 אנטיפלסים גמביאים: база данных генов Anopheles gambiae с интегрированными алгоритмами для идентификации сохраненных ДНК-мотивов в промоторных последовательностях

Сумуду Н. Дисанаяке 1, Освалдо Маринотти 1, Демокасис К. Рibeiro 2 и Антуан А. Джеймс* 1,3

Адрес: 1Отдел Молекулярной Биологии и Биохимии, Университет Калифорнии, Ириден, CA 92697, USA, 2Лаборатория Мalaria и Векторных Исследований, Национальные Институты Здравоохранения (NIH/NIAID), Роквилл, MD 20852, USA и 3Отдел Микробиологии и Молекулярной Генетики, Университет Калифорнии, Ириден, CA 92697, USA

Электронные адреса: Сумуду Н. Дисанаяке - sdissana@uci.edu; Освалдо Маринотти - omarinot@uci.edu; Демокасис К. Рibeiro - jribeiro@niaid.nih.gov; Антуан А. Джеймс* - aajames@uci.edu

* Корреспондирующий автор

Абстракт

Описание: Мы предоставляем публично-доступную базу данных и интегрированную метаданных, angaGEDUCI, которая объединяет 1) структурно- и тканево-специфический микроАРГ измерений генов An. gambiae при различных этапах развития и временных сепараций после кормления, 2) функциональную генотегизацию, 3) геномные последовательности данных, и 4) промоторные последовательности сравнения алгоритмов. База данных может быть использована для изучения генов, которые экспрессируются в определенных стадиях, тканях, и паттернах интереса, и идентификации сохраненных промоторных последовательностей, которые могут играть роль в регуляции таких экспрессий. База данных доступна по адресу http://www.angaged.bio.uci.edu.

Заключение: Сочетание генов, функций и последовательности данных с интегрированными последовательностями алгоритмов, angaGEDUCI, упрощает поиск пространственно-временных паттернов и позволяет делать прогнозы и планировать эксперименты, позволяющие оценить, как генетическая экспрессия может контролироваться на молекулярном уровне.
efforts to meet these expectations, we generated and organized large data sets using gene expression microarrays to quantify genome-wide transcription in different developmental stages and tissues of this mosquito [3,4]. Arrangement of these data into a searchable format has streamlined the elucidation of genes expressed with stage-, tissue-, and sex-specificity. In addition, by juxtaposing these microarray findings with DNA comparative algorithms, the regulation of genes co-ordinately expressed in specific spatial and temporal patterns can be studied at a mechanistic level. We provide here a public database and web-based data-mining tool that combine stage and tissue expression microarray data, functional annotation, and regulatory DNA sequence comparison algorithms to provide insight into gene expression and regulation in An. gambiae.

Construction and content

Data collection

Stage-specific transcriptional signal values were imported from genome-wide microarray analyses of An. gambiae larvae, male sugar-fed adults, female sugar-fed adults, and female blood-fed adults 3, 24, 48, 72, 96 hours and 15 days after a bloodmeal using Affymetrix GCOS software. Values from tissue-specific microarray analyses also were imported using GCOS to quantify genome-wide transcription in fat bodies, midgut, and ovaries at 24 hours after bloodfeeding [3,4]. Functional gene annotation was imported from the Ano-Xcel database [5] to populate angaGEDUCI with keywords and annotation from the ENSEMBL, NCBI non-redundant, GO, PFAM, and SMART databases. Promoter sequences were selected as regions 1.5 kilobases (kb) in length adjacent to the 5'-ends of transcription start sites of genes using genomic data from ENSEMBL (Assembly: AgamP3, Feb 2006; Genebuild: VectorBase, Feb 2006; Database version: 37.3). Transcription factor binding sites from several classes of organisms were imported from the Transcription Factors Database (TFD) available publicly at ftp://ftp.ncbi.nih.gov/repository/TFD/datasets/. Of the 7,066 sites listed in TFD, 6639 (94.0%) are eight nucleotides or longer and 623 (8.82%) contain degenerate notation. Five-hundred and eleven sites in the database were identified in insects (7.23%), of which 499 (97.7%) are eight nucleotides or longer, and 34 (6.65%) contain degeneracy.

