Off-Shell and Interference Effects for SUSY Particle Production

Jürgen Reuter

University of Freiburg

Hagiwara/Kilian/Krauss/Ohl/Plehn/Rainwater/JR/Schumann PRD 73 (2006), 055005;
JR et al., hep-ph/0512012

DESY, June 1st, 2007
SUSY Precision measurements

Motivation for SUSY: see Tuesday’s Symposium

Analysis Goal:

▶ Mass measurements to get the spectrum
▶ Access spin of all new particles: angular/spin correlations
▶ Coupling measurements: verify SUSY by the structure of couplings

Precise predictions for SUSY processes:
background to other (more difficult) SUSY processes

Precise parameter values: Reverse the renormalization-group evaluation and get a handle on GUT parameters (⇒ P. Zerwas’ talk)
⇒ SPA project http://spa.desy.de/spa
Classification of corrections to (SUSY) processes

Corrections to the SUSY processes fall into six categories:

- Loop corrections to SUSY production and decay processes
 Kilian/JR/Robens, EPJ C48 (2006), 389, see T. Robens’ talk

- Nonfactorizable, maximally resonant photon exchange between production and decay

- Real radiation of photons [gluons]
 Kilian/JR/Robens, EPJ C48 (2006), 389, see T. Robens’ talk

- Off-shell kinematics for the signal process
 see also Berdine/Rainwater/Kauer, 2007

- Irreducible background from all other SUSY processes

- Reducible, experimentally indistinguishable SM background processes
Classification of approximations in (SUSY) processes

Some generic SUSY process:

\[e^+ e^- \rightarrow b\bar{b} e^+ e^- \tilde{\chi}_1^0 \tilde{\chi}_1^0 \]

66478 diagrams. (It’s just \(e^+ e^- \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_2^0 \! \))

- Entanglement of different signal diagrams (\(e^+ e^- \rightarrow \tilde{\chi}_i^0 \tilde{\chi}_j^0, \tilde{b}_i \tilde{b}_j, \tilde{e}_i \tilde{e}_j \))
- Need for cuts to disentangle those (experimentally/simulation)
- Add SM backgrounds (\(e^+ e^- \rightarrow b\bar{b} e^+ e^- \nu_i \bar{\nu}_i \))
- Much more complicated processes for LHC, and even also for ILC

Process \(A_1 A_2 \rightarrow P(*) \rightarrow F_1 F_2 \), 3 different levels:

Level	Formula
Narrow width	\(\sigma(A_1 A_2 \rightarrow P) \times \text{BR}(P \rightarrow F_1 F_2) \)
Breit-Wigner	\(\sigma(A_1 A_2 \rightarrow P) \times \frac{M_P^2 \Gamma_P^2}{(s-M_P^2)^2+\Gamma_P^2 M_P^2} \times \text{BR}(P \rightarrow F_1 F_2) \)
Full matrix element	\(\sigma(A_1 A_2 \rightarrow F_1 F_2) \)

last level not featured by ISAJET, PYTHIA, HERWIG, SUSYGEN
The generator generator O’Mega Ω / Whizard

Matrix Element Generator O’Mega:

Optimized helicity amplitudes: avoiding all redundancies

Multi-purpose Event Generator Whizard:

– Multi-Channel adaptive Monte-Carlo integration
– Generator generator for arbitrary multi-particle processes
– Well-suited for ILC physics (ISR, beamstrahlung); used for ILC reference event files
– New release this summer: Whizard 2.0/O’Mega 1.0 (LHC approaching!!)
 ▶ Fancier support for full color flows
 ▶ LHAPDF support
 ▶ new BSM models: extMSSM, ext.Dim., Little Higgs, NCSM
 ▶ new syntax for arbitrary cut functions
– Virtual (SUSY) Corrections (all $2 \rightarrow 2$ processes for ILC)
– Future features: Parton Shower/Matrix Element matching
Tests and Checks of MSSM implementation

- MSSM: doubled spectrum, 100 parameters, 5000 vertices
- Unitarity checks: $\sigma(2 \rightarrow 2, s), \sigma(2 \rightarrow 3, s) \sim const$ or $1/s$
- Gauge invariance: Ward- and Slavnov-Taylor identities
- Supersymmetry: Ward-/Slavnov-Taylor identities

