Analysis of the water use efficiency using super-efficiency data envelopment analysis

Zhengwei Pan1 · Yanhua Wang2 · Yuliang Zhou3 · Yanfang Wang1

Received: 22 July 2019 / Accepted: 5 May 2020 / Published online: 19 May 2020
© The Author(s) 2020

Abstract
Data envelopment analysis (DEA) is a linear programming and production theory-based nonparametric approach that is generally used for efficiency analysis. Older DEA models, such as CCR and BCC, can only identify decision-making units (DMUs) efficient or inefficient. The super-efficiency DEA model enables efficient DMUs to be ranked. A change in efficient DMUs can be measured using Malmquist index model, and the Malmquist productivity change index can be decomposed multiplicatively into an efficiency-change component (Effch) and a technical change component (Techch). This paper analyzes the water use efficiency in Shandong Province between 2006 and 2015 using Malmquist productivity index (TFP). The results show that: (1) the mean of super-efficiency scores of 17 cities in Shandong Province for the period 2006–2015 is between 0.965 and 2.760; (2) the water use efficiency was positive in 2006–2007, 2007–2008, and 2013–2014; however, it was negative in the other periods between 2006 and 2015; and (3) technical change is the key influencing factor on water use efficiency of 17 cities in Shandong Province. So, we suggest that Shandong Province encourage technological innovation to promote water use efficiency.

Keywords Water use efficiency · Super-efficiency DEA · Malmquist index · Shandong Province

Introduction
Water is a basic natural resource and a strategic economic resource. It is essential to biodiversity, an ecological balance, socioeconomic development, and environmental goods or amenities. Nevertheless, humans can only use 0.26% of the global water resources. Water resources are not evenly distributed in time and space in most countries and regions, and approximately 80 countries, accounting for 40% of the global population, have severe water shortages. Improving water use efficiency is an effective way to address a water shortage, and it is the foundation for maintaining the sustainable development and utilization of a water resource (Zoebi 2006; Linderson et al. 2007; Allan 1999; Bithas 2008). So, water use efficiency has become a hot issue in water science research, and national governments, water policy-makers, and related industries have become focused on these issues. Water use efficiency has two forms: technical and allocative. Technical efficiency, or, as Farrell called it, physical efficiency (Farrell 1957), is defined either as producing the maximal level of output given an input, or as using the minimal level of input given an output and input mix (Lovell 1993; Cornwell and Schmidt 1996). Allocative efficiency, or, as Farrell called it, price efficiency (Farrell 1957), means the ability to combine inputs and outputs in optimal proportions on the basis of prevailing prices (Lovell 1993; Badunenko et al. 2008). National governments believe that it will be possible to have ‘better water management’ and ‘achieve more with less’, and policy-making must be considered in order to enhance water use efficiency (Allan 1999).
This ‘better water management’ is understood as gains for water resources allocation and technical efficiency. Water use efficiency is a social, economic, or ecological benefit for a unit of water. Water use for a single purpose is a major research perspective in water use efficiency. Examples are water use efficiency in irrigated agriculture (Singh 2007; Christian-Smith et al. 2012), industrial water efficiency (Mousavi et al. 2016; Schlei-Peters et al. 2015; Bindra et al. 2003), and urban water resource utilization efficiency (Shi et al. 2015), etc.

The main methods for measuring water use efficiency are the unit water output, value-added unit water output, and total factor productivity (TFP) methods. The unit water output or value-added of unit water output methods cannot adequately reflect the actual condition of water use efficiency because they are subjective, use a single factor input index and are not always meaningful (Zoebl 2006).

