Targeted inhibition of glutamine metabolism enhances the antitumor effect of selumetinib in KRAS-mutant NSCLC

Meng Xia, Xuena Li, Yao Diao, Bulin Du, Yaming Li*

Department of Nuclear Medicine, The First Hospital of China Medical University, 155 Nanjin Street, Shenyang 110000, China

Abstract

Regulated by the tumor microenvironment, the metabolic network of the tumor is reprogrammed, driven by oncogenes and tumor suppressor genes. The metabolic phenotype of tumors of different driven-genes and different tissue types is extremely heterogeneous. KRAS-mutant non-small cell lung cancer (NSCLC) has glutamine dependence. In this study, we demonstrated that glutamine utilization of KRAS-mutant NSCLC was higher than that of KRAS wild-type. CB839, an efficient glutaminase inhibitor, synergized with the MEK inhibitor selumetinib to enhance antitumor activity in KRAS-mutant NSCLC cells and xenografts, and the therapeutic response could be well identified by 18F-FDG PET imaging. Combination therapy induced redox stress, manifesting as a decrease in mitochondrial membrane potential and an increase in ROS levels, and energetic stress manifesting as suppression of glycolysis and glutamine degradation. The phosphorylation of AKT was also suppressed. These effects combined to induce autophagy and thereby caused cancer cell death. Our results suggest that dual inhibition of the MEK-ERK pathway and glutamine metabolism activated by KRAS mutation may be an effective treatment strategy for KRAS-driven NSCLC.

Introduction

Uncontrolled uptake of glucose and amino acids is an important part of tumor metabolic reprogramming, which is a hallmark of cancer [1]. As a conditional non-essential amino acid, normal cells have no dependence on glutamine, while cancer cells, especially KRAS-mutant driven cancer cells [2], uptake glutamine frantically to meet bioenergetic and biosynthetic demands [3]. Compared with targeting glucose metabolism, targeting glutamine metabolism can inhibit cancer cell proliferation on the basis of reducing the impact on normal cells. Metabolism-based imaging such as 18F-fluoro-2-deoxyglucose (18F-FDG) positron emission tomography (PET), an advanced method of evaluating tumor glucose metabolism in preclinical and clinical studies, has been used to evaluate the overall metabolic activity of tumors and the treatment response in the early stages [4-6]. Furthermore, glutamine metabolism imaging using 18F-(2S,4R)-4-fluoroglutamine (18F-Gln) is under active preclinical investigation [7-9].

Beginning with glutaminase (GLS) catalyzed decomposition, glutamine provides nitrogen for the synthesis of nucleic acids, promotes the synthesis of antioxidant glutathione (GSH) to maintain redox homeostasis, and replenishes α-ketoglutarate (α-KG) for the tricarboxylic acid cycle (TCA) [3]. CB839 is an efficient GLS1 inhibitor, which can increase the radiation sensitivity of KRAS-driven NSCLC [10]. Furthermore, CB839 synergistically sensitized the BCL-2 inhibitor in leukemic cells through activation of mitochondrial apoptosis [11].

KRAS-driven cancer cells are addicted to glutamine [12,13], and in KRAS-driven NSCLC, the expression of GLS mRNA was higher than that of other mutant types [14]. Selumetinib, an inhibitor targeting the RAS-ERK pathway, significantly prolonged median progression-free survival (PFS) when combined with docetaxel in the phase 2 study [15]. Regrettably, the addition of selumetinib to docetaxel did not improve PFS compared with docetaxel alone in multinational phase 3 study [16]. There are still no specifically approved targeted therapies for this most common genetically defined subset. In preclinical study, pulsatile administration [17] or in combination with palbociclib [18], enhanced the anti-tumor effect of selumetinib in KRAS-driven NSCLC. MAPK inhibitor resistant cells showed more dependent on glutamine for growth and proliferation, selumetinib resistant melanoma cell lines had increased sensitivity to glutamine deprivation and glutaminase inhibitors than their sensitive counterparts [19].

To capitalize on the link between MEK signaling and glutamine metabolism in KRAS-mutant NSCLC, we evaluated the baseline glu-
tamine metabolism in KRAS- mutant NSCLC, inhibited GLSI to synergistically sensitize KRAS- mutant NSCLC to selumetinib in vitro and in vivo, and assessed therapeutic response by 18F-FDG PET imaging. Furthermore, we evaluated the redox and energetic stress induced by dual inhibition of MEK and GLSI, and preliminarily explored the mechanism of synergistic sensitivity.

Materials and methods

Cell culture

Human NSCLC KRAS-mutant cell lines A549, H23, H2122, KRAS wild-type cell line H1299, H838 and the human bronchial epithelial (HBE) cell line were obtained from the Stem Cell Bank, Chinese Academy of Sciences. A549 cells were cultured in DMEM/F12 1:1 medium (Hyclone, Logan, UT, USA), while H23, H2122, H1299, H838 and HBE cells were cultured in RPMI-1640 medium (Hyclone, Logan, UT, USA) supplemented with 10% fetal bovine serum (FBS, Clar BioScience, Houston, Texas, USA) at 37 °C and 5%CO2. In glutamine deprivation testing, NSCLC cells were cultured in RPMI-1640 without glutamine (Gibco, NY, USA) for 24 h.

