Was sind Spintronics?
Der Spintransistor nach Datta und Das
Erzeugung spinpolarisierter Elektronen
Spinmanipulation und -transport

Spintronics

Christian Caspers

Betreuer
Dr. Christian Schüßler-Langeheine
II. Physikalisches Institut an der Universität zu Köln

Oberseminar 2. Juli 2007
Was sind Spintronics?
- Der Spinfreiheitsgrad von Elektronen
- Klassische Spintronics

Der Spintransistor nach Datta und Das

Erzeugung spinpolarisierter Elektronen

Spinmanipulation und -transport
Was sind Spintronics?
Was sind Spintronics?
Der Spintransistor nach Datta und Das
Erzeugung spinpolarisierter Elektronen
Spinmanipulation und -transport

Der Spinfreiheitsgrad von Elektronen
Klassische Spintronics

Elektron besitzt Masse, Ladung
und inneren Freiheitsgrad, den Spin

Spin $S \Rightarrow$ winziges magnetisches Moment μ

Im Magnetfeld haben $|\uparrow\rangle$ und $|\downarrow\rangle$
unterschiedliche Energien
Was sind Spintronics?
Der Spintransistor nach Datta und Das
Erzeugung spinpolarisierter Elektronen
Spinmanipulation und -transport

Prinzip der Spintronics

Herkömmliche elektrische Schaltung: Elektronik

Spinabhängiger Stromfluss: Spintronics.
Was sind Spintronics?
Der Spintransistor nach Datta und Das
Erzeugung spinpolarisierter Elektronen
Spinmanipulation und -transport

Giant Magneto-Resistivity (GMR)

Co/Cu-Layer \times 100

Abhängig vom äußeren Magnetfeld
\Rightarrow unterschiedliche Widerstände

GMR ermöglicht das elektrische Auslesen kleiner statischer Magnetfelder

Christian Caspers
Spintronics
GMR: Spinabhängige Streuung

Elektrischer Widerstand:
- klein $\iff S \parallel M$
- groß $\iff S \perp M$

FM-Schichten im Sensor:
- 1 mit fester Magnetisierung (*gepinnt*), min. 1 mit freier Magnetisierung (*magn. weich*)
GMR-Anwendung: Leseköpfe für Festplatten
Was sind Spintronics?
Der Spintransistor nach Datta und Das
Erzeugung spinpolarisierter Elektronen
Spinmanipulation und -transport

Tunnel Magneto-Resistivity (TMR)

- 2 FM-Schichten um dünne Isolationsschicht ([itex]magnetic tunnel junction, MTJ[/itex])

- Eine FM-Schicht gepinnt (magn. hart), die andere von außen magnetisierbar (magn. weich)

- Tunnelstrom abhängig von Orientierung der Magnetisierungen in den FM-Schichten
 ⇒ Elektrischer Widerstand abhängig von äußerem Magnetfeld
 ⇒ Magnetfeldsensor; magn. Speicherzellen...
Anwendung: Nichtflüchtiger Massenspeicher MRAM

- MRAMS speichern Daten in *magnetic tunnel junctions (MTJ)*.
- Die Stellungen der Magnetisierungen (parallel oder antiparallel) stellen die Information von 1 Bit dar.
Each time the sequence is executed, the device changes its current magnetic state to the opposite state. Freescale Semiconductor, Inc. Revised June 23, 2006.

Non-volatile storage and logic have traditionally been performed with bipolar transistors, which use magnetism to store information without moving parts, and have become available commercially this summer from Freescale. Rather than following an applied magnetic field, the magnetic moment of the free layer responds to an applied magnetic field differently from the two antiparallel layer magnetizations will rotate to be approximately orthogonal to the applied field. A current travelling in the other direction. Thus, magnetooptical elements cannot be sufficiently changed by applied electric fields to provide non-reciprocal transmission of light. This 'non-reciprocal' transmission requires an element that can be changed with an applied magnetic field, the moment-balanced SAF.

A synthetic antiferromagnet (SAF) free layer that is formed from Ru and a magnetic coupling spacer layer. This is shown schematically in Figure 3. The moment-balanced SAF junction of one optical component of a communications system is the current that moves the domain wall from one side of the device to the other. This experimental demonstration (from ref. 35) sets the stage for similar device developments in semiconductor spintronics.
MRAM – Lesen und Schreiben der Daten

2-Phasen-Programmierimpuls, um die freie FM-Schicht um 180° zu rotieren
Wechsel des Bits unabhängig von dem existierenden Zustand
Ein Pre-Read erfasst, ob ein Schreibprozess nötig ist
Non-volatile storage and logic have traditionally been performed by independent technologies. The dominant technological implementation of non-volatile storage is through the magnetic orientation of media, such as on the platters in hard disks. MRAM, has become available commercially this summer from Freescale.

