Global Regulator AdpA_1075 Regulates Morphological Differentiation and Ansamitocin Production in Actinosynnema pretiosum subsp. auranticum

Siyu Guo 1, Tingting Leng 1, Xueyuan Sun 1, Jiawei Zheng 1, Ruihua Li 1, Jun Chen 1, Fengxian Hu 1, Feng Liu 1,* and Qiang Hua 1,2,*

1 State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
2 Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China
* Correspondence: fengliu@ecust.edu.cn (F.L.); qhua@ecust.edu.cn (Q.H.); Tel./Fax: +86-21-64250972 (Q.H.)

Abstract: Actinosynnema pretiosum is a well-known producer of maytansinoid antibiotic ansamitocin P-3 (AP-3). Growth of A. pretiosum in submerged culture was characterized by the formation of complex mycelial particles strongly affecting AP-3 production. However, the genetic determinants involved in mycelial morphology are poorly understood in this genus. Herein a continuum of morphological types of a morphologically stable variant was observed during submerged cultures. Expression analysis revealed that the ssgA_6663 and ftsZ_5883 genes are involved in mycelial aggregation and entanglement. Combining morphology observation and morphology engineering, ssgA_6663 was identified to be responsible for the mycelial intertwining during liquid culture. However, down-regulation of ssgA_6663 transcription was caused by inactivation of adpA_1075, gene coding for an AdpA-like protein. Additionally, the overexpression of adpA_1075 led to an 85% increase in AP-3 production. Electrophoretic mobility shift assays (EMSA) revealed that AdpA_1075 may bind the promoter regions of asm28 gene in asm gene cluster as well as the promoter regions of ssgA_6663. These results confirm that adpA_1075 plays a positive role in AP-3 biosynthesis and morphological differentiation.

Keywords: Actinosynnema pretiosum; ansamitocin P-3; ssgA; AdpA; morphological differentiation

1. Introduction

Ansamitocin P-3 (AP-3) exhibits antitumor activity against various cancer cell lines [1–3]. Its derivatives are commonly used as the ‘warhead’ molecule in antibody-conjugated drug (ADC) for the treatment of various solid tumors [4]. AP-3 is a member of various ansamitocin congeners produced by A. pretiosum. Ansamitocins are of limited industrial applicability because of their low production yields. In recent decades, considerable efforts have been made to further enhance AP-3 yield to satisfy the industrial demands with medium optimization and genetic modifications because of its great pharmaceutical value [5–12].

From an industrial point of view, liquid culture is favorable for large scale production of antibiotics. Actinomycetes are usually subjected to submerged fermentation. Unlike other bacteria, Actinobacteria remarkably exhibits complex morphology during submerged cultivation. In liquid culture, their mycelium shows filamentous growth, exhibiting dispersed mycelial form or compact mycelial network [13]. It is well studied that different morphological forms lead to various degrees of nutrient and oxygen transfer during the fermentation process [14]. Three types of morphologies—freely dispersed mycelia, open mycelial networks, and compact mycelial network are generally distinguished in submerged cultures [15]. The morphological phenotypes are genetically determined and differ considerably between strains. The formation of unfavorable morphology during liquid-grown cultures may be a major bottleneck hindering the industrial production of...
antibiotics [16]. Submerged culture studies for different antibiotic production have made efforts to select strains with better growth characteristics. Forming dispersed mycelium helps productivity in the bioreactor for *Streptomyces hygroscopicus* producing rapamycin [17]. A similar situation was found in previous studies of tylosin and nystatin production in both *Streptomyces fradiae* and *Streptomyces noursei* [18,19]. However, for production of nikkomycin and erythromycin pelleted growth is preferred [20,21]. Additionally, forming dense pellets also contributed to the productivity optimization of *Streptomyces lividans* TK21 for a hybrid antibiotic production as well [22].

Therefore, in order to optimize mycelial morphology in a more targeted and flexible manner, several genetic determinants have been identified that play roles in the control of morphogenesis [23]. The genetic factors include cell-matrix proteins and extracellular polymers. Morphoproteins with specific roles in liquid-culture morphogenesis for apical growth and hypha branching include the cell wall remodeling protein SsgA-like proteins (SALPs) [24], and the cellulose synthase-like protein CslA [25]. Members of the family of SALPs are required to activate cell division in both solid and liquid culture sporulation [26–28]. SsgB is the archetypal SALP and functions by colocalizing with SsgA for recruiting FtsZ during aerial hyphae early division stage [29–31]. Morphology engineering strategies for *ssgA* gene modification were employed to obtain desirable morphologies and fast growth [32,33]. Interestingly, morphological differentiation caused by *ssgA* transcriptional variations are generally controlled by AdpA [28,34,35]. AdpA is universally present in Actinomycetes, as a global regulator of morphological differentiation and secondary metabolism [36,37]. In *S. griseus*, AdpA positively controls the expression of genes involved in spore formation and aerial mycelium formation, as well as activates the transcription of various genes related to secondary metabolism [38,39]. Whereas, overexpression of the *adpAsx* gene in *S. xiamenensis* 318 had negative effects on cell division genes, such as putative *ssgA,ftsZ,ftsH*, and *whiB*. Besides, it functions as a bidirectional regulator for the biosynthesis of xiamenmycin and PTMs [40]. To date, AdpA has been proven to contain a C-terminal domain with two helix-turn-helix (HTH) DNA binding motifs [41]. As a global transcription factor, the regulatory relationship between AdpA and target genes has been investigated in *Streptomyces*. AdpA and its orthologs activate or down-regulate genes, including repression of its own transcription, by directly binding to operator regions containing a consensus sequence [38,42,43].

Although *A. pretiosum* is being developed as a sustainable industrial production platform, the genes involved in cell division and morphological development are still poorly investigated. Gene *APASM_4178* was identified as a subtilisin-like serine peptidase encoding gene responsible for mycelial fragmentation [44]. FtsZ protein from *A. pretiosum* as the analogue of β-tubulin, was demonstrated to be the AP-3 binding target. Overexpression of *APASM_5716* gene that encodes FtsZ resulted in AP-3 resistance and overproduction in *A. pretiosum* ATCC 31280 [45]. A two-component signal transduction system, PhoPR homolog was identified in the genome of the *A. pretiosum* X47 strain. PhoP is the response regulator, negatively affecting morphological development and excluding its regulation on the biosynthesis of AP-3 in X47 strain [46]. However, for filamentous microorganisms, the importance of understanding the relationship between mycelial morphological development and antibiotic biosynthesis is nontrivial. In this study, a variant of *A. pretiosum* has been observed to form dense pellets, while the control strain formed loose clumps. In addition, excessive mycelial fragmentation of the control strain was observed early in the fermentation. We investigated several putative genes that may contribute to cell division and pellet architecture. Gene *ssgA_6663* was identified as a key genetic determinant of compact mycelial network formation during solid and liquid cultures. We also characterized the roles of AdpA_1075 in controlling the morphological differentiation and AP-3 production. AdpA_1075 was determined to positively control the biosynthesis of ansamitocin by directly regulating the expression of *asm28*.
2. Materials and Methods

2.1. Bacterial Strains, Plasmids and Culture Conditions

All plasmids and strains used in this study are listed in Supplementary Table S1. *A. pretiosum* subspp. *auranticum* L40 was derived from *A. pretiosum* subspp. *auranticum* ATCC 31565 by atmospheric and room temperature plasma (ARTP) mutagenesis [12]. Strain L40 and its derivatives in this study were cultivated as described previously [47]. YMG agar plates (for solid culture) and TSBY broth (for liquid culture) were employed for strain culture. For fermentation experiments, strains were cultured in shake flasks at 28 °C for 8 days.

