Summary: In this paper we present a computer-assisted procedure for proving the existence of transverse heteroclinic orbits connecting hyperbolic equilibria of polynomial vector fields. The idea is to compute high-order Taylor approximations of local charts on the (un)stable manifolds by using the parameterization method and to use Chebyshev series to parameterize the orbit in between, which solves a boundary value problem. The existence of a heteroclinic orbit can then be established by setting up an appropriate fixed-point problem amenable to computer-assisted analysis. The fixed point problem simultaneously solves for the local (un)stable manifolds and the orbit which connects these. We obtain explicit rigorous control on the distance between the numerical approximation and the heteroclinic orbit. Transversality of the stable and unstable manifolds is also proven.

MSC:
- 34C37 Homoclinic and heteroclinic solutions to ordinary differential equations
- 47N20 Applications of operator theory to differential and integral equations
- 34C45 Invariant manifolds for ordinary differential equations
- 37M99 Approximation methods and numerical treatment of dynamical systems

Keywords:
heteroclinic orbits; validated computations; computer-assisted proof

Software:
AUTO-07P; Taylor; AUTO; Matlab; INTLAB; MATCONT

Full Text: DOI arXiv

References:
[1] Akveld, M. E.; Hulshof, J., Travelling wave solutions of a fourth-order semilinear diffusion equation, Appl. Math. Lett., 11, 3, 115-120 (1998) · Zbl 0932.35017
[2] Ambrosi, D.; Arioli, G.; Koch, H., A homoclinic solution for excitation waves on a contractile substratum, SIAM J. Appl. Dyn. Syst., 11, 4, 1533-1542 (2012) · Zbl 1260.34080
[3] Arioli, Gianni; Koch, Hans, Integration of dissipative partial differential equations: a case study, SIAM J. Appl. Dyn. Syst., 9, 3, 1119-1133 (2010) · Zbl 1298.37071
[4] Arioli, Gianni; Koch, Hans, Existence and stability of traveling pulse solutions of the FitzHugh-Nagumo equation, Nonlinear Anal., 113, 51-70 (2015) · Zbl 1304.35181
[5] Beyn, Wolf-Jürgen; Thümmler, Vera, Phase conditions, symmetries and PDE continuation, (Numerical Continuation Methods for Dynamical Systems, Numerical Continuation Methods for Dynamical Systems, Underst. Complex Syst. (2007), Springer: Springer Dordrecht), 301-330 · Zbl 1129.65094
[6] Breden, Maxime; Lessard, Jean-Philippe, Polynomial interpolation and a priori bootstrap for computer-assisted proofs in nonlinear ODEs, Discrete Contin. Dyn. Syst. Ser. B, 23, 7, 2825-2858 (2018) · Zbl 1398.65092
[7] Breden, Maxime; Lessard, Jean-Philippe; Mireles James, Jason D., Computation of maximal local (un)stable manifold patches by the parameterization method, Indag. Math. (N.S.), 27, 1, 340-367 (2016) · Zbl 1336.65197
[8] Breden, Maxime; Lessard, Jean-Philippe; Vanicat, Matthieu, Global bifurcation diagrams of steady states of systems of PDEs via rigorous numerics: a 3-component reaction-diffusion system, Acta Appl. Math., 128, 113-152 (2013) · Zbl 1277.65092
[9] Cabré, Xavier; Fontich, Ernest; de la Llave, Rafael, The parameterization method for invariant manifolds. III. Overview and applications, J. Differential Equations, 218, 2, 444-515 (2005) · Zbl 1101.37019
[10] Coomes, Brian A.; Koçak, Huseyin; Palmer, Kenneth J., Transversal connecting orbits from shadowing, Numer. Math., 106, 3, 427-469 (2007) · Zbl 1129.65138
[11] Cyranka, Jacek, Efficient and generic algorithm for rigorous integration forward in time of dPDEs: Part I, J. Sci. Comput., 59, 1, 28-52 (2014) · Zbl 1296.65138
Dunbar, Steven R., Traveling wave solutions of diffusive Lotka-Volterra equations: a heteroclinic connection in \mathbf{R}^4

Doedel, Eusebius, AUTO: a program for the automatic bifurcation analysis of autonomous systems, Proceedings of the Tenth Manitoba Conference on Numerical Mathematics and Computing, Vol. I (Winnipeg, Man., 1980).

