THE PERFORMANCE OF ORTHOGONAL MULTI-MATCHING PURSUIT UNDER RIP

ZHIQIANG XU

Abstract. The orthogonal multi-matching pursuit (OMMP) is a natural extension of the orthogonal matching pursuit (OMP). We denote the OMMP with the parameter \(M \) as OMMP(\(M \)) where \(M \geq 1 \) is an integer. The main difference between OMP and OMMP(\(M \)) is that OMMP(\(M \)) selects \(M \) atoms per iteration, while OMP only adds one atom to the optimal atom set. In this paper, we study the performance of orthogonal multi-matching pursuit under RIP. In particular, we show that, when the measurement matrix \(A \) satisfies \((9s, 1/10)-RIP\), there exists an absolute constant \(M_0 \leq 8 \) so that OMMP(\(M_0 \)) can recover \(s \)-sparse signal within \(s \) iterations. We furthermore prove that OMMP(\(M \)) can recover \(s \)-sparse signal within \(O(\frac{s}{M}) \) iterations for a large class of \(M \) provided the signal is slowly-decaying. In particular, for \(M = s^a \) with \(a \in [0, 1/2] \), OMMP(\(M \)) can recover slowly-decaying \(s \)-sparse signals within \(O(s^{1-a}) \) iterations. The result implies that OMMP can reduce the computational complexity heavily.

1. Introduction

1.1. Orthogonal Matching Pursuit. Orthogonal matching pursuit (OMP) is a popular algorithm for the recovery of sparse signals and it is also commonly used in compressed sensing. Let \(A \) be a matrix of size \(m \times N \) and \(y \) be a vector of size \(m \). The aim of OMP is to find the approximate solution to the following \(\ell_0 \)-minimization problem:

\[
\min_{x \in \mathbb{C}^N} \|x\|_0 \quad \text{s.t.} \quad Ax = y,
\]

where \(\|x\|_0 \) denotes the number of non-zero entries in \(x \). In compressed sensing and the sparse representation of signals, we often have \(m \ll N \). Throughout this paper, we suppose that the sampling matrix \(A \in \mathbb{C}^{m \times N} \) whose columns \(a_1, \ldots, a_N \) are \(\ell_2 \)-normalized.

To introduce the performance of OMP, we first recall the definition of the restricted isometry property (RIP) [6] which is frequently used in the analysis of the recovering algorithm in compressed sensing. Following Candès and Tao, for \(1 \leq s \leq N \) and \(\delta \in [0, 1) \), we say that the matrix \(A \) satisfies \((s, \delta)-\text{RIP}\) if

\[
(1 - \delta)\|x\|_2^2 \leq \|Ax\|_2^2 \leq (1 + \delta)\|x\|_2^2
\]

holds for all \(s \)-sparse signals \(x \). We say that the signal \(x \) is \emph{\(s \)-sparse} if \(\|x\|_0 \leq s \) and use \(\Sigma_s \) to denote the set of \(s \)-sparse signals, i.e.,

\[
\Sigma_s = \{ x \in \mathbb{C}^N : \|x\|_0 \leq s \}.
\]

We next state the definition of the spark (see also [1]).

Supported by the National Natural Science Foundation of China (11171336).
Definition 1. The spark of a matrix A is the size of the smallest linearly dependent subset of columns, i.e.,

$$\text{Spark}(A) := \min \{ \|x\|_0 : Ax = 0, x \neq 0 \}.$$

Theoretical analysis of OMP has concentrated primarily on two directions. The first one is to study the condition for the matrix A under which OMP can recover s-sparse signals in exactly s iterations. In this direction, one uses the coherence and RIP to analyze the performance of OMP. In particular, Davenport and Wakin showed that, when the matrix A satisfies $(s + 1, \sqrt{s})$-RIP, OMP can recover s-sparse signal in exactly s iterations [8]. The sufficient condition is improved to $(s + 1, 1/\sqrt{s})$-RIP in [12, 13] (see also [10, 11]). However, it was observed in [16], when the matrix A satisfies $(c_0 s, \delta_0)$-RIP for some fixed constants $c_0 > 1$ and $0 < \delta_0 < 1$, that s iterations of OMP is not enough to uniformly recover s-sparse signals, which implies that OMP has to run for more than s iterations to uniformly recover the s-sparse signals. Hence, one investigates the performance of OMP along the second line with allowing to OMP run more than s iterations. For this case, it is possible that OMP add wrong atoms to the optimal atom set, but one can identify the correct atoms by the least square. A main result in this direction is presented by Zhang [20] with proving that when A satisfies $(31s, 1/3)$-RIP OMP can recover the s-sparse signal in at most $30s$ iterations.

The other type of greedy algorithms, which are based on OMP, have been proposed including the regularized orthogonal matching pursuit (ROMP) [14], subspace pursuit (SP) [7], CoSaMP [15], and many other variants. For each of these algorithms, it has been shown that, under a natural RIP setting, they can recover the s-sparse signals in s iterations.

1.2. Orthogonal Multi-matching Pursuit and Main Results. A more natural extension of OMP is the orthogonal multi-matching pursuit (OMMP) [11]. We denote the OMMP with the parameter M as OMMP(M) where $M \geq 1$ is an integer. The main difference between OMP and OMMP(M) is that OMMP(M) selects M atoms per iteration, while OMP only adds one atom to the optimal atom set. The Algorithm 1 outlines the procedure of OMMP(M) with initial feature set Λ^0.

In comparison with OMP, OMMP has fewer iterations and computational complexity [10]. We note that, when $M = 1$, OMMP(M) is identical to OMP. OMMP is also studied in [10, 12, 18] under the names of KOMP, MOMP and gOMP, respectively. These results show that, when RIP constant $\delta = O(\sqrt{M}/s)$, OMMP(M) can recover the s-sparse signal in at most $30s$ iterations.

The aim of this paper is to study the performance of OMMP(M) under a more natural setting of RIP (the RIP constant is an absolute constant). Particularly, we also would like to understand the relation between the number of iterations and the parameter M. So, we are interested in the following questions:

Question 1 Does there exist an absolute constant M_0 so that OMMP(M_0) can recover all the s-sparse signals within s iterations?

Question 2 For $1 \leq M \leq s$, can OMMP(M) recover the s-sparse signals within $O(s/M)$ iterations?

We next state one of our main results which gives an affirmative answer to Question 1.
Algorithm 1 OMMP(M)

Input: sampling matrix A, samples $y = Ax$, candidate number M for each step, stopping iteration index H, initial feature set $\Lambda^0 \subset \{1, \ldots, N\}$

Output: the x^*.

Initialize: $\ell = 0$.

$x^0 = \arg\min_{z: \text{supp}(z) \subset \Lambda^0} \| y - Az \|_2$, $r^0 = y - Ax^0$

while $\ell < H$

 match: $h^\ell = A^T r^\ell$

 calculate: $T^\ell = M$ indices corresponding to the largest magnitude entries in the vector h^ℓ

 identity: $\Lambda^{\ell+1} = \Lambda^\ell \cup T^\ell$

 update: $x^{\ell+1} = \arg\min_{z: \text{supp}(z) \subset \Lambda^{\ell+1}} \| y - Az \|_2$

 $r^{\ell+1} = y - Ax^{\ell+1}$

 $\ell = \ell + 1$

end while

$x^* = x^H$

Theorem 1. Let $x \in \Sigma_s$ and $S = \text{supp}(x)$. Suppose that the sampling matrix $A \in \mathbb{C}^{m \times N}$ satisfies $(9s, 1/10)$-RIP and $\text{Spark}(A) > \max\{Ms', 8s'\} + \#\Lambda^0$ where Λ^0 is the initial feature set in OMMP algorithm. Then OMMP(M) can recover the signal x within, at most, $\max\{s', (4M + 2)s'\}$ iterations, where $s' := \#(S \setminus \Lambda^0)$.

The above theorem shows that, when $M \geq 8$, OMMP(M) with the initial feature set $\Lambda^0 = \emptyset$ can recover all the s-sparse signal within, at most, s iterations. It implies that there exists an absolute constant $M_0 \leq 8$ so that OMMP(M_0) can recover all the s-sparse signals within s iterations. We believe that the constant $M_0 = 8$ is not optimal. The numerical experiments make us conjecture that the optimal number is 2, i.e., under RIP, OMMP(2) can recover the s-sparse signal within s iterations.

We next turn to Question 2. The following theorem shows that, when $1 \leq M \leq \sqrt{s}$, OMMP(M) can recover slowly-decaying signal within $O(s/M)$ iterations.

Theorem 2. Let $x \in \Sigma_s$, $S = \text{supp}(x)$ and $s' = \#(S \setminus \Lambda^0)$. Consider the OMMP($M$) algorithm with $1 \leq M \leq \sqrt{s}$ and the initial feature set Λ^0. If the sampling matrix $A \in \mathbb{C}^{m \times N}$ satisfies $(9s, 1/10)$-RIP and

$$\text{Spark}(A) > 8(C_0^2 + 2)s' + \#\Lambda^0,$$

then OMMP(M) recovers the x within $\lfloor 8(C_0^2 + 2)s'/M \rfloor$ iterations where $C_0 = \max_{j \in S} |x_j| / \min_{j \in S} |x_j|.$

The theorem above shows that, for $1 \leq M \leq \sqrt{s}$, OMMP(M) can recover s-sparse signals within $C_1 s/M$ iterations. Here, the constant C_1 depends on the signal x. In particular, if we take $M = \lfloor s/\alpha \rfloor$ in Theorem 2 we have

Corollary 1. Under the condition of Theorem 2 if $M = \lfloor s/\alpha \rfloor$ with $\alpha \in [0, 1/2]$, then OMMP(M) with the initial feature set $\Lambda^0 = \emptyset$ recovers the s-sparse signal within $\lfloor 8(C_0^2 + 2)s^{1-\alpha} \rfloor$ iterations.

