Pituitary stalk transection syndrome: Comparison of clinico-radiological features in adults and children with review of literature

Chinmay Kulkarni, Srikanth Moorthy, Sreekumar K Pullara, Rajeshkannan R, Ambika G Unnikrishnan
Department of Radiology, Amrita Institute of Medical Sciences and Research Center, Cochin, Kerala, India

Correspondence: Dr. Chinmay Kulkarni, Department of Radiology, Amrita Institute of Medical Sciences and Research Center, Amrita Lane, Elamakkara P.O., Kochi, Kerala, India. E-mail: chidoc@rediffmail.com

Abstract
Hypo-pituitarism results from impaired production of one or more of anterior pituitary trophic hormones. A rare cause of hypo-pituitarism is pituitary stalk transection syndrome. The MRI features of this condition in children and its association with hormonal deficiencies have been reported earlier. Reports on adults with this disorder are scarce, with only one small case series published in the recent literature. We studied the hormonal deficiency pattern and MRI findings of 12 patients with pituitary stalk transection syndrome who presented to our department between 2004 and 2011. Six patients were children and six were adults (≥18 years). This article compares the adult clinico-radiological phenotype of pituitary transection syndrome with the pediatric group of patients with same condition.

Key words: Ectopic posterior pituitary; hypo-pituitarism; magnetic resonance imaging; pituitary hormones; stalk transaction syndrome

Introduction
Hypo-pituitarism results from impaired production of one or more of anterior pituitary trophic hormones. Patients with hypo-pituitarism may have isolated pituitary hormone deficiency (IPHD) or multiple pituitary hormone deficiency (MPHD), and may present with varied clinical manifestations like growth failure, central hypothyroidism, or underdeveloped secondary sexual characters. A rare cause of hypo-pituitarism is pituitary stalk transection syndrome. This syndrome was recognized only after MRI became widely used for evaluation of children with hypo-pituitarism. The characteristics features encountered are small anterior pituitary gland, absent or ectopic high signal intensity of posterior pituitary, and absence or hypoplasia of pituitary stalk. The MRI features of this condition in children and its association with hormonal deficiencies has been reported earlier. Reports on adults with this disorder are scarce, with only one small case series published in the recent literature. This article describes the adult clinico-radiological phenotype of pituitary transaction syndrome, and compares this with the pediatric group of patients with same condition.

Aim
The aim of this study was to compare the adult clinico-radiological phenotype of pituitary transection syndrome with the pediatric group of patients with same condition.

Materials and Methods
We studied the hormonal deficiency pattern and MRI findings of 12 patients with pituitary stalk transection syndrome who presented to our department between
2004 and 2011. Six patients were children and six were adults (218 years). The children (4 males and 2 females) were in the age group 4-16 years (mean ± SD = 11.7 ± 4.3 years. Adults (3 males and 3 females) were in age group of 22-41 years (mean ± SD = 27.5 ± 7.4 years).

MRI Technique

Three-millimeter contiguous sagittal and coronal plain T1W and T2W and dynamic post-contrast T1W MRI images through the selle were obtained using a 1.5-T superconducting MRI unit (Magnetom; Siemens, Erlangen, Germany). The images were evaluated for central nervous system malformations, with specific attention to the location and size of the anterior pituitary, its stalk, and posterior pituitary bright spot. Radiological diagnosis of empty selle was made when the cerebrospinal fluid (CSF) space was seen invaginating into the selle with non-visualization of the pituitary gland. Hypoplastic pituitary gland was defined as crescentic glandular tissue seen at the floor of the selle, with a maximum measurable height of 2 mm. \(±\) 0.8 mm. The stalk was reported as thin or absent.

Observations and Results

Of the children, three presented with isolated growth hormone deficiency and three presented with MPHD, and of the six adults, only one presented with isolated cortisol deficiency and the rest presented with multiple hormone deficiencies [Tables 1-3]. Only one adult patient had reported an onset of symptom at 14 years (short stature, delayed puberty), whereas the others presented at ≥218 years. History of breech delivery was elicited in two children, one of whom had IPHD and the other had MPHD. Of the five adults with MPHD, two had breech deliveries and one had a history of perinatal asphyxia. The only adult with IPHD had cortisol deficiency, with a history of difficult delivery with shoulder dystocia. The MRI features in our cases are as shown in Tables 1, 2, and 4.

