The first mitochondrial genome of the genus *Exhippolysmata* (Decapoda: Caridea: Lysmatidae), with gene rearrangements and phylogenetic associations in Caridea

Ying-ying Ye1,2,3*, Jing Miao2, Ya-hong Guo2, Li Gong3, Li-hua Jiang2,3, Zhen-ming Lü2,3, Kai-da Xu1* & Bao-ying Guo2,3

The complete mitochondrial genome (mitogenome) of animals can provide useful information for evolutionary and phylogenetic analyses. The mitogenome of the genus *Exhippolysmata* (i.e., *Exhippolysmata ensirostris*) was sequenced and annotated for the first time, its phylogenetic relationship with selected members from the infraorder Caridea was investigated. The 16,350 bp mitogenome contains the entire set of 37 common genes. The mitogenome composition was highly A+T biased at 64.43% with positive AT skew (0.009) and negative GC skew (−0.199). All tRNA genes in the *E. ensirostris* mitogenome had a typical cloverleaf secondary structure, except for trnS1 (AGN), which appeared to lack the dihydrouridine arm. The gene order in the *E. ensirostris* mitogenome was rearranged compared with those of ancestral decapod taxa, the gene order of *trnL2-cox2* changed to *cox2-trnL2*. The tandem duplication-random loss model is the most likely mechanism for the observed gene rearrangement of *E. ensirostris*. The ML and BI phylogenetic analyses place all Caridea species into one group with strong bootstrap support. The family Lysmatidae is most closely related to Alpheidae and Palaemonidae. These results will help to better understand the gene rearrangements and evolutionary position of *E. ensirostris* and lay a foundation for further phylogenetic studies of Caridea.

The Decapoda is an ecologically and economically important order of crustaceans comprising a wide variety of crabs, lobsters, prawns and shrimps totalling over 18,000 extant and fossil species1,2. It is also the most abundant and largest order of crustaceans. Shrimps of the infraorder Caridea are commonly found in marine and freshwater habitats and have attracted attention due to their high commercial value3–5. Currently, there are 15 superfamilies recognized in the Caridea6. The family Lysmatidae is shown to comprise five genera, viz. *Lysmata* Risso, 1816; *Ligur* Sarato, 1885; *Mimocaris*, Nobili, 1903; *Lysmatella* Borradaile, 1915 and *Exhippolysmata* Stebbing, 1915. In the past, genetic studies of caridean families indicated that Hippolytidae is not a monophyletic taxa7,8 but should be partitioned into at least two families. Thereafter, morphological and genetic studies have recovered the Hippolytidae as polyphyletic, and the family Lysmatidae was formally resurrected9. Lysmatid shrimps are unique among crustaceans because of their enigmatic sexual system. They are protandric simultaneous hermaphrodites: shrimps initially mature and reproduce solely as males and later in life become functional simultaneous hermaphrodites10. In addition, due to their wide diversity of lifestyles, shrimp from the genus *Exhippolysmata* are particularly special.

1Marine Fishery Institute of Zhejiang Province, Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhejiang Ocean University, Zhoushan 316021, People’s Republic of China. 2National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, People’s Republic of China. 3National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, People’s Republic of China.

email: yeyy@zjou.edu.cn; xkd1981@163.com
The species *Exhippolysmata ensirostris* (Kemp 1914), which is widely distributed in the Pacific region, extends from the coast of the East China Sea and South China Sea to the Indo-West Pacific. It is an important and commercially exploited species in the East China Sea and the South China Sea. However, research on the genus *Exhippolysmata* has been limited to its species investigation and morphological description. Most of the research in Lysmatidae has focused on the genus *Lysmata*, including their mitochondrial genes and evolutionary relationships. Consequently, research on the mitochondrial genes of the genus *Exhippolysmata* has rarely been reported.

The complete mitochondrial genome (mitogenome) is typically extrachromosomal and characterized by maternal inheritance and with a high evolution rate. A complete mitogenome is a powerful tool for analysing the evolutionary history and phylogeny of species. The mitogenome can also provide direct molecular clues for gene rearrangement processes, which would reveal important information for phylogenetic analyses. The mitogenome of most metazoans is a double-stranded closed circular molecule approximately 11–20 kb in length. It typically contains 37 genes, including 13 protein coding genes (PCGs), two ribosomal RNA genes (*16S rRNA* and *12S rRNA*) and 22 transporter RNA genes.

