Research Article

Human Mesenchymal Stem Cells Derived from the Placenta and Chorion Suppress the Proliferation while Enhancing the Migration of Human Breast Cancer Cells

Sarawut Sirithammajak,1 Sirikul Manochantr,1,2 Chairat Tanrawatpan,1,2 Duangrat Tantikanlayaporn,1,2 and Pakpoom Kheolamai1,2

1Center of Excellence in Stem Cell Research and Innovation, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
2Division of Cell Biology, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand

Correspondence should be addressed to Pakpoom Kheolamai; pkheolamai@me.com

Received 14 May 2022; Revised 21 October 2022; Accepted 31 October 2022; Published 11 November 2022

Academic Editor: Francesca Megiorni

Copyright © 2022 Sarawut Sirithammajak et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. Breast cancer is the most frequently diagnosed malignancy among women, resulting from abnormal proliferation of mammary epithelial cells. The highly vascularized nature of breast tissue leads to a high incidence of breast cancer metastases, resulting in a poor survival rate. Previous studies suggest that human mesenchymal stem cells (hMSCs) play essential roles in the growth, metastasis, and drug responses of many cancers, including breast cancer. However, hMSCs from different sources may release different combinations of cytokines that affect breast cancer differently. Methods. In this study, we have isolated hMSCs from the placenta (PL-hMSCs) and the chorion (CH-hMSCs) and determined how these hMSCs affect the proliferation, migration, invasion, and gene expression of two human breast cancer cells, MCF-7 and MDA-MB-231, as well as the possible mechanisms underlying those effects. Results. The results showed that the soluble factors derived from PL-hMSCs and CH-hMSCs inhibited the proliferation of MCF-7 and MDA-MB-231 cells but increased the migration of MDA-MB-231 cells. The study of gene expression showed that PL-hMSCs and CH-hMSCs downregulated the expression levels of the protooncogene CyclinD1 while upregulating the expression levels of tumor suppressor genes, P16 and P21 in MCF-7 and MDA-MB-231 cells. Furthermore, hMSCs from both sources also increased the expression levels of CYCLIND1 while negatively regulating CYCLIND1 expression and upregulating the expression of MYC, SNAI1, and TWIST genes in those cells.

Conclusions. Our study suggests that CH-hMSCs and PL-hMSCs inhibited breast cancer cell proliferation by negatively regulating CYCLIND1 expression and upregulating the expression of MYC, SNAI1, and TWIST genes in those cells.
bone marrow, adipose tissue, umbilical cord, placenta, and chorion [4–7]. hMSCs have been recognized as prospective cell sources for several clinical applications due to their ability to release many beneficial bioactive compounds that reduce inflammation, increase cell viability, and enhance neovascularization [8–10]. Additionally, some sources of hMSC, such as bone marrow and adipose tissues, can be harvested from patients and used for autologous transplantation, thus circumventing the need for immunosuppression [10, 11].

In animal models, hMSCs have also been shown to migrate from the bloodstream to cancerous areas [12–14], where they form cancer-associated fibroblasts (CAFs) that promote cancer growth. CAFs derived from hMSCs released multiple soluble factors that induce tumor neovascularization, increase cancer survival, and enhance metastasis [15–23]. Furthermore, hMSCs are believed to promote tumor growth by suppressing immune surveillance against tumor cells [24]. Despite these data, some studies have shown that hMSCs can also limit the growth and spread of several cancers [25–28]. These discrepancies could be caused by differences in the types of hMSCs and cancer used in these investigations.

Although bone marrow-derived hMSCs (BM-hMSCs) have been widely used in most research and therapeutic applications, their harvesting requires an invasive process and their numbers decrease with age [29, 30]. As a result, hMSCs derived from gestational tissues, such as the placenta and chorion, have been deemed more appropriate for therapeutic applications since they are easily available in high quantities using a noninvasive procedure. However, the bioactive molecules produced by hMSCs originating from gestational tissue and their impact on breast cancer cells are still poorly characterized. Therefore, this study is aimed at investigating the effects of placenta-derived hMSCs (PL-hMSCs) and chorion-derived hMSCs (CH-hMSCs) on proliferation, migration, invasion, and gene expression profiles of two different human breast cancer cells, estrogen receptor-expressing MCF-7 cells and estrogen receptor-negative MDA-MB231 cells.

2. Methods

2.1. Subjects. This study was approved by the Ethics Committee for Human Research of the Faculty of Medicine of Thammasat University (project number: MTU-EC-DS-2-001/62). The study was carried out according to the ICH-GCP. After labor, healthy women donated their placentas and chorions. All donors signed an informed consent form.

2.2. Isolation and Culture of hMSCs. As described in our earlier study [31], the placenta and the chorionic membrane were manually separated, minced into small pieces, and incubated for 30 minutes at 37°C in 0.25% (w/v) trypsin-EDTA (Invitrogen Corporation, USA). The digested tissues were then washed twice with PBS, resuspended in DMEM +10% (v/v) Fetal Bovine Serum (FBS) (Lonza, USA), and cultured in 25 cm² flasks (Corning, USA) at 37°C. The medium was changed every three days, and the cells were passaged when their density reached 80% confluence. An inverted microscope (Nikon ECLIPSE Ts2R, Japan) was used to examine and photograph the morphological characteristics of hMSCs.

2.3. Culture of Human Breast Cancer Cells. Human breast cancer cells, MCF-7 and MDA-MB231, were purchased from ATCC. MCF-7 is an estrogen receptor-expressing human breast cancer cell line derived from the pleural effusion of a female patient with metastatic (stage IV) breast cancer. MDA-MB231 is a triple negative (ER-/PR-/EGFR-) human breast cancer cell line derived from the pleural effusion of a female patient with metastatic (stage IV) breast cancer. Both cells were cultured in DMEM (Invitrogen Corporation, USA) supplemented with 10% (v/v) FBS (Lonza, USA) at 37°C. The medium was changed every three days, and the cells were passaged when their density reached 80% confluence.

