Weyl, Pontryagin, Euler, Eguchi and Freund∗

M J Duff ©

Theoretical Physics, Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom
Mathematical Institute, Andrew Wiles Building, University of Oxford, Woodstock Road, Radcliffe Observatory Quarter, Oxford OX2 6GG, United Kingdom
Institute for Quantum Science and Engineering and Hagler Institute for Advanced Study, Texas A & M University, College Station, TX, 77840, United States of America

Received 2 March 2020, revised 1 May 2020
Accepted for publication 21 May 2020
Published 6 July 2020

Abstract
In a September 1976 PRL Eguchi and Freund considered two topological invariants: the Pontryagin number $P \sim \int d^4x \sqrt{g} R^* R$ and the Euler number $\chi \sim \int d^4x \sqrt{g} R^* R^*$ and posed the question: to what anomalies do they contribute? They found that P appears in the integrated divergence of the axial fermion number current, thus providing a novel topological interpretation of the anomaly found by Kimura in 1969 and Delbourgo and Salamin in 1972. However, they found no analogous role for χ. This provoked my interest and, drawing on my April 1976 paper with Deser and Isham on gravitational Weyl anomalies, I was able to show that for conformal field theories the trace of the stress tensor depends on just two constants:

$$g^{\mu\nu}(T_{\mu\nu}) = \frac{1}{(4\pi)^2} (cF - aG)$$

where F is the square of the Weyl tensor and $\int d^4x \sqrt{g} G/(4\pi)^2$ is the Euler number. For free CFTs with N_s massless fields of spin s, $720c = 6N_0 + 18N_{1/2} + 72N_1$, $720a = 2N_0 + 11N_{1/2} + 124N_1$.

Keywords: Weyl, Euler, anomaly

1. Freund

Peter Freund ranks highly on the list of physicists who have influenced my work, especially in the realm of Kaluza–Klein supergravity [1], but here I have chosen to recollect an older source of inspiration, namely his paper with Eguchi [2] on topological invariants and anomalies [2].

∗In memory of Peter Freund.
†Sadly, Tohru Eguchi also died recently.
2. Weyl

Following the discovery of the gravitational Weyl anomaly by Capper and myself [3] in 1974, Deser, Isham and I decided in April 1976 to write down the most general form of the trace of the energy–momentum tensor in various dimensions [4]. By general covariance and dimensional analysis, it must take the following form:

- $D = 2$,
 \[g^{\alpha\beta} \langle T_{\alpha\beta} \rangle = cR, \]
- $D = 4$,
 \[g^{\alpha\beta} \langle T_{\alpha\beta} \rangle = \alpha R^2 + \beta R_{\mu\nu} R^{\mu\nu} + \gamma R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma} + \delta \Box R \]
- $D \geq 6$
 \[g^{\alpha\beta} \langle T_{\alpha\beta} \rangle \sim (\text{Riem})^{D/2} + \ldots \]

where $c, \alpha, \beta, \gamma, \delta$ are constants. (At one-loop, and ignoring boundary terms, there is no anomaly for D odd).

The significance of my paper with Deser and Isham was to demonstrate that, in addition to scheme-dependent terms such as $\Box R$ which can be removed by the addition of finite local counterterms such as R^2, there are scheme-independent terms such as $\alpha R^2 + \beta R_{\mu\nu} R^{\mu\nu} + \gamma R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma}$ which cannot, thus laying to rest any lingering doubts about the inevitability of Weyl anomalies. As is well-known, the 1PI effective action arising from closed loops of massless particles is non-local. The title of the paper non-local conformal anomalies was chosen to emphasize that although the trace of the stress tensor and infinite counterterms are local, (for example $C_{\mu\nu\rho\sigma} C^{\mu\nu\rho\sigma}$), the part of the finite effective action responsible for the $(\text{curvature})^2$ anomalies is not (for example $C_{\mu\nu\rho\sigma} \ln \Box C^{\mu\nu\rho\sigma}$). One may construct a local action involving extra scalar fields which yields the non-local action after integrating out the scalars [8]. However, the exact form of the non-localities is still a matter of debate. See [8–16].

