SNOC: a Monte-Carlo simulation package for high-z supernova observations

A. Goobar1, E. Mörtsell1, R. Amanullah1, M. Goliath2, L. Bergström1, and T. Dahlén3

1 Physics Department, Stockholm University, SCFAB, S-106 91 Stockholm, Sweden
2 Swedish Defence Research Agency (FOI), S-172 90 Stockholm, Sweden
3 Stockholm Observatory, SCFAB, S-106 91 Stockholm, Sweden

Received ...; accepted ...

Abstract. We present a Monte-Carlo package for simulation of high-redshift supernova data, SNOC. Optical and near-infrared photons from supernovae are ray-traced over cosmological distances from the simulated host galaxy to the observer at Earth. The distances to the sources are calculated from user provided cosmological parameters in a Friedmann-Lemaître universe, allowing for arbitrary forms of “dark energy”. The code takes into account gravitational interactions (lensing) and extinction by dust, both in the host galaxy and in the line-of-sight. The user can also choose to include exotic effects like a hypothetical attenuation due to photon-axion oscillations. SNOC is primarily useful for estimations of cosmological parameter uncertainties from studies of apparent brightness of Type Ia supernovae vs redshift, with special emphasis on potential systematic effects. It can also be used to compute standard cosmological quantities like luminosity distance, lookback time and age of the universe in any Friedmann-Lemaître model with or without quintessence.

Key words. Methods: numerical, data analysis, Cosmology: cosmological parameters

1. Introduction

The study of brightness of Type Ia supernovae (SNe) at high redshifts has become one of the most important tools in observational cosmology over the last few years (Goobar & Perlmutter, 1995; Perlmutter et al., 1999; Riess et al., 1998, 2001), giving the first direct observational evidence for a presently accelerating universe. With the increased capabilities of observing very high-redshift SNe, more comprehensive analysis tools are needed (see, e.g., Mörtsell et al., 2001b).

In this work we describe a Monte-Carlo simulation package called The SuperNova Observation Calculator (SNOC) which produces synthetic samples of SN observations that can be used to estimate the accuracy of the magnitude-redshift method for measuring cosmological parameters as well as quantifying the possibility of constraining extragalactic dust properties (Goobar et al., 2002a) or investigating the matter distribution in the Universe (Mörtsell et al., 2001a). For example, SNOC can be used to quantify the deviations in the Hubble diagram of Type Ia SNe due to gravitational lensing or dust extinction along the line-of-sight. Tools are also provided to compute the possible contamination of an observational sample by core collapse SNe and the likelihood of observation of multiple (lensed) images from individual high-z SNe (Goobar et al., 2002b).

2. The program

SNOC is a modular FORTRAN77 program using a random number generator described in Walck (1988). The program produces an ASCII output containing one block of data for each synthetic “event”. One event corresponds to one SN. Each SN is characterized by its redshift and SN type (i.e whether is a Type Ia, Ib, Ic, IIP, IIL or 'SN1987A like'). The luminosity distance corresponding to the SN redshift is calculated from the user supplied set of cosmological parameters where we assume a standard Friedmann-Lemaître (FL) universe with arbitrary choice of “dark energy”. In order to estimate effects along the line-of-sight, e.g., from gravitational lensing and dust extinction, the light beam is traced backwards in time from the observer to the host galaxy, taking into account the non-homogeneity of the universe and possible intervening matter. This procedure is shown schematically in Fig. 1.

The program sequence is as follows:

\begin{itemize}
 \item Initialization
 \item Read user-supplied parameters (see next section)
 \item Loop: event generator
 \begin{enumerate}
 \item Select SN type
 \end{enumerate}
\end{itemize}
2. Generate SN redshift, \(z\)
3. Calculate distance and lookback time to \(z\)
4. Calculate unperturbed SN lightcurve in a “redshifted” B-band filter\(^1\)
5. Perform ray-tracing
 (a) Calculate gravitational lensing magnification
 (b) Perform differential dust extinction calculation
 (c) Estimate dimming due to exotics, e.g., photon-axion oscillations
6. Calculate apparent SN brightness in BVRIJ filters
7. Generate host galaxy properties

3. The user supplied parameters

Table 1 in Appendix A summarizes the user supplied parameters for the simulation. These include the following main items:

- The number and type of SNe to be generated. The SN types supported are Ia, Ibc, IIn, IIP, IIL and core collapse SNe resembling SN 1987a.
- The redshift distribution to be used. The options include:
 1. Uniform distribution within a chosen range
 2. Tabulated redshift distribution
 3. Listed individual redshifts
 4. Gaussian probability distribution function with given mean value and standard deviation
 5. Redshift distribution generated from star formation rates [Ref. Dahlén & Fransson (1999)]
- Options for generating the SN lightcurve
- Cosmological parameters: \([H_0, \Omega_M, \Omega_X, \alpha_X(z)]\)
- Gravitational lensing. The user supplies the relative fraction of galaxy halos parametrized as singular isothermal spheres (SIS), Navarro-Frenk-White profiles (NFW), compact objects or spheres with uniform mass density.
- Dust extinction parameters: mean free paths and frequency dependence for host galaxy dust extinction, dust in intervening galaxies and in the intergalactic medium.
- Choice of observed filters (K-corrections)

\(^1\) Transmission function satisfying \(B^x(\lambda) = B(\frac{1}{1 + x})\)

- Galaxy parameters: luminosity and mass distribution
- SN search conditions

4. The event generator

4.1. Supernova Type and redshift distribution

The SN type is selected as either individual type (e.g., ‘Ia’) or a group of SNe (e.g., ‘core’) which generates core collapse SNe with a differential rate as in Dahlén & Fransson (1999) and Dahlén & Goobar (2002).

Several redshift distributions are provided by the code: uniform or Gaussian distributions as well as physically motivated redshift distributions according to:

\[
\frac{dN}{dz} = \frac{4\pi c^3}{H(z)(1+z)^2} \cdot \frac{r_{SN}(z)}{1+z} \tag{1}
\]

where \(r_{SN}\) is the rate of SNe in comoving coordinates.

In SNOC we implemented the models of the evolution of the comoving rate of SN explosions in Dahlén & Fransson (1999). In these models an additional user supplied parameter \(\tau\) indicates the minimum time needed to form the binary systems believed to be the progenitors of Type Ia SN explosions. Typical values range from 0.3 to 3.0 billion years.

It is also possible to generate SNe with redshifts from a user provided list of redshifts or user defined distributions.

4.2. The luminosity distance and apparent magnitude: cosmological models

The luminosity distance and the lookback time to the event are calculated assuming an isotropic and homogeneous universe. In such a FL universe, the scale factor and thereby the distance estimates are functions of the Hubble constant, \(H_0\) and the energy components of the universe (see, e.g., Bergström & Goobar, 1999).

