The Application of SNP Microarray Technique in Fetal Central Nervous System Abnormality

Conghong Xu1,2, Yuanzhen Zhu1, Jingyi Liu1, Changhong Yu1,*, Huafeng Li2

1Department of genetics and cell biology, Basic medical college, 308 Ningxia Road, Qingdao University, Qingdao, China; 2Prenatal screening and prenatal diagnostic genetic laboratory, 1 Qinghe Road, Women and Children hospital, LinYin, China, 276000

Abstract: Objective: To explore the application significance of SNP microarray technique in fetal central nervous system deformity and the relationship between chromosome abnormality and fetal nervous system abnormality. Methods: Collection of 40 abnormal amniotic fluid and abortion cases of fetal nervous system abnormalities screened by Ultrasonic testing and Nuclear magnetic resonance (NMR) were tested by SNP microarray technology, of the 40 samples, 32 samples of amniotic fluid were additionally analyzed with traditional karyotype. Results: The success rate of fetal nervous system anomaly detection was 100%. At the same time, in 32 cases of amniotic fluid analysis, 31 cases were successfully cultured, and the success rate was 96.9%. There were 7 cases of chromosome abnormality (17.5%), 2 cases with abnormal number (5%), 5 cases of structural abnormalities (12.5%). 32 samples of amniotic fluid were tested both by traditional karyotype analysis and SNP microarray technique, the traditional karyotype analysis only found 2 cases of numerical chromosomal abnormalities. SNP chromosome microarray technology also found 2 cases structural chromosomal abnormalities in the sample of lateral ventricle and hydrocephalus. Additionally detected out 3 cases of structural chromosomal abnormalities among 8 cases of abortion samples with fetal nervous system abnormality. Conclusion: SNP microarray can not only detect the numerical abnormalities of chromosome and large fragments of structural abnormalities, but also detect the microdeletion and microduplication of chromosomes, so as to help fully understanding the status of the chromosomal abnormalities of fetal nervous system abnormality. Particularly, gene copy number variation (CNV) is closely related to fetal central nervous system abnormality.

Keywords: Fetal Central Nervous Malformation, SNP Microarray, Chromosome Number/Structure Abnormality, Gene Copy Number Variation

1 Introduction

The development of the central nervous system is carried out strictly in accordance with procedures and is one of the most complex systems in the human body. Nervous system malformation is the most common fetal malformation [1], which reflects the termination of the development of the nervous system at a certain stage. Although the etiology of central nervous system abnormalities is highly heterogeneous, genetic factor is considered to be the major reason [2-3], especially trisomy 13 and trisomy 18. However, with the rapid development of molecular genetics, it has been found that between the nervous system malformation and deletion/duplication of chromosome fragments also have a certain relationship [4].

At present, most hospitals use the G-banding karyotype analysis technique and fluorescence in situ hybridization (FISH) technique for chromosome inspection. G-banding karyotyping is consistently considered as the golden standard for checking chromosomes. However, there are many deficiencies in this technique, which are mainly manifested in the in vitro culture of fetal exfoliated cells. The failure rate is about 10% to 40%; The culture period is long, it takes about 4 to 6 weeks; It is easily contaminated by the mother cells and leads to false inlay [5]. Although FISH technology does not need cell culture, it can only detect specific known regions and the technical operation is difficult, time-consuming and low-flux [6]. Chromosomal microarray technology can perform
high-resolution detection within the whole genome with sensitivity that is more than 100 times higher than that of karyotype analysis. It can accurately detect chromosome microdeletions, microreplication syndromes \[7\], uniparental disomy, loss of Heterozygosity and so on, the result is more accurate and reliable.

2 Materials and Methods

2.1 Samples collection

During the period from May 2016 to January 2018, 40 cases of fetal nervous system abnormalities were detected by ultrasound or MRI at the Linyi Women and Children Hospital. These included 22 structural abnormalities including the incomplete development of the corpus callosum, disappearance of the transparent compartment, loss of the cerebellar mound, and expansion of the ventricles. There were 18 cases of flexible target abnormalities such as lateral ventricle widening, choroid plexus cyst, and polyhydramnios. Thirty-two of them accepted amniocentesis and amniotic fluid exfoliated cells tested by SNP chromosome microarray analysis and additionally by conventional cell culture. The other 8 cases of artificial abortion, the SNP chromosome microarray analysis was agreed to analyze the skin or muscle tissue of the aborted embryos.

2.2 SNP Microarray Detection

The whole genome DNA is detected strictly in accordance with Affymetrix CytoScan 750K Array operating procedures (Hangzhou Bo Sheng Company). Amniotic fluid exfoliating cells, flow products extracting DNA, fragmentation, amplification, purification, quantification and hybridization after labeling, the test results were searched online for specific structures and functions of the target gene, such as DGV-human normal copy number variation database, DECIPHER-known syndrome and case database, OMIM Genes-human Mendelian (disease) gene database, and Genes-NCBI database. Deletion, duplication fragments were classified as pathogenic, ambiguous and polymorphic.

