S1 File. PRISMA 2020 Checklist

Section and Topic	Item #	Checklist item	Location where item is reported
TITLE			
Title	1	Identify the report as a systematic review.	Page 1
ABSTRACT			
Abstract	2	See the PRISMA 2020 for Abstracts checklist.	Page 2
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of existing knowledge.	Page 4
Objectives	4	Provide an explicit statement of the objective(s) or question(s) the review addresses.	Page 5
METHODS			
Eligibility criteria	5	Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.	Pages 6 and 7
Information sources	6	Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted.	Page 6
Search strategy	7	Present the full search strategies for all databases, registers and websites, including any filters and limits used.	Page 6
Selection process	8	Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process.	Page 6
Data collection process	9	Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process.	Page 6
Data items	10a	List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect.	Pages 7 and 8
	10b	List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information.	Page 7 and 8
Study risk of bias assessment	11	Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process.	Page 8
Effect measures	12	Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.	Page 8
Synthesis methods	13a	Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5)).	Page 8
	13b	Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions.	Page 8
	13c	Describe any methods used to tabulate or visually display results of individual studies and syntheses.	Page 8
	13d	Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used.	Pages 8 and 9
	13e	Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression).	Page 9
	13f	Describe any sensitivity analyses conducted to assess robustness of the synthesized results.	Page 9
Reporting bias assessment	14	Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases).	Page 9
Certainty	15	Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome.	NA
Section and Topic	Item #	Checklist item	Location where item is reported
-------------------	--------	----------------	---------------------------------
RESULTS			
Study selection	16a	Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in the review, ideally using a flow diagram.	Page 9
	16b	Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded.	Page 9
Study characteristics	17	Cite each included study and present its characteristics.	Page 9 and Table 1
Risk of bias in studies	18	Present assessments of risk of bias for each included study.	Figure 2 and S4 file
Results of individual studies	19	For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (e.g. confidence/credible interval), ideally using structured tables or plots.	Figures 3 to 5 and S5 file
Results of syntheses	20a	For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies.	Figure 2 and supplemental S4 File
	20b	Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect.	Figures 3 to 5 and supplemental S4 file
	20c	Present results of all investigations of possible causes of heterogeneity among study results.	Page 11
	20d	Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.	Page 11-12
Reporting biases	21	Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed.	Page 10-11
Certainty of evidence	22	Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.	NA
DISCUSSION			
Discussion	23a	Provide a general interpretation of the results in the context of other evidence.	Pages 14 to 18
	23b	Discuss any limitations of the evidence included in the review.	Pages 17-18
	23c	Discuss any limitations of the review processes used.	Pages 17-18
	23d	Discuss implications of the results for practice, policy, and future research.	Page 18
OTHER INFORMATION			
Registration and protocol	24a	Provide registration information for the review, including register name and registration number, or state that the review was not registered.	Prospero, page 6
	24b	Indicate where the review protocol can be accessed, or state that a protocol was not prepared.	Prospero
	24c	Describe and explain any amendments to information provided at registration or in the protocol.	NA
Support	25	Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review.	Page 18
Competing interests	26	Declare any competing interests of review authors.	Page 18
S1 File. PRISMA 2020 Checklist

Section and Topic	Item #	Checklist item	Location where item is reported
Availability of data, code and other materials	27	Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other materials used in the review.	NA

From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi: 10.1136/bmj.n71

For more information, visit: http://www.prisma-statement.org/
S2 File. Exhaustive list of extracted parameters.

Parameter	Number of Studies Reporting This Parameter
HEMODYNAMIC PARAMETERS	
Mean Arterial pressure	17
Heart rate	20
CARDIAC FUNCTION	
Echographic parameters	
IVSd	15
IVSs	12
LVDd	34
LVDs	33
LVPWd	17
LVPWs	13
Ejection fraction	35
Fractional shortening	33
Millar intraventricular catheter	
Stroke volume	4
ESV	5
EDV	5
ESP	8
EDP	8
dPdmax	9
dPdtmin	7
CARDIAC REMODELING	
Hypertrophy	
HW/TL	8
CSA	11
ANP	3
BNP	3
Fibrosis	
PVF (histology)	11
IF (histology)	19
Col1a1	4
Col3a1	0
Tgfb	6
Ctgf	7
Apoptosis	
Caspase 3	13
TUNEL	23
RESPONSE TO ISCHEMIA	
Infarct size	17

IVSd: interventricular septum in diastole; IVSs: interventricular septum in systole; LVDd: left ventricular diameter in diastole; LVDs: left ventricular diameter in systole; LVPWd: left ventricular posterior wall in diastole; LVPWs: left ventricular posterior wall in systole; ESV: end-systolic volume; EDV: end-diastolic volume; ESP: end-systolic pressure; EDP: end-diastolic pressure, dPdmax/dPdtmin: maximum and minimum rate of pressure change in the ventricle (index of left ventricular global contractility/relaxation); HW/TL: heart weight/tibia length; CSA: cross-sectional area; ANP: atrial natriuretic peptide; BNP: brain natriuretic peptide; PVF: perivascular fibrosis; IF: interstitial fibrosis; Col1a1: collagen type 1, Col3a1: collagen type 3; Tgfb: transforming growth factor; Ctgf: connective tissue growth factor.
S3 File. References included in the meta-analysis

1. Bao Q, Zhang B, Suo Y, Liu C, Yang Q, Zhang K, Yuan M, Yuan M, Zhang Y, Li G. Intermittent hypoxia mediated by TSP1 dependent on STAT3 induces cardiac fibroblast activation and cardiac fibrosis. Elife 2020;9.

2. Beguin PC, Belaidi E, Godin-Ribuot D, Levy P, Ribuot C. Intermittent hypoxia-induced delayed cardioprotection is mediated by PKC and triggered by p38 MAP kinase and Erk1/2. J Mol Cell Cardiol 2007;42(2):343-51.

