HEIGHT OF SOME AUTOMORPHISMS OF LOCAL FIELDS

HUA-CHIEH LI

Abstract. In this note, we determine which automorphism subgroups of Aut\(_{(\mathbb{F}_q((x)))}\) are corresponding to \(\mathbb{Z}_p\)-extensions or \(\mathbb{Z}_p \times \mathbb{Z}_p\)-extensions of characteristic 0 fields.

1. Introduction

Let \(k = \mathbb{F}_q\) be a finite field of characteristic \(p > 0\) and let \(L/K\) be a totally ramified abelian extension, where \(K\) is a local field with residue field \(k\). Then \(G = \text{Gal}(L/K)\) has a decreasing filtration by the upper ramification subgroups \(G(r)\), defined for nonnegative \(r \in \mathbb{R}\) (see [10, IV]). Since \(G\) is abelian, \(L/K\) is arithmetically profinite (see [12]). This means that for every \(r \geq 0\) the upper ramification group \(G(r)\) has finite index in \(G\). This allows us to define the Hasse-Herbrand function \(\psi : \mathbb{R}^+ \to \mathbb{R}^+\) where \(\psi_{L/F}(r) = \int_0^r [G : G(t)] dt\) and \(\phi_{L/K}(r) = \psi_{L/K}^{-1}(r)\). The ramification subgroups of \(G\) with the upper numbering are defined by \(G[r] = G(\phi_{L/K}(r))\).

Let \(\text{Aut}_k(k((x)))\) denote the group of continuous automorphisms of \(k((x))\) which induce the identity map on \(k\). A closed abelian subgroup \(G\) of \(\text{Aut}_k(k((x)))\) also has a ramification filtration. The lower ramification subgroups of \(G\) are defined by \(G[\sigma] = \{\sigma \in G : v_x(\sigma(x) - x) \geq r + 1\}\) for \(r \geq 0\). Since \(G[r]\) has finite index in \(G\) for every \(r \geq 0\), the function \(\phi_G : \mathbb{R}^+ \to \mathbb{R}^+\) where \(\phi_G(r) = \int_0^r [G : G(t)]^{-1} dt\) is strictly increasing. We define the ramification subgroups of \(G\) with the upper numbering by \(G(r) = G[\phi_G^{-1}(r)]\).

Wintenberger [11] has shown that the field of norms functor induces an equivalence between a category whose objects are totally ramified abelian \(p\)-adic Lie extensions \(L/K\), where \(K\) is a local field with residue field \(k\), and a category whose objects are pairs \((\mathbb{K}, G)\), where \(\mathbb{K} \simeq k((x))\) and \(G\) is an abelian \(p\)-adic Lie subgroup of \(\text{Aut}_k(\mathbb{K})\). In short, if \(G\) is an abelian \(p\)-adic Lie subgroup of \(\text{Aut}_k(k((x)))\), then there is an abelian \(p\)-adic Lie extensions \(L/K\) corresponding to \((k((x)), G)\) by the equivalence of categories given by the field of norms functor. Moreover, the canonical isomorphism from \(\text{Gal}(L/K)\) onto \(G\) preserves the ramification filtration [6, 11]. This equivalence has been extended to allow \(\text{Gal}(L/K)\) and \(G\) to be arbitrary abelian pro-\(p\) groups by Keating [3]. In the following, we will simply say that \(G\) is corresponding to \(L/K\) if the extension \(L/K\) corresponds to \((k((x)), G)\) by the equivalence of categories given by the field of norms functor.

For \(\sigma \in \text{Aut}_k(k((x)))\), we let

\[i(\sigma) = v_x \left(\frac{\sigma(x)}{x} - 1 \right)\]
Moreover, if $\sigma(x) \equiv x \pmod{x^2}$, then we denote $i_n(\sigma) = i(\sigma^n)$. When $\sigma \in \text{Aut}_k(k((t)))$ has infinite order, the sequence $\{i_n(\sigma)\}$ is strictly increasing and attracts many attentions. In [9] Sen proved that for every $n \in \mathbb{N}$, $i_{n+1}(\sigma) \equiv i_n(\sigma) \pmod{p^{n+1}}$. In [2] Keating determines upper bounds for the $i_n(\sigma)$ in some cases and in [4, 5] the authors improve Keating’s results using Wintenberger’s theory of field of norms [11, 12]. These results are based on the fact that the automorphism subgroups correspond to $\mathbb{Z}_p\times\mathbb{Z}_p$-extensions of characteristic 0 fields in [2, 3, 4] and correspond to $\mathbb{Z}_p\times\mathbb{Z}_p$-extensions of characteristic 0 fields in [5]. In this note, we determine which automorphism subgroups of $\text{Aut}_k(k((t)))$ are corresponding to $\mathbb{Z}_p\times\mathbb{Z}_p$-extensions of characteristic 0 fields. In the following, we will simply say that an extension L/K is of characteristic 0 if the characteristic of K is 0. Likewise, if the characteristic of K is p, then we say that the extension L/K is of characteristic p.

Motivated by the definition of height of a formal group and height of a p-adic dynamical system [7], we have the following definition.

Definition 1.1. Let $\sigma \in \text{Aut}_k(k((t)))$ with $\sigma \equiv x \pmod{x^2}$. We say that the **height** of σ exists if $\lim_{n \to \infty} i_n(\sigma)/i_{n-1}(\sigma)$ is finite and denote by

$$\text{Height}(\sigma) = \lim_{n \to \infty} \log_p \frac{i_n(\sigma)}{i_{n-1}(\sigma)}.$$

Let G be a closed subgroup of $\text{Aut}_k(k((x)))$. Our main result shows that if G is isomorphic to \mathbb{Z}_p then G corresponds to a characteristic 0 field extension if and only if every nonidentity element of G has height 1 and if G is isomorphic to $\mathbb{Z}_p\times\mathbb{Z}_p$, then G corresponds to a characteristic 0 field extension if and only if every nonidentity element of G has height 2.

