Immunisation of two rodent species with new live-attenuated mutants of *Yersinia pestis* CO92 induces protective long-term humoral- and cell-mediated immunity against pneumonic plague

Bethany L Tiner¹, Jian Sha¹,², Yingzi Cong¹,²,³,⁴,⁵, Michelle L Kirtley¹, Jourdan A Andersson¹ and Ashok K Chopra¹,²,⁴,⁵

We showed recently that the live-attenuated \(\Delta lpp\ \Delta msbB\ \Delta ail\) and \(\Delta lpp\ \Delta msbB:ailL2\) mutants of *Yersinia pestis* CO92 provided short-term protection to mice against developing subsequent lethal pneumonic plague. These mutants were either deleted for genes encoding Braun lipoprotein (Lpp), an acetyltransferase (MsbB) and the attachment invasion locus (Ail) (\(\Delta lpp\ \Delta msbB\ \Delta ail\)) or contained a modified version of the *ail* gene with diminished virulence (\(\Delta lpp\ \Delta msbB:ailL2\)). Here, long-term immune responses were first examined after intramuscular immunisation of mice with the above-mentioned mutants, as well as the newly constructed \(\Delta lpp\ \Delta msbB\ \Delta pla\) mutant, deleted for the plasminogen-activator protease (*pla*) gene instead of *ail*. *Y. pestis*-specific IgG levels peaked between day 35 and 56 in the mutant-immunised mice and were sustained until the last tested day 112. Splenic memory B cells peaked earlier (day 42) before declining in the \(\Delta lpp\ \Delta msbB:ailL2\) mutant-immunised mice while being sustained for 63 days in the \(\Delta lpp\ \Delta msbB\ \Delta ail\) and \(\Delta lpp\ \Delta msbB\ \Delta pla\) mutant-immunised mice. Splenic CD4⁺ T cells increased in all immunised mice by day 42 with differential cytokine production among the immunised groups. On day 120, immunised mice were exposed intranasally to wild-type (WT) CO92, and 80–100% survived pneumonic challenge. Mice immunised with the above-mentioned three mutants had increased innate as well as CD4⁺ responses immediately after WT CO92 exposure, and coupled with sustained antibody production, indicated the role of both arms of the immune response in protection. Likewise, rats vaccinated with either \(\Delta lpp\ \Delta msbB\ \Delta ail\) or the \(\Delta lpp\ \Delta msbB\ \Delta pla\) mutant also developed long-term humoral and cell-mediated immune responses to provide 100% protection against developing pneumonic plague. On the basis of the attenuated phenotype, the \(\Delta lpp\ \Delta msbB\ \Delta ail\) mutant was recently excluded from the Centers for Disease Control and Prevention select agent list.

Npj Vaccines (2016) 1, 16020; doi:10.1038/npjvaccines.2016.20; published online 13 October 2016

INTRODUCTION

There has been a rise in the number of human plague cases globally resulting in the categorisation of *Yersinia pestis*, the aetiological agent of the highly fatal pneumonic plague, as a re-emerging pathogen by the World Health Organization.¹ The progression of pneumonic plague is very rapid after appearance of the symptoms in humans, and the case fatality rate approaches 100%, if the antimicrobial treatment is delayed.²–⁴ Unfortunately, antibiotic-resistant *Y. pestis* strains have been isolated from plague patients and/or engineered for bioweaponization,⁵ which is concerning as *Y. pestis* is classified by the Centers for Disease Control and Prevention (CDC) as a Tier-1 select agent.⁶ The optimal strategy for protection against this deadly disease would be through vaccination; however, there are currently no Food and Drug Administration (FDA)-licensed plague vaccines available in the United States.⁷–⁹

Live-attenuated vaccines promote both humoral- and cell-mediated immune responses making them the optimal option to protect humans against pneumonic plague.⁹ The various live-attenuated *Y. pestis* EV76 vaccine strains, which lack the pigmentation locus (*pgm*) required for iron acquisition, have been used in plague endemic parts of the world due to vaccine strains’ ability to provide protection against both bubonic and pneumonic plague.⁵ Unfortunately, these EV76-based vaccines are not FDA approved because of high reactogenicity and these strains are not genetically uniform.⁹ In addition, *Δpgm* mutants of *Y. pestis* cause fatal infection in individuals with diseases such as hemochromatosis.⁴⁻¹¹

Subunit plague vaccines, mainly composed of two immunogens, namely F1 capsular antigen and a type III secretion system component and effector low calcium response V antigen (LcrV), are generally protective across various animal species⁵,⁸,¹²–¹⁸ but such vaccines largely generate a humoral immune response. Furthermore, F1-LcrV-based vaccines would not be ideal against infection with *Y. pestis* strains devoid of capsule or those harbouring variants of LcrV with diverged amino acid sequences.¹⁹–²²

Therefore, our recent efforts to develop novel live-attenuated vaccines led to the deletion and/or modification of the genes...
encoding Braun lipoprotein (Lpp), an acetyltransferase (MsbB), the attachment invasion locus (Aii) and the plasminogen-activator protease (Pla).23–26 Lpp activates toll-like receptor (TLR)-2 leading to pro-inflammatory cytokine production and septic shock.27–30 MsbB modifies lipopolysaccharide (LPS) resulting in its increased biological potency.26,31–33 Aii is an outer membrane protein with an extracellular loop 2 (L2) reported to be responsible for All-mediated bacterial serum resistance and adherence/invasion to the host cells.25,36–42 Pla facilitates bacterial dissemination during bubonic and pneumonic plague as well as contributes to intracellular survival of \textit{Y. pestis} in macrophages.34,44

Recently, our laboratory generated three live-attenuated mutant strains of \textit{Y. pestis} CO92. The \textit{Δlpp ΔmsbB Δpla} triple mutant was shown to be safe and highly immunogenic.23,25 However, as Aii also has immunogenic potential,23,25 the corresponding virulence-associated amino acid residues in L2 of the \textit{aai} gene were mutated generating the \textit{Δlpp ΔmsbB::aaiL2} mutant of CO92.25 Immunisation of mice with two doses of either \textit{Δlpp ΔmsbB ΔaaiL2} or the \textit{Δlpp ΔmsbB::aaiL2} mutant via the intramuscular (i.m.) route triggered robust humoral and cellular immune responses. Such vaccinated mice were 100% protected when challenged 21 days after the second immunisation with high pneumonic challenge doses (70–92 LD\textsubscript{50}) of wild-type (WT) CO92, indicating these vaccines were capable of providing short-term protection.25 We also developed a \textit{Δlpp Δpla} double mutant of CO92, and mice immunised with this double mutant developed protective immunity against subsequent pneumonic challenge.24 Studies have shown that deletion of the \textit{msbB} gene from \textit{Y. pestis} EV76 strain modulated major immunoreactive antigens,46 and that the \textit{Δlpp ΔmsbB Δpla} double mutant was significantly more attenuated compared with the single mutants.25 Therefore, we deleted \textit{msbB} gene from the \textit{Δlpp Δpla} double mutant to improve immunogenicity and safety of the \textit{Δlpp ΔmsbB Δpla} triple mutant.

It is imperative that a successful plague vaccine should generate long-term immunity in immunised animals. Thus, it is essential to examine if the newly created \textit{Δlpp ΔmsbB Δpla} mutant as well as the \textit{Δlpp ΔmsbB ΔaaiL2} and \textit{Δlpp ΔmsbB::aaiL2} mutants have the ability to elicit protective long-term humoral- and cell-mediated immune responses, which formed the basis of this study. To authenticate our data, we used both mouse and rat models of pneumonic plague.

