CLASSES WITH NEGATIVE COEFFICIENTS AND STARLIKE WITH RESPECT TO OTHER POINTS II

SUZEINI ABDUL HALIM, AINI JANTENG AND MASLINA DARUS

Abstract. A class $S \ast_s T(\alpha, \beta, \sigma, k)$ of functions f which are analytic and univalent in the open unit disk $D = \{z : |z| < 1\}$ given by $f(z) = z - \sum_{n=2}^{\infty} a_n z^n$ and satisfying the condition

$$\left| \frac{zf'(z)}{f(z) - f(-z)} - k \right| < \beta \left| \frac{\alpha zf'(z)}{f(z) - f(-z)} - (2\sigma - k) \right|$$

for $0 \leq \alpha \leq 1, 0 < \beta \leq 1, 0 \leq \sigma \leq \frac{1}{2}, \frac{1}{2} < k \leq 1, z \in D,$ is introduced and studied. An analogous class $S \ast_c T(\alpha, \beta, \sigma, k)$ and $S \ast_sc T(\alpha, \beta, \sigma, k)$ are also examined.

1. Introduction

Let S be the class of functions f which are analytic and univalent in the open unit disk $D = \{z : |z| < 1\}$ given by

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \quad (1)$$

and a_n a complex number. Let $S \ast$ be the subclass of S consisting of functions given by (1) satisfying

$$\text{Re} \left\{ \frac{zf'(z)}{f(z) - f(-z)} \right\} > 0, \quad z \in D.$$

These functions are called starlike with respect to symmetric points and were introduced by Sakaguchi [4]. El-Ashwa and Thomas [2] obtained various results concerning functions in $S \ast$ and two other classes namely the class $S \ast_c$ of functions starlike with respect to conjugate points and the class $S \ast_sc$ of functions starlike with respect to symmetric conjugate points.

Now, we denote T the class consisting of functions f of the form

$$f(z) = z - \sum_{n=2}^{\infty} a_n z^n \quad (2)$$

Received April 25, 2005.
2000 Mathematics Subject Classification. Primary 30C45.
Key words and phrases. Analytic, univalent, starlike with respect to symmetric points.
where a_n is a non-negative real number.

For $f \in T$, Halim et al. [3] studied the class $S^*_T(\alpha, \beta)$, $0 \leq \alpha \leq 1, \frac{1}{2} < \beta \leq 1$, consisting of functions $f \in T$ and starlike with respect to symmetric points. An analogous results are also obtained for the class $S^*_cT(\alpha, \beta)$, $0 \leq \alpha \leq 1, \frac{1}{2} < \beta \leq 1$, consisting of functions $f \in T$ and starlike with respect to conjugate points and the class $S^*_scT(\alpha, \beta)$, $0 \leq \alpha \leq 1, \frac{1}{2} < \beta \leq 1$, consisting of functions $f \in T$ and starlike with respect to symmetric conjugate points.

For this paper, we consider a class $S^*_sT(\alpha, \beta, \sigma, k)$, $0 \leq \alpha \leq 1, 0 < \beta \leq 1, 0 \leq \sigma \leq \frac{1}{2} < k \leq 1$, consisting of functions $f \in T$ and starlike with respect to symmetric points as follows:

Definition 1. A function $f \in S^*_sT(\alpha, \beta, \sigma, k)$ if it satisfies

$$\left| \frac{zf'(z)}{f(z) - f(-z)} - k \right| < \beta \left| \frac{zf'(z)}{f(z) - f(-z)} - (2\sigma - k) \right|$$

for some $0 \leq \alpha \leq 1, 0 < \beta \leq 1, 0 \leq \sigma \leq \frac{1}{2} < k \leq 1$ and $z \in D$.

An analogous results are also obtained for the class of functions $f \in T$ and starlike with respect to conjugate points and functions starlike with respect to symmetric conjugate points. These classes are defined as below:

Definition 2. A function $f \in S^*_cT(\alpha, \beta, \sigma, k)$ if it satisfies

$$\left| \frac{zf'(z)}{f(z) + f(\bar{z})} - k \right| < \beta \left| \frac{zf'(z)}{f(z) + f(\bar{z})} - (2\sigma - k) \right|$$

for some $0 \leq \alpha \leq 1, 0 < \beta \leq 1, 0 \leq \sigma \leq \frac{1}{2} < k \leq 1$ and $z \in D$.

