Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Global virus outbreaks: Interferons as 1st responders

Ben X. Wang, Eleanor N. Fish

1. Introduction

Interferons (IFNs) are critical effectors of both innate and adaptive immune responses, associated with the development of immune cell populations and their activation to respond to pathogens, cancers and other insults. IFNs are classified according to the receptors through which they signal (Fig. 1). Type I IFNs (α, β, δ, ε, ζ, η, τ, and ω), signal through the IFN-α/β receptor (IFNAR), and are one of three major classes of IFNs, the other two being type II IFN (γ) and type III IFNs (λ1, λ2, λ3). Type I IFNs were discovered for their effectiveness to inhibit virus replication [1], and have since been shown to exert critical effects on the development and activation of immune cell subsets. Given both their antiviral and immunomodulatory effects, type I IFNs, alone, or in combination with other therapies, have been examined clinically in a variety of chronic and acute viral infections. This review will highlight the antiviral and immunomodulatory effects of type I IFNs, the mechanisms by which viruses inhibit and evade a host type I IFN response, and describe recent therapeutic applications for recombinant type I IFNs in the treatment of viral infections.

1.1. Induction of type I IFNs, receptor activation and signaling

Type I IFNs are induced following detection of pathogen-associated molecular patterns (PAMPs) and damage/danger-associated molecular patterns (DAMPs) by innate pattern recognition receptors (PRRs). Expressed by both immune and non-immune cells, PRRs comprise Toll-like receptors (TLRs), C-type lectin receptors (CLRs), retinoic acid-inducible gene 1 (RIG-I)-like receptors (RLRs), nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), Aim2-like receptors (ALRs) and cyclic GMP-AMP synthase (cGAS), which together bind a diverse range of extracellular and endosomal PAMPs and DAMPs (Fig. 2). PRR signaling results in the expression of type I IFNs and pro-inflammatory cytokines mediated by three essential transcription factors: IFN regulatory factor (IRF)3, IRF7, and nuclear factor-xB (NF-xB) [2–6]. Virus-inducible IFN-β expression is upregulated by the formation of an IFN-β enhancerosome, which is comprised of NF-xB, IRF3, IRF7 and c-Jun at the IFN-β promoter [7,8]. The induction of type I IFNs provides the first line of defense against many diverse pathogens. Indeed, IFN dysregulation can lead to increased virus susceptibility: RIG-I−/− and MDA5−/− mice produce lower levels of type I IFNs and are more susceptible to infection by RNA viruses, including Japanese encephalitis virus (JEV), encephalomyocarditis virus (EMCV), and West Nile virus (WNV) [9,10].

Type I IFNs bind to their cognate transmembrane receptor, IFNAR, comprised of an IFN-α/β receptor alpha chain (IFNAR1) and an IFN-α/β receptor beta chain (IFNAR2). Receptor binding leads to activation of multiple intracellular signaling cascades (Fig. 3). Best known is activation of the canonical Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway, whereby IFNAR-associated JAK1 and TYK2 participate in the recruitment of STATs (1–6) to IFNAR and their subsequent phosphorylation-activation to form homo- or heterodimers [11–14]. Unlike other STAT dimers, STAT1-STAT2 heterodimers also bind IRF9 to form the IFN-stimulated gene (ISG) factor 3 (ISGF3) complex [15,16]. In the nucleus, ISGF3 binds to IFN-sensitive
response elements (ISREs), 5′-AGTTTN3TTTC-3′ [15,16], while other STAT dimers bind to IFN-γ activated sequence (GAS) elements, 5′-TTCN3GAA-3′, to initiate transcription of ISGs [17]. Several non-canonical pathways are also activated by type I IFNs, including the p38-associated mitogen-activated protein kinase (MAPK) signaling pathway [18] to modulate histone modification and early gene expression [19], and the phosphoinositide 3-kinase (PI3K) and protein kinase B (AKT) pathway, to regulate mTORC1 activation, protein synthesis and capping-dependent mRNA translation [20] (D. Saleiro et al, this issue).

In humans, IFN-inducible transcriptional and translational regulation of ISGs results in the expression of over 7000 genes, that contribute to cellular processes including metabolism, survival, migration, activation and, importantly, innate host defense against viral infections [21]. Notably, many ISGs have been identified with functions that interfere with different stages of viral replication and transmission (Table 1). Interestingly, in vitro studies that examined the effects of IFN-β against Coxsackievirus B3 infection, identified a novel function of IFN-β in regulating glucose metabolism, mediated by activation of the PI3K/AKT signaling pathway, important for the induction of a rapid antiviral response [59].

1.2. Effects of type I IFNs on the immune system

Type I IFNs have diverse effects on the immune system, beyond the induction of antiviral ISGs, ranging from regulation of hematopoietic stem cells (HSCs) [60,61]. In mice, IFN-α enhances the proliferation of dormant HSCs in a STAT1- and AKT-phosphorylation dependent manner [60]. Moreover, chronic IFN-α signaling can lead to HSC exhaustion, resulting in a reduction in the number of quiescent HSCs in the bone marrow [60]. As a result, HSCs that lack the negative regulator of type I IFN signaling, IRF2, fail to outcompete IRF2−/− HSCs in competitive repopulation assays [61].

Type I IFNs also regulate the expression of chemokines and cell adhesion receptors, thereby affecting the trafficking of different immune cell populations. IFN-α/β signaling upregulates chemokine (C-C motif) ligand (CCL) 2 [62], CCL3, CCL4 [63], CCL5 [64], CCL7 [65], CCL12 [66], chemokine (C-X-C motif) ligand (CXCL) 9 [67], CXCL10 [66,67], CXCL11 [68] and cluster of differentiation (CD) 69 [69], while downregulating the expression of CXCL1, CXCL2 [60–72]. Briefly, CCL2, CCL7 and CCL12 are chemoattractants for monocytes [62,73], while CCL5, CXCL9, CXCL10, and CXCL11 are chemoattractants for T cells [74,75] – CCL2 also recruits memory T cells [76]. CCL3 and CCL4 are chemoattractants for monocytes and macrophages [77], and CXCL1 and CXCL2 recruit neutrophils [70]. IFN-α/β-inducible CD69 expression promotes the retention of lymphocytes in lymph nodes by inhibiting sphingosine 1-phosphate receptor-1 (S1P1) [69], thereby promoting antigen presentation and lymphocyte activation.

In addition to influencing chemokine expression, type I IFNs also regulate the survival and activation of innate and adaptive immune cells. Although type I IFNs inhibit the recruitment of neutrophils by suppressing CXCL1 and CXCL2 expression, IFN-α has been shown to promote neutrophil survival by inducing the expression of cellular inhibitor of apoptosis 2 (cIAP2) via STAT1 and STAT3 [78]. In NK cells, type I IFN signaling enhances IFN-γ production [79], cell survival [80], and cytotoxicity against tumor cells and virus-infected cells [80–83] through upregulation of Fas ligand (FasL) expression [84]. Moreover, type I IFN signaling in macrophages is important for phagocytosis [85] and nitric oxide synthase 2 (NOS2) expression [66], both of which contribute to the clearance of pathogens, tumor cells and damaged tissues.

Monocytes express high levels of IFNAR on their cell surface [86], and in the presence of IFN-α and granulocyte-macrophage colony-stimulating factor (GM-CSF), rapidly differentiate into DCs that are capable of presenting antigens, priming CD4+ T helper 1 (Th1) cells, and activating CD8+ T cells [87–90]. Type I IFN signaling in conventional DCs (cDCs) further directs T3–1 immunity and T cell activation by boosting IL-12 production in the presence of PAMPs [91]. IFN-α/β enhances the expression of major histocompatibility complex (MHC) class I, MHC class II, and the co-stimulatory factors: CD40, CD80, and CD86 [92,93]. Plasmacytoid DCs (pDCs) also produce considerably more IFN-α/β in the presence of PAMPs when compared to other leukocytes, due to high levels of constitutive IRF7 expression [94,95].

