Prevalence and Patterns of EGFR Mutations in Non-Small Cell Lung Cancer in the Middle East and North Africa: A Systematic Review

Youssra Boustany (✉ youssra.boustany@um5s.net.ma)
Université Mohammed V de Rabat

Abdellah Laraqui
Hôpital Militaire d'Instruction Mohammed V, Université Mohammed V de Rabat

Hicham El Raffouli
Hôpital Militaire d'Instruction Mohammed V, Université Mohammed V de Rabat

Tahar Bajjou
Hôpital Militaire d'Instruction Mohammed V, Université Mohammed V de Rabat

Bouchra El Mchichi
Hôpital Militaire d'Instruction Mohammed V, Université Mohammed V de Rabat

Hicham El Anaz
Hôpital Militaire d'Instruction Mohammed V, Université Mohammed V de Rabat

Idriss Lahiou Amine
Hôpital Militaire d'Instruction Mohammed V, Université Mohammed V de Rabat

Hafsa Chahdi
Hôpital Militaire d'Instruction Mohammed V, Université Mohammed V de Rabat

Mohammed Oukabli
Hôpital Militaire d'Instruction Mohammed V, Université Mohammed V de Rabat

Hicham Souhi
Hôpital Militaire et d'Instruction Mohammed V, Université Mohammed V de Rabat

Hanane El Ouazzani
Hôpital Militaire et d'Instruction Mohammed V, Université Mohammed V de Rabat

Ismail Abderrahmani Rhorfi
Hôpital Militaire et d'Instruction Mohammed V, Université Mohammed V de Rabat

Ahmed Abid
Hôpital Militaire et d'Instruction Mohammed V, Université Mohammed V de Rabat

Tarik Mahfoud
Hôpital Militaire d'Instruction Mohammed V, Université Mohammed V de Rabat

Rachid Tanz
Hôpital Militaire d'Instruction Mohammed V, Université Mohammed V de Rabat

Mohammed Ichou
Hôpital Militaire d'Instruction Mohammed V, Université Mohammed V de Rabat

Khaled Ennibi
Hôpital Militaire d'Instruction Mohammed V, Université Mohammed V de Rabat

Bouchra Belkadi
Université Mohammed V de Rabat

Yassine Sekhsokh
Hôpital Militaire d'Instruction Mohammed V, Université Mohammed V de Rabat

Research Article

Keywords: Non-small cell lung cancer, EGFR mutations, MENA

Posted Date: December 29th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1051050/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

To summarize current evidence and estimate the prevalence of epidermal growth factor receptor (EGFR) mutation frequency and its association with ethnicity and clinic-pathological features in non-small cell lung cancer (NSCLC) patients in the Middle East (ME) and North Africa (NA), a systematic literature review was undertaken. We conducted a literature search of original articles published in six databases (PubMed, Science Direct, Web of Science, Embase, Scopus, and Google scholar) from the time of inception until April 2021. Search terms included “lung cancer”, “NSCLC”, “EGFR mutation”, “Middle East”, “North Africa”, and specific country names belonging to the considered region. The included studies had to meet the following criteria: the study must relate to the role of the EGFR gene in NSCLC, analyze mutations in exon 18, 19, 20, and 21 or select exons of the EGFR gene, and provide sufficient information on the clinic-pathological characteristics of the included NSCLC patients. A total of 24 eligible studies were included ([66.6%] in the ME and [34.4%] in NA). Overall, 6544 patients with NSCLC were analyzed for EGFR mutations ([55.1%] in the ME and [44.8%] in NA). The overall prevalence of EGFR mutations was 17.9%. In the ME, the reported frequency was 17.3%, whereas in NA, the prevalence of EGFR mutations was 18.5%. The most frequently encountered mutations were the exon 19 deletions (45.2%) and exon 21 substitutions (30.9%). Exon 20 alterations were detected in 11.2%, of which, the T790M resistance mutation was the most prevalent (45.5%). Exon 18 mutations were reported in 3.8%. In the ME, 50.5% of NSCLC patients were positive for exon 19 deletions versus 48.3% in NA. Exon 21 mutations were slightly more commonly detected in the ME (36.3%) than in NA (31.3%). There was 1.2% of patients that had concurrent EGFR mutations. Overall, EGFR mutations prevalence was higher in females, non-smokers, and patients with adenocarcinoma. Our systematic literature review concurs that EGFR mutation prevalence among MENA populations is slightly higher than that seen in NSCLC patients of Caucasian ethnicity but is lower than that identified in Asian NSCLC patients. The distribution of these mutations varies significantly throughout the MENA region.

Introduction

Lung cancer occurred in approximately 2.2 million patients, representing 22.7% of the global cancer burden. In 2020, 1.8 million patients died of lung cancer [1]. It is the leading cause of cancer morbidity and mortality in men, whereas in women, it is the third most common cancer, behind breast and colorectal cancers, and the second leading cause of female cancer death. Incidence and mortality rates are roughly 2 times higher in men than in women, and the male-to-female ratio varies widely across regions, ranging from 1.2 in Northern America to 5.6 in Northern Africa [1]. The incidence and mortality estimates for lung cancer are 3 to 4 times higher in countries with a high Human Development Index (HDI) than in countries with a low HDI; this pattern may well change as the tobacco epidemic evolves given that 80% of smokers aged ≥15 years resided in low-income and middle-income countries in 2016 [2]. Worldwide, the lung cancer mortality rate is foreseen to increase up to 3 million by 2035. The figures are set to double for both genders (men: from 1.1 million in 2012 to 2.1 million by 2035; and women: from 0.5 million in 2012 to 0.9 million by 2035) and the existing gender gap is expected to persist. Most prominent increases are expected in Africa and the Eastern Mediterranean region [3].

The Middle East (ME) and North Africa (NA) countries have witnessed a steady increase in the incidence rates of lung cancer [4]. In 2018, an estimated new 79887 lung cancer cases were registered in the MENA region versus 470000 new diagnoses in Europe. The age-standardized incidence rate of lung cancer in the MENA region is less than international rates, with figures varying from lowest in Yemen (4.2 per 100,000) to highest in Lebanon (23 per 100,000) [5]. Lung cancer incidence rates increases are more eminent among older age groups in the MENA area [6]. Despite recent breakthroughs in lung cancer management, the 5-year relative survival rate in the region doesn't surpass 8%. This is largely due to late diagnoses. In the MENA countries, the highest mortality rates were reported in Morocco and Tunisia, whereas the lowest were in Yemen and Egypt [5].

Lung carcinomas are categorized by the size and appearance of the malignant cells and are divided into two broad categories of small cell lung cancers (SCLC) and non-small cell lung cancers (NSCLC). SCLC comprises about 10%-15% of all lung cancers. NSCLC is the most common type of lung cancer and accounts for 80-90% of all lung tumors. SCLC, commonly centrally located in the major airway, tends to grow and spread faster than NSCLC. It is estimated that 70% of SCLC patients present with locally advanced or distant metastatic disease at the time of diagnosis [7]. NSCLC is a highly heterogeneous disease and is mainly divided into three major histological subtypes: adenocarcinoma, squamous cell carcinoma, and large cell carcinoma, it harbors various genetic alterations within each subtype. The identification of mutations in certain histological subtypes has led to molecular sub-classification of NSCLC and also opened therapeutic opportunities for personalized medicine based on targeted drugs [8, 9]. Several mutations in NSCLC are considered actionable with available or promising targeted therapies. Some of the most common mutations for NSCLC occur in epidermal growth factor receptor (EGFR) and favor cell survival, proliferation and migration, and metastasis development by increasing the activity of EGFR tyrosine kinase [10]. EGFR tyrosine kinase inhibitors (TKIs) are established effective therapies in patients who have mutations in exons 18, 19, 20, and 21 of EGFR, leading to longer progression-free survival intervals with fewer or at least different side-effects than chemotherapy [11, 12].

