Iron deficiency responses in rice roots

Takanori Kobayashi1,2, Reiko Nakanishi Itai3 and Naoko K Nishizawa2*

Abstract

Iron (Fe) is an essential element for most living organisms. To acquire sparingly soluble Fe from the rhizosphere, rice roots rely on two Fe acquisition pathways. The first of these pathways involves Fe(III) chelators specific to graminaceous plants, the mugineic acid family phytosiderophores, and the second involves absorption of Fe2+. Key components in this response include enzymes involved in the biosynthesis of deoxymugineic acid (OsNAS1, OsNAS2, OsNAAT1, and OsDMAS1), the deoxymugineic acid efflux transporter (TOM1), the Fe(III)-deoxymugineic acid transporter (OsYSL15), and Fe2+ transporters (OsIRT1, OsIRT2, and OsNRAMP1). In whole roots, these proteins are expressed in a coordinated manner with strong transcriptional induction in response to Fe deficiency. Radial transport of Fe to xylem and phloem is also mediated by the mugineic acid family phytosiderophores, as well as other chelators and their transporters, including Fe(II)-nicotianamine transporter (OsYSL2), phenolics efflux transporters (PEZ1 and PEZ2), and citrate efflux transporter (OsFRDL1). Among these, OsYSL2 is strongly induced under conditions of Fe deficiency. Both transcriptional induction and potential feedback repression mediate the expression regulation of the genes involved in Fe uptake and translocation in response to Fe deficiency. The transcription factors IDEF1, IDEF2, and OsIRO2 are responsible for transcriptional induction, whereas the ubiquitin ligases OsHRZ1 and OsHRZ2, as well as the transcription factors OsIRO3 and OsbHLH133, are thought to mediate negative regulation. Furthermore, IDEF1 and OsHRZs bind Fe and other metals, and are therefore candidate Fe sensors. The interacting functions of these regulators are thought to fine tune the expression of proteins involved in Fe uptake and translocation.

Keywords: Gene regulation; Iron deficiency response; Mugineic acid family phytosiderophores; Transcription factor; Transporter

Review

Iron (Fe) is an essential element for most living organisms, including all animals and plants. However, despite its high abundance in the Earth’s crust, Fe is only slightly soluble in the soil under aerobic conditions, especially in alkaline calcareous soils (Marschner 1995). To prevent Fe deficiency, rice plants possess a dual mechanism in which ferric iron [Fe(III)] is taken up as a complex with iron-chelating compounds, and ferrous ion (Fe2+) is taken up directly (Takagi 1976; Römheld and Marschner 1986; Ishimaru et al. 2006). Excessive Fe uptake is highly deleterious, as it catalyzes the generation of reactive oxygen species. Thus, to optimize Fe uptake, genes responsible for Fe uptake and translocation are transcriptionally induced in response to low Fe availability, and repressed when sufficient Fe has been absorbed. Recent advances in molecular biology and bioinformatics linked to rice genome sequence data have markedly advanced our understanding of Fe deficiency responses at the molecular level. In this review, we summarize rice root responses to Fe deficiency, which consist of Fe uptake from the rhizosphere, Fe translocation to the xylem and phloem, and their expression modulation by positive and negative regulators.

In spite of these root responses, rice is highly susceptible to Fe deficiency (Mori et al. 1991). Insufficient Fe causes the plant disease Fe chlorosis, which is characterized by yellowing of new leaves and severely impacts grain yield. Rice is also a characteristic crop which contains low concentration of Fe in polished seeds, thus is disadvantageous as a major Fe supply in human diet. Understanding of the molecular components of Fe uptake and translocation and their regulation has paved the way to develop crops that are tolerant to Fe deficiency, both to improve food and biomass production, as well as to develop Fe-rich crops for...
improved human nutrition (reviewed in Kobayashi and Nishizawa 2012; Bashir et al. 2013; Masuda et al. 2013).

Iron uptake from the rhizosphere
Takagi (1976) was the first to describe natural Fe(III) chelators secreted from the roots of graminaceous plants, which were designated as mugineic acid family phytosiderophores (MAs). The biosynthesis and secretion of MAs are unique to graminaceous plants. Römheld and Marschner (1986) classified plant Fe uptake mechanisms into two basic strategies: iron absorption through reduction (Strategy I) in non-graminaceous plants and iron absorption through chelation (Strategy II) in graminaceous plants. Since then, the molecular components of both strategies have been identified (Kobayashi and Nishizawa 2012; Rodríguez-Celma et al. 2013; Fourcroy et al. 2014; Schmid et al. 2014). Rice, being a graminaceous species, utilizes Strategy II (Figure 1A), but also possesses a partial Strategy I system (Figure 1B) (Ishimaru et al. 2006).

Among the nine types of MAs identified, young rice plants exclusively synthesize and secrete 2′-deoxymugineic acid (DMA) (Nakanishi et al. 2000). All MAs share a conserved biosynthetic pathway from methionine to DMA (Mori and Nishizawa 1987; Kawai et al. 1988; Shojima et al. 1990), which is mediated by nicotianamine synthase (NAS), nicotianamine aminotransferase (NAAT), and deoxymugineic acid synthase (DMAS) (Higuchi et al. 1999; Takahashi et al. 1999; Bashir et al. 2006). In rice, the enzymes participating in this pathway include OsNAS1, OsNAS2, OsNAAT1, and OsDMAS1 (Table 1) (Higuchi et al. 2001; Inoue et al. 2003, 2008; Bashir et al. 2006; Cheng et al. 2007). Genes encoding enzymes involved in the methionine cycle are also transcriptionally induced to ensure a sufficient supply of methionine for DMA biosynthesis (Kobayashi et al. 2005; Itai et al. 2013).

