Role of *dupA* in virulence of *Helicobacter pylori*

Amin Talebi Bezmin Abadi, Guillermo Perez-Perez

Amin Talebi Bezmin Abadi, Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115-111, Iran

Guillermo Perez-Perez, Departments of Medicine and Microbiology, New York University School of Medicine and VA Medical Center, New York, NY 10010, United States

Author contributions: Talebi Bezmin Abadi A and Perez-Perez G prepared the first draft and finalized it for publication.

Conflict-of-interest statement: Authors declare no conflict of interests for this article.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Correspondence to: Amin Talebi Bezmin Abadi, PhD, Assistant Professor, Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115-111, Iran. amin.talebi@modares.ac.ir
Telephone: +98-21-82884883
Fax: +98-21-82884883

Received: August 23, 2016
Peer-review started: August 24, 2016
First decision: September 12, 2016
Revised: September 27, 2016
Accepted: November 14, 2016
Article in press: November 16, 2016
Published online: December 14, 2016

Abstract

Helicobacter pylori (*H. pylori*) is a gastric human pathogen associated with acute and chronic gastritis, 70% of all gastric ulcers, 85% of all duodenal ulcers, and both forms of stomach cancer, mucosal-associated lymphoid tissue (MALT) lymphoma and adenocarcinoma. Recently, attention has focused on possible relationship between presence of certain virulence factor and *H. pylori*-associated diseases. Some contradictory data between this bacterium and related disorders has been observed since not all the colonized individuals develop to severe disease. The reported diseases plausibility related to *H. pylori* specific virulence factors became an interesting story about this organism. Although a number of putative virulence factors have been identified including cytotoxin-associated gene a (*cagA*) and *vacA*, there are conflicting data about their actual participation as specific risk factor for *H. pylori*-related diseases. Duodenal ulcer promoting gene a (*dupA*) is a virulence factor of *H. pylori* that is highly associated with duodenal ulcer development and reduced risk of gastric cancer. The prevalence of *dupA* in *H. pylori* strains isolated from western countries is relatively higher than in *H. pylori* strains from Asian countries. Current confusing epidemiological reports will continue unless future sophisticated and molecular studies provide data on functional and complete *dupA* cluster in *H. pylori* infected individuals. This paper elucidates available knowledge concerning role of *dupA* in virulence of *H. pylori* after a decade of its discovery.

Key words: *Helicobacter pylori*; *dupA*; Bacterial virulence; Infection; Clinical outcome

© The Author(s) 2016. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: *Helicobacter pylori* (*H. pylori*) is one of the most common bacterial infections worldwide. Ten years ago, *virB4* homologue was identified as a new virulence factor, *dupA* "duodenal ulcer promoting gene A" by Lu and her colleagues. Nowadays, new genetical analysis using available sequences can help scientists to draw a better conclusion about *dupA* and its actual role in pathogenesis of *H. pylori*-related diseases. In this paper, we aim to draw a new shaped overview regarding *H. pylori* and its virulence factors with emphasis of *dupA*.
INTRODUCTION

Due to the difficulty in diagnosis and fastidious condition of an optimal growth, Helicobacter pylori (H. pylori) was an unculturable and thus forgotten microorganism for many years[1]. Following the clinical and histological observations in gastritis and duodenal ulcer patients, Marshall and Warren were able to isolate and characterize this bacterium around thirty-three years ago[2]. New era had been started after this groundbreaking discovery and revealed as a publication in Lancet written by those Australian scientists[11]. As most of other human bacteria, H. pylori is mainly acquired during childhood and persists for the whole life of the colonized individual if not treated efficiently[3]. From bacteriologic point of view, H. pylori is a rod-shaped, microaerophilic Gram-negative organism which colonizing more than half of the world population[4]. Bacterial colonization induces acute inflammation in the gastric mucosa, a clinical manifestation which can be followed by diverse gastroduodenal disorders, but noted that only a minority of infected individuals develop severe diseases include duodenal ulcer and gastric cancer[4-8]. Many virulence-associated genes of H. pylori, including outer inflammatory protein a (OipA), vacuolating cytotoxin gene a (vacA), cytotoxin-associated gene a (cagA) and blood-group antigen-binding adhesion (babA) are believed to have a critical role in determining the final clinical manifestation of the infection[9,10]. Therefore, various studies have conducted to discover new insights into the role of these proposed virulence factors in pathogenesis of digestive diseases[11-14]. None of the mentioned virulence factors have distinguished as discriminating factor in the development of peptic ulcer disease and gastric cancer. The main rationale for different diseases outcome observed among colonized individuals is still under debate, though scientists proposed different array of virulence biomarkers in this bacterium as regular answer to this question. In this paper, we aim to open a new window for defining a bacterium as regular answer to this question. In this study, we will focus on the cagA gene which is in the group of subgroup A1[10,11].