Previous studies have established marked variations in EGFR mutation rates depending on different geographic locations and race/ethnicity backgrounds. It occurs at the rate of 10-15% in North Americans and Europeans, 15–20% in African-Americans, 20-30% in various East Asian series (Chinese, Koreans, Japanese), and 20–25% in patients from the Indian subcontinent [13–17]. In ME and African populations, the EGFR mutation frequency is higher than that shown in white populations but still lower than the frequency reported in Asian populations [18]. In the MENA, the frequency of EGFR mutations is considered among the lowest. To summarize current evidence and estimate the prevalence of EGFR mutations and its association with geographic region/country and clinic-pathological features of EGFR mutation-positive NSCLC patients in the Middle East (ME) and North Africa (NA). A systematic literature review was undertaken in Bahrain, Egypt, Iran, Iraq, Jordan, Kingdom of Saudi Arabia, Kuwait, Lebanon, Oman, Palestine, Qatar, Syria, Turkey, United Arab Emirates, Yemen, Algeria, Egypt, Morocco, and Tunisia.

Methods

We conducted a systematic review of literature published on EGFR mutation prevalence and its association with geographic region/country and clinic-pathological features in NSCLC patients in MENA region. We carried out a literature search of original articles published in six databases (PubMed, Science Direct, Web of science, Embase, Scopus, and Google scholar) from the time of inception until April 2021. Included articles have been published in English in
indexed and peer-reviewed journals. Search terms included lung cancer, or lung tumor, or lung adenocarcinoma, or NSCLC, or EGFR, or EGFR mutation, or EGFR oncogene mutations, or EGFR oncogenic driver mutation, or EGFR activating mutation, or EGFR prevalence, or EGFR rate, or EGFR incidence or EGFR frequency. An additional literature search was also conducted using Middle East, Middle Eastern, North Africa, North African and specific country names belonging to the considered region and any other variant names for any of the MENA countries (ex: Maghreb, Levant, Gulf, Arab). We manually checked reference lists of the included studies and relevant review articles to identify additional studies. We also searched relevant abstracts reported in the most important multi-disciplinary societies of medical oncology such as the American Society of Clinical Oncology (ASCO) meetings to identify unpublished studies.

Original articles were identified from Jordan [19], Iran [20, 21], Turkey [22–26], Bahrain [27], Iraq [29, 30], Lebanon [31–33], Morocco [35–37], Tunisia [38–40], Egypt [41], and Algeria [42]. A multicenter prospective study from Levant (Lebanone, Syria, Palestine, Jordan, Iraq, and Egypt) [34] and a multisite retrospective study from Gulf region (Saudi Arabia, the United Arab Emirates and Qatar) were also identified and will part of our analysis [28]. The included studies had to meet the following criteria: the study must relate to the role of the EGFR gene in NSCLC, analyze mutations in exon 18, 19, 20, and 21 or select exons of the EGFR gene, and provide sufficient information on the clinico-pathological characteristics of the included NSCLC patients.

A total of 24 studies met the inclusion criteria. In most studies, materials were formalin-fixed paraffin-embedded (FFPE) tissues and included small biopsies such as trans-bronchial biopsy or tru-cut biopsy and also resection materials. DNA extraction was applied on tissue samples using kits that extracted DNA from paraffin blocks. Mutations in exon 18 (codon 719), exon 19 deletions, exon 20 (codons 768 and 790), and exon 21 (codons 858 and 861) were assessed in 79.1% (19/24) of the studies. A wide variety of detection methods were used to identify recognized mutations of the EGFR kinase domain, from exon 18 to 21. Direct sequencing was broadly used, as it was used in the most of the studies [19–21, 23, 24, 26, 33, 34, 36, 37, 40]. RT-PCR-based assays, namely scorpions-amplification refractory mutation system (ARMS/Scorpion) methodology, was also widely used [27, 29, 31–33, 37, 40]. EGFR mutation analysis was carried out with quantitative PCR analysis in the study from Gulf region [41]. The INFINITI system using BioFilmChip-based microarray assay was used in one study from Turkey [22]. Details of the study methods and population characteristics are summarized in Table 1.
Country/Region	Author [reference]	Year of publication	cases	Age (years)	Male/female n (%)	Smokers/non smokers n (%)	ADK/NADK n (%)	Detection Site (exon)	Test type
Jordan	Obeidatet al. [19]	2016	166	59 ± 12.6	116 (70)/50 (30)	129 (77)/37 (23)	166 (100)/0 (0)	18, 19, 20, and 21	PCR/Sequencing
Iran	Mohammad et al. [20]	2019	50	58.4 ± 13	30 (60)/20 (40)	31 (42)/29 (58)	50 (100)/0 (0)	18, 19, 20, and 21	PCR/Sequencing
	Basi et al. [21]	2018	103	67	51 (49.5)/52 (50.5)	37 (36)/66 (64)	103 (100)/0 (0)	18, 19, 20, and 21	PCR/Sequencing
Turkey	Calibasi et al. [22]	2020	409	60	299 (73.1)/110 (26.9)	246 (60.1)/163 (35.9)	409 (100)/0 (0)	18, 19, 20, and 21	INFINITI method
	Bircan et al. [23]	2014	25	65.3	21 (84)/4 (16)	17 (73.9)/6 (26.1)	14 (56)/11 (44)	19 and 21	Sequencing
	Unal et al. [24]	2013	48	63.2	41 (85.4)/7 (14.6)	43 (89.6)/5 (10.4)	32 (66)/16 (34)	18, 19, 20, and 21	Sequencing
	Tezel et al. [25]	2017	959	60	700 (73)/259 (27)	(10) 1/25 (2.6)	698 (72.8)/261(27.2)	18, 19, 20, and 21	RT-PCR
	Ozcelik et al. [26]	2019	703	63.3±12.5	545 (77.6)/158 (22.3)	546 (83.5)/154 (16.5)	613 (87)/90 (13)	-	PCR/Sequencing
Bahrain	Mubarak et al. [27]	2020	65	68	-	-	61 (93.8)/4 (6.2)	18, 19, 20, and 21	Scorpion-ARMS technology
Gulf Region	Jazieh et al. [28]	2015	230	61	162 (70.4)/68 (29.5)	96 (41.7)/134 (58.2)	191 (83.4)/39 (16.6)	18, 19, 20, and 21	PCR
Iraq	Hassani et al. [29]	2014	27	-	14 (51.8)/13 (48.1)	-	-	18, 19, 20, and 21	Scorpion-ARMS technology
	Ramadhan et al. [30]	2021	138	60.1±12.4	79 (57.2)/59 (42.8)	-	-	18, 19, 20, and 21	RT-PCR / PCR
Lebanon	Naderia et al. [31]	2015	201	65.2±10.4	123 (61.2)/78 (38.8)	157 (78.1)/44 (21.9)	182 (90.5)/19 (9.5)	18, 19, 20, and 21	Scorpion-ARMS technology
	Kattan et al. [32]	2015	170	65.2	102 (59.8)/68 (40.2)	131 (76.8)/39 (23.9)	157 (92.1)/13 (7.9)	18, 19, 20, and 21	Scorpion-ARMS technology
	Fakhruddin et al. [33]	2014	106	62.1±10.4	72 (67.9)/34 (32.1)	59 (55.7)/18 (17)	106 (100)/0 (0)	18, 19, 20, and 21	Scorpion-ARMS technology
Levant Erea	Tfayli et al. [34]	2017	210	63.4±10.8	139 (66.2)/71 (33.8)	152 (72.4)/49 (27.5)	210 (100)/0 (0)	18, 19, 20, and 21	PCR
Morocco	Errihani et al. [35]	2013	137	59	91 (66)/46 (44)	79 (58)/58 (42)	137 (100)/0 (0)	18, 19, 20, and 21	Sequencing
	Sow et al. [36]	2020	334	62	242 (72.5)/92 (27.5)	178 (53)/135 (40)	314 (94)/20 (6)	18, 19, 20, and 21	PCR/Sequencing
	Kaanane et al. [37]	2019	239	61.4 ± 8.9	169 (70.7)/70 (29.3)	139 (58.2)/100 (41.8)	218 (91.2)/21 (8.8)	18, 19, 20, and 21	ARMS technology and the Idylla system
Tunisia	Dhib et al. [38]	2019	73	73	61 (83.5)/12 (16.4)	45 (76.2)/14 (23.7)	73 (100)/0 (0)	-	IHC