RESULTS

Attenuation in virulence of the newly generated \textit{Δlpp ΔmsbB Δpla} mutant of \textit{Y. pestis} CO92

To gauge the extent of attenuation, mice (\textit{n}=5 per group) were infected by the intranasal (i.n.) route with 2.5 × 106 colony forming units (CFU) or 5 × 106 CFU doses of the WT CO92 or the \textit{Δlpp ΔmsbB Δpla} mutant (representing 5,000 and 10,000 LD\textsubscript{50} of the WT bacterium).24 Although mice inoculated with the WT CO92 died by day 3 post infection (p.i.), all mice infected with the \textit{Δlpp ΔmsbB Δpla} mutant survived with no clinical signs of the disease such as ruffled fur, hunch back and lethargy (Figure 1). On day 22, the surviving mice as well as the age-matched naive controls were exposed i.n. to 1.8 × 104 CFU dose of WT CO92 (36 LD\textsubscript{50}). All of the naive mice succumbed to infection by day 27 (5 days p.i.). Animals receiving the higher immunisation dose of the \textit{Δlpp ΔmsbB Δpla} mutant had 80% survival after WT CO92 infection; although dropping to 70% at the lower vaccination dose (Figure 1).

Evaluation of long-term humoral immunity in mice after immunisation with live-attenuated mutants of \textit{Y. pestis} CO92

To further gauge vaccine potential of these three mutants (i.e. \textit{Δlpp ΔmsbB ΔaaiL2}, \textit{Δlpp ΔmsbB::aaiL2} and \textit{Δlpp ΔmsbB Δpla}), we used the optimal vaccination regimen,25 which utilised two i.m. doses (2.5 × 106 CFU/dose, 21 days apart). A recent study also indicated that parental immunisation can lead to protective mucosal immunity, by yet unidentified mechanism(s).47 Using the above-mentioned vaccination protocol, 100% survivability was noted with no clinical signs of disease in immunised mice, irrespective of the mutant used, up to 120 days after the initial immunisation.

To determine long-term humoral immune response generated by the three live-attenuated vaccine strains, splenocytes were harvested from mice (\textit{n}=3–5 per group per time point) on days 42, 63 and 84 after the first immunisation. The total CD19 B-cell population was similar across all groups of mice on all days examined (~30% of the live cell population) based on flow cytometry. On day 42, mice immunised with \textit{Δlpp ΔmsbB::aaiL2}, \textit{Δlpp ΔmsbB Δpla} or the \textit{Δlpp ΔmsbB Δpla} mutant exhibited significantly increased CD19 CD38 IgG+ memory B-cell populations (10.5, 7.3 and 4.2%, respectively) in the spleen compared with animals injected with phosphate-buffered saline (PBS) (1.6%) (Figure 2a). By day 63, this population decreased in mice immunised with the \textit{Δlpp ΔmsbB::aaiL2} mutant (3.2%), which was comparable to the population observed in control (PBS) mice (Figure 2a). In comparison, mice immunised with \textit{Δlpp ΔmsbB ΔaaiL2} or \textit{Δlpp ΔmsbB Δpla} mutants continued to show increased or similar to those in the PBS-injected mice (~0.7–1%) (Figure 2a).

Sera were collected from all mice on days 14, 35, 56, 81 and 112 after the first vaccination for measuring antigen-specific antibody responses (Figure 2b). On day 14, mice immunised with \textit{Δlpp ΔmsbB ΔaaiL2} or \textit{Δlpp ΔmsbB Δpla} mutants exhibited increased IgG antibody titres (Geometric Mean IgG titres of 15,625) against \textit{Y. pestis} F1-V fusion antigen, representing capsular (F1) and low calcium response V (LcrV) antigens, compared with mice vaccinated with the \textit{Δlpp ΔmsbB::aaiL2} mutant (titre of 9,365). By day 35, a boost in the IgG antibody titres (46,875) occurred after the second immunisation (given on day 21) when mice were immunised with \textit{Δlpp ΔmsbB ΔaaiL2} or \textit{Δlpp ΔmsbB Δpla} mutants. On
the contrary, a boost to the peak IgG antibody titres (46,875) in the Δlpp ΔmsbB ΔailL2 mutant-vaccinated mice was attained by day 56. These antibody titres remained at similar high levels until day 112 in all of the immunised groups of mice. A significantly higher IgG1 over IgG2a/b antibody titres were noted in all of the immunised mice on day 14 (Figure 2c-I). After the second vaccine dose, and on days 35 and 56, mice immunised with the Δlpp ΔmsbB Δail and Δlpp ΔmsbB Δpla mutants had balanced Th1-based IgG2a and Th2-based IgG1 antibody responses, whereas mice vaccinated with the Δlpp ΔmsbB::ailL2 mutant continued to have higher IgG1 over IgG2a titres (Figure 2c-II; data not shown for day 56). By day 81, balanced Th1-based IgG2a and Th2-based IgG1 antibody titres were observed in mice immunised with the Δlpp ΔmsbB Δail or the Δlpp ΔmsbB::ailL2 mutant, whereas the Δlpp ΔmsbB Δpla mutant-vaccinated mice exhibited significantly higher IgG1 titres compared with IgG2a/b titres (Figure 2c-III). By day 112, mice immunised with the Δlpp ΔmsbB Δail or the Δlpp ΔmsbB::ailL2 mutant maintained balanced Th1-based IgG2a and Th2-based IgG1 antibody titres. However, Δlpp ΔmsbB Δpla mutant-vaccinated mice possessed significantly higher IgG2a titres compared with IgG1 antibody titres (Figure 2c-IV).

Overall, all immunised mice maintained high levels of IgG1, IgG2a and IgG2b antibody titres over the duration of the experiment, albeit some skewing of Th1- and Th2-based immune responses occurred. Importantly, all three aforementioned
mutants were metabolically active as no apparent alterations were observed in the production of both F1 and LcrV compared with the WT CO92 based on the F1 antigen capture-based dipstick and Western blot analyses (Figure 3).23,25

Long-term cell-mediated immunity after immunisation of mice with live-attenuated mutants of Y. pestis CO92

To examine T cell-mediated immune responses after immunisation, splenocytes were isolated from mice and stained for T cell-specific markers on days 42, 63 and 84. By day 42, all immunised mice had statistically significant increased population of CD4+ cells in the spleen (Figure 4a). On day 84, although the increasing pattern still continued in all three mutant-immunised mice as compared with mice injected with PBS (20.5%), only mice vaccinated with the Δlpp ΔmsbB Δail mutant had statistically significant higher CD4+ population (29.7%). The CD4+ population was 26.5 and 28.4% in mice immunised with the WT CO92 and Western blot analyses (Figure 3).23,25

To further evaluate cell-mediated immune responses in vaccinated mice, T cells were stained for selected cytokines or transcription factors. On days 42 and 63, interferon (IFN)-γ+ CD4+ cell population was significantly increased in mice immunised with the Δlpp ΔmsbB Δail mutant (~2.7%) or the Δlpp ΔmsbB Δpla mutant (~3.1–3.2%) compared with PBS-injected mice (~0.7–1.7%) (Figure 4b-I). On day 84, although the IFN-γ+ CD4+ cell population remained significantly high in mice immunised with the Δlpp ΔmsbB Δail mutant (2.7%), this cell population decreased in Δlpp ΔmsbB Δpla mutant-immunised mice (0.7%) (Figure 4b-I). The IFN-γ+ CD4+ cell population in mice vaccinated with the Δlpp ΔmsbB::ailL2 mutant (~1.8%) was comparable to that of PBS-injected mice (~1.7%) on day 42, increasing significantly on day 63 (~2.4%). However, it dropped to a level similar to that in the PBS-injected mice on day 84.

