Exploration of wood species at Enggano Island:
Identification and fiber morphology measurements

W Dwianto¹, R Damayanti², S Rulliaty², E Lestari¹, A Bahanawan¹, D S Adi¹, T Darmawan¹, Wihermanto³ and J Sugiyama⁴

¹Research Center for Biomaterials, Indonesian Institute of Sciences, Cibinong Science Center, Bogor 16911, Indonesia
²Forest Products Research and Development Center, Research, Development and Innovation Agency, Ministry of Environment and Forestry, Gunung Batu 5, Bogor 16610, Indonesia
³Research Center for Plants Conservation and Botanical Garden, Indonesian Institute of Sciences, Bogor 16000, Indonesia
⁴Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan

E-mail: wahyudwianto@biomaterial.lipi.go.id

Abstract. The objectives of this exploration were to identify and characterize the lesser-known wood species in Enggano island, and to find the suitability especially for construction and sawn-timbers. Wood samples were taken by drilling the trees to obtain a pencil-like shape with a size of 20 cm in length and 0.5 cm in diameter. Identification and anatomical structure observation of wood samples were carried out according to the International Association of Wood Anatomist (IWA). Preparation of maceration for wood fiber dimension measurement followed the modified Franklin method. Physical properties of wood were investigated to obtain the specific gravity data. Absolute bending and compression strength, as well as the strength class were estimated through the specific gravity values based on Indonesian Forestry Classification. As many as 22 wood species have been collected, where nine of which were categorized as lesser-known wood species. Wood species at Enggano island which have potential as construction timber with strength class II were Ki Ahid (Intsia palembanica) and Kasai (Kingiodendron alternifolium); and that for sawn-timbers with strength class III were Kabaruk (Anriaris sp.) and Ki Ono (Combretocarpus rotundatus). From the fiber morphological measurements, it was indicated that the smaller the lumen diameter and the longer the fiber, the specific gravity of wood increased.

1. Introduction
In the period before 1985, Indonesia was a producer of various qualified tropical wood species on the world market. However, management and exploitation that did not pay attention to sustainability results in a decrease in the ability of natural forests to provide high-quality wood for raw materials of timber industries. Currently, wood production other than from natural forests that is 5 million m³, comes from plantation forests of 26.67 million m³ and community forests of 3.93 million m³ [1]. The production of primary industries includes sawn wood is 1.18 million m³, pulp 5.42 million tons, veneers 0.9 million m³, and plywood 3.2 million m³. Log production in 2017 came from Acacia (Acacia mangium 63.36%), Meranti (Shorea leprosula 10.57%), Sengon (Paraserianthes falcatoria
7.80%), Ekaipitus (Eucalyptus sp. 7.75%), mixed woods (5.09%), and others (5.43%) with a total production of 49.13 million m3 [2]. From these data, it can be seen that Acacia wood from forest industrial plantations dominates the wood supply, which amounted to 31.13 million m3 that mostly for pulp and paper industries.

To overcome the limited raw materials from commercial wood species for sawn timber, veneers and plywood, it is necessary to diversify the sources of wood raw materials by developing and utilizing lesser-known wood species or by exploring the potential wood species from small or bordered islands in Indonesia. Besides the wood species that have been developed into forest industrial plantations before, such as Acacia, Ekaipitus, Gmelina (Gmelina arborea), and Pinus (Pinus merkusii) which are generally used for pulp and paper raw material [3], it is estimated that there are still many lesser-known wood species that have the potential to be used as raw materials for the timber industries and various wood-based products according to their characteristics. Based on the Forest Inventory and Administration Agency, Ministry of Forestry, there are 3,124 wood species consisting of commercial, non-commercial, unknown, and cultivated wood [4]. According to the classification in the Prosea book, 51 genera belong to major commercial timbers, 62 genera of minor commercial timbers, and 309 genera of lesser-known timbers in South-East Asia [5-7], whereas the four volumes of Indonesian Wood Atlas only describe the basic properties of 122 genera of Indonesian woods [8-11].

Assuming the demand for wood continues to increase from year to year, there is an opportunity for forest industrial plantations to play a greater role in providing raw material for wood [12]. The development of lesser-known wood species through forest industrial plantations has the potential to provide a portion of the wood demand for the substitution of raw materials that has been explored from natural forests.

Intensive research on lesser-known and fast growing wood species have been started since 1990, including Gmelina [13,14], Mindi (Melia azedarach L.) [15,16], Gadog (Bischofia javanica Blume) [17], and Cengkeh (Syzygium aromaticum L.) [18]. Wood species with strength class II and have a high ratio of strength to weight can be utilized for construction timbers [19]. Factors that need to be considered if the wood is to be used as construction timbers are (1) specific gravity, (2) dimensional stability, (3) strength, (4) natural durability, and (5) workability. The trees also should have good morphological characteristics, namely (7) straight stem and (8) high free branching. If the potential wood species are going to be developed for forest industrial plantation, factors that need to be taken into account are (9) silvicultural, (10) growth rate, (11) disease resistance, and (12) utilization prospects.

