Two-Sample Mendelian Randomization Analysis of Associations Between Periodontal Disease and Risk of Cancer

Laura Corlin, PhD,1,2 Mengyuan Ruan, MS,1 Konstantinos K. Tsilidis, PhD,3,4 Emmanouil Bouras, MSc,4 Yau-Hua Yu, DDS, DMSc,5 Rachael Stolzenberg-Solomon, PhD, MPH, RD,6 Alison P. Klein, PhD,7,8 Harvey A. Risch, MD, PhD,9 Christopher I. Amos, PhD,10 Lori C. Sakoda, PhD, MPH,11 Pavel Vodička, MD, PhD,12 Pai K. Rish, MD, PhD,13 James Beck, PhD,14 Elizabeth A. Platz, ScD, MPH,8,15 Dominique S. Michaud, ScD1,*

1Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA, USA; 2Department of Civil and Environmental Engineering, Tufts University School of Engineering, Medford, MA, USA; 3Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, England; 4Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece; 5Tufts University School of Dental Medicine, Boston, MA, USA; 6National Cancer Institute, Rockville, MD, USA; 7Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; 8The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA; 9Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA; 10Department of Medicine, Baylor College of Medicine, Waco, TX, USA; 11Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA; 12Department of the Molecular Biology of Cancer, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic; 13Laboratory Medicine And Pathology, The Colon Cancer Family Registry at Mayo Clinic, Rochester, MN, USA; 14Department of Dental Ecology, © The Author(s) 2021. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
University of North Carolina, Chapel Hill, NC, USA; and Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA

For CCFR, CORECT, GECCO, ILCCO, PanScan, and PanC4

Correspondence:

Dominique S. Michaud, ScD
Tufts University School of Medicine
136 Harrison Avenue
Boston, MA 02111

Email: Dominique.Michaud@tufts.edu
Abstract

Background: Observational studies indicate that periodontal disease may increase the risk of colorectal, lung, and pancreatic cancers. Using a two-sample Mendelian randomization (MR) analysis, we assessed whether a genetic predisposition index for periodontal disease was associated with colorectal, lung, or pancreatic cancer risks.

Methods: Our primary instrument included single nucleotide polymorphisms (SNPs) with strong genome-wide association study evidence for associations with chronic, aggressive, and/or severe periodontal disease (rs729876, rs1537415, rs2738058, rs12461706, rs16870060, rs2521634, rs3826782, and rs7762544). We used summary-level genetic data for colorectal cancer (n=58,131 cases; Genetics and Epidemiology of Colorectal Cancer Consortium; Colon Cancer Family Registry; and Colorectal Transdisciplinary study), lung cancer (n=18,082 cases; International Lung Cancer Consortium), and pancreatic cancer (n=9254 cases; Pancreatic Cancer Consortia). Four MR approaches were employed for this analysis: random-effects inverse-variance weighted (primary analyses), MR-PRESSO, simple median, and weighted median. We conducted secondary analyses to determine if associations varied by cancer sub-type (colorectal cancer location, lung cancer histology), sex (colorectal and pancreatic cancers), or smoking history (lung and pancreatic cancer). All statistical tests were 2-sided.

Results: The genetic predisposition index for chronic or aggressive periodontitis was statistically significantly associated with a 3% increased risk of colorectal cancer (per unit increase in genetic index of periodontal disease; p=0.03), 3% increased risk of colon cancer (p=0.02), 4% increased risk of proximal colon cancer (p=0.01), and 3% increased risk of colorectal cancer
among females (p=0.04); however, it was not statistically significantly associated with the risk of lung cancer or pancreatic cancer, overall or within most subgroups.

Conclusions: Genetic predisposition to periodontitis may be associated with colorectal cancer risk. Further research should determine whether increased periodontitis prevention and increased cancer surveillance of patients with periodontitis is warranted.
Colorectal cancer, lung cancer (including tracheal and bronchus cancers), and pancreatic cancer together account for >2.9 million deaths per year globally.\(^1\) Colorectal and lung cancer have the two highest number of incident cases globally (1.7 million and 2.0 million annual cases, respectively). Most histologic sub-types of lung cancer and pancreatic cancer have poor prognoses since, even in the United States, at least 50% of cases are not diagnosed until the cancer is at a less curative, advanced stage.\(^2\) Primary prevention efforts are thus critical, and observational studies indicate that modifiable risk factors (e.g., periodontal disease), are implicated in the pathogenesis of colorectal, lung, and pancreatic cancers.\(^3-5\) Although well-conducted meta-analyses of observational studies have strengthened the evidence for positive associations between periodontal disease and lung, colorectal, and pancreatic cancers,\(^6-8\) additional evidence for causal associations could be observed in randomized trials or in observational studies that employ methods that emulate randomization (e.g., Mendelian randomization; MR).

Two-sample MR is an approach that uses summary association estimates (often from genome-wide association studies; GWAS) to develop a genetic instrument index for the exposure, and then applies the index to assess the association with the outcome in a different sample of the same underlying source population.\(^9,10\) The instrument must be associated with the exposure, associated with the outcome only through paths that include the exposure, and independent of exposure-outcome confounders.\(^11\) Two-sample MR has advantages over one-sample MR: weak instrument bias tends to drive association estimates towards the null in two-sample MR rather than in the direction of the observational associations as in one-sample MR,
and robust instruments from larger GWAS can be used in two-sample MR investigations such that more precise and accurate estimates may be obtained.12–14

Previous two-sample MR studies used genetic instruments for periodontal disease15–17 and other studies used two-sample MR to assess risk factors for each of colorectal, lung, and pancreatic cancer;18–20 however, to our knowledge, no MR study has assessed the association between periodontal disease and cancer risk. Given the need to rigorously assess putative causal relationships among modifiable factors (e.g., oral health) and cancer risk to support health promotion, our primary objective was to assess whether genetic predisposition to having chronic or aggressive periodontal disease was associated with colorectal, lung, or pancreatic cancers using a two-sample MR analysis. Our secondary objectives were to assess whether these associations varied by cancer sub-type (location in the large bowel for colorectal cancer and histology for lung cancer), sex (for colorectal and pancreatic cancers), or smoking history (for lung and pancreatic cancers); and were robust against potential violations of MR assumptions.

