Exploring the relationship between black hole accretion and star formation with blind mid-/far-infrared spectroscopic surveys

M. Bonato1,2*, M. Negrello2, Z.-Y. Cai3,4, G. De Zotti2,4, A. Bressan4, A. Lapi4,5, F. Pozzi6, C. Gruppioni7 and L. Danese4

1Dipartimento di Fisica e Astronomia “G.Galilei”, Università degli Studi di Padova, Vicolo Osservatorio 3, I-35122 Padova, Italy
2INAF, Osservatorio Astronomico di Padova, Vicolo Osservatorio 5, I-35122 Padova, Italy
3Center for Astrophysics, University of Science and Technology of China, Hefei, 230026, China
4SISSA, Via Bonomea 265, I-34136 Trieste, Italy
5Dipartimento di Fisica, Università “Tor Vergata”, Via della Ricerca Scientifica 1, I-00133 Roma, Italy
6Dipartimento di Fisica e Astronomia, Università di Bologna, via Ranzani 1, I-40127 Bologna, Italy
7INAF, Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna, Italy

ABSTRACT

We present new estimates of redshift-dependent luminosity functions of IR lines detectable by SPICA/SAFARI and excited both by star formation and by AGN activity. The new estimates improve over previous work by using updated evolutionary models and dealing in a self consistent way with emission of galaxies as a whole, including both the starburst and the AGN component. New relationships between line and AGN bolometric luminosity have been derived and those between line and IR luminosities of the starburst component have been updated. These ingredients were used to work out predictions for the source counts in 11 mid/far-IR emission lines partially or entirely excited by AGN activity. We find that the statistics of the emission line detection of galaxies as a whole is mainly determined by the star formation rate, because of the rarity of bright AGNs. We also find that the slope of the line integral number counts is flatter than 2 implying that the number of detections at fixed observing time increases more by extending the survey area than by going deeper. We thus propose a wide spectroscopic survey of 1 hour integration per field-of-view over an area of 5 deg2 to detect (at 5\sigma) \sim 760 AGNs in [OIV]25.89 \mu m – the brightest AGN mid-infrared line – out to z \sim 2. Pointed observations of strongly lensed or hyper-luminous galaxies previously detected by large area surveys such as those by Herschel and by the SPT can provide key information on the galaxy-AGN co-evolution out to higher redshifts.

Key words: galaxies: luminosity function – galaxies: evolution – galaxies: active – galaxies: starburst – infrared: galaxies

1 INTRODUCTION

One of the main scientific goals of the SPace InfraRed telescope for Cosmology and Astrophysics (SPICA2) with its SpicA FAR infrared Instrument (SAFARI; Roelfsema et al. 2012) is to provide insight into the interplay between galaxy evolution and the growth of active nuclei (AGNs) at their centers during the dust-enshrouded active star formation and mass accretion phases. The imaging spectrometer SAFARI is designed to fully exploit the extremely low far-infrared (far-IR) background environment provided by the SPICA observatory, whose telescope will be actively cooled at 6K. In each integration it will take complete 34–210\mu m spectra split in three bands (34 – 60\mu m, 60 – 110\mu m, 110 – 210\mu m), spatially resolving the full 2’x2’ field of view (FoV). These bands are weakly if at all affected by dust extinction and thus allowing direct measurements of the intrinsic properties of the sources.

The mid-IR (MIR) lines that will be detected can come either from star forming regions or from nuclear activity or from both. Distinguishing the two contributions is not easy. However a key diagnostic relies on the fact that AGNs produce harder radiation and therefore excite metals to
higher ionization states than starbursts. Thus lines with high-ionization potential are a powerful tool for identifying AGN activity (Sturm et al. 2002; Meléndez et al. 2008; Satyapal et al. 2008; 2009; Goulding & Alexander 2008; Dunhil, Satyapal, & March 2009; Weaver et al. 2010) that is easily missed by optical spectroscopic observations in the case of dusty objects, as galaxies with intense star formation are.

So far these studies have been limited to local objects. Substantial progress in this area will be made possible by spectroscopy with SAFARI that will exploit for the first time the rich suite of mid- and far-IR diagnostic lines to trace the star formation and the accretion onto the supermassive black holes up to high redshifts through both blind spectroscopic surveys and pointed observations.

An exploratory study of the SPICA/SAFARI potential in detecting galaxies and AGNs in the main IR lines in several redshift ranges has been presented by Spinoglio et al. (2012). Their calculations were based on the phenomenological evolutionary models by Franceschini et al. (2010), Gruppioni et al. (2011) and Valiante et al. (2009). The models, like most classical backward evolution models, evolve the star forming galaxies and the AGNs independently. This class of models have been quite successful in reproducing far-IR to sub-millimeter source counts but are clearly unable to predict the composite line spectra of galaxies in which star formation and AGN activity co-exist.

Valiante et al. (2009) have carried out a first attempt to deal in a coherent way with the cosmic evolution of IR emissions of both the starburst and the AGN components. This was done by first estimating the distribution of the ratios between the 6 µm AGN continuum luminosity, νL_{6µm}, and the total IR luminosity, L_{IR} = L_{8−1000µm}, for a sample of local galaxies in five IR luminosity bins. The luminosity dependent distributions of νL_{6µm}/L_{IR} were derived subtracting the estimated starburst contribution from the Spitzer Infrared Spectrograph (IRS) mid-IR data for a complete sample of IRAS galaxies. A check on the evolution with redshift of the mean νL_{6µm} vs L_{IR} relation was made using IRS measurements for a sample of galaxies at 0.37 < z < 3.35. The mean ratio νL_{6µm}/L_{IR} was found to increase with luminosity as νL_{6µm}/L_{IR} ∝ L_{IR}^{1.4±0.6}. The increase was assumed to stop at L_{IR, t} = 10^{12.5} L_⊙ for z < 0.5 and at L_{IR, t} = 10^{12} L_⊙ for z ≥ 0.5. Then an evolutionary law for L_{IR} was chosen and a value of νL_{6µm}/L_{IR} drawn at random from the appropriate distribution was assigned to each source.

The strong increase of the average AGN luminosity fraction with increasing L_{IR} up to L_{IR, t} derived by Valiante et al. (2009) is however not supported by many other analyses, although the relationship between these two quantities is still matter of debate with studies showing either strong or marginal correlations between AGN and starburst luminosities (Lutz et al. 2003; Serjeant & Hatziminaoglou 2009; Alexander & Hickox 2012; Diamond-Stanic & Rieke 2012; Rosario et al. 2012; Mullaney et al. 2012; Chen et al. 2013; Chen & Hickox 2014; Hickox et al. 2014). The apparently contradictory results of different analyses may be understood taking into account on one side that the characteristic timescale of black hole accretion is very different from that of star formation and on the other side that any relation between star formation rate (SFR) and accretion rate must break down as the AGN luminosity is at the Eddington limit.