We next consider the case with $M = \alpha \cdot s$. In particular, for ‘small’ α, we give an affirmative answer to Question 2 up to a log factor.
Theorem 3. Let \(x \in \Sigma_s \) and \(S = \text{supp}(x) \). Suppose that the sampling matrix \(A \in \mathbb{C}^{m \times N} \) satisfies \((14s, 1/10)\)-RIP and
\[
\text{Spark}(A) > 8s \log_2(2(s + 1)).
\]
Consider the OMMP\((M)\) algorithm with the initial feature set \(\Lambda^0 = \emptyset \). If \(M = \alpha \cdot s \), then OMMP\((M)\) recover the \(s \)-sparse signal \(x \) from \(y = Ax \) within \(\lceil \frac{8}{\alpha} \log_2(2(s + 1)) \rceil \) iterations, where \(0 < \alpha \leq \frac{2}{(C_0^2 + 2)} \) and \(C_0 = \max_{j \in S} |x_j| / \min_{j \in S} |x_j| \).

Remark 1. We prove the main results using some of the techniques developed by Zhang in his study of OMP [20] (see also [9]). To make the paper more readable, we state our results for the strictly sparse signal. In fact, using a similar method, one also can extend the results in this paper to the case where the measurement vector \(y \) is subjected to an additive noise and \(x \) is not strictly sparse.

Remark 2. In [11], Liu and Tymlyakov proved that, when \(A \) satisfies \((M_0, \delta)\)-RIP with \(\delta = \sqrt{M_0 / ((2 + \sqrt{2}) \sqrt{s})} \), OMMP\((M_0)\) can recover \(s \)-sparse signal within, at most, \(s \) iterations. The result requires the RIP constant \(\delta \) depends on \(s = \|x\|_0 \). In Theorem 1 we require that the measurement matrix \(A \) satisfies \((9s, \delta)\)-RIP with \(\delta \) being an absolute constant 1/10. Hence, Theorem 1 gives an affirmative answer to Question 1 under the more natural setting for the measurement matrix \(A \).

Remark 3. It is of interest to know which matrices \(A \) obey the \((s, \delta)\)-RIP and the \(\text{Spark}(A) > K \) where \(K \) is a fixed constant. Much is known about finding matrices that satisfy the \((s, \delta)\)-RIP (see [2, 4, 5, 17, 19]). If we draw a random \(m \times N \) matrix \(A \) whose entries are i.i.d. Gaussian random variables, then \(\text{Spark}(A) = m \) with probability 1 (see [1, 3]). Moreover, the random matrix \(A \) also satisfies \((s, \delta)\)-RIP with high probability provided
\[
m = O \left(\frac{s \log(N/s)}{\delta^2} \right).
\]
So, to make the random matrices \(A \) obey the \((s, \delta)\)-RIP and the \(\text{Spark}(A) > K \), one can take
\[
m = \max \left\{ O \left(\frac{s \log(N/s)}{\delta^2} \right), K + 1 \right\}.
\]

2. Numerical experiments

The purpose of the experiment is the comparison for the reconstruction performances of and the iteration number of OMMP\((M)\) with different parameter \(M \). Given the parameters \(m = 300 \) and \(N = 1,500 \), we randomly generate a \(m \times N \) sampling matrix \(A \) from the standard i.i.d Gaussian ensemble. The support set \(S \) of the sparse signal \(x \) is drawn from the uniform distribution over the set of all subsets of \([1, N] \cap \mathbb{Z}\) of size \(s \). We then generate the sparse signal \(x \) according to the probability model: the entries \(x_j, j \in S \), are independent random variable having the Gaussian distribution with mean 5 and standard deviation 1.

We apply the OMMP\((M)\) to recover the sparse signal \(x \) from \(y = Ax \) for different parameters \(M \in \{1, \lceil \sqrt{s} \rceil, \lceil s \rceil \} \). Note that when \(M = 1 \), OMMP\((M)\) is identical with OMP. We repeat the experiment 200 times for each number \(s \in \{1, 2, \ldots, 80\} \) and calculate the success rate. When OMMP succeeds, we record the number of the iteration steps. The left graph in Fig. 1 depicts the success rate of the
reconstructing algorithm OMMP(M) with $M \in \{1, \lceil \sqrt{s} \rceil, \lfloor \frac{s}{2} \rfloor \}$. The number of the average iteration steps of OMMP(M) with $M \in \{1, \lceil \sqrt{s} \rceil, \lfloor \frac{s}{2} \rfloor \}$ are illustrated in the right graph in Fig. 1. The numerical results show that the performance of OMMP(M), $M \in \{1, \lceil \sqrt{s} \rceil, \lfloor \frac{s}{2} \rfloor \}$, is similar with that of OMP, while the number of iteration steps of OMMP(M), $M \in \{1, \lceil \sqrt{s} \rceil, \lfloor \frac{s}{2} \rfloor \}$, is far less than that of OMP, which agrees with the theoretical results presented in this paper.

3. Extension

According to Theorem 2 and Theorem 3, OMMP has a good performance for the slowly-decaying sparse signal x. Naturally, one may want to know whether OMMP(M) can recover all the s-sparse signal within less than s iterations for some $M \in [1, s] \cap \mathbb{Z}$. Numerical experiments show that, for some fast-decaying s-sparse signal x, OMMP(M) has to run at least s steps to recover x for any $M \in [1, s] \cap \mathbb{Z}$. However, as shown in [8], when the s-sparse signal x is fast-decaying, OMP has a good performance. To state the result in [8], we firstly introduce the definition of α-decaying signals. For any s-sparse signal $x \in \mathbb{C}^N$, we denote by S the support of x. Without loss of generality, we suppose that $S = \{j_1, \ldots, j_s\}$ and

$$|x_{j_1}| \geq |x_{j_2}| \geq \cdots \geq |x_{j_s}| > 0.$$

For $\alpha > 1$, we call the x α-decaying if $|x_{j_t}|/|x_{j_{t+1}}| \geq \alpha$ for all $t \in \{1, 2, \ldots, s-1\}$.

Theorem 4. ([8]) Suppose that A satisfies $(s+1, \delta_{s+1})$-RIP with $\delta_{s+1} < \frac{1}{3}$. Suppose that x with $\|x\|_0 \leq s$ is α-decaying signal. If

$$\alpha > \frac{1 + 2 \cdot \delta_{s+1}}{1 - \delta_{s+1}} \sqrt{s - 1},$$

then OMP will recover x exactly from $y = Ax$ in s iterations.

In this paper, motivated by the proof of Theorem 1, we can improve Theorem 4 as follows:
Theorem 5. Suppose that \(A \) satisfies \((s, \delta_s)\)-RIP with \(\delta_s < \sqrt{2} - 1 \). Suppose that \(x \in \mathbb{C}^N \) with \(\|x\|_0 \leq s \) is \(\alpha \)-decaying. If

\[
\alpha > \sqrt{\frac{1 + \delta_s}{2 - (1 + \delta_s)^2}},
\]

then OMP can recover \(x \) exactly from \(y = Ax \) in \(s \) iterations.

Remark 4. In Theorem 4, the right side of (2) depends on RIP constant and \(s = \|x\|_0 \), while in Theorem 5, the right side of (3) only depends on the RIP constant. So, Theorem 5 is an improvement over Theorem 4.

Appendix A. Lemmas

In this section, we introduce many lemmas, which extend some results in \([9]\). To state conveniently, for any set \(T \subset \{1, \ldots, N\} \) of column indices, we denote by \(A_T \) the \(m \times \#T \) matrix composed of these columns. Similarly, for a vector \(x \in \mathbb{C}^N \), we use \(x_T \) to denote the vector formed by the entries of \(x \) with indices from \(T \). For \(u \in \mathbb{C}^N \) and \(t \in \mathbb{Z}_+ \), we extend the \(\ell_1 \)-norm to a generalized \(\ell_1 \)-norm defined as

\[
\|u\|_{t,1} := \sum_{j=0}^{\lfloor N/t \rfloor - 1} \sqrt{u_{jt+1}^2 + \cdots + u_{(j+1)t}^2} + \sqrt{u_{n_0 t+1}^2 + \cdots + u_N^2}.
\]

Similarly, we also can extend the \(\ell_{\infty} \)-norm as follows

\[
\|u\|_{t,\infty} := \max \left\{ \max_{0 \leq j \leq \lfloor N/t \rfloor - 1} \sqrt{u_{jt+1}^2 + \cdots + u_{(j+1)t}^2} \right\}.
\]

Then the following lemma presents some inequalities for the extension norm:

Lemma 1. Suppose that \(u \in \mathbb{C}^N \), \(v \in \mathbb{C}^N \) and \(t \in \mathbb{Z}_+ \). Then

(i) \(\Re(\langle u, v \rangle) \leq \|u\|_{t,\infty} \cdot \|v\|_{t,1} \),

where \(\Re(\cdot) \) denotes the real part;

(ii) \(\|u\|_{t,1}^2 \leq \left\lfloor \frac{N}{t} \right\rfloor \cdot \|u\|_2^2 \).