3. Beguin PC, Joyeux-Faure M, Godin-Ribuot D, Levy P, Ribuot C. Acute intermittent hypoxia improves rat myocardium tolerance to ischemia. J Appl Physiol (1985) 2005;99(3):1064-9.

4. Belaidi E, Beguin PC, Levy P, Ribuot C, Godin-Ribuot D. Prevention of HIF-1 activation and iNOS gene targeting by low-dose cadmium results in loss of myocardial hypoxic preconditioning in the rat. Am J Physiol Heart Circ Physiol 2008;294(2):H901-8.

5. Belaidi E, Joyeux-Faure M, Ribuot C, Launois SH, Levy P, Godin-Ribuot D. Major role for hypoxia inducible factor-1 and the endothelin system in promoting myocardial infarction and hypertension in an animal model of obstructive sleep apnea. J Am Coll Cardiol 2009;53(15):1309-17.

6. Belaidi E, Thomas A, Bourdier G, Moulin S, Lemanie E, Levy P, Pepin JL, Korichneva I, Godin-Ribuot D, Arnaud C. Endoplasmic reticulum stress as a novel inducer of hypoxia inducible factor-1 activity: its role in the susceptibility to myocardial ischemia-reperfusion induced by chronic intermittent hypoxia. Int J Cardiol 2016;210:45-53.

7. Bober SL, Ciriello J, Jones DL. Atrial arrhythmias and autonomic dysfunction in rats exposed to chronic intermittent hypoxia. Am J Physiol Heart Circ Physiol 2018;314(6):H1160-H1168.
8. Bourdier G, Flore P, Sanchez H, Pepin JL, Belaidi E, Arnaud C. High-intensity training reduces intermittent hypoxia-induced ER stress and myocardial infarct size. Am J Physiol Heart Circ Physiol 2016;310(2):H279-89.

9. Cai Z, Manalo DJ, Wei G, Rodriguez ER, Fox-Talbot K, Lu H, Zweier JL, Semenza GL. Hearts from rodents exposed to intermittent hypoxia or erythropoietin are protected against ischemia-reperfusion injury. Circulation 2003;108(1):79-85.

10. Castro-Grattoni AL, Alvarez-Buve R, Torres M, Farre R, Montserrat JM, Dalmases M, Almendros I, Barbe F, Sanchez-de-la-Torre M. Intermittent Hypoxia-Induced Cardiovascular Remodeling Is Reversed by Normoxia in a Mouse Model of Sleep Apnea. Chest 2016;149(6):1400-8.

11. Castro-Grattoni AL, Suarez-Giron M, Benitez I, Torres M, Almendros I, Farre R, Montserrat JM, Dalmases M, Gozal D, Sanchez-de-la-Torre M, Spanish Sleep N. Effect of age on the cardiovascular remodelling induced by chronic intermittent hypoxia as a murine model of sleep apnoea. Respirology 2020;25(3):312-320.

12. Chen L, Einbinder E, Zhang Q, Hasday J, Balke CW, Scharf SM. Oxidative stress and left ventricular function with chronic intermittent hypoxia in rats. Am J Respir Crit Care Med 2005;172(7):915-20.

13. Chen L, Zhang J, Gan TX, Chen-Izu Y, Hasday JD, Karmazyn M, Balke CW, Scharf SM. Left ventricular dysfunction and associated cellular injury in rats exposed to chronic intermittent hypoxia. J Appl Physiol (1985) 2008;104(1):218-23.

14. Chen L, Zhang J, Hu X, Philipson KD, Scharf SM. The Na+/Ca2+ exchanger-1 mediates left ventricular dysfunction in mice with chronic intermittent hypoxia. J Appl Physiol (1985) 2010;109(6):1675-85.
15. Chen MY, Yang KT, Shen YJ, Cheng CF, Tu WC, Chen TI. Role of Sodium-Hydrogen Exchanger-1 (NHE-1) in the Effect of Exercise on Intermittent Hypoxia-Induced Left Ventricular Dysfunction. Chin J Physiol 2015;58(4):254-62.

16. Chen TI, Chen MY. Zinc Is Indispensable in Exercise-Induced Cardioprotection against Intermittent Hypoxia-Induced Left Ventricular Function Impairment in Rats. PLoS One 2016;11(12):e0168600.

17. Chen TI, Lai CJ, Hsieh CJ, Tsai KL, Yang KT. Differences in left ventricular cardiomyocyte loss induced by chronic intermittent hypoxia between spontaneously hypertensive and Wistar-Kyoto rats. Sleep Breath 2011;15(4):845-54.

18. Chen TI, Shen YJ, Wang IC, Yang KT. Short-term exercise provides left ventricular myocardial protection against intermittent hypoxia-induced apoptosis in rats. Eur J Appl Physiol 2011;111(8):1939-50.

19. Chen TI, Tu WC. Exercise Attenuates Intermittent Hypoxia-Induced Cardiac Fibrosis Associated with Sodium-Hydrogen Exchanger-1 in Rats. Front Physiol 2016;7:462.

20. Del Rio R, Andrade DC, Lucero C, Arias P, Iturriaga R. Carotid Body Ablation Abrogates Hypertension and Autonomic Alterations Induced by Intermittent Hypoxia in Rats. Hypertension 2016;68(2):436-45.

21. Detrait M, Pesse M, Calissi C, Bouyon S, Brocard J, Vial G, Pepin JL, Belaidi E, Arnaud C. Short-term intermittent hypoxia induces simultaneous systemic insulin resistance and higher cardiac contractility in lean mice. Physiol Rep 2021;9(5):e14738.

22. Ding W, Zhang X, Huang H, Ding N, Zhang S, Hutchinson SZ, Zhang X. Adiponectin protects rat myocardium against chronic intermittent hypoxia-induced injury via inhibition of endoplasmic reticulum stress. PLoS One 2014;9(4):e94545.
23. Ding WX, Dong YB, Ding N, Zhang XF, Zhang SJ, Zhang XL, Liu JN, Lu G. Adiponectin protects rat heart from left ventricular remodeling induced by chronic intermittent hypoxia via inhibition of TGF-beta/smads2/3 pathway. J Thorac Dis 2014;6(9):1278-84.

