Topotactic Fluorine Insertion into the Channels of FeSb$_2$O$_4$-Related Materials

Benjamin P. de Laune, Gregory J. Rees, José F. Marco, Hien-Yoong Hah, Charles E. Johnson, Jacqueline A. Johnson, Frank J. Berry, John V. Hanna, and Colin Greaves

#School of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K.
§Department of Physics, University of Warwick, Coventry CV4 7AL, U.K.
†Instituto de Química-Física "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain
¶Department of Mechanical, Aeronautical and Biomedical Engineering and Center for Laser Applications, University of Tennessee

ABSTRACT: This paper discusses the fluorination characteristics of phases related to FeSb$_2$O$_4$, by reporting the results of a detailed study of Mg$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$ and Co$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$. Reaction with fluorine gas at low temperatures (typically 230 °C) results in topotactic insertion of fluorine into the channels, which are an inherent feature of the structure. Neutron powder diffraction and solid state NMR studies show that the interstitial fluoride ions are bonded to antimony within the channel walls to form Sb–F–Sb bridges. To date, these reactions have been observed only when Fe$^{2+}$ ions are present within the chains of edge-linked octahedra (FeO$_6$ in FeSb$_2$O$_4$) that form the structural channels. Oxidation of Fe$^{2+}$ to Fe$^{3+}$ is primarily responsible for balancing the increased negative charge associated with the presence of the fluoride ions within the channels. For the two phases studied, the creation of Fe$^{3+}$ ions within the chains of octahedra modify the magnetic exchange interactions to change the ground-state magnetic symmetry to C-type magnetic order in contrast to the A-type order observed for the unfluorinated oxide parents.

1. INTRODUCTION

Fluorine insertion into low-dimensional oxides is well understood and results in changes in structural properties, e.g., increased separation in layered materials, and electronic characteristics that are associated with oxidation of transition metal ions present in the parent material. These reactions have recently been reviewed, and a classic example is provided by the conversion of semiconducting La$_2$CuO$_4$ to superconducting La$_2$CuO$_4$F$_x$ by heating in ambient pressure fluorine gas. Similar reactions may also be observed for oxygen insertion, albeit generally at elevated pressures. We have recently reported that phases related to FeSb$_2$O$_4$ (the mineral schafarzikite) can accommodate oxygen into the narrow one-dimensional channels that are an inherent feature of their structure. We have therefore examined whether related fluorine insertion reactions are possible. In this paper we report that this is, indeed, the case; we describe the nature of the redox reactions involved and compare the different anion insertion processes.

The structure of FeSb$_2$O$_4$ is tetragonal (P4_2/nmc a = 8.62 Å c = 5.91 Å) and contains chains of edge-sharing Fe$^{2+}$O$_6$ octahedra that are linked by trigonal pyramidal Sb$^{3+}$ ions. The Sb$^{3+}$ coordination becomes pseudotetrahedral if we include the lone pair of electrons (e) in the coordination geometry, SbO$_6$e. The combination of these structural features provides parallel channels (along the c-axis) into which the Sb$^{3+}$ lone pairs of electrons are directed (Figure 1). The schafarzikite family, which can be represented by MSb$_2$O$_4$, is quite broad, and the members with M = Co$^2+$ and M = Mg$^{2+}$ are relevant to the present study. There have been several reports of the magnetic properties where M is a magnetic ion, especially of how elemental substitutions affect the magnetic exchange interactions.
interactions and thereby influence the nature of the low-
temperature magnetic order. All Sb-based materials which
order magnetically at low temperatures have been found to
display either A- or C-type modes of order with the moments
aligned perpendicular to [001] or along [001], as shown in
Figure 2. FeSb₂O₄, for example, has A-type order below a Néel
temperature, Tₙₐ₅ ≈ 45 K, whereas CoSb₂O₄ is C-type with Tₙₐ₅
≈ 79 K. Interestingly, partial oxidation of Fe²⁺ to Fe³⁺ via
cation substitution, FeSb₂₋ₓPbₓO₄₋ₙ or in oxygen-excess phases,
e.g., Mg₀.₅₀Fe₀.₅₀Sb₂O₄₋ₙ, cause a switch from A-type to C-
type order. However, the pure Fe³⁺ compound FePbO₄ is A-
type, which highlights the delicate balance that exists between
the intrachain and interchain magnetic exchange interactions and
how small changes to the relative magnitudes of direct and
superexchange magnetic interactions within the chains of
octahedra influence the three-dimensional (3-D) magnetic
order. The only reports of electronic conductivity relate to
Fe²⁺-containing phases and suggest semiconductor behavior with
higher conductivities being observed for materials containing
mixed Fe²⁺/Fe³⁺ compositions.

We have recently reported that unusual oxidation reactions can occur in air or oxygen with retention of the basic structure. The reactions occur at low temperatures, e.g., at 350 °C, but it has been seen only for compounds which contain some Fe²⁺ cations. The reaction involves insertion of oxide ions into the empty channels, with charge balance being provided by simultaneous oxidation of Fe²⁺ ions to Fe³⁺ and Sb³⁺ to Sb⁵⁺. The stability appears to be enhanced by the formation of defect clusters in the channels: these contain two 4-coordinate Sb⁵⁺, two interstitial O²⁻ ions, and one 5-coordinate Sb³⁺. High levels of oxygen insertion occur when the Fe²⁺ concentration is high, e.g., in FeSb₂O₄, and this causes structural strain and broadening of diffraction peaks. However, this is not apparent for compounds such as Fe₀.₅₀Mg₀.₅₀Sb₂O₄ for which detailed investigations are possible.

These low temperature oxidations are of interest for their demonstration that the schafarzikite structure may be useful for materials with relevant electrocatalytic and ion transport properties. Given the high oxidation potential of the parent oxides, we have studied its low temperature reactions with Fe²⁺-containing schafarzikite phases and compared the nature of the reactions with those reported previously for the production of oxygen-excess phases. Here we report a detailed study of two representative materials, Mg₀.₅₀Fe₂₋ₓSbₓO₄ and C₀.₅₀Mg₀.₅₀Sb₂O₄. We show that similar reactions occur, but the Sb–F bonding preferences are different from Sb–O and result in significant differences not only to the structural characteristics, but also to the nature of the redox processes involved.

