Disentangling the effect of host-genotype and environment on the microbiome of the coral *Acropora tenuis*

Bettina Glasl* Correspond., 1, 2, 3, Caitlin E Smith 1, 2, 3, David G Bourne 1, 2, 3, Nicole S Webster 1, 3, 4

1 Australian Institute of Marine Science, Townsville, Queensland, Australia
2 College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
3 AIMS@JCU, Townsville, Queensland, Australia
4 Australian Centre for Ecogenomics, University of Queensland, Brisbane, Queensland, Australia

Corresponding Author: Bettina Glasl
Email address: b.glasl@aims.gov.au

Genotype-specific contributions to the environmental tolerance and disease susceptibility of corals are widely accepted. Yet our understanding of how host genotype influences the composition and stability of the coral microbiome subjected to environmental fluctuations is limited. To gain insight into the community dynamics and environmental stability of microbiomes associated with distinct coral genotypes, we assessed the microbial community associated with *Acropora tenuis* under single and cumulative pressure experiments. Experimental treatments comprised either a single pulse of reduced salinity (minimum of 28 psu) or exposure to the cumulative pressures of reduced salinity (minimum of 28 psu), elevated seawater temperature (+2 °C), elevated pCO$_2$ (900 ppm) and the presence of macroalgae. Analysis of 16S rRNA gene amplicon sequence data revealed that *A. tenuis* microbiomes were highly host-genotype specific and maintained high compositional stability irrespective of experimental treatment. On average, 48% of the *A. tenuis* microbiome was dominated by *Endozoicomonas*. Amplicon sequence variants (ASVs) belonging to this genus were significantly different between host individuals. Although no signs of stress were evident in the coral holobiont and the vast majority of ASVs remained stable across treatments, a microbial indicator approach identified 26 ASVs belonging to Vibrionaceae, Rhodobacteraceae, Hahellaceae, Planctomycetes, Phylobacteriaceae, Flavobacteriaceae and Cryomorphaceae that were significantly enriched in corals exposed to single and cumulative stressors. While several recent studies have highlighted the efficacy of microbial indicators as sensitive markers for environmental disturbance, the high host-genotype specificity of coral microbiomes may limit their utility and we therefore recommend meticulous control of host-genotype effects in coral microbiome research.
Disentangling the effect of host-genotype and environment on the microbiome of the coral *Acropora tenuis*

Bettina Glasl1,2,3, Caitlin E. Smith1,2,3 David G. Bourne1,2,3 and Nicole S. Webster1,3,4

1 Australian Institute of Marine Science, Townsville, Qld, Australia
2 College of Science and Engineering, James Cook University, Townsville, Qld, Australia
3 AIMS@JCU, Townsville, Qld, Australia
4 Australian Centre for Ecogenomics, University of Queensland, Brisbane, Qld, Australia

Corresponding Author:
Bettina Glasl1,2,3
PMB No 3, Townsville MC, Queensland, 4810, Australia
Email address: b.glasl@aims.gov.au
ABSTRACT

Genotype-specific contributions to the environmental tolerance and disease susceptibility of corals are widely accepted. Yet our understanding of how host genotype influences the composition and stability of the coral microbiome subjected to environmental fluctuations is limited. To gain insight into the community dynamics and environmental stability of microbiomes associated with distinct coral genotypes, we assessed the microbial community associated with Acropora tenuis under single and cumulative pressure experiments.

Experimental treatments comprised either a single pulse of reduced salinity (minimum of 28 psu) or exposure to the cumulative pressures of reduced salinity (minimum of 28 psu), elevated seawater temperature (+2 °C), elevated pCO$_2$ (900 ppm) and the presence of macroalgae.

Analysis of 16S rRNA gene amplicon sequence data revealed that A. tenuis microbiomes were highly host-genotype specific and maintained high compositional stability irrespective of experimental treatment. On average, 48% of the A. tenuis microbiome was dominated by Endozoicomonas. Amplicon sequence variants (ASVs) belonging to this genus were significantly different between host individuals. Although no signs of stress were evident in the coral holobiont and the vast majority of ASVs remained stable across treatments, a microbial indicator approach identified 26 ASVs belonging to Vibrionaceae, Rhodobacteraceae, Hahellaceae, Planctomycetes, Phylobacteriaceae, Flavobacteriaceae and Cryomorphaceae that were significantly enriched in corals exposed to single and cumulative stressors. While several recent studies have highlighted the efficacy of microbial indicators as sensitive markers for environmental disturbance, the high host-genotype specificity of coral microbiomes may limit their utility and we therefore recommend meticulous control of host-genotype effects in coral microbiome research.

