Impact of COVID-19 Pandemic on Traffic Volume and Air Quality in Urban Areas

Muhammad Rendana¹, Wan Mohd Razi Idris², Sahibin Abdul Rahim³ and Mohd Talib Latif²

¹Universitas Sriwijaya, Indonesia. ²Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia. and ³Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia.

ABSTRACT: The large transmission of COVID-19 has resulted in a deep impact on the surrounding urban environments, especially on air quality and traffic flows. The objective of this study was to analyze air pollutant concentrations (PM10, SO2, NO2, CO, and O3) and traffic volumes at five congested districts (Bundaran HI, Kelapa Gading, Jagakarsa, Lubang Buaya, and Kebon Jeruk) within Jakarta city impacted by the large-scale social restriction (LSSR) policy. Air quality data during three periods; before, during, and after the LSSR at five observed districts was obtained from the Department of Environment of Jakarta using the Air Quality Monitoring (AQMS) tool. While vehicle speed data were obtained from the waze data during the study period. In this study, air pollutant data during three periods; before, during, and after the LSSR were compared with vehicle speed and meteorological data using a statistical analysis. Results revealed the mean traffic volume at all five districts has greatly reduced by 19% from before to during the LSSR period. It was consistent with the mean PM10, NO2, CO, and SO2 concentrations which also dropped about 46%, 45%, 30%, and 23% respectively. In contrast, the concentrations of air pollutants significantly increased after the LSSR period. During the LSSR period, the traffic volume was negatively associated with the O3 concentration ($r$ = −.86, $p$ < .01), it was different with before the LSSR periods where the traffic volume associated with CO ($r$ = .88, $p$ < .01) and NO2 ($r$ = .89, $p$ < .01). The broad analysis of changes in air pollutants and traffic volumes can be used by the authorities to arrange a good air quality management and an effective way for current and future scenarios.

KEYWORDS: Air quality, COVID-19, LSSR, remote sensing, urban traffic

Introduction

Currently, many cities around the world have sustained a exacerbating in air quality, because of the escalating of population and human activities, which resulting in polluting emissions (Boreck & Schrauth, 2021). In Indonesia in 2019-2020, many air quality stations passed the threshold value based on the World Health Organization (WHO), for instance, in annual NO2, SO2, and CO levels (Brontowiyono et al., 2022). Bad air quality significantly affects the human daily life and health. The WHO reported more than 90% of the global population lived in areas in low air quality level. In Indonesia, about 65 million people were exposed to the unhealthy air quality condition in 2015 (Crippa et al., 2016). Many studies have revealed a strong association between exposure to air pollution and bad health effects for people staying in urban areas, especially in near roads and roadways in their surrounding (Alam et al., 2018; Kuerban et al., 2020). Urban traffic or road traffic is one of the primary problems of air pollution in urban areas (Rossi et al., 2020). In 2018 in Indonesia, about 80% of greenhouse gas emissions were generated by the transportation sector (Haryanto, 2018). Air pollutants are carried from roads, thus exacerbating the air quality of urban environments. Additionally, transportation sector is not only affect the environment, but also economy and community of cities (Mohsin et al., 2019). Therefore, it is very prominent because the sustainable transport is one of the the 17 Sustainable Development Goals in agenda 2030.

In order to diminish air pollutant levels, several actions have been conducted by the government to restrict vehicle volume and cycle. Some restrictions are such as the use of greener vehicles or implement car-free days, and odd-even plate regulation (Fardà & Balijepalli, 2018; Zhang et al., 2020). Previous studies have analyzed the link between traffic volume and air pollution (Gao et al., 2021; Xiang et al., 2020; Yuwono & Sari, 2020). Some of them obtained positive correlations between traffic volume and NO2 concentration. In contrast, the other authors found the association between vehicle volumes and particulate matter varied (Sohrab et al., 2022). Thus, the association between air quality and traffic was still not clear, due to many factors that have to be evaluated. First, the observed air pollutants levels in urban areas are produced by many sources and also vehicle movement, which are complicated to collect, the impact of traffic on air pollutants levels is very dynamic. Furthermore, the distance between air quality stations and roadways greatly affects the association between air pollutants and traffic, contributing to results become too site-specific. In addition, meteorological variables like rainfall, wind speed, temperature, humidity, and sunshine have a big role on pollution creation and transport (Yang et al., 2019). To assess these impacts, many studies have considered meteorological variables into their analysis (Rendana, 2021; Sangkhram et al., 2021; Xiao et al., 2011). However, the causal association between the decreased traffic volumes and the improved air quality, that cannot be evaluated scrupulously (Rossi et al., 2020). In 2020, a substantial reduction in human activities has firstly occurred, which contributed to the changes in air pollution in many cities all over the world due to the COVID-19 lockdown.
(Briz-Redón et al., 2021; Chakraborty et al., 2021; Shen et al., 2021). On March 11, 2020, the WHO announced over 118,000 confirmed cases in over 110 countries around the world (World Health Organization, 2020). In Indonesia, the first confirmed COVID-19 case found on 2 March 2020 (Ministry of Health Indonesia, 2020; Rendana et al., 2021). Then, after several weeks, the total of confirmed cases was up to 5,000. On 10 April 2020, for the first time, the Indonesian government implemented a national lockdown (LSSR policy) in the capital city of Indonesia (Jakarta city), which was expanded to the other cities in the next following weeks (Rendana & Idris, 2021). This policy has restricted all social, educational, and entertainment activities, and the shutdown of all commercial areas like restaurants, malls and cinemas. This situation has resulted to the improved air quality in many countries around the world (Giani et al., 2020). For example, decreases of NO\textsubscript{2} and PM10 were reported in Lombardia Region of Italy (Cameletti, 2020); in the China region, PM2.5 levels reduced during the lockdown (He et al., 2020), and the reduction of O\textsubscript{3} and CO concentrations during the lockdown were observed in Bangkok city, Thailand (Wetchayont et al., 2021). This current study aimed to assist to the understanding of the association between traffic volumes and air pollutants levels in urban environments (PM\textsubscript{10}, SO\textsubscript{2}, NO\textsubscript{2}, CO, and O\textsubscript{3}), in order to identify the effect of the LSSR policy on air quality, this study use data in before, during, and after the LSSR period in the Jakarta city. The pandemic situation gives a good chance to study the impacts of human activities and urban traffic volume.

In fact, previous studies investigated the effect of the lockdown on air pollution, but were limited in space and time (Das et al., 2021; Wu et al., 2021), as they only concerned on the decreased traffic volumes during few days or influenced only certain areas. However, in this study, the period of analysis had a long duration and big scale, which strengthening the result of this study. Additionally, the impact of meteorological factor on decreasing pollution levels was obviously elaborated, and especially concerning on the effect of the changes in vehicle volumes. Therefore, the objective of this study was not to estimate air pollutants levels after the changes in traffic volumes, but to deeply analyze the association between the traffic volumes and PM\textsubscript{10}, SO\textsubscript{2}, NO\textsubscript{2}, CO, and O\textsubscript{3} levels. The Indonesian government generally applied the traffic restriction policy to improve air quality. These results can be used to assist them in arranging decisions in order to maximize air quality control regulations, toward the creation of sustainable cities.

