Pathophysiology of Diabetic Dyslipidemia

Tsutomu Hirano

Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan

Accumulating clinical evidence has suggested serum triglyceride (TG) is a leading predictor of atherosclerotic cardiovascular disease, comparable to low-density lipoprotein (LDL)-cholesterol (C) in populations with type 2 diabetes, which exceeds the predictive power of hemoglobinA1c. Atherogenic dyslipidemia in diabetes consists of elevated serum concentrations of TG-rich lipoproteins (TRLs), a high prevalence of small dense low-density lipoprotein (LDL), and low concentrations of cholesterol-rich high-density lipoprotein (HDL2-C). A central lipoprotein abnormality is an increase in large TG-rich very-low-density lipoprotein (VLDL1), and other lipoprotein abnormalities are metabolically linked to increased TRLs. Insulin critically regulates serum VLDL concentrations by suppressing hepatic VLDL production and stimulating VLDL removal by activation of lipoprotein lipase. It is still debated whether hyperinsulinemia compensatory for insulin resistance is causally associated with the overproduction of VLDL. This review introduces experimental and clinical observations revealing that insulin resistance, but not hyperinsulinemia stimulates hepatic VLDL production. LDL and HDL consist of heterogeneous particles with different size and density. Cholesterol-depleted small dense LDL and cholesterol-rich HDL2 subspecies are particularly affected by insulin resistance and can be named “Metabolic LDL and HDL,” respectively. We established the direct assays for quantifying small dense LDL-C and small dense HDL(HDL3)-C, respectively. Subtracting HDL3-C from HDL-C gives HDL2-C. I will explain clinical relevance of measurements of LDL and HDL subspecies determined by our assays.

Diabetic kidney disease (DKD) substantially worsens plasma lipid profile thereby potentiated atherogenic risk. Finally, I briefly overview pathophysiology of dyslipidemia associated with DKD, which has not been so much taken up by other review articles.

Key words: Triglyceride-rich lipoproteins, Small dense LDL, HDL subspecies, Insulin resistance, Diabetes

Introduction

Diabetes is a disease of hyperglycemia due to deficiency of insulin actions, but serum lipids are also strongly affected by insulin. Serum lipid abnormalities (dyslipidemia) are commonly seen in diabetic populations irrespective of insulin deficiency or insulin resistance. It is no doubt that low-density lipoprotein (LDL)-cholesterol (C) is the most important risk factor for atherosclerotic cardiovascular disease (CVD) such as coronary artery diseases. However, severe hypercholesterolemia is not frequently observed in diabetic populations, rather hypertriglyceridemia and low high-density lipoprotein (HDL-C) are more common. A representative cohort study for Japanese populations with type 2 diabetic has revealed that the serum triglyceride (TG) levels are a leading predictor of CVD, comparable to LDL-C, which exceeded the predictive power of hemoglobinA1c. This observation simply implies that dyslipidemia is more powerful CVD risk than hyperglycemia even in diabetic populations whose blood glucose levels are substantially high. Thus, it is important to understand the pathophysiology of dyslipidemia based on the deficiency of insulin action. This review will firstly discuss the mechanisms of hypertriglyceridemia, a central lipid abnormality in diabetes. It is still matter of debate whether hyperinsulinemia compensatory for insulin resistance is causally associated with the overproduction of very-low-density lipoprotein (VLDL). I will explain the distinct role of insulin and insulin resistance in TG-rich lipoprotein (TRL) metabolism based on basic and clinical obser-
vations. Hypertriglyceridemia is metabolically associated with a preponderance of small dense (sd) LDL particle and low HDL2-C levels. We established the direct assays for quantifying sdLDL-C and HDL3-C levels, respectively. I will discuss clinical relevance of measurements of sdLDL-C and HDL2-C levels. Diabetic kidney disease (DKD) are frequently developed in poor glycemic controlled diabetic patients, which further worsens the nature and degree of diabetic dyslipidemia. I will finally discuss the unique lipoprotein abnormalities in patients with DKD, which may partially explain substantial high incidence of CVD in these patients.

Mechanism of Hypertriglyceridemia in Diabetes

Hypertriglyceridemia is the most common serum lipid abnormality in diabetic populations. Serum TG levels are not simply elevated along with the degree of hyperglycemia, but hyperinsulinemia compensated by insulin resistance is closely correlated with TG levels. TG consists of three molecules of fatty acids, the availability of circulating fatty acids (free fatty acids (FFA)) plays a crucial role in TG production in the liver, and partly in the intestine. Reaven et al. proposed that three distinct syndromes of hypertriglyceridemia occur as a result of abnormalities of glucose metabolism. In patients with impaired glucose tolerance, the basic defect is postulated to be the loss of normal insulin sensitivity, leading to compensatory hyperinsulinemia increased VLDL-TG secretion. Patients with type 2 diabetes have relative insulin deficiency, and the elevated FFA levels increase hepatic VLDL-TG secretion. In absolute insulin-deficient patients with type 1 diabetes, however, elevated FFA levels do not stimulate hepatic VLDL-TG secretion because the livers cannot respond to the increased FFA flux under severe insulin deficiency. The hypertriglyceridemia in patients with type 1 diabetes is primarily due to defect in the removal of VLDL-TG. This proposal provides important fundamental knowledge for understanding diabetic hypertriglyceridemia. However, one point remains questionable: Does hyperinsulinemia increase hepatic VLDL production? I will discuss this important issue later.

Chylomicrons in Diabetes

Chylomicrons are temporarily produced in the small intestine after dietary fat ingestion. Abnormal increase in serum TG levels after meal is called postprandial hyperlipidemia, which is often observed in diabetic patients and reported to be associated with the incidence of CVD. Similar to VLDL production in the liver, chylomicron production in the intestine is regulated by insulin and circulating FFA. Lipoprotein lipase (LPL), which is attached to the luminal surface of vascular endothelium plays a major role in chylomicron removal by hydrolysing chylomicron-TGs. LPL is upregulated by insulin, and conversely, insulin resistance diminishes LPL activity. Severe chylomicronemia (so-called diabetic lipemia) occasionally occurs in patients with insulin-depleted diabetes due to LPL deficiency. In type 2 diabetes with insulin resistance, chylomicron levels are often elevated by both overproduction and catabolic defect of chylomicrons. Increased secretion of apoC3 (an inhibitor of LPL) into plasma contributes to less efficient lipolysis of chylomicron-TGs. Although about 80% of the increase in TGs after a fat-load meal comes from chylomicrons, approximately 80% of the increase in particle number is accounted for by VLDL particles containing apoB100. Chylomicrons and VLDL particles are cleared from the circulation by common pathways and, therefore, compete for clearance. For this reason, increased secretion of VLDL by the liver is an important predictor of postprandial accumulation of chylomicrons.