The total factor productivity of water use efficiency is the ratio of the minimum water consumption to the actual water consumption in the measurement area. Data envelopment analysis (DEA) is a linear programming and production theory-based mathematical approach that aims to measure how efficiently selected DMUs generate selected outputs by using selected inputs as the scope of comparison (Charnes et al. 1978; Egilmez and McAvoy 2013). The original work on DEA is the original DEA-CRS (constant-returns-to-scale) model provided by Charnes et al. (1978), which is later extended to a variable-returns-to-scale (VRS) model by Banker et al. (1984), called CCR (initial of Charnes Cooper and Rhodes) and BCC (initial of Banker Charnes and Cooper), respectively. DEA is generally used to measure the efficiency of a resource’s utilization by its total input and output and can measure the relative effectiveness and rank the efficiency of a resource’s utilization. This includes land utilization efficiency (Chen et al. 2016), the efficiency of electric power production, and distribution processes (Khalili-Damghani and Shahmir 2015), agricultural water resources efficiency (Mousavi-Avval et al. 2011; Speelman et al. 2008), industrial water resources efficiency, and urban water supply efficiency (Molinos-Senante et al. 2016; Byrnes et al. 2010; Aida et al. 1998), and so on. But a DMU is considered to be efficient in most DEA models like CCR and BCC if its performance relative to other DMUs cannot be improved. Therefore, Andersen and Petersen (1993) proposed the super-efficiency DEA (SE-DEA) model, in which the efficiency scores (i.e., \(\theta = 1 \)) or the super-efficiency scores (i.e., \(\theta > 1 \)) of DMUs can be obtained. Meanwhile, the efficiency scores of DMUs in most DEA models like CCR and BCC cannot be analyzed dynamically in different periods. The DEA-based Malmquist index model by Färe and Grosskopf (1994) can be implemented.

This paper applies the super-efficiency DEA and the Malmquist index to analyze the water use efficiency in Shandong province, China. Firstly, the CCR, BCC, and SE-DEA models are applied to a comparative analysis of the water use efficiency of 17 cities in Shandong Province for the period 2006–2015, and the DEA-based Malmquist index method is used for a dynamic analysis. Then, the change roots of the water use efficiency during the 11th and 12th Five-year Plan periods are identified by means of decomposing the Malmquist index into a technical progress component and a technical efficiency component, and further decomposing the technical efficiency component into a pure technical efficiency component and a scale efficiency component.

Methodology

Super-efficiency DEA model

The super-efficiency DEA method ranks the performance of efficient DMUs. The basic idea of SE-DEA model is to compare the unit under evaluation with a linear combination of all other units in the sample, i.e., the DMU itself is excluded (Sun and Lu 2005). In that case, an efficiency score that exceeds unity is obtained for the unit because the maximum proportional increase in inputs preserves efficiency (Andersen and Petersen 1993; Matthias and Maik 2005).

The SE-DEA model may be expressed as

\[
\begin{align*}
\text{min} \quad \theta & \\
\sum_{k=1}^{n} \lambda_k X_k + s^- &= \theta X_j \\
\sum_{k=1}^{n} \lambda_k Y_k - s^+ &= Y_j \\
\lambda_k &\geq 0, \quad k = 1, 2, \ldots, n \\
s^- &\geq 0, \quad s^+ \geq 0
\end{align*}
\]

(1)

where \(\theta \) is a scalar that defines the share of the \(j \)th DMU’s input vector, which is required in order to produce the \(j \)th DMU’s output vector within the reference technology; \(X_j \) is an \(m \)-dimensional input vector and \(Y_j \) is an \(s \)-dimensional output vector for the \(j \)th unit; and \(\lambda \) is an intensity vector in which \(\lambda_k \) denotes the intensity of the \(k \)th unit.

The advantage of the SE-DEA model is that it permits us to rank efficient DMUs. Similar to CCR, it can provide a super-efficiency rating for efficient units. Meanwhile, the efficiency score of the inefficient DMUs remains consistent with CCR.

Malmquist index

The concept of Malmquist index was first introduced by Malmquist (1953), which was developed by Caves et al.
(1982) who defined the output-based Malmquist productivity index as the ratio of two output distance functions.

Supposing that each DMU produces a vector of outputs \(Y_j^t = (Y_{1j}^t, Y_{2j}^t, \ldots, Y_{nj}^t) \) by using a vector of inputs \(X_j^t = (X_{1j}^t, X_{2j}^t, \ldots, X_{mj}^t) \) at each time period \(t = 1, 2, \ldots, T \), and following Shephard (1970) or Färe (1988), the output distance function is defined at \(t \) as

\[
D_t^j(x', y') = \inf \left\{ \theta : (x', y'/\theta) \in \mathcal{S}^j \right\}
\]

(2)

The production is technically efficient if \(D_t^j(x', y') = 1 \), and it is technically inefficient if \(D_t^j(x', y') < 1 \).