The different timescales imply that accretion and star formation are not necessarily on at the same time. Hence the relation among the two quantities may have a large dispersion when individual objects are considered, still being strong when averaging over the whole population of star forming galaxies (Chen et al. 2013). A coherent scenario for the interpretation of the various pieces of evidence on the connection between star formation and AGN activity has been elaborated by Lapi et al. (2014).

In this paper we present a new approach to the problem taking advantage of the physical model for the co-evolution of super-massive black holes and massive proto-spheroidal galaxies at high redshift (z ≥ 1.5) worked out by Cai et al. (2013) who presented the evolving luminosity functions of these objects as a whole (starburst plus AGN), taking into account in a self-consistent way the variation with galactic age of the global spectral energy distribution.

The physical model was complemented by a phenomenological model for lower z AGNs and star forming galaxies, mostly late-type since massive spheroidal galaxies are observed to be in essentially passive evolution at z ≤ 1–1.5. In this case galaxies and AGNs were evolved separately. We combined the two components exploiting the average accretion rate as a function of the SFR derived by Chen et al. (2013), taking into account its dispersion. Bright optically selected QSOs, that do not obey such correlation, were taken into account adopting the best fit evolutionary model by Croom et al. (2009) up to z = 2.

The plan of the paper is the following. In Section 2 we present the adopted model for the evolution with cosmic time of the IR (8−1000 µm) luminosity function.

In Section 3 we discuss the relations between line and continuum luminosity for the main mid/far-IR lines. In Section 4 we work out our predictions for line luminosity functions, number counts and redshift distributions in the SPICA/SAFARI bands. In Section 5 we compare our results with previous estimates. In Section 6 we discuss possible SPICA/SAFARI observation strategies, considering different integration times per FoV. Section 7 contains a summary of our main conclusions.

We adopt a flat ΛCDM cosmology with matter density Ω_m = 0.32, dark energy density Ω_Λ = 0.68 and Hubble constant h = H_0/100 km s^{-1} Mpc^{-1} = 0.67 (Planck Collaboration XVI 2013).

2 EVOLUTION OF THE IR LUMINOSITY FUNCTIONS

As mentioned in Sect. 1 our reference model for the redshift-dependent IR luminosity functions is the one worked out by Cai et al. (2013) based on a comprehensive “hybrid” approach combining a physical model for the progenitors of early-type galaxies with a phenomenological one for late-types. The evolution of progenitors of early-type galaxies and of massive bulges of Sa’s is described by an updated version of the physical model by Granato et al. (2004) see also Lapi et al. 2006, 2011 and Mao et al. 2007). In the local universe these objects are composed of relatively old stellar populations with mass-weighted ages ≥ 8–9 Gyr, cor-
responding to formation redshifts \(z > 1.5 \), while the disc components of spirals and the irregular galaxies are characterized by significantly younger stellar populations (cf. Bernardi et al. 2010, their Fig. 10). Thus the progenitors of early-type galaxies, referred to as proto-spheroidal galaxies or “proto-spheroids”, are the dominant star forming population at \(z > 1.5 \), while IR galaxies at \(z \lesssim 1.5 \) are mostly late-type galaxies.

According to Cai et al. 2013 the redshift dependent luminosity functions of proto-spheroids as a whole, \(\Phi(L_{\text{tot}}, z) \), writes:

\[
\Phi(L_{\text{tot}}, z) = \int_{M_{\text{min}}}^{M_{\text{max}}} dM_{\text{vir}} \int_{z}^{z_{\text{max}}} dz_{\text{vir}} \frac{dM_{\text{vir}}}{dz_{\text{vir}}} \\
\times \frac{dN_{\text{ST}}}{dt_{\text{vir}}}(M_{\text{vir}}, z_{\text{vir}}) \int_{-\infty}^{\log L_{\text{tot}}} \frac{dx}{2\pi\sigma_{\ast}\sigma_{*}} \\
\times \frac{L_{\text{tot}} - 10^{x}}{L_{\text{tot}} - 10^{x}} \exp \left[-\frac{(x \log L_{\ast})^{2}}{2\sigma_{\ast}^{2}} \right] \\
\times \exp \left[-\frac{[\log(L_{\text{tot}} - 10^{x}) - L_{\ast}]^{2}}{2\sigma_{*}^{2}} \right]
\]

where \(L_{\ast} = L_{\ast}(z|M_{\text{vir}}, z_{\text{vir}}) \) and \(L_{\ast} = L_{\ast}(z|M_{\text{vir}}, z_{\text{vir}}) \) are the redshift-dependent mean starburst and AGN luminosities at given halo mass, \(M_{\text{vir}} \), and virialization redshift, \(z_{\text{vir}} \), respectively, and \(\sigma_{\ast} \) and \(\sigma_{*} \) are the corresponding dispersions. \(dN_{\text{ST}}/dt_{\text{vir}} \) is the matter dark halo mass function (Sheth & Tormen 1999).

The conditional luminosity function of the starburst component, \(\Phi_{\ast}(L_{\ast}|L_{\text{tot}}, z) \), i.e. the number density of sources at redshift \(z \) with starburst luminosity \(L_{\ast} \) given that the total luminosity is \(L_{\text{tot}} \), writes

\[
\Phi_{\ast}(L_{\ast}|L_{\text{tot}}, z)d\log L_{\ast} = \int_{M_{\text{min}}}^{M_{\text{max}}} dM_{\text{vir}} \\
\times \frac{L_{\text{tot}}}{L_{\text{tot}} - L_{\ast}} \exp \left[-\frac{(\log L_{\ast} - \log L_{\ast})^{2}}{2\sigma_{\ast}^{2}} \right] \\
\times \exp \left[-\frac{[\log(L_{\text{tot}} - 10^{x}) - L_{\ast}]^{2}}{2\sigma_{*}^{2}} \right] \\
\times \frac{dN_{\text{ST}}}{dt_{\text{vir}}}(M_{\text{vir}}, z_{\text{vir}}) \frac{d\log L_{\ast}}{2\pi\sigma_{\ast}\sigma_{*}}
\]

