Best practices for prevention of post-endoscopic retrograde cholangiopancreatography pancreatitis

Simcha Weissman, Mohamed Ahmed, Matthew R Baniqued, Dean Ehrlich, James H Tabibian

Abstract
Acute pancreatitis is one of the most common gastroenterology-related indications for hospital admissions worldwide. With the widespread reliance on endoscopic retrograde cholangiopancreatography (ERCP) for the management of pancreaticobiliary conditions, post-ERCP pancreatitis (PEP) has come to represent an important etiology of acute pancreatitis. Despite many studies aiming to better understand the pathogenesis and prevention of this iatrogenic disorder, findings have been heterogeneous, and considerable variation in clinical practice exists. Herein, we review the literature regarding PEP with the goal to raise awareness of this entity, discuss recent data, and present evidence-based best practices. We believe this manuscript will be useful for gastrointestinal endoscopists as well as other specialists involved in the management of patients with PEP.

Key Words: Post-endoscopic retrograde cholangiopancreatography pancreatitis; Endoscopic retrograde cholangiopancreatography; Pancreatitis; Practice guidelines; Pharmacology; Prevention

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.
PATHOGENESIS OF ACUTE PANCREATITIS

The pathogenesis of acute pancreatitis is centered around direct acinar cell injury with subsequent activation of proteolytic pancreatic enzymes. Inciting injuries include obstruction (e.g., from stone or tumor), alcohol and other toxins, and trauma, among others[9]. In PEP, activation of inflammatory pathways can occur for multiple reasons, which similarly include mechanical obstruction, direct trauma, or toxic injury[9,10]. When bile duct cannulation is difficult, prolonged papillary manipulation and repeat instrumentation can lead to mechanical injury and edema, impairing flow of pancreatic enzymes from the exocrine pancreas into the small intestine[8]. Electrocautery can also cause edema and similarly impair flow of pancreatic enzymes. Hydrostatic injury can occur secondary to intraductal water or contrast injection[8]. Contrast agents themselves can potentially cause chemical injury (even without significant changes in hydrostatic pressure); however, their role in this regard in the pathogenesis of PEP remains controversial and may depend on the chemical properties of the specific contrast agent[11]. The ensuing sequence of inflammation and recruitment of cytokines can manifest locally or go on to activate a systemic inflammatory response syndrome, resulting in higher severity of acute pancreatitis.

APPROACH TO DIAGNOSING PEP

The diagnosis of acute pancreatitis (of any etiology) can be made with at least two of the following three criteria: (1) Typical epigastric abdominal pain (often radiating to
Prophylactic measures that may help curtail PEP [18]. Several well-designed meta-analyses have found an association between early needle-knife precutting and lower rates of PEP, as compared to persistent attempts at cannulation [19,20]. A recent study showed that prophylactic pancreatic stenting following a double-guide wire technique reduces the rate of PEP, as double-guide wire technique alone was associated with higher PEP [21]. As such, international endoscopic societies recommend early needle-knife precut sphincterotomy (or papillotomy) and double-guide wire technique with prophylactic pancreatic duct stenting, especially in difficult biliary cannulation, to prevent ERCP-related AEs [2,18,22-29].
Table 1 Mild, moderate, and severe acute pancreatitis as delineated by the revised Atlanta classification and the post-endoscopic retrograde cholangiopancreatography pancreatitis-specific Cotton criteria

Revised Atlanta classification	Cotton criteria
Mild	Requires 2 out of 3: Epigastric abdominal pain; amylase/lipase > 3 × normal limit; abdominal image findings; no organ failure; no local or systemic complications
Moderate	Transient organ failure (resolves within 48 h). Local or systemic complications without persistent organ failure
Severe	Persistent organ failure (> 48 h). Single/multiple organ failure

Table 2 Reported patient-, procedure-, and operator-related risk factors for post-endoscopic retrograde cholangiopancreatography pancreatitis

Risk factors for post-ERCP pancreatitis by category	Patient-related	Procedure-related	Operator-related
Sphincter of Oddi dysfunction	Age (young or old)	Pancreatic sphincterotomy	Endoscopist inexperience
Normal bilirubin	Recent sphincter of Oddi manometry	Difficult biliary cannulation	Lower ERCP case volume
Female sex	Papillary balloon dilation	Numerous pancreatic duct cannulations	Poor ancillary services
History of PEP	Inadvertent/high-pressure pancreatography	Unfamiliarity with preventative methods	

PEP: Post endoscopic retrograde cholangiopancreatography pancreatitis; ERCP: Endoscopic retrograde cholangiopancreatography.