Intestinal Cholesterol Absorption

Cholesterol homeostasis in the body is tightly balanced by de novo biosynthesis, intestinal absorption, and biliary and fecal excretion. Niemann-Pick C1-Like 1 (NPC1L1) mediates intestinal cholesterol absorption and facilitates cholesterol transport through the liver, which is a molecular target of an agent for hypercholesterolemia (ezetimibe). Intestinal NPC1L1 expression was increased in patients with diabetes. ATP binding cassette (ABC) proteins G5/G8 stimulate cholesterol excretion from the intestine. Reduced ABCG5/G8 expression was observed in the intestine of diabetic patients. Microsomal triglyceride transfer protein (MTP) is central to the formation of the chylomicron in the intestine. Intestinal MTP expression has been shown to increase in diabetes. These abnormal gene expressions in the intestine are associated with high prevalence of hypercholesterolemia as well as hyperchylomicronemia.

Hepatic VLDL Production

Increased assembly and secretion of VLDL by the liver is not strictly regulated by the gene expression of apoB100, a central constitutive protein of VLDL particle, but post-transcriptional regulation of apoB
plays a crucial role22]. In the presence of low levels of hepatic lipids, much of the synthesized apoB is degraded intracellularly22, 23. When hepatic TG is increased, degradation of apoB is reduced, and VLDL production is facilitated23. The major sources of fasting TG in the liver are 1) fatty acids derived from adipose tissue and enters into the liver, 2) fatty acids derived from chylomicron and VLDL remnants taken up by the liver, and 3) fatty acids produced by hepatic de novo lipogenesis (DNL). Among them, circulating FFA is the major source of VLDL-TG24.

FFA

Insulin resistance is associated with reduced inhibition of hormone-sensitive lipase in adipose tissue by insulin, leading to increased lipolysis, and thereby augmented portal flux of FFA to the liver. Endoplasmic reticulum (ER) is a central organelle where apoB is degraded in the hepatocytes25. FFA such as oleic acid-albumin complex rapidly enhances apo B secretion by hepatocytes because of the suppression of apoB degradation in ER22, 26. However, high doses of FFA for a long period inhibit apo B secretion in association with induction of ER stress, which induces steatohepatitis27. FFA-induced VLDL-particle (apoB) secretion is not always associated with VLDL-TG secretion, suggesting FFA per se suppresses apoB degradation before being synthesized to TG28. Cholesterol ester (CE) biosynthesis from FFA does not play a significant role in apoB degradation because changes in CE synthesis by free cholesterol or a statin did not affect the oleate-induced suppression of apoB degradation29.

Fatty Acids Derived from Chylomicron and VLDL Remnants

Chylomicron and VLDL are received lipolysis and metabolized into its remnants. Remnants are quickly taken up by the liver and supply TGs to hepatocytes. Exogenous VLDL treatment stimulates apoB secretion in hepatocytes by supplying fatty acids for TG synthesis30. However, the contribution of TRL remnants flux to newly produced VLDL-TG is estimated to be far small compared with that of FFA24. In diabetes, the role of TRL remnant uptake in VLDL production is complex because insulin resistance increases serum concentrations of remnants, whereas it suppresses the particle uptake due to reduced activity of hepatic lipoprotein receptors31.

Endogenous Fatty Acids

Hepatic DNL is mainly regulated by the transcription factor sterol response element binding protein-1c (SREBP-1c), and SREBP-1c regulates nearly all genes involved in fatty acids and TG synthesis in the liver32. Increased DNL stimulates VLDL-TG secretion but, unlike FFA flux, increases in DNL are not associated with increase in VLDL particle number but enlarges VLDL particle size with enrichment of TG in a particle33. DNL is stimulated by insulin via SREBP-1c and regulates the storage of hepatic TG. VLDL enlargement is also stimulated by high glucose via carbohydrate responsive element binding protein34. DNL is stimulated by insulin through insulin receptor substrate 1 (IRS1); however, IRS-1 is not downregulated by hyperinsulinemia35. Thus, DNL keeps work and contributes to produce VLDL-TG even though insulin resistance is developed. Insulin resistance may indirectly potentiate DNL by suppressing AMP-protein activated kinase which inhibits ATP consuming lipogenic processes36. Nevertheless, the proportion of VLDL-TG production through DNL is minor, but majority of the proportion of hepatic VLDL-TG production is derived from circulating FFA37. Therefore, VLDL-TG production should be reduced by hyperinsulinemia, such as insulin injection, via marked reduction in FFA flux into the liver. Similarly, patients with insulinoma are hyperinsulinemic but not hypertriglyceridemic38.

Direct Effect of Insulin on VLDL Production

Insulin suppresses VLDL-TG production by reduction in FFA, but insulin could directly suppress VLDL production independent of substrate availability. Incubation of insulin suppresses VLDL secretion into the medium in hepatocytes39-41. The suppressive effects of insulin on VLDL production requires phosphoinositide 3-kinase activity, a downstream of insulin signaling42. MTP transfers neutral lipids to nascent apoB, which is a rate-limiting step in hepatic VLDL production. Insulin downregulates MTP expression via activation of the mitogen-activated protein kinase pathway42 and suppression of forkhead box protein O1 (FOXO1) phosphorylation43. Thus, insulin resistance stimulates MTP activity and thereby enhances VLDL assembly. Lewis et al.5 demonstrated in humans that insulin infusion reduced VLDL-TG production under FFA clump by infusions of TG-emulsion and heparin. Interestingly, this direct suppressive effect of insulin on VLDL production was blunted in obese subjects with insulin resistance5. Similar to exogenous insulin, sulfonylurea suppressed VLDL-TG production and reduced serum TG levels48, suggesting that hyperinsulinemia suppresses VLDL secretion irrespective of the route of insulin delivery (portal or systemic). Conversely, hepatic VLDL-apo B secretion was increased in liver-specific insulin receptor knockout mice, a model of pure hepatic insulin resistance. These mice develop hyperinsulinemia, but their livers are unable to respond to it45. Taken together, there is no evidence that hyper-
insulinemia directly stimulates VLDL secretion. However, one cannot deny a possibility that long-term hyperinsulinemia, for instance, by excess amount of insulin injections or sulfonylureas, causes massive obesity, which provides enough FFA to overcome the suppressive effect of insulin on VLDL production. In fact, we demonstrated that adiposity powerfully regulates VLDL-TG production in massive obese rats, which was independent of the degrees of hyperinsulinemia or insulin sensitivity.

