Electrostatic confinement and manipulation of DNA molecules for genome analysis

Kristy L. Kounovsky-Shafer, Juan P. Hernandez-Ortiz, Konstantinos Potamousis, Gene Tsvird, Michael Place, Prabu Ravindran, Kyubong Jo, Shiguo Zhou, Theo Odijk, Juan J. de Pablo, and David C. Schwartz

*Department of Chemistry, University of Nebraska–Kearney, Kearney, NE 68849; †Departamento de Materiales, Facultad de Minas, Universidad Nacional de Colombia, Sede Medellín, Medellín 500034, Colombia; ‡Department of Chemistry, Laboratory for Molecular and Computational Genomics, University of Wisconsin–Madison, Madison, WI 53706–1580; §Laboratory of Genetics, University of Wisconsin–Madison, Madison, WI 53706–1580; ¶University of Wisconsin–Madison Biotechnology Center, University of Wisconsin–Madison, Madison, WI 53706–1580; ‡Department of Chemistry, Sogang University, Seoul 40107, Republic of Korea; †Lorentz Institute for Theoretical Physics, University of Leiden, Leiden, NL-2333 CA, The Netherlands; ‡Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637; and Argonne National Laboratory, Argonne, IL 60439

Edited by Robert H. Austin, Princeton University, Princeton, NJ, and approved November 8, 2017 (received for review June 19, 2017)

Very large DNA molecules enable comprehensive analysis of complex genomes, such as human, cancer, and plants because they span across sequence repeats and complex somatic events. When physically manipulated, or analyzed as single molecules, long polyelectrolytes are problematic because of mechanical considerations that include shear-mediated breakage, dealing with the massive size of these coils, or the length of stretched DNAs using common experimental techniques and fluidic devices. Accordingly, we harness analytic “issues” as exploitable advantages by our invention and characterization of the “molecular gate,” which controls and synchronizes formation of stretched DNA molecules as DNA dumbbells within nanoslit geometries. Molecular gate geometries comprise micro- and nanoscale features designed to synergize very low ionic strength conditions in ways we show effectively create an “electrostatic bottle.” This effect greatly enhances molecular confinement within large slit geometries and supports facile, synchronized electrokinetic loading of nanoslit, even without dumbbell formation. Device geometries were considered at the molecular and continuum scales through computer simulations, which also guided our efforts to optimize design and functionalities. In addition, we show that the molecular gate may govern DNA separations because DNA molecules can be electrokinetically triggered, by varying applied voltage, to enter slits in a size-dependent manner. Lastly, mapping the *Mesoplasma florum* genome, via synchronized dumbbell formation, validates our nascent approach as a viable starting point for advanced development that will build an integrated system capable of large-scale genome analysis.

Significance

Repeated sequences make up approximately two-thirds of the human genome, which become fully accountable when very large DNA molecules are analyzed. Long, single DNA molecules are problematic using common experimental techniques and fluidic devices because of mechanical considerations that include breakage, dealing with the massive size of these coils, or the huge length of stretched DNAs. Accordingly, we harness analytic “issues” as exploitable advantages by invention and characterization of the “molecular gate,” which controls and synchronizes formation of stretched molecules as DNA dumbbells within nanoslit geometries that may also offer new routes to separation. This was accomplished by theoretical studies and experiments leveraging a series of electrical forces acting on DNA molecules, device walls, and the fluid flows within our devices.

Author contributions: K.L.K.-S., J.P.H.-O., and D.C.S. designed research; K.L.K.-S., K.P., and G.T. performed research; K.L.K.-S., J.P.H.-O., P.R., K.J., S.Z., T.O., J.J.d.P., and D.C.S. contributed new reagents/analytic tools; K.L.K.-S., J.P.H.-O., M.P., P.R., T.O., J.J.d.P., and D.C.S. analyzed data; and K.L.K.-S., J.P.H.-O., T.O., J.J.d.P., and D.C.S. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

1To whom correspondence should be addressed. Email: dcschwartz@wisc.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1711069114/-/DCSupplemental.