2. EXPERIMENTAL DETAILS

Parent materials were prepared by heating dried mixed metal oxides and antimony metal (CoO, 325 mesh Sigma-Aldrich; Fe₂O₃, 99.9% Sigma-Aldrich; Sb₂O₃, reagent plus, Sigma-Aldrich; Pb, BDH; MgO, 99% 325 mesh Sigma-Aldrich) in evacuated sealed quartz tubes as previously described. Samples were fluorinated by heating in flowing F₂ (10% in N₂) at 230 °C for various times. After each heat treatment the reaction vessel was immediately purged with N₂ or Ar gas.

Powder X-ray diffraction (XRPD) analysis was performed on a Bruker D8 diffractometer in transmission geometry (monochromatic Cu–Kα radiation source, λ = 1.5406 Å). Neutron powder diffraction (NPD) data sets were collected (from samples of ca. 2–3 g in 8 mm vanadium cans) at 4 and 300 K on the diffractometer D2B at ILL, Grenoble, France. Data obtained from the central portion of the detector were used in the analysis to limit low angle asymmetry. Crystallographic and magnetic structure determinations were performed using the Rietveld method and the general structures analysis system (GSAS) and EXPGUI. The magnetic refinements for 4 K data used form factors for Fe⁷⁺ and Co⁷⁺ based on evidence gained from the 300 K data and Mössbauer spectroscopy, which suggested that Fe³⁺ was the major iron species present. Magnetic properties were determined with a Netzsch Sta 449 F1 analyzer by heating samples at 10 K/min to 873 K in flowing 10% H₂ in N₂. The Fe³⁺ and Sb-Mössbauer spectra were recorded at 300 K with constant acceleration spectrometers using ⁵⁷Co/Rh and ¹²¹mn sources. All spectra were fitted and the chemical isomer shift data are quoted relative to metallic iron at room temperature. The distribution of O²⁻ and F⁻ ions among the available anion sites was investigated using NMR experiments.

3. RESULTS

3.1. Crystal and Magnetic Structure Determination.

The samples Co₀.₅₀Fe₀.₅₀Sb₂O₄ and Mg₀.₅₀Fe₂₋ₓSbₓO₄ were selected for detailed study from a wide range of synthesized compounds, since they offered sufficient fluorine contents for reliable structure analysis while avoiding complications of broadened diffraction peaks seen for samples with higher iron contents; this also occurs for oxygen-excess phases as previously discussed. XRPD data showed that the products of fluorination were single phase with structures closely related to that of the parent oxides; Figure 3 shows data for the formation of Co₀.₅₀Fe₀.₅₀Sb₂O₄F, from Co₀.₅₀Fe₂₋ₓSbₓO₄.

3.1.1. Structure Analysis, 300 K.

The structure was refined against NPD data in Pnma using structural information from the related oxygen-excess phases as a model for locating the
interstitial fluorine. Satisfactory refinements were achieved for both materials and located interstitial fluorine within the channels at sites which are closely related to those reported for oxygen excess phases.3,12 The isotropic displacement parameters for the fluorine and the two oxygen sites (equatorial, O\textsubscript{eq} and apical, O\textsubscript{ap}, as shown in Figure 1) were constrained to be equal to limit correlation effects between the F site occupancy and its displacement parameter. The diffraction peaks for Mg\textsubscript{0.50}Fe\textsubscript{0.50}Sb\textsubscript{2}O\textsubscript{4}F\textsubscript{x} showed evidence for shoulders which were attributed to a non-homogeneous distribution of fluorine within the sample. Although fitting the data to two phases was possible, refinement using a single phase was more stable and was therefore adopted. After Rietveld refinement, the profile data are shown in Figures 4 and 5 and the structural data in Tables 1 and 2 for Co\textsubscript{0.50}Fe\textsubscript{0.50}Sb\textsubscript{2}O\textsubscript{4}F\textsubscript{x} and Mg\textsubscript{0.50}Fe\textsubscript{0.50}Sb\textsubscript{2}O\textsubscript{4}F\textsubscript{x}, respectively. Since NPD cannot differentiate between oxygen and fluorine, Tables 1 and 2 assume that the inserted fluorine occupies the intrachannel site and does not undergo any substitution with framework O\textsubscript{ap} or O\textsubscript{eq} sites. Thermodynamic support for this anion distribution was sought using Madelung energy calculations,17 which provide good relative stabilities for different ionic arrangements that are possible for a given material.

Madelung energies were computed based on the structural data for Co\textsubscript{0.50}Fe\textsubscript{0.50}Sb\textsubscript{2}O\textsubscript{4}F\textsubscript{x}, Table 1, with a fluorine content of 0.5 per formula unit (in accordance with the site occupancies in Table 1) and charge balance via oxidation Fe2+ to Fe3+. Structures were examined in which fluorine was allowed to substitute for both apical and equatorial oxide ions, and the results, Figure 6, revealed very little difference for substitution at O\textsubscript{ap} and O\textsubscript{eq} sites. An alternative charge balance involving a combination of Fe2+ and Sb3+ oxidation, suggested by Mössbauer spectroscopy (section 3.2), was also examined, and the results are included in Figure 6. The data provide no thermodynamic evidence to suggest any F/O exchange in the material, with fluorine showing a strong preference to remain in interstitial channel sites according to a higher Madelung energy of ∼4%. However, it should be noted that the interstitial fluorine sites are occupied only to the extent of ∼12%, and the model used distributes the charge evenly across all equivalent sites. This will result in a higher repulsive interaction between the channel sites than would occur in reality, where short-range order could avoid very close contacts between the anions. In the computations, this will destabilize structures with oxide ions in the channels more than those involving interstitial fluoride ions because of the higher ionic charge on oxygen. To evaluate the magnitude of this contribution, the structure was transformed to P\textbar\textbar\textbar symmetry which allowed the selection of two well-separated positions for the two interstitial anions in the unit cell (to give the required composition). This model slightly increased the stability of all distributions, but especially those with oxygen within the channels, as expected. In all cases, however, the Madelung energy for fluorine occupancy of the channels remained >1.3% higher than for fluorine occupancy of framework sites (O\textsubscript{ap} or O\textsubscript{eq}) and confirmed the structural assignments in Tables 1 and 2.

