CROSS-SECTION ASYMMETRIES AROUND THE Z PEAK

T. Riemann

Theory Division, CERN, CH-1211 Geneva, Switzerland
and
DESY – Institut für Hochenergiephysik, O-1615 Zeuthen, Germany

Abstract

A simple model-independent formula for cross-section asymmetries A in fermion-pair production is derived, which may be used for the analysis of LEP 1 data,

$$A = \sum_n A_n (s - M_Z^2)^n.$$

The coefficient A_0 depends on the Z boson exchange, A_1 additionally on the γZ interference, while the higher-order contributions are practically redundant. QED corrections are taken into account, and relations to other approaches are indicated.
1 Introduction

For fermion-pair production at LEP 1 energies,
\[e^+e^- \to (\gamma, Z) \to f^+f^- (\gamma), \] (1)

experimentalists may present their cross-section asymmetries in a rather simple way:
\[A(s) = A_0 + A_1 \left(\frac{s}{M_Z^2} - 1 \right) + A_2 \left(\frac{s}{M_Z^2} - 1 \right)^2 + \ldots \] (2)

Instead of \(s \), one can also use the centre-of-mass energy as a variable: \(\left(\frac{s}{M_Z^2} - 1 \right) = \left(\sqrt{s}/M_Z + 1 \right) \left(\sqrt{s}/M_Z - 1 \right) \sim 2(\sqrt{s}/M_Z - 1) \). Depending on the accuracy of the data, higher-order terms in the expansion may be neglected. Within \(\sqrt{s} = M_Z \pm \Gamma_Z \), the \(|(s/M_Z^2 - 1)| \) is less than 0.05, and coefficients beyond \(A_2 \) will hardly be within reach. With the data of the 1990 running period, for the \(\tau \)-polarization \(A_{pol} \), only the peak value \(A_0 \) has been determined, and the forward–backward asymmetry \(A_{FB} \) is known to be an almost linear function of \(s \). The LEP 1 data of 1992 will be much more precise and it seems to be reasonable to analyse the shapes of the cross-section asymmetries, and not only the peak values.

In this letter, it will be proved that (2) is a unique, model-independent ansatz for cross-section asymmetries around the \(Z \) peak. The coefficients \(A_n \) contain the complete physical information without approximations. Allowing for a smooth (and calculable) dependence of the \(A_n \) on \(s \), the complete QED corrections may be included in the ansatz (2). We derive (2) in two steps, first neglecting the photonic corrections.

2 Model-independent approach to asymmetries

A cross section may be parametrized in a unique way:
\[\sigma(s) = \frac{4}{3} \pi \alpha^2 \left[\frac{r_\gamma}{s} + \frac{sR + (s - M_Z^2)J}{(s - M_Z^2)^2 + M_Z^2 \Gamma_Z^2} + \sum_n \frac{r_n}{M_Z^2} \left(\frac{s}{M_Z^2} - 1 \right)^n \right]. \] (3)

For the total cross section \(\sigma_T \), a formula like (3) has been extracted from the Standard Model in [1]. In [2], this formula has been derived for \(\sigma_T \), but also for left–right \((\sigma_{pol}, \sigma_{LR}) \) and forward–backward \((\sigma_{FB}) \) cross-section differences from an ansatz for the scattering matrix. The definitions of mass and width are also discussed there. At LEP 1, the corresponding asymmetries are:
\[A_{FB} = \frac{\sigma_{FB}}{\sigma_T}, \quad A_{pol} = \frac{\sigma_{pol}}{\sigma_T}. \] (4)

The four independent matrix elements \(\mathcal{M}_i \) for the scattering of helicity states,
\[\mathcal{M}_i(s) = \frac{R_\gamma}{s} + \frac{R_{Z}^i}{s - s_Z} + \sum_n F_i^{(n)}(s_Z)(s - s_Z)^n, \] (5)
with \(s_Z = M_Z^2 - i M_Z \Gamma_Z \), are used to derive the cross sections. The \(R_{\gamma}, R_Z \), and \(F_i^{(n)} \) are complex constants, which characterize the scattering process. They compose the parameters \(r_{\gamma}, R, J, r_n \) in \([3]\) in \(\sigma_T, \sigma_{pol}, \sigma_{FB} \) \([2]\). For definiteness, we quote the quantum-mechanical interpretation of the coefficients:

\[
\begin{align*}
\kappa_T &= v_\gamma v_f, \\
\kappa_{FB} &= \frac{3}{2}\mu a_\gamma a_f, \\
\kappa_{pol} &= -v_\gamma a_\tau, \\
\kappa &= \frac{G_\mu M_Z^2}{\sqrt{2} 8\pi \alpha} = 0.3724 \left(\frac{M_Z}{91} \right)^2.
\end{align*}
\]

