The role of binaries in the enrichment of the early Galactic halo
II. Carbon-enhanced metal-poor stars: CEMP-no stars

Hansen, T. T.; Andersen, Johannes; Nordström, Birgitta; Beers, T. C.; Placco, V. M.; Yoon, J.; Buchhave, Lars A.

Published in:
Astronomy & Astrophysics

DOI:
10.1051/0004-6361/201527235

Publication date:
2016

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY

Citation for published version (APA):
Hansen, T. T., Andersen, J., Nordström, B., Beers, T. C., Placco, V. M., Yoon, J., & Buchhave, L. A. (2016). The role of binaries in the enrichment of the early Galactic halo: II. Carbon-enhanced metal-poor stars: CEMP-no stars. Astronomy & Astrophysics, 586, [A160]. https://doi.org/10.1051/0004-6361/201527235
The role of binaries in the enrichment of the early Galactic halo

II. Carbon-enhanced metal-poor stars – CEMP-no stars

(Corrigendum)

T. T. Hansen¹, J. Andersen², B. Nordström², T. C. Beers⁴, V. M. Placco⁴, J. Yoon⁴, and L. A. Buchhave⁵

¹ George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, and Department of Physics and Astronomy, Texas A&M University, College Station TX 77843, USA
e-mail: thansen@tamu.de
² Dawn Cosmology Centre, The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
e-mail: ja@nbi.ku.dk; birgitta@nbi.ku.dk
³ Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
⁴ Department of Physics and JINA Center for the Evolution of the Elements, University of Notre Dame, Notre Dame, IN 46556, USA
⁵ DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, 2800 Lyngby, Denmark

A&A, 586, A160 (2016), https://doi.org/10.1051/0004-6361/201527235

Key words. Galaxy: formation – Galaxy: halo – stars: chemically peculiar – binaries: spectroscopic – ISM: structure – errata, addenda

In Hansen et al. (2016) the RV mean for HE 0020−1741 listed in Table 2 in the printed article is given incorrectly. The correct value is 93.039 km s⁻¹, in agreement with the individual RV values for the star listed in Table A.1.