A symmetrization result for a class of anisotropic elliptic problems

A. Alberico∗– G. di Blasio†– F. Feo‡

Abstract

We prove estimates for weak solutions to a class of Dirichlet problems associated to anisotropic elliptic equations with a zero order term.

1 Introduction

We consider the class of Dirichlet problems for anisotropic elliptic equations, whose prototype has the form

\[
\begin{aligned}
\left\{ \begin{array}{ll}
- \sum_{i=1}^{N} \left(|u_{x_{i}}|^{p_{i} \cdot 2} u_{x_{i}} \right)_{x_{i}} + b(u) = f(x) & \text{in } \Omega \\
 u = 0 & \text{on } \partial \Omega,
\end{array} \right.
\end{aligned}
\]

where \(\Omega \) is a bounded open subset of \(\mathbb{R}^{N} \) with Lipschitz continuous boundary, \(N \geq 2, p_{i} \geq 1 \) for \(i = 1, \ldots, N \) such that their harmonic mean \(\overline{p} \) is greater than 1, the subscript \(x_{i} \) denotes partial derivative with respect to \(x_{i} \), \(b \) is a continuous, non-decreasing function such that \(b(0) = 0 \) and \(f \) is a nonnegative function with a suitable summability.

The anisotropy of problem (1.1) depends on differential operator whose growth with respect to the partial derivatives of \(u \) is governed by different powers. In the last years anisotropic problems have been extensively studied by many authors (see e.g. [AdBF2, AdBF3, ACh, BMS, DFG, DF, FGK, FGL, FS, G, Mar]).

The growing interest has led to an extensive investigation also for problems governed by fully anisotropic growth conditions (see e.g. [AC, A, AdBF1, CI, C3]) and problems related to different type of anisotropy (see e.g. [AFTL, BFK, DdB, DG]).

Our goal is to obtain an estimate of concentration of a weak solution to problem (1.1) via symmetrization methods. The use of the standard isoperimetric inequality in the study of isotropic elliptic Dirichlet problems was introduced in [Maz1, Maz2] and independently in [Ta1, Ta2]. Variants and extensions from these papers have been developed in a rich literature. We refer to Vazquez [V2] and Trombetti [T] for a quite comprehensive bibliography on this and related topics.

∗Istituto per le Applicazioni del Calcolo “M. Picone” (I.A.C.), Sez. Napoli, Consiglio Nazionale delle Ricerche (C.N.R.), Via P. Castellino 111, 80131 Napoli, Italy. E-mail:a.alberico@na.iac.cnr.it

†Dipartimento di Matematica e Fisica, Università degli Studi della Campania “Luigi Vanvitelli”, Via Vivaldi, 43 - 81100 Caserta, Italy. E-mail: giuseppina.diblasio@unicampania.it

‡Dipartimento di Ingegneria, Università degli Studi di Napoli “Parthenope”, Centro Direzionale Isola C4 80143 Napoli, Italy. E-mail: filomena.feo@uniparthenope.it

0 Mathematics Subject Classifications: 35B45, 35J25, 35J60

Key words: Anisotropic symmetrization rearrangements, Anisotropic Dirichlet problems, A priori estimate
It is well known that when isotropic elliptic Dirichlet problems with a zero order term are considered, the situation is quite different if we assume or not a sign condition (see, e.g., [D1, D2, Mad, V1, V2]). In the anisotropic setting there are two different cases as well. Indeed, when $b(u)u \geq 0$, it is showed (see, e.g., [C3]) that the symmetric rearrangement of a solution u to anisotropic problem (1.1) is pointwise dominated by the radial solution to an isotropic problem, defined in a ball, with a radially symmetric decreasing data and with no zero order term. Otherwise, with no sign condition on $b(u)u$, we prove an integral comparison result between a solution u to anisotropic problem (1.1) and the radial solution to a suitable isotropic problem defined in a ball, with a radially symmetric decreasing data again but, this time, which preserves a zero order term.

Just to give an idea of our results, let us consider problem (1.1) when the domain Ω is $B_R(0)$, the ball centered at the origin and with radius $R > 0$. We take into account two smooth strictly increasing functions b and \tilde{b} having the same domain such that $b(0) = \tilde{b}(0) = 0$, and two positive decreasing radial symmetric functions f and \tilde{f} defined in $B_R(0)$. Denote by b^{-1} and \tilde{b}^{-1} the inverse function of b and \tilde{b}, respectively. Suppose that

$$((\tilde{b})^{-1})'(s) \leq (b^{-1})'(s) \quad \text{for every } s \in \mathbb{R}$$

and that the datum f is less concentrated than the datum \tilde{f}, i.e.

$$\int_{B_r(0)} f(x) \, dx \leq \int_{B_r(0)} \tilde{f}(x) \, dx \quad \text{for every } 0 \leq r \leq R.$$

