Níveis de MCP-1 estão Associados com Remodelamento Cardíaco mas não com Hipertensão Resistente

MCP-1 Levels are Associated with Cardiac Remodeling but not with Resistant Hypertension

Alessandra Mileni Versuti Ritter, Ana Paula Cabral de Faria, Andrea Sabbatini, Nathalia Batista Corrêa, Veridiana Brunelli, Rodrigo Modolo, Heitor Moreno

Universidade Estadual de Campinas (UNICAMP), Campinas, SP – Brasil

Resumo

Fundamentos: A hipertensão arterial é um processo crônico de baixo grau inflamatório, associado com liberação de citocinas e desenvolvimento de lesão em órgãos-alvo. A desregulação dos níveis de proteína quimiotática de monócitos-1 (MCP-1) tem sido associada com elevação da pressão arterial e complicações cardiovasculares; porém, os mecanismos envolvidos são complexos e ainda não foram inteiramente elucidados.

Objetivo: O objetivo deste estudo foi comparar os níveis de MCP-1 em pacientes com hipertensão resistente (HR) versus pacientes com hipertensão de grau leve a moderado (HAS) e sua associação com a presença ou ausência de hipertrofia ventricular esquerda (HVE) em todos os indivíduos hipertensos.

Métodos: Foram incluídos 256 indivíduos hipertensos: 120 com HR e 136 com HAS. Foi investigada a relação entre os níveis circulantes de MCP-1 e pressão arterial, dados bioquímicos, perfil hematológico e dano cardíaco nos grupos HR e HAS. Os níveis plasmáticos de MCP-1 foram medidos por ELISA e a HVE foi avaliada por ecocardiografia.

Resultados: Não encontramos diferença nos níveis de MCP-1 entre indivíduos com HR e HAS. Por outro lado, encontramos níveis mais baixos de MCP-1 em pacientes com HVE (105 pg/mL [100 – 260 pg/mL] versus 136 pg/mL [100 – 200 pg/mL], respectivamente, p = 0,005) em comparação a pacientes sem HVE. Um modelo de regressão logística ajustado para o índice de massa corporal (IMC), idade, raça, níveis de aldosterona e presença de diabetes e HR mostrou que os níveis médianos de MCP-1 (2,55 pg/mL [1,22 – 5,2 pg/mL], p = 0,01) estiveram independentemente associados com HVE em toda a população de hipertensos.

Conclusão: Como os níveis de MCP-1 foram semelhantes em indivíduos tanto com HR quanto HAS e estiveram diminuídos em pacientes hipertensos com HVE, nosso estudo sugere uma possível redução nos níveis de MCP-1 em indivíduos hipertensos com HVE, indepente do grau da hipertensão. (Arq Bras Cardiol. 2017; 108(4):331-338)

Palavras-chave: Hipertensão; Citocinas; Proteínas Quimioatraentes de Monócitos; Hipertrofia Ventricular Esquerda; Remodelamento Cardiaco.

Abstract

Background: Hypertension is a chronic, low-grade inflammation process associated with the release of cytokines and development of target organ damage. Deregulated monocyte chemoattractant protein-1 (MCP-1) levels have been associated with high blood pressure and cardiovascular complications; however, the mechanisms involved are complex and not fully understood.

Objective: This study aimed to compare the levels of MCP-1 in patients with resistant (RH) versus mild-to-moderate (HTN) hypertension and their association with the presence or absence of left ventricular hypertrophy (LVH) in all hypertensive subjects.

Methods: We enrolled 256 hypertensive subjects: 120 RH and 136 HTN, investigating the relationship between circulating MCP-1 levels and blood pressure, biochemical data, hematologic profile, and cardiac damage within the RH and HTN groups. Plasma MCP-1 levels were measured by ELISA and LVH was assessed by echocardiography.

