On the Estimate for a Mean Value Relative to $\frac{4}{p} = \frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_3}$

Chaohua Jia

Abstract. For the positive integer n, let $f(n)$ denote the number of positive integer solutions (n_1, n_2, n_3) of the Diophantine equation

$$\frac{4}{n} = \frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_3}.$$

For the prime number p, $f(p)$ can be split into $f_1(p) + f_2(p)$, where $f_i(p) (i = 1, 2)$ counts those solutions with exactly i of denominators n_1, n_2, n_3 divisible by p.

Recently Terence Tao proved that

$$\sum_{p < x} f_1(p) \ll x \exp\left(\frac{c \log x}{\log \log x}\right)$$

with other results. In this paper we shall improve it to

$$\sum_{p < x} f_1(p) \ll x \log^5 x \log \log^2 x.$$

1. Introduction

For the positive integer n, let $f(n)$ denote the number of positive integer solutions (n_1, n_2, n_3) of the Diophantine equation

$$\frac{4}{n} = \frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_3}.$$

Erdös and Straus conjectured that for all $n \geq 2$, $f(n) > 0$. It is still an open problem now although there are some partial results.

In 1970, R. C. Vaughan[5] showed that the number of $n < x$ for which $f(n) = 0$ is at most $x \exp(-c \log^2 x)$, where x is sufficiently large and c is a positive constant.

Recently Terence Tao[4] studied the situation in which n is the prime number p. He gave lower bound and upper bound for the mean value of
Precisely, he split \(f(p) \) into \(f_1(p) + f_2(p) \), where \(f_i(p)(i = 1, 2) \) counts those solutions with exactly \(i \) of denominators \(n_1, n_2, n_3 \) divisible by \(p \). He proved that

\[
x \log^2 x \ll \sum_{p<x} f_1(p) \ll x \exp\left(\frac{c \log x}{\log \log x}\right)
\]

and

\[
x \log^2 x \ll \sum_{p<x} f_2(p) \ll x \log^2 x \log \log x,
\]

where \(p \) denotes the prime number, \(x \) is sufficiently large and \(c \) is a positive constant.

For the progress and some explanation on the estimate in (2), one can see [2]. In this paper we shall improve the upper bound in (1).

Theorem. Let \(p \) denote the prime number. Then for sufficiently large \(x \), we have

\[
\sum_{p<x} f_1(p) \ll x \log^5 x \log \log^2 x.
\]

Throughout this paper, let \(p \) denote the prime number, \(c \) denote the positive constant, \(p(n) \) be the least prime factor of \(n \), \(P(n) \) be the largest prime factor of \(n \), \(d(n) \) be the divisor function, \(\varphi(n) \) be the Euler totient function, \(\Omega(n) \) be the number of prime factors of \(n \) with multiplicity.

2. Some preliminaries

Lemma 1. Let

\[
g(x) = a_n x^n + \cdots + a_1 x + a_0
\]

be the polynomial in integer coefficients, \(G(n) \) be the number of solutions to the congruence equation

\[
g(x) \equiv 0 \pmod{n}.
\]

Then \(G(n) \) is a multiplicative function.

One can see page 34 of [1].

Lemma 2. Let \(g(x) \) be the polynomial in integer coefficients. If

\[
g(x) \equiv 0, \quad g'(x) \equiv 0 \pmod{p}
\]

then
have no common solution, then the number of solutions to
\[g(x) \equiv 0 \pmod{p^l} \]
is equal to that to
\[g(x) \equiv 0 \pmod{p}. \]

One can see page 36 of [1].

Lemma 3. For the fixed integer \(l \), let \(G(n) \) be the number of solutions to the congruence equation
\[4lx^2 + 1 \equiv 0 \pmod{n}. \]
Then
\[G(n) \leq d(n). \]

Proof. By Lemma 1, we know
\[G(p_1^{l_1} \cdots p_s^{l_s}) = G(p_1^{l_1}) \cdots G(p_s^{l_s}). \]
Write
\[g(x) = 4lx^2 + 1. \]
Then \(g'(x) = 8lx \). It is obvious that
\[g(x) \equiv 0, \quad g'(x) \equiv 0 \pmod{p} \]
has no common solution. Thus Lemma 2 claims
\[G(p^l) = G(p). \]
It is easy to see that the congruence equation
\[4lx^2 + 1 \equiv 0 \pmod{p} \]
has at most two solutions. Therefore
\[G(p^l) = G(p) \leq 2 \leq d(p^l). \]
The conclusion of Lemma 3 follows.
Lemma 4. For \(x \geq 2 \), we have
\[
\sum_{n \leq x} \frac{d^2(n)}{n} \ll \log^4 x.
\]