3. Eguchi and Freund

The scalar terms of order $D/2$ in the curvature which appear in the D-dimensional gravitational trace anomaly are reminiscent of the pseudoscalar terms of order $D/2$ in the curvature which appear in the D-dimensional gravitational axial anomaly as calculated for massive Dirac spinors ψ in $D = 4$ by Kimura [17] and by Delbourgo and Salam [18]

\[\partial_\mu (\sqrt{g} J_5^\mu) = 2m\sqrt{g} J_5 - \frac{1}{384\pi^2} \varepsilon^{\mu\nu\rho\sigma} R_{\alpha\beta\mu\nu} R^{\alpha\beta\rho\sigma} \]

where

\[J_5^\mu = \bar{\psi} \gamma^\mu \gamma_5 \psi \]

and

\[J_5 = \bar{\psi} \gamma_5 \psi \]

This means, in particular, that Starobinsky’s original model of cosmic inflation [5], which was driven by the Weyl anomaly, involved a non-local lagrangian and not the local $R + R^2$ as is often stated. See also [6, 7].
I was musing on this in September 1976 when I saw a paper by Eguchi and Freund in PRL [2] on the then new and exciting topic of gravitational instantons. They considered two topological invariants; the Pontryagin number

$$P = \frac{1}{(4\pi)^2} \int d^4x \sqrt{g} R^* R \tag{7}$$

and the Euler number

$$\chi = \frac{1}{2} \frac{1}{(4\pi)^2} \int d^4x \sqrt{g} R^* R^* \tag{8}$$

where

$$*R_{\mu\nu}^{\alpha\beta} = \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} R_{\alpha\beta \mu\nu} \tag{9}$$

and posed the question: to what anomalies do they contribute? They found that P appears in the divergence of the axial fermion number current

$$\int d^4x \partial_{\mu}(\sqrt{g} J^\mu_5) = \frac{N}{12} P \tag{10}$$

in the case of N massless Dirac fermions thus providing a topological interpretation of the results of Kimura and Delbourgo and Salam. For χ however, they say 'We now consider the other topological invariant of the gravitational field, the Euler–Poincare characteristic χ. Its density $R^* R^*$ does not seem to lead to any anomalies.'

I therefore wrote a short note to PRL [19] relating χ to the integrated trace anomaly. As described in [20], this result was later to prove important in the two-dimensional context of string theory,

$$\frac{1}{4\pi} \int d^2x \sqrt{g} \alpha^{\alpha\beta}\langle T_{\alpha\beta}\rangle = c \chi. \tag{11}$$

where the worldsheet Euler number is related to the genus g of the Riemann surface

$$\chi = \frac{1}{4\pi} \int d^2x \sqrt{g} = 2 - 2g \tag{12}$$

Unfortunately, the referee’s vision did not extend that far and the paper was rejected. Rather than resubmit it, I decided to incorporate the results into a larger paper [21] which re-examined the Weyl anomaly in the light of its applications to the Hawking effect, to gravitational instantons, to asymptotic freedom and Weinberg’s asymptotic safety.

4. The c and a coefficients

In the process, I discovered that for conformal field theories (CFTs) in $D = 4$ the constants α, β, γ and δ are not all independent but obey the constraints

$$4\alpha + \beta = \alpha - \gamma = -\delta \tag{13}$$
Table 1. The central charges a and c for CFTs.

Fields	a	c	a/c
$\mathcal{N} = 0$ spin 0	$1/360$	$1/120$	$1/3$
$\mathcal{N} = 0$ spin 1/2	$11/720$	$1/40$	$11/18$
$\mathcal{N} = 0$ spin 1	$31/180$	$1/10$	$31/18$
$\mathcal{N} = 1$ chiral multiplet	$1/48$	$1/24$	$1/2$
$\mathcal{N} = 1$ vector multiplet	$3/16$	$1/8$	$3/2$
$\mathcal{N} = 2$ hyper multiplet	$1/24$	$1/12$	$1/2$
$\mathcal{N} = 2$ vector multiplet	$5/24$	$1/6$	$5/4$
$\mathcal{N} = 4$ vector multiplet	$1/4$	$1/4$	1

so that the trace of the stress tensor depends on just two constants:\footnote{In the notation of \cite{21} $(4\pi)^2 b = c$, $(4\pi)^2 b' = -a$ and $N_{1/2}$ counts the number of four-component spinors. The letters c and a and the nomenclature of central charges may be found in \cite{22} along with a discussion of the anomaly supermultiplet.}

$$g^{\mu\nu}\langle T_{\mu\nu}\rangle = \frac{1}{(4\pi)^2}(cF - aG)$$

(14)

where

$$F = C^{\mu\nu\rho\sigma}C_{\mu\nu\rho\sigma},$$

(15)

$C_{\mu\nu\rho\sigma}$ is the Weyl tensor, and G is proportional to the Euler number density

$$G = R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma}.$$

(16)

(We have ignored the scheme-dependent $\Box R$ term, but see \cite{23}) moreover, for free CFTs with N_s massless fields of spin s,

$$720c = 6N_0 + 18N_{1/2} + 72N_1, \quad 720a = 2N_0 + 11N_{1/2} + 124N_1.$$

(17)

Here $N_{1/2}$ counts the number of two-component spinors; four-component spinors contribute twice as much. Note the inequalities on the ratio a/c

$$\frac{31}{18} \geq \frac{a}{c} \geq \frac{1}{3}$$

(18)

where the upper and lower bounds are saturated by a single vector and a single scalar, respectively. Remarkably, these bounds continue to hold true when the CFT is interacting \cite{24}.

