Supplementary Figure 1. Viral Proteins and vRNA expression level in whole cells.

(a) Proteins from lysates of PV- and mock-infected cells at 3, 4, 5, 6, and 7 hours post infection (hpi) were probed by western blot. The blot was first probed for GAPDH (top panel) to show similar loading in all lanes. The blot was then stripped, and re-probed using polyclonal anti-3D antibodies. All species containing the 3D protein are expected to be labeled by the anti-3D antibody (e.g. Garmarnik & Andino (1998). Genes and Development 12:2293-2304, and Teterina et al., (2001). J. Virology 75:3841-3850); these additional species are shown in parentheses.

(b) Proteins from lysates of mock-infected (3 and 7 hpi) and PV-infected cells (3, 4, 5, 6, and 7 hpi) were probed for PV 3A; it is expected that 3AB is also labeled by this antibody, as indicated by parentheses.

(c) Proteins from lysates of PV-infected (Inf) and mock-infected (Mock) cells at 7 hpi were probed for PV 2C.

3AB: purified PV 3AB protein
BI: blank lanes
MW: molecular weight markers.
Supplementary Figure 2. Viral proteins are present in vesicles secreted by virus-infected cells.

Full western blots from Figure 1d, showing the presence of viral proteins in microvesicles secreted by PV-infected HeLa cells at 8 hours post infection (hpi), but not in vesicles isolated from mock-infected cells.

Vesicles were run on tricine gels, and probed with (a) anti-VP capsid protein antibodies; the membrane on the left is shown for its molecular weight markers (MW) and poliovirus stock.
solution, (b) anti-C antibodies; Mock 1 (vesicles from mock-infected cells) and Infect 1 (vesicles from PV-infected cells) are from one experiment, and Mock 2 and Infect 2 are from an independent experiment, (c) anti-3D antibodies; Mock prep 1 (vesicles from mock-infected cells) and Infected prep 1 (vesicles from PV-infected cells) are from one experiment, and Mock prep 2 and Infected prep 2 are from an independent experiment, (d) anti-3A antibodies; lanes are samples of vesicles secreted by mock- and PV-infected cells at 7 hpi. All species containing the protein probed for are expected to be labeled by that antibody (see, e.g., Garmarnik & Andino (1998). Genes and Development 12:2293-2304, and Teterina et al., (2001). J. Virology 75:3841-3850); these additional species are shown in parentheses. MW: molecular weight markers.
Supplementary Figure 3 b-k (panel a is blank)

Supplementary Figure 3. Viral Proteins and vRNA expression level in whole cells. (b-i) Confirmation and determination of specificity of the positive- and negative-strand RNA assays show no amplification in PV-infected cells when reverse transcriptase was absent, probed
using positive- (b) and negative- (c) sense RNA strands. No amplification was observed in water, probed using positive- (d) and negative- (e) sense RNA. Primers were able to specifically recognize positive- (f) and negative- (g) sense viral RNA from the total RNA extracted from PV-infected cells. The single peak in the melt curve of cDNA products of positive- (h) and negative- (i) sense viral RNA probes from PV-infected cells indicates the presence of one target amplicon. The amplification of positive-sense viral RNA was absent in mock-infected cells (j). The total RNA of PV- (IW) and mock-infected (MW) cells at 8 hpi was collected, and the levels of (+) vRNA and (-) vRNA were determined using RT-qPCR (k). The y-axis indicates fluorescent intensity signal in arbitrary units. Panels b, c are expressed in log mode. Panels d-j are expressed in linear mode. RT-qPCR relative quantification was calculated as ΔC_t where $\Delta C_t = (C_t$ of endogenous control gene (GAPDH)) – (Ct of gene of interest (vRNA)), using GAPDH of whole cells for normalization.

Supplementary Figure 4. PV infectivity before and after the treatment of freeze-thaw, detergent, RNAse.

The titer of poliovirus stock solutions was determined by plaque assay before (black) and after (white) freeze-thaw, detergent, and RNAse treatment. The y-axis indicates the viral titer (plaque-forming units) while the x-axis indicates three independent experiments.
Supplementary Figure 5. Virions were rarely seen dispersed within the bundled actin filaments carried by infectious microvesicles.

Successive 1 nanometer thick slices through a reconstructed cryo-electron tomogram (a-d). Traced models of (a’-d’) depict the disappearance and appearance of individual virions (red hexagons) among actin filaments (black arrows). The scale bar is 100 nm.

