Upper gastrointestinal tumours: diagnosis and staging

Richard M Gore, Uday K Mehta, Jonathan W Berlin, Vikram Rao and Geraldine M Newmark

Department of Radiology, Evanston Northwestern Healthcare, Northwestern University, 2650 Ridge Ave, Evanston, IL 60201, USA

Corresponding address: Richard M Gore, MD, Department of Radiology, Evanston Northwestern Healthcare, Northwestern University, 2650 Ridge Ave, Evanston, IL 60201, USA. E-mail: rmgore1953@aol.com

Date accepted for publication 14 November 2006

Abstract
Upper GI tumours have a dismal prognosis. Only early diagnosis and accurate staging can optimize patient management.

Keywords: Oesophageal neoplasms; gastric neoplasms; adenocarcinoma; CT; endoscopic ultrasound; PET/CT.

Introduction
Cancers of the oesophagus and stomach are among the most lethal of all malignancies. The majority of these neoplasms in Western countries are detected at an advanced stage due to the insidious nature of the onset of symptoms and their similarity in early stages to benign causes of dysphagia and dyspepsia. Only earlier diagnosis, more accurate staging methods, and more effective treatment protocols offer any hope of improving the dismal prognosis of these tumours[1,2].

Oesophageal cancer
In the past, squamous cell carcinoma accounted for over 95% of oesophageal malignancies. Over the past two decades, however, there has been a dramatic increase of adenocarcinoma arising in columnar cell-lined Barrett’s mucosa, accounting for greater than 50% of all oesophageal cancers in some areas[1,3].

Diagnosis
On double-contrast barium studies (Fig. 1), early squamous cell carcinomas of the oesophagus appear as small, sessile, polypoid lesions, with smooth or slightly lobulated contours; or as plaque-like lesions that often have flat, central ulcers that are best visualized in profile; or as a superficial, spreading lesion with a nodular appearance of the mucosa without a discrete mass. When early oesophageal cancer or superficial spreading cancer is suspected on barium examinations, endoscopic biopsy should be performed. Advanced squamous cell carcinomas may appear infiltrative, ulcerative, polypoid or less commonly varicoid[1,4].

Early adenocarcinoma arising from Barrett’s mucosa can manifest as small sessile polyps, plaque-like lesions, or superficial spreading lesions that cause focal nodularity of the mucosa without a discrete mass. These early cancers can also cause focal irregularity, flattening or nodularity of a pre-existing peptic stricture. Accordingly, early endoscopy and biopsy are necessary to exclude adenocarcinoma whenever any of these suspicious features develop in the region of a peptic stricture. Advanced adenocarcinoma of the oesophagus can appear infiltrating, polypoid, ulcerative, or, less commonly varicoid[1,3].

Gastric cancer
Cancers of the antrum and body of the stomach have decreased in incidence in Western countries but the incidence of adenocarcinomas at the gastro-oesophageal junction have been dramatically rising. Early gastric cancer can only be found by screening asymptomatic, at risk patients.
Diagnosis

Early gastric cancer is limited to the mucosa (Fig. 2(a)) and submucosa, regardless of the presence or absence of lymph node involvement. Type 1 early gastric cancers are elevated lesions that protrude more than 5 mm into the lumen. Type 2 tumours appear as plaque-like elevations with mucosal nodularity, or shallow areas of ulceration, singly or severally. Type 3 early gastric cancers are excavated lesions resembling gastric ulcers but with irregular ulcer craters, clubbing, fusion, or amputation of radiating folds, and nodularity of adjacent mucosa\(^{[2,5]}.\)

Type 1 advanced gastric cancer is a large polyoid or fungating lesion that has irregular lobulation and measures 3 cm or larger in greatest diameter. In Type 2 advanced gastric cancer, the bulk of the tumour has been replaced by ulceration. These tumours have discrete, sharply defined borders. Type 3 advanced gastric cancers have mixed morphology with both infiltrative and ulcerative components. The ulceration does not have discrete borders however. Type 4 advanced gastric cancers are diffusely infiltrating lesions that are associated with marked proliferation of fibrotic tissue and desmoplasia producing the so-called linitis plastica appearance (Fig. 2(b))\(^{[2,5,6]}\).

Staging

Once the diagnosis of oesophageal or gastric cancer is established, accurate staging is essential in planning the surgical approach, in deciding whether neoadjuvant chemotherapy or radiation therapy is necessary, and in determining the risk of tumour recurrence and overall prognosis\(^{[7-17]}\).

A number of imaging examinations have proven useful for upper gastrointestinal tumour staging:

1. Multi-detector computed tomography (MDCT)
2. Magnetic resonance imaging (MRI)
3. Endoluminal MRI
4. Transabdominal ultrasound
5. Endoscopic ultrasound
6. Intraoperative ultrasound
7. Positron emission tomography
8. PET/CT
T staging

T staging (Fig. 3) assesses the depth of tumour invasion into the wall of the oesophagus and stomach, surrounding adventitia, serosa, fat, and adjacent organs. Endoscopic ultrasound is superior to endoscopic MR in depicting the depth of mural invasion (Fig. 4) for oesophago–gastric neoplasms and both modalities are superior to MDCT (Figs 5 and 6) and conventional MR. PET and PET/CT have only a limited role in this aspect of tumour staging.[7–17].

