HOMOGENEOUS METRIC ANR COMPACTA ARE DIMENSIONALLY FULL-VALUED

V. VALOV

Abstract. One of the problems accompanying the famous Bing-Borsuk conjecture \cite{3} is whether homogeneous metric ANR compacta are dimensionally full-valued. In the present paper we provide a positive answer to that problem.

1. Introduction

The Bing-Borsuk conjecture \cite{3} asserts that a homogeneous Euclidean neighborhood retract is a topological manifold. In the present paper we prove that one of the problems accompanying this conjecture (whether homogeneous metric ANR’s are dimensionally full-valued) has a positive solution. Our proofs are based on Theorem 1.1 below stating that the local cohomological structure of any \(n\)-dimensional homogeneous metric ANR compactum to some extend is similar to the local structure of \(\mathbb{R}^n\).

Everywhere in this paper by a space we mean a homogeneous metric ANR compactum \(X\) with \(\dim_G X = n\), where \(G\) is a fixed countable abelian group and \(n \geq 2\). Reduced Čech homology \(H_n(X; G)\) and cohomology groups \(H^n(X; G)\) with coefficient from \(G\) are considered everywhere below. Suppose \((K, A)\) is a pair of closed subsets of a space \(X\) with \(A \subset K\). Following \cite{3}, we say that \(K\) is an \(n\)-homology membrane spanned on \(A\) for an element \(\gamma \in H_n(A; G)\) provided \(\gamma\) is homologous to zero in \(K\), but not homologous to zero in any proper closed subset of \(K\) containing \(A\). Similarly, \(K\) is said to be an \(n\)-cohomology membrane spanned on \(A\) for an element \(\gamma \in H^n(A; G)\) if \(\gamma\) is not extendable over \(K\), but it is extendable over every proper closed subset of \(K\) containing \(A\). Here, \(\gamma \in H^n(A; G)\) is not extendable over \(K\) means that \(\gamma\) is not contained in the image \(j^n_{K,A}(H^n(K; G))\), where

\begin{itemize}
 \item 2010 Mathematics Subject Classification. Primary 55M10, 55M15; Secondary 54F45, 54C55.
 \item Key words and phrases. Bing-Borsuk conjecture for homogeneous compacta, cohomological carrier, cohomology groups, cohomological membrane, dimensionally full-valued compactum, homogeneous metric ANR-compacta.
 \item The author was partially supported by NSERC Grant 261914-13.
\end{itemize}
$j_{K,A}^n : H^n(K;G) \to H^n(A;G)$ is the homomorphism generated by the inclusion $A \hookrightarrow K$.

We note the following simple fact, which will be used in this paper and follows from Zorn’s lemma and the continuity of Čech cohomology \[20\]: If A is a closed subset of a compact space X and γ is an element of $H^n(A;G)$ not extendable over X, then there exists an n-cohomology membrane for γ spanned on A.

We also say that a closed set $A \subset X$ is a cohomological carrier of a non-zero element $\alpha \in H^n(A;G)$ if $j_{A,B}^n(\alpha) = 0$ for every proper closed subset $B \subset A$. If $H^n(X;G) \neq 0$, but $H^n(B;G) = 0$ for every closed proper subset $B \subset X$, then X is called an (n,G)-bubble.

Here is our main result:

Theorem 1.1. Let X be a homogeneous metric ANR compactum X with $\dim_G X = n$, where G is a countable Abelian group and $n \geq 2$. Then every point x of X has a basis \mathcal{B}_x of open sets $U \subset X$ satisfying the following conditions:

1. \overline{U} is an $(n-1)$-cohomology membrane spanned on $\text{bd} \overline{U}$ for any non-zero $\gamma \in H^{n-1}(\text{bd} \overline{U};G)$;
2. $H^{n-1}(\overline{U};G) = 0$ and $X \setminus \overline{U}$ is connected;
3. $H^{n-1}(\text{bd} \overline{U};G)$ is a non-trivial finitely generated group;
4. $\dim_G \text{bd} \overline{U} = n-1$ and $\text{bd} \overline{U}$ is an $(n-1,G)$-bubble.

Corollary 1.2. Any homogeneous metric ANR compactum X with $\dim_G X = n$ has the following property $K(n)$: If a proper closed subset $K \subset X$ is an $(n-1)$-cohomology membrane spanned on A for some $\gamma \in H^{n-1}(A;G)$, then $(K \setminus A) \cap X \setminus K = \emptyset$.

The property $K(n)$ implies the invariance of domain for homogeneous ANRs (see \[15\] and \[17\] for homogeneous or locally homogeneous ANR spaces X with $\dim X = n$).

Corollary 1.3. Let X be as in Theorem 1.1 and $f : U \to X$ be an injective map, where $U \subset X$ is open. Then $f(U)$ is also open in X.

Recall that a compactum X is said to be dimensionally full-valued if $\dim(X \times Y) = \dim X + \dim Y$ for any compact space Y, or equivalently, $\dim_G X = \dim_{\mathbb{Z}} X$ for any abelian group G. Recent work of Bryant \[5\] was believed to provide a positive answer to the question whether any homogeneous metric ANR is dimensionally full-valued, but Bryant discovered a gap in the proof of one of the theorems from \[5\]. The question whether $\dim(X \times Y) = \dim X + \dim Y$ if both X and Y are homogeneous compact ANRs was raised in \[7\] and \[11\]. Theorem 1.4 below shows that both questions have a positive answer.
Theorem 1.4. Every homogeneous metric ANR-compactum is dimensionally full-valued.

2. Some preliminary results

In this section, if not stated otherwise, X always denotes a homogeneous metric ANR compactum with $\dim_G X = n$, $n \geq 2$. If $H^n(X; G) \neq 0$, then $H^n(B; G) = 0$ for all proper closed subsets B of X, see [22]. Obviously, this is true when $H^n(X; G) = 0$. Therefore, we can assume that all proper closed subsets of X have trivial n-cohomology groups.

We begin with the following analogue of Theorem 8.1 from [3].

Proposition 2.1. Let $A \subset X$ be a closed set and K be an $(n - 1)$-cohomology membrane spanned on A for some $\gamma \in H^{n-1}(A; G)$. Then $(K \setminus A) \cap \overline{X \setminus K} = \emptyset$ provided K is contractible in a proper subset of X.

Proof. It is easily seen that K can be assumed to be a subset of a component of X. Since each component is also homogeneous ANR, we can suppose that X is connected.

