On the Unboundedness of the First Eigenvalue of the Laplacian for G-Invariant Metrics

Paul Cernea

July 27, 2010

Abstract

In this note we partially answer a question posed by Colbois, Dryden, and El Soufi. Consider the space of constant-volume Riemannian metrics on a connected manifold M which are invariant under the action of a discrete Lie group G. We show that the first eigenvalue of the Laplacian is not bounded above on this space, provided $M = S^n$, G acts freely, and S^n/G with the round metric admits a Killing vector field of constant length, or provided $M \neq T^n$ is a compact Lie group, and G is a discrete subgroup.

Let G be a Lie group acting on a smooth orientable closed connected manifold M of dimension $n > 2$. Given a Riemannian metric g on M, let ∇ be its Riemannian connection, and $\Delta = \nabla^i \nabla_i$ its Laplacian. This Laplacian has eigenvalues $\lambda > 0$ and associated eigenfunctions $u \in C^\infty(M)$ which are by definition solutions to

$$\Delta u + \lambda u = 0$$

with u not identically zero. The set of eigenvalues is discrete, and its only limit point is ∞, so we can define $\lambda_1(g)$ as the lowest eigenvalue. Define a scale-invariant functional,

$$g \mapsto \Lambda_1(g) = \lambda_1(g)\text{vol}^{2/n}(M, g)$$

In [CDE] the following question is posed (Remark 3.1):

For G a discrete group, can we construct G-invariant metrics such that the functional $\Lambda_1 = \lambda_1\text{vol}^{2/n}$ becomes arbitrarily large? Note that we are not requiring the eigenfunctions to be G-invariant.

Suppose G is just the trivial group. If $n = 2$, Hersch showed that $\Lambda_1(g) \leq 8\pi$ on $M = S^2$. More generally, P. Yang and S. T. Yau showed that if M has genus γ, then $\Lambda_1(g) \leq 8\pi(1 + \gamma)$. (See
[SY] for a discussion of these results.) On the other hand, if \(n > 2 \), it is well-known that \(\Lambda_1 \) can be arbitrarily large for any choice of \(M \) (see [CD]).

In this paper, we will consider nontrivial \(G \) actions. We will see that \(\Lambda_1 \) is unbounded for \(M = S^n \) with certain values of \(n \) and certain \(G \)-actions. We will also see that \(\Lambda_1 \) is unbounded for \(M \neq T^n \) a compact Lie group, and \(G \) a discrete subgroup \(G \leq M \) acting on the left by isometries, as a corollary to a theorem of Urakawa.

1 Spheres.

Let

\[
\bar{g}^{ij} = g^{ij} + ty^iy^j
\]

(3)

Lemma. Suppose that \(Y^i \) is a Killing vector field (i.e. \(\nabla_i Y_j + \nabla_j Y_i = 0 \)) of constant length (\(|Y| = \text{const.} \)). Then the Laplacian \(\bar{\triangle} \) of \(\bar{g} \) satisfies

\[
\bar{\triangle}u = \triangle u - \frac{t}{1 + t|Y|^2} Y^i Y^j \nabla_i \nabla_j u
\]

(4)

Proof. First,

\[
\bar{g}^{ij} = g^{ij} - \frac{tY^i Y^j}{1 + t|Y|^2}
\]

(5)

Next,

\[
\bar{\Gamma}^k_{ij} = \frac{1}{2} \left(g^{kl} - \frac{tY^k Y^l}{1 + t|Y|^2} \right) \left([g_{il,j} + g_{jl,i} - g_{ij,l}] + t \left[(Y_i Y_l)_j + (Y_j Y_l)_i - (Y_Y)_j, l \right] \right)
\]

(6)

\[
= \frac{1}{2} \left(g^{kl} - \frac{tY^k Y^l}{1 + t|Y|^2} \right) \left(g_{ls} \Gamma^s_{ij} + t \left[(Y_i Y_l)_j + (Y_j Y_l)_i - (Y_Y)_j, l \right] \right)
\]

(7)

Let \(K_{ij} = \nabla_i Y_j + \nabla_j Y_i \) and \(C_{ij} = \nabla_j Y_i - \nabla_i Y_j = Y_{i,j} - Y_{j,i} \). Then

\[
\bar{\Gamma}^k_{ij} = \frac{1}{2} \left(g^{kl} - \frac{tY^k Y^l}{1 + t|Y|^2} \right) \left(g_{ls} \Gamma^s_{ij} + t \left[K_{ij} Y_l + 2 \Gamma^s_{ij} Y_s Y_l + Y_i C_{lj} + Y_j C_{li} \right] \right)
\]

(8)
Thus

\[\Gamma^k_{ij} = \Gamma^k_{ij} - \frac{t Y^k Y_s}{1 + t|Y|^2} \Gamma^s_{ij} + t \frac{K_{ij} Y^k}{2} + t \frac{\Gamma^s_{ij} Y_s Y^k}{2} + \frac{t}{2} g^{kl} (Y_l C_{ij} + Y_j C_{li}) - \frac{t^2 K_{ij} Y^k|Y|^2}{2(1 + t|Y|^2)} \]

