An operon consisting of a P-type ATPase gene and a transcriptional regulator gene responsible for cadmium resistances in Bacillus vietamensis 151–6 and Bacillus marisflavi 151–25

Xiaoxia Yu1, Zundan Ding1, Yangyang Ji1,2, Jintong Zhao1, Xiaoqing Liu1, Jian Tian1*, Ningfeng Wu1* and Yunliu Fan1

Abstract

Background: Cadmium (Cd) is a severely toxic heavy metal to most microorganisms. Many bacteria have developed Cd²⁺ resistance.

Results: In this study, we isolated two different Cd²⁺ resistance Bacillus sp. strains, Bacillus vietamensis 151–6 and Bacillus marisflavi 151–25, which could be grown in the presence of Cd²⁺ at concentration up to 0.3 mM and 0.8 mM, respectively. According to the genomic sequencing, transcriptome analysis under cadmium stress, and other related experiments, a gene cluster in plasmid p25 was found to be a major contributor to Cd²⁺ resistance in B. marisflavi 151–25. The cluster in p25 contained orf4802 and orf4803 which encodes an ATPase transporter and a transcriptional regulator protein, respectively. Although 151–6 has much lower Cd²⁺ resistance than 151–25, they contained similar gene cluster, but in different locations. A gene cluster on the chromosome containing orf4111, orf4112 and orf4113, which encodes an ATPase transporter, a cadmium efflux system accessory protein and a cadmium resistance protein, respectively, was found to play a major role on the Cd²⁺ resistance for B. vietamensis 151–6.

Conclusions: This work described cadmium resistance mechanisms in newly isolated Bacillus vietamensis 151–6 and Bacillus marisflavi 151–25. Based on homologies to the cad system (CadA-CadC) in Staphylococcus aureus and analysis of transcriptome under Cd²⁺ induction, we inferred that the mechanisms of cadmium resistance in B. marisflavi 151–25 was as same as the cad system in S. aureus. Although Bacillus vietamensis 151–6 also had the similar gene cluster to B. marisflavi 151–25 and S. aureus, its transcriptional regulatory mechanism of cadmium resistance was not same. This study explored the cadmium resistance mechanism for B. vietamensis 151–6 and B. marisflavi 151–25 and has expanded our understanding of the biological effects of cadmium.

Keywords: Cadmium resistance, Genomic sequencing, Bacillus vietamensis 151–6, Bacillus marisflavi 151–25
Background
Soil contamination with heavy metals is becoming an increasingly urgent problem worldwide. Among all heavy metals, one of the most hazardous is cadmium (Cd) [1, 2]. Cd is a non-essential heavy metal element that is toxic, teratogenic and carcinogenic to humans. When critical Cd levels in soil are reached, biodiversity, agricultural productivity, food safety and human health can be threatened, as Cd can be accumulated in the food chain [3–7]. Consequently, solutions to remediate heavy metal-contaminated soil, in particular Cd-contaminated soil, are urgently needed. Many remediation techniques, such as chemical immobilization, electrokinetic extraction, phytoremediation, and bioremediation, have been proposed for soils contaminated with heavy metals [8]. Among these technologies, bioremediation is considered an innovative and promising remediation method based on its cost effectiveness and low environmental impact [9–11].

Many organisms have developed strategies to withstand the presence of Cd in the environment, such as exclusion, compartmentalization, deployment of inorganic polyphosphates, cell wall binding, and expression of metal binding proteins [12–16]. The most prominent mechanism of resistance to Cd2+ is the use of efflux pumps [17]. Several bacteria, such as Alcaligenes eutrophus [18], Staphylococcus aureus [19], Bacillus subtilis [20], Listeria monocytogenes [21] and Escherichia coli [22] have demonstrated resistance to Cd2+.

One of the most thoroughly characterized Cd2+ resistance efflux systems is the czc (Cd2+, Zn2+, and Co2+ resistance) system in the gram-negative bacterium Alcaligenes eutrophus [18, 23]. The CzcA, CzcB and CzcC proteins comprise an active efflux pump complex driven by a cation-proton antiporter [18]. Briefly, CzcA, located in the inner membrane, is essential for cation transport and can remove heavy metals (Cd2+, Zn2+, and Co2+) from the cytoplasm using a H+ ion gradient [23, 24]. CzcB belongs to a family of bacterial membrane fusion proteins. It may create a pathway for the removal of cations from CzcA [23, 25]. CzcC relies on CzcB to function and may act as a substrate (Cd2+, Zn2+, and Co2+) switch for the efflux pump [17].

Another well-characterized Cd2+ resistance system is the cad system (cadA-cadC) in the gram-positive bacterium S. aureus [19, 26]. The Cd-efflux ATPase is encoded by the cadA gene, which contains six predicted membrane-spanning regions. The fourth membrane span is thought to be involved in the cation translocation pathway, and includes a conserved Cys-Pro-Cys tripeptide [27]. CadC is a regulatory protein encoded immediately downstream of cadA, and is also required for Cd2+ resistance in S. aureus [28]. CadC is a member of the ArsR/SmtB family [29, 30], which can bind to the promoter-operator area of the cadA-cadC system and acts as a transcriptional repressor in vitro [31].

In present study, two different Cd2+ resistance Bacillus sp. strains (B. vietnamensis 151–6 and B. marisflavi 151–25) isolated from Cd-contaminated soil was grown in the presence of Cd2+ at two distinct concentrations up to 0.3 mM and 0.8 mM, respectively. In order to compare the mechanism of Cd2+ resistance for these two strains, their genome and transcriptome under Cd2+ stress were analyzed. Moreover, a fosmid library from genomic DNA of B. vietnamensis 151–6 was constructed to further delineate the Cd2+ resistance-related genes. The functions of these genes were analyzed and verified through overexpression in E. coli and B. subtilis. The gene clusters of 4802–4803 in the plasmid p25 of B. marisflavi 151–25 and 4111–4112–4113 on the chromosome of B. vietnamensis 151–6 played the major role on the Cd2+ resistance.