VLDL Subspecies

VLDL particles are separated into two main classes: large TG-rich VLDL1 particles and smaller more dense VLDL2 particles. VLDL particle is either secreted from the liver as VLDL2 or further lipidated to form a mature, TG-rich VLDL (i.e., VLDL1). Insulin infusion has a greater effect on the secretion of VLDL2-TGs than VLDL-apoB and suppresses mainly VLDL1-apoB production with little effect on VLDL2-apoB production. The reverse is true in the insulin-resistant state; VLDL1 production is preferentially increased without affecting VLDL2 production.

VLDL Catabolism

VLDL-TG removal is impaired in patients with type 2 diabetes, which promotes hypertriglyceridemia accompanied by an increase in secretion of VLDL. The removal defect is mainly caused by reduced activity of LPL, particularly in adipose tissue. Since insulin is an activator of LPL, insulin deficiency or insulin resistance diminishes LPL activity. In addition, increased serum levels of apoC3 could also contribute to the decreased VLDL catabolism. ApoC3 deficient mice were hypotriglyceridemic by enhanced VLDL-TG removal, and never developed hypertriglyceridemia even if obesity or diabetes were induced. Insulin sup-

Fig. 1. Pathogenesis of insulin resistance on VLDL overproduction and its related changes in other lipoproteins. Hepatic VLDL1 production is stimulated by insulin resistance, which is a central lipoprotein abnormality in diabetic dyslipidemia. The major sources of triglyceride (TG) in the liver are 1) free fatty acid (FFA) derived from adipose, 2) fatty acids derived from remnants of TRL (VLDL and chylomicron), and 3) de Novo Lipogenesis (DNL). Newly synthesized TG suppress intracellular apoB degradation. Insulin resistance is associated with reduced inhibition of hormone-sensitive lipase in adipose tissue, thereby augmented portal flux of FFA. TG synthesis from FFA or FFA per se strongly inhibit apoB degradation in the liver, thereby stimulates VLDL production. Hepatic uptake of TG-rich lipoprotein (TRL) remnants and DNL supply TG in the liver, but the contribution of these two factors to suppress apoB degradation are minor. Insulin resistance suppresses phosphoinositide (PI) 3-kinase mediated apoB degradation and enhances the action of microsomal triglyceride transfer protein (MTP), a rate-limiting factor of VLDL assembly. In the insulin-resistant state, VLDL1 production is preferentially increased without affecting VLDL2 production. Overproduction of VLDL1 is metabolically associated with preponderance of small dense LDL and reduced large cholesterol-rich HDL2.
are believed to be atherogenic lipoproteins. Nakajima et al. established the immune absorption assay for remnant-like particle (RLP)-C by using monoclonal antibodies to apoA-1 and apoB. This assay was initially made as an assay for apoB48 containing chylomicron remnants, but it was disclosed that apo B100 containing VLDL particles were also measurable.

RLP-C is highly correlated with plasma TG levels, and subjects with metabolic syndrome and type 2 diabetes have higher levels. ApoB48 concentration, a constitutive protein of chylomicrons, represents particle number of chylomicrons. It remains unknown whether apoB48 is an independent risk factor of CVD upon classical lipid parameters. It is of note that RLP-C concentrations are only 1/20 of LDL-C, and apoB48 concentrations are only 1/200 of apoB100. Therefore, it is no doubt that LDL is the most powerful atherogenic lipoprotein in blood circulation, but remnants could become a leading cause for CVD in special cases, such as Type 2 diabetes or end-stage kidney diseases where remnants are substantially elevated while LDL-C is reduced.

Unlike nephrotic syndrome or hypothyroidism, diabetes is not a representative disease exhibiting severe hypercholesterolemia. However, LDL-C is the best predictor of CVD, and LDL lowering by statin treatments dramatically reduced the incidence of CVD in diabetes populations. Why do LDL-C concentrations are only 1/20 of LDL-C, and apoB48 concentrations are only 1/200 of apoB100. Therefore, it is no doubt that LDL is the most powerful atherogenic lipoprotein in blood circulation, but remnants could become a leading cause for CVD in special cases, such as Type 2 dyslipidemia or end-stage kidney diseases where remnants are substantially elevated while LDL-C is reduced.

The Effect of Pioglitazone on VLDL Metabolism

Pioglitazone, a peroxisome proliferator-activated receptor (PPAR) gamma agonist, is an agent for the amelioration of insulin resistance, which might be an appropriate tool to study the relationship between insulin resistance and lipid metabolism. Pioglitazone has shown to improve TG and HDL-C levels and favorable effects on LDL particle size. We examined the effect of pioglitazone on VLDL-TG metabolism in rats with severe insulin resistance. Pioglitazone normalized TG levels by enhancing VLDL-TG removal from the circulation. Pioglitazone activated serum LPL activity and LPL production in adipose tissues in insulin-resistant mice. Unexpectedly, pioglitazone did not suppress VLDL-TG overproduction. Nagashima et al. reported the same results in patients with type 2 diabetes. They found that apoC3 production was suppressed by pioglitazone, which resulted in increasing LPL activity. These results suggest that this insulin sensitizer does not necessarily ameliorate all abnormal lipid metabolism associated with insulin resistance.

Remnant Lipoproteins

Chylomicron and VLDL are received lipolysis with LPL and metabolized into its remnants. Remnants are cholesterol-enriched particles, and their size is small enough to penetrate the vessel wall. Therefore, these are believed to be atherogenic lipoproteins. Nakajima et al. established the immune absorption assay for remnant-like particle (RLP)-C by using monoclonal antibodies to apoA-1 and apoB100. This assay was initially made as an assay for apoB48 containing chylomicron remnants, but it was disclosed that apo B100 containing VLDL particles were also measurable.

RLP-C is highly correlated with plasma TG levels, and subjects with metabolic syndrome and type 2 diabetes have higher levels. ApoB48 concentration, a constitutive protein of chylomicrons, represents particle number of chylomicrons. It remains unknown whether apoB48 is an independent risk factor of CVD upon classical lipid parameters. It is of note that RLP-C concentrations are only 1/20 of LDL-C, and apoB48 concentrations are only 1/200 of apoB100. Therefore, it is no doubt that LDL is the most powerful atherogenic lipoprotein in blood circulation, but remnants could become a leading cause for CVD in special cases, such as Type 2 diabetes or end-stage kidney diseases where remnants are substantially elevated while LDL-C is reduced.