The Precision Medicine Initiative is pressing for the development of new approaches for knowing the molecular underpinnings of disease through the detailed measurement of individuals, which may ramp up to a large cohort of one million participants (1). Meeting this challenge means that genome analysis approaches must advance to become more informative across the entire human genome, by leveraging large DNA molecules that can span across repeated sequences to foster their elucidation. Accordingly, systems employing single-molecule analytes have emerged, but not without much teething pain. Early single-molecule sequencing systems (2–5) have pointed the way forward to meeting these challenges, but despite costly commercialization efforts by Pacific Biosciences and Oxford Nanopore, issues still remain to be solved for moving industrialized versions of these systems into widespread use within biomedical settings.

Single-molecule approaches to human genome mapping provide a counterpart to sequencing efforts through discernment of structural variation (SV), in ways that elude sequence analysis (6, 7). The invention of optical mapping (8, 9) and its advanced version—nanocoding (10, 11), now being commercialized by BioNanoGenomics (12), is offering insights into structural variation present in normal human (6) and cancer genomes (7, 13). Such variants are difficult to fully characterize by sequencing because the human genome comprises vast stretches of complex, repeat-ridden regions harboring SVs that were comprehensively functionalized by the Encyclopedia of DNA Elements (ENCODER Project (14)). The new insights provided by ENCODE are substantiating the biological importance of these previously neglected portions within the human genome, and this new knowledge is also motivating development of new technologies that readily reveal complex variants.

As such, our previous work (10, 15, 16) dealt with these issues through development of a robust DNA labeling and presentation approach, “nanocoding,” which barcodes molecules with nicking restriction enzymes whose cleavage sites are then marked by nick translation using fluorochrome-labeled nucleotides. Thus formed punctuates are imaged by fluorescence resonance energy transfer (FRET) microscopy along stretched molecules using nanoconfinement regimes leveraging low ionic strength (I) conditions. Because the DNA persistence length increases with lowered solution ionic strength (17, 18), these conditions synergized DNA stretching within relatively large slits. Other groups later built upon these developments (12, 19). More specifically, our first nanoslit devices were fabricated from poly(dimethylsiloxane) (PDMS) using soft lithography techniques that featured single DNA molecules | nanofluidics | genomics | devices
high aspect ratio slits (100 nm × 1,000 nm). Although much smaller slit dimensions are required for stretching DNA molecules, confinement conditions were greatly enhanced by using electrostatic effects mediated by very low ionic strength conditions (0.2 mM). Later work (16) modified slit geometries (250 nm × 400 nm) and ionic strength conditions, which further enhanced DNA stretch (S = S/L = 0.88, where L is the molecule contour length), but loading molecules into the nanoslit became more difficult. This is a common problem affecting most nanofluidic devices, since the entropic cost is substantial when threading large random-coil molecules into slit geometries comparable to the DNA persistence length.

Our early investigations revealed that large DNA molecules, usually few microns in length, can be stretched with conditions where confinement fields partially load the molecules into nanoslit (100 nm × 1,000 nm), but were bracketed outside of the slits by random-coil portions that formed “DNA dumbbells” (11). Importantly, DNA molecules in a dumbbell conformation showed enhanced stretching (S = S/L = 1.06), which we previously reported (11) cannot be the result of the vanishingly small entropic forces exerted by the “molecular lobes.” Instead, our theoretical treatments and simulations identified the combined effects of electrostatic and hydrodynamic interactions as the dominant factors mediating enhanced stretching.

The challenge we address here is to further understand and then harness electrostatic effects and DNA polymer dynamics within nanofluidic systems in ways that would readily load and present very large DNA molecules as dumbbells, important considerations since DNA dumbbells, when formed by random loading events, would be difficult to produce en masse. Accordingly, our work presented here enables the synchronized formation of DNA dumbbells by a multiscale approach to device geometries. Given these insights, we report advances for greatly enhancing DNA presentation that leverage electrostatic properties (20), inherent to both nanofluidic devices and highly charged DNA molecules, through specifically engineered geometries in place of just confinement effects commonly used by many nanofluidic devices. Such advances in DNA presentation are tested here for genome analysis and shown to successfully map the Mesoplasma florum (M. florum) genome, and, after system hardening, may support high-throughput operation for enabling analysis of complex genomes.

