Effects of Milking Frequency of Dairy Goats on Milk Yield and Composition and on System Profitability

Martinez GM*, Suarez VH, Alfaro E and Alfaro J

1Estación Experimental Agropecuaria Salta-INTA, Argentina
2Instituto de Investigación Animal del Chaco Semiárido-INTA, Argentina

Submission: September 01, 2017; Published: September 15, 2017

*Corresponding author: Martinez GM, Estación Experimental Agropecuaria Salta-INTA, Research Institute in Cerrillos, Salta, Argentina, Tel: 54-387-5212004; Email: martinez.gabriela@inta.gob.ar

Abstract
The effects of once (1X) vs twice (2X) daily milking frequency on milk yield and chemical composition of multiparous Saanen biotype goats were evaluated during the second third of lactation. Goats were assigned to one of two treatment groups, once daily milking at 0500 (1X, n=18) and twice daily milking at 0500 and 1700 (2X, n=18). Milk yield and composition were recorded weekly during 12wk. Differences in variables between groups were compared using an analysis of variance. Mean milk yield of X2 (2.5±?) was significantly (p<0.05) higher than that of X1 (2.09±?), representing an increase of 19.61%. Milk fat and protein content were also higher (p<0.05) in X2 (3.86 and 3.18%) than in X1 (3.13 and 2.99%). This study demonstrates a low to moderate increase in milk yield and quality under 2X during the second third of lactation in multiparous Saanen goats.

Keywords: Goat milk; Milking Effects; Cost effectiveness

Abbreviations: 1X: Once Milking; 2X: Twice Milking; W: Week; FCM: Fat Corrected Milk

Introduction
Intensive and semi-intensive dairy farms invest in automatic milking systems motivated by increased milk production per goat. Milking frequency is an important factor determining milk yield and quality of dairy goats that requires adequate feeding, welfare, health and environmental conditions [1]. The potential advantage of increased milking frequency for milk production and composition used to be main reason for applying this kind of management; nowadays, however, the production model that takes priority is known as “low cost, high return”[1]. Since more frequent milking requires more variable costs, knowledge about the real increment of production per goat under a double milking system is necessary to decide if this practice will be adequate for each dairy system. For the twice daily milking frequency, increases in milk production of 6-18% were reported for native Spanish goat breeds like Majorera, Murciano Granadina or Tarirfeña [2-4]. In Swiss breeds like Saanen and Alpine variable increments from 17 to 36% were documented [2,5,6]. The reported wide variation in milk yield may be attributed to different factors, such as breed, lactation stage, production level, and intervals between twice milking.

During intervals between milking, milk is stored in the lumen of alveoli, milk ducts, and udder cisterns. There are studies about the effect of twice (2X) vs. once (1X) milking a day on chemical composition of different milk fractions [4,7,8]; however, changes in the composition of the whole milk have been poorly studied. Torres et al. [8] indicated that fat content was the only milk component that presented variation with different milking frequency (3.86 once and vs. 4.38% twice daily). Nevertheless, total solids percentage was not modified. Salama et al. [4] also reported changes in fat content, with the lowest percentage being obtained with twice daily milking (5.10 vs. 4.62%). As a consequence, they concluded that animals subjected to this milking frequency presented a lower percentage of total solids. The objective of the present study was to determine the effects of two milking frequencies (once vs twice daily) on milk yield and chemical composition of multiparous Saanen biotype goats during the second third of lactation under the northwestern Argentina system conditions.
Materials and Methods

Thirty-six third or more parity Saanen goats with 90±5d in milk born and reared at the National Institute of Agricultural Technology of Salta province, Argentina, were used for the present trial. Animals were allocated to the treatments (1X: once daily milking; 2X: twice daily milking) based on average milk production of the first 90 days of lactation. Milking frequency before the experimental period was once daily. The experiment was conducted during 12wk; goats were milked at 0500h (1X) or at 0500-1700h (2X). The animals had access to alfalfa pasture during milking intervals (0800-1630) and grazing management consisted of the allocation of daily plots by visual estimation of the availability of forage dry matter (2000kg/DM/ha).