Discussion

Structural pituitary abnormalities have been reported in 50%-70% of patients with pituitary hormone deficiency. \(^{[7-12]}\) These abnormalities are more prevalent in MPHD. \(^{[9]}\) In both adults and children, ectopic posterior pituitary bright spot (EPPBS) at the median eminence was a universal finding in all patients, except one child who had the EPPBS in the stalk [Figure 1]. In general, subjects with multiple hormone deficiency did not have a stalk (3/3 (100%) in children; 4/5 (80%) in adults), and children with IPHD had a detectable thin stalk (2/3 (66.66%) in children) [Figure 2]. In our series, non-visualization of stalk was an important finding in all patients, except one child who had the EPPBS in the stalk [Figure 1]. The thin stalk was visualized only in post-contrast images in two children with IPHD and one adult with MPHD. Maghnie, et al. \(^{[15]}\) and Genovese, et al. \(^{[16]}\) have stressed the importance of contrast injection as a means of optimizing visualization.

Table 1: Correlation of hormone deficiencies and MRI findings in children

Isolated growth hormone deficiency \((n=3)\)	Multiple hormone deficiency \((n=3)\)
Breech delivery	1
Hypoplastic pituitary gland	3
Absent stalk	1
Thin stalk	2
EPPBS (median eminence)	2
EPPBS (stalk)	1
Midline brain anomalies	1

MRI: Magnetic resonance imaging, EPPBS: Ectopic posterior pituitary bright spot

Table 2: Correlation of hormone deficiencies and MRI findings in adults

Isolated cortisol deficiency \((n=1)\)	Multiple hormone deficiency \((n=5)\)
Breech delivery	1
Hypoplastic pituitary gland	1
Absent stalk	1
Thin stalk	0
EPPBS (median eminence)	1
EPPBS (stalk)	0

MRI: Magnetic resonance imaging, EPPBS: Ectopic posterior pituitary bright spot

Table 3: Pattern of multiple hormonal deficiency in children and adults

Hormones deficient
Children
10 years/male
14 years/female
16 years/male
Adults
22 years/male
23 years/female
23 years/female
25 years/male
41 years/male

Table 4: Comparison between MRI findings in children and adults

Children	Children	Adult isolated cortisol deficiency \((n=1)\)	Adult MPHD \((n=5)\)
IGHD \((n=3)\)	MPHD \((n=3)\)	Adenohypophysis \((1.8 \text{ mm})\)	Average size (millimeter)
Visualization of thin stalk	2	0	0
EPPBS (median eminence)	2	3	1
EPPBS (stalk)	1	0	0

MRI: Magnetic resonance imaging EPPBS: Ectopic posterior pituitary bright spot
of the thin stalk. They observed that in a previous study of similar patients evaluated with plain MRI, the thin stalks were deemed absent.17 Visualization of an enhancing stalk on post-contrast images of patients with IGHD indicates partial preservation of the hypothalamo-hypophyseal portal vessels, and non-visualization in most patients with MPHD indicates progression of disease. Apparently the stalk becomes thinner as disease progresses from IPHD to MPHD. So the term ‘pituitary stalk hypoplasia’ or ‘thin stalk syndrome’ may be preferred over pituitary stalk transection syndrome. Using new MRI sequences like constructive interference in steady-state (CISS) may actually show the stalk in most cases of IPHD. The mean size of the adenohypophysis in children with IPHD was 1.86 ± 0.05 mm and the value in one adult with IPHD was 1.2 mm. The mean size of the adenohypophysis in children with MPHD was 1.5 ± 0.1 mm and in adults with MPHD it was 0.8 ± 0.74 mm [Table 4]. While the number of patients was too small to derive statistical significance, we hypothesize that patients progress from IPHD to MPHD, with subsequent hormone deficiencies appearing as they progress from childhood to adulthood. This is corroborated by our finding that the size of adenohypophysis seems to diminish, and also by the higher occurrence of MPHD in adults. This correlates with previous reports of hypo-pituitarism, where a small gland was found to be significantly related to MPHD after puberty.18 Clearly a large multicenter study compiling patient data could answer this fascinating question. It is important therefore that the patients have long-term follow-up, with early detection and treatment of hormone deficiency as and when they manifest.