Results

Multiscale Theoretical Approach Toward Device Design and Functionality. A comprehensive theoretical study was performed, using multiple length scales, which informed the design and functionalities of the nanofluidic device featuring microchannel and nanoslit geometries (Fig. 1A). Electrostatic conditions, posed by device features and ionic strength conditions, affect both electroosmotic (electrically driven fluid flows) and electrophoretic forces, controlling DNA migration. These forces were studied using Brownian dynamics (BD), continuum finite-element (FE) simulations, and arguments from polymer physics, thereby engineering device features that leverage both molecular confinement and electrostatic effects (Methods). The FE calculations were performed on two levels: a detailed electrostatic study (Figs. S1 and S2), complemented by full momentum and mass balance simulations (Nernst–Planck/Stokes flow) that explored the microchannel/cup/nanoslit geometry (Fig. 1B). The electrostatic simulations guided electrode locations through calculation of resulting electric field lines and electrostatic potentials within the device immersed in the surrounding buffer medium. The BD simulations provided insights into enabling electrokinetic effects within the device for moving, parking, and loading DNA molecules.

Electrical Effects: Electrophoretic vs. Electroosmotic. We employ electrostatic considerations for controlling the Debye lengths of both DNA molecules and device features for efficient electrokinetic loading into...
nanoslits. The Debye length, defined as \(\lambda_D = \sqrt{\frac{k_B T}{2 N_A e^2 I}} \) (where \(k_B \) is the Boltzmann constant, \(T \) is the temperature, \(N_A \) is Avogadro’s number, \(e \) is the elementary charge, \(\varepsilon_0 \) is the vacuum permittivity, \(\varepsilon_r \) is the dielectric constant, and \(I \) is the ionic strength), determines the length of the electrical double layer (ion cloud) near charged walls and DNA molecules. The unusual design theme here is to foster, rather than hinder, electroosmotic flows. Our thinking is that purely electroosmotic forces may be insufficient for efficient loading of molecules into nanoslits decorated by micropillars (21), which suffer entanglement and are not suitable for dealing with very large DNA molecules. Fig. 1A–D shows the overall layout of the microfluidic/nanofluidic device. Fig. 1D details the design and functionalities of the device for DNA manipulations using ionic strength regimes engendering electroosmotic flows. The device uses a series of parallel microchannels (a molecule bus) for transporting DNA molecules to the molecular gate features (cup-like structures), which abut each diagonally oriented nanoslit. We expected electroosmotic perturbation of DNA migration due to low ionic strength (\(I < 0.75 \text{ mM} \)) buffer conditions and the presence of negatively charged walls of the device (PDMS walls are \(\text{O}_2 \) plasma treated). By increasing the ionic strength (\(I > 2 \text{ mM} \)), we see the net direction of migrating DNA molecules reverse, relative to electrode polarity, indicating that the dominating force transitions from electroosmotic to electrophoretic; independent evidence of electroosmotic flow is presented in Fig. S2.

FE calculations informed device geometrical design and placements of electrodes within the microscope-mounted buffer tank; multiple systems were simulated for optimization of the effective electric field that would enhance molecular manipulations (parking and loading; see Molecular Gates: Parking, Loading, and Synchronized Dumbbell Formation). Electrode positions control the field magnitude and direction within the microchannels, thereby guiding molecules to gates according to ionic strength \(I \) (as we will describe below). Fig. 1C presents the magnitude and direction of the electric field, calculated by FE, for the electrode configuration in Fig. 1B under 70 V applied at the electrodes. Within the microchannels, the field has an \(\sim 5^\circ \) angle while in the nanoslit it follows the \(45^\circ \) geometrical direction. Importantly, the small cross-sectional area of the nanoslits, compared with microchannels, increases electrical resistance, which increases the electric field strength within that device feature (18–20 vs. 8.9 V/cm).

We then define DNA migration direction relative to nanoslit features and microchannels as being “acute” (electroosmotic flow), or “obtuse” (electrophoretic) under low \(I (0.44–0.89 \text{ mM}) \), or high \(I (9.0 \text{ and } 17 \text{ mM}) \) ionic strength conditions. Fig. 2A shows time-lapse imaging, rendered as one composite image that reveals migrational trajectories of adeno DNA molecules (35.9 kb) within the device under low and high ionic strength conditions. Remarkably, low ionic strength conditions enable adeno DNA molecules to readily load into the nanoslits features of the device and then exit, as evidenced by sparse occupancies within all device features and higher migrational velocities. DNA molecules migrate by skirting along the molecular gate/microchannel interface, and consequently do not appreciably load, or pass through the nanoslits. Fig. 2B echoes these findings over a range of ionic strength conditions evaluated at two applied voltages (50 and 70 V) and gauged by loading efficiency into the nanoslits (\(L_{\text{NP}} \)). At very low ionic strength \((I = 0.44–0.89 \text{ mM}) \) adeno DNA molecules quantitatively load in nanoslits at 50 and 70 V but then loading dramatically decreases, dropping to nearly zero at the highest ionic strength conditions \((I = 9.0 \text{ and } 17 \text{ mM}; 50 \text{ V}) \).