Definition 3. A function $f \in S^*_scT(\alpha, \beta, \sigma, k)$ if it satisfies

$$\left| \frac{zf'(z)}{f(z) - f(\bar{z})} - k \right| < \beta \left| \frac{zf'(z)}{f(z) - f(\bar{z})} - (2\sigma - k) \right|$$

for some $0 \leq \alpha \leq 1, 0 < \beta \leq 1, 0 \leq \sigma \leq \frac{1}{2} < k \leq 1$ and $z \in D$.

2. **Coefficient Inequalities**

We first state some preliminary lemmas, required for proving our result.

Lemma 1. ([5]) If $f \in T$ then $\sum_{n=2}^{\infty} n |a_n| < 1$.

Lemma 2. If $f \in T$ then $\sum_{n=2}^{\infty} (n\alpha + (k - 2\sigma)(1 - (-1)^n)) |a_n| < \alpha + 2(k - 2\sigma)$.
Proof. We note that
\[
\sum_{n=2}^{\infty} \left(n \alpha (k - 2 \sigma)(1 - (-1)^n) \right) |a_n|
\]
\[
= \sum_{n=2}^{\infty} n \alpha |a_n| + \sum_{n=2}^{\infty} (k - 2 \sigma)(1 - (-1)^n) |a_n|
\]
\[
= \alpha \sum_{n=2}^{\infty} n |a_n| + (k - 2 \sigma) \sum_{n=2}^{\infty} (1 - (-1)^n)|a_n|
\]
\[
< \alpha (1) + (k - 2 \sigma)2(1) = \alpha + 2(k - 2 \sigma), \quad \text{by (Lemma 1)},
\]
as required.

Lemma 3. If \(f \in T \) then \(\sum_{n=2}^{\infty} (n \alpha + 2(k - 2 \sigma)) |a_n| < \alpha + 2(k - 2 \sigma) \).

Proof. We note that
\[
\sum_{n=2}^{\infty} (n \alpha + 2(k - 2 \sigma)) |a_n|
\]
\[
= \sum_{n=2}^{\infty} n \alpha |a_n| + \sum_{n=2}^{\infty} 2(k - 2 \sigma) |a_n|
\]
\[
= \alpha \sum_{n=2}^{\infty} n |a_n| + 2(k - 2 \sigma) \sum_{n=2}^{\infty} |a_n|
\]
\[
< \alpha (1) + 2(k - 2 \sigma)(1) = \alpha + 2(k - 2 \sigma), \quad \text{by (Lemma 1)},
\]
as required.

For \(S^*_T(\alpha, \beta, \sigma, k) \), we have the following:

Theorem 1. Let \(f \in T \). A function \(f \in S^*_T(\alpha, \beta, \sigma, k) \) if and only if
\[
\sum_{n=2}^{\infty} \left(\frac{(1 + \beta \alpha)n}{\beta(2k - 2 \sigma) + \alpha - (2k - 1)} + \frac{\beta(k - 2 \sigma)(1 - (-1)^n) - k(1 - (-1)^n)}{\beta(2k - 2 \sigma) + \alpha - (2k - 1)} \right) a_n \leq 1
\]
for \(0 \leq \alpha \leq 1, \frac{1}{2} \leq \beta \leq 1 \) and \(0 \leq \sigma \leq \frac{1}{2} < k \leq 1 \).

Proof. First we prove the ‘if’ part. We adopt the method used by Clunie and Keogh.
We write
\[|zf'(z) - k(f(z) - f(-z))| - \beta|\alpha zf'(z) - (2\sigma - k)(f(z) - f(-z))| \]
\[= |(1 - 2k)z - \sum_{n=2}^{\infty} (n - k(1 - (-1)^n))a_n z^n| - \beta(2(k - 2\sigma) + \alpha)z \]
\[- \sum_{n=2}^{\infty} (n\alpha + (k - 2\sigma)(1 - (-1)^n))a_n z^n| \]
\[\leq \sum_{n=2}^{\infty} (n - k(1 - (-1)^n))|a_n| r^n + (2k - 1)r - \beta(2(k - 2\sigma) + \alpha)r \]
\[+ \sum_{n=2}^{\infty} \beta(n\alpha + (k - 2\sigma)(1 - (-1)^n))|a_n| r^n \]
\[< \left[\sum_{n=2}^{\infty} (n - k(1 - (-1)^n))|a_n| + (2k - 1) - \beta(2(k - 2\sigma) + \alpha) \right] r \]
\[+ \sum_{n=2}^{\infty} \beta(n\alpha + (k - 2\sigma)(1 - (-1)^n))|a_n| \]
\[= \left[\sum_{n=2}^{\infty} ((1 + \beta\alpha)n + \beta(k - 2\sigma)(1 - (-1)^n) - k(1 - (-1)^n))a_n \right] r \]
\[- \beta(2(k - 2\sigma) + \alpha - (2k - 1)) \]
\[\leq 0 \text{ by (3)}. \]

Thus,
\[\frac{|zf'(z) - k|}{|\alpha zf'(z) - (2\sigma - k)|} |< \beta \]

and hence \(f \in S^*_T(\alpha, \beta, \sigma, k) \).

