Evidence of a thick disk rotation–metallicity correlation

A. Spagna1, M. G. Lattanzi1, P. Re Fiorentin2, and R. L. Smart1

1 INAF-Osservatorio Astronomico di Torino, via Osservatorio 20, 10025 Pino Torinese, Italy
2 University of Ljubljana, Faculty of Mathematics and Physics, Jadranska 19, SLO-1000 Ljubljana, Slovenia

Received 23 October 2009 / Accepted 13 January 2010

ABSTRACT

We analyze a new kinematic survey that includes accurate proper motions derived from SDSS DR7 positions, combined with multi-epoch measurements from the GSC-II database. By means of the SDSS spectro-photometric data (effective temperature, surface gravity, metallicity, and radial velocities), we estimate photometric parallaxes for a sample of 27 000 FGK (sub)dwarfs with [Fe/H] < −0.5, which we adopted as tracers of the seven-dimensional space distribution (kinematic phase distribution plus chemical abundance) of the thick disk and inner halo within a few kiloparsecs of the Sun. We find evidence of a kinematics-metallicity correlation, ∂Vz/∂[Fe/H] ≃ 40 ± 50 km s−1 dex−1, amongst thick disk stars located between one and three kiloparsecs from the plane and with abundance −1 < [Fe/H] < −0.5, while no significant correlation is present for [Fe/H] > −0.5. In addition, we estimate a shallow vertical rotation velocity gradient, ∂Vz/∂|z| = −19 ± 2 km s−1 kpc−1, for the thick disk between 1 kpc < |z| < 3 kpc, and a low prograde rotation, 37 ± 3 km s−1 for the inner halo up to 4 kpc. Finally, we briefly discuss the implications of these findings for the thick disk formation scenarios in the context of CDM hierarchical galaxy formation mechanisms and of secular evolutionary processes in galactic disks.

Key words. Galaxy: disk – Galaxy: kinematics and dynamics – Sun: abundances – stars: kinematics and dynamics – surveys

1. Introduction

The existence of a thick disk in our Galaxy was revealed by Gilmore & Reid (1983), who analyzed starscours toward the South Galactic Pole. Thanks to the many studies carried out since then, the main spatial, kinematic, and chemical features of this population are well established. Thick disks have been also observed in many disk galaxies (Yoachim & Dalcanton 2006), and they represent the frozen relics of the first phases of disk galaxy formation (Freeman & Bland-Hawthorn 2002). However, in spite of the many scenarios proposed until now, the origin of this component is still unclear.

In the context of CDM hierarchical galaxy formation models, it is possible that thick disks are formed by the heating of a pre-existing thin disk through a minor merger (e.g. Villalobos & Helmi 2008), by accretion of stars from disrupted satellites (Abadi et al. 2003), or by the stars formed in situ from gas-rich chaotic mergers at high redshift (Brook et al. 2005). On the other hand, simulations suggest that thick disks could simply be produced through secular radial migration of stars induced by the spiral arms (Roškar et al. 2008; Schönrich & Binney 2009).

In any event, most astronomers agree that our thick disk is formed of an old stellar population with an age of 8–12 Gyr (e.g. Haywood 2008, and references therein). The bulk of the thick disk stars have metallicity in the range −1 ≤ [Fe/H] ≤ −0.3 ([Fe/H] = −0.6, on average) with enhanced [α/Fe] (Bensby et al. 2005; Reddy et al. 2006), but note that tails with metal-poor stars down to [Fe/H] ≃ −2 (Chiba & Beers 2000) and metal-rich stars up to [Fe/H] ≃ 0 (Bensby & Beers 2000) have also been revealed. Moreover, according to Ivezić et al. (2008), a mild vertical metallicity gradient shifts the mean metallicity to [Fe/H] ≃ −0.8 beyond |z| ≃ 3 kpc.

