Two local inequalities

I. A. Cheltsov

Abstract. We prove two new local inequalities for divisors on smooth surfaces and consider several applications of these inequalities.

Keywords: Tian’s α-invariant, del Pezzo surface, Cremona group.

To the memory of Vasilii Alekseevich Iskovskikh (1939–2009)

§ 1. Introduction

All varieties are assumed to be projective, normal and defined over \mathbb{C}.

In many algebro-geometric problems it is required to prove that a log pair consisting of a variety (possibly singular) and an effective divisor (called the boundary) is log canonical provided that the divisor satisfies certain numerical conditions. In contrast to the intersection multiplicities of effective divisors, the property of being log canonical is not easily derived from global numerical conditions. Therefore one should use local inequalities that relate the intersection multiplicities of the boundary components and log canonicity of the pair. We illustrate this with an example.

Let S be a surface, O a smooth point of S, and Δ_1 and Δ_2 curves on S such that $O \in \Delta_1 \cap \Delta_2$, both Δ_1 and Δ_2 are irreducible, reduced and smooth at O, and Δ_1 intersects Δ_2 transversally at O. Let a_1 and a_2 be rational numbers.

Theorem 1.1 ([1], Corollary 5.57). Let D be an effective \mathbb{Q}-divisor on S such that the log pair $(S, D + \Delta_1)$ is not log canonical at O. Suppose that $\Delta_1 \not\subseteq \text{Supp}(D)$ and $a_1 \leq 1$. Then $\text{mult}_O(D \cdot \Delta_1) > 1$.

Corollary 1.2. Let D be an effective \mathbb{Q}-divisor on S such that the log pair $(S, D + a_1 \Delta_1 + a_2 \Delta_2)$ is not log canonical at O. Suppose that $\Delta_1 \not\subseteq \text{Supp}(D) \not\subseteq \Delta_2$, $a_1 \geq 0$, $a_2 \geq 0$. Then $\text{mult}_O(D \cdot \Delta_1) > 1 - a_2$ or $\text{mult}_O(D \cdot \Delta_2) > 1 - a_1$.

The following analogue of Corollary 1.2 is obtained implicitly in [2].

Theorem 1.3. Let D be an effective \mathbb{Q}-divisor on S such that the log pair $(S, D + a_1 \Delta_1 + a_2 \Delta_2)$ is not log canonical at O. Suppose that $\Delta_1 \not\subseteq \text{Supp}(D) \not\subseteq \Delta_2$, $a_1 \geq 0$, $a_2 \geq 0$. Then $\text{mult}_O(D \cdot \Delta_1) > 2a_1 - a_2$ or $\text{mult}_O(D \cdot \Delta_2) > \frac{3}{2}a_2 - a_1$ provided that $a_1 + \frac{a_2}{2} \leq 1$.

The area of application of Theorem 1.3 is rather limited. Our first goal is to prove the following generalization of Theorem 1.3 and give some applications.
Theorem 1.4. Let D be an effective \mathbb{Q}-divisor on S such that the log pair $(S, D+a_1\Delta_1+a_2\Delta_2)$ is not log canonical at O. Suppose that $\Delta_1 \not\subset \operatorname{Supp}(D) \neq \Delta_2$, $a_1 \geq 0$, $a_2 \geq 0$. Then $\operatorname{mult}_O(D \cdot \Delta_1) > M + Aa_1 - a_2$ or $\operatorname{mult}_O(D \cdot \Delta_2) > N + Ba_2 - a_1$ provided that $\alpha a_1 + \beta a_2 \leq 1$, where $A, B, M, N, \alpha, \beta$ are non-negative rational numbers with $A(B-1) \geq 1 \geq \max(M, N)$, $\alpha(A+M-1) \geq A^2(B+N-1)\beta$, $\alpha(1 - M) + A\beta \geq A$, and either $2M + AN \leq 2$ or $\alpha(B+1-MB-N) + \beta(A+1-AN-M) \geq AB-1$ (or both).

Moreover, let ε be a positive rational number.

Theorem 1.5 ([3], Theorem 3.1, [4], Lemma 3.3). Let \mathcal{M} be a linear system without fixed components on S and let ε be a positive rational number. Suppose that the log pair $(S, \varepsilon\mathcal{M} + a_1\Delta_1 + a_2\Delta_2)$ is not Kawamata log terminal at O. Let M_1 and M_2 be sufficiently general curves in \mathcal{M}. Then we have

$$\operatorname{mult}_O(M_1 \cdot M_2) \geq \begin{cases} \frac{4(1-a_1)(1-a_2)}{\varepsilon^2} & \text{if } a_1 \geq 0 \text{ or } a_2 \geq 0, \\
\frac{4(1-a_1-a_2)}{\varepsilon^2} & \text{if } a_1 \leq 0 \text{ and } a_2 \leq 0. \end{cases}$$

(1.1)

Moreover, if (1.1) is an equality, then $\operatorname{mult}_O(\mathcal{M}) = \frac{2}{\varepsilon}(a_1 - 1)$, the log pair $(S, \varepsilon\mathcal{M} + a_1\Delta_1 + a_2\Delta_2)$ is log canonical and $a_1 = a_2 > 0$.

Our second goal is to prove the following analogue of Theorem 1.5 and give an application.

Theorem 1.6. Let \mathcal{M} be a linear system without fixed components on S, and let ε be a positive rational number. Suppose that the log pair $(S, \varepsilon\mathcal{M} + a_1\Delta_1)$ is not terminal at O and $a_1 \leq 0$. Let M_1 and M_2 be sufficiently general curves in \mathcal{M}. Then we have

$$\operatorname{mult}_O(M_1 \cdot M_2) \geq \begin{cases} \frac{1-2a_1}{\varepsilon^2} & \text{if } a_1 \geq -\frac{1}{2}, \\
-\frac{4a_1}{\varepsilon^2} & \text{if } a_1 \leq -\frac{1}{2}. \end{cases}$$

(1.2)

Moreover, if (1.2) is an equality, then $(S, \varepsilon\mathcal{M} + a_1\Delta_1)$ is canonical and either $-a_1 \in \mathbb{N}$ and $\operatorname{mult}_O(\mathcal{M}) = \frac{2}{\varepsilon}$, or $a_1 = 0$ and $\operatorname{mult}_O(\mathcal{M}) = \frac{1}{\varepsilon}$.

The author would like to thank I. Dolgachev, V. Golyshchev, D. Kosta, Yu. Prokhorov and K. Shramov for useful comments and conversations. The author would like to thank T. Dokshitsker for the proof of Lemma B.18 (see Appendix B at the end of the paper).

§ 2. Preliminaries

Let φ, ψ and v_1, \ldots, v_γ be non-zero polynomials in $\mathbb{C}[z_1, \ldots, z_n]$ such that the locus in \mathbb{C}^n given by the equations $v_1 = \cdots = v_\gamma = 0$ has dimension at most $n - 2$. We denote the origin in \mathbb{C}^n by O. Let a, b and c be non-negative rational numbers.
We define a function
\[
\Omega = \frac{\vert \psi \vert^b}{\varphi^a (\vert v_1 \vert + \cdots + \vert v_\gamma \vert)^c}.
\]

Question 2.1. When is \(\Omega^2 \) locally integrable in a neighbourhood of \(O \)?

The answer to Question 2.1 is given in Example 2.8. By putting
\[
c_0(\Omega) = \sup\{\varepsilon \in \mathbb{Q} \mid \Omega^{2\varepsilon} \text{ is locally integrable near } O \in \mathbb{C}^n\},
\]
we see that the function \(\Omega^2 \) is locally integrable in a neighbourhood of \(O \) if and only if \(c_0(\Omega) > 1 \). Note that \(c_0(\Omega) \in \mathbb{Q} \geq 0 \cup \{+\infty\} \).

Example 2.2. Let \(m_1, \ldots, m_n \) be positive integers. Then
\[
\min\left(1, \sum_{i=1}^{n} \frac{1}{m_i}\right) = c_0\left(\frac{1}{\sum_{i=1}^{n} \frac{1}{z_i}}\right) \geq c_0\left(\frac{1}{\prod_{i=1}^{n} z_i}\right)
\]
\[
= \min\left(\frac{1}{m_1}, \frac{1}{m_2}, \ldots, \frac{1}{m_n}\right).
\]

Let \(X \) be a variety with at most rational singularities. We consider a formal linear combination \(B_X = \sum_{i=1}^{r} a_i B_i + \sum_{i=1}^{l} c_i \mathcal{M}_i \), where \(a_i \) and \(c_i \) are rational numbers (not necessary positive), \(B_i \) is a prime Weil divisor on \(X \), and \(\mathcal{M}_i \) is a linear system without fixed components on \(X \). We assume that \(B_i \neq B_j \) and \(\mathcal{M}_i \neq \mathcal{M}_j \) for \(i \neq j \).

Remark 2.3. Let \(k \) be any sufficiently large positive integer. For every \(i \in \{1, \ldots, l\} \) and every \(j \in \{1, \ldots, k\} \) let \(M_i^j \) be a general element in \(\mathcal{M}_i \). Then, replacing every \(\mathcal{M}_i \) by the divisor
\[
\frac{M_i^1 + M_i^2 + \cdots + M_i^k}{k},
\]
we can always regard \(B_X \) as a \(\mathbb{Q} \)-divisor on \(X \).

Suppose that \(K_X + B_X \) is a \(\mathbb{Q} \)-Cartier divisor.

Definition 2.4. We say that \(B_X \) is the **boundary** of the log pair \((X, B_X)\). The boundary \(B_X \) is said to be **mobile** (resp. **effective**) if \(a_i = 0 \) for every \(i \in \{1, \ldots, r\} \) (resp. \(a_i \geq 0 \) for every \(i \in \{1, \ldots, r\} \) and \(c_j \geq 0 \) for every \(j \in \{1, \ldots, l\} \)).

Let \(\pi : \bar{X} \to X \) be a birational morphism such that \(\bar{X} \) is smooth. We put
\[
B_{\bar{X}} = \sum_{i=1}^{r} a_i B_i + \sum_{i=1}^{l} c_i \mathcal{M}_i,
\]
where \(B_i \) is the proper transform of a divisor \(B_i \) on \(X \), and \(\mathcal{M}_i \) is the proper transform of a linear system \(\mathcal{M}_i \) on \(\bar{X} \). Then
\[
K_{\bar{X}} + B_{\bar{X}} \equiv \pi^*(K_X + B_X) + \sum_{i=1}^{m} d_i E_i,
\]
where \(d_i \in \mathbb{Q} \), and \(E_i \) is an exceptional divisor of \(\pi \). We additionally assume that \(\sum_{i=1}^r B_i + \sum_{i=1}^m E_i \) is a divisor with simple normal crossings and \(M_i \) is base-point-free for every \(i \in \{1, \ldots, l\} \). Put \(B_X = B_X - \sum_{i=1}^m d_i E_i \) and take a rational number \(\varepsilon \) such that \(1 \geq \varepsilon \geq 0 \). Then \((X, B_X)\) is called the log pullback of \((X, B_X)\).

Definition 2.5. The log pair \((X, B_X)\) is said to be \(\varepsilon \)-log canonical (resp. \(\varepsilon \)-log terminal) if \(a_i \leq 1 - \varepsilon \) (resp. \(a_i < 1 - \varepsilon \)) for all \(i \in \{1, \ldots, r\} \) and \(d_j \geq -1 + \varepsilon \) (resp. \(d_j > -1 + \varepsilon \)) for all \(j \in \{1, \ldots, m\} \).

We say that \((X, B_X)\) has log canonical singularities (resp. log terminal singularities) if the log pair \((X, B_X)\) is 0-log canonical (resp. 0-log terminal).

Remark 2.6. Let \(P \) be a point of \(X \) and \(\Delta \) an effective divisor on \(X \) such that \(\Delta = \sum_{i=1}^r \varepsilon_i B_i \equiv B_X \), where the \(\varepsilon_i \) are non-negative rational numbers. Suppose that the boundary \(B_X \) is effective, the divisor \(\Delta \) is a \(\mathbb{Q} \)-Cartier divisor, the log pair \((X, \Delta)\) is log canonical at \(P \in X \), and the log pair \((X, B_X)\) is not log canonical at \(P \in X \). We put \(\alpha = \min \left\{ \frac{a_i}{\varepsilon_i} \mid \varepsilon_i \neq 0 \right\} \) and note that \(\alpha \) is well defined because \(\varepsilon_i \neq 0 \) for some \(i \). Then \(\alpha < 1 \) and the log pair

\[
\left(X, \sum_{i=1}^r \frac{a_i - \alpha \varepsilon_i}{1 - \alpha} B_i + \sum_{i=1}^l c_i M_i \right)
\]

is not log canonical at \(P \in X \). We also have

\[
\sum_{i=1}^r \frac{a_i - \alpha \varepsilon_i}{1 - \alpha} B_i + \sum_{i=1}^l c_i M_i \equiv B_X \equiv \Delta
\]

and at least one irreducible component of \(\text{Supp}(\Delta) \) is not contained in

\[
\text{Supp}\left(\sum_{i=1}^r \frac{a_i - \alpha \varepsilon_i}{1 - \alpha} B_i \right).
\]

Let \(D_X \) be any boundary on \(X \) such that \(K_X + B_X + D_X \) is a \(\mathbb{Q} \)-Cartier divisor. Let \(Z \) be a closed subvariety of \(X \).

Definition 2.7. The \(\varepsilon \)-log canonical threshold of \(D_X \) along \(Z \) is

\[
c_Z^\varepsilon(X, B_X, D_X) = \sup \left\{ \lambda \in \mathbb{Q} \mid \text{the pair } (X, B_X + \lambda D_X) \text{ is } \varepsilon \text{-log canonical at each point of } Z \right\}
\]

\[
\in \mathbb{Q} \cup \{\pm \infty\}.
\]

The number \(c_Z^\varepsilon(X, B_X, D_X) \) with \(\varepsilon = 0 \) plays a very important role in geometry. Therefore we put \(c_Z(X, B_X, D_X) = c_Z^0(X, B_X, D_X) \) for simplicity of notation. We similarly put \(c^\varepsilon(X, B_X, D_X) = c^\varepsilon_X(X, B_X, D_X) \) and \(c(X, B_X, D_X) = c_X(X, B_X, D_X) \). Note that \(c_Z^\varepsilon(X, B_X, D_X) = -\infty \) if, for example, the log pair
It follows from (2.17) that $c_2(X, D_X) = c_2(X, B_X, D_X)$ for simplicity of notation. For the same reason, we put $c^e(X, D_X) = c^e(X, B_X, D_X)$, $c_Z(X, D_X) = c_Z(X, B_X, D_X)$ and $c(X, D_X) = c(X, D_X)$.

Example 2.8. It follows from [5] that $c_0(\Omega) = c_O(\mathbb{C}^n, a(\psi) = b(\phi) = c_{\mathcal{B}})$, and the following conditions are equivalent.

1) The function Ω^2 is locally integrable in a neighbourhood of $O \in \mathbb{C}^n$.

2) The singularities of the log pair $(\mathbb{C}^n, a(\phi) = b(\phi) + \frac{\epsilon}{\delta}\sum_{j=1}^{k-1}(\sum_{j=1}^{k-1} \lambda_{ij} v_j = 0))$ are log terminal in a neighbourhood of $O \in \mathbb{C}^n$, where $[\lambda_{ij} : \ldots : \lambda_{ik}]$ is a general point of $\mathbb{P}^{\gamma - 1}$ and k is any sufficiently large positive integer.

3) The singularities of the log pair $(\mathbb{C}^n, a(\phi) = b(\phi) + c_{\mathcal{B}})$ are at most log terminal in a neighbourhood of $O \in \mathbb{C}^n$, where \mathcal{B} is the linear system generated by the divisors $v_1 = 0, \ldots, v_r = 0$.

We say that the log pair (X, B_X) has *canonical singularities* (resp. *terminal singularities*) if the log pair (X, B_X) is 1-log canonical (resp. 1-log terminal).

Remark 2.9. Suppose that B_X is effective and (X, B_X) is canonical. Then $a_1 = \cdots = a_r = 0$.

One can show that Definition 2.5 is independent of the choice of π. We put

$$LCS_\varepsilon(X, B_X) = \left(\bigcup_{a_i \geq 1 - \varepsilon} B_i \right) \cup \left(\bigcup_{d_i \leq -1 + \varepsilon} \pi(E_i) \right) \subsetneq X,$$

$LCS(X, B_X) = LCS_0(X, B_X)$ and $CS(X, B_X) = LCS_1(X, B_X)$. The subsets $LCS_\varepsilon(X, B_X)$, $LCS(X, B_X)$, $CS(X, B_X)$ are called the *loci* of ε-log canonical, log canonical, and canonical singularities of (X, B_X) respectively.

Definition 2.10. A proper irreducible subvariety $Y \subsetneq X$ is called a *centre* of ε-log canonical singularities of the log pair (X, B_X) if one of the following conditions holds for some choice of the birational morphism $\pi : \overline{X} \to X$.

1) The inequality $a_i \geq 1 - \varepsilon$ holds and $Y = B_i$ for some $i \in \{1, \ldots, r\}$.

2) The inequality $d_i \leq -1 + \varepsilon$ holds and $Y = \pi(E_i)$ for some $i \in \{1, \ldots, m\}$.

Let $LCS_\varepsilon(X, B_X)$ be the set of all centres of ε-log canonical singularities of (X, B_X). Then $Y \in LCS_\varepsilon(X, B_X) \iff Y \subsetneq LCS_\varepsilon(X, B_X)$ and $LCS_\varepsilon(X, B_X) = \emptyset \iff LCS_\varepsilon(X, B_X) = \emptyset \iff$ the log pair (X, B_X) is ε-log terminal.

Remark 2.11. Let \mathcal{H} be a base-point-free linear system on X, H a sufficiently general divisor in \mathcal{H}, and $Y \subset X$ an irreducible subvariety. We write $Y \cap H = \sum_{i=1}^{k} Z_i$, where the Z_i are irreducible subvarieties of H. It follows from Definition 2.10 (see Theorem 2.17) that $Y \in LCS_\varepsilon(X, B_X)$ if and only if $\{Z_1, \ldots, Z_k\} \subsetneq LCS_\varepsilon(H, B_X \mid H)$.

We put $LCS(X, B_X) = LCS_0(X, B_X)$ and $CS(X, B_X) = LCS_1(X, B_X)$. The elements of $LCS(X, B_X)$ are called centres of log canonical singularities of the log pair (X, B_X). The elements of $CS(X, B_X)$ are called centres of canonical singularities of (X, B_X).
Example 2.12. Let $\chi: \hat{X} \to X$ be the blow-up of a smooth point $P \in X$. We put $B_{\hat{X}} = \sum_{i=1}^r a_i \hat{B}_i + \sum_{i=1}^t c_i \hat{M}_i$, where \hat{B}_i is the proper transform of a divisor B_i on \hat{X} and \hat{M}_i is the proper transform of a linear system M_i on \hat{X}. Then
$$K_{\hat{X}} + B_{\hat{X}} \equiv \pi^*(K_X + B_X) + (\dim(X) - 1 - \text{mult}_P(B_X))E,$$
where E is the exceptional divisor of χ and $\text{mult}_P(B_X) \in \mathbb{Q}$. Hence the log pair (X, B_X) is ε-log canonical in a neighbourhood of the point $P \in X$ if and only if the log pair
$$(\hat{X}, B_{\hat{X}} + (\text{mult}_P(B_X) - \dim(X) + 1))E)$$
is ε-log canonical in a neighbourhood of E. In particular, if $\text{mult}_P(B_X) \geq \dim(X) - \varepsilon$, then $P \in \mathbb{L}\mathbb{C}\mathbb{S}_\varepsilon(X, B_X)$. If the boundary B_X is effective and $\text{mult}_P(B_X) < 1 - \varepsilon$, then $P \notin \mathbb{L}\mathbb{C}\mathbb{S}_\varepsilon(X, B_X)$. If the boundary B_X is effective and mobile and $\text{mult}_P(B_X) < 1$, then $P \notin \mathbb{C}\mathbb{S}(X, B_X)$. In the case when $\dim(X) = 2$ and B_X is effective, we have $P \in \mathbb{C}\mathbb{S}(X, B_X)$ if and only if $\text{mult}_P(B_X) \geq 1$.

If the boundary B_X is effective, then the locus $\mathbb{C}\mathbb{S}(X, B_X) \subset X$ can be equipped with the structure of a subscheme (see [6]) in a natural way. Indeed, if B_X is effective, we can put
$$\mathcal{I}(X, B_X) = \pi_* \left(\sum_{i=1}^m [d_i] E_i - \sum_{i=1}^r [a_i] B_i \right).$$
We write $\mathcal{L}(X, B_X)$ for the subscheme that corresponds to the ideal sheaf $\mathcal{I}(X, B_X)$.

Definition 2.13. If the boundary B_X is effective, then we say that $\mathcal{L}(X, B_X)$ is the subscheme of log canonical singularities of the log pair (X, B_X), and $\mathcal{I}(X, B_X)$ is the multiplier ideal sheaf of the log pair (X, B_X).

If the boundary B_X is effective, then it follows from the construction of $\mathcal{L}(X, B_X)$ that $\text{Supp}(\mathcal{L}(X, B_X)) = \mathbb{C}\mathbb{S}(X, B_X) \subset X$.

Theorem 2.14 ([7], Theorem 9.4.8). Let H be a nef and big \mathbb{Q}-divisor on X such that $K_X + B_X + H \equiv D$ for some Cartier divisor D on X. Suppose that B_X is effective. Then $H^i(\mathcal{I}(X, B_X) \otimes D) = 0$ for every $i \geq 1$.

Corollary 2.15. Suppose that B_X is effective and $-(K_X + B_X)$ is nef and big. Then the locus $\mathbb{C}\mathbb{S}(X, B_X)$ is connected.

Corollary 2.15 is a special case of the following result.

Theorem 2.16 ([6], Lemma 5.7). Let $\psi: X \to Z$ be a surjective morphism with connected fibres. Suppose that the boundary B_X is effective and the divisor $-(K_X + B_X)$ is ψ-nef and ψ-big. Then the locus $\mathbb{C}\mathbb{S}(\overline{X, B_X})$ is connected in a neighbourhood of every fibre of the morphism $\psi \circ \pi: \overline{X} \to Z$.

Applying Theorem 2.16, one can easily prove the following result.

Theorem 2.17 ([5], Theorem 7.5). Suppose that the divisor K_X is \mathbb{Q}-Cartier, the boundary B_X is effective, $a_1 = 1$, and B_1 is a Cartier divisor with at most log terminal singularities. Then the log pair (X, B_X) is canonical in a neighbourhood of B_1 if and only if the singularities of the log pair $(B_1, \sum_{i=2}^r a_i B_i|_{B_1})$ are log canonical.
Note that Theorem 1.1 is a simple corollary of Theorem 2.17.

Definition 2.18. We say that the log pair \((X, B_X)\) has purely log terminal singularities if \(a_i \leq 1\) for every \(i \in \{1, \ldots, r\}\) and \(d_j > -1\) for every \(j \in \{1, \ldots, m\}\).

Theorem 2.19 ([5], Theorem 7.5). Suppose that \(B_X\) is effective, \(a_1 = 1\), and \(B_1\) is a Cartier divisor. Then \((X, B_X)\) has purely log terminal singularities in a neighbourhood of \(B_1\) if and only if \(B_1\) has rational singularities and the log pair \((B_1, \sum_{i=2}^{r} a_i B_i|_{B_1})\) is log terminal.

Suppose in addition that the boundary \(B_X\) is effective and movable. Thus we have \(B_X = \sum_{i=1}^{l} c_i M_i\), where the \(c_i\) are non-negative rational numbers and the \(M_i\) are linear systems without fixed components on \(X\).

Definition 2.20. We say that a log pair \((Y, B_Y)\) is birationally equivalent to \((X, B_X)\) if the boundary \(B_Y\) is effective and mobile and there is a birational map \(\xi: X \dasharrow Y\) such that \(B_Y = \sum_{i=1}^{l} c_i \xi(M_i)\), where \(\xi(M_i)\) is the proper transform of the linear system \(M_i\) on \(Y\).

Thus the log pairs \((\bar{X}, B_{\bar{X}})\) and \((X, B_X)\) are birationally equivalent.

Definition 2.21. Let \(D\) be a \(\mathbb{Q}\)-Weil divisor on \(X\). We say that \(D\) is \(\mathbb{Q}\)-effective if there is a positive integer \(n\) such that the linear system \(|nmD|\) is non-empty, where \(m\) is a positive integer such that \(mD\) is an integral Weil divisor.

Definition 2.22. The Kodaira dimension of the log pair \((X, B_X)\) is the number

\[
\kappa(X, B_X) = \begin{cases}
\sup_{n \in \mathbb{N}}(\dim(\varphi|_{nm(K_X+B_X)}(X))) & \text{if } K_X + B_X \text{ is } \mathbb{Q}\text{-effective}, \\
-\infty & \text{if } K_X + B_X \text{ is not } \mathbb{Q}\text{-effective},
\end{cases}
\]

where \(m \in \mathbb{N}\) is such that \(m(K_X + B_X)\) is a Cartier divisor.

One can show that the Kodaira dimension \(\kappa(X, B_X)\) is independent of the choice of \(\pi\) (see [8], Lemma 1.3.6).

Lemma 2.23 ([8], Lemma 1.3.6). Let \((Y, B_Y)\) be a log pair that is birationally equivalent to \((X, B_X)\). Then \(\kappa(X, B_X) = \kappa(Y, B_Y)\).

If the singularities of the log pair \((X, B_X)\) are canonical, then it follows from [8], Lemma 1.3.6, that

\[
\kappa(X, B_X) = \begin{cases}
\sup_{n \in \mathbb{N}}(\dim(\varphi|_{nm(K_X+B_X)}(X))) & \text{if } K_X + B_X \text{ is } \mathbb{Q}\text{-effective}, \\
-\infty & \text{if } K_X + B_X \text{ is not } \mathbb{Q}\text{-effective},
\end{cases}
\]

where \(m \in \mathbb{N}\) is such that \(m(K_X + B_X)\) is a Cartier divisor.