The energy density components are treated as perfect fluids characterized by their equation of state, \(p_i = \alpha_i \rho_i\). Besides the mass density, \(\Omega_M (\alpha_M = 0)\), a second fluid is used in the simulation, \(\Omega_X\), with a user specified parameter, \(\alpha_X(z)\). Thus, SNOC can generate luminosity distances for any choice of \(\Omega_M\) and \(\Omega_X\) including the cosmological constant (\(\alpha_X = -1\)) or a time dependent equation of state parameter as predicted by quintessence. In addition to the FL luminosity distance, or filled beam distance, the distance in absence of any focusing of the light beam, the empty beam distance, is calculated.

The apparent magnitude \(m\) of a SN at redshift \(z\), assuming the cosmology \(\Theta = [\Omega_M, \Omega_X, \alpha_X(z)]\), is given by

\[
m(\theta, \mathcal{M}, z) = \mathcal{M} + 5 \log_{10}(d_L'(\theta, z)), \tag{2}
\]

\[
\mathcal{M} = 25 + M + 5\log_{10}(c/H_0), \tag{3}
\]

where \(M\) is the absolute magnitude of the SN, and \(d_L' \equiv H_0 d_L\) is the \(H_0\)-independent luminosity distance,
where \(H_0 \) is the Hubble parameter.\(^2\) Hence, the intercept \(\mathcal{M} \) contains the “unwanted” parameters \(M \) and \(H_0 \) that apply equally to all magnitude measurements [we do not consider evolutionary effects \(M = M(z) \)]. The \(H_0 \)-independent luminosity distance \(d'_L \) is given by

\[
d'_L = \begin{cases}
(1 + z) \frac{1}{\sqrt{-\Omega_k}} \sinh(\sqrt{-\Omega_k} I), & \Omega_k < 0 \\
(1 + z) I, & \Omega_k = 0 \\
(1 + z) \frac{1}{\sqrt{\Omega_k}} \sinh(\sqrt{\Omega_k} I), & \Omega_k > 0
\end{cases}
\]

(4)

\[
\Omega_k = 1 - \Omega_M - \Omega_X,
\]

(5)

\[
I = \int_0^z \frac{dz'}{H'(z')},
\]

(6)

\[
H'(z) = H(z)/H_0 = \sqrt{(1 + z)^3 \Omega_M + f(z) \Omega_X + (1 + z)^2 \Omega_k},
\]

(7)

\[
f(z) = \exp \left[3 \int_0^z \frac{dz'}{1 + z'} \frac{1 + \alpha_X(z')}{1 + z'} \right],
\]

(8)

where we consider an equation of state with arbitrary \(z \)-dependence.

4.3. Ray-tracing

The ray-tracing is discussed in detail in Sect. 5. Here, we summarize its key elements. The light-beam path is divided into ‘cells’ corresponding approximately to average distances between galaxies. Each cell is characterized by

1. The mass density profile, the source of gravitational lensing
2. The dust density and differential extinction coefficient, treated separately for the actual galaxy in the cell center and the region around it
3. The average magnetic field and electron density, relevant in exotic scenarios such as the photon-axion oscillation mechanism discussed in Sect. 5.3

4.4. Supernova and Galaxy apparent magnitudes: K-corrections

The SN and host galaxy apparent magnitudes through a standard (or user specified) broad-band filter is calculated using cross-filter K-corrections as described in Kim et al. (1996). Thus, the apparent magnitude of a SN observed at a redshift \(z \) through a filter \(Y \) defined through the filter function \(S_Y(\lambda) \) becomes:

\[
m_Y(z) = \mathcal{M}_X + 5 \log_{10} [d'_L(\theta, z)] + K_{XY},
\]

(9)

where the restframe absolute magnitude of the SN is measured in the filter \(X \) with a filter transmission function \(S_X(\lambda) \).

Assuming a spectral template for each SN type, \(F_{SN} \) and an arbitrary differential attenuation \(0 < \epsilon_1(\lambda) < 1 \) the K-correction becomes:

\[
K'_{XY} = -2.5 \log_{10} \left(\frac{\int V(\lambda) S_X(\lambda) d\lambda}{\int V(\lambda) S_Y(\lambda) d\lambda} \right)
\]

\[
+ 2.5 \log_{10} \left(\frac{\int F_{SN}(\lambda) S_X(\lambda) d\lambda}{\int F_{SN}(\lambda) \epsilon_1(\lambda) S_Y(\lambda(1 + z)) d\lambda} \right),
\]

where the photometry system is normalized in the Vega system, \(\mathcal{V} \).

By default, SNOC calculates K-corrections for \(K'_{BY} \), where \(Y \) includes the standard broad-band filters B, V, R, I and J. In order to assess the color corrections from the various extinction sources we list the results separately:

0) \(K'_{BY} \): no extinction \((\epsilon_0 = 1) \)
1) \(K'_{BY} \): host galaxy extinction
2) \(K'_{EXT} \): extinction from galaxies along the line-of-sight
3) \(K'_{DUST} \): extinction from intergalactic dust
4) \(K'_{AX} \): differential effects from photon-axion oscillations

Finally, \(K'_{BY} \) (no index) shows the combined effect on the observed magnitudes from all the considered attenuation sources.

Similarly, representative galaxy templates for E, Sbc, Scd and Im galaxies from Coleman et al. (1980) are used to calculate the observed colors of the SN host galaxies.

SNOC generates simulated lightcurve data with a user specified time sampling, date of discovery and noise contamination. For Type Ia SNe, K-corrections for BVRIJ may be calculated starting from up to 19 days prior to maximum up to 70 days past maximum in the restframe system using a spectral template from Nugent et al. (2002).\(^3\) For other types of SNe, approximate K-corrections are calculated from a set of (truncated) blackbody functions, following the approach in Dahlén & Fransson (1999).

4.5. Simulation of supernova search conditions

Two samplings of the SN lightcurve are generated randomly using a user specified time gap. SNOC can thus be used to optimize the search strategy for finding SNe at any given redshift. The tuning parameters are the broad band filter chosen, the limiting magnitude of the search and the time between the reference and the discovery images. The method can also be used to study the contamination from core collapse SNe in the discovery sample (Dahlén & Goobar, 2002).

5. The elements of the ray-tracing section

5.1. Gravitational lensing

When simulating observations of distant sources, it is necessary to take into account the fact that the Universe is inhomogeneous. First, the inhomogeneities might influence the overall expansion rate of the Universe, the so called averaging problem. Second, gravitational lensing effects due

\(^{2}\) In the expression for \(\mathcal{M} \), the units of \(c \) and \(H_0 \) are km s\(^{-1}\) and km s\(^{-1}\) Mpc\(^{-1}\), respectively.