Table 3 compares some relevant bond distances for the starting materials with those in the fluorinated products and some common trends are seen. The bond distances around the octahedral cations decrease on fluorination which is consistent with oxidation of some Fe2+ ions to Fe3+. The higher charge provides enhanced cation–cation repulsions within the chains of octahedra, which is reflected in the increased c-parameter.
and automatically the larger cation–cation distance between adjacent cations. We also see that fluorination causes an increase in the averaged Sb–O bond lengths, which is consistent with some of the Sb ions increasing their coordination by bonding to an interstitial fluoride ion. It is interesting that the bridging bonds between Fe and two Sb ions have slightly different lengths. However, there is no special space group position that would constrain the bonds to be equal, and the fluoride position reflects not only the bonding to the two Sb ions, but also more distant structural aspects.

Detailed bond distance comparisons around the Sb ions is not possible because we have only average bond distances, and these reflect ions with coordination numbers of 3 and 4.

The mean site occupancies from 300 and 4 K data (see below) refinements suggest compositions of $\text{Co}_{0.50}\text{Fe}_{0.50}\text{Sb}_{2}\text{O}_{4}\text{F}_{0.49}$ and $\text{Mg}_{0.50}\text{Fe}_{0.50}\text{Sb}_{2}\text{O}_{4}\text{F}_{0.31}$.

Co0.50Fe0.50Sb2O4F0.49 (Table 1) with the O positions in $\text{FeSb}_{1.25}\text{Pb}_{0.75}\text{O}_{4.24}$.8 The data for Mg 0.50Fe0.50Sb2O4F0.31 and $\text{Co}_{0.50}\text{Fe}_{0.50}\text{Sb}_{2}\text{O}_{4}\text{F}_{0.31}$12 suggest compositions of $\text{Co}_{0.50}\text{Fe}_{0.50}\text{Sb}_{2}\text{O}_{4}\text{F}_{0.49}$ (Table 1) and $\text{Mg}_{0.50}\text{Fe}_{0.50}\text{Sb}_{2}\text{O}_{4}\text{F}_{0.31}$.

The mean site occupancies from 300 and 4 K data (see below) refinements suggest compositions of $\text{Co}_{0.50}\text{Fe}_{0.50}\text{Sb}_{2}\text{O}_{4}\text{F}_{0.49}$ and $\text{Mg}_{0.50}\text{Fe}_{0.50}\text{Sb}_{2}\text{O}_{4}\text{F}_{0.31}$.

Figure 6 compares the interstitial F atom positions for fluorinated products; common trends are seen for both system. The compositions can be compared with the fluorine content of 0.50 per formula unit if oxidation of all Fe$^{2+}$ to Fe$^{3+}$ occurred completely and was the only charge balance mechanism for the interstitial fluoride. The concentration of interstitial anions is therefore compatible with oxidation of only Fe$^{2+}$, whereas for the analogous oxygen insertion reactions, oxidation of both Fe$^{2+}$ and Sb$^{3+}$ cations was necessary to explain the significantly higher concentrations of anions in the channels.12 The results from Mössbauer spectroscopy, section 3.2, address this question.

Detailed bond distance comparisons around the Sb ions is not possible because we have only average bond distances, and these reflect ions with coordination numbers of 3 and 4.

The mean site occupancies from 300 and 4 K data (see below) refinements suggest compositions of $\text{Co}_{0.50}\text{Fe}_{0.50}\text{Sb}_{2}\text{O}_{4}\text{F}_{0.49}$ and $\text{Mg}_{0.50}\text{Fe}_{0.50}\text{Sb}_{2}\text{O}_{4}\text{F}_{0.31}$.

Co0.50Fe0.50Sb2O4F0.49 (Table 1) with the O positions in $\text{FeSb}_{1.25}\text{Pb}_{0.75}\text{O}_{4.24}$.8 The data for Mg 0.50Fe0.50Sb2O4F0.31 and $\text{Co}_{0.50}\text{Fe}_{0.50}\text{Sb}_{2}\text{O}_{4}\text{F}_{0.31}$12 suggest compositions of $\text{Co}_{0.50}\text{Fe}_{0.50}\text{Sb}_{2}\text{O}_{4}\text{F}_{0.49}$ (Table 1) and $\text{Mg}_{0.50}\text{Fe}_{0.50}\text{Sb}_{2}\text{O}_{4}\text{F}_{0.31}$.

The mean site occupancies from 300 and 4 K data (see below) refinements suggest compositions of $\text{Co}_{0.50}\text{Fe}_{0.50}\text{Sb}_{2}\text{O}_{4}\text{F}_{0.49}$ and $\text{Mg}_{0.50}\text{Fe}_{0.50}\text{Sb}_{2}\text{O}_{4}\text{F}_{0.31}$.

Figure 6 compares the interstitial F atom positions for fluorinated products; common trends are seen for both system. The compositions can be compared with the fluorine content of 0.50 per formula unit if oxidation of all Fe$^{2+}$ to Fe$^{3+}$ occurred completely and was the only charge balance mechanism for the interstitial fluoride. The concentration of interstitial anions is therefore compatible with oxidation of only Fe$^{2+}$, whereas for the analogous oxygen insertion reactions, oxidation of both Fe$^{2+}$ and Sb$^{3+}$ cations was necessary to explain the significantly higher concentrations of anions in the channels.12 The results from Mössbauer spectroscopy, section 3.2, address this question.

Figure 7 compares the interstitial F atom positions for Co0.50Fe0.50Sb2O4F0.49 (Table 1) with the O positions in $\text{FeSb}_{1.25}\text{Pb}_{0.75}\text{O}_{4.24}$.8 The data for Mg 0.50Fe0.50Sb2O4F0.31 and $\text{Co}_{0.50}\text{Fe}_{0.50}\text{Sb}_{2}\text{O}_{4}\text{F}_{0.31}$12 suggest compositions of $\text{Co}_{0.50}\text{Fe}_{0.50}\text{Sb}_{2}\text{O}_{4}\text{F}_{0.49}$ (Table 1) and $\text{Mg}_{0.50}\text{Fe}_{0.50}\text{Sb}_{2}\text{O}_{4}\text{F}_{0.31}$.
are not equal, and the Sb—O distances have increased in length after the fluorination; this is consistent with an increase in average coordination for Sb, but provides no support for any significant oxidation to Sb$^{5+}$. This structural aspect is explored later in section 3.2. The F-bridging between two Sb$^{3+}$ cations is shown in Figure 8. It is interesting that the bridging bonds between F and two Sb ions have slightly different lengths. However, there is no special space group position that would constrain the bonds to be equal, and the fluorine position affects not only the bonding to the two Sb ions, but also more distant structural aspects. Figure 8 shows that the fluorine bonds in such a way as to provide space for the Sb$^{3+}$ lone pair of electrons, which are directed into the channels. The SbO$_3e$F coordination ($e =$ lone pair) can be related to pseudo-\(D_{3h}\) symmetry where one of the two O$_{ap}$ ions (marked * in Figure 8) and the lone pair lie on the C$_3$ axis, on opposite sides of the Sb ion. Detailed bond distance comparisons around the Sb ions are not possible unfortunately because the experimental distances are averages for ions with coordination numbers of