In this study, the first complete mitogenome of the genus *Exhippolysmata* was described for the first time. We first successfully determined the complete mitogenome sequence of *E. ensirostris* using Illumina sequencing technology. We also analysed the nucleotide composition, codon usage profiles of protein coding genes (PCGs), Ka/Ks ratios of 13 PCGs, tRNA secondary structures, gene order and investigate the evolutionary relationships.
within Caridea. The purpose of this study was to understand the characteristics of the *E. ensirostris* mitogenome and clarify the evolutionary relationships within the Caridea mitogenome.

Results and discussion

Genome organization and base composition. The complete mitogenome of *E. ensirostris* was found to be a typical circular molecule of 16,350 bp (Fig. 1), and the sequence was deposited in GenBank under accession number MK681888. The data that support the findings of this study are openly available in Microsoft OneDrive at (https://1drv.ms/w/s!Ag1aKdaw8C731HxX998FCkZvQ3n?e=BaRfdq). The newly sequenced mitogenome contains 13 PCGs, 22 tRNA genes, two rRNA genes and a large noncoding or control region (CR). Of the 37 genes, 23 were encoded on the heavy strand, and the other 14 were encoded on the light strand (Fig. 1, Table 1). The longest noncoding region was located between trnL2 and trnK, and the largest gene junction was located between trnL1 and 12S rRNA. The base compositions (Table 2) showed a high A + T content in the complete mitogenome (64.43%), PCGs (62.6%), tRNAs (66.04%), rRNAs (66.62%) and a CR (69.33%). The relative order of the nucleotide composition was A > T > C > G. The complete sequence had a positive AT skew (0.009) and a negative GC skew (−0.199). As in other invertebrate mtDNAs, there were overlapping and noncoding bases between some genes.

![Table 1. Organization of the *Exhippolysmata ensirostris* mitochondrial genome.](image)

Among the 13 PCGs, 12 of them were AUG-initiated, and only the COX1 was ATG-initiated. Seven of the 13 PCGs (MtCOX1, MtCOX2, MtATP6, MtATP8, MtNAD3, MtNAD5 and MtCOX3) had an ATG start codon, and the remaining 6 PCGs had a TAT start codon. There were only 12 stop codons (9 TAA, 3 TAG) in the complete mitogenome. There was no UGA stop codon. The two rRNA genes were separated by the tRNA-Thr (T) gene. Besides, the gene distances of the tRNA-Leu2 gene from the tRNA-Lys gene and the tRNA-Arg gene from the tRNA-Glu gene were also the shortest. The base content of the 22 tRNA genes was also listed in Table 1. Among the 22 tRNA genes, only the tRNA-Glu gene contained a termination codon (TGA). The tRNA-Leu2 gene also contained a termination codon (TAA). In addition, a TGG codon was found in the tRNA-Phe gene. The GC content of the 22 tRNA genes was quite different, with a maximum of 72% and a minimum of 45%.
Protein coding genes and noncoding regions. The total length of the 13 PCGs was 10,852 bp and accounted for 66.3% of the whole *E. ensirostris* mitogenome. The 13 PCGs ranged from 165 bp (*ATP8*) to 1704 bp (*nad5*) (Tables 1, 2). Nine PCGs (*cox1*, *cox2*, *cox3*, *nad2*, *nad3*, *nad6*, *atp8*, *atp6*, and *cob*) were encoded on the heavy strand, and the other four PCGs (*nad5*, *nad4*, *nad4L* and *nad1*) were encoded on the light strand (Table 1). Three genes (*nad6*, *cox1* and *cox3*) were found to start with ATA, a further three (*nad5*, *nad4* and *nad4L*) with ATT, and the other seven with ATG. Eleven PCGs were found to end with the typical stop codon TAA, whereas *cox1* and *nad4* were found to end with TAG. Codon number and relative synonymous codon usage in the *E. ensirostris* mitochondrial genome are listed in Table 3. The patterns of codon usage of 13 PCGs are exhibited in Fig. 2A. The abundance of codon families and the relative synonymous codon usage (RSCU) in the PCGs were investigated for all available *E. ensirostris* mtDNAs, and the results are shown in Fig. 2B. The most frequently used codon was UUR (*trnL2*). There were 22 non-coding regions and eight overlaps of neighbouring genes in the mitochondrial genome of *E. ensirostris*. The largest non-coding region of *E. ensirostris* was identified as a putative control region. In addition, the position of the largest gene overlap (23 bp) was between *trnL1* and 16S rRNA.

