Supplementary Information for

Ammonia-fed reversible protonic ceramic fuel cell with Ru-based catalyst

Liangzhu Zhu1,4*, Chris Cadigan2, Chuancheng Duan3, Jake Huang1, Liuzhen Bian1, Long Le2, Carolina H. Hernandez2, Victoria Avance1, Ryan O’Hayre1*, Neal P. Sullivan2*

1Metallurgical and Materials Engineering Department, Colorado School of Mines, Golden, USA, 80401
2Mechanical Engineering Department, Colorado School of Mines, Golden, USA, 80401
3Chemical Engineering Department, Kansas State University, Manhattan, USA, 66506
4Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, China, 315201

*Correspondence to: zhuliangzhu@nimte.ac.cn; rohayre@mines.edu; nsulliva@mines.edu

This PDF file includes:

Supplementary Tables S1 and S2
Supplementary Discussion: Challenges on electrochemical ammonia synthesis
Supplementary Figures S1 to S15
Supplementary Table S1. Comparison of H₂- and NH₃-fed SOFC and PCFC performance

Anode	Electrolyte	Cathode	OCV (V)	MPD (mW·cm⁻²)	% of MPD	Temp. (°C)	Ref.	
Ni-BCZYYb	BCZYBN (4 μm)	BCFZY	1.05	944	877	93	650	This work
Ni-BCZYYb	BCZYBN (4 μm)	BCFZY	1.02	944	877	93	650	This work
Ni-BCZYYb	BCZYBN (4 μm)	BCFZY	1.11	109	140	71	600	This work
Ni-BCZYYb	BCZYBN (4 μm)	BCFZY	1.06	109	140	71	600	This work
Ni-BCZYYb	BCZYBN (4 μm)	BCFZY	1.13	131	145	94	450	This work
Ni-BCZYYb	BCZYBN (4 μm)	BCFZY	1.11	131	145	94	450	This work
Ni-YSZ	YSZ (4.5 μm) + GDC (2-4 μm)	LSCF	1.12	103	140	71	600	1
Ni-SCD	SDC (10 μm)	BSCF	0.75	1872	1190	64	650	2
Ni-SCD	SDC (10 μm)	BSCF	0.79	1357	434	32	600	2
Ni-SCD	SDC (10 μm)	BSCF	0.82	748	167	22	550	2
Pd foil (50 μm)	BZY (1 μm)	LSCF	1.06	580	810	72	600	3
Pd foil (50 μm)	BZY (1 μm)	LSCF	1.08	340	490	69	550	3
Pd foil (50 μm)	BZY (1 μm)	LSCF	1.12	210	240	88	500	3
Pd foil (50 μm)	BZY (1 μm)	LSCF	1.13	71	85	84	450	3
Ni-YSZ	YSZ (15 μm)	LSM-YSZ	1.07	70	80	88	650	4
Ni-BCE	BCGO (1000 μm)	Pr	1	28	36	78	600	5
Ni-YSZ	YSZ (30 μm)	LSM-YSZ	1.08	91	94	86	650	6
Ni-CGO	BCGO (50 μm)	BSCFCGO	1.11	90	223	90	600	7
Ni-CGO	BCGO (50 μm)	BSCFCGO	1.14	85	172	147	600	7
Ni-SCD	SDC (24 μm)	SSC-SDC	0.8	54	870	467	600	7
Ni-SCD	SDC (24 μm)	SSC-SDC	0.84	51	580	295	600	7
Ni-SCD	SDC (24 μm)	SSC-SDC	0.88	57	300	170	550	7
Fe²⁺/Ni-YSZ	SSZ (15 μm)	SSZ-LSM	1.15	91	292	266	650	9
Fe²⁺/Ni-YSZ	SSZ (15 μm)	SSZ-LSM	1.15	98	286	279	650	9
Ni-BZCY	BZY (35 μm)	BSCF	-1.0	67	335	225	650	10
Ni-BZCY	BZY (35 μm)	BSCF	-1.0	68	280	190	600	10
Ni-BZCY	BZY (35 μm)	BSCF	-1.0	58	225	130	550	10
Ni-BZCY	BZY (35 μm)	BSCF	-1.0	56	180	65	500	10
Ni-SCD	SDC (50 μm)	SSC-SDC	0.87	88	192	168	600	10
Ni-SCD	SDC (50 μm)	SSC-SDC	0.93	79	82	79	600	10