2.3 Karyotype analysis

According to the amniotic mid-term karyotype harvest operation procedure, the results were analyzed after inoculation, liquid exchange, harvesting, dropping, and staining.

2.4 Statistical analysis

The direct counting method was used to count the frequency of chromosomal abnormalities and the frequency of calculation.

3 Results

In 40 fetal abnormality samples detected by fetal ultrasound or nuclear magnetic resonance, there were 7 chromosomal abnormalities, the abnormal rate is 17.5%, 2 number abnormalities (1 trisomy 18 and 1 trisomy 13), the abnormal rate is 5%, 5 structural abnormalities, the abnormal rate was 12.5%. In the 32 amniotic fluid samples detected by traditional karyotype analysis and SNP chromosomal microarray, only two abnormalities were detected out with traditional karyotype analysis. But the SNP chromosome microarray technique not only detected two abnormalities, but also detected two cases of chromosome abnormalities in lateral ventricle broadening and hydrocephalus. In addition, 3 chromosome abnormalities were detected with SNP chromosome microarray technique in 8 cases of abortive chromosomes, and all 5 structural abnormalities were pathogenic. Specific pathogenic sites and gene functions are shown in Table 1.

Table 1 5 cases of chromosomal abnormalities in the central nervous system

Case	Gestational age	Prenatal diagnosis indications	Abnormal type and the length of CNV	Pathogenic conditions of the related gene
1	21w	lateral ventriculomegaly	A 616Kb microduplicatin in	The region contains gene IL1RAPl1
				IL1RAPl1 is associated with neurodevelopment. Some essays say it may also lead to mental retardation.
2	20w	Lateral ventricles are slightly wider	A 1.25Mb duplication in	This area contains 123 genes such as APOA4,
		Transparent insulation cavity is disappeared	11q23.3q25	APOC3 and APOA1
			A 3.45Mb duplication in 12q11.1q13.21	This area contains 37 genes such as XKR3, IL17RA, and CECRE

In addition, 3 chromosome abnormalities were detected with SNP chromosome microarray technique in 8 cases of abortive chromosomes, and all 5 structural abnormalities were pathogenic. Specific pathogenic sites and gene functions are shown in Table 1.
The Application of SNP Microarray Technique in Fetal Central Nervous System Abnormality

4 Discussion

The incidence of central nervous system abnormalities is 0.14%-0.16% in the live birth, and the rate of stillbirth is as high as 3%-6% [8]. Fetal nervous system malformations include anencephaly, malformation of the corpus callosum, hydrocephalus, Dandy-Walker syndrome, microcephaly, subarachnoid cyst, widened posterior fossa, and poor cerebellar dysplasia. The development process of the nervous system is complex, and the etiology and pathogenesis of its distortion are still unclear. In addition to teratogenicity caused by disturbances in the development of neural tube and brain bubble caused by teratogenic factors in the environment, many reports have been reported in relation to chromosome number, especially trisomy 13 and trisomy 18 [4]. This study also detected one case of trisomy 13 and one case of trisomy 18 in 40 cases of fetal neurological abnormalities. Studies have shown that 39% of trisomy 13 and 25% of trisomy 18 have a nervous system deformity detected by ultrasonography. Also in this study, trisomy 13 and trisomy 18 were detected in the case of ultrasound-induced microcephaly and polyhydramnios. In recent years, with the rapid development of molecular genetics, there has been a certain relationship between neurological malformations and deletion/duplication of chromosome fragments. In this case, 5 cases of chromosome abnormalities were detected, and the abnormal rate was much higher than the number of abnormalities. This is due to the high resolution of the SNP chromosome microarray. Traditional karyotype analysis did not detect microreplicates of 616 kb in the Xp21.3 region in case 1 and microduplication of 1.6 Mb in 16p13.11 in case 5 in amniotic fluid culture samples. Therefore, the SNP chromosomal microarray can detect more chromosomal abnormalities than the traditional karyotype.

These five chromosome abnormalities involved Emanuelsyndrome (ES), Wolf-Hirschhorn syndrome (WHS) and 16p13.11 microdeletion syndrome. These syndromes are related to neurocognition, growth and development. Case 1 contains only one gene, IL1RAPL1, which codes for high levels of brain neuronal proteins and regulates neurite outgrowth and extracellular secretion. The studies of Franek and other researchers showed that the function of IL1RAPL1 protein is related to mental retardation. In addition to mental retardation, there are other features including low muscle tone, funnel-shaped chest, prominent chin, and one eyebrow etc [9]. In the late follow-up, this pregnant women have induced labor. Case 2 is related with Emanuel syndrome. The syndrome (ES) is a rare chromosomal disorder characterized by multiple congenital malformations and developmental disorders. The reported malformations are growth retardation, central nervous system abnormalities (most common are microcephaly), heart defects, reproductive bowel, musculoskeletal abnormalities, and kidney damage.

