L – Fuzzy Ordered ‘Γ’- Semi rings

T. Srinivasa Rao, B. Srinivasa Kumar, S. Hanumantha Rao, T. Nageswara Rao

Abstract— ‘Γ’- ring concept was introduced by Nobusawa which is the generalization of a ring. In this paper we studied the concept of L – Fuzzy Ordered ‘Γ’- Semi ring along with non-membership and membership functions whose values are taken from a complete lattice and some properties.

AMS Mathematics Subject Classification: 03B52

Key words : ordered ‘Γ’-semi ring, complete lattice, L-fuzzy sets, L-fuzzy ordered ‘Γ’-semi ring

I. INTRODUCTION
The approach of Fuzzy sets was invented by Zadeh, L.A[1] in the year 1965. Fuzzy sets which are using in different fields such as linguistics and clustering are special cases of L-relations. Goguen J.A [2] introduced L-fuzzy subset from a no empty subset to a complete lattice, L which is the generalization of fuzzy subset. The concept of generalization of a ring in ‘Γ’- ring was invented by Nobusawa [3] in 1961. M.K.Rao [4] studied the nation of a ‘Γ’- semi ring , ternary semiring and semiring. Majority of the researchers deduced many important results on ‘Γ’- Semi rings. Several authors studied fuzzy sets on ordered ‘Γ’- Semi rings, ideals, prime ideals and many more. Bhargavi, Y. et.al, [5] studied fuzzy ideals on ‘Γ’- Semi rings and deduced some important properties related to ‘Γ’- Semi rings. Bhargavi, Y. and Eswaralal, T, Nageswara Rao, B., Ramakrishana, N [6-9&15] studied the translates applications of vague sets in cear decision making and vague set in medical diagnosis. Vasavi, C. H et.al[10,11&14] deliberated fuzzy dynamic equations on time scales under second type hukuhara delta derivative. Bind et.al[12] discussed about the approach of Complete left ideals in ternary semi groups. Nayagam, V. L. G et.al [13] studied fuzzy multi-criteria decision-making. Srinivasa Rao, B et.al [16] introduced some properties and generalization on ‘Γ’-semi ring, R, which is named as an ordered ‘Γ’- Semi rings, ideals, prime ideals and many more. Bhargavi, Y. et.al [17] introduced Vague filters on ‘Γ’- Semi rings. Several authors studied fuzzy sets on ordered ‘Γ’- Semi rings, ideals, prime ideals and many more.

II. PRELIMINARIES
In the present part we discussed some basic concepts and definitions related to this article.

2.1 Definition:
For two additive commutative semi groups R and ‘Γ’, R is called ‘Γ’-semi ring if there exists a mapping RXR→R defined by p,q ∈ R and α,β ∈ ‘Γ’ satisfying the below four conditions
1. p α (q + r) = p α q + q α r
2. (p + q) α r = p α r + q α r
3. p (α + β) r = p α r + q β r
4. p α (q β r) = (p α q) β r , ∀ p,q,r ∈ R, α, β ∈ ‘Γ’.

2.2 Definition:
For a ‘Γ’-semi ring, R, which is named as an ordered ‘Γ’-semi ring if it satisfying the relation ≤ i.e., ≤ is a partial ordering on R satisfies the below three conditions. If p ≤ q and r ≤ s then
(i) p+r ≤ q+s
(ii) p α r ≤ q α s
(iii) r α p ≤ s α q, ∀ p,q,r ∈ R, α ∈ ‘Γ’.

2.3 Definition:
Suppose a non-empty sub set S, of an ordered ‘Γ’-semi ring, then S is called an ordered sub ‘Γ’-semi ring of R if (S,+), is sub semi ring of (R,+) and p α q ∈ S, α ∈ ‘Γ’.

Definition:
A partially ordered set is a complete lattice in which all sub sets have both supremum (join) and infimun (meet).
2.8 Definition:
Let S be a subset of ordered \(\Gamma' \)-semi ring R. The L-fuzzy set is the characteristic function of S taking values in L which is a given by
\[
\delta_S(g) = \begin{cases}
1_L & \text{if } g \in M \\
0_L & \text{if } g \text{ is not in } M
\end{cases}
\]
Then \(\delta_S \) is a \('L' \)-fuzzy characteristic function of Sin L.

