Closed form solution of Eigen frequency of monopile supported offshore wind turbines in deeper waters incorporating stiffness of substructure and SSI

Laszlo Arany a, S. Bhattacharya b,*, John H.G. Macdonald a, S. John Hogan a

a University of Bristol, United Kingdom
b Chair in Geomechanics, University of Surrey, United Kingdom

ARTICLE INFO

Article history:
Received 2 September 2015
Received in revised form 13 December 2015
Accepted 17 December 2015
Available online 19 January 2016

Keywords:
Eigen value
Monopile
Deeper water
Beam theory
Soil–structure interaction

Abstract

Offshore wind turbines (OWTs) are dynamically loaded structures and therefore the estimation of the natural frequency is an important design calculation to avoid resonance and resonance related effects (such as fatigue). Monopiles are currently the most used foundation type and are also being considered in deeper waters (> 30 m) where a stiff transition piece will join the monopile and the tapered tall tower. While rather computationally expensive, high fidelity finite element analysis can be carried to find the Eigen solutions of the whole system considering soil–structure interaction; a quick hand calculation method is often convenient during the design optimisation stage or conceptual design stage. This paper proposes a simplified methodology to obtain the first natural frequency of the whole system using only limited data on the WTG (Wind Turbine Generator), tower dimensions, monopile dimensions and the ground. The most uncertain component is the ground and is characterised by two parameters: type of ground profile (i.e. soil stiffness variation with depth) and the soil stiffness at one monopile depth below mudline. In this framework, the fixed base natural frequency of the wind turbine is first calculated and is then multiplied by two non-dimensional factors to account for the foundation flexibility (i.e. the effect of soil–structure interaction). The theoretical background behind the model is the Euler–Bernoulli and Timoshenko beam theories where the foundation is idealised by three coupled springs (lateral, rocking and cross-coupling). 10 wind turbines founded in different ground conditions from 10 different wind farms in Europe (e.g. Walney, Gunfleet sand, Burbo Bank, Belwind, Barrow, Kentish flat, Blyth, Lely, Thanet Sand, Irene Vorrink) have been analysed and the results compared with the measured natural frequencies. The results show good accuracy (errors below 3.5%). A step by step sample calculation is also shown for practical use of the proposed methodology.

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Offshore wind turbines (OWTs) are currently installed in high numbers in Northern Europe and the industry is rapidly developing worldwide. For example, countries such as China, South Korea, Taiwan and Japan are currently developing wind farms and the US has just installed its first pilot offshore wind farm. The Levelised Cost of Energy (LCoE) and ScOE (Society’s Cost of Energy) from offshore wind are expected to decrease significantly in the near future and challenging projects in further offshore and deeper water depths (30–50 m), with heavier/larger wind turbines (upwards of 6 MW, with turbines of 10 MW in the testing phase) are underway. OWTs are expected to have a fatigue life of 25–30 years, while foundations are typically designed to last even longer (50 years).

It has been well established that offshore wind turbines are dynamically sensitive structures [10–12,3,35], and dynamics of OWTs must be studied to avoid unplanned resonance which may lead to increased fatigue damage through dynamic amplification of responses. Estimation of the natural frequency of the whole system is an important design calculation [25] so as to avoid the excitation frequencies arising from wind turbulence loading, wave loading, the rotational frequency of the turbine (1P) and the blade passing frequency (2P/3P). The installed number of these relatively new structures is likely to grow significantly in deeper waters and will pose additional dynamic challenges, and is therefore the focus of the paper. Specifically, the paper tackles the issue of the extra length of the tower in water (which is generally stiffer than the tower exposed in air) due to deeper water sites which makes the
tower relatively more flexible as compared to shallow water installations thereby lowering the natural frequency of the whole system.

Fig. 1 shows typical wind and wave power spectral densities for offshore sites which essentially describe the frequency content of dynamic excitations from wind turbulence and waves. The graphs also show the turbine’s rotational frequency range (1P) and the turbine’s blade passing frequency range (3P) for a range of commercial wind turbines of different capacities (2–8 MW). A simplified way of translating the wind turbulence spectrum and the wave spectrum into mudline bending moment spectra through linear transfer functions has been presented in [8]. The peak frequencies of loading have been shown to coincide with the peak frequencies of wind turbulence and waves. However, loads at the 1P and 3P frequencies can also be observed through effects such as aerodynamic and mass imbalance of the rotor and rotational sampling of turbulence by the blades, for 1P and 3P loads, respectively [18,8]. Further details on the estimations of the loads can be found in [13].

For the widely used soft–stiff design, the target Eigen frequency (first natural frequency) is a frequency in the gap between 1P and 3P. Fig. 1 also shows measured natural frequencies of a wide array of OWTs from several different wind farms across Europe (see Table 1 for the nomenclature on the wind turbine structure for which the measured natural frequency is shown and Table 5 for the specification of the turbines given in Fig. 1). The figure clearly shows the trend that the target natural frequencies of heavier turbines are indeed closer to the excitation frequencies of the wave and wind making these structures even more sensitive to dynamics.

1.1. Dynamic issues in support structure design

Fig. 2 shows a schematic diagram of a wind turbine system along with the mechanical model relevant to the study of the overall system dynamics which is important for many design calculations such as Eigen frequencies and fatigue. The definitions of support structure, tower, substructure, foundation (monopile considered here), transition piece, mudline and mean sea level are defined in Fig. 2(a) and are consistently used throughout the paper. For clarity, the support structure is the whole structure that supports the heavy turbine i.e. the components below the rotor nacelle assembly (RNA) which includes the tower, substructure and foundation. The foundation is defined as the part of the support structure that is embedded in the ground below the mudline. The tower is typically a tubular tapered column. As the natural frequencies of these systems are very close to the forcing frequencies, the dynamics pose multiple design challenges and the scale of the challenges will vary depending on turbine types and site characteristics. These issues are briefly mentioned in the next section.

There are two main categories of modern wind turbines based on the operational range:

1. Variable rotational speed machines have an operational speed range (1P range);
2. Constant rotational speed wind turbines that operate at a single rotational speed (fixed 1P).

Variable speed machines have 1P and 2P/3P frequency bands which must be avoided, as opposed to a single frequency (applicable to constant rotational speed machines). They are more restrictive from the point of view of foundation design as the forcing frequency is a band rather than a unique value. The turbines currently used in practice (under operation) are variable speed machines. Fig. 1 shows the 1P and 3P bands for typical offshore wind turbines ranging from 2 MW (not in production anymore) turbines to commercially not yet available 8 MW turbines. It may be observed from Fig. 1 that for most wind turbines, 1P and 3P excitation cover wide frequency bands. To avoid these ranges, the designer of the support structure has three options from the point of view of the stiffness of the tower and the foundation [32]:

1. Soft–soft structures: whereby the natural frequency lies below the 1P frequency range. This design is typical for floating offshore platforms, but are practically impossible to achieve for fixed (grounded) structures. Also, soft–soft fixed structures would likely be subject to high dynamic amplification of wave load response.
2. Soft–stiff structures: whereby the natural frequency lies above the 1P frequency range. This is the typical design choice for practical bottom fixed structures, such as monopile founded OWTs. All wind turbines in Fig. 1 are designed soft–stiff.
3. Stiff–stiff structures: whereby the natural frequency lies above the 3P range. Such designs are typically considered to have a massive support structure and therefore uneconomic. However, the Hornsea twisted jacket foundation supporting a met mast has recently successfully achieved a natural frequency above the 3P band [36].

It is quite clear from Fig. 1 that designing a soft–stiff system which avoids both the 1P and 3P frequency bands is challenging because of the tight tolerance of the target natural frequency. Indeed, some OWTs with a wide rotational speed range, such as the Areva M5000 5 MW in Fig. 1 with 4.5–14.8 rpm do not even have a gap between 1P and 3P and they are overlapping. Modern wind turbines often feature a sophisticated pitch control system.
Analysed offshore wind farms with the used wind turbines and soil conditions at the sites.