(9)

\[- \frac{t^2 \Gamma^s_{ij} Y_s Y^k|Y|^2}{1 + t|Y|^2} - \frac{t^2 Y^k Y^l (Y_l C_{ij} + Y_j C_{li})}{2(1 + t|Y|^2)} \]

(10)

Now suppose \(Y \) is a Killing vector field. Then \(K_{ij} = 0 \), and taking its trace, \(\text{div}(Y) = 0 \). Moreover, \(C_{ij} = 2 \nabla_j Y_i \), and

\[Y^i \nabla_i Y^j = -Y^i \nabla_j Y_i = -\frac{1}{2} \nabla_j |Y|^2 = 0 \]

(11)

Hence \(Y^t Y_l C_{lj} = 0 \) and

\[\Gamma^k_{ij} = \Gamma^k_{ij} - \frac{t Y^k Y_s}{1 + t|Y|^2} \Gamma^s_{ij} + t \frac{\Gamma^s_{ij} Y_s Y^k}{2} + \frac{t}{2} g^{kl} (Y_l C_{ij} + Y_j C_{li}) - \frac{t^2 \Gamma^s_{ij} Y_s Y^k|Y|^2}{1 + t|Y|^2} \]

(12)

However,

\[- \frac{t Y^k Y_s}{1 + t|Y|^2} \Gamma^s_{ij} + t \frac{\Gamma^s_{ij} Y_s Y^k}{2} - \frac{t^2 \Gamma^s_{ij} Y_s Y^k|Y|^2}{1 + t|Y|^2} = 0 \]

(13)

so

\[\Gamma^k_{ij} = \Gamma^k_{ij} + \frac{t}{2} g^{kl} (Y_l C_{ij} + Y_j C_{li}) \]

(14)

Let

\[A^k_{ij} = \Gamma^k_{ij} - \Gamma^k_{ij} = t g^{kl} (Y_l \nabla_j Y_i + Y_j \nabla_i Y_l) \]

(15)

Then

\[\bar{\Delta} u = \Delta u - \frac{t}{1 + t|Y|^2} Y^i Y^j \nabla_i \nabla_j u - A^k_{ij} g^{ij} \nabla_k u + \frac{t}{1 + t|Y|^2} A^k_{ij} Y^i Y^j \nabla_k u \]

(16)
But since

$$A^k_{ij}g^{ij} = A^k_{ij}Y^iY^j = 0$$ \hspace{1cm} (17)$$

we obtain

$$\bar{\Delta}u = \Delta u - \frac{t}{1 + t|Y|^2}Y^iY^j\nabla_i\nabla_j u$$ \hspace{1cm} (18)$$
as desired. ■

Now rescale Y so that $|Y| = 1$. Then we have

$$\bar{\Delta}u = \Delta u - \frac{t}{1 + t}Y^iY^j\nabla_i\nabla_j u$$ \hspace{1cm} (19)$$

Also, the volume transforms as $\bar{\text{vol}}^{2/n}(M,g) = (1 + t)^{1/n}\text{vol}^{2/n}(M,g)$ since

$$\frac{\partial}{\partial t}d\mu = \frac{1}{2}\bar{g}^{ij}Y_iY_j d\mu = \frac{1}{2(1 + t)}d\mu$$ \hspace{1cm} (20)$$

Now specialize to the case where g is the round metric on $M = S^n$ and Y is a unit-length Killing field on (M,g) with the property that Y is the lift of a Killing field on M/G. Then \bar{g} is a one-parameter family of G-invariant metrics.

Let u be a first eigenfunction of Δ on S^n. Any such u is just a coordinate projection x^1, x^2, x^3, \ldots or x^{n+1} restricted to S^n (or a linear combination thereof), and is characterized by

$$\nabla_i\nabla_j u = -g_{ij}u$$ \hspace{1cm} (21)$$

Then

$$\bar{\Delta}u = \left(-n + \frac{t}{1 + t}\right)u$$ \hspace{1cm} (22)$$

It follows that $n - t/(1 + t)$ is an eigenvalue of $\bar{\Delta}_t$. But that's not all. Let $\lambda_k(t)$ be the kth smallest eigenvalue of $\bar{g}(t)$, counted with multiplicity. Since $\lambda_k(t)$ is continuous in t (see [BU]), it follows that $n - t/(1 + t)$ is the first eigenvalue of $\bar{\Delta}_t$.
To see this, let S be the set of $t \in (-1, \infty$) such that $\lambda_1(t) = n - t/(1 + t)$. We will show that S is open and closed in $(-1, \infty)$, as well as nonempty. Obviously, $0 \in S$. Next, by continuity of $\lambda_k(t)$, S is closed. Finally, let $\tau \in S$, and suppose that $\lambda_1(t) < n-t/(1+t)$ for t close to τ. Then there exists a maximal natural number $m > n + 1$ such that $n - t/(1 + t) = \lambda_m(t)$. But $\lambda_m(\tau) > n - \tau/(1 + \tau)$ which contradicts the continuity of $\lambda_m(t)$ at τ. So $n - t/(1 + t)$ is indeed the first eigenvalue of Δ_t for all $t \in (-1, \infty)$.

