpin has been characterized to date: celpin from *Piromyces* spp. line E2. *Piromyces* is an anaerobic fungus found in ruminant guts and is important for digesting plant material. Celpin is predicted to be an inhibitory molecule and contains two N-terminal dockerin domains in addition to the serpin domain. Dockerins are commonly found in proteins that localize to the fungal cellulosome, a large extracellular multiprotein complex that breaks down cellulose [23]. It is therefore suggested that celpin protects the cellulosome against plant proteases. Interestingly, certain bacterial serpins also localize to the cellulosome. Laccases are copper-containing oxidases that are found in many plants, fungi, and microorganisms. Our analysis of SNPs in shiitake laccases is expected to be useful in future genotyping or protein function studies.

ELECTRONIC SUPPLEMENTARY MATERIAL

Supplementary data including one table and one figure can be found with this article online at http://www.mycobiology.or.kr/src/sm/mb-43-75-s001.pdf.

ACKNOWLEDGEMENTS

This work was carried out with the support of “Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ01118805)” Rural Development Administration, Republic of Korea, supported by grant (Code 306008-5) from Technology Development Program for Agriculture and Forestry, Ministry of Agriculture, Forestry and Fisheries, Republic of Korea, and supported by the Sangji University Research Fund, 2013 (Project No. 2013-0081) to Hyuk Je Lee.

REFERENCES

1. Oba K, Kobayashi M, Matsui T, Kodera Y, Sakamoto J. Individual patient based meta-analysis of lentinan for unresectable/recurrent gastric cancer. Anticancer Res 2009;29: 2739-45.
2. Bisen PS, Baghel RK, Sanodiya BS, Thakur GS, Prasad GB. *Lentinus edodes*: a macrofungus with pharmacological activities. Curr Med Chem 2010;17:2419-30.

3. Chiu SW, Ma AM, Lin FC, Moore D. Genetic homogeneity of cultivated strains of shiitake (*Lentinula edodes*) used in China as revealed by the polymerase chain reaction. Mycol Res 1996;100:1393-9.

4. Terashima K, Matsumoto T. Strain typing of shiitake (*Lentinula edodes*) cultivars by AFLP analysis, focusing on a heat-dried fruiting body. Mycoscience 2004;45:79-82.

5. Hibbett DS, Donoghue MJ. Implications of phylogenetic studies for conservation of genetic diversity in Shiitake mushrooms. Conserv Biol 1996;10:1321-7.

6. Madhavi V, Lele SS. Laccase: properties and applications. BioResources 2009;4:1694-717.

7. Chitterbuck AJ. The genetics of conidiophore pigmentation in *Aspergillus nidulans*. J Gen Microbiol 1990;187:341-52.

8. Chitterbuck AJ. The blue oxidase, ascorbate oxidase, laccase and ceruloplasmin. Eur J Biochem 1990;187:341-52.

9. Leatham GF, Stahmann MA. Studies on the laccase of *Lentinus edodes*: specificity, localization and association with the development of fruiting bodies. J Gen Microbiol 1981;125:147-57.

10. Worrall JJ, Chet I, Hütttermann A. Association of rhizomorph formation with laccase activity in *Armillaria* spp. J Gen Microbiol 1986;132:2527-33.

11. Giardina P, Canno R, Martirani L, Marzullo L, Palmieri G, Sannia G. Cloning and sequencing of a laccase gene from the lignin-degrading basidiomycete *Pleurotus ostreatus*. Appl Environ Microbiol 1995;61:2408-13.

12. Kawai S, Imura Y, Takenouchi K, Katayama Y, Morohoshi N. Cloning and sequence analysis of laccase genes and construction of host vector system in *Coriolus versicolor*. J Cell Biochem Suppl 1993;17:C192.

13. Kojima Y, Tsukuda Y, Kawai Y, Tsukamoto A, Sugiuira J, Sakaino M, Kita Y. Cloning, sequence analysis, and expression of ligninolytic phenoloxidase genes of the white-rot basidiomycete *Coriolus hirsutus*. J Biol Chem 1990;265:1522-30.

14. Yaver DS, Xu E, Golightly EJ, Brown KM, Brown SH, Rey MW, Schneider P, Halkier T, Mondorf K, Dalboge H. Purification, characterization, molecular cloning, and expression of two laccase genes from the white rot basidiomycete *Trametes villosa*. Appl Environ Microbiol 1996;62:834-41.

15. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999;41:95-8.

16. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1997;22:4673-80.

17. Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 1980;32:314-31.