To prove the 'only if' part, we write
\[\frac{|zf'(z) - k|}{|\alpha zf'(z) - (2\sigma - k)|} = \frac{(1 - 2k) - \sum_{n=2}^{\infty} (n - k(1 - (-1)^n))a_n z^{n-1}}{2(k - 2\sigma) + \alpha - \sum_{n=2}^{\infty} (n\alpha + (k - 2\sigma)(1 - (-1)^n))a_n z^{n-1}} < \beta. \]

Since \(f \) is analytic, continuous and non constant in \(D \), the maximum modulus principle
and hence, we obtain
\[\frac{1 - 2\kappa}{2(2 - \sigma) + \alpha - \sum_{n=2}^{\infty} (n\alpha + (k - 2\sigma)(1 - (-1)^n))a_n z^{n-1}} \leq \frac{2(2 - \sigma) + \alpha - \sum_{n=2}^{\infty} (n\alpha + (k - 2\sigma)(1 - (-1)^n))a_n z^{n-1}}{2(2 - \sigma) + \alpha - \sum_{n=2}^{\infty} (n\alpha + (k - 2\sigma)(1 - (-1)^n))a_n z^{n-1}} \]

next, similar coefficient properties for functions which belong to \(S^*T(\alpha, \beta, \sigma, k) \) and \(S^*T(\alpha, \beta, \sigma, k) \) are obtained. Similar method of proving is used for Theorem 2 and Theorem 3.
Thus, since states that 0 and hence f is analytic, continuous and non constant in D, the maximum modulus principle states that

\[
\left| \frac{zf'(z) - k(f(z) + \overline{f(z)})}{azf'(z) - (2\sigma - k)(f(z) + \overline{f(z)})} \right| < \beta
\]

and hence $f \in S^*_T(\alpha, \beta, \sigma, k)$.

To prove the 'only if' part, as before we write

\[
\left| \frac{zf'(z) - k(f(z) + \overline{f(z)})}{azf'(z) - (2\sigma - k)(f(z) + \overline{f(z)})} \right| = \left| \frac{(1 - 2k)(n - 2k)a_n z^n}{2(k - 2\sigma) + \alpha - \sum_{n=2}^{\infty} (n\alpha + 2(k - 2\sigma))a_n z^n} \right| < \beta.
\]

Since f is analytic, continuous and non constant in D, the maximum modulus principle states that

\[
\left| \frac{(1 - 2k)(n - 2k)a_n z^n}{2(k - 2\sigma) + \alpha - \sum_{n=2}^{\infty} (n\alpha + 2(k - 2\sigma))a_n z^n} \right| < \beta.
\]
Since \(f \in S^*_c(T(\alpha, \beta, \sigma, k)) \) and \(|z| < r < 1\), we obtain
\[
\left\{ \frac{(2k-1) + \sum_{n=2}^{\infty} (n-2k)a_n r^{n-1}}{2(k-2\sigma) + \alpha - \sum_{n=2}^{\infty} (n\alpha + 2(k-2\sigma))a_n r^{n-1}} \right\} < \beta
\] (6)
for any \(z \in D \). Now letting \(r \to 1 \) in (6), we obtain
\[
(2k-1) + \sum_{n=2}^{\infty} (n-2k)a_n \leq \beta \left(2(k-2\sigma) + \alpha - \sum_{n=2}^{\infty} (n\alpha + 2(k-2\sigma))a_n \right)
\]
and hence, we obtain
\[
\sum_{n=2}^{\infty} \left(\frac{(1+\beta\alpha)n}{\beta(2(k-2\sigma) + \alpha) - (2k-1)} + \frac{2(\beta(k-2\sigma) - k)}{\beta(2(k-2\sigma) + \alpha) - (2k-1)} \right) a_n \leq 1
\]
as required. This completes the proof of the theorem.