The stability of strain MD15 was tested following the method described by former study [10] with some modifications. In brief, strain MD15 was transferred at 24 h intervals for a total of twenty-five passages in YMG liquid medium. The original strain, fifteenth and twenty-fifth passages were selected to test the fermentation performances stability of strain MD15 in liquid fermentation.

2.2. Construction of Recombinant Strains

CRISPR-Cas9 mediated gene inactivation. Mutants with gene ssgA_6663, adpA_1075, or asm28 disruption were performed by pCRISPR-Cas9apre with a unified construction process [47]. As an example, the construction of mutant with gene ssgA_6663 deletion was described briefly. Two homologous arms (upstream 1.2 kb, downstream 1.3 kb) for ssgA_6663 deletion were amplified and together cloned to *Stu*I-digested plasmid pCRISPR-Cas9apre by NEB DNA Assembly Master Mix (New England Biolabs, Ipswich, MA, USA) to give the pCRISPR-Cas9apreΔssgA. The ApE software (a plasmid editor, version 2.0.50. https://jorgensen.biology.utah.edu/wayned/ape/, accessed on 5 October 2016) was used to search N20 targeting sequences of sgRNAs. The sgRNA cassettes were cloned into the *Xma*I/*Sna*BI site of pCRISPR-Cas9apreΔssgA. The amplification primers used to construct pCRISPR-Cas9apre series gene knockout plasmids are shown in Supplementary Table S2.

Construction of plasmids for gene overexpression. pSETK derived from pSET152 was used to prepare overexpression plasmids of ssgA_6663, adpA_1075, ftsZ_5883 or asm28. More specifically, the *kasOp*-rbs fragment was introduced to *Xba*I/*Eco*RV cloning site of pSET152. Aforementioned genes were amplified from *A. pretiosum* L40 chromosome. The amplicons were cloned into *Nde*I/*Eco*RV site of pSETK, respectively. The obtained recombinant plasmids pSETKssgA, pSETKftsZ, pSETKadpA, pSETKasm28, pSETKftsZ:ssgA, and control plasmid pSETK were individually transferred into *E. coli* ET12567(pUZ8002) and then integrated into the *attB* site of strain MD02 by intergeneric conjugation. The verification of these recombinant strains was performed by PCR (Supplementary Figure S2A–C). To construct the pSETKftsZ:ssgA plasmid, the fragment containing *kasOp*-rbs-ssgA_6663 expression cassette cloned from pSETKssgA plasmid was inserted into pSETKftsZ digested by *Eco*RV to generate pSETKftsZ:ssgA. The verification of gene co-expression was double checked by PCR using two primer pairs 152yz-F/R and ftsZchk-f/ssgAchk-r (Supplementary Figure S2D–F).

2.3. RNA Isolation, cDNA Synthesis and Quantitative Real-Time PCR (qRT-PCR)

Total RNA was extracted using a bacterial RNA extraction kit (Jiangsu Cowin Biotech Co., Ltd., Taizhou, China). Isolated RNA was treated by DNase I before being reverse transcribed with cDNA Synthesis Kit (Jiangsu Cowin Biotech Co., Ltd., Taizhou, China). The cDNA templates were amplified in triplicate for each transcription analysis using MagicSYBR Mixture (Jiangsu Cowin Biotech Co., Ltd., Taizhou, China) with primers listed in Supplemental Table S2. The transcription of target genes was determined by RT-PCR using a CFX96 Real-Time System (Bio-Rad, Richmond, CA, USA). 16S rRNA gene was used for internal normalization. Relative transcript level of genes was quantified by the $2^{-\Delta\Delta Ct}$ method [48].
2.4. Determination of AP-3 Production

AP-3 was extracted from the culture supernatant using a previously described method [12]. HPLC analysis of AP-3 was operated on Agilent series 1260 (Agilent Technologies, Inc., Santa Clara, CA, USA) equipped with a SinoChrom ODS-BP C18 column (4.6 mm × 250 mm, 5 µm, Elite, Dalian, China) coupled to UV detector at 254 nm. The column was eluted with 85% methanol and 15% water at 28 °C.

2.5. Mycelial Morphology Observation

Mycelial morphology was observed using an optical microscope (Olympus CX 31, Olympus Corporation, Tokyo, Japan). Culture broth (10 µL) was pipetted onto a standard glass slide (25 × 75 mm), dyed with crystal violet. Images were captured under an oil immersion lens (magnification, 100×).

2.6. Scanning Electron Microscope (SEM)

Mycelium was harvested by centrifugation, and washed with 0.1 M PBS. The mycelium was resuspended in 2.5% glutaraldehyde solution for 3 h. The fixed samples were then washed twice with 0.1 M PBS. Samples were subjected to gradient dehydration with ethanol solution (50%, 70%, 95% and 100%). Finally, the dehydrated samples analyses were carried out on a S3400-N scanning electron microscopy (Hitachi, Tokyo, Japan).

2.7. Heterologous Overexpression of AdpA-1075

Gene adpA_1075 was amplified with primers 28a1075-F/R. The adpA_1075 cassette was cloned in HindIII/Ndel-digested pET28a (+), generating plasmid pET-28a-adpA_1075. The plasmid was transformed into E. coli BL21(DE3) for protein overexpression. The generated strain BL21(DE3)/pET-28a-adpA_1075 was cultivated at 37 °C for 2–3 h in 100 mL LB medium containing 50 µg/mL kanamycin until OD600 reached about 0.6–0.8. Isopropyl-β-D-thiogalactoside (IPTG, 0.1 mM) was added after 30 min of cooling at 4 °C and further incubated overnight at 16 °C for AdpA_1075 expression. The cells were harvested and resuspended in 50 mM phosphate buffer solution (pH 7.5). His-tagged AdpA_1075 protein was released from cells by homogenization. Ni SepharoseTM 6 Fast Flow (GE Healthcare Life Sciences, Marlborough, MA, USA) was applied to proteins purification with elute buffer (50 mM phosphate buffer solution, 250 mM imidazole, 500 mM NaCl). The purified His-tagged AdpA-1075 was analyzed by 12.5% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE).

