EXTENDED CESÁRO OPERATORS ON ZYGMUND SPACES IN THE UNIT BALL

ZHONG-SHAN FANG AND ZE-HUA ZHOU∗

ABSTRACT. Let \(g \) be a holomorphic function of the unit ball \(B \) in the \(n \)-dimensional space, and denote by \(T_g \) and \(I_g \) the induced extended Cesáro operator and another integral operator. The boundedness and compactness of \(T_g \) and \(I_g \) acting on the Zygmund spaces in the unit ball are discussed and necessary and sufficient conditions are given in this paper.

1. Introduction

Let \(f(z) \) be a holomorphic function on the unit disc \(D \) with Taylor expansion
\[
f(z) = \sum_{j=0}^{\infty} a_j z^j,
\]
the classical Cesáro operator acting on \(f \) is
\[
C[f](z) = \sum_{j=0}^{\infty} \left(\frac{1}{j+1} \sum_{k=0}^{j} a_k \right) z^j.
\]

In the past few years, many authors focused on the boundedness and compactness of extended Cesáro operator between several spaces of holomorphic functions. It is well known that the operator \(C \) is bounded on the usual Hardy spaces \(H^p(D) \) for \(0 < p < \infty \) and Bergman space, we recommend the interested readers refer to [10, 12, 8, 2, 13]. But the operator \(C \) is not always bounded, in [15], Shi and Ren gave a sufficient and necessary condition for the operator \(C \) to be bounded on mixed norm spaces in the unit disc. Recently, Siskakis and Zhao in [14] obtained sufficient and necessary conditions for Volterra type operator, which is a generalization of \(C \), to be bounded or compact between \(BMOA \) spaces in the unit disc. It is a natural question to ask what are the conditions for higher dimensional case.

Let \(dv \) be the Lebesgue measure on the unit ball \(B \) of \(\mathbb{C}^n \) normalized so that \(v(B) = 1 \), and \(dv_\beta = c_\beta (1 - |z|^2)^\beta dv \), where \(c_\beta \) is a normalizing constant so that \(dv_\beta \) is a probability measure. The class of all holomorphic functions on \(B \) is defined by \(H(B) \). For \(f \in H(B) \) we write
\[
Rf(z) = \sum_{j=1}^{n} z_j \frac{\partial f}{\partial z_j}(z).
\]

2000 Mathematics Subject Classification. Primary: 47B38; Secondary: 46E15, 32A37.

Key words and phrases. Zygmund space; Extended Cesáro Operators; boundedness; compactness.

∗Ze-Hua Zhou, Corresponding author. Supported in part by the National Natural Science Foundation of China (Grant Nos.10671141, 10371091).
A little calculation shows $C[f](z) = \frac{1}{z} \int_0^z f(t)(\log \frac{1}{1-t})' dt$. From this point of view, if $g \in H(B)$, it is natural to consider the extended Cesàro operator (also called Volterra-type operator or Riemann-Stieltjes type operator) T_g on $H(B)$ defined by

$$T_g(f)(z) = \int_0^1 f(tz) Rg(tz) \frac{dt}{t}.$$

It is easy to show that T_g take $H(B)$ into itself. In general, there is no easy way to determine when an extended Cesàro operator is bounded or compact.

Motivated by [15], Hu and Zhang [6, 7, 17] gave some sufficient and necessary conditions for the extended C to be bounded and compact on mixed norm spaces, Bloch space as well as Dirichlet space in the unit ball.

Another natural integral operator is defined as follows:

$$I_g(f)(z) = \int_0^1 Rf(tz) g(tz) \frac{dt}{t}.$$

The importance of them comes from the fact that

$$T_g(f) + I_g(f) = M_g f - f(0) g(0)$$

where the multiplication operator is defined by

$$M_g(f)(z) = g(z) f(z), f \in H(B), z \in B.$$

Now we introduce some spaces first. Let H^∞ denote the space of all bounded holomorphic functions on the unit ball, equipped with the norm $\|f\|_\infty = \sup_{z \in B} |f(z)|$.

