New late Middle to early Late Ordovician U–Pb zircon ages of extension-related felsic volcanic rocks in the Eastern Pyrenees (NE Iberia): tectonic implications

Joan Martí1,*, Luigi Solari2, Josep Maria Casas3 and Martim Chichorro4

1Volcanology Group, Institute of Earth Sciences Jaume Almera, CSIC, Lluis Solé Sabarís s/n, 08028 Barcelona, Spain; 2Centro de Geociencias, UNAM, Campus Juriquilla, 76230 Queretaro, Mexico; 3Departament de Dinàmica de la Terra i de l’Oceà-Institut de Recerca Geomodels, Facultat de Ciències de la Terra, Universitat de Barcelona, Martí i Franquès s/n, 08028 Spain and 4GEOBIOTEC, Departamento de Ciências da Terra, Universidade Nova de Lisboa, Portugal

Abstract

Pre-Variscan basement rocks from the Pyrenees provide evidence of several magmatic episodes with complex geodynamic histories from late Neoproterozoic to Palaeozoic times. One of the most significant episodes, consisting of several granitic and granodioritic bodies and volcanic rocks, mostly pyroclastic in nature, dates from the Late Ordovician period. In the Eastern Pyrenees, this magmatism is well represented in the Ribes de Freser and Núria areas; here, the Núria orthogneiss and the Ribes granophyre, both dated at c. 457–460 Ma, seem to form a calc-alkaline plutonic suite emplaced at different crustal levels. The presence of numerous pyroclastic deposits and lavas interbedded with Upper Ordovician (Sandbian–lower Katian, formerly Caradoc) sediments, intruded by the Ribes granophyre, suggests that this magmatic episode also generated significant volcanism. Moreover, the area hosts an important volume of rhylitic ignimbrites and andesitic lavas affected by Alpine deformation. These volcanic rocks were previously attributed to late Variscan volcanism, extensively represented in other areas of the Pyrenees. Here we present the first five laser-ablation U–Pb zircon dates for this ignimbritic succession and two new ages for the Ribes granophyre. The ages of the ignimbrites, overlapping within error, are all 460 Ma, suggesting a genetic relationship between the plutonic and volcanic rocks and indicating that the Sandbian–Katian magmatism is much more voluminous than reported in previous studies, and possibly includes mega-eruptions linked to the formation of collapse calderas.

1. Introduction

The Pyrenees are a WNW–ESE-trending Alpine fold and thrust belt that contains pre-Variscan basement rocks, late Neoproterozoic to Carboniferous in age. Pre-Variscan basement rocks form a large belt in the core of the cordillera and provide evidence of several pre-Variscan and Variscan magmatic episodes. Recently, the extensive use of U–Pb zircon geochronology, together with new geochemical and isotopic data, have produced significant advances in the understanding of these magmatic episodes, including the importance of subduction-related Ediacaran magmatism (Castiñeiras et al. 2008; Casas et al. 2015; Padel et al. 2018a), Ordovician magmatic events linked to the formation of the northern Gondwana passive margin (Cocherie et al. 2005; Castiñeiras et al. 2008; Casas et al. 2010; Navidad et al. 2010) and Carboniferous magmatic rocks formed during the Variscan collision (Pereira et al. 2013; Denèle et al. 2014; Martinez et al. 2016; Van Lichtervelde et al. 2017). In some cases, where there is a lack of fossils and of reference stratigraphic horizons, geochronological data can also enable us to assess the age of the pre-middle Palaeozoic metasedimentary sequences and correlate them along the whole margin (Padel et al. 2018a). This is the case for the pre-Upper Ordovician sequences of the Eastern Pyrenees where Ediacaran, Ordovician and Carboniferous magmatic rocks are interbedded with or mainly intrude into an almost unfossiliferous, thick (up to 5000 m) pre-Upper Ordovician series.

In this study, we focus on a thick sequence of strongly welded, rheomorphic (i.e. showing secondary flow structures) rhylitic ignimbrites that crop out extensively in the Campelles–Bruguera area, along the southern slope of the Canigó massif (Fig. 1). These volcanic rocks were initially attributed to Late Carboniferous – Early Permian magmatism (F. Robert, unpub. Ph.D. thesis., Univ. Besançon, 1980), lying unconformably on an undated pre-Variscan slate-dominated succession (Cambrian–Ordovician?; J. A. Muñoz, unpub. Ph.D. thesis, Univ. Barcelona, 1985). We present new geochronological results that demonstrate these rocks correspond to a late Middle to early Late Ordovician magmatic event rather than a late...
Palaeozoic one. Unlike other Ordovician igneous rocks in the Pyrenees, the impressive volume of the rhylotic ignimbrites represents an important volcanic event. We compare our new radiometric ages with existing ones from plutonic and subvolcanic rocks from the same late Middle to early Late Ordovician magmatic episode found near the study area and suggest a possible genetic relationship among all of them.

2. Geological setting

Ordovician magmatic events have been well studied in most of the Ordovician terranes of the North Gondwana margin and other margins of the Rheic Ocean (Holland & Patzkowsky, 1996; Herrmann et al. 2004; Finney & Berry, 2010 and references therein; Huff et al. 2010), where they are mainly represented by calc-alkaline granites and granodiorites, and silicic volcanic rocks. A number of large eruptions that may even have had implications for climate change have also been identified from the period (Huff et al. 1992; Young et al. 2009; Buggisch et al. 2010; Herrmann et al. 2010; Lefebvre et al. 2010; Sell et al. 2013; Jones et al. 2017). In Alpine peri-Mediterranean domains, Ordovician magmatic rocks are well represented in several areas, including the French Massif Central (Roger et al. 2004; Pitra et al. 2012; Lotout et al. 2017), Sardinia (Heling & Tiepolo, 2005; Gaggero et al. 2012), Sicily (Trombetta et al. 2004) and the central, southern and eastern Alps (Heinisch, 1981; Zurbrüggen et al. 1997; von Raumer, 1998; Guillot et al. 2002; Schaltegger et al. 2003).

