Abstract

Distributions of stable isotopes have been used to infer an organism’s trophic niche width, the ‘isotopic niche’, and examine resource partitioning. Spatial variation in the isotopic composition of prey may however confound the interpretation of isotopic signatures especially when foragers exploit resources across numerous locations. In this study the isotopic compositions from marine assemblages are modelled to determine the role of variation in the signature of prey items and the effect of dietary breadth and foraging strategies on predator signatures. Outputs from the models reveal that isotopic niche widths can be greater for populations of dietary specialists rather than for generalists, which contravenes what is generally accepted in the literature. When a range of different mixing models are applied to determine if the conversion from δ to p-space can be used to improve model accuracy, predator signature variation is increased rather than model precision. Furthermore the mixing models applied failed to correctly identify dietary specialists and/or to accurately estimate diet contributions that may identify resource partitioning. The results presented illustrate the need to collect sufficiently large sample sizes, in excess of what is collected under most current studies, across the complete distribution of a species and its prey, before attempts to use stable isotopes to make inferences about niche width can be made.

Introduction

Stable isotope analysis is often used by ecologists to identify trophic interactions [1]. This approach can be less problematic than others such as gut analysis, which may have logistical constraints and require regular and large sampling regimes [2,3]. In the last decade, a number of authors have used stable isotopes to estimate trophic niche width [1,3] and to examine resource partitioning [4,5]. There has, however, been a growing realisation that interpreting patterns of stable isotope reliance heavily on a comprehensive understanding of habitat use by predators, and the spatial patterns of isotopic variation among organisms at all trophic levels [6,7,8,9,10]. Post [3] has concluded, that without a suitable quantification of the isotopic composition of prey items, comparisons of consumers among and across habitats will be confounded by variations in prey signatures. The challenge for ecologists is to determine where isotopic variation exists and why.

An assumption of many studies aiming to estimate isotopic niche breadth, developed from the niche variation hypothesis proposed by Van Valen in 1965 [11], is that niche width correlates positively with diet breadth [12]. In this case, dietary specialists, i.e. those that utilise only a small number of food types at the population level, will have a narrow isotopic niche width, whereas dietary generalists, i.e. those that utilise a wide range of food resources at the population level, will have a broad isotopic niche width [11,13,14]. More recently this assumption has been challenged by studies which indicate that the converse can be true, i.e. the isotopic niche width of specialists can be broader than that for generalists, and that habitat use may complicate any conclusions that can be drawn from isotopic data [15,16]. In addition, variation in isotopic signatures in δ-space (the dimensional space occupied by two or more isotopic signatures) may lead to incorrect estimates of the range of resources a population utilises. One suggestion to overcome this is to convert isotopic signatures from δ to p-space (relative proportions of prey items contributing to delta space signature) [17,18]. The transformation to dietary proportions (p-space) is thought to resolve scaling discrepancies in δ-space, allowing direct comparison with a metric based measure of niche width [1,19].

Flaherty and Ben-David [15] examined the effects of diet and habitat use on isotopic derived trophic niche width, in both δ-space and p-space, by modelling the isotopic composition of predators employing different feeding strategies. Their findings revealed that populations of dietary generalists display narrower isotopic niches than dietary specialists, suggesting that estimates from isotopic values of trophic niche may be confounded by habitat-derived differences (see also [12]). Our aim in this paper was to develop the models of Flaherty and Ben-David [15] by
Table 1. Depths (metres) and distance (kilometres) between the sites.

	Goodwyn	Wanaea	Yodel	Cossack
Depth	136 m	84 m	137 m	82 m
Distance				
between	Wanaea	45 km	55 km	31 km
well heads	Yodel	74 km	10 km	45 km
	Cossack	84 km	10 km	55 km

doi:10.1371/journal.pone.0040539.t001

Table 2. Values of δ13C and δ15N (mean and standard deviation) for the prey species collected from each site.

Prey	Global	Goodwyn	Yodel	Echo	Wanaea										
	n C13δ	N15δ	n C13δ	N15δ	n C13δ	N15δ	n C13δ	N15δ	n C13δ	N15δ					
Pseudanthias rubrozonatus*	195	-17.80 (0.63)	11.25 (0.88)	95	-17.99 (0.69)	11.00 (0.99)	37	-17.71 (0.49)	11.62 (0.89)	8	-17.84 (0.54)	11.54 (0.87)	55	-17.51 (0.50)	11.40 (0.46)
Rynchocinetes balusi*	34	-16.29 (0.41)	11.34 (0.83)	10	-16.54 (0.20)	11.89 (0.27)	10	-16.84 (0.29)	11.85 (0.34)	4	-15.77 (0.58)	11.58 (0.22)	10	-16.04 (0.31)	10.17 (0.38)
Petrolithus militaris*	36	-18.10 (1.38)	10.77 (0.81)	10	-16.19 (0.25)	11.37 (0.40)	9	-18.19 (0.57)	10.60 (0.33)	8	-18.65 (0.42)	11.27 (0.36)	8	-19.44 (1.06)	9.62 (0.69)
Pilumnus scabriculus*	31	-16.82 (0.64)	11.22 (0.87)	10	-17.15 (0.40)	11.27 (0.44)	9	-16.68 (0.35)	12.15 (0.42)	7	-16.13 (0.43)	10.14 (0.41)	5	-17.41 (0.78)	10.95 (0.76)
Maja spinipes	Crab	-16.92 (0.61)	11.60 (1.52)	6	-17.06 (0.48)	11.58 (1.30)	8	-17.05 (0.63)	12.28 (1.58)						
Portunus spinipes	7	-17.71 (1.54)	11.30 (0.51)	3	-19.33 (0.25)	10.86 (0.33)	4	-16.49 (0.34)	11.62 (0.33)						
Pyllograpus pseudolus	Hermit Crab	-17.87 (0.75)	9.78 (1.05)	9	-17.97 (0.30)	9.82 (0.32)	8	-18.41 (0.91)	11.2 (0.40)	14	-17.51 (0.48)	9.03 (0.87)			
Munida rogeri	Squat Lobster	-17.29 (0.81)	11.19 (0.48)	10	-16.80 (0.52)	11.45 (0.45)	9	-17.83 (0.73)	10.90 (0.34)						
Lysmata amboinensis	Shrimp	-16.02 (0.76)	11.72 (0.74)	10	-15.62 (0.37)	12.03 (0.41)	5	-16.49 (1.04)	11.66 (0.95)	3	-16.55 (0.58)	10.80 (0.36)			
Lysmata sp.	Shrimp	-17.05 (0.62)	11.26 (0.64)	8	-16.76 (0.21)	10.93 (0.36) v(0.74)	3	-17.82 (0.74)	12.14 (0.17)						
Alpheus gracilipes	Shrimp	-16.53 (0.89)	11.48 (0.83)	3	-16.53 (0.59)	11.48 (0.83)									
Paranthus sp.	Anemone	-18.04 (1.71)	12.03 (0.66)	10	-16.20 (0.36)	11.87 (0.57)	10	-18.32 (0.34)	12.36 (0.84)	7	-19.75 (1.50)	11.74 (0.41)			
Megalabalanus tintinnabulum	Barnacle	-18.57 (0.40)	10.02 (0.83)	8	-18.72 (0.18)	9.89 (0.36)	9	-18.52 (0.32)	9.89 (1.12)	3	-17.80 (0.40)	10.72 (0.31)			
Bait fish	Fish	-17.89 (0.23)	11.57 (0.24)	8	-17.90 (0.22)	12.29 (0.58)	8	-18.25 (0.22)	11.73 (0.50)						
Pseudanthias shernii*	Reef Fish	-18.25 (0.15)	11.96 v(0.53)	3	-18.29 (0.22)	12.29 (0.58)	8	-18.25 (0.15)	11.73 (0.50)						
Pseudanthias sp.	Reef Fish	-18.16 (0.63)	12.50 (0.30)	5	-18.16 (0.63)	12.50 (0.30)									
Gobiidae sp.	Fish	-18.13 (0.34)	11.39 (0.93)	3	-18.13 (0.34)	11.39 (0.93)									
Apogonidaesp.	Fish	-17.41 (0.71)	11.10 (0.52)	3	-17.41 (0.71)	11.10 (0.52)									
Turritellidae sp.	Gastropod	-15.68 (0.41)	12.66 (0.99)	4	-15.68 (0.41)	12.66 (0.99)									
Ranellidae sp.	Gastropod	-17.78 (0.09)	10.38 (0.33)	5	-17.78 (0.09)	10.38 (0.33)									
Ophiuridae sp.	Brittle Star	-16.91 (0.13)	10.40 (0.86)	3	-16.91 (0.13)	10.40 (0.86)									