N staging

CT and MR detection of malignant lymphadenopathy has traditionally been based on size criteria. Lymph nodes greater than 1 cm are considered abnormal (Fig. 7). Unfortunately, size criteria are based only on statistical probability. In reality, many nodes smaller than 1 cm are malignant, and nodes larger than 1 cm are caused by reaction to a number of benign inflammatory conditions. Accordingly, CT and MR cannot reliably differentiate benign from malignant adenopathy.[7–17]. Endoscopic ultrasound is superior to MDCT, conventional MR and endoscopic MR in the depiction of local adenopathy. Tissue aspiration can also be performed during endoscopic ultrasound. PET/CT is superb for detecting regional and distant adenopathy.[7–17].
that can be assessed with imaging: (1) direct invasion (Fig. 8); (2) lymphatic permeation and dissemination; (3) hematogenous embolization (Fig. 9); (4) transperitoneal seeding; (5) intraluminal implantation \cite{1,2}.

MDCT is the standard means of M staging in most situations. It is superior to MR in depicting mediastinal, hilar, pulmonary, pericardial, pleural, omental, mesenteric and peritoneal disease. PET/CT appears to be the most accurate means of globally evaluating the chest and abdominal cavities for metastatic tumour (Fig. 10). Intraoperative ultrasound appears to be the most sensitive technique in the depiction of liver metastases \cite{18,19}.

Figure 7 N staging of oesophago-gastric neoplasm. Schematic diagram depicting the common sites of lymph node metastases in oesophageal and gastric cancers.

Figure 8 Coronal reformatted image shows direct invasion (arrows) of a gastric cancer into the spleen via the gastrosplenic ligament.

Figure 9 Coronal reformatted image shows large Krukenberg tumours of the ovaries (arrows) due to hematogenous metastases from a gastric cancer (T).

Figure 10 PET scan showing a tumour of the oesophago-gastric junction with metastatic disease to the chest and neck.

M staging

Once oesophageal and gastric cancer have become invasive, there are five major routes of metastases...
References

[1] Gore RM, Yaghmai V. Esophageal cancer. In: Oncologic Imaging, 2nd ed. Bragg DG, Rubin P, Hricak H, eds. Philadelphia: Saunders, 2002: 359–90.

[2] Gore RM, Miller FH. Stomach cancer. In: Oncologic Imaging, 2nd ed. Bragg DG, Rubin P, Hricak H, eds. Philadelphia: Saunders, 2002: 391–418.

[3] Lee SS, Ha HK, Shin YM et al. Superficial esophageal cancer: esophagogastric findings correlated with histopathologic findings. Radiology 2005; 236: 535–44.

[4] Iyer RB, Silverman PM, Tamm EP et al. Diagnosis, staging, and follow-up of esophageal cancer. AJR 2003; 181: 785–93.

[5] Iyer R, Dubrow R. Imaging upper gastrointestinal malignancy. Semin Roentgenol 2006; 41: 113–20.

[6] Carrascosa P, Capunay C, Ulla M et al. Elevated gastric lesions: virtual gastroscopy. Abdom Imaging 2006; 31: 261–7.

[7] Rosenbaum SJ, Stergar H, Antoch G et al. Staging and follow-up of gastrointestinal tumors with PET/CT. Abdom Imaging 2006; 31: 25–35.

[8] Westerterp M, van Westreenen HL, Reitsma JB et al. Esophageal cancer: CT, endoscopic US, and FDG PET for assessment of response to neoadjuvant therapy-systematic review. Radiology 2005; 236: 841–51.

[9] Umeoka S, Koyama S, Togashi K et al. Esophageal cancer: evaluation with triple-phase dynamic CT—initial experience. Radiology 2006; 239: 777–83.

[10] Panbianco V, Grazhdani H, Infrate F et al. 3D CT protocol in the assessment of the esophageal neoplastic lesions: can it improve TNM staging? Eur Radiol 2006; 16: 414–21.

[11] Hur J, Park M-S, Lee JH et al. Diagnostic accuracy of multidetector row computed tomography in T- and N- staging of gastric cancer with histopathologic correlation. J Comput Assist Tomogr 2006; 30: 272–377.

[12] Lim JS, Yun MJ, Kim M-J et al. CT and PET in stomach cancer: preoperative staging and monitoring of response to therapy. Radiographics 2006; 26: 143–56.

[13] Kim HY, Kim AV, Oh ST et al. Gastric cancer staging at multidetector row CT gastrography: comparison of transverse and volumetric CT scanning. Radiology 2005; 236: 879–85.

[14] Kim JH, Eun HW, Goo DE et al. Imaging of various gastric lesions with 2D MPR and CT gastrography performed with MDCT. Radiographics 2006; 26: 1101–18.

[15] Schmidt GP, Haug AR, Schoenberg SO et al. Whole-body MRI and PET-CT in the management of cancer patients. Eur Radiol 2006; 16: 1216–25.

[16] Shimizu K, Ito K, Matsunaga N et al. Diagnosis of gastric cancer with MDCT using the water-filling method and multiplanar reconstruction: CT-histologic correlation. AJR 2005; 185: 1152–8.

[17] Inamoto K, Kouzai K, Ueeda T et al. CT virtual endoscopy of the stomach: comparison study with gastric fiberscopy. Abdom Imaging 2005; 30: 473–9.

[18] Van Westreenen HL, Plukker JTM, Cobben DCP et al. Prognostic value of the standard uptake value in esophageal cancer. AJR 2006; 185: 436–40.

[19] Schmidt GP, Haug AR, Schoenberg SO et al. Whole-body MRI and PET-CT in the management of cancer patients. Eur Radiol 2006; 16: 1216–25.