Effect of Metformin on Lactate Metabolism in Normal Hepatocytes under High Glucose Stress in Vitro

Yiyu Cai a Yuxuan Wang b Zhilu Li c Saijia Li c Yingjing Du c Bingxin Xu c Xiaomin Zhuang d Guanlu Li e Daifeng Zhou f*

Hainan Medical University a. College of Tropical Medicine and Laboratory Medicine; b. College of Public Health; c. The First Clinical College; d. College of Management; e. College of International Education; f. College of Basic Medicine and Life Sciences, Haikou, Hainan, 570100, China

Abstract
Objective: To study the effect of metformin on lactate metabolism in hepatocytes in vitro under high glucose stress. Methods: LO2 hepatocytes were cultured in vitro, and cells were randomly divided into blank control, 25 mmol/L glucose solution, 27 mmol/L glucose solution, 29 mmol/L glucose solution, 31 mmol/L glucose solution, 33 mmol/L glucose solution, 35 mmol/L glucose solution treatment groups, and then into blank control groups after determining the optimal concentration of 31 mmol/L and use 30 mmol/L metformin solution, and then divided into blank control group. The optimal concentration of glucose solution, normal liver cells+metformin solution normal liver cells, the optimal concentration of glucose solution normal liver cells+metformin solution respectively in the 12 h, 24 h, 48 h on cell count plate to calculate the number of liver cells, and using lactic acid determination kit the optimal concentration of glucose solution+normal liver cells and normal liver cells+the optimal concentration of glucose solution+metformin solution respectively in the 12h, 24h, 48h of cell cultures of lactic acid value.

Results: There was no significant change in the lactic acid concentration but significant increase in the number of surviving hepatocytes in the high-glucose control group compared with that in the high-glucose control group without metformin.

Conclusion: Metformin has no significant effect on lactate metabolism of hepatocytes under high glucose stress in vitro, and has a protective effect on hepatocytes under high glucose stress. Based on this, it is preliminarily believed that metformin is not the direct factor leading to diabetic lactic acidosis.

Keywords
metformin; liver cells; metformin associated lactic acidosis (MALA)
降糖药物在控制血糖和延缓并发症发生方面发挥了不错的作用，但是仍然存在一些局限性及不良反应。

二甲双胍是一种双胍类口服抗糖尿病药物，因其具有显著的降糖作用及多方面的临床应用价值，在临床中被广泛应用，国际上也将二甲双胍作为首选的降糖药物。HOME和DDP实验研究表明，二甲双胍对糖尿病治疗的安全性和有效性。然而，随着临床上二甲双胍的应用范围增大，在其作为降糖药的使用过程中也逐渐显示出一些副作用，其中乳酸酸中毒（LA）是临床医生一直担忧的问题。患者服用二甲双胍引起的乳酸酸中毒，称为二甲双胍相关性乳酸酸中毒（MALA），MALA是使用二甲双胍治疗过程中出现的少见且严重的不良反应，是由于二甲双胍阻碍了线粒体中乳酸向葡萄糖转化的通路，引起体内乳酸生成过多或清除过少，导致机体产生了代谢性疾患，这种疾病的致死率非常高。有研究表明二甲双胍导致乳酸酸中毒可能与糖尿病患者自身具有严重疾病有关，其中主要与患者肾功能不全、心功能不全、缺氧状态等有联系。基于此，本文针对二甲双胍干预下体外高糖胁迫下正常肝细胞乳酸代谢的影响进行阐述，进而探索二甲双胍对乳酸的代谢是否具有直接的关联性，为临床上治疗糖尿病以及二甲双胍的合理使用提供参考依据。

2 材料与方法

2.1 主要试剂与仪器

试剂：细胞选取LO2肝细胞株、DMEM培养基、胰酶、青霉素—链霉素双抗混合溶液、二甲双胍、10%胎牛血清、乳酸测定试剂盒（均购于海口锐科生物科技有限公司）。仪器：显微镜、超净生物台、CO₂细胞培养箱。

2.2 实验方法

2.2.1 细胞培养

LO2细胞使用10%胎牛血清的DMEM完全培养液，于37℃、5%CO₂培养箱中培育，培养至细胞贴壁，进行常规的细胞培养，1~2天换液一次，当培养细胞覆盖率达80%~90%时，进行传代培养，重复操作，将一瓶即将传代的细胞进行冻存，以免发生意外导致缺少LO2肝细胞无法进行实验。

2.2.2 分组模型建立及对照实验

（1）高糖模型的建立

本实验开始前进行了高糖对LO2肝细胞的预处理，进行了葡萄糖（Glucose，G）最适宜浓度实验，G的浓度梯度设为0mmol/L，25mmol/L，27mmol/L，29mmol/L，31mmol/L，33mmol/L，预试验得出31mmol/L作为最适实验浓度，并运用乳酸试剂盒测算乳酸含量。