Figure 2. schematic diagram of MRAM produced by Freescale. (Figures from http://www.freescale.com/files/memory/doc/white_paper/MRAMWP.pdf).

MRAM-Chips

256 kbit-Chip (Freescale Sc., 2006)

Prinzip

- MRAMS speichern Daten dauerhaft magnetisch
- Schreiben durch induziertes Magnetfeld, Lesen durch Spinströme
Der Spintransistor nach Datta und Das
Spintronics promises to be revolutionary. Exploiting Spin Currents

In some ways, an electron is just like a charged sphere that is spinning rapidly. The circulating charges on the sphere have a quantity of angular momentum. That property is hardwired into the mathematics that describes all the elementary particles of matter, a result whose significance and meaning are another story. In an ordinary electric current, the spins point at random and play no role in the transport of “spin up” and “spin down.” But in an electronic current through a ferromagnet, the spins of the conduction electrons align with the magnetic fields. The result is a spin-polarized current in one spin direction tend to be obstructed. A ferromagnet can even affect the flow of a current in a nearby nonmagnetic metal, which all the electron spins point in the same direction. The spins in this way take much less energy and is much faster than the thermal Meissner effect that produces an electric field in the ferromagnet, electrons of which create a magnetic field similar to that of a bar magnet. Immersing the spinning sphere in an external magnetic field changes its orientation. But there the similarities end. An electron has a quantity of angular momentum, equal to one half the fundamental quantum unit of angular momentum.

That property is hardwired into the mathematics that describes all the elementary particles of matter, a result whose significance and meaning are another story.
Was sind Spintronics?
Der Spintransistor nach Datta und Das
Erzeugung spinpolarisierter Elektronen
Spinmanipulation und -transport

Schaltprinzip im Datta-Das-Spintransistor

- Source und Drain: Parallele (oder antiparallele) Magnetisierung
- Ballistischer Transport spinpolarisierter Elektronen \(\mathbf{k} \) im Gate-Kanal
- Kontrolle der Spinpräzession (Gatespannung, Material)
Was sind Spintronics?

Der Spintransistor nach Datta und Das
Erzeugung spinpolarisierter Elektronen
Spinmanipulation und -transport

Schaltprinzip im Datta-Das-Spintransistor

- Source und Drain: Parallele (oder antiparallele) Magnetisierung
- Ballistischer Transport spinpolarisierter Elektronen (k) im Gate-Kanal
- Kontrolle der Spinpräzession (Gatespannung, Material)

Stromfluss Source \rightarrow Drain

- *hoch* \Leftrightarrow Spinpolarisation am Drain erhalten
 (Präzessionsperiode \gg Flugzeit der Elektronen)
- *minimal* \Leftrightarrow Spinpolarisation umgekehrt
Magnetic semiconductor spin lifetime FET uses static spin-dependent barriers and changes the spin character of the electrons in the channel to turn the current on or off. Reused with permission from ref. 51. Copyright 2006, American institute of Physics.

Many of the ferromagnetic semiconductor materials have extremely high carrier-doping levels, and controlling the interfaces of these semiconductor spin transistors (SFET) is challenging. Only very recently has there been a report of a p–n diode made with GaMnAs, which implies new gating mechanisms for spin-based logic and storage.

FIGURE 4
Schematic structure of a MOSFET (left) and a spin-FET (right). MOSFETs work by raising and lowering a barrier to turn the current on or off. A magnetic semiconductor spin transistor (SFET) uses static spin-dependent barriers and changes the spin character of the electrons in the channel to turn the current on or off. Reused with permission from ref. 51. Copyright 2006, American institute of Physics.

The demonstration of exchange biasing in magnetic semiconductors naturally at the edges of ferromagnetic materials, as the carriers are ferromagnetic in lower-doped semiconductor materials will be depleted from the region but magnetism remains because the doping level in the intrinsic, or depletion, region was too high. As the materials become cleaner and more controllable, transistor-like devices can be made with more spin and quantum dots (although at low temperatures). Finally, it might be possible to do away with magnetic materials entirely due to the achievement of spontaneous spin polarization at room temperature in a non-magnetic semiconductor.