Table 2. Nucleotide composition and skewness of the *Exhippolysmata ensirostris* mitochondrial genome.

Gene	Size (bp)	A%	T%	G%	C%	A + T%	AT-skew	GC-skew
Mitogenome	16,350	32.51	31.91	14.24	21.33	64.43	0.009	−0.199
nad4	1227	22.96	39.82	23.05	14.17	62.79	−0.269	0.239
nad4l	255	23.53	38.43	25.88	12.16	61.96	−0.240	0.361
nad6	498	27.91	36.55	12.65	22.89	64.46	−0.134	−0.288
cob	1137	26.47	35.09	15.92	22.52	61.57	−0.140	−0.172
nad1	870	22.76	40.34	23.33	13.56	63.1	−0.279	0.265
nad2	982	26.48	36.25	10.9	26.37	62.73	−0.156	−0.415
cox1	1512	26.32	33.8	17.99	21.89	60.12	−0.124	−0.098
cox2	687	31.26	32.61	15.87	20.52	63.61	−0.025	−0.128
atp8	165	34.55	41.82	4.85	18.79	76.36	−0.095	−0.590
atp6	666	26.43	36.04	12.91	24.62	62.46	−0.153	−0.312
cox3	783	26.82	33.59	17.5	22.09	60.41	0.975	−0.116
nad3	366	26.78	37.43	13.93	21.86	64.21	−0.166	−0.222
nad5	1704	25.23	38.32	22.77	13.67	63.56	−0.206	0.250
PCGs	10,852	26	36.6	18	19.4	62.6	−0.169	−0.037
tRNAs	1446	32.92	32.13	18.74	15.21	66.04	0.012	0.104
rRNAs	2186	31.05	35.57	20.53	12.85	66.62	−0.068	0.230
CR	1249	35.23	34.09	14.14	16.53	69.33	0.016	−0.078

Table 3. Codon number and relative synonymous codon usage in the *Exhippolysmata ensirostris* mitochondrial genome.

Codon	Count	RSCU									
UUU	132	1.17	UCU	101	1.72	UAU	100	1.27	UGU	23	0.84
UUC	93	0.83	UCC	58	0.99	UAC	58	0.73	UGC	32	1.16
UUA	196	1.46	UCA	74	1.26	UAA	99	1.51	UGA	59	1.4
UUG	32	0.44	UCG	9	0.15	UAG	32	0.49	UGG	25	0.6
CUU	95	1.31	CUC	88	1.56	CAU	74	1.14	CGU	18	1.09
CUC	74	1.02	CCC	66	1.17	CAC	56	0.86	CGC	9	0.55
CUA	99	1.37	CCA	58	1.03	CAA	69	1.5	CGA	30	1.82
CUG	29	0.4	CGG	13	0.23	CAG	23	0.5	CGG	9	0.55
AUC	117	1.2	ACC	80	1.36	AUA	107	1.06	AGU	37	0.63
AUG	78	0.8	ACC	61	1.04	AAC	95	0.94	AGC	61	1.04
AUA	112	1.62	ACA	80	1.36	AAA	117	1.36	AGA	82	1.4
AUG	26	0.38	ACG	14	0.24	AAG	55	0.64	AGG	47	0.8
GUU	57	1.5	GCU	56	1.68	GAU	56	1.26	GGU	30	0.84
GUC	16	0.42	GCC	29	0.87	GAC	33	0.74	GGC	25	0.7
GUA	62	1.63	GCA	38	1.14	GAA	60	1.38	GGA	64	1.79
GUG	17	0.45	GCG	10	0.3	GAG	27	0.62	GGG	24	0.67
To analyse the selection pressure on mitochondrial PCGs of the caridean shrimps, the ratio of the non-synonymous and synonymous substitution rates (Ka/Ks) for the 13 PCGs from the six caridean species (E. ensirostris, Alpheus japonicas, Alvinocaris longirostris, Halocaridina rubra, Heterocarpus ensifer and Macrobrachium lanchesteri) was calculated. We found that the Ka/Ks values for all PCGs were lower than one (between 0.187 and 0.959), indicating that they are evolving under purifying selection (Fig. 3). Among all 13 caridean protein-coding genes, the average Ka/Ks of nad1 was the highest (0.959), and nad2 (0.941) and nad5 (0.927) also had very high average Ka/Ks values, indicating that these genes bear less selective pressure than other mitochondrial protein-coding genes.