doi:10.1371/journal.pone.0040539.t002

Estimating Niche Width Using Stable Isotopes adding new degrees of ecological realism and statistical robustness by taking advantage of a rich new isotopic database, while also extending the models from a terrestrial to a marine context.

The isotopic data used for the modelling were derived from marine assemblages collected from artificial reefs (decommissioned oil drilling wellheads) on the North-West Shelf of Australia. These data offer several novel and significant features for such an investigation: a) the fauna sampled at each location was complete (i.e. isotopic signatures from the entire community were collected); b) the wellheads are replicated (the same) structures that differ in location and depth; and c) the wellheads had a range of species from a similar trophic level, representing a good system to
investigate the effects of a predator that forages widely but without many additional differences between food patches. In addition, the wellheads were in deep-water locations (i.e. relatively unstudied) and the sample sizes for individual species were large (n = 4 – 195).

The objective of this study is to use similar models to those applied by Flaherty and Ben-David [15] to determine effects of habitat variability in prey on the isotopic outcomes of the predator. We will apply both multi-source and Bayesian-based models to determine if trophic interactions, such as trophic niche widths and resource partitioning can be accurately estimated. To confidently address this hypothesis we will improve the modelling approach and test the resulting outcomes with more rigorous statistical analysis. In addition, the isotopic outcomes of our model predator will be tested under more ecologically realistic assumptions that represent conditions a predator is likely to face in the real environment. The basis of this approach adopted the four basic foraging models (as outlined in the methods) tested by Flaherty and Ben-David [15], using all combinations of dietary and habitat specialists or generalists. For this study, habitat generalists refers to those collected from a range of wellhead (artificial reef) locations. Isotopic differences were simulated by: 1) using four common prey species of known isotopic signatures at each location; 2) incorporating the effects of distance between sites on the signatures of the predator feeding on the common prey species at each habitat/location; and 3) using the entire assemblage of prey sampled within a similar trophic level at each site.

Methods

Animals were collected in 2008 from the North West Shelf of Australia approximately 100km offshore from Dampier, Western Australia, from isolated wellhead structures (see Table 1). The wellheads were remotely severed and brought onboard a construction vessel as part of the decommissioning works, allowing organisms to be collected directly by hand from the structures (see [20] for full details). The wellheads had been in place for 12 – 16 years, such that they were colonised by extensive communities of deep reef species. δ13C and δ15N isotope signatures among sites, a Multiple Analysis of Variance (MANOVA) was performed. All statistical tests were performed using the SPSS statistical package. The dependent variables δ13C and δ15N were compared among the fixed factors site and prey species. Variances were compared separately for both δ13C and δ15N to determine the effects of habitat/location variability on isotopic composition in δ-space. An O'Brien’s transformation [29] was applied to convert the variance data into a format suitable for Analysis of Variance (ANOVA), as follows:

\[
\frac{(n_i - 1.5)n_i(y_{ik} - \bar{y}_i)^2 - 0.5s_i^2(n_i - 1)}{(n_i - 1)(n_i - 2)}
\]

Where \(n_i\) is the number of observations of group \(i\), \(y_{ik}\) is the \(k\) th observation of group \(i\), \(\bar{y}_i\) is the mean of the observations of group \(i\), and \(s_i^2\) is the variance of the observations of group \(i\).

In order to avoid Type II error (i.e. falsely accept the null hypotheses) rarefaction curves were generated to determine the

Foraging models

Models were created using the MATLAB software package. The large pelagic fish Almaco Jack (Seriola rivoliana) was chosen as a model predator in the simulations. Almaco Jack are known to feed opportunistically on a wide range of prey [23] including both fish and invertebrates [24,25], and foraging across distances of up to 50 km [26] with the capacity to migrate hundreds of kilometres [27]. All parts of this study used the basis of the same modelling approach as Flaherty and Ben-David (2010), but to enhance reliability, modelling was based on 100 000 replicates per model rather than the 250 (see Text S1 for a detailed description of the model).

In the first part of this study to mimic the original model [15], four focal species; the fish P. rubripinnus and decapods R. holsi, P. militari and P. sobriasculus (see also [23]) common to all sites were designated as prey (Table 2), for four different predator models, as follows:

1. DsHs – the predator is a dietary and habitat specialist (preys on specific items but has site fidelity) (Model 1);
2. DsHg – the predator is a dietary specialist and habitat generalist (preys on specific items and forages between sites) (Model 2);
3. DgHs – the predator is a dietary and habitat generalist (preys on everything and forages between sites) (Model 3);
4. DgHg – the predator is a dietary generalist and habitat specialist (preys on everything but has site fidelity) (Model 4).

In part two of the study, the effect of distance between foraging sites on isotopic signatures of the Almaco Jack predator feeding on the four focal species was modelled. The aim was to model isotopic outcomes under conditions that are more likely to reflect a marine predator that is highly mobile and forages across large spatial scales. This was achieved by dictating the relative contribution of each habitat to reflect the effect of distance between foraging sites on habitat generalists (DsHs and DsHg), see Text S1 for a detailed description of the model).

In the third part, to further increase ecological realism, entire prey assemblages at each site were used to reflect site composition (see Table 2). Hence, for this part, only dietary generalists (DsHg and DgHg) were simulated. Unless otherwise denoted niche width is equal to the variance produced by the models.

Data analysis

To determine if the common invertebrates varied in isotopic signatures among sites, a Multiple Analysis of Variance (MANOVA) was performed. All statistical tests were performed using the SPSS statistical package. The dependent variables δ13C and δ15N were compared among the fixed factors site and prey species. Variances were compared separately for both δ13C and δ15N to determine the effects of habitat/location variability on isotopic composition in δ-space. An O’Brien’s transformation [29] was applied to convert the variance data into a format suitable for Analysis of Variance (ANOVA), as follows:

\[
\frac{(n_i - 1.5)n_i(y_{ik} - \bar{y}_i)^2 - 0.5s_i^2(n_i - 1)}{(n_i - 1)(n_i - 2)}
\]

Where \(n_i\) is the number of observations of group \(i\), \(y_{ik}\) is the \(k\) th observation of group \(i\), \(\bar{y}_i\) is the mean of the observations of group \(i\), and \(s_i^2\) is the variance of the observations of group \(i\).

In order to avoid Type II error (i.e. falsely accept the null hypotheses) rarefaction curves were generated to determine the
optimal sampling size of modelled variances [30]. For the modelled data it was found that optimal sample size ranged between 100 and 950 observations, hence a median of 475 observations was randomly selected from the 100 000 modelled observations for analysis of their means and variances.

