The structural sheath protein of aphids is required for phloem feeding

Torsten Will, Andreas Vilcinskas

Abstract

Aphids produce two types of saliva that mediate their interactions with plants. Watery saliva is secreted during cell penetration and ingestion, whereas gel saliva is secreted during stylet movement through the apoplast where it forms a sheath around the stylet to facilitate penetration and seal puncture sites on cell membranes. In order to study the function of the sheath when aphids interact with plants, we used RNA interference (RNAi) to silence the aphid structural sheath protein (SHP) in the pea aphid Acyrthosiphon pisum. The injection of 50 ng of double stranded RNA completely disrupted sheath formation, as confirmed by scanning electron microscopy. Aphid behavior was monitored using the electrical penetration graph technique, revealing that disrupted sheath formation prevented efficient long-term feeding from sieve tubes, with a silencing effect on reproduction but not survival. We propose that sealing the stylet penetration site in the sieve tube plasma membrane is part of a two-step mechanism to suppress sieve-tube occlusion by preventing calcium influx into the sieve tube lumen. The SHP is present in several aphid species and silencing has a similar impact to aphid-resistant plants, suggesting that SHP is an excellent target for RNAi-mediated pest control.

1. Introduction

Aphids (Hemiptera, Sternorrhyncha, Aphidoidea) are severe agricultural pests that deprive plants of nutrition and act as vectors for phytopathogenic viruses. Aphids feed on phloem sap from the sieve tubes of higher plants through specially adapted mouthparts known as stylets. Prior to feeding, the aphid stylet must penetrate the plant epidermis and move through the cortical layer. To facilitate this process, aphids secrete gel saliva which hardens to form a surface flange and a continuous tubular sheath encasing the full length of the stylet within the apoplast. When aphids are fed on an artificial diet, traces of gel saliva form structures reminiscent of pearls in a necklace, indicating that the salivary sheath is formed progressively from drops of saliva that hardens rapidly (Miles, 1965; Miles et al., 1964).

The stylet follows an intercellular pathway towards the sieve tube, but periodically probes adjacent plant cells and injects them with a small amount of watery saliva (Powell, 2005; Martin et al., 1997). The same watery saliva is also injected into the sieve tube immediately after penetration (Prado and Tjallingii, 1994) and this is thought to counteract plant defense mechanisms (Louis and Shah, 2013; Will et al., 2013). After the initial salivation phase, aphids begin to ingest phloem sap while intermittently secreting more watery saliva (Prado and Tjallingii, 1994).

Although the functions of watery saliva are understood in detail, little is known about the functions of gel saliva (Miles, 1999). The salivary flange on the epidermal surface is presumed to facilitate stylet penetration by serving as an anchor point (Pollard, 1973; Tjallingii, 2006). During stylet movement through the apoplasm, the continuous sheath around the stylet may provide mechanical stability, lubrication and protect against chemical defenses (Kimmis, 1986; Tjallingii and Hogen Esch, 1993), which would explain why gel saliva contains anti-defense molecules such as enzymes that detoxify free radicals (Miles, 1999). Other plant-sucking pests such as whiteflies and planthoppers also form a salivary sheath by the secretion of gel saliva (Brentassi and Remes Lenicov, 2007; Freeman et al., 2001) and show feeding-associated secretion of waxtory saliva (Walling, 2008).

The salivary proteome of the aphid Acyrthosiphon pisum has been described in detail (Carolan et al., 2009, 2011) and we have published a comparative proteomic analysis of watery and gel saliva in the aphid Megoura vicinae (Will et al., 2012). The latter study demonstrated that oxidation is required to polymerize the
structural components of the gel saliva to achieve hardening, and that salivary sheaths adopt an amorphous form when the reducing agent dithiothreitol is included in the artificial diet (Will et al., 2012). One of the most abundant proteins in the gel saliva of *A. pisum* is the sheath protein (SHP), which is rich in cysteine residues and is thought to form a polymer matrix during sheath hardening via intermolecular disulfide bonds (Carolan et al., 2011).

To test this hypothesis, we used RNA interference (RNAi) to silence the expression of SHP and studied its impact on sheath structure (by scanning electron microscopy) and function (by observing aphid feeding behavior, survival and reproduction). We found that sheath formation was disrupted and that aphid feeding and reproduction (but not survival) were inhibited. We discuss our results in the context of aphid–plant interactions and agricultural pest management strategies.

