Data Article

Data exploration on diet, and composition, energy value and functional division of prey items ingested by White Storks *Ciconia ciconia* in south-western Poland: Dietary variation due to land cover, reproductive output and colonial breeding

Grzegorz Orłowski a,*, Jerzy Karg b, Leszek Jerzak b, Marcin Bocheński b, Piotr Profus c, Zofia Książkiewicz-Parulska d, Karol Zub e, Anna Ekner-Grzyb f, Joanna Czarnecka g

a Institute of Agricultural and Forest Environment, Polish Academy of Sciences, Bukowska 19, 60-809 Poznań, Poland
b Department of Nature Conservation, Faculty of Biological Sciences, University of Zielona Góra, Zielona Góra, Poland
c Institute of Nature Conservation, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
d Department of General Zoology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
e Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland
f Department of Behavioural Ecology, Faculty of Biology, Poznań, Poland
g Ecology Department, Institute of Biology and Biochemistry, Lublin, Poland

Article info

Article history:
Received 26 July 2018
Received in revised form 14 October 2018
Accepted 19 October 2018
Available online 24 October 2018

Abstract

The dataset presented in this data paper supports “Linking land cover satellite data with dietary variation and reproductive output in an opportunistic forager: Arable land use can boost an ontogenetic trophic bottleneck in the White Stork *Ciconia ciconia*” (Orłowski et al. 2019) [1]. Analysis of data on diet and prey composition based on an investigation of 165 pellets of White Storks *Ciconia ciconia* sampled from 52 nests showed that their diet was based primarily on ‘eurytopic prey’ (embracing taxa from grassland and a variety of non-cropped habitats), the biomass contribution of which in the diet was disproportionately (3–4-fold)
higher than the percentage of available corresponding habitats. Similarly, prey items from water/wetland sites prevailed over the availability of corresponding habitats. The opposite pattern characterized prey taxa from arable habitats and forests, the contribution of which was lower than the availability of the corresponding habitats. The total energy content per pellet (calculated by summing the energy content of all individual prey items across one specific prey group) was the most strongly correlated with the biomass of Orthoptera, thereafter with that of mammals, other vertebrates, earthworms and other invertebrates, but not with the biomass of Coleoptera. White Storks from nests of low productivity pairs (i.e. with 1–2 fledglings) consumed a significantly (up to two-fold) higher biomass of Coleoptera, Orthoptera and all invertebrates, which also translated into a higher total biomass and a higher total energy content compared to the diet of high-productivity pairs (i.e. with 3–4 fledglings). Our data, in particular those relating to energy content in a variety of invertebrate taxa, and their body mass and functional division in terms of habitat preferences should be useful for other researchers to calculate energy budgets of predatory animals living in agricultural landscapes in Europe.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications table

Subject area	Ecology, Biological Sciences
More specific subject area	Foraging and Dietary Ecology
Type of data	Tables and Figures
How data was acquired	Through field work and laboratory work
Data format	Raw, filtered and analysed
Experimental factors	Investigation of 165 pellets of White Storks Ciconia ciconia sampled from 52 nests in June and July 2012 in 39 villages in south-western Poland.
Experimental features	The identification of each prey items consumed along with their dry weights and eco-morphological characteristics: energy content (expressed in kJ) and functional division in terms of habitat preferences.
Data source location	Turew, SW Poland, Research Station of Institute of Agricultural and Forest Environment, Polish Academy of Sciences
Data accessibility	The data are given in this article
Related research article	G. Orłowski, J. Karg, L. Jerzak, M. Bocheński, P. Profus, Z. Książkiewicz-Parul ska, K. Zub, A. Ekner-Grzyb, J. Czarnecka, Linking land cover satellite data with dietary variation and reproductive output in an opportunistic forager: Arable land use can boost an ontogenetic trophic bottleneck in the White Stork Ciconia ciconia. Sci. Tot. Environ. 646 (2019) 491–502.
Value of the data

- The data presents the functional classification of prey items into four major habitat categories: (i) arable, (ii) grassland/non-cropped (= marginal habitats = eurytopic prey), iii) forest; and iv) water/wetland and could be used by others researchers.
- For each prey taxa the data on energy content based on ash-free dry mass is given and this data could be re-used in other studies.
- The data in this article, in particular those on energy content in a variety of invertebrate taxa, and their body mass and functional division in terms of habitat preferences, should be useful for other researchers to calculate energy budgets of predatory animals.

1. **Data**

The data presented here were the basis for the article by Orłowski et al. [1]. The dataset of this article provides detailed information on dietary composition of 165 pellets of White Storks collected in June and July 2012 from 52 nests in 39 villages in south-western Poland (Figs. 1–4, Tables 1–5). The data describes basic dietary indices relating to prey items consumed, including the biomass contribution of invertebrate and vertebrate prey (Figs. 2 and 3, Tables 1–5).

The average mass of one individual prey item calculated across all identified prey (n = 20 561; Table 2) was 286 mg (95% C.I. = 269–302 mg), while the average mass of one individual prey item per pellet (n = 165) and per nest (n = 52) was 445 mg (95% C.I. = 384–510 mg) and 399 mg (95% C.I. = 335–462 mg), respectively. The total biomass (dry mass) of all prey consumed was 5869 g (Table 2).

1.1. **Data on overall diet composition and prey composition in White Storks**

The most numerous prey group both by number and biomass was Orthoptera (59.5% and 35.6%, respectively). The following ranking for invertebrate prey items in descending order of their quantitative contribution to the diet was: earthworms (19.5% by number and 16.4% by biomass), Coleoptera (16.2% and 7.3%) and other invertebrates (3.5% and 0.4%). Small mammals and other vertebrates (i.e. fish, reptiles and birds) constituted only 0.7% and 0.6% of all prey items consumed, but the contribution of their biomass was disproportionately high at 24.8% and 15.2%, respectively (Table 2).

With regard to the functional division of prey, the diet of White Storks was based primarily on ‘eurytopic prey’ (embracing taxa from grassland and a variety of non-cropped habitats), the biomass contribution of which in the diet was disproportionately (3–4-fold) higher than the percentage of available corresponding habitats (Fig. 2). Similarly, the prey from water/wetland sites prevailed over the availability of corresponding habitats (Fig. 2). The opposite pattern characterized prey taxa from arable habitats and forests, the contribution of which was lower than the availability of the corresponding habitats (Fig. 2).