The spatial distribution is usually modeled with a symmetric exponential density distribution as a function of galactocentric coordinates (R, z). Its scale height spans a wide range of measurements, between hz = 640 pc and 1500 pc, while the local normalization varies between 13% and 2% in anticorrelation with hz (see Fig. 3 of Árnadóttir et al. 2008). The distribution above the galactic plane is supported by a vertical velocity dispersion, σw ≃ 40 km s−1, which is associated with an asymmetric drift of ~50 km s−1, relative to the local standard of rest.

Significant asymmetries have also been detected, such as the prominent Hercules thick disk cloud (Parker et al. 2003; Jurić et al. 2008), which could correspond to a merger remnant or indicate a triaxial thick disk (Larsen et al. 2008).

In this letter, we present new results regarding the vertical rotation gradient and, for the first time to our knowledge, evidence of a metallicity-rotation correlation in the thick disk stellar population.

2. The SDSS – GSC-II catalog

This study is based on a new kinematic catalog derived by assembling the astrometric parameters extracted from the database used for the construction of the Second Guide Star Catalog (GSC-II; Lasker et al. 2008) with spectro-photometric data from the Seventh Data Release of the Sloan Digital Sky Survey (SDSS DR7; e.g. Abazajian et al. 2009; Yanny et al. 2009). The SDSS–GSC-II catalog contains positions, proper motions, classification, and ugriz photometry for 77 million sources down to r ≃ 20, over 9000 square-degrees.

Proper motions are computed by combining multi-epoch positions from SDSS DR7 and the GSC-II database. Typically, 5–10 observations are available for each source, spanning...
~50 years. Total errors are in the range 2–3 mas yr\(^{-1}\) for \(16 < r < 18.5\), comparable with those of the SDSS proper motions (Munn et al. 2004), as confirmed by external comparisons against QSOs. The construction and properties of this catalog are described in detail by Smart et al. (2010, in preparation), while a concise description can be found in Spagna et al. (2009).

Radial velocities (\(\sigma_{V_{r}} \approx 10 \text{ km s}^{-1}\)) and astrophysical parameters (\(\sigma_{V_{d}} \approx 150 \text{ K}, \sigma_{\log g} \approx 0.25, \sigma_{[\text{Fe/H}]} \approx 0.20\)) are available for 151 000 sources cross-matched with the SDSS spectroscopic catalog. From this list, we select sources with 4500 K < \(T_{\text{eff}}\) < 7500 K and log g > 3.5, corresponding to FGK (sub)dwarfs, and apply the color thresholds from Klement et al. (2009) in order to remove turn-off stars.

Spectro-photometric distances are computed by means of metallicity-dependent absolute magnitude relations, \(M_{V} = f(g-i,[\text{Fe/H}])\), from Ivezić et al. (2008). Here, the observed magnitudes are corrected for interstellar absorption via the extinction maps of Schlegel et al. (1998), while the spectroscopic [Fe/H] is used, instead of the photometric metallicity applied by Ivezić et al. (2008).

The mean distance of the sample is ~2 kpc, while most (92\%) of the sources are distributed between 0.5 kpc < \(|z| < 3.5\) kpc and 6 kpc < \(r < 11\) kpc. The typical accuracy of the \(M_{V}\) calibration is 0.3 mag (random) and 0.1 mag (systematic), which corresponds to distance errors of \(\Delta d/d = 15\%\) and 5\%, respectively. Finally, 3D velocities in the galactocentric reference frame, (\(V_{R}, V_{\phi}, V_{Z}\)), are derived by assuming \(R_{0} = 8\) kpc, solar motion (\(U_{0}, V_{0}, W_{0}\)) from Dehnen & Binney (1998), and local standard of rest velocity of 220 km s\(^{-1}\).

In order to produce an accurate sample, we select only stars with (i) proper motion errors <10 mas yr\(^{-1}\) per component; (ii) errors on the velocity components <50 km s\(^{-1}\); (iii) total velocity <600 km s\(^{-1}\); (iv) distance <5 kpc, and (v) magnitude 13.5 < \(g < 20.5\). Overall, the kinematic catalog contains 46 000 stars; in the following sections a subsample of 27 000 low metallicity dwarfs with \(-3 < [\text{Fe/H}] < -0.5\) will be used as tracers of the inner halo and thick disk and analyzed in details.