Corollary 2.24. If \((X, B_X)\) has at most canonical singularities and \(K_X + B_X\) is \(\mathbb{Q}\)-effective, then \(\kappa(X, B_X) \geq 0\).
It follows from Definition 2.22 that
\[
\kappa \left(X, \sum_{i=1}^{l} c_i' \mathcal{M}_i \right) \geq \kappa(X, B_X) = \kappa \left(X, \sum_{i=1}^{l} c_i \mathcal{M}_i \right)
\]
in the case when \(c_i' \geq c_i \) for every \(i \in \{1, \ldots, l\} \).

Definition 2.25. The log pair \((X, B_X) \) is called a **canonical model** if the divisor \(K_X + B_X \) is ample and the log pair \((X, B_X) \) has canonical singularities.

It follows from Definition 2.22 that \(\kappa(X, B_X) = \dim(X) \) if \((X, B_X) \) is a canonical model.

Definition 2.26. A log pair \((Y, B_Y) \) is a **canonical model of the log pair** \((X, B_X) \) if the log pair \((Y, B_Y) \) is a canonical model and the log pairs \((Y, B_Y) \) and \((X, B_X) \) are birationally equivalent.

Note that the log pair \((X, B_X) \) has no canonical model if \(\kappa(X, B_X) < \dim(X) \).

Theorem 2.27 ([8], Theorem 1.3.20). A canonical model is unique whenever it exists.

It follows from [9] that \((X, B_X) \) has a canonical model if and only if \(\kappa(X, B_X) = \dim(X) \).

§ 3. The first inequality

The purpose of this section is to prove Theorem 1.4.

Let \(X \) be a surface, \(O \) a smooth point of \(X \), and \(\Delta_1 \) and \(\Delta_2 \) curves on \(X \) such that \(O \in \Delta_1 \cap \Delta_2 \), both \(\Delta_1 \) and \(\Delta_2 \) are irreducible and reduced, both \(\Delta_1 \) and \(\Delta_2 \) are smooth at \(O \), and \(\Delta_1 \) intersects \(\Delta_2 \) transversally at \(O \). Let \(D \) be an effective \(\mathbb{Q} \)-divisor on \(X \) whose support contains neither \(\Delta_1 \) nor \(\Delta_2 \), and let \(a_1, a_2 \) be non-negative rational numbers. Suppose that the log pair \((X, D + a_1 \Delta_1 + a_2 \Delta_2) \) is not log canonical at \(O \). Let \(A, B, M, N, \alpha, \beta \) be non-negative rational numbers with the following properties.

(i) \(\alpha a_1 + \beta a_2 \leq 1 \).

(ii) \(A(B - 1) \geq 1 \geq \max(M, N) \).

(iii) \(\alpha(A + M - 1) \geq A^2(B + D - 1)\beta \) and \(\alpha(1 - M) + A\beta \geq A \).

(iv) Either \(2M + AN \leq 2 \), or

\[
\alpha(B + 1 - MB - N) + \beta(A + 1 - AN - M) \geq AB - 1.
\]

Lemma 3.1. We have \(A + M \geq 1, \ B > 1, \) and

\[
\alpha(B + 1 - MB - N) + \beta(A + 1 - AN - M) \geq AB - 1,
\]

\[
\beta(1 - N) + B\alpha \geq B, \quad \frac{\alpha(2 - M)}{A + 1} + \frac{\beta(2 - N)}{B + 1} \geq 1, \quad \alpha(2 - M)B + \beta(1 - N)(A + 1) \geq B(A + 1).
\]
Proof. The inequality $B > 1$ follows from the inequality $A(B - 1) \geq 1$. Then

$$\frac{\alpha}{A+1} + \frac{\beta}{B+1} \geq \frac{\alpha}{A+1} + \frac{\beta}{2B} \geq \frac{1}{2}$$

because $2B \geq B + 1$. We similarly see that $A + M \geq 1$ because

$$\frac{\alpha(A + M - 1)}{A^2(B + D - 1)} \geq \beta \geq 0$$

and $B + D - 1 \geq 0$. The inequality $\beta(1 - N) + B\alpha \geq B$ follows from the inequalities

$$\alpha + \frac{\beta(1 - N)}{B} \geq \frac{2 - M}{A+1} \alpha + \frac{\beta(1 - N)}{B} \geq 1$$

because $A + 1 \geq 2 - M$.

We now show that $\alpha(2 - M)B + \beta(1 - N)(A + 1) \geq B(A + 1)$ using the inequality $A(B - 1) \geq 1$. Let L_1 be the line in \mathbb{R}^2 given by the equation

$$x(2 - M)B + y(1 - N)(A + 1) - B(A + 1) = 0,$$

and let L_2 be the line given by the equation $x(1 - M) + Ay - A = 0$, where (x, y) are coordinates in \mathbb{R}^2. Then L_1 intersects the line $y = 0$ at the point $(\frac{A+1}{2-M}, 0)$, and L_2 intersects the line $y = 0$ at the point $(\frac{A}{1-M}, 0)$. On the other hand, we have

$$\frac{A + 1}{2 - M} < \frac{A}{1 - M},$$

whence we see that $\alpha(2 - M)B + \beta(1 - N)(A + 1) \geq B(A + 1)$ if

$$A^2 \beta_0(B + N - 1) \geq \alpha_0(A + M - 1),$$

where (α_0, β_0) is the point of intersection of L_1 and L_2. Moreover,

$$(\alpha_0, \beta_0) = \left(\frac{A(A + 1)(B + N - 1)}{\Delta}, \frac{B(A - 1 + M)}{\Delta} \right),$$

where $\Delta = 2AB - ABM - A + AM - 1 + M + NA - NAM + N - NM$. We have

$$A^2(B(A - 1 + M))(B + N - 1) \geq (A(A + 1)(B + N - 1))(A + M - 1)$$

because $A(B - 1) \geq 1$. It follows that $A^2 \beta_0(B + N - 1) \geq \alpha_0(A + M - 1)$.

To complete the proof of the lemma, we must show that $\alpha(B + 1 - MB - N) + \beta(A + 1 - AN - M) \geq AB - 1$.

Let L'_1 be the line in \mathbb{R}^2 given by the equation

$$x(B + 1 - MB - N) + y(A + 1 - AN - M) - AB + 1 = 0,$$

and let L_2 be the line given by the equation $x(1 - M) + Ay - A = 0$, where (x, y) are the coordinates in \mathbb{R}^2. Then L'_1 intersects the line $y = 0$ at the point...
\[(\frac{AB-1}{B+1-MB-N}, 0),\] and \(L_2\) intersects the line \(y = 0\) at the point \((\frac{A}{1-M}, 0)\). On the other hand, we have
\[
\frac{AB - 1}{B + 1 - MB - N} < \frac{A}{1 - M},
\]
whence \(\alpha(B + 1 - MB - N) + \beta(A + 1 - AN - M) \geq AB - 1\) provided that \(A^2\beta_2(B + N - 1) \geq \alpha_1(A + M - 1)\), where \((\alpha_1, \beta_1)\) is the point of intersection of \(L_1\) and \(L_2\). Note that
\[
(\alpha_1, \beta_1) = \left(\frac{A(AB - A - 2 + NA + M)}{\Delta'}, \frac{A + 1 - NA - M}{\Delta'}\right),
\]
where \(\Delta' = AB - 1 - ABM + AM + 2M - NAM - M^2\). Thus, to complete the proof, we must show that
\[
A^2(A + 1 - NA - M)(B + N - 1) \geq (A(AB - A - 2 + NA + M))(A + M - 1).
\]
This inequality is equivalent to the inequality
\[
(2 - M)(A + M - 1) \geq A(AN + 2M - 2)(B + N - 1),
\]
which indeed holds because \(M \leq 1\) and \(AN + 2M - 2 \leq 0\). □

Suppose that \(\text{mult}_O(D \cdot \Delta_1) \leq M + Aa_1 - a_2\) and \(\text{mult}_O(D \cdot \Delta_2) \leq N + B a_2 - a_1\). We shall see that this assumption leads to a contradiction. This will prove Theorem 1.4.

Lemma 3.2. We have \(a_1 > \frac{1 - M}{A}\) and \(a_2 > \frac{1 - N}{B}\).

Proof. If \(a_1 > 1\), then \(a_1 > \frac{1 - M}{A}\) by Lemma 3.1. Suppose that \(a_1 \leq 1\). Then the log pair \((X, D + \Delta_1 + a_2 \Delta_2)\) is not log canonical at \(O\). Thus it follows from Theorem 1.1 that \(M + Aa_1 - a_2 \geq \text{mult}_O(D \cdot \Delta_1) > 1 - a_2\), whence \(a_1 > \frac{1 - M}{A}\). We similarly have \(a_2 > \frac{1 - N}{B}\). □

Lemma 3.3. We have \(a_1 < 1\) and \(a_2 < 1\).

Proof. By Lemma 3.2, \(a_1 > \frac{1 - M}{A}\) and \(a_2 > \frac{1 - N}{B}\). On the other hand, \(\alpha a_1 + \beta a_2 \leq 1\), whence \(a_1 \alpha < 1 - \beta \frac{1 - N}{B}\) and \(a_2 \beta < 1 - \alpha \frac{1 - M}{A}\). Therefore \(a_1 < 1\) and \(a_2 < 1\) because \(\beta(1 - N) + B \alpha \geq B\) by Lemma 3.1 and \(\alpha(1 - M) + A \beta \geq A\) by assumption. □

Put \(m_0 = \text{mult}_O(D)\). Then \(m_0\) is a positive rational number.

Lemma 3.4. We have \(m_0 \leq M + Aa_1 - a_2\) and \(m_0 \leq N + B a_2 - a_1\).

Proof. This follows from the inequalities \(m_0 \leq \text{mult}_O(D \cdot \Delta_1)\) and \(m_0 \leq \text{mult}_O(D \cdot \Delta_2)\). □

Lemma 3.5. We have \(m_0 + a_1 + a_2 \leq 2\).

Proof. It is known that \(m_0 + a_1 + a_2 \leq M + (A + 1)a_1\) and \(m_0 + a_1 + a_2 \leq N + (B + 1)a_2\). Then
\[
(m_0 + a_1 + a_2)\left(\frac{\alpha}{A + 1} + \frac{\beta}{B + 1}\right) \leq \alpha a_1 + \beta a_2 + \frac{\alpha M}{A + 1} + \frac{\beta N}{B + 1} \leq 1 + \frac{\alpha M}{A + 1} + \frac{\beta N}{B + 1}.
\]
It follows that \(m_0 + a_1 + a_2 \leq 2\) because \(\frac{\alpha(2 - M)}{A + 1} + \frac{\beta(2 - N)}{B + 1} \geq 1\) by Lemma 3.1. □
Let $\pi_1 : X_1 \to X$ be the blow-up of O, and let F_1 be the exceptional curve for π_1. Then

$$K_{X_1} + D^1 + a_1\Delta_1^1 + a_2\Delta_2^1 + (m_0 + a_1 + a_2 - 1)F_1 \equiv \pi_1^*(K_X + D + a_1\Delta_1 + a_2\Delta_2),$$

where $D^1, \Delta_1^1, \Delta_2^1$ are the proper transforms on X_1 of D, Δ_1, Δ_2 respectively. In this case the log pair $(X_1, D^1 + a_1\Delta_1^1 + a_2\Delta_2^1 + (m_0 + a_1 + a_2 - 1)F_1)$ is not log canonical at some point $O_1 \in F_1$. Note that $m_0 + a_1 + a_2 - 1 \geq 0$.

Lemma 3.6. Either $O_1 = F_1 \cap \Delta_1^1$ or $O_1 = F_1 \cap \Delta_2^1$.

Proof. Suppose that $O_1 \notin \Delta_1^1 \cup \Delta_2^1$. Then the log pair $(X_1, D^1 + (m_0 + a_1 + a_2 - 1)F_1)$ is not log canonical at O_1. On the other hand, $m_0 = D^1 : F_1 > 1$ by Theorem 1.1 because $m_0 + a_1 + a_2 \leq 2$ by Lemma 3.5. Then

$$m_0\left(\frac{\beta + Ba}{AB - 1} + \frac{\alpha + A\beta}{AB - 1}\right) \leq (M + Aa_1 - a_2)\frac{\beta + Ba}{AB - 1} + (N + Ba_2 - a_1)\frac{\alpha + A\beta}{AB - 1}$$

because $m_0 \leq M + Aa_1 - a_2$ and $m_0 \leq N + Ba_2 - a_1$. Moreover, we have

$$(M + Aa_1 - a_2)\frac{\beta + Ba}{AB - 1} + (N + Ba_2 - a_1)\frac{\alpha + A\beta}{AB - 1} \leq 1 + \frac{M\beta + MBa + Na\alpha + N\alpha}{AB - 1}$$

because $\alpha a_1 + \beta a_2 \leq 1$ and $AB - 1 > 0$. But we have already proved that $m_0 > 1$. Thus we see that $\beta + Ba + \alpha + A\beta \leq AB - 1 + M\beta + MBa + Na\alpha + N\alpha$. But this contradicts Lemma 3.1. \square

Lemma 3.7. We have $O_1 \neq F_1 \cap \Delta_1^1$.

Proof. Suppose that $O_1 = F_1 \cap \Delta_1^1$. Then the log pair $(X_1, D^1 + a_1\Delta_1^1 + (m_0 + a_1 + a_2 - 1)F_1)$ is not log canonical at O_1. Therefore,

$$M + Aa_1 - a_2 - m_0 = D^1 \cdot \Delta_1^1 > 1 - (m_0 + a_1 + a_2 - 1)$$

by Theorem 1.1 because $a_1 < 1$ by Lemma 3.3. We have $a_1 > \frac{2 - M}{A + 1}$. Then

$$\frac{2 - M\alpha}{A + 1} + \frac{\beta(1 - N)}{B} < \alpha a_1 + \beta a_2 \leq 1$$

because $a_2 > \frac{1 - N}{B}$ by Lemma 3.3. Hence we see that $\frac{2 - M\alpha}{A + 1} + \frac{\beta(1 - N)}{B} < 1$. But this contradicts Lemma 3.1. \square

Thus we see that $O_1 = F_1 \cap \Delta_1^2$. Then $(X_1, D^1 + a_1\Delta_1^1 + a_2\Delta_2^1 + (m_0 + a_1 + a_2 - 1)F_1)$ is not log canonical at O_1. It is also known that $1 \geq m_0 + a_1 + a_2 - 1 \geq 0$.

We already have the blow-up $\pi_1 : X_1 \to X$. For every positive integer n we consider a sequence of blow-ups

$$X_n \xrightarrow{\pi_n} X_{n-1} \xrightarrow{\pi_{n-1}} \cdots \xrightarrow{\pi_2} X_2 \xrightarrow{\pi_1} X_1 \xrightarrow{\pi_1} X$$

such that π_{i+1} is the blow-up of the point $F_i \cap \Delta_2^i$ for every $i \in \{1, \ldots, n-1\}$, where F_i is the exceptional curve for π_i, and Δ_2^i is the proper transform of Δ_2 on X_i. Two local inequalities 385
For every $k \in \{1, \ldots, n\}$ and every $i \in \{1, \ldots, k\}$ we put $O_k = F_k \cap \Delta_k^2$ and denote the proper transforms of D, Δ_1 and F_i on X_k by D^k, Δ_i^k and F_i^k respectively. Then

$$K_{X_n} + D^n + a_1 \Delta_1^n + a_2 \Delta_2^n + \sum_{i=1}^{n} (a_1 + ia_2 - i + \sum_{j=0}^{i-1} m_j) F_i^n$$

$$\equiv \pi^*(K_X + D + a_1 \Delta_1 + a_2 \Delta_2),$$

where $\pi = \pi_n \circ \cdots \circ \pi_2 \circ \pi_1$ and $m_i = \text{mult}_{O_i}(D^i)$ for all $i \in \{1, \ldots, n\}$. Hence the log pair

$$\left(X_n, D^n + a_1 \Delta_1^n + a_2 \Delta_2^n + \sum_{i=1}^{n} (a_1 + ia_2 - i + \sum_{j=0}^{i-1} m_j) F_i^n\right) \quad (3.1)$$

is not log canonical at some point of the set $F_1^n \cup F_2^n \cup \cdots \cup F_n^n$.

Lemma 3.8. For every $i \in \{1, \ldots, n\}$ we have $1 \geq a_1 + ia_2 - i + \sum_{j=0}^{i-1} m_j \geq 0$ and the log pair (3.1) is log canonical at every point of the set $(F_1^n \cup F_2^n \cup \cdots \cup F_n^n) \setminus O_n$.

We now see that Lemma 3.8 contradicts itself. Indeed, it follows from Lemma 3.8 that there is a positive integer n such that $a_1 + na_2 - n + \sum_{j=0}^{n-1} m_j > 1$. But this contradicts Lemma 3.8. Therefore, to complete the proof of Theorem 1.4, it suffices to prove Lemma 3.8. This will be done by induction on $n \in \mathbb{N}$. Note that the case $n = 1$ is already proved.

By induction, we may assume that $n \geq 2$ and, for every $k \in \{1, \ldots, n-1\}$, we have $1 \geq a_1 + ka_2 - k + \sum_{j=0}^{k-1} m_j \geq 0$ and the log pair $(X_k, D^k + a_1 \Delta_1^k + a_2 \Delta_2^k + \sum_{i=1}^{k} (a_1 + ia_2 - i + \sum_{j=0}^{i-1} m_j) F_i^k)$ is log canonical at every point of the set $(F_1^k \cup F_2^k \cup \cdots \cup F_k^k) \setminus O_k$. Hence the singularities of this log pair are not log canonical at O_k.

Lemma 3.9. We have $a_2 > \frac{n-N}{B+n-1}$.

Proof. The singularities of the log pair $(X_{n-1}, D^{n-1} + a_2 \Delta_2^{n-1} + (a_1 + (n-1)a_2 - (n-1) + \sum_{j=0}^{n-2} m_j) F_{n-1}^{n-1})$ are not log canonical at O_{n-1}. Then

$$N - Ba_2 - a_1 - \sum_{j=0}^{n-2} m_j = D^{n-1} \cdot \Delta_2^{n-1} > 1 - \left(a_1 + (n-1)a_2 - (n-1) + \sum_{j=0}^{n-2} m_j\right)$$

by Theorem 1.1 because $a_2 < 1$ by Lemma 3.3. We have $a_2 > \frac{n-N}{B+n-1}$, as required. \square

Lemma 3.10. We have $1 \geq a_1 + na_2 - n + \sum_{j=0}^{n-1} m_j \geq 0$.

Proof. The inequality $a_1 + na_2 - n + \sum_{j=0}^{n-1} m_j \geq 0$ follows from the fact that the log pair $(X_{n-1}, D^{n-1} + a_2 \Delta_2^{n-1} + (a_1 + (n-1)a_2 - (n-1) + \sum_{j=0}^{n-2} m_j) F_{n-1}^{n-1})$ is not log canonical at O_{n-1}. Suppose that $a_1 + na_2 - n + \sum_{j=0}^{n-1} m_j > 1$. Then $m_0 + a_2 \leq M + Aa_1$ by Lemma 3.4. Thus we see that

$$a_1 + nM + nAa_1 - n \geq a_1 + na_2 - n + nm_0 \geq a_1 + na_2 - n + \sum_{j=0}^{n-1} m_j > 1,$$
whence we immediately get $a_1 > \frac{n+1-Mn}{nA+1}$. On the other hand, we know that
\[a_2 > \frac{n-N}{B+n-1} \]
by Lemma 3.9. Therefore,

\[
\left(\frac{\alpha - M}{A} + \beta \right) + \alpha \frac{A - 1 + M}{A(An + 1)} + \beta \frac{1 - B - N}{B + n - 1} = \alpha \frac{n + 1 - Mn}{nA + 1} + \beta \frac{n - N}{B + n - 1} < a_1a_1 + \beta a_2 \leq 1,
\]

where $\frac{\alpha(1-M)}{A} + \beta \geq 1$. Hence we get $\alpha \frac{A + M - 1}{A(n + 1)} < \beta \frac{B + n - 1}{B + n - 1}$, where $n \geq 2$. On the other hand, it follows from Lemmas 3.2, 3.3 that $A + M > 1$ and $B > 1$. Thus we see that $\frac{A^{(An + 1)}}{\alpha(A + M - 1)} > \frac{B + n - 1}{\beta(B + N - 1)}$, but $A^2(B + N - 1)\beta \leq \alpha(A + M - 1)$ by assumption. Then

\[
\frac{A}{\alpha(A + M - 1)} - \frac{B - 1}{\beta(B + N - 1)} \geq \left(\frac{A^2}{\alpha(A + M - 1)} - \frac{1}{\beta(B + M - 1)} \right) n + \frac{A}{\alpha(A + M - 1)} - \frac{B - 1}{\beta(B + N - 1)} > 0,
\]

whence $\beta A(B + N - 1) > \alpha(A - 1)(A + M - 1)$. We have

\[
\frac{\alpha(A + M - 1)}{A} \geq \beta A(B + N - 1) > \alpha(B - 1)(A + M - 1)
\]

because $A^2(B + N - 1)\beta \leq \alpha(A + M - 1)$ by assumption. Then $\alpha \neq 0$ and $A(B - 1) < 1$, which is a contradiction since $A(B - 1) \geq 1$ by assumption. \(\square\)

Lemma 3.11. The singularities of the log pair (3.1) are log canonical at every point of the set $F_n \setminus ((F_n \cap F^n_{n-1}) \cup (F_n \cap \Delta^n_2))$.

Proof. Suppose that there is a point $Q \in F_n$ such that $F_n \cap F^n_{n-1} \neq Q \neq F_n \cap \Delta^n_2$ and the pair (3.1) is not log canonical at Q. Then the log pair $(X_n, D^n + (a_1 + na_2 - n + \sum_{j=0}^{n-1} m_j) F_n)$ is not canonical at Q. We have $m_0 > m_{n-1} = D^n \cdot F_n > 1$ by Theorem 1.1 because $a_1 + na_2 - n + \sum_{j=0}^{n-1} m_j \leq 1$ by Lemma 3.10. Then

\[
m_0 \left(\frac{\beta + B\alpha}{AB - 1} + \frac{\alpha + A\beta}{AB - 1} \right) \leq (M + Aa_1 - a_2) \frac{\beta + B\alpha}{AB - 1} + (N + Ba_2 - a_1) \frac{\alpha + A\beta}{AB - 1}
\]

because $m_0 \leq M + Aa_1 - a_2$ and $m_0 \leq N + Ba_2 - a_1$ by Lemma 3.4. We have

\[
(M + Aa_1 - a_2) \frac{\beta + B\alpha}{AB - 1} + (N + Ba_2 - a_1) \frac{\alpha + A\beta}{AB - 1} \leq 1 + \frac{M\beta + MB\alpha + N\alpha + AN\beta}{AB - 1}
\]

because $\alpha a_1 + \beta a_2 \leq 1$ and $AB - 1 > 0$. On the other hand, $m_0 > 1$. Thus we see that $\beta + B\alpha + \alpha + A\beta \leq AB - 1 + M\beta + MB\alpha + N\alpha + AN\beta$. This contradicts our initial assumption. \(\square\)
Lemma 3.12. The log pair (3.1) is log canonical at the point $F_n \cap F_{n-1}$.

Proof. Suppose that (3.1) is not log canonical at $F_n \cap F_{n-1}$. Then the log pair

$$\left(X_n, D^n + \left(a_1 + (n-1)a_2 - (n-1) + \sum_{j=0}^{n-2} m_j\right)F_{n-1} + \left(a_1 + na_2 - n + \sum_{j=0}^{n-1} m_j\right)F_n\right)$$

is not log canonical at the point $F_n \cap F_{n-1}$. Therefore,

$$m_{n-2} - m_{n-1} = D^n \cdot F_{n-2} > 1 - \left(a_1 + na_2 - n + \sum_{j=0}^{n-1} m_j\right)$$

by Theorem 1.1 because $a_1 + (n-1)a_2 - (n-1) + \sum_{j=0}^{n-2} m_j$. Note that

$$M + Aa_1 - a_2 - m_0 \geq \text{mult}_O(D \cdot \Delta_1) - m_0 \geq D \cdot \Delta_1 - m_0 = D_1 \cdot \Delta_1 \geq 0,$$

whence $m_0 + a_2 \leq Aa_1 + M$. Then

$$nM + nAa_1 - na_2 \geq nm_0 \geq (n+1)m_0 - m_{n-1}$$

$$\geq m_{n-2} - m_{n-1} + \sum_{j=0}^{n-1} m_j > n + 1 - a_1 - na_2.$$

It follows that $a_1 > \frac{n+1-nM}{Aa_1+1}$. Arguing as in the proof of Lemma 3.10, we arrive at a contradiction. □

This proves Lemma 3.8 and thus completes the proof of Theorem 1.4.

§ 4. The second inequality

The goal of this section is to prove Theorem 1.6.

Let X be a surface, O a smooth point of X, \mathcal{M} a linear system without fixed components on X, and Δ_1 an irreducible reduced curve on X such that $O \in \Delta_1 \setminus \text{Sign}(\Delta_1)$. Let ε and a_1 be rational numbers such that $\varepsilon > 0$ and $a_1 \leq 0$. Suppose that the log pair $(X, \varepsilon \mathcal{M} + a_1 \Delta_1)$ is not terminal at O. Then there is a birational morphism $\pi: \overline{X} \to X$ (a composite of blow-ups of smooth points) that contracts m irreducible curves E_1, E_2, \ldots, E_m to the point O and induces an isomorphism $\overline{X} \setminus \bigcup_{i=1}^{m} E_i \cong X \setminus O$. For some rational numbers d_1, d_2, \ldots, d_m we have

$$K_{\overline{X}} + \varepsilon \overline{\mathcal{M}} + a_1 \overline{\Delta_1} \equiv \pi^*(K_X + \varepsilon \mathcal{M} + a_1 \Delta_1) + \sum_{i=1}^{m} d_i E_i,$$

where $\overline{\mathcal{M}}$ and $\overline{\Delta_1}$ are the proper transforms on \overline{X} of \mathcal{M} and Δ_1 respectively, $d_m \leq 0$, and either $m = 1$, or we have $m \geq 2$ and $d_i > 0$ for every $i \in \{1, \ldots, m-1\}$.

