Risk of road-traffic accidents in the city of Kazan, Russia

Ramil Zagidullin[10000-0001-5185-2690], Talgat Gabdullin[10000-0001-8232-4225]

1Kazan State University of Architecture and Engineering, Kazan 420043, Russia
E-mail: r.r.zagidullin@mail.ru

Abstract. According to the records of the World Health Organization for the year 2018, mortality rate due to road traffic accidents (RTAs) in Russia is equal to 18 RTAs per 100,000 citizens. It ranks Russia the 72th among all the other countries in the world. Statistics of the road traffic accidents occurring between 2013 and 2019 was analyzed in order to reveal the major reasons thereof. The method of levelling of longstanding tendencies by analytical dependencies was used for the evaluation of dynamics and predictions of RTA number. As a result, predicted number of RTAs in 2020 in case of linear dependency was equal to 2118 cases and 1816 cases in case of tendency line. Common RTAs include collisions, hitting of pedestrians and falling of passengers. Most RTAs occur near apartment buildings with death toll rise by 23 % (27 deaths 2018/2017) and 218 % rise (2018/2017) in the number of RTAs near nonresidential buildings.

Keywords: road-traffic accidents, statistics, road safety, city, development analysis, forecast.

1 Introduction
The quality and effectiveness of road-traffic safety management decisions depend directly on the completeness of analysis of the road traffic accidents data and the objective evidence of the causes and conditions of their occurrence [1-4]. Basically, analysis and management are the parts of an inseparable single process with different content depending on the features of the object of management. People are the main objects of management in social systems, which include the road-traffic safety system. Therefore, such systems are characterized by a high degree of responsibility for decisions made and a high degree of uncertainty in the conditions in which such decision are made [5-8].
Practices of philosophy, logic, mathematics, psychology, economics, sociology, and other fields of knowledge are used while taking decisions. They allow deeper analysis, more reliable forecasting, and more effective influence on technical, economic, and social processes [9-12]. Due to the results of scientific research in the field of social systems management it was possible to identify a number of conditions to be met to get realisable and affective management practices. Accidence analysis is an integral part of the general road-traffic safety management process [2, 13-15]. Therefore, the decision to evaluate the effectiveness of both analytical activities and the general work on RTA prevention based on the final results achievement is understandable. However, this approach is even more difficult to implement than the evaluation of the effectiveness of single activities. Consequently, it is more advantageous to determine not the analysis effectiveness, but its quality while evaluating it according to both objective and subjective factors.

In the last decade the problem of accidence related to motor vehicles has become particularly acute in the light of suboptimal road-traffic safety system and poor discipline of road users [11, 16, 17].

Within seven years (from January 01, 2013 to December 31, 2019) of realisation of the Federal Target Program "Improving road-traffic safety in 2013-2020" 13,721 road-traffic accidents (RTA) took place in the city of Kazan with 435 people killed and 15,875 people suffered wounds of varying severity [7].

In 2012, 1421 road-traffic accidents (87.3 percent) were caused by drivers and 190 (11.7 percent) – by pedestrians. A total 1631 road-traffic accidents were registered on the territory of Kazan in 2012, causing death of 78 people and injury of 1,880 people.

Measures taken by the executive authorities and other civil services to reduce accident rate have led to the improvement of the most important effectiveness indicator of policy measures in Kazan: reducing the number of road fatalities, including children deaths. Comparing figures of 2019 with those of the reference year of 2012, we see that the number of deaths in RTA decreased by 23.1 percent, while the number of accidents increased by 17 percent and the number of injuries – by 17.7 percent.

A total 1909 road-traffic accidents were registered in the territory of Kazan in 2019, with 60 people killed and 2,213 people suffered wounds of varying severity. Against the same period in 2018, the number of people killed in RTA increased by 22.4 percent with the number of RTA decreased by 6 percent, and the number of injured people – by 5.9 percent.

Kazan has experienced a constant increase in the number of vehicles in recent years. For example, in 2012 there were 307,663 vehicles in Kazan,
while in January 2020 there were 445,028. The number of vehicles increased by 44.6 percent in seven years.

The population in Kazan as of January 1, 2012 was 1,161,308 people, and in 2019 – 1,251,969 people. So, it increased by 7.8 percent in seven years.

The increased number of motor vehicles and the wholesale inclusion of new drivers have led to a significant change in the characteristics of road conditions and their complexity. It resulted in increased traffic density and traffic load, which has a negative impact on the rate of the accident reduction [18].

Quarter-century international practices of safety audit have shown that effective safety management programs shall be adopted on the basis of balance between reactive and proactive strategies with respect to local conditions [19-21].

Countries, which succeeded in road traffic safety, applied their national strategies acknowledging the necessity of close cooperation and coordination between all the interested parties. In other words, these countries understood that the road traffic safety increased most effectively when traffic regulation observance authorities, traffic control authorities, legislation authorities, public healthcare and education authorities and all the other interested parties worked in close cooperation and followed national road safety strategies. They acknowledged that the road itself could also cause RTAs and that the road authorities could eliminate dangerous sectors by means of detailed analysis of RTAs and affordable corrective measures. Moreover, in course of the construction of the new roads, they managed to implement the process of road safety audit in order to minimize the chance of newly-built road sectors being dangerous. The success of these countries was due to most of their efforts being directed to the road itself [10, 18, 22, 23].

