Reduction of Kummer surfaces modulo 2 in the non-supersingular case

C. D. Lazda and A. N. Skorobogatov

Abstract. We obtain necessary and sufficient conditions for the good reduction of Kummer surfaces attached to abelian surfaces with non-supersingular reduction when the residue field is perfect of characteristic 2. In this case, good reduction with an algebraic space model is equivalent to good reduction with a scheme model, which we explicitly construct. We extend these results to Kummer surfaces attached to 2-coverings of such abelian surfaces.

Keywords. Kummer surfaces, abelian surfaces, non-supersingular reduction

2020 Mathematics Subject Classification. 14J28, 11G10, 14L15, 14G20
Contents

1. Introduction ... 2
2. Geometry in the ordinary case 5
3. Geometry in the almost ordinary case 7
4. The Galois action on Kummer surfaces 11
5. Explicit smooth models .. 13
6. Good reduction criterion .. 17
7. Twisted Kummer surfaces ... 20
Appendix. Good reduction and quadratic twists 23
References ... 24

1. Introduction

To an abelian surface A over a field K, one can attach the associated Kummer surface $\text{Kum}(A)$, defined as the minimal desingularisation of the quotient of A by the antipodal involution $\iota(P) = -P$. If the characteristic of K is not 2, then $\text{Kum}(A)$ is a K3 surface. Quartic surfaces with sixteen nodes in \mathbb{P}^3 are classically studied singular models of Kummer surfaces associated to Jacobians of genus 2 curves. When K is a number field, such Kummer surfaces, as well as those attached to products of elliptic curves, form classes of K3 surfaces most accessible for studying their arithmetic; see for example [HS16, SZ17] and references therein.

If the characteristic of K is 2, then the geometry of $\text{Kum}(A)$ depends on the 2-rank of A, that is, the integer $r \in \{0, 1, 2\}$ such that $A[2]$ has 2^r points over an algebraic closure of K. The abelian surface A is called ordinary if $r = 2$ and supersingular if $r = 0$; in the remaining case, where $r = 1$, A will be called almost ordinary. Then $\text{Kum}(A)$ is a K3 surface if and only if A is not supersingular. This was proved by Shioda when A is a product of elliptic curves [Shi74] and by Katsura in general [Kat78]. In contrast, if A is supersingular, then $\text{Kum}(A)$ is geometrically rational. Katsura also points out another striking difference between these cases: if A is not supersingular, then the singularities of A/ι are rational double points, which are four geometric points of type D_4 when A is ordinary, and two geometric points of type D_8 when A is almost ordinary, giving rise to sixteen rational curves in $\text{Kum}(A)$. On the other hand, if A is supersingular, then the unique singular point of A/ι is an elliptic singularity. In the non-supersingular case, the 2-rank of A also controls the height of the K3 surface $\text{Kum}(A)$, which is 1 in the ordinary case and 2 in the almost ordinary case; see Remark 6.5.

In this paper we are interested in necessary and sufficient conditions for good reduction of Kummer surfaces. We will therefore take K to be a complete discretely valued field of characteristic zero, with ring of integers \mathcal{O}_K and perfect residue field k. Given an abelian surface A over K, we say that $X = \text{Kum}(A)$ has good reduction if there exists a scheme or algebraic space X' smooth and proper over \mathcal{O}_K with generic fibre $X_k \cong X$. Note that in this situation, the special fibre \mathcal{X}_k is necessarily a K3 surface since it must have trivial canonical bundle $\omega_{\mathcal{X}_k} \cong \mathcal{O}_{\mathcal{X}_k}$, and (coherent) Euler characteristic $\chi(\mathcal{O}_{\mathcal{X}_k}) = 2$. Although for general K3

\footnote{This is because the isomorphism $\text{Pic}(X) \to \text{Pic}(X)$ sends ω_X/\mathcal{O}_X to ω_X.}
surfaces, good reduction requires models which are algebraic spaces (see for example [Mat15a, Example 5.2]), in the cases considered in this paper, it turns out that schemes suffice.

If \(\text{char}(k) \neq 2 \), then \(\text{Kum}(A) \) has good reduction if and only if there exists a quadratic twist \(A^k \) of \(A \) such that \(A^k \) has good reduction. Indeed, if \(\text{Kum}(A) \) has good reduction, one can show that the inertia group of \(K \) acts on \(H^1_0(\mathcal{A}_\mathbb{P}, \mathbb{Q}_\ell) \) via a quadratic character and then apply the classical Néron–Ogg–Shafarevich criterion (see the proof of Theorem A.1, which is certainly well known to the experts). Conversely, any quadratic twist of \(A \) satisfies \(\text{Kum}(A^k) \cong \text{Kum}(A) \), so replacing \(A \) with \(A^k \), we can assume that \(A \) has good reduction. In this case, the Néron model \(\mathcal{A}/\mathcal{O}_K \) of \(A/K \) is an abelian scheme with generic fibre \(A_K \cong A \). We can then form the quotient \(\mathcal{A}/\mathfrak{I} \) and blow up the singular subscheme to obtain a smooth model of \(\text{Kum}(A) \) over \(\mathcal{O}_K \); see [Mat15b, Lemma 4.2] and [Ove21, Proposition 3.11].

If \(\text{char}(k) = 2 \), one direction of this argument still works: if \(\text{Kum}(A) \) has good reduction, then a quadratic twist \(A^k \) of \(A \) has good reduction, and \(\text{Kum}(A) \cong \text{Kum}(A^k) \). But the argument in the other direction breaks down, essentially because the singular subscheme of \(\mathcal{A}/\mathfrak{I} \) is no longer étale over \(\mathcal{O}_K \). We are therefore left with the following question: suppose that \(\text{char}(k) = 2 \), and let \(A/K \) be an abelian surface with good reduction \(\mathcal{A}/\mathcal{O}_K \). When does \(\text{Kum}(A) \) have good reduction?

Our first result is a construction, in the non-supersingular case, of an explicit smooth model of \(\text{Kum}(A) \) over the ring of integers of a finite extension of \(K \) that trivialises the Galois action on the 2-torsion subgroup \(A[2] \). We use a local equation of the special fibre at each singular point, but not much else. Our method relies on the crucial fact that blowing up a (singular!) section commutes with specialisation to each fibre, provided the section meets both fibres at rational double points; see Proposition 5.1. As a consequence we obtain the following.

Theorem 1. Assume that \(\text{char}(k) = 2 \), and let \(A/K \) be an abelian surface with good, non-supersingular reduction. Then \(\text{Kum}(A) \) has potentially good reduction with a scheme model.

An important feature of our model is that it establishes a bijection between the sets of sixteen geometric exceptional curves of the special and generic fibres.\(^{(2)}\) A weaker result concerning good reduction with an algebraic space model, and without an explicit bound on the degree of the field extension required, follows from Artin’s simultaneous resolution of singularities [Art74]. This can be applied because \(A/\mathfrak{I} \) is flat over \(\mathcal{O}_K \), and its fibres are normal varieties with at worst rational double points.

To explain more refined results than Theorem 1, let us fix an algebraic closure \(\overline{K} \) of \(K \), with residue field \(\overline{k} \), and let \(\Gamma_K \) denote the Galois group of \(\overline{K}/K \). We therefore have the exact sequence

\[
\begin{array}{c}
0 \longrightarrow A[2]^{\circ}(\overline{K}) \longrightarrow A[2](\overline{K}) \longrightarrow A[2](\overline{k}) \longrightarrow 0
\end{array}
\]

of \(\Gamma_K \)-modules, where \(A[2]^{\circ} \) is the connected component of the identity of the 2-torsion subscheme \(A[2] \subset A \) (see Section 4.1 below).

Theorem 2. Assume that \(\text{char}(k) = 2 \), and let \(A/K \) be an abelian surface with good, ordinary reduction. Then \(\text{Kum}(A) \) has good reduction over \(K \) if and only if the exact sequence (1.1) of \(\Gamma_K \)-modules splits. Moreover, in this case \(\text{Kum}(A) \) has good reduction with a scheme model.

Another way of phrasing the given condition is as the splitting of the connected-étale sequence

\[
\begin{array}{c}
0 \longrightarrow A[2]^{\circ} \longrightarrow A[2] \longrightarrow A[2]^{\text{ét}} \longrightarrow 0
\end{array}
\]

of finite flat group schemes over \(\mathcal{O}_K \). It is a consequence of Cartier duality that the splitting of (1.1) implies in particular that the \(\Gamma_K \)-module \(A[2](\overline{K}) \) is unramified (see Section 4.1); however, the converse fails – there exist examples where \(A[2](\overline{K}) \) is unramified but the exact sequence (1.1) is non-split (see Example 6.4).

\(^{(2)}\)This bijection, however, does not describe the images of these curves under the specialisation map on Néron–Severi groups.
In particular, this gives an example of a K3 surface over \mathbb{Q}_2 which only attains good reduction over a non-trivial unramified extension.\(^{(3)}\)

We also have similar results in the almost ordinary case.

Theorem 3. Assume that $\text{char}(k) = 2$, and let A/K be an abelian surface with good, almost ordinary reduction. Then $\text{Kum}(A)$ has good reduction over K if and only if the Γ_K-module $A[2](\overline{K})$ is trivial. Moreover, in this case $\text{Kum}(A)$ has good reduction with a scheme model.

Again, it is easy to see that this condition is not vacuous: there exist examples where the Γ_K-module $A[2](\overline{K})$ is unramified but non-trivial.

The ‘if’ directions of Theorems 2 and 3 are proved by explicitly constructing a smooth model for $\text{Kum}(A)$, by resolving the singularities of the quotient scheme A/\mathfrak{i} as in the proof of Theorem 1. The hypotheses on $A[2](\overline{K})$ are exactly what is required to make this construction work over \mathcal{O}_K itself.

The ‘only if’ directions of Theorems 2 and 3 are rather more involved, and the proofs use (the easy direction of) the main result of [CLL19]. (Note that since we have potentially good reduction by Theorem 1, the crucial Hypothesis (*) of [CLL19] is always satisfied in our case.) Indeed, we have an isomorphism $A_\mathfrak{i}/\mathfrak{i} \cong (A/\mathfrak{i})_k$ (see Proposition 5.6), and this implies the key observation that $\text{Kum}(A_k)$ is the ‘canonical reduction’ of $\text{Kum}(A)$ in the terminology introduced in [CLL19] (see Section 6 for the definition). By [CLL19, Theorem 1.6], good reduction of $\text{Kum}(A)$ with an algebraic space model is therefore equivalent to the existence of an isomorphism between the Galois representations in the ℓ-adic étale cohomology groups of $\text{Kum}(A_k)$ and $\text{Kum}(A)$, where ℓ is any odd prime. We compare the Galois action on these cohomology groups by explicitly calculating the Galois action on the exceptional curves of $\text{Kum}(A_k)$ and $\text{Kum}(A)$.

We finish this paper by applying our method to give a necessary and sufficient condition for good reduction of ‘twisted’ Kummer surfaces, that is, Kummer surfaces associated to 2-coverings of abelian surfaces; see Theorem 7.4. Again, we only have results in the case of non-supersingular reduction. Indeed, the approach of this paper does not seem to be suitable for studying good reduction of Kummer surfaces attached to abelian surfaces with good, supersingular reduction. In the non-supersingular case, we make crucial use of the fact that a smooth model for $\text{Kum}(A)$ over \mathcal{O}_K can be obtained by resolving the singularities of the obvious singular model A/\mathfrak{i}. This completely breaks down in the supersingular case, where no such resolution of A/\mathfrak{i} can possibly provide a smooth model for $\text{Kum}(A)$.

Notation and conventions

Throughout, \mathcal{O}_K is a complete discrete valuation ring with field of fractions K, maximal ideal \mathfrak{m}_K, and residue field $k = \mathcal{O}_K/\mathfrak{m}_K$. We assume that $\text{char}(K) = 0$ and that k is perfect with $\text{char}(k) = 2$.

Let \overline{K} be an algebraic closure of K, and write $\Gamma_K = \text{Gal}(\overline{K}/K)$. The residue field of the maximal unramified extension $K_{nr} \subset \overline{K}$ is an algebraic closure \overline{k} of k. We write $\Gamma_k = \text{Gal}(\overline{k}/k) = \text{Gal}(K_{nr}/K)$, and we have the usual inertia exact sequence

$$1 \longrightarrow \Gamma_K \longrightarrow \Gamma_k \longrightarrow \Gamma_k^{nr} \longrightarrow 0$$

relating Γ_K and Γ_k.

Let G be the (abstract) group $\mathbb{Z}/2$. For any abelian group object A (in any category), we write $\iota: A \rightarrow A$ for the involution $\iota(x) = -x$, which we also think of as an action of G.

Acknowledgments

This paper benefited from intensive discussions with Evis Ieronymou to whom we are very grateful. We would like to thank Martin Liebeck for suggesting to use group cohomology in the proof of Theorem 4.6. We thank Otto Overkamp for his interest in this paper and helpful remarks.