3. Analysis and results

3.1. Vertical rotation gradient

Figure 1 shows the \(V_{\phi}\) distribution of 6538 stars with 1.0 kpc < \(|z| < 1.5\) kpc and [Fe/H] < −0.5. In this sample, the contamination of thin disk stars is expected to be negligible\(^1\), so that we fit the distribution with only two Gaussian populations, corresponding to the thick disk and halo. The least-squares solution of the two-component model is good, although the counts at \(V_{\phi} \approx 220\) km s\(^{-1}\) are slightly underestimated (−16\%) and the velocity peak is overestimated of about 7\%; this explains a nonoptimal \(\chi^{2}_{\text{red}} = 3.18\). (If we force a third Gaussian component corresponding to the thin disk, the formal goodness of fit improves significantly, \(\chi^{2}_{\text{red}} = 1.37\), but the solution becomes ill-conditioned with an inaccurate thin disk normalization of (19 ± 6\%).)

The same procedure is repeated for six height bins: \(|z| = 0.5–1.0\) kpc, 1.0–1.5 kpc, 1.5–2.0 kpc, 2.0–2.5 kpc, 2.5–3.0 kpc, and 3.0–4.0 kpc. The results are reported in Table 1, which lists mean height, number of stars, mean rotation velocities and dispersions, fraction of thick disk stars, and reduced \(\chi^{2}_{\text{red}}\). The halo parameters appear quite stable: on average, \(V_{\phi} < 37 ± 3\) km s\(^{-1}\) (1 < \(|z| < 4\) kpc), which indicates a slow prograde rotation of the inner halo, in agreement with some authors (Chiba & Beers 2000; Kepley et al. 2007) but different from others that favor a non-rotating inner halo (Vallenari et al. 2006; Smith et al. 2009; Bond et al. 2010). The halo velocity dispersion also appears rather constant up to \(|z| \approx 4\) kpc, with a mean value of \(\sigma_{V_{\phi}} = 93 ± 2\) km s\(^{-1}\) (uncorrected for the velocity errors).

Conversely, the thick disk shows a monotonic decreasing of the rotation velocity from \(V_{\phi} = 186\) km s\(^{-1}\) to 146 km s\(^{-1}\), for height from 0.5 kpc to 3 kpc. In the highest bin (3 kpc < \(|z| < 4\) kpc), \(V_{\phi}\) increases to 166 ± 11 km s\(^{-1}\), but we think this is a spurious effect of both the larger velocity errors and the small fraction, (13 ± 7\%), of thick disk stars that are strongly entangled with the halo population. Similarly, in the same \(z\)-range, the velocity dispersion increases from \(\sigma_{V_{\phi}} = 34\) km s\(^{-1}\) to ~45 km s\(^{-1}\), in part because of the tangential velocity errors that scale with distance.

We exclude the highest bin and also the lowest, as it is probably contaminated by thin disk stars which are difficult to deconvolve from the thick disk population. Thus, we estimate the gradient,

\[
\frac{\partial(V_{\phi})}{\partial |z|} = -19 ± 2\ \text{ km s}^{-1}\ \text{kpc}^{-1}
\]

(1)

and the extrapolated intercept, \(V_{\phi}(|z| = 0) = 196 ± 3\) km s\(^{-1}\). Our result is significantly smaller than the value, −30 ± 3 km s\(^{-1}\) kpc\(^{-1}\), measured by Chiba & Beers (2000), who analyzed stars with abundance in the range, −0.8 ≤ [Fe/H] ≤ −0.6,
where the thick disk dominates. A similar trend was estimated by Girard et al. (2006), Carollo et al. (2010), and by Bond et al. (2010), although they adopted a nonlinear function.