On average (confidence interval = C.I.) per 1 nest (n = 52), invertebrate prey and vertebrate prey respectively made up 58% (95% C.I. = 52–64%) and 42% (95% C.I. = 36–48%) of the biomass consumed.

The total energy content per pellet (calculated by summing the energy content of all individual prey items across one specific prey group) was the most strongly correlated with the biomass of Orthoptera (Pearson r = 0.801, P < 0.0001), thereafter with that of mammals (r = 0.361, P < 0.0001), other vertebrates (r = 0.234, P = 0.002), earthworms (r = 0.214, P = 0.006) and other invertebrates (r = 0.181, P = 0.020), but not with the biomass of Coleoptera (r = 0.024, P = 0.756) (see also Table 3).

Across the 52 nests analysed the diet was based primarily on prey items attributed to the grassland/non-cropped habitat category collectively referred to as ‘eurytopic prey’, and their biomass contribution to the diet was significantly (indexed via the t-test) – 3–4-fold – and disproportionately higher than the percentage of available corresponding habitats at each of the three distances (1 km, 15 km, 25 km).
Fig. 1. (A) General map showing the distribution of 52 nests (black dots) of White Storks clustered within five sub-plots (between 373 and 764 km² in area) in south-western Poland where pellets were sampled for dietary analysis; (2) border of five subplots, (3) forest, (4) water/hydrographic network, (5) other land cover types. (B) The land cover types representing the class 3 of the Corine Land Cover classification. (C) The hydrographic networks around the sub-sample of nests, a circle of 1 km radius. (D) Land use around a nest of a high-productivity pair with three fledglings at the time the young were ringed (Photo credit: Adam Dmoch/www.birdwatching.pl). (E) An adult foraging on earthworms (Photo credit: Marcin Lenart/www.birdwatching.pl).
2.5 km and 5 km) around the nests (Fig. 2). Similarly, the contribution of prey items from water/wetland sites prevailed significantly –2–5-fold – over the availability of corresponding habitats (Fig. 2). The opposite pattern characterized prey taxa from arable habitats, the contribution of which was markedly –3–5-fold – lower than the availability of corresponding habitats. Lastly, the contribution of the prey category attributed to forest habitats was similar to that of the availability of these habitats measured at the distance of 1 km around nests, but was significantly –2–3-fold – lower than the availability of forests at the other two distances (Fig. 2).

MANOVA revealed significant differences in dietary composition in terms of the biomass of the six major prey groups (earthworms, Orthoptera, Coleoptera and other invertebrates, other vertebrates and mammals) identified in the 52 nests (MANOVA, Wilks’s Lambda, $\lambda_{306,653} = 0.007, P < 0.0001$). However, further post-hoc analysis (yielding a matrix with 1 326 comparisons between pairs of nests for each individual prey group) confirmed that the contribution of two prey groups – small mammals and other invertebrates – did not differ between any pairs of nests, indicating similar exploitation of these prey resources across the entire landscape in which our White Stork population foraged. The biomass contribution of the other four prey groups varied between different nests with variable magnitude. So, the negligible variations between nests observed in the case of biomasses of Coleoptera, other vertebrates and earthworms, which varies significantly merely between 3, 5 and 12 pairs of nests, respectively. The most variable contribution was that of the biomass of Orthoptera, which varied between 55 pairs (from all 1326 possible comparisons) of nests.

The variations in biomass of the major prey groups and individual prey mass for different contributions of grassland and arable land measured within three spatial scales around the nests are visualized in Fig. 3.
Fig. 3. Biomasses of five major prey groups (earthworms; Coleoptera; Orthoptera; other vertebrates; and mammals) and individual prey mass per pellet (n = 165) compared for three spatial scales (extent/radius: 1 km, 2.5 km and 5 km) around White Stork nests and varying in percentages of grassland and arable land.
1.2. Data on reproductive output in relation to colonial breeding and habitat variation

On average, the number of fledglings in solitary nests \((n = 36)\) was nearly 14% higher than in nests with a clumped distribution \((n = 16)\): 2.69 (95% C.I. = 2.45–2.93) vs 2.37 (95% C.I. = 2.04–2.70), respectively; however, this difference was not significant (Mann-Whitney test, \(Z = 1.46, P = 0.145\)), presumably because of the small sample size. This result may be explained in part by the fact that there is significantly less %arable land (within 1 km and 2.5 km) around solitary nests than in the vicinity of clumped nests; in contrast, %grassland was higher and there were more aquatic habitats (mostly within 2.5 km and 5 km) around the clumped nests (Table 4).

MANOVA did not show any significant effect \((P \leq 0.251)\) of the percentage distribution of the eleven land cover types (Fig. 4) or four major habitat categories used for prey classification (i.e. certain land cover types combined; Fig. 2) influencing the number of nestlings in the nest. However, inspection of the distribution of the percentage of the four major land cover types around nests with different numbers of fledglings yielded a single, clear pattern: this tallied only in part with our initial prediction. So, %arable land consistently decreased with the number of fledglings across all three distances (1, 2.5 and 5 km) around nests, whereas %forest exhibited the opposite pattern, this percentage increasing along with the number of fledglings (Fig. 4). Furthermore, we found that in
principle, there were no differences between the nests of low productivity pairs (1–2 fledglings) and those of high productivity pairs (3–4 fledglings) in any of the landscape traits analysed (Table 4).

We found marginally significant differences (both at $P = 0.08$) for two dietary indices, the biomasses of five major prey groups and number of prey taxa, between nests with different numbers of fledglings (Table 5, Fig. 4).

White Storks from the nests of low productivity pairs (i.e. with 1–2 fledglings) consumed a significantly (up to two-fold) higher biomass of Coleoptera, Orthoptera and all invertebrates, which also translated into a higher total biomass and a higher total energy content compared to the diet of high-productivity pairs (Table 5).

2. Experimental design, materials and methods

As the majority of nestling mortality occurs during the first 20 days after hatching [2–4], we considered the number of fledglings present in a nest at the time of ringing to be a proxy of the productivity of a breeding pair of White Storks (hereafter ‘reproductive output’).