SdLDL

Unlike nephrotic syndrome or hypothyroidism, diabetes is not a representative disease exhibiting severe hypercholesterolemia. However, LDL-C is the best predictor of CVD, and LDL lowering by statin treatments dramatically reduced the incidence of CVD in diabetes populations. Why do LDL-C concentrations are only 1/20 of LDL-C, and apoB48 concentrations are only 1/200 of apoB100. Therefore, it is no doubt that LDL is the most powerful atherogenic lipoprotein in blood circulation, but remnants could become a leading cause for CVD in special cases, such as Type 2 dyslipidemia or end-stage kidney diseases where remnants are substantially elevated while LDL-C is reduced.

Table 1. Distinct role of insulin vs. insulin resistance in major abnormalities of VLDL metabolism

Metabolic abnormalities	insulin	Insulin resistance	VLDL metabolism
FFA flux into the liver	↓	↑	Increase VLDL secretion
Intracellular degradation of apoB	↑	↓	Increase VLDL secretion
de novo lipogenesis (DNL)	↑	↑	Indirect
Microsomal triglyceride transfer protein (MTP)	↓	↑	Enlarge VLDL particle size
Lipoprotein lipase (LPL)	↑	↓	Stimulate VLDL assembly
Apolipoprotein C3	↑	↑	Decrease VLDL catabolism

Table 1. Distinct role of insulin vs. insulin resistance in major abnormalities of VLDL metabolism

- **FFA flux into the liver**: insulin decreases, insulin resistance increases, resulting in increased VLDL secretion.
- **Intracellular degradation of apoB**: insulin increases, insulin resistance decreases, leading to increased VLDL secretion.
- **de novo lipogenesis (DNL)**: both insulin and insulin resistance increase, resulting in indirect increase in VLDL particle size.
- **Microsomal triglyceride transfer protein (MTP)**: insulin decreases, insulin resistance increases, leading to increased VLDL assembly.
- **Lipoprotein lipase (LPL)**: insulin increases, insulin resistance decreases, leading to decreased VLDL catabolism.
- **Apolipoprotein C3**: insulin increases, insulin resistance increases, leading to decreased VLDL catabolism.
hypertriglyceridemia, such as chylomicronemia, have only modest increase in CVD risk\(^75\). This suggests that measurement of LDL particle size is not sufficient to predict CVD, but the number of LDL particles should be taken account for evaluating the overall risk. We established a direct method for the quantification of sdLDL-C, which is applicable to the auto-analyzer\(^76\). This method quantifies only cholesterol in LDL particles of density between 1.044 and 1.063 g/L. Our assay has been employed in many large cohort studies\(^77, 78\) and has revealed that sdLDL-C is a potent predictor of CVD beyond LDL-C. SdLDL-C levels are increased with either levels of TG or LDL-C, and remarkably increased in the combined hyperlipidemia (Type \(\text{ii}b\))\(^79\).

As shown in Fig. 3, sdLDL-C levels corresponding to LDL-C levels were constantly higher in patients with diabetes or coronary artery diseases than in healthy controls\(^80\). Abdominal fat volume measured by CT scan was positively associated with sdLDL-C but inversely associated with large-buoyant LDL-C\(^74\). Therefore, we can call sdLDL as “Metabolic LDL.”

LDL size is negatively regulated by serum TG levels, and LDL size is significantly reduced in hypertriglyceridemic subjects. However, individuals with severe hypertriglyceridemia, such as chylomicronemia, have only modest increase in CVD risk\(^75\). This suggests that measurement of LDL particle size is not sufficient to predict CVD, but the number of LDL particles should be taken account for evaluating the overall risk. We established a direct method for the quantification of sdLDL-C, which is applicable to the auto-analyzer\(^76\). This method quantifies only cholesterol in LDL particles of density between 1.044 and 1.063 g/L. Our assay has been employed in many large cohort studies\(^77, 78\) and has revealed that sdLDL-C is a potent predictor of CVD beyond LDL-C. SdLDL-C levels are increased with either levels of TG or LDL-C, and remarkably increased in the combined hyperlipidemia (Type \(\text{ii}b\))\(^79\).

As shown in Fig. 3, sdLDL-C levels corresponding to LDL-C levels were constantly higher in patients with diabetes or coronary artery diseases than in healthy controls\(^80\). Abdominal fat volume measured by CT scan was positively associated with sdLDL-C but inversely associated with large-buoyant LDL-C\(^74\). Therefore, we can call sdLDL as “Metabolic LDL.”

HDL Heterogeneity

Low HDL-C levels have been an independent
Patients with type 1 diabetes treated with insulin had higher HDL2-C than type 2 diabetes, and insulin-treated type 2 diabetes had higher HDL2-C levels than non-insulin-treated type 2 diabetes. These results suggest that exogenous insulin increases HDL2-C, and conversely insulin resistance blunts the raising effect of insulin on HDL2-C levels. Similar to sdLDL, HDL2-C would be “Metabolic HDL.” HDL function could be causally associated with CVD; thus recent studies have focused more on HDL function than on HDL-C levels. Cholesterol efflux capacity is a key metric of the anti-atherosclerotic functionality of HDL. Cholesterol efflux capacity was decreased in HDL obtained from subjects with metabolic syndrome and diabetes. Hyperglycemia-induced advanced glycation end products, oxidative stress, and low-grade inflammation are possible mechanisms for promoting HDL dysfunction.

Influence of Diabetic Kidney Disease (DKD)

It is well known that the incidence of CVD becomes substantially elevated with the progression of DKD. Plasma lipid profiles change substantially as the

Fig. 3. Relationship between LDL-C and small dense LDL-C concentrations in healthy controls, patients with type 2 diabetes without coronary heart diseases (CAD), and patients with CAD including diabetes. SdLDL-C levels corresponding to LDL-C levels are higher in patients with diabetes or CAD than in healthy controls. This figure is made based on our original data published in reference (80).
DKD advances. Overt proteinuria/hypoalbuminemia markedly increases LDL-C, and kidney dysfunction increases remnants and decreases HDL-C. We found that patients with DKD exhibited remarkable post-prandial hypertriglyceridemia and hyper-apoB48, a marker of chylomicrons. Hypertriglyceridemia was developed even in early stage of DKD. We studied a possible mechanism behind the hypertriglyceridemia in early stage of DKD. Plasma von Willebrand factor (vWF) is widely used as a surrogate marker for vascular endothelial damage. VWF was significantly elevated in albuminuric diabetes, whereas it remained normal in non-diabetic patients with kidney disease. These results suggest that albuminuria in diabetes implies not only kidney damage but also widespread vascular endothelial damage. Microalbuminuric diabetic patients had lower heparin-releasable LPL mass and higher vWF levels, and the LPL mass was inversely related to vWF. We speculate that the generalized endothelial damage decreases the functional LPL mass anchored on the endothelium, which is reflected by increased plasma vWF levels.