2.8. Electrophoretic Mobility Shift Assays (EMSA)

EMSA was performed using a Chemiluminescent EMSA Kit (Beyotime Biotechnology, Shanghai, China) according to the manufacturer’s instructions. The two complementary oligonucleotides were annealed, labeled with biotin, and incubated with recombinant proteins in the absence or presence of excess amounts of unlabeled wildtype oligonucleotides. The protein-DNA complexes were separated on 5% polyacrylamide gels and the signals were captured with a Chemiluminescence Imaging System (BG-gdsAUTO 720, Baygene Biotechnol Co., Ltd., Shanghai, China). As a control, for each target gene, excessive unlabelled specific DNA fragments were added to the reactions, resulting in the appearance of free un-shifted probe and demonstrating that the binding was specific.

3. Results

3.1. Identification of ssgA in A. pretiosum subsp. auranticum

The previously constructed mutant MD15 with tandem deletion of two gene clusters (cluster T1PKS-15 and T1PKS/NRPS-5) [47] showed excellent fermentation stability (Figure 1A). To better understand the improvement of fermentation performance, the mycelia from culture broth were collected at 16, 24 and 72 h, and aerial hyphae were examined on YMG medium. Scanning electron microscopy (SEM) was used to demonstrate in detail the morphological differences between the mutant strain MD15 and the control.
strain L40. During the first 24 h of fermentation in both control strain L40 and mutant strain MD15, pellets were formed by aggregative hyphae. Mycelial fragmentation occurred in the control strain L40 at around 72 h, while in contrast, the mycelia of MD15 remained dense pellets with well-developed mycelial boundaries (Figure 1B). Compared with the loosely interwoven mycelial morphological characteristics of L40, the aerial mycelia of MD15 formed a tight mycelial network (Figure 1C). We speculate that gene expression may be altered in strain MD15. SsgA, FtsZ, SsgB, and CslA encoding genes were found, namely ssgA_6663, ftsZ_5883, ssgB_2072, and cslA_0512, respectively, in A. pretiosum subsp. auranticum ATCC 31565 genome. To better understand the role of these genes in mutant MD15 morphological development, the transcription levels of these target genes were measured by qRT-PCR on the third day of fermentation. In mutant MD15, transcription levels of ssgA_6663 and ftsZ_5883 were 124% and 160% higher than those in strain L40, respectively (Figure 1D). The transcription of gene ssgB_2072 was not detected, suggesting that the strain was defective in the initiation of sporulation, as the protein complexes SsgA and SsgB cannot colocalize in aerial hyphae. It has been supported by phenotypic observations. In strain L40 and its derivative, smooth and uncoiled aerial hyphae formed, but no spores (Figure 1C). Negligible changes were observed in cslA_0512, which encodes a cellulose synthase-like protein homologue essential for pellet formation [49]. This fact excludes the involvement of cslA_0512 in the formation of compact pellets in A. pretiosum.

Figure 1. Fermentation stability and morphological variation of mutant MD15. (A) Fermentation stability of strain MD15. The strains from original, fifteenth and twenty-fifth subculture were collected to perform liquid fermentation. Fermentation experiments were carried out in three biological replicates. The average AP-3 production of the original MD15 strain was set to 100% as the standard, and the values are means ± SD (standard deviations) of three independent experiments. (B) Mycelium morphology changes of strain L40 and mutant MD15 during fermentation. Magnification, 100×. (C) Scanning electron micrographs of strain L40 and mutant MD15 on day 3 of YMG solid culture. Scale bar: 5 μm. Magnification, 7500×. (D) Transcription levels of the cell division genes of mutant MD15 on the third day of fermentation. The average expression value of genes in the control strain L40 was set to 1 as the standard, and the values are means ± SD of triplicate analyses. Gene expression level was determined by 2−ΔΔCt method.
Mycelial fragmentation has previously been reported to impede AP-3 production [12,44]. Pelleted growth is preferred for *A. pretiosum* producing AP-3 in submerged cultivation [12]. The sporulation-specific gene *ssgA* directly activates cell division in *Streptomyces* [27,50]. Moreover, the expression of *ssgA_6663* also varies with strain morphology in non-spore producing *A. pretiosum* (Figure 1) [12]. We therefore assume that both *ssgA_6663* and *ftsZ_5883* play important roles in controlling the morphogenesis in *A. pretiosum*, especially in the formation of intertwined mycelial network. As reported earlier, filamentous growth and sporulation of actinobacteria require the bacterial tubulin homolog FtsZ [39,51,52]. Overexpression of *ftsZ* gene might also be used to alleviate AP-3 toxicity and improve resistance of *A. pretiosum* to AP-3. Since FtsZ was determined to be the intracellular binding target of AP-3 [45]. A high transcriptional level of *ftsZ_5883* was observed in mutant with a denser mycelial intertwining pattern (Figure 1D). Whether *ssgA_6663* and *ftsZ_5883* are involved in specific cellular process and contribute to stable fermentation remains to be investigated.

3.2. Deletion of *ssgA_6663* Affected the Morphological Differentiation of *A. pretiosum*

We then investigated the effects of *ssgA_6663* deletion on mycelium development and AP-3 production. The length of aerial mycelia of *ssgA_6663* disruption mutant was much shorter than that of strain L40 without intertwining (Figure 2A). In submerged cultivation, mycelium of ΔssgA_6663 mutant developed into dispersed mycelial form (Figure 2B). The short aerial mycelium probably prevented the strain from making biomass from nutrients (Figure 2C). Further HPLC analysis revealed that AP-3 was almost undetected in the fermentation culture of the *ssgA_6663* disruption mutant, and the biomass in the fermentation was also reduced (Figure 2D). However, the introduction of multiple copies of gene *ssgA* may cause an excessive mycelial fragmentation in spore-producing *Streptomyces* [50]. To verify whether *ssgA_6663* and *ftsZ_5883* play a positive role in mycelial aggregation and entanglement, these two cell division genes were overexpressed in tandem under the drive of *kasOp*. The co-overexpression of *ftsZ_5883* and *ssgA_6663* caused the long hyphae to intertwine closely with each other and form clumps, which was more visible than that of the strain overexpressing *ftsZ_5883* alone (Figure 2B). This phenomenon may be consistent with previous reports that secondary metabolism and morphological differentiation can be regulated by global regulator, rather than morphology directly affecting secondary products biosynthesis [35]. The timing of SsgA expression in *Streptomyces* sporulation-specific cell division and morphogenesis can be regulated by global regulator AdpA [50]. As previously reported in *A. pretiosum* ATCC 31280, AdpA-like protein APASM_1021 was found [44]. Gene *adpA_1075* was identified as an AdpA orthologue from three putative AraC family protein encoding genes in *A. pretiosum* subsp. *auranticum* for the high amino acid sequence identity (97.17%) between AdpA_1075 and APASM_1021 (Supplementary Figure S3). We therefore speculate that AdpA_1075 may also play a regulatory role in the L40 strain. Furthermore, the lawns of *ssgA_6663*-null mutant on YMG plate exhibited a bald phenotype distinct from L40, whereas deletion of *adpA_1075* had little restriction on the arising of aerial hyphae (Figure 2C). Interestingly, deletion of *adpA_1075* also resulted in a significant decrease in AP-3 production without inhibition of biomass accumulation, suggesting that *adpA_1075* is essential for AP-3 biosynthesis as a pleiotropic transcriptional regulator (Figure 2D).
Figure 2. Differences in morphology (A–C) and AP-3 production (D) between mutant strains and L40 strain. (A) Scanning electron micrographs of ssgA_6663 deletion mutant and strain L40 on day 3 of YMG plate culture. Scale bar: 5 μm. Magnification, 7500×. (B) Scanning electron microscopic observation of mycelium of strain L40, ssgA_6663 deletion mutant, strain overexpressing ssgA_6663 and ftsZ_5883 in tandem, and mutant with ftsZ_5883 overexpression in liquid seed culture for 16 h. Scale bar: 5 μm. Magnification, 7500×. (C) Phenotypes of control strain L40, ssgA_6663 deletion mutant, and adpA_1075 deletion mutant grown on YMG plates at 28 °C (day 3). (D) AP-3 production and cell growth of strains L40, MD07, and MD08. MD07, mutant with ssgA_6663 deletion. MD08, mutant with adpA_1075 deletion. All fermentation experiments were performed in three biological replicates.