The Weyl anomaly acquires a new significance when placed in the context of supersymmetry. In particular, Ferrara and Zumino \cite{25} showed that the trace of the stress tensor $T_{\mu\nu}$, the divergence of the axial current $\partial_{\mu}J_{5\mu}$, and the gamma trace of the spinor current $\gamma_{\mu}S_{\mu}$ form a scalar supermultiplet. See \cite{22}. Table 1 shows the values of a and c for various supermultiplets.

The Weyl anomaly in four-derivative theories, such as conformal gravity and conformal supergravity \cite{9}, also takes the form (14) with suitably corrected c and a. So does the non-perturbative \textit{holographic} Weyl anomaly \cite{26, 27}, which plays a vital part in the AdS/CFT correspondence. In the large N limit $c = a$. See also the earlier work in \cite{28}.

See for example \cite{26, 29, 30} for the $D = 6$ anomaly.
5. Comments and caveats

- The integrated anomaly reduces to the pure Euler form in the important special cases of Ricci flat \((F = G)\)

\[
g^{\mu\nu}(T_{\mu\nu}) = \frac{1}{(4\pi)^2}(c - a)G
\]

(19)

and conformally flat \((F = 0)\)

\[
g^{\mu\nu}(T_{\mu\nu}) = -\frac{1}{(4\pi)^2}aG
\]

(20)

spacetimes.

- Note the absence of an \(R^2\) term in (14). This result was later rederived using the Wess–Zumino consistency conditions [31].

- The constants \(c, a, c\) are also those which determine the counterterms

\[
\Delta L = \frac{1}{\epsilon} c \sqrt{g} R
\]

(21)

\[
\Delta L = \frac{1}{\epsilon} \frac{1}{(4\pi)^2} \sqrt{g} (\epsilon F - aG)
\]

(22)

at the one-loop level. The Euler number counterterms were previously ignored on the grounds that they are total divergences [3, 32], but will nevertheless contribute on the spacetimes of non-trivial topology demanded by gravitational instantons.

- By calculating the two-point function

\[
\Pi_{\mu\nu\rho\sigma}(p) = \int d^Dx e^{ipx} \langle T_{\mu\nu}(x)T_{\rho\sigma}(0) \rangle \big|_{\eta_{\mu\nu} = \eta_{\rho\sigma}}
\]

(23)

\[
= \frac{1}{\epsilon} \frac{c}{(4\pi)^2} S^{(2)}_{\mu\nu\rho\sigma} + \text{finite}
\]

(24)

using dimensional regularization \((\epsilon = D - 4)\) where

\[
S^{(2)}_{\mu\nu\rho\sigma} = \frac{1}{2}(X_{\mu\rho}X_{\nu\sigma} + X_{\nu\rho}X_{\mu\sigma}) - \frac{1}{3}X_{\mu\nu}X_{\rho\sigma}
\]

(25)

\[
X_{\mu\nu} = \eta_{\mu\nu} p^2 - p_\mu p_\nu
\]

(26)

the earlier papers by Capper and myself [3, 33–36] determined \(c\), the coefficient of the (Weyl)\(^2\) counterterm but not \(a\), the Gauss–Bonnet term which requires the three-point function. See [21, 37] for a list of references for \(a\) calculations. The two-point function is sufficient to calculate CFT loop corrections to the Schwarzschild solution and hence Newton’s law [38, 39],

\[
V(r) = \frac{GM}{r} \left(1 + \frac{8cG}{3\pi r^2}\right).
\]

(27)

For \(N = 4\) Yang–Mills \(c = 1/4\) and we recover the Randall–Sundrum [40] braneworld result. Similarly the graviton mass in the Karch–Randall [41] braneworld is

\[
M^2 = \frac{6cG}{\pi L^4},
\]

(28)
where L is the AdS_4 radius.