ApoC1 and apoC3 are inhibitors of the lipolysis and particle uptake of TRLs. Especially TRL-apoC3 levels were significantly elevated in both diabetic and non-diabetic CKD. The molecular mechanisms of upregulation of apoC3 remain unknown; however, we found that PPAR-alpha gene expression was remarkably diminished in animal model of CKD. PPAR-alpha is a target molecule of TG-lowering agent, fibrates, and inversely regulates the production of apoC3. Hepatic TG lipase, a key enzyme for hydrolysis of intermediate-density lipoprotein (IDL), is markedly decreased in CKD irrespective of nondiabetes or diabetes, which may explain the substantial increase of remnant lipoproteins. ApoA5 has been the focus of significant attention as a potential modulator of plasma TG in spite of its very low plasma concentration. Measured apoA5 levels were markedly reduced in both diabetic and non-diabetic HD patients, suggesting that reduced apoA5 might play an important role in the development of hypertriglyceridemia in some HD populations. Angiopoietin-like 4 has been considered a candidate molecule by which hypertriglyceridemia is developed in nephrotic syndrome. It remains to be determined whether angiopoietin-like 4 plays a pivotal role in the development of dyslipidemia associated with DKD.

Conclusion

Diabetes is a disease of insulin which strictly regulates both glucose and lipid metabolism. The effect of insulin on TRL metabolism is a key for understanding diabetic dyslipidemia. FFA/TRL/sdLDL particle is an atherogenic axis. In addition, the progression of DKD should be taken into account as an exacerbated factor for diabetic dyslipidemia. I wish this review helps to understand the pathophysiology of lipid abnormalities, a leading cause of CVD in diabetes populations.

Acknowledgement

Dr. Toshiyuki Hayashi in Showa University provided valuable comments on this review.

Conflicts of Interests

Tsutomu Hirano has received clinical research grants from Denka Seiken, AstraZeneka, MSD, and Takeda Pharmaceutical Co., and has received lecture honoraria from Kowa Pharmaceutical Co, AstraZeneka, MSD, and Takeda Pharmaceutical Co. The funding agencies had no role in the preparation of the manuscript.

References

1) Reaven GM, Greenfield MS. Diabetic hypertriglyceridemia: evidence for three clinical syndromes. Diabetes: 1981; 30 (Suppl 2): 66-75
2) Taskinen MR. Diabetic dyslipidaemia: from basic research to clinical practice. Diabetologia. 2003; 46: 733-749
3) Sone H, Tanaka S, Tanaka S, Iimuro S, Oida K, Yamasaki Y, Oikawa S, Ishibashi S, Katayama S, Ohashi Y, Akanuma Y, Yamada N; Japan Diabetes Complications Study Group. Serum level of triglycerides is a potent risk factor comparable to LDL cholesterol for coronary heart disease in Japanese patients with type 2 diabetes: sub-analysis of the Japan Diabetes Complications Study (JDCS). J Clin Endocrinol Metab. 2011, 96: 3448-3456
4) Reaven GM: Compensatory hyperinsulinemia and the development of an atherogenic lipoprotein profile: the price paid to maintain glucose homeostasis in insulin-resistant individuals. Endocrinol Metab Clin North Am. 2005; 34: 49-62
5) Lewis GF, Uffelman KD, Szeto LW, Weller B, Steiner G: Interaction between free fatty acids and insulin in the acute control of very low density lipoprotein production in humans. J Clin Invest. 1995; 95: 158-166
6) Lewis GF, Carpentier A, Adeli K, Giacca A: Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr Rev. 2002; 23: 201-229
7) Xiao C, Dash S, Morgantini C, Lewis GF: New and emerging regulators of intestinal lipoprotein secretion. Atherosclerosis. 2014; 233: 608-615
8) Zilversmit D.B.: Atherogenesis: a postprandial phenomenon Circulation, 1979; 60: 473-485
9) Borén J, Matikainen N, Adiels M, Taskinen MR. Post-prandial hypertriglyceridemia as a coronary risk factor.
10) Duez H, Pavlic M, Lewis GF: Mechanism of intestinal lipoprotein overproduction in insulin resistant humans. Atheroscler Suppl. 2008; 9: 33-38

11) Duez H, Lamarche B, Valéro R, Pavlic M, Proctor S, Xiao C, Szeto L, Patterson BW, Lewis GF: Both intestinal and hepatic lipoprotein production are stimulated by an acute elevation of plasma free fatty acids in humans. Circulation 2008: 117: 2369-2376

12) Goldberg IJ: Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis. J Lipid Res. 1996; 37: 693-707

13) Pykäläistö OJ, Smith PH, Brunzell JD: Determinants of human adipose tissue lipoprotein lipase. Effect of diabetes and obesity on basal- and diet-induced activity. J Clin Invest. 1975; 56: 1108-1117

14) Bagdade JD, Porte D Jr, Bierman EL: Diabetic lipemia. A form of acquired fat-induced lipemia. N Engl J Med. 1967; 276: 427-433

15) Li WW, Dammerman MM, Smith JD, Metzger S, Brslow JL, Leff T: Common genetic variation in the promoter of the human apo CII gene abolishes regulation by insulin and may contribute to hypertriglyceridemia. J Clin Invest. 1995. 96: 2601-2605

16) Cohn JS, Johnson EJ, Millar JS, Cohn SD, Milne RW, Noda T, Terauchi Y, Ueki K, Kadowaki T: Differential expression of genes involved in dysregulation of postprandial lipoproteins in type 2 diabetes. Atherosclerosis 2010; 211: 353-360

17) Karpe F, Bell M, Björkergen J, Hamsten A et al. Quantification of postprandial triglyceride-rich lipoproteins in healthy men by retinyl ester labeling and simultaneous measurement of apolipoproteins B-48 and B-100. Arterioscler. Thromb. Vasc. Biol. 1995; 15: 199-207

18) Brunzell JD, Hazzard WR, Porte D Jr, Bierman EL: Evidence for a common, saturable, triglyceride removal mechanism for chylomicrons and very low density lipoproteins in man. J. Clin. Invest. 1973; 52: 1578-1585

19) Adieles MA, Matikainen N, Westerbacka J, Söderlund S, Brunzell JD, Hazzard WR, Porte D Jr, Bierman EL: Evidences for a common, saturable, triglyceride removal mechanism for chylomicrons and very low density lipoproteins in man. J. Clin. Invest. 1995; 56: 1108-1117

20) Davis RA, Thrift RN, Wu CC, Howell KE: Apolipoprotein B100 secretion by lipid-induced hepatic endoplasmic reticulum stress in rodents. J Clin Invest. 2008; 118: 316-332