Soft clay in the uppermost layer to dense and very dense sand layers

II. Irene Vorrink Offshore Wind Farm

Nordtank NTK600/43 600 kW study purpose wind turbine

Zaaijer [54,55]

IV. Kentish Flats Offshore Wind Farm (UK) Vestas V90 3 MW industrial offshore wind turbine

Layers of dense sand and stiff clay

Damgaard et al. [22]

V. Barrow Offshore Wind Farm (UK) Vestas V90 3 MW industrial offshore wind turbine

Layers of dense sand and stiff clay

Damgaard et al. [22]

VI. Thanet Offshore Wind Farm (UK) Vestas V90 3 MW industrial offshore wind turbine

Fine sand and stiff clay

Damgaard et al. [22]

VII. Belwind 1 Offshore Wind Farm (Belgium) Vestas V90 3 MW industrial offshore wind turbine

Dense sand and stiff clay

Damgaard et al. [22]

IX. Walney 1 Offshore Wind Farm (UK Siemens SWT-3.6-107 3.6 MW industrial offshore wind turbine

Medium and dense sand layers

4C Offshore Limited [1]

X. Gunfleet Sands Offshore Wind Farm (UK) Siemens SWT-3.6-107 3.6 MW industrial offshore wind turbine

Sand and clay layers

Leblanc Thilsted and Tarp-Johansen [33]

L. Arany et al. / Soil Dynamics and Earthquake Engineering 83 (2016) 18–32

where \(C_p \) is a constant and \(D, l, \Omega \) are the diameter, length and rotational speed of the generator, respectively.

As the total mass of the rotor–nacelle assembly influences the natural frequency, the design of the support structure for wind turbines may be improved by an integrated design. A further effect is the increasing importance of the flexibility of the monopile, the grouted connection and the transition piece (that is, the substructure) as a consequence of increasing water depth. The longer the monopile, the more effect the substructure has on the natural frequency of the whole system. This is in contrast with shallow water turbines where the tower is overwhelmingly softer than the substructure and the natural frequency of the whole system is critically governed by the bending stiffness of the tower and the soil stiffness.

For large wind turbines the frequency band of the wave excitation (see JONSWAP spectrum in Fig. 1) becomes important as it is very close to the natural frequency of the whole system. This issue gains even more importance as the substructure diameter increases for large wind turbines. If the structure is also installed in deeper water, then both the expected significant wave height and the length of the substructure increase, resulting in dynamic wave loads comparable to or exceeding the wind load.

The natural frequency of the whole system therefore needs to be assessed in the feasibility study phase and also in the early phases of the foundation design. This calls for a simplified methodology that is quick and uses only limited data about the wind turbine and the site.

\[
P = C_p D^2 l \Omega^2\]

(1)
1.2. Motivation behind the study

This study aims to provide a simple, quick and reliable tool for the foundation designer to assess the fundamental natural frequency of the turbine-substructure-foundation-soil system. The simple expressions obtained in this work build on previous research in the dynamics of offshore wind turbines. Analysis of OWTs modelled as Euler–Bernoulli beams and founded on two independent springs (lateral and rocking stiffness) is carried out in [4,3] while soil–structure interaction was experimentally verified in [10]. A major discrepancy between measured and predicted natural frequencies of OWT structures has been reported in a multitude of studies [21,28,32,36,54,56]. The sources of uncertainty related to the discrepancy can be due to theory or physical idealisation of the system or parameters or a combination of the above and are summarised below:

(1) Beam model uncertainty i.e. uncertainty in the mathematical idealisation of the physical system: The current methodology is based on the Euler–Bernoulli beam theory, however, the authors have found in [6] that more sophisticated beam models including rotary inertia (Rayleigh beam) and shear deformation (Timoshenko beam) do not provide notable improvements in the results (less than 0.1%). Therefore, the simple Euler–Bernoulli model is satisfactory for wind turbine towers. Further details are given in Appendix A.

(2) Uncertainty in the modelling of the substructure: The substructure is modelled by a single equivalent cross section (which is the cross section of the monopile). This approximation may lead to over or underestimation of substructure stiffness.

(3) Uncertainty in the modelling of the foundation. The analysis focuses on Eigen solutions of a linear system, and therefore nonlinear soil behaviour is not modelled. The foundation system is not expected to go into the nonlinear regime and therefore the linear approximation is considered acceptable. In the linear regime, the foundation is modelled with three coupled springs (K_s, K_p and K_LR) resulting in an exact model of the linearised system, see Fig. 2(c). It was found in [6] that the cross coupling spring (K_LR) cannot be excluded from the analysis.

(4) The major uncertainty is the well-known issue of measurement of soil stiffness. It is challenging to estimate foundation stiffness with complex soil layers at offshore sites. A sensitivity analysis was carried out [7] and it was found that underestimation of soil stiffness by 30% would typically result in a frequency increase of 0.2–5% while overestimation by 30% causes a natural frequency change of 2–5.6%. The uncertainty analysis was carried out by considering the effect of stiffness changes for the ten wind turbines presented in Table 1, as well as 6 other industrial wind turbines not discussed in this paper. The transcendental equations resulting from the analytical formulation have been solved, using the three springs approximation for the foundation and Timoshenko beam theory for the tower, as given in Appendix B, and also in [6] (a simplified version of the problem has also been given in [4,3]). The equations have been numerically solved for all wind turbines in different soil conditions to analyse the sensitivity.

(5) Another aspect is the idealisation of the tapered tower of varying wall thickness with an equivalent diameter and wall thickness as a constant bending stiffness column, as has been used in many of the simplified methods [3,4,50,55,56].

(6) A further source of uncertainty is the damping of the real structure. If the damping ratio is \(\zeta \), the natural frequency of undamped vibrations \(f_1 \) can be expressed with the undamped frequency \(f_1 \) as

\[
\tilde{f}_1 = f_1 \sqrt{1 - \zeta^2}
\]

The main sources of damping of an offshore wind turbine structure are the aerodynamic damping, soil damping, structural damping (damping of steel), hydrodynamic damping and additional damping from tower motion dampers (e.g. slosh dampers).

\[
\zeta_{\text{total}} = \zeta_{\text{aero}} + \zeta_{\text{struct}} + \zeta_{\text{soil}} + \zeta_{\text{hydro}} + \zeta_{\text{damper}}
\]

1.3. Damping of structural vibrations of offshore wind turbines

As the natural frequencies of offshore wind turbines are close to forcing frequencies, damping is critical to restrict damage accumulation and avoid premature maintenance. Therefore discussion is warranted for issues related to damping and for practical design purposes can be idealised in fore–aft and side-to-side vibrations of offshore wind turbines. The main difference between the sway-bending (or rocking) vibrations about two axes \(X \) and \(Y \) in Fig. 2) is that in the along-wind direction higher damping is expected due to the high aerodynamic damping caused by the rotating blades interacting with the airflow. On the other hand, for the side-to-side direction, the aerodynamic damping is orders of magnitudes lower.

A non-operational (parked or idling) OWT has similar aerodynamic damping in the fore–aft as in the side-to-side direction.
Since the wind load is acting in the along-wind direction, the highest load amplitudes are expected in fore–aft motion. This is because for most wind turbines in water depths less than 30 m, wind loading is the dominant load, while for very large diameter monopiles in medium to deep water, wave loading is expected to have equal or higher magnitude. It is worth noting that due to the yaw mechanism of the wind turbine, the along-wind and cross-wind directions are dynamically moving and are not fixed, therefore the foundation is subjected to both cross-wind and along-wind loading in all directions during the lifetime of the OWT. One can conclude that analysing vibrations in both directions is important.

