Acaricidal activity and chemical composition of essential oil derived from the *Albizia julibrissin* barks

Jun-Hwan Park1 · Sang-Guei Lee2 · Jeong-Moon Kim3 · Hoi-Seon Lee1

Received: 17 February 2016 / Accepted: 9 March 2016 / Published Online: 30 June 2016
© The Korean Society for Applied Biological Chemistry 2016

Abstract The chemical compositions of the essential oil extracted from *Albizia julibrissin* barks were analyzed by Gas chromatography-Mass spectrometry spectrometry. Fourteen components were identified, representing 89.23% of the total oil composition. The analysis of the essential oil revealed that the essential oil contains 14 compounds, accounting for 89.23% of the total oil. Hexanoic acid was the principal component (41.43%) of the essential oil, followed by 4,4,6-trimethyl-cyclohex-2-en-1-ol (11.16%), palmic acid (9.00%), 2-pentylfuran (5.66%), 2-butyl-2-octenal (4.12%), linoleic acid (3.10%), amyl hexanoate (3.01%), linalool (2.55%), 2-hexylthiophene (2.47%), caprylic acid (2.13%), δ-undecalactone (1.52%), heptanoic acid (1.27%), 3,5-octadien-2-ol (0.99%), and 2-octenal (0.88%). The acaricidal activity of the *A. julibrissin* oil was tested against *Dermatophagoides farinae*, *D. pteronyssinus* and *Tyrophagus putrescentiae* by the fumigant bioassay. Based on the LD50 values, the essential oil exhibited strong acaricidal activities against *D. farinae* (LD50, 4.88 µg/cm²), *D. pteronyssinus* (2.44 µg/cm²), and *T. putrescentiae* (1.22 µg/cm²). These results indicate that *A. julibrissin* oil could be a source of acaricidal agents for mite control.

Keywords Acaricidal activity · *Albizia julibrissin* · *Dermatophagoides farinae* · *Tyrophagus putrescentiae*

House dust mites (*Dermatophagoides farinae* and *D. pteronyssinus*) have been recognized as a main cause of allergic dermatitis and rhinitis (Stewart 1995). Exposure to mite allergen, particularly in atopic children, is connected with the development of sensitization to some allergens (Arbes et al. 2003). The allergenic role of the stored food mites, *Tyrophagus putrescentiae*, is a significant inducer of allergens (allergic asthma and rhinitis) among industrial food workers and farmers (Marx et al. 1993). Current chemicals for mite control primarily use synthetic acaricides, avermectins and benzyl benzoate. However, some mite species have become resistant to these synthetic acaricides in the consequence of repeated exposure (Foil et al. 2004). Thus, there is a clear need for efficient alternatives to synthetic acaricide for the control of stored food mites and house dust mites (Erdal and Kamuran 2010). Plant oils and microbial secondary metabolites may provide potential alternative sources to acaricidal agents, because they contain a rich array of active chemicals (Cavalcanti et al. 2010).

Albizia cortex, the stem bark of *Albizia julibrissin* Durazz (Leguminosae), is known as traditional Chinese medicine (Han et al. 2008). *Albiziae* cortex is popularly used as sedative and anti-inflammatory agents to treat injuries and remove carbuncles (Han et al. 2008). Recently, it was reported to exhibit various pharmacological activities such as antitumor and antagonic actions against PAF receptor (Kokila et al. 2013). To the best of our knowledge, the acaricidal activity of the essential oil extracted from the *A. julibrissin* barks against stored food mites and house dust mites has not been reported in literature. Therefore, the purpose of this study was to investigate the chemical composition of the essential oil of the *A. julibrissin* barks and its acaricidal activity against stored food mites and house dust mites.

Plant materials

The stem barks of *A. julibrissin* Durazz (Leguminosae) were purchased from the local market in Jeonju, Korea, in August 2015. A voucher specimen was authenticated by Prof. Jeongmoon Kim and deposited in the herbarium at Department of Landscape Architecture, Chonbuk National University, Korea. The essential
oil of the *A. julibrissin* barks was extracted from the dry stem barks by the steam distillation extraction method (Yang and Lee 2013).