21) Melish J, Le NA, Ginsberg H, Steinberg D, Brown WV: Delayed secretory pathway contributions to postprandial accumulation of chylomicrons and chylomicron remnants is determined by the clearance capacity. Atherosclerosis. 2012; 222: 222-228

22) Dixon J.L, Ginsberg HN: Regulation of hepatic secretion of apolipoprotein B-containing lipoproteins: information obtained from cultured liver cells. J. Lipid Res. 1993; 34: 167-179

23) Bostrom K, M. Wettesten, J. Boren, G. Bondjers, O. Wiklund, and S-O. Olofsson: Pulse-chase studies of the synthesis and intracellular transport of apolipoprotein B-100 in HepG2 cells. 1986; J. Biol. Chem. 261: 13800-13806

24) Barrows BR, Parks EJ: Contributions of different fatty acid sources to very low-density lipoprotein-triacylglycerol in the fasted and fed states. J Clin Endocrinol Metab. 2006; 91: 1446-1452

25) Davis RA, Thrift RN, Wu CC, Howell KE: Apolipoprotein B is both integrated into and translocated across the endoplasmic reticulum membrane. Evidence for two functionally distinct pools. J Biol Chem. 1990; 265: 10005-10011

26) Dixon J.L, Furukawa S, Ginsberg HN: Oleate stimulates secretion of apolipoprotein B-containing lipoproteins from Hep G2 cells by inhibiting early intracellular degradation of apolipoprotein B. J Biol Chem. 1991; 266: 5080-5086

27) Ota T, Gayet C, Ginsberg HN: Inhibition of apolipoprotein B100 secretion by lipid-induced hepatic endoplasmic reticulum stress in rodents. J Clin Invest. 2008; 118: 316-332

28) Zhang Y-L, Hernandez-Ono A, Ko C, Yasunaga K, Huang L-S, Ginsberg HN: Regulation of hepatic apolipoprotein B-lipoprotein assembly and secretion by the availability of fatty acids 1: Differential effects of delivering fatty acids via albumin or remnant-like emulsion particles. J Biol Chem. 2004; 279: 19362-1937

29) Furukawa S, Hirano T: Rapid stimulation of apolipoprotein B secretion by oleate is not associated with cholesteryl ester biosynthesis in HepG2 cells. Biochim Biophys Acta. 1993; 1170: 32-37

30) Wu X, Sakata N, Dixon J, Ginsberg HN: Exogenous VLDL stimulates apolipoprotein B secretion from HepG2 cells by both pre- and post-translational mechanisms. J Lipid Res. 1994; 35: 1200-1210

31) Field PA, Gibbons GF: Decreased hepatic expression of the low-density lipoprotein (LDL) receptor and LDL receptor-related protein in aging rats is associated with delayed clearance of chylomicrons from the circulation. Metabolism. 2000; 49: 492-498

32) Horton JD, Goldstein JL, Brown MS. SREBP: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest. 2002; 109: 1125-1131

33) Melish J, Le NA, Ginsberg H, Steinberg D, Brown WV: Dissociation of apoprotein B and triglyceride production in very-low-density lipoproteins. Am J Phys. 1980; 239: E354-362

34) Wang Y, Viscarra J, Kim SJ, Sul HS: Transcriptional regulation of hepatic lipogenesis. Nat Rev Mol Cell Biol. 2015; 16: 678-689

35) Kubota N, Kubota T, Kajiwara E, Iwamura T, Kumagai H, Watanabe T, Inoue M, Takamoto I, Sasako T, Kumagai K, Kohjima M, Nakamura M, Moroi M, Sugi K, Noda T, Terauchi Y, Ueki K, Kadowaki T: Differential hepatic distribution of insulin receptor substrates causes selective insulin resistance in diabetes and obesity. Nat. Commun. 2016; 7: 12977

36) Verges B: Abnormal hepatic apolipoprotein B metabolism in type 2 diabetes. Atherosclerosis 2010; 211: 353-360

37) Vedala A, Wang W, Neese RA, Christiansen MP, Hellerstein MK: Delayed secretory pathway contributions to...
VLDL-triglycerides from plasma NEFA, diet, and de novo lipogenesis in humans. J Lipid Res. 2006; 47: 2562-2574

38) Skrha J, Haas T, Sindelka G, Prázný M, Widimský J, Cibula D, Svacina S: Comparison of the insulin action parameters from hyperinsulinemic clamps with homeostasis model assessment and QUICKI indexes in subjects with different endocrine disorders. J Clin Endocrinol Metab. 2004; 89: 135-141

39) Durrington PN, Newton RS, Weinstein DB, Steinberg RO: Apolipoprotein C-III: a potent modulator of hypertriglyceridemia and cardiovascular disease. Curr Opin Endocrinol Diabetes Obes. 2015; 22: 119-125

40) Sparks CE, Sparks JD, Bolognino M, Salhanick A, Malmstrom R, Packard CJ, Watson TD, Rannikko S, Adiels M, Olofsson SO, Taskinen MR, Borén J: Overproduction of very low-density lipoproteins is the hallmark of the dyslipidemia in the metabolic syndrome. Arterioscler Thromb Vasc Biol. 2008; 28: 1225-1236

41) Phung TL, Roncone A, Jensen KL, Sparks CE, Sparks JD: Phosphoinositide 3-kinase activity is necessary for insulin-dependent inhibition of apolipoprotein B secretion by rat hepatocytes and localizes to the endoplasmic reticulum. J Biol Chem. 1997; 272: 30693-30702

42) Allister EM, Borрадаle NM, Edwards JY, Huff MW: Inhibition of microsomal triglyceride transfer protein expression and apolipoprotein B100 secretion by the citrus flavonoid naringenin and by insulin involves activation of the mitogen-activated protein kinase pathway in hepatocytes. Diabetes. 2005; 54: 1676-1683

43) Kamagate A, Dong HH: Fox01 integrates insulin signaling to VLDL production. Cell Cycle. 2008; 7: 3162-3170

44) Lewis GF, Zinman B, Uffelman KD, Szeto L, Weller B, Adachi M, Olofsson SO, Taskinen MR, Borén J: Overproduction of very low-density lipoproteins is the hallmark of the dyslipidemia in the metabolic syndrome. Arterioscler Thromb Vasc Biol. 2008; 28: 1225-1236

45) Biddinger SB, Hernandez-Ono A, Rask-Madsen C, Haas JT, Alemán JO, Suzuki R, Scapa EF, Agarwal C, Carey MC, Stephanopoulos G, Cohen DE, King GL, Ginsberg HN, Kahn CR: Hepatic insulin resistance is sufficient to produce dyslipidemia and susceptibility to atherosclerosis. Cell Metab. 2008; 7: 95-96