In barley, the secretion of MAs follows a diurnal pattern, with a sharp peak in the morning (Takagi et al. 1984). MAs are thought to be synthesized in vesicles that

![Diagram of Fe acquisition systems in rice roots. A) Strategy II system. B) Partial Strategy I system. Ovals represent transporters and enzymes that play central roles in Fe uptake from the rhizosphere. All the indicated transporters and enzymes except PEZ2 are strongly induced in response to Fe deficiency. Broken lines indicate putative pathways. DMA, 2′-deoxymugineic acid, NA, nicotianamine, SAM, S-adenosyl-L-methionine; PCA, protocatechuic acid; CA, caffeic acid.](http://www.thericejournal.com/content/7/1/27)
Gene name	Function	Fe deficiency response	Effects of regulators										
		Whole root	Microdissected	1DEF1	1DEF2	IRO2	HRZ1/2						
		24 h	7d	7d Ep	7d Co	7d VB	1d	2-7d	7d	6d	Cont.	7d	
DMA biosynthesis for Fe(III)-DMA uptake/translocation													
OsNAS1	Nicotianamine synthase	↑ ↑ ↑ ↑ ↑ ↑ ↑	↑ (↑)	→ ↑	↓↓ →								
OsNAS2	Nicotianamine synthase	↑ ↑ ↑ ↑ ↑ ↑ ↑	↑ (↑)	→ ↑	↓↓ →								
OsNAS3	Nicotianamine synthase	→ ↑ ↑ ↑ ↑ ↑ ↑	↑	↓ ↓	↓ →								
OsNAAT1	Nicotianamine aminotransfer	↑ ↑ ↑ ↑ ↑ ↑ ↑	(↑) (↑)	→ ↑	↓ →								
OsDMA51	Deoxymugineic acid synthase	↑ ↑ ↑ ↑ ↑ ↑ ↑	(↑) (↑)	→ ↑	↓ →								
Transporters for Fe(III)-DMA uptake/translocation													
TOM1	DMA efflux transporter	↑ ↑ ↑ ↑ ↑ ↑	↑ (↑)	→ →	→ →								
OsYSL15	Fe(III)-DMA transporter	↑ ↑ ↑ ↑ ↑ ↑	↑	→ →	↓ →								
OsYSL16	Fe(III)-DMA transporter*	→ ↑ (↑) (↑)	↓	→ →	→ →								
Methionine cycle for Fe(III)-DMA uptake/translocation													
OsSAM51	S -adenosyl-L-methionine synthetase	→ ↑ (↑)	→ →	→ →	→ →								
OsSAM52	S -adenosyl-L-methionine synthetase	(↑) ↑ ↑	↑ ↑ ↑	↑	(↑) →	→ →	(↑) →						
MTN	Methylthioadenosine/S -adenosyl homocysteine nucleosidase	(↑) ↑ ↑	↑ ↑ ↑	↑	(↑) →	→ →	(↑) →						
OsMTK1	Methylthioribose kinase	↑ ↑ (↑)	↑ ↑ ↑	↑	→ (↑) →	→ →	↓ →						
OsMTK2	Methylthioribose kinase	↑ ↑ (↑)	↑ ↑ ↑	↑	→ (↑) →	→ →	↓ →						
OsDI2	Methylthioribose-1-phosphate isomerase	↑ ↑ ↑	↑ ↑ ↑	→	↓ →	→ →	↓ →						
DEF	Methylthioribulose-1-phosphate dehydratase-enzyme-phosphatase	↑ ↑	↑ ↑ ↑	↑	↓ (↑) ↓	(↑) →	↓ →						
OsDI1/OsARD2	Acireductone dioxygenase	↑ ↑	↑ ↑ ↑	↑	→ →	→ →	↓ →						
OsDI1U/OsARD1	Acireductone dioxygenase	↑ (↑) (↑)	↓ (↑)	↑ ↓	→ (↑) (↑) →								
OsDI4	Aminotransferase catalyzing the synthesis of methionine?	↑ ↑	↑ ↑ ↑	↑	(↑) →	→ →	↑ →						
OsAPT1	Adenine phosphoribosyltransferase	↑ ↑	↑ ↑ ↑	↑	(↑) (↑) →	→ →	(↑) →						
PRPPS	Phosphoribosyl pyrophosphate synthetase	↑ ↑	↑ ↑ ↑	↑	(↑) ↓ (↑) (↑) (↑) →	(↑) (↑) →							
RPI	Ribose 5-phosphate isomerase	↑ ↑	↑ ↑ ↑	↑	(↑) →	→ →	→ →						
FDH	Formate dehydrogenase	↑ ↑	↑ ↑ ↑	↑	→ (↑) ↓	(↑) →	→ →						
Transporters for ferrous Fe uptake/translocation													
OsIRT1	Ferrous Fe transporter	→ ↑ ↑ ↑ ↑ ↑ ↑	↑	→ →	→ →								
OsIRT2	Ferrous Fe transporter	↑ ↑ ↑ ↑ ↑ ↑ ↑	↑	→ →	n.d.	→							
OsNRAMP1	Ferrous Fe transporter	↑ ↑ ↑ ↑ ↑ ↑	↑	→ →	→ →								
OsNRAMP5	Ferrous Fe/manganese/cadmium transporter	(↑) ↑ (↑)	↑ (↑) (↑)	(↑) →	→ →	↓ (↑)							
PEZ2	Phenolics efflux transporter	→ (↑)	↑ (↑)	(↑) →	(↑) →	→ →							
Transporters for Fe translocation													
OsYS12	Fe(II)/manganese(II)-NA transporter	↑ ↑	↑ ↑ ↑	↑	(↑) ↑ ↑	→ (↑) ↓	↓						
ENA1	NA efflux transporter	→ ↑	↑	↑	(↑) →	(↑) ↓	↓ (↑)						
ENA2	NA efflux transporter	→ (↑) →	(↑) (↑)	(↑) →	→ →	→							
OsFRDL1	Citrate efflux transporter	→ →	↓ (↑)	→	→ →	→	→						
PEZ1	Phenolics efflux transporter	→ (↑)	→ (↑)	↑	→ →	↓	n.d.	→					
Transporters for subcellular Fe sequestration													
OsWT1	Fe transporter into vacuole	→	↓	→	→	→	→						
OsWT2	Fe transporter into vacuole	↓	↓↓	→	↓↓	→	→						

Notes: ↑ indicates 2-fold increase; ↓ indicates 2-fold decrease; n.d. indicates not determined; (↑) and (↓) denote relative increased and decreased expression compared to control, respectively.
can be observed within root cells; these vesicles are swollen in the early morning and shrink by the evening. These vesicles may therefore be putative sites of MAs biosynthesis and storage until secretion in the morning, and thus are designated MAs-vesicles (Nishizawa and Mori 1987; Negishi et al. 2002). Rice also shows diurnal fluctuations in MAs secretion and the presence of similar vesicles, although they are much less obvious than in barley roots (Nozoye et al. 2014), presumably due to the much lower abundance of MAs-vesicles in rice (Mori et al. 1991; Kanazawa et al. 1994). In Fe-deficient rice root cells, tagging of the knockdown lines was more dominant and may reflect more direct effects than overexpression lines.

