A note on minor antichains of uncountable graphs

Max Pitz

Department of Mathematics, Universität Hamburg, Hamburg, Germany

Correspondence
Max Pitz, Department of Mathematics, Universität Hamburg, Bundesstraße 55 (Geomatikum), 20146 Hamburg, Germany.
Email: max.pitz@uni-hamburg.de

Abstract
A simplified construction is presented for Komjáth’s result that for every uncountable cardinal κ, there are 2^κ graphs of size κ none of them being a minor of another.

KEYWORDS
antichain, minor, stationary sets, well-quasi ordering

MATHEMATICAL SUBJECT CLASSIFICATION 2010
05C83, 05C63

1 | INTRODUCTION

The famous Robertson–Seymour Theorem asserts that the class of finite graphs is well-quasi-ordered under the minor relation \leq: For every sequence G_1, G_2, \ldots of finite graphs there are indices $i < j$ such that $G_i \leq G_j$.

This is no longer true for arbitrary infinite graphs. Thomas [7] has constructed a sequence G_1, G_2, \ldots of binary trees with tops of size continuum, such that $G_i \not\leq G_j$ whenever $i < j$.

Here, binary tree with tops describes the class of graphs where one selects in the rooted infinite binary tree T_2 a collection \mathcal{R} of rays all starting at the root, adds for each $R \in \mathcal{R}$ a new vertex v_R, and makes v_R adjacent to all vertices on R. Let us write $G(\mathcal{R})$ for the resulting graph. In his proof, Thomas carefully selects continuum-sized collections of rays $\mathcal{R}_1, \mathcal{R}_2, \mathcal{R}_3, \ldots$ such that $G_i = G(\mathcal{R}_i)$ form the desired bad sequence.

1Recall that a graph H is a minor of another graph G, written $H \leq G$, if to every vertex $x \in H$ we can assign a (possibly infinite) connected set $V_x \subset V(G)$, called the branch set of x, so that these sets V_x are pairwise disjoint and G contains a $V_x - V_y$ edge whenever xy is an edge of H. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerives License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. © 2022 The Authors. Journal of Graph Theory published by Wiley Periodicals LLC.
Thomas’s result raises the question whether infinite graphs smaller than size continuum are well-quasi ordered. While this question for countable graphs is arguably the most important open problem in infinite graph theory, Komjáth [2] has established that for all other (uncountable) cardinals κ, there are in fact 2^κ pairwise minor-incomparable graphs of size κ.

The purpose of this note is to give an alternative construction for Komjáth’s result which is simpler than the original, and also more integrated with other problems in the area:

First, our construction reinstates a pleasant similarity to Thomas’s original strategy: The desired minor-incomparable graphs can already be found amongst the κ-regular trees with κ many tops. Second, our construction bears a surprising similarity to a family of rays considered in the 60’s by A.H. Stone in his work on Borel isomorphisms [5]. And finally, a very similar family of graphs had recent applications for results about normal spanning trees in infinite graphs [4].

2 | TREES WITH TOPS AND STONE’S EXAMPLE

Consider the order tree (T, \preceq) where the nodes of T are all sequences of elements of κ of length $\leq \omega$ including the empty sequence, and let $t \preceq t'$ if t is a proper initial segment of t'. The graph on T where any two comparable vertices are connected by an edge was considered by Kriz and Thomas in [3] where they showed that any tree-decomposition of this graph must have a part of size κ, despite not containing a subdivision of an uncountable clique.

For our purposes, however, it suffices to consider a graph G on T such that any node represented by finite sequences of length n is connected to all its successors of length $n + 1$ in the tree order \preceq, and any node represented by an ω-sequence is connected to all elements below in the tree order \preceq. Clearly, G is connected. We later use the simple fact that

(i) every connected subgraph $H \subset G$ has a unique minimal node t_H in (T, \preceq).

Now given a set $S \subset \kappa$ consisting just of cofinality ω ordinals, choose for each $s \in S$ a cofinal sequence $f_s : \omega \to s$, and let $F = F(S) := \{f_s : s \in S\}$ be the corresponding collection of sequences in κ. Let T^S denote the subtree of T given by all finite sequences in T together with $F(S)$, and let $G(S)$ denote the corresponding induced subgraph of G. We will refer to $G(S)$ as a ‘κ-regular tree with tops’, where the elements of $F(S)$ are of course the ‘tops’.

To the author's best knowledge, such a collection of tree branches $F(S) = \{f_s : s \in S\}$ for S the set of all cofinality ω ordinals was first considered by Stone in [5, §5] for the case $\kappa = \omega_1$ and in [6, §3.5] for the general case of uncountable regular κ.

We consider below graphs $G(S)$ where $S \subset \kappa$ is stationary. Recall that a subset $A \subset \kappa$ is stationarv if $\sup A = \kappa$, and closed if $\sup(A \cap \ell) = \ell$ implies $\ell \in A$ for all limits $\ell < \kappa$. The set A is a club in κ if it is both closed and unbounded. A subset $S \subset \kappa$ is stationary (in κ) if S meets every club of κ. Below, we use the following two elementary properties of stationary sets of regular uncountable cardinals κ (for details see e.g. [[1], §8]):

• If $S \subset \kappa$ is stationary and $S = \bigcup\{S_n : n \in \mathbb{N}\}$, then some S_n is stationary.
• Fodor’s lemma: If $S \subset \kappa$ is stationary and $f : S \to \kappa$ is such that $f(s) < s$ for all $s \in S$, then there is $i < \kappa$ such that $f^{-1}(i)$ is stationary.
3 CONSTRUCTING FAMILIES OF MINOR-INCOMPARABLE GRAPHS

At the heart of Komjáth’s proof [2] lies the construction, for regular uncountable \(\kappa \), of \(\kappa \) pairwise minor-incomparable connected graphs of cardinality \(\kappa \). From this, the singular case follows, and by considering disjoint unions of these graphs, one may obtain an antichain of size \(2^\kappa \). Here, we will prove directly the maximum bound in the regular case.

