Nonreciprocal charge transport phenomena are widely studied in two-dimensional superconductors, which demonstrate unidirectional-anisotropy magnetoresistances as a result of symmetry breaking. Here, we report a strong nonreciprocal transport phenomenon in superconducting CsV$_3$Sb$_5$ thin films. The second harmonic voltages, mainly originating from the rectification effect of vortex motion, are unambiguously developed with in-plane and out-of-plane magnetic fields, and their magnitudes are comparable to those in noncentrosymmetric superconductors. The second harmonic magnetoresistances split into several peaks and some of them reverse their signs by ramping the magnetic field or the current within the superconducting transition. The nonreciprocity suggests a strong asymmetry in CsV$_3$Sb$_5$. The centrosymmetric structure and symmetric electronic phases in CsV$_3$Sb$_5$ can hardly induce the distinct nonreciprocal transport phenomenon, which could be correlated to a symmetry breaking from an unconventional superconducting order parameter symmetry.

INTRODUCTION

The nonreciprocal charge transport phenomenon, also called magnetochiral anisotropy1 or unidirectional magnetoresistance2, results from inversion and time-reversal symmetry breaking that can modulate the energy dispersion with unequal electron energies of opposite momentum k and $-k$ or spin s and $-s$.3 Based on this phenomenon, a wide range of potential applications such as rectifiers, alternating-direct-current converters, and photodetectors could be engineered.$^4-7$. In superconductors, the nonreciprocal signal can be considerably enhanced in the superconducting state by several orders of magnitude due to the significant difference between Fermi energy and superconducting energy gaps$^8-16$, for which the nonreciprocal transport is related to the chirality of supercurrent or Cooper pairs. Up to now, nonreciprocal transport measurements have been performed in various superconductors such as the noncentrosymmetric MoS$_2$,17 NbSe$_2$,8 Nb/V/Ta superlattice19, the polar superconductor SrTiO$_3$,19 and the artificially engineered MoGe superconducting thin films19, all of which are basically related to the symmetry breaking in structures, electronic states, or even anisotropic friction forces on vortex flowing. On the other hand, the intrinsic vortex motion behavior correlated with the superconducting gap symmetry can also contribute to the nonreciprocity8. In addition, such nonreciprocal transport phenomenon has been observed in the topological superconducting heterostructure of Bi$_2$Te$_3$/FeTe15. Thus, these nonreciprocal responses could be studied as a probe to detect the chirality in an anisotropic superconducting states.

Recently, a series of kagome metals AV$_x$Sb$_3$(A = K, Rb, Cs)16 have attracted increasing attentions with the unique coexistence of topological states, charge density wave (CDW), and multi-band superconductivity. Among these crystals, CsV$_3$Sb$_5$ reveals the highest of 2.5 K17. Up to now, fruitful experiments have been actualized to understand the superconducting gap symmetry of CsV$_3$Sb$_5$, including thermal conductivity18, scanning tunneling spectroscopy measurements19, and penetration length measurements20. However, these results provided contradictory conclusions on the gap symmetry.$^{17-31}$ On the other hand, since the superconductivity coexists with CDW, their interplay should be also taken into account. The investigation of these two competitive orders is one of research focuses in CsV$_3$Sb$_5$ superconductor$^{32-38}$. For instance, the observation of chiral CDW provides a possible mechanism for unconventional superconductivity39, which induces a pair density wave phase below the superconducting transition temperature.39,40 Nevertheless, by applying high pressure, an unusual observation of two superconducting domes was found inside and outside the CDW phase$^{41-45}$, indicating the competition between CDW and superconductivity. In addition, CsV$_3$Sb$_5$ is also a $\alpha \mathbf{Z}_2$ topological metal in which the Dirac line locates between \mathbf{K} and \mathbf{H} points, and the topological surface states were confirmed by the angle-resolved photon electron spectroscopy (ARPES)46,47. Moreover, evidence of anomalous Hall effect has been observed in the CDW state, which was attributed to the symmetry breaking of the band structures$^{47-49}$. To address these issues, one of the most promising paths is investigating the possible chirality of Cooper pairs and vortex dynamics, which has not yet been reported.