Then, we are going to prove that

$$\int_{B_r(0)} b(u^*(x)) \, dx \leq \int_{B_r(0)} \tilde{b}(\tilde{u}(x)) \, dx \quad \text{for every } 0 \leq r \leq R,$$

where u^* is the symmetric decreasing rearrangement of the solution u to problem (1.1) and \tilde{u} is the solution to the following problem

$$\begin{cases}
- \div (|\nabla \tilde{u}|^{\overline{p}-2} \nabla \tilde{u}) + \tilde{b}(\tilde{u}) = \tilde{f}(x) & \text{in } B_R(0) \\
\tilde{u} = 0 & \text{on } \partial B_R(0).
\end{cases}$$

The paper is organized as follows. In Section 2 we recall some backgrounds on the anisotropic spaces and on the properties of symmetrization. In Section 3 we state our main results, proved in Section 4.

2 Preliminaries

Let Ω be a bounded open subset of \mathbb{R}^N, $N \geq 2$, and let $1 \leq p_1, \ldots, p_N < \infty$ be N real numbers. The anisotropic Sobolev space (see e.g. [D1])

$$W^{1,\overline{p}}(\Omega) = \{ u \in W^{1,1}(\Omega) : u_{x_i} \in L^{p_i}(\Omega), i = 1, \ldots, N \}$$

is a Banach space with respect to the norm

$$(2.1) \quad \| u \|_{W^{1,\overline{p}}(\Omega)} = \sum_{i=1}^N \| u_{x_i} \|_{L^{p_i}(\Omega)}.$$

The space $W^{1,\overline{p}}_0(\Omega)$ is the closure of $C_0^\infty(\Omega)$ with respect to the norm (2.1) and we will denote by $\left(W^{1,\overline{p}}_0(\Omega)\right)'$ its dual.
A precise statement of our results requires the use of classical notions of rearrangement and of suitable symmetrization of a Young function, introduced by Klimov in [K]. Let \(u \) be a measurable function (continued by 0 outside its domain) fulfilling
\[
|\{ x \in \mathbb{R}^N : |u(x)| > t \}| < +\infty \quad \text{for every} \ t > 0.
\]
The symmetric decreasing rearrangement of \(u \) is the function \(u^\star : \mathbb{R}^N \to [0, +\infty[\) satisfying\[
\{ x \in \mathbb{R}^N : u^\star(x) > t \} = \{ x \in \mathbb{R}^N : |u(x)| > t \}^\star \quad \text{for} \ t > 0.
\]
The decreasing rearrangement \(u^\ast \) of \(u \) is defined by
\[
u^\ast(s) = \sup \{ t > 0 : \mu_u(t) > s \} \quad \text{for} \ s \geq 0,
\]
where
\[
\mu_u(t) = |\{ x \in \Omega : |u(x)| > t \}| \quad \text{for} \ t \geq 0
\]
denotes the distribution function of \(u \).
Moreover,
\[
u^\star(x) = u^\ast(\omega_N |x|^N) \quad \text{for a.e.} \ x \in \mathbb{R}^N.
\]
Similarly, we define the symmetric increasing rearrangement \(u^\bullet \) on replacing “>” by “<” in the definitions of the sets in (2.2) and (2.3). We refer to [BS] for details on these topics.

In this paper we will consider an \(N \)-dimensional Young function \(\Phi : \mathbb{R}^n \to \mathbb{R} \) (namely, an even convex function such that \(\Phi(0) = 0 \) and \(\lim_{|\xi| \to +\infty} \Phi(\xi) = +\infty \)) of the following type:
\[
\Phi(\xi) = \sum_{i=1}^{N} \alpha_i |\xi_i|^{p_i} \quad \text{for} \ \xi \in \mathbb{R}^N \quad \text{with} \ \alpha_i > 0 \quad \text{for} \ i = 1, \ldots, N.
\]
We denote by \(\Phi^\bullet : \mathbb{R} \to [0, +\infty[\) the symmetrization of \(\Phi \) introduced in [K]. It is the one-dimensional Young function fulfilling
\[
\Phi^\bullet(|\xi|) = \Phi^\bullet^\bullet(\xi) \quad \text{for} \ \xi \in \mathbb{R}^N,
\]
where \(\Phi^\bullet \) is the Young conjugate function of \(\Phi \) given by
\[
\Phi^\bullet(\xi') = \sup \{ \xi : \xi' - \Phi(\xi) : \xi \in \mathbb{R}^N \} \quad \text{for} \ \xi' \in \mathbb{R}^N.
\]
So \(\Phi^\bullet \) is the composition of Young conjugation, symmetric increasing rearrangement and Young conjugate again.