The Bloch space B is defined as the space of holomorphic functions such that

$$\|f\|_B = \sup \{(1 - |z|^2)|Rf(z)| : z \in B\} < \infty.$$

It is easy to check that if $f \in B$ then

$$|f(z)| \leq C \log \frac{2}{1 - |z|^2} \|f\|_B.$$

We define weighted Bloch space B_{log} as the space of holomorphic functions $f \in H(B)$ such that

$$\|f\|_{B_{log}} = \sup \{(1 - |z|^2)|Rf(z)| \log \frac{2}{1 - |z|^2} : z \in B\} < \infty.$$

The Zygmund space Z [18] in the unit ball consists of those functions whose first order partial derivatives are in the Bloch space.

It is well known that (Theorem 7.11 in [18]) $f \in Z$ if and only if $Rf \in B$, and Z is a Banach space with the norm

$$\|f\| = |f(0)| + \|Rf\|_B.$$

The purpose of this paper is to discuss the boundedness and compactness of extended Cesàro operator T_g and another integral operator I_g on the Zygmund space in the unit ball.
In the following, we will use the symbol C to denote a finite positive number which does not depend on variable z and f.

In order to prove the main results, we will give some Lemmas first.

Lemma 1. Assume $f \in Z$, then we have

$$||f||_{\infty} \leq C||f||$$

Proof. Since $f \in Z$ implies that $Rf \in B$, it follows from (2) that

$$|f(z)| \leq C \log \frac{2}{1 - |z|^2} ||Rf||_B \leq C \log \frac{2}{1 - |z|^2} ||f||.$$

Furthermore by $\lim_{|z| \to 1} (1 - |z|^2) \log \frac{2}{1 - |z|^2} = 0$ we have

$$|Rf(z)| \leq C (1 - |z|^2) \log \frac{2}{1 - |z|^2} ||f|| < \infty,$$

so $f \in B$. It follows from Theorem 2.2 in [18] that

$$Rf(z) = \int_B \frac{Rf(w) dv_\beta(w)}{(1 - z, w)^{n+1+\beta}}$$

where β is a sufficiently large positive constant. Since $Rf(0) = 0$,

$$f(z) - f(0) = \int_0^1 \frac{Rf(tz)}{t} dt = \int_B Rf(w) L(z, w) dv_\beta(w)$$

where the kernel

$$L(z, w) = \int_0^1 \frac{1}{(1 - t < z, w >)^{n+1+\beta}} - 1 \frac{dt}{t}$$

satisfies

$$|L(z, w)| \leq \frac{C}{|1 - z, w |^{n+\beta}}$$

for all z and w in B. Note that $t^{1/2} \log \frac{2}{t} \leq \frac{2}{1 - \log 2}$ for all $t \in (0, 1]$, then

$$|f(z) - f(0)| = C \int_B \frac{(1 - |w|^2) |Rf(w)| dv_{\beta-1}(w)}{|1 - z, w |^{n+\beta}}$$

$$\leq C \int_B \frac{(1 - |w|^2) \log \frac{2}{1 - |w|^2} ||f|| dv_{\beta-1}(w)}{|1 - z, w |^{n+\beta}}$$

$$\leq C \int_B \frac{(1 - |w|^2)^{1 - 1/2} ||f|| dv_{\beta-1}(w)}{|1 - z, w |^{n+\beta}}$$

$$\leq C||f||.$$

The last inequality holds since $\int_B \frac{(1 - |w|^2)^t dv(w)}{|1 - z, w |^{n+1+\beta}}$ is bounded for $c < 0$. This completes the proof of Lemma 1.

By Lemma 1, Montel theorem and the definition of compact operator, the following lemma follows.
Lemma 2. Assume that \(g \in H(B) \). Then \(T_g \) (or \(I_g \) : \(\mathbb{Z} \rightarrow \mathbb{Z} \) is compact if and only if \(T_g \) (or \(I_g \)) is bounded and for any bounded sequence \((f_k)_{k \in \mathbb{N}} \) in \(\mathbb{Z} \) which converges to zero uniformly on \(\mathbb{B} \) as \(k \to \infty \), \(||T_g f_k|| \to 0 \) (or \(||I_g f_k|| \to 0 \)) as \(k \to \infty \).