18. Liu K, Muse SV. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 2005;21:2128-9.

19. Rice WR. Analyzing tables of statistical tests. Evolution 1989;43:223-5.

20. Kulkarni RK. DNA polymorphisms in *Lentinula edodes*, the Shiitake mushroom. Appl Environ Microbiol 1991;57:1735-9.

21. Zhang Y, Molina Fl. Strain typing of *Lentinula edodes* by random amplified polymorphic DNA assay. FEMS Microbiol Lett 1995;131:17-20.

22. Kim KH, Kim YY, Ka KH, Lee HS, Bak WC, Jeong SI, Seong KY, Suh DS. Microsatellite makers for population-genetic studies of Shiitake (*Lentinula edodes*) strains. Gene Genomics 2009;31:403-11.

23. Potempa J, Korzus E, Travis J. The serpin superfamily of proteinase inhibitors: structure, function, and regulation. J Biol Chem 1994;269:15957-60.
Supplementary Fig. 1. Multiple sequence alignment of the LELCC (*Letinula edodes* laccase) gene sequences (2,249 bp) of 89 shiitake lines, illustrating locations of the single nucleotide polymorphism polymorphisms identified. R = A or G, Y = C or T, K = G or T, M = A or C, S = G or C, and W = A or T.
Supplementary Table 1. Genotyping at eight SNPs in the LELCC (*Letinula edodes* laccase) gene from each shiitake line