We denote by \(\overline{p} \) the harmonic average of the exponents \(p_i \), i.e.
\[
\frac{1}{\overline{p}} = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{p_i}.
\]
The harmonic average \(\overline{p} \) plays a basic role in discussing anisotropic equations of the form (1.1). Let us assume that \(\overline{p} > 1 \) and set
\[
\Lambda = \frac{2\overline{p}(\overline{p} - 1)\overline{p}^{-1}}{\overline{p}^2} \left[\prod_{i=1}^{N} \frac{1}{\omega_N \Gamma(1 + 1/p_i') \Gamma(1 + 1/p_i)} \left(\frac{N}{\alpha_i} \right)^{\frac{1}{p_i'}} \right]^{\frac{\overline{p}}{N}} \left(\prod_{i=1}^{N} \frac{\alpha_i^{1/p_i}}{\alpha_i} \right)^{\frac{\overline{p}}{N}}.
\]
with ω_N the measure of the $N-$dimensional unit ball, Γ the Gamma function and $p_i' = \frac{p_i}{p_i-1}$, the Hölder conjugate of p_i with the usual conventions if $p_i = 1$. We are now in position to evaluate $\Phi_\bullet(|\xi|)$. Easy calculations show (see e.g. [C3]) that

$$\Phi_\bullet(|\xi|) = \Lambda |\xi|^{\overline{p}}.$$

In the anisotropic setting, we stress that \overline{p} plays a role also in a Polya-Szegö principle which reads as follows (see [C3]). Let u be a weakly differentiable function in \mathbb{R}^N satisfying (2.2) and such that

$$\sum_{i=1}^{N} \alpha_i \int_{\mathbb{R}^N} |u_{x_i}|^{p_i} \, dx < +\infty.$$

Then u^\star is weakly differentiable in \mathbb{R}^N and

$$\Lambda \int_{\mathbb{R}^N} |\nabla u^\star|^{\overline{p}} \, dx \leq \sum_{i=1}^{N} \alpha_i \int_{\mathbb{R}^N} |u_{x_i}|^{p_i} \, dx.$$

3 Main results

In the present section, we focus our attention on the following class of anisotropic elliptic problems

$$\begin{cases} -\text{div}(a(x,u,\nabla u)) + g(x,u) = f(x) & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$

where Ω is a bounded open subset of \mathbb{R}^N with Lipschitz continuous boundary, $N \geq 2$, $a : \Omega \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}^N$ is a Carathéodory function such that for a.e. $x \in \Omega$, for all $s \in \mathbb{R}$ and for all $\xi, \xi' \in \mathbb{R}^N$

(A1) $a(x,s,\xi) \cdot \xi \geq \sum_{i=1}^{N} \alpha_i |\xi_i|^{p_i}$ with $\alpha_i > 0$,

(A2) $|a_j(x,s,\xi)| \leq \beta \left[|s|^{\overline{p}_j} + |\xi_j|^{p_j-1} \right]$ with $\beta > 0$ \quad $\forall j = 1, \ldots, N$,

(A3) $(a(x,s,\xi) - a(x,s,\xi')) \cdot (\xi - \xi') > 0$ for $\xi \neq \xi'$,

where $1 \leq p_1, \ldots, p_N < \infty$ are real numbers and $\overline{p} > 1$. Moreover, we assume that $g : \Omega \times \mathbb{R} \to \mathbb{R}$ is a measurable, continuous and non-decreasing function in s for fixed x, and bounded in x uniformly for bounded u such that

(A4) $g(x,s) s \geq b(s) s$ for a.e. $x \in \Omega$, $\forall s \in \mathbb{R}$, where b is a continuous and strictly increasing function such that $b(0) = 0$.

Finally, we assume that

(A5) $f : \Omega \to \mathbb{R}$ is a nonnegative function such that $f \in \left(W_0^{1,\overline{p}}(\Omega) \right)'$.

In order to give a precise statement of our results, we need to precise what means to be less diffusive. Let \(b_1, b_2 \) be two continuous strictly increasing functions. We say that \(b_1 \) is \textit{weaker} than \(b_2 \) and we write

\[
(3.2) \quad b_1 \prec b_2,
\]

if they have the same domains and there exists a contraction \(\rho : \mathbb{R} \rightarrow \mathbb{R} \) such that \(b_1 = \rho \circ b_2 \).