IL-17A+ CD4+ cell population increased in all immunised mice on day 42 (~0.5–1.3%) compared with PBS-injected mice (0.003%) (Figure 4b-II); however, only mice immunised with the Δlpp ΔmsbB Δpla mutant reached statistical significance and had the highest IL-17A+ CD4+ population compared with all other groups. Importantly, the level of IL-17A+ CD4+ cells were further elevated on day 63 in all of the immunised mice (~1.2–1.9%) compared with that on day 42, and was significant higher than that of the PBS-injected mice (~0.3%). By day 84, this subset of population in the immunised mice returned to that of the PBS-injected mice. Interestingly, Foxp3+ CD4+ cell population increased significantly in all immunised mice on day 42 (~6.4–9.4%) compared with PBS-injected mice (6.3%) (Figure 4b-II). On day 63, these levels remained elevated (~7.2–10.5%) compared with those in naive mice (~5%). By day 84, this subset of cell population in vaccinated mice returned to that of PBS-injected mice.

Evaluation of long-term protection against pneumonic plague provided by immunisation of mice with live-attenuated mutants of Y. pestis CO92

On day 120, mice were challenged via the i.n. route with 1.2 x 10⁴ CFU dose (24 LD₅₀) of the WT CO92 luc2 strain (with the luciferase gene) to mimic the pneumonic plague.23-26,46 The PBS-injected mice succumbed to infection by day 125 (5 days p.i.) (Figure 5a). Two of these five mice died prior to imaging for bioluminescence. The image in Figure 5b-I (PBS) showed that two of the three remaining control mice were positive for bioluminescence on day 123 (3 days p.i.). One animal with the strongest bioluminescence died immediately after the imaging, whereas the other two with somewhat weaker or negative bioluminescence died on day 4 and 5 p.i., respectively. The mouse on the extreme right side in the panel PBS represented an uninfected control for imaging. One animal from each of the Δlpp ΔmsbB Δail and Δlpp ΔmsbB::ailL2 mutant-immunised groups were positive for bioluminescence, and
Δpla mutant survived exposure to WT CO92, and they were negative for bioluminescence on both days 3 and 10 p.i. (Figures 5a, b-IV).

Evaluation of the immediate innate immune response of vaccinated mice after exposure to WT Y. pestis CO92 in a pneumonic plague model

On day 120, both mutant-immunised- and PBS-injected control mice were exposed to 24 LD50 of WT CO92 luc2 strain. On day 124 (4 days p.i.), spleens were harvested from a subset of the challenged mice (n=3–4 per group) to determine innate immune cell response subsequent to the challenge. The total number of CD11c+ CD11b+ resident dendritic cells (DCs) was maximally increased in mice immunised with the Δlpp ΔmsbB ΔailL2 mutant (6.3%) compared with the other two groups of vaccinated (with Δlpp ΔmsbB Δail (4.3%) or Δlpp ΔmsbB Δpla (4.7%) mutant) mice (Figure 6a). Importantly, the DC numbers significantly increased in all immunised mice compared with mice that were injected with PBS and exposed to the WT CO92 luc2 strain (2.5%) (Figure 6a).

The total number of CD80+ CD86+ cells, which represented activated DC populations, was maximally increased in mice immunised with the Δlpp ΔmsbB Δail mutant followed by the Δlpp ΔmsbB ΔailL2 and Δlpp ΔmsbB Δpla mutants subsequent to the WT CO92 exposure (Figure 6b-I). These activated DC cell numbers were in comparison to mice injected with PBS and exposed to WT CO92. Likewise, MHC-II expression was highest in the CD11c+ CD11b+ cell population isolated from mice vaccinated with the Δlpp ΔmsbB Δail mutant followed by that of Δlpp ΔmsbB ΔailL2 or Δlpp ΔmsbB Δpla mutants when compared with mice injected with PBS and exposed to WT CO92 (Figure 6b-II).

Evaluation of cytokine producing CD4+ T cells in immunised mice after exposure to WT Y. pestis CO92 in a pneumonic plague model

Similar to the DC staining above, the isolated splenocytes were stained for T cell markers to determine immune recall response after exposure to WT CO92, and an additional time point on day 141 (21 days p.i.) was also included. For the 124-day time point, spleens from PBS-injected mice with and without exposure to WT CO92 were used as controls. As all PBS-injected mice, exposed to WT CO92 succumbed to infection by day 141 (21 days p.i.), we only used PBS-injected mice not exposed to WT CO92 as controls for this time point.

On day 124 (4 days p.i.), there were no differences in the total number of CD4+ cell population in any groups of the immunised and control mice after challenge with WT CO92 (Figure 7a). By day 141 (21 days p.i.), mice immunised with Δlpp ΔmsbB ΔailL2 or Δlpp ΔmsbB Δpla mutants had increased number of total CD4+
immunised with Δlpp ΔmsbB Δail, Δlpp ΔmsbB:ailL2 or Δlpp ΔmsbB Δpla mutants (3, 3.2 and 3.4%, respectively) (Figure 7b-I). However, this cell population was still significantly higher when compared with the control naive mice without exposure to WT CO92 (1%). IL-17A+ CD4+ cells were increased in spleens of mice immunised with the Δlpp ΔmsbB Δail and Δlpp ΔmsbB Δpla mutants as compared with mice vaccinated with the Δlpp ΔmsbB:ailL2 mutant or injected with PBS after exposure to WT CO92 on day 4 p.i. (Figure 7b-II). On day 141 (21 days p.i.), the percentage of IL-17A+ CD4+ cells was further increased in spleens of mice immunised with the Δlpp ΔmsbB Δail mutant, whereas maintained at a similar level in mice vaccinated with the Δlpp ΔmsbB Δpla mutant compared with day 4 p.i. On the contrary, a robust increase in the population of IL-17A+ CD4+ cells was noted in mice vaccinated with the Δlpp ΔmsbB:ailL2 mutant followed by exposure to WT CO92 on day 141 (21 days p.i.) (Figure 7b-II).

On day 124 (4 days p.i.), the Foxp3+ CD4+ cell population was increased in mice vaccinated with Δlpp ΔmsbB Δail, Δlpp ΔmsbB:ailL2 or Δlpp ΔmsbB Δpla mutants elicited slightly better humoral and cell-mediated immune responses than that of the Δlpp ΔmsbB::ailL2 mutant. Therefore, these two mutants were further evaluated in a rat model of pneumonic plague to authenticate mouse data.

Evaluation of humoral and cell-mediated immunity in the mutant-immunised rats necessary for protection against WT Y. pestis CO92 challenge in a pneumonic plague model

On the basis of the mouse data presented above, both Δlpp ΔmsbB Δail and Δlpp ΔmsbB Δpla mutants elicited slightly better humoral and cell-mediated immune responses than that of the Δlpp ΔmsbB::ailL2 mutant. Therefore, these two mutants were further evaluated in a rat model of pneumonic plague to authenticate mouse data.

Similar to the mouse model, inbred Brown Norway rats were immunised with two i.m. doses (2.5 × 10⁶ CFU/dose, 21 days apart) of the selected mutants, and rats receiving PBS injection served as a control. Sera were collected from all rats on days 0, 14, 35, 56, 77 and 88 after the first vaccination for measuring antigen-specific antibody responses. As shown in Figure 8a, the immunised rats in both immunisation groups exhibited high IgG antibody titres (Geometric Mean IgG titres of 9,325) against Y. pestis F1-V fusion antigen on day 14. More specifically, in rats immunised with the Δlpp ΔmsbB Δail mutant, the IgG antibody titres remained plateaued until day 56 with a slight decrease on day 77 and then maintained at the same level to the last examining day (day 88).