Since 2015, Indonesian Institute of Sciences (LIPI) has conducted exploration activities to the outer islands in Indonesia. Enggano is a small island located in the Indonesian Ocean, the southwest of Bengkulu Sumatra island. Most of the land is still covered by forests. Enggano island still has a lot of potential wood and non-timber forest products to be explored. Based on its function, the forest area of Enggano Island is consisting of limited production forests, protected forests, nature reserves, and hunting parks. The forest ecosystems are lowland forest, swamp forest, mangrove forest, and coastal forest. The topography of the forest area varies from flat to steep with a height of 0~220 m above sea level. The dominant species in the lowland forests are the Dipterocarpaceae, Sapindaceae, and Myrtaceae; in the swamp forest are the Palmae and swamp grass; in the mangrove forests are Rhizophoraceae and Soneratiaceae; while in the coastal forests are Malvaceae and Guttiferae.

The purpose of this exploration activity was to identify and characterize the wood species found in Enggano island, and to provide recommendation which wood species are potential for construction and sawn-timbers according to the wood properties. The selected species could be considered to be planted widely through forest industrial plantation as an alternative of commercial trade wood species in providing various raw materials of wood-based products.

2. Materials and methods

2.1. Wood test sampling
The wood samples were carried out from the forests which were expected to represent lowland and coastal forest ecosystem. The wood sampling for identification and characterization was conducted
based on morphological criteria of trees that have a diameter of 40 cm or above, 10 m or above for free branches height, and have straight/cylindrical stems, with the expectation of high wood volume and quality. The wood sample was taken by drilling a tree using a drill tool at a height of 1.3 m to obtain a pencil-like shape with a size of 20 cm in length and 0.5 cm in diameter for the basic property measurements (anatomical and physical properties). In addition, several leaves and wood chips were taken for wood species verification through the herbarium specimens and anatomical structure observation.

2.2. Observation of anatomical structure and identification
The microscopic structure of the cross section for anatomical observations was carried out on the incision of wood sample with a thickness of 40 µm using a sliding microtome. The dehydration was conducted using 30%, 50%, 70%, 96%, and absolute alcohol, respectively, followed by soaking the sliced wood sample in carboxylol and toluene, and then placing them on an object glass. Identification and observation of wood anatomical structures followed the International Association of Wood Anatomists [20].

2.3. Fiber morphological measurement
Fiber maceration of wood samples were prepared by using modified Franklin method [21]. The samples were heated slowly at 40–60°C in the solution of 1:1 Acetic Acid and Hydrogen Peroxide (H₂O₂) in a boiling water bath for 12 hours or more to produce milky white to almost transparent whips and satisfactory separation of cells. Then the separated cells were washed with water to remove residual acid and H₂O₂, and stained with Safranin. Fiber dimensions, i.e., fiber length were observed and measured under a microscope.

2.4. Specific gravity measurement
After cutting to 1 cm in length, the wood samples were weighed by immersing them into water and measured in length and diameter to get the initial weight (Wo) and volume (Vo) in fresh condition. Then the wood samples were dried at 60°C for about three days to get an oven-dry weight (Wod). The specific gravity of wood was calculated by the formula Wod/Vo [22].

2.5. Estimation of mechanical properties and testings
The mechanical properties values (absolute bending strength and absolute compression strength), as well as the strength class were estimated through their specific gravity values based on the Indonesian Forestry Classification in Table 1 [23].

Strength class	Specific gravity	Absolute bending strength (kgf/cm²)	Absolute compression strength (kgf/cm²)
I	over 0.90	over 1100	over 650
II	0.60 to 0.90	725 to 1100	425 to 650
III	0.40 to 0.60	500 to 725	300 to 425
IV	0.30 to 0.40	360 to 500	215 to 300
V	under 0.30	under 360	under 215

Especially for four wood species that have generally been used by the community as construction and sawn-timbers, namely Merbau (Intsia bijuga), Nehek (Dillenia excelsa), Ketaping (Terminalia catappa), and Apua (Lagerstroemia floribunda), the mechanical properties were tested to determine the Modulus of Rupture (MOR) and Modulus of Elasticity (MOE) based on British Standard (BS) 373-1957 [24]. A wood sample sized of 30 x 2 x 2 cm was loaded in the middle of a span and the maximum load was recorded until the wood sample was damaged. MOR and MOE values were calculated using the formula: MOR (kgf/cm²) = [(3PL) / (2bh²)], and MOE (kgf/cm²) = [(ΔPL³) / (4Δybh⁵)], where: P = load (kgf), ΔP = load change (kgf), L = span distance (cm), Δy = deflection (cm), b = sample width (cm), h = sample thickness (cm), l = sample length (cm).
3. Results and discussion

3.1. Identification and classification

As much as 22 wood species have been collected (Table 2), consisting of one species of strength class I, three species of strength class II, 13 species of strength class III, and five species of strength class IV. The strength classification was based on the specific gravity (Table 1). Ironwood (*Eusideroxylon zwageri*) had a strength class I, although it was unable to obtain the sample because the drill tool cannot penetrate the stem.

Table 2. Wood species from an exploration in Enggano island.