We are interested in proving an integral estimate of a weak solution \(u \in W^{1,p}_0(\Omega) \) to problem (3.1) in terms of the weak solution \(w \in W^{1,p}_0(\Omega^\star) \) to the following problem

\[
(3.3) \quad \begin{cases}
- \operatorname{div}(\Lambda|\nabla w|^{p-2}\nabla w) + b(w) = f(x) & \text{in } \Omega^\star \\
w = 0 & \text{on } \partial\Omega^\star,
\end{cases}
\]

where \(\Omega^\star \) is the ball centered at the origin and having the same measure as \(\Omega \),

(A6) \(\tilde{b} \) is a continuous and strictly increasing function such that \(\tilde{b}(0) = 0 \),

(A7) \((\tilde{b})^{-1} \prec b^{-1} \),

(A8) \(\tilde{f} : \Omega^\star \rightarrow \mathbb{R} \) is a nonnegative radially symmetric function and decreasing along the radii such that \(\tilde{f} \in (W^{1,p}_0(\Omega^\star))^\prime \).

We stress that, by standard arguments and thanks to the results contained in [BB] (see also [BCE] for the anisotropic setting), there exists a unique weak solution \(w \in W^{1,p}_0(\Omega^\star) \) to (3.3) such that

(i) \(\tilde{b}(w) \in L^1(\Omega^\star) \)

(ii) \(\tilde{b}(w) \in L^1(\Omega^\star) \)

(iii) \(\Lambda \int_\Omega |\nabla w|^{p-2}\nabla w \cdot \nabla \phi \, dx + \int_\Omega \tilde{b}(w) \phi \, dx = \langle \tilde{f}, \phi \rangle_{(W^{1,p}_0(\Omega^\star))^\prime} \)

for every \(\phi \in W^{1,p}_0(\Omega^\star) \cap L^\infty(\Omega^\star) \) and \(\varphi = w \).

Theorem 3.1 Assume that (A1)–(A8) hold. Let \(u \) be a weak solution to the problem (3.1) and \(w \) the weak solution to the problem (3.3). Then,

\[
(3.4) \quad \|(B - \tilde{B})_+\|_{L^\infty(0,|\Omega|)} \leq \|(F - \tilde{F})_+\|_{L^\infty(0,|\Omega|)},
\]

where

\[
(3.5) \quad B(s) = \int_0^s b(u^\star(t)) \, dt \quad \tilde{B}(s) = \int_0^s \tilde{b}(w^\star(t)) \, dt
\]

\[
(3.6) \quad F(s) = \int_0^s f^\star(t) \, dt \quad \tilde{F}(s) = \int_0^s \tilde{f}^\star(t) \, dt
\]

for \(s \in (0,|\Omega|] \).

If we assume that the datum of problem (3.1) dominates the datum of problem (3.3), then the following comparison result between concentrations holds as an easy consequence of Theorem 3.1.

1 By contraction we mean \(|\rho(a) - \rho(b)| \leq |a - b| \) for \(a, b \in \mathbb{R} \).
Corollary 3.2 Under the same assumption of Theorem 3.1, if we suppose that

\[F(s) \leq \tilde{F}(s) \quad \text{for any } s \in [0, |\Omega|], \]

then

\[B(s) \leq \tilde{B}(s) \quad \text{for any } s \in [0, |\Omega|]. \]

In particular, we have

\[\int_{\Omega} \Psi(b(u(x))) \, dx \leq \int_{\Omega} \Psi(\tilde{b}(w(x))) \, dx \]

for all convex and non-decreasing function \(\Psi : \mathbb{R} \to \mathbb{R} \).

An immediate consequence of Corollary 3.2 are norm estimate s of \(b(u) \) in terms of norm of \(\tilde{b}(w) \). An example of applications of (3.9) is the following one:

\[\| b(u) \|_{L^p(\Omega)} \leq \| \tilde{b}(w) \|_{L^p(\Omega^*)} \quad \text{for } 1 \leq p \leq \infty. \]

We emphasize that in the spirit of [V2], Theorem 3.1 and Corollary 3.2 still hold if we do not require the strictly monotony of \(b \) and \(\tilde{b} \), but assume that \(b \) and \(\tilde{b} \) are non-decreasing functions or, more generally, maximal monotone graphs in \(\mathbb{R}^2 \) such that \(b(0) \ni 0 \) and \(\tilde{b}(0) \ni 0 \). Indeed, a maximal monotone graph is a natural generalization of the concept of monotone non-decreasing real function; moreover, the inverse of a maximal monotone graph is again a maximal monotone graph (see [V2] for more details).

