A DICHOTOMY FOR CLT IN TOTAL VARIATION

Aihua Xia*
University of Melbourne

May 21, 2018

Abstract

Let \(\eta_i, i \geq 1 \), be a sequence of independent and identically distributed random variables with finite third moment, and let \(\Delta_n \) be the total variation distance between the distribution of \(S_n := \sum_{i=1}^{n} \eta_i \) and the normal distribution with the same mean and variance. In this note, we show the dichotomy that either \(\Delta_n = 1 \) for all \(n \) or \(\Delta_n = O \left(\frac{1}{n^{1/2}} \right) \).

Key words and phrases: Total variation distance, non-singular distribution, Berry-Esseen bound, Stein’s method.

AMS 2010 Subject Classification: primary 60F05; secondary 62E17, 62E20.

1 Introduction and the main result

The Berry-Esseen Theorem (Berry [3] and Esseen [9]) states that if \(\eta_i, 1 \leq i \leq n \), are independent and identically distributed (iid) random variables with mean 0 and variance 1, \(Y_n = \sum_{i=1}^{n} \eta_i \sqrt{\frac{1}{n}} \), \(Z \sim N(0,1) \), where \(\sim \) denotes “is distributed as”, then

\[
d_K(Y_n, Z) \leq \frac{C\mathbb{E}|\eta_1|^3}{\sqrt{n}},
\]

1

*School of Mathematics and Statistics, the University of Melbourne, Parkville, VIC 3010, Australia; aihuaxia@unimelb.edu.au; work supported by Australian Research Council Discovery Grant DP150101459.
where d_K is the Komogorov distance: for two random variables X_1 and X_2 with distributions F_1 and F_2,

$$d_K(X_1, X_2) := d_K(F_1, F_2) := \sup_{x \in \mathbb{R}} |F_1(x) - F_2(x)|.$$

The Kolmogorov distance $d_K(F_1, F_2)$ measures the difference between the distribution functions F_1 and F_2, but it does not tell much about the difference between the probabilities $P(X_1 \in A)$ and $P(X_2 \in A)$ for a non-interval Borel set $A \subset \mathbb{R}$, e.g., $A = \cup_{i \in \mathbb{Z}} (2i - 0.1, 2i + 0.1)$, where \mathbb{Z} denotes the set of all integers. Such difference is reflected in the total variation distance $d_{TV}(F_1, F_2)$ defined by

$$d_{TV}(X_1, X_2) := d_{TV}(F_1, F_2) := \sup_{A \in \mathcal{B}(\mathbb{R})} |F_1(A) - F_2(A)|,$$

where $\mathcal{B}(\mathbb{R})$ denotes the Borel σ-algebra on \mathbb{R} and $F_i(A) := \int_A dF_i(x)$. The definition is equivalent to

$$d_{TV}(F_1, F_2) = \frac{1}{2} \sup_f \left| \int f(x) dF_1(x) - \int f(x) dF_2(x) \right|,$$

where the supremum is taken over all measurable functions f on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ bounded by 1.

Although central limit theorems in the total variation have been studied in some special circumstances (see, e.g., [8, 14]), it is generally believed that the total variation distance is too strong for normal approximation (see, e.g., Čekanavičius [4], Chen and Leong [7], Fang [10]). For example, the total variation distance between any binomial distribution and any normal distribution is always 1. To recover central limit theorems in the total variation, a common approach is to discretize the distribution of interest and approximate it with a simple discrete distribution, e.g., translated Poisson (Röllin [15, 16]), centered binomial (Röllin [17]), discretized normal (Chen and Leong [7], Fang [10]) and a family of polynomial type distributions (Goldstein and Xia [11]). The multivariate versions of these approximations are investigated by Barbour, Luczak and Xia [1].

By discretizing a distribution F of interest, we essentially group the probability of an area and put it at one point in the area, hence the information of $F(A)$ for a general set $A \in \mathcal{B}(\mathbb{R})$ is completely lost. In this note, we consider the normal approximation in the total variation to the sum of iid random variables with finite second moment.