24. Du Y, Wang X, Li L, Hao W, Zhang H, Li Y, Qin Y, Nie S, Christopher TA, Lopez BL, Lau WB, Wang Y, Ma XL, Wei Y. miRNA-Mediated Suppression of a Cardioprotective Cardiokine as a Novel Mechanism Exacerbating Post-MI Remodeling by Sleep Breathing Disorders. Circ Res 2020;126(2):212-228.

25. Farre N, Otero J, Falcones B, Torres M, Jorba I, Gozal D, Almendros I, Farre R, Navajas D. Intermittent Hypoxia Mimicking Sleep Apnea Increases Passive Stiffness of Myocardial Extracellular Matrix. A Multiscale Study. Front Physiol 2018;9:1143.

26. Fu J, Guo F, Chen C, Yu X, Hu K, Li M. C1 inhibitor-mediated myocardial protection from chronic intermittent hypoxia-induced injury. Exp Ther Med 2016;12(4):2208-2214.

27. Guan P, Sun ZM, Wang N, Zhou J, Luo LF, Zhao YS, Ji ES. Resveratrol prevents chronic intermittent hypoxia-induced cardiac hypertrophy by targeting the PI3K/AKT/mTOR pathway. Life Sci 2019;233:116748.

28. Guo X, Shang J, Deng Y, Yuan X, Zhu D, Liu H. Alterations in left ventricular function during intermittent hypoxia: Possible involvement of O-GlcNAc protein and MAPK signaling. Int J Mol Med 2015;36(1):150-8.

29. Han Q, Li G, Ip MS, Zhang Y, Zhen Z, Mak JC, Zhang N. Haemin attenuates intermittent hypoxia-induced cardiac injury via inhibiting mitochondrial fission. J Cell Mol Med 2018;22(5):2717-2726.

30. Han Q, Yeung SC, Ip MS, Mak JC. Cellular mechanisms in intermittent hypoxia-induced cardiac damage in vivo. J Physiol Biochem 2014;70(1):201-13.

31. Hayashi T, Yamashita C, Matsumoto C, Kwak CJ, Fujii K, Hirata T, Miyamura M, Mori T, Ukimura A, Okada Y, Matsumura Y, Kitaura Y. Role of gp91phox-containing NADPH
oxidase in left ventricular remodeling induced by intermittent hypoxic stress. Am J Physiol Heart Circ Physiol 2008;294(5):H2197-203.

32. Hayashi T, Yoshioka T, Hasegawa K, Miyamura M, Mori T, Ukimura A, Matsumura Y, Ishizaka N. Inhalation of hydrogen gas attenuates left ventricular remodeling induced by intermittent hypoxia in mice. Am J Physiol Heart Circ Physiol 2011;301(3):H1062-9.

33. Imano H, Kato R, Tanikawa S, Yoshimura F, Nomura A, Ijiri Y, Yamaguchi T, Izumi Y, Yoshiyama M, Hayashi T. Factor Xa inhibition by rivaroxaban attenuates cardiac remodeling due to intermittent hypoxia. J Pharmacol Sci 2018;137(3):274-282.

34. Inamoto S, Yoshioka T, Yamashita C, Miyamura M, Mori T, Ukimura A, Matsumoto C, Matsumura Y, Kitaura Y, Hayashi T. Pitavastatin reduces oxidative stress and attenuates intermittent hypoxia-induced left ventricular remodeling in lean mice. Hypertens Res 2010;33(6):579-86.

35. Jiang S, Jiao G, Chen Y, Han M, Wang X, Liu W. Astragaloside IV attenuates chronic intermittent hypoxia-induced myocardial injury by modulating Ca(2+) homeostasis. Cell Biochem Funct 2020;38(6):710-720.

36. Joyeux-Faure M, Stanke-Labesque F, Lefebvre B, Beguin P, Godin-Ribuot D, Ribuot C, Launois SH, Bessard G, Levy P. Chronic intermittent hypoxia increases infarction in the isolated rat heart. J Appl Physiol (1985) 2005;98(5):1691-6.

37. Lai MC, Lin JG, Pai PY, Lai MH, Lin YM, Yeh YL, Cheng SM, Liu YF, Huang CY, Lee SD. Protective effect of salidroside on cardiac apoptosis in mice with chronic intermittent hypoxia. Int J Cardiol 2014;174(3):565-73.

38. Lai MC, Lin JG, Pai PY, Lai MH, Lin YM, Yeh YL, Cheng SM, Liu YF, Huang CY, Lee SD. Effects of rhodiola crenulata on mice hearts under severe sleep apnea. BMC Complement Altern Med 2015;15:198.
39. Li G, Jin M, He Y, Ren J, Zhang M, Chen Y, Lan X, Zhong J, Liu H. Fork Head Box Class O1 (FOXO1) Activates Bim Expression to Mediate Cardiac Apoptosis in Chronic Intermittent Hypoxia-Induced Cardiac Hypertrophy. Med Sci Monit 2017;23:3603-3616.

40. Li S, Feng J, Wei S, Qian X, Cao J, Chen B. Delayed neutrophil apoptosis mediates intermittent hypoxia-induced progressive heart failure in pressure-overloaded rats. Sleep Breath 2016;20(1):95-102.

41. Lu D, Wang J, Zhang H, Shan Q, Zhou B. Renal denervation improves chronic intermittent hypoxia induced hypertension and cardiac fibrosis and balances gut microbiota. Life Sci 2020;262:118500.

42. Lucking EF, O'Halloran KD, Jones JF. Increased cardiac output contributes to the development of chronic intermittent hypoxia-induced hypertension. Exp Physiol 2014;99(10):1312-24.

43. Ma Z, Zhang K, Wang Y, Wang W, Yang Y, Liang X, Zhang Y, Li G. Doxycycline Improves Fibrosis-Induced Abnormalities in Atrial Conduction and Vulnerability to Atrial Fibrillation in Chronic Intermittent Hypoxia Rats. Med Sci Monit 2020;26:e918883.