Here, we report the study of the nonreciprocal charge transport of mechanically exfoliated CsV$_3$Sb$_5$ thin films. As reducing the thickness, the superconducting transition temperature (T_c) is firstly enhanced but then suppressed, competing...
with the emergence of CDW. The nonreciprocal charge transport is observed when the magnetic field is aligned both within the \(ab\)-plane and along the \(c\)-axis. The second harmonic magnetoresistance splits into several peaks and reverses their signs by ramping the magnetic field or the current, suggesting a tunable rectification effect. Our results reveal detailed information about the chirality and vortex dynamics.

RESULTS

Sample characterization

CsV\(_3\)Sb\(_5\) is a layered material with a V-kagome lattice located in the middle of the unit cell shown in Fig. 1a. Thanks to the weakly bonding strength between Cs and Sb atoms, atomically thin crystals can be obtained by the mechanical exfoliation method. Thin flakes were covered by few-layer BN, and then transferred onto the pre-patterned gold leads as shown in Fig. 1b. Before the nonreciprocity measurements, we first examined the onset and zero resistance \(T_c\), and their thickness dependence is shown in Fig. 1c. The onset \(T_c\) of bulk crystal is 3.5 K, and the \(T_c\) can be enhanced up to 4.25 K by shrinking the thickness of the crystal into 80 nm, followed by a decrease in \(T_c\) to 2.5 K for the 10-nm-thick one. The \(T_c\) of zero-resistance behaves the similarly behavior. The nonmonotonically evolution of \(T_c\) with reducing layers may be correlated to the competition with CDW order. Particularly, in the 80-nm-thick sample, the transition temperature of CDW is reduced to 77 K, which can be confirmed by both Hall resistances and \(dR/dT\) as shown in Fig. 1d. This phenomenon has been well discussed in recent reports\(^{50,51}\), in which the surface oxidation that occurred during the sample fabrication process was attributed to additional carrier doping and \(T_c\) modification\(^{51}\). In our present work, however, a piece of BN was covered onto the thin flakes to avoid oxidation, the \(T_c\) is generally related to the thickness, we can hardly ascribe to the sample degradation. Here, we focus on the samples with \(T_c\) of above 4 K (a 45-nm-thick device in the manuscript and others in Supplementary Figs. 1 and 2) to study the vortex dynamics and the chirality of superconductivity from the nonreciprocal charge transport by probing the second harmonic response.

Nonreciprocal magnetoresistance

The first and second harmonic voltages (\(V^{2}\) and \(V^{2\omega}\)) were detected using lock-in amplifier. According to the definition of nonreciprocity, the total voltage \(V\) can be considered as \(V = V^{2\omega} + V^{2\omega} = V^{2\omega}(1 + yB)\), where the coefficient \(y\) is equal to \(2V^{2\omega}/V^{2\omega}B\)\(^{1}\). Since the electronic structure of CsV\(_3\)Sb\(_5\) is quasi-two-dimensional, the nonreciprocal response could be anisotropic from in-plane to out-of-plane. We then measured and calculated the temperature dependence of the first and second harmonic resistances (\(R^{2\omega}_{xx} = V^{2\omega}/I^2\) and \(R^{2\omega}_{xx} = V^{2\omega}/I^2\)) simultaneously for both \(B/ab\)-plane and \(B/cc\)-axis cases as shown in Fig. 2a, b. At low magnetic field limit for \(B/ab\)-plane case as shown in Fig. 2a, b. At low magnetic field limit for \(B/ab\)-plane case, the nonreciprocal resistance immediately develops when \(R_{xx}\) starts to decrease as marked in the green dashed line. On the other hand, the \(R^{2\omega}_{xx}\) disappears at high magnetic field limit. Similar behavior is observed for \(B/cc\)-axis case as well. Another important feature is that several times of sign reversals appear at both \(R^{2\omega}_{xx}\)-T and \(R^{2\omega}_{xx}\)-B curves, which will be discussed in detail below. It should be noted that the nonreciprocal magnetoresistance is detected just within the superconductivity transition region. Thus, we focus on the investigation between nonreciprocal magnetoresistance and superconductivity.