Spin transistors (SFET) can be fabricated using a variety of materials, including metal-oxide-semiconductor field-effect transistors (MOSFETs) and magnetic semiconductor quantum dots (quantum dots or embedded ions in the near future). The optical losses in these devices are typically small, and the optical properties of magnetic semiconductors have improved substantially further. It has been demonstrated that the internal effective magnetic fields in magnetic semiconductors have not been successful at dislodging magnetic in semiconductors from this niche. Experiments on CdMnTe and CdMnHgTe optical isolators, however, suggest competitive performance as an optical isolator on a semiconductor substrate. A semiconductor waveguide with a ferromagnetic metal cladding has also shown good optical performance as an optical isolator.

Charge-based current gating (MOSFET)

Spin-based current gating (Spin-FET)

As the materials become cleaner and more controllable, transistor-like devices can be made with more spin and quantum dots (although at low temperatures). Finally, it might be possible to do away with magnetic materials entirely due to the achievement of spontaneous spin polarization at room temperature in a non-magnetic semiconductor.
Was sind Spintronics?
Der Spintransistor nach Datta und Das
Erzeugung spinpolarisierter Elektronen
Spinmanipulation und -transport

Prinzipien beim Spintransistor

Schaltprinzipien

- MOSFETs heben oder senken eine elektrische Barriere (viel Energie)
- SFETs nutzen statische spinabhängige Barrieren, Änderung der Elektronenspins im Gate (niedriger Energieaufwand).
Prinzipien beim Spintransistor

Schaltprinzipien

- MOSFETs heben oder senken eine elektrische Barriere (viel Energie)
- SFETs nutzen statische spinabhängige Barrieren, Änderung der Elektronenspins im Gate (niedriger Energieaufwand).

Aufgaben

Spininjektion \rightarrow Spintransport / -manipulation \rightarrow Spindetektion
Erzeugung spinpolarisierter Elektronen
Was sind Spintronics?

Der Spintransistor nach Datta und Das Erzeugung spinpolarisierter Elektronen
Spinmanipulation und -transport

Spinpolarisierung in der Bandstruktur
Spininjektion
Spinpolarisation in EuO in dünnen Filmen

Spinpolarisierte Elektronen im FM-Metall

Abbildung: Elektronische Zustandsdichten der d- und s-Elektronen in Nickel für \uparrow-Spins und \downarrow-Spins. Die Zustandsdichte an der Fermikante besteht überwiegend aus $|\downarrow\rangle$-Elektronen.
Ohmsche Spininjektion

Metall (FM) \rightarrow Halbleiter (SC).
Leitfähigkeit abhängig von Spin und Material

- $\sigma_{\text{FM}} \leq \sigma_{\text{SC}}$: effiziente Spininjektion
- $\sigma_{\text{FM}} \gg \sigma_{\text{SC}}$: sehr niedrige Injektion (typische Metalle)
Was sind Spintronics?
Der Spintransistor nach Datta und Das
Erzeugung spinpolarisierter Elektronen
Spinmanipulation und -transport
Spinpolarisation in der Bandstruktur
Spininjektion
Spinpolarisation in EuO in dünnen Filmen

Ohmsche Spininjektion

Metall (FM) \rightarrow Halbleiter (SC).
Leitfähigkeit abhängig von Spin und Material

- \sigma_{FM} \leq \sigma_{SC}: effiziente Spininjektion
- \sigma_{FM} \gg \sigma_{SC}: sehr niedrige Injektion (typische Metalle)

- Interface-Schicht als Tunnelbarriere mit hohem Widerstand und Spinselektivität (*Schottky-Barriere*
- Suche nach *ferromagnetischen Halbleitern*

Spindependenttransportprozesse X5.13

\(V_g\)

2 DEG

FM electrode

Spin Injection

Spin Transport/

Spin Manipulation

Spin Detection

FM electrode

Fig. 9:
The device proposed by Datta and Das. Current is injected from the left ferromagnetic lead, manipulated within the semiconductor and detected by the right ferromagnetic lead.

Fig. 10:
The origin of the problem in spin injection (left) and its solution (right).

applicable. On the other hand, many experiments continue to be oriented towards the construction of clean, ordered structures, where the ballistic approach is applicable. As we have seen, one advantage of succeeding in creating such structures would be an extremely high TMR ratio.

