Biostratigraphy and palaeoenvironmental analysis of a Lower to Middle Jurassic succession on Anholt, Denmark.

MARIT-SOLVEIG SEIDENKRANTZ
Department of Earth Sciences,
University of Aarhus,
8000 Århus C, Denmark.

EVA BUNDGAARD KOPPELHUSt
Geological Survey of Denmark, Thoravej 8,
1400 Copenhagen NV, Denmark
New address: Geological Survey of Greenland
Oster Voldgade 10
1350 Copenhagen K, Denmark

HELLE RAVN-SØRENSEN
Department of Earth Sciences,
University of Aarhus,
8000 Århus C, Denmark.

ABSTRACT
Palynomorph and foraminiferal assemblages have been studied from the Upper Pliensbachian to Bathonian of a borehole section on the island of Anholt in the Kattegat, situated near the eastern margin of the Norwegian-Danish Basin. Palynomorphs were recorded throughout the succession and have been used for both biostratigraphical and palaeoenvironmental assessments. Foraminifera were recorded from only the lower part of the succession, where they proved useful for interpreting palaeoenvironments. Four palynomorph and three foraminiferal zones have been established.

The interval encompasses a palaeoenvironmental transition from a marine, inner shelf setting to mainly terrestrial conditions. The Upper Pliensbachian-Toarcian boundary marks the beginning of a major regression, which continued through the Toarcian and Aalenian. Hence, it took place significantly earlier at Anholt than in the centre of the Norwegian-Danish Basin, where a lowering of sea level did not occur until the late Toarcian.

The Jurassic succession on Anholt spans the Fjerritslev and Haldager Sand formations; biostratigraphical data indicate that the Lower-Middle Jurassic boundary is here located within the uppermost part of the Fjerritslev Formation. The Fjerritslev and Haldager Sand formational transition was previously considered to coincide with the Lower-Middle Jurassic boundary. J. Micropalaeontol. 12 (2): 201-218, December 1993.

INTRODUCTION
Jurassic strata were studied from a boring on the small Danish island of Anholt in the Kattegat (Fig. 1). This site is located near the eastern margin of the Norwegian-Danish Basin, which extended across most of Denmark into the present North Sea during the Early and Mid Jurassic. This depocentre continued into the Danish-Polish Trough to the south-east, and was delimited by the Fennoscandian Shield to the north and north-east and by the Ringkøbing-Fyn High to the south (Sorgenfrei & Buch, 1964; Michelsen, 1978; Liboriussen et al., 1987). Our study focuses on the biostratigraphy and palaeoecology of the uppermost Lower Jurassic to Middle Jurassic section.

Previous investigations have revealed a generally regressive phase in the uppermost Fjerritslev Formation. Deposition of open marine claystones occurred during the Pliensbachian and possibly early Toarcian, and of more restricted marine claystones during the late Toarcian (Michelsen, 1989a). Prograding delta or braided river sediments of the Haldager Sand Formation were deposited during the Mid Jurassic in the north-east of the basin (Michelsen, 1978, 1989a; Koch, 1983). The purpose of this study is to provide a biostratigraphic subdivision of the succession using microfossils, and to evaluate the palaeoenvironmental setting at the basin margin.

The succession from 196 m to 306 m depth in the Anholt core, consists of marine claystones with numerous very thin silty and sandy storm layers (a few mm or cm thick) referred to the Fjerritslev Formation, and from 104 m to 196 m depth it comprises alternating non-marine sand and silty clay layers with some thin brown coals referred to the Haldager Sand Formation (Fig. 2; Nielsen, 1992).

MATERIAL AND METHODS
The present study is based on both core material and ditch cuttings from a 306 m deep boring in the northwestern part of Anholt (Fig. 1). The boring penetrated about 104 m of Quaternary sediments before it reached deposits of Mid Jurassic age and continued into the upper part of the Lower Jurassic. The elevation of the drilling site is about 2 m above present-day sea level, and all of the depths noted are calculated below this altitude.

The material from c. 104 m to 230 m consists of both cuttings and core samples, while that from the lowest part of the boring (c. 230 m to 306 m) consists solely of core samples (Fig. 2). The lithological log (Fig. 2) was prepared by Ole Bjørnslev Nielsen (University of Aarhus). The total organic carbon content (TOC) of the sediments (Fig. 2) was analyzed at the University of Aarhus (AU), and at the Geological Survey of Denmark (DGU) O.B. Nielsen.
Foraminifera and megaspores. The samples for the foraminiferal and megaspore analyses (100-500 g of sediment) were processed at AU using standard techniques for foraminifera (Meldgaard & Knudsen, 1979). All foraminifera and megaspores present in the 0.1-1.0 mm fraction were counted except for those samples which yielded more than 300 specimens. In these cases only 300 specimens were identified. Selected foraminiferal species are included in Fig. 4 as estimated numbers of specimens per 1000 g of sediment. The foraminifera are stored at AU and the megaspores at the DGU.

RESULTS

Palynological zonation

Palynomorphs were recorded from 306 m to 107 m (Fig. 3) and a total of 137 species recognised. Two assemblages and two acme zones are defined using the definitions of Hedberg (1976). The boundary between two zones is placed in the interval between two sampling horizons (Fig. 3).

The *Nannoceratopsis senex - Nannoceratopsis sp. 1 Assemblage Zone* (PA), is the lowermost palynozone (Fig. 3). The assemblage is dominated by dinoflagellate cysts, especially *Nannoceratopsis senex* (Pl. 1, fig. 3) and *Nannoceratopsis sp. 1* (Pl. 1, fig. 5). In the lowermost sample (306 m) one specimen of *Luehndea spinosa* (C. Heilmann-Clausen, pers. comm. 1991) (Pl. 1, fig. 1) and one specimen of *Mendicodinium reticulatum* (Pl. 1, fig. 2) were found. Laevigate trilete spores are common, together with abundant pollen of e.g. *Corollina torosus* (Pl. 3, fig. 2) and *Chasmatosporites hians*.

