Polymorphisms, diet and nutrigenomics

AYSHA KARIM KIANI1, GABRIELE BONETTI2,*, KEVIN DONATO1, JURGEN KAFFTLI1, KAREN L. HERBST3, LIBORIO STUPPIA1, FRANCESCO FIORETTI1, SAVINA NODARI3, MARCO PERRONE6, PIETRO CHIURAZZI7,8, FRANCESCO BELLINATO9, PAOLO GISONDI9, MATTEO BERTELLI1,2,10

1 MAGI EUREGIO, Bolzano, Italy; 2 MAGI’S LAB, Rovereto (TN), Italy; 3 Total Lipedema Care, Beverly Hills California and Tucson Arizona, USA; 4 Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University, Chieti, Italy; 5 Department of Cardiology, University of Brescia and ASST “Spedali Civili” Hospital, Brescia, Italy; 6 Department of Cardiology and CardioLab, University of Rome Tor Vergata, Rome, Italy; 7 Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Rome, Italy; 8 UOC Genetica Medica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy; 9 Section of Dermatology and Venereology, Department of Medicine, University of Verona, Verona, Italy; 10 MAGISNAT, Peachtree Corners (GA), USA

Keywords

Nutrigenomics • Nutrigenetics • Metabolomics • Precision nutrition • Physical activity

Summary

Every human being possesses an exclusive nutritional blueprint inside their genes. Bioactive food components and nutrients affect the expression of such genes. Nutrigenomics is the science that analyzes gene-nutrient interactions (nutrigenetics), which can lead to the development of personalized nutritional recommendations to maintain optimal health and prevent disease. Genomic diversity among various ethnic groups might affect nutrients bioavailability as well as their metabolism. Nutrigenomics combines different branches of science including nutrition, bioinformatics, genomics, molecular biology, molecular medicine, and epidemiology. Genes regulate intake and metabolism of different nutrients, while nutrients positively or negatively influence the expression of a number of genes; testing of specific genetic polymorphisms may therefore become a useful tool to manage weight loss and to fully understand gene-nutrient interactions. Indeed, several approaches are used to study gene-nutrient interactions: epigenetics, the study of genome modification not related to changes in nucleotide sequence; transcriptomics, the study of tissue-specific and time-specific RNA transcripts; proteomics, the study of proteins involved in biological processes; and metabolomics, the study of changes of primary and secondary metabolites in body fluids and tissues. Hence, the use of nutrigenomics to improve and optimize a healthy, balanced diet in clinical settings could be an effective approach for long-term lifestyle changes that might lead to consistent weight loss and improve quality of life.

Nutrigenomics

Nutrigenomics is an emerging field where advanced genomics tools are used to analyze the effects of nutrients on the genome and gene expression, and the effects of genetic variants on the intake of nutrients. The term “Nutrigenomics” was created to describe the interaction between nutrients and genes. Therefore, nutrigenomics links genetics to nutrition, physiology, biochemistry, metabolomics, proteomics, transcriptomics, and bioinformatics [1]. Nutrigenomics relies on three fundamental tenets:

• Genomic diversity in ethnic groups, which can affect bioavailability of nutrients and their metabolism;
• Choice of food and its availability based on cultural, geographical, and socio-economic factors;
• Malnutrition, which affects gene expression and poses a serious threat to genome stability by causing mutations in the DNA sequence or even chromosomal instability, that result in abnormal gene dosage and adverse phenotypes [2].

Therefore, nutrigenomics is the field of nutritional study that applies molecular techniques to exploring, analyzing, and understanding the physiological responses of particular populations or individuals to specific diets[3]. It further explains how dietary components might affect gene expression at pre-transcriptional, post-transcriptional, and translational levels, resulting in gain or loss of function of those particular proteins [3]. These, gene-nutrient interactions depend on the capacity of particular nutrients to bind with transcription factors, eventually regulating RNA polymerase recruitment to gene promoters and the ensuing transcript levels. For example, research on vitamin A, vitamin D and fatty acids indicate that these vitamins directly trigger the activation of nuclear receptors and induce gene transcription [4]. Furthermore, compounds like soy genistein and resveratrol from wine indirectly affect various molecular signaling pathways through nuclear factor kappa B, thereby activating and regulating major molecules linked with disease [1,5].

Recently, nutrigenetic studies have identified genetic variants associated with susceptibility to various diseases secondary to interaction with dietary factors. Theses scientific advancements will greatly contribute to the treatment and prevention of chronic disease, as they could potentially predict an individual’s risk, explain the etiology of the disease, and enable the personalization of nutritional management [6]. This scientific approach
may have caveats, as certain genes might preferentially favor the intake of some nutrients and adversely affect the consumptions of other beneficial nutrients [2, 7].

Nutrigenetics

Nutrigenetics encompasses the genetic variation effects on nutritional responses and nutrient function [2, 6]. Although nutrigenetics and nutrigenomics are closely related, these terms are not interchangeable. Nutrigenetics explores the effect of hereditary genetic variants on the uptake and metabolism of micronutrients, whereas nutrigenomics studies the interconnection between genome and diet with reference to nutritional effects on the metabolic, proteomic, transcriptional, and translation-al changes along with dietary variation due to an individual’s genetic background [8]. Recently, nutrigenetic research studies have enabled identification of genetic variants associated with disease susceptibility through interaction with specific dietary factors. For example, various genetic variants in genes involved in metabolic pathways affect the intake and usage of different micro-nutrients [2, 7, 9]. Nutrigenetic studies may be used to predict the risk of various chronic diseases, and, with the help of personalized nutritional management, these diseases could be prevented or better managed.

Gene-diet interactions are also involved in the response to nutritional interventions when limiting the total energy intake or altering the relative proportion of carbohydrates, proteins and fats. Studies have been performed in different populations to further explore the effects of genetic polymorphisms located near or within genes regulating food intake, lipoprotein and lipid metabolism, glucose homeostasis, insulin signaling, circadian cycles, inflammatory responses and amino acid metabolism on metabolic improvement, weight gain/loss, insulin resistance, and serum lipid levels. Most nutrigenetic tests analyze the effect of multiple polymorphisms on eating behavior changes. For instance, diets tailored to people with polymorphisms in the apolipoprotein E gene should decrease the intake of saturated fats compared to the standard dietary advice, because carriers of such polymorphisms are at increased risk of myocardial infarction (MI) [6, 10].

It is worth noting that not only DNA sequence variants are important, but also copy number variants. Some studies have reported the association between copy number variants (CNVs) for small genome sections and the risk of metabolic diseases, as illustrated in the following three examples: 1) copy number variants of the leptin receptor gene are linked with metabolic traits and with type 2 diabetes mellitus risk [11]; 2) lower copy number of the salivary amylase alpha 1A gene has been associated with obesity predisposition, thereby linking obesity to carbohydrate metabolism [12]; 3) a pentanucleotide (CTTTA) deletion/insertion in the 3′-untranslated region of the leptin receptor gene has been associated with type 2 diabetes mellitus risk [13]. Additional studies are needed to further explore the many levels of gene-diet interactions in relation to disease risk and dietary response [6].

Nutritional epigenetics

Epigenetics involves reversible and heritable processes that regulate the expression of genes without associated changes in the coding sequence of DNA. In fact, epigenetic dysregulation may underlie the onset of various chronic diseases and their progression [14]. Complex interactions between nutrients and DNA methylation, noncoding RNAs, and covalent histone modifications contribute to obesity, type 2 diabetes mellitus, dyslipidemia, cardiovascular diseases, non-alcoholic fatty liver disease, and cancer. For example, diets rich in fats and sugar are associated with abnormal methylation patterns of neuropeptide genes that control food intake and could be involved in obesity development [15]. Similarly, low-protein diets could alter lipid and glucose levels by disrupting histone modifications within major regulatory genes [16]. Moreover, deficiency of various micro-nutrients – like vitamin A, group B vitamins, selenium, potassium, and iron – are linked with hypermethylation of tumor suppressor genes that play a crucial role in cancer [6, 16].