Lemma 3. If \((f_k)_{k \in \mathbb{N}} \) is a bounded sequence in \(\mathbb{Z} \) which converges to zero uniformly on compact subsets of \(B \) as \(k \to \infty \), then \(\limsup_{k \to \infty, z \in B} |f_k(z)| = 0 \).

Proof. Assume \(||f_k|| \leq M \). For any given \(\epsilon > 0 \), there exists \(0 < \eta < 1 \) such that \(\frac{\sqrt{1-\eta}}{\eta} < \epsilon \). Note that \(t^{1/2} \log \frac{2}{t} \leq \frac{2}{e} \) (1-log 2) for all \(t \in (0,1] \), then when \(\eta < |z| < 1 \), it follows from (3) that

\[
|f_k(z) - f_k(\frac{\eta}{|z|}z)| = \left| \int_{\frac{\eta}{|z|}}^1 Rf_k(tz) \frac{dt}{t} \right| \leq C \int_{\frac{\eta}{|z|}}^1 \log \left(1 - \frac{\eta^2}{|z|^2} \right) \frac{||f_k||}{t} \frac{dt}{t} \leq C \frac{|z|}{\eta} \int_{\frac{\eta}{|z|}}^1 \frac{||f_k||}{(1 - |tz|^2)^{1/2}} \frac{dt}{t} \leq CM \frac{(1-\eta)^{1/2}}{\eta} \leq C\epsilon.
\]

So we get \(\sup_{\eta < |z| < 1} |f_k(z)| \leq C\epsilon + \sup_{|w|=\eta} |f_k(w)| \). Thus, we have

\[
\limsup_{k \to \infty, z \in B} |f_k(z)| \leq \lim \left(\sup_{|z| \leq \eta} |f_k(z)| + \sup_{\eta < |z| < 1} |f_k(z)| \right) \leq C\epsilon.
\]

Now we finish the proof of this lemma.

Lemma 4. Let \(g \in H(B) \), then

\[
R[T_g f](z) = f(z) Rg(z)
\]

for any \(f \in H(B) \) and \(z \in B \).

Proof. Suppose the holomorphic function \(fRg \) has the Taylor expansion

\[
(fRg)(z) = \sum_{|\alpha| \geq 1} a_\alpha z^\alpha.
\]

Then we have

\[
R(T_g f)(z) = R \int_0^1 f(tz) R(tz) \frac{dt}{t} = R \int_0^1 \sum_{|\alpha| \geq 1} a_\alpha (tz)^\alpha \frac{dt}{t}
\]

\[
= R \left[\sum_{|\alpha| \geq 1} a_\alpha z^\alpha \right] = \sum_{|\alpha| \geq 1} a_\alpha z^\alpha = (fRg)(z).
\]

3. Main Theorems

Theorem 1. Suppose \(g \in H(B) \), then the following conditions are all equivalent:

(a) \(T_g \) is bounded on \(\mathbb{Z} \);
(b) \(T_g \) is compact on \(\mathbb{Z} \);
(c) \(g \in \mathcal{Z} \).

Proof. \(b \implies a \) is obvious. For \(a \implies c \) we just take the test function given by \(f(z) \equiv 1 \).

We are going to prove \(c \implies b \). Now assume that \(g \in \mathcal{Z} \) and that \((f_k)_{k \in \mathbb{N}}\) is a sequence in \(\mathcal{Z} \) such that \(\sup_{k \in \mathbb{N}} ||f_k|| \leq M \) and that \(f_k \to 0 \) uniformly on \(\overline{B} \) as \(k \to \infty \). Now note that \(T_0g_k(0) = 0 \) and for every \(\epsilon > 0 \), there is a \(\delta \in (0, 1) \), such that

\[
(1 - |z|^2)(\ln \frac{2}{1 - |z|^2})^2 < \epsilon
\]

whenever \(\delta < |z| < 1 \). Let \(K = \{ z \in B : |z| \leq \delta \} \), it follows from Lemma 4 and (4) that