Proof. Theorem 2 in [3] asserts that
\[
\sum_{n \leq x} d^2(n) \ll x \log^3 x.
\]

Then
\[
\sum_{n \leq x} \frac{d^2(n)}{n} \leq \sum_{i \leq \log_2 x} \sum_{2^i \leq n < 2^{i+1}} \frac{d^2(n)}{n} \\
\ll \sum_{i \leq \log_2 x} i^3 \\
\ll \log^4 x.
\]

Lemma 5. Let
\[
\Psi(x, y) = \sum_{n \leq x} \sum_{P(n) \leq y} 1.
\]

Then for \(x \geq 10 \), we have
\[
\Psi(x, \log x \log \log x) \ll \exp(\frac{3 \log x}{(\log \log x)^2}).
\]

This is Lemma 1 in [3].

Lemma 6. The estimate
\[
\sum_{2^k \leq n \leq x, \ P(n) \leq Z^{\frac{1}{3}}} \frac{d^2(n)}{n} \ll \exp(\sum_{p \leq Z} \frac{d^2(p)}{p} - \frac{r}{10} \log r)
\]
holds true for \(1 \leq r \leq \frac{\log Z}{\log \log Z} \) uniformly.

This is a special case of Lemma 4 in [3].

3. The proof of Theorem

According to the discussion in the beginning of section 3 of [4], in order to estimate
\[
\sum_{p < x} f_1(p),
\]
it is enough to estimate
\[
\sum_{a,l} \frac{xd(4a^2 + 1)}{\varphi(4al) \log(1 + \frac{x}{al})}.
\] (3)

Using the bound
\[
\varphi(n) \gg \frac{n}{\log \log n},
\]
we should estimate
\[
x \log \log x \sum_{a,l} \frac{d(4a^2 + 1)}{al \log(1 + \frac{x}{al})}
\]
or
\[
x \log \log x \sum_{i \leq \log_2 x} \sum_{j \leq \log_2 x-i} \frac{1}{1 + \log_2 x-i-j} \cdot \frac{1}{2^{i+j}} \sum_{2^i < a \leq 2^{i+1}} \sum_{2^j < l \leq 2^{j+1}} d(4a^2 + 1).
\]

Now we consider the estimate for the sum
\[
\sum_{V < l \leq 2V} \sum_{W < a \leq 2W} d(4a^2 + 1). \tag{4}
\]

We shall use some ideas from [3].

Firstly assume that \(V \leq W \). Let
\[
Z = W^{\frac{1}{2V}}. \tag{5}
\]

Write \(n \) uniquely as
\[
n = p_1^{s_1} \cdots p_j^{s_j} p_{j+1}^{s_{j+1}} \cdots p_r^{s_r}, \quad p_1 < \cdots < p_j < p_{j+1} < \cdots < p_r,
\]
where
\[
p_1^{s_1} \cdots p_j^{s_j} \leq Z < p_1^{s_1} \cdots p_j^{s_j} p_{j+1}^{s_{j+1}}.
\]

We can decompose \(4a^2 + 1 \) as
\[
4a^2 + 1 = (p_1^{s_1} \cdots p_j^{s_j})(p_{j+1}^{s_{j+1}} \cdots p_r^{s_r}) = b(l, a)c(l, a), \tag{6}
\]
where
\[
b(l, a) \leq Z, \quad (b(l, a), c(l, a)) = 1.
\]
We shall discuss in four cases as in [3].

Case I. \(p(c(l, a)) > Z^{\frac{3}{2}} \).