- The $-\text{euler} + \text{conformal}$ structure of the anomaly (14) may be generalized to arbitrary even dimensions and are labelled type A and type B respectively [42].

$$g^{\mu\nu}\langle T_{\mu\nu}\rangle = (-1)^{d/2}aE_d + \sum c_i I_i$$

(29)

where E_d is the Euler density arising from scale-free contributions to the effective gravitational action and the I_i are local conformal scalar polynomials involving powers of the Weyl tensor and its derivatives; their number increases rapidly with dimension. See [43] for the a coefficients in arbitrary dimensions.

- The two dimensional anomaly is purely type A, leading to the conjecture that the c-theorem on renormalisation group flow in $D = 2$ [44] would generalize to an a-theorem in $D = 4$ [45–47]. This has recently been proved [48]. See [49] for a review.

- Our discussions so far are valid only for theories which are classically conformally invariant (e.g. conformal scalars and massless fermions in any D, Maxwell/Yang–Mills in $D = 4$, p-form gauge fields in $D = 2p + 2$, conformal supergravity in $D = 4$). For other theories (e.g. Maxwell/Yang–Mills for $D \neq 4$, pure quantum gravity for $D > 2$, or any theory with mass terms) the ‘anomalies’ will still survive, but will be accompanied by contributions to $g^{\alpha\beta}\langle T_{\alpha\beta}\rangle$ expected anyway through the lack of conformal invariance. Since the anomaly arises because the operations of regularizing and taking the trace do not commute, the anomaly A in a theory which is not classically Weyl invariant may be defined as [21, 37, 50]:

$$A = g^{\alpha\beta}\langle T_{\alpha\beta}\rangle_{\text{reg}} - \langle g^{\alpha\beta}T_{\alpha\beta}\rangle_{\text{reg}}. $$

(30)

Of course, the second term happens to vanish when the classical invariance is present. That it still makes sense to talk of an anomaly in the absence of a symmetry is already familiar from the divergence of the axial vector current (4) where the operations of regularizing and taking the divergence do not commute

$$\partial_\mu < (\sqrt{g}J_5^\mu) >_{\text{reg}} - < \partial_\mu (\sqrt{g}J_5^\mu) >_{\text{reg}} = -\frac{1}{384\pi^2}e^{\mu\rho\sigma\tau}R_{\alpha\beta\mu\nu}R_{\alpha\beta}^{\rho\sigma\tau}$$

(31)

and where the second term

$$< \partial_\mu (\sqrt{g}J_5^\mu) >_{\text{reg}} = 2m < \sqrt{g}\bar{\psi}\gamma_5\psi >_{\text{reg}}$$

(32)

happens to vanish when the classical axial symmetry

$$\delta \psi = \theta\gamma_5\psi$$

(33)

is present i.e. when the fermions are massless. For theories which are not classically conformal, the Weyl anomaly and counterterms continue to be given by the Schwinger–DeWitt B_4 coefficient appearing in the asymptotic expansion of the heat-kernel [51–53] and equations (14), (22) and (24) get replaced by

$$A = \frac{1}{(4\pi)^2}(cF - aG + eR^2)$$

(34)

$$\Delta L = \frac{1}{c(4\pi)^2}\sqrt{g}(cF - aG + eR^2)$$

(35)
\[\Pi_{\mu\nu\rho\sigma}(p) = \frac{1}{\epsilon} \frac{1}{(4\pi)^2} \left[eS^{(2)}_{\mu\nu\rho\sigma} + eS^{(0)}_{\mu\nu\rho\sigma} \right] + \text{finite} \quad (36) \]

where
\[S^{(0)}_{\mu\nu\rho\sigma} = \frac{1}{3} X_{\mu\nu} X_{\rho\sigma} \quad (37) \]

Note that the anomaly \(\mathcal{A} \) is still local even though \(g^{\alpha\beta} \langle T_{\alpha\beta} \rangle_{\text{reg}} \) and \(\langle g^{\alpha\beta} T_{\alpha\beta} \rangle_{\text{reg}} \) separately need not be. \(\mathcal{A} \) is not in general the functional derivative of any action, however, and is no longer constrained by the Wess–Zumino consistency condition. Hence the appearance of \(R^2 \). The prescription (30) is regularization-scheme independent but see [50] for a recent and very clear articulation of this theme in the case of dimensional regularization.