\(^{(3)}\) The only examples of such behaviour in the literature are for K3 surfaces over \mathbb{Q}_p with $p \geq 5$; see [LM18, Theorem 7.2].
2. Geometry in the ordinary case

For this section, we will let A/k be an ordinary abelian variety. Thus $A[2](\hat{k}) \cong (\mathbb{Z}/2)^2$, and the quotient variety A/G has four (geometric) singular points, all of type D_4; see [Sch09, table on p. 144]. These points are in a natural Γ_k-equivariant bijection with $A[2](\hat{k})$. The exceptional divisor of the minimal resolution $\text{Kum}(A) \to A/G$ therefore contains sixteen rational curves, occurring in four (geometrically) connected components. Our goal here is to calculate the Galois action on these curves and in particular prove the following result.

Proposition 2.1. The sixteen exceptional curves of $\text{Kum}(A) \to A/G$ are indexed Γ_k-equivariantly by the set $A[4](\hat{k}) \times A[2](\hat{k})$.

We achieve this by first considering the case where k is algebraically closed and giving a geometric description of how these singular points arise. This description will then be easily seen to be Galois equivariant. Note that the factor $A[2](\hat{k})$ arises from the four singular points of A/G. It is therefore enough to complete around the image of the identity $O \in A$ and prove that the exceptional curves of the minimal resolution of the resulting D_4 singularity are naturally indexed by $A[4](\hat{k})$.

So suppose for now that k is algebraically closed, and let $\hat{O}_{A,O}$ be the completed local ring of A at the identity element $O \in A$.

Proposition 2.2. There exists an isomorphism

$$\hat{O}_{A,O} \cong k[[u,v]]$$

such that the involution i acts via $i(u) = \frac{u}{1+u}$ and $i(v) = \frac{v}{1+v}$, and the formal group law Δ satisfies

$$\Delta(u) \equiv 1 \otimes u + u \otimes 1 + u \otimes u \mod (u^2 \otimes 1, 1 \otimes u^2, v^2 \otimes 1, 1 \otimes v^2),$$

$$\Delta(v) \equiv 1 \otimes v + v \otimes 1 + v \otimes v \mod (u^2 \otimes 1, 1 \otimes u^2, v^2 \otimes 1, 1 \otimes v^2).$$

Proof. As in the proof of [Kat78, Lemma 4], the classification of formal group laws over k implies that there is an isomorphism of formal groups

$$(2.1) \quad \hat{A}_{1,O} \cong \hat{E} \times \hat{E}_{1,O},$$

where E is any ordinary elliptic curve over k. For example, we can take E to be the curve

$$y^2 + xy = x^3 + x.$$

Note that the involution i on E is defined by $i(x,y) = (x,y+x)$. The function $z = x/y$ is a local parameter at the origin of the group law $O \in E$, so that the completed local ring $\hat{O}_{E,O}$ is isomorphic to $k[[z]]$. We have $i(z) = z(1+z)^{-1}$. In view of (2.1), this proves the claim concerning the action of i. For the claim concerning the form of Δ, we simply use the formula on the top of p. 115 of [Sil86].

Let $S = \text{Spec}(\hat{O}_{A,O})$, let $T = S/G$, and let $q: S \to T$ be the quotient morphism. It follows from [Sch09, Proposition 1.1], which is simply a statement of the main result of [Art75], that

$$T = \text{Spec} \left(\frac{k[[x,y,z]]}{(z^2 + xyz + x^2 y + xy^2)} \right),$$

where q is given by

$$x = \frac{u^2}{1+u}, \quad y = \frac{v^2}{1+v}, \quad z = \frac{uv(u+v)}{(1+u)(1+v)}.$$

Let $O \in S$ denote the closed point and $q(O) \in T$ its image in T; thus $O = V(u,v)$ and $q(O) = V(x,y,z)$ as closed subschemes of S and T, respectively. Let

$$S^{(1)} := \text{Bl}_O S \longrightarrow S, \quad T^{(1)} = \text{Bl}_{q(O)} T \longrightarrow T.$$
be the blowups at O and $q(O)$, respectively. Explicitly, we have

$$S^{(1)} = \text{Proj} \left(\frac{k[u,v][U,V]}{(uV + vU)} \right)$$

and

$$T^{(1)} = \text{Proj} \left(\frac{k[x,y,z][X,Y,Z]}{(xY + yX + zX + yZ + zY + xZ + xY + xY^2)} \right).$$

It is clear that $S^{(1)}$ is smooth. By [Kat78, Proposition 3(6)] or [Sch09, Proposition 5.1], the singular point $q(O)$ is a rational double point of type D_4^1 (for the classification of rational double points in all characteristics, see [Art77]). By [Sch09, Corollary 1.7], $T^{(1)}$ is normal with at most rational double points as singularities, and the minimal desingularisation of T factors through $T^{(1)}$. We let $D^{(1)} \subseteq S^{(1)}$ and $E^{(1)} \subseteq T^{(1)}$ denote the reduced exceptional subschemes of $S^{(1)} \to S$ and $T^{(1)} \to T$, respectively.

Lemma 2.3. The rational map $q: S^{(1)} \to T^{(1)}$ is regular, and the induced map $D^{(1)} \to E^{(1)}$ is a universal homeomorphism.

Proof. Let $S' \to S$ be the blowup of the fibre $q^{-1}(q(O)) \subset S$. By the universal property of blowing up, we have a commutative diagram

$$
\begin{array}{ccc}
S' & \to & S \\
\downarrow & & \downarrow \\
T^{(1)} & \to & T.
\end{array}
$$

By [Sch09, Lemma 1.3, Remark 1.4], the ideal of $q^{-1}(q(O))$ is the bracket ideal $m^2_O = \{ f^2 \mid f \in m_O \}$, where $m_O \subset \widehat{O}_{A,O}$ is the maximal ideal. We have $m^2_O = m^3_O$, which is simply saying that $(u^2, v^2)(u, v) = (u, v)^3$. Thus the ideal m^2_O becomes invertible on $S^{(1)}$. By the universal property of blowing up, there is a unique factorisation $S^{(1)} \to S' \to S$, which therefore provides the required regular map $S^{(1)} \to T^{(1)}$ extending q. Explicitly, the map q is given by

$$(u, v, [U : V]) \mapsto \left(\frac{u^2}{1 + u}, \frac{v^2}{1 + v}, \frac{uv(u + v)}{1 + u(1 + v)}, \left[\frac{U^2}{1 + u} : \frac{V^2}{1 + v} : \frac{UV(u + v)}{1 + u(1 + v)} \right] \right),$$

which on $D^{(1)} = V(u, v) \subset S^{(1)}$ simplifies to

$$(0, 0, [U : V]) \mapsto (0, 0, 0, [U^2 : V^2 : 0]).$$

This map can therefore be identified with the relative Frobenius and is thus a universal homeomorphism. \(\square\)

It follows from the results of [Sch09] that $T^{(1)}$ has precisely three singular points, all of type A_1. An explicit calculation gives these three points as

$$(x, y, z, [X : Y : Z]) = (0, 0, 0, [0 : 1 : 0]), \ (0, 0, 0, [1 : 0 : 0]), \ (0, 0, 0, [1 : 1 : 0]).$$

Since $D^{(1)} \to E^{(1)}$ is a universal homeomorphism and k is algebraically closed, these in turn give rise to three k-points on $D^{(1)}$. Explicitly, these are the three points

$$(u, v, [U : V]) = (0, 0, [1 : 0]), \ (0, 0, [0 : 1]), \ (0, 0, [1 : 1]).$$

Via the natural identification $D^{(1)} = \mathbb{P}(T_O A)$, where $T_O A$ is the tangent space to A at O, these three points therefore correspond to three distinguished tangent directions to A at O. We can give an alternative description of these tangent directions as follows.

Since k has characteristic 2, the inclusion $A[2] \subset A$ induces an isomorphism $T_O (A[2]) \cong T_O A$, and the formula for Δ given in Proposition 2.2 gives $A[2]^\circ \cong \mu_2^2$. We therefore obtain three subgroups of $A[2]^\circ$ isomorphic to μ_2, and the tangent spaces to these three subgroups give three preferred tangent directions to A at O.

Lemma 2.4. These three directions are precisely those coming from the three singular points of $T^{(1)}$.

Proof. Again, we can just calculate everything explicitly. Indeed, $A[2]^\circ$ is the closed subgroup scheme of S defined by $u = i(u), v = i(v)$; thus we can write

$$A[2]^\circ \cong \text{Spec} \left(\frac{k[[u,v]]}{(u^2,v^2)} \right)$$

with the group law given by $\Delta(u) = 1 \otimes u + u \otimes 1 + u \otimes u$, and similarly for v. The three preferred tangent directions come from the three closed subgroup schemes of $\text{Spec} \left(\frac{k[[u,v]]}{(u^2,v^2)} \right)$ defined by

$$u = 0, \quad v = 0, \quad u + v = 0,$$

respectively. The strict transform of the closed subscheme $\{u = 0\} \subset S$ is the closed subscheme $\{U = 0\}$ of $S^{(1)}$, which intersects the exceptional divisor $D^{(1)}$ at the point $(u,v, [U : V]) = (0,0,[0 : 1])$. Similarly, the strict transform of the closed subscheme $\{v = 0\} \subset S$ (respectively, $\{u + v = 0\}$) intersects the exceptional divisor $D^{(1)}$ at the point $(0,0,[1 : 0])$ (respectively, $(0,0,[1 : 1])$).

We now drop the assumption that k is algebraically closed. Then we can form $S = \text{Spec}(\mathcal{O}_{A,O}), T := S/G$, $q : S \to T$, and $T^{(1)} := \text{Bl}_{\mathcal{O}(O)} T$ as above, and thus $T^{(1)}$ has precisely three singular points over \bar{k}. The description of these three singular points as arising from the three subgroups of $A_{\bar{k}}[2]^\circ$ respects the Galois action, and so we obtain the following.

Corollary 2.5. Let A be an ordinary abelian surface over k. Then there is an isomorphism of k-schemes $(T_{\text{sing}}^{(1)})_{\text{red}} \cong (A^V[2])_{\text{red}} \setminus \{O\}$.

Proof. The three subgroups of $A_{\bar{k}}[2]^\circ$ isomorphic to μ_2 canonically correspond to the three non-zero elements of the abelian group $\text{Hom}(A^V[2](\bar{k}), \mathbb{F}_2)$, which we can identify canonically with $A^V[2](\bar{k})$ via the isomorphism $\wedge^2(A^V[2](\bar{k})) \cong \mathbb{F}_2$. These isomorphisms are Γ_k-equivariant.

If we now consider the minimal resolution $\text{Kum}(A) \to A/G$, then we can apply the description given in Corollary 2.5 around each of the four singular points of A/G. Since these singular points correspond precisely to the points of $A[2](\bar{k})$, this completes the proof of Proposition 2.1.

3. Geometry in the almost ordinary case

We now want to carry out a similar analysis when A is an almost ordinary abelian surface over k. We have $A[2](k) = A[2](\bar{k}) = \mathbb{Z}/2$, and A/G has two geometric singular points, both k-rational and both of type D_8^2; see [Sch09, table on p. 144]. The exceptional divisor of the minimal resolution $\text{Kum}(A) \to A/G$ contains sixteen rational curves, occurring in two (geometrically) connected components. The main result of this section is then the following.

Proposition 3.1. The sixteen exceptional curves of $\text{Kum}(A) \to A/G$ are all k-rational.

Translating by the unique non-identity point of $A[2](k) = A[2](\bar{k}) = \mathbb{Z}/2$, we see that it suffices to prove the rationality of the eight exceptional curves of the minimal resolution of the formal D_8^2 singularity $\text{Spec}(\mathcal{O}_{A,O})/G$. If we look at the associated Dynkin diagram, we see that the only possible Galois action is to interchange the two curves corresponding to the nodes at the two ‘short ends’ of the diagram. Thus we see straight away that at least six of the exceptional curves are k-rational, and the remaining two are defined (at worst) over a quadratic extension of k.
3.1. Formal groups and 2-divisible groups

To prove Proposition 3.1, we decompose the formal group of A.

Lemma 3.2. There is a k-isomorphism of formal groups $\text{Spf}(\overline{O}_{A,0}) \cong G_1 \times_k G_2$, where G_h is a connected, 2-divisible formal group of dimension 1 and height h, for $h = 1, 2$.

Proof. Let $A[2^\infty]$ be the 2-divisible group of A and $A^\vee[2^\infty]$ that of its dual. If we let D denote the Cartier duality functor for p-divisible groups (so that $D(G)[p^n] = \text{Hom}(G[p^n], \mu_{p^n})$), then the Weil pairing gives an isomorphism $A'[2^\infty] \cong D(A[2^\infty])$. Since k is perfect, the connected-etale sequences of both $A[2^\infty]$ and $A^\vee[2^\infty]$ split canonically by [Tat97, last paragraph on p. 142]. Thus by Cartier duality, we obtain a decomposition

$$A[2^\infty] \cong D\left(\left(\begin{array}{c} A'\left[2^\infty\right]\end{array}\right) \times G_2 \times A[2^\infty]\right),$$

where G_2 is a connected 2-divisible group of height 2 and dimension 1. Passing to the connected component of $A[2^\infty]$, we find that

$$A[2^\infty] \cong D\left(\left(\begin{array}{c} A\left[2^\infty\right]\end{array}\right) \times G_2,\right)$$

and invoking [Tat67, Proposition 1] then gives the result. □

Lemma 3.3. Let $G_h = \text{Spf}(k[\mathfrak{u}])$ be a 2-divisible formal group over k of dimension 1 and height $h \geq 1$. Then the inversion map i is of the form

$$i(u) = u + a$$

for some $a \in k[\mathfrak{u}]^\times$ with $\text{val}_u(a) = 2h$.