2. Materials and methods

2.1. Aphid and plant breeding

We reared *Acyrthosiphon pisum* clone L010 on 2–3-week-old bean plants (*Vicia faba* var. minor) in a climate cabinet (KBWF 720, Binder GmbH, Tüttlingen, Germany) with a 16-h photoperiod and day/night temperature of 24/18 °C. Plants for experiments and aphid rearing were cultivated in a greenhouse with an average temperature of 20 °C and natural light plus additional illumination (SONT Agro 400 W, Phillips, Eindhoven, Netherlands) to maintain a 14-h photoperiod.

2.2. dsRNA production and injection

A 491-bp template for the production of dsRNA representing the *A. pisum* SHP sequence (ACYP009881) was generated by PCR from plasmid DNA using gene-specific primers containing a 5′ T7 polymerase promoter sequence (AP-SHP-for 5′-TAATACGACTCACTATAGGGAGAACAGCTACCCTGGCCGATCTT-3′ and AP-SHP-qPCR-for 5′-TAATACGACTCACTATAGGGAGAACAGCTACCCTGGCCGATCTT-3′). We ensured this sequence did not have overlaps exceeding 19 bp with any other gene, to avoid off-target effects. The template was purified using the QIAquick PCR Purification Kit (Quiagen, Hilden, Germany) and dsRNA was prepared using the Ambion MEGAscript RNAi kit (Applied Biosystems, Austin, TX). Primers were designed using Primer3 (Rozen and Skaletsky, 2000) and were purchased from Sigma–Aldrich (Taufkirchen, Germany) and dsRNA was prepared using the Ambion MEGAscript RNAi kit (Zymo Research, Fermentas, St. Leon-Rot, Germany) and subsequent qPCR was performed with the StepOnePlus™ Real-Time PCR system (Applied Biosystems, Darmstadt, Germany) using Power SYBR® Green Master Mix (Applied Biosystems). Appropriate primers were designed using Primer3 (Rozen and Skaletsky, 2000) (AP-SHP-qPCR-for 5′-AAATGTCGGCTGACTCTGTTTCT-3′ and AP-SHP-qPCR-rev 5′-CGTGACCTCTGCTTCTAGAAGGGA-3′) and were purchased from Sigma–Aldrich. The amplified sequence was different to the one used for production of shp dsRNA. As a reference gene we used 18sRNA (AP-18srRNA-qPCR-for 5′-CCTGCGTGCTTAAATTGGACTCAG-3′ and AP-18srRNA-qPCR-rev 5′-CGTGTTTCTACTGCCGCATGGAG-3′). Calculation of ΔΔCt values was done with StepOne™ software v2.3 (Applied Biosystems).

2.3. Rearing aphids during experimental treatments

Aphids were reared on an artificial diet that mimics the cell-wall milieu (20 mM KCl, 1 mM CaCl₂, 10 mM MES, adjusted to pH 5.5 (Cosgrove and Cleland, 1983; Will et al., 2012)) to encourage secretion of gel saliva. The diet was sterile-filtered before use (pore size 0.45 μm) and 150 μl was placed in a Parafilm sachet. Parafilm sheets were previously sterilized with 30% H₂O₂ for at least 30 min. Five days after dsRNA injection, the time point we were dsRNA mediated silencing reaches its maximum (Jaubert-Possamai et al., 2007), 15 aphids of each treatment were placed in groups of five per sheet. The sachet was located on one side of a plastic ring. Opposite to the diet sachet, the ring was closed with a single Parafilm sheet after the ring volume was filled with water. The diet sachet was then placed downwards on a small aphid cage and aphids were allowed to feed for 24 h. Sheets containing aphids were than placed downwards in a Petri dish and were searched for salivary sheaths with an inverse microscope (Olympus IMT-2). Regions of interest were labeled, SEM sample holders were placed on these regions and Parafilm was cut around the sample holders with a scalpel. The samples were dried for a minimum of 3 days in a desiccator with silica gel under vacuum, then gold-sputtered and observed with a Zeiss DSM982 Gemini SEM. Two replicas were prepared for each treatment and 20 randomly-chosen salivary sheaths were observed for each replica.