Lemma 4.1. Suppose that $a_1 \geq 0$. Then $m = 1$.

Proof. This is well known and easy to prove. □
Let $\chi: \hat{X} \to X$ be the blow-up of O and E the exceptional curve of χ. Then
\[
K_{\hat{X}} + \varepsilon\hat{M} + a_1\hat{\Delta}_1 + (\varepsilon \text{mult}_O(M) + a_1 - 1)E \equiv \pi^*(K_X + \varepsilon M + a_1\Delta_1),
\]
where \hat{M} and $\hat{\Delta}_1$ are the proper transforms on \hat{X} of M and Δ_1 respectively.

Lemma 4.2. Suppose that $m = 1$. Then the inequality (1.2) holds. Moreover, if (1.2) is an equality, then either $-a_1 \in \mathbb{N}$ and $\text{mult}_O(M) = \frac{2}{\varepsilon}$, or $a_1 = 0$ and $\text{mult}_O(M) = \frac{1}{\varepsilon}$.

Proof. Note that $\pi = \chi$ and $d_1 = 1 - \varepsilon \text{mult}_O(M) - a_1 \leq 0$. Hence we have
\[
\text{mult}_O(M_1 \cdot M_1) \geq \text{mult}_O^2(M) \geq \frac{(1 - a_1)^2}{\varepsilon^2} \geq \max\left(\frac{1 - 2a_1}{\varepsilon^2}, \frac{-4a_1}{\varepsilon^2}\right),
\]
which yields (1.2). Moreover, if (1.2) is an equality, then either $a_1 = -1$ and $\text{mult}_O(M) = \frac{2}{\varepsilon}$, or $a_1 = 0$ and $\text{mult}_O(M) = \frac{1}{\varepsilon}$. □

Proof of Theorem 1.6. The proof is by induction on m. We may assume that $m \geq 2$. Then $a_1 < 0$ and the log pair $(\hat{X}, a_1\hat{\Delta}_1 + \varepsilon\hat{M} + (\varepsilon \text{mult}_O(M) + a_1 - 1)E)$ is not terminal at some point $Q \in E$. Note that $d_1 = 1 - \varepsilon \text{mult}_O(M) - a_1$.

Let \hat{M}_1 and \hat{M}_2 be the proper transforms on \hat{X} of the curves M_1 and M_2 respectively. Then
\[
\text{mult}_O(M_1 \cdot M_2) \geq \text{mult}_O^2(M) + \text{mult}_Q(\hat{M}_1 \cdot \hat{M}_2),
\]
where $\text{mult}_O(M) \geq \frac{1}{\varepsilon}$. On the other hand, we have $d_1 = 1 - \varepsilon \text{mult}_O(M) - a_1 \leq 0$ and the log pair $(\hat{X}, \varepsilon\hat{M} + (\varepsilon \text{mult}_O(M) + a_1 - 1)E)$ is not terminal at Q. By induction we have
\[
\text{mult}_Q(\hat{M}_1 \cdot \hat{M}_2) \geq \begin{cases}
\frac{3 - 2\varepsilon \text{mult}_O(M) - 2a_1}{\varepsilon^2} & \text{if } \varepsilon \text{mult}_O(M) + a_1 \geq \frac{1}{2}, \\
\frac{4 - 4\varepsilon \text{mult}_O(M) - 4a_1}{\varepsilon^2} & \text{if } \varepsilon \text{mult}_O(M) + a_1 \leq \frac{1}{2}.
\end{cases}
\]

If (4.1) is an equality, then either $-a_1 - \varepsilon \text{mult}_O(M) + 1 \in \mathbb{N}$ and $\text{mult}_Q(\hat{M}_2) = \frac{2}{\varepsilon}$, or $\varepsilon \text{mult}_O(M) + a_1 = 1$ and $\text{mult}_Q(\hat{M}_1) = \text{mult}_Q(\hat{M}_2) = \frac{1}{\varepsilon}$.

Lemma 4.3. Suppose that $\varepsilon \text{mult}_O(M) + a_1 \leq \frac{1}{2}$. Then (1.2) holds. Moreover, if (1.2) is an equality, then either $-a_1 \in \mathbb{N}$ and $\text{mult}_O(M) = \frac{2}{\varepsilon}$, or $a_1 = 0$ and $\text{mult}_O(M) = \frac{1}{\varepsilon}$.

Proof. Since $a_1 \leq \frac{1}{2} - \varepsilon \text{mult}_O(M) \leq -\frac{1}{2}$ and
\[
\text{mult}_O(M_1 \cdot M_2) \geq \text{mult}_O^2(M) + \frac{4 - 4\varepsilon \text{mult}_O(M) - 4a_1}{\varepsilon^2}
\]
\[
= \frac{-4a_1}{\varepsilon^2} + \left(\text{mult}_O(M) - \frac{2}{\varepsilon}\right)^2 \geq \frac{-4a_1}{\varepsilon^2},
\]
we get (1.2). Moreover, if (1.2) is an equality, then $\text{mult}_O(M) = \frac{2}{\varepsilon}$, whence (4.1) is also an equality. By induction we see that $-a_1 - 1 = -a_1 - \varepsilon \text{mult}_O(M) + 1 \in \mathbb{N}$, whence $-a_1 \in \mathbb{N}$. □
Thus, to complete the proof of the theorem, we may assume that $\varepsilon \operatorname{mult}_O(M) + a_1 \geq \frac{1}{2}$.

Lemma 4.4. Suppose that $a_1 \geq -\frac{1}{2}$. Then the inequality (1.2) holds and is not an equality.

Proof. It follows from the inequalities $\varepsilon \operatorname{mult}_O(M) + a_1 \geq \frac{1}{2}$ and $a_1 \geq -\frac{1}{2}$ that

$$\operatorname{mult}_O(M_1 \cdot M_1) \geq \operatorname{mult}_P^2(M) + \frac{3 - 2\varepsilon \operatorname{mult}_O(M) - 2a_1}{\varepsilon^2} \geq \frac{2 - 2a_1}{\varepsilon^2}.$$

\square

Thus, to complete the proof of the theorem, we may assume that $a_1 \leq -\frac{1}{2}$. Then it follows from the inequality $\operatorname{mult}_O(M) \geq \frac{1/2 - a_1}{\varepsilon}$ that

$$\operatorname{mult}_O(M_1 \cdot M_1) \geq \operatorname{mult}_P^2(M) + \frac{3 - 2\varepsilon \operatorname{mult}_O(M) - 2a_1}{\varepsilon^2} \geq \frac{9/4 - a_1 + a_1^2}{\varepsilon^2} \geq -\frac{4a_1}{\varepsilon^2}.$$

This immediately yields (1.2).

Lemma 4.5. The inequality (1.2) is not an equality.

Proof. Assume that (1.2) is an equality. Then $a_1 = -\frac{3}{2}$ and $\operatorname{mult}_O(M) = \frac{1/2 - a_1}{\varepsilon}$, whence $\operatorname{mult}_O(M) = \frac{2}{\varepsilon}$. Thus (4.1) must also be an equality. In this case we obtain by induction that $\frac{1}{2} = \varepsilon \operatorname{mult}_O(M) + a_1 = 1$. The resulting contradiction completes the proof of the lemma. \square

Thus Theorem 1.6 is proved. \square

§ 5. Del Pezzo orbifolds

The purpose of this section is to show how to apply Theorem 1.4. All results proved in this section are well known to experts. Nevertheless, Theorem 1.4 enables one to shorten their proofs considerably.

Let X be a Fano variety with at most quotient singularities. The real number

$$\operatorname{lct}(X) = \sup\left\{ \lambda \in \mathbb{Q} \mid \text{the log pair } (X, \lambda D) \text{ is log canonical for every effective } \mathbb{Q}\text{-divisor } D \equiv -K_X \text{ on } X \right\}$$

is called the **global log canonical threshold** of the Fano variety X (see Definition A.22 in Appendix A).

Theorem 5.1 ([10]–[12], Appendix A). The variety X possesses an orbifold Kähler–Einstein metric if $\operatorname{lct}(X) > \frac{\dim(X)}{\dim(X) + 1}$.

We now show how to use Theorem 1.4 along with Theorem 5.1 to prove the existence of orbifold Kähler–Einstein metrics on some Fano orbifolds.

Theorem 5.2 [2]. Let X be a hypersurface of degree 6 in $\mathbb{P}(1,1,2,3)$. If the set $\operatorname{Sign}(X)$ consists of Du Val singular points of type A_3, then $\operatorname{lct}(X) \geq \frac{5}{6}$.
Proof. Suppose that the set $\text{Sign}(X)$ consists of Du Val singular points of type A_3. Put $\omega = \frac{2}{5}$. Suppose that $\text{lc}(X) < \omega$. Then there is an effective \mathbb{Q}-divisor D on X such that $D \equiv -K_X$, and the log pair $(X, \omega D)$ is not log canonical at some point $P \in X$.

Let C be a curve in $|-K_X|$ such that $P \in C$. Then C is irreducible and the log pair $(X, \omega C)$ is log canonical. By Remark 2.6 we may assume that $C \not\subset \text{Supp}(D)$.

Note that X must be singular at P since otherwise we get a contradiction:

$$1 = K_X^2 = C \cdot D \geq \text{mult}_P(D) > \frac{1}{\omega} = \frac{6}{5} > 1.$$

Let $\pi : \tilde{X} \to X$ be a birational morphism that contracts three irreducible curves E_1, E_2, E_3 to the point $P \in X$ and induces an isomorphism $\tilde{X} \setminus (E_1 \cup E_2 \cup E_3) \cong X \setminus P$. The surface X is smooth along the curves E_1, E_2, E_3.

Note that $E_1^2 = E_2^2 = E_3^2 = -2$. We may assume without loss of generality that $E_1 \cdot E_3 = 0$ and $E_1 \cdot E_2 = E_2 \cdot E_3 = 1$.

Let \overline{C} be the proper transform of C on the surface \tilde{X}. Then $\overline{C} \equiv \pi^*(C) - E_1 - E_2 - E_3$. Let \overline{D} be the proper transform of D on \tilde{X}. Then $\overline{D} \equiv \pi^*(D) - a_1 E_1 - a_2 E_2 - a_3 E_3$, where a_1, a_2, a_3 are positive rational numbers. We have

$$1 - a_1 - a_3 = \overline{D} \cdot \overline{C} \geq 0, \quad 2a_1 - a_2 = \overline{D} \cdot E_1 \geq 0,$$

$$2a_2 - a_1 - a_3 = \overline{D} \cdot E_2 \geq 0, \quad 2a_3 - a_2 = \overline{D} \cdot E_3 \geq 0,$$

whence $1 \geq a_1 + a_3, 2a_1 \geq a_2, 3a_2 \geq a_3, 2a_3 \geq a_2, 3a_2 \geq 2a_1, a_1 \leq \frac{3}{4}, a_2 \leq 1, a_3 \leq \frac{3}{4}$. On the other hand, since

$$K_X + \overline{D} + a_1 E_1 + a_2 E_2 + a_3 E_3 \equiv \pi^*(K_X + D),$$

it follows that there is a point $Q \in E_1 \cup E_2 \cup E_3$ such that the log pair $(\tilde{X}, \overline{D} + a_1 E_1 + a_2 E_2 + a_3 E_3)$ is not log canonical at Q because (X, D) is not log canonical at $P \in X$.

Suppose that $Q \in E_1$ and $Q \notin E_2$. Then $(\tilde{X}, \overline{D} + E_1)$ is not log canonical at Q. Hence,

$$2a_1 - a_2 = \overline{D} \cdot E_1 \geq \text{mult}_Q(\overline{D} \cdot E_1) > 1$$

by Theorem 1.1. Therefore we see that $1 \geq \frac{4}{3} a_1 \geq 2a_1 - \frac{2}{3} a_1 \geq 2a_1 - a_2 > 1$, a contradiction.

Suppose that $Q \in E_2$ and $Q \notin E_1 \cup E_3$. Then $(\tilde{X}, \overline{D} + E_2)$ is not log canonical at Q. Hence,

$$2a_2 - a_1 - a_3 = \overline{D} \cdot E_2 \geq \text{mult}_Q(\overline{D} \cdot E_2) > 1$$

by Theorem 1.1. Therefore we see that $1 \geq a_2 = 2a_2 - \frac{a_2^2}{2} - \frac{a_2}{2} \geq 2a_2 - a_1 - a_3 > 1$, a contradiction.

There is no loss of generality in assuming that $Q = E_1 \cap E_2$. Then $(\tilde{X}, \overline{D} + a_1 E_1 + a_2 E_2)$ is not log canonical at Q. On the other hand, we have $a_1 + \frac{a_2}{2} \leq a_1 + a_3 \leq 1$ because $2a_3 \geq a_2$. Hence we can apply Theorem 1.4 to the log pair $(\tilde{X}, \overline{D} + a_1 E_1 + a_2 E_2)$ with $M = N = 0$, $A = 2$, $B = \frac{3}{2}$, $\alpha = 1$ and $\beta = \frac{1}{2}$. Thus we have

$$2a_2 - a_1 - a_3 = \text{mult}_O(\overline{D} \cdot E_2) > \frac{3}{2} a_2 - a_1$$

because $\overline{D} \cdot E_1 = 2a_1 - a_2$. Then $a_2 > 2a_3$ contrary to the inequality $2a_3 \geq a_2$. □
Theorem 5.3 [2]. Let X be a singular hypersurface of degree 6 in $\mathbb{P}(1,1,2,3)$ such that the set $\text{Sign}(X)$ consists of Du Val singular points of type \mathbb{A}_4. Then $\text{lct}(X) = \frac{4}{3}$.

Proof. Let P be a singular point of X and let $\pi: \tilde{X} \to X$ be a birational morphism that contracts four irreducible curves E_1, E_2, E_3, E_4 to the point $P \in X$ and induces an isomorphism $\tilde{X} \setminus (E_1 \cup E_2 \cup E_3 \cup E_4) \cong X \setminus P$. The surface \tilde{X} is smooth along the curves E_1, E_2, E_3, E_4. We have $E_1^2 = E_2^2 = E_3^2 = E_4^2 = -2$. We may assume that $E_1 \cdot E_3 = E_1 \cdot E_4 = E_2 \cdot E_4 = 0$ and $E_1 \cdot E_2 = E_2 \cdot E_3 = E_3 \cdot E_4 = 1$.

There is a unique smooth irreducible curve $\tilde{Z} \subset \tilde{X}$ such that $\pi(\tilde{Z}) \sim -2K_X$ and $E_2 \cap E_3 \in Z$. Put $\omega = \frac{2}{3}$ and $Z = \pi(\tilde{Z})$. Then $Z \sim \pi^*(-2K_X) - E_1 - 2E_2 - 2E_3 - E_4$, which implies that $(X, \omega Z)$ is log canonical and not log terminal. In particular, we have $\text{lct}(X) \leq \omega$.

Suppose that $\text{lct}(X) < \omega$. Then there is an effective \mathbb{Q}-divisor D on X such that $D \equiv -K_X$ and the log pair $(X, \omega D)$ is not log canonical at some point $O \in X$. Remark 2.6 enables us to assume that $Z \not\subseteq \text{Supp}(D)$ because Z is irreducible. Arguing as in the proof of Theorem 5.2, we can also assume that $O = P$.

Let \mathcal{D} be the proper transform of D on \tilde{X}. Then $\mathcal{D} \equiv \pi^*(D) - a_1E_1 - a_2E_2 - a_3E_3 - a_4E_4$, where a_1, a_2, a_3 and a_4 are positive rational numbers. Then the equivalence

$$K_{\tilde{X}} + \mathcal{D} + \sum_{i=1}^{4} a_iE_i \equiv \pi^*(K_X + D)$$

yields the existence of a point $Q \in E_1 \cup E_2 \cup E_3 \cup E_4$ such that the log pair $(\tilde{X}, \mathcal{D} + a_1E_1 + a_2E_2 + a_3E_3 + a_4E_4)$ is not log canonical at Q because (X, D) is not log canonical at $P \in X$.

Let C be the curve through P in the linear system $|-K_X|$. Then C is irreducible and the log pair $(X, \omega C)$ is log canonical. Remark 2.6 enables us to assume that $C \not\subseteq \text{Supp}(D)$. Let \mathcal{C} be the proper transform of C on \tilde{X}. Then $\mathcal{C} \equiv \pi^*(C) - E_1 - E_2 - E_3 - E_4$ and $\mathcal{D} \cdot \mathcal{C} \geq 0$. Thus we have $1 - a_1 - a_4 = \mathcal{D} \cdot \mathcal{C} \geq 0$, whence $a_1 + a_4 \leq 1$. We similarly have

$$2a_1 - a_2 = \mathcal{D} \cdot E_1 \geq 0, \quad 2a_2 - a_1 - a_3 = \mathcal{D} \cdot E_2 \geq 0,$$

$$2a_3 - a_2 - a_4 = \mathcal{D} \cdot E_3 \geq 0, \quad 2a_4 - a_3 = \mathcal{D} \cdot E_4 \geq 0,$$

whence $a_1 \leq \frac{4}{5}$, $a_2 \leq \frac{6}{5}$, $a_3 \leq \frac{6}{5}$ and $a_4 \leq \frac{4}{5}$. It follows from Theorem 2.16 that $\text{LCS}(\tilde{X}, \mathcal{D} + a_1E_1 + a_2E_2 + a_3E_3 + a_4E_4) = \{Q\}$ because $\omega < \frac{5}{6}$. We similarly see that $\frac{4}{5}a_1 + \frac{2}{5}a_2 = \omega a_1 + \frac{\omega a_2}{2} \leq 1$.

Suppose that $Q \in E_1$ and $Q \not\in E_2$. Then $(\tilde{X}, \mathcal{D} + E_1)$ is not log canonical at Q. Hence $2a_1 - a_2 = \mathcal{D} \cdot E_1 \geq \text{mult}_Q(\mathcal{D} \cdot E_1) > 1$ by Theorem 1.1. It follows that $1 \geq \frac{2}{5}a_1 \geq 2a_1 - \frac{3}{4}a_1 \geq 2a_1 - a_2 > 1$, a contradiction.

Suppose that $Q \in E_2$ and $Q \not\in E_1 \cup E_3$. Then $2a_2 - a_1 - a_3 = \mathcal{D} \cdot E_2 \geq \text{mult}_Q(\mathcal{D} \cdot E_2) > 1$ by Theorem 1.1. Hence we have $1 \geq \frac{3}{5}a_2 \geq 2a_2 - \frac{a_2}{2} - \frac{a_2}{2} = 2a_2 - a_1 - a_3 > 1$, a contradiction.

Suppose that $Q = E_1 \cap E_2$. Then we can apply Theorem 1.4 to the log pair $(\tilde{X}, \omega \mathcal{D} + \omega a_1E_1 + \omega a_2E_2)$ with $M = N = 0$, $A = 2$, $B = \frac{3}{2}$, $\alpha = 1$ and $\beta = \frac{1}{2}$.
Thus we have $2a_2 - a_1 - a_3 = \text{mult}_O(D \cdot E_2) > \frac{3}{2}a_2 - a_1$. Since $D \cdot E_1 = 2a_1 - a_2$, we get $a_2 > 2a_3$. This easily leads to a contradiction.

To complete the proof, we may assume that $Q = E_2 \cap E_3$. Then $(\bar{X}, \omega D + \omega a_2 E_2 + \omega a_3 E_3)$ is not log canonical at Q. Hence,

$$2a_2 - \frac{1}{2}a_2 - a_3 \geq 2a_2 - a_1 - a_3 = \overline{D} \cdot E_2 \geq \text{mult}_Q(\overline{D} \cdot E_2) > \frac{5}{4} - a_3$$

by Theorem 1.1. We similarly see that

$$2a_3 - a_2 - a_4 = \overline{D} \cdot E_3 \geq \text{mult}_Q(\overline{D} \cdot E_3) > \frac{5}{4} - a_2,$$

whence $a_2 > \frac{5}{6}$ and $a_3 > \frac{5}{6}$.

Let $\xi: \tilde{X} \to X$ be the blow-up of Q, E the exceptional curve of ξ, and \tilde{D} the proper transform of D on \tilde{X}. We put $m = \text{mult}_Q(\tilde{D})$. Then $\tilde{D} \equiv \xi^*(D) - mE$.

Let $\tilde{E}_1, \tilde{E}_2, \tilde{E}_3, \tilde{E}_4$ be the proper transforms on \tilde{X} of the curves E_1, E_2, E_3, E_4 respectively. Then

$$K_{\tilde{X}} + \omega \tilde{D} + \omega a_2 \tilde{E}_2 + \omega a_3 \tilde{E}_3 + (\omega a_2 + \omega a_3 + \omega m - 1)E$$

$$\equiv \xi^*(K_X + \omega D + \omega a_2 E_2 + \omega a_3 E_3).$$

Hence there is a point $R \in E$ such that the log pair $(\tilde{X}, \omega \tilde{D} + \omega a_2 \tilde{E}_2 + \omega a_3 \tilde{E}_3 + (\omega a_2 + \omega a_3 + \omega \text{mult}_Q(D) - 1)E)$ is not log canonical at R.

Let \tilde{Z} be the proper transform of Z on \tilde{X}. Then

$$0 \leq \tilde{Z} \cdot \tilde{D} = 2 - a_2 - a_3 - \text{mult}_Q(D) = 2 - a_2 - a_3 - m,$$

whence $m + a_2 + a_3 \leq 2$. In particular, we see that $\omega a_2 + \omega a_3 + \omega m - 1 \leq 2\omega - 1 \leq \frac{3}{2}$.

It follows that $\text{LCS}(X, \omega \tilde{D} + \omega a_2 \tilde{E}_2 + \omega a_3 \tilde{E}_3 + (\omega a_2 + \omega a_3 + \omega \text{mult}_Q(D) - 1)E) = \{R\}$ by Theorem 2.16. We similarly see that

$$2a_3 - a_2 - a_4 - m = \tilde{E}_3 \cdot \tilde{D} \geq 0, \quad 2a_2 - a_1 - a_3 - m = \tilde{E}_2 \cdot \tilde{D} \geq 0,$$

whence $E \cdot \tilde{D} = m \leq \frac{1}{2}$.

Suppose that $Q \notin E_2 \cup E_3$. Then the log pair

$$(\tilde{X}, \omega \tilde{D} + (\omega a_2 + \omega a_3 + \omega \text{mult}_Q(D) - 1)E)$$

is not log canonical at R. Therefore,

$$\frac{5}{4} > \frac{1}{2} \geq m = \tilde{D} \cdot E \geq \text{mult}_R(\tilde{D} \cdot E) > \frac{5}{4}$$

by Theorem 1.1. The resulting contradiction shows that either $R = \tilde{E}_2 \cap E$, or $R = \tilde{E}_3 \cap E$.

We may assume without loss of generality that $R = \tilde{E}_2 \cap E$. Then the singularities of the log pair $(\tilde{X}, \omega \tilde{D} + \omega a_2 \tilde{E}_2 + (\omega a_2 + \omega a_3 + \omega \text{mult}_Q(D) - 1)E)$ are not log canonical at the point R. Hence it follows from Theorem 1.1 that

$$\frac{5}{4} - a_2 > \frac{6}{5} - a_2 = 2 - \frac{4}{5} - a_2 \geq 2 - a_2 - a_3 \geq m = \tilde{D} \cdot E \geq \text{mult}_R(\tilde{D} \cdot E) > \frac{5}{4} - a_2$$

because $m + a_2 + a_3 \leq 2$. The resulting contradiction completes the proof. □
Theorem 5.4 [13]. Let X be a quasi-smooth hypersurface of degree 95 in the weighted projective space $\mathbb{P}(11, 21, 29, 37)$. Then $\lct(X) = \frac{11}{4}$.

Proof. We may assume that X is defined by a quasi-homogeneous equation,

$$t^2y + tz^2 + xy^4 + x^6z = 0 \subset \text{Proj}(\mathbb{C}[x, y, z, t]),$$

where $\text{wt}(x) = 11$, $\text{wt}(y) = 21$, $\text{wt}(z) = 29$, $\text{wt}(t) = 37$. Let O_x be the point of X given by the equations $y = z = t = 0$. We similarly define the singular points O_y, O_z and O_t of X. Then O_x, O_y, O_z, O_t are singular points of X of types $\frac{1}{11}(5, 2)$, $\frac{1}{21}(1, 2)$, $\frac{1}{29}(11, 21)$, $\frac{1}{37}(11, 29)$ respectively.