The result in Theorem 2 is sharp for function \(f_n \) given by
\[
f_n(z) = z - \frac{\beta(2(k-2\sigma) + \alpha) - (2k-1)}{(1+\beta\alpha)n + 2(\beta(k-2\sigma) - k)} z^n.
\]

Corollary 2. If \(f \in S^*_c(T(\alpha, \beta, \sigma, k)) \) then
\[
a_n \leq \frac{\beta(2(k-2\sigma) + \alpha) - (2k-1)}{(1+\beta\alpha)n + 2(\beta(k-2\sigma) - k)}, \quad n \geq 2.
\]

For completeness, we state the following result with regards to the class \(S^*_c(T(\alpha, \beta, \sigma, k)) \).

Theorem 3. Let \(f \in T \). A function \(f \in S^*_c(T(\alpha, \beta, \sigma, k)) \) if and only if
\[
\sum_{n=2}^{\infty} \left(\frac{(1+\beta\alpha)n}{\beta(2(k-2\sigma) + \alpha) - (2k-1)} + \frac{\beta(k-2\sigma)(1 - (-1)^n) - k(1 - (-1)^n)}{\beta(2(k-2\sigma) + \alpha) - (2k-1)} \right) a_n \leq 1
\] (7)
for \(0 \leq \alpha \leq 1, 0 < \frac{1}{2} < \beta \leq 1 \) and \(0 \leq \sigma \leq \frac{1}{2} < k \leq 1 \).

The result in Theorem 3 is sharp for functions given by
\[
f_n(z) = z - \frac{\beta(2(k-2\sigma) + \alpha) - (2k-1)}{(1+\beta\alpha)n + \beta(k-2\sigma)(1 - (-1)^n) - k(1 - (-1)^n)} z^n, \quad n \geq 2.
\]

Corollary 3. If \(f \in S^*_c(T(\alpha, \beta, \sigma, k)) \) then
\[
a_n \leq \frac{\beta(2(k-2\sigma) + \alpha) - (2k-1)}{(1+\beta\alpha)n + \beta(k-2\sigma)(1 - (-1)^n) - k(1 - (-1)^n)}, \quad n \geq 2.
\]
3. Growth Theorem

A growth property for functions in the class \(S^*_{\alpha, \beta, \sigma, k} \) is given as follows.

Theorem 4. Let the functions \(f \) be defined by (2) and belongs to the class \(S^*_{\alpha, \beta, \sigma, k} \). Then for \(\{ z : 0 < |z| = r < 1 \} \),

\[
r - \frac{\beta(2(k-2\sigma)+\alpha)-(2k-1)}{2(1+\beta\alpha)} r^2 \leq |f(z)| \leq r + \frac{\beta(2(k-2\sigma)+\alpha)-(2k-1)}{2(1+\beta\alpha)} r^2.
\]

The result is sharp.

Proof. First, it is obvious that

\[
\sum_{n=2}^{\infty} a_n \leq \frac{2(1+\beta\alpha)}{\beta(1+2\sigma)+\alpha-(2k-1)} \sum_{n=2}^{\infty} \frac{\alpha}{\beta(1+2\sigma)+\alpha-(2k-1)} a_n
\]

and as \(f \in S^*_{\alpha, \beta, \sigma, k} \), using the inequality in Theorem 1 yields

\[
\sum_{n=2}^{\infty} a_n \leq \frac{2(1+\beta\alpha)}{\beta(1+2\sigma)+\alpha-(2k-1)} \sum_{n=2}^{\infty} a_n \frac{(1+\beta\alpha)n}{\beta(1+2\sigma)+\alpha-(2k-1)} + \frac{\beta(2-2\sigma)(1-(-1)^n) - k(1-(-1)^n)}{\beta(1+2\sigma)+\alpha-(2k-1)} a_n.
\]

From (2) with \(|z| = r (r < 1) \), we have

\[
|f(z)| \leq r + \sum_{n=2}^{\infty} a_n r^n \leq r + \sum_{n=2}^{\infty} a_n r^2
\]

and

\[
|f(z)| \geq r - \sum_{n=2}^{\infty} a_n r^n \geq r - \sum_{n=2}^{\infty} a_n r^2.
\]

Finally, using (8) in the above inequalities, give the result in Theorem 4.

The result in Theorem 4 is sharp for functions given by

\[
f_2(z) = z - \frac{\beta(2(k-2\sigma)+\alpha)-(2k-1)}{2(1+\beta\alpha)} z^2
\]

at \(z = \pm r \).