Nutriepigenetics is the study of nutritional interventions that alter epigenetic changes which significantly impact treatment and prevention of chronic diseases. For example, it has been demonstrated that the anti-inflammatory effects of the Mediterranean diet are linked to inhibitory hypermethylation of proinflammatory genes [17, 18]. Furthermore, polyunsaturated fatty acid administration positively regulates expression of specific miRNAs that inhibit lipogenic and oncogenic genes [19]. Curcumin is also an important epigenetic regulator that exerts protective effects against heart failure and liver injury through the regulation of specific DNA methylation and histone modification patterns. These data suggest that introducing specific dietary compounds to an individual’s diet, that modulate epigenetic patterns, could be an efficient strategy for reducing the prevalence of obesity and associated comorbidities [6, 20].

Nutritional transcriptomics

Transcriptomics is the process that evaluates the sequence and abundance of all RNA transcripts at a specific time point. RNA levels are tissue-specific and time-specific. During the process of transcription, activated transcription factors move to the nucleus, where they bind to a specific DNA sequence within the promoter region of a particular gene and inhibit or facilitate that gene’s transcription. Transcription factors can also be stimulated by physiological signals triggered by bioactive food components, nutrients or their metabolites, hormones, diseases, and pharmacological treatments. Therefore, transcription factors act like sensors and thereby modulate transcription. Transcriptomics can provide information on the mechanisms
related to a specific nutrient or diet. Transcriptional changes also help in the identification of genes, metabolites, or proteins that alter pre-disease states and assist in distinguishing and characterizing bioactive food components or nutrient-regulated pathways [1, 21, 22].

Nutritional proteomics

Proteomics identifies the complex array of proteins involved in biological processes, i.e., the proteome. Various pathological or physiological states can alter the proteome [21, 22].

Proteomics uses a variety of technologies designed to analyze protein expression including electrophoresis, organelle proteome analysis, high throughput extract pre-fractionation screening and mass spectrometry [3, 21]. Proteomics serves as a biological tool to fully understand genome activation in response to specific nutrients. For example, butyrate can change the expression of different proteins belonging to the ubiquitin proteasome system. This suggests that butyrate regulates major proteins that control cell differentiation, cell cycle, and apoptosis by proteolysis [1, 22, 23]. Proteomics can thereby identify pathways that are important in various disease states including those related to nutrition.

Nutritional metabolomics

Metabolomics is the branch of functional genomics that identifies primary and secondary metabolites in bodily fluids and can be used to understand alterations in metabolites and the mechanisms to isolate and characterize them. Metabolomics is a significant tool for investigating the effect of food on the health of individual. Identification of the food-derived biomarkers helps in understanding the variability among individual to metabolize the same foods during healthy as well as in diseased states. Nutritional metabolomics identifies the metabolic changes caused by specific nutrients or diets [21, 24, 25].

It also involves the study of metabolism under various genetic and environmental stresses [1, 21, 26, 27]. Food components and nutrients interact and alter metabolic pathways in different ways. Many cohort studies have identified the intake biomarkers like red meat, fish, walnuts and whole-grain bread. Under specific organic stimulations the monoterpane called perilla alcohol, extracted from strawberries, could behave as an anticancer molecule [24]. Similarly, Wittenbecher et al. [28], applied serum metabolomics to reveal the significant association of various red meat intake biomarkers with type-2 diabetes risk.

Precision nutrition

Nutrigenetics can be used to personalize diets by modifying them according to individual genetic variation. Precision nutrition is an important part of precision medicine, which consists of establishing guidelines for nutritional requirements of particular subgroups of people [6, 29, 30]. For example, lactose intolerance, phenylketonuria, or celiac disease are managed via tailored nutritional instructions based upon the genetic background [29].

Numerous SNPs are linked with chronic diseases because of their interaction with the intake of micro- and macronutrients or by specific foods or diets. For instance, polymorphisms of taste perception genes, including the sweet taste receptor TAS1R2 (Taste 1 Receptor Member 2) gene and CD36 gene, were reported to be linked with dyslipidemia among research participants in Mexico with high consumption of carbohydrates and fats, respectively [31, 32]. Similarly, common variants of homocysteine metabolism-regulating genes, such as MTHFR (methylene tetrahydrofolate reductase) and MTR (methionine synthase), have been associated with increased breast cancer risk in individuals with reduced intake of vitamin B6, vitamin B12, and folate [33]. Interestingly, SNPs in the VDR (vitamin D receptor) gene affect the availability of vitamin D and are known to be associated with osteoporosis predisposition in postmenopausal females with reduced calcium intake [6, 34].

In clinical practice, nutrigenetics is currently being used to evaluate the genes involved in the transport and metabolism of nutrients, toxins removal, and protection against oxidative stress. Therefore, polymorphisms in these genes are included in nutrigenetic tests to evaluate their effects on eating habits. For instance, personalized diets designed according to specific ACE (angiotensin I converting enzyme) genotypes may recommend higher sodium intake compared to the standard population-based dietary advice [6, 10, 35].

Nutritional effects on gene expression profiles

Nutrition influences health outcomes by affecting expression of genes that regulate crucial metabolic pathways. Western dietary patterns – rich in processed grain products, processed meats, sweets, and desserts – have a gene expression profile typical of cancer signaling and inflammatory response. This is not the case in individuals that eat whole grain products, fruits, and vegetables. Pathway analyses have shown that higher meat consumption is linked to genetic networks associated with colon cancer [36]. Moreover, higher saturated fatty acid consumption results in a gene expression profile that is typical of glucose intolerance, liver lipid accumulation, inflammation, and increased neuropeptide expression, leading to development of obesity. On the contrary, lower protein diets increase the expression of hepatic gluconeogenic genes, with subsequent glucose intolerance. Furthermore, diets lacking folate and choline are linked with dysregulation of lipid metabolism genes, thus predisposing to non-alcoholic fatty liver disease [37]. Similarly, chromium deficiency induces downregulation of insulin signaling genes, which may lead to type 2 dia-
betes mellitus. Selenium, vitamin A, and vitamin B12 deficiencies increase the susceptibility to cardiovascular diseases by upregulating lipogenic and proinflammatory genes [6]. Research studies have also reported favorable effects of bioactive food components and nutrients on gene expression profiles; for example, people consuming the Mediterranean diet have lower postprandial expression of genes encoding proteins involved in inflammation, oxidative stress, atherogenesis, and endoplasmic reticulum stress-related activation. Furthermore, a higher intake of monounsaturated fatty acids through olive oil consumption is linked with reduced expression of inflammatory and lipid storage genes. Consumption of higher polyunsaturated fatty acid-containing diets positively regulates the expression of neuropeptide genes that modulate energy homeostasis [38, 39]. Bioactive food components like theaflavin, epigallocatechin-3-gallate, genistein, curcumin and sulforaphane exhibit anticancer properties by upregulating tumor-suppressor genes and downregulating proto-oncogenes. In addition, resveratrol and curcumin have antiatherogenic effects by downregulating the expression of matrix metalloproteinases that cause the formation and progression of plaques. Finally, apple polyphenols prevent diet-induced obesity by regulating genes involved in fatty acid oxidation, lipolysis, and adipogenesis [15, 40].