Doedel, E. J.; Oldeman, B. E.; Champneys, A. R.; Dercole, F.; Fairgrieve, T. F.; Kuznetsov, Yu. A.; Sandstede, B.; Wang, X. J.; Zhang, C. H., AUTO-07p: Continuation and bifurcation software for ordinary differential equations (2012), URL: http://sourceforge.net/projects/auto-07p/

Dunbar, Steven R., Traveling wave solutions of diffusive Lotka-Volterra equations: a heteroclinic connection in \mathbf{R}^4. Trans. Amer. Math. Soc., 286, 2, 557-594 (1984) - Zbl 0556.35078

Gidea, Marian; Zgliczynski, Piotr, Covering relations for multidimensional dynamical systems. II. J. Differential Equations, 202, 1, 59-80 (2004) - Zbl 1066.37031

Hungria, Allan; Lessard, Jean-Philippe; Mireles James, J. D., Rigorous numerics for analytic solutions of differential equations: the radii polynomial approach. Math. Comp., 85, 299, 1427-1459 (2016) - Zbl 1332.65114

Jorba, Ángel; Zou, Maorong, A software package for the numerical integration of ODEs by means of high-order Taylor methods. Exp. Math., 14, 1, 99-117 (2005), MR2146523 - Zbl 1108.65072

Koçak, H.; Palmer, K.; Coomes, B., Shadowing in ordinary differential equations, Rend. Semin. Mat. Univ. Politec. Torino, 65, 1, 89-113 (2007) - Zbl 1134.37009

Lessard, Jean-Philippe; Mireles James, J. D.; Ransford, Julian, Automatic differentiation for Fourier series and the radii polynomial approach, Physica D, 334, 174-186 (2016) - Zbl 1418.34094

Lessard, Jean-Philippe; Mireles James, Jason D.; Reinhardt, Christian, Computer assisted proof of transverse saddle-to-saddle connecting orbits for first order vector fields, J. Dynam. Differential Equations, 26, 2, 267-313 (2014) - Zbl 1351.37107

Lessard, Jean-Philippe; Reinhardt, Christian, Rigorous numerics for nonlinear differential equations using Chebyshev series, SIAM J. Numer. Anal., 52, 1, 1-22 (2014) - Zbl 1290.65060

Mireles James, J. D., Validated numerics for equilibria of analytic vector fields: invariant manifolds and connecting orbits, (Rigorous Numerics in Dynamics, Rigorous Numerics in Dynamics, Proc. Sympos. Appl. Math., vol. 74 (2018), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 27-80 - Zbl 1409.65109

Rump, L. N., INTLAB - INTerval LABoratory, (Csendes, Tibor, Developments in Reliable Computing (1999), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht), 77-104 - Zbl 0949.65046

Sheombarsing, R. S.S., Validated Chebyshev-Based Computations for Ordinary and Partial Differential Equations (2018), Vrije Universiteit Amsterdam, (Ph.D. thesis)

Trefethen, Lloyd N., Approximation Theory and Approximation Practice (2013), Society for Industrial and Applied Mathematics (SIAM): Society for Industrial and Applied Mathematics (SIAM) Philadelphia, PA, viii+305 pp. back matter - Zbl 1264.41001

van den Berg, Jan Bouwe; Brezzi, Maxime; Lessard, Jean-Philippe; Murray, Maxime, Continuation of homoclinic orbits in the suspension bridge equation: a computer-assisted proof, J. Differential Equations, 264, 5, 3086-3130 (2018) - Zbl 1405.34037

van den Berg, Jan Bouwe; Deschênes, Andrés; Lessard, Jean-Philippe; Mireles James, Jason D., Stationary coexistence of hexagons and rolls via rigorous computations, SIAM J. Appl. Dyn. Syst., 14, 2, 942-979 (2015) - Zbl 1371.37036