JR et al., 2005; Hagiwara/Kilian/Krauss/Ohl/Plehn/Rainwater/JR/Schumann, 2006

Comparison of codes ($\mathcal{O}(600)$ processes):

Process	status	Madgraph/Helas		Whizard/O'Mega		Sherpa/A'Megic	
	0.5 TeV	2 TeV	0.5 TeV	2 TeV	0.5 TeV	2 TeV	
$\tilde{\tau}_1 \tilde{\tau}^*_1$	●	257.57(7)	79.63(4)	257.32(1)	79.636(4)	257.30(1)	79.638(4)
$\tilde{\tau}_2 \tilde{\tau}^*_2$	●	46.55(1)	66.86(2)	46.368(2)	66.862(3)	46.372(2)	66.862(3)
$\tilde{\tau}_1 \tilde{\tau}^*_2$	●	95.50(3)	19.00(1)	94.637(3)	19.0015(8)	94.645(5)	19.000(1)
$\tilde{\nu}_\tau \tilde{\nu}_\tau$	●	502.26(7)	272.01(8)	502.27(2)	272.01(1)	502.30(3)	272.01(1)
$\tilde{\chi}^0_1 \tilde{\chi}^0_1$	●	249.94(2)	26.43(1)	249.954(9)	26.431(1)	249.96(1)	26.431(1)
$\tilde{\chi}^0_2 \tilde{\chi}^0_2$	●	69.967(3)	9.8940(3)	69.969(2)	9.8940(4)	69.968(3)	9.8937(5)
$\tilde{\chi}^0_1 \tilde{\chi}^0_2$	●	17.0387(3)	0.7913(1)	17.0394(1)	0.79136(2)	17.040(1)	0.79137(5)
$\tilde{\chi}^+ \tilde{\chi}^-$	●	185.09(3)	45.15(1)	185.093(6)	45.147(2)	185.10(1)	45.151(2)

Reference: http://james.physik.uni-freiburg.de/~reuter/susy_comparison.html
Parameter point under consideration

Following discussions do not depend on the special parameter point
SUGRA-inspired point, non-universal right-handed scalar masses
\[\tan \beta = 20 \]

Particle	\(M \) [GeV]	\(\Gamma \) [GeV]	Particle	\(M \) [GeV]	\(\Gamma \) [GeV]
\(h \)	114.45	0.0050	\(\tilde{\chi}^0_1 \)	46.84	—
\(H \)	300.15	2.2924	\(\tilde{\chi}^0_2 \)	112.41	0.00005
\(A \)	300.00	2.7750	\(\tilde{\chi}^0_3 \)	148.09	0.01162
\(H^\pm \)	310.96		\(\tilde{\chi}^0_4 \)	236.77	1.0947
\(\tilde{b}_1 \)	295.36	0.5395	\(\tilde{\chi}^{\pm}_1 \)	106.60	
\(\tilde{b}_2 \)	399.92	3.4956	\(\tilde{\chi}^{\pm}_2 \)	237.25	
\(\tilde{e}_L \)	205.02		\(\tilde{t}_1 \)	413.84	
\(\tilde{e}_R \)	205.65		\(\tilde{t}_2 \)	978.88	

- (Very) light Higgs, directly above LEP limit
- \(h \sim 47\% \) invisible decays to LSP
- \(m_{\tilde{q}} \sim 430\text{ GeV} \)
- Light sbottoms accessible at the ILC
- Low-energy data-compatible: \(b \to s\gamma, B_s \to \mu^+\mu^-, \Delta\rho, g_\mu - 2, \text{CDM} \)
- Focus on \(\text{BR}(\tilde{b}_1 \to b\tilde{\chi}^0_1) = 43.2\% \)
Sbottom production at the ILC

- In contrast to the LHC: Electroweak production
- More channels contribute to $e^+e^- \rightarrow b\bar{b}\tilde{\chi}_1^0\tilde{\chi}_1^0$:
 $e^+e^- \rightarrow Zh, ZH, Ah, HA, \tilde{\chi}_1^0\tilde{\chi}_2^0, \tilde{\chi}_1^0\tilde{\chi}_3^0, \tilde{\chi}_1^0\tilde{\chi}_4^0, \tilde{b}_1\tilde{b}_1^*, \tilde{b}_1\tilde{b}_2^*$ (412 diagrams)
- Irreducible SM background: $e^+e^- \rightarrow b\bar{b}\nu_i\bar{\nu}_i$ (WW fusion, Zh, ZZ) (47 diagrams)