46) Suga A, Hirano T, Inoue S, Tsuji M, Nambu K, Miura M, Adachi M: Plasma leptin levels and triglyceride secretion rates in VMH-lesioned obese rats: a role of adiposity. Am J Physiol. 1999; 276: E650-657

47) Zhao SP, Hozumi T, Ishida Y, Yoshino G: VLDL triglyceride kinetics in Wistar fatty rats, an animal model of NIDDM: effects of dietary fructose alone or in combination with pioglitazone. Diabetes. 1996; 45: 806-811

48) Nagashima K, Lopez C, Donovan D, Ngai C, Fontanze B, Bensadoun A, Fruchtman, A, Limaye A, Holleran S, Cohn JS, Ramakrishnan R, Ginsberg HN: Effects of the PPARgamma agonist pioglitazone on lipoprotein metabolism in patients with type 2 diabetes mellitus. J Clin Invest. 2005; 115: 1323-1332

49) Nakajima K, Saito T, Tamura A, Suzuki M, Nakano T, Adachi M, Tanaka A, Tada N, Nakamura H, Campos E, Havel RJ: Cholesterol in remnant-like lipoproteins in human serum using monoclonal anti apo B-100 and anti apo A-I immunoaffinity mixed gels. Clin Chim Acta. 1993; 223: 53-71
64) Campos E, Kotite L, Blanche P, Mitsugi Y, Frost PH, Masharani U, Krauss RM, Havel RJ: Properties of triglyceride-rich and cholesterol-rich lipoproteins in the remnant-like particle fraction of human blood plasma. J Lipid Res. 2002; 43: 365-374

65) Schaefer EJ, McNamara JR, Shah PK, Nakajima K, Cupples LA, Ordovas JM, Wilson PW: Framingham Offspring Study Elevated remnant-like particle cholesterol and triglyceride levels in diabetic men and women in the Framingham Offspring Study. Diabetes Care. 2002; 25: 989-994

66) Turner RC: The U.K. Prospective Diabetes Study. A review. Diabetes Care. 1998; 21 Suppl 3: C35-38

67) Colhoun HM, Betteridge DJ, Durrington PN, Hitman GA, Neil HA, Livingstone SJ, Thomason MJ, Mackness MI, Charlton-Menys V, Fuller JH: CARDS investigators Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet. 2004; 364: 685-696

68) Krauss RM: All low-density lipoprotein particles are not created equal. Arterioscler Thromb Vasc Biol. 2014; 34: 959-961

69) Austin MA, King MC, Vranizan KM, Krauss RM: Atherogenic lipoprotein phenotype. A proposed genetic marker for coronary heart disease risk. Circulation. 1990; 82: 495-506

70) Berneis KK, Krauss RM: Metabolic origins and clinical significance of LDL heterogeneity. J Lipid Res. 2002; 43: 1363-1379

71) Stampfer MJ, Krauss RM, Ma J, Blanche PJ, Holl LG, Sacks FM, Hennekens CH: A prospective study of triglyceride level, low-density lipoprotein particle diameter, and risk of myocardial infarction. JAMA. 1996; 276: 882-888

72) Georgieva AM, van Greevenbroek MM, Krauss RM, Brouwers MC, Vermeulen VM, Robertus-Teunissen MG, van der Kallen CJ, de Bruin TW: Subclasses of low-density lipoprotein and very low-density lipoprotein in familial combined hyperlipidemia: relationship to multiple lipoprotein phenotype. Arterioscler Thromb Vasc Biol. 2004; 24: 744-749

73) Kathiresan S, Otvos JD, Sullivan LM, Keyes MJ, Schaefer EJ, Wilson PW, D’Agostino RB, Vasan RS, Robins SJ: Increased small low-density lipoprotein particle number: a prominent feature of the metabolic syndrome in the Framingham Heart Study. Circulation 2006; 113: 20-29

74) Okazaki M, Usui S, Ishigami M, Sakai N, Nakamura T, Matsuzawa Y, Yamashita S: Identification of unique lipoprotein subclasses for visceral obesity by component analysis of cholesterol profile in high-performance liquid chromatography. Arterioscler Thromb Vasc Biol. 2005; 25: 578-584

75) Hegele RA, Ginsberg HN, Chapman MJ, Nordestgaard BG, Kuivenhoven JA, Averna M, Borén J, Bruckert E, Catapano AL, Descamps OS, Hovingh GK, Humphries SE, Kovanen PT, Masana L, Pajukanta P, Parhofer KG, Raal FJ, Ray KK, Santos RD, Stalenhofen AF, Stroes E, Taskinen MR, Tybjaerg-Hansen A, Watts GF, Wiklund O; European Atherosclerosis Society Consensus Panel: The polygenic nature of hypertriglyceridaemia: implications for definition, diagnosis, and management. Lancet Diabetes Endocrinol. 2014; 2: 655-666

76) Ito Y, Fujimura M, Ohta M, Hirano T: Development of a homogeneous assay for measurement of small dense LDL cholesterol. Clin Chem. 2011; 57: 57-65

77) Arai H, Kokubo Y, Watanabe M, Sawamura T, Ito Y, Minagawa A, Okamura T, Miyamoto Y: Small dense low-density lipoproteins cholesterol can predict incident cardiovascular disease in an urban Japanese cohort: the Suita study. J Atheroscler Thromb. 2013; 20: 195-203

78) Hoogeveen RC, Gaubatz JW, Sun W, Dodge RC, Crosby JR, Jiang J, Couper D, Virani SS, Kathiresan S, Boerwinkle E, Ballantyne CM: Small dense low-density lipoprotein-cholesterol concentrations predict risk for coronary heart disease: the Atherosclerosis Risk In Communities (ARIC) study. Arterioscler Thromb Vasc Biol. 2014; 34: 1069-1077

79) Hirano T, Ito Y, Koba S, Toyoda M, Ikejiri A, Saegusa H, Yamazaki J, Yoshino G: Clinical significance of small dense low-density lipoprotein cholesterol levels determined by the simple precipitation method. Arterioscler Thromb Vasc Biol. 2004; 24: 558-563

80) Hayashi T, Koba S, Ito Y, Hirano T: Method for estimating high sdLDL-C by measuring triglyceride and apolipoprotein B levels. Lipids Health Dis. 2017 26; 16: 21

81) Hirano T, Ito Y, Saegusa H, Yoshino G: A novel and simple method for quantification of small, dense LDL. J Lipid Res. 2003; 44: 2193-2201