In the Pyrenees, Ordovician magmatic events form part of successive magmatic pulses that are well documented in the pre-Variscan basement rocks (Figs 1, 2). According to radiometric data, this Ordovician magmatism lasted for c. 30 Myr (c. 477–446 Ma) (Deloule et al. 2002; Castineiras et al. 2008; Denèle et al. 2009; Casas et al. 2010; Martínez et al. 2011; Mezger & Gerdes, 2016), and although the magmatic activity seems to be continuous, geochronological and geochemical data reveal the existence of two separate magmatic events, one of Early to Middle Ordovician age and the other of late Middle to Late Ordovician age. The Early–Middle Ordovician magmatic events (c. 477–467 Ma) gave rise to voluminous granites that constitute the protoliths of the gneiss of the Aston, Hospitalet, Canigó, Roc de Frausa and Albera massifs (Cocherie et al. 2005; Castineiras et al. 2008; Denèle et al. 2009; Liesa et al. 2011; Mezger & Gerdes, 2016). Early–Middle Ordovician granites are of calc-alkaline and metaluminous composition, and some authors relate them to arc magmatism, generated by subduction beneath the northern Gondwanan margin (e.g. von Raumer et al. 2003; von Raumer & Stampfl, 2008). It should be noted that coeval mafic plutonic and silicic volcanic rocks are scarce. By contrast, the late Middle to Late Ordovician magmatic pulse (c. 467–446 Ma) yielded a varied suite of magmatic rocks especially well represented in the Canigó massif: calc-alkaline ignimbrites, andesites, volcanioclastic rocks, diorites and various types of small granitic bodies (Marti et al. 1986; Casas et al. 2010; Martínez et al. 2011).

The Ediacaran–Lower Ordovician sedimentary sequence that crops out extensively in the Central and Eastern Pyrenees is covered unconformably by a well-dated Upper Ordovician succession (Cavet, 1957; Hartevelt, 1970). This younger succession constitutes a broad, fining-upwards megasequence of clastic deposits bearing a key limestone–marlstone interbed, which lies unconformably upon older Cambrian–Ordovician beds (Santanach, 1972; García-Sansegundo et al. 2004; Casas & Fernández, 2007; Padel et al. 2018b) (Figs 2, 3, 4), and which has been interpreted as related to extensional tectonics (e.g. García-Sansegundo et al. 2004; Alvaro et al. 2018; Puddu et al. 2018). The presence of volcanic rocks interbedded with the Upper Ordovician sediments has been noted from Pierrefite (Calvet et al. 1988) and mainly from the Ribes de Freser area (Robert & Thiebaut, 1976; F. Robert, unpub. Ph.D. thesis, Univ. Besançon, 1980; C. Ayora, unpub. Ph.D. thesis, Univ. Barcelona, 1980). These volcanic rocks compose a predominantly pyroclastic succession, which indicates the predominantly explosive character of this volcanic episode; associated lavas and subvolcanic intrusive rocks are scarce (Marti et al. 1986). The composition of these pyroclastic rocks includes andesite, rhyodacite and rhyolite, and in volume they provide only a relatively minor contribution to the sedimentation of their corresponding Ordovician basins.
Additionally, our study area (Campelles–Bruguera, along the southern slope of the Canigó) includes a subvolcanic granitic body, the Ribes granophyre, an undeformed, fine-grained, leucocratic granofels with a microscopic granophyric texture, emplaced in the lower part of the Sandbian–lower Katian succession and dated at 458 ± 3 Ma by Martínez et al. (2011) (Figs 2, 3, 4a–d). Several other granitic orthogneissic bodies are emplaced in the lower part of the pre-Variscan succession; for example, the Núria gneiss is a homogeneous, medium-to-coarse-grained, two-mica granite gneiss (protolith age of 457 ± 4 Ma; Martínez et al. 2011), and the contemporaneous Queralbs gneiss is an augen gneiss that forms a ring around and on top of this two-mica gneiss (with an igneous crystallization age of 457 ± 5 Ma; Martínez et al. 2011, who used the name Núria augen gneiss for the Queralbs gneiss).

In addition to volcanic rocks clearly interbedded with Upper Ordovician sediments, the study area contains a thick (>1000 m) succession of rheomorphic rhyolitic ignimbrites (the Campelles–Bruguera ignimbrites), occasionally associated at their bases with
basaltic andesites (Figs 2, 3, 4e, f). This succession lies unconformably over undated rocks, attributed to the Cambrian or Lower Ordovician (J. A. Muñoz, unpub. Ph.D. thesis, Univ. Barcelona, 1985), that include an occasional thin, poorly exposed succession of continental sedimentary fan deposits. The presence of some pollen remains in these fan deposits motivated F. Robert (unpub. Ph.D. thesis., Univ. Besançon, 1980) to attribute them and the overlying volcanic rocks to a late Palaeozoic volcanic episode, the effects of which are noted throughout the Pyrenees. This assumption was never questioned by subsequent studies (J. A. Muñoz, unpub. Ph.D. thesis, Univ. Barcelona, 1985; J. Martí, unpub. Ph.D. thesis, Univ. Barcelona, 1986; Martí, 1991) despite the fact that these pollen remains were described as “badly preserved and a poor representative association that is insufficient to precisely indicate the age of the sediment” by F. Robert (unpub. Ph.D. thesis., Univ. Besançon, 1980). The ignimbrites are rhyolitic in composition and show clear secondary silicification due to post-emplacement alteration processes (J. Martí, unpub. Ph.D. thesis, Univ. Barcelona, 1986). They are very crystal-poor, possessing only phenocrysts of sodium-rich plagioclase, quartz and minor biotite. The main characteristic of these rocks is their flow banding, with some flow folds caused by the extreme stretching and welding of the original pumice fragments due to rheomorphism (J. Martí, unpub. Ph.D. thesis, Univ. Barcelona, 1986) (Fig. 4e, f). Stretched pumices (fiammes) are still visible in some outcrops, evidence of their primary pyroclastic character (Fig. 4f).