To compare the four models, all combinations relevant to that model were pooled. For example, for the model DsHg this includes each of the prey species, which equates to four combinations. Analysis of Variance (ANOVA) was employed to test for differences between models, followed by Tukey’s post hoc comparisons to identify where significant differences between models existed. However, the pooling of scenarios for models may confound some comparisons (i.e. where the effects of scenarios are opposite within each model, such differences due to pooling will not be apparent). Therefore, additional analysis using a one-way ANOVA with Tukey’s post hoc comparisons between all possible scenarios of each model was performed. This same procedure was followed for all three parts of the study.

Mixing models were applied to the data to determine if converting δ-space to p-space (proportion space) as proposed by Newsome et al [19], could reduce variance to more accurately estimate trophic niche width, and to identify resource partitioning. To model the effects of prey variability across habitats that a “naive researcher” may encounter, 50 Almaco Jack were randomly sampled from the simulated populations. A sample size of 50 (predators) was deemed appropriate following initial runs which determined that a sample size of >15, as used by Flaherty and Ben-David [15], was required because the mixing space derived from the four reef species in this study was smaller.

Following the procedures of Flaherty and Ben-David [15], we constructed mixing spaces using the four focal prey species and selected Almaco Jack that fell only within this mixing space from simulated populations in both Part 1 and 2 for conversion to p-space. For models involving habitat generalists (DsHg and DsHs), global means of the four common prey species (sources) were used to distinguish the mixing space. However global means for habitat specialists were deemed inappropriate as they fell outside the mixing space, therefore the appropriate site means were used (Table 2).

In addition to the multi-source mixing model SISUS [31] applied by Flaherty and Ben-David [15], we also used the IsoSource [32], SIAR [33] and MixSIR [34] models to convert variances to p-space and estimate proportions of prey species contributions. Unless otherwise denoted, the model default settings were used and no trophic enrichment factors (TEF’s) were defined other than program defaults, where appropriate. For the SISUS (Bayesian based) model [14], 10 000 samples were selected to be retained for analysis within the model, which generated mean proportions and variances for each of the mixtures (fractions of prey contributing to predator signature). For the IsoSource model (multiple source dual isotope mixing-model) [32], an increment of 1% and tolerance of 0.05 were selected for each possible mixture to generate mean proportions and variances. For the MixSIR (Bayesian based) model [34] 1 000 000 iterations were run and a posterior density ratio of <0.01 was ensured. For the SIAR (Bayesian based) model [33], 1 000 000 iterations with a burnin of 400 000 iterations (“very long” default setting in the package) were run, standard trophic enrichment factors (TEF’s) of 3.54% (standard deviation (SD) of 0.74) for δ15N and and 1.63% (SD = 0.63) for δ13C for trophic level were used, no elemental concentration corrections and/or priors were defined. Mean proportions and variances were calculated by randomly selecting a number, equal to the sample sizes of the mixtures for any one scenario. Mixture sample size was determined from the number of predator signatures that fell within the two dimensional mixing space (defined by the delta values of the prey).

For models containing dietary and habitat specialists, Pilumnus scabriusculus and the Yodel site were randomly selected for part 1 (DsHg and DsHs), and Pseudanthias rubrizonatus in part 2 (DgHg). To determine the combined variances amongst proportions of each prey source in p-space, the Shannon-Wiener information measure (H) was used to estimate variances (niche width) [35]. These estimates were then compared with one way analysis of variance (ANOVA) followed by a Tukey’s post hoc comparisons.

Results

Niche width estimates in δ-space

Part 1. The isotopic signatures of the common prey species varied among the sites (MANOVA, p<0.05; Table 2). Mean differences among sites were 0.5 %δ13C and 0.6 %δ15N for Pseudanthias rubrizonatus, 0.7 %δ13C and 1.7 %δ15N for Rhynechoicetes balsii, 3.2 %δ13C and 1.8 %δ15N for Petrolisthes miliaris, and 1.3 %δ13C and 2.1 %δ15N for Pilumnus scabriusculus. Simulated models of Almaco Jack isotopic compositions from feeding on the common prey species (Part 1) found that their position within δ-space was variable (Fig 1, 2). In the majority of cases, higher variances indicated that dietary specialists (DsHg, and DsHs) occupied greater bivariate space than dietary generalists (DsHg, and DsHs). Pooled (i.e. the mean sum of all possible scenarios/ combinations within each model) results for each model show that the isotopic niche can be greater for dietary specialists (DsHg, and DsHs) with variances of 1.7 to 5.6 and 2 – 3 times greater for δ13C and δ15N, respectively, than dietary generalists (DsHg, and DsHs) (Table 3). Comparison of O’Brien’s variances among models with all possible scenarios pooled found significant differences for both δ13C (ANOVA, F3, 11875 = 8.27, p<0.001) and δ15N (ANOVA, F3, 11875 = 74.11, p<0.001). Post hoc comparisons revealed that for δ13C DsHg populations had significantly greater variances than DsHg, while DsHg were significantly greater than those of DsHg; however other comparisons e.g. DsHs and DsHs, were not significantly different (Table 4). For δ15N, significant differences were only found for comparisons of DsHg with all other models (Table 4).

A closer inspection of the modelled data for Part 1 revealed that the niche width displayed by the predator varied both among and within models (Fig 1, 2) (for additional plots see Figure S1). Further comparison among the modelled outcomes found that isotopic niche width varied between both sites and prey species for the simulated populations of Almaco Jack (Table 3). The data show that differences in isotopic variances of the predator are prey species specific. For DsHg δ13C variances ranged from being 2.8 times greater to 4 times less than those of DsHg, while for δ15N, DsHg variances ranged from 1.9 times greater to 2.4 times less than DsHg. In a similar manner the data reveal that for all models,
Table 3. Mean and variance of δ^{13}C and δ^{15}N for models of simulated Almaco Jack populations.