Table 1
Characteristics of the included studies.
Country/Region	Author [reference]	Year of publication	cases	Age (years)	Male/female n (%)	Smokers/non smokers n (%)	ADK/NADK n (%)	Detection gene Site (exon)	Test type
	Mraihi et al. [39]	2018	50	59.9	48 (96)/2 (4)	47 (94)/3 (6)	50 (100)/0 (0)	19 and 21	Sequencing and IHC
	Toumi et al. [40]	2018	26	58	23 (91.4)/3 (8.6)	12 (80)/3 (20)	26 (100)/0 (0)	18, 19, 20, and 21	ARMS technology
Egypt	Ibrahim et al. [41]	2019	2017	-	-	-	-	18, 19, 20, and 21	PCR
Algeria	Lahmadi et al. [42]	2021	58	59	53 (91.4)/5 (8.6)	23 (39.6)/17 (29.3)	27 (46.5)/31 (53.5)	Exon 19, Exon 21	Sequencing

Results

We identified 24 eligible studies: 16 (66.6%) in the ME [19–34] and 8 (34.4%) in NA [35–42]. Overall, *EGFR* mutations were analyzed in 6544 patients with NSCLC [3610 (55.2%) in the ME and 2934 (44.8%) in NA]. The median age is 61.7±3.8 years old, with a range of 22 [25] to 89 [22] years old. Male patients were predominant in all of the considered studies, accounting for 71.3% (3182/4462). Two studies, one from Bahrain [27] and another from Egypt [41] did not include information about male/female proportions. There were more smokers than nonsmokers, as 66.4% (2177/3276) self-reported a history of smoking; they were either former or current smokers. Four of the considered studies did not report data regarding patient smoking history [27, 29, 30, 41]. The histological subtype was defined in only 20 of the included studies [19–28, 31–39, 42]. Specimens were obtained from FFPE blocks in 19 studies [19–25, 30, 31, 33–42]. Five of the considered studies failed to report the type of specimens used [26–29, 32]. Baseline characteristics of enrolled studies are summarized in Table 1.

Overall, *EGFR* exons 18 through 21 mutations were assessed in 19 out of the 24 considered studies in 86.1% (5635/6544) NSCLC patients: Jordan (1 study, 166 patients) [19], Iran (2 studies, 153 patients) [20, 21], Turkey (3 studies, 1416 patients) [22, 24, 25], Bahrain (1 study, 65 patients) [27], the Gulf Region (1 study, 230 patients) [28], Iraq (2 study, 165 patients) [29, 30], Lebanon (3 studies, 477 patients) [31–33], the Levant area (1 study, 210 patients) [34], Morocco (3 studies, 710 patients) [35–37], Tunisia (1 study, 26 patients) [40], and Egypt (1 study, 2017 patients) [41]. Studies from Turkey (1 study, 25 patients) [23], Tunisia (1 study, 50 patients) [39], and Algeria (1 study, 58 patients) [42] identified mutations in exons 19 and 21 in 25, 50 and 58 patients, respectively. One study from Tunisia (73 patients) and another from Turkey (703 patients) did not mention specific exons genotyped [38, 26] (Table 1).

In total, the prevalence of *EGFR* mutations among NSCLC patients in the MENA region was 17.9% (1171/6544). In the ME, the reported frequency was 17.3% (626/3610) and varied throughout the geographic region/country. In the Levant and Gulf regions, *EGFR* mutations were found in 15.6% (32/205) [34] and in 28.7% (66/230) [28], respectively. *EGFR* mutations were least common in Lebanon, accounting for 11.7% (56/477) [31–33]. In Turkey, the *EGFR* mutation rate ranged between 13% and 44% [22–26]. In NA, *EGFR* mutations were found in 18.5% (545/2934) of NSCLC patient. Tunisia highlights a wide range of *EGFR* mutations rates, ranging from 5.5% (4/73) to 44% (22/50) [38–40]. In Morocco, *EGFR* mutation prevalences ranged from 15.9–26.8% [35–37] and one study has shown a frequency of 21.9%, similar to that seen among Caucasian populations [36]. Details of *EGFR* mutation prevalences in the MENA region are summarized in Table 2.
Table 2
Correlation between clinicopathological features of included patients and the EGFR mutational status.

Country/Region	Author [reference]	Frequency of EGFR mutation n (%)	Male EGFR+/female EGFR+ n (%)	EGFR+ADK/EGFR+NADK n (%)	EGFR+ smokers/EGFR+ nonsmokers n (%)
Jordan	Obeidat et al. [19]	24 (14.7)	13 (11.2)/11 (22)	24 (100)/0 (0)	9 (37.5)/15 (62.5)
Iran	Mohammad et al. [20]	14 (28)	8 (26.7)/6 (30)	14 (100)/0 (0)	3 (9.6)/11 (37.9)
Basi et al. [21]	25 (24.3)	14 (27.4)/11 (21.1)			8 (12.1)/17 (46)
Turkey	Calibasi et al. [22]	68 (16.6)	42 (14)/26 (33.6)	68 (100)/0 (0)	32 (13)/36 (22)
Bircan et al. [23]	25 (24.3)	14 (27.4)/11 (21.1)			8 (12.1)/17 (46)
Unal et al. [24]	18 (37.5)	13 (31.7)/5 (31.3)			13 (30.2)/5 (100)
Tezel et al. [25]	160 (16.7)	64 (9.1)/96 (37.1)			142 (20.3)/18 (6.8)
Ozcelik et al. [26]	92 (13)	-			2 (20)/10 (40)
Bahrain	Mubarak et al. [27]	14 (21.5)			14 (22.9)/0 (0)
Gulf Region	Jazieh et al. [28]	66 (28.7)	79.1 (129)/93.5(63)	62 (32.4)/4 (10.2)	
Iraq	Hassani et al. [29]	8 (29.6)	4 (28.5)/4 (30.7)	-	-
Ramadhan et al. [30]	38 (27.5)	22 (27.8)/16 (27.1)		-	
Lebanon	Naderia et al. [31]	25 (12.4)	8 (6.5)/16 (20.5)	25 (13.7)/0 (0)	8 (5)/16 (36.3)
Kattan et al. [32]	22 (12.7)	8 (7.8)/14 (20.5)			8 (6.1)/14 (35.8)
Fakhruddin et al. [33]	9 (8.8)	2 (2.7)/7 (20.5)			1 (1.6)/5 (27.7)
Levant Erea	Tfayli et al. [34]	32 (15.6)	12 (9.6)/20 (40.8)	32 (15.2)/0 (0)	14 (10.4)/16 (50)
Morocco	Errihani et al. [35]	29 (26.8)	7 (7.6)/22 (47.8)	29 (21.1)/0 (0)	5 (6.3)/24 (41.3)
Sow et al. [36]	73 (21.9)	35 (14.5)/38 (43.1)		-	23 (13)/47 (35)
Kaanane et al. [37]	38 (15.9)	21 (12.4)/17 (22.4)			16 (11.5)/22 (22)
Tunisia	Dhieb et al. [38]	4 (5.5)	3 (4.9)/1 (8.3)	4 (5.4)/0 (0)	3 (6.6)/1 (7.1)
Mraihi et al. [39]	22 (44)	-		-	-
Touni et al. [40]	3 (11.5)	3 (13)/0 (0)			3 (25)/0 (0)
Egypt	Ibrahim et al. [41]	353 (17.5)	-	-	-
Algeria	Lahmadi et al. [42]	23 (39.6)	22 (41.5)/1 (20)	9 (39.1)/6 (35.3)	14 (51.8)/9 (29)