Since \(p(c(l, a)) > Z^{\frac{3}{2}} \), \(d(c(l, a)) = O(1) \). Thus

\[
d(4la^2 + 1) = d(b(l, a))d(c(l, a)) \ll d(b(l, a)).
\]

Lemmas 3 and 4 yield that

\[
\sum_l \ll \sum_{b \leq Z} \frac{d(b)}{b} \sum_{V < l \leq 2V} \sum_{W < a \leq 2W} \frac{1}{4la^2 + 1 \equiv 0 \text{ (mod } b)}
\]

\[
\ll \sum_{b \leq Z} \frac{d(b)}{b} \sum_{V < l \leq 2V} \frac{1}{b} \sum_{a = 1}^{b} \frac{1}{4la^2 + 1 \equiv 0 \text{ (mod } b)}
\]

\[
\ll VW \sum_{b \leq Z} \frac{d^2(b)}{b}
\]

\[
\ll VW \log^4(2W).
\]

Case II. \(p(c(l, a)) \leq Z^{\frac{3}{2}}, b(l, a) \leq Z^{\frac{3}{2}} \).

Write \(p = p(c(l, a)) \). Then \(p^s \| 4la^2 + 1, p \leq Z^{\frac{3}{2}} \). The fact that \(b(l, a) \leq Z^{\frac{3}{2}} \), \(b(l, a)p^s > Z \) yields \(p^s > Z^{\frac{3}{2}} \). Let \(s_p \) be the smallest \(s \) such that \(p^s > Z^{\frac{1}{2}} \). Thus \(s_p \geq 2 \). On the other hand, \(p^{2s_p} \leq p^{s_p - 1} \leq Z^{\frac{1}{2}} \implies p^{s_p} \leq Z \). Now we have

\[
\frac{1}{p^{s_p}} \leq \min\left(\frac{1}{Z^{\frac{3}{2}}}, \frac{1}{p^2}\right).
\]

Hence

\[
\sum_{p \leq Z^{\frac{1}{2}}} \frac{1}{p^{s_p}} \leq \sum_{p \leq Z^{\frac{1}{2}}} \frac{1}{Z^{\frac{s_p}{2}}} + \sum_{Z^{\frac{1}{2}} < p} \frac{1}{p^2}
\]

\[
\ll Z^{-\frac{1}{4}}.
\]
Lemmas 3 yields that

\[
\sum_{\|} \ll W^\varepsilon \sum_{p \leq Z^\frac{1}{2}} \sum_{V < l \leq 2V} \sum_{W < a \leq 2W} \frac{1}{4a^2 + 1 \equiv 0 \pmod{p^s}}
\]

\[
\ll W^\varepsilon \sum_{p \leq Z^\frac{1}{2}} \sum_{V < l \leq 2V} \frac{W}{p^s} \sum_{a=1}^{p^s} \frac{1}{4a^2 + 1 \equiv 0 \pmod{p^s}}
\]

\[
\ll VW^{1+\varepsilon} \sum_{p \leq Z^\frac{1}{2}} \frac{1}{p^s}
\]

\[
\ll VW^{1-\frac{1}{m}+\varepsilon} \ll VW,
\]

where \(p^s \leq Z\) works.

Case III. \(p(c(l, a)) \leq \log W \log \log W, b(l, a) > Z^\frac{1}{2}\).

We have \(p(c(l, a)) \leq \log W \log \log W \implies P(b(l, a)) < \log W \log \log W\).

Then Lemmas 3 and 5 yield that

\[
\sum_{\|} \ll W^\varepsilon \sum_{Z^\frac{1}{2} < b \leq Z} \sum_{P(b) < \log W \log \log W} \sum_{V < l \leq 2V} \sum_{W < a \leq 2W} \frac{1}{4a^2 + 1 \equiv 0 \pmod{b}}
\]

\[
\ll W^\varepsilon \sum_{Z^\frac{1}{2} < b \leq Z} \frac{d(b)}{b} VW
\]

\[
\ll VW^{1+2\varepsilon} Z^{-\frac{1}{2}} \sum_{P(b) < \log W \log \log W} 1
\]

\[
\ll VW^{1-\frac{1}{m}+2\varepsilon} \Psi(W, \log W \log \log W)
\]

\[
\ll VW^{1-\frac{1}{m}+3\varepsilon} \ll VW.
\]

Case IV. \(\log W \log \log W < p(c(l, a)) \leq Z^\frac{1}{2}, b(l, a) > Z^\frac{1}{2}\).