Theorem 1. For regular uncountable \(\kappa \), the class of \(\kappa \)-regular trees with \(\kappa \) many tops contains a minor-antichain of size \(2^\kappa \).

Proof. As the cofinality \(\omega \) ordinals of a regular uncountable \(\kappa \) split into \(\kappa \) many disjoint stationary subsets [1, Lemma 8.8], it is routine and well-known that there is a family \(\Sigma \) of \(2^\kappa \) stationary subsets consisting of cofinality \(\omega \) ordinals such that for any \(\Sigma \neq \emptyset \), the differences \(\Delta S \) and \(\Delta R \) are still stationary, cf. [8, Proposition 1.1. We claim that the family \(\Sigma \subset GS \) is the desired antichain. Towards to aim, it clearly suffices to show: If \(\Sigma \) and \(\Sigma \) are disjoint stationary subsets consisting of cofinality \(\omega \) ordinals, then \(\Sigma \prec \Sigma \).

Suppose for a contradiction that \(\Sigma \prec \Sigma \). For ease of notation, we identify \(s \) with \(f(s) \) for all \(s \in S \), and similarly for \(R \). For \(v \in \Sigma \) write \(\Sigma(v) \) for the by (i) unique minimal node of the branch set of \(v \) in \(\Sigma \). Note that if \(v, w \) are adjacent in \(\Sigma \), then \(v \) and \(w \) are comparable in \(\Sigma \). Since \(\Sigma \) has countable height, by (ii) there is a stationary subset \(S' \subset S \) such that all \(t_s \) for \(s \in S' \) belong to the same level of \(\Sigma \). Suppose for a contradiction this level has finite height \(n \). By applying Fodor’s lemma (iii) iteratively \(n + 1 \) times, we obtain a stationary subset \(S'' \subset S' \) such that all \(f_s \) for \(s \in S'' \) agree on \(f_s(i) \) for \(i < n \). So distinct \(t_s \) for \(s \in S'' \) have at least \(n + 1 \) common neighbours below them in \(\Sigma \), a contradiction.

Thus, we may assume that \(t_s \in \Sigma \) for all \(s \in S \), giving rise an injective function \(f : S \to R, s \to t_s \). Since \(f \) is injective, we cannot have \(f(x) < x \) on a stationary subset of \(S \) by Fodor’s lemma (iii). Hence, we may further assume that \(f(x) \geq x \) for all \(x \in S \).

For \(\kappa < \ell \) let \(\Sigma(\ell) \) be the subtree of \(\Sigma \) of all elements whose coordinates are strictly less than \(\ell \), and consider the function \(g : \kappa \to \kappa, i \mapsto \min \{ j < \kappa : t_v \in \Sigma(\ell) \text{ for all } v \in \Sigma(\ell) \} \). Since \(\kappa \) is regular, the function \(g \) is well-defined. And clearly, \(g \) is increasing. The function \(g \) is also continuous. Indeed, for a limit \(\ell < \kappa \) consider any \(v \in \Sigma(\ell) \setminus \bigcup_{i < \ell} \Sigma(i) \). Clearly, \(v \) is a top, and so all its neighbours belong to \(\bigcup_{i < \ell} \Sigma(i) \). Hence, \(t_v \) must be comparable to infinitely many nodes in \(\bigcup_{i < \ell} \Sigma(\ell) \), implying that \(t_v \in \bigcup_{i < \ell} \Sigma(\ell) \), too.

Hence, the set of fixed points \(C \) of \(g \) forms a club in \(\kappa \), see [1, Exercise 8.1]. But any \(s \in S \cap C \) satisfies \(\leq f(s) \leq g(s) = s \), showing that \(s = f(s) \in S \cap R \), a contradiction. \(\square \)

ACKNOWLEDGEMENT

Open Access funding enabled and organized by Projekt DEAL.

DATA AVAILABILITY STATEMENT

Data sharing is not applicable to this article as no new data were created or analysed in this study.
REFERENCES

1. T. Jech, *Set theory, the third millennium edition*, Springer Monographs in Mathematics, Berlin, 2013.
2. P. Komjáth, *A note on minors of uncountable graphs*, Mathematical Proceedings of the Cambridge Philosophical Society, vol. 117, 1995, pp. 7–9.
3. I. Kriz and R. Thomas, *Clique-sums, tree-decompositions and compactness*, Discrete Math. 81 (1990), no. 2, 177–185.
4. M. Pitz, *A new obstruction for normal spanning trees*, Bull. London Math. Soc. 53 (2021), no. 4, 1220–1227.
5. A. H. Stone, *On σ-discreteness and Borel isomorphism*, Am. J. Math. 85 (1963), no. 4, 655–666.
6. A. H. Stone, *Non-separable Borel sets*, Gen. Topol. Appl. 2 (1972), no. 3, 249–270.
7. R. Thomas, *A counter-example to ‘Wagner’s conjecture’ for infinite graphs*, Mathematical Proceedings of the Cambridge Philosophical Society, vol. 103, 1988, pp. 55–57.
8. S. Todorčević, *Trees and linearly ordered sets*, Handbook of set-theoretic topology, (K. Kunen, and J. Vaughan, eds.) Elsevier, Amsterdam, 1984, pp. 235–293.

How to cite this article: M. Pitz, *A note on minor antichains of uncountable graphs*, J. Graph Theory. 2023;102:552–555. https://doi.org/10.1002/jgt.22886