No.	Local names	Botanical names	Specific gravity	Strength class	Commercial classes**	Fiber length* (μm)	Lumen diameter* (μm)
1	Kayu Besi	*Eusideroxylon Zwageri*	0.71	I	Major	1260	21.58
2	Ki Ahid	*Intsia palembanica*	0.69	II	Lesser-known	1079	17.25
3	Merbau	*Intsia bijuga*	0.57	II	Lesser-known	1273	14.35
4	Kasai	*Kingiodendron alternifolium*	0.56	II	Lesser-known	1200	17.30
5	Kempas	*Koompassia malaccensis*	0.51	III	Major	2009	23.88
6	Nehek/ Simpur Terap	*Dillenia excelsa*	0.56	III	Minor	1210	17.79
7	Jati	*Tectona grandis*	0.55	III	Major	1607	21.58
8	Pakarot/ Medang	*Endiandra macrophylla*	0.52	III	Major	1630	21.38
10	Umih	*Un-identified*	0.52	III	Lesser-known	1360	21.38
11	Kabaruk	*Antiris toxicaria*	0.51	III	Lesser-known	1204	13.98
12	Ki Oka/ Kelat	*Timonius sp.*	0.51	III	Minor	1962	16.56
13	Apua	*Lagerstroemia floribunda*	0.50	III	Major	1435	17.50
14	Ketaping/ Ketapang	*Terminalia catappa*	0.50	III	Minor	1212	17.85
15	Ehei/Dao	*Dracomontemon dao*	0.44	III	Minor	1031	17.26
16	Ki Ono	*Combretocarpus rotundatus*	0.44	III	Lesser-known	1579	17.06
17	Randu	*Ceiba pentandra*	0.44	III	Lesser-known	1312	29.88
18	Rengas	*Gluta renghas*	0.31	IV	Minor	1316	29.88
19	Pupua/ Amberoi	*Pterocymbium tinctorum*	0.31	IV	Minor	1474	25.72
20	Purut	*Parartocarpus venosa*	0.39	IV	Lesser-known	1553	29.36
21	Kenanga	*Cananga odorata*	0.31	IV	Lesser-known	1209	25.27

* [25]; ** [5-7].

The wood species were also grouped by commercial class into Major Timber, Minor Timber and Lesser-known Timber [5-7]. From the commercial classification, there were nine lesser known wood species, namely Ki Ahid (*Intsia palembanica*) and Kasai (*Kingiodendron alternifolium*) with strength...
class II; Umih, Kabaruk (*Antiaris toxicaria*), Ki Ono (*Combretocarpus rotundatus*), and Randu (*Ceiba pentandra*) with strength class III; and Purut (*Parartocarpus venenos*a), Kenanga (*Cananga odorata*), and Bayur (*Pterospermum javanicum*) with strength class IV. The trade names, scientific names, families, distribution, commercial classes,utilizations, general characteristics, and the basic properties of the woods are presented. These data were obtained from the identification, characterization and some literatures [5-10]. The conservation status based on International Union for Conservation of Natures’s Red List of Threatened Species (IUCN) Version 2020-1 of each species are provided for commercially consideration.

3.2. Fiber morphology

From the fiber morphology measurements of 17 wood species (Table 2), the wood species with the largest lumen diameter was Rengas (*Gluta renghas*) which was 29.88 µm and the smallest was Kabaruk (*Antiaris toxicaria*) which was 13.98 µm. The length of fibers ranged between 1031–2009 µm. The wood species that had long fibers (1600–2200 µm) according to the Indonesian Forestry Classification [23] were Nehek (*Dillenia excelsa*), Pakaror (*Endiandra macrophylla*) and Kioka (*Syzygium* sp.), while other wood species were classified into medium category (900~1600 µm). The wood species that had the longest fiber was Nehek (*Dillenia excelsa*, 2000 µm), and the shortest was Ehei/Dao (*Dracontomelon dao* 1031 µm) [25].

![Figure 1](image_url)

Figure 1. Relationships between fiber lumen diameter (left) and fiber length (right) with specific gravity.

Figure 1 shows the relationships between fiber lumen diameter (left) and fiber length (right) with specific gravity. From the Figure, it was indicated that the smaller the lumen diameter and the longer the fiber, the specific gravity of wood increased.

3.3. Mechanical properties

MOR and MOE values of four wood species that have generally been utilized by the community as construction and sawn timbers are shown in Table 3.

Merbau wood (*Intsia bijuga*) was included in strength class II and generally used for bridge construction. Likewise, Nehek wood (*Dillenia excelsa*) was used for lightweight construction purposes. Whereas Ketaping wood (*Terminalia catappa*) and Apua (*Lagerstroemia floribunda*) were widely used for sawn-timber.
Table 3. MOR and MOE values of four wood species from Enggano island that have been commonly utilized by local community.

Wood species	MOR (kgf/cm²)	MOE (kgf/cm²)
Merbau (*Intsia bijuga*)	1101.24	128614.33
Nehek (*Dillenia excelsa*)	828.30	99291.33
Ketaping/Ketapang (*Terminalia catappa*)	581.32	58213.43
Apua (*Lagerstroemia floribunda*)	551.30	93343.10

The analysis of anatomical, physical, and mechanical properties of 22 wood species found in Enggano island provided details description of wood species. Additional information of basic properties from literatures completed with habitus and macroscopic images will allow appropriate utilization and development of the wood species. The details of wood description are presented completed with the pictures of the trees and/or macroscopic images (Figure 2-4).