2.4. Immunophenotyping of hMSCs by Flow Cytometry. As described in our previous study [31], the hMSCs were collected and immediately processed for flow cytometric analysis. Approximately 4 × 10⁵ hMSCs (passage 3rd-5th) were resuspended in 50 μl PBS and incubated for 30 minutes at 4°C in the dark with 10 μl fluorochrome-labeled mouse anti-human monoclonal antibodies: anti-CD45-FITC (BD Pharmingen, USA), anti-CD34-PE (BioLegend, USA), anti-CD90-FITC (AbD Serotec, USA), and anti-CD73-PE (BioLegend, USA). After incubation, the cells were washed twice with PBS and fixed with 1% (w/v) paraformaldehyde in PBS (Sigma-Aldrich, USA). The flow cytometry was performed on a FACSCalibur™ flow cytometer (Becton Dickinson, USA) using CellQuest™ software.

2.5. Osteogenic and Adipogenic Differentiation of hMSCs. As described in our previous study [31], 5 × 10⁴ hMSCs were cultured in NH OsteoDiff® Medium (Miltenyi Biotec, Germany) for osteogenic differentiation. The cells were cultured for 28 days with media replacement every three days. At the end of the culture, the cells were fixed with 4% paraformaldehyde, stained with a 40 mM alizarin red S solution (Sigma-Aldrich, USA) for 20 minutes at room temperature, and viewed under an inverted microscope (Nikon ECLIPSE Ts2R, Japan). For adipogenic differentiation, 5 × 10⁴ hMSCs were cultured in NH AdipoDiff® medium (Miltenyi Biotec, Germany) for 28 days with media replacement every three days. At the end of the culture, the cells were fixed with vaporized 37% formalin for 10 minutes at room temperature, stained with 0.5% (w/v) oil red O (Sigma-Aldrich, USA) in 6% (v/v) isopropyl alcohol for 20 minutes at room temperature and observed by light microscopy.

2.6. Preparation of hMSC-Conditioned Medium. As described in our previous study [31], 7 × 10⁵ hMSCs were initially expanded in DMEM +10% FBS until their density reached 90% confluence. The medium was then removed, the cells were rinsed twice with 10 ml sterile PBS, fresh 15 ml DMEM +10% FBS medium was added, and the cells were incubated for another 24 hours. The conditioned medium (CM) was collected after incubation and centrifuged at 1,000 g for 10 minutes at 4°C before being filtered through a 0.45 μm syringe filter (Corning, USA). Finally, the filtered CM was lyophilized and diluted to the appropriate concentrations.
2.7. Effects of hMSC-Derived Soluble Factors on the Proliferation of Breast Cancer Cells. 5×10^5 MCF-7 or MDA-MB231 cells were seeded into each well in the 96-well plate (SPL Life Sciences, Korea) in DMEM +10% FBS and cultured for 12 hours. At this stage, the media were replaced with 25%, 50%, and 75% (v/v) hMSC-CM in DMEM +10% FBS. To avoid the nutrient depletion effect in the groups treated with hMSC-CM, various percentages of hMSC-CM were prepared by diluting 10-fold concentrated hMSC-CM in DMEM +10% FBS. MCF-7 or MDA-MB231 cultured in DMEM +10% FBS served as controls. Cell number was measured by an MTT assay (Sigma-Aldrich, USA) every 24 hours for 5 consecutive days. At the time of measurement, the media were removed, 100 μl dimethyl sulfoxide (DMSO; VWR BDH Chemicals, France) was added and the absorbance was measured at 570 nm using a microplate reader (BioTex, USA).

2.8. In Vitro Migration Assay. The migration assay was performed using a 24-well transwell chamber (Corning, USA) with an 8 μm pore polyester membrane insert. 5×10^4 MDA-MB-231 cells were seeded in transwell inserts containing DMEM +2% FBS and incubated at 37°C for 12 hours to allow cell adhesion. The following days, the inserts containing MDA-MB-231 cells were placed in an individual well of the 24-well plate (SPL Life Sciences, Korea) containing 5×10^4 hMSCs in 600 μl DMEM +10% FBS, and the cells were cultured for another 24 hours. At this stage, the transwell inserts were washed, fixed with 2% (v/v) paraformaldehyde in PBS, stained with 0.5% (w/v) Hoechst 33342 in PBS (Sigma-Aldrich, USA), and observed under a fluorescence microscope (Nikon ECLIPSE Ts2R-FI, Nikon, Japan) to determine the number of invasive cells. MDA-MB-231 cells cultured with DMEM +30% FBS in the lower chamber served as controls.

2.10. Gene Expression Study by Quantitative Real-Time PCR (qRT-PCR). As described in our previous study [31], TRIzol® reagent (Invitrogen Corporation, USA) was used to separate total RNA from cells. The SuperScript™ III Reverse Transcriptase (Invitrogen Corporation, USA) was used to generate cDNA from 2 μg RNA according to the manufacturer's instruction. For qRT-PCR, an Applied Biosystems MicroAmp® quick optical 96-well reaction plate was used. cDNA was mixed with 0.45 μm forward and reverse primers and SYBR® Green PCR Master Mix (Applied Biosystem, USA). The plate was then sealed with a MicroAmp® transparent adhesive film (Applied Biosystem, USA). The following procedure was used for PCR: initial denaturation at 95°C for 10 minutes, followed by 40 cycles of denaturation (95°C, 10 seconds), annealing (60°C, 10 seconds), and extension (72°C, 40 seconds) using an Applied Biosystems 7500 Fast Real-Time PCR system. 7500 software version 2.0.5 (Applied Biosystem, USA) was used to calculate the relative abundance of a target gene by normalizing with glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The primer sequences are listed in Table 1.