Notes: 1) OCV: Open circuit voltage; 2) MPD: Maximum power density; 3) % of MPD: 100 x MPD(NH₃)/MPD(H₂); 4) YSZ: yttria-stabilized zirconia; 5) GDC: gadolinium-doped coria (CGO is used by authors in other references); 6) LSCF: La₂₀Ses²⁰Ce₀₂Fe₀₂O₇₋₈; 7) SDC: Ces₂Sn₂O₇₋₈; 8) BSCF: Ba₀₂Sn₀₂Ce₀₂Fe₀₂O₇₋₈; 9) BCFE: BaCe₀₂Fe₀₂E₀₂O₇₋₈; 10) BCGO: BaCe₀₂G₀₂O₁₉₃₆O₇₋₈; 11) CGO: Same as GDC; 12) BCGO: BaCe₀₂G₀₂O₁₉₃₆O₇₋₈; 13) BSCFCGO: Same as conventionally used BSCF; 14) SSC: Sm₀₂Se₀₂CoO₇₋₈; 15) Fe⁺²: 2 wt.% by impregnation Fe(NO₃)₃·H₂O and calcined at 600 °C; 16) SSZ: Ssc₁₂Zno₁₉; 17) BZY: BaZr₀₂Ce₀₂Y₀₂O₇₋₈; 18) SSC: Sm₀₂Se₀₂CoO₇₋₈; 19) BCZY: BaCe₀₂Zr₀₂Y₀₂O₇₋₈; 20) BCZYBN: BaCe₀₂Fe₀₂Zr₀₂Y₀₂O₇₋₈; 21) BCFZY: BaCe₀₂Fe₀₂Zr₀₂O₁₉₃₆O₇₋₈
Supplementary Table S2 Comparison of reported electrochemical ammonia production rate under ambient pressure (T* stands for this work)

Catalyst	Negatrod e	Electrolyte	Postside	Proton Source	C#	NH₃ Rate mod s⁻¹ cm⁻²	Ref.
Plasma	Plasma	H₂O-sulfuric acid	Pt	H₂O	1	7.20E-07	12
Li₃N	Al	LiCl-KCl-CrCl₃-LiCl	Ni	H₂	1	3.33E-14	14
Li₃N	Ni	LiCl-KCl-CrCl₃-LiCl	Carbon	H₂O	1	2.00E-08	16
Ru-BZCA	Ni-BZCYb	BZCYbN	BZCY	H₂O	2	1.20E-08	T*
SFCN	SFCN	Nafion	Ni-SDC	H₂	2	1.13E-08	18
SSN	SSN	Nafion	Ni-SDC	H₂	2	1.05E-08	20
Ag-Pt	SSN	Nafion	Ni-SDC	H₂	2	1.05E-08	22
SSN	SSN	SPSF	Ni-SDC	H₂	1	1.03E-08	20
Ag-Pd-SBCN	SBCN	Nafion	Ni-SDC	H₂	2	8.70E-09	23
Ag-Pd	Ag-Pd	CSO	Ag-Pd	H₂	2	8.20E-09	24
Ag-Pd	Ag-Pd	CGO	Ag-Pd	H₂	2	7.70E-09	24
Ag-Pd	Ag-Pd	CYO	Ag-Pd	H₂	2	7.50E-09	24
Ag-Pd-SBCC	SBCC	Nafion	Ni-SDC	H₂	2	7.30E-09	23
Ag-Pd	Ag-Pd	CIA	Ag-Pd	H₂	2	7.10E-09	24
Ag-Pd-SBCC	SBCC	Nafion	Ni-SDC	H₂	2	7.00E-09	23
Ag-Pd	Ag-Pd	Oxide-salt	Ag-Pd	CH₄	2	6.95E-09	31
Ag-Pd	Ag-Pd	BCGS	Ag-Pd	H₂	2	5.82E-09	32
LSFcu-SADC	LSFcu-SADC	Carbonate-SADC	Ni-SDC	H₂/O₂	2	5.39E-09	34
Ag-Pd	Ag-Pd	BCS	Ag-Pd	H₂	2	5.23E-09	32
Ag-Pd	Ag-Pd	BCC	Ni-BCCO	H₂	2	4.63E-09	37
Pd	Pd	SCY	Pd	H₂	2	4.50E-09	38
Ag-Pd	BSCF	BCY15	Ni-BZCY	H₂	2	4.10E-09	40
Cu	Cu	BZCY	Ni-BZCY	H₂	2	4.10E-09	19
Ag-Pd	Ag-Pd	BCD	Ag-Pd	H₂	2	3.50E-09	43
Ag-Pd	Ag-Pd	BCG	Ag-Pd	H₂	2	3.09E-09	45
Ru	Ru	BZCY27	Ni-BZCY	H₂	1	2.86E-09	46
Ag-Pd	Ag-Pd	BCC	Ni-BZCY	H₂	2	2.69E-09	47
Ag-Pd	Ag-Pd	BCZS	Ag-Pd	H₂	2	2.67E-09	49
Ag-Pd	Ag-Pd	BCD	Ag-Pd	H₂	2	2.60E-09	51
Ag-Pd	Ag-Pd	LGSM	Ag-Pd	H₂	2	2.17E-09	53
Ag-Pd	Ag-Pd	BCCN	Ag-Pd	H₂	2	2.16E-09	13
Ag-Pd	Ag-Pd	BCA	Ag-Pd	H₂	2	2.10E-09	56
Ag-Pd	Ag-Pd	LCZ	Ag-Pd	H₂	2	2.00E-09	57
Ag-Pd	Ag-Pd	BZC	Ag-Pd	H₂	2	1.92E-09	13
Ag-Pd	Ag-Pd	LGSM	Ag-Pd	H₂	2	1.89E-09	15
Ag-Pd	Ag-Pd	LGSM	Ag-Pd	H₂	2	1.82E-09	13
Ag-Pd	Ag-Pd	LCZ	Ag-Pd	H₂	2	1.76E-09	17
Cu	Cu	BZCY	Ni-BZCY	H₂	2	1.70E-09	19
VN-Fe	VN-Fe	BZCY81	Ni-BZCY	CH₄	2	1.67E-09	21
Ag-Pd	Ag-Pd	BCN	Ag-Pd	H₂	2	1.64E-09	13
Ag-Pd	Ag-Pd	BCN	Ag-Pd	H₂	2	1.43E-09	13
Ag-Pd	Ag-Pd	BCN18	Ag-Pd	H₂	2	1.42E-09	13
Pt	Pt	Pt-C	Nafion	H₂O	2	1.14E-09	25
Pt	Pt	Pt-C	Nafion	H₂O	2	9.37E-10	26
LSCF-CGDC	LSCF-CGDC	Carbonate	SSO-CGDC	H₂	2	4.08E-10	27
Ag-CMN	Ag-CMN	Carbonate	Ag-Pd	H₂	2	3.27E-10	28
Ag-CF	Ag-CF	Carbonate	Ag-Pd	H₂	2	2.32E-10	29
Fe₃Mo₃N	Fe₃Mo₃N-Ag	Carbonate	Ag-Pd	H₂	2	1.89E-10	30
Ag-Pd	Ag-Pd	CSO	Ag-Pd	H₂	2	1.83E-10	24
PBCu	PBCu	Carbonate-CGO	PBCu	H₂O	1	1.83E-10	33
LCFN	LCFN	Carbonate-CGO	LCFN	H₂O	1	9.21E-11	39
LSCF-CGCa	LSCF-CGCa	Carbonate-CGCa	SSO-CGDC	H₂O	2	1.50E-10	36
PBCu	PBCu	Carbonate-CGO	PBCu	H₂O	1	1.07E-10	33
LCFN	LCFN	Carbonate-CGO	LCFN	H₂O	1	9.21E-11	39
LSCF-CGCa	LSCF-CGCa	Carbonate-CGCa	SSO-CGDC	H₂O	2	5.00E-11	34
Ag	Ag	BZY	Ag	H₂O	2	4.98E-11	41
Pt	Pt	GDC	Pt	H₂O	2	3.67E-11	48
Ag-Pd	Ag-Pd	BCY10	Pt	H₂	2	2.80E-11	49
Nano-Iron	-	Ionic liquids	Ni	H₂O	1	2.30E-11	52
Ru	Ru	Nafion	-	H₂O	2	2.12E-11	54
Fe	Fe	SZY	Ag	H₂	2	6.20E-12	55
Ru/MgO	Ag	YSZ	Pd	H₂O	2	6.98E-14	58