\(^{3}\) The spectral template of day 70 is used for later epochs.
to the inhomogeneities will cause a dispersion in the observed source luminosities.

In SNOC we employ a method proposed by Holz & Wald (1998) for examining lensing effects. In this method, the overall expansion is assumed to follow that of the average background geometry. That is, in the following we will neglect the averaging problem and only consider effects from gravitational lensing.

5.1.1. The Method

The method of Holz & Wald can be summarized as follows: First, a FL background geometry is selected, i.e., we specify the space-averaged energy density content of the Universe, Ω_M and Ω_X. Inhomogeneities are accounted for by specifying matter distributions in spherical cells which have an average energy density equal to that of the underlying FL model. Thereafter, an infinitesimal beam focused at the observer is integrated backwards using the geodesic deviation equation by being sent through a series of cells, each time with a randomly selected impact parameter with respect to the matter distribution in the cell. Finally, the resulting area, A, at the source redshift is considered.

In a homogeneous FL universe, the ray bundle will have an area corresponding to the filled beam area, A_{FL}. Since the apparent luminosity of a source is proportional to the inverse of the area of the beam, we define the magnification as

$$\mu = \frac{A_{FL}}{A}. \quad (10)$$

By using Monte-Carlo techniques to trace a large number of light rays, statistics for the apparent luminosity of an ensemble of sources is obtained.

As noted in Holz & Wald, some care is needed when interpreting results as probability distributions. This is due to the fact that individual ray bundles do not correspond to random source positions. Since the fraction of the source sphere being sampled by a beam is proportional to the area of the beam, i.e., inversely proportional to the magnification, magnified sources will be over-represented if not compensated for. This is done by designating a probability proportional to the area of the ray bundle to keep each event. Further discussions of the statistical weight given to random lines-of-sight can be found in Ehlers & Schneider (1986) and Bergström et al. (2000).

In order to validate our implementation of the method, we have performed a number of consistency tests. The interested reader is referred to Bergström et al. (2000).

5.1.2. Matter distributions

The matter distribution in the cells can be chosen to be in arbitrary fractions of point-masses, uniform spheres, singular isothermal spheres (SIS) or the Navarro-Frenk-White (NFW) density profile (Navarro et al., 1997).

Matter distribution parameters such as the scale radius of the NFW halo and the cut-off radius of the SIS halo are determined from distributions reflecting real galaxy properties.

One of the advantages of the method of Holz & Wald is that any mass distribution and number density, including possible redshift dependencies, can easily be implemented and used as long as the average energy density in each cell agrees with the underlying FL model.

We derive a galaxy mass distribution, dn/dM, by combining the Schechter luminosity function (see, e.g., Peebles, 1993, Eq. 5.129) with a mass-to-luminosity ratio

$$M \propto L^{1-\beta}. \quad (11)$$

For elliptical galaxies in the fundamental plane, we can, e.g., choose $\beta = 0.25$ (see Peebles, 1993, Eq. 3.39). The normalization of the resulting galaxy mass distribution, i.e., the characteristic galaxy mass, M_*, is determined from observational constraints on the galaxy number density.

5.1.3. Foreground cluster

Since all cells have the same average density as the underlying FL model, the average luminosity will be equal to the one obtained in the homogeneous case. To simulate the increased gravitational lensing effects due to a specific matter distribution along a given line-of-sight, the user can specify the properties of a cell at a given redshift to mimic a foreground galaxy or cluster. The matter distribution is in the form of an isothermal sphere,

$$\rho_{SIS}(r) = \frac{\nu^2}{2\pi} \frac{1}{r^2}, \quad (12)$$

where ν is the line-of-sight velocity dispersion of the mass particles. Thus, the velocity dispersion sets the concentration of the cluster, the mass sets the cut-off radius and the radius of the cell sets the size of the image field.

5.1.4. Multiple images

Since we in principle only are able to follow infinitesimal light-rays in SNOC, we have to use some approximations when trying to get information on multiple image systems. The main approximation is that we assume that in cases of strong lensing, the effects from one close encounter is dominant, i.e., the one-lens approximation. With this simplification, we can use the information from the magnification to derive quantities for systems with finite separations. In order to do this, we need to be able to derive analytical relations between different observables, e.g., the magnification and the image separation. Here we show how this is done for the case of SIS lenses.

When running SNOC, we want to answer the following questions:

- Will the particular event correspond to the primary image in a multiple lens-system? If this is the case:
What is the flux of the second image?
What is the separation between images?
What is the time-delay between images?

Employing the one-lens approximation with a SIS lens, we will have multiple imaging whenever $\mu_1 > 2$ and we can relate the magnification of the secondary image, μ_2, to that of the first by

$$|\mu_2| = \mu_1 - 2. \quad (13)$$

Furthermore, the image separation is given by

$$\Delta \theta = 8\pi \left(\frac{v}{c}\right)^2 \frac{D_d D_{ds}}{D_s} \frac{2}{\mu_1 - 1}. \quad (14)$$

where D_s and D_d are the angular size distances, to the source (z_s), the lens (z_d), while D_{ds} represents the angular size distance between the lens and the source. The time delay for the two images is

$$\Delta t = \left[4\pi \left(\frac{v}{c}\right)^2 \frac{D_d D_{ds}}{D_s} (1 + z_d)^2 \frac{2}{\mu_1 - 1}\right]. \quad (15)$$

Therefore, in order to compute the quantities of interest, we need to pick a lens redshift and velocity dispersion from some reasonable distributions for every case where $\mu_1 > 2$. The distributions will in general be functions of the cosmology, the mass distribution of the lenses and the source redshift. The differential probability for multiple imaging is in the general case given by

$$dP \propto \sigma(z_d, z_s) \frac{dn}{dM} dM (1 + z_d)^3 dV, \quad (16)$$

where $\sigma(z_d, z_s)$ is the cross-section for multiple imaging and n is the comoving number density of lenses, assumed to be constant. For SIS lenses, the cross-section is given by

$$\sigma(z_d, z_s) \propto \left(\frac{v}{c}\right)^4 D_{ds}^2. \quad (17)$$

Since $dV \propto D_s^2 \frac{dt}{dz_d} dV_d$ and n is independent of lens redshift we can use

$$dP(z_d) \propto D_{ds} D_d (1 + z_d)^3 \frac{dt}{dz_d} dV_d, \quad (18)$$

as our probability distribution for z_d. The probability distribution for v is given by

$$dP(v) \propto \frac{dn}{dM} \frac{dM}{dv}\left(\frac{v}{c}\right)^4 dv, \quad (19)$$

where the velocity dispersion is related to mass by

$$\frac{v}{v_x} = M^{\gamma(1-\beta)}, \quad (20)$$

(see Bergström et al., 2000, Sect. 7.1).