2.11. Statistical Analysis. The mean and standard error of the mean (SEM) were used to present the data. The significance of the differences between the observed data was determined using unpaired student’s t-test. Statistical significance was defined as a P value of less than 0.05.
3. Results

3.1. Characteristics of hMSCs Derived from the Placenta and Chorion. The placenta-derived hMSCs (PL-hMSCs) and chorion-derived hMSCs (CH-hMSCs) exhibited typical characteristics of hMSCs according to the minimal criteria suggested by the international society for cell therapy [32]. The hMSCs of both sources showed a fibroblast-like morphology (Figure 1(a)), expressed typical surface markers of hMSCs (positive for CD73, CD90, and CD105 and negative for hematopoietic markers, CD34, and CD45; Figure 1(b)), and could differentiate to adipocytes and osteocytes as determined by oil red O staining and alizarin red S staining, respectively (Figures 1(c) and 1(d)).

![Figure 1: Characteristics of CH-hMSCs and PL-hMSCs.](image)
3.2. The Expression Levels of Cytokine Genes in hMSCs Derived from the Placenta and Chorion. The expression levels of 5 cytokine genes commonly involved in cancer growth [33–35], including Dickkopf WNT signaling pathway inhibitor 1 (DKK1), transforming growth factor-β (TGF-β), interferon-β (IFN-β), interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α) in CH-hMSCs and PL-hMSCs were determined by quantitative real-time PCR. The results showed that CH-hMSCs and PL-hMSCs derived from most donors expressed high levels of DKK1, TGF-β, and IFN-γ (Figure 2). Although CH-hMSCs and PL-hMSCs also expressed IFN-β and TNF-α genes, their expression levels were lower than those of DKK1, TGF-β, and IFN-γ (Figure 2).

3.3. The Effect of hMSC-Derived Soluble Factors on the Proliferation of Human Breast Cancer Cells. To investigate the effect of hMSC-derived soluble factors on the proliferation of breast cancer cells, 10% (v/v) conditioned media derived from PL-hMSCs and CH-hMSCs were used to culture two human breast cancer cell lines, the estrogen receptor-expressing MCF-7 cells and the estrogen-receptor-negative MDA-MB231 cells, for five days. The results showed that the condition media derived from PL-hMSCs (PL-CM) and CH-hMSCs (CH-CM) significantly reduced MCF-7 proliferation in a dose-dependent manner (Figures 3(a) and 3(b)). The inhibitory effect of PL-CM and CH-CM on MCF-7 and MDA-MB231 cell proliferation was initially observed at 24 hours and was maintained throughout the culture period (Figures 4(a) and 4(b)). The PL-CM and CH-CM derived from 3 distinct donors also have the same levels of inhibitory effect on the MDA-MB231 cell proliferation (Figure 4(a)).

3.4. The Effect of hMSC-Derived Soluble Factors on the Migration of MDA-MB231 Cells. To study the effect of hMSC-derived soluble factors on the migration of breast cancer cells, MDA-MB231 cells were induced to migrate through transwell with 8 μm pore using 10% (v/v) −75% (v/v) conditioned media derived from PL-hMSCs and CH-hMSCs. The numbers of MDA-MB231 cells that migrate through the other side of the membrane were determined after 24 hours of induction. 75% CH-CM (v/v) significantly enhanced MDA-MB231 cell migration compared with controls induced by DMEM +30% FBS (9,407 ± 65.6 cells vs. 9,097 ± 49 cells, P < 0.05) (Figures 5(a)–5(c)). Similar to the CH-CM, 50% and 75% PL-CM also significantly enhanced MDA-MB231 cell migration compared with controls (8,969 ± 114 cells vs. 8,578 ± 145 cells, P < 0.01 and 9,573 ± 160.4 cells vs. 8,578 ± 145 cells, P < 0.01, respectively) (Figures 5(a)–5(c)). These results suggest that the soluble factors derived from CH-hMSCs and PL-hMSCs enhanced the migratory capacity of MDA-MB231 cells in a dose-dependent manner. It is worth noting that there are variations in migration-enhancing ability among PL-hMSCs and CH-hMSCs derived from different donors (Figures 5(a) and 5(b)).

3.5. The Effect of hMSC-Derived Soluble Factors on the Invasion of MDA-MB231 Cells. To study the effect of hMSC-derived soluble factors on the invasion of breast cancer cells, MDA-MB231 cells were cocultured with CH-hMSCs and PL-hMSCs using the Matrigel-coated transwells with 8 μm pore. The number of MDA-MB231 cells that invade Matrigel and move through the other side of the membrane was determined after 24 hours of coculture (Figure 6(a)). Unlike the migration assay, CH-hMSCs and PL-hMSCs did not significantly affect the number of invading MDA-MB231 cells compared with controls that were induced by DMEM +30% FBS (9,019 ± 146.2 cells vs. 8,607 ± 86.7 cells and 8,980 ± 202.6 cells vs. 8,607 ± 86.7 cells, respectively) (Figure 6(a)–6(c)). These results suggest that although the soluble factors derived from CH-hMSCs and PL-hMSCs enhanced the migratory ability of MDA-MB231 cells, they did not significantly affect the invasion of MDA-MB231 cells.