Results
Strain 151–6 and 151–25 exhibit different Cd2+ resistances
To isolate Cd-resistant bacteria, a Cd-contaminated (59.561 ± 3.76 mg Cd kg−1) soil sample was collected in Hunan Province. A total of 21 strains of bacteria were isolated using LB agar plates containing 0.5, 1 and 2 mM Cd2+. The MIC-Cd values of those isolates were determined and ranged from 0.4 to 1.0 mM (Additional file 3: Table S3). Among them, the strains 151–25 and 151–6, which showed the highest and lowest level of Cd2+ resistance respectively, were selected for further study (Additional file 3: Table S3), and identified as Bacillus sp. through 16S rDNA analysis.

To compare the level of Cd2+ resistance of two selected strains with other Bacillus sp. bacteria, we examined their MIC-Cd, as well as those of three other Bacillus sp. strains, B. subtilis WB600 (BS), B. amyloliquefaciens (BA) and B. licheniformis (BL), in liquid medium supplemented with various Cd2+ concentrations. 151–25 and 151–6 were grown in the presence of Cd2+ at concentrations up to 0.8 mM and 0.3 mM, respectively (Fig. 1), while the growth of the other three Bacillus sp. strains was inhibited in the presence of 0.3 mM Cd2+ (Fig. 1). The growth curves at 0 mM Cd2+ demonstrated that all four Bacillus sp. strains exhibited similar growth trends in liquid LB medium (Additional file 6: Figure S1a). However, under culture conditions with 0.1 mM or 0.3 mM Cd2+, 151–6 and 151–25 exhibited greater growth potential than the other three Bacillus sp. strains (Additional file 6: Figure S1b and c). And only 151–25 could grow at 0.5 mM Cd2+ (Additional file 6: Figure S1d). These data indicated that compared to other Bacillus sp. strains, 151–6 and 151–25
exhibited stronger tolerance to Cd\(^{2+}\). And the Cd\(^{2+}\) resistance of 151–25 was significantly higher than 151–6.

Genomic analysis of 151–6 and 151–25

To compare the mechanism of Cd\(^{2+}\) resistance for 151–6 and 151–25, their genome were sequenced. The results showed that 151–6 contains a single chromosome (4,556,861 bp and 4952 predicted genes) and one plasmid, designated p6 (40,946 bp and 66 predicted genes) (Additional file 7: Figure S2). And 151–25 also contains a single chromosome (4,411,234 bp and 4734 predicted genes) and one plasmid, designated p25 (138,020 bp and 156 predicted genes) (Additional file 8: Figure S3). Simultaneously, the results of non-redundant protein database (NR) annotation of the predicted coding genes presented that strain 151–6 can be identified as *B. vietamensis* (4093 of the 5018 genes are annotated to derive from *B. vietamensis*) and strain 151–25 can be identified as *B. marisflavi* (4095 of the 4890 genes are annotated to derive from *B. vietamensis*).

Plasmid p25 in *B. marisflavi* 151–25 is important for Cd\(^{2+}\) resistance, while p6 in *B. vietamensis* 151–6 is not relevant to the Cd\(^{2+}\) resistance

To determine whether plasmid p6 and p25 were responsible for Cd\(^{2+}\) resistance in *B. vietamensis* 151–6 and *B. marisflavi* 151–25, we eliminated the plasmids and then examined their contribution to Cd\(^{2+}\) resistance. The plasmid p6-eliminated strains 151–6\(^{\Delta 5}\) and 151–6\(^{\Delta 7}\) and the plasmid p25-deleted strains 151–25\(^{\Delta 3}\) and 151–25\(^{\Delta 29}\) were obtained (Additional file 9: Figure S4a and Additional file 10: Figure S5a, respectively) and further verified by PCR (Additional file 9: Figure S4b and Additional file 10: Figure S5b, 5c, respectively). In liquid media, the strains 151–6\(^{\Delta 5}\) and 151–6\(^{\Delta 7}\) exhibited the same MIC-Cd as the wild strain 151–6 (Fig. 2a). And the growth curve of 151–6\(^{\Delta 5}\) and 151–6\(^{\Delta 7}\) did not show any differences with wild type 151–6 at the three different concentrations of Cd\(^{2+}\) (Fig. 2b, c and d). These data indicated that the elimination of plasmid p6 does not influence the Cd\(^{2+}\) resistance of *B. vietamensis* 151–6. However, eliminating plasmid p25 caused a significant decrease of Cd\(^{2+}\) resistance in *B. marisflavi* 151–25. As shown in Fig. 3a, the MIC-Cd values of 151–25\(^{\Delta 3}\) and 151–25\(^{\Delta 29}\) were 0.2 mM, markedly lower than that of wild-type 151–25 (1.0 mM). Elimination of plasmid p25 did not affect the growth of the strain in liquid LB medium without added Cd\(^{2+}\) (Fig. 3b). However, with addition of 0.1 or 0.5 mM Cd\(^{2+}\) to the medium, the growth of 151–25\(^{\Delta 3}\) was inhibited, while the growth of *B. marisflavi* 151–25 was not affected (Fig. 3c and d, respectively). Thus, we concluded that plasmid p25 is important for Cd\(^{2+}\) resistance in *B. marisflavi* 151–25 while plasmid p6 is not relevant to the Cd\(^{2+}\) resistance in *B. vietamensis* 151–6.
A gene cluster consisting of orf4802 and orf4803 confers high Cd2+ resistance in \textit{B. marisflavi} 151–25

To determine the genes related to the Cd2+ resistance of \textit{B. marisflavi} 151–25, its transcriptome under Cd2+ induction was analyzed by RNA sequencing. Fragments per kilobase of exon model per million mapped reads values were used to measure transcript abundance. As shown in Additional file 4: Table S4 and Additional file 11: Figure S6, a total of 65 differentially expressed genes were identified in the presence of Cd2+ (47 up-regulated genes and 18 down-regulated genes). Among the 47 up-regulated genes, 9 were located on plasmid p25, and the top three up-regulated genes in terms of fold change were also from plasmid p25 (Table 1 and Additional file 4: Table S4). Briefly, transcripts of a transcriptional regulator gene (orf4803) and a copper-translocating P-type ATPase gene (orf4802) were increased 72.53- and 63.83-fold, respectively. These results were confirmed through qRT-PCR (Fig. 4b), and it further indicated that plasmid p25 is related to Cd2+ resistance in \textit{B. marisflavi} 151–25. Based on these results, we hypothesize that nine up-regulated genes located on plasmid p25, orf4774, 4775, 4776, 4777, 4779, 4781, 4782, 4802 and 4803 may be involved in Cd2+ resistance of \textit{B. marisflavi} 151–25. To confirm this hypothesis, we overexpressed these genes using their own promoter with five gene clusters (Fig. 4a) in \textit{E. coli} and \textit{B. subtilis}, to examine their contributions to Cd2+ resistance. As shown in Fig. 4c and d, the gene cluster containing orf4802 and orf4803 allowed recombinant \textit{E. coli} and \textit{B. subtilis} to exhibit higher Cd2+ resistance than negative control strains. In particular, \textit{B. subtilis} cells containing the recombinant plasmid 4802–4803-pUBC19 would grow in the presence of Cd2+ at seven times the concentration tolerated by control cells. However, compared to control cells, the other four recombinant \textit{E. coli} and \textit{B. subtilis} strains did not show elevated Cd2+ resistance. These results indicate that the gene cluster consisting of orf4802 and orf4803 confers high Cd2+ resistance in \textit{B. marisflavi} 151–25.