Type I IFNs regulate effector and memory CD4+ and CD8+ T cells [reviewed in [96]]. For cytotoxic CD8+ T cells, IFN-α/β upregulate IFN-γ, perforin and granzyme B expression [97]. Curtissinger et al. [97]...
showed that in the absence of IFN-α and IL-12 signaling, CD8+ T cells fail to upregulate perforin or granzyme B expression even in the presence of antigen and co-stimulation; therefore, IFN-α and IL-12 may provide a necessary third signal for CD8+ T cell effector function. In the context of viral infections, type I IFNs are also critical for CD8+ T cell clonal expansion and memory formation [98–100], and contribute to Eomesodermin (Eomes) and T-box transcription factor TBX21 (T-bet) expression [101]. Using IFNAR-/- cells, Le Bon et al. [102] showed that intact type I IFN signaling affects the ability for CD4+ T cells to provide B cell help, as well as the formation of antigen-specific antibody responses. In regard to other T cell subsets, type I IFNs downregulate both Th2 and Th17 differentiation by inhibiting GATA3 and IL-17 expression, respectively [103,104].

IFN-β⁻/⁻ mice exhibit a defect in B cell maturation resulting in significantly fewer circulating immunoglobulin (Ig) M⁺ B cells than in wild-type mice [105]. This defect is characterized by a reduction in pro-B cell and B220⁺, IgM⁺ and CD23⁺ B cell populations in the bone marrow. Moreover, IFN-β⁻/⁻ B220⁺ B cells express significantly lower levels of IgM and CD23 than wild-type B220⁺ B cells [105]. Like monocytes, B cells also express high levels of surface IFNAR [86], and IFN-α/β signaling is important for B cell survival and activation. Type I IFN signaling upregulates the surface expression of MHC class I, MHC class II, L-selectin, CD69, CD86, and CD25 on B cells [86,106,107], which prime them for B cell receptor (BCR) activation [105]. IFN-β expression by transitional stage 1 (T1) B cells in the spleen is critical for their survival and development [108]. Furthermore, IFN-α induces B cell activating factor (BAFF) and a proliferation-inducing ligand (APRIL) expression by DCs [109–111], which promote B cell Ig class switching [112,113]. Virus-activated pDCs also direct antigen-specific B cell differentiation into Ig-secreting plasma cells mediated by a combination of type I IFN and IL-6 signaling [114].

2. Viral antagonism of type I IFN responses

Given the effectiveness of IFN-inducible antiviral responses in limiting infection and viral replication in a largely cell-independent manner, irrespective of the virus, viruses have developed different mechanisms to inhibit type I IFN induction and signaling, and the activity of antiviral ISGs (Table 2). Viruses may encode in their genomes multiple different proteins that target different facets of type I IFN-inducible antiviral responses, or a single multifunctional protein: herpes simplex virus (HSV) encodes several proteins - ICP0, ICP27, ICP34.5, US11 - directed against different IFN-inducible targets, whereas influenza A virus (IAV), encodes a multifunctional viral protein - NS1 - with the capacity to interfere with multiple host pathways and proteins involved in an antiviral response.
3. Type I IFNs as broad-spectrum antivirals

Newly emerging and re-emerging virus infections pose a serious threat to global health (Fig. 4). In the absence of targeted vaccines for newly emerging virus infections, or sufficient vaccine availability for re-emerging virus infections, there is an obvious need for direct antivirals to deploy during a pandemic. Viruses mutate to become resistant to pathogen-specific antivirals, necessitating the development of broad-spectrum pleiotropic antivirals. Type I IFNs are prototypical candidate broad-spectrum antivirals, specifically because of their rapid induction in response to any and all virus infections, the pleiotropic nature of their effects on inhibition of different stages of viral replicative cycles and their effects on activating immune cells to clear virus infections. Not surprisingly, therefore, as mentioned above, viruses have evolved

Table 1
Antiviral ISGs with known functions.

ISG(s)	Function(s)	Reference(s)
APOBEC3	Cytidine deamination of single-stranded viral DNA (deoxycytidine to deoxyuridine) to inhibit retrovirus replication.	[22,23]
BST2	Binds and inhibits the release of budding progeny virions.	[24,25]
DDX58	RIG-I detects ssRNA to induce MAVS and IRF-dependent type I IFN production.	[9,26–28]
DDX60	Enhances RIG-I and MDA5-dependent type I IFN production.	[29,30]
EIF2AK2	Detects dsRNA and phosphorylates EIF2α to inhibit both cellular and viral mRNA translation.	[31,32]
IFI16	Detects dsDNA to induce MAVS and IRF-dependent type I IFN production.	[26,28]
IFITM1, IFITM2, and IFITM3	Inhibit viral entry. IFITM3 inhibits the formation of fusion pores in the late endosome.	[33–35]
IRF1 and IRF7	Induce ISG expression in the absence of type I IFN signaling.	[36,37]
ISG15	Regulates host and viral protein function by ISGylation.	[38–40]
ISG20	Cleaves ssRNA to inhibit viral RNA synthesis and replication.	[41,42]
MX1	Forms oligomeric ring structures that bind viral nucleoproteins to inhibit replication.	[43–45]
OAS1, OAS2, and OAS3	Detect dsRNA and synthesize 2′-5′ oligoadenylates, which are the substrate for RNaseL activation.	[46–48]
OASL	Enhances RIG-I activation.	[49]
RSAD2	Restricts viral budding by modulating lipid synthesis.	[50]
SAMHD1	Depletes intracellular dNTPs to inhibit viral replication.	[51–54]
TRIM5	Binds virus capsid proteins to inhibit viral infection.	[55]
TRIM25	Ubiquitinates RIG-I to enhance type I IFN induction.	[56]
ZC3HAV1	Inhibits viral mRNA expression and enhances RIG-I-dependent type I IFN induction.	[57,58]
Table 2
Virus-encoded proteins that antagonize the type I IFN response.