Notes: C# stands for number of chambers. 1 means all gases from two electrodes are mixed in one chamber; 2 means postside and negatrod e gases are separated from each chamber.
Challenges on electrochemical ammonia synthesis

In general, there are two reaction mechanisms regarding electrochemical production of ammonia from nitrogen and hydrogen: the dissociative mechanism and the associative mechanism \(^{59-64}\). These mechanisms are well reported in literature, but with variable nomenclature. For convenience, the reaction mechanisms are reformatted as following.

I) Dissociative mechanism: In the dissociative mechanism, each \(\text{N}_2 \) molecule forms two \(\text{N} \) atoms directly upon adsorption on the surface site. These then capture three protons and three electrons from the reaction interface or the reaction medium.

\[
\begin{align*}
(N \equiv N)_{g} + 2S & \rightarrow 2S \\
N_{g} + 2S + 6H^+ + 6e^- & \rightarrow 2S \\
2S & \rightarrow 2S + 2NH_{3,g}
\end{align*}
\]
(R1) (R2) (R3)

II) Associative mechanism

\[
\begin{align*}
(N \equiv N)_{g} + S & \rightarrow S \\
(N=\text{N})_{g} + S & \rightarrow S \\
(N=\text{NH})_{g} + S & \rightarrow S \\
(H=\text{NH})_{g} + S & \rightarrow S \\
(H=\text{NH})_{g} + S & \rightarrow S \\
(S = \text{NH})_{g} + S & \rightarrow S
\end{align*}
\]
(R4) (R5) (R6) (R7) (R8) (R9)

\[
\begin{align*}
S & \rightarrow S + NH_{3,g} \\
S & \rightarrow S + NH_{3,g}
\end{align*}
\]
(R10) (R11)
where \(S \) in the above reactions is an empty catalyst surface site, \(S^{(N=N)} \) indicates dissociated atomic nitrogen adsorbed on a surface site, \(S^{(H,N,H)} \) indicates molecular nitrogen adsorption on surface site, and \(S \) indicates molecular \(\text{NH}_3 \) attached to a surface site. Other intermediate products on surface sites are defined similarly. Rate and equilibrium constants are shown as \(k_s \) and \(K_s \), respectively.