To find more genes responsible for high Cd2+ resistance of \textit{B. marisflavi} 151–25, we also compared gene expression between \textit{B. marisflavi} 151–25 and 151–253 under Cd2+ stress. Nineteen up-regulated genes located on the chromosome that exhibited a more than 4-fold change according to transcriptome data were analyzed using qRT-PCR. Compared to wild-type \textit{B. marisflavi} 151–25, the transcript levels of seven genes showed
marked fold increases in 151–25△3 (Additional file 12: Figure S7a). These genes were orf666 (TetR family transcriptional regulator gene), orf667 (cysteine ABC transporter substrate-binding protein gene), orf668 (ABC transporter permease gene), orf1240 (ArsR family transcriptional regulator gene), orf1241 (copper-translocating P-type ATPase gene), orf3892 (hypothetical protein gene) and orf3894 (cation transporter gene). To confirm whether these genes were related to Cd$^{2+}$ resistance for B. marisflavi 151–25, three gene fragments also with 4802–4803 were overexpressed in B. subtilis and the Cd-MIC values for those recombinant strains were determined. As shown in Additional file 12: Figure S7b, the operon containing orf4802 and orf4803 allowed recombinant B. subtilis to exhibit greater Cd$^{2+}$ resistance, while the other three fragments would not increase Cd$^{2+}$ resistance of the recombinant B. subtilis. Our results suggested that the operon of 4802–4803 plays a leading role in Cd$^{2+}$ resistance.

Table 1 Transcriptome annotation of up-regulated genes from the plasmid p25 of B. marisflavi 151–25

Gene	Location	Reads count	Fold change (Cd/CK)	NR annotation	
orf4803	51,464–51,832	500.24	72.53	transcriptional regulator	
orf4802	49,342–51,471	7460.73	116.89	copper-translocating P-type ATPase	
orf4775	26,102–26,236	70.79	1.65	42.98	putative transcriptional regulator
orf4777	28,766–29,110	45.73	1.75	26.10	restriction endonuclease
orf4776	26,251–28,752	3137.19	132.92	arsenic resistance protein	
orf4774	25,655–25,972	566.50	26.48	21.40	oxidoreductase
orf4782	31,679–32,254	899.96	76.98	11.69	oxidoreductase
orf4781	31,185–31,682	619.15	54.15	11.43	arsenic resistance protein

* No annotation information in NR database
role for Cd\(^{2+}\) resistance of B. marisflavi 151–25, and that when plasmid p25 (containing the main Cd-efflux pump genes, orf4802 and orf4803) was deleted, the transcript level of other efflux pump genes would be enhanced. The interaction between these genes remains to be further study.

A gene cluster consisting of orf4111, orf4112 and orf4113 confers Cd\(^{2+}\) resistance for B. vietamensis 151–6

Compared to B. marisflavi 151–25, the analysis of the transcriptome of B. vietamensis 151–6 under Cd\(^{2+}\) induction demonstrated that a total of 1268 differentially expressed genes were identified (585 up-regulated genes and 683 down-regulated genes), significantly higher than that of B. marisflavi 151–25 (Additional file 13: Figure S8 and Additional file 5: Table S5). Moreover, 585 up-regulated genes in the presence in Cd\(^{2+}\) were located on the chromosome, and among the 683 down-regulated genes, only 16 were located on plasmid p6. These data verified that plasmid p6 does not influence the Cd\(^{2+}\) resistance of B. vietamensis 151–6. To further identify the key Cd\(^{2+}\) resistance genes from those differentially expressed genes, a fosmid library of B. vietamensis 151–6 genomic DNA was constructed in E. coli. And the clones were screened by the Cd\(^{2+}\) resistance to determine the genes that contribute to Cd\(^{2+}\) resistance. Among the total of 1204 clones, there were 25 and 3 clones were able to grown on LB agar plates with 1.2 mM and 1.5 mM Cd\(^{2+}\), respectively. In liquid LB medium with 1.2 mM Cd\(^{2+}\), there were 27 clones could be grown. Only 2 clones, B2 and C2, could be grown in liquid LB medium with 1.5 mM Cd\(^{2+}\). The MIC-Cd of B2 and C2 were determined. As shown in Additional file 14: Figure S9, B2 and C2 exhibit higher Cd\(^{2+}\) resistance than negative control strain EPI300-T1R. The fosmid DNAs isolated from B2 and C2 were sequenced. Sequence analyses of B2 revealed that it contained 32, 263 bp insert fragment, which consisted 31 annotated genes (Table 2) (And the fosmid DNA isolated from C2 was failed by sequencing many times, so the clone was not analyzed). Moreover, the analysis of the transcriptome showed that insert fragment of B2 contained 8 up-regulated genes (orf4108, orf4109, orf4088, orf4087, orf4090, orf4093, orf4106, orf4107) and 3 down-regulated genes (orf4086, orf4101, orf4120). These results were confirmed through qRT-PCR and the transcription levels of other 16 genes in the insert fragment of B2 were also evaluated by qRT-PCR. The results presented that the transcripts of the orf4108, orf4109, orf4088, orf4087, orf4104, orf4106 and orf4107 were increased 156.64,
130.84, 102.58, 87.26, 14.19, 12.68 and 9.07-fold, respecti-
vely (Table 2 and Fig. 5b). Based on these results, four
gene clusters (orf4108–orf4109, orf4087–orf4088, orf404, orf406–orf407) containing their own promoter were overexpressed in E. coli and B. subtilis to examine their contributions to the Cd\(^{2+}\) resistance. Due to the fact that ATPase gene and oxidoreductase gene have been reported to be involved in Cd\(^{2+}\) resistance [32], three related gene clusters (orf4093–orf4094-orf4095, orf4102–orf403 and orf4111–orf4112-orf4113) containing their own promoter were also overexpressed in E. coli and B. subtilis (And the construction of the recombinant vectors containing orf404 and orf406–orf407 were failed by many times, so the results were not showed). As shown in Fig. 5c and d, the gene cluster containing orf4111 (copper-translocating P-type ATPase gene), orf4112 (cadmium efflux system accessory protein gene, cadC) and orf4113 (cadmium resistance protein gene, cadD) allowed recombinant E. coli and B. subtilis to exhibit higher Cd\(^{2+}\) resistance than the negative control strain. Especially, the B. subtilis cells containing the