Methods

Genetic instrument for periodontal disease

We determined two genetic instruments for periodontal disease (defined in the Supplementary Methods, available online) based on a systematic evaluation of the strength of the GWAS evidence for associations between individual SNPs and chronic, aggressive, and/or severe periodontal disease (Supplementary Table 1).21–28 There were eight SNPs in our primary instrument, of which five had very strong evidence for an association with periodontal disease
(rs729876, rs1537415, rs2738058, rs12461706, rs16870060) and three had strong evidence (rs2521634, rs3826782, rs7762544).21–25 We considered the evidence very strong if the association with periodontitis met the genome-wide significance threshold of $p<5\times10^{-8}$ in a pooled analysis of multiple cohorts (focusing on populations of European descent to match the population demographics of our outcome data). We considered the evidence strong for SNPs that were positively associated with chronic periodontitis in one cohort ($p<5\times10^{-6}$), nominally positively associated ($p<0.05$) with severe chronic periodontitis in an independent replication cohort, and positively associated ($p<5\times10^{-6}$) with chronic periodontitis in a meta-analysis of over 5000 European American individuals. Our secondary instrument included the eight SNPs in the primary instrument and six additional SNPs (rs1122900, rs2064712, rs2070901, rs4970469, rs9982623, rs9984417) with moderate evidence for an association with periodontitis (statistically significant with a threshold of $p<5\times10^{-6}$ in a pooled analysis of multiple cohorts but not associated with periodontitis in any single cohort with a threshold of $p<5\times10^{-6}$).21,22 We assessed whether any of the 14 SNPs were potentially pleiotropic, in mutual linkage disequilibrium, accounted for population stratification, or were problematic to harmonize. The \textbf{Supplementary Methods} contain additional details about our SNP selection process. We include both the primary and secondary instruments so that the reader can assess the sensitivity of the results to our SNP selection process, and to balance the advantages of having more SNPs in the instrument with having SNPs with the strongest evidence for an association.

\textbf{Summary-level data for lung, colorectal, and pancreatic cancer}
We used summary-level genetic data for colorectal cancer (overall, by location in the large bowel, and by sex) from 125,478 participants (including 58,131 colorectal cancer and advanced adenoma cases) in the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO; 13 studies), Colon Cancer Family Registry (CCFR), and Colorectal Transdisciplinary study (CORECT);^29–31^ lung cancer (overall, by histologic type, and by smoker status [current/non-current]) from 31,862 participants (including 18,082 cases) in the International Lung Cancer Consortium (ILCCO; 26 studies included);^32,33^ pancreatic cancer (overall, by sex, smoker status, data source [pancreatic cancer consortium], and study design) for 13,823 participants (including 5090 cases) in PanScan I and II (12 cohort and eight case-control studies) and PanScan III (15 cohorts, two case series, and one case-control study);^30,34^ and pancreatic cancer (overall, by sex, and by smoker status) in 7956 participants in the Pancreatic Cancer Case-Control Consortium (PanC4; including 4164 cases for a total of 9254 pancreatic cancer cases).^35–37^ Choices for secondary analyses (e.g., not assessing colorectal cancer associations by smoker status) were due to data availability. All cancer data came from individuals of European ancestry. All studies participating in each consortium obtained informed consent from participants and approval from the relevant ethical review boards. None of the study samples that contributed genetic data for lung, colorectal, or pancreatic cancer overlapped with study samples that contributed data for the periodontitis GWAS. Genotyping and imputation methods for each consortium have been described previously and are summarized in the Supplementary Methods.^29,37–45^ Since we only used de-identified data, we did not need Institutional Review Board approval for our analysis.
Statistical analyses

In our primary analysis, we estimated the association between each genetic predisposition index for having chronic or aggressive periodontal disease and colorectal, lung, and pancreatic cancer risks using the random-effects inverse-variance weighted (IVW) method. We also considered three other MR estimation methods (MR-PRESSO, simple median, and weighted median) with different assumptions to evaluate the robustness of the IVW findings. A description of the strengths and weaknesses of each MR approach is provided in the Supplementary Methods. We quantitatively assessed violations of the ‘NO Measurement Error’ (NOME) assumption using the $I^2_{A X}$ statistic (where values between 0.9 and 1 suggest that violations are negligible and that the uncertainty in the SNP-exposure associations are substantially smaller than the underlying heterogeneity in these associations).46,47 We assessed horizontal pleiotropy using the I^2 statistic (where values >50% indicate potential horizontal pleiotropy).48 All statistical analyses were performed in R (version 3.6.2) with packages MendelianRandomization (version 0.4.2) and MRPRESSO (version 1.0). We constructed plots showing the genetic associations of the SNPs with periodontitis (natural log values of the odds ratios shown in Supplementary Table 1) versus the genetic associations of the SNPs with each cancer (natural log values of the odds ratios provided by each consortium) using ggplot2 (slope represents the beta values for the MR models). Default parameters were used for each analysis. All statistical tests were 2-sided. Our cut point for statistical significance was 0.05.

Results
Using the eight SNPs with the strongest evidence for a genetic predisposition to having chronic or aggressive periodontal disease, we observed a statistically significant association with the risk of colorectal cancer (3% increase per unit increase in genetic index of periodontal disease; \(p = 0.03 \)) but not with the risk of lung (0.4% increase; \(p = 0.83 \)) or pancreatic cancers (2% increase; \(p = 0.51 \); Table 1 and Figure 1). In secondary analyses, including an additional six SNPs with moderately strong evidence for an association with periodontitis attenuated the effect estimates for the association with colorectal cancer but did not substantially change the effect estimates for either lung or pancreatic cancers. For the primary and secondary analyses, \(I^2_{\text{Gx}} \) values were 0.947 and 0.926, respectively, indicating that the effect estimates were unlikely to be substantially biased towards the null due to violations of the NOME assumption. There was no indication of horizontal pleiotropy for any of the primary analyses (\(I^2 \) of 0% for each colorectal, lung, and pancreatic cancers) and limited evidence of horizontal pleiotropy for the secondary analyses (\(I^2 \) of 60% for colorectal, 12% for lung, and 0% for pancreatic cancer).