The two probabilities have unit integral over the luminosity range \(0 - L_{\text{tot}} \) and are linked by the condition that, at fixed \(L_{\text{tot}} \), \(P_{\ast}(L_{\ast}|L_{\text{tot}}) = -P_{\ast}(L_{\ast}|L_{\text{tot}}) / d\log L_{\ast} / d\log L_{\ast} \) with \(d\log L_{\ast} / d\log L_{\ast} = d\log(L_{\text{tot}} - L_{\ast}) / d\log L_{\ast} = -L_{\ast} / (L_{\text{tot}} - L_{\ast}) \). Then

\[
P_{\ast}(L_{\ast}|L_{\text{tot}}) = \frac{L_{\ast}}{L_{\text{tot}} - L_{\ast}} P_{\ast}(L_{\text{tot}} - L_{\ast}|L_{\text{tot}})
\]

or

\[
P_{\ast}(L_{\ast}|L_{\text{tot}}) = \frac{L_{\ast}}{L_{\text{tot}} - L_{\ast}} P_{\ast}(L_{\text{tot}} - L_{\ast}|L_{\text{tot}})
\]

Each proto-spheroid of luminosity \(L_{\text{tot}} \) was assigned bolometric luminosities of the starburst and of the AGN compo-
ments drawn at random from the above probability distributions, with the parameter values given by Cai et al. (2013). Note that for the starburst component the bolometric luminosity is very close to the IR (8–1000 µm) luminosity, but this is not the case for AGNs, especially for type-1’s. For example, adopting the AGN SEDs used by Cai et al. (2013) we get $L_{IR}/L_{bol} = 0.189$ and 0.776 for type-1’s, type-2’s, respectively. This should be taken into account when comparing our results with those by Spinoglio et al. (2012) which rely on correlations between line and IR luminosity rather than between line and bolometric luminosity, as done in this paper.

The model makes detailed predictions also for strongly gravitationally lensed galaxies. These objects are of special interest because strong lensing allows us to measure their total mass distribution up to very large distances and to gain information on sources too faint to be detected with current instrument sensitivities, thus testing models for galaxy formation and dark matter. To deal with them the probability distributions have been applied to the de-lensed luminosities. The de-lensing was made attributing to each lensed source an amplification factor randomly extracted from the amplification probability distributions by Negrello et al. (2007) and Lapi et al. (2012). After having done that, the luminosities of both component were re-amplified by the same factor.

As mentioned above, the evolution of late-type galaxies, the dominant star forming population at $z \gtrsim 1.5$, is described by a phenomenological, parametric model, distinguishing two sub-populations, “cold” (normal) and “warm” (starburst) galaxies. The AGNs associated to these populations are evolved independently, again with a phenomenological recipe. To combine galaxies and AGNs into sources including both components we have exploited the correlation between SFR and average black hole accretion rate derived by Chen et al. (2013) on the basis of a sample of 1767 far-IR selected galaxies in the redshift range $0.25 < z < 0.8$. Using their eq. (5), their bolometric correction for the AGN X-ray emission $L_{bol}/L_X = 22.4$, and their relationship between the IR luminosity of the starburst, L_{IR}, and the SFR we got $\langle L_{bol}/L_{IR} \rangle = 0.054(L_{IR}/10^{12} L_\odot)^{0.05}$.

It is also necessary to properly take into account the large (see the discussion in Sect. 1) dispersion around the mean relation. Such dispersion is difficult to evaluate because of the large fraction of galaxies in the Chen et al. (2013) sample for which only upper limits to the nuclear emission are available. We have estimated it by trial and error, looking for a value that yields redshift-dependent AGN luminosity functions consistent with the observational estimates by Delveccchio et al. (2014). In practice, we have carried out simulations associating to galaxies with a given L_{IR} an AGN with bolometric luminosity drawn at random from a Gaussian distribution with mean given by the average L_{bol}/L_{IR} relation and several values of the dispersion. The contribution of optically selected AGNs (see below) was then added to the derived luminosity functions. We get consistency with the data (see a couple of examples in Fig. 11 with a dispersion of 0.69 dex, in agreement with the distribution of data points in Figs 3 and 4 of Chen et al. (2013). The fact that the model appears to over-estimate the low-luminosity tail of the AGN bolometric luminosity function is not worrisome for the present purposes since these sources are anyway too weak to be detectable by SPICA/SAFARI. It should also be noticed that the observational errors are purely statistical, i.e. do not include uncertainties on the decomposition of the observed spectral energy distribution to disentangle the AGN contribution from that of the host galaxy, on the bolometric correction, on the correction for incompleteness. These systematic errors increase with decreasing AGN luminosity. The evolution of sources as a whole is then driven by that of the SFR, as modeled by Cai et al. (2013).

Not all AGNs obey the accretion rate – SFR correlation. In particular, hosts of bright optically selected QSOs, with high accretion rates, are found to have SFRs ranging from very low to moderate, particularly at relatively low redshifts (Schweitzer et al. 2006; Netzer et al. 2007). These objects were taken into account adopting the best fit evolutionary model by Croom et al. (2009) up to $z = 2$ since at higher redshifts the abundance of AGNs associated to late-type galaxies is negligible compared to that of AGNs associated to proto-spheroids whose evolution up to the optically bright phase is described by the Cai et al. (2013) physical model.

The consistency between the model and the observed bolometric luminosity functions, illustrated by Fig. 1 for $z \leq 1.5$ and demonstrated by Cai et al. (2013) at higher z, is crucial for the reliability of the derived line luminosity functions because they are calculated coupling the bolometric luminosity functions with the relations between line and bolometric luminosities (see Sect. 3). In summary, the different IR galaxy populations considered in our paper are:

- proto-spheroidal galaxies (unlensed and lensed), the progenitors of early-type galaxies and the dominant star forming population at $z \gtrsim 1.5$, whose evolution is described by the physical model by Cai et al. (2013);
- AGNs associated to proto-spheroids whose co-evolution with the host galaxies is self-consistently built in the Cai et al. (2013) physical model;
- late-type galaxies, the dominant star forming population at $z \lesssim 1.5$, divided into two sub-populations (spiral and starburst galaxies), whose evolution is described by the Cai et al. (2013) phenomenological model;
- type-1 and type-2 AGNs associated to late-type galaxies, whose evolution is linked to that of host galaxies via the Chen et al. (2013) accretion rate – SFR correlation;
- optical AGNs, whose evolution is described by the Croom et al. (2009) best-fit model up to $z = 2$ and included in the Cai et al. (2013) physical model at higher z.