Virus	Viral Proteins(s)	Function(s)	Reference(s)
Chikungunya virus (CHIKV)	nsP2	Inhibits type I IFN-inducible JAK-STAT1 signaling.	[115]
Coxackievirus	2A protease	Cleaves MAVS and MDA5 to block type I IFN induction.	[116]
	3C protease	Cleaves RIG-I, MAVS and TRIF to block type I IFN induction.	[116,117]
Dengue virus (DENV)	NS2A, NS4A, NS4B, NS2B and NS3	Inhibit IFN-α-inducible STAT1 phosphorylation and ISG expression.	[118,119]
	NS5	Induce STAT2 and inhibit IFN-α-inducible STAT2 phosphorylation.	[120]
	VP2	Binds STAT1 and karyopherin-α to inhibit nuclear translocation of phosphorylated STAT1.	[121]
	VP35	Binds dsRNA to suppress RLR-dependent IRF3 activation and IFN-β induction.	[124,125]
Ebola virus (EBOV)	BRLF1	Inhibits IRF3 and IRF7 to suppress IFN-β induction.	[126]
	BZF1	Inhibits IRF7 activation to suppress IFN-β induction.	[127]
	LF2	Binds IRF7 to inhibit IFN-α induction.	[128]
	HBx	Binds RIG-I, TRAF3 and MAVS to inhibit type I IFN induction.	[129]
	Pol	Binds karyopherin-α and PKA-2 to inhibit IFN-α-inducible STAT1 phosphorylation and nuclear translocation of STAT1-STAT2 heterodimers. Also binds DDX3 to inhibit TBK1 and IKKε-dependent type I IFN induction.	[130,131]
Hepatitis B virus (HBV)	Core protein	Induces SOCS3 expression to inhibit IFN-α-inducible STAT1 phosphorylation.	[132]
	E2	Inhibits PKR activation.	[133]
	NS3 and NS4A	Inhibit TLR3 and MAVS-dependent IRF3 activation and IFN-β induction.	[134,135]
	NS5A	Binds PKR to inhibit PKR dimerization. Also binds STAT1 to inhibit IFN-α-inducible STAT1 phosphorylation and ISG expression.	[136,137]
Human cytomegalovirus (HCMV)	IE72	Interacts with STAT2 to inhibit ISGF3 binding to ISREs.	[138,139]
	IE86	Inhibits IFN-α production.	[140]
	pRS1 and pTRS1	Binds dsRNA to inhibit PKR and OAS activation.	[141]
	pUL26	Inhibits ISGylation.	[142]
Human immuno-deficiency virus (HIV)	Tat	Inhibits PKR activation.	[143]
	Vif	Inhibits AP01CE2G mRNA translation and enhances in post-translational degradation.	[144]
	Vpu	Inhibits the antiviral activity of teterhin.	[145]
	Vpx	Enhances degradation of SAMHD1.	[151]
Human parainfluenza virus (HPIV)	C	Inhibits type I IFN production and signaling.	[146]
	E6 and E7	Inhibit ISG expression. E6 inhibits type I IFN-inducible STAT1 phosphorylation and ISRE activation. Also, E6 binds IRF3 to inhibit type I IFN production.	[147,148]
Human respiratory syncytial virus (HRSV)	NS1 and NS2	Inhibit the activation and nuclear translocation of IRF3 to inhibit type I IFN induction.	[149]
Human rhinovirus (HRV)	NS1	Inhibits the antiviral activity of teterhin.	[150]
	NS2	Inhibits the antiviral activity of teterhin.	[151]
	- unknown -	Inhibits the antiviral activity of teterhin.	[152]
Herpes simplex virus (HSV)	ICP0	Inhibits IRF3 activation.	[153]
	ICP27	Inhibits IFN-α-inducible STAT1 phosphorylation and nuclear translocation.	[154]
	ICP34.5	Reverses PKR-dependent eIF2α phosphorylation.	[155]
	US11	Binds dsRNA to inhibit PKR and RNaseL activation.	[156]
Influenza A virus (IAV)	NS1	Binds RIG-1, CPSF4, and PABPII to suppress type I IFN production. Binds dsRNA to inhibit PKR and RNaseL activation. Inhibits IFNAR1 expression and IFN-β-inducible STAT phosphorylation.	[155-160]
	NS2	Inhibits type I IFN production and binds dsRNA to inhibit PKR activation.	[161]
	NS4A	Inhibits type I IFN-inducible STAT1 and STAT2 phosphorylation, and ISRE activation.	[162]
	NS5	Inhibits type I IFN-inducible STAT1 phosphorylation and ISG expression.	[163,164]
Lassa virus (LASSV)	NP	Inhibits the nuclear translocation of IRF3 and IFN-β induction.	[165,166]
Lymphocytic choriomeningitis virus (LCMV)	NP	Inhibits the nuclear translocation of IRF3 and IFN-β induction.	[166,167]
Marburg virus (MARV)	VP2	Inhibits type I IFN-inducible STAT1 and STAT2 phosphorylation.	[168]
	VP35	Binds dsRNA to suppress RLR-dependent IRF3 activation and IFN-β induction.	[169]
	VP40	Inhibits type I IFN-inducible STAT1 phosphorylation.	[170]
Measles virus (MeV)	C and P	Inhibit IFN-α-inducible ISRE activation.	[171]
	N	Inhibits nuclear translocation of STAT1 and STAT2.	[172]
	V	Binds STAT2 to inhibit type I IFN-inducible ISRE induction.	[173]
Middle East respiratory syndrome coronavirus (MERS-CoV)	M, ORF4b and ORF5, ORF4a	Inhibit IRF3 activation and IFN-β induction. Also inhibit ISRE activation.	[173]
	M	Inhibits type I IFN production and binds dsRNA to inhibit PKR activation.	[174]
	ORF4b	Inhibits type I IFN-inducible STAT1 and STAT2 phosphorylation.	[175]
	ORF4a	Binds dsRNA to inhibit RIG-I and MDA5-dependent IFN-β induction. Also inhibits ISRE activation.	[176]
Mumps virus (MuV)	V	Inhibits IFN-β-inducible STAT1 and STAT2 phosphorylation.	[177]
Nipah virus (NIV)	V, P and W	Inhibit IFN-β-inducible STAT1 phosphorylation and ISRE activation.	[178]
Poliovirus (PV)	2A protease	Cleaves MAVS and MDA5 to block type I IFN induction.	[179]
	3C protease	Cleaves RIG-I to block type I IFN induction.	[180]
Rabies virus (RbAV)	P	Binds STAT1, STAT2, and STAT3 to inhibit nuclear translocation of phosphorylated STAT proteins, and ISRE and GAS activation. Also inhibits IRF3 activation and IFN-β induction.	[181]
Rotavirus (RV)	NSP1	Enhances IRF3 and IRF7 degradation to inhibit type I IFN induction.	[182]

(continued on next page)
to evade an IFN response, specifically because it is so critical for the host immune response to infection. However, given the pleiotropic nature of the antiviral effects of IFNs, virus-targeted inhibition of some of these elements may still permit a partial - and effective - IFN response. To date, however, type I IFNs have seen limited clinical use for the treatment of acute and chronic infections.

Pegylated recombinant IFN-α-2a/2b (PEG-INF) in combination with ribavirin, a nucleoside inhibitor of viral RNA synthesis, remains the standard of care for treatment for chronic hepatitis C virus (HCV) infection in those jurisdictions where direct antiviral agents (DAA) are unavailable. Type I IFNs were first approved for single-agent therapeutic use in the context of HCV infection in the 1990s. A major limitation for the clinical use of type I IFNs for HCV has been the prevalence of adverse events, with the most common adverse events including fatigue, headache, pyrexia, rigors, myalgia, nausea, abdominal pain, anxiety, depression, psychosis and insomnia [197]. Serious adverse events include neutropenia, thrombocytopenia, hyper- and hypothyroidism, pancreatitis, type I diabetes mellitus, and irreversible pulmonary hypertension [198–200]. Notably, these adverse advents are associated with sustained IFN treatment. Pegylation of recombinant IFN improved pharmacokinetics to allow for longer dosing intervals [201]. The clinical efficacy of IFN therapy is determined by measuring serum HCV RNA levels, where a sustained virological response (SVR) is defined by undetectable HCV RNA levels at 24 weeks following the completion of the IFN therapy. Patients infected with HCV genotype (G) 2, G2, or G3, exhibit SVR rates of between 76–82% [202–205], in

Table 2 (continued)