（2）二甲双胍模型的建立

本实验使用盐酸二甲双胍药片稀释至30mmol/L至细胞培养基，进行二甲双胍对LO2肝细胞的预处理，培养时间为12h、24h和48h。

（3）干预模型的建立

本实验将浓度为30mmol/L的盐酸二甲双胍培养液和浓度为31mmol/L的葡萄糖溶液加入培养瓶，培养12h、24h和48h后运用乳酸试剂盒测算乳酸含量。

2.2.3 细胞计数法测定肝细胞增殖情况

用胰酶将细胞分解，消化一段时间后加入培养液终止消化，再用移液枪移取培养液至计数板，严格按照细胞计数规则计数细胞。

2.2.4 乳酸试剂盒法检测样本的乳酸情况

在加入二甲双胍溶液和高糖处理的细胞溶液放入二氧化碳细胞培养箱中培养12h、24h和48h，并分别运用乳酸试剂盒测定细胞培养液中的乳酸值，从而判断二甲双肢对高糖下细胞的影响。

2.3 统计学方法

统计学分析采用SPSS25.0统计软件进行数据处理，样本均数采用样本t检验，多样本均数采用单因素方差分析，以P<0.05具有统计学意义。

3 结果与分析

3.1 探究最适宜高糖胁迫LO2肝细胞的G的浓度

在进行此实验后探究了最适宜高糖胁迫LO2肝细胞的G的浓度，根据表1得出这样的结论：当G浓度为31mmol/L时，是最适宜的实验浓度。
表 1 选取最适高糖浓度（正常肝细胞）

加入葡萄糖的浓度（mmol/L）	25	27	29	31	33	35	0
存活肝细胞数目（12h，个）	1.12×10⁷	1.08×10⁷	1.02×10⁷	0.98×10⁷	0.88×10⁷	0.82×10⁷	0.73×10⁷
存活肝细胞数目（13h，个）	2.04×10⁷	1.97×10⁷	1.95×10⁷	1.92×10⁷	1.72×10⁷	1.25×10⁷	0.92×10⁷
存活肝细胞数目（14h，个）	3.90×10⁷	3.92×10⁷	3.79×10⁷	3.76×10⁷	3.63×10⁷	3.19×10⁷	2.50×10⁷
存活肝细胞数目（15h，个）	1.68×10⁷	2.46×10⁷	2.37×10⁷	2.34×10⁷	2.14×10⁷	1.63×10⁷	2.26×10⁷
存活肝细胞数目（16h，个）	3.89×10⁷	4.79×10⁷	5.24×10⁷	5.89×10⁷	6.23×10⁷	6.89×10⁷	0
存活肝细胞数目（17h，个）	6.72×10⁷	8.43×10⁷	9.14×10⁷	9.28×10⁷	10.87×10⁷	11.27×10⁷	0

3.2 二甲双胍对高糖胁迫下正常肝细胞乳酸代谢的影响

在培养基中配置30mmol/L二甲双胍，设置对照组与实验组，分别设计了正常肝细胞、高糖 + 正常肝细胞、二甲双胍 + 正常肝细胞、高糖 + 二甲双胍 + 正常肝细胞，在培养的12h、24h、48h所测得的乳酸浓度变化如表2所示。

表2 二甲双胍对高糖胁迫下正常肝细胞乳酸代谢的影响

组别	第一组（正常肝细胞）	第二组（正常肝 + 高糖）	第三组（正常 + 二甲双胍）	第四组（肝细胞 + 高糖 + 二甲双胍）
12h	3.48±1.42	5.89±2.64	0.98±0.33	1.92±0.26
24h	3.76±1.31	5.20±1.10	1.42±0.17	5.89±2.64
48h	1.30±10⁷	2.60±10⁷	1.42±0.17	5.89±2.64

根据此实验组与对照组可得出，二甲双胍本身并不会造成肝细胞产生乳酸，在高糖环境下，根据二四组的实验结果对比可知，在加入二甲双胍前，高糖 + 正常肝细胞12h内培养液中测得的乳酸浓度值从 1.42mmol/L 增长到 3.48mmol/L，24h后最高增加至 5.89mmol/L。48h后细胞数量增加率开始显著性下降，乳酸浓度也增加至 9.289mmol/L。在加入二甲双胍后，从结果上看乳酸浓度和细胞数量与仅高糖胁迫下的结果比较并无显著的变化。