2.4. Determining SHP expression level by real time PCR (qPCR)

RNA was isolated from aphids 5 days after injection of *imi* dsRNA and *shp* dsRNA respectively. 3 × 15 aphids of each treatment were collected and directly frozen in liquid nitrogen. RNA was extracted using TrizReagent (Sigma–Aldrich) and a TissueLyser II with 3 mm steel beads (Quiagen, Hilden, Germany). Samples were centrifuged to remove aphid body remnants and were subsequently mixed with 95% ethanol. RNA was collected with Directzol™ RNA MiniPrep columns (Zymo Research, Ferburg, Germany). mRNA was converted to cDNA (First Strand cDNA Synthesis Kit; Fermentas, St. Leon-Rot, Germany) and subsequent qPCR was performed with the StepOnePlus™ Real-Time PCR system (Applied Biosystems, Darmstadt, Germany) using Power SYBR® Green Master Mix (Applied Biosystems). Appropriate primers were designed using Primer3 (Rozen and Skaletsky, 2000) (AP-SHP-qPCR-for 5′-AAATGTCGGCTGACTCTGTTTCT-3′ and AP-SHP-qPCR-rev 5′-CGTGACCTCTGCTTCTAGAAGGGA-3′) and were purchased from Sigma–Aldrich. The amplified sequence was different to the one used for production of shp dsRNA. As a reference gene we used 18sRNA (AP-18srRNA-qPCR-for 5′-CCTGCGTGCTTAAATTGGACTCAG-3′ and AP-18srRNA-qPCR-rev 5′-CGTGTTTCTACTGCCGCATGGAG-3′). Calculation of ΔΔCt values was done with StepOne™ software v2.3 (Applied Biosystems).

2.5. Preparation and observation of aphid salivary sheaths

Aphids were reared on an artificial diet that mimics the cell-wall milieu (20 mM KCl, 1 mM CaCl₂, 10 mM MES, adjusted to pH 5.5 (Cosgrove and Cleland, 1983; Will et al., 2012)) to encourage secretion of gel saliva. The diet was sterile-filtered before use (pore size 0.45 μm) and 150 μl was placed in a Parafilm sachet. Parafilm sheets were previously sterilized with 30% H₂O₂ for at least 30 min. Five days after dsRNA injection, the time point we were dsRNA mediated silencing reaches its maximum (Jaubert-Possamai et al., 2007), 15 aphids of each treatment were placed in groups of five per sheet. The sachet was located on one side of a plastic ring. Opposite to the diet sachet, the ring was closed with a single Parafilm sheet after the ring volume was filled with water. The diet sachet was then placed downwards on a small aphid cage and aphids were allowed to feed for 24 h. Sheets containing aphids were then placed downwards in a Petri dish and were searched for salivary sheaths with an inverse microscope (Olympus IMT-2). Regions of interest were labeled, SEM sample holders were placed on these regions and Parafilm was cut around the sample holders with a scalpel. The samples were dried for a minimum of 3 days in a desiccator with silica gel under vacuum, then gold-sputtered and observed with a Zeiss DSM982 Gemini SEM. Two replicas were prepared for each treatment and 20 randomly-chosen salivary sheaths were observed for each replica.

2.6. EPG analysis of aphid feeding behavior

Aphid feeding behavior was monitored using the electrical penetration graph (EPG) technique (Tjallingii, 1988). A gold wire electrode (1 cm × 20 μm) was attached to the dorsal abdomen of randomly selected aperitous aphids 5 days after injection, using electrically conductive silver glue (Electrolube, Swadlincote, Derbyshire, UK) and a vacuum device for immobilization (van Helden and Tjallingii, 2000). The aphid electrode was connected to a DC EPG Giga-8 (Tjallingii, 1978, 1988) and the EPG output was recorded with Stylet+ (hardware and software from EPGSystems,
Wageningen, Netherlands). A second electrode (plant electrode) was inserted into the soil of potted plants. The experimental setup was placed in a Faraday cage to shield it from electromagnetic interference. Aphids were placed on the lower side of the petiole of a mature leaf on a 10-day-old plant, and EPG recordings were started immediately, running for 8 h. We carried out 14 biological replicates of each treatment. EPG waveforms were analyzed by pattern and autopower spectra as described (Prado and Tjallingii) using the Stylet + analysis module. Further analysis was performed with the workbook for automatic parameter calculation of EPG data version 4.4 (Sarria et al., 2009).

2.7. Survival and reproduction assay

Survival assays ($n = 3$) and reproduction assays ($n = 1$) were conducted separately using 15 aphids per group in each test. Aphids were maintained on a single leaf in an agar plate as described above. Parameters were checked once every day from the first day after injection until the final aphid died. Plates were placed in a climate cabinet using the conditions described above.

2.8. Statistical analysis

Real time PCR data were compared with t-test. Descriptive statistical analysis of aphid behavior was carried out and treatments were compared with ANOVA and Kruskal–Wallis ANOVA on ranks. The Wald–Wolfowitz test (SigmaPlot 11) was used to analyze non-parametric class-arranged behavior data. Because of the small sample size for non-parametric data analysis, Z and p-values were corrected (Siegel, 1956). Survival analysis was carried out with Kaplan–Meier Survival Analysis Log-Rank, and ANOVA was used to compare the median and maximum survival rates. Reproduction data were analyzed by ANOVA. The level for significance for the statistical tests was set to $p = 0.05$, whereas for behavior analysis p-values between 0.05 and 0.075 were seen to indicate a trend with marginal significance. For statistical analysis SigmaPlot 11 was used (Systat Software Inc., London, UK).

