Cardiopulmonary exercise testing as a vital sign in patients recovering from COVID-19

Ross Arena a,b and Mark A. Faghy a,b,c

aDepartment of Physical Therapy, College of Applied Sciences, University of Illinois at Chicago, Chicago, IL, USA; bHealthy Living for Pandemic Event Protection (HL – PIVOT) Network, Chicago, IL, USA; cHuman Sciences Research Centre, University of Derby, Derby, UK

ARTICLE HISTORY
Received 20 July 2021; Accepted 22 September 2021

KEYWORDS
Aerobic capacity; cardiopulmonary fitness; prognosis; pulmonary hemodynamics; ventilatory efficiency

Countries around the world continue to address the large-scale health and wellbeing impacts and the broader societal burden associated with the coronavirus disease 2019 (COVID-2019). From an individual to global level, we continue to increase our understanding of the current and legacy impacts affecting population health. Pathophysiologic sequela both acute and chronic, are numerous in the individuals who have been infected [1,2]. Evidence also demonstrates that cardiopulmonary fitness (CRF) can be compromised following COVID-19 infection [2]. The evidence that COVID-19 has upon CRF is not surprising given the potential impact the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has on the cardiac, pulmonary, and skeletal muscular systems, the three systems that have a primary influence on the CRF response [1,3,4]. The impact of COVID-19 on CRF is particularly important given the fact that this clinical measure is now considered a vital sign [5], a designation earned by an evidence base spanning several decades, which clearly demonstrates its robust: 1) prognostic and diagnostic value; 2) ability to gauge therapeutic efficacy; and 3) correlation with functional capacity and quality of life [6]. Of the various approaches to assessing CRF, cardiopulmonary exercise testing (CPX) remains the gold-standard, providing for the most noninvasive, comprehensive, and accurate assessment of CRF. In the context of COVID-19, CPX provides an ideal approach to assess intersection between pathophysiologic and clinical manifestations, allowing for refined account of the impact the viral infection has both cross-sectionally and longitudinally, most importantly during a bout of physical exertion in a controlled environment. Put simply, without CPX, the pathophysiologic impacts of COVID-19 that only manifest during physical exertion, or manifest more profoundly during physical exertion, would be missed entirely, preventing a holistic understanding of the clinical presentation.

Aerobic capacity, quantified by peak oxygen consumption (VO2), and ventilatory efficiency, most commonly quantified by the minute ventilation/carbon dioxide production (VE/VO2) slope, are two of the most-established measures obtained through CPX and several studies to date report the impact of COVID-19 on both [7]. Pleguezuños et al. [8] performed CPX on healthy controls, patients diagnosed with ischemic heart disease (IHD), patients diagnosed with chronic obstructive pulmonary disease (COPD) and patients hospitalized for COVID-19; CPX was performed two months post-hospital discharge in the COVID-19 group. Compared to healthy controls [32.31(28.32–36.31) mlO2·kg−1·min−1], peak VO2 was significantly reduced (p < 0.001) in all groups (COVID-19 group: 17.30 (14.82–19.78) mlO2·kg−1·min−1, COPD group: 14.35 (12.97–15.73) mlO2·kg−1·min−1, and IHD group: 18.82 (15.64–22) mlO2·kg−1·min−1). Skjøtt et al. [9] found 31% of the cohort has a percent-predicted peak VO2 less than 80% in patients that were hospitalized with COVID-19 and undertook a CPX three months post-discharge. Compared to subjects reporting no dyspnea during activities of daily living (n = 67, 62%), those reporting dyspnea (n = 59, 38%) had a significantly lower peak VO2 (31.9 ± 9.3 vs. 23.6 ± 7.9 mlO2·kg−1·min−1, p < 0.001) and significantly higher VE/VO2 slope (26.6 ± 4.4 vs. 28.9 ± 4.5, p < 0.01). Raman et al. [2] compared 58 patients hospitalized for COVID-19 to a healthy control group. Two to three months following hospital discharge due to COVID-19, 64% of the patients continued to report dyspnea and 55% continued to report fatigue. Compared to healthy controls, percent-predicted peak VO2 was significantly lower (80.5 ± 23.1% vs. 112.7 ± 27.0%, p < 0.0001), and the VE/VO2 slope was significantly higher (33.4 (29.2–40.3) vs. 28.2 (26.7–30.0), p < 0.0001) in those hospitalized with COVID-19. Aparisi et al. [10] reported similar findings in a cohort previously hospitalized for COVID-19 and undergoing CPX at three-month follow-up; peak VO2 was significantly lower [17.8 (15.8–21.2] vs. 22.8 (18.8–27.7) mlO2·kg−1·min−1, p < 0.001], and the VE/VO2 slope was significantly higher [32.0 (28.1–37.4) vs. 29.4 (26.9–31.4), p < 0.05] in the 41 subjects (58.6%) who reported persistent dyspnea following discharge compared to the 29 subjects (41.4%) who were asymptomatic. These findings indicate that CPXs can be safely performed in these patients represent an emerging phenotype in a significant percentage of patients hospitalized due to COVID-19 several months following discharge resulting in diminished aerobic capacity and ventilatory inefficiency with the primary subjective symptom indicative of these responses being persistent exertional dyspnea.