Genetic polymorphism effect on dietary intake

Genome-wide association studies have evaluated genetic polymorphisms associated with various metabolic pathways [2]. Epidemiological and interventional studies have also explored the associations of genetic variants with dietary intake [41]. For example, clinically significant associations have been reported between: 1) the APOA2 (c.2265T>C) variant and intake of saturated fatty acids and body mass index, 2) MTHFR variants and homocysteine levels, and 3) CYP1A2 variants and caffeine-related hypertensive response [2, 42, 43]. Inborn errors of metabolism are caused by mutations in specific genes encoding key metabolic enzymes. These pathogenic variants lead to gene-diet interactions altering nutritional requirements and metabolism: classical examples are lactose intolerance and phenylketonuria. The T>C-13910 variant upstream of the lactase gene (LCT) results in non-persistence or absence of the lactase enzyme after infancy, therefore individuals with this variant do not digest lactose. On the other hand, phenylketonuria is an autosomal recessive disorder caused by mutations in the phenylalanine hydroxylase (PAH) gene, a major hepatic enzyme that is responsible for the conversion of phenylalanine to tyrosine [2, 44, 45]. Other genetic-food interactions are much more complex, such as polygenic interactions underlying the multifactorial etiology of cancer, obesity, type 2 diabetes, and cardiovascular disease. Such diseases derive from the interaction among several genes and environmental factors, and respond to numerous dietary exposures. For example, a number of genetic variants are associated with an increased obesity risk, such as those found in the FTO gene, UCP1 and UCP3 genes, the PPAR (peroxisome proliferator-activated receptor) encoding genes, the melanocortin 4 receptor (MC4R), and the leptin receptor (LEPR) gene [2, 46, 47], as detailed in Table I. In coronary artery disease, variants in genes associated with lipid metabolism, such as LPL (lipoprotein lipase), CETP (cholesteryl ester transfer protein), LDLR (low density lipoprotein receptor), and APOE (apolipoprotein E), affect the intake and catabolism of cholesterol and other lipids, resulting in atherosclerosis (Tab. I) [2, 48, 49]. Further studies evaluated the role of the genetic variants in the CYP1A2 (Cytochrome P450 1A2) gene, which encodes the main caffeine-metabolizing enzyme, in cardiovascular disease. A higher consumption of caffeine might be linked with increased cardiovascular disease risk in subjects with genetic variants associated with “slow” caffeine metabolism. On the other hand, people that have genetic variants associated with fast caffeine metabolism are protected from the effects of moderate caffeine consumption [2, 50]. Genetic variations of the APOA2 (apolipoprotein A2) gene are associated with obesity via alterations in energy intake. Chinese and Asian-Indian populations with a specific APOA2 variant are at a greater risk of developing obesity when consuming food rich in saturated fatty acids, but with lower saturated fatty acids intake, such risk was not observed. Similar studies were performed among Mediterranean populations of Southeastern Spain. Moreover, polymorphisms of genes associated with iron, vitamin C, vitamin D, and vitamin B12 metabolism have been reported to affect the risk of deficiency or reduced levels of these nutrients [51, 52]. Other genetic loci were analyzed for their associations with the intake of macronutrients. Merino et al. [53] identified two genetic loci, DRAM1 (DNA damage regulated autophagy modulator 1) and RARB (retinoic acid receptor beta), which exhibited a genome-wide significant association with macronutrient intake. Additionally, they also confirmed the association of the FGF21 (fibroblast growth factor 21) genetic variant (rs838133) with the intake of macronutrients [41, 53].

Genetic polymorphisms associated with body weight

Research studies have identified significant associations between genetic variants and body weight. Numerous genetic loci have been linked to weight loss following hypocaloric diets and physical activity. These genes encode important enzymes regulating adipogenesis, lipid metabolism, the circadian clock, carbohydrate metabolism, appetite control, energy intake and expenditure, cell differentiation, and thermogenesis [54, 55]. Moreover, genetic variants associated with taste- and texture-related, and olfactory genes could affect individual preferences and sensitivity towards certain foods, influ-
Tab. I. Genetic polymorphisms, their related genes, and involved dietary factors if known, and putative disease risks.