3.3. Overexpression of adpA_1075 Increased the Production of AP-3

As reported previously, ssgA is essential for septum formation in aerial hyphae, a late step in morphological differentiation. Therefore, ssgA mutation may not affect the production of secondary metabolites [26–28]. In this study, ssgA_6663 or adpA_1075 was individually overexpressed under the strong promoter kasOp* on the shuttle vector pSETK, to investigate the effects of the enhanced expression of these two proteins on ansamitocin biosynthesis. The fermentation experiments were performed for the recombinant strains overexpressing ssgA_6663, ftsZ_5883, or adpA_1075, and the control strain MD02::pSETK (MD02 integrated with the vector pSETK), respectively. The results showed that the overexpression of ssgA_6663 did not improve AP-3 production, which was consistent with what was observed in S. griseus [26,28]. As expected, enhanced expression of ftsZ_5883 improved strain resistance against AP-3 [45], alleviated cell toxicity, and increased AP-3 production by 45% (Figure 3A). Moreover, overexpression of adpA_1075 increased AP-3 production by 85% without affecting dry cell weight (DCW) at the end of fermentation (Figure 3A,B). Therefore, we may conclude that overexpression of ssgA_6663 only causes morphological changes but does not directly promote AP-3 production. Overexpression of adpA_1075 may not only regulate ansamitocins biosynthesis, but also regulate strain morphology by controlling the expression of ssgA_6663.
3.4. AdpA_1075 Is Involved in the Regulation of ssgA_6663 Transcription in A. pretiosum

The AraC family transcription factor known as AdpA is a global regulator of morphological differentiation and secondary metabolism [42,43,53,54]. Cell division genes are included in members of AdpA regulon, such as ssgA which requires AdpA to turn on transcription [28,50,55,56]. Since the fermentation morphology changes caused by ssgA_6663 inactivation did not directly affect the production of AP-3, we hypothesized that AdpA_1075 might be involved in both ssgA_6663 expression and ansamitocins production. Diametrically opposed transcriptional patterns of ssgA_6663 in adpA_1075 inactivation mutant seemed to further validate the hypothesis. In parent strain L40, the transcription of ssgA_6663 increased significantly on day 3 of fermentation, but decreased sharply when the strain switched to the stationary growth phase (Figure 4). In contrast, in mutant MD08, ssgA_6663 transcription was down-regulated due to the absence of AdpA_1075 and remained low from the third day of fermentation (Figure 4).

Figure 3. Effects of overexpression of cell division genes on AP-3 production (A) and cell growth (B). Three biological replicates were performed in fermentation experiments. The values are means ± SD of triplicate analyses. Differences were analyzed by one-way ANOVA, **, p < 0.01, ***, p < 0.001.

Figure 4. Relative transcription of ssgA_6663 gene in L40 and MD08 at different culture times. RNA sample data were obtained from days 2, 3, and 4 of fermentation. Gene expression level was determined by $2^{-\Delta\Delta Ct}$ method, and the values are means ± SD of triplicate analyses. Transcription data on day 2 was set as the baseline for comparison. 16s rRNA was used as the internal control. Three biological replicates were performed in fermentation experiments. Significant differences were analyzed by one-way ANOVA, *, p < 0.05, **, p < 0.01, ****, p < 0.0001, ns, no significant. MD08, mutant with adpA_1075 deletion.
3.5. AdpA_1075 Binds to Promoters of ssgA_6663 and asm28

The above analyses demonstrated that AdpA_1075 regulated morphological development by controlling the expression of ssgA_6663. To determine whether AdpA_1075 directly regulated the gene transcription of ssgA_6663, EMSA was performed. As previously reported, a consensus AdpA-binding sequence such as 5′-TGGCSNGWWY-3′ (S: G or C; W: A or T; Y: T or C; N: any nucleotide) was identified in S. griseus (Figure 5A) [57]. Consequently, the upstream region of ssgA_6663 was analyzed by gene sequence alignment and manual correction, according to the reported AdpA-binding motifs in Streptomyces and A. pretiosum ATCC 31280 [44, 57]. A conserved AdpA-binding motif, 5′-TGGCCGAAC-3′ (in reversed orientation) was identified (Figure 5B). AdpA_1075-His₆ protein was then purified, and biotin labeled probes were prepared as mentioned above. EMSA results showed that the complex AdpA_1075-PssgA was formed in a protein concentration-dependent manner, confirming that AdpA_1075 bound specifically to the promoter region of ssgA_6663 (Figure 5E). Surprisingly, we not only found an AdpA-binding sequence in the promoter region of ssgA_6663, but also observed a potential AdpA-binding site 5′-TGGCCCGAAC-3′ (in reversed orientation) in the upstream region of asm28 (Figure 5C). Compared to the transcriptional changes of ssgA_6663 and ftsZ_5883 in adpA_1075 overexpression mutant, transcriptional level of asm28 in the adpA_1075 overexpression strain was 3.5 times higher than that in the parent strain (Figure 5D). Unexpectedly, the overexpression of adpA_1075 did not affect the expression of ftsZ_5883. The slight up-regulation of ssgA_6663 indicated that another regulator may be also involved in the regulation of ssgA_6663 transcription. Results of EMSAs showed that Pasm28 probe was shifted when incubated with 1000 nM AdpA_1075-His₆ (Figure 5E). The above results suggested that AdpA_1075 specifically binds to the promoters of ssgA_6663 and asm28, implying that AdpA_1075 controls the transcription of these genes directly. The upstream region of asm28 is the only potential AdpA binding site on the asm gene cluster, as it contains a 10-bp consensus sequence mentioned above. However, the function of asm28 has not been reported. Therefore, we further investigated the effect of asm28 gene on AP-3 production. Mutant with asm28 deletion was constructed by CRISPR-Cas9-mediated vector pCRISPR-Cas9apreΔasm28 (Supplementary Figure S4A,B). AP-3 production of the obtained mutant MD19 was only 69% of that of parent strain MD01. However, overexpression of asm28 promoted ansamitocin biosynthesis and resulted in an approximately 25% increase in AP-3 production, without any effect on DCW of the strain at the end of fermentation (Figure S4D,E). These results demonstrated that AdpA_1075 activated asm28 and ssgA_6663 on the third to fourth day of fermentation, consistent with the enhanced AP-3 production and mycelial pellet formation in strains.
Figure 5. AdpA_1075 binds PssgA and Pasm28. (A) The Sequence of AdpA-binding motif. (B,C) Conserved (shown in red) AdpA-binding motifs in the upstream region of ssgA_6663 and asm28. The start codon of ssgA_6663 or asm28 are shown in bold black. *, stop codons. (D) Relative transcription of gene ssgA_6663, ftsZ_5883, asm28 in mutant with adpA_1075 overexpression on day 3 of fermentation. Gene expression level was determined by $2^{-\Delta\Delta CT}$ method. The average expression value of genes in the strain MD02 was set to 1 as the standard, and the values are means ± SD of triplicate analyses. Differences were analyzed by one-way ANOVA, ns, no significant, *, $p < 0.05$. (E) EMSAs of purified AdpA_1075-His6 binding to the probes PssgA and Pasm28 labeled with biotin in the upstream region of ssgA_6663 and asm28. 20 ng biotin-labeled probes were incubated for 10 min at room temperature. The experiment was repeated for three times.
4. Discussion