The estimates of earthworm biomass were based on a soil mass of 192 mg per 1000 chaetae (for more details see also Orłowski et al. [5]). For each pellet, the number of prey items representing each invertebrate taxon was established from the numbers of fragments of chitinous body parts (according to [6,7]). Here, we added two new eco-morphological characteristics for each individual prey item: (1) energy content (expressed in kJ) and (2) functional division in terms of habitat preferences (Table 2). The energy content (ash-free dry mass, AFDM) in prey items of White Storks (see Table 2) followed [8,9], where previous data for specific (or related) prey taxa were used (after [10–14]).

Table 1

Major land cover types (class 2 of the Corine Land Cover classification)	Distance around nests (total area within a given distance)			
Land cover type, hydrographic trait	Class 2 of Corine Land Cover classification	1 km (314.1 ha)	2.5 km (1931.4 ha)	5 km (7725.4 ha)
Urban fabric (ha)	11	27.90 (± 3.47)	67.53 (± 10.41)	337.64 (± 27.91)
Industrial, commercial and transport units (ha)	1.2	0	3.90 (± 1.88)	123.02 (± 21.92)
Mine, dump and construction sites (ha)	1.3	2.09 (± 1.71)	6.74 (± 3.70)	41.64 (± 7.63)
Artificial non-agricultural vegetated areas (ha)	1.4	0.15 (± 0.15)	14.25 (± 3.17)	7752 (± 16.47)
Arable land (ha)	2.1	188.3 (± 12.2)	915.4 (± 57.7)	2849.9 (± 184.1)
Grassland, pasture (ha)	2.3	35.9 (± 6.0)	248.9 (± 27.0)	875.7 (± 74.3)
Heterogeneous agricultural areas (ha)	2.4	7.57 (± 2.30)	88.24 (± 9.06)	280.33 (± 17.57)
Forests (ha)	2.5	49.6 (± 8.8)	534.0 (± 59.3)	2894.6 (± 187.6)
Shrub and/or herbaceous vegetation associations (ha)	3.2	1.34 (± 0.75)	11.74 (± 3.44)	96.19 (± 11.43)
Inland wetlands (ha)	4.1	0	0.45 (± 0.33)	10.23 (± 4.50)
Inland waters (ha)	5.1	1.25 (± 0.64)	40.17 (± 5.60)	138.25 (± 14.18)
Watercourses (m)	–	9859.6	52,118.6	164,602.7
Shoreline of water bodies (m)	–	1994.4	16,103.7	57922.6
Inland waters and large rivers (ha)	–	3.40 (± 0.92)	53.68 (± 6.59)	199.76 (± 20.15)
List of all the prey items (n = 20,561) representing six major prey groups (earthworms; Orthoptera; Coleoptera; other invertebrates; fish, reptiles and birds = other vertebrates; and mammals) taken by breeding White Storks *Ciconia ciconia* and identified in 165 pellets sampled in south-western Poland in 2012; individual dry masses of insects and certain invertebrates after and Karg, unpubl; estimate of earthworms consumed from [5]. The habitat preferences of the prey taxa are based on extensive ecological studies on various invertebrate groups carried out in the study area since 1960. (following:) non (non-agricultural/eurytopic including grassland), arable, wet (wetland/water), for (forest). (A) For sources of information on energy content based on ash-free dry mass (AFDM; 18–22), see also the bottom of the table.