The overlying *Spheripollenites subgranulatus Acme Zone* (PB), is characterized by a diverse pollen and spore flora, a dominance of the pollen *Spheripollenites subgranulatus* (Pl. 2, fig. 10), and a high frequency of *S. psilatus* (Pl. 2, figs 12 & 13) and *Corollina torosus*. The lower boundary of this zone is defined at the increase in occurrence of *S. subgranulatus* (at 230 m). Also typical is the common occurrence of the spores *Ischyosporites variegatus* (Pl. 2, fig. 9), *Striatella jurassica*, *Taurocusporites verrucatus* (Pl. 2, fig. 2), *Foraminisporis jurassicus* (Pl. 2, fig. 4), *Polycingulatisporites liassicus* (Pl. 2, fig. 3), and *Campenia gigas* (Pl. 3, fig. 8) and the occasional presence of the spores *Leptolepidites major* (Pl. 2, fig. 5), *L.
Fig. 2. Lithological log, total spectral natural gamma ray log (cps = counts per second), TOC values, and reworked palynomorphs from the lower 200 m of the Anholt boring (partly after Korsbøch & Gynther Nielsen, 1990a,b; Nielsen, pers. comm. 1992; Schmidt, pers. comm. 1992).
Fig. 3. The distribution of selected palynomorphs in the Jurassic part of the Anholt boring. (DC= ditch cutting sample, CCS= conventional core sample).
Fig. 4. The distribution of foraminifera and other fossil groups in the Jurassic interval of the Anholt boring. The selected foraminiferal species are given as an estimated number of specimens in 1000 g sediment. For other species groups: x= present, xx= frequent. All samples are from cores. Barren samples are marked with a short line in the column headed "Analysed samples".

macroverrucosus, Manumia delcourtii (Pl. 2, fig. 8), and Kekryphalospora distincta (Pl. 2, fig. 1). Unlike Zone PA, dinoflagellate cysts occur sporadically. The upper part of the zone is characterized by the presence of several megaspores, e.g. Anuletes patera, Erlansonisporites sp., Striatriletes excavatus, Hughesisporites variabilis, Paxilliriletes reticulatus, and Striatriletes sulcatus spp. (Pl. 4, figs 1-6). The upper part of the zone is characterized by reworked Carboniferous and Triassic spores.

The Peripollonites elatoides Acme Zone (PC) comprises an assemblage of uniform composition. It is dominated by Peripollonites elatoides (Pl. 3, fig. 1), "replacing" the dominance of Spheripollonites subgranulatus in the underlying Zone PB (Fig. 3). The lower boundary of the
Fig. 5. Lower and Middle Jurassic chrono- and lithostratigraphy of the Norwegian-Danish Basin, selected palynomorph- and ostracod zonations from previous studies in the region, and the local palynomorph and foraminiferal zonation of the Anholt borehole succession.

Zone is defined by the marked increase of this species (at 231.4 m). Corollina torosus occurs frequently, and a few specimens of Callialaspites turbarus (Pl. 3, fig. 7) and Nannoceratopsis gracilis (Pl. 1, fig. 4) are recorded together with reworked Carboniferous and Triassic palynomorphs.

The Callialaspites turbarus - Callialaspites dampieri Assemblage Zone (PD) is also dominated by Perinopollenites elatoides, but it is further characterized by the presence of numerous Callialaspites turbarus and C. dampieri. Other significant palynomorph species are Callialaspites microvelatus (Pl. 3, figs 4 & 6), C. minus (Pl. 3, fig. 5), Densoconis scanicus (Pl. 2, fig. 11), Neoarachnion gristharns, Sestrosporites pseudoalveolatus, Gleicheniidites conspicuus, and G. senonicus, and specimens of Botryococcus have been found sporadically throughout (Fig. 3). The assemblages from the lower half of the zone contain occasional acritarchs, which disappear in the upper part. The palynoflora of the uppermost few metres, which represents the youngest Jurassic sediments in the boring, is characterized by a low diversity and low density assemblage. Reworked Ordovician, Silurian, Devonian, and Triassic palynomorphs occur sporadically throughout.

Foraminiferal zonation

Fifteen foraminiferal species were identified in the samples examined (Fig. 4). These are concentrated in the interval 306 m to 231 m. This interval is divided into 4 foraminiferal assemblage zones (sensu Hedberg, 1976). Foraminifera were not recorded from 231-104 m. As for the palynological subdivision, zonal boundaries are placed between two

Explanation of Plate 1

Microplankton.

Light microscope photographs. Sample depth, slide number, England Finder Reference (EFR), and the Danish Geological Survey (DGU) catalogue number in brackets. Magnification x 750.

Fig. 1. *Luelrnedia spinosa* Morgenroth, 1970 (306 m; 1659, D4; EFR M323; DGU-1992-EBK-48). (Photograph kindly given to us by C. Heilmann-Clausen)
Fig. 2. *Mendicodinium reticulatum* Morgenroth, 1970 (306 m; no. 6; EFR K394; DGU-1992-EBK-49)
Fig. 3. *Nannoceratopsis senex* van Helden, 1977 (306 m; no. 6; EFR Z441; DGU-1992-EBK-50)
Fig. 4. *Nannoceratopsis gracilis* Alberti emend. van Helden, 1977 (306 m; no. 6; EFR O244; DGU-1992-EBK-51)
Fig. 5. *Nannoceratopsis ridigii* Poulsen, 1992 (306 m; no. 6; EFR N613; DGU-1992-EBK-52)
Fig. 6. *Nannoceratopsis triangulata* Prauss, 1987 (296.9 m; no. 3; EFR F330; DGU-1992-EBK-53)
Fig. 7. *Nannoceratopsis triceras* Drugg, 1978 (306 m; no. 6; EFR D583; DGU-1992-EBK-54)
Fig. 8. *Crassospira* sp. (306 m; no. 6; EFR P304; DGU-1992-EBK-55)
Lower to Middle Jurassic of Anholt, Denmark
includes 8 species (Fig. 4). The assemblage is characterized by the agglutinated species *Bulbobaculitesoviculus, Haplophragmoidesaff. pygmaeus, Reophaxhelveticus, and Kutsevella* spp. Several specimens of *Spirillina numismalis* are present in the lower part of the zone, while *Kutsevella* spp. have only been recorded in the upper part. Other fossil groups include ammonites, bivalves and scolecodonts. The lower boundary of this zone is defined by the disappearance of the Nodosaridae and the appearance of agglutinated species at about 304 m.