Model	Treatment	C13 Mean	C13 Variance	N15 Mean	N15 Variance
Part 1					
D$_1$H$_g$ (1)	$P. \ rubrizonatus$	−17.85	0.20	11.31	0.49
D$_1$H$_g$ (1)	$R. \ balssi$	−16.38	0.06	11.66	0.11
D$_1$H$_g$ (1)	$P. \ militaris$	−17.51	0.67	10.93	0.18
D$_1$H$_g$ (1)	$P. \ scabriusculus$	−16.90	0.14	11.32	0.21
D$_2$H$_g$ (1)	Pooled	−17.16	0.58	11.30	0.31
D$_2$H$_g$ (2)	Generalist	−17.40	0.24	11.27	0.26
D$_2$H$_g$ (3)	Goodwyn – $P. \ rubrizonatus$	−17.96	0.45	11.00	0.97
D$_2$H$_g$ (3)	Goodwyn – $R. \ balssi$	−16.54	0.04	11.89	0.07
D$_2$H$_g$ (3)	Goodwyn – $P. \ militaris$	−16.19	0.07	11.36	0.17
D$_2$H$_g$ (3)	Goodwyn – $P. \ scabriusculus$	−17.17	0.14	11.27	0.20
D$_2$H$_g$ (3)	Yodel – $P. \ rubrizonatus$	−17.77	0.25	11.63	0.78
D$_2$H$_g$ (3)	Yodel – $R. \ balssi$	−16.47	0.09	11.85	0.12
D$_2$H$_g$ (3)	Yodel – $P. \ militaris$	−18.43	0.34	10.61	0.11
D$_2$H$_g$ (3)	Yodel – $P. \ scabriusculus$	−16.86	0.11	12.16	0.16
D$_2$H$_g$ (4)	Generalist	−17.29	0.29	11.29	0.41
D$_2$H$_g$ (4)	Goodwyn	−17.33	0.31	11.31	0.34
D$_2$H$_g$ (4)	Yodel	−17.47	0.20	11.61	0.33
D$_2$H$_g$ (4)	Echo	−17.34	0.40	11.43	0.34
D$_2$H$_g$ (4)	Wanaea	−17.34	0.35	10.80	0.28
D$_2$H$_g$ (4)	Pooled	−17.29	0.34	11.24	0.41
Part 2					
D$_1$H$_g$	$P. \ rubrizonatus$	−17.81	0.23	11.52	0.56
D$_1$H$_g$	$R. \ balssi$	−15.87	0.25	11.56	0.04
D$_1$H$_g$	$P. \ militaris$	−18.64	0.13	11.14	0.10
D$_1$H$_g$	$P. \ scabriusculus$	−16.24	0.15	10.37	0.12
D$_2$H$_g$ (1)	Pooled	−17.14	1.47	11.15	0.43
D$_2$H$_g$ (2)	Generalist	−17.24	0.25	11.36	0.24
Part 3					
D$_2$H$_g$ (2)	Generalist	−17.33	0.14	11.34	0.18
D$_2$H$_g$ (4)	Goodwyn	−17.23	0.31	11.31	0.34
D$_2$H$_g$ (4)	Yodel	−17.47	0.20	11.61	0.33
D$_2$H$_g$ (4)	Echo	−17.34	0.40	11.43	0.34
D$_2$H$_g$ (4)	Wanaea	−17.34	0.34	10.73	0.26
D$_2$H$_g$ (4)	Pooled	−17.35	0.32	11.27	0.43

Those models in bold elucidate mean values for each population based on diet (specialist vs. generalist) and habitat (Wellhead). Where a model consists of numerous variations (different specialisations) a ‘Pooled’ value is provided as an accumulative mean value for the model. Models for Part 1 used the four common prey species. Models for Part 2 used the common prey species and incorporating distance between sites. Models for Part 3 used the entire prey assemblage.

doi:10.1371/journal.pone.0040539.t003
Table 4. Tukey’s post hoc results comparing variances between models using the four common prey species (Part 1) for δ13C and δ15N.

Isotope	Comparison	DsHg	DgHg	DsHs
δ13C	DsHg	*		
δ13C	DgHg	NS	***	
δ13C	DsHs	NS	NS	*
δ15N	DgHg	***		
δ15N	DsHg	***	NS	
δ15N	DsHs	***	NS	

NS: no significant difference; asterisks indicate significant differences at *p<0.05, **p<0.01 and ***p<0.001.

do.i:10.1371/journal.pone.0040539.t004

differences in variances are prey source and/or habitat specific (see Table 3).

Part 2. The isotopic composition of habitat generalists was found to further vary when the predator transfers between foraging sites was added to the model (see DsHg Fig 3) (for additional plots see Figure S2). In δ-space the differences in variances of dietary specialists (DsHg) were variable between prey sources, ranging from being the same to 1.9 times greater than dietary generalists (DgHg) for δ13C, and 6 times less to 2.3 times greater than dietary generalists (DgHg) for δ15N (Table 3). Comparison of variances between models with scenarios pooled was significant for δ13C (ANOVA, F1, 2375 = 106.636, p<0.001) and δ15N (ANOVA, F1, 2375 = 6.083, p<0.05), while comparisons among all scenarios within each of the two models (1 and 4) were significant for both δ13C (ANOVA, F1, 2375 = 60.719, p<0.001) and δ15N (ANOVA, F1, 2375 = 208.679, p<0.001). All scenarios of dietary specialists (DgHg) were found to be different to dietary generalists (DgHg) for both δ13C and δ15N, while some comparisons between the different dietary specialists (DgHg) were also different (see Table 5).

Part 3. Differences in δ-space were also variable when comparing models of dietary generalists (DgHg and DgHs) utilising the entire prey assemblages at each site (Fig 3; for additional plots see Figure S3). Variances of habitat specialists (DgHs) ranged from being 1.4 to 2.9 times greater than habitat generalists (DgHg) for δ13C, and 1.4 to 2.2 times greater than habitat generalists (DgHg) for δ15N (Table 3). Comparisons of pooled variances (i.e. those derived from the isotopic signatures) of simulated populations feeding on the entire prey assemblage for significant for both δ13C and δ15N isotopes (δ13C: ANOVA, F1, 2375 = 106.636, p<0.001; δ15N ANOVA, F1, 2375 = 66.109, p<0.001). Differences were also found for δ13C and δ15N variances among all scenarios within each of the two models compared (DgHg and DgHs) δ13C: ANOVA, F1, 2375 = 73.911, p<0.001; δ15N: ANOVA, F1, 2375 = 25.942, p<0.001). All comparisons of individual scenarios within DgHg were different to DgHs (with the exception of habitat specialists at Yodel for δ13C and Wanaea for δ15N), while only some comparisons between the different habitat specialists were different (see Table 6).

Niche width estimates in p-space and prey source proportions

In Part 1, variances indicate that isotopic niche width in p-space was greater for the dietary specialists (DgHg and DgHs) than the dietary generalists (DgHg and DgHs) (Table 7), however only differences using the MIXSIR and SIAR models were found to be significantly different (SISUS: F3, 43 = 1.588, p = 0.208; IsoSource: F3, 43 = 2.082, p = 0.118; MIXSIR: F3, 43 = 5.013, p<0.05; SIAR: F3, 43 = 63.153, p<0.001). Post hoc comparisons for the MIXSIR model indicated that only dietary and habitat generalists (DgHg) were different from dietary generalist, habitat specialists (DgHs). In comparison, post-hoc analysis for the SIAR model revealed that dietary generalists and habitat specialists (DgHs) were different to all other categories, which were not different from each other (Table 8).

In Part 2 (where foraging distance was included in the models) the dietary specialist (DgHg) was found to have narrower isotopic niche than the dietary generalist (DgHg). Three of the four models found these differences to be significant, SISUS (F1, 12 = 6.220, p<0.05), IsoSource (F1, 12 = 6.794, p<0.05) and MIXSIR (F1, 12 = 6.794, p<0.05). These results should be interpreted with care as the sample size was small (Table 7). Results from both Parts 1 and 2 show that model variances decreased on conversion from δ-space. However, the differences in variances between models remained similar or increased (Table 8).

Discussion

The results confirm that isotopic variability amongst habitats can confound estimates of isotopic niche in both δ-space and p-space. The modelling of isotopic compositions of simulated populations of Almaco Jack foraging between artificial reefs conforms with the terrestrial modelling by Flaherty and Ben-David [15]. In the present study, improved modelling techniques and more ecologically realistic conditions were applied to test the effects of isotopic variability between habitats on trophic niche width. In addition, data were converted from δ-space to p-space, as suggested by Newsome et al. [19] using a range of different mixing models to reduce scaling discrepancies. The modelling suggests that the isotopic variability of prey may confound any predictions of trophic niche, irrespective of an organism’s trophic strategy (specialist vs. generalist) and/or the source of isotopic variation (spatial vs. compositional differences). In addition, the use of mixing models to convert δ-space variance to p-space variance offers little or no assistance. Interestingly, and in contrast to what is commonly accepted, although estimated isotopic niche breadth is a function of the variance of prey items in this study global values of common prey species varied by 1.9‰ for δ13C and 0.5‰ for δ15N and the spatial dispersion of that variance, dietary specialists appear to have a broader isotopic range than dietary generalists.