The mycelial fragmentation of *A. pretiosum* under submerged conditions has long attracted researchers’ attention [12,44,58]. However, in our previous work, pelleted growth was found to be more conducive to the production of ansamitocin [12]. Other studies have revealed that cell-wall remodeling protein SsgA may control the development of fragmentation and promote the growth rate of spore-forming *Streptomyces* strains [32,33]. The absence of SsgB in *A. pretiosum* makes it a non-spore-forming bacterium (Figure 1C,D) [59,60]. Additionally, both mycelial fragmentation and significant biomass enhancement was observed in *ssgA*₆₆₆₃-overexpressing *A. pretiosum* (Figures 2B and 3B). All these results indicate that *ssgA*₆₆₆₃ is not responsible for mycelial fragmentation and AP-3 yield reduction in *A. pretiosum*.

Therefore, we hypothesized that, similar to that reported in *S. limosus* [32], *A. pretiosum* strain may produce large mycelial mat structures in the early growth phase, while the enhanced expression of *ssgA*₆₆₆₃ leads to pellet formation during stationary phase. As expected, a significant increase in the transcriptional profile of *ssgA*₆₆₆₃ was observed in the parent strain L40, followed by a noticeable decrease from day 2 to day 4 of fermentation (Figure 4). However, this transcriptional pattern was disrupted when gene *adpA*₁₀₇₅ was inactivated (Figure 4).

AdpA as a pleiotropic transcriptional regulator can regulate both morphological differentiation and secondary metabolism [61]. We further investigated the *adpA*₁₀₇₅ gene, encoding an AdpA-like protein. Specific regulation of AdpA-like protein on subtilisin-family serine peptidase encoding gene resulted in a delayed fragmentation, which has been demonstrated in *A. pretiosum* ATCC 31280 [44]. Moreover, the *ssgA*₆₆₆₃ gene has also been identified as being primarily responsible for the formation of mycelial intertwining. Based on these findings, we hypothesized that AdpA₁₀₇₅, as a global regulator, may comprehensively control the development of multicellular structures and AP-3 biosynthesis during strain fermentation.

Despite the presence of many regulatory genes in the *asm* gene cluster, few studies have been reported on the regulation of ansamitocin biosynthesis. The functions of these regulatory genes were characterized by gene inactivation, complementation, transcriptional analysis, and feeding experiments [62–65]. For example, negative regulatory gene *asm2* and *asm34*, and positive regulatory gene *asm8* and *asm18* are the putative regulatory genes on the *asm* gene cluster. Whereas, direct evidence for these regulators directly controlled *asm* structural genes was absent. Most of them probably control the expression of genes involved in resistance to xenobiotics, regulation of efflux pumps, and response to stressors [41].

AdpA homologs were well-studied, and have been proven to contain a C-terminal domain with two helix-turn-helix (HTH) DNA binding motifs [37]. In this study, the *adpA*₁₀₇₅ gene was identified as an ortholog of pleiotropic regulator AdpA, and its DNA-binding site is similar to the conserved sequence of the AdpA-binding motifs in many *Streptomyces* species [57]. Earlier work revealed that the expression of APASM₄₁₇₈, which is responsible for mycelial fragmentation, is specifically regulated by an AdpA-like protein in *A. pretiosum* ATCC 31280 [44]. In this work, the EMSA results also demonstrated the interaction between AdpA₁₀₇₅ and promoter region of the subtilisin-family serine peptidase encoding gene (data not shown). Our data showed that AdpA₁₀₇₅ of the *A. pretiosum* L40 strain directly binds to the promoters of the *ssgA*₆₆₆₃ and *asm28*. Therefore, these findings deepen insights into the regulatory roles of the AdpA-like protein in *A. pretiosum*, revealing a high functional similarity to the AdpA homolog in *Streptomyces* reported previously [35].

In this study, an intergenic region containing AdpA-binding motif was identified in the upstream region of *asm28* (Figure 5). Our findings in vitro and in vivo experiments suggested that *asm28* may be the target of AdpA₁₀₇₅ for regulating ansamitocin biosynthesis (Figures 5 and S4). Moreover, the global regulator *bldA* controls antibiotic production as well, by regulating sporulation and antibiotic production in *Streptomyces* [66]. Generally, the TTA codons are very rare in GC-rich genomes of *Actinobacteria*. TTA-containing genes are usually the cluster-situated regulators of secondary metabolite biosynthesis. In this
study, we found that the asm28 open reading frame (ORF) also contains a TTA codon, indicating that asm28 might be an important regulatory target during ansamitocin biosynthesis. However, the function of asm28 gene and its encoded protein remain uncharacterized at present. Follow-up studies are needed to confirm this hypothesis and to elucidate the complex regulatory network in which asm28 is involved.

5. Conclusions

In this study, we have elucidated the function of ssgA_6663 in mycelial development. ssgA_6663 can dominate the mycelial intertwining and pellet formation. The silencing of the ssgB_2072 gene resulted in the absence of SsgB, which may explain the fact that the strain developed into mycelium without sporulation septa.

Additionally, we characterized the regulatory role of AdpA_1075 in A. pretiosum. AdpA_1075 acts as a global regulator, affecting morphological differentiation and promoting the biosynthesis of ansamitocin. Our findings provide additional useful evidence for the regulatory mechanism of ansamitocin biosynthesis.

Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/10.3390/bioengineering9110719/s1, Table S1: Strains and plasmids used in this study; Table S2: Primers used in this study; Figure S1: Verification of ssgA_6663 and adpA_1075 gene deletion mutant strains; Figure S2: Identification of recombinant strains; Figure S3: Sequence alignment of AdpA-like protein APASM_1021 with AdpA_1075; Figure S4: Effects of asm28 gene deletion or overexpression.

Author Contributions: Conceptualization, Q.H. and F.L.; methodology, S.G. and T.L.; validation, S.G. and X.S.; investigation, S.G. and J.Z.; data curation, S.G., R.L., J.C. and F.H.; writing—original draft preparation, S.G.; writing—review and editing, Q.H. and F.L.; supervision, Q.H. and F.L.; funding acquisition, Q.H. and F.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Fund for Young Scholars (32001035) and Shanghai Super postdoctoral program 2020.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data generated or analyzed during this study are included in this article.

Conflicts of Interest: The authors declare no competing interest.

References

1. Prelog, V.; Oppolzer, W. Ansamycins, a novel class of microbial metabolites. Helv. Chim. Acta 1973, 56, 2279–2287. [CrossRef] [PubMed]
2. Martin, K.; Müller, P.; Schreiner, J.; Prince, S.S.; Lardinois, D.; Heinzelmann-Schwarz, V.A.; Thommen, D.S.; Zippelius, A. The microtubule-depolymerizing agent ansamitocin P3 programs dendritic cells toward enhanced anti-tumor immunity. Cancer Immunol. Immunother. 2014, 63, 925–938. [CrossRef] [PubMed]
3. Kashyap, A.S.; Fernandez-Rodriguez, L.; Zhao, Y.; Monaco, G.; Trefny, M.P.; Yoshida, N.; Martin, K.; Sharma, A.; Olieric, N.; Shah, P.; et al. GEF-H1 signaling upon microtubule destabilization is required for dendritic cell activation and specific anti-tumor responses. Cell Rep. 2019, 28, 3367–3380.e8. [CrossRef] [PubMed]
4. Barok, M.; Joensuu, H.; Isola, J. Trastuzumab emtansine: Mechanisms of action and drug resistance. Breast Cancer Res. 2014, 16, 209. [CrossRef] [PubMed]
5. Fan, Y.; Gao, Y.; Zhou, J.; Wei, L.; Chen, J.; Hua, Q. Process optimization with alternative carbon sources and modulation of secondary metabolism for enhanced ansamitocin P-3 production in Actinosynnema pretiosum. J. Biotechnol. 2014, 192, 1–10. [CrossRef]
6. Li, T.; Fan, Y.; Nambou, K.; Hu, F.; Imanaka, T.; Wei, L.; Hua, Q. Improvement of ansamitocin P-3 production by Actinosynnema mirum with fructose as the sole carbon source. Appl. Biochem. Biotechnol. 2015, 175, 2845–2856. [CrossRef]
7. Fan, Y.; Hu, F.; Wei, L.; Bai, L.; Hua, Q. Effects of modulation of pentose-phosphate pathway on biosynthesis of ansamitocins in Actinosynnema pretiosum. J. Biotechnol. 2016, 230, 3–10. [CrossRef]
8. Zhao, M.; Fan, Y.; Wei, L.; Hu, F.; Hua, Q. Effects of the methylmalonoyl-CoA metabolic pathway on ansamitocin production in Actinosynnema pretiosum. Appl. Biochem. Biotechnol. 2017, 181, 1167–1178. [CrossRef]

9. Ning, X.; Wang, X.; Wu, Y.; Kang, Q.; Bai, L. Identification and engineering of post-PKS modification bottlenecks for ansamitocin P-3 titer improvement in Actinosynnema pretiosum subsp. pretiosum ATCC 31280. Biotechnol. J. 2017, 12, 1700484. [CrossRef]

10. Du, Z.Q.; Zhang, Y.; Qian, Z.G.; Xiao, H.; Zhong, J.J. Combination of traditional mutation and metabolic engineering to enhance ansamitocin P-3 production in Actinosynnema pretiosum. Biotechnol. Bioeng. 2017, 114, 2794–2806. [CrossRef] [PubMed]

11. Du, Z.Q.; Zhong, J.J. Rational approach to improve ansamitocin P-3 production by integrating pathway engineering and substrate feeding in Actinosynnema pretiosum. Biotechnol. Bioeng. 2018, 115, 2456–2466. [CrossRef] [PubMed]

12. Li, J.; Guo, S.; Hua, Q.; Hu, F. Improved AP-3 production through combined ARTP mutagenesis, fermentation optimization, and subsequent genome shuffling. Biotechnol. Lett. 2021, 43, 1143–1154. [CrossRef]

13. Kumar, P.; Dubey, K.K. Mycelium transformation of Streptomyces lividans into pellet: Role of culture conditions and kinetics. Bioreour. Technol. 2017, 228, 339–347. [CrossRef]

14. Celler, K.; Picireanu, C.; van Loosdrecht, M.C.M.; van Wezel, G.P. Structured morphological modeling as a framework for rational strain design of Streptomyces species. Antonie Van Leeuwenhoek 2012, 102, 409–423. [CrossRef]

15. Paul, G.C.; Thomas, C.R. Characterisation of mycelial morphology using image analysis. Adv. Biochem. Eng. Biotechnol. 1998, 60, 1–59. [CrossRef] [PubMed]

16. Wang, H.; Zhao, G.; Ding, X. Morphology engineering of Streptomyces coelicolor M145 by sub-inhibitory concentrations of antibiotics. Sci. Rep. 2017, 7, 13226. [CrossRef]

17. Fang, A.; Pierson, D.L.; Mishra, S.K.; Demain, A.L. Growth of Streptomyces hygroscopicus in rotating-wall bioreactor under simulated microgravity inhibits rapamycin production. Appl. Microbiol. Biotechnol. 2000, 54, 33–36. [CrossRef]

18. Park, Y.; Tamura, S.; Koike, Y.; Toriyama, M.; Okabe, M. Mycelial pellet infrastructure visualization and viability prediction in a culture of Streptomyces fradiae using confocal scanning laser microscopy. J. Ferment. Bioeng. 1997, 84, 483–486. [CrossRef]

19. Jonsbu, E.; McIntyre, M.; Nielsen, J. The influence of carbon sources and morphology on nystatin production by Streptomyces noursei. J. Biotechnol. 2002, 95, 133–144. [CrossRef]

20. Vecht-Lishitz, S.E.; Sasson, Y.; Braun, S. Nikkomycin production in pellets of Streptomyces tendae. J. Appl. Bacteriol. 1992, 72, 195–200. [CrossRef]

21. Wardell, J.N.; Stocks, S.M.; Thomas, C.R.; Bushell, M.E. Decreasing the hyphal branching rate of Saccharopolyspora erythraea NRRL 2338 leads to increased resistance to breakage and increased antibiotic production. Biotechnol. Bioeng. 2002, 78, 141–146. [CrossRef] [PubMed]