The proof of our result is based on the following straightforward consequence of Theorem 4 of [8].

Lemma 1.2. Let L/K be an abelian extension and let G denote the Galois group $\text{Gal}(L/K)$.

1. If K is of characteristic p, then the mapping $\sigma \to \sigma^p$ maps $G(n)$ into $G(pn)$, for all $n \in \mathbb{N}$.
2. If K is of characteristic 0 with absolute ramification index e, then the mapping $\sigma \to \sigma^p$ induces a homomorphism which maps $G(n)/G(n+1)$ onto $G(n+e)/G(n+e+1)$, for all n large enough.

We remark that since G is abelian, every upper ramification break u (i.e. $G(u) \supseteq G(u+\epsilon)$, $\forall \epsilon > 0$) is an integer (see for instance [10, V]). Therefore, we can apply Lemma 1.2 to the case where n is an upper ramification break of G. Moreover, if K is of characteristic 0 and $\text{Gal}(L/K)$ is a pro-p group, then Lemma 1.2(2) shows that the mapping $\sigma \to \sigma^p$ maps $G(n)$ onto $G(n+e)$, for n sufficiently large. Therefore, in this case, if there is no nontrivial p-torsion element in G, then the mapping $\sigma \to \sigma^p$ induces an isomorphism between $G(n)/G(n+1)$ and $G(n+e)/G(n+e+1)$, for all n large enough. In particular, if n is large enough and n is an upper ramification break of G, then $n+e$ is also an upper ramification break of G.

2. \mathbb{Z}_p-extensions

Given $\sigma \in \text{Aut}_k(k((t)))$ with $\sigma \equiv x \pmod{x^2}$, write $\lim_{n \to \infty} (i_n(\sigma)/p^n) = (p/(p-1))e$. It is well-known that either e is a positive integer or $e = \infty$ (see
for instance [13]. Moreover, e is a positive integer if and only if the field extension E/F corresponding to the closed subgroup generated by σ is of characteristic 0. In fact, in this case, e is the absolute ramification index of F. If e is finite, then it’s clear that $\lim_{n \to \infty} (i_n(\sigma)/i_{n-1}(\sigma)) = p$. That is $\text{Height}(\sigma) = 1$. In this section, we will show that the converse is also true. Thus, for the case $\sigma \in \text{Aut}_k(k((x)))$ with $\text{Height}(\sigma) = 1$, the closed cyclic group generated by σ corresponds to a \mathbb{Z}_p-extension of characteristic 0 field.

We prove this by contradiction. Suppose that the corresponding \mathbb{Z}_p-extension is of characteristic p. Then it is also true that the \mathbb{Z}_p-extension corresponding to the closed subgroup H generated by σ^{p^n} is of characteristic p. By considering the ramification groups of H, we have $\sigma^{p^n} \in H[i_n(\sigma)] \setminus H[i_n(\sigma) + \epsilon]$ and $\sigma^{p^{n+1}} \in H[i_{n+1}(\sigma)] \setminus H[i_{n+1}(\sigma) + \epsilon], \forall \epsilon > 0$. Therefore $\phi_H(i_n(\sigma))$ and $\phi_H(i_{n+1}(\sigma))$ are upper ramification breaks of H and hence we can apply Lemma 1 (2) to get $\sigma^{p^{n+1}} \in H(p\phi_H(i_n(\sigma)))$. In other words,

$$\phi_H(i_{n+1}(\sigma)) = i_n(\sigma) + \frac{i_{n+1}(\sigma) - i_n(\sigma)}{p} \geq p \phi_H(i_n(\sigma)) = p i_n(\sigma), \forall n \in \mathbb{N}.$$

This says that

$$i_{n+1}(\sigma) \geq (p^2 - p + 1)i_n(\sigma), \forall n \in \mathbb{N},$$

and hence contradicts to the assumption that $\lim_{n \to \infty} \frac{i_n(\sigma)}{i_{n-1}(\sigma)} = p$.

Conversely, suppose that G is corresponding to a characteristic 0 field extension E/F with $e = v_F(p)$ being the absolute ramification index of F. By the definition of lower ramification group, for every $n \in \mathbb{N}$, $\sigma^{p^n} \in G[i_n(\sigma)] \setminus G[i_n(\sigma) + \epsilon]$ and $\sigma^{p^{n+1}} \in G[i_{n+1}(\sigma)] \setminus G[i_{n+1}(\sigma) + \epsilon], \forall \epsilon > 0$. On the other hand, by Lemma 1 (2) and the remark following it, when n is large enough if we let $u = \phi_G(i_n(\sigma))$, then $u + e$ is an upper ramification break of G. Moreover, since $\sigma^{p^n} \in G[i_n(\sigma)] = G(u)$, $\sigma^{p^{n+1}} \in G(u)^p = \{g^p : g \in G(u)\} = G(u + e)$. In other words, $u + e = \phi_G(i_n(\sigma)) + e = \phi_G(i_{n+1}(\sigma))$, and hence

$$e = \phi_G(i_{n+1}(\sigma)) - \phi_G(i_n(\sigma)) = \frac{1}{p^{n+1}}(i_{n+1}(\sigma) - i_n(\sigma))$$

because G is isomorphic to \mathbb{Z}_p. This is true for all n large enough. Therefore, we conclude that there exists $m \in \mathbb{N}$ such that for all $n > m$,

$$i_n(\sigma) = i_m(\sigma) + \sum_{j=m+1}^{n} (i_j(\sigma) - i_{j-1}(\sigma))$$

$$= i_m(\sigma) + e(p^{n+1} + \cdots + p^m)$$

$$= i_m(\sigma) + \frac{ep}{p-1}(p^n - p^m).$$

This shows

$$\lim_{n \to \infty} \frac{i_n(\sigma)}{p^n} = \frac{ep}{p-1}.$$

We summarize this result as the following.