At the milking parlor, goats received 600g/animal/d of corn and 20g/animal/d of a vitamin-mineral corrector. Goats milked twice daily received the same ration but offered at two different moments of the day. Before the experiment, goats were allowed 1wk of adaptation to milking frequency. Milk yields of individual goats were measured with an Mk 5 Waikato milk meter (direct measurement device; Waikato, Hamilton, New Zealand) and grazing management consisted of the allocation of daily plots by visual estimation of the availability of forage dry matter (2000kg/DM/ha).

Results and Discussion

Table 1: Effect of milking frequency on milk yield and chemical composition in dairy goats (n=36).

Dependent Variable	Milking Frequency	SEM1	Milking frequency (M)	Week (W)	M x W	
	1X	2X				
Milk yield (L/d)	2.09a	2.50b	0.06	<0.0001	0.9602	0.9825
Milk fat %	3.13a	3.86b	0.04	<0.0001	<0.0001	<0.0001
Milk protein %	2.99a	3.18b	0.02	<0.0001	<0.0001	<0.0001
Milk lactose %	4.88a	4.84b	0.02	0.0441	0.0484	0.7125
Milk non fat solids %	8.68	8.92	0.13	0.1749	0.4522	0.3792
Milk ash %	0.87a	0.84b	0.004	<0.0001	<0.0001	0.2708
Milk fat content (g/d)	64.84a	94.36b	2.29	<0.0001	0.0516	0.1707
Milk protein content (g/d)	62.16a	78.51b	1.89	<0.0001	0.3477	0.9159
Milk lactose content (g/d)	101.91a	120.33b	3.09	<0.0001	0.8989	0.9281
4% FCM2	1.81a	2.41b	0.06	<0.0001	0.4450	<0.0001

Means with a different letter within the same row are different (P<0.05).

The results of the trial are shown in Table 1. Milking frequency treatments resulted in different milk yields between once and twice daily milking groups, but no differences were obtained between weeks. Figure 1 shows the evolution of mean milk yields throughout the trial. Although the trial began on day 90 post-partum, i.e. in the second third of lactation, 2X obtained 19.61% more milk daily than 1X; this percentage suggests an important difference considering the decrease in milk yield that occurs in the lactation curve from day 90 post-partum. However, other previous trials that began on the first post-partum days and that involved different goat breeds demonstrated similar differences, such as 18% with Murciano-Granadina [9] and 8-35% with Alpine [6], and even a lower percentage (9.3%) with Tinerfeña [3].

Statistical analyses were performed using PROC MIXED of SAS (version 9.0; SAS Institute Inc., Cary NC). The model included fixed effects of milking frequency and week of trial and their interactions. Differences between milking frequencies were evaluated using a Tukey test. Statistical differences were considered significant at P<0.05.

Figure 1: Milk production of dairy goat under 1X or 2X milking frequency. Values are means with SEM indicated by vertical bars.

Milk yield is a function of two factors that change during the course of lactation: the number of mammary secretory cells...
and their metabolic activity. The rate at which they change may be influenced by farm management practices, such as milking frequency [10]. It has been suggested that once daily milking stimulates an accumulation of Feedback Inhibitor of Lactation (FIL) in the milk-producing alveoli, resulting in feedback inhibition of milk synthesis and secretion. Furthermore, frequent removal of milk (2X) from the gland minimizes local inhibitory effects of FIL and increases milk secretion [9-11].

Results of milk composition showed that twice daily milking increased milk fat percentage significantly (Figure 2), with values differing between weeks (Table 1). Capote et al. [3,4] found that goats milked twice daily showed a significant increase in fat percentage compared with those milked once daily due to a higher proportion of alveolar milk removed in goats under the former frequency, which is richer in fat. These results were in disagreement with those found by Salama et al. [4], who reported that milk of 1X goats were more concentrated than milk of 2X goats (fat: 5.10 vs. 4.62%, and casein 2.57 vs. 2.35%).

Total solids did not show significant differences between treatments and was greater in all weeks in 2X milked goats (Figure 3). In contrast, Salama et al. [4] and Capote et al. [7] did not find differences in milk protein content due to milking frequency, whereas Boutinaud et al. [5] showed a higher protein content in Saanen goats milked X1 than in X2 and X3 milked goats.