VIRULENCE OF H. PYLORI

The definition of a virulence factor is referring to the ability of a bacterium to induce and develop a disease with a spectrum of severity[15]. Strains possessing these virulence factors are isolated more frequently from patients with the more serious clinical manifestations. It is logic to consider that for increase the chance of survival within harsh gastric condition H. pylori needs such smart strategies to keep the colonization. However, virulence factors can induce more cell damage with infiltrate immune cells to the location and thus inflammation will be the high priority event in epithelial cells[16]. Due to the chronic characteristic of H. pylori infection, scientists should expect to have particular definition of virulence factors for this bacterium.

Virulence factors of H. pylori play an inevitable role in the development of gastroduodenal diseases through mucosal inflammation[16]. Basically, the criteria for being a virulence factor are (1) biologic rationale; (2) epidemiologic consistency; and (3) enough evidences for being linked with certain disease[17,18]. In order to define a virulence factor for each bacterium, it should pass many in vivo and in vitro experiments[19-21]. However, it is worthwhile to emphasize that only a limited number of proposed virulence factors had been successfully confirmed for H. pylori[22-24]. It had been well-documented that all H. pylori strains have several virulence factors such as flagella and urease enzyme since they have a critical role in bacterial colonization[4]. Urease enzyme (as cytoplasmic protein) is necessary to establish primary bacterial colonization in the gastric mucosa. H. pylori flagella provide sufficient ability to quickly penetrate the gastric mucosa layer to avoid exposure with harsh acid condition in the stomach[4]. In addition, some adhesines such as babA2, iceA and Sialic acid-binding adhesin (sabA) are mostly present in H. pylori strains, and these factors help the bacterium to attach properly to the epithelial cells and serve as a unique virulence factor[25,26]. Clinically, gastric cancer and duodenal ulcer are standing in quite opposite sides of H. pylori-related disease spectrum. It brings a big query in the mind about disease plausibility which only can be explained with existence of diverse, but, specific virulence factors in this microorganism.

cagA

cagA is located at the end of the cag pathogenicity island (PAI), which is a 39-kb region transferred horizontally from an unknown bacterial source. The “pathogenicity islands” include cagA encode proteins contributing in signal transduction cascades that result in cytoskeletal rearrangement via actin polymerization and host cell protein phosphorylation[4]. Virulent strains of H. pylori possess the cagPAI. Many of H. pylori strains from patients with peptic ulcer or gastric cancer carry cagA, whereas many of those strains from asymptptomatically infected persons lack this gene[4]. Currently, we identify two major types of H. pylori isolates: cagA gene-negative and cagA gene-positive strains. Counting a virulence factor for cagA needs another classification which is based on polymorphism in Glu-Pro-Ile-Tyr-Ala (EPIYA) motifs[4]. In cagA positive strains, there is a region contains the EPIYA motifs, which contains a tyrosine phosphorylation site[4]. Brief-
ly, two major types (Western and Eastern cagA) were determined according to this polymorphism. Though, we need more biologic rationale to be consistent with clinical evidences to present better information on how to interoperate this classic virulence factor in *H. pylori*.

vacA

To now, vacA is the second most extensively investigated virulence factor of *H. pylori*. Virtually all *H. pylori* strains have a functional vacA gene which codes for the secreted pore-forming protein vacA\(^{[22]}\). The main difference in bacteria carrying vacA is expression levels and disease severity which are associated with sequence variation in different domains of secreted protein\(^{[49]}\). There is a big gap on our knowledge regarding biologic function of this protein since still many contradictory findings are exist\(^{[23-26]}\). So we need more investigation to determine how to count on vacA as useful *H. pylori* virulence factor.