Chemicals and antibodies

CB839 and selumetinib (AZD6244) were purchased from Selleckchem (Houston, TX, USA). For cellular studies, drugs were dissolved in dimethyl sulfoxide (DMSO), and for xenograft experiments, drugs were dissolved in 10% CMC–Na solution. The antibodies against GLS, Glut1, PKM2, MEK, ERK1/2, AKT, p-ERK1/2, p-AKT were obtained from Abcam (Cambridge, UK). The antibodies against p62, p-ULK1, p53 were obtained from Cell Signaling Technology (Danvers, MA, USA). The antibody against β-actin was obtained from Boster Biological Technology (Wuhan, China).

Cell viability and drug combination assay

Cells were cultured in 96-well plates (2000 cells/well) for 24 h, and were treated with the indicated concentrations (range from 10 to 105 nM) of CB839, selumetinib, or both drugs in combination for 72 h. Cell viability was measured using the Cell Counting Kit 8 (CCK8, Dojindo Laboratories, Tokyo, Japan) and microplate reader (Thermo Fisher Scientific, Waltham, MA, USA) at the 450 nm wavelength. The half maximal inhibitory concentration (IC50) and 10% inhibitory concentration (IC10) were calculated by Probit analysis. Combination index (CI) data were obtained using CompuSyn software (CompuSyn, Inc., Paramus, NJ, USA). CI values <1 indicated a synergistic drug-drug interaction, while CI values >0.3 indicated a strong synergistic effect.

Cell proliferation assay

After 72 h of drug treatment, cell proliferation was evaluated using the YF594 Click-IT Edu Imaging Kit (Everbright, California, USA) according to the manufacturer's protocol. For the colony formation assay, cells treated by different drugs were seeded into 6-well plates at a density of 400 cells per well. After culturing in the cell incubator (37 °C, 5% CO2) for 14 days, the cells were fixed in 70% ethanol and then stained with crystal violet.

Cell metabolism assay

To evaluate the changes in cell metabolism, cellular lactate, ATP, glutamate production, and glucose consumption were determined. According to the manufacturer's instructions, relative cellular ATP content was measured using an ATP assay kit (Beyotime, Shanghai, China), while the levels of lactate and glutamate in the external medium were measured using a lactic acid assay kit (KeyGEN, Nanjing, China) and a glutamate assay kit (Jiancheng, Nanjing, China). 18F-FDG cellular uptake can reflect the glucose consumption of cells. After exposure to 18F-FDG at a final concentration of 4 μCi/mL in medium at 37 °C and 5% CO2 for 60 min, the radioactivity of the whole-cell lysates was assessed by γ counter. These readouts were normalized by the amount of the corresponding protein.

Mitochondrial membrane potential and reactive oxygen species (ROS) assay

The mitochondrial membrane potential was evaluated using JC-1 Assay Kit (Beyotime, Shanghai, China) and images were analyzed by Image J. ROS levels were evaluated using ROS Assay Kit (Beyotime, Shanghai, China) and detected by a fluorescence microplate reader (Thermo Fisher Scientific, Waltham, MA, USA). The readouts were normalized by the amount of cell numbers.

Cell transfection

The A549 cell line was transfected with small interfering RNA (siRNA) against KRAS or negative control (RiboBio, Guangzhou, China), denoted as siRNA KRAS, siRNA NC (siRNA sense: 3′-GGACGAATATGATCACAAC-5′). The H2122 cell line was transfected with the KRAS plasmid or pcmV6 Entry vector (RiboBio, Guangzhou, China), denoted as KRAS OE, KRAS NC. Transfection was performed using riboFECT™ CP Transfection Agent (RiboBio, Guangzhou, China) with a 50 nM concentration following the manufacturer's protocol.

Western blotting analysis

Total protein was extracted from cells using RIPA buffer (Beyotime, Shanghai, China) and protein concentration was measured by the BCA Protein Assay Kit (Beyotime, Shanghai, China). Protein lysates were separated by SDS-PAGE and then transferred to polyvinylidene difluoride (PVDF) membranes. The PVDF membranes were incubated with the primary antibodies at 4 °C overnight after blocking for 2 h with 5% skim milk. Following incubation with the secondary antibody (1:5000, ZSJO Biosciences, Beijing, China), the blots signals were captured by Bio-Rad Image System using ECL Advanced Western Blot Detection Kit (Thermo Fisher Scientific, Waltham, MA, USA), and then analyzed using Image Lab software (Bio-Rad).

Xenograft experiments and PET imaging

Female BALB/ct nude mice (5 week old) were injected subcutaneously into the right back with A549 cells or H1299 cells (1 × 107 cells). Tumor volume was calculated as: \(\text{volume} = \text{length} \times \text{width}^2 \times 2 \). To evaluate the metabolic baseline levels of glutamine, 3 mice injected A549 cells and 3 mice injected H1299 cells underwent PET/CT (United imaging uPMR790, Shanghai, China) imaging with 18F-Gln and 18F-FDG on consecutive days. Coronary T1, T2, and T2-FLAIR images were collected. To evaluate the efficacy of drugs, when tumor volumes reached approximately 200–300 mm3, the mice were randomly assigned to one of four groups (5 mice per group) and treated via oral gavage twice per day for six days as follows: control (vehicle alone, 10% CMC–Na solution), selumetinib (25 mg/kg), CB839 (200 mg/kg), selumetinib (25 mg/kg) + CB839 (200 mg/kg). Before and after therapy, mice underwent micro-PET (Madic, Shandong, China) imaging with 18F-FDG. Static PET images were collected. Mice were injected via lateral tail vein with radiolabeled probe (300 μCi per mouse), underwent 60 min uptake and image acquisition under 2% isoflurane anesthesia. Animal studies were in compliance with the Guide for the Care and Use of Laboratory Animal Resources (1996), National Research Council and approved by the China Medical University Animal Ethics Committee (IACUC Issue No.2019079). All procedures accepted the supervision and inspection by the committee and laboratory animal department.
Immunohistochemical analysis (IHC)