Analysis of the data revealed that prey variability in stable isotope signatures among habitats must be accounted for if we are to make realistic predictions about niche width. These results confirm that the natural variability that occurs across spatial scales of the study area will influence isotopic signatures, especially those of δ13C [16,31], confounding comparisons of isotopic variances between many populations [36]. Natural variations in isotopic signatures will be evident amongst most basal resource pools. This is especially evident in the marine environment. For example phytoplankton are known to show trends of δ13C enrichment with decreasing latitude towards the equator [37], indicating fluctuations in the physiochemical environment may lead to variability. What remains clear, is that to interpret the variance amongst isotopic signatures of predators, isotopic variability of prey needs careful consideration [16,38] and for many studies, adequate sampling across relevant spatial and temporal scales needs to be a prerequisite [39]. Despite this, a number of studies have attempted to estimate isotopic niche width as a measure of trophic niche [31,40,41,42,43,44]. Where spatial variation in isotopic composi-
Figure 3. 2D histograms showing the distribution of the results obtained for 100 000 of the isotopic signatures from the modelled Almaco Jack in δ-space incorporating distance between sites for the common prey species (Part 2), and the entire prey assemblages (Part 3). Models include those for dietary generalists and habitat generalists (DgHg), dietary specialists and habitat specialists (DsHs) (Part 2 only) and dietary generalists and habitat specialists (DgHs) (Part 3 only). Individual histogram greyscale bars indicate the relative frequency for each class.

doi:10.1371/journal.pone.0040539.g003
tion of prey can be dismissed, comparisons of trophic niche widths may be possible e.g. as in Willson et al. [40] who used a small, isolated study site to investigate aquatic snakes. Unfortunately for the majority of habitats and study species, it is clear that a detailed knowledge of species-specific feeding behaviour and the ecology of the community are required before variability in prey isotopic composition can be identified and accounted for [1,15,45]. The use of multiple methods may aid the accuracy of estimation of trophic niche width using stable isotopes, and as such, a number of studies have successfully utilised the information from stable isotopes combined with gut analysis to make informed estimates of trophic niches [42,46,47].

The ‘niche variation hypothesis’ proposed by Van Valen [11] predicts that “populations with wider niches are more variable than populations with narrower niches” [48]. Correspondingly, Bearhop et al. [12] predicted that populations consuming a wider range of prey and those that forage in a range of geographical areas could display wider isotopic variation than those that have a narrow range of prey and limited foraging capacity. In accordance with Bearhop et al.’s [12] predictions, Olsson et al. [41] examined the isotopic niche widths of invasive and native crayfish in Swedish streams. The greater niche width of the introduced species reflected a wider use of habitat and/or prey sources. However at the population level, the two species did not differ in niche widths, indicating that isotopic variability between habitats was confounding any differences [41]. Accordingly, our models have identified the confounding influence of habitat use on predictions of trophic niche width. Furthermore, comparisons of populations of dietary generalists feeding on the common four prey sources indicate that isotopic variation among habitat specialists was similar or greater than the equivalent habitat generalists (Table 3). Niche width may increase by either the entire population shifting to use all available resources or by an increase in inter-individual specialisation within a population (see [49]). Simulations of populations of dietary generalists here suggest that populations confined to one site may display greater isotopic variance within their population due to individual specialisation. This individual niche variation among conspecific individuals has been suggested as being widespread [49], indicating that the variation in isotopic niche within a population may further confound any estimates of a populations trophic niche width. For example, predators within the same population with different dietary specialisations can account for greater trophic variability at the population level than the same population composed of generalists.

Fundamentally, anything which prevents or causes an organism to sample only a portion of the complete distribution of prey signatures where variation exists could result in incomplete and inaccurate estimates of niche width. Our data indicates that as the variance in prey items increases, the greater there is for the potential of inaccuracy (dependant on the spatial distribution of the signatures). The influence of distance between resources on the foraging behaviour of animals has been well established [50,51], and such effects may be driven by macronutrient regulation [52,53] and prey availability [54]. Data from simulated popula-

Isotope	Comparison	\(\delta^{13}C \)					
		\(D_{4}H_{2} \)	\(P. rubrizonatus \)	\(D_{4}H_{2} \)	\(R. balssi \)	\(D_{4}H_{2} \)	\(P. militaris \)
\(\delta^{13}C \)	\(D_{4}H_{2} \) \(- \) \(R. balssi \)	NS	***	***	NS	NS	NS
\(\delta^{13}C \)	\(D_{4}H_{2} \) \(- \) \(P. militaris \)	***	***	***	NS	NS	NS
\(\delta^{13}C \)	\(D_{4}H_{2} \) \(- \) \(P. scabriusculus \)	***	***	***	NS	NS	NS
\(\delta^{13}C \)	\(D_{4}H_{2} \)	***	***	***	***	NS	NS
\(\delta^{15}N \)	\(D_{4}H_{2} \) \(- \) \(R. balssi \)	***	***	***	***	NS	NS
\(\delta^{15}N \)	\(D_{4}H_{2} \) \(- \) \(P. militaris \)	NS	NS	NS	NS	NS	NS
\(\delta^{15}N \)	\(D_{4}H_{2} \) \(- \) \(P. scabriusculus \)	NS	NS	NS	NS	NS	NS

NS: no significant difference; asterisks indicate significant differences at *p*<0.05, **p*<0.01 and ***p<0.001.

doi:10.1371/journal.pone.0040539.t005

Isotope	Comparison	\(D_{4}H_{2} \)	\(Goodwyn \)	\(D_{4}H_{2} \)	\(Yodel \)	\(D_{4}H_{2} \)	\(Echo \)	\(D_{4}H_{2} \)	\(Wanaea \)
\(\delta^{13}C \)	\(D_{4}H_{2} \) \(- \) \(Yodel \)	***	***	***	***	***	***	***	***
\(\delta^{13}C \)	\(D_{4}H_{2} \) \(- \) \(Echo \)	***	***	***	***	***	***	***	***
\(\delta^{13}C \)	\(D_{4}H_{2} \) \(- \) \(Wanaea \)	NS	***	***	***	***	***	***	***
\(\delta^{13}C \)	\(D_{4}H_{2} \)	***	NS	***	***	***	***	***	***
\(\delta^{15}N \)	\(D_{4}H_{2} \) \(- \) \(Yodel \)	NS	NS	NS	NS	NS	NS	NS	NS
\(\delta^{15}N \)	\(D_{4}H_{2} \) \(- \) \(Echo \)	**	NS	NS	NS	NS	NS	NS	NS
\(\delta^{15}N \)	\(D_{4}H_{2} \) \(- \) \(Wanaea \)	***	NS	NS	NS	NS	NS	NS	NS
\(\delta^{15}N \)	\(D_{4}H_{2} \)	***	***	***	***	***	***	***	***

NS: no significant difference; asterisks indicate significant differences at *p*<0.05, **p*<0.01 and ***p<0.001.

doi:10.1371/journal.pone.0040539.t006
Table 7. Comparison of source proportion estimates for each of the common prey species and Shannon-Wiener information measure (H) means and variances in p-space, between mixing models (SISUS, IsoSource and MixSIR) for Part 1 and 2.