INTRODUCTION

Corals contain abundant and diverse communities of microorganisms that together form a holobiont (Rohwer et al. 2002). The photoautotrophic dinoflagellate endosymbionts of the family Symbiodiniaceae are by far the best studied symbiotic partners of reef-building corals.
Symbiodiniaceae lineages vary between coral species (Smith et al. 2017) and even between host genotypes of conspecific corals (Brener-Raffalli et al. 2018). Fine-scale adaptations of the Symbiodiniaceae lineages can influence the environmental sensitivity of their hosts (Baker 2003), as some Symbiodiniaceae lineages are more thermo-tolerant and hence infer higher bleaching tolerance to corals (Rowan 2004). Corals also harbour diverse communities of bacteria, archaea and viruses (Bourne et al. 2016; Hernandez-Agreda et al. 2017; Thurber et al. 2017). Excessive environmental stress resulting in coral bleaching, tissue necrosis and mortality, is often accompanied by a shift in the microbiome (Glasl et al. 2016; Zaneveld et al. 2017). While the importance of the microbiome to coral fitness is well appreciated (Bourne et al. 2016; Grottoli et al. 2018; Peixoto et al. 2017; Ziegler et al. 2017), the microbiome’s potential to expand the environmental tolerance of coral holobionts via microbial shuffling and switching is far less understood (Webster & Reusch 2017). *Endozoicomonas*, a bacterial genus commonly associated with marine invertebrates, is considered a putative symbiont of corals as it can occur at high abundance in aggregates within the tissue (Neave et al. 2016b) and loss of *Endozoicomonas* is frequently seen in bleached or diseased corals (Bayer et al. 2013b; Glasl et al. 2016). Pangenome analysis of *Endozoicomonas* has revealed evidence for functional specificity between strains (Neave et al. 2017), hence fine-scale changes in the composition or relative abundance of different *Endozoicomonas* strains may contribute to variation in the environmental tolerance and disease susceptibility of conspecific corals. A fundamental question in microbiome research is whether host intrinsic factors (e.g. genetics) or the environment are the main drivers of microbiome composition and stability (Spor et al. 2011; Wullaert et al. 2018). The influence of host genetics and environmental factors on the community composition of a microbiome varies between host species and even between host compartments. For example, the rhizosphere microbiome of the perennial plant *Boechera stricta* are predominantly shaped by environmental factors, however, its leaf associated microbial community is largely controlled by host genetic factors (Wagner et al. 2016). Host-genotype specific factors also shape the gut microbiome of *Drosophila melanogaster*, a model system for animal-microbe interactions, and further mediate its nutritional phenotype (Chaston et al. 2016). While many coral microbiome studies have focused on the effect of environmental stress (e.g. elevated temperature, increased macroalgae abundance, anthropogenic pollution and declining water quality (Garren et al. 2009; Vega Thurber et al. 2009; Zaneveld et al. 2016; Zhang et al. 2016).
the combined influence of host-genotype and environmental stress on the microbial community composition remains largely unknown. This is a critical knowledge gap as microbiome-by-host genotype-by-environment interactions may have important implications for the resistance of corals to stress and disease. Considering the recent declines in coral reefs (De’ath et al. 2012; Hoegh-Guldberg et al. 2007; Hughes et al. 2017) and the key role microorganisms play in maintaining host health (Bourne et al. 2016), disentangling the effect of environment and host-genotype on a coral’s microbiota is of utmost importance.

This study investigated the effect of host genotype-by-environment interactions on the microbiome of Acropora tenuis. The compositional variability of the A. tenuis microbiome associated with distinct host genotypes (individual coral colonies) was assessed with high taxonomic resolution based on amplicon sequence variants (ASV). The stability of the microbiome was further investigated by exposing corals to acute salinity fluctuations (ranging from 35 psu to 28 psu) under current (sea surface temperature of 27.5 °C and pCO₂ of 400 ppm) and future (sea surface temperature of 29.5 °C, pCO₂ of 900 ppm and macroalgae) projected reef conditions. Stress treatments were designed to simulate environmental conditions that A. tenuis can experience in their natural environment. Both stress treatments (single and cumulative stress) consisted of a non-lethal low salinity pulse, mimicking freshwater influx into the reef as occurs after large rainfall events, often linked to cyclones that cross the Eastern Australian coastline and result in large riverine flows into the nearshore and mid-shelf reef areas of the GBR (e.g. Jones & Berkelmans 2014; VanWoesik et al. 1995).

MATERIALS & METHODS

Coral colony collection and experimental design

Nine Acropora tenuis colonies were collected from Davies Reef (Great Barrier Reef, Australia) in March 2017 and transported to the National SeaSimulator at the Australian Institute of Marine Science (Townsville, Australia). Corals were fragmented into coral nubbins, glued onto aragonite plugs and kept at control temperature (27.5 °C) and light (150 mol photons m⁻² s⁻¹) conditions in indoor flow-through aquaria for three weeks to allow healing. Corals were collected under the permit G12/35236.1 granted by the Great Barrier Reef Marine Park Authority to the Australian Institute of Marine Science.
The experimental design consisted of three treatment conditions: 1) control, 2) single stress and 3) cumulative stress treatment (Fig 1). Nubbins of all nine *A. tenuis* genotypes (A-I) were exposed to all three treatment conditions to explore microbiome variation according to host genotype. Each experimental aquarium (three aquaria per treatment) held nubbins of three *A. tenuis* genotypes (four nubbins per genotype, total of 12 nubbins per aquarium). Coral nubbins were acclimated to experimental aquaria for three weeks during which corals in the cumulative stress treatment were gradually ramped to 29.5 °C and 900 ppm pCO$_2$ over a period of 12 days. Corals in the control and single stressor treatments were kept at stable temperature (27.5 °C) and ambient (400 ppm) pCO$_2$ conditions throughout the experiment.

Salinity was ramped down over 3 h to a minimum of 28 psu and oscillated between 28 psu and 30 psu in a six-hour rhythm to simulate natural fluctuations occurring on reefs (tidal influences). Temperature and pCO2 adjusted freshwater (0.2 µm filtered) was used to lower salinities prior to supplying the low saline seawater to the aquaria tanks. After seven days of low salinity, the salinity was ramped up (3 h) to 35 psu. In the cumulative stress treatment, corals were additionally exposed to elevated temperature (29.5 °C), pCO$_2$ (900 ppm) and macroalgae (*Sargassum* sp.), as predicted for the end of the 21st century (IPCC 2014).

Samples were collected regularly throughout the experiment (see Fig 1), including 24 h before the salinity pulse was induced (day 1) and at three time points (day 10, day 14 and day 19) after the low-salinity stress exposure. All nubbins were processed as follows: effective quantum yield was measured (pulse amplitude modulation fluorometry), photographed, inspected for visual signs of stress (tissue lesions, bleaching and necrosis), rinsed with 0.2 µm filter-sterilized seawater, snap frozen in liquid nitrogen and stored at -80 °C until further processing.