Proof. If $i(u) = a_1 u + a_2 u^2 + \cdots$, then we must have $a_1 = 1$ and hence $i(u) = u + a$ for some $a \in k[\mathfrak{u}]$ with $\text{val}_u(a) \geq 2$. The 2-torsion $G_h[2]$ is the i-fixed subscheme of G_h, which is defined by the ideal generated by $u + i(u) = a$ and is therefore of rank $\text{val}_u(a)$ over k. But since G_h has height h, we know that $G_h[2]$ is of rank 2^h over k, and the result follows. □

Corollary 3.4. Let $x = u \cdot i(u)$ and $a = u + i(u)$. The quotient $G_h/1$ is given by $\text{Spf}(k[x])$, the element a lies in $k[x]$ and satisfies $\text{val}_x(a) = 2^{h-1}$, and u satisfies the equation

$$u^2 + au + x = 0.$$

Proof. Arguing as in the proof of [Art75, Lemma 1], we see that $k[\mathfrak{u}]$ is finite free over $k[x]$ of rank $\dim_k k[\mathfrak{u}]/(x) = 2$. In particular, this implies that $k((u))/k((x))$ is finite of degree 2, from which we deduce that the inclusion $k((x)) \subset k((u))^G$ is an equality, and hence $k[\mathfrak{u}]^G = k((x)) \cap k[\mathfrak{u}] = k[x]$. Then $a = u + i(u)$ is an element of $k[\mathfrak{u}]^G = k[x]$. Moreover, $\text{val}_u(a) = \text{val}_u(u^{2h}f) = 2^h$ and $\text{val}_u(x) = 2$; hence $\text{val}_x(a) = 2^{h-1}$, as required. Finally the fact that $u^2 + au + x = 0$ is a straightforward check. □

3.2. A naïve resolution of A/G

Having decomposed the formal group of A, we can then explicitly resolve the singular surface $\text{Spec}(\overline{O}_{A,0})/G$ in the most naïve way, by repeatedly blowing up the ‘worst’ singularity. Let us write $S = \text{Spec}(\overline{O}_{A,0}) = \text{Spec}(k[\mathfrak{u}, v])$, where we may use the results of Section 3.1 above to choose u and v in such a way that G acts via

$$i(u) = u + u^2 f(u), \quad i(v) = v + v^4 g(v)$$

for some $f \in k[\mathfrak{u}]^\times$, $g \in k[v]^\times$. Let $x = ui(u)$, $y = vi(v)$, $z = ui(v) + vi(u)$. From Corollary 3.4, we obtain $u^2 + au + x = 0$, where $a = xe(x)$ for some $e(x) \in k[\mathfrak{u}]^\times$. Similarly, we have $v^2 + bv + y = 0$, where $b = y^2 \eta(y)$ for some $\eta(y) \in k[\mathfrak{u}]^\times$. By [Sch09, Proposition 1.1], we see that the quotient $T := S/G$ is given by

$$T = \text{Spec}\left(\frac{k[\mathfrak{u}, y, z]}{(z^2 + xy^2 ze(x) \eta(y) + x^2 y e(x)^2 + xy^4 \eta(y)^2)}\right).$$

Write $q : S \to T$ for the quotient morphism. Then $q(O)$ is the unique singular point of T and is of type D_8^o.

Lemma 3.5. There exist a cubic extension k'/k and a change of co-ordinates $x \mapsto \alpha x, y \mapsto \beta y, z \mapsto \gamma z$, with $\alpha, \beta, \gamma \in k'[x, y, z]^{*}$, inducing an isomorphism
\[
T \cong \text{Spec} \left(\frac{k[x, y, z]}{\left(z^2 + xy^2z + x^2y + xy^4\right)} \right).
\]

Proof. If we make the given substitution, then we obtain the equation
\[
\gamma^2 z^2 + \alpha \beta^2 \gamma xy^2z \epsilon \eta + \alpha^2 \beta^2 \gamma x^2e^2 + \alpha \beta^4 \gamma xy^4 \eta^2 = 0,
\]
and for this to be of the required form, we need
\[
\alpha \beta^2 \gamma \epsilon \eta = \gamma, \quad \alpha^2 \beta^2 e^2 = \gamma^2, \quad \alpha \beta^4 \gamma \eta^2 = \gamma^2.
\]
Solving these equations gives
\[
\alpha = e^{-2}, \quad \beta^3 = \eta^{-2}, \quad \gamma = \alpha \beta^2 \epsilon \eta.
\]
Thus we need to be able to take a cube root of $\eta \in k[y]^{*}$, which we can always do over the (at worst) cubic extension $k(\sqrt[3]{\eta(0)})$.

We already know that all the exceptional curves in the minimal resolution of T are rational over a quadratic extension of k. To prove that they are k-rational, we are therefore allowed to make a cubic extension of k and hence assume that
\[
T \cong \text{Spec} \left(\frac{k[x, y, z]}{\left(z^2 + xy^2z + x^2y + xy^4\right)} \right).
\]
Let $T^{(1)}$ be the blowup of T at $q(O) = V(x, y, z)$. Thus
\[
T^{(1)} = \text{Proj} \left(\frac{k[x, y, z][X, Y, Z]}{(xY + yX, xZ + zX, yZ + zY, Z^2 + xyZX + yX^2 + y^3XY)} \right).
\]
Let $E^{(1)} \subseteq T^{(1)}$ denote the reduced exceptional subscheme of $T^{(1)} \rightarrow T$.

Via direct calculation, we can show that $T^{(1)}$ has precisely two singular points, both defined over k, and given in co-ordinates $(x, y, z, [X : Y : Z])$ by
\[
Q^{(1)}_1 = (0, 0, 0, [1 : 0 : 0]), \quad Q^{(1)}_2 = (0, 0, 0, [0 : 1 : 0]).
\]
These are of type A_1 and D_6^1, respectively. Indeed, if we set $y' = y/x$ and $z' = z/x$, we can explicitly describe the formal completion $T^{(1)}_{/Q^{(1)}_1}$ as
\[
T^{(1)}_{/Q^{(1)}_1} = \text{Spec} \left(\frac{k[x, y', z']}{\left(z'^{2} + x^2y'^2z' + xp' + x^3y'^4\right)} \right),
\]
and if we set $x' = x/y$ and $z'' = z/y$, then the formal completion $T^{(1)}_{/Q^{(1)}_2}$ is given by
\[
T^{(1)}_{/Q^{(1)}_2} = \text{Spec} \left(\frac{k[x', y, z'']}{\left(z''^{2} + x'y'^2z'' + x^2y' + x'y'^3\right)} \right).
\]
We now let $T^{(2)} \rightarrow T^{(1)}$ be the blowup at the k-rational singular point $Q^{(1)}_2$ of type D_6^1. We let $E^{(2)} \subseteq T^{(2)}$ denote the reduced exceptional subscheme of $T^{(2)} \rightarrow T$, which naturally decomposes as $E^{(2)} = E^{(2)}_1 \cup E^{(2)}_2$, where $E^{(2)}_1$ is the (reduced) strict transform of $E^{(1)}$ and $E^{(2)}_2$ is the reduced exceptional subscheme of $T^{(2)} \rightarrow T^{(1)}$.

To perform explicit calculations on $T^{(2)}$, we write $x' = x/y$ and $z'' = z/y$ and take the formal completion
\[
T^{(1)}_{/Q^{(2)}_1} = \text{Spec} \left(\frac{k[x', y, z'']}{\left(z''^{2} + x'y'^2z'' + x^2y' + x'y'^3\right)} \right).
\]
at $Q_2^{(1)}$. Thus $T_2^{(2)} \times_{T_1^{(1)}} T_1^{(1)}$ is given by
\[
\operatorname{Proj}\left(\frac{k[[x',y,z'']][X',Y',Z']}{(x'Y' + yX', x'Z' + z''X', yZ' + z''Y', Z'^2 + y'^2X'Z' + yX'Y')}\right).
\]

Further explicit calculations show that $T_2^{(2)}$ has three singular points $Q_1^{(2)}$, $Q_2^{(2)}$, and $Q_3^{(2)}$. The first of these, $Q_1^{(2)}$, is obtained simply as the strict transform of $Q_1^{(1)}$, lies on $E_1^{(2)} \setminus E_2^{(2)}$, and is k-rational of type A_1. The second, $Q_2^{(2)}$, is the unique point of $E_1^{(2)} \cap E_2^{(2)}$ and is given in co-ordinates $(x',y,z'',[X':Y':Z'])$ by $(0,0,0,[1:0:0])$. It is therefore k-rational, and it is not difficult to show, again via explicit calculation, that it is of type A_1.

The final singularity $Q_3^{(2)}$ lies on $E_2^{(2)} \setminus E_1^{(2)}$. In co-ordinates $(x',y,z'',[X':Y':Z'])$, it is given by $(0,0,0,[0:1:0])$, and if we set $x'' = x'/y$ and $z''' = z''/y$, then the formal completion $T_2^{(2)}/Q_3^{(2)}$ is given explicitly by
\[
\operatorname{Spec}\left(\frac{k[[x'',y,z''']]}{(z''y^2 + x''y^2 + x'y^2)}\right).
\]

In particular, this singularity is k-rational and of type D_4^0.

We now let $T_3^{(3)} \to T_2^{(2)}$ be the blow up at $Q_3^{(2)}$. We let $E_3^{(3)} \subset T_3^{(3)}$ denote the reduced exceptional subscheme of $T_3^{(3)} \to T_2^{(2)}$, write $E_1^{(3)}$, $E_2^{(3)}$ for the (reduced) strict transforms of $E_1^{(2)}$, $E_2^{(2)}$, and set $E^{(3)} = E_1^{(3)} \cup E_2^{(3)} \cup E_3^{(3)}$. A further explicit calculation shows that $T_3^{(3)}$ has five singular points, all of type A_1, and lying on $E^{(3)}$ as follows:

It is clear that the points $Q_1^{(3)}$ and $Q_2^{(3)}$ are k-rational since they are simply the unique preimages of $Q_1^{(2)}$ and $Q_2^{(2)}$. That $Q_3^{(3)}$ is k-rational then follows from the geometry of the above configuration since there is no other point it could be sent to under the Galois action. To see that the last two points $Q_4^{(3)}$ and $Q_5^{(3)}$ are k-rational, we can do an explicit calculation. Indeed, if we write
\[
T_2^{(2)}/Q_3^{(2)} = \operatorname{Spec}\left(\frac{k[[x'',y,z''']]}{(z''y^2 + x''y^2 + x'y^2)}\right),
\]
so that $T_3^{(3)} \times_{T_2^{(2)}} T_2^{(2)}/Q_3^{(2)}$ is given by
\[
\operatorname{Proj}\left(\frac{k[[x'',y,z''']][X'' : Y' : Z'']}{(x''Y'' + yX''x''Z'' + z'''X''yZ'' + z'''Y''Z'^2 + y'^2X''Z'' + yX''Y'')}\right),
\]
then we can explicitly give the singular points $Q_3^{(3)}$, $Q_4^{(3)}$, and $Q_5^{(3)}$ in co-ordinates as
\[
(x'',y,z'''|[X'' : Y' : Z'']) = (0,0,0,[1:0:0]), (0,0,0,[1:1:0]), (0,0,0,[0:1:0]).
\]
This completes the proof of Proposition 3.1. \qed
4. The Galois action on Kummer surfaces

We can now use the above results to describe, in the non-supersingular case, the Galois action on the cohomology of Kummer surfaces over \(K \) and \(k \). We will assume that \(\bar{k} \) is perfect of characteristic 2 and let \(\mathcal{A}/\mathcal{O}_K \) be a relative abelian surface with generic fibre \(A := \mathcal{A}_K \).

4.1. Preliminaries on Cartier duality

The 2-torsion subscheme \(\mathcal{A}[2] \) is a finite flat group scheme over \(\mathcal{O}_K \); we let \(\mathcal{A}[2]^{\circ} \) be the connected component of the identity. By [Tat97, Section (3.7)(0)], we have the connected-étale exact sequence of finite flat group \(\mathcal{O}_K \)-schemes

\[
0 \longrightarrow \mathcal{A}[2]^{\circ} \longrightarrow \mathcal{A}[2] \longrightarrow \mathcal{A}[2]^{\text{ét}} \longrightarrow 0,
\]

where \(\mathcal{A}[2]^{\text{ét}} \) is the largest étale group \(\mathcal{O}_K \)-scheme quotient of \(\mathcal{A}[2] \). If we base change from \(\mathcal{O}_K \) to \(k \), the connected-étale sequence splits, and we have

\[
(\mathcal{A}[2]^{\text{ét}})_k = (\mathcal{A}_k[2])^{\text{ét}} = (\mathcal{A}_k[2])_{\text{red}},
\]

and this is the unique étale group scheme over \(k \) whose \(\bar{k} \)-points are in \(\Gamma_{\text{nr}} \)-equivariant bijection with \(\mathcal{A}_k[2](\bar{k}) \); see for example [Tat97, Section (3.7)(IV)]. Thus over \(\mathcal{O}_K \), we deduce that

\[
\mathcal{A}[2]^{\text{ét}}(\mathcal{K}) = \mathcal{A}[2]^{\text{ét}}(\mathcal{K}_{\text{nr}}) \cong \mathcal{A}[2]^{\text{ét}}(\bar{k}) = \mathcal{A}[2](\bar{k}),
\]

which are all isomorphisms of (unramified) \(\Gamma_k \)-modules.