### Methods

#### Study area

This study chose five representative districts within the Jakarta city of Indonesia with high traffic jams such as Bundaran HI (6°11′41.79″S, 106°49′22.88″E), Kebon Gading (6°9′37.79″S, 106°54′19.51″E), Jagakarsa (6°20′5.93″S, 106°49′25.32″E), and Lubang Buaya (6°17′38.18″S, 106°54′12.22″E) as the study area (Figure 1). The Jakarta city is the capital city of Indonesia, it is an epicenter of COVID-19 outbreak since it has the highest total number of COVID-19 cases. It is located on the northwest coast of Java island with total area around 699.5 km\textsuperscript{2}. The city is the hub of the culture, politics, and economy of Indonesia. It ranks first among the Indonesian provinces in urban traffic index with the current population of the city is about 10,609,681. It has a tropical monsoon climate with dry and wet seasons. It lies in a low and flat alluvial plain (0–50 m) with a mean elevation of 8 m above sea level. Most of power plants emission in the city was affected by the electric steam power plants, these emissions tended to concentrate in the borderland such as beach and seaside areas. But, the source of pollution from transportation or vehicle emission was defined as a line source where the air pollutants were more concentrated in dense traffic areas.

#### Data collection and analysis

Air pollutants data from January to December in 2019, 2020, and 2021 were collected from the air quality monitoring stations in each district of study. These data were issued by the Department of Environment of Jakarta from the website (https://data.jakarta.go.id/). The website provided the daily mean data of air pollutants concentrations (PM\textsubscript{10}, SO\textsubscript{2}, NO\textsubscript{2}, CO, and O\textsubscript{3}). Due to the incomplete PM\textsubscript{2.5} data in the study area, this study did not use them in this study. The spatial distribution of NO\textsubscript{2} concentration in the study area was obtained from the Ozone Monitoring Instrument (OMI) instrument aboard the NASA’s Satellite (https://giovanni.gsfc.nasa.gov/). The OMI could quantify several pollutants such as NO\textsubscript{2}, SO\textsubscript{2}, O\textsubscript{3}, and particulate matter (Judd et al., 2019; Qu et al., 2019). The US Environmental Protection Agency (EPA) has applied these pollutants as a strenuous menace to human health. The satellite image of NO\textsubscript{2} concentration was extracted in three periods of study (2019, 2020, and 2021). Because the LSSR policy was implemented in April 2020, this study chose the NO\textsubscript{2} concentration at that month to compare with the other periods. The images of NO\textsubscript{2} concentration were processed using the ArcGIS software to improve their resolution and quality. In addition, meteorological data such as air temperature, humidity, rainfall, sunshine hours, and wind speed to identify an association with the air pollutants during the COVID-19 period. The meteorological data were obtained from the Meteorological, Climatological, and Geophysical Agency of Indonesia.

Furthermore, due to the lack of urban traffic data in the study area, the vehicle speed was chosen for the supplementary data of urban traffic data. The vehicle speed data was collected from the waze data using the website (https://corona.jakarta.go.id/). Several studies have successfully used vehicle speed data as an indicator for traffic jams incidents (Du et al., 2021; Grents et al., 2020; Harantová et al., 2020). The vehicle speed...
data were collected from the Jakarta Smart city website (https://corona.jakarta.go.id/). The website provided vehicle speed data in the observed districts. The vehicle speed data were provided in form of daily and hourly types thus this could be used to assess the traffic condition during weekdays and weekends, and even on morning and evening days. This study used several periods to investigate the impact of the COVID-19 period on the vehicle speed data such as before LSSR (February to April 2020), during LSSR (April to September 2020), and after LSSR (October to December 2020). For statistical analysis, this study used the Pearson correlation test from the IBM SPSS Statistics Ver. 21 software to analyze the relationship between vehicle speed and meteorological variables with air pollutants data.

Results and Discussion

COVID-19 cases in Jakarta city

On October 1, 2020, there have been 857,916 confirmed COVID-19 cases and 13,524 deaths in Jakarta city. Most COVID-19 cases in Jakarta were found in the Jagakarsa district (South of Jakarta) and Lubang Buaya district (East of Jakarta) which were the two most congested areas. After the high emergence of COVID-19 cases in Jakarta, the local government announced a state of emergency in early-April 2020 and banned community gatherings and social interaction. The large-scale social restriction (LSSR) policy included the shutdown of offices, commercial places, industries, and recreational areas. Society was asked to stay at their home and conducted physical and social distance when went to outdoor activities. This pandemic also had a great impact on the country’s economy. For the economic restoration, gradual ways to loosen LSSR policy were carried out in Jakarta in mid-June 2020. Although there have been increasing cases after loosening the LSSR policy, the city was forced back to implementing the restriction policy in September 2020. Then, after the cases decreased, the loosened LSSR policy was applied in the city.

Impact of LSSR on urban traffic volume

This study used vehicle speed data to assess urban traffic volume where the decrease in the vehicle speed indicated the increase in traffic congestion. The decrease in urban traffic due to the COVID-19 pandemic has been observed in many cities around the world (Du et al., 2021). The impacts of social restriction policies such as social distancing, self-isolation, and the closure of commercial places, offices, industries could be evaluated using the traffic volume data (Tian et al., 2021). Previous studies have reported that urban traffic congestion was associated with air pollutants emissions (Bigazzi & Rouleau, 2017; Zalakeviciute et al., 2020). Results of this study revealed there was a reduction in traffic volume level in most districts such as Kelapa Gading (8%), Kebon Jeruk (1%), and Jagakarsa (0.8%) during the LSSR period (Figure 2). The decrease in vehicle traffic was also recorded in the Rzeszow city of Poland which was found in the first phase of the pandemic.
from March to April 2020 (Smieszek et al., 2021). The other studies also revealed the reducing traffic volume and industrial activities during the COVID-19 lockdown period which then were associated with the changes in air pollutants levels (Nakada & Urban, 2020; Selvam et al., 2020; Tobias et al., 2020). These studies showed the average reduction by 20% to 60% in several areas of China, Spain, and India. The decrease in vehicle traffic could be caused by restrictions on the number of vehicles, according to physical distancing, sanitary prevention (Al-Gheethi et al., 2021), and the public’s fear of virus transmission (Hudda et al., 2020).