Coral nubbins were defrosted on ice before tissue was removed with an airgun in 1 x PBS (pH = 7.4), homogenised for 1 min at 12.5 rpm with a hand-held tissue homogeniser (Heidolph Silent Crusher M) and subsequently aliquoted for the quantification of Symbiodiniaceae cell density, chlorophyll a, protein concentration and DNA extraction for amplicon-based sequencing of the 16S rRNA gene. Aliquots (500 µl) for Symbiodiniaceae cell counts were fixed with formaldehyde (final concentration 1.5 %) and stored in the dark at room temperature. Aliquots for chlorophyll a, protein and DNA extraction (1 ml each) were centrifuged for 10 min at 16,000 g, the supernatant was discarded and the remaining pellet was snap frozen in liquid nitrogen and stored at -80 °C until further processing. Coral nubbin surface area was assessed by a single
paraffin wax dipping for 2 s followed by 5 min air-drying. The weight of each coral nubbin before and after dipping was quantified and the surface area was calculated against a standard curve.

Physiology of Symbiodiniaceae and the coral holobiont

The effective quantum yield of the Symbiodiniaceae was measured using pulse amplitude modulation (PAM) fluorometry. Corals were light adapted (5 h) before measuring the response of the photosystem II effective quantum yield (ΔF/Fm’) with a Heinz Walz™ Imaging PAM as previously described (Chakravarti et al. 2017). Coral nubbins were exposed to a saturation pulse and the minimum and maximum fluorescence was recorded and effective quantum yield was calculated (see Equation S1).

Symbiodiniaceae cell densities were manually counted under a stereomicroscope using formaldehyde fixed tissue samples (final c = 1.5 %). Samples were briefly vortexed and 9 µl of each sample was added to either side of two haemocytometers and the density of symbiont cells was quantitatively normalised to the tissue blastate and aliquot volume, and standardised to the nubbin’s surface area.

Chlorophyll a was extracted and concentrations were measured using a spectrophotometric assay. Tissue pellets were defrosted on ice, centrifuged at 16,000 g for 10 min at 4 °C, and remaining supernatant was discarded. Pellets were re-suspended in 1 ml of 100 % acetone and incubated in the dark for 24 h at 4 °C after which they were centrifuged at 16,000 g for 10 min and supernatant (200 µl) was pipetted into a 96-well plate in triplicate. Absorbance at 630 nm and 663 nm was measured using a BioTek™ microplate reader and chlorophyll a concentration was calculated (see S1 Equation), quantitatively normalised to the tissue blastate and aliquot volume, and standardised to the nubbin’s surface area.

Total protein was quantified using a Pierce™ BCA Protein Assay Kit (Thermo Scientific) following the manufacturer’s instruction. Absorbance was measured in triplicate for each sample at 562 nm in a BioTek™ Plate reader. Standard curves were calculated using a bovine serum albumin (BSA) solution, creating a working range between 20 and 2000 µg ml⁻¹ and total protein was calculated against the BSA standard curve, quantitatively normalised to the tissue blastate and aliquot volume, and standardised to the surface area of each individual nubbin.
DNA extraction, 16S rRNA gene sequencing and analysis

DNA of all coral samples was extracted using the DNeasy PowerBiofilm Kit (QIAGEN) following the manufacturer’s instructions. Blank extractions were included to control for kit contamination. Coral DNA extracts were stored at -80 °C until shipment on dry ice to Ramaciotti Centre (University of New south Wales, Australia) for sequencing. The V1-V3 region of the 16S rRNA gene was amplified using primers 27F (5’-AGAGTTTGATCMTGGCTCAG-3’; Lane 1991) and 519R (5’-GWATTACCGCGGCKGCTG-3’; Turner et al. 1999) and libraries were prepared with the Illumina TruSeq protocol, followed by Illumina MiSeq 2 x 300 bp sequencing (see Table S1).

Demultiplexed paired end reads were analyzed in QIIME2 (Version 2017.9.0; https://qiime2.org) as previously described by Glasl et al. (2018). In brief, forward and reverse reads were truncated at their 3’ end at the 296 and 252 sequencing positions, respectively. Samples were checked for chimeras and grouped into features based on 100 % sequence similarity, from here on referred to as ASV (amplicon sequence variants), using DADA2 (Callahan et al. 2016). Multiple de novo sequence alignments of the representative sequences were performed using MAFFT (Katoh et al. 2002). Non-conserved and highly gapped columns from the alignment were removed using default settings of the mask option in QIIME2.

Unrooted and rooted trees were generated for phylogenetic diversity analysis using FastTree. For taxonomic assignment, a Naïve-Bayes classifier was trained on the SILVA v123 99 % Operational Taxonomic Units, where reference sequences only included the V1-V2 regions (27F/519R primer pair) of the 16S rRNA genes. The trained classifier was applied to the representative sequences to assign taxonomy. A total of 11,063,364 reads were retrieved from 100 sequenced samples and clustered into 4624 ASVs (Table 1). Chloroplast and Mitochondria derived sequence reads and singletons were removed from the dataset and the feature table was rarefied to an even sequencing depth of 3,506 sequencing reads, leading to the exclusion of four samples.

Demultiplexed sequences and metadata are available from the NCBI Sequence Read Archives (SRA) under accession number PRJNA492377.