The following primary antibodies were used: GLS (1:100), Glut1 (1:200), MEK (1:100), ERK1/2 (1:100), p-ERK1/2 (1:200), AKT (1:100), p-AKT Ser472 (1:100), P62 (1:1000). The mean of the integrated option density (IOD) was calculated using Image-Pro Plus 6.0 (Media Cybernetics, Inc., Bethesda, MD, USA).

Statistical analysis

Statistical analysis was performed using GraphPad Prism 7.0 (GraphPad Software, Inc., La Jolla, CA, USA) and SPSS 19.0 (SPSS, Inc., Chicago, IL, USA). One-way ANOVA or the Student’s t-test was used to measure differences between groups. CI were presented as median (P25, P75), other data were presented as mean±SD. A p-value<0.05 was considered statistically significant (*p<0.05, **p<0.01, ***p<0.001).

Results

NSCLC with and without KRAS mutation showed differences in baseline glucose and glutamine metabolism

To confirm that NSCLC with KRAS mutation has glutamine addiction, we evaluated baseline glucose and glutamine metabolism in A549(KRAS-mutant), H1299(KRAS-wild-type) and HBE cell lines. The expression of GLS, the key enzyme for glutamine degradation, in A549 cells was higher than that in H1299 cells, while the expression of enzymes related to glucose metabolism such as GLUT1 and PKM2 in A549 cells was lower than that in H1299 cells (Fig. 1A). We next performed coronal PET/MR imaging in A549 and H1299 mouse xenografts with 18F-FDG and 18F-Gln radiotracers on consecutive days and calculated units of percent injected dose per gram (%ID/g) (Fig. 1B-C, S1). The results demonstrated that A549 xenografts had higher glutamine and lower glucose uptake than H1299 xenografts. When glutamine was deprived (by culturing in medium without glutamine or treatment by CB839 for 24 h), cell proliferation of A549 was significantly inhibited, while glutamic acid was added, this effect could be rescued (Fig. 1D). Under identical culture conditions, KRAS was knockdown in A549 cell and overexpressed in H1299 cell. After the knockdown of KRAS in A549 cell, the expression of GLS1 was significantly decreased, while that was significantly increased in H1299 cell when KRAS was overexpression (Fig. 1E). As another crucial regulator of GLS1 expression, the change trend of c-Myc was consistent with that of GLS1 when KRAS was knockdown or overexpressed (Fig. 1E).

CB839 synergized with selumetinib to inhibit proliferation of KRAS-mutant NSCLC cells

The CCK8 assay was performed to test whether CB839 would synergize with selumetinib to inhibit cell proliferation. KRAS-mutant cells A549, H23, H2122 and the KRAS wild-type cell line H1299, H838 were treated with selumetinib, CB839, or a combination of both at esca-
Fig. 2. CB839 synergized with selumetinib to inhibit proliferation of KRAS-mutant NSCLC cells. KRAS-mutant cells A549, H23, H2122 and the KRAS wild-type cell line H1299, H838 were treated with selumetinib, CB839, or a combination of both at escalating doses that ranged from 10 to 10^5 nM for 72 h. Subsequent cell proliferation experiments were carried out according to the following combinations and drug doses: control, selumetinib (SE, \(\frac{1}{2} \) IC\(_{50}\) concentration), CB839 (CB, IC\(_{10}\) concentration), and selumetinib+CB839 (SE + CB IC\(_{50}\) concentration + CB IC\(_{10}\) concentration). (A) CCK8 assay of A549,H23 and H1299 cells treated with monotherapy or a combination of selumetinib and CB839. (B) The combination index (CI) plots of selumetinib and CB839 in A549, H23, and H1299 cells. CI values <1 indicated a synergistic drug-drug interaction. CI values <0.3 indicated a strong synergistic effect. (C) IC\(_{50}\) of selumetinib, CB839 alone, and selumetinib combined with CB839. (D) Fold change of IC\(_{50}\) of selumetinib when combined with CB839. (E) Edu assay of cell proliferation of A549 and H1299 cells to test the short-term response to the combination therapy. (200x) (F) The colony formation assay of A549 and H1299 cells to test the long-term response. CI were presented as median (P25, P75), other data were presented as mean ± SD from three independent experiments. A p-value <0.05 was considered statistically significant (*p<0.05, **p<0.01, ***p<0.001; in red: compared with SE group, in green: compared with CB group).
Fig. 3. Combination therapy inhibited tumor growth in the KRAS-mutant NSCLC xenograft and the therapeutic response could be identified by 18F-FDG PET imaging. When tumor volumes reached approximately 200–300 mm³, mice were randomly assigned to one of four groups (5 mice per group) and treated via oral gavage twice per day for six days acutely: control (vehicle alone), selumetinib (25 mg/kg), CB839 (200 mg/kg), selumetinib (25 mg/kg)+CB839 (200 mg/kg). (A) A representative micro-PET imaging of mouse bearing A549 xenografts with 18F-FDG pre- and post-treatment. Tumors are indicated by arrows. (B) Quantification of 18F-FDG uptake represented as fold change of SUV_max pre- and post-treatment. Data were presented as mean±SD (n=5). A p-value <0.05 was considered statistically significant (∗p<0.05, ∗∗p<0.01, ∗∗∗p<0.001; ‘< in black: compared with control group, ‘> in red: compared with SE group, ‘> in green: compared with CB group).