dupA

As first time, in 2005, it has been described that a new virulence factor which was located in the plasticity region of the *H. pylori* genome, PR or "plasticity region" where composed the dupA, has a relatively high rate of allelic diversity in *H. pylori* genomic DNA\(^{[27,28]}\). Whole genome analysis of 399 and 26695 revealed regions where G + C content was lower than rest of the *H. pylori* genome (34% against 40%)\(^{[29]}\). Later, since high variability was observed in this region, it termed as "plasticity region". Currently, we know that more than 60% of strain-specific genes of *H. pylori* are located in this area. In 399 and 26695 strains, two regions with lower G + C content and 45 kb and 69 kb long has been named as plasticity zones\(^{[40]}\). More than 50% of strain specific open reading frames (ORFs) are located in plasticity zone which are 46% and 48% unique genes from 26695 and 399, respectively. Interestingly, in comparison with 26695, the strain 399 has 33 more ORF in plasticity region (jhp914-jhp951)\(^{[30]}\). Lu *et al*\(^{[31]}\) investigated this region and reported a continuous gene covering jhp0917 and jhp0918 genes for first time which is a risk factor for duodenal ulcer diseases. Accordingly, they named the jhp0917-jhp0918 gene the dupA gene. To date, many of putative *H. pylori* genes have been suggested to be linked with increasing risk of digestive diseases, while none have been confirmed to be actually associated with unique and specific *H. pylori*-related disease such as gastric cancer or duodenal ulcer. Therefore, dupA can be named as first candidate to have achieved this distinction. Following the primary study by Lu *et al*\(^{[31]}\), a large number of controversial examinations has been published\(^{[32-42]}\). The global prevalence of dupA in patients with gastritis was reported around 45% which is highly differed among subjects with various nationality (31% in Asian and 64% in Western countries)\(^{[43,44]}\). Therefore, among most of Asian countries, a significant association between disease development and dupA status can be reported\(^{[38,45-54]}\). In two studies, first by Imagawa *et al*\(^{[37]}\) patients infected with dupA-positive strains showed higher risk to suffer from duodenal ulcer than dupA-negative patients. In second study, we have found that higher acid resistance of the dupA-positive strains can explain the adaptation of those strains to human stomach with high gastric acid output\(^{[35]}\). Indeed, Lu *et al*\(^{[31]}\) described that infections with *H. pylori* dupA-negative strains can increase the risk for duodenal ulcer; but it reduce the chance of occurrence for gastric\(^{[31]}\). Antral induction of IL-8 production is a main character of dupA pathogenesis causing predominant gastritis\(^{[36]}\). The mentioned mucosal inflammation and polymorphonuclear leukocytes (PMN) infiltration can lead to the occurrence of duodenal ulcer\(^{[31]}\). In a systematic review by Shiota *et al*\(^{[35]}\) with more than 2466 patients, they confirmed an association between certain clinical outcomes and the dupA status. Moreover, presence of an extra 600 bp in dupA ORF in *H. pylori* strains such as g27 showed that the length of the dupA is differ among various strain, mostly declared that dupA has two main genotypes accordingly, (long and short type)\(^{[35,38,55]}\). Unfortunately, most of studies in past did not consider this two types of dupA and thus the final results by them might be cautiously useful. Another interesting topics about dupA is existence of several mutations in gene length\(^{[38,56]}\). At different positions, these mutations can create a premature stop codon with considerable effects on its produced proteins function\(^{[56]}\). Strains isolated from patients with duodenal ulcer mostly carrying dupA without stop codon in comparison with other diseases types\(^{[27]}\). Notwithstanding, without frameshift mutation dupA which called intact long-type dupA rather short-type dupA is highly associated with gastric cancer\(^{[57]}\). It has been extensively reported that there is an association between increased expression levels of IL-8 and dupA in the gastric mucosa of *H. pylori*-colonized individuals. As expected, many reports are indicating on gastric mucosal inflammatory cell infiltration was significantly higher in patients with dupA-positive *H. pylori* than in patients with dupA-negative strain\(^{[56,57]}\). As such, current data suggesting that only intact long type dupA can produce DupA protein and also serve as real virulence factor for *H. pylori* strains. In brief, current knowledge about dupA positive strain and its subsequent diseases vulnerability insist on significant associations between the dupA gene and an increased risk for duodenal ulceration rather gastric cancer. As final remarks about dupA, we can mention to these sentences as follow: (1) Additional tests of the dupA DNA sequence are necessary to determine actual importance of intact dupA; also in level of proteins with immunoblotting techniques; (2) Similar to the caga, it has been asserted that dupA is forming a Type 4 secretion system (T4SS) as a full gene cluster. Noted that virB4 and dupA as homologous genes together.
are the major constituents of T4SS where located in plasticity region[52]; (3) Jung et al[58] recently examined South American population from Colombia to see association between dupA and virB gene homologs and clinical outcomes. In total, we concluded that intact dupA without shift mutation can serve as actual virulence factor with consistent results worldwide. It is no doubt that evaluation of various genes located in plasticity region are required and new data in close future can enrich our knowledge about this mysterious region of H. pylori genome; and (4) Broadly defined, virulence of H. pylori play an essential role in the development of severe gastroduodenal diseases such as duodenal ulcer through mucosal inflammation. With this regard, dupA as one of important risk factor was in focus of many researches in last years. The discrepancy observed among the epidemiologic studies can be explained by using various methods to determine existence of dupA, variation in ORF and different population’s bias. Thus, despite advances in our understanding of the development of H. pylori-related diseases, further work is required to clarify the roles of H. pylori virulence factors.