The Malmquist index measures the productivity change in a DMU between two time periods. Following Färe et al. (1989, 1992), this index could be also written in an equivalent way as

\[
M_0(x', y', x'^{t+1}, y'^{t+1}) = \frac{D_0^{t+1}(x'^{t+1}, y'^{t+1})}{D_0^t(x', y')} \times \left[\frac{D_0'(x'^{t+1}, y'^{t+1})}{D_0'(x'^{t+1}, y'^{t+1})} \times \frac{D_0'(x', y')}{D_0'(x', y')} \right]^{\frac{1}{2}}
\]

(3)

where \(M_0 \) measures the productivity change in DMU between period \(t \) and \(t + 1 \).

The Malmquist productivity change index is decomposed multiplicatively into Effch and Techch (Färe et al. 1992, 2011):

\[
\text{Effch} = \frac{D_0^{t+1}(x'^{t+1}, y'^{t+1})}{D_0^t(x', y')}
\]

(4)

and

\[
\text{Techch} = \left[\frac{D_0'(x'^{t+1}, y'^{t+1})}{D_0'(x'^{t+1}, y'^{t+1})} \times \frac{D_0'(x', y')}{D_0'(x', y')} \right]^{\frac{1}{2}}
\]

(5)

so that \(M_0 = \text{Effch} \times \text{Techch} \), where Effch = Sech \(\times \) Pech. The Effch term refers to efficiency change calculated under CRS, and Pech is efficiency change calculated under VRS.

Case study

Data and index

Water resources, as a kind of natural resource, and other production factors together make products. Reasonable input and output indexes were chosen based on whether an index had no linear relationship, the availability of data, and research achievements in water use efficiency (Hu et al. 2006; Yang et al. 2015; Wang et al. 2015; Deng et al. 2016). Taking agricultural water consumption, industrial water consumption, domestic water consumption, total COD discharge quantity, investment in fixed assets of the whole society, and labor of the whole society as input index, GDP and grain yield are taken as output index.

Here, using super-efficiency DEA-based Malmquist index model, we analyzed water use efficiency in Shandong
Province from 2006 to 2015 with data from the Shandong Statistic Yearbook.

Static analysis on water use efficiency in Shandong Province

The productive efficiency score, pure technical efficiency, and scale efficiency of 17 cities in Shandong Province in 2015 were obtained using the DEAP2.1 software. The super-efficiency score was obtained using the Efficiency Measurement System software, Version 1.3.0, and the results are shown in Table 1. Table 1 also shows changes in the returns to scale that were obtained with BCC, and ranks of super-efficiency scores that were obtained with SD-DEA.

1. Results from CCR and BCC

Table 1 shows that Jining, Tai’an, Rizhao, Laiwu, Linyi, Liaocheng, and Binzhou are categorized as being relatively inefficient (i.e., efficiency scores that is less than unity), with the CCR model giving efficiency scores of 0.901, 0.850, 0.792, 0.717, 0.853, 0.904, and 0.882, respectively. The water use efficiency of relatively inefficient units can be ranked according to their productive efficiency score, pure technical efficiency, and scale efficiency.

The other regions are categorized as being relatively efficient (i.e., efficiency score equal to unity), also, their productive efficiency score, pure technical efficiency, and scale efficiency are equal to unity according to the CCR or BBC model. However, the CCR or BBC model cannot fully rank all of the relatively efficient DMUs.

From the point of view of scale efficiency, the change in the returns to scale of Jining and Linyi is decreasing, implying that there is too much input into these two cities, and the rational allocation of resources is necessary to improve their water use efficiency. However, the change in the returns to scale of Tai’an, Rizhao, Laiwu, Liaocheng, and Binzhou is increasing, indicating that the input and scale do not match, and the scale of production needs to expand in these cities.

2. Results from SE-DEA

The SE-DEA model only analyzes DMUs that the efficiency scores are unity in the CCR model, while DMUs that the efficiency scores less than unity are unchanged. In Table 1, the super-efficiency scores of Jining, Tai’an, Rizhao, Laiwu, Linyi, Liaocheng, and Binzhou are identical with that of CCR. However, the super-efficiency scores of Jinan, Qingdao, Zibo, Zaozhuang, Dongying, Yantai, Weifang, Weihai, Dezhou, and Heze are greater than unity. Therefore, the SE-DEA model is able to assess and rank all DMUs. The rank of water use efficiency is successively as follows: Qingdao, Dezhou, Weihai, Heze, Dongying, Jinan, Yantai, Weifang, Zaozhuang, Zibo, Liaocheng, Jining, Binzhou, Linyi, Tai’an, Rizhao, and Laiwu in 2015.