Table 1 Rice genes responsible for Fe uptake and translocation, and their expression patterns under Fe deficiency (Continued)

Gene regulation in response to Fe deficiency	MIT	Fe transporter into mitochondria	→	↓ (↑)	→	→	→	→	n.d.	→	→					
IDEF1	Positive transcriptional regulator	→	→	↓ (↑)	↓	↓	→	→	→	n.d.	→	→				
IDEF2	Positive transcriptional regulator	→	→	→	→	→	→	(↑)	↓	→	→	→				
OsR2O	Positive transcriptional regulator	↑	↑	↑	↑	↑	↑	↓	↓	→	→	→				
OsR2O (negative?)	↑	↑	↑	↑	↑	↑	↓	↓	(↑)	(↑)	→	n.d.	-	-		
OsRHLH133	Negative transcriptional regulator	↑	↑	n.d.												
OsHRZ1	Negative regulator/ubiquitin ligase	↑	↑	↑	↑	↑	↑	(↑)	(↑)	→	→	→	→	→	→	→
OsHRZ2	Negative regulator/ubiquitin ligase	↑	↑	↑	↑	↑	(↑)	→	→	→	→	→	→	→	→	→
OsHORZ1	Positive regulator?	→	(↑)	→	→	→	→	(↑)	→	→	→	→	→	→	→	→
IBP1.1	IDEF1 protector/trypsin inhibitor	↑	↑	(↑)	(↑)	↓	↓	↓	↑	(↑)	→	→	→	→	→	→
IBP1.2	IDEF1 protector/trypsin inhibitor	↑	↑	→	→	↓	↓	↓	↑	↓	→	→	→	→	→	→
OsRMC	Positive regulator?/receptor-like protein	↑	↓	→	→	→	→	(↑)	(↑)	→	(↑)	(↓)	(↓)			

Functions indicated with a question mark have not been confirmed. Arrows indicate expression responses: ↑↑, strongly upregulated; ↑, upregulated; ↓, downregulated; ↓↓, strongly downregulated; n.d., not determined because of the lack of corresponding probe in the microarray. Arrows in boldface indicate expression confirmed by quantitative RT-PCR and/or Northern blotting experiments. The remaining expression data are based on microarray results as follows: Whole root 24 h, root under 24-h Fe deficiency (Itai et al. 2013); Whole root 7d, root under 7-d Fe deficiency (Ogo et al. 2008); Microdissected 7d Ep, 7d Co, and 7d VB, rice root segments (Ep, epidermis plus exodermis; Co, cortex; VB, vascular bundle) under 7-d Fe deficiency (Ogo et al. 2014); IDEF1 1 d and 2-7 d, roots from an IDEF1 induction line vs. non-transformant under 1-d and 4-d Fe deficiency, respectively (Kobayashi et al. 2009); IDEF2 7d, roots from an IDEF2 knockdown line vs. non-transformant under 7-d Fe deficiency (Ogo et al. 2008); IR22 6d, roots from an IR22 knockdown line vs. non-transformant under 6-d Fe deficiency (Ogo et al. 2007); HRZ1/2 Cont. and 7d, roots from OsHRZ1 and OsHRZ2 knockdown lines vs. non-transformant under Fe-sufficient control condition and 7-day Fe deficiency treatment, respectively (Kobayashi et al. 2013).

*OsYSL16 is also proposed as a copper-NA transporter involved in internal copper distribution (Zheng et al. 2012).

**The probe used for Northern blotting analysis (Kobayashi et al. 2005) may not have differentiated between OsMTK1 and OsMTK2.

***Downregulation was observed in the IDEF1 induction lines, but upregulation was not observed in the IDEF1 knockdown lines, suggesting that negative regulation by IDEF1 may be a secondary effect (Kobayashi et al. 2009).

****Downregulation was observed in the IDEF1 induction and knockdown lines. Positive regulation by IDEF1 may be more plausible, because downregulation in the knockdown lines was more dominant and may reflect more direct effects than overexpression lines.

*Confirmation by quantitative RT-PCR has been conducted using plants grown on calcareous soil (Ogo et al. 2011), but not with hydroponically grown plants.

OsNAS1, OsNAS2, and OsNAAT1, shows daily fluctuations (Nozoye et al. 2004, 2011). This regulation, in addition to the formation and trafficking of MAs-vesicles, is thought to contribute to the observed pattern of DMA secretion in the morning.

The Fe(III)-DMA complex formed in the rhizosphere is then taken up into root cells via the OsYSL15 transporter (Figure 1A) (Inoue et al. 2009; Lee et al. 2009). Transcript abundance of OsYSL15 also shows daily fluctuation (Inoue et al. 2009), possibly supporting efficient Fe uptake. Moreover, expression of all the above-mentioned enzymes and transporters for DMA-based Fe uptake is strongly up-regulated under conditions of Fe deficiency to meet the increased demand of Fe uptake (Table 1). OsYSL16 is another Fe(III)-DMA transporter that is expressed in the plasma membrane of root epidermis/exodermis (Kakei et al. 2012; Lee et al. 2012), and therefore may also mediate Fe(III)-DMA uptake from the rhizosphere. However, in contrast to the strong induction of OsYSL15, expression of the OsYSL16 gene is constitutive and only slightly induced under conditions of Fe deficiency, suggesting that Fe(III)-DMA uptake is predominantly mediated through OsYSL15.

In addition to Fe(III)-DMA uptake, rice also possesses the components of an Fe2+ uptake system (Figure 1B)
The epidermis and exodermis of rice roots express various Fe2+ transporters in the plasma membrane, including OsIRT1, OsIRT2, OsNRAMP1, and OsNRAMP5 (Ishimaru et al. 2006, 2012; Takahashi et al. 2011; Ogo et al. 2014). Among these, OsIRT1 is thought to be the primary transporter involved in Fe2+ uptake (Ishimaru et al. 2006). The transcript levels of the OsIRT1, OsIRT2, and OsNRAMP1, but not OsNRAMP5, are strongly upregulated under conditions of Fe deficiency (Table 1). OsNRAMP5 mediates the predominant pathway for manganese and cadmium uptake, but has relatively small contribution to Fe uptake under Fe-deficient conditions (Ishikawa et al. 2012; Ishimaru et al. 2012; Sasaki et al. 2012).

In the Strategy I system utilized by non-graminaceous plants, Fe2+ uptake is coupled to ferric-chelate reductase activity on the root surface, which is strongly induced under conditions of Fe deficiency (Römheld and Marschner 1986). However, rice roots show very low ferric-chelate reductase activity with no induction response to Fe deficiency (Ishimaru et al. 2006), thus it lacks complete Strategy I system. This is likely because paddy rice has adapted to anaerobic conditions in which Fe2+ is abundant, making direct uptake without active ferric-chelate reduction sufficient for Fe acquisition.

