Cobalt(II)-catalyzed remote C5-selective C–H sulfonylation of quinolines via insertion of sulfur dioxide†

Kai Wang, Guodong Wang, Guiyun Duan and Chengcai Xia✉

A novel and simple method for C–H sulfonylation of quinolines based on an inexpensive cobalt catalyst via insertion of sulfur dioxide is established. Excellent selectivity in the C5-position of quinolines is observed. This transformation has no need of oxidant and additive, affording sulfonated products in moderate to good yields. Furthermore, aromatic amines can displace aryl diazonium tetrafluoroborates as the original materials via the in situ diazotisation. The results of control experiments indicate that a radical pathway is involved in this sulfonylation.

Introduction

Heterocyclic aromatic sulfoxides are significant skeletons due to their extensive application in organic chemistry,† and pharmaceutical chemistry‡ as well as material chemistry.† Hence, the development of procedures for sulfonylation has become increasingly significant in synthetic methodology. Classic synthetic routes to sulfoxides are the oxidation of thioether and the Friedel–Crafts reaction.‡ Nevertheless, these typical reactions usually require harsh reaction conditions, including strong oxidants, strong acids and a high reaction temperature.

In recent decades, transition-metal-catalyzed C–H functionalization has become a novel and efficient strategy in the synthesis of various organic molecules.† A series of synthetic methods have been exhibited for the preparation of sulfoxides by employing different substrates.‡ In pioneering studies, Dong and co-workers disclosed a Pd(II)-catalyzed o-sulfonylation protocol which allowed the isolation of the o-sulfonylation products in good yields.† As interesting as the former, Frost et al. developed Ru(n)-catalyzed sulfonylation of 2-phenylpyridines and obtained the m-sulfonylation product in considerable yield.†

For the past few years, owing to the special properties of quinolines,§ a series of researches were pursued by utilizing quinolines as raw materials for the C–H functionalization.†§ Especially, the C5-functionalization of quinolines has achieved much attention. Prior works from many groups were focused on copper-catalyzed C–H functionalization|| or transition-metal-free oxidative coupling reaction with a stoichiometric amount of oxidants.|| But only a few examples were developed which employed iron,|| cobalt and nickel as catalyst.

Additionally, Among C5-functionalization of quinolines, the C5-sulfonylation has been successively reported by choosing sulfonyl chloride, sulfinates as well as sulfonhydrazide as the source of sulfonyl, respectively (Scheme 1, eqn (1)).||| Despite their utilities represent very inspiring progress, as mentioned above, almost all of them were catalyzed by copper catalyst. In addition, a stoichiometric amount of oxidants and additives were usually indispensable, not only increasing wastes, but also making this method inadaptable to large-scale synthesis. In recent years, the advance in the synthesis of sulfoxides via insertion of sulfur dioxide has been accomplished rapidly.17,18 Generally, the available DABCO·(SO2)2 and inorganic sulphites such as rongalite and potassium metabisulphite were used as the source of sulfur dioxide rather than toxic gaseous sulfur dioxide in organic reactions. Very recently, Wu and coworkers reported a copper-catalyzed sulfonylative C–H bond functionalization of quinolines from DABCO·(SO2)2 and aryl diazonium tetrafluoroborates.19

Currently, the field of cobalt-catalyzed C–H functionalization has started to receive considerable attention due to its cheaper

Scheme 1 Summary of sulfonylation of quinoline amides.
and more abundant characteristics. Herein, we report a cobalt(II)-catalyzed and convenient protocol for highly selective C5-sulfonylation of quinolines with DABCO·(SO2)2 and aryldiazonium salts to give the desired products in moderate to excellent yields under oxidant and additive free condition.

Results and discussion

Initially, the three-component reaction of N-(quinolin-8-yl)benzamide (1a), DABCO·(SO2)2 and p-tolylidiazonium tetrafluoroborate (2a) was selected as the model reaction for the development of the optimal reaction conditions. The desired C5-sulfonylated product (3a) was obtained in 49% yield by using CuI as catalyst in the presence of Na2CO3 in DCE for 12 h under N2 (Table 1, entry 1). Encouraged by this result, some metal catalysts including iron(n), iron(II), nickel(n), cobalt(II), copper(n) and copper(II) were studied (Table 1, entries 2–9), the yields of target product 3a was increased to 64% by using Co(acac)2 as catalyst (Table 1, entry 10). No product was formed in the absence of any metal catalyst (Table 1, entry 11). After that, we also screened several additives (Table 1, entries 12 and 13). Curiously, the higher yield was got in the absence of any additive (Table 1, entry 14). No better results were gained in further variations in solvents, temperature and so forth (Table 1, entries 15–20). Actually, we also screened the reaction condition by using Cu(acac)2 as a catalyst, the results were shown in ESI.