Furthermore, after the LSSR period, the traffic congestion level in Jagakarsa showed the highest increase of about 50%, while the lowest increase of traffic level was observed in Kelapa Gading with the percentage of 1% (Figure 2). The same situation was also found in the Rzeszow city of Poland as the restrictions were withdrawn, the situation slowly reverted to the pre-lockdown period (Smieszek et al., 2021). In the study area, after the reopening of social activities, the traffic congestion in all observed districts has returned to levels before the pandemic. Among these five districts, Jagakarsa was the top district where traffic levels had the most rapid recovery after the LSSR period. The traffic congestion level has increased by 50% in Jagakarsa compared with the normal congestion level.

This study also found that urban traffic congestion in most districts was high on the weekdays during the LSSR period (Figure 4). After the opening policy was declared, the traffic congestion levels during weekdays and also weekends increased significantly in all observed districts. Although it could be assumed that the traffic volume was slowly recovering, the alteration for the remaining time of the year might be dependent on the duration of the COVID-19 restriction.

The effect of the LSSR period on air pollutants concentrations

Human health is very associated with the environment. The effect of exposure to air pollutants on human health has been an important topic and obtained many studies over half a century. Generally, air pollution is one of the main factors contributing to diseases like respiratory and cardiovascular disease, also lung cancer for human. In addition, air pollution also can affect agricultural sector like the decline in crop productivity (Rendana et al., 2019). The dangerous impact of major air pollutants (PM10, CO, SO2, and NO2) pointedly relies on the exposure time, the amount and type of pollutants, and the pollutants accumulation.

Carbon monoxide can react with the hemoglobin to form carboxyhemoglobin (COHb) (Shi et al., 2018). John and Feyisayo (2013) assumed the 50% of the hemoglobin can be altered to the COHb using a little concentration of CO with value of 667 ppm. The negative impact of NO2 exposure is more harmful on people with pre-existing lung disease. Even only with the short-term NO2 exposure, the risk of exacerbation of chronic respiratory diseases and bronchial activity will increase for those people (Almetwally et al., 2020). The long-term exposure to sulfur dioxide contributes to premature death, harms the respiratory system, asthma, heart and lung diseases.
(Ewald, 2018). In addition, SO\textsubscript{2} can highly irritate eyes, throat, nose, and respiratory tracks. Moreover, the inhalation of PM\textsubscript{10} can lead to acute and chronic issues and deteriorate the respiratory system. Currently, numerous studies have obtained a strong relationship between air pollution and respiratory illness, such as asthma, bronchitis, COPD, lung cancer, and lung failure (Park et al., 2021; Shin et al., 2021).

Figure 5 represented the mean concentrations of PM\textsubscript{10} in five districts within Jakarta city in the before, during, and after LSSR period. It revealed the reduction of PM\textsubscript{10} concentrations in five districts from before the LSSR to during the LSSR period was Bundaran HI (186.7–149.2 µg/m\textsuperscript{3}), Kelapa Gading (203.6–110.8 µg/m\textsuperscript{3}), Jagakarsa (175–99.7 µg/m\textsuperscript{3}), Lubang Buaya (198.5–89.5 µg/m\textsuperscript{3}), and Kebon Jeruk (224.6–91.6 µg/m\textsuperscript{3}). On average, the percentage of reduction of PM\textsubscript{10} in this study was about 46%, this result was different with the same regional study by Anugerah et al. (2021) that found the increase in PM\textsubscript{10} concentration around 10.9% during the LSSR. It could be due to the effect of the southwest monsoon during the seasonal change in the area. However, this result was consistent with other studies which reported the reduction of PM\textsubscript{10} concentration during the lockdown period (Bontempi et al., 2022; Otmani et al., 2020; Tobías et al., 2020). In contrast, the significant increases of PM\textsubscript{10} concentrations were observed from during LSSR to after LSSR period in all observed districts. For instance, Bundaran HI (149.2–251.3 µg/m\textsuperscript{3}), Kelapa Gading (110.8–261.6 µg/m\textsuperscript{3}), Jagakarsa (99.7–187.5 µg/m\textsuperscript{3}), Lubang Buaya (89.5–165.2 µg/m\textsuperscript{3}), and Kebon Jeruk (91.6–167.4 µg/m\textsuperscript{3}). The PM\textsubscript{10} concentrations after LSSR period in all districts exceeded the Indonesian guideline for PM\textsubscript{10} threshold value (150 µg/m\textsuperscript{3}). It means that the air quality in the city was unhealthy. The highest concentration of PM\textsubscript{10} after LSSR period was found in Kelapa Gading (261.6 µg/m\textsuperscript{3}), while the lowest value was found in Lubang Buaya (165.2 µg/m\textsuperscript{3}). The dry season in Jakarta contributed to intense wind motion, that increased total dust and finally increased the level of PM\textsubscript{10} in the city. In addition, the transportation sector and fuel combustion places could affect the diffusion of PM\textsubscript{10} around the city.

Figure 3. Variation of vehicle speed at the observed districts areas during morning and evening days in before, during, and after the LSSR periods.
The distribution of SO$_2$ levels in different districts within Jakarta city was depicted in Figure 6. It could be found that the effect of the COVID-19 pandemic on the SO$_2$ level in each district was not significant. It was shown by the level changes during this study period did not exhibit an obvious correlation between SO$_2$ level and this pandemic. All districts showed a very slight reduction of SO$_2$ levels during the LSSR period and they fluctuated sometimes with an increasing trend. In general, SO$_2$ pollutants are majorly emitted from coal-fired power stations. In Indonesia, there is an increasing in coal usage in 2016 about 50,556,446.13 tons or near to 134%, compared to 2009 (ESDM, 2017). Based on a statistical report, one unit of coal-fired power plants emit SO$_2$ approximately at 8,374.37 ton/year (Kramawijaya, 2018). Moreover, there are minor anthropogenic activities of SO$_2$ emissions such as trains, ships, and vehicles that use fuel containing high sulfur levels. In this study, the concentrations of SO$_2$ decreased from before to during the LSSR period at all observed districts. Contrarily, the SO$_2$ increased from during LSSR to after the LSSR period, for instance, Bundaran HI (0.012–0.012 ppm), Kelapa Gading (0.013–0.031 ppm), Jagakarsa (0.014–0.025 ppm), Lubang Buaya (0.015–0.031 ppm), and Kebon Jeruk (0.010–0.024 ppm) (Figure 6). In Turkey, the mean of SO$_2$ increased from 0.018 to 0.023 ppm before and after COVID-19, respectively (Tekin, 2021). The opening of industrial and transportation sectors after the pandemic situation has led to a greater rebound of emissions. It might be the temporary stop of operation activities during 6 months of restriction has made the industries or factories pursue their production and financial drop during the COVID-19 restriction period.