Electroosmosis produces a flow-driven force that transports charged molecules toward the similarly charged electrode. Here, the flow field drugs DNA molecules; therefore, the electroosmotic force depends on the “Zimm” frictional coefficient \(\zeta \approx R_G \approx 1.0^{1/3}(d_{\text{NP}})^{1/3} \approx L_{\text{NP}}^{10/3} \) \(e^{-1/2} I \), where \(R_G \), \(d_{\text{NP}} \), and \(L_{\text{NP}} \) are the molecule radius of gyration, effective width, and persistence length, respectively, the electroosmotic (EO) mobility \((\mu_{\text{EO}} \approx 1^{-1/2}) \), and the applied electric field \(\langle E \rangle_{\text{fEO}} \approx (\zeta R_G I) E \approx (I^{-1/2}) \). In contrast, during DNA electrophoresis, molecules move toward the electrode with opposite charge. Because polyelectrolytes (i.e., DNA) are free-draining during electrophoresis, meaning no hydrodynamic shielding, the electrophoretic force is now a function of the “Zimm” frictional coefficient \(\zeta_R \approx 1 \). Consequently, the electrophoretic (EP) mobility \((\mu_{\text{EP}} \approx \ln I^{-1/2}) \) and the applied electric field scale as \(\langle E \rangle_{\text{fEP}} \approx (\zeta_R R_G I) E \approx (\ln I^{-1/2}) \).

Intuitively, obtuse migration of DNA molecules should enhance loading, but we observe a noticeable difference in the loading rate between low and high ionic strength conditions. We attribute this difference to EO flows within the nanoslits; under high ionic strength conditions “push” molecules away from the molecular gates. Within a nanoslit, the EO velocity field can be calculated, as a first approximation, from Stokes equations providing an estimate for the characteristic velocity \(u_{\text{EO}} \approx 1^{-1/2}/(\zeta R_G I) \), where \(\zeta R_G \) is the magnitude of the EO velocity, \(H \) is the slit height, and \(L_{\text{NP}} \) is the Debye length. At high ionic strength, the Debye length is small compared with the nanoslit height, allowing a fully developed EO flow within the nanoslit. However, under low ionic strength conditions the flow field will be attenuated by an enlarged Debye length, now comparable to the nanoslit height (Fig. 1E), thereby removing this flow, which prevents loading.

\[
\zeta \approx R_G \approx 1.0^{1/3}(d_{\text{NP}})^{1/3} \approx L_{\text{NP}}^{10/3} \approx e^{-1/2} I
\]

Fig. 2. DNA parking synchronizes nanoslit loading controlled by ionic strength conditions. (A1 and A2) Green traces show trajectories of adeno DNA molecules traveling through a microchannel, without parking, loading into nanoslits captured by superimposition of 174 image frames \((0.03 \text{ s intervals}) \); device is detailed in Fig. 1. (A1) Yellow arrows indicate overall direction of DNA migration (low ionic strength: 0.51 mM) under EO and EP forces. Accumulation of intense fluorescence along the molecular gate/electrode interfaces. Within a nanoslit, the EO velocity field can be calculated, as a first approximation, from Stokes equations providing an estimate for the characteristic velocity \(u_{\text{EO}} \approx 1^{-1/2}/(\zeta R_G I) \), where \(\zeta R_G \) is the magnitude of the EO velocity, \(H \) is the slit height, and \(L_{\text{NP}} \) is the Debye length. At high ionic strength, the Debye length is small compared with the nanoslit height, allowing a fully developed EO flow within the nanoslit. However, under low ionic strength conditions the flow field will be attenuated by an enlarged Debye length, now comparable to the nanoslit height (Fig. 1E), thereby removing this flow, which prevents loading.
Molecular Gates: Parking, Loading, and Synchronized Dumbbell Formation. The molecular gate dimensions (Fig. 1E)—comparable to the R_o of the DNA coils—are designed for placing and holding an individual molecule at the entrance of each nanoslit. As such, these device features, differing vastly in scale, present support-controlled and synchronous loading of DNA molecules into nanoslits. We reasoned that molecules under low applied voltage (V_p) would “park” within the molecular gates, and could then be triggered at high voltage (V_L) to synchronously “load” within the nanoslits. We first tested this concept by measuring the loading times for a population of individual molecules sized 35.9, 48.5, and 165.6 kb (Fig. 2C). This plot shows a relatively tight distribution of loading into nanoslits that completes at ~80 ms (80–90%). In contrast (Fig. 2C, Inset), nonparked molecules demonstrate a rather broad distribution of loading times that now span seconds, because molecules directly enter nanoslits from the microchannels by passing through the molecular gates without parking. Although these loading times (no parking) do not foster synchronous loading across multiple nanoslits, this experiment shows that molecular gates support efficient loading of large DNA molecules into nanoslits, even without the parking step.