After getting the optimized reaction condition, we next explored the scope of sulfonylation reaction of 2 with N-(quinolin-8-yl)benzamide and DABCO·(SO2)2 (Table 2). Numbers of aryldiazonium salts with different substituent groups were investigated. Overall, all the substrates could transform into corresponding products smoothly. By contrast, the compatibility of electron-donating groups on aryldiazonium tetrafluoroborates was better. Moreover, the molecular structure of product 3f was confirmed by X-ray crystallographic analysis. Product 3j was got in lower yield due to the steric-hindrance effect of 2,4,6-trimethylbenzamid azonium salt (Scheme 2).

After that, the sulfonylation reactions of p-tolylidiazonium tetrafluoroborate (2a), DABCO·(SO2)2 and quinoline amides were discussed (Table 3). The substituent effects on the benzene ring of quinoline amides revealed a lesser impact, both electron-donating and electron-withdrawing groups were tolerated in this reaction. The carboxamides with 2-thiazolyl, cyclohexyl as well as cyclopropyl furnished target products 3r, 3s and 3t in high yields too. In addition, the different substituent groups on quinoline ring were also researched. Corresponding products (3u–x) were got in ideal yield. Regrettably, product 3y was not detected because of the influence of ester group.

Table 1 Screening of reaction conditions for sulfonylationa

Entry	Catalyst	Additive	Solvent	Yield [%]
1	CuI	Na2CO3	DCE	49
2	Fe(OTf)3	Na2CO3	DCE	13
3	Fe(OAc)2	Na2CO3	DCE	Trace
4	Ni(OAc)2	Na2CO3	DCE	Trace
5	CoF2	Na2CO3	DCE	15
6	CoCl2	Na2CO3	DCE	20
7	CoBr2	Na2CO3	DCE	31
8	Co(NO3)2	Na2CO3	DCE	43
9	Co(OAc)2	Na2CO3	DCE	57
10	Co(acac)2	Na2CO3	DCE	64
11	Co(acac)2	NaHCO3	DCE	62
12	Co(acac)2	ArOH	DCE	46
14	Co(acac)2	—	DCE	80
15	Co(acac)2	—	Dioxane	53
16	Co(acac)2	—	Toluene	Trace
17	Co(acac)2	—	DMF	14
18	Co(acac)2	—	DCE	42
19	Co(acac)2	—	DCE	53
20	Co(acac)2	—	DCE	78

a Reaction conditions: 1a (0.2 mmol), Co(acac)2 (10 mol%), DABCO·(SO2)2 (1.2 equiv.), 2a (1.2 equiv.), DCE (1.0 mL), stirred at 50 °C, under N2, 12 h. b Isolated yields. c Under air. d Stirred at rt. e Stirred at 80 °C.

Table 2 Substrate scope of aryldiazonium salts with 1aa

Entry	Catalyst	Additive	Solvent	Yield [%]
3a	Co(acac)2	(SO2)2	DCE	66
3b	Co(acac)2	(SO2)2	DCE	73
3c	Co(acac)2	(SO2)2	DCE	71
3d	Co(acac)2	(SO2)2	DCE	65
3e	Co(acac)2	(SO2)2	DCE	82
3f	Co(acac)2	(SO2)2	DCE	81
3g	Co(acac)2	(SO2)2	DCE	65
3h	Co(acac)2	(SO2)2	DCE	92

a Reaction conditions: 1a (0.2 mmol), Co(acac)2 (10 mol%), DABCO·(SO2)2 (1.2 equiv.), 2 (1.2 equiv.), DCE (1.0 mL), stirred at 50 °C, under N2, 12 h, isolated yields.