3. Results

3.1. Formation of the aphid salivary sheath is disrupted by shp silencing

We injected aphids with 25 ng dsRNA corresponding to the major salivary sheath protein (SHP) and compared them to non-treated controls and non-relevant dsRNA controls (injected with 25 ng dsRNA) corresponding to the insect metalloprotease inhibitor (IMPI), which is specific to the greater wax moth G. mellonella (Wedde et al., 2007). After 5 days feeding on an artificial diet on Parafilm, salivary sheaths were prepared for scanning electron microscopy. This revealed that salivary sheaths secreted by the control aphids adopted the typical necklace-like structure that forms on this substrate (Fig. 1a–d, white arrows), whereas those secreted by the shp RNAi aphids (injected with 25 ng dsRNA) showed the remnants of a bead-like structure but were predominantly amorphous (Fig. 1e,f). The injection of 50 ng of dsRNA SHP, lead to knockdown of approximately 33% (Fig. 2) and almost completely prevented the formation of bead-like structures, with minimal gel saliva deposits observed at the stylet penetration sites (Fig. 1g,h; white arrows).

3.2. The silencing of shp increases aphid probing activity and interrupts feeding

We selected aphids injected with 50 ng of dsRNA due to their more complete disruption of sheath formation (Fig. 1g,h) for further

![Fig. 1. Influence of shp silencing on sheath formation. Salivary sheaths from untreated aphids reared on an artificial diet (a, b) show a typical necklace structure and the sheaths are wider at the stylet penetration site (white arrow) than at the tip. Each bead represents one gel saliva secretion event (white arrowheads). Aphids injected with impi dsRNA form similar sheaths (c, d). The hole caused by stylet penetration through the Parafilm sheet is visible (white arrows). The silencing of shp disrupts sheath formation (e–h). In aphids injected with 25 ng shp dsRNA (e, f) the first two beads are clear and the next four or five appear less distinct. Additional gel saliva material appears to be distributed over the surrounding Parafilm sheet surface. In aphids injected with 50 ng shp dsRNA there are no visible beads (g, h) and only a small amount of gel saliva material covering the hole in the sheet (white arrow).](image-url)
Behavior analysis using 8-h EPG recordings in aphids from the shp treatment and impi control group. Data from selected parameters (Table 1) were sorted as events in classes representing 2-h intervals and analyzed using the non-parametric Wald–Wolfowitz test.

IMPI	SHP	IMPI	SHP	IMPI	SHP	IMPI	SHP	
0–2 h	4	6	4	6	4	5	4	5
2–4 h	8	2	8	2	8	1	8	1
4–6 h	0	2	1	2	0	4	0	4
6–8 h	2	1	1	2	2	1	2	1
no detection	0	3	0	1	0	3	0	3

\[Z_{corr.} = 1.3481 \]

\[P = 0.123 \]

\[0.021 \]

\[0.034 \]

Table 2

Non-parametric analysis of phloem localizing-parameters in s from the shp treatment and impi control group. Statistical analysis was carried out by ANOVA (*) and ANOVA on ranks (**) with parameter definitions as previously described (Sarria et al., 2009).