While referring to the Cai et al. (2013) paper for full details, we summarize here, for the sake of clarity, a few points. Proto-spheroidal galaxies and massive bulges of disk galaxies are assumed to virialize at $z \geq 1.5$ but their evolution is followed down to $z = 0$. Their lifetimes in the star formation phase increase with decreasing halo mass, consistent with the observed “downsizing”, from ~ 0.7 Gyr for the most massive ones to a few Gyr for the least massive. Hence they are contributing to the IR luminosity functions also at $z < 1.5$, but their contribution decreases with decreasing z. At $z < 1.5$ late-type galaxies take over them as the domi-
3 LINE VERSUS IR LUMINOSITY

IR lines excited by star formation activity have been dealt
with by [Bonato et al. (2014)], with an analysis of the rela-
tions between line and starburst IR luminosities that con-
sidered differences among source populations and that was
supported by extensive simulations taking into account dust
obscuration. We complement their study considering the
brightest lines that are excited by, or also by, AGNs. These
include 3 typical AGN lines ([NeV]14.32 µm, [NeV]24.31 µm
and [OIV]25.89 µm) and 8 lines that can also be produced in
star formation regions (the 5 HII region lines: [SIV]10.49 µm,
[NeII]12.81 µm, [NeIII]15.55 µm, [SIII]18.71 µm and [SIII]-
33.48 µm; three molecular hydrogen lines, H2.96 µm, H2-
12.28 µm and H2 17.03 µm). The other IR lines considered
by [Bonato et al. (2014)] have negligible AGN contributions
so that we adopt directly the luminosity functions derived
in that paper. In addition we present results for the 6.2, 7.7
and 8.6 µm Polycyclic Aromatic Hydrocarbons (PAH) lines,
overlooked by [Bonato et al. (2014)] but of considerable in-
terest for SPICA/SAFARI surveys. Of course, to detect the
broad PAH lines the SAFARI (R = 2000) spectral resolution
needs to be degraded without loss of signal, using appropri-
ate algorithms. All the lines have been taken into account to
compute the number of sources detected in more than one line.

As in [Bonato et al. (2014)], the line luminosities are derived
from the continuum ones exploiting the relations between line
and IR (or bolometric in the AGN case) lu-
minosities, taking into account the dispersions around the
mean values. For 5 of the lines listed above, namely [NeII]-
12.81 µm, [NeIII]15.55 µm, H2 17.03 µm, [SIII]18.71 µm and
[SIII]33.48 µm, these relationships were already derived, for
the starburst component only, by [Bonato et al. (2014)].
Again for the starburst component we have collected from
the literature data on 3 additional lines (H2 9.66 µm, [SIV]-
10.49 µm and H2 12.28 µm), excluding objects for which
there is evidence of a substantial AGN contribution. These
data are shown in Fig. 2 together with the best fit linear
relations. We have neglected the starburst contribution to the
3 typical AGN lines.

The mean ratios \(\langle \log(L_{\lambda}/L_{\text{IR}}) \rangle \) for star burst
galaxies and the dispersions around them are given in Table I.
The values for the 6.2, 7.7 and 8.6 µm PAH lines (also given
in Table I) were inferred from that for the PAH 11.25 µm
line, given by [Bonato et al. (2014)], using the average ratios
\(L_{\text{PAH}6.2}/L_{\text{PAH}11.25} = 1.22 \), \(L_{\text{PAH}7.7}/L_{\text{PAH}11.25} = 4.5 \) and
\(L_{\text{PAH}8.6}/L_{\text{PAH}11.25} = 1.36 \) given by [Fiolet et al.
(2010)].

The relationships between line and bolometric luminosities
of AGNs were determined using the data on the QSO samples
by [Veilleux et al. (2009)], on the local Seyfert galaxies whose
mid-IR emission was found to be 100% AGN dominated by
[Sturm et al. (2002)] and, only for the three pure AGN lines ([NeV]14.32 µm, [NeV]24.31 µm and [OIV]-
25.89 µm), on the local Seyfert galaxies by [Tommasin et al.
(2008), 2010] coupled with the continuum nuclear emission
measurements by [Gorjian et al. (2004), (Gandhi et al. (2009)]
and [Hönig et al. (2010)].

The IR luminosities given in [Veilleux et al. (2009)] and
[Sturm et al. (2002)] are defined as in [Sanders & Mirabel
(1996)], but this definition applies to starburst not to AGN
SEDs. Therefore to convert them to AGN bolometric lumi-
nosities we cannot use the correction factors given in Sect. 2.

The AGN bolometric luminosities were then estimated using
the appropriate [Cai et al. (2013)] SEDs (i.e. for QSOs and
Seyfert 1 galaxies the mean QSO SED of Richards et al.
(2006) extended to millimeter wavelengths as described in
Cai et al. 2013 for Seyfert 2 galaxies the SED of the local
AGN-dominated ULIRG Mrk 231 taken from the SWIRE li-
brary) normalized to the observed 12 µm fluxes.

\begin{table}[h]
\centering
\begin{tabular}{|l|c|c|}
\hline
Spectral line & \(\langle \log(L_{\lambda}/L_{\text{IR}}) \rangle \) (σ) & \\
\hline
PAH6.2µm & -2.20 (0.36) & \\
PAH7.7µm & -1.64 (0.36) & \\
PAH8.6µm & -2.16 (0.36) & \\
H2 9.66µm & -3.96 (0.52) & \\
[SIV]10.49µm & -3.95 (0.69) & \\
H2 12.28µm & -4.12 (0.54) & \\
[NeII]12.81µm & -3.11 (0.45) & \\
[NeII]15.55µm & -3.69 (0.47) & \\
H2 17.03µm & -4.04 (0.46) & \\
[SIII]18.71µm & -3.49 (0.48) & \\
[SIII]33.48µm & -3.05 (0.31) & \\
\hline
\end{tabular}
\caption{Mean values of the log of line to IR (8-1000 µm) con-
tinuum luminosities for star forming galaxies, \(\langle \log(L_{\lambda}/L_{\text{IR}}) \rangle \), and
associated dispersions σ. For the H2 17.03 µm line, the tabulated
values, taken from [Bonato et al. (2014)], have been computed exclu-
sing local ULIRGs, for which the luminosity in this line was
found to be uncorrelated with LIR. The mean value of log(Le)
for local ULIRGs was found to be \(\langle \log(L_{\lambda}/L_{\text{IR}}) \rangle = 8.07 \)
with a dispersion of 0.34.}
\end{table}
The mean ratios $\langle \log(L_\ell/L_{IR}) \rangle$ and the dispersions around them are given in Table 1.

The best fit coefficients for the line luminosity functions of the objects as whole, as well as of their starburst and AGN components. Examples are shown in Figs 4 and 5.

The counts are then straightforwardly computed. The wavelength range covered by each SPICA/SAFARI band, $[\lambda_{\min}, \lambda_{\max}]$, and the line rest-frame wavelength, λ_ℓ, define the minimum and the maximum redshift within which the line is detectable in that band, $z_\ell,\min/\max = \lambda_\min/\max/\lambda_\ell - 1$. The integral counts predicted by our model in the SPICA/SAFARI wavelength range for the 14 IR lines of our sample are shown in Fig. 6.