4 Spin Injection

In 1990, Datta and Das [11] proposed a spin-filter transistor where a spin-polarized current could be created, manipulated and detected. For details we refer the reader to the original publication, but in short, we can say that the device (shown schematically in Fig. 9) would consist of two ferromagnetic leads sandwiching a semiconductor region. The semiconductor part should be constructed in such a way (by doping or other techniques) that the Fermi level would be slightly within the conduction band. Under a small bias voltage in such a structure, spin-polarised current could be injected from the ferromagnetic lead into the semiconductor. Then this spin current could be manipulated, i.e., its magnetisation direction could be rotated willingly by utilising the Rashba spin-orbit effect via an applied field (the strength of the field would determine the degree of rotation). Finally it would be detected by a second ferromagnetic lead, and the conductance should depend on the degree of rotation; for example, if no rotation was performed one would expect a high conductance, while if the magnetisation axis was reversed, a very low conductance. Thus a continuously varying magnetoresistance ratio could be achieved, depending on the strength of the external field. As a model the conception was ideal, but many difficulties had (and still have) to be overcome before it could be realised.
Was sind Spintronics?
Der Spintransistor nach Datta und Das
Erzeugung spinpolarisierter Elektronen
Spinmanipulation und -transport

Curie-Temperatur $T_C = 69$ K

Effekte: Metall-Isolator-Übergang (MIT), Kolossaler Magnetwiderstand (CMR)

Untersuchung des Leitungsbands mit spinaufgelöster Röntgenabsorptionsspektroskopie (XAS)

(Steeneken, Tjeng, et al., 2002)
Beweise für die Spinpolarisation in EuO

Abbildung: Spinaufgelöste XAS zeigt ein Splitting der \(|\uparrow\rangle \)- und \(|\downarrow\rangle \)-Peaks von 0,6 eV an der Unterkante des Leitungsbandes. (Steeneken, Tjeng, et al. 2001)
Beweise für die Spinpolarisation in EuO

Abbildung: Spinaufgelöste XAS zeigt ein Splitting der $|\uparrow\rangle$- und $|\downarrow\rangle$-Peaks von 0,6 eV an der Unterkante des Leitungsbandes. (Steeneken, Tjeng, et al. 2001)

Folgerung

Elektronendotiertes EuO hat in der FM Phase fast 100% spinpolarisierte Leitungselektronen!
Herstellung des ferromagnetischen Halbleiters EuO

- Untersuchung von EuO-Einkristallen (bulk) bereits in den 1970ern
- Schwierige Herstellung: Hohe Temperatur (↔ Halbleiter), exaktes stoichiometrisches Verhältnis
- Heute: Herstellung dünner Filme bei niedrigen Temperaturen

(Shafer, 1972)
Was sind Spintronics?

Der Spintransistor nach Datta und Das
Erzeugung spinpolarisierter Elektronen
Spinmanipulation und -transport

Spinpolarisation in der Bandstruktur
Spininjektion
Spinpolarisation in EuO in dünnen Filmen

Herstellung von Europiumoxid in dünnen Filmen

- EuO-Wachstum mittels MBE bei 350 °C
- Wachstumsbedingung „Eu-rich EuO“
- \(T_C = 69 \) K erhöhen
- Dotierung mit Gd, Abdeckung mit Al
Was sind Spintronics?
Der Spintransistor nach Datta und Das
Erzeugung spinpolarisierter Elektronen
Spinmanipulation und -transport

Spin-Bahn-Kopplung
Spinrelaxation
Kontrollierter Spintransport in Silizium
Änderung magnetischer Domänen durch Spinströme

Spinmanipulation und -transport

Crisitan Caspers
Spintronics
Spinmanipulation

A SPIN TRANISTOR CONCEPT

Exploiting Spin Currents

In exploitation of the quantum peculiarities, researchers are developing a new type of transistor. The new device, known as a spin transistor, differs from a conventional transistor in that it exploits the spin of an electron rather than its charge to control current flow. An electron's spin is a fundamental quantum property that is analogous to the spin of a tiny, fast-moving sphere of charge. Such a spinning sphere of charge is aligned with the field of an applied magnetic field, and its energy depends on how its spin vector is oriented. But there the similarities end. Spintronics promises to be revolutionary.

The circulating charges on the sphere of charge produce an electric field in the ambient space, much as an ordinary charged sphere does. And the electric field, in turn, has a magnetic effect on the sphere, changing its angular momentum. This effect is analogous to the magnetic effect of a current-carrying, fast-moving charged sphere.

In the spin FET, both the source and drain are ferromagnetic. The drain impedes current flow into the channel when there is no voltage applied. But in the presence of a voltage, the spins have been rotated. Flipping the spin current according to how far the spins have been rotated allows an electric field to be applied to the semiconductor, changing the resistance of the device.

In some ways, an electron is just like a spinning sphere of charge. But in other ways, it is not. In the quantum world, the electron's spin is not just a quantity. It is an operator, which means it can interact with other operators in a way that charge does not. For example, the electron's spin interacts with the magnetic field of an external source in a way that is different from the way the electron's charge interacts with the electric field.