Various hypotheses have been proposed to explain the pituitary stalk transection syndrome. One hypothesis is an ischemic insult to the pituitary stalk occurring because of trauma during breech delivery.19 However, no pathological proof has been found and moreover these patients do not exhibit hypoxic damage to other structures sharing the same vascular supply. Another hypothesis is that head

Figure 1 (A, B): A 4-year-old child presented with IGHD. Plain sagittal (A) and coronal (B) T1W images show hypoplastic adenohypophysis, thin interrupted stalk, and EPPBS in mid-stalk (arrow) with type-1 Arnold–Chiari malformation (arrow)

Figure 2 (A-D): A 14-year-old female presented with IGHD. Plain sagittal (A) and coronal (B) T1W images show EPPBS at the median eminence (arrow), hypoplastic adenohypophysis, and absent stalk. However, in the contrast-enhanced, sagittal and coronal T1W images (D), a thin interrupted stalk was visualized (arrow)

Figure 3 (A-D): A 16-year-old male presented with MPHD. Plain sagittal (A) and coronal (B) T1W images, and contrast-enhanced sagittal (C) and coronal (D) T1W images show EPPBS at the median eminence (arrow), hypoplastic adenohypophysis, and absent stalk

Figure 4 (A, B): A 41-year-old male with a known case of panhypo-pituitarism (diagnosed at the age of 31 years) presented with hyponatremic seizures. Plain sagittal (A) and coronal (B) T1W images show EPPBS, a severely hypoplastic adenohypophysis, and absent stalk
trauma associated with breech delivery causes mechanical
trupture of the pituitary stalk as the stalk is stretched
between the pituitary gland and the mobile brain. Six
out of 12 patients in our series had breech delivery and one
patient had evidence of perinatal hypoxia. However, these
two hypotheses do not explain the association of midline
anomalies in these patients. A third conjecture therefore
is that congenital hypoplasia or dysplasia of the pituitary
gland is the cause of hypo-pituitarism. There is early fetal
mal-development of midline structures, which results in
failure of the neurohypophysis and its investing vascular
plexus to descend completely into sella turcica. Anterior lobe
hypoplasia and dysfunction result in decreased hormone
secretion, which in turn results in increased incidence of
breech presentation. One of our children aged 4 years
with IGHD had type-1 Chiari malformation [Figure 1].

Conclusion

This entity should be considered in the differential diagnosis
in adults with hypo-pituitarism. The presence of MRI
features suggestive of pituitary stalk transection syndrome
should prompt a full pituitary hormonal evaluation. It
is important to closely follow up these patients in the
long-term so that their natural history of progressive
radiological and hormonal deterioration can be ascertained
and these patients can be managed better.

As patients progress from IPHD to MPHD, with subsequent
hormone deficiencies appearing as they age from childhood
to adulthood, the stalk and adenohypophysis become
smaller, indicating that the term ‘pituitary stalk hypoplasia’
or ‘thin stalk syndrome’ is more appropriate than pituitary
stalk transection syndrome.