Theorem 2.1. Suppose that $G \subseteq \text{Aut}_k(k((x)))$ is a closed subgroup generated by σ which is isomorphic to \mathbb{Z}_p. Then the following are equivalent:

1. $\lim_{n \to \infty} \frac{i_n(\sigma)}{i_{n-1}(\sigma)} = p$
Therefore, \(\tau \) since Lemma 1.2 (1) says \(i \) and (3) by any nonidentity element \(\tau \in G \). This is because the closed subgroup of \(G \) generated by \(\tau \) is a finite index subgroup. In other words, we shows that the \(\mathbb{Z}_p \)-extension corresponding to \(G \) is of characteristic 0 if and only if every nonidentity element \(\tau \in G \) has \(\text{Height}(\tau) = 1 \).

3. \(\mathbb{Z}_p \times \mathbb{Z}_p \)-extensions

In this section we extend the result of the previous section to the case that \(G \subseteq \text{Aut}_k(k((x))) \) is isomorphic to \(\mathbb{Z}_p \times \mathbb{Z}_p \). In this case we show that every nonidentity element of \(G \) has height 2 if and only if the \(\mathbb{Z}_p \times \mathbb{Z}_p \)-extension corresponding to \(G \) is of characteristic 0.

Let \(G \) be a closed subgroup of \(\text{Aut}_k(k((x))) \) which is isomorphic to \(\mathbb{Z}_p \times \mathbb{Z}_p \) and suppose that for every nonidentity element \(\sigma \in G \) we have \(\lim_{n \to \infty} i_n(\sigma)/i_{n-1}(\sigma) = p^2 \). Again, we use method of contradiction to show that the \(\mathbb{Z}_p \times \mathbb{Z}_p \)-extension corresponding to \(G \) is of characteristic 0. First, suppose that the corresponding \(\mathbb{Z}_p \times \mathbb{Z}_p \)-extension is of characteristic \(p \). Then for any two linearly independent elements \(\sigma, \tau \in G \), since \(\langle \sigma, \tau \rangle \) is a finite index subgroup of \(G \) (we use \(\langle \sigma, \tau \rangle \) to denote the closed subgroup of \(G \) generated by \(\sigma \) and \(\tau \)), the field extension corresponding to \(\langle \sigma, \tau \rangle \) is also a characteristic \(p \) field extension. Similarly, for \(m, n \in \mathbb{N} \), the \(\mathbb{Z}_p \times \mathbb{Z}_p \) extension corresponding to \(\langle \sigma^p, \tau^p \rangle \) is also of characteristic \(p \). We consider several cases.

For a given nonidentity \(\sigma \in G \), we first suppose that for every \(N \in \mathbb{N} \), there exist \(n, m > N \) and \(\tau \) of \(G \) such that \(i_n(\sigma) < i_m(\tau) < i_{m+1}(\tau) \leq i_{n+1}(\sigma) \). Notice that the field extension corresponding to the closed subgroup \(H = \langle \sigma^p, \tau^p \rangle \) is also of characteristic \(p \). By considering the lower ramification subgroups of \(H \), we have

\[
H[i_n(\sigma)] = \langle \sigma^p, \tau^p \rangle \supseteq H[i_n(\sigma) + 1] = \cdots = H[i_m(\tau)] = \langle \sigma^{p+1}, \tau^p \rangle \\
\supseteq H[i_m(\tau) + 1] = \cdots = H[i_{m+1}(\tau)] = \langle \sigma^{p+1}, \tau^{p+1} \rangle.
\]

Therefore,

\[
\phi_H(i_m(\tau)) = i_n(\sigma) + \frac{i_m(\tau) - i_n(\sigma)}{p}
\]

and

\[
\phi_H(i_{m+1}(\tau)) = i_n(\sigma) + \frac{i_m(\tau) - i_n(\sigma)}{p} + \frac{i_{m+1}(\tau) - i_m(\tau)}{p^2}.
\]

Since \(\tau^p \in H[i_m(\tau)] = H(\phi_H(i_m(\tau))) \) and

\[
\tau^{p+1} \in H(\phi_H(i_{m+1}(\tau))) \setminus H(\phi_H(i_{m+1}(\tau)) + \epsilon), \forall \epsilon > 0,
\]

Lemma 1.2 (1) says

\[
i_n(\sigma) + \frac{i_m(\tau) - i_n(\sigma)}{p} + \frac{i_{m+1}(\tau) - i_m(\tau)}{p^2} \geq p(i_n(\sigma) + \frac{i_m(\tau) - i_n(\sigma)}{p}).
\]

Therefore by \(i_n(\tau) \geq i_{m+1}(\tau) \) and \(i_m(\tau) > i_n(\sigma) \), we have

\[
i_{n+1}(\sigma) \geq (p^2 - p + 1)i_n(\tau) + (p^3 - 2p^2 + p)i_n(\sigma) > (p^3 - p^2 + 1)i_n(\sigma).
\]
Since for every $N \in \mathbb{N}$, this is true for some $n > N$, it contradicts to the assumption that $\lim_{n \to \infty} \frac{i_n(\sigma)}{i_{n+1}(\sigma)} = p^2$.