3.6. The Effect of hMSC-Derived Soluble Factors on the Gene Expression of Human Breast Cancer Cells. To study the effect of hMSC-derived soluble factors on the expression of genes involved in the proliferation and migration of human breast
Figure 3: Effect of soluble factors derived from CH-hMSCs and PL-hMSCs on the proliferation of human breast cancer MCF-7 cells. (a) Graphs show the growth kinetics of MCF-7 cells cultured in 10%, 25%, 50%, and 75% conditioned media derived from CH-hMSCs (CH-CM) and PL-hMSCs (PL-CM) determined by the MTT assay. Data are presented as 6 of four experiments. MCF-7 cultured in DMEM medium +10% FBS served as controls. CH-CMs were prepared from 3 CH-hMSCs (CH9, CH15, and CH16) and PL-CMs were prepared from 3 PL-hMSCs (PL11, PL14, and PL17). (b) Graphs show the growth kinetic of MCF-7 cells cultured in 10%, 25%, 50%, and 75% CH-CM (average from CH9, CH15, to CH16) and PL-CM (average from PL11, PL14, to PL17). Data are presented as mean ± SEM of three hMSC-CMs. MCF-7 cultured in DMEM medium +10% FBS served as controls. * P < 0.05 vs. control.
Figure 4: Effect of soluble factor derived from CH-hMSCs and PL-hMSCs on the proliferation of human breast cancer MDA-MB231 cells. (a) Graphs show the growth kinetics of MDA-MB231 cells cultured in 10%, 25%, 50%, and 75% conditioned medium derived from CH-hMSCs (CH-CM) and PL-hMSCs (PL-CM) determined by the MTT assay. Data are presented as mean ± SEM of four experiments. MDA-MB231 cultured in DMEM medium +10% FBS served as controls. CH-CMs were prepared from 3 CH-hMSCs (CH9, CH15, and CH16), and PL-CMs were prepared from 3 PL-hMSCs (PL11, PL14, and PL17). (b) Graphs show the growth kinetics of MDA-MB231 cells cultured in 10%, 25%, 50%, and 75% CH-CM (average from CH9, CH15, to CH16) and PL-CM (average from PL11, PL14, to PL17). Data are presented as mean ± SEM of three hMSC-CMs. MDA-MB231 cultured in DMEM medium +10% FBS served as controls. ∗P < 0.05 vs. control.
DMEM + 30% FBS (Control) 10% CM 20% CM 50% CM 75% CM

(a)

CH9
CH15
CH16
PL11
PL14
PL17

Number of migratory MB231 cells

(b)

Figure 5: Continued.
cancer cells, the MCF-7, and MDA-MB231 cells were cocultured with CH-hMSCs or PL-hMSCs using the transwell system for 24 hours. After coculture, the expression levels of the Cyclin-D1, P16, P21, P27, MYC, SNAI1, and TWIST genes in MCF-7 and MDA-MB231 cells were determined by qRT-PCR.

The soluble factors derived from most CH-hMSCs and PL-hMSCs downregulated the expression level of the protumorigenic gene Cyclin-D1 while upregulated the expression level of tumor suppressor gene P16 in MCF-7 cells (Figure 7 and Supplementary Materials). Likewise, hMSC-derived factors increased the expression level of the P16 and cyclin-dependent kinase inhibitor P21 genes in MDA-MB231 cells (Figure 7 and Supplementary Materials). The expression levels of these three cell cycle regulators agreed with the reduction of MCF-7 and MDA-MB231 proliferation after being treated with conditioned media derived from CH-hMSCs and PL-hMSCs. Furthermore, soluble factors derived from CH-hMSCs and PL-hMSCs also increased the expression levels of MYC, SNAI1, and TWIST, which play critical roles in the epithelial-mesenchymal transition and migration of cancer cells (Figure 7 and Supplementary Materials).

3.7. The Effects of DKK1, TGF-β, and IFN-γ Released from hMSCs on the Proliferation of Human Breast Cancer Cells. According to the study of CH-hMSC and PL-hMSC gene expression (Figure 2), we hypothesized that DKK1, TGF-β, and IFN-γ might be responsible for the inhibitory effects of hMSCs on the proliferation of MCF-7 and MDA-MB231 cells. To investigate this hypothesis, MCF-7 and MDA-MB231 cells were cultured in 75% CH-CM (v/v) or 75% (v/v) PL-CM supplemented with 3 μM CHIR99021 (WNT activator and DKK1 antagonist), 5 μM SB431542 (TGF-β inhibitor), and 2 μg XMG1.2 (a neutralizing antibody against IFN-γ) for 5 days. The results showed that the addition of CHIR99021 or SB431542 did not decrease the ability of CH-hMSCs and PL-hMSCs to suppress the proliferation of MCF-7 (Figure 8) and MDA-MB231 cells (Figure 9). The results demonstrate that CH-hMSCs and PL-hMSCs did not suppress the proliferation of MCF-7 and MDA-MB231 cells through the action of DKK1 and TGF-β. Unlike CHIR99021 and SB431542, XMG1.2 significantly reduced the ability of CH-hMSCs and PL-hMSCs to suppress MCF-7 and MDA-MB231 cell proliferation (Figures 8 and 9). These findings suggest that IFN-γ is one of the factors involved in the suppressive effect of CH-hMSCs and PL-hMSCs on MCF-7 and MDA-MB231 cell proliferation.

4. Discussion

hMSCs have long been regarded as one of the most promising sources for cell therapy. The capacity of hMSCs to release a wide range of bioactive chemicals that alter various processes, including immune response, cell growth, and neo-vascularization, is crucial to their therapeutic potential [39]. hMSCs also play a role in cancer progression by releasing angiogenic factors, such as IGF-1, SDF-1, and PDGF, which promote tumor neoangiogenesis, enhance tumor engraftment, and suppress immune responses to cancer cells [16, 17, 19, 20, 22, 24, 40–42]. However, several other studies found that hMSC prevented the growth and spread of several malignant neoplasms in animal models, including colon