According to the duality between homology and cohomology for countable groups [12, viii 4G]), for any compact metric space Y the groups $H_{n-1}(Y, G^*)$ and $H^{n-1}(Y; G)^*$ are isomorphic, where G^* and $H^{n-1}(Y; G)^*$ denote the character groups of G and $H^{n-1}(Y; G)$, respectively. Here $H^{n-1}(Y; G)$ and G are considered as discrete groups. Using this duality, we can show that K is an $(n - 1)$-homology membrane for some $\beta \in H_{n-1}(A, G^*)$ spanned on A. Indeed, consider the homomorphism $j_{K,A}^{n-1} : H^{n-1}(K; G) \to H^{n-1}(A; G)$. Since γ is not extendable over K, $\gamma \notin G_A = j_{K,A}^{n-1}(H^{n-1}(K; G))$. Considering $H^{n-1}(A; G)$ as a discrete group, we can find a character $\beta : H^{n-1}(A; G) \to S^1$ such that $\beta(\gamma) \neq e$ and $\beta(G_A) = \exp e$, where e is the unit of S^1. On the other hand, γ is extendable over every proper closed subset B of K which contains A. Therefore, γ is contained in the image of $j_{B,A}^{n-1} : H^{n-1}(B; G) \to H^{n-1}(A; G)$ for any such B. Then the composition $j_{K,A}^{n-1} \circ \beta$ is the trivial character of $H^{n-1}(K; G)$, while the composition $j_{B,A}^{n-1} \circ \beta$ is non-trivial for any proper closed subset B of K containing A. So, β is homologous to zero in K, but not homologous to zero in any proper closed subset of K containing A. Hence, K is an $(n - 1)$-homology membrane for β spanned on A.

Now, assume that $(K \setminus A) \cap \overline{X \setminus K} \neq \emptyset$. Then following the proof of Theorem 16.1 from [6] (see also [3, Theorem 8.1]), we can find a
proper closed subset Γ of X and a non-zero element $\alpha \in H_n(\Gamma; G^*)$. This means that $H^n(\Gamma; G) \neq 0$, a contradiction. □

Since the Bing-Borsuk result used in the proof of Proposition 2.1 was established for locally homogeneous spaces, Proposition 2.1 remains valid for locally homogeneous spaces X such that $H^n(A; G) \neq 0$.

Corollary 2.2. Let $Z \subset X$ be a closed set. Then $\dim_G Z = n$ if and only if Z has a non-empty interior in X. Moreover, $\dim_G F = n-1$ for every non-empty, closed and nowhere dense subset $F \subset X$ separating X.

Proof. The first statement was established by Seidel in [17] for the covering dimension. His arguments can be modified for \dim_G. If $\dim_G Z = n$, we may assume that Z is contractible in proper closed subset of X (this can be done because X is locally contractible and \dim_G satisfies the countable sum theorem). Since $\dim_G Z = n$, there exists a closed set $A \subset Z$ such that $H^n(Z, A; G) \neq 0$. On the other hand, $H^n(Z; G) = 0$ (as a proper closed subset of X). So, according to the exact sequence

$$H^{n-1}(Z; G) \xrightarrow{j_{Z,A}^{n-1}} H^{n-1}(A; G) \xrightarrow{\delta} H^n(Z, A; G) \to 0$$

there exists $\gamma \in H^{n-1}(A; G)$ not extendable over Z. Hence, as it was noted above, we can find a closed subset K of Z such that K is an $(n-1)$-cohomological membrane for γ spanned on A. So, by Proposition 2.1 $(K \setminus A) \cap \overline{X \setminus K} = \emptyset$. This means that $K \setminus A$ is open in X, and it is contained in Z. The other direction follows because X is homogeneous and contains arbitrary small open sets U with $\dim_G U = n$.

According to the first part of this corollary, $\dim_G F \leq n-1$ provided F is nowhere dense. On the other hand, every non-empty separator of X is of dimension $\geq n-1$, see [13]. Therefore, $\dim_G F = n-1$. □

Corollary 2.3. Let $A \subset X$ be a closed subset and K an $(n-1)$-cohomology membrane for some $\gamma \in H^{n-1}(A; G)$ spanned on A. If K is contractible in a proper closed subset of X, then $K \setminus A$ is a connected open subset of X.

Proof. By Proposition 2.1, $(K \setminus A) \cap \overline{X \setminus K} = \emptyset$. This implies that $K \setminus A$ is an open set in X. Suppose $K \setminus A$ is the union of two non-empty, disjoint open sets U and V. Then $K \setminus U$ and $K \setminus V$ are closed proper subsets of K such that $(K \setminus U) \cap (K \setminus V) \subset A$. Hence, γ is extendable over each of these sets and, because A contains their common part, γ
is extendable over K. The last conclusion contradicts the fact that K is $(n - 1)$-cohomology membrane for γ. \hfill \Box

Proposition 2.4. Let $A \subset X$ be a closed subset of an arbitrary compactum X such that $X \setminus A = U \cup V$, where U and V are disjoint open subsets of X. Then any $(n - 1)$-cohomology membrane in X spanned on A is contained either in $U \cup A$ or in $V \cup A$.

Proof. Suppose that a closed set $K \subset X$ is an $(n - 1)$-cohomology membrane spanned on A for some $\gamma \in H^{n-1}(A;G)$. Consider the following diagram, where B is a proper closed subset of K containing A and the vertical arrows are generated by the corresponding inclusions:

\[
\begin{array}{cccc}
H^{n-1}(K;G) & \to & H^{n-1}(A;G) & \to & H^n(K,A;G) \\
\downarrow i_1 & & \downarrow i_2 & & \downarrow i_B \\
H^{n-1}(B;G) & \to & H^{n-1}(A;G) & \to & H^n(B,A;G).
\end{array}
\]

Because $\gamma \not\in j_{K,A}^{n-1}(H^{n-1}(K;G))$, $\beta = \delta_1(\gamma)$ is a non-trivial element of $H^n(K,A;G)$. On the other hand, since γ is extendable over B, $i_2(\gamma)$ belongs to $j_{B,A}^{n-1}(H^{n-1}(B;G))$. So, $\delta_2(i_2(\gamma)) = i_B(\beta) = 0$. In this way we show the existence of a non-zero element $\beta \in H^n(K,A;G)$ such that the image of β under the homomorphism i_B is trivial for every proper closed subset $B \subset K$ containing A.

Assume now that both $K_1 = K \cap (U \cup A)$ and $K_2 = K \cap (V \cup A)$ are proper non-empty subsets of K ($U \cup A$ and $V \cup A$ are closed sets, so are K_1 and K_2). Since $A = K_1 \cap K_2$, we have the Mayer-Vietoris sequence (the group G is not shown)

\[
H^{n-1}(A,A) \to H^n(K,A) \to \varphi H^n(K_1,A) \oplus H^n(K_2,A).
\]

Because $H^{n-1}(A,A;G) = 0$ and β is a non-zero element of $H^n(K,A;G)$ with $\varphi(\beta) = (i_{K_1}(\beta), i_{K_2}(\beta)) = 0$, we have a contradiction. \hfill \Box

Lemma 2.5. Let X be an arbitrary compactum and $A \subset X$ be a carrier for a non-zero element $\gamma \in H^{n-1}(A;G)$ with $\dim_G A \leq n - 1$, $n \geq 2$. Then A is connected.