The *Ammobaculites agglutinans* Assemblage Zone (FC) contains almost solely the nominate arenaceous species in relatively high numbers (Fig. 4). Just a few specimens of *Arnmobaculites aff. alaskaensis* and one specimen of a *Trockammina* were found in the uppermost two samples. The lower boundary of the zone is defined at the disappearance of the species characterizing Zone FB and the appearance of *Ammobaculites agglutinans* (at 287 m). Bivalves and gastropods are occasionally present in small numbers.

The *Ammobaculites vetustus* Assemblage Zone (FD) is characterized by the sporadic occurrence of *A. vetustus* and *Bulbobaculites* sp. 1. Animal burrows filled with pyrite are common. The lower boundary of this zone is defined at the disappearance of *Ammobaculites agglutinans* and the first occurrence of *A. vetustus*. The upper boundary is defined at the disappearance of foraminifera at 264 m.

The interval above Zone FD is barren of foraminifera except for a single specimen of *Eoguttulina liassica* at 231 m below core top.

CORRELATION AND STRATIGRAPHY

The chronostratigraphy of the Anholt section is based entirely on the palynomorphs because the foraminiferal

Spores and pollen.

Light microscope photographs. Sample depth, slide number, England Finder Reference (EFR), and the DGU catalogue number in brackets. Magnification x 750.

Fig. 1. *Kekryphalospora distincta* Fenton & Riding, 1987 (283.4 m; no. 3; EFR Z284; DGU-1992-EBK-56) Fig. 2. *Taurocospores verrucatus* Schulz, 1967 (237.6 m; no. 3; EFR N514; DGU-1992-EBK-57) Fig. 3. *Polycingulatosporites lissantus* Schulz, 1967 (239.6 m; no. 3; EFR B360; DGU-1992-EBK-58) Fig. 4. *Foraminisporis jurassicus* Schulz, 1967 (237.6 m; no. 3; EFR N514; DGU-1992-EBK-59) Fig. 5. *Leptolepidites major* Couper, 1958 (248.6 m; no. 2; EFR Z513; DGU-1992-EBK-60) Fig. 6. *Leptolepidites bussus* (Couper) Schulz, 1967 (237.6 m; no. 3; EFR P602; DGU-1992-EBK-61) Fig. 7. *Utvæsporites argenteiformis* (Bolkhovitina) Schulz, 1967 (263.9 m; no. 3; EFR J361; DGU-1992-EBK-62) Fig. 8. *Manunia delcourtii* (Pocock) Dybkjaer, 1991 (306 m; no. 6; EFR R600; DGU-1992-EBK-63) Fig. 9. *Ischyosporites variegatus* (Couper) Schulz, 1967 (265.4 m; no. 3; EFR D490; DGU-1992-EBK-64) Fig. 10. *Spheripollenites subgranulatus* Couper, 1958 (239.6 m; no. 3; EFR B360; DGU-1992-EBK-65) Fig. 11. *Densoisporites scanicus* Tralau, 1968 Fig. 12, 13. *Spheripollenites psilatus* Couper, 1958 (239.6 m; no. 3; EFR B360; DGU-1992-EBK-66)
Lower to Middle Jurassic of Anholt, Denmark
assemblages cannot be correlated with faunas from other localities in this area. The stratigraphic correlation is based on comparisons with palynostratigraphic studies of deposits where the stratigraphical determinations are based on ammonites, ostracods, or dinoflagellate cyst assemblages.

On the basis of the abundant occurrence of the dinoflagellate genus *Nannoceratopsis* and the presence of rare specimens of *Luehndeia spinosa* and *Mendicodinium reticulatum*, Zone PA is correlated with the English *Luehndeia spinosa* Zone of Woollam and Riding (1983), with Zone C3 (in the Hobro-1 boring) of Bertelsen (1974), with the top of Zone C (in Gassum-1 boring) of Dybkjaer (1988) and the *Cerebropollkenites macroverrucosus* Zone of Dybkjaer (1991) (Fig. 5), and with assemblages recorded from parts of the Bagå Formation on Bornholm (Fig. 1) (Koppelhus & Nielsen, in prep.). These correlations indicate a late Pliensbachian age.

The abundance of *Speripollenites* and *Corollina*, and the presence of *Ischyosporites variegatus* and *Manumia delcourti* indicate a Toarcian age for Zone PB. The palynomorph assemblage allows a correlation with Zone C4 (Hobro-1 boring) of Bertelsen (1974), with the *Speripollenites-Leptoplerides* Zone in the Stenlille borings (Dybkjaer, 1991), and with Zone I in the Hasle Klinkerfabrik clay Pit, Bornholm, of Hoelstad (1985) (Figs 1, 5). The composition of the megaspore assemblages recorded from this interval is comparable to that known from part of the Bagå Formation on Bornholm (Koppelhus & Batten, 1992).

The abundance of *Callialasporites* and the sporadic occurrence of *Callialasporites turbatus, Nannoceratopsis gracilis*, and *N. senex* in Zone PC (Fig. 4) suggest a correlation of that zone with the *Peripollenites elatoides* Zone, which has been allocated a presumed Aalenian age (Dybkjaer, 1991), with Zone II of Hoelstad (1985), and with assemblages recorded in other parts of the Bagå Formation on Bornholm (Koppelhus & Nielsen, in prep.) (Figs 1, 5).

The low diversity faunas of agglutinated foraminifera in Zones FC and FD (middle part of palynomorph Zone PB), and the sparse dinoflagellate cysts are correlated with the Middle Jurassic Zone D in Hobro-1 of Bertelsen (1974) and with Zone III (Hasle Klinkerfabrik clay pit) of Hoelstad (1985) (Fig. 5). The lack of dinoflagellate cysts and other stratigraphically significant fossil groups hampers certain chronostratigraphical determination of this zone (and those beneath) zones. The spore/pollen stratigraphy of the Middle Jurassic in the area is not well established. Since the examined assemblages lack any species indicating a Late Jurassic age, the zone is, however, suggested to encompass the Bajocian to Bathonian interval.