The parameter \(R \) in \([3]\) is built out of the residua of the \(Z \) pole in the four helicity amplitudes, the \(J \) comes from the \(\gamma Z \) interference, and \(\alpha(s) \) is the running QED coupling constant, which we assume to be known.

Explicit expressions for the coefficients \(R \) and \(J \) in \(\sigma_T, \sigma_{FB}, \sigma_{LR} \) and \(\sigma_{pol} \) in terms of the Standard Model have been derived in \([3]\). The \(r_n \) are additional, non-resonating quantum corrections and yield negligible contributions.

From \([3]\) and \([4]\), one easily derives expressions for the coefficients \(A_n \) in \([2]\). The peak value of the asymmetry is (index \(A = FB, pol \)):

\[
A_0 = \frac{R_A + \gamma^2 r_0^A}{R_T + \gamma^2 (r_0^T + r_\gamma^T)} \sim \frac{R_A}{R_T + \gamma^2 r_\gamma^T} \sim \frac{R_A}{R_T},
\]

where it is taken into account that \(r_\gamma^A = 0 \). Then, non-resonating quantum corrections \(\gamma^2 r_0 \sim \frac{2}{7} \gamma^2 \sim 2 \times 10^{-6} \) are neglected, and finally also the pure photonic contribution \(r_\gamma^T \), which is multiplied with \(\gamma^2 = \Gamma^2_Z/M_Z^2 \sim 0.75 \times 10^{-3} \). For the coefficient \(A_1 \), again after safely neglecting the quantum corrections \(r_0, r_1 \), one gets:

\[
A_1 = \left[\frac{J_A}{R_A} - \frac{J_T}{R_T + \gamma^2 r_\gamma^T} + \frac{2\gamma^2 r_\gamma^T}{R_T + \gamma^2 r_\gamma^T} \right] A_0 \sim \left[\frac{J_A}{R_A} - \frac{J_T}{R_T} \right] A_0.
\]
The higher-order coefficients are defined by a recurrence relation. Neglecting again the \(r_n \) and terms of order \(\mathcal{O}(\gamma^2) \),

\[
A_n = -\left(2 + \frac{J_T}{R_T}\right) A_{n-1} + \left[(1 + \frac{J_A}{R_A}) \delta_{n,2} - \left(1 + \frac{J_T + r_T}{R_T}\right)\right] A_{n-2}.
\] (15)

Assuming for a moment that photonic corrections may be neglected, and that the asymmetry (2) may be interpreted in terms of vector- and axial-vector couplings, it is:

\[
A_{FB}^0 = 3 \frac{a_e v_e a_f v_f}{(a_e^2 + v_e^2)(a_f^2 + v_f^2)}, \quad A_{pol}^0 = -\frac{2a_\tau v_\tau}{a_\tau^2 + v_\tau^2}.
\] (16)

A notation is used with \(a_f = 1, v_f = 1 - 4|Q_f|\sin^2\theta_W \). Further,

\[
A_{FB}^1 \sim \frac{3}{2\kappa} |Q_e Q_f| a_e a_f \frac{(a_e^2 + v_e^2)(a_f^2 + v_f^2) - 4v_e^2 v_f^2}{(a_e^2 + v_e^2)^2(a_f^2 + v_f^2)^2},
\] (17)

\[
A_{pol}^1 \sim -\frac{2}{\kappa} |Q_e Q_\tau| \frac{v_\tau a_\tau (a_e^2 - v_e^2)}{(a_e^2 + v_e^2)(a_\tau^2 + v_\tau^2)}.\] (18)