The Lebesgue decomposition theorem [12, p. 134] ensures that any distribution function F on \mathbb{R} can be represented as

$$F = (1 - \alpha_F) F_s + \alpha_F F_a,$$

where $\alpha_F \in [0, 1]$, F_s and F_a are two distribution functions such that, with respect to the Lebesgue measure on \mathbb{R}, F_a is absolutely continuous and F_s is singular.

Definition 1.1. A distribution function F on \mathbb{R} is said to be non-singular if $\alpha_F > 0$.

In other words, F is non-singular if and only if there exists a sub-probability measure $F_0 \neq 0$ with a density f_0 such that

$$F_0(A) = \int_A f_0(x) \, dx, \text{ for all } A \in \mathcal{B}(\mathbb{R}). \tag{1.2}$$

Theorem 1.2. Let $\eta_i, i \geq 1$, be iid with finite second moment, define $S_n := \sum_{i=1}^{n} \eta_i$ and $\Delta_n = d_{TV}(S_n, Z_n)$, where $Z_n \sim N(\mathbb{E}S_n, \text{Var}(S_n))$. The following are equivalent:

(i) There exists a finite integer n_0 such that $\Delta_{n_0} < 1$.

(ii) There exists a finite integer n_0 such that S_{n_0} is non-singular.

(iii) $\Delta_n = o(1)$.

Furthermore, if η_1 has finite third moment, then (i)-(iii) are also equivalent to

(iv) $\Delta_n = O\left(n^{-1/2} \right)$.

Remark 1.1. Theorem 1.2 says that, for the iid sequence $\{\eta_i : i \geq 1\}$ with finite third moment, we have the dichotomy that either S_n is singular so that $\Delta_n = 1$ for all n or it can be approximated by the normal distribution with the same mean and variance in the total variation with convergence speed no less than $O\left(n^{-1/2} \right)$. Curiously, this phenomenon may be related to the Kolmogorov’s zero-one law.

It is possible to generalize some parts of Theorem 1.2 to non-identically distributed random variables but the formulation of such generalizations is typically complicated. By focusing on the most important case, we aim to keep the paper reader-friendly and to deliver a clear and concise message.

The proof of Theorem 1.2 is based on Stein’s method for normal approximation and the estimate of $d_{TV}(S_n, S_n + \gamma)$. Generally speaking, the easiest metric that Stein’s method for normal approximation can handle is the Wasserstein metric. Much more effort is needed to achieve an error bound for the Kolmogorov distance enjoying the same order as that for the Wasserstein distance bound $[5, 6]$. The way that Stein’s method for normal approximation is used in this paper seems to be unexplored. In the context of Poisson and other discrete distribution approximations, this approach is well studied (see, e.g., [19, 2, 1]).

2 The proof of Theorem 1.2

We start with a few technical lemmas.
Lemma 2.1. Assume ξ_1, \ldots, ξ_n are iid random variables having the triangular density function

$$
\kappa_a(x) = \begin{cases}
\frac{1}{a} \left(1 - \frac{|x|}{a}\right), & \text{for } |x| \leq a, \\
0, & \text{for } |x| > a,
\end{cases}
$$

(2.1)

where $a > 0$. Let $T_n = \sum_{i=1}^{n} \xi_i$. Then for any $\gamma > 0$,

$$
d_{TV}(T_n, T_n + \gamma) \leq \gamma \left\{ \sqrt{\frac{3}{\pi n}} + \frac{2}{(2n-1)\pi^{2n}} \right\}.
$$

(2.2)