Generally, the superconducting transition of the type-II superconductor consists of two regions, separated by a mean-field transition temperature \(T^{\text{mf}}_c\)\(^{13,15}\). The \(T^{\text{mf}}_c\) can be determined as...
shown in Fig. 2c by using the Aslamazov-Larkin term \(\sigma_{2D} = A(T - T_m^c)^{-1} \), where \(\sigma_{2D} \) is the two-dimensional conductivity and \(A \) is a fitting parameter. Thus, we can confirm the \(T_m^c \) is about 4.00 K. Above the \(T_m^c \), the transport properties are dominated by the amplitude fluctuation of order parameters which causes a paraconductivity state. Below the \(T_m^c \), a phase fluctuation generates vortices motion, which takes charge of the transport properties. It is worth noting that the resistance is still nonzero until about 3.45 K due to the current-driven vortex motion. Below 3.45 K, the vortices are frozen as the vortex solid state (or vortex lattice for the type-II superconductors) and the system is in superconductivity state completely. Meanwhile, the temperature-dependent \(R_{xx}^{2h} \) curve demonstrates four characteristic regions as well, namely, normal state, paraconductivity, vortex motion, and vortex solid state according to those of the \(R_{xx}^{2h} - T \) curve. For the magnetoresistance measurements, the \(R_{xx}^{2h} \) reveals a typical magnetic-field-dependent behavior as shown in Fig. 2d, while the \(R_{xx}^{2h} \) curve demonstrates antisymmetric to the magnetic field, namely, a typical characteristic of nonreciprocity.

To explore the magnetochoiral properties correlated with the superconductivity, we investigated the field- and temperature-dependent \(R_{xx}^{2h} \). Figure 3a, b show the \(R_{xx}^{2h} \) for different temperatures under magnetic fields in the \(ab \)-plane and along the \(c \)-axis, respectively. The phase diagrams of \(R_{xx}^{2h} \) with respect to the magnetic field and the temperature are shown in Fig. 3c, d, respectively. The dashed lines are the contours of the first harmonic resistance \(R_{xx}^{2h} \) at zero resistance \(0R_n \), half of the normal state resistance (0.5\(R_n \)), three-quarters of the normal state resistance (0.75\(R_n \)), and the onset of transition. The nonreciprocal magnetotransport mainly locates at the regions between the contours of 0\(R_n \) and 0.5\(R_n \) when the field is in the \(ab \)-plane and along the \(c \)-axis. Therefore, the nonreciprocal response basically occurs at the vortex flow regions, indicating that the vortex motion could be the domination. Above the contour of \(R = 0.5R_n \), \(R_{xx}^{2h} \) decays gradually because the magnetic field diminishes the pinning potentials and the vortices move more freely. Above the contour of \(R = 0.75R_n \), the free flow regions continuously evolved into the amplitude fluctuation region and nonreciprocity is almost indiscernible as demonstrated in Fig. 3a, b. However, the \(R_{xx}^{2h} \) did not disappear until \(R \) reaches 0.95\(R_n \) (Fig. 2d) at 3.8 K, where the contribution of amplitude fluctuation of order parameter may not be neglected.