Scheme 2 Sulfonylation of quinoline amides by using anilines as the starting materials.
Considering anilines are cheap and available materials, furthermore, the stability of aryldiazonium tetrafluoroborates are poor, therefore, we then investigated the possibility by using aromatic amines as original materials via the in situ diazotization. Interestingly, this reaction took place smoothly, which afforded desired products in moderate yields.

Subsequently, we studied the application values of this reaction (Scheme 3). Gram-scale synthesis was carried out under standard conditions, and sulfonated product was isolated in 69% yield. Obviously, the productive rate was reduced when the scale of reaction was amplified. Then hydrolysis reaction was performed, and the C5-sulfonated 8-aminoquinoline was acquired in 89% yield.

Several control experiments were achieved in order to gain more deep understanding about the reaction mechanism. In the first place, three analogues (1x–z) were employed as substrates under the standard conditions and no products were detected, this result revealed that a free NH of amides and N atom of quinoline were crucial blocks for the sulfonylation (Scheme 4, eqn (1)). Next, TEMPO (2,2,6,6-tetramethyl-1-piperidinylxoxo) and HQ (hydroquinone) were used as free radical inhibitor respectively, and the sulfonylation reaction was absolutely suppressed (Scheme 4, eqn (2)). Additionally, 32% yield of compound 7 was isolated when 1,1-diphenylethenene was utilized as trapping agent (Scheme 4, eqn (3)), declaring that a radical pathway was included. Finally, further test about kinetic isotope effects (KIE) gave a low ratio (k = 1.0) (Scheme 4, eqn (4)), suggesting that the rate determining step was not the process of cleavage of C–H bond.20

According to the experiment conclusions and previous reports,11–17,21 a plausible mechanism was proposed (Scheme 5). Initially, complex A was produced via the combination of L₉CoII(D) and substrate 1. In the meantime, the sulfonyl radical was formed through insertion of sulphur dioxide.17 Subsequently, sulfonyl radical attacked intermediate A to afford complex B. After the generation of complex C via dehydrogenation process, desired product 3 was obtained through single electron transfer (SET) between complex C and tertiary amine cation radical.
Conclusions

In conclusion, we have developed a cobalt(II)-catalyzed method for highly selective C5-sulfonylation of quinolines via insertion of sulfur dioxide under oxidant and additive free condition. This transformation proved a broad substrate scope and high efficiency. Furthermore, aromatic amines could displace aryldiazonium tetrafluoroborates as original materials via the in situ diazotization. Eventually, a single electron transfer (SET) mechanism was presented after verification of control experiments.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by the Projects of Medical and Health Technology Development Program in Shandong Province (No. 2015WS0102).

Notes and references

1 (a) Q. Lu, J. Zhang, F. Wei, Y. Qi, H. Wang, Z. Liu and A. Lei, Angew. Chem., Int. Ed., 2013, 52, 7156; (b) N. Rocke, K. B. Bahneck, M. Herr, S. Lavergne, V. Mascitti, C. Perreault, J. Polivkova and A. Shavnya, Org. Lett., 2014, 16, 154; (c) Q. Lu, J. Zhang, G. Zhao, Y. Qi, H. Wang and A. Lei, J. Am. Chem. Soc., 2013, 135, 11481; (d) T. Shen, Y. Yuan, S. Song and N. Jiao, Chem. Commun., 2014, 50, 4115.

2 (a) H. Rosen, R. Hajdu, L. Silver, H. Kropp, K. Dorso, J. Kohler, J. G. Sundelof, J. Huber, G. G. Hammond, J. J. Jackson, C. J. Gill, R. Thompson, B. A. Pelak, J. H. Epstein-Toney, G. Lankas, R. L. Wilkening, K. J. Wildonger, T. A. Blizzard, F. F. DiNinno, R. W. Ratcliffe, J. V. Heck, J. W. Kozarich and M. L. Hammond, Science, 1999, 283, 70; (b) J. Colomb, G. Becker, S. Fieux, L. Zimmer and T. Billard, J. Med. Chem., 2014, 57, 3884; (c) S. Patai, C. Z. Rappoport and J. M. Stirling, The Chemistry of Sulfoxones and Sulfoxides, Wiley, New York, 1988; (d) D. C. Meadows, T. Sanchez, N. Neamati, T. W. North and J. Gervay-Hague, Bioorg. Med. Chem., 2007, 15, 1127.