Virus	Viral Protein(s)	Function(s)	Reference(s)
Severe acute respiratory syndrome coronavirus (SARS-CoV)	M	Binds RIG-I, TRAF3, TBK1 and IKKε to inhibit IRF3 and IRF7-dependent ISRE activation, and type I IFN production.	[182,183]
	Nsp1	Enhances host mRNA degradation and inhibits mRNA translation to suppress type I IFN expression. Also inhibits IRF3 and IRF7 activation, and IFN-α-inducible STAT1 phosphorylation.	[184–186]
	Nsp3	Inhibits IRF3 phosphorylation and nuclear translocation.	[187]
	ORF6	Binds karyopherin-α2 and -β1 to inhibit nuclear translocation of STAT1, and ISG expression.	[188]
Vaccinia virus (VACV)	E3L	Binds dsRNA to inhibit PKR and RNaseL activation. Also inhibits IRF3 activation and IFN-β induction.	[189]
	K3L	Inhibits PKR activation.	[190]
	vIFN-α/βRe	Binds type I IFN to inhibit IFN signaling.	[191]
West Nile virus (WNV)	NS4B	Inhibits type I IFN-inducible STAT1 phosphorylation and ISRE activation.	[119]
	NS5	Inhibits IFN-β-inducible STAT1 phosphorylation and ISG expression.	[192,193]
Yellow fever virus (YFV)	NS4B	Inhibits type I IFN-inducible STAT1 phosphorylation and ISRE activation.	[119]
	NS5	Inhibits type I IFN induction and signaling.	[194]
Zika Virus (ZIKV)	NS1, NS4A, NS5	Inhibit type I IFN induction and signaling.	[195]

Fig. 4. Extent of global viral infections. Graphical depiction of global viral outbreaks and summary of the impact of global viral infections based on information gathered from the World Health Organization (WHO) [196]. CHIKV (grey), chikungunya virus; EBOV (red), Ebola virus; IAV (purple), influenza A virus; MERS-CoV (blue), Middle-East respiratory syndrome coronavirus; LASV (pink), Lassa virus; RVFV (blue-purple), Rift Valley fever virus; SARS-CoV (yellow-green), severe acute respiratory syndrome coronavirus; WNV (green), West Nile virus; YFV (brown), yellow fever virus; ZIKV (gold), Zika virus; DENV, dengue virus; HBV, hepatitis B virus; HCV, hepatitis C virus; HIV, human immunodeficiency virus; HPV, human papillomavirus; HSV-1/2, herpes simplex virus type 1/2; PV, poliovirus.
comparison to SVR rates of approximately 67% and 40–50% for patients infected with HCV G4 and G1, respectively [206–211]. Furthermore, patients with HCV G1/G2/G3 infections who exhibit a rapid virological response (RVR), defined by undetectable serum HCV RNA after 4 weeks of treatment, are most likely to achieve a SVR [212,213]. In addition to RVR, other predictors of SVR include low expression of the suppressor of cytokine signaling, SOCS3, mRNA and protein in the liver [214], whereas elevated SOCS3 expression [215], and polymorphisms in MX1 and IFNAR1 gene promoter regions are associated with non-response [216,217]. A lack of variation in the gene sequence encoding the PKR-binding domain within E2 and NS5A of HCV G1/G4 may contribute to the increased resistance to PEG-IFN and ribavirin combination therapy [218].

PEG-INF has also shown therapeutic efficacy in patients with chronic hepatitis B virus (HBV) infection, as evidenced by seroconversion from hepatitis B e-antigen (HBeAg) positivity (active HBV replication) to HBeAg negativity and detectable levels of anti-HBe antibodies [219–221]. In a study conducted by Keating et al. [221], 42% of HBV infected patients treated with PEG-IFN achieved seroconversion, while 12% cleared the virus one year following onset of treatment. In the same study, inactive HBV was detected in another 17% of treated patients.

In a single patient case study of chronic hepatitis E virus (HEV) infection, weekly PEG-INF treatment resulted in a decrease in serum HEV RNA by week 2 and a complete virological response by week 4 [222]. In the same patient, serum HEV RNA remained undetectable after 5 months. An SVR was seen in another patient with chronic HEV infection following PEG-INF treatment, with undetectable serum HEV RNA by week 3 that persisted for 6 months after cessation of PEG-INF treatment [223]. PEG-INF treatment induces ISG transcription and clearance of HEV infection in humanized mice [224].

Apart from their clinical use for chronic virus infections, little consideration has been given to the application of type I IFNs for severe acute virus infections. Between November 2002 and August 2003 over 8000 cases of severe acute respiratory syndrome coronavirus (SARS-CoV) infection were reported worldwide, resulting in 916 deaths [196]. 8000 cases of severe acute respiratory syndrome coronoavirus (SARS-CoV) infection were reported worldwide, resulting in 916 deaths [196]. Between November 2002 and August 2003 over 8000 cases of severe acute respiratory syndrome coronavirus (SARS-CoV) infection were reported worldwide, resulting in 916 deaths [196]. Type I IFNs have also been shown to inhibit acute influenza A virus (IAV) infections, in vitro [155,237]. In primary human lung explants, IFN alfacon-1 inhibited avian H5N1 and pandemic H1N1 IAV replication, while upregulating the expression of several antiviral ISGs - PKR, OAS, and ISG15 [155]. Treatment of IAV-infected human lung A549 cells with IFN-β inhibited viral replication in a dose-dependent manner [237]. In the context of another acute virus infection, West Nile Virus, Type I IFNs have been shown to increase incorporation of microRNAs (miRNAs) into extracellular vesicles in A549 cells [238]. These enriched miRNAs regulate genes involved in antiviral and pro-inflammatory responses.

Type I IFNs have also been shown to inhibit acute influenza A virus (IAV) infections, in vitro [155,237]. In primary human lung explants, IFN alfacon-1 inhibited avian H5N1 and pandemic H1N1 IAV replication, while upregulating the expression of several antiviral ISGs - PKR, OAS, and ISG15 [155]. Treatment of IAV-infected human lung A549 cells with IFN-β inhibited viral replication in a dose-dependent manner [237]. In the context of another acute virus infection, West Nile Virus, Type I IFNs have been shown to increase incorporation of microRNAs (miRNAs) into extracellular vesicles in A549 cells [238]. These enriched miRNAs regulate genes involved in antiviral and pro-inflammatory responses.

The orally administered, low molecular weight IFNAR2 agonist CDM-3008, has been shown to mimic the action of IFN-α by inhibiting both HCV [239] and HBV [240] infection in vitro. CDM-3008 is able to induce JAK-STAT signaling and upregulate ISG expression. Adenovirus-vectored IFN-alfacon-1, which has long-lasting antiviral activity, protects mice, hamsters and non-human primates in animal models of enterovirus (EV) 71 [241], EBOV [234,242], Chikungunya virus (CHIKV) [243], and Rift Valley fever virus (RVFV) infection [244]. A single dose of adenovirus-vectored IFN-α (DEF201), given intranasally within 6 h post-RVFV challenge, significantly reduced viral loads in the serum, liver and spleen of hamsters [244]. DEF201, when administered prophylactically 21 days to 24 h prior to CHIKV challenge in mice, reduced CHIKV viral titers [243]. Furthermore, administration of DEF201 at 6 h and 12 h post-lethal EV71 infection of mice resulted in full and partial protection, respectively [241]. Viewed together, these in vivo studies provide a rationale for the evaluation of the prophylactic and therapeutic effects of adenovirus-vectored IFN-α for the treatment of severe acute virus infections when vaccines and/or approved antiviral agents are unavailable.

4. Concluding remarks

The preceding serves to illustrate the pleiotropic nature of type I IFNs in inhibiting virus replication, irrespective of the virus. Virus outbreaks pose a serious threat to global health, as exemplified by the
recent outbreaks of SARS CoV, avian H5N1 influenza, Zika virus, WNV and EBOV. In the absence of a vaccine targeted against a newly emerging or re-emerging virus, antiviral drugs serve to limit viral spread. Viruses mutate to specifically evade pathogen-specific antivirals, a case in point being the emergence of Tamiflu-resistant influenza N1 strains [245]. A preferred strategy to limit virus outbreaks would be to develop broad-spectrum antiviral agents that would exhibit pleiotropic effects [21], including invoking metabolic events important for the induction of a rapid antiviral response [59], targeting different stages of a virus replicative cycle and also invoking a robust immune response against the virus, regardless of the virus. Type I IFNs present as nonredundant roles of RIG-I and MDA5 in detecting and controlling West Nile virus, Nature 424 (2003) 992–997.