Separate sensitivity analyses removing each of rs1537415 (palindromic allele), rs3826782 (low effect allele frequency and potentially influential), rs12461706 (palindromic allele), rs1537415 and rs12461706 (palindromic alleles in the primary instrument), and rs9984417 (palindromic allele) did not substantively change any of these results (Supplementary Table 2).

In addition to the analyses for each cancer overall, we assessed associations between genetic predisposition to having chronic or aggressive periodontitis and risk of colorectal cancer stratified by location in the large bowel (colon, rectal, distal, and proximal) and sex (Figure 2 and Supplementary Figure 1). We observed that each unit increase in the genetic predisposition index for chronic or aggressive periodontitis was associated with a 3% increased...
risk in colon cancer ($p=0.02$), a 4% increased risk of proximal colon cancer ($p=0.01$), and a 3% increased risk of colorectal cancer among females ($p=0.04$; Figure 2). Each of these associations was observed with the IVW MR method and at least one alternative MR approach (Supplementary Table 3). Additionally, whereas the primary analyses using the MR approach did not suggest statistically significant associations with rectal cancer ($\beta=0.002; p=0.93$), distal cancer ($\beta=0.023; p=0.19$), or colorectal cancer in men ($\beta=0.021; p=0.17$), with the MR-PRESSO method, a one-unit increase in the genetic predisposition index for chronic or aggressive periodontitis was associated with a 2% increased risk of distal colorectal cancer ($p=0.03$) and a 2% increased risk of colorectal cancer in men ($p=0.01$). In secondary analyses including the six additional SNPs with moderate evidence for an association with periodontitis, none of the associations assessed with any of the MR methods remained statistically significant (Supplementary Table 3).

We also investigated associations between genetic predisposition to having chronic or aggressive periodontitis and risk of lung cancer stratified by histologic type (adenocarcinoma, squamous cell, or small cell), smoker status (current or not-current), and the combination of histologic type and smoker status (Table 2). We did not observe statistically significant associations for any of these analyses using the primary genetic instrument or with any of the MR methods (Supplementary Table 4); however, using the secondary genetic instrument, a one-unit increase in genetic predisposition index for chronic or aggressive periodontitis was associated with a 34% decreased risk of small cell lung cancer among non-smokers ($p=0.02$; Supplementary Table 4). Notably, this secondary analysis included a very small number of cases.
(n=64) and may thus simply represent statistical noise (especially since the association with the primary instrument was not statistically significant with a β of -0.383 and a p-value of 0.06).

For pancreatic cancer, we observed no statistically significant associations when we stratified by sex or smoker status (Table 3). In addition, results were similar by study design (cohort or case-control; Supplementary Table 5) and by dataset (i.e., PanScan I and II, PanScan III, and PanC4; data not shown). In general, the main analysis results were not substantively different than the results from the secondary analyses including the six additional SNPs (Supplementary Tables 5 and 6); the only exception was for a separate analysis of the PanScan cohort studies where positive associations were observed with pancreatic cancer using both the IVW (15% increased risk; p=0.02) and MR-PRESSO methods (15% increased risk; p=0.01; Supplementary Table 5).

Discussion

Using data from several large cancer consortia and a genetic instrument index for predisposition to having chronic or aggressive periodontal disease developed through a rigorous systematic selection process, we conducted the first two-sample MR assessment of periodontitis in relation to the risks of developing colorectal, lung, and pancreatic cancer. We observed evidence that a genetic predisposition to having chronic or aggressive periodontitis is associated with colorectal cancer (overall, and in a sub-analysis only including women), colon cancer, and proximal colon cancer. Conversely, our two-sample MR results were not consistent with the hypothesis that genetically predicted periodontal disease is linked to lung cancer or pancreatic cancer risk.
Our observation of an MR association between genetic predisposition to periodontitis and increased colorectal cancer risk is supported by several observational studies, though not all. Additionally, our observation that the relationship between genetic predisposition to periodontal disease and colorectal cancer risk varies by sex is supported by null associations in an all-male cohort, positive associations in one all-female cohort, and suggestive positive associations in another small all-female cohort (n=19 participants with colorectal cancer); however, a large cohort study with clinical measurements for periodontal disease reported similar positive associations in men and women. More studies will need to examine the role of sex in the association between periodontal disease and colorectal cancer.

Plausible causal mechanisms linking periodontal disease to colorectal cancer incidence may involve inflammatory processes or oral microbiome shifts (dysbiosis) that migrate to extra oral sites. For example, the gram-negative *Fusobacteria* is among the quantitatively dominant microorganisms in dental plaque; it interacts with inflammatory processes associated with periodontal disease; and it has been identified in colorectal cancer tissue. Notably, the proportion of colorectal cancer cases with high *Fusobacteria* varies by location (generally observed more in proximal versus distal cases). Furthermore, microbiota organization (e.g., presence of a bacterial biofilm) is particularly associated with proximal colon cancer compared to distal colon cancer. These observations, along with studies indicating that multiple environmental factors and mutation profiles have differential associations by cancer location in the large bowel, support our finding that genetic predisposition to periodontal disease may be more likely to influence proximal colon cancer risk than distal colon cancer or rectal cancer risk.
In contrast to meta-analyses of observational studies suggesting that periodontal disease is associated with the risk of lung and pancreatic cancer, our primary analyses did not indicate that there were statistically significant associations between a genetic predisposition to periodontal disease and the risk of either lung or pancreatic cancer. Given that the effect estimates for colorectal cancer and pancreatic cancer were similar but we had over six times as many colorectal cancer cases, our pancreatic cancer analyses may have been underpowered. Similarly, we had over three times as many colorectal cancer cases as lung cancer cases. Additionally, residual confounding by smoking status could explain some of the differences between our results and results from certain observational studies (especially due to the null results in our secondary analyses including only non-smokers). The statistically significant association we observed in one analysis with the secondary genetic instrument using only data from PanScan cohort study participants was most likely a chance finding, or it could suggest that other pathways are involved that we failed to capture with our existing primary instrument. Finally, based on our overall results, it is possible that periodontal disease is not causally involved with lung or pancreatic cancer initiation and may instead be linked with cancer progression. This hypothesis would be supported by evidence that cancer progression is related to increased presence of certain oral bacteria common among individuals with periodontal disease; or is affected by oxidative stress, inflammatory, or immunological responses associated with periodontal disease. More research using markers of periodontal disease that may affect cancer progression could provide insight into this alternative scenario.