Now suppose that for every $N \in \mathbb{N}$, there exist $n, m > N$ and τ of G such that $i_n(\sigma) < i_m(\tau) < i_{n+1}(\sigma) < i_{n+2}(\sigma) \leq i_{m+1}(\tau)$. Notice that the field extension corresponding to the closed subgroup $H = \langle \sigma^{p^2}, \tau^{p^m} \rangle$ is also of characteristic p. By considering the lower ramification subgroups of H, we have

$$H[i_n(\sigma)] = \langle \sigma^{p^2}, \tau^{p^m} \rangle \supseteq H[i_n(\sigma) + 1] = \cdots = H[i_m(\tau)] = \langle \sigma^{p^{n+1}}, \tau^{p^m} \rangle$$

$$\supseteq H[i_{n+1}(\sigma)] = \cdots = H[i_{n+2}(\sigma)] = \langle \sigma^{p^{n+2}}, \tau^{p^{m+1}} \rangle.$$

Therefore

$$\phi_H(i_{n+2}(\sigma)) = \phi_H(i_{n+1}(\sigma)) + \frac{i_{n+2}(\sigma) - i_{n+1}(\sigma)}{p^3}.$$

By Lemma 1.2 (1), $\phi_H(i_{n+1}(\sigma)) \geq p \phi_H(i_n(\sigma)) = p i_n(\sigma)$ and since $\sigma^{p+2} \notin H[i_{n+2}(\sigma) + \epsilon], \forall \epsilon > 0$, we have $\phi_H(i_{n+2}(\sigma)) \geq p \phi_H(i_{n+1}(\sigma))$. This implies

$$\frac{i_{n+2}(\sigma) - i_{n+1}(\sigma)}{p^3} \geq (p-1)\phi_H(i_{n+1}(\sigma)) \geq (p-1)p i_n(\sigma),$$

and hence

$$i_{n+2}(\sigma) \geq (p^5 - p^4)i_n(\sigma) + i_{n+1}(\sigma).$$

Since for every $N \in \mathbb{N}$, this is true for some $n > N$, it contradicts to the assumption that $\lim_{n \to \infty} \frac{i_n(\sigma)}{i_{n+1}(\sigma)} = p^2$.

Now we only have the following two cases to consider:

1. There exists N such that there is neither $m, n > N$ nor any nonidentity $\tau \in G$ such that $i_n(\sigma) < i_m(\tau) < i_{n+1}(\sigma)$.
2. There exists $m, n \in \mathbb{N}$ and a nonidentity $\tau \in G$ such that $i_{n+j}(\sigma) < i_{m+j}(\tau) < i_{n+j+1}(\sigma)$, for all $j \in \mathbb{N}$.

For the case (1), there exists $N \in \mathbb{N}$ such that

$$G[i_n(\sigma)] \supseteq G[i_n(\sigma) + 1] = \cdots = G[i_{n+1}(\sigma)], \forall n > N.$$

Now let $H = G[i_n(\sigma)]$. Then by the contrapositive assumption, the field extension corresponding to H is also of characteristic p. Since $\phi_H(i_{n+1}(\sigma)) = i_n(\sigma) + (1/p^2)(i_{n+1}(\sigma) - i_n(\sigma))$, again by Lemma 1.2 (1) we have $i_n(\sigma) + (1/p^2)(i_{n+1}(\sigma) - i_n(\sigma)) \geq p i_n(\sigma)$ and hence

$$i_{n+1}(\sigma) \geq (p^3 - p^2 + 1)i_n(\sigma) \geq (p^2 + 1)i_n(\sigma).$$

This is true for all $n > N$, and hence it contradicts to the assumption that $\text{Height}(\sigma) = 2$.

For the case (2), for every $j \in \mathbb{N}$, let $H = \langle \sigma^{p^{n+j}}, \tau^{p^{m+j}} \rangle$ and by considering the ramification subgroups of H, we have

$$\phi_H(i_{n+j+1}(\sigma)) = i_{n+j}(\sigma) + \frac{i_{m+j}(\tau) - i_{n+j}(\sigma)}{p} + \frac{i_{n+j+1}(\sigma) - i_{m+j}(\tau)}{p^2}.$$

Again, by the contrapositive assumption, the field extension corresponding to H is of characteristic p, and hence by Lemma 1.2 (1)

$$\phi_H(i_{n+j+1}(\sigma)) \geq p \phi_H(i_{n+j}(\sigma)) = p i_{n+j}(\sigma).$$
This contradicts to the assumption that \(\lim_{j \to \infty} i_{n+j+1}(\sigma) = p^2 \), for every 1 > \(\epsilon > 0 \), there exists \(j \) large enough such that \(p^2 - \epsilon < \lim_{j \to \infty} i_{n+j+1}(\sigma) < p^2 + \epsilon \). Similarly, \(p^2 - \epsilon < \lim_{j \to \infty} i_{n+j+1}(\tau)/i_{n+j}(\tau) < p^2 + \epsilon \). Hence, we can have either \(i_{n+j}(\tau) < (p+\epsilon)i_{n+j}(\sigma) \) or \(i_{n+j}(\sigma) < (p+\epsilon)i_{n+j}(\tau) \). Otherwise \(i_{n+j}(\tau) \geq (p+\epsilon)i_{n+j}(\sigma) \) and \(i_{n+j+1}(\sigma) \geq (p+\epsilon)i_{n+j}(\tau) \), imply \(i_{n+j+1}(\sigma) \geq (p+\epsilon)^2i_{n+j}(\sigma) > (p^2 + \epsilon)i_{n+j}(\sigma) \). Without lose of generality (switching \(\sigma \) and \(\tau \) if necessary), for every \(N \in \mathbb{N} \) and 1 > \(\epsilon > 0 \), we can find \(j > N \) such that \(i_{n+j}(\tau) < (p+\epsilon)i_{n+j}(\sigma) \) and hence by Equation (3.1), we get
\[
i_{n+j+1}(\sigma) \geq (p^3 - p^2 + p)i_{n+j}(\sigma) - (p - 1)(p+\epsilon)i_{n+j}(\sigma).
\]
Thus
\[
i_{n+j+1}(\sigma) \geq (p^3 - 2p^2 + (2-\epsilon)p + \epsilon)i_{n+j}(\sigma).
\]
This contradicts to the assumption that \(\lim_{j \to \infty} i_{n+j+1}(\sigma) = p^2 \), for \(p \geq 3 \).