In general, major NO$_2$ emissions originated from the burning of fossil fuels such as vehicles fuel combustion. In 2014, about 67,143 t/year of NO$_2$ emissions were derived from the road in Jakarta (Siami et al., 2014). COVID-19 pandemic with applying LSSR policy in Jakarta has contributed to the decrease in NO$_2$ levels in the city. It was also found that the NO$_2$ levels in cities of Northern China decreased to 24.67% during lockdown period (Bao & Zhang, 2020). A similar decrease of around 36.7% was also found in some states of the USA (Shaakor et al., 2020). Overall, global NO$_2$ emissions showed a great decrease of up to 70% (Hoang et al., 2021). In this study, the NO$_2$ concentrations during the COVID-19 period were
compared among five districts in Jakarta (Figure 6). The results revealed that all the districts had NO$_2$ reduced from before the LSSR to during the LSSR periods. The most significant change was found in the Lubang Buaya district (0.019–0.008 ppm or 57% decreases). Jakarta city is an epicenter of the COVID-19 outbreak since it was declared the first case in Indonesia, thus the city has applied a tight restriction policy to control the virus transmission. Among the most populous cities with high total COVID-19 cases, the changes in the pollutant level could be used to indicate the quality of public health and control policy in Jakarta. The mean O$_3$ concentrations in five districts of Jakarta city were also investigated. The O$_3$ increased in all districts from before the LSSR to during the LSSR periods such as Bundaran HI (0.018–0.024 ppm), Kelapa Gading (0.023–0.030 ppm), Jagakarsa (0.023–0.039 ppm), Lubang Buaya (0.022–0.032 ppm), and Kebon Jeruk (0.027–0.041 ppm). The O$_3$ concentration in this study did not exceed the Indonesian air quality standard, where it should be below than 0.12 ppm. Another study by Hashim et al. (2021) also found there was a 52% increase in O$_3$ during the lockdown period (June 14–July 24, 2020) in the Baghdad, Iraq. Contrarily, the mean of O$_3$ concentrations decreased in all districts after the LSSR period. The reduction of O$_3$ concentration in this study after LSSR period could be linked to the increase in particulate matter and NO$_2$ concentrations within the study area. It was supported by previous studies that obtained an inverse association between O$_3$ and NO$_2$ (Hvidtfeldt et al., 2019; Li et al., 2018).

The effect of carbon monoxide pollutants on human health was fatal poisoning in the human body because CO could enter the bloodstream and dropped oxygen delivery (Ryter et al., 2018). In Indonesia, the average of CO emission from transportation sources was about 71% (Pratiwi & Zaenab, 2020). Furthermore, the use of antibiotics for the Acute Respiratory Infection (ARI) disease in 2013 was more than 80% (Putra and Wardani, 2017). In Jakarta city, total of the ARI cases were 11.2% in 2018 (Ernyasih et al., 2018). The carbon monoxide significantly increased the daily hospital visits for the ARI (Bai...
et al., 2018). In addition, the increased carbon monoxide concentrations have been associated with asthma worsening among adults and children (Evans et al., 2014). Carbon monoxide poisoning is started as it accumulates in human bloodstream. When the ambient air had too much carbon monoxide, human body changes the oxygen in red blood cells to the carbon monoxide. It can cause to fatal tissue failures and also mortality.

Major carbon monoxide gaseous were emitted by fossil fuel combustion from transportation sectors. Figure 7 exhibited the changes in the mean CO concentrations during COVID-19 period in five observed districts. The mean CO concentrations in all districts reduced from before LSSR to LSSR periods. The highest reduction of the CO concentration was found in Bundaran HI district which reduced from 2.06 to 1.28 ppm or 38% reduction (Figure 7). The traffic volume in Kelapa Gading during the LSSR has been significantly reduced compared with before LSSR, while the changes in Bundaran HI fluctuated without a reduction trend. It showed that the CO concentration in Kelapa Gading was more influenced by society's travel, whereas Bundaran HI did not. A previous study by Zhou et al. (2021) also reported the CO concentration reduced during lockdown, with an average from 8% to 27% reduction in Shanghai, Chengdu, Beijing, Guangzhou, and Zhengzhou, but no significant change in Wuhan. The increase of the CO level in the South of China was greatly influenced by fire emissions transport from the Southeast Asia region. Overall, the reduction of SO₂, CO, and NO₂ concentrations in the study area during the LSSR period was also found by another regional study from Anugerah et al. (2021).

This study also analyzed the air quality index (AQI) and health risk estimations in five observed districts during the period of study (Table 3). The AQI is calculated using a standard formula from the EPA. The AQI is defined as the highest value determined for each pollutant. To obtain the AQI value, the air pollutants concentrations are needed to convert into specific values (range from 0 to 500). The AQI is classified into five classes according to the health risk estimation; good
(0–50), moderate (51–100), unhealthy for sensitive groups (101–150), unhealthy (151–200), very unhealthy (201–300), and hazardous (301–500). There were greatly reductions of the AQI values from before the LSSR to during the LSSR periods at all observed districts. For instance, Bundaran HI (117-98), Kelapa Gading (125-79), Jagakarsa (111-79), Lubang Buaya (123-68), and Kebon Jeruk (135-69), with PM10 as the responsible pollutant. Overall, there was about 34% of the AQI reduction on average. This study obtained the AQI was classified into the unhealthy for sensitive groups (i.e old people, people with asthma, infant, and children) at before and after the LSSR periods (AQI 101–150), while for during the LSSR, the AQI varied from good (0 to 50) to moderate (50–100) classes. In contrast, the AQI in all observed districts significantly increased after the LSSR period. The loosened LSSR policy has contributed to the increase in the AQI values at the observed districts. The effect of the restriction period on the AQI was also studied by Bhat et al. (2021). They found the AQI obtained more than 50% reduction during the lockdown in the India region. But, after 14 days of the shutdown, a slight increase in the AQI was recorded due to the opening human activities in the city. These results were consistent to the current study in the Jakarta.

**Spatial and temporal distribution of NO2 concentration**

The maps in Figure 8a to c based on the data from the Ozone Monitoring Instrument (OMI) spectrometer aboard the NASA Aura Spacecraft showed the NO2 concentration across Jakarta city. The distribution of NO2 level was not only represented the air quality and urban health, but also an indicator of economic and urban growth (Mele & Magazzino, 2021). The satellite images which presented five observed districts within Jakarta city were shown. Based on the analysis of satellite images, the concentrations of NO2 in each district were not much different. Therefore, this study used the whole area of Jakarta city to be compared. The NO2 tropospheric column in Jakarta city and its surrounding areas have dropped about 48% during the
LSSR period (Figure 8b), compared to before LSSR period (Figure 8a). In the Indian region, Singh and Chauhan (2020) also reported a sharp decline in the NO₂ levels was observed in most areas of the country. Further results, the NO₂ levels were associated with decreasing in fossil fuel combustion and anthropogenic sources due to complete lockdown in India. After the COVID-19 cases started to decrease within Jakarta city, the Indonesian government began to build economic growth by opening industries, factories, offices, and transportation activities. After LSSR period (Figure 8c), the NO₂ tropospheric column in Jakarta city surprisingly increased about 12%, compared to during LSSR. It indicated that the use of short-term isolation in decreasing air pollution was notable, but it could be only interim. A similar result was also found in Wuhan city of China, the concentration of NO₂ after lockdown increased by 55%, compared to the lockdown period (Sulaymon et al., 2021).

