Searching for signatures of planet formation in stars with circumstellar debris discs

Jesús Maldonado

INAF - Osservatorio Astronomico di Palermo

jmaldonado@astropa.inaf.it
Collaborators:

- **C. Eiroa** (Universidad Autónoma de Madrid)
- **E. Villaver** (Universidad Autónoma de Madrid)
- **B. Montesinos** (Department of Astrophysics, Centro de Astrobiología (CAB, CSIC-INTA))
- **A. Mora** (ESA-ESAC Gaia SOC)
Outline

1. Introduction
2. Observations and analysis
3. Abundance trends
4. Discussion
5. Summary
Outline

1. Introduction
2. Observations and analysis
3. Abundance trends
4. Discussion
5. Summary
Debris discs: Signatures of planetesimals systems
Continuously produced by collisions of such solid bodies

Frequency around solar-type stars
- *Spitzer*: $\sim 16\%$ (e.g. Trilling et al. 2008)
- *Herschel*: $\sim 20\%$ (DUNES sample)

Planets frequency
- $> 50\%$ planets of any mass, period up to 100 days
- 14% planets with $M_p > 50 \, M_\oplus$, period shorter than 10 years

Herschel view of the HD 207129 debris disc
(Marshall et al. 2011)
Debris and planets

Correlated phenomena?

Planetesimals are the “building blocks” of planets ⇒ Do their host stars have similar properties?

Discs
Incidence no higher around planet-host stars
No correlation with stellar properties
(e.g. Bryden et al. 2009, Kóspál et al. 2009)

Planets
Trend of ↑ [Fe/H] of stars hosting gas-giant planets
Low-mass planets $M_p < 30 M_⊕$ do not follow this trend
Puzzling results in evolved stars hosting planets (e.g. Maldonado et al. 2013)

Low-mass planets: a major challenge

- ∼ 55% more SWDPs w.r.t. previous works
- Debris discs and low-mass planets: “Good neighbours?”
 (e.g. Maldonado et al. 2012, Wyatt et al. 2012, Marshall et al. 2014)
- “Fingerprints” of terrestrial planet formation in the stellar photospheric abundances?
 (e.g. Meléndez et al. 2009; Ramírez et al. 2009, 2010, 2014)
Outline

1. Introduction
2. Observations and analysis
3. Abundance trends
4. Discussion
5. Summary
In this study:

Chemical abundances of four samples of solar-like stars

1. Stars with known debris discs (SWDs)
 IRAS, ISO, Spitzer, Herschel data (68 stars)

2. Stars with known debris discs and planets (SWDPs)
 $\sim 55\%$ more SWDPs w.r.t. previous works (31 stars)

3. Stars with known planets (SWPs)
 Stars hosting gas-giant/low-mass planets (32 stars)

4. Comparison sample (SWODs)
 No IR-excess found at Spitzer/Herschel’s λs (119)
Telescopes and instruments

- **FOCES** 2.20 m
 Calar Alto
- **SARG-TNG** 3.56 m
 La Palma
- **FIES-NOT** 2.56 m
 La Palma
- **HERMES-MERCATOR** 1.2 m
 (La Palma)
- **+ Public Archives**
 S4N
 ESO-Archive

IRAF-echelle package

- overscan, flat-fielding, scattered light, blazeshape removing, order extraction, wavelength calibration

Example of FOCES spectra in the H$_\alpha$ region
(Maldonado et al. 2010)
Stellar parameters

- Code TGVIT (Takeda et al. 2005)
- Iron ionisation and excitation conditions, match of the curve of growth
- 302 Fe I and 28 Fe II lines
- EWs measurements using ARES (Sousa et al. 2007)
- ATLAS9, plane-parallel, LTE (Kurucz 1993)
- Statistical uncertainties from the converged solution

Elemental abundances

- C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti I, Ti II, V, Cr I, Cr II, Mn, Co, Ni, Cu, Zn
- MOOG program + ATLAS9 model atmospheres
- HFS: V, C, Cu
- Oxygen: nLTE
- Line list mainly from Neves et al. 2009, Ramírez et al. 2014
Outline

1. Introduction
2. Observations and analysis
3. Abundance trends
4. Discussion
5. Summary
Transition towards higher $[\text{Fe/H}]$

SWODs \Rightarrow SWPs

Results
- SWDs similar to SWODs
- SWDPs behave as SWPs (no matter the planet's mass)
- Hot-giant hosts tend to be more metal-rich than cool-giant hosts