Essential oil prepared
The essential oil of the *A. julibrissin* barks was isolated by hydrodistillation using a modified Clevenger-type apparatus for 8 h (Kingston and Jassie 1988). The essential oil was dried over anhydrous sodium sulfate, affording the pure essential oil. The essential oil of the *A. julibrissin* barks was then concentrated in vacuo at 30 °C, affording the desired oil in 0.075 % yield.

Mite
The cultures of *D. farinae*, *T. putrescentiae*, and *D. pteronyssinus* have been maintained in the laboratory for seven years without exposure to any known mite control agent. They were reared in containers (16×13×5 cm) containing 32 g of diet (fry feed no. 1/dried yeast, 1:1, wt/wt) at 24±1 °C and 73 % relative humidity in darkness. The fry feed was obtained from Korea Special Feed Meal Co. Ltd. (Jeonju, Korea).

Gas chromatography-Mass spectrometry (GC-MS)
Analytical GC analysis was carried out using a Hewlett-Packard HP 6890 (Agilent Technologies, Palo Alto, CA, USA) Series GC equipped with a flame ionization detection detector and a DB-5 fused silica column (30 m 0.25 mm i.d., 0.25 µm film thickness, J&W Scientific, Folsom, CA, USA); column temperature, 51–201 °C at 1.8 °C/min; injector temperature, 211 °C; split ratio, 49:1; carrier gas, He at 0.75 mL/min; ionization potential, 70 eV; ion source temperature, 232 °C; mass range, 50–601 mui. The components of essential oil were identified by comparing the retention times, indices, and mass spectra in the mass spectra library (The Wiley Registry of Mass Spectral Data, 8th edition).

Acaricidal activity and statistical analysis
Fumigant bioassay was used to access the acaricidal activity of the essential oil against *D. pteronyssinus*, *D. farina* and *T. putrescentiae*. Each test sample with an amount of 40, 20, 10, 5, 2.5, 1.25, and 0.50 µg/cm³ was applied to a paper disc (Advantec, 8 mm diameter, 1 mm thickness, Tokyo, Japan) in acetone. The same dose of acetone was used as the negative control, and benzyl benzoate was used as the positive control. After air-drying in a fume hood for 7 min, each paper disc was placed on the cap of a microtube (5 mL, Greiner bio-one GmbH, Frickenhausen, Germany). Batches of 35 adult mites (7–10-days-old) were placed in each microtube (10 mL) and exposed to a period of 24 h. Experiments were conducted at 26±1 °C and 73 % relative humidity in darkness. Mites were considered dead if they did not move when pierced with a fine pin. All treatments were replicated three times. The LD₅₀ values were analyzed using the probit analysis. Mortality (%) was transformed by the analysis of variance. Treatment means were separated using Scheffe’s test at *p* <0.05.

The yield of essential oil extracted from the *A. julibrissin* barks is 0.075 % by steam distillation. The chemical compositions of the essential oil were analyzed by GC-MS. The analysis of the essential oil of the *A. julibrissin* barks revealed that the essential oil contains 14 compounds, accounting for 89.23 % of the total oil (Table 1). Hexanoic acid was the principal component (41.43 %)

| Table 1 Chemical composition of the essential oil of the *Albizziae julibrissin* barks |
|---|---|---|---|
| Retention time (min) | Constituents | RI¹ | Mass spectra (m/z) | Relative amount (%) |
| 5.988 | 2-Pentylfuran | 1040 | 46, 53, 47, 81, 95, 109, 123, 138 | 5.66 |
| 6.771 | Hexanoic acid | 974 | 27, 41, 60, 73, 89 | 41.43 |
| 6.881 | 3,5-Octadien-2-ol | 995 | 41, 55, 69, 97, 111, 112, 126 | 0.99 |
| 7.235 | 2-Octenal | 1013 | 27, 29, 55, 70, 84, 98 | 0.88 |
| 7.849 | Heptanoic acid | 1073 | 27, 41, 60, 73, 87, 101, 113, 131 | 1.27 |
| 9.161 | 6-Undecylactone | 1503 | 27, 41, 69, 71, 84, 99, 114, 148, 166 | 1.52 |
| 9.388 | Caprylic acid | 1173 | 38, 41, 60, 73, 84, 101, 115, 127, 144 | 2.13 |
| 10.886 | 2-Hexylthiophene | 1292 | 28, 39, 58, 71, 97, 98, 112, 139, 168 | 2.47 |
| 11.130 | Amyl hexanoate | 1282 | 27, 41, 43, 60, 70, 87, 99, 117 | 3.01 |
| 11.616 | (E,E)-2,4-Decadienal | 1220 | 51, 55, 67, 81, 95, 152 | 2.49 |
| 12.068 | 4,4,6-Trimethyl-cyclohex-2-en-1-ol | 1085 | 41, 69, 83, 84, 98, 125, 140 | 11.16 |
| 12.474 | 2-Butyl-2-octenal | 1388 | 27, 41, 55, 69, 83, 95, 111, 125, 139, 140, 182 | 4.12 |
| 10.835 | Palmitic acid | 1968 | 27, 41, 43, 60, 73, 85, 98, 115, 129, 157, 171, 185, 213, 227, 256 | 9.00 |
| 21.328 | Linoleic acid | 2183 | 27, 41, 55, 67, 81, 95, 109, 123, 136, 150 | 3.10 |