Figure 5. Survival analysis of immunised mice after exposure to WT Y. pestis CO92 in a pneumonic plague model. Mice (n=5–6 per group) were immunised by the i.m. route with two doses (2 × 10⁶ CFU/dose) of Δlpp ΔmsbB Δail, Δlpp ΔmsbB:ailL2 or the Δlpp ΔmsbB Δpla mutants on days 0 and 21. Mice were injected i.m. with PBS to serve as controls (n=5 per group). (a) Mice were exposed i.m. on day 120 with 1.2 × 10⁶ CFU (24 LD₅₀, 1 LD₅₀=500 CFU)²⁴ of the WT CO92 luc² strain (with luciferase gene). The P values were calculated using the Kaplan–Meier analysis with log-rank (Mantel–Cox) test and were in comparison to the naive control. (b) Bioluminescence imaging of mice. Surviving mice after i.m. exposure with 1.2 × 10⁶ CFU of WT CO92 luc² strain were imaged on days 123 and 130 (days 3 and 10 p. i.). The mouse at the extreme right side in each panel was uninfected naive animal to serve as an imaging control. The bioluminescent scale is within the figures and ranges from most intense (red) to least intense (violet).
On the other hand, by day 35, a boost in the IgG antibody titres (46,875) occurred in rats immunised with the Δlpp ΔmsbB Δpla mutant and remained high until day 88.

To evaluate CD4+ T cell-mediated immune responses in vaccinated rats, splenocytes (n = 3 per group) were isolated on day 42. Although all groups of rat (both immunised and PBS-injected control) had similar number of total CD4+ cell populations (~31.4–33.9%), significantly increased IL-17A+ CD4+ cell population was observed in both groups of immunised rats (~1.2–2%) compared with the PBS-injected control rats (0.2%) (Figure 8b). Furthermore, rats immunised with the Δlpp ΔmsbB Δpla mutant had higher IL-17A+CD4+ population than that of animals vaccinated with the Δlpp ΔmsbB Δail mutant (Figure 8b). The IFN-γ+ CD4+ cell population also increased in both mutant-immunised rats (~15.5–19.9%) as compared with the PBS-injected control rats (~8.5%); however, a statistical significance was not achieved (data not shown).

To further evaluate the vaccine efficacy of the two mutants, the immunised rats (n = 6 per group) were challenged via the i.n. route with WT CO92 luc2 strain at the dose of either 2.3 × 10^6 CFU (46 LD50) on day 42 to evaluate short-term protection or 1.6 × 10^4 CFU (per dose) of EV76 (21 days apart) and splenocytes harvested on day 43 to evaluate short-term protection or 1.6 × 10^4 CFU (per dose) of EV76 (21 days apart). Spleens were harvested from mice (n = 3–4 per group) on day 124 (days 4 p.i.). Splenocytes were stained and analysed by Flow cytometry. (a) Total per cent of CD11c+ CD11b+ (resident DC markers) expressing cells was calculated using FlowJo. (b) Per cent of CD80+ CD86+ (I; activation markers) and MHC-II+ (II) expressing DCs were also calculated. Two-way ANOVA analysis with Tukey post hoc was utilised for determining statistical significance. *P < 0.05, **P < 0.01, ***P < 0.001 and ****P < 0.0001 as compared with PBS-injected controls. Horizontal bars represent differences between the indicated groups.

DISCUSSION

It is crucial that a potential vaccine candidate(s) demonstrates long-term immune responses and protection. This is the first study to examine several components of the immune response generated after immunisation of mice and rats with the above three live-attenuated mutants over a period of 3–4 months.

The kinetics of memory B-cell population in Y. pestis EV76 vaccine strain-immunised mice has been reported. Similar to our protocol, mice were immunised i.m. with two doses (8 × 10^7 CFU/dose) of EV76 (21 days apart) and splenocytes harvested periodically after immunisation. However, CD38 and IgD expressing CD19+ CD27+ population was evaluated in that study. CD27 is not considered as an appropriate marker for memory B cells in mice, and the lack of CD27 expression on memory B cells has been previously reported. CD38 has been widely accepted as a marker of memory B cells as antigen-specific IgG1 B cells with high CD38 expression and similar characteristics to recirculating memory B cells are apparent weeks after immunisation. Although IgD and IgG are produced by activated B cells, we designated memory B-cell population as CD38 and IgG producing CD19+ cells. By day 7, memory B-cell populations increased in EV76-immunised mice in the spleen. However, this population of cells sharply decreased by day 56. Memory B cells in the Δlpp ΔmsbB::ailL2 mutant-immunised mice behaved similar to those in the EV76-immunised animals with increases in the CD19+ CD27+ IgG+ cell population on day 42 which decreased to the levels seen in naive mice by day 63 (Figure 2a). However, memory B-cell population in Δlpp ΔmsbB Δail and Δlpp ΔmsbB Δpla mutant-immunised mice increased or remained high through day 84 and declined to levels seen in naive mice only on day 84 (Figure 2a).

In terms of antibody production, total IgG titres in the Δlpp ΔmsbB::ailL2 mutant-immunised mice reached a maximal level on day 56 and then plateaued, whereas mice immunised with the other two mutants, Δlpp ΔmsbB Δail and Δlpp ΔmsbB Δpla, showed maximum IgG titres by day 35 and then plateaued (Figure 2b). In contrast, the total memory B-cell population peaked at day 42 in the Δlpp ΔmsbB::ailL2 mutant-immunised mice, which then decreased to levels of PBS-injected, naive mice by day 63 (Figure 2a). Interestingly, mice immunised with the other two mutants were capable of sustaining memory B-cell populations until day 63 (Figure 2a). These differences in time to peak antibody titres versus the maximum percentage of memory B-cell population in the Δlpp ΔmsbB::ailL2 mutant-immunised mice (Figure 2a,b) could be attributed to low avidity of the IgG antibodies to F1-V antigens of Y. pestis early during vaccination before switching to high-affinity antibodies later during immunisation. Alternatively, these memory B cells from Δlpp ΔmsbB::ailL2 mutant-immunised mice might be secreting less IgG per cell compared with that of the memory B cells of Δlpp ΔmsbB Δail- and Δlpp ΔmsbB Δpla mutant-immunised mice because of a high proportion of unswitched memory B cells early during immunisation.54

![Figure 6.](image-url)
Protective immunity in animals with live-attenuated *Y. pestis* mutants

BL Tiner et al

Figure 7. Cell-mediated immune responses in mutant-immunised mice after exposure to WT *Y. pestis* CO92 in a pneumonic plague model. Mice were immunised by the i.m. route with two doses (2 \times 10^6 CFU/dose) of Δ*lpp* Δ*msbB Δail*, Δ*lpp* Δ*msbB::ailL2 or the Δ*lpp* Δ*msbB Δpla* mutants on days 0 and 21. Mice were exposed i.n. on day 120 with 1.2 \times 10^6 CFU (24 LD50; 1LD50 ΔCD4+ cells immediately after WT CO92 exposure (Figure 7b-II)). Immunised mice had the highest increase in IL-17A producing CD4+ T cells after immunisation (Figure 4). A similar trend was also noted when these mutant-immunised mice were subsequently exposed to WT CO92 in a pneumonic model (Figure 7). All immunised mice that survived WT CO92 challenge rapidly cleared the bacteria (3 days post i.n.) and 141 (21 days post i.n.). Splenocytes were harvested from surviving mice (3–5 per group) on days 124 (4 days p.i.) and 141 (21 days p.i.). Splenocytes were stained and analysed by Flow cytometry. (a) Total per cent of CD4+ (T-helper cell marker) expressing cells was calculated using FlowJo. (b) Per cent of IFN-γ (I; Th1 marker), IL-17A (II; Th17 marker) and Foxp3 (III; Treg marker) expressing CD4+ cells was calculated. Two-way ANOVA analysis with Tukey post hoc was utilised for determining statistical significance. *P < 0.05, **P < 0.01, ***P < 0.001 and ****P < 0.0001 as compared with PBS-injected controls. Horizontal bars represent differences between the indicated groups.