CONCLUSION

H. pylori plays a critical role in the development of severe digestive diseases; though, the main virulence determinant acting in this field are still not completely defined. Now the question is to find the determining item to represent this interesting disease pattern. For sure, we admitted that H. pylori is involved in pathogenesis of both gastric cancer and duodenal ulcer while they are in quite opposite side of digestive diseases, again, how we can still accept a crucial role for H. pylori in these gastroduodenal diseases? Many studies had been performed to elucidate actual biologic role of dupA in development of severe gastroduodenal diseases such as gastric cancer[48-49]. The observed discrepancy of dupA link with disease outcomes might be associate with the plasticity region of H. pylori or the limitation of PCR to detect the various forms of dupA gene; however, in order to draw a better conclusion further experiments are required[58,59]. Interestingly, the presence of dupA was significantly associated with H. pylori eradication failure with no biologic explanation[50-52]. In conclusion, it sounds that rather than promoting gastric cancer or duodenal ulceration in all populations, dupA is an effective factor for some of populations. Because of microarray analysis as new technology many new genes can be proposed as novel virulence biomarker for H. pylori.

REFERENCES

1. Marshall BJ, Warren JR. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1984; 1: 1311-1315 [PMID: 6145023]
2. Mégraud F. A humble bacterium sweeps this year’s Nobel Prize.

Abadi AT, Musters KG. Management of Helicobacter pylori infections. BMC Gastroenterol 2016; 16: 94 [PMID: 27520775 DOI: 10.1186/s12876-016-0486-2]

Yamaoka Y. Mechanisms of disease: Helicobacter pylori virulence factors. Nat Rev Gastroenterol Hepatol 2010; 7: 629-641 [PMID: 20938460 DOI: 10.1038/nrgastro.2010.154]

Talebi Bezmin Abadi A. Therapy of Helicobacter pylori infection: present medley and future prospective. Biomed Res Int 2014; 2014: 124607

Karlsön A, Ryberg A, Nosouhi Dehnoei M, Borch K, Monstein HJ. Variation in number of cagA EPIYA-C phosphorylation motifs between cultured Helicobacter pylori and biopsy strain DNA. Infect Genet Ecol 2012; 12: 175-179 [PMID: 22085823 DOI: 10.1016/j.meegid.2011.10.025]

Talebi Bezmin Abadi A. Vaccine against Helicobacter pylori: Inevitable approach. World J Gastroenterol 2016; 22: 3150-3157 [PMID: 27003991 DOI: 10.3748/wjg.v22.i1.3150]

Abadi AT, Lee YY. Helicobacter pylori vacA as marker for gastric cancer and gastroduodenal diseases: one but not the only factor. J Clin Microbiol 2014; 52: 4451 [PMID: 25399000 DOI: 10.1128/JCM.02640-14]

Kolaylı F, Karadenizli A, Bingöl R, Schneider T, Kist M. [Differences of vacA alleles and cagA gene positivity of Helicobacter pylori strains isolated from two different countries: Turkey and Germany]. Mikrobiyol Bul 2012; 46: 332-334 [PMID: 22639323]