Proof. To state conveniently, we set \(T_j := \{j \cdot t, \ldots, j \cdot t + t\}, \) \(j = 0, \ldots, n_0 - 1 \) and \(T_{n_0} := \{n_0 t + 1, \ldots, N\} \), where \(n_0 = \left\lfloor \frac{N}{t} \right\rfloor \). Then

\[
\Re(\langle u, v \rangle) = \sum_{j=0}^{n_0} \Re(\langle u_{T_j}, v_{T_j} \rangle)
\]

\[
\leq \sum_{j=0}^{n_0} \|u_{T_j}\|_2 \cdot \|v_{T_j}\|_2 \leq \|u\|_{t,\infty} \sum_{j=0}^{n_0} \|v_{T_j}\|_2
\]

\[
\leq \|u\|_{t,\infty} \cdot \|v\|_{t,1}.
\]

We now consider (ii). Note that

\[
\|u\|_2^2 = \sum_{j=0}^{n_0} \|u_{T_j}\|_2^2.
\]
To this end, we consider \((A^6(7)(A^7)) \). According to \((6) \), we obtain that \(A^6(7)(A^7) \). Furthermore, \((4) \) implies that \(\supp(z) \subseteq \Lambda^6+1 \). Let

\[
\begin{align*}
x^n & := \arg\min_{\supp(z) \subseteq \Lambda^n} \|y - Az\|_2, \\
x^{n+1} & := \arg\min_{\supp(z) \subseteq \Lambda^{n+1}} \|y - Az\|_2,
\end{align*}
\]

and

\[
V^n := A^H_{T^n}(y - Ax^n),
\]

where \(A^H_{T^n} := (A_{T^n})^H \). Then

\[
\|y - Ax^{n+1}\|_2^2 \leq \|y - Ax^n\|_2^2 - \frac{1}{1+\delta_t} \|V^n\|_2^2.
\]

Proof. The definition of \(x^{n+1} \) implies that the residuality \(y - Ax^{n+1} \) is orthogonal to the space \(\text{span}(A_{\Lambda^{n+1}}) \). Noting \(A(x^{n+1} - x^n) \in \text{span}(A_{\Lambda^{n+1}}) \), we obtain that

\[
\langle y - Ax^{n+1}, A(x^{n+1} - x^n) \rangle = 0,
\]

which implies that

\[
\|y - Ax^n\|_2^2 = \|y - Ax^{n+1} + A(x^{n+1} - x^n)\|_2^2
\]

\[
= \|y - Ax^{n+1}\|_2^2 + \|A(x^{n+1} - x^n)\|_2^2.
\]

Furthermore, \(A^H_{\Lambda^{n+1}}(y - Ax^n) = 0 \) implies that

\[
(A^H_{\Lambda^{n+1}}y)_{\Lambda^{n+1}} = (A^HAx^{n+1})_{\Lambda^{n+1}}.
\]

Similarly, we have

\[
(A^H_{\Lambda^{n}}y)_{\Lambda^{n}} = (A^H_{\Lambda^{n}}Ax^n)_{\Lambda^{n}}.
\]

According to \((6) \), we obtain that

\[
(A^H_{\Lambda^{n+1}}A(x^{n+1} - x^n))_{\Lambda^{n+1}} = (A^H_{\Lambda^{n+1}}(y - Ax^n))_{\Lambda^{n+1}},
\]

since

\[
(A^H_{\Lambda^{n+1}}A(x^{n+1} - x^n))_{\Lambda^{n+1}} = (A^H_{\Lambda^{n+1}}y)_{\Lambda^{n+1}} - (A^H_{\Lambda^{n+1}}Ax^n)_{\Lambda^{n+1}} = (A^H_{\Lambda^{n+1}}(y - Ax^n))_{\Lambda^{n+1}}.
\]

To this end, we consider

\[
\|A(x^{n+1} - x^n)\|_2^2 = \langle x^{n+1} - x^n, A^H_{\Lambda^{n+1}}A(x^{n+1} - x^n) \rangle
\]

\[
= \langle (x^{n+1} - x^n)_{\Lambda^{n+1}}, (A^H_{\Lambda^{n+1}}A(x^{n+1} - x^n))_{\Lambda^{n+1}} \rangle
\]

\[
= \langle (x^{n+1} - x^n)_{\Lambda^{n+1}}, (A^H_{\Lambda^{n+1}}(y - Ax^n))_{\Lambda^{n+1}} \rangle
\]

\[
= \langle (x^{n+1} - x^n)_{T^n}, (A^H_{\Lambda^{n}}y)_{T^n} \rangle
\]

\[
= \langle (x^{n+1})_{T^n}, (A^H_{\Lambda^{n+1}}(y - Ax^n))_{T^n} \rangle
\]

\[
= \langle (A^H_{\Lambda^{n+1}}(y - Ax^n))_{T^n}, (x^{n+1})_{T^n} \rangle
\]

\[
= \langle V^n, (x^{n+1})_{T^n} \rangle,
\]
where the third and the fourth equality follow from (8) and (7), respectively. According to (4),
\[x^{n+1} = A_{n+1}^T y, \]
where \(A_{n+1}^+ = (A_{n+1}^H A_{n+1})^{-1} A_{n+1}^H \) is the Moore-Penrose pseudoinverse of \(A_{n+1} \).
And hence
\[x^{n+1} = (A_{n+1}^H A_{n+1})^{-1} A_{n+1}^H y. \]
We can write \(A_{n+1} \) as \([A_{n}, A_T] \). Then
\[A_{n+1}^H A_{n+1} = \begin{bmatrix} A_{n}^H A_{n} & A_{n}^H A_T \\ A_T^H A_{n} & A_T^H A_T \end{bmatrix}. \]
We next consider
\[(A_{n+1}^H A_{n+1})^{-1} = \begin{bmatrix} M_1 & M_2 \\ M_3 & M_4 \end{bmatrix}, \]
where
\[M_4 = (A_T^H A_T - A_{n+1}^H A_{n} A_{n+1}^H A_T) \]
\[M_3 = -M_4 (A_{n+1}^H A_{n})^{-1}. \]
Noting (10) and that
\[A_{n+1}^H y = \begin{bmatrix} A_{n}^H y \\ A_T^H y \end{bmatrix}, \]
we obtain that
\[(x^{n+1})_T = ((A_{n+1}^H A_{n+1})^{-1} A_{n+1}^H y)_T = M_4 A_{n}^H y + M_4 A_T^H y = -M_4 (A_{n+1}^H A_{n})^{-1} A_{n+1}^H y + M_4 A_T^H y = M_4 A_T^H (-A_{n} A_{n}^T y + y) = M_4 A_T^H (y - A x^n) = M_4 \langle v^n \rangle. \]
Combining (4) and (11) we have
\[(V^n)^H M_4 V^n = \langle V^n, (x^{n+1})_T \rangle = \| A(x^{n+1} - x^n) \|_2^2. \]
To this end, we consider \(u^H M_4^{-1} u \) for any \(u \in \mathbb{C}^l \). Note that
\[u^H M_4^{-1} u = u^H A_{n}^T A_{n} u - u^H A_{n}^T A_{n+1}^{-1} A_{n}^H A_T u = u^H A_{n}^T A_{n} u - \langle A_{n} (A_{n} A_{n}^H), (u, P_{A_{n}} (A_{n}^H u)) \rangle \]
\[\leq \| A_{n} u \|_2^2 - \| P_{A_{n}} (A_{n}^H u) \|_2^2 \]
\[\leq (1 + \delta_t) \| u \|_2^2, \]
where \(P_{A_{n}} (A_{n}^H u) \) denotes the orthogonal projection of \(A_{n} u \) in the subspace \(\text{span}(A_{n}) \). The last inequality follows from the RIP property of \(A \). Since \(\text{Spark}(A) > \# \{ n+1 \} \), we have \(A_{n} u \notin \text{span}(A_{n}) \) which implies that \(\| P_{A_{n}} (A_{n}^H u) \|_2^2 < \| A_{n} u \|_2^2 \) provided \(u \neq 0 \). And hence, according to (13),
\[u^H M_4^{-1} u = \| A_{n} u \|_2^2 - \| P_{A_{n}} (A_{n}^H u) \|_2^2, \]
which implies that M_4 is a positive-definite matrix since $u^H M_4^{-1} u > 0$ provided $u \neq 0$. Combining (12) and (14), we obtain that

$$\|A(x^{n+1} - x^n)\|_2^2 = (V^n)^H M_4 V^n \geq \frac{1}{1 + \delta_t} \| V^n \|_2^2.$$

Then the (5) implies that

$$\|y - Ax^{n+1}\|_2^2 = \|y - Ax^n\|_2^2 - \|A(x^{n+1} - x^n)\|_2^2 \leq \|y - Ax^n\|_2^2 - \frac{1}{1 + \delta_t} \| V^n \|_2^2.$$

\[\square\]

Lemma 3. Consider OMMP(M) and $\Lambda^n \subset \Lambda^{n+1} \subset \{1, \ldots, N\}$. Set $T^n := \Lambda^{n+1} \setminus \Lambda^n$ and $t := \#T^n$. Suppose that the sampling matrix $A \in \mathbb{C}^{n \times N}$ whose columns a_1, \ldots, a_N are ℓ_2-normalized. Then for any $u \in \mathbb{C}^N$ whose support $U := \text{supp}(u)$ not included in Λ^n, we have

$$\| V^n \|_2^2 \geq \frac{\|A(u - x^n)\|_2^2 (\|y - Ax^n\|_2^2 - \|y - Au\|_2^2)}{\|u_{\text{Xn}}\|_{t,1}^2},$$

where $V^n := A_{T^n}^H (y - Ax^n)$.