\[
||T_gf_k|| = \sup_{z \in B} (1 - |z|^2)|R(R(T_gf_k))|
\]

\[
= \sup_{z \in B} (1 - |z|^2)|Rf_k \cdot Rg + f_k \cdot R(Rg)|
\]

\[
\leq \sup_{z \in B} (1 - |z|^2)(|Rf_k \cdot Rg| + |f_k \cdot R(Rg)|)
\]

\[
\leq \sup_{z \in K} (1 - |z|^2)|Rf_k \cdot Rg| + \sup_{z \in B^c - K} (1 - |z|^2)(|Rf_k \cdot Rg|)
\]

\[
+ \sup_{z \in B}(1 - |z|^2)|f_k \cdot R(Rg)|
\]

\[
\leq C||g|| \sup_{z \in K} (1 - |z|^2)|Rf_k(z)||\log \frac{2}{1 - |z|^2}
\]

\[
+ C||f_k|| \cdot ||g|| \sup_{z \in B^c - K} (1 - |z|^2)(\log \frac{2}{1 - |z|^2})^2 + ||g|| \cdot \sup_{z \in B} |f_k(z)|.
\]

With the uniform convergence of \(f_k \) to 0 and the Cauchy estimate, the conclusion follows by letting \(k \to \infty \).

Theorem 2. Suppose \(g \in H(B) \), \(I_g : \mathcal{Z} \to \mathcal{Z} \). Then \(I_g \) is bounded if and only if \(g \in H^\infty \cap \mathcal{B}_{\log} \).

Proof. First we assume that \(g \in H^\infty \cap \mathcal{B}_{\log} \). Notice that \(I_gf(0) = 0 \) and \(R(I_gf) = fRg \), it follows from (4) that

\[
(1 - |z|^2)||RR(I_gf)(z)|| = (1 - |z|^2)||R(Rf(z) \cdot g(z))||
\]

\[
= (1 - |z|^2)||R(Rf(z)) \cdot g(z) + Rf(z) \cdot Rg(z)||
\]

\[
\leq ||Rf(z)||_B ||g||_\infty + |Rf(z)|(1 - |z|^2)||Rg(z)||
\]

\[
\leq C||f|| \cdot ||g||_\infty + C||f|| \cdot Rg(z)||\log \frac{2}{1 - |z|^2}
\]

\[
\leq C||f|| \cdot ||g||_\infty + C||f|| \cdot ||g||_{\mathcal{B}_{\log}}.
\]

The boundedness of \(I_g \) follows.

Conversely, assume that \(I_g \) is bounded, then there is a positive constant \(C \) such that

