Supporting information

Polysulfonate Cappings on Upconversion Nanoparticles Prevent their Disintegration in Water and Provide Superior Stability in a Highly Acidic Medium

Nestor Estebaneza, María González-Béjar,ab,* Julia Pérez-Prietoa,b*
a Instituto de Ciencia Molecular (ICMol)/ b Departamento de Química Orgánica, Universitat de València. C/Catedrático José Beltrán, 2, 46980 Paterna (Valencia), Spain.

Contact authors: maria.gonzalez@uv.es; julia.perez@uv.es

INDEX

Synthesis of oleate-capped nanoparticles (UCEr@OA)	S2
Synthesis of oleate-capped nanoparticles (UCTm@OA)	S2
Ligand exchange with BF4-	S2
Ligand removal with HCl	S2
Synthesis of polymer 2-acrylamido-2-methyl-1-propanesulfonate (PAMPS)	S3
Figure S1. XRD spectra of UCM@OA	S3
Figure S2. Low-resolution TEM images of UCM@OA	S4
Table S1. Composition of UCM@OA	S4
Figure S3. HRTEM images of UCM1@PAMPS and UCM1@PSS	S4
Figure S4. FTIR spectra of UCM1@PAMPS, UCM2@PEGP and UCM1@PFD	S5
Figure S5. Thermogravimetric analyses of UCM1@BF4, UCM1@AMPS, UCM1@PSS and UCM1@PFD	S6
Figure S6. HRTEM images of UCM@PSS and UCM@AMPS before and after acid treatment	S6
Figure S7. 2H-NMR spectra of PFD and UCM1@PFD	S7
Figure S8. Emission spectra of nanohybrids	S8
Figure S9. Emission spectra of UCM@PAMPS and UCM@PSS after acid treatment	S8
Figure S10. Emission spectra of UCM2@PEGP and UCM1@PFD after acid treatment	S9
Figure S11. FTIR spectra of nanohybrids before and after acid treatment	S9
Figure S12. HRTEM images of UCM@AMPS and UCM2@PEGP before and after acid treatment	S10
Figure S13. Comparison between emission spectra of UCM1@PSS and UCM@PSS in water at pH 6.5 and pH 2.0	S10
Table S2. Values of zeta potential of nanohybrids	S10
Table S3. Values of zeta potential UCM1@BF4, UCM2 and UCM@BF4	S11
Figure S14. Dynamic scattering (DLS) of UCM3@PSS dispersed in DMF.	S11
Figure S15. Schematic representation of the procedure followed to study the stability of the UCNPS in water	S11
Figure S16. Ratio between lanthanides in bare UCEr nanoparticles at different dissolution times.	S12
Figure S17. TEM images of bare UCEr and UCEr@PSS at 15 minutes, 48 and 96 hours	S12
Synthesis of oleate-capped NaYF₄:Yb³⁺(16%),Er⁺³(2%) nanoparticles (UC₆@OA). In a 1000 mL three-necked flask, YCl₃·6H₂O (15.6 mmol), YbCl₃·6H₂O (4.0 mmol), ErCl₃·6H₂O (0.4 mmol), oleic acid (160 mL) and octadecene (300 mL) were stirred at 160 °C under an atmosphere N₂ until lanthanides salts were completely dissolved. The reaction was then cooled to room temperature and 100 ml of methanol containing NaOH (0.5M) and NH₄F (0.8M) were added at once. The colloidal suspension was stirred for 30 min at 120 °C, under a flow of nitrogen and then heated to reflux at 305-308 °C for 90 minutes. Afterwards, the mixture was cooled to room temperature. The formed UCNPs were precipitated by addition of ethanol and isolated via centrifugation at 7000 rpm for 5 minutes. The white pellet was washed three times by dispersion of the UCNPs in chloroform and then precipitated by addition of excess of ethanol, additionally washed three times by dispersion in cyclohexane, and then precipitated by addition of excess of acetone. Finally, the purified UC₆@OA were dispersed in cyclohexane.