The \(A_0 \) is completely determined by the residua of the \(Z \) resonance. It is not influenced by the \(\gamma Z \) interferences, while the \(A_1 \) gets its leading contributions just from them. With a rising accuracy of the data, the photonic contributions may not be neglected in the above definitions \[4\]. In \(A_1 \), there is an additional suppression due to the small factor \((s/M_Z^2 - 1)\). With ideal data, the interpretation of the asymmetry is straightforward. The \(M_Z, \Gamma_Z, R_T \) and \(J_T \) may be determined from an analysis of the \(Z \) line shape \[1\]. Then, \(A_0 \) allows the determination of \(R_A \), and afterwards the \(\gamma Z \) interference \(J_A \) may be derived from \(A_1 \). Instead of \(R_A \), we may determine the ratio \(R_A/R_T \), which allows us to determine other coupling combinations than may be obtained from a line-shape analysis, thus improving determinations of the effective weak mixing angle. The problems connected with a secondary interpretation of the model-independent findings will not be discussed here, although they are important and interesting.

Since the \(A_0 \) is independent of the \(\gamma Z \) interferences, it is stable against several phenomena. For the \(Z \) peak position \(s_p \), one may derive the relation \[3\]:

\[
\Delta \sqrt{s_p} = \Delta M_Z + \frac{1}{4} \gamma^2 M_Z \Delta \left(\frac{J_T}{R_T}\right) + \ldots
\] (19)

between an uncertainty in \(M_Z \) and an uncertainty in the \(\gamma Z \) interference. The latter influences \(A_1 \). Similarly, for a hypothetical heavy gauge boson \(Z' \), the

\[1\] A serious line-shape analysis has at least four free parameters. While \(M_Z \) and \(\Gamma_Z \) are universal, the \(R_T, J_T \) are different for the different channels.
effects from its virtual exchange transform after a partial fraction decomposition into simple shifts of the γZ interferences [5]:

$$
\Delta \left(\frac{J_T}{R_T} \right) = -2 \frac{g^2}{g^2 M_{Z'}^2 - M_Z^2} \frac{(a_e a_e' + v_e v_e')(a_f a_f' + v_f v_f')}{(a_e^2 + v_e^2)(a_f^2 + v_f^2)}, \tag{20}
$$

and analogously for the cross-section differences. Again, the A_1 will be influenced, while A_0 is sensitive exclusively to the ZZ' mixing effect. The r_T^{γ} in the definition of A_2 is of the order of one, thus not suppressed by neglecting γ. As mentioned above, the whole A_2 is suppressed at LEP 1 with a factor of $(s/M_Z^2 - 1)^2 \leq 0.3\%$ and it contains no new physical information with respect to $A_{0,1}$.

3 Inclusion of photonic corrections

In this section, the modifications from the photonic corrections are discussed. Neglecting the initial–final interference bremsstrahlung, the cross sections σ [eq. (3)] may be replaced by

$$
\bar{\sigma}(s) = \int dk \sigma(s') \rho(k), \tag{21}
$$

where $s' = (1-k)s$, and the radiator function $\rho(k)$ contains the QED corrections. An introduction to photonic corrections in the language of scattering amplitudes is given in [6]. A rather complete discussion of (21) may be found in [7, 8], and in the references therein. For the present purpose, after inserting (3) into (21), the cross section may be rewritten as follows:

$$
\bar{\sigma}(s) = \frac{4}{3} \pi \alpha^2 \left[\frac{\bar{r}_\gamma}{s} + \frac{s \bar{R} + (s - M_Z^2) \bar{J}}{(s - M_Z^2)^2 + M_Z^2 \Gamma_Z^2} + \sum_n \frac{\bar{r}_n}{M_Z^2} \left(\frac{s}{M_Z^2} - 1 \right)^n \right]. \tag{22}
$$

Any of the barred parameters differs from its unbarred partner by a correction factor $C(s)$:

$$
\bar{R} = C_R(s) R, \quad C_R(s) = \mathcal{I} \left[\frac{s' - M_Z^2}{s} \frac{(s - M_Z^2)^2 + M_Z^2 \Gamma_Z^2}{(s' - M_Z^2)^2 + M_Z^2 \Gamma_Z^2} \right], \tag{23}
$$

$$
\mathcal{I}[B] = \int dk B(s') \rho(k). \tag{24}
$$

The other correction factors are analogously defined:

$$
C_J(s) = \mathcal{I} \left[\frac{s' - M_Z^2}{s - M_Z^2} \frac{(s - M_Z^2)^2 + M_Z^2 \Gamma_Z^2}{(s' - M_Z^2)^2 + M_Z^2 \Gamma_Z^2} \right], \tag{25}
$$

$$
C_r(s) = \mathcal{I} \left[\frac{s}{s'} \right], \tag{26}
$$

$$
C_n(s) = \mathcal{I} \left[\frac{(s' - M_Z^2)^n}{(s - M_Z^2)^n} \right]. \tag{27}
$$