III. L-FUZZY ORDERED \(\Gamma' \)-SEMI RINGS & RESULTS

In this section we study the concept of L-fuzzy ordered \(\Gamma' \)-semi ring along with non-membership and membership functions taking values in a complete lattice. Also we deduce that there is a one-to-one correspondence between L-fuzzy ordered \(\Gamma' \)-semi rings to the crisp ordered \(\Gamma' \)-semi rings. In this section R stands for an ordered \(\Gamma' \)-semi ring.

3.1 Definition:
A fuzzy set \(\mu \) is said to be L-fuzzy ordered \(\Gamma' \)-semi ring of R if for all \(g, h \in R \), \(\forall g, h \in \Gamma' \). The mapping \(R \rightarrow L \).

(i) \(\mu(g+h) \geq \mu(g) \wedge \mu(h) \)
(ii) \(\mu(gy)h) \geq \mu(g) \wedge \mu(h) \)
(iii) \(g \leq h \rightarrow \mu(g) \geq \mu(h) \)

3.2 Example:
Suppose that R is the set of whole numbers (W) and let \(\Gamma' = \{0,1\} \). The mapping R, from \(\Gamma' \) into R by \(\rho \neq q \) usual product of \(\rho, q \). \(\forall p, q \in R, \rho \in \Gamma' \). Then R is ordered \(\Gamma' \)-semi ring.

Consider \(L = \{0,1\} \) and define the mapping \(\mu : R \rightarrow L \) by
\[
\mu(x) = \begin{cases}
0.7 & \text{if } g = 0 \\
0.6 & \text{if } g \text{ is even} \\
0.4 & \text{if } g \text{ is odd}
\end{cases}
\]

By this definition we can observe clearly \(\mu \) is L-fuzzy ordered \(\Gamma' \)-semi ring.

3.3 Theorem:
An L-fuzzy subset \(\mu \) of R is a L-fuzzy ordered \(\Gamma' \)-semi ring if and only if its level set \(\mu_t \), \(t \in L \) is an ordered sub \(\Gamma' \)-semi ring of R.

Proof:
Let us suppose that \(\mu \) is an L-fuzzy ordered \(\Gamma' \)-semi ring of R. Then \(\mu \) is an L-fuzzy ordered \(\Gamma' \)-semi ring of R.

Let \(g, h \in R \) and \(g, h \in \Gamma' \).

\[
\Rightarrow (\mu(g) \geq t, \mu(h) \geq t) \Rightarrow (\mu(g) \wedge \mu(h)) \geq t \\
\Rightarrow (g+h) \geq t \Rightarrow (g, h) \in \mu_t \\
\Rightarrow (g+h) \geq \mu_t \Rightarrow gyh \geq \mu_t.
\]

Conversely, \(\mu_t \) is an ordered sub \(\Gamma' \)-semi ring of R.

Now we show that \(\mu \) is L-fuzzy ordered \(\Gamma' \)-semi ring of R.

Let \(g, h \in R \) and \(g, h \in \Gamma' \).

Suppose \(\mu(g) = p \) and \(\mu(h) = q \).

Put \(t = a \wedge b \).

Then \(\mu(g) \geq t, \mu(h) \geq t \)

\[
\Rightarrow g, h \in \mu_t \\
\Rightarrow g+h \geq \mu_t \Rightarrow gyh \geq \mu_t.
\]

\[
\Rightarrow \mu(g+h) \geq t \Rightarrow \mu(gy)h \geq \mu_t.
\]

\[
\Rightarrow \mu(g+h) \geq \mu(g) \wedge \mu(h) \text{ and } \mu(gy)h \geq \mu(g) \wedge \mu(h).
\]

Let \(g \leq h \).
If possible, suppose that \(\mu(g) < \mu(h) \).
Then there exists \(t_1 \in L \) such that \(\mu(g) < t_1 < \mu(h) \).
Then \(h \in \mu_{t_1} \) and \(x \) does not belong to \(\mu_{t_1} \).

Which is a contradiction?

The contradiction arises our supposition is wrong.

Therefore \(\mu(g) \geq \mu(h) \).

Thus \(\mu \) is L-fuzzy ordered \(\Gamma' \)-semi ring of R.

3.4 Theorem:
Let S is a non-empty subset of an ordered \(\Gamma' \)-semi ring R.

Then \(\delta_S \) is an L-fuzzy ordered \(\Gamma' \)-semi ring of R if and only if S is an ordered sub \(\Gamma' \)-semi ring of R.