- \(p \)-form gauge fields \(\phi_\text{p} \) in \(D \neq 2p + 2 \) provide nice examples of theories that are scale invariant but not conformal invariant. In \(D = 4 \) \(\phi_\text{p} \) and their duals \(\phi_{(2-p)} \) yield [54]

\[\int \mathcal{A}(\phi_2) - \int \mathcal{A}(\phi_0) = \chi, \quad (38) \]
\[\int \mathcal{A}(\phi_1) = -2\chi, \quad (39) \]

Such quantum inequivalence of \(p \)-forms and their duals has been called into question [55–57] on the grounds that their total stress tensors are the same and that the anomalous trace is unphysical. Nevertheless, the Euler number factors they provide in the partition functions are important for the subjects of black hole entropy [58], free energy [59] and entanglement anomalies [60].

- Another controversy concerns the role of the Pontryagin number [61–63]. Consider the coefficients \(B_k(A, B) \) with \(k = 0 \) to \(\infty \) which appear in the asymptotic expansion of the heat kernel corresponding to the operator \(\Delta(A, B) \), the generalized Laplacian acting on the \((A, B) \) representations of the (Euclideanized) Lorentz group \(SO(4) \) in \(D = 4 \). It is this coefficient \(B_4 \) which counts the sum of the number of zero-modes \(n(A, B) \) and the number of non-zero-modes \(m(A, B) \) of \(\Delta(A, B) \)

\[B_4(A, B) = n(A, B) + m(A, B) \quad (40) \]

As expected, if one calculates the axial anomaly via the difference of chiral and antichiral reps \((A, B) - (B, A) \) with \(A \neq B \) the \(\chi \) dependence drops out. Similarly, if we calculate the Weyl anomaly for the sum of chiral and antichiral reps \((A, B) + (B, A) \), the \(P \) dependence drops out. However (although this was not explicitly stated) the partition function for a purely chiral rep \((A, B) \) with \(A \neq B \) depends on both \(\chi \) and \(P^4 \). This has been the subject of much debate recently with several papers arguing with different methods for the existence of a Pontryagin term in the Weyl anomaly [65–67] while others disagree [68].

6. Subsequent developments

- Spacetime Weyl anomalies have found application in quantum corrections to the Schwarzschild solution and Newton’s law [38, 39], particle creation [69], the Hawking
effect [70], inflationary cosmology [5], asymptotic safety [21, 71], wormholes [72], holography [26, 27], viscosity bounds [73, 74], condensed matter physics [75], hydrodynamics [76], the graviton mass in the braneworld [41], conformal collider physics [24], quantum entanglement [60, 77–80], log corrections to black hole entropy [81–83], generalized mirror symmetry [84, 85], and double-copy theories [86].

• The cancellation of worldsheet Weyl anomalies not only determines the critical dimensions $D = 26$ for strings and $D = 10$ for superstrings [20, 87], but also provides the derivation of the spacetime Einstein equations [88].

• In [89] it was pointed out that Euclidean signature field configurations and their topological properties (Betti numbers, Euler numbers, Pontryagin numbers, holonomy, index theorems etc) which feature in gauge and gravitational instanton physics can lead a second life as internal manifolds X^n appearing in the compactification of the n extra dimensions in Lorentzian signature Kaluza–Klein theory $M^D = M^4 \times X^n$. The first non-trivial example was provided by $K3$ [89].

• Moreover, the Weyl anomaly in supergravity, string and M-theory can depend also on the internal Euler number [84]. In the case of type IIA on X^6, for example,

$$\int d^4 x \sqrt{g} \epsilon^{\alpha \beta \gamma \delta} (T_{\alpha \beta \gamma \delta}) = - \frac{1}{24} \chi(M^4) \chi(X^6) = - \frac{1}{24} \chi(M^{10})$$

(41)

where

$$\chi(X^6) = 2c_0 - 2c_1 + c_2 - c_3$$

(42)

and c_k are the Betti numbers of X^6. Similarly for M-theory on X^7

$$\int d^4 x \sqrt{g} \epsilon^{\alpha \beta \gamma \delta} (T_{\alpha \beta \gamma \delta}) = - \frac{1}{24} \chi(M^4) \rho(X^7)$$

(43)

where

$$\rho(X^7) = 7b_0 - 5b_1 + 3b_2 - 2b_3 + b_4$$

(44)

and b_k are the Betti numbers of X^7.

7. Memories of Transylvania

In 2013 Peter Freund invited me to give the 7th annual Erwin Schrödinger Lecture at West University of Timisoara, Romania. I also enjoyed the kind hospitality of Peter and his wife Lucy at their home, where he reminisced about his life as a student at the time of the 1956 anti-Soviet uprising. Identified as a rabble-rouser he faced the firing squad (a bit like Schrödinger’s cat), but fortunately orders came to stand down before the triggers were pulled. Peter was a unique individual. I am glad to have inhabited a universe where both he and the cat survived.