Let C_x be the curve cut out on X by the equation $x = 0$. Then $C_x = L_{xt} + R_x$, where L_{xt} and R_x are irreducible reduced curves on X such that L_{xt} is given by the equations $x = t = 0$ and R_x by the equations $x = yt + z^2 = 0$. We have $\lct(X, \frac{3}{11}C_x) = \frac{11}{4}$, whence $\lct(X) < \frac{11}{4}$. Let C_y be the curve cut out on X by the equation $y = 0$. Then $C_y = L_{yz} + R_y$, where L_{yz} and R_y are irreducible reduced curves on X such that L_{yz} is given by the equations $y = z = 0$ and R_y by the equations $y = zt + x^6 = 0$. Let C_z be the curve cut out on X by the equation $z = 0$. Then $C_z = L_{yz} + R_z$, where R_z is the irreducible reduced curve given by the equations $z = xy^3 + t^2 = 0$. Let C_t be the curve cut out on X by the equation $t = 0$. Then $C_t = L_{xt} + R_t$, where R_t is the irreducible reduced curve given by the equations $t = y^4 + x^5z = 0$. It is easy to compute the intersection numbers of the divisors D, L_{xt}, L_{yz}, R_x, R_y, R_z, R_t on X:

$$D \cdot L_{xt} = \frac{1}{7} \cdot 29, \quad D \cdot R_x = \frac{2}{7} \cdot 37, \quad D \cdot R_y = \frac{18}{29} \cdot \frac{37}{3},$$

$$D \cdot L_{yz} = \frac{3}{11} \cdot 37, \quad D \cdot R_z = \frac{2}{7} \cdot 11, \quad D \cdot R_t = \frac{12}{11} \cdot 29,$$

$$L_{xt} \cdot R_x = \frac{2}{21}, \quad L_{yz} \cdot R_y = \frac{6}{37}, \quad L_{yz} \cdot R_z = \frac{2}{11}, \quad L_{xt} \cdot R_t = \frac{4}{29},$$

$$R_x^2 = \frac{52}{21} \cdot 37, \quad L_{xt}^2 = \frac{47}{21} \cdot 29, \quad R_y^2 = \frac{48}{29} \cdot \frac{37}{3},$$

$$L_{yz}^2 = \frac{45}{11} \cdot 37, \quad R_z^2 = \frac{16}{11} \cdot 21, \quad R_t^2 = \frac{104}{11} \cdot 29.$$

We have $L_{xt} \cap R_x = \{O_y\}$, $L_{yz} \cap R_y = \{O_t\}$, $L_{yz} \cap R_z = \{O_x\}$, $L_{xt} \cap R_t = \{O_z\}$, and

$$\min\left(\lct\left(X, \frac{3}{21}C_y\right), \lct\left(X, \frac{3}{29}C_z\right), \lct\left(X, \frac{3}{37}C_t\right)\right) \geq \frac{11}{4}.$$

Put $\omega = \frac{11}{4}$. Suppose that $\lct(X) < \omega$. Then there is an effective \mathbb{Q}-divisor $D \equiv -K_X$ on X such that the log pair $(X, \omega D)$ is not log canonical at some point $P \in X$.

By Remark 2.6 we may assume that the support of D does not contain at least one irreducible component of each of the divisors C_x, C_y, C_z, C_t. Since $D \cdot L_{xt} = \frac{3}{29} \cdot 21$ and $D \cdot R_x = \frac{6}{37} \cdot 21$, we see that $P \neq O_y$. We similarly have $P \neq O_x$. Since $D \cdot L_{xt} = \frac{1}{7} \cdot 29$ and $D \cdot R_t = \frac{12}{11} \cdot 29$, we see that $P \neq O_z$ because the curve R_t is singular at O_z and its orbifold multiplicity at O_z is equal to 4.
We put $D = mL_{xt} + \Omega$, where m is a non-negative rational number and Ω is an effective \mathbb{Q}-divisor whose support does not contain L_{xt}. Then $m \leq \frac{4}{11}$ because the log pair $(X, \omega D)$ is log canonical at O_y. Therefore we have

$$(D - mL_{xt}) \cdot L_{xt} = \frac{3 + 47m}{21 \cdot 29} \leq \frac{4}{11},$$

whence $P \in L_{xt}$ by Theorem 1.1. We similarly see that either $P = O_t$ or $P \notin C_x \cup C_y \cup C_z \cup C_t$.

Suppose that $P \neq O_t$. Let L be the pencil cut out on X by the equation $\lambda yt + \mu z^2 = 0$, where $[\lambda : \mu] \in \mathbb{P}^1$. Then the base locus of L consists of the curve Lyz and the point O_y. Let E be the unique curve through P in L. Then E is cut out on X by the equation $z^2 = \alpha yt$ for some non-zero $\alpha \in \mathbb{C}$ because $P \notin C_x \cup C_y \cup C_z \cup C_t$.

Suppose that $\alpha \neq -1$. Then E is isomorphic to the curve given by the equations $yt - z^2 = t^2y + xy^A + x^6z = 0$. Therefore E is smooth at P. Note that $E = L_{yz} + C$, where C is an irreducible reduced curve and it is known that $P \in C$. We have $D \cdot C = D \cdot E - D \cdot L_{yz} = \frac{169}{7 \cdot 11 \cdot 37}$ and $C \cdot C > 0$. This easily leads to conclusions that contradict Theorem 1.1.

Suppose that $\alpha = -1$. Then $E = L_{yz} + Rx + M$, where M is an irreducible reduced curve containing P. It is easy to see that M is non-singular at P. We have $D \cdot M = D \cdot E - D \cdot L_{yz} - D \cdot Rx = \frac{147}{7 \cdot 11 \cdot 37}$ and $M \cdot M > 0$. Arguing as in the previous case, we again easily arrive at a contradiction to Theorem 1.1.

Thus we see that $P = O_t$. Put $D = \Delta + aL_{yz} + bRx$, where a and b are non-negative rational numbers and Δ is an effective \mathbb{Q}-divisor whose support contains neither L_{yz} nor Rx. Then $a > 0$. Indeed, otherwise we obtain a contradiction: $\frac{3}{11} = 37D \cdot L_{yz} \geq \text{mult}_{O_t}(D) > \frac{4}{11}$.

Note that $R_y \notin \text{Supp}(\Delta)$ because $a > 0$. If $b > 0$, then L_{xt} is not contained in the support of D. It follows that $\frac{3}{21 \cdot 29} = D \cdot L_{xt} \geq b(R_x \cdot L_{xt}) = \frac{2b}{21}$, whence $b \leq \frac{3}{58}$. We similarly see that

$$\frac{18}{29 \cdot 37} = D \cdot R_y \geq \frac{6a}{37} + \frac{b}{37} + \frac{\text{mult}_{O_t}(D) - a - b}{37} > \frac{5a}{37} + \frac{4}{11 \cdot 37},$$

whence $a < \frac{82}{1595}$. One can easily check that $\Delta \cdot L_{yz} = \frac{3}{11 \cdot 37} + a \frac{45}{11 \cdot 37} - \frac{37}{37}$ and $\Delta \cdot Rx = \frac{2}{7 \cdot 37} + b \frac{52}{21 \cdot 37} - \frac{37}{37}$. Using Theorem 1.4 for the log pair $(X, \omega \Delta + \omega aL_{yz} + \omega bRx)$ with $M = \frac{3}{11}$, $N = \frac{2}{7}$, $A = \frac{45}{11}$, $B = \frac{52}{21}$, $\alpha = \frac{675}{197}$ and $\beta = \frac{77}{197}$, we see that $\frac{24681}{45704} \geq \alpha \omega a + \beta \omega b > 1$, a contradiction. □

Theorem 5.5 [13]. Let X be a quasi-smooth hypersurface of degree 79 in the weighted projective space $\mathbb{P}(13,14,23,33)$. Then $\text{lct}(X) = \frac{65}{32}$.

Proof. The surface X can be defined by a quasi-homogeneous equation

$$z^2 t + y^A z + x t^2 + x^5 y = 0 \subset \text{Proj}(\mathbb{C}[x,y,z,t]),$$

where $\text{wt}(x) = 13$, $\text{wt}(y) = 14$, $\text{wt}(z) = 23$, $\text{wt}(t) = 33$. Let O_x be the point on X given by the equations $y = z = t = 0$. We similarly define the singular points O_y, O_z and O_t of X. Then O_x, O_y, O_z, O_t are singular points of X of types $\frac{1}{13}(1,2)$, $\frac{1}{14}(13,5)$, $\frac{1}{23}(13,14)$, $\frac{1}{33}(14,23)$ respectively.
Let C_x be the curve cut out on X by the equation $x = 0$. Then $C_x = L_{xz} + R_x$, where L_{xz} and R_x are irreducible reduced curves on X such that L_{xt} is given by the equations $x = z = 0$ and R_x by the equations $x = y^4 + zt = 0$. Let C_y be the curve cut out on X by the equation $y = 0$. Then $C_y = L_{yt} + R_y$, where L_{yt} and R_y are irreducible reduced curves on X such that L_{yt} is given by $y = t = 0$ and R_y by $y = z^2 + xt = 0$. Let C_z be the curve cut out on X by the equation $z = 0$. Then $C_z = L_{xz} + R_z$, where R_z is an irreducible reduced curve given by the equations $z = x^4y + t^2 = 0$. Let C_t be the curve cut out on X by the equation $t = 0$. Then $C_t = L_{yt} + R_t$, where R_t is the irreducible reduced curve given by the equations $t = x^5 + y^3z = 0$. It is easy to compute the intersection numbers of the divisors D, L_{xz}, L_{yt}, R_x, R_y, R_z, R_t on X:

\[
\begin{align*}
L_{xz}^2 &= -\frac{43}{14 \cdot 33}, & R_x^2 &= -\frac{40}{23 \cdot 33}, & L_{xz} \cdot R_x &= \frac{4}{33}, \\
D \cdot L_{xz} &= \frac{4}{14 \cdot 33}, & D \cdot R_x &= \frac{16}{23 \cdot 33}, \\
L_{yt}^2 &= -\frac{32}{13 \cdot 23}, & R_y^2 &= -\frac{38}{13 \cdot 33}, & L_{yt} \cdot R_y &= \frac{2}{13}, \\
D \cdot L_{yt} &= \frac{4}{13 \cdot 23}, & D \cdot R_y &= \frac{8}{13 \cdot 33}, \\
R_z^2 &= \frac{20}{13 \cdot 14}, & L_{xz} \cdot R_z &= \frac{2}{14}, & D \cdot R_z &= \frac{8}{13 \cdot 14}, & R_t^2 &= \frac{95}{14 \cdot 13}, \\
L_{yt} \cdot R_t &= \frac{5}{23}, & D \cdot R_t &= \frac{20}{14 \cdot 23}, & R_y \cdot R_x &= L_{xz} \cdot R_y = \frac{1}{33}, & R_x \cdot L_{yt} &= \frac{1}{23}.
\end{align*}
\]

We have $L_{xz} \cap R_x = \{O_t\}$, $L_{xz} \cap R_z = \{O_y\}$, $L_{yt} \cap R_y = \{O_x\}$, $L_{yt} \cap R_t = \{O_z\}$. Then

\[
\lct\left(X, \frac{4}{13} C_x\right) = \frac{65}{32} < \lct\left(X, \frac{4}{14} C_y\right) = \frac{21}{8} < \lct\left(X, \frac{4}{25} C_t\right) = \frac{33}{10} < \lct\left(X, \frac{4}{23} C_z\right) = \frac{69}{20}.
\]

In particular, it follows that $\lct(X) \leq \frac{65}{32}$.

Put $\omega = \frac{65}{32}$. Suppose that $\lct(X) < \omega$. Then there is an effective \mathbb{Q}-divisor $D \equiv -K_X$ on X such that the log pair $(X, \omega D)$ is not log canonical at some point $P \in X$.

By Remark 2.6 we may assume that $\text{Supp}(D)$ does not contain at least one irreducible component of each of the curves C_x, C_y, C_z, C_t. Arguing as in the proof of Theorem 5.4, we obtain that $P = O_t$ (see [13]). The curve L_{xz} must be contained in $\text{Supp}(D)$ since otherwise we have a contradiction: $\text{mult}_{O_t}(D) \leq 33(D \cdot L_{xz}) = \frac{2}{7} < \frac{32}{65}$. Thus we see that $R_x \not\subset \text{Supp}(D)$. Put $D = \Delta + aL_{xz} + bR_y$, where a and b are non-negative rational numbers and Δ is an effective \mathbb{Q}-divisor whose support contains neither L_{xz} nor R_y. Then we have

\[
\frac{16}{23 \cdot 33} = D \cdot R_x \geq a(L_{xz} \cdot R_x) + \frac{\text{mult}_{O_t}(D) - a}{33} > \frac{3a}{33} + \frac{32}{33 \cdot 65},
\]

I. A. Cheltsov
whence \(a < \frac{304}{4485}\). If \(b \neq 0\), then \(L_{yt} \not\subseteq \text{Supp}(D)\). It follows that \(\frac{4}{13} \cdot 23 = D \cdot L_{yt} \geq b(R_y \cdot L_{yt}) = \frac{2b}{13}\), whence \(b \leq \frac{2}{23}\). Note that \(33(\Delta \cdot L_{xz}) = \frac{4}{14} + a\frac{43}{14} - b\) and \(33(\Delta \cdot R_y) = \frac{8}{13} + b\frac{38}{23} - a\). Put \(M = \frac{4}{14}\), \(N = \frac{8}{13}\), \(A = \frac{43}{14}\), \(B = \frac{38}{23}\), \(\alpha = \frac{700771}{301108}\) and \(\beta = \frac{690958}{150654}\) and apply Theorem 1.4 to the log pair \((X, \omega \Delta + \omega a L_{xz} + \omega b R_y)\). Then \(\frac{66727051}{166211616} \geq \alpha \omega a + \beta \omega b > 1\), a contradiction. \(\square\)

Theorem 5.6. Let \(X\) be a quasi-smooth hypersurface of degree 79 in \(\mathbb{P}(11,17,24,31)\). Then \(\text{lct}(X) = \frac{33}{16}\).

Proof. The surface \(X\) can be defined by a quasi-homogeneous equation,

\[
t^2y + t z^2 + xy^4 + x^5z = 0 \subset \text{Proj}(\mathbb{C}[x,y,z,t]),
\]

where \(\text{wt}(x) = 11\), \(\text{wt}(y) = 17\), \(\text{wt}(z) = 24\), \(\text{wt}(t) = 31\). We define points \(O_x, O_y, O_z, O_t\) as in the proof of Theorem 5.4. Then \(O_x, O_y, O_z, O_t\) are singular points of \(X\) of types \(\frac{1}{11}(2,3), \frac{1}{17}(1,2), \frac{1}{24}(11,17), \frac{1}{31}(11,24)\) respectively.

Let \(C_x\) be the curve cut out on \(X\) by the equation \(x = 0\). Then \(C_x = L_{xt} + R_x\), where \(L_{xt}\) and \(R_x\) are irreducible reduced curves on \(X\) such that \(L_{xt}\) is given by the equations \(x = t = 0\) and \(R_x\) by the equations \(x = yt + z^2 = 0\). Let \(C_y\) be the curve cut out on \(X\) by the equation \(y = 0\). Then \(C_y = L_{yz} + R_y\), where \(L_{yz}\) and \(R_y\) are irreducible reduced curves on \(X\) such that \(L_{yz}\) is given by the equations \(y = z = 0\) and \(R_y\) by the equations \(yt + x^5 = 0\). Let \(C_z\) be the curve cut out on \(X\) by the equation \(z = 0\). Then \(C_z = L_{yz} + R_z\), where \(R_z\) is an irreducible reduced curve given by the equations \(z = xy^3 + t^2 = 0\). Let \(C_t\) be the curve cut out on \(X\) by the equation \(t = 0\). Then \(C_t = L_{xt} + R_t\), where \(R_t\) is an irreducible reduced curve given by the equations \(t = y^4 + x^4z = 0\). It is easy to compute the intersection numbers of the divisors \(D, L_{xt}, L_{yz}, R_x, R_y, R_z, R_t\) on \(X\):

\[
\begin{align*}
D \cdot L_{xt} &= \frac{1}{6} \cdot 17, & D \cdot R_x &= \frac{8}{17} \cdot 31, & D \cdot R_y &= \frac{5}{6} \cdot 31, \\
D \cdot L_{yz} &= \frac{4}{11} \cdot 31, & D \cdot R_z &= \frac{8}{11} \cdot 17, \\
D \cdot R_t &= \frac{2}{3} \cdot 11, & L_{xt} \cdot R_x &= \frac{2}{17}, & L_{yz} \cdot R_y &= \frac{5}{31}, \\
L_{yz} \cdot R_z &= \frac{2}{11}, & L_{xt} \cdot R_t &= \frac{1}{6}, & L_{xt}^2 &= -\frac{37}{17} \cdot 24, \\
R_x^2 &= -\frac{40}{17} \cdot 31, & R_y^2 &= -\frac{35}{24} \cdot 31, & L_{yz}^2 &= -\frac{38}{11} \cdot 31, \\
R_z^2 &= \frac{14}{11} \cdot 17, & R_t^2 &= \frac{10}{3} \cdot 11.
\end{align*}
\]

We have \(L_{xt} \cap R_x = \{O_y\}, L_{yz} \cap R_y = \{O_t\}, L_{yz} \cap R_z = \{O_x\}, L_{xt} \cap R_t = \{O_z\}\). Then

\[
\text{lct} \left(X, \frac{4}{11} C_x \right) = \frac{33}{16} < \min \left(\text{lct} \left(X, \frac{4}{17} C_y \right), \text{lct} \left(X, \frac{4}{24} C_z \right), \text{lct} \left(X, \frac{4}{31} C_t \right) \right).
\]

In particular, it follows that \(\text{lct}(X) \leq \frac{33}{16}\).
Put $\omega = \frac{33}{16}$. Suppose that $\operatorname{lct}(X) < \omega$. Then there is an effective \mathbb{Q}-divisor $D \equiv -K_X$ on X such that the log pair $(X, \omega D)$ is not log canonical at some point $P \in X$.

By Remark 2.6, we may assume that $\operatorname{Supp}(D)$ does not contain at least one irreducible component of each of the curves C_x, C_y, C_z, C_t. Arguing as in the proof of Theorem 5.4, we obtain that $P = O_t$ (see [13]).

Note that the curve L_{yz} must be contained in $\operatorname{Supp}(D)$ since otherwise we have $31(D \cdot L_{yz}) = \frac{4}{11} < \frac{16}{33}$: a contradiction. Thus we see that $R_y \not\subset \operatorname{Supp}(D)$. Put $D = \Delta + aL_{yz} + bR_x$, where a and b are non-negative rational numbers and Δ is an effective divisor whose support does not contain the curves L_{yz} and R_x. Then

$$\frac{1}{6 \cdot 17} = D \cdot L_{xt} \geq b(R_x \cdot L_{xt}) = \frac{26}{17},$$

when $b \leq \frac{1}{12}$. On the other hand, we have

$$\frac{5}{6 \cdot 31} = D \cdot R_y \geq \frac{5a}{31} + \frac{b}{31} + \frac{\operatorname{mult}_{O_t}(D) - a - b}{31} > \frac{4a}{31} + \frac{16}{31 \cdot 33},$$

whence $a < \frac{23}{2064}$. It is known that $31(\Delta \cdot L_{yz}) = \frac{4}{11} + a\frac{38}{11} - b$ and $31(\Delta \cdot R_x) = \frac{8}{17} + b\frac{10}{17} - a$. Thus we can apply Theorem 1.4 to the log pair $(X, \omega \Delta + \omega aL_{yz} + \omega bR_x)$ with $M = \frac{4}{11}, N = \frac{8}{17}, A = \frac{38}{11}, B = \frac{40}{17}, \alpha = \frac{1444}{453}$ and $\beta = \frac{187}{453}$. We get $\frac{6221}{9664} \geq \alpha a + \beta b > 1$, a contradiction. \(\square\)

Theorem 5.7 [13]. Let X be a quasi-smooth surface of degree 95 in the weighted projective space $\mathbb{P}(13, 17, 27, 41)$. Then $\operatorname{lct}(X) = \frac{55}{24}$.

Proof. The surface X can be defined by a quasi-homogeneous equation

$$z^2 t + y^4 z + x t^2 + x^6 y = 0 \subset \text{Proj}(\mathbb{C}[x, y, z, t]),$$

where $\operatorname{wt}(x) = 13$, $\operatorname{wt}(y) = 17$, $\operatorname{wt}(z) = 27$, $\operatorname{wt}(t) = 41$. We define points O_x, O_y, O_z, O_t as in the proof of Theorem 5.4. They are singular points of X of types $\frac{1}{13}(1, 2), \frac{1}{17}(13, 7), \frac{1}{27}(13, 17), \frac{1}{41}(17, 27)$ respectively.

Let C_x be the curve cut out on X by the equation $x = 0$. Then $C_x = L_{xz} + R_x$, where L_{xz} and R_x are irreducible reduced curves on X such that L_{xt} is given by the equations $x = z = 0$ and R_x by the equations $x = y^4 + zt = 0$. Let C_y be the curve cut out on X by the equation $y = 0$. Then $C_y = L_{yt} + R_y$, where L_{yt} and R_y are irreducible reduced curves on X such that L_{yt} is given by the equations $y = t = 0$ and R_y by the equations $y = z^2 + xt = 0$. Let C_z be the curve cut out on X by the equation $z = 0$. Then $C_z = L_{xz} + R_z$, where R_z is an irreducible reduced curve given by $z = t^2 + x^5 y = 0$. Let C_t be the curve cut out on X by the equation $t = 0$. Then $C_t = L_{yt} + R_t$, where R_t is an irreducible reduced curve given by $t = x^6 + y^3 z = 0$. It is easy to compute the intersection numbers of the divisors $D, L_{xz}, L_{yt}, R_x, R_y, R_z, R_t$ on X:

$$D \cdot L_{xz} = \frac{3}{17 \cdot 41}, \quad D \cdot L_{yt} = \frac{1}{9 \cdot 13}, \quad D \cdot R_x = \frac{4}{9 \cdot 41},$$

$$D \cdot R_y = \frac{6}{13 \cdot 41}, \quad D \cdot R_z = \frac{6}{13 \cdot 17},$$

$$D \cdot R_t = \frac{2}{3 \cdot 17}, \quad L_{xz}^2 = -\frac{55}{17 \cdot 41}, \quad L_{yt}^2 = -\frac{37}{13 \cdot 27},$$

$$R_x^2 = -\frac{56}{27 \cdot 41}, \quad R_y^2 = -\frac{48}{13 \cdot 41},$$

$$R_z^2 = -\frac{56}{27 \cdot 41}, \quad R_t^2 = -\frac{48}{13 \cdot 41}.$$
Two local inequalities

The surface L where the equations numbers and Δ is an effective O_x where \(\text{wt}(O_x) \) is given by

\[
R_x^2 = \frac{28}{13 \cdot 17}, \quad R_t^2 = \frac{16}{3 \cdot 17}, \quad L_{xz} \cdot R_x = \frac{4}{41}, \quad L_{yt} \cdot R_y = \frac{2}{13}, \quad L_{xz} \cdot R_z = \frac{2}{17}, \quad L_{yt} \cdot R_t = \frac{2}{9}.
\]

We have $L_{xz} \cap R_x = \{O_t\}$, $L_{xz} \cap R_z = \{O_y\}$, $L_{yt} \cap R_y = \{O_x\}$, $L_{yt} \cap R_t = \{O_z\}$. Then

\[
\frac{65}{24} = \text{lct} \left(X, \frac{3}{13} C_x \right) < \frac{51}{12} = \text{lct} \left(X, \frac{3}{17} C_y \right) < \frac{41}{8} = \text{lct} \left(X, \frac{3}{41} C_t \right) < \frac{21}{4} = \text{lct} \left(X, \frac{3}{27} C_z \right).
\]

It follows that $\text{lct}(X) \leq \frac{65}{24}$.

Put $\omega = \frac{65}{24}$. Suppose that $\text{lct}(X) < \omega$. Then there is an effective \mathbb{Q}-divisor $D \equiv -K_X$ on X such that the log pair $(X, \omega D)$ is not log canonical at some point $P \in X$.

By Remark 2.6, we may assume that $\text{Supp}(D)$ does not contain at least one component of each of the curves C_x, C_y, C_z, C_t. Arguing as in the proof of Theorem 5.4, we have $P = O_t$ (see [13]). If $L_{xz} \not\subset \text{Supp}(D)$, then $\frac{24}{65} < \text{mult}_{O_t}(D) \leq 41(D \cdot L_{xz}) = \frac{3}{17} < \frac{24}{65}$, a contradiction. Therefore $L_{xz} \subset \text{Supp}(D)$, whence $R_x \not\subset \text{Supp}(D)$. We put $D = aL_{xz} + bR_y + \Delta$, where a and b are non-negative rational numbers and Δ is an effective \mathbb{Q}-divisor whose support contains neither L_{xz} nor R_y.

Then we have

\[
\frac{4}{9 \cdot 41} = D \cdot R_x \geq a(L_{xz} \cdot R_x) + \frac{\text{mult}_{O_t}(D) - a}{41} > \frac{3a}{41} + \frac{24}{41 \cdot 65},
\]

whence $a \leq \frac{44}{585}$. If $b \neq 0$, then $\frac{1}{9 \cdot 13} = D \cdot L_{yt} \geq b(R_y \cdot L_{yt}) = \frac{2b}{13}$. It follows that $b \leq \frac{1}{18}$. On the other hand, $41(\Delta \cdot L_{xz}) = \frac{3}{17} + a\frac{55}{17} - b$ and $41(\Delta \cdot R_y) = \frac{6}{13} + b\frac{48}{41} - a$. Therefore one can apply Theorem 1.4 to the log pair $(X, \omega \Delta + \omega aL_{xz} + \omega bR_y)$ with $M = \frac{6}{13}$, $N = \frac{3}{17}$, $A = \frac{48}{41}$, $B = \frac{55}{17}$, $\alpha = \frac{39952}{19505}$, $\beta = \frac{5729}{19505}$. We get

\[
\frac{306379}{1053270} \geq \alpha \omega b + \beta \omega a > 1,
\]

a contradiction. \square

Theorem 5.8 [13]. Let X be a quasi-smooth hypersurface of degree 99 in the weighted projective space $\mathbb{P}(14, 17, 29, 41)$. Then $\text{lct}(X) = \frac{51}{10}$.

Proof. The surface X can be defined by a quasi-homogeneous equation,

\[
t^2y + tz^2 + xy^5 + x^5z = 0 \subset \text{Proj}(\mathbb{C}[x, y, z, t]),
\]

where $\text{wt}(x) = 14$, $\text{wt}(y) = 17$, $\text{wt}(z) = 29$, $\text{wt}(t) = 41$. We define points O_x, O_y, O_z, O_t as in the proof of Theorem 5.4. Then O_x, O_y, O_z, O_t are singular points of X of types $\frac{1}{14}(3, 13)$, $\frac{1}{17}(12, 7)$, $\frac{1}{29}(11, 17)$, $\frac{1}{41}(14, 29)$ respectively.