22. Sarrà, M.; Casas, C.; Poch, M.; Gòdia, F. A simple structured model for continuous production of a hybrid antibiotic by Streptomyces lividans pellets in a fluidized-bed bioreactor. Appl. Biochem. Biotechnol. 1999, 80, 39–50. [CrossRef]

23. van Dessel, D.; Claessen, D.; van Wezel, G.P. Chapter One-Morphogenesis of Streptomyces in submerged cultures. Adv. Appl. Microbiol. 2014, 89, 1–45. [PubMed]

24. Noens, E.E.; Mersiniavas, V.; Willems, J.; Traag, B.A.; Laing, E.; Chater, K.F.; Smith, C.P.; Koerten, H.K.; Van Wezel, G.P. Loss of the ssfR, ssgA and ssgH genes involved in sporulation of Streptomyces griseus. J. Ferment. Bioeng. 2000, 89, 141–146. [CrossRef]

25. Nothaft, H.; Dresel, D.; Willimek, A.; Mahr, K.; Niederweis, M.; Titgemeyer, F. The phosphotransferase system of Escherichia Coli. Adv. Biochem. Eng. Biotechnol. 1998, 60, 1–59. [CrossRef] [PubMed]

26. Sarrà, M.; Casas, C.; Poch, M.; Gòdia, F. A simple structured model for continuous production of a hybrid antibiotic by Streptomyces lividans pellets in a fluidized-bed bioreactor. Appl. Biochem. Biotechnol. 1999, 80, 39–50. [CrossRef]

27. Jonsbu, E.; McIntyre, M.; Nielsen, J. The influence of carbon sources and morphology on nystatin production by Streptomyces noursei. J. Biotechnol. 2002, 95, 133–144. [CrossRef]

28. van Wezel, G.P.; van der Meulen, J.; Kawamoto, S.; Luiten, R.G.M.; Koerten, H.K.; Kraal, B. Unlocking antibiotic production in Streptomyces coelicolor ATCC 15439. Appl. Microbiol. Biotechnol. 2012, 88, 257–266. [CrossRef] [PubMed]

29. van Wezel, G.P.; van der Meulen, J.; Kawamoto, S.; Luiten, R.G.M.; Koerten, H.K.; Kraal, B. Unlocking antibiotic production in Streptomyces coelicolor ATCC 15439. Appl. Microbiol. Biotechnol. 2012, 88, 257–266. [CrossRef] [PubMed]

30. van Wezel, G.P.; van der Meulen, J.; Kawamoto, S.; Luiten, R.G.M.; Koerten, H.K.; Kraal, B. Unlocking antibiotic production in Streptomyces coelicolor ATCC 15439. Appl. Microbiol. Biotechnol. 2012, 88, 257–266. [CrossRef] [PubMed]

31. Xiao, X.; Willemse, J.; Voskamp, P.; Li, X.; Prota, A.E.; Lamers, M.; Pannu, N.; Abrahams, J.P.; van Wezel, G.P. Ectopic Positioning of the Cell Division Plane Is Associated with Single Amino Acid Substitutions in the FtsZ-Recruiting SsgB in Streptomyces. Open. Biol. 2021, 11, 200409. [CrossRef] [PubMed]

32. Van Wezel, G.P.; Krabben, P.; Traag, B.A.; Keijser, B.J.; Kerste, R.; Vigenboom, E.; Heijnen, J.J.; Kraal, B. Unlocking Streptomyces spp. for use as sustainable industrial production platforms by morphological engineering. Appl. Environ. Microbiol. 2006, 72, 5283–5288. [CrossRef] [PubMed]

33. Nguyen, H.T.; Pham, V.T.T.; Nguyen, C.T.; Pokhrel, A.R.; Kim, T.-S.; Kim, D.; Na, K.; Yamaguchi, T.; Sohng, J.K. Exploration of cryptic organic photosensitive compound as zincphyrin IV in Streptomyces venezuelae ATCC 15439. Appl. Microbiol. Biotechnol. 2020, 104, 713–724. [CrossRef]
34. Traag, B.A.; Kelemen, G.H.; Van Wezel, G.P. Transcription of the sporulation gene ssgA is activated by the IclR-type regulator SsgR in a width-independent manner in *Streptomyces coelicolor* A3(2). *Mol. Microbiol.* 2004, 53, 985–1000. [CrossRef]

35. Horinouchi, S.; Beppu, T. Hormonal control by A-factor of morphological development and secondary metabolism in *Streptomyces*. *Proc. Jpn. Acad. Ser. B* 2007, 83, 277–295. [CrossRef]

36. Ohnishi, Y.; Kameyama, S.; Onaka, H.; Horinouchi, S. The A-factor regulatory cascade leading to streptomycin biosynthesis in *Streptomyces griseus*: Identification of a target gene of the A-factor receptor. *Microbiol. 1999, 34*, 102–111. [CrossRef] [PubMed]

37. Ohnishi, Y.; Yamazaki, H.; Kato, J.; Tomono, A.; Horinouchi, S. AdpA, a central transcriptional regulator in the A-factor regulatory cascade that leads to morphological development and secondary metabolism in *Streptomyces griseus*. *Biosci. Biotechnol. Biochem.* 2005, 69, 431–439. [CrossRef]

38. Akanuma, G.; Hara, H.; Ohnishi, Y.; Horinouchi, S. Dynamic changes in the extracellular proteome caused by absence of a pleiotropic regulator AdpA in *Streptomyces griseus*. *Mol. Microbiol.* 2009, 73, 898–912. [CrossRef] [PubMed]

39. Bush, M.J.; Tschowri, N.; Schlimpert, S.; Flärdh, K.; Buttner, M.J. c-di-GMP signalling and the regulation of developmental transitions in streptomycetes. *Nat. Rev. Microbiol.* 2015, 13, 749–760. [CrossRef]

40. Bu, X.-L.; Weng, J.-Y.; He, B.-B.; Xu, M.-J.; Xu, J. A novel AdpA homologue negatively regulates morphological differentiation in *Streptomyces xianensis* 318. *Appl. Environ. Microbiol.* 2019, 85, e03107-18. [CrossRef]

41. Romero-Rodriguez, A.; Robledo-Casados, I.; Sánchez, S. An overview on transcriptional regulators in *Streptomyces*. *Biochim. Biophys. Acta* 2015, 1849, 1017–1039. [CrossRef] [PubMed]

42. Higo, A.; Hara, H.; Horinouchi, S.; Ohnishi, Y. Genome-wide distribution of AdpA, a global regulator for secondary metabolism and morphological differentiation in *Streptomyces*, revealed the extent and complexity of the AdpA regulatory network. *DNA Res.* 2012, 19, 259–273. [CrossRef] [PubMed]

43. Rabyk, M.; Yushchuk, O.; Rokytksyy, I.; Anisimova, M.; Ostach, B. Genomic insights into evolution of AdpA family master regulators of morphological differentiation and secondary metabolism in *Streptomyces*. *J. Mol. Evol.* 2018, 86, 204–215. [CrossRef] [PubMed]