Proof. To this end, we only need prove that

$$\| V^n \|_2^2 \cdot \| u_{\text{Xn}} \|_{t,1}^2 \geq \|A(u - x^n)\|_2^2 \cdot (\|y - Ax^n\|_2^2 - \|y - Au\|_2^2).$$

When

$$\|y - Ax^n\|_2^2 - \|y - Au\|_2^2 < 0,$$

the conclusion holds. So, we only consider the case where

$$\|y - Ax^n\|_2^2 - \|y - Au\|_2^2 \geq 0.$$

Recall that T^n is the t indices corresponding to the largest magnitude entries in the vector $(A^H (y - Ax^n))^\Lambda^n$. Then

$$\| V^n \|_2 \geq \|(A^H (y - Ax^n))_{\text{Xn}}\|_{t,\infty}.$$

Noting that $(x^n)_{\text{Xn}} = 0$ and $(A^H (y - Ax^n))_{\Lambda^n} = 0$, we have

$$\| V^n \|_2 \cdot \| u_{\text{Xn}} \|_{t,1} \geq \|(A^H (y - Ax^n))_{\text{Xn}}\|_{t,\infty} \cdot \|(u - x^n)_{\text{Xn}}\|_{t,1} \geq \mathcal{R} \left(\langle (u - x^n)_{\text{Xn}}, (A^H (y - Ax^n))_{\text{Xn}} \rangle \right) \geq \mathcal{R} \left(\langle (u - x^n), A^H (y - Ax^n) \rangle \right) \geq \frac{1}{2} \left(\| A(u - x^n) \|_2^2 + \| y - Ax^n \|_2^2 - \| A(u - x^n) - (y - Ax^n) \|_2^2 \right) \geq \| A(u - x^n) \|_2 \cdot \sqrt{\| y - Ax^n \|_2^2 - \|y - Au\|_2^2},$$

which implies the result, where the second inequality follows from Lemma [1] \[\square\]
Lemma 4. Under the conditions of Lemma 3, we have
\[
\|y - Ax^{n+1}\|_2^2 \leq \|y - Ax^n\|_2^2 - \frac{(1 - \delta)}{1 + \delta} \max \{0, \|y - Ax^n\|_2^2 - \|y - Au\|_2^2\},
\]
where \(\delta = \delta_{\#(U \setminus \Lambda^n)}\).

Proof. According to Lemma 2 and Lemma 3, we have
\[
\|y - Ax^{n+1}\|_2^2 \leq \|y - Ax^n\|_2^2 - \frac{1}{1 + \delta} \|V_n\|_2^2.
\]
(16)
From Lemma 1, we have
\[
\|u_{\Lambda^n}\|_2^2 \leq \left\lfloor \frac{\#(U \setminus \Lambda^n)}{t} \right\rfloor \cdot \|u_{\Lambda^n}\|_2^2.
\]
(17)
Also,
\[
\|A(u - x^n)\|_2^2 \geq (1 - \delta)\|u - x^n\|_2^2 \geq (1 - \delta)\|u - x^n\|_{\Lambda^t}\|_2^2 \geq (1 - \delta)\|u_{\Lambda^n}\|_2^2.
\]
(18)
Putting (16), (17) and (18) together, we arrive at the conclusion. \(\square\)

Remark 5. Lemma 4 extends some results in [9], where Foucart considered the case with \(t = \#(\Lambda^{n+1} \setminus \Lambda^n) = 1\), to the general case. In fact, if takes \(t = 1\) in Lemma 4, one can obtain Lemma 4 in [9].

Appendix B. PROOF OF THEOREM 4

Proof of Theorem 4. To state conveniently, we set \(x' := x_{\Lambda^n}\) and \(K := \max \{s', \frac{M}{s'} s'\}\). We claim that the conclusion follows provided \(S \subset \Lambda^K\). Indeed, since
\[
\#\Lambda^K \leq \max \{Ms', 8s'\} + \#\Lambda^0 < \text{Spark}(A),
\]
one can recover \(x\) by solving the least square, i.e.,
\[
x = \arg \min_{z: \text{supp}(z) \subset \Lambda^K} \|y - Az\|_2.
\]
Thus, to this end, we only need prove that \(S \subset \Lambda^K\), i.e. \(\#(S \setminus \Lambda^K) = 0\). The proof is by induction on \(s' = \#(S \setminus \Lambda^0)\). If \(s' = 0\), then the conclusion holds. For the induction step, we assume that the result holds up to an integer \(s' - 1\). We next show that it holds for \(s'\).

Without loss of generality, we suppose that
\[
|x'_1| \geq |x'_2| \geq \cdots \geq |x'_{s'}| > 0.
\]
For \(\ell = 1, \ldots, \max \{0, \left\lceil \log_2 \frac{M}{s'} \right\rceil\} + 1\), we set
\[
\tilde{x}'_j := \begin{cases} x'_j & \text{if } j \geq 2^{\ell-1} \cdot M + 1, \\ 0 & \text{else}, \end{cases}
\]
and $\tilde{x}^0 := x'$. Suppose that $L \in \mathbb{Z}$ such that

\begin{equation}
||\tilde{x}^0||^2 < \mu ||\tilde{x}^1||^2, \ldots, ||\tilde{x}^{L-2}||^2 < \mu ||\tilde{x}^{L-1}||^2
\end{equation}

and

\begin{equation}
||\tilde{x}^{L-1}||^2 \geq \mu ||\tilde{x}^L||^2.
\end{equation}

And hence, L is the least integer such that $||\tilde{x}^{L-1}||^2 \geq \mu ||\tilde{x}^L||^2$ and we will choose $\mu > 2$ late. The existence of such a L can follow from $||\tilde{x}^\ell||^2 = 0$ when $\ell = \max\{0, \log_2 \frac{S}{\lambda}\} + 1$. And hence, we have

\[1 \leq L \leq \max \left\{ 0, \left\lfloor \log_2 \frac{S}{\lambda} \right\rfloor \right\} + 1. \]

We first consider the case where $L = 1$. We take $u = u^1 := x - \tilde{x}^1$ and $t = M$ in (15). Then a simple observation is that

\[\#(\text{supp}(u^1) \setminus A^0) = \min\{M, s'\}. \]

Noting that $\left\lfloor \#(\text{supp}(u^1) \setminus A^0) \right\rfloor = 1$ and

\[||y - Au^1||^2 = ||A\tilde{x} - Au^1||^2 = ||A\tilde{x}^1||^2. \]

By subtracting $||y - Au^1||^2 = ||A\tilde{x}^1||^2$ on both sides of (15), we can obtain that

\[\max\{0, ||y - Ax^1||^2 - ||Ax^1||^2\} \leq \left(1 - \frac{1 - \delta_s}{1 + \delta_s}\right) \max\{0, ||y - Ax^0||^2 - ||Ax^1||^2\}, \]

which implies that

\begin{align*}
||y - Ax^1||^2 &\leq \left(1 - \frac{1 - \delta_s}{1 + \delta_s}\right) \max\{0, ||y - Ax^0||^2 - ||Ax^1||^2\} + ||Ax^1||^2 \\
&= \left(1 - \frac{1 - \delta_s}{1 + \delta_s}\right) \max\{0, ||Ax^0||^2 - ||Ax^1||^2\} + ||Ax^1||^2 \\
&\leq \left(1 - \frac{1 - \delta_s}{1 + \delta_s}\right) \parallel Ax^0\parallel^2 + ||Ax^1||^2 \\
&\leq (1 + \delta_s) \left(1 - \frac{1 - \delta_s}{1 + \delta_s}\right) \parallel Ax^0\parallel^2 + \parallel Ax^1\parallel^2 \\
&\leq 2\delta_s\parallel Ax^0\parallel^2 + \frac{1 + \delta_s}{\mu} \parallel Ax^0\parallel^2 = \left(2\delta_s + \frac{1 + \delta_s}{\mu}\right) \parallel Ax^0\parallel^2, \tag{21}
\end{align*}

where the last inequality uses the fact that $L = 1$ and hence $\parallel Ax^1\parallel^2 \leq \parallel Ax^0\parallel^2/\mu$. On the other hand, we note that

\begin{align*}
||y - Ax^1||^2 &= \parallel A(x - x^1)\parallel^2 \\
&\geq (1 - \delta_{2s}) \parallel x - x^1\parallel^2 \\
&\geq (1 - \delta_{2s}) \parallel x_{\Lambda_{\delta}}\parallel^2. \tag{22}
\end{align*}

Then, combining (21) and (22), we obtain that

\[\parallel x_{\Lambda_{\delta}}\parallel^2 \leq \frac{1}{1 - 3\delta_{2s}} \left(2\delta_s + \frac{1 + \delta_s}{\mu}\right) \parallel Ax^0\parallel^2. \]

Noting $\delta_s \leq \delta_{2s} \leq \delta_s \leq \frac{1}{17}$, we have

\[\frac{1 + \delta_s}{1 - 3\delta_{2s}} \leq 2 < \mu, \]
which implies that
\[
\frac{1}{1 - \delta_{2s}} \left(2\delta_s + \frac{1 + \delta_s}{\mu}\right) < 1.
\]
And hence,
\[
\|x_{\Lambda}^0\|_2^2 < \|\tilde{x}\|_2^2,
\]
i.e.
\[
\#(S \setminus \Lambda^1) \leq s' - 1.
\]
Now we continue the algorithm with the initial feature set \(\Lambda^1\). According to the induction assumption, we can recover the \(s\)-sparse signal \(x\) within \(\max\{s' - 1, \frac{s}{M}(s' - 1)\}\) iterations provided the initial feature set is \(\Lambda^1\). Thus, if one chooses the initial feature set as \(\Lambda^0\) then \(x\) can be recovered within \(1 + \max\{s' - 1, \frac{s}{M}(s' - 1)\}\) iterations.