For the case \(p = 2 \), considering the ramification subgroups
\[
H[i_{n+j}(\sigma)] \supseteq H[i_{m+j}(\tau)] \supseteq H[i_{n+j+1}(\sigma)] \supseteq H[i_{m+j+1}(\tau)] \supseteq H[i_{n+j+2}(\sigma)],
\]
we have
\[
\phi_H(i_{n+j+2}(\sigma)) = i_{n+j}(\sigma) + \frac{i_{m+j}(\tau) - i_{n+j}(\sigma)}{2} + \frac{i_{n+j+1}(\sigma) - i_{m+j}(\tau)}{4} + \frac{i_{m+j+1}(\tau) - i_{n+j+1}(\sigma)}{8} + \frac{i_{n+j+2}(\sigma) - i_{m+j+1}(\tau)}{16}.
\]
Again by the assumption that the corresponding field extension is of characteristic 2, we have \(\phi_H(i_{n+j+2}(\sigma)) \geq 2\phi_H(i_{n+j+1}(\sigma)) \) and deduce that
\[
i_{n+j+2}(\sigma) \geq 8i_{n+j}(\sigma) + 4i_{m+j}(\tau) + 6i_{n+j+1}(\sigma) - i_{m+j+1}(\tau).
\]
Again, without lose of generality, for every \(N \in \mathbb{N} \) and 1 > \(\epsilon > 0 \), we can assume there exists \(j > N \) such that \(i_{n+j+1}(\sigma) > (4-\epsilon)i_{n+j}(\sigma) \), \(i_{m+j+1}(\tau) < (4+\epsilon)i_{m+j}(\tau) \) and \(i_{m+j}(\tau) < (2+\epsilon)i_{n+j}(\sigma) \). Therefore, by using \(i_{m+j}(\tau) > i_{n+j}(\sigma) \), we get
\[
i_{n+j+2}(\sigma) > (28 - 12\epsilon - 2\epsilon^2)i_{n+j}(\sigma).
\]
This contradicts to the assumption that \(\lim_{j \to \infty} \frac{i_{n+j+2}(\sigma)}{i_{n+j}(\sigma)} = 2^4 \). We complete the proof of showing that if every nonidentity element of \(G \) is of height 2, then the \(\mathbb{Z}_p \times \mathbb{Z}_p \)-extension corresponding to \(G \) is of characteristic 0.

Conversely, suppose the field extension \(E/F \) corresponding to \(G \) is of characteristic 0 with \(\epsilon = v_F(p) \) being the absolute ramification index of \(F \). Then since there is no \(p \)-torsion element in \(G \), by Lemma [1.2(2) and the remark following it, there exists an \(N \) such that the raise to \(p \)-th power map \(G(u)/G(u+\epsilon) \to G(u+\epsilon)/G(u+\epsilon+\epsilon) \) is an isomorphism for all \(u > N \). In other words, there exists \(N \in \mathbb{N} \) such that for every upper ramification break \(u > N \), \([G(u) : G(u+\epsilon)]\) is either always 2 or always 1. For simplicity, we call the former depth 2 case and the latter depth 1 case.

For depth 2 case, it means that for every \(\sigma, \tau \in G \), there exists \(n, m \in \mathbb{N} \) such that \(i_{n+j}(\sigma) = i_{m+j}(\tau) \) for all \(j \in \mathbb{N} \). Therefore, for every \(\sigma \in G \), we choose another \(\tau \in G \) so that \(G[i_{n}(\sigma)] = G[u_1] = \langle \sigma^{p^n}, \tau^{p^n} \rangle \), \(G[i_{n+1}(\sigma)] = G[u_2] = \langle \sigma^{p^{n+1}}, \tau^{p^{n+1}} \rangle \), where \(u_1, u_2 \) are upper ramification breaks and \(G(u)^p = G(u+\epsilon) \) for all \(u \geq u_1 \). Let \(G' \) be the closed subgroup of \(G \) generated by \(\sigma \) and \(\tau \). It is clear that \(G' \) is of finite index over \(G \) and hence the field extension \(E/F' \) corresponding to \(G' \).
is also of characteristic 0. Let e' be the absolute ramification index of F'. Since $G'[i] = G[i] \cap G'$, we get $\phi_{G'}(i_{n+1}(\sigma)) - \phi_{G'}(i_n(\sigma)) = (i_{n+1}(\sigma) - i_n(\sigma))/p^{m+2} = e'$. Inductively, we have

$$\frac{i_{n+j}(\sigma) - i_{n+j-1}(\sigma)}{p^{n+m+2j}} = e'.$$

This shows

$$\frac{i_{n+1}(\sigma) - i_n(\sigma)}{i_n(\sigma) - i_{n-1}(\sigma)} = p^2$$

for all n large enough. Moreover, since

$$i_{n+j}(\sigma) = i_n(\sigma) + (i_{n+1}(\sigma) - i_n(\sigma)) + \cdots + (i_{n+j}(\sigma) - i_{n+j-1}(\sigma)),$$

we have

$$i_{n+j}(\sigma) = i_n(\sigma) + \frac{p^{2m+ne'} - 1}{p^2 - 1}(p^{2j} - 1)$$

and hence the limit $\lim_{n \to \infty} \frac{i_n(\sigma)}{p^{2n}}$ exists.