The dissociation energy in R1 reaches 945.4 kJ.mol\(^{-1}\). Additionally, the electrochemical driving force does no effect\(^{59,61}\), so that \(\text{N}_2 \) dissociation is the highly unfavorable rate-determining step.

II) Associative mechanism: The first hydrogenation of nitrogen (R6) is the rate-determining step in the associative mechanism\(^{60,61,65}\). The activation energy is \(\sim 94.5 \) kJ.mol\(^{-1}\)\(^{60}\), one order of magnitude lower than that of the rate-determining step in the dissociative mechanism. This makes the associative mechanism more energetically favorable for electrochemical ammonia production.

Following the dissociative mechanism, Singh et al. proposed a model to predict rate of ammonia and hydrogen production based on Langmuir isotherms\(^{61}\). The two most-important reactions:

\[
\begin{align*}
 r_N &= k_N \frac{K_N}{K_H} \tilde{c}_{N_2} \\
 r_H &= k_H \tilde{c}_+ \tilde{c}_-
\end{align*}
\]

where \(K \)'s are the bulk-to-near-surface equilibrium constants, \(k \)'s are rate constants, and \(\tilde{c} \)'s are bulk concentration. Note the term \(\tilde{c}_- \) is not meant to indicate a physical concentration but to account for cases where the electron transfer rate is limiting\(^{61}\). The rate-determining step of this model is the first hydrogenation step of \(\text{N}_2 \) (R5).

The above two equations indicate the rate of ammonia production is zeroth order in the electron and proton concentrations, while the rate of hydrogen production is first order in both electron and proton concentrations. The two equations suggest the ammonia production rate is non-electrochemically driven and the rate is nearly independent of electron and proton concentrations.

In order to increase selectivity, the electron and proton concentrations must be minimized in order to minimize the hydrogen evolution reaction (HER). Detailed strategies on improving ammonia selectivity are proposed Singh et al.\(^{61}\). By suppressing the protonic current in proton-conducting cells, the \(\text{H}_2 \) production rate is reduced, while the nitrogen-reduction rate or ammonia-production rate are nearly unaffected, thereby achieving a higher selectivity to \(\text{NH}_3 \). This has been observed in a few studies where higher ammonia selectivities were achieved under relatively low current densities\(^{52}\). Of course, this approach generally is accompanied by low ammonia production rate due to the low current densities. Simultaneously maintaining high rates of ammonia synthesis and conversion efficiency remains very challenging in practice since the activation barrier of HER is much less than that of NRR. Further, no metal catalyst provides better catalytic selectivity in NRR over HER.

Montoya et al. applied DFT calculations to study electrochemical ammonia synthesis on various metal catalysts\(^{66}\). Among the 11 elements explored (Re, Ru Rh, Co, Ni, Ir, Pt, Pd, Cu, Au, Ag),...
no catalyst demonstrated a more-negative limiting potential under HER than NRR. Rhenium had the minimum difference between HER and NRR, followed by Ru; both metals are good candidates for high-selectivity ammonia synthesis.

These thermodynamic, kinetic, and catalytic analyses all show that it is fundamentally very challenging to suppress hydrogen-evolution reaction while increasing the nitrogen reduction reaction. Low selectivity to NH₃ is more favorable by nature. While better catalysts with higher selectivity may be found for electrochemical production of ammonia, rethinking the integrated electrochemical H₂ production - ammonia thermocatalytic synthesis coupling may prove more efficient, where higher pressure operation is technically more feasible and unused hydrogen can be recycled back to the NH₃-synthesis reactor.
Supplementary Figure S1 | TEM-EDX full elemental map showing reasonable uniformity across 300-nm particles and evidence of Ru-B2CA core-shell structure.
Supplementary Figure S2 | Photographs showing.

a. SEM image of electrolyte surface via solid state reaction synthesis (SSRS) method, the electrolyte is relatively dense with small defects without affecting cell open circuit voltage or performance.