44. Maeda H, Nagai H, Takemura G, Shintani-Ishida K, Komatsu M, Ogura S, Aki T, Shirai M, Kuwahira I, Yoshida K. Intermittent-hypoxia induced autophagy attenuates contractile dysfunction and myocardial injury in rat heart. Biochim Biophys Acta 2013;1832(8):1159-66.

45. Matsumoto C, Hayashi T, Kitada K, Yamashita C, Miyamura M, Mori T, Ukimura A, Ohkita M, Jin D, Takai S, Miyazaki M, Okada Y, Kitaura Y, Matsumura Y. Chymase plays an important role in left ventricular remodeling induced by intermittent hypoxia in mice. Hypertension 2009;54(1):164-71.

46. Milano G, Abruzzo PM, Bolotta A, Marini M, Terraneo L, Ravara B, Gorza L, Vitadello M, Burattini S, Curzi D, Falcieri E, von Segesser LK, Samaja M. Impact of the
phosphatidylinositide 3-kinase signaling pathway on the cardioprotection induced by intermittent hypoxia. PLoS One 2013;8(10):e76659.

47. Morand J, Arnaud C, Pepin JL, Godin-Ribuot D. Chronic intermittent hypoxia promotes myocardial ischemia-related ventricular arrhythmias and sudden cardiac death. Sci Rep 2018;8(1):2997.

48. Moreau JM, Ciriello J. Chronic intermittent hypoxia induces changes in expression of synaptic proteins in the nucleus of the solitary tract. Brain Res 2015;1622:300-7.

49. Moulin S, Arnaud C, Bouyon S, Pepin JL, Godin-Ribuot D, Belaidi E. Curcumin prevents chronic intermittent hypoxia-induced myocardial injury. Ther Adv Chronic Dis 2020;11:2040622320922104.

50. Moulin S, Thomas A, Arnaud C, Arzt M, Wagner S, Maier LS, Pepin JL, Godin-Ribuot D, Gaucher J, Belaidi E. Cooperation Between Hypoxia-Inducible Factor 1alpha and Activating Transcription Factor 4 in Sleep Apnea-Mediated Myocardial Injury. Can J Cardiol 2020;36(6):936-940.

51. Naghshin J, McGaffin KR, Witham WG, Mathier MA, Romano LC, Smith SH, Janczewski AM, Kirk JA, Shroff SG, O'Donnell CP. Chronic intermittent hypoxia increases left ventricular contractility in C57BL/6J mice. J Appl Physiol (1985) 2009;107(3):787-93.

52. Naghshin J, Rodriguez RH, Davis EM, Romano LC, McGaffin KR, O'Donnell CP. Chronic intermittent hypoxia exposure improves left ventricular contractility in transgenic mice with heart failure. J Appl Physiol (1985) 2012;113(5):791-8.

53. Nakagawa T, Furukawa Y, Hayashi T, Nomura A, Yokoe S, Moriwaki K, Kato R, Ijiri Y, Yamaguchi T, Izumi Y, Yoshiyama M, Asahi M. Augmented O-GlcNAcylation attenuates intermittent hypoxia-induced cardiac remodeling through the suppression of NFAT and NF-kappaB activities in mice. Hypertens Res 2019;42(12):1858-1871.
54. Nishioka S, Yoshioka T, Nomura A, Kato R, Miyamura M, Okada Y, Ishizaka N, Matsumura Y, Hayashi T. Celiprolol reduces oxidative stress and attenuates left ventricular remodeling induced by hypoxic stress in mice. Hypertens Res 2013;36(11):934-9.

55. Pai P, Lai CJ, Lin CY, Liou YF, Huang CY, Lee SD. Effect of superoxide anion scavenger on rat hearts with chronic intermittent hypoxia. J Appl Physiol (1985) 2016;120(8):982-90.

56. Park AM, Suzuki YJ. Effects of intermittent hypoxia on oxidative stress-induced myocardial damage in mice. J Appl Physiol (1985) 2007;102(5):1806-14.

57. Ramirez TA, Jourdan-Le Saux C, Joy A, Zhang J, Dai Q, Mifflin S, Lindsey ML. Chronic and intermittent hypoxia differentially regulate left ventricular inflammatory and extracellular matrix responses. Hypertens Res 2012;35(8):811-8.

58. Ramond A, Godin-Ribouot D, Ribouot C, Totoson P, Koritchneva I, Cachot S, Levy P, Joyeux-Faure M. Oxidative stress mediates cardiac infarction aggravation induced by intermittent hypoxia. Fundam Clin Pharmacol 2013;27(3):252-61.

59. Ramond A, Ribouot C, Levy P, Joyeux-Faure M. Deleterious myocardial consequences induced by intermittent hypoxia are reversed by erythropoietin. Respir Physiol Neurobiol 2007;156(3):362-9.

60. Ray CJ, Dow B, Kumar P, Coney AM. Mild Chronic Intermittent Hypoxia in Wistar Rats Evokes Significant Cardiovascular Pathophysiology but No Overt Changes in Carotid Body-Mediated Respiratory Responses. Adv Exp Med Biol 2015;860:245-54.

61. Rodriguez RH, Bickta JL, Murawski P, O'Donnell CP. The impact of obesity and hypoxia on left ventricular function and glycolytic metabolism. Physiol Rep 2014;2(4):e12001.

62. Sun ZM, Guan P, Luo LF, Qin LY, Wang N, Zhao YS, Ji ES. Resveratrol protects against CIH-induced myocardial injury by targeting Nrf2 and blocking NLRP3 inflammasome activation. Life Sci 2020;245:117362.
63. Tao L, Wang L, Yang X, Jiang X, Hua F. Recombinant human glucagon-like peptide-1 protects against chronic intermittent hypoxia by improving myocardial energy metabolism and mitochondrial biogenesis. Mol Cell Endocrinol 2019;481:95-103.