Mice immunised i.m. with two doses (8 \times 10^7 CFU/dose) of EV76 strain (21 days apart) had lower total F1-specific IgG titres (10,000–15,000 on day 42).55 These titres decreased below 10,000 by day 70, and further declined before attaining a steady state level (1,400) by day 322.55 In comparison, mice vaccinated with our live-attenuated mutants at a lower dose (2 \times 10^6 CFU/dose) were not only able to achieve total F1-V specific IgG titres of 46,875 by day 35–56 but were able to maintain these maximum titres until day 112 (Figure 2b).

Overall, all three live-attenuated mutants stimulated long-lasting T cell-mediated immune responses capable of protecting mice from developing subsequent pneumonic plague. Our data generally indicated an increase in IFN-γ, IL-17A- and Foxp3-expressing CD4+ T cells after immunisation (Figure 4). A similar trend was also noted when these mutant-immunised mice were subsequently exposed to WT CO92 in a pneumonic model (Figure 7). All immunised mice that survived WT CO92 luc2 strain challenge rapidly cleared the bacteria (3 days p.i.) as measured by bioluminescence (Figure 5b), possibly due to increased production of IFN-γ by CD4+ cells (Figure 7b-I). IFN-γ promotes macrophage activation facilitating defence against bacterial pathogens,56 and it has been shown that IFN-γ as well as tumour necrosis factor-α are important co-determinants of antibody-mediated protection against pneumonic plague.57 Consequently, the increased presence of IFN-γ+ CD4+ cells in conjunction with F1-V specific neutralising antibody production could augment opsonization and clearance of *Y. pestis*.

Th17 cells are potent secretors of IL-17A, and it has recently been shown that IL-17A provides an antibody-independent heterologous protection of the host against many pathogenic bacterial infections, including *Y. pestis*.58,59 For example, IL-17A was induced by the intranasal immunisation of mice with the *Y. pestis* strain D27–plpxL KIM/D27 engineered to produce *Escherichia coli* LpxL, which increases TLR-4 activation by LPS of *Y. pestis*.60 Thus, IL-17A contributed significantly to T cell-mediated defence against pulmonary *Y. pestis* infection.59 Consistent with previous reports,58,59 we also showed Δ*lpp* Δ*msbB Δpla* mutant-immunised mice had the highest increase in IL-17A producing CD4+ cells immediately after WT CO92 exposure (Figure 7b-II) resulting in efficient clearance of the invading pathogen. Importantly, the IL-17A+ CD4+ cell population decreased in the Δ*lpp* Δ*msbB Δpla* mutant-immunised mice 21 days post WT CO92 exposure (Figure 7b-II) signifying a possible faster resolution of inflammation, which is desirable in a potential vaccine.

In contrast, mice vaccinated with Δ*lpp* Δ*msbB Δail* or Δ*lpp* Δ*msbB::ailL2* mutants and subsequently challenged with WT CO92 had increased IL-17A producing CD4+ cells 21 days p.i. (Figure 7b-II). Thus, these mice would most likely had somewhat of a prolonged
inflammatory response after exposure to WT CO92; however, not to an extent to cause any adverse histopathological lesions in immunised mice.25 Interestingly, production of IL-17A from T cells was also observed in our previous study when isolated T cells from Δlpp ΔmsbB Δail and Δlpp ΔmsbB Δpla mutant-immunised mice were co-cultured with antigen-presenting cells, which had been exposed to heat-killed WT CO92.25 Foxp3 is a transcription factor and marker for Treg cells (Foxp3+ CD4+), which are primarily responsible for dampening immune responses. Recent studies have revealed that Treg cells can promote protective Th17-associated immune responses against bacterial infections.61,62 Interestingly, both Foxp3+ and IL-17A+ CD4+ cells were concurrently increased both after immunisation as well as after WT CO92 challenge (Figures 4b and 7b). However, a direct link between Treg cells and Th17-based protective immune responses against Y. pestis still needs further investigation.

Consistent with the above-mentioned data, all mutant-immunised mice had increased DC population expressing MHC-II (Figure 6b-II), which is required for antigen presentation to CD4+ cells.63 An increasing trend in the activation of DCs was noted for all mutant-immunised mice, which attained statistical significance for the Δlpp ΔmsbB Δail mutant. Overall, our results indicated immunisation of mice with any of these mutants could successfully induce activation of an innate immune response after exposure to WT CO92. Most importantly, all three live-attenuated mutants stimulated both long-term humoral- and cell-mediated immune responses, which protected mice against exposure to highly lethal pneumonic challenge (Figure 5).

In the second animal model of pneumonic plague, both the Δlpp ΔmsbB Δail and Δlpp ΔmsbB Δpla mutants also stimulated robust humoral and cell-mediated immune responses, which protected mice against exposure to highly lethal pneumonic challenge (Figure 8). The significantly increased IL-17A+ CD4+ population in the immunised rats further highlighted the importance of IL-17 against Y. pestis infection.

In addition to efficiency, safety is another important aspect for vaccine development. Recently, we have shown that both the Δlpp ΔmsbB Δail and Δlpp ΔmsbB:ailL2 mutants are safe live-attenuated vaccine candidates due to their quick clearance from
injection site by 24–48 h after vaccination, and these mice had no histopathological lesions during immunisation. 25 Our extensive data with the Δlpp ΔmsbB Δail mutant23,25 led to its exclusion from the CDC select agent list. In this study, we have further demonstrated that the WT CO92 luc2 challenge strain was efficiently cleared from the immunised mice and rats after 10–14 days post challenge as examined by using either IVIS or the plate count method. Our future goals are to obtain permission from the CDC to exclude Δlpp ΔmsbB:ail2 and Δlpp ΔmsbB Δplα mutants from the select agent list, allowing safe production of these vaccines under biosafety level 2 precautions. We will further evaluate safety of these live-attenuated vaccine candidates in immunocompromised mice, study in more depth their immune protection mechanisms, and to finally examine efficacy of these vaccines in non-human primates.

MATERIALS AND METHODS

Y. pestis and recombinant E. coli strains were grown as described by us previously. 23,24,26 All of our studies were performed in a Tier-1 select agent facility within the Galveston National Laboratory (GNL), UTMB.

Creation of the Δlpp ΔmsbB Δplα mutant of Y. pestis CO92

The in-frame deletion of the msbB gene from the Δlpp Δplα double mutant of Y. pestis CO92 was prepared using the suicide vector pDMS197 followed by homologous recombination as described previously by our laboratory. 26 The in-frame deletion of the msbB gene was confirmed by polymerase chain reaction (PCR) analysis employing specific primers 26 as well as by DNA sequencing of the flanking regions to the msbB gene on the chromosome.