4 讨论

大量研究表明，乳酸酸中毒是糖尿病患者一种少见而严重的并发症，大多发生在使用双胍类药物并伴随有肝肾功能不全、心力衰竭等患者中。近年研究认为，因使用正常治疗剂量的二甲双胍导致的乳酸酸中毒（Metformin Lactate Acidosis, MALA）很罕见，但如果临床使用不当也可能导致血浆乳酸含量升高，甚至导致乳酸酸中毒（Lactate Acidosis, LA）发生。肝脏是葡萄糖代谢的重要器官，肝脏内高糖会促进乳酸的生成，而高糖肝会导致乳酸的生成，进而使乳酸堆积增加了发生乳酸酸中毒的风险。本试验研究发现，二甲双胍对高糖环境下的肝细胞乳酸代谢影响不大，实验组与对照组加入不同水平的二甲双胍后，所测得的乳酸浓度并无较大差异，但不同水平的二甲双胍可促进细胞增殖。高糖环境能抑制肝细胞的增殖，其原因可能是高糖诱导肝细胞中STC2表达，而STC2能进一步增强高糖所诱导的肝细胞增殖抑制能力。另外，还有研究表明高糖能促进TNF-α、IL-6等炎性细胞因子分泌，调控凋亡信号分子B淋巴细胞激酶和Bax表达，从而诱导肝细胞凋亡。二甲双胍能促进肝细胞增殖，可能是因为二甲双胍可以通过AMPK依赖途径等途径，抑制炎性细胞因子的分泌及核转录因子 NF-κB 的活性，从而达到促进细胞增殖的目的。

综上所述，二甲双胍对高糖环境下的肝细胞乳酸代谢情况无太大影响，但不同浓度的二甲双胍对肝细胞有保护机制，可以促进细胞增殖。

参考文献

[1] 母义明, 纪立农. 二甲双胍临床应用专家共识 (2016 年版) [J]. 中国糖尿病杂志, 2016(10):871–884.
[2] 春永岩, 叶希明. 二甲双胍浓度对肝 L02 细胞损伤的实验研究 [J]. 华东师范大学学报, 2010(5):143–148.
[3] 苏弘毅, 韦勋, 潘海林, 等. 2 型糖尿病患者血乳酸水平及其影响因素[J]. 糖尿病研究, 2015(02):215-218.

[4] 宁光, 中国糖尿病防治现状及展望[J]. 中国科学(生命科学), 2008(08):810-811.

[5] Lilian Beatriz Aguayo Rojas, Marilia Brito Gomes. Metformin: an old but still the best treatment for type 2 diabetes[J]. Lilian Beatriz Aguayo Rojas, Marilia Brito Gomes, 2013(01):143-146.

[6] 张伟娜, 于敏, 孙美云, 等. 二甲双胍致乳酸性酸中毒1例[J]. 浙江省海宁第一医院药剂科中国乡村医药, 2020(01):43-44.

[7] 袁承萍. 特殊人群使用二甲双胍[N]. 上海中医药报, 2019.

[8] 林健, 周智广. 糖尿病乳酸酸中毒的诊断与治疗[J]. 临床内科杂志, 2017(34):159-161.

[9] Richy FF, Sabido-Espin M, Guedes S, et al. Incidence of lactic acidosis in patients with type 2 diabetes with and without renal impairment treated with metformin: a retrospective cohort study[J]. Diabetes Care, 2014(08):2291-2295.

[10] Aharraz A, Pottegard A, Henriksen DP, et al. Risk of lactic acidosis in type 2 diabetes patients using metformin: A case control study[J]. PLoS One, 2018(05):196+122.

[11] Xianbin Cai, Xi Hu, Bozhi Cai, et al. Metformin suppresses hepatocellular carcinoma cell growth through induction of cell cycle G1/G0 phase arrest and p21CIP and p27KIP expression and downregulation of cyclin D1 in vitro and in vivo[J]. Oncology Reports, 2013(05):438-441.

[12] 郭雅丽, 卢书明, 李春艳, 等. 糖尿病合并高龄患者胰岛素抵抗及与功能相关探讨[J]. 大连医科大学学报, 2017(04):378-382.

[13] Almirall J, Briculle M, Gonzalez Clemente JM. Metformin as associated lactic acidosis in type 2 diabetes mellitus: incidence and presentation in common clinical practice[J]. Nephrol Dial Transplant, 2008(23):2436-2438.

[14] 陆祖谦. 双脉类降糖药物对糖尿病治疗价值的认识[J]. 临床药物治疗杂志, 2010(04):33-38.

[15] McAlister FA, Majumdar SR, Eureich DT, et al. The effect of specialist care within the first year on subsequent outcomes in 24,232 adults with new-onset diabetes mellitus: population based cohort study[J]. Qual Saf Health Care, 2007(01):6-11.

[16] 陶文江, 陈文杰, 李晓亮, 等. 高钙素 2 在高糖诱导的肝细胞炎症反应中的作用机制[J]. 实用医学杂志, 2019(14):2220-2224+2229.

[17] 李妍, 黄艳斌, 刘瑶, 等. 高迁移率族蛋白 B1 在高糖诱导肝细胞炎症反应中的作用机制研究[J]. 中国糖尿病杂志, 2019(02):137-142.

[18] Li Z, Ding Q, Ling LP, et al. Metformin attenuates motility, contraction, and fibrogenic response of hepatic stellate cells in vivo and in vitro by activating AMP-activated protein kinase[J]. World J Gastroenterol, 2018(07):819-832.