IUCrJ

Volume 7 (2020)

Supporting information for article:

The structural study of mutation-induced inactivation of human muscarinic receptor M4

Jingjing Wang, Meng Wu, Lijie Wu, Yueming Xu, Fei Li, Yiran Wu, Petr Popov, Lin Wang, Fang Bai, Suwen Zhao, Zhi-Jie Liu and Tian Hua
Table S1 Supporting information RMSD values of the mutation-induced inactive M4 structure with other classical mAChRs structures

State	mAChRs (PDB code)	ligand	RMSD value (Å)
Inactive	M1R(5CXV)	tiotropium	1.227
	M2R(3UON)	QNB*	0.713
	M3R(4U15)	tiotropium	0.701
	M4R(5DSG)	tiotropium	0.699
Active	M1R(6OIJ)	iperoxo	1.472
	M2R(6OIK)	iperoxo	1.251

*R-(2)-3-quinuclidinyl benzilate.
Table S2 Supporting information R_{free}/R_{work} values of the mutation-induced inactive M4 structure with three fatty acids from docking results

HMDB ID	Compound name	Chemical structure	R_{free}/R_{work} (%)
None	None		26.42/23.14
0010212	17,18-EpETE	![17,18-EpETE](image)	26.79/21.65
0034295	Floionolic acid	![Floionolic acid](image)	26.45/21.72
0010217	5-oxo-ETE	![5-oxo-ETE](image)	26.70/21.63
Figure S1 Protein purification and crystal packing of the mutation-induced inactive M4 structure. (a) Analytical size-exclusion chromatography trace of purified mutation-induced M4 protein. (b) Crystal picture of M4 obtained in lipidic cubic phase. (c-d) Crystal packing and the overall structure of mutation-induced inactive M4. M4 and PGS are coloured in teal blue and orange, respectively. Six-point mutations in the crystallization construct are shown as pink spheres.
Figure S2 Residues in the rational designed ionic network are conserved in class A GPCRs. (a-c) TM2, TM3 and TM7 sequence conservation across 286 human class A GPCRs (including 81 orphan receptors and non-olfactory receptors). (d) The percentages of the polar amino acids in the conserved positions of 2×50 in TM2, 3×39 of TM3 and 7×49 in TM7.
Figure S3 Molecular docking and molecular dynamic simulation results of tiotropium using the mutation-induced inactive M4 structure. (a) The overall comparison with M4-tiotropium structure (PDB code 5DSG). (b) The interaction residues in the orthosteric binding pocket are similar except for side chains of W164$^{4.57}$, Y416$^{6.51}$ and Y439$^{7.39}$.
Figure S4 Electron density maps for three different fatty acids. (a) The initial omit 2|F_o|-|F_c| map. (b-d) The refined 2|F_o|-|F_c| maps for 17,18-EpETE (b), Floionolic acid (c) and 5-oxo-ETE (d), after refinements.
Figure S5 Omit electron density maps for the mutation-induced M4 structure. (a) The initial omit 2|F_o|-|F_c| map (grey) for seven transmembrane domains (I, II, III, IV, V, VI and VII). Contoured at 2.0σ at 3.0 Å. (b-f) The omit 2|F_o|-|F_c| (blue) and |F_o|-|F_c| (green) maps for tyrosine lid (b), residues Trp6.48 (c), the R(R449)PxxY (Y453) motif (d), DRY motif (e), and ionic network residues in the mutation-induced M4 structure (f). The sidechains of the residues are selected for omit map generation. 2|F_o|-|F_c| omit maps contoured at 1.0σ at 3.0 Å, |F_o|-|F_c| omit maps contoured at 3.5σ at 3.0 Å.