On the other hand, the \(R_{xx}^{2h} \) under in-plane field is larger than that along the \(c \)-axis, suggesting an anisotropic nonreciprocal magnetotransport. Since the crystal is in a quasi-two-dimensional structure, anisotropic superconducting properties should also affect the vortex motion. We then examined the coherence.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2.png}
\caption{Anisotropic nonreciprocal magnetoresistance of a 45-nm-thick sample. a, b \(R - T \) curves of first (top) and second (bottom) harmonic signal under \(B \) applied along the \(ab \)-plane and the \(c \)-axis, respectively. Scale bar: 2 mΩ. The dashed line is the guideline of onset temperature of second harmonic signal. c The transition regions for \(R_{xx}^{2h} - T \) curve under \(B = 0.1 \) T. Red dashed line is the Aslamazov-Larkin fitting curve of paraconductivity contribution. d The \(R_{xx}^{2h} - B \) and \(R_{xx}^{2h} - B \) curves at 3.8 K, where \(B \) is applied within the \(ab \)-plane.}
\end{figure}
lengths to estimate the size of the vortex from the anisotropic upper critical field \(B_{c} \) (at \(R = 0.99R_{N} \)). According to the Ginzburg-Landau theory, the in-plane and out-of-plane coherence lengths are \(\xi_{ab}^{2} = \frac{\Phi_{0}}{2\pi h_{F}} \) and \(\xi_{c}^{2} = \frac{\Phi_{0}}{2\pi \sqrt{J_{c} h_{F}}} \), which are given in Fig. 4a, where \(\Phi_{0} \) is flux quanta. Thus, the anisotropic factor can be estimated as \(\lambda = \xi_{c}/\xi_{ab} \) (≈1.72 at 1.8 K), indicating a weak anisotropy. Meanwhile, the thickness of the sample is comparable to the diameter of a vortex of \(2\xi_{ab} \). Once \(B//ab\)-plane, \(R_{xx}^{2\omega} \) is enhanced due to the size effect and/or possible anisotropic pinning potential. Consequently, we conclude that the asymmetric property of pinning potential is three-dimensional.

Moreover, several specific series of peaks are observed other than one main peak predicted by the theory of vortex dynamics. Particularly, four series can be identified when \(B//ab\)-plane and much more series exist in \(B//c\)-axis case. The locations of each series of peaks are weakly temperature-dependent. In other words, the nonreciprocity is strong when some number of vortices exist in the device, indicating that the many-body interaction of vortices may also play a role. We select three major series of

Fig. 3 The magnetic field and temperature dependence of \(R_{xx}^{2\omega} \) of the 45-nm-thick sample. a and b are the second harmonic magnetoresistance with the magnetic field applied along the \(ab\)-plane and the \(c\)-axis at different temperatures. Scale bar: 2.5 mΩ. c and d are the color mapping plot of a and b, respectively. The dashed lines are the contours of first harmonic resistance \(R_{\omega} \) of zero resistance, half of the normal state resistance (0.5\(R_{N} \)), 0.75\(R_{N} \), and onset of transition.

Current dependent nonreciprocity

We then focus on the current dependence of the nonreciprocity, which should follow the relation of \(R_{xx}^{2\omega} \sim yB\). The phase diagrams of the first and the second harmonic signals are plotted in Fig. 5a, b, respectively. The effect of current on \(R_{xx}^{2\omega} \) is similar to the effect of temperature as it suppresses the superconductivity and reduces the region of \(R_{xx}^{2\omega} \). Meanwhile,
Intrinsic symmetry breaking through the vortex dynamics such as viscous vortex flow, ratchet effect, or specific mechanisms of superconductivity under spontaneous symmetry-breaking conditions. Under the vortex motion regime, one possibility is that the vortex liquid state and thermally activated vortex state may contribute to the response with opposite signs. The viscous vortex flow is also possible to the nonreciprocal signal, which predicts a monotonic enhancement of γ as decreasing temperature. Nevertheless, one can only observe an individual non-reciprocity peak for each mechanism instead of multi-peaks in our present results. Another mechanism is the effect of periodical pinning potential when the vortices match the lattice constant or artificially structured pinning sites, resulting in the modulation of condensing energy. After breaking the inversion symmetry of the pinning potential, a well-controlled many-body interaction can realize sign reversal in artificial structures. For single crystals, however, the symmetry of pinning potential should reflect the intrinsic symmetry of the crystal as well studied on MoS$_2$ and PbTaSe$_2$, where the anisotropy of nonreciprocity follows that of crystal. Therefore, the appearance of series of nonreciprocity peaks in our present results suggests an intrinsic symmetry breaking as well.

