RESTRICTED INVERTIBILITY OF CONTINUOUS MATRIX FUNCTIONS

ADRIAN FAN, JACK MONTEMURRO, PAVLOS MOTAKIS, NAINA PRAVEEN, ALYSSA RUSONIK, PAUL SKOUFRANIS AND NOAM TOBIN

Abstract. Motivated by an influential result of Bourgain and Tzafriri, we consider continuous matrix functions $A : \mathbb{R} \to M_{n \times n}$ and lower ℓ_2-norm bounds associated with their restriction to certain subspaces. We prove that for any such A with unit-length columns, there exists a continuous choice of subspaces $t \mapsto U(t) \subset \mathbb{R}^n$ such that for $v \in U(t)$, $\|A(t)v\| \geq c\|v\|$ where c is some universal constant. We provide two methods. The first relies on an orthogonality argument and it yields an optimal asymptotic dependence for $\dim(U(t))$ on n and $\sup_{t \in \mathbb{R}} \|A(t)\|$ but it does not preserve any structure for $U(t)$. The second is probabilistic and combinatorial in nature and it does not yield the optimal bound for $\dim(U(t))$ but the $U(t)$ obtained in this way are guaranteed to have a canonical representation as joined-together spaces spanned by subsets of the unit vector basis.

Mathematics subject classification (2020): 46B07, 46B20, 47A68, 15A09.

Keywords and phrases: Restricted invertibility, continuous matrix functions.

REFERENCES

[1] S. N. AFRIAT, Orthogonal and oblique projectors and the characteristics of pairs of vector spaces, Proc. Cambridge Philos. Soc. 53: 800–816, 1957.

[2] J. ANDERSON, Extensions, restrictions, and representations of states on C*-algebras, Trans. Amer. Math. Soc. 249 (2): 303–329, 1979.

[3] A. D. ANDREW, Perturbations of Schauder bases in the spaces $C(K)$ and L^p, $p > 1$, Studia Math. 65 (3): 287–298, 1979.

[4] J. BOURGAIN and S. J. SZAREK, The Banach-Mazur distance to the cube and the Dvoretzky-Rogers factorization, Israel J. Math. 62 (2): 169–180, 1988.

[5] J. BOURGAIN and L. TZAFIRI, Invertibility of “large” submatrices with applications to the geometry of Banach spaces and harmonic analysis, Israel J. Math. 57 (2): 137–224, 1987.

[6] J. BOURGAIN and L. TZAFIRI, Restricted invertibility of matrices and applications, in Analysis at Urbana, vol. II (Urbana, IL, 1986–1987), vol. 138 of London Math. Soc. Lecture Note Ser., pages 61–107, Cambridge Univ. Press, Cambridge, 1989.

[7] J. BOURGAIN and L. TZAFIRI, On a problem of Kadison and Singer, J. Reine Angew. Math. 420: 1–43, 1991.

[8] P. G. CASAZZA and J. C. TREMAIN, Revisiting the Bourgain-Tzafriri restricted invertibility theorem, Oper. Matrices 3 (1): 97–110, 2009.

[9] Y. DAI, A. HORE, S. JIAO, T. LAN, and P. MOTAKIS, Continuous factorization of the identity matrix, Involve 13 (1): 149–164, 2020.

[10] R. V. KADISON and I. M. SINGER, Extensions of pure states, Amer. J. Math. 81: 383–400, 1959.

[11] N. J. LAUSTSEN, R. LECHNER, and P. F. X. MÜLLER, Factorization of the identity through operators with large diagonal, J. Funct. Anal. 275 (11): 3169–3207, 2018.

[12] R. LECHNER, Factorization in mixed norm Hardy and BMO spaces, Studia Math. 242 (3): 231–265, 2018.

[13] R. LECHNER, P. MOTAKIS, P. F. X. MÜLLER, and TH. SCHLUMPRECHT, Strategically reproducible bases and the factorization property, Israel J. Math. 238 (1): 13–60, 2020.

[14] R. LECHNER, P. MOTAKIS, P. F. X. MÜLLER, and TH. SCHLUMPRECHT, The factorisation property of $\ell^p(X_k)$, Math. Proc. Cambridge Philos. Soc. 171 (2): 421–448, 2021.
[15] S. J. Leon, Linear algebra with applications, Macmillan, Inc., New York; Collier-Macmillan Publishers, London, 1980.

[16] A. W. Marcus, D. A. Spielman, and N. Srivastava, Interlacing families II: Mixed characteristic polynomials and the Kadison-Singer problem, Ann. of Math. (2), 182 (1): 327–350, 2015.

[17] Adam W. Marcus, Daniel A. Spielman, and Nikhil Srivastava, Interlacing families III: Sharper restricted invertibility estimates, Israel J. Math. 247 (2): 519–546, 2022.

[18] A. Naor and P. Youssef, Restricted invertibility revisited, in A journey through discrete mathematics, pages 657–691, Springer, Cham, 2017.

[19] N. Sauer, On the density of families of sets, J. Combinatorial Theory Ser. A, 13: 145–147, 1972.

[20] D. A. Spielman and N. Srivastava, An elementary proof of the restricted invertibility theorem, Israel J. Math. 190: 83–91, 2012.

[21] R. Vershynin, John’s decompositions: selecting a large part, Israel J. Math. 122: 253–277, 2001.