In the Pyrenees, Early–Middle Ordovician magmatic events developed during an episode of folding, uplift and erosion that led to the formation of the Upper Ordovician (‘Sardin’) unconformity, whereas a subsequent extensional pulse developed normal faults that controlled the post-Sardin sediments and filled in palaeo-relief depressions (García-Sansegundo et al. 2004; Casas & Fernández, 2007; Casas, 2010). In order to complete our understanding of the Middle–Late Ordovician magmatism, we present here the first zircon U–Pb age data from the thick sequence of rheomorphic rhyolitic ignimbrites cropping out in the vicinity of the towns of Campelles and Bruguera. This succession of volcanic rocks was deformed during the Variscan orogeny but is not affected by metamorphism. It is only partially affected by post-emplacement hydrothermal alteration that produced the silicification of the original glass components and transformed the juvenile phenocrysts into clay aggregates, microcrystalline quartz and carbonates, but their original forms and textures are preserved.

3. Analytical methodology
To determine the age of the Campelles–Bruguera welded ignimbrites, we selected five samples (CAM-6, CAM-7, CAM-9, CAM-13 and CAM-18) that were prepared for laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) isotopic dating of single zircon crystals. Samples CAM-18, CAM-6 and CAM-7 are located, from base to top, respectively, along the same rheomorphic ignimbrite unit, cropping out c. 4 km west of the town of Campelles (Fig. 2). Sample CAM-9 corresponds to the same unit that occurs in an isolated outcrop c. 2 km north of Campelles. Sample CAM-13 comes from a thick unit of rheomorphic ignimbrites located north of the town of Brugera (Fig. 2). We also collected two samples (CAM-11 and CAM-12) from the Ribes granophyre that was previously dated by Martínez et al. (2011).
Zircon grains were separated from fresh rock samples in the Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa (FCT-UNL) laboratories using standard heavy mineral separation techniques, including the application of heavy liquids and a Frantz isodynamic separator. The final selection of the zircon grains for U–Pb dating was performed by hand-picking under a binocular microscope. The most euhedral zircons, with well-preserved facets and no sign of resorption were selected for analysis. Prior to analysis, the mounted and polished grains were imaged under cathodoluminescence (CL), using an ELM-3R luminoscope. CL images were used to avoid inclusions of minerals that can contain radiogenic Pb (e.g. apatite), and to avoid analysing inherited cores and overgrowths.

The laser-ablation system at Laboratorio de Estudios Isotópicos, Centro de Geociencias, UNAM, has been described by Solari et al. (2010). It consists of a Thermo ICap Qc quadrupole ICP-MS equipped with an LPX 200 Excimer laser, and a new M151 two-volume cell, with even greater stability than the cell described by Müller et al. (2009). The instrument is run through a Resonetics M050 workstation. A ‘squid’ signal homogenizer is used immediately after the cell, approximately 2 m before the ablated material enters the plasma. A total of 350 ml of He is used as carrier gas and mixed downstream with 4.5 ml of N2. A frequency of 5 Hz was used during the work, with a constant on-target fluence of 6 J cm$^{-2}$, measured with an external energy meter. An analytical spot of 23 μm was systematically used throughout the whole study, while the pit depth is estimated to be less than 8 μm. The zircon standard 91500 (Wiedenbeck et al. 1995) was used as the primary standard, and the Plešovice standard (Slama et al. 2008) was employed as a secondary (quality control) standard. Both were interspersed in the sequence with unknown zircon crystals: two 910500 and one Plešovice followed by ten unknown zircon grains. Additionally, NIST SRM 610 was also analysed to calculate the elemental concentrations in zircon, monitored to check for inclusions or subtle changes in composition that could be indicative of different domains. We used 29Si as an internal standard, assuming a stoichiometry of 32.77 % SiO$_2$ in zircon.

The data reduction was performed using Iolite 3.0 (Paton et al. 2010, 2011) employing the VizualAge data reduction scheme developed by Petrus & Kamber (2012). Uncertainties of the
primary standard during the analytical session were propagated using Iolite protocols. The calculated age uncertainties correspond to two standard errors. Data were exported from Iolite and the Concordia diagrams and weighed mean dates were calculated and plotted using Isoplot v.3.7 (Ludwig, 2008). No common Pb correction was applied as the small 206Pb count rates were insignificant when compared to the 203Hg signal typically seen in our system. Analyses that fell outside +30 % and −5 % discordancy, or which had more than 10 % 2-sigma errors, were discarded. The external reproducibility of the Plešovice secondary standard was better than 2 %.

The seven selected samples described above yielded 218 U–Pb analyses that, after filtering, were used to determine crystallization ages. Oscillatory zoning, observed under CL, was interpreted as indicative of zircon crystallization in the magma chamber. Results are presented in Figure 5 (and Table S1 in the online Supplementary Material).