Table 1 Water use efficiency scores of 17 regions of Shandong Province in 2015 and their rank

DMU (region)	CCR Productive efficiency	BCC Pure technical efficiency	Scale efficiency	Returns to scale change	SE-DEA Super-efficiency	Rank
Jinan	1.000	1.000	1.000	Constant	1.409	6
Qingdao	1.000	1.000	1.000	Constant	3.323	1
Zibo	1.000	1.000	1.000	Constant	1.042	10
Zaozhuang	1.000	1.000	1.000	Constant	1.059	9
Dongying	1.000	1.000	1.000	Constant	1.451	5
Yantai	1.000	1.000	1.000	Constant	1.265	7
Weifang	1.000	0.914	0.986	Decreasing	0.901	12
Jining	0.901	0.914	0.986	Increasing	0.850	15
Tai’an	0.850	0.863	0.985	Constant	2.020	3
Weihai	1.000	1.000	1.000	Constant	0.792	16
Rizhao	0.792	0.928	0.853	Increasing	0.717	17
Laiwu	0.717	1.000	0.717	Increasing	0.853	14
Linyi	0.853	0.854	0.999	Decreasing	2.698	2
Dezhou	1.000	1.000	1.000	Constant	0.904	11
Liaocheng	0.904	0.916	0.987	Increasing	0.882	13
Binzhou	0.882	1.000	0.882	Constant	1.995	4
The SE-DEA super-efficiency scores of 17 cities in Shandong Province for the period 2006–2015 are given in Table 2. And the spatial distribution of super-efficiency score means of 17 cities in Shandong Province is shown in Fig. 1.

Table 2 shows that the super-efficiency scores of 17 cities in Shandong Province for the period 2006–2015 range between 0.670 and 5.225. As shown in Fig. 1, according to the super-efficiency score means, the cities can be divided into three categories: low efficiency, medium efficiency, and high efficiency. The low efficiency category includes cities whose mean super-efficiency scores is less than unity in Binzhou, Tai’an, and Rizhao. The high efficiency category includes cities whose mean score is greater than 1.33 in Dezhou, Dongying, Weihai, Qingdao, and Heze. The other cities belong to medium efficiency category, which includes cities with a mean score between 1.00 and 1.33.
Dynamic analysis of water use efficiency in Shandong Province

1. Malmquist index

According to the above-mentioned theories, a dynamic analysis of water use efficiency in Shandong Province was performed using DEA-based Malmquist index method. Malmquist index (TFP) of water use efficiency of each of 17 cities in Shandong Province was obtained for the period 2006–2015 using the DEAP2.1 software, and the results are shown in Table 3. The trend of mean Malmquist index of water use efficiency in Shandong Province for the period 2006–2015 is shown in Fig. 2.

Table 3 shows that TFP of water use efficiency of 17 cities in Shandong Province for the period 2006–2015 ranges from 0.466 to 1.434. Additionally, as shown in Fig. 2, TFPs of 2006–2007, 2007–2008, and 2013–2014 exceed unity, implying that water use efficiency during these periods was in the positive. TFPs for the other periods are less than unity, implying that water use efficiency during these periods was in the negative.

Period	Jinan	Qingdao	Zibo	Zaozhuang	Dongying	Yantai	Weifang	Jining	Tai’an
2006–2007	1.049	1.102	1.092	0.865	1.035	1.162	1.07	1.077	1.073
2007–2008	1.021	1.122	1.114	0.984	1.232	1.06	1.058	1.002	0.994
2008–2009	0.951	0.876	0.825	0.805	0.787	0.989	0.937	0.791	0.976
2009–2010	1.028	1.105	0.942	0.947	1.018	1.081	1.027	0.991	1.07
2010–2011	0.848	0.703	0.878	0.899	0.889	0.768	0.57	0.678	0.466
2011–2012	1.024	1.029	1.006	0.997	1.149	1.1	0.997	0.851	0.997
2012–2013	0.881	0.876	0.86	0.884	0.856	0.888	0.869	0.867	0.878
2013–2014	1.079	1.052	1.081	1.044	1.084	1.125	1.091	1.082	1.082
2014–2015	0.924	1.329	0.953	0.98	0.951	0.987	0.964	0.914	0.927