The SPICA/SAFARI reference 5 deg2 detection limits for an integration of 1 hr per FoV are (B. Sibthorpe, private communication) $3.7 \cdot 10^{-19}$ W/m2 for the first band (34 – 60 μm), 3.4 $\cdot 10^{-19}$ W/m2 for the second band (60 – 110 μm) and 2.9 $\cdot 10^{-19}$ W/m2 for the third band (110 – 210 μm). We present predictions for a survey of 5 deg2 with 1 hr per FoV. The survey area is 10 times larger compared to the reference survey considered in Bonato et al. (2014). In fact, as discussed later on in this section and in Sec. 6, AGN lines are more difficult to detect than starburst lines and thus a wider/deeper survey is required to achieve a good statistics. The predicted numbers of sources detected in each line by a SPICA/SAFARI survey covering 5 deg2 with a 1 hr integration/FOV are given in the last column of Table 3. The other columns detail the redshift distributions of detected sources. This SPICA/SAFARI survey will be able to detect many hundreds of AGNs (762, according to our calculations) in the strongest line ([OIV]25.89μm).

The redshift distributions of sources detected in the three AGN lines [NeV]14.32μm, [NeV]24.31μm and [OIV]25.89μm are displayed in Fig. 7 where the redshift ranges covered by the different bands are identified by different colours. Fig. 8 shows the contributions to the counts of AGNs of the various kinds.

Fig. 9 illustrates the luminosity and redshift distributions of sources (starburst plus AGN components) for which the SPICA/SAFARI 5 deg2 survey will detect at least 2, 3

Table 2. Coefficients of the best-fit linear relations between line and AGN bolometric luminosities, $\log(L_\ell) = a \cdot \log(L_{bol}) + b$, and 1σ dispersions associated to each component line luminosities drawn at random from the appropriate probability distributions (see Sect. 2). Then we associated to each component line luminosities drawn at random from Gaussian distributions with the mean values and the dispersions given in Tables 1 and 2. This procedure gives the line luminosity functions of the objects as a whole, as well as of their starburst and AGN components. Examples are shown in Figs 4 and 5.

At variance with star forming galaxies for which data and extensive simulations are consistent with a constant line-to-continuum IR luminosity ratio (Bonato et al. 2014), AGNs observational data indicate luminosity dependent ratios (Hill et al. 2013). We adopt a relation of the form $\log(L_\ell) = a \cdot \log(L_{bol}) + b$. The best fit coefficients for the 11 lines of our sample and the dispersions, σ, are listed in Table 2.

Table 2.

Spectral line	a	b	disp (1σ)
H$_2$ 9.66μm	1.07	-5.32	0.34
[SIV] 10.49μm	0.90	-2.96	0.24
H$_2$ 12.28μm	0.94	-3.88	0.24
[NeII] 12.81μm	0.98	-4.06	0.37
[NeV] 14.32μm	0.78	-1.61	0.39
[NeIII] 15.59μm	0.78	-1.44	0.31
H$_2$ 17.03μm	1.05	-5.10	0.42
[SII] 18.71μm	0.96	-3.75	0.31
[NeV] 24.31μm	0.69	-0.50	0.39
[OIV] 25.89μm	0.70	-0.04	0.42
[SII] 33.48μm	0.62	0.35	0.30

4 LINE LUMINOSITY FUNCTIONS AND NUMBER COUNTS

To compute the line luminosity functions and the number counts we adopted a Monte Carlo approach, starting from the redshift-dependent luminosity functions of the source populations described in Sect. 2, including both the starburst and the AGN component. Each source was assigned luminosities of each component drawn at random from the

The redshift distributions of sources detected in the three AGN lines [NeV]14.32μm, [NeV]24.31μm and [OIV]25.89μm are displayed in Fig. 7, where the redshift ranges covered by the different bands are identified by different colours. Fig. 8 shows the contributions to the counts of AGNs of the various kinds.

Fig. 9 illustrates the luminosity and redshift distributions of sources (starburst plus AGN components) for which the SPICA/SAFARI 5 deg2 survey will detect 2, 3
Mid-/far-IR spectroscopic surveys

Figure 3. Line versus bolometric luminosity, in solar units, for AGNs. PG QSO data (yellow circles) are taken from Veilleux et al. (2009), Seyfert 1 (green triangles) and Seyfert 2 (blue squares) data from Sturm et al. (2002) and, only for the [NeV]14.32 µm, [NeV]24.31 µm and [OIV]25.89 µm lines, also from Tommasin et al. (2008, 2010). The orange bands show the 2σ spread around the linear relations \(\log(L_{\ell}) = a \cdot \log(L_{\text{bol}}) + b \) (red line).

Figure 4. Predicted luminosity functions of the three typical AGN lines of our sample at different redshifts at which these lines can be detected by SPICA/SAFARI.

or 4 lines, taking into account both the spectral lines considered in this paper and the pure starburst lines considered in Bonato et al. (2014). We expect that 114903, 50817, 29492, 18412, 11555 and 6930 sources will be detected in at least 1, 2, 3, 4, 5 and 6 lines, respectively. The numbers of protospheroidal galaxies detectable in at least 1, 2, 3, 4, 5 and 6 lines are 44335, 13854, 6149, 3151, 1749 and 907, respectively. Sources detected in at least one line include \(\sim 724 \) strongly lensed galaxies at \(z > 1 \); about 300 of them will be detected in at least 2 lines.

It is easily seen that these values, once rescaled to the same survey area, a factor of 10 smaller, are similar to those calculated in Bonato et al. (2014) considering only star forming galaxies: the AGN component adds a minor contribution. The reason for that is illustrated by Fig. 10 where the luminosity functions of the brightest AGN line ([OIV]25.89 µm) are compared with those of two bright starburst lines at 2 redshifts. Two factors concur to yield a much higher space density of detectable starbursts compared to AGNs. First, AGNs are far less numerous than starburst galaxies, due to the much shorter lifetime of their bright phase. Second, many starburst lines have ratios to bolometric luminosity substantially higher than even the brightest AGN line (cf. the luminosity ratios for starbursts in Table 1 of Bonato et al. 2014 with those for AGNs in Table 2 of the present paper).
Figure 5. Predicted luminosity functions for the total (starburst plus AGN) emission (solid lines) and for the AGN component only (dashed lines) at different redshifts at which these lines can be detected by SPICA/SAFARI.

Figure 6. Integral counts in several lines of galaxies as a whole (starburst plus AGN components; solid black lines) and of AGNs only (dash-dotted violet lines) over the full SPICA-SAFARI wavelength range, and, for the AGNs, in each of its three bands. The vertical lines correspond to the average detection limit in the 3 bands for 1 hr integration/FoV.
5 COMPARISON WITH PREVIOUS ESTIMATES

Fig. 11 compares our predictions for the redshift distributions of sources detected by SPICA/SAFARI with those from the 3 models used by Spinoglio et al. (2012). The total number of detections, for each line, is also summarized in Table 4.