Thirty zircon crystals were analysed from the ignimbrite sample CAM-6, collected from the middle zone of the thick ignimbritic succession of Campelles (Fig. 2). In all, 24 satisfied the filtering criteria. Some of the zircon crystals are prismatic and stubby in shape, rarely zoned under CL, and cluster around a mean 206Pb–238U date of 459.5 ± 4.2 Ma (n = 12, MSWD = 1.4), which is interpreted as the crystallization age of the ignimbrite. Some other crystals with anhedral to corroded shapes yielded older ages, ranging from the Neoproterozoic (the youngest, 824 Ma) to the Palaeoproterozoic. While stratigraphic correlations suggest for this unit a similar Ordovician age as the other dated samples, we were unable to recover any magmatic zircons.

Sample CAM-9 also consists of a welded ignimbrite cropping out several kilometres towards the NW from the site of samples CAM-6, CAM-7 and CAM-18. Only 20 zircon grains were recovered from CAM-9, 16 of which satisfied the filtering criteria. They are small compared with zircons from the previously described samples, not exceeding 140 μm, with mostly oval to rounded morphologies. Although being poorly luminescent under CL, igneous zoning is observable in some of the crystals. Few of these crystals are discordant; instead most are variably discordant (Fig. 5d).

Three of the least discordant are Ediacaran, ranging in age from 592 to 625 Ma (Table S1 in the online Supplementary Material); the others range in age from early Neoproterozoic to Palaeoproterozoic. While stratigraphic correlations suggest for this unit a similar Ordovician age as the other dated samples, we were unable to recover any magmatic zircons.

Sample CAM-13 corresponds to a different outcrop of welded ignimbrite, belonging to the Bruguera succession (Fig. 2). In all, 33 out of 35 analysed zircon crystals met the filtering criteria. They are stubby grains with bipyramidal terminations, faintly zoned under CL and up to 220 μm in length. Most of the analysed crystals are discordant. Apart from one clearly inherited zircon, with an apparent age of 759 ± 28 Ma, and another, slightly discordant one with an apparent age of 379 ± 12 Ma, most almost all the other crystals define a cluster whose mean 206Pb–238U age of 459.6 ± 1.9 Ma (n = 26, MSWD = 0.46) is interpreted as the age of crystallization (Fig. 5g).

Finally, samples CAM-11 and CAM-12 both belong to a granophyre, previously dated at 458 ± 3 Ma by Martínez et al. (2011). In all, 35 zircon grains were analysed from sample CAM-11, all of which except one met the filtering criteria. They range in shape from elongated to bipyramidal short prisms, up to 260 μm in length. Under CL they show homogeneous luminescence, with faint oscillatory zoning only developed in a few crystals. A few of the analysed zircon grains were slightly discordant. A group of 23 coherent analyses yielded a mean 206Pb–238U date of 460.1 ± 2 Ma (n = 23, MSWD = 0.49), interpreted as the age of granophyre crystallization (Fig. 5e, inset). A small number of zircon crystals, although discordant, yielded a slightly older mean age of c. 488 Ma, and probably correspond to either inherited grains or antecrysts formed in the magma chamber during an earlier episode of magma crystallization. Three discordant grains ranging from c. 438 Ma to c. 410 Ma are interpreted as recording Pb loss. Sample CAM-12 also yielded a good number of zircon crystals, 35 of which were analysed and met the filtering criteria. They are generally stubby and bipyramidal, up to 240 μm in length, although some are fragmentised grains belonging to larger crystals. Under CL they often show oscillatory zoning, with some high-luminescent inclu- sions, possibly apatite crystals. Apart from a few discordant data, which probably experienced Pb loss, the overall behaviour of the remaining crystals have a consistent age. The mean 206Pb–238U date of 461.5 ± 2.3 Ma (n = 25, MSWD = 1.4; Fig. 5f, inset) obtained from a coherent group of 25 analyses is interpreted as the crystallization age of the granophyre. Only two grains were slightly older but discordant; three other younger and discordant analyses probably experienced variable amounts of Pb loss.

4. Results

The new isotopic ages obtained in this study demonstrate that the Campelles–Bruguera rheomorphic rhyolite ignimbrites, previously attributed to a late Palaeozoic volcanic event, are in fact Sandbian–Katian in age and are part of a Middle–Late Ordovician magmatic
Fig. 5. (Colour online) U-Pb Wetherill Concordia diagrams of the dated samples. Insets are the 206Pb/238U weighted mean dates, normally interpreted as indicative of the crystallization age of the dated samples. In each inset diagram the red lines correspond to the analyses used for mean age calculation; the blue lines in diagrams CAM-12 and CAM-18 are the analyses rejected by the age calculation algorithm in Isoplot 3.7 (Ludwig, 2008). Error bars correspond to 2 sigma errors.
event in the Eastern Pyrenees. In addition to the stratigraphic implications that these results have for understanding the pre-Variscan evolution of the Pyrenees, there are also significant implications for the origin, characteristics and importance of volcanism associated with Middle to Late Ordovician magmatism in the Eastern Pyrenees. All the ages obtained indicate that a single magmatic event produced the emplacement of the silicic intrusive xenocrysts. Despite the fact that volcanic rocks interbedded with Middle–Upper Ordovician metasediments are abundant and present in nearly the whole Middle–Upper Ordovician stratigraphic succession in the Eastern and Central Pyrenees, they were previously recognized as neither volumetrically significant nor indicative of the provenance or location of source vents. The predominance of pyroclastic rocks (e.g. ignimbrites and ashfall beds) was already noted by Martí et al. (1986) as indicative of the explosive character of this volcanism. The recognition of the Campelles–Bruguera rheomorphic ignimbrites as products of the Middle–Late Ordovician magmatism in this area increases their extent by several thousands of cubic kilometres, thereby suggesting that this volcanic episode was much more significant than once thought. This, together with the thickness of the Campelles ignimbritic succession, which is in the order of 1000 m, suggests the occurrence of Sandbian–Katian mega-eruptions possibly linked to the formation of collapse calderas.