1. Kayu Besi (Figure 2A)
 - Trade name: Ulin
 - Scientific name: *Eusideroxylon zwageri*
 - Family: Lauraceae
 - Distribution: West Sumatra, East Sumatra, Bangka, Belitung, Kalimantan, and the Sulu Islands
 - Commercial class: major timber
 - Uses: heavy construction, poles, docks, ships, dams, bridges, masts, and traditional houses
 - General characteristics: heavy wood weight; wood terrace yellowish brown or reddish brown; sapwood dark yellow; wood grain straight and sometimes combined
 - Basic properties: specific gravity 1.04; strength class I; durability class I
 - Conservation status (IUCN): Vulnerable [26]

2. Ki Ahid (Figure 2B)
 - Trade name: Merbau
 - Scientific name: *Intsia palembanica*
 - Family: Caesalpiniaceae
 - Distribution: Tanzania, Madagascar, India, Myanmar, Malesia, Australia and Polynesia
 - Commercial class: lesser known
 - Uses: sawn wood
 - General characteristics: heavy, hard, the heartwood is light brown, orange-brown to dark red-brown, darkening on exposure, sharply differentiated from the lighter sapwood, usually without lustre, but light colored wood sometimes slightly lustrous and with stripe Figure on radial surface. The grain is straight, interlocked to wavy, the texture moderately coarse and coarse but even
 - Basic properties: specific gravity 0.71; strength class II
 - Conservation status (IUCN): Vulnerable [27]

3. Merbau (Figure 2C)
 - Trade name: Merbau
 - Scientific name: *Intsia bijuga* (colebr.) O. Kuntze
 - Family: Caesalpiniaceae
Distribution: Tanzania, Madagascar, India, Myanmar, Malesia, Australia and Polynesia
Commercial class: major timber
Use: window, door, frame, floor, furniture, panel, stairs, truck body, lathe, pole, musical instrument, carving, and bridge
General characteristics: heavy and hard; brown patio wood; pale yellow sapwood; straight fiber
Basic properties: specific gravity 0.70; strength class II; durability class I-III
Conservation status (IUCN): Vulnerable [27]

4. Kasai (Figure 2D)
Trading name: Kasai
Scientific name: Kingiodendron alternifolium
Family: Caesalpinaceae
Distribution: India, the Philippines, New Guinea, New Britain, Solomon Island and Fiji
Commercial class: lesser known
Uses: furniture, floors, doors, roofs and walls
General characteristics: medium weight; reddish brown patio wood; yellowish brown sapwood; chime fiber
Basic properties: specific gravity 0.69; strength class II; durability class V
Conservation status (IUCN): Endangered (Kingiodendron pinnatum) [28], Least Concern (Kingiodendron platycarpum) [29]

5. Kempas (Figure 2E)
Trading name: Kempas
Scientific name: Koompassia malaccensis
Family: Caesalpiniaceae
Distribution: Vietnam, Cambodia, Andaman Island, Thailand, Solomon Island and Australia
Commercial class: major timber
Uses: lightweight construction, flooring, molding, panel boards, joints, furniture, veneers, plywood, pallets, boat construction, surfboards, poles, bridges, and musical instruments
General characteristics: medium weight; patio wood brownish orange, brownish pink, or brownish red; brownish yellow sapwood with a hint of pink; fiber chime and wavy.
Basic properties: specific gravity 0.57; strength class III; durability class II-IV.
Conservation status (IUCN): Vulnerable (Koompassia grandiflora) [30], (Koompassia excelsa) [31], (Koompassia malaccensis) [32]

6. Nehek (Figure 2F)
Trading name: Simpur
Scientific name: Dillenia excelsa (Jack) Gilg
Family: Dilleniaceae
Distribution: Thailand, Malaysia, Sumatra, Bangka, West Java, Kalimantan and the Philippines
Commercial class: minor timber
Uses: construction, beams, joints, roof frames, sills, stairs, floors, decorative wall panels, furniture, molding, boats,
The 7th Symposium of JAPAN-ASEAN Science Technology Innovation Platform (JASTIP)
IOP Conf. Series: Earth and Environmental Science 591 (2020) 012040
doi:10.1088/1755-1315/591/1/012040

General characteristics: moderate to severe; reddish brown patio wood; paler colored wood; chime fibers sometimes straight
Basic properties: specific gravity 0.56; strength class III
Conservation status (IUCN): No information

Figure 2. Tree of Kayu Besi (*Eusideroxylon zwageri*) (A); Tree (left) and anatomical structure (right) of Ki Ahid (*Intsia palembanica*) (B); Tree (left) and anatomical structure (right) of Merbau (*Intsia bijuga* (colebr.) O. Kuntze) (C); Tree (left and anatomical structure (right) of Kasai (*Kingiodendron alternifolium*) (D); Anatomical structure of Kempas (*Koompassia malaccensis*) (E); Tree (left) and anatomical structure (right) of Nehek (*Dillenia excelsa* (Jack) Gilg) (F).
7. Terap (Figure 3A)