Production of LcrV and F1 by the live-attenuated mutants of Y. pestis CO92

WT CO92 and the Δlpp ΔmsbB Δail, Δlpp ΔmsbB:ail2, and Δlpp ΔmsbB Δplα mutants were grown overnight in heart infusion broth (HIB) at 28 °C and then diluted 1:20 in 5 ml HIB supplemented with 5 mM EGTA. Cultures were incubated at 28 °C for 2 h and then at 37 °C (to activate the TSS) for an additional 3 h. The cell pellets were dissolved in SDS–PAGE buffer and analysed with anti-LcrV antibodies (Santa Cruz Biotechnology, Santa Cruz, CA, USA). The anti-Dnak monoclonal antibody (Enzo Life Sciences, Boston, MA, USA) was employed for analysis and normalisation of protein concentrations in cell pellets. The density of the immunoblots was analysed by using Image Studio Lite Version 5.2 (Li-Cor, Lincoln, NE, USA). To detect F1 production, 100 μl of each 37 °C grown bacterial cultures (1 × 107 CFU) was analysed with the F1 antigen capture-based dipstick (Plaque BioThreat Alert test strips, Tetracore, Inc., Rockville, MD, USA) as we previously described. 23,25

Animal studies

Six-to-eight-week-old, female Swiss-Webster mice were purchased from Taconic Laboratories (Germantown, NY, USA), and four-to-five-week old (50–75 g) Brown Norway female rats were purchased from Charles River (Houston, TX, USA). The animal studies were performed in the Animal Biosafety Level (ABSL)-3 facility under an approved Institutional Animal Care and Use Committee protocol.

Attenuation

Mice were infected by the i.n. route with one dose of 2.5 × 106 CFU/40 μl or 5 × 106 CFU/40 μl of the Δlpp ΔmsbB Δplα mutant, and mice i.n. infected with 2.5 × 106 CFU/40 μl of WT CO92 served as control. 23,24 Animals were assessed for morbidity and/or mortality for twenty-two days. The surviving mice were then rechallenged by the i.n. route with 1.8 × 107 CFU/40 μl (36 LD50) of the bioluminescent WT Y. pestis CO92 luc2 strain. 23 The naive mice served as rechallenge controls.

Immunisation

Mice were immunised by the i.m. route with two doses (2 × 106 CFU/100 μl) of the Δlpp ΔmsbB Δail, Δlpp ΔmsbB:ail2 or the Δlpp ΔmsbB Δplα mutant. One group of mice received PBS in lieu of bacteria, thus representing a naive, unimmunized control. Two doses of the vaccine were given in a 50 μl volume in each of the hind legs 21 days apart. 25 Animals were assessed for morbidity and/or mortality over the duration of vaccination.

Antibody production

Retro-orbital bleeding of all mice occurred on days 0, 14, 35, 56, 81 and 112. Sera were filtered by using Costar 0.1-μm centrifuge tube filters (Corning Inc., Corning, NY, USA). ELISA plates were coated with the F1–V fusion protein (1 ng/ml, BEI Resources, Manassas, VA, USA) overnight at 4 °C. 23,24,25 Total IgG and antibody isotypes (IgG1, IgG2a and IgG2b) against F1–V in the sera (1:5 serially diluted) of all mice were determined as we previously described. 23,25

Organ harvesting

To evaluate immunogenicity of the mutant strains, spleens from three control and five immunised mice (per group per time point) were isolated on days 42, 63 and 84. In addition, another set of mice (immunised and control, n = 8–10 per group) were first exposed to 1.2 × 107 CFU/40 μl (24 LD50) of the bioluminescent WT Y. pestis CO92 luc2 strain on day 120 after the first immunisation. Spleens were then isolated from these surviving mice (n = 3–5 per group) on either day 124 (4 days p.i.) or on day 141 (21 days p.i.). The PBS-injected mice without exposure to WT CO92 luc2 (n = 3) served as an additional control for the T cell experiment. Single cell suspensions were prepared by forcing the spleens through nylon cell strainers and by suspending the cells in RPMI 1640 medium with 10% fetal bovine serum. Cells were collected by centrifugation, with blood cells being removed by using red blood cell lysis buffer (Sigma-Aldrich; St Louis, MO, USA).

Flow cytometry analysis

All cells were stained with Ghost Dye-APC/Cy7 (Tonbo biosciences; San Diego, CA, USA) to gate for live cell populations. Splenocytes (1 × 106) were incubated with 0.5 μg/sample mouse anti-CD16/32 antibody (BioLegend; San Diego, CA, USA) for 10 min on ice to prevent non-specific binding of monoclonal antibodies to the Fc receptors. The surface of the B cells was stained with monoclonal anti-mouse CD19-FITC (B-cell surface marker; BioLegend), anti-mouse CD38–PE/Cy7 (memory B-cell marker; BioLegend) and anti-mouse IgG–PE (mature, isotype-switched B-cell marker; Southern Biotech; Birmingham, AL) for 30 min in the dark at 4 °C. To measure T cell kinetics, splenic cells were pretreated with ionomycin (750 ng/ml) and phosphor 12- myristate 13-acetate (PMA, 50 ng per sample), and then incubated 2 h later with Brefeldin A (0.7 μg per sample) to accumulate intracellular cytokines. The surface of the T cells was stained with monoclonal anti-mouse CD4–PE/Dazzle594 (BioLegend) and anti-mouse CD8–FITC (BioLegend) for 30 min in the dark at 4 °C to distinguish CD4+ and CD8+ expressing cells. Stained cells were centrifuged, washed and permeabilised with Foxp3 staining buffer set (eBioscience; San Diego, CA, USA). T cells were stained with anti-mouse IFN-γ–PerCp/Cy5.5 (BioLegend), anti-mouse IL-17A–PE/Cy7 (BioLegend) and anti-mouse Foxp3–PacificBlue (eBioscience) for 30 min in the dark at 4 °C. To determine innate immune responses, the surface of DCs was stained with monoclonal anti-mouse CD11c–PE/Dazzle594 (BioLegend), anti-mouse CD11b–PerCp/Cy5.5 (BioLegend), anti-mouse CD80–Pacific Blue (BioLegend), anti-mouse CD86–FITC (BioLegend) and anti-mouse MHC-II–PE (Tonbo Biosciences) for 30 min in the dark at 4 °C.

All stained cells were fixed with 1% paraformaldehyde in PBS, examined for sterility and then subjected to flow cytometry. Suitable isotype antibodies for all experiments were used as controls. The differential cell population was acquired on flow cytometer (LSRII Fortessa) and analysed using FACS diva software (BD Biosciences, San Jose, CA, USA).

Challenge

On day 120, a set of immunised and PBS-injected control mice (n = 5 per group) were exposed by the i.n. route with 1.2 × 106 CFU/40 μl (24 LD50) of the bioluminescent WT Y. pestis CO92 luc2 strain, which contains the luciferase operon (lux), allowing in vivo imaging of mice for bacterial dissemination in real time. 23,24,25 On days 123 and 130 (day 3 and 10 p.i.), the animals were imaged by using an in vivo imaging system (IVIS) 200 bioluminescent and fluorescence whole-body imaging workstation (Caliper Corp.; Alameda, CA, USA) in the ABSL-3 facility to examine dissemination and progress of infection.

Rat studies

Rats were immunised by the i.m. route with two doses (2 × 106 CFU/100 μl, 21 days apart) of the Δlpp ΔmsbB Δail or the Δlpp ΔmsbB Δplα mutant. One group of rats received PBS in lieu of bacteria, thus representing a naive, unimmunized control group. Saphenous vein bleeding of all rats occurred on days 0, 14, 35, 56, 77 and 88. Sera were processed as described above for mice. Total IgG against F1–V in the sera was determined as we previously described. 23,25

Published in partnership with the Sealy Center for Vaccine Development
On day 42, spleens were isolated from rats (n = 6 per group) and were pretreated with iodonucin and PMA and then incubated 2 h later with Brefeldin A. The surface of the T cells was stained with monoclonal anti-rat CD4/PE/Cy7 (BioLegend) and anti-rat CD8-APC (BioLegend) for 30 min in the dark at 4 °C to distinguish CD4+ and CD8+ expressing cells. Stained cells were centrifuged, washed and permeabilized with Freq3 staining buffer set (eBioscience). T cells were stained with anti-rat IFN-γ-PE (BioLegend) and anti-rat IL-17A-Percp/Cy5.5 (eBioscience) for 30 min in the dark at 4 °C. Cells were analyzed by Flow Cytometry as described above.