First, this implies that much greater magma production was needed to sustain the volcanism and, secondly, that the mechanisms for storing and expelling such large amounts of rhyolitic magmas were favoured by the regional and local tectonics operating at that time. Such a large volume of volcanic rocks and their particular characteristics (i.e. rheomorphic ignimbrites) suggest that one or more large caldera structures were the source of the volcanism in this area, as was suggested when these rocks were still considered to be late Palaeozoic in age (F. Robert, unpub. Ph.D. thesis, Univ. Besançon, 1980; J. Martí, unpub. Ph.D. thesis, Univ. Barcelona, 1986; Martí, 1991). Moreover, it has been proposed (Navidad et al. 2010) that the most probable tectonic setting for the emplacement of the Middle–Late Ordovician volcanic and plutonic rocks is an extensional regime. An extensional geodynamic setting would favour the large-scale eruption of silicic magma, as it occurs in other similar settings in more modern analogues (Basin and Range, USA, Lipman, 1992; Sierra Madre Occidental, México, Aguirre-Díaz & McDowell, 1993). Thus, by 460 Ma, the extensional break-up of the Gondwanan margin and the rifting away of terranes, including the Eastern Pyrenees, was in progress.

Existing petrological and geochemical data of the volcanic rocks dated here (J. Martí, unpub. Ph.D. thesis, Univ. Barcelona, 1986; Martí et al. 1986) reveal a calc-alkaline character coincident with that of the coeval intrusive rocks cropping out in the same area (Martínez et al. 2011). Martínez et al. (2011) proposed that these intrusive rocks were derived from the melting of Ediacaran sediments formed from the erosion of previous Neoproterozoic arc rocks, which were contaminated by older components, possibly owing to the partial melting of a pre-Neoproterozoic basement. Inherited Neoproterozoic (and even a few Palaeoproterozoic to Archaean) zircon grains found in nearly all the samples we dated (Fig. 6) support the existence of pre-Neoproterozoic components in the source region of these magmatic rocks. However, pre-Palaeozoic crystalline basement does not crop out in the eastern Pyrenean part of the Variscan Chain, and so the exact source of the late Middle–Early Late Ordovician magmas remains uncertain.

The Middle–Late Ordovician magmatic episode in the Eastern Pyrenees would have been triggered by extensional tectonics affecting a crust previously thickened by a compressional episode of Middle Ordovician age (Casas, 2010; Navidad et al. 2010), which followed the Neoproterozoic–early Cambrian subduction-related magmatism (Casas et al. 2015). This tectonic scenario involving compression followed by extension resembles the events that occurred at the end of the Variscan orogeny in relation to the Late Carboniferous–Early Permian volcanism, which is widely found throughout the Pyrenees in pull-apart basins. These basins were generated during a late-orogenic extensional phase that also generated large-volume eruptions of calc-alkaline magmas (J. Gisbert, unpub. Ph.D. thesis, Univ. de Zaragoza, 1981; J. Martí, unpub. Ph.D. thesis, Univ. Barcelona, 1986; J. Gilbert, unpub. Ph.D. thesis, Univ. Cambridge, 1989; Lago et al. 2004). This late Palaeozoic volcanism was coeval with the emplacement of granodioritic plutons at very shallow crustal levels (García-Sansegundo et al. 2004; Pereira et al. 2013). Likewise, our new age data show that all studied magmatic products from the area attributed to a Middle–Late Ordovician magmatic episode, i.e. the Núria gneisses, the Ribes granophyre and the Campelles–Bruguera volcanic rocks, lie within a very narrow age range. Consequently, we must assume that all these magmatic products have a genetic connection. However, the lack of xenocrysts in the Ribes granophyre, in contrast with their presence in most of the ignimbritic samples, poses an interesting question on whether or not both magmas shared the same source, which deserves to be investigated in further studies in order to understand this potential plutonic–volcanic connection.

Author ORCID(s). Joan Martí 0000-0003-3930-8603

Acknowledgements. Financial support for this work was provided by the projects CGL2015-66335-C2-1-R, CGL2017-87631-P and CGL2017-84901-C2-1-P from Spanish MINECO. JM is grateful for the MECD (PRX16/00056) grant. We would like to thanks Carlos Ortega-Obregón (CGEO, UNAM) for the instrument maintenance and U–Pb determinations. We thank the Editor, C. Dietsch, and an anonymous referee for their constructive reviews. English text was reviewed and corrected by Michael Lockwood.

Supplementary material. To view supplementary material for this article, please visit https://doi.org/10.1017/S0016756819000116.
References

Aguirre-Diaz GJ and McDowell FW (1993) Nature and timing of faulting and synextensional magmatism in the southern Basin and Range, central-eastern Durango, Mexico. *Geological Society of America Bulletin* 105, 1435–44.

Alvaro JJ, Casas JM, Clausen S and Quesada C (2018) Early Palaeozoic geodynamics in NW Gondwana. *Journal of Iberian Geology* 44, 551–65.