Complementation therapy inhibited tumor growth in the KRAS-mutant NSCLC xenograft and the therapeutic response could be identified by 18F-FDG PET imaging

We next tested the efficacy of SE+CB combination therapy compared with monotherapy on A549 and H1299 mouse xenografts. When tumor volumes reached approximately 200–300 mm³, mice were randomly assigned to one of four groups (5 mice per group) and treated via oral gavage twice per day for six days acutely: control (vehicle alone), selumetinib (25 mg/kg) [20], CB839 (200 mg/kg) [21,22], selumetinib (25 mg/kg)+CB839 (200 mg/kg) Monotherapy and combination therapy induced significant tumor regression compared to vehicle (Fig. 3). In A549 xenografts, combination therapy induced a significantly larger reduction in tumor volume than either selumetinib or CB839 alone, while in H1299 xenografts, combination therapy did not provide added benefit when compared with monotherapy (Fig. 3B). Before and after therapy, mice underwent micro-PET imaging with 18F-FDG to evaluate the therapeutic response from a metabolic perspective. As shown in Fig. 3C, micro-PET scans of A549 and H1299 xenografts showed efficient uptake of 18F-FDG in tumors before therapy, while monotherapy and combination therapy significantly inhibited the uptake of 18F-FDG in tumors. With reference to the European Organization for Research and Treatment of Cancer (EORTC) criteria of solid tumors [23], a decrease in maximum standardized uptake value (SUV_max) greater than 25% is defined as partial metabolic remission (PMR). Overall, 40% (2 in 5) of A549 xenografts treated by selumetinib alone achieved the PMR, while 100% (5 in 5) of A549 xenografts receiving SE+CB treatment achieved PMR (Fig. 3D). Meanwhile, in H1299 xenografts, CB839 induced less decrease in 18F-FDG uptake than selumetinib, which was equal to that of combination therapy (Fig. 3D). The ratio of SUV_max pre- and post-therapy closely mirrored the fold change in tumor volume, implying that the therapeutic response could be identified by 18F-FDG PET imaging.

Combination therapy induced redox and energetic stress

In the metabolic assay, IC10 concentration of selumetinib and CB839 were used. When the mitochondrial membrane potential decreases, the fluorescence of JC-1 staining changes from red to green. After a 72 h drug treatment, the green/red fluorescence ratio increased, demonstrating that the mitochondrial membrane potential decreased after selumetinib and combination therapy in the KRAS-mutant NSCLC (Fig. 4A). ROS levels also increased in all treatment groups, and the increase in combination therapy was significantly greater than that following
monotherapy (Fig. 4B). We next examined cellular glucose consumption and lactate, ATP, and glutamate production of A549 and H1299 cells. 18F-FDG uptake was used to evaluate the glucose uptake capacity in vitro. Selumetinib alone or combined with CB839 reduced the consumption of glucose (Fig. 4C) and the production of lactate (Fig. 4D) and ATP (Fig. 4E) in both A549 and H1299 cells. Combination therapy induced a significantly sharper change compared with selumetinib alone only in A549 cells (Fig. 4C-E). The degradation of glutamine decreased when GLS1 was inhibited by CB839 (alone or with selumetinib) (Fig. 4F), implying that the nitrogen supply from glutamine was suppressed. In A549 xenografts, the expression of GLS decreased when mice were treated by CB839 (alone or in combination with selumetinib) (Fig. 4G), such a decrease in GLS1 level was probably associated with a decrease in the metabolic activity of the tumor after treatment which was reflected by 18F-FDG PET imaging. The reduced expression of GLUT1 could only be found in the SE+CB treatment group (Fig. 4G). The results of IHC were consistent with the results of micro-PET imaging. Interestingly, the expression of GLS analyzed by western blotting moderately declined following selumetinib treatment in vitro, while GLS expression was equal to the control group in vivo (Fig. 5A). Taken together, the above results suggested that combination therapy induced redox and energetic stress in the KRAS-mutant A549 cell line in vitro and in vivo.