References

[1] A. Isaacs, J. Lindenmann, Virus interference. I. The interferon, Proc. R. Soc. Lond. B. Biol. Sci. 147 (1957) 256–267.

[2] W.S. Moore, P.A. Toper, S. LaFleur, B. Tombl, P.M. Pitta, Characterization of the interferon regulatory factor-7 and its potential role in the transcription activation of interferon A genes, J. Biol. Chem. 273 (1998) 29210–29217.

[3] T.Y. Juang, W. Lowther, M. Kellum, W.C. Au, R. Lin, J. Hiscott, P.M. Pitta, Primary activation of interferon A and interferon B gene transcription by interferon regulatory factor 3, Proc. Natl. Acad. Sci. U. S. A. 95 (1998) 9837–9842.

[4] T.A. Libermann, D. Baltimore, Activation of interferon-6 gene expression through IFN-κB induction, Mol. Cell. Biol. 10 (1990) 2327–2334.

[5] T. Matsusaka, K. Fujikawa, Y. Nishio, N. Mukaida, K. Matushima, T. Kishimoto, S. Akira, Transcription factors NF-IL6 and NF-κappaB synergistically activate transcription of the inflammatory cytokines, interleukin 6 and interleukin 8, Proc. Natl. Acad. Sci. U. S. A. 90 (1993) 10193–10197.

[6] M. Sato, N. Hata, M. Asagiri, T. Nakaya, T. Taniguchi, N. Tanaka, Positive feed-forward activation of interferon beta interferon enhanceosome is dependent on ATF-2-c-jun heterodimer orientation, Mol. Cell. Biol. 20 (2000) 8418–8424.

[7] D. Panne, T. Maniatis, J.L. Cole, Mechanism of Promotion by PDI, J. Mol. Biol. 381 (2008) 351–361.

[8] A.L. Brass, I.C. Huang, Y. Benita, S.P. John, M.N. Krishnan, E.M. Feeley, B.J. Ryan, J.L. Weyer, L. van der Weyden, E. Fikrig, D.J. Adams, R.J. Xavier, M. Fazan, S.J. Elledge, The IFITM proteins mediate cellular resistance to influenza A virus, West Nile virus, and dengue virus, Cell 139 (2009) 1243–1254.

[9] T.M. Desai, M. Marin, C.R. Chin, G. Savidis, A.L. Brass, G.B. Melikyan, IFITM3 restricts influenza A virus infection by formation of fusion pores following virus-endosome hemifusion, PLoS Pathog. 10 (2014) e1004048.

[10] L.C. Huang, C.C. Bailey, J.L. Weyer, S.P. John, M.N. Krishnan, E.M. Feeley, B.J. Ryan, J.L. Weyer, L. van der Weyden, E. Fikrig, D.J. Adams, R.J. Xavier, M. Fazan, S.J. Elledge, S. Bavar, M.R. Denison, H. Choe, M. Fazan, Distinct patterns of IFITM-mediated restriction of flaviviruses, SARS coronavirus, and influenza virus, PLoS Pathog. 7 (2011) e1001258.

[11] S. Kim, M. Mordstorf, A.G. Hovanessian, A. Garcia-Sastre, B.R. Teneoover, Transcription factor redundancy ensures induction of the antiviral state, J. Biol. Chem. 285 (2010) 42031–42022.

[12] R. Lane, Constitutive expression of an ISGF2/IRF1 transgene leads to interferon-independent activation of interferon-inducible genes and resistance to virus infection, J. Virol. 66 (1992) 4470–4478.

[13] C. Zhao, T.Y. Juang, R.L. Xiao, K.M. Krog, ISGF3 conjugation system targets the viral NS1 protein in influenza A virus-infected cells, Proc. Natl. Acad. Sci. U. S. A. 107 (2010) 2255–2258.

[14] O.A. Malakhova, M. Yan, M.P. Malakhov, Y. Yuan, K.J. Ritchie, K.J. Lim, L.P. Peterson, K. Shuai, D.E. Levy, J.E. Darnell Jr., ISGF3, the transcription factor complex, Mol. Cell. Biol. 20 (2000) 1146–11425.

[15] H. Yan, K. Krisan, G. Lundgreen, S.G. Park, T.T. Lim, R.D. Schreiber, C.W. Schindler, J.J. Kroewelki, Phosphorylated interferon-alpha receptor 1 subunit (IFNAR1) acts as a docking site for the latent form of the 113 kDa STAT2 pool, J. Biol. Chem. 273 (2000) 3827–8.

[16] J. Braunstein, S. Brutsaert, R. Olsen, C. Schindler, STAT5 dimerization in the absence of phosphorylation, J. Biol. Chem. 278 (2003) 33143–33140.

[17] E.N. Fish, J.C. Platanias, Interferon receptor signaling in malignancy: a network of cellular pathways defining biological outcomes, Mol. Cancer Res. 12 (2014) 1699–1703.

[18] Y.S. Fu, D.S. Kesler, S.A. Veals, D.E. Levy, J.E. Darnell Jr., ISGF2/IRF1, the transcription factor complex, Mol. Cell. Biol. 20 (2000) 1146–11425.

[19] B.E. Perrot, J. Mischa, M. Schaller, P. Stack, G. Scharl, S.M. Proost, E. Defrance, D. Terno, Broad anti-retroviral defense by human APOBEC3G through lethal editing of nascent reverse transcripts, Nature 423 (2003) 100–103.

[20] Q. Yu, R. Konig, S. Pillai, K. Chiles, M. Kearney, S. Palmer, D. Richman, J.M. Coffin, N.R. Landau, Single-stranded specificity of APOBEC3F accounts for minus-strand deamination of the HIV genome, Nat. Struct. Mol. Biol. 11 (2004) 435–442.

[21] B. Seil, T. Zang, P.D. Bieniasz, Tetherin inhibits reovirus release and is antagonized by HIV-1 Vpu, Nature 451 (2008) 425–430.

[22] A. Perez-Calderon, T. Zang, A. Braham, M.W. McNatt, D.A. Gregory, M.C. Johnson, P.D. Bieniasz, Tetherin inhibits HIV-1 release by directly tethering viral particles, Cell 139 (2009) 511–519.

[23] D. Kolakofsky, E. Kowalinski, S. Cusack, A structure-based model of RIG-I activation, RNA 18 (2012) 2118–2127.

[24] T. Kawazoe, K. Takahashi, T. Nakazawa, A. Cohan, H. Kumar, H. Kato, K.J. Ishii, O. Takeuchi, S. Akira, IPS-1, an adaptor triggering RIG-I and Mda5-mediated type I interferon induction, Nat. Immunol. 6 (2005) 981–988.

[25] M. Yoneyama, M. Kikuchi, T. Natsuoka, N. Shinobi, T. Imaiizu, M. Miyagishi, K. Akira, T. Fujita, The RNA helicase cGAS-IFITM1 has an essential function in double-stranded RNA-induced innate antiviral responses, Nat. Immunol. 5 (2004) 340–347.

[26] M. Miyashita, O. Murata, M. Okamoto, Y. Morikma, M. Okabe, M. Matsumoto, T. Seya, DXD60 is involved in RIG-I dependent and independent antiviral responses, and its function is antagonized by interferon-induced EGRF activation, Cell Rep. 11 (2015) 1193–1207.