5.2. Extinction by dust along the line-of-sight

An important effect to consider when observing SNe is the absorption of light due to dust. With SNOC, it is possible to take the effects from three different extragalactic dust components into account:

- A homogeneous intergalactic component.
- A host galaxy dust component.
- Dust in galaxies between the source and the observer.

Properties such as the exponential extinction scale-length and the frequency dependence can be set separately for each component. The frequency dependence is computed using the parametrization in Cardelli et al. (1989).

5.2.1. Grey dust

For a given emission redshift z_e, the attenuation Δm_d at observed wavelength λ_o due to dust can be written

$$\Delta m_d(z_e, \lambda_o) = -2.5 \log_{10} \left[e^{-C\int_0^{\lambda_e} \rho_{dust}(z)(\lambda_o(1+z_e),R_V) h(z) dz} \right], \quad (21)$$

where $\rho_{dust}(z)$ is the physical dust density at redshift z, $a(\lambda, R_V)$ is the wavelength-dependent attenuation, and the cosmology-dependent function $h(z)$ is given by

$$h(z) = [H(z)(1+z)]^{-1}. \quad (22)$$

The reddening parameter R_V is defined by

$$A_V = R_V E(B-V), \quad (23)$$

where A_V is the V-band extinction and

$$E(B-V) = (B-V) - (B-V)_i \quad (24)$$

with $(B-V)_i$ being the intrinsic (unobscured) color.

The normalization constant C is related to the overall magnitude of the extinction, i.e., the exponential extinction scale-length.\(^5\)

In a manner similar to that used in computing gravitational lensing effects, the integral in Eq. (21) is performed numerically by following individual light paths through a large number of cells containing galaxies and intergalactic dust. Through each cell the background cosmology, the wavelength of the photon and the dust density are updated, and the contributions from each cell added. Note that the model is approximately valid also for a patchy dust distribution, as long as the scale of inhomogeneities is small enough, i.e., $1/\sqrt{N} \ll 1$ where N is the number of dust clouds intersected by the light-ray.

The intergalactic dust density is parametrized by $\rho_{dust} = \rho_{dust}(1+z)^{f(z)}$, where

$$f(z) = \begin{cases} \alpha = \text{const. for } z < z_{\text{lim}} \\ \beta = \text{const. for } z > z_{\text{lim}} \end{cases} \quad (25)$$

\(^5\) This can be fixed, e.g., by demanding that a given cosmology reproduces the observed luminosity distance at $z \sim 0.5$, i.e., that dust extinction can explain the dimming of the presently observed SN sample, otherwise attributed to the “concordance” cosmology $\Omega_M = 0.3, \Omega_{\Lambda} = 0.7$.

Goobar et al.: SNOC: a Monte-Carlo simulation package for high-z supernova observations 5
5.2.2. Host galaxy dust

The absorption in the host galaxy will be different for different SN types. This is because core collapse SNe (Type II, Ibc etc.) occur in late type, star forming, dusty galaxies whereas Type Ia can occur in any type of host galaxy. In the current version of SNOC, we have used Fig. 6 in Matteucci & Recchi (2001) to make a first rough estimate of the probability for a Type Ia SNe (up to $z < 4$) to occur in an early type galaxy as

$$ p_E(z) = p_E(0) + q_1 \cdot z $$

where $p_E(0) = 0.5$ and $q_1 = 0.125$. This simplistic approach could without doubt be improved on in the future.

Also, the amount of dust and the SN rate depend on the size of the galaxy (i.e., the star content). Using Monte-Carlo methods, the galaxy type, dust content, SN position and disk inclination are determined and the absorption is calculated.

We model the dust distribution in late type galaxies as a double exponential disk

$$ \rho_{\text{dust}} = \rho_0^\dust e^{-r/r_0-|\zeta|/\zeta_0}, $$

where r and ζ are cylindrical coordinates. We set $\zeta_0 = 0.1$ kpc. In order to determine r_0, we assume that the amount of dust is proportional to the amount of stars in the galaxy. If stars are distributed as

$$ n_* = n_0^\star e^{-r/r_0-|\zeta|/\zeta_0}, $$

the luminosity, L, will be proportional to $\int n_* dV \propto r_0^2 \zeta_0$. If ζ_0 is fixed, we have $r_0 \propto \sqrt{L} r_0^\star$ where $r_0^\star = 5$ kpc is the scale radius for a $L = L_\star$ galaxy. We determine ρ_{dust}^0 by setting the exponential scale-length at the galaxy center. The disk is truncated at $r_{\text{max}} = 20$ kpc and $\zeta_{\text{max}} = 3$ kpc.

We let the probability for a SN to occur in a specific galaxy be proportional to the galaxy luminosity in order to allow for SNe to be more common in star-rich, luminous galaxies. Core collapse only occur in the disk, closely following the dust distribution in Eq. (27), but we do not allow any SNe inside $r = 0.3$ kpc. We let a fraction (87.5%) of Type Ia SNe follow the dust distribution in Eq. (27), only that we set $\zeta_0 = 0.35$ kpc, and the remaining fraction (12.5%) occur in a bulge according to the probability distribution

$$ p(R) \propto \frac{1}{R^3 + 0.73}, $$

where R is the radial coordinate in spherical coordinates (expressed in kpc). The bulge is truncated at $R_{\text{max}} = 3$ kpc. For further reference regarding dust and SNe distribution in host galaxies, see Hatano et al. (1998). After determining the dust distribution and SN position in the galaxy, we assume a random inclination of the disk and integrate the absorption along the path of the light-ray through the disk.

5.2.3. Dust in intervening galaxies

In each cell, the galaxy type is selected using a Monte-Carlo method. We use a parametrization where the fraction of early type, dust-free galaxies is given by $f_E(z) = f_E(0) - q_2 \ast z$, where $f_E(0) = 0.3$ and $q_2 = 0.05$. If the galaxy is a spiral, the absorption due to the dusty disk is computed (if the light-ray passes it). Equivalent to the case of host galaxies, we model the dust distribution in intervening spiral galaxies by a double exponential disk with random inclination, see Eq. (27).

5.3. Photon-axion oscillations

The general structure of SNOC, i.e., the tracing of light through successive cells, makes it relatively easy to add more refinement to the propagation code. As an example we mention here an exotic, hypothetical process that could affect light propagation on cosmological scales.