Proof. Suppose A is not connected, so A is the union of two closed disjoint non-empty sets A_1 and A_2. Then $H^{n-1}(A;G)$ is isomorphic to $H^{n-1}(A_1;G) \oplus H^{n-1}(A_2;G)$ and γ is identified with the pair (γ_1, γ_2), where $\gamma_i = j_{A_i}^{n-1}(\gamma)$, $i = 1, 2$. Because A is a carrier of γ and A_i are proper closed non-empty subsets of A, $\gamma_1 = \gamma_2 = 0$. So, $\gamma = 0$, a contradiction. \hfill \Box
We say that a subset A of a space Z is an $(n-1,G)$-bubble with respect to a subgroup $L \subset H^{n-1}(Z;G)$ if the group $j_{Z,A}^{n-1}(L) \subset H^{n-1}(A;G)$ is non-trivial, but $j_{Z,B}^{n-1}(L) \subset H^{n-1}(B;G)$ is trivial for any closed proper subset $B \subset A$.

Lemma 2.6. If A is a closed subset of an arbitrary compactum X and $L \subset H^{n-1}(A;G)$ is a non-trivial and finitely generated subgroup, then A contains a non-empty closed subset F such that F is an $(n-1,G)$-bubble with respect to L.

Proof. We are going to use an induction with respect to the number of generators of L. If L has one generator γ, we just take a closed set $F \subset A$, which is a carrier for γ. Then $\beta = j_{A,F}^{n-1}(\gamma)$ and $\beta_B = j_{A,B}^{n-1}(\gamma)$ are generators, respectively, of $j_{A,F}^{n-1}(L) \subset H^{n-1}(F;G)$ and $j_{A,B}^{n-1}(L) \subset H^{n-1}(B;G)$ for any closed set $B \subset A$. So, $j_{A,B}^{n-1}(L) = 0$ for every proper closed subset B of F because $j_{A,B}^{n-1}(\gamma) = j_{F,B}^{n-1}(\beta) = 0$. Hence, F is an $(n-1,G)$-bubble with respect to L. Suppose our lemma is true for any such set A and a subgroup $L \subset H^{n-1}(A;G)$ with $\leq k$ generators. In case L has $k+1$ generators $\gamma_1, \ldots, \gamma_k, \gamma_{k+1}$, we first take a closed non-empty set $F_1 \subset A$, which is a carrier for γ_1. So, $j_{A,B}^{n-1}(\gamma_1) = 0$ for any proper closed subset B of F_1. If $H^{n-1}(B;G) = 0$ for all closed $B \subsetneq F_1$, then F_1 is as required. If $j_{A,B^*}^{n-1}(L) \neq 0$ for some closed proper set $B^* \subset F_1$, then $j_{A,B}^{n-1}(L)$ is generated by the set $\{j_{A,B}^{n-1}(\gamma_i) : i = 2, 3, \ldots, k+1\}$. Obviously B^* satisfies the hypotheses of the lemma, so according to our inductive assumption, there exists a closed non-empty set $F \subset B^*$ being an $(n-1,G)$-bubble in B^* with respect to $j_{A,B}^{n-1}(L)$. Consequently, F is an $(n-1,G)$-bubble in A with respect to L. \[\square\]

Lemma 2.7. Let F, W be a closed and open, respectively, subsets of X such that F is contractible in W and \overline{W} is contractible in a proper closed subset of X. If \overline{W} an $(n-1)$-cohomology membrane spanned on $bd\overline{W}$ for some non-zero $\alpha \in H^{n-1}(bd\overline{W};G)$, then the following conditions are equivalent:

- F separates X;
- F separates W;
- $H^{n-1}(F;G) \neq 0$.

Proof. Obviously, if F separates X, then it separates W. Since \overline{W} is an $(n-1)$-cohomology membrane spanned on $bd\overline{W}$ for $\alpha \in H^{n-1}(bd\overline{W};G)$, α (considered as a map from $bd\overline{W}$ to the Eilenberg-MacLane complex $K(G,n-1)$) is not extendable over \overline{W} but it is extendable over any proper closed subset of \overline{W}. Hence, by [21] Proposition 2.10, the couple $(\overline{W}, bd\overline{W})$ is a strong K^n_G-manifold (see [21] for the definition of a strong[$\overline{?}$]}
Lemma 2.8. Let X be an arbitrary compactum with $H^n(B;G) = 0$ for any closed proper subset $B \subset X$. Suppose $U \subset X$ is open and $P \nsubseteq X$ is closed such that $\overline{U} \subset P$ and $H^{n-1}(bd\overline{U};G)$ contains elements not extendable over \overline{U}. Then, there exists $\gamma \in H^{n-1}(bd\overline{U};G) \setminus L$ extendable over $P \setminus U$, where $L = j_{P\setminus U,bd\overline{U}}^{-1}(H^{n-1}(\overline{U};G))$. Moreover, if $L = 0$, then every $\gamma \in H^{n-1}(bd\overline{U};G)$ is extendable over $P \setminus U$.

Proof. Indeed, since $H^{n-1}(bd\overline{U};G)$ contains elements not extendable over \overline{U}, L is a proper subgroup of $H^{n-1}(bd\overline{U};G)$. Consider the homomorphism $j_{P\setminus U,bd\overline{U}}^{-1}: H^{n-1}(P \setminus U;G) \rightarrow H^{n-1}(bd\overline{U};G)$. It suffices to show that the image of $H^{n-1}(P \setminus U;G)$ under $j_{P\setminus U,bd\overline{U}}^{-1}$ is not contained in L. To this end, suppose $j_{P\setminus U,bd\overline{U}}^{-1}(H^{n-1}(P \setminus U;G)) \subset L$. Consider the Mayer-Vietoris exact sequence, where $A = P \setminus U$ and $\varphi(\gamma_1, \gamma_2) = j_{A,bd\overline{U}}^{-1}(\gamma_2) - j_{U,bd\overline{U}}^{-1}(\gamma_1)$ for $\gamma_1 \in H^{n-1}(\overline{U};G)$, $\gamma_2 \in H^{n-1}(A;G)$:

$$H^{n-1}(\overline{U};G) \oplus H^{n-1}(A;G) \xrightarrow{\varphi} H^{n-1}(bd\overline{U};G) \xrightarrow{\Delta} H^n(P;G) \rightarrow$$

Obviously, $L_U = \varphi(H^{n-1}(\overline{U};G) \oplus H^{n-1}(A;G)) \subset L$. Consequently, any $\gamma \in H^{n-1}(bd\overline{U};G) \setminus L$ is not contained in L_U. Hence, $\Delta(\gamma) \neq 0$ for all $\gamma \in H^{n-1}(bd\overline{U};G) \setminus L$. So, $H^n(P;G) \neq 0$, a contradiction (recall that the n-th cohomology groups of all proper closed sets in X are trivial).

