Parameter-independent predictions for shape variables of heavy deformed nuclei in the proxy-SU(3) model

Dennis Bonatsos1, I. E. Assimakis1, N. Minkov2, Andriana Martinou1, S. Sarantopoulou1, R. B. Cakirli3, R. F. Casten4,5, and K. Blaum6

1 Institute of Nuclear and Particle Physics, National Centre for Scientific Research “Demokritos”, GR-15310 Aghia Paraskevi, Attiki, Greece
2 Institute of Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72 Tzarigrad Road, 1784 Sofia, Bulgaria
3 Department of Physics, University of Istanbul, Istanbul, Turkey
4 Wright Laboratory, Yale University, New Haven, Connecticut 06520, USA
5 Facility for Rare Isotope Beams, 640 South Shaw Lane, Michigan State University, East Lansing, MI 48824 USA
6 Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany

Received: date / Revised version: date

Abstract. Using a new approximate analytic parameter-free proxy-SU(3) scheme, we make predictions of shape observables for deformed nuclei, namely β and γ deformation variables, and compare these with empirical data and with predictions by relativistic and non-relativistic mean-field theories.

PACS. 21.60.Fw Models based on group theory – 21.60.Ev Collective models

1 Introduction

Proxy-SU(3) is a new approximate symmetry scheme applicable in medium-mass and heavy deformed nuclei \cite{1,2}. The basic features and the theoretical foundations of proxy-SU(3) have been described in Refs. \cite{3,4}, to which the reader is referred. In this contribution we are going to focus attention on the first applications of proxy-SU(3) in making predictions for the deformation variables of deformed rare earth nuclei.

2 Connection between deformation variables and SU(3) quantum numbers

A connection between the collective variables β and γ of the collective model \cite{5} and the quantum numbers λ and μ characterizing the irreducible representation (λ, μ) of SU(3) \cite{6,7} has long been established \cite{8,9}, based on the fact that the invariant quantities of the two theories should possess the same values.

The relevant equation for β reads \cite{8,9}

\[
\beta^2 = \frac{4\pi}{5} \frac{1}{(Ar^2)^2} (\lambda^2 + \lambda \mu + \mu^2 + 3\lambda + 3\mu + 3),
\]

where A is the mass number of the nucleus and r^2 is related to the dimensionless mean square radius \cite{10}, $\sqrt{r^2} = r_0 A^{1/6}$. The constant r_0 is determined from a fit over a wide range of nuclei \cite{11,12}. We use the value in Ref. \cite{8}, $r_0 = 0.87$, in agreement to Ref. \cite{12}. The quantity in Eq. (1) is proportional to the second order Casimir operator of SU(3) \cite{13}.

\[
C_2(\lambda, \mu) = \frac{2}{3} (\lambda^2 + \lambda \mu + \mu^2 + 3\lambda + 3\mu).
\]

The relevant equation for γ reads \cite{8,9}

\[
\gamma = \arctan \left(\frac{\sqrt{3} (\mu + 1)}{2\lambda + \mu + 3} \right).
\]

3 Predictions for the β variable

The β deformation variable for a given nucleus can be obtained from Eq. (1), using the (λ, μ) values corresponding to the ground state band of this nucleus, obtained from Table 2 of Ref. \cite{14}.

A rescaling in order to take into account the size of the shell will be needed, as in the case of the geometric limit \cite{15} of the Interacting Boson Model \cite{16} in which a rescaling factor $2N_B/A$ is used, where N_B is the number of bosons (half of the number of the valence nucleons measured from the closest closed shell) in a nucleus with mass number A. In the present case one can see \cite{2} that the β values obtained from Eq. (1) should be multiplied by a rescaling factor $A/(S_p + S_n)$, where S_p (S_n) is the size of the proton (neutron) shell in which the valence protons (neutrons) of the nucleus live. In the case of the rare
through $S_n = 82 - 50 = 32$ and $S_n = 126 - 82 = 44$, thus the rescaling factor is $A/76$.

Results for the β variable for several isotopic chains are shown in Fig. 1. These can be compared to Relativistic Mean Field predictions [16] shown in Fig. 2, as well as to empirical β values obtained from $B(E2)$ transition rates [17] shown in Fig. 3. Indeed such detailed comparisons for various series of isotopes are shown in Figs. 4-7. We remark that the proxy-SU(3) predictions are in general in very good agreement with both the RMF predictions and the empirical values. The sudden minimum developed in Fig. 1 at $N = 116$ could be related to the prolate-to-oblate shape/phase transition to be discussed in Ref. [14].