Dual inhibition of MEK and GLS1 suppressed the phosphorylation of AKT and induced autophagy in vitro and in vivo

AKT activation bypassing MEK signally was one of the main reasons that KRAS-mutant NSCLC cells developed intrinsic resistance to MEK inhibition [24], and the activity of mTORC1, a negative regulator of autophagy, is regulated by AKT [25]. Considering that combination therapy had created a microenvironment characterized by redox and energetic stress, we evaluated the phosphorylation status of ERK, AKT, and the expression of autophagy biomarker p-ULK1, p62 to investigate the mechanism by which dual inhibition of MEK and GLS1 was more effective in KRAS-mutant NSCLC cells. The phosphorylation of ERK was inhibited by selumetinib and that of AKT was promoted compensatorily, while the phosphorylation of ERK and AKT was significantly suppressed by dual inhibition of MEK and GLS1 in A549 cell and xenografts (Fig. 5A-B). At the same time, the phosphorylation of autophagy positive regulator ULK increased and the level of autophagy substrate P62 decreased following combination therapy (Fig. 5A-B). Collectively, our results implied that dual inhibition of MEK and GLS1 suppressed the activation of PI3K-AKT-mTOR pathway, induced autophagy in the tumor microenvironment characterized by redox and energetic stress, and ultimately led to tumor cell death.
Fig. 5. Dual inhibition of MEK and GLS1 suppressed the phosphorylation of AKT and induced autophagy in vitro and in vivo. (A) Western blotting analysis to evaluate the phosphorylation level of ERK, AKT and the expression of p-ULK1, P62, GLS, GLUT1 and MEK in A549 cell line. (B) Representative IHC images from tumors staining for ERK, p-ERK, AKT, p-AKT, and P62 in A549 xenografts (400x). Quantification of the mean IOD (n = 3–15 fields of view). Data were presented as mean±SD. A p-value <0.05 was considered statistically significant (*p<0.05, **p<0.01, ***p<0.001).

Discussion

In this study, we confirmed that glutamine uptake of NSCLC with KRAS mutation was higher than that of KRAS wild-type. Regulated by the tumor microenvironment, the metabolic network of the tumor is reprogrammed, driven by oncogenes and tumor suppressor genes such as KRAS [26], c-Myc [27], and TP53 [28]. The metabolic phenotype of tumors of different driven-genes and different tissue types is extremely heterogeneous. How tumors obtain nutrition is speculative, even in a specific tumor lesion, the potential contributions of glucose and non-glucose nutrients differ in poor- and well-perfused tumor areas [29].

In addition to targeting mutation sites, activation pathways and immune mechanisms, targeting cancer metabolism have emerged as a hot topic. Targeted metabolic therapy has many targets available including key enzymes (GLUT1, HK2 etc.), product (lactic acid, ROS etc.) and organelles (mitochondria). Some tumors are dependent on specific metabolic processes, and targeting the sweet spot always brings a gratifying effect. For example, JHU083, a glutamine antagonist, metabolically dismantled the immunosuppressive microenvironment and improved the efficacy of anti-PD-1 agents [30]. Currently, targeting glutamine mainly involves targeted inhibition of key enzymes such as GLS1 and ASCT2. The expression or activity of GLS1 increases in the lung, liver [31], breast cancer [32] etc. Drugs targeting GLS1 include BPTES [33], CB839 [34,35], and UPGL00004 [36]. As a potent GLS1 inhibitor, CB839 increased the sensitivity of IDH1-mutant gliomas to mTOR inhibitors [37], suppressed the proliferation of NSCLC when combined with THZ1, an inhibitor of cyclin-dependent kinase 7 (CDK7) [38], synergized with signal transduction pathway inhibitors such as erlotinib, pazopanib, and everolimus in several renal cell carcinoma and NSCLC cell lines [39]. In early phase clinical trials, CB839 showed well safety and tolerability, it was absorbed rapidly (T_{max} 1–2 h fasted and 2–4 h fed) and cleared with a half-life of about 4 h, plasma C_{max} was >450 nM at steady state at the recommended phase 2 dose (RP2D) of 600 mg BID [40]. Clinical trials combining CB839 with targeted therapies, such as palbociclib in advanced/metastatic NSCLC with KRAS mutation (NCT03965845), osimertinib, sapanisertib in advanced stage...
NSCLC (NCT03831932,NCT04250545) are ongoing. Besides, phase I/II trial on PET/CT imaging biomarkers of C8839 in combination with pani-
tumumab and irinotecan in patients with colorectal cancer has also been
started and are currently recruiting patients (NCT03263429).

KRAS-driven tumors rewire metabolic networks. KRAS4A colocalizes
with HK1 on the outer mitochondrial membrane to directly regulate glu-
cose metabolism [41]. KRAS mutation accompanied by additional mu-
tations present different degrees of glutamine dependence. LKB1 and
KEAP1/NRF2 pathways cooperatively enhanced glutamine dependence in
KRAS-mutant lung adenocarcinoma [42], it explained to a certain ex-
tent why the A549 (KRAS,LKB1,KEAP1 mutant) cell line was more sen-
tive to combination therapy than the H23 (KRAS,LKB1 mutant) cell line.
Metabolic interfering drugs can be attempted to tackle KRAS mu-
tant cancers with sufficient consideration of the mutation background,
the tissue types and the crosstalk between the tumor and the microen-
vironment [43].