Instead, a shallower slope was found by Majewski (1992), who derived a gradient of -21 ± 1 km s$^{-1}$ kpc$^{-1}$ for $|z| < 5$ kpc, after separating the halo population from that of the thick disk. A low kinematical gradient was also found by Spagna et al. (1996) and, more recently, by Allende Prieto et al. (2006), who estimated -10 km s$^{-1}$ kpc$^{-1}$ and -16 km s$^{-1}$ kpc$^{-1}$, respectively. The difference between these results can be explained, at least in part, by thin disk and halo star contamination, which tends to produce steeper velocity gradients.

3.2. Rotation–metallicity correlation

The disk and halo populations are apparent in the V_ϕ vs. [Fe/H] distribution (see Fig. 2). In particular, the region $-1.0 < [\text{Fe/H}] < -0.5$ and 0 km s$^{-1} < V_\phi < 300$ km s$^{-1}$ does contain the bulk of the regular thick disk stars, besides a small number of stars belonging to the metal-poor tail of the thin disk and to the high-metallicity tail of the inner halo. Actually, a significant fraction of thin disk stars are expected for [Fe/H] > -0.5, while towards lower abundances, [Fe/H] < -1, the thick disk metal weak tail and the newly discovered flattened inner halo (Morrison et al. 2009) are also present.

Figure 3 shows the iso-density contours of the velocity-metallicity distribution of stars with $|z| = 1.0$–3.0 kpc and $|z| < -0.3$. As in Ivezić et al. (2008) and Bond et al. (2010), no correlation appears in the transition region between the thin and thick disks ($[\text{Fe/H}] \simeq -0.5$). Instead, we notice a shallow but clear slope for $[\text{Fe/H}] \leq -0.5$, undetected by previous studies, which indicates that the metal-rich stars tend to rotate faster than the metal-poor ones. In particular, the top-density ridge increases from $V_\phi \approx 150$ km s$^{-1}$ at $|z| = 1$ kpc to $V_\phi \approx 170$ km s$^{-1}$ at $|z| \approx -0.4$. Inspection of Fig. 3 also proves a bimodal distribution with a secondary maximum located at $[\text{Fe/H}] \approx -0.55$, close to the value of the mean metallicity of the thick disk, and the peak at $[\text{Fe/H}] \approx -0.38$ due to thin disk stars.

To quantify the correlation, we first select the stars within $\Delta [\text{Fe/H}] = 0.05$ bins in the range $-1.0 < [\text{Fe/H}] < -0.5$ and located at the different height intervals: $\Delta |z| = 1.0$–1.5 kpc, 1.5–2.0 kpc, and 2.0–3.0 kpc. Then, the stars with velocities (V_ϕ, V_θ, V_z) outside 3σ from the thick disk velocity ellipsoid, corresponding to a confidence level of 97.1%, were rejected to minimize the contamination from the halo stars. We adopted $\langle V_\phi \rangle$ as a function of z derived from Table 1 and assumed constant dispersions: $\sigma_{V_\phi} = \sigma_{V_z} = 40$ km s$^{-1}$ and $\sigma_{V_\phi} = 60$ km s$^{-1}$.

Finally, mean velocities were computed for the bona fide thick disk stars and the slope, $\partial \langle V_\phi \rangle / \partial [\text{Fe/H}]$, is estimated by means of a linear fit for the height intervals $\Delta |z| = 1.0$–1.5 kpc, 1.5–2.0 kpc, and 2.0–3.0 kpc. For each bin, mean height, total number of stars, number of stars used (after 3σ rejection), slope, and Spearman’s rank correlation coefficient are listed in Table 2, while the observed distributions are shown in Fig. 4. Overall, a kinematic-metallicity correlation of about 50 km s$^{-1}$ dex$^{-1}$ is detected up to $|z| = 2$ kpc, while a shallower slope (~ 35 km s$^{-1}$ dex$^{-1}$) is present between 2 $< |z| \leq 3$ kpc. It is possible that these values are affected by a residual contamination of halo stars, whose presence can be inferred by the number of rejected high velocity stars shown in Table 2 being greater than the 3% expected in the case of a pure Gaussian distribution. Nevertheless, even if we apply a conservative 2σ selection (73.8% confidence level), we still find a correlation at the level of 30–40 km s$^{-1}$ dex$^{-1}$, as reported in the last column of Table 2.