\[
||I_gf|| \leq C||f||
\]
for every \(f \in \mathcal{Z} \). Setting
\[
h_a(z) = (\log \frac{2}{1 - |a|^2})^{-1}(< z, a > - 1)[(1 + \log \frac{2}{1 - < z, a >})^2 + 1]
\]
for \(a \in B \) such that \(|a| \geq \sqrt{1 - 2/e} \), then
\[
Rh_a(z) = < z, a > (\log \frac{2}{1 - < z, a >})^2(\log \frac{2}{1 - |a|^2})^{-1}
\]
and
\[
RRh_a(z) = \{ < z, a > (\log \frac{2}{1 - < z, a >})^2 + 2 < z, a >^2 \log \frac{2}{1 - < z, a >} \} (\log \frac{2}{1 - |a|^2})^{-1}
\]
It is easy to check that \(M = \sup_{\sqrt{1 - 2/e} \leq |a| < 1} ||h_a|| < \infty \). Therefore, we have that
\[
\infty > \|I_g\| ||h_a|| \geq ||I_g h_a|| \geq \sup_{z \in B} (1 - |z|^2) |RRh_a(z) \cdot g(z) + Rh_a(z) \cdot Rg(z)|
\]
\[
\geq (1 - |a|^2)|\frac{2|a|^4}{1 - |a|^2} g(a) + |a|^2 \log \frac{2}{1 - |a|^2} g(a) + |a|^2 Rg(a) \log \frac{2}{1 - |a|^2}|
\]
\[
\geq -(2|a|^4 + |a|^2 \frac{2}{1 - \log 2} |g(a)| + |a|^2 (1 - |a|^2) |Rg(a)| \log \frac{2}{1 - |a|^2}
\]
(7) \[
\geq -(2 + \frac{2}{e} (1 - \log 2)) |a|^2 + |a|^2 (1 - |a|^2) |Rg(a)| \log \frac{2}{1 - |a|^2}.
\]
Next let
\[
f_a(z) = h_a(z) - \int_0^1 < z, a > \log \frac{2}{1 - t < z, a >} dt
\]
then
\[
Rf_a(z) = < z, a > \{ (\log \frac{2}{1 - < z, a >})^2(\log \frac{2}{1 - |a|^2})^{-1} - \log \frac{2}{1 - < z, a >} \}
\]
\[
RRf_a(z) = RRh_a(z) - < z, a > \log \frac{2}{1 - < z, a >} - < z, a >^2
\]
and consequently \(N = \sup_{\sqrt{1 - 2/e} \leq |a| < 1} ||f_a|| < \infty \). Note that \(Rf_a(a) = 0 \) and
\[
RRf_a(a) = \frac{|a|^4}{1 - |a|^2}, \text{ we have}
\]
\[
\infty > \|I_g\| \cdot ||f_a|| \geq ||I_g f_a|| \geq \sup_{z \in B} (1 - |z|^2) |RRf_a(z) \cdot g(z) + Rf_a(z) \cdot Rg(z)|
\]
(8) \[
\geq (1 - |a|^2)|RRf_a(a) g(a) + Rf_a(a) Rg(a)| = |a|^4 |g(a)|.
\]
From the maximum modulus theorem, we get \(g \in H^\infty \). So it follows from (7) and (8) that
\[
\sup_{\sqrt{1 - 2/e} \leq |a| < 1} (1 - |a|^2)|Rg(a)| \log \frac{2}{1 - |a|^2} < \infty.
\]
On the other hand, we have
\[\sup_{|a| \leq \sqrt{1-2/e}} (1 - |a|^2)|Rg(a)| \log \frac{2}{1-|a|^2} \leq \frac{2}{e} \cdot (1 - \log 2) \max_{|a| = \sqrt{1-2/e}} |Rg(a)| \]
\[\leq \frac{2}{\sqrt{1-2/e}} (1 - |a|^2)|Rg(a)| \log \frac{2}{1-|a|^2} < +\infty. \]

Combining (9) and (10), we finish the proof of Theorem 2.

Corollary The multiplication operator \(M_g : \mathcal{Z} \rightarrow \mathcal{Z} \) is bounded if and only if \(g \in \mathcal{Z} \).

Proof. If \(M_g \) is bounded on \(\mathcal{Z} \), then setting the test function \(f \equiv 1 \), we have \(M_g f = g \in \mathcal{Z} \).

Conversely, if \(g \in \mathcal{Z} \), from Lemma 1 and (5), it is easy to see that \(g \in H_\infty \cap B_{\log} \), so by Theorems 1 and 2, both \(T_g \) and \(I_g \) are bounded, it follows from (1) that \(M_g \) is also bounded.

Theorem 3. Suppose \(g \in H(B) \), \(I_g : \mathcal{Z} \rightarrow \mathcal{Z} \). Then \(I_g \) is compact if and only if \(g = 0 \).