Transfer and ribosomal RNA genes. The E. ensirostris mitochondrial genome encodes 22 tRNA genes, each of which was predicted to fold into a clover-leaf secondary structure that ranged in size from 64 bp (trnC) to 70 bp (trnV) of nucleotides (Table 1). The DHU arm of the trnS1 gene lacked any secondary structure (Fig. 4). The total length of the 22 tRNA genes in the E. ensirostris mitochondrial genome was 1446 bp. The overall A + T content of tRNA genes was 66.04%, which is similar to that of other carideans (Table 2)21. The mt tRNAs had a weakly positive AT skew (0.012) and positive GC skew (0.104). Fourteen tRNA genes (trnL2, trnK, trnD, trnG, trnA, trnR, trnN, trnS1, trnE, trnT, trnS2, trnI, trnM and trnW) were present on the heavy strand, and eight tRNA genes (trnF, trnH, trnP, trnL1, trnV, trnQ, trnC and trnY) were present on the light strand.

The 12S rRNA gene lay between trnL1 (CUN) and trnV, while the 16S rRNA gene lay between trnV and the putative control region, and both rRNA genes were encoded by the β-strand. As typically seen in other shrimp mitogenomes, the 16S rRNA and 12S rRNA genes of the E. ensirostris mitogenome were 1368 bp and 818 bp in length, respectively. The location and orientation of the rRNA genes were identical to the original arrangement of ancestral Caridea22. The A + T content of the two rRNA genes was 66.62%, and they had a negative AT skew (−0.068, Table 2).

Figure 2. Codon usage patterns in the mitogenome of Exhippolysmata ensirostris CDspT, codons per thousand codons. Codon families are provided on the x axis (A); the relative synonymous codon usage (RSCU) (B).
Gene rearrangement. Gene rearrangement in the Decapoda mitogenome commonly occurs and can be a tool to study phylogenetic relationships. Tan et al. gave an overview of mitochondrial gene orders (MGOs) of Decapoda, which revealed a large number of MGOs deviating from the ancestral arthropod ground pattern and unevenly distributed among infraorders. Here, we compared the MGOs of the Caridea mitogenomes with ancestral Decapoda and Caridea (Fig. 5). Among them, the MGOs in the mitogenomes of the families Pandalidae, Atyidae, and Alvinocarididae were identical to those of the ancestral Decapoda. However, fourteen carideans from the families of Lysmatidae, Alpheidae and Palaemonidae displayed gene rearrangements. This is in contrast with previous views that the gene order in Caridea is conserved. Compared with the gene order of the ancestral Decapoda, has a translocation, for which the gene order is instead of (Fig. 5C). , , , , , and in Alpheidae also undergo gene rearrangement, and translocates and reverses with (Fig. 5D). has an extra duplication of located downstream of (Fig. 5E). In addition, the translocation of two tRNA genes was found in the mitochondrial genomes of , , , , , and in Palaemonidae, wherein or were translocated, while the arrangement of other genes was identical (Fig. 5F). has an extra translocation between and (Fig. 5G). The mitochondrial genome of in Palaemonidae bears a novel gene order, the gene block was rearranged from the downstream of to the position downstream of (Fig. 5H). These data indicate that gene order is not conserved among caridean shrimp and could be useful for inferring phylogenetic relationships within Caridea when more mitochondrial data from Caridea become available in the future.

Some mechanisms have been proposed to explain the rearrangement of genes in animal mitogenomes, including the tandem duplication/random loss model (TDRL), tandem duplication/non-random loss model (TDNL), and recombination. Generally, TDRL is one of the most widely accepted mechanisms of mitochondrial gene rearrangement, which involves tandem duplication of gene regions caused by downstream chain mismatch during replication. TDNL attribute gene rearrangement to clustering by common polarity. The recombination within mitochondria mechanism involves the breaking and reconnecting of DNA double strands, leading to gene rearrangement and gene inversion. Here, we propose that TDRL is more capable of explaining the and translocations of the tRNA genes in the E. ensirostris mitochondrial genome.