4 Predictions for the γ variable

The γ deformation variable for a given nucleus can be obtained from Eq. (3), using the (λ, μ) values corresponding to the ground state band of this nucleus, obtained from Table 2 of Ref. [14].

Results for the γ variable for several isotopic chains are shown in Figs. 8 and 9. In Fig. 9, predictions by Gogny D1S calculations [18] are also shown for comparison. The sharp jump of the γ variable from values close to 0 to values close to 60 degrees, seen in Fig. 9 close to $N = 116$, for both the proxy-SU(3) and the Gogny D1S predictions, can be related to the prolate-to-oblate shape/phase transition to be discussed in the next talk [14]. In contrast, in the series of isotopes shown in Fig. 8, γ is only raising at large neutron number N up to 30 degrees, indicating possible regions with triaxial shapes.

Minima appear in the proxy-SU(3) predictions for the neutron numbers for which the relevant SU(3) irrep, seen in Table 2 of Ref. [14], happens to possess $\mu = 0$, as one can easily see from Eq. (3). These oscillations could probably be smoothed out through a procedure of taking the average of neighboring SU(3) representations, as in Ref. [19].

Empirical values for the γ variable can be estimated from ratios of the γ vibrational bandhead to the first 2^+ state,

$$R = \frac{E(2^+_2)}{E(2^+_1)},$$

through [20,21,22]

$$\sin 3\gamma = \frac{3}{2\sqrt{2}} \sqrt{1 - \left(\frac{R - 1}{R + 1}\right)^2}.\quad (5)$$

The proxy-SU(3) predictions for several isotopic chains are compared to so-obtained empirical values, as well as to Gogny D1S predictions where available, in Figs. 10 and 11. Again in general good agreement is seen.

5 Conclusions

The proxy-SU(3) symmetry provides predictions for the β collective variable which are in good agreement with RMF predictions, as well as with empirical values obtained from $B(E2)$ transition rates. Furthermore, the proxy-SU(3) symmetry provides predictions for the γ collective variable which are in good agreement with Gogny D1S predictions, as well as with empirical values obtained from the γ vibrational bandhead.

References

1. D. Bonatsos, I. E. Assimakis, N. Minkov, A. Martinou, R. B. Cakirli, R. F. Casten, and K. Blaum, Proxy-SU(3) symmetry in heavy deformed nuclei, Phys. Rev. C (2017) accepted, arXiv 1706.02282 [nucl-th].
2. D. Bonatsos, I. E. Assimakis, N. Minkov, A. Martinou, S. Sarantopoulou, R. B. Cakirli, R. F. Casten, and K. Blaum, Analytic predictions for nuclear shapes, prolate dominance and the prolate-oblate shape transition in the proxy-SU(3) model, Phys. Rev. C (2017) accepted, arXiv 1706.02321 [nucl-th].
3. D. Bonatsos, I. E. Assimakis, N. Minkov, A. Martinou, R. B. Cakirli, R. F. Casten, and K. Blaum, A new symmetry for heavy nuclei: Proxy-SU(3), in the Proceedings of the 4th Workshop of the Hellenic Institute of Nuclear Physics (HINPw4), ed. A. Pakou, http://hinpw4.physics.uoi.gr.
4. D. Bonatsos, I. E. Assimakis, N. Minkov, A. Martinou, R. B. Cakirli, R. F. Casten, and K. Blaum, Proxy-SU(3) symmetry in heavy nuclei: Foundations, in the Proceedings of the 4th Workshop of the Hellenic Institute of Nuclear Physics (HINPw4), ed. A. Pakou, http://hinpw4.physics.uoi.gr.
5. A. Bohr and B. R. Mottelson, Nuclear Structure, Vol. II: Nuclear Deformations (Benjamin, New York, 1975).
6. J. P. Elliott, Collective motion in the nuclear shell model. I. Classification schemes for states of mixed configurations, Proc. Roy. Soc. Ser. A 245, 128(1958).
7. J. P. Elliott, Collective motion in the nuclear shell model II. The introduction of intrinsic wave-functions, Proc. Roy. Soc. Ser. A 245, 562 (1958).
8. O. Castaños, J. P. Draayer, and Y. Leschber, Shape variables and the shell model, Z. Phys. A 329, 33 (1988).
9. J. P. Draayer, S. C. Park, and O. Castaños, Shell-model interpretation of the collective-model potential-energy surface, Phys. Rev. Lett. 62, 20 (1989).
10. P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer, Berlin, 1980).
11. H. De Vries, C. W. De Jager, and C. De Vries, Nuclear charge-density-distribution parameters from elastic electron scattering, At. Data Nucl. Data Tables 36, 495 (1987).
12. J. R. Stone, N. J. Stone, and S. Moszkowski, Incompressibility in finite nuclei and nuclear matter, Phys. Rev. C 89, 044316 (2014).
13. F. Iachello and A. Arima, The Interacting Boson Model (Cambridge University Press, Cambridge, 1987).
14. D. Bonatsos, I. E. Assimakis, N. Minkov, A. Martinou, S. Sarantopoulou, R. B. Cakirli, R. F. Casten, and K. Blaum, Prolate dominance and prolate-oblate shape transition in the proxy-SU(3) model, in the Proceedings of the 4th Workshop of the Hellenic Institute of Nuclear Physics (HINPw4), ed. A. Pakou, http://hinpw4.physics.uoi.gr.
Fig. 1. Proxy-SU(3) predictions for β, obtained from Eq. (1).