Strategy I plants secrete protons and various phenolic compounds into the rhizosphere under conditions of low Fe availability; this serves to increase Fe solubility and maintain ferric-chelate reductase activity (Römheld and Marschner 1986; Rodriguez-Celma et al. 2013; Fourcroy et al. 2014; Schmid et al. 2014). Rice also possesses phenolics efflux transporters (PEZ1 and PEZ2) (Ishimaru et al. 2011; Bashir et al. 2011a), among which PEZ2 is expressed in the plasma membrane of root epidermis/exodermis and is thought to be responsible for the secretion of protocatechuic acid and caffeic acid into the rhizosphere (Bashir et al. 2011a; Ogo et al. 2014). These phenolic compounds possess chemical properties to chelate and reduce Fe in vitro (Yoshino and Murakami 1998), which may contribute to Fe3+ uptake, although this effect may be limited as the PEZ2 transcript shows little induction under conditions of Fe deficiency (Table 1).

Translocation of iron to the shoots
Following uptake from the rhizosphere into the root epidermis/exodermis, Fe is transported toward the vascular bundle for translocation to the shoots via xylem and phloem. This radial transport system occurs through both symplasmic and apoplasmic pathways, but the latter pathway is impeded by two Casparian strips in the exodermis and endodermis (Enstone et al. 2002). To avoid Fe toxicity and facilitate its transport, the greater portions of both ferric and ferrous cellular Fe are chelated. In rice, DMA, nicotianamine (NA), and citric acid are thought to be the dominant Fe chelators. Figure 2 depicts the Fe translocation in vascular cells and possible involvement of Fe chelators and transporters.

Under Fe-deficient conditions, the enzymes and transporters responsible for Fe uptake are induced not only in the epidermis/exodermis, but also in the cortex and vascular bundle (Table 1) (Inoue et al. 2003, 2008, 2009; Bashir et al. 2006; Ishimaru et al. 2006; Lee et al. 2009; Nozoye et al. 2011; Ogo et al. 2014), where they are thought to be involved in Fe transport to shoot tissues. DMA has been detected in rice xylem and phloem sap (Mori et al. 1991; Kakei et al. 2009). Moreover, the Fe (III)-DMA complex has been identified as the primary chemical form of Fe in phloem sap (Nishiyama et al. 2012). These findings indicate that DMA is responsible not only for Fe uptake from the rhizosphere, but also for internal Fe translocation. OsYSL15 and OsYSL16 are expressed in vascular bundles, where they are thought to transport Fe(III)-DMA for phloem Fe transport (Inoue et al. 2009; Lee et al. 2009, 2012; Kakei et al. 2012).

NA is a precursor of DMA, and is biosynthesized by the NAS enzyme in all plant species analyzed to date, including non-graminaceous species (Shojima et al. 1989; reviewed by Hell and Stephan 2003; Curie et al. 2009). NA functions as a potent chelator of Fe and other divalent metals, facilitating their translocation within the plant while suppressing their toxicity. In rice, NA is biosynthesized by three NAS enzymes (OsNAS1, OsNAS2, and OsNAS3). Both OsNAS1 and OsNAS2 expression are induced in whole roots in response to Fe deficiency, whereas OsNAS3 expression is weaker and detected mainly in the vascular bundle, suggesting a role in Fe translocation (Inoue et al. 2003). The OsYSL2 transporter is responsible for Fe(II)-NA and manganese(II)-NA transport across the plasma membrane, and plays a crucial role in phloem-mediated Fe distribution (Koike et al. 2004; Ishimaru et al. 2010). The NA efflux transporters ENA1 and ENA2 (Nozoye et al. 2011) are thought to be responsible for NA extrusion to the apoplast or intracellular compartments for redistribution of Fe. The expression of OsYSL2 and ENA1 are strongly induced under conditions of Fe deficiency (Table 1) (Koike et al. 2004; Lee et al. 2009; Ishimaru et al. 2010; Nozoye et al. 2011; Ogo et al. 2014).

Citrate is an Fe(III) chelator and is thought to play a dominant role in xylem Fe transport in non-graminaceous plants (Rellán-Álvarez et al. 2010). In rice, the OsFRDL1 transporter mediates citrate efflux into the xylem for efficient Fe translocation (Yokosho et al. 2009). OsFRDL1 is specifically expressed in root pericycle cells, with no apparent induction under conditions of Fe deficiency (Table 1) (Inoue et al. 2004; Yokosho et al. 2009; Ogo et al. 2014).
The recent identification of the plasma membrane-localized protocatechuic acid transporters PEZ1 and PEZ2 indicated that phenolics are also involved in Fe utilization within the rice plant (Ishimaru et al. 2011; Bashir et al. 2011a). PEZ1 is expressed specifically in the vascular bundle, while PEZ2 is expressed in the epidermis/exodermis, cortex, and vascular bundle (Ishimaru et al. 2011; Bashir et al. 2011a; Ogo et al. 2014). Both PEZ1 and PEZ2 expression are only moderately induced under conditions of Fe deficiency in vascular bundles. Knockdown or knock-out mutants of either PEZ1 or PEZ2 expression show decreased amounts of protocatechuic acid and caffeic acid, as well as decreased Fe concentrations, in xylem sap. As xylem is an apoplasmic space, Fe must be effluxed out of the cell for xylem loading, after passing through the Casparian strip at the endodermis. The transporter responsible for this Fe efflux has yet to be identified in plants, although the ferroportin 1/iron-regulated 1 protein identified in Arabidopsis thaliana (AtFPN1/AtIREG1) is a likely candidate (Morrisssey et al. 2009) for the Fe\(^{2+}\) efflux transporter. The effluxed Fe would be rapidly chelated either as ferrous form or ferric form after chemical or enzymatic oxidization. On the other hand, Fe\(^{2+}\) transport into the cytosol might occur via OsIRT1, OsIRT2, or OsNRAMP1, because expression of these transporters is induced under Fe deficiency in the vascular bundle in addition to the epidermis/exodermis and cortex (Table 1) (Ishimaru et al. 2006; Ogo et al. 2014). The subcellular transport of Fe is crucial for cellular function, and can also affect Fe translocation. As vacuoles constitute a large proportion of the total cellular space, vacuolar Fe transport is thought to substantially affect Fe flux. OsVIT1 and OsVIT2 are thought to transport Fe across the tonoplast into the vacuole in rice (Zhang et al. 2012). The mitochondrial iron transporter (MIT) transports Fe into mitochondria, and disruption of this gene is lethal (Bashir et al. 2011b). Although OsVIT1, OsVIT2, and MIT expression are repressed under conditions of Fe deficiency (Table 1) (Bashir et al. 2011b; Zhang et al. 2012), the contribution of these transporters to root Fe flux is not well understood.