Trade name	Terap
Scientific name	Artocarpus lanceifolius
Family	Moraceae
Distribution	Thailand, Malaysia, Sumatra, Bangka, Riau and Lingga Islands, and Kalimantan
Commercial class	minor timber
Uses	lightweight construction, boxes and crates, wooden pallets, veneers, furniture, joints, and panels
General characteristics	light weight; wood patio pale yellow or yellowish brown; not clearly separated from sapwood; chime fiber
Basic properties	specific gravity 0.56; strength class III
Conservation status (IUCN)	No information

8. Jati (Figure 3B)

Trade name	Teak
Scientific name	Tectona grandis L.f.
Family	Verbenaceae
Distribution	India, Myanmar, Thailand, Laos and Java
Commercial class	major timber
Uses	ship floor, boat, house floor, railroad tracks, furniture, bridges, connections, building poles, fences, walls, boxes, musical instruments, toys, train construction, veneers, decorative plywood, charcoal, and firewood.
General characteristics	medium weight; patio woods golden brown, golden dark brown; sapwood white, yellowish white to yellowish brown; straight or wavy fibers, sometimes combined
Basic properties	specific gravity 0.55; strength class III; durability class II
Conservation status (IUCN)	No information

9. Pakaror (Figure 3C)

Trade name	Medang
Scientific name	Endiandra macrophylla
Family	Lauraceae
Distribution	Thailand, Malaysia, Sumatra, and Kalimantan
Commercial class	lesser known
Uses	floor, panel, roof, interior, joints, decking, musical instruments, crates, boxes, toys, lathe, lighters, fiberboard, particle board, plywood, and veneer
General characteristics	medium weight; patio woods reddish brown, dark red, or reddish brown; sapwood is not too different from patio wood; chime and wavy fibers
Basic properties	specific gravity 0.52; strength class III
Conservation status (IUCN)	Least Concern for majority of Endiandra species; with the exception for E. holttumii (Endangered), E. lecardii (Vulnerable), E. wrayi (Near Threatened), and E. scrobiculata (Critically Endangered) [33]

10. Umih

Trade name	Un-identified
Scientific name	Un-identified
Family	Un-identified
Distribution	Un-identified
Commercial class: lesser known
Uses: lightweight construction, floors, sills, roofs, interior decoration, furniture, toys, lathe, boxes, ships and boats, connections, plywood, veneers, particle boards, fiberboard, and pulp
General characteristics: light weight; yellowish brown patio wood with a greenish pattern; sapwood is paler and yellower; chime fiber
Basic properties: specific gravity 0.52; strength class III

11. Kabaruk (Figure 3D)
Trade name: Kabaruk
Scientific name: Antiaris toxicaria
Family: Moraceae
Distribution: West Africa, Sri Lanka, India, Indo-China, Southern China, Thailand, Malesian Region, Pacific and North Australia
Commercial class: lesser known
Uses: lightweight construction, interior, furniture, molding, paneling, flooring, plywood, veneers, and block boards.
General characteristics: light weight; wood terrace white or pale yellow; colored sapwood cannot be distinguished; chime fiber
Basic properties: specific gravity 0.51; strength class III
Conservation status (IUCN): No information

12. Ki Oka (Figure 3E)
Trade name: Kelat
Scientific name: Timonius sp.
Family: Rubiaceae
Distribution: Indo-China, Malaysia, Java, Kalimantan, the Philippines and Papua New Guinea
Commercial class: minor timber
Uses: construction, furniture, floors, ships, bridges, equipment, fiberboard, veneers, plywood, charcoal and firewood
General characteristics: moderate to severe; patio wood grayish brown, golden brown, or reddish brown to reddish brown or purplish brown; paler colored wood; fiber chime or less regular
Basic properties: specific gravity 0.51; strength class III; durability class III
Conservation status (IUCN): From Least Concern (Timonius timon, T. pubistipulus and T. flavescens); Vulnerable (T. celemntis) to Critically Endangered (T. jambosella) [34]

13. Apua (Figure 3F)
Trade name: Bungur
Scientific name: Lagerstroemia floribunda
Family: Lythraceae
Distribution: Thailand, Malaysia, Sumatra, Riau Islands, Bangka, Belitung and Kalimantan
Commercial class: major timber
Uses: pallets, frames, tool handles, marine construction, parquet, panel board, and furniture
General characteristics: medium weight; wood patio reddish orange or brownish
red with many brownish yellow stripes; clearly separated with sapwood which is whitish brown and whitish yellow; fiber chime and wavy

Basic properties: specific gravity 0.50; strength class III; durability class III-IV

Conservation status (IUCN): From Least Concern (*Lagerstromia excels* and *L. indica*); Vulnerable (*L. anisoptera* and *L. intermedia*), and Endangered (*L. langkawiensis* and *L. minuticarpa*) [35]

14. Ketaping (Figure 3G)

Trade name: Ketapang

Scientific name: *Terminalia catappa* L.