**Correlation between air pollutants, vehicle speed, and meteorological variables**

The correlation coefficients between vehicle speed with five major air pollutants (PM10, SO₂, NO₂, CO, and O₃) at before, during, and after LSSR periods (Table 1). The results demonstrated during the LSSR period, only PM10 and O₃ gave significantly correlated with vehicle speed. Results of this study estimated lower vehicle speed would lead to higher traffic jams. Thus, the traffic jams contributed to higher PM10 emissions from fuel combustion by vehicles that were trapped in the traffic jams. This was consistent with another study by Wang et al. (2021) where they found the traffic exhaust during traffic jams had a big impact on urban air quality, especially on particulate matter emissions. After the LSSR period, this study found a change in the type of air pollutants associated with vehicle speed. The PM10 showed a low correlation, but it increased the correlation coefficients of SO₂ and NO₂. In general, these pollutants could also come from emissions from cars, buses, trucks, and other vehicles. It might be a smaller vehicle volume in the road during the LSSR period affected the number of pollutants was emitted. Higher congestion of traffic would make higher diffusion of air pollution, especially for NOₓ, CO, and SO₂ emissions. This condition was also found in the before LSSR period.

Furthermore, this study also analyzed the correlation between meteorological variables and the air pollutants. This has been calculated based on the data from before, during, and after the LSSR periods. In this study, before the LSSR period,
several air pollutants specifically SO₂, CO, and O₃ were highly negatively correlated with temperature \( (r = -0.78 \text{ to } -0.97) \) and wind speed \( (r = -0.60 \text{ to } -0.65) \), while PM10 and NO₂ showed moderately positively correlated with temperature \( (r = 0.62 \text{ to } 0.89) \). PM10 and O₃ were highly negatively correlated with humidity \( (r = -0.72 \text{ to } -0.90) \) and SO₂ showed moderately positively correlated with humidity \( (r = 0.73 \text{ to } 0.75) \). Only CO and O₃ showed moderately positively correlated with sunshine \( (r = 0.81 \text{ to } 0.83) \), and O₃ was moderately negatively correlated with rainfall \( (r = -0.66) \). The results of the correlation analysis were not too different with during and after the LSSR periods where the air pollutants were mostly closely related with meteorological variables. These results were also reported in other studies (Cameletti, 2020; Fan et al., 2021).

Most air pollutants more correlated with vehicle speed at weekends, compared with weekdays during the LSSR period (Table 2). In contrast, in before LSSR and after LSSR periods, this study found most of air pollutants concentrations were higher at weekdays than on weekends. This circumstance occurred because the normal people activities at weekdays were restricted during the LSSR period. That why weekends effects in all air pollutants concentrations were weakened in the study area. In general, road traffic emission was one of the biggest effects on public health especially at 8 o’clock in the morning (during rush hour). The concentrations of air pollutants were related to road traffic situation and decided the level of the health effects due to air pollution. These results gave insights to assist in arranging effective public health regulations to mitigate air pollutants from vehicles emissions.

### Conclusions

This study gave a new insight into the effects of the COVID-19 pandemic on urban traffic volume and air pollution. Some major findings of this study were the mean traffic volume and air pollutants concentration (PM10, SO₂, NO₂, and CO) greatly reduced during the LSSR period but they started to rebound after LSSR period. The changes in traffic volume closely associated with the CO, NO₂, and O₃ concentrations. The

### Table 1. Pearson correlation coefficients between vehicle speed and meteorological variables with air pollutants during the COVID-19 period.

| PARAMETER     | PM10   | SO₂   | CO    | O₃    | NO₂   |
|---------------|--------|-------|-------|-------|-------|
| **Before LSSR** |        |       |       |       |       |
| Vehicle speed | 0.066  | 0.455 | 0.884* | −0.034| 0.893**|
| Temperature   | 0.620* | −0.97**| −0.871**| −0.785*| 0.889**|
| Humidity      | −0.900** | 0.736* | 0.576 | −0.724*| −0.562|
| Rainfall      | −0.112 | −0.044 | −0.071 | −0.660*| 0.107 |
| Sunshine hour | −0.002 | 0.185 | 0.612* | 0.603* | 0.581 |
| Wind speed    | −0.213 | −0.629* | −0.604* | 0.659* | 0.575 |
| **During LSSR** |        |       |       |       |       |
| Vehicle speed | 0.215  | 0.132 | 0.231 | −0.859**| 0.307 |
| Temperature   | 0.914** | −0.828** | −0.763* | −0.648*| 0.989**|
| Humidity      | −0.355 | 0.792* | 0.991**| −0.540 | −0.879**|
| Rainfall      | −0.401 | −0.383 | −0.766*| −0.089 | 0.304 |
| Sunshine hour | −0.102 | 0.466 | 0.093 | 0.819**| 0.020 |
| Wind speed    | −0.238 | −0.812**| −0.974**| 0.803**| 0.820**|
| **After LSSR** |        |       |       |       |       |
| Vehicle speed | 0.070  | 0.252 | 0.681* | −0.335| 0.898**|
| Temperature   | 0.526  | −0.950** | −0.624* | −0.669*| 0.994**|
| Humidity      | −0.555 | 0.933** | 0.810**| −0.176| −0.725*|
| Rainfall      | −0.883** | 0.450 | −0.954**| −0.136 | 0.039 |
| Sunshine hour | −0.599 | 0.106 | 0.339 | 0.795* | 0.040 |
| Wind speed    | −0.696* | −0.900** | −0.898**| 0.786* | 0.638*|

**The correlation was significant at .01 level (two-tailed). *The correlation was significant at .05 level (two-tailed).**
Table 2. Pearson correlation coefficients between vehicle speed and meteorological variables with air pollutants in the weekend and weekdays during the COVID-19 period.