Lemma 4.1. The connected-étale sequence

\[
0 \longrightarrow \mathcal{A}[2]^{\circ} \longrightarrow \mathcal{A}[2] \longrightarrow \mathcal{A}[2]^{\text{ét}} \longrightarrow 0
\]

splits if and only if the exact sequence

\[
0 \longrightarrow \mathcal{A}[2]^{\circ}(\mathcal{K}) \longrightarrow \mathcal{A}[2](\mathcal{K}) \longrightarrow \mathcal{A}[2](\bar{k}) \longrightarrow 0
\]

of \(\Gamma_k \)-modules splits.

Proof. Clearly if the connected-étale sequence splits, then the sequence of \(\Gamma_K \)-module splits. Conversely, if the sequence of \(\Gamma_k \)-modules splits, we obtain a finite flat group scheme \(G \subset \mathcal{A}[2] \) of order \(|A[2]^{\text{ét}}| \) as the image of the splitting. Taking the closure of \(G \) inside \(\mathcal{A}[2] \) then gives a finite flat group scheme \(G \subset \mathcal{A}[2] \) of order \(|A[2]^{\text{ét}}| \) mapping isomorphically onto \(\mathcal{A}[2]^{\text{ét}} \). This gives a splitting of the connected-étale sequence. \(\square \)

Let \(\mathcal{A}^{\vee}/\mathcal{O}_K \) be the dual abelian surface, which exists by [BLR90, Theorem 8.5]. By [Oda69, Corollary 1.3], the finite flat group \(k \)-schemes \(\mathcal{A}[2] \) and \(\mathcal{A}^{\vee}[2] \) are Cartier duals of each other; that is, \(\mathcal{A}[2] = \text{Hom}_{\mathcal{O}_K}(\mathcal{A}^{\vee}[2], G_m) = \text{Hom}_{\mathcal{O}_K}(\mathcal{A}^{\vee}[2], \mu_2) \). If \(\mathcal{A} \) has ordinary reduction, that is, \(\mathcal{A}[2](\bar{k}) \cong (\mathbb{Z}/2)^2 \), then so does \(\mathcal{A}^{\vee} \). Thus each of the group schemes \(\mathcal{A}[2]^{\circ}, \mathcal{A}[2]^{\text{ét}}, \mathcal{A}^{\vee}[2]^{\circ}, \mathcal{A}^{\vee}[2]^{\text{ét}} \) has order 4. The Cartier dual of a commutative finite étale group \(\mathcal{O}_K \)-scheme annihilated by 2 is connected; hence \(\text{Hom}_{\mathcal{O}_K}(\mathcal{A}^{\vee}[2]^{\text{ét}}, \mu_2) \) is naturally embedded into \(\mathcal{A}[2]^\circ \). Since the orders are equal, we obtain a canonical isomorphism

\[
\mathcal{A}[2]^\circ \cong \text{Hom}_{\mathcal{O}_K}(\mathcal{A}^{\vee}[2]^{\text{ét}}, \mu_2).
\]

Similarly, we have \(\mathcal{A}^{\vee}[2]^\circ \cong \text{Hom}_{\mathcal{O}_K}(\mathcal{A}[2]^{\text{ét}}, \mu_2) \), and we also have a canonical isomorphism of \(\mathbb{F}_2[\Gamma_k] \)-modules

\[
\text{Hom}(\mathcal{A}^{\vee}[2](\bar{k}), \mu_2(\mathcal{K})) \cong \mathcal{A}^{\vee}[2](\bar{k})
\]

because \(\mu_2(\bar{k}) = \mathbb{F}_2 \) and \(\wedge^2(\mathcal{A}[2](\bar{k})) = \mathbb{F}_2 \). Thus the connected-étale sequence gives rise to an exact sequence of \(\Gamma_k \)-modules

\[
0 \longrightarrow \mathcal{A}^{\vee}[2](\bar{k}) \longrightarrow \mathcal{A}[2](\mathcal{K}) \longrightarrow \mathcal{A}[2](\bar{k}) \longrightarrow 0.
\]

In particular, we have the following statement.
Lemma 4.2. Suppose that A/O_K is a relative abelian surface with ordinary special fibre A_k. Then $A[2]^\circ(K)$ is unramified as a Γ_k-module.

4.2. Galois action over the residue field

If A_k is not supersingular, then the minimal resolution $\text{Kum}(A_k) \to A_k/G$ is a K3 surface by [Kat78, Theorem B]. There are sixteen (geometric) exceptional curves, which appear in four disjoint D_4 configurations when A_k is ordinary, and two disjoint D_6 configurations when A_k is almost ordinary. The results of Sections 2 and 3 then describe the Galois action on these curves: if A_k is ordinary, the exceptional curves are indexed Galois-equivariantly by $A^V[2](\bar{k}) \times A[2](\bar{k})$, and if A_k is almost ordinary, they are all k-rational.

Definition 4.3. Suppose that a group Γ acts on a finite set X. For a prime ℓ, we write Q^X_ℓ for the associated Q_ℓ-valued permutation representation of Γ.

In particular, if X is the set underlying an n-dimensional \mathbb{F}_2-representation of Γ, we have $\dim Q_\ell(Q^X_\ell) = 2^n$. Thanks to the results of Sections 2 and 3, we can then describe the Γ_k-representation in $H^2_{\ell\text{et}}(\text{Kum}(A_k)_{\bar{k}}, Q_\ell)$ explicitly as follows.

Corollary 4.4. Suppose that A_k is ordinary. Let $V = V_1 \oplus V_2$, where $V_1 = A^V[2](\bar{k})$ and $V_2 = A[2](\bar{k})$. Then for any odd prime ℓ, there is an isomorphism

$$H^2_{\ell\text{et}}(\text{Kum}(A_k)_{\bar{k}}, Q_\ell) \cong H^2_{\ell\text{et}}(A_k, Q_\ell) \oplus Q^V_\ell(-1)$$

of Γ_k-representations.

Corollary 4.5. Suppose that A_k is almost ordinary. Then for any odd prime ℓ, there is an isomorphism

$$H^2_{\ell\text{et}}(\text{Kum}(A_k)_{\bar{k}}, Q_\ell) \cong H^2(A_k, Q_\ell) \oplus Q^V_\ell(-1)^{\oplus 16}$$

of Γ_k-representations.

4.3. Galois action over the fraction field

We now consider the Γ_k-representation in the cohomology group $H^2_{\ell\text{et}}(\text{Kum}(A)_{\overline{\mathbb{Q}}}, Q_\ell)$ of the generic fibre. In this case, we have an isomorphism of Γ_k-modules

$$H^2_{\ell\text{et}}(\text{Kum}(A)_{\overline{\mathbb{Q}}}, Q_\ell) \cong H^2_{\ell\text{et}}(A_{\overline{\mathbb{Q}}}, Q_\ell) \oplus Q^W_\ell(-1),$$

where $W = A[2](\overline{\mathbb{K}})$ is the Γ_k-representation on the 2-torsion points of A. A detailed explanation of this isomorphism can be found in [Ove21, Lemma 4.1].

We will want to compare the Galois representations in $H^2_{\ell\text{et}}(\text{Kum}(A_k), Q_\ell)$ and $H^2_{\ell\text{et}}(\text{Kum}(A)_{\overline{\mathbb{Q}}}, Q_\ell)$, at least when A_k is non-supersingular. In the almost ordinary case, this is entirely straightforward, so we will concentrate on the case where A_k is ordinary.

In this case, if we let $V_1 = A^V[2](\bar{k})$ and $V_2 = A[2](\bar{k})$, then recall from Section 4.1 that we have a short exact sequence of $\mathbb{F}_2[\Gamma_k]$-modules

$$0 \to V_1 \to W \to V_2 \to 0. \quad (4.1)$$

Let $P \subset \text{GL}(W)$ be the parabolic subgroup which leaves invariant the \mathbb{F}_2-subspace $V_1 \subset W$. Let G_W (respectively, G_V) be the image of the action of Γ_k on W (respectively, on $V = V_1 \oplus V_2$). The natural projection $\pi: P \to \text{GL}(V_1) \times \text{GL}(V_2)$ induces a surjective homomorphism $G_W \to G_V$. Since G_V and G_W are finite, we have $G_W \cong G_V$ if and only if $|G_W| = |G_V|$.

Theorem 4.6. Suppose that A_k is ordinary. Then the following properties are equivalent:

1. There is an isomorphism of Γ_k-representations $Q^V_\ell \cong Q^W_\ell$.
2. The extension of $\mathbb{F}_2[\Gamma_k]$-modules (4.1) is split.
\[|G_W| = |G_V|. \]

If these properties hold, then the Γ_K-representation in $W = A[2](\overline{K})$ is unramified; that is, it factors through Γ_K.

Proof. The implications (1) \Rightarrow (3) and (2) \Rightarrow (1) are clear. Either (1) or (2) implies that the representation of Γ_K in W is unramified because the representation of Γ_K in V is unramified. It remains to show that (3) implies (2).

Choosing a section $V_2 \to W$ of the projection $W \to V_2$ induces a section σ of the projection $\pi: P \to GL(V_1) \times GL(V_2)$. Thus we have a split exact sequence of groups

$$0 \to R_u(P) \to P \to GL(V_1) \times GL(V_2) \to 0,$$

where $R_u(P)$ is the unipotent radical of P. We need to show that if G_W is isomorphic to $G_V = \pi(G_W)$, then G_W is conjugate, via an element of $R_u(P)$, to $\sigma(G_V)$.

The pullback of (4.2) with respect to the inclusion $G_V \subset GL(V_1) \times GL(V_2)$ is a split exact sequence

$$0 \to R_u(P) \to R_u(P) \rtimes G_V \to G_V \to 0,$$

where $G_V \subset GL(V_1) \times GL(V_2)$ acts on $R_u(P)$ by conjugation. The subgroups G_W and $\sigma(G_V)$ are complements to $R_u(P)$ in $R_u(P) \rtimes G_V$. It is enough to show that $H^1(G_V, R_u(P)) = 0$ because then all the complements to $R_u(P)$ in $R_u(P) \rtimes G_V$ are conjugate; see, e.g., [Rot09, Proposition 9.21].

We note that the action of $(A, B) \in GL(V_1) \times GL(V_2)$ on \(\begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \in R_u(P)$ by conjugation via $\sigma((A, B))$ sends X to AXB^{-1}, so $R_u(P)$ is isomorphic as a $GL(V_1) \times GL(V_2)$-representation to $V_1 \otimes F_2 V_2^* \cong V_1 \otimes F_2 V_2$. It remains to prove that for any subgroup $G \subset GL(V_1) \times GL(V_2)$, we have $H^1(G, V_1 \otimes F_2 V_2) = 0$. Since this group is annihilated by 2, by the standard restriction-corestriction argument, it is enough to prove that $H^1(H, V_1 \otimes F_2 V_2) = 0$, where H is a 2-Sylow subgroup of G. Then H is contained in a subgroup of $S_3 \times S_3$ isomorphic to the product of $\mathbb{Z}/2 \subset S_3$ and $\mathbb{Z}/2 \subset S_3$. The F_2-vector space V_1 has a basis whose elements are permuted by $\mathbb{Z}/2$, and similarly for V_2. This gives a basis of $V_1 \otimes F_2 V_2$ whose elements are permuted by $\mathbb{Z}/2 \times \mathbb{Z}/2$. It follows that $H^1(H, V_1 \otimes F_2 V_2) = 0$ for any subgroup $H \subset \mathbb{Z}/2 \times \mathbb{Z}/2$. \qed

5. Explicit smooth models

Let A/O_K be a abelian scheme of relative dimension 2 whose reduction A_k is non-supersingular. Let $A := A_k$ be the generic fibre of A. In this section, we show how to construct an explicit smooth model for $\text{Kum}(A)$ under suitable assumptions on the 2-torsion $A[2](\overline{K})$ as a Γ_K-module. In particular, this will result in a proof of Theorem 1.

5.1. Blowups and specialisation

Let $X \to \text{Spec}(O_K)$ be a flat morphism of finite type, of relative dimension 2, and with normal, integral fibres. It is not true in general that blowing up a closed subscheme of X commutes with base change to k, even if the centre is flat over O_K. However, we do have the following result.

Proposition 5.1. Suppose that $Z \subset X$ is an O_K-section such that both fibres of X have an isolated rational double point at Z. Then $\text{Bl}_Z(X)_k \cong \text{Bl}_{\overline{Z}}(X_k)$.

Proof. Let $\mathcal{I} \subset O_X$ be the ideal of Z and $\mathcal{I}_k \subset O_{X_k}$ the ideal of Z_k in X_k. Thus \mathcal{I}_k is just the image of \mathcal{I} inside O_{X_k}, and similarly each power \mathcal{I}^n_k is the image of the corresponding power \mathcal{I}^n inside O_{X_k}. Then

$$\text{Bl}_Z(X)_k = \text{Proj}\left(\bigoplus_{n \geq 0} \mathcal{I}^n_k \otimes_{O_K} k \right),$$
We say that

Thus

Lemma 5.3.