Prey group/taxa	Habitat preference	Number of pellets in which a prey taxon was present	Total number of prey items	Individual dry mass (mg)	Energy content per individual (kJ)
EARTHWORMS					
Lumbricidae sp.	non	152	c. 4004	240	4.76 a
ORTHOPTERA					
Chorthippus sp.	non	139	6066	40.6	0.91
Metrioptera	non	138	5360	134.6	3.03
Tettigonia sp.	non	96	760	1498.3	32.74
Gryllus campestris	non	38	49	81.2	1.83
Gryllotalpa gryllotalpa	non	8	11	90.0	2.02
Orthoptera sp.	non	1	1	85.5	1.87
COLEOPTERA					
Silpha sp.	non	108	545	26.0	0.60
Geotrupes sp.	non	136	452	156.1	3.61
Pterostichus sp.	non	124	366	54.2	1.25
Silpha obscura	non	46	261	42.0	0.97
Carabus cancelatus	non	117	227	125.8	2.91
Poecilus sp.	arable	86	188	26.1	0.60
Hydrochara caraboides	wet	62	138	29.0	3.61
Coleoptera sp.	wet	62	128	10.0	0.23
Zabrus tenebrioides	wet	6	116	63.0	0.20
Amphimallon solstitialis	non	20	92	225	5.21
Rhanthus sp.	wet	54	70	58.7	1.36
Elateridae (larvae)	non	12	60	6.0	0.15
Selatosomus sp.	arable	35	53	21.0	0.49
Ophonus sp.	arable	37	48	8.5	0.20
Agriotes sp.	arable	35	42	9.7	0.22 a
Cetonia sp.	arable	32	41	91.5	2.12
Amara sp.	arable	25	33	8.5	0.20
Curculionidae	arable	21	31	2.8	0.06
Agabus sp.	wet	23	29	17.0	0.39 a
Calathus sp.	wet	16	28	17.0	0.39
Phyllopertha sp.	arable	6	22	17.4	0.40
Staphylinus sp.	arable	16	20	32.8	0.76
Bembidion sp.	arable	12	17	1.2	0.03
Histeridae	non	5	17	3.9	0.09
Otiorrhynchus sp.	arable	16	17	37.3	0.86
Carabus auratus	non	16	16	125.8	2.91
Carabus violaceus	for	14	14	133.7	3.09
Trax sp.	non	7	13	30.1	0.70
Colymbetes sp.	arable	8	11	9.7	0.22
Necrophorus sp.	non	10	11	265.9	6.15
Chrysomelidae	non	8	10	7.2	0.17
Sitona sp.	arable	10	10	4.7	0.11
Elateridae	non	5	9	13.8	0.32
Helophorus sp.	wet	9	9	0.3	0.01
Hydrous piceus	wet	6	9	1293	16.62
Selatosomus latus	arable	7	9	9.7	0.22
Staphylinidae	non	8	9	1.8	0.04
Staphylinus cesareus	non	7	8	10.0	0.23
Ceurorrhynchus sp.	arable	6	7	0.8	0.02
Philonthus sp.	arable	7	7	1.4	0.03
Cicindella sp.	for	5	6	8.5	0.20
Hydrophilidae	wet	3	6	1.0	0.02
Prey group/taxa	Habitat preference in which a prey taxon was present	Number of pellets	Total number of prey items	Individual dry mass (mg)	Energy content per individual (kJ)
-----------------	--	------------------	---------------------------	-------------------------	----------------------------------
Typhaeus typhoeus	for	4	6	156.1	3.61
Anomala sp.	arable	4	5	40.2	0.93
Carabus coriaceus	for	4	5	1099	25.43
Coleoptera (larvae)	non	4	5	6.0	0.15
Dorcus parallelipipedus	for	5	5	251.6	5.81
Buprestidae	non	3	4	5.4	0.12
Coccinella septempunctata	non	4	4	13.7	0.32
Hydaticus sp.	wet	3	4	13.7	0.32
Hydroporus sp.	wet	3	4	13.7	0.32
Onthophagus sp.	non	3	4	9.7	0.22
Phyllobius sp.	arable	3	4	3.7	0.08
Apion sp.	arable	3	3	0.5	0.01
Catops sp.	non	1	3	1.1	0.03
Coreus marginatus	non	3	3	37.2	0.86
Cryptopleurum sp.	non	3	3	0.5	0.01
Cytilus sericeus	non	3	3	5.2	0.12
Dytiscidae (larvae)	wet	3	3	6.0	0.15
Dytiscus (larvae)	wet	3	3	12.0	0.29
Hydrobius sp.	wet	3	3	0.3	0.01
Liparus sp.	for	3	3	119.1	2.76
Ontholestes sp.	non	2	3	16.1	0.37
Oxytelus sp.	arable	2	3	0.3	0.01
Prosternon tessellatum	non	3	3	48.0	1.11
Silphidae	non	1	3	145.9	3.38
Carabus sp.	non	2	2	125.8	2.91
Cassida sp.	non	2	2	12.0	0.28
Cercyon sp.	arable	2	2	1.1	0.03
Dytiscus sp.	wet	2	2	551	12.75
Hister sp.	non	2	2	7.0	0.16
Lathrobius sp.	non	2	2	1.6	0.04
Oulema melanopus	arable	2	2	3.4	0.08
Propylaea 14-punctata	non	2	2	3.2	0.07
Psyllodes chrysoscelpha	arable	2	2	1.8	0.04
Scarabaeeidae	non	2	2	84.8	1.96
Spondylis buprestoides	for	2	2	125.8	2.91
Acilus sp.	non	1	1	125.8	2.91
Anthicus sp.	non	1	1	0.5	0.01
Aphodius sp.	arable	1	1	6.7	0.16
Carabidae	non	1	1	23.6	0.55
Chaetocnema sp.	arable	1	1	0.9	0.02
Chalcophora mariana	for	1	1	572.8	13.25
Coccinellidae	non	1	1	4.4	0.10
Corticarina sp.	non	1	1	0.2	0.005
Curculio sp.	non	1	1	37.3	0.86
Dytiscidae	wet	1	1	12.0	0.28
Glischrichius sp.	non	1	1	4.5	0.10
Graphoderes sp.	arable	1	1	73.6	1.70
Hydaticus sp.	wet	1	1	13.7	0.32
Hydrophilidae (larvae)	wet	1	1	1.0	0.30
Hylobius sp.	arable	1	1	37.3	0.86
Malachius sp.	non	1	1	2.2	0.05
Necrodes sp.	non	1	1	265.9	6.15
Nitidulidae	arable	1	1	1.5	0.03
Oryctes nasicornis	for	1	1	1145.6	26.51
Potamonectes sp.	wet	1	1	8.5	0.20
Protaetia aeruginosa	non	1	1	440	10.18
Tenebrio laticollis	non	1	1	8.5	0.20
Xylodrepa sp.	non	1	1	26.0	0.60
Prey group/taxa	Habitat preference	Number of pellets in which a prey taxon was present	Total number of prey items	Individual dry mass (mg)	Energy content per individual (kJ)
-------------------------	--------------------	---	-----------------------------	--------------------------	-----------------------------------
OTHER INVERTEBRATES					
Lasius sp.	non	81	316	0.6	0.014
Ichneumonidae	non	34	57	2.4	0.06
Coreus sp.	non	31	46	37.2	0.86
Myrmica sp.	non	25	46	1.2	0.03
Forficula sp.	non	21	40	11.7	0.27
Mollusca	non	32	33	200	3.56
Lepidoptera (larvae)	non	23	28	8.2	0.20
Diptera (larvae)	non	10	19	5.5	0.12
Araneae	non	11	13	4.3	0.10
Nabis sp.	non	9	11	2.0	0.05
Formica sp.	non	7	11	1.2	0.03
Odonata: Zygoptera	wet	6	10	137.6	3.13
Nematoda	non	4	9	3.0	0.06
Aelia acuminata	arable	8	8	14.3	0.33
Tentredinimidae	non	6	8	9.6	0.22
Eurygaster maura	arable	5	7	36.3	0.84
Insecta (larvae)	non	4	6	10.0	0.24
Dolicoris sp.	non	6	6	26.6	0.61
Pentatomimidae	arable	4	6	26.2	0.62
Viviparus viviparus	wet	3	3	350	6.23
Heteroptera	non	3	3	2.0	0.05
Diplodopa	non	2	2	66.8	1.55
Chartoscirta sp.	wet	2	2	0.8	0.02
Apidae	non	2	2	19.8	0.45
Apoidea	non	2	2	19.8	0.45
Bombus sp.	non	2	2	50.7	1.15
Panorpa sp.	non	2	2	504.5	0.21
Helix pomatia	non	2	2	900.	16.02
Orconestes limosus	wet	1	1	5000	75.15
Diptera	non	1	1	2.0	0.04
Graphosoma italicca	non	1	1	39.5	0.91
Lygaeidae	non	1	1	1.3	0.03
Lygus sp.	non	1	1	2.0	0.05
Auchenorrhynchina sp.	non	1	1	2.4	0.06
Andrena sp.	non	1	1	8.8	0.20
Apis mellifera	non	1	1	21.4	0.49
Eumenidae	non	1	1	4.8	0.11
Camponotus sp.	non	1	1	1.2	0.03
Selenopsis sp.	arable	1	1	1.2	0.03
Vespula sp.	non	1	1	25.7	0.59
Lepidoptera (eggs)	non	1	1	0.5	0.01
Chrysopa (larvae)	non	1	1	3.0	0.07
Mollusca (large)	non	1	1	1000	17.8