Next, similar growth results for functions which belong to \(S^*_{\alpha, \beta, \sigma, k} \) and \(S_{\alpha, \sigma, \beta, k}^* \) are obtained. Similar method of proving is used for Theorem 5 and Theorem 6.

Theorem 5. Let the functions \(f \) be defined by (2) and belongs to the class \(S^*_{\alpha, \beta, \sigma, k} \). Then for \(\{ z : 0 < |z| = r < 1 \} \),

\[
r - \frac{\beta(2(k-2\sigma)+\alpha)-(2k-1)}{2(1+\beta\alpha)+2(\beta(k-2\sigma)-k)} r^2 \leq |f(z)| \leq r + \frac{\beta(2(k-2\sigma)+\alpha)-(2k-1)}{2(1+\beta\alpha)+2(\beta(k-2\sigma)-k)} r^2.
\]
The result is sharp.

Proof. First, it is obvious that

\[
\frac{2(1 + \beta \alpha) + 2(\beta(k - 2\sigma) - k)}{\beta(2(k - 2\sigma) + \alpha) - (2k - 1)} \sum_{n=2}^{\infty} a_n \leq \sum_{n=2}^{\infty} \left(\frac{(1 + \beta \alpha)n}{\beta(2(k - 2\sigma) + \alpha) - (2k - 1)} + \frac{2(\beta(k - 2\sigma) - k)}{\beta(2(k - 2\sigma) + \alpha) - (2k - 1)} \right) a_n,
\]

and as \(f \in S^*_c(T(\alpha, \beta, \sigma, k)) \), using the inequality in Theorem 2 yields

\[
\sum_{n=2}^{\infty} a_n \leq \frac{\beta(2(k - 2\sigma) + \alpha) - (2k - 1)}{2(1 + \beta \alpha) + 2(\beta(k - 2\sigma) - k)}.
\]

From (2) with \(|z| = r \) \((r < 1) \), we have

\[
|f(z)| \leq r + \sum_{n=2}^{\infty} a_n r^n \leq r + \sum_{n=2}^{\infty} a_n r^2
\]

and

\[
|f(z)| \geq r - \sum_{n=2}^{\infty} a_n r^n \geq r - \sum_{n=2}^{\infty} a_n r^2.
\]

Finally, using (9) in the above inequalities, give the result in Theorem 5.

The result in Theorem 5 is sharp for functions given by

\[
f_2(z) = z - \frac{\beta(2(k - 2\sigma) + \alpha) - (2k - 1)}{2(1 + \beta \alpha) + 2(\beta(k - 2\sigma) - k)} z^2
\]

at \(z = \pm r \).

For completeness, we state the following result with regards to the class \(S^*_c(T(\alpha, \beta, \sigma, k)) \).

Theorem 6. Let the functions \(f \) be defined by (2) and belongs to the class \(S^*_c(T(\alpha, \beta, \sigma, k)) \). Then for \(\{ z : 0 < |z| = r < 1 \} \),

\[
r - \frac{\beta(2(k - 2\sigma) + \alpha) - (2k - 1)}{2(1 + \beta \alpha)} r^2 \leq |f(z)| \leq r + \frac{\beta(2(k - 2\sigma) + \alpha) - (2k - 1)}{2(1 + \beta \alpha)} r^2.
\]

The result is sharp.

The result in Theorem 6 is sharp for functions given by

\[
f_2(z) = z - \frac{\beta(2(k - 2\sigma) + \alpha) - (2k - 1)}{2(1 + \beta \alpha)} z^2
\]

at \(z = \pm r \).
References

[1] J. Clunie and F. R. Keogh, *On starlike and Schlicht functions*, J. London. Math. Soc. **35**(1960), 229-233.

[2] R. M. El-Ashwa and D. K. Thomas, *Some subclasses of close-to-convex functions*, J. Ramanujan Math. Soc. **2**(1987), 86-100.

[3] S. A. Halim, A. Janteng and M. Darus, *Coefficient properties for classes with negative coefficients and starlike with respect to other points*, 13th Mathematical Sciences National Symposium Proceeding (2005).

[4] K. Sakaguchi, *On certain univalent mapping*, J. Math. Soc. Japan. **11**(1959), 72-75.

[5] H. Silverman, *Univalent functions with negative coefficients*, Proc. Amer. Math. Soc. **51**(1975), 109-116.

Institute of Mathematical Sciences, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
E-mail: suzeini@um.edu.my

Institute of Mathematical Sciences, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
E-mail: aini_jg@ums.edu.my

School of Mathematical Sciences, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
E-mail: maslina@pkrisc.cc.ukm.my