If $L = 0$, then $j_{U,bd\overline{U}}^{-1}(\gamma_1) = 0$ for all $\gamma_1 \in H^{n-1}(\overline{U};G)$, so $\varphi(\gamma_1, \gamma_2) = j_{A,bd\overline{U}}^{-1}(\gamma_2)$. Since $\Delta(H^{n-1}(bd\overline{U};G)) = 0$, we obtain that for any $\gamma \in H^{n-1}(bd\overline{U};G)$ there exist $\gamma_1 \in H^{n-1}(\overline{U};G)$ and $\gamma_2 \in H^{n-1}(A;G)$ such that $\varphi(\gamma_1, \gamma_2) = \gamma$. Hence, $\gamma = j_{A,bd\overline{U}}^{-1}(\gamma_2)$, which means that γ is extendable over A. This completes the proof.

Lemma 2.9. If $U \subset X$ is a connected open set and \overline{U} is contractible in a proper closed subset of X, then \overline{U} is an $(n-1)$-cohomology membrane spanned on $bd\overline{U}$ for every $\gamma \in H^{n-1}(bd\overline{U};G)$ not extendable over \overline{U}.

K^∞_2-manifold). Then, according to [21, Theorem 3.3], $H^{n-1}(F;G) \neq 0$ provided F separates W. Finally, suppose $H^{n-1}(F;G) \neq 0$. Because F is contractible in W, any non-zero element $\gamma \in H^{n-1}(F;G)$ is not extendable over \overline{W} (otherwise γ, considered as a map from F to $K(G, n-1)$, would be homotopic to a constant). This yields the existence of an $(n-1)$-cohomology membrane $K_\gamma \subset \overline{W}$ for γ spanned on F. Because \overline{W} is contractible in a proper closed subset of X, so is K_γ. Hence, by Proposition 2.1, $(K_\gamma \setminus F) \cap X \setminus K_\gamma = \emptyset$. The last equality implies that F separates X.

□
Proof. Observe first that U is dense in $V = \text{Int}(\overline{U})$, so V is also connected. Let γ be an element of $H^{n-1}(\text{bd}U; G)$ not extendable over \overline{U}. Then there exists a closed subset $K \subset \overline{U}$ such that K is an $(n - 1)$-cohomology membrane for γ spanned on $\text{bd} U$. Since K is contractible in a proper closed subset of X (as a subset of \overline{U}), by Proposition 2.1 $(K \setminus \text{bd}U) \cap X \setminus K = \emptyset$. Hence, $K \setminus \text{bd}U$ is open in X. This implies that $K = \overline{U}$, otherwise V would be the union of the non-empty disjoint open sets $V \setminus K$ and $(K \setminus \text{bd}U) \cap V$. Therefore, \overline{U} is an $(n - 1)$-cohomology membrane spanned on $\text{bd}U$ for γ. \qed

3. Proof of Theorem 1.1 and Corollaries 1.2 - 1.3

We consider the following properties of a space X and open subsets $U \subset X$, where $\text{bd}U$ denotes the boundary of U.

$M_1(n)$: $\dim_G \text{bd}U = n - 1$, $H^{n-1}(\text{bd}U; G) \neq 0$ and there exists $\gamma \in H^{n-1}(\text{bd}U; G)$ not extendable over \overline{U}.

$M_2(n)$: $H^{n-1}(\overline{U}; G) = 0$ and \overline{U} is an $(n - 1)$-cohomology membrane spanned on $\text{bd}U$ for any non-zero $\gamma \in H^{n-1}(\text{bd}U; G)$.

$M_3(n)$: $H^{n-1}(\text{bd}U; G)$ is finitely generated and $\text{bd}U$ is an $(n - 1, G)$-bubble.

Proof of Theorem 1.1. As in the proof of Proposition 2.1, we may suppose that X is connected and $H^n(C; G) = 0$ for any closed proper subset C of X. Moreover, we equip X with a convex metric d generating its topology (such a metric exists, see [2]). According to [14], there exists a closed subset $Y \subset X$ and its open subset $D \subset Y$ with the following properties: $\dim_G Y = n$ and any $y \in D$ has sufficiently small neighborhoods U_y in Y such that the homomorphism $j^{n-1}_{U_y, \text{bd}U_y}$ is not surjective. Because Y has a non-empty interior in X (by Corollary 2.2), there exists a point $x \in \text{Int}(Y) \cap D$, its open connected neighborhood W_x in X and an element $\alpha_x \in H^{n-1}(\text{bd}W_x; G)$ such that α_x is not extendable over \overline{W}_x. We can suppose that \overline{W}_x is contractible in a proper closed subset of X. So, by Lemma 2.9, $\overline{W}_x (n - 1)$-cohomology membrane for α_x spanned on $\text{bd} W_x$.

We define \mathcal{B}_x' to be the family of all open connected subsets $U \subset X$ containing x such that $U = \text{Int}(\overline{U})$ and \overline{U} is contractible in W_x. Because X is locally contractible, \mathcal{B}_x' is a local base at x. Moreover, $\text{bd} U = \text{bd} \overline{U}$ for all $U \in \mathcal{B}_x'$.

Claim 1. Every $U \in \mathcal{B}_x'$ has the following properties:

(i) \overline{U} is an $(n - 1)$-cohomology membrane for some element of $H^{n-1}(\text{bd}U; G)$ spanned on $\text{bd}U$;
(ii) the group \(L_U = j_{W_x \setminus U, bdU}^{n-1}(H^{n-1}(W_x \setminus U; G)) \subset H^{n-1}(bdU; G) \) is non-trivial and finitely generated;

(iii) the group \(H^{n-1}(bdU; G) \) is finitely generated provided the homomorphism \(j_{W, bdU}^{n-1} \) is trivial.

We fix \(U \in B_x' \) and a non-zero element \(\alpha_x \in H^{n-1}(bdW_x; G) \) such that \(W_x \) is an \((n-1)\)-cohomology membrane for \(\alpha_x \) spanned on \(bdW_x \). Then \(\alpha_x \) is not extendable over \(W_x \) but it is extendable over every closed proper subset of \(W_x \). Next, extend \(\alpha_x \) to an element \(\tilde{\alpha}_x \in H^{n-1}(W_x \setminus U; G) \). Obviously, \(bdU \subset W_x \setminus U \). Hence, the element \(\gamma_U = j_{W_x \setminus U, bdU}^{n-1}(\tilde{\alpha}_x) \in H^{n-1}(bdU; G) \) is not extendable over \(\overline{U} \) (otherwise \(\alpha_x \) would be extendable over \(W_x \)), in particular \(\gamma_U \neq 0 \). Since \(U \) is connected, by Lemma 2.9, \(U \) is an \((n-1)\)-cohomology membrane for \(\gamma_U \) spanned on \(bdU \).