The circulating charges on the sphere of charge produce an electric field in the ambient space, much as an ordinary charged sphere does. And the electric field, in turn, has a magnetic effect on the sphere, changing its angular momentum. This effect is analogous to the magnetic effect of a current-carrying, fast-moving charged sphere.

In the spin FET, both the source and drain are ferromagnetic. The drain impedes current flow into the channel when there is no voltage applied. But in the presence of a voltage, the spins have been rotated. Flipping the spin current according to how far the spins have been rotated allows an electric field to be applied to the semiconductor, changing the resistance of the device.

In some ways, an electron is just like a spinning sphere of charge. But in other ways, it is not. In the quantum world, the electron's spin is not just a quantity. It is an operator, which means it can interact with other operators in a way that charge does not. For example, the electron's spin interacts with the magnetic field of an external source in a way that is different from the way the electron's charge interacts with the electric field.

The result is that some of the fundamental differences between charge and spin disappear in the quantum world. For example, the electron's spin is not just a quantity. It is an operator, which means it can interact with other operators in a way that charge does not. For example, the electron's spin interacts with the magnetic field of an external source in a way that is different from the way the electron's charge interacts with the electric field.

The resulting changes in the current allow the spins to be manipulated. One proposed design is a spin FET, which is a generalization of the conventional FET. In a spin FET, both the source and drain are ferromagnetic, and the spin current flows easily if it reaches the drain unaltered. But if the spin current reaches the drain, the spins have been rotated. Flipping the spin current according to how far the spins have been rotated allows an electric field to be applied to the semiconductor, changing the resistance of the device.

In some ways, an electron is just like a spinning sphere of charge. But in other ways, it is not. In the quantum world, the electron's spin is not just a quantity. It is an operator, which means it can interact with other operators in a way that charge does not. For example, the electron's spin interacts with the magnetic field of an external source in a way that is different from the way the electron's charge interacts with the electric field.

The result is that some of the fundamental differences between charge and spin disappear in the quantum world. For example, the electron's spin is not just a quantity. It is an operator, which means it can interact with other operators in a way that charge does not. For example, the electron's spin interacts with the magnetic field of an external source in a way that is different from the way the electron's charge interacts with the electric field.
Spin-Bahn-Kopplung

Spin-Bahn-Kopplung:
\[\mathcal{H} = \frac{1}{2c^2} \sigma (\nabla U(r) \times \mathbf{p}) \]

- Kopplung zwischen Spinmoment \(\mathbf{S} \) und Bahndrehimpuls \(\mathbf{L} \) in Anwesenheit eines elektrischen Feldgradienten \(\nabla U \)
- \(\nabla U \) ~ atomar: Kernpotenzial; an Grenzflächen: äußere Felder
Spinmanipulation durch elektrischen Feldgradient

- SFET: Elektrisches Feld am Gate führt zu einer Spin-Bahn-Kopplung
- ⇒ Effektives Magnetfeld (blau) senkrecht zur Transportrichtung und senkrecht zum elektrischen Feld
In einem Magnetfeld ($\mathbf{B} \perp$ Bildfläche) präziedieren Elektronenspins mit einer Frequenz proportional zur B-Feldstärke

1. Keine Präzession: Spinpolarisierter Strom fließt durch die FM-Filter

2. 180°-Präzession: Stromfluss ist minimal

3. 360°-Präzession: Spinpolarisierter Strom fließt

4. Sehr schnelle Präzession: Diffuser Transport, Streuung an Gitterstörstellen dominiert \sim keine Spinpräzession detektierbar
Spinrelaxation nach D’yakonov und Perel

- Der Spin \(\mathbf{S} \) (rot) eines Elektrons mit Impuls \(\mathbf{p} \) präzediert im effektiven Magnetfeld \(\mathbf{B} \).
- \(\mathbf{B}(\mathbf{p}) \) ändert sich aufgrund Impulsstreuung, bevor sich die Orientierung von \(\mathbf{S} \) ändert.
- \[\Rightarrow \] Unterdrückung der Spinstreuung durch häufige Impulsstreuung.
Die Spinrelaxationszeit

Die Spinrelaxationszeit ist die Zeit, innerhalb der die Spinpolarisation verlorengeht.
Die Spinrelaxationszeit

- Die Spinrelaxationszeit ist die Zeit, innerhalb der die Spinpolarisation verlorengeht.
- Bereich von Pikosekunden bis viele Millisekunden (Silizium), abhängig vom Halbleitermaterial und Kristallorientierung.
Die Spinrelaxationszeit