Overall, the most frequently encountered EGFR mutations were the exon 19 deletions (45.2%, 523/1157) and exon 21 substitutions (30.9%, 358/1157) of all detected mutations. Exon 20 alterations were detected in (11.2%, 112/998) including the T790 M mutation (45.5%, 51/112), which is the primary cause of acquired resistance to first-generation TKI. Exon 18 mutations were reported in 3.8% (38/998) of the EGFR mutated patients (Table 3). In the ME, we report that 50.5% (270/534) of NSCLC patients were positive for exon 19 deletions versus 48.3% (253/523) in NA. Exon 19 deletion were most commonly detected in the Levant region (78.1%, 25/32) and in Morocco (67.8%, 95/140), in ME and NA, respectively. Exon 21 L858R mutation was slightly less commonly detected in ME (64.4%, 125/194) compared with NA (68.2%, 112/164). Algeria from NA and Jordan from ME had a noticeably higher exon 21 mutation detection rate at (91.3%, 21/23) and (50%, 12/24), respectively. Exon 20 and exon 18 mutations were the least commonly identified EGFR alterations in ME and NA. Exon 20 mutations were most common in Egypt (16.7%, 59/2017) and Turkey (13.4%, 33/246) in NA and the ME, respectively. Exon 18 mutations were most prevalent in Jordan (37.5%, 9/24) and Morocco (6.4%, 9/140) from ME and NA, respectively.
Patients genotyping for these alterations should be a standard of care right along standard clinical examination, pathology and imaging studies. Furthermore, it has been established that EGFR mutations in tumors of NSCLC patients has led to personalized molecular therapies and to a paradigm shift for patients with lung cancer candidates for targeted therapy. In overall cases from studies that reported patients’ histological features (Table 3), in adenocarcinoma were far more likely to carry EGFR mutations (adenocarcinoma versus non-adenocarcinoma: 19% (516/2703) versus 9.7% (42/431)). The prevalence of EGFR mutations was higher in non-smokers [non-smokers versus current smokers: 31.1% (252/808) versus 11.1% (169/1479)]. Histology was reported in all of the considered studies. NSCLC patients with adenocarcinoma were far more likely to carry EGFR mutations [adenocarcinoma versus non-adenocarcinoma: 19% (516/2703) versus 9.7% (39/402)] in overall cases from studies that reported patients’ histological features (Table 2).

Discussion

The identification of EGFR mutations in tumors of NSCLC patients has led to personalized molecular therapies and to a paradigm shift for patients with lung cancer candidates for targeted therapy. Furthermore, it has been established that EGFR mutations are key diagnostic biomarkers in NSCLC, therefore NSCLC patients genotyping for these alterations should be a standard of care right along standard clinical examination, pathology and imaging studies [43].
Worldwide, 32.4% of NSCLCs involve \(\text{EGFR} \) mutations \[46\]. Previous studies have established marked variations in \(\text{EGFR} \) rates depending on different geographic regions and race/ethnicity backgrounds. The frequency of mutations was greater for \(\text{EGFR} \) mutation-positive NSCLC patients of East Asian ethnicity than those of other ethnicities (30% versus 8%) \[47\]. A slightly lower incidence of \(\text{EGFR} \) mutations (12%) has been identified among the Oceanic ethnicities and other insular Mediterranean patients with NSCLC \[48, 49\]. A prevalence of 21.2% of \(\text{EGFR} \) mutations has been observed in the ME and African NSCLC patients \[18\]. Different frequencies of \(\text{EGFR} \) mutations have been found in Russia (18%), South Africa (23%), Australia (23.8%), and Latin America (26%) \[50–53\]. In our systematic review, an overall prevalence of 17.8% was identified in patients with \(\text{EGFR} \) mutation-positive NSCLC across the MENA region. The reported prevalence was slightly higher than those observed among Western populations but still lower than frequencies reported in Latino and Asian populations. In the Levant countries, a region flanked by the ME and Europe, and the Gulf region (also known as Arabian Gulf), the reported \(\text{EGFR} \) mutation frequency was 15.6% \[34\] and 28.7% \[28\], respectively. The lowest mutation frequencies were seen in Lebanon (8.8 to 12.7%) \[31–33\]. Among the Turkish population, an \(\text{EGFR} \) mutation frequency of 42.6% in NSCLC patients was identified in western Turkey \[25\], when Tezel et al., showed that the mutations rate in Turkish patients with \(\text{EGFR} \) mutation-positive NSCLC was 16.7% \[25\]. Regional distribution of genetic mutations of lung cancer in Turkey, as reported in the \text{REDIGMA} study, including 25 centers, showed that mutation tests were found to be positive in 18.9% of these patients. The mutations were 69.9% \(\text{EGFR} \), 26.3% \(\text{ALK} \), 1.6% \(\text{ROS} \) and 2.2% \(\text{PDL} \) \[26\]. Our systematic review also highlights a wide range in \(\text{EGFR} \) mutation frequencies in NA populations. The overall \(\text{EGFR} \) mutation rate of NSCLC patients varied from 15.9% \[37\] to 26.8% \[35\] in Morocco. Additionally, one Moroccan study showed similar \(\text{EGFR} \) incidence rates (21%) as in patients of Caucasian descent \[36\]. An overall rate of 39.6% was found in \(\text{EGFR} \) mutation-positive NSCLC patients in Algeria \[42\]. In Tunisia, while first reports account for an \(\text{EGFR} \) mutation frequency as low as 5.5% \[38\], other reports show discrepant data of 11.5% and 44% \[40, 39\].

The mechanism behind the differences of \(\text{EGFR} \) mutation rates across geographic regions and the race/ethnicity is still unclear. A persistent finding in the literature is the substantial variation in \(\text{EGFR} \) mutation prevalence across different geographic areas and among various race/ethnicity backgrounds \[54\]. Although such mutations are over-represented in more than 40% of \(\text{EGFR} \) mutation-positive NSCLC in Japan and China, they are detected in roughly 15% of \(\text{EGFR} \) mutation-positive NSCLC patients in France and Italy \[48\]. It has been demonstrated that ethnic genetic variation may explain these differences \[55, 56\]. In the ME, the frequency of \(\text{EGFR} \) mutations was reported to range between 16.6% and 44% in the Turkish population \[22–26\]. This disproportion is a result of the genetic heterogeneity and the ethnic diversity that characterize Turkey, a country endowed with a distinguished geographic location that is between Europe and Asia and near the ME. In NA, the \(\text{EGFR} \) mutation frequency in Tunisians range from 5.5% and 44% \[38–40\]. This disparity in frequencies is mainly attributable to the ethnicities that have succeeded in Tunisia, contributing to this country’s ethnic diversity and therefore genetic heterogeneity \[57\].

Some studies showed that difference in \(\text{EGFR} \) mutations frequencies might be caused by exposing to indoor and/or outdoor air pollution \[58\]. The unique \(\text{EGFR} \) mutation spectrum in southwestern China might be related to the exposure of air pollution from local smoky coal and can reflect a specific environmental exposure \[59\]. In Europe, a positive association between various indicators of indoor air pollution and lung cancer risk has also been reported \[60\]. Indoor air pollution from burning in poorly ventilated houses, burning of wood and other solid fuels, as well as fumes from high-temperature cooking using unrefined vegetable oils such as rapeseed oil \[61\]. Cooking oil fumes from vegetable oils are mutagenic \[62, 63\]. The International Agency for Research on Cancer classifies outdoor air pollution as an established lung carcinogen in humans \[64\]. In 2017, the global proportion of lung cancer deaths attributable to outdoor ambient PM2.5 air pollution was 14%, ranging from 4.7% in the United States to 20.5% in China \[65\]. PM2.5 is generally described as fine particles and is emitted by vehicles, coal-burning in power plants, industrial activity, waste burning, and other human activities.