Let

\[
r_0 = \left[\frac{\log Z}{\log(\log W \log \log W)} \right].
\]

Since

\[
\log W \log \log W > Z^{r_0 + 1},
\]

for \(2 \leq r \leq r_0\), we consider these \((l, a)\) which satisfy

\[
Z^{\frac{1}{r_0+1}} < p(c(l, a)) \leq Z^\frac{1}{r}
\]

7
so that

\[P(b(l, a)) < p(c(l, a)) \leq Z^{1/2}. \]

We have

\[\Omega(c(l, a)) \leq \frac{3 \log W}{\log p(c(l, a))} \leq \frac{(r + 1) \log W}{\log Z} \leq 60(r + 1) \leq 120r \]

so that

\[d(c(l, a)) \leq A^r, \]

where \(A \) is a positive constant.

Lemmas 3, 4 and 6 yield that

\[
\sum_{IV} \ll \sum_{2 \leq r \leq r_0} A^r \sum_{\substack{Z^{1/2} < b \leq Z \\ P(b) < Z^{1/2}}} d(b) \sum_{V < l \leq 2V} \sum_{W < a \leq 2W} \frac{1}{\prod_{4a^2 + 1 \equiv 0 (\text{mod} \ b)}}
\]

\[
\ll VW \sum_{2 \leq r \leq r_0} A^r \sum_{\substack{Z^{1/2} < b \leq Z \\ P(b) < Z^{1/2}}} \frac{d^2(b)}{b}
\]

\[
\ll VW \sum_{2 \leq r \leq r_0} A^r \exp\left(\sum_{p \leq Z} \frac{d^2(p)}{p} - \frac{r}{10} \log r\right)
\]

\[
= VW \sum_{2 \leq r \leq r_0} A^r \exp\left(\sum_{p \leq Z} \frac{4}{p} - \frac{r}{10} \log r\right)
\]

\[
\ll VW \sum_{2 \leq r \leq r_0} A^r \exp\left(4 \log \log Z - \frac{r}{10} \log r\right)
\]

\[
\ll VW \log^4 Z \sum_{r=2}^{\infty} A^r \exp\left(-\frac{r}{10} \log r\right)
\]

\[
\ll VW \log^4 (2W),
\]

where the series is convergent.

Then assume that \(W < V \). In this situation, we shall change the role of \(l \) and \(r \) and shall consider the linear congruence equation

\[4a^2l + 1 \equiv 0 (\text{mod} \ n) \]

for the fixed \(a \). This situation is simpler than previous one. We can get the similar estimate as above.
Combining all of above, we get
\[\sum_{V < l \leq 2V} \sum_{W < a \leq 2W} d(4la^2 + 1) \ll VW \log^4(2W). \]

Hence,
\[
x \log \log x \sum_{i \leq \log_2 x} \sum_{j \leq \log_2 x} \frac{1}{1 + \log_2 x - i - j} \cdot \frac{1}{2^i + j} \sum_{2^i < a \leq 2^{i+1}} \sum_{2^j < l \leq 2^{j+1}} d(4la^2 + 1) \\
\ll x \log^4 x \log \log x \sum_{i \leq \log_2 x} \sum_{j \leq \log_2 x - i} \frac{1}{1 + \log_2 x - i - j} \\
\ll x \log^4 x \log \log x \sum_{i \leq \log_2 x} \sum_{1 \leq h \leq \log_2 x - i + 1} \frac{1}{h} \\
\ll x \log^4 x \log \log x \sum_{i \leq \log_2 x} \log(\log_2 x - i + 2) \\
\ll x \log^5 x \log \log^2 x.
\]

So far the proof of Theorem is finished.

References

[1] Lookeng Hua, *An Introduction to the Number Theory*, Science Press, Beijing, 1995, in Chinese.

[2] Chaohua Jia, *A note on Terence Tao’s paper “On the number of solutions to \(\frac{4}{p} = \frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_3} \)”*, available at http://arxiv.org/abs/1107.5394

[3] P. Shiu, *A Brun-Titchmarsh Theorem for multiplicative functions*, J. Reine Angew. Math., 313(1980), 161-170.

[4] Terence Tao, *On the number of solutions to \(\frac{4}{p} = \frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_3} \)“, available at http://arxiv.org/abs/1107.1010

[5] R. C. Vaughan, *On a problem of Erdös, Straus and Schinzel*, Mathematika, 17(1970), 193-198.