Gene	Location	NR annotation	RNA sequence Fold Change (Cd/CK)	qRT-PCR Fold change (Cd/CK)
orf4086	3,723,301–3,723,687	four-helix bundle copper-binding protein	−1.95	1.59
orf4087	3,723,960–3,726,575	ATPase	47.79 a	87.26 a
orf4088	3,726,588–3,726,953	transcriptional regulator	105.62 a	102.58 a
orf4090	3,727,300–3,727,605	hypothetical protein	2.06 a	N
orf4091	3,727,630–3,728,040	hypothetical protein	/	0.96
orf4092	3,728,051–3,728,596	cysteine ABC transporter ATP-binding protein	/	0.89
orf4093	3,728,764–3,730,818	cadmium transporter	1.85	0.89
orf4094	3,730,891–3,731,259	transcriptional regulator	/	0.89
orf4095	3,731,357–3,731,866	hypothetical protein	/	0.89
orf4096	3,732,138–3,732,377	ferrous iron transport protein A	/	0.89
orf4097	3,732,378–3,733,106	small GTP-binding protein domain-containing protein	/	0.89
orf4098	3,733,084–3,734,481	ferrous iron transport protein B	/	0.89
orf4099	3,734,546–3,734,869	small multidrug resistance family-3 protein	/	0.89
orf4100	3,734,912–3,736,732	MULTISPECIES: hypothetical protein	/	0.89
orf4101	3,736,938–3,737,783	hypothetical protein	−2.71 N	N
orf4102	3,737,798–3,738,649	cation diffusion facilitator family transporter	/	2.29
orf4104	3,738,917–3,739,834	YIEGIA protein	/	14.19
orf4105	3,739,859–3,740,047	hypothetical protein	/	N
orf4106	3,740,119–3,740,538	disulfide bond formation protein B	13.10 b	12.68 b
orf4107	3,740,539–3,741,201	Protein-disulfide isomerase	12.17 b	9.07
orf4108	3,741,422–3,741,952	thiol-disulfide oxidoreductase	372.96 a	156.64 a
orf4109	3,742,073–3,742,675	cytochrome C biogenesis protein CcdA	194.33 a	130.84 a
orf4110	3,743,680–3,745,806	copper-translocating P-type ATPase	/	1.20
orf4111	3,745,799–3,746,164	cadmium efflux system accessory protein CadC	/	0.59
orf4112	3,746,292–3,746,906	cadmium resistance protein CadD	/	0.89
orf4113	3,747,815–3,748,807	oxidoreductase	/	0.73
orf4114	3,749,310–3,750,713	hypothetical protein	/	0.77
orf4115	3,750,703–3,750,882	hypothetical protein	/	N
orf4116	3,750,879–3,752,096	alpha-hydroxy-acid oxidizing enzyme	/	0.57
orf4117	3,752,206–3,752,757	hypothetical protein	−2.12 0.87	
orf4118	3,752,778–3,753,803	ion transporter	/	0.69

/represent the fold change of transcriptome is not significant; N represent qRT-PCR is not performed because the target genes are too small; *represent the fold change of target gene > 100; # represent the fold change of target gene > 10.
recombinant plasmid 4111–4112-4113-pUBC19 demonstrated the potential to tolerate and grow in the presence of 6 times the concentration of Cd$^{2+}$ compared to the control cells. Moreover, the recombinant strain exhibited similar Cd resistance with the strain which overexpressed the gene fragment 4802–4803 from B. marisflavi 151–25 (Fig. 4d). However, compared to the negative control cells, the other 4 recombinant E. coli and B. subtilis cells did not show great Cd$^{2+}$ resistance. These results indicated that the gene cluster consisting of orf4111, orf4112 and orf4113 confers Cd$^{2+}$ resistance for B. vietamensis 151–6.