Phylogenetic relationships. Many studies on the classification and evolutionary history of the Decapoda relied on morphological characteristics, which led to conflicting phylogenetic relationships. Under the best model, both ML and BI analyses of two data sets, based on the nucleotide sequences of the 13 PCGs and reconstruction of 53 species (including 51 Caridea species and two outgroup species) revealed the phylogenetic relationship between them. This study proposes a consistent phylogenetic relationship based on BI and ML methods; therefore, only one phylogenetic tree with both support values is presented (Fig. 6). Our results indicate that the mitochondrial genome sequence is robust for the inference of the relationships between shrimps. In addition, both ML and BI analyses of the two data sets show high branch support values. The phylogenetic tree based on the mitogenomes indicates that Palaemonidae and Alpheidae form a monophyletic group and show a statistically significant relationship at the family level. Our complete mitogenome data suggest phylogenetic

Figure 3. The ratio of synonymous and nonsynonymous substitution rates (Ka/Ks) in all 13 mitochondrial PCGs of seven caridean shrimp. Ka: nonsynonymous substitution rate; Ks: synonymous substitution rate. The histogram represents the average Ka/Ks for each PCG.
relationships among the major lineages of Caridea as (((Alpheidae + Palaemonidae) + Lysmatidae) + Pandalidae) + Atyidae) + Alvinocarididae. Although the main phylogenetic structures of our tree were consistent with those of previous result, some controversial findings were observed. Here, the families Alpheidae, Pandalidae, Lysmatidae and Palaemonidae clustered together as sister groups and were distantly related to Alvinocarididae, which supports the previous finding revealed by five nuclear genes (18S, Enolase, H3, NaK and PEPCK) in Li et al.8. However, Li et al.4 also revealed that Atyidae has been considered as basal lineages within the Caridea, which was conflict with our results. Based on both mitochondrial and nuclear genes (16S and 18S), Bracken et al. also revealed Atyidae represent basal lineages within the Caridea. Meanwhile, in Sun et al’s recent study, the phylogenetic relationship among Caridea was (((Alpheidae + Palaemonidae) + Pandalidae) + Alvinocarididae) + Atyidae), which also considered Atyidae was distantly related to the four above families. Furthermore, our result does not agree with Tan et al.35 and Wang et al.28, which state that Atyidae was the sister clade to Alvinocarididae. In our phylogenetic tree, most of the unstable and conflicting clades might have resulted from the limited taxon samples. The sequencing and assembly of the mitochondrial genome current result will promote the future work of further

Figure 4. Putative secondary structures of tRNAs from the Exhippolysmata ensirostris mitogenome. The tRNAs are labelled with the abbreviations of their corresponding amino acids.
mitochondrial genome sequencing, and to increase in taxon sampling and genome sequencing which will help to resolve the classification of Caridea. Thus, more mitochondrial genome data will lead to a more comprehensive understanding of the phylogenetic relationships within Caridea and to resolve its classification.

Conclusions
Using next-generation sequencing methods, the mitogenome of *E. ensirostris* was determined to be a circular molecule of 16,350 bp. Compared with typical Decapoda mitogenomes, the gene order of this species had undergone a rearrangement, wherein *cox2* and *trnL2* were translocated to *trnL2* and *cox2*. The gene rearrangement event occurring in *E. ensirostris* mitogenome can be explained by the TDRL model. The evolutionary patterns of PCGs were observed in the six caridean shrimp mitogenomes, which indicates that these genes were evolving under purifying selection. Phylogenetic analyses indicated the Caridea clades as monophyletic groups with strong bootstrap support. The family Lysmatidae is most closely related to Alpheidae and Palaemonidae. However, the lack of complete mitogenomes of other species of the Lysmatidae has limited the understanding of the evolution of this group at the genome level. Therefore, further studies are required to elucidate the phylogenetic status of species belonging to this group and their relationships.

Materials and methods
Sampling, identification and DNA extraction. An individual specimen of *E. ensirostris* was collected from Zhoushan, Zhejiang Province, China (30° 09' 41" N, 122° 35' 10" E) by bottom trawl fishery resource monitoring in November 2018. The specimen was identified morphologically and preserved in absolute ethanol. The total genomic DNA was extracted from muscle tissues of the specimen by the salt-extraction procedure with a slight modification. Once extracted, the DNA was stored in 1 × TAE buffer at 4 °C. The extracted DNA was identified by 1.5% agarose gel electrophoresis and stored at −20 °C.