Selumetinib is an effective and highly selective MEK inhibitor and
inhibitor of phosphorylation of ERK. Selumetinib was absorbed rapidly
(T_max 1 h) and cleared with terminal elimination half-life of about 6 h,
plasma t_1/2 was 886 ng/ml at dose of 25 mg/m^2 BID, the most com-
mon toxic effects of it included acneiform rash, gastrointestinal effects
and asymptomatic creatine kinase elevation (NCT01362803) [44]. Cli-
nical trials combining selumetinib with paclitaxel as second-line treat-
ment (NCT02503358) and small molecule inhibitor such as vandetanib
(NCT01586624), gefitinib (NCT02025114) in NSCLC are ongoing. The
PI3K-AKT-mTOR pathway is a considerable pathway involved in cell
proliferation and energy metabolism. AKT activation bypassing MEK is
one of the main reasons that KRAS-mutant NSCLC cells developed in-
trinsic resistance to selumetinib [24]. In this study, the phosphorylation of
AKT increased compensatorily when given selumetinib monotherapy
both in vivo and in vitro and was suppressed in combination therapy. We
showed that combination therapy induced a decrease in mitochondrial
membrane potential and an increase in ROS levels, suppressed glycoly-
sis, and glutamine degradation. In a microenvironment characterized by
redox and energetic stress induced by combination therapy, the activity of
the negative autopsy regulator mTORC1 decreased and induced auto-
phagy, manifesting as an increase in the phosphorylation of autophagy
positive regulator ULK and a decrease in the level of autophagy substrate
P62, resulting in cell death.

Changes in tumor metabolism can be monitored in vivo by molecu-
lar imaging methods, so-called immunohistochemistry in vivo. PET is a
representative of molecular imaging. By labeling specific molecules in
tumor metabolism or pathophysiological changes with radionuclides,
PET can show the molecular mechanism of the disease in vivo. 18F-FDG
(18F labeled glucose analogs) is the most commonly used radiotracer in
clinical practice. Based on the Warburg effect [45], means tumors
tend to undergo aerobic glycolysis, tumor cells undergo vigorous and
continuous glucose uptake and utilization, appearing as abnormal accu-
mulation of 18F-FDG on the image. 18F-FDG PET imaging plays an im-
portant role in tumor diagnosis, staging, therapeutic effect evaluation,
recurrence monitoring, and prognostic evaluation [46]. In this study, we
used micro-PET imaging with 18F-FDG to evaluate the therapeutic re-
sponse from a metabolic perspective. Before therapy, xenografts of both
KRAS-mutant and wild type showed efficient uptake of 18F-FDG. Con-
sidering the requirements of animal ethics, we referred to the EORTC
criteria rather than RECIST 1.1 (requiring that the diameter and length
of the measurable lesion to be ≥20 mm) criteria [47] to perform ther-
apeutic effect evaluation by imaging studies. According to the EORTC
criteria, when the 18F-FDG uptake of lesions is same as the surrounding
normal tissues, this defines a complete remission (CR), when the de-
screase in SUV greater than 25%, it is defined as PMR [23]. All (100%,
5 in 5) A549 xenografts receiving SE-CB treatment achieved a PMR.
Furthermore, the ratio of SUV_max pre- and post-therapy closely mir-
rored the fold change in tumor volume and the result of IHC, implying
that therapeutic response could be well identified by 18F-FDG PET
imaging.

In conclusion, targeted inhibition of GLS1 synergized with selume-
tinib to enhance antitumor activity in KRAS-mutant NSCLC, the ther-
apeutic response could be well identified by 18F-FDG PET imaging.
This combination therapy induced redox and energetic stress and sup-
pressed the phosphorylation of AKT. These effects combined to induce
autophagy, resulting in cell death. Targeting the pathways and addicted
metabolism activated by the KRAS mutation, and using PET imaging to
dynamically monitor therapeutic efficacy may be a feasible model for
NSCLC tumor management.

Author contribution

Meng Xia: Experimental design, investigation, data curation, valida-
tion and writing manuscript.

Xuena Li: Experimental design.

Yao Diao: Assisted the animal imaging.

Bulin Du: Experimental design.

Yaming Li: Experimental design, Supervision and Funding acquisi-
tion.

All authors read and approved the final manuscript.

Declaration of Competing Interest

The authors declare they have no competing interests.

Acknowledgments

We are grateful to Prof. Zhi Yang from Department of Nuclear Medicine, Peking University Cancer Hospital; Prof. Hank F. Kung from Department of Radiology, University of Pennsylvania School of Medicine and Prof. Lin Zhu from Key Laboratory of Radiopharmaceuti-
cals, Ministry of Education, Beijing Normal University for their kindly
assistance in synthesis of 18F-Gln.

Funding

This work was supported by the National Natural Science Foundation
of China [Grant No. 81971652,81771868].

Supplementary materials

Supplementary material associated with this article can be found, in
the online version, at doi:10.1016/j.tranon.2020.100920.