4 Proof of Theorem 3.1

Let us consider the functions \(u_{\kappa,t} : \Omega \to \mathbb{R} \) defined by

\[
 u_{\kappa,t}(x) = \begin{cases}
 0 & \text{if } |u(x)| \leq t, \\
 (|u(x)| - t) \text{sign}(u(x)) & \text{if } t < |u(x)| \leq t + \kappa \\
 \kappa \text{sign}(u(x)) & \text{if } t + \kappa < |u(x)|,
 \end{cases}
\]

for any fixed \(t \) and \(\kappa > 0 \). This function can be chosen as a test function in (3.1). By (A1) and (A4),

\[-\frac{d}{dt} \int_{\{u > t\}} \sum_{i=1}^{N} \alpha_i |u_{x_i}|^{p_i} \, dx \leq \int_{\{u > t\}} |f(x)| \, dx - \int_{\{u > t\}} b(u(x)) \text{sign } u \, dx \quad \text{for a.e. } t > 0. \]

Taking into account (2.4), (2.8) and (2.9), analogous arguments as in [C3] yield

\[-\frac{d}{dt} \int_{\{u > t\}} \Lambda |\nabla u|^p \, dx \leq -\frac{d}{dt} \int_{\{u > t\}} \sum_{i=1}^{N} \alpha_i |u_{x_i}|^{p_i} \, dx \quad \text{for a.e. } t > 0. \]

By the Coarea formula and the H"older inequality,

\[\left(-\frac{d}{dt} \int_{\{u > t\}} |\nabla u|^p \, dx \right)^{\frac{1}{p}} \geq N \omega_N \frac{1}{\mu(t)^{\frac{1}{p'}}} \mu(t)^{\frac{1}{p'}} \left(-\mu(t) \right)^{-\frac{1}{p'}} \quad \text{for a.e. } t > 0. \]
Since f is nonnegative, the maximum principle assures that $u \geq 0$. Since b is monotone, we obtain

$$
(4.4) \quad \int_{\{u > t\}} b(u(x)) \text{sign } u \, dx = \int_0^{\mu_u(t)} b(u^*(s)) \, ds \quad \text{for a.e. } t > 0.
$$

Thus, as a consequence of (4.1), (4.2), (4.3) and (4.4), it follows that

$$
(4.5) \quad \Lambda \left(N \omega_N^\frac{1}{N} \mu_u(t) \frac{1}{\alpha^p} \right) \left(-\mu_u(t)^{\frac{1}{p}} \right) \leq \int_0^{\mu_u(t)} f^*(s) \, ds - \int_0^{\mu_u(t)} b(u^*(s)) \, ds \quad \text{for a.e. } t > 0.
$$

The relation (4.5) implies that

$$
(4.6) \quad 1 \leq \frac{-\mu_u(t) \Lambda^{-\frac{1}{p-1}}}{\left(N \omega_N^{\frac{1}{N}} \right)^{\frac{1}{p-1}} (\mu_u(t))^{-\frac{1}{p}}} \left[\mathcal{F}(\mu_u(t)) - \mathcal{B}(\mu_u(t)) \right]^{-\frac{1}{p-1}} \quad \text{for a.e. } t > 0,
$$

where \mathcal{F} and \mathcal{B} are defined as in (3.5) and (3.6), respectively.

By standard arguments (see, e.g., [Ta1]), it follows that

$$
(4.7) \quad (-u^*(s))' \leq \left(N \omega_N^\frac{1}{N} \right)^{-\frac{1}{p}} \Lambda^{-\frac{1}{p-1}} s^{-\frac{1}{pN}} [\mathcal{F}(s) - \mathcal{B}(s)]^{-\frac{1}{p-1}} \quad \text{for a.e. } s \in (0, |\Omega|).
$$

By (3.5),

$$
(4.8) \quad \mathcal{B}'(s) = b(u^*(s)) \quad \text{for a.e. } s \in (0, |\Omega|).
$$

Relations (3.5), (4.7) and (4.8) imply that

$$
(4.9) \quad \left\{ \begin{array} {l}
\Lambda \left(N \omega_N^\frac{1}{N} \right)^{-\frac{1}{p}} s^{\frac{p-1}{Np}} \left[-\frac{d}{ds} \left(\gamma \left(\mathcal{B}'(s) \right) \right) \right]^{-\frac{1}{p}} + \mathcal{B}(s) \leq \mathcal{F}(s) \quad \text{for a.e. } s \in (0, |\Omega|) \\
\mathcal{B}(0) = 0, \quad \mathcal{B}'(|\Omega|) = 0,
\end{array} \right.
$$

where γ is the inverse function of b, i.e. $\gamma = b^{-1}$.