Supplemental Movie. Cryotomogram of a microvesicle from poliovirus-infected cells

Movie of an electron cryotomogram of a Class III microvesicle isolated from poliovirus-infected cells. Labeled, and later shown in isosurface-rendered models in the tomogram, are virions, vesicle membranes, mat-like structures, and the inner vesicular structure. Additional labels indicate representative annexin-V beads that were used to isolate the sample, and fiducial gold beads that were added to aid alignment of tilt series data. Scale bar, 100 nm.
Supplemental Table S1.

Proteins Identified in Microvesicles Isolated from Cells that were:

PV-infected

Accession #	Protein Abbreviation	P	Aggregated Area from one run of ImVs	Description	Aggregated Area from one run of ImVs
P60709	ACTB_HUMAN	378.78	1.32E-38	97500000	Actin cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1
P63261	ACTG_HUMAN	378.78	1.32E-38	97500000	Actin cytoplasmic 2 OS=Homo sapiens GN=ACTG1 PE=1 SV=1
P80723	BASP1_HUMAN	370.94	8.05E-38	28800000	Brain acid soluble protein 1 OS=Homo sapiens GN=BASP1 PE=1 SV=2
P35908	K22E_HUMAN	330.12	9.73E-34	51700000	Keratin type II cytoskeletal 2 epidermal OS=Homo sapiens GN=KRT2 PE=1 SV=2
P04264	K2C1_HUMAN	307.63	1.73E-31	48800000	Keratin type II cytoskeletal 1 OS=Homo sapiens GN=KRT1 PE=1 SV=6
P50995	ANXK1_HUMAN	269.92	1.02E-27	14800000	Annexin A11 OS=Homo sapiens GN=ANXK11 PE=1 SV=1
P13645	K1C10_HUMAN	266.4	2.29E-27	41600000	Keratin type I cytoskeletal 10 OS=Homo sapiens GN=KRT10 PE=1 SV=6
P35613	BASI_HUMAN	253.39	4.58E-26	24400000	Basigin OS=Homo sapiens GN=BSG PE=1 SV=2
P02533	K1C14_HUMAN	237.36	1.84E-24	30700000	Keratin type I cytoskeletal 14 OS=Homo sapiens GN=KRT14 PE=1 SV=4
P04406	G3P_HUMAN	227.96	1.60E-23	92700000	Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3
P11142	HSP7C_HUMAN	225.22	3.01E-23	14600000	Heat shock cognate 71 kDa protein OS=Homo sapiens GN=HSPA8 PE=1 SV=1
P04083	ANXA1_HUMAN	218.34	1.47E-22	31700000	Annexin A1 OS=Homo sapiens GN=ANXA1 PE=1 SV=2
P08195	4F2_HUMAN	214.05	3.94E-22	11100000	4F2 cell-surface antigen heavy chain OS=Homo sapiens GN=SLCA2 PE=1 SV=2
P07540	PDCD6_HUMAN	213.31	4.67E-22	21300000	Programmed cell death protein 6 OS=Homo sapiens GN=PDCD6 PE=1 SV=1
P35527	K1C9_HUMAN	206.24	2.38E-21	17800000	Keratin type I cytoskeletal 9 OS=Homo sapiens GN=KRT9 PE=1 SV=3
P23525	C0F3_HUMAN	204.53	3.52E-21	19300000	Cofilin 1 OS=Homo sapiens GN=CFL1 PE=1 SV=3