Results: We found no difference in MCP-1 levels between RH and HTN subjects. On the other hand, we encountered lower MCP-1 levels in patients with LVH (105 pg/mL [100 – 260 pg/mL] versus 136 pg/mL [100 – 200 pg/mL], p = 0.005, respectively) compared with those without LVH. A logistic regression model adjusted for body mass index (BMI), age, race, aldosterone levels, and presence of diabetes and RH demonstrated that median levels of MCP-1 (2.55 pg/mL [1.22 – 5.2 pg/mL], p = 0.01) were independently associated with LVH in the entire hypertensive population.

Conclusion: Since MCP-1 levels were similar in both RH and HTN subjects and decreased in hypertensive patients with existing LVH, our study suggests a possible downregulation in MCP-1 levels in hypertensive individuals with LVH, regardless of hypertension strata. (Arq Bras Cardiol. 2017; 108(4):331-338)

Keywords: Refractory Hypertension; Cytokines; Monocyte Chemoattractant Proteins; Left Ventricular Hypertrophy.
Introdução

A hipertensão arterial resistente (HR) é definida como uma condição na qual os pacientes apresentam (i) pressão arterial (PA) descontrolada (≥ 140/90 mmHg) apesar do uso de doses máximas recomendadas ou toleradas de três ou mais medicamentos anti-hipertensivos, ou (ii) PA controlada com uso de pelo menos quatro medicamentos.1,2 A alta prevalência de lesões em órgãos-alvo (LOA), como a hiperтроfia ventricular esquerda (HVE), é mais elevada em pacientes com HR em comparação àquelas com hipertensão arterial leve/moderada (HAS)1,3 e é considerada preditora de eventos cardiovasculares futuros nessa população específica de HR.4

Muitas linhas de evidência estabeleceram que a hipertensão arterial é um processo crônico de inflamação de baixo grau que desempenha um papel fundamental no desenvolvimento e manutenção de LOA.4,5 Vários mediadores inflamatórios estão aumentados em indivíduos hipertensos,6 incluindo a proteína quimiotática de monócitos-1 (MCP-1).7 A MCP-1, também conhecida como CCL2, pode ser produzida por diferentes células e é responsável pela migração de monócitos e macrófagos para o tecido,8 exacerbando o dano local.

Modelos experimentais de hipertensão mostraram que a infiltração de células inflamatórias (macrófagos) nas paredes vasculares está fortemente relacionada a um aumento da PA9 e alterações cardiovasculares.10,11 Um estudo clínico sugeriu que os níveis de MCP-1 podem variar de acordo com o grau de hipertensão,5 indicando uma biomarcador dependente da fase da doença.

Embora alguns autores tenham demonstrado que o aumento dos níveis de MCP-1/CCL2 e macrófagos no coração contribui para o dano cardíaco,13,14 outros apontam que os macrófagos têm um efeito cardioprotetor.15 De fato, um estudo mostrou que a depleção de macrófagos acelera o desenvolvimento de cardiomiopatia em ratos hipertensos.15 Este efeito poderia ser explicado por uma capacidade de manutenção da homeostase cardíaca durante algumas doenças cardíacas.14

A apesar destes achados, a relação da MCP-1 com a HR e o dano cardíaco no cenário clínico ainda não está estabelecida. Portanto, este estudo foi desenvolvido para avaliar os níveis de MCP-1 em indivíduos com HR em comparação a indivíduos com HAS e sua associação com HVE em ambos os grupos de hipertensos.

Métodos

Sujeitos do estudo

Uma amostra de conveniência de 256 pacientes hipertensos do Ambulatório de Hipertensão Resistente da Universidade de Campinas (Campinas, Brasil) foi incluída neste estudo transversal.

Os pacientes foram diagnosticados com HR após um protocolo de 6 meses para excluir pseudoresistência (hipertensão do avenental branco e má adesão aos medicamentos) com monitorização ambulatorial da PA (MAPA), questionário de Morisky e contagem de pílulas. A hipertensão secundária (estenose da artéria renal, feocromocitoma e hiperaldosteronismo primário) também foi excluída. Estes indivíduos foram incluídos no grupo com HR. Além disso, os pacientes com PA controlada em uso de três ou menos medicamentos anti-hipertensivos, ou PA ainda não controlada com uso de dois ou menos destes medicamentos foram classificados como tendo HAS e também incluídos no estudo.