Statistical analysis

Statistical analysis was performed in R (R Development Core Team 2008). Holobiont health metadata were z-score standardized and variation between treatments and host genotypes was
evaluated using Analysis of Variance (ANOVA) and if applicable, variations were further assessed with a Tukey post-hoc test. Multivariate statistical approaches including Multivariate Homogeneity of Group Dispersion (‘vegan package’ (Oksanen et al. 2013)), Permutation Multivariate Analysis of Variance (PERMANOVA, ‘vegan package’ (Oksanen et al. 2013)), Non-metric multidimensional scaling (NMDS ‘phyloseq package’, (McMurdie & Holmes 2013)) and distance based Redundancy Analysis (db-RDA ‘phyloseq package’ (McMurdie & Holmes 2013)) were based on Bray Curtis dissimilarities. Mantel statistics based on Pearson's product-moment correlation (mantel test, ‘vegan package’ (Oksanen et al. 2013) were used to evaluate whether sample-to-sample dissimilarities in microbiome composition and physiological holobiont health parameters (protein concentration, chlorophyll a concentration, Symbiodiniaceae cell densities and effective quantum yield) were correlated. Holobiont health parameters were z-score standardised and dissimilarity matrices were based on Bray Curtis dissimilarities. Alpha diversity measures including richness and Shannon diversity for the Endozoicomonas community were analyzed using the ‘phyloseq package’ (McMurdie & Holmes 2013). Variation in the total relative abundance of all Endozoicomonas ASVs per sample between treatments, over time and between host-genotypes was assessed using ANOVAs with arcsine-square-root transformed relative abundance data. The phylogenetic tree of the 11 most abundant Endozoicomonas ASVs was produced with phyloseq (McMurdie & Holmes 2013) using the Newick rooted tree generated in QIIME 2 (Version 2017.9.0; https://qiime2.org). Indicator value analysis (IndVal, ‘indspecies” package (De Cáceres & Legendre 2009)) was used to identify ASVs significantly associated with treatment groups (control, single stress and cumulative stress) based on their occurrence and abundance distribution. Day 1 samples were excluded from the IndVal analysis to restrict the dataset to ASVs significantly associated with coral tissue after stress exposure (day 10, day 14 and day 19).

Graphs were created in R using ggplot2 (Wickham 2009) and phyloseq packages (McMurdie & Holmes 2013). Alluvial diagram was generated in RAWGraph (Mauri et al. 2017).

RESULTS

Coral holobiont physiological response
Corals showed no visual signs of stress (change in pigmentation, bleaching, tissue necrosis and/or mortality) in any treatment. Chlorophyll \(a \) concentrations remained stable between treatments (one-way ANOVA with sampling time point as blocking factor, \(F_{(2/94)} = 2.707, p = 0.072 \)), however, effective quantum yield (\(\Delta F/Fm' \); one-way ANOVA with sampling time point as blocking factor, \(F_{(2/94)} = 15.52, p = 1.49 \times 10^{-6} \)), symbiont cell densities (one-way ANOVA with sampling time point as blocking factor, \(F_{(2/94)} = 8.83, p = 3.06 \times 10^{-4} \)) and protein concentration (one-way ANOVA with sampling time point as blocking factor, \(F_{(2/94)} = 5.563, p = 5.21 \times 10^{-3} \)) varied significantly between treatments within sampling time points (Fig 2A). Coral nubbins in the cumulative stress treatment contained significantly lower protein and symbiont cell densities, while displaying significantly higher effective quantum yield compared to nubbins in the control and single stressor treatments (Tukey Posthoc test, Table S2). Furthermore, effective quantum yield (one-way ANOVA, \(F_{(8/91)} = 2.688, p = 0.0106 \)), symbiont cell densities (one-way ANOVA, \(F_{(8/91)} = 4.334, p = 1.86 \times 10^{-4} \)) and chlorophyll \(a \) concentrations (one-way ANOVA, \(F_{(8/91)} = 2.773, p = 8.64 \times 10^{-3} \)) varied significantly between host genotypes (Fig 2B). Protein concentration, however, was unaffected by host genotype (one-way ANOVA, \(F_{(8/91)} = 1.783, p = 0.0906 \)) and hence was the only holobiont health parameter solely affected by treatment.

Microbial community response

The microbiome of *A. tenuis* remained highly stable across treatments, with no significant changes in the heterogeneity, also referred to as multivariate dispersion (one-way ANOVA, \(F_{(2/93)} = 1.2107, p = 0.3026 \); Fig 3A), or in community composition (PERMANOVA, \(p = 0.5156 \), 10,000 permutations; Fig 3B). However, the microbiome composition varied significantly between individual host genotypes (PERMANOVA, \(p = 9.99 \times 10^{-5} \), 10,000 permutations), but was unaffected by treatment, sampling time point or tank effects when tested for each genotype individually (PERMANOVA with host-genotype as blocking factor, 10,000 permutations, Table S3). Similar results were obtained using presence/absence data (Fig S1). Host genotype was the only significant factor, explaining 32.4 % of the observed community variation (permutational ANOVA for db-RDA based on 1,000 permutations, \(p = 9.99 \times 10^{-4} \); Fig S2). Treatment and holobiont health parameters did not significantly contribute to the microbiome variation (Table S4). Furthermore, no significant correlation between similarity matrices based on microbiome
composition and physiological holobiont health parameters was observed (chlorophyll a, protein, effective quantum yield and symbiont cell density; Mantel statistic based on Pearson's product-moment correlation $r = -0.0238$, $p = 0.6243$, 10,000 permutations).

Endozoicomonas assemblage

Endozoicomonas affiliated sequences comprised the majority of the *A. tenuis* microbiome, representing 48% (± 29%) of the community (based on proportion of reads) and comprising 133 unique ASVs. One *Endozoicomonas* strain (ASV 11) was consistently present (100% of all samples) and highly abundant (19% ± 12%) throughout the experiment (Fig 4). The *A. tenuis* microbiome also contained diverse bacteria affiliated with phyla including Proteobacteria (30%), Actinobacteria (10%), Firmicutes (2.4%) and Bacteroidetes (1.9%; Fig 4).

The total relative abundance of *Endozoicomonas* was not affected by treatment (one-way ANOVA, $F_{(2/84)} = 0.473$, $p = 0.625$), sampling time point (one-way ANOVA, $F_{(3/84)} = 0.588$, $p = 0.625$) or the interaction of treatment-by-sampling time point (one-way ANOVA, $F_{(6/84)} = 0.696$, $p = 0.654$). However, total relative *Endozoicomonas* abundance varied significantly between host genotypes (one-way ANOVA, $F_{(8/87)} = 3.741$, $p = 2.04 \times 10^{-4}$) and remained stable between treatments when tested for each genotype individually (within subject ANOVA, $F_{(2/85)} = 0.756$, $p = 0.473$; Fig 5A).