Proof:
Suppose that \(\delta_S \) is an L-fuzzy ordered \(\Gamma' \)-semi ring of R.

Let \(g, h \in R \) and \(g \in \Gamma' \).

By the definition \(\delta_S(g+h) \geq \delta_S(g) \wedge \delta_S(h) = 1_L \Rightarrow g \cdot h \in S \).

Also \(\delta_S(gy)h \geq \delta_S(g) \wedge \delta_S(h) = 1_L \Rightarrow g \cdot h \in S \).

Then S is an ordered sub \(\Gamma' \)-semi ring of R.

Conversely suppose that S is an ordered sub \(\Gamma' \)-semi ring of R.

Let \(g, h \in R \) and \(g, h \in \Gamma' \).

If \(g, h \in S \Rightarrow g+h \in S \) and \(g \cdot h \in S \).

\[
\Rightarrow \delta_S(g+h) = 1_L \Rightarrow \delta_S(gy)h = 0_L \Rightarrow \delta_S(g) \geq \delta_S(h).
\]

Suppose that \(g \leq h \) then we have \(\mu(g) = \mu(h) \).

Therefore \(\mu(g) \geq \mu(h) \).

Thus \(\delta_S \) L-fuzzy ordered \(\Gamma' \)-semi ring of R.

3.5 Theorem
Let \(\mu \) and \(\sigma \) be L-fuzzy ordered \(\Gamma' \)-semi ring of R. Then \(\mu \wedge \sigma \) is a L-fuzzy ordered \(\Gamma' \)-semi ring of R.

Proof:
Let \(g, h \in R \) and \(g, h \in \Gamma' \).

\[
(\mu \wedge \sigma)(g+h) = \mu(g+h) \wedge \sigma(g+h) \]

\[
\geq (\mu(g) \wedge \mu(h)) \wedge (\sigma(g) \wedge \sigma(h)) \\
\Rightarrow (\mu(g) \wedge \sigma(g)) \wedge (\mu(h) \wedge \sigma(h)) \\
\Rightarrow (\mu \wedge \sigma)(g) \wedge (\mu \wedge \sigma)(h)
\]

Also we have
\[
(\mu \wedge \sigma)(gy)h = \mu(gy)h \wedge \sigma(gy)h \]

\[
\geq (\mu(g) \wedge \mu(h)) \wedge (\sigma(g) \wedge \sigma(h)) \\
\Rightarrow (\mu(g) \wedge \sigma(g)) \wedge (\mu(h) \wedge \sigma(h)) \\
\Rightarrow (\mu \wedge \sigma)g)(h) \wedge (\mu \wedge \sigma)(h)
\]

Moreover, let suppose that \(g \leq h \).

\[
(\mu \wedge \sigma)(g) \wedge (\sigma(g) \wedge (\mu(h) \wedge \sigma(h)) \\
\Rightarrow (\mu \wedge \sigma)(g) \wedge (\mu \wedge \sigma)(h)
\]

Thus \(\mu \wedge \sigma \) is an L-fuzzy ordered \(\Gamma' \)-semi ring of R.

3.6 Theorem
Two L-fuzzy ordered \(\Gamma' \)-semi rings \(\mu \) and \(\theta \) of Rsuch that card \(\mu < \infty \) and card \(\mu < \infty \) are equal if and only if card \(\mu \)

\[
= \text{Im} \theta \text{ and } F_{\mu} = F_{\theta}.
\]

Proof:
Suppose \(\mu \) and \(\theta \) are equal.
Let $t \in \text{Im} \mu$

$\iff \mu(g) = t.

$\Rightarrow \theta(g) = t.$ (because $\mu = \theta$).

$\Rightarrow t \in \text{Im} \theta$.

Therefore $\text{Im} \mu = \text{Im} \theta$.

Now

$F_\mu = \{ \mu(t) / t \in \text{Im} \mu \} = \{ \theta(t) / t \in \text{Im} \theta \} = F_\theta$.

Therefore $F_\mu = F_\theta$.

Conversely suppose that $\text{Im} \mu = \text{Im} \theta$ and $F_\mu = F_\theta$.