Table 3. Selected Bond Distances (Å) for Co$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$F$_{0.49}$ and Mg$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$F$_{0.31}$ at 300 K

	Co$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$ [ref 7]	Co$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$F$_{0.49}$	Mg$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$	Mg$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$F$_{0.31}$
Co/Fe/Mg—O$_{ap}$ \([\times 2]\)	2.165(1)	2.083(4)	2.151(1)	2.111(4)
Co/Fe/Mg—O$_{eq}$ \([\times 4]\)	2.080(9)	2.052(3)	2.075(1)	2.050(3)
Fe—Fe	2.0521(5)	2.9750(1)	2.9613(9)	2.9726(1)
Sb—O$_{ap}$ \([\times 2]\)	1.993(1)	2.020(3)	2.000(1)	2.003(4)
Sb—O$_{eq}$	1.947(2)	1.987(6)	1.933(2)	1.985(6)
Sb—F	2.15(2)	2.35(3)	2.07(4)	2.43(6)

Table 4. 57Fe Mössbauer Parameters Recorded at 300 K from Fluorinated Derivatives of Co$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$ and Mg$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$

assignment	IS \pm 0.05 mm s$^{-1}$	QS \pm 0.05 mm s$^{-1}$	spectral area/%	
Co$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$F$_{0.49}$	Fe^{2+} (1)	1.16	1.91	19
	Fe^{2+} (2)	0.82	1.51	13
	Fe^{3+} (1)	0.50	0.90	16
	Fe^{3+} (2)	0.38	0.70	52
Mg$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$F$_{0.31}$	Fe^{2+} (1)	1.09	2.09	20
	Fe^{2+} (2)	0.82	1.60	14
	Fe^{3+} (1)	0.57	0.84	12
	Fe^{3+} (2)	0.38	0.75	54

Figure 7.Interstitial O atom positions in FeSb$_{1.25}$Pb$_{0.75}$O$_{4.24}$ (a), compared with the F atom positions in Co$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$F$_{0.49}$ (Table 1) (b). All partially occupied sites are shown.

Figure 8. Interstitial F (orange) bridging two Sb ions (black) viewed approximately along [111] and showing bonds distances in Å. O$_{ap}$ and O$_{eq}$ ions are shown in yellow and red, respectively. The ions marked * are opposite the position of the lone pairs of electrons on Sb.

Figure 9. 57Fe Mössbauer spectrum from Mg$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$F$_{0.31}$ at 300 K: observed data (black points), Fe$^{2+}$ (purple and orange), Fe$^{3+}$ (green and blue), overall (red).

Figure 10. 57Fe Mössbauer spectrum from Co$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$F$_{0.49}$ at 300 K: observed data (black points), Fe$^{2+}$ (purple and orange), Fe$^{3+}$ (green and blue), overall (red).
3 and 4. The bond distances around the octahedral cations decrease on fluorination which is consistent with oxidation of some Fe²⁺ ions to Fe³⁺. The charge increase provides enhanced cation−cation repulsions along the chains of octahedra and is reflected in the increased c-parameter and hence the larger cation−cation distance between adjacent cations.

3.1.2. Magnetic Structure, 4 K. Magnetic structures were refined by introducing a discrete magnetic-only phase with P1 symmetry to allow total flexibility in determining the magnetic order; lattice parameters for this cell were constrained to correspond with the nuclear cell. It was clear from the intense (100) peak at ca. 10.8° 2θ (Figures 4 and 5) that the dominant type of magnetic order for both fluorinated phases was consistent with C-type (Figure 2), with ferromagnetic order along a given chain of octahedra and antiferromagnetic order between adjacent chains. This contrasts with the predominant A-type arrangement seen in both starting phases. In fact, Co₀.₅₀Fe₀.₅₀Sb₂O₄ has a ground-state comprising a minor C-type component (35%) which corresponds to a rotation of the magnetic moments through ∼30°. Refinements proceeded smoothly to yield magnetic moments of 3.58(5) μₓ and 2.5(1) μₓ per transition metal for the Co and Mg variants, respectively. Small peaks at ca. 18.5° 2θ can be seen in the diffraction patterns for both compounds at 300 and 4 K. These were assigned to a strong magnetic peak which is characteristic of

Table 5. ¹²¹Sb Mössbauer Parameters Recorded from Fluorinated Derivatives of Co₀.₅₀Fe₀.₅₀Sb₂O₄ and Mg₀.₅₀Fe₀.₅₀Sb₂O₄

Assignment	IS ± 0.15 mm s⁻¹	QS ± 0.15 mm s⁻¹	Spectral area/%	
Co₀.₅₀Fe₀.₅₀Sb₂O₄F	Sb³⁺	−12.6	+7.54	95
	Sb⁵⁺	0.03		5
Mg₀.₅₀Fe₀.₅₀Sb₂O₄F	Sb³⁺	−10.94	+7.35	100

Figure 11. ¹²¹Sb Mössbauer spectra from Mg₀.₅₀Fe₀.₅₀Sb₂O₄F₀.₃₁ at 300 K showing fitting of observed data (black) to a single Sb⁺⁺ absorption (red).

Figure 12. ¹²¹Sb Mössbauer spectrum from Co₀.₅₀Fe₀.₅₀Sb₂O₄F₀.₄₉ at 300 K: the data (black) are fitted to Sb³⁺ (green) and Sb⁵⁺ (cyan) to give the calculated profile (red).

Figure 13. Magnetic susceptibility data (FC red, ZFC black) for (a) Mg₀.₅₀Fe₀.₅₀Sb₂O₄F₀.₃₁ and (b) Co₀.₅₀Fe₀.₅₀Sb₂O₄F₀.₄₉.