Buggisch W, Joachimski MM, Lehnter O, Bergstrom SM, Repetski JE and Webers GF (2010) Did intense volcanism trigger the first Late Ordovician icehouse? *Geology* 38, 327–30.

Calvet P, Lapierre H and Charvet J (1988) Diversité du volcanisme Ordovicien dans la région de Pierrefitte (Hautes Pyrénées): rhyolites calco-alcalines et basaltes alcalins. *Comptes Rendus de l'Académie des Sciences de Paris D* 307, 805–12.

Casas JM (2010) Ordovician deformations in the Pyrenees: new insights into the significance of pre-Variscan ('sardic') tectonics. *Geological Magazine* 147, 674–89.

Casas JM and Fernández O (2007) On the Upper Ordovician unconformity in the Pyrenees: new evidence from the La Cerdanya area. *Geologica Acta* 5, 193–83.

Casas JM, Castinéiras P, Navidad M, Liesa M and Carreras J (2010) New insights into the Late Ordovician magmatism in the Eastern Pyrenees: U–Pb SHRIMP zircon data from the Canigou massif. *Gondwana Research* 17, 317–24.

Casas JM, Navidad M, Castinéiras P, Liesa M, Aguilar C, Carreras J, Hofman M, Gärtner A and Linnemann U (2015) The Late Neoproterozoic magmatism in the Ediacarian series of the Eastern Pyrenees: new ages and isotope geochemistry. *International Journal of Earth Sciences* 104, 909–25.

Castinéiras P, Navidad M, Liesa M, Carreras J and Casas JM (2008) U–Pb zircon ages (SHRIMP) for Cadomian and Lower Ordovician magmatism in the Eastern Pyrenees: new insights in the pre-Variscan evolution of the northern Gondwana margin. *Tectonophysics* 461, 228–39.

Cavet P (1957) Le Paléozoïque de la zone axiale des Pyrénées orientales françaises entre le Roussillon et l’Andorre. *Bulletin Service Carte Géologique France* 55, 503–518.

Cocherie A, Baudin Th, Autran A, Puerto C, Fanning CM and Laumonier B (2005) U–Pb zircon (ID-TIMS and SHRIMP) evidence for the early Ordovician intrusion of metagranites in the late Proterozoic Canaveilles Group of the Pyrenees and the Montagne Noire (France). *Bulletin de la Société géologique de France* 176, 269–82.

Cohen KM, Finney SC, Gribbard PL and Fan J-X (2013) The ICS Chronostatigraphic Chart. *Episodes* 36, 199–204.

Deloule E, Alexandrov P, Cheilletz A, Laumonier B and Barby P (2002) In-situ U–Pb zircon ages for Early Ordovician magmatism in the eastern Pyrenees, France: the Canigou orthogneisses. *International Journal of Earth Sciences* 91, 398–405.

Denélé Y, Barby P, Deloule E, Pelletier E, Olivier P and Gleizes G (2009) Middle Ordovician U–Pb age of the Astin and Hospitalet orthogneissic laccoliths: their role in the Variscan evolution of the Pyrenees. *Bulletin de la Société géologique de France* 180, 209–16.

Denélé Y, Laumonier B, Paquette JL, Olivier P, Gleizes G and Barby P (2014) Timing of granite emplacement, crustal flow and gneiss dome formation in the Variscan segment of the Pyrenees. In *The Variscan Orogeny:Extent, Timescale and the Formation of the European Crust* (eds K Schulmam, JR Martinez Catalán, JM Lardieux, V Janousek and G Oggiano), pp. 265–87. *Geological Society of London, Special Publication* no. 405.

Finney SC and Berry WBN (eds) (2010) *The Ordovician Earth System*. Geological Society of America, Special Paper no. 446, 193 pp.

Gaggero L, Oggiano G, Funedda A and Buzzi L (2012) Rifting and arc-related Early Paleozoic volcanism along the north Gondwana margin: geochemical and geological evidence from Sardinia (Italy). *Journal of Geology* 120, 273–92.

García-Sansengudo J, Gavaldà J and Alonso JL (2004) Preuves de la discordance de l’Ordovicien supérieur dans la zone axiale des Pyrénées: exemple du Dôme de la Garonne (Espagne, France). *Comptes Rendus Geosciences* 336, 1035–40.

Guillot F, Schaltegger U, Bertrand JM, Deloule E and Baudin T (2002) Zircon U–Pb geochronology of Ordovician magmatism in the polyclastic Ruitor Massif (Internal W-Alps). *International Journal of Earth Sciences* 91, 964–78.

Hartveit JJA (1970) Geology of the Upper Segre and Valira valleys, Central Pyrenees, Andorra/Spain. *Leidsche Geologische Mededelingen* 45, 167–236.

Heinisch H (1981) Preliminary report on Early Paleozoic acidic volcanism in the Eastern and Southern Alps: a review. In *IGCP No 5: Newsletter 3* (eds S Karamata and FP Sassi), pp. 80–8.

Helbing H and Tiepolo M (2005) Age determination of Ordovician magmatism in NE Sardinia and its bearing on Variscan basement evolution. *Journal of the Geological Society, London* 162, 689–700.

Herrmann AD, Maclod KG and Leslie SA (2010) Did a volcanic mega-eruption cause global cooling during the Late Ordovician? *Palaeontology* 25, 831–36.

Herrmann AD, Haupt BJ, Patzkowsky ME, Seidov D and Slingerland RL (2004) Response of Late Ordovician paleoceanography to changes in sea level, continental drift, and atmospheric pCO2: potential causes for long-term cooling and glacialiation. *Palaeogeography, Palaeoclimatology, Palaeoecology* 210, 385–410.