As with all MR studies, one limitation of our analysis is the potential for violations of the MR assumptions. For example, we could not directly test for the presence (or impact of)
directional pleiotropy using MR-Egger due to the small number of genetic variants in our instrument. However, the overall consistency of our primary analyses using the IVW method and secondary analyses using different MR methods (MR-PRESSO, simple median, and weighted median – an approach that is less biased by the presence of directional pleiotropy75) suggests both that directional pleiotropy is unlikely to completely explain the results and that outliers were unlikely to substantially affect the results. One exception to this general trend was observed in the analysis for colorectal cancer in men where the effect estimates using the IVW and MR-PRESSO methods were identical, but the association was only statistically significant using the MR-PRESSO method. Bias could also arise due to assortative mating (i.e., if parental genotypes are correlated).76,77 There could also be concerns about the interpretability of the results (particularly with the IVW method) if potential gene-environment interactions led to violations of the assumption that the genetic instrument level modified any effect of periodontitis on cancer78 or if the association with periodontitis did not fulfill the monotonicity assumption for other reasons.79 Additionally, the primary phenotypes associated with at least several of the SNPs used in the analysis (e.g., rs2738058, rs12461706, and rs2070901) involve inflammatory pathways. Since inflammation processes are likely on a putative causal pathway between periodontal disease and cancer risk, our choice of SNPs may introduce vertical pleiotropy and potentially strengthen the genetic instrument. Finally, we may have observed statistically significant associations by chance due to the multiple comparisons made, we did not have data stratified by smoker status for colorectal data or smoking data that distinguished former versus never smokers for lung cancer, and our study results are only generalizable to individuals of European ancestry.
Strengths of our study include the large number of cancer cases included in each analysis, our MR approach that limits the potential for confounding or reverse causation, and our systematic approach to SNP selection for inclusion in our genetic instrument. Previous two-sample MR analyses that used genetic instruments for periodontal disease (examining non-cancer outcomes) included SNPs identified from single GWAS articles without clear justification for using those specific articles and SNPs.15,17 Another two-sample MR analysis included SNPs that were not statistically significantly associated with periodontitis as well as SNPs that were statistically significantly associated with the autoimmune outcomes (rheumatoid arthritis and systemic lupus erythematosus) in GWAS (potentially introducing bias due to violations of the MR assumptions).16,80 In contrast, we examined the strength of the evidence for an association of each SNP with periodontal disease based on objective criteria (e.g., inclusion of validation and replication cohorts, definition of periodontal disease). We also quantitatively assessed our assumptions about these criteria. Finally, our inclusion of SNPs associated with aggressive (early onset) periodontitis may reflect the risk of periodontal disease only, rather than possible shared risk factors of periodontal disease and cancer.

Our two-sample MR analysis utilizing a systematically developed genetic instrument suggests that a genetic predisposition to having chronic or aggressive periodontal disease may be associated with colorectal cancer risk. Additionally, our results suggest confounding is unlikely to fully explain previous observational studies’ claims for an association between periodontal disease and colorectal cancer. Our results were not consistent with the hypothesis that a genetic predisposition to having periodontal disease is associated with lung or pancreatic cancer risk; however, we cannot entirely rule out the possibility that periodontal disease is
associated with either of these cancers. Taken together, our results suggest that increased attention to preventative oral health measures and increased cancer surveillance of patients with periodontitis may be warranted. Future research is needed to further elucidate biological pathways underlying the associations between periodontitis and cancer risk.

Funding

This work was supported the AACR-Johnson & Johnson Lung Cancer Innovation Science Grant Number 18-90-52-MICH. LC was supported by the National Institute of Child Health & Human Development at the National Institutes of Health (grant number K12HD092535). KKT was supported by Cancer Research UK (grant number: C18281/A29019). CA was a Research Scholar supported by Cancer Prevention Research Institute of Texas grant RR170048. Funding for the cancer consortia that provided genetic data for this analysis are listed in the

Supplementary Material (available online).

Notes

Role of the funder: None of the funders had any role in this analysis or interpretation of the data; the writing of the manuscript; or the decision to submit this manuscript for publication.

Disclosures: No authors have any conflicts of interest to disclose.

Author contributions: Conceptualization: EAP, DSM. Data curation: MR, DSM, consortia (CCFR, CORECT, GECCO, ILCCO, PanScan, and PanC4). Validation: KKT, EB. Formal analysis: MR.

Supervision: DSM. Writing – Original Draft: LC. Writing – Review and Editing: all authors.

Acknowledgements: The authors would like to thank the study participants and staff of the Seattle Colon Cancer Family Registry and the Hormones and Colon Cancer study (CORE Studies).
They would also like to thank Kimon Divaris for helpful guidance on selecting periodontitis-associated SNPs and genes.

Data Availability

Data underlying this article are available through dbGAP through the Oncoarray Consortium - Lung Cancer Studies dbGaP Study Accession: phs001273.v3.p2 at

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/analysis.cgi?study_id=phs001273.v3.p2&phv=282571&phd=7215&pha=4930&pht=6171&phvf=&phdf=&phaf=&phtf=&dssp=1&consent=&temp=1;

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000206.v3.p2;

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000648.v1.p1;

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001078.v1.p1; and

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001499.v1.p1. Data unavailable in dbGaP can be requested from the respective consortia.