It has recently been proposed that the observed faintness of high-redshift SNe could be attributed to the mixing of photons with a light axion in an intergalactic magnetic field (Csaki et al., 2001). We compute the mixing probability using the formalism of density matrices (see, e.g., Sakurai, 1995). We define the mixing matrix as

$$ Q = \begin{pmatrix} \Delta_\perp & 0 & \Delta_M \cos \alpha \\ 0 & \Delta_\parallel & \Delta_M \sin \alpha \\ \Delta_M \cos \alpha & \Delta_M \sin \alpha & \Delta_m \end{pmatrix}. $$

The different quantities appearing in this matrix are given by

$$ \Delta_\perp = -3.6 \times 10^{-25} \left(\frac{\omega}{1 \text{eV}} \right)^{-1} \left(\frac{n_e}{10^{-8} \text{cm}^{-3}} \right) \text{cm}^{-1}, $$

$$ \Delta_\parallel = \Delta_\perp, $$

$$ \Delta_M = 2 \times 10^{-26} \left(\frac{B_{0,\perp}}{10^{-9} \text{G}} \right) \left(\frac{M_a}{10^{11} \text{GeV}} \right)^{-1} \text{cm}^{-1}, $$

$$ \Delta_m = -2.5 \times 10^{-28} \left(\frac{m_a}{10^{-16} \text{eV}} \right)^2 \left(\frac{\omega}{1 \text{eV}} \right)^{-1} \text{cm}^{-1}, $$

where $B_{0,\perp}$ is the strength of the magnetic field perpendicular to the direction of the photon, M_a is the inverse coupling between the photon and the axion, n_e is the electron density, m_a is the axion mass and ω is the energy of the photon. The angle α is the angle between the (projected) magnetic field and the (arbitrary, but fixed) perpendicular polarization vector. The time-evolution of the density matrix ρ is given by

$$ i \delta_t \rho = \frac{1}{2 \omega} [Q, \rho], $$

where δ_t is the time derivative and $[Q, \rho]$ is the commutator of Q and ρ. This equation is solved to obtain the probability $p_{\text{abs}}(z)$ that a photon has been absorbed by the time it reaches redshift z. For an axion mass m_a of 10^{-16}eV, this probability is very low. However, for $m_a = 10^{-26} \text{eV}$, the probability is of order 10^{-3}, which is in the range of observational constraints (see, e.g., Tepes and Zejnullahu, 2000).
with initial conditions

\[
\rho_0 = \begin{pmatrix}
\frac{1}{2} & 0 & 0 \\
0 & \frac{1}{2} & 0 \\
0 & 0 & 0 \\
\end{pmatrix}.
\]

(36)

Here the three diagonal elements refer to two different polarization intensities and the axion intensity respectively. In each cell, we solve the 9 coupled (complex) differential equations and update \(\rho \) and \(Q \). This method ensures that the full frequency dependence of the effect is taken into account, as shown in Mörtsell et al. (2002).

6. Fitting cosmological parameters

The SNOC package also includes a software tool for cosmology fitting, based on the output files from the Monte-Carlo program. In its current state two different types of maximum-likelihood analysis can be done using different measurement variables.

Type Ia supernovae as standard candles The analysis tool can be used to fit the cosmological parameters \(\mathcal{M}, \Omega_M, \Omega_X, \alpha_X \), and parameters related to the quintessence models presented in Goliath et al. (2001) and Eriksson & Amanullah (2002), by using simulated Type Ia events where the magnitude \(m_i \) (in the redshifted B-band) and the redshift \(z_i \) are considered to be the measurement variables for each event. The negative log-likelihood function will in this case take the following appearance

\[
\mathcal{L} = -N \ln \left(\frac{1}{\sqrt{2\pi} \sigma} \right) + \frac{1}{2\sigma^2} \sum_{i=1}^{N} \left[m_i - 5 \log_{10} d'_L(\Omega_M, \Omega_X, \alpha; z_i) - \mathcal{M} \right]^2,
\]

(37)

where \(N \) is the number of events, \(\sigma \) the statistical uncertainty for each event, \(m_i \) and \(z_i \) and finally the luminosity distance, \(d'_L \), is given by Eq. (4).

It is also possible to use a different, more general, likelihood function that also takes into account the fact that the data could be subject to systematic effects from gravitational lensing. This procedure is further described in Amanullah et al. (2002).

Cosmological parameters from lensed supernovae The other way to use the analysis tool is to use lensed SNe as is described in detail in Goobar et al. (2002b). In this case core-collapse SNe as well as Type Ia’s can be used, and in its present state the software allows fitting of the parameters \(H_0, \Omega_M, \Omega_X \) and \(\alpha_X (= \text{constant}) \), by using multiply imaged high-z SNe in spherically symmetric lensing systems producing only two or ring-like images. The observables are assumed to be the source redshift, the redshift of the lensing galaxy, the image separation, \(\Delta \theta \), the time delay, \(\Delta t \), and the flux-ratio, \(r_f \), between the images.

The negative log-likelihood function for this analysis can be expressed as

\[
\mathcal{L} = \sum_{i=1}^{N} \frac{(R^i_{\exp} - R^i)^2}{2\sigma^2},
\]

(38)

where \(R^i_{\exp} \) and \(R^i \) can be written as

\[
R^i_{\exp} = 2\Delta t \frac{(1 + z_d)}{f(r_f)} \]

and

\[
R^i = \frac{D_d D_s}{D_{ds}}.
\]

The function \(f \) depends on the flux-ratio and the applied lens model.

6.1. Minimizing the negative log-likelihood function

The user may choose between the three implemented methods to minimize the negative log-likelihood function, independently of what it looks like.

1. A simple method to minimize the negative log-likelihood function is to calculate its value in a grid, specified by start and end values for each parameter and the number of grid steps in each dimension. In the output file (see Appendix B) the result array is saved as an ASCII vector.

2. The basic idea of the **Davidon Variance Algorithm** (Davidon, 1968) is to calculate the covariance matrix by an iterative algorithm. The matrix is obtained by using only the function values and the gradient, and the minimum value is calculated simultaneously as the algorithm converges. This method is much faster in finding the minimum than the grid search, the disadvantage however, is that a parabolic shape is assumed for the negative log-likelihood function and the estimated values for the covariance matrix are somewhat misleading if this is not the case.

3. **Powell’s Quadratically Convergent Method** (Powell, 1964) is a multidimensional minimization algorithm that does not require any derivatives. Basically it is a method to choose in an efficient way a direction in the minimization space and then use linear minimization in that direction. This method will however not calculate any covariance matrix, only the minimum point of the function.