Implementation

The data have been stored as a MySQL relational database that is accessible directly through an Apache web server. A web-based data mining interface is used to manage queries to identify genes that meet specific expression, keyword, and sequence criteria (Figure 1). A sequence comparison program based on the Boyer-Moore algorithm [6] is built into the data-mining interface for comparison of promoter regions of genes within a selected gene set.

Data retrieval

The main page of the database provides hyperlinks to: Filter Database, Import Gene Set, Download Data, View Database, Submit Study, Documentation, and Contact. Selection of the Filter Database link opens the data-mining interface and allows users to focus on specific genes that satisfy input criteria based on: 1) stage- and tissuespecific expression, 2) annotated keywords, 3) DNA sequences present in promoter, 3' untranslated regions (UTR), or coding regions, or 4) presence of specific transcription factor binding sites (Figure 1). Queries are conducted by stepwise entry of input criteria with each query imposed on the previous so that all genes currently displayed meet all preceding query criteria as well as the criterion that was last entered. Once a gene set of interest has been selected, users then can use the analysis menu in the interface to search for conserved DNA motifs within the promoters of the gene set, view expression profiles, build a distribution of annotated keywords, or export the set for future retrieval (Figure 2). Detailed annotation and expression data for each gene also can be viewed at any time by selecting the gene identifier link to invoke the description of a gene entry.

Description of a gene entry

Each gene has a corresponding data page that can be accessed by selecting the gene identifier link during data retrieval. Gene entry pages display data from microarray expression analyses for stage- and tissue-specific expression and functional annotation as gathered by Ano-Xcel from ENSEMBL, NCBI non-redundant, GO, PFAM, and SMART databases (Figure 3). A link to the Vectorbase database that contains additional, centralized gene data also is provided on each entry page. User-contributed notes and a form for sharing notes for a gene entry are found below the annotation of each gene. To encourage data sharing, note submission does not require user pre-registration.

Comparing promoters to identify conserved DNA sequence motifs

After clustering genes into gene sets that show similar patterns of expression, the data-mining interface analysis menu can be used to search for common DNA motifs that may act as regulatory sequences in coordinating these expression patterns. Two parameters must be selected to begin the analysis: 1) motif match length: the desired conserved sequence motif length to search for in the analysis, 2) mismatches: the number of base mismatches allowed between two nearly-conserved sequence motifs without disqualification.
The resulting output from the analysis contains three parts. First, a comparison matrix is displayed indicating the number of conserved motifs found in each pair-wise comparison among every gene in the gene set (Figure 4).

The data-mining interface allows users to select a gene set that meets specific expression, keyword, and sequence criteria. Input fields include a) differential expression quantified from stage- and tissue-specific expression microarray analyses, b) keywords included in functional annotation gathered by Ano-Xcel [5] from the ENSEMBL, NCBI non-redundant, PFAM, GO, and SMART databases, and c) presence of transcription factor binding sites and other conserved DNA sequences contained within promoter, 3’ UTR, or coding regions of the An. gambiae genome. Each filter is imposed on the current gene set being examined, beginning with the entire An. gambiae genome, thus selecting and reducing the gene set in a stepwise fashion as genes matching previous filter criteria are eliminated by subsequent filters. The parameters specified here are those that are used in the prophenoloxidase case study described in the text.