INTRAVENOUS FLUIDS AS A PREVENTATIVE STRATEGY

The use of IV fluids, in particular aggressive periprocedural IV hydration, has been recommended for the prevention of PEP[18,22]. Two meta-analyses found that the use of aggressive hydration with lactated Ringer’s Solution, 35-45 mL/kg administered over 8-10 h, decreased the incidence of PEP[30,31]. Another more recent study found similar results when comparing aggressive to standard IV hydration[32]. There is evidence that suggests lactated Ringer’s solution may be preferable as compared to normal saline[33,34]. Of note, aggressive hydration should be tempered in patients that are at risk of fluid overload (those with heart failure, anisarca, poor renal function, ascites etc.) and may be less impactful in those that have a prophylactic pancreatic duct stent placed[18].

PHARMACOLOGICAL PREVENTION

Numerous pharmacological approaches have been studied as a means to preventing (or decreasing the severity of) PEP. These include: NSAIDs, somatostatin, protease inhibitors, antibiotics, nitrates, heparin, and others. Prophylactic NSAIDs are perhaps the most studied pharmacological tool found to help prevent PEP[35-42]. Indeed, numerous meta-analyses have examined the effect of NSAIDs, and while the overwhelming majority found a significantly lower incidence of PEP — a few found a nonsignificant difference[35-42]. As such, it has been recommended to use 100 mg of diclofenac or indomethacin (per rectum) before ERCP in all patients who do not have a contraindication[18]. Of note, the use of NSAIDs in combination with other pharmacologic measures to prevent PEP is not recommended by the European society of gastrointestinal endoscopy[18]. However, recommendations from other societies do not support or deny the use of NSAIDs with other pharmacological measures[2,43]. Studies to better understand the role and optimal timing, route, and dose of NSAIDs in this regard are ongoing[44].
Somatostatin is a cyclic peptide that has an inhibitory effect on multiple systems of the body\cite{45}. There are a few studies that have shown that its use is associated with an overall reduction in the incidence of PEP; however, these studies may be biased by a small sample size and have had conflicting results with other studies\cite{18}. Additionally, octreotide, a somatostatin analogue, was shown to have no significant difference in PEP incidence when compared to a placebo, unless used at a dose higher than 0.5 mg\cite{46}. Thus, this somatostatin is not recommended for PEP prophylaxis.

Protease inhibitors can be used to inhibit the activation of proteolytic enzymes that are released from the pancreas and play a role on the pathogenesis of PEP\cite{47}. However, at this time the results of its usefulness in PEP prevention are inconclusive\cite{18}. Notably, a study from 2010 found that the main protease inhibitors, gabexate mesylate and ulinastatin, had no effect on PEP\cite{48}. As such, it is not recommended to administer protease inhibitors for PEP prophylaxis\cite{2,18,43}.

Nitrates can also be used as a form of prophylaxis, with sublingual administration being the best studied route\cite{49}. This most recent meta-analysis showed that the use of glyceryl trinitrate reduces the overall incidence of PEP, which was consistent with four previously published meta-analyses\cite{49-53}. It is currently recommended that sublingual glyceryl trinitrate be considered in patients with a contraindication to NSAIDs or to aggressive hydration for prevention of PEP\cite{18}.

Epinephrine has also been proposed as a method for PEP prevention. It is administered by spraying the papilla to reduce the edema and prevent PEP. However, there are conflicting results in two randomised controlled trials which compared epinephrine and saline\cite{54,55}. Topical administration of epinephrine onto the papilla for PEP prophylaxis is not recommended\cite{18}.