To prove the second item \((ii)\), let \(U_0 \) be an open subset of \(X \) with \(\overline{U}_0 \subset U \). Since \(\gamma_U \in L_U \) and \(\gamma_U \neq 0 \), \(L_U \neq 0 \). For any \(\gamma \in L_U \) there are two possibilities: either \(\gamma \) is extendable over \(\overline{U} \) or it is not extendable over \(\overline{U} \). If \(\gamma \) is not extendable over \(\overline{U} \), then \(\overline{U} \) is an \((n-1)\)-cohomology membrane for \(\gamma \) spanned on \(bdU \) (Lemma 2.9). Hence, \(\gamma \) is extendable over the set \(\overline{U} \setminus U_0 \). So, every \(\gamma \in L_U \) is extendable over the set \(W_x \setminus U_0 \), which is closed in \(X \) and contains \(bdU \) in its interior. Therefore, by [4, Theorem 17.4, p.127], \(L_U \) is finitely generated. If \(j_{U, bdU}^{n-1}(H^{n-1}(U; G)) = 0 \), then every \(\gamma \in H^{n-1}(bdU; G) \) is extendable over \(W_x \setminus U \), see Lemma 2.8. Hence, \(H^{n-1}(bdU; G) \subset L_U \), and item \((ii)\) yields item \((iii)\).

According to Corollary 2.2, \(\dim_G bdU = n-1 \) for all such \(U \in B_x' \). Hence, by Claim 1, each \(U \in B_x' \) has \(M_1(n) \).

Let \(B_x'' \) be the family of all \(U \in B_x' \) satisfying the following condition: \(bdU \) contains a continuum \(F_U \) such that \(X \setminus F_U \) has exactly two components.

Claim 2. \(B_x'' \) is a local base at \(x \).

We fix \(W_0 \in B_x' \) and for every \(\delta > 0 \) denote by \(B(x, \delta) \) the open ball in \(X \) with center \(x \) and radius \(\delta \). There exists \(\varepsilon_x > 0 \) such that \(B(x, \delta) \subset W_0 \) for all \(\delta \leq \varepsilon_x \). Since \(d \) is a convex metric, each \(B(x, \delta) \) is a connected open set such that \(Int(B(x, \delta)) = B(x, \delta) \). Because \(W_0 \) is contractible in \(W_x \), so is \(B(x, \delta) \). Hence, all \(U_\delta = B(x, \delta), \delta \leq \varepsilon_x \), belong to \(B_x' \). Consequently, by Claim 1, the groups \(L_\delta = j_{W_x \setminus U_\delta, bdU_\delta}^{n-1}(H^{n-1}(W_x \setminus U_\delta; G)) \) are finitely generated. Then, by Lemma 2.6, there exists a closed non-empty set \(F_\delta \subset bdU_\delta \) with \(F_\delta \) being an \((n-1; G)\)-bubble.
with respect to L_δ. Because F_δ is a carrier for any $\gamma \in L_\delta$, Lemma 2.5 yields that each F_δ is a continuum. Let us show that the family $\{F_\delta : \delta \leq \varepsilon_x\}$ is uncountable. Since the function $f : X \to \mathbb{R}$, $f(y) = d(x, y)$, is continuous and W_0 is connected, $f(W_0)$ is an interval containing $[0, \varepsilon_x]$ and $f^{-1}([0, \varepsilon_x)) = B(x, \varepsilon_x) \subset W_0$. So, $f^{-1}(\delta) = bdU_\delta \neq \emptyset$ for all $\delta \leq \varepsilon_x$. Hence, the family $\{F_\delta : \delta \leq \varepsilon_x\}$ is indeed uncountable and consist of disjoint continua. Moreover, $H^{n-1}(F_\delta; G) \neq 0$ and, according to Lemma 2.7, F_δ separates X. So, each $X \setminus F_\delta$ has at least two components. Then, by [8, Theorem 8], there exists $\delta_0 \leq \varepsilon_x$ such that $X \setminus F_{\delta_0}$ has exactly two components. Therefore, $U_{\delta_0} = B(x, \delta_0) \in \mathcal{B}_x$ and it is contained in W_0. This completes the proof of Claim 2.

Now, let \mathcal{B}_x be the subfamily of all $U \in \mathcal{B}_x''$ such that both U and $X \setminus \overline{U}$ are connected.

Claim 3. \mathcal{B}_x is a local base at x.

We fix $U_0 \in \mathcal{B}_x''$ with $U_0 \subset W_x$ and choose $W_1 \in \mathcal{B}_x''$ such that $\overline{W}_1 \subset U_0$ (this is possible because \mathcal{B}_x'' is a local base at x). Let $\varepsilon = d(\overline{W}_1, X \setminus U_0)$. According to the Effros’ theorem [10], there is $\eta > 0$ such that if $y, z \in X$ with $d(y, z) < \eta$, then $h(y) = z$ for some homeomorphism $h : X \to X$, which is ε-close to the identity on X. Now, take $U, W \in \mathcal{B}_x''$ such that \overline{U} is contractible in W, $\overline{W} \subset W_1$ and $\text{diam}(\overline{W}) < \eta$. There exists a continuum $F_U \subset bdU$ such that $X \setminus F_U$ has exactly two components and F_U is an $(n - 1, G)$-bubble with respect to the group $L_U = j^{n-1}_{\overline{W}_1 \setminus U, bdU}(H^{n-1}(\overline{W}_1 \setminus U; G))$ (see the proof of Claim 2). If $F_U = bdU$, we are done because $U \subset U_0$ and both U and $X \setminus \overline{U}$ are connected. Suppose that F_U is a proper subset of bdU. Then there exists $\gamma \in L_U$ such that $\beta = j^{n-1}_{bdU, F_U}(\gamma) \neq 0$. Because F_U separates X, it also separates \overline{W}. So, $\overline{W} \setminus F_U = V_1 \cup V_2$ for some open, non-empty disjoint subsets $V_1, V_2 \subset \overline{W}$. Since U is a connected subset of $\overline{W} \setminus F_U$, U is contained in one of the sets V_1, V_2, say $U \subset V_1$. Hence, $F_U \cup V_2 \subset \overline{W} \setminus U$. Observe that $\gamma \in L_U$ implies γ is extendable over $\overline{W_x} \setminus U$. Consequently, β is also extendable over $\overline{W_x} \setminus U$, in particular β is extendable over $F_U \cup V_2$. On the other hand, F_U (as a subset of \overline{U}) is contractible in \overline{W}, so β is not extendable over \overline{W} (otherwise β would be zero). Thus, since $(F_U \cup V_1) \cap (F_U \cup V_2) = F_U$, β is not extendable over $F_U \cup \overline{V}_1$. Let $\beta' = j^{n-1}_{F_U, F'}(\beta)$, where $F' = \overline{V}_1 \cap F_U$ (observe that $F' \neq \emptyset$ because \overline{W} is connected). If F' is a proper subset of F_U, then $\beta' = 0$ (recall that $j^{n-1}_{bdU, F'}(\gamma) = \beta'$ and F_U being a carrier for any element of L_U yields $j^{n-1}_{bdU, Q}(L_U) = 0$ for any proper closed subset Q of F_U). So, β' would be extendable over \overline{V}_1, which yields β is extendable
over $F_U \cup \overline{V}_1$, a contradiction. Therefore, $F' = F_U \subset \overline{V}_1$ and β is not extendable over \overline{V}_1. Consequently, there exists an $(n-1)$-cohomology membrane $P_{\beta} \subset \overline{V}_1$ for β spanned on F_U. By Corollary 2.3, $V = P_{\beta} \setminus F_U$ is a connected open set in X whose boundary, according to Proposition 2.1, is the set $F'' = X \setminus P_{\beta} \cap \overline{P_{\beta} \setminus F_U} \subset F_U$ (we can apply Proposition 2.1 and Corollary 2.3 because P_{β}, as a subset of \overline{W}, is contractible in a proper closed subset of X). As above, using that β is not extendable over P_{β} and $J_{bdU;Q}(L_U) = 0$ for any proper closed subset $Q \subset F_U$, we can show that $F'' = F_U$ and $bd\overline{V} = F_U$. Summarizing the properties of V, we have that \overline{V} is contractible in W_ε (because $\overline{V} \subset W \subset W_1$), $V = \text{Int}(\overline{V})$ (because $F_U = bd\overline{V}$) and V is connected. Moreover, since $X \setminus F_U$ is the union of the open disjoint non-empty sets V, $X \setminus P_{\beta}$ with V being connected and $X \setminus F_U$ has exactly two components, $X \setminus \overline{V}$ is also connected. If V does not contain x, we take a point $y \in V$ and a homeomorphism h on X such that $h(y) = x$ and $d(z, h(z)) < \varepsilon$ for all $z \in X$. Such a homeomorphism exists because $\text{diam}(\overline{V}) < \eta$ and $x, y \in \overline{W}$. Then $h(V) \subset U_0$ (this inclusion follows from the choice of ε and the fact that h is ε-close to the identity on X). So $h(V)$ is contractible in W_ε and both $h(V)$ and $X \setminus h(V)$ are connected. Consequently, $h(V) \in \mathcal{B}_x$, and we conclude that \mathcal{B}_x is a base at the point x. This completes the proof of Claim 3.