One possible spontaneous symmetry breaking can be from the electronic structure, which is mainly dominated by the nature of the crystal structure and quantum phases. Hoshiba et al. proposed a possible mechanism in noncentrosymmetric crystal structures and interfaces such as Rashba superconductor, and topological surface state with superconducting proximity effect. For the intrinsic asymmetry like spin-orbital effects and time-reversal symmetry breaking, an asymmetric energy dispersion relation can be induced as $E(s, k) \neq E(s, -k)$ and $E(s, k) \neq E(-s, -k)$, which is the key to the nonreciprocity. In bulk CsV$_3$Sb$_5$, the Rashba spin-orbital interaction seems unlikely to exist, because the crystal structure is centrosymmetric. Alternatively, a recent study of Raman spectrum in CsV$_3$Sb$_5$ thin films revealed an intrinsic instability of crystalline structure, and STM measurement also shows an inhomogeneous Cs-surface. Such degradation may reduce the symmetry and modify its electronic structure, providing a possibility to induce nonreciprocity. Nevertheless, these effects ought to be weak since our crystals is relatively thick, and particularly, the samples are single-crystalline and well protected by BN, the degradation of crystalline can be basically avoided.

In addition, the charge orders can also modulate the rotational, translation, and time reversal symmetry. In Cs$_5$V$_3$Sb$_5$, the nematicity reveals a C$_2$ rotational symmetry, and the unidirectional $4a_0$ CDW also breaks rotational symmetry. The amplitudes of three q vectors within the in-plane $2a_0 \times 2a_0$ CDW are chiral, which can break the time-reversal symmetry as well. However, the CDW-induced lattice distortion Cs$_5$V$_3$Sb$_5$ was found to be centrosymmetric, and no any evidence suggests that one of these charge orders can break the inversion symmetry up to now.

Another possible origin of the spontaneously symmetry breaking is the unconventional superconducting state. Among a variety of possible pairing states, superconducting states on topological bands should keep a nontrivial nature and the pair potential demonstrates anisotropic, for instance a spinless p-wave superconductor. Previously, the nonreciprocal transport has been comprehensively studied on the interfacial systems of Bi$_2$Te$_2$F/FeTe, which were attributed to inversion symmetry breaking of the topological superconductivity in the interface. The effect of other unconventional states, for example, chiral superconductors, still needs further theoretical analysis and experimental evidence. Although the superconductivity symmetry of AV$_3$Sb$_5$ family is still an open question as discussed in the introduction part, the ARPES and first principles calculations indicate the existence of topological bands.
and surface states, and a recent work reported an observation of
two-fold symmetry on the c-axis resistivity under in-plane
rotation of magnetic field26. Therefore, our nonreciprocal
transport phenomenon should be a promising probe to re-
fl ect the anisotropic nature of the unconventional superconductivity
state in CsV$_3$Sb$_5$.

In conclusion, we have carefully investigated the nonrecipro-
city under the dissipative state of CsV$_3$Sb$_5$ superconductors.
With the reduction of thickness, we found that the super-
conductivity is firstly enhanced and then suppressed due to the
competition with CDW. Strong nonreciprocal signals can be
detected when superconductivity occurs, whose strength is
comparable to the artificially structured or noncentrosymmetric
superconductors. The second harmonic resistance can be
observed as the magnetic field in the ab-plane and along the
c-axis, which can be basically attributed to the vortex ratchet
motion. The nonreciprocal signal with respect to magnetic
fields splits into several series of peaks that are asymmetric with
magnetic fields. We suggest the intrinsic symmetry breaking in
superconducting states may induce the magnetochirality in the
CsV$_3$Sb$_5$ superconductor.

METHODS

Crystal growth

High-quality single crystal were synthesized by Sb flux method
and described in previous work45.