FISH, REPTILES AND BIRDS

Anguis fragilis	for	92	95	6750	132.84
Aves (small Passeriformes)	non	10	11	8200	191.22
Pisces	wet	5	6	5000	110.75
Carassius carassius	wet	2	2	5000	100.68
Lacerta sp.	non	1	1	2700	53.14
Natrix natrix	wet	1	1	24,300	478.22

MAMMALS

Microtus arvalis	arable	80	81	6080	130.21
Talpa europaea	non	38	39	19,520	429.97
Apodemus sp.	non	8	8	6400	144.56
Arvicola amphibius	wet	7	7	26,560	585.04
We applied the functional division of the individual prey species/taxa, in terms of their habitat preferences (see Table 2), in part basing this classification on our previous detailed per-taxon habitat assignment [15]. Specifically, we classified the individual prey species/taxa into four major habitat categories, taking into account their relationship with the landscape and agricultural activities as the habitat of their development and their association with crop or non-crop habitats [15]. The habitat preferences of prey taxa were based on extensive ecological studies of various invertebrate groups in agricultural regions of south-western Poland after 1960 (16–21; summarized in [15]). This yielded four groups of prey from i) non-agricultural/marginal habitats including grassland, ii) crop fields/arable land, iii) wetland and aquatic habitats, and iv) forest and woodland habitats (Table 1).

The habitat preferences of prey taxa were based on extensive ecological studies of various invertebrate groups in agricultural regions of south-western Poland after 1960 (16–21; summarized in [15]). This yielded four groups of prey from i) non-agricultural/marginal habitats including grassland, ii) crop fields/arable land, iii) wetland and aquatic habitats, and iv) forest and woodland habitats (Table 1).

2.1. Statistical analysis

The aim of our analysis of data in Fig. 2 was to assess whether the percentage distribution of the biomasses of four functional prey groups representing taxa from major habitat categories (arable; eurytopic = grassland/non-cropped; forest; and waters/wetland) was utilized in proportion to the availability of the corresponding habitats measured at three different distances (1 km, 2.5 km and 5 km) around the same 52 White Stork nests. The corresponding background of available habitats is a synthetic measure combining land cover classes with a similar structure: arable (Arable land + Heterogeneous agricultural areas), grassland/non-cropped (Urban fabric + Industrial, commercial and transport units + Mine, dump and construction sites + Grassland, pasture + Shrub and/or herbaceous vegetation associations), forest (Forests + Artificial non-agricultural vegetated areas) and water/wetland (Inland wetlands + Inland waters and large rivers) (Table 1; Fig. 1; see also [1]). The percentage distribution of individual prey groups vs available habitat background (Fig. 2) was compared with using the t-test for dependent samples.

Finally, since previous findings on behavioural limitations resulted from colonial breeding leading to decreased reproductive output in White Storks, we compared using the Mann-Whitney test, the landscape traits and dietary indices between nests of low productivity pairs (1–2 fledglings; n = 21 nests) and nests of high productivity pairs (3–4 fledglings; n = 31 nests); and (2) between solitary nests (n = 36) and nests in an aggregation (n = 16; Table 4; Table 5). However, results of the latter
Table 3
All the statistically significant ($P \leq 0.05$) results of the Spearman rank correlation coefficient (r_s) testing the relationships between the various dietary indices determined for 165 pellets and landscape/habitat variables (i.e. area of individual land cover type expressed in ha or length of hydrographic networks expressed in m) measured at three spatial scales (1 km, 2.5 km and 5 km) around 52 White Stork nests in south-western Poland; P-values in bold meet the threshold of Bonferroni’s correction at $\alpha \leq 0.0036$ ($k = 14$).

Land cover/habitat/extent	N prey items	Total prey biome	Ind. prey mass	N taxa	Energy content per prey item	Total energy content	Biomass %biomass Earth Cole Orth Other	%biomass Earth Cole Orth Other	Biomass %biomass Invert Verte Invert Verte
Urban fabric n fabric									
1 km	-0.160						0.217 0.272 0.252 -0.328 -0.192		
2.5 km							0.265 0.193 -0.159 0.268 0.184 -0.174	0.184 0.166 0.164	
5 km	-0.170						0.176 0.223 0.158 0.173 0.178		
Industrial, commercial and transport units									
2.5 km	0.170								
5 km	**0.278**	**-0.244**	-0.197				0.176 0.223 0.158 0.173 0.178		
Artificial non-agricultural vegetated areas									
1 km	-0.209	0.219	-0.208				0.257 0.158 -0.256 -0.230 0.228 -0.259	-0.163 -0.179 0.158 -0.160	
2.5 km							0.198 0.183 -0.161 0.205 -0.166 -0.208		
5 km	0.204	-0.186					0.213 0.216 -0.169 0.185 0.192 -0.187	0.215 0.203 -0.179 **0.230** -0.229	
Arable land									
1 km	-0.184	-0.159					0.264 0.235 -0.188 -0.194 0.331 -0.241	-0.241	
2.5 km									
5 km	**-0.324**	**-0.278**	**-0.353**						
Grassland, pastures									
2.5 km							-0.184		
5 km							-0.171		
Heterogeneous agricultural areas									
1 km	-0.155	0.178	0.169				0.252 -0.216 **0.241** -0.254 -0.193	0.203 -0.204	
2.5 km									
5 km	**0.274**	**-0.304**							
Other									