Figure 1
Data-mining interface. The “Filter database” data-mining interface allows users to select a gene set that meets specific expression, keyword, and sequence criteria. Input fields include a) differential expression quantified from stage- and tissue-specific expression microarray analyses, b) keywords included in functional annotation gathered by Ano-Xcel [5] from the ENSEMBL, NCBI non-redundant, PFAM, GO, and SMART databases, and c) presence of transcription factor binding sites and other conserved DNA sequences contained within promoter, 3’ UTR, or coding regions of the An. gambiae genome. Each filter is imposed on the current gene set being examined, beginning with the entire An. gambiae genome, thus selecting and reducing the gene set in a stepwise fashion as genes matching previous filter criteria are eliminated by subsequent filters. The parameters specified here are those that are used in the prophenoloxidase case study described in the text.

Figure 2
Gene set with analysis menu. The six transcripts comprising the prophenoloxidase case study gene set, listed by ENSANGT identifiers, are shown in the background. The link to each transcript invokes a gene entry page, an example of which is represented in Figure 3. The analysis drop-down menu allows users to execute a search for conserved DNA sequence motifs in the promoter regions of the six genes in this gene set, build a keyword distribution from the functional annotation of these genes, display expression profiles of genes in the set, export promoter, 3’ UTR, or cDNA sequences of the genes in FASTA format, or export the gene set.
Each link in the matrix invokes a new page that prints the promoter sequences of the two genes being compared with areas of sequence conservation and transcription factor binding sites highlighted (Figure 5). Second, a table of the conserved motifs is displayed that compares the frequency of occurrence of each conserved motif within the gene set against the frequency of each motif in all 1) exons, 2) exons and introns, and 3) promoters within the *An. gambiae* genome (Figure 6). Each motif that matches or contains a transcription factor binding site is indicated in the same output. The third item displayed is a table indicating the frequency of occurrence of each transcription factor binding site of any size found within the gene set (Figure 7). Due to the degeneracy and varied size of transcription factor binding sites in the TFD database, the frequencies reported here are noticeably higher in this item compared to the frequencies in the conserved motif table that precedes it.

![Figure 3](image-url)
Figure 3
Gene entry for one transcript. Complete gene description for one transcript, ENSANGT00000011456. Each entry displays the developmental expression profile built for the transcript from stage- and tissue-specific microarray analyses, followed by a link to Vectorbase and functional annotation gathered by Ano-Xcel [5] from the ENSEMBL, NCBI non-redundant, PFAM, GO, and SMART databases. The bottom of each entry includes user-contributed notes if they are available, as well as a form for users to submit their own notes for immediate listing.

![Figure 4](image-url)
Figure 4
Promoter comparison matrix. Each transcript in the current gene set is displayed in a matrix indicating the number of conserved motifs found between each transcript when compared pair-wise with every other transcript within the gene set. The matrix shown corresponds to the prophenoloxidase case study gene set, with the promoter regions of the six transcripts being compared to search for conserved DNA sequence motifs that are 12 nucleotides in length, with no mismatched bases allowed. Each link in the matrix invokes the sequence comparison output shown in Figure 5.
Visualization of transcription profiles

The transcription profiles for a gene set can be viewed in batch by using the analysis menu from the data-mining interface after a gene set has been selected. The resulting graphs print transcriptional expression according to developmental stage: larvae, male sugar-fed adults, female sugar-fed adults, and female blood-fed adults 3, 24, 48, 72, 96 hours and 15 days after a bloodmeal (Figure 8).

Keyword distribution

A keyword distribution listing all keywords found in a gene set, as gathered by Ano-Xcel [5], and their respective frequency of occurrence, can be constructed by using the analysis menu from the data-mining interface (Figure 9).

Import gene set

A gene set can be imported by entering a list of gene identifiers in ENSANGG, ENSANGP, ENSANGT, Probeset ID, or Celera form, or by choosing from a list of pre-defined gene sets. Pre-defined gene sets consist of groups of genes that have been linked to similar function or regulation in existing literature (Figure 10). Users can submit gene sets for automatic and immediate listing as a pre-defined gene set from the same page. Gene sets can be exported from the data-mining interface by using the analysis menu.