| PARAMETER         | PM10  | SO₂   | CO   | O₃   | NO₂   |
|-------------------|-------|-------|------|------|-------|
| **Weekend (Before LSSR)** |       |       |      |      |       |
| Vehicle speed     | 0.359 | 0.329 | −0.198 | 0.493 | −0.645* |
| Temperature       | −0.536 | −0.990** | −0.653 | −0.667* | 0.333 |
| Humidity          | 0.050 | 0.575 | 0.037 | 0.208 | 0.155 |
| Rainfall          | −0.294 | 0.547 | −0.276 | 0.434 | −0.192 |
| Sunshine hour     | −0.163 | 0.528 | 0.027 | 0.876** | −0.852** |
| Wind speed        | −0.675* | −0.423 | −0.520 | 0.843** | 0.999** |
| **Weekdays (Before LSSR)** |       |       |      |      |       |
| Vehicle speed     | −0.313 | 0.209 | 0.431 | 0.028 | 0.301 |
| Temperature       | −0.530 | −0.940** | −0.589 | 0.746* | −0.766* |
| Humidity          | 0.300 | 0.463 | 0.551 | −0.898** | 0.984** |
| Rainfall          | −0.802** | 0.285 | −0.342 | 0.827** | −0.745* |
| Sunshine hour     | −0.639* | 0.373 | 0.834** | −0.290 | 0.164 |
| Wind speed        | −0.670* | 0.377 | 0.808** | 0.877** | −0.956** |
| **Weekend (During LSSR)** |       |       |      |      |       |
| Vehicle speed     | −0.694* | −0.162 | 0.667* | 0.925** | −0.561 |
| Temperature       | 0.907** | 0.538 | 0.437 | −0.981** | 0.978** |
| Humidity          | −0.828** | −0.320 | 0.683* | 0.922** | −0.808** |
| Rainfall          | 0.601* | 0.317 | 0.151 | −0.659* | 0.840** |
| Sunshine hour     | −0.152 | 0.358 | 0.736* | 0.643* | −0.020 |
| Wind speed        | 0.223 | 0.759* | 0.633* | 0.740* | 0.176 |
| **Weekdays (During LSSR)** |       |       |      |      |       |
| Vehicle speed     | −0.411 | 0.040 | 0.232 | 0.303 | −0.218 |
| Temperature       | 0.859** | 0.471 | −0.700* | −0.618* | 0.991** |
| Humidity          | −0.313 | −0.262 | 0.693* | 0.814** | −0.761* |
| Rainfall          | 0.947** | 0.239 | −0.277 | −0.106 | 0.937** |
| Sunshine hour     | 0.454 | 0.371 | 0.187 | 0.623* | 0.037 |
| Wind speed        | 0.310 | 0.787* | −0.324 | 0.546 | 0.109 |
| **Weekend (After LSSR)** |       |       |      |      |       |
| Vehicle speed     | 0.980** | 0.939** | 0.608* | −0.597 | −0.300 |
| Temperature       | −0.411 | −0.722* | 0.509 | 0.654* | 0.976** |
| Humidity          | 0.746* | 0.754* | 0.690* | 0.032 | −0.022 |
| Rainfall          | 0.357 | 0.079 | 0.282 | −0.442 | 0.260 |
| Sunshine hour     | 0.583 | 0.406 | 0.949** | 0.373 | 0.510 |
| Wind speed        | −0.855** | −0.747* | −0.330 | 0.798* | 0.264 |

(Continued)
lower traffic volume during the LSSR would increase the \( \text{O}_3 \) concentration, while the \( \text{CO} \) and \( \text{NO}_2 \) concentrations would increase if the traffic volume increased too. It also showed that emissions from vehicles had a great portion in the urban areas. Overall, the urban air pollution in Jakarta city significantly improved during the pandemic period. Moreover, this study also suggested to develop public transportation facilities with energy-saving and green fuel energy, thus it could assist to reduce vehicles emissions in the city. For future works, the comparison the air pollutants concentrations in a multi-city study can be carried out to give a deeper notion about the impact of the COVID-19 restriction policy on air pollutants in Indonesia.
Declarations of Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