7. Examples of use

As an example of the usage of SNOC, we show how to create a data sample of 2000 Type Ia SNe with a uniform distribution \(0.1 < z < 2 \) and fit the parameters \(\Omega_M \) and \(\alpha_X \) (assuming a flat geometry) by performing a maximum likelihood analysis.

In the SNOC input file (see Appendix A), we set:
All other logical options should be set to ‘false’ or ‘0’. We have used a “standard” cosmology with $\Omega_M = 0.3$ and a pure cosmological constant $\Omega_\Lambda = 0.7$ and computed lensing effects with 20\% point-masses and 80\% NFW halos.

In Fig. 2, we show the Hubble diagram obtained by plotting the various quantities of interest from the SNOC output ASCII file (see Appendix B). In the upper panel, the luminosity distance, d_L, and the lookback time t_{lookb} (in units of c/H_0) are given as a function of redshift by plotting d_L and t_{lookb} vs z.

In the lower panel, the full line is the theoretical magnitude-redshift relation for a typical Type Ia SNe observed at maximum luminosity in the restframe B band. This is obtained by plotting $BZ\text{mag-intsig}$ vs z. In the same panel the magnitude of each individual SNe is shown, including the intrinsic dispersion and gravitational lensing effects, i.e., we have plotted $BZ\text{mag+lin}sdm$ vs z.

We can now use the SNOC analysis tools to fit, e.g., Ω_M and α_X, assuming $\Omega_M + \Omega_\Lambda = 1$.

In the input for the analysis tool (Appendix A), we set:

- `nrsne 2000`
- `nrparsigma 2`
- `flat` (assuming $\Omega_M + \Omega_\Lambda = 1$)
- `w_0 -1.0 0.0 200 -1`
- `omega_M 0.0 0.4 200 0.3`
- `NUISM
- `nointsig
gauss
- `nodavidomin
gridsearch
- `nopowellmin`

Fig. 3 shows the confidence contours produced from this three-parameter fit, where \mathcal{M} has been treated as a nuisance parameter. The solid contour that is centred around the input values $\Omega_M = 0.3$, and $\alpha_X = -1.0$ is the fitted confidence region when the lensing dispersion is not considered, i.e., the keyword `nolenseffect` has been specified in the input file. The dashed contour shows instead the fitted result when the `addlenseffect` parameter has been specified in the input file and the lensing effects are considered. As can be seen, this will induce a significant bias in the parameter determination, an effect discussed in further detail in Amanullah et al. (2002). Both contours show the

$$\min(L) + \frac{1.51^2}{2}$$

Fig. 2. In the upper panel the luminosity distance, d_L, and the lookback time t_{lookb} (in units of c/H_0) are given as a function of redshift. In the lower panel the theoretical magnitude-redshift relation for Type Ia SNe (full line) is plotted together with the magnitude of each individual SNe including the intrinsic dispersion and gravitational lensing effects.

Fig. 3. Three-parameter fits in the (Ω_M, α_X)-plane using the data set shown in Fig. 2. The contours show the 1.51\sigma level, which corresponds to a probability content of $\sim 68\%$ of including both parameter in the region.
level of the negative log-likelihood surface, L, defined in Eq. (37). This level corresponds approximately to a confidence region of $\sim 68\%$ of including the true value of the two parameters of interest.

8. Summary

As we enter a phase of high-precision cosmological measurements, sophisticated tools for data analysis are required, especially to evaluate potential systematic effects related to the method. The Monte-Carlo simulation package SNOC is mainly designed for the study of the precision and possible biases of measured cosmological parameters from high-z Type Ia SNe. Besides calculating the luminosity distance for arbitrary cosmological parameters: $H_0, \Omega_M, \Omega_X, \alpha_X(z)$, the code also allows for the estimates of observed magnitudes for high-z SNe taking into account the inhomogeneity of matter and dimming by, e.g., dust or more exotic process such as photon-axion oscillations. Along with the simulation, a maximum-likelihood analysis package has been developed for fitting of cosmological parameters and possible bias.

Acknowledgements

The authors would like to thank Ch. Walck for providing us with his random number generator and P. Nugent for the spectral template for Type Ia supernovae. J. Edsjö, M. Eriksson, C. Gunnarsson and S. Perlmutter are acknowledged for useful discussions. AG is a Royal Swedish Academy Research Fellow supported by a grant from the Knut and Alice Wallenberg Foundation.

References

Amanullah, R., Mörtsell, E., & Goobar, A., 2002, submitted to A&A (astro-ph/0204280)
Bergström, L., & Goobar, A., 1999, *Cosmology and Particle Astrophysics* (Wiley/Praxis, Chichester)
Bergström, L., Goliath, M., Goobar, A., & Mörtsell, E., 2000, A&A, 358, 13-29
Cardelli, J. A., Clayton, G. C. & Mathis, J. S., 1989, ApJ, 345, 245
Coleman, G. D., Wu, C. C., & D. W. Weedman, 1980, ApJS, 43, 393
Csaki, C., Kaloper, N., & and Terning, J., 2002, Phys.Rev.Lett. 88, 161302
Dahlén, T., & Fransson, C., 1999, A&A 350, 349
Dahlén, T., & Goobar, A., 2002, PASP, 114, 284
Davison, W. C., 1968, Computer Journal, 10, 406
Ehlers, J., & Schneider, P., 1986, A&A 168, 57
Eriksson, M., & Amanullah, R., 2002, Phys.Rev.D in press (astro-ph/0202157)
Goliath, M., Amanullah, R., Astier, P., Goobar, A., & Pain, R., 2001, A&A 380, 6
Goliath, M., & Mörtsell, E., 2000, Physics Letters B, 486, 249
Goobar, A., & Perlmutter, S., 1995, ApJ 450, 14
Goobar, A., Bergström, L., & Mörtsell, E., 2002a, A&A, 384, 1
Goobar, A., Mörtsell, E., Amanullah, R., & Nugent, P., 2002b, submitted to A&A
Hatano, K., Branch, D., & Deaton, J., 1998, ApJ 502, 177
Holz, D. E., & Wald, R. M., 1998, Phys. Rev. D 58, 063501
Kim, A., Goobar, A., & Perlmutter, S., 1996, PASP, 108, 190
Matteucci, F., & Recchi, S., 2001, ApJ, 558, 351
Mörtsell, E., Goobar, A., & Bergström, L., 2001a, ApJ, 559, 53
Mörtsell, E., Gunnarsson, C., & Goobar, A., 2001b, ApJ, 561, 106
Mörtsell, E., Bergström, L., & Goobar, A., 2002, Phys.Rev.D, in press (astro-ph/0202153)
Navarro, J. F., Frenk, C. S., & White, S. D. M., 1997, ApJ 490, 493
Nugent, P., Kim, A., & Perlmutter, S., 2002, PASP in press (astro-ph/0205351)
Peebles, P. J. E., 1993, *Principles of physical cosmology* (Princeton University Press, Princeton)
Perlmutter, S., Gabi, S., Goldhaber, G., et al., 1997, ApJ 483, 565
Perlmutter, S., Aldering, G., Goldhaber, et al., 1999, ApJ 517, 565
Powell, M. J. D., 1964, Computer Journal, 7, 155
Riess, A. G., Filippenko, A. V., Challis, P., et al., 1998, AJ, 116, 1009
Riess, A. G., Nugent, P., Gilliland, R. L., et al., 2001, ApJ, 560, 49
Sakurai, J. J., 1995, *Modern Quantum Mechanics*, Reading.
Schneider, P., Ehlers, J., & Falco, E. E., 1992, *Gravitational Lenses* (Springer-Verlag, Berlin)
Walck, Ch., http://www.physto.se/~walck/suf.html
Appendix A: Summary of SNOC input parameters