Proof. For convenience, we write G_n, g_n and ψ_n as the distribution, density and characteristic functions of T_n respectively. It is well-known that the triangular density κ_a has the characteristic function $\psi_1(s) = \frac{2(1 - \cos(as))}{(as)^2}$, which gives $\psi_n(s) = \left(\frac{2(1 - \cos(as))}{(as)^2}\right)^n$. Using the fact that the convolution of two symmetric unimodal distributions on \mathbb{R} is unimodal \[18\], we can conclude that the distribution of T_n is unimodal and symmetric. This ensures that

$$
d_{TV}(T_n, T_n + \gamma) = \sup_{x \in \mathbb{R}} |G_n(x) - G_n(x - \gamma)| = \int_{-\gamma/2}^{\gamma/2} g_n(x)dx.
$$

(2.3)

Applying the inversion formula, we have

$$
g_n(x) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{-isx} \psi_n(s)ds = \frac{1}{2\pi} \int_{\mathbb{R}} \cos(sx)\psi_n(s)ds = \frac{1}{a\pi} \int_{0}^{\infty} \cos(sx/a) \left(\frac{2(1 - \cos s)}{s^2}\right)^n ds,
$$

where $i = \sqrt{-1}$ and the second equality is due to the fact that $\sin(sx)\psi_n(s)$ is an odd function. Obviously, $g_n(x) \leq g_n(0)$ so we need to establish an upper bound for $g_n(0)$. A direct verification gives

$$
0 \leq \frac{2(1 - \cos s)}{s^2} \leq e^{-\frac{s^2}{12}} \text{ for } 0 \leq s \leq 2\pi,
$$

which implies

$$
g_n(0) \leq \frac{1}{a\pi} \left\{ \int_{0}^{2\pi} e^{-\frac{as^2}{12}} ds + \int_{2\pi}^{\infty} \left(\frac{4}{s^2}\right)^n ds \right\}
= \frac{1}{a\pi} \sqrt{n} \int_{0}^{\infty} e^{-\frac{s^2}{12}} ds + \frac{2}{a(2n-1)\pi^{2n}}
= \frac{1}{a} \sqrt{\frac{3}{\pi n}} + \frac{2}{a(2n-1)\pi^{2n}}.
$$

(2.4)

Now, combining (2.4) with (2.3) gives (2.2).

We denote the convolution by \ast and write $F^{k\ast}$ as the k-fold convolution of the function F with itself.
Lemma 2.2. If F is a non-singular distribution, then there exist $a > 0$, $u \in \mathbb{R}$, $\theta \in (0, 1]$ and a distribution function H_2 such that

$$F^{2*} = (1 - \theta)H_2 + \theta H_1 * \delta_u,$$

where H_1 is the distribution of the triangular density κ_a in (2.1) and δ_u is the Dirac measure at u.

Proof. Since F is non-singular, we can find f_0 satisfying (1.2) and $\int f_0(x)dx > 0$. Without loss, we assume that f_0 is bounded with bounded support. Then f_0^{2*} is continuous [13, p. 79]. Referring to Figure 1 since $f_0^{2*} \not\equiv 0$, we can find $u \in \mathbb{R}$ and $v > 0$ such that $f_0^{2*}(u) > 0$ and $\min_{x \in [u-v, u+v]} f_0^{2*}(x) \geq \frac{1}{2} f_0^{2*}(u) =: b$. Let $\theta = vb$ and $a = \frac{\sqrt{v}}{b}$, $H_2 = \frac{1}{1 - \theta}(F^{2*} - \theta H_1 * \delta_a)$, the claim follows. \qed

Figure 1: Existence of u and v

Lemma 2.2 says that F^{2*} is the distribution function of $(X_1 + u)X_3 + X_2(1 - X_3)$, where $X_1 \sim H_1$, $X_2 \sim H_2$, $X_3 \sim \text{Bernoulli}(\theta)$ are independent random variables.

Lemma 2.3. With the setup in Theorem 1.2, for any $\gamma > 0$, we have

$$d_{TV}(S_n, S_n + \gamma) \leq (\gamma \vee 1)O(n^{-1/2}), \quad (2.5)$$

where $O(n^{-1/2})$ does not depend on γ.