Os pacientes foram classificados em dois grupos: HR (n = 120) e HAS (n = 136). Adicionalmente, ambos os grupos HR e HAS foram combinados para avaliação dos níveis de MCP-1 de acordo com (1) a presença ou ausência de HVE (115 g/m² para homens e 95 g/m² para as mulheres)16 e (2) gravidade da HVE, considerando os pacientes sem HVE como nível 0; pacientes com HVE e índice de massa do ventrículo esquerdo (IMVE) < mediana (121 g/m²) como nível 1 e aqueles com HVE e IMVE ≥ mediana (121 g/m²) como nível 2.

Todos os requisitos éticos para estudos realizados em seres humanos foram rigorosamente seguidos. O estudo foi aprovado pelo Comitê de Ética em Pesquisa da Faculdade de Ciências Médicas, Universidade de Campinas (São Paulo, Brasil) (aprovação nº 1.112.881/2015) e foi conduzido em conformidade com a Declaração de Helsinki. Todos os participantes assinaram um termo de consentimento livre e esclarecido antes da inclusão no estudo.

Medidas da pressão arterial de consultório

Um profissional da saúde treinado realizou a medida da PA de consultório pelo menos três vezes com utilização de um esfigmomanômetro digital certificado (HEM-907 XL OMRON Healthcare Inc., Bannockburn, IL, EUA), de acordo com as diretrizes de 2013 da Sociedade Europeia de Hipertensão (ESH).17 A média de duas ou três medidas consecutivas foi utilizada quando a diferença entre as medidas foi inferior a 5 mmHg.

Monitorização ambulatorial da pressão arterial

A MAPA de 24 horas foi realizada com um aparelho oscilométrico automático (Spacelabs 90207; Spacelabs Inc.). As medidas foram obtidas a cada 20 minutos durante todo o período de 24 horas. Os sujeitos foram instruídos a manter suas atividades diárias normais, evitando excesso de atividade física, e a tomar nota do seu período de sono em um diário pessoal. Foi calculada a média da PA durante a vigília e o sono.

Eccocardiografia

Especialistas experientes cegos em relação aos dados clínicos dos pacientes mediram os parâmetros eccocardiográficos (Siemens Acuson CV70, Munique, Baviera, Alemanha) com uso de eccocardiografia bidimensional orientada pelo modo M. O diâmetro diástolico e sistólico do ventrículo esquerdo (VE) e a espessura da parede do septo interventricular e da parede posterior foram medidos de acordo com a onda QRS do eletrocardiograma. A massa do VE foi calculada pela fórmula recomendada pela Sociedade Americana de Eccocardiografia (American Society of Echocardiography, ASE)18 e o IMVE foi calculado dividindo a massa do VE pela superfície corporal. Um IMVE superior a 115 g/m² para homens e 95 g/m² para mulheres caracterizou a presença de HVE.19
Coleta de soro e avaliações laboratoriais

Amostras de sangue foram retiradas da veia antecubital através de punção atraumática após 8 horas de jejum. Os níveis plasmáticos de MCP-1 foram medidos através de ensaio de imunobssorção por ligação enzimática (ELISA; R&D Systems, Inc., Minneapolis, MN, EUA), de acordo com instruções do fabricante. Radioimunoensaio (Immunotech SAS, Marselha, França) foi utilizado para medir o nível de aldosterona plasmática de acordo com as instruções do fabricante. A razão neutrófilo/linfócito (RNLI) foi calculada pela contagem absoluta de neutrófilos dividida pela contagem absoluta de linfócitos. Além disso, foram medidos também os níveis séricos de colesterol total, colesterol ligado à lipoproteína de baixa e alta densidade, triglicerídeos, glicose e creatinina. O clearance de creatinina (mL/min/1,73 m²) foi medido em amostra de urina coletada durante 24 horas.