For depth 1 case, it means that for every $\sigma \in G$, there exists $\tau \in G$ and $n, m \in \mathbb{N}$ such that $i_{n+j}(\sigma) < i_{n+j}(\tau) < i_{n+j+1}(\sigma)$ for all $j \in \mathbb{N}$. Therefore, for every $\sigma \in G$, we choose another $\tau \in G$ satisfying this condition so that $G[i_{n+j}(\sigma)] = G(u_1) = \langle \sigma^{p^n}, \tau^{p^m} \rangle, G[i_{n}(\tau)] = G(u_2) = \langle \sigma^{p^{n+1}}, \tau^{p^m} \rangle$ and $G[i_{n+1}(\sigma)] = G(u_3) = \langle \sigma^{p^{n+1}}, \tau^{p^{n+1}} \rangle$, where u_1, u_2, u_3 are three consecutive upper ramification breaks and $G(u)^p = G(u + e)$ for all $u \geq u_1$. Again, let $G' = \langle \sigma, \tau \rangle$ and let e' be the absolute ramification index of F'. We have

$$\phi_{G'}(i_{n+1}(\sigma)) - \phi_{G'}(i_n(\sigma)) = \frac{i_{m}(\tau) - i_n(\sigma)}{p^{n+m+1}} + \frac{i_{n+1}(\sigma) - i_{m}(\tau)}{p^{n+m+2}} = e'.$$

Similarly,

$$\frac{i_{n+1}(\sigma) - i_{m}(\tau)}{p^{n+m+2}} + \frac{i_{m+1}(\sigma) - i_{n+1}(\sigma)}{p^{n+m+3}} = e'.$$

Inductively, we have

$$\frac{i_{m}(\tau) - i_n(\sigma)}{p^{n+m+1}} = \frac{i_{n+j}(\tau) - i_{n+j}(\sigma)}{p^{n+m+1+2j}}, \forall j \in \mathbb{N}.$$

Similarly, we can get

$$\frac{i_{n+1}(\sigma) - i_{m}(\tau)}{p^{n+m+2}} = \frac{i_{n+1+j}(\sigma) - i_{m+j}(\tau)}{p^{n+m+2+2j}}, \forall j \in \mathbb{N}.$$

This shows

$$\frac{i_{n+1}(\sigma) - i_n(\sigma)}{i_n(\sigma) - i_{n-1}(\sigma)} = p^2$$

for all n large enough and we also get the limit $\lim_{n \to \infty} \frac{i_n(\sigma)}{p^{2n}}$ exists.

We summarize this result as the following.

Theorem 3.1. Suppose that $G \subseteq \text{Aut}_k(k((x)))$ is a closed subgroup which is isomorphic to $\mathbb{Z}_p \times \mathbb{Z}_p$. Then the following are equivalent:

1. For every nonidentity $\sigma \in G$, Height$(\sigma) = 2$.
2. For every nonidentity $\sigma \in G$, the sequence $\{i_n(\sigma)/p^{2n}\}_n$ converges.
3. For every nonidentity $\sigma \in G$, $i_{n+1}(\sigma) - i_n(\sigma)/i_n(\sigma) - i_{n-1}(\sigma) = p^2$ for all n sufficiently large.
4. The $\mathbb{Z}_p \times \mathbb{Z}_p$-extension corresponding to G is of characteristic 0.
Remark 3.2. It is reasonable to extend Theorem 3.1 to the case that G is a closed subgroup of $\text{Aut}_k(k((x)))$ which is isomorphic to a free \mathbb{Z}_p-module of rank $n > 2$. Our method seems not applicable to show that if every nonidentity element of G has height n, then G corresponds to an extension of characteristic 0. However, in [1], we use different approach to show that the corresponding statements (3) and (4) are equivalent.

4. Ramification Index

Suppose that G is isomorphic to \mathbb{Z}_p with generator σ and is corresponding to a \mathbb{Z}_p-extension E/F of characteristic 0. Then we can use the limit $\lim_{n \to \infty} i_n(\sigma)/p^n$ to determine the absolute ramification index e of F. In fact, by (2.1) we have $e = \frac{p-1}{p} \lim_{n \to \infty} i_n(\sigma)/p^n$. For the case that G is isomorphic to $\mathbb{Z}_p \times \mathbb{Z}_p$ with $G = \langle \sigma, \tau \rangle$ and is corresponding to a $\mathbb{Z}_p \times \mathbb{Z}_p$-extension of characteristic 0, both limits $\lim_{n \to \infty} i_n(\sigma)/p^{2n}$ and $\lim_{n \to \infty} i_n(\tau)/p^{2n}$ exist, so it is interesting to know whether it is possible to determine the absolute ramification index by purely using the limits $\lim_{n \to \infty} i_n(\sigma)/p^{2n}$ and $\lim_{n \to \infty} i_n(\tau)/p^{2n}$.

For the case of depth 2, if $G(N)$ is generated by σ^{p^n}, τ^{p^n} and $G(u) = G(u + e)$ for $u \geq N$, then as indicated above

$$i_{n+j}(\sigma) = i_n(\sigma) + \frac{p^{2+n}e}{p^2 - 1} (p^{2j} - 1), \forall j \in \mathbb{N},$$

and hence

$$\lim_{j \to \infty} \frac{i_j(\sigma)}{p^{2j}} = \frac{p^2}{p^2 - 1} p^{m-n} e.$$

Similarly,

$$\lim_{j \to \infty} \frac{i_j(\tau)}{p^{2j}} = \frac{p^2}{p^2 - 1} p^{n-m} e.$$

Therefore, we have

$$e = \frac{p^2}{p^2 - 1} \left(\lim_{j \to \infty} \frac{i_j(\sigma)}{p^{2j}} \right) \left(\lim_{j \to \infty} \frac{i_j(\tau)}{p^{2j}} \right).$$

Notice that in this case, since $i_{n+j}(\sigma) = i_{m+j}(\tau)$ for all $j \in \mathbb{N}$, if we set

$$\lim_{j \to \infty} \frac{i_j(\sigma)}{p^{2j}} = \gamma_1, \lim_{j \to \infty} \frac{i_j(\tau)}{p^{2j}} = \gamma_2,$$

then $\gamma_1/\gamma_2 = p^{2(m-n)}$. In other words, $\log_p \gamma_1 - \log_p \gamma_2$ must be an even number.