Studies considering the damping of the first bending mode either empirically or theoretically include Camp et al. [19], Tarp-joehansen et al. [48], Versteijen et al. [51], Damgaard and Andersen [21], Damgaard et al. [22] and Shirzadeh et al. [46]. Based on these studies and other estimates and in the absence of other data, the following assessment of damping ratio contributions is recommended:

- Structural damping: 0.15–1.5%. The value of structural damping depends on the connections in the structure (such as welded connections, grouted connections, etc.) In addition to material damping (usually steel) through energy dissipation in the form of heat (hysteretic damping).
- Soil damping: 0.44–1%. The sources of damping resulting from soil–structure interaction (SSI) include hysteretic (material) damping of the soil, wave radiation damping (geometric dissipation) and, to a much lesser extent, pore fluid induced damping. Wave radiation damping and pore fluid induced damping are negligible for excitations below 1 Hz, and therefore hysteretic damping is dominant for the purposes of this study. The soil damping depends on the type of soil and the strain level.
- Hydrodynamic damping: 0.07–0.23%. Results from wave radiation and viscous damping due to hydrodynamic drag. In the low frequency vibration of wind turbines the relative velocity of the substructure is low and therefore viscous damping, which is proportional to the square of the velocity is typically very low. The larger contribution results from wave radiation damping, which is proportional to the relative velocity.
- Aerodynamic damping: in the fore–aft direction for an operational turbine 1–6%, for a parking turbine or in the crosswind direction 0.06–0.23%. Aerodynamic damping is the result of the relative velocity between the wind turbine structure and the surrounding air. Aerodynamic damping depends on the particular wind turbine, and is inherent in the popular Blade Element Momentum (BEM) theory for aeroelastic analysis of wind turbine rotors. The magnitude for a particular wind turbine also depends on the rotational speed of the turbine.

The total damping of the first mode of vibration is typically between 1% and 4% in side-to-side vibration, or for a parked, stopped or idling turbine. On the other hand, the total damping is between 2% and 8% for an operational wind turbine in the fore–aft direction.

2. Methodology and results

In this study, the OWT mechanical model used in [4,3,6] is extended to consider the effect of the stiffness of the substructure which becomes critical for deeper water, see Fig. 2. The rotor–nacelle assembly (RNA) is modelled as a lumped top head mass \(m_{RNA} \) and the tower and the substructure are modelled as beams. The foundation is idealised as three springs (lateral \(K_l \), rocking or rotational \(K_r \) and cross coupling \(K_{lr} \) stiffness). This methodology requires 14 input parameters which are given in Table 1 and the definitions are shown in Fig. 2. Arany et al. [6] demonstrated that the more sophisticated Timoshenko beam model, which takes into account mass moment of inertia and shear deformation in the equations of motion of the tower, provides no notable improvement over the simpler Euler–Bernoulli beam model in natural frequency estimation. It was concluded that the tower can be considered a slender beam and the Euler–Bernoulli beam is sufficiently accurate, therefore it was used to obtain the results presented in this paper.

Appendix B shows the derivation of the frequency equations of the two beam models. The natural frequency in both cases can be obtained numerically from the resulting transcendental equations. Approximate closed form expressions have been fitted to the results to fit the expression given by Eq. (2) which states that the first natural frequency \(f_1 \) can be obtained by multiplying the fixed base frequency (cantilever beam frequency \(f_{FB} \)) by two factors \(C_F \) and \(C_L \) which account for the flexibility provided by the foundation. In other words, the foundation flexibility coefficients \(C_F \) and \(C_L \) are applied to the fixed base (cantilever beam) natural frequency to obtain the natural frequency taking into account the foundation compliance and soil–structure interaction. The formula for the first mode natural frequency is then given as:

\[
 f_1 = C_FC_L f_{FB}. \tag{2}
\]

2.1. Parameters and idealisation

The methodology uses 14 basic parameters for the wind turbine support structure and the site (foundation stiffness) and are summarised in Table 2. It is considered useful to explain the idealisation of the structure in a bit more detail. Fig. 2(b) shows the dimensions of the tapered and equivalent towers. The tapering is assumed to be linear with the tower diameter linearly decreasing from \(D_b \) at the bottom to \(D_t \) at the top of the tower. The average diameter is used as the equivalent constant diameter for the idealised tower \(D_t \), that is

\[
 D_t = \frac{D_b + D_t}{2}. \tag{3}
\]

The wall thickness \(t_T \) is assumed to be constant along the tower. The equivalent mass of the tower is calculated from the geometry and density of the tower material \(\rho_T \) as

\[
 m_T = \rho_T D_t \pi t_T L_T. \tag{4}
\]

#	Input parameter	Symbol	Unit
1	Mass of the rotor–nacelle assembly	\(m_{RNA} \)	ton
2	Tower height	\(L_T \)	m
3	Tower top diameter	\(D_t \)	m
4	Tower bottom diameter	\(D_b \)	m
5	Average tower wall thickness	\(t_T \)	m
6	Tower Young’s modulus	\(E_T \)	GPa
7	Tower mass	\(m_T \)	ton
8	Platform height above mudline	\(L_s \)	m
9	Monopole diameter	\(D_p \)	m
10	Monopole wall thickness	\(t_p \)	m
11	Monopole Young’s modulus	\(E_p \)	GPa
12	Lateral stiffness of foundation	\(K_L \)	GN/m
13	Cross stiffness of foundation	\(K_{LR} \)	GN
14	Rocking stiffness of foundation	\(K_R \)	GN m/rad
Note, in some cases this mass may not necessarily be exactly the same as the actual mass of the tower \(m_T \). However, in cases when the average tower thickness or a range of tower wall thicknesses is not available, the thickness can be back-calculated from the tower mass

\[
l_T = \frac{m_T}{\rho_T L_T D_T E_T}
\]

(5)

The model is based on a beam with two different cross section. It is assumed that the cross section of the monopile is the first section of the beam from the mudline to the bottom of the tower, and the second section of the beam is the tower from the tower bottom to the rotor nacelle assembly. In this formulation the flexibilities of the grouted connection and the transition piece are neglected. The first section is of length \(L_S \), diameter \(D_S \), wall thickness \(t_S \) and bending stiffness \(E_P L_P \), while the second cross section is of length \(L_T \), diameter \(D_T \), wall thickness \(t_T \) and bending stiffness \(E_T L_T \). The platform height above mudline \(L_S \) is defined as the distance from the mudline (seabed) to the bottom of the tower (tower – transition piece connection).

2.2. Calculation procedure for simple natural frequency estimation

The natural frequency estimation process can be summarised in three steps:

Step 1: Calculate fixed base natural frequency \(f_{FB} \) of the variable cross section beam using the monopile flexibility coefficient \(C_{MP} \).

Step 2: Calculate the non-dimensional foundation stiffness parameters: \(\eta_L, \eta_R, \eta_K \).

Step 3: Calculate and apply foundation flexibility coefficients \(C_L \) and \(C_C \) and apply them to obtain the first natural frequency on the flexible foundation, i.e. \(f_1 = C_C C_{MP} f_{FB} \).

The steps are described in more detail along with the methodology and calculation steps together with references for further reading.

Calculation procedure for Step 1: The fixed base natural frequency can be calculated by the simple natural frequency formula of the cantilever beam. The derivation can be found in Appendix A.

\[
f_{FB} = \frac{1}{2\pi} \sqrt{\frac{k}{m}}
\]

(6)

where for the tower and the RNA only, the equivalent stiffness of the beam \(k \) based on the tower bending stiffness \(E_T L_T \) and length \(L_T \), and the equivalent mass (considering the mass of the tower \(m_T \) and the mass of the rotor–nacelle assembly \(m_{RNA} \)) are given by:

\[
k = 3E_T L_T \quad \text{and} \quad m = m_{RNA} + \frac{33}{140} m_T
\]

(7)

Substituting back into the formula, the following is given for the fixed base natural frequency.

\[
f_{FB} = \frac{1}{2\pi} \sqrt{\frac{3E_T L_T}{L_T (m_{RNA} + \frac{33}{140} m_T)}}
\]

(8)

In these expressions the second moment of area \(I_T \) and the mass \(m_T \) of a constant diameter tower are considered. That is, if the average diameter of the tower is \(D_T \) and the average wall thickness of the tower is \(t_T \) then the equivalent second moment of area \(I_T \) and the equivalent tower mass \(m_T \) are

\[
I_T = \frac{1}{8} \pi D_T^3 t_T \quad m_T = \rho_T D_T \pi t_T L_T
\]

(9)

A similar expression is given specifically for wind turbine towers by van der Tempel and Molenaar [50].

\[
f_{FB} = \frac{1}{2\pi} \sqrt{\frac{3.04E_T L_T}{L_T (m_{RNA} + 0.227 m_T)}}
\]

(10)

In this paper the simple expression in Eq. (8) is used. The flexibility of the monopile is taken into account by a monopile flexibility coefficient \(C_{MP} \) expressed in terms of two non-dimensional numbers,

bending stiffness ratio : \(\chi = \frac{E_T L_T}{E_P L_P} \)

platform/tower length ratio : \(\psi = \frac{L_S}{L_T} \)

where \(E_T L_T \) is the bending stiffness of the constant diameter tower, \(E_P L_P \) is the bending stiffness of the monopile, \(L_S \) is the platform height above the seabed (distance from the mudline to the top of the transition piece) and \(L_T \) is the height of the tower.