Figure 5: The effect of soluble factors on the migration of human breast cancer MDA-MB231 cells. (a) Representative micrographs of migratory MDA-MB231 cells induced by 10%, 25%, 50%, and 75% conditioned medium derived from CH-hMSCs (CH-CM) PL-hMSCs (PL-CM) determined by the transwell migration assay. CH-CMs were prepared from 3 CH-hMSCs (CH9, CH15, and CH16), and PL-CMs were prepared from 3 PL-hMSCs (PL11, PL14, and PL17). MDA-MB231 cells induced by DMEM medium +30% FBS served as controls. (b) Graphs show the number of migratory MDA-MB231 cells induced by 10%, 25%, 50%, and 75% conditioned media derived from CH-CM and PL-CM determined by transwell migration assay. Data are presented as average of CH9, CH15, and CH16) and PL-hMSC-CM (average of PL11, PL14, and PL17). Data are presented as mean ± SEM of three hMSC-CMs. MDA-MB231 induced by DMEM medium +30% FBS served as controls. *P < 0.05 vs. control, **P < 0.01 vs. control. (c) Graphs show the number of migratory MDA-MB231 cells induced by 10%, 25%, 50%, and 75% conditioned media derived from CH-hMSC-CM (average of CH9, CH15, and CH16) and PL-hMSC-CM (average of PL11, PL14, and PL17). Data are presented as mean ± SEM of three hMSC-CMs. MDA-MB231 induced by DMEM medium +30% FBS served as controls. *P < 0.05 vs. control, **P < 0.01 vs. control.
Figure 6: The effect of soluble factors derived from CH-hMSCs and PL-hMSCs on the invasion of human breast cancer MDA-MB231 cells. (a) Representative micrographs of the invasive MDA-MB231 cells after coculture with CH-hMSCs and PL-hMSCs as determined by transwell invasion assay. CH-hMSCs were derived from three donors (CH9, CH15, and CH16), and PL-hMSCs were derived from three donors (PL11, PL14, and PL17). MDA-MB231 cells induced by DMEM medium +30% FBS served as controls. (b) Graphs show the number of invasive MDA-MB231 cells after being cocultured with CH-hMSCs and PL-hMSCs as determined by transwell invasion assay. Data are presented as mean ± SEM of three experiments. CH-hMSCs were derived from three donors (CH9, CH15, and CH16), and PL-hMSCs were derived from three donors (PL11, PL14, and PL17). MDA-MB231 cells induced by DMEM medium +30% FBS served as controls. (c) Graphs show the number of invasive MDA-MB231 cells after being induced by cocultured with CH-hMSCs (average from CH9, CH15, and CH16) and PL-hMSCs (average from PL11, PL14, and PL17). Data are presented as mean ± SEM of three hMSCs. MDA-MB231 cells cultured in DMEM medium +30% FBS served as a control.
cancer, hepatocellular carcinoma, and malignant melanoma [25–28]. The variations could be attributed to differences in the sources of hMSCs and types of cancer cells used in the studies. The hMSCs derived from the placenta and chorion (PL-hMSCs and CH-hMSCs) have been considered to be more appropriate sources of hMSCs for therapeutic applications than the commonly used BM-hMSCs, since they may be easily obtained in high quantities using a noninvasive technique. However, the types of bioactive chemicals produced by hMSCs originating from these gestational tissues and their impact on the properties of breast cancer, the most prevalent cancer in women, have yet to be determined.

Our study found that bioactive compounds released from PL-hMSCs and CH-hMSCs inhibited the proliferation of MCF-7 and MDA-MB231 cells in a dose-dependent manner. Both sources of hMSC suppressed breast cancer cell proliferation in the same way, and there was no difference between hMSCs generated from different donors. According to our

Figure 7: The effect of hMSC-derived soluble factors on the gene expression of human breast cancer MCF-7 and MDA-MB231 cells. Gene expression levels in MCF-7 and MDA-MB231 cells cocultured with CH-hMSCs (coCH) and PL-hMSCs (coPL) using a transwell culture system as determined by qRT-PCR. CH-hMSCs were derived from 3 donors (CH9, CH15, and CH16), and PL-hMSCs were derived from 3 donors (PL11, PL14, and PL17). MCF-7 and MDA-MB231 cells cultured in DMEM medium +10% FBS (10% FBS) served as controls. The relative expression levels of the genes in each sample were standardized with the expression level of the same genes in the control samples. Data are presented as mean ± SEM of three experiments.
MTT reading of MCF7 cells (Log2 scale)

Culture time (Days)

CH9-MCF7-CHIR

Control + CHIR
75% CH9-CM
75% CH9-CM + CHIR

PL11-MCF7-CHIR

Control + CHIR
75% PL11-CM
75% PL11-CM + CHIR

PL17-MCF7-CHIR

Control + CHIR
75% PL17-CM
75% PL17-CM + CHIR

(b)

MTT reading of MCF7 cells (Log2 scale)

Culture time (Days)

CH15-MCF7-CHIR

Control + CHIR
75% CH15-CM
75% CH15-CM + CHIR

PL14-MCF7-CHIR

Control + CHIR
75% PL14-CM
75% PL14-CM + CHIR

PL17-MCF7-CHIR

Control + CHIR
75% PL17-CM
75% PL17-CM + CHIR

(a)

MTT reading of MCF7 cells (Log2 scale)

Culture time (Days)

CH16-MCF7-CHIR

Control + CHIR
75% CH16-CM
75% CH16-CM + CHIR

PL17-MCF7-CHIR

Control + CHIR
75% PL17-CM
75% PL17-CM + CHIR

(b)

Figure 8: Continued.
study of gene expression, soluble factors derived from CH-hMSCs and PL-hMSCs inhibited the cell proliferation of MCF-7 and MDA-MB-231 by negatively regulating the expression level of the protumorigenic gene Cyclin-D1 and upregulated the tumor suppressor gene PI6 and the cyclin-dependent kinase inhibitor genes P21 in these cells. All of these genes have been shown to play a critical role in the onset and progression of breast cancer. The inactivation of p16\(^{INK4a}\) is a CDK inhibitor that inactivates CDK4/6 and prevents cell cycle progression at the G1/S checkpoint, resulting in the loss of cell cycle control, while dysregulation of the CDK4/6-cyclin D1 complex is a crucial stage in the genesis of breast cancer [43–46].

In contrast to their effect on breast cancer cell proliferation, the soluble factors derived from CH-hMSCs and PL-hMSCs enhanced MDA-MB231 cell migration in a dose-dependent manner. Consistent with this observation, our gene expression study showed that the soluble factors derived from CH-hMSCs and PL-hMSCs upregulated the expression levels of MYC, SNAII, and TWIST that promote epithelial to mesenchymal transition and migration of breast cancer cells [47–51]. There are variances in the ability of PL-hMSCs and CH-hMSCs obtained from different donors to enhance MDA-MB231 migration, which could be due to differences in the amount of released cytokines. Interestingly, although both sources of hMSCs increased the migration of MDA-MB231 cells, they did not affect the invasion of MDA-MB231 cells. These findings suggested that the cytokines that cause MDA-MB231 cells to migrate may be different from those that cause them to invade.