This conclusion is consistent with the systematic slowing down of the thick disk rotation, which results from fitting a two Gaussian-component model, representing the thick disk and halo populations, as more metal-poor thresholds are applied: $[\text{Fe/H}]_{\max} < -0.5, < -0.6, ... < -1.0$ (see Table 3). This effect is depicted in Fig. 5, which shows how the thick disk
Table 3. Fitted parameters, as in Table 1, for different metallicity intervals, $-3.0 < \text{[Fe/H]} \leq \text{[Fe/H]}_{\text{max}}$, where $-1.0 \leq \text{[Fe/H]}_{\text{max}} \leq -0.5$.

THICK DISK	HALO									
$\frac{[\text{Fe/H}]}{V_\phi}$	N	$\langle V_\phi \rangle$	σ_{V_ϕ}	$\langle V_Z \rangle$	σ_{V_Z}	χ^2				
(dex)	(km s$^{-1}$)	(km s$^{-1}$)	(%)							
---	---	---	---	---	---	---				
1.0 kpc $<	z	\leq 1.5$ kpc	-0.5	6537	173 \pm 1	39 \pm 1	33 \pm 4	90 \pm 3	68 \pm 2	3.19
0.0 $<	z	\leq 0.5$ kpc	-0.6	5470	170 \pm 1	39 \pm 1	35 \pm 7	94 \pm 4	61 \pm 3	2.13
1.5 $<	z	\leq 2.0$ kpc	-0.7	4511	167 \pm 1	39 \pm 1	33 \pm 7	94 \pm 4	55 \pm 3	1.80
2.0 $<	z	\leq 3.0$ kpc	-0.8	3675	165 \pm 1	38 \pm 3	31 \pm 6	93 \pm 3	46 \pm 3	1.57
0.0 $<	z	\leq 0.5$ kpc	-0.9	3036	162 \pm 2	38 \pm 2	29 \pm 6	93 \pm 3	38 \pm 4	1.51
1.5 $<	z	\leq 2.0$ kpc	-1.0	2543	162 \pm 2	37 \pm 2	24 \pm 5	92 \pm 3	30 \pm 4	1.59

Fig. 4. V_ϕ vs. [Fe/H] distribution of stars with $-1.0 < [\text{Fe/H}] < -0.5$. Black cross marks the rejected stars beyond 3σ of the velocity ellipsoid of the thick disk to minimize the contamination from halo stars (see Sect. 3.2). The solid line connects the mean velocities $\langle V_\phi \rangle$, which are plotted with 2σ error bars. The dashed lines indicate the ±1σ spread of the velocity distribution. Top, middle, and bottom panels refer to $|z| = 1.0–1.5$ kpc, 1.5–2.0 kpc, and 2.0–3.0 kpc, respectively.

Fig. 5. V_ϕ distribution for $[\text{Fe/H}] < -0.5$, -0.7, and -1.0, in descending order. The solid lines show the best fit of two Gaussian-component models (thick disk and halo). Bottom, middle, and top panels refer to $|z| = 1.0–1.5$ kpc, 1.5–2.0 kpc, and 2.0–3.0 kpc, respectively. The solid and dashed lines mark the values $V_\phi = 0$ km s$^{-1}$ and 170 km s$^{-1}$.