Análise estatística

Os dados descritivos estão apresentados como média ± desvio padrão (DP) para dados paramétricos ou mediana (intervalo interquartil [IIQ]) para dados não paramétricos. A distribuição dos dados foi avaliada pelo teste de Shapiro-Wilk. Os testes t de Student não pareado ou o teste de Mann-Whitney, respectivamente, foram usados para grupos de três, de acordo com a distribuição de dados. As variáveis categóricas estão apresentadas como frequências e/ou percentagens e foram comparadas pelo teste de Fisher. A correlação de Spearman testou a associação de dados não paramétricos. Também realizamos regressão logística múltipla para a presença de HVE ajustada para a idade, níveis de aldosterona, índice de massa corporal (IMC), raça, presença de diabetes, presença de HR e níveis medianos de MCP-1 (categorizados pelo valor mediano < 125 pg/mL) em indivíduos hipertensos. O nível de significância estatística considerado foi de < 0,05.

As análises foram realizadas utilizando o programa SigmaPlot (Systat Software, Inc, v.12, Chicago, IL, EUA).

Resultados

A Tabela 1 mostra as características gerais, dados bioquímicos e perfil hematólogicos dos 256 sujeitos hipertensos. Encontramos uma percentagem maior de indivíduos diabéticos e da raça negra no grupo HR quando comparado com o grupo HAS. Além disso, pacientes com HR mostraram PA sistólica (PAS) medida em consultório e níveis de aldosterona mais elevados, uma maior incidência de HVE, sendo que os níveis de MCP-1 estiveram inversamente associados com a presença de HVE após ajustes para IMC, idade, raça, nível de aldosterona e a presença de diabetes e HR (Tabela 3).

Discussão

O principal achado deste estudo foi a associação entre os níveis de MCP-1 e a presença de HVE em indivíduos hipertensos, especialmente naqueles com HVE avançada, independentemente de resistência ao tratamento anti-hipertensivo.

Fortes evidências apoiam o papel do processo inflamatório na hipertensão.16 Tanto os pacientes com HR quanto aqueles com HAS apresentam níveis mais elevados de citocinas inflamatórias, que por sua vez estão relacionados com LOA. A MCP-1 é uma citocina proinflamatória com potente atividade quimiotática para monócitos e macrófagos. O recrutamento e ativação dos monócitos em modelos de ratos parecem estar envolvidos com a hipertensão e o processo de LOA através do aumento do estresse oxidativo na parede vascular. Além disso, camundongos com ausência de receptor para a MCP-1 não apresentam fibrose cardíaca ou acúmulo de fibroblastos no coração após infusão de angiotensina, sugerindo que a MCP-1 e seu receptor possam ter um papel importante no dano cardíaco.

Em relação aos níveis de MCP-1, os dados são limitados e conflitantes.11,22 Um estudo mostrou níveis mais elevados de MCP-1 em pacientes com hipertensão arterial sem tratamento em comparação a controles e pacientes com hipertensão sistólica isolada.23 Mirhafez et al. propuseram que as citocinas são dependentes do estágio da hipertensão. Fato, estes autores encontraram níveis de MCP-1 semelhantes entre indivíduos normotensos, com pré-hipertensão e hipertensão estágio 2, mas níveis mais
Tabela 1 – Características gerais dos indivíduos com hipertensão resistente e hipertensão leve a moderada