Given that parked molecules load within a short period of time (Fig. 2C), we then evaluated this effect for the synchronous formation of dumbbells within multiple slits. Fig. 3 shows T4 DNA molecules moving through microchannels, with $V_p = 20$ V, becoming stably parked within molecular gates. Application of a short pulse ($V_L = 70$ V) synchronously loads parked molecules into nanoslits and traps them as dumbbells when $V = 0$. During parking, V_p is carefully selected so that molecules within molecular gates are compressed, as visually judged, but do not load into adjoining nanoslits. Once parked, the loading voltage V_L triggers passage into nanoslits through a nondiffusive and fast translocation, fostering synchronized loading. This transition from parked to loaded is sharp for a population of molecules, indicating a kinetic energy barrier in the process (Fig. 2C). The detailed dynamics of loading into nanoslits is complex and will be developed through simulations in another publication. Here, we develop scaling arguments that were used for the design and operation of the device.

As argued in Supporting Information, when there is a barrier we adopt a transition-state approximation. The DNA segments in both channels are effectively in equilibrium because the rate of leaking of the DNA molecule into the nanoslit is comparatively slow. The electrokinetic phenomena discussed above result in a front factor within our expression for the rate. The other factor is of the Boltzmann type $\exp(-\Delta F/k_B T)$, where $\Delta F(E)$ is the free energy of the barrier. For electric fields E much smaller than the cutoff E_c, the DNA coils are parked in the molecular gates, or cups. At a larger field $E \approx E_c$, the leaking into the nanoslit becomes immediate, since the barrier disappears ($\Delta F(E_c) = 0$). Within this scenario, the loading voltage V_L refers to the associated electric field E_L that should be close to E_c.

Applied Voltage Differentially Loads DNA Molecules as a Function of Size. Our scaling arguments indicate that loading into nanoslits, after parking, at a given applied voltage should show a pronounced dependence on the size of a DNA coil, with larger molecules triggered to loading before smaller ones. We explored this concept by increasing the applied voltage (10–70 V; 5 V per 5-s interval) in a stepwise manner and assessed the loading efficiency $L_{E,F}$ for different DNA molecule sizes: pXba (22.6 kb), adeno (35.9 kb), and λ (48.5 kb). We define $L_{E,F}$ as the number of molecules that load after parking ($N_{L,F}/N_F$) and V_L as the voltage at which 50% of the parked molecules load into the nanoslits. Fig. 4 plots $L_{E,F}$ vs. V_L (V_p), showing steep transitions from the parked to loaded state for the larger molecules, λ and adeno, less so for pXba. Differential loading effects are apparent under this voltage stepping scheme: Consider that 66% of the parked λ DNA loads at 30 V compared with only 5% of the adeno DNA molecules. Analysis of this plot also reveals an inverse linear relationship for size-dependent loading, $L_{E,F}(0.5) = -0.77M_o + 67.5$ (Mb in kbp), confirming that larger molecules load before smaller ones (22). Although direct separation of molecules was not attempted, this plot suggests that excellent size-dependent separations may be achievable.

At present, we do not have a detailed theory of the full curves displayed in Fig. 4. Nevertheless, our scaling analysis in Supporting Information does present a qualitative explanation for what is happening at $L_{E,F} = 0$. In that case, the voltage times the length of the DNA (VL) should be a constant within a zero-order approximation. This seems to be borne out reasonably well; the products are 1,040 (pXba), 1,364 (adeno), and 1,358 (lambda) in
units volts per kilobase. However, Eq. S7 underestimates this product by an order of magnitude although the numerical coefficient on the right-hand side is unknown.