As previously noted, CRF is now considered a vital sign, a designation particularly due to its robust prognostic significance [5]. Peak VO2 is a proven and established prognostic
marker in apparently healthy individuals, those with risk factors for chronic disease and patients with a confirmed diagnosis of one or more chronic disease. The peak VO₂ response is primarily driven by left sided cardiac output, but skeletal muscle function also plays an important role, as indicated by the Fick equation [11]. Given both the cardiac and skeletal muscle systems can be negatively impacted by COVID-19, it is not surprising to see a diminished peak VO₂ response in a significant percentage of individuals infected, particularly those who have been hospitalized due to increased pathophysiologic severity due to the virus. The VE/VCO₂ slope has emerged as an extremely important prognostic marker, particularly in patients with heart failure (HF) and pulmonary arterial hypertension (PAH). Studies in patients with HF and PAH have demonstrated the VE/VCO₂ slope is significantly correlated with pulmonary pressures and right-sided cardiac function and is a strong prognostic marker [7,12]. There is growing concern that PAH can be a sequela of COVID-19 [3,4,13] and as such, an elevated VE/VCO₂ slope should prompt further assessment of pulmonary
hemodynamics, particularly when values exceed 36 [7,12].
Given the trends, we are seeing in patients hospitalized for
COVID-19 infection, a strong case can be made to incorpo-
rate CPX as a core clinical assessment during follow-up post
discharge. It should be noted that, while peak VO2 and the
VE/VCO2 slope have been highlighted as primary CPX mea-
sures in this editorial, subjective symptoms, hemodynamics,
electrocardiography, and the heart rate response during exer-
cise and recovery should also be assessed. Our group has
recently proposed a CPX algorithm (Figure 1) highlighting
these CPX measures and thresholds for favorable vs. unfavor-
able responses[14]. As more research is conducted in this
patient population, additional variables obtainable during
CPET (e.g. pulmonary function testing, flow volume loops
during exercise, etc.) may prove to provide important clinical
insight.

Given the total number of COVID-19 infections globally, it is
not feasible or warranted to refer all individuals for CPX test-
ing. For individuals who recover from COVID-19 and return to
pre-infection functional activities without new subjective
symptomatology, in particular exertional dyspnea, referral for
CPX is likely not indicated. However, persistent exertional
dyspnea following acute recovery from infection should be a
primary indication for CPX referral, to assess current CRF status
and inform rehabilitative strategies. In fact, exertional dyspnea
is a well-established indication for CPX in other patient popu-
lations, including HF and PAH. Moreover, there is now a clear
recognition of long COVID syndrome and the need to develop
bespoke rehabilitation strategies to alleviate prolonged symp-
tom profile and restore functional capacity [1]. CPX should
therefore be considered a core assessment, both at baseline
to guide the initial exercise prescription and post intervention
to assess efficacy.

There is of course a need for more research related to the
value of CPX in the COVID-19 population moving forward. At
this point, findings indicate a significant percentage of
patients hospitalized with COVID-19 have diminished CRF as
measured by CPX. Future research should extend the time
from viral infection to CPX as well as include individuals con-
firmed to have COVID-19 but had milder symptoms that did
not require hospitalization. Moreover, studies assessing the
relationship between lasting pathophysiologic associated
with COVID-19 and variations in CRF are needed to determine
the ability of CPX to determine system dysfunction (e.g. PAH,
skeletal muscle myopathy, cardiac dysfunction, etc.). Identifying CPX phenotypes associated with specific COVID-
19-induced pathophysiology will enhance clinical applica-
tion and interpretation of this exercise assessment. The prognostic
value of CPX in the COVID-19 population should also be
explored. To achieve this with an appropriately powered sam-
ple size, an international registry that includes high-quality
CPX laboratories conducting tests in patients with COVID-19
and tracking outcomes would be ideal. The Fitness Registry
and the Importance of Exercise National Database (FRIEND)
serves as an excellent model for this approach [15]. Lastly, as
pharmacologic and rehabilitation interventions are developed
to treat patients suffering from chronic system dysfunction
and symptoms due to COVID-19 are developed, CPX should
be employed to determine their ability to gauge therapeutic
efficacy. Conducting research in these areas will further solvi-
dify the utility of CPX in the COVID-19 population.