It is generally the descendant of a carrier who have the balanced translocation of chromosome 11and 22. Carriers of this balanced transposition are usually not clinically symptomatic and are usually identified in cases of unbalanced translocations of offspring after birth, derived (22)t(11,22) syndrome, and Emanuel Syndrome is also known as Derived 22 Syndrome, Derived 11; 22 Syndrome, Partial trisomy 11; 22, or Derived (22) t(11,22) Syndrome, and this case is on chromosome der(11;22). There are repetitions that should be part of the trisomy of chromosome11and22. Therefore, ES is an unbalanced translocation syndrome, and its production is mainly caused by a chromosome segregation anomaly in the 3:1 segregation of parental balanced translocation carriers during the first meiotic division [10]. In this case, because parents rejected the
Among the 18 flexible target abnormalities, only 2 cases of chromosomal abnormalities were detected, 1 case was detected in the Fetal cerebral ventriculomegaly, 1 case was detected in the polyhydramnios, and the remaining 16 cases had normal karyotypes. This brings a dilemma for prenatal diagnosis, that is, there are both normal and abnormal karyotypes in abnormal fetal ultrasound, which brings great pressure and anxiety to guide women to determine the fetal stay or not. Follow-up of 3 cases of Fetal cerebral ventriculomegaly, 5 cases of choroid plexus cysts choose abortion, and the remaining 8 cases choose to continue pregnancy.

References
1. Petracchietal. Holoprosencephaly at prenatal diagnosis: analysis of 28 cases regarding etiopathogenic diagnoses [J]. Prenatal diag, 2011, 31 (9): 887-891.
2. LJ. Huang, I. M.Wah, R.K. Pooh,etal. Molecular genetics in fetal neurology[J]. Seminars in Fetal and Neonatal Medicine, 2012,17(6):341–346.
3. F. Petracchi, L. Crespo, C.Michia,etal. GadowHoloprosencephaly at prenatal diagnosis: analysis of 28 cases regarding etiopathogenic diagnoses, “J. PrenatalDiagnosis, 2011,31(9): 887–89.
4. Yunan Wang, Jian Lu, An wei,etal. Analysis of chromosome microarray of abnormal fetus in nervous system [J]. China prenatal diagnostic journal (electronic edition),2016,8(4):35-42.
5. Latli RB, Loring M, Massie JAM, et al. Informatics Enhanced SNP Microarray Analysis of 30 Miscarriage Samples Compared to Routine Cytogenetics[J]. PLoS ONE, 2012, 7(3): e51282.
6. Hai ming Yuan, Meng fan Chen, Xiaoyan Deng,etal. Application of chromosome microarray technique in the diagnosis of spontaneous abortion [J]. Chinese journal of genetics,2016,33 (4) : 442-445.
7. Spitsyn MA, Shershov VE, Kuznetsova VE. Infrared fluorescent markers for microarray DNA analysis on biological microchip[J]. Mol Biol (Mosk) 2015,49 (5): 760-769.
8. D. Onkar, P. Onkar, and K. Mitra, Evaluation of fetal centralnervous system anomalies by ultrasound and its anatomical correlation [J]. Journal of Clinical and Diagnostic Research, 2014, 8(6):5-7.
9. FranekKJ,ButlerJ,JohnsonJ.Deletion of the immunoglobulin domain of IL1RAPL1 results in nonsyndromic X-linked intellectual disability associated with behavioral problems and mild dysmorphism[J]. Am. J. Med. Genet. 2011,155A (5) : 1109-1114.
10. Melissa T Carter, Stephanie A St. Pierre, Elaine H Zackai,etal. Phenotypic Delineation of Emanuel Syndrome (Supernumerary Derivative 22 syndrome): Clinical features of 63 individuals[J]. Am J Med Genet A,2009, 149A(8): 1712–1721.
11. Halil Aslan,Nilay Karaca, Seher Basaran,Prenatal diagnosis of Wolf-Hirschhorn syndrome (4p–) in association with congenital hydronephrosis and foot deform[J]. BMC Pregnancy and Childbirth, 2003 1 (24) :1471-2391.
12. Feng Y, Walsh CA. Mitotic spindle regulation by Nde1 controls cerebral cortical size[J]. Neuron,2004,44(2):279–93.
13. AlikurayaFS, Cai X, Emery C, Mochida GH, Al-Dosari MS, Felihe JM,etal. Human mutations in NDE1 cause extreme microcephaly with lissencephaly [corrected] [J]. Am J Hum Genet, 2011,88(5):536–47.