BEST PRACTICE

Best practice with respect to the prevention of PEP continues to progress as the literature evolves and new evidence becomes available. First, we suggest that prior to ERCP, clinicians should conduct a thorough assessment for possible risk factors for PEP. Second, rectal indomethacin (or diclofenac) should be considered for all patients undergoing ERCP. Third, IV fluids (lactated Ringer's solution or alternatively normal saline) should be given pre-, intra-, and post-procedure to those who do not have a contraindication to high-volume hydration, particularly in those with a contraindication to NSAIDs. Fourth, pancreatic duct stenting should be performed prophylactically in cases of difficult cannulation and when pancreatic duct access is readily achieved. Fifth, in patients without a prior sphincterotomy who are at high-risk for PEP, cannulation with needle-knife precut techniques (e.g., suprapapillary fistulotomy) should be progressed to early or considered as a primary approach so as to avoid trauma to the pancreatic duct orifice. Finally, pancreatic duct injections should be minimized (Figure 1).

CONCLUSION

Despite advances in collective knowledge of the mechanisms of and risk factors for PEP, it remains the most common major AE of ERCP and incompletely understood. Best practice with regards to prevention is through careful patient selection, sound endoscopic technique, and evidence-based prophylactic measures. Thoughtful attention to risk factors for PEP is vital in order to guide specific procedural and other preventative techniques and to optimize outcomes. Preventive measures include administration of (rectal) NSAIDs, aggressive IV hydration, various procedural techniques aimed at avoiding trauma to the papillary region, pancreatic duct stenting, and avoiding contrast injection into the pancreatic duct. The optimal choice and/or combination of these measures often requires individualized decision-making. Future high-quality studies are needed to better evaluate these and other approaches and thereby decrease the incidence and severity of PEP.
Figure 1 Flow chart illustrating the best-practice approach to post-endoscopic retrograde cholangiopancreatography pancreatitis prevention and management. Notably, in patients with complications of underlying advanced liver disease and/or comorbidities such as portal hypertension, coagulopathy, renal dysfunction, and volume overload, the selection of these prophylactic options should be made on a case-by-case basis and, when available, based on clinical evidence. ¹Younger age, female sex, normal bilirubin, recurrent pancreatitis, prior post endoscopic retrograde cholangiopancreatography pancreatitis, sphincter of Oddi dysfunction; ²Rectal indomethacin or diclofenac; ³Lactated Ringers preferred, 35-45 mL/kg administered over 8-10 h. PEP: Post endoscopic retrograde cholangiopancreatography pancreatitis; NSAID: Non-steroidal anti-inflammatory drug.