Sequencing and assembly. The mitogenome of *E. ensirostris* was sequenced using next-generation sequencing by Origin Gene Co. Ltd., Shanghai, China. The mitogenome was sequenced from the total genomic DNA using an Illumina HiSeq X Ten platform to generate a library with an insert size of 400 bp. Then, the raw image data were converted into sequential data by base calling. A total of 5,515,049,137 bp of clean data and 37,141,698 clean reads were retrieved. Raw sequencing data were deposited into the Sequence Read Archive (SRA) database (SRR12199494) (http://www.ncbi.nlm.nih.gov/Traces/sra). De novo assembly of clean data without sequencing adapters was conducted using NOVOPlasty software (https://github.com/ndierckx/NOVOPlasty).
Mitochondrial genome annotation and analysis. Based on the sequence of the complete de novo assembled mitochondrial genome set, MITOS tools (http://mitos2.bioinf.uni-leipzig.de/index.py) was used for annotation with manual correction\(^\text{38}\). To ensure the accuracy of the assembled mitogenome, we first compared it to those of other Lysmatidae species and then further verified it using NCBI BLAST searches of the cox1 barcode sequence\(^\text{39}\). Base composition and relative synonymous codon usage (RSCU) values were calculated using MEGA v. 7.0\(^\text{40}\). Identification of tRNA genes was verified using the MITOS WebServer. The rRNA genes...
Order	Family	Species	Size (bp)	Accession no
Caridea	Alpheidae	Alpheus bellulus	15,738	MH796167
Caridea	Alpheidae	Alpheus distinguendus	15,700	NC014883
Caridea	Alpheidae	Alpheus hoplocheles	15,735	NC03868
Caridea	Alpheidae	Alpheus inopinatus	15,789	NC041151
Caridea	Alpheidae	Alpheus japonicus	16,619	NC038116
Caridea	Alpheidae	Alpheus lobidens	15,735	KP726147
Caridea	Alpheidae	Alpheus randalli	15,676	MH796168
Caridea	Alpheidae	Synalpheus microneptanus	15,603	NC047307
Caridea	Alvinocarididae	Alvinocaris chelys	9,190	NC018778
Caridea	Alvinocarididae	Alvinocaris longirostris	16,050	NC020313
Caridea	Alvinocarididae	Nautilocaris saintlaurentae	15,928	NC021971
Caridea	Alvinocarididae	Rimicaris exoculata	15,902	NC027116
Caridea	Alvinocarididae	Rimicaris kairet	15,900	NC020310
Caridea	Alvinocarididae	Shinkaicaris leurokolos	15,903	NC034787
Caridea	Alvinocarididae	Oopaele lohi	15,905	NC020311
Caridea	Atyidae	Caridina gracilipes	15,550	NC024751
Caridea	Atyidae	Caridina multidentata	15,825	NC038067
Caridea	Atyidae	Halocaridina rubra	16,065	DQ917452
Caridea	Atyidae	Halocaridinidus jowleri	15,997	NC035412
Caridea	Atyidae	Neocaridina heteropoda	15,558	MK907783
Caridea	Atyidae	Neocaridina denticulata	15,561	NC028323
Caridea	Atyidae	Paratya australensis	15,990	NC027603
Caridea	Atyidae	Stygiocaris lancifera	15,787	NC034040
Caridea	Atyidae	Stygiocaris stylifera	15,812	KX844722
Caridea	Atyidae	Typhlatya taina	15,790	NC035399
Caridea	Atyidae	Typhlatya pearsei	15,798	NC035400
Caridea	Atyidae	Typhlatya monae	16,007	NC035405
Caridea	Atyidae	Typhlatya mitchelli	15,814	NC035403
Caridea	Atyidae	Typhlatya miravetensis	15,865	NC036335
Caridea	Atyidae	Typhlatya iliffei	15,926	NC035401
Caridea	Atyidae	Typhlatya garciati	15,318	NC035409
Caridea	Atyidae	Typhlatya galapagensis	16,430	NC035402
Caridea	Atyidae	Typhlatya dzmamensis	15,892	NC035408
Caridea	Atyidae	Typhlatya consobrina	15,758	NC035407
Caridea	Atyidae	Typhlatya arfcae	15,887	NC035410
Caridea	Atyidae	Typhlopata pauliani	15,824	NC035406
Caridea	Lysmatidae	Exchypneustona enrostri	16,350	MK881888
Caridea	Palaemonidae	Exopalaemon carinicauda	15,730	NC012566
Caridea	Palaemonidae	Palaemon modestus	15,736	MF687349
Caridea	Palaemonidae	Palaemon graviervi	15,735	KU899135
Caridea	Palaemonidae	Palaemon capensis	15,925	NC039373
Caridea	Palaemonidae	Anchistus australis	15,396	NC046034
Caridea	Palaemonidae	Palaemon sinensis	15,955	MH880828
Caridea	Palaemonidae	Palaemon annandalei	15,718	NC038117
Caridea	Palaemonidae	Macrobanchium lanchesteri	15,694	NC012217
Caridea	Palaemonidae	Macrobanchium rosenbergii	15,964	NC012217
Caridea	Palaemonidae	Macrobanchium nipponense	15,806	HQ830201
Caridea	Palaemonidae	Macrobanchium rosenbergii	15,772	AY659990
Caridea	Pandalidae	Chlorotocus crassicornis	15,935	NC035828
Caridea	Pandalidae	Pandalus borealis	15,956	LC341266
Caridea	Pandalidae	Heterocarpus ensifer	15,939	MG674228
Caridea	Pandalidae	Bitias brevis	15,891	NC040856
Stenopodidea	Stenopodidea	Stenopus hispidus	15,528	NC018097
Stenopodidea	Spongicolidae	Spongicaris panglao	15,909	NC038166