Holland SM and Patzkowsky ME (1996) Sequence stratigraphy and long-term paleoceanographic change in the Middle and Upper Ordovician of the eastern United States. In *Paleozoic Sequence Stratigraphy; Views from the North American Craton* (eds B Witzke, GA Ludvigson and J Day), pp. 117–29. *Geological Society of America, Special Paper* no. 306.

Horstwood MSA, Kössler J, Gehrels G, Jackson SE, McLean NM, Paton C, Pearson NJ, Sicombe K, Sylvester P, Vermeesch P, Boring WJ, Condon DJ and Shoene B (2016) Community-derived standards for LA-ICP-MS U–Th–Pb geochronology – uncertainty propagation, age interpretation and data reporting. *Geostandards and Geoanalytical Research* 40, 311–32.

Huff WD, Bergstrom SM and Kolastra DR (1992) Gigantic Ordovician volcanic ash fall in North America and Europe: biological, tectonomagmatic, and event-stratigraphic significance. *Geology* 20, 875–78.

Huff WD, Bergstrom SM and Kolastra DR (2010) Ordovician explosive volcanism. In *The Ordovician Earth System* (eds SC Finney and WBN Berry), pp. 13–28. *Geological Society of America, Special Paper* no. 466.

Jones DS, Martini AM, Fike DA and Kailo K (2017) A volcanic trigger for Late Ordovician mass extinction? Mercury data from south China and Laurentia. *Geology* 45, 651–4.

Klitzli U, Klitzli E, Günes Z and Kosler J (2009) Accuracy of laser ablation U–Pb zircon dating: results from a test using five different reference zircons. *Geostandards and Geoanalytical Research* 33, 5–15.

Lago M, Arranz E, Pocovi A, Gale C and Gil-Izam A (2004) Permian magmatism and basin dynamics in the southern Pyrenees: a record of the transition from late Variscan transtension to early Alpine extension. In *Permo-Carboniferous Magmatism and Rifting in Europe* (eds M Wilson, E-R Neumann, GR Davies, MJ Timmerman, M Heeremans and BT Larsen), pp. 439–64. *Geological Society of London, Special Publication* no. 223.

Lefebvre V, Servais T, François L and Averbuch O (2010) Did a Katian large igneous province trigger the Late Ordovician glaciation? *Palaeogeography, Palaeoclimatology, Palaeoecology* 296, 310–19.

Lotout C, Pittra P, Poujol M and Van Den Driessche J (2017) Ordovician magmatism in the Lévézou massif (French Massif Central): tectonic and geodynamic implications. *International Journal of Earth Sciences* 106, 501–15.

Liesa M, Carreras J, Castinéiras P, Casas JM, Navidad M and Villa M (2011) U–Pb zircon age of Ordovician magmatism in the Albera Massif (Eastern Pyrenees). *Geologica Acta* 9, 93–101.

Lipman PW (1992) Magmatism in the Cordilleran United States: progress and problems. In *The Cordilleran Orogen: Conterminous U.S.* (eds PW Lipman and ML Zoback), pp. 481–510.

Ludwig K (2008) *User’s Manual for Isoplot 3.7: A Geochronological Toolkit for Microsoft Excel*. Berkeley Geochronology Center, Special Publication no. 4, 77 pp.

Marti J (1991) Caldera-like structures related to Permo-Carboniferous volcanism of the Catalan Pyrenees (NE Spain). *Journal of Volcanology and Geothermal Research* 45, 173–86.
Martí J, Muñoz JA and Vaquer R (1986) Les roches volcaniques de l’Ordovicien supérieur de la région de Ribes de Freser-Rocabruna (Pyrénées catalanes): caractères et signification. Comptes Rendus de l’Académie des Sciences de Paris 302, 1237–42.

Martínez FJ, Iriondo A, Dietsh C, Aleinkoff JN, Peucat JJ, Cirés J, Reche J and Capdevila R (2011) U–Pb SHRIMP–RG zircon ages and Nd signature of lower Paleozoic rifting-related magmatism in the Variscan basement of the Eastern Pyrenees. Lithos 127, 10–23.

Martínez FJ, Dietsh C, Aleinkoff J, Cirés J, Arboleya ML, Reche J and Gómez-Gras D (2016) Provenance, age, and tectonic evolution of Variscan flysch, southeastern France and northeastern Iberia based on zircon geochronology. Geological Society of America Bulletin 128, 842–59.

Mezger J and Gerdes A (2016) Early Variscan (Visean) granites in the core of central Pyrenean gneiss domes: implications from laser ablation U–Pb and Th–Pb studies. Gondwana Research 29, 181–98.

Müller W, Shelley JMG, Miller P and Broude S (1995) Improved laser ablation U–Pb SHRIMP-RG zircon ages and Nd signature of lower Paleozoic rifting-related magmatism in the Variscan basement of the Eastern Pyrenees. Lithos 127, 10–23.

Müller W, Shelley JMG, Miller P and Broude S (2009) Initial performance metrics of a new custom-designed ArF excimer LA-ICP-MS system coupled to a two volume laser-ablation cell. Journal of Analytical Atomic Spectrometry 24, 209–14.

Navidad M, Casas JM, Castiñeiras P, Barnolas A, Fernández-Suárez J, Líes M, Carreras J and Gil-Peña I (2010) Geochemical characterization and isotopic age of the Caradocian magmatism from North-Eastern Iberian Peninsula: insights from the Late Ordovician evolution of the northern Gondwana margin. Gondwana Research 17, 325–37.