Grzegorz Orłowski et al. / Data in Brief 21 (2018) 1186–1203
	1 km	2.5 km	5 km
Forests	0.203	**-0.312**	0.203
	0.171	**-0.317**	0.206
	0.200	**-0.300**	0.248
	0.188	**-0.252**	
	0.179	**-0.215**	
	0.197	**0.252**	
	-0.215	**-0.278**	
	0.201	**0.247**	
	0.155	**0.231**	
Shrub and/or herbaceous vegetation associations			
	-0.200	**-0.222**	-0.208
	-0.222	**-0.178**	-0.188
	0.179	**-0.250**	0.181
	0.171	**0.171**	
	0.181		
Inland wetland			
	0.254	0.190	0.216
	-0.174	0.174	-0.173
	0.192	-0.226	0.196
	-0.161	-0.187	0.157
Inland water			
	-0.208	**0.237**	0.194
	0.180	0.189	
	0.209	-0.183	
	0.178	-0.176	
	0.165	-0.156	
Watercourses (length)			
	0.191		
	0.214	-0.219	
	0.237	-0.200	
Shoreline of water bodies (length)			
	-0.153	-0.160	
	-0.162	-0.166	
	0.196	-0.199	
	-0.196	-0.206	
Water bodies and large rivers (surface area)			
	-0.291	-0.200	
	0.187	-0.247	
	0.208	-0.287	
	0.176	-0.246	
	-0.153	-0.238	
Table 4
Comparison of landscape/habitat traits measured at three spatial scales for White Stork nests grouped into (A) pair productivity: low (1–2 fledglings; n = 21) and high (3–4 fledglings; n = 31), and (B) colonial breeding: solitary nests (n = 36) versus nests in aggregations (i.e. clumped distribution = more than one nest in an individual locality/village; n = 16); statistically significant results are shown in bold.

(A) Pair productivity

Land cover type, hydrographic feature (unit)	1–2 fledglings	3–4 fledglings	Mann-Whitney test	
SPATIAL SCALE: 1 km				
Urban fabric (ha)	26	29	-0.55	0.585
Mine, dump and construction sites (ha)	0.0	3.5	-1.18	0.240
Artificial non-agricultural vegetated areas (ha)	0.00	0.26	-0.82	0.410
Arable land (ha)	197	183	0.49	0.621
Grassland, pasture (ha)	39	34	0.23	0.821
Heterogeneous agricultural areas (ha)	4.1	9.9	-1.04	0.299
Forests (ha)	44.6	52.9	-0.84	0.398
Shrub and/or herbaceous vegetation associations (ha)	3.2	0.1	1.51	0.130
Inland wetlands (ha)	0.0	0.0	-	-
Inland waters (ha)	0.9	1.5	-0.37	0.712
Watercourses (m)	11,554	8712	2.25	0.025
Shoreline of water bodies (m)	1629	2242	-1.78	0.075
Inland waters and large rivers (ha)	2.5	4.0	-1.69	0.091

SPATIAL SCALE: 2.5 km

Urban fabric (ha)	54	77	-0.85	0.396
Mine, dump and construction sites (ha)	2.5	4.9	0.53	0.596
Artificial non-agricultural vegetated areas (ha)	5	8	-0.34	0.737
Arable land (ha)	905	922	-0.08	0.933
Grassland, pasture (ha)	286	224	1.32	0.186
Heterogeneous agricultural areas (ha)	94	84	0.52	0.601
Forests (ha)	494	561	-0.33	0.744
Shrub and/or herbaceous vegetation associations (ha)	21	5	1.50	0.133
Inland wetlands (ha)	0.4	0.5	0.25	0.801
Inland waters (ha)	50	33	1.51	0.131
Watercourses (m)	58,670	47,681	1.87	0.061
Shoreline of water bodies (m)	17,508	15,153	0.62	0.532
Inland waters and large rivers (ha)	64	47	0.96	0.337

SPATIAL SCALE: 5 km

Urban fabric (ha)	338	337	-0.07	0.941
Mine, dump and construction sites (ha)	166	94	1.20	0.229
Artificial non-agricultural vegetated areas (ha)	46	38	0.79	0.428
Arable land (ha)	2585	3030	-0.81	0.417
Grassland, pasture (ha)	1036	767	1.71	0.088
Heterogeneous agricultural areas (ha)	290	274	0.55	0.582
Forests (ha)	2880	2905	-0.33	0.744
Shrub and/or herbaceous vegetation associations (ha)	119	81	1.73	0.085
Inland wetlands (ha)	12	9	0.28	0.780
Inland waters (ha)	158	125	1.13	0.259
Watercourses (m)	175,753	157,049	1.41	0.159
Shoreline of water bodies (m)	63,580	54,090	1.04	0.301
Inland waters and large rivers (ha)	231	179	1.13	0.259

(B) Colonial breeding

Land cover type, hydrographic feature (unit)	Solitary	Aggregation	Mann-Whitney test	
SPATIAL SCALE: 1 km				
Urban fabric (ha)	27	31	-1.50	0.133
Mine, dump and construction sites (ha)	3.0	0.0	0.95	0.341
Artificial non-agricultural vegetated areas (ha)	0.2	0.2	0.67	0.505
Arable land (ha)	161	251	-3.33	0.001
Grassland, pasture (ha)	40	28	0.37	0.711
(B) Colonial breeding