Thus

$$\Lambda_1(t) = \left(n - \frac{t}{1 + t}\right) (1 + t)^{1/n} \text{vol}^{2/n}(M, g(0))$$ \hspace{1cm} (23)$$

Since $n > 1$, we see that $\Lambda_1 \to \infty$ as $t \to \infty$. This proves unboundedness.

Now it only remains to find examples of S^n and G for which S^n/G admits a nonvanishing Killing field. The Euler characteristic obstructs the existence of a nonvanishing vector field. Even-dimensional spheres, then, are at once ruled out, since the Euler characteristic $\chi(S^{2m})$ is nonzero. The Euler characteristic of odd closed manifolds, however, vanishes by Poincaré Duality.

Let us make the following definition. A Riemannian manifold (M, g) is called a Sasakian manifold if M has a unit length Killing vector field Y such that, for any vector fields A and B on M we have

$$R(A, Y)B = g(Y, B)A - g(A, B)Y$$ \hspace{1cm} (24)$$

It is a classical result of Sasaki that all 3-dimensional spherical space forms are Sasaki. Thus examples of G include any cyclic group \mathbb{Z}_m (whose actions result in the Lens spaces). More generally, G can be any finite subgroup of $SO(4)$ acting freely by rotations on S^3. These G give rise to the so-called spherical 3-manifolds. By Grigori Perelman’s proof of the elliptization conjecture, these are all the possible fundamental groups of discrete quotients of S^3. Such a G is either cyclic, or a central extension of a dihedral, tetrahedral, octahedral, or icosahedral group by a cyclic group of even order. For example, if G is

$$\langle a, b | (ab)^2 = a^3 = b^5 \rangle$$ \hspace{1cm} (25)$$

then S^3/G is the Poincaré homology sphere.

Further higher-dimensional examples include $G = \mathbb{Z}_2$ acting on S^{4m-1} since

$$\mathbb{R}P^{4m-1} = \frac{Sp(m)}{Sp(m - 1) \times \mathbb{Z}_2}$$ \hspace{1cm} (26)$$
is Sasakian. For these and more results on Sasakian manifolds, refer to [BGM].

2 Compact Lie Groups.

In [U] we have the following (Theorem 4):

Let M be a compact connected Lie group. We assume M has nontrivial commutator subgroup. That is, the commutator Lie subalgebra m_1 of m is not zero. Then there exists a family of left-invariant Riemannian metrics $g(t)$ ($0 < t < \infty$) on M such that

$$\lim_{t \to \infty} \lambda_1(g(t)) = \infty$$

(27)

$$\lim_{t \to 0} \lambda_1(g(t)) = 0$$

(28)

and $\text{vol}(M, g(t))$ is constant in t.

To say that $m_1 = 0$ is to say that m is abelian, and so M is abelian, i.e. M is a torus T^n, being compact. Therefore, we have

Corollary. If $M \neq T^n$ is a compact connected Lie group, and G is a discrete subgroup, then Λ_1 is unbounded among the G-invariant metrics on M, where G acts by left-multiplication.

Proof. Since $M \neq T^n$, the existence of the family $g(t)$ from Theorem 4 is guaranteed to us. Furthermore, all those metrics are G-invariant, since they are left-invariant. □

3 References.

[CD] Bruno Colbois and J. Dozdiuk, Riemannian Metrics with Large λ_1, Proc. Amer. Math. Soc., 122(3):905-906, 1994.

[BGM] Charles P. Boyer, Krzysztof Galicki, and Benjamin M. Mann, Quaternionic Geometry and 3-Sasakian Manifolds, Proceedings of the Meeting on Quaternionic Structures in Mathematics and Physics, Trieste (1994)

[BU] Shigetoshi Bando and Hajime Urakawa, Generic Properties of the Eigenvalue of the Laplacian For Compact Riemannian Manifolds, Tohoku Math. Journ. 35, 155-172 (1983)
[CDE] Bruno Colbois, Emily Dryden, and Ahmad El Soufi, *Extremal G-Invariant Eigenvalues of the Laplacian of G-Invariant Metrics*, available at arXiv:math/0702547.

[SY] R. Schoen and S. T. Yau, *Lectures on Differential Geometry, Volume 1*, pp. 135-136, (c) 1994.

[U] Hajime Urakawa, *On the Least Positive Eigenvalue of the Laplacian for Compact Group Manifolds*, J. Math. Soc. Japan, Vol 31, No. 1, 1979.