b. Comparison of X-ray diffraction spectra of BaCe$_{0.7}$Zr$_{0.1}$Y$_{0.1}$Yb$_{0.1}$Ni$_{0.04}$O$_{3-\delta}$ (BCZYYbN) synthesized by sol-gel method and BaCe$_{0.7}$Zr$_{0.1}$Y$_{0.1}$Yb$_{0.1}$O$_{3-\delta}$ (BCZYYb) synthesized by solid-state reactive sintering (SSRS) (1 wt% NiO was added). Both samples were heat treated at 1450 °C for 12h. Peaks for both materials are well aligned with database records for BaCe$_{0.8}$Zr$_{0.2}$O$_{3-\delta}$. A slight secondary phase is observed in the SSRS material.
Supplementary Figure S3 | Photographs showing. a, Anode green pellets. b, Electrolyte layer deposition via spin coating. c, Electrolyte layer deposition via drop coating. d to f, Sintered half-cell. g, Cathode application on half-cells. h, Example of sealing via ceramabond (552-VFG). i, Example of compress sealing.
Supplementary Figure S4 | Representative EIS at two temperatures under H₂ and cracked NH₃ fuel cell mode.
Supplementary Figure S5 | Long term stability test of a cell for up to 1250 h under various testing conditions. For cracked NH$_3$ fuel with trace amount of NH$_3$, we found the degradation is less sensitive as compared with operation conditions such as discharge current density, humidity, and temperature.
Supplementary Figure S6| Stability test of cell without cracking catalyst and postmortem analysis. a, The cell voltage dropped to zero even under OCV mode after exposure to non-cracked NH₃ fuel. Both the ohmic and polarization resistance increased significantly after cell degraded, respectively by 83 and 50 times higher. b, Postmortem analysis shows the cell has a dense and about 25 µm thick electrolyte layer. No mechanic cracks in the electrolyte layer were found based on the measured areas. Note this cell has a drop coated electrolyte layer via SSRS process.
Supplementary Figure S7 | Additional and larger viewing field SEM images of assintered porous BCZYYb pellet (with 1 wt.% NiO).
Supplementary Figure S8| Additional and larger viewing field SEM images of porous BCZYYb pellets (with 1 wt.% NiO) after H₂ reduction.
Supplementary Figure S9 | Additional and larger viewing field SEM images of porous BCZYYb pellets (with 1 wt.% NiO) after NH₃ reduction.
Supplementary Figure S10 | Additional and larger viewing field SEM images of as-sintered porous NiO pellet.
Supplementary Figure S11| Additional and larger viewing field SEM images of porous NiO pellets after H2 reduction.
Supplementary Figure S12 | Additional and larger viewing field SEM images of porous NiO pellets after NH₃ reduction.
Supplementary Figure S13| Full electrochemical impedance spectroscopy (EIS) of a porous BCZYYb pellet (with 1 wt.% NiO) under N₂ flow and before switching to H₂ and NH₃.
Supplementary Figure S14| Anode nitridation verification experiment with exposure to NH$_3$ gas. Little evidence for formation of Ni$_3$N under the testing conditions.
Supplementary Figure S15 | Measured ammonia production rates as a function of total flow rate of 3:1 H$_2$ to N$_2$ gas mixture with comparison to equilibrium calculation. Reactor temperature at 400 °C.
Supplementary Figure S16 | Effect of hydrogen flux through the protonic-ceramic electrolyzer on ammonia-synthesis rate.
Supplementary Figure S17 | Illustrations of pressure test. a, packaging and sealing of the high pressure protonic-ceramic membrane-electrode assembly within b, electrochemical test stand and downstream ammonia-synthesis reactor.
Supplementary Figure S18| Ammonia detection and calibration. a, a tested Drager tube showing the distinct color of NH$_3$ absorbed region (blue) and non-absorbed region (yellow) b, linear plot of time reaching each specific marker position versus labelled marker to using 10 ppm NH$_3$ in N$_2$ standard gas.
Supplementary references

1. Yang, J. et al. A stability study of Ni/Yttria-stabilized zirconia anode for direct ammonia solid oxide fuel cells. *ACS Applied Materials & Interfaces* 7, 28701-28707, (2015).

2. Guangyao, M., Cairong, J., Jianjun, M., Qianli, M. & Xingqin, L. Comparative study on the performance of a SDC-based SOFC fueled by ammonia and hydrogen. *Journal of Power Sources* 173, 189-193, (2007).

3. Aoki, Y. et al. High-Efficiency Direct Ammonia Fuel Cells Based on BaZr0.1Ce0.7Y0.2O2–δ/Pd Oxide-Metal Junctions. 2, 1700088, (2018).

4. Zhang, L., Cong, Y., Yang, W. & Lin, L. A Direct Ammonia Tubular Solid Oxide Fuel Cell. *Chinese Journal of Catalysis* 28, 749-751, (2007).

5. Maffei, N., Pelletier, L. & McFarlan, A. A high performance direct ammonia fuel cell using a mixed ionic and electronic conducting anode. *Journal of Power Sources* 175, 221-225, (2008).