PALAEOENVIRONMENTAL CONDITIONS

The dominance of *Nodosaridae* (foraminifera) and dinoflagellate cysts together with a low TOC content (below 1 %) suggest a marine shelf environment with well-oxygenated bottom conditions for foraminiferal Zone FA (the lower part of palynomorph Zone PA) in the late Pliensbachian. The presence of ammonite fragments and fish remains also support this suggestion (Fig. 4). The low species diversity in the foraminiferal and dinoflagellate cyst assemblages does, however, suggest a more marginal marine aspect. It is, therefore, suggested that Zone FA was deposited under marine inner shelf conditions, an interpretation which accords with Jurassic foraminiferal facies trends documented by Gordon (1970), Nagy (1985a,b), Coppeake (1989), and Nagy et al. (1990).

The low species diversity and the dominance of the arenaceous foraminiferal genera *Bulobaculites*, *Haplophragmoids*, and *Kutsevella* in foraminiferal Zone PB (the upper part of palynomorph Zone PA and the lowermost part of PB), combined with the presence of 0.5 to 1 % TOC (Fig. 2), implies a well-oxygenated, shallow water environment with reduced salinities (Johnson, 1976; Lefaldi & Nagy, 1980; Nagy et al., 1984; Coppeake, 1989; J. Nagy, pers. comm. 1992). The foraminifera *Logutulina liassica* and the scolocodonts (Fig. 4) also indicate a shallow water environment, possibly of reduced salinity (Brouwer, 1969; Kozur, 1972; Coppeake, 1989; Courtinat et al., 1991).

Furthermore, the upwards-decreasing frequency of dinoflagellate cysts and increasing amounts of spores and pollen (Fig. 3) suggest a gradual decrease in distance from the shoreline through the interval. Hence, this zone represents a regression from marine inner shelf environments of Zone FA to near lagoonal or deltaic conditions during the late Pliensbachian and early Toarcian. The presence of ammonite fragments and isolated specimens of the dinoflagellate cysts *Luehndeia spinosa* and *Mendicodinium reticulatum*, indicate, however, that the marine influence on the environment of deposition had not ceased entirely.

The low diversity faunas of agglutinated foraminifera in Zones FC and FD (middle part of palynomorph Zone PB), and the sparse dinoflagellate cysts, indicate a continuation of this inshore trend to a fully lagoonal to estuarine environment.
environment. The general decrease in the foraminiferal and marine palynomorph content is a response to continued regression. An average of 0.5 % TOC indicates well-oxygenated conditions.

The presence of the planktonic algal genus Botryococcus, which is normally considered to be a freshwater indicator, but which may be tolerant of slightly brackish water (Traverse & Ginsburg, 1966; Tappan, 1980), and the lack of foraminifera (Figs 3, 4) in the upper part of the palynomorph Zone PB, indicate further regression leading to an inner deltaic or estuarine and non-marine conditions.

The presence of dinoflagellate cysts, especially Nanoceratopsis gracilis, and acritarchs in palynomorph Zone PC (Fig. 3) and the presence of a single foraminiferal specimen and a few specimens of ostracods and bivalves just below 230 m may indicate a brief brackish or marine influx into a mainly lagoonal or deltaic environment. Nanoceratopsis gracilis may have been tolerant of brackish, but not of freshwater environments (Hancock, 1981; Riding, 1983). Although acritarchs are mainly marine they may occur relatively abundantly in shallow bays and lagoons in association with low diversity assemblages of dinoflagellate cysts, and sometimes even in freshwater environments (Erkmen & Sarjeant, 1980; Hancock & Fisher, 1981; Batten, 1982).

In the uppermost part of the Jurassic section at Anholt, Zone PD, the foraminifera and dinoflagellate cysts are lacking and acritarchs only present in the lower part and Botryococcus present throughout the zone. This indicate a delta plain environment with occasional brackish water influence in the lower part.

DISCUSSION AND CONCLUSIONS

The palynomorph assemblages from the Jurassic of the Anholt boring are similar to those described from other sites in the Norwegian-Danish Basin and on Bornholm (Fig. 5). This facilitates a close correlation of the Anholt section to other sections within the region. Similar assemblages have also been described, for example, from Germany (Schulz, 1967), Britain (Woollam & Riding, 1983; Riding et al. 1991), and East Greenland (Lund & Pedersen, 1985), suggesting a rather uniform flora over a large part of north-west Europe and Greenland during the Early - Mid Jurassic. This coincides with the relatively rather uniform climatic regime in the area during that time (Hallam, 1984).

Lower Jurassic foraminiferal faunas have been described from several localities within the Norwegian-Danish Basin and adjacent areas (Nervang, 1957; Bang, 1968 a,b, 1971, 1973; Norling, 1970, 1972), but those from the Anholt succession are markedly dissimilar. These previously described faunas are from older Lower Jurassic deposits and from fully marine assemblages, as opposed to the mainly marginal marine associations at Anholt. Shallow water foraminiferal faunas comparable to those encountered in the Toarcian of Anholt have, however, been encountered previously in the Lower Jurassic Wilhelmoya Formation of Spitsbergen (J. Nagy, pers. comm. 1992).

A comparison of the sedimentological and palaeontological data from the Anholt section with those from previous investigations in the region indicates a discrepancy in the timing of the onset of the regression during the latest Early Jurassic. The main phase of sea level lowering at Anholt occurred around the upper Pliensbachian/Toarcian boundary (Fig. 6), whereas in the centre of the Danish Subbasin most of the Toarcian was characterized by an increase in marine influence corresponding to the global sea level rise described by Hallam (1988). This sea level rise resulted in the establishment of stagnant bottom conditions in the centre of the basin (Michelsen, 1989b), and shallowing of the water apparently did not take place here until the late Toarcian, when a lagoonal environment was established (Michelsen, 1989a, b).

The regression at Anholt which occurred early as the latest Pliensbachian, and thus slightly earlier than the shallowing in the centre of the basin, may have been caused by the prograding of the delta plain which characterized the basin during the Mid Jurassic (Michelsen, 1978). This delta progradation may have reached the more marginal Anholt area earlier than the basin centre. The Toarcian regression at Anholt may, however, also be the result of local tectonic uplift triggered within the Fennoscandian Border Zone.