Discussion

The present study showed that the gene cluster 4802–4803 located onA plasmid p25 and the gene cluster 4111–4112-4113 located on chromosome were involved in Cd$^{2+}$ resistance for strain B. marisflavi 151–25 and B. vietamensis 151–6, respectively. Many microorganisms have been reported to use heavy-metal-transporting ATPases, such as the proteins CadA and ZntA, to overcome Cd$^{2+}$ toxicity [19, 33]. Specifically, CadA from S. aureus has a length of 727 amino acids [19], and its amino acid sequence is highly similar to 4111 (63.31%) and 4802 (65.21%) (Additional file 15: Figure S10). Alignment with CadA from S. aureus showed that the protein sequences of orf4111 from B. vietamensis 151–6 and orf4802 from B. marisflavi 151–25 all included a conserved (Cys-Pro-Cys) tripeptide for Cd$^{2+}$, Pb$^{2+}$ or Zn$^{2+}$ binding [34]. CadC from S. aureus including 122 amino acids was related to the divalent cation ATPase [27]. Expression of CadA is regulated by CadC, which is a homodimeric repressor that dissociates from the cad operator/promoter upon Cd$^{2+}$ binding [19]. CadC is a member of the ArsR/SmtB family of metalloregulatory proteins [29, 30]. Its crystal structure was resolved in 2005, and showed that two regulatory metal-binding sites for the inducer Cd$^{2+}$ are formed by Cys-7 and Cys-11 from the N terminus of one monomer and Cys-58 and Cys-60 of the other monomer [34]. Alignment with CadC from S. aureus showed that the protein sequence of orf4112 from B. vietamensis 151–6 and of orf4803 from B. marisflavi 151–25 contained these four Cys residues (Additional file 16: Figure S11). Moreover, the similarity between CadC and Orf4803 or Orf4112 are 86.89 and 82.64%, respectively. These analysis indicated that the orf4111, orf4112 from B. vietamensis 151–6 and orf4802, orf4803 from B. marisflavi 151–25 all encoded
the proteins CadA and CadC, respectively. The protein CadA existed as the efflux transporter and was vital to the cadmium resistance. And the protein CadC was a transcription factor to regulate the expression of CadA. However, the expression mechanism of the two proteins in *B. vietnamensis* 151–6 was different to the *B. marisflavi* 151–25. In *B. marisflavi* 151–25, the two genes (orf4802 and orf4803) were induced by the cadmium. While in *B. vietnamensis* 151–6, the expression of CadC (Orf4112) was repressed by the cadmium, as the qRT-PCR Fold change (Cd/CK) was only 0.56 (Table 2). As a result, few CdC was expressed in the cell and the expression of CadA (Orf4111) was activated by the cadmium and the expression of CadA (Orf4111) was only 0.56 (Table 2). As a result, few and study the regulation of the cad system. Additionally, we did not know the detailed mechanism about the expression of orf4111–41,112 in *B. vietnamensis* 151–6. In the future study, we will clone the promoter and study the regulation of the *cad* system.

In addition, the result of the transcriptome of *B. marisflavi* 151–25 under Cd²⁺ induction showed that orf4608 (arsenical efflux pump membrane protein gene,

Methods

Bacterial strains, plasmids, and growth conditions

The bacterial strains and plasmids used in this study are listed in Additional file 1: Table S1. *B. subtilis* WB600 (BS), *B. amyloliquefaciens* (BA) and *B. licheniformis* WX-02 (BL) were stored in our lab. *E. coli* TOP10 (TIANGEN Biotech, Beijing, China) was used as the cloning host. *B. vietnamensis* 151–6 and *B. marisflavi* 151–25 were isolated from Cd-contaminated soil in Hunan Province (27°46′N, 112°52′E), China. These strains were all grown in Luria–Bertani (LB) medium. CdCl₂·H₂O was used as the source of Cd. Ampicillin (100 μg mL⁻¹), kanamycin (10 μg mL⁻¹), or tetracycline (5 μg mL⁻¹) was added as necessary.

Isolation of cd-resistant bacteria

Cd-contaminated soil was collected from a former industrial site in Hunan Province (27°46′N, 112°52′E) and analyzed for Cd content through acid digestion followed by the use of a 7700 × inductively coupled plasma mass spectrometer (Agilent Technologies, Tokyo, Japan). To isolate Cd-resistant and bio-safe bacteria, aerobic *Bacillus* sp. were isolated from the soil by plating on LB agar plates containing progressively higher concentrations of cadmium chloride (0, 0.5, 1 and 2 mM). Then, in order to isolate aerobic *Bacillus* sp., the bacterial enrichment cultures were heat-shocked at 80 °C for 20 min. Bacterial genomic DNA was isolated using the TIANamp Bacteria DNA kit (TIANGEN Biotech). The 16S rRNA gene was amplified from the extracted DNA using the universal primers 16S rRNA-F/16S rRNA-R (Additional file 2: Table S2) and the amplification products were cloned in the pGM-T (TIANGEN Biotech) vector using competent *E. coli* TOP10 cells (TIANGEN Biotech). Sequencing was carried out using T7 and SP6 primers and compared to the GenBank database using the NCBI BLAST program.

Evaluation of cadmium resistance and growth curve

To evaluate growth in a liquid medium of isolated bacteria, the minimum inhibitory concentration (MIC) of Cd²⁺ (MIC-Cd) was determined. LB medium (800 μL) with different concentrations of Cd²⁺ was dispensed into 96-well (12 × 8) microtiter plates (96 × 2-mL wells) with a multi-channel micropipette (rows A to H: 0 mM, 0.02

Conclusions

In our study, we isolated two different Cd²⁺ resistance strains *B. vietnamensis* 151–6 and *B. marisflavi* 151–25 isolated from Cd-contaminated soil, which could grow in the presence of Cd²⁺ at two distinct concentrations up to 0.3 mM and 0.8 mM, respectively. Further study with whole genome sequencing, transcriptome sequencing and heterologous expression revealed a gene cluster that played a vital role in Cd²⁺ resistance of the two strains. Orf4802 (ATPase transporter) and Orf4803 (transcriptional regulator) on plasmid p25, were found to be major contributors to Cd²⁺ resistance in *B. marisflavi* 151–25. And Orf4111 (ATPase transporter), Orf4112 (cadmium efflux system accessory protein) and Orf4113 (cadmium resistance protein) on the chromosome, were proved to be critical for Cd²⁺ resistance of *B. vietnamensis* 151–6. In the end, we explored the cadmium resistance mechanism for *B. vietnamensis* 151–6 and *B. marisflavi* 151–25. And we identified that the Cd²⁺ resistance mechanism of *B. marisflavi* 151–25 was the same as cad system in *S. aureus*. Although *Bacillus vietnamensis* 151–6 also had the similar gene cluster to *B. marisflavi* 151–25 and *S. aureus*, its transcriptional regulatory mechanism of cadmium resistance was not same. This study could expand our understanding of the biological effects of cadmium.
mm, 0.04 mM, 0.06 mM, 0.08 mM, 0.1 mM, 0.2 mM, 0.3 mM, 0.4 mM, 0.5 mM, 0.6 mM, 0.7 mM, 0.8 mM, 0.9 mM, 1.0 mM and 1.1 mM). Single colonies of the test strains were inoculated into 3 mL of LB medium and cultured overnight. The test culture (15 μL) was then inoculated into each well of the prepared 96-well plate. After 24 h at 37 °C and 750 rpm in an incubator (Hei-dolph, Viertrieb, Germany), 200 μL of the cell suspension was transferred to a 96-well plate and the turbidity at OD600 was measured.