6. Ma, Q. et al. A high-performance ammonia-fueled SOFC based on a YSZ thin-film electrolyte. *Journal of Power Sources* 164, 86-89, (2007).

7. Zhang, L. & Yang, W. Direct ammonia solid oxide fuel cell based on thin proton-conducting electrolyte. *Journal of Power Sources* 179, 92-95, (2008).

8. Liu, M. et al. Direct liquid methanol-fueled solid oxide fuel cell. *Journal of Power Sources* 185, 188-192, (2008).

9. Liu, L. et al. Improved performance of ammonia-fueled solid oxide fuel cell with SSZ thin film electrolyte and Ni-SSZ anode functional layer. *International Journal of Hydrogen Energy* 37, 10857-10865, (2012).

10. Lin, Y. et al. Proton-conducting fuel cells operating on hydrogen, ammonia and hydrazine at intermediate temperatures. *International Journal of Hydrogen Energy* 35, 2637-2642, (2010).

11. Ma, Q., Peng, R., Tian, L. & Meng, G. Direct utilization of ammonia in intermediate-temperature solid oxide fuel cells. *Electrochemistry Communications* 8, 1791-1795, (2006).

12. Hawtof, R. et al. Catalyst-free, highly selective synthesis of ammonia from nitrogen and water by a plasma electrolytic system. *Science Advances* 5, eaat5778, (2019).

13. Li, Z., Liu, R., Xie, Y., Feng, S. & Wang, J. A novel method for preparation of doped Ba3(Ca1.18Nb1.82)O9−δ: Application to ammonia synthesis at atmospheric pressure. *Solid State Ionics* 176, 1063-1066, (2005).

14. Murakami, T., Nishikiori, T., Nohira, T. & Ito, Y. Investigation of Anodic Reaction of Electrolytic Ammonia Synthesis in Molten Salts Under Atmospheric Pressure. 152, D75-D78, (2005).

15. Chen, C. & Ma, G. Preparation, proton conduction, and application in ammonia synthesis at atmospheric pressure of La0.9Ba0.1Ga1.98O4−δ. *Journal of Materials Science* 43, 5109-5114, (2008).

16. Murakami, T., Nohira, T., Goto, T., Ogata, Y. H. & Ito, Y. Electrolytic ammonia synthesis from water and nitrogen gas in molten salt under atmospheric pressure. *Electrochimica Acta* 50, 5423-5426, (2005).

17. Xie, Y.-H. et al. Preparation of La1.9Ca0.1Zr2O6.95 with pyrochlore structure and its application in synthesis of ammonia at atmospheric pressure. *Solid State Ionics* 168, 117-121, (2004).

18. Xu, G., Liu, R. & Wang, J. Electrochemical synthesis of ammonia using a cell with a Nafion membrane and SmFe0.7Cu0.3−xMgxO3 (x = 0–0.3) cathode at atmospheric pressure and lower temperature. *Science in China Series B: Chemistry* 52, 1171-1175, (2009).

19. Vasileiou, E. et al. Electrochemical enhancement of ammonia synthesis in a BaZr0.7Ce0.2Y0.2O2 solid electrolyte cell. *Solid State Ionics* 288, 357-362, (2016).

20. Liu, R. & Xu, G. Comparison of Electrochemical Synthesis of Ammonia by Using Sulfonated Polysulfone and Nafion Membrane with Sm1.5Sr0.5NiO4. *Chinese Journal of Chemistry* 28, 139-142, (2010).

21. Kyriakou, V., Garagounis, I., Vourros, A., Vasileiou, E. & Stoukides, M. An Electrochemical Haber-Bosch Process. *Joule* 4, 142-158, (2020).

22. Xu, G. & Liu, R. Sm1.5Sr0.5MO4 (M=Ni, Co, Fe) Cathode Catalysts for Ammonia Synthesis at Atmospheric Pressure and Low Temperature. *Chinese Journal of Chemistry* 27, 677-680, (2009).

23. Zhang, Z., Zhong, Z. & Liu, R. Cathode catalysis performance of SmBaCuM05+δ (M=Fe, Co, Ni) in ammonia synthesis. *Journal of Rare Earths* 28, 556-559, (2010).

24. Liu, R.-Q., Xie, Y.-H., Wang, J.-D., Li, Z.-J. & Wang, B.-H. Synthesis of ammonia at atmospheric pressure with Ce0.8M0.2O2–δ (M=La, Y, Gd, Sm) and their proton conduction at intermediate temperature. *Solid State Ionics* 177, 73-76, (2006).

25. Lan, R., Irvine, J. T. S. & Tao, S. Synthesis of ammonia directly from air and water at ambient temperature and pressure. *Scientific Reports* 3, 1145, (2013).
[26] Lan, R. & Tao, S. Electrochemical synthesis of ammonia directly from air and water using a Li+/H+/NH4+ mixed conducting electrolyte. *RSC Advances* **3**, 18016-18021, (2013).

