Reduced dimensionality hyphenated NMR experiments for the structure determination of compounds in mixtures

Citation for published version:
Sakas, J & Bell, NGA 2019, 'Reduced dimensionality hyphenated NMR experiments for the structure determination of compounds in mixtures', Faraday Discussions. https://doi.org/10.1039/C9FD00008A

Digital Object Identifier (DOI):
10.1039/C9FD00008A

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Faraday Discussions

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
This manuscript will be presented and discussed at a forthcoming Faraday Discussion meeting. All delegates can contribute to the discussion which will be included in the final volume.

Register now to attend! Full details of all upcoming meetings: http://rsc.li/fd-upcoming-meetings

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

This article can be cited before page numbers have been issued, to do this please use: J. Sakas and N. G.A. Bell, Faraday Discuss., 2019, DOI: 10.1039/C9FD00008A.
Reduced dimensionality hyphenated NMR experiments for the structure determination of compounds in mixtures

Justinas, Sakas and Nicholle G. A. Bell*

For the structure determination of molecules in mixtures using NMR, the dispersion of 13C chemical shifts provides much needed separation of resonances in the indirectly detected dimension of 2D heterocorrelated NMR experiments. This separation is crucial for establishing networks of coupled spins by hyphenated techniques that combine hetero- and homonuclear polarisation transfers. However, as the sample complexity increases, 13C chemical shifts stop being unique, making interpretation of such spectra problematic. The resulting ambiguities can be removed by adding another dimension to these experiments. However, the spectra obtained from complex samples are riddled with overlapped signals, meaning that another dimension will only reduce the spectral resolution and prevent structure determination. A promising solution is to stay in two dimensions and use the combined 13C and 1H chemical shifts to separate signals. We have developed a suite of (3,2)D reduced dimensionality hyphenated NMR experiments that preserve information content of 3D spectra but offer all the advantages of 2D spectra – high resolution and ease of manipulation with only a mild sensitivity penalty. The proposed experiments complement the existing (3,2)D HSQC-TOCSY and include a (3,2)D HSQC-NOESY/ROESY, (3,2)D HSQC-CLIP-COSY and (3,2)D HSQC-HSQMBC. The new experiments represent a set of NMR techniques typically employed in the structure determination of complex compounds and have been adopted here for the use on mixtures. The resolving power of these experiments is illustrated on the analysis of hot water extracts of green tea.

In this contribution we exploit the possibility of combining 1H and 13C chemical shifts to achieve much needed separation of resonances in the indirectly detected dimension of 2D heterocorrelated NMR experiments. This separation is crucial for establishing networks of coupled spins via hyphenated techniques. These techniques combine heteronuclear polarisation transfers, usually in the form of 1H-13C HSQC, with through bond (COSY and TOCSY) or through-space (NOESY or ROESY) homonuclear polarisation transfer steps. We also use this approach in a long-range 1H, 13C correlated experiment.

The basic premise of these techniques is, that as the sample complexity increases, 13C chemical shifts stop being unique at some point, making the interpretation of hyphenated heterocorrelated spectra problematic. This ambiguity can in principle be tackled by adding another dimension to these experiments, e.g. in a form of a 3D HSQC-TOCSY. However, the spectra of complex mixtures are riddled with so many overlapping signals that another dimension, even with non-uniform sampling, will not aid the structure determination process and instead will lower the spectral resolution. A better method is to use the fact that the combined 13C and 1H chemical shifts of a given CH pair are more unique and use them to distinguish overlapped 13C chemical shifts. Experiments that utilise this approach are commonly referred to as reduced dimensionality NMR experiments. The (3,2)D reduced...
dimensionality hyphenated NMR experiments preserve the information content of the corresponding 3D spectra but offer all the advantages of 2D spectroscopy — high resolution and ease of manipulation with only a mild sensitivity penalty.