Family: Combretaceae

Distribution: India, Indo-China, Thailand, Malesia, Australia and Polynesia

Commercial class: minor timber

Uses: lightweight construction, sills, crates, molding, beams, roof frames, floors, furniture, trains, agricultural tools, tool handles, lathe, boats, pile foundations, veneers, and plywood

General characteristics: mild to moderate weight; patio wood brown, light brown, reddish brown, light yellow, and yellowish brown; pig wood is a little paler; straight fiber to chime

Basic properties: specific gravity 0.50; strength class III; durability class IV

Conservation status (IUCN): No information

15. Ehei (Figure 3H)

Trade name: Dao

Scientific name: *Dracontomelon dao* (Burs.)

Family: Anacardiaceae

Distribution: India, Myanmar, Thailand, Cambodia, South China, the Malesia Region, and Solomon Island

Commercial class: minor timber

Uses: furniture, joints, decorative veneers, plywood, panels, molding, floors, lightweight construction, ships, and carvings

General characteristics: mild to moderate weight; wood terrace grayish and greenish yellow; paler colored wood; straight or chime fibers

Basic properties: specific gravity 0.44; strength class III; durability class IV

Conservation status (IUCN): From Vulnerable (*D. lenticulatum*), Endangered (*D. costatum*), to Critically Endangered (*Dracontomelon macrocarpum*) [36]

16. Ki Ono (Ki Ona) (Figure 4A)

Trade name: Tumih

Scientific name: *Combretocarpus rotundatus*

Family: Rhizophoraceae

Distribution: Sumatra (Riau Archipelago, Bangka and Belitong), Borneo, Sarawak, Brunei, Peninsular Malaysia

Commercial class: lesser known

Uses: heavy interior construction and railway sleepers, temporary construction exposed to the weather, furniture, flooring,
16. Randu (Figure 4B)

Trade name: Randu
Scientific name: *Ceiba pentandra* (L.) Gaertn.
Family: Malvaceae
Distribution: medium weight hardwood; the heartwood is reddish-brown and generally distinct from the grey-white sapwood which turns grey-brown upon exposure; texture coarse and uneven; tangential and radial surfaces exhibit an attractive silver grain.

Conservation status (IUCN): Vulnerable (*Combretocarpus rotundatus*)

17. Rengas (Figure 4C)

Trade name: Rengas
Scientific name: *Gluta renghas* L.
Family: Anacardiaceae
Distribution: Malaysia, Sumatra, Java, Kalimantan, Sulawesi, Maluku, Myanmar and Thailand
Commercial class: lesser known
Uses: joints, furniture, panels, floors, rotary veneers, plywood, lathe, poles, ships, and molding

Conservation status (IUCN): Least Concern [32]

18. Pupua (Figure 4D)

Trade name: Amberoii
Scientific name: *Pterocymbium tinctorum*
Family: Sterculiaceae
Distribution: Myanmar, Nicobar and Andaman Islands, Indo-China, Thailand, Malesian Region and Fiji
Commercial class: minor timber
Uses: veneer, plywood, molding, furniture, boats and pulp

Conservation status (IUCN): Least Concern (*Pterocymbium tinctorum*) and Critically Endangered (*Pterocymbium oceanicum*) [37]
Figure 3. Tree (left) and anatomical structure (right) of Terap (*Artocarpus lanceifolius*) (A); Tree (left) and anatomical structure (right) of Jati (*Tectona grandis* L.f.) (B); Tree (left) and anatomical structure (right) of Pakaror (*Endiandra macrophylla*) (C); Tree (left) and anatomical structure (right) of Kabaruk (*Antiaris toxicaria*) (D); Anatomical structure of Ki Oka (*Timonius* sp.) (E); Tree (left) and anatomical structure (right) of Apua (*Lagerstroemia floribunda*) (F); Tree of Ketaping (*Terminalia catappa* L.) (G); Tree (left) and anatomical structure (right) of Ehei (*Dracontomelon dao* (Burs.)) (H).
Figure 4. Tree (left) and anatomical structure (right) of Ki Ono (*Combretocarpus rotundatus*) (A); Tree of Randu (*Ceiba pentandra* (L.) Gaertn.) (B); Anatomical structure of Rengas (*Gluta renghas* L.) (C); Anatomical structure of Pupua (*Pterocymbium tinctorium*) (D); Tree (left) and anatomical structure (right) of Purut (*Parartocarpus venenosa*) (E); Tree (left) and anatomical structure (right) of Kenanga (*Cananga odorata*) (F); Tree (left) and anatomical structure (right) of Bayur (*Pterospermum javanicum* Jungh.) (G).

20. Purut (Figure 4E)

Description	Details
Trade name	Purut
Scientific name	*Parartocarpus venenosa*
Family	Moraceae
Distribution	Thailand, the Malesian Region, and Solomon Island
Commercial class	lesser known
Uses	lightweight construction, flooring, furniture, sills, block boards, particle boards, plywood, cast boards, crates and pallets, panels, boats, vehicle bodies, sports equipment, musical instruments, lathe, toys, and molds
General characteristics	mild to moderate weight; wood terrace yellowish white to grayish white; not clearly separated from sapwood; straight fiber slightly chime
21. Kenanga (Figure 4F)