3 X. Codony, J. M. Vela and M. J. Ramirez, Curr. Opin. Pharmacol., 2011, 11, 94.

4 (a) W. Su, Tetrahedron Lett., 1994, 35, 4955; (b) L. Xu, J. Cheng and M. L. Trudell, J. Org. Chem., 2003, 68, 5388; (c) N. Fukuda and T. Ikemoto, J. Org. Chem., 2010, 75, 4629; (d) L. Zhu, R. Qiu, X. Cao, S. Xiao, X. Xu, C.-T. Au and S.-F. Yin, Org. Lett., 2015, 17, 5528; (e) S. J. Nara, J. R. Harjani and M. M. Salunkhe, J. Org. Chem., 2001, 66, 8616; (f) R. P. Singh, R. M. Ramble, K. L. Chandra, P. Saravanan and V. K. Singh, Tetrahedron, 2001, 57, 241; (g) B. M. Graybill, J. Org. Chem., 1967, 32, 2931; (h) M. Ueda, K. Uchiyama and T. Kano, Synthesis, 1984, 323.

5 (a) J. Yi, L. Yang, C.-G. Xia and F.-W. Li, J. Org. Chem., 2015, 80, 6213; (b) Z. Chen, B. Wang, J. Zhang, W. Yu, Z. Liu and Y. Zhang, Org. Chem. Front., 2015, 2, 1107; (c) A. A. López and E. López, Dalton Trans., 2015, 44, 10128; (d) M. Zhang, Y. Zhang, X. Jie, H. Zhao, G. Li and W. Su, Org. Chem. Front., 2014, 1, 843; (e) Z. Huang, H. N. Lim, F. Mo, M. C. Young and G. Dong, Chem. Soc. Rev., 2015, 44, 7764; (f) F. Wang, S. Yu and X. Li, Chem. Soc. Rev., 2016, 45, 6462; (g) J. R. Hummel, J. A. Boerth and J. A. Ellman, Chem. Rev., 2017, 117, 9163.

6 (a) C. Shen, P.-F. Zhang, Q. Sun, S.-Q. Bai, T. S. A. Hor and X.-G. Liu, Chem. Soc. Rev., 2015, 44, 291; (b) S. Shaaban, S. Liang, N.-W. Liu and G. Manoliakas, Org. Biomol. Chem., 2017, 15, 1947; (c) W.-H. Rao, B.-B. Zhan, K. Chen, P.-X. Ling, Z.-Z. Zhang and B.-F. Shi, Org. Lett., 2015, 17, 3552.

7 X. Zhao, E. Dimitrijević and V. M. Dong, J. Am. Chem. Soc., 2009, 131, 3466.

8 O. Saidi, J. Marafie, A. W. Ledger, P. M. Liu, M. F. Mahon, G. K. Kohn, M. K. Whittlesey and C. G. Frost, J. Am. Chem. Soc., 2011, 133, 19298.

9 (a) J. P. Michael, Nat. Prod. Rep., 2008, 25, 166; (b) K. Kaur, M. Jain, R. P. Reddy and R. Jain, Eur. J. Med. Chem., 2010, 45, 3245; (c) H. Jiang, J. E. Taggart, X. Zhang, D. M. Benbrook, S. E. Lind and W.-Q. Ding, Cancer Lett., 2011, 312, 11; (d) C. C. Hughes, J. B. MacMillan, S. P. Gaudencio, P. R. Jensen and W. Fenical, Angew. Chem., Int. Ed., 2009, 48, 725; (e) C. C. Hughe and W. Fenical, J. Am. Chem. Soc., 2010, 132, 2528; (f) Y. Takayama, T. Yamada, S. Tatekabe and K. Nagasawa, Chem. Commun., 2013, 49, 6519; (g) Y.-C. Liu, J.-H. Wei, Z.-F. Chen, M. Liu, Y.-Q. Gu, K.-B. Huang, Z.-Q. Li and H. Liang, Eur. J. Med. Chem., 2013, 69, 554.