Proof. The sufficiency is obvious. We just need to prove the necessity. Suppose that \(I_g \) is compact, for any given sequence \((z_k)_{k \in \mathbb{N}}\) in \(B \) such that \(|z_k| \rightarrow 1 \) as \(k \rightarrow \infty \), if we can show \(g(z_k) \rightarrow 0 \) as \(k \rightarrow \infty \), then by the maximum modulus theorem we have \(g \equiv 0 \). In fact, setting
\[
f_k(z) = h_{z_k}(z) - (\log \frac{2}{1-|z_k|})^{-2} \int_0^1 < z, z_k > (\log \frac{2}{1-t < z, z_k>})^2 dt.
\]
Using the same way as in Theorem 2, we can show \(\sup_{k \in \mathbb{N}} \|f_k\| \leq C \) and \(f_k \) converges to 0 uniformly on compact subsets of \(B \). Since \(I_g \) is compact, we have \(\|I_g f_k\| \rightarrow 0 \) as \(k \rightarrow \infty \). Note that \(Rf_k(z_k) = 0 \) and \(RRf_k(z_k) = \frac{|z_k|^4}{1-|z_k|^2} \), it follows that
\[
|z_k|^4 |g(z_k)| \leq \sup_{z \in B} (1 - |z|^2)|RRf_k(z) \cdot g(z) + Rf_k(z) \cdot Rg(z)|
\leq \sup_{z \in B} (1 - |z|^2)|RR(I_g f_k)(z)| \leq \|I_g f_k\| \rightarrow 0
\]
as \(k \rightarrow \infty \). This ends the proof of Theorem 3.

References

[1] C.C.Cowen and B.D.MacCluer, Composition operators on spaces of analytic functions, CRC Press, Boca Raton, FL, 1995.
[2] N. Danikas and A. Siskakis, The cesáro operator on bounded analytic functions, Analysis, 13(1993), 195-199.
[3] P. Durn, Theory of \(H^p \) space, Academic Press, New York, 1979.
[4] P. Galanopoulos, The cesáro operator on Dirichlet spaces, Acta Sci. Math. 67 (2001), 441-420.
[5] D. V. Giang and F. Morricz, The cesáro operator on Dirichlet is bounded on the Hardy space \(H^1 \), Acta Sci. Math. 61 (1995), 535-544.
[6] Z. J. Hu, Extended cesáro operators on mixed norm space, Proc. Amer. Math. Soc., 131(2003), 2171-2179.
[7] Z. J. Hu, Extended cesáro operators on the Bloch spaces in the unit ball of C^n, Acta Math. Sci., 23B(2003), 561-566.
[8] J. Miao, The cesáro operator is bounded on H^p for $0 < p < 1$, Proc. Amer. Math. Soc., 116(1992), 1077-1079.
[9] W. Rudin, Function theory in the unit ball of C^n, Springer-Verlag, New York, 1980.
[10] A. Siskakis, Composition semigroups and the cesáro operator on $H^p(D)$, J. London Math. Soc. 36(1987), 153-164.
[11] A. Siskakis, Semigroups of composition operators in Bergman spaces, Bull. Austral. Soc. 35 (1987), 397-406.
[12] A. Siskakis, The cesáro operator is bounded on H^1, Proc. Amer. Math. Soc., 110(1990), 461-462.
[13] A. Siskakis, On the Bergman space norm of the cesáro operator, Arch. Math. 67 (1996), 312-318.
[14] A. Siskakis and R. Zhao, A Volterra type operator on spaces of analytic functions, Contemporary Mathematics, 232(1999), 299-311.
[15] J. H. Shi and G. B. Ren, Boundedness of the cesáro operator on mixed norm space, Proceeding of the American Mathematical Society, 126 (1998), 3553-3560.
[16] J. Xiao, Cesáro-type operators on Hardy, BMOA and Bloch spaces, Arch. Math., 68(1997): 398-406.
[17] X. J. Zhang, Extended cesáro operators on Dirichlet type spaces and Bloch spaces of C^n, Chin. Ann. of Math., 26A(2005), 139-150. (in Chinese)
[18] K. H. Zhu, Spaces of Holomorphic functions in the Unit Ball, Springer-Verlag (GTM 226), 2004.
[19] K. H. Zhu, Operator Theory in Function Spaces, Pure and Applied Mathematics 136, Macel Dekker, Inc., New York-Basel, 1990.

DEPARTMENT OF MATHEMATICS
TIANJIN POLYTECHNICAL UNIVERSITY
TIANJIN 300160
P.R. CHINA.
E-mail address: fangzhongshan@yahoo.com.cn

DEPARTMENT OF MATHEMATICS
TIANJIN UNIVERSITY
TIANJIN 300072
P.R. CHINA.
E-mail address: zehuazhou2003@yahoo.com.cn