The described approach has so far been applied to produce (3,2)D HSQC-TOCSY experiments.13-15 In the work presented here we have extend it to a suite of complementary experiments, including (3,2)D HSQC-CLIP-COSY, (3,2)D HSQC-
NOESY/ROESY and (3,2)D HSQC-HSQMBC. The new experiments, derived from a set of NMR techniques typically employed in the structure determination of pure, but complicated molecules, were adopted here for the use on mixtures. The results are illustrated on the analysis carbohydrates obtained by the hot water extraction of green tea.

Results

Reduced-dimensionality experiments provide equivalent information to the corresponding higher dimensionality techniques, i.e. correlate n chemical shift, but achieve this in a n-x chemical shift space by simultaneous sampling of several chemical shifts during each or some of the incrementable periods of $(n, n-x)D$ experiments. In the case of $(3,2)D$ 1H, 13C correlated, hyphenated experiments, the 13C and 1H chemical shifts of directly bonded 13CHn pairs are sampled simultaneously to record $\Omega_{13C} \pm k\Omega_{1H}$ offset frequencies in a $(3,2)D$ 1H, 13C HSQC part of the experiment. Here, Ω_{13C} (Ω_{1H}) represent the difference between individual 1H chemical shift and the respective r.f. carrier frequency; κ is a scaling factor between two frequencies. Such an experiment samples proton chemical shifts twice; first time during the indirectly-detected period, and second time during the directly detected period. In between these periods a polarisation transfer occurs, which can either be homonuclear or, in the case of 1H, 13C long-range correlation, heteronuclear. The displacement of cross peaks by $\pm k\Omega_{1H}$ relative to their position in standard 1H, 13C correlated, hyphenated spectra separates signals with identical 13C chemical shifts, but also allows the determination of the 1H chemical shift of the initial proton in the 1H dimension, when the direct correlation cross peak is absent.

As a consequence of modulating 13C chemical shifts by 1H frequencies, the number of cross peaks doubles, increasing signal overlap. This issue can however be dealt with easily by recording two data sets while changing the phase of the first 90º 1H pulse in the pulse sequence by 90º. This treatment produces $\cos(2\pi\Omega_{1H}t)$ or $\sin(2\pi\Omega_{1H}t)$ modulated signals in F_1. Consequently, cross peaks in the (3,2)D spectra appear as in phase or antiphase doublets, centred around 13C chemical shifts and separated by $2\kappa\Omega_{1H}$ in F_1, i.e. displaced by $\pm \kappa\Omega_{1H}$ relative to the original HSQC cross peak. The cosine and sine modulated datasets are acquired in an interleaved manner and used to produce two simplified spectra by the addition or subtraction of the original spectra. The simplified spectra thus contain only one part of the F_1 doublet, each as positive signals with increased intensity. They are referred to here as the $\Omega_{13C} + \kappa\Omega_{1H}$ and the $\Omega_{13C} - \kappa\Omega_{1H}$ spectrum.