Fig. 2. RMF predictions for β, obtained from Ref. [10].

15. J. N. Ginocchio and M. W. Kirson, An intrinsic state for the Interacting Boson Model and its relationship to the Bohr–Mottelson model, Nucl. Phys. A 350, 31 (1980).
16. G. A. Lalazissis, S. Raman, and P. Ring, Ground-state properties of even-even nuclei in the relativistic mean-field theory, At. Data Nucl. Data Tables 71, 1 (1999).
17. S. Raman, C. W. Nestor, Jr., and P. Tikkanen, Transition probability from the ground to the first-excited 2^+ state of even-even nuclides, At. Data Nucl. Data Tables 78, 1 (2001).
18. L. M. Robledo, R. Rodríguez-Guzmán, and P. Sarriguren, Role of triaxiality in the ground state shape of neutron rich Yb, Hf, W, Os and Pt isotopes, J. Phys. G: Nucl. Part. Phys. 36, 115104 (2009).
19. K. H. Bhatt, S. Kahane, and S. Raman, Collective properties of nucleons in abnormal-parity states, Phys. Rev. C 61, 034317 (2000).
20. A. S. Davydov and G. F. Filippov, Rotational states in even atomic nuclei, Nucl. Phys. 8, 237 (1958).
21. R. F. Casten, Nuclear Structure from a Simple Perspective (Oxford University Press, Oxford, 2000).
22. L. Esser, U. Neumeyer, R. F. Casten, and P. von Brentano, Correlations of the deformation variables β and γ in even-even Hf, W, Os, Pt, and Hg nuclei, Phys. Rev. C 55, 206 (1997).
Fig. 3. Empirical predictions for β, obtained from Ref. [17].

Fig. 4. Proxy-SU(3) predictions for β, obtained from Eq. (1), compared with tabulated β values [17] and also with predictions from relativistic mean field theory [16].

Fig. 5. Proxy-SU(3) predictions for β, obtained from Eq. (1), compared with tabulated β values [17] and also with predictions from relativistic mean field theory [16].
Fig. 6. Proxy-SU(3) predictions for β, obtained from Eq. (1), compared with tabulated β values [17] and also with predictions from relativistic mean field theory [16].

Fig. 7. Proxy-SU(3) predictions for β, obtained from Eq. (1), compared with tabulated β values [17] and also with predictions from relativistic mean field theory [16].

Fig. 8. Proxy-SU(3) predictions for γ, obtained from Eq. (3).
Fig. 9. Proxy-SU(3) predictions for γ, obtained from Eq. (3) and from Gogny D1S calculations [18].

Fig. 10. Proxy-SU(3) predictions for γ, obtained from Eq. (3), compared with experimental values obtained from Eq. (5) [21, 22], as well as with predictions of Gogny D1S calculations [18].

Fig. 11. Proxy-SU(3) predictions for γ, obtained from Eq. (3), compared with experimental values obtained from Eq. (5) [21, 22], as well as with predictions of Gogny D1S calculations [18].