31 solar-like SWDPs:
- 47% multiplanet systems, 6 stars with low-mass planets
- 8 stars host at least one low mass planet
- 2/24 SWDPs hosting only gas giant planets, host “hot”-Jupiters ($a < 0.1$ AU)
No obvious differences SWDs/SWODs

Kolmogorov-Smirnov probabilities

[X/Fe]	p-value	[X/Fe]	p-value
C	0.30	Ti	0.08
O	0.96	V	0.88
Na	0.82	Cr	0.56
Mg	0.10	Mn	0.91
Al	0.55	Co	0.83
Si	0.63	Ni	0.86
S	0.25	Cu	<0.01
Ca	>0.99	Zn	0.04
Sc	0.80		
Different behaviour $<[\text{X/Fe}]>-T_C$ slope in SWDPs

All elements

SWD/ SWODs: -3.62

SWD: -1.89

SWDPs: 1.14

T_c (K)
Abundances of volatiles not as reliable as refractories’ ones

Only $T_C > 900$ K

Slope change their signs, but still there is a difference in SWDPs wrt SWDs/SWODs
Comparison with planet hots (all elements)

- SWDPs behave as stars with planets
- Differences between stars with cool and low-mass planets
Comparison with planet hots (only refractories)

SWDPs behave as stars with planets
Differences between stars with cool and low-mass planets

Cool: -0.75
Debris+Cool: -3.87
Low-mass: 6.87
Debris+Low: 4.17
Hot: 14.36
Debris+Hot: -24.79
Outline

1. Introduction
2. Observations and analysis
3. Abundance trends
4. Discussion
5. Summary
Previous analysis:

- **Meléndez et al. 2009**: Deficit of refractory in the Sun wrt other solar twins. Related to the formation of low-mass planets.

- **González Hernández et al. 2012, 2013; Adibekyan et al. 2014**: Galactic chemical evolution effects age/Galactic birth place explanation.
Previous analysis:

- **Meléndez et al. 2009**: Deficit of refractory in the Sun wrt other solar twins. Related to the formation of low-mass planets
- **González Hernández et al. 2012, 2013; Adibekyan et al. 2014**: Galactic chemical evolution effects age/Galactic birth place explanation

In this work:

1. Similar behaviour SWDs/SWODs
2. Similar behaviour SWDPs/SWPs
3. No differences in stars with low-mass planets (wrt SWODs/SWDs)
4. Different behaviour in stars with cool-Jupiters
5. Positive slopes in stars with hot-Jupiters
Previous analysis:

- **Meléndez et al. 2009:** Deficit of refractory in the Sun wrt other solar twins. Related to the formation of low-mass planets.
- **González Hernández et al. 2012, 2013; Adibekyan et al. 2014:** Galactic chemical evolution effects age/Galactic birth place explanation.

In this work:

1. Similar behaviour SWDs/SWODs
2. Similar behaviour SWDPs/SWPs
3. No differences in stars with low-mass planets (wrt SWODs/SWDs)
4. Different behaviour in stars with cool-Jupiters
5. Positive slopes in stars with hot-Jupiters

Key questions:

1. Might the $<[X/Fe]>-T_C$ trends be influenced by GCE effects?
2. Do the $<[X/Fe]>-T_C$ trends fit in the ME09 hypothesis?
Might the $<[X/Fe]>-T_C$ trends be influenced by GCE effects?

Abundance patterns may be affected by GCE effects

T_C slope vs. $[\text{Fe/H}]$, age, and R_{mean}

![Graph showing $[X/Fe]$ vs T_C slope vs $[\text{Fe/H}]$ and T_C slope vs $[\text{Fe/H}]$ with correlation coefficients and significances.](image-url)
Might the $\langle X/Fe \rangle$-T_C trends be influenced by GCE effects?

Abundance patterns may be affected by GCE effects

T_C slope vs. $[\text{Fe/H}]$, age, and R_{mean}

Factor	Correlation
$[\text{Fe/H}]$	Moderate, significant
Age	Weak, but significant
R_{mean}	Not clear correlation

GCE corrections

$[\text{X/H}]$ vs. $[\text{Fe/H}]$ linear fits
- Still correlations with the chromospheric age and the stellar radius remain
- Might this correction “delete” possible chemical depletions?
Do the $<[X/Fe]>-T_C$ trends fit in the ME09 hypothesis?