Proof. Let $m = \lfloor n/2 \rfloor$, the integer part of $n/2$. By Lemma 2.2 we can construct independent random variables X_{ij}, $1 \leq i \leq 3$, $1 \leq j \leq m$ such that $X_{1j} \sim H_1$, $X_{2j} \sim H_2$, $X_{3j} \sim \text{Bernoulli}(\theta)$ and $S_{2m} \overset{d}{=} S_m' := \sum_{j=1}^m [(X_{1j} + u)X_{3j} + X_{2j}(1 - X_{3j})]$. Clearly $I := \sum_{j=1}^m X_{3j}$ follows Binomial(m, θ) and given $I = k$, the conditional distribution of S_m' is $(H_1 * \delta_u)^{k*} * H_2^{(m-k)*}$. In other words,

$$S_{2m} \sim \sum_{k=0}^m \mathbb{P}(I = k)(H_1 + \delta_u)^{k*} * H_2^{(m-k)*}. \quad (2.6)$$

Let $A - \gamma := \{x - \gamma : x \in A\}$. Using the fact that for distribution functions G_i, $d_{TV}(G_1 * G_3, G_2 * G_3) \leq d_{TV}(G_1, G_2)$ in the last two inequalities below, we obtain from
that
\[d_{TV}(S_n, S_n + \gamma) \leq d_{TV}(S_{2m}, S_{2m} + \gamma) \]
\[
= \sup_{A \in \mathcal{B}(\mathbb{R})} \sum_{k=0}^{m} \mathbb{P}(I = k) \left\{ (H_1 + \delta_u)^{k*} H_2^{(m-k)*}(A) - (H_1 + \delta_u)^{k*} H_2^{(m-k)*}(A - \gamma) \right\} \\
\leq \sum_{k=0}^{m} \mathbb{P}(I = k) \sup_{A \in \mathcal{B}(\mathbb{R})} \left\{ (H_1 + \delta_u)^{k*} H_2^{(m-k)*}(A) - (H_1 + \delta_u)^{k*} H_2^{(m-k)*}(A - \gamma) \right\} \\
= \sum_{k=0}^{m} \mathbb{P}(I = k) d_{TV} \left((H_1 + \delta_u)^{k*}, (H_1 + \delta_u)^{k*} \delta_u \right) \\
\leq \sum_{k=0}^{m} \mathbb{P}(I = k) d_{TV} \left(H_1^{k*}, H_1^{k*} \delta_u \right) \\
\leq d_{TV} \left(H_1^{k*}, H_1^{k*} \delta_u \right) + \mathbb{P}(I \leq k_0 - 1). \tag{2.7} \]

If we take \(k_0 = \lfloor 0.5m\theta \rfloor \), it follows from Lemma 2.1 and 2.7 that
\[d_{TV}(S_n, S_n + \gamma) \leq \gamma O(m^{-1/2}) + O(m^{-1}). \]

However, \(m = \lfloor n/2 \rfloor \), the proof is complete. \(\Box \)

Proof of Theorem 1.2: If \(\text{Var}(\eta_1) = 0 \), then \(S_n \) is singular and \(\Delta_n = 1 \) for all \(n \). Now, we assume \(\text{Var}(\eta_1) > 0 \). As the total variation distance is invariant in terms of the linear transformation, without loss, we can further assume that \(\eta_i \)'s have mean 0 and variance 1. Define \(W_n = \frac{S_n}{\sqrt{n}} \), then \(\mathbb{E}W_n = 0 \) and \(\text{Var}(W_n) = 1 \).

(i)\(\Rightarrow \) (ii): If \(S_{n_0} \) is singular, then there exists an \(A \in \mathcal{B}(\mathbb{R}) \) with \(|A| = \int_A dx = 0 \) and \(\mathbb{P}(S_{n_0} \in A) = 1 \). This implies that \(\Delta_{n_0} = 1 \), which contradicts (i).