To illustrate a redistribution of cross peaks, as a result of combined $(3,2)D$ 1H and 13C chemical shift sampling, a 2D 1H, 13C HSQC spectrum of a green tea sample is shown in Fig. 1S, together with two $(3,2)D$ BIRDX-HSQC spectra. Partial $(3,2)D$ BIRDX-HSQC-TOCSY spectra of the carbohydrate region are shown in Fig. 3, including the equivalent standard sensitivity-enhanced 2D 1H, 13C HSQC spectrum (Fig. 3a). Figs. 3c and d show separated $\Omega_{13C} + \kappa\Omega_{1H}$ and $\Omega_{13C} - \kappa\Omega_{1H}$ (3,2)D BIRDX-HSQC-TOCSY spectra, while Fig. 3b shows an overlay of all three spectra.
Fig. 3. Partial (3,2)D spectra of green tea. (a) regular sensitivity-enhanced 2D HSQC spectrum; (b) overlay of spectra (a), (c) and (d); (c) $\Omega_{13C} - \kappa_1\Omega_{1H}$ (3,2)D BIRD$^\alpha$-HSQC-TOCSY spectrum; (d) $\Omega_{13C} + \kappa_1\Omega_{1H}$ (3,2)D BIRD$^\alpha$-HSQC-TOCSY spectrum; (e) (3,2)D BIRD$^\alpha$-HSQC-CLIP-COSY spectrum. As a demonstration the resonances of C2-C5 carbons of α-D-glucopyranose are identified. 1D traces are shown in Fig. 2S. Intense signals of sucrose that accidently appear on the same F_1 frequency as those of C3x in the $\Omega_{13C} - \kappa_1\Omega_{1H}$ spectrum are labelled with an asterisk in (b).
The process of identification and assignment of signals from the same molecule is illustrated here on α-D-glucopyranose, a minor component of this mixture. While chemical shifts of C2α and C5α of α-D-glucopyranose differ by only 8 Hz (and in a lower resolution spectrum would be undistinguishable), the difference in the chemical shifts of H2α and H5α protons leads to a clear separation of their TOCSY traces (Fig. 3b). As discussed previously[15] the separation of signals in the $\Omega_{13\alpha} + \alpha\Omega_{2\alpha}$ and the $\Omega_{13\alpha} - \alpha\Omega_{2\alpha}$ spectra is different. While an accidental overlap can occur in one of the spectra, separation is usually achieved in the other. This can be seen on the C3α trace of the $\Omega_{13\alpha} - \alpha\Omega_{2\alpha}$ spectrum, where strong sucrose signals interfere, but this is not the case for the $\Omega_{13\alpha} + \alpha\Omega_{2\alpha}$ spectrum, where the signals are well separated. 1D traces through the C1-C5 carbons of α-D-glucopyranose taken from the $\Omega_{13\alpha} - \alpha\Omega_{2\alpha}$ (3,2)D BIRD$^{x\alpha}$-HSQC-TOCSY spectra are shown in Fig. 25.

The next experiment to be presented is a (3,2)D BIRD$^{x\alpha}$-HSQC-CLIP-COSY, which is a modification of a recently published 2D HSQC-CLIP-COSY25, 26 method. Here, the perfect-echo based mixing sequence for in-phase coherence transfer between directly coupled protons is employed in place of an isotropic mixing of a TOCSY. An overlay of the $\Omega_{13\alpha} \pm \alpha\Omega_{2\alpha}$ (3,2)D BIRD$^{x\alpha}$-HSQC-CLIP-COSY spectra and a regular HSQC spectrum is presented in Fig. 3e. A comparison with an equivalent presentation of the TOCSY-based experiment (Fig. 3b) indicates that both experiments provide similar information, although the sensitivity of the CLIP-COSY based experiment is lower, as discussed later.

The reduced dimensionality approach was also applied to two through-space proton-proton correlation experiments, HSQC-NOESY and HSQC-ROESY (pulse sequences of Fig. 1). The obtained spectra contain only few NOESY/ROESY cross peaks. This is to be expected, as the efficiency of NOE-based transfer for in particular small molecules is low on high field instruments, even reaching zero. For carbohydrate structure determination the most important through-space correlations are those across glycosidic linkages. These have been detected by the (3,2)D BIRD$^{x\alpha}$-HSQC-NOESY/ROESY experiments and are presented in Fig. 35.

The last experiment discussed is a (3,2)D BIRD$^{x\alpha}$-HSQC-HSQMBC, which can be viewed as a modification of a 3D HSQC-HSQMBC technique.22 An expansion identical to that of Fig. 3 shows an overlay of the $\Omega_{13\alpha} + \alpha\Omega_{2\alpha}$ and the $\Omega_{13\alpha} - \alpha\Omega_{2\alpha}$ (3,2)D BIRD$^{x\alpha}$-HSQC-HSQMBC spectra together with a regular 2D HSQC spectrum (Fig. 4).