The fixed base natural frequency of the wind turbine – substructure system is

\[
f_{FB} = C_{MP} \cdot f_{FB, T} = \frac{1}{\sqrt{1 + (1 + \psi^3)^{\chi}}} f_{FB, T}
\]

(11)

Fig. 3 shows the effect of the parameters \(\chi \) and \(\psi \) on the fixed base natural frequency. To make these parameters more physically meaningful, one can say that increasing \(\chi \) represents a stiffer monopile, while increasing \(\psi \) represents deeper water.

Calculation procedure for Step 2: In the second step, the foundation stiffness is non-dimensionalised using the tower’s length \(L_T \) and the equivalent bending stiffness of the tapered tower \(E_T L_T \). The non-dimensional lateral, cross-coupling and rotational stiffness values, \(\eta_L, \eta_R, \eta_K \) respectively, are necessary for this calculation

\[
\eta_L = \frac{K_L L_T^3}{E_T L_T} \quad \eta_R = \frac{K_R L_T^3}{E_T L_T} \quad \eta_K = \frac{K_K L_T^3}{E_T L_T}
\]

(12)

These formulae use the equivalent bending stiffness for a tapered tower as given in [7–9]. The derivation is shown in
Appendix C. Only the final formulae are presented here for brevity:
\[EI_t = EI_t \times f(q) \]
(13)

where \(EI_t \) is the bending stiffness at the top of the tower.

\[f(q) = \frac{1}{3} < 2q^2(q-1)^2 \quad \text{with} \quad q = \frac{D_t}{D_t^*} \]
(14)

Calculation procedure for Step 3: The empirical foundation flexibility factors are applied to the natural frequency

\[C_k(\eta_l, \eta_R, \eta_{LR}) = 1 - \frac{1}{1+a \left(\frac{\eta_l - \eta_l^*}{\eta_l^*} \right)} \]
(15)

\[C_l(\eta_l, \eta_R, \eta_{LR}) = 1 - \frac{1}{1+b \left(\frac{\eta_l - \eta_l^*}{\eta_l^*} \right)} \]

where \(a, b \) are empirical constants. The values of these constants were found to be \(a = 0.6 \) and \(b = 0.5 \) and were obtained by fitting closed form curves to the numerical results obtained by solving the transcendental equations resulting from the analytical formulation given in Appendix B. Further details can be found in [6] and a simplified version of the problem has also been solved in [4,3]. A total of 16 wind turbines have been used to fit best-fit values of \(a \) and \(b \) minimising the mean squared error between the numerical and closed form results. The curve fit reproduces the natural frequency for all 16 wind turbines with excellent accuracy (\(< 1% \)) for practical parameter combinations. The applicability of the formulae in Eq. (15) is limited to

\[\eta_l > 1.2 \eta_l^* \quad \text{and} \quad \eta_R > 1.2 \eta_R^* \]
(16)

With these the natural frequency of the OWT on a flexible foundation can be calculated as given in Eq. (2).

2.3. Example step by step calculation: Blyth Offshore Wind Farm

The input data for the calculations are shown in Table 3 (number III). Foundation stiffness is one of the most uncertain quantities and Appendix D discusses a method to obtain foundation stiffness in the absence of detailed site data.

Step 1: The parameters in Table 2 are used to calculate the fixed base natural frequency of the tower

\[f_{FB,\text{LT}} = \frac{1}{2\pi} \sqrt{\frac{3EI_t}{m_{\text{RMA}} + \frac{m_{\text{c}}}{2}m_I}} = 0.703[\text{Hz}] \]
(17)

In this formulation \(D_t \) is the average tower diameter

\[D_t = \frac{D_b + D_t}{2} = \frac{4.25 + 2.75}{2} = 3.5[m] \]
(18)

The tower wall thickness is determined from the mass of the tower as

\[t_r = \frac{m_r}{\rho_{\text{steel}}D_t^2/4} = \frac{159,000[kg]}{7860[kg/m^2] \cdot 3.5[m] \cdot \pi \cdot 55[m]} \approx 0.034[m] \]
(19)

and \(I_t \) is the second moment of area of the equivalent constant diameter tower cross section

\[I_t = \frac{1}{8}D_t^4 t_r \pi = \frac{1}{8} \cdot 3.5^4[m^4] \cdot 0.034[m] \cdot \pi = 0.572[m^4] \]
(20)

The bending stiffness ratio and length ratio are calculated as

\[\chi = \frac{E_t/I_t}{E_t/I_P} = \frac{210[GPa] \cdot 0.572[m^4]}{210[GPa] \cdot 0.806[m^4]} = 0.710 [\text{]} \]
(21)

\[\psi = \frac{I_s/I_t}{L_T^2} = \frac{16[m]^2}{55[m]} = 0.306 [\text{]} \]
(22)

where the monopile's second moment of area is

\[I_P = \frac{1}{8}D_t^4 t_r \pi = \frac{1}{8} \cdot 3.5^4[m^4] \cdot 0.806[m^4] \]
(23)

The natural frequency of the monopile supported wind turbine on a fixed base is given as

\[f_{IM} = C_{\text{MR}} \cdot f_{FB,\text{LT}} = \sqrt{\frac{1}{1 + (1 + 0.306)^2 \cdot 0.710 - 0.710}} \]
\[= 0.514[\text{Hz}] \]
(24)

Step 2: The equivalent bending stiffness needed for the non-dimensional stiffness parameters is calculated.

\[q = \frac{D_t}{D_t^*} = \frac{4.25}{2.75} = 1.55 \quad f(q) = \frac{1}{3} \frac{2q^2(q-1)^2}{2q^2lnq - 3q^2 + 4q - 1} = 2.69 \]
(25)

\[EI_t = EI_{\text{top}} \times f(q) = 14[G\text{Nm}^2] \]
(26)

See details on the derivation of these expressions in Appendix B. Then the non-dimensional stiffness parameters can be obtained from

\[\eta_l = \frac{K_T}{EI_q} = 45709[\text{]} \]
(27)

Table 3

#	Input parameter	Symbol	Unit
1	Mass of the rotor–nacelle assembly	\(m_{\text{RMA}} \)	ton
2	Tower height	\(L_t \)	m
3	Tower bottom diameter	\(D_b \)	m
4	Tower top diameter	\(D_t \)	m
5	Average tower wall thickness	\(t_t \)	mm
6	Tower Young’s modulus	\(E_t \)	GPa
7	Tower weight	\(m_t \)	t
8	Platform height above mudline	\(L_s \)	m
9	Monopile diameter	\(D_p \)	m
10	Monopile wall thickness	\(t_p \)	mm
11	Monopile Young’s modulus	\(E_p \)	GPa
12	Lateral stiffness of foundation	\(K_L \)	GN/m
13	Cross stiffness of foundation	\(K_{KL} \)	GN
14	Rocking stiffness of foundation	\(K_R \)	GN m/°

See details on the derivation of these expressions in Appendix B. Then the non-dimensional stiffness parameters can be obtained from
As the foundation stiffness parameter \(K_L, K_R \) increases, the foundation flexibility coefficients \(C_L, C_R \) also increase and the natural frequency approaches the fixed base natural frequency \(f_{FB} \). Most of the contribution to the frequency change (4–15\%) results from the rotational foundation flexibility coefficient \(C_R \) and the lateral foundation stiffness coefficient \(C_L \) has very limited influence (of less than 1\% on the natural frequency) of all analysed turbines. Consequently, the most important foundation stiffness parameter is the rotational stiffness \(K_R \).