Device fabrication

The thin crystals of CsV$_3$Sb$_5$ were prepared by mechanical
exfoliation from bulk crystal and transferred on pre-patterned
SiO$_2$(300 nm)/Si substrate using polydimethylsiloxane (PDMS)
stamps in a laboratory-made vacuum transfer system. The
pre-patterned leads were fabricated by standard photolithography
method using Photosist (AZ5214) and subsequent deposition of
Ti/Au (5 nm/20 nm) by magnetron sputtering. Some of the
samples were then covered by a h-BN capping layer for further
degradation. The thicknesses of the samples were confirmed by
AFM after transport measurement.

Transport measurements

The transport measurement was carried out in PPMS. The four-
terminal DC and AC signal was measured by set of Keithley 2400

Fig. 5 **Current dependence of nonreciprocity of the 45-nm-thick sample.** a and b are color mapping of the $R^{2\omega}_{xx}$ as a function of magnetic field and current. The dashed lines are the contours of first harmonic resistance $R^{2\omega}_{xx}$ of $0R_N$, $0.5R_N$, $0.75R_N$ and onset of transition. c Current dependence of the maximum second harmonic resistance for B/ab-plane and B/c-axis. Error bars are standard deviations of the resistances. d The corresponding coefficient γ as estimated by $\gamma = \frac{2V_2^{\omega}}{\pi R}$.

Y. Wu et al. 6 npj Quantum Materials (2022) 105 Published in partnership with Nanjing University
and 2182a and set of Keithley 6221 and OE1022 lock-in amplifier, respectively. The first and second harmonic resistance were defined as $R^2 = V^2/I_0$ and $R^{2\omega} = V^{2\omega}/I_{0\omega}$, where I_0 is the amplitude of the AC current applied and V^2 and $V^{2\omega}$ are the amplitude of first and second harmonic voltage. The current frequency was set to be 113 Hz to lower the noise and the phase of second harmonic signal was set as $\pi/2$.

DATA AVAILABILITY

The data supporting the findings of this study are available from the corresponding authors upon reasonable request.

Received: 5 May 2022; Accepted: 17 October 2022; Published online: 01 November 2022