[27] T. Kawai, K. Takahashi, S. Sato, A. Mihashi, M. Okamoto, Y. Morikma, M. Matsumoto, T. Seya, DXD60 is involved in RIG-I dependent and independent antiviral responses, and its function is antagonized by interferon-induced EGRF activation, Cell Rep. 11 (2015) 1193–1207.
myeloid-cell-specific HIV-1 restriction factor counteracted by Vpu, Nature 474 (2011) 654–657.

[52] H. Labouzaa, W. Daddach, H. Hofmann, D. Ayinde, E.C. Logue, L. Dragin, N. Bloch, C. Bachelor, M. Bertrand, T. Gramberg, G. Pancino, S. Priet, R. Canard, N. Laguette, M. Benkirane, C. Tranzy, N.R. Landaua, B. Kim, F. Margottin-Goguet, SAMBD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxyadenosine triphosphates, Nat. Immunol. 13 (2012) 223–230.

[53] D.C. Goldstone, V. Ennis-Adirian, J.J. Hedden, H.C. Groom, G.I. Rice, E. Christodoulou, P.A. Walker, G. Kelly, L.F. Haie, M.W. Yap, L.P. de Carvalho, J.P. Frye, Y.J. Crook, C. Taylor, M. Webb, HIV restriction factor SAMBD1 is a deoxyadenosine triphosphohydrolase, Nature 480 (2011) 379–382.

[54] J. Ryoo, J. Choi, C. Oh, S. Kim, M. Seo, S.Y. Kim, D. Seo, J. Kim, T.E. White, A. Brandariz-Nuñez, F. Diaz-Griffero, C.H. Yun, J.A. Hollo, B. Kim, D. Baek, K. Jiao, The ribonucleotidase activity of SAMBD1 is required for HIV-1 restriction, Nat. Med. 20 (2014) 936–941.

[55] M. Stremlau, M. Perron, M. Lee, Y. Li, B. Song, H. Fujiwara, K.E. Thomas, C.L. Galligan, R.D. Newman, E.N. Fish, S.N. Vogel, Contribution of type I interferons to ubiquitination and uncoating of retroviral capsids by the TRIMsPatha restriction factor, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 5514–5519.

[56] S. Inoue, R.A. Albrecht, T. Uran, R.S. Iim, L.C. Huang, E. Carreno, M. Farzan, S. Inoue, J.U. Jung, A. Garcia-Sastre, Influenza A virus S1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I, Cell Host Microbe 5 (2009) 439–449.

[57] S. Serezawa, J. Nakatani, Y. Yamato, T. Kameyama, C. Kitatsui, F. Kashihi, S. Goto, S. Kameoka, D. Fujikura, T. Yamada, T. Mizutani, K. Mazumata, S. Sato, J. Tanaka, M. Asaka, Y. Ohba, T. Miyazaki, M. Immamura, A. Takezaki, ZAPS is a potent stimulator of IFN-α/β, IL-6 and IL-10 RNA helicase RIG-I during antiviral responses, Nat. Immunol. 12 (2011) 37–44.

[58] G. Gao, X. Guo, S.P. Goff, Inhibition of retroviral RNA production by ZAP, a CCHC zinc finger protein, Science 297 (2002) 2116–2119.

[59] J.D. Burke, L.C. Platanias, E.N. Fish, Beta interferon regulation of glucose metabolism is PI3K/Akt dependent and important for antiviral activity against Coxsackie virus B3, J. Virol. 88 (2014) 3485–3495.

[60] M. Serio, S. shrine, K. Yamaguchi, A. Blanco-Rodriguez, N. Uchida, M.A. Duchosal, Interferon-alpha and -beta di differently stimulate human dendritic cell maturation and activation of mouse Langerhans cells, J. Immunol. 125 (2004) 297.

[61] J.M. Jaspar, D. De Groote, A. Billiau, G. Opdenakker, J. Van Damme, Dimers for IFNs and STAT1 in NK cell function, J. Immunol. 165 (2000) 7540–7549.

[62] M. Stremlau, M. Perron, M. Lee, Y. Li, B. Song, H. Fujiwara, K.E. Thomas, C.L. Galligan, R.D. Newman, E.N. Fish, S.N. Vogel, Contribution of type I interferons to ubiquitination and uncoating of retroviral capsids by the TRIMsPatha restriction factor, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 5514–5519.

[63] L.F. Coelho, G. Magno de Freitas Almeida, F.J. Mennechet, A. Blangy, G. Uze, Interferon-alpha and -beta differentially differentiate peripheral blood monocytes into potent antigen-presenting cells, J. Immunol. 125 (2000) 11917–11922.

[64] A. Le Bon, C. Thompson, E. Kamphuis, V. Durand, C. Rossmann, U. Kalinke, A. Izaguirre, B.J. Barnes, S. Amrute, W.S. Yeow, N. Megjugorac, J. Dai, D. Feng, J.B. Swann, Y. Hayakawa, N. Zerafa, K.C. Sheehan, B.C. Kelly, J. Hu, L. Zhu, J. Sun, J.M. Curtsinger, J.O. Valenzuela, P. Agarwal, D. Lins, M.F. Mescher, Type I IFNs provide a third signal to CD8 T cells to stimulate clonal expansion and differentiation of these cells, J. Immunol. 188 (2012) 3116–3125.

[65] D. Dauer, K. Schad, J. Junkmann, C. Bauer, J. Herten, R. Kiefer, M. Schurr, S. Endres, A. Eigel, IFN-alpha promotes definitive maturation of dendritic cells generated by short-term culture of monocytes with GM-CSF and IL-4, J. Leukoc. Biol. 80 (2006) 278–286.

[66] T. Luft, K.C. Pang, E. Thomas, P. Hertzog, D.N. Hart, J. Trapani, J. Cebron, Type I IFNs enhance the terminal differentiation of dendritic cells, J. Immunol. 161 (1998) 1947–1953.

[67] M. Dauer, B. Obermair, J. Herten, C. Haerle, K. Pohl, S. Rothenfuss, M. Schurr, S. Endres, A. Eigel, IFN-alpha promotes definitive maturation of dendritic cells derived from human monocytes within 48 hours: a novel strategy for dendritic cell differentiation from blood precursors, Immunity 170 (2002) 215–225.

[68] R.L. Paquette, N.C. Hu, S.M. Kietscher, A.N. Park, L. Tran, M.D. Roth, J.A. Glaspy, Interferon-alpha and granulocyte-macrophage colony-stimulating factors differentiate peripheral blood monocytes into potent antigen-presenting cells, J. Leukoc. Biol. 64 (1998) 358–367.

[69] G. Gautier, M. Humbert, F. Deauville, M. Scullier, J. Hiscott, E.E. Bates, G. Trinchieri, C. Caux, P. Garone, A Type I interferon autocrine-paracrine loop is involved in T- and B-cell proliferation induced by IFN-α through the Jak-2/STAT1 pathway, J. Biol. Chem. 277 (2002) 14531–14539.

[70] J.P. Simmons, P.A. Wearch, D.H. Canaday, H.J. Meyerson, Y.C. Liu, Y. Wang, W. Lu, G. Brennan, R.D. Newton, J. Trapani, J. Cebron, Type I IFNs are highly expressed on peripheral blood B cells and monocytes and mediate a distinct profile of differentiation and activation of these cells, J. Immunol. 170 (2003) 4076–4083.