Regulation of root iron responses

As reviewed above, the levels of expression of numerous rice genes involved in Fe uptake and translocation are strongly induced under conditions of Fe deficiency at the transcriptional level. Highly conserved temporal and spatial patterns of expression are observed, especially with regard to genes involved in DMA-based Fe uptake (Kobayashi et al. 2005; Itai et al. 2013; Ogo et al. 2014). These Fe deficiency responses are mediated by several regulators, which are summarized in Figure 3.

IDEF1 and IDEF2 are transcription factors that specifically bind the Fe deficiency-responsive cis-acting elements IDE1 and IDE2, respectively (Kobayashi et al. 2007; Ogo et al. 2008). IDE1 and IDE2 have been identified from the barley Fe deficiency-inducible gene IDS2, but they are also able to function in various other species, including rice and non-graminaceous plants (Kobayashi et al. 2003, 2004). IDEF1 and IDEF2 positively regulate the expression of subsets of Fe deficiency-induced genes with relatively little overlap (Kobayashi et al. 2007, 2009; Ogo et al. 2008). IDEF1 regulates most genes known to be involved in Fe\(^{3+}\)-DMA and Fe\(^{2+}\) uptake, as well as Fe translocation, especially during the early stages of Fe deficiency. IDEF2 regulates OsYSL2 and other Fe deficiency-inducible
Figure 3 Regulation of Fe deficiency responses in rice roots.

Ovals indicate regulatory proteins. Boxes indicate proteins responsible for Fe uptake and translocation. All depicted proteins except IDEF1, IDEF2, and OsHRZ2 are transcriptionally induced in response to Fe deficiency. Broken lines indicate putative pathways. Line colors indicate the type of regulation: black lines, transcriptional regulation; pink lines, IDEF1 protein degradation and its inhibition; red lines, unknown mechanism of regulation occurring primarily under Fe sufficiency, which may involve protein ubiquitination by OsHRZ2s; blue lines, putative Fe sensing by IDEF1 and OsHRZ2s via direct binding of Fe and other metals; green line, putative Fe sensing by IDEF2 through an unknown mechanism.

during Fe deficiency (Figure 3). Although it is not known whether IBP1.2 also inhibits IDEF1 degradation, IBP1.2 might also regulate IDEF1 function redundantly. Alternatively, IBP1.1 and IBP1.2 might participate in regulating IDEF1 function in different stages of Fe deficiency, because the Fe deficiency-induced expression of IBP1.1 and IBP1.2 shows different time-course properties; IBP1.1 expression is higher at day 1 of Fe deficiency compared with day 7, whereas IBP1.2 expression is higher at day 7 of Fe deficiency (Zhang et al. 2014).

Three basic helix-loop-helix transcription factors, OsIRO2, OsIRO3 and OsbHLH133, are involved in Fe deficiency response in rice (Figure 3) (Ogo et al. 2006, 2007, 2011; Zheng et al. 2010; Wang et al. 2013). These factors are transcriptionally induced under conditions of Fe deficiency; they have been found and characterized from the Fe deficiency-induced genes in microarray analyses (Ogo et al. 2006; Zheng et al. 2010; Wang et al. 2013). OsIRO2 is a positive regulator of most genes known to be involved in Fe(III)-DMA uptake and translocation (Table 1, Figure 3) (Ogo et al. 2007, 2011). Overexpression of OsIRO2 enhances DMA secretion (Ogo et al. 2007) and confers substantial tolerance to low Fe availability in calcareous soil, significantly improving both plant biomass and seed yield (Ogo et al. 2011). Expression of OsIRO2 itself is positively regulated by IDEF1, forming a transcriptional cascade enhancing the expression of genes involved in Fe(III)-DMA uptake and translocation (Figure 3) (Kobayashi et al. 2007, 2009). In contrast, OsIRO3 and OsbHLH133 are thought to negatively regulate Fe deficiency responses (Zheng et al. 2010; Wang et al. 2013). OsIRO3 overexpression lines suggest that this factor negatively regulates the Fe deficiency-inducible genes OsIRO2, OsNAS1, OsNAS2, OsYSL15, OsIRT1, and OsNRAMP1 (Zheng et al. 2010). However, OsIRO3 knockdown or knockout studies required to clarify the precise function of this protein have yet to be reported. Microarray results suggested that OsIRO3 expression may be positively regulated by IDEF1 (Table 1). OsbHLH133 negatively regulates Fe translocation from root to shoot (Wang et al. 2013). OsbHLH133 knockout mutants show slightly higher expression of some Fe deficiency-inducible genes, including OsNAS1, OsNAS2, TOM1, OsYSL15, OsNRAMP1, and OsYSL2, mainly under Fe-sufficient conditions (Wang et al. 2013).

DNA sequences specifically recognized by IDEF1, IDEF2, and OsIRO2 have been identified biochemically (Kobayashi et al. 2007; Ogo et al. 2006, 2008). Recent in silico prediction of cis-sequences over-represented in Fe deficiency-induced gene promoters revealed that the IDEF1-, IDEF2-, and OsIRO2-binding sequences are enriched within the 500-bp promoter regions of Fe deficiency-induced genes (Kakei et al. 2013; Ogo et al. 2014). The enrichment of IDEF1-binding sequences (the core sequence of which is
CATGC) is particularly remarkable, strongly suggesting the importance of IDEF1 in the Fe deficiency response. The simulation also predicted enrichment of novel candidate cis-sequences, such as ACCTAGGT (designated FAM1 for Fe deficiency-associated motif 1) and AGC-TAGCT (designated DCEp1 for putative downstream core element 1), as well as common regulatory sequences, such as TATA-box and upstream TFIIB-recognition elements near the transcription start sites of Fe deficiency-inducible genes (Kakei et al. 2013). Regulatory proteins interacting with these sequences may play important roles in Fe deficiency responses.

IDEF1 binds ferrous Fe and other divalent metals, such as zinc (Zn) and nickel, via its histidine-asparagine repeats and proline-rich regions (Kobayashi et al. 2012). In rice, deletion of these metal-binding regions abolishes the ability of overexpressed IDEF1 to transactivate downstream genes during the early stages of Fe deficiency (Kobayashi et al. 2012). These results suggest that IDEF1 may function as a sensor of Fe deficiency, in which the signal detection may be determined by the relative concentrations of Fe vs. other metals.