Synthesis of oleate-capped NaYF₄:Yb³⁺(16%),Tm⁺³(0.35%) nanoparticles (UC₉m@OA). In a 1000 mL three-necked flask, YCl₃·6H₂O (15.0 mmol), YbCl₃·6H₂O (5.0 mmol), TmCl₃·6H₂O (0.06 mmol), oleic acid (160 mL) and octadecene (300 mL) were stirred at 160 °C under an atmosphere N₂ until lanthanides salts were completely dissolved. The reaction was then cooled to room temperature and 100 ml of methanol containing NaOH (0.5M) and NH₄F (0.8M) were added at once. The colloidal suspension was stirred for 30 min at 120 °C, under a flow of nitrogen and then heated to reflux at 305-308 °C for 90 minutes. Afterwards, the mixture was cooled to room temperature. The formed UCNPs were precipitated by addition of ethanol and isolated via centrifugation at 7000 rpm for 5 minutes. The white pellet was washed three times by dispersion of the UCNPs in chloroform and then precipitated by addition of excess of ethanol, additionally washed three times by dispersion in cyclohexane, and then precipitated by addition of excess of acetone. Finally, the purified UC₉m@OA were dispersed in cyclohexane.

Ligand exchange with BF₄⁻. We used a ligand-exchange strategy using nitrosonium tetrafluoroborate (NOBF₄) to replace the original oleate ligands attached to the UCNPs. In particular, in 50 mL round bottom flask 10 mL of UC₉m@OA [25 mg/mL] dispersed in cyclohexane and then 10 mL dimethylformamide (DMF) were added. This resulted in a two-phase system consisting of an upper layer of cyclohexane (containing the OA-coated UCNPs) and a subjacent layer of DMF. Subsequently 250 mg of NOBF₄ were added at once under vigorous stirring and the mixture was stirred for 60 minutes. This resulted in the phase transfer of the UCNPs from cyclohexane to DMF. The UCNPs in the slightly turbid DMF phase were precipitated by adding 100 mL of chloroform and were collected by centrifugation (7000 rpm, 5 minutes).

The transparent pellet was redispersed in 5 mL of DMF, precipitated again by addition of an excess of chloroform (50ml), and collected by centrifugation. This wash was repeated three times. Afterwards, the pellet was redispersed in 5 mL of DMF and centrifuged (2000 rpm, 3 minutes) in order to get rid of larger agglomerates to afford UC₉m@BF₄.

Ligand removal with HCl. For this synthesis we used a protocol based on two-steps. The first one is the complete removal of the hydrophobic ligand oleate by treatment of hydrophobic UCNPs with hydrochloric acid that can strip the native ligands off the surface to generate ligand-free and water-dispersible particles. The UC₆m@OA (50 mg) were dried and then, dispersed in 0.1 M HCl (10 mL, pH = 3), sonicated in an ultrasonic bath and stirred for 3 hours while adjusting the pH value to 3 by the addition of the HCl solution every 30 min. After this, the oleic acid was extracted with diethyl ether and the process was repeated until the solution became almost transparent. Naked UCNPs (UC₆m) were precipitated with acetone and centrifuged (10000 rpm for 8 min), and collected by dried under vacuum.
Synthesis of poly(2-acrylamido-2-methyl-1-propanesulfonate acid, PAMPS) The polymer (PAMPS) has been prepared via free radical polymerization by using a high percentage of azobisisobutyronitrile (AIBN) as initiator as previously reported. The free radical polymerization and purification was carried out by following a previously described protocol.

![Scheme 1. Synthesis of PAMPS.](image)

Briefly, polymerization was carried out in a deoxygenated mixture of milli-Q water/n-propanol (50: 50 v/v; total volume of 60 mL) containing, AMPS (14 g, 67mmol), and AIBN as initiator (500 mg, 3.00 mmol). The solution was deoxygenated with nitrogen for 2 hours and continuously stirred at 65 °C for 24 h. The reaction was cooled (using an ice-bath) Then, 50 mL chloroform were added and the mixture was vigorously stirred during 3 h. The reaction was stopped and two phases were observed, the denser phase (strong emulsion) was discarded. Organic solvents were removed at reduced pressure from the other one and, then, dried under vacuum.