The different results reflect the different approaches adopted by the authors (only very marginally the different evolutionary models used). In particular, Spinoglio et al. (2012) based their estimate on empirical relations between the line luminosities and the total IR luminosity for the Seyfert galaxies of the 12 µm galaxy sample (Tommasin et al. 2008, 2010), and for the pure starburst galaxies of the sample of Bernard-Salas et al. (2009). These luminosity ratios were then used to convert the total IR luminosity functions from different evolutionary models (i.e. Valiante et al. 2009, Franceschini et al. 2010, Gruppioni et al. 2011) into line luminosity functions and to derive the numbers of objects detectable by SPICA at different redshifts and luminosities. This approach - purely empirical - could be taken as an upper limit for the SPICA detections, since it applies the relations found for a sample of AGNs to all the AGN populations considered in the models, regardless of the AGN contribution to L_{IR}, while - thanks to Herschel - we now know that L_{IR} in IR detected AGNs is typically composed by both AGN and starburst contributions (Hatziminaoglou et al. 2010) in different proportions (in large fractions of objects the AGN contributes to L_{IR} for <10%; see Delvecchio et al. 2014).

On the other hand the approach adopted in this paper requires bolometric corrections, endowed with a substantial uncertainty, to derive the relationships between line and bolometric luminosities. We are now working on a semi-empirical approach, based on SED decomposition (see Berta et al. 2013; Delvecchio et al. 2014) of local (Tommasin et al. 2008, 2010) and high-z samples of AGN (from Herschel PACS Evolutionary Probe; Lutz et al. 2011), considering nuclear observational data in the MIR for esti-

2 In the calculation of the IR luminosities used to calibrate the line to continuum relations in the Spinoglio et al. (2012) paper a factor of 1.8 was inadvertently omitted, resulting in an overestimate of the line counts (an Erratum on that has been submitted to ApJ).
mating the $L_{\text{line}}/L_{\text{tot}}$ relations and the AGN accretion luminosity function of Delvecchio et al. (2014) to derive expected detection numbers. The results of that work will be published in a forthcoming paper (Gruppioni, Berta, Spinoglio et al. in preparation).

6 OBSERVATION STRATEGY

Quantitative predictions on the number of detections of AGNs and of galaxies as a whole for a survey of 0.5 deg2 and different integration times per FoV are given in Table 5. As illustrated by Fig. 5, the integral counts have a slope flatter than 2 at and below the detection limit for 1 hr integration/FoV. This means that the number of detections at fixed observing time increases more extending the survey area than going deeper. This is particularly true for the 3 typical AGN lines (cf. Fig. 5), due to the fact that the AGN contribution to the bolometric luminosity is higher at higher luminosities. For a survey of 0.5 deg2 and 1 hr integration/FoV the detection rate of AGNs is quite low and the predicted redshift distributions sink down at $z > 1$ (cf. Fig. 7). To investigate with sufficient statistics the galaxy–AGN co-evolution a deeper or a wider area survey is necessary. For example, a survey of 1 hr/FoV over 5 deg2 would yield about 760 AGN detections in the [OIV]25.89 µm line, with a total observing time of 4500 hours. A deeper survey with the same observing time (exposure time of 10 hr/FoV over 0.5 deg2) would give 427 AGN detections (see Table 5).

The blind spectroscopic survey may be complemented by follow-up observations of bright high-z galaxies already discovered at (sub-)mm wavelengths over much larger areas. Fig. 12 shows, as an example, the SPICA/SAFARI exposure time per FoV necessary for a 5σ detection of the three typical AGN lines at $z = 1.5$ and $z = 2.5$ as a function of the AGN bolometric luminosity. When SPT and Herschel survey data will be fully available we will have samples of many hundreds of galaxies with either intrinsic or apparent (i.e. boosted by strong gravitational lensing) IR luminosities larger than 10^{12} L_{\odot}. These IR luminosities correspond to SFR > 10^3 M_{\odot} yr$^{-1}$ (Kennicutt & Evans 2012). Comparing the stellar with the halo mass function (Lapi et al. 2011) estimated that the active star formation phase lasts for ~ 0.7 Gyr. Thus objects that bright are the likely progenitors of spheroidal galaxies with stellar masses $M_{\star} \gtrsim 7 \times 10^{11} \mu M_{\odot}$, μ being the gravitational magnification factor. As shown by Fig. 12 the AGN contribution to the bolometric luminosity of $\sim 3 \times 10^{12} L_{\odot}$ at $z = 1.5$ and of $\sim 2 \times 10^{13} L_{\odot}$ at $z = 2.5$. For Eddington limited accretion these luminosities correspond to black hole masses of $\sim 9 \times 10^{7} \mu M_{\odot}$ and $\sim 6 \times 10^{8} \mu M_{\odot}$. For comparison, from the black hole/stellar mass correlation (Kormendy & Ho 2013) we get that the final black hole masses associated to spheroidal galaxies with stellar masses of $\sim 10^{11} M_{\odot}$ and $\sim 10^{12} M_{\odot}$ are $\sim 5 \times 10^{5} M_{\odot}$ and $\sim 7 \times 10^{6} M_{\odot}$, respectively. This means that pointed SPICA/SAFARI observations can allow us to investigate early phases of the galaxy/AGN co-evolution, when the black hole mass was one or even two orders of magnitude lower than the final one.

Table 5. AGN and total (in parenthesis) detections obtainable by SPICA/SAFARI surveys covering 0.5 deg2 in 1 hr integration/FoV (2nd column) and 10 h integration/FoV (3rd column).

Spectral line	$t = 1$ h	$t = 10$ h
μ m 0 (1579)	0 (4183)	0 (2601)
μ m 75 (75)	3 (31)	3 (156)
μ m 2 (26)	9 (236)	11 (627)
μ m 5 (5)	48 (48)	18 (1979)
μ m 1 (1)	5 (5)	3 (330)
μ m 1 (1)	5 (5)	3 (330)
μ m 0 (89)	0 (709)	0 (2601)
μ m 0 (4183)	0 (2601)	0 (2601)
μ m 0 (709)	0 (2601)	0 (2601)

7 CONCLUSIONS

We have improved over earlier estimates of redshift-dependent luminosity functions of IR lines detectable by SPICA/SAFARI by building a model that deals in a self consistent way with emission of galaxies as a whole, including both the starburst and the AGN component. For protospheroidal galaxies, that dominate the cosmic star formation rate at $z > 1.5$, we have derived analytic formulae giving the probability that an object at redshift z has a starburst luminosity L_{\star} or an AGN luminosity L_{\ast} given the total luminosity of $L_{\text{tot}} = L_{\star} + L_{\ast}$. Each protospheroidal of luminosity L_{tot} was assigned IR luminosities of the starburst and of the AGN component based on the above probability distributions. The association of the AGN component to late-type galaxies was made on the basis of the observed correlation between SFR and accretion rate.