Period	Weihai	Rizhao	Laiwu	Linyi	Dezhou	Liaocheng	Binzhou	Heze	Mean
2006–2007	0.964	0.894	1.081	1.005	1.434	0.838	1.098	0.991	1.041
2007–2008	1.027	0.825	0.885	0.983	0.883	1.047	1.021	1.146	1.019
2008–2009	0.95	1.079	0.642	0.853	1.424	0.761	0.838	0.787	0.885
2009–2010	1.197	1.105	0.919	1.035	0.556	1.031	0.971	0.977	0.989
2010–2011	0.693	0.687	0.924	0.469	0.689	0.68	0.842	0.554	0.705
2011–2012	1.013	1.01	0.928	0.926	1.025	0.954	1.038	0.888	0.993
2012–2013	1.023	0.914	0.864	0.945	1.043	0.867	0.865	0.915	0.898
2013–2014	1.137	0.947	0.861	1.017	1.004	0.984	1.002	1.081	1.042
2014–2015	0.931	0.917	0.988	0.921	0.87	0.945	0.975	0.969	0.963
2. Malmquist index summary

Based on Malmquist index approach, this paper analyzed TFP trend of water use efficiency of 17 cities in Shandong Province. TFP trend was decomposed into Effch and Techch, and Effch was further decomposed into a pure technical efficiency-change component (Pech) and a scale efficiency-change component (Sech), i.e., TFP = Effch × Techch = Techch × (Pech × Sech).

A summary of TFP of water use efficiency of each of 17 cities in Shandong Province during the 11th Five-year Plan period (i.e., 2006–2010) and the 12th Five-year Plan period (i.e., 2011–2015) is given in Table 4.

The comparison diagram of TFP index summary (i.e., Effch, Techch, Pech, and Sech) between the 11th and 12th Five-year Plan period is shown in Fig. 3. And the spatial distribution of TFPs of 17 cities during the 11th and 12th Five-year Plan periods is shown in Fig. 4.

Table 4 A summary of TFPs of 17 cities in Shandong Province during 11th and 12th Five-year Plan periods

Region	11th Five-year Plan period	12th Five-year Plan period								
	Effch	Techch	Pech	Sech	TFP	Effch	Techch	Pech	Sech	TFP
Jinan	1.011	1.000	1.000	1.011	1.011	1.000	0.974	1.000	1.000	0.974
Qingdao	1.009	1.036	1.000	1.009	1.046	1.000	1.060	1.000	1.000	1.060
Zibo	1.025	0.962	1.015	1.010	0.986	1.000	0.972	1.000	1.000	0.972
Zaozhuang	1.000	0.897	1.000	1.000	0.897	1.000	0.974	1.000	1.000	0.974
Dongying	1.000	1.006	1.000	1.000	1.006	1.000	1.003	1.000	1.000	1.003
Yantai	1.032	1.038	1.000	1.032	1.071	1.000	1.020	1.000	1.000	1.020
Weifang	1.000	1.022	1.000	1.000	1.022	1.005	0.972	1.004	1.001	0.977
Jining	1.000	0.959	1.000	1.000	0.959	0.974	0.949	0.978	0.996	0.924
Tai’an	1.000	1.027	1.000	1.000	1.027	1.023	0.946	1.015	1.008	0.968
Weihai	1.000	1.030	1.000	1.000	1.030	1.000	1.023	1.000	1.000	1.023
Rizhao	1.000	0.968	1.000	1.000	0.968	0.988	0.958	0.997	0.991	0.946
Laiwu	0.996	0.870	1.000	0.996	0.866	0.944	0.963	1.000	0.944	0.909
Linyi	1.000	0.966	1.000	1.000	0.966	1.001	0.951	1.000	1.001	0.952
Dezhou	1.000	1.001	1.000	1.000	1.001	1.000	0.983	1.000	1.000	0.983
Liaocheng	1.000	0.911	1.000	1.000	0.911	0.975	0.961	0.978	0.997	0.937
Binzhou	1.006	0.972	1.000	1.006	0.977	0.969	0.998	1.000	0.969	0.968
Heze	1.000	0.967	1.000	1.000	0.967	1.000	0.961	1.000	1.000	0.961
Mean	1.005	0.997	1.001	1.004	0.982	0.993	0.980	0.998	0.994	0.973

Fig. 3 Comparison diagram of TFP index summary between 11th and 12th Five-year Plan periods

Fig. 4 Comparison diagram of TFP index summary between 11th and 12th Five-year Plan periods
TFP₁ and TFP₂ are greater than unity in Dongying, Yantai, Weihai, and Qingdao. TFP₁ is greater than unity and TFP₂ is less than unity in Dezhou, Jinan, Tai' an, and Weifang, but there are no cities whose TFP₁ is less than unity and whose TFP₂ exceeds unity. In the others cities, TFP₁ and TFP₂ are both less than unity.