According to the study of CH-hMSC and PL-hMSC gene expression, we hypothesized that DKK1, TGF-\(\beta\), and IFN-\(\gamma\) might be responsible for the inhibitory effects of hMSCs on the proliferation of MCF-7 and MDA-MB231 cells. Our functional study using CHIR99021, SB431542, and XMG1.2 suggests that CH-hMSCs and PL-hMSCs suppressed MCF-7 and MDA-MB231 cell proliferation, at least in part, through IFN-\(\gamma\) rather than DKK1 and TGF-\(\beta\). This result contrasts with a previous study showing that BM-hMSCs promote breast cancer cell proliferation, migration, and invasion under...
Figure 9: Continued.
hypoxic conditions by releasing TGF-β1 [52]. The discrepancies are most likely due to the different types of hMSCs used in each study. Due to the heterogeneous nature of hMSCs at the time of isolation and subsequent expansion, all sources of hMSCs, including BM-hMSCs, likely consist of several subpopulations that might release different combinations of cytokines and therefore exert different effects on breast cancer cells. Therefore, hMSCs derived from different tissues or those derived from the same tissue from different donors could exhibit distinct characteristics and biological properties, making the outcome of therapy difficult to predict. Consequently, we believe that all hMSCs, regardless of the sources, should be characterized in terms of their cytokine expression before being used for various therapeutic purposes. The knowledge gained from this study could help identify soluble factors derived from hMSCs that could be used to inhibit breast cancer cell growth, so hMSCs derived from many tissue sources or donors could be screened for those therapeutically beneficial factors and, therefore, the suitable MSCs could be selected for treatment.

5. Conclusion

Our study suggests that CH-hMSCs and PL-hMSCs inhibited breast cancer cell proliferation by negatively regulating CyclinD1 expression and upregulating the expression of the P16 and P21 genes. The suppressive effect could be mediated, at least in part, by IFN-γ released from the hMSCs. On the contrary, hMSCs from both sources enhanced breast cancer by modulating the interaction between breast cancer cells and hMSCs.

Abbreviations

CH-hMSCs: Chorion-derived human mesenchymal stem cells
PL-hMSCs: Placenta-derived human mesenchymal stem cells
CH-CM: Conditioned medium derived from CH-hMSCs
PL-CM: Conditioned medium derived from PL-hMSCs.

Data Availability
All data generated or analyzed during this study are included in this published article.

Additional Points
Novelty and Impact Statements. Our study demonstrates that placenta- and chorion-derived hMSCs inhibited the proliferation of human breast cancer cells MCF-7 and MDA-MB-231 by negatively regulating CYCLIND1 expression and upregulating the expression of the P16 and P21 genes. On the contrary, the hMSCs derived from both sources enhanced breast cancer cell migration, possibly by increasing the expression of MYC, SNAI1, and TWIST genes in those cells. The functional study suggests that the suppressive effect of CH-hMSCs and PL-hMSCs on MCF-7 and MDA-MB231 cell proliferation was mediated, at least in part, through IFN-γ. The knowledge gained from this research provides a better understanding of the effects of human gestational tissue-derived MSCs on the properties of breast cancer cells involved in their growth and metastasis. This knowledge might be used to improve the strategy of using hMSCs to treat advanced-stage breast cancer.

Ethical Approval
This study was approved by the Ethics Committee for Human Research of the Faculty of Medicine of Thammasat University (project number: MTU-EC-DS-2-001/62), which was in accordance with the Declaration of Helsinki, the Belmont Report, and ICH-GCP. The human placenta and chorion were obtained from healthy women after labor. All donors gave their informed consent in writing.

Conflicts of Interest
The authors declare that they have no competing interests.

Authors’ Contributions
PK designed the experiments, analyzed the data, supervised the study, wrote, and finalized the manuscript; SS performed the experiments and analyzed the data; SM, CTT, and DTT analyzed the data. All authors read and approved the final manuscript.

Acknowledgments
This research project was funded by a grant from Thammasat University (TUGR2/39/2562, to PK). No commercial organizations or funding bodies were associated with the collection and analysis of the data in this manuscript.

Supplementary Materials
Table S1. Effect of hMSCs on MCF-7 gene expression.pdf which shows the expression level of genes in MCF-7 cells cocultured with hMSCs. Table S2. Effect of hMSCs on MB231 gene expression.pdf which shows the expression level of genes in MDA-MB231 cells cocultured with hMSCs. Table S3. Effect of hMSCs on MCF7 gene expression raw qRT-PCR data as exported from the Bio-Rad.mgxd file. Table S4. Effect of hMSCs on raw qRT-PCR data for MB231 gene expression exported from the Bio-Rad.mgxd file. (Supplementary Materials)