Then, the conclusion follows since
\[
1 + \max\{s' - 1, \frac{s}{M}(s' - 1)\} \leq \max\{s, \frac{8}{M}s\}.
\]

We next consider the case where \(L \geq 2\). We take \(u = u^\ell := x - \tilde{x}_\ell\) and \(t = M\) in (15). Then a simple observation is that
\[
\#(\text{supp}(u^\ell) \setminus \Lambda^n) = \#(\text{supp}(u^\ell) \cap \Lambda^0) + \min\{2, \frac{s}{M}s\} - \#(\text{supp}(u^\ell) \cap \Lambda^n).
\]
Thus, for any \(n \geq 0\),
\[
\#(\text{supp}(u^\ell) \setminus \Lambda^n) = \#(\text{supp}(u^\ell) \cap \Lambda^0) + \min\{2, \frac{s}{M}s\} - \#(\text{supp}(u^\ell) \cap \Lambda^n) \leq \min\{2, \frac{s}{M}s\}.
\]
To state conveniently, we set
\[
\bar{U}^\ell := \left\lfloor \frac{\min\{2, \frac{s}{M}s\}}{M} \right\rfloor \in \mathbb{Z}.
\]
If \(\text{supp}(u^\ell) \not\subset \Lambda^n\) then we obtain that
\[
\max\{0, \|y - Ax^{n+1}\|_2^2 - \|Ax^\ell\|_2^2\} \leq \left(1 - \frac{1 - \delta_{s+nM}}{(1 + \delta_M) \cdot \bar{U}^\ell}\right) \max\{0, \|y - Ax^n\|_2^2 - \|Ax^\ell\|_2^2\} \leq \exp\left(-\frac{1 - \delta_{s+nM}}{(1 + \delta_M) \cdot \bar{U}^\ell}\right) \max\{0, \|y - Ax^n\|_2^2 - \|Ax^\ell\|_2^2\},
\]
which follows by subtracting
\[
\|y - Ax^\ell\|_2^2 = \|Ax - Ax^\ell\|_2^2 = \|Ax^\ell\|_2^2
\]
on both sides of (15) in Lemma 4. For the case \(\text{supp}(u^\ell) \subset \Lambda^n\), (23) still holds since both sides of (23) are equal to 0. Iterating (23) \(k\) times leads to
\[
\max\{0, \|y - Ax^{n+k}\|_2^2 - \|Ax^\ell\|_2^2\} \leq \exp\left(-k\frac{1 - \delta_{s+nM}}{(1 + \delta_M) \cdot \bar{U}^\ell}\right) \max\{0, \|y - Ax^n\|_2^2 - \|Ax^\ell\|_2^2\}
\]
which implies that
\[
\|y - Ax^{n+k}\|_2^2 \\
\leq \exp\left(-k \frac{1 - \delta_{s+nM}}{(1 + \delta_M) \cdot U^r}\right) \max\{0, \|y - Ax^n\|_2^2 - \|Ax^\ell\|_2^2\} + \|Ax^\ell\|_2^2.
\]
(25)
\[
\leq \exp\left(-k \frac{1 - \delta_{s+nM}}{(1 + \delta_M) \cdot U^r}\right) \|y - Ax^n\|_2^2 + \|Ax^\ell\|_2^2.
\]

Here, if the left side of (24) is 0, then
\[
\|y - Ax^{n+k}\|_2^2 \leq \|Ax^\ell\|_2^2.
\]
Thus, (25) still holds since \(\|y - Ax^n\|_2^2 \geq 0\). To state conveniently, for \(\ell = 1, \ldots, L\), we set \(k_\ell := k \cdot U^\ell\), \(k_0 := 0\), \(K := k_1 + \cdots + k_L\) and \(\nu := \exp\left(-k \frac{1 - k_{\ell-1}M}{1 + \delta_M}\right)\), and we will choose \(k\) late. For \(\ell = 1, \ldots, L\), we take \(n := k_0 + \cdots + k_{\ell-1}\) and \(k := k_\ell\) in (26) and arrive at
\[
\|y - Ax^{k_1 + \cdots + k_\ell}\|_2^2 \leq \exp\left(-k \frac{1 - \delta_{s+(k_0 + \cdots + k_{\ell-1})M}}{(1 + \delta_M) \cdot U^r}\right) \|y - Ax^{k_1 + \cdots + k_{\ell-1}}\|_2^2 + \|Ax^\ell\|_2^2.
\]
(26)
\[
\leq \nu \|y - Ax^{k_1 + \cdots + k_{\ell-1}}\|_2^2 + \|Ax^\ell\|_2^2.
\]
Then, using the inequality (26) for \(L\) times, we can obtain that
\[
\|y - Ax^K\|_2^2 \leq \nu^L \|y - Ax^0\|_2^2 + \nu \|Ax^1\|_2^2 + \cdots + \nu \|Ax^{L-1}\|_2^2 + \|Ax^L\|_2^2
\]
\[
\leq \nu^L \|Ax^0\|_2^2 + \cdots + \nu \|Ax^{L-1}\|_2^2 + \|Ax^L\|_2^2.
\]
Here, for the second relation, we use the fact of
\[
\|y - Ax^0\|_2^2 = \min_{\text{supp(x) \subset} \Lambda^0} \|y - Ax\|_2^2 \leq \|y - A(x - \hat{x}^0)\|_2^2 = \|Ax^0\|_2^2
\]
with supp\((x - \hat{x}^0) \subset \Lambda^0\). Combining RIP property of \(A\), (19) and (20), we obtain that
\[
\|Ax^\ell\|_2^2 \leq (1 + \delta_s)\|\hat{x}^\ell\|_2^2 \leq (1 + \delta_s)\mu^{L-1-\ell}\|\hat{x}^{L-1}\|_2^2
\]
for \(\ell = 0, 1, \ldots, L\). Note that
\[
\|y - Ax^K\|_2^2 \leq \sum_{\ell=0}^L \nu^{L-\ell} \|Ax^\ell\|_2^2
\]
\[
\leq \frac{(1 + \delta_s)\|\hat{x}^{L-1}\|_2^2}{\mu} \sum_{\ell=0}^L (\mu \nu)^{L-\ell}
\]
\[
\leq \frac{(1 + \delta_s)\|\hat{x}^{L-1}\|_2^2}{\mu (1 - \mu \nu)},
\]
(27)
and
\[
\|y - Ax^K\|_2^2 \geq \|A(x - x^K)\|_2^2
\]
\[
\geq (1 - \delta_{s+K \cdot M})\|x - x^K\|_2^2
\]
\[
\geq (1 - \delta_{s+K \cdot M})\|x - x^K\|_2^2.
\]
(28)
Combining (27) and (28), we have
\[
\|x - x^K\|_2^2 \leq \frac{(1 + \delta_s)}{(1 - \delta_{s+K \cdot M})\mu(1 - \mu \nu)} \|\hat{x}^{L-1}\|_2^2.
\]
(29)
We can choose $\hat{k} = 2$, $\mu = \frac{1}{2^{\nu}}$, and $\delta_{s+K \cdot M} \leq \delta_{9s} \leq \frac{1}{10}$ with

$$K = k_1 + \cdots + k_L \leq 2^L \hat{k} \leq 8 \frac{s}{M}.$$

Noting that $\nu \leq \exp(-18/11)$ and $\mu = \frac{1}{2^{\nu}} > 2$, we have

$$\frac{(1 + \delta_s)}{(1 - \delta_{s+K \cdot M})\mu(1 - \mu\nu)} < 1.$$

Combining (29) and (30), we obtain that

$$\|x_{\Lambda^k}\|_2^2 < \|\tilde{x}_{L-1}\|_2^2.$$

As a result, after K iterations, we have

$$\#(S \setminus \Lambda^k) = 0,$$

with

$$K = k_1 + \cdots + k_L \leq 2^L \hat{k}.$$

Now we continue the algorithm with the initial feature set Λ^K. According to the induction assumption, we can recover the s-sparse signal x within \bar{n} iterations provided the initial feature set is Λ^K, where $\bar{n} = \max\{s' - 2^{L-2} \cdot M - 1, \frac{8}{M}(s' - 2^{L-2} \cdot M - 1)\}$.

Thus, if one chooses the initial feature set as Λ^0 then x can be recovered within $K + \bar{n}$ iterations. Then, the conclusion follows since $K + \bar{n} \leq \max\{s', \frac{8}{M}s'\}$.

Appendix C. Proofs of Theorem 2 and Theorem 3

To prove Theorem 2 and Theorem 3, we first introduce two lemmas.