Abadi AT. BabA2 in Helicobacter pylori and Gastric Cancer. Front Med (Lausanne) 2016; 3: 36 [PMID: 27597945 DOI: 10.3389/fmed.2016.00036]

Talebi Bezmin Abadi A, Talebi Bezmin Abadi AT, Yamaoka Y, Kikuchi S, el-Zimaity HM, Gutierrez O, Osato MS, Graham DY. Importance of Helicobacter pylori oipA in clinical presentation, gastric inflammation, and mucosal interleukin 8 production. Gastroenterology 2002; 123: 414-424 [PMID: 12457935]

Abadi AT, Lee YY. Helicobacter pylori vacA as marker for gastric cancer and gastroduodenal diseases: one but not the only factor. J Clin Microbiol 2014; 52: 4451 [PMID: 25399000 DOI: 10.1128/JCM.02640-14]

Kolaylı F, Karadenizli A, Bingöl R, Schneider T, Kist M. [Differences of vacA alleles and cagA gene positivity of Helicobacter pylori strains isolated from two different countries: Turkey and Germany]. Mikrobiyol Bul 2012; 46: 332-334 [PMID: 22639323]

Graham DY, Yamaoka Y. Disease-specific Helicobacter pylori virulence factors: the unfulfilled promise. Helicobacter 2000; 5 Suppl 1: S3-59; discussion S27-S31 [PMID: 10828748]

Talebi Bezmin Abadi A, Ierardi E, Lee J. Why do we still have Helicobacter pylori in our Stomachs? Malays J Med Sci 2015; 22: 70-75

Abdullah SM, Hussein NR, Salih AM, Merza MA, Goreal AA, Odeesh OY, Majed HS, Assaf MA, Hawrani K. Infection with Helicobacter pylori strains carrying babA2 and cagA is associated with an increased risk of peptic ulcer disease development in Iraq. Arab J Gastroenterol 2012; 13: 166-169 [PMID: 23432983 DOI: 10.1016/j.ajg.2012.12.001]

Graham DY, Yamaoka Y. Disease-specific Helicobacter pylori virulence factors: the unfulfilled promise. Helicobacter 2000; 5 Suppl 1: S3-59; discussion S27-S31 [PMID: 10828748]

Talebi Bezmin Abadi A. BabA2 in Helicobacter pylori infection in the pathogenesis of duodenal ulcer and gastric cancer: a model. Gastroenterology 1997; 113: 1983-1991 [PMID: 9394739]

Yamaoka Y. Pathogenesis of Helicobacter pylori-Related Gastroduodenal Diseases from Molecular Epidemiological Studies. Gastroenterol Res Pract 2012; 2012: 371503 [PMID: 22829807 DOI: 10.1155/2012/371503]

Talebi Bezmin Abadi A, Talebi Bezmin Abadi AT, Yamaoka Y, Kikuchi S, el-Zimaity HM, Gutierrez O, Osato MS, Graham DY. Importance of Helicobacter pylori oipA in clinical presentation, gastric inflammation, and mucosal interleukin 8 production. Gastroenterology 2002; 123: 414-424 [PMID: 12457935]

Abadi AT, Lee YY. Helicobacter pylori vacA as marker for gastric cancer and gastroduodenal diseases: one but not the only factor. J Clin Microbiol 2014; 52: 4451 [PMID: 25399000 DOI: 10.1128/JCM.02640-14]
Helicobacter pylori strains lacking dupA is associated with an increased risk of gastric ulcer and gastric cancer development. *J Med Microbiol* 2012; 61: 23-30 [PMID: 21903829 DOI: 10.1099/jmm.0.02705-0]

Hussein NR, Tuncel IE. Helicobacter pylori dupA and smoking are associated with increased levels of interleukin-8 in gastric mucosa in Iraq, *Hum Pathol* 2015; 46: 929-930 [PMID: 25791584]

Imagawa S, Ito M, Yoshihara M, Eguchi H, Tanaka S, Chayama K. Helicobacter pylori dupA and gastric acid secretion are negatively associated with gastric cancer development. *J Med Microbiol* 2010; 59: 1484-1489 [PMID: 20823937 DOI: 10.1099/jmm.0.021816-0]