The boundary between the Fjerritslev Formation and the Haldager Sand Formation in the Norwegian-Danish Basin has previously been considered coincident with the Lower-Middle Jurassic boundary (Michelsen, 1978, 1989a). More recently, though, Michelsen & Nielsen (1991) have indicated the possibility of an Aalenian age for the upper part of the Fjerritslev Formation in the Terne-1 boring (Fig. 1). But they chose to place the Lower/Middle Jurassic boundary between the Fjerritslev and Haldager Sand formations on the basis of lithostratigraphy. The biostratigraphical data from the Anholt boring, however, presents new information concerning the age of this formalional boundary. The boundary between the Fjerritslev and Haldager Sand formations corresponds to the boundary between palynomorph Zones PC and PD in the boring (Fig. 5) (see Nielsen, 1992). Since the palynomorph assemblage of Zone

Explanation of Plate 4

Megasporites.

Scanning electron micrographs. Sample depth, stub number, and catalogue the DGU number in brackets. Magnification x 150.

Fig. 1. Aneulotes pater Harris, 1961 (240-49--52 m; stub 1.1; DGU-1992-EBK-71) Fig. 2. Erlanosporites sp. (240-49--52 m; stub 1.2; DGU-1992-EBK-72) Fig. 3. Striatriletes excavatus (Marcinkiewicz) Sweet, 1979 (240-49--52 m; stub 1.3; DGU-1992-EBK-73) Fig. 4. Hughesisporetes variabilis Dettmann, 1961 (240-49--52 m; stub 1.4; DGU-1992-EBK-74) Fig. 5. Paxilliriletes reticulatus (Mädler) Hall & Nicolson, 1973 (236-69--72 m; stub 1.6; DGU-1992-EBK-75) Fig. 6. Striatriletes sulcatus (Dijkstra) Potonié, 1956 (240-12--15 m; stub 1.7; DGU-1992-EBK-76)
Lower to Middle Jurassic of Anholt, Denmark

1

2

3

4

5

6
PC indicates an Aalenian age, the uppermost part of the Fjerritslev Formation at Anholt can be dated as Mid Jurassic.

ACKNOWLEDGEMENTS

We are grateful to David J. Batten (University College of Wales), Karen Louise Knudsen (University of Aarhus (AU)), Olaf Michelsen (AU), Jenö Nagy (University of Oslo), Lars Henrik Nielsen (Geological Survey of Denmark), Kaj Raunsgaard Pedersen (AU), and David N. Penney (AU) for valuable discussions and critically reading the manuscript. We also thank an unnamed referee for valuable comments. Our sincere thanks also to Jeno Nagy for help with determination of the foraminiferal species, to John D. Taylor and Phillip Palmer (The Natural History Museum, London) for examining the Gastropoda, and to Ole Bjørnslev Nielsen and Birthe Schmidt (AU) who let us use unpublished data.

REFERENCES

Bang, I. 1968. Biostratigraphical investigation of the pre-Quaternary in the Øresund boreholes mainly on the basis of foraminifera. In Larsen, G. et al. (1968), Øresund. Helsinger-Hålsingborg Linien. Geologisk Rapport. Danmarks geologiske Undersøgelse, Rapport 1, Copenhagen, 90 pp, 24 pls.

Bang, I. 1971. Jura aflejringerne i Rende nr. 1 (2103-2614 m). Danmarks geologiske Undersøgelse, Rapport 3, Copenhagen, 126 pp.

Bang, I. 1973. Jura-biostratigrafi i Novling nr. 1 på grundlag af Foraminiferer. In Rasmussen, L. B. (Ed.), Dybdeboringen Rende nr. 1 på Djursland. Danmarks geologiske Undersøgelse, Rk. III, Copenhagen, 74-80.

Bang, I. 1973. Jura-biostratigrafi i Novling nr. 1 på grundlag af Foraminiferer. In Rasmussen, L. B. (Ed.), Dybdeboringen Novling nr. 1 i Midtjylland. Danmarks geologiske Undersøgelse, Rk. III, Copenhagen, 190, 191-123. (English summary).

Batten, D.J. 1982. Palynological investigations of the Triassic-Jurassic section of the Hobro No. 1 borehole. In Michelsen, O., 1979, Report on the Jurassic of the Hobro No. 1 and Voldum No. 1 borings, Denmark. Danmarks geologiske Undersøgelse, Årbog 1978, Copenhagen, 141-149.

Brouwer, J. 1969. Foraminiferal assemblages from the Lias of North-Western Europe. Verhandelingen der Koninklijke Nederlandse Akademie van Wetenschappen, Afd. Natuurkunde, 25 (4), 1-65.

Copestake, P. 1989. Jurassic. In Jenkins, D. G. & Murray, J. W. (Eds.), Stratigraphical atlas of fossil foraminifera, 123-272. British Micropalaenological Society Series, Ellis Horwood Ltd., Chichester.

Courtinat, B., Atrops, F. &erry, S. 1991. Les scolécodontes du Jurassic moyen et du Crétacé du sud-est de la France. Revue de Micropaléontology, Paris, 34, 95-104.

Dybkjaer, K. 1988. Palynological zonation and stratigraphy of the Jurassic section in the Gassum No. 1 borehole, Denmark. Danmarks geologiske Undersøgelse, Serie A, Copenhagen, 21, 1-73.

Dybkjaer, K. 1991. Palynological zonation and palynofacies investigation of the Lower to lowermost Middle Jurassic Fjerritslev Formation in the Danish Subbasin. Danmarks geologiske Undersøgelse, Serie A, Copenhagen, 30, 1-150.

Ericksen, U. & Sarjeant, W.A.S., 1980. Dinoflagellate cysts, acritarchs and tasmanitids from the uppermost Callovian of England and Scotland: with a reconsideration of the "Xanthidium pilosum" problem. Geobios, Lyon, 13, 45-59.

Gordon, W. A. 1970. Biogeography of Jurassic Foraminifera. Bulletin of the Geological Society of America, Colorado, 81, 1689-1704.

Hallam, A. 1984. Continental humid and arid zones during the Jurassic and Cretaceous. Palaeoecology, Palaeoclimatology, Palaeoecology, Amsterdam, 47, 195-223.