64. Tong J, Yu FC, Li Y, Wei Q, Li C, Zhen P, Zhang G. Prolyl 4-Hydroxylase Domain Protein 3-Inhibited Smooth-Muscle-Cell Dedifferentiation Improves Cardiac Perivascular Fibrosis Induced by Obstructive Sleep Apnea. Biomed Res Int 2019;2019:9174218.

65. Totoson P, Fhayli W, Faury G, Korichneva I, Cachot S, Baldazza M, Ribuot C, Pepin JL, Levy P, Joyeux-Faure M. Atorvastatin protects against deleterious cardiovascular consequences induced by chronic intermittent hypoxia. Exp Biol Med (Maywood) 2013;238(2):223-32.

66. Wang J, Zhang J, Chen L, Cai J, Li Z, Zhang Z, Zheng Q, Wang Y, Zhou S, Liu Q, Cai L. Combination of Broccoli Sprout Extract and Zinc Provides Better Protection against Intermittent Hypoxia-Induced Cardiomyopathy Than Monotherapy in Mice. Oxid Med Cell Longev 2019;2019:2985901.

67. Wang JW, Li AY, Guo QH, Guo YJ, Weiss JW, Ji ES. Endothelin-1 and ET receptors impair left ventricular function by mediated coronary arteries dysfunction in chronic intermittent hypoxia rats. Physiol Rep 2017;5(1).

68. Wang N, Chang Y, Chen L, Guo YJ, Zhao YS, Guo QH, Ji ES. Tanshinone IIA protects against chronic intermittent hypoxia-induced myocardial injury via activating the endothelin 1 pathway. Biomed Pharmacother 2017;95:1013-1020.

69. Wang W, Song A, Zeng Y, Chen X, Zhang Y, Shi Y, Lin Y, Luo W. Telmisartan protects chronic intermittent hypoxic mice via modulating cardiac renin-angiotensin system activity. BMC Cardiovasc Disord 2018;18(1):133.
70. Wang W, Zhang K, Li X, Ma Z, Zhang Y, Yuan M, Suo Y, Liang X, Tse G, Goudis CA, Liu T, Li G. Doxycycline attenuates chronic intermittent hypoxia-induced atrial fibrosis in rats. Cardiovasc Ther 2018;36(3):e12321.

71. Wang Z, Si LY. Hypoxia-inducible factor-1alpha and vascular endothelial growth factor in the cardioprotective effects of intermittent hypoxia in rats. Ups J Med Sci 2013;118(2):65-74.

72. Wei Q, Bian Y, Yu F, Zhang Q, Zhang G, Li Y, Song S, Ren X, Tong J. Chronic intermittent hypoxia induces cardiac inflammation and dysfunction in a rat obstructive sleep apnea model. J Biomed Res 2016;30(6):490-495.

73. Williams AL, Chen L, Scharf SM. Effects of allopurinol on cardiac function and oxidant stress in chronic intermittent hypoxia. Sleep Breath 2010;14(1):51-7.

74. Xie S, Deng Y, Pan YY, Wang ZH, Ren J, Guo XL, Yuan X, Shang J, Liu HG. Melatonin protects against chronic intermittent hypoxia-induced cardiac hypertrophy by modulating autophagy through the 5' adenosine monophosphate-activated protein kinase pathway. Biochem Biophys Res Commun 2015;464(4):975-981.

75. Xu XM, Yao D, Cai XD, Ding C, Lin QD, Wang LX, Huang XY. Effect of chronic continual- and intermittent hypoxia-induced systemic inflammation on the cardiovascular system in rats. Sleep Breath 2015;19(2):677-84.

76. Yang R, Sikka G, Larson J, Watts VL, Niu X, Ellis CL, Miller KL, Camara A, Reinke C, Savransky V, Polotsky VY, O'Donnell CP, Berkowitz DE, Barouch LA. Restoring leptin signaling reduces hyperlipidemia and improves vascular stiffness induced by chronic intermittent hypoxia. Am J Physiol Heart Circ Physiol 2011;300(4):H1467-76.

77. Yang X, Shi Y, Zhang L, Liu H, Shao Y, Zhang S. Overexpression of filamin c in chronic intermittent hypoxia-induced cardiomyocyte apoptosis is a potential cardioprotective target for obstructive sleep apnea. Sleep Breath 2019;23(2):493-502.
78. Yang X, Zhang L, Liu H, Shao Y, Zhang S. Cardiac Sympathetic Denervation Suppresses Atrial Fibrillation and Blood Pressure in a Chronic Intermittent Hypoxia Rat Model of Obstructive Sleep Apnea. J Am Heart Assoc 2019;8(4):e010254.

79. Yeung HM, Hung MW, Lau CF, Fung ML. Cardioprotective effects of melatonin against myocardial injuries induced by chronic intermittent hypoxia in rats. J Pineal Res 2015;58(1):12-25.

80. Yin X, Zhou S, Zheng Y, Tan Y, Kong M, Wang B, Feng W, Epstein PN, Cai J, Cai L. Metallothionein as a compensatory component prevents intermittent hypoxia-induced cardiomyopathy in mice. Toxicol Appl Pharmacol 2014;277(1):58-66.

81. Yuan X, Deng Y, Guo X, Shang J, Zhu D, Liu H. Atorvastatin attenuates myocardial remodeling induced by chronic intermittent hypoxia in rats: partly involvement of TLR-4/MYD88 pathway. Biochem Biophys Res Commun 2014;446(1):292-7.

82. Yuan X, Zhu D, Guo XL, Deng Y, Shang J, Liu K, Liu HG. Telmisartan attenuates myocardial apoptosis induced by chronic intermittent hypoxia in rats: modulation of nitric oxide metabolism and inflammatory mediators. Sleep Breath 2015;19(2):703-9.