A number of long-range cross peaks is visible in this region, as recognised by their antiphase appearance of a proton-carbon long-range coupling. One-bond correlations are strongly suppressed in the (3,2)D BIRD$^{x\alpha}$-HSQC-HSQMBC spectra, nevertheless can appear as four weak cross peaks positioned in the corners of a rectangle separated by 2 $\Omega_{13\alpha}$ and $\Omega_{2\alpha}$ in F_3 and F_2, respectively. The long-range cross peaks of carbons C2-5 of α-D-glucopyranose were identified in this spectrum. The F_2 traces through the corresponding cross peaks taken from the $\Omega_{13\alpha} + \alpha\Omega_{2\alpha}$ spectrum are shown in Fig. 45. These include correlations of C3 and C5 with H1, which are outside of the spectral region shown in Fig. 4. All expected correlations for C2-C5 carbons were detected by this experiment with good sensitivity.

Discussion

The sensitivity of NMR experiments is always a concern, hence the following discussion focusses on this aspect of the proposed experiments. The overall theoretical sensitivity of a (3,2)D BIRD$^{x\alpha}$-HSQC is half of that of a regular 2D HSQC experiment.

![Fig. 4. Overlay of HSQC (gold) and the $\Omega_{13\alpha} \pm \alpha\Omega_{2\alpha}$ (3,2)D BIRD$^{x\alpha}$-HSQC-HSQMBC spectra (pink/green and blue/green) of green tea. Resonances of C2-C5 carbons of α-D-glucopyranose are identified. 1D traces are shown in Fig. 45.](image)
acquired in the same overall time. In practice, additional signal-to-noise reduction occurs, which can be attributed to the \(^{13}J_{\text{CH}} \) mismatch and evolution of proton-proton couplings during the BIRD\(^X\) pulse: signal-to-noise of 30-45% was observed in individual \(\Omega_{\text{13C}} + \omega_{\text{Hm}} \) (3,2)D BIRD\(^X\)-HSQC spectra relative that of a 2D HSQC spectrum, i.e. roughly comparable to 3D HSQC-based hyphenated extensions. The spectra are clean and without noise, with an exception of the CLIP-COSY extension, where strong signals left minor traces, likely due to the use of the gradient z-filter.\(^{27} \) In all experiments the coherence selection gradient was applied at 20% of the maximum strength (unlike the standard 80%) to minimise diffusion related losses during long mixing times used in NOESY, ROESY and also CLIP-COSY experiments. This is not a concern in the (3,2)D BIRD\(^X\)-HSQC-HSQMBC, where gradient coherence selection is not used. Nevertheless, high quality spectra are obtained here as well, mainly due to two G-BIRD blocks\(^{28} \) that dephase the magnetization of remote protons.

As can be seen from the comparison of corresponding TOCSY and CLIP-COSY \(\Omega_{\text{13C}} + \omega_{\text{Hm}} \) spectra (Fig. 2d and e) their appearance is very similar, nevertheless, the sensitivity of the TOCSY transfer is greater as seen from the comparison of the 1D traces through the \(\Omega_{\text{13C}} + \omega_{\text{Hm}} \) (3,2)D BIRD\(^X\)-HSQC-TOCSY and CLIP-COSY spectra in Fig. 2s. We have tested different settings using \(\Delta \) between 8.33 and 16.7 ms, however the obtained signal-to-noise was between 30 and 50% of the one obtained for a 20 ms mixing time TOCSY. This drop of sensitivity has been discussed previously\(^{26} \) and is caused by the presence of passive proton-proton couplings.