Table 4. Classification and mitochondrial genome information of families from Caridea.
were determined based on the locations of adjacent tRNA genes and by comparisons with other shrimp. Strand asymmetry was calculated using the formulae AT-skew = (A − T)/(A + T) and GC-skew = (G − C)/(G + C)59. The graphical map of the circular E. ensirostris mitogenome was drawn using the online mitochondrial visualization tool CGView Server60. In addition, we estimated the value of synonymous (Ks) and nonsynonymous substitutions (Ka) in the 13 mitochondrial PCGs using DnaSP 5.1.061. A Ka/Ks rate that is significantly less than one indicates negative (purifying) selective pressure, and a Ka/Ks rate that is significantly greater than 1 indicates positive selection62.

Phylogenetic analysis. A total of 51 caridean shrimp mitogenomes were downloaded from GenBank (https://www.ncbi.nlm.nih.gov/genbank/) for phylogenetic analysis (Table 4). The outgroup taxa were two Stenopodidea species: *Stenopus hispidus* and *Spongicaros panglao*. We used the nucleotide sequences of the 13 protein coding genes (PCGs) to construct ML and BI phylogenetic trees. The 13 mitochondrial PCGs were aligned through MAFFT using default settings45, and then the resulting alignments were imported into Gblocks v. 0.91b (http://molevol.cmima.csic.es/castresana/Gblocks_server.html) to select the conserved regions46. A substitution saturation analysis was performed in DAMBE v. 5.3.15 to test whether the dataset was suitable for constructing trees47. ML analysis was conducted using IQ-TREE v1.4.163 with the best-fit substitution model automatically selected by ModelFinder49 in the IQ-TREE package. GTR + I + G was selected as the best-fit model for nucleotide datasets under the Akaike Information Criterion (AIC) by MrModeltest 2.360, and then BI analysis was carried out using MrBayes 3.2.661. BI analysis was performed using default settings over four independent runs for 2 million generations sampled every 100 generations. The average standard deviation of split frequencies was < 0.01, the estimated sample size was > 200 and the potential scale reduction factor approached 1.0. The first 25% of samples were discarded as burn-in, and the remaining trees were used to calculate the Bayesian posterior probabilities for a 50% majority-rule consensus tree. All parameters were checked with Tracer v. 1.6 (http://tree.bio.ed.ac.uk/software/tracer/). The resulting phylogenetic trees were visualized in FigTree v. 1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/).

Data availability

The mitochondrial genome data has been submitted to NCBI GenBank under the following Accession Numbers MK681888.