References

1. Fitzmaurice C, Akinyemiju TF, Lami FHA, et al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2016: A Systematic Analysis for the Global Burden of Disease Study. *JAMA Oncol.* 2018;4(11):1553-1568. doi:10.1001/jamaoncol.2018.2706

2. National Cancer Institute USD of H and HS. SEER*Explorer Application: Stage Distribution of SEER Incidence Cases, 2008-2017. Accessed July 30, 2020.
3. Heikkilä P, But A, Sorsa T, Haukka J. Periodontitis and cancer mortality: Register-based cohort study of 68,273 adults in 10-year follow-up. *International Journal of Cancer*. 2018;142(11):2244-2253. doi:10.1002/ijc.31254

4. Arora M, Weuve J, Fall K, Pedersen NL, Mucci LA. An Exploration of Shared Genetic Risk Factors Between Periodontal Disease and Cancers: A Prospective Co-Twin Study. *Am J Epidemiol*. 2010;171(2):253-259. doi:10.1093/aje/kwp340

5. Michaud DS, Liu Y, Meyer M, Giovannucci E, Joshipura K. Periodontal disease, tooth loss, and cancer risk in male health professionals: a prospective cohort study. *The Lancet Oncology*. 2008;9(6):550-558. doi:10.1016/S1470-2045(08)70106-2

6. Michaud DS, Fu Z, Shi J, Chung M. Periodontal Disease, Tooth Loss, and Cancer Risk. *Epidemiol Rev*. 2017;39(1):49-58. doi:10.1093/epirev/mxx006

7. Zeng X-T, Xia L-Y, Zhang Y-G, Li S, Leng W-D, Kwong JSW. Periodontal Disease and Incident Lung Cancer Risk: A Meta-Analysis of Cohort Studies. *Journal of Periodontology*. 2016;87(10):1158-1164. doi:10.1902/jop.2016.150597

8. Corbella S, Veronesi P, Galimberti V, Weinstein R, Fabbro MD, Francetti L. Is periodontitis a risk indicator for cancer? A meta-analysis. *PLOS ONE*. 2018;13(4):e0195683. doi:10.1371/journal.pone.0195683
9. Pierce BL, Burgess S. Efficient design for Mendelian randomization studies: subsample and 2-sample instrumental variable estimators. *Am J Epidemiol.* 2013;178(7):1177-1184. doi:10.1093/aje/kwt084

10. Inoue A, Solon G. TWO-SAMPLE INSTRUMENTAL VARIABLES ESTIMATORS. *The Review of Economics and Statistics.* 2010;92(3):557-561.

11. Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. *Hum Mol Genet.* 2014;23(R1):R89-R98. doi:10.1093/hmg/ddu328

12. Burgess S, Butterworth A, Thompson SG. Mendelian Randomization Analysis With Multiple Genetic Variants Using Summarized Data. *Genet Epidemiol.* 2013;37(7):658-665. doi:10.1002/gepi.21758

13. Burgess S, Scott RA, Timpson NJ, Davey Smith G, Thompson SG. Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors. *Eur J Epidemiol.* 2015;30(7):543-552. doi:10.1007/s10654-015-0011-z

14. Burgess S, Davies NM, Thompson SG. Bias due to participant overlap in two-sample Mendelian randomization. *Genetic Epidemiology.* 2016;40(7):597-608. doi:10.1002/gepi.21998

15. Sun Y-Q, Richmond RC, Chen Y, Mai X-M. Mixed evidence for the relationship between periodontitis and Alzheimer’s disease: A bidirectional Mendelian randomization study. *PLOS ONE.* 2020;15(1):e0228206. doi:10.1371/journal.pone.0228206
16. Bae S-C, Lee YH. Causal association between periodontitis and risk of rheumatoid arthritis and systemic lupus erythematosus: a Mendelian randomization. *Z Rheumatol*. Published online January 21, 2020. doi:10.1007/s00393-019-00742-w

17. Czesnikiewicz-Guzik M, Osmenda G, Siedlinski M, et al. Causal association between periodontitis and hypertension: evidence from Mendelian randomization and a randomized controlled trial of non-surgical periodontal therapy. *Eur Heart J*. 2019;40(42):3459-3470. doi:10.1093/eurheartj/ehz646

18. Langdon RJ, Richmond RC, Hemani G, et al. A Phenome-Wide Mendelian Randomization Study of Pancreatic Cancer Using Summary Genetic Data. *Cancer Epidemiol Biomarkers Prev*. 2019;28(12):2070-2078. doi:10.1158/1055-9965.EPI-19-0036

19. Yuan S, Kar S, Carter P, et al. Is Type 2 Diabetes Causally Associated With Cancer Risk? Evidence From a Two-Sample Mendelian Randomization Study. *Diabetes*. 2020;69(7):1588-1596. doi:10.2337/db20-0084

20. Zhang X, Theodoratou E, Li X, et al. Physical activity and colorectal cancer risk: a two-sample Mendelian randomisation study. *The Lancet*. 2019;394:S101. doi:10.1016/S0140-6736(19)32898-3

21. Munz M, Willenborg C, Richter GM, et al. A genome-wide association study identifies nucleotide variants at SIGLEC5 and DEFA1A3 as risk loci for periodontitis. *Hum Mol Genet*. 2017;26(13):2577-2588. doi:10.1093/hmg/ddx151

22. Munz M, Richter GM, Loos BG, et al. Meta-analysis of genome-wide association studies of aggressive and chronic periodontitis identifies two novel risk loci. *Eur J Hum Genet*. 2019;27(1):102-113. doi:10.1038/s41431-018-0265-5
23. Schaefer AS, Richter GM, Nothnagel M, et al. A genome-wide association study identifies GLT6D1 as a susceptibility locus for periodontitis. *Hum Mol Genet*. 2010;19(3):553-562. doi:10.1093/hmg/ddp508

24. Divaris K, Monda KL, North KE, et al. Exploring the genetic basis of chronic periodontitis: a genome-wide association study. *Hum Mol Genet*. 2013;22(11):2312-2324. doi:10.1093/hmg/ddt065