Acknowledgments

I am grateful to Leron Borsten and Silvia Nagy for valuable discussions, to Philip Candelas for hospitality at the Mathematical Institute, University of Oxford, to Marlan Scully for his hospitality in the Institute for Quantum Science and Engineering, Texas A & M University,
and to the Hagler Institute for Advanced Study at Texas A & M for a Faculty Fellowship. This work was supported in part by the STFC under rolling Grant ST/P000762/1.

ORCID iDs

M J Duff https://orcid.org/0000-0001-6671-5509

References

[1] Duff M J, Nilsson B E W and Pope C N 1986 Kaluza–Klein supergravity *Phys. Rep.* 130 1–142
[2] Eguchi T and Freund P G O 1976 Quantum gravity and world topology *Phys. Rev. Lett.* 37 1251
[3] Capper D M and Duff M J 1974 Trace anomalies in dimensional regularization *Nuovo Cimento* A 23 173–83
[4] Deser S, Duff M J and Isham C J 1976 Nonlocal conformal anomalies *Nucl. Phys.* B 111 A 55–60
[5] Starobinsky A A 1980 A new type of isotropic cosmological models without singularity *Phys. Lett.* B 91 99–102
[6] Hawking S W, Hertog T and Reall H S 2001 Trace anomaly driven inflation *Phys. Rev.* D 63 083504
[7] Pelinson A M, Shapiro I L and Takakura F I 2003 On the stability of the anomaly induced inflation *Nucl. Phys.* B 648 417–45
[8] Mazur P O and Mottola E 2001 Weyl cohomology and the effective action for conformal anomalies *Phys. Rev.* D 64 104022
[9] Fradkin E S and Tseytlin A A 1984 Conformal anomaly in Weyl theory and anomaly free superconformal theories *Phys. Lett.* B 134 187
[10] Riegert R J 1984 A nonlocal action for the trace anomaly *Phys. Lett.* B 134 56–60
[11] Barvinsky A O, Gusev Y V, Vilkovisky G A and Zhytnikov V V 1995 The one loop effective action and trace anomaly in four-dimensions *Nucl. Phys.* B 439 561–82
[12] Deser S 1996 Conformal anomalies: recent progress *Helv. Phys. Acta* 69 570–81
[13] Deser S 2000 Closed form effective conformal anomaly actions in $D \geq 4$ *Phys. Lett.* B 479 315–20
[14] Meissner K A and Nicolai H 2008 Effective action, conformal anomaly and the issue of quadratic divergences *Phys. Lett.* B 660 260–6
[15] Meissner K A and Nicolai H 2018 Non-local effects of conformal anomaly *Found. Phys.* 48 1150–8
[16] Kuzenko S M, Schwimmer A and Theisen S 2020 Comments on anomalies in supersymmetric theories *J. Phys. A: Math. Theor.* 53 064003
[17] Kimura T 1969 Divergence of axial-vector current in the gravitational field *Prog. Theor. Phys.* 42 1192–205
[18] Delbourgo R and Salam A 1972 The gravitational correction to pcac *Phys. Lett.* B 40 381–2
[19] Duff M J Comment on quantum gravity and world topology (Queen Mary University of London) *Report No QMC-76-29*
[20] Polyakov A M 1981 Quantum geometry of bosonic strings *Phys. Lett.* B 103 207–10
[21] Duff M J 1977 Observations on conformal anomalies *Nucl. Phys.* B 125 334
[22] Anselmi D, Freedman D Z, Grisaru M T and Johansen A A 1998 Nonperturbative formulas for central functions of supersymmetric gauge theories *Nucl. Phys.* B 526 543–71
[23] Prochazka V and Zwicky R 2017 On the flow of $\Box R$ Weyl-anomaly *Phys. Rev.* D 96 045011
[24] Hofman D M and Maldacena J 2008 Conformal collider physics: energy and charge correlations *J. High Energy Phys.* JHEP08(2008)12
[25] Ferrara S and Zumino B 1975 Transformation properties of the supercurrent *Nucl. Phys.* B 87 207
[26] Henningson M and Skenderis K 1998 The holographic Weyl anomaly *J. High Energy Phys.* JHEP07(1998)23
[27] Graham C R and Witten E 1999 Conformal anomaly of submanifold observables in AdS/CFT correspondence *Nucl. Phys.* B 546 52–64
[28] Liu H and Tseytlin A A 1998 $D = 4$ super Yang–Mills, $D = 5$ gauged supergravity, and $D = 4$ conformal supergravity *Nucl. Phys.* B 533 88–108