Example 4.1. For an odd prime p, let $F = \mathbb{Q}_p(\zeta)$ be the unramified extension of degree 2 over \mathbb{Q}_p with ζ being a unit in \mathcal{O}_F. Consider the Lubin-Tate formal group over \mathcal{O}_F constructed by $[p](x) = px + x^{p^2}$. For $a \in \mathcal{O}_p$, let $[a](x) \in \mathcal{O}_F[[x]]$ be the automorphism of the Lubin-Tate formal group with leading coefficient a and we denote its reduction by $\sigma_a \in \mathbb{F}_p[[x]]$. For $a \in \mathcal{O}_p$ with $v_F(a - 1) = r$, it is well-known that $i_n(\sigma_a) = p^{2(r+n)} - 1$ and hence we have $\lim_{n \to \infty} \frac{i_n(\sigma_a)}{p^{2n}} = p^{2r}$. For the case that $a = 1 + p$ and $\beta = 1 + \zeta p$, we know that the closed subgroup generated by σ_a, σ_β corresponds to an extension N/M where M is the extension of F generated
by the p-torsion elements, i.e., elements that satisfy $|p|(x) = 0$. Therefore, we have the ramification index of M over \mathbb{Q}_p is $p^2 - 1$ which is equal to

$$\frac{p^2 - 1}{p^2} \sqrt{\lim_{j \to \infty} \frac{i_j(\sigma_\alpha)}{p^{2j}}} \sqrt{\lim_{j \to \infty} \frac{i_j(\sigma_\beta)}{p^{2j}}}.$$

Similarly, for the extension N/M' corresponding the closed subgroup G' generated by α, β^p, we have the ramification index of M' over \mathbb{Q}_p is $(p^2 - 1)p$. Notice that G' is also generated by $\sigma_{\alpha}, \sigma_{\beta'}$ where $\beta' = \alpha\beta^p$, but the ramification index of M' over \mathbb{Q}_p is not equal to

$$\frac{p^2 - 1}{p^2} \sqrt{\lim_{j \to \infty} \frac{i_j(\sigma_\alpha)}{p^{2j}}} \sqrt{\lim_{j \to \infty} \frac{i_j(\sigma_{\beta'})}{p^{2j}}} = p^2 - 1.$$

This is because the ramification subgroup of $G(u)$ is not of the form $\langle \sigma^{p^n}, \tau^{p^m} \rangle$ when u is large enough.

For the case of depth 1, if $G(u)$ is generated by σ^{p^n}, τ^{p^m} and $G(u')^p = G(u' + e)$ for $u' \geq u$, then as indicated above

$$\frac{i_{m+j}(\tau) - i_{n+j}(\sigma)}{p^{n+m+1+2j}} + \frac{i_{n+1+j}(\sigma) - i_{m+j}(\tau)}{p^{n+m+2+2j}} = e, \forall j \in \mathbb{N}.$$

If we set

$$\lim_{j \to \infty} \frac{i_j(\sigma)}{p^{2j}} = \gamma_1, \quad \lim_{j \to \infty} \frac{i_j(\tau)}{p^{2j}} = \gamma_2,$$

then

$$e = \frac{p - 1}{p^{m-n+1}} \gamma_1 + \frac{p - 1}{p^{m-n+2}} \gamma_2.$$

Moreover, without lose of generality we assume that $i_{n+j}(\sigma) < i_{m+j}(\tau) < i_{n+j+1}(\sigma)$ for all $j \in \mathbb{N}$. Diving by $p^{2(n+j)}$ and taking limits, we get

$$\gamma_1 \leq p^{2(m-n)} \gamma_2 \leq p^2 \gamma_1.$$

However, $(i_{m+j}(\tau) - i_{n+j}(\sigma))/p^{n+m+1+2j}$ is a nonzero constant c for all $j \in \mathbb{N}$ (by (3.3)). Taking limits, we get

$$p^{2(m-n)} \gamma_2 - \gamma_1 = p^{m-n+1} c \neq 0.$$

Similarly, $p^{2(m-n)} \gamma_2 \neq p^2 \gamma_1$. In other words, $\log_p \gamma_1 - \log_p \gamma_2$ cannot be an even number and $m - n$ is the unique integer between $(1/2)(\log_p \gamma_1 - \log_p \gamma_2)$ and $1 + (1/2)(\log_p \gamma_1 - \log_p \gamma_2)$.