Gene	Polymorphism	Putative disease risks	Effect
TAS1R2	rs35874116	Hypertriglyceridemia	Carbohydrate responsiveness
	ile191Val		
CSHMT	L474F	Colon cancer	Folate degradation
		Neural tube defects	
MTHFR	rs1801133	Breast cancer	Increased folic acid intake
		Homocystinuria	Macronutrient intake
		Cardiovascular diseases	High levels of homocysteine
		Diabetes	Folate metabolism
	C677T	Neural tube defects	
	A1298C		
	A222V		
MTHFD1	R653Q	Neural tube defects	Higher folate intakes
MTR	rs1905087	Breast cancer	Lower folate concentration
	A2756G		
MTRR	A66C	Neural tube defects in	Lower folate concentration
		offspring	
VDR	rs1544410	Osteoporosis	Affects vitamin D levels
	T>C	Prostate cancer	
	rs11568820		
APOA1	rs670	Metabolic syndrome	-
	rs5089		
APOA2	rs5082	Cardiovascular diseases	Higher total energy, fat,
		Obesity	and protein intake
APOA5	rs964184	Higher risk of early heart attacks	Greater reduction in TC and LDL-c
	rs662799	Lipid metabolism	Macronutrient intake
		disturbances	
		Less weight gain on high fat diets	
APOB	rs512535	Metabolic syndrome	Low Fat
APOC3	rs5128	Metabolic syndrome	Cholesterol metabolism
	C 3175G		
APOE	rs429358	Lipid metabolism	Macronutrient intake
	rs7412	disturbances	
PNPLA3	rs739409	NAFLD	-
CYP1A1	TMsp1C	Breast and prostate cancer	Oxidative metabolism of estrogens
	lle462Val		
CYP1A2	A>C	Heart diseases	Reduced ability to metabolize caffeine
CYP1B1	C194G	Congenital glaucoma	
CYP2R1	rs10741657	Lower vitamin D levels	Increased consumption of food rich in vitamin D
	rs10766197		Increased sun exposure
CYP17A	T54C	Congenital adrenal hyperplasia	Increased estrogen level
FTO	rs9939609	T2DM	Macronutrient intake
		Obesity	
FTO	rs8050136	T2DM	Macronutrient intake
		Obesity	
	rs1558902	Obesity	Greater weight loss
			Less reductions in insulin and HOMA-IR
MC4R	rs17782313	T2DM	Increased BMI
MC4R	rs12970134	Metabolic syndrome	Macronutrient intake
TCF7L2	rs7903146	T2DM	Smaller weight loss and HOMA-IR
LCT	rs4988255	Metabolic syndrome	Macronutrient intake
		Obesity	
PPARA	rs1800206	Lipid metabolism	Macronutrient intake
	rs60008259	disturbances	Low n-6 Fatty Acid
		Hypercholesterolemia	
Gene	Polymorphism	Putative disease risks	Effect
----------	--------------	---	--
PPARG	rs1801282	Obesity, Insulin Sensitivity	Macronutrient intake
TXN	rs2301241	Abdominal obesity	
GIPR	rs2287019	Cardiovascular diseases	Greater weight loss
			Greater decreases in glucose, insulin and HOMA-IR
DHCR7	rs12785878	Vitamin D insufficiency	Greater decreases in insulin
			HOMA-IR
LIPC	rs2070895	Lipid metabolism disturbances	Higher decreases in TC and LDL-c
	rs1800588I		Lower increase in HDL-c
PPM1K	rs1440581	Maple syrup urine disease	Less weight loss
			Lower decreases in insulin and HOMA-IR
TFAP2B	rs987237	Non-familial congenital heart disease, Char syndrome	Higher weight regains
IRS1	rs2943641	Autism spectrum disorder, Hepatocellular carcinoma	Greater decreases in insulin, HOMA-IR, weight loss
PCSK1	rs6232	Higher obesity and insulin sensitivity risk	
PCSK7	rs256918	Metabolic disorders, Liver diseases	Higher decreases in insulin and HOMA-IR
MTNR1B	rs10830963	Type 2 Diabetes, Impairment of early insulin response	Lower weight loss in women
IL-1A	G4845T	Chronic inflammatory diseases, Periodontitis, Coronary artery disease, A few autoimmune diseases and cancers	Increased IL-1 plasma concentrations
	C-889T		
IL-1B	C 3954T	Chronic inflammatory diseases, Periodontitis, Coronary artery disease, A few autoimmune diseases and cancers	Increased IL-1 plasma concentrations
	A -511G		
IL-1RN	C 2018T	Chronic inflammatory diseases, Periodontitis, Coronary artery disease, A few autoimmune diseases and cancers	Increased IL-1 plasma concentrations
IL-6	rs2069827	Low-grade chronic inflammation, Obesity, Visceral fat deposition, Insulin resistance, Dyslipidemia, Risk for cardiovascular diseases	Lower weight gains, Tissue healing
	G -174C		
IL6R	A>G	Low-grade chronic inflammation	Tissue healing
SH2B1	rs7498665	Obesity, Type 2 diabetes	Higher fat intake
SLC2A2	rs5400	Diabetes	Higher sugar consumption
			Insulin sensitivity
F2	rs1799963	Higher risk of thrombosis and cerebral stroke	
F5	rs6025	Higher risk of thrombosis	
FUT2	rs602662	Lower vitamin B12 levels	Increased consumption of Food rich in vitamin B12
	Gly258Ser		
Gene	Polymorphism	Putative disease risks	Effect
----------	--------------	--	---
ALPL	rs4654748	Lower Vitamin B6 blood concentration	Increased consumption of food rich in vitamin B6
CBS	rs1801181	Colorectal Cancer	
	rs121964962	Homocystinuria	
	rs2802292	Vitamin deficiency	
	rs2802288	Dementia	
	rs3740051	Heart disease	
	rs2236519	Stroke	
	rs2272773		
FOXO3	rs2802292	Longer lifespan	
CBS	rs3740051	Higher basal energy expenditure	
	rs2236519		
	rs2272773		
PEMT	rs12525817	Low choline	Increased choline intake
PLIN1	rs894160	Obesity	Macronutrients intake
CBS	rs1260326	Lipid metabolism disturbances	Macronutrients intake
CBS	rs4959853	Lipid metabolism disturbances	Macronutrients intake
CBS	rs328	Lipid metabolism disturbances	Macronutrients intake
CBS	C1595G	Lipid metabolism disturbances	Macronutrients intake
CBS	rs12740374	Lipid metabolism disturbances	Macronutrients intake
CBS	rs4580704	Lipid metabolism disturbances	Coronary heart disease
CBS	rs5874116	Lipid metabolism disturbances	Type 2 diabetes
CBS	rs9701796	Lipid metabolism disturbances	Type 2 diabetes
CBS	rs307355	Lipid metabolism disturbances	Dental caries
CBS	rs35744813	Lipid metabolism disturbances	Reduced promoter activity
CBS	rs307377	Lipid metabolism disturbances	Dental caries
CBS	rs846664	Association with the aging process	Alcohol dependence
CBS	rs978739	Association with the aging process	Alcohol dependence
CBS	rs713598	Metabolic diseases	Bitter taste of PTC or PROP perception
CBS	rs7172866	Coronary heart disease	
CBS	rs10246939	Risk of hypertension	
CBS	rs239345	Risk of hypertension	
CBS	rs11064153	Risk of hypertension	
CBS	rs578568	Risk of hypertension	
CBS	rs239345	Risk of hypertension	
CBS	rs4401050	Risk of hypertension	
CBS	rs4790522	Cardiovascular risk disease	
CBS	rs8065080	Risk of hypertension	
Gene	Polymorphism	Putative disease risks	Effect
----------	--------------	---	---
CD36	rs1761667	Hypercholesterolemia, Metabolic syndrome, Type 2 diabetes mellitus	Ethnic-specific effects
	rs1984112	Lipid metabolism, Type 2 diabetes, Cardiovascular disease risk	
	rs1527483	Obesity	
	rs2151916	Obesity, High triglycerides levels	
	rs7755	Type 2 diabetes mellitus	
	rs1049673	Obesity, Hypertension, Type 2 diabetes mellitus, Premature coronary heart disease	
	rs3840546	Obesity, Type 2 diabetes mellitus	
	rs3211933	Metabolic syndrome	
	rs10499859	Metabolic syndrome	
	rs3211867	Obesity	
	rs3211883	Metabolic syndrome	
	rs3173798	Obesity, Metabolic syndrome	
	rs3211892	Obesity, Metabolic syndrome	
	rs1358337	Metabolic syndrome	
	rs1054516	Metabolic syndrome, High levels of triglyceride	
	rs1049654	Metabolic syndrome	
	rs3211909	Metabolic syndrome	
	rs3211849	Metabolic syndrome, High levels of triglyceride	
	rs1358337	Metabolic syndrome	
	rs1194197	Metabolic syndrome	
	rs11760281	Metabolic syndrome	
OR7D4	rs61729907	Metabolic syndrome	
OR11H7P	rs1953558	Obesity, Dental caries, Diabetes, Cardiovascular disease, Hypertension, Hyperlipidemia, Cancer	
OR6A2	rs72921001	Gestational choriocarcinoma	
LEPR	rs3790483	Obesity, Metabolic syndrome	Low n-6 PUFA, High n-3 PUFA
POMC	rs713586	Obesity, Early-onset type 2 diabetes	