¹RI, Kovat’s index of retention
of the essential oil, followed by 4,4,6-trimethyl-cyclohex-2-en-1-
ol (11.16 %), palmitic acid (9.00 %), 2-pentylfluran (5.66 %), 2-
butyl-2-octen-1-ol (4.12 %), limoleic acid (3.10 %), amyl hexanoate
(3.01 %), (E,E)-2,4-decadienal (2.49 %), 2-hexylthiophene (2.47 %),
caprylic acid (2.13 %), δ-undecalactone (1.52 %), heptanoic acid
(1.27 %), 3,5-octadien-2-ol (0.99 %), and 2-octenal (0.88 %).
Significant proportions of fatty acyl group (64.94 %) were present
in the sample (amyl hexanoate, caprylic acid, (E,E)-2,4-
decadienal, hexanoic acid, heptanoic acid, limoleic acid, 3,5-
octadien-2-ol, palmitic acid and δ-undecalactone). Previous studies
have reported saponins, glycosides, flavonoids, lignans, and
phenolic triterpenes as the phytochemical components of Azadirachta
julibrissin barks (Chen and Zhang 1997; Kang et al. 2000; Jung et
al. 2004; Won et al. 2006).

The acaricidal activity of the A. julibrissin oil against house
dust mites (D. farinae and D. pteronyssinus) and stored food mites
(T. putrescentiae) was evaluated by the fumigant bioassay and
compared to that of synthetic acaricide, benzyl benzoate (Table 2).
The LD_{50} values of the essential oil obtained from the A. julibrissin
barks were 4.88, 2.44, and 1.22 µg/cm² against D. farinae, D. pteronyssinus, and T. putrescentiae, respectively. Based on the
LD_{50} values against D. farinae, the A. julibrissin oil was circa 1.83 times more effective than benzyl benzoate (8.94 µg/cm²).
Against D. pteronyssinus, the A. julibrissin oil was circa 2.96 times more effective than benzyl benzoate (7.22 µg/cm²). In the case of T. putrescentiae, the A. julibrissin oil was circa 8.6 times more effective than benzyl benzoate (10.48 µg/cm²). These results indicate that the stored food mite is more sensitive than house dust mites to the A. julibrissin oil. These results exhibited the differences of the acaricidal activity on the species of insects. Actually, species-specific differences have been studied for a variety of mite species (Won et al. 2006). In 2003, Jung et al. (2003) reported that the methanol extract of the A. julibrissin exhibited strong antioxidant activity. Furthermore, the butanol extract from the A. julibrissin barks exhibited significant inhibitory activity against human tumor cell lines (Zheng et al. 2006). Previous studies have reported that the main compound of A. julibrissin, hexanoic acid, has the fumigant activity to Drosophila melanogaster (Dettmer et al. 1992). Moreover, Kumar et al. (2010) suggested that the palmitic acid showed antioxidant, hypocholesterolemic nematicide, and pesticide activities. This study is, to our knowledge, the first to study the acaricidal function of A. julibrissin oil against house dust mites and stored food mites.

The acaricidal activity may be attributed to the presence of components found in the A. julibrissin oil, hexanoic and palmitic acids. However, the relationship between chemical composition and acaricidal activity has not been assessed in literature. Therefore, further research is needed to understand the relationship between the acaricidal activity and isolated component. Our results indicate that the essential oil of the A. julibrissin barks can be potentially used as a source of natural mite control agents.