3. Analysis of influence factors of water use efficiency

The factors that influence water use efficiency were received from a combination of input–output indexes. R&D staff ratio and proportion of R&D expenditure to GDP can explain technical change (Techch), the water consumption per unit of grain production (Pech), the water consumption per unit of industrial added value (Pech2), COD emission per unit GDP (Pech3), and annual growth rate of investment in fixed assets of the whole society (Pech4).
of grain production and water consumption per unit of industrial added value explain pure technical efficiency change (Pech), and the annual growth rate of investment in fixed assets of the whole society explain scale efficiency change (Sech). The factors that influenced water use efficiency of 17 cities in Shandong Province during 12th Five-year Plan period are shown in Table 5.

Table 5 shows that the results of TFP summary are related to the factors that influence water use efficiency. The R&D staff ratio of cities with a Techch that is less than unity, such as Zaozhuang, Jining, Tai’an, Rizhao, Laiwu, Linyi, Dezhou, Liaocheng, Binzhou, and Heze, is lower than the province’s average. In cities with a Pech that is less than unity, the water consumption per unit of grain production of Jining and Rizhao, the water consumption per unit of industrial added value of Jining, Rizhao, and Liaocheng, and COD emission per unit GDP of Jining and Liaocheng are greater than the province’s average. The annual growth rate of investment in fixed assets of the whole society of the cities with a Sech that is less than unity is lower than the province’s average: examples are Jining, Rizhao, Laiwu, Linyi, Dezhou, Binzhou, and Heze, is lower than the province’s average: examples are Jining, Rizhao, Laiwu, Linyi, Dezhou, Binzhou, and Heze.

Conclusion and suggestion

From the perspective of input and output, this paper has selected agricultural water consumption, industrial water consumption, domestic water consumption, total COD discharge quantity, investment in fixed assets of the whole society, and labor of the whole society as input indicators, and GDP and grain output as output indicators. The water use efficiency in Shandong Province for the period 2006–2015 was measured by using SE-DEA model, and dynamic analyses were performed by using Malmquist index based on DEA during the 11th and 12th Five-year Plan periods. The results show that, in general, during the period studied, the water use efficiency of the 17 cities in Shandong Province experiences deteriorations with super-efficiency scores that fluctuate between 0.466 and 1.434. However, there is significant divergence among cities, and the TFPs of the water use efficiency in Shandong Province during the 12th Five-year Plan period are all less than those during the 11th Five-year Plan period.

The factors that influence water use efficiency were analyzed based on Table 5, and suggestions for promoting water use efficiency in Shandong Province can be made. Firstly, the R&D staff ratio is a key influencing factor for Zaozhuang, Jining, Tai’an, Rizhao, Laiwu, Linyi, Dezhou, Liaocheng, Binzhou, and Heze, so the technical change efficiency (Techch) of these cities could be promoted by increasing the number of R&D personnel. Secondly, the water consumption per unit of grain production is the key influencing factor for Jining and Rizhao, the water consumption per unit of added value to industry is a key influencing factor for Jining, Rizhao, and Liaocheng, and the COD emission per unit of GDP is a key influencing factor for Jining and Liaocheng. So, the pure technical efficiency change (Pech) could be improved in two respects. One is to promote water efficiency in agriculture by developing agricultural science and technology and spreading water-saving technology in agriculture. The other is to reduce COD emissions, increase the reuse rate of water in industry and promote water use efficiency in industry by eliminating backward industries, reducing high water consumption, promoting the rapid development of new industrial technologies, and implementing cleaner production. Finally, the annual growth rate of investment in fixed assets of the whole society is a key influencing factor in the scale efficiency change (Sech) of Jining, Rizhao, Laiwu, Linyi, Dezhou, and Binzhou, which could be improved by increasing the investment in the total amount of fixed assets.