Let C_x be the curve cut out on X by the equation $x = 0$. Then $C_x = L_{xt} + R_x$, where L_{xt} and R_x are irreducible reduced curves on X such that L_{xt} is given by the equations $x = t = 0$ and R_x by the equations $x = yt + z^2 = 0$. Let C_y be the
curve cut out on X by the equation $y = 0$. Then $C_y = L_{yz} + R_y$, where L_{yz} and R_y are irreducible reduced curves on X such that L_{yz} is given by the equations $y = z = 0$ and R_y by the equations $y = zt + x^5 = 0$. Let C_z be the curve cut out on X by the equation $z = 0$. Then $C_z = L_{yz} + R_z$, where R_z is an irreducible reduced curve given by the equations $z = xy^4 + t^2 = 0$. Let C_t be the curve cut out on X by the equation $t = 0$. Then $C_t = L_{xt} + R_t$, where R_t is an irreducible reduced curve given by the equations $t = y^5 + x^4 z = 0$. It is easy to compute the intersection numbers of the divisors D, L_{xt}, L_{yz}, R_x, R_y, R_z, R_t on X:

$$D \cdot L_{xt} = \frac{2}{17 \cdot 29}, \quad D \cdot R_x = \frac{4}{17 \cdot 41}, \quad D \cdot R_y = \frac{10}{29 \cdot 41},$$

$$D \cdot L_{yz} = \frac{1}{7 \cdot 41}, \quad D \cdot R_z = \frac{2}{7 \cdot 17},$$

$$D \cdot R_t = \frac{5}{7 \cdot 29}, \quad L_{xt} \cdot R_x = \frac{2}{17}, \quad L_{yz} \cdot R_y = \frac{5}{41},$$

$$L_{yz} \cdot R_z = \frac{1}{7}, \quad L_{xt} \cdot R_t = \frac{5}{29}, \quad L_x^2 = -\frac{44}{17 \cdot 29},$$

$$R_x^2 = -\frac{54}{17 \cdot 41}, \quad R_y^2 = -\frac{60}{29 \cdot 41}, \quad L_y^2 = -\frac{53}{14 \cdot 41},$$

$$R_t^2 = \frac{12}{7 \cdot 17}, \quad R_t^2 = \frac{135}{14 \cdot 29}.$$

We have $L_{xt} \cap R_x = \{O_y\}$, $L_{yz} \cap R_y = \{O_t\}$, $L_{yz} \cap R_z = \{O_z\}$, $L_{xt} \cap R_t = \{O_z\}$. Then

$$\lct\left(X, \frac{2}{17} C_y\right) = \frac{51}{10} < \min\left(\lct\left(X, \frac{1}{7} C_x\right), \lct\left(X, \frac{2}{29} C_z\right), \lct\left(X, \frac{2}{41} C_t\right)\right).$$

It follows that $\lct(X) \leq \frac{51}{10}$.

Put $\omega = \frac{51}{10}$. Suppose that $\lct(X) < \omega$. Then there is an effective \mathbb{Q}-divisor $D \equiv -K_X$ on X such that the log pair $(X, \omega D)$ is not log canonical at some point $P \in X$.

By Remark 2.6 we may assume that the support of D does not contain at least one component of each of the curves C_x, C_y, C_z, C_t. Arguing as in the proof of Theorem 5.4, we see that $P = O_t$. Put $D = aL_{yz} + bR_x + \Delta$, where a and b are non-negative rational numbers and Δ is an effective \mathbb{Q}-divisor whose support contains neither L_{yz} nor R_x. If $a = 0$, then $\frac{1}{7} = 41(D \cdot L_{yz}) \geq \mult_{O_t}(D) > \frac{10}{51}$, a contradiction. Therefore $a > 0$. Hence we have $R_y \not\subseteq \Supp(\Delta)$. If $b > 0$, then

$$\frac{10}{17 \cdot 29} = D \cdot L_{xt} \geq b(R_x \cdot L_{xt}) = \frac{26}{17},$$

whence $b \leq \frac{1}{19}$. We similarly see that

$$\frac{10}{29 \cdot 41} = D \cdot R_y \geq \frac{5a}{41} + \frac{b}{41} + \frac{\mult_{O_t}(D) - a - b}{41} > \frac{4a}{41} + \frac{4}{21 \cdot 41},$$

whence $a < \frac{47}{1218}$. One has $41(\Delta \cdot L_{yz}) = \frac{2}{14} + a \frac{53}{14} - b$ and $41(\Delta \cdot R_x) = \frac{4}{17} + b \frac{54}{17} - a$.

Putting $M = \frac{1}{7}, N = \frac{4}{17}, A = \frac{53}{14}, B = \frac{54}{17}, \alpha = \frac{2809}{874}, \beta = \frac{119}{437}$ and applying Theorem 1.4 to the log pair $(X, \omega \Delta + \omega aL_{yz} + \omega bR_x)$, we get

$$\frac{2414323}{3548440} \geq \alpha a + \beta b > 1,$$

a contradiction. □
Note that every del Pezzo surface satisfying the hypotheses of at least one of Theorems 5.2–5.8 admits a Kähler–Einstein metric by Theorem 5.1.

§ 6. The icosahedral group

The purpose of this section is to give an application of Theorem 1.6.

We fix embeddings of groups $A_5 \cong G_1 \subset \text{Aut}(\mathbb{P}^1)$, $A_5 \cong G_2 \subset \text{Aut}(\mathbb{P}^2)$ and the induced embedding

$$A_5 \times A_5 \cong G_1 \times G_2 \subset \text{Aut}(\mathbb{P}^1 \times \mathbb{P}^2) \cong \text{PSL}(2, \mathbb{C}) \times \text{PSL}(3, \mathbb{C}).$$

Put $G = G_1 \times G_2$ and $X = \mathbb{P}^1 \times \mathbb{P}^2$. Let $\pi_1 : X \to \mathbb{P}^1$ and $\pi_2 : X \to \mathbb{P}^2$ be the natural projections. Then $\mathcal{P}(X, G) \supseteq \{\pi_1, \pi_2\}$, where $\mathcal{P}(X, G)$ is the G-pliability of X (see Definition A.9). Here is the main result.

Theorem 6.1. We have $\mathcal{P}(X, G) = \{\pi_1, \pi_2\}$.

Corollary 6.2. Let $\gamma : X \dasharrow \mathbb{P}^3$ be an arbitrary birational map. Then the subgroup $\gamma \circ G \circ \gamma^{-1} \subset \text{Bir}(\mathbb{P}^3)$ is not conjugate to any subgroup of $\text{PSL}(3, \mathbb{C}) \cong \text{Aut}(\mathbb{P}^3) \subset \text{Bir}(\mathbb{P}^3)$.

Theorem 6.3. There is a group isomorphism $\text{Bir}^G(X) \cong A_5 \times S_5$.

Proof. Let ξ be an arbitrary G-equivariant birational automorphism of X. Using the notation in the proof of Theorem 6.1, we put $\overline{X} = X$, $\pi = \pi_1$ and $\nu = \xi$. Arguing as in the proof of Theorem 6.1 (see below), we obtain a commutative diagram

$$
\begin{array}{ccc}
X & \xrightarrow{\xi} & X \\
\downarrow \pi_1 & & \downarrow \pi_1 \\
\mathbb{P}^1 & \xrightarrow{\sigma} & \mathbb{P}^1
\end{array}
$$

where $\sigma \in \text{Aut}^G(\mathbb{P}^1)$. Then it follows from Remark A.26 and Theorem B.10 that either ξ induces an isomorphism of the generic fibre of π_1, or $\xi \circ \tau$ induces an isomorphism of the generic fibre of π_1 for some birational automorphism $\tau \in \text{Bir}^G(\mathbb{P}^2)$. It follows that either ξ is biregular or $\xi \circ \tau$ is biregular (see [14], Theorem 1.5, and [15], Example 5.4). Then

$$\text{Bir}^G(X) \cong \text{Aut}^G(\mathbb{P}^1) \times \text{Bir}^G(\mathbb{P}^2).$$

Moreover, $\text{Aut}^G(\mathbb{P}^1) \cong A_5$ and it follows from Theorem B.10 that $\text{Bir}^G(\mathbb{P}^2) \cong S_5$. □

Proof of Theorem 6.1. We suppose that $\mathcal{P}(X, G) \neq \{\pi_1, \pi_2\}$ and derive a contradiction. One can find a G-Mori fibration $\overline{\pi} : \overline{X} \to \overline{S}$ which is not square birationally equivalent to π_1 or π_2 but admits a G-equivariant birational map $\nu : \overline{X} \dasharrow X$. In the case when $\dim(\overline{S}) \neq 0$, we put $\mathcal{M}_{\overline{X}} = |\overline{\pi}^*(D)|$ for some very ample divisor D on \overline{S}. In the case when $\dim(\overline{S}) = 0$, we put $\mathcal{M}_{\overline{X}} = |-mK_{\overline{X}}|$ for a sufficiently large and divisible positive integer m. Put $\mathcal{M}_X = \nu(\mathcal{M}_{\overline{X}})$.

Lemma 6.4. For each of $i \in \{1, 2\}$ there is a $\lambda_i \in \mathbb{Q}$ such that $\lambda_i > 0$ and $K_X + \lambda_i \mathcal{M}_X \equiv \pi_i^*(H_i)$, where H_i is a \mathbb{Q}-divisor on \mathbb{P}^i.

Proof. The existence of such positive rational numbers λ_1 and λ_2 is obvious in the case when $\dim(S) = 0$. Hence we may assume that either $S \cong \mathbb{P}^1$ or $\dim(S) = 2$.

The fibration π is not square birational to π_1. Thus the existence of λ_1 is obvious. The fibration π is not birationally equivalent to π_2, whence λ_2 exists in the case when $\dim(S) = 2$. Therefore we may assume that $\dim(S) = 1$. Then $S \cong \mathbb{P}^1$.

Suppose that λ_2 does not exist. Then there is a commutative diagram

\[
\begin{array}{c}
X & \xrightarrow{\nu} & S \\
\downarrow \pi & & \downarrow \zeta \\
\mathbb{P}^1 & \xrightarrow{\zeta} & \mathbb{P}^2
\end{array}
\]

where ζ is a rational dominant map. The normalization of a general fibre of ζ is a rational curve since the general fibre of π is a rational surface. On the other hand, the map ζ is G_2-equivariant. This contradicts Theorem B.10, which says that \mathbb{P}^2 is G_2-birationally rigid. □

Let D be a general fibre of π_1. Then it follows from Theorems A.15, B.10 that either the log pair $(D, \lambda_1 M_X|_D)$ has canonical singularities, or there is a birational involution $\tau \in \text{Bir}^G(X)$ such that the log pair $(D, \lambda_1^\tau M_X|_D)$ has canonical singularities, where $\lambda_1^\tau \in \mathbb{Q}$ is such that $K_X + \lambda_1^\tau M_X \equiv \pi_1^*(H_1')$ for some \mathbb{Q}-divisor H_1' on \mathbb{P}^1.

Corollary 6.5. We may assume that $(D, \lambda_1 M_X|_D)$ has canonical singularities.

There is a commutative diagram

\[
\begin{array}{c}
W \\
\downarrow \alpha \\
X & \xrightarrow{\nu} & \mathbb{P}^1 \\
\downarrow \beta \\
\end{array}
\]

where α and β are G-equivariant birational morphisms and W is a smooth variety. Let M_W be the proper transform of M_X on W. Take a rational number ε. Then

$$\alpha^*(K_X + \varepsilon M_X) + \sum_{i=1}^k a_i^\varepsilon F_i \equiv K_W + \varepsilon M_W \equiv \beta^*(K_X + \varepsilon M_X) + \sum_{i=1}^r b_i^\varepsilon E_i,$$

where a_i^ε is a rational number, b_i^ε is a positive rational number, F_i is an exceptional prime divisor for the morphism α, and E_i is an exceptional prime divisor of the morphism β.

Lemma 6.6. We have $\lambda_1 > \lambda_2$.

Proof. Suppose that $\lambda_2 \geq \lambda_1$. Then the divisor H_2 is \mathbb{Q}-effective and numerically effective. By Lemmas A.13, A.14 we may assume that there is an $l \in \{1, \ldots, k\}$ such that F_1, \ldots, F_l are all α-exceptional divisors which are not exceptional divisors for β, and all the rational numbers $a_1^\lambda_1, \ldots, a_l^\lambda_1$ are negative. Put $Z_i = \alpha(F_i)$ for every $i \in \{1, \ldots, r\}$. Then $\pi_2(Z_i)$ is either an irreducible curve or a closed point.
Suppose that $\dim(\pi_2(Z_i)) = 1$. Let Γ_i be the fibre of π_2 over a generic point of $\pi_2(Z_i)$. Then

$$2 = \lambda_2 \mathcal{M}_X \cdot \Gamma_i \geq \lambda_2 \text{mult}_{Z_i}(\mathcal{M}_X)|Z_i \cap \Gamma_i| \geq 12 \lambda_2 \text{mult}_{Z_i}(\mathcal{M}_X)$$

because each G_1-orbit in \mathbb{P}^1 consists of at least 12 points (see [16]). It follows that $i > l$.

Thus we have shown that $\pi_2(Z_i)$ is a closed point for every $i \in \{1, \ldots, l\}$. It follows from Proposition 1 in [17] that there is a commutative diagram

$$\begin{array}{ccc}
P^1 \times S & \xrightarrow{\psi} & X \\
\downarrow \gamma & & \downarrow \pi_2 \\\nS & \xrightarrow{\omega} & \mathbb{P}^2
\end{array}$$

where S is a smooth surface, ω is a G_2-invariant birational morphism, ψ is the induced birational morphism, U is a smooth threefold, γ and δ are G-invariant birational morphisms, and $\dim(\iota \circ \gamma(F_i)) = 1$ for every $i \in \{1, \ldots, k\}$, where F_i is the proper transform of F_i on U. We put $V = \mathbb{P}^1 \times S$.

Let \mathcal{M}_U and \mathcal{M}_V be the proper transforms of \mathcal{M}_X on the varieties U and V respectively. Then

$$K_U + \lambda_2 \mathcal{M}_U \equiv \gamma^*(K_V + \lambda_2 \mathcal{M}_V) + \sum_{i=1}^{k} c_i^{\lambda_2} F_i + \sum_{i=1}^{s} d_i^{\lambda_2} B_i,$$

where $c_i^{\lambda_2}$ and $d_i^{\lambda_2}$ are rational numbers and B_i is a δ-exceptional divisor. Note that F_i need not be exceptional for γ. Namely, if F_i is not γ-exceptional, then $c_i^{\lambda_2} = 0$.

Let R be the G_2-invariant divisor on S such that $K_V + \lambda_2 \mathcal{M}_V \equiv \iota^*(R)$. We have $D \cong \mathbb{P}^2$. Identifying S with the proper transform of D on V, we have $R \equiv K_S + \lambda_2 \mathcal{M}_V|_S$, and the linear system $\mathcal{M}_V|_S$ is the proper transform of $\mathcal{M}_X|_D$. On the other hand, $\kappa(D, \lambda_2 \mathcal{M}_X|_D) \geq 0$ because the singularities of the log pair $(D, \lambda_1 \mathcal{M}_X|_D)$ are canonical and $\lambda_2 \geq \lambda_1$. Then the divisor R is \mathbb{Q}-effective.

By Lemmas A.13, A.14 we have $c_i^{\lambda_2} < 0$ for some $t \in \{1, \ldots, l\}$. On the other hand, we have $\dim(\iota \circ \gamma(F_t)) = 1$. Arguing as in the case when $\dim(\pi_2(Z_i)) = 1$, we arrive at a contradiction. □

We thus see that $H_1 \equiv rF$ for some positive rational number r because $\lambda_2 < \lambda_1$. Then

$$K_W + \lambda_1 \mathcal{M}_W \equiv \alpha^*(rD) + \sum_{i=1}^{k} a_i^{\lambda_1} F_i,$$

We put $a_i = a_i^{\lambda_1}$ for every $i \in \{1, \ldots, k\}$ and define

$$\mathcal{J} = \{P \in \mathbb{P}^1 \mid \exists i \in \{1, \ldots, k\}: P \in \pi_1 \circ \alpha(F_i), \pi_1 \circ \alpha(F_i) \neq \mathbb{P}^1, a_i < 0\}.$$
Let D_λ be the fibre of π_1 over the point $\lambda \in \mathbb{P}^1$. Then $D_\lambda \cong \mathbb{P}^2$ and we have $\alpha^*(D_\lambda) \equiv \overline{D}_\lambda + \sum_{i=1}^k b_i^\lambda F_i$, where \overline{D}_λ is the proper transform of D_λ on W and b_i^λ is a non-negative integer. Note that $b_i^\lambda \neq 0$ if and only if there is a $\lambda \in J$ with $\alpha(F_i) \subset D_\lambda$. Note also that $J \neq \emptyset$ by Corollary 6.5 and Lemmas A.13, A.14. For every $\lambda \in J$ we put

$$\delta_\lambda = \max \left\{ -\frac{a_i}{b_i^\lambda} \mid \alpha(F_i) \subset D_\lambda, a_i < 0 \right\} > 0.$$ We also put $\delta_\lambda = 0$ for all $\lambda \in \mathbb{P}^1 \setminus J$. Then it follows from Definition 2.7 and Corollary 6.5 that $\delta_\lambda = -c_{D_\lambda}^1(X, \lambda_1 M_X, D_\lambda)$.

Lemma 6.7. We have $\sum_{\lambda \in J} \delta_\lambda \geq r$.

Proof. Suppose that $\sum_{\lambda \in J} \delta_\lambda < r$. Then

$$K_W + \lambda_1 M_W \equiv \alpha^* \left(\left(r - \sum_{\lambda \in J} \delta_\lambda \right) D \right) + \sum_{\lambda \in J} \delta_\lambda D_\lambda + \sum_{i=1}^k (a_i + \delta_i^b) F_i,$$

where $a_i + \delta_i^b b_i^\lambda \geq 0$ for every $i \in \{1, \ldots, k\}$. It follows that $\kappa(\overline{X}, \lambda_1 M_{\overline{X}}) = \kappa(W, \lambda_1 M_W) = 1$. This is a contradiction because we have either $\kappa(\overline{X}, \lambda_1 M_{\overline{X}}) \leq 0$ or $\kappa(\overline{X}, \lambda_1 M_{\overline{X}}) = 3$. □

Corollary 6.8. For every set $\{c_\lambda\}_{\lambda \in J}$ of rational numbers with $\sum_{\lambda \in J} c_\lambda \leq r$ we have $\text{CS}(X, \lambda_1 M_X - \sum_{\lambda \in J} c_\lambda D_\lambda) \neq \emptyset$.

Let $Z \cong \mathbb{P}^1$ be a fibre of π_2, and let C be a line in $D \cong \mathbb{P}^2$. Then $\text{NE}(X) = \mathbb{R}_{\geq 0} Z \oplus \mathbb{R}_{\geq 0} C$ and $K_{X}^2 \equiv 9Z + 12C$. Let M_1 and M_2 be general divisors in M_X. We put $T_0 = \lambda_1^2 M_1 \cdot M_2$. Then

$$T_0 = Z_X + \sum_{\lambda \in \mathbb{P}^1} C_\lambda \equiv 9Z + (12 + 6r)C,$$

where C_λ is an effective cycle whose components lie in the fibre of π_1 over a point $\lambda \in \mathbb{P}^1$, and Z_X is an effective cycle none of whose components lie in a fibre of π_1. We have $12 + 6r \leq 12 + 6 \sum_{\lambda \in J} \delta_\lambda$ by Lemma 6.7. Take $\beta_\lambda \in \mathbb{Q}_{\geq 0}$ such that $C_\lambda \equiv \beta_\lambda C$. Then

$$\sum_{\lambda \in J} \beta_\lambda \leq \sum_{\lambda \in \mathbb{P}^1} \beta_\lambda \leq 12 + 6r \leq 12 + 6 \sum_{\lambda \in J} \delta_\lambda$$

because Z and C generate the cone of effective cycles $\text{NE}(X)$. We denote the G_1-orbit of the point $\lambda \in \mathbb{P}^1$ by O_{λ}^1. Then

$$\sum_{O_{\lambda}, \lambda \in J} \beta_\lambda \mid O_{\lambda}^1 \mid \leq 12 + 6r \leq 12 + 6 \sum_{O_{\lambda}, \lambda \in J} \delta_\lambda \mid O_{\lambda}^1 \mid,$$

whence there is a point $\omega \in \mathbb{P}^1$ such that $\beta_\omega \mid O_{\omega}^1 \mid \leq 12 + 6 \delta_\omega \mid O_{\omega}^1 \mid$, where $\mid O_{\omega}^1 \mid \geq 12$ (see [16]).
Corollary 6.9. There is a $t \in \{1, \ldots, k\}$ such that $\alpha(F_t) \subset D_\omega$ and $\beta_\omega \leq 1 - \frac{a_t}{b_t}$,
where
$$\frac{a_t}{b_t} = -\delta_\omega = \min \left\{ \frac{a_i}{b_i} \left| \alpha(F_i) \subset D_\omega, a_i < 0 \right. \right\} = c^1_{D_\omega}(X, \lambda_1 M_X, D_\omega),$$
the log pair $(X, \lambda_1 M_X - \delta_\omega D_\omega)$ is canonical along D_ω, but $\alpha(F_t) \in \mathbb{C} S(X, \lambda_1 M_X + \delta_\omega D_\omega)$.

Arguing as in the proof of Lemma B.13, we see that there are no G_2-invariant curves on $D_\omega \cong \mathbb{P}^2$ of degrees 1, 3 or 5. Moreover, there is a unique G_2-invariant conic $\Gamma_2 \subset D_\omega \cong \mathbb{P}^2$. Γ_2 is non-singular and irreducible. The action of the group G_2 on the curve $\Gamma_2 \cong \mathbb{P}^1$ induces an embedding $G_2 \subset \text{Aut}(\Gamma_2) \cong \text{PGL}(2, \mathbb{C})$. Every G_2-orbit in $D_\omega \cong \mathbb{P}^2$ consists of at least 6 points. Every G_2-orbit in Γ_2 consists of at least 12 points (see [16]).

Lemma 6.10. We have $\dim(\alpha(F_t)) = 0$.

Proof. Suppose that $\alpha(F_t)$ is an irreducible curve. Put $\Lambda = \alpha(F_t)$. Then $\text{mult}_\Lambda(M_X) > \frac{1}{\lambda_1}$. Replacing, if necessary, the divisor F_t by its G-orbit, we may assume that the subvariety Λ is a G_2-invariant curve. Let L be a general line in $D_\omega \cong \mathbb{P}^2$. Then we have
$$\frac{3}{\lambda_1} = L \cdot M_X > \frac{L \cdot \Lambda}{\lambda_1},$$
whence $\Lambda = \Gamma_2$. We put $C_\omega = m \Lambda + \Delta$, where Δ is an effective cycle such that $\Lambda \not\subset \text{Supp}(\Delta)$. Therefore
$$m \geq \begin{cases} 1 + 2\delta_\omega & \text{if } \delta_\omega \leq \frac{1}{2}, \\ 4\delta_\omega & \text{if } \delta_\omega \geq \frac{1}{2} \end{cases}$$
by Theorem 1.6. On the other hand, it was shown above that $\beta_\omega \geq 2m$ and $\beta_\omega \leq 1 + 6\delta_\omega$ (see Corollary 6.9). We have
$$\frac{1}{2} + 3\delta_\omega \geq \begin{cases} 1 + 2\delta_\omega & \text{if } \delta_\omega \leq \frac{1}{2}, \\ 4\delta_\omega & \text{if } \delta_\omega \geq \frac{1}{2}, \end{cases}$$
whence $\delta_\omega = \frac{1}{2}$ and $m = 2$. This contradicts Theorem 1.6. □

We put $P = \alpha(F_t)$ and denote the G_2-orbit of the point $P \in D_\omega$ by O^2_P.

Lemma 6.11. We have $\text{mult}_P(Z_X) \leq \frac{3}{2}$ and $\text{mult}_P(C_\omega) \leq \frac{\beta_\omega}{2}$.

Proof. Put $r = |O^2_P|$. Then $r \geq 6$. We have
$$9 = \left(\sum_{\lambda \in \mathbb{P}^1} C_\lambda \right) \cdot D_\omega = Z_X \cdot D_\omega \geq \sum_{Q \in O^2_P} \text{mult}_Q(Z_X)$$
$$= r \text{mult}_P(Z_X) \geq 6 \text{mult}_P(Z_X),$$
whence $\text{mult}_P(Z_X) \leq \frac{3}{2}$. Let us show that $\text{mult}_P(C_\omega) \leq \frac{\beta_\omega}{2}$.
The curve C_ω may be regarded as an effective G_2-invariant \mathbb{Q}-divisor of degree β_ω on $\mathbb{P}^2 \cong D_\omega$. Then $C_\omega = m\Gamma_2 + \Delta$, where $m \in \mathbb{Q}$ is such that $\frac{\beta_\omega}{2} \geq m \geq 0$, and Δ is an effective \mathbb{Q}-divisor whose support does not contain Γ_2.

Suppose that $P \in \Gamma_2$. Then

$$2(\beta_\omega - 2m) = \Gamma_2 \cdot \Delta \geq \sum_{Q \in O_P} \text{mult}_Q(\Delta) = r(\text{mult}_P(C_\omega) - m) \geq r(\text{mult}_P(C_\omega) - m)$$

and $r \geq 12$ (see [16]). Therefore we have

$$\text{mult}_P(C_\omega) \leq \frac{2\beta_\omega + (r-4)m}{r} \leq \frac{2\beta_\omega + (r-4)\beta_\omega/2}{r} \leq \frac{\beta_\omega}{2}$$

because $r \geq 4$. Thus, to complete the proof, we may assume that $P \not\in \Gamma_2$.

Suppose that $\text{mult}_P(C_\omega) > \frac{\beta_\omega}{2}$. Then $\text{mult}_P(\Delta) > \frac{\beta_\omega}{2}$ and there is a rational number μ such that $\text{mult}_P(\mu \Delta) \geq 2$ and $\mu < \frac{4}{\beta_\omega}$. In particular, we see that $O_P^2 \subseteq \text{LCS}(\mathbb{P}^2, \mu \Delta)$.

