Microexcision of intramedullary schwannoma at the thoracic vertebra

JIANWEN LI¹,², YIQUAN KE¹, MIN HUANG¹, ZHIBIN LI² and YI WU²

¹Department of Neurosurgery, Neurosurgery Institute, Key Laboratory on Brain Function Repair and Regeneration of Guangdong Province, Zhujiang Hospital of Southern Medical University, Guangzhou 510282; ²Neurosurgery Department of Jiangmen Central Hospital, Jiangmen, Guangdong 529030, P.R. China

Received October 26, 2012; Accepted November 26, 2012

DOI: 10.3892/etm.2013.890

Abstract. Intramedullary schwannoma is often misdiagnosed as other types of malignant tumour prior to surgery due to its atypical imaging appearance and low incidence. In the present study, a case of small intramedullary schwannoma was analysed using clinical and imaging data. Data concerning the surgery and follow-up process of this case were collected. Instead of performing the traditional surgical procedure of cutting the central and posterior rhizotomies of the patient, minimally invasive hemilaminectomy was performed to maintain spinal stability. This procedure was selected since the small mass would be removed completely via minimally invasive hemilaminectomy. Intramedullary schwannoma was confirmed following surgery. The patient recovered well and no recurrence of the tumour was detected during the two-year follow-up period. In conclusion, the treatment strategy for intramedullary schwannoma was determined based on its atypical symptoms and imaging characteristics.

Introduction

Intramedullary schwannoma, which was first reported by Penfild in 1932 (1), is a rare tumour that accounts for 1.1% of all intraspinal tumours. Prior to surgery, intramedullary schwannoma is often misdiagnosed as other types of malignant tumour, including ependymoma, astrocytoma and hemangio-blastoma, due to its atypical imaging appearance and low incidence. Long follow-ups of intramedullary schwannomas are unavailable.
Schwannoma was diagnosed by frozen section pathology. Following surgery, the numbness of the right side of the chest and weakness of the lower limbs were reduced compared with before the surgery.

No lesion was detected using MRI during the follow-up period at 3 (Fig. 2A), 6 (Fig. 2B), 12 (Fig. 2C) and 18 months (Fig. 2D) after the surgery. A small area of isos signals was observed in the spinal cord.

The numbness of the right side of the chest had completely disappeared at 6 months after the surgery. The weakness and numbness of the lower limb partially improved. Although the patient continued to have defeation and micturition disturbances, all symptoms had disappeared at 18 months after the surgery. A small fluid-filled region was observed in the epidural space.

Discussion

Intramedullary schwannoma is a rare tumour that accounts for ~1.1% of schwannomas in the spinal canal. Up to 34 cases were included in the study of Hejazi and Hassler (2) published in 1998, whereas Qian et al (3) observed only 82 cases when reviewing domestic and foreign data in 2006. Ross et al (1) noted that 60.7 and 20% of all intramedullary schwannomas occurred in the cervical and thoracic regions, respectively (4). This type of tumour is uncommon in other regions. The ages of the patients in the reported cases ranged between 11 months and 53 year.

Based on the reported cases, the main symptoms of intramedullary schwannomas are progressive numbness, fatigue and pain in the extremities, whereas the main physical signs are hypertonia, decreased muscle strength, hypalgesia and hypopselaphesia, tendon reflex attenuation and tendinous reflex. These clinical manifestations are also common in other lesions of the spinal cord.

Intramedullary schwannoma has no specific imaging features (3). However, Kodama et al (5) reported that diagnosis of schwannoma should be considered if an intramedullary tumour has a clear boundary in the spinal cord and intense enhancement. Qian et al (3) described certain changes in MR that aid the diagnosis of intramedullary schwannoma. Firstly, the tumour exhibits isointensity or a slightly longer T1 and isointensity or long T2 signals, often combined with cystic degeneration. Secondly, the lesion shows intense and homogenous enhancement. Thirdly, the margin is clear. Fourthly, the lesions are often small (normally within three vertebrae) tumours. In 2005, Kim et al (6) revealed that slight peritumoural oedema is one of the characteristics of intramedullary schwannomas. However, another study did not agree with this finding (3).

Owing to its low incidence and lack of clinical and imaging manifestation, intramedullary schwannoma is often misdiagnosed as other types of intramedullary tumour such as ependymoma, astrocytoma, hemangioblastoma and subependymoma, among others (1,3,6).