44. Wu, Y.; Kang, Q.; Zhang, L.-L.; Bai, L. Subtilisin-involved morphology engineering for improved antibiotic production in actinomycetes. *Biomolecules* 2020, 10, 851. [CrossRef]

45. Wang, X.; Wang, R.; Kang, Q.; Bai, L. The antimicrobial agent ansamitocin P-3 binds to cell division protein FtsZ in *Actinosynema pretiosum* transcom. *Biomolecules* 2020, 10, 699. [CrossRef]

46. Zhang, P.; Zhang, K.; Liu, Y.; Fu, J.; Zong, G.; Ma, X.; Cao, G. Deletion of the response regulator PhoP accelerates the formation of aerial mycelium and spores in *Actinosynnema pretiosum*. *Biomolecules* 2020, 10, 845620. [CrossRef] [PubMed]

47. Guo, S.; Sun, X.; Li, R.; Zhang, T.; Hu, F.; Liu, F.; Hua, Q. Two strategies to improve the supply of pkb extender units for ansamitocin P-3 biosynthesis by CRISPR–Cas9. *Bioprocess. Bioprocess.* 2022, 9, 90. [CrossRef]

48. Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. *Methods* 2001, 25, 402–408. [CrossRef]

49. Xu, H.; Chater, K.F.; Deng, Z.; Tao, M. A cellulose synthase-like protein involved in hyphal tip growth and morphological differentiation in *Streptomyces*. *J. Bacteriol.* 2008, 190, 4971–4978. [CrossRef]

50. Kawamoto, S.; Watanabe, H.; Heseketh, A.; Ensign, J.C.; Ochi, K. Expression analysis of the ssgA gene product, associated with sporulation and cell division in *Streptomyces griseus*. *Microbiology 1997, 143*, 1077–1086. [CrossRef]

51. McCormick, J.R.; Su, E.P.; Driks, A.; Losick, R. Growth and viability of *Streptomyces coelicolor* mutant for the cell division gene ftsZ. *Mol. Microbiol.* 1994, 14, 243–254. [CrossRef]

52. Santos-Beneit, F.; Roberts, D.M.; Cantlay, S.; McCormick, J.R.; Errington, J. A mechanism for FtsZ-independent proliferation in *Streptomyces*. *Nat. Commun.* 2017, 8, 1378. [CrossRef] [PubMed]

53. Yushchuk, O.; Ostach, I.; Vlasiiuk, I.; Gren, T.; Luzhetskyy, A.; Kalinowski, J.; Fedorenko, V.; Ostach, B. Heterologous AdpA transcription factors enhance landomycin production in *Streptomyces cyanogenum* S136 under a broad range of growth conditions. *Appl. Microbiol. Biotechnol.* 2018, 102, 8419–8428. [CrossRef]

54. Kang, Y.; Wang, Y.; Hou, B.; Wang, R.; Ye, J.; Zhu, X.; Wu, H.; Zhang, H. AdpA LIN, a pleiotropic transcriptional regulator, is involved in the cascade regulation of lincomycin biosynthesis in *Streptomyces lincolnensis*. *Front. Microbiol.* 2019, 10, 2428. [CrossRef] [PubMed]

55. Higo, A.; Horinouchi, S.; Ohnishi, Y. Strict regulation of morphological differentiation and secondary metabolism by a positive feedback loop between two global regulators AdpA and BldA in *Streptomyces griseus*. *Mol. Microbiol.* 2011, 81, 1607–1622. [CrossRef] [PubMed]

56. Guyet, A.; Benaroudj, N.; Proux, C.; Gominet, M.; Coppée, J.-Y.; Mazodier, P. Identified members of the *Streptomyces lividans* AdpA regulon involved in differentiation and secondary metabolism. *BMC Microbiol.* 2014, 14, 81. [CrossRef] [PubMed]

57. Yamazaki, H.; Tomono, A.; Ohnishi, Y.; Horinouchi, S. DNA-binding specificity of AdpA, a transcriptional activator in the A-factor regulatory cascade in *Streptomyces griseus*: DNA-binding specificity of AdpA. *Mol. Microbiol.* 2004, 53, 555–572. [CrossRef]

58. Watanabe, K.; Okuda, T.; Yokose, K.; Furumai, T.; Maruyama, H. *Actinosynema mirum*, a new producer of nocardicin antibiotics. *J. Antibiot.* 1983, 36, 321–324. [CrossRef] [PubMed]

59. Keijser, B.J.F.; Noens, E.E.E.; Kraal, B.; Koerten, H.K.; van Wezel, G.P. The *Streptomyces coelicolor* ssgB gene is required for early stages of sporulation. *FEMS Microbiol. Lett.* 2003, 225, 59–67. [CrossRef]
60. Xu, Q.; Traag, B.A.; Willemse, J.; McMullan, D.; Miller, M.D.; Elsliger, M.-A.; Abdubek, P.; Astakhova, T.; Axelrod, H.L.; Bakolitsa, C.; et al. Structural and functional characterizations of SsgB, a conserved activator of developmental cell division in morphologically complex actinomycetes. J. Biol. Chem. 2009, 284, 25268–25279. [CrossRef] [PubMed]

61. Makitrynskyy, R.; Ostash, B.; Tsypik, O.; Rebets, Y.; Doud, E.; Meredith, T.; Luzhetskyy, A.; Bechthold, A.; Walker, S.; Fedorenko, V. Pleiotropic regulatory genes bldA, adpA and absB are implicated in production of phosphoglycolipid antibiotic moenomycin. Open Biol. 2013, 3, 130121. [CrossRef] [PubMed]

62. Bandi, S.; Kim, Y.; Chang, Y.K.; Shang, G.; Yu, T.W.; Floss, H.G. Construction of asm2 deletion mutant of Actinosynnema pretiosum and medium optimization for ansamitocin P-3 production using statistical approach. J. Microbiol. Biotechnol. 2006, 16, 1338–1346.

63. Ng, D.; Chin, H.K.; Wong, V.V.T. Constitutive overexpression of asm2 and asm39 increases AP-3 production in the actinomycete Actinosynnema pretiosum. J. Ind. Microbiol. Biotechnol. 2009, 36, 1345–1351. [CrossRef] [PubMed]

64. Pan, W.; Kang, Q.; Wang, L.; Bai, L.; Deng, Z. Asm8, a specific LAL-type activator of 3-amino-5-hydroxybenzoate biosynthesis in ansamitocin production. Sci. China Life Sci. 2013, 56, 601–608. [CrossRef]

65. Li, S.; Lu, C.; Chang, X.; Shen, Y. Constitutive overexpression of asm18 increases the production and diversity of maytansinoids in Actinosynnema pretiosum. Appl. Microbiol. Biotechnol. 2016, 100, 2641–2649. [CrossRef]

66. Hackl, S.; Bechthold, A. The gene bldA, a regulator of morphological differentiation and antibiotic production in Streptomyces. Arch. Pharm. 2015, 348, 455–462. [CrossRef]