Genome Mapping via DNA Dumbbells. We evaluated the effectiveness of the parking and loading scheme for mapping genomes using *M. florum* (793 kb) genomic DNA labeled for nanocoding (ref. 10 and Methods). Briefly, nick translation places fluorescently labeled nucleotides at nick sites created by Nt.BspQI that are imaged as FRET pairs formed by YOYO-1 (green donor) staining and the covalently incorporated Alexa Fluor-647 (red acceptor) moieties. This labeling step effectively barcodes individual DNA molecules through later measurement of punc
tate spacing, using image processing, to create one restriction map per molecule—termed, “Nmap.” Such distance measurements (pixels, nanometers) are converted into fragment sizes as kilobase pairs by using DNA stretch estimations, determined by alignment using SOMA software (refs. 6, 23, and 24 and Methods), which are mediated by ionic strength (10) and the amount of YOYO-1 bound to DNA molecules (25). Accordingly, the pairwise alignment rate of the entire Nmap dataset (906 Nmaps) against the *M. florum* reference map maximized at 86% (781 aligned/906 total) using a stretch of 0.85; Fig. 5 shows these alignments spanning across the entire genome. Briefly, SOMA uses a series of error models, reflecting labeling rates (false and missing) and sizing errors to score and then optimally place Nmaps onto a reference genome. The reference genome is simply an ordered restriction map created in the computer from available sequence. We generate confidence scores (P values) using an approach similar to that used by Vingron and Waterman for sequence alignments (26).

Discussion

We have created an electrostatically inspired approach for genome analysis through design of a nanofluidic device embracing a series of synergistic functionalities exhibited by both DNA molecules and the device itself. Here, very low ionic strength conditions augment stretching and strategically combine for effective transport and temporal control of molecules loading into nanoslits. These advances empower DNA dumbbells through parking and loading, which greatly enhance DNA stretching, to be synchronously or consistently formed and analyzed for mapping *M. florum* using genomic DNA molecules, which were potentiated by low rates of DNA breakage within the device. We accomplished this through the elucidation and harnessing of two major electrostatic effects: (i) Enhanced confinement of DNA molecules within relatively large, easily fabricated nanoslits. (ii) Electrokinetic actions using both EO and EP forces, which greatly facilitate and synchronize loading DNA molecules into nanoslits via molecular gates. Collectively, the coordination of these somewhat antagonistic effects posed special challenges for enabling DNA dumbbells for genome analysis. We have addressed these challenges by a unique design and device strategy: Our multiscale theoretical approach allowed direct engineering of device features that exploit electrostatic and fluctuating hydrodynamic forces for controlling the concerted and parallel manipulation of large DNA molecules. Such advancements fostered invention of the molecular gate and discovery of the “parking and loading effect,” which now enfranchises dumbbell molecules as practical analytes.

These device effects and functionalities hinge on controlling the Debye lengths (λ_D) inherent to DNA molecules (polyelectrolyte) and the charged device features by varying buffer ionic strength conditions. Here, high ionic strength solutions (~8 mM) produce compact ion clouds (3.4 nm), whereas low ionic strength solutions (~0.1 mM) generate expansive ion clouds (~30 nm). Accordingly, at low ionic strength, device nanoslit (100 nm high) and DNA (60-nm Debye diameter) Debye layers intersect (Fig. 1F) to enhance DNA confinement (11) and consequent stretching (16). Low ionic strength conditions also increase the “stiffness,” or persistence length of DNA molecules, which is yet another effect that further enhances DNA stretch within the device. This stiffness follows Odijk–Skolnick–Fixman theory (17, 18) ($p_l \sim 1/\mu_0 + 1^{-1}$), where p_l is the persistence length excluding electrostatic considerations, which governs the average
dimension of a DNA random coil, explicitly described by the radius of gyration: \(R_g \sim l_0^{\frac{5}{6}} (\beta + \lambda_p \log \lambda_p) \). Accordingly, increased ionic strength decreases coil dimensions; for example, we see that as \(I \) increases (0.1 vs. 8.5 mM), \(l_p \) shrinks (358 vs. 53 nm), thereby reducing \(R_g \) (1.9 vs. 0.7 \(\mu m \)). Importantly, our previous work (10) had shown that increasing DNA persistence length under nanoconfinement greatly increases its stretch: \(X/L = 1 - 0.085((A/l_p)^{3/2} + (B/l_p)^{3/2}) \), where \(X \) is the measured molecule length, \(L \) is the polymer contour length, and \(A \) and \(B \) are the slit height and width, respectively.