Jung SW, Sugimoto M, Shiota S, Graham DY, Yamaoka Y. The intact dupA Cluster is a more reliable Helicobacter pylori virulence marker than dupA alone. *Infect Immun* 2012; 80: 381-387 [PMID: 22038914 DOI: 10.1128/IAI.05472-11]

Nguyen LT, Uchida T, Tsukamoto Y, Kuroda A, Okimoto T, Kodama M, Murakami K, Fujioka T, Moriyama M. Helicobacter pylori dupA gene is not associated with clinical outcomes in the Japanese population. *Clin Microbiol Infect* 2010; 16: 1264-1269 [PMID: 19832706 DOI: 10.1111/j.1469-0691.2009.03081.x]

Salih AM, Gorce R, Hussein NR, Abdulllah SM, Hawrami K, Assafi M. The distribution of cagA and dupA genes in Helicobacter pylori strains in Kurdistan region, northern Iraq. *Ann Saudi Med* 2013; 33: 290-293 [PMID: 23793434 DOI: 10.5144/0256-4947.2013.290]

Wang MY, Shao C, Li J, Yang YC, Wang SB, Hao JL, Wu CM, Gao AY, Shao SH. Helicobacter pylori with the Intact dupA Cluster is more Virulent than the Strains with the Incomplete dupA Cluster. *Curr Microbiol* 2015; 71: 16-23 [PMID: 25847580 DOI: 10.1007/s00284-015-0812-z]

Zhang Z, Zheng Q, Chen X, Xiao S, Liu W, Lu H. The Helicobacter pylori duodenal ulcer promoting gene, dupA in China. *BMC Gastroenterol* 2008; 8: 49 [PMID: 18950522 DOI: 10.1186/1471-2431-8-49]

Hussein NR. The association of dupA and Helicobacter pylori-related gastroduodenal diseases. *Eur J Clin Microbiol Infect Dis* 2010; 29: 817-821 [PMID: 20419465 DOI: 10.1007/s10096-010-0933-z]

Hussein NR, Mohammad M, Talebkhan Y, Doraghi M, Lettley DP, Muhammad MK, Argent RH, Atherton JC. Differences in virulence markers between Helicobacter pylori strains from Iraq and those from Iran: potential importance of regional differences in H. pylori-associated disease. *J Clin Microbiol* 2008; 46: 1774-1779 [PMID: 18355934 DOI: 10.1128/JCM.01737-07]

Arachi HS, Kalva V, Lal B, Bhatia V, Baba CS, Chakravarty S, Rohatgi S, Sarma PM, Misra V, Das B, Ahuja V. Prevalence of duodenal ulcer-promoting gene (dupA) of Helicobacter pylori in patients with duodenal ulcer in North Indian population. *Helicobacter* 2007; 12: 591-597 [PMID: 18001398 DOI: 10.1111/j.1222-1758.2007.00557.x]

Argent RH, Burette A, Miedje Dieyi VY, Atherton JC. The presence of dupA in Helicobacter pylori is not significantly associated with duodenal ulceration in Belgium, South Africa, China, or North America. *Clin Infect Dis* 2007; 45: 1204-1206 [PMID: 17918084 DOI: 10.1086/522271]

Douraghi M, Mohammad M, Oghalaeia A, Abdirad A, Mohagheghi MA, Hossein ME, Zenati H, Ghasemi A, Esmaeili M, Mohajerani N. dupA as a risk determinant in Helicobacter pylori infection. *J Med Microbiol* 2008; 57: 554-562 [PMID: 18436587 DOI: 10.1099/jmm.0.02777-0]

Haddadi MH, Bazzargani A, Khashe R, Fattahi MR, Bagheri Lankarani K, Moimi M, Rokni Hosseini SM. Different distribution of Helicobacter pylori EPIYA-C cagA motifs and dupA genes in the upper gastrointestinal diseases and correlation with clinical outcomes in iranian patients. *Gastroenterol Hepatol Bed Bench* 2015; 8: S37-S46 [PMID: 26171136]