[27] Amar, I. A., Lan, R. & Tao, S. Synthesis of ammonia directly from wet nitrogen using a redox stable La0.75Sr0.25Cr0.5Fe0.5O3–δ–Ce0.8Gd0.18Ca0.02O2–δ composite cathode. *RSC Advances* **5**, 38977-38983, (2015).

[28] Amar, I. A., Lan, R., Petit, C. T. G. & Tao, S. Electrochemical Synthesis of Ammonia Based on Co3Mo3N Catalyst and LiAlO2–(Li,Na,K)2CO3 Composite Electrolyte. *Electrocatalysis* **6**, 286-294, (2015).

[29] Amar, I. A., Lan, R., Petit, C. T. G., Arrighi, V. & Tao, S. Electrochemical synthesis of ammonia based on a carbonate-oxide composite electrolyte. *Solid State Ionics* **182**, 133-138, (2011).

[30] Amar, I., Lan, R., Petit, C. & Tao, S. *Electrochemical Synthesis of Ammonia Using Fe3Mo3N Catalyst and Carbonate-Oxide Composite Electrolyte*. Vol. 10 (2015).

[31] Wang, B. H., Wang, J. D., Liu, R., Xie, Y. H. & Li, Z. J. Synthesis of ammonia from natural gas at atmospheric pressure with doped ceria–Ca3(PO4)2–K3PO4 composite electrolyte and its proton conductivity at intermediate temperature. *Journal of Solid State Electrochemistry* **11**, 27-31, (2007).

[32] Li, Z. *et al*. Preparation of double-doped BaCeO3 and its application in the synthesis of ammonia at atmospheric pressure. *Science and Technology of Advanced Materials* **8**, 566-570, (2007).

[33] Lan, R., Alkhazmi, K. A., Amar, I. A. & Tao, S. Synthesis of ammonia directly from wet air at intermediate temperature. *Applied Catalysis B: Environmental* **152-153**, 212-217, (2014).

[34] Amar, I. A., Lan, R. & Tao, S. Electrochemical Synthesis of Ammonia from Wet N2 Using La0.6Sr0.4Fe0.8Cu0.2O2–δ–Ce0.8Gd0.18Ca0.02O2–δ Composite Catalyst. *Faraday Discussions* **161**, H350-H354, (2014).

[35] Lan, R., Alkhazmi, K. A., Amar, I. A. & Tao, S. Synthesis of ammonia directly from wet air using Sm0.6Ba0.4Fe0.8Cu0.2O2–δ as the catalyst. *Faraday Discussions* **182**, 353-363, (2015).

[36] Amar, I. A., Lan, R., Humphreys, J. & Tao, S. Electrochemical synthesis of ammonia from wet nitrogen via a dual-chamber reactor using La0.6Sr0.4Co0.2Fe0.8O3–δ–Ce0.8Gd0.18Ca0.02O2–δ composite cathode. *Catalysis Today* **286**, 51-56, (2017).

[37] Chen, C. & Ma, G. Proton conduction in BaCe1-xGdO3–α at intermediate temperature and its application to synthesis of ammonia at atmospheric pressure. *Journal of Alloys and Compounds* **485**, 69-72, (2009).

[38] Marnellos, G. & Stoukides, M. Ammonia Synthesis at Atmospheric Pressure. *Science* **282**, 98, (1998).

[39] Lan, R., Alkhazmi, K. A., Amar, I. A. & Tao, S. Synthesis of ammonia directly from wet air using new perovskite oxide La0.8Cs0.2Fe0.8Ni0.2O3–δ as catalyst. *Electrochimica Acta* **123**, 582-587, (2014).

[40] Wang, W. B. *et al*. Ammonia synthesis at atmospheric pressure using a reactor with thin solid electrolyte BaCe0.8Y0.15O3–α membrane. *Journal of Membrane Science* **360**, 397-403, (2010).

[41] Yun, D. S. *et al*. Electrochemical ammonia synthesis from steam and nitrogen using proton conducting yttrium doped barium zirconate electrolyte with silver, platinum, and lanthanum strontium cobalt ferrite electrocatalyst. *Journal of Power Sources* **284**, 245-251, (2015).

[42] Amar, I. A. *et al*. Electrochemical synthesis of ammonia from N2 and H2O based on (Li,Na,K)2CO3–Ce0.8Gd0.18Ca0.02O2–δ composite electrolyte and CoFe2O4 cathode. *International Journal of Hydrogen Energy* **39**, 4322-4330, (2014).

[43] Wang, W. B. *et al*. Microstructure and proton conduction behaviors of Dy-doped BaCeO3 ceramics at intermediate temperature. *Solid State Ionics* **181**, 667-671, (2010).