BDNF	rs6265	Obesity, Psychological eating disorders	Carbohydrate and fat intakes
KCNB1	rs6063399	Obesity	Lower BMI
KCNC2	rs7511660	Obesity	Lower BMI
Gene	Polymorphism	Putative disease risks	Effect
---------------	--------------	--	---
TMPRSS6	rs1421312	Anemia	Iron deficiency
	rs2111833	Damage of immune function, work performance, and damage of adolescent's psychological behavior and mental development	
TUB	rs2272382	Obesity	Higher consumption of mono- and disaccharides
	rs1528133		Higher glycemic load
CAPN10	SNP-44	Type 2 diabetes mellitus	Total cholesterol
ACE	Insertion/Deletion (I/D)	Type 2 diabetes mellitus Acute myocardial infarction Hypertension	Salt sensitivity
ADRB2	Arg16Gly	Asthma	Carbohydrate responsiveness
	Glu27Glu	Chronic obstructive pulmonary disease	
ADRB3	Trp64Arg	Coronary heart disease Weight gain	
		Type 2 diabetes mellitus	
PON1	rs854549	Cardiovascular disease	Detoxification/Oxidative stress Lipid levels
	rs854552	Atherosclerosis	
Cdx-2	G3751A	Vitamin D deficiency	Calcium intestinal absorption Increasing bone mineral density
CYP24A1		Vitamin D deficiency	
GSTM1	Insertion/Deletion	Vitamin C deficiency Cancer Coronary artery disease Atopic asthma	Low vitamin C intake
GSTP1	A313G	Ascorbic acid deficiency	Low vitamin C intake
HFE	C282Y	Iron-storage disease	Iron metabolism
		Iron overload	
ADH1B	47His	Alcohol dependence	Systemic ethanol clearance
	569Arg		
	rs1229984		
ADH1C	349Ile		
ALDH2	E487K	Alcohol metabolism	Acetaldehyde accumulation Alcohol metabolism
	rs671		
FADS1	rs174557	Abnormal lipid profile	PUFA metabolism
	rs174546		
AGT	T>C	Hypertension	Salt sensitivity Increased blood flow and respiration
	M235T	Cardiorespiratory disorders	
MCM6	C 13910T	Lactose intolerance	
HLA	DQ2/DQ8	Celiac disease	Gluten intolerance
BCO1	Ala579Val	Hypercarotenemia Vitamin A deficiency Chronic lung disease	Vitamin A Higher levels of provitamin A carotenoids
GSTT1	Insertion / Deletion	Serum ascorbic acid deficiency Free radical production	
MnSOD	Ala16Val	Breast cancer	Reduced oxidation of catecholamines
TNF-A	G -308A	Obesity Insulin resistance Dyslipidemia	Whole body glucose homeostasis alteration
Gene	Polymorphism	Putative disease risks	Effect
-------	--------------	------------------------	--------
CRP	rs1205	Mental health disorder	
	G>A	Depressive disorder	
		Low-grade chronic	Higher levels of CRP
		inflammation	
SULT1A1	G638A	Post-menopausal breast	
		cancer	
NQO1	C609T	Cancer	
FACTOR V	G1691A	Deep venous thrombosis	
MMP1	1G/2G	Accelerated skin aging	
COL1A1	Sp1 G>T	Accelerated skin aging	Mature connective tissue structure, essential for tensile strength
COL5A1	BstUI C>T	Achilles tendinopathy	Increase in content of type V collagen
		Anterior cruciate ligament rupture	Decrease in fibril diameter and biomechanical properties of tendons
		Tennis elbow	
GPX1	C>T	Premature aging	Protect against oxidative stress
		Prostate cancer	
	rs713041	Colorectal cancer	Lymphocyte GPx activities
GPX4	C -262T	Premature aging	Protect against oxidative stress
CAT	rs1051740	Cellular damage	Process toxins and pollutants
		Accelerated aging	
	rs7852552	Non-goitrous congenital hypothyroidism	Increased lean body mass
	rs16892496		
EPHX1	rs4532	Addictive behavior	Regulate neuronal growth and development
	G-94A		Mediate some behavioral responses
		Chronic kidney disease	
		Chronic obstructive pulmonary disease	
		Metabolic disease	
	rs1800497	Compulsive and risk- seeking behaviors	Carbohydrate responsiveness
	Taq1A/2A	Increased risk for co-morbid substance use disorders (alcoholism & opioids)	Reduced carbohydrate intake
		Binge eating behavior	
		Addictive disorder	
	Ser9Gly	Addictive behavior	Cognitive, emotional, and endocrine functions
DRD4	C521T	ADHD	
		Opioid dependence	
		Novelty seeking	
	Trp64Arg	Obesity and bodyweight-related disorders	Exercise responsiveness
	K153R	Skeletal muscle-related disorders	
	rs5859	Lung cancer	
	rs7579	Inflammation Cancer	Selenium availability and metabolism
Gene	Polymorphism	Putative disease risks	Effect
-----------	--------------	---	---------------------------------
BCMO1	rs1293492	Vitamin A deficiency	Low vitamin A levels
	rs7501351		
SOD2	rs4880	Breast and prostate cancers	
ACSL1	rs9997745	Metabolic Syndrome	
DNMT3B	rs6087990	Colorectal cancer Adenoma	High folate
	rs2424913		
	rs2424909		
ADAM17	rs10495563	Obesity	Low n-6 fatty acids
FAF1	rs3827730	Alcohol dependence	
CSK	rs1378942	Hypertension	
Intergenic	rs2168784	Alcohol dependence	
NADSYN1	rs75038630	Abnormal eating behavior	
OCTN1	C 1672T	Mushroom intolerance Crohn’s disease	
NBPF3	rs4654748	Vitamin B6 deficiency	Low vitamin B6 levels
TF	rs3811647	Low iron levels anemia	Increased iron concentrations
SLC23A1	rs33972313	Vitamin C deficiency	Low levels of vitamin C
BCDIN3D	rs7138803	Diabetes	
CB1-R	rs1049553	Renal fibrosis Metabolic disorders	
GNPDA2	rs1093897	Obesity risk	
FGF21	rs838153	Metabolic disorders Diabetes	Increased carbohydrate intake Decreased fat intake
KCTD15	rs29941	Diabetes	Higher carbohydrate intake
NECR1	rs2815752	Diabetes	Higher carbohydrate intake
TEMEM18	rs6548238	Obesity	
MAP2K5	rs2241423	Diabetes	
QPCTL	rs2287919	Diabetes	
TNN15K	rs1514175	Diabetes	
GSK3B	rs534555	Bipolar disorder Brain disorders	Response to antidepressant pharmacotherapy
	rs11925868		
	rs11927974		
FKBPS	rs1360780	Depression Post-traumatic stress disorder	Glucocorticoid receptor sensitivity
OXTR	rs53576	Post-traumatic stress disorder	Regulation of mood, anxiety and social biology
AKT1	rs2494732	Psychosis	Regulation of dopamine levels in the prefrontal cortex
ANK3	rs10994336	Bipolar disorder	Sodium channel activity increased excitatory signaling
	rs1958526		
CACNA1C	rs1006737	Mood instability Depressive and bipolar disorder	Altered brainstem volume increased excitatory signaling
CHRNA5	Asp598Asn	Cigarettes smoking	Neurotransmission
CHRNA5	rs1696968	Pleasure response from smoking	Neurotransmission
OPRM1	Asn40Asp	Addictive behavior	
CNR1	rs2023259	Addictive behavior	Normal reward signaling
FAAH	C 385A	Addictive behavior	Difficulty with withdrawal
GABRA2	rs279858	Sedation Amnesia Ataxia Anxiety Insomnia Alcohol addiction	Improved GABA production
ening the person’s susceptibility to nutrition-induced obesity [3]. The major genetic variants influencing metabolic pathways involved in the increased risk of obesity and obesity-related disorders are located in the following genes: ADIPOQ, FTO, LEPR, LEP, MC4R, INSRG2, PPARG, PCSK1, ADBR3, ADBR2, PPARG, APOA1, GHR, APOA5, FABP2, LIPC, MTNR1B, TCF7L2, CETP, GIPR, NPY, IRS1, and PCSK1 (Tab. I) [2, 56, 57]. Candidate genes involved in the regulation of food intake, lipid metabolism, or release of intestinal hormones have been investigated. For example, the FABP2 (fatty-acid-binding protein 2) gene, expressed in the epithelial cells of the small intestine, is involved in fat absorption. Genetic variants in this locus may cause higher fat absorption and obesity [58]. Similarly, the PPARG (peroxisome proliferator-activated receptor-gamma) gene is expressed in the fat cells and plays a major role in adipocyte differentiation. In their study, Deeb et al. [59] demonstrated an association of the PPARG gene with insulin sensitivity and body mass index. So far, almost 500 genetic loci have been identified in association with obesity traits, like waist-to-hip ratio or body mass index [60].