82) HPS2-THRIVE Collaborative Group, Landray MJ, Haynes R, Hopewell JC, Parish S, Aung T, Tomson J, Wallendszus K, Craig M, Jiang L, Collins R, Armitage J: Effects of extended-release niacin with laropiprant in high-risk patients. N Engl. J Med. 2014; 371, 203-212

83) Barter PJ, Caulfield M, Eriksson M, Grundy SM, Kastelein JJ, Komajda M, Lopez-Sendjon M, Mosca L, Tardif JC, Waters DD, Shear CL, Revkin JH, Buhr KA, Fisher MR, Tall AR, Brewer B; ILLUMINATE Investigators. Effects of torcetrapib in patients at high risk for coronary events N. Engl. J. Med., 2007; 357: 2109-2122

84) Voight BF, Peloso GM, Ortho-Melander M, Frikke-Schmidt R, Barbalic M, Jensen MK, Hindy G, Holm H, Ding EL, Johnson T, Schunkert H, Samani NJ, Clarke R, Hopewell JC, Thompson JF, Li M, Thorleifsson G, Newton-Cheh C, Musunuru K, Pirruccello JP, Saleheen D, Chen L, Stewart A, Schillert A, Thorsteinsdottir U, Thorgeirsson G, Anand S, Engert JC, Morgan T, Spertus J, Stoll M, Berger K, Martellini N, Girelli D, McKeown PP, Patterson CC, Epstein SE, Devaney J, Burnett MS, Mooser V, Ripatti S, Surakka I, Nieminen MS, Sinisalo J, Lokki ML, Perola M, Havulinna A, de Faire U, Pershagen G, Ingelsson E, Zeller T, Wild P, de Bakker PI, Daly MJ, Guiducci C, Burtt NP, Surti A, Gonzalez E, Purcell S, Gabriel S, Marrugat J, Pedersen J, Erdmann J, Diemert P, Willenborg C, König IR, Fischer M, Heng-
stenberg C, Ziegler A, Buysschaert I, Lambrechts D, Van de Werf F, Fox KA, El Mokhtari NE, Rubin D, Schreinemacker J, Schreiber S, Schäfer A, Danesh J, Blankenberg S, Roberts R, McPherson R, Watkins H, Hall AS, Overvad K, Rimm E, Boerwinkle E, Tybjærg-Hansen A, Cupples LA, Reilly MP, Melander O, Mannucci PM, Ardissino D, Siscovick D, Elosua R, Stefansson K, O’Donnell CJ, Salomaa V, Rader DJ, Peltonen L, Schwartz SM, Alshuler D, Kathiresan S. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet. 2012; 380: 572-580

85) Calabresi L, Franceschini G, Sirtori M, Gianfranceschi G, Werba P, Sirtori CR: Influence of serum triglycerides on the HDL pattern in normal subjects and patients with coronary artery disease. Atherosclerosis. 1990; 84: 41-48

86) Ito Y, Satoh N, Ishii T, Kumakura J, Hirano T: Development of a homogeneous assay for measurement of high-density lipoprotein-subclass cholesterol. Clin Chim Acta. 2014; 427: 86-93

87) Maeda S, Nakanishi S, Yoneda M, Awaya T, Yamane K, Hirano T, Kohno N: Associations between small dense LDL, HDL subfractions (HDL2, HDL3) and risk of atherosclerosis in Japanese-Americans. J Atheroscler Thromb. 2012; 19: 444-452

88) Fukui T, Hirano T: High-density lipoprotein subfractions between patients with type 1 diabetes and type 2 diabetes without / with intensive insulin therapy. Endocr J. 2012; 59: 561-569

89) Khera AV, Chucel M, de la Llera-Moya M, Rodrigues A, Burke MF, Jafri K, French BC, Phillips JA, Mucksavage ML, Wilensky RL, Mohler ER, Rothblat GH, Rader DJ: Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med. 2011; 364: 127-135

90) Srivastava RAK: Dysfunctional HDL in diabetes mellitus and its role in the pathogenesis of cardiovascular disease. Mol Cell Biochem. 2018; 440: 167-187

91) Hirano T: Abnormal lipoprotein metabolism in diabetic nephropathy. Clin Exp Nephrol. 2014; 18: 206-209

92) Hayashi T, Hirano T, Taira T, Tokuno A, Mori Y, Koba S, Adachi M: Remarkable increase of apolipoprotein B48 level in diabetic patients with end-stage renal disease. Atherosclerosis. 2008; 197: 154-158

93) Hirano T, Ookubo K, Kashiwazaki K, Tajima H, Yoshino G, Adachi M: Vascular endothelial markers, von Willebrand factor and thrombomodulin index, are specifically elevated in type 2 diabetic patients with nephropathy: comparison of primary renal disease. Clin Chim Acta. 2000; 299: 65-75

94) Kashiwazaki K, Hirano T, Yoshino G, Kurokawa M, Tajima H, Adachi M: Decreased release of lipoprotein lipase is associated with vascular endothelial damage in NIDDM patients with microalbuminuria. Diabetes Care. 1998; 21: 2016-2020

95) Hirano T, Sakaue T, Misaki A, Murayama S, Takahashi T, Okada K, Takeuchi H, Yoshino G, Adachi M: Very low-density lipoprotein-apoprotein C III is increased in diabetic nephropathy: comparison with apoprotein C III. Kidney Int. 2003; 63: 2171-2177

96) Mori Y, Hirano T, Nagashima M, Shiraiishi Y, Fukui T, Adachi M: Decreased peroxisome proliferator-activated receptor alpha gene expression is associated with dyslipidemia in a rat model of chronic renal failure. Metabolism. 2007; 56: 1714-1718

97) Oi K, Hirano T, Sakai S, Kawaguchi Y, Hosoya T: Role of hepatic lipase in intermediate-density lipoprotein and small, dense low-density lipoprotein formation in hemodialysis patients. Kidney Int Suppl. 1999; 71: S227

98) Pennacchio LA, Rubin EM: Apolipoprotein A5, a newly identified gene that affects plasma triglyceride levels in humans and mice. Arterioscler Thromb Vasc Biol. 2003; 23: 529-534

99) Hirano T, Hayashi T, Adachi M, Taira T, Hattori H: Marked decrease of apolipoprotein A-V in both diabetic and nondiabetic patients with end-stage renal disease. Metabolism. 2007; 56: 462-463

100) Clement LC, Macé C, Avila-Casado C, Joles JA, Kersten S, Chugh SS: Circulating angiotensin-like 4 links proteinuria with hypertriglyceridemia in nephrotic syndrome. Nat Med, 2014; 14: 37-46