Claim 4. Every $U \in \mathcal{B}_x$ has the properties $M_2(n)$ and $M_3(n)$.

Since each \overline{U} is contractible in the set \overline{W}_x, for any non-zero element $\gamma \in H^{n-1}(bdU;G)$ there exists an $(n-1)$-cohomology membrane $P_\gamma \subset \overline{W}_x$ for γ spanned on bdU. Because P_γ, as a subset of \overline{W}_x, is contractible in a proper closed subset of X, $P_\gamma \setminus bdU$ is open in X (by Proposition 2.1). According to Proposition 2.4, P_γ is contained either in \overline{U} or in $X \setminus U$. First, consider the case P_γ is contained in $X \setminus U$. Since $X \setminus \overline{U}$ is connected, we obtain a contradiction because $P_\gamma \setminus bdU$ and $X \setminus (P_\gamma \cup \overline{U})$ are non-empty open disjoint sets whose union is $X \setminus \overline{U}$. Therefore, $P_\gamma \subset \overline{U}$, and γ is not extendable over \overline{U}. Hence, by Lemma 2.9, \overline{U} is an $(n-1)$-cohomology membrane for γ spanned on bdU. Moreover, \overline{U} does not separate X (recall that $X \setminus \overline{U}$ is connected). Then, by Lemma 2.7, $H^{n-1}(\overline{U};G) = 0$. So, $U \in M_2(n)$.

We actually proved in the previous paragraph that the homomorphism $j_{\overline{U};bdU}^{-1}$ is trivial for any $U \in \mathcal{B}_x$. Thus, by Lemma 2.8 we have $H^{n-1}(bdU;G) = j_{\overline{W}_x;U;bdU}^{-1}(H^{n-1}(\overline{W}_x \setminus U;G))$ and, by Claim 1(ii), $H^{n-1}(bdU;G)$ is finitely generated. Suppose there exists a proper
closed subset \(F \subset \text{bd}U \) and a non-trivial element \(\alpha \in H^{n-1}(F; G) \). Observe that \(\alpha \) is not extendable over \(\overline{U} \) because \(H^{n-1}(\overline{U}; G) = 0 \). Hence, there is an \((n-1)\)-cohomology membrane \(K_\alpha \subset \overline{U} \) for \(\alpha \) spanned on \(F \). Because \(K_\alpha \setminus F \) is open in \(X \) (Proposition 2.1) and \(U \) is connected, it follows from the proof of Lemma 2.9 that \(K_\alpha = \overline{U} \). Finally, according to Proposition 2.1, we have \((K_\alpha \setminus F) \cap X \setminus K_\alpha = \emptyset \). On the other hand, any point from \(\text{bd}U \setminus F \) belongs to \((K_\alpha \setminus F) \cap X \setminus K_\alpha \), a contradiction. Therefore, \(\text{bd}U \) is an \((n-1, G)\)-bubble and \(U \in M_3(n) \).

Combining the above claims, we obtain the proof of Theorem 1.1. □

Proof of Corollary 1.2. Suppose \(K \) is a proper closed subset of \(X \), which is an \((n-1)\)-cohomology membrane spanned on \(A \) for some \(\gamma \in H^{n-1}(A; G) \), but there exists a point \(a \in (K \setminus A) \cap \overline{X \setminus K} \). Take a neighborhood \(U \in B_a \) such that \(\overline{U} \cap A = \emptyset \). Since \(K \setminus U \) is a closed proper subset of \(K \) containing \(A \), \(\gamma \) is extendable over \(K \setminus U \). So, there exists \(\beta \in H^{n-1}(K \setminus U; G) \) with \(j_{K \setminus U, A}^{n-1}(\beta) = \gamma \). Then \(\beta_1 = j_{K \setminus U, \text{bd}U \cap K}^{n-1}(\beta) \) is a non-zero element of \(H^{n-1}(\text{bd}U \cap K; G) \) (otherwise \(\beta_1 \) would be extendable over \(\overline{U} \cap K \), and hence, \(\gamma \) would be extendable over \(K \)). Since \(\dim_G \text{bd}U = n - 1 \), there exists a non-zero element \(\alpha \in H^{n-1}(\text{bd}U; G) \) extending \(\beta_1 \). Because \(U \) has property \(M_3(n) \), \(\overline{U} \) is an \((n-1)\)-cohomology membrane for \(\alpha \) spanned on \(\text{bd}U \). Finally, using that \(\text{bd}U \cup (\overline{U} \cap K) \) is a closed proper subset of \(\overline{U} \), we extend \(\alpha \) over \(\text{bd}U \cup (\overline{U} \cap K) \). This yields that \(\beta_1 \) is extendable over \(\overline{U} \cap K \), a contradiction. Hence \((K \setminus A) \cap \overline{X \setminus K} = \emptyset \). □