P05023	AT1A1_HUMAN	204.08	3.91E-21	25300000	Sodium/potassium-transporting ATPase subunit alpha-1 OS=Homo sapiens GN=ATP1A1 PE=1 SV=1
P08174	DAF_HUMAN	190.48	8.95E-20	21600000	Complement decay-accelerating factor OS=Homo sapiens GN=CD55 PE=1 SV=4
P13987	CD59_HUMAN	190.45	9.02E-20	61500000	CD59 glycoprotein OS=Homo sapiens GN=CD59 PE=1 SV=1
P09525	ANXA4_HUMAN	181.51	7.08E-19	19800000	Annexin A4 OS=Homo sapiens GN=ANXA4 PE=1 SV=4
P26038	MOE5_HUMAN	178.96	1.27E-18	23500000	Moesin OS=Homo sapiens GN=MSN PE=1 SV=3
P62937	PPIA_HUMAN	173.59	4.38E-18	40700000	Peptidyl-prolyl cis-trans isomerase A OS=Homo sapiens GN=PPIA PE=1 SV=2
P60174	TP5_HUMAN	164.69	3.40E-17	27000000	Triosephosphate isomerase OS=Homo sapiens GN=TP1 PE=1 SV=3
P30626	SORC1_HUMAN	157.35	1.84E-16	42900000	Sorcin OS=Homo sapiens GN=SRI PE=1 SV=1
P07195	LDHB_HUMAN	156.21	2.39E-16	9910000	l-Lactate dehydrogenase B chain OS=Homo sapiens GN=LDHB PE=1 SV=1
P61586	RHDA_HUMAN	152.91	5.12E-16	6180000	Transforming protein Rhod OS=Homo sapiens GN=RHDA PE=1 SV=1
Q09666	AHNK_HUMAN	150.48	8.95E-16	7160000	Neuroblast differentiation-associated protein AHNAK OS=Homo sapiens GN=AHNAK PE=1 SV=2
P08238	H590B_HUMAN	150.15	9.66E-16	15800000	Heat shock protein HSP 90-beta OS=Homo sapiens GN=HSP90AB1 PE=1 SV=4
P63104	1433Z_HUMAN	147.65	1.72E-15	12000000	14-3-3 protein zeta/delta OS=Homo sapiens GN=YWHAZ PE=1 SV=1
P62087	RL40_HUMAN	144.04	3.94E-15	54000000	Ubiquitin-40S ribosomal protein L40 OS=Homo sapiens GN=UBA52 PE=1 SV=2
P62979	RS27A_HUMAN	144.04	3.94E-15	54000000	Ubiquitin-40S ribosomal protein S27a OS=Homo sapiens GN=RPS27A PE=1 SV=2
P0C548	UBC_HUMAN	144.04	3.94E-15	54000000	Polyubiquitin-C OS=Homo sapiens GN=UBC PE=1 SV=3
P06733	ENOA_HUMAN	142.93	5.09E-15	23900000	Alpha-epsilon OS=Homo sapiens GN=ENO1 PE=1 SV=2
P08758	ANXK3_HUMAN	142.1	6.17E-15	24600000	Annexin A5 OS=Homo sapiens GN=ANXK3 PE=1 SV=2
P16070	CD44_HUMAN	141.89	6.47E-15	5710000	CD44 antigen OS=Homo sapiens GN=CD44 PE=1 SV=3
Q05274	LYPD3_HUMAN	141.14	7.69E-15	4970000	Ly6/PLAUR domain-containing protein 3 OS=Homo sapiens GN=LYPD3 PE=1 SV=2
P02786	TF2L_HUMAN	140.98	7.98E-15	7890000	Transferrin receptor protein 1 OS=Homo sapiens GN=TFRC PE=1 SV=2
P31949	S10A8_HUMAN	140.88	8.17E-15	52900000	Protein S100-A11 OS=Homo sapiens GN=S100A11 PE=1 SV=2
P04075	ALDOA_HUMAN	140.39	9.14E-15	10700000	Fructose-bisphosphate aldolase A OS=Homo sapiens GN=ALDOA PE=1 SV=2
P14618	KPYM_HUMAN	138.78	1.32E-14	17500000	Pyruvate kinase PM5 OS=Homo sapiens GN=PKM PE=1 SV=4