	HAS (n = 136)	HR (n = 120)	Valor de p
Dados Clínicos			
Idade (anos)	65 ± 10	60 ± 11	< 0,001
Mulheres (%)	62	67	0,50
Raça negra (%)	13	44	< 0,001
Diabetes (%)	38	51	0,05
PAS de consultório (mmHg)	139 (131 – 148)	147 (134 – 160)	< 0,001
PAD de consultório (mmHg)	81 (76 – 86)	83 (78 – 92)	0,09
PAS MAPA (mmHg)	127 (118 – 135)	130 (117 – 143)	0,18
PAD MAPA (mmHg)	76 (70 – 81)	77 (70 – 83)	0,34
IMVE (g/m²)	100 (87 – 119)	113 (95 – 142)	< 0,001
Dados Bioquímicos			
Proteína C reativa (mg/dL)	0,3 (0,2 – 0,6)	0,3 (0,2 – 0,6)	0,72
Colesterol (mg/dL)	165 (140 – 185)	181 (151 – 209)	0,003
HDL (mg/dL)	49 (42 – 57)	46 (38 – 54)	0,02
LDL (mg/dL)	87 (67 – 107)	98 (79 – 127)	0,002
Triglicerídeos (mg/dL)	108 (80 – 151)	129 (93 – 185)	0,019
HbA1c (%)	6,0 (5,8 – 6,5)	6,3 (6,0 – 7,8)	0,007
Glicose (mg/dL)	97 (90 – 107)	101 (89 – 132)	0,12
Creatinina (mg/dL)	0,94 (0,8 – 1,1)	0,97 (0,8 – 1,2)	0,15
Clearance de creatinina (mL/min/1,73 m²)	65 (28 – 93)	81 (62 – 98)	0,05
Aldosterona (ng/dL)	88 (43 – 115)	98 (60 – 179)	< 0,001
Perfil Hematológico			
Leucócitos (mm³)	6,6 (6 – 8)	7,4 (6 – 8)	0,03
Monócitos %	8 (7 – 9)	8 (6 – 9)	0,79
Linfócitos %	30 ± 7	30 ± 8	0,85
Basófilos %	0,4 (0,2 – 0,5)	0,4 (0,3 – 0,6)	0,41
Eosinófilos %	3 (2 – 4)	2 (1 – 3)	0,43
Neutrofilos %	59 ± 7	58 ± 10	0,60
RNL	2 (1,8 – 2,3)	2 (1,4 – 2,6)	0,80

HAS: indivíduos com hipertensão leve a moderada; HR: indivíduos com hipertensão resistente; PAS: pressão arterial sistólica; PAD: pressão arterial diastólica; MAPA: monitorização ambulatorial da pressão arterial; IMVE: índice de massa do ventrículo esquerdo; HDL: lipoproteína de alta densidade; LDL: lipoproteína de baixa densidade; HbA1c: hemoglobina glicosilada; RNL razão neutrofilo/linfócito. As variáveis contínuas estão representadas como média ± desvio padrão (DP) para dados paramétricos ou mediana (1ª, 3ª quartis) para dados não paramétricos. As variáveis categóricas estão representadas em porcentagens. Os testes t de Student e de Mann-Whitney foram realizados de acordo com a distribuição dos dados e o teste exato de Fisher foi utilizado para comparar variáveis categóricas.

Elevados de MCP-1 em indivíduos com hipertensão estágio 1 em comparação com os seus controles. Por outro lado, encontramos níveis semelhantes de MCP-1 entre indivíduos com HR e HAS, apesar das diferenças de PAS entre os grupos. Além disso, uma análise de regressão logística múltipla mostrou que não houve influência dos níveis de PA na MCP-1 circulante, após ajuste para potenciais confundidores (dados não mostrados).

É bem descrito que indivíduos com HR representam um grupo com fenótipo desfavorável em comparação com indivíduos com HAS. Com isto, esperava-se que o subgrupo com HR tivesse níveis elevados de aldosterona, presença de HVE e um número maior de indivíduos da raça negra, uma vez que estas são características estreitamente relacionadas com a presença de HR. No entanto, não existem dados na literatura mostrando uma influência destes parâmetros sobre níveis de MCP-1.