Suppose that there is a G_2-invariant reduced curve $\Omega \subset \mathbb{P}^2$ such that $\mu \Delta = v\Omega + \Upsilon$, where $v \geq 1$ and Υ is an effective \mathbb{Q}-divisor with $\Omega \not\subseteq \text{Supp}(\Upsilon)$. Then

$$4 > \mu \beta_\omega - 2m\mu = \mu \Delta \cdot H = (v\Omega + \Upsilon) \cdot H \geq v\Omega \cdot H \geq 0,$$

where H is a general line on \mathbb{P}^2. Hence $\Omega = \Gamma_2$, a contradiction.

Thus we see that the scheme $\mathcal{L}(\mathbb{P}^2, \mu \Delta)$ is zero-dimensional and its support contains O_P^2. By Theorem 2.14 there is an exact sequence of groups

$$\mathbb{C}^3 \cong H^0(\mathcal{O}_{\mathbb{P}^2}(1)) \longrightarrow H^0(\mathcal{O}_{\mathcal{L}(\mathbb{P}^2, \mu \Delta)}) \longrightarrow 0,$$

whence $r \leq 3$. On the other hand, we have shown above that $r \geq 6$. The resulting contradiction proves the lemma. \square

Lemma 6.12. We have $\text{mult}_P(\mathcal{M}_X) < \frac{2+\delta_\omega}{\lambda_1}$.

Proof. Suppose that $\text{mult}_P(\mathcal{M}_X) \geq \frac{2+\delta_\omega}{\lambda_1}$. Then

$$\frac{\beta_\omega}{2} \geq \text{mult}_P(C_\omega) \geq \lambda_1^2 \text{mult}_P(M_1 \cdot M_2) - \text{mult}_P(Z_X) \geq \lambda_1^2 \text{mult}_P(M_X) - \frac{3}{2}$$

$$\geq \delta_\omega^2 + 2\delta_\omega + \frac{5}{2}$$

by Lemma 6.11. But $\beta_\omega \leq 1 + 6\delta_\omega$ by Corollary 6.9, a contradiction. \square

Put $X_0 = X$ and $\Theta_0 = P$. Then one can find positive integers N and K, $N \geq K \geq 2$, such that there is a sequence of blow-ups

$$X_N \xrightarrow{\psi_{N,N-1}} X_{N-1} \xrightarrow{\psi_{N-1,N-2}} \cdots \xrightarrow{\psi_{3,2}} X_2 \xrightarrow{\psi_{2,1}} X_1 \xrightarrow{\psi_{1,0}} X_0$$

with the following properties. The morphism $\psi_{1,0}$ blows up the point Θ_0 and, for every $i \in \{2, \ldots, K\}$, $\psi_{i,i-1}$ blows up a point $\Theta_{i-1} \in G_{i-1} \cong \mathbb{P}^2$, where G_{i-1} is the
exceptional divisor for $\psi_{i-1,i-2}$. The morphism $\psi_{K+1,K}$ blows up an irreducible curve $\Theta_K \subset G_K \cong \mathbb{P}^2$ and, for every $i \in \{K + 2, \ldots, N\}$, $\psi_{i,i-1}$ blows up an irreducible curve $\Theta_{i-1} \subset G_{i-1}$ with $\psi_{i-1,i-2}(\Theta_{i-1}) = \Theta_{i-1}$, where G_{i-1} is the exceptional divisor of $\psi_{i-1,i-2}$. The divisors G_N and F_i induce the same discrete valuation of the field of rational functions on X. For $N \geq j \geq i \geq 0$ we denote the proper transforms of G_i, \mathcal{M}_X and D_ω on the variety X_j by G^j_i, \mathcal{M}_{X_j} and D^j_ω respectively and put $\psi_{j,i} = \psi_{i+1,i} \circ \cdots \circ \psi_{j,j-1}$, where $\psi_{j,j} = \text{id}_{X_j}$. Then

$$K_{X_N} + \lambda_1 \mathcal{M}_{X_N} \equiv \psi_N^{*}(rD_\omega) + \sum_{i=1}^{N} c_i G_i^N,$$

where $c_i \in \mathbb{Q}$ and $c_N = a_t$. We similarly have $\psi_{N,0}(D_\omega) \equiv D_\omega^N + \sum_{i=1}^{N} d_i G_i^N$, where $d_i \in \mathbb{N}$ and $d_N = b_t^N$. Note that $c_N < 0$ and $\delta_\omega = -\frac{c_N}{d_N}$. We may assume that $-\delta_\omega = \frac{\alpha}{\nu} = \frac{\delta_N}{d_N} < \frac{c_i}{d_i}$ for every $i < N$. The curves Θ_i, $i \geq K$, might a priori be singular. But Lemma 6.12 yields that Θ_K is a line in $G_K \cong \mathbb{P}^2$ and, for every $i > K$, Θ_i is a section of the induced morphism $\psi_{i-1,i-2}|_{G_{i-1}} : G_{i-1} \to \Theta_{i-2} \cong \mathbb{P}^1$, whence, in particular, $\Theta_i \cong \mathbb{P}^1$ for $i \geq K$.

Let Γ be a directed graph whose set of vertices consists of the exceptional divisors G_1, \ldots, G_N and the set of edges is defined by the formulae

$$(G_j, G_i) \in \Gamma \iff j > i, \quad \Theta_{j-1} \subset G^{j-1}_i \subset X_{j-1},$$

where (G_j, G_i) is an edge from the vertex G_j to the vertex G_i. Let P_i be the number of directed paths from G_N to G_i in Γ. Then

$$c_N = \sum_{i=1}^{K} P_i (2 - \nu_i) + \sum_{i=K+1}^{N} P_i (1 - \nu_i),$$

where $\nu_i = \lambda_1 \text{mult}_{P_{i-1}}(\mathcal{M}_{X_{i-1}})$. Note that $(G_i, G_{i-1}) \in \Gamma$ for every $i \in \{1, \ldots, N\}$. Put $\Sigma_0 = \sum_{i=1}^{K} P_i$ and $\Sigma_1 = \sum_{i=K+1}^{N} P_i$. Let M be the largest positive integer such that $M \leq K$ and $P_{M-1} \in F_{\omega}^{M-1}$. We put $\Sigma_0 = \sum_{i=1}^{M} P_i$. Then

$$\text{mult}_P(Z_{X}) \Sigma_0 + \text{mult}_P(C_\omega) \Sigma'_0 \geq \frac{(2 \Sigma_0 + \Sigma_1 - c_N)^2}{\Sigma_0 + \Sigma_1},$$

by [18]. Note that $d_N \geq \Sigma_0 \leq \Sigma_0$. On the other hand,

$$\text{mult}_P(C_\omega) \leq \frac{\beta_\omega}{2} \leq \frac{1}{2} + 3 \delta_\omega = \frac{1}{2} - 3 \frac{c_N}{d_N},$$

by Lemma 6.11 and Corollary 6.9. Therefore we see that

$$\left(\text{mult}_P(Z_{X}) + \frac{1}{2}\right) \Sigma_0 - 3c_N \geq \frac{(2 \Sigma_0 + \Sigma_1 - c_N)^2}{\Sigma_0 + \Sigma_1},$$

where $c_N < 0$ and $\text{mult}_P(Z_{X}) \leq \frac{3}{2}$. Thus $2 \Sigma_0 - 3c_N \geq \frac{(2 \Sigma_0 + \Sigma_1 - c_N)^2}{\Sigma_0 + \Sigma_1}$.

Lemma 6.13. We have $\text{mult}_P(Z_{X}) \leq \frac{3}{4}$.
Proof. Since the log pair \((X, \lambda_1M_X)\) is not log canonical at the point \(P \in D_\omega\), the log pair \((X, \lambda_1M_X + D_\omega)\) is not log canonical at \(P\). Hence it follows from Theorem 2.17 that \((D_\omega, \lambda_1M_X|_{D_\omega})\) is not log canonical at \(P\). There is a rational number \(\mu\) such that \(0 < \mu < \lambda_1\) and the log pair \((D_\omega, \muM_X|_{D_\omega})\) is not log canonical at \(P\). Then LCS\((D_\omega, \muM_X|_{D_\omega})\) is connected by Theorem 2.16. Arguing as in the proof of Lemma 6.11, we see that either the subscheme \(L(D_\omega, \lambda_1M_X|_{D_\omega})\) is zero-dimensional or \(P \in \Gamma_2\). If \(L(D_\omega, \lambda_1M_X|_{D_\omega})\) is zero-dimensional, then \(|O_P^2| = 1\) by connectedness. This contradicts the inequality \(|O_P^2| \geq 6\). Hence we see that \(P \in \Gamma_2\). Then \(|O_P^2| \geq 12\) (see [16]). We have

\[
9 = \left(Z_X + \sum_{\lambda \in \mathbb{P}^1} C_\lambda \right) \cdot D_\omega
\]

\[
= Z_X \cdot D_\omega \geq \sum_{Q \in O_P^2} \text{mult}_Q(Z_X) = |O_P^2| \text{mult}_P(Z_X) \geq 12 \text{mult}_P(Z_X),
\]

whence \(\text{mult}_P(Z_X) \leq \frac{9}{4}\). \(\Box\)

Thus we see that \(c_N < 0\), \(\Sigma_0 \geq 1\), \(\Sigma_1 \geq 1\) and

\[
\frac{5}{4} \Sigma_0 - 3c_N \geq \frac{(2\Sigma_0 + \Sigma_1 - c_N)^2}{\Sigma_0 + \Sigma_1}.
\]

This is easily seen to be a contradiction. Theorem 6.1 is proved.

Appendix A. Non-rationality

Let \(X\) be a variety, \(\pi: X \to S\) a morphism, and \(G\) a finite subgroup of \(\text{Aut}(X)\).

Definition A.1. The morphism \(\pi\) is called a \(G\)-Mori fibration if the following conditions hold. The morphism \(\pi\) is \(G\)-equivariant, the variety \(X\) has terminal singularities, every \(G\)-invariant Weil divisor on \(X\) is a \(\mathbb{Q}\)-Cartier divisor, \(\pi\) is surjective and \(\pi_*(O_X) = O_S\), the divisor \(-K_X\) is \(\pi\)-ample, \(\dim(S) < \dim(X)\) and \(\dim_{\mathbb{Q}}(\text{Pic}^G(X/S) \otimes \mathbb{Q}) = 1\).

Suppose that \(\pi\) is a \(G\)-Mori fibration. Then \(X\) is rationally connected if and only if \(S\) is rationally connected (see [19], [20]).

Remark A.2. \(G\) acts naturally on \(S\), but this action need not be faithful. One can show that every \(G\)-invariant Weil divisor on \(S\) is a \(\mathbb{Q}\)-Cartier divisor (see [21]).

Suppose additionally that \(X\) is rationally connected. Then

\[
\dim_{\mathbb{Q}}(\text{Pic}^G(X) \otimes \mathbb{Q}) = \dim_{\mathbb{Q}}(\text{Pic}^G(S) \otimes \mathbb{Q}) + 1.
\]

Definition A.3. The fibration \(\pi\) is \(G\)-birationally rigid if, given any \(G\)-equivariant birational map \(\xi: X \dashrightarrow X'\) to a \(G\)-Mori fibration \(\pi': X' \to S'\), there is a commutative diagram

\[
\begin{array}{ccc}
X & \overset{\rho}{\longrightarrow} & X' \\
\downarrow \pi & & \downarrow \pi' \\
S & \overset{\sigma}{\longrightarrow} & S'
\end{array}
\]

\[
X \rightarrow^\rho X' \rightarrow^\xi X' \\
\pi \downarrow \downarrow \pi' \\
S \rightarrow^\sigma S' \rightarrow X'^\prime
\]
where σ is a birational map and $\rho \in \text{Bir}^G(X)$ is such that the rational map $\xi \circ \rho$ induces an isomorphism of generic fibres of the G-Mori fibrations π and π'.

Definition A.4. The fibration π is G-birationally superrigid if, given any G-equivariant birational map $\xi: X \dashrightarrow X'$ to a G-Mori fibration $\pi': X' \to S'$, there is a commutative diagram

$$
\begin{array}{ccc}
X & \xrightarrow{\xi} & X' \\
\downarrow \pi & & \downarrow \pi' \\
S & \xrightarrow{\sigma} & S'
\end{array}
$$

where σ is a birational map and ξ induces an isomorphism of generic fibres of the G-Mori fibrations π and π'.

For simplicity we say that X is G-birationally rigid (resp. G-birationally superrigid) if $\dim(S) = 0$ and $\pi: X \to S$ is G-birationally rigid (resp. G-birationally superrigid).

Remark A.5. Suppose that $\dim(S) = 0$. Then X is G-birationally superrigid if and only if X is G-birationally rigid and $\text{Bir}^G(X) = \text{Aut}^G(X)$.

We also say that a fibration $\pi: X \to S$ is birationally rigid (resp. birationally superrigid) if it is G-birationally rigid (resp. G-birationally superrigid) when G is the trivial group.

Example A.6. It was shown in [18] that $\pi: X \to S$ is birationally rigid if the following conditions hold. The variety X is smooth, $\dim(X) = 3$, $\dim(S) = 1$, K_X^2 is not an interior point of the closed cone of effective cycles on X and $K_X^2 \cdot F \leq 2$, where F is a general fibre of π.

We say that X is birationally rigid (resp. birationally superrigid) if $\dim(S) = 0$ and the fibration $\pi: X \to S$ is birationally rigid (resp. birationally superrigid).

Example A.7. It was shown in [22] that a general hypersurface of degree $n \geq 4$ in \mathbb{P}^n is birationally superrigid.

It follows from Definition A.3 that if the G-Mori fibration $\pi: X \to S$ is G-birationally superrigid and $X \not\cong \mathbb{P}^n$, then there is no G-equivariant birational map $X \dashrightarrow \mathbb{P}^n$, where $n = \dim(X)$.

Definition A.8. The fibration π is square birationally equivalent to a G-Mori fibration $\pi': X' \to S'$ if there is a commutative diagram

$$
\begin{array}{ccc}
X & \xrightarrow{\xi} & X' \\
\downarrow \pi & & \downarrow \pi' \\
S & \xrightarrow{\sigma} & S'
\end{array}
$$

where σ is a birational map and ξ is a G-equivariant birational map that induces an isomorphism of generic fibres of the G-Mori fibrations π and π'.
The following definition was introduced in [23].

Definition A.9. Let V be a variety and let Γ be a finite subgroup of $\text{Aut}(V)$. Then the set

$$\mathcal{P}(V, G) = \left\{ \tau: Y \to T \left| \begin{array}{l} \text{there is a } G\text{-equivariant} \\ \text{birational map } Y \dashrightarrow V \end{array} \right. \right\}/\star$$

where τ is a G-Mori fibration, is called the G-pliability of V. Here the equivalence relation \star is determined by the square birational equivalence of G-Mori fibrations.

We put $\mathcal{P}(V) = \mathcal{P}(V, G)$ if G is trivial. The following conditions are equivalent:

1. The fibration $\pi: X \to S$ is G-birationally rigid, the set $\mathcal{P}(X, G)$ consists of the fibration $\pi: X \to S$, we have $|\mathcal{P}(X, G)| = 1$.

Remark A.10. In the notation and under hypotheses of Definition A.9, it follows from [9] that the following conditions are equivalent:

- $\mathcal{P}(V, \Gamma) \neq \emptyset$,
- The divisor $-K_V$ is not pseudo-effective,
- The variety V is uniruled.

Example A.11. Let X be a quartic in \mathbb{P}^4 given by the equation

$$w^2x^2 + wyz + xg_3(y, z, t, w) + g_4(y, z, t, w) = 0 \subset \mathbb{P}^4 \cong \text{Proj}(\mathbb{C}[x, y, z, t, w]),$$

where g_i is a sufficiently general homogeneous polynomial of degree i. It was shown in [23] that $|\mathcal{P}(X)| = 2$.

Let $\overline{X} \to \overline{S}$ be a G-Mori fibration such that there is a G-equivariant birational map $\nu: \overline{X} \dashrightarrow X$. If $\dim(\overline{S}) \neq 0$, then we put $\mathcal{M}_{\overline{X}} = |\overline{\pi}^*(D)|$ for an arbitrary very ample divisor D (whose class in $\text{Pic}(\overline{S})$ is G-invariant) on \overline{S}. If $\dim(\overline{S}) = 0$, then we put $\mathcal{M}_{\overline{X}} = |-mK_{\overline{X}}|$ for a sufficiently large and sufficiently divisible positive integer m. Put $\mathcal{M}_X = \nu(\mathcal{M}_{\overline{X}})$.

Lemma A.12. Suppose that $\dim(\overline{S}) \neq 0$. Then either there is a commutative diagram

$$\begin{array}{ccc}
\overline{X} & \xrightarrow{\nu} & X \\
\downarrow \pi & & \downarrow \pi \\
\overline{S} & \xleftarrow{\zeta} & S
\end{array} \tag{A.1}
$$

where ζ' is a rational dominant map, or there is a $\lambda \in \mathbb{Q}$ such that $K_X + \lambda \mathcal{M}_X \equiv \pi^*(H)$, where H is a G-invariant \mathbb{Q}-divisor on S such that either the log pair $(X, \lambda \mathcal{M}_X)$ is not canonical or the divisor H is not \mathbb{Q}-effective.

Proof. Note that the commutative diagram (A.1) exists if and only if the linear system \mathcal{M}_X lies in the fibres of π. Hence we may assume that \mathcal{M}_X does not lie in the fibres of π. Then there is a $\lambda \in \mathbb{Q}$ such that $K_X + \lambda \mathcal{M}_X \equiv \pi^*(H)$, where H is a G-invariant \mathbb{Q}-divisor on S. By Lemma 2.23, $\kappa(K_X + \lambda \mathcal{M}_X) = -\infty$. But we have $\kappa(K_X + \lambda \mathcal{M}_X) = 0$ in the case when $(X, \lambda \mathcal{M}_X)$ is canonical and H is \mathbb{Q}-effective (see Corollary 2.24). □
Let \(\varepsilon \) be a positive rational number. There is a commutative diagram

\[
\begin{array}{c}
W \\
\alpha \downarrow \quad \beta \\
X \leftarrow \nu \leftarrow X
\end{array}
\]

where \(\alpha \) and \(\beta \) are \(G \)-equivariant birational morphisms and \(W \) is a smooth variety. Let \(M_W \) be the proper transform of \(M_X \) on \(W \). Then

\[
\alpha^* (K_X + \varepsilon M_X) + \sum_{i=1}^k a_i^\varepsilon F_i \equiv K_W + \varepsilon M_W \equiv \beta^* (K_X + \varepsilon M_X) + \sum_{i=1}^r b_i^\varepsilon E_i,
\]

where \(a_i^\varepsilon \) is a rational number, \(b_i^\varepsilon \) is a positive rational number, and \(F_i \) and \(E_i \) stand for the \(G \)-orbits of exceptional prime divisors for the morphisms \(\alpha \) and \(\beta \) respectively.

Lemma A.13. Suppose that \(\dim(S) \neq 0 \). Then either there is a commutative diagram

\[
\begin{array}{c}
\overline{X} \\
\pi \downarrow \\
\overline{S} \leftarrow \zeta \leftarrow S
\end{array}
\]

where \(\zeta \) is a rational dominant map, or there is a \(\lambda \in \mathbb{Q} \) such that \(K_X + \lambda M_X \equiv \pi^*(H) \), where \(H \) is a \(G \)-invariant \(\mathbb{Q} \)-divisor on \(S \) such that either there is an \(i \in \{1, \ldots, k\} \) for which \(a_i^\lambda < 0 \) and \(F_i \) is not \(\beta \)-exceptional, or the divisor \(H \) is not \(\mathbb{Q} \)-effective.

Proof. Arguing as in the proof of Lemma A.12, we may assume that there is a \(\lambda \in \mathbb{Q} \) such that \(K_X + \lambda M_X \equiv \pi^*(H) \), where \(H \) is a \(G \)-invariant \(\mathbb{Q} \)-divisor on \(S \). Suppose that \(H \) is not \(\mathbb{Q} \)-effective and we have \(a_i^\lambda \geq 0 \) for all \(i \in \{1, \ldots, k\} \) such that \(F_i \) is not \(\beta \)-exceptional. Then

\[
\beta \left[(\pi \circ \alpha)^* (H) + \sum_{i=1}^k a_i^\lambda F_i \right] \equiv \beta \left[(\pi \circ \alpha)^* (H) + \sum_{a_i^\lambda \geq 0} a_i^\lambda F_i \right] \equiv K_{X} + \lambda M_{X}, \quad (A.2)
\]

whence \(K_X + \lambda M_X \) is \(\mathbb{Q} \)-effective, a contradiction. \(\square \)

We note that Lemma A.13 is an analogue of Proposition 2 in [17].

Lemma A.14. Suppose that \(\dim(S) = 0 \). Then there is a \(\lambda \in \mathbb{Q} \) such that \(K_X + \lambda M_X \equiv \pi^*(H) \), where \(H \) is a \(G \)-invariant \(\mathbb{Q} \)-divisor (whose class in \(\text{Pic}(S) \) is \(G \)-invariant) on \(S \). Moreover, either \(\dim(S) = 0 \) and \(\nu \) is an isomorphism. or there is an \(i \in \{1, \ldots, k\} \) such that \(a_i^\lambda < 0 \) and \(F_i \) is not \(\beta \)-exceptional, or else the divisor \(H \) is not \(\mathbb{Q} \)-effective.
Proof. Recall that $\mathcal{M}_X = | - mK_X |$, where m is a sufficiently large and sufficiently divisible positive integer. Clearly, \mathcal{M}_X does not lie in the fibres of π. In particular, there is a $\lambda \in \mathbb{Q}$ such that $K_X + \lambda \mathcal{M}_X \equiv \pi^*(H)$, where H is a G-invariant \mathbb{Q}-divisor on S. Then

$$\dim(S) \geq \kappa(X, \lambda \mathcal{M}_X) = \kappa(X, \lambda \mathcal{M}_X) = \begin{cases}
\dim(X) & \text{if } \lambda > \frac{1}{m}, \\
0 & \text{if } \lambda = \frac{1}{m}, \\
-\infty & \text{if } \mu < \frac{1}{m},
\end{cases}$$

by Lemma 2.23. Thus we see that $\lambda \leq \frac{1}{m}$.

Suppose that H is \mathbb{Q}-effective and $a_i^\lambda \geq 0$ for every $i \in \{1, \ldots, k\}$ such that F_i is not β-exceptional. Then the numerical equivalence (A.2) holds and, therefore, $K_X + \lambda \mathcal{M}_X$ is \mathbb{Q}-effective. Thus we see that $\lambda = \frac{1}{m}$. It follows that

$$(\pi \circ \alpha)^*(H) + \sum_{i=1}^{k} a_i^\lambda F_i \equiv \sum_{i=1}^{r} b_i^\lambda E_i.$$

Suppose that $\dim(S) = 0$. It follows from Lemma 2.19 in [24] that $\sum_{i=1}^{k} a_i^\lambda F_i = \sum_{i=1}^{r} b_i^\lambda E_i$, whence the log pair $(X, \lambda \mathcal{M}_X)$ is terminal. Therefore ν is an isomorphism by Theorem 2.27.

To complete the proof, we may assume that $\dim(S) \neq 0$. Then

$$\dim_{\mathbb{Q}}(\text{Pic}^G(S) \otimes \mathbb{Q}) + 1 + k = \dim_{\mathbb{Q}}(\text{Pic}^G(X) \otimes \mathbb{Q}) + k = \dim_{\mathbb{Q}}(\text{Pic}^G(W) \otimes \mathbb{Q}) = 1 + r,$$

whence $k \leq r - 1$. For every $i \in \{1, \ldots, r\}$, we see that either E_i is α-exceptional or $\alpha(E_i)$ is a divisor that lies in the fibres of π.

Suppose that F_1 is not β-exceptional. Then $\langle F_1, E_1, \ldots, E_r \rangle = \text{Pic}^G(W) \otimes \mathbb{Q}$, where $\langle F_1, E_1, \ldots, E_r \rangle$ is the linear span of F_1, E_1, \ldots, E_r. We have

$$\dim_{\mathbb{Q}}(\langle E_1, \ldots, E_r \rangle \cap \langle F_1, \ldots, F_k \rangle) = k - 1$$

since the divisors F_1, \ldots, F_k are linearly independent in $\text{Pic}^G(W) \otimes \mathbb{Q}$. Therefore,

$$\dim_{\mathbb{Q}}(\langle \alpha(E_1), \ldots, \alpha(E_r) \rangle) = r - k + 1 = \dim_{\mathbb{Q}}(\text{Pic}^G(X) \otimes \mathbb{Q}),$$

where we assume that $\alpha(E_i) = 0$ in the case when E_i is α-exceptional. On the other hand, $\langle \alpha(E_1), \ldots, \alpha(E_r) \rangle \neq \text{Pic}^G(X) \otimes \mathbb{Q}$ because $\alpha(E_i)$ lies in the fibres of π if E_i is not α-exceptional.

Thus we see that F_1 is β-exceptional. We similarly see that all the divisors F_1, \ldots, F_k are β-exceptional. There is no loss of generality in assuming that $F_i = E_i$ for every $i \in \{1, \ldots, k\}$. Then $\dim_{\mathbb{Q}}(\langle \alpha(E_{k+1}), \ldots, \alpha(E_r) \rangle) = r - k = \dim_{\mathbb{Q}}(\text{Pic}^G(S) \otimes \mathbb{Q})$ and $\alpha(E_{k+1}), \ldots, \alpha(E_r)$ lie in the fibres of π.

Let M be a general very ample divisor on S, and let N be the proper transform of M on W. Then $\pi^*(M) \in \langle \alpha(E_{k+1}), \ldots, \alpha(E_r) \rangle$ and $N \sim (\pi \circ \alpha)^*(M)$. Note that the divisor N is not β-exceptional. On the other hand, $(\pi \circ \alpha)^*(M) \in \langle E_1, \ldots, E_r \rangle$, a contradiction. \(\square\)

Suppose additionally that $\dim(S) = 0$.