Acknowledgments This work was carried out with the support of “Cooperative Research Program for Agriculture Science & Technology Development (Project title: Development of crop pest management techniques using the functional materials derived from Coriandrum sativum and Valeriana fauriei, Project No. PJ011983022016)” Rural Development Administration, Republic of Korea.

References

Arbes SJ, Cohn RD, Yin M, Muilenberg ML, Burge HA, Friedman W, Zeldin DC (2003) House dust mite allergen in US beds: Results from the first national survey of lead and allergens in housing. J Allergy Clin Immun 111: 408–414

Cavalcani SCH, Niculau ES, Blank AF, Camara CAG, Araujo IN, Alves PB (2010) Composition and acaricidal activity of Lippia sidoides essential oil against two-spotted spider mite (Tetranychus urticae Koch). Bioresource Technol 101: 829–832

Chen SP, Zhang RY (1997) Studies on the triterpene sapogenin from Albizia Cortex. Acta Pharmaceutica Sinica 32: 144–147

Dettner K, Fettkether R, Ansteeg O, Liepert C, Petersen, Haslinger E, Francke W (1992) Insecticidal fumigants from defensive glands of insects a fumigant test with adults of Drosophila melanogaster. J Appl Ent 113: 128–137

Erdal S, Kamuran K (2010) Acaricidal activities of the essential oils from several medicinal plants against the carmine spider mite (Tetranychus cinnabarinus Boisd.) (Acarina: Tetranychidae). Ind Crop Prod 31: 107–112

Foil LD, Coleman P, Eisler M, Fragoso-Sanchez H, Garcia-Vazquez Z, Guerrero FD, Jonsson NN, Langstaff IG, Li AY, Machila N, Miller RJ, Morton J, Pruitt JR, Torr S (2004) Factors that influence the prevalence of acaricide resistance and tick-borne diseases. Vet Parasitol 125: 163–181

Han LF, Ma BP, Zhang HS, Song Xb, Gao XM, Kang LP, Xiong CQ, Zhao Y, Tan DW (2008) 1H and 13C NMR assignments for four triterpenoid saponins from Alhizia cortex. Magn Reson Chem 46: 1059–1065

Jung MJ, Chung HY, Kang SS, Choi JH, Bae KS, Choi JS (2003) Antioxidant activity from the stem bark of Albizia julibrissin. Arch Pharm Res 26: 458–462

Jung MJ, Kang SS, Jung YJ, Choi JS (2004) Phenolic glycosides from the stem bark of Albizia julibrissin. Chem Pharm Bull 52: 1501–1503

Kang TH, Jeong ST, Kim NY, Higuchi R, Kim YC (2000) Sedative activity of two flavonol glycosides isolated from the flower of Albizia julibrissin. J Ethnopharmacol 71: 321–323

Kingston HM, Jassie LB (1988) Introduction to Microwave Sample Preparation, American Chemical Society, Washington

Kokila K, Priyadharshini SD, Sujatha V (2013) Phytopharmacological properties of Albizia species: A Review. Int J Pharm Pharm Sci 5: 70–73
Kumar PP, Kumaravel S, Lalitha C (2010) Screening antioxidant activity, total phenolics and GC-MS study of Vitex negundo. Afr J Biochem Res 4: 191–195

Marx JJ, Twiggs JT, Ault BJ, Merchant JA, Fernandez-Caldas E (1993) Inhaled aeroallergen and storage mite reactivity in a Wisconsin farmer nested case-control study. Am Rev Respir Dis 147: 354–358

Stewart GA (1995) Dust mite allergens. Clin Rev Allergy Immunol 13: 135–150

Won HJ, Han CH, Kim YH, Kwon HJ, Kim BW, Choi JS, Kim KH (2006) Induction of apoptosis in human acute leukemia Jurkat T cells by Albizia julibrissin extract is mediated via mitochondria-dependent caspase-3 activation. J Ethnopharmacol 106: 383–389

Yang JY, Lee HS (2013) Changes in acaricidal potency by introducing functional radicals and an acaricidal constituent isolated from Schizonepeta tenuifolia. J Agri Food Chem 61: 11511–11516

Zheng L, Zheng J, Zhao Y, Wang B, Wu L, Liang H (2006) Three anti-tumor saponins from Albizia julibrissin. Bioorg Med Chem Lett 16: 2765–2768