In Fig. 4 three turbines are used to illustrate the effect of the non-dimensional rotational stiffness \(\eta_R \) on the natural frequency in terms of the rotational foundation flexibility coefficient \(C_R \). It should be noted that the curves flatten out for increasing rotational stiffness. The foundation designer should choose the foundation stiffness such that the OWT structure is in the flat part of this curve. This ensures that even if the foundation stiffness was estimated with significant errors or if the stiffness changes during the lifetime of the turbine, the natural frequency change is limited and does not affect the foundation’s ability to meet the Fatigue Limit State (FLS) and Serviceability Limit State (SLS) criteria. On the dropping part of the curve, however, a slight increase or decrease of the stiffness might cause substantial change in the natural frequency, which may lead to increased fatigue damage and reduced service life.

It is important to emphasise that the foundation stiffnesses \(K_L, K_R \) and thus the non-dimensional foundation stiffnesses \(\eta_L, \eta_R \) are not independent parameters. Appendix D provides a brief discussion about the available methods for estimating the foundation stiffness, and simple expressions are provided for the simple cases of cohesive soils, cohesionless soils and rock. Following these formulae, the independent parameters of foundation stiffness are the geometry of the pile (diameter \(D_p \), wall thickness \(t_p \) and embedded length \(L_E \) as defined in Fig. 2(b)) and soil parameters (expressed using either the modulus of subgrade reaction \(k_0 \), the coefficient of subgrade reaction \(n_h \) or the effective shear modulus \(G' \)).

Furthermore, as discussed in Section 1, the damping in the first sway-bending mode also influences the measured natural frequency. The damping is lower for side-to-side direction and for a parked/idling turbine than in the fore–aft direction for an operational turbine due to the significant contribution of aerodynamic damping. The total damping of the system was estimated between 2\% and 8\% in Section 1, which amounts to a frequency change of about 0.02–0.32\%.

3.1. Discussion on the parameters for foundation stiffness estimation

There are two groups of parameters necessary to determine foundation stiffness, categorised as pile data and soil data, as tabulated in Tables 6 and 7 for all the turbines listed in Table 1. The pile parameters are the pile diameter \(D_p \), the pile wall thickness \(t_p \), and the pile embedded length \(L_E \). The diameter of monopiles is typically constant along the length. However, the pile wall thickness may change. In this paper the wall thickness was chosen as the pile thickness in the region below the mudline, because the top layers are considered more
Table 5
Natural frequency results.

Wind farm	Turbine ID	Natural frequency [Hz]	Error [%]	Flexibility [%]		
		Measured	Fixed base	Formula		
I. Lely	A2	0.634	0.713	0.643	1.36	9.9
	A3	0.735	0.767	0.712	–3.19	7.2
II. Irene Vorrink	3	0.546	0.583-0.586	0.552-0.555	–1.10	5.3
	7	0.554			–0.18	5.8
	12	0.553			0.18	5.3
	23	0.563			1.42	5.8
	28	0.560			0.89	5.8
III. Blyth Southernmost		0.488	0.514	0.489	0.12	
IV. Kentish Flats		0.339	0.380	0.339	0.01	10.9
V. Barrow		0.369	0.387	0.367	0.54	5.2
VI. Thanet		0.370	0.402	0.382	3.08	5.0
VII. Belwind		0.372	0.401	0.380	2.12	5.4
VIII. Burbo Bank		0.292	0.322	0.295	1.05	8.4
IX. Walney		0.350	0.380	0.349	0.40	8.4
X. Gunfleet Sands		0.314	0.352	0.315	0.31	10.6

Fig. 4. Rotational foundation flexibility coefficient curves as a function of non-dimensional rotational stiffness for three different sites, all using Vestas V90 3 MW offshore wind turbines.

Table 6
Input and calculated soil parameters for each wind turbine listed in Table 1.

#	Input parameter	Symbol	Unit	I	II	III	IV	V	VI	VII	VIII	IX	X
1	Soil density	\(\rho_S \)	kg/m³	2000	2000	2850	920	920	920	920	2090	2000	2000
2	Soil's Young's modulus	\(E_S \)	MPa	5160									
3	Soil's Poisson's ratio	\(\nu \)	Dimensionless	0.2									
4	Soil's shear modulus	\(G_S \)	MPa	2150.0									
	Soil coefficient of subgrade reaction	\(n_S \)	MN/m³	29.1	29.1	6.2	6.2	6.2	30.4	29.1	29.1		
	Soil's equivalent shear modulus	\(G \)	MPa	2472.50									

Table 7
Input and calculated pile parameters for each wind turbine listed in Table 1.

#	Input parameter	Symbol	Unit	I	II	III	IV	V	VI	VII	VIII	IX	X
1	Pile diameter (range)	\(D_P \)	m	3.2-3.7	3.515	3.5	4.3	4.75	4.05–5.1	4.07–5.0	4.7	6	4.7
	Chosen value			3.2, 3.7	3.515	3.5	4.3	4.75	4.7	5	4.7	6	4.7
2	Pile wall thickness (range)	\(t_P \)	mm	35	50	35–50	45–80	60	50–75	45–75	80	50–94	
	Chosen value			35	50	45	80	60	70	75	80	94	
3	Pile embedded length (range)	\(L_P \)	m	30	23–24.6	12–15	18–34	30.2–40.7	25–30	35	21–24	30	27–38
	Chosen value			30	24.6	15	29.5	40	35	24	30	38	
4	Pile material's Young's modulus	\(E_P \)	GPa	210	210	210	210	210	210	210	210	210	210
	Pile equivalent Young's modulus	\(E_{EP} \)	GPa	15.45	16.23	22.99	17.04	26.89	20.64	22.55	21.52	31.62	31.62
	Pile bending stiffness	\(E_{IP} \)	GN m²	134.09	121.64	169.32	285.88	671.92	494.29	691.70	611.89	1368.78	757.49
	Pile slenderness parameter	\(\beta_P \)	Dimensionless	2.712	2.310	4.459	2.750	3.329	2.711	3.138	1.931	1.529	2.338

L. Arany et al. / Soil Dynamics and Earthquake Engineering 83 (2016) 18–32
important from the point of view of pile head deflection/rotation and pile stiffness. As can be seen based on Appendix D, the stiffness of the soil is described by different parameters for different soil types. For cohesive soils where the modulus of subgrade reaction is considered constant with depth below mudline, the critical parameter is the modulus of subgrade reaction \(k_m \). For cohesionless soils where \(k_m \) increases linearly with depth, the key parameter is the coefficient of subgrade reaction \(n_h \), which describes the rate at which the modulus of subgrade reaction increases with depth. The parameter \(n_h \), however, is a simple linear function of the unit weight \(\gamma_S \) and thus the density \(\rho_S \) of the cohesionless soil using the formula of Terzaghi [49] as given in Eq. (D5) (in Appendix D). In case of rocks the important parameters are the shear modulus \(G_S \) and the Poisson’s ratio \(\nu_S \), from which the effective shear modulus of Eq. (D7) can be calculated.

As mentioned in Section 3, the foundation stiffness parameters \(K_L, K_R \) and \(K_{LR} \) are not independent. It is apparent from Table D1 (in Appendix D) that the independent parameters required to determine the foundation flexibility factor \(F_{FF} = C_K C_t \) are different for each soil type and pile slenderness combination. The simplest cases are for cohesionless soils where only two independent parameters are necessary. For slender piles these are the density of soil \(\rho_S \) and the bending stiffness of the monopile \(E_I P_L \), and for rigid piles they are the soil density \(\rho_S \) and the pile embedded length \(L_p \). These two cases are shown in Fig. 5. There are more independent parameters for clays and rock, and those cases therefore do not allow for easy visualisation.

- It is shown through the study of 10 wind turbines that the natural frequency can be predicted with accurately (the error range is \(\pm 3.5\% \)).
- For the wind turbines considered, foundation flexibility reduced the fixed base natural frequency typically by 4–15%.
- The foundation flexibility factor is very sensitive to the rotational stiffness \(k_F \) of the monopile. On the other hand, the natural frequency change from the fixed base frequency due to lateral stiffness of the monopile (\(k_L \)) is limited to about 1%.
- The simple framework for the calculation of the foundation stiffness following the work of Poulos and Davis [42] Randolph [43] and Carter and Kulhawy [20] used in this study was found to give reasonable results for the 10 wind turbines studied where three different soil types (cohesive/clay, cohesionless/sand and rock) and two limit case approximations of slender/ininitely long and rigid/ininitely stiff piles were analysed. It was found that most real monopiles fall between the limiting cases of infinitely long and rigid piles.
- The effect of water depth and monopile stiffness were also analysed and it is found that the methodology can correctly represent the flexibility of the monopile and therefore the approximation is applicable both in shallow and deep water.
- While the final design verification can be carried out using detailed finite element investigations, the method presented in the paper can be used to estimate the natural frequency using limited information about the wind turbine and the site and may be a useful tool for initial analyses and conceptual design.