Let us consider problem (3.3). A weak solution w to problem (3.3) is unique and the symmetry of data assures that $w(x) = w(|x|)$, i.e. w is positive and radially symmetric. Moreover, setting $s = \omega_N |x|^N$ and $\tilde{w}(s) = w((s/\omega_N)^{1/N})$, we get that for all $s \in [0, |\Omega|]$}

$$
-\Lambda |\tilde{w}'(s)|^{p-2} \tilde{w}'(s) = \frac{s^{-p/N'}}{(N \omega_N^{1/N})^p} \int_0^s \left(f^*(\sigma) - b(\tilde{w}(\sigma)) \right) d\sigma \quad \text{for a.e. } s \in (0, |\Omega|).
$$

Since it is possible to show (see [D1] Lemma 1.31) that the above integral is positive, we deduce that $w(x) = w^*(x)$. By the properties of w we can repeat arguments used to prove (4.7) replacing all the inequalities by equalities and obtaining

$$
(4.10) \quad (-w^*(s))' = \left(N \omega_N^\frac{1}{N} \right)^{-\frac{1}{p}} \Lambda^{-\frac{1}{p-1}} s^{-\frac{p}{pN'}} \left[\tilde{\mathcal{F}}(s) - \tilde{\mathcal{B}}(s) \right]^{-\frac{1}{p-1}} \quad \text{for a.e. } s \in (0, |\Omega|).
$$

Moreover, we have

$$
(4.11) \quad \left\{ \begin{array} {l}
\Lambda \left(N \omega_N^\frac{1}{N} \right)^{-\frac{1}{p}} s^{\frac{p-1}{Np}} \left[-\frac{d}{ds} \left(\tilde{\gamma} \left(\tilde{\mathcal{B}}'(s) \right) \right) \right]^{-\frac{1}{p}} + \tilde{\mathcal{B}}(s) = \tilde{\mathcal{F}}(s) \quad \text{for a.e. } s \in (0, |\Omega|) \\
\tilde{\mathcal{B}}(0) = 0, \quad \tilde{\mathcal{B}}'(|\Omega|) = 0,
\end{array} \right.
$$

7
where \(\tilde{\gamma} \) is the inverse function of \(\tilde{b} \), i.e. \(\tilde{\gamma} = (\tilde{b})^{-1} \).

Since \(B, \tilde{B} \in C([0, |\Omega|]) \), there exists \(s_0 \in (0, |\Omega|) \) such that

\[
\| (B - \tilde{B})_+ \|_{L^\infty(0, |\Omega|)} = (B - \tilde{B})(s_0).
\]

In order to prove (4.11), we argue by contradiction. Assume that

\[
(B - \tilde{B})(s_0) > \| (\mathcal{F} - \tilde{\mathcal{F}})_+ \|_{L^\infty(0, |\Omega|)}.
\]

We distinguish two cases: \(s_0 < |\Omega| \) and \(s_0 = |\Omega| \).

Case \(s_0 < |\Omega| \). Combining (4.9) and (4.11) yields

\[
\Lambda \left(N \omega^\frac{1}{N} \right) \frac{s}{\sqrt{s}} \left[\left(-\frac{d}{ds} \left(\gamma \left(B'(s) \right) \right) \right)^{\frac{\sqrt{s}}{\sqrt{s}}} - \left(-\frac{d}{ds} \left(\tilde{\gamma} \left(\tilde{B}'(s) \right) \right) \right)^{\frac{\sqrt{s}}{\sqrt{s}}} \right] \leq \mathcal{F}(s) - \tilde{\mathcal{F}}(s) + \tilde{B}(s) - B(s) \quad \text{for a.e. } s \in (0, |\Omega|)
\]

By (4.13),

\[
\mathcal{F}(s) - \tilde{\mathcal{F}}(s) + \tilde{B}(s) - B(s) \leq \| (\mathcal{F} - \tilde{\mathcal{F}})_+ \|_{L^\infty(0, |\Omega|)} - (B - \tilde{B})(s) < 0
\]

for \(s \in (s_0 - \varepsilon, s_0 + \varepsilon) \). As a consequence of (4.14) and (4.15) we obtain

\[
\Lambda \left(N \omega^\frac{1}{N} \right) \frac{s}{\sqrt{s}} \left[\left(-\frac{d}{ds} \left(\gamma \left(B'(s) \right) \right) \right)^{\frac{\sqrt{s}}{\sqrt{s}}} - \left(-\frac{d}{ds} \left(\tilde{\gamma} \left(\tilde{B}'(s) \right) \right) \right)^{\frac{\sqrt{s}}{\sqrt{s}}} \right] = \Lambda \left(N \omega^\frac{1}{N} \right) \frac{s}{\sqrt{s}} \omega(s) \left[\frac{d}{ds} \left(\gamma \left(B'(s) \right) - \tilde{\gamma} \left(\tilde{B}'(s) \right) \right) \right] < 0,
\]

where

\[
\omega(s) = (\sqrt{s} - 1) \int_0^1 \left\{ \left[\tau \left(-\frac{d}{ds} \left(\gamma \left(B'(s) \right) \right) \right) + (1 - \tau) \left(-\frac{d}{ds} \left(\tilde{\gamma} \left(\tilde{B}'(s) \right) \right) \right) \right]^{\sqrt{s}} \right\} d\tau > 0.
\]