25. Shungin D, Haworth S, Divaris K, et al. Genome-wide analysis of dental caries and periodontitis combining clinical and self-reported data. *Nat Commun*. 2019;10(1):2773. doi:10.1038/s41467-019-10630-1

26. Offenbacher S, Divaris K, Barros SP, et al. Genome-wide association study of biologically informed periodontal complex traits offers novel insights into the genetic basis of periodontal disease. *Hum Mol Genet*. 2016;25(10):2113-2129. doi:10.1093/hmg/ddw069

27. Freitag-Wolf S, Dommisch H, Graetz C, et al. Genome-wide exploration identifies sex-specific genetic effects of alleles upstream NPY to increase the risk of severe periodontitis in men. *J Clin Periodontol*. 2014;41(12):1115-1121. doi:10.1111/jcpe.12317

28. Sanders AE, Sofer T, Wong Q, et al. Chronic Periodontitis Genome-wide Association Study in the Hispanic Community Health Study / Study of Latinos. *J Dent Res*. 2017;96(1):64-72. doi:10.1177/0022034516664509

29. Peters U, Jiao S, Schumacher FR, et al. Identification of Genetic Susceptibility Loci for Colorectal Tumors in a Genome-Wide Meta-analysis. *Gastroenterology*. 2013;144(4):799-807.e24. doi:10.1053/j.gastro.2012.12.020
30. Tryka KA, Hao L, Sturcke A, et al. NCBI's Database of Genotypes and Phenotypes: dbGaP.
 Nucleic Acids Res. 2014;42(Database issue):D975-D979. doi:10.1093/nar/gkt1211

31. Huyghe JR, Bien SA, Harrison TA, et al. Discovery of common and rare genetic risk variants
 for colorectal cancer. *Nature Genetics.* 2019;51(1):76-87. doi:10.1038/s41588-018-0286-6

32. IARC W. General Study Description - ILCCO. About ILCCO. Accessed August 1, 2020.
 https://ilcco.iarc.fr/About/study.php

33. McKay JD, Hung RJ, Han Y, et al. Large-scale association analysis identifies new lung cancer
 susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes.
 Nat Genet. 2017;49(7):1126-1132. doi:10.1038/ng.3892

34. NCI E and GRP. PanScan, the Pancreatic Cancer Cohort Consortium, and the Pancreatic
 Cancer Case-Control Consortium. Accessed August 1, 2020.
 https://epi.grants.cancer.gov/panscan/

35. Eric J Duell. PanC4. Published 2020. https://panc4.org/

36. Amundadottir L, Kraft P, Stolzenberg-Solomon RZ, et al. Genome-wide association study
 identifies variants in the ABO locus associated with susceptibility to pancreatic cancer. *Nat
 Genet.* 2009;41(9):986-990. doi:10.1038/ng.429

37. Klein AP, Wolpin BM, Risch HA, et al. Genome-wide meta-analysis identifies five new
 susceptibility loci for pancreatic cancer. *Nature Communications.* 2018;9(1):556.
 doi:10.1038/s41467-018-02942-5

38. Frazer KA, Ballinger DG, Cox DR, et al. A second generation human haplotype map of over
 3.1 million SNPs. *Nature.* 2007;449(7164):851-861. doi:10.1038/nature06258
39. International Genome Sample Resource. Data portal. Accessed August 1, 2020.
 https://www.internationalgenome.org/data/

40. Amos CI, Dennis J, Wang Z, et al. The OncoArray Consortium: A Network for Understanding the Genetic Architecture of Common Cancers. *Cancer Epidemiol Biomarkers Prev.* 2017;26(1):126-135. doi:10.1158/1055-9965.EPI-16-0106

41. Wolpin BM, Rizzato C, Kraft P, et al. Genome-wide association study identifies multiple susceptibility loci for pancreatic cancer. *Nature Genetics.* 2014;46(9):994-1000. doi:10.1038/ng.3052

42. Durbin RM, Altshuler D, Durbin RM, et al. A map of human genome variation from population-scale sequencing. *Nature.* 2010;467(7319):1061-1073. doi:10.1038/nature09534

43. Marchini J, Howie B, Myers S, McVean G, Donnelly P. A new multipoint method for genome-wide association studies by imputation of genotypes. *Nature Genetics.* 2007;39(7):906-913. doi:10.1038/ng2088

44. Wang Z, Jacobs KB, Yeager M, et al. Improved Imputation of Common and Uncommon Single Nucleotide Polymorphisms (SNPs) with a New Reference Set. *Nat Genet.* 2011;44(1):6-7. doi:10.1038/ng.1044

45. IMPUTE2. Accessed December 15, 2020.
 http://mathgen.stats.ox.ac.uk/impute/impute_v2.html

46. Bowden J, Del Greco M F, Minelli C, Davey Smith G, Sheehan NA, Thompson JR. Assessing the suitability of summary data for two-sample Mendelian randomization analyses using
MR-Egger regression: the role of the I² statistic. *Int J Epidemiol*. 2016;45(6):1961-1974. doi:10.1093/ije/dyw220

47. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. *BMJ*. 2003;327(7414):557-560.

48. Verbanck M, Chen C-Y, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. *Nat Genet*. 2018;50(5):693-698. doi:10.1038/s41588-018-0099-7

49. Ahn J, Segers S, Hayes RB. Periodontal disease, Porphyromonas gingivalis serum antibody levels and orodigestive cancer mortality. *Carcinogenesis*. 2012;33(5):1055-1058. doi:10.1093/carcin/bgs112

50. Hu J-M, Shen C-J, Chou Y-C, et al. Risk of colorectal cancer in patients with periodontal disease severity: a nationwide, population-based cohort study. *Int J Colorectal Dis*. 2018;33(3):349-352. doi:10.1007/s00384-018-2965-2

51. Ren HG, Luu HN, Cai H, et al. Editor’s choice: Oral health and risk of colorectal cancer: results from three cohort studies and a meta-analysis. *Annals of Oncology*. 2016;27(7):1329. doi:10.1093/annonc/mdw172