[44] Kumari, S., Pishgar, S., Schwarting, M. E., Paxton, W. F. & Spurgeon, J. M. Synergistic plasma-assisted electrochemical reduction of nitrogen to ammonia. *Chemical Communications* **54**, 13347-13350, (2018).

[45] Li, Z.-J., Liu, R.-Q., Wang, J.-D., Xie, Y.-H. & Yue, F. Preparation of BaCe0.8Gd0.2O3–δ by the citrate method and its application in the synthesis of ammonia at atmospheric pressure. *Journal of Solid State Electrochemistry* **9**, 201-204, (2005).

[46] Vasileiou, E., Kyriakou, V., Garagounis, I., Vourros, A. & Stoukides, M. Ammonia synthesis at atmospheric pressure in a BaCe0.2Zr0.7Y0.1O2.9 solid electrolyte cell. *Solid State Ionics* **275**, 110-116, (2015).

[47] Liu, J. *et al*. Proton conduction at intermediate temperature and its application in ammonia synthesis at atmospheric pressure of BaCe1-xCaxO3–α. *Journal of Materials Science* **45**, 5860-5864, (2010).

[48] Kim, J. N. *et al*. Electrochemical Synthesis of Ammonia from Water and Nitrogen using a Pt/GDC/Pt Cell. *Korean chemical engineering research* **52**, 58-62, (2014).

[49] Wang, X., Yin, J., Xu, J., Wang, H. & Ma, G. Chemical Stability, Ionic Conductivity of BaCe0.9-xZrxSm0.10O3–α and Its Application to Ammonia Synthesis at Atmospheric Pressure. *Chinese Journal of Chemistry* **29**, 1114-1118, (2011).
Otomo, J., Noda, N. & Kosaka, F. Electrochemical Synthesis of Ammonia with Proton Conducting Solid Electrolyte Fuel Cells at Intermediate Temperatures. *Journal of Materials Science* **46**, 4690-4694, (2011).

Zhang, F. *et al.* Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids. *Energy & Environmental Science* **10**, 2516-2520, (2017).

Zhou, F. *et al.* Electrochemical ammonia synthesis from nitrogen at ambient temperature and pressure in ionic liquids. *Energy & Environmental Science* **10**, 2516-2520, (2017).

Kordali, V., Kyriacou, G. & Lambrou, C. Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell. *Chemical Communications*, 1673-1674, (2000).

Ouzounidou, M., Skodra, A., Kokkofitis, C. & Stoukides, M. Catalytic and electrocatalytic synthesis of NH3 in a H+ conducting cell by using an industrial Fe catalyst. *Solid State Ionics* **178**, 153-159, (2007).

Guo, Y. *et al.* Preparation via microemulsion method and proton conduction at intermediate-temperature of BaCe1−xYxO3−α. *Electrochemistry Communications* **11**, 153-156, (2009).

Wang, J.-D., Xie, Y.-H., Zhang, Z.-F., Liu, R.-Q. & Li, Z.-J. Protonic conduction in Ca2+-doped La2M2O7 (M=Ce, Zr) with its application to ammonia synthesis electrochemically. *Materials Research Bulletin* **40**, 1294-1302, (2005).

Skodra, A. & Stoukides, M. Electrocatalytic synthesis of ammonia from steam and nitrogen at atmospheric pressure. *Solid State Ionics* **180**, 1332-1336, (2009).

Yoo, C.-Y. *et al.* Role of protons in electrochemical ammonia synthesis using solid-state electrolytes. *ACS Sustainable Chemistry & Engineering* **5**, 7972-7978, (2017).

Neese, F. The Yandulov/Schrock cycle and the nitrogenase reaction: pathways of nitrogen fixation studied by density functional theory. *Angewandte Chemie International Edition* **45**, 196-199, (2006).

Singh, A. R. *et al.* Electrochemical ammonia synthesis—the selectivity challenge. *ACS Catalysis* **7**, 706-709, (2017).

Skúlason, E. *et al.* A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. *Physical Chemistry Chemical Physics* **14**, 1235-1245, (2012).

Foster, S. L. *et al.* Catalysts for nitrogen reduction to ammonia. *Nature Catalysis* **1**, 490-500, (2018).

Garden, A. L. & Skúlason, E. The Mechanism of Industrial Ammonia Synthesis Revisited: Calculations of the Role of the Associative Mechanism. *The Journal of Physical Chemistry C* **119**, 26554-26559, (2015).

Stucke, N., Flöser, B. M., Weyrich, T. & Tuczek, F. Nitrogen Fixation Catalyzed by Transition Metal Complexes: Recent Developments. *European Journal of Inorganic Chemistry* **2018**, 1337-1355, (2018).

Montoya, J. H., Tsai, C., Vojvodic, A. & Nørskov, J. K. The challenge of electrochemical ammonia synthesis: a new perspective on the role of nitrogen scaling relations. *ChemSusChem* **8**, 2180-2186, (2015).