REFERENCES
Alam, M. Z., Armin, E., Haque, M., Kayesh, J. H. E., & Qayum, A. (2018). Air pollutants and their possible health effects at different locations in Dhaka City. Journal of Current Chemical and Pharmaceutical Sciences, 8(1), 111.
Al-Gheethi, A., Ma, N. L., Rupani, P. F., Sultana, N., Yaakob, M. A., Mohamed, R. M. S. R., & Soon, C. F. (2021). Biowastes of slaughterhouses and wet markets: An overview of waste management for disease prevention. Environmental Science and Pollution Research. Advance online publication. https://doi.org/10.1007/s11356-021-16629-9
Al-Saleh, A. A., Bin-Jumah, M., & Allam, A. A. (2020). Ambient air pollution and its influence on human health and welfare: An overview. Environmental Science and Pollution Research, 27(20), 24815–24830.
Anugerah, A. R., Mustaqin, P. S., & Purnama, D. A. (2021). Effect of large-scale social restriction (PSBB) during COVID-19 on outdoor air quality: Evidence from five residential areas in DKI Jakarta. Jurnal Ilmu Kesehatan Masyarakat, 7(3), 111–164.
Bai, L., Su, X., Zhao, D., Zhang, Y., Cheng, Q., Zhang, H., Wang, S., Xie, M., & Su, H. (2018). Exposure to traffic-related air pollution and acute bronchitis in children: Season and age as modifiers. Journal of Epidemiology and Community Health, 72(5), 426–433.
Ban, R., & Zhang, A. (2020). Does lockdown reduce air pollution? Evidence from 44 cities in northern China. The Science of the Total Environment, 731, 139052.
Bhar, S. A., Bashir, O., Bilal, M., Ishag, A., Din Dar, M. U., Kumar, R., Bhat, R. A., & Sher, F. (2021). Impact of COVID-related lockdowns on environmental and climate change scenarios. Environmental Research, 195, 110839.
Bigazzi, A. Y., & Rouleau, M. (2017). Can traffic management strategies improve urban air quality? A review of the evidence. Journal of Transport & Environment, 7, 112–124.
Bontempi, E., Carnevale, C., Cornelio, A., Volta, M., & Zanodetti, A. (2022). Analysis of the lockdown effects due to the COVID-19 on air pollution in Brescia (Italy). Environmental Research Letters, 212, 113193.
Borck, R., & Schraub, P. (2021). Population density and urban air quality. Regional Science and Urban Economics, 86, 103596.
Briz-Redon, Belenguer-Sapita, C., & Serrano-Aroca. (2021). Changes in air pollution during COVID-19 lockdown in Spain: A multi-city study. Journal of Environmental Sciences, 101, 16–26.
Broniwtowonyo, W., Sihavyardhi, E., Maziya, F., & Hakim, L. (2022). Distribution of climate-related groups in the city of Brescia in Lombardia region (Italy). Science and Urban Economics, 23(10), 116–128.
Camelerti, M. (2020). The effect of coronavirus lockdown on air pollution: Evidence from the city of Brescia in Lombardia region (Italy). Atmospheric Environment, 239, 117794.
Chakraborty, T., Sarangi, C., & Lee, X. (2021). Reduction in human activity can enhance the urban heat island: Insights from the COVID-19 lockdown. Environmental Research, 296, 126514.
Crippa, P., Castruccio, S., Archer-Nicholls, S., Lebron, G. B., Kuwata, M., Thota, A., & Sher, F. (2021). Impact of COVID-19 lockdowns in China and Europe: A modelling study. The Lancet Planetary Health, 6(4), e47–e82.
Greens, A., Varkentin, Y., & Goryayeva, N. (2020). Determining vehicle speed based on video using convolutional neural network. Transportation Research Procedia, 50, 192–200.
Harantová, V., Hájnik, A., & Kalasová, A. (2020). Comparison of the flow rate and speed of vehicles on a representative road section before and after the implementation of measures in connection with COVID-19. Sustainability, 12(17), 7216.
Haryanto, B. (2018). The value of health damage due to sulphur dioxide emissions from coal-fired electricity generation in NSW and implications for pollution licences. Australian and New Zealand Journal of Public Health, 42(3), 227–229.
He, G., Pan, Y., & Tanaka, T. (2020). COVID-19, city lockdowns, and air pollution: Evidence from China. ModRero.
Huang, A. T., Huynh, T. T., Nguyen, X. P., Nguyen, T. K. T., & Le, T. H. (2021). An analysis and review on the global NO2 emission during lockdowns in COVID-19 period. Energy Sources Part A Recovery Utilization and Environmental Effects, 27(6), 718–727.
Hudda, N., Simon, M. C., Patton, A. P., & Durant, J. L. (2020). Reductions in traffic-related black carbon and ultrafine particle number concentrations in an urban neighborhood during the COVID-19 pandemic. The Science of the Total Environment, 742, 140931.
Hvidrefedt, U. A., Sorensen, M., Geels, C., Kertesz, M., Khan, J., Tjensved, A., Overad, K., Brandt, J., & Raaschou-Nielsen, O. (2019). Long-term residential exposure to PM2.5, PM10, black carbon, NO2, and ozone and mortality in a Danish cohort. Environmental International, 123, 265–272.
James, M. A. (2000). The impact of the COVID-19 pandemic on the flow rate of urban road networks in a Dutch city. Environmental Science and Pollution Research, 26(32), 32824–32835.
John, K. S., & Feyisayo, K. (2013). Air pollution by carbon monoxide (CO) poisonous gas and its influence on human health and welfare: An overview. Science and Urban Economics, 3, 510–514.
Judd, J. L., Al-Saadi, J. A., Jans, S. J., Kowalewski, M. G. P., Pierce, R. B., Szykman, J. J., Valin, L. C., Swap, R., Cede, A., Mueller, M., Tiefengraber, M., Abhucas, N., & Williams, D. (2019). Evaluating the impact of spatial resolution on tropospheric NO2 column comparisons within urban areas using high-resolution airborne data. Atmospheric Measurement Techniques, 12(11), 6095–6111.
Kramawijaya, A. G. (2018). Estimasi Bahan Emisi Partikrat dan Gas dari Puluhan Hut Tanaman di Jawa Barat. Indonesian Journal of Environmental Science and Pollution Research, 30, 7–16.
Kuehbar, M., Waili, Y., Fan, F., Liu, Y., Qin, W., Dore, A. J., Peng, J., Xu, W., & Zhang, F. (2020). Spatio-temporal patterns of air pollution in China from 2015 to 2018 and implications for health risks. Environmental Pollution, 258, 113659.
Lian, X., Huang, J., Huang, R., Liu, C., Wang, L., & Zhang, T. (2020). Impact of city lockdown on the air quality of COVID-19-hit Wuhan city. The Science of the Total Environment, 742, 140556.
Li, Y., Wang, J., Ren, B., Wang, H., Qiao, L., Zhu, J., & Li, L. (2018). The characteristics of atmospheric pollutants in Shanghai: A haze case study and human exposure assessment. Atmospheric Environment, 178, 80–89.
Meh, M., & Magazzino, C. (2020). Pollution, economic growth, and COVID-19 deaths in India: A machine learning evidence. Environmental Science and Pollution Research, 28(3), 2669–2677.
Mohsin, M., Abbas, Q., Zhang, J., Ikrarn, M., & Iqbal, N. (2019). Integrated effect of air pollution on economic development, and population growth on CO2 based environmental degradation: A case of transport sector. Environmental Science and Pollution Research, 26(32), 32824–32835.
Nakada, L. Y. K., & Urban, R. C. (2020). COVID-19 pandemic: Impacts on the air quality during the partial lockdown in São Paulo state, Brazil. Science of the Total Environment, 730, 139087.

Otmani, A., Benchir, A., Tahri, M., Bounakhla, M., Chakir, E. M., El Bouch, M., & Kronb, M. (2020). Impact of Covid-19 lockdown on PM10, SO2, and NO2 concentrations in Sfax City (Tunisia). The Science of the Total Environment, 735, 139541.

Park, J., Kim, H. J., Lee, C. H., Lee, C. H., & Lee, H. W. (2021). Impact of long-term exposure to ambient air pollution on the incidence of chronic obstructive pulmonary disease: A systematic review and meta-analysis. Environmental Research, 194, 110703.

Prasit, C., & Zacot, R. Z. (2020). Faktor-Faktor Yang Mempengaruhi Kepadatan Kendaraan Dengan Kandungan Karbon Monoksid (CO) Di Kota Makassar Tahun 2019. Suluhku: Media Komunikasi Studia: Ahademi dan Masyarakat, 20(1), 35–41.

Putra, I. M. A. S., & Wardani, I. G. A. A. K. (2017). Profil penggunaan antibiotika untuk pengobatan ESFP nonpneumonia di Puskesmas Kediri II tahun 2013 sam- pakan dengan 2015. Jurnal Dinihi Medicaments, 3(1), https://doi.org/10.36723/medicament.v3i1.1037

Qa, Z., Henze, D. K., Li, C., Theys, N., Wang, Y., Wang, J., Wang, W., Han, J., Shim, C., Dickerson, R. R., & Ren, X. (2019). SO2 emission estimates using OMI SO2 retrievals for 2005–2017. Journal of Geophysical Research Atmospheres, 124(14), 8336–8339.

Rendana, M. (2021). Air pollutant levels during the large-scale restriction period and its association with case fatality rate of COVID-19. Aerosol and Air Quality Research, 21(7), 200662.

Rendana, M., & Idris, W. M. R. (2021). New COVID-19 variant (B.1.1.7): Forecasting the occasion of virus and the related meteorological factors. Journal of Infection and Public Health, 14(10), 1320–1327.

Rendana, M., Idris, W. M. R., & Abdul Rahim, S. (2021). Spatial distribution of COVID-19 cases, epidemic spread rate, spatial pattern, and its correlation with meteorological factors in the second waves. Journal of Infection and Public Health, 14(10), 1340–1348.