Lemma 5. Consider the OMMP(M) algorithm with $1 \leq M \leq s$. Suppose that the sampling matrix $A \in \mathbb{C}^{m \times N}$ satisfies $(9s, \frac{1}{10})$-RIP. Suppose that $x \in \Sigma_s$, $S = \text{supp}(x)$. Then

$$\#(S \setminus \Lambda^K) = 0,$$

where $K = \left[\frac{8s'}{M} + 8(C_0^2 + 1)M \right]$, $s' = \#(S \setminus \Lambda^0)$ and $C_0 = \max_{j \in S} |x_j| / \min_{j \in S} |x_j|$.

Proof. To state conveniently, we set

$$x' := x_{\Lambda^0}$$

and

$$C_2 := \frac{C_0^2}{\mu - 1} + 1.$$

We will choose $\mu > 2$ late so that $C_2 < C_0^2 + 1$. To this end, we will prove that $\#(S \setminus \Lambda^{K_1}) = 0$ with $K_1 = \left[\frac{8s'}{M} + 8C_2M \right]$, which implies the result. The proof is by induction on $s' = \#(S \setminus \Lambda^0)$. We first consider the case where $s' \leq C_2M$. According to Theorem 1, OMMP(M) recover the s-sparse signal within $8C_2M < 8(C_0^2 + 1)M$ iterations. Thus, we arrive at the result provided $s' \leq C_2M$.

We next consider the case where $s' > C_2M$. Without loss of generality, we suppose that

$$|x'_1| \geq |x'_2| \geq \cdots \geq |x'_{s'}| > 0.$$
To state conveniently, for \(\ell = 1, \ldots, \lceil \log_2 \left(\frac{s'}{M} \right) \rceil + 1 \), we set
\[
\mathbf{x}_j^\ell := \begin{cases}
\mathbf{x}_j' & \text{if } 2^{\ell-1}M + 1 \leq j, \\
0 & \text{else}.
\end{cases}
\]
and \(\mathbf{x}^0 := \mathbf{x}' \). Suppose that \(L \in \mathbb{Z} \) such that
\[
||\mathbf{x}^0||^2 < \mu||\mathbf{x}^1||^2, \ldots, ||\mathbf{x}^{L-2}||^2 < \mu||\mathbf{x}^{L-1}||^2
\]
and
\[
||\mathbf{x}^{L-1}||^2 \geq \mu||\mathbf{x}^L||^2.
\]
And hence, \(L \) is the least integer such that \(||\mathbf{x}^{L-1}||^2 \geq \mu||\mathbf{x}^L||^2 \). The existence of such a \(L \) can follow from \(||\mathbf{x}^\ell||^2 = 0 \) when \(\ell = \lceil \log_2 \left(\frac{s'}{M} \right) \rceil + 1 \). We next show that the assumption of \(s' > C_2M \) implies that \(||\mathbf{x}^0||^2 < \mu||\mathbf{x}^1||^2 \) and hence \(L \geq 2 \). Indeed, \(||\mathbf{x}^0||^2 < \mu||\mathbf{x}^1||^2 \) is equivalent to
\[
x_1^2 + \cdots + x_M^2 < (\mu - 1)\|\mathbf{x}^1\|_2^2.
\]
Hence, we only need argue (33). Note that
\[
x_1^2 + \cdots + x_M^2 \leq M \max_{j \in S} x_j^2 < (\mu - 1)(s' - M) \min_{j \in S} x_j^2 \leq (\mu - 1)||\mathbf{x}^1||^2,
\]
where the second relation uses the fact of
\[
s' > C_2M = \left(\frac{C_2}{\mu - 1} + 1 \right) M.
\]
And hence, we have \(2 \leq L \leq \lceil \log_2 \left(\frac{s'}{M} \right) \rceil + 1 \). We take
\[
\mathbf{u} = \mathbf{u}^\ell := \mathbf{x} - \mathbf{x}^\ell
\]
and \(t = M \) in (15). Then a simple observation is that
\[
\#\text{supp}(\mathbf{u}^\ell) = \#\Lambda^0 + \min\{2^{\ell-1}M, s'\}.
\]
For any \(n \geq 0 \),
\[
\#(\text{supp}(\mathbf{u}^\ell) \setminus \Lambda^n) = \#(\text{supp}(\mathbf{u}^\ell) \cap \Lambda^n) + \min\{2^{\ell-1}M, s'\} - \#(\text{supp}(\mathbf{u}^\ell) \cap \Lambda^n) \\
\leq \min\{2^{\ell-1}M, s'\}.
\]
To state conveniently, we set
\[
U^\ell := \left\lfloor \frac{\min\{2^{\ell-1}M, s'\}}{M} \right\rfloor.
\]
Noting that
\[
||\mathbf{y} - A\mathbf{u}^\ell||_2^2 = ||A\mathbf{x} - A\mathbf{u}^\ell||_2^2 = ||A\mathbf{x}^\ell||_2^2,
\]
by (14), we obtain that
\[
\max\{0, ||\mathbf{y} - A\mathbf{x}^n||_2^2 - ||A\mathbf{x}^\ell||_2^2\} \\
\leq \left(1 - \frac{1 - \delta_{s+nM}}{(1 + \delta_M) \cdot U^\ell} \right) \max\{0, ||\mathbf{y} - A\mathbf{x}^n||_2^2 - ||A\mathbf{x}^\ell||_2^2\} \\
\leq \exp\left(\frac{1 - \delta_{s+nM}}{(1 + \delta_M) \cdot U^\ell} \right) \max\{0, ||\mathbf{y} - A\mathbf{x}^n||_2^2 - ||A\mathbf{x}^\ell||_2^2\}.
\]
Iterating (34) for \(k \) times leads to
\[
\max\{0, ||\mathbf{y} - A\mathbf{x}^{n+k}||_2^2 - ||A\mathbf{x}^\ell||_2^2\} \leq \exp\left(-k \frac{(1 - \delta_{s+KM})}{(1 + \delta_M) \cdot U^\ell} \right) \max\{0, ||\mathbf{y} - A\mathbf{x}^n||_2^2 - ||A\mathbf{x}^\ell||_2^2\}.
\]
which implies that
\begin{equation}
\|y - Ax^{n+k}\|_2^2 \leq \exp\left(-k \frac{1 - \delta_{s+KM}}{1 + \delta_M} \cdot \bar{U}^\ell\right) \|y - Ax^n\|_2^2 + \|Ax^\ell\|_2^2
\end{equation}
where \(k\) and \(K\) are integers satisfying \(K \geq n + k\).

To state conveniently, for \(\ell = 1, \ldots, L\), we set \(k_\ell := \bar{k} \cdot \bar{U}^\ell\), \(K := k_1 + \cdots + k_L\) and
\[v := \exp\left(-\bar{k} \frac{1 - \delta_{s+KM}}{1 + \delta_M}\right),\]
and we will choose \(\bar{k}\) late. We use (35) and a similar argument in the proof of Theorem 1 to obtain that
\begin{equation}
\|y - Ax^K\|_2^2 \leq \sum_{\ell=0}^L v^{L-\ell} \|Ax^\ell\|_2^2
\end{equation}
Note that
\begin{equation}
\|y - Ax^K\|_2^2 \geq \|A(x - x^K)\|_2^2
\end{equation}
\begin{align*}
&\geq (1 - \delta_{s+KM})\|x - x^K\|_2^2 \\
&\geq (1 - \delta_{s+KM})\|x_{\Lambda^K}\|_2^2.
\end{align*}
Combining (36) and (37), we arrive at
\begin{equation}
\|x_{\Lambda^K}\|_2^2 \leq \frac{(1 + \delta_s)}{(1 - \delta_{s+KM})\mu(1 - \mu v)}\|x^{L-1}\|_2^2.
\end{equation}
We can choose \(\bar{k} = 2\), \(\mu = \frac{1}{2v}\), and
\[\delta_{s+KM} \leq \delta_{9s} \leq \frac{1}{10},\]
and therefore \(v \leq \exp(-18/11)\) and
\[\mu = \frac{1}{2v} > 2.\]
Here, we use \(s + KM \leq s + 4\bar{k}s' \leq 9s\) since
\[K = k_1 + \cdots + k_L \leq \bar{k}(1 + \cdots + 2^{L-1}) \leq 2^L \bar{k} \leq 4 \cdot \bar{k} \cdot \frac{s'}{M}.\]
Then
\[\frac{(1 + \delta_s)}{(1 - \delta_{s+KM})\mu(1 - \mu v)} < 1,\]
which implies that
\[\|x_{\Lambda^K}\|_2^2 < \|x^{L-1}\|_2^2.\]
As a result, after \(K\) iterations, we have
\[\#(S \setminus \Lambda^K) < \#((S \setminus \Lambda^0) \setminus \text{supp}(u^{L-1})) = s' - 2^{L-2} M.\]
Now we continue the algorithm with the initial feature set Λ^K. According to the induction assumption, we can recover the s-sparse signal x in $K + \bar{n}$ iterations where $$\bar{n} \leq \left\lfloor \frac{8s' - 2L - 2M}{M} + 8C_2M \right\rfloor.$$

Note that $L \geq 2$ and

$$K + \bar{n} \leq 2^{L+\bar{k}} + \left\lfloor \frac{8s' - 2L - 2M}{M} + 8C_2M \right\rfloor = 8 \cdot 2^{L+\bar{k}} - \left\lfloor \frac{8s' - 2L - 2M}{M} + 8C_2M \right\rfloor.$$

Then we arrive at

$$K + \bar{n} \leq \left\lfloor \frac{8s'}{M} + 8C_2M \right\rfloor,$$

which implies the result. \hfill \Box

Lemma 6. Suppose that x is s-sparse, $S = \text{supp}(x)$ and $C_0 = \max_{j \in S} |x_j|/\min_{j \in S} |x_j|$. Consider the OMMP($M$) algorithm with $1 \leq M \leq \frac{2}{C_0^2 + 2} \cdot s$. Suppose that the sampling matrix $A \in \mathbb{C}^{m \times N}$ whose columns a_1, \ldots, a_N are ℓ_2-normalized, and that A satisfies $(14s, \frac{1}{10})$-RIP. Set $s' := \#(S \setminus \Lambda^0)$ and

$$\bar{K} := \left\lfloor \frac{8s'}{M} + 4 \cdot \ln 2 \cdot \frac{s}{M} \log_2(s' + 1) \right\rfloor.$$

Then

$$\#(S \setminus \Lambda^{\bar{K}}) = 0.$$

Proof. To state conveniently, we set $x' := x_{\Lambda^0}$. The proof is by induction on $s' = \#(S \setminus \Lambda^0)$. When $s' = 0$, the conclusion holds trivially.