Pandel M, Alvaro J, Casas JM, Clausen S, Poujol M and Sánchez-García T (2018) Cadomian volcano込んだsystems across the Ediacaran-Cambrian transition of the Eastern Pyrenees, southwestern Europe. International Journal of Earth Sciences 107, 1579–601.

Pandel M, Clausen S, Alvaro J and Casas JM (2018) Review of the Ediacaran–Lower Ordovician (pre-Sarcolitic) stratigraphic framework of the Eastern Pyrenees, southwestern Europe. Geologica Acta 16, 339–50.

Paton C, Hellstrom J, Paul B, Woodhead J and Hergt J (2011) Iolite: freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry 26, 2508–18.

Paton C, Woodhead JD, Hellstrom JC, Hergt JM, Greig A and Maas R (2010) Improved laser ablation U–Pb zircon geochronology through robust down-hole fractionation correction. Geochemistry, Geophysics, Geosystems 11, Q0A086, doi: 10.1029/2009GC002618.

Perreira J, Castro A, Chichorro M, Fernández C, Díaz-Alvarado J, Martí J and Rodriguez C (2013) Chronological link between deep-seated processes in magma chambers and eruptions: Permocarboniferous magmatism in the core of Pangea (Southern Pyrenees). Gondwana Research 25, 290–308.

Petrus JA and Kamber BS (2012) VirualAge: a novel approach to laser ablation ICP-MS U–Pb geochronology data reduction. Geostandards and Geoscientific Research 36, 247–70.

Pitra P, Poujol M, Den Driessche JV, Poilvet J-C and Paquette J-L (2012) Early Permian extensive sheeting of an Ordovician granite: the Saint-Eutrope “C/S-like” orthogneiss (Montagne Noire, French Massif Central). Comptes Rendus Geoscience 344, 377–84.

Puddu C, Alvaro J and Casas JM (2018) The Sardinian unconformity and the Upper Ordovician successions of the Ribes de Freser area, Eastern Pyrenees. Journal of Iberian Geology 44, 603–17.

Robert JF and Thiebaut J (1976) Découverte d’un volcanisme acide dans le Caradoc de la région de Ribes de Freser (Prov. de Gerone). Comptes Rendus de l’Académie des Sciences de Paris, D 282, 2050–79.

Roger F, Respaut JP, Brunel M, Matte Ph and Paquette JL (2004) Première datation U–Pb des orthogneiss oélles de la zone axiale de la Montagne Noire (Sud du Massif central): nouveaux témoins du magmatisme Ordovicien dans la chaîne varisque. Comptes Rendus Geoscience 336, 19–28.

Santanna PF (1972) Sobre una discordancia en el Paleoico inferior de los Pirineos orientales. Acta Geológica Hispánica 7, 129–32.

Sell B, Ainsaar L and Leslie S (2013) Precise timing of the Late Ordovician (Sandbian) supereruptions and associated environmental, biological, and climatological events. Journal of the Geological Society, London 170, 711–14.

Schaltegger U, Abrecht J and Corfu F (2003) The Ordoanian orogeny in the Alpine basement: constraints from geochronology and geochemistry in the Aar Massif (Central Alps). Schweizerische Mineralogische und Petrologische Mitteilungen 83, 183–95.

Slana J, Kosler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MS, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN and Whitehouse MJ (2008) Plešovice zircon — A new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology 249, 1–35.

Solari LA, Gómez-Tuena A, Bernal JP, Pérez-Arvizu O and Tanner M (2010) U–Pb zircon geochronology by an integrated LA-ICP-MS microanalytical workstation: achievements in precision and accuracy. Geostandards and Geoscientific Research 34, 5–18.

Trombetta A, Cirrincione R, Corfu F, Mazzoleni P and Pazzino A (2004) Mid-Ordovician U–Pb ages porphyrids in the Peloritan Mountains (NE Sicily): palaeogeographical implications for the evolution of the Alboran microplate. Journal of the Geological Society, London 161, 265–76.

Van Lichtervelde M, Grand’Homme A, de Saint-Blanquat M, Olivier P, Gerdes A, Paquette J-L, Melgarejo JC, Druguet E and Alfonso P (2017) U–Pb geochronology on zircon and columbite-group minerals of the Cap de Creus pegmatites, NE Spain. Mineralogy and Petrology 111, 1–21.

von Raumer JF (1998) The Paleozoic evolution in the Alps: from Gondwana to Pangaea. Geologische Rundschau 87, 407–35.

von Raumer JF and Stampfl GM (2008) The birth of the Rheic Ocean — Early Palaeozoic subsidence patterns and subsequent tectonic plate scenarios. Tectonophysics 461, 9–20.

von Raumer JF, Stampfl GM and Bussy F (2003) Gondwana-derived microcontinents — the constituents of the Variscan and Alpine collisional orogens. Tectonophysics 365, 7–22.

Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli F, Von Quadt A, Roddick JC and Spiegel W (1995) Three natural zircon standards for U-Th–Pb, Lu–Hf, trace element and REE analyses. Geostandards and Geoscientific Research 19, 1–23.

Young SA, Saltzman MR, Foland KA, Linder JS and Kump LR (2009) A major drop in seawater $^{87}Sr/^{86}Sr$ during the Middle Ordovician (Darrilwian): links to volcanism and climate? Geology 37, 951–4.

Zurbriggen R, Franz L and Handy MR (1997) Pre-Variscan deformation, metamorphism and magmatism in the Strona-Ceneri Zone (southern Alps of northern Italy and southern Switzerland). Schweizerische Mineralogische und Petrologische Mitteilungen 77, 361–80.