These very small corrections may be properly taken into account [2]. Then, the number of free parameters increases.
The reader may wonder that some of the corrections seem to be singular at \(\sqrt{s} = M_Z \). This is not the case for the products \(C_{J,n}(s - M_Z^2) \). As may be seen from the corresponding definitions, these remain small compared with e.g. \(A_0 \), when \(\sqrt{s} \) approaches \(M_Z \). At this energy, the asymmetry is defined as the (smooth) limit from the neighbouring energies. In a more elegant notation, but unnecessarily sophisticated for applications, one could rewrite the asymmetry as a series in powers of \((s - s_Z) \) as \(\bar{A}_n \), thus regularizing the \(C_{J,n} \). We remark that after inclusion of photonic corrections the parameters \(J \) and \(r_n \) may yield non-vanishing contributions at \(s = M_Z^2 \). This was not the case without the QED corrections, which smear out the effective energy.

The QED corrections are well-defined as soon as \(M_Z \) and \(\Gamma_Z \) are known. They are independent of the underlying dynamics of the scattering process. It is not difficult to collect explicit expressions for the \(C \) functions from the literature. They, of course, depend on the handling of the photonic phase space, the inclusion of higher orders, and on acceptance cuts. For example, the initial-state corrections in \(A_0 \) (with possible inclusion of soft photon exponentiation), with a cut on the energy of the emitted photon, are \(C_T^R = R_T(1,1), C_F^B = R_{FB}(1,1) \), where the \(R_{T,FB} \) are defined in eqs. (56)–(57) and (78) of \(\text{[8]} \). In the simplest case [initial state radiation to \(O(\alpha) \) without cuts], it is \(C_T^R = 1 + \frac{\alpha}{\pi} H_0^T, C_F^B = 1 + \frac{4}{3} \frac{\alpha}{\pi} H^T_3 \), with the \(H_{0,3} \) to be taken from \(\text{[9]} \).

Taking into account the QED corrections, the experimental data may be fitted with the ansatz

\[
\bar{A}(s) = \bar{A}_0 + \bar{A}_1 \left(\frac{s}{M_Z^2} - 1 \right) + \bar{A}_2 \left(\frac{s}{M_Z^2} - 1 \right)^2 + \ldots \tag{28}
\]

The \(\bar{A}_n \) may be obtained from the \(A_n \), replacing everywhere in the corresponding definitions the unbarrred variables by barred ones. For the leading contribution to the forward–backward asymmetry, the explicit expression is:

\[
\bar{A}_{F B}^0 = \frac{C_{F B}^R(s)}{C^T_R(s)} \frac{R_{F B}}{R_T + [C^T_T(s)/C^T_R(s)] \gamma^2 r_T^T} \sim 0.998 \frac{R_{F B}}{R_T + 0.001}. \tag{29}
\]

Note that the radiator function \(\rho_{FB}(k) \) in (24), which must be used for the calculation of \(\sigma_{FB} \), differs from the radiator \(\rho_T(k) \). The latter is used both for \(\sigma_T \) and \(\sigma_{pol} \), and the expression for \(A_{pol} \) simplifies correspondingly. The leading term is:

\[
\bar{A}_{pol}^0 = \frac{R_{pol}}{R_T + [C^T_T(s)/C^T_R(s)] \gamma^2 r_T^T} \sim \frac{R_{pol}}{R_T + 0.001}. \tag{30}
\]

Further, neglecting the strongly suppressed contributions to \(A_1 \) (index \(A = FB, pol \)):

\[
\bar{A}_1 = \frac{C^T_T(s)}{C^T_R(s)} \left[\frac{J_A}{R_A} - \frac{J_T}{R_T} \right] \bar{A}_0. \tag{31}
\]
The explicit numerical values in (29) and (30) may be taken from Table 1, which is calculated with the FORTRAN package ZFITTER \[8, 10, 11\].