Let $t \in \text{Im} \mu$

$\iff t \in \text{Im} \theta$

Then $\mu(g) = t$ and $\theta(g) = t$.

i.e., $\mu(g) = t = \theta(g), \forall g \in R$.

$\Rightarrow \mu = \theta$.

IV. CONCLUSIONS

In the present work we studied the concept of L – Fuzzy Ordered ‘Γ’- Semi ring with membership and non-membership functions whose values are taken from a complete lattice and some important properties. Also we discussed L-fuzzy ordered ‘Γ’-semi ring with suitable example.

REFERENCES

1. Zadeh, L.A, ‘Fuzzy sets’, Information and control, vol.8, 1965

2. Gouguen, J.A, 'L-Fuzzy sets', Journal of Mathematical Analysis and Applications, vol. 18,1967

3. Nobusawa, N, ‘On generalization of the Ring theory’, Osaka J. Math., vol.1, 1978

4. M. K. Rao, ‘Γ’-semi rings’, South East Asian Bulletin of Mathematics, vol.19, 1995

5. Bhargavi, Y. and Eswarlal, T, ‘Fuzzy ‘Γ’-semi rings’, International journal of pure and Applied Mathematics, vol.98, No.3, 2015.

6. Bhargavi, Y. and Eswarlal, T, ‘Application of vague set in medical diagnosis’, International Journal of Chemical Sciences,vol.14, No.2, 2016.

7. Nageswara Rao, B., Ramakrishana, N., & Eswarlal, T,’ Application of translates of vague sets in career decision making’, International Journal of Chemical Sciences, vol.14, No.1, 2016.

8. Nageswara Rao, B., Ramakrishana, N, & Eswarlal, T, ‘Application of translates of vague sets on electoral-democracy model’, International Journal of Chemical Sciences, vol.14, No.2, 2016.

9. Bhargavi, Y. and Eswarlal, T, ‘Vague magnified translation in ’Γ’-semi rings’, International Journal of Pure and Applied Mathematics, vol.453, No.2, 2016.

10. Vasavi, C. H., Suresh Kumar, G., & Murty, M. S. N, ‘Fuzzy dynamic equations on time scales under second type hukuhara delta derivative’, International Journal of Chemical Sciences, vol.14, No.1, 2016.

11. Vasavi, C. H., Kumar, G. S., Rao, T. S., & Rao, B. V. A, ‘Application of fuzzy differential equations for cooling problems’, International Journal of Mechanical Engineering and Technology, vol.8, No.12, 2017.

12. Bindu, P., Sarala, Y., Srinivasa Rao, T. & Madhusudhana Rao, D, ‘Complete left ideals in ternary semigroups’, Proceedings of the Jangjeon Mathematical Society, vol.20, No.3, 2017.

13. Nayagam, V. L. G., Jeevaraj, S., & Dhanasekaran, P, ‘An intuitionistic fuzzy multi-criteria decision-making method based on non-hesitance score for interval-valued intuitionistic fuzzy sets’, Soft Computing, vol.21, No.23, 2017.

14. Leelavathi, R., Suresh Kumar, G., & Murty, M. S. N, ‘Nabla integral for fuzzy functions on time scales’, International Journal of Applied Mathematics, vol.31, No.5, 2018.

15. Bhargavi, Y., & Eswarlal, T, ‘Vague semiprime ideals of a ’Γ’–semi ring’, Afrika Matematika, vol. 29, No.3-4, 2018.

16. Srinivasa Rao, B., Kishore, G. N. V., Hari Krishna, Y., & Sarwar, M, ‘Generalized (α,β) - rational contractions in ordered sb-metric spaces with applications’, International Journal of Mechanical Engineering and Technology, vol.9, No.3, 2018.

17. Bhargavi, Y, ‘Vague filters of a ‘Γ’–semi ring’, International Journal of Mechanical and Production Engineering Research and Development, vol.9, No.3, 2018.

18. Nayagam, V. L. G., Jeevaraj, S., & Dhanasekaran, P, ‘An improved ranking method for comparing trapezoidal intuitionistic fuzzy numbers and its applications to multicriteria decision making’, Neural Computing and Applications, vol.30, No.2, 2018.

19. Seetha, M. P., Sarala, Y., Jaya Lalitha, G., & Anjaneyulu, A, ‘Ideal theory in a-ternary semigroups’, International Journal of Civil Engineering and Technology, vol.9, No.3, 2018.