![Figure S1. XRD spectra of: Orange-line: NaYF₄:Yb,Tm (UC₃m₁@OA); red line: NaYF₄:Yb,Tm (UC₃m₂@OA) and blue line: NaYF₄:Yb,Er (UCₑ@OA) and hexagonal NaYF₄ standard (JCPDS PDF number 16-0334).](image)
Figure S2. Representative low-resolution TEM images for UCₐ together with size distribution histograms constructed from these TEM particle measurements: (left) UCₐEr@OA, (Middle) UCₐTm₁@OA and (right) UCₐTm₂@OA.

Table S1. Content of rare-earth ions of UCₐ@OA determined by ICP-MS.

Samples	Code	Er⁺³ [%mol]	Tm⁺³ [%mol]	Yb⁺³ [%mol]	Y⁺³ [%mol]
NaYF₄:Yb,Tm	UCₐTm₁@OA	0.3	75.9	23.8	
NaYF₄:Yb,Tm	UCₐTm₂@OA	0.3	76.2	23.5	
NaYF₄:Yb,Er	UCₐEr@OA	2.1	16.9	81.0	

Figure S3. Representative HRTEM images of (top) UCₐTm₁@PAMPS and (bottom) UCₐTm₁@PSS. Scale bar 10 nm.
Figure S4. FTIR spectra of (A) UC$_{\text{TM1}}$@PAMPS (red line), (B) UC$_{\text{TM2}}$@PEGP (blue line) and (C) UC$_{\text{TM3}}$@PFD (orange line). The grey line in A-C corresponds to PAMPS, PEGP and PFD, respectively.
Figure S5. Thermograms of (A) UC$_{\text{Er}}$@BF$_4$ (green), (B) UC$_{\text{Tm}_1}$@PFD (orange), UC$_{\text{Tm}_1}$@AMPS (red), (C) comparison between UC$_{\text{Er}}$@AMPS (black) and UC$_{\text{Tm}_1}$@AMPS (red) and (D) comparison between UC$_{\text{Er}}$@PSS (blue) and UC$_{\text{Tm}_1}$@AMPS (gray).

Figure S6. Representative HRTEM images of (left) UC$_{\text{Er}}$@PSS, (middle) UC$_{\text{Er}}$@AMPS and (right) UC$_{\text{Er}}$@PEGP.
Figure S7. 19F-NMR spectra of (A) PFD and (B) UC$_{1m1}$$\phi$PFD in deuterated methanol. (C) Amplification of signals 1-7 of the 19F-NMR spectra.

19F-NMR of 1H,1H,2H,2H-perfluoro-1-decanol.

19F-NMR (MEOD) δ_F, ppm: -82.85 (3F, t, CF$_3$), -115.15 (2F, m, CH$_2$-CF$_2$-CF$_2$), -123.15 and -123.40 (6F, m, CH$_2$-(CF$_2$)$_n$-CF$_2$), -124.20 (2F, m, CF$_2$-CF$_2$-CF$_3$), -125.25 (2F, m, CH$_2$-CF$_2$-CF$_2$), -127.75 (2F, m, CF$_2$-CF$_2$-CF$_3$).
Figure S8. Emission spectra of (A) UC$_{\text{Tm1}}$@PAMPS [5mg/ml DMF], (B) UC$_{\text{Tm1}}$@PSS [5mg/ml DMF], (C) UC$_{\text{Tm2}}$@PEGP [2mg/ml H$_2$O], (D) UC$_{\text{Tm1}}$@PFD [5mg/ml DMF], (E) UC$_{\text{Er}}$@PAMPS [5mg/ml DMF] and (F) UC$_{\text{Er}}$@PSS [5mg/ml DMF]. ($\lambda_{\text{ex}}= 975$ nm).

Stability of the polymer capping of UC$_{\text{Ln}}$ in strongly acidic media

Figure S9. Emission spectra of UC$_{\text{Er}}$@PAMPS (top) and UC$_{\text{Er}}$@PSS (bottom) after acid treatment. The concentration of the solutions was 1 mg/mL in H$_2$O. ($\lambda_{\text{ex}}= 975$ nm).
Figure S10. Emission spectra of UC\textsubscript{Tm2}@PEGP (top) and UC\textsubscript{Tm3}@PFD (bottom) after acid treatment. The concentration of the solutions was 1 mg/mL in H\textsubscript{2}O. (\(\lambda_{\text{ex}}\) = 975 nm).