83. Zhang GH, Yu FC, Li Y, Wei Q, Song SS, Zhou FP, Tong JY. Prolyl 4-Hydroxylase Domain Protein 3 Overexpression Improved Obstructive Sleep Apnea-Induced Cardiac Perivascular Fibrosis Partially by Suppressing Endothelial-to-Mesenchymal Transition. J Am Heart Assoc 2017;6(10).

84. Zhang K, Ma Z, Wang W, Liu R, Zhang Y, Yuan M, Li G. Beneficial effects of tolvaptan on atrial remodeling induced by chronic intermittent hypoxia in rats. Cardiovasc Ther 2018;36(6):e12466.

85. Zhang K, Ma Z, Wang W, Liu R, Zhang Y, Yuan M, Li G. Effect of doxycycline on chronic intermittent hypoxia-induced atrial remodeling in rats. Herz 2020;45(7):668-675.
86. Zhang K, Zhao L, Ma Z, Wang W, Li X, Zhang Y, Yuan M, Liang X, Li G. Doxycycline Attenuates Atrial Remodeling by Interfering with MicroRNA-21 and Downstream Phosphatase and Tensin Homolog (PTEN)/Phosphoinositide 3-Kinase (PI3K) Signaling Pathway. Med Sci Monit 2018;24:5580-5587.

87. Zhao YS, An JR, Yang S, Guan P, Yu FY, Li W, Li JR, Guo Y, Sun ZM, Ji ES. Hydrogen and Oxygen Mixture to Improve Cardiac Dysfunction and Myocardial Pathological Changes Induced by Intermittent Hypoxia in Rats. Oxid Med Cell Longev 2019;2019:7415212.

88. Zhou S, Wang J, Yin X, Xin Y, Zhang Z, Cui T, Cai J, Zheng Y, Liu Q, Cai L. Nrf2 expression and function, but not MT expression, is indispensable for sulforaphane-mediated protection against intermittent hypoxia-induced cardiomyopathy in mice. Redox Biol 2018;19:11-21.

89. Zhou S, Yin X, Jin J, Tan Y, Conklin DJ, Xin Y, Zhang Z, Sun W, Cui T, Cai J, Zheng Y, Cai L. Intermittent hypoxia-induced cardiomyopathy and its prevention by Nrf2 and metallothionein. Free Radic Biol Med 2017;112:224-239.

90. Zhou S, Yin X, Zheng Y, Miao X, Feng W, Cai J, Cai L. Metallothionein prevents intermittent hypoxia-induced cardiac endoplasmic reticulum stress and cell death likely via activation of Akt signaling pathway in mice. Toxicol Lett 2014;227(2):113-23.

91. Zhou X, Tang S, Hu K, Zhang Z, Liu P, Luo Y, Kang J, Xu L. DL-Propargylglycine protects against myocardial injury induced by chronic intermittent hypoxia through inhibition of endoplasmic reticulum stress. Sleep Breath 2018;22(3):853-863.

92. Zhu J, Kang J, Li X, Wang M, Shang M, Luo Y, Xiong M, Hu K. Chronic intermittent hypoxia vs chronic continuous hypoxia: Effects on vascular endothelial function and myocardial contractility. Clin Hemorheol Microcirc 2020;74(4):417-427.
S4 File. Individual study quality