Electrostatic considerations allowed us to engineer a device modality that synchronously loads DNA molecules into nanoslit geometries in ways that portend its broad application. The overall utility of the molecular gate geometry, complemented by low ionic strength conditions, showed usefulness for genome analysis via synchronous dumbbell formation within nanoslits parking/loading, and an almost “digital-like” separation ability (Fig. 4), where under certain conditions, closely sized DNA molecules exhibit either great mobility, or effectively none. In addition, we showed facile entry of large DNA molecules into nanoslits, even without using the parking and loading routine (Fig. 2C). Nascent systems for genome analysis gain credibility when they demonstrate the potential for high-throughput operation. Although a limited portion of our device was sampled for the complete mapping of the _M. florum_ genome, the device harbors 138,600 nanoslits, each 28 \(\mu m \) in length. With a total length of almost 4 \(m \), the device can hold DNA molecules corresponding to \~4 haploid human genome equivalents. Given such capacity, automated data acquisition schemes are easily envisioned where serial dumbbell formation and concerted imaging over occupied portions of the device would enable high-throughput operation.

Lastly, we envision future applications that may leverage the potential of the molecular gate to aptly manipulate arrays of DNA molecules for the cell-free synthesis of entire chromosomes.

Methods

Device Design and Fabrication. Device fabrication was multistep via standard photolithography and electron-beam lithography techniques: (i) Fiduciary marks, UVIII were spin coated (~600 nm) onto a silicon wafer, then exposed using a JBX5DII electron-beam lithography system (JEOL; CNTech). Oxygen descum process removed organic deposits or residual resist before evaporation (CNTech) to promote adhesion between the silicon wafer; a gold layer (~60 nm thick) was then deposited for a high-contrast mark holder using paraffin wax. Capillary action loaded device microchannels using a 3-\(\mu l \) solution containing final concentrations of DNA (0.615 ng/\(\mu l \)), YOYO-1 (in water; 0.38 \(\muM \)), beta-mercaptoethanol (3.65%), and POP6 (0.091% Thermofisher Scientific). Next, devices were immersed in 2 \(ml \) of 0.05 \(\times \) TE buffer (10 mM Tris HCl, 1 mM EDTA; pH = 7.9; solution dilutions checked by conductivity) for 20 min before electrophoretic loading of DNA molecules into nanoslits using platinum electrodes inserted into the reservoirs. DNA was loaded into nanoslits via parking and loading using an electrical signal (~20 s: square waveform (20–70 V; 0.025 Hz)) with electrodes 2.5 cm apart. Thus, parked molecules were then synchronously loaded into adjoining nanoslits (70 V using a square-wave signal; ~1-s duration).

Device Setup, Parking, and Loading. Acid-cleaned glass coverslips (9) with a PDM5 device adhered were affixed to a Plexiglas holder using paraffin wax. Capillary action loaded device microchannels using a 3-\(\mu l \) solution containing final concentrations of DNA (0.615 ng/\(\mu l \)), YOYO-1 (in water; 0.38 \(\muM \)), beta-mercaptoethanol (3.65%), and POP6 (0.091% Thermofisher Scientific). Next, devices were immersed in 2 \(ml \) of 0.05 \(\times \) TE buffer (10 mM Tris HCl, 1 mM EDTA; pH = 7.9; solution dilutions checked by conductivity) for 20 min before electrophoretic loading of DNA molecules into nanoslits using platinum electrodes inserted into the reservoirs. DNA was loaded into nanoslits via parking and loading using an electrical signal (~20 s: square waveform (20–70 V; 0.025 Hz)) with electrodes 2.5 cm apart. Thus, parked molecules were then synchronously loaded into adjoining nanoslits (70 V using a square-wave signal; ~1-s duration).

ACKNOWLEDGMENTS. We thank Tom Knight for providing _M. florum_. This work was supported by Grants NIH R01-HG-000225 and National Cancer Institute (NCI) CA182360 (to D.C.S.). G.T. was supported by National Human Genome Research Institute Grant T32 HG002760. The development and validation of the codes used here to simulate DNA, which couple particle-based simulations to hydrodynamics, was supported by the Department of Energy, Basic Energy Sciences, Materials Science and Engineering, through the Midwest Integrated Center for Computational Materials. The engineering of processes for charged-driven assembly of polyelectrolytes is supported by the National Institute of Standards and Technology through the Center for Hierarchical Materials Design.