[29] Bastianelli F, Frolov S and Tseytlin A A 2000 Conformal anomaly of (2,0) tensor multiplet in six dimensions and AdS/CFT correspondence *J. High Energy Phys.* JHEP02(2000)13
[30] Faraji Astaneh A and Solodukhin S N 2015 The Wald entropy and 6d conformal anomaly Phys. Lett. B 749 272–7
[31] Bonora L, Cotta-Ramusino P and Reina C 1983 Conformal anomaly and cohomology Phys. Lett. B 126 305
[32] ‘t Hooft G and Veltman M 1974 One loop divergencies in the theory of gravitation Ann. Inst. Poincaré Phys. Théor. A 20 69–94
[33] Capper D M and Duff M J 1974 The one loop neutrino contribution to the graviton propagator Nucl. Phys. B 82 147
[34] Capper D M 1975 On quantum corrections to the graviton propagator Nuovo Cimento A 25 29
[35] Capper D M, Duff M J and Halpern L 1974 Photon corrections to the graviton propagator Phys. Rev. D 10 461–7
[36] Capper D M and Duff M J 1975 Conformal anomalies and the renormalizability problem in quantum gravity Phys. Lett. A 53 361
[37] Duff M J 1994 Twenty years of the Weyl anomaly Class. Quantum Grav. 11 1387–404
[38] Duff M J 1974 Quantum corrections to the schwarzschild solution Phys. Rev. D 9 1837–9
[39] Duff M J and Liu J T 2001 Complementarity of the Maldacena and Randall–Sundrum pictures Class. Quantum Grav. 18 3207–14
[40] Randall L and Sundrum R 1999 An alternative to compactification Phys. Rev. Lett. 83 4690–3
[41] Karch A and Randall L 2001 Locally localized gravity J. High Energy Phys. JHEP05(2001)18
[42] Deser S and Schwimmer A 1993 Geometric classification of conformal anomalies in arbitrary dimensions Phys. Lett. B 309 279–84
[43] Cappelli A and D’Appollonio G 2000 On the trace anomaly as a measure of degrees of freedom Phys. Lett. B 487 87–95
[44] Zamolodchikov A B 1986 Irreversibility of the flux of the renormalization group in a 2D field theory JETP Lett. 43 730–2
[45] Cardy J L 1988 Is there a c theorem in four-dimensions? Phys. Lett. B 215 749–52
[46] Osborn H 1989 Derivation of a four-dimensional c theorem Phys. Lett. B 222 97
[47] Antoniadis I, Mazur P O and Mottola E 1992 Conformal symmetry and central charges in four-dimensions Nucl. Phys. B 388 627–47
[48] Komargodski Z and Schwimmer A 2011 On renormalization group flows in four dimensions J. High Energy Phys. JHEP12(2011)99
[49] Shore G M 2017 The c and a-theorems and the local renormalisation group Springer Briefs in Physics (Berlin: Springer)
[50] Casarino L, Godazgar H and Nicolai H 2018 Conformal anomaly for non-conformal scalar fields Phys. Lett. B 787 94–9
[51] Hawking S W 1977 Zeta function regularization of path integrals in curved space-time Commun. Math. Phys. 55 133
[52] Christensen S M 1976 Vacuum expectation value of the stress tensor in an arbitrary curved background: the covariant point separation method Phys. Rev. D 14 2490–501
[53] Dowker J S and Critchley R 1977 The stress tensor conformal anomaly for scalar and spinor fields Phys. Rev. D 16 3390
[54] Duff M J and van Nieuwenhuizen P 1980 Quantum inequivalence of different field representations Phys. Lett. B 94 179
[55] Siegel W 1981 Quantum equivalence of different field representations Phys. Lett. B 103 107
[56] Grisaru M T, Nielsen N K, Siegel W and Zanon D 1984 Energy momentum tensors, supercurrents, (super)traces and quantum equivalence Nucl. Phys. B 247 157
[57] Bern Z, Cheung C, Chi H-H, Davies S, Dixon L and Nohle J 2015 Evanescent effects can alter ultraviolet divergences in quantum gravity without physical consequences Phys. Rev. Lett. 115 211301
[58] Bhattacharyya S, Grassi A, Marino M and Sen A 2014 A one-loop test of quantum supergravity Class. Quantum Grav. 31 015012
[59] Raj H 2017 A note on the sphere free energy of p-form gauge theory and Hodge duality Class. Quantum Grav. 34 247001