In conclusion, we are working toward a transition from
addressing the pandemic through vaccination to managing
patients infected with COVID-19 who continue to experience
lasting effects. Some of the pathophysiologic effects of COVID-
19, as well as the related symptomatology, manifest more
profoundly or only during a bout of physical exertion. As
such, performing clinical assessments during a controlled
bout of exercise is imperative to more fully understanding
the effects of COVID-19 and developing optimally effective
treatment strategies. Cardiopulmonary exercise testing is the
gold-standard approach to clinical exercise testing whose use
should be expanded and considered a core assessment in the
COVID-19 population.

Funding
This paper was not funded.

Declaration of interest
The authors have no relevant affiliations or financial involvement with any
organization or entity with a financial interest in or financial conflict with
the subject matter or materials discussed in the manuscript. This includes
employment, consultancies, honoraria, stock ownership or options, expert
testimony, grants or patents received or pending, or royalties.

ORCID
Ross Arena http://orcid.org/0000-0002-6675-1996
Mark A. Faghy http://orcid.org/0000-0002-8163-7032

References
Papers of special note have been highlighted as either of interest (•) or of
considerable interest (••) to readers.
1. Silva RN, Goulart CDL, and Oliveira MR, et al. Cardiorespiratory and
skeletal muscle damage due to COVID-19: making the urgent case for
rehabilitation. Expert Rev Respir Med. 2021;15(9):1107–1120.
• Important: Comprehensive review of COVID-19 effects and
makes strong case for rehabilitation.
2. Raman B, Cassar MP, Tunnicliffe EM, et al. Medium-term effects of
SARS-CoV-2 infection on multiple vital organs, exercise capacity,
cognition, quality of life and mental health, post-hospital dis-
charge. EClinicalMedicine. 2021;31:100683.
3. Khan AW, Ullah I, Khan KS, et al. Pulmonary arterial hypertension
post COVID-19: a sequela of SARS-CoV-2 infection? Respir Med Case
Rep. 2021;33:101429.
4. Suzuki YJ, Nikolaenko SI, Shults NV, et al. COVID-19 patients may
become predisposed to pulmonary arterial hypertension. Med
Hypotheses. 2021;147:110483.
5. Ross R, Blair SN, Arena R, et al. Importance of Assessing
Cardiorespiratory Fitness in Clinical Practice: a Case for Fitness as a
Clinical Vital Sign: a Scientific Statement From the American
Heart Association. Circulation, 2016;134:e653–e699.
• Highly important: Makes strong case for CRF to be used as a
vital sign.
6. Faghy MA, Sylvester KP, Cooper BG, et al. Cardiopulmonary exer-
cise testing in the COVID-19 endemic phase. Br J Anaesth.
2020;125:447–449.
7. Guazzi M, Adams V, Conraads V, et al. EACPR/AHA Scientific
Statement. Clinical recommendations for cardiopulmonary exercise
testing data assessment in specific patient populations. Circulation. 2012;126:2261–2274.

8. Pleguezuelos E, Del Carmen A, Llorensi G, et al. Severe loss of mechanical efficiency in COVID-19 patients. J Cachexia Sarcopenia Muscle. 2021;12:1056–1063.

9. Skjørten I, Ankerstjerne OAW, Trebinjac D, et al. Cardiopulmonary exercise capacity and limitations 3 months after COVID-19 hospitalisation. Eur Resp J. 2021;58:2100996.

10. Aparisi Á, Ybarra-Falcón C, García-Gómez M, et al. Exercise ventilatory inefficiency in Post-COVID-19 syndrome: insights from a prospective evaluation. J Clin Med. 2021;10:2591.

11. Fletcher GF, Ades PA, Kligfield P, et al. Exercise standards for testing and training: a scientific statement from the American Heart Association. Circulation. 2013;128:873–934.

12. Guazzi M, Cahalin LP, Arena R. Cardiopulmonary exercise testing as a diagnostic tool for the detection of left-sided pulmonary hypertension in heart failure. J Card Fail. 2013;19:461–467.

13. Tudoran C, Tudoran M, Lazureanu VE, et al. Evidence of Pulmonary Hypertension after SARS-CoV-2 infection in subjects without previous significant cardiovascular pathology. J Clin Med. 2021;10:199.

• Important: Highlights the potential for pulmonary arterial hypertension in COVID-19 patients.

14. Arena R, Myers J, Kaminsky LA. Cardiopulmonary Exercise Testing Algorithm for Viral Infection: assessing health risk and short- to long-term effects. J Cardiopulm Rehabil Prev. 2021;41:E7–e8.

15. Kaminsky LA, Arena R, Beckie TM, et al. The importance of cardiopulmonary fitness in the United States: the need for a national registry: a policy statement from the American Heart Association. Circulation. 2013;127:652–662.