Let

\[\text{Lemma 5.2.} \]

\[\text{Remark} \]

This result has the following important consequence.

Lemma 5.2. Let \((A, \mathfrak{m}_A)\) be a complete Noetherian local ring, normal of Krull dimension 2, with a rational double point at \(m_A\). Then \(\dim_{A/\mathfrak{m}_A}(m_A^n/m_A^{n+1}) = 2n + 1\).

Proof. We may assume that the residue field \(A/\mathfrak{m}_A\) is algebraically closed. In this case, the computation is done in Theorem 4 and Corollary 6 of [Art66].

This result has the following important consequence.

Lemma 5.3. Let \(x \in X(k)\), and assume that \(X_k\) has a rational double point of type \(A_1\) at \(x\). Then there exists at most one (geometric) rational double point of \(X_k\) specialising to \(x\).

Remark 5.4. If \(P : \text{Spec}(K) \to X_k\) is a point, then there exist a finite extension \(L/K\) and a finitely generated \(O_K\)-algebra \(R \subset L\) such that \(R[1/2] = L\) and the scheme-theoretic image of \(P\) is given by a closed immersion \(\text{Spec}(R) \to X\). Since the normalisation of \(R\) is equal to \(O_L\), the special fibre \(\text{Spec}(R \otimes_{O_K} k)\) has a single point. We say that \(P\) specialises to \(x\) if the closed immersion \(\text{Spec}(R) \to X\) sends the unique point of \(\text{Spec}(R \otimes_{O_K} k)\) to \(x\).

Proof. Suppose towards a contradiction that there are two distinct such points \(P_1, P_2\). Let \(L/K\) be a finite extension over which both are defined, with ring of integers \(O_L\) and residue field \(k_L\). Let \(X_{O_L}\) be the base change of \(X\) to \(O_L\). Thus \(X_{O_L}\) is flat over \(O_L\) with normal fibres, its special fibre \(X_{k_L}\) has a rational double point of type \(A_1\) at \(x\), and both \(P_1\) and \(P_2\) specialise to this point.

Let \(P_1\) denote the scheme-theoretic closure of \(P_1\) inside \(X_{O_L}\). This is therefore an \(O_L\)-section of \(X_{O_L}\), and we let \(X'_{O_L}\) denote the blowup of \(X\) along this section. Thus the special fibre \(X'_{k_L}\) is smooth over \(k_L\) at every point in the fibre over \(x\). Now, we let \(P_2\) denote the closure of \(P_2\) inside \(X_{O_L}\) and \(P'_{2,k_L}\) its strict transform. Then \(P'_{2,k_L}\) is an \(O_L\)-section of \(X'_{O_L}\) such that the special fibre \(X'_{k_L}\) is smooth at \(P'_{2,k_L}\), but the generic fibre \(X'_{L}\) is singular at \(P'_{2,L} \). This is the contradiction we seek.
Remark 5.5. More generally, if we have a collection of rational double points, we can talk about their ‘total degree’ as being the sum of the lower indices in the ADE classification. We can then use Lemma 5.3 to prove by induction that the total degree of a collection of rational double points cannot increase under specialisation. We will not need this more general result.

5.2. Blowing up \(\mathcal{A}/G \) along the étale part of 2-torsion

We now let \(\mathcal{Y} := \mathcal{A}/G \) be the quotient scheme by the involution \(\iota \) and let \(q \): \(A \to \mathcal{Y} \) be the quotient morphism. Note that \(\mathcal{Y} \) is flat over \(O_K \). Our aim is to show that under appropriate conditions one can explicitly construct relative (smooth) Kummer surfaces by resolving the relative quotient surface \(\mathcal{Y} \).

We begin by describing the fibres of \(\mathcal{Y} \to \text{Spec}(O_K) \). Since quotients of quasi-projective schemes by finite group actions commute with flat base change, we may assume that \(\mathcal{Y} \) is an isomorphism under appropriate conditions.

Proposition 5.6. The natural map \(A_k \to \mathcal{Y}_k \) induces an isomorphism \(A_k/G \to \mathcal{Y}_k \).

Proof. In view of compatibility of quotients by \(G \) with flat base change, we may assume that \(k \) is algebraically closed. Since the \(G \)-action is free on \(A \setminus A[2] \), we obtain an isomorphism

\[
(A_k \setminus A_k[2])/G \xrightarrow{\sim} (A/G)_k \setminus q(A_k[2]).
\]

Once more appealing to compatibility with flat base change, it therefore suffices to prove the analogous statement after base changing to the formal completion \((A/G)_{\mathbb{Q}} \) at any point \(Q \) of \(q(A_k[2]) \). Up to translation, and possibly enlarging \(K \) if necessary to ensure that the map \(A[2](k) \to A[2](k) \) is surjective, we may therefore replace \(A \) with its completion at the zero section \(O_K \in A_k \) on the special fibre.

Thus we have an action of \(G \) on \(\hat{O}_{A,O_K} \cong O_K[[u,v]] \), and we may choose the local parameters \(u \) and \(v \) in such a way that the description of the action and its quotient given in [Sch09, Proposition 1.1] and [Art75, Theorem, p. 60] holds modulo \(m_K \). The quotient \(O_K[[u,v]]/O_K[[u,v]]^G \) is \(m_K \)-torsion free, which shows that the map \(O_K[[u,v]]^G \to O_K[[u,v]] \) is injective upon applying \(\otimes_{O_K} k \). This implies that the natural map \(O_K[[u,v]]^G \otimes_{O_K} k \to k[[u,v]]^G \) is injective; we need to show that it is in fact an isomorphism. In other words, we need to show that

\[
O_K[[u,v]]^G \to k[[u,v]]^G
\]

is surjective. But this is straightforward since every element of \(k[[u,v]]^G \) can be written as a series in \(x = u \cdot i(u), y = v \cdot i(v) \), and \(z = u \cdot i(v) + v \cdot i(u) \). Any such series clearly lifts to an element of \(O_K[[u,v]]^G \). \(\square \)

Let us now assume that \(A_k \) is non-supersingular and that the exact sequence of \(\Gamma_K \)-modules

\[
0 \to A[2]^{\circ}(K) \to A[2](K) \to A[2](k) \to 0
\]

is split. Then the surjective morphism of finite flat group \(O_K \)-schemes \(A[2] \to A[2]^{\ell} \) has a section \(\sigma \), so that \(A[2] \) is isomorphic to \(A[2]^{\circ} \times \sigma(A[2]^{\ell}) \). The degree of \(\sigma(A[2]^{\ell}) \to \text{Spec}(O_K) \) is 4 in the ordinary case and 2 in the almost ordinary case. Let \(Z = q(\sigma(A[2]^{\ell})) \subset \mathcal{Y} \) denote the scheme-theoretic image of \(\sigma(A[2]^{\ell}) \).

Lemma 5.7. The natural map \(\sigma(A[2]^{\ell}) \to Z \) is an isomorphism.

Proof. The claim can be checked after making a finite extension of \(K \), so we may assume that \(\sigma(A[2]^{\ell}) \subset A \) consists of either four (in the ordinary case) or two (in the almost ordinary case) disjoint \(O_K \)-sections. Their images remain disjoint in \(\mathcal{Y} \), and so we may reduce to considering the scheme-theoretic image in \(\mathcal{Y} \) of a single \(O_K \)-section in \(A \), where the claim is clear. \(\square \)

(4) This is essentially because the ring of functions on the quotient can be expressed as a kernel; see for example the argument in Section (4.24) on p. 59 of [EvdGM].
Let $\mathcal{Y}^{(1)}$ be the blowup of \mathcal{Y} in \mathcal{Z}. It then follows from Proposition 5.1 that the special fibre $\mathcal{Y}^{(1)}_k$ is the blowup of \mathcal{Y}^*_k in its reduced singular locus.

5.3. The ordinary case

We now assume further that \mathcal{A}_k is ordinary. Thus both the generic fibre $\mathcal{Y}^{(1)}_k$ and the special fibre $\mathcal{Y}^{(1)}_k$ contain twelve (geometric) singular points, all of which are rational double points of type A_1. Each of the twelve singular points on $\mathcal{Y}^{(1)}_k$ has to specialise to a singular point on $\mathcal{Y}^{(1)}_k$, and by Lemma 5.3 each singular point on $\mathcal{Y}^{(1)}_k$ is specialised to by at most one singular point on $\mathcal{Y}^{(1)}_k$.

In other words, if we let $\mathcal{Z}^{(1)} \subset \mathcal{Y}^{(1)}$ denote the scheme-theoretic closure of the twelve (geometric) singular points on $\mathcal{Y}^{(1)}_k$, then $\mathcal{Z}^{(1)}$ is finite étale over \mathcal{O}_K of degree 12 and intersects both the generic and special fibres in their reduced singular loci. We now let \mathcal{X} be the blowup of $\mathcal{Y}^{(1)}$ in $\mathcal{Z}^{(1)}$.

Theorem 5.8. Suppose that \mathcal{A}_k is ordinary and the exact sequence

\[0 \to \mathcal{A}[2](\bar{k}) \to \mathcal{A}[2](\overline{\mathbb{K}}) \to \mathcal{A}[2](\bar{k}) \to 0 \]

splits. Then any section σ of $\mathcal{A}[2] \to \mathcal{A}[2]^{\text{ét}}$ gives rise to a smooth and projective scheme $\mathcal{X}/\mathcal{O}_K$, equipped with an action of $\mathcal{A}[2]^{\text{ét}}$, whose fibres are the minimal desingularisations of the fibres of \mathcal{A}/\mathcal{G}. In particular, $\mathcal{X}_K \cong \text{Kum}(\mathcal{A}_K)$ and $\mathcal{X}^*_k \cong \text{Kum}(\mathcal{A}_k)$.

Proof. The statement about the special fibre follows from the results of Section 2; in particular, \mathcal{X}^*_k is smooth.

The generic fibre \mathcal{X}_k is clearly the Kummer surface attached to \mathcal{A}_k, so it is smooth. We can see that $\mathcal{X}/\mathcal{O}_K$ is flat because \mathcal{X} is integral, \mathcal{O}_K is a DVR, and $\mathcal{X} \to \text{Spec}(\mathcal{O}_K)$ is surjective; see [Har77, Proposition III.9.7]. It is projective because it is an iterated blowup of the projective \mathcal{O}_K-scheme \mathcal{Y}. Finally, $\mathcal{X}/\mathcal{O}_K$ is smooth since it is flat with smooth fibres; see [Stacks, Lemma 01V8].

5.4. The almost ordinary case

The construction of an explicit smooth resolution of $\mathcal{Y} = \mathcal{A}/\mathcal{G}$ is slightly more involved in the almost ordinary case. Here, we assume that $\mathcal{A}[2](\overline{\mathbb{K}}) = \mathcal{A}[2](K)$, and we show that we can perform the ‘naïve’ resolution described in Section 3.2 on the relative surface \mathcal{Y}. In fact, we will replace \mathcal{A} with the formal completion $\mathcal{S} = \text{Spec}(\widehat{\mathcal{O}}_{\mathcal{A}/\mathcal{O}_K})$ at the zero section of the special fibre. We let $\mathcal{T} = \mathcal{S}/\mathcal{G}$ and write $q: \mathcal{S} \to \mathcal{T}$ for the quotient map. We will describe a resolution of \mathcal{S} via an explicit sequence of blowups. To obtain a resolution of \mathcal{Y}, we simply perform the same sequence of blowups and then translate the whole procedure by the point of $\mathcal{A}[2](K)$ given by the image of the non-identity point of $\mathcal{A}[2](k)$ under the splitting σ of $\mathcal{A}[2] \to \mathcal{A}[2]^{\text{ét}}$.

First of all, note that any point in the kernel of the reduction map $\mathcal{A}(K) \to \mathcal{A}(k)$ can naturally be thought of as a K-point of \mathcal{S}. Moreover, any such point extends uniquely to a section $\text{Spec}(\mathcal{O}_K) \to \mathcal{S}$. In particular, all eight points of $\mathcal{A}[2]^{\text{ét}}(K)$ give rise to sections of \mathcal{S}, and the images of these sections under q intersect the generic fibre \mathcal{T}_K precisely at its eight singular points. The fibre product $\mathcal{T}^{(1)} := \mathcal{Y}^{(1)} \times_{\mathcal{Y}} \mathcal{T}$ is then the blowup of \mathcal{T} along $q(\mathcal{O})$.

We therefore know that the (reduced) singular locus of $\mathcal{T}^{(1)}_k$ consists of seven K-rational points of type A_1, and the (reduced) singular locus of $\mathcal{T}^{(1)}_k$ consists of two k-rational points, one of type A_1 and one of type D_6^1. By Lemma 5.3, there exists at least one singular point on $\mathcal{T}^{(1)}_k$ specialising to the D_6^1-singularity $Q_2^{(1)}$ (in the notation of Section 3). Let $Q_2^{(1)} \subset \mathcal{T}^{(1)}$ denote the closure of this point and $\mathcal{T}^{(2)}$ the blowup of $\mathcal{T}^{(1)}$ along $Q_2^{(1)}$.