REFERENCES

1. Rikken, G. & Raupach, E. Observation of magneto-chiral dichroism. Nature 390, 493–494 (1997).
2. Zhou, X., Zeng, F., Jia, M., Chen, H. & Wu, Y. Sign reversal of unidirectional magnetoresistance in monocrystalline FePt bilayers. Phys. Rev. B 104, 184413 (2021).
3. Tokura, Y. & Nagaosa, N. Nonreciprocal responses from non-centrosymmetric quantum materials. Nat. Commun. 9, 3740 (2018).
4. Villegas, J. E. et al. A superconducting reversible rectifier that controls the motion of magnetic flux quanta. Science 302, 1188–1191 (2003).
5. Moshchalkov, V., Woerdeman, R. & Lang, W. Nanoscience and engineering in superconductivity (Springer Science & Business Media, 2010).
6. Zhang, E. et al. Nonreciprocal superconducting NbSe2 antenna. Nat. Commun. 11, 5634 (2020).
7. Nagulu, A., Reiskarimian, N. & Krishnaswamy, H. Non-reciprocal electronics based on n-capaculated few-layered CrI3. Sci. Adv. 6, eaax7628 (2020).
8. Hoshino, S., Wakatsuki, R., Hamamoto, K. & Nagaosa, N. Nonreciprocal charge transport in two-dimensional noncentrosymmetric superconductors. Phys. Rev. B 98, 054510 (2018).
9. Daido, A., Ikeda, Y. & Yanase, Y. Intrinsic superconducting diode effect. Phys. Rev. Lett. 128, 037001 (2022).
10. Itahashi, Y. M., Saito, Y., Iideue, T., Nojima, T. & Iwasa, Y. Quantum and classical ratchet motions of vortices in a two-dimensional trigonal superconductor. Phys. Rev. Res. 2, 023127 (2020).
11. Ando, F. et al. Observation of superconducting diode effect. Nature 584, 373–376 (2020).
12. Itahashi, Y. M. et al. Nonreciprocal transport in gate-induced polar superconductor SrTiO3. Sci. Adv. 6, eaay9120 (2020).
13. Lyu, Y. et al. Superconducting diode effect via conformal-mapped nanoholes. Nat. Commun. 12, 2703 (2021).
14. Yasuda, K. et al. Nonreciprocal charge transport at topological insulator/superconductor interface. Nat. Commun. 10, 2734 (2019).
15. Ortiz, B. R. et al. CsV3Sb5: A 2D Topological Kagome Metal with a Superconducting Ground State. Phys. Rev. Lett. 125, 247002 (2020).
16. Wu, X. et al. Nature of Unconventional Pairing in the Kagome Superconductors AV3Sb5 (A=K,Rb,Cs). Phys. Rev. Lett. 127, 177001 (2021).
17. Li, S. et al. Nodal superconductivity and domes in the topological Kagome metal CsV3Sb5. Preprint at https://doi.org/10.48550/arXiv.2201.10352 (2022).
18. Chen, K. Y. et al. Double superconducting dome and triple enhancement of T_c in the kagome superconductor CsV3Sb5 under High pressure. Phys. Rev. Lett. 126, 247001 (2021).
19. Zhang, Z. et al. Pressure-induced reemergence of superconductivity in the topological kagome metal CsV3Sb5. Phys. Rev. B 103, 224513 (2021).
20. Yu, F. H. et al. Unusual competition of superconductivity and charge-density-wave state in a compressed topological kagome metal. Nat. Commun. 12, 3645 (2021).
21. Chen, X. et al. Highly robust reentrant superconductivity in CsV3Sb5 under pressure. Chin. Phys. Lett. 38, 057402 (2021).
22. Wang, Q. et al. Charge density wave orders and enhanced superconductivity under pressure in the kagome Metal CsV3Sb5. Adv. Mater. 33, 2102813 (2021).
23. Yu, Y. et al. Topological surface states and flat bands in the kagome superconductor CsV3Sb5. Sci. Bull. 67, 495–500 (2022).
24. Wang, Z. et al. Electronic nature of chiral charge order in Kagome superconductor CsV3Sb5. Phys. Rev. B 104, 075148 (2021).
25. Yu, F. H. et al. Concentration of anomalous Hall effect and charge density wave in a superconducting topological kagome metal. Phys. Rev. B 104, L041103 (2021).
26. Yu, F. et al. Quantum transport evidence of topological band structures of kagome superconductor CsV3Sb5. Phys. Rev. Lett. 127, 207002 (2021).
27. Song, B. Q. et al. Competing superconductivity and charge-density wave in Kagome metal CsV3Sb5: evidence from their evolutions with sample thickness. Preprint at https://doi.org/10.48550/arXiv.2105.09248 (2021).
28. Song, Y. et al. Competition of superconductivity and charge density wave in selectively oxidized CsV3Sb5 thin films. Phys. Rev. Lett. 127, 237001 (2021).
29. Tinkham, M. Introduction to superconductivity (Courier Corporation, 2004).
30. de Souza Silva, C. C., Van de Vondel, J., Morelle, M. & Moshchalkov, V. V. Controlled multiple reversals of a ratchet effect. Nature 440, 651–654 (2006).
31. Yan, H., Abdelhadi, M. M., Jung, J. A., Willemsen, B. A. & Khlifstrom, K. E. Exponential dependence of the vortex pinning potential on current density in high-T_c superconductors. Phys. Rev. B 72, 064522 (2005).
32. Maley, M. P., Willis, J. O., Lessure, H. & McHenry, M. E. Dependence of flux-creep activation energy upon current density in grain-aligned YBa2Cu3O7-x. Phys. Rev. B 54, 2639 (1990).
33. Saito, Y., Itahashi, Y. M., Nojima, T. & Iwasa, Y. Dynamical vortex phase diagram of two-dimensional superconductivity in gated MoS2. Phys. Rev. Mater. 4, 074003 (2020).
57. Ideue, T., Koshikawa, S., Namiki, H., Sasagawa, T. & Iwasa, Y. Giant nonreciprocal magnetotransport in bulk trigonal superconductor PbTaSe₂. Phys. Rev. Res. 2, 042046 (2020).