REFERENCES

1. Fagenholz PJ, Castillo CF, Harris NS, Pelletier AJ, Camargo CA Jr. Increasing United States hospital admissions for acute pancreatitis, 1988-2003. Ann Epidemiol 2007; 17: 491-497 [PMID: 17448682 DOI: 10.1016/j.annepidem.2007.02.002]
2. Peery AF, Crockett SD, Murphy CC, Lund JL, Dorlon ES, Williams JL, Jensen ET, Shaheen NJ, Barriss AS, Lieber SR, Kochar B, Barnes EL, Fan YC, Patel V, Galanko J, Baron TH, Sandler RS. Burden and Cost of Gastrointestinal, Liver, and Pancreatic Diseases in the United States: Update 2018. Gastroenterology 2019; 156: 254-272. e11 [PMID: 30315778 DOI: 10.1053/j.gastro.2018.08.063]
3. Tenner S, Baillie J, DeWitt J, Vege SS; American College of Gastroenterology. American College of Gastroenterology guideline: management of acute pancreatitis. Am J Gastroenterol 2013; 108: 1400-15; 1416 [PMID: 23896955 DOI: 10.1038/ajg.2013.218]
4. Yang AL, Vadhavkar S, Singh G, Omary MB. Epidemiology of alcohol-related liver and pancreatic disease in the United States. Arch Intern Med 2008; 168: 649-656 [PMID: 18362258 DOI: 10.1001/archinte.168.6.649]
5. Kwon CI, Song SH, Hahn KB, Ko KH. Unusual complications related to endoscopic retrograde cholangiopancreatography and its endoscopic treatment. Clin Endosc 2013; 46: 251-259 [PMID: 23767036 DOI: 10.5946/ce.2013.46.3.251]
6. Morales SJ, Sampath K, Gardner TB. A Review of Prevention of Post-ERCP Pancreatitis. Gastroenterol Hepatol (N Y) 2018; 14: 286-292 [PMID: 29991936]
7. Maranki J, Yeaton P. Prevention of post-ERCP pancreatitis. Curr Gastroenterol Rep 2013; 15: 352 [PMID: 24193373 DOI: 10.1007/s11894-013-0352-2]
8. Cotton PB, Lehman G, Vennes J, Geenen JE, Russell RC, Meyers WC, Liguori C, Nickl N. Endoscopic sphincterotomy complications and their management: an attempt at consensus. Gastrointest Endosc 1991; 37: 383-393 [PMID: 2070995 DOI: 10.1016/0016-5107(91)70740-2]
9. Smeets X, Bouhouch N, Buxbaum J, Zhang H, Cho J, Verdonk RC, Römkens T, Venneman NG, Kats I, Vrolijk JM, Hemmink G, Otten A, Tan A, Elmunzer BJ, Cotton PB, Drenth J, van Geenen E. The revised Atlanta criteria more accurately reflect severity of post-ERCP pancreatitis compared to the consensus criteria. United European Gastroenterol J 2019; 7: 557-564 [PMID: 31065373 DOI: 10.1177/2050646018348349]
10. Banks PA, Bollen TL, Dervenis C, Gooszen HG, Johnson CD, Sarr MG, Tsitotos GG, Vege SS. Acute Pancreatitis Classification Working Group. Classification of acute pancreatitis–2012: revision of the Atlanta classification and definitions by international consensus. Gut 2013; 62: 102-111 [PMID: 23100216 DOI: 10.1136/gutjnl-2012-302779]
11. Sasahira N, Kawakami H, Isayama H, Uchino R, Nakai Y, Ito Y, Matsuura S, Ishiwatari H, Ueyashii M, Yagioka H, Todora O, Toda N, Sakamoto N, Kato J, Koike K. Early use of double-guidewire technique to facilitate selective bile duct cannulation: the multicenter randomized controlled EDUCATION trial. Endoscopy 2015; 47: 421-429 [PMID: 25590180 DOI: 10.1055/s-0034-1391228]
Meta-analysis of Randomized Controlled Trials. Solution in Prevention of Postendoscopic Retrograde Cholangiopancreatography Pancreatitis: A systematic review and meta-analysis.

Ringer Solution for the Prevention of Post-ERCP Pancreatitis: A systematic review and meta-analysis.

Xu L, Kiyaw MH, Tse YK, Lau JY. Endoscopic sphincterotomy with large balloon dilation versus endoscopic sphincterotomy for bile duct stones: a systematic review and meta-analysis. Biomed Res Int 2015; 2015: 673103 [PMID: 25756070 DOI: 10.1155/2015/673103]

Berry R, Han JY, Tabibian JH. Difficult biliary cannulation: Historical perspective, practical updates, and guide for the endoscopist. World J Gastrointest Endosc. 2019; 11: 5-21 [PMID: 30705728 DOI: 10.4253/wjge.v11.i1.5]

Wu D, Wan J, Xia L, Chen J, Zhu Y, Lu N. The Efficiency of Aggressive Hydration With Lactated Ringer Solution for the Prevention of Post-ERCP Pancreatitis: A Systematic Review and Meta-analysis. J Clin Gastroenterol 2017; 51: e68-e76 [PMID: 28609383 DOI: 10.1097/MCG.0000000000000856]

Zhang ZF, Duan ZJ, Wang LX, Zhao G, Deng WG. Aggressive Hydration With Lactated Ringer Solution in Prevention of Postendoscopic Retrograde Cholangiopancreatography Pancreatitis: A Meta-analysis of Randomized Controlled Trials. J Clin Gastroenterol 2017; 51: e17-e26 [PMID: 28409076 DOI: 10.3748/wjg.v19.i48.9453]
Weissman S et al. Best practices for prevention of PEP

28178088 DOI: 10.1097/MCG.0000000000000781
32 Park CH, Paik WH, Park ET, Shim CS, Lee TY, Kang C, Noh MH, Yi SY, Lee JK, Hyun JJ. Aggressive intravenous hydration with lactated Ringer's solution for prevention of post-ERCP pancreatitis: a prospective randomized multicenter clinical trial. Endoscopy 2018; 50: 378-385 [PMID: 29237204 DOI: 10.1055/s-0043-122386]