Statistical analysis

For majority of the experiments, one-way analysis of variance (ANOVA) and two-way ANOVA were used with the Tukey’s post hoc test for data analysis. We used Kaplan–Meier survival estimates with log-rank (Mantel–Cox) test for animal studies, and P values of 0.05 were considered significant for all of the statistical tests used.

REFERENCES

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

This research was supported by the NIH/NIAID Grant AI064389 awarded to AKC We also acknowledge a UC7 Grant (AI070083), which facilitated our research in the Galveston National Laboratory, UTMB, Galveston, TX, USA. BLT was supported by a predoctoral fellowship from the Jeanie B. Kemper Foundation, Galveston, TX, USA and the James W. McLaughlin Endowment Scholar Program, Galveston, TX, USA. JAA also acknowledge a UC7 Grant (AI070083), which facilitated our research in the James W. McLaughlin Endowment Scholar Program, Galveston, TX, USA. JAA was supported in part by the Sealy Center for Vaccine Development, UTMB.

CONTRIBUTIONS

Bethany L. Tiner and Jian Sha planned as well as executed all experiments described above. Bethany L. Tiner analysed all collected data and wrote the manuscript. Yingzi Cong and Ashok Chopra helped in the planning of all experiments and discussion of the acquired results. Ashok Chopra and Jian Sha also contributed to the writing and editing of the manuscript. Michelle L. Kintley and Jourdan A. Andersson provided help in performing rat studies. Ashok Chopra is the guarantor.

COMPETING INTERESTS

The authors declare no conflict of interest.

REFERENCES

1. Bertherat, E. G. Plague around the world, 2010–2015. Wkly. Epidemiol. Rec. 91, 89–104 (2015).
2. Rosenzweig, J. A. et al. Cethromycin-mediated protection against the plague pathogen Yersinia pestis in a rat model of infection and comparison with levofloxacin. Antimicrob. Agents Chemother. 55, 5034–5042 (2011).
3. Layton, R. C. et al. Levofloxacin cures experimental pneumonic plague in African green monkeys. PLoS Negl. Trop. Dis. 5, e959 (2011).
4. Inglesby, T. V. et al. Plague as a biological weapon: medical and public health management. Working Group on civilian biodefense. JAMA 283, 2281–2290 (2000).
5. Smiley, S. T. Current challenges in the development of vaccines for pneumonic plague. Expert Rev. Vaccines 7, 209–221 (2008).
6. Centers for Disease Control and Prevention (CDC). Possession, use, and transfer of select agents and toxins; biennial review: final rule. Fed. Regist. 77, 61083–61115 (2012).
7. Alvarez, M. L. & Cardineau, G. A. Prevention of bubonic and pneumonic plague using plant-derived vaccines. Biotechnol. Adv. 28, 184–196 (2010).
8. Rosenzweig, J. A. et al. Progress on plague vaccine development. Appl. Microbiol. Biotechnol. 91, 265–286 (2011).
9. Cui, Y. et al. Genetic variations of live attenuated plague vaccine strains (Yersinia pestis EV76 lineage) during laboratory passages in different countries. Infect. Genet. Evol. 26, 172–179 (2014).
10. MMWR. Fatal laboratory-acquired infection with an attenuated Yersinia pestis Strain—Chicago, Illinois, 2009. Morbid. Mortality Wkly. Rep. 60, 201–205 (2011).
11. Quenee, L. E. et al. Hereditary hemochromatosis restores the virulence of plague vaccine strains. J. Infect. Dis. 206, 1050–1058 (2012).
12. Fellows, P. et al. Characterization of a cynomolgus macaque model of pneumonic plague for evaluation of vaccine efficacy. Clin. Vaccine Immunol. 22, 1070–1078 (2015).
13. Agar, S. L. et al. Characterization of the rat pneumonic plague model: infection kinetics following aerosolization of Yersinia pestis CO92. Microbes Infect. 11, 209–214 (2009).
14. Smiley, S. T. Immune defense against pneumonic plague. Immunol. Rev. 225, 256–271 (2008).
15. Food and Drug Administration. African green monkey (Chlorocebus aethiops) animal model development to evaluate treatment of pneumonic plague. Food and Drug Administration, Washington, DC, 2012; http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/AntiInfectiveDrugsAdvisoryCommittee/UCM297180.pdf.
16. Sha, J. et al. Characterization of an F1 deletion mutant of Yersinia pestis CO92, pathogenic role of F1 antigen in bubonic and pneumonic plague, and evaluation of sensitivity and specificity of F1 antigen capture-based dipsticks. J. Clin. Microbiol. 49, 1708–1715 (2011).
17. Quenee, L. E., Cornelius, C. A., Ciletti, N. A., Ell, D. & Schneewind, O. Yersinia pestis caf1 variants and the limits of plague vaccine protection. Infect. Immun. 76, 2025–2036 (2008).
18. van Lier, C. J. et al. Deletion of Braun lipoprotein and plasminogen-activating protease-encoding genes attenuates Yersinia pestis while retaining immunogenicity in a mouse model of pneumonic plague. Infect. Immun. 83, 1318–1338 (2015).
19. Sha, J. et al. Deletion of the Braun lipoprotein-encoding gene and altering the function of lipopolysaccharide attenuate the plague bacterium. Infect. Immun. 81, 815–828 (2013).
20. Blauwel, M. P., Zanetti, G., Baumgartner, J. D. & Cohen, J. Septic shock: pathogenesis. Lancet 338, 732–736 (1991).
21. Braun, V. & Hankte, K. Biochemistry of bacterial cell envelopes. Annu. Rev. Biochem. 43, 89–121 (1974).
22. Neilson, P. O., Zimmerman, G. A. & McNairy, T. M. Escherichia coli Braun lipoprotein induces a lipopolysaccharide-like endotoxic response from primary cultures against pneumonic plague. Clin. Vaccine Immunol. 29, 621–627 (2012).
23. Anisimov, A. P. et al. Expression of heterologous O-antigen in Yersinia pestis while retaining immunogenicity in a mouse model of pneumonic plague. Infect. Immun. 83, 1318–1338 (2015).
24. van Lier, C. J. et al. Deletion of Braun lipoprotein and plasminogen-activating protease-encoding genes attenuates Yersinia pestis in mouse models of bubonic and pneumonic plague. Infect. Immun. 82, 2485–2503 (2014).
25. Tiner, B. L. et al. Intramuscular immunization of mice with a live-attenuated triple mutant of Yersinia pestis CD22 induces robust humoral and cell-mediated immunity to completely protect animals against pneumonic plague. Clin. Vaccine Immunol. 22, 1255–1266 (2015).
26. Sha, J. et al. Deletion of the Braun lipoprotein-encoding gene and altering the function of lipopolysaccharide attenuate the plague bacterium. Infect. Immun. 81, 815–828 (2013).
27. Blauwel, M. P., Zanetti, G., Baumgartner, J. D. & Cohen, J. Septic shock: pathogenesis. Lancet 338, 732–736 (1991).
28. Braun, V. & Hankte, K. Biochemistry of bacterial cell envelopes. Annu. Rev. Biochem. 43, 89–121 (1974).
29. Neilson, P. O., Zimmerman, G. A. & McNairy, T. M. Escherichia coli Braun lipoprotein induces a lipopolysaccharide-like endotoxic response from primary human endothelial cells. J. Immunol. 167, 5231–5239 (2001).
30. Aliprantis, A. O. et al. Cell activation and apoptosis by bacterial lipopolysaccharides through toll-like receptor-2. Science 285, 736–739 (1999).
31. Clementz, T., Bednarski, J. J. & Raetz, C. R. Function of the htrB high temperature requirement gene of Escherichia coli in the acylation of lipid A: HtrB catalyzed incorporation of laurate. J. Biol. Chem. 271, 12095–12102 (1996).
32. Clementz, T., Zhour, Z. & Raetz, C. R. Function of the Escherichia coli mslB gene, a multicyclase suppressor of HtrB, in the acylation of lipid A. Acylation by MslB follows laurate incorporation by HtrB. J. Biol. Chem. 272, 10353–10360 (1997).
33. Anisimov, A. P. et al. Expression of heterologous O-antigen in Yersinia pestis KIM does not affect virulence by the intravenous route. J. Med. Microbiol. 52, 289–294 (2003).
34. Perez-Gutierrez, C., Llobet, E., Llopard, C. M., Reines, M. & Bengochea, J. A. Role of lipid A acylation in Yersinia enterocolitica virulence. Infect. Immun. 78, 2768–2781 (2010).
Protective immunity in animals with live-attenuated \textit{Y. pestis} mutants