The Input for the Monte-Carlo tool

Parameter	Description
NUMSNE	number of SNe to be generated
SEED	seed for random number generator (if negative use computer clock)
SNTYPE	SN type
GENDIS	functional form of SN redshift distribution option
MEANZ	mean redshift of SN sample (for Gaussian distribution only)
SIGMAZ	σ in redshift of SN sample (for Gaussian distribution only)
MAXZ	maximum SN redshift
MINZ	minimum SN redshift
ZFILE	name of file with tabulated z-distribution of SNe (optional)
TAUIA	τ-parameter to in SFR redshift distribution (Dahlén & Fransson, 1999)
INTSIG	intrinsic magnitude spread of SNe
BUILDLC	option to build SN lightcurves
LCPONINT	number of points in lightcurve (optional)
LCNOISE	measurement error in each lightcurve point
LCSPACE	number of days between lightcurve points
LCTMIN	earliest day in lightcurve
FILTER	default filter for lightcurve (BVRIJ)
USFILT	user specified filters
STRETCH	lightcurve “stretch”, relevant for Type Ia SNe (Perlmutter et al., 1997)
STRCORR	lightcurve “stretch-brightness” correlation (Perlmutter et al., 1997)
STRSIG	intrinsic lightcurve “stretch” standard deviation
HUBBLE	Hubble parameter, h ($H_0 = h \cdot 100$ km s$^{-1}$ Mpc$^{-1}$)
OMEGAM	mass density, $\Omega_M(z = 0)$
OMEGAX	dark energy, $\Omega_X(z = 0)$
EOSTYPE	dark energy equation of state form (constant or time varying)
ALPHAX0	dark energy equation of state parameter, $w_0 = p_X/\rho_X$ at $z = 0$
ALPHAX1	dark energy equation of state parameter, first derivative, $w_1 = \frac{dw}{dz}$
EOSFILE	dark energy equation of state parameter, tabulated file with $w(z)$ (optional)
LENS	parametrization of matter lenses (compact objects, uniform, SIS or NFW)
DOFRAC	option to use alternating lens types
FRACHOM	fraction of path in homogeneous matter
FRACPOI	fraction of path in an environment of compact objects
FRACUNI	fraction of path in an environment of uniform objects
FRACISO	fraction of path in an environment of SIS mass distributions
FRACNFW	fraction of path in an environment of NFW mass distributions
CELLSZ	initial cell size [Mpc] (when MTYPE 1)
MATTERB	size of homogeneous matter ball [Mpc] (when LENS ’uni’)
MULTI	option to treat multiple images of gravitationally lensed SNe
REJTYPE	event rejection level for secondary (lensed) images
CLUSTER	option to simulate lensing due to foreground galaxy cluster
ZCL	redshift of foreground galaxy cluster
VELDISP	dispersion velocity of foreground galaxy cluster
MASSCLU	mass of foreground galaxy cluster
RADCLU	radius of foreground cluster image field
DOGREY	option to add intergalactic dust in the line-of-sight
MINWAVE	shortest observable wavelength
The Input for the Analysis Tool

parameter name	description
nrsne	number of SNe to use in the fit
zrange	only use SNe within specified z-range
nrparsigma	the number of parameters that should simultaneously lie within a specific deviation range.
flat	assume that the Universe is flat
noflat	do not assume that the Universe is flat

Fit parameters

These parameters specify which of the cosmological parameters that should be fixed and which that should be fitted. Each line consist of a parameter name and four numerical values, s, e, g and c. For a parameter to be fitted s and e cannot be identical, and g should be an integer greater than 1. For a grid search s and e specifies the grid interval for each parameter and g then number of steps. The value c should be the correct value of each parameter that was used in the Monte-Carlo. For the iterative minimization methods a start value will randomly be selected between s and e.
Goobar et al.: SNOC: a Monte-Carlo simulation package for high-z supernova observations

\[w_0 \] non-redshift dependent part of the equation of state parameter
\[w_1 \] linearly redshift dependent part of the equation of state parameter
\[\omega_M \] mass density, \(\Omega_M (z = 0) \)
\[\omega_X \] dark energy, \(\Omega_X (z = 0) \)
\[\text{mscript} \] intercept in the Hubble diagram, \(\mathcal{M} \), only used for Hubble diagram fits
\[\text{hubble0} \] Hubble parameter, \(h (H_0 = h \cdot 100 \text{ km s}^{-1} \text{ Mpc}^{-1}) \), only used for fits of multiply imaged objects

Nuisance parameters

NUISM	fit \(\mathcal{M} \) as a nuisance parameter
NUIFP	fit the fraction of compact objects in the Universe

Type Ia fits

gausserror	the uncertainty in the magnitude \(\sigma \)
addintsig	add a dispersion to the measured magnitudes
nointsig	do not add a dispersion to the measured magnitudes
addlenseffect	add the magnitude dispersion due to lensing
nolenseffect	do not add the magnitude dispersion due to lensing
magresiduals	calculate the magnitude residuals from the best cosmology fit
nomagresiduals	do not calculate the magnitude residuals from the best cosmology fit
gauss	assume Gaussian magnitude distribution
gausslin	assume a modified Gaussian magnitude distribution to handle gravitational lensing

Multiple image fits

domulti	do a multiple image fit instead of the default Type Ia fit
ibandmax	maximum allowed I-band magnitude for the SNe
lenstype	which lens model to use, SIS or POI
etimedelay	uncertainty in the time delay in days
eimsep	uncertainty in the image separation in arcsecs
imrat	uncertainty in the flux ratio
ezl	uncertainty on lensing galaxy redshift
emodel	systematic error on lensing model

Minimization method

davidonmin	use the Davidon Variance Algorithm
nodavidonmin	do not use the Davidon Variance Algorithm
gridsearch	use the grid search
nogridsearch	do not use the grid search
powellmin	use Powell’s Quadratically Convergent Method
nopowellmin	do not use Powell’s Quadratically Convergent Method

Table 2: SNOC analysis steering parameters

Appendix B: The SNOC Output

The Output of the Monte-Carlo Tool

SNOC produces an ASCII output file that can be easily interpreted and piped into histogramming tools.\(^6\) Table 3 shows the first event record of a SNOC simulation.