- **Trading name**: Boxwood
- **Scientific name**: *Cananga odorata* (Lam.) Hook.f. & Thomson
- **Family**: Annonaceae
- **Distribution**: India, Fiji, Australia, the Philippines, and Malaya
- **Commercial class**: lesser known
- **Uses**: light construction, molding, box, carving, pulp and firewood
- **General characteristics**: white-gray patio wood; not clearly separated from sapwood; straight and wavy fibers
- **Basic properties**: specific gravity 0.36; strength class IV; durability class V
- **Conservation status (IUCN)**: Least Concern [38]

22. Bayur (Figure 4G)

- **Trade name**: Bayur
- **Scientific name**: *Pterospermum javanicum* Jungh.
- **Family**: Sterculiaceae
- **Distribution**: Myanmar, Malaysia, Sumatra, Java, Kalimantan, and Maluku
- **Commercial class**: lesser known
- **Uses**: joints, flooring, furniture, walls, tool handles, plywood, ships, bridges, boards, roof frames and pulp
- **General characteristics**: mild to moderate weight; patio wood pale brown to reddish brown with a purple hue; not clearly separated from sapwood; straight fiber slightly chime
- **Basic properties**: specific gravity 0.31; strength class IV; durable class IV-V
- **Conservation status (IUCN)**: No information

4. Conclusions

According to the wood properties, from the 22 wood species found in Enggano Island, two lesser known wood species had the potential as construction timbers, namely Ki Ahid (*Intsia palembanica*) and Kasai (*Kingiodendron alternifolium*), which belong to the strength class II. Four lesser-known wood species namely Umih, Kabaruk (*Antiaris toxicaria*), Ki Ono (*Combretocarpus rotundatus*), and Randu (*Ceiba pentandra*) which belong to the strong class III, were potential for sawn-timber. Due to the conservation status, the information regarding *Intsia palembanica* (Vulnerable), *Kingiodendron alternifolium* (Least Concern to Endangered), and *Combretocarpus rotundatus* (Vulnerable), should be carefully disseminated to the public. To support the utilization of those potential timber, the information regarding the cultivation is needed.

5. References

[1] Anonymous 2015 2015-2019 Strategic plan of the ministry of environment and forestry (Jakarta: Ministry of Environment and Forestry)

[2] Anonymous 2017 Forestry production statistics (Jakarta: Sub-directorate of Forestry Statistic, Central of Statistic Agency)

[3] Aprianis Y and Rahmayanti S 2009 The fiber dimension and its derivative values of seven wood species from Jambi Province Jurnal Penelitian Hasil Hutan 27(1): 11–20

[4] Anonymous 1986 Trees species arranged by regional and botanical names throughout Indonesia (Jakarta: Forest Inventory and Management Agency, Department of Forestry) p 149
[5] Soerianegara I and Lemmens R H M J 1994 *Plant resources of South-East Asia 5(1) Timber Trees: Major Commercial Timbers* (Bogor: PROSEA) p 610

[6] Lemmens R H M J, Soerianegara I and Wong W C 1995 *Plant Resources of South-East Asia 5(2) Timber Trees: Minor Commercial Timbers* (Bogor: PROSEA) p 664

[7] Sosef M S M, Hong LT and Praiwirohatmodjo S 1998 *Plant Resources of South-East Asia 5 (3) Timber Trees: Lesser-known Timbers* (Bogor: PROSEA) p 859

[8] Martawijaya A, Kartasajujia I, Kadir K and Prawira S A 1986 *Indonesian wood atlas volume I* (Bogor: Forest Products Research and Development Agency, Forestry Research and Development Agency, Department of Forestry) p 171

[9] Martawijaya A, Kartasajujia I, Mandang Y I, Prawira S A and Kadir K 1989 *Indonesian wood atlas volume II* (Bogor: Forest Products Research and Development Center, Forestry Research and Development Agency, Department of Forestry) p 167

[10] Abdurrohim S, Mandang Y I and Sutisna U 2004 *Indonesian wood atlas volume III* (Bogor: Forest Products Research and Development Center, Forestry Research and Development Agency, Department of Forestry) p 162

[11] Muslich M, Wardani M, Kalima T, Rulliati S, Damayanti R, Hadjib N, Pari G, Suprapti S, Iskandar MI, Abdurachman, Basri E, Heriansyah I and Tata H L 2013 Atlas of Indonesian Timber Volume IV (Bogor: Pusat Penelitian dan Pengembangan Keteknikan Kehutanan dan Pengolahan Hasil Hutan, Badan Penelitian dan Pengembangan Kehutanan, Kementerian Kehutanan) p 160

[12] Soewarni 2006 *General forestry studies* (Jakarta: Indonesian Forestry Rehabilitation Agency)

[13] Mandang Y I and Pandit I K N 2002 *Guidelines for identifying wood types in the field* (Bogor: PROSEA Foundation and the Center for Education and Training of Forestry Human Resource Employees) p 194

[14] Alrasjid H and Widiarti A 1992 *Gmelina arborea (Yamane) planting and harvesting technique*. Technical Information No. 36 (Bogor: Forest Research and Development Center)

[15] Sutapa J P G 2002 Quality of Mindi logs (*Melia azedarach* L.) from agroforestry areas. *Proceedings of Indonesian Wood Research Society National Seminar V* Bogor