Mock-infected
Supplemental Table S1 (continued).
Proteins Identified in Microvesicles Isolated from Cells that were:

Protein ID	Protein Name	Accession Number	Monoisotopic Mass	Charge State	Protein Name	Accession Number	Monoisotopic Mass	Charge State
QBW5M4	PDC6I_HUMAN	OS=Homo sapiens	138.08	1.56E-14	69600000	PDC6I_HUMAN	OS=Homo sapiens	138.08
P20073	ANS7_HUMAN	OS=Homo sapiens	135.42	2.87E-14	13500000	ANS7_HUMAN	OS=Homo sapiens	135.42
P39004	L1CAM_HUMAN	OS=Homo sapiens	134.29	3.72E-14	50200000	L1CAM_HUMAN	OS=Homo sapiens	134.29
P07437	TUBB5I_HUMAN	OS=Homo sapiens	129.88	1.03E-13	46700000	TUBB5I_HUMAN	OS=Homo sapiens	129.88
P15311	EZR_HUMAN	OS=Homo sapiens	129.76	1.06E-13	40900000	EZR_HUMAN	OS=Homo sapiens	129.76
O75131	CPNE3_HUMAN	OS=Homo sapiens	123.29	4.69E-13	10200000	CPNE3_HUMAN	OS=Homo sapiens	123.29
P00338	LDHA_HUMAN	OS=Homo sapiens	121.52	7.05E-13	75800000	LDHA_HUMAN	OS=Homo sapiens	121.52
P05556	ITB1_HUMAN	OS=Homo sapiens	120.67	8.57E-13	95400000	ITB1_HUMAN	OS=Homo sapiens	120.67
P0DMV8	HS71A_HUMAN	OS=Homo sapiens	118.29	1.48E-12	35300000	HS71A_HUMAN	OS=Homo sapiens	118.29
P0DMV9	HS71B_HUMAN	OS=Homo sapiens	118.29	1.48E-12	35300000	HS71B_HUMAN	OS=Homo sapiens	118.29
Q9UBV8	PFEF1_HUMAN	OS=Homo sapiens	118.08	1.56E-12	25400000	PFEF1_HUMAN	OS=Homo sapiens	118.08
P10809	CHG0_HUMAN	OS=Homo sapiens	114.89	3.24E-12	30200000	CHG0_HUMAN	OS=Homo sapiens	114.89
Q16658	FSCN1_HUMAN	OS=Homo sapiens	112.11	6.17E-12	64600000	FSCN1_HUMAN	OS=Homo sapiens	112.11
P08754	GNAI3_HUMAN	OS=Homo sapiens	111.38	7.28E-12	40600000	GNAI3_HUMAN	OS=Homo sapiens	111.38
O0X099	CLIC1_HUMAN	OS=Homo sapiens	96.21	2.39E-10	29900000	CLIC1_HUMAN	OS=Homo sapiens	96.21
Q9H444	CHM4B_HUMAN	OS=Homo sapiens	95.61	2.75E-10	50800000	CHM4B_HUMAN	OS=Homo sapiens	95.61
P08133	ANXA6_HUMAN	OS=Homo sapiens	91.15	7.67E-10	13800000	ANXA6_HUMAN	OS=Homo sapiens	91.15
Q06830	PRDXI_HUMAN	OS=Homo sapiens	90.78	8.36E-10	11500000	PRDXI_HUMAN	OS=Homo sapiens	90.78
Q00159	MYO1C_HUMAN	OS=Homo sapiens	85.90	2.57E-09	16500000	MYO1C_HUMAN	OS=Homo sapiens	85.90
P68104	EF1A1_HUMAN	OS=Homo sapiens	83.73	4.24E-09	19500000	EF1A1_HUMAN	OS=Homo sapiens	83.73
Q05639	EF1A2_HUMAN	OS=Homo sapiens	83.73	4.24E-09	19500000	EF1A2_HUMAN	OS=Homo sapiens	83.73
Q5VTE0	EF1A3_HUMAN	OS=Homo sapiens	83.73	4.24E-09	19500000	EF1A3_HUMAN	OS=Homo sapiens	83.73
P15328	FOLR2_HUMAN	OS=Homo sapiens	80.60	8.71E-09	25400000	FOLR2_HUMAN	OS=Homo sapiens	80.60
Q69KHE	CD109_HUMAN	OS=Homo sapiens	74.04	3.94E-08	68600000	CD109_HUMAN	OS=Homo sapiens	74.04
P29401	TKT_HUMAN	OS=Homo sapiens	71.68	6.79E-08	25400000	TKT_HUMAN	OS=Homo sapiens	71.68

Table S1. Proteomic profiles of microvesicles from PV- and mock- infected cells at 8 hpi.
We report the full proteomic profile of microvesicles from PV-infected cells carry 65 identified host protein matches (columns to the left of the green column, including Accession number, protein name, -10lgP, P, and aggregated area from one of the experiments). Microvesicles from mock-infected cells carry five host protein matches (columns to the right of the green column). All proteins identified in samples from mock-infected cells were also identified in samples from PV-infected cells. All proteomic analyses were conducted at a specified precursor ion (MS1) error tolerance of 10 ppm, a fragment ion (MS/MS) error tolerance of 0.02 Da. and a target-decoy false discovery threshold of 0.1%.