The *Endozoicomonas* community composition also varied significantly between host genotypes (PERMANOVA, $p = 9.99 \times 10^{-5}$, 10,000 permutations, Fig 5), however, was unaffected by treatment, sampling time point or tank (PERMANOVA with host-genotype as blocking factor, 10,000 permutations, Table S5). Furthermore, host-genotype significantly explained 26.4% of the observed compositional variability of the *Endozoicomonas* community (permutational ANOVA for db-RDA based on 1,000 permutations, $p = 9.99 \times 10^{-5}$; Fig 5B).

Microbial indicators for environmental stress

Indicator value analysis was performed to assess if specific ASVs could be identified as indicators for environmental stress treatments. Despite the vast majority of ASVs (i.e. 4598 ASVs) showing no response to experimental treatment, 26 ASVs were significantly associated ($p < 0.05$) with one and / or two treatment groups (Fig 6, Table S6). The identified indicator ASVs belonged to the bacterial families Vibrionaceae, Rhodobacteraceae, Hahellaceae (genus
Endozoicomonas), Planctomycetes, Phylobacteriaceae, Flavobacteriaceae and Cryomorphaceae (Fig 6).

DISCUSSION

Elucidating the effect of host genotype on microbiome composition and understanding consequences of environmental change for holobiont stability is central to predicting the influence of host genetics on the stress tolerance of corals. Here we followed the compositional stability of microbiomes associated with nine distinct *A. tenuis* genotypes when exposed to control, single and cumulative stress treatments over time. The *A. tenuis* microbiome varied significantly between coral genotypes, with host genotype being a much stronger driver of microbiome variation than environment. Similar host-genotype specificities have recently been described for sponge microbiomes (Glasl et al. 2018) and are also frequently reported for plant, crustacean and human microbiomes (Balint et al. 2013; Macke et al. 2017; Spor et al. 2011). Traditional coral health parameters targeting the coral algal symbiont (i.e. chlorophyll a concentrations, symbiont cell densities, effective quantum yield) were also significantly affected by host-genotype, although no correlation between these parameters and the microbiome was observed. This suggests that the *A. tenuis* microbiome composition remains largely unaffected by the performance and density of the algal symbiont, and that other host intrinsic factors (e.g. genetics) and/or the environmental life-history of individual genotypes fine-tune the microbiome composition.

Endozoicomonas form symbiotic partnerships with diverse marine invertebrates (Neave et al. 2016a). In corals, *Endozoicomonas* occur as dense clusters within the coral tissue and in some bacterial 16S rRNA gene profiling studies they can reach relative abundances as high as 95% of retrieved sequences (Bayer et al. 2013a; Neave et al. 2016a; Pogoreutz et al. 2018). Loss of *Endozoicomonas* from the coral microbiome has been correlated with negative health outcomes for the coral host, though their direct effects on host fitness are unknown (Bourne et al. 2008; Glasl et al. 2016; Ziegler et al. 2016). In *A. tenuis*, we detected no significant change in the relative frequency, alpha diversity, richness and community composition of *Endozoicomonas* following exposure to non-lethal environmental stress. These results are consistent with findings for *Pocillopora verrucosa*, where *Endozoicomonas* remains the dominant symbiont even under bleaching conditions (Pogoreutz et al. 2018). In our study, the *Endozoicomonas* community
generally exhibited high host-genotype specificity at the ASV level, though a single
Endozoicomonas strain (ASV 11) was consistently shared among all coral nubbins and
.genotypes (including field control samples – data not shown). This ubiquitous strain likely
represents a stable and consistent member of the resident Endozoicomonas community. A stable
core is often described as a key feature of a symbiotic coral microbiome (Ainsworth et al. 2015;
Hernandez-Agreda et al. 2017), and despite being ubiquitously persistent between conspecific
corals, the core characteristically only comprises a few members of the whole microbiome
(Hernandez-Agreda et al. 2018).

While the Endozoicomonas community as a whole was not significantly affected by
environmental treatment, one Endozoicomonas ASV was identified as a significant indicator for
environmental stress. Similar environmental sensitivity has been reported for two prevalent
Endozoicomonas species following exposure to elevated dissolved organic carbon (Pogoreutz et
al. 2018). Although these Endozoicomonas affiliated ASVs show high sequence identity, small
variations in the rRNA gene sequence can impact the biology and pathogenicity of bacteria (Cilia
et al. 1996; Fukushima et al. 2002), hence single nucleotide variations (ASV level) may affect
the functional role of microbes with flow on consequences for the coral holobiont. Shuffling and
switching of Endozoicomonas strains may therefore provide the coral holobiont with an
enhanced capacity to cope with shifting environmental conditions (Neave et al. 2017), although
characterisation of the symbiotic contribution made by Endozoicomonas to the coral host is
required to better understand the ecological significance of these findings.

Recent studies have highlighted the potential for coral microbiomes to act as sensitive
markers for environmental disturbance (Glasl et al. 2017; Roitman et al. 2018). Here we showed
that a small number of ASVs, including taxa commonly reported to increase under host stress
(i.e. Vibrionaceae, Rhodobacteraceae (Ben-Haim et al. 2003; Bourne et al. 2016; Sunagawa et al.
2010)), were significantly associated with the tissue of A. tenuis exposed to single and
cumulative stress treatments. However, despite the potential diagnostic value of these ASVs,
host genotype overwhelmed any overarching effect of environment on the coral microbiome.
This high divergence in the microbiome between conspecific corals is likely to hinder our ability
to detect fine-scale variation of sensitive microbial indicator taxa. Therefore, unless host-
genotype independent microbial indicators can be identified and validated, the efficacy of
integrating microbial community data into coral health monitoring initiatives appears unfeasible due to high compositional variability between microbiomes of conspecific corals.