References

[1] N.N. Pavlova, C.B. Thompson, The emerging hallmarks of cancer metabolism, Cell.
Methab. 23 (2016) 27–47.
[2] R. Romero, V.I. Sayin, S.M. Davidson, M.R. Bauer, S.X. Singh, S.E. LeBoeuf,
T.R. Karakousi, D.C. Ellis, A. Bhutkar, F.J. Sánchez-Rivera, L. Subbaraj, B. Martínez,
R.T. Bronson, J.R. Frige, E.E. Schmidt, C.J. Thomas, C. Goparaju, A. Davies, I. Dol-
galev, A. Hegen, V. Alajl, J.T. Poizier, A.L. Moreira, C.M. Rudin, H.I. Pass, M.G. Van-
der Heiden, T. Jacks, T. Papagiannakopoulos, Kepap loss promotes KRAS-driven
lung cancer and results in dependence on glutaminolysis, Nat. Med. 23 (2017)
1362–1369.
[3] E. Bernfeld, D.A. Foster, Glutamine as an essential amino acid for KRAS-driven can-
cer cells, Trends Endocrinol. Metab. 30 (2019) 357–368.
[4] M.P. Morelli, J.T. Tentler, G.N. Kulikovski, A.C. Tan, E.L. Bradshaw-Pierce,
T.M. Pitts, A.M. Brown, S. Nallapareddy, J.J. Arcaroni, N.J. Serkova, M. Hidalgo,
F. Ciardiello, S.G. Eckhardt, Preclinical activity of the rational combination of
selumetinib (AZD6244) in combination with vorinostat in KRAS-mutant colorec-
tal cancer models, Clin. Cancer Res.: Off. J. Am. Assoc. Cancer Res. 18 (2012)
1051–1062.
[5] L. Evangelista, L. Cuppari, J. Menis, L. Bonanno, P. Reccia, S. Frega, G. Pasello,
18F-FDG PET/CT in non-small-cell lung cancer patients: a potential predictive
biomarker of response to immunotherapy, Nucl. Med. Commun. 40 (2019) 882–807.
[6] K. Ito, R. Teng, H. Schneider, J.L. Humm, A. Ni, L. Michaud, R. Nakajima, R. Ya-
mashita, J.D. Wolchock, W.A. Weber, (18)F-FDG PET/CT for monitoring of ipili-
mumab therapy in patients with metastatic melanoma, J. Nucl. Med. 60 (2019)
335–341.
M. Xia, X. Li, Y. Diao et al.

Translational Oncology 14 (2021) 100920

[7] H. Z. H. Liu, Y. Zhang, Y. J. Yang, X. Xu, X. Guo, T. Liu, N. L. Zhu, H. F. Kung, Y. Zhang, (2013). e188/fluorouracil as a PET indicator for bone marrow metabolism dysfunctional: from animal experiments to clinical application. Mol. Imaging and Biodistribution. doi:10.1007/s11307-012-0502-y.

[8] H. Z. H. Liu, X. Xu, H. Z. Zhang, Y. Yang, L. Zhang, N. L. Zhu, H. F. Kung, Y. Zhang, PET imaging of (18F)-2-(4-R)-fluorouracil accumulation in breast cancer: from xenografts to patients, Mol. Pharmacol. 2015 (18) 3448–3455.

[9] H. Z. H. Liu, F. Yang, L. Wang, X. L. Wu, T. D. R. Wire, L. A. Chadock, G. Belka, C. B. Thompson, H. F. Kung, PET imaging of glutaminase inhibition in tumors by 18F-(2R,4R)-fluorouracil, J. Nucl. Med. 52 (2011) 1947–1955.

[10] G. Boysen, A. Jamshidi-Farsani, M.A. Davis, E.R. Siegel, C.M. Simecka, R.A. Kore, R.P. M. Ding, B.J. Griffin, Glutaminase inhibitor CB393 increases radiation sensitivity of lung tumors and human lung tumor xenografts in mice, Int. J. Radiat. Biol. 95 (2019) 436–442.

[11] N. Jacque, A.M. Ronchetti, C. Lарre, G. Meunier, R. Biesen, L. Willems, E. Sandal, D. Blumberg, X. Neuman, C. Masmoudi, M.A. Hospital, S. Boukler, L. Joseph, N. Chappuis, C. Lacombe, L. Moura, S. Demo, J. E. Sarry, C. Recher, P. Meyeux, J. Tamburini, D. Bouscaray, Targeting glutaminolysis has anti-inflammatory activity in acute myeloid leukemia and synergizes with BCL-2 inhibition, Blood 126 (2015) 1346–1356.

[12] T. Wang, H. Yu, N.W. Hughes, B. Liu, A. Kendri, K. Klein, W.W. Chen, E.S. Lander, D.M. Sabatini, Gene essentiality profiling reveals genes network and synthetic lethal interactions with oncogenic ras, Cell 166 (2016) 890–903.e13.

[13] C.C. Wong, J. Xu, X. Bian, J.L. Wu, W. Kang, Y. Qin, W. Li, H. Chen, H. Gou, D. Liu, S.T. Yat Lok, Q. Zhou, F. Ji, L.S. Chan, S. Shirasawa, J.A. Sung, J. Yu, In colorectal cancer cells with mutant KRAS, SLC2A5/22–mediated glutaminolysis reduces DNA demethylation to increase WNT signaling, Stemness, Drug Resist. Gastroen. Cancer 2020, doi:10.2478/s13880-020-00334-0.

[14] T.W.H. Meijer, M.G. Looijen-Salamon, J. Lok, M. van den Heuvel, B. Tops, J. Kaand , P.N. Span, J. Bussink, Glucose and glutamine metabolism in relation to matura- tional status in NSCLC histological subtypes, Thorac. Cancer 10 (2019) 2289–2299.

[15] P.A. Wang, A.T. Smith, D. Pereira, C. Barbieri, F.A. Franke, L. Grinsted, V. Zazzula, P. Smith, I. Smith, L. Crinó, Selumetinib plus docetaxel for KRAS mutant advanced non–small-cell lung cancer: a randomized, multicenter, placebo-controlled, phase 2 study, Lancet Oncol. 14 (2013) 38–47.