Working Group IAP/APA Acute Pancreatitis Guidelines. IAP/APA evidence-based guidelines for the management of acute pancreatitis. Pancreatology 2013; 13: e1-15 [PMID: 24054878 DOI: 10.1016/j.pan.2013.07.063]

34 Wu BU, Hwang JQ, Gardner TH, Repas K, Deles R, Yu S, Smith B, Banks PA, Conwell DL. Lactated Ringer's solution reduces systemic inflammation compared with saline in patients with acute pancreatitis. Clin Gastroenterol Hepatol 2011; 9: 710-717. e1 [PMID: 21645639 DOI: 10.1016/j.gi.2011.04.026]

35 Feng Y, Navaneethan U, Zhu X, Varadaraju S, Schwartz I, Hawes R, Hasan M, Yang A. Prophylactic rectal indomethacin may be ineffective for preventing post-endoscopic retrograde cholangiopancreatography pancreatitis in general patients: A meta-analysis. Dig Endosc 2017; 29: 272-280 [PMID: 27914176 DOI: 10.1111/den.12779]

36 He X, Zheng W, Ding Y, Tang X, Si J, Sun LM. Rectal Indomethacin Is Protective against Pancreatitis after Endoscopic Retrograde Cholangiopancreatography: Systematic Review and Meta-Analysis. Gastroenterol Res Pract 2018; 2018: 9784841 [PMID: 29661721 DOI: 10.1155/2018/9784841]

37 Yu LM, Zhao KJ, Lu B. Use of NSAIDs via the Rectal Route for the Prevention of Pancreatitis after ERCP in All-Risk Patients: An Updated Meta-Analysis. Gastroenterol Res Pract 2018; 2018: 1027530 [PMID: 29576766 DOI: 10.1155/2018/1027530]

38 Yang C, Zhao Y, Li W, Zhu S, Yang H, Zhang Y, Liu X, Peng N, Fan P, Jin X. Rectal nonsteroidal anti-inflammatory drugs administration is effective for the prevention of post-ERCP pancreatitis: An updated meta-analysis of randomized controlled trials. Pancreatology 2017; 17: 681-688 [PMID: 28374270 DOI: 10.1016/j.pan.2017.07.008]

39 Inamdar S, Han D, Passi M, Seipal DV, Trindade AJ. Rectal indomethacin is protective against post-ERCP pancreatitis in high-risk patients but not average-risk patients: a systematic review and meta-analysis. Gastrointest Endosc 2017; 85: 65-75 [PMID: 27612923 DOI: 10.1016/j.gie.2016.08.034]

40 Hou YC, Hu Q, Huang J, Fang JY, Xiong H. Efficacy and safety of rectal nonsteroidal anti-inflammatory drugs for prophylaxis against post-ERCP pancreatitis: a systematic review and meta-analysis. Sci Rep 2017; 7: 46650 [PMID: 28440297 DOI: 10.1038/srep46650]

41 Yaghoobi M, Pauls Q, Durkaliski V, Romagnuolo J, Fogel EL, Tarnasky PR, Aliperti G, Freeman ML, Kozarek RA, Jamidar PA, Wilcox CM, Elta GH, Hawes RH, Wood-Williams A, Cotton PB. Incidence and predictors of post-ERCP pancreatitis in patients with suspected sphincter of Oddi dysfunction undergoing biliary or dual sphincterotomy: results from the EPISOD prospective multicenter randomized sham-controlled study. Endoscopy 2015; 47: 884-890 [PMID: 26156739 DOI: 10.1055/s-0034-1392418]

42 Akbar A, Abu Dayyeh BK, Baron TH, Wang Z, Altayar O, Murad MH. Rectal nonsteroidal anti-inflammatory drugs are superior to pancreatic duct stents in preventing pancreatitis after endoscopic retrograde cholangiopancreatography: a network meta-analysis. Clin Gastroenterol Hepatol 2013; 11: 778-783 [PMID: 23376320 DOI: 10.1016/j.cgh.2012.12.043]