Channel	$\sigma_{2\rightarrow2}$ [fb]	$\sigma \times BR$ [fb]	σ_{BW} [fb]
Zh	20.574	1.342	1.335
ZH	0.003	0.000	0.000
hA	0.002	0.001	0.000
HA	5.653	0.320	0.314
$\tilde{\chi}_1^0\tilde{\chi}_2^0$	69.109	13.078	13.954
$\tilde{\chi}_1^0\tilde{\chi}_3^0$	24.268	3.675	4.828
$\tilde{\chi}_1^0\tilde{\chi}_4^0$	19.337	0.061	0.938
$\tilde{b}_1\tilde{b}_1$	4.209	0.759	0.757
$\tilde{b}_1\tilde{b}_2$	0.057	0.002	0.002
Sum	19.238	22.129	

Channel	$\sigma_{2\rightarrow2/3}$ [fb]	$\sigma \times BR$ [fb]	σ_{BW} [fb]
ZZ	202.2	12.6	13.1
Zh	20.6	1.9	1.9
ZH	0.0	0.0	0.0

Channel	$\sigma_{2\rightarrow2/3}$ [fb]	$\sigma \times BR$ [fb]	σ_{BW} [fb]
$Z\tilde{\nu}\nu$	626.1	109.9	111.4
$h\tilde{\nu}\nu$	170.5	76.5	76.4
$H\tilde{\nu}\nu$	0.0	0.0	0.0
Sum	186.5	187.7	

- Use widths to the same order as your process
Sbottom production at the ILC

In contrast to the LHC: Electroweak production

More channels contribute to $e^+ e^- \rightarrow b\bar{b}\tilde{\chi}_1^0\tilde{\chi}_1^0$:

$e^+ e^- \rightarrow Zh, ZH, Ah, HA, \tilde{\chi}_1^0\tilde{\chi}_2^0, \tilde{\chi}_1^0\tilde{\chi}_3^0, \tilde{\chi}_1^0\tilde{\chi}_4^0, \tilde{b}_1\tilde{b}_1^*, \tilde{b}_1\tilde{b}_2^*$ (412 diagrams)

Irreducible SM background: $e^+ e^- \rightarrow b\bar{b}\nu_i\bar{\nu}_i (WW$ fusion, $Zh, ZZ)$ (47 diagrams)

Channel	$\sigma_{2\rightarrow2}$ [fb]	$\sigma \times BR$ [fb]	σ_{BW} [fb]
Zh	20.574	1.342	1.335
ZH	0.003	0.000	0.000
hA	0.002	0.001	0.000
HA	5.653	0.320	0.314
$\tilde{\chi}_1^0\tilde{\chi}_2^0$	69.109	13.078	13.954
$\tilde{\chi}_1^0\tilde{\chi}_3^0$	24.268	3.675	4.828
$\tilde{\chi}_1^0\tilde{\chi}_4^0$	19.337	0.061	0.938
$\tilde{b}_1\tilde{b}_1$	4.209	0.759	0.757
$\tilde{b}_1\tilde{b}_2$	0.057	0.002	0.002
Sum	19.238	22.129	

Channel	$\sigma_{2\rightarrow2/3}$ [fb]	$\sigma \times BR$ [fb]	σ_{BW} [fb]
ZZ	202.2	12.6	13.1
Zh	20.6	1.9	1.9
ZH	0.0	0.0	0.0
$Z\bar{\nu}\nu$	626.1	109.9	111.4
$h\bar{\nu}\nu$	170.5	76.5	76.4
$H\bar{\nu}\nu$	0.0	0.0	0.0
Sum	186.5	187.7	

Exact w/ISR

Channel	$\sigma_{2\rightarrow2/3}$ [fb]	$\sigma \times BR$ [fb]	σ_{BW} [fb]
Exact	19.624		
w/ISR	22.552		

Use widths to the same order as your process
Results

Off-shell decay $\tilde{\chi}^0_3 \rightarrow (\tilde{b}_1)_{off} \tilde{b} \rightarrow b\bar{b}\tilde{\chi}^0_1$ gives broad continuum