The FTO genetic locus that is associated with fat mass and obesity is considered to have the strongest effect upon body weight. The TMEM18 (transmembrane protein 18) gene is also known to regulate appetite, body weight, and obesity development. Similarly, decreased expression of the MC4R (melanocortin-4 receptor) gene results in a monogenic form of obesity [41, 47, 61, 62].

Gene	Polymorphism	Putative disease risks	Effect
1A HTR1A	C -1019G	Depressive disorder Bipolar disorder	Reduced serotonin signaling at post-synaptic sites
SLC6A4	rs1042173	Addiction-related disorders	-

Genetic polymorphism interaction with physical activity

Research studies have revealed the significance of diet in combination with physical activity for maintaining a healthy body weight. Genetic polymorphisms associated with obesity might influence physical activity levels; conversely, physically active lifestyles might reduce obesity risk. For example, sixteen interventional and cross-sectional research studies performed on children and adults of European, East African, and African origin reported a significantly strong association of FTO intron 1 with physical activity [61, 62]. Additionally, a recent meta-analysis involving 111,421 individuals of European descent established a significant association between physical activity and genetic risk score for twelve obesity-linked polymorphisms [63, 64]. Similarly, another meta-analysis involving 19,268 children and 218,166 adults found higher leisure-time physical activity reduces FTO variants effects, whereas increased sedentary periods, like watching TV, enhance genetic predisposition to increased adiposity [65]. In the US, the Diabetes Prevention Program involving 869 individuals reported a strong association of FTO genetic variants with one-year lifestyle intervention processes related to physical activity, weight loss, and diet with reference to the subcutaneous fat area. They found an association of the minor allele of an FTO variant with more subcutaneous fat mass within the control group as compared to the lifestyle intervention group. Similarly, another recent study indicated that physical activity, along with a vegetarian diet, could reduce elevated body mass index due to the minor allele of a variant in the FTO gene (rs3751812). Other physical activity-related genes are influenced by dietary intake and are involved in muscle strength and structure [66-68].

Additional studies have described the protective effect of physical activity on obesity-linked genetic variants in the form of a combined genetic risk score. In their study, Li et al. [69] have shown that the genetic susceptibility to obesity in individuals with higher genetic risk scores could be reduced by high physical activity levels [29, 69].

Conclusion

Every human being possesses an exclusive nutritional blueprint inside his/her genes. Bioactive food components and nutrients affect the expression of such genes. Nutrigenomics is the branch of science that analyzes gene-nutrient interactions, allowing the development of personalized nutrition approaches to maintain good health and prevent disease. Nutrigenomics combines different branches of science like nutrition, bioinformatics, genomics, molecular biology, molecular medicine, and epidemiology. Studies have revealed a myriad of interconnections at various levels amongst nutrients and genes. More specifically, genes regulate the intake and metabolism of different nutrients, while nutrients positively or negatively influence the expression of different genes at the epigenetic, transcriptional, and translational level. Nutrigenetic testing may soon become a fundamental technique to plan individualized weight loss and to better understand gene-nutrient interactions.

Acknowledgements

This research was funded by the Provincia Autonoma di Bolzano in the framework of LP 15/2020 (dgp 3174/2021).
Conflicts of interest statement

Authors declare no conflict of interest.

Author’s contributions

MB: study conception, editing and critical revision of the manuscript; AKK, GB, KD, JK, KLH, LS, FF, SN, MP, PC, FB, PG: literature search, editing and critical revision of the manuscript. All authors have read and approved the final manuscript.

References

[1] Sales NMR, Pelegrini PB, Goersch M. Nutrigenomics: definitions and advances of this new science. J Nutr Metab 2014. https://doi.org/10.1155/2014/202759
[2] Naureen Z, Miggiano GAD, Aquilanti B, Velluti V, Matera G, Gagliardi L, Zalian A, Romanelli R, Bertielli M. Genetic test for the prescription of diets in support of physical activity. Acta Biomedi 2020;91. https://doi.org/10.23750/abm.v91i13-S.10584
[3] Cozzolino S, Cominetti C. Biochemical and physiological bases of nutrition in different stages of life in health and disease. Monole, Sao Paulo, Brazil, 2013. Available from https://scholar.google.com/scholar?url=https://scholar.google.com/scholar?hl=it&as_sdt=0%2C5&q=Biochemical+and+physiological+bases+of+nutrition+in+different+stages+of+life+in+health+and+disease.+&btnG=. Accessed on 01/07/2022.
[4] Dauncey M. Recent advances in nutrition, genes and brain health. Proc Nutr Soc 2012;71:581-91. https://doi.org/10.1017/S002966511000237
[5] Fialho E, Moreno F, Ong T. Nutrition in the post-genomics: fundamentals and applications of omics tools. Rev Nutr 2008;21:757-66.
[6] Ramos-Lopez O, Milagro FI, Allayee H, Chmurzynska A, Choi S-W, Fialho E, Moreno F, Ong T. Nutrition in the post-genomics: fundamentals and applications of omics tools. Rev Nutr 2008;21:757-66.
[7] Portoillo MP, Fatty acid synthase methylation levels in adipose tissue: effects of an obesogenic diet and phenol compounds. Genes Nutr 2014;9:411. https://doi.org/10.1007/s12263-014-0411-9
[8] Gracia A, Elcoroaristizabal X, Fernández-Quintela A, Miranda J, Bediaga NG, de Pancorbo MM, Rimando AM, Portillo MP, Fatty acid synthase methylation levels in adipose tissue: effects of an obesogenic diet and phenol compounds. Genes Nutr 2014;9:411. https://doi.org/10.1007/s12263-014-0411-9
[9] Liu B and Qian S-B. Translational regulation in nutrigenomics. Adv Nutr 2012;3:211-9. https://doi.org/10.3945/an.111.001057
[10] Daumíel L, Vargas T, Ramírez de Molina A. Nutritional genom-ics for the characterization of the effect of bioactive molecules in lipid metabolism and related pathways. Electrophoresis 2012;33:2266-89. https://doi.org/10.1002/elps.201200084
[11] Costa N and Rosa C. Functional foods: bioactive components and physiological effects. 1 Reprint. Rúbio, Rio de Janeiro, 2011. Available from https://scholar.google.com/scholar?url=https://scholar.google.com/scholar?hl=it&as_sdt=0%2C5&q=Costa+N+and+Rosa+C.+Functional+foods%3A+bioactive+components+and+physiological+effects.+&btnG=. Accessed on 01/07/2022.
[12] Ronetloup A, Van Trijp J, Renes R. Consumer acceptance of nutrigenomics-based personalised nutrition. Br J Nutr 2008;101:132-44. https://doi.org/10.1017/S0007114508992552
[13] Tebani A and Bekri S. Paving the Way to Precision Nutrition Through Metabolomics. Front Nutr 2019;6:41. https://doi.org/10.3389/fnut.2019.00041
[14] Norheim F, Gjelstad IM, Hjorth M, Vinknes KJ, Langleite TM, Ho- len T, Jensen J, Dalen KT, Karlsen AS, Kielland A. Molecular nutri-tion research—the modern way of performing nutritional science. Nutrients 2012;4:1898-44. https://doi.org/10.3390/nu4121898
[15] Ong T and Rogero M. Nutrigenomics: importance of nutrient-gene interaction for health promotion. Available from https://scholar.google.com/scholar?url=https://scholar.google.com/scholar?hl=it&as_sdt=0%2C5&q=Ong+T+and+Rogero+M.+Nutrigenomics%3A+importance+of+nutrient-gene+interaction+for+health+promotion.+Journal+of+the+ABES+O%2C2009%3B340.&btnG=. Accessed on 01/07/2022.
[16] Wittenbecher C, Muhlenbruch K, Kroger J, Jacobs S, Kuxhaus O, Flosell A, Fritsche A, Pischon T, Prehn C, Adamski J, Joost
HG, Boeing H, Schulze MB. Amino acids, lipid metabolites, and ferritin as potential mediators linking red meat consumption to type 2 diabetes. Am J Clin Nutr 2015;101:1241-50. https://doi.org/10.3945/ajcn.114.099150