The relationships between line and IR luminosities of the starburst component derived by Bonato et al. (2014) have been updated whenever new data have become available in the meantime and additional lines have been taken into account. New relationships between line and AGN bolometric luminosities have been derived.

These ingredients were used to work out predictions for the source counts in 11 mid/far-IR emission lines partially or entirely excited by AGN activity, as well as in the 6.2, 7.7 and 8.6µm PAH lines, overlooked by Bonato et al. (2014). The expected outcome of a survey covering 5 deg2 with a 1 hr integration/FoV is specifically discussed. Taking into account also the additional 9 lines, with negligible AGN contribution, investigated by Bonato et al. (2014), i.e. a total of 23 IR lines, we have estimated the number of objects detectable in at least 2, 3, 4, 5 and 6 lines. We estimate that such survey will yield about 760 AGN detections in the [OIV]25.89 µm line. A deeper survey (10 hr/FoV over 0.5 deg2) requiring the same observing time (4500 hours) will yield about ~ 430 detections in the same line.

The AGN contribution to the detectability of galaxies as a whole is minor. We show that this is due to the combination of two factors: the rarity of bright AGNs, due
Mid-/far-IR spectroscopic surveys

Figure 9. Predicted redshift (left) and total IR luminosity (right) distributions of galaxies (starburst plus AGN components) detectable in two (cyan histogram), three (red) and four (blue) spectral lines, by a SPICA/SAFARI survey covering 5 deg2 in 1 hr integration/FoV (taking into account both the spectral lines of this sample and those studied in Bonato et al. 2014). The shaded areas represent the contributions of proto-spheroids.

Figure 10. Comparison of the cumulative luminosity functions at 2 redshifts of the brightest AGN line ([OIV]25.89μm) with those of two bright starburst lines. The dotted curves show the contributions of strongly lensed sources to the total luminosity functions (solid curves). At each redshift the vertical line corresponds to the minimum luminosity detectable by a survey with 1 hr integration/FoV.

Spectral line	0.00 − 0.75	0.75 − 1.25	1.25 − 1.75	1.75 − 2.25	2.25 − 2.75	2.75 − 4.00	4.00 − 6.00	6.00 − 8.00	All z
PAH6.2μm	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (452)	0 (19)	0 (451)
PAH7.7μm	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (8750)	0 (6787)	0 (237)
PAH8.6μm	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (5778)	0 (1280)	0 (26)
H$_2$9.66μm	0 (0)	0 (0)	0 (0)	0 (0)	0.2 (18)	0.2 (21)	0 (0.7)	0 (0)	0.4 (39)
[SIV]10.49μm	0 (0)	0 (0)	0 (0)	0 (9)	0.1 (169)	0 (119)	0 (12)	0 (0.2)	0.1 (308)
H$_2$12.28μm	0 (0)	0 (0)	0 (0)	0.3 (58)	0 (26)	0 (11)	0 (1)	0 (0)	0.3 (95)
[NeII]12.81μm	0 (0)	0 (0)	0 (0)	1 (1515)	0.4 (748)	0.3 (495)	0 (43)	0 (0.3)	3 (3298)
[NeV]14.32μm	0 (0)	0 (0)	0 (0)	0 (9)	2 (2)	0.4 (0.4)	0.2 (0.2)	0 (0)	11 (11)
[NeIII]15.55μm	0 (0)	1 (82)	10 (493)	2 (220)	0.3 (92)	0.3 (52)	0 (1)	0 (0)	13 (941)
H$_2$17.03μm	0 (0)	9 (84)	10 (100)	1 (45)	0.4 (20)	0.2 (10)	0 (0.3)	0 (0)	20 (260)
[SIII]18.71μm	0 (0)	13 (2040)	10 (1125)	1 (499)	0.4 (261)	0.1 (143)	0 (10)	0 (0.3)	25 (4078)
[NeV]24.31μm	28 (28)	19 (19)	8 (8)	1 (1)	0.3 (0.3)	0.2 (0.2)	0 (0)	0 (0)	55 (55)
[OIV]25.89μm	426 (426)	227 (227)	89 (89)	20 (20)	1 (1)	0.3 (0.3)	0 (0)	0 (0)	762 (762)
[SIII]33.48μm	235 (9876)	10 (6760)	1 (2947)	1 (1289)	0.2 (771)	0.1 (438)	0 (21)	0 (0)	248 (22104)

Table 3. Predicted redshift distributions of AGNs and, in parenthesis, of galaxies as a whole (starburst plus AGN components) detectable by a SPICA/SAFARI survey covering an area of 5 deg2 in 1 hr integration per FoV.
to their short lifetime, and the relatively low (compared to starbursts) line to bolometric luminosity ratios.

We also recommend pointed observations of the brightest (either because are endowed with extreme SFRs or because luminosities are strongly magnified by gravitational lensing) galaxies previously detected by large area surveys such as those by Herschel and by the SPT. Such observations will allow us to investigate early phases of the galaxy/AGN co-evolution when the black hole mass was much lower than the final one, given by the present day correlation with the stellar mass.

ACKNOWLEDGEMENTS

We are grateful to the anonymous referee for many constructive comments that helped us improving this paper and to Prof. Kotaro Kohno and Prof. Takehiko Wada for pointing out the importance of the 6.2, 7.7 and 8.6μm PAH lines, overlooked by our previous study. We acknowledge financial support from ASI/INAF Agreement 2014-024-R.0 for the Planck LFI Activity of Phase E2 and from PRIN INAF 2012, project “Looking into the dust-obscured phase of galaxy formation through cosmic zoom lenses in the Herschel Astrophysical Large Area Survey”.

Spectral line	This work	Spinoglio et al. (2012)
[NeII]12.81μm	0.3	14
[NeV]14.32μm	1	42
[NeIII]15.55μm	1	1
H2 17.03μm	2	179
[SII]18.71μm	3	6
[NeV]24.31μm	5	76
[OIV]25.89μm	25	938
[SIII]33.48μm	25	1103

Table 4. Numbers of 5σ AGN detections by SPICA/SAFARI for a survey covering 0.5 deg^2 in 1 hr integration/FoV, as predicted by the present model (second column, in boldface) compared with those given (only for 8 lines) by Spinoglio et al. (2012) for the 3 models used by them.

Figure 11. Redshift distributions of AGNs detectable in each of the 8 lines by a SPICA/SAFARI survey covering 0.5 deg^2 with 1 hr integration/FoV. The predictions of our model (black solid lines) are compared with those of the 3 models used by Spinoglio et al. (2012); see the legend on the bottom right.
Figure 12. SPICA/SAFARI exposure time per FoV required for a 5σ line detection of the three typical AGN lines as a function of the AGN bolometric luminosity for $z = 1.5$ (left) and $z = 2.5$ (right).