Parameters	Tissue specificity	No.	IMPI	SHP	P value				
Time to 1st probe from start of EPG	Epidermis	1	8	65.94	33.35	11	126.44	30.95	0.069**
Number of probes to the 1st E1	Epidermis and Mesophyll	3	14	23.69	3.90	11	21.36	6.58	0.984*
Contribution of E1 to phloem phase (%)		13	2.98	0.48	11	13.81	8.61	0.339**	
Number of single E1	Phloem	10	14	0.07	0.07	14	0.64	0.27	0.012*
Number of E2		11	2.5	0.48	14	2.29	0.55	0.64**	
Mean duration of E1		12	2.14	0.33	14	1.43	0.34	0.145*	
Mean duration of E2 (longer than 10 min)		14	1.36	0.27	14	0.71	0.19	0.064*	
Total duration of F		3	11	352.07	780.43	8	1772.87	537.15	0.137**
Mean duration of F		5	11	452.07	780.43	8	1772.87	537.15	0.137**
Average number of pd per probe		6	14	14.5	6.15	13	10.39	1.85	0.544**
Time to start of EPG to 1st E		7	14	110.2036	1853.27	14	13372.35	2756.92	0.783**
Time from 1st probe to 1st E		8	14	11982.69	1854.87	14	12328.01	2765	0.854**
Number of E2		9	14	2.64	0.52	14	3.14	0.66	0.558*
Number of single E1		10	14	0.07	0.07	14	0.64	0.27	0.012*
Number of E2		11	2.5	0.48	14	2.29	0.55	0.64**	
Mean duration of E1		12	2.14	0.33	14	1.43	0.34	0.145*	
Mean duration of E2 (longer than 10 min)		13	2.98	0.48	11	13.81	8.61	0.339**	
Time to 1st sustained E2		14	119320.18	119617.81	11	5828.98	919.45	0.035*	
Number of E2		15	11	13071.16	11	15465.85	990.77	0.03*	
Mean duration of E1		16	11	1080.68	26.39	11	88.1	29.53	0.064*
Mean duration of E2		17	11	1108.68	26.39	11	88.1	29.53	0.064*
Time to 1st sustained E2		18	13	4905.67	1221.21	11	2281.98	583.28	0.06**
Total duration of E		19	14	11058.98	962.67	14	1058.54	1516.52	0.025**
Number of probes		20	14	34.71	4.74	14	37.86	4.24	0.625**
Total probing time		21	14	24893.48	1952.43	14	2611.54	4025.88	0.064**
Mean duration of np		22	14	152.06	15.38	14	1674.9	1440.95	0.818**
Total duration of np		23	14	5564.7	1137.94	14	8734.3	2014.78	0.408*
Time from start of EPG to 1st sustained E2 (10 min)		24	11	11269.14	1896.99	14	1661.34	2873.88	0.048**
Time from 1st probe to 1st sustained E2 (10 min)		25	11	11231.46	1898.74	14	16282.83	2815.42	0.491**
Time from start of EPG to 1st E2		26	11	11254.16	1899.55	14	15342.19	2866.63	0.748**
Duration of the longest E2		27	14	11216.48	1901.29	14	14857.81	2821.31	0.818**
Phloem acceptability	Phloem	28	13	6264.13	1323.51	11	3550.96	888.01	0.068**
% E2 >10 min		29	11	92.86	4.85	11	66.84	10.75	0.032**
Several parameters associated with phloem localization, such as time to first E2 event [P26] and time to first sustained E2 event [P24, 25], were delayed in the shp group albeit not to a statistically significant extent, possibly reflecting the small sample size (Table 1). To refine the analysis, we sorted the data into groups representing intervals of 2 h, and each parameter [P24–27] was analyzed using non-parametric statistics (Table 2). In the shp group, there was a significant increase in the time from start to first sustained E2 event ($p = 0.021$) and the time from first probe to the first sustained E2 event ($p = 0.034$) but no difference in the time from the start of EPG recording ($p = 0.123$) or from first probe to the first E2 event ($p = 0.178$).

The late occurrence of sustained E2 in the shp group is also shown by displaying the percentage change of EPG waveforms (non-probing (np), stylet pathway activities (C), cell penetrations (pd), and phloem-related activities (E1, E2)) over the EPG recording time of 8 h in 30-min intervals (Fig. 3). During the first 1.5 h, there was a maximum of 21% np activity and 36% waveform C activity in the control group, and phloem activities (E1 and E2) increased from 14% after 1 h to 43% after 2.5 h. Approximately 50% of the aphids ingested sap after 7 h. In contrast, the shp group showed a higher frequency of np (~30%) and waveform C (29–57%) behavior but reduced phloem activities (7% after 1 h, increasing to 7–14% after 2.5 h and stabilizing at 21%).

3.3. The silencing of shp inhibits aphid reproduction

We monitored the reproduction of aphids in the shp and control groups throughout their lifespan. In all groups, the reproduction rate increased rapidly at the beginning of the observation period and reached a maximum after 4 days (Fig. 4a). The maximum reproduction rate in the control groups was approximately eight nymphs per day, whereas in the shp group it was six nymphs per day. Furthermore, reproduction in the control groups was maintained for 27 days (untreated control) or 22 days (impi control) whereas the reproduction rate dropped off after 4 days in the shp group and ceased after 17 days. There was a highly significant difference ($p < 0.001$) in the total mean reproduction rate (Fig. 4b) between the shp group (45.6 nymphs per adult) and untreated controls (88.2 nymphs per adult), and a significant difference ($p = 0.052$) between the shp group and impi control group (68.9 nymphs per adult in the latter). There was no significant difference between the two control groups ($p = 0.083$).

3.4. The silencing of shp does not affect aphid survival

We compared the shp group and controls using Kaplan–Meier survival analysis and found that the log-rank showed no difference in survival between the groups, where $n = 3$ (Fig. 4c, Table 3). There were also no differences in mean median survival (50% of animals alive) or mean maximum survival between the groups (Table 3).