SNOC output file: example

variable	value	description

\(^6\) We use the CERNLIB package PAW for that purpose
	Value
event	1
sntype	'Ia'
hubble	0.6500
omegam	0.2800
omegax	0.7200
alphax0	-1.0000
Ntotal	237
nzbins	28
zcent	0.125 0.175 0.225 0.275 0.325 0.375 0.425 0.475 0.525 0.575 0.625 0.675 0.725 0.775 0.825 0.875 0.925 0.975 1.025 1.075 1.125 1.175 1.225 1.275 1.325 1.375 1.425 1.475
zrate	0.749 1.414 2.154 2.770 3.741 4.576 5.076 6.144 6.896 7.161 8.218 8.818 8.828 9.824 10.260 10.043 10.961 11.250 10.850 11.688 11.856 11.319 12.083 12.156 11.523 12.223 12.223 11.527
zs	0.4318
lookb	0.3264
lookGyr	4.9234
dL	0.5586
BZmag	22.9903
intsig	0.2662
emptyb	1.0241
emptydm	0.0259
lensrat	1.0212
linsdm	0.0228
ncells	386
ncaustics	0
nreject	0
ttot	1508.5641
galtypetype	'Sbc'
galabsB	-16.4987
galBband	26.2917
galVband	25.0382
galRband	24.2002
galIband	23.5455
hostdm	0.0000
greysc	58200.000
rV	9.5000
zgreylim	0.5000
greyexp1	3.0000
greyexp2	0.0000
greydm	0.5118
numgrey	30
lambda	4000.0 4448.3 4896.6 5344.8 5793.1 6241.4 6689.7 7137.9 7586.2 8034.5 8482.8 8931.0 9379.3 9827.6 10275.9 10724.1 11172.4 11620.7 12069.0 12517.2 12965.5 13413.8 13862.1 14310.3 14758.6 15206.9 15655.2 16103.4 16551.7 17000.0
Parameter	Value
-----------	-------
greyvec	0.539E-01 0.558E-01 0.560E-01
	0.548E-01 0.532E-01 0.514E-01
	0.496E-01 0.476E-01 0.456E-01
	0.436E-01 0.415E-01 0.395E-01
	0.375E-01 0.356E-01 0.337E-01
	0.318E-01 0.300E-01 0.283E-01
	0.267E-01 0.252E-01 0.239E-01
	0.226E-01 0.214E-01 0.204E-01
	0.194E-01 0.185E-01 0.176E-01
	0.168E-01 0.161E-01 0.154E-01
	0.148E-01 0.142E-01 0.136E-01
	0.131E-01 0.126E-01 0.121E-01
	0.117E-01 0.113E-01 0.109E-01
	0.105E-01 0.101E-01 0.098E-01
	0.094E-01 0.091E-01 0.088E-01
	0.084E-01 0.081E-01 0.078E-01
	0.075E-01 0.072E-01 0.070E-01
	0.067E-01 0.064E-01 0.062E-01
	0.059E-01 0.056E-01 0.054E-01
	0.051E-01 0.049E-01 0.047E-01
	0.044E-01 0.042E-01 0.040E-01
	0.038E-01 0.036E-01 0.034E-01
	0.032E-01 0.030E-01 0.028E-01
	0.026E-01 0.024E-01 0.022E-01
	0.020E-01 0.018E-01 0.016E-01
	0.014E-01 0.012E-01 0.010E-01
	0.008E-01 0.007E-01 0.006E-01
	0.005E-01 0.004E-01 0.003E-01
	0.002E-01 0.001E-01 0.000E+00

Differential Extinction

- K_{BB}-correction, LC maximum
- K_{BV}-correction, LC maximum
- K_{BR}-correction, LC maximum
- K_{BI}-correction, LC maximum
- K_{BJ}-correction, LC maximum

Effective B-band Extinction due to Photon-Axion Oscillations

- K_{BB}-correction (includes host galaxy extinction)
- K_{BV}-correction (includes host galaxy extinction)
- K_{BR}-correction (includes host galaxy extinction)
- K_{BI}-correction (includes host galaxy extinction)
- K_{BJ}-correction (includes host galaxy extinction)

Lightcurve Stretch

- Lightcurve stretch

Noise Standard Deviation

- K_{BB}-correction total extinction folded
- K_{BV}-correction total extinction folded
- K_{BR}-correction total extinction folded
- K_{BI}-correction total extinction folded
- K_{BJ}-correction total extinction folded

Number of Lightcurve Points

- 8

Dates from Maximum

- -13.54 -6.77 0.00 6.77 13.54 20.31 27.08 33.85

R-band Lightcurve Magnitudes

- $m_R(t) - BZmag$
Table 3: Extract of SNOC output showing the first event record

The Output of the Analysis Tool

SNOC output file: example

THIS IS THE OUTPUT GENERATED BY SNALYS
==
The number of supernovae used: 2300
The number of parameters estimated: 2
#
Flat universe assumption: no
Execution started at: Wed Mar 6 16:24:15 2002
Total execution time: 00:01:33.00
Used CPU-time: total = 00:01:35.43
user = 00:01:35.34
system = 00:00:00.07
#
Powell Minimization
==
Start values
omega_m 0.333
omega_x 0.733
The min of the ML function (powell): 0.010
Cosmology (powell)
omega_m 0.299860
omega_x 0.699683
#
Davidon Minimization
==
Start values
omega_m 0.300
omega_x 0.700
The min of the ML function (davidon): 0.010
Cosmology (davidon)
omega_m 0.299983 +/- 0.023836
omega_x 0.699974 +/- 0.046131
Correlation matrix (davidon)
omega_m omega_x
omega_m 1.00000 0.95052
omega_x 0.95052 1.00000
#
Grid Search
==
The min of the ML function (grid): 6.729
Cosmology (grid)
omega_m 0.333333 + 0.33E-01 - 0.67E-01
omega_x 0.733333 + 0.00E+00 - 0.67E-01
Conditions for grid search.
Parameter start stop nr.step
omega_m 0.10 0.40 10
omega_x 0.40 1.00 10
The ML-function from Grid Search
#omega_m omega_x
82.4738235
42.1675644
51.1707954
...