[71] K.B. Nguyen, T.P. Salazar-Mather, M.Y. Dalod, J.B. Van Deusen, X.Q. Wei, F.Y. Liew, M.A. Caligiuri, J.E. Durbin, C.A. Biron, Coordinated and distinct roles for type I-IFN alpha, beta, and IL-15 regulation of NK cell responses to viral infections, J. Virol. 82 (2008) 3076–3085.

[72] J.C. Liao, Z.T. Yao, M. Inoue, J.U. Jung, A. Garcia-Sastre, Inhibition of retroviral RNA production by ZAP, a CCCH-zinc finger protein, Science 297 (2002) 2116–2119.

[73] E. Yanguez, A. Garcia-Culebras, A. Frau, C. Llompart, K.P. Knobeloch, S. Gutierrez-Ferrer, E. Trinchieri, C. Caux, P. Garrone, A type I interferon autocrine-paracrine loop is involved in Toll-like receptor-induced IP-10 secretion by dendritic cells, J. Exp. Med. 201 (2005) 1435–1446.

[74] D.P. Simmons, P.A.W. Fast, D.H. Canaday, H.J. Meyerson, Y.C. Liu, Y. Wang, W. Lu, G. Brennan, R.D. Newton, J. Trapani, J. Cebron, Type I IFNs enhance the terminal differentiation of dendritic cells, J. Immunol. 161 (1998) 1947–1953.

[75] E. Chung, P.M. Pitta, P. Fitzgerald-Bocarsly, Comparative analysis of IRF and IFN-type-I interferon-dependent immune responses, Nature 434 (2005) 772–777.

[76] V. Gattei, Monocytes/macrophages but not T lymphocytes are the major targets of IFN-alpha and -beta in the gas phase, Blood 99 (2002) 3263–3269.

[77] B.X. Wang and E.N. Fish, Seminaries in Immunology 43 (2019) 101300
human Th2 commitment and stability by suppressing GATA3, J. Immunol. 185 (2010) 813–817.

[104] A.R. Moschen, S. Geiger, I. Krehan, A. Kaiser, H. Tilg, Interferon-alpha controls IL-17 expression via STAT3 in monocytes and regulates the production of IL-12, J. Immunol. 179 (2007) 1978–1984.

[105] R. Deonarain, A. Verma, A.C. Porter, D.R. Gevert, L.C. Flatanis, E.N. Fish, Critical roles for IFN-beta in lymphoid development, myelopoesis, and tumor development: links to tumor necrosis factor alpha, Proc. Natl. Acad. Sci. U. S. A. 100 (2003) 13433–13438.

[106] D. Braun, I. Caramelo, J. Demengeot, IFN-alpha/beta enhances BCR-dependent B cell responses, Int. Immunol. 14 (2002) 411–419.

[107] S.S. Evans, R.P. Farnsworth, G.J. Appenheimer, S.O. Gollnick, Interferon-alpha affects expression of the L-selectin homing receptor in human B lymphoid cells, J. Cell Biol. 123 (1993) 1889–1898.

[108] J.A. Hamilton, Q. Wu, P. Yang, B. Luo, S. Liu, H. Hong, J. Li, M.R. Walter, E.N. Fish, H.C. Huang, M. Mountz, Cutting-edge: endogenous IFN-β regulates survival and development of transitional B cells, J. Immunol. 199 (2017) 2618–2623.

[109] Y. Yao, L. Richman, B.W. Higgs, C.A. Morehouse, M. de los Reyes, P. Brohawn, J. Zhang, B. White, A.J. Joyce, P.A. Kieny, J. Ballal, Neutralization of interferon-alpha/beta-inducible genes and downstream effect in a phase I trial of an anti-interferon-alpha monoclonal antibody in system lupus erythematosus, Arthritis Rheum. 53 (2005) 1514–1520.

[110] M.B. Litinsky, B. Nardelli, D.M. Hibbert, B. He, A. Schaffer, P. Casali, A. Cerutti, DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL, Nat. Immunol. 3 (2002) 822–829.

[111] H.J. C. Jouvenet, M. Iayet, S.R. Dillon, M. Panaro, G. Zarowski, J. Banchereau, V. Pascual, S. Oh, Serum from patients with SLE instructs monocytic cells to promote IgG and IgA plasmablast differentiation, J. Exp. Med. 209 (2012) 1353–1364.

[112] E. Castigli, S.A. Wilson, S.O. Gollnick, Interferon-alpha modulates the expression of toll-like receptor 4 on human B lymphoid cells, J. Virol. 86 (2012) 1048–1059.

[113] E. Schnettier, J.M. Vlak, A. Suhrbier, A.A. Khromykh, G.P. Pijlman, Chikungunya virus nonstructural protein 2 inhibits type I/II interferon-stimulated JAK-STAT signaling, J. Virol. 82 (2008) 4942–4952.

[114] A.R. Moschen, S. Geiger, I. Krehan, A. Kaser, H. Tilg, Interferon-alpha controls IL-12 and block IFN-beta in lymphoid development, myelopoiesis, and tumor development, links to tumor necrosis factor alpha, Proc. Natl. Acad. Sci. U. S. A. 100 (2003) 13433–13438.

[115] K. Li, E. Foy, J.C. Ferroence, M. Nakamura, A.C. Ferrebee, M. Ikeda, S.C. Ray, M. Gale Jr., J.M. Lom, Immuneevasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF, Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 2992–2997.

[116] K. Kumipi, P. Churtt, N. Jilgi, L. Zhao, D.N. Fusco, H. Zhao, K. Goto, D. Cheng, L. Schad, K. Wang, C. Panpup, S. Thongwatt, A. Bitern, L.F. Peng, N. Maneekarn, R.T. Chung, W. Lin, Hepatitis C virus NSSA disrupts STAT1 phosphorylation and suppresses type I interferon signaling, J. Virol. 86 (2012) 10182–10191.

[117] M. Gale Jr., C.M. Blakely, B. Kwieciezinski, S.L. Tan, M. Dossett, N.M. Tang, N.M. Tang, M.J. Korth, S.J. Polyak, D.R. Gretch, M.G. Ratte, Control of FKR protein kinase by hepatitis C virus nonstructural 5A protein: molecular mechanism, PLoS Pathog. 7 (2011) e1002354.

[118] C. Paulaus, S. Krauss, M. Nevels, A human cytomegalovirus antagonist of type I IFN-dependent signal transducer and activator of transcription signaling, Proc. Natl. Acad. Sci. U. S. A. 100 (2003) 3840–3845.

[119] Y.H. Huh, Y.E. Kim, E.T. Kim, J.J. Park, M.L. Song, R.M. Krug, The CPSF30 binding site on the 3′ untranslated region of the hepatitis C virus 5B gene is negatively regulated by the Epstein-Barr virus immediate-early fl1117, Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 10052–10057.

[120] S.S. Evans, R.P. Collea, M.M. Appenheimer, S.O. Gollnick, Interferon-alpha monoclonal antibody in systemic lupus erythematosus, Arthritis Rheum. 53 (2005) 1514–1520.

[121] B.X. Wang and E.N. Fish, J. Banchereau, V. Pascual, S. Oh, Serum from patients with SLE instructs monocytic cells to promote IgG and IgA plasmablast differentiation, J. Exp. Med. 209 (2012) 1353–1364.

[122] J. Hass, J.U. Jung, Epstein-Barr virus LF2: an antagonist to type I interferon, J. Virol. 80 (2006) 5156–5167.

[123] P. Paladino, S.E. Collins, K.L. Mossman, Cellular localization of the herpes simplex virus 1348, Proc. Natl. Acad. Sci. U. S. A. 97 (2000) 12343–12348.