10 (a) C. Zhu, M. Yi, D. Wei, X. Chen, Y. Wu and X. Cui, Org. Lett., 2014, 16, 1840; (b) H. Wang, X. Cui, Y. Pei, Q. Zhang, J. Bai, D. Wei and Y. Wu, Chem. Commun., 2014, 50, 14409; (c) G. Li, C. Jia and K. Sun, Org. Lett., 2013, 15, 5198; (d) L.-C. Campeau, D. R. Stuart, J.-P. Leclerc, M. Bertrand-Laperle, E. Villemure, H.-Y. Sun, S. Lasserre, N. Guimond, M. Lecavallier and K. Fagnou, J. Am. Chem. Soc., 2009, 131, 3291; (e) K. Sun, Y. Lv, J. Wang, J. Sun, L. Liu, M. Jia, X. Liu, Z. Li and X. Wang, Org. Lett., 2015, 17, 4408; (f) X. Zhang, Z. Qi and X. Li, Angew. Chem., Int. Ed., 2014, 53, 10794; (g) J. Jeong, P. Patel, H. Hwang and S. Chang, Org. Lett., 2014, 16, 4598; (h) H. Hwang, J. Kim, J. Jeong and S. Chang, J. Am. Chem. Soc., 2014, 136, 10770; (i) Y. Su, X. Zhou, C. He, W. Zhang, X. Ling and X. Xiao, J. Org. Chem., 2016, 81, 4981; (j) K. Sun, X.-L. Chen, X. Li, L.-B. Qu, W.-Z. Bi, X. Chen, H.-L. Ma, S.-T. Zhang, B.-W. Han, Y.-F. Zhao and C.-J. Li, Chem. Commun., 2015, 51, 12111; (k) B. Du, P. Qian, Y. Wang, H. Mei, J. Han and Y. Pan, Org. Lett., 2016, 18, 4144; (l) B. Ying, J. Xu, X. Zhu, C. Shen and P. Zhang, ChemCatChem, 2016, 8, 2604.

11 (a) Y. Dou, Z. Xie, Z. Sun, H. Fang, C. Shen, P. Zhang and Q. Zhu, ChemCatChem, 2016, 8, 3570; (b) Y. Yin, J. Xie, F.-Q. Huang, L.-W. Qi and B. Zhang, Adv. Synth. Catal., 2016, 359, 1037; (c) H. Yi, H. Chen, C. Bian, Z. Tang,
Y.-C. Chen and Y. Wei, \textit{J. Org. Chem.}, \textbf{4}, 2016, 1313; (f) A. Shavnya, S. B. Coffey, A. C. Smith and V. Mascitti, \textit{Org. Lett.}, 2013, 15, 6226; (m) W. Johnson, S. W. Bagley, N. P. Mankad, R. G. Bergman, V. Mascitti and F. D. Toste, \textit{Angew. Chem., Int. Ed.}, 2014, 53, 4404; (n) A. Shavnya, K. D. Hesp, V. Mascitti and A. C. Smith, \textit{Angew. Chem., Int. Ed.}, 2015, \textbf{54}, 13571; (o) E. J. Emmett, C. S. Richards, D. Taylor, B. Nguyen, A. Garcia, D. Rubia, R. Hayter and M. C. Willis, \textit{Org. Biomol. Chem.}, 2012, \textbf{10}, 4007; (p) L. Martial, \textit{Synlett}, 2013, \textbf{24}, 1595; (q) X. Wang, L. Xue and Z. Wang, \textit{Org. Lett.}, 2014, \textbf{16}, 4056; (r) A. S. Deeming, C. J. Russell and M. C. Willis, \textit{Angew. Chem., Int. Ed.}, 2015, \textbf{54}, 1168; (s) C. C. Chen and J. Waser, \textit{Org. Lett.}, 2015, \textbf{17}, 736; (t) E. J. Emmett, B. R. Hayter and M. C. Willis, \textit{Angew. Chem., Int. Ed.}, 2013, \textbf{52}, 12679; (u) E. J. Emmett, B. R. Hayter and M. C. Willis, \textit{Angew. Chem., Int. Ed.}, 2014, \textbf{53}, 10204; (v) W. Zhang and M. Luo, \textit{Chem. Commun.}, 2016, \textbf{52}, 2980; (w) N. Wolff, J. Chai, X. Frognex and T. Cantat, \textit{Angew. Chem., Int. Ed.}, 2017, \textbf{56}, 5616; (x) H. Konishi, H. Tanaka and K. Manabe, \textit{Org. Lett.}, 2017, \textbf{19}, 1578; (y) S. Ye and J. Wu, \textit{Chem. Commun.}, 2012, \textbf{48}, 10037.