52. Michaud DS, Kelsey KT, Papathanasiou E, Genco CA, Giovannucci E. Periodontal disease and risk of all cancers among male never smokers: an updated analysis of the Health Professionals Follow-up Study. *Ann Oncol*. 2016;27(5):941-947. doi:10.1093/annonc/mdw028
53. Momen-Heravi F, Babic A, Tworoger SS, et al. Periodontal disease, tooth loss and colorectal cancer risk: Results from the Nurses’ Health Study. *International Journal of Cancer*. 2017;140(3):646-652. doi:10.1002/ijc.30486

54. Mai X, LaMonte MJ, Hovey KM, et al. Periodontal disease severity and cancer risk in postmenopausal women: the Buffalo OsteoPerio Study. *Cancer Causes Control*. 2016;27(2):217-228. doi:10.1007/s10552-015-0699-9

55. Michaud DS, Lu J, Peacock-Villada AY, et al. Periodontal Disease Assessed Using Clinical Dental Measurements and Cancer Risk in the ARIC Study. *J Natl Cancer Inst*. 2018;110(8):843-854. doi:10.1093/jnci/djx278

56. Lauritano D, Sbordone L, Nardone M, Iapichino A, Scapoli L, Carinci F. Focus on periodontal disease and colorectal carcinoma. *Oral implantology*. 2017;10(3):229-233. doi:10.11138/orl/2017.10.3.229

57. Flynn KJ, Baxter NT, Schloss PD. Metabolic and Community Synergy of Oral Bacteria in Colorectal Cancer. *mSphere*. 2016;1(3). doi:10.1128/mSphere.00102-16

58. Signat B, Roques C, Poulet P, Duffaut D. Fusobacterium nucleatum in periodontal health and disease. *Curr Issues Mol Biol*. 2011;13(2):25-36.

59. Castellarin M, Warren RL, Freeman JD, et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. *Genome Research*. 2012;22(2):299. doi:10.1101/gr.126516.111

60. Kostic AD, Gevers D, Pedamallu CS, et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. *Genome Research*. 2012;22(2):292. doi:10.1101/gr.126573.111
61. Mima K, Cao Y, Chan AT, et al. Fusobacterium nucleatum in Colorectal Carcinoma Tissue According to Tumor Location. *Clin Transl Gastroenterol*. 2016;7(11):e200. doi:10.1038/ctg.2016.53

62. Ito M, Kanno S, Nosho K, et al. Association of Fusobacterium nucleatum with clinical and molecular features in colorectal serrated pathway. *Int J Cancer*. 2015;137(6):1258-1268. doi:10.1002/ijc.29488

63. Yu J, Chen Y, Fu X, et al. Invasive Fusobacterium nucleatum may play a role in the carcinogenesis of proximal colon cancer through the serrated neoplasia pathway. *Int J Cancer*. 2016;139(6):1318-1326. doi:10.1002/ijc.30168

64. Dejea CM, Wick EC, Hechenbleikner EM, et al. Microbiota organization is a distinct feature of proximal colorectal cancers. *Proc Natl Acad Sci U S A*. 2014;111(51):18321-18326. doi:10.1073/pnas.1406199111

65. Li F, Lai M. Colorectal cancer, one entity or three. *Journal of Zhejiang University Science B*. 2009;10(3):219. doi:10.1631/jzus.B0820273

66. Zhao Z, Feng Q, Yin Z, et al. Red and processed meat consumption and colorectal cancer risk: a systematic review and meta-analysis. *Oncotarget*. 2017;8(47):83306-83314. doi:10.18632/oncotarget.20667

67. Demb J, Earles A, Martínez ME, et al. Risk factors for colorectal cancer significantly vary by anatomic site. *BMJ Open Gastroenterology*. 2019;6(1):e000313. doi:10.1136/bmjgast-2019-000313

68. Loree JM, Pereira AAL, Lam M, et al. Classifying Colorectal Cancer by Tumor Location Rather than Sidedness Highlights a Continuum in Mutation Profiles and Consensus
Molecular Subtypes. Clin Cancer Res. 2018;24(5):1062-1072. doi:10.1158/1078-0432.CCR-17-2484

69. Wang J, Yang X, Zou X, Zhang Y, Wang J, Wang Y. Relationship between periodontal disease and lung cancer: A systematic review and meta-analysis. Journal of Periodontal Research. 2020;55(5):581-593. doi:10.1111/jre.12772

70. Maisonneuve P, Amar S, Lowenfels AB. Periodontal disease, edentulism, and pancreatic cancer: a meta-analysis. Ann Oncol. 2017;28(5):985-995. doi:10.1093/annonc/mdx019

71. Yan X, Yang M, Liu J, et al. Discovery and validation of potential bacterial biomarkers for lung cancer. Am J Cancer Res. 2015;5(10):3111-3122.

72. Soory M. Oxidative Stress Induced Mechanisms in the Progression of Periodontal Diseases and Cancer: A Common Approach to Redox Homeostasis? Cancers. 2010;2(2):670-692. doi:10.3390/cancers2020670

73. Zhang Y, Yan W, Collins MA, et al. Interleukin-6 Is Required for Pancreatic Cancer Progression by Promoting MAPK Signaling Activation and Oxidative Stress Resistance. Cancer Res. 2013;73(20):6359-6374. doi:10.1158/0008-5472.CAN-13-1558-T

74. Michaud DS. Role of bacterial infections in pancreatic cancer. Carcinogenesis. 2013;34(10):2193-2197. doi:10.1093/carcin/bgt249

75. Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet Epidemiol. 2016;40(4):304-314. doi:10.1002/gepi.21965
76. Hartwig FP, Davies NM, Smith GD. Bias in Mendelian randomization due to assortative mating. *Genetic Epidemiology*. 2018;42(7):608-620.

doi:https://doi.org/10.1002/gepi.22138

77. Sebro R, Peloso GM, Dupuis J, Risch NJ. Structured mating: Patterns and implications. *PLOS Genetics*. 2017;13(4):e1006655. doi:10.1371/journal.pgen.1006655

78. von Hinke S, Davey Smith G, Lawlor DA, Propper C, Windmeijer F. Genetic markers as instrumental variables. *J Health Econ*. 2016;45:131-148.

doi:10.1016/j.jhealeco.2015.10.007

79. Burgess S, Labrecque JA. Mendelian randomization with a binary exposure variable: interpretation and presentation of causal estimates. *Eur J Epidemiol*. 2018;33(10):947-952.

doi:10.1007/s10654-018-0424-6

80. Teumer A, Holtfreter B, Völker U, et al. Genome-wide association study of chronic periodontitis in a general German population. *J Clin Periodontol*. 2013;40(11):977-985.

doi:10.1111/jcpe.12154
Tables

Table 1. Effect estimates for the association between genetic predisposition to having chronic or aggressive periodontitis and the risk of colorectal, lung, and pancreatic cancer by genetic instrument and MR approach.