(ii)\(\Rightarrow \) (iii): The Stein equation for the standard normal distribution (see [6 p. 15]) is
\[f'(w) - w f(w) = h(w) - Nh, \tag{2.8} \]
where \(Nh := \mathbb{E}h(Z) \) for \(Z \sim N(0,1) \). The solution of the Stein equation satisfies (see [6 p. 16])
\[\|f'_h\| := \sup_w |f'_h(w)| \leq 2\|h(\cdot) - Nh\|. \]
Hence, for \(h = 1_A \) with \(A \in \mathcal{B}(\mathbb{R}) \), the solution \(f_h =: f_A \) satisfies
\[\|f'_A\| \leq 2. \tag{2.9} \]

Regrouping \(\eta_i, 1 \leq i \leq n \), into blocks of \(n_0 \) random variables and setting \(\eta'_i = \sum_{j=(i-1)n_0+1}^{i n_0} \eta_j \) if necessary, we may assume that \(\eta_i \)'s are non-singular. For convenience, we define
$W'_n := W_n - \eta_1 / \sqrt{n}$ and omit the subindex A in f_A, then
\[
\begin{aligned}
\mathbb{E}[f'(W_n) - W_n f(W_n)] &= \mathbb{E} f'(W_n) - \eta_1 \mathbb{E}[\eta_1 \sqrt{n} (f(W'_n + \eta_1 / \sqrt{n}) - f(W'_n))] \\
&= \mathbb{E} f'(W_n) - \mathbb{E} \eta_1^2 \int_0^1 f'(W'_n + u \eta_1 / \sqrt{n}) du \\
&= \mathbb{E} [f'(W_n) - f'(W'_n)] - \mathbb{E} \eta_1^2 \int_0^1 (f'(W'_n + \eta_1 / \sqrt{n}) - f'(W'_n)) du \\
&= \mathbb{E} \left\{ \mathbb{E} \left[f'(W'_n + \eta_1 / \sqrt{n}) - f'(W'_n) \right] \eta_1 \right\} du,
\end{aligned}
\]
where, since η_1 is independent of W'_n, the first equality is guaranteed by $\mathbb{E} \eta_1 f(W'_n) = \mathbb{E} \eta_1 \mathbb{E} f(W'_n) = 0$, and the third equality follows from $\mathbb{E} \eta_1^2 f'(W'_n) = \mathbb{E} \eta_1^2 \mathbb{E} f'(W'_n) = \mathbb{E} f'(W'_n)$. Now, with
\[
d_{n,v} := d_{TV}(W'_n + |v| / \sqrt{n}, W'_n) = d_{TV}(S_{n-1} + |v|, S_{n-1}),
\]
we have from (1.1) that
\[
\left| \mathbb{E} \left[f'(W'_n + \eta_1 / \sqrt{n}) - f'(W'_n) \right] \eta_1 = v \right| \leq 2 \| f' \| d_{n,v}
\]
and
\[
\left| \mathbb{E} \left[f'(W'_n + u \eta_1 / \sqrt{n}) - f'(W'_n) \right] \eta_1 = v \right| \leq 2 \| f' \| d_{n,vu}.
\]
We denote the distribution function of η_1 by F_η. For $A \in \mathcal{B}(\mathbb{R})$, using (2.8) and (2.9), we obtain from (2.10), (2.11) and (2.12) that
\[
|\mathbb{P}(W_n \in A) - \mathbb{P}(Z \in A)| \leq 4 \int_\mathbb{R} \left\{ d_{n,v} + \left(\int_0^1 d_{n,vu} du \right) v^2 \right\} dF_\eta(v).
\]
Taking supremum over all $A \in \mathcal{B}(\mathbb{R})$ in (2.13), we get
\[
\Delta_n \leq 4 \int_\mathbb{R} \left\{ d_{n,v} + \left(\int_0^1 d_{n,vu} du \right) v^2 \right\} dF_\eta(v).
\]
However, for all $s \in \mathbb{R}$, (2.5) ensures that $d_{n,s} \to 0$ as $n \to \infty$. Since $0 \leq d_{n,s} \leq 1$, (iii) follows from the dominated convergence theorem.