4. Discussion

Aphids feed on phloem sap from sieve tubes, located deep inside the tissues of higher plants. While penetrating the epidermis and moving the stylet through the apoplastic layer towards the sieve tubes, aphids secrete gel saliva forming a sheath that envelopes the stylet. This salivary sheath remains in the plant after stylet retraction (Tjallingii and Hogen Esch, 1993). The stylet sheath contains a number of proteins but the structural protein SHP is the most abundant and is therefore likely to be the most important component of sheath integrity (Carolan et al., 2009). Sheath hardening is probably caused by SHP polymerization, induced by the oxidation of sulfhydryl groups on multiple cysteine residues to form intermolecular disulfide bonds (Miles, 1965; Carolan et al., 2009; Will et al., 2012). We used RNAi to specifically target shp mRNA for degradation, thus reducing the amount of SHP in the saliva. We then observed the impact of thin intervention on sheath formation and aphid feeding behavior, survival and reproduction.

When aphids are fed on an artificial diet presented in Parafilm sachets, the salivary sheath forms a necklace-like structure wherein each bead represents an individual secretion event (Miles, 1965). Similar structures were produced by untreated aphids and those injected with 25 or 50 ng impi dsRNA, a G. mellonella sequence which does not have a natural homolog in A. pisum (Fig. 1a–d). In contrast, these bead-like structures progressively broke down following the injection of 25 ng (Fig. 1e,f) or 50 ng (Fig. 1g,h) shp dsRNA. The small deposits of gel saliva observed at the Parafilm styloretinum penetrate produced by aphids treated with 50 ng shp dsRNA probably form because there is sufficient oxygen on the Parafilm surface to polymerize gel saliva even with a low concentration of SHP (expression reduced to 67%). The impact of shp silencing on sheath formation confirms that SHP is an essential component of the sheath structure (Carolan et al., 2009).

We assumed that the inability to produce a hardened sheath would influence aphid feeding behavior such as probing, stylet movement through the apoplastic and ingestion from sieve tubes, because these functions are probably facilitated by the stylet sheath (Miles, 1999; Will and van Bel, 2006). EPG analysis revealed significant differences in probing and feeding parameters between the shp treatment group and the impi control group, including delayed penetration, prolonged stylet movement, more watery saliva secretion events without subsequent ingestion, a lower mean duration of watery saliva secretion into the sieve tubes, a lower mean and total duration of ingestion, a lower (and delayed) total

Fig. 3. Temporal evolution of the behavior of aphids in the shp treatment and impi control group. The data shown the percentage of individuals in the control group (a) and shp treatment group (b) that show a specific behavior in 30-min intervals over a total recording time of 8 h. Behavior is shown as EPG waveform codes: np — non-penetration, C — stylet movement and secretion of gel saliva, pd — potential drop, E1 — secretion of watery saliva in a penetrated sieve tube, E2 — ingestion of phloem sap, F — penetration problems.
duration of sustained ingestion, and fewer instances of derailed stylet mechanics.

The formation of the salivary flange during the first period of gel saliva secretion is probably delayed in the shp treatment group but eventually succeeds as shown by the small deposits formed at the stylet penetration site (Fig. 1g,h), probably explaining the delayed penetration behavior we observed. The inability to form a completely hardened sheath, together with the potential diffusion of gel saliva components into the surrounding apoplast milieu, results in a loss of sheath functions potentially including lubrication, cell wall digestion and detoxification (Cherqui and Tjallingii, 2000). These losses are likely to explain the prolonged stylet movement, but it is notable that the time from first probe to first ingestion is similar in the shp treatment group and controls. This suggests that the loss of SHP does not delay or prevent the stylet reaching the phloem and calls into question the proposed lubrication function of the sheath (Miles, 1999). Instead, the bottleneck appears to be stable access to the sieve tubes after ingestion events indicate that after successful stylet penetration, overall ingestion period and the lower percentage of sustained ingestion of phloem sap, we observed no impact on aphid survival but a significant impact on reproduction. This suggests that the reduced availability of nutrients forces a trade-off, in which the aphids sacrifice their reproductive ability in order to ensure survival.