As stated above, the efficiency of the through space correlation was low, with ROESY transfer being more efficient than the NOESY transfer. The reduced dimensionality through-space correlation experiments will therefore be most useful for NOESY transfer. The reduced dimensionality through-space correlation experiments are 90° magnetisation during the long-range evolution interval \(T \). Even for very small couplings, e.g. between C1 and H3 and H5 of \(\alpha\)-glucopyranose show correlations (see Fig. 4S). The experiment was repeated twice by optimising the refocusing interval \(\tau \) for \(^{13}\text{CH} \) or \(^{13}\text{CH}_2 \) pairs. For CH optimised experiment, low intensity one-bond cross peaks appear in the spectra due to a mismatch of \(^{13}J_{\text{CH}} \) couplings with those used to set the \(\tau \) interval (0.5/\(^{13}J_{\text{CH}} \)). These cross peaks are characteristically positioned in the four corners of a rectangle separated by \(^{13}J_{\text{CH}} \) in F2 and by \(2\times\omega_{\text{Hm}} \) in F1, as seen in Fig. 4. For CH\(_2\) optimised experiments (\(\tau = 0.25/\(^{13}J_{\text{CH}} \)\)) the intensity of CH one-bond cross peaks increases. It is interesting to note that for CH optimised experiments very intense one-bond CH\(_2\) cross peaks appear in the spectra (the long-range correlations cross peaks are at the same time weak), while for CH\(_2\) optimised experiments the intensity of the one-bond CH\(_2\) cross peaks drops close to zero (and the long-range correlations cross peaks are more intense). This behaviour is explained in the ESI using product spin operators. The analysis presented there indicates that refocusing of one-bond couplings before before the long-range evolution interval, \(T \), should be considered as a way of removing one-bond correlations cross peaks.

Experimental

The sample was prepared by hot water extraction. 150 mg of Lipton green tea (EAN 87 22700 05552 5) in 40 ml of Milli-Q\(^{(R)} \) water was heated to 80°C for 30 minutes. The extractant was separated by centrifugation at 8000 g and free dried. The freeze dried powder (20 mg) was dissolved in D\(_2\)O (600 \(\mu \)L, 100% deuterated, Sigma Aldrich\(^{(R)} \)) spun down in a centrifuge. All spectra were acquired on a 4-channel NEO 800 MHz Bruker spectrometer equipped with a 5 mm TCI CryoProbe\(^{TM} \) with automated tuning and matching at 300 K. The following parameters were used: 2048 and 2048 complex points in \(t_2 \) and \(t_1 \) respectively, spectral widths of 9.8 and 160 ppm in \(F_2 \) and \(F_1 \), yielding \(t_2 \) and \(t_1 \) acquisition times of 131 and 31.8 ms, respectively. Eight scans were acquired for each \(t_1 \) increment using a relaxation time of 1.5 s. The polarisation transfer was optimised for \(^{1}{J}_{\text{CH}} = 150 \text{ Hz} \). Forward linear prediction to 4096 points was applied in \(F_2 \). A zero filling to 4096 was applied in \(F_2 \). A cosine square window function was used for apodization prior to Fourier transformation in both dimensions.

The following parameters are associated with pulse sequences shown in Fig. 1. Narrow and wide filled rectangles represent 90° and 180° pulses, respectively. Open rectangles with inclined arrows represent 180° 13C CHIRP pulses (p14, 500 \(\mu \)S), while for CH2 optimised experiments the intensity of the one-bond CH2 cross peaks drops close to zero (and the long-range correlations cross peaks are more intense). This behaviour is explained in the ESI using product spin operators. The analysis presented there indicates that refocusing of one-bond couplings before before the long-range evolution interval, \(T \), should be considered as a way of removing one-bond correlations cross peaks.

References

1. Lipton green tea (EAN 87 22700 05552 5) in 40 ml of Milli-Q\(^{(R)} \) water was heated to 80°C for 30 minutes.
2. The extractant was separated by centrifugation at 8000 g and free dried.
3. The freeze dried powder (20 mg) was dissolved in D\(_2\)O (600 \(\mu \)L, 100% deuterated, Sigma Aldrich\(^{(R)} \)) spun down in a centrifuge. All spectra were acquired on a 4-channel NEO 800 MHz Bruker spectrometer equipped with a 5 mm TCI CryoProbe\(^{TM} \) with automated tuning and matching at 300 K.
4. The following parameters were used: 2048 and 2048 complex points in \(t_2 \) and \(t_1 \) respectively, spectral widths of 9.8 and 160 ppm in \(F_2 \) and \(F_1 \), yielding \(t_2 \) and \(t_1 \) acquisition times of 131 and 31.8 ms, respectively.
5. Eight scans were acquired for each \(t_1 \) increment using a relaxation time of 1.5 s. The polarisation transfer was optimised for \(^{1}{J}_{\text{CH}} = 150 \text{ Hz} \). Forward linear prediction to 4096 points was applied in \(F_2 \). A zero filling to 4096 was applied in \(F_2 \).
6. A cosine square window function was used for apodization prior to Fourier transformation in both dimensions.