Cancer outcome	Ncases / Ncontrols	Instrument	IVW^b β (P)	MR-PRESSO β (P)	Simple median β (P)	Weighted median β (P)
Colorectal	58131/67347	Primary	0.025 (0.03)	0.025 (0.01)	0.025 (0.12)	0.027 (0.06)
		Secondary	0.006 (0.70)	0.016 (0.106)	0.002 (0.88)	0.025 (0.05)
Colon	31083/67347	Primary	0.031 (0.02)	0.031 (<0.001)	0.030 (0.10)	0.030 (0.08)
		Secondary	0.010 (0.47)	0.010 (0.48)	0.017 (0.34)	0.027 (0.07)
Rectal	15775/67347	Primary	0.002 (0.93)	0.002 (0.94)	-0.015 (0.55)	0.011 (0.64)
		Secondary	-0.014 (0.47)	-0.014 (0.49)	-0.043 (0.09)	0.004 (0.87)
Lung	18082/13780	Primary	0.004 (0.83)	0.004 (0.76)	-0.020 (0.48)	0.019 (0.45)
		Secondary	-0.006 (0.75)	-0.006 (0.75)	-0.011 (0.66)	0.017 (0.45)
Pancreatic	9254/12525	Primary	0.017 (0.51)	0.017 (0.41)	0.015 (0.70)	-0.007 (0.85)
		Secondary	0.021 (0.34)	0.021 (0.26)	0.055 (0.11)	0.011 (0.71)

^aThe primary analysis included eight SNPs (rs729876, rs1537415, rs2738058, rs12461706, rs16870060, rs2521634, rs3826782, and rs7762544). The secondary analysis included six additional SNPs (rs1122900, rs2064712, rs2070901, rs4970469, rs9982623, and rs9984417).

^bThe primary Mendelian randomization method (i.e., statistical test) was inverse-variance weighted (IVW) MR. We used MR-PRESSO, simple median, and weighted median as secondary analyses. Betas indicate the effect estimate for the association between a one-unit increase in genetic predisposition to having chronic or aggressive periodontitis and the natural log risk for each cancer outcome. All statistical tests were 2-sided.
Table 2. Effect estimates for the association between genetic predisposition to having chronic or aggressive periodontitis and the risk of lung cancer by histologic sub-type and smoker status.

Lung cancer	Overall (N_{controls} = 13780)	Smokers (n_{controls} = 9084)^b	Non-smokers (n_{controls} = 4415)			
	N_{cases}	β (p-value)	n_{cases}	β (p-value)	n_{cases}	β (p-value)
Overall	18082	0.004 (0.83)	15984	0.002 (0.93)	1800	-0.021 (0.65)
Adenocarcinoma	6730	0.025 (0.31)	5639	0.029 (0.32)	975	0.012 (0.84)
Squamous cell	4429	-0.010 (0.74)	4209	-0.019 (0.54)	158	-0.040 (0.77)
Small cell	1853	-0.035 (0.40)	1761	-0.023 (0.59)	64	-0.383 (0.06)

^aThe inverse-variance weighted Mendelian randomization analysis included eight SNPs (rs729876, rs1537415, rs2738058, rs12461706, rs16657910, rs3826782, and rs7762544).

^bControls were shared across lung cancer histologic sub-types.

^cBetas indicate the effect estimate for the association between a one-unit increase in genetic predisposition to having chronic or aggressive periodontitis and the natural log risk for each lung cancer outcome. All statistical tests were 2-sided.
Table 3. Effect estimates for the association between genetic predisposition to having chronic or aggressive periodontitis\(^a\) and the risk of pancreatic cancer by sex and smoker status using PanScan and PanC4 data.

Pancreatic Cancer	No. of Cases/Controls	IVW \(\beta (P)^{b} \)
Overall	9254/12525	0.017 (0.51)
Female	4243/4734	0.036 (0.40)
Male	5011/7791	0.003 (0.94)
Current smoker	1517/1724	0.053 (0.44)
Former smoker	3286/4982	-0.008 (0.88)
Never smoker	3314/5199	0.020 (0.63)

\(^a\)The inverse-variance weighted (IVW) Mendelian randomization analysis included eight SNPs (rs729876, rs1537415, rs2738058, rs12461706, rs16870060, rs2521634, rs3826782, and rs7762544).

\(^b\)Betas indicate the effect estimate for the association between a one-unit increase in genetic predisposition to having chronic or aggressive periodontitis and the natural log risk for pancreatic cancer. All statistical tests were 2-sided.
Figure legends

Figure 1. Scatterplots comparing the strength of the single nucleotide polymorphism (SNP)-exposure (periodontitis) and SNP-outcome (cancer risk) associations. The lines indicate the estimated effect sizes by four Mendelian randomization methods (inverse-variance weighted (IVW), MR-PRESSO, simple median, and weighted median).

Figure 2. Scatterplots comparing the strength of the single nucleotide polymorphism (SNP)-exposure (periodontitis) and SNP-colorectal cancer associations. The lines indicate the estimated effect sizes by four Mendelian randomization methods (inverse-variance weighted (IVW), MR-PRESSO, simple median, and weighted median).
Figure 1
Figure 2