Acknowledgement

The first author is supported by an EPSRC DTP studentship via the University of Bristol.

Appendix A. – Natural frequency of a cantilever beam with variable cross section

The motion of the cantilever beam can be described as a single degree of freedom mass-spring system. The free vibration of this system is given by

\[
mx(t) + kx(t) = 0
\]

(A1)
Assuming harmonic vibration, the following equation can be obtained:

\[-m\omega^2 + k = 0 \quad \text{with} \quad k = \frac{3EI}{L^3} \quad \text{and} \quad m = m_{RNA} + \frac{33}{140}m_{\text{tower}} \tag{A2}\]

and from the circular frequency the Hertz frequency is easily obtained

\[\omega = \sqrt{\frac{k}{m}} \quad \Rightarrow \quad f_1 = \frac{1}{2\pi} \sqrt{\frac{k}{m}} \tag{A3}\]

The flexibility of the substructure expresses the dependence of the natural frequency on the water depth, that is, the flexibility of the monopile above the mudline and that of the transition piece. For the sake of simplicity, the model used in this paper assumes that the monopile’s bending stiffness continues throughout the water depth and up to the root of the tower. For clarity, see Fig. A1.

Bending stiffness ratio : \[\chi = \frac{E_LT_f}{E_P l_P} \tag{A4}\]
Platform/tower length ratio : \[\psi = \frac{L_S}{L_T} \tag{A5}\]

Castigliano’s second theorem for a linearly elastic 1 DoF structure can be written as

\[q = \frac{\partial U}{\partial Q} \]

where \(U\) is the strain energy, \(q\) is the generalised displacement, and \(Q\) is the generalised force. For the particular problem, the theorem can be used to calculate the top head deflection (the total deflection at the hub \(w(0)\)) due to a horizontal force \(F\) acting at the hub as

\[w(0) = \frac{\partial U}{\partial F} = \frac{\partial}{\partial F} \int_0^{l_T} \frac{[M(z)]^2}{2EI} dz = \frac{\partial}{\partial F} \int_0^{l_T} \frac{F^2 z^2}{2EI} dz + \frac{\partial}{\partial F} \int_{l_T}^{l_T + l_S} \frac{F^2 z^2}{2EI_P} dz = \left[\frac{Fz^3}{3EI} \right]_0^{l_T} + \left[\frac{Fz^3}{3EI_P} \right]_{l_T}^{l_T + l_S} \tag{A6}\]

where the moment distribution along the structure caused by the horizontal force \(F\) is given as

\[M(z) = Fz \tag{A7}\]

The stiffness of the 1DoF system is then given as

\[k = \frac{F}{w(0)} = \frac{1}{\frac{EI_T}{L^2} + \frac{EI_P}{L_S^2} + \frac{EI_P}{L_T^2}} \quad \Rightarrow \quad \frac{3EI_T}{L_T^2 + \left(L_T^2 + 3L_T^2L_S + 3L_TL_S^2 + L_S^3 \right)x - L_T^2} \chi - L_T^2 \left(1 + 3\psi \right)^2 \chi - \chi \tag{A8}\]

From this the natural frequency is calculated as

\[f_{\text{hub}} = \frac{1}{2\pi} \sqrt{\frac{k}{m}} \tag{A9}\]
where m is the generalised mass of the 1DoF system. The stiffness can be written as

$$k = \frac{1}{1 + (1 + \psi)^2} k_T$$ \hspace{1cm} (A10)

where k_T is the stiffness of the tower without the substructure, given as

$$k = \frac{3EI_1I_T}{L_T^3}$$

The fixed-base natural frequency of the tower-substructure system (excluding foundation stiffness) is given using the bending stiffness ratio χ and the platform/tower length ratio ψ as

$$f_{FB} = \sqrt{\frac{1}{1 + (1 + \psi)^2} f_{FB,T}}$$ \hspace{1cm} (A11)

Appendix B. The Euler-Bernoulli beam model equation

The equation of motion using the Euler–Bernoulli beam model for a beam with an axial force is

$$\frac{\partial^2}{\partial z^2} \left(E(z) \frac{\partial^2 w(z, t)}{\partial t^2} \right) + \mu(z) \frac{\partial^2 w(z, t)}{\partial t^2} + \frac{\partial}{\partial z} \left(p^r(z, t) \right) = p(z, t)$$ \hspace{1cm} (B1)

where $E(z)$ is the bending stiffness distribution along the axial coordinate z, $\mu(z)$ is the distribution of mass per unit length, and $p(z, t)$ is the axial force acting on the beam due to the top head mass and the self-weight of the tower, $p(z, t)$ is the excitation of the beam, $w(z, t)$ is the deflection profile.

Using constant equivalent values for the axial force, bending stiffness and mass per length, and considering free harmonic vibration of the beam with separation of variables $w(z, t) = W(z) e^{i\omega t}$, the equation can be reduced to the following using the non-dimensional parameters of Table A1 and the dimensionless axial coordinate $\xi = z/L$:

$$W'''' + \nu W''' - \Omega^2 W = 0$$ \hspace{1cm} (B2)

where $\nu = P T^2 / E I_v$ is the non-dimensional axial force and $\Omega = \omega / \omega_0 = \omega / \sqrt{E I_v / m L^3}$ is the non-dimensional circular frequency.

Using the non-dimensional numbers as defined above, the boundary conditions can be written for the bottom of the tower ($\xi = 0$):

$$W'''(0) + (\nu + \eta_{LR}) W'(0) + \eta_1 W(0) = 0$$ \hspace{1cm} (B3)

$$W''(0) - \eta_1 W'(0) + \eta_{LR} W(0) = 0$$ \hspace{1cm} (B4)

and the top of the tower ($\xi = 1$):

$$W''''(1) + \nu W'''(1) + \alpha \Omega^2 W'(1) = 0$$ \hspace{1cm} (B5)

$$W''(1) - \beta \Omega^2 W'(1) = 0$$ \hspace{1cm} (B6)

The parameters used in the boundary conditions are defined in Table A1. The characteristic equation for the equation of motion can be written as

$$\lambda^4 + \nu \lambda^3 - \Omega^2 = 0 \text{ or } \lambda^2 + \nu \lambda - \Omega^2 = 0 \text{ with } \ddot{z} = \lambda^2$$ \hspace{1cm} (B7)

and

$$\ddot{z}_{1,2} = -\nu \pm \sqrt{\nu^2 + 4 \Omega^2}$$

$$f = 2 \sqrt{\frac{\nu^2}{2} + \Omega^2}, \quad -\frac{\nu}{2} \pm \frac{\nu}{2} \sqrt{\nu^2 + 4 \Omega^2}$$

The four solutions are then

$$r_1 = i\sqrt{\bar{z}_1}, \quad r_2 = -i\sqrt{\bar{z}_1}, \quad r_3 = \sqrt{\bar{z}_2}, \quad r_4 = -\sqrt{\bar{z}_2}$$ \hspace{1cm} (B8)

with which the solution is in the form

$$W(\xi) = C_1 e^{i\lambda_1 \xi} + C_2 e^{i\lambda_2 \xi} + C_3 e^{-i\lambda_1 \xi} + C_4 e^{-i\lambda_2 \xi}$$

which can be transformed using Euler’s identity to

$$W(\xi) = P_1 \cos(\lambda_1 \xi) + P_2 \sin(\lambda_1 \xi) + P_3 \cos(\lambda_2 \xi) - P_4 \sin(\lambda_2 \xi)$$ \hspace{1cm} (B10)

with

$$\lambda_1 = \sqrt{|\bar{z}_1|}, \quad \lambda_2 = \sqrt{|\bar{z}_2|}.$$ \hspace{1cm} (B11)