Funding The authors would like to thank the support of the National Key Research and Development Program of China under Grant No. 2017YFC1502405, the National Natural Science Foundation of China under Grant No. 51779067.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Aida K, Cooper WW, Pastor JT et al (1998) Evaluating water supply services in Japan with RAM: a range-adjusted measure of inefficiency. Omega 26(2):207–232. https://doi.org/10.1016/S0305-0483(97)00072-8
Allan T (1999) Productive efficiency and allocative efficiency: why better water management may not solve the problem. Agric Water Manag 40(1):71–75. https://doi.org/10.1016/S0378-3774(98)00106-1
Andersen P, Petersen NC (1993) A procedure for ranking efficient units in data envelopment analysis. Manag Sci 39(10):1261–1264. https://doi.org/10.1287/mnsc.39.10.1261
Badunenko O, Fritsch M, Stephan A (2008) Allocative efficiency measurement revisited: do we really need input prices? Econ Model 25(5):1093–1109. https://doi.org/10.1016/j.econmod.2008.02.001
Banker RD (1984) Estimating the most productive scale size using data envelopment analysis. Eur J Oper Res 17(1):35–44. https://doi.org/10.1016/0377-2217(84)90006-7

Banker RD, Charnes A, Cooper WW (1984) Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manage Sci 30(9):1078–1092. https://doi.org/10.1287/mnsc.30.9.1078

Bindra SP, Muntasser M, El Khweldi M et al (2003) Water use efficiency for industrial development in Libya. Desalination 158(1–3):167–178. https://doi.org/10.1016/S0011-9164(03)00447-8

Bithas K (2008) The European policy on water use at the urban level in the context of the water framework directive. Effectiveness, appropriateness and efficiency. Eur Plan Stud 16(9):1293–1311. https://doi.org/10.1080/09654310802401789

Byrnes J, Crase L, Dollery B et al (2010) The relative economic efficiency of urban water utilities in regional New South Wales and Victoria. Res Energy Econ 32(3):439–455. https://doi.org/10.1016/j.reseneeco.2009.08.001

Caves DW, Christensen LR, Diewert WE (1982) The economic theory of index numbers and the measurement of input, output, and productivity. Econometrica 50(6):1393–1414. https://doi.org/10.2307/1913338

Charnes A, Cooper WW, Rhodes E (1978) Measuring the efficiency of decision-making units. Eur J Oper Res 2(6):429–444. https://doi.org/10.1016/0377-2217(78)90138-8

Chen Y, Chen ZG, Xu GL et al (2016) Built-up land efficiency in urban China: insights from the general land use plan (2006–2020). Habitat Int 51:31–38. https://doi.org/10.1016/j.habitatint.2015.10.014

Christian-Smith J, Cooley H, Gleick PH (2012) Potential water savings associated with agricultural water efficiency improvements: a case study of California, USA. Water Policy 14(2):194–213. https://doi.org/10.2166/wp.2011.017

Cornwell C, Schmidt P (1996) Production Frontiers and efficiency measurement. In: Mátayás L, Sevestre P (eds) The econometrics of panel data: a handbook of the theory with applications. Kluwer Academic Publishing, New York, pp 845–878. https://doi.org/10.1007/978-94-009-0137-7_33

Deng GY, Li L, Song YN (2016) Provincial water use efficiency measurement and factor analysis in China: based on SBM-DEA model. Ecol Indic 69:12–18. https://doi.org/10.1016/j.ecolind.2016.03.052

Egilmez G, McAvoy D (2013) Benchmarking road safety of U.S. states: a DEA-based Malmquist productivity index approach. Accid Anal Prev 53:55–64. https://doi.org/10.1016/j.acap.2012.12.038

Färe R (1988) Fundamentals of production theory. Springer, Heidelberg. https://doi.org/10.1007/978-3-642-51728-2

Färe R, Grosskopf S (1994) Theory and calculation of productivity indexes. In: Eichhorn W (ed) Models and measurement of welfare and productivity. Econometrica 50(6):1393–1414. https://doi.org/10.2307/1913338

Färe R, Grosskopf S, Kokkelenberg EC (1989) Measuring plant capacity, utilization and technical change: a nonparametric approach. Int Econ Rev 30(3):655–666. https://doi.org/10.2307/2526781

Färe R, Grosskopf S, Lindgren B, Roos P (1992) Productivity changes in Swedish pharmacies 1980–1989: a non-parametric Malmquist approach. J Prod Anal 3(1–2):85–101. https://doi.org/10.1007/BF00170401

Färe R, Grosskopf S, Norris M, Zhang Z (1994) Productivity growth, technical progress, and efficiency change in industrialized countries. Am Econ Rev 84(1):66–83. https://doi.org/10.2307/2235033