BL Tiner et al

36. Bartra, S. S. et al. Resistance of \textit{Yersinia pestis} to complement-dependent killing is mediated by the Ail outer membrane protein. \textit{Infect. Immun.} 76, 612–622 (2008).

37. Felek, S. & Krukonis, E. S. The \textit{Yersinia pestis} Ail protein mediates binding and Yop delivery to host cells required for plaque virulence. \textit{Infect. Immun.} 77, 825–836 (2009).

38. Felek, S., Tsang, T. M. & Krukonis, E. S. Three \textit{Yersinia pestis} adhesins facilitate Yop delivery to eukaryotic cells and contribute to plaque virulence. \textit{Infect. Immun.} 78, 4134–4150 (2010).

39. Hinnebusch, B. J. et al. Role of the \textit{Yersinia pestis} Ail protein in preventing a protective polymorphonuclear leukocyte response during bubonic plague. \textit{Infect. Immun.} 79, 4984–4989 (2011).

40. Kolodziej, A. M. et al. Phenotypic characterization of OmpX, an Ail homologue of \textit{Yersinia pestis} KIM. \textit{Microbiology} 153, 2941–2951 (2007).

41. Kolodziej, A. M. et al. Outer membrane protein X (Ail) contributes to \textit{Yersinia pestis} virulence in pneumonic plague and its activity is dependent on the lipopolysaccharide core length. \textit{Infect. Immun.} 78, 5233–5243 (2010).

42. Tsang, T. M., Felek, S. & Krukonis, E. S. Ail binding to fibronectin facilitates \textit{Yersinia pestis} binding to host cells and Yop delivery. \textit{Infect. Immun.} 78, 3358–3368 (2010).

43. Yamashita, S. et al. Structural insights into Ail-mediated adhesion in \textit{Yersinia pestis}. \textit{Structure}. 19, 1672–1682 (2011).

44. van Lier, C. J. et al. Further characterization of a highly attenuated \textit{Yersinia pestis} CO92 mutant deleted for the genes encoding Braun lipoprotein and plasminogen activator protease in murine alveolar and primary human macrophages. \textit{Microb. Pathog.} 80C, 27–38 (2015).

45. Erava, T. E. et al. Evaluation of protective potential of \textit{Yersinia pestis} outer membrane protein antigens as possible candidates for a new-generation recombinant plague vaccine. \textit{Clin. Vaccine Immunol.} 20, 227–238 (2013).

46. Fedorova, V. A. et al. Pleiotropic effects of the lpxM mutation in \textit{Yersinia pestis} resulting in modification of the biosynthesis of major immunoreactive antigens. \textit{Vaccine} 27, 2240–2250 (2009).

47. Clements, J. D. & Freytag, L. C. Parenteral vaccination can be an effective means of inducing protective mucosal responses. \textit{Clin. Vaccine Immunol.} 23, 438–441 (2016).

48. Sha, J. et al. A non-invasive in vivo imaging system to study dissemination of bioluminescent \textit{Yersinia pestis} CO92 in a mouse model of plague. \textit{Microb. Pathog.} 55, 39–50 (2013).

49. Zhang, X. et al. Kinetics of memory B cell and plasma cell responses in the mice immunized with plague vaccines. \textit{Scand. J. Immunol.} 79, 157–162 (2014).

50. Anderson, S. M., Tomayko, M. M., Ahuja, A., Haberman, A. M. & Shlomchik, M. J. New markers for murine memory B cells that define mutated and unmutated subsets. \textit{J. Exp. Med.} 204, 2103–2114 (2007).

51. Xiao, Y., Hendriks, J., Langerak, P., Jacobs, H. & Borst, J. CD27 is acquired by primed B cells at the centroblast stage and promotes germinal center formation. \textit{J. Immunol.} 172, 7432–7441 (2004).

52. Sanz, I., Wei, C., Lee, F. E. & Anolik, J. Phenotypic and functional heterogeneity of human memory B cells. \textit{Semin. Immunol.} 20, 67–82 (2008).

53. Ridderdal, A. & Tarlinton, D. M. Kinetics of establishing the memory B cell population as revealed by CD38 expression. \textit{J. Immunol.} 160, 4688–4695 (1998).

54. Ndauji, E. W. et al. HIV-exposed uninfected infants show robust memory B cell responses in spite of a delayed accumulation of memory B cells: An observational study in the first two years of life. \textit{Clin. Vaccine Immunol.} 23, 576–585 (2016).

55. Wang, Z. et al. Long-term observation of subunit vaccine F1-rV270 against \textit{Yersinia pestis} in mice. \textit{Clin. Vaccine Immunol.} 17, 199–201 (2010).

56. Hume, D. A. The many alternative faces of macrophage activation. \textit{Front. Immunol.} 6, 370 (2015).

57. Lin, J. S. et al. TNFa and IFNy contribute to F1/LcrV-targeted immune defense in mouse models of fully virulent pneumonic plague. \textit{Vaccine} 29, 357–362 (2010).

58. Kumar, P., Chen, K. & Kolls, J. K. Th17 cell based vaccines in mucosal immunity. \textit{Curr. Opin. Immunol.} 25, 373–380 (2013).

59. Lin, J. S., Kummer, L. W., Szaba, F. M. & Smiley, S. T. IL-17 contributes to cell-mediated defense against pulmonary \textit{Yersinia pestis} infection. \textit{J. Immunol.} 186, 1675–1684 (2011).

60. Szaba, F. M. et al. D27-plpxL, an avirulent strain of \textit{Yersinia pestis}, primes T cells that protect against pneumonic plague. \textit{Infect. Immun.} 77, 4295–4304 (2009).

61. Moore-Connors, J. M., Fraser, R., Halperin, S. A. & Wang, J. CD4+CD25+Foxp3+ regulatory T cells promote a protective Th17-associated immune response to intestinal bacterial infection with \textit{C. rodentium}. \textit{Mucosal Immunol.} 7, 1290–1301 (2014).

62. Kambayashi, T. & Laufer, T. M. Atypical MHC class II-expressing antigen-presenting cells: can anything replace a dendritic cell? \textit{Nat. Rev. Immunol.} 14, 719–730 (2014).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/