Substituting this form of the solution into the boundary conditions, one obtains four equations, written in matrix form as

$$M \cdot \mathbf{p} = \mathbf{0}$$ \hspace{1cm} (B12)

with

$$\mathbf{p^T} = [P_1 \quad P_2 \quad P_3 \quad P_4]$$ \hspace{1cm} (B13)

and

$$M = \begin{bmatrix}
\eta_1 & \lambda_1^2 - \eta_{LR} & \lambda_1^2 + (\nu + \eta_{LR}) \lambda_1 & -\lambda_2^2 + (\nu + \eta_{LR}) \lambda_2 \\
\lambda_1^2 + \nu \lambda_1 & \lambda_2^2 + \nu \lambda_2 & \lambda_1^2 + \nu \lambda_1 & \lambda_2^2 + \nu \lambda_2 \\
\lambda_1^2 \sinh(\lambda_1) + \alpha \Omega^2 \cosh(\lambda_1) & \lambda_1^2 \cosh(\lambda_1) + \alpha \Omega^2 \sinh(\lambda_1) & \lambda_2^2 \sin(\lambda_1) + \beta \Omega^2 \cos(\lambda_1) & \lambda_2^2 \cos(\lambda_1) + \beta \Omega^2 \sin(\lambda_1) \\
\lambda_1^2 \cosh(\lambda_1) - \beta \Omega^2 \lambda_1 \sinh(\lambda_1) & \lambda_1^2 \sinh(\lambda_1) - \beta \Omega^2 \lambda_1 \cosh(\lambda_1) & \lambda_2^2 \cos(\lambda_1) - \beta \Omega^2 \lambda_2 \sin(\lambda_1) & \lambda_2^2 \sin(\lambda_1) - \beta \Omega^2 \lambda_2 \cos(\lambda_1)
\end{bmatrix}$$ \hspace{1cm} (B14)

Looking for nontrivial solutions of this equation one obtains

$$\det(M) = 0$$ \hspace{1cm} (B15)

from which one can obtain the non-dimensional circular frequency Ω, and from that the natural frequency using

$$f_1 = \frac{\omega}{2 \pi} = \Omega \omega_0 = \Omega \sqrt{\frac{m L^2}{EI_v}}$$ \hspace{1cm} (B16)

The equation that has to be solved is transcendental and therefore solutions can only be obtained numerically.

Appendix C. Tower idealisation

The towers of offshore wind turbines are tapered towers with diameters decreasing from the bottom to the top. Typically, the wall thickness of the tower also decreases with height. However, some small and medium sized turbines have constant wall thickness. The formulation presented in this paper replaces this tower shape with an equivalent constant diameter, constant wall thickness tower. The average tower diameter

$$D_t = \frac{D_b + D_t}{2}$$ \hspace{1cm} (C1)

is used in combination with an equivalent tower wall thickness t_t. Note that if the average wall thickness is determined from a range
of wall thicknesses of the tower or from the mean of the top and bottom wall thicknesses, then the tower mass, as calculated from the idealised tower geometry,

\[m_T' = D_T \pi t_T L_T \]

may not be the same as the actual tower mass \(m_T \). In the case that information about tower wall thickness is not available, the equivalent thickness can be chosen such that the actual tower mass is maintained, that is,

\[t_T = \frac{m_T}{L_T D_T \pi} \]

(C3)

The non-dimensional stiffness parameters are normalised with the length \(L_T \) and the bending stiffness \(E_I L_T \) of the tower. When calculating these non-dimensional stiffness parameters, the equivalent bending stiffness is calculated such that the deflection at the tower top due to a force acting perpendicularly to the tower at the tower top is the same for the equivalent constant diameter tower as that of the tapered tower. The derivation is given here.

\[D_b = qD_t \]

(C4)

The diameter varies along the structure as

\[D(z) = D_0 \left[L_T + (q - 1)z \right] \]

(C5)

with \(z = 0 \) at the top of the tower and positive downwards. The second moment of area is then given as

\[I_T(z) = \frac{1}{8} D^2(z) t_T = \frac{1}{8} \frac{D^3(z)}{L_T^2} (L_T + (q - 1)z)^3 = I_T (1 + az)^3 \]

(C6)

where

\[a = \frac{q - 1}{L_T} \]

(C7)

Moment curvature relation is written as

\[E_I L_T \frac{d^2w}{dz^2} = Fz \]

(C8)

where \(F \) is the horizontal force at the hub. One can write

\[E_I L_T (1 + az)^3 \frac{d^2w}{dz^2} = Fz \]

(C9)

and from that \(w \) is obtained via integration

\[\frac{d^2w}{dz^2} = \frac{Fz}{E_I L_T (1 + az)^3} \]

(C10)

\[\frac{dw}{dz} = \frac{F}{E_I L_T a^2} \left[\frac{1}{2(1 + az)^2} - \frac{1}{1 + az} \right] + C_1 \]

(C11)

Table D1

Approximation formulae based on soil conditions and pile slenderness.

Slender pile	Rigid pile
Constant \(k_0 \) [42]	\[F \]
\[F \]	\[\frac{F}{M} = \begin{bmatrix} \frac{L}{M} - \frac{L}{M} \end{bmatrix} \end{bmatrix} \]
Linear \(k_0 \) [42]	\[F \]
\[F \]	\[\frac{F}{M} = \begin{bmatrix} 1.077 \sigma_0 (E_0) a^2 \end{bmatrix} \]
Bedrock – shear modulus \(C_0 \) based [20,43]	\[F \]
\[F \]	\[\frac{F}{M} = \begin{bmatrix} 3.15 C_0 D_1 (\frac{E}{L})^2 \end{bmatrix} \]

The boundary conditions are used to calculate the constants.

\[z = L_T, \quad \frac{dw}{dz} = 0 \]

[C1] \[\frac{F}{E_I L_T a^2} \left[\frac{1}{2(1 + az)^2} - \frac{1}{1 + az} \right] + C_1 z + C_2 \]

(C12)

The deflection at the end of the column is obtained by substituting \(z = 0 \) into the equation of deflection

\[w_{free} = \frac{H}{E_I L_T a^2} \left[\frac{1}{2(1 + az)^2} - \frac{1}{1 + az} \right] \]

(C13)

The stiffness is then given as

\[k = \frac{E_I L_T}{L_T} \left[\frac{2q^2(1 - q)^3}{q^2(1 - q)^3 + 4q - 1} \right] \]

(C17)

Verification: for a cantilever beam of constant diameter

\[\lim_{q \to 1} \frac{2q^2(1 - q)^3}{q^2(1 - q)^3 + 4q - 1} = 3 \]

(C18)

In the paper the following notification is used

\[E_I L_T = E_I \]

Appendix D. – Guidance on the calculation of foundation stiffness

The stiffness of the foundation is used as input in the calculations shown in this paper. However, determining the stiffness is the most challenging task. In the absence of careful (very expensive) and detailed site measured data, existing formulations available in the literature may be used to estimate the stiffness of the foundation theoretically. For the sake of brevity only a brief summary of some common methods are presented here.

For static analysis, two methods are given in [42], one methodology based on soil conditions and pile slenderness.
long) and rigid (infinitely stiff) piles. Another static stiffness approach is recommended in Eurocode 8 Part 5 [26] based on Gazetas [27], developed for seismic analysis of slender piles.

Dynamic analysis using a subgrade reaction approach of a beam on an elastic foundation was developed in terms of p-y curves [37,39,41,44,45], which is the currently accepted design procedure suggested by e.g. the DNV code for offshore wind turbines [25]. This methodology is based on Winkler’s approach [53] and utilises nonlinear springs to model the elastic foundation. Analytical solutions for dynamic analysis have been published by e.g. Nogami and Novak [38,40]. Green’s function based models have also been developed for dynamic stiffness of piles, e.g. [29,31]. Recent work regarding dynamic stiffness and damping of monopiles of offshore wind turbines include Shadlou and Bhattacharya [45], Zania [56] and Damgaard et al. [23]. For seismic analysis, a three-step solution was suggested by Kausel et al. [30], including simplified approximate expressions that make the method more attractive than finite element analysis. Finite element based methods for analysis of piles were developed by e.g. Blaney et al. [15].