REFERENCES
Alexander D. M., Hickox R. C., 2012, NewAR, 56, 93
Bernardi M., Shankar F., Hyde J. B., Mei S., Marulli F., Sheth R. K., 2010, MNRAS, 404, 2087
Bernard-Salas J., et al., 2009, ApJS, 184, 230
Berta S., et al., 2013, A&A, 551, A100
Bonato M., et al., 2014, MNRAS, 438, 2547
Cai Z.-Y., et al., 2013, ApJ, 768, 21
Chen C.-T. J., et al., 2013, ApJ, 773, 3
Chen C.-T. J., Hickox R. C., 2014, arXiv, arXiv:1401.2179
Cornier D., et al., 2012, A&A, 548, A20
Croom S. M., et al., 2009, MNRAS, 399, 1755
Delvecchio I., et al., 2014, MNRAS, 439, 2736
Diamond-Stanic A. M., Rieke G. H., 2012, ApJ, 746, 168
Dudik R. P., Satyapal S., Marcu D., 2009, ApJ, 691, 1501
Farrah D., et al., 2007, ApJ, 667, 149
Fiolet N., et al., 2010, A&A, 524, A33
Franceschini A., Rodighiero G., Vaccari M., Berta S., Marchetti L., Mainetti G., 2010, A&A, 517, A74
Gandhi P., Horst H., Smette A., Hönig S., Comastri A., Gilli R., Vignali C., Duschl W., 2009, A&A, 502, 457
Goulding A. D., Alexander D. M., 2009, MNRAS, 398, 1165
Gorjian V., Werner M. W., Jarrett T. H., Cole D. M., Ressler M. E., 2004, ApJ, 605, 156
Granato G. L., De Zotti G., Silva L., Bressan A., Danese L., 2004, ApJ, 600, 580
Gruppioni C., Pozzi F., Zamorani G., Vignali C., 2011, MNRAS, 416, 70
Hao L., Wu Y., Charmandaris V., Spoon H. W. W., Bernard-Salas J., Devost D., Lebouteiller V., Houck J. R., 2009, ApJ, 704, 1159
Hatziminaoglou E., et al., 2010, A&A, 518, L33
Hickox R. C., Mullaney J. R., Alexander D. M., Chen C.-T. J., Civano F. M., Goulding A. D., Hainline K. N., 2011, ApJ, 782, 9
Hill A. R., Gallagher S. C., Deo R. P., Peeters E., Richards G. T., 2013, MNRAS, 2983
Hönig S. F., Kishimoto M., Gandhi P., Smette A., Asmus D., Duschl W., Polletta M., Weigelt G., 2010, A&A, 515, A23
Kennicutt R. C., Evans N. J., 2012, ARA&A, 50, 531
Kormendy J., Ho L. C., 2013, ARA&A, 51, 511
Lapi A., et al., 2011, ApJ, 742, 24
Lapi A., Negrello M., González-Nuevo J., Cai Z.-Y., De Zotti G., Danese L., 2012, ApJ, 755, 46
Lapi A., Raimundo S., Aversa R., Cai Z.-Y., Negrello M., Celotti A., De Zotti G., Danese L., 2014, ApJ, 782, 69
Lapi A., Shankar F., Mao J., Granato G. L., Silva L., De Zotti G., Danese L., 2006, ApJ, 650, 42
Lutz D., et al., 2008, ApJ, 684, 853
Lutz D., et al., 2011, A&A, 532, A90
Mao J., Lapi A., Granato G. L., de Zotti G., Danese L., 2007, ApJ, 667, 655
Meléndez M., et al., 2008, ApJ, 682, 94
Mullaney J. R., Alexander D. M., Goulding A. D., Hickox R. C., 2011, MNRAS, 414, 1082
Mullaney J. R., et al., 2012a, ApJ, 753, L30
Mullaney J. R., et al., 2012b, MNRAS, 419, 49
Negrello M., Perrotta F., González-Nuevo J., Silva L., de Zotti G., Granato G. L., Baccigalupi C., Danese L., 2007, MNRAS, 377, 1557
Negrello M., et al., 2010, Sci, 330, 800
Negrello M., et al., 2014, MNRAS, 440, 1999
Netzer H., et al., 2007, ApJ, 666, 806
O'Dowd M. J., et al., 2008, ApJ, 705, 885
O'Dowd M. J., et al., 2011, ApJ, 741, 79
Pereira-Santaella M., Alonso-Herrero A., Rieke G. H., Colina L., Díaz-Santos T., Smith J.-D. T., Pérez-González P. G., Engelbracht C. W., 2010, ApJS, 188, 447
Planck Collaboration XVI, 2013, arXiv:1303.5076
Richards G. T., et al., 2006, ApJS, 166, 470
Roelfsema P., et al., 2012, SPIE, 8442
Rosario D. J., et al., 2012, A&A, 545, A45
Roussel H., et al., 2006, ApJ, 646, 841
Sanders D. B., Mirabel I. F., 1996, ARA&A, 34, 749
Sani E., Lutz D., Risaliti G., Netzer H., Gallo L. C., Trakhtenbrot B., Sturm E., Boller T., 2010, MNRAS, 403, 1246
Satyapal S., Böker T., Mcalpine W., Gliozzi M., Abel N. P., Heckman T., 2009, ApJ, 704, 439
Satyapal S., Vega D., Dudik R. P., Abel N. P., Heckman T., 2008, ApJ, 677, 926
Schweitzer M., et al., 2006, ApJ, 649, 79
Serjeant S., Hatziminaoglou E., 2009, MNRAS, 397, 265
Sheth, R. K., & Tormen, G. 1999, MNRAS, 308, 119
Spinoglio L., Dasyra K. M., Franceschini A., Gruppioni C., Valiante E., Isaak K., 2012, ApJ, 745, 171
Sturm E., Lutz D., Verma A., Netzer H., Sternberg A., Moorwood A. F. M., Oliva E., Genzel R., 2002, A&A, 393, 821
Tommasin S., Spinoglio L., Malkan M. A., Fazio G., 2010, ApJ, 709, 1257
Tommasin S., Spinoglio L., Malkan M. A., Smith H., González-Alfonso E., Charmandaris V., 2008, ApJ, 676, 836
Valiante E., Lutz D., Sturm E., Genzel R., Chapin E. L., 2009, ApJ, 701, 1814
Veilleux S., et al., 2009, ApJS, 182, 628
Vieira J. D., et al., 2013, Nature, 495, 344
Weaver K. A., et al., 2010, ApJ, 716, 1151