No widely accepted explanation is available for the occurrence of intramedullary schwannoma. The origin of the tumour has multiple factors. Several possibilities based on the study by Liu et al (4) for the origin of the lesion are as follows: i) schwannoma cells in the posterior spinal cord nerve root; ii) schwannoma cells located along the blood vessels and peripheral nerves of the spinal cord; iii) schwannoma cells dislocated during the closure of the neural crest in the fourth week of embryonic development; iv) pia mater cells from the mesoderms; v) the peripheral fibres of vagus nerves in the spinal cord; and vi) a traumatic spinal cord injury or a chronic disorder of the central nervous system (1,7,8).

The traditional surgical approach for removing occupying lesions in the spinal canal causes adverse effects in three column structures. The spinous process, supraspinous and interspinous ligaments, vertebral arch, vertebral plate, ligamentum flavum and facet joint are cut during central and posterior rhizotomies, resulting in spinal instability and thus significantly affecting the lives of patients.

According to Denis’s three-column principle (9), minimally invasive hemilaminectomy should be used as the
treatment method for space-occupying lesions instead of central and posterior rhizotomies to maintain the stability of the vertebral column (10). In the presence of clear peripheral oedema, malignant tumours diagnosed prior to surgery should be treated using central and posterior rhizotomies. In addition, a biopsy should be performed to confirm the diagnosis or to partly excise the tumour. These procedures affect the stability of the vertebral column.

This case was preoperatively diagnosed as an ependymoma or astrocytoma. Minimally invasive hemilaminectomy was performed on the space-occupying lesion in the spinal cord with clear boundaries and intense enhancement. The possibility of endoscopic resection was also considered. The surgery was considered to be successful. All the benign tumours were removed and central and posterior rhizotomies were avoided. The patient recovered well after the surgery and intramedullary schwannoma did not recur during the two-year follow-up period.

Therefore, depending on the patient's condition, doctors may consider a case to be a possible intramedullary schwannoma and perform minimally invasive hemilaminectomy if no confirmed diagnosis has been achieved prior to the surgery, particularly when differential diagnosis exists among ependymoma, astrocytoma and hemangioblastoma and if the space-occupying lesion in the spinal cord had clear boundaries and exhibited intense enhancement. The necessity of cutting the spinous process, ligamentum flavum and bi-vertebral plate may then be decided after the biopsy results are known. In this way, the spinal instability resulting from the traditional surgical procedure of excision during central and posterior rhizotomies, which are preoperatively applied to patients diagnosed with malignant tumours, may be avoided.

References

1. Ross DA, Edwards MSB and Wilson CB: Intermedullary neurilemmomas of the spinal cord: report of two cases and review of the literature. Neurosurgery 19: 458-464, 1986.
2. Hejazi N and Hassler W: Microsurgical treatment of intramedullary spinal cord tumors. Neurol Med Chri (Tokyo) 38: 266-273, 1998.
3. Qian YF, Wang WQ and Yu YQ: Two cases of intramedullary schwannoma. Chinese J Radiol 12: 1337-1338, 2006.
4. Liu L, Wang GW and Yang J: A Case report of intra-medullary schwannoma and review of literature. Journal of Chinese Neurotumor 5: 42-44, 2007.
5. Kodama Y, Terae S, Hida K, et al: Intramedullary schwannoma of the spinal cord: report of two cases. Neuroradiology 43: 567-571, 2001.
6. Kim SD, Nakagawa H, Mizuno J and Inoue T: Thoracic subpial intramedullary schwannoma involving a ventral nerve root: a case report and review of the literature. Surg Neurol 63: 389-393, 2005.
7. Aryanpur J and Long DM: Schwannoma of the medulla oblongata. Case report. J Neurosurg 69: 446-499, 1988.
8. Riffaud L, Morandi X, Massengo S, et al: MRI of the intramedullary spinal schwannomas: case report and review of the literature. Neuroradiology 42: 275-279, 2000.
9. Denis F: The three column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine (Phila Pa 1976) 8: 817-831, 1983.
10. Xu RX, Ke YS, Zhang SZ, et al: Analysis of intravertebral canal tumors in 296 cases. Journal of First Military Medical University 19: 130-132, 1999 (In Chinese).