(a) G. Liu, C. Fan and J. Wu, \textit{Org. Biomol. Chem.}, 2015, \textbf{13}, 1592; (b) P. Bisseret and N. Blanchard, \textit{Org. Biomol. Chem.}, 2013, \textbf{11}, 5393; (c) A. S. Deeming, E. J. Emmett, C. S. Richards, D. Taylor and M. C. Willis, \textit{Synthesis}, 2014, \textbf{46}, 2701; (d) D. Zheng and J. Wu, \textit{Sulfur Dioxide Insertion Reactions for Organic Synthesis}, Nature Springer, 2017.

(a) M. Moselage, J. Li and L. Ackermann, \textit{ACS Catal.}, 2016, \textbf{6}, 498; (b) D. Wei, X. Zhu, J.-L. Niu and M.-P. Song, \textit{ChemCatChem}, 2016, \textbf{8}, 1242; (c) L. Ackermann, \textit{J. Org. Chem.}, 2014, \textbf{79}, 8948; (d) J. Li, M. Tang, L. Zhang, Z. Zhang and L. Ackermann, \textit{Org. Lett.}, 2016, \textbf{18}, 2742; (e) H. Wang, M. M. Lorion and L. Ackermann, \textit{ACS Catal.}, 2017, \textbf{7}, 3430; (f) D. Zheng, M. Chen, L. Yao and J. Wu, \textit{Org. Chem. Front.}, 2016, \textbf{3}, 985.

(a) M. Gómez-Gallego and M. A. Sierra, \textit{Chem. Rev.}, 2011, \textbf{111}, 4857; (b) E. M. Simmons and J. F. Hartwig, \textit{Angew. Chem., Int. Ed.}, 2012, \textbf{51}, 3066.

(a) Y. Li, R. Mao and J. Wu, \textit{Org. Lett.}, 2017, \textbf{19}, 4472; (b) Y. Xiang, Y. Li, Y. Kuang and J. Wu, \textit{Chem.–Eur. J.}, 2017, \textbf{23}, 1032; (c) Y. Xiang, Y. Kuang and J. Wu, \textit{Chem.–Eur. J.}, 2017, \textbf{23}, 6996; (d) R. Mao, Z. Yuan, Y. Li and J. Wu, \textit{Chem.–Eur. J.}, 2017, \textbf{23}, 8176; (e) J. Zhang, Y. An and J. Wu, \textit{Chem.–Eur. J.}, 2017, \textbf{23}, 9477; (f) T. Liu, D. Zheng, Z. Li and J. Wu, \textit{Adv. Synth. Catal.}, 2017, \textbf{359}, 2653; (g) X. Gong, Y. Ding, X. Fan and J. Wu, \textit{Adv. Synth. Catal.}, 2017, \textbf{359}, 2999; (h) T. Liu, D. Zheng, Y. Ding, X. Fan and J. Wu, \textit{Chem.–Asian J.}, 2017, \textbf{12}, 465; (i) J. Yu, R. Mao, Q. Wang and J. Wu, \textit{Org. Chem. Front.}, 2017, \textbf{4}, 617; (j) Y. An, J. Zhang, H. Xia and J. Wu, \textit{Org. Chem. Front.}, 2017, \textbf{4}, 1318; (k) X. Wang, T. Liu, D. Zheng, Q. Zhong and J. Wu, \textit{Org. Chem. Front.}, 2017, DOI: 10.1039/C7QO00787F; (l) H. Xia, Y. An, X. Zeng and J. Wu, \textit{Org. Chem. Front.}, 2017, DOI: 10.1039/C7QO00866J; (m) K. Zhou, M. Chen, L. Yao and J. Wu, \textit{Org. Chem. Front.}, 2017, DOI: 10.1039/C7QO00811B; (n) D. Zheng, Y. An, Z. Li and J. Wu, \textit{Angew. Chem., Int. Ed.}, 2014, \textbf{53}, 2451.