Models	Prey sources	p-space					
Part 1							
D_3H_2	SISUS	0.30 (0.06)	0.44 (0.08)	0.11 (0.02)	0.15 (0.01)	-0.98	0.10
n = 8	IsoSource	0.35 (0.11)	0.33 (0.08)	0.12 (0.02)	0.19 (0.01)	-0.97	0.16
	MixSIR	0.29 (0.15)	0.09 (0.02)	0.26 (0.05)	0.36 (0.09)	-0.79	0.09
	SIAR	0.21 (0.01)	0.10 (0.01)	0.51 (0.03)	0.16 (0.01)	-1.08	0.04
Mean		0.29 (0.08)	0.24 (0.19)	0.25 (0.03)	0.22 (0.01)	-0.96	0.01
D_3H_3	SISUS	0.36 (0.05)	0.15 (0.06)	0.28 (0.09)	0.20 (0.09)	-1.11	0.07
n = 7	IsoSource	0.31 (0.06)	0.13 (0.01)	0.24 (0.08)	0.19 (0.01)	-1.14	0.06
	MixSIR	0.11 (0.03)	0.22 (0.03)	0.45 (0.06)	0.22 (0.05)	-0.95	0.01
	SIAR	0.23 (0.04)	0.10 (0.01)	0.45 (0.02)	0.22 (0.01)	-1.14	0.01
Mean		0.25 (0.05)	0.15 (0.03)	0.36 (0.06)	0.21 (0.04)	-1.09	0.04
D_3H_3	SISUS	0.09 (0.01)	0.49 (0.09)	0.10 (<0.01)	0.33 (0.10)	-0.88	0.11
n = 8	IsoSource	0.10 (<0.01)	0.47 (0.08)	0.09 (<0.01)	0.33 (0.08)	-0.95	0.07
	MixSIR	0.19 (0.09)	0.17 (0.02)	0.55 (0.05)	0.08 (0.01)	-0.88	0.06
	SIAR	0.06 (<0.01)	0.02 (<0.01)	0.90 (<0.01)	0.03 (<0.01)	-0.99	0.02
Mean		0.11 (0.03)	0.29 (0.05)	0.41 (0.01)	0.19 (0.05)	-0.93	0.07
D_3H_3	SISUS	0.23 (0.04)	0.28 (0.04)	0.31 (0.04)	0.18 (0.01)	-1.09	0.04
n = 20	IsoSource	0.25 (0.03)	0.26 (0.04)	0.30 (0.04)	0.20 (0.01)	-1.15	0.01
	MixSIR	0.09 (0.01)	0.05 (<0.01)	0.79 (0.01)	0.07 (<0.01)	-0.66	0.02
	SIAR	0.21 (0.02)	0.12 (0.01)	0.60 (0.01)	0.07 (<0.01)	-0.40	0.02
Mean		0.20 (0.03)	0.18 (0.02)	0.50 (0.02)	0.13 (<0.01)	-0.83	0.02

Part 2							
D_3H_2	SISUS	0.27 (0.02)	0.02 (<0.01)	0.06 (0.03)	0.03 (<0.01)	-0.72	0.09
n = 3	IsoSource	0.23 (0.02)	0.02 (<0.01)	0.71 (0.03)	0.04 (<0.01)	-0.74	0.09
	MixSIR	0.49 (0.18)	0.10 (0.01)	0.13 (0.02)	0.28 (0.09)	-0.84	0.01
	SIAR	0.26 (0.06)	0.16 (<0.01)	0.42 (0.07)	0.08 (<0.01)	-1.00	0.06
Mean		0.31 (0.07)	0.06 (<0.01)	0.49 (0.04)	0.11 (0.02)	-0.83	0.06
D_3H_3	SISUS	0.46 (0.03)	0.12 (0.01)	0.25 (0.03)	0.17 (0.02)	-1.11	0.04
n = 9	IsoSource	0.45 (0.03)	0.12 (0.01)	0.26 (0.03)	0.17 (0.01)	-1.13	0.03
	MixSIR	0.36 (0.11)	0.06 (<0.01)	0.53 (0.08)	0.06 (0.01)	-1.13	0.03
	SIAR	0.28 (0.02)	0.13 (0.01)	0.41 (0.04)	0.12 (0.02)	-1.06	0.03
Mean		0.39 (0.05)	0.11 (<0.01)	0.36 (0.05)	0.13 (0.02)	-1.11	0.03

Includes mean proportion estimates, and Shannon-Wiener means and variances for all three models, elucidated in bold.

doi:10.1371/journal.pone.0040539.t007
mixing models are sometimes less informative than non-isotopic reliant on amounts of a priori information, in such cases isotopic many mixing models used to estimate proportional values are raised concerns with the use of such transformation. Furthermore, concur with the findings of Flaherty and Ben-David [15] who variances between the simulated models (Table 7). We therefore many instances increased the observed differences in isotopic space, it was clear that this transformation maintained and in (1 & 2) where variances were compared in both d-space and p-space. It is clear that this transformation maintained and in many instances increased the observed differences in isotopic variances between the simulated models (Table 7). We therefore concur with the findings of Flaherty and Ben-David [13] who raised concerns with the use of such transformation. Furthermore, many mixing models used to estimate proportional values are reliant on amounts of a priori information, in such cases isotopic mixing models are sometimes less informative than non-isotopic information in its raw form i.e. stomach content data (see [1] for discussion).

Flaherty and Ben-David [15] modelled the attempts of a “naive researcher” who ignores habitat use of the study species when using isotopic data to estimate the trophic niche. In a similar manner, we used mixing spaces [32] to reproduce these simulations within a marine ecosystem. In comparison, mixing spaces for habitat specialists (D5Hs and D5Hg) were defined using source values from each site. If habitat variability in isotopic signatures is an important source of variation [15,16,56], it seems only appropriate that we define mixing space accordingly. Like Flaherty and Ben-David [15], we too encountered many isotopic values that fell outside of the mixing space. Because simulations are based on the isotopic signatures of the global or site mean of the prey species, when populations of specialist predators are observed a large proportion of the calculated isotopic values will fall outside their mixing space, independent of mixing space width. As variability in δ13C and δ15N of the primary producers in food webs exist among habitats [57,58,59], comparisons of δ13C and δ15N among habitats will be confounded by isotopic variability of the prey source [3].

Mixing models that provide estimates of prey item proportions within diets are becoming popular to determine partitioning of dietary resources. Such models have been refined [32,34,60,61] and debated [62,63] over recent years. Very recent examples of their use include Kristensen et al. [64], who applied mixing models to δ13C and δ15N isotopes to determine resource partitioning amongst leaf-eating mangrove crabs, and Flaherty et al. [65] used similar models to determine the contribution of different prey items to overall diet of flying squirrels. We tested and compared numerous models to determine if the partitioning of a resource by populations could be identified. It can be seen that in the majority of cases SISUS and IsoSource made very similar estimates, but different to those from the MixSIR and SIAR models (Table 6). The mixing models all predicted that Almaco Jack fed in a relatively generalist manner on all four prey species, with the exception of the SIAR model for D5Hs in Part 1. This includes models generated in part 2 for dietary specialists (D5Hs and D5Hg), which were simulated to feed exclusively on P. scabriusculus. Of concern was that on closer inspection of the proportions estimated, it was evident that no mixing model was able to accurately estimate proportions of the dietary specialists, possibly with the exception of SIAR for D5Hs, irrespective of isotopic variation of habitats (Table 6). For part 2, SIAR failed to allocate the majority of the diet to the specialist prey item, P. rubrizonatus.

Transformation of the data to dietary proportions failed to distinguish the correct partitioning of prey sources for dietary specialists. In Part 1 mean estimates among mixing models for predators specialising on P. scabriusculus determined that this prey source, only counted for approximately a ¼ of their diet irrespective of the habitat model. In part 2, mean estimates amongst mixing models for predators specialising on P. rubrizonatus revealed that P. rubrizonatus accounted for only 31% of their diet, while other “uneaten” individual prey species contributing up to 49% of the diet (Table 6). Because no mixing model was able to accurately estimate proportions of the dietary specialists, irrespective of isotopic variation of habitats (Table 5), our data therefore show that inaccuracies amongst estimates provided by linear mixing models may go well beyond problems associated with habitat variability.