Several studies have reported a higher incidence of \(\text{EGFR} \) mutations among women in comparison to men, with figures up to 69.7%. In effect, up to 42% of females versus only 14% of males with NSCLC are expected to harbor an \(\text{EGFR} \) TK domain mutation \[46, 47, 66\]. In our review, \(\text{EGFR} \) mutation prevalence was higher in females (females versus males: 33.4% versus 17%). This is similar to data from Europe, Spain and other Asian studies which concluded that \(\text{EGFR} \) mutations were more common in women \[67–69\]. A systematic review covering 151 worldwide studies published in 2014 observed that the \(\text{EGFR} \) mutation-positive proportions were 60% and 37% in women and in men, respectively \[48\]. Previous studies showed that women can be more exposed to domestic radon which poses a risk for lung cancer at exposure levels approaching those for underground miners \[70\]. Others studied reported that domestic radon is associated with a low excess risk for lung cancer \[71, 72\]. Generally, women tend to be non-smokers or light smokers compared to men, but their domestic lifestyle may expose them to certain indoor mutagens. If the occurrence of \(\text{EGFR} \) mutations is associated with potential indoor mutagens, women would have a higher mutation rate than men \[73\]. Furthermore, female endocrine factors such as progesterone receptor and aromatase expression could also play a role in the prevalence of the \(\text{EGFR} \) mutations \[74\]. Further studies are needed to investigate the role of hormones in \(\text{EGFR} \) mutation-positive NSCLC.

In our review article, the prevalence of \(\text{EGFR} \) mutations in non-smokers was more than two folds higher in non-smokers than current smokers (31.1% versus 11.1%). In European or American studies, \(\text{EGFR} \) mutations rates in non-smokers ranged from 10–30% \[75\]. \(\text{EGFR} \) mutations are the most common driver gene found in never-smoker adenocarcinoma from East Asia, constituting 60–78% of this subgroup \[76–78\]. While some studies found that non-smokers were associated with a significantly higher \(\text{EGFR} \) mutations prevalence \[79\]. Others have reported an association between \(\text{EGFR} \) mutations and the amount and duration of cigarette smoking, with a higher incidence of mutations than that seen in never smokers \[80\]. Furthermore, clinical studies have suggested that the pathogenesis, clinical manifestation, and prognosis of non-smokers and smokers are different in lung cancer tumors \[81–83\]. Genetic differences have been also found in the tumors of non-smokers versus smokers \[84, 85\]. The proportion of non-smokers with NSCLC is increasing. Multiple environmental factors are implicated in lung carcinogenesis including exposure to secondhand tobacco smoke, pre-existing lung diseases, and family history of cancer. Exposure to industrial substances such as toxin (ex: arsenic, nickel, chromium, tar, soot), some organic chemicals (ex: radon, asbestos), radiation exposure, air pollution, tuberculosis and environmental tobacco smoke in non-smokers also increases the risk of developing lung cancer. More thorough investigations are needed to pinpoint causal mutagens and determine the amplitude of their potential mutagenic capability.
Deletions in exon 19 and the single amino acid substitution L858R in exon 21 account for approximately 85%-90% of all EGFR mutations in NSCLC, they are the most common and can predict response to EGFR TKIs and confer sensitivity to EGFR TKIs [86]. Exon 18 and 20 insertion mutations are less common and represent the remaining 10% of EGFR mutants in NSCLC. The exon 20 T790M point mutation, and most EGFR exon 20 mutations, are predictive of treatment resistance to first- and second-generation EGFR TKI therapies [44, 87]. In our article review, the average frequency of the exon 19 and substitutions in exon 21 were 45.2% and 30.9%, respectively, among all EGFR mutations. Together, these two mutations account for up to 76.1% of identified EGFR mutations. Our findings also identified potential EGFR TKI-resistant mutations in 11.2% (112/998) among which, the T790M substitution was the most prevalent resistance mutation to first-generation TKI (45.5%, 51/112). The low frequency of exon 19 del and the point mutation L858R at exon 21 (73.4%) among the MENA population is likely the result of the heterogeneity in screening and targeted methods, potentially engendering inaccuracies in the incidence rates of otherwise common EGFR mutations. Direct sequencing was the most commonly used methodology in MENA studies (45.9%, 11/24). However, Direct sequencing has some critical limitations among which the low mutation detection sensitivity; below a certain threshold of mutant DNA, mutations could not be detected. The sensitivity of this technique is under par in representative clinical tumor samples and can yield accurate results only at higher concentrations of mutant DNA [88]. Sousaa et al. showed that approximately 3% of NSCLC patients have rare mutations not identified by real-time PCR approaches [89]. The molecular characterization of peripheral blood may provide a strategy for the non-invasive serial monitoring of tumor genotypes during treatment, particularly for the EGFR T790M mutation [90]. The frequency of T790M mutation depends on the types of assays for this mutation [91]. Oxnard et al. found that 31% of NSCLC patients who are negative for T790M on central tumor genotyping have detectable T790M in plasma and recommend that tissue biopsy T790M genotyping would be substituted by liquid biopsy [92]. Other plasma assays have similarly identified unexpected false-positives for T790M in the absence of false-positives for other mutations [93]. T790M mutational analysis in liquid biopsies is currently incorporated in recent guidelines for the management of acquired TKI resistance [94]. Recent studies have confirmed that EGFR mutations from plasma can predict the clinical response to targeted therapy [95, 96]. In the MENA region, the T790M mutation, using liquid biopsy, has been conducted only in NSCLC patients from Lebanon [97]. In addition, Next Generation Sequencing (NGS) has the ability to detect the whole exome or genome and is not restricted to specific target sequences. NGS can simultaneously analyze multiple variations, including uncommon alterations. Uncommon EGFR mutations make up a highly heterogeneous subgroup of NSCLCs that account for approximately 10%-18% of EGFR-mutated patients, and NGS testing can broaden the spectrum of alterations within the uncommon group in NSCLC patients [98]. However, Non-invasive plasma-based detection of EGFR mutations using digital PCR is still the most suitable method in clinical EGFR testing, thanks to its higher sensitivity, easier-to-understand results, low turn-around time and low cost to predicting the efficiency of EGFR-TKI [96].

This report revealed that the molecular epidemiology of EGFR mutations is heavily influenced by ethnicity and geography; EGFR mutations were found to be more frequent in patients in the MENA region than in patients of caucasian ancestry, in contrast, the rates reported among Asian populations were quite higher. Although results from this study were consistent with findings in previous reports, they should be considered cautiously due to some limitations. Firstly, a considerable portion of the considered studies have low statistical power as 8 of them included less than 100 patients. This could misrepresent the true prevalence of EGFR mutations in the region. Also, data about the stage of the tumors lacked from the majority of the included studies. Therefore, the correlation of tumor-stage and EGFR mutational status remains undefined in the region. Furthermore, the majority of the analyzed cases of the studies had adenocarcinomas, consequently, the reported influence of this particular histological subtype on EGFR mutational status could be inaccurate. Despite these limitations, a major strength of this review is the inclusion of available studies from a wide range of countries in the region. These estimates can serve as a reference for future research or policy making. Since EGFR mutation rates vary depend depending on, inter alia, ethnicity, NSCLC patients genotyping should be a standard of care in the MENA region in order to have more accurate and realistic data on EGFR mutation frequencies.

Declarations

Ethics approval and consent to participate: Not applicable.

Consent for publication: Not applicable.

Availability of data and materials: The data that support the findings of this study are available from original articles that have been included in this study. Data are available from the authors upon reasonable request from the corresponding author.

Competing Interest: The authors declare no competing interest.

Funding: This research received no external funding.