References

1. Melmed S, Jameson JL. Disorders of the anterior pituitary and
hypothalamus. In: Lango DL, editor. Harrison’s Principles of
Internal Medicine. 18th ed. New York: McGraw-Hill Publishers;
2012. p. 2876-902.
2. Fujisawa WM, Kikuchi K, Nishimura K, Togashi K, Itoh K, Noma S,
et al. Transaction of pituitary stalk: Development of an ectopic
posterior lobe assessed with MR imaging. Radiology 1987;166:487-9.
3. Kelly WM, Kuwarczyk W, Kuharczyk J, Kjos B, Peck WW,
Norman D, et al. Posterior pituitary ectopia: An MR feature of
pituitary dwarfism. AJNR Am J Neuroradiol 1988;9:453-60.
4. Kikuchi K, Fujisawa I, Momoi T, Yamanaka C, Kaji M, Nakano Y,
et al. Hypothalamic pituitary function in growth hormone deficient
patients with pituitary stalk transaction. J Clin Endocrinol Metab
1988;67:817-23.
5. Ioachimescu AG, Hamraham AH, Stevens M, Zimmermann RS.
The pituitary stalk transection syndrome: Multifacetated presentation
in adulthood. Pituitary 2012;15:405-11.
6. Argyropoulou M, Perigrum F, Brauner R, Brunelle F. Magnetic
resonance imaging in diagnosis of growth hormone deficiency.
J Pediatr 1992;12:886-91.
7. Cacciari E, Zucchini S, Carla G, Pirazzoli P, Cicognini A, Mandini M,
et al. Endocrine function and morphologic findings in patients with
disorders of hypothalamo pituitary area: A study with magnetic
resonance. Arch Dis Child 1990;65:1199-202.
8. Simon D, Hadjiathanasiou C, Czernichow P, Leger J. Phenotypic
variability in children with growth hormone deficiency associated
with posterior pituitary ectopia. Clin Endocrinol 2006;64:416-22.
9. Turton JP, Mehta A, Raza J, Woods KS, Tuilpakov A, Cassar J,
et al. Mutations within the transcription factor PROP 1 are rare
in cohort of patients with sporadic combined pituitary hormone
deficiency (CPHD). Clin Endocrinol (Oxf) 2005;63:10-8.
10. Trulz B, Scotti G, D’Natale B, Pellini C, Luzez B, Swgnamiglio M,
et al. Evidence of congenital midline anomaly in pituitary dwarfs:
A magnetic resonance imaging study in 101 patients. Pediatrics
1994;93:409-16.
11. Abrahams J, Trefelner E, Boulware AS. Idiopathic growth hormone
deficiency; MR findings in 35 patients. Am J Radiol 1991;12:155-60.
12. Ochi M, Morikawa M, Yoshimoto M, Kinoshita E, Hayashi K.
Growth retardation due to idiopathic growth hormone deficiencies:
MR findings in 24 patients. Pediatr Radiol 1992;22:477-80.
13. Kornreich L, Horev G, Lazar L, Schwarz M, Sulek J, Pertselan A. MR
findings in growth hormone deficiency: Correlation with severity
of hypopituitarism. AJNR Am J Neuroradiol 1998;19:1495-9.
14. Chen S, Leger J, Garel C. Growth hormone deficiency with ectopic
neurohypophysis: Anatomical variations and relationship between
the visibility of the pituitary stalk asserted by magnetic resonance
imaging and anterior pituitary function. J Clin Endocrinol Metab
1999;84:2408-13.
15. Maghnie M, Genovese E, Villa A, Spagnolo L, Campan R,
Severi F. Dynamic MRI in the congenital agenesis of neural
pituitary stalk syndrome: The role of the vascular pituitary stalk
in predicting residual anterior pituitary function. Clin Endocrinol
1996;45:281-90.
16. Genovese E, Maghnie M, Beluffi G, Villa A, Sammarchi L, Severi F,
et al. Hypothalamic–pituitary vascularization in the pituitary stalk
transection syndrome: Is the pituitary stalk really transected?
Pediatr Radiol 1997;24:48-53.
17. Maghnie M, Trulz B, Larizza D, Preti P, Priora C, Scotti G, et al.
Hypothalamic-pituitary dysfunction in growth hormone deficient
patients with pituitary abnormalities. J Clin Endocrinol Metab
1991;73:79-83.
18. Bozzola M, Adamsbaum C, Biscaldi I, Zecca M, Cisternino M,
Genovese E, et al. Role of magnetic resonance imaging in the
diagnosis and prognosis of growth hormone deficiency. Clin Endocrinol
1996;45:21-6.
19. Shizume K, Harada Y, Ibavashi Y. Survey studies on pituitary
function in growth hormone deficient children. Pediatr Radiol 1993;23:107-13.
20. Despert F, Guenault I, Bricaud P, Abury JC. [Hypopituitarism
caused by pituitary transection syndrome. Pathogenic hypotheses
apropos of 7 cases]. Pediatr 1993;48:639-44.
21. Maghnie M, Larizza D, Trulz B, Sampalo P, Scotti G, Severi F.
Hypopituitarism and stalk agenesis: A congenital syndrome
worsened by breech delivery? Horm Res 1991;35:104-8.

Cite this article as: Kulkami C, Moorthy S, Pullara SK, Rajeshkanan R,
Unnikrishnan AG. Pituitary stalk transection syndrome: Comparison of clinico-
radiological features in adults and children with review of literature. Indian J
Radiol Imaging 2012;22:182-5.

Source of Support: Nil, Conflict of Interest: None declared.