- Die Spinrelaxationszeit ist die Zeit, innerhalb der die Spinpolarisation verlorengeht.
- Bereich von Pikosekunden bis viele Millisekunden (Silizium), abhängig vom Halbleitermaterial und Kristallorientierung.
- *Lange* Relaxationszeiten erwünscht, wenn Spins räumlich entfernt vom Spininjektor verarbeitet werden.
- *Kurze* Relaxationszeiten ermöglichen ein extrem schnelles Ausschalten von Halbleiterelementen (Halbleiterlaser).
Die Spinrelaxationszeit

- Die Spinrelaxationszeit ist die Zeit, innerhalb der die Spinpolarisation verlorengeht.
- Bereich von Pikosekunden bis viele Millisekunden (Silizium), abhängig vom Halbleitermaterial und Kristallorientierung.
- *Lange* Relaxationszeiten erwünscht, wenn Spins räumlich entfernt vom Spininjektor verarbeitet werden.
- *Kurze* Relaxationszeiten ermöglichen ein extrem schnelles Ausschalten von Halbleiterelementen (Halbleiterlaser).

Bedeutung

Kontrolle der Spinrelaxation in der Spintronik \iff Kontrolle der Leitfähigkeit in konventioneller Elektronik.
Ziel: Spinpolarisation aufrechterhalten.
Bei schwachem äußerem Magnetfeld präzedieren die ausgerichteten Spins.

Die Oszillation kann mit Hilfe der Messung der Kerr-Rotation (\propto Magnetisierung) aufgelöst werden.

- $B = 0$ (blau): keine Oszillation;
- $B = 0,025$ T (rot): mittlere Oszillation;
- $B = 0,25$ T (schwarz): schnelle Oszillation.
Kontrollierter Spintransport in Silizium
Der Silizium Spintransport-Aufbau

1. Injektion heißer Elektronen in CoFe
2. Dämpfung der Minoritätselektronen
3. Transport spinpolarisierter Elektronen über Schottky-Barriere
4. Spintransport durch 10 µm reines Si
5. SpinfILTERUNG (Detektion)

„Elektronisches Analogon“ zu optischen Polarisationsanalyse-Experimenten
(Appelbaum et al., 2007)
Spintronic transistor, a high-impedance current source to prevent potential wells and long spin dwell times. (2) The device operates by spin-dependent ballistic hot-electron filtering through ferromagnetic thin films for both spin injection and spin detection. As it is not based on magnetic transport, this device is the electron analogue of the photon polarization-analyzer experiment in optics.

There are several design aspects that provide our device with a high degree of spin polarization of the conduction-band electrons. The spin polarization is detected by measurements of the magnetic moment, which can be large, in agreement with the expected non-linear relationship.

Experimentally, the spin polarization is observed by measuring the induced magnetoresistance and Hall effects. (1) The exponential spin filtering of the injected spin-polarized electrons is responsible for the high degree of spin polarization. In principle, this can approach 100%. Hence, the spin polarization of the conduction-band electrons is detected by the spin-dependent ballistic transport in Si.

Figure 1 shows a representative wire-bonded Si spin-transport device, showing the device explanation of sequential transport steps (1)–(5).

First collector current, I_{c1}, at an In contact to the n-Si substrate. Second collector current, I_{c2}, at an Fe contact to the FZ-Si resistance. The device characteristics illustrate the expected non-linear relationship.

(Appelbaum, et al., Mai 2007)
Änderung magnetischer Domänen durch spinpolarisierte Ströme
Spintronic Strom erzeugt Drehmomente auf die magnetischen Momente in dünner Co-Schicht (#1)

Momente in magn. Schichten: \(\tau_{1,2} \propto I \hat{\mathbf{s}}_{1,2} \times (\hat{\mathbf{s}}_1 \times \hat{\mathbf{s}}_2) \)
\[\Rightarrow \text{Asymmetrie in Bezug auf die Stromrichtung} \]

Stabilität magn. Momente: „negative“ Stromstärke \(\Rightarrow \) parallele \(\hat{\mathbf{s}} \); stabil
„positive“ Stromstärke \(\Rightarrow \) antiparallele \(\hat{\mathbf{s}} \); stabil
Was sind Spintronics?
Der Spintransistor nach Datta und Das
Erzeugung spinpolarisierter Elektronen
Spinmanipulation und -transport
Spin-Bahn-Kopplung
Spinrelaxation
Kontrollierter Spintransport in Silizium
Änderung magnetischer Domänen durch Spinströme

Änderung magnetischer Domänen durch Spinströme

Abbildung: Hysterese ⇒ Magnetische Domänen können in der dünnen Co-Schicht kontrolliert umgeklappt werden (antiparallel ⇔ parallel)
Was sind Spintronics?
Der Spintransistor nach Datta und Das
Erzeugung spinpolarisierter Elektronen
Spinmanipulation und -transport
Spin-Bahn-Kopplung
Spinrelaxation
Kontrollierter Spintransport in Silizium
Änderung magnetischer Domänen durch Spinströme