To determine the Cd²⁺ tolerance of isolated bacteria, growth curves at different concentrations (0 mM, 0.1 mM, 0.3 mM and 0.5 mM) of Cd²⁺ were analyzed. For the growth assay, single colonies of the test strains were cultured overnight and then diluted 1:100 into 100-well plates containing 200 μL of LB and various concentrations of Cd²⁺ in quintuplicate. The growth curve was measured at 1-h intervals using a Bioscreen C automatic growth curve analyzer (Bioscreen, Helsinki, Finland).

Genome sequencing and analysis

Bacterial genomic DNA was extracted using the sodium dodecyl sulfate (SDS) method [36]. A total of 5 μg DNA was used to generate each library, and this DNA was sheared using Covaris g-Tubes to generate sheared fragments >10 kb in length. The sheared DNA fragments were then prepared using the SMRT bell template preparation kit (Pacific Biosciences, Menlo Park, CA, USA) according to the manufacturer’s instructions. Whole-genome sequencing was performed on the Pachio RSII platform. All high-quality paired reads were assembled using SOAPdenovo (http://soap.genomics.org.cn/soapdenovo.html) onto a number of scaffolds [37]. Then, the filtered reads were transferred for the next step of gap closing. Transfer RNA (tRNA) genes were predicted with tRNAscan-SE [38]. Ribosomal RNA (rRNA) genes were analyzed using rRNAmmer [39]. Coding genes were identified with the GeneMarkS program [40]. The predicted coding genes were annotated based on the non-redundant protein database (NR) of the National Center for Biotechnology Information [41] and Gene Ontology (GO) [42].

RNA sequencing and transcriptome analysis

An overnight culture was diluted 1:100 in LB medium in the presence (0.1 mM) and absence of Cd²⁺, and these cultures were grown at 37 °C and 200 rpm to the exponential phase. Total RNA from both groups (each group has three replicates) were extracted using a TRIzol kit (TIANGEN Biotech) according to the manufacturer's instructions. Total RNA of B. vietamensis 151–6 and B. marisflavi 151–25 were isolated as described above under RNA sequencing. cDNA samples were prepared using Transcript One-Step gDNA Removal and cDNA Synthesis SuperMix (TransGen Biotech, Beijing, China) with random primers according to the manufacturer’s instructions. qRT-PCR was performed using the ChamQ Universal SYBR qPCR Master Mix (Vazyme Biotech, Ipswich, MA, USA). TruSeq Stranded Total RNA was prepared with the Ribo-Zero™ Bacteria Kit (Epicenter, Madison, WI, USA). The clustering of index-coded samples was performed on a cBot Cluster Generation System using the TruSeq HiSeq 4000 PE 150 Cluster Kit (Illumina, San Diego, CA, USA) according to the manufacturer’s instructions. After cluster generation, the prepared libraries were sequenced on the Illumina HiSeq 4000 platform by Allwegen Technology (Beijing, China) and 150-bp paired-end reads were generated. Bowtie2 was used to map mRNA reads to the genome, and HTSeq v 0.5.4 p3 was used to count the number of reads mapped to each gene. Then, the fragments per kilobase of exon model per million mapped reads (FPKM) of each gene was calculated based on the length of, and read count mapped to, the gene [43].

Elimination of plasmids

Plasmid elimination was performed using SDS, as previously described [44], with some modifications. Specifically, B. vietamensis 151–6 and B. marisflavi 151–25 were treated with 0.0005 and 0.002% SDS, respectively. Single colonies were selected on LB agar plates to screen for strains that had eliminated the p6 plasmid or the p25 plasmid. Primers 4108CDS-F/4108CDS-R and 4109CDS-F/4109CDS-R (Additional file 2: Table S2) were used to identify gene located on the chromosome of B. vietamensis 151–6. The primer pairs 4963CDS-F/4963-CDS-R, 4967CDS-F/4967CDS-R, 4982CDS-F/4982CDS-R, 4983CDS-F/4983CDS-R, 5014CDS-F/5014CDS-R and 5018CDS-F/5018CDS-R (Additional file 2: Table S2) were employed to identify genes located on the chromosome of B. vietamensis 151–6 and B. marisflavi 151–25, the primers 4163CDS-F and 4163CDS-R (Additional file 2: Table S2) were used to identify genes located on the chromosome, while the primer pairs 4779CDS-F/4779-CDS-R, 4780CDS-F/4780CDS-R and 4803CDS-F/4803CDS-R (Additional file 2: Table S2) were used to detect the p25 plasmid (Additional file 10: Figure S5). Meanwhile, the primers for quantitative reverse transcription-polymerase chain reaction (qRT-PCR) (Additional file 2: Table S2) located on plasmid p25 were also used to detect the plasmid (Additional file 10: Figure S5).

RT-PCR and qRT-PCR

Total RNA of B. vietamensis 151–6 and B. marisflavi 151–25 were isolated as described above under RNA sequencing. cDNA samples were prepared using Transcript One-Step gDNA Removal and cDNA Synthesis SuperMix (TransGen Biotech, Beijing, China) with random primers according to the manufacturer’s instructions. qRT-PCR was performed using the ChamQ Universal SYBR qPCR Master Mix (Vazyme Biotech,
Beijing, China) according to the manufacturer’s instructions. 16S rRNA, amplified with the primers 16S-F/16S-R, was used as an internal control. All reactions were performed in biological triplicate, and the normalized fold changes of the relative expression ratios were quantified using the 2^{-ΔΔCT} method [45].