Authors’ Contributions: YB, AL, and HEIR have conceived the study, exploited data, coordinated and drafted the paper. TB, BEIM, HEIA, and HC participated in the designed. HS, HE, IAR and, TM generated data and involved in data analyses. YS, BB, KE, IL-A, MI, RT, AA, and MO have read and agreed to the published version of the manuscript. All authors have read and agreed to the published version of the manuscript.

Acknowledgements: All authors thank HAMZAOU1 Said for the English language revision.

References

1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2021;71:3.

2. Fouad H, Commar A, Hamadeh R, El-Awa F, Shen Z, Fraser C. Estimated and projected prevalence of tobacco smoking in males, Eastern Mediterranean Region, 2000-2025. Eastern Mediterranean Health Journal. 2021;27:1.

3. Didkowska J, Wojciechowska U, Marczuk M, Lobaszewski J. Lung cancer epidemiology: contemporary and future challenges worldwide. Annals of translational medicine. 2016;4:8.
4. Salim EI, Jazieh AR, Moore MA. Lung cancer incidence in the Arab league countries: risk factors and control. Asian Pac J Cancer Prev. 2011;12:1.

5. Jazieh AR, Algwais G, Enihani H, Elghissassi I, Mula-Hussain L, Bawazir AA, et al. Lung cancer in the middle East and North Africa Region. Journal of Thoracic Oncology. 2019;14:11.

6. Salhab HA, Fares MY, Khachfe HH, Khachfe HM. Epidemiological study of lung cancer incidence in Lebanon. Medicina. 2019;55:6.

7. Planchard D, Popat S, Kerr K, Novello S, Smit EF, Fairev-Finn C, et al. Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology. 2018;29:4.

8. da Cunha Santos G, Shepherd FA, Tsao MS. EGFR mutations and lung cancer. Annual Review of Pathology: Mechanisms of Disease. 2011;6.

9. Liu X, Wang P, Zhang C, Ma Z. Epidermal growth factor receptor (EGFR): A rising star in the era of precision medicine of lung cancer. Oncotarget. 2017;8:30.

10. Graham RP, Treece AL, Lindeman NI, Vasalos P, Shan M, Jennings LJ, et al. Worldwide frequency of commonly detected EGFR mutations. Archives of pathology & laboratory medicine. 2018;142:2.

11. Westover D, Zugazagotia J, Cho BC, Lovly CM, Paz-Ares L. Mechanisms of acquired resistance to first-and second-generation EGFR tyrosine kinase inhibitors. Annals of Oncology. 2018;29:1.

12. Sequist LV, Yang JC, Yamamoto N, O'Byrne K, Hirsh V, Mok T, et al. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. Journal of clinical oncology. 2013;31:27.

13. Cote ML, Haddad R, Edwards DJ, Atikukke G, Gadgeel S, Soubani AQ, et al. Frequency and type of epidermal growth factor receptor mutations in African Americans with non-small cell lung cancer. Journal of Thoracic Oncology. 2011;6:3.

14. Reinersman JM, Johnson ML, Riely GJ, Chitale DA, Nicastri AD, Soff GA, et al. Frequency of EGFR and KRAS mutations in lung adenocarcinomas in African Americans. Journal of Thoracic Oncology. 2011;6:1.

15. Chougule A, Prabhav K, Noronha V, Joshi A, Thavamani A, Chandrani P, et al. Frequency of EGFR mutations in 907 lung adenocarcinoma patients of Indian ethnicity. PloS one. 2013;8:10.

16. Shigematsu H, Lin L, Takahashi T, Nomura M, Suzuki M, Wistuba II, et al. Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. Journal of the National Cancer Institute. 2005;97:5.

17. Leidner RS, Fu P, Clifford B, Hamdan A, Jin C, Eisenberg R, et al. Genetic abnormalities of the EGFR pathway in African American patients with non–small-cell lung cancer. Journal of Clinical Oncology. 2009;27:33.

18. Benbrahim Z, Antonia T, Mellas N. EGFR mutation frequency in Middle East and African non-small cell lung cancer patients: a systematic review and meta-analysis. BMC cancer. 2018;18:1.

19. Obeidat N, Awidi A, Ababneh N, Shomar M, Al-Adaily T, Jaber M, et al. Frequency of epidermal growth factor receptor mutations in Jordanian lung adenocarcinoma patients at diagnosis. Journal of cancer research and therapeutics. 2016;12:2.

20. Mohammadzadeh S, Jawkar Z, Mirzai M, Geramizadeh B. Epidermal Growth Factor Receptor (EGFR) Gene Mutation Analysis in Adenocarcinoma of Lung, the First Report from Iran. Iranian journal of pathology. 2019;14:1.

21. Basi A, Khaleidi F, Niya MH, Rezvani H, Rakhshani N. Epidermal growth factor receptor mutations in lung adenocarcinomas: A single center study from Iran. Asian Pacific journal of cancer prevention: APJCP. 2018;19:1.

22. Calibasi-Kocal G, Amirfallah A, Sever T, Umit Unal O, Gurel D, Oztop I, et al. EGFR mutation status in a series of Turkish non-small cell lung cancer patients. Biomedical Reports. 2020;13:2.

23. Bircan S, Baloglu H, Kucukodaci Z, Bircan A. EGFR and KRAS mutations in Turkish non-small cell lung cancer patients: a pilot study. Medical oncology. 2014;31:8.

24. Unal OU, Oztop I, Calibasi G, Baskin Y, Koca D, Demir N, et al. Relationship between epidermal growth factor receptor gene mutations and clinicopathological features in patients with non-small cell lung cancer in western Turkey. Asian Pacific Journal of Cancer Prevention. 2013;14:6.

25. Tezel GG, Şener E, Aydın Ç, Önder S. Prevalence of epidermal growth factor receptor mutations in patients with non-small cell lung cancer in Turkish population. Balkan medical journal. 2017;34:6.

26. Özçelik N, Akşel N, Bülbü Y, Erdog'an Y, Gündavale F, Gül ŞK, et al. Regional distribution of genetic mutation in lung cancer in Turkey (REDIGMA). Tuberk Toraks. 2019;67:3.

27. Mubarak A, Aljufairi E, Almahari SA. Lung Cancer in Bahrain: Histological and Molecular Features. The Gulf Journal of Oncology. 2020;1:34.

28. Jazieh AR, Jaafar H, Jaloudi M, Mustafa RS, Rasul K, Zekri J, et al. Patterns of epidermal growth factor receptor mutation in non-small-cell lung cancers in the Gulf region. Molecular and clinical oncology. 2015;3:6.

29. Hassani HH, Al-Awadi SJ, Harak JJ. Detection of EGFR Mutations in Bronchial Wash from Iraqi patients with nonsmall Cell Lung Cancer (NSCLC). Journal of Clinical and Biomedical Sciences. 2014;4:3.

30. Ramadhan HH, Taaban DF, Hassan JK. The Frequency of Epidermal Growth Factor Receptor (EGFR) mutations in Iraqi patients with Non-Small Cell Lung Cancer (NSCLC). Asian Pacific Journal of Cancer Prevention: APJCP. 2021;22:2.

31. Naderi S, Ghorra C, Haddad F, Kourie HR, Rassy M, El Karak F, et al. EGFR mutation status in Middle Eastern patients with non-squamous non-small cell lung carcinoma: A single institution experience. Cancer epidemiology. 2018;39:6.

32. Kattan JG, Haddad F, Kourie HR, Naderi S, Rassy M, El Karak FR, et al. EGFR mutation incidence and characteristics in non-squamous lung carcinoma in the Lebanese population J.Clin. Oncol. 2015;33:5.
33. Fakhruddin N, Mahfouz R, Farhat F, Tfayli A, Abdelkhalik R, Jabbour M, et al. Epidermal growth factor receptor and KRAS mutations in lung adenocarcinoma: A retrospective study of the Lebanese population. Oncology reports. 2014;32:5.