Submit a microarray study

The angaGEDUCI database has the capacity to store and integrate additional Affymetrix microarray studies that examine gene expression in *An. gambiae*. The Submit Study link provides a short form for uploading microarray data and specifications.

Utility and Discussion

The angaGEDUCI database identifies genes that meet stage- and tissue-specific expression criteria, and incorporates keyword searching and promoter sequence analysis into one unified data-mining tool. A case study best illustrates the utility of this integration. In this example, we will identify genes linked to the complex regulation of phenoloxidase, an enzyme involved in the melanization of invading parasites and micro-organisms as part of...
specifically, we will search for pro-phenoloxidase genes that are preferentially
found in fat bodies and expressed highly three hours after
bloodfeeding. Three filters will be used to complete this
inquiry (Figure 1). First, a filter selects genes that contain
the keyword "prophenoloxidase" in their functional
annotation. Eighty-eight of the 13,639 transcripts in the
An. gambiae
genome contain this keyword. Second, a
stage-specific filter identifies 14 of these 88 transcripts that
show 5-fold up-regulated expression three hours after
bloodfeeding (BF3h) as compared to sugared mosquitoes
(NBF). Third, a tissue-specific filter isolates six of
these 14 transcripts that are expressed 5-fold higher in fat
bodies as compared to their corresponding expression in
the midgut and ovaries (Figure 2).

The analysis menu can be used with this gene set of interest
to search for common DNA sequence motifs that occur
within the promoter regions of the genes corresponding
to these transcripts. Analysis of the promoter regions of
the six prophenoloxidase-related genes shows the
occurrence of 14 conserved 12-basepair DNA sequence motifs
(Figure 6). Of these 14 motifs, 10 match known transcription
factor binding sites while the other four do not. Addi-
tional motifs of interest can be found by executing the
promoter analysis as a search for a conserved motif length
less than 12 nucleotides or by specifying a
number of mismatches that may be allowed within a
nearly-conserved but imperfectly-matching motif. Depending on how these parameters are adjusted, the output from the promoter analysis of a gene set may generate more or less conserved motifs, as well as a different number of motifs that are or are not matched to known transcription factor binding sites. A survey of the data produced with different specifications of these parameters in the analysis of the prophenoloxidase gene set is included

motif	#genes	count	cdna/cdna-fold	#genes	gene-fold	prom-fold	factors	genes	
AGGACGACTTACA	2	2	0.04	923.25	1.47	22.67	1.11	36.39	ENOSFP00000011456
AGAGCTACAAATC	2	2	0.01	3333	0.1	3333	0.05	866.6	ENOSFP00000019999
AATTTATCTTAT	2	2	0.01	3333	0.06	1111	0.04	833.25	ENOSFP00000011456
ATGGGCTTATGA	2	2	0.04	3333	0.67	476.14	0.02	183.8	ENOSFP00000011456
CATTATACCTG	2	2	0.01	3333	0.04	3333	0.01	3333	ENOSFP00000011456
CGGICAACATCA	2	2	0.01	3333	0.12	277.75	0.01	3333	ENOSFP00000011456
GACGACTGTACC	2	2	0.07	476.14	1.36	23.98	1.1	39.3	ENOSFP00000011456
GATCTCGTATG	2	2	0.01	3333	0.04	3333	0.01	3333	ENOSFP00000011456
OCAAAATCAMA	2	2	0.01	3333	0.61	1111	0.05	866.6	ENOSFP00000011456
TTAGACACCA	2	2	0.01	3333	0.06	3333	0.05	866.6	ENOSFP00000011456
OTATTGCATATC	2	2	0.01	3333	0.02	1006.5	0.02	183.8	ENOSFP00000011456
TAAGGCGAAA	2	2	0.01	3333	0.63	1111	0.04	833.25	ENOSFP00000011456
TCGCAACTATA	2	2	0.01	3333	0.04	3333	0.02	1111	ENOSFP00000011456
TTAATGATGTC	2	2	0.02	1006.5	0.05	866.6	0.04	833.25	ENOSFP00000011456