Setting

\[
Z = B - \tilde{B} \in W^{2, \infty}(s_0 - \varepsilon, s_0 + \varepsilon),
\]

we get

\[
-\frac{d}{ds} \left(\tilde{\gamma} \left(\tilde{B}'(s) \right) - \gamma \left(B'(s) \right) \right) = -\frac{d}{ds} \left(Z'(s) \eta(s) \right),
\]

where

\[
\eta(s) = \int_0^1 \tau \left(\gamma \left(B'(s) \right) + (1 - \tau) \tilde{B}'(s) \right) d\tau > 0.
\]

By (A7), we can conclude that

\[
-\frac{d}{ds} \left(\gamma \left(B'(s) \right) - \tilde{\gamma} \left(\tilde{B}'(s) \right) \right) \geq 0 \quad \text{for a.e. } s \in (0, |\Omega|).
\]

Then, by (4.18) and (4.20),

\[
-\frac{d}{ds} \left(Z'(s) \eta(s) \right) \leq -\frac{d}{ds} \left(\gamma \left(B'(s) \right) - \tilde{\gamma} \left(\tilde{B}'(s) \right) \right) \quad \text{for a.e. } s \in (0, |\Omega|).
\]
Finally, thanks to (4.16) and (4.21), we have
\begin{align}
\Lambda \left(N \omega_\gamma \frac{1}{\beta} \right)^p \int_\Omega \omega(s) \left(\frac{d}{ds} (\eta(s)Z'(s)) \right) \leq \\
\leq \Lambda \left(N \omega_\gamma \frac{1}{\beta} \right)^p \int_\Omega \omega(s) \left[-\frac{d}{ds} \left(\gamma \left(B'(s) \right) - \gamma \left(\bar{B}'(s) \right) \right) \right] < 0 \quad \text{for a.e. } s \in (0, |\Omega|).
\end{align}

We can conclude that
\begin{align}
-d \left(\eta(s)Z'(s) \right) < 0 \quad \text{for } s \in (s_0 - \epsilon, s_0 + \epsilon),
\end{align}

which is in contradiction with the assumption (4.12), i.e. \(Z \) has a maximum in \(s_0 \).

Case \(s_0 = |\Omega| \). In this case, the inequality (4.23) holds for \(s \in (|\Omega| - \epsilon, |\Omega|) \). So \(Z'(|\Omega|) > 0 \), but this is not true since \(Z'(|\Omega|) = 0 \).

Acknowledgements This work has been partially supported by GNAMPA of the Italian INdAM (National Institute of High Mathematics) and “Programma triennale della Ricerca dell’Università degli Studi di Napoli “Parthenope” - Sostegno alla ricerca individuale 2015-2017”.

References

[A] A. Alberico, *Boundedness of solutions to anisotropic variational problems*, Comm. Part. Diff. Eq. 36 (2011), 470–486; Corrigendum, ibid, 41, No. 5, 877–878 (2016).

[AC] A. Alberico, A. Cianchi, *Comparison estimates in anisotropic variational problems*, Manuscripta Math. 126 (2008), 481–503.

[AdBF1] A. Alberico, G. di Blasio, F. Feo, *A priori estimates for solutions to anisotropic elliptic problems via symmetrization*, Math. Nachr., Version of Record online : 25 OCT 2016, DOI: 10.1002/mana.201500282.

[AdBF2] A. Alberico, G. di Blasio, F. Feo, *Estimates for solutions to anisotropic elliptic equations with zero order term*, Geometric Properties for Parabolic and Elliptic PDEs. Contributions of the 4th Italian-Japanese Workshop, GPPEPDEs, Palinuro, Italy, May 25–29, 2015, pp. 1–15, Springer (2016).

[AdBF3] A. Alberico, G. di Blasio, F. Feo, *Comparison results for nonlinear anisotropic parabolic problems*, in press on Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl..

[ALT] A. Alvino, G. Trombetti, P. L. Lions, *On optimization problems with prescribed rearrangements*, Nonlinear Anal. 13 (1989), 185–220.

[AFTL] A. Alvino, V. Ferone, G. Trombetti, P. L. Lions, *Convex symmetrization and applications*, Ann. Inst. H. Poincaré Anal. Non Linéaire 14 (1997), 275–293.

[ACh] S. Antontsev, M. Chipot, *Anisotropic equations: uniqueness and existence results*, Diff. Int. Eq. 21 (2008), 401–419.

[BFK] M. Belloni, V. Ferone, B. Kawohl, *Isoperimetric inequalities, Wulff shape and related questions for strongly nonlinear elliptic equations*, Zeit. Angew. Math. Phys. 54 (2003), 771–789.
[BCE] M. Bendahmane, M. Chrif, S. El Manouni, An approximation result in generalized anisotropic Sobolev spaces and applications. Z. Anal. Anwend. 30 (2011), 341–353.