Änderung magnetischer Domänen durch Spinströme

Abbildung: Hysterese ⇒ Magnetische Domänen können in der dünnen Co-Schicht kontrolliert umgeklappt werden (antiparallel ⇌ parallel)

Folgerungen
- Maximale Stromstärken für GMR-basierte Messsonden sind begrenzt
- Magnetischer RAM: Lesen und Schreiben durch lokale Austauscheffekte (Spinströme) – statt durch langreichweitige Magnetfelder
Zusammenfassung
Prinzipien der Spintronics

Basis
Nutzung des Spinfreiheitsgrades der Elektronen

Klassische Spintronics
- Magnetisch schreiben und elektrisch auslesen (GMR)
- GMR-Magnetfeldsonden, Festplattenleseköpfe, MRAM-Chips

Moderne Spintronics
- Elektrische Manipulation des Spinstroms (Spin-Bahn-Kopplung)
- Spinströme schreiben magnetische Daten (Co-Schicht)
- Spintransistor, elektrisch geschalteter magn. Speicher
Aktuelle Forschung

Neue Bauelemente...

...nutzen unterschiedliche Leitfähigkeiten für ↑- und ↓-Elektronen. (Orientierung der Spins zu den magnetischen Momenten im FM)

Spininjektion und Spinmanipulation

Vor allem Ohmsche Injektion und Injektion „heißer“ Elektronen. Manipulation durch elektrische Felder und Strompulse

Neue Materialien

- Ferromagnetische Halbleiter
- Ferromagnetische Halbmetalle, die spinpolarisierte Elektronen zur Verfügung stellen (Beispiel EuO)
- Was passiert bei Doping?
Zusatzinformationen
Spinpolarisation aus Symmetrierverletzung

Zeitumkehrsymmetrie: \(E(k) = E(-k); \quad P(k) = -P(-k) \)

Inversionssymmetrie: \(P(k) = P(-k) \)
Zeitumkehrsymmtrie: \(E(k) = E(-k) \); \(P(k) = -P(-k) \)

Inversionssymmetrie: \(P(k) = P(-k) \)

An Grenzflächen wird die Inversionssymmetrie gebrochen, nur \(k_{||} \) ist „gute Quantenzahl“ \(P(k_{||}) = P(-k_{||}) \)

Polarisation möglich
Zustandsdichte der Elektronen abhängig von Spin.

Gesamtenergie der Elektronen

Parallel zum Feld
Antiparallel zum Feld
2\(\mu B\)
Orbitaldichte
Fermi-Niveau

(a) (b)
Spindependent transport processes

\[\Psi^i_k \rightarrow t_{kk'} \Psi^t_{k'} \]

Left lead

Right lead

Prinzip

Unterschied der Spinelektronen-Leitungsbänder
⇒ spinabhängige Übergangswahrscheinlichkeit der ballistischen Elektronen

Kapitel

Symmetriebetrachtung

Injektionsmethoden

Bandmodelle bei Injektion und Tunneln

Aktuelle Experimente
Ein Rastertunnelmikroskop mit ferromagnetischer Spitze wird benutzt, um im Vakuum Spins in einen Halbleiter zu injizieren. Die Spins werden während des Tunnelns durch das Vakuum konserviert.

Anwendung: tunnel diode (M-iso-SC); Schottky-barrier diode (M-SC)
Tunnelinjektion der Elektronen mit $E \gg E_F$ in eine ferromagnetische Schicht.

Die Mehrheit und die Minderheit der spinpolarisierten Elektronen haben sehr unterschiedliche inelastische freie Weglängen in der ferromagnetischen Schicht (z. B. ferromagnetische 3 nm-Co-Schicht).

Die Bandstrukturdifferenzen zwischen M und SC müssen klein sein, um Umklappstreuung der Spins zu vermeiden. Gesamtenergieeffizienz niedrig.
Methode	Effektivität	Probleme
Ohmsche Spininjektion	4,5 %	abhängig von den Leitfähigkeiten FM/M
Ballistische Elektronen-Injektion	> 40 % bei Punktkontakten	aufwändige Herstellung
Methode	Effektivität	Probleme
-------------------------------------	--------------	--
Ohmsche Spininjektion	4,5 %	abhängig von den Leitfähigkeiten FM/M
Ballistische Elektronen-Injektion	> 40 % bei Punktkontakten	aufwändige Herstellung
Tunnelinjektion	2 %	(nur) für Grundlagenexperimente
Injektion heißer Elektronen	> 90 %	Umklappstreuung der Spins, Gesam吞energieeffizienz ist niedrig
Messung der Spininjektion