[29] Toro-Martín D, Asensault BJ, Després J-P, Vohl M-C. Precision nutrition: a review of personalized nutritional approaches for the prevention and management of metabolic syndrome. Nutrients 2017;9:913. https://doi.org/10.3945/ajcn.114.099150

[30] Wang DD and Hu FB. Precision nutrition for prevention and management of type 2 diabetes. Lancet Diabetes Endocrinol 2018;6:416-26. https://doi.org/10.1016/S2213-8587(18)30037-8

[31] Ramos-Lopez O, Panduro A, Martinez-Lopez E, Roman S. Sweet taste receptor TAS1R2 polymorphism (Val191Val) is associated with a higher carbohydrate intake and hypertretti-glyceridemia among the population of West Mexico. Nutrients 2016;8:101. https://doi.org/10.3390/nu8020101

[32] Lopez-Ramos O, Panduro A, Martinez-Lopez E. Genetic variant in the CD36 gene (rs1761667) is associated with higher fat intake and high serum cholesterol among the population of West Mexico. J Nutr Food Sci 2005;5:1-5. https://doi.org/10.4172/2157-9600.1000353

[33] Jiang-Hua Q, De-Chuang J, Zhen-Duo L, Shu-de C, Zhenzhen Wang DD and Hu FB. Precision nutrition for prevention and management of type 2 diabetes. Lancet Diabetes Endocrinol 2018;6:416-26. https://doi.org/10.1016/S2213-8587(18)30037-8

[34] Grimaldi KA, van Ommen B, Ordovas JM, Parnell LD, Mathers CJ, Bendik I, Brennan L, Celis-Morales C, Cirillo E, Daniel H. Proposed guidelines to evaluate scientific validity and evidence for genotype-based dietary advice. Genes Nutr 2017;12:1-12. https://doi.org/10.1186/s12263-017-0584-0

[35] Rao AD, Sun B, Saxena A, Hopkins PN, Jeunemaitre X, Brown NJ, Adler GK, Williams JS. Polymorphisms in the serum-and glucocorticoid-inducible kinase 1 gene are associated with blood pressure and renin response to dietary salt intake. J Hum Hypertens 2013;27:176-80. https://doi.org/10.1038/jhh.2012.22

[36] Ferguson LR. Nutrigenomics approaches to functional foods. J Am Diet Assoc 2009;109:452-8. https://doi.org/10.1016/j.jada.2008.11.024

[37] Trujillo E, Davis C, Milner J. Nutrigenomics, proteomics, metabolomics, and the practice of dietetics. J Am Diet Assoc 2006;106:403-13. https://doi.org/10.1016/j.jada.2005.12.002

[38] Ferguson LR, De Caterina R, Gorman U, Allayee H, Kohnmier M, Prasad C, Choi MS, Curi R, De Luis DA, Gil Á. Guide and position of the international society of nutrigenetics/nutrigenomics on personalised nutrition: part 1-fields of precision nutrition. J Nutrigenet Nutrigenomics 2016;9:12-27. https://doi.org/10.1159/000445350

[39] Ranzquin C, Martí A, Martínez JA. Evidences on three relevant obesogenes: MC4R, FTO and PPARγ. Approaches for personalized nutrition. Mol Nutr Food Res 2011;55:136-49. https://doi.org/10.1002/mnfr.201000445

[40] Huang D, Xie X, Ma Yt, Huang Y, Ma X. Endothelial lipase-384A/C polymorphism is associated with acute coronary syndrome and lipid status in elderly Uygur patients in Xinjiang. Genet Test Mol Biomarkers 2014;18:781-4. https://doi.org/10.1089/gtmb.2014.0195

[41] Shamas MA, Telomers, lifestyle, cancer, and aging. Curr Opin Clin Nutr Metab Care 2011;14:28-32. https://doi.org/10.1097/MCP.0b013e3283412b1i

[42] Cornelis MC, El-Sohemy A, Kabagambe EK, Campos H. Coffee, CYP1A2 genotype, and risk of myocardial infarction. JAMA 2006;295:1135-41. https://doi.org/10.1001/jama.295.10.1135

[43] Corella D, Peloso G, Arnett DK, Demissie S, Cupples LA, Tuck- er K, Lai C-Q, Parnell LD, Coltelt O, Lee Y-C. APOA2, dietary fat, and body mass index: replication of a gene-diet interaction in 3 independent populations. Arch Intern Med 2009;169:1897-906. https://doi.org/10.1001/archinternmed.2009.343

[44] Slater NA, Rager ML, Havrda DE, Harrallson AF. Genetic variation in CYP2R1 and GC genes associated with vitamin D deficiency status. J Pharm Pract 2017;30:31-6. https://doi.org/10.1177/1099141417699980

[45] Zhang Z, Delgado-Casado N, Delgado-Lista J, Perez-Martinez P, Gar- cea-Rios A, Caballero J, Marin C, Gutierrez-Mariscal FM. Glycogen synthase polymorphisms with breast cancer risk and interaction with folate, vitamin B 6, and vitamin B 12 intakes. Tumour Biol 2014;35:11895-901. https://doi.org/10.1007/s13277-014-2456-1

[46] Barré EL, Rees JR, Peacock IL, Mott LA, Amos CI, Bostick RM, Figueiredo JC, Ahnjen DH, Bresalier RS, Burke CA. Genetic variants in CYP2R1, CYP24A1, and VDR modify the efficacy of vitamin D3 supplementation for increasing serum 25-hydroxyvi- tamin D levels in a randomized controlled trial. J Clin Endocrinol Metab 2014;99:E2133-7. https://doi.org/10.1210/jc.2014-1388

[47] Arkadianos I, Valdes AM, Marios E, Florou A, Gill RD, Grimaldi KA. Improved weight management using genet- ic information to personalize a calorie controlled diet. Nutr J 2007;6:1-8. https://doi.org/10.1186/1475-2819-6-29

[48] Pellat AJ, Slattery ML, Mullan LE, Wolff RK, Pellat DF. Diet- ary intake alters gene expression in colon tissue: possible under- lying mechanism for the influence of diet on disease. Pharcmacogenet Genomics. 2016;26:294. https://doi.org/10.1097/ FPC.0000000000000217

[49] Tryndyk V, de Conti A, Kobets T, Kutanzi K, Koturbash I, Tryndyak V, de Conti A, Kobets T, Kutanzi K, Koturbash I, Pasinetti Genet and ferritin as potential mediators linking red meat consumption to type 2 diabetes. Am J Clin Nutr 2015;101:1241-50. https://doi.org/10.3945/ajcn.114.099150

[50] Filipovska K, Manara E, Bonetti G, Stuppia L, Paolacci S, Dautaj A, Bertelli M. Genetics of fat deposition. Eur Rev Med Pharmacol Sci 2019;23:1751-61. https://doi.org/10.26355/eurrev_201902_17137

[51] Slater NA, Rager ML, Havrda DE, Harrallson AF. Genetic variation in CYP2R1 and GC genes associated with vitamin D deficiency status. J Pharm Pract 2017;30:31-6. https://doi.org/10.1177/1099141417699980