The following parameters are associated with pulse sequences shown in Fig. 1. Narrow and wide filled rectangles represent 90° and 180° pulses, respectively. Open rectangles with inclined arrows represent 180° 13C CHIRP pulses (p14, 500 \(\mu \)S), while for CH2 optimised experiments the intensity of the one-bond CH2 cross peaks drops close to zero (and the long-range correlations cross peaks are more intense). This behaviour is explained in the ESI using product spin operators. The analysis presented there indicates that refocusing of one-bond couplings before before the long-range evolution interval, \(T \), should be considered as a way of removing one-bond correlations cross peaks.
simultaneously with t_1 incrementation; the real and imaginary points were acquired by changing the polarity of the G_1 gradient.

For the $(3,2)$D BIRD$^\phi$-Δ HSQC-CLIP-COSY $\Delta = 11.4$ ms and $\Delta_2 = 0.25/\Delta_{CH}$. A 20 ms CHIRP pulse was applied simultaneously with a G_3 (-5%) PGF followed by a $G_6 = -19.4%$; $G_4 = 11%$. Phases were as follows: $\varphi = 2 \pi, 2(-\gamma)$; $\varphi_2 = x,-x$; $\Psi = 2(x,-x), 2(-x,x)$. Phases φ_3, φ_4 and Ψ were increased by 180° simultaneously with t_1 incrementation; the real and imaginary points were acquired by changing the polarity of the G_1 gradient.

The $(3,2)$D BIRD$^\phi$-Δ HSQC-HSQMBC spectrum, T represents the long-range evolution interval was set to 62.5 ms and $\tau = n\phi 0.5/\Delta_{CH}, n=1$ for CH and 2 for all multiplicities. $\varphi_{10} = x,-x$; $\varphi_{10} = 2x, 2(-x)$; $\Psi = x, 2(-x)$, x. Phases φ_{10} was incremented in a TPPI manner by 90°, phase Ψ was increased by 180° simultaneously with t_1 incrementation. $G_8 = 10%$, $G_9 = 11.6%, G_{10} = 26%, G_{11} = 16%, G_{12} = 50%, G_{13} = 22%$.

The number of scans (NS) was 8, except for the ROESY and the HSQC-HSQMBC, where NS=12. The overall acquisition time was 7 hours 40 minutes (standard sensitivity-enhanced HSQC), 15 hours and 38 minutes ((3,2)D HSQC), 15 hours and 48 minutes (TOCSY), 17 hour 52 minutes (NOESY), 25 hours and 41 minutes (ROESY), 16 hours 5 minutes (CLIP-COSY) and 25 hours and 16 minutes (HSQC-HSQMBC).

Conclusions

In conclusions, we have presented a series of reduced dimensionality 2D hyphenated HSQC-based experiments designed to deal with the overlap of carbon resonances encountered in mixtures. In combination with high digital resolution, achievable by non-linear sampling, these experiments are suitable for tracing out individual spin systems of small to medium size molecules imbedded in mixtures of considerable complexity.

Conflicts of interest

The authors declare no conflicts of interests.

Acknowledgements

The authors would like to thank Juraj Bella and Dr. Lorna Murray for maintenance of the NMR spectrometers. J. Sakas would like to acknowledge the financial support received from an EPSRC Undergraduate Vacation Scholarship. N. G. A. Bell would like to acknowledge the financial support received from a NERC Soil Security Programme Fellowship.