Proof of Corollary 1.3. Take a point \(y \in V = f(X) \) and let \(x = f^{-1}(y) \). Choose a connected open set \(W \in B_x \) such that \(\overline{W} \subset U \) and \(\overline{W} \) is an \((n-1)\)-cohomology membrane for some \(\gamma \in H^{n-1}(\text{bd}W; G) \) spanned on \(\text{bd}W \). Then \(f(\overline{W}) \) is homeomorphic to \(\overline{W} \), so it is an \((n-1)\)-cohomology membrane for \((f^*)^{-1}(\gamma) \in H^{n-1}(f(\text{bd}W); G) \) spanned on \(f(\text{bd}W) \). Since \(X \in K(n) \), \(f(W) \setminus f(\text{bd}W) \) does not intersect \(X \setminus f(\overline{W}) \). This means that \(f(\overline{W}) \setminus f(\text{bd}W) \) is an open set in \(X \), which contains \(y \) and is contained in \(V \). So, \(V \) is also open. □

4. Proof of Theorem 1.4

Suppose \(X \) is a homogeneous compact metric ANR-space of dimension \(n \). According to Theorem 1.1, every point \(x \in X \) has a basis \(B_x = \{U_k\}_{k \geq 1} \) consisting of open sets such that \(\overline{U}_1 \) is a proper subset of \(X \), \(\overline{U}_{k+1} \subset U_k \), \(H^{n-1}(\overline{U}_k) = H^n(\overline{U}_k) = 0 \) and \(H^{n-1}(\text{bd}U_k) \) is a non-trivial finitely generated group (everywhere in this section the coefficient group \(\mathbb{Z} \) in all homology and cohomology groups is suppressed).
Let \(\hat{H}_n \) denote the exact homology (see [16], [18]) and \(Q_1 = Q/\mathbb{Z} \), where \(Q \) is the group of rational numbers. Note that for any group \(G \) and a closed set \(A \subset X \) we have \(\hat{H}_n(X, A; G) \simeq H_n(X, A; G) \) provided \(\dim X = n \) [18].

Lemma 4.1. All groups \(\hat{H}_{n-1}(bd\overline{U}_k; Q_1) \), \(k \geq 2 \), are non-trivial.

Proof. For any abelian group \(G \) the homological dimension \(h \dim_G Y \) of a space \(Y \) is the greatest integer \(m \) such that \(H_m(Y, A; G) \neq 0 \) for some closed \(A \subset Y \) (if there is no such \(m \), then \(h \dim_G Y = \infty \)). It is well known [1] that for a finite dimensional metric compacta \(Y \) we have \(h \dim_{Q_1} Y = \dim Y \). Moreover, if \(h \dim_G Y < \infty \), then \(h \dim_G Y \) is the greatest \(m \) such that the local homology group \(\hat{H}_m(Y, Y \setminus y; G) = \lim_{n \to \infty} \hat{H}_m(Y, Y \setminus V; G) \) is not trivial for some \(y \in Y \) [19]. Therefore, there exists \(x \in X \) such that \(\hat{H}_n(X, X \setminus x; Q_1) = \lim_{n \to \infty} \hat{H}_n(X, X \setminus U_k; Q_1) \neq 0 \).

So, by the excision axiom, we may assume that all groups \(\hat{H}_n(\overline{U}_1, \overline{U}_1 \setminus U_k; Q_1), k \geq 2 \), are non-trivial. For every \(k \geq 1 \) we have the following exact sequences, see [18]:

\[
0 \to \Ext(H^n(\overline{U}_k), Q_1) \to \hat{H}_{n-1}(\overline{U}_k; Q_1) \to \Hom(H^{n-1}(\overline{U}_k), Q_1) \to 0
\]

and

\[
0 \to \Ext(H^{n+1}(\overline{U}_k), Q_1) \to \hat{H}_n(\overline{U}_k; Q_1) \to \Hom(H^n(\overline{U}_k), Q_1) \to 0.
\]

Since \(H^{n-1}(\overline{U}_k) = H^n(\overline{U}_k) = H^{n+1}(\overline{U}_k) = 0 \), \(\hat{H}_{n-1}(\overline{U}_k, Q_1) = 0 \) and \(\hat{H}_n(\overline{U}_k, Q_1) = 0 \). Hence, it follows from the Mayer-Vietoris sequence (the coefficient group \(Q_1 \) is suppressed)

\[
\to \hat{H}_n(\overline{U}_1) \to \hat{H}_{n-1}(bd\overline{U}_k) \to \hat{H}_{n-1}(\overline{U}_1 \setminus U_k) \oplus \hat{H}_{n-1}(\overline{U}_k) \to \hat{H}_{n-1}(\overline{U}_1) \to
\]

that \(\hat{H}_{n-1}(bd\overline{U}_k; Q_1) \simeq \hat{H}_{n-1}(\overline{U}_1 \setminus U_k; Q_1) \). Similarly, the exact sequence

\[
\to \hat{H}_n(\overline{U}_1) \to \hat{H}_n(\overline{U}_1, \overline{U}_1 \setminus U_k) \to \hat{H}_n(\overline{U}_1 \setminus U_k) \to \hat{H}_{n-1}(\overline{U}_1) \to
\]

yields \(\hat{H}_n(\overline{U}_1, \overline{U}_1 \setminus U_k; Q_1) \simeq \hat{H}_{n-1}(\overline{U}_1 \setminus U_k; Q_1) \). Therefore, for all \(k \geq 2 \) the groups \(\hat{H}_{n-1}(bd\overline{U}_k; Q_1) \) and \(\hat{H}_n(\overline{U}_1, \overline{U}_1 \setminus U_k; Q_1) \) are non-trivial and isomorphic to each other. \(\square \)

Lemma 4.2. Suppose some \(\mathcal{B}_x \) contains an open set \(U \subset X \) such that the group \(H^{n-1}(bd\overline{U}) \) is finite. Then \(\dim X - \dim_{\mathbb{Q}} X \leq 1 \).