In this appendix, however, the simple formulae in [42,43,20] are used. These formulations neglect the frequency dependence of foundation stiffness, which can be justified for dynamic loading of offshore wind turbines because the frequencies of excitation are so low. For seismic analysis, however, this frequency dependence should be taken into account. These approximations provide quick and easy solutions for foundation stiffness, achieving sufficiently accurate results for the natural frequency as shown in the paper.

The two main parameters to decide the calculation methodology for foundation stiffness are:

1. Soil condition and ground profile at the site and
2. Pile slenderness/rigidity.

The ground type/soil determines the main soil parameter for estimating soil stiffness, while determining whether the pile can be considered slender or rigid. This allows for simplification of the foundation stiffness estimation and for the use of closed form solutions instead of graphs or numerical methods.

Ground profile and soil conditions at the site

There are three main categories to consider from the point of view of the current analysis.

1. Cohesive soils: the horizontal modulus of subgrade reaction k_h is considered constant with depth below the mudline. This is typically used for over-consolidated clayey soils which is often encountered in offshore conditions, see Bhattacharya et al., [141] for typical North Sea soils. For normally consolidated cohesive soils, the subgrade reaction increases linearly with depth.

2. Cohesionless soils: the horizontal modulus of subgrade reaction k_h is assumed to increase with the square root of the depth below the mudline. This can be typically used for loose to medium dense sand and gravels.

3. Bedrock: The foundation stiffness is determined by the shear modulus of the soil. This is typically used for weathered bedrock and very dense sand.

4. Complex layered soils: For real sites the soil is obviously not always as simple as the above categories and different layers are often observed. One of the above categories may be chosen for such complex sites, bearing in mind that from the point of view of pile head deflection/rotation and pile stiffness the upper layers of the soil are of higher importance, and the upper layers should be weighted accordingly. The soil types at the sites of all the wind turbines considered in this paper are listed in Table 1 in Section 1. Alternatively, the stiffness can be more accurately obtained from p-y curves.

The constant horizontal modulus of subgrade reaction k_h for cohesive soils can be determined using the expression of Vesic [52], using the parameters from Tables 6 and 7:

$$k_h = \frac{0.65 \sqrt{D_p}}{E_p} \left(\frac{E_s}{1-\nu_s^2} \right)$$

where I_p is the second moment of area of the pile cross section, E_s is the elastic modulus of the soil, and ν_s is the soil’s Poisson’s ratio. Broms [17] provides another expression for clays based on the secant Young’s modulus E_{so}:

$$k_h = \frac{1.67E_{so}}{D_p}$$

which can be used in combination with the formula of Skempton [47] or the more conservative formula of Davisson [24] as quoted in [42], in terms of the undrained shear strength c_u.

Skempton : $E_{so} = (50 - 200 \cdot c_u$ and $k_h = (80 - 320 \cdot \frac{c_u}{D_p}$

Davisson : $k_h = 67 \cdot \frac{c_u}{D_p}$

The linearly varying modulus of subgrade reaction of cohesionless soils can be written following [42] as:

$$k_h = n_h \cdot \frac{Z}{D_p}$$

where n_h is the coefficient of subgrade reaction, calculated for sand after [49] as

$$n_h = \frac{A \cdot \gamma_{sand}}{1.35}$$

where γ_{sand} is the specific weight of sand and $A = 100 - 300$ for loose sand, $A = 300 - 1000$ for medium sand, and $A = 1000 - 2000$ for dense sand. The modulus of subgrade reaction k_h for cohesive soils and the coefficient of subgrade reaction n_h for cohesionless soils are used to calculate the foundation stiffness, as given in Table D1. In Table D1 ρ and θ are mudline pile head deflection and rotation, respectively, F and M are horizontal force and overturning moment at the mudline.

Slenderness/rigidity of the pile

Simple closed form solutions are readily available for the simplified cases obtained by assuming either a slender pile or a rigid pile.

1. Slender pile: The monopile is idealised as ‘slender’ or ‘infinitely long’ assuming that the pile flexibly deflects and that the pile fails first by yielding through a plastic hinge (as opposed to failure of the soil).

2. Rigid pile: The monopile is idealised as ‘rigid’ or ‘infinitely stiff’ assuming that the pile undergoes rigid body rotation (the soil fails first). However significant bending moment may be generated in the pile.

Two main methods are presented here to determine whether a pile can be slender or rigid. The first one is given in [42] and is based on the modulus of subgrade reaction k_h and the bending stiffness of the pile E_pI_p. The slenderness parameter is calculated as

$$\beta = \sqrt{\frac{k_h D_p}{4E_p I_p}}$$

The pile is considered slender or infinitely long if $\beta I_p > 2.5$, and considered rigid if $\beta I_p < 1.5$.

The second method is that of Randolph [43] and Carter and Kulhawy [20], which is based on the equivalent Young’s modulus
\(E_s \) of the pile, and the effective shear strength of the soil \(C' \).

\[
E_s = \frac{E_f p}{D_f \pi^2/64}, \quad C' = C_0 + \frac{3}{4}E_s
\]

where \(C_0 \) is the shear modulus of the soil. The pile is considered

slender, if \(\frac{L_P}{D_p} \geq \left(\frac{E_f}{C'} \right)^{1/2} \)

rigid, if \(\frac{L_P}{D_p} \leq 0.05 \left(\frac{E_f}{C'} \right)^{1/2} \).

This methodology is used for rocks by Carter and Kulhawy [20]. The formulae summarised in Table D1 were used to approximate the foundation stiffness in the present study and were found to provide good approximations in terms of natural frequency. The difference between the rigid and slender pile approximations is typically 1–6%.

References

[1] 4C Offshore Limited. Global offshore wind farms database. In: 4Coffshore.com web page. <http://www.4Coffshore.com/windfarms/>; 2015 [accessed 19.03.15].

[2] 4C Offshore Limited. Offshore wind turbine database. In: 4Coffshore.com web page. <http://www.4Coffshore.com/windturbines.aspx>; 2015 [accessed 19.03.15].

[3] Adhikari S, Bhattacharya S. Dynamic analysis of wind turbine towers on flexible foundations. Shock Vib 2012;19:37–56.

[4] Adhikari S, Bhattacharya S. Vibrations of wind-turbines considering soil–structure interaction. Wind Struct 2011;14:85–112.

[5] API. Recommended practice for planning, designing and constructing fixed offshore platforms—working stress design; 2005.

[6] Arany L, Bhattacharya S, Adhikari S, Macdonald John HG, Hogan S John. An analytical model for predicting the natural frequency of offshore wind turbines on three- and four-legged foundations using different beam models. Soil Dyn Earthq Eng 2015;74:40–55. http://dx.doi.org/10.1016/j.soildyn.2015.03.007.

[7] Arany L, Bhattacharya S, Hogan Sj, Macdonald J. Dynamic soil–structure interaction issues of offshore wind turbines. In: Proceedings of the 9th international conference on structural dynamics EURODYN; 2014. p. 3611–8.

[8] Arany L, Bhattacharya S, Macdonald J, Hogan Sj. Simplified critical mudline bending moment spectra of offshore wind turbine support structures. Wind Energy 2015;18(12):2171–97. http://dx.doi.org/10.1002/we.1812.

[9] Bhattacharya S. SDOWT: user manual (simplied dynamic of wind turbines); 2011, 1–51.

[10] Bhattacharya S, Adhikari S. Experimental validation of soil–structure interaction of offshore wind turbines. Soil Dyn Earthq Eng 2011;31:805–16. http://dx.doi.org/10.1016/j.soildyn.2011.01.004.

[11] Bhattacharya S, Cox JA, Lombardi D, Wood DM. Dynamic properties of offshore wind turbines supported on two foundations. Proc ICE – Geotech Eng 2013;166:159–69. http://dx.doi.org/10.1680/geot.2013.166.2.7.

[12] Blaney GW, Kausel E, Roesset JM. Dynamic stiffness of piles. In: Proceedings of the 5th international conference on structural dynamics ASCE 1964;90:123–56.

[13] Borell RO, Varberg C, Overbeek JT. A demonstration of the API p-y formulation of initial bending of a pile in ground having a finite width. In: Proceedings of the 22nd international offshore and polar engineering conference. Rhodes, Greece; 2012; p. 300–7.