[52] Hill DE, Kline N, Adler GK, Williams JS. Polymorphisms in the serum-and ferritin as potential mediators linking red meat consumption to type 2 diabetes. Am J Clin Nutr 2015;101:1241-50. https://doi.org/10.3945/ajcn.114.099150

[53] Corella D, Peloso G, Arnett DK, Demissie S, Cupples LA, Tuck- er K, Lai C-Q, Parnell LD, Collett O, Lee Y-C. APOA2, dietary fat, and body mass index: replication of a gene-diet interaction in 3 independent populations. Arch Intern Med 2009;169:1897-906. https://doi.org/10.1001/archinternmed.2009.343

[54] Slater NA, Rager ML, Havrda DE, Harrallson AF. Genetic variation in CYP2R1 and GC genes associated with vitamin D deficiency status. J Pharm Pract 2017;30:31-6. https://doi.org/10.1177/1099141417699980
strategies: energy-restricted diet or bariatric surgery. Obes Surg 2016;26:603-11. https://doi.org/10.1007/s11695-015-1802-8

[85] Gracia A, Elcoroaristizabal X, Fernández-Quintela A, Miranda J, Bediaga NG, de Pancorbo MM, Rimando AM, Portillo MP. Fatty acid synthase methylation levels in adipose tissue: effects of an obese diet and phenol compounds. Genes Nutr 2014;9:411. https://doi.org/10.1007/s12263-014-0411-9

[86] Peng W, Huang R, Xiong Y-L, Chao W. Protective effects of curcumin against liver fibrosis through modulating DNA methylation. Chin J Nat Med 2016;14:255-64. https://doi.org/10.1007/S1875-5364(16)00025-5

[87] Liu B, Qian S-B. Translational regulation in nutrigenomics. Adv Nutr 2011;2:511-9. https://doi.org/10.3945/an.111.001057

[88] Daimiel L, Vargas T, Ramirez de Molina A. Nutritional genomics for the characterization of the effect of bioactive molecules in lipid metabolism and related pathways. Electrophoresis 2012;33:2266-89. https://doi.org/10.1002/elsp.201200084

[89] Costa N, Rosa C. Functional foods: bioactive components and physiological effects. 1 Reprint. Rio, Rio de Janeiro 2011. Available from https://scholar.google.com/scholar?hl=ta&as_sdt=0,5&q=Costa+N+and+Rosa+C.+Functional+foods%3A+bioactive+components+and+physiological+effects.&btnG= Accessed on: 01/07/2022.

[90] Ronteltap A, Van Trij P, Renes R. Consumer acceptance of nutrigenomics-based personalised nutrition. Br J Nutr 2008;101:132-44. https://doi.org/10.1017/S0007114508992552

[91] Tebani A, Bekri S. Paving the Way to Precision Nutrition Through Metabolomics. Front Nutr 2019;6:51. https://doi.org/10.3389/fnut.2019.00041

[92] Norheim F, Gjelstad IM, Hjorth M, Vinknes KJ, Langleite TM, Ronteltap A, Van Trijp J, Renes R. Consumer acceptance of West Mexico dietary fats differentially change the gene expression of neuropeptides involved in body weight regulation in rats. Neuroendocrinology 2007;19:364-73. https://doi.org/10.1111/j.1365-2826.2007.01541.x

[93] Cao F, Liu T, Xu Y, Xu D, Feng S. Curcumin inhibits cell proliferation and promotes apoptosis in human osteosarcoma cell through MMP-9, NF-κB and JNK signaling pathways. Int J Clin Exp Pathol 2015;8:6307.

[94] Drabsch T, Holzapfel A. A scientific perspective of personalised gene-based dietary recommendations for weight management. Nutrients 2019;11:617. https://doi.org/10.3390/nu1030167

[95] Grimaldi KA, van Ommen B, Orordova JM, Parnell LD, Mathers JC, Bendik I, Brennan L, Celis-Morales C, Cirillo E, Daniel H. Proposed guidelines to evaluate scientific validity and evidence for genotype-based dietary advice. Genes Nutr 2017;12:1-12. https://doi.org/10.1186/s12263-017-0584-0

[96] Rao AD, Sun B, Saxena A, Hopkins PN, Jeunemaitre X, Brown HG, Boeing H, Schulze MB. Amino acids, lipid metabolites, and ferritin as potential mediators linking red meat consumption to type 2 diabetes. Nutrients 2017;9:913. https://doi.org/10.3390/nu9030913

[97] Ferguson LR, De Caterina R, Görman U, Allayee H, Kohlmeier M, Prasad C, Choi MS, Curi R, De Luis DA, Gil A. Guide for health promotion through Metabolomics and the practice of dietetics. J Am Diet Assoc 2009;109:452-8. https://doi.org/10.1016/j.jada.2005.12.002

[98] Druga-Holz-Holzapfel C. Telomeres, lifestyle, cancer, and aging. Curr Med Res Opin 2012;33:2266-89. https://doi.org/10.1002/elsp.201200084

[99] Arkadianos I, Valdes AM, Marinos E, Florou A, Gill RD, Rúbio, Rio de Janeiro 2011.

[100] Diamil L, Vargas T, Ramirez de Molina A. Nutritional genomics for the characterization of the effect of bioactive molecules in lipid metabolism and related pathways. Electrophoresis 2012;33:2266-89. https://doi.org/10.1002/elsp.201200084

[101] Shammas MA. Endothelial lipase-384A/C polymorphism is associated with acute coronary syndromes and lipid status in elderly Uygur patients in Xinjiang. Chin J Nat Med 2016;14:255-64. https://doi.org/10.1007/s11357-011-9331-4

[102] Tryndyak V, de Conti A, Kobets T, Kutanzi K, Koturbash I, Han T, Fuscoe JC, Lastordresse J, Melnyk S, Shmyonov S. Interstrain differences in the severity of liver injury induced by a choline-and folate-deficient diet in mice are associated with dysregulation of genes involved in lipid metabolism. FASEB J 2012;26:4592-602. https://doi.org/10.1096/fj.12-209569

[103] Drabsch T, Holzapfel A. A scientific perspective of personalised gene-based dietary recommendations for weight management. Nutrients 2019;11:617. https://doi.org/10.3390/nu1030167

[104] Trujillo E, Davis C, Milner J. Nutrigenomics, proteomics, metabolomics, and position of the international society of nutrigenetics/nutrition. J Nutr Food Sci 2017;6:1-8. https://doi.org/10.1186/s12263-017-0584-0

[105] Ferguson LR, De Caterina R, Görman U, Allayee H, Kohlmeier M, Prasad C, Choi MS, Curi R, De Luis DA, Gil A. Guide for health promotion through Metabolomics and the practice of dietetics. J Am Diet Assoc 2009;109:452-8. https://doi.org/10.1016/j.jada.2008.11.024

[106] Trujillo E, Davis C, Milner J. Nutrigenomics, proteomics, metabolomics, and the practice of dietetics. J Am Diet Assoc 2006;106:403-13. https://doi.org/10.1016/j.jada.2005.12.002

[107] Drabsch T, Holzapfel A. A scientific perspective of personalised gene-based dietary recommendations for weight management. Nutrients 2019;11:617. https://doi.org/10.3390/nu1030167
POLYMORPHISMS, DIET AND NUTRIGENOMICS

Claussnitzer M, Dankel SN, Kim K-H, Quon G, Meuleman W, Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy LE, Ménard D, Delvin E, Stan S, Mitchell G, Lambert M, De Caterina R, El-Sohemy A. Moving towards specific nutrigenomics: https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

This is an open access article distributed in accordance with the CC-BY-NC-ND (Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International) license. Copyright by Pacini Editore Srl, Pisa, Italy