Figure 14. TG reduction of Mg₀.₅₀Fe₀.₅₀Sb₂O₄F₀.₃₁ and Co₀.₅₀Fe₀.₅₀Sb₂O₄F₀.₄₉ (compositions from NPD analysis) in 10% H₂ in N₂.
Periods Mg0.50Fe0.50Sb2O4F0.31, respectively. Given the high orbital
flowing fluorine gas (230 °C) for three different time periods.

Table 6. Fluorine Contents Implied by Reductive TG Analysis for Samples of Co0.50Fe0.50Sb2O4 Heated under Flowing Fluorine Gas (230 °C) for Three Different Time Periods

time heated in F₂	% mass loss	implied fluorine content
~10 s	1.49	0.29
10 min	2.12	0.42
30 min	3.67	0.73

spinel phases; these are presumed to be very small amounts of
(CoFe)₃O₄ and (MgFe)₃O₄.

Assuming full conversion of Fe²⁺ to Fe³⁺, the theoretical spin-
only moments for the transition metal ions relevant to NPD data are 4.0 μB and 5.0 μB for Co₀.₅₀Fe₀.₅₀Sb₂O₄F₀.₄₉ and Mg₀.₅₀Fe₀.₅₀Sb₂O₄F₀.₃₁, respectively. Given the high orbital contribution inherent in Co²⁺ ions, the experimental moments are therefore smaller than expected, especially for Mg₀.₅₀Fe₀.₅₀Sb₂O₄F₀.₃₁. It is important to recognize that this effect appears to be a feature of phases of this type with mixed cations on the octahedral sites, and moments for Co₀.₅₀Fe₀.₅₀Sb₂O₄ and Mg₀.₅₀Fe₀.₅₀Sb₂O₄ have been reported to be 2.12(4) and 2.24(5) μB, respectively, compared with spin-only values of 3.5 and 4.0 μB per transition metal ion. This has previously been attributed to the effects of disorder within the chains of octahedra and the similarity in exchange interactions for A- and C-type order, such that some magnetic ions show no long-range magnetic order; this has been supported by the results of Mössbauer spectroscopy.²¹

It is interesting that both oxygen and fluorine insertion reactions result in stabilization of the C-type magnetic structure. In the starting materials, the diamagnetic Mg²⁺ ions weaken the magnetic exchange interactions,²¹ whereas Co²⁺ stabilizes the C-type structure relative to A. These effects will also be apparent in the fluorinated products. It is likely that the effects of oxidation of Fe²⁺ to Fe³⁺ are more important to intrachain magnetic exchange rather than to interchain effects. Two significant interactions occur within the chains: direct exchange involving t₂g orbital overlap and ~90° superexchange involving the oxygen ions forming the common edges of the linked octahedra. It is difficult to predict, a priori, the results of oxidation because of conflicting effects. Direct exchange (favoring antiferromagnetic order within each chain and therefore A-type order) would be enhanced by the maximum number of half-filled t₂g orbitals on Fe³⁺ ions, but reduced by the increased separation between adjacent cations within each chain (caused by the increased cation—cation repulsions and reflected in the c unit cell parameter). Enhanced covalence and the d⁶ Fe³⁺ configuration should increase the superexchange which favors ferromagnetic order within each chain and overall C-type order. The latter effect seems to be dominant, at least for the materials examined to date.

3.2. Mössbauer Spectroscopy. The ⁵⁷Fe- and ¹²¹Sb-Mössbauer spectra recorded from FeSb₂O₄ showed components characteristic of Fe²⁺ and Sb³⁺.²¹ Fluorination of both Mg₀.₅₀Fe₀.₅₀Sb₂O₄ and Co₀.₅₀Fe₀.₅₀Sb₂O₄ gave materials from which the ⁵⁷Fe- and ¹²¹Sb-Mössbauer spectra showed that Fe²⁺ had been largely oxidized to Fe³⁺, whereas Sb³⁺ showed little signs of oxidation. The spectrum recorded from fluorinated Mg₀.₅₀Fe₀.₅₀Sb₂O₄F₀.₃₁ is shown in Figure 9 and ⁵⁷Fe Mössbauer parameters are collected in Table 4. The results show that, upon fluorination, ca. 66% of the Fe²⁺ in the pure oxide is oxidized to Fe³⁺. This agrees well with the NPD data, which show the bulk material to contain 62% Fe ³+, assuming no oxidation of Sb³⁺ ions. The Fe³⁺ and Fe²⁺ components were both amenable to fitting to more than one site and are designated here as Fe²⁺(1), Fe²⁺(2), Fe³⁺(1), Fe³⁺(2). This fitting is attributed to the best approximation to the variety of local sites experienced by the octahedral cations that result from an essentially random arrangement within the chains and also more distant effects of the partially occupied fluorine sites. The Fe²⁺ and Fe³⁺ components are typical for an oxide environment and provide no evidence that fluorine may occupy sites within the structural framework.

The ⁵⁷Fe Mössbauer results from Co₀.₅₀Fe₀.₅₀Sb₂O₄F₀.₄₉ (Figure 10, Table 4) are similar to those from Mg₀.₅₀Fe₀.₅₀Sb₂O₄F₀.₃₁ and demonstrate that fluorination induces ca. 68% of Fe²⁺ in the pure oxide to be oxidized to Fe³⁺, sufficient to compensate for 0.34F. The spectra also show two components for each of Fe²⁺ and Fe³⁺ species with isomer shifts similar to those recorded from Mg₀.₅₀Fe₀.₅₀Sb₂O₄F₀.₃₁.

The ¹²¹Sb Mössbauer results (Figure 11, Table 5) from Mg₀.₅₀Fe₀.₅₀Sb₂O₄F₀.₃₁ show a single resonance (IS = −10.9 mm s⁻¹) consistent with only Sb³⁺ and thereby confirming that oxidation of antimony is insignificant for this material. The broad nature of the line width (ca. 4 mm s⁻¹) may suggest more than one environment for Sb³⁺ ions, which would be expected for bonding of some to the inserted F ions. However, in this study a single asymmetric peak was modeled by incorporating a quadrupole splitting. In contrast, the broad
lined ^{121}Sb Mössbauer spectrum from Co$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$F$_{0.49}$ (Figure 12, Table 5) showed a small (ca. 5%) level of oxidation of Sb$^{3+}$ to Sb$^{5+}$. This concentration of Sb$^{5+}$ (0.1 Sb$^{5+}$ per formula unit) corresponds to a fluorine content of 0.2, an overall fluorine content of 0.54, and composition of Co$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$F$_{0.54}$, in good agreement with the NPD analysis.