[16] P.A. Jimm, M. van den Heuvel, F. Barlesi, M. Colon, J. Mazieres, L. Crinó, S. Orlov, F. Blackhall, J. Wolf, P. Garrido, A. Poltoratskyy, G. Mariani, D. Ghiorghiu, E. Kigour, P. Smith, A. Kohlmann, D. J. Carville, D. Lawrence, B. Koren, Van, Vastenisteek, Selumetinib plus docetaxel compared with docetaxel alone and progression-free survival in patients with KRAS–mutant advanced non–small-cell lung cancer: the SELECT–1 randomized clinical trial, JAMA 317 (2014) 1844–1853.

[17] H. Choi, J. Deng, S. Li, T. Silk, D. Long, E.J. Brea, S. Houghton, D. Redmond, J. Zhou, M. Zhao, P. Bockhold, K. Ahaby, P.H. Green, E. Kohn, P.D. Wolchok, Pulsatile MEK inhibition improves anti-tumor immunity and T cell function in murine KRAS mutant lung cancer, Cell Rep. 27 (2019) 806–819.e805.

[18] J. Zhou, S. Zhang, X. Chen, X. Zheng, Y. Zhao, G. Lu, J. Zhau, P. Bolkovich, a selective CDK4/6 inhibitor, enhances the effect of selumetinib in KRAS-driven non–small-cell lung cancer, Cancer Lett. 408 (2017) 130–137.

[19] J.E. Hernandez-Davies, T.Q. Tran, M.A. Reid, K.R. Rosales, X.H. Lowman, M. Pan, G. Morieau, Y. Yang, J. Wu, R. L. Mo, K. Meng, V. Murzín. Resilience reprogram Cancer cells towards resistance to mitomycin D through the regulation of glucosamine transporters, Oncotarget 8, 19131–19143, 2017. A selective CDK4/6 inhibitor, synergizes with signal transduction pathway inhibitors to enhance anti-tumor activity. (abstract), in: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18–22; Philadelphia, PA. Philadelphia: AACR; Cancer Res. 2015, Abstract nr. 1073.

[20] J.J. Harding, M.L. Teli, P.N. Munster, M.L. Ce, M. C. Lamine, M. Bennett, E. Mitra, H.A. Burrus, A.S. Clark, M. Dunphy, F. Meric-Bernstam, M. Patel, A. DeMichele, J.R. Infante, Safety and tolerability of increasing doses of CB393, a first-in-class, orally administered small molecule inhibitor of glutaminase, in solid tumors, J. Clin. Oncol. 33 (2015) 2512–2512.

[21] R.C. Amendola, J.P. Mahaffey, S.J. Parker, M.L. Ahearn, W.C. Chen, M. Zhou, H. Court, J. Shi, S.L. Mendoza, M.J. Morton, E. Rothenberg, E.G. Gottlieb, V.Z. Wadghiri, R. Posanne, S.R. Hubbard, A. Balmann, A.C. Kimmelman, M.R. Philips, KRAS4A directly regulates hexokinase I, Nature 576 (2019) 482–486.

[22] A. Galan-Cobo, P. Sithideethapallon, X. Qu, A. Poteete, M.A. Pisegna, P. Tong, P.H. Chen, L.K. Boroughs, M.L.M. Rodriguez, W. Zhang, F. Parlati, J. Wang, V. Garcia, F. Skondilis, H.J. DeBerardinis, D.J. Minna, J.V. Heymach, LKB1 and KEAP1/NRF2 pathways cooperatively promote metabolic reprogramming with enhanced glutaminolysis in KRAS–mutant lung adenocarcinoma, Cancer Res. 80 (2020) 5526–5536.

[23] E. Pupo, D. Avanzato, E. Middonti, F. Bussolino, L. Lanzetti, KRAS–driven metabolic rewiring reveals novel actionable targets in cancer, Front. Oncol. 9 (2019) 848.

[24] E. Komil, A. Baldwin, L.J. Marcus, M.J. Fisher, B. Weis, A. Kim, P. Whitcomb, S. I. M. Le, A. Schachterbeek-Smith, T. Avi, J. Wu, B. Eshler, P. Frents, J. Thierr, J. Gild, B.J. Belasco, E. Schorcy, A. Broffier, A.J. Starosta, A. Gillespie, A.L. Doyle, N. Ratner, B.C. Widmann, Activity of selumetinib in neurofibromatosis type I–related plexiform neurofibromas, N. Engl. J. Med. 375 (2016) 2550–2560.

[25] M. Liberti, L.W. Lockman, E. Whitney, Does cancer therapy effect: how does it benefit cancer cells? Trends Biochem. Sci. 41 (2016) 211–218.

[26] M.D. Farwell, D.A. Pryma, D.A. Mankoff, PET/CT imaging in cancer: current applications and future directions, Cancer Res. 2012 (14) 3433–3445.

[27] E.R. Bohagen, P. Tommasini, D. Sargent, R. Ford, J. Danacey, S. Arsbuck, W. Gryn, M. Mooney, L. Rubinstein, L. Shankard, L. D. Rak, L. Kaplan, D. Lacombe, J. Verweij, New response evaluation criteria in solid tumors: revised RECIST guideline (version 1.1), Euro. J. Cancer (Oxford). 1990: 45 (2009) 228–247.