[BB] H. Brezis, F. E. Browder, Some properties of higher order Sobolev spaces, J. Math. Pures Appl. 61 (1982), 245–259.

[BS] C. Bennett, R. Sharpley, Interpolation of operators, Pure and Applied Mathematics, 129, Academic Press, Inc., Boston, MA, 1988.

[BMS] L. Boccardo, P. Marcellini, C. Sbordone, L^∞-regularity for variational problems with sharp nonstandard growth conditions, Boll. Un. Mat. Ital. A 4 (1990), 219–225.

[C1] A. Cianchi, Local boundedness of minimizers of anisotropic functionals, Ann. Inst. Henri Poincaré, Analyse non linéaire 17 (2000), 147–168.

[C3] A. Cianchi, Symmetrization in anisotropic elliptic problems, Comm. Part. Diff. Eq. 32 (2007), 693–717.

[DdB] F. Della Pietra, G. di Blasio, Blow-up solutions for some nonlinear elliptic equations involving a Finsler-Laplacian, Publ. Mat. 61, No. 1, 213–238 (2017).

[DG] F. Della Pietra, N. Gavitone, Anisotropic elliptic equations with general growth in the gradient and Hardy-type potentials, J. Differential Equations 255 (2013), 3788–3810.

[DFG] R. Di Nardo, F. Feo, O. Guibé, Uniqueness result for nonlinear anisotropic elliptic equations. Adv. Differential Equations 18 (2013), 433–458.

[DF] R. Di Nardo, F. Feo, Existence and uniqueness for nonlinear anisotropic elliptic equations, Arch. Math. (Basel) 102 (2014), 141–153.

[D1] J. I. Díaz, Nonlinear partial differential equations and free boundaries. Vol. I. Elliptic equations, Research Notes in Mathematics, 106. Pitman, Boston, MA, 1985.

[D2] J. I. Díaz, Inequalities of isoperimetric type for the Plateau problem and the capillarity problem, Rev. Acad. Canaria Cienc. 3 (1991), 127–166.

[FGK] I. Fragalà, F. Gazzola, B. Kawohl, Existence and nonexistence results for anisotropic quasilinear elliptic equations, Ann. Inst. Henri Poincaré, Analyse non linéaire 21 (2004), 715–734.

[FGL] I. Fragalà, F. Gazzola, G. Lieberman, Regularity and nonexistence results for anisotropic quasilinear elliptic equations in convex domains, Disc. Cont. Dynam. Syst. (2005), 280–286.

[FS] N. Fusco, C. Sbordone, Some remarks on the regularity of minima of anisotropic integrals, Comm. Part. Diff. Equat. 18 (1993), 153-167.

[G] M. Giaquinta, Growth conditions and regularity, a counterexample, Manus. Math. 59 (1987), 245–248.

[Mad] C. Maderna, Optimal problems for a certain class of nonlinear Dirichlet problems, Boll. Un. Mat. Ital. Suppl. 1 (1980), 31–43.

[Mar] P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions, Arch. Rat. Mech. Anal. 105 (1989), 267–284.

[Maz1] V. G. Maz’ya, Some estimates of solutions of second-order elliptic equations, Dokl. Akad. Nauk. SSSR 137 (1961), 1057–1059 (Russian); English translation: Soviet Math. Dokl. 2 (1961), 413–415.
[Maz2] V. G. Maz’ya, *On weak solutions of the Dirichlet and Neumann problems*, Trusdy Moskov. Mat. Obšč. 20 (1969), 137–172 (Russian); English translation: Trans. Moscow Math. Soc. 20 (1969), 135–172.

[K] V. S. Klimov, *Isoperimetric inequalities and imbedding theorems*, (Russian) Dokl. Akad. Nuak SSSR 217 (1974), 272–275.

[Ta1] G. Talenti, *Elliptic equations and rearrangements*, Ann. Sc. Norm. Sup. Pisa IV 3 (1976), 697–718.

[Ta2] G. Talenti, *Nonlinear elliptic equations, rearrangements of functions and Orlicz spaces*, Ann. Mat. Pura Appl. 120 (1979), 160–184.

[Tr] M. Troisi, *Teoremi di inclusione per spazi di Sobolev non isotropi*, Ricerche Mat. 18 (1969), 3–24.

[T] G. Trombetti, *Symmetrization methods for partial differential equations*, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. 3 (2000), 601–634.

[V1] J. L. Vazquez, *Symétrisation pour ut = \Delta \varphi(u) et applications*, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), 71–74.

[V2] J. L. Vazquez, *Symmetrization and Mass Comparison for Degenerate Nonlinear Parabolic and related Elliptic Equations*, Advances in Nonlinear Studies, 5 (2005), 87–131.