1. Collins FS, Varmus H (2015) A new initiative on precision medicine. _N Engl J Med_ 372: 793–795.
2. Ramanathan A, et al. (2004) An integrative approach for the optical sequencing of single DNA molecules. _Anal Biochem_ 320:227–241.
3. Braslavsky I, Hebert B, Kartavelis E, Quake SR (2003) Sequence information can be obtained from single DNA molecules. _Proc Natl Acad Sci USA_ 100:3960–3964.
4. Levene MJ, et al. (2003) Zero-mode waveguides for single-molecule analysis at high concentrations. _Science_ 299:682–685.
5. Kasianowicz JJ, Brandin E, Branton D, Deamer DW (1996) Characterization of individual polynucleotide molecules using a membrane channel. _Proc Natl Acad Sci USA_ 93:13770–13773.
6. Teague B, et al. (2010) High-resolution human genome structure by single-molecule analysis. _Proc Natl Acad Sci USA_ 107:10848–10853.
7. Gupta A, et al. (2015) Single molecule analysis reveals widespread structural variation in multiple myeloma. _Proc Natl Acad Sci USA_ 112:7649–7694.
8. Schwartz DC, et al. (1993) Ordered restriction maps of Saccharomyces cerevisiae chromosomes constructed by optical mapping. _Science_ 262:110–114.
9. Dimara GA, et al. (2004) A microfluidic system for large DNA molecule arrays. _Anal Chem_ 76:5293–5301.
10. Jo K, Schramm TM, Schwartz DC (2009) A single-molecule barcoding system using nanoslits for DNA analysis: Nanocoding. _Methods Mol Biol_ 544:29–42.
11. Kim Y, et al. (2011) Nanochannel confinement: DNA stretch approaching full contour length. _Lab Chip_ 11:1721–1729.
12. Skolnick I, Fisman M (1977) Atactic translocation persistence length of a wormlike polyelectrolyte. _Macromolecules_ 10:944–948.
13. Odijk T (1977) Polyelectrolytes near rod limit. _J Polym Sci Pol Phys_ 15:477–483.
14. Hastie AR, et al. (2013) Rapid genome mapping in nanochannel arrays for highly complete and accurate de novo sequence assembly of the complex Aeglopus tausschi genome. _PLoS One_ 8:e55864.
15. Manion JT, Rieccius CH, Cross JD, Craighead HG (2006) Conformational analysis of single DNA molecules undergoing entropically induced motion in nanochannels. _Biophys J_ 90:4538–4545.
16. Valouev A, et al. (2006) Alignment of optical maps. _J Comput Biol_ 13:442–462.
17. Sarkar D, Goldstein S, Schwartz DC, Newton MA (2012) Statistical significance of Optical Mapping. _J Comput Biol_ 19:478–492.
18. Gunther K, Mertig M, Seidel R (2010) Mechanical and structural properties of YOYO-1 complexed DNA. _Nucleic Acids Res_ 38:6526–6532.
19. Vingron M, Waterman MS (1994) Sequence alignment and penalty choice. Review of _Computational Biology_ 372:372–396.
20. Macrini S, Waterman MS (1994) Sequence alignment and penalty choice. Review of _Computational Biology_ 372:372–396.
21. Saksena K, Bystrov IM, Riazuddin S, Newton MA (2012) Statistical significance of Optical Mapping. _J Comput Biol_ 19:478–492.
22. Vingron M, Waterman MS (1994) Sequence alignment and penalty choice. Review of _Computational Biology_ 372:372–396.
23. Valouev A, et al. (2006) Alignment of optical maps. _J Comput Biol_ 13:442–462.
24. Sarkar D, Goldstein S, Schwartz DC, Newton MA (2012) Statistical significance of Optical Mapping. _J Comput Biol_ 19:478–492.
25. Vingron M, Waterman MS (1994) Sequence alignment and penalty choice. Review of _Computational Biology_ 372:372–396.
26. Vingron M, Waterman MS (1994) Sequence alignment and penalty choice. Review of _Computational Biology_ 372:372–396.