Da mesma maneira que os níveis semelhantes de MCP-1 em nossos grupos, não encontramos diferença nos níveis de proteína C reativa e número de monócitos entre indivíduos com HR e HAS, mostrando que o estado inflamatório possa ser semelhante em ambos os grupos, corroborando outros
Figura 1 – Níveis plasmáticos de MCP-1 em indivíduos com hipertensão resistente (HR, n = 119, 153 ± 93 pg/mL) e hipertensão leve a moderada (HAS, n = 114, 178 ± 120 pg/mL, p = 0,47). Os valores estão expressos como média ± desvio padrão (DP).

Tabela 2 – Uso de medicamento por indivíduos com hipertensão resistente e hipertensão leve a moderada

	HAS (n = 136)	HR (n = 120)	Valor de p
Drogas anti-hipertensivas			
Número de classes	2 (2 – 3)	4 (4 – 5)	< 0,001
Diuréticos (%)	66	91	< 0,001
Espironolactona (%)	2	40	< 0,001
IECAs (%)	16	37	< 0,001
ARAs (%)	74	55	0,003
BCCs (%)	46	84	< 0,001
Betabloqueadores (%)	14	69	< 0,001
Outras drogas			
Agentes hipoglicemiante (%)	38	51	0,05
Estatina (%)	75	57	0,003

HAS: indivíduos com hipertensão leve a moderada; HR: indivíduos com hipertensão resistente; IECAs: inibidores da enzima de conversão da angiotensina; ARAs: antagonistas do receptor da angiotensina; BCCs: bloqueadores do canal de cálcio. As variáveis categóricas estão apresentadas como números ou porcentagens. O teste de Fisher foi realizado para comparar variáveis categóricas.

estudos que não encontraram diferença em alguns mediadores inflamatórios entre esses grupos.6,26-28 Os achados semelhantes entre a HR e a HAS podem indicar um processo inflamatório independente da PA.

O dano cardíaco é uma resposta adaptativa à sobrecarga crônica da PA, resultando em crescimento hipertrófico de cardiomiócitos.29 Até o momento, o mecanismo subjacente envolvido nesta LOA permanece desconhecido, embora evidências apoiem o fato de que células inflamatórias especializadas – incluindo monócitos – contribuam para a lesão tecidual através da interação célula-a-célula realizada por quimiocinas como a MCP-1.30

Recentemente, a ideia de que o sistema imunológico inato desempenhe um papel importante na fase inicial e nas fases crônicas da lesão cardíaca tem sido aventada. Um estudo experimental no início da fase inflamatória da cicatrização do infarto revelou um acentuado aumento nos níveis de MCP-1, resultando em intensa infiltração de monócitos no miocárdio, enquanto uma situação inversa foi observada na fase crônica – uma redução dos níveis de MCP-1.31

Além disso, Weinberger et al.12 demonstraram que os macrófagos no miocárdio sofrem mudanças dinâmicas ao curso da vida e o CCL-2 – receptor para MCP-1 – ajuda a identificar especialmente macrófagos que migraram recentemente da circulação. Considerando ambos os estudos em conjunto, nós especulamos que a MCP-1 possa também variar durante o desenvolvimento de LOA na hipertensão, na qual a MCP-1 está suprimida em pacientes com HVE e hipertensão arterial.
De longa duração. Isso pode contribuir para apoiar os nossos achados de que a MCP-1 possa ser regulada de maneira diferente de acordo com o grau de dano ao órgão. É importante destacar que os medicamentos anti-hipertensivos têm algumas propriedades anti-inflamatórias e podem exercer influência sobre as quimiocinas. Consistente com estes relatórios, foi encontrada uma diminuição dos níveis de MCP-1 após administração de inibidores da enzima de conversão da angiotensina (IECA). Por outro lado, o uso de losartana não alterou os níveis de MCP-1. Os autores sugeriram que apenas os IECAs poderiam mudar os níveis de MCP-1 através de um aumento de óxido nítrico e síntese de prostaglandinas. No entanto, o mecanismo preciso ainda merece maior investigação.