43 Crockett SD, Wani S, Gardner TB, Falcé-Ytter Y, Barkun AN; American Gastroenterological Association Institute Clinical Guidelines Committee. American Gastroenterological Association Institute Guideline on Initial Management of Acute Pancreatitis. Gastroenterology 2018; 154: 1096-1101 [PMID: 29409760 DOI: 10.1053/j.gastro.2018.01.032]

44 A Randomized Controlled Trial of IV Ketorolac to Prevent Post-ERCP Pancreatitis. [accessed 2021 Jan 26] In: ClinicalTrials.gov [Internet]. NIH: U.S. National Library of Medicine. Available from: https://clinicaltrials.gov/ct2/show/NCT02465138 ClinicalTrials.gov Identifier: NCT02465138

45 O'Toole TJ, Sharma S. Physiology, Somatostatin. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2020

46 Zhang Y, Chen QB, Gao ZY, Xie WF. Meta-analysis: octreotide prevents post-ERCP pancreatitis, but only at sufficient doses. Aliment Pharmacol Ther 2009; 29: 1155-1164 [PMID: 19302265 DOI: 10.1111/j.1365-2036.2009.03931.x]

47 Seta T, Noguchi Y, Shikata S, Nakayama T. Treatment of acute pancreatitis with protease inhibitors administered through intravenous infusion: an updated systematic review and meta-analysis. BMC Gastroenterol 2014; 14: 102 [PMID: 24886242 DOI: 10.1186/1471-230X-14-102]

48 Zhang ZF, Yang N, Zhao G, Zhu L, Zhu Y, Wang LX. Preventive effect of ulinastatin and gabexate mesylate on post-endoscopic retrograde cholangiopancreatography pancreatitis. Chin Med J (Engl) 2010; 123: 2600-2606 [PMID: 21034635]

49 Ding J, Jin X, Pan Y, Liu S, Li Y. Glycerol trinitrate for prevention of post-ERCP pancreatitis and improve the rate of cannulation: a meta-analysis of prospective, randomized, controlled trials. PLoS One 2013; 8: e56645 [PMID: 24098392 DOI: 10.1371/journal.pone.0075645]

50 Shao LM, Chen QY, Chen MY, Cai JT. Nitroglycerin in the prevention of post-ERCP pancreatitis: a meta-analysis. Dig Dis Sci 2010; 55: 1-7 [PMID: 19160042 DOI: 10.1007/s10620-008-0709-9]

51 Chen B, Fan T, Wang CH. A meta-analysis for the effect of prophylactic GTN on the incidence of post-ERCP pancreatitis and on the successful rate of cannulation of bile ducts. BMC Gastroenterol 2010; 10: 85 [PMID: 20673365 DOI: 10.1186/1471-230X-10-85]
52 Bai Y, Xu C, Yang X, Gao J, Zou DW, Li ZS. Glyceryl trinitrate for prevention of pancreatitis after endoscopic retrograde cholangiopancreatography: a meta-analysis of randomized, double-blind, placebo-controlled trials. *Endoscopy* 2009; 41: 690-695 [PMID: 19670137 DOI: 10.1055/s-0029-1214951]

53 Bang UC, Nørgaard C, Andersen PK, Matzen P. Meta-analysis: Nitroglycerin for prevention of post-ERCP pancreatitis. *Aliment Pharmacol Ther* 2009; 29: 1078-1085 [PMID: 19236312 DOI: 10.1111/j.1365-2036.2009.03978.x]

54 Xu LH, Qian JB, Gu LG, Qiu JW, Ge ZM, Lu F, Wang YM, Li YM, Lu HS. Prevention of post-endoscopic retrograde cholangiopancreatography pancreatitis by epinephrine sprayed on the papilla. *J Gastroenterol Hepatol* 2011; 26: 1139-1144 [PMID: 21392105 DOI: 10.1111/j.1440-1746.2011.06718.x]

55 Matsushita M, Takakuwa H, Shimeno N, Uchida K, Nishio A, Okazaki K. Epinephrine sprayed on the papilla for prevention of post-ERCP pancreatitis. *J Gastroenterol* 2009; 44: 71-75 [PMID: 19159075 DOI: 10.1007/s00535-008-2272-8]