Figure S11. FTIR spectra of (A) UC\textsubscript{Er}@PAMPS, (B) UC\textsubscript{Er}@PSS and (C) UC\textsubscript{Er}@PFD before (left) and after (right) acid treatment.
Figure S12. Representative HRTEM images of UC$_{\text{Er}}$@AMPS (top) and UC$_{\text{Tm2}}$@PEGP (bottom) before (left) and after (right) acid treatment.

Figure S13. Comparison between emission spectra of Left: UC$_{\text{Tm1}}$@PSS (1.4 mg/mL) in water at pH 6.5 (black) and pH 2.0 (red) and Right: UC$_{\text{Er}}$@PSS (1.2 mg/mL) in water at pH 6.3 (black) and pH 1.9 (red). (\lambda_{\text{ex}}= 975 nm).

Table S2. Values of zeta potential (ζ) of UC$_{\text{Ln}}$@ligand nanoparticles.

Sample	Zeta potential (ζ/ mV)	
	Before acid treatment	After acid treatment*
UC$_{\text{Er}}$@PAMPS	-26.9±1.2	-25.9±1.4
UC$_{\text{Tm1}}$@PSS	-31.2±1.3	-32.0±1.4
UC$_{\text{Tm2}}$@PEGP	-2.6±0.3	14.8±0.5
UC$_{\text{Tm3}}$@PFD	11.5±0.6	18.6±0.5

*Samples were dispersed in MQ-H$_2$O after acid treatment.
Table S3. Values of zeta potential (ζ) of bare UC$_{Ln}$ dispersed in MQ-H_2O.

Sample	Zeta potential (ζ)$_{pH=5.5}$/mV
UC$_{\text{Tm}_1}$@BF$_4$	19.3±0.5
UC$_{\text{Tm}_2}$ naked	19.4±0.4
UC$_{\text{Er}}$@BF$_4$	20.3±0.6

Figure S14. Dynamic scattering (DLS) of UC$_{\text{Tm}_1}$@PSS dispersed in DMF.

Figure S15. Schematic representation of the procedure followed to study the stability of the UCNPS in water
Figure S16. Ratio between lanthanides in bare UC$_{Er}$ nanoparticles at different dissolution times: 24, 48, 72 and 96 h (calculated from ICP-MS results of the solid residue in the centrifuged samples).

Figure S17. Representative low-resolution TEM images bare UC$_{Er}$ (top) and UC$_{Er}$@PSS (bottom), 15 minutes (left), 48 hours (center) and 96 hours (right) in water dispersions at 5 µg/ml. Scale bar 20 nm.
References.

1. Dong, A.; Ye, X.; Chen, J.; Kang, Y.; Gordon, T.; Kikkawa, J. M.; Murray, C. B. A Generalized Ligand-Exchange Strategy Enabling Sequential Surface Functionalization of Colloidal Nanocrystals. *J. Am. Chem. Soc.* 2011, 133 (4), 998–1006.

2. Muhr, V.; Würth, C.; Kraft, M.; Buchner, M.; Baeumner, A. J.; Resch-Genger, U.; Hirsch, T. Particle-Size-Dependent Förster Resonance Energy Transfer from Upconversion Nanoparticles to Organic Dyes. *Anal. Chem.* 2017, 89 (9), 4868–4874.

3. Bogdan, N.; Vetrone, F.; Ozin, G. A.; Capobianco, J. A. Synthesis of Ligand-Free Colloidally Stable Water Dispersible Brightly Luminescent Lanthanide-Doped Upconverting Nanoparticles. *Nano Lett.* 2011, 11 (2), 835–840.

4. Aguilar, M. R.; Gallardo, A.; San Román, J.; Cifuentes, A. Micellar Electrokinetic Chromatography: A Powerful Analytical Tool To Study Copolymerization Reactions Involving Ionic Species. *Macromolecules* 2002, 35 (22), 8315–8322.

5. Recalde, I.; Estebanez, N.; Francés-Soriano, L.; Liras, M.; González-Béjar, M.; Pérez-Prieto, J. Upconversion Nanoparticles with a Strong Acid-Resistant Capping. *Nanoscale* 2016, 8 (14), 7588–7594.