Received: 3 February 2021; Accepted: 30 June 2021

Published online: 14 July 2021

References

1. De Grave, S. & Fransen, C. H. J. M. Carideorum Catalogus: The recent species of the dendrobranchiate, stenopodidean, procaridean and caridean shrimps (Crustacea: Decapoda). *Zool. Med. Leiden* 85(9), 195–588 (2011).
2. Shen, H., Braband, A. & Scholtz, G. Mitogenomic analysis of decapod crustacean phylogeny corroborates traditional views on their relationships. *Mol. Phylogenet. Evol.* 66(3), 776–789 (2013).
3. Chace, F. A. Jr & Kesley, R. The cardiac notch in decapods. *J. Crustacean Biol.* 12(3), 442–447 (1992).
4. Holthuis, L.B., Fransen, C.H.J.M. & Van Achterberg, C. The recent genera of the Caridean and Stenopodidean shrimps (Crustacea, Decapoda): Resurrection of several families. *Zool. J. Linn. Soc. Lond.* 127(2), 181–188 (2008).
5. Baeka, J. A. Protandric simultaneous hermaphroditism in the shrimps Lysmata wurdemanni (Crustacea: Caridea). *Behav. Ecol. Sociobiol.* 55, 544–550 (2004).
6. De Grave, S. et al. A classification of living and fossil genera of decapod crustaceans. *Raffles Bull. Zool. Suppl.* 21, 1–109 (2009).
7. Bracken, H. D., De Grave, S. & Felder, D. L. Phylogeny of the infraorder Caridea based on mitochondrial and nuclear genes (Crustacea: Decapoda). *Decapod Crustacean Phylogenet.* 18, 274–298 (2009).
8. Li, C. P., De Grave, S., Lei, H. C., Chan, T. Y. & Chu, K. H. Molecular systematics of caridean shrimps based on five nuclear genes: Implications for superfamily classification. *Zool. Anz.* 250, 270–279 (2011).
9. De Grave, S., Li, C. P., Tsang, L. M., Chu, K. H. & Chan, T. Y. Unveiling hippolytoid systematics (Crustacea, Decapoda, Hippolytidae): Resurrection of several families. *Zool. Sci.* 43(5), 496–507 (2014).
10. Baeka, J. A. Protandric simultaneous hermaphroditism in the shrimps Lysmata bahia and Lysmata intermedia. *Invertebr. Biol.* 127(2), 181–188 (2008).
11. Baeka, J. A. & Bauer, R. T. Experimental test of social mediation of sex change in a protandric sequential hermaphrodite; the marine shrimp *Lysmata wurdemanni* (Crustacea: Caridea). *Behav. Ecol. Sociobiol.* 55, 544–550 (2004).
12. Xu, Y., Song, L. S. & Li, X. The molecular phylogeny of Caridea based on 16S rDNA sequences. *Heredity* 98, 1018–1038 (2007).
13. Boore, J. L. Animal mitochondrial genomes. *Nucleic Acids Res.* 27(8), 1767–1780 (1999).
14. Liu, Q. N., Zhu, B. J., Dai, L. S., Wei, G. Q. & Liu, C. L. The complete mitochondrial genome of the wild silkworm moth, *Actias selene*. *Gene* 505(2), 291–299 (2012).
15. Tan, M. H. et al. Comparative mitogenomics of the Decapoda reveals evolutionary heterogeneity in architecture and composition. *Sci. Rep.* 9, 10756 (2019).
16. Gissi, C., Iannelli, F. & Pesole, G. Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. *Heredity* 101(4), 301–320 (2008).
17. Rich, A. & Rajbhandary, U. L. Transfer RNA: Molecular structure, sequence, and properties. *Annu. Rev. Biochem.* 45(1), 805–860 (1976).
18. Staton, J. L., Daehler, L. L. & Brown, W. M. Mitochondrial gene arrangement of the horseshoe crab *Limulus polyphemus*: Conservation of major features among arthropod classes. *Mol. Biol. Evol.* 14(8), 867–874 (1997).
Author contributions
Y.Y. and K.D.X. designed the work, analyzed the data and wrote the paper, J.M and Y.H.G. analyzed the data, wrote the paper, and prepared the figures and tables. L.G. and L.H.J. analyzed the data, G.B.Y. and L.Z.M. reviewed drafts of the paper and supervised and directed the work. All authors gave final approval for the publication of the article.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to Y.Y. or K.X.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