Färe R, Grosskopf S, Margaritis D (2011) Malmquist productivity indexes and DEA. In: Cooper WW, Seiford LM, Zhu J (eds) Handbook on data envelopment analysis, 2nd edn. Springer, New York, pp 127–149

Farrell MJ (1957) The measurement of productive efficiency. J R Stat Soc Ser A Gen 120(3):253–290. https://doi.org/10.2307/2334100

Huang J, Wang SC, Yeh FY (2006) Total-factor water efficiency of regions in China. Resour Policy 31(4):217–230. https://doi.org/10.1016/j.resourpol.2007.02.001

Khalili-Damghani K, Shahmir Z (2015) Uncertain network data envelopment analysis with undesirable outputs to evaluate the efficiency of electricity power production and distribution processes. Comput Ind Eng 88:131–150. https://doi.org/10.1016/j.cie.2015.06.013

Linderson M, Iritz Z, Lindroth A (2007) The effect of water availability on stand-level productivity, transpiration, water use efficiency and radiation use efficiency of field-grown willow clones. Bio-mass Bioenergy 31(7):460–468. https://doi.org/10.1016/j.biombioe.2007.01.014

Lovell CAK (1993) Production Frontiers and productive efficiency. In: Fried HO, Lovell CAK, Schmidt SS (eds) The measurement of productive efficiency: techniques and applications. Oxford University Press, Oxford, pp 3–67

Malmquist S (1953) Index numbers and indifference surfaces. Trabajos de Estadística y de Investigación Operativa 4(2):209–242. https://doi.org/10.1007/BF03068683

Matthias S, Maik H (2005) Product performance evaluation: a super-efficiency model. Int J Bus Perform Manag 7(3):304–319. https://doi.org/10.1054/ijbmp.2005.006722

Molinos-Senante M, Donoso G, Sala-Garrido R (2016) Assessing the efficiency of Chilean water and sewerage companies accounting for uncertainty. Environ Sci Policy 61:116–123. https://doi.org/10.1016/j.envsci.2016.04.003

Mousavi S, Kara S, Kornfeld B (2016) A hierarchical framework for concurrent assessment of energy and water efficiency in manufacturing systems. J Clean Prod 133:88–98. https://doi.org/10.1016/j.jclepro.2015.07.074

Mousavi-Avval SH, Rafiee S, Jafari A et al (2011) Improving energy use efficiency of canola production using data envelopment analysis (DEA) approach. Energy 36(5):2765–2772. https://doi.org/10.1016/j.energy.2011.02.016

Schlei-Peters I, Kurle D, Wichmann MG et al (2015) Assessing combined water-energy-efficiency measures in the automotive industry. Procedia CIRP 29:50–55. https://doi.org/10.1016/j.proci.2015.02.013

Shepherd RW (1970) Theory of cost and production functions. Princeton University Press, Princeton. https://doi.org/10.2307/2230285

Shi T, Zhang X, Du H et al (2015) Urban water resource utilization efficiency of China. Chin Geogr Sci. 25(6):684–697. https://doi.org/10.1007/s11769-015-0773-y

Singh K (2007) Rational pricing of water as an instrument of improving water use efficiency in the agricultural sector: a case study in Gujarat, India. Int J Water Resour Dev 23(4):679–690. https://doi.org/10.1080/07900670701488604

Speelman S, D’Haese M, Buysse J et al (2008) A measure for the efficiency of water use and its determinants: a case study of small-scale irrigation schemes in North-West Province, South Africa. Agric Syst 98(1):31–39. https://doi.org/10.1016/j.agsy.2008.03.006

Sun S, Lu WM (2005) A cross-efficiency profiling for increasing discrimination in data envelopment analysis. INFORMS 43(1):51

Wang YS, Bian YW, Xu H (2015) Water use efficiency and related pollutants’ abatement costs of regional industrial systems in China: a slacks-based measure approach. J Clean Prod 101:301–310. https://doi.org/10.1016/j.jclepro.2015.03.092

Yang L, Ouyang H, Fang KG, Ye LL, Zhang J (2015) Evaluation of regional environmental efficiencies in China based...
on super-efficiency-DEA. Ecol Indic 51:13–19. https://doi.org/10.1016/j.ecolind.2014.08.040
Zoebl D (2006) Is water productivity a useful concept in agricultural water management? Agric Water Manag 84(3):265–273. https://doi.org/10.1016/j.agwat.2006.03.002

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.