Hallam, A. 1988. A reevaluation of Jurassic eustasy in the light of new data and the revised Exxon Curve. In Wilgus, C.K. et al. (Eds.), Sea-level changes: an integrated approach. Society of Economic Paleontologists and Mineralogists Special Publication, Tulsa, Oklahoma, 42, 261-273.

Hancock, N.J. & Fisher, M.J., 1981. Middle Jurassic North Sea deltas with particular reference to Yorkshire. Petroleum Geology of the Continental Shelf of N.W. Europe, 186-195.

Hedberg, H. H. 1976. International stratigraphical guide. A guide to stratigraphic classification, terminology and procedure, Wiley and Sons, New York, 200 pp.

Hoelstad, T. 1985. Palynology of the uppermost Lower to Middle Jurassic strata on Bornholm, Denmark. Bulletin of the geological Society of Denmark, Copenhagen, 34, 111-132.

Johnson, B. 1976. Ecological ranges of selected Toarcian and Domerian (Jurassic) foraminiferal species from Wales. 1st. Intenational Symposium on Benthonic Foraminifera of Continental Margins. Pt. B: Palaeoecology and Biostratigraphy. Maritime Sediments, Special Publication 1, Halifax, 545-556.

Explanation of Plate 5

Foraminifera.

Light microscope photographs. Sample depth in brackets. Magnification x 90. Figs 1, 2. Ammobaculites agglutinans (d’Orbigny, 1846 = Spirolina agglutinans) (286.63-68 m). Figs 3, 4. Haplophragmoides aff. pygmaeus (Haeusler, 1881 = Rotalia pygmaea) (302.20-25 m). Figs 5, 6. Spirillina numismalis Terquem & Berthelin, 1875 (302.20-25 m). Fig. 7. Kutsevella sp. 1. (290.08-12 m). Figs 8, 9. Kutsevella sp. 2 (290.08-12 m). Fig. 10. Ammobaculites aff. alakensis Tappan, 1955 (281.20-25 m). Fig. 11. Ammobaculites vetustus (Terquem & Berthelin, 1875 = Haplophragmium vetustum) (274.83-90 m). Fig. 12. Reophax helvetica (Haeusler, 1881 = Dentalina helvetica) (302.20-25 m). Fig. 13. Bulbubaculites ovolculus (Nagy, 1991 = Bulbubaculites ovolculus) (302.20-25 m). Figs 14, 15. Bulbubaculites sp. 1 (302.20-25 m). Figs 16, 17. Planulina beierana (Gümbel, 1862 = Marginulina beierana) (305.95-306.00 m). Fig. 18. Astacolus varians (Bornemann, 1854 = Cristellaria varians) (305.95-306.00 m). Fig. 19. Prodenatalina vetusta (d’Orbigny, 1849 = Dentalina vetusta) (302.20-25 m). Fig. 20. Eoguttulina liassica (Strickland, 1846 = Polymorphina liassica) (291.80-84 m).
Koch, J.-O. 1983. Sedimentology of Middle and Upper Jurassic sandstone reservoirs of Denmark. Geologic Mijnbouw, Dordrecht, 16, 115-129.

Korsbech, U. & Gynter Nielsen, K. 1990a. SNG-log i Anholt IV. Unpubl. report, BHR-56. DTH. Department of Electrophysics, Copenhagen, 16 pp.

Korsbech, U., & Gynter Nielsen, K. 1990b. Supplerende SNG-log i Anholt IV. Unpubl. report, BHR-56. DTH. Department of Electrophysics, Copenhagen, 11 pp.

Koppellhus, E.B. & Batten, D.J. 1992. Megaspore assemblages from the Jurassic and lowermost Cretaceous of Bornholm, Denmark. Danmarks geologiske Unders"agelse, Serie A, Copenhagen 32, 81 pp.

Koppellhus E.B. & Nielsen, L.H. in prep. Palynostratigraphy and palaeoenvironments of the Lower to Middle Jurassic Bagå Formation of Bornholm, Denmark.

Kozur, H. 1972. Die Bedeutung der triassischen Scolecodonten insbesondere fur die Taxonomie und Phylogenie der fossilen Eunidica. Mitteilungen der Gesellschaft der Geologie und Bergbaustudenten, Innsbruck, 21, 745-776.

Larsen, G., Christensen, O. B., Bang, J. & Buch, A. 1968. Qresund. Helsing-"aalsborg Linien. Geologisk Rapport. Danmarks geologiske Unders"agelse, Rapport 1, Copenhagen, 90 pp, 24 pls.

Liboriussen, J., Ashton, P. & Tygesen, T. 1987. The tectonic evolution of the Fennoscandian Border Zone in Denmark. Tectonophysics, Amsterdam, 137, 21-29.

Lund, J. J. 1977. Rhaetic to lower Liassic palynology of the onshore south-eastern North Sea Basin. Danmarks geologiske Unders"agelse Rk. II, Copenhagen, 109, 1-129.

Lund, J. J. & Pedersen, K. R. 1985. Palynology of the marine Jurassic formations in the Vard"ekl"oft ravine, Jameson Land, East Greenland. Bulletin of the geological Society of Denmark, Copenhagen, 33 (3-4), 371-399.

Letaldli, M. & Nagy, J. 1980. Foraminiferal stratigraphy of Jurassic deposits on Kongs"a, Svalbard. Norsk Polarinstitutts Skrifter, Oslo, 172, 63-95.

Moldgaard, S. & Knudsen, K. L. 1979. Metoder til indsamling og oparbejdning af pr"oer til foraminifer-analysers. Dansk Natur-Dansk Skole, Arsskrift 1979, Copenhagen, 48-57.

Michelsen, O. 1975. Lower Jurassic biostратigraphy and ostracods of the Danish Embayment. Danmarks geologiske Unders"agelse Rk. II, Copenhagen, 104, 1-287.

Michelsen, O. 1978. Stratigraphy and distribution of Jurassic deposits of the Norwegian-Danish Basin. Danmarks geologiske Unders"agelse, Serie B, Copenhagen, 2, 1-28.

Michelsen, O. 1989 a. Revision of the Jurassic litostratigraphy of the Danish Subbasin. Danmarks geologiske Unders"agelse, Serie A, Copenhagen, 24, 1-22.