Land cover type, hydrographic feature (unit)	Solitary	Aggregation	Mann-Whitney test			
Average	SE	Average	SE	Z	P-value	
Heterogeneous agricultural areas (ha)	10.8	3.2	0.3	0.3	2.06	0.039
Forests (ha)	70	11	5	3	4.41	0.000
Shrub and/or herbaceous vegetation associations (ha)	1.9	1.1	0.0	0.0	1.37	0.170
Inland wetlands (ha)	0.0	0.0	0.0	0.0	–	–
Inland waters (ha)	1.8	0.9	0.0	0.0	1.72	0.086
Watercourses (m)	8015	655	14,010	1511	-3.83	0.000
Shoreline of water bodies (m)	2479	459	904	178	1.09	0.275
Inland waters and large rivers (ha)	4.5	1.3	0.9	0.1	0.93	0.351
SPATIAL SCALE: 2.5 km						
Urban fabric (ha)	80	14	40	10	2.22	0.026
Industrial, commercial and transport units (ha)	4.9	2.7	1.6	0.7	-1.90	0.057
Mine, dump and construction sites (ha)	9.7	5.3	0.0	0.0	0.95	0.341
Artificial non-agricultural vegetated areas (ha)	3.0	1.6	39.7	5.9	-4.12	0.000
Arable land (ha)	827	75	1114	58	-2.54	0.011
Grassland, pasture (ha)	212	34	332	37	-2.52	0.012
Heterogeneous agricultural areas (ha)	70	10	129	13	-2.87	0.004
Forests (ha)	684	73	197	18	3.69	0.000
Shrub and/or herbaceous vegetation associations (ha)	15.5	4.7	3.4	3.1	1.41	0.159
Inland wetlands (ha)	0.7	0.5	0.0	0.0	0.32	0.751
Inland waters (ha)	25	6	75	8	-3.87	0.000
Watercourses (m)	43,426	3048	71,678	4686	-3.99	0.000
Shoreline of water bodies (ha)	13,480	1959	22,008	1719	-3.19	0.001
Inland waters and large rivers (ha)	36	7	93	9	-3.61	0.000
SPATIAL SCALE: 5 km						
Urban fabric (ha)	288	34	449	39	-3.03	0.002
Industrial, commercial and transport units (ha)	66	21	252	37	-3.39	0.001
Mine, dump and construction sites (ha)	30	10	68	9	-3.35	0.001
Artificial non-agricultural vegetated areas (ha)	22	10	204	30	-3.65	0.000
Arable land (ha)	3011	236	2487	263	1.19	0.234
Grassland, pasture (ha)	652	75	1378	84	-4.46	0.000
Heterogeneous agricultural areas (ha)	252	20	343	30	-2.78	0.006
Forests (ha)	3208	237	2189	213	2.48	0.013
Shrub and/or herbaceous vegetation associations (ha)	84	15	123	11	-2.26	0.024
Inland wetlands (ha)	148	6.4	0.0	0.0	0.95	0.341
Inland waters (ha)	96	14	233	19	-4.52	0.000
Watercourses (m)	150,451	9153	196,445	7582	-3.07	0.002
Shoreline of water bodies (m)	45,715	4452	85,391	5370	-4.40	0.000
Inland waters and large rivers (m)	134	17	349	29	-4.62	0.000
Table 5
Comparison of dietary indices/variables of breeding White Storks (A) among nests with low productivity (1–2 fledglings; \(n = 66 \) pellets) and high productivity (3–4 fledglings; \(n = 99 \) pellets) pairs and (B) among solitary nests (\(n = 125 \) pellets) and nests in an aggregation (i.e. more than one nest in an individual locality/village; \(n = 40 \) pellets); statistically significant results are shown in bold. Note: Thirty-two pellets were collected from 12 nests in Kłopot, a village supporting one of the largest White Stork colonies in Poland, see [1].

(A) Pair productivity

Dietary index/variable (unit)	1–2 fledglings	3–4 fledglings	Mann-Whitney test			
	Average	SE	Average	SE	Z	P-value
Biomass of earthworms (mg d.w.)	5379.0	882.0	5997.0	782.0	-0.43	0.670
Biomass of Coleoptera (mg d.w.)	3773.0	1275.0	1811.0	157.0	1.99	0.046
Biomass of Orthoptera (mg d.w.)	18,349.0	2215.0	9074.0	1402.0	4.21	0.000
Biomass of other invertebrates (mg d.w.)	1213.0	22.6	143.8	55.4	1.78	0.075
Biomass of other vertebrates (mg d.w.)	5967.0	611.0	5103.0	510.0	1.35	0.177
Biomass of mammals (mg d.w.)	7719.0	1115.0	9361.0	1267.0	-0.12	0.904
%biomass of earthworms	13.9	2.3	20.9	2.6	-1.77	0.077
%biomass of Coleoptera	8.3	1.4	6.9	0.6	-0.05	0.963
%biomass of Orthoptera	39.2	3.3	24.2	2.3	3.55	0.000
%biomass of other invertebrates	0.3	0.1	0.5	0.1	-0.09	0.775
%biomass of other vertebrates	17.0	2.1	17.5	1.8	1.44	0.149
%biomass of mammals	21.4	2.8	30.1	3.1	-0.12	0.904
Number of prey items	149.0	12.1	108.2	10.2	3.22	0.001
Total biomass of prey (mg d.w.)	41,307.0	2620.0	31,489.0	2067.0	3.26	0.001
Individual prey mass (mg d.w.)	397.0	40.7	481.8	45.6	-0.60	0.545
Number of prey taxa	16.3	0.6	14.5	0.5	2.14	0.032
Biomass of all invertebrates (mg d.w.)	27,622.0	2610.0	17,025.0	1803.0	4.00	0.000
Biomass of all vertebrates (mg d.w.)	13,685.0	1308.0	14,464.0	1353.0	0.30	0.761
%biomass of all invertebrates	38.3	3.3	47.6	3.1	-1.94	0.052
%biomass of all vertebrates	61.7	3.3	52.4	3.1	1.94	0.052
Energy content per 1 prey item (kJ)	9.7	0.8	7.4	1.0	-2.62	0.009
Total energy content (kJ)	419.0	53	663.0	44	2.97	0.003