Matteo MJ, Armitano RI, Granados G, Wonaga AD, Sánchez C, Olimos M, Catalano M. Helicobacter pylori cagA, vacA and dupA genetic diversity in individual hosts. *J Med Microbiol* 2010; 59: 89-95 [PMID: 19643933 DOI: 10.1099/jmm.0.011684-0]
Parzecka M, Szaflikas-POPawska A, Gasiorowska J, Gorzkiewicz M, Grzybowski T. [The prevalence of dupA (duodenal ulcer-promoting gene) of Helicobacter pylori in children and adolescents-own observation]. Pol Merkur Lekarski 2013; 34: 277-280 [PMID: 23894779]

Queiroz DM, Moura SB, Rocha AM, Costa RF, Anacleto C, Rocha GA. The genotype of the Brazilian dupA-positive Helicobacter pylori strains is dupA1. J Infect Dis 2011; 203: 1033-1034 [PMID: 21402555 DOI: 10.1093/infdis/jiq147]

Wang MY, Chen C, Shao C, Wang AC, Yang YC, Yuan XY, Shao SH. Intact long-type DupA protein in Helicobacter pylori is an ATPase involved in multifunctional biological activities. Microb Pathog 2015; 81: 53-59 [PMID: 25745877 DOI: 10.1016/j.micpath.2015.03.002]

Osman HA, Hasan H, Suppian R, Hassan S, Andee DZ, Abdul Majid N, Zilfalil BA. Prevalence of Helicobacter pylori cagA, babA2, and dupA genotypes and correlation with clinical outcome in Malaysian patients with dyspepsia. Turk J Med Sci 2015; 45: 940-946 [PMID: 26422871]

Miftahussurur M, Syam AF, Makmun D, Nusi IA, Zein LH, Zulkhairi F, Uswan WB, Simanjuntak D, Uchida T, Adi P, Utari AP, Rezkitha YA, Nasronudin Y. Helicobacter pylori virulence genes in the five largest islands of Indonesia. Gut Pathog 2015; 7: 26 [PMID: 26442711 DOI: 10.1186/s13099-015-0072-2]}

Shiota S, Matsunari O, Watada M, Hanada K, Yamaoka Y. Systematic review and meta-analysis: the relationship between the Helicobacter pylori dupA gene and clinical outcomes. Gut Pathog 2010; 2: 13 [PMID: 21040520 DOI: 10.1186/1757-4749-2-13]

Queiroz DM, Rocha GA, Rocha AM, Moura SB, Saraiwa JE, Gomes LJ, Soares TF, Melo FF, Cabral MM, Oliveira CA. dupA polymorphisms and risk of Helicobacter pylori-associated diseases. Int J Med Microbiol 2011; 301: 225-228 [PMID: 21050811 DOI: 10.1016/j.ijmm.2010.08.019]

Takahashi A, Shiota S, Matsunari O, Watada M, Suzuki R, Nakachi S, Kinjo N, Kinjo F, Yamaoka Y. Intact long-type dupA as a marker for gastroduodenal diseases in Okinawan subpopulation. Japan. Helicobacter 2013; 18: 66-72 [PMID: 23067336 DOI: 10.1111/j.1523-5378.2012.00994.x]

Abadi AT, Loffeld RJ, Constancia AC, Wagenaar JA, Kusters JG. Detection of the Helicobacter pylori dupA gene is strongly affected by the PCR design. J Microbiol Methods 2014; 106: 55-56 [PMID: 25128081 DOI: 10.1016/j.mimet.2014.07.027]

Alam J, Ghosh P, Ganguly M, Sarkar A, De R, Mukhopadhyay AK. Association of intact dupA (dupA1) rather than dupA1 cluster with duodenal ulcer in Indian population. Gut Pathog 2015; 7: 9 [PMID: 25829953 DOI: 10.1186/s13099-015-0056-2]

Abadi AT, Loffeld RJ, Constancia AC, Wagenaar JA, Kusters JG. Detection of the Helicobacter pylori dupA gene is strongly affected by the PCR design. J Microbiol Methods 2014; 106: 55-56 [PMID: 25128081 DOI: 10.1016/j.mimet.2014.07.027]

Alam J, Ghosh P, Ganguly M, Sarkar A, De R, Mukhopadhyay AK. Association of intact dupA (dupA1) rather than dupA1 cluster with duodenal ulcer in Indian population. Gut Pathog 2015; 7: 9 [PMID: 25829953 DOI: 10.1186/s13099-015-0056-2]