Michelsen, O. 1989 b. Log-sequence analysis and environmental aspects of the Lower Jurassic Fjerritslev Formation in the Danish Subbasin. Danmarks geologiske Unders"agelse, Serie A, Copenhagen, 25, 1-23.

Michelsen, O. & Nielsen, L. H. 1991. Well records on the Phanerozoic stratigraphy in the Fennoscandian Border Zone, Denmark. Danmarks geologiske Unders"agelse, Serie A, Copenhagen, 29, 1-37.

Nagy, J. 1985 a. Jurassic foraminiferal facies in the Statfjord area, Northern North Sea - I. Journal of Petroleum Geology, Accrington, 8 (3), 273-295.

Nagy, J. 1985 b. Jurassic foraminiferal facies in the Statfjord area, Northern North Sea - I. Journal of Petroleum Geology, Accrington, 8 (4), 389-404.

Nagy, J., Dypvik, H. & Bjaerke, T. 1984. Sedimentological and paleontological analyses of Jurassic North Sea deposits from deltaic environments. Journal of Petroleum Geology, Accrington, 7 (2), 169-188.

Nagy, J., Pilskog, B. & Wilhelmsen, R. M. 1990. Facies controlled distribution of Foraminifera in the Jurassic North Sea Basin. In Hemleben, C., Kaminski, M. A., Kuhnt, W., & Scott, D. B. (Eds.), Paleoecology, Biostatigraphy, Paleoceanography and Taxonomy of Agglutinated Foraminifera, 621-657. Kluwer Academic Publishers, Dordrecht.

Nielsen, O. B. 1992. Lithologi, litostratigrafi og aflejringsmiljø i Anholtboringen. Dansk Geologisk Forening, Årskrift for 1990-1991, Copenhagen, 62-67. (English abstract).

Norling, E. 1970. Jurassic and Lower Cretaceous stratigraphy of the Rydeb ck-Fortuna borings in southern Sweden. Geologiska Föreningens i Stockholm Förhandlingar, Stockholm, 92, 261-287.

Norling, E. 1972. Jurassic stratigraphy and foraminifera of western Scania, southern Sweden. Sveriges geologiska Unders"akning, Serie C, Stockholm, 47, 1-120.

Nærvang, A. 1957. The foraminifera of the Lia series in Jutland, Denmark. Meddelelser fra Dansk Geologisk Forening, Copenhagen, 13 (5), 1-413.

Poulsen, N.E. 1992. Jurassic dinoflagellate cyst biostratigraphy of the Danish Subbasin in relation to sequences in England and Poland; a preliminary review. Review of Palaeobotany and Palynology 75, 20 pp.

Poulsen, N.E. & Gudmundson, L., Hansen, J.M. & Husfelt, Y. 1990. Palynological preparation techniques, a new maceration-tank-method and other modifications. Danmarks geologiske Unders"agelse, Serie C, Copenhagen, 10, 22 pp.

Riding, J.B. 1983. The palynology of the Aalenian (Middle Jurassic) sediments of the Jackdaw Quarry, Stanway Hill, Gloucestershire, England. Mercian Geologist, Nottingham, 9, 111-120.

Riding, J.B., Walton, W. & Shaw, D. 1991. Toarcian to Bathonian (Jurassic) palynology of the Inner Hebrides, northwest Scotland. Palynology 15, 115-179.

Riding, J.B. & Thomas, J.E. 1992. Dinoflagellate cysts of the Jurassic System. In Powell, A.J. (ed.), A Stratigraphic Index of Dinoflagellate Cysts, 7-98. British Micropalaeontological Society Publication Series. Chapman and Hall, London 290 pp.

Schulz, E. 1967. Sporenal ontologische Untersuchungen zur Råh-Lias-Grenze in Thüringen und der Altmarm. Geologie, Berlin, 11, 308-320.

Sorgenfrei, T. & Buch, A. 1964. Deep tests in Denmark, 1935-1959. Danmarks geologiske Unders"agelse, Rk. III, Copenhagen, 36, 1-146.

Tappend, H. 1980. The Paleobiology of Plant Protists. W. H. Freeman & Co., San Francisco, 1028 pp.

Traverse, A. & Ginsburg, R.N. 1966. Palynology of the surface sediments of Great Bahama Bank, as related to water movement and sedimentation. Marine Geology, Amsterdam, 4, 417-459.

Woolam, R. & Riding, J. B. 1983. Dinoflagellate cyst zonation of the English Jurassic. Institute of Geological Sciences Report, London, 83/2, 42 pp.

Spores and pollen Acanthotriletes varius Nilsson, 1958
Table 1.
Palynomorph and foraminiferal taxa recorded from the Jurassic section penetrated by the Anholt borehole, with author attributions and dates.

Taxon Name	Author	Date
Alisporites microsaccus	Couper	1962
A. radialis	Leschik	1977
A. robustus	Nilsson	1958
A. thomassii	Couper	1958
Anapiculatisporites spiniger	Leschik	1962
A. sp.		
Ararisporites minimus	Schulz	1967
A. sp.		
Araucariacites australis	Cookson	1947
Baculatisporites communis	Cookson	1956
B. sp.		
Bisaccates indeterminate		
Calamospora tener	Leschik	1955
Callialasporites dampieri	Balme	1961
C. microvelatus	Schulz	1966
C. minus	(Tralau) Guy	1971
C. segmentatus	(Balme) Srivastava	1963
C. turvatus	(Balme) Schulz	1967
Campenia gigas	Mädler	1963
Camarozonosporites radii	(Leschik) Klaus	1963
Ceratopollenites macrovexculus	(Thiergart) Schulz	1967
C. thiergartii	Schulz	1967
Chasmatosporites apertus	Nilsson	1958
C. elegans	Nilsson	1958
C. hians	Nilsson	1958
C. major	Nilsson	1958
Chomatotriletes minor	(Kedves) Pocock	1970
Chitomispora jareniensis	Filatoff	1975
Clavatipollenites hughesi	Couper	1958
Conbaculatisporites mesozoicus	Klaus	1960
C. spinosus	(Mädler) Lund	1977
Converrucosisporites sp.		
Corollina meyeriana	(Klaus) Venkatachala & Góczán	1964
C. torosus	Traverse	1975
Cyathidites sp.		
Cypresesacites sp.		
Deloidespora minor	(Couper) Pocock	1970
D. toralis	(Leschik) Lund	1977
D. sp. cf. D. minor	(Couper) Pocock	1970
Densoosporites scanicus	Tralau	1968
D. velatus	Weyland & Krieger	1953
Dicyclisporis radiatus	(Schulz) Jansonius & Hills	1990
Eucomiinitites minor	Groot & Penny	1960
E. troedsonii	Erdtmann	1948
Exesipollenites tumulus	Balme	1957
Foraminisporis jurassicus	Schulz	1967
Gleicheniinites conspiciens	(Bolkhovitina) Krutzsch	1959
G. semenicsis	Ross	1949
Iraqispora labrada	Singh	1964
Ischyosporites variegatus	(Couper) Schulz	1967
Kekryphalospora distincta	Fenton & Riding	1987
Klukispores lacunae	Filatoff	1975
Kraeuselisporites reissingeri	(Harris) Morbey	1975
Lacinigatosporites dubius	Nilsson	1958
L. mesozoicus	Schulz	1967
Leptolepidites bossus	(Couper) Schulz	1967
L. macrovexculus	Schulz	1967