Now the (reduced) singular locus of $\mathcal{T}^{(2)}_k$ consists of six K-rational points of type A_1, and the (reduced) singular locus of $\mathcal{T}^{(2)}_k$ consists of three k-rational points, two of type A_1 and one of type D_4^0. By Lemma 5.3,
there exists at least one singular point on $T^{(2)}_K$ specialising to the D_4^0 singularity $Q_3^{(2)}$. We let $Q_3^{(2)} \subset T^{(2)}$ denote the closure of this point and $T^{(3)}$, the blowup of $T^{(2)}$ along $Q_3^{(2)}$.

We therefore see that both the general and special fibres of $T^{(3)}$ have precisely five singular points, all of type A_1, and the singular subscheme of $T^{(3)}$ is finite étale of degree 5 over O_K. Now, as in the ordinary case, we may blow up the singular subscheme of $T^{(3)}$ to obtain a scheme which is formally smooth over O_K. We therefore obtain the following analogue of Theorem 5.8.

Theorem 5.9. Suppose that A^g is almost ordinary and that $A[2](\overline{K})$ is trivial as a Γ_K-module. Then there exists a smooth and projective scheme X/O_K, equipped with an action of $A[2]^\text{ét}$, whose fibres are the minimal desingularisations of the fibres of A/G. In particular, $X_K \cong \text{Kum}(A_K)$ and $X_k \cong \text{Kum}(A_k)$.

Remark 5.10. It is not completely transparent exactly where the hypothesis that $A[2](\overline{K}) = A[2](K)$ is used. However, a more careful examination of the proof shows that:

1. the two sections $Q_2^{(1)}$ and $Q_3^{(2)}$ that we blew up above,
2. the chosen splitting of $A[2] \to A[2]^\text{ét}$,
3. the canonical multiplicative subgroup $\mu_2 \cong \text{Hom}_{O_K}(A[2]^\text{ét}, \mu_2) \subset A[2]$.

all combine to give a set of K-rational generators of $A[2](\overline{K})$. The choice involved in producing X is essentially a choice of \mathbb{F}_2-basis of $A[2](\overline{K})$ containing the non-trivial element of $\text{Hom}_{O_K}(A[2]^\text{ét}, \mu_2)$.

6. Good reduction criterion

In this section, we complete the proofs of Theorems 1, 2, and 3. Since we will want to use the main result of [CLL19], we first need to explain the ‘canonical reduction’ of a K3 surface which plays a key role there.

6.1. Canonical reduction

Suppose that X/K is a K3 surface which attains good reduction after a finite and unramified extension of K. In general, this does not imply that X has good reduction over K itself; see for example [LM18, Section 7]. However, it is still possible to produce a K3 surface X_0/k as the ‘reduction’ of X, in a way that is unique up to k-isomorphism.

The key result that allows us to do this is [LM18, Proposition 4.7(2)], which says that if X_1 and X_2 are smooth models of our K3 surface X over O_K, that is, smooth and proper algebraic spaces over O_K with generic fibres identified with X, then X_1 and X_2 are connected by a sequence of flopping contractions and their inverses. In particular, this implies that the canonical rational map $X_1 \dashrightarrow X_2$ given by the identity on generic fibres is an isomorphism away from a finite collection of curves on the special fibres of X_1 and X_2. We may therefore restrict this map to obtain a birational map $X_{1,k} \dashrightarrow X_{2,k}$ between these special fibres. As remarked in the introduction, these special fibres must be K3 surfaces (since they have trivial canonical bundle and coherent Euler characteristic 2), and hence this restricted birational map is in fact an isomorphism.

This has the following important consequence. Suppose that L/K is a finite and unramified Galois extension, with induced residue field extension k_L/k. If X/O_L is a smooth model for X_L, then we may consider the natural $\text{Gal}(L/K)$-action on X_L as a rational action on X. By the above discussion, this is defined away from a finite collection of curves on X_L. We can therefore restrict this rational action to the special fibre $X_{L,k}$, and again, as in the above discussion, this restricted rational action is regular. Hence we may form the quotient $X_0 := X_{L,k}/\text{Gal}(L/K)$, which is a K3 surface over k by the theory of Galois descent. Moreover, if we had any two such smooth models X_1 and X_2 over O_L, then the identity map between the generic fibres induces a $\text{Gal}(L/K)$-equivariant isomorphism between their special fibres. Thus the K3 surface X_0, up to isomorphism, does not depend on the choice of model X/O_L, or indeed on the choice of L.

Definition 6.1. The K3 surface X_0 over k is called the canonical reduction of X.

In our case the canonical reduction appears in the following way.

Lemma 6.2. Let $\mathcal{Y}/\mathcal{O}_K$ be a flat, projective scheme with normal, 2-dimensional fibres, such that the minimal resolution X of \mathcal{Y}_K is a K3 surface. Assume that there exists a finite and unramified Galois extension L/K and a proper birational morphism $\mathcal{X} \to \mathcal{Y}_{O_l}$ such that \mathcal{X} is smooth over \mathcal{O}_L with generic fibre isomorphic to X_L. Then the minimal resolution of \mathcal{Y}_K is the canonical reduction of X.

Proof. The Galois group $\text{Gal}(L/K)$ acts naturally on X_L and \mathcal{Y}_L, and the morphism $X_L \to \mathcal{Y}_L$ is $\text{Gal}(L/K)$-equivariant. The action of $\text{Gal}(L/K)$ on X_L extends uniquely to a rational action of $\text{Gal}(L/K)$ on \mathcal{X}. The morphism $\mathcal{X} \to \mathcal{Y}_{O_l}$ is thus $\text{Gal}(L/K)$-equivariant. As we have seen, the rational action of $\text{Gal}(L/K)$ on \mathcal{X} restricts to a regular action on \mathcal{X}_{k_l}. We therefore obtain a $\text{Gal}(k_l/k)$-equivariant birational morphism $\mathcal{X}_{k_l} \to \mathcal{Y}_{k_l}$. Since \mathcal{X}_{k_l} is a K3 surface, this morphism is a minimal resolution of \mathcal{Y}_{k_l}. Hence $\mathcal{X}_{k_l}/\text{Gal}(L/K)$, which by definition is the canonical reduction of X, is the minimal resolution of \mathcal{Y}_K.

6.2. The proofs

We can now prove our main theorems.

Theorem 6.3. Let A be an abelian surface over K with good, non-supersingular reduction. Then we have the following statements:

1. The Kummer surface $\text{Kum}(A)$ attains good reduction with a scheme model after a finite field extension L/K of degree $[L : K] \leq |\text{GL}_4(F_2)|$.
2. If the Γ_K-module $A[2](\overline{K})$ is unramified, then the extension L/K in (1) can be chosen to be unramified.
3. (a) If A has ordinary reduction, then $\text{Kum}(A)$ has good reduction over K if and only if the exact sequence
 $$0 \to A^\vee(2)(\overline{K}) \to A[2](\overline{K}) \to A[2](\overline{k}) \to 0$$
 of Γ_K-modules splits. If this condition holds, then the Γ_K-module $A[2](\overline{K})$ is unramified and $\text{Kum}(A)$ has good reduction over K with a scheme model.
 (b) If A has almost ordinary reduction, then $\text{Kum}(A)$ has good reduction over K if and only if the Γ_K-module $A[2](\overline{K})$ is trivial. If this condition holds, then $\text{Kum}(A)$ has good reduction over K with a scheme model.

Proof. Parts (1) and (2), as well as ‘if’ statements of part (3) immediately follow from Theorems 5.8 and 5.9. In particular, we see that the K3 surface $\text{Kum}(A)$ satisfies Hypothesis (\dagger) in the terminology of [LM18] and [CLL19].

For the ‘only if’ direction of part (3), we first note that the hypothesis that $\text{Kum}(A)$ has good reduction implies that $A[2](\overline{K})$ is an unramified Γ_K-module. We then consider the singular model A/I for $\text{Kum}(A)$, which by the results of Section 5 has a simultaneous resolution after an unramified extension of K. Hence Lemma 6.2 shows that $\text{Kum}(A_k)$ is the canonical reduction of $\text{Kum}(A)$.

It therefore follows from [CLL19, Theorem 1.6] that good reduction of $\text{Kum}(A)$ over K is equivalent to the existence of an isomorphism of Γ_K-representations
\[H^2_\text{et}(\text{Kum}(A), \mathbb{Q}_\ell) \cong H^2_\text{et}(\text{Kum}(A_k), \mathbb{Q}_\ell) \]
for any odd prime ℓ. Indeed, given this isomorphism, we have an induced isomorphism on respective semisimplifications and therefore an isomorphism
\[
\frac{H^2_\text{et}(\text{Kum}(A), \mathbb{Q}_\ell)}{H^2_\text{et}(A_{\overline{K}}, \mathbb{Q}_\ell)} \cong \frac{H^2_\text{et}(\text{Kum}(A_k), \mathbb{Q}_\ell)}{H^2_\text{et}(A_k, \mathbb{Q}_\ell)}
\]
since both sides are semisimple and $H^2_\text{et}(A_{\overline{K}}, \mathbb{Q}_\ell) \cong H^2_\text{et}(A_k, \mathbb{Q}_\ell)$. Hence we can apply Theorem 4.6 in the case of ordinary reduction or Corollary 4.5 in the case of almost ordinary reduction.
\[\square\]
Example 6.4. The condition appearing in Theorem 6.3(3a) is not automatic, even if we assume that $A[2](\overline{K})$ is unramified. To see this, we let E/\mathbb{Z}_2 be the elliptic curve defined by

$$E : y^2 + xy = x^3 - 20x - 5.$$

If we reduce modulo 2, we get the curve

$$E_{\mathbb{F}_2} : y^2 + xy = x^3 + 1,$$

which is smooth over \mathbb{F}_2, and hence E is indeed an elliptic curve over \mathbb{Z}_2. Note that $E_{\mathbb{F}_2}$ has the 2-torsion point $(x, y) = (0, 1)$ and is therefore ordinary. If we make the change of co-ordinates $y = \frac{1}{2}(y' - x)$, then $E := E_{\mathbb{Q}_2}$ can be defined by the equation

$$y'^2 = 4x^3 + x^2 - 80x - 20,$$

and the right-hand side factors as

$$4x^3 + x^2 - 80x - 20 = (4x + 1)(x^2 - 20).$$

Since 20 is not a square in \mathbb{Q}_2, it follows that $E(\mathbb{Q}_2)$ has precisely one point of exact order 2, namely $(x, y) = (-\frac{1}{4}, \frac{1}{8})$. However, the full 2-torsion of E is defined over the unramified extension $\mathbb{Q}_2(\sqrt{5})$ of \mathbb{Q}_2. The exact sequence

$$0 \longrightarrow E[2](\overline{\mathbb{Q}_2}) \longrightarrow E[2](\overline{\mathbb{Q}_2}) \longrightarrow E[2](\mathbb{F}_2) \longrightarrow 0$$

therefore consists of unramified $\mathbb{F}_2[\Gamma_K] \cdot \text{-modules}$, since all points of $E[2]$ are defined over $\mathbb{Q}_2(\sqrt{5})$, and is non-split since $E[2](\mathbb{F}_2)$ is a trivial $\Gamma_K \cdot \text{-module}$ but $E[2](\overline{\mathbb{Q}_2})$ is not. In particular, if we take $\mathcal{A} = E \times_{\mathbb{Z}_2} E$, then $A := \mathcal{A}_{\mathbb{Q}_2}$ is an abelian surface with good ordinary reduction, and the exact sequence

$$0 \longrightarrow A'[2](\overline{\mathbb{F}_2}) \longrightarrow A[2](\overline{\mathbb{Q}_2}) \longrightarrow A[2](\mathbb{F}_2) \longrightarrow 0$$

consists of unramified $\mathbb{F}_2[\Gamma_K] \cdot \text{-modules}$ and is non-split. Thus $\text{Kum}(A)$ has good reduction over $\mathbb{Q}_2(\sqrt{5})$ but not over \mathbb{Q}_2.

We leave it to the reader to find an example of an abelian surface A/K with good, almost ordinary reduction, such that $A[2](\overline{K})$ is unramified but non-trivial as a $\Gamma_K \cdot \text{-module}$.