3.3. Magnetic Susceptibility.

The magnetic susceptibilities of Mg$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$F$_{0.31}$ and Co$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$F$_{0.49}$ are plotted against temperature in Figure 13 and show that the oxidation of Fe$^{2+}$ ions within the chains of octahedra results in a significant change in magnetic behavior. Both Mg$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$F$_{0.31}$ and Co$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$F$_{0.49}$ show canted antiferromagnetic transitions with $T_N = 49(1)$ and $80(1)$ K, respectively; these values can be compared with $T_N = 20(2)$ K and $61(2)$ K for the parent materials. The increased Neél temperatures indicate a strengthening in magnetic exchange interactions, not only within the chains (resulting in a change from A-type to C-type order) but also between the chains to provide the overall three-dimensional order. Unfortunately the materials do not show Curie–Weiss behavior and provide nonlinear plots of (susceptibility)$^{-1}$ against temperature; this prevents reliable determination of effective moments or valid Weiss constants.

3.4. TG and Chemical Analysis.

The fluorine content for a variety of materials was examined using a fluoride ion selective electrode after dissolution in HCl solutions. The results obtained indicated substantially higher fluorine contents than could be attributed to fluorine within the bulk material. It was therefore assumed that the samples contained significant, and variable, amounts of adsorbed and/or absorbed fluorine, and that the channels within the materials probably play a significant mechanistic role in this process.

TG analysis under reducing conditions (10% H$_2$ in N$_2$) was therefore explored in a further attempt to endorse the bulk fluorine contents deduced from crystallography and Mössbauer spectroscopy. Quantitative analysis of the decomposition products of oxide fluorides reduced in this way can often provide an accurate estimate of the fluorine content (see, for example, ref 22). Although this strategy could not address the bulk fluorine content in this study, it nevertheless provided some very interesting results. Figure 14 shows the mass losses associated with this reduction process were always larger than that expected from the NPD and Mössbauer spectroscopy data, and this was particularly pronounced for Co$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$F$_{x}$ reduced on the TGA at 600 °C. The results of heating Co$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$ under flowing F$_2$ for varying time periods are shown in (i) 10 s, (j) 10 min, and (k) 30 min.
Table 7. Deconvoluted Solid State 19F MAS NMR Parameters for (a) MgF$_2$; (b) SbF$_3$; (c) FeF$_2$; (d) CoF$_2$; (e) Mg$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$F$_{0.31}$; (f) Mg$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$F$_{0.31}$ after TG reduction in H$_2$ at 600 °C; (g) Co$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$F$_{0.49}$; (h) Co$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$F$_{0.49}$ after TG reduction 600 °C.

sample	peak	δ_{iso}/para/cg (ppm)	$\Delta \delta$ (ppm)	η^b	intensity (%)
a	MgF$_2$	1	−198		100
b	SbF$_3$	1	−58		100
c	FeF$_2$	1	−163		100
d	CoF$_2$	1	−162		100
e	Mg$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$F$_{0.31}$	1	−165	2	
f	Mg$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$F$_{0.31}$ after H$_2$ reduction	1	−197	45	
g	Co$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$F$_{0.49}$	1	−170	4	
h	Co$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$F$_{0.49}$ after H$_2$ reduction	1	−160	100	
i	Co$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$F$_{10}$ s. fluorination	1	−160	22	
j	Co$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$F$_{10}$ 10 min fluorination	1	−160	11	
k	Co$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$F$_{10}$ 30 min fluorination	1	−170	9	

The NMR parameters for heating Co$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$ under flowing F$_2$ for varying time periods are given in i, j, and k. bHaeberlen shift convention: $\delta = \eta \delta_{iso} - (\delta_{iso} - \delta_{ao})/3$, where $\eta = 2(\delta_{iso} - \delta_{ao})/(\delta_{iso} - \delta_{ao})$. The intensity is normalized to 100%

inserted fluorine. TG data therefore confirmed that fluorine atoms/ions were present in our samples in addition to the intrachannel fluoride ions. At first sight, it seems unusual that the fluorination reaction can be reversed under a hydrogen-rich atmosphere, but the reduction of Fe$^{3+}$ ions to Fe$^{2+}$ can certainly balance a feasible reaction, e.g:

\[
\text{Co}_{0.50}\text{Fe}_{0.50}\text{Sb}_2\text{O}_4\text{F}_{10} \rightarrow \text{Co}_{0.50}\text{Fe}_{0.50}\text{Sb}_2\text{O}_4 + 0.49\text{HF}
\]

HF molecules have the highest single bond energy, 567 kJ mol$^{-1}$, which is probably crucial in order to reverse the fluorination reaction and restore the initial oxide.

Some evidence was noticed for a possible correlation between the duration of a fluorination reaction and the amount of additional nonbulk fluorine suggested by TG measurements. In order to investigate this further, three samples were prepared from Co$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$ by heating under flowing F$_2$ for different lengths of time at 230 °C and then immediately conducting a reductive TG analysis (Figure 16). The TG results are given in Table 6; the samples were then included in a comprehensive solid state NMR investigation to reveal more information about the nature of fluorine in these oxide-fluoride compounds.