[60] Donnelly W, Michel B and Wall A 2017 Electromagnetic duality and entanglement anomalies Phys. Rev. D 96 045008
[61] Christensen S M and Duff M J 1978 Axial and conformal anomalies for arbitrary spin in gravity and supergravity Phys. Lett. B 76 571
[62] Christensen S M and Duff M J 1979 New gravitational index theorems and supertheorems Nucl. Phys. B 154 301
[63] Townsend P K and van Nieuwenhuizen P 1979 Anomalies, topological invariants and the gaußbonnet theorem in supergravity Phys. Rev. D 19 3592
[64] Deser S, Duff M J and Isham C J 1980 Gravitationally induced cp effects Phys. Lett. B 93 419–23
[65] Bonora L, Cvitan M, Dominis Prester P, Giacconi S, Paulišić M and Stemberga T 2018 Axial gravity: a non-perturbative approach to split anomalies Eur. Phys. J. C 78 652
[66] Bonora L and Soldati R 2019 On the trace anomaly for Weyl fermions (arXiv:1909.11991 [hep-th])
[67] Nakagawa K and Nakayama Y 2020 CP-violating Super Weyl Anomaly (arXiv:2002.01128 [hep-th])
[68] Bastianelli F and Broccoli M 2019 Axial gravity and anomalies of fermions (arXiv:1911.02271 [hep-th])
[69] Parker L 1984 Some cosmological aspects of quantum gravity Quantum Theory of Gravity ed S M Christensen (Bristol: Adam Hilger) pp 89–102
[70] Christensen S M and Fulling S A 1977 Trace anomalies and the Hawking effect Phys. Rev. D 15 2088–104
[71] Weinberg S 1979 Ultraviolet divergences in quantum theories of gravitation General Relativity S W Hawking and W Israel (Cambridge: Cambridge University Press) pp 790–831
[72] Grinstein B and Hill C T 1989 The trace anomaly and low-energy phenomenological implications of wormholes Phys. Lett. B 220 520
[73] Baier R, Romatschke P, Son D T, Starinets A O and Stephanov M A 2008 Relativistic viscous hydrodynamics, conformal invariance, and holography J. High Energy Phys. JHEP04(2008)100
[74] Sinha A and Myers R C 2009 The viscosity bound in string theory (arXiv:0907.4798 [hep-th])
[75] Chernodub M N 2016 Anomalous transport due to the conformal anomaly Phys. Rev. Lett. 117 141601
[76] Eling C, Oz Y, Theisen S and Yankielowicz S 2013 Conformal anomalies in hydrodynamics J. High Energy Phys. JHEP05(2013)37
[77] Nishioka T, Ryu S and Takayanagi T 2009 Holographic entanglement entropy: an overview (arXiv:0905.0932 [hep-th])
[78] Casini H, Huerta M and Myers R C 2011 Towards a derivation of holographic entanglement entropy (arXiv:1102.0440 [hep-th])
[79] Perlmutter E, Rangamani M and Rota M 2015 Central charges and the sign of entanglement in 4D conformal field theories Phys. Rev. Lett. 115 171601
[80] Herzog C P, Huang K-W and Jensen K 2016 Universal entanglement and boundary geometry in conformal field theory J. High Energy Phys. JHEP01(2016)162
[81] Sen A 2012 Logarithmic corrections to N = 2 black hole entropy: an infrared window into the microstates Gen. Relativ. Gravit. 44 1207–66
[82] Sen A 2012 Logarithmic corrections to rotating extremal black hole entropy in four and five dimensions Gen. Relativ. Gravit. 44 1947–91
[83] Faraji Astaneh A, Patrushev A and Solodukhin S N 2015 Entropy discrepancy and total derivatives in trace anomaly Phys. Lett. B 751 227–32
[84] Duff M J and Ferrara S 2011 Generalized mirror symmetry and trace anomalies Class. Quantum Grav. 28 065005
[85] Duff M J and Ferrara S 2011 Four curious supergravities Phys. Rev. D 83 046007
[86] Antoniadis I, Gava E and Narain K S 1992 Moduli corrections to gravitational couplings from string loops Phys. Lett. B 283 209–12
[87] Polyakov A M 1981 Quantum geometry of fermionic strings Phys. Lett. B 103 211–3
[88] Callan J, Curtis G, Martinec E J, Perry M J and Friedan D 1985 Strings in Background Fields Nucl. Phys. B 262 593
[89] Duff M J, Nilsson B E W and Pope C N 1983 Compactification of d = 11 supergravity on K(3) X U(3) Phys. Lett. B 129 39–42