ISR/beamstrahlung: corrections of same order (effects all p_{miss} observables)

$b\bar{b}$ invariant mass with SM background:

Cut out the resonances

$M_{b\bar{b}} < 150$ GeV

250 GeV $< M_{b\bar{b}} < 350$ GeV
Results

Off-shell decay $\tilde{\chi}_3^0 \rightarrow (\tilde{b}_1)_{off} \tilde{b} \rightarrow b\bar{b}\tilde{\chi}_1^0$ gives broad continuum

ISR/beamstrahlung: corrections of same order (effects all p_{miss} observables)

$b\bar{b}$ invariant mass with SM background:

Cut out the resonances

$M_{b\bar{b}} < 150 \text{ GeV}$

$250 \text{ GeV} < M_{b\bar{b}} < 350 \text{ GeV}$
Results: Isolation of the Signal

Channel	σ_{BW} [fb]	$\sigma_{cut\ BW}$ [fb]
$Z\tilde{\nu}\nu$	111.4	2.114
$h\tilde{\nu}\nu$	76.4	0.002
$H\tilde{\nu}\nu$	0.0	0.000
Sum	187.7	2.117

Channel	σ_{BW} [fb]	$\sigma_{cut\ BW}$ [fb]
Zh	1.335	0.009
HA	0.314	0.003
$\tilde{\chi}_1\tilde{\chi}_2^0$	13.954	0.458
$\tilde{\chi}_1\tilde{\chi}_3^0$	4.828	0.454
$\tilde{\chi}_1\tilde{\chi}_4^0$	0.938	0.937
$\tilde{b}_1\tilde{b}_1$	0.757	0.451
$\tilde{b}_1\tilde{b}_2$	0.002	0.001
Sum	22.129	2.314

$\tilde{b}_1 \rightarrow b\tilde{\chi}_1^0$ decay kinematics affected

dσ/dE_b [fb/GeV] $e^+e^- \rightarrow bb\tilde{\chi}_1\tilde{\chi}_1^0$
w. ISR + beamstr.
Results: Isolation of the Signal

Channel	\(\sigma_{BW} \) [fb]	\(\sigma_{cut}^{BW} \) [fb]
\(Z\bar{\nu}\nu\)	111.4	2.114
\(h\bar{\nu}\nu\)	76.4	0.002
\(H\bar{\nu}\nu\)	0.0	0.000
Sum	187.7	2.117

Channel	\(\sigma_{BW} \) [fb]	\(\sigma_{cut}^{BW} \) [fb]
\(Zh\)	1.335	0.009
\(HA\)	0.314	0.003
\(\tilde{\chi}_1^0\tilde{\chi}_2^0\)	13.954	0.458
\(\tilde{\chi}_1^0\tilde{\chi}_3^0\)	4.828	0.454
\(\tilde{\chi}_1^0\tilde{\chi}_4^0\)	0.938	0.937
\(\tilde{\chi}_1^0\tilde{\chi}_1^0\)	0.757	0.451
\(\tilde{\chi}_1^0\tilde{\chi}_2^0\)	0.002	0.001
Sum	22.129	2.314

\(\tilde{b}_1 \to b\tilde{\chi}_1^0\) decay kinematics affected
Summary & Outlook

Precision predictions for SUSY pheno are important

- Higher orders: virtual corrections
- Higher orders: real corrections

Factorization in $2 \rightarrow 2$ production and decay insufficient/wrong

Off-shell effects and interferences affect results (especially with cuts)

Use full matrix elements

Tools are available for ILC/LHC: Whizard/O’mega

http://james.physik.uni-freiburg.de/~reuter

Reconsider all edge structures [LHC]: Alwall/Plehn/Rainwater/JR/Schumann
Summary & Outlook

Precision predictions for SUSY pheno are important
 ▶ Higher orders: virtual corrections
 ▶ Higher orders: real corrections

Factorization in $2 \rightarrow 2$ production and decay insufficient/wrong

Off-shell effects and interferences affect results (especially with cuts)

Use full matrix elements

Tools are available for ILC/LHC: Whizard/O’Mega

 http://james.physik.uni-freiburg.de/~reuter

Reconsider all edge structures [LHC]: Alwall/Plehn/Rainwater/JR/Schumann