Notes and references

1. C. Griesinger, O. W. Sorensen and R. R. Ernst, Journal of Magnetic Resonance, 1987, 73, 574-579.

2. H. Kessler, H. Oschkinat and C. Griesinger, Journal of Magnetic Resonance, 1986, 70, 106-103.

K. Zangger, Progress in Nuclear Magnetic Resonance Spectroscopy, 2015, 86-87, 1-20.

J. A. Aguilar, S. Faulkner, M. Nilsson and G. A. Morris, Angewandte Chemie-International Edition, 2010, 49, 3901-3903.

W. S. Price, Concepts in Magnetic Resonance, 1997, 9, 299-336.

W. S. Price, Concepts in Magnetic Resonance, 1998, 10, 197-237.

H. Barjat, G. A. Morris, S. Smart, A. G. Swanson and S. C. R. Williams, Journal of Magnetic Resonance Series B, 1995, 108, 170-172.

N. G. A. Bell, M. C. Graham and D. Uhrin, Analyst, 2016, 141, 4614-4624.

N. G. A. Bell, L. Murray, M. C. Graham and D. Uhrin, Chemical Communications, 2014, 50, 1694-1697.

G. A. Bell, A. A. L. Michalchuk, J. W. T. Blackburn, M. C. Graham and D. Uhrin, Angewandte Chemie-International Edition, 2015, 54, 8382-8385.

V. V. Krishnamurthy, Journal of Magnetic Resonance Series B, 1995, 106, 170-177.

S. Kim and T. Szymerski, Journal of the American Chemical Society, 2003, 125, 1385-1393.

S. M. Pudakalakatti, A. Dubey, G. Jaipuria, U. Shubhashree, S. K. Adiga, D. Moskau and H. S. Atrey, Journal of Biomolecular Nmr, 2014, 58, 165-173.

A. Singh, A. Dubey, S. K. Adiga and H. S. Atrey, Journal of Magnetic Resonance, 2018, 286, 10-16.

N. Brodaczewska, Z. Kostalova and D. Uhrin, Journal of Biomolecular Nmr, 2018, 70, 115-122.

J. R. Garbow, D. P. Weitkamp and A. Pines, Chemical Physics Letters, 1982, 93, 504-509.

D. Uhrin, T. Liptaj and K. E. Kover, Journal of Magnetic Resonance Series A, 1993, 101, 41-46.

L. E. Kay, P. Keifer and T. Saarinen, Journal of the American Chemical Society, 1992, 114, 10663-10665.

J. Schleucher, M. Schwendinger, M. Sattler, P. Schmidt, O. Schledetzky, S. J. Glaser, O. W. Sorensen and C. Griesinger, Journal of Biomolecular Nmr, 1994, 4, 301-306.

A. Bax and D. C. Davis, Journal of Magnetic Resonance, 1985, 63, 207-213.

S. P. Rucker and A. J. Shaka, Molecular Physics, 1989, 68, 509-517.

D. Uhrin, Journal of Magnetic Resonance, 2002, 159, 145-150.

J. A. Keuskamp, R. J. J. Dingemans, T. Lehtinen, J. M. Sarneel and M. M. Hefting, Methods in Ecology and Evolution, 2013, 4, 1070-1075.

Y. F. Yuan, Y. L. Song, W. H. Jing, Y. T. Wang, X. Y. Yang and D. Y. Liu, Analytical Methods, 2014, 6, 907-914.

T. Gyongyosi, I. Timari, J. Haller, M. R. M. Koos, B. Luy and K. E. Kover, Chempluschem, 2018, 83, 53-60.

M. R. M. Koos, G. Kummerlowe, L. Kaltenschnee, C. M. Thiele and B. Luy, Angewandte Chemie-International Edition, 2016, 55, 7655-7659.

M. J. Thrippleton and J. Keefer, Angewandte Chemie-International Edition, 2003, 42, 3938-3941.

C. Emetarom, T. L. Hwang, G. Mackin and A. J. Shaka, Journal of Magnetic Resonance Series A, 1995, 115, 137-140.
Reduced dimensionality hyphenated NMR experiments for the structure determination of compounds in mixtures

Justinas Sakas and Nicholle G. A. Bell*

EaStCHEM School of Chemistry, University of Edinburgh, King’s Buildings, Joseph Black Building, Brewster Rd, Edinburgh EH9 3FJ, UK

A suite of NMR experiments using combined chemical shifts to separate resonances in two rather than three dimensions.