Theorem A.15 ([12], Theorem 1.26; see Lemmas A.13, A.14). The following conditions are equivalent. The Fano variety X is G-birationally rigid. For every G-invariant linear system \mathcal{M} without fixed components on X, there is a G-equivariant birational automorphism $\xi \in \text{Bir}^G(X)$ such that the log pair $(X, \lambda \xi(\mathcal{M}))$ has canonical singularities, where $\lambda \in \mathbb{Q}$ is such that $K_X + \lambda \xi(\mathcal{M}) \equiv 0$.

Corollary A.16. The following conditions are equivalent. The Fano variety X is G-birationally rigid. For every G-invariant linear system \mathcal{M} without fixed components on X, there is a G-equivariant birational automorphism $\xi \in \text{Bir}^G(X)$ such that $\kappa(X, \lambda \xi(\mathcal{M})) \geq 0$, where $\lambda \in \mathbb{Q}$ is such that $K_X + \lambda \xi(\mathcal{M}) \equiv 0$.

Corollary A.17. The following conditions are equivalent. The Fano variety X is G-birationally superrigid. For every G-invariant linear system \mathcal{M} without fixed components on X, the log pair $(X, \lambda \mathcal{M})$ has canonical singularities, where $\lambda \in \mathbb{Q}$ is such that $K_X + \lambda \mathcal{M} \equiv 0$.

We now give an elementary application of Corollary A.17.

Lemma A.18. Suppose that X is a smooth del Pezzo surface and $|\Sigma| \geq K_X^2$ for every G-orbit $\Sigma \subset X$. Then X is G-birationally superrigid.

Proof. Suppose that X is not G-birationally superrigid. Then, by Corollary A.17, there is a G-invariant linear system \mathcal{M} without fixed components on X such that the log pair $(X, \lambda \mathcal{M})$ is not canonical at some point $O \in X$, where $\lambda \in \mathbb{Q}$ is such that $K_X + \lambda \mathcal{M} \equiv 0$.

We denote the G-orbit of O by Σ. Then $\text{mult}_P(\mathcal{M}) > \frac{1}{\lambda}$ for every point $P \in \Sigma$. We have

$$\frac{K_X^2}{\lambda^2} = M_1 \cdot M_2 \geq \sum_{P \in \Sigma} \text{mult}_P(M_1 \cdot M_2) \geq \sum_{P \in \Sigma} \text{mult}_P^2(\mathcal{M}) > \frac{|\Sigma|}{\lambda^2} \geq \frac{K_X^2}{\lambda^2},$$

where M_1 and M_2 are sufficiently general curves in \mathcal{M}, a contradiction. □

Let us show how to apply Lemma A.18.

Theorem A.19. Let G be a finite subgroup of $\text{Aut}(\mathbb{P}^2) \cong \text{PGL}(3, \mathbb{C})$ such that $G \cong A_6$. Then \mathbb{P}^2 is G-birationally superrigid.

Proof. Let Σ be an arbitrary G-orbit in \mathbb{P}^2. Then it follows from [25] that $|\Sigma| \geq 12$. Hence \mathbb{P}^2 is G-birationally superrigid by Lemma A.18. □

Let Γ be a subset of $\text{Bir}^G(X)$.

Definition A.20. The subset Γ untwists all G-maximal singularities if, for every G-invariant linear system \mathcal{M} without fixed components on X, there is a $\xi \in \Gamma$ such that the log pair $(X, \lambda \xi(\mathcal{M}))$ has canonical singularities, where λ is a rational number such that $K_X + \lambda \xi(\mathcal{M}) \equiv 0$.

Lemmas A.13, A.14 yield the following corollary.

Corollary A.21. Suppose that Γ untwists all G-maximal singularities. Then X is G-birationally rigid, and the group $\text{Bir}^G(X)$ is generated by Γ and $\text{Aut}^G(X)$.

Two local inequalities 413
It follows from Theorem A.15 that X is G-birationally rigid if and only if the group $\text{Bir}^G(X)$ untwists all G-maximal singularities.

Definition A.22. The *global G-invariant log canonical threshold* of a variety X is the number

$$\text{lct}(X,G) = \sup\left\{ \lambda \in \mathbb{Q} \mid \text{the log pair } (X, \lambda D) \text{ has log canonical singularities for every } G\text{-invariant effective } \mathbb{Q}\text{-divisor } D \equiv -K_X \right\}.$$

We give an example of the calculation of the number $\text{lct}(X,G)$ (see [15], Lemma 5.7).

Theorem A.23. Let X be a smooth del Pezzo surface with $K_X^2 = 5$. Then $\text{Aut}(X) \cong S_5$, we have $\text{lct}(X, A_5) = 2$, and X is A_5-birationally superrigid, where $\text{Pic}^{A_5}(X) \cong \mathbb{Z}$.

Proof. The isomorphisms $\text{Aut}(X) \cong S_5$ and $\text{Pic}^{A_5}(X) \cong \mathbb{Z}$ are well known (see [26], [27]). Let P be a point of X and let $H \subset A_5$ be the stabilizer of P. We denote the A_5-orbit of P by Σ. Then $|H| = \frac{|A_5|}{|\Sigma|} = \frac{60}{|\Sigma|}$ and H acts faithfully on the tangent space of X at P. It follows that $|\Sigma| \neq 5$ because A_4 has no faithful two-dimensional representations. Since A_5 is simple, we have $|\Sigma| \geq 6$. In particular, X is G-birationally superrigid by Lemma A.18. This also follows from [28] or [29].

The surface X contains 10 smooth rational curves L_1, L_2, \ldots, L_{10} such that $L_1 \cdot L_1 = L_2 \cdot L_2 = \cdots = L_{10} \cdot L_{10} = -1$ and $\sum_{i=1}^{10} L_i \sim -2K_X$. In particular, we have $\text{lct}(X, A_5) \leq 2$ because the divisor $\sum_{i=1}^{10} L_i$ is A_5-invariant.

It follows from [30] that there is a birational morphism $\chi: X \to \mathbb{P}^2$ which blows up the four singular points of the curve $W \subset \mathbb{P}^2$ given by the equation

$$x^6 + y^6 + z^6 + (x^2 + y^2 + z^2)(x^4 + y^4 + z^4) = 12x^2y^2z^2 \subset \mathbb{P}^2 \cong \text{Proj}(\mathbb{C}[x,y,z]).$$

Let Z be the proper transform of W on X. Then $Z \sim 2K_X$, and the only S_5-invariant curves in the linear system $-2K_X$ are Z and $\sum_{i=1}^{10} L_i$. Let \mathcal{P} be the pencil on X generated by the curves Z and $\sum_{i=1}^{10} L_i$. Then every curve in \mathcal{P} is A_5-invariant (see [30]).

Suppose additionally that $|\Sigma| = 6$. Let T be a curve in \mathcal{P} such that $\Sigma \cap T \neq \emptyset$. Then $\Sigma \subset \text{Sign}(T)$ because H is non-Abelian and, therefore, has no faithful one-dimensional representations. It follows from [30] that \mathcal{P} contains five singular curves: the curve $\sum_{i=1}^{10} L_i$, two irreducible rational curves R_1 and R_2 having 6 nodes each, and two reduced curves F_1 and F_2 consisting of 5 smooth rational curves each. Thus we see that either $\Sigma = \text{Sign}(R_1)$, or $\Sigma = \text{Sign}(R_2)$.

The six-dimensional representation of A_5 induced by the action of A_5 on $-K_X$ is the sum of two inequivalent irreducible three-dimensional representations (see [26]). This yields A_5-equivariant projections $\varphi: X \dashrightarrow \mathbb{P}^2$ and $\psi: X \dashrightarrow \mathbb{P}^2$ respectively. It follows from [26] that φ and ψ are morphisms of degree 5, and the actions of A_5 on \mathbb{P}^2 induced by φ and ψ coincide with the actions of A_5 induced by the two non-isomorphic irreducible three-dimensional representations (see the proof of Lemma B.13) respectively.

Suppose that $\text{lct}(X, A_5) \neq 2$. Then there is an effective A_5-invariant \mathbb{Q}-divisor D on X such that $\text{LCS}(X, \lambda D) \neq \emptyset$ and $D \equiv -K_X$, where λ is a positive rational
number and \(\lambda < 2 \). Hence \(h^1(O_X(-K_X) \otimes \mathcal{I}(X, \lambda D)) = 0 \) by Theorem 2.14, where \(\mathcal{I}(X, \lambda D) \) is the multiplier ideal sheaf of the log pair \((X, \lambda D)\) (see Definition 2.13).

Suppose that \(X \) contains an \(\mathbb{A}^5 \)-invariant reduced curve \(C \) with \(\lambda D = \mu C + \Omega \), where \(\mu \) is a positive rational number, \(\mu \geq 1 \), and \(\Omega \) is an effective \(\mathbb{Q} \)-divisor on \(X \) whose support contains no components of \(C \). Then \(C \sim -mK_X \) for some positive integer \(m \). Therefore we have \(5 = -K_X \cdot D \geq \frac{5\mu}{X} > \frac{5m}{2} \), whence \(m = 1 \). On the other hand, the equality \(m = 1 \) is impossible.

Thus we obtain that the set \(\mathbb{L}CS(X, \lambda D) \) contains no curves (see Definition 2.10). Since \(h^1(O_X(-K_X) \otimes \mathcal{I}(X, \lambda D)) = 0 \), it follows that \(|\mathbb{L}CS(X, \lambda D)| \leq 6 \), but the set \(\mathbb{L}CS(X, \lambda D) \) is \(\mathbb{A}^5 \)-invariant. In particular, we have either \(\mathbb{L}CS(X, \lambda D) = \text{Sign}(R_1) \), or \(\mathbb{L}CS(X, \lambda D) = \text{Sign}(R_2) \).

To complete the proof, we may assume that \(\text{Supp}(D) \) contains neither \(R_1 \) nor \(R_2 \) (see Remark 2.6). We may also assume that \(\mathbb{L}CS(X, \lambda D) = \text{Sign}(R_1) = \Sigma \). Write \(\text{Sign}(R_1) = \{O_1, O_2, O_3, O_4, O_5, O_6\} \), where the \(O_i \) are the singular points of \(R_1 \). Suppose that \(P = O_1 \). Then we have

\[
10 = R_1 \cdot D \geq \sum_{i=1}^{6} \text{mult}_{O_i}(D) \cdot \text{mult}_{O_i}(R_1) \geq 12 \cdot \text{mult}_P(D),
\]

whence \(\text{mult}_P(D) \leq \frac{5}{6} \).

Let \(\pi : U \to X \) be the blow-up of the points \(O_1, O_2, O_3, O_4, O_5, O_6 \). Then

\[
K_U + \lambda D + \sum_{i=1}^{6} (\lambda \cdot \text{mult}_{O_i}(D) - 1)E_i \equiv \pi^*(K_X + \lambda D),
\]

where \(E_i \) is an exceptional curve of \(\pi \) with \(\pi(E_i) = O_i \) and \(D \) is the proper transform of \(D \) on \(U \). Moreover, the log pair \((U, \lambda D + \sum_{i=1}^{6} (\lambda \cdot \text{mult}_{O_i}(D) - 1)E_i) \) is not log canonical at some point \(Q \in E_1 \). It follows from Theorem 2.16 that

\[
\mathbb{L}CS\left(U, \lambda D + \sum_{i=1}^{6} (\lambda \cdot \text{mult}_{O_i}(D) - 1)E_i\right) \cap E_1 = Q.
\]

On the other hand, the \(\mathbb{A}^5 \)-orbit of \(Q \) contains at least two points of the exceptional curve \(E_1 \) since the stabilizer \(H \) acts faithfully on the tangent space of \(X \) at \(P \), a contradiction. \(\Box \)

The number \(\text{lct}(X, G) \) plays an important role in geometry (see Theorem 5.1). For simplicity we put \(\text{lct}(X) = \text{lct}(X, G) \) in the case when \(G \) is trivial. Then \(\text{lct}(\mathbb{P}^n) = \frac{1}{n+1} \) (see [12]).

Example A.24. Let \(X \) be a general hypersurface of degree \(n \geq 6 \) in \(\mathbb{P}^n \). It was shown in [17] that \(\text{lct}(X) = 1 \).

Note that Definition A.3 makes sense in the case when \(X \) is defined over an arbitrary perfect field, not necessarily algebraically closed.

Definition A.25. The variety \(X \) is said to be **universally G-birationally rigid** if \(X \otimes \text{Spec}(\mathbb{C}(U)) \) is G-birationally rigid for every variety \(U \). Here \(\mathbb{C}(U) \) is the field of rational functions on \(U \), and we regard \(G \) as a subgroup of \(\text{Aut}(X \otimes \text{Spec}(\mathbb{C}(U))) \).
It follows from Definition A.4 that all G-birationally superrigid varieties X are universally G-birationally rigid because the variety $X \otimes \text{Spec}(\mathbb{C}(U))$ is G-birationally superrigid for every variety U.

Remark A.26. Suppose that $\dim(X) \neq 1$ and X is G-birationally rigid. Then the group $\text{Aut}^G(X)$ is finite (see [31]). Moreover, X is universally G-birationally rigid if, for example, the group $\text{Bir}^G(X)$ is countable (see [32]).

Take a positive integer $r \geq 2$. For every $i \in \{1, 2, \ldots, r\}$ let X_i be a Fano variety and G_i a finite subgroup of $\text{Aut}(X_i)$ such that $\dim_{\mathbb{Q}}(\text{Pic}^{G_i}(X_i) \otimes \mathbb{Q}) = 1$ and every G_i-invariant Weil divisor on X_i is a \mathbb{Q}-Cartier divisor. Suppose that each X_i is G_i-birationally rigid and has at most terminal singularities. Put $X' = X_1 \times \cdots \times X_r$, $G = G_1 \times \cdots \times G_r$, $S_1 = X_2 \times \cdots \times X_r$, $S_r = X_1 \times \cdots \times X_r$ and $S_i = X_1 \times \cdots \times X_{i-1} \times X_{i+1} \times \cdots \times X_r$ for every $i \in \{2, \ldots, r-1\}$.

The natural projection $\pi_i : X' \to S_i$ is a G-Mori fibration and we have $\{\pi_1, \ldots, \pi_r\} \subseteq \mathcal{P}(X', G)$, where $\mathcal{P}(X', G)$ is the G-pliability of X' (see Definition A.9).

Theorem A.27. For every $i \in \{1, 2, \ldots, r\}$ suppose that X_i is universally G_i-birationally rigid and $\text{lct}(X_i, G_i) \geq 1$. Then $\mathcal{P}(X', G) = \{\pi_1, \ldots, \pi_r\}$.

Proof. Suppose that there is a G-equivariant birational map $\nu : X' \to X$ for some G-Mori fibration $\pi : X \to S$. We must prove the existence of an $i \in \{1, 2, \ldots, r\}$ such that $\dim(S) = \dim(S_i)$ and there is a commutative diagram

$$
\begin{array}{ccc}
X' & \xrightarrow{\nu} & X \\
\pi \downarrow & & \pi_i \\
S & \xrightarrow{\sigma} & S_i \\
\end{array}
$$

(A.3)

where ρ is a G-equivariant birational automorphism and σ is a birational map. Arguing as in the proofs of Theorem 1 in [17] and Theorem 6.5 in [33] and using Lemma A.14 instead of Proposition 2 in [17], we see that $\dim(S) \neq 0$ (compare with the proof of Theorem 6.1). Then, arguing as in the proofs of Theorem 1 in [17] and Theorem 6.5 in [33] and using Lemma A.13 instead of Proposition 2 in [17], we obtain the existence of the commutative diagram (A.3). \square

We now give some applications of Theorem A.27 (see Examples A.7, A.24).

Example A.28. It is known that the simple group A_6 is a group of automorphisms of the curve

$$10x^3y^3 + 9zx^5 + 9zy^5 + 27z^6 = 45x^2y^2z^2 + 135xyz^4 \subset \mathbb{P}^2 \cong \text{Proj}(\mathbb{C}[x, y, z]).$$

Hence there is a monomorphism $A_6 \times A_6 \to \text{Aut}(\mathbb{P}^2 \times \mathbb{P}^2)$, which in turn induces a monomorphism $\varphi : A_6 \times A_6 \to \text{Bir}(\mathbb{P}^4)$ since the variety $\mathbb{P}^2 \times \mathbb{P}^2$ is rational. Then it follows from Theorem A.27 that the subgroup $\varphi(A_6 \times A_6)$ is not conjugate to a subgroup of $\text{Aut}(\mathbb{P}^4)$ because \mathbb{P}^2 is A_6-birationally superrigid by Theorem A.19 and we have $\text{lct}(\mathbb{P}^2, A_6) = 2$ (see [15]).

For further applications of Theorem A.27 see [17] and [33].
Appendix B. The Cremona group

Let G be a finite group. We put $\text{Cr}_2(\mathbb{C}) = \text{Bir}(\mathbb{P}^2)$ and assume that there is a monomorphism $\varphi : G \to \text{Cr}_2(\mathbb{C})$.

Problem B.1. Find all subgroups of $\text{Cr}_2(\mathbb{C})$ (up to conjugacy) that are isomorphic to $\varphi(G)$.

The purpose of this appendix is to solve Problem B.1 in the case when G is a simple non-Abelian subgroup of $\text{Cr}_2(\mathbb{C})$ (see Theorem B.7).

Theorem B.2. Up to conjugacy, $\text{Cr}_2(\mathbb{C})$ contains precisely 3, 1, 2 subgroups isomorphic to A_5, A_6, $\text{PSL}(2,\mathbb{F}_7)$ respectively. An explicit description of these subgroups follows from Theorems B.8–B.10.

Let $\varphi' : G \to \text{Cr}_2(\mathbb{C})$ be a monomorphism. We note that if $\varphi(G) = \varphi'(G)$, then there is an automorphism $\chi \in \text{Aut}(G)$ such that $\varphi' = \varphi \circ \chi$.

Definition B.3. The pairs (G, φ) and (G, φ') are said to be conjugate if there is a birational automorphism $\varepsilon \in \text{Cr}_2(\mathbb{C})$ and a commutative diagram

$$
\begin{array}{ccc}
G & \xrightarrow{\varphi} & \text{Cr}_2(\mathbb{C}) \\
\downarrow{\omega_\varepsilon} & & \downarrow{\omega_\varepsilon} \\
\text{Cr}_2(\mathbb{C}) & \xrightarrow{\varphi'} & \text{Cr}_2(\mathbb{C})
\end{array}
$$

where ω_ε is the inner automorphism $\omega_\varepsilon(g) = \varepsilon \circ g \circ \varepsilon^{-1}$ for all $g \in \text{Cr}_2(\mathbb{C})$.

If $\varphi' = \varphi \circ \chi$ for some inner automorphism $\chi \in \text{Aut}(G)$, then the pairs (G, φ) and (G, φ') are conjugate.

Problem B.4. For every $\sigma \in \text{Aut}(G)$ decide whether (G, φ) and $(G, \varphi \circ \sigma)$ are conjugate.

It follows from [27], Lemma 3.5, that there is a smooth rational surface X, a monomorphism $\upsilon : G \to \text{Aut}(X)$ and a birational map $\xi : X \dasharrow \mathbb{P}^2$ such that $\varphi(g) = \xi \circ \upsilon(g) \circ \xi^{-1} \in \text{Bir}(\mathbb{P}^2)$ for all $g \in G$. Note that the triple (X, ξ, υ) is not uniquely determined by the pair (G, φ).

Definition B.5. The triple (X, ξ, υ) is called a regularization of the pair (G, φ).

Let (X', ξ', υ') be a regularization of (G, φ').

Theorem B.6 ([27], Lemma 3.4). The pairs (G, φ) and (G, φ') are conjugate if and only if there is a birational map $\rho : X \dasharrow X'$ such that $\upsilon'(g) = \rho \circ \upsilon(g) \circ \rho^{-1} \in \text{Aut}(X')$ for all $g \in G$.

In particular, Theorem B.6 implies that to solve Problems B.1, B.4, we may assume the existence of a morphism $\pi : X \to S$, which is a $\upsilon(G)$-Mori fibration. Note that either $S \cong \mathbb{P}^1$, or S is a point.

Theorem B.7 ([27]). Let G be a non-Abelian simple group. Then G is isomorphic to one of the following groups: A_5, A_6, $\text{PSL}(2,\mathbb{F}_7)$.
We identify the subgroup $v(G)$ of $\text{Aut}(X)$ with G.

Theorem B.8. Suppose that $G \cong \text{PSL}(2, \mathbb{F}_7)$. Then S is a point and the surface X is G-birationally superrigid. Moreover, either $X \cong \mathbb{P}^2$ and G is conjugate to a subgroup of $\text{Aut}(X)$ that leaves the smooth curve

$$x^3y + y^3z + z^3x = 0 \subset \text{Proj}(\mathbb{C}[x, y, z]) \cong \mathbb{P}^2 \quad \text{(B.4)}$$

invariant, or X is a double covering of \mathbb{P}^2 branched along the curve (B.4). For every $\sigma \in \text{Aut}(G)$, the pairs (G, φ) and $(G, \varphi \circ \sigma)$ are conjugate if and only if the automorphism σ is inner.

Proof. It is easy to see that S is a point and either $X \cong \mathbb{P}^2$ and G is conjugate to a subgroup of $\text{Aut}(X)$ that leaves the curve (B.4) invariant, or X is a double covering of \mathbb{P}^2 branched along the curve (B.4).

Note that any G-orbit in X consists of at least two points. Indeed, since G is simple, it has no faithful two-dimensional representations and no subgroups of index two. If $X \cong \mathbb{P}^2$, then any G-orbit in X contains at least 12 points (see [16], [25]). In particular, we see that X is G-birationally superrigid by Lemma A.18.

Consider an arbitrary automorphism $\sigma \in \text{Aut}(G)$ such that the pairs (G, φ) and $(G, \varphi \circ \sigma)$ are conjugate. By Theorem B.6, there is a birational map $\rho: X \dasharrow X$ such that $v \circ \sigma(g) = \rho \circ v(g) \circ \rho^{-1}$ for all $g \in G$. We have $\rho \in \text{Aut}(X)$ because X is G-birationally superrigid. Put $\widehat{G} = \langle G, \rho \rangle$ (where, as above, we identify G with the subgroup $v(G)$ of $\text{Aut}(X)$). Then \widehat{G} is a finite subgroup of $\text{Aut}^G(X)$. It follows that $\widehat{G} = G$ because $\text{Aut}^G(X) = G$ if $X \cong \mathbb{P}^2$, and $\text{Aut}(X) = \text{Aut}^G(X) \cong \text{PSL}(2, \mathbb{F}_7) \rtimes \mathbb{Z}_2$ if $X \not\cong \mathbb{P}^2$. In particular, we see that $\rho \in G$ and, therefore, σ is an inner automorphism of G. □

Theorem B.9. Suppose that $G \cong \mathbb{A}_6$. Then $X \cong \mathbb{P}^2$ and X is G-birationally superrigid. For every $\sigma \in \text{Aut}(G)$, the pairs (G, φ) and $(G, \varphi \circ \sigma)$ are conjugate if and only if σ is an inner automorphism. Moreover, the subgroup G is conjugate to a subgroup of $\text{Aut}(X)$ that leaves invariant the curve

$$10x^3y^3 + 9zx^5 + 9zy^5 + 27z^6 = 45x^2y^2z^2 + 135xyz^4 \subset \mathbb{P}^2 \cong \text{Proj}(\mathbb{C}[x, y, z]). \quad \text{(B.5)}$$

Proof. Denote the curve (B.5) by C. Arguing as in the proof of Theorem B.8, we see that $X \cong \mathbb{P}^2$ and G is conjugate to a subgroup that leaves C invariant. Hence we may assume that C is G-invariant. By Theorem A.19, X is G-birationally superrigid.

Let ρ be any element of $\text{Aut}^G(X)$ and g any element of G. Then $g(\rho(C)) = \rho(g'(C)) = \rho(C)$ for some $g' \in G$. On the other hand, C is the only G-invariant sextic in \mathbb{P}^2. Thus we see that $\rho(C) = C$. It follows that $\rho \in G$ because $G \cong \text{Aut}(C)$. We complete the proof by arguing as in the proof of Theorem B.8. □

Theorem B.10. Suppose that $G \cong \mathbb{A}_5$. Then the pairs (G, φ) and $(G, \varphi \circ \sigma)$ are conjugate for every $\sigma \in \text{Aut}(G)$. Moreover, one of the following possibilities holds.

1) X is a blow-up of \mathbb{P}^2 at any four points in general position, S is a point, X is G-birationally superrigid, and $\text{Aut}(X) \cong \mathbb{S}_5$.

2) $X \cong P^2$, X is G-birationally rigid, and

\[A_5 \cong \text{Aut}^G(\mathbb{P}^2) \subsetneq \text{Bir}^G(\mathbb{P}^2) \cong S_5. \]

3) $X \cong \mathbb{F}_n$, where $n \in \mathbb{N} \cup \{0\}$ is even, there is a birational map $\rho : X \dashrightarrow \mathbb{P}^1 \times \mathbb{P}^1$ inducing a monomorphism $\overline{\nu} : G \rightarrow \text{Aut}(\mathbb{P}^1 \times \mathbb{P}^1)$ such that $\overline{\nu}(g) = \rho \circ \nu(g) \circ \rho^{-1}$ for all $g \in G$, and $\overline{\nu}$ is induced by the natural action of $A_5 \times \text{id}_{\mathbb{P}^1}$ on $\mathbb{P}^1 \times \mathbb{P}^1$.

Note that Theorems B.8–B.10 completely solve Problems B.1 and B.4 in the case when $G \in \{A_5, A_6, \text{PSL}(2, \mathbb{F}_7)\}$.

Proof of Theorem B.10. Suppose that $G \cong A_5$.

Lemma B.11. If S is a point, then either $K_X^2 = 5$ or $X \cong \mathbb{P}^2$. If S is not a point, then $S \cong \mathbb{P}^1$ and $X \cong \mathbb{F}_n$, where $n \in \mathbb{N} \cup \{0\}$.

Proof. If S is a point, then either $K_X^2 = 5$ or $X \cong \mathbb{P}^2$ (see [27]). If $S \cong \mathbb{P}^1$, then $X \cong \mathbb{F}_n$ by Lemma 5.6 in [27], where $n \in \mathbb{N} \cup \{0\}$. □

Note that if $K_X^2 = 5$ and S is a point, then $\text{Aut}(X) \cong S_5$ and X is a blow-up of \mathbb{P}^2 at four arbitrary points, no three of which lie on a line (see [26], [27]).