Remark 6.5. In the case where $\text{Kum}(A)$ has good reduction, we can ask what the height is of the reduced K3 surface over k, that is, the height of its formal Brauer group over k as defined in [AM77]. This is the same as the height of the Kummer surface $\text{Kum}(A_k)$ and can be detected in the slopes (roughly speaking, the valuations of the Frobenius eigenvalues) of the geometric crystalline cohomology groups of $\text{Kum}(A_k)$. After replacing k with \bar{k}, and using crystalline cohomology relative to $W := W(\bar{k})$, we have an isomorphism of F-isocrystals

$$H^2_{\text{cris}}(\text{Kum}(A_k)/W)_Q \cong H^2_{\text{cris}}(A_k/W)_Q \oplus W(-1)^{\oplus 16}.$$

This allows us to simply read off the slopes of $H^2_{\text{cris}}(\text{Kum}(A_k)/W)_Q$ from those of

$$H^2_{\text{cris}}(A_k/W)_Q = \bigoplus_{r=0}^{2} H^1_{\text{cris}}(A_k/W)_Q.$$

Indeed, if A_k has 2-rank $r \in \{1, 2\}$, then $H^1_{\text{cris}}(A_k/W)_Q$ has slopes $0, \frac{1}{2}, 1$ with multiplicities $r, 4 - 2r, r$, respectively. If we therefore set $h := 3 - r$, then $H^2_{\text{cris}}(A_k/W)_Q$ has slopes $1 - \frac{1}{2}, 1, 1 + \frac{1}{h}$ with multiplicities $h, 6 - 2h, h$, respectively. Since $W(-1)_Q$ has slope 1, we deduce from [III79, Section II.7.2] that $\text{Kum}(A_k)$ has height 1 when A_k is ordinary, and height 2 when A_k is almost ordinary.
7. Twisted Kummer surfaces

We can also play the same game with Kummer surfaces obtained via twisting. Indeed, let A/K be an abelian surface, and let Z be a K-torsor for $A[2]$. We write $[Z]$ for the class of Z in $H^1(K, A[2])$. The quotient $A_Z := (A \times_K Z)/A[2]$, where $A[2]$ acts diagonally on the product, is a K-torsor for A. There is an action of G on A_Z, coming from the G-action on A, and we can form the quotient A_Z/G. Let $\text{Kum}(A_Z)$ be the minimal resolution of A_Z/G. This is a K3 surface over K; indeed, it is \overline{K}-isomorphic to $\text{Kum}(A)$.

Alternatively, we could use the fact that the $A[2]$-action on A gives rise to an action on $\text{Kum}(A)$ and then form the twist $(\text{Kum}(A) \times_K Z)/A[2]$.

Since translations by elements of $\Gamma(\overline{K})$ act trivially on the cohomology of A, we have canonical isomorphisms of Γ_K-modules

$$H^i_{\text{ét}}(A_Z, \mathbb{Q}_\ell) \cong H^i_{\text{ét}}(A, \mathbb{Q}_\ell), \quad i \geq 0.$$

Thus we have a canonical isomorphism

$$H^2_{\text{ét}}(\text{Kum}(A_Z), \mathbb{Q}_\ell) \cong H^2_{\text{ét}}(A, \mathbb{Q}_\ell) \oplus \mathbb{Q}_\ell^Z(\overline{K})(-1)$$

of Γ_K-representations.

Lemma 7.1. Suppose $\text{Kum}(A_Z)$ has good reduction, and let ℓ be an odd prime. Then both $A[2][\overline{K}]$ and $H^2_{\text{ét}}(A, \mathbb{Q}_\ell)$ are unramified as Γ_K-modules, and $[Z] \in \ker(H^1(K, A[2]) \to H^1(K_{nr}, A[2]))$.

Proof. Since $H^2_{\text{ét}}(A_Z, \mathbb{Q}_\ell)$ is an unramified Γ_K-module, we see immediately that both $H^2_{\text{ét}}(A, \mathbb{Q}_\ell)$ and $\mathbb{Q}_\ell^Z(\overline{K})(-1)$ are unramified. Thus $Z(\overline{K}) = Z(\overline{K}_{nr})$, which implies that $A[2][\overline{K}]$ is unramified. The same fact also implies that Z is trivialised over K_{nr}; hence $[Z]$ maps to zero in $H^1(K_{nr}, A[2])$. \hfill \square

It follows that some quadratic twist of A has good reduction (see the appendix). Since quadratic twists of A do not change the K-isomorphism class of $\text{Kum}(A_Z)$, we will therefore assume that A has good reduction, with Néron model A/O_K. The connected-étale sequence for $A[2]$ then gives rise to an exact sequence

$$0 \to A[2]_K^o \to A[2] \to A[2]_K^\ast \to 0$$

of group schemes over K. Define $Z^\text{ét}$ as the pushout of Z along $A[2] \to A[2]_K^\ast$; that is, $Z^\text{ét}$ is the quotient $Z/A[2]_K^o$. We write $\pi: Z \to Z^\text{ét}$ for the quotient morphism.

Lemma 7.2. Suppose that there exists an isomorphism of K-schemes $Z \cong A[2]_K^o \times_K Z^\text{ét}$. Then the morphism $\pi: Z \to Z^\text{ét}$ has a section.

Remark 7.3. The lemma is not immediate since the second projection defined by the isomorphism $Z \cong A[2]_K^o \times_K Z^\text{ét}$ need not coincide with $\pi: Z \to Z^\text{ét}$.

Proof. First of all, let us suppose that A_K is ordinary. Write $Z^\text{ét} = \text{Spec}(L_1) \sqcup \cdots \sqcup \text{Spec}(L_m)$, where each L_i is a finite field extension of K. If $L_i = K$ for some i, then both Z and $Z^\text{ét}$ are trivial torsors, and hence the claim follows from Theorem 4.6. We may therefore assume either that $m = 1$ and L_1 is a quartic extension of K, or that $m = 2$ and L_1 and L_2 are (not necessarily distinct) quadratic extensions of K.

Since $\pi: Z \to Z^\text{ét}$ is a $A[2]_K^o$-torsor, we get a decomposition of K-schemes

$$Z \cong Z_1 \sqcup \cdots \sqcup Z_m,$$

where each $Z_i \to \text{Spec}(L_i)$ is a $A[2]_K^o$-torsor. Now, our given isomorphism $Z \cong A[2]_K^o \times_K Z^\text{ét}$ of K-schemes, together with the identity element of $A[2]_K^o$, gives rise to a K-morphism $Z^\text{ét} \to Z$, and hence to K-morphisms $\text{Spec}(L_i) \to Z_{\phi(i)} \to \text{Spec}(L_{\phi(i)})$ for some function (not necessarily a permutation) $\phi: \{1, \ldots, m\} \to \{1, \ldots, m\}$.

If ϕ is a permutation, then the composite map $Z^\text{ét} \to Z \to Z^\text{ét}$ is an isomorphism, and we therefore obtain a section as claimed. But if ϕ is not a permutation, then we must have $m = 2$, $L_1 \cong L_2$ are isomorphic quadratic extensions of K, and (after possibly reindexing) $\phi(i) = 1$ for $i = 1, 2$. Write $L = L_1 = L_2$. In this case...
Theorem 7.4. Let A be an abelian surface over K with good, non-supersingular reduction. Let Z be a K-torsor for $A[2]$.

1. The twisted Kummer surface $\text{Kum}(A_Z)$ attains good reduction after a finite extension of K.
2. If the étale K-scheme Z is unramified, then $\text{Kum}(A_Z)$ attains good reduction after a finite unramified extension of K.
3. (a) If A has ordinary reduction, then $\text{Kum}(A_Z)$ has good reduction over K if and only if the étale K-scheme $Z^{\acute{e}t}$ is unramified and the morphism $\pi : Z \to Z^{\acute{e}t}$ has a section.

Remark 7.5.

1. In the almost ordinary case, $Z^{\acute{e}t}$ is a K-torsor for $Z/2$, and so its splitting field is either K itself or a quadratic extension of K.
2. If Z is a trivial torsor, then the condition in part (3a) does not quite reduce to that in Theorem 6.3 since here we only require a scheme-theoretic section, whereas in Theorem 6.3 the section is required to be a group homomorphism. This implicitly proves (in the ordinary case) that the connected-étale sequence

$$0 \to A[2](\bar{k}) \to A[2](\bar{K}) \to A[2](\bar{k}) \to 0$$

has a section as Γ_K-modules if and only if it has a section as Γ_K-sets. The most direct proof that we know of this result goes through Theorem 4.6.

3. It is not difficult to check that if $\text{Kum}(A_Z)$ has good reduction, then it does so with a scheme model. Indeed, we can easily adapt the explicit constructions of Section 5 to produce scheme-theoretic models of our twisted Kummer surfaces.

Proof of Theorem 7.4. Parts (1) and (2) follow from Theorem 6.3. Indeed, $\text{Kum}(A)$ and $\text{Kum}(A_Z)$ are isomorphic over a finite extension L/K. If the K-scheme Z is unramified, then $A[2](\bar{K})$ is unramified; hence L can be taken to be unramified over K.

Now let us turn to part (3). We first claim that all hypotheses imply that Z extends to an étale $A[2]$-torsor Z/\mathcal{O}_K or, equivalently, that Z is unramified as an étale K-scheme. Indeed, if $\text{Kum}(A_Z)$ has good reduction, then this follows from Lemma 7.1. On the other hand, if $Z^{\acute{e}t}$ is unramified and π has a section, then the fact that $\pi : Z \to Z^{\acute{e}t}$ is a $A[2]_K^{\acute{e}t}$-torsor implies that $Z \cong A[2]_K^{\acute{e}t} \times_K Z^{\acute{e}t}$. In the ordinary case, this implies directly that Z is unramified. In the almost ordinary case, we use the extra assumption that all points of $A[2]^\circ(\bar{K})$ are defined over the splitting field of $Z^{\acute{e}t}$ to conclude this.

We may therefore assume that we have such a torsor Z. We let $Z^{\acute{e}t}$ denote the pushout of Z along $A[2] \to A[2]^{\acute{e}t}$; thus $Z^{\acute{e}t}_K \cong Z^{\acute{e}t}$. The special fibres Z_k and $Z^{\acute{e}t}_k$ are then étale torsors for $A_k[2]$ and $A_k[2]^{\acute{e}t}$, respectively. Now, the connected-étale sequence for $A_k[2]$ splits canonically, and hence we may write $Z_k = Z_k^\circ \times_k Z^{\acute{e}t}_k$, where Z_k° is an étale torsor for $A_k[2]^\circ$. Since $A_k[2]^\circ$ is trivial as an étale sheaf on $\text{Spec}(k)$, any such torsor must be trivial, so we have $Z_k \cong A_k[2]^\circ \times_k Z^{\acute{e}t}_k$. There is a natural action of both $A_k[2]$ and $A_k[2]^{\acute{e}t}$ on A_k, and we may therefore form the twisted Kummer surfaces $\text{Kum}(A_k, Z_k)$ and $\text{Kum}(A_k, Z_k^{\acute{e}t})$, which are isomorphic since $Z_k \cong A_k[2]^\circ \times_k Z^{\acute{e}t}_k$. We claim that $\text{Kum}(A_k, Z_k) \cong \text{Kum}(A_k, Z_k^{\acute{e}t})$ is the canonical
reduction of $\text{Kum}(A_Z)$. To see this, we can twist the abelian scheme A by the $\mathcal{A}[2]^\circ$-torsor Z to form A_Z. Now taking the quotient of A_Z by the natural G-action gives rise to a flat O_K-scheme A_Z/G, with normal fibres, such that the minimal resolutions of the fibres are $\text{Kum}(A_Z)$ and $\text{Kum}(A_{k,Z_i})$, respectively. Thus we may apply Lemma 6.2.

As Γ_k-representations, we have

$$H^2_{\text{et}}(\text{Kum}(A_Z)_{\overline{k}}, \mathbb{Q}_\ell) \cong H^2_{\text{et}}(A_{\overline{k}}, \mathbb{Q}_\ell) \oplus \mathbb{Q}_\ell^{|\Gamma_k|}(-1),$$

as well as

$$H^2_{\text{et}}(\text{Kum}(A_{k,Z^i})_{\overline{k}}, \mathbb{Q}_\ell) \cong H^2_{\text{et}}(A_{\overline{k}}, \mathbb{Q}_\ell) \oplus \mathbb{Q}_\ell^{A[2]^\circ}_{\overline{k}}(\mathbb{Q}(\overline{k}) \times Z^i_{\overline{k}}(-1))$$

if A_k is ordinary, and

$$H^2_{\text{et}}(\text{Kum}(A_{k,Z^i})_{\overline{k}}, \mathbb{Q}_\ell) \cong H^2_{\text{et}}(A_{\overline{k}}, \mathbb{Q}_\ell) \oplus \mathbb{Q}_\ell^{\mathbb{Q}(\overline{k})}_{\overline{k}}(\mathbb{Q}(\overline{k}) \times Z^i_{\overline{k}}(-1))$$

if A_k is almost ordinary. Indeed, in the latter case we know that all sixteen exceptional curves of $\text{Kum}(A_{k,Z^i})$ have to be defined over the (at most) quadratic extension of k trivialising $Z^i_{\overline{k}}$ but not over any smaller field.

We therefore deduce from [CLL19, Theorem 1.6] that $\text{Kum}(A_Z)$ has good reduction over K if and only if there exists an isomorphism of (unramified) Γ_k-sets

$$Z(\overline{k}) \cong \mathcal{A}[2]^\circ_{\overline{k}}(\overline{k}) \times Z^\text{et}_{\overline{k}}(\overline{k})$$

in the ordinary case, and

$$Z(\overline{k}) \cong \bigsqcup_{i=1}^{8} Z^\text{et}_{\overline{k}}(\overline{k})$$

in the almost ordinary case.

In the ordinary case, if we have such an isomorphism, then the existence of a section was proved in Lemma 7.2. Conversely, if π has a section, then we know that $Z \cong \mathcal{A}[2]^\circ_{\overline{k}} \times_K Z^\text{et}$ since $\pi: Z \to Z^\text{et}$ is a trivial $\mathcal{A}[2]^\circ_{\overline{k}}$-torsor.