Our findings confirm that SHP is a major structural protein of the salivary sheath that is required for sheath hardening. Based upon the behavior of aphids in the shp treatment group, we propose that the salivary sheath seals the stylet penetration site in the sieve-tube plasma membrane to prevent the influx of calcium from the apoplast. In this manner, it acts together with calcium-binding proteins in the watery saliva of A. pisum (Carolan et al., 2009, 2011). Nevertheless, recent studies involving the cryofixation of aphids at different feeding stages demonstrate that sieve tube occlusion is not triggered at the beginning of sieve tube penetration before the secretion of watery saliva, suggesting there must be accessory upstream mechanisms that prevent calcium influx (Medina-Ortega and Walker, 2013). Our findings indicate that the salivary sheath prevents such an influx of calcium from the apoplast as previously suggested (Will and van Bel, 2006) by forming a seal at the sieve tube penetration site in the sieve-tube plasma membrane. The increase in watery salivation events without subsequent ingestion in the shp treatment group is most likely induced by the loss of turgor pressure inside penetrated sieve tubes as a consequence of an occlusion event (Will and van Bel, 2006; Gould et al., 2004). As observed in artificial feeding systems, aphids can detect a pressure drop and react by secreting watery saliva and pausing ingestion (Will et al., 2008). Although, shp silencing impedes the ingestion of phloem sap, we observed no impact on aphid survival but a significant impact on reproduction. This suggests that the reduced availability of nutrients forces a trade-off, in which the aphids sacrifice their reproductive ability in order to ensure survival.

Table 3

Survival analysis. Kaplan–Meier survival log-rank analysis and survival analysis by median and maximum survival time in aphids from the shp treatment and control groups.

Experiment	Treatment	Median survival time	P-value	Maximum survival time	Kaplan–Meier log-rank P-value
1	nt	13	0.586	50	0.772
	IMPI	15	37	0.788	0.113
	SHP	19	40	0.824	0.113
	vs. nt				
	vs. IMPI				
2	nt	13	0.586	50	0.772
	IMPI	16	28	0.218	0.648
	SHP	15	35	0.274	0.648
3	nt	13	0.586	50	0.772
	IMPI	15	38	0.781	0.87
	SHP	18	45	0.567	0.87

Acknowledgments

The authors acknowledge generous funding from the Hessen State Ministry of Higher Education, Research and the Arts (HMWK) via the LOEWE center for “Insect Biotechnology and Bioresources”. We thank Dr. Tom Wilkinson (School of Biology, University College Dublin, Ireland) for the aphid clone A. pisum LL01, Dr. Eileen Knorr for introducing the RNAi technique, Linda Bingsohn for help with
References

Bhatia, V., Bhattacharya, R., Uniyal, P.L., Singh, R., Niranjan, R.S., 2012. Host generated siRNAs attenuate expression of serine protease gene in Myzus persicus. PLoS ONE 7, e46343.

Brennert, M.S.E., Remes Lenicov, A.M.M. de, 2007. Feeding behavior of the vector Delphacodes kuschelii (Homoptera: Fulgoromorpha: Delphacidae) on maize and oat. Ann. Soc. Entomol. Fr. 43, 205–212.

Carolan, J.C., Careaga, D., Reardon, K.T., Mutti, N.S., Dittmer, N., Pappan, K., Cui, F., Castaneto, M., Poulain, J., Dosset, C., Tagu, D., Reese, J.C., Recek, G.R., Wilkinson, T.L., Edwards, O.R., 2011. Predicted effector molecules in the salivary secretome of the pea aphid (Acyrthosiphon pismum): a dual transcriptomic/proteomic approach. J. Proteome Res. 10, 505–518.

Carolan, J.C., Fitzroy, C.J.J., Ashton, P.D., Douglas, A.E., Wilkinson, T.L., 2009. The secreted salivary proteome of the pea aphid Acyrthosiphon pismum characterised by mass spectrometry. Proteomics. 9, 2457–2467.

Cherqui, A., Tjallingii, W.F., 2000. Salivary proteins of aphids, a pilot study on identification, separation and immunolocalisation. J. Insect Physiol. 46, 1177–1186.

Clermont, A., Wedde, M., Seitz, V., Podsiadlowski, J., Lenze, D., Hummel, M., Vilcinskas, A., 2004. Cloning and expression of an inhibitor of microbial metalloproteinases from insects contributing to innate immunity. Biochem. J. 382, 315–322.

Cosgrove, D.J., Cleland, R.E., 1983. Solutes in the free space of growing stem tissues. Plant Physiol. 72, 326–331.

Freeman, T.P., Buckner, J.S., Nelson, D.R., Chu Chang, C.C., Henneberry, T.J., 2001. Functional analysis of sugar transporters in Gossypium hirsutum. Plant Physiol. 126, 325–334.

Gould, N., Minchin, P.E.H., Thorpe, M.R., 2004. Direct measurements of sieve element hydrostatic pressure reveal strong regulation after pathway blockage. Funct. Plant Biol. 31, 987–993.

Jaubert-Possamai, S., Le Tréonnois, G., Bonhomme, J., Christophides, G.K., Rispe, C., Tagu, D., 2007. Gene knockdown by RNAi in the pea aphid Acyrthosiphon pisum. BMC Biotechnol. 7, 63.