L. major | Couper | 1958 |
L. sp. | | |
Lycochladidiites rugulatus | (Couper) Schulz | 1967 |
Lygodiosporites peronervatus | Couper | 1958 |
Manumia delcourtii | (Pocock) Dybkjaer | 1991 |
Maratisporites scabrunatus | Couper | 1958 |
Matonisporites crookshankii | (Balme) Levet-Carette | 1964 |
“Monosaccates”: Paleopicea glaesaria | Bolkhovitina | 1956 |
Menosoralites minor | Cookson | 1947 |
M. punctatus | Orlowska-Zwolinska & Krieger | 1953 |
Norris, 1969 |
P. lassicus | Schulz | 1967 |
Quadracaulina anelliformis | Malyavkina | 1949 |
Retricalites australavatidites | (Cookson) Potonius & Krieger | 1963 |
R. minor | (Couper) Döring Krutzsch & Schulz | 1963 |
R. semitectulus | (Danzé-Corsin & Laveine) McKellar | 1974 |
R. sp. | | |
Retesotalites mesozoicus | Klaus | 1962 |
Rogalskisporites citatricosus | (Rogalska) Danzé-Corsin & Laveine | 1963 |
Schisiamatosporis ovalis | Nilsson | 1958 |
Scultipsporis aulosenensis | (Schulz) Koppelhus | 1991 |
Semireispores | sp. | |
Sextiposporites pseudoalveolatus | (Couper) Dettmann | 1963 |
Spharipollenites psilatus | Couper | 1958 |
S. subgranulatus | Couper | 1958 |
Staplinisporas camninius | (Balme) Pocock | 1970 |
Sterisporites antiquasporates | (Wilson & Webster) Dettmann | 1963 |
S. stereoides | (Potonie & Veniz) Pflug in Thomson & Pflug, 1953 |
Striatella jurassica | Mädler | 1964 |
S. parva | (Li & Shang) Filatoff & Price | 1988 |
S. seebergenesis | Mädler | 1964 |
Taurorispores verruculatus | Schulz | 1967 |
Todisporites major | Couper | 1958 |
T. minor | Couper | 1958 |
Trachysporitis asper | Nilsson | 1958 |
T. sp. | | |
Tripartitina variabilis | Malyavkina | 1949 |
Uvaeosporites argenteaformis | (Bolkhovitina) Schulz | 1967 |
U. sp. cf. U. microverruculatus | Schulz | 1967 |
Verrucosiporites obscurenus | Pocock | 1962 |
Viterospores patulus | (Reissinger) Nilsson | 1958 |

Megasporas

Anaisporites patra Harris, 1961
Cabochozecus carunculus | (Dijkstra) Batten & Ferguson | 1987 |
Echitricites hispidus | Marcinkiewicz | 1960 |
Erlansonisporites sp.
Horstisporites sp.
Hughesisporites variabilis Dettmann, 1961
Paxillitiletes sp.
Striatitiletes excava tus (Marcinkiewicz, 1962) Sweet, 1979
S. sulcatus (Dijkstra) Potonié, 1956

Microplankton
Acanthomorphitae spp.
Botryococcus spp.
Crassosphaera hexagonalis Wall, 1965
Cymatiosphaera pachytheca Eisenack, 1957
C. spp.
Lecanilha foveata Singh, 1971
Leiosphaeridia spp. (reworked).
Luehndea spinosa Morgenroth, 1970
Mendicodinium reticulatum Morgenroth, 1970
Micrhystridium sp.
Nannoceratopsis gracilis Alberti emend. van Helden, 1977
N. senex van Helden, 1977
N. sp. 1 (N. ridingii Poulsen, in press)
N. triangulata Prauss, 1987
N. triceras Drugg, 1978
Ovodites spp.
Pterospermella sp.
Tasmanites sp.

Tetraporina compressa Kondratev, 1963
Veryhachium sp.

Foraminifera
Ammobaculites agglutinans (d'Orbigny, 1846 = Spirolina agglutinans)
Ammobaculites aff. alaskensis Tappan, 1955
Ammobaculites vetustus (Terquem & Berthelin, 1875 = Haplophragmium vetustum)
Astacolus varians (Bornemann, 1854 = Cristellaria varians)
Bullobaculites ovilocus (Nagy, 1991 = Bullobaculites ovilocus)
Bullobaculites sp. 1
Equttulina liassica (Strickland, 1846 = Polymorphina liassica)
Haplophragmoides aff. pygmaeus (Haeusler, 1881 = Rotalia pygmaea)
Kutsevela sp. 1
Kutsevela sp. 2
Planularia beierana (Gümbel, 1862 = Marginulina beierana)
Prodentalina vetusta (d'Orbigny, 1849 = Dentalina vetusta)
Reophax helvetica (Haeusler, 1881 = Dentalina helvetica)
Spirillina numismalis Terquem & Berthelin, 1875
Trochammina sp.