In the almost ordinary case, if we have such an isomorphism $Z(\overline{k}) \cong \bigsqcup_{i=1}^{8} Z^\text{et}_{\overline{k}}(\overline{k})$, then any set-theoretic section will be Γ_k-equivariant. The fact that all points of $\mathcal{A}[2]^\circ(\overline{k})$ have to be defined over the splitting field of Z^et follows from applying Theorem 6.3 over this field.

Conversely, suppose that π has a section and all points of $\mathcal{A}[2]^\circ(\overline{k})$ are defined over a splitting field L/K for Z^et. If $L = K$, then clearly both $Z(\overline{k})$ and $\bigsqcup_{i=1}^{8} Z^\text{et}_{\overline{k}}(\overline{k})$ are trivial Γ_k-sets. Otherwise, L/K is quadratic, and then both $Z(\overline{k})$ and $\bigsqcup_{i=1}^{8} Z^\text{et}_{\overline{k}}(\overline{k})$ consist of sixteen points, none of which are fixed by Γ_k, but all of which are fixed by the index 2 subgroup $\Gamma_l \subset \Gamma_k$. We can therefore directly construct a Γ_k-equivariant bijection $Z(\overline{k}) \cong \bigsqcup_{i=1}^{8} Z^\text{et}_{\overline{k}}(\overline{k})$.

It is possible for $\text{Kum}(A_Z)$ to have good reduction over K even if $\text{Kum}(A)$ does not. We give examples in both the ordinary and almost ordinary cases.

Example 7.6. To give an example where A has good, ordinary reduction, we take elliptic curves E_1, E_2 over \mathbb{Z}_2 with ordinary reduction, such that $E_1[2](\mathbb{Q}_2)$ is a trivial Γ_{Q_2}-module but $E_2[2](\mathbb{Q}_2)$ is a non-trivial but unramified Γ_{Q_2}-module. For example, we could take E_1 to be defined by

$$y^2 + xy = x^3 - 4x - 1$$

and E_2 to be the curve from Example 6.4.

Let K/Q_2 be the unramified quadratic extension over which all \mathbb{Q}_2-points of $E_2[2]$ are defined (equivalently, over which the connected-étale sequence for $E_2[2]$ splits), and let $\sigma: Z/2 \cong E_1[2]^\text{et} \to E_1[2]$ be a splitting of the connected-étale sequence of E_1. We take $A = E_1 \times_{\mathbb{Z}_2} E_2$ and $A = A_{Q_2}$; thus σ induces a map $Z/2 \to A[2]$. The quadratic extension K/Q_2 gives rise to a class $[K] \in H^1(\Gamma_{Q_2}, Z/2)$, and we let Z/Q_2 be an $A[2]$-torsor whose cohomology class is equal to the image of $[K]$ in $H^1(\Gamma_{Q_2}, A[2])$.

We then see that Z and $\mathcal{A}[2]_{\mathbb{Q}_2} \times_{\mathbb{Q}_2} Z^{\text{ét}}$ are isomorphic as \mathbb{Q}_2-schemes since neither admits a \mathbb{Q}_2-point but both split into sixteen disjoint rational points over the quadratic extension K/\mathbb{Q}_2. Hence the twisted Kummer surface $\text{Kum}(A_Z)$ has good reduction by Theorem 7.4 and Lemma 7.2. On the other hand, since the connected étale sequence \mathcal{E}_2 is not split, neither is that for \mathcal{A}, and hence the Kummer surface $\text{Kum}(A)$ cannot have good reduction by Theorem 6.3.

Example 7.7. For an example in the almost ordinary case, we choose a 2-adic field K and elliptic curves $\mathcal{E}_1, \mathcal{E}_2/\mathcal{O}_K$ such that \mathcal{E}_1 has ordinary reduction, \mathcal{E}_2 has supersingular reduction, \mathcal{E}_1 has full 2-torsion defined over K, but \mathcal{E}_2 has one K-point of order 2, with the remaining two defined over an unramified quadratic extension L/K.

To see that such examples exist, we take $K = \mathbb{Q}_2(\sqrt{2})$, take $\mathcal{E}_1/\mathcal{O}_K$ defined by

$$y^2 + xy = x^3 - \frac{81}{389017},$$

and take $\mathcal{E}_2/\mathcal{O}_K$ defined by

$$y^2 + y = x^3.$$

The 2-torsion of \mathcal{E}_2 is defined over the unramified quadratic extension $L = K(\omega)$, where ω is a primitive third root of unity.

Now we take $\mathcal{A} = \mathcal{E}_1 \times_{\mathcal{O}_K} \mathcal{E}_2$. This has almost ordinary reduction, but $\mathcal{A} := \mathcal{A}_K$ does not have full 2-torsion defined over K. Hence $\text{Kum}(A)$ does not have good reduction over K by Theorem 4.6. On the other hand, if we let $Z^{\text{ét}}/\mathcal{O}_K$ be the unique non-trivial $\mathcal{A}[2]^{\text{ét}}$-torsor trivialised by the unramified extension L/K and choose a splitting $\sigma : \mathcal{A}[2]^{\text{ét}} \to \mathcal{A}[2]$ of the connected étale sequence (which exists because \mathcal{E}_1 has full 2-torsion defined over K), then we may take Z to be the generic fibre of the $\mathcal{A}[2]$-torsor over \mathcal{O}_K which is the pushout of $Z^{\text{ét}}$ under the map $\sigma : \mathcal{A}[2]^{\text{ét}} \to \mathcal{A}[2]$. It is straightforward to check that Z and \mathcal{A} satisfy the hypotheses of Theorem 7.4(3b); thus $\text{Kum}(A_Z)$ has good reduction.

Appendix. Good reduction and quadratic twists

In this appendix we prove the following result, which is surely well known to the experts. For this appendix only, we drop the assumption that $\text{char}(k) = 2$; thus \mathcal{O}_K will be a complete DVR with fraction field K of characteristic 0 and perfect residue field k of arbitrary characteristic.

Theorem A.1. Let A be an abelian surface over K, and suppose that $\text{Kum}(A)$ has good reduction over K. Then there exists a character $\chi : \Gamma_K \to \mathbb{Z}/2$ such that the quadratic twist A^{χ} has good reduction over K.

Combining the smooth and proper base change theorem with the classical Néron-Ogg-Shafarevich criterion, and using the inclusion $H^2_{\text{ét}}(A_F, \mathbb{Q}_\ell) \subset H^2_{\text{ét}}(\text{Kum}(A)_F, \mathbb{Q}_\ell)$, we can restate Theorem A.1 as follows.

Theorem A.2. Suppose that $\ell \neq \text{char}(k)$ and that the inertia subgroup $1_K \subset \Gamma_K$ acts trivially on $H^2_{\text{ét}}(A_F, \mathbb{Q}_\ell)$. Then there exists a character $\chi : \Gamma_K \to \mathbb{Z}/2$ such that 1_K acts trivially on $H^1_{\text{ét}}(A_F^{\chi}, \mathbb{Q}_\ell)$.

Proof. Let $\rho : \Gamma_K \to \text{GL}(H^1_{\text{ét}}(A_F, \mathbb{Q}_\ell))$ be the representation of Γ_K in $H^1_{\text{ét}}(A_F, \mathbb{Q}_\ell)$. The triviality of the action of 1_K on $H^2_{\text{ét}}(A_F, \mathbb{Q}_\ell)$ implies that $\rho(1_K) \subset \{ \pm 1 \}$; see [Ove21, Lemma 4.4(ii)]. Since $\{ \pm 1 \}$ is central in $\text{GL}(H^1_{\text{ét}}(A_F, \mathbb{Q}_\ell))$, the restriction of ρ to 1_K is invariant under the action of 1_K on 1_K by conjugation. This implies that the restriction of ρ to 1_K is a 1_K-invariant element of $H^1(1_K, \mathbb{Z}/2) = \text{Hom}(1_K, \mathbb{Z}/2)$.

We next claim that the restriction map

$$H^1(1_K, \mathbb{Z}/2) \to H^1(1_K, \mathbb{Z}/2)^{1_K}$$

is surjective. By the Hochschild-Serre spectral sequence, this is equivalent to injectivity of the inflation map

$$H^2(1_K, \mathbb{Z}/2) \to H^2(1_K, \mathbb{Z}/2).$$
If $\text{char}(k) \neq 2$, this is well known; see, e.g., [CTS21, Equation (1.15), p. 30]. If $\text{char}(k) = 2$, then the Artin–Schreier exact sequence implies that $H^2(\Gamma_k, \mathbb{Z}/2) = 0$; see, e.g., [Stacks, Lemma 0A3K]. Hence the map is trivially injective.

To complete the proof, we now choose $\chi \in H^1(\Gamma_K, \mathbb{Z}/2) = \text{Hom}(\Gamma_K, \mathbb{Z}/2)$ to be a lifting of the restriction of ρ to I_K. Then the representation of Γ_K in $H^1_{\text{ét}}(A^X_K, \mathbb{Q}_\ell)$ restricts to the trivial representation of I_K. □

References

[Art66] M. Artin, On isolated rational singularities of surfaces, Amer. J. Math. 88 (1966), no. 1, 129–136.
[Art74] ———, Algebraic construction of Brieskorn’s resolutions, J. Algebra 29 (1974), no. 2, 330–348.
[Art75] ———, Wildly ramified $\mathbb{Z}/2$ actions in dimension two, Proc. Amer. Math. Soc. 52 (1975), 60–64.
[Art77] ———, Coverings of the rational double points in characteristic p in: Complex analysis and algebraic geometry: a collection of papers dedicated to K. Kodaira, pp. 11–22, Cambridge Univ. Press, Cambridge, 1977.

[AM77] M. Artin and B. Mazur, Formal groups arising from algebraic varieties, Ann. Sci. Éc. Norm. Sup. (4) 10 (1977), no. 1, 87–131.
[BLR90] S. Bosch, W. Lütkebohmert, and M. Raynaud, Néron models, Ergeb. Math. Grenzgeb. (3), vol 21, Springer-Verlag, Berlin, 1990.

[CLL19] B. Chiarellotto, C. Lazda, and C. Liedtke, A Néron–Ogg–Shafarevich criterion for $K3$ surfaces, Proc. Lond. Math. Soc. 119 (2019), 469–514.

[CTS21] J.-L. Colliot-Thélène and A. N. Skorobogatov, The Brauer–Grothendieck group, Ergeb. Math. Grenzgeb. (3), vol 71, Springer, Cham, 2021.

[EvdGM] B. Edixhoven, G. van der Geer, and B. Moonen, Quotients by group schemes. Available from https://www.math.ru.nl/~bmoonen/BookAV/Quotients.pdf

[HS16] Y. Harpaz and A. N. Skorobogatov, Hasse principle for $K3$ varieties, Algebra Number Theory 10 (2016) 813–841.

[Har77] R. Hartshorne. Algebraic geometry, Grad. Texts in Math., vol. 52, Springer-Verlag, New York, 1977.

[Ill79] L. Illusie, Complex de de Rham–Witt et cohomologie cristalline, Ann. Sci. Éc. Norm. Sup. 12 (1979), 501–661.

[Kat78] T. Katsura, On Kummer surfaces in characteristic 2, in Proc. Int. Symp. Algebraic Geometry (Kyoto, 1977), pp. 525–542, Kinokuniya Book Store, Tokyo, 1978.

[LMI18] C. Liedtke and Y. Matsumoto, Good reduction of $K3$ surfaces, Compos. Math. 154 (2018), 1–35.

[Mat15a] Y. Matsumoto, Good reduction criterion for $K3$ surfaces, Math. Z. 279 (2015), 241–266.

[Mat15b] ———, On good reduction of some $K3$ surfaces related to abelian surfaces, Tohoku Math. J. 67 (2015), 83–104.

[Oda69] T. Oda, The first de Rham cohomology group and Dieudonné modules, Ann. Sci. Éc. Norm. Sup. 2 (1969), 63–135.

[Ove21] O. Overkamp, Degeneration of Kummer surfaces, Math. Proc. Cambridge Philos. Soc. 171 (2021), 65–97.

[Rot09] J. J. Rotman, An introduction to homological algebra, 2nd ed., Universitext, Springer, New York, 2009.
[Sch09] S. Schröer, *The Hilbert scheme of points for supersingular abelian surfaces*, Ark. Math. 47 (2009), 143–181.

[Shi74] T. Shioda, *Kummer surfaces in characteristic 2*, Proc. Japan Acad. 50 (1974), 718–722.

[Sil86] J. H. Silverman, *The arithmetic of elliptic curves*, Grad. Texts in Math., vol 106, Springer-Verlag, New York, 1986.

[SZ17] A. N. Skorobogatov and Yu. G. Zarhin, *Kummer varieties and their Brauer groups*, Pure Appl. Math. Quart. 13 (2017), 337–368.

[Stacks] The Stacks Project Authors, *The Stacks Project*, https://stacks.math.columbia.edu.

[Tat67] J. Tate, *p-divisible groups*, in: *Proc. conf. local fields* (Driebergen, 1966), pp. 158–183, Springer, Berlin, 1967.

[Tat97] ———, *Finite flat group schemes*, in: *Modular forms and Fermat’s last theorem* (Boston, 1995), pp. 121–154, Springer, New York, 1997.