1. Injektion spinpolarisierter Elektronen von FM in Halbleiter
2. Bewegung in die Quantenmulde in der Mitte des Schichtsystems
3. Rekombination mit Elektronenlöchern beider Spinrichtungen \(\leftrightarrow \)
 Emission von Photonen
4. Erfolgreiche Spininjektion \(\leftrightarrow \) Polarisation der Photonen
Spininjektion von einem FM in ein normales Metall

(a) Geometrie
(b) Magnetisierung M als Funktion der Nichtgleichgewichtsmagnetisierung δM (spin accumulation) wird in ein normales Metall injiziert
(c) Verteilung verschiedener spinaufgelöster Zustandsdichten über eine FM-N Grenzfläche. (Žutić et al., 2004)
Abbildung: Bei parallelen Magnetisierungsrichtungen: Tunnels von Majoritätsspinzuständen nach Majoritätsspinzuständen. Bei antiparalleler Magnetisierung: Tunnels zwischen Majoritäts- und Minoritätsspinzuständen. Tunnelrate \(\propto \) Zustandsdichte der Anfangs- und Endzustände der jeweiligen Tunnelprozesse.
(a) Parallele und (b) antiparallele Magnetisierungen mit den entsprechenden Spinzustandsdichten der d-Zustände in FM-Metallen.

Die Pfeile der Austausch-Spin-Aufspaltung Δ_{ex} in den beiden ferromagnetischen Bereichen sind durch das Majoritätsspin-Subband bestimmt.

Gestrichelt: Tunneln mit Konservierung des Spins.
Im indirekten Übergang sind die Bandkanten des Valenz- und Leitungsbandes im \(k \)-Raum weit entfernt. Die Energieschwelle für den indirekten Prozess ist größer als die eigentliche Bandlücke.

Übergang im Bild: \(\hbar \omega = E_g + \hbar \Omega \)

\(\Omega \): Frequenz eines Phonons mit \(k = -k_c \)
Spinvalve-Signal

- Im Spinventil („Spinvalve“) lassen ferromagnetische Schichten (F) nur Elektronen einer Polarisation passieren
- FM-Schichten parallel \(\sim\) Stromfluss von Emitter zu Collector, antiparallel \(\sim\) kein Stromfluss
- Der relative Unterschied des Collector-Stroms ist das Spinvalve-Signal
- Geringe Ausbeute von 2 %, bei 85 K
Ballistische Spininjektion in reines Silizium

- Reines Si als Spintransportmedium
- Ballistische Injektion „heißer“ Elektronen durch ferromagnetische dünne Filme
- Dies vermeidet Probleme der unterschiedlichen Leitfähigkeiten
- Der glatte Kollektorstrom (Abb. b) zeigt die elektrische Kontrolle der Spinpräzession an
 ⇒ Spinkohärente Drift der Leitungselektronen in Si (Appelbaum et al., 2007)
Die spinaufgelöste XAS

Ground state | XAS final state | Auger final state

"Eu 5d–6s" ———

"O 2p"

O 1s

hv

hv absorbed

O KLL Auger decay

O 2p4:1S 1D 3R

Auger electron (free)

Abbildung: Der Spin des herausfliegenderen O KL23L23 Auger-Elektrons (rechts) ist entgegengesetzt dem bereits durch das Röntgenphoton angeregten Elektron (Mitte und rechts). Aus der Beobachtung schließt man auf ein |↑⟩-Elektron im Leitungsband. (Steeneken, Tjeng, et al. 2001)
Literaturverzeichnis

I. Appelbaum, et al., *Nature* **447**, S. 295 (2007)

D.D. Awschalom und M.E. Flatté, *Nature* **3**, S. 153 (2007)

I. Žutić und J. Fabian, *Nature* **447**, S. 269 (2007)

R. Winkler und M. Oestreich, *Physik Journal* **11**, S. 39 (2004)

I. Žutić, et al., *Rev. Mod. Phys.* **76**, S. 323 (2004)

P.G. Steeneken, L.H. Tjeng, et al., *Phys. Rev. Let.* **4**, S. 47201 (2002)

D.D. Awschalom, et al., *Scientific American* **6**, S. 53 (2002)

S.A. Wolf, et al., *Science* **294**, S. 1488 (2001)

W. Weber, et al., *Science* **291**, S. 1015 (2001)

J.M. Kikkawa, et al., *Physica E* **9**, S. 194 (2001)

E.B. Myers, et al., *Science* **285**, S. 867 (1999)