[124] R. Sanchez, I. Mohr, Inhibition of cellular 2′-5′ oligoadenylate synthetase by the Epstein-Barr virus Vp15 protein: a mechanism of immune suppression in EBV-positive Burkitt's lymphoma, J. Virol. 81 (2007) 1146–1154.
T. Muster, Influenza virus NS1 protein countercells PKR-mediated inhibition of replication, J. Virol. 74 (2000) 6203–6206.

Z. Chen, Y. Li, R.M. Krug, Influenza A virus NS1 protein targets poly(A)-binding protein II of the cellular 3’-end processing machinery, EMBO J. 18 (1999) 2273–2283.

J.Y. Min, R.M. Krug, The primary function of RNA binding by the influenza A virus NS1 protein in infected cells: Inhibiting the 2’-5’ oligo (A) synthetase/RNase L pathway, J. Virol. 80 (2006) 11667–11677.

B. Dauber, J. Schneider, T. Wolf, Double-stranded RNA binding of influenza B virus nonstructural NS1 protein inhibits protein kinase R but is not essential to antagonizing production of alpha/beta interferon, J. Virol. 83 (2009) 32220–32221.

C.W. Lin, C.W. Cheng, T.C. Yang, S.W. Li, M.H. Cheng, L. Wan, Y.J. Lin, C.H. Lai, W.Y. Lin, C.M. Lin, K.I. Kao, Interferon antagonist function of Japanese encephalitis virus NS4A and its interaction with DEAD-box RNA helicase DDX4, Virus Res. 137 (2008) 49–52.

R.J. Lin, B.L. Chang, H.P. Yu, C.L. Liao, Y.L. Lin, Blockage of interferon-induced Jak-Stat signaling by Japanese encephalitis virus NS5 through a tyrosine phosphorylation mechanism, J. Virol. 80 (2006) 5908–5918.

T.C. Yang, S.W. Li, C.C. Lai, K.Z. Lu, M.T. Chu, T.H. Hsieh, L. Wan, C.W. Lin, Proteomic analysis for Type I interferon antagonism of Japanese encephalitis virus protein X, J. Virol. 86 (2012) 3442–3452.

K.M. Haste, C.R. Kimberlin, M.A. Zandonatti, I.J. MacRae, E.O. Saphire, Structure of the Lassa virus nucleoprotein reveals a dsRNA-specific 3’ to 5’ exonuclease activity essential for immune suppression, Proc. Natl. Acad. Sci. U. S. A. 108 (2011) 2399–2403 (2011) 951–961.

J. Martinez-Sobrido, P. Giannakas, B. Cubitt, A. Garcia-Sastre, J.C. de la Torre, Differential inhibition of type I interferon induction by arenavirus nucleoproteins. J. Virol. 81 (2007) 12763–12770.

S. Zhou, A.M. Cerny, A. Zacharia, K.A. Fitzgerald, E.A. Kurt-Jones, R.W. Finberg, A. Alcami, J.A. Symons, G.L. Smith, The vaccinia virus soluble alpha/beta interferon (IFN) receptor binds to the cell surface and protects cells from the antiviral effects of IFN, Proc. Natl. Acad. Sci. U. S. A. 93 (1996) 16202–16209.

D. Negro, Adverse effects of drugs in the treatment of viral hepatitis, Best Pract. Res. Clin. Gastroenterol. 24 (2010) 189–198.

A. Kumar, S. Hou, A.M. Airo, D. Limantza, V. Mancinelli, W. Branson, C. Power, T.C. Hobman, Zika virus inhibits type I interferon production and downstream signalling, EMBO Rep. 15 (2014) 312–317.

K. Narayanay, C. Huang, K. Lokugamage, W. Kamitani, T. Ikegami, C.T. Tseng, S. Makino, Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type I interferon, in infected cells, J. Virol. 82 (2008) 4471–4479.

M.G. Wathelet, M. Orr, M.B. Frieman, R.S. Baric, Severe acute respiratory syndrome coronavirus evades antiviral signaling: role of nsp1 and rational design of an attenuated strain, J. Viol. 81 (2007) 11620–11633.

S. Bao, T. Tanigaki, N. Ito, M. Nakazawa, N. Barretto, R. Lin, C.J. Peters, C.T. Tseng, S.B. Baker, K. Li, Regulation of IRF-3-dependent innate immunity by the p56k65-like protease domain of the severe acute respiratory syndrome coronavirus, J. Virol. 87 (2013) 3224–3232.

M. Frieman, B. Young, M. Heise, S.A. Kopecky-Bromberg, P. Palese, R.S. Baric, Severe acute respiratory coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membranes, J. Virol. 81 (2007) 9819–9824.

Y. Xiang, R.C. Condit, S. Vijayaraj, B. Jacobs, R.B. Williams, R.H. Silverman, Blockade of interferon induction and action by the E6L double-stranded RNA antagonist, J. Virol. 84 (2010) 4377–4383.

M.D. Davies, H.W. Chang, B.L. Jacobs, R.J. Kaufman, The E6L and K12 vaccinia virus genes product stimulate translation through inhibition of the double-stranded RNA-dependent protein kinase by different mechanisms, J. Virol. 67 (1993) 1688–1692.

A. Alcamí, J.A. Symons, G.L. Smith, The vaccinia virus soluble alpha/beta interferon (IFN) receptor binds to the cell surface and protects cells from the antiviral effects of IFN, Proc. Natl. Acad. Sci. U. S. A. 93 (1996) 16202–16209.
F. Legrand-Abraham, P. Colson, H. Leguillou-Guillelmet, L. Albic, I. Ravaux, F. Lune-Fabiani, M. Bouvier-Alais, P. Trimoulet, M.L. Chaix, C. Hezode, J. Foucher, H. Fontaine, A.M. Roque-Afonso, M. Gassin, E. Schoverer, C. Gaudy, B. Rache, M. D’Albreche, L. D’Albreche, S. Vallet, Y. Bassign, B. Burzotta, Y. Thibault, J.B. Nousbaum, D. Roulot, H. Coppete, T. Poynard, C. Payan, J. Iozpet, Influence of the HCV subtype on the virological response to pegylated interferon and ribavirin therapy, J. Med. Virol. 81 (2009) 2029–2035.

Y. Inoue, N. Hijikata, T. Ono, T. Yakuishi, K. Mochizuki, H. Hagiwara, M. Oshita, E. Mita, H. Fukui, M. Inada, S. Tamura, H. Yoshihara, E. Hayashi, A. Inoue, Y. Imai, M. Kato, T. Miyagi, A. Hohstu, H. Ishida, S. Kiso, T. Kanto, A. Kacabara, T. Takahara, Y. Hayakawa, Factors affecting efficacy in patients with genotype 2 chronic hepatitis C treated by pegylated interferon alpha-2b and ribavirin: reducing drug doses has no impact on rapid and sustained virological responses, J. Viral Hepat. 17 (2010) 336–344.

F. Proodda, K.R. Reddy, P. Martin, Rapid virologic response: a new milestone in the management of chronic hepatitis C, Clin. Infect. Dis. 46 (2008) 78–84.

A. Federico, M. Masarone, M. Romano, D. dalillo, V. Rosato, M. Persico, Rapid virological response represents the highest prediction factor of response to anti-viral treatment in HCV-related chronic hepatitis: a multicenter retrospective study, Hepat. Mon. 15 (2015) e18640.

L.M. Smith, L.E. Hensley, T.W. Geisbert, J. Johnson, A. Stossel, A. Honko, J.Y. Yen, Mobile Laboratory Consortium, M. Pintilie, E.N. Fish, Interferon β therapy prolongs survival in rhesus macaque models of Ebola and Marburg hemorrhagic fever, J. Exp. Med. 197 (2003) 711–716.