(iii) \Rightarrow (i) is obvious.

(ii) \Rightarrow (iv): It follows from (2.14) and (2.5) that
\[
\begin{aligned}
\Delta_n &\leq O \left(n^{-1/2} \mathbb{E} (|\eta_1| \vee 1)^3 \right) + O \left(n^{-1/2} \int_\mathbb{R} \left\{ \int_0^1 (|vu| \vee 1) v^2 dF_\eta(v) \right\} du \\
&= O \left(n^{-1/2} \mathbb{E} (|\eta_1| \vee 1)^3 \right) + O \left(n^{-1/2} \mathbb{E} (|\eta_1| \vee 1)^3 \right) \\
&= O \left(n^{-1/2} \right),
\end{aligned}
\]
since $\mathbb{E}|\eta_1|^3 < \infty$, concluding the proof.

(iv) \Rightarrow (iii) is also obvious.
References

[1] Barbour, A. D., Luczak, M. J. and Xia, A. (2015). Multivariate approximation in total variation. Available at http://arxiv.org/abs/1512.07400.

[2] Barbour, A. D. and Xia, A. (1999). Poisson perturbations. *ESAIM: P&S* 3, 131–150.

[3] Berry, A. C. (1941). The accuracy of the Gaussian approximation to the sum of independent variates. *Trans. Amer. Math. Soc.* 49, 122–136.

[4] Čekanavičius, V. (2000). Remarks on estimates in the total-variation metric. *Lithuanian Mathematical Journal* 40, 1–13.

[5] Chen, L. H. Y. (1998). Stein’s Method: Some Perspectives with Applications. *Lecture Notes in Statistics: Probability towards 2000*, Vol. 128, 97–122.

[6] Chen, L. H. Y., Goldstein, L. and Shao, Q. M. (2011). *Normal approximation by Stein’s method*. Springer-Verlag.

[7] Chen, L. H. Y. and Leong, Y. K. (2010). From zero-bias to discretized normal approximation. Preprint.

[8] Diaconis, P. and Freedman, D. (1987). A dozen de Finetti-style results in search of a theory. *Ann. Inst. H. Poincaré Probab. Statist.* 23, no. 2, suppl., 397–423.

[9] Esseen, C. G. (1942). On the Liapounoff limit of error in the theory of probability. *Ark. Mat. Astr. Fys.* 28A, 1–19.

[10] Fang, X. (2014). Discretized normal approximation by Stein’s method. *Bernoulli* 20, 1404–1431.

[11] Goldstein, L. and Xia, A. (2006). Zero biasing and a discrete central limit theorem. *Ann. Probab.* 34, 1782–1806.

[12] Halmos, P. R. (1974). *Measure Theory*. Graduate Texts in Mathematics 18, Springer-Verlag.

[13] Lindvall, T. (1992). *Lectures on the coupling method*. Wiley, New York.

[14] Meckes, E. S. and Meckes, M. W. (2007). The Central Limit Problem for Random Vectors with Symmetries. *Journal of Theoretical Probability* 20, 697–720.

[15] Röllin, A. (2005). Approximation of sums of conditionally independent variables by the translated Poisson distribution. *Bernoulli* 11, 1115–1128.

[16] Röllin, A. (2007). Translated Poisson approximation using exchangeable pair couplings. *Ann. Appl. Probab.* 17, 1596–1614.
[17] Röllin, A. (2008). Symmetric and centered binomial approximation of sums of locally dependent random variables. *Electron. J. Probab.* **13**, 756–776.

[18] Wintner, A. (1938). *Asymptotic distributions and infinite convolutions*. Edwards Brothers, Ann Arbor, MI.

[19] Xia, A. (1997). On using the first difference in the Stein-Chen method. *Ann. Appl. Probab.* **7**, pp 899–916.