CONCLUSIONS

This study shows that the A. tenuis microbiome varies significantly between host individuals (genotypes) and that these genotype-specific communities persist during exposure to non-lethal environmental disturbances. Consideration of microbiome-by-host genotype-by-environment effects is therefore needed to elucidate how intraspecific variations of the microbiome affect the susceptibility of corals to environmental stress and disease. Furthermore, microbial variability between individual coral genotypes may cloud our ability to identify universal microbial changes during periods of adverse environmental conditions. This is particularly relevant if establishing sensitive microbial indicators for sub-lethal environmental disturbances (tested in this study), since the observed stability of the coral microbiome combined with the host genotype specificity likely precludes the robust assignment of microbial indicators across broad scales.

ACKNOWLEDGEMENTS

We thank Victoria Lydick and Andrew Ball for their help during the experiment. We also acknowledge the technical support provided by the National SeaSimulator, and are particularly grateful to Craig Humphrey and Andrea Severati for their support with the experimental system. We thank Pedro R. Frade for inspiring scientific discussions on the coral microbiome and photobiology of corals and Jonathan Barton for his insights into coral husbandry.

REFERENCES

Ainsworth TD, Krause L, Bridge T, Torda G, Raina J-B, Zakrzewski M, Gates RD, Padilla-Gamino JL, Spalding HL, Smith C, Woolsey ES, Bourne DG, Bongaerts P, Hoegh-Guldberg O, and Leggat W. 2015. The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts. ISME J. 9:2261-2274.

Baker AC. 2003. Flexibility and specificity in coral-algal symbiosis: Diversity, ecology, and biogeography of Symbiodinium. Annual Review of Ecology Evolution and Systematics 34:661-689.

Balint M, Tiffin P, Hallstrom B, O’Hara RB, Olson MS, Fankhauser JD, Piepenbring M, and Schmitt I. 2013. Host genotype shapes the foliar fungal microbiome of balsam poplar (Populus balsamifera). PLoS ONE 8:e53987.

Bayer T, Neave MJ, Alsheikh-Hussain A, Aranda M, Yum LK, Mincer T, Hughen K, Apprill A, and Voolstra CR. 2013. The Microbiome of the Red Sea coral Stylophora pistillata is dominated by
tissue-associated Endozoicomonas bacteria. *Applied and Environmental Microbiology* 79:4759-4762.

Ben-Haim Y, Thompson F, Thompson C, Cnockaert M, Hoste B, Swings J, and Rosenberg E. 2003. *Vibrio coralliilyticus* sp. nov., a temperature-dependent pathogen of the coral *Pocillopora damicornis*. *International Journal of Systematic and Evolutionary Microbiology* 53:309-315.

Bourne DG, Iida Y, Uthicke S, and Smith-Keune C. 2008. Changes in coral-associated microbial communities during a bleaching event. *ISME J* 2:350-363.

Bourne DG, Morrow KM, and Webster NS. 2016. Coral Holobionts: Insights into the coral microbiome: Underpinning the health and resilience of reef ecosystems. *Annual Reviews of Microbiology* 70:317-340.

Brener-Raffalli K, Clerissi C, Vidal-Dupiol J, Adjeroud M, Bonhomme F, Pratlong M, Aurelle D, Mitta G, and Toulza E. 2018. Thermal regime and host clade, rather than geography, drive *Symbiodinium* and bacterial assemblages in the scleractinian coral *Pocillopora damicornis* sensu lato. *Microbiome* 6:39.

Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, and Holmes SP. 2016. DADA2: High-resolution sample inference from Illumina amplicon data. *Nature Methods* 13:581.

Chakravarti LJ, Beltran VH, and van Oppen MJH. 2017. Rapid thermal adaptation in photosymbionts of reef-building corals. *Glob Chang Biol* 23:4675-4688.

Chaston JM, Dobson AJ, Newell PD, and Douglas AE. 2016. Host Genetic Control of the Microbiota Mediates the Drosophila Nutritional Phenotype. *Applied and Environmental Microbiology* 82:671-679.

Cilia V, Lafay B, and Christen R. 1996. Sequence heterogeneities among 16S ribosomal RNA sequences, and their effect on phylogenetic analyses at the species level. *Molecular Biology and Evolution* 13:451-461.

De Cáceres M, and Legendre P. 2009. Associations between species and groups of sites: indices and statistical inference. *Ecology* 90:3566-3574.

De'ath G, Fabricius KE, Sweatman H, and Puotinen M. 2012. The 27-year decline of coral cover on the Great Barrier Reef and its causes. *Proceedings of the National Academy of Sciences of the United States of America* 109:17995-17999.

Fukushima M, Kakinuma K, and Kawaguchi R. 2002. Phylogenetic analysis of Salmonella, Shigella, and *Escherichia coli* strains on the basis of the gyrB gene sequence. *Journal of Clinical Microbiology* 40:2779-2785.

Garren M, Raymundo L, Guest J, Harvell CD, and Azam F. 2009. Resilience of coral-associated bacterial communities exposed to fish farm effluent. *PLoS ONE* 4:e7319.

Glasl B, Hernaldl GJ, and Frade PR. 2016. The microbiome of coral surface mucus has a key role in mediating holobiont health and survival upon disturbance. *ISME J* 10:2280-92

Glasl B, Smith CE, Bourne DG, and Webster NS. 2018. Exploring the diversity-stability paradigm using sponge microbial communities. *Scientific Reports* 8:8425.

Glasl B, Webster NS, and Bourne DG. 2017. Microbial indicators as a diagnostic tool for assessing water quality and climate stress in coral reef ecosystems. *Marine Biology* 164:91

Grottoli AG, Martins PD, Wilkins MJ, Johnston MD, Warner ME, Cai WJ, Melman TF, Hoadley KD, Pettay DT, Levas S, and Schoepf V. 2018. Coral physiology and microbiome dynamics under combined warming and ocean acidification. *PLoS ONE* 13:e0191156.

Hernandez-Agreda A, Gates RD, and Ainsworth TD. 2017. Defining the core microbiome in corals' microbial soup. *Trends in Microbiology* 25:125-140.

Hernandez-Agreda A, Leggat W, Bongaerts P, Herrera C, and Ainsworth TD. 2018. Rethinking the coral microbiome: simplicity exists within a diverse microbial biosphere. *MBio* 9:e00812-00818.

Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH,
Dubi A, and Hatziolos ME. 2007. Coral reefs under rapid climate change and ocean acidification. *Science* 318:1737-1742.

Hughes TP, Barnes ML, Bellwood DR, Cinner JE, Cumming GS, Jackson JBC, Kleypas J, van de Leemput IA, Lough JM, Morrison TH, Palumbi SR, van Nes EH, and Scheffer M. 2017. Coral reefs in the Anthropocene. *Nature* 546:82-90.

IPCC 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: R.K. Pachauri, and Meyer LA, editors. IPCC. Geneva, Switzerland.

Jones AM, and Berkelmans R. 2014. Flood impacts in Keppel Bay, southern Great Barrier Reef in the aftermath of cyclonic rainfall. *PLoS ONE* 9:e84739.

Katoh K, Misawa K, Kuma K, and Miyata T. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. *Nucleic Acids Research* 30:3059-3066.

Lane DJ. 1991. 16S/23S rRNA sequencing. In: Stackebrandt E, and Goodfellow M, eds. *Nucleic acid techniques in bacterial systematics*. New York: John Wiley and Sons, 115–175.

Macke E, Callens M, De Meester L, and Decaestecker E. 2017. Host-genotype dependent gut microbiota drives zooplankton tolerance to toxic cyanobacteria. *Nature Communications* 8:1608.

Mauri M, Elli T, Caviglia G, Uboldi G, and Azzi M. 2017. *RAWGraphs: A visualisation platform to create open outputs*. New York, NY, USA.

McMurdie PJ, and Holmes S. 2013. *phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data*. *PLoS ONE* 8:e61217.

Neave MJ, Michell CT, Apprill A, and Voolstra CR. 2017. Endozoicomonas genomes reveal functional adaptation and plasticity in bacterial strains symbiotically associated with diverse marine hosts. *Scientific Reports* 7:40579.

Neave MJ, Rachmawati R, Xun L, Michell CT, Bourne DG, Apprill A, and Voolstra CR. 2016b. Differential specificity between closely related corals and abundant *Endozoicomonas* endosymbionts across global scales. *ISME J* 11:186-200

Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, and Wagner H. 2013. *vegan: Community Ecology Package*. *R package version 2.0-9*.

Peixoto RS, Rosado PM, Leite DCD, Rosado AS, and Bourne DG. 2017. Beneficial Microorganisms for Corals (BMC): Proposed mechanisms for coral health and resilience. *Frontiers in Microbiology* 8:341.

Pogoreutz C, Radecker N, Cardenas A, Gardes A, Wild C, and Voolstra CR. 2018. Dominance of *Endozoicomonas* bacteria throughout coral bleaching and mortality suggests structural inflexibility of the Pocillopora verrucosa microbiome. *Ecology and Evolution* 8:2240-2252.

R Development Core Team. 2008. *R: A language and environment for statistical computing*. *R Foundation for Statistical Computing*.

Rowan R. 2004. Coral bleaching: Thermal adaptation in reef coral symbionts. *Nature* 430:742-742.

Smith EG, Ketchum RN, and Burt JA. 2017. Host specificity of *Symbiodinium* variants revealed by an ITS2 metahaplotype approach. *ISME J* 11:1500-1503.

Spor A, Koren O, and Ley R. 2011. Unravelling the effects of the environment and host genotype on the gut microbiome. *Nature Reviews Microbiology* 9:279-290.

Sunagawa S, Woodley CM, and Medina Mn. 2010. Threatened corals provide underexplored microbial habitats. *PLoS ONE* 5:e9554.
Thurber RV, Payet JP, Thurber AR, and Correa AMS. 2017. Virus-host interactions and their roles in coral reef health and disease. *Nature Reviews Microbiology* 15:205-216.

Turner S, Pryer KM, Miao VP, and Palmer JD. 1999. Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. *Journal of Eukaryotic Microbiology* 46:327-338.

VanWoestik R, DeVantier LM, and Glazebrook JS. 1995. Effects of cyclone 'Joy' on nearshore coral communities of the Great Barrier Reef. *Marine Ecology Progress Series* 128:261-270.

Vega Thurber RL, Willner-Hall D, Rodriguez-Mueller B, Desnues C, Edwards RA, Angly F, Dinsdale EA, Kelly L, and Rohwer F. 2009. Metagenomic analysis of stressed coral holobionts. *Environmental Microbiology* 11:2148-2163.

Wagner MR, Lundberg DS, Del Río TG, Tringham SG, Dangl JL, and Mitchell-Olds T. 2016. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. *Nat Commun* 7:12151.

Webster NS, and Reusch TBH. 2017. Microbial contributions to the persistence of coral reefs. *Isme Journal* 11:2167-2174.

Wickham H. 2009. *ggplot2: elegant graphics for data analysis*: Springer New York.

Wullaert A, Lamkanfi M, and McCoy KD. 2018. Defining the Impact of Host Genotypes on Microbiota Composition Requires Meticulous Control of Experimental Variables. *Immunology* 48:605-607.

Zaneveld JR, Burkepile DE, Shantz AA, Pritchard CE, McMinds R, Payet JP, RoryWelsh, Correa AMS, Lemoine NP, Rosales S, Fuchs C, Maynard JA, and Thurber RV. 2016. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales. *Nature Communications* 7:11833.

Zaneveld JR, McMinds R, and Thurber RV. 2017. Stress and stability: applying the Anna Karenina principle to animal microbiomes. *Nature Microbiology* 2:17121

Zhang YY, Ling J, Yang QS, Wang YS, Sun CC, Sun HY, Feng JB, Jiang YF, Zhang YZ, Wu ML, and Dong JD. 2015. The diversity of coral associated bacteria and the environmental factors affect their community variation. *Ecotoxicology* 24:1467-1477.