Without loss of generality, we suppose that

$$|x'_1| \geq |x'_2| \geq \cdots \geq |x'_{s'}| > 0.$$

For convenience, for $\ell = 1, \ldots, \left\lfloor \log_2\left(\frac{s'}{M}\right) \right\rfloor + 1$, we set

$$\hat{x}^\ell_j := \begin{cases} x'_j & \text{if } 2^{\ell-1} \frac{M}{s'} s' + 1 \leq j, \\ 0 & \text{else} \end{cases}$$

and $\hat{x}^0 := x'$. Similar with the proof of Lemma 5, suppose that L is the least integer such that $\|\hat{x}^{L-1}\|_2^2 \geq \mu\|\hat{x}^{L}\|_2^2$. We will choose $\mu > 2$ late. The assumption of

$$M < \frac{2}{C_0^2 + 2} s$$

implies that

$$\|\hat{x}^0\|_2^2 < \mu\|\hat{x}^1\|_2^2.$$

And hence, we have $2 \leq L \leq \left\lfloor \log_2\left(\frac{s'}{M}\right) \right\rfloor + 1$. We take $u = u^\ell := x - \hat{x}^\ell$.

and \(t = M \) in (15). Then a simple observation is that

\[
\#\text{supp}(u^t) = \#\text{supp}((u^t) \cap \Lambda^0) + \min \left\{ \left\lfloor 2^\ell - 1 \frac{M}{s} \right\rfloor, s' \right\}.
\]

For any \(n \geq 0 \),

\[
\#(\text{supp}(u^\ell) \setminus \Lambda^n) = \#\text{supp}((u^\ell) \cap \Lambda^0) + \min \left\{ \left\lfloor 2^\ell - 1 \frac{M}{s} \right\rfloor, s' \right\} - \#\text{supp}((u^\ell) \cap \Lambda^n).
\]

To state conveniently, we set \(\bar{U}^\ell := \left\lceil \min \left\{ \left\lfloor 2^\ell - 1 \frac{M}{s} \right\rfloor, s' \right\} \right\rceil \), \(k^\ell := \bar{k} \cdot \bar{U}^\ell \), \(K := k^1 + \cdots + k^L \) and \(v := \exp \left(-\bar{k} \frac{1 - \delta + KM}{1 + 3M} \right) \), and we will choose \(\bar{k} \) later. We use (35) and a similar argument in the proof of Theorem 1 to obtain that

\[
\|y - Ax^K\|_2^2 \leq \sum_{\ell=0}^L v^{L-\ell} \|Ax^\ell\|_2^2
\]

\[
\leq \frac{(1 + \delta_s)\|x^{L-1}\|_2^2}{\mu} \sum_{\ell=0}^L (\mu v)^{L-\ell}
\]

\[
(38)
\]

Note that

\[
\|y - Ax^K\|_2^2 \geq \|A(x - x^K)\|_2^2
\]

\[
\geq (1 - \delta_s + KM)\|x - x^K\|_2^2
\]

\[
\geq (1 - \delta_s + KM)\|x_{\Lambda^K}\|_2^2.
\]

(39)

Combining (38) and (39), we arrive at

\[
\|x_{\Lambda^K}\|_2^2 \leq \frac{(1 + \delta_s)}{(1 - \delta_s + KM)\mu(1 - \mu v)}\|x^{L-1}\|_2^2.
\]

We can choose \(\bar{k} = 2 \), \(\mu = 1/(2v) \), and \(\delta_s + KM \leq \delta_{14s} \leq 1/10 \). And hence \(v \leq \exp(-18/11) \) and \(\mu = 1/(2v) > 2 \). Here, we use \(s + KM \leq 13s \) with

\[
K = k^1 + \cdots + k^L
\]

\[
\leq \bar{k}(1 + \cdots + 2^L - 1) \frac{s'}{s} + \bar{k}L \leq 2^L \frac{\bar{k} s'}{s} + \bar{k}L
\]

\[
\leq 4\bar{k} \frac{s'}{M} + \bar{k}L \leq 8 \frac{s'}{M} + 4 + 2 \log_2 \frac{s}{M}.
\]

Then

\[
\frac{(1 + \delta_s)}{(1 - \delta_s + KM)\mu(1 - \mu v)} < 1,
\]

which implies that

\[
\|x_{\Lambda^K}\|_2^2 \leq \|x^{L-1}\|_2^2.
\]
As a result, after K iterations, we have
\[
\#(S \setminus \Lambda^K) \leq \#((S \setminus \Lambda^0) \setminus \text{supp}(u^{L-1})) - 1 = s' - 2^{L-2}M \frac{s'}{s} - 1,
\]
with
\[
K = k_1 + \cdots + k_L \leq \tilde{k}(1 + \cdots + 2^{L-1}) \frac{s'}{s} + \tilde{k}L \leq 2^{L} \frac{s'}{s} + \tilde{k}L.
\]
Now we continue the algorithm from the iteration K. According to the induction assumption, we have
\[
\#(S \setminus \Lambda^{K+\bar{n}}) = 0
\]
with
\[
\bar{n} \leq \left\lfloor \frac{8s' - 2^{L-2}M s'}{M} + 4 \cdot \ln 2 \cdot \frac{s}{M} \log_2 \left(s' - 2^{L-2}M \frac{s'}{s} \right) \right\rfloor.
\]
Note that $L \geq 2$ and that
\[
2^{L} \frac{s'}{s} + 8 \frac{s' - 2^{L-2}M s'}{M} \leq 8 \frac{s'}{M}.
\]
A simple calculation shows that
\[
\tilde{k}L + 4 \cdot \ln 2 \cdot \frac{s}{M} \log_2 \left(s' - 2^{L-2}M \frac{s'}{s} \right) = 4 \cdot \ln 2 \cdot \frac{s}{M} \log_2 s' + \tilde{k}L + 4 \cdot \ln 2 \cdot \frac{s}{M} \log_2 \left(1 - 2^{L-2}M \right) \leq 4 \cdot \ln 2 \cdot \frac{s}{M} \log_2 (s' + 1).
\]
Then we arrive at
\[
K + \bar{n} \leq 2^{L} \frac{s'}{s} + \tilde{k}L + \bar{n} \leq \left\lfloor \frac{8s'}{M} + 4 \cdot \ln 2 \cdot \frac{s}{M} \log_2 (s' + 1) \right\rfloor,
\]
which implies the result. \hfill \Box

Proof of Theorem 2. According to Lemma 5, after OMMP(M) running \bar{K} steps, we have
\[
S \subset \Lambda^{\bar{K}}
\]
where
\[
\bar{K} = \left\lfloor \frac{8s'}{M} + 8(C_0^2 + 1)M \right\rfloor \leq \left\lfloor 8(C_0^2 + 2) \frac{s'}{M} \right\rfloor.
\]
Here we use the assumption of $M \leq \sqrt{s'}$. Since OMMP(M) chooses M atoms at each iteration, we have
\[
\#\Lambda^{\bar{K}} \leq \bar{K}M \leq 8(C_0^2 + 2)s' + \#\Lambda^0.
\]
Noting that $\text{Spark}(A) > 8(C_0^2 + 2)s' + \#\Lambda^0$, we obtain that
\[
\arg\min_{\mathbf{z} \in \mathbb{C}^N, \text{supp}(\mathbf{z}) \subset \Lambda^{\bar{K}}} \|A\mathbf{z} - \mathbf{y}\|_2 = \mathbf{x}
\]
which implies that OMMP(\(M\)) can recover the \(s\)-sparse signal \(x\) within \([8(C_0^2 + 2)^\frac{1}{\alpha^2}]\) iterations.

Proof of Theorem 3. By Lemma \(5\), we have
\[
S \subset \Lambda^\bar{K},
\]
since
\[
\bar{K} \leq \left[\frac{8s}{M} + 4 \cdot \ln 2 \cdot \frac{s}{M} \log_2(s + 1)\right] \leq \left[8\frac{s}{M} \log_2(2(s + 1))\right] = \left[\frac{8s}{M} \log_2(2(s + 1))\right].
\]
Here, we use the fact of \(\Lambda^0 = \emptyset\) and hence \(#(S \setminus \Lambda^0) = s\). Also, noting that
\[
#\Lambda^\bar{K} \leq \bar{K}M \leq 8s \log_2(2(s + 1))
\]
and
\[
\text{Spark}(A) > 8s \log_2(2(s + 1)),
\]
we obtain that
\[
\arg\min_{z \in \mathbb{C}^N, \supp(z) \subset \Lambda^\bar{K}} \|Az - y\|_2 = x,
\]
which implies the result. \(\square\)

Appendix D. Proof of Theorem 5.