References
[1] R. L. Siegel, K. D. Miller, H. E. Fuchs, and A. Jemal, “Cancer statistics, 2022,” CA: A Cancer Journal for Clinicians, vol. 72, no. 1, pp. 7–33, 2022.
[2] R. Dhankhar, S. P. Vyas, A. K. Jain, S. Arora, G. Rath, and A. K. Goyal, “Advances in novel drug delivery strategies for breast cancer therapy,” Artificial Cells, Blood Substitutes, and Immobilization Biotechnology, vol. 38, no. 5, pp. 230–249, 2010.
[3] M. I. Nounou, F. ElAmravy, N. Ahmed, K. Abdelraouf, S. Goda, and H. Syed-Sha-Qhattal, “Breast cancer: conventional diagnosis and treatment modalities and recent patents and technologies,” Breast Cancer, vol. 9, Suppl 2, pp. 17–34, 2015.
[4] M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999.
[5] H. Rahavi, S. M. Hashemi, M. Soleimani, J. Mohammadi, and N. Tajik, “Adipose tissue-derived mesenchymal stem cells exert in vitro immunomodulatory and beta cell protective functions in streptozotocin-induced diabetic mice model,” Journal Diabetes Research, vol. 2015, article 878535, pp. 1–10, 2015.
[6] S. Vellasamy, P. Sandrasaigaran, S. Vidyadaran, M. Abdullah, E. George, and R. Ramasamy, “Mesenchymal stem cells of human placenta and umbilical cord suppress T-cell proliferation at G0 phase of cell cycle,” Cell Biology International, vol. 37, no. 3, pp. 250–256, 2013.
[7] R. Ziadlou, M. Shahhoseini, F. Safari, F. A. Sayahpour, S. Nemati, and M. B. Eslamiejad, “Comparative analysis of neural differentiation potential in human mesenchymal stem cells derived from chorion and adult bone marrow,” Cell and Tissue Research, vol. 362, no. 2, pp. 367–377, 2015.
[8] A. J. Nauta and W. E. Fibbe, “Immunomodulatory properties of mesenchymal stromal cells,” Blood, vol. 110, no. 10, pp. 3499–3506, 2007.
[9] H. Tao, Z. Han, Z. C. Han, and Z. Li, “Proangiogenic features of mesenchymal stem cells and their therapeutic applications,” Stem Cells International, vol. 2016, Article ID 1314709, 11 pages, 2016.
[10] S. Jeon, J. H. Ha, I. Kim, J. Bae, and S. W. Kim, “The immunomodulatory effect of adipose-derived stem cells in xenograft transplantation model,” Transplantation Proceedings, 2022.
[11] S. Ceccarelli, G. Gerini, F. Megiorni et al., “Inhibiting DNA methylation as a strategy to enhance adipose-derived stem cells differentiation: focus on the role of Akt/mTOR and Wnt/β-Catenin pathways on adipogenesis,” Frontiers in Cell and Development Biology, vol. 10, article 926180, 2022.
[12] P. Bhoopathi, C. Chetty, V. R. Gogineni et al., “MMP-2 mediates mesenchymal stem cell tropism towards medulloblastoma tumors,” Gene Therapy, vol. 18, no. 7, pp. 692–701, 2011.

[13] R. M. Dwyer, S. M. Potter-Beirne, K. A. Harrington et al., “Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells,” Clinical Cancer Research, vol. 13, no. 17, pp. 5020–5027, 2007.

[14] Y. Rattigian, J. M. Hsu, J. Glod, and D. Banerjee, “Interleukin 6 mediated recruitment of mesenchymal stem cells to the hypoxic tumor milieu,” Experimental Cell Research, vol. 316, no. 20, pp. 3417–3424, 2010.

[15] P. J. Mishra, P. J. Mishra, R. Humeniuk et al., “Adult mesenchymal stem cells from bone marrow express tumor endothelial and stromal markers,” International Journal of Oncology, vol. 34, no. 3, pp. 619–627, 2009.

[16] D. Bexell, S. Gunnarsson, A. Tormin et al., “Bone marrow multipotent mesenchymal stroma cells act as pericyte-like migratory vehicles in experimental gliomas,” Molecular Therapy, vol. 17, no. 1, pp. 183–190, 2009.

[17] M. Galì, G. Konstantinidou, D. Peroni et al., “Mesenchymal stem cells share molecular signature with mesenchymal tumor cells and favor early tumor growth in syngeneic mice,” Oncogene, vol. 27, no. 18, pp. 2542–2551, 2008.

[18] P. J. Mishra, P. J. Mishra, R. Humeniuk et al., “Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells,” Cancer Research, vol. 68, no. 11, pp. 4331–4339, 2008.

[19] K. Shinagawa, Y. Kitadai, M. Tanaka et al., “Mesenchymal stem cells enhance growth and metastasis of colon cancer,” International Journal of Cancer, vol. 127, no. 10, pp. 2323–2333, 2010.

[20] E. L. Søttnes, E. L. Søttnes, K. A. Sasser et al., “Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression,” PLoS One, vol. 4, no. 4, article e992, 2009.

[21] K. E. Corcoran, K. A. Trzaska, H. Fernandes et al., “Mesenchymal stem cells in early entry of breast cancer into bone marrow,” PLoS One, vol. 3, no. 6, article e2563, 2008.

[22] A. E. Karnoub, A. B. Dash, A. P. Vo et al., “Mesenchymal stem cells within tumour stroma promote breast cancer metastasis,” Nature, vol. 449, no. 7162, pp. 557–563, 2007.

[23] K. Suzuki, R. Sun, M. Origuchi et al., “Mesenchymal stromal cells promote tumor growth through the enhancement of neo-vascularization,” Molecular Medicine, vol. 17, no. 7-8, pp. 579–587, 2011.

[24] F. Djourou, P. Pience, C. Bony et al., “Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogenic animals,” Blood, vol. 102, no. 10, pp. 3837–3844, 2003.

[25] G. J. Maestroni, E. Hertens, and P. Galli, “Factor(s) from non-macrophage bone marrow stromal cells inhibit Lewis lung carcinoma and B16 melanoma growth in mice,” Cellular and Molecular Life Sciences, vol. 55, no. 4, pp. 663–667, 1999.

[26] L. B. Ohlsson, L. Varas, C. Kjellman, K. Edvardsen, and M. Lindvall, “Mesenchymal progenitor cell-mediated inhibition of tumor growth in vivo and in vitro in gelatin matrix,” Experimental and Molecular Pathology, vol. 75, no. 3, pp. 248–255, 2003.

[27] L. Qiao, Z. Xu, T. Zhao et al., “Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model,” Cell Research, vol. 18, no. 4, pp. 500–507, 2008.

[28] B. Cousin, E. Ravet, S. Poglio et al., “Adult stromal cells derived from human adipose tissue provoke pancreatic cancer cell death both in vitro and in vivo,” PLoS One, vol. 4, no. 7, article e6278, 2009.