Uma vez que indivíduos com HR estavam em uso de um maior número de medicamentos anti-hipertensivos em comparação aos indivíduos com HAS, nós avaliámos a potencial influência destas medicações sobre os níveis de MCP-1. Uma análise de regressão linear múltipla, ajustada para idade, presença de HVE e HR, revelou que apenas os betabloqueadores estiveram independentemente associados com os níveis de MCP-1 (coeficiente beta = 55, erro padrão [EP] = 20, p < 0,01). No entanto, esta possível interferência pode não ter afetado o resultado do nosso estudo, já que indivíduos com HR apresentavam níveis semelhantes de MCP-1 em relação aos com HAS, apesar do uso de uma maior proporção de agentes betabloqueadores. Uma vez que os níveis de MCP-1 não refletem necessariamente a sua concentração tecidual, esta seria apontada como a principal limitação do nosso estudo. Podemos também citar como limitações a falta de um grupo controle de normotensos e a possível interferência dos medicamentos anti-hipertensivos nos níveis de MCP-1. No entanto, devido a razões éticas, o washout destes medicamentos em pacientes com HR não deve ser realizado. Por conseguinte, como este é um estudo observacional, não podemos inferir uma relação causal entre o remodelamento cardíaco e as alterações nos níveis de MCP-1.

Conclusão

Os níveis semelhantes de citocina em indivíduos com HR e HAS e os níveis mais baixos de MCP-1 em pacientes com HVE sugerem (i) uma possível redução dos níveis de MCP-1 em pacientes hipertensos com estágio avançado de dano cardíaco e (ii) alta ativação da migração de monócitos pela MCP-1 nestes pacientes hipertensos que...
estão desenvolvendo alterações estruturais cardíacas. A modulação de quimiocinas representa uma interessante abordagem terapêutica; portanto, mais estudos clínicos são necessários para definir o potencial envolvimento dos cursos da hipertensão e do remodelamento cardíaco e alterações nos níveis de MCP-1.

Contribuição dos autores

Concepção e desenho da pesquisa e Redação do manuscrito: Ritter AMV; Obtenção de dados: Ritter AMV, Faria APC, Sabbatini A, Corrêa NB, Brunelli V; Análise e interpretação dos dados: Faria APC, Ritter AMV, Sabbatini A; Análise estatística: Ritter AMV, Faria APC; Obtenção de financiamento: Moreno H; Revisão crítica do manuscrito quanto ao conteúdo intelectual importante: Ritter AMV, Faria APC, Sabbatini A, Corrêa NB, Brunelli V, Modolo R, Moreno H.

Potencial conflito de interesse

Declaro não haver conflito de interesses pertinentes.

Fontes de financiamento

O presente estudo foi parcialmente financiado pela FAPESP e CNPq.

Vinculação acadêmica

Não há vinculação deste estudo a programas de pós-graduação.