58. Nakamura, S., Katsumi, K., Terai, H. & Shimano, R. Nonreciprocal terahertz second-harmonic generation in superconducting nb₃ under supercurrent injection. Phys. Rev. Lett. 123, 097004 (2020).

59. Shiomi, Y., Lustikova, J. & Saitoh, E. Oscillatory Nernst effect in Pt ferrite cuprate-superconductor trilayer films. Sci. Rep. 7, 1–8 (2017).

60. Nagao, M. et al. Periodic oscillations of Josephson-vortex flow resistance in oxygen-deficient YBa₂Cu₃Oₓ-δ. Phys. Rev. B 74, 054502 (2006).

61. Liu, G. et al. Anomalous amplitude modes and thinning-induced loss of crystallinity in the kagome metal CsV₃Sb₅. Preprint at https://doi.org/10.48550/arXiv.2201.05330 (2022).

62. Nie, L. et al. Charge-density-wave-driven electronic nematicity in a kagome superconductor. Nature 604, 59–64 (2022).

63. Zhang, W. et al. Emergence of large quantum oscillation frequencies in thin flakes of a kagome superconductor CrV₃Sb₅. Preprint at https://doi.org/10.48550/arXiv.2201.05330 (2022).

64. Li, H. et al. Rotation symmetry breaking in the normal state of a kagome superconductor KV₃Sb₅. Nat. Phys. 18, 265–270 (2022).

65. Mackenzie, A. P. & Maeno, Y. The superconductivity of Sr₂RuO₄ and the physics of spin-triplet pairing. Rev. Mod. Phys. 75, 657–712 (2003).

66. Zinkl, B., Hamamoto, K. & Sigrist, M. Symmetry conditions for the superconducting diode effect in chiral superconductors. Phys. Rev. Res. 4, 033167 (2022).

ACKNOWLEDGEMENTS
This research was supported in part by the National Natural Science Foundation of China (Grants No. 12004251, 12104302, 12104303, U1932217, and 11974246), the Natural Science Foundation of Shanghai (Grant No. 20ZR1436100, 19ZR1477300), the Science and Technology Commission of Shanghai Municipality, the Shanghai Sailing Program (Grant No. 21YL1429200), the start-up funding from ShanghaiTech University, Beijing National Laboratory for Condensed Matter Physics, the Interdisciplinary Program of Wuhan National High Magnetic Field Center (WHMFC202124), the Elemental Strategy Initiative conducted by the MEXT, Japan, Grant Number JPMXP0112101001, JSPS KAKENHI Grant Number JP20H00354 and A3 Foresight by JSPS, and National Key R&D Program of China (Grant No. 2018YFA0304300).

AUTHOR CONTRIBUTIONS
Y.W. and Q.W. contributed equally to this work. Y.W. and J.L. designed the research. Q.W. and Y.Q. grew the single crystals of CsV₃Sb₅. K.W. and T.T. grew the single crystals of h-BN. Y.W. fabricated the samples and performed the electrical transport measurements. Y.Z. performed the atomic force microscopy experiment. Y.Z., P.D., J.H., Y.D., Y.L., B.T., C.Z., and H.Z. assisted the device fabrication. Y.W., X.Z., J.W., Q.Y., and J.L. contributed to analyze the data. Y.W. and J.L. wrote the paper.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material at https://doi.org/10.1038/s41535-022-00516-9.

Correspondence and requests for materials should be addressed to Yueshen Wu, Yanpeng Qi or Jun Li.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022