34. Tfayli A, Rafei H, Mina A, Khalil M, Fakhruddin N, Mahfouz R, et al. Prevalence of EGFR and ALK mutations in lung adenocarcinomas in the Levant Area: a prospective analysis. Asian Pacific journal of cancer prevention: APJCP. 2017;18:1.

35. Errihani H, Inrahoum H, Bouik A, Kettani F, Gamra L, Mestari A, et al. Frequency and type of epidermal growth factor receptor mutations in moroccan patients with lung adenocarcinoma. Journal of Thoracic Oncology. 2013;8:9.

36. Lemine Sow M, El Yacoubi H, Moukafih B, Balde S, Akimana G, Najem S, et al. Frequency and types of EGFR mutations in Moroccan patients with non–small cell lung cancer. Tumori Journal. 2021;107:4.

37. Kaanane H, El Attar H, Louahabi A, CASA I, Berradi H, Idrissi HH, et al. Targeted methods for molecular characterization of EGFR mutational profile in lung cancer Moroccan cohort. Gene. 2019;705.

38. Dhib D, Belguith I, Capelli L, Chiadini E, Canale M, Bravaccini S, et al. Analysis of genetic alterations in Tunisian patients with lung adenocarcinoma. Cells. 2019;8:6.

39. Mrahi Z, Amar JB, Bouaouch H, Rammeh S, Hila L. EGFR mutation status in Tunisian non-small-cell lung cancer patients evaluated by mutation-specific immunohistochemistry. BMC pulmonary medicine. 2018;18:1.

40. Touni AA, Blet A, AlouI R, Zaibi H, Ksentinini M, Boudaya MS, et al. Assessment of EGFR mutation status in Tunisian patients with pulmonary adenocarcinoma. Current research in translational medicine. 2018;66:3.

41. Ibrahim AK, Youssef MW, Helal A, Waguil S, Khalifa M, Azir R. Prevalence of EGFR mutations and its correlation with Egyptian patients’ human kinetics (PEEK Study). Annals of Oncology. 2019;30:38.

42. Lahmadi M, Beddar L, Rouibah AL, Boumegoura A, Boufendi H, Temim A, et al. Analysis of EGFR Mutation Status in Algerian Patients with Non-Small Cell Lung Cancer. Asian Pacific Journal of Cancer Prevention. 2021;22:4.

43. Park IK, Hyun K, Kim ER, Park S, Kang CH, Kim YT. The prognostic effect of the epidermal growth factor receptor gene mutation on recurrence dynamics of lung adenocarcinoma. European Journal of Cardio-Thoracic Surgery. 2018;54:6.

44. Ettinger DS, Wood DE, Akerley W, Rathkopf DE, Camidge DR, et al. NCCN guidelines insights: non–small cell lung cancer, version 4.2016. Journal of the National Comprehensive Cancer Network. 2016;14:3.

45. Kerr KM, Babendorff L, Edelman MJ, Marchetti A, Mok T, Novello S, et al. Second ESMO consensus conference on lung cancer: pathology and molecular biomarkers for non-small-cell lung cancer. Annals of Oncology. 2014;25:9.

46. Zhang YL, Yuan JQ, Wang KF, Fu XH, Han XR, Threapleton D, et al. The prevalence of EGFR mutation in patients with non-small cell lung cancer: a systematic review and meta-analysis. Oncotarget. 2016;7:48.

47. Shigematsu H, Lin L, Takahashi T, Nomura M, Suzuki M, Wistuba II, et al. Clinical and biological features associated with epidermal growth factor receptor gene mutations associated in lung cancers. Journal of the National Cancer Institute. 2005;97:5.

48. Midha A, Dearden S, McCormack R. EGFR mutation incidence in non-small-cell lung cancer of adenocarcinoma histology: a systematic review and global map by ethnicity (mutMapII). American journal of cancer research. 2015;5:9.

49. Colombino M, Pallojannis P, Cossu A, Santeufemia DA, Sini MC, Casula M, et al. EGFR, KRAS, BRAF, ALK, and cMET genetic alterations in 1440 Sardinian patients with lung adenocarcinoma. BMC pulmonary medicine. 2019;19:1.

50. Han B, Tjulandin S, Hagiwara K, Normanno N, Wulandari L, Laktionov K, et al. EGFR mutation prevalence in Asia-Pacific and Russian patients with advanced NSCLC of adenocarcinoma and non-adenocarcinoma histology: The IGNITE study. Lung Cancer. 2017;113.

51. Chan SW, Maske CP, Ruff P. EGFR Mutations in Non-Small Cell Lung Cancer in South Africa. Annals of Oncology. 2015;26:1.

52. Stone E, Allen HA, Saghaie T, Abbott A, Daniel R, Mead RS, et al. High proportion of rare and compound epidermal growth factor receptor mutations in an Australian population of non-squamous non-cell lung cancer. Internal medicine journal. 2014;44:12a.

53. Arrieta O, Cardona AF, Martin C, Más-López L, Corrales-Rodríguez L, Bramuglia G, et al. Updated frequency of EGFR and KRAS mutations in nonsmall-cell lung cancer in Latin America: the Latin-American Consortium for the Investigation of Lung Cancer (CLICaP). Journal of Thoracic Oncology. 2015;10:5.

54. Soraas L, Stebbing J. Geographic variation in EGFR mutation frequency in lung adenocarcinoma may be explained by interethnic genetic variation. Journal of Thoracic Oncology. 2018;13:3.

55. Soh J, Toyooka S, Matsuo K, Yamamoto H, Wistuba II, Lam S, et al. Ethnicity affects EGFR and KRAS gene alterations of lung adenocarcinoma. Oncology letters. 2015;10:3.

56. Pinto JA, Mas LA, Gomez HL. High epidermal growth factor receptor mutation rates in Peruvian patients with non–small-cell lung cancer: is it a matter of Asian ancestry? Journal of global oncology. 2017;3:4.

57. Innes CJ, Mohamed T, Emma MM, Carl BL, Nevill B. “Tunisia”. Encyclopedia Britannica, 23 Sep. 2021, https://www.britannica.com/place/Tunisia. Accessed 30 September 2021.

58. Lan Q, He X, Shen M, Tian L, Liu LZ, Lai H, et al. Variation in lung cancer risk by smoky coal subtype in Xuanwei, China. International journal of cancer. 2008;123:9.

59. Zhou Y, Wang Y, Yang C, Chen Y, Yang C, Du Y, et al. Epidermal growth factor receptor (EGFR) mutations in non–small cell lung cancer (NSCLC) of Yunnan in southwestern China. Oncotarget. 2017;8:9.

60. Lissowska J, Bardin-Mikolajczak A, Fletcher T, Zaridze D, Szeszenia-Dabrowska N, Rudnai P, et al. Lung cancer and indoor pollution from heating and cooking with solid fuels: the IARC international multicentre case-control study in Eastern/Central Europe and the United Kingdom. American journal of epidemiology. 2005;162:4.
61. International Agency for Research on Cancer. Household use of solid fuels and high-temperature frying. IARC Press, International Agency for Research on Cancer. 2010; 95.

62. Shields PG, Xu GX, Blot WJ, Fraumeni Jr Jr, Trivers GE, Pellizzari ED, et al. Mutagens from heated Chinese and US cooking oils. JNCI: Journal of the National Cancer Institute. 1995;87:11.

63. Wang LF. Mutagenicity and aromatic amine content of fumes from heated cooking oils produced in Taiwan. Food and Chemical Toxicology. 1999;37:2–3.

64. Loomis D, Huang W, Chen G. The International Agency for Research on Cancer (IARC) evaluation of the carcinogenicity of outdoor air pollution: focus on China. Chinese journal of cancer. 2014;33:4.

65. Turner MC, Andersen ZJ, Baccarelli A, Diver WR, Gapstur SM, Pope III CA, et al. Outdoor air pollution and cancer: An overview of the current evidence and public health recommendations. CA: a cancer journal for clinicians. 2020;70:6.