[29] M. S. Choudhury, M. Khan, R. Mahmood, A. Mehmoord, S. N. Khan, and S. Riazuddin, “Bone marrow derived mesenchymal stem cells from aged mice have reduced wound healing, angiogenesis, proliferation and anti-apoptosis capabilities,” Cell Biology International, vol. 36, no. 8, pp. 747–753, 2012.

[30] J. D. Kretlow, Y.-Q. Jin, W. Liu et al., “Donor age and cell passage affects differentiation potential of murine bone marrow-derived stem cells,” BMC Cell Biology, vol. 9, no. 1, p. 60, 2008.

[31] N. Paiboon, W. Kamprom, S. Manocharan et al., “Gestational tissue-derived human mesenchymal stem cells use distinct combinations of bioactive molecules to suppress the proliferation of human hepatoblastoma and colorectal cancer cells,” Stem Cells International, vol. 2019, Article ID 9748795, 15 pages, 2019.

[32] M. Dominici, K. Le Blanc, I. Mueller et al., “Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement,” Cytotherapy, vol. 8, no. 4, pp. 315–317, 2006.

[33] M. Esquivel-Velázquez, P. Ostoa-Saloma, M. I. Palacios-Arreola, K. E. Nava-Castro, J. I. Castro, and J. Morales-Montor, “The role of cytokines in breast cancer development and progression,” Journal of Interferon & Cytokine Research, vol. 35, no. 1, pp. 1–16, 2015.

[34] L. Qiao, Z. L. Xu, T. J. Zhao, L. H. Ye, and X. D. Zhang, “Dkk-1 secreted by mesenchymal stem cells inhibits growth of breast cancer cells via depression of Wnt signalling,” Cancer Letters, vol. 269, no. 1, pp. 67–77, 2008.

[35] D. Jorgovanovic, M. Song, L. Wang, and X. Zhang, “Roles of IFN-γ in tumor progression and regression: a review,” BioMarker Research, vol. 8, no. 1, p. 49, 2020.

[36] C. Gest, U. Joimel, L. Huang et al., “Rac3 induces a molecular pathway triggering breast cancer cell aggressiveness: differences in MDA-MB-231 and MCF-7 breast cancer cell lines,” BMC Cancer, vol. 13, no. 1, p. 63, 2013.

[37] M. Perrot-Appelanet and M. Di Benedetto, “Autocrine functions of VEGF in breast tumor cells: adhesion, survival, migration and invasion,” Cell Adhesion & Migration, vol. 6, no. 6, pp. 547–553, 2012.

[38] Ş. Comça, A. M. Cimpian, and M. Raica, “The story of MCF-7 breast cancer cell line: 40 years of experience in research,” Anticancer Research, vol. 35, no. 6, pp. 3147–3154, 2015.

[39] M. Dominici, K. Le Blanc, and V. Pistoia, “Mesenchymal stem cells promote breast cancer growth and metastasis, vol. 30, no. 4, pp. 589–597, 2009.

[40] L. V. Rhodes, S. E. Muir, and S. Elliott et al., “Adult human mesenchymal stem cells enhance breast tumorigenesis and promote hormone independence,” Breast Cancer Research and Treatment, vol. 121, no. 2, pp. 293–300, 2010.

[41] W. Zhu, W. Xu, R. Jiang et al., “Mesenchymal stem cells derived from bone marrow favor tumor cell growth in vivo,” Experimental and Molecular Pathology, vol. 80, no. 3, pp. 267–274, 2006.
[43] C. J. Sherr and J. M. Roberts, “CDK inhibitors: positive and negative regulators of G1-phase progression,” *Genes & Development*, vol. 13, no. 12, pp. 1501–1512, 1999.

[44] R. M. Zwijsen, E. Wientjens, R. Klompmaker, J. van der Sman, R. Bernards, and R. J. Michalides, “CDK-independent activation of estrogen receptor by cyclin D1,” *Cell*, vol. 88, no. 3, pp. 405–415, 1997.

[45] A. Arnold and A. Papanikolaou, “Cyclin D1 in breast cancer pathogenesis,” *Journal of Clinical Oncology*, vol. 23, no. 18, pp. 4215–4224, 2005.

[46] A. B. Ortiz, D. Garcia, Y. Vicente, M. Palka, C. Bellas, and P. Martin, “Prognostic significance of cyclin D1 protein expression and gene amplification in invasive breast carcinoma,” *PLoS One*, vol. 12, no. 11, article e0188068, 2017.

[47] J. Yang, P. Antin, G. Berx et al., “Guidelines and definitions for research on epithelial-mesenchymal transition,” *Nature Reviews Molecular Cell Biology*, vol. 21, no. 6, pp. 341–352, 2020.

[48] B. N. Smith, L. J. Burton, V. Henderson et al., “Snail promotes epithelial mesenchymal transition in breast cancer cells in part via activation of nuclear ERK2,” *PLoS One*, vol. 9, no. 8, article e104987, 2014.

[49] Y. Zhang, X. Zou, W. Qian et al., “Enhanced PAPSS2/VCAN sulfation axis is essential for snail-mediated breast cancer cell migration and metastasis,” *Cell Death & Differentiation*, vol. 26, no. 3, pp. 565–579, 2019.

[50] J. Cao, X. Wang, T. Dai et al., “Twist promotes tumor metastasis in basal-like breast cancer by transcriptionally upregulating ROR1,” *Theranostics*, vol. 8, no. 10, pp. 2739–2751, 2018.

[51] Y. Wang, J. Liu, X. Ying, P. C. Lin, and B. P. Zhou, “Twist-mediated epithelial-mesenchymal transition promotes breast tumor cell invasion via inhibition of hippo pathway,” *Scientific Reports*, vol. 6, no. 1, p. ???, 2016.

[52] S. P. Hung, M. H. Yang, K. F. Tseng, and O. K. Lee, “Hypoxia-induced secretion of TGF-β1 in mesenchymal stem cell promotes breast cancer cell progression,” *Cell Transplantation*, vol. 22, no. 10, pp. 1869–1882, 2013.