1. Similar behaviour SWDs/SWODs
2. Similar behaviour SWDPs/SWPs
3. No differences in stars with low-mass planets (wrt SWODs/SWDs)
Do the \([X/Fe]-T_C\) trends fit in the ME09 hypothesis?

1. Similar behaviour SWDs/SWODs
2. Similar behaviour SWDPs/SWPs
3. No differences in stars with low-mass planets (wrt SWODs/SWDS)

- Planet: key factor in revealing the chemical behaviour of the star
 - Consistent with core-accretion model of planet formation.

- Correlation between dust and low-mass planets?
 - Significant fraction of low-mass hosts among the SWDPs.
 - In agreement with recent results (e.g. Wyatt et al. 2012, Marshall et al. 2014)
Do the $<\text{[X/Fe]}>-T_C$ trends fit in the ME09 hypothesis?

- No differences in stars with low-mass planets (wrt SWODs/SWDs)
- Different behaviour in stars with cool-Jupiters
3. No differences in stars with low-mass planets (wrt SWODs/SWDS)

4. Different behaviour in stars with cool-Jupiters

Not in agreement with ME09

Low-mass planet hosts: only \(<\) slopes for all elements, but similar to SWDs/SWODs

Cool-Jupiter hosts: differences in \(T^\text{all}_C\) and \(T^\text{ref}_C\); \(<\) slopes in \(T^\text{ref}_C\) analysis
Do the $<[X/Fe]>-T_C$ trends fit in the ME09 hypothesis?

3. No differences in stars with low-mass planets (wrt SWODs/SWDs)

4. Different behaviour in stars with cool-Jupiters

Not in agreement with ME09

Low-mass planet hosts: only $<$ slopes for all elements, but similar to SWDs/SWODs

Cool-Jupiter hosts: differences in T_C^{all} and T_C^{ref}; $<$ slopes in T_C^{ref} analysis

5. Positive slopes in stars with hot-Jupiters
Do the $\langle\text{X}/\text{Fe}\rangle$-$T_C$ trends fit in the ME09 hypothesis?

3. No differences in stars with low-mass planets (wrt SWODs/SWDs)

4. Different behaviour in stars with cool-Jupiters

- **Not in agreement with ME09**
 - **Low-mass planet hosts:** only < slopes for all elements, but similar to SWDs/SWODs
 - **Cool-Jupiter hosts:** differences in T_C^{all} and T_C^{ref}; < slopes in T_C^{ref} analysis

5. Positive slopes in stars with hot-Jupiters

- **Caution, small sample size!**
 - Also SWDs/SWODs show > slopes in T_C^{ref}
 - Indication of non low-mass planets?
Signatures of pollution

[X/Fe]-T_C slope correlation: natural prediction of self-enrichment hypothesis

- **R_⋆**: proxy of the convective envelope size
 - **Early-type:** ↑ R_⋆, ↓ CZ
 - **Late-type:** ↓ R_⋆, ↑ CZ

- K-stars show larger negative slopes
 - But, only in T^all_C analysis
 - Against the pollution hypothesis
No apparent trends between disc/planet properties with $[X/Fe]$-T_C slope

\[\rho = -0.11 \]
\[\text{prob.} = 0.23 \]
Outline

1. Introduction
2. Observations and analysis
3. Abundance trends
4. Discussion
5. Summary
Summary

Detailed chemical analysis of SWDs and SWDPs

- No differences SWDs/SWODs
- SWDPs driven by the type of planet
 - In agreement with core-accretion models
 - Correlation debris disc/low-mass planets?
 - Lack correlation debris discs/giant planets?
- Tentative $[X/\text{Fe}]-T_C$ trends in SWPs
 - Different behaviour in stars with cool-planets
 - Similar behaviour low-mass planets hosts / non-planets samples
 - Stars with hot Jupiters: higher $[\text{Fe}/\text{H}]$, positive slopes?
- Chemical depletions/Planet formation?
 - Low statistical significances
 - Correlation $T_C-[\text{Fe}/\text{H}]$
 - After GCE corrections: still correlations with age, radius
| Introduction | Observations and analysis | Abundance trends | Discussion | Summary |
|-------------|--------------------------|------------------|------------|---------|
| | | | | |

- Introduction
- Observations and analysis
- Abundance trends
- Discussion
- Summary