KFRI No.	Origin	SNP1	SNP2	SNP3	SNP4	SNP5	SNP6	SNP7	SNP9
401	KFRI	A/G	G/C	G/A	G/A	T/A	A/G	G/A	G/A
402	KFRI	??	G/C	G/A	T/T	G/A	G/A	G/A	
403	KFRI	G/G	C/C	A/A	G/G	T/T	G/G	A/A	G/G
404	KFRI	A/G	G/G	G/G	A/A	T/T	A/G	G/A	G/A
405	KFRI	A/G	A/G	T/T	G/G	A/A	A/A	G/G	A/A
406	KFRI	?/?	G/C	G/A	G/A	T/T	A/G	G/A	G/A
407	KFRI	G/G	C/C	A/A	G/G	T/T	G/G	A/A	G/G
408	KFRI	G/G	C/C	A/A	G/G	T/T	G/G	A/A	G/A
299	KFRI	??	G/C	G/A	A/G	T/A	A/G	G/A	G/A
169	KFRI	A/G	G/G	G/G	A/A	T/T	A/G	G/A	G/A
1	FMRI	??	G/C	G/A	T/A	A/G	G/A	G/A	G/A
2	FMRI	??	G/C	G/A	T/A	A/G	G/A	G/A	G/A
3	FMRI	A/G	G/G	A/A	T/A	A/G	G/A	G/A	G/A
5	FMRI	A/G	G/G	A/A	T/T	A/G	G/A	G/A	G/A
137	FMRI	A/G	G/C	G/A	T/A	A/G	G/A	G/A	G/A
180	FMRI	A/G	G/C	G/A	A/G	T/T	A/G	G/A	G/A
504	FMRI	A/G	G/C	A/A	T/A	A/G	G/A	G/A	G/A
689	FMRI	??	G/C	G/A	A/G	T/A	A/G	G/A	G/A
192	RDA	A/G	G/C	G/A	G/A	T/T	A/G	G/A	G/A
36	Wild	G/G	C/C	A/A	G/G	T/T	G/G	A/G	G/G
37	Wild	G/G	?/?	?/?	?/?	?/?	G/G	A/A	?/?
38	Wild	G/G	C/C	A/A	G/G	?/?	G/G	A/A	G/G
42	Wild	G/G	?/?	?/?	?/?	T/T	G/G	A/A	?/?
51	Wild	G/G	?/?	?/?	?/?	?/?	G/G	A/A	?/?
53	Wild	G/G	?/?	?/?	?/?	T/T	?/?	A/A	G/G
55	Wild	A/G	G/G	G/A	T/A	A/G	G/A	G/A	G/A
57	Wild	A/G	G/C	G/A	T/A	A/G	G/A	G/A	G/A
60	Wild	A/G	?/?	?/?	?/?	G/G	?/?	G/A	G/A
62	Wild	A/G	G/C	G/A	T/A	A/G	G/A	G/A	G/A
63	Wild	A/G	G/G	A/A	T/A	A/A	G/A	G/A	G/A
64	Wild	G/G	C/C	A/A	G/G	T/T	G/G	A/A	G/G
128	Wild	G/G	?/?	?/?	?/?	?/?	G/G	A/A	?/?
129	Wild	A/A	?/?	?/?	?/?	T/T	?/?	?/?	G/G
135	Wild	G/G	?/?	?/?	?/?	T/T	?/?	A/A	G/G
136	Wild	G/G	?/?	?/?	T/T	?/?	?/?	A/A	G/G
176	Wild	G/G	?/?	A/A	?/?	T/T	G/G	A/A	G/G
177	Wild	?/?	G/C	G/A	G/A	T/A	A/G	G/A	G/A
188	Wild	G/G	C/C	A/A	G/G	T/T	G/G	A/A	G/A
369	Wild	G/G	C/C	A/A	G/A	T/A	A/G	G/A	G/A
370	Wild	G/G	C/C	A/A	G/A	T/A	A/G	G/A	G/A
411	Wild	A/G	G/G	?/?	A/A	?/?	A/A	G/A	G/A
665	Wild	A/A	?/?	?/?	T/T	?/?	A/A	G/A	G/A
666	Wild	G/G	C/C	A/A	A/A	A/A	A/A	G/G	G/A
669	Wild	?/?	G/G	A/A	T/T	A/A	G/A	?/?	G/A
672	Wild	G/G	?/?	?/?	T/T	G/G	A/A	G/G	
674	Wild	A/G	G/G	G/A	A/A	T/A	A/A	G/A	G/A
675	Wild	G/G	C/C	A/A	G/G	T/T	G/G	A/A	G/G
731	Wild	G/G	C/C	A/A	G/G	T/T	G/G	A/A	G/A
478	China	A/G	G/C	G/A	T/A	A/G	G/A	G/A	G/A
480	China	A/G	G/C	G/A	T/A	A/G	G/A	G/A	G/A
481	China	G/G	?/?	A/A	?/?	T/T	G/G	A/A	G/G
482	China	A/G	G/C	G/A	T/A	A/G	G/A	G/A	G/A
483	China	A/G	G/C	G/A	T/T	A/G	G/A	G/A	?/?
484	China	A/G	G/C	G/A	T/A	A/G	G/A	G/A	?/?
485	China	A/A	G/G	G/A	A/A	A/A	A/A	G/G	G/G
486	China	A/G	G/C	G/A	T/T	A/G	G/A	G/A	?/?
487	China	?/?	?/?	?/?	?/?	?/?	?/?	?/?	?/?
488	China	A/G	G/C	G/A	T/A	A/G	G/A	G/A	?/?
KFRI No.	Origin	SNP1	SNP2	SNP3	SNP4	SNP5	SNP6	SNP7	SNP9
----------	--------	------	------	------	------	------	------	------	------
489	China	A/G	G/C	G/A	G/A	A/A	A/G	G/A	G/A
490	China	A/G	G/C	G/A	G/A	T/T	A/G	G/A	G/A
491	China	A/G	G/C	G/A	G/A	T/A	A/G	G/A	G/A
494	China	A/G	G/C	G/A	G/A	T/A	A/G	G/A	?/?
495	China	A/G	G/C	G/A	G/A	T/A	A/G	G/A	?/?
497	China	A/G	G/C	G/A	G/A	T/A	A/G	G/A	G/A
816	China	A/A	G/G	G/G	A/A	A/A	G/G	A/A	
817	China	G/G	C/C	A/A	G/G	T/T	G/G	A/A	G/G
754	Japan	A/G	G/C	G/A	T/A	A/G	G/A	G/A	
755	Japan	A/G	G/C	G/A	G/A	T/A	A/G	G/A	G/A
760	Japan	A/G	G/C	G/A	G/A	T/A	A/G	G/A	?/?
761	Japan	A/G	G/G	G/G	T/T	G/G	A/A	G/G	
751	Japan	A/G	G/C	G/A	G/A	T/A	A/G	G/A	?/?
756	Japan	G/G	C/C	A/A	G/G	T/T	G/G	A/A	G/G
803	Japan	A/G	G/C	G/A	T/A	A/G	G/A	G/A	
804	Japan	G/G	C/C	A/A	G/G	T/T	G/G	A/A	G/G
805	Japan	G/G	C/C	A/A	G/G	T/A	A/G	G/A	G/A
806	Japan	A/G	G/C	G/A	G/A	T/T	A/G	G/A	G/A
807	Japan	A/G	G/C	G/A	G/A	T/T	A/G	G/A	G/A
808	Japan	G/G	C/C	A/A	G/G	T/T	G/G	A/A	G/G
809	Japan	A/G	G/G	G/G	A/A	T/A	A/G	G/A	G/A
810	Japan	A/G	G/C	G/A	T/A	A/G	G/A	G/A	
812	Japan	A/G	G/C	G/A	G/A	T/T	A/G	G/A	G/A

Shiitake lines highlighted in bold could not be distinguished by the SNP markers developed.

SNP, single nucleotide polymorphism; KFRI, Korea Forest Research Institute; FMRI, Forest Mushroom Research Institute, Korea; RDA, Rural Development Administration, Korea; Wild: Korea wild type; ?/?, amplification failure.