Study	Sequence generation	Baseline characteristics	Allocation concealment	Random housing	Blinding	Random outcome assessment	Blinding	Incomplete outcome data	Selective outcome reporting	Other sources of bias																		
Bao 2020	unclear	unclear	unclear	unclear	unclear	unclear	unclear	unclear	unclear	unclear																		
Béguin 2005	unclear	unclear	unclear	unclear	unclear	unclear	unclear	unclear	unclear	unclear																		
Béguin 2007	unclear	unclear	unclear	unclear	unclear	unclear	unclear	unclear	unclear	unclear																		
Belaidi 2008	unclear	unclear	unclear	unclear	unclear	unclear	unclear	unclear	unclear	unclear																		
Belaidi 2009	low	low	low	unclear	unclear	unclear	unclear	unclear	unclear	unclear																		
Belaidi 2016	low	low	low	unclear	unclear	unclear	unclear	unclear	unclear	unclear																		
Bober 2018	unclear	unclear	unclear	unclear	unclear	unclear	unclear	unclear	unclear	unclear																		
Bourdier 2016	low	low	low	unclear	unclear	unclear	unclear	unclear	unclear	unclear																		
Cai 2003	unclear	unclear	unclear	unclear	unclear	unclear	unclear	unclear	unclear	unclear																		
Castro-Grattoni 2016	unclear	unclear	unclear	unclear	unclear	unclear	unclear	unclear	unclear	unclear																		
Castro-Grattoni 2019	unclear	low	low	low	low	low	low	low	low	low																		
Chen 2005	low	low	low	low	low	low	low	low	low	low																		
Chen 2008	unclear	low	unclear	low	low	low	unclear	unclear	unclear	low																		
Chen 2010	unclear	unclear	unclear	unclear	unclear	unclear	unclear	unclear	unclear	unclear																		
Chen 2011	low	low	unclear	unclear	unclear	unclear	unclear	unclear	unclear	low																		
Chen 2015	low	low	low	low	low	low	low	low	low	low																		
Chen 2016	low	low	unclear	unclear	unclear	unclear	unclear	unclear	unclear	low																		
Chen 2016	unclear	unclear	unclear	unclear	unclear	unclear	unclear	unclear	unclear	low																		
Del Rio 2016	unclear	unclear	unclear	unclear	unclear	unclear	unclear	unclear	unclear	unclear																		
Détraite 2021	low	unclear	low	low	low	low	low	low	low	low																		
Ding 2014	unclear	unclear	unclear	unclear	unclear	unclear	unclear	unclear	unclear	unclear																		
Ding 2014	low	unclear	unclear	unclear	unclear	unclear	unclear	unclear	unclear	unclear																		
Du 2019	unclear	unclear	low	low	low	low	unclear	unclear	unclear	low																		
Farre 2018	unclear	low	unclear	unclear	unclear	unclear	unclear	unclear	unclear	low																		
Fu 2016	unclear	unclear	unclear	unclear	unclear	unclear	unclear	unclear	unclear	low																		
Guan 2019	low	low	low	low	low	low	low	low	low	low																		
Guo 2015	unclear	unclear	unclear	unclear	unclear	unclear	unclear	unclear	unclear	low																		
Han 2014	low	unclear	unclear	unclear	unclear	unclear	unclear	unclear	unclear	low																		
Han 2018	unclear	low	unclear	unclear	unclear	unclear	unclear	unclear	unclear	low																		
Hayashi 2008	low	low	low	low	low	low	low	low	low	low																		
Hayashi 2011	unclear	low	unclear	unclear	unclear	unclear	unclear	unclear	unclear	low																		
Author/Year	Confidence Level																											
-------------------------	------------------	------------------	------------------	------------------	------------------	------------------	------------------	------------------	------------------																			
Imahigh 2018	unclear	low	unclear																									
Inamoto 2010	unclear																											
Jiang 2020	unclear																											
Joyeux-Faure 2005	low	unclear																										
Lai 2015	unclear																											
Lai 2015	unclear																											
Li 2016	unclear																											
Li 2017	unclear																											
Lu 2020	unclear	unclear	low	unclear	low	unclear	low	unclear	unclear																			
Lucking 2014	low	unclear																										
Ma 2020	unclear	unclear	unclear	unclear	low	unclear	low	unclear	unclear																			
Maeda 2013	unclear	unclear	unclear	unclear	low	unclear	low	unclear	unclear																			
Matsumoto 2009	unclear																											
Milahigh 2013	unclear																											
Moraunclear 2018	uncertain	low	unclear																									
Moreau 2015	unclear																											
Mouin 2020	unclear	unclear	low	low	low	low	low	Yes	low																			
Moulin 2020	low	unclear	low	low	low	low	low	Yes	low																			
Naghshin 2009	unclear	low	unclear	unclear	unclear	low	unclear	low	unclear																			
Naghshin 2012	unclear	unclear	unclear	unclear	unclear	unclear	low	unclear	unclear																			
Nakagawa 2019	unclear	unclear	unclear	unclear	unclear	low	unclear	low	unclear																			
Nishioka 2013	unclear	unclear	unclear	unclear	unclear	low	unclear	low	unclear																			
Pai 2016	low																											
Park 2007	unclear	unclear	unclear	unclear	unclear	unclear	uncertain	low	unclear																			
Ramirez 2012	unclear	unclear	uncertain	low	low	low	low	low	low																			
Ramounclear 2007	unclear	unclear	low	unclear	unclear	low	unclear	low	unclear																			
Ramounclear 2013	unclear	unclear	low	unclear	low	low	low	low	low																			
Ray 2015	unclear	unclear	low	unclear	low	unclear	low	unclear	low																			
Rodriguez 2014	unclear	unclear	low	unclear	low	unclear	low	unclear	low																			
Sun 2020	unclear	unclear	low																									
Tao 2019	unclear	unclear	low																									
Tong 2019	unclear	unclear	low																									
Totoson 2013	unclear	unclear	low																									
Wang 2013	unclear	unclear	low																									
Wang 2017	unclear	unclear	low																									
Wang 2020	unclear	unclear	low																									
Year	Name	Score	Score	Score																								
---------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------
2017	Wei	unclear																										
2010	Williams	low	low	unclear																								
2015	Xie	unclear																										
2015	Xu	low	low	unclear																								
2011	Yang	unclear																										
2018	Yang	unclear																										
2019	Yang	unclear	low	unclear																								
2015	Yeung	unclear																										
2014	Yin	unclear																										
2014	Yuan	low	unclear																									
2015	Yuan	unclear																										
2018	Zang	unclear																										
2018	Zhang	unclear	low	unclear																								
2018	Zhang	unclear	low	unclear																								
2018	Zhang	unclear	unclear	uncertain																								
2019	Zhao	unclear	unclear	uncertain																								
2014	Zhou	unclear	uncertain																									
2018	Zhou	unclear	low	uncertain																								
2018	Zhou	unclear	uncertain																									
2020	Zhu	unclear	uncertain																									
S5 File. Meta-regression results

Results of meta-regressions and subgroup analyses. Meta-regressions on IH parameters were adjusted on significant predictors in univariate meta-regressions (p<0.2). *not included in multivariate models because of an important proportion of missing data.

HEMODYNAMIC PARAMETERS

MEAN ARTERIAL PRESSURE			
Moderator	n	slope	p-val
Univariate meta-regression			
Strain	22	0.04 ¥	
Species	22	0.56	
Sex	22	NA	
Body weight	14	0.00	0.93
Year of publication	22	0.00	0.95
Age	12	-0.02	0.70
Adjusted meta-regression on IH parameters			
FiO₂	22	-0.08	0.64
Hypoxia duration	8	-0.07	0.60
Reoxygenation duration	8	0.07	0.60
IH duration per day	22	0.14	0.67
Protocol duration	22>21	0.03>0.02	0.02>0.29

¥covariate included in the multivariate model on IH parameters

HEART RATE			
Moderator	n	slope	p-val
Univariate meta-regression			
Strain	22	0.60	
Species	22	0.47	
Sex	21	NA	
Body weight	10	0.00	0.91
Year of publication	22	0.03	0.33
Age	13	-0.01	0.62
Adjusted meta-regression on IH parameters			
FiO₂	22	0.02	0.91
Hypoxia duration	11	0.00	0.77
Reoxygenation duration	11	0.00	0.73
IH duration per day	22	-0.06	0.53
Protocol duration	22	0.00	0.95
CARDIAC FUNCTION

LVDd	Moderator	n	slope	p-val
Univariate meta-regression	Strain	43	0.25	
	Species	43	0.16†	
	Sex	40	NA	
	Body weight	17	-0.01	0.03*
	Year of publication	43	0.05	0.52
	Age	27	-0.04	0.19*