van den Berg, Jan Bouwe; Hulshof, Josephus; Vandervorst, Robertus C., Traveling waves for fourth order parabolic equations, SIAM J. Math. Anal., 32, 6, 1342-1374 (2001) - Zbl 0988.34035

van den Berg, Jan Bouwe; Lessard, Jean-Philippe; Mischaikow, Konstantin, Global smooth solution curves using rigorous branch following, Math. Comp., 79, 271, 1565-1584 (2010) - Zbl 1206.37045

van den Berg, J. B.; Mireles James, J. D., Parameterization of slow-stable manifolds and their invariant vector bundles: theory and numerical implementation, Discrete Contin. Dyn. Syst., 36, 9, 4637-4664 (2016), MR3541499 - Zbl 1366.65073

van den Berg, Jan Bouwe; Mireles-James, Jason D.; Lessard, Jean-Philippe; Mischaikow, Konstantin, Rigorous numerics for symmetric connecting orbits: even homoclinics of the Gray-Scott equation, SIAM J. Math. Anal., 43, 4, 1557-1594 (2011) - Zbl 1231.34081

van den Berg, Jan Bouwe; Mireles James, Jason D.; Reinhardt, Christian, Computing (un)stable manifolds with validated error bounds: non-resonant and resonant spectra, J. Nonlinear Sci., 26, 4, 1055-1095 (2016) - Zbl 1360.37176

van den Berg, Jan Bouwe; Queirolo, Elena, A general approach to validated continuation of periodic orbits in systems of polynomial ODEs (2019), Preprint

van den Berg, Jan Bouwe; Sheombarsing, Ray, Rigorous numerics for ODEs using Chebyshev series and domain decomposition (2016), Preprint

van den Berg, Jan Bouwe; Sheombarsing, Ray, MATLAB code for “Validated computations for connecting orbits in polynomial vector fields” (2019)

Wilczak, Daniel, Symmetric heteroclinic connections in the Michelson system: a computer assisted proof, SIAM J. Appl. Dyn.
Wilczak, Daniel, Abundance of heteroclinic and homoclinic orbits for the hyperchaotic Rössler system, Discrete Contin. Dyn. Syst. Ser. B, 11, 4, 1039-1055 (2009) · Zbl 1172.34032

Wilczak, Daniel; Żgliczyński, Piotr, Heteroclinic connections between periodic orbits in planar restricted circular three-body problem—a computer assisted proof, Comm. Math. Phys., 234, 1, 37-75 (2003) · Zbl 1055.70005

Wilczak, Daniel; Żgliczyński, Piotr, Connecting orbits for a singular nonautonomous real Ginzburg-Landau type equation, SIAM J. Appl. Dyn. Syst., 15, 1, 495-525 (2016) · Zbl 1337.34044

Wilczak, Daniel; Żgliczyński, Piotr, Symbolic dynamics for Kuramoto-Sivashinsky PDE on the line — a computer-assisted proof (2017), Preprint

Yamamoto, Nobito, A numerical verification method for solutions of boundary value problems with local uniqueness by Banach’s fixed-point theorem, SIAM J. Numer. Anal., 35, 5, 2004-2013 (1998) · Zbl 0972.65084

Yamamoto, Nobito, A numerical verification method for solutions of boundary value problems with local uniqueness by Banach’s fixed-point theorem, SIAM J. Numer. Anal., 35, 5, 2004-2013 (1998) · Zbl 0972.65084

Żgliczyński, Piotr, \(C^1 \) Lohner algorithm, Found. Comput. Math., 2, 4, 429-465 (2002) · Zbl 1049.65038

Żgliczyński, Piotr, Covering relations, cone conditions and the stable manifold theorem, J. Differential Equations, 246, 5, 1774-1819 (2009) · Zbl 1185.37045

Żgliczyński, Piotr; Gidea, Marian, Covering relations for multidimensional dynamical systems, J. Differential Equations, 202, 1, 32-58 (2004) · Zbl 1061.37013

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.