Figure 6
Conserved DNA sequence motifs in putative promoter regions. Analysis output from comparing putative promoter regions of the six prophenoloxidase transcripts identified in the case study, searching for conserved DNA sequence motifs that are 12 nucleotides in length with no mismatches allowed. Each conserved DNA sequence (motif) is followed by the number of genes (#genes) within the gene set where this motif was found, the total occurrences of the motif (count), taking into account that some genes may contain multiple instances of a motif, the corresponding frequency (%set) of occurrence of this motif within the current gene set, the frequency of occurrence of the motif within: all cDNAs (%cdna), all genes (including introns) (%gene), and all promoters (%prom), in the An. gambiae genome, and the fold difference between the frequency of occurrence of the motif in this gene set as compared to its frequency in all cDNAs (cdna-fold), all genes (gene-fold), and all promoter regions (prom-fold), in the An. gambiae genome. Each transcription factor binding site that matches or occurs within a conserved motif is indicated (factors), along with the class of organism in which the binding site was described originally. Motifs that do not match or contain a known transcription factor binding site are highlighted in orange. The gene identifiers containing each sequence motif are shown in the last column (genes).
in Figure 11 to aid users in choosing parameters that are most appropriate for their particular investigation.

Conclusion

While existing databases may allow individualized searching by expression, keyword, or sequence criteria, it is the unification of these fields that makes angaGEDUCI a unique facilitator of experimental design. The database may be used in many different ways, but perhaps most useful is the ability to use the stage- and tissue-specific expression microarray data to identify genes that are expressed in spatial and temporal patterns of interest and then compare the promoter regions of such genes to investigate putative means of facilitating such expression. The experimentally validated utility of such applications may pave the way for similar investigations into the regulatory role of conserved DNA sequence motifs in other control regions within the genome, such as putative microRNA target sites that may be found in 3' UTRs.

In addition to its current microarray data based on genome-wide tissue- and stage-specific gene expression, angaGEDUCI has been built with the goal of expanding its scope to house, integrate, and display additional microarray studies of *An. gambiae*. For example, Affymetrix microarray data from a study investigating gene expression in *An. gambiae* following infection with *Plasmodium falciparum* can be integrated with the existing data in the database to produce a clearer picture of how the mosquito responds to parasite challenge at the transcriptional level. This flexibility assures that angaGEDUCI is capable of growing alongside the increasing quantity of data being produced from other studies. By working closely with Vectorbase and other laboratories in this way, it is hoped that angaGEDUCI will act as a catalyst in accelerating the study and understanding of gene expression and regulation in this important and devastating vector of disease.

Availability and requirements

The *Anopheles gambiae* Gene Expression Database at UCI is publicly accessible from the URL: http://www.angaged.bio.uci.edu. Questions and comments are welcomed through the site.

Authors' contributions

SND designed and implemented the website, database, and promoter analysis algorithms and wrote the principal
Developmental expression profiles. Gene expression profiles measuring transcriptional signal values from stage-specific microarray analyses of the six prophenoloxidase case study transcripts. The stages shown are larvae (L), male (M), sugar-fed adult female (NBF), and blood-fed adult female 3, 24, 48, 72, 96 hours, and 15 days after bloodmeal (BF3h-BF96h, BF15d).
Figure 9

Keyword distribution. A distribution of keywords gathered by Ano-Xcel [5] from the ENSEMBL, NCBI non-redundant, PFAM, GO, and SMART databases for genes in the prophenoloxidase case study gene set. The number of occurrences corresponds to the number of genes in the gene set that contain the keyword.
putative promoter sequences and constructed the Ano-Xcel database. AAJ assisted in the editing of the manuscript.

Acknowledgements
The authors thank Dr. Norman Jacobson for his advice and Lynn Olson for help in preparing the manuscript. This work was supported by a grant from the National Institutes of Health (AI29746 to AAJ).