Like Flaherty and Ben-David [15], we too provide simplistic approaches to what are in reality, much more complex systems [49] that are likely to substantially underestimate the true extent of isotopic variability. We have attempted to include greater

Part	Model	d13C	d15N	P
Part 1	D5Hg	1.7	1.2	2.4
Part 1	D5Hg (P. scabriusculus and Yodel only)	1.3	1.3	1.5
Part 1	D5Hs (Yodel only)	1.7	1.2	6.0
Part 1	D5Hs	2.2	1.6	1.6
Part 1	D5Hs (P. scabriusculus and Yodel only)	1.0	1.2	2.5
Part 1	D5Hs (P. scabriusculus and Yodel only)	2.1	2.0	4.0
Part 2	D5Hg (P. rubrizonatus only)	1.1	2.3	2.0

Table 8. Comparison of variances in d-space (for both δ13C and δ15N) with p-space (Shannon-Wiener information measure) for models using the common prey species (Part 1) and models using the common prey species and incorporated distance between sites (Part 2).
ecological complexity by including foraging distance and by using entire assemblages across a trophic level as prey sources. With these additions our models show that isotopic variability amongst habitats will confound estimations of trophic niche width derived from measures of isotopic niche width in both δ-space [12] and p-space [19]. While the variability of prey isotopes is lower than may be encountered in some ecological systems but still likely reflective of many, it remains clear that isotopic niche is not a reliable indicator of trophic niche. Of greater concern was the failure of mixing models to correctly identify dietary specialisations and potential resource partitioning. Additionally, our simulations bring into question the accuracy of mixing models in identifying contribution sources, irrespective of whether isotopic variability amongst habitats exists. Our findings emphasise that progress in isotopic studies in animal ecology will require a greater understanding of the functional traits and behaviour of organisms.

Supporting Information

Figure S1 Data output from simulations of the isotopic signatures for Part I from the modelled Almaco Jack in δ-space that were both dietary and habitat specialist δHs for the common. (TIF)

Figure S2 Data output from simulations of the isotopic signatures for Part I from the modelled Almaco Jack in δ-space that were both dietary and habitat specialist δHs for the common species. (TIF)

Figure S3 Data output from simulations of the isotopic signatures from the modelled Almaco Jack in δ-space. A) Habitat generalists specialising on the common species δHs accounting for distance between sites – Part 2. B) – Habitat specialists feeding on the entire prey assemblages δHs – Part 3. (TIF)

Text S1 Detailed model description. (DOCX)

Acknowledgments

We gratefully acknowledge Roger Springthorpe, Shane Ahlyong and Stephen Keable of the Australian Museum, and Michela Mitchell from the Museum of Victoria, for assistance with specimen identification. We are grateful to SE4 SERPENT personnel D. Skrogeta, N. Pastro and A. Fowler who assisted in the collection of specimens and V. Valenzuela Davie for maintaining the database of these specimens. We thank the Captain, business partners and crew of the C/V Haskell Harmony and Woodside Energy who made this research possible by providing access and logistical support. The quality and content of this manuscript was significantly improved, by the comments of two anonymous reviewers, to whom we are grateful. The paper is contributed #9 from the South East Asian Branch of the SERPENT (Scientific and Environmental Remotely Operated Vehicle Partnership using Existing Industrial Technology).

Author Contributions

Conceived and designed the experiments: DOC SPH. Analyzed the data: DOC SPH CB. Contributed reagents/materials/analysis tools: DOC RWL. Wrote the paper: DOC SPH CB SJ S RWL.