(B) Colonial breeding

Dietary index/variable (unit)	Solitary	Aggregation	Mann-Whitney test			
	Average	SE	Average	SE	Z	P-value
Biomass of earthworms (mg d.w.)	4311.0	557.0	10,245.0	1478.0	-3.84	0.000
Biomass of Coleoptera (mg d.w.)	2876.0	685.0	1720.0	188.0	0.68	0.494
Biomass of Orthoptera (mg d.w.)	12,260.0	1493.0	14,418.0	2380.0	-1.66	0.096
Biomass of other invertebrates (mg d.w.)	103.0	18.0	234.0	131.0	-1.27	0.205
Biomass of other vertebrates (mg d.w.)	5647.0	407.0	4828.0	1002.0	1.61	0.108
Biomass of mammals (mg d.w.)	9088.0	900.0	7504.0	2317.0	2.08	0.038
%biomass of earthworms	14.5	1.9	28.9	4.1	-3.53	0.000
%biomass of Coleoptera	8.20	0.85	5.19	0.70	1.97	0.049
%biomass of Orthoptera	29.6	2.3	32.6	3.7	-0.91	0.364
%biomass of other invertebrates	0.37	0.06	0.46	0.18	-0.57	0.566
%biomass of other vertebrates	18.04	1.47	15.02	3.22	1.70	0.090
%biomass of mammals	29.34	2.49	17.84	4.35	2.71	0.007
Number of prey items	114.1	8.8	156.8	17.2	-2.62	0.009
Total biomass of prey (mg d.w.)	34,286.0	1960.0	38,950.0	3054.0	-1.54	0.125
Individual prey mass (mg d.w.)	479.0	39.0	350.0	45.0	2.02	0.043
Number of prey taxa	15.0	0.5	15.9	0.7	-0.3	0.798
Biomass of all invertebrates (mg d.w.)	19,550.0	1776.0	26,619.0	3079.0	-2.67	0.008
Biomass of all vertebrates (mg d.w.)	14,735.0	1026.0	12,332.0	2353.0	2.03	0.042
%biomass of all invertebrates	52.6	2.6	67.1	4.7	-2.69	0.007
%biomass of all vertebrates	47.4	2.6	32.9	4.7	2.69	0.007
Energy content per 1 prey item (kJ)	9.7	0.8	7.4	1.0	1.46	0.145
Total energy content (kJ)	706.0	40.0	823.0	66.0	0.09	0.089
analysis due to non-random sampling design (i.e. the true density of 'solitary' and 'colonial' nests is unknown) should be treated with caution.

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.10.064.

References

[1] G. Orłowski, J. Karg, L. Jerzak, M. Bocheński, P. Profus, Z. Książkiewicz-Parulska, K. Zub, A. Ekner-Grzyb, J. Czarnecka, Linking land cover satellite data with dietary variation and reproductive output in an opportunistic forager: arable land use can boost an ontogenetic trophic bottleneck in the White Stork Ciconia ciconia, Sci. Total Environ. 646 (2019) 491–502.

[2] F.S. Tortosa, F. Castro, Development of thermoregulatory ability during ontogeny in the white stork Ciconia ciconia, Ardeola 50 (2003) 39–45.

[3] S. Djerdali, F. Tortosa, L. Hillstrom, S. Doumandji, Food supply and external cues limit the clutch size and hatchability in the white stork Ciconia ciconia, Acta Ornithol. 43 (2008) 145–150.

[4] J. Hušek, P. Adamík, T. Albrecht, J. Cepák, W. Kania, E. Mikołajkoska, E. Tkadlec, N. Stenseth, Cyclicality and variability in prey dynamics strengthens predator numerical response: the effects of vole fluctuations on white stork productivity, Popul. Ecol. 55 (2013) 363–375.

[5] G. Orłowski, Z. Książkiewicz-Parulska, J. Karg, M. Bocheński, L. Jerzak, K. Zub, Using soil from pellets of White Storks Ciconia ciconia to assess the number of earthworms (Lumbricidae) consumed as primary and secondary prey, Ibis 158 (2016) 587–597.

[6] G. Orłowski, J. Karg, Diet of nestling Barn Swallows Hirundo rustica in rural areas of Poland, Cent. Eur. J. Biol. 6 (2011) 1023–1035.

[7] G. Orłowski, J. Karg, Diet breadth and overlap in three sympatric aerial insectivorous birds at the same location, Bird Study 60 (2013) 475–483.

[8] P. Profus, Zur Brutbiologie und Bioenergetik des Weißstorchs in Polen. Beih. Veröff. Naturschutz Landschaftspflege Baden-Württemberg, 43, 1986, 205–220.

[9] P. Profus, Population changes and breeding ecology of the White Stork Ciconia ciconia L. in Poland against a background of the European population, Synthesis, Studia Nat. 50 (2006) 1–155.

[10] V.R. Dolnik, T.V. Dolnik, S.N. Postnikov, Caloric densities and metabolic efficiency coefficients of objects eaten by birds, in: V.R. Dolnik (Ed.), Time and energy budgets in free-living birds, Proceedings of Zoological Institute, Academy of Sciences of the USSR, 1982, pp. 143–153 (in Russian).

[11] N. Caspers, Kalorische Werte der dominierenden Invertebraten zweier Waldbäume des Naturparks Kottenforst-Ville, Arch. Hydrobiol. 75 (1975) 484–489.

[12] T. Prus, Caloric value of animals as an element of bioenergetical investigations, Pol. Arch. Hydrobiol. 17 (1970) 183–199.

[13] K.W. Cummins, J.K. Wuycheck, Caloric equivalents for investigations in ecological energetics, Int. Ver. Theor. Angew. Limnol. 18 (1971) 1–158.

[14] A. Golec, Energy value of body in small mammals, Acta Theriol. 10 (1965) 333–352.

[15] G. Orłowski, J. Karg, G. Karg, Functional invertebrate prey groups reflect dietary responses to phenology and farming activity and pest control services in three sympatric species of aerially foraging insectivorous birds, PLoS One 9 (12) (2014) e114906. https://doi.org/10.1371/journal.pone.0114906.

[16] J. Karg, A preliminary study of agroecosystem aerentomofauna, Pol. Ecol. Stud. 1 (1975) 149–154.

[17] J. Karg, A method of motor-net for estimation of aerentomofauna, Pol. Ecol. Stud. 6 (1980) 345–354.

[18] J. Karg, Differentiation in the density and biomass of flying insects in the agricultural landscape of Western Poland, Roczn. Akad. Rol. Poz 188 (1989) 1–7 (in Polish).

[19] L. Ryszkowski, J. Karg, Variability of biomass of epigeic insects in the agricultural landscape, Ecol. Pol. 25 (1977) 501–517.

[20] L. Ryszkowski, J. Karg, The effect of the structure of agricultural landscape on biomass of insects of the aboveground fauna, Ecol. Pol. 39 (1991) 171–179.

[21] L. Ryszkowski, J. Karg, G. Margarit, M. Paolletti, R. Zlotin, Above-ground insect biomass in agricultural landscapes of Europe, in: R.G.H. Bunce, L. Rybkowski, M.G. Paolletti (Eds.), Landscape Ecology and Agroecosystems, Lewis Publishers, Boca Raton, FL, 1993, pp. 71–82.