66. Fois SS, Palogiannis P, Zinellu A, Fois AG, Cossu A, Palmieri G. Molecular epidemiology of the main druggable genetic alterations in non-small cell lung cancer. International Journal of Molecular Sciences. 2021;22:2.

67. Tarigopula A, Ramasubban G, Chandrashekar V, Govindasami P, Chandran C. EGFR mutations and ROS1 and ALK rearrangements in a large series of non-small cell lung cancer in South India. Cancer Reports. 2020;3:6.

68. Boch C, Kollmeier J, Roth A, Stephan-Falkenau S, Misch D, Gruning W, et al. The frequency of EGFR and KRAS mutations in non-small cell lung cancer (NSCLC): routine screening data for central Europe from a cohort study. BMJ Open. 2013;4:4.

69. Rosell R, Moran T, Queralt C, Porta R, Cardenal F, Camps C, et al. Screening for epidermal growth factor receptor mutations in lung cancer. New England Journal of Medicine. 2009;361:10.

70. Couraud S, Souquet PJ, Paris C, Do P, Doubre H, Pichon E, et al. BioCAST/IFCT-1002: epidemiological and molecular features of lung cancer in never-smokers. European Respiratory Journal. 2015;45:5.

71. Darby S, Hill D, Auvinen A, Barros-Dios JM, Baysson H, Bochicchio F, et al. Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case-control studies. Bmj. 2005;330:7485.

72. Krewski D, Lubin JH, Zielinski JM, Alavanja M, Catalan VS, Field RW, et al. Residential radon and risk of lung cancer: a combined analysis of 7 North American case-control studies. Epidemiology. 2005.

73. Zhang X, Chang A. Somatic mutations of the epidermal growth factor receptor and non-small-cell lung cancer. Journal of medical genetics. 2007;44:3.

74. Sun HB, Zheng Y, Ou W, Fang Q, Li P, Ye X, et al. Association between hormone receptor expression and epidermal growth factor receptor mutation in patients operated on for non-small cell lung cancer. The Annals of thoracic surgery. 2011;91:5.

75. Bryant A, Cerfolio RJ. Differences in epidemiology, histology, and survival between cigarette smokers and never-smokers who develop non-small cell lung cancer. Chest. 2007;132:1.

76. Ha SY, Choi SJ, Cho JH, Choi HJ, Lee J, Jung K, et al. Lung cancer in never-smoker Asian females is driven by oncogenic mutations, most often involving EGFR. Oncotarget. 2015;6:7.

77. Serizawa M, Koh Y, Kenmotsu H, Isaka M, Murakami H, Akamatsu H, et al. Assessment of mutational profile of Japanese lung adenocarcinoma patients by multtarget assays: a prospective, single-institute study. Cancer. 2014;120:10.

78. Li S, Choi YL, Gong Z, Liu X, Lira M, Kan Z, et al. Comprehensive Characterization of Oncogenic Drivers in Asian Lung Adenocarcinoma. JOURNAL OF THORACIC ONCOLOGY. 2016;12:2.

79. Ren JH, He WS, Yan GL, Jin M, Yang KY, Wu G. EGFR mutations in non-small-cell lung cancer among smokers and non-smokers: A meta-analysis. Environmental and molecular mutagenesis. 2012;53:1.

80. Pham D, Krit MG, Riely GJ, Sarkaria IS, McDonough T, Chuai S, et al. Use of cigarette-smoking history to estimate the likelihood of mutations in epidermal growth factor receptor gene exons 19 and 21 in lung adenocarcinomas. J Clin Oncol. 2006;24:11.

81. Ferketich AK, Niland JC, Mamet R, Zornosa C, D’Amico TA, Ettinger DS, et al. Smoking status and survival in the national comprehensive cancer network non–small cell lung cancer cohort. Cancer. 2013;119:4.

82. Lee SJ, Lee J, Park YS, Lee CH, Lee SM, Yim JJ, et al. Impact of smoking on mortality of patients with non-small cell lung cancer. Thoracic cancer. 2014;5:1.

83. Muallaoglu S, Karadeniz C, Mertsoylu H, Besen AA, Sezer A, Sedef AM, et al. The clinicopathological and survival differences between never and ever smokers with non-small cell lung cancer. J BUON. 2014;19.

84. Chapman AM, Sun KY, Ruestow P, Cowan DM, Madl AK. Lung cancer mutation profile of EGFR, ALK, and KRAS: meta-analysis and comparison of never and ever smokers. Lung Cancer. 2016;102.

85. Gou LY, Niu FY, Wu YL, Zhong WZ. Differences in driver genes between smoking-related and non–smoking-related lung cancer in the Chinese population. Cancer. 2015;121:517.

86. Castellanos E, Feld E, Horn L. Driven by mutations: the predictive value of mutation subtype in EGFR-mutated non–small cell lung cancer. Journal of thoracic oncology. 2017;12:4.

87. Yoneda K, Imanishi N, Ichiki Y, Tanaka F. Treatment of non-small cell lung cancer with EGFR-mutations. Journal of UOEH. 2019;41:2.

88. Pao W, Ladanyi M. Epidermal growth factor receptor mutation testing in lung cancer: searching for the ideal method. Clinical Cancer Research. 2007;13.

89. Sousa AC, Silveira C, Janeiro A, Malveiro S, Oliveira AR, Felizardo M, et al. Detection of rare and novel EGFR mutations in NSCLC patients: implications for treatment-decision. Lung Cancer. 2020;139.
90. Zhao X, Han RB, Zhao J, Wang J, Yang F, Zhong W, et al. Comparison of epidermal growth factor receptor mutation statuses in tissue and plasma in stage I–IV non-small cell lung cancer patients. Respiration. 2013;85:2.

91. Oya Y, Yoshida T, Asada K, Oguri T, Inui N, Morikawa S, et al. Clinical utility of liquid biopsy for EGFR driver, T790M mutation and EGFR amplification in plasma in patients with acquired resistance to afatinib. BMC cancer. 2021;21:1.

92. Oxnard GR, Thress KS, Alden RS, Lawrance R, Paweletz CP, Cantarini M, et al. Association between plasma genotyping and outcomes of treatment with osimertinib (AZD9291) in advanced non–small-cell lung cancer. Journal of Clinical Oncology. 2016;34:28.

93. Sacher AG, Paweletz C, Dahlberg SE, Alden RS, O’Connell A, Feeney N, et al. Prospective validation of rapid plasma genotyping for the detection of EGFR and KRAS mutations in advanced lung cancer. JAMA oncology. 2016;2:8.

94. Shin DH, Shim HS, Kim TJ, Park HS, La Choi Y, Kim WS, et al. Provisional guideline recommendation for EGFR gene mutation testing in liquid samples of lung cancer patients: a proposal by the Korean Cardiopulmonary Pathology Study Group. Journal of pathology and translational medicine. 2019;53:3.

95. Seki Y, Fujiwara Y, Kohno T, Yoshida K, Goto Y, Horinouchi H, et al. Circulating cell-free plasma tumour DNA shows a higher incidence of EGFR mutations in patients with extrathoracic disease progression. ESMO open. 2018;3:2.

96. Song X, Gong J, Zhang X, Feng X, Huang H, Gao M, et al. Plasma-based early screening and monitoring of EGFR mutations in NSCLC patients by a 3-color digital PCR assay. British Journal of Cancer. 2020;123:9.

97. Assi H, Tfayli A, Assaf N, Abou Daya S, Bidikian AH, Kawsarani D, et al. Prevalence of T790M mutation among TKI-therapy resistant Lebanese lung cancer patients based on liquid biopsy analysis: A first report from a major tertiary care center. Molecular biology reports. 2019;46:4.

98. O’Kane GM, Bradbury PA, Feld R, Leighl NB, Liu G, Pisters KM, et al. Uncommon EGFR mutations in advanced non-small cell lung cancer. Lung Cancer. 2017;109.