Ziegler M, Roik A, Porter A, Zubier K, Mudarris MS, Ormond R, and Voolstra CR. 2016. Coral microbial community dynamics in response to anthropogenic impacts near a major city in the central Red Sea. *Marine Pollution Bulletin*. 105:629-40

Ziegler M, Seneca FO, Yum LK, Palumbi SR, and Voolstra CR. 2017. Bacterial community dynamics are linked to patterns of coral heat tolerance. *Nature Communications* 8:14213.
Table 1 (on next page)

Sequencing and sample overview
Host-genotype	Total no. of samples	No. of sequences	Richnessa	Evennessa	Shannon Indexa
A	12	54,352 (±18,259)	71 (± 64)	0.63 (± 0.05)	2.53 (± 0.48)
B	12	31,702 (±19,058)	51 (± 44)	0.66 (± 0.14)	2.49 (± 0.86)
C	12	26,421 (± 26,065)	108 (± 86)	0.73 (± 0.11)	3.23 (± 0.65)
D	12	59,543 (± 28,560)	101 (± 102)	0.64 (± 0.07)	2.74 (± 0.80)
E	12	27,348 (± 24,386)	100 (± 110)	0.69 (± 0.10)	2.97 (± 0.81)
F	12	36,097 (± 21,293)	108 (± 103)	0.73 (± 0.08)	3.18 (± 0.84)
G	4	55,460 (± 35,822)	126 (± 74)	0.75 (± 0.07)	3.46 (± 0.74)
H	12	44,101 (± 19,488)	92 (± 63)	0.65 (± 0.14)	2.81 (± 0.64)
I	12	51,998 (± 23,968)	109 (± 73)	0.63 (± 0.08)	2.82 (± 0.65)

a diversity indices (average ± SD) for each host genotype are based on a non-rarefied ASV table from which chloroplast and mitochondria derived reads were removed.
Figure 1 (on next page)

Conceptual overview of the experimental design.

Acropora tenuis colonies (n = 9) were fragmented and coral nubbins of each host genotype (A-I) were exposed to three different treatment conditions (control, single stress and cumulative stress) and sampled on a regular basis throughout the experiment (day 1, day 10, day 14 and day 19). Image credit: Bettina Glasl.
Acropora tenuis

Host genotype (n=9)

Control
- Temperature: 27.5 °C
- pCO$_2$: 400 ppm

Single Stress
- Temperature: 27.5 °C
- pCO$_2$: 400 ppm

Cumulative Stress
- Temperature: 29.5 °C
- pCO$_2$: 900 ppm

Salinity
- Day 1:
 - Day 10:
 - Day 14:
 - Day 19:

Manuscript to be reviewed
Figure 2 (on next page)

Physiological response of *Acropora tenuis* under control, single stress and cumulative stress treatments.

Variations in the chlorophyll a (Chl a) concentration, protein concentration, effective quantum yield (Δ F/Fm′) and symbiont cell density (Symbiont density) of *A. tenuis* (A) over time (day 1, 10, 14 and 19) and (B) between individual host-genotypes (A-I). Physiological parameters are z-score standardised and error bars represent standard deviations.
A) Cumulative stress

B) Single stress

- Chl a
- Protein
- Δ F/Fm'
- Symbiont density

Z-scores

Day

Genotype
Figure 3 (on next page)

Configurational and compositional stability of *Acropora tenuis* microbiome.

(A) Multivariate dispersion (heterogeneity) measured by the distance to the group centroid for each host-genotype (A-I) within each treatment (control, acute stress and cumulative stress) over time (day 1, 10, 14 and 19). (B) Non-metric multidimensional scaling (NMDS) illustrating compositional similarity of sample replicates of each host-genotype (A-I) under different treatment conditions (control, single stress and cumulative stress).
The taxonomic composition of the *Acropora tenuis* microbiome.

(A) The *A. tenuis* microbiome was dominated by the bacterial genus *Endozoicomonas* (average relative abundance of 48 %), with one *Endozoicomonas* ASV (ASV 11) present in all samples (average relative abundance of 19 %). **(B)** The average contribution of the remaining microbiome (others) is displayed as an alluvial diagram, depicting the proportional contribution of bacterial phyla (classes for Proteobacteria). Mean relative abundances (%) are provided for bacterial taxa >1 %.

Figure 4 (on next page)
Acidobacteria
Actinobacteria (10%)
Aminicenantes
Bacteria (4%)
Bacteroidetes (2%)
Chlamydiae
Chloroflexi
Cyanobacteria
Deferribacterales
Deinococcus-Thermus
Fibrobacteres
Firmicutes (2%)
Fusobacteria
Gracilibacteria
Lentisphaerae
Nitrospirae
Omnitrophica
Parcubacteria
Planctomycetes (1%)
Proteobacteria (30%)
SHA-109
Saccharibacteria
Spirochaetae
Tenericutes (2%)
unassigned
Verrucomicrobia
Hydrogenedentes

Endozoicomonas
Endozoicomonas ASV 11
others

Manuscript to be reviewed
Figure 5

Composition and distribution of *Endozoicomonas* assemblages.

(A) Total relative abundance of *Endozoicomonas* and the relative abundance distribution of the 11 most abundant *Endozoicomonas* amplicon sequence variants (ASVs) associated with individual coral nubbins of each host genotype (A-I) under control, single stress and cumulative stress conditions over time (day 1, 10, 14 and 19). **(B)** Distance-based Redundancy Analysis (db-RDA) quantifying the contribution of host-genotype to significantly explaining the observed compositional variation of the *Endozoicomonas* microbiome. **(C)** Phylogenetic tree of the 11 most abundant *Endozoicomonas* ASVs (including the ubiquitously present ASV 11) and their average relative abundance within a host genotype.
Figure 6 (on next page)

Microbial indicators significantly associated with one and/or two treatments.

Indicators were identified based on their occurrence and abundance in coral tissue post stress exposure (excluding samples collected at day 1) using Indicator Value analysis. Each dot represents a single amplicon sequence variant (ASV), labelled with the taxonomic affiliation and their average relative abundance in the treatment group.