Proof. The proof proceed by induction. We assume that \(\Lambda^\ell \subset \supp(x)\) holds for \(\ell = 0, \ldots, n - 1 \leq s - 1\). We next consider \(\Lambda^n\). Set
\[
\tilde{x}^{n-1} := x_{\Lambda^\ell \cup \{j^{n-1}\}}, \quad u := x_{\Lambda^n \setminus \{j^{n-1}\}},
\]
where \(j^{n-1}\) is the indices of the largest entries of \(x_{\Lambda^n \setminus \{j^{n-1}\}}\) in magnitude. Lemma \(3\) implies that
\[
\|y - Ax^n\|_2^2 \leq \|y - Ax^{n-1}\|_2^2 - \frac{(1 - \delta_s)}{\#(U \setminus \Lambda^{n-1})} \max\{0, \|y - Ax^{n-1}\|_2^2 - \|y - Au\|_2^2\},
\]
where \(U := \supp(u)\). Noting that \(#(U \setminus \Lambda^{n-1}) = 1\), we have
\[
\|y - Ax^n\|_2^2 \leq \|y - Ax^{n-1}\|_2^2 - (1 - \delta_n) \max\{0, \|y - Ax^{n-1}\|_2^2 - \|y - Au\|_2^2\} \leq \|y - Ax^{n-1}\|_2^2 - (1 - \delta_n) \max\{0, \|y - Ax^{n-1}\|_2^2 - \|A\tilde{x}^{n-1}\|_2^2\}.
\]
We claim that
\[
\|y - Ax^{n-1}\|_2^2 \geq \|A\tilde{x}^{n-1}\|_2^2.
\]
Then we have
\[
\|y - Ax^n\|_2^2 \leq \|y - Ax^{n-1}\|_2^2 - (1 - \delta_n) \max\{0, \|y - Ax^{n-1}\|_2^2 - \|A\tilde{x}^{n-1}\|_2^2\} \leq \delta_n \|y - Ax^{n-1}\|_2^2 + (1 - \delta_n) \|A\tilde{x}^{n-1}\|_2^2 \leq \delta_n \|A(x - x^{n-1})\|_2^2 + \|A\tilde{x}^{n-1}\|_2^2 \leq \delta_n (1 + \delta_s) \|x_{\Lambda^n \setminus \{j^{n-1}\}}\|_2^2 + (1 + \delta_s) \|\tilde{x}^{n-1}\|_2^2 \leq (1 + \delta_s) \left(\delta_n + \frac{1}{\alpha^2}\right) \|x_{\Lambda^n \setminus \{j^{n-1}\}}\|_2^2,
\]
Here, for the last inequality, we use the fact of \(\|\tilde{x}^{n-1}\|_2^2 \leq \|x^{\Lambda_{n-1}}\|_2^2/\alpha^2 \) since \(x \) is \(\alpha \)-decaying. On the other hand, we have

\[
\|y - Ax^n\|_2^2 = \|A(x - x^n)\|_2^2 \geq \|A(x - x^n)\|_2^2 \geq (1 - \delta_s)\|x^{\Lambda_{n-1}}\|_2^2.
\]

Combing the results above, we obtain that

\[
\|x^{\Lambda_{n}}\|_2^2 \leq \beta\|x^{\Lambda_{n-1}}\|_2^2
\]

where

\[
\beta = \frac{1 + \delta_s}{1 - \delta_s} \left(\delta_s + \frac{1}{\alpha^2} \right).
\]

Note that \(\delta_s < \sqrt{2} - 1 \) and hence \(2 - (1 + \delta_s)^2 > 0 \). Then when

\[
\alpha > \sqrt{\frac{1 + \delta_s}{2 - (1 + \delta_s)^2}},
\]

we have

\[
\beta < 1.
\]

And hence,

\[
\|x^{\Lambda_{n}}\|_2^2 < \|x^{\Lambda_{n-1}}\|_2^2,
\]

which implies that \(\Lambda^n \subset \text{supp}(x) \).

We remain to argue that

\[
\|y - Ax^{n-1}\|_2^2 \geq \|Ax^{n-1}\|_2^2.
\]

We assume that

\[
\|y - Ax^{n-1}\|_2^2 < \|Ax^{n-1}\|_2^2,
\]

and we shall derive a contradiction. The RIP property of the matrix \(A \) implies that

\[
(1 - \delta_s)\|x^{\Lambda_{n-1}}\|_2^2 \leq \|y - Ax^{n-1}\|_2^2 < \|Ax^{n-1}\|_2^2 \leq (1 + \delta_s)\|\tilde{x}^{n-1}\|_2^2.
\]

And hence,

\[
\|x^{\Lambda_{n-1}}\|_2^2 \leq \frac{1 + \delta_s}{1 - \delta_s}\|\tilde{x}^{n-1}\|_2^2.
\]

Noting that \(\alpha^2\|\tilde{x}^{n-1}\|_2^2 \leq \|x^{\Lambda_{n-1}}\|_2^2 \), we have

\[
\alpha^2 \leq \frac{1 + \delta_s}{1 - \delta_s},
\]

which contradicts with \(\alpha^2 > \frac{1 + \delta_s}{2 - (1 + \delta_s)^2} \).

\[\square\]

References

[1] B. Alexeev, J. Cahill and D. G. Mixon, Full Spark Frames, J. Fourier Anal. Appl., DOI 10.1007/s00041-012-9235-4.

[2] R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin, A simple proof of the restricted isometry property for random matrices, Constr. Approx. vol.28, no.3, pp.253-263, 2008.

[3] Blumensath, T., Davies, M.E., Sampling Theorems for Signals From the Union of Finite-Dimensional Linear Subspaces, IEEE Trans. Inform. Theory, vol. 55, no.4, pp.1872-1882, 2009.

[4] T. Cai, L. Wang, and G. Xu, Shifting inequality and recovery of sparse signals. IEEE Trans. Signal Process, vol. 58, no. 3, pp. 1300-1308, 2010.

[5] T. Cai, L. Wang, and G. Xu, New Bounds for Restricted Isometry Constants, IEEE Transactions on Information Theory, vol. 56, no.9, pp. 4388 - 4394, 2010.
[6] E. J. Candès and T. Tao, Decoding by linear programming, IEEE Trans. Inf. Theory, vol.51, no. 12, pp.4203-4215, 2005.
[7] W. Dai and O. Milenkovic, Subspace pursuit for compressive sensing signal reconstruction, IEEE Trans. Inf. Theory, vol. 55, no.5, pp.2230-49, 2009.
[8] M. A. Davenport and M. B. Wakin, Analysis of orthogonal matching pursuit using the restricted isometry property, IEEE Transactions on Information Theory, vol. 56, no.9, pp. 4395-4401, 2010.
[9] S. Foucart, Stability and robustness of weak orthogonal matching pursuits, AMS Spring 2011 Southeastern Conference, Springer Proceedings in Mathematics, 2011.
[10] S. Huang and J. Zhu, Recovery of sparse signals using OMP and its variants: Convergence analysis based on RIP, Inverse problem, vol. 28, no.3, pp. 35003-35016, 2011.
[11] Entao Liu and V. N. Temlyakov, The orthogonal super greedy algorithm and applications in compressed sensing, IEEE Transactions on Information Theory, vol.58, no.4, pp.2040-2047, 2012.
[12] R. Malch, Improved RIP analysis of Orthogonal matching pursuit, arXiv:1102.4311.
[13] Qun Mo and Yi Shen, A remark on the Restricted Isometry Property in Orthogonal Matching Pursuit, IEEE Transaction on Information Theory, vol. 58, no. 6, pp.3654-3656, 2012.
[14] D. Needell and R. Vershynin, Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit, Found. Comput. Math., vol.9, no.3, pp.317-334, 2009.
[15] D. Needell and J. Tropp, CoSamp: iterative signal recovery from incomplete and inaccurate samples, Appl. Comput. Harmon. Anal., vol.26, no.3, pp. 301-321, 2009.
[16] H. Rauhut, On the impossibility of uniform sparse reconstruction using greedy methods, Samppl. Theory Signal Image Process., vol.7, no.2, pp.197-215, 2008.
[17] R. Vershynin, Introduction to the non-asymptotic analysis of random matrices, arXiv:1011.3027.
[18] Jian Wang, Seokbeop Kwon and Byonghyo Shim, Generalized Orthogonal Matching Pursuit, IEEE Transaction on Signal Processing, vol. 60, no. 12, pp.6202-6216, 2012.
[19] Z. Xu, Deterministic sampling of sparse trigonometric polynomials, J. Complexity, vol.27, no.2, pp.133-140, 2011.
[20] Tong Zhang, Sparse recovery with orthogonal matching pursuit under RIP, IEEE Transactions on Information Theory, vol.57, No.9, pp.6215-6221, 2011.

Authors’ addresses:
Zhiquiang Xu, LSEC, Institute of Computational Mathematics, Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing 100190, CHINA
Email: xuzq@lsec.cc.ac.cn