References

1. Layman CA, Arrington DA, Montana CG, Post DM (2007) Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology 88: 42–48.
2. Vander Zanden MJ, Hulshof M, Ridgway MS, Rasmussen JB (1998) Application of stable isotope techniques to trophic studies of age-0 smolts in the Great Lakes. Transactions of the American Fisheries Society 127: 729–739.
3. Post DM (2002) Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83: 703–718.
4. Ferrance RS, MacFadden KJ (2000) Evolution of the grazing niche in Pleisiorniscus mammals from Florida: Evidence from stable isotopes. Palaeogeography Palaeoclimatology Palaeoecology 162: 155–169.
5. Cheryl Y, Le Corre M, Jaquemet S, Menard F, Richard P, et al. (2008) Resource partitioning within a tropical seabird community: New information from stable isotopes. Marine Ecology Progress Series 366: 281–291.
6. Burton RK, Koch PL (1999). Isotopic tracking of foraging and long-distance migration in northeastern Pacific pinnipeds. Oecologia 119: 570–585.
7. Mooney KA, Tilberg CV (2005) Temporal and spatial variation to ant omnivory in pine forests. Ecology 86: 1225–1255.
8. Dzarinoni CT, Paquet PC, Reimchen TE (2007) Stable isotopic niche predicts fitness of prey in a wolf–deer system. Biological Journal of the Linnean Society 90: 125–137.
9. Aruvides-Gamboso D, Newcombe SD, Salazar-Pico S, Koch PL (2009). Stable isotopic differences between sea lions (δ15N) from the Gulf of California and Galapagos Islands. Journal of Mammalogy 90: 1410–1420.
10. Gross A, Kieda J, Van Canteoy O, Richard P, Ridoux V (2009) A preliminary study of habitat and resource partitioning among co-occurring tropical dolphins around Mayotte, southwest Indian Ocean. Eutime Marine and Shelf Science 84: 367–374.
11. Van Valen L (1965) Morphological Variation and Width of Ecological Niche. American Naturalist 99: 377–390.
12. Bearhop S, Adams CE, Waldron S, Fuller RA, MacLeod H (2004) Determining trophic niche width: a novel approach using stable isotope analysis. Journal of Animal Ecology 73: 1007–1012.
13. Raubenheimer D, Simpson SJ (2003) Nutrient balancing in grasshoppers: behavioural and physiological correlates of dietary breadth. Journal of Experimental Biology 206: 1669–1681.
14. Bolnick DI, Swinarski R, Araujo MS, Persson L (2007) Comparative support for the niche variation hypothesis that more generalized populations also are more heterogeneous. Proceedings of the National Academy of Sciences of the United States of America 104: 10075–10079.
15. Flaherty EA, Ben-David M (2010) Overlap and partitioning of the ecological and isotopic niches. Oikos 119: 1409–1416.
16. Matthews B, Manzumder A (2004) A critical evaluation of intrapopulation variation of δ13C and isotopic evidence of individual specialization. Oecologia 140: 361–371.
17. Jackson AL, Inger R, Parnell AC, Bearhop S (2011) Comparing isotopic niche widths among and within communities: SIBER – Stable Isotope Bayesian Ellipses in R. Journal of Animal Ecology 80: 595–602.
18. Semmens BX, Ward EJ, Darwin CT (2009) Quantifying Inter- and Intra- Population Niche Variability Using Hierarchical Bayesian Stable Isotope Mixing Models. PLoS ONE 4: e9.
19. Newcombe SD, del Rio CM, Bearhop S, Phillips DL (2007) A niche for isotopic ecology. Frontiers in Ecology and the Environment 5: 429–436.
20. Cummings DO, Booth DJ, Lee RW, Simpson SJ, Pike AJ (2010) Ontogenetic diet shifts in the reef fish Pseudanthias rubicundus from isolated populations on the North-West Shelf of Australia. Marine Ecology Progress Series 419: 211–222.
21. Yohannes E, Hanson R, Lee RW, Waldenstrom J, Westerdahl H, et al. (2008) Isotope signatures in winter moulded feathers predict malaria prevalence in a breeding avian host. Oecologia 158: 299–306.
22. Minagawa M, Wada E (1984) Stepwise enrichment of δ15N along food–chains – further evidence and the relation between delta δ15N and animal age. Geochimica Et Cosmochimica Acta 48: 1135–1140.
23. Barreiros JP, Morato T, Santos RS, de Borba AE (2003) Interannual changes in the diet of the almaco jack, Seriola quinqueloba (Perciformes: Carangidae) from the Azores. Cybium 27: 37–40.
24. Anderlof E, Pipitone C (1997) Food and feeding habits of the amberjack, Seriola dumerili in the Central Mediterranean Sea during the spawning season. Cahiers de Biologie Marine 38: 91–96.
25. Matallanas J, Casadevall M, Carrasson M, Boix J, Fernandez V (1995) The food of the almaco jack, Seriola dumerili (Pisces, Carangidae) from the Central Mediterranean Sea. Aquatic and Shoreline Animal Ecology 257–260.
26. Semmens BX, Ward EJ, Darwin CT (2009) Quantifying Inter- and Intra- Population Niche Variability Using Hierarchical Bayesian Stable Isotope Mixing Models. PLoS ONE 4: e9.
27. Tanaka S (1972) Migration of yellowtails along pacific coast of Japan observed in the field. Research Report of Japan Oceanographic Data Center. 1: 1–17.
28. Cummins DO, Booth DJ, Lee RW, Simpson SJ, Pike AJ (2010) Ontogenetic diet shifts in the reef fish Pseudanthias rubicundus from isolated populations on the North-West Shelf of Australia. Marine Ecology Progress Series 419: 211–222.
29. Yohannes E, Hanson R, Lee RW, Waldenstrom J, Westerdahl H, et al. (2008) Isotope signatures in winter moulded feathers predict malaria prevalence in a breeding avian host. Oecologia 158: 299–306.
30. Minagawa M, Wada E (1984) Stepwise enrichment of δ15N along food–chains – further evidence and the relation between delta δ15N and animal age. Geochimica Et Cosmochimica Acta 48: 1135–1140.
31. Barreiros JP, Morato T, Santos RS, de Borba AE (2003) Interannual changes in the diet of the almaco jack, Seriola quinqueloba (Perciformes: Carangidae) from the Azores. Cybium 27: 37–40.
32. Anderlof E, Pipitone C (1997) Food and feeding habits of the amberjack, Seriola dumerili in the Central Mediterranean Sea during the spawning season. Cahiers de Biologie Marine 38: 91–96.
33. Matallanas J, Casadevall M, Carrasson M, Boix J, Fernandez V (1995) The food of the almaco jack, Seriola dumerili (Pisces, Carangidae) from the Central Mediterranean Sea. Aquatic and Shoreline Animal Ecology 257–260.
34. Gillanders BM, Ferrer DJ, Andrew NL (2001) Estimates of movement and life-history parameters of yellowtail kingfish (Seriola lalandi): how useful are data from a cooperative tagging programme? Marine and Freshwater Research 52: 179–192.
35. Tanaka S (1972) Migration of yellowtails along pacific coast of Japan observed by tagging experiments. 2. considerations from catch statistics and length composition. Bulletin of the Japanese Society of Scientific Fisheries 38: 95–98.
36. Cummings DO, Lee RW, Simpson SJ, Booth DJ, Pike AJ, et al. (2011) Resource partitioning amongst co-occurring decapods on wellheads from Australia's North-West shelf. An analysis of carbon and nitrogen stable isotopes. Journal of Experimental Marine Biology and Ecology 409: 186–193.
37. Rau GH, Sweeney RE, Kaplan IR (1982) Plankton 13C:12C ratio changes with

36. Araujo MS, Bolnick DI, Machado G, Giaretta AA, dos Reis SF (2007) Using

33. Parnell AC, Inger R, Bearhop S, Jackson AL (2010) Source Partitioning Using

32. Phillips DL, Gregg JW (2003) Source partitioning using stable isotopes: coping

31. Erhardt EB (2010) SISUS: Stable isotope sourcing using sampling [dt].

30. Quinn GP, Keough MJ (2002) Experimental design and data analysis for

29. O’Brien RG (1981) A simple test for variance effects in experimental-designs.

47. Layman CA, Quattrochi JP, Peyer CM, Allgeier JE (2007) Niche width collapse

46. Wilson RM, Chanton J, Lewis G, Nowacek D (2009) Combining Organic

45. Hammerschlag-Peyer CM, Yeager LA, Araujo MS, Layman CA (2011) A

44. Chen G, Wu ZH, Gu BH, Liu DY, Li X, et al. (2011) Isotopic niche overlap of

43. Woo KJ, Elliott KH, Davidson M, Gaston AJ, Davoren GK (2008) Individual

42. Frederich B, Fabri G, Lepoint G, Vandewalle P, Parmentier E (2009) Trophic

41. Olsson K, Stenroth P, Nystrom P, Graneli W (2009) Invasions and niche width:

40. Wilson JD, Winn CT, Pilgrim MA, Romanek CS, Gibbons JW (2010) Seasonal variation in terrestrial resource subsidies influences trophic niche width and overlap in two aquatic snake species: a stable isotope approach. Oikos 119: 1161–1171.

39. Barnes C, Jennings S, Polumin NVC, Lancaster JE (2008) The importance of quantifying inherent variability when interpreting stable isotope field data. Oecologia 153: 227–235.

38. Post DM (2003) Individual variation in the timing of ontogenetic niche shifts in largemouth bass. Ecology 84: 1298–1310.

37. Rau GH, Sweeney RE, Kaplan IR (1982) Plankton 13C:12C ratio changes with latitude: differences between northern and southern oceans. Deep Sea Research (Part I, Oceanographic Research Papers) 29: 1035–1039.

36. Araujo MS, Bolnick DI, Machado G, Giaretta AA, dos Reis SF (2007) Using delta C-13 stable isotopes to quantify individual-level diet variation. Oecologia 152: 683–684.

35. Ruu GH, Sweeney RE, Kaplan IR (1982) Plankton 13C:12C ratio changes with latitude: differences between northern and southern oceans. Deep Sea Research (Part I, Oceanographic Research Papers) 29: 1035–1039.

34. Moore JW, Semmens BX (2008) Incorporating uncertainty and prior information into stable isotope mixing models. Ecology Letters 11: 470–480.

33. Parnell AC, Inger R, Bearhop S, Jackson AL (2010) Source Partitioning Using Stable Isotopes: Coping with Too Much Variation. PLoS ONE 5: 5.

32. Phillips DL, Gregg JW (2003) Source partitioning using stable isotopes: coping with too many sources. Oecologia 136: 261–269.

31. Erhardt EB (2010) SISUS: Stable isotope sourcing using sampling [dt].

30. Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge: Cambridge University Press.

29. O’Brien RG (1981) A simple test for variance effects in experimental-designs. Psychological Bulletin 89: 570–574.

28. Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge: Cambridge University Press.

27. Erhardt EB (2010) SISUS: Stable isotope sourcing using sampling [dt].

26. Phillips DL, Gregg JW (2003) Source partitioning using stable isotopes: coping with too many sources. Oecologia 136: 261–269.

25. Parnell AC, Inger R, Bearhop S, Jackson AL (2010) Source Partitioning Using Stable Isotopes: Coping with Too Much Variation. PLoS ONE 5: 5.