Example 4.2. For an odd prime p, let $F = \mathbb{Q}_p(\pi)$ be the totally ramified extension of degree 2 over \mathbb{Q}_p with π being a prime element in \mathcal{O}_F. Consider the Lubin-Tate formal group over \mathcal{O}_F constructed by $[\pi](x) = \pi x + x^p$. For $\alpha \in \mathcal{O}_F^*$, let $[\alpha](x) \in \mathcal{O}_F[[x]]$ be the automorphism of the Lubin-Tate formal group with leading coefficient α and we denote its reduction by $\sigma_\alpha \in \mathbb{F}_p[[x]]$. For $\alpha \in \mathcal{O}_F'$ with $v_F(\alpha - 1) = r$, it is well-known that $i_n(\sigma_\alpha) = p^{(r+2n)} - 1$ and hence we have $\lim_{j \to \infty} \frac{i_j(\sigma_\alpha)}{p^{2j}} = p^r$. For the case that $\alpha = 1 + \pi$ and $\beta = 1 + \pi^2$, consider G being the closed subgroup generated by $\sigma_\alpha, \sigma_\beta$. We have

$$\gamma_1 = \lim_{j \to \infty} \frac{i_j(\sigma_\alpha)}{p^{2j}} = p, \quad \gamma_2 = \lim_{j \to \infty} \frac{i_j(\sigma_\beta)}{p^{2j}} = p^2.$$
Moreover, $p - 1$ is the first upper ramification break of G where $G[p - 1] = G(p - 1)$ is generated by $\sigma_\alpha, \sigma_\beta$ and $G(u^p) = G(u + e)$ for $u \geq p - 1$. Notice that $m - n = 1 - 1 = 0$ is the only integer between $(1/2)(\log_p \gamma_1 - \log_p \gamma_2) = -1/2$ and $1 + (-1/2)$. On the other hand, G corresponds to an extension N/M where M is the extension of F generated by the π-torsion elements, i.e. elements that satisfy $[\pi](x) = 0$. Therefore, we have the ramification index of M over F is $p - 1$ and hence the ramification index of M over \mathbb{Q}_p is $2(p - 1)$ which is equal to

$$\frac{p - 1}{p^{1-1+2p^2}} + \frac{p - 1}{p^{1-1+2p^2}}.$$

Similarly, for the extension N/M' corresponding the closed subgroup G' generated by α, β^p, we have the ramification index of M' over \mathbb{Q}_p is $2(p - 1)p$.

We summarize our result as the following.

Theorem 4.4. Let G be a closed subgroup of $\text{Aut}_k(k((x)))$ which is isomorphic to $\mathbb{Z}_p \times \mathbb{Z}_p$. Suppose G corresponds to an extension of characteristic 0. Suppose further that $G = \langle \sigma, \tau \rangle$, $G(u) = \langle \sigma^p, \tau^p \rangle$ and $G(u^p) = G(u + e)$ for all $u' \geq u$. Let

$$\gamma_1 = \lim_{j \to \infty} \frac{i_j(\sigma)}{p^{2j}}, \gamma_2 = \lim_{j \to \infty} \frac{i_j(\tau)}{p^{2j}}.$$

(1) If $\log_p(\gamma_1/\gamma_2)$ is an even number, then G is of depth 2 and

$$e = \frac{p - 1}{p^2} \sqrt{\gamma_1 \gamma_2}.$$

(2) If $\log_p(\gamma_1/\gamma_2)$ is not an even number, then G is of depth 1. Furthermore, let a be the unique integer between $(1/2)\log_p(\gamma_1/\gamma_2)$ and $1 + (1/2)\log_p(\gamma_1/\gamma_2)$. Then

$$e = \frac{p - 1}{p^{a+1}} \gamma_1 + \frac{p - 1}{p^{2-a}} \gamma_2.$$

Remark 4.4. In the case of depth 2, let a be the integer $(1/2)\log_p(\gamma_1/\gamma_2)$. Then we have

$$\frac{p - 1}{p^2} \sqrt{\gamma_1 \gamma_2} = \frac{p - 1}{p^{a+1}} \gamma_1 + \frac{p - 1}{p^{2-a}} \gamma_2.$$

References

[1] L.-H. Hsia and H.-C. Li, Ramification filtrations of certain abelian Lie extensions of local fields, submitted.
[2] K. Keating, Automorphisms and extensions of $k((t))$, *J. Number Theory* 41 (1992), pp. 314–321.
[3] K. Keating, Wintenberger’s functor for abelian extensions, *J. Théor. Nombres Bordeaux* 21 (2009), pp. 665–678.
[4] F. Laubie and M. Sauñé, Ramification of automorphisms of $k((t))$, *J. Number Theory* 63 (1997), pp. 143–145.
[5] F. Laubie and M. Sauñé, Ramification of some automorphisms of local fields, *J. Number Theory* 72 (1998), pp. 174–182.
[6] F. Laubie, Ramification des groupes abéliens d’automorphismes de $\mathcal{F}_p((x))$, *Canad. Math. Bull.* 50 (2007), pp. 594–597.
[7] H.-C. Li, On heights of p-adic dynamical systems, *Proc. Amer. Math. Soc.* 130 (2) (2001), pp. 379–386.
[8] M. A. Marshall, Ramification groups of abelian local field extensions, *Canad. J. Math.* XXIII (2) (1971), pp. 271–281.
[9] S. Sen, On automorphisms of Local Fields, *Ann. of Math.* (2) 90 (1) (1969), pp. 33–46.
[10] J.-P. Serre, *Local Fields*, Grad. Text in Math. vol 67 (Springer-Verlag, 1979). translation from the French version by M. J. Greeberg.

[11] J.-P. Wintenberger, Extensions abélienne et groupes d’automorphismes de corps locaux *C. R. Acad. Sci. Paris Sér. A* 290 (1980), pp. 201–203.

[12] J.-P. Wintenberger, Le corps des normes de certaines extensions infinies des corps locaux; applications, *Ann. Sci. Éc. Norm. Supér. (4)* 16 (1983), pp. 59–89.

[13] J.-P. Wintenberger, Automorphismes des corps locaux de caractéristique p, *J. Théor. Nombres Bordeaux* 16 (2004), pp. 429-456.

Department of Mathematics, National Taiwan Normal University, Taipei, Taiwan, R.O.C.

E-mail address: li@math.ntnu.edu.tw