Construction and screening of an B. vietamensis 151–6 genomic fosmid library
High-molecular-weight genomic DNA from B. vietamensis 151–6 was extracted using the bacterial genomic DNA extraction kit (BioTeke Biotech, Beijing, China) according to the manufacturer’s instructions. And a fosmid library was constructed with the CopyControl Fosmid Library Production Kit (vector pCC1FOS; Epicentre, Madison, WI, USA) according to the manufacturer’s instructions. A total of 1204 clones were used to construct the library in 13 96-well plates. To screen for clones with Cd^{2+} resistance, overnight cultures of the 1204 clones were inoculated into LB liquid medium with 1.0 mM and 1.2 mM Cd^{2+}, respectively. Meanwhile, these clones were spotted onto LB agar plates with 1.2 mM and 1.5 mM Cd^{2+}. Fosmid DNA was isolated from the positive fosmid clones by Axyprep Plasmid Miniprep Kit (Axygen, USA) and sequenced by pCC1 sequencing shuttle vector pUBC19, respectively. The gene fragment 3444-bp Sac I-Xba I DNA fragment amplified from B. vietamensis 151–6 genome with the primers 4111–4112-4113-F/4111–4112-4113-R (Additional file 2: Table S2), containing copper-translocating P-type ATPase gene (orf4111), cadmium efflux system accessory gene cadC (orf4112), cadmium resistance gene cadD (orf4113) and 217-bp upstream of orf4113, was cloned into E. coli pUC19 vector and E. coli-B. subtilis shuttle vector pUBC19, respectively. The gene fragments 4087–4088, 4093–4094-4095, 4102–4103 and 4108–4109 amplified from B. vietamensis 151–6 genome with corresponding primers (Additional file 2: Table S2) were also cloned into pUC19 and pUBC19. For B. marisflavi 151–25, the gene fragments 4774–4775, 4776–4777, 4779–4780, 4781–4782 and 4802–4803 amplified from plasmid p25 of B. marisflavi 151–25 with the corresponding primers (Additional file 2: Table S2) were cloned into pUC19 and pUBC19. The ligation mixture was transformed into E. coli TOP10, and the correct plasmids were identified through colony PCR with corresponding sequencing primers (Additional file 2: Table S2). After confirmation via sequencing, recombinant pUBC19 plasmids were extracted from E. coli TOP10 and transformed into B. subtilis, as described previously [46]. Transformants were harvested by screening the clones on LB agar containing 10 μg/mL kanamycin, and the correct plasmids were verified through colony PCR with the pUBC19 sequencing primers CX-F/CX-R (Additional file 2: Table S2).

MIC-Cd and growth curve determination
MIC-Cd and the growth curve of plasmid-eliminated strains and wild strains of B. vietamensis 151–6 and B. marisflavi 151–25 were determined as described above in 2.3. MIC-Cd values for the recombinant strains of E. coli TOP10 and B. subtilis were also evaluated using 96-well microtiter plates, as described in 2.3.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s12866-020-1705-2.
Additional file 17: Figure S12. The hypothetical cad system model of B. marisflavi 151–25

Abbreviations
Cd: Cadmium; MIC: Minimum inhibitory concentration; MIC-Cd: Minimum inhibitory concentration of Cd^{2+}

Acknowledgments
We would like to thank all colleagues in our lab for constructive discussion and technical support.

Authors’ contributions
XY, JT, NW and YF conceived and coordinated the study and wrote the paper. XY, JX, and NW designed, performed and analyzed the experiments. ZD, YJ, JZ and XL provided technical assistance and contributed to the preparation of the figures. All authors reviewed the results and approved the final version of the manuscript.

Availability of data and materials
The B. vietamensis 151–6 chromosome and plasmid p6, also the chromosomal and p25 plasmid sequences of B. marisflavi 151–25 have been deposited in GenBank of NCBI. The BioProject IDs of B. vietamensis 151–6 and B. marisflavi 151–25 in NCBI were PRJNA545803 and PRJNA490129, respectively. If you have any problems accessing the data, you can ask the corresponding author for help.

Ethics approval and consent to participate
Corresponding author for help.

Consent for publication
Not applicable.

Competing interests
Not applicable.

Author details
1Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China. 2College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China.

Received: 28 June 2019 Accepted: 13 January 2020
Published online: 21 January 2020