3.5. Solid State NMR. Although the NMR characteristics of 19F have been explored as probes for metal centers in paramagnetic bioinorganic NMR studies, this study represents the first direct observation of paramagnetically influenced 19F nuclei within solid state materials. The 19F MAS NMR spectra of some binary fluorides (see Figure 17a–d) were measured as an aid to the interpretation of the more complex data acquired from Mg$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$F$_{0.31}$ (Figure 17e) and Co$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$F$_{0.49}$ (Figure 17g). These spectra exhibit an array of narrow and broad components spread over a chemical shift range; this is the product of both the pseudcontact (electron–nuclear dipolar) shift and Fermi contact interactions, which together comprise the paramagnetic NMR shift interaction. As observed from Figure 17a–d and Table 7, the binary fluorides are characterized by single narrow resonances which fall within a 19F chemical shift range of −58 to −198 ppm. The corresponding 19F MAS NMR data from Mg$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$F$_{0.31}$ and Co$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$F$_{0.49}$ (see Figures 17, panels e and f, respectively) also exhibit narrow resonances with chemical shifts in this region; this corroborates the NPD data which conclusively shows that the F$^{-}$ ions in the channels are bonded to Sb$^{3+}$ ions. These resonances show distinct shoulders attributed to a small amount of chemical decomposition to form binary fluorides such as MgF$_2$, CoF$_2$, FeF$_2$, and SbF$_3$. In addition, the spectra of both fluorinated systems show two broad resonances representing a large distribution of F environments. For Mg$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$F$_{0.31}$, the broad component centered at $\delta_{iso} = 1000$ ppm (Table 7) is assigned to the high (but variable) concentration of adsorbed/absorbed (possibly surface and intrachannel) fluorine in a paramagnetically shifted and disordered environment. It is interesting to note that after TG reduction at 600 °C (see Figure 17f), these broad resonances are not present, which supports the view that the resonance originates from the adsorbed/absorbed fluorine. The XRPD data of Figure 15 shows that the fluorine has been removed from the channels with no additional crystalline phases being formed. The narrower upfield resonances which possess a spinning sideband
The 19F MAS NMR data from Co$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$F$_{0.49}$ (see Figure 17g) can be deconvoluted in a similar fashion. Narrow resonances suggesting more ordered environments are observed at $\delta_{\text{iso}} \approx -170$ ppm, and these are assigned to the channel site, and possibly some contamination as occurs for Mg$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$F$_{0.31}$. Three broad resonances indicating more disordered fluorine environments are observed at $\delta_{\text{iso}} \approx 450$, 480, and 1190 ppm. The resonance centered at $\delta_{\text{iso}} \approx 450$ ppm is spread over the entire observed 5000 ppm paramagnetic shift range and appears to relate to an F$_2$(g) environment possibly located at the surface. As observed in Figure 17h, the post-reduction product formed under 10% H$_2$ in N$_2$ results in a single resonance at $\delta_{\text{iso}} \approx -160$ ppm and is assigned to poorly crystalline decomposition products CoF$_2$, FeF$_3$, and SbF$_5$.

The lack of resolution evident in 19F MAS NMR data for the absorbed fluorine hinders the assignment of specific F environments. To assist with this problem, three samples were synthesized from the same parent Co$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$ by heating under flowing F$_2$ at 230 °C for different times (~10 s, 10 min, and 30 min). These spectra are shown in Figure 17i–k, respectively. The initial addition of F$_2$ gives rise to two species characterized by a narrow 19F resonance at ~ -160 ppm and a broader 19F resonance with a center of gravity at ~ 640 ppm. The narrow resonance can be assigned to the channel site (and possibly a contaminant), while the broader resonance emanates from the additional adsorbed/absorbed fluorine. The exposure of the material to F$_2$ for 10 min increases the amount of the broad component and begins to show evidence of a third resonance, a paramagnetic shift anisotropic sideband manifold with a $\delta_{\text{iso}} = 590$ ppm ($\Delta \delta = 1800$ ppm, $\eta = 0.90$) (see Figure 17i). Upon further addition of F$_2$ up to 30 min, the intensity of the broad resonance increases further, and the sideband manifold of the third resonance becomes fully resolved ($\delta_{\text{iso}} = 590$ ppm, $\Delta \delta = 1970$ ppm, $\eta = 0.90$) (see Figure 17k). This resonance is attributed to absorbed fluorine, and the origin of the extensive sideband manifold is attributed to the electron–nuclear dipolar (pseudcontact) paramagnetic interaction arising from the fluorine being closer to the paramagnetic Co/Fe site, while the larger chemical shift can be accounted for by the Fermi contact hyperfine term.

A 19F MAS NMR study focusing on the importance of Fe plays in the reaction with fluorine gas was undertaken by varying the Fe content (x) in the Co$_x$Fe$_{1-x}$Sb$_2$O$_4$F$_y$ system (see Figure 18 and Table 8). As the Fe in the sample increases from Co$_{0.75}$Fe$_{0.25}$Sb$_2$O$_4$F$_y$ (Figure 18c) to Co$_{0.25}$Fe$_{0.75}$Sb$_2$O$_4$F$_y$ (Figure 18a), the percentage of the fluorine that is absorbed within the channels is observed to increase, as evidenced by the emerging dominance of the disordered resonance at $\delta_{\text{iso}} = 1200$ ppm (Figure 18a,b). Hence, this experiment unambiguously demonstrates that the amount of fluorine absorbed into the channel structure, but not being chemically bonded to Sb, is strongly dependent on the Fe concentration in the initial oxide.

4. CONCLUSIONS

Phases related to FeSb$_2$O$_4$ and which contain some Fe$^{2+}$ cations, have been shown to undergo topotactic fluorine insertion when heated at low temperatures in 10% F$_2$ in nitrogen. The fluorine occupies sites within the structural channels of the FeSb$_2$O$_4$ structure and forms bridges between two Sb$^{3+}$ ions in a way that leaves space for the cation lone-pair of electrons to occupy a stereochemical position. The charges

![Image](image_url)
associated with the F⁻ ions are balanced primarily by oxidation of Fe²⁺ to Fe³⁺, although a small amount of oxidation of Sb³⁺ to Sb⁵⁺ may also occur. Fluorination of Mg₀.₅₀Fe₀.₅₀Sb₂O₄ and Co₀.₅₀Fe₀.₅₀Sb₂O₄ was studied in detail and the fluorinated products order antiferromagnetically \(T_N = 49(1) \) and \(80(1) \) K, respectively but with different magnetic ground states (C-type order) compared to their oxide parent phases (A-type order). This is attributed to a change in magnetic interactions resulting from the oxidation of Fe²⁺ to Fe³⁺.