Adjusted meta-regression on IH parameters

FiO₂	43	0.59	
Hypoxia duration	40	-0.01	0.25
Reoxygenation duration	38	-0.00	0.59
IH duration per day	42	0.37	0.07
Protocol duration	43	0.03	0.12

† covariate included in the multivariate model on IH parameters

EJECTION FRACTION

Ejection Fraction	Moderator	n	slope	p-val
Univariate meta-regression	Strain	45	0.02†	
	Species	45	0.45	
	Sex	43	NA	
	Body weight	17	0.01	0.05*
	Year of publication	45	-0.14	0.19
	Age	29	0.09	0.25

Adjusted meta-regression on IH parameters

FiO₂	45	-0.31	0.37
Hypoxia duration	42	0.03	0.31
Reoxygenation duration	40	0.01	0.57
IH duration per day	44	-0.52	0.20
Protocol duration	45	-0.05	0.07

† covariate included in the multivariate model on IH parameters
HW/TL

Moderator	n	slope	p-val
Univariate meta-regression			
Strain	15	0.52	
Species	15	0.49	
Sex	14		
Body weight	0		
Year of publication	15	0.17	0.22
Age	15	-0.02	0.75
Adjusted meta-regression on IH parameters			
FiO₂	15	0.05	0.88
Hypoxia duration	15	0.00	0.97
Reoxygenation duration	15	-0.01	0.48
IH duration per day	15	0.07	0.77
Protocol duration	15	0.03	0.15

* covariate included in the multivariate model on IH parameters

Cardiomyocyte size (CSA)

Moderator	n	slope	p-val
Univariate meta-regression			
Strain	10	0.15	¥
Species	10	0.07	¥
Sex	9	NA	
Body weight	3	0.11	0.63
Year of publication	10	-0.09	0.75
Age	6	-0.10	0.58
Adjusted meta-regression on IH parameters			
FiO₂	10	-1.32	0.74
Hypoxia duration	3	0.18	**0.00**
Reoxygenation duration	3	0.04	**0.00**
IH duration per day	10	-0.23	0.77
Protocol duration	10	-1.32	0.74

* covariate included in the multivariate model on IH parameters
CARDIAC REMODELING - FIBROSIS

PVF

Moderator	n	slope	p-val
Univariate meta-regression			
Strain	10		
Species	10		
Sex	10	0.34	0.73
Body weight	2		
Year of publication	10	-0.027	0.84
Age	10	-0.029	0.18†

Adjusted meta-regression on IH parameters

Moderator	n	slope	p-val
FiO2	10	-0.03	0.07
Hypoxia duration	5		
Reoxygenation duration	5		
IH duration per day	10	0.5	0.45
Protocol duration	10	0.01	0.80

†covariate included in the multivariate model on IH parameters

INTERSTITIAL FIBROSIS

Moderator	n	slope	p-val
Univariate meta-regression			
Strain	22->21	0.00->0.01†	
Species	22		0.81
Sex	20		NA
Body weight	11	0.00	0.89
Year of publication	22	-0.11	0.69
Age	12	-0.17	0.42

Adjusted meta-regression on IH parameters

Moderator	n	slope	p-val
FiO2	22	0.53	0.32
Hypoxia duration	9	0.02	0.24
Reoxygenation duration	9	-0.01	0.72
IH duration per day	21	0.64	0.32
Protocol duration	22	0.03	0.70

†covariate included in the multivariate model on IH parameters
Moderator	n	slope	p-val
Univariate meta-regression			
Strain	16	0.25	
Species	16	0.63	
Sex	14	NA	
Body weight	11	0.00	0.89
Year of publication	16	0.49	0.05*
Age	10	-1.92	0.19
Adjusted meta-regression on IH parameters			
FiO$_2$	16	-0.16	0.87
Hypoxia duration	6	0.02	0.90
Reoxygenation duration	6	0.00	0.90
IH duration per day	16	0.38	0.26
Protocol duration	16	-0.01	0.87
CARDIAC REMODELING - APOPTOSIS

TUNEL

Moderator	n	slope	p-val
Univariate meta-regression			
Strain	19		0.00¥
Species	19		0.15¥
Sex	18		
Body weight	10	0.00	
Year of publication	19	-0.20	0.50
Age	10	0.15	0.72

Adjusted meta-regression on IH parameters

Moderator	n	slope	p-val
FiO₂	19	0.11	0.93
Hypoxia duration	7	0.09	0.13
Reoxygenation duration	7	0.05	0.49
IH duration per day	16	-0.68	0.65
Protocol duration	17	0.11	0.34

CASPASE 3

Moderator	n	slope	p-val
Univariate meta-regression			
Strain	13		0.67
Species	13		0.73
Sex	13		
Body weight	8	-0.02	0.80
Year of publication	13	0.91	0.30
Age	9	0.76	0.43

Adjusted meta-regression on IH parameters

Moderator	n	slope	p-val
FiO₂	13	0.41	0.85
Hypoxia duration	7	-0.01	0.64
Reoxygenation duration	7	-0.01	0.85
IH duration per day	11	2.74	0.62
Protocol duration	11	0.43	**0.03**
RESPONSE TO MYOCARDIAL ISCHEMIA

Moderator	n	slope	p-val	slope	p-val
Univariate meta-regression					
Strain	23	0.01	¥		
Species	24	0.93			
Sex	24	NA			
Body weight	16	0.00	0.76		
Year of publication	24	0.14	0.02	¥	
Age	9	-0.22	0.40		
Adjusted meta-regression on IH parameters					
FiO₂	23	-0.61	0.00	-0.50	0.00
Hypoxia duration	21	-0.02	0.07		
Reoxygenation duration	21	-0.03	0.11		
IH duration per day	23	0.46	0.00	0.18	0.11
Protocol duration	22	0.03	0.51		
Funnel plots showing publication bias for the main outcomes (white circles indicate observed studies, black circles indicate imputed studies): MAP: mean arterial pressure; LVDd: left ventricular diameter in diastole; EF: ejection fraction; CSA: cross-sectional area.