References
1. Abdu N, Abdullahi AA, Abdulkadir A. Heavy metals and soil microbes. Environ Chem Lett. 2016;14(1):65–84.
2. Liu X, Tian G, Jiang D, Zhang C, Kong L. Cadmium (Cd) distribution and contamination in Chinese paddy soils on national scale. Environ Sci Pollut Res Int. 2016;23(18):17941–52.
3. Satarug S, Baker JR, Urbenjapol S, Haswell-Elkins M, Reilly PEB, Williams DJ, Moore MR. A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol Lett. 2003;137(1–2):65–83.
4. Lehrheine F, Dirollon D, David E, Piroetto S, Baude J, Foulon J, Harfouche L, Vallon L, Poulain J, Da Silva C, et al. Soil metatranscriptomics for mining eukaryotic heavy metal resistance genes. Environ Microbiol. 2013;15(10):2829–40.
5. Op De Beeck M, Lievens B, Busschaert P, Rinneo F, Smits M, Vangronsveld J, Colpaert JV. Impact of metal pollution on fungal diversity and community structures. Environ Microb. 2015;17(6):2035–47.
6. Feng G, Xie T, Wang X, Bai J, Tang L, Zhao H, Wei W, Wang M, Zhao Y. Metagenomic analysis of microbial community and function involved in cd-contaminated soil. BMC Microbiol. 2018;18(1):11.
7. Rehman MZU, Rizwan M, Hussain A, Saqib M, Ali S, Sohail MI, Shafiq M, Haifeez F. Alleviation of cadmium (Cd) toxicity and minimizing its uptake in wheat (Triticum aestivum) by using organic carbon sources in Cd-spiked soil. Environ Pollution (Barking, Essex : 1987). 2018;241:557–65.
8. Liu L, Li W, Song W, Guo M. Remediation techniques for heavy metal-contaminated soils: principles and applicability. Sci Total Environ. 2018;633:206–19.
9. Jacob JM, Kartich C, Saratate RG, Kumar SS, Prabaker D, Kadivelu K. Pugazhendhi A. Biological approaches to tackle heavy metal pollution: a survey of literature. J Environ Manage. 2018;217:56–70.
10. Emenike CU, Jayanthi B, Agamuthu P, Fauziah SH. Biotransformation and removal of heavy metals: a review of phytoremediation and microbial remediation assessment on contaminated soil. Environ Rev. 2018;26(2):156–68.
11. Peng W, Li X, Song J, Jiang W, Liu Y, Fan W. Biotransformation of cadmium-and zinc-contaminated soil using Rhodobacter sphaeroides. Chemosphere. 2018;197:33–41.
12. Gillan DC. Metal resistance systems in cultivated bacteria: are they found in complex communities? Curr Opin Biotechnol. 2016;38:123–30.
13. Yu X, Wei S, Yang Y, Ding Z, Wang Q, Zhao J, Liu X, Chu X, Tian J, Wu N, et al. Identification of cadmium-binding proteins from oyster (Oyza sativa L.). Int J Biol Macromol. 2018;119:597–603.
14. Kubkovskaia T. Inorganic polyphosphates and heavy metal resistance in microorganisms. World J Microbiol Biotechnol. 2018;34(9):139.
15. Abbas SZ, Rafatullah M, Hossain K, Ismail N, Tajarudin HA, Khalil H. A review on mechanism and future perspectives of cadmium-resistant bacteria. Int J Environ Sci Technol. 2018;15(1):243–62.
16. Reddy MS, Kour M, Agganwal S, Ahuja S, Marmeisse R, Frasissen-Tachet L. Metal induction of a Pilosulfur albus metallohehionine and its potential involvement in heavy metal tolerance during mycorhizal symbiosis. Environ Microbiol. 2016;18(8):2446–54.
17. Bruins MR, Kapil S, Oehme FW. Microbial resistance to metals in the environment. Ecotoxicol Environ Saf. 2000;45(3):198–207.
18. Nies DH, Nies A, Chu L, Silver S. Expression and nucleotide sequence of a plasmid-determined divalent cation efflux system from Alcaligenes eutrophus. Proc Natl Acad Sci U S A. 1989;86(19):7351–5.
19. Nucifora G, Chu L, Misra TK, Silver S. Cadmium resistance from Staphylococcus aureus plasmid p258 cadA gene results from a cadmium-efflux ATPase. Proc Natl Acad Sci U S A. 1989;86(10):3544–8.
20. Moore CM, Gaballa A, Hui M, Ye RW, Helmann JD. Genetic and physiological responses of Bacillus subtilis to metal ion stress. Mol Microbiol. 2005;57(1):27–40.
21. Parsons C, Lee S, Jayeola V, Kathariou S. Novel Cadmium Resistance Determinant in Listeria monocytogenes. Appl Environ Microbiol. 2017;83(5):e02580–16.
22. Khan Z, Nisar MA, Hussain SZ, Arshad MN, Rehman A. Cadmium resistance mechanism in Escherichia coli P4 and its potential use to bioremediate environmental cadmium. Appl Microbiol Biotechnol. 2015;99(24):10745–57.
23. Delis L, Dong Q, van der Lee D, Baiyens W, Mergeay M. The czc operon of Alcaligenes eutrophus: from resistance mechanism to the removal of heavy metals. J Ind Microbiol. 1995;14(2):142–53.
24. Nies DH. Resistance to cadmium, cobalt, zinc, and nickel in microbes. Plasmid. 1992;27(1):17–28.
25. Rensing C, Pribyl T, Nies DH. New functions for the three subunits of the CzcCBA cation-proton antiporter. J Bacteriol. 1997;179(2):6871–9.
26. Yu X, Wei S, Yang Y, Ding Z, Wang Q, Zhao J, Liu X, Chu X, Tian J, Wu N, et al. Cadmium-binding proteins from oyster (Oyza sativa L.). Int J Biol Macromol. 2018;119:597–603.
27. Yoon KP, Silver S. A second gene in the Staphylococcus aureus cadA cadmium resistance determinant of plasmid pI258. J Bacteriol. 1991;173(23):7636–42.
28. Silver S, Phung LT. Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol. 1996;50:753–89.
29. Yoon KP, Misra TK, Silver S. Regulation of the cadA cadmium resistance determinant of Staphylococcus aureus plasmid pI258. J Bacteriol. 1991;173(23):7643–9.
30. Saha RP, Samanta S, Patra S, Sarkar D, Saha A, Singh MK. Metal homeostasis in bacteria: the role of ArsR-SmtB family of transcriptional repressors in combating varying metal concentrations in the environment. Biometals. 2017;30(4):459–503.
31. Buskenlehner LS, Pennella MA, Giedroc DP. The Smr family of metalloregulatory transcriptional repressors: structural insights into prokaryotic metal resistance. FEMS Microbiol Rev. 2003;27(2–3):131–43.
32. Endo G, Silver S, CadC, the transcriptional regulatory protein of the cadmium resistance system of Staphylococcus aureus plasmid pI258. J Bacteriol. 1995;177(15):4437–41.
32. Wang A, Crowley DE. Global gene expression responses to cadmium toxicity in Escherichia coli. J Bacteriol. 2005;187(9):3259–66.
33. Rensing C, Mitra B, Rosen BP. The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase. Proc Natl Acad Sci U S A. 1997;94(26): 14326–31.
34. Ye J, Kandegedara A, Martin P, Rosen BP. Crystal structure of the Staphylococcus aureus pl258 CadC Cd(II)/Pb(II)/Zn(II)-responsive repressor. J Bacteriol. 2005;187(12):4214–21.
35. Shafique M, Jawaid A, Rehman Y. As(V) reduction, as(III) oxidation, and Cr(VI) reduction by multi-metal-resistant Bacillus subtilis, Bacillus safensis, and Bacillus cereus species isolated from wastewater treatment plant. Geomicrobiology. 2016;34(8):00.
36. Lee YK, Kim HW, Liu CL, Lee HK. A simple method for DNA extraction from marine bacteria that produce extracellular materials. J Microbiol Methods. 2003;52(2):245–50.
37. Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 2010;20(2):265–72.
38. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25(5):955–64.
39. Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007;35(9):3100–8.
40. Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 2001;29(12):2607–18.
41. Li W, Jaroszewski L, Godzik A. Tolerating some redundancy significantly speeds up clustering of large protein databases. Bioinformatics (Oxford, England). 2002;18(1):77–82.
42. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet. 2000;25(1):25–9.
43. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5(7):621–8.
44. El-Mansi M, Anderson KJ, Inche CA, Knowles LK, Platt DJ. Isolation and curing of the Klebsiella pneumoniae large indigenous plasmid using sodium dodecyl sulphate. Res Microbiol. 2000;151(3):201–8.
45. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−ΔΔC(T)) Method. Methods (San Diego, Calif). 2001;25(4):402–8.
46. Yu X, Xu J, Liu X, Chu X, Wang P, Tian J, Wu N, Fan Y. Identification of a highly efficient stationary phase promoter in Bacillus subtilis. Sci Rep. 2015;5:18405.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.