Characterization of the oxide-fluorides is hampered by the presence of significant fluorine in addition to that bonded to Sb in the channels. No evidence for this was indicated by NPD data, and it is assumed that the fluorine is adsorbed on surface sites or absorbed within the channels. This proposal was supported by the presence of a large \(^{19}F \) MAS solid state NMR signal that indicated the presence of disordered fluorine. Fluorine contamination prevented reliable chemical analysis for the bulk fluorine content, which was necessarily based on NPD refined values. Reduction of the fluorinated materials under hydrogen removed not only the adsorbed/absorbed fluorine but also the channel fluorine. The phase is restored to its original state, although \(^{19}F \) solid state NMR studies indicate that the channel fluorine probably remains in the material, and forms binary fluorides (amorphous or with very small crystal sizes) that will depend on the starting composition.

REFERENCES

(1) Slater, P. R.; Driscoll, L. Modification of Magnetic and Electronic Properties, in Particular Superconductivity, by Low Temperature Insertion of Fluorine into Oxides. In Photonics and Electronic Properties of Fluoride Materials; Tressaud, A., Poppelmeier, K., Eds.; Progress in Fluorine Science Series; Elsevier: Amsterdam, 2016; Vol. 1, pp 401–421.

(2) Chevalier, B.; Tressaud, A.; Lepine, B.; Amine, K.; Dance, J. M.; Lozano, L.; Hickey, E.; Etourneau, J. Stabilization of a new superconducting phase by low temperature fluorination of La₂CuO₄. Phys. C 1990, 167, 97–101.

(3) de Laune, B. P.; Rees, G. J.; Whitaker, M. J.; Hah, H.-Y.; Johnson, C. E.; Johnson, J. A.; Brown, D. E.; Tucker, M. G.; Hansen, T. C.; Berry, F. J.; Hanna, J. V.; Greaves, C. Oxygen insertion reactions within the 1-D channels of phases related to FeSb₂O₄. Inorg. Chem. 2017, 56, 594–607.

(4) Fischer, R.; Pertlik, F. Refinement of crystal-structure of schafarzikite, FeSb₂O₄. T TMP, Tschermaks Mineral. Petrogr. Mitt. 1975, 22, 236–241.

(5) de Laune, B. P.; Greaves, C. Structural and Magnetic Characterisation of CoSb₂O₄ and the substitution of Pb²⁺ for Sb³⁺. J. Solid State Chem. 2012, 187, 225–230.

(6) Giroux-Maraine, C.; Perez, G. Crystal-structure of magnesium antimonite, MgSb₂O₄. Rev. Chim. Minérale 1975, 12, 427–432.

(7) Cumby, J. C.; de Laune, B. P.; Greaves, C. The Structures and Magnetic Properties of Fe₃CoₓSb₂O₄ and Mn₃CoₓSb₂O₄ 0 ≤ x ≤ 1. J. Mater. Chem. C 2016, 4, 201–208.

(8) Whitaker, M. J.; Bayliss, R. D.; Berry, F. J.; Greaves, C. The synthesis, structure, magnetic and electrical properties of FeSb₂Pb₂O₄. J. Mater. Chem. 2011, 21, 14523–14529.

(9) Fjellvåg, H.; Kjelsås, A.; Leskelä, T.; Leskelä, M.; Hoyer, E. Crystal- and magnetic-structure of MnSb₂O₄. Acta Chem. Scand. 1985, 39A, 389–395.

(10) Witteveen, H. T. Magnetic susceptibility of Ni₃As₄O₄ and NiSb₂O₄. Solid State Commun. 1971, 9, 1313–1315.

(11) Gonzalo, J. A.; Cox, D. E.; Shirane, G. Magnetic structure of FeSb₂O₄. Phys. Rev. 1966, 147, 415–418.

(12) de Laune, B. P.; Whitaker, M. J.; Marco, J. F.; Thomas, M. F.; Berry, F. J.; Lees, M. R.; Greaves, C. Synthesis and magnetic characterisation of FeₙMgₓSb₂O₄ (x = 0.25, 0.50, 0.75) and their oxygen-excess derivatives, FeₙMgₓSb₂O₄−x. J. Mater. Chem. C 2017, 5, 4985–4995.

(13) de Laune, B. P.; Berry, F. J.; Marco, J. F.; Horswell, S. L.; Greaves, C. The Structure, Chemistry and Magnetic Properties of FePbBiO₄. J. Mater. Chem. 2016, 4, 5320–5325.

(14) Rietveld, H. M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71.

(15) Larson, C.; Von Dreele, R. B. General Structure Analysis System (GSAS). Los Alamos National Laboratory Report LAUR 2004, 86–748.

(16) Toby, B. H. J. Appl. Crystallogr. 2001, 34, 210–213.

(17) Weenk, J. W.; Harwig, H. A. Calculation of electrostatic fields in ionic-crystals based upon Ewald method. J. Phys. Chem. Solids 1977, 38, 1047–1054.

(18) MacKenzie, K. J. D.; Smith, M. E. Multinuclear Solid State NMR of Inorganic Materials; Pergamon Press: Oxford, 2002.

(19) Harris, R. K.; Becker, E. D.; Cabral de Menezes, S. M.; Goodfellow, R.; Granger, P. NMR nomenclature: nuclear spin properties and conventions for chemical shifts. IUPAC Recommendations 2001. Magn. Reson. Chem. 2002, 40, 489–505.

(20) Massiot, D.; Fayon, F.; Capron, M.; King, I.; Le Calvé, S.; Alonso, B.; Durand, J. O.; Bujoli, B.; Gan, Z. H.; Hootson, G. Modelling one- and two-dimensional solid-state NMR spectra. Magn. Reson. Chem. 2002, 40, 70–76.

(21) Bayliss, R. D.; Berry, F. J.; de Laune, B. P.; Greaves, C.; Helgason, O.; Marco, J. F.; Thomas, M. F.; Vergara, L.; Whitaker, M. J. Magnetic interaction in ferrous antimonite, FeSb₂O₄ and some derivatives. J. Phys.: Condens. Matter 2012, 24, 276001.

(22) Gurusinghe, N. M. N.; Fones, J. C.; Marco, J. F.; Berry, F. J.; Greaves, C. Fluorine insertion into the Ruddlesden-Popper phase...
La₂BaFe₂O₇: the structure and magnetic properties of La₂BaFe₂O₅F₄.
Dalton Trans. **2014**, *43*, 2038–2043.

(23) Belle, C.; Béguin, C.; Hamman, S.; Pierre, J.-L. F-19 NMR: An underused efficient probe for paramagnetic metal centers in bioinorganic solution chemistry. *Coord. Chem. Rev.* **2009**, *253*, 963–976.