Rendana, M., Idris, W. M. R., Abdul Rahim, S., Ali Rahman, Z., Lihan, T., & Jamil, H. (2019). Soft Clay soil and organic amendment effects on soil organic carbon in paddy Cultivation Area. Sains Malaysia, 48(1), 61–68.

Rosu, R., & Cescutti, G. (2020). Effect of road traffic on air pollution. Experimental evidence from COVID-19 lockdown. Sustainability, 12(21), 8984.

Ryter, S. W., Ma, K. C., & Choi, A. M. K. (2018). Carbon monoxide in lung cell physiol- ogy and disease. American journal of Physiology-Cell Physiology, 314(2), C211–C227.

Sangkham, S., Thongtip, S., & Vongruang, P. (2021). Influence of air pollution and meteorological factors on the spread of COVID-19 in the Bangkok Metropolitan Region and air quality during the outbreak. Environmental Research, 197, 111004.

Selvam, S., Murthukumar, P., Venkatramanan, S., Roy, P. D., Manikanda Bharath, K., & Jesuraja, K. (2020). SARS-CoV-2 pandemic lockdown: Effects on air quality in the industrialized Gujarat state of India. The Science of the Total Environment, 765, 144270.

Shahjor, U., Ashraf, F., Rehman, A., & Yaq, W. (2020). Fluctuations in environmental pollutants and air quality during the lockdown in the USA and China: Two sides of COVID-19 pandemic. Air Quality, Atmosphere & Health, 13(11), 1335–1342.

Shen, L., Zhao, T., Wang, H., Liu, J., Bai, Y., Kong, S., Zheng, H., Zhu, Y., & Shu, Z. (2021). Importance of meteorology in air pollution events during the city lockdown for COVID-19 in Hubei Province, Central China. The Science of the Total Environment, 754, 142227.

Shi, G., Yoon, T., Cha, S., Kim, S., Yousuf, M., Ahmed, N., Kim, D., Kang, H. W., & Kim, K. S. (2018). Turn-on and turn-off fluorescent probes for carbon monoxide detection and blood carbonoxymoglobin determination. ACS Sensors, 3(6), 1102–1108.

Shin, S., Bai, L., Burnett, R. T., Kwong, J. C., Hyttal, P., van Donkelaar, A., Lavigne, E., Weichenthal, S., Copes, R., Martin, R. V., Kopp, A., & Chen, H. (2021). Air pollution as a risk factor for incident chronic obstructive pulmonary disease and asthma. A 15-year population-based cohort study. American Journal of Respiratory and Critical Care Medicine, 203(9), 1138–1148.

Siami, L., Sofyan, A., & Frázila, R. B. (2014). Perhitungan Penurunan Beban Emisi Pencemaran Udarai dari Pembangunan Jalur Tol JORR W2 di DKI Jakarta. Jurnal Teknik Lingkungan, 20(2), 211–214.

Singh, B. R., & Chauhan, A. (2020). Impact of lockdown on air quality in India during COVID-19 pandemic. Air Quality, Atmosphere & Health, 13(8), 921–928.

Smieszek, M., Matechiky, V., Dobrzenska, M., Dobrzenski, P., & Weigang, G. (2021). The impact of the pandemic on vehicle traffic and roadside environmental pollution: Zrencew City as a case study. Energies, 14(4), 4299.

Sohb, S., Cikoks, N., & Sulisasi, P. (2022). Connection between the spatial characteristics of the road and railway networks and the air pollution (PM10) in urban– rural fringe zones. Sustainability, 14(16), 10103.

Sulaymon, I. D., Zhang, Y., Hopke, P. K., Zhang, Y., Hua, J., & Mei, X. (2021). COVID-19 pandemic in Wuhan: Ambient air quality and the relationships between criteria air pollutants and meteorological variables before, during, and after lockdown. Atmospheric Research, 250, 105362.

Tekin, O. F. (2021). Evaluation of air pollutants (PM10 and SO2) in the first year of the COVID-19: A city sample from Turkey. World Journal of Advanced Research and Reviews, 10(1), 641–647.

Tian, X., An, C., Chen, Z., & Tian, Z. (2021). Assessing the impact of COVID-19 pandemic on urban transportation and air quality in Canada. The Science of the Total Environment, 765, 144270.

Tobias, A., Carnerero, C., Reche, C., Massagüé, J., Via, M., Minguillon, M. C., Alastuey, A., & Querol, X. (2020). Changes in air quality during the lockdown in Barcelona (Spain) one month into the SARS-CoV-2 epidemic. The Science of the Total Environment, 726, 138540.

Wang, Q., Feng, H., Feng, H., Yu, Y., Ji, L., & Ning, E. (2021). The impacts of road traffic on urban air quality in Jinan based GWR and remote sensing. Scientific Reports, 11(1), 15112.

Wetchayont, P., Hayasaka, T., & Khati, P. (2021). Air quality improvement during COVID-19 lockdown in Bangkok metropolitan, Thailand: Effect of the long-range transport of air pollutants. Aerosol and Air Quality Research, 21(7), 200662.

World Health Organization. (2020). Considerations for quarantine of individuals in the context of containment for coronavirus disease (COVID-19): Interim guidance. 19 March 2020 (No. WHO/2019-nCoV/Quarantine/2020.2). Author.

Wu, C. L., Wang, H. W., Cai, W. J., He, H. D., Ni, A. N., & Peng, Z. R. (2021). Impact of the COVID-19 lockdown on roadside traffic-related air pollution in a northwestern US city. Environment and Reviews, 314(2), C211–C227.

Xiao, H., Tian, H., Zhao, J., Zhang, X., Li, Y., Liu, Y., Liu, R., Chen, T. (2011). Influenza A (H1N1) transmission by road traffic between cities and towns. Chinese Science Bulletin, 56(24), 2613–2620.

Yang, J., Ji, Z., Kang, S., Zhang, Q., Chen, X., & Lee, S. Y. (2019). Spatialtemporal variations of air pollutants in western China and their relationship to meteorological factors and emission sources. Environmental Pollution, 254, 112952.

Yuwono, B. E., & Sari, M. (2020). Air pollution prediction models due to traffic volume and green open space availability. International Journal on Livable Space, 5(1), 41–45.

Zalakeviciute, R., Bastidas, M., Banañia, A., & Rybarczyk, Y. (2020). A traffic-based method to predict and map urban air quality. Applied Sciences, 10(6), 2035.

Zhang, M., Shan, C., Wang, W., Pang, J., & Guo, S. (2020). Do driving restrictions improve air quality: Take Beijing-Tianjin for example? The Science of the Total Environment, 712, 136408.

Zhao, M., Jiang, J., Langerock, B., Dils, B., Sha, M., & De Mazière, M. (2021). Change of CO concentration due to the COVID-19 lockdown in China observed by surface and satellite observations. Remote Sensing, 13(6), 1129.