Kleemann, F.M., 1986. Ultrastructure of the stylet pathway of Brevicoryne brassicae in host plant tissues. Brasicae olorenci. Entomol. Exp. Appl. 41, 283–290.

Klingler, J., Powell, G., Thompson, G.A., Isaacs, R., 1998. Phloem speciﬁc aphid saliva. Funct. Plant Biol. 25, 321–327.

Louis, J., Shah, J., 2013. Arabidopsis thaliana. Insect Sci. 20, 553–557.

Miles, P.W., 1965. Studies on the salivary physiology of plant-bugs: the salivary secretions of aphids. J. Insect Physiol. 11, 1261–1268.

Miles, P.W., 1999. Aphid saliva. Biol. Rev. 74, 41–85.

Miles, P.W., McLean, D.L., Kinsey, M.G., 1964. Evidence that two species of aphid ingest food through an open stylet sheath. Experientia 20, 582.

Mutt, N.S., Park, Y., Reese, J.C., Recek, G.R., 2006. RNAi knockdown of a salivary transcript leading to lethality in the pea aphid, Acyrthosiphon pisum. Insect Sci. 6, 38.

Pitino, M., Coleman, A.D., Maffei, M.E., Ridout, C.J., Hogenhout, S.A., 2011. Silencing of aphid genes by dsRNA feeding from plants. PlOS One 6, e25709.

Pollard, D.G., 1973. Plant penetration by feeding aphids (Hemiptera: Aleyrodidae): a review. Bull. Entomol. Res. 62, 631–714.

Pisani, G., 2005. Intraacellular salivation is the aphid activity associated with inoculation of non-continuously transmitted viruses. J. Gen. Virol. 86, 469–472.

Prado, E., Tjallingii, W.F., 2008. A novel perfusion system shows that aphid phloem feeding is regulated by intercellular CO2. J. Exp. Bot. 59, 2827–2838.

Siegel, S., 1956. Nonparametric Statistics for the Behavioral Sciences. McGraw-Hill, New York.

Tjallingii, W.F., 1978. Electronic recording of penetration behaviour by aphids. Entomol. Exp. Appl. 24, 721–730.

Tjallingii, W.F., 1988. Electrical recording of stylen penetration activities. In: Minks, A.K., Harrewijn, P. (Eds.), Aphids: Their Biology, Natural Enemies and Control, vol. 2B. Elsevier, Amsterdam, pp. 95–108.

Tjallingii, W.F., 2006. Salivary secretions by aphids interacting with proteins of phloem wound responses. J. Exp. Bot. 57, 739–745.

Tjallingii, W.F., Hogen Esch, Th., 1993. Fine structure of aphid stylo routes in plant tissues in correlation with EPG signals. Physiol. Entomol. 18, 317–328.

van Helden, M., Tjallingii, W.F., 2000. Experimental design and analysis in EPG experiments with emphasis on plant resistance research. In: Walker, G.P., Backus, E.A. (Eds.), Principles and Applications of Electronic Monitoring and Other Techniques in the Study of Homopteran Feeding Behavior. Thomas Say Publications in Entomology, Entomological Society of America, Lanham, pp. 144–171.

Wallig, L.L., 2008. Avoiding effective defenses: strategies employed by phloem-feeding insects. Plant Physiol. 146, 859–866.

Wedde, M., Wiese, C., Nuck, C., Altringeck, B., Vilcinskas, A., 2007. The insect metalloproteinase inhibitor gene of the lepidopteran Galleria mellonella encodes two distinct inhibitors. Biol. Chem. 388, 119–127.

Will, T., Steckbauer, K., Hardt, M., van Bel, A.J.E., 2012. Aphid gel saliva: sheath structure, protein composition and secretory dependence on stylet-tip milieu. PlOS ONE 7 (10), e46904.

Will, T., Furch, A.C.U., Zimmermann, M.R., 2013. How phloem-feeding insects face the challenge of phloem-located defenses. Front. Plant Sci. 4, 213.

Mao, J., Zeng, F., 2013. Plant-mediated RNAi of a gap gene-enhanced tobacco tolerance against the Myzus persicae. Transgenic Res. 22.

Martin, B., Collar, J.L., Tjallingii, W.F., Fereres, A., 1997. Intracellular ingestion and salivation by aphids may cause the acquisition and inoculation of non-persistently transmitted plant viruses. J. Gen. Virol. 78, 2701–2705.

Medina-Ortega, K., Walker, G.P., 2013. Does aphid salivation affect phloem sieve element occlusion in vivo? J. Exp. Bot. 64, 5525–5535.