Proof. Suppose \(\dim X - \dim_{\mathbb{Q}} X \geq 2 \), so \(\dim_{\mathbb{Q}} X \leq n - 2 \). Then, since the interior of \(bd\overline{U} \) is empty, Corollary 2.2 implies \(\dim_{\mathbb{Q}} bd\overline{U} \leq n - 3 \). Hence, \(H^{n-2}(bd\overline{U}; Q) = 0 \). Consider the exact sequence

\[
0 \to \Ext(H^n(bd\overline{U}), Q) \to \hat{H}_{n-1}(bd\overline{U}; Q) \to \Hom(H^{n-1}(bd\overline{U}), Q) \to 0
\]
Since \(\dim \partial U = n - 1 \), \(H^n(\partial U) = 0 \). The group \(\text{Hom}(H^{n-1}(\partial U), \mathbb{Q}) \) is also trivial because \(H^{n-1}(\partial U) \) is torsion (as a finite group). Thus, \(\hat{H}_{n-1}(\partial U; \mathbb{Q}) = 0 \). Next, the exact sequence
\[
0 \to \mathbb{Z} \to \mathbb{Q} \to \mathbb{Q}_1 \to 0
\]
yields the exact homology sequence (see [16])
\[
0 \to \hat{H}_{n-1}(\partial U; \mathbb{Q}) \to \hat{H}_{n-1}(\partial U; \mathbb{Q}_1) \to \hat{H}_{n-2}(\partial U) \to
\]
According to Lemma 4.1, \(\hat{H}_{n-1}(\partial U; \mathbb{Q}_1) \neq 0 \), so \(\hat{H}_{n-2}(\partial U) \neq 0 \). Then, it follows from the exact sequence
\[
0 \to \text{Ext}(H^{n-1}(\partial U), \mathbb{Z}) \to \hat{H}_{n-2}(\partial U) \to \text{Hom}(H^{n-2}(\partial U), \mathbb{Z}) \to 0
\]
that there exists a non-trivial homomorphism \(\varphi : H^{n-2}(\partial U) \to \mathbb{Z} \). This means that \(H^{n-2}(\partial U) \) contains an isomorphic copy of \(\mathbb{Z} \) as a direct summand. Therefore, \(H^{n-2}(\partial U) \otimes \mathbb{Q} \neq 0 \), and the universal coefficients formula
\[
0 \to H^{n-2}(\partial U) \otimes \mathbb{Q} \to H^{n-2}(\partial U; \mathbb{Q}) \to
\]
implies \(H^{n-2}(\partial U; \mathbb{Q}) \neq 0 \), a contradiction. \(\square \)

Proof of Theorem 1.4. It is well known that \(\dim_{\mathbb{Q}} Y \leq \dim_{\mathbb{G}} Y \) for any ANR compactum \(Y \) and any abelian group \(\mathbb{G} \), see [9, Theorem 12.3]. So, it suffices to show that \(\dim_{\mathbb{Q}} X = n \). Striving for a contradiction, assume that \(\dim_{\mathbb{Q}} X \leq n - 1 \), and consider \(X^2 \). Obviously, \(X^2 \) is also a homogeneous ANR-compactum. Moreover, \(\dim X^2 = 2n \) and \(\dim_{\mathbb{Q}} X^2 \leq 2n - 2 \), see Proposition 3.3 and Corollary 12.4 from [9]. Since \(\dim X^2 - \dim_{\mathbb{Q}} X^2 \geq 2 \), it follows from Lemma 4.2 and Theorem 1.1 that every point of \(X^2 \) has a basis of open sets \(W_k \subset X^2 \) such that \(\dim \partial W_k = 2n - 1 \) and each group \(H^{2n-1}(\partial W_k) \) is finitely generated and contains elements of infinite order. Hence, by the universal coefficients formula, \(H^{2n-1}(\partial W_k; \mathbb{Q}) \neq 0 \). So, \(\dim_{\mathbb{Q}} \partial W_k = 2n - 1 \). This implies that \(\dim_{\mathbb{Q}} X^2 \geq \dim_{\mathbb{Q}} \partial W_k = 2n - 1 \), a contradiction. Thus, \(X \) is dimensionally full-valued. \(\square \)

Acknowledgments. The author would like to express his gratitude to A. Dranishnikov, A. Karassev and G. Skordev for their helpful comments.

References

[1] P. Alexandroff, H. Hopf and L. Pontrjagin, *"Über den Brouwerschen dimensionsbegriff*, Comp. Math. **4** (1937), 239–255.

[2] R. H. Bing, *Partitioning a set*, Bull. Amer. Math. Soc. **55** (1949), no. 12, 1101–1110.
[3] R. H. Bing and K. Borsuk, Some remarks concerning topological homogeneous spaces, Ann. of Math. 81 (1965), no. 1, 100–111.
[4] G. Bredon, Sheaf Theory, Second Edition, Graduate texts in Mathematics 170, Springer, 1997.
[5] J. Bryant, Reflections on the Bing-Borsuk conjecture, Abstracts the talks presented at the 19th Annual workshop in Geometric Topology (13-15 June, 2002), 2-3.
[6] K. Borsuk, Theory of retracts, PWN-Polish Sci. Publ., Warszawa, 1967.
[7] M. Cardenas, F. Lasheras, A. Quintero and D. Repovš, On manifolds with nonhomogeneous factors, Cent. Eur. J. Math. 10 (2012), no. 3, 857–862.
[8] J. Choi, Properties of n-bubles in n-dimensional compacta and the existence of (n – 1)-bubles in n-dimensional cle^a compacta, Top. Proceed. 23 (1998), 101-120.
[9] A. Dranishnikov, Cohomological dimension theory of compact metric spaces, Topology Atlas invited contribution, 2004.
[10] E. Effros, Transformation groups and C*-algebras, Ann. of Math. 81 (1965), 38–55.
[11] V. Fedorchuk, On homogeneous Pontryagin surfaces, Dokl. Akad. Nauk 404 (2005), no. 5, 601–603 (in Russian).
[12] W. Hurewicz and H. Wallman, Dimension Theory, Princeton Math. Series, vol. 4, Princeton University Press, 1941.
[13] A. Karassev, P. Krupski, V. Todorov and V. Valov, Generalized Cantor manifolds and homogeneity, Houston J. Math. 38 (2012), no. 2, 583–609.
[14] V. Kuz’minov, Homological dimension theory, Russian Math. Surveys 23 (1968), no. 1, 1–45.
[15] J. Lysko, Some theorems concerning finite dimensional homogeneous ANR-spaces, Bull. Acad. Polon. Sci. 24 (1976), no. 7, 491–496.
[16] W. Massey, Homology and cohomology theory, New York, Dekker, 1978.
[17] H. Seidel, Locally homogeneous ANR-spaces, Arch. Math. 44 (1985), 79–81.
[18] E. Sklyarenko, Homology theory and the exactness axiom, Uspehi Mat. Nauk 24 (1969) no. 5(149), 87-140 (in Russian).
[19] E. Sklyarenko, On the theory of generalized manifolds, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 831-843 (in Russian).
[20] E. Spanier, Algebraic Topology, McGraw-Hill Book Company, 1966.
[21] V. Todorov and V. Valov, Alexandroff type manifolds and homology manifolds, Houston J. Math., to appear.
[22] V. Valov, Homogeneous ANR spaces and Alexandroff manifolds, Topol. Appl. 173 (2014), 227–233.

Department of Computer Science and Mathematics, Nipissing University, 100 College Drive, P.O. Box 5002, North Bay, ON, P1B 8L7, Canada

E-mail address: veskov@nipissingu.ca