[16] Kasmudjo and Sunarto S 1999 Mindi wood properties and possible uses. *Proceedings of Indonesian Wood Research Society National Seminar II Yogyakarta* pp 8–18

[17] Suwandhi I, Rasyid E, Darwis A and Rosmiati 2004 Distribution of Gadog trees (*Bischofia javanica* Blume) in West Java and testing the characteristics of the wood (Exploration series for typical and rare trees of West Java) *Proceeding of Indonesian Wood Research Society National Seminar VII Makassar* pp A210–214

[18] Rachman O and Malik J 1999 The utilization prospect of Cengkeh (*Eugenia aromatica* L.) wood as raw material for furniture and handicrafts. *Proceeding of Indonesian Wood Research Society National Seminar II Yogyakarta* pp 118–131

[19] Abdurachman and Hadjib N 2001 Physical and mechanical properties of West Java’s local mainstay wood species *Proceeding of Indonesian Wood Research Society National Seminar IV Samarinda* pp I125–I135

[20] Wheeler E A, Baas P and Gasson E 1989 IAWA List of microscopic features for hardwood identification *IAWA Bulletin* 10(3): 219–332

[21] Rulliati S 1994 Wood quality indicators as estimators of juvenile wood in mahogany (*Swietenia macrophylla* King.) from forest plantation in Sukabumi, West Java, Indonesia [Thesis] (Laguna: University of the Philippines at Los Banos, Laguna)

[22] Haygreen J G and Bowyer J L 1996 *Forest Products and Wood Science: an introduction* ed HadikuSumo S A (Yogyakarta: Gadjah Mada University Press) p 484

[23] Directorate of General of Forestry 1976 *Indonesian forestry vademecum* (Jakarta: Department of Agriculture) p 226

[24] British Standard 373-1957 *Methods of testing small clear specimens of timber* BSI 07-1999

[25] Lestari E, Amin Y, Pramasari D A, Adi D S and Dwianto W 2017 Fiber morphology of several wood species from the island of Enggano *Proceeding of Lignoselulosia Seminar* pp 15–19
[26] Asian Regional Workshop (Conservation & Sustainable Management of Trees, Viet Nam, August 1996) 1998 Eusideroxylon zwageri. The IUCN red list of threatened species 1998: e.T31316A9624725. [Online] accessed from https://dx.doi.org/10.2305/IUCN.UK.1998. RLTS.T31316A9624725.en

[27] World Conservation Monitoring Centre 1998 Intsia bijuga The IUCN red list of threatened species 1998: e.T32310A9694485. [Online] accessed from https://dx.doi.org/10.2305/IUCN.UK.1998. RLTS.T32310A9694485.en

[28] CAMP Workshops on Medicinal Plants, India (January 1997 1998 Kingiodendron pinnatum. The IUCN Red List of Threatened Species 1998: e.T33647A9800386. [Online] accessed from https://dx.doi.org/10.2305/IUCN.UK.1998. RLTS.T33647A9800386.en.

[29] World Conservation Monitoring Centre 1998 Kingiodendron platycarpum The IUCN red list of threatened species 1998: e.T35013A9903141 [Online] accessed from https://dx.doi.org/10.2305/IUCN.UK.1998. RLTS.T35013A9903141.en

[30] Eddowes, PJ 1998 Koompassia grandiflora. The IUCN red list of threatened species 1998: e.T34626A9879722. [Online] accessed from https://dx.doi.org/10.2305/IUCN.UK.1998. RLTS.T34626A9879722.en

[31] Asian Regional Workshop (Conservation & sustainable management of trees, Viet Nam, August 1996) 1998 Koompassia excelsa. The IUCN red list of threatened species 1998: e.T33208A9765707. [Online] accessed from https://dx.doi.org/10.2305/IUCN.UK.1998. RLTS.T33208A9765707.en

[32] Asian Regional Workshop (Conservation & sustainable management of trees, Viet Nam, August 1996) 1998 Koompassia malaccensis. The IUCN Red List of Threatened Species 1998: e.T33209A9765872 [Online] accessed from https://dx.doi.org/10.2305/IUCN.UK.1998. RLTS.T33209A9765872.en

[33] Rivers, MC, Mark, J 2017 Ceiba pentandra The IUCN Red List of Threatened Species 2017: e.T61782438A61782442 [Online] accessed from https://dx.doi.org/10.2305/IUCN.UK.2017-3. RLTS.T61782438A61782442.en

[34] IUCN [Online] accessed from https://www.iucnredlist.org/search?taxonomies=129283&searchType=species

[35] IUCN [Online] accessed from https://www.iucnredlist.org/search?query=Timonius&searchType=species

[36] IUCN [Online] accessed from https://www.iucnredlist.org/search?taxonomies=127949&searchType=species

[37] IUCN [Online] accessed from https://www.iucnredlist.org/search?taxonomies=110307&searchType=species

[38] IUCN SSC Global Tree Specialist Group & Botanic Gardens Conservation International (BGCI) 2019 Parartocarpus venenosa The IUCN Red List of Threatened Species 2019: e.T156202593A156216276. [Online] accessed from https://dx.doi.org/10.2305/IUCN.UK.2019-3. RLTS.T156202593A156216276.en