Recently, another kind of Fe-binding regulators, OsHRZ1 and OsHRZ2, have been identified (Kobayashi et al. 2013) from the Fe deficiency-induced genes listed in previous microarray analysis (Ogo et al. 2006). OsHRZ1 and OsHRZ2 share hemerythrin domains that bind Fe and Zn (Kobayashi et al. 2013), suggesting that they are candidate Fe sensors. OsHRZ1 and OsHRZ2 also possess protein ubiquitination activity presumably mediated by RING Zn-finger domains, which are deduced to be in-
corporator treatment enhances the expression of OsNAS1, OsNAS2, OsYSL15, and OsIRT1 under both Fe sufficiency and deficiency, and this enhancement may be mediated by the OsIRO2 pathway (Wu et al. 2011). Knockout of a transcription factor involved in auxin response, OsARF12, also affects expression of some Fe deficiency-induced genes including OsIRT1 in roots (Qi et al. 2011). Gibberellin and jasmonic acid induce OsIRO2 and IBP1 expression, respectively (Komatsu and Takasaki 2009; Yoshii et al. 2010). A jasmonic acid-induced receptor-like protein (OsRMC) that negatively regulates jasmonic acid-mediated root development (Jiang et al. 2007) has recently been identified as a positive regulator of the Fe deficiency-
inducible genes including OsIRT1 in roots (Yang et al. 2013). OsRMC expression is transcriptionally induced by jasmonic acid and during the early stages of Fe deficiency, but is repressed under prolonged Fe deficiency (Table 1) (Jiang et al. 2007; Yang et al. 2013). On the other hand, some IDEF1-induced genes activated in later stages of Fe deficiency are also regulated by abscisic acid (Kobayashi et al. 2009). In fact, IDEF1 belongs to the ABI3 (B3) transcription factor family, involved in mediating the abscisic acid response (Kobayashi et al. 2007).

In Strategy-I plants, systemic Fe signal derived from shoots is thought to determine whether Fe deficiency response in roots takes place (Giehl et al. 2009; García
et al. 2013). This signal is proposed to be transmitted from shoot to root via phloem, locating upstream of the induction system of Fe deficiency-responsive gene expression mediated by auxin and ethylene (García et al. 2013). Mechanism of this systemic regulation is less understood in rice, although the existence of similar regulation has been suggested (Enomoto et al. 2009). Thus, the Fe deficiency response is a complicated process that reflects various input signals to maintain adequate amounts of available Fe for cellular activities.

Conclusions

Rice responds to low Fe availability by inducing enzymes, transporters, and regulators that participate in Fe uptake from the rhizosphere and Fe translocation within the plant body. Recent studies demonstrated that rice utilizes both classical DMA-based Fe uptake and direct Fe2+ uptake. Research has also elucidated the function of DMA in internal Fe translocation, in addition to its known role in Fe uptake. The differential spatial expression of genes responsible for Fe uptake and translocation in response to Fe deficiency is highly coordinated and is well correlated with their physiological functions. In addition to positive regulation of these genes at the transcriptional level, negative regulation at both the transcriptional and translational levels may also function in fine tuning the Fe deficiency response. Although the Fe-sensing mechanism remains unclear, further characterization of IDEF1 and OsHRZs may in fact consolidate their respective roles as Fe sensors. Despite these advances in our understanding, a potentially large proportion of the molecules involved in intercellular and subcellular Fe movement have not yet been identified. Further investigation into these issues will help to develop novel tools for producing Fe-efficient and Fe-fortified crops with increased versatility.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

TK and RNI analyzed the microarray data. TK wrote the manuscript with critical revision by RNI and NKN. All of the authors read and approved the manuscript.

Acknowledgments

This research was supported by the Japan Science and Technology Agency via grants awarded through the PRESTO program (to TK) and the ALCA program (to NKN). NKN also received a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology (#23248011).