Referências

1. Gaddam KK, Nishizaka MK, Pratt-Ubunama MN, Pimenta E, Aban I, Oparil S, et al., Characterization of resistant hypertension: association between resistant hypertension, aldosterone, and persistent intravascular volume expansion. Arch Intern Med. 2008;168(11):1159-64.
2. Myat A, Redwood SR, Qureshi AC, Spertus JA, Williams B. Resistant hypertension. BMJ. 2012; 345:e7473.
3. Lotufo PA, Pereira AC, Vasconcellos PS, Santos IS, Mill JC, Bensenor IM. Resistant hypertension: risk factors, subclinical atherosclerosis, and comorbidities among adults-the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). J Clin Hypertens (Greenwich). 2015;17(1):74-80.
4. Cuspidi C, Macca G, Sampieri L, Michev I, Salerno M, Fusi V, et al. High prevalence of cardiac and extracardiac target organ damage in refractory hypertension. J Hypertens. 2001;19(11):2063-70.
5. Schiffrin EL. The immune system: role in hypertension. Can J Cardiol. 2003;29(5):543-8.
6. Barbaro NR, Fontana V, Modolo R, De Faria AP, Sabbatini AR, Fonseca FH, et al. Increased arterial stiffness in resistant hypertension is associated with inflammatory biomarkers. Blood Press. 2015;24(1):7-13.
7. Leibowitz A, Schiffrin EL. Immune mechanisms in hypertension. Curr Hypertens Rev. 2011;7(6):465-72.
8. Mirafeso SR, Mohabati M, Feiz Difani M, Saberi Karimian M, Elbahirini M, Ayan A, et al. An imbalance in serum concentrations of inflammatory and anti-inflammatory cytokines in hypertension. J Am Soc Hypertens. 2014;8(9):614-23.
9. Luster AD. Chemokines—chemotactic cytokines that mediate inflammation. N Engl J Med. 1998;338(7):436-45.
10. Rodriguez-Hurtbe B, Vaziri ND, Herrera-Acosta J, Johnson RJ. Oxidative stress, renal infiltration of immune cells, and salt-sensitive hypertension: all for one and one for all. Am J Physiol Renal Physiol. 2004;286(4):F606-16.
11. Arakelyan A, Petrkova J, Hermanova Z, Boyajyan A, Lukl J, Petrek M. Serum levels of the MCP-1 chemokine in patients with ischemic stroke and myocardial infarction. Mediators Inflamm. 2005;2005(3):175-9.
12. Weinberger T, Schulc C. Myocardial infarction: a critical role of macrophages in cardiac remodeling. Front Physiol. 2015;6:107.
13. Wynn TA, Barron L. Macrophages: master regulators of inflammation and fibrosis. Semin Liver Dis. 2010;30(3):245-57.
23. Antonelli A, Fallahi P, Ferrari SM, Chiadoni L, Virdis A, Mancusi C, et al. High serum levels of CXC (CXCL10) and CC (CCL2) chemokines in untreated essential hypertension. Int J Immunopathol Pharmacol. 2012;25(2):387-95.

24. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, et al., The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA. 2003;289(19):2560-72. Erratum in: JAMA. 2003;290(2):197.

25. Martins LC, Figueiredo VN, Quinaglia T, Boer-Martins L, Yugar-Toledo JC, Martin JF, et al. Characteristics of resistant hypertension: ageing, body mass index, hyperaldosteronism, cardiac hypertrophy and vascular stiffness. J Hum Hypertens. 2011;25(9):532-8.

26. Tayebjee MH, Nadar S, Blann AD, Gareth Beevers D, MacFadyen RJ, Lip GY. Matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in hypertension and their relationship to cardiovascular risk and treatment: a substudy of the Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT). Am J Hypertens. 2004;17(9):764-9.

27. Nakamura K, Fushimi K, Kouchi H, Mihara K, Miyazaki M, Ohe T, et al. Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-alpha and angiotensin II. Circulation. 1998;98(8):794-9.

28. Sivasubramanian N, Coker ML, Kurrelmeyer KM, MacLellan WR, DeMayo FJ, Spinale FG, et al. Left ventricular remodeling in transgenic mice with cardiac restricted overexpression of tumor necrosis factor. Circulation. 2001;104(7):826-31.

29. Nadruz W. Myocardial remodeling in hypertension. J Hum Hypertens. 2015;29(1):1-6.

30. Wu J, Xia S, Kalionis B, Wan W, Sun T. The role of oxidative stress and inflammation in cardiovascular aging. Biomed Res Int. 2014;2014:615312.

31. Dewald O, Zymek P, Winkelmann K, Kuerting A, Ren G, Abou-Khamis T, et al., CCL2/Monocyte Chemoattractant Protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circ Res. 2000;96(8):881-9.

32. Duprez DA. Role of the renin-angiotensin-aldosterone system in vascular remodeling and inflammation: a clinical review. J Hypertens. 2006;24(6):983-91.

33. Jilma B, Li-Saw-Hee FL, Wagner OF, Beevers DG, Lip GY. Effects of enalapril and losartan on circulating adhesion molecules and monocyte chemotactic protein-1. Clin Sci (Lond). 2002;103(2):131-6.