References
1. Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, Wincker P, Clark AG, Ribeiro JMC, Wides R, Salzberg SL, Loftus B, Yandell M, Majoros WH, Rusch DB, Lai Z, Kraft CL, Abril JF, Anthouard V, Arensburger P, Atkinson PW, Baden H, de Berardinis V, Baldwin D, Benes V, Biedler J, Blass C, Bolanos R, Boscus D, Barnstead M, Cai S, Center A, Chaturvedi K, Christophides GK, Chrysalis MA, Clamp M, Cravchik A, Curwen V, Dana A, Delcher A, Dew I, Evans CA, Flanigan M, Grundschober-Freimoser A, Friedli L, Gu Z, Guan P, Guigo R, Hillenmeyer ME, Hladun SL, Hogan JR, Hong YS, Hoover J, Jallon O, Ke Z, Kodira C, Kokoza E, Koutsos A, Letunic I, Levitsky A, Lin J, Lobo NF, Lopez JR, Malek JA, Mcintosh TC, Meister S, Miller J, Mobarry C, Mongin E, Murphy SD, O'Brochta DA, Pfannkoch C, Qi R, Regier MA, Remington K, Shao H, Shakhova MV, Sitter CD, Shetty J, Smith TJ, Strong R, Sun J, Thomasova D, Ton LQ, Topalis P, Tu Z, Unger MF, Waten B, Wang A, Wang J, Wang M, Wang X, Woodford KK, Wortman JR, Wu M, Yao A, Zdobnov EM, Zhang H, Zhao Q, Zhao S, Zhu SC, Zhimulev I, Coluzzi M, della Torre A, Roth CW, Louis C, Kalush F, Mural RJ, Myers EW, Adams MD, Smith HO, Broder S, Gardner MJ, Fraser CM, Bork P, Brey PT, Venter JC, Weissenbach J, Kafatos FC, Collins FH,
Figure 11
Promoter analysis results with different parameter specifications. Different numbers of conserved DNA sequence motifs found by the promoter analysis algorithm when different parameters were specified (x-axis: length in basepairs [bp]; number of mismatches allowed [mm]). Numbers of conserved motifs (Y-axis) that match known transcription factor binding sites are shown in green, with motifs that do not match known sites shown in orange.

Hoffman SL: The genome sequence of the malaria mosquito Anopheles gambiae. Science 2002, 298:129-49.
2. Hill CA, Kafatos FC, Stansfield SK, Collins FH: Arthropod-borne diseases: vector control in the genomics era. Nat Rev Microbiol 2005, 3:262-268.
3. Marinotti O, Nguyen QK, Calvo E, James AA, Ribeiro JMC: Microarray analysis of genes showing variable expression following a bloodmeal in Anopheles gambiae. Insect Mol Biol 2005, 14:365-373.
4. Marinotti O, Calvo E, Nguyen QK, Dissanayake S, Ribeiro JMC, James AA: Genome-wide analysis of gene expression in adult Anopheles gambiae. Insect Mol Biol 2006, 15:1-12.
5. Ribeiro JM, Topalis P, Louis C: AnoXcel: an Anopheles gambiae protein database. Insect Mol Biol 2004, 13:449-457.
6. Boyer RS, Moore JS: A fast string searching algorithm. Communications of the ACM 1977, 20:762-772.
7. Cerenius L, Söderhäll K: The phenoloxidase-activating system in invertebrates. Immunol Rev 2004, 198:116-126.
8. Dimopoulos G: Insect immunity and its implication in mosquito-malaria interactions. Cell Microbiol 2003, 5:3-14.
9. Li J, Riehle MM, Zhang Y, Xu J, Oduol F, Gomez SM, Egelmeier K, Ueberheide BM, Shabanowitz J, Hunt DF, Ribeiro JM, Vernick KD: Anopheles gambiae genome reannotation through synthesis of ab initio and comparative gene prediction algorithms. Genome Biol 2006, 7:R24.