In addition, we estimate the rotation-metallicity correlation by fitting the thick disk (V_ϕ) values from Table 3 through the following integral linear model:

$$\langle V_\phi \rangle = V_\phi([\text{Fe/H}]_0) + a \cdot ([\text{Fe/H}] - [\text{Fe/H}]_0).$$

where $\langle [\text{Fe/H}] \rangle$ is the average for the stars with $-3 < [\text{Fe/H}] \leq [\text{Fe/H}]_{\text{max}}, a = \partial\langle V_\phi \rangle/\partial[\text{Fe/H}],$ and $V_\phi([\text{Fe/H}]_0)$ is the mean velocity of the reference metallicity, which we set to $[\text{Fe/H}]_0 = -0.6$. In Fig. 6, the lines connect the values from Eq. (2) at the different $[\text{Fe/H}]_{\text{max}}$ thresholds. These results confirm both a vertical gradient consistent with the value derived in Sect. 3.1 and a rotation-metallicity correlation in the range of $40 \div 50$ km s$^{-1}$ dex$^{-1}$ for the thick disk.

We also considered the hypothesis that a false trend V_ϕ vs. [Fe/H] might derive from the tangential velocity estimated through the metallicity-dependent photometric parallaxes. Actually, the correlation would still be significant even
if the M_r-calibration were subjected to a systematic error up to 0.4 mag per dex. Moreover, no kinematics-metallicity correlation is expected to arise because of the color-selection criteria of the SDSS spectroscopic targets, which although they produce a bias towards metal poor stars, cannot affect the conditional V_ϕ probability distribution at a given metallicity, $\langle V_\phi \mid [\text{Fe/H}] \rangle$, and no further kinematical selection is applied.

Thus, we conclude that the observed correlation is an intrinsic signature of our sample.

4. Discussion and conclusions

The existence of a vertical velocity gradient and a rotation-metallicity correlation sets important constraints on the origin of the thick disk. The estimated gradient of -19 ± 2 km s$^{-1}$ kpc$^{-1}$ is consistent with N-body simulations of disks thickened by a single minor merger with a low/intermediate orbital inclination (e.g. Villalobos & Helmi 2008), as well as by the interaction with numerous dark subhalos, as discussed by Hayashi & Chiba (2006) and Kazantzidis et al. (2008), whose simulations show kinematic gradients of $-(10 \pm 30)$ km s$^{-1}$ kpc$^{-1}$ and of -20 km s$^{-1}$ kpc$^{-1}$, respectively, for 1 kpc $< \vert z \vert \leq 3$ kpc. A vertical rotation gradient of about -20 km s$^{-1}$ kpc$^{-1}$ can also be inferred from Fig. 5 of Abadi et al. (2003), who investigated thick disks formed by accretion of both the stars of a pre-existing thin disk and the debris from disrupted satellites. Unfortunately, we have not found any explicit kinematic prediction in the scenario of the chaotic gas-rich mergers described by Brook et al. (2005), although Hayashi & Chiba (2006) state that a velocity shear “may have difficulties in this regard.” Finally, to the best of our knowledge, explicit predictions of kinematics-metallicity correlations are missing in the current CDM scenarios of satellite accretion or minor mergers. Hopefully, our results will motivate theoreticians to investigate this issue in their future models.

In the context of models based on disk secular processes of stellar migration driven by interactions with spiral arms, a vertical gradient of ~-15 km s$^{-1}$ kpc$^{-1}$ is reported by Loebman et al. (2008), who, conversely, did not detect any V_ϕ vs. [Fe/H] correlation. The simulations carried out by Schönrich & Binney (2009) indicate a mild trend $(-10\text{ km s}^{-1}\text{ dex}^{-1})$ at $z \approx 0$ kpc, which decreases with height and disappears for $|z| > 1$ kpc. Possibly, by adopting appropriate parameters, their inside-out disk formation model could reproduce the observed downturn trend (Schönrich 2009, private communication). Thus, more attention should be devoted to this scenario as a possible theoretical framework to explain the rotation-metallicity relation in the thick disk of the Milky Way.