\[
\sqrt{s} \quad M_Z - 2\Gamma_Z \quad M_Z - \Gamma_Z \quad M_Z - \frac{1}{2}\Gamma_Z \quad M_Z \quad M_Z + \frac{1}{2}\Gamma_Z \quad M_Z + \Gamma_Z \quad M_Z + 2\Gamma_Z \\
C_{FB}^T \quad 0.7784 \quad 0.7331 \quad 0.7078 \quad 0.7350 \quad 0.9367 \quad 1.2209 \quad 1.8120 \\
C_{FB}^T / C_{R}^T \quad 0.9977 \quad 0.9980 \quad 0.9982 \quad 0.9982 \quad 0.9981 \quad 0.9978 \quad 0.9964 \\
C_{T}^T / C_{R}^T \quad 1.7422 \quad 1.8565 \quad 1.9264 \quad 1.8582 \quad 1.4601 \quad 1.1215 \quad 1.7569 \\
C_{FB}^J / C_{FB}^T \quad 1.0881 \quad 1.1111 \quad 1.1592 \quad [-0.004] \quad 0.6176 \quad 0.5649 \quad 0.4384 \\
C_{T}^J / C_{R}^T \quad 1.0905 \quad 1.1130 \quad 1.1610 \quad [-0.004] \quad 0.6159 \quad 0.5631 \quad 0.4358 \\
\]

Table 1: QED corrections to the parameters of the model-independent asymmetry formulae; \(M_Z = 91.146 \) GeV, \(\Gamma_Z = 2.499 \) GeV.

For this purpose, one should use the branch which relies on the S-matrix ansatz \[12\]. The maximal acollinearity of the final-state fermions is assumed to be \(\xi = 15^\circ \), and the minimal energy of one of the fermions to be \(E_{\text{min}} = 20 \) GeV (standard cuts of ZFITTER with flag ZUCUTS=1). The photonic corrections to the asymmetries are remarkably stable against a variation of the cut conditions. Higher-order corrections with common exponentiation of initial- and final-state corrections are taken into account.

The photonic corrections to \(A_0 \) are nearly negligible. The reason is that the corrections \(C_T \) and \(C_{FB} \) differ only owing to hard-photon emission, which is strongly suppressed at the \(Z \) peak \[13\]. Explicit expressions for their ratio may be found in eqs. (81)–(86) of \[8\]. The photonic corrections to \(A_1 \) show a completely different behaviour. This is due to the ratio \(C_J(s)/C_R(s) \). In (31) we took into account that this ratio is nearly identical for \(\sigma_{FB} \) and \(\sigma_{T,pol} \). As has been discussed in \[8, 14\], there is an essential difference between the two corrections \(C_J(s) \) and \(C_R(s) \): while the pure \(Z \) exchange cross section (i.e. \(C_R \)) develops a radiative tail, the \(\gamma Z \) interference (i.e. \(C_J \)) does not. Consequently, their ratio is smooth and of order one below the resonance, while above it becomes considerably smaller since \(C_R(s) \) grows up. Mainly for this reason, the measured asymmetries are nearly linear functions of \(\sqrt{s} \) at \(\sqrt{s} < M_Z \), and become suppressed beyond the peak. In principle, the radiative tail may be avoided by a cut on the allowed energy of the emitted photons \[14\]:

\[
\frac{E_\gamma}{E_{\text{beam}}} < \Delta = 1 - \frac{M_Z^2}{s}.
\]
At LEP 1, where s is near to M_Z^2, this condition is rather restrictive; e.g. at $\sqrt{s} = M_Z + 2\Gamma_Z$, it is $\Delta = 0.1$. Thus, usually one presents data including radiative corrections (see e.g. figures 19a-c of [15]). In the present approach, the ratio C_J/C_R is the only QED correction, which is essentially energy dependent. As has been mentioned above, near $\sqrt{s} = M_Z$, one should better enumerate the smooth product $(s/M_Z^2 - 1)C_J/C_R$. This has been done in Table 1; see the numbers in square brackets there.

The higher-order coefficients A_n are composed out of the two first ones, and the same is true for their photonic corrections.