References

Bashir K, Inoue H, Nagasaka S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2006) Cloning and characterization of deoxymugineic acid synthase genes from graminaceous plants. J Biol Chem 343:2395–3420
Bashir K, Ishimaru Y, Shimo H, Kaike Y, Senoura T, Takahashi R, Sato Y, Sato Y, Uozumie N, Nakanishi H, Nishizawa NK (2011a) Rice phenolics efflux transporter 2 (PEZZ) plays an important role in solubilizing apoplastic iron. Soil Sci Plant Nutr 57:803–812
Bashir K, Ishimaru Y, Shimo H, Nagasaka S, Fujimoto M, Takahashi H, Tsutsumi N, An G, Nakanishi H, Nishizawa NK (2011b) The rice mitochondrial iron transporter is essential for plant growth. Nat Commun 3:232
Bashir K, Nozoe T, Ishimaru Y, Nakanishi H, Nishizawa NK (2013) Exploiting new tools for iron bio-fortification of rice. Biotechnol Adv 31:1624–1633
Cheng L, Wang F, Shou H, Huang F, Zheng L, He F, Li J, Zhao FJ, Ueno D, Ma JF, Wu P (2007) Mutation in nicotianamine aminotransferase stimulated the Fe (II) acquisition system and led to iron accumulation in rice. Plant Physiol 145:1647–1657
Curie C, Cassin G, Couch D, Divol F, Higuchi K, Le Jean M, Misson J, Schikora A, Czernic P, Mari S (2009) Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Annals Bot 103:1–11
Enomoto Y, Hashida S, Shoji K, Shimada H, Yoshihara T, Goto F (2009) Expressions of iron uptake genes in roots are affected by long-distance signals both in non-graminaceous and in graminaceous plants. In: Proceedings of XVI International Plant Nutrition Colloquium, p Paper 1209
Enstone DE, Peterson CA, Ma F (2002) Root endodermis and exodermis: structure, function, and responses to the environment. J Plant Growth Regul 21:335–351
Fourcroy P, Síos-Terraça P, Suder D, Sabréon M, Reyn G, Guymand F, Abadia A, Abadia J, Álvarez-Fernández A, Briat JF (2014) Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency. New Phytol 201:155–167
García MJ, Romera FJ, Stacey MG, Stacey G, Villar E, Alcántara E, Pérez-Vicente R (2013) Shoot to root communication is necessary to control the expression of iron-acquisition genes in Strategy I plants. Planta 237:655–75
Giehl RFH, Meda AR, von Wirén N (2009) Moving up, down, and everywhere: signaling of micronutrients in plants. Crit Opin Plant Biol 12:320–327
Hell R, Stephan LW (2003) Iron uptake, trafficking and homeostasis in plants. Plant J 34:541–551
Higuchi K, Suzuki K, Nakanishi H, Yamaguchi H, Nishizawa NK, Mori S (1999) Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiol 119:471–479
Higuchi K, Watanabe S, Takahashi M, Kawasaki S, Nakanishi H, Nishizawa NK, Mori S (2001) Nicotianamine synthase gene expression differs in barley and rice under Fe-deficient conditions. J Biol Chem 276:6621–6631
Inoue H, Higuchi K, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2003) Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron. Plant J 36:366–381
Inoue H, Suzuki M, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2004) A rice FRD3-like (OsFRD1L) gene is expressed in the cells involved in long-distance transport. Soil Sci Plant Nutr 50:1133–1140
Inoue H, Takahashi M, Kobayashi T, Suzuki M, Nakanishi H, Mori S, Nishizawa NK (2008) Identification and localisation of the rice nicotianamine aminotransferase gene OsNAT1 expression suggests the site of phytosiderophore synthesis in rice. Plant Mol Biol 66:193–203
Inoue H, Kobayashi T, Nozoe T, Takahashi M, Kaike Y, Suzuki K, Nakazono M, Nakanishi H, Mori S, Nishizawa NK (2009) Rice OsYSL15 is an iron-regulated iron(II)-deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings. J Biol Chem 284:3740–3749
Ishikawa S, Ishimaru Y, Ijima M, Kuramata A, Abe T, Senoura T, Hase Y, Arai Y, Nishizawa NK, Nakanishi H (2012) Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice. Proc Natl Acad Sci U S A 109:19166–19171
Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T, Wada Y, Watanabe S, Matsushima S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2006) Rice plants take up iron as an Fe2+-phytosiderophore and as Fe3+. Plant J 45:335–346
Ishikawa Y, Masuda H, Bashir K, Inoue H, Tsukamoto T, Takahashi M, Nakanishi H, Aoki N, Hirose T, Ohsubi R, Nishizawa NK (2010) Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese. Plant J 62:379–390
Ishimaru Y, Takahashi R, Bashir K, Shimo H, Senoura T, Sugimoto K, Naka K, Yano M, Ishikawa S, Arai T, Nakashima H, Nishizawa N (2012) Characterizing the role of rice NRAMPs in manganese, iron and cadmium transport. Sci Rep 2:286
Kobayashi T, Nagasaka S, Bashir K, Takahashi M, Kobayashi T, Nakanishi H, Nishizawa NK (2011) Development of a novel prediction method of rice leaf sheath encodes basic helix–loop–helix transcription factor. Amino Acids 42:231–238
Lee S, Chiecko JC, Kim SA, Walker EL, Lee Y, Guerinot ML, An G (2009) Disruption of OsYSL5 leads to iron inefficiency in rice plants. Plant Physiol 150:786–800
Lee S, Ryoo N, Jeon JS, Guerinot ML, An G (2012) Activation of rice Yellow Stripe-like 16 (OsYSL16) enhances iron efficiency. Mol Cell 33:117–126
Long TA, Tsukagoshi H, Busch W, Lahner B, Salt D, Benfey PN (2010) The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots. Plant Cell 22:2219–2236
Marschner H (1995) Mineral Nutrition of Higher Plants, 2nd edn. Academic press, London
Masuda H, Aung MS, Nishizawa NK (2013) Iron biofortification of rice using different transgenic approaches. Rice 6:40
Mori S, Nishizawa N (1987) Methionine as a dominant precursor of phytosiderophores in Graminaceous plants. Plant Cell Physiol 28:1081–1092
Mori S, Nishizawa N, Hayashi H, Chino M, Yoshimura E, Ishihara J (1991) Why are young rice plants highly susceptible to iron deficiency? Plant Soil 130:143–156
Morrissey J, Baxter IR, Lee J, Li L, Lahner B, Grotz N, Kaplan J, Salt DE, Guerinot ML (2009) The ferroporin metal efflux proteins function in iron and cobalt homeostasis in Arabidopsis. Plant Cell 21:3326–3338
Nakanishi H, Yamaguchi H, Sasakuma T, Nishizawa N, Mori S (2002) Two diacygenase genes, Ids3 and Ids2, from Hordeum vulgare are involved in the biosynthesis of mugineic acid family phytosiderophores. Plant Mol Biol 44:199–207
Nishizawa NK (2006) Isolation and characterization of IRO2, a novel iron-responsive element 2 regulates the genes involved in iron homeostasis in plants. Plant Cell Physiol 53:207–213
Nishizawa NK (2008) A novel NAC transcription factor IDEF2 that recognizes iron-deficiency-responsive elements. J Exp Bot 59:393–400
Nishizawa NK (2009) A highly sensitive, quick, and simple quantification method for nicotianamine and 2′-deoxymugineic acid from minimum samples using LC/ESI-TOF-MS achieves functional analysis of these components in plants. Plant Cell Physiol 50:1988–1993
Nishizawa NK (2004) Construction of artificial promoters highly responsive to iron deficiency. Soil Sci Plant Nutr 50:1167–1175
Nishizawa NK (2005) Expression of iron-acquisition-related genes in iron-deficient rice is co-ordinately induced by partially conserved iron-deficiency-responsive elements. J Exp Bot 56:1305–1316