References

Abadi, M. G., Navarro, J. F., Steinmetz, M., & Eke, V. R. 2003, ApJ, 597, 21
Abazajian, K. N., Adelman-McCarthy, J. K., Agüeros, M. A., et al. 2009, ApJS, 182, 543
Allende Prieto, C., Beers, T. C., Wilhelm, R., et al. 2006, ApJ, 636, 804
Arnould, A. S., Feltzing, S., & Lundström, I. 2008, Proc. IAU Symp., 254 (CUP Cambridge) [arXiv:0807.1665]
Aumer, M., & Binney, J. 2009, MNRAS, 397, 1286
Bensby, T., Feltzing, S., & Lundström, I., & Iljin, I. 2005, A&A, 433, 185
Bensby, T., Zinn, A. R., Oey, M. S., & Feltzing, S. 2007, ApJ, 663, L13
Bonf, N. A., Ivezic, Z., Sesar, B., et al. 2010, ApJ, submitted [arXiv:0909.0013]
Brook, C. B., Gibson, B. K., Martel, H., & Kawata, D. 2005, ApJ, 630, 298
Chen, B., Stoughton, C., Smith, J. A., et al. 2001, ApJ, 553, 184
Carollo, D., Beers, T. C., Chiba, M., et al. 2010, ApJ, in press [arXiv:0909.1819]
Chiba, M., & Beers, T. C. 2000, AJ, 119, 2843
Dehnen, W., & Binney, J. 1998, MNRAS, 298, 387
Freeman, K., & Bland-Hawthorn, J. 2002, ARA&A, 40, 487
Gilmore, G., & Reid, N. 1983, MNRAS, 220, 1025
Girard, T. M., Korchagin, V. I., Cas TODAY. D., et al. 2006, AJ, 132, 1768
Hayashi, H., & Chiba, M. 2006, PASJ, 58, 835
Haywood, M. 2008, MNRAS, 388, 1175
Ivezic, Z., Sesar, B., Jurić, M., et al. 2008, ApJ, 684, 287
Jurić, M., Ivezic, Ž., Brooks, A., et al. 2008, ApJ, 673, 864
Kazantzidis, S., Bullock, J. S., & Zentner, A. R. 2008, 688, 254
Kepley, A. A., Morrison, H. L., Helmi, A., et al. 2007, AJ, 134, 1579
Klement, R., Rix, H. W., Flynn, C., et al. 2009, ApJ, 698, 865
Larsen, J. A., Humphreys, R. M., & Cabanela, J. E. 2008, ApJ, 687, L17
Lasker, B. M., Lattanzio, M. G., McLean, B. J., et al. 2008, AJ, 136, 735
Loebman, S., Roskar, R., Ivezic, Z., & Kazantzidis, S. 2008, AIP Conf. Proc., 1082, 238
Majewski, S. R. 1992, ApJS, 78, 87
Morrisson, H. L., Helmi, A., Sun, J., et al. 2009, ApJ, 694, 130
Munn, J. A., Monet, D. G., Levine, S. E., et al. 2003, AJ, 127, 3034
Parker, J. E., Humphreys, R. M., & Larsen, J. A. 2003, AJ, 126, 1346
Reddy B. E., Lambert D. L., & Allende Prieto, C. 2006, MNRAS, 367, 1329
Roskar, R., Debattista, V. P., Steinson, G. S., et al. 2008, ApJ, 675, L65
Schlegel, D., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525
Schönrich, R., & Binney, J. 2009, MNRAS, 396, 203
Smith, M. C., Evans, N. W., Belokurov, V., et al. 2009, MNRAS, 399, 1223
Soubiran, C., Bienaymé, O., & Siebert, A. 2003, A&A, 398, 141
Spagna, A., Bucciarelli, B., Lattanzio, M. G., et al. 2009, Proc. 53rd Annual Meeting S.A.I., Pisa (I), Mem. Soc. Astron. Ital. Suppl., in press
Spagna, A., Lattanzio, M. G., Lasker, B. M., et al. 1996, A&A, 311, 758
Vallenari, A., Pasquetto, S., Bertelli, G., et al. 2006, A&A, 451, 125
Villalobos, A., & Helmi, A. 2008, MNRAS, 391, 1806
Yanny, B., Rockosi, C., Newberg, H. J., et al. 2009, AJ, 137, 4377
Yoachim, P., & Dalcanton, J. J. 2006, AJ, 131, 226