Lemma B.12. Suppose that $K_X^2 = 5$ and S is a point. Then X is G-birationally superrigid. Moreover, the pairs (G, φ) and $(G, \varphi \circ \sigma)$ are conjugate for every $\sigma \in \text{Aut}(G)$.

Proof. The surface X is G-birationally superrigid by Theorem A.23. It is well known that $\text{Aut}(G) \cong S_5$ and every element of $\text{Aut}(G)$ is induced by an inner automorphism of S_5. Therefore the pairs (G, φ) and $(G, \varphi \circ \sigma)$ are conjugate for every $\sigma \in \text{Aut}(G)$. □

Note that if $X \cong \mathbb{P}^2$, then the embedding $A_5 \cong G \subset \text{Aut}(X) \cong \text{PSL}(3, \mathbb{C})$ is induced by a non-trivial three-dimensional representation of A_5.

Lemma B.13. Suppose that $X \cong \mathbb{P}^2$. Then $A_5 \cong \text{Aut}^G(X) \subsetneq \text{Bir}^G(X) \cong S_5$ and X is G-birationally rigid. Moreover, the pairs (G, φ) and $(G, \varphi \circ \sigma)$ are conjugate for every $\sigma \in \text{Aut}(G)$.

Proof. By [25] there are no G-invariant curves of degrees 1, 3 or 5 in \mathbb{P}^2. On the other hand, there is a unique G-invariant conic in \mathbb{P}^2. We denote this conic by C. Note that C is irreducible. The action of $G \cong A_5$ on the curve $C \cong \mathbb{P}^1$ induces an embedding $C \subset \text{Aut}(C)$.

It is well known that there is a unique G-invariant curve in \mathbb{P}^2 which is the union of 6 distinct lines. We denote these lines by L_1, \ldots, L_6. Then $C \cap (L_1 \cup \cdots \cup L_6)$ is the unique G-orbit in \mathbb{P}^2 that lies in C and consists of 12 points (see [16]). It is also well known that every G-orbit in \mathbb{P}^2 consists of at least 6 points, and there is a unique G-orbit of 6 points.

Take any element σ of $\text{Aut}(G)$. Then σ is induced by an inner automorphism of S_5. Thus, if $\text{Bir}^G(X) \cong S_5$, then the pairs (G, φ) and $(G, \varphi \circ \sigma)$ are conjugate.
Let ρ be an arbitrary element of $\text{Aut}^G(X)$, and g an arbitrary element of G. Then $g \circ \rho = \rho \circ g'$ for some $g' \in G$. Hence we have $g(\rho(C)) = \rho(g'(C)) = \rho(C)$ and, therefore, $\rho(C) = C$. Let Λ be the unique G-orbit in \P^2 that lies in C and consists of 12 points. Then $g(\rho(\Lambda)) = \rho(g'(\Lambda)) = \rho(\Lambda)$ and, therefore, $\rho(\Lambda) = \Lambda$. Note that the subgroup of those elements of $\text{Aut}(C)$ that leave Λ invariant is finite. Hence $\rho \in G$. Thus we see that $\text{Aut}^G(X) = G$.

To complete the proof, we must show that X is G-birationally rigid and $\text{Bir}^G(X) \cong S_5$.

Let Σ be the G-orbit of some point in \P^2. Suppose that $|\Sigma| \leq 9$. Then, by [16] or [25], we have $\Sigma \cap C = \emptyset$ and $|\Sigma| = 6$ (see §6). Note that Σ is uniquely determined by the equality $|\Sigma| = 6$.

Let $\gamma: W \to X$ be the blow-up of all points of Σ. Then it follows from Proposition 1 in [34] that $\text{Aut}(W) \cong S_5$ and W is isomorphic to the Clebsch cubic surface (see [27]). We put $\tau = \gamma \circ \theta \circ \gamma^{-1}$, where θ is an odd involution in $\text{Aut}(W) \cong S_5$. Then $\tau \notin \text{Aut}(\P^2)$. Note that the involution τ induces a monomorphism $\nu': G \to \text{Aut}(\P^2)$ such that $\nu'(g) = \tau \circ \nu(g) \circ \tau^{-1}$ for every $g \in G$. Then ν' is induced by a three-dimensional irreducible representation of A_5 and this representation is not isomorphic to the representation that induces ν (see [27], §9).

Let E be a reduced γ-exceptional divisor with $\gamma(E) = \Sigma$. Then there is a commutative diagram

$$
\begin{array}{ccc}
W & \xrightarrow{\gamma} & X \\
\downarrow{\psi} & & \downarrow{\psi} \\
\P^2 & \xrightarrow{\tau} & \P^2
\end{array}
$$

where ψ blows down the curve $\theta(E)$ to the set Σ (see the proof of Theorem A.23). If the group generated by τ untwists all G-maximal singularities (see Definition A.20), then $\text{Bir}^G(X) = \langle \text{Aut}^G(X), \tau \rangle \cong S_5$ by Corollary A.21 and X is G-birationally rigid by Corollary A.16. Hence, to complete the proof, we must show that the group generated by τ untwists all G-maximal singularities.

Let \mathcal{M} be a G-invariant linear system without fixed curves on X such that the log pair $(X, \mu \mathcal{M})$ is not canonical at some point $O \in X$, where $\mu \in \mathbb{Q}$ and $K_X + \mu \mathcal{M} \equiv 0$. We denote the G-orbit of O by Δ. Then $\text{mult}_P(\mathcal{M}) > \frac{1}{\mu}$ for every point $P \in \Delta$. Let M_1 and M_2 be general curves in \mathcal{M}. Then we have

$$
\frac{9}{\mu^2} = \frac{K_X^2}{\mu^2} = M_1 \cdot M_2 \geq \sum_{P \in \Delta} \text{mult}_P(M_1 \cdot M_2) \geq \sum_{P \in \Delta} \text{mult}_P(M_1) \cdot \text{mult}_P(M_2) = \sum_{P \in \Delta} \text{mult}_P^2(\mathcal{M}) > \frac{|\Delta|}{\mu^2},
$$

whence $|\Delta| < 9$. Therefore $\Delta = \Sigma$. Putting $H = \gamma^*(O_{\P^2}(1))$, we have

$$
\theta^*(H) \sim 5H - 2E, \quad \theta^*(E) \sim 12H - 5E \quad (B.6)
$$
since the involution θ acts non-trivially on $\text{Pic}(W)$. Put $M' = \tau(M)$. Then $K_X + \mu'M' \equiv 0$ for some positive rational number μ'. Therefore it follows from (B.6) that

$$\mu' = \frac{3}{15/\mu - 12 \text{mult}_O(M)},$$

whence $\mu' > \mu$. We similarly deduce from (B.6) that $\text{mult}_P(M') = \frac{6}{\mu} - 5 \text{mult}_O(M)$ for every point $P \in \Sigma$. This proves that the log pair $(X, \mu'M')$ has canonical singularities at every point of Σ. Arguing as at the beginning of the proof of the lemma, we see that the singularities of the log pair $(X, \mu'M')$ are canonical everywhere. It follows that the group generated by τ untwists all G-maximal singularities. \hfill \Box

Hence, to complete the proof of Theorem B.10, we may assume that $X \cong \mathbb{F}_n$, where $n \in \mathbb{N} \cup \{0\}$.

Lemma B.14. Suppose that there are a monomorphism $\iota: G \to \text{Aut}(\mathbb{P}^1)$, an outer isomorphism $\nu \in \text{Aut}(G)$ and a birational map $\chi: X \dashrightarrow \mathbb{P}^1 \times \mathbb{P}^1$ such that

$$\chi \circ \nu(g) \circ \chi^{-1}(a,b) = (\iota(g)(a), \iota \circ \nu(g)(b))$$

for all $g \in G$ and $(a,b) \in \mathbb{P}^1 \times \mathbb{P}^1$. Then the pairs (G, φ) and $(G, \varphi \circ \sigma)$ are conjugate for every $\sigma \in \text{Aut}(G)$.

Proof. The birational map χ induces a monomorphism $\hat{\nu}: G \to \text{Aut}(\mathbb{P}^1 \times \mathbb{P}^1)$ such that $\hat{\nu}(g) = \chi \circ \nu(g) \circ \chi^{-1}$ for all $g \in G$. In this case $\hat{\nu}$ is induced by the twisted diagonal action of A_5 on $\mathbb{P}^1 \times \mathbb{P}^1$. We identify the subgroup $\hat{\nu}(G)$ with G.

Take an automorphism τ of $\mathbb{P}^1 \times \mathbb{P}^1$ such that $\tau(a,b) = (b,a)$ for all $(a,b) \in \mathbb{P}^1 \times \mathbb{P}^1$. Then $(G, \tau) \cong S_5$. It follows that the pairs (G, φ) and $(G, \varphi \circ \sigma)$ are conjugate for every $\sigma \in \text{Aut}(G)$ because every automorphism of A_5 is induced by an inner automorphism of S_5. \hfill \Box

Thus, to complete the proof of Theorem B.10, we may ignore any difference between the monomorphisms ν and $\nu \circ \sigma$, where $\sigma \in \text{Aut}(G)$.

Lemma B.15. Suppose that $n \neq 0$. Then n is even and there is a commutative diagram

$$\begin{array}{ccc}
X & \xrightarrow{\rho} & \mathbb{P}^1 \times \mathbb{P}^1 \\
\pi & & \pi \\
\mathbb{P}^1 & \xrightarrow{=} & \mathbb{P}^1
\end{array}$$

where ρ is a birational map that induces a monomorphism $\overline{\nu}: G \to \text{Aut}(\mathbb{P}^1 \times \mathbb{P}^1)$ satisfying $\overline{\nu}(g) = \rho \circ \nu(g) \circ \rho^{-1}$ for every $g \in G$, and $\overline{\nu}$ is induced by the natural action of the group $A_5 \times \text{id}_{\mathbb{P}^1}$ on $\mathbb{P}^1 \times \mathbb{P}^1$.

Proof. Let Z be the unique section of π such that $Z^2 = -n$. Then Z is a G-invariant curve. It is well known that Z contains G-orbits consisting of 12, 20 and 30 points (see [16]).
Let Σ be a G-orbit such that $\Sigma \subset Z$ and $|\Sigma| = 30$. Then there is a commutative diagram

$$
\begin{array}{ccc}
U & \xrightarrow{\beta} & X_1 \\
\alpha \downarrow & & \psi \downarrow \\
X & \xrightarrow{\pi} & X_1 \\
\pi_1 & \downarrow & \pi_1 \\
\mathbb{P}^1 & \xrightarrow{\psi_1} & \mathbb{P}^1
\end{array}
$$

where ψ is a birational map, π_1 is a \mathbb{P}^1-bundle, α is the blow-up of Σ, and β is the blow-down of the proper transforms of all fibres of π that pass through points of Σ.

The birational map ψ induces a monomorphism $\nu_1: G \to \text{Aut}(X_1)$ such that $\nu_1(g) = \psi \circ \nu(g) \circ \psi^{-1}$ for all $g \in G$. We identify the subgroup $\nu_1(G)$ with G. Put $Z_1 = \psi(Z)$. Then we have

$$Z_1 \cdot Z_1 = Z \cdot Z - 30 = -n - 30 < 0,$$

whence $X_1 \cong \mathbb{F}_{n+30}$ and Z_1 is G-invariant. The curve Z_1 contains G-orbits consisting of 12, 20 and 30 points (see [16]).

Let Σ_1 be a G-orbit with $\Sigma_1 \subset Z_1$ and $|\Sigma_1| = 20$, P_1 a point of Σ_1, and H_1 the stabilizer of P_1 in G. Then $H_1 \cong \mathbb{Z}_3$. Let L_1 be the fibre of π_1 such that $P_1 \in L_1$. Then $h_1(L_1) = L_1$ for every $h_1 \in H_1$. Thus there is a point $Q_1 \in L_1 \setminus P_1$ such that $h_1(Q_1) = Q_1$ for every $h_1 \in H_1$.

We denote the G-orbit of Q_1 by Λ_1. Then $|\Lambda_1| = 20$ and $\Lambda_1 \cap Z_1 = \emptyset$ because Z_1 is G-invariant and $Q_1 \notin Z_1$. Thus there is a commutative diagram

$$
\begin{array}{ccc}
U_1 & \xrightarrow{\beta_1} & X_2 \\
\alpha_1 \downarrow & & \psi_1 \downarrow \\
X_1 & \xrightarrow{\pi_1} & X_2 \\
\pi_2 & \downarrow & \pi_2 \\
\mathbb{P}^1 & \xrightarrow{\psi_2} & \mathbb{P}^1
\end{array}
$$

where ψ_1 is a birational map, π_2 is a \mathbb{P}^1-bundle, α_1 is the blow-up of Λ_1, and β_1 is the blow-down of the proper transform of the fibres of π_1 passing through the points of Λ_1.

The birational map ψ_1 induces a monomorphism $\nu_2: G \to \text{Aut}(X_2)$ such that $\nu_2(g) = \psi_1 \circ \nu_1(g) \circ \psi_1^{-1}$ for every $g \in G$. We identify the subgroup $\nu_2(G)$ with G. Put $Z_2 = \psi_1(Z_1)$. Then we have

$$Z_2 \cdot Z_2 = -n - 10 < 0,$$

whence $X_2 \cong \mathbb{F}_{n+10}$ and Z_2 is G-invariant. The curve Z_2 contains G-orbits consisting of 12, 20 and 30 points (see [16]).

Let Σ_2 be the unique G-orbit with $\Sigma_2 \subset Z_2$ and $|\Sigma_2| = 12$, P_2 a point of Σ_2, and H_2 the stabilizer of P_2 in G. Then $H_2 \cong \mathbb{Z}_5$. Let L_2 be the fibre of π_2 such
that $P_2 \in L_2$. Then $h_2(L_2) = L_2$ for every $h_2 \in H_2$. Hence there is a point $Q_2 \in L_2 \setminus P_2$ such that $h_2(Q_2) = Q_2$ for every $h_2 \in H_2$.

We denote the G-orbit of Q_2 by Λ_2. Then $|\Lambda_2| = 12$ and $\Lambda_2 \cap Z_2 = \emptyset$ because Z_2 is G-invariant and $Q_2 \notin Z_2$. Thus there is a commutative diagram

\[\begin{array}{ccc}
U_2 & \overset{\alpha_2}{\longrightarrow} & X_2 \\
\downarrow \psi_2 & & \downarrow \pi_2 \\
\mathbb{P}^1 & & \mathbb{P}^1
\end{array}\]

where ψ_2 is a birational map, π' is a \mathbb{P}^1-bundle, α_2 is the blow-up of Λ_2, and β_2 is the blow-down of the proper transforms of the fibres of π_2 that pass through the points of Λ_2.

The birational map ψ_2 induces a monomorphism $\nu': G \to \text{Aut}(X')$ such that $\nu'(g) = \psi_2 \circ \psi_3(g) \circ \psi_2^{-1}$ for every $g \in G$. We identify the subgroup $\nu'(G)$ with G. Put $Z' = \psi_2(Z_2)$. Then $Z' \cdot Z' = -n + 2 \leq 0$, and the curve Z' is a G-invariant section of π'. Note that $X' \cong \mathbb{P}_{n-2}$.

We put $\nu = \psi_2 \circ \psi_1 \circ \psi$. Then the triple $(X', \xi \circ \nu, \nu')$ is a regularization of the pair (G, φ). Thus we have constructed a commutative diagram

\[\begin{array}{ccc}
X & \overset{\nu}{\longrightarrow} & X' \\
\downarrow \pi & & \downarrow \pi' \\
\mathbb{P}^1 & & \mathbb{P}^1
\end{array}\]

where ν is a birational map, π' is a \mathbb{P}^1-bundle, $X' \cong \mathbb{P}_{n-2}$, and there is a section Z' of π' such that $Z' \cdot Z' = -n + 2$ and the curve Z' is G-invariant. If $n = 2$, then we are done. We similarly see that $n \neq 3$. Hence $n \geq 4$. Repeating the construction above $\lceil n/2 \rceil$ times, we complete the proof. \(\square\)

To complete the proof of Theorem B.10, we may put $X \cong \mathbb{P}^1 \times \mathbb{P}^1$ and assume that $\pi: \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^1$ is the projection onto the first factor.

Lemma B.16. Suppose that there is a G-invariant section Z of the fibration π. Then there is a commutative diagram

\[\begin{array}{ccc}
X & \overset{\rho}{\longrightarrow} & \mathbb{P}^1 \times \mathbb{P}^1 \\
\downarrow \pi & & \downarrow \pi \\
\mathbb{P}^1 & & \mathbb{P}^1
\end{array}\]

where ρ is a birational map inducing a monomorphism $\overline{\nu}: G \to \text{Aut}(\mathbb{P}^1 \times \mathbb{P}^1)$ such that $\overline{\nu}(g) = \rho \circ \nu(g) \circ \rho^{-1}$ for every $g \in G$, and $\overline{\nu}$ is induced by the natural action of the group $\mathbb{A}_5 \times \text{id}_{\mathbb{P}^1}$ on $\mathbb{P}^1 \times \mathbb{P}^1$.

Proof. Let Σ be a G-orbit such that $\Sigma \subset Z$ and $|\Sigma| = 60$. Then there is a commutative diagram

\[
\begin{array}{ccc}
U & \xrightarrow{\alpha} & X' \\
\downarrow{\psi} & & \downarrow{\psi'} \\
\pi & & \pi' \\
\end{array}
\]

where ψ is a birational map, π' is a \mathbb{P}^1-bundle, α is the blow-up of Σ, and β is the blow-down of the proper transforms of the fibres of π that pass through the points of Σ. The birational map ψ induces a monomorphism $\psi': G \to \text{Aut}(X')$ such that $\psi'(g) = \psi \circ \nu(g) \circ \psi^{-1}$ for every $g \in G$. We identify the subgroup $\psi'(G)$ with G. Put $Z' = \psi(Z)$. Then $Z'.Z = Z.Z - 60$ and the curve Z' is a G-invariant section of π'. We put $m = -Z'.Z'$. If $m \geq 0$, then $X' \cong \mathbb{P}_m$ and we are done by Lemma B.15. If $m < 0$, then we can repeat the construction above $\lceil m/60 \rceil$ times to complete the proof. □

We define a biregular involution τ of the surface $\mathbb{P}^1 \times \mathbb{P}^1$ by putting $\tau(a,b) = (b,a)$ for all $(a,b) \in \mathbb{P}^1 \times \mathbb{P}^1$. Then τ induces a monomorphism $\nu': G \to \text{Aut}(\mathbb{P}^1 \times \mathbb{P}^1)$ such that $\nu'(g) = \tau \circ \nu(g) \circ \tau$ for every $g \in G$. Hence the triple $(\mathbb{P}^1 \times \mathbb{P}^1, \xi \circ \tau, \nu')$ is a regularization of the pair (G, φ).

Lemma B.17. The monomorphism ν is induced by the natural action of the group $\text{id}_{\mathbb{P}^1} \times \mathbb{A}_5$ if and only if ν' is induced by the natural action of $\mathbb{A}_5 \times \text{id}_{\mathbb{P}^1}$.

Proof. This is obvious. □

We fix a monomorphism $\iota: G \to \text{Aut}(\mathbb{P}^1)$ and an outer automorphism $\nu \in \text{Aut}(G)$. It follows from Lemmas B.14, B.16, B.17 that we can assume that $\nu(g)(a,b) = (\iota(g)(a), \iota \circ \nu(g)(b))$ for every $g \in G$ and every $(a,b) \in \mathbb{P}^1 \times \mathbb{P}^1$.

Lemma B.18. There is a G-invariant section of π.

Proof. An explicit calculation shows that there is a G-invariant curve $Z \subset \mathbb{P}^1 \times \mathbb{P}^1$ such that

$$Z \sim \pi^*(\mathcal{O}_{\mathbb{P}^1}(7)) \otimes (\pi \circ \tau)^*(\mathcal{O}_{\mathbb{P}^1}(1)).$$

In particular, it follows that Z is a G-invariant section of π. □

Theorem B.10 is proved.

Bibliography

[1] J. Kollár and S. Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Math., vol. 134, Cambridge Univ. Press, Cambridge 1998.

[2] D. Kosta, Del Pezzo surfaces with Du Val singularities, Ph. D. thesis, University of Edinburgh 2009; arXiv:abs/0904.0943.
A. Corti, “Singularities of linear systems and 3-fold birational geometry”, *Explicit birational geometry of 3-folds*, London Math. Soc. Lecture Note Ser., vol. 281, Cambridge Univ. Press, Cambridge 2000, pp. 259–312.

V. A. Iskovskikh, “Birational rigidity of Fano hypersurfaces in the framework of Mori theory”, *Uspekhi Mat. Nauk* 56:2 (2001), 3–86; English transl., *Russian Math. Surveys* 56:2 (2001), 207–291.

J. Kollár, “Singularities of pairs”, *Algebraic geometry* (Santa Cruz 1995), Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI 1997, pp. 221–287.

V. V. Shokurov, “3-fold log flips”, *Izv. Ross. Akad. Nauk Ser. Mat.* 56:1 (1992), 105–203; English transl., *Russian Acad. Sci. Izv. Math.* 40:1 (1993), 95–202.

R. Lazarsfeld, *Positivity in algebraic geometry*, vol. II, Ergeb. Math. Grenzgeb. (3), vol. 49, Springer-Verlag, Berlin 2004.

I. A. Cheltsov, “Birationally rigid Fano varieties”, *Uspekhi Mat. Nauk* 60:5 (2005), 71–160; English transl., *Russian Math. Surveys* 60:5 (2005), 875–965.

I. A. Cheltsov and C. A. Shramov, “Log canonical thresholds of smooth Fano threefolds”, *Uspekhi Mat. Nauk* 63:5 (2008), 73–180; English transl., *Russian Math. Surveys* 63:5 (2008), 859–958.

I. Cheltsov, J. Park, and C. Shramov, “Exceptional del Pezzo hypersurfaces”, *J. Geom. Anal.* 20:4 (2010), 787–816.

I. Cheltsov, “On singular cubic surfaces”, *Asian J. Math.* 13:2 (2009), 191–214.

I. Cheltsov, “Log canonical thresholds of del Pezzo surfaces”, *Geom. Funct. Anal.* 18:4 (2008), 1118–1144.

A. V. Pukhlikov, “Birational geometry of Fano direct products”, *Izv. Ross. Akad. Nauk Ser. Mat.* 69:6 (2005), 153–186; English transl., *Izv. Math.* 69:6 (2005), 1225–1255.

A. V. Pukhlikov, “Birational automorphisms of algebraic threefolds with a pencil of Del Pezzo surfaces”, *Izv. Ross. Akad. Nauk Ser. Mat.* 62:1 (1998), 123–164; English transl., *Izv. Math.* 62:1 (1998), 115–155.

Q. Zhang, “Rational connectedness of log \mathbb{Q}-Fano varieties”, *J. Reine Angew. Math.* 590 (2006), 131–142.

T. Graber, J. Harris, and J. Starr, “Families of rationally connected varieties”, *J. Amer. Math. Soc.* 16:1 (2003), 57–67.

Y. Kawamata, K. Matsuda, and K. Matsuki, “Introduction to the minimal model problem”, *Algebraic geometry* (Sendai 1985), Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam 1987, pp. 283–360.

A. V. Pukhlikov, “Birational automorphisms of Fano hypersurfaces”, *Invent. Math.* 134 (1998), 401–426.

A. Corti and M. Mella, “Birational geometry of terminal quartic 3-folds. I”, *Amer. J. Math.* 126:4 (2004), 739–761.
[24] J. Kollár, *Flips and abundance for algebraic threefolds* (Salt Lake City, Utah 1991), Astérisque, vol. 211, Soc. Math. de France, Paris 1992.

[25] S. S.-T. Yau and Y. Yu, *Gorenstein quotient singularities in dimension three*, Mem. Amer. Math. Soc., vol. 105, no. 505, Amer. Math. Soc., Providence, RI 1993.

[26] J. Rauschning and P. Slodowy, “An aspect of icosahedral symmetry”, *Canad. Math. Bull.* **45**:4 (2005), 686–696.

[27] I. V. Dolgachev and V. A. Iskovskikh, “Finite subgroups of the plane Cremona group”, *Algebra, arithmetic, and geometry: in honor of Yu. I. Manin*, vol. I, Progr. Math., vol. 269, Birkhäuser, Boston, MA 2009, pp. 443–548.

[28] J. Blanc, “Sous-groupes algebriques du groupe de Cremona”, *Transform. Group* **14**:2 (2009), 249–285.

[29] S. Bannai and H. Tokunaga, “A note on embeddings of S_4 and A_5 into the two-dimensional Cremona group and versal Galois covers”, *Publ. Res. Inst. Math. Sci.* **43**:4 (2007), 1111–1123.

[30] W. L. Edge, “A pencil of four-nodal plane sextics”, *Math. Proc. Cambridge Philos. Soc.* **89**:3 (1981), 413–421.

[31] M. Rosenlicht, “Some basic theorems on algebraic groups”, *Amer. J. Math.* **78** (1956), 401–443.

[32] J. Kollár, “Birational rigidity of Fano varieties and field extensions”, *Multidimensional algebraic geometry*, Tr. Mat. Inst. Steklova, vol. 264, MAIK, Moscow 2009, pp. 103–108 (English); reprinted in *Proc. Steklov Inst. Math.* **264** (2009), 96–101.

[33] I. Cheltsov, “Fano varieties with many selfmaps”, *Adv. Math.* **217**:1 (2008), 97–124.

[34] N. Hitchin, “Spherical harmonics and the icosahedron”, *Groups and symmetries*, CRM Proc. Lecture Notes, vol. 47, Amer. Math. Soc., Providence, RI 2009, pp. 215–231.

Ivan A. Cheltsov
School of Mathematics, University of Edinburgh, UK
E-mail: I.Cheltsov@ed.ac.uk

Received 19/SEP/11
Translated by THE AUTHOR