Nishizawa NK (2007) The transcription factor IDE1 regulates the response to and tolerance of iron deficiency in plants. Proc Natl Acad Sci U S A 104:19149–19154
Nishizawa NK (2008) Activation of rice leaf sheath encodes basic helix–loop–helix transcription factor. Amino Acids 42:231–238
Nishizawa NK (2010) Iron uptake, translocation, and regulation in rice. Plant Physiol 150:786–2465
Nishizawa NK (2011) Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. J Biol Chem 286:5446–5454
Nishizawa NK (2014) The rice transcription factor IDEF1 directly binds to iron and other divalent metals for sensing cellular iron status. Plant J 69:81–91
Nishizawa NK (2003) Diurnal changes in the expression of genes that participate in phytosiderophore synthesis in rice. Soil Sci Plant Nutr 50:1125–1131
Nishizawa NK, Mori S (2007) The particular vesicle appearing in barley root cells and its relation to mugineic acid secretion. J Plant Nutr 10:1013–1020
Ogo Y, Itai RN, Nagasaka S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2004) Diurnal changes in the expression of genes that participate in phytosiderophore synthesis. Plant Physiol 137:642–654
Ogo Y, Itai RN, Nakanishi H, Inoue H, Kobayashi T, Suzuki M, Takahashi M, Mori S, Nishizawa NK (2006) Isolation and characterization of IRO2, a novel iron-regulated bHLH transcription factor in graminaceous plants. J Exp Bot 57:2867–2879
Qi YH, Wang SK, Shi CJ, Zhang SN, Chen Y, Xu Y, Liu Y, Wu YR, Jiang DA (2011) OsARF12, a transcription activator on auxin response gene, regulates root elongation and affects iron accumulation in rice (Oryza sativa). New Phytol 193:109–118
Sakata K, Sasaki T, Kikuchi S, Mori S, Nishizawa NK, Ishihara J (2002) cDNA microarray analysis of gene expression during Fe-deficiency stress in barley suggests that polar transport of vesicles is implicated in phytosiderophore secretion in Fe-deficient barley roots. Plant J 30:83–94
Shindo Y, Kato M, Nagata S, Yasunaga S, Yoneyama T (2012) Identification of Zn-nicotianamine and Fe-2′-deoxymugineic acid in the phloem sap from rice plants (Oryza sativa L.). Plant Cell Physiol 53:381–390
Nishizawa N, Mori S (2007) The particular vesicle appearing in barley root cells and its relation to mugineic acid secretion. J Plant Nutr 10:1013–1020
Osake T, Itai RN, Nagasaka S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2004) Diurnal changes in the expression of genes that participate in phytosiderophore synthesis in rice. Soil Sci Plant Nutr 50:1125–1131
Osake T, Nagasaka S, Kobayashi T, Takahashi M, Sato Y, Uozumi N, Nakanishi H, Nishizawa NK (2011) Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. J Biol Chem 286:5446–5454
Ogo Y, Itai RN, Nakanishi H, Inoue H, Kobayashi T, Suzuki M, Takahashi M, Mori S, Nishizawa NK (2006) Isolation and characterization of IRO2, a novel iron-regulated bHLH transcription factor in graminaceous plants. J Exp Bot 57:2867–2879
Ogo Y, Itai RN, Nakanishi H, Inoue H, Kobayashi T, Suzuki M, Takahashi M, Mori S, Nishizawa NK (2005) Isolation and characterization of IRO2, a novel iron-regulated bHLH transcription factor in graminaceous plants. J Exp Bot 57:2867–2879
Römheld V, Marschner H (1986) Evidence for a specific uptake system for iron phytosiderophore in roots of grasses. Plant Physiol 80:175–180
Sasaki A, Yamaji N, Yokosho K, Ma JF (2012) NrAMP5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 24:2155–2167
Schmid NB, Geiß RH, Döll S, Mock HP, Strehmel S, Schell D, Kong X, Hider RC, von Wirén N (2014) Feruloyl-CoA 6′-hydroxylase-dependent coumarins mediate iron acquisition from alkaline substrates in Arabidopsis. Plant Physiol 164:160–172
Shogima S, Nishizawa NK, Fushiya S, Nozoe S, Kumashiro T, Nagata T, Ohata T, Mori S (1989) Biosynthesis of nicotianamine in the suspension-cultured cells of tobacco (Nicotiana megasiphon). Bio Metall 2:142–145
Shogima S, Nishizawa NK, Fushiya S, Nozoe S, Irfune T, Mori S (1990) Biosynthesis of phytosiderophores: in vitro biosynthesis of 2′-deoxymugineic acid from L-methionine and nicotianamine. Plant Physiol 93:1497–1503
Takagi S (1976) Naturally occurring iron-chelating compounds in oat- and rice-root washing. I. Activity measurement and preliminary characterization. Soil Sci Plant Nutr 22:423–433
Takagi S, Nomoto K, Takemoto S (1984) Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plants. J Plant Nutr 7:469–477
Takahashi M, Yamaguchi H, Nakanishi H, Shioiri T, Nishizawa NK, Mori S (1999) Cloning two genes for nicotianamine aminotransferase, a critical enzyme in iron acquisition (Strategy II) in graminaceous plants. Plant Physiol 121:947–956
Takahashi R, Ishimaru Y, Senoura T, Shimo H, Ishikawa S, Arai T, Nakanishi H, Nishizawa NK (2011) The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. J Exp Bot 62:4843–4850
Wang L, Ying Y, Narsai R, Ye L, Zheng L, Tran J, Whelan J, Shou H (2013) Identification of OsIbHLH133 as a regulator of iron distribution between roots and shoots in Oryza sativa. Plant Cell Environ 36:224–236
Wu J, Wang C, Zheng L, Wang L, Chen Y, Whelan J, Shou H (2011) Ethylene is involved in the regulation of iron homeostasis by regulating the expression of iron-acquisition-related genes in Oryza sativa. J Exp Bot 62:667–674
Yang A, Li Y, Xu Y, Zhang WH (2013) A receptor-like protein RMC is involved in regulation of iron acquisition in rice. J Exp Bot 64:5009–5020
Yokosho K, Yamaji N, Yokosho S, Nozoe S, Irfune T, Mori S (1990) Biosynthesis of phytosiderophores: in vitro biosynthesis of 2′-deoxymugineic acid from L-methionine and nicotianamine. Plant Physiol 93:1497–1503
Yokosho K, Yamaji N, Ueno D, Mitani N, Ma JF (2009) OsFRDL1 is a citrate transporter required for efficient translocation of iron in rice. Plant Physiol 149:297–305
Yoshii M, Yamazaki M, Rakvål R, Nishizawa NK, Miyao A, Hirochika H (2010) The NAC transcription factor RIM1 of rice is a new regulator of jasmonate signaling. Plant J 61:804–815
Yoshino M, Murakami K (1998) Interaction of iron with polyphenolic compounds: application to antioxidant characterization. Anal Biochem 257:40–44
Zhang Y, Xu YH, Yi HY, Gong JM (2012) Vacuolar membrane transporters OSWIT1 and OSWIT2 modulate iron translocation between flag leaves and seeds in rice. Plant J 72:400–410
Zhao L, Itai RN, Tamakawa T, Nakanishi H, Nishizawa NK, Kobayashi T (2014) The Bowman-Birk trypsin inhibitor IBP1 interacts with and prevents degradation of DFE1 in rice. Plant Mol Biol Rep 32:841–851
Zheng L, Ying Y, Wang L, Wang F, Whelan J, Shou H (2010) Identification of a novel iron regulated basic helix-loop-helix protein involved in Fe homeostasis in Oryza sativa. BMC Plant Biol 10:166
Zheng L, Yamaji N, Yokosho K, Ma JF (2012) YSL16 is a phloem-localized transporter of the copper-nicotianamine complex that is responsible for copper distribution in rice. Plant Cell 24:3767–3782

Cite this article as: Kobayashi et al.: Iron deficiency responses in rice roots. Rice 2014 7:27.

Submit your manuscript to a SpringerOpen journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at → springeropen.com