4 Discussion

From the model-independent Z line-shape formulae, we derived the corresponding expressions for the forward–backward asymmetry A_{FB} and the τ polarization A_{pol} at LEP 1 energies. The analytic expressions are valid for the leptonic and b-quark forward–backward asymmetries as well as for the τ polarization. The remarkably simple power series in $(s - M_Z^2)$ may cover in their coefficients the photonic corrections as complete as the line-shape formulae do. The asymmetries are defined by only two free parameters A_0 and A_1/A_0 or, alternatively, R_A, J_A ($A = FB, pol$). The latter ones are related to the ZZ and γZ contributions to the corresponding asymmetric cross-section combinations. In a subsequent step, one may determine effective couplings or radiatively corrected Standard Model parameters from the measured model-independent numbers. Additional, non-resonating quantum corrections may be neglected. The photonic corrections are defined such that they depend exclusively on s, M_Z, Γ_Z. The FORTRAN package ZFIT ER may be used for their calculation. For A_0 they are extremely small. The corrections to A_1 are dominated by the radiative tail.

From a combined analysis of the line shape and of asymmetries, one may try to determine the basic quantities of the S-matrix approach, i.e. the four complex residua of the Z-boson pole R^i_Z in (5). For a given channel, this deserves the measurement of four independent sets of parameters R, J. For lepton-pair production, the three energy-dependent quantities $\sigma_T, A_{FB}, A_{pol}$ have been determined experimentally. These are sufficient for at least the determination of the real parts of the leptonic R^i_Z. As long as there is no beam polarization available at LEP 1, one could try to measure as a fourth, independent leptonic observable the τ polarization in forward direction, λ^F_T, or the asymmetry λ^{FB}_T, as was proposed in [11, 16].
Acknowledgements

We have been motivated to work out the details of the present approach to asymmetries by discussions with G. Altarelli, L. Maiani, S. Kirsch and M. Pohl. Thanks to A. Leike and S. Kirsch for discussions and a careful reading of the manuscript.

References

[1] A. Borrelli, L. Maiani, M. Consoli and R. Sisto, *Nucl. Phys. B333* (1990) 357.

[2] A. Leike, T. Riemann and J. Rose, *Phys. Lett. B273* (1991) 513.

[3] B. Kniehl and R. G. Stuart, FORTRAN package Z0POLe, and preprint CERN–TH.6439/92 (March 1992).

[4] S. Ganguli, Tata Inst. preprint TIFR/EHEP 91-15 (1991).

[5] F. Jegerlehner, Physics of precision experiments with Zs, in: A. Faessler (ed.), *Prog. Part. Nucl. Phys.*, vol. 27, p. 1 (Pergamon Press, Oxford, U.K., 1991); A. Leike, S. Riemann and T. Riemann, CERN–TH. 6545/92 (1992).

[6] F. Berends, Electroweak Radiative Corrections for Z Physics, in: M. Levy et al. (eds.), *Z° Physics*, Proc. of a NATO Adv. Study Inst., Cargèse, 1990 (Plenum Press, New York, 1991), p. 307.

[7] G. Altarelli, R. Kleiss and C. Verzegnassi (eds.), *Z Physics at LEP 1* (CERN 89–08, Geneva, 1989) and references quoted the rein.

[8] D. Bardin et al., *Nucl. Phys. B351* (1991) 1.

[9] D. Bardin, O. Fedorenko and T. Riemann, JINR Dubna preprint E2-87-663 (1987).

[10] D. Bardin et al., *Phys. Lett. B255* (1991) 290.

[11] D. Bardin et al., FORTRAN package $\mathcal{Z}_{F}\mathcal{T}_{E_{R}}^{F}$, and preprint CERN–TH. 6443/92.

[12] T. Riemann, Extension of $\mathcal{Z}_{F}\mathcal{T}_{E_{R}}^{F}$ version 4.5 for forward–backward asymmetries in the S-matrix branch.

[13] D. Bardin et al., *Phys. Lett. B229* (1989) 405; T. Riemann and Z. Was, *Mod. Phys. Lett. A4* (1989) 2487.
[14] A. Leike and T. Riemann, Z. Phys. C51 (1991) 113.

[15] B. Adeva et al. (L3 Collab.), Z. Phys. C51 (1991) 179.

[16] T. Riemann and M. Sachwitz, in: Proc. Int. Topical Meeting on Physics of e+e− Interactions at LEP Energies, ed. D. Bardin (Dubna, 1987), p. 101; see also: Zeuthen preprint PHE 87-12 (1987).