Milk protein percentage varied significantly between treatments and was greater in all weeks in 2X milked goats (Figure 3). In contrast, Salama et al. [4] and Capote et al. [7] did not find differences in milk protein content due to milking frequency, whereas Boutinaud et al. [5] showed a higher protein content in Saanen goats milked X1 than in X2 and X3 milked goats.

Ethics statement

The procedures adopted has been approved by the Ethical Review Committee (CICUAL: Institutional Committee of Care and Use of Experimental Animals) of the University of La Plata, Argentina. There was no animal experimentation involved apart from normal system of goat production and our veterinary intervention.

Conflict of Interest

The authors declare that they have no conflict of interests on the writing and publishing of this manuscript.

References

1. Marnet PG, Komara M (2008) Management systems with extended milking intervals in ruminants: regulation of production and quality of milk. J Anim Sci 86: 47-56.
2. Capote J, López JL, Caja G, Peris S, Argüello A, Darmanin N (1999) The effects of milking once or twice daily throughout lactation on milk production of Canaria dairy goats. In Milking and Milk Production System Profitability. Dairy and Vet Sci J. 2017; 3(4): 555616.DOI: 10.19080/JDVS.2017.03.555616
Capote J, Castro N, Caja G, Fernandez G, Morales-delaNuez A, et al. (2009) The effects of the milking frequency and milk production levels on milk partitioning in Tinerfeña dairy goats. Milchwissenschaft 64: 239-241.

Salama AAK, Such X, Caja G, Rovai M, Casals R, et al. (2003) Effects of once versus twice daily milking throughout lactation on milk yield and milk composition in dairy goats. J Dairy Sci 86: 1673-1680.

Boutinaud M, Rousseau C, Keisler DH, Djiane J, Jammes H (2003) Growth hormone and milking frequency act differently on goat mammary gland in late lactation. J Dairy Sci 86: 509-520.

Komara M, Boutinaud M, Ben Chedly H, Guinard-Flament J, Marnet PG (2009) Once-daily milking effects in high-yielding Alpine dairy goats. J Dairy Sci 92(11): 5447-5455.

Capote J, Castro N, Caja G, Fernandez G, Briggs H, et al. (2008) Effects of the frequency of milking and lactation stage on milk fractions and milk composition in Tinerfena dairy goats. Small Ruminant Research 75: 252-255.

Torres A, Castro N, Hernández-Castellano LE, Argüello A, Capote J (2013) Effects of milking frequency on udder morphology, milk partitioning, and milk quality in 3 dairy goat breeds. J Dairy Sci 96(2): 1071-1074.

Blatchford DR, Peaker M (1982) Effect of frequent milking on milk secretion during lactation in the goat: relation to factors which limit the rate of secretion. Q J Exp Physiol 67(2): 303-310.

Maltz E, Blatchford DR, Peaker M (1984) Effects of frequent milking on milk secretion and mammary blood flow in the goat. Q J Exp Physiol 69(1): 127-132.

Wilde CJ, Addey VCP, Boddy LM, Peaker M (1995) Autocrine regulation of milk secretion by a protein in milk. Biochem J 305(pt1): 51-58.

Chauvat S, Seegers J, The Nguyen B, Clément B (2003) Le travail d’astreinte en élevage bovin laitier. Institut de l’Elevage, Paris, France.

Stelwagen K (2001) Effect of Milking Frequency on Mammary Functioning and Shape of the Lactation Curve. J Dairy Sci 84: E204-E211.

Wilde CJ, Knight CH (1990) Milk yield and mammary function in goats during and after once-daily milking. J Dairy Res 57(4): 441-447.

This work is licensed under Creative Commons Attribution 4.0 License
DOI: 10.19080/JDVS.2017.03.555616

Your next submission with Juniper Publishers will reach you the below assets

• Quality Editorial service
• Swift Peer Review
• Reprints availability
• E-prints Service
• Manuscript Podcast for convenient understanding
• Global attainment for your research
• Manuscript accessibility in different formats (Pdf, E-pub, Full Text, Audio)
• Unceasing customer service

Track the below URL for one-step submission
https://juniperpublishers.com/online-submission.php