2 Methods

Studying and comparing the development of the accident rates is the most common method of analysis of absolute and any specific and relative indicators. There are several basic methods of studying and comparing the development of the accident state, their practicability confirmed in practice not only within accident analysis, but in many other fields of knowledge:

1. Development analysis in relation to the similar previous period. This method is the most common in real-time control and response to accident changes. Its ever-growing use is principally attributed to the goal of the road-traffic safety system: to reduce absolute indicators. The comparison of indicators of two similar periods gives a straightforward criterion for the goal meeting, where the decline of absolute indicators shows that the goal was achieved. So, the main reason for its wide application is the ease of
connection this method with the ultimate goal of the entire system functioning. However, the same ease leads to the main drawback of the method, i.e. the ambiguity of the analysis conclusions.

2. Development analysis in relation to the "reference" year. According to this method, accident rates for several years are recalculated as a percentage in regard to one "reference" year. The results obtained are easily represented in the form of graphs and are used to compare indicators with stable trend.

3. Development analysis in relation to the average indicators. Development analysis in relation to the average indicators helps to smooth over fluctuations in the analyzed indicators. Three or five years are usually taken as the averaging period, i.e., for example, the average accident rates for the two subsequent quinquennium are calculated and compared with each other. If the analyzed period is long enough, this method can be combined with the previous one, with the "reference" five-year or three-year period taken instead of one "reference" year.

4. Development analysis based on the "point-to-average" principle. This method combines the first one and last one of the above methods, where data for one last period is compared with the average value for several (usually three) previous periods. This method can be recommended both for dynamic response and for evaluating road-traffic safety activities over a specific period of time.

5. Smoothing long-term trends by analytical dependencies. According to the actual data, we can assume that the general trend is towards a steady increase in the number of RTA and that the jogged line can be "smoothed" by a right line. Therefore, in this case, a linearly increasing dependence of the number of RTA on time can be used as the model of development of the number of RTA in the region.

The possibilities of smoothing long-term data are considered on the specific example of the accident in Kazan (See Fig. 1).
The model built, we will get the average value of the analyzed indicator for some period, as well as the average rate of the indicator growth (or decline).

The formula for the average rate of indicators development within a linear model is well known and is as follows:

\[k = \frac{\sum_{i=1}^{n}(I_i - I_{av})(t_i - t_{av})}{\sum_{i=1}^{n}(t_i - t_{av})^2}, \]

where \(I_i \) is the value of the analyzed indicator at \(t_i \) points of time;

\(I_{av} \) is the average value of the \(I_i \) indicator for the analyzed period;

\(t_i \) are points of time with relevant values of \(t_{av} \);

\(t_{av} \) is the midpoint of the analyzed time period;

\(n \) is the number of points of time with relevant values of \(I_i \);

\[I_{av} = \frac{\sum_{i=1}^{n} I_i}{n}, \]

\[t_{av} = \frac{\sum_{i=1}^{n} t_i}{n}, \]

Another advantage of the calculated indicators is that they enable to estimate the expected number of RTA for any given time, provided that existing trends persist.

Expected number of RTA is:
\[I(t_i) = I_{av} + k(t_i - t_{av}), \quad (4) \]

where \(t_i \) is the point of time for which the accident rate is calculated.

3 Results

The examples of smoothing long-term data and usage of the calculated values are given in Table 1.

Table 1. Building a linear model for changing the number of RTA in 2012-2019.

Years \((t_i)\)	Number of RTA (I)	\(I_i - I_{av} \)	\(t_i' - t_{av} \)	\((I_i - I_{av}) \cdot (t_i' - t_{av}) \)	\((t_i' - t_{av})^2 \)
2012	1631	-288	4	5	6
2013	1819	-100	2	-2.5	250
2014	1851	-68	3	-1.5	102
2015	1970	51	4	-0.5	-25.5
2016	2092	173	5	0.5	86.5
2017	2050	131	6	1.5	196.5
2018	2030	111	7	2.5	277.5
2019	1909	-10	8	3.5	-35
Total	15,352	36	36	1860	42
Average number	1919	4.5			

Table 1 provides data on changing number of RTA in 2012-2019. The first column represents data on the analyzed period from 2012 to 2019. The second column shows the number of RTA over the same years. Columns 3-7 give the intermediate calculations and information necessary for calculating \(k \). The third column shows the difference between \(I_i \) and \(I_{av} \) (the value of which is given in the last row of the Table).

To avoid multiplication of too large figures, the "offset time" was introduced, i.e. 2012 became No. 1, 2013 – No. 2, so forth. This "offset time" is indicated by \(t_i' \) and is given in Column 4.

The fifth column is similar to Column 3, except that it indicates time instead of accident rate. The content of Columns 6 and 7 is clear from their labeling.

Substituting the values shown in Column 5 into the formula for calculation \(k \), we get:

\[k = 1860:42 = 44.3. \]
Thus, we calculated two characters of the process of the number of RTA development in the city over eight years: the average level (1919 RTA per year) and the average rate of growth (44.3 RTA per year).

Using Formula 4 and information given in Table 1, we estimate the expected number of RTA in 2020. Since we introduce the offset time in our calculations, we shall also take \(t_i' = 2020 - 2011 = 9 \) instead of \(t_i = 2020 \). Substituting all the necessary number values in Formula (4), we will get:

\[
I(2020) = 1919 + 44.3(9 - 4.5) = 2118
\]

Thus, 2118 road-traffic accidents are expected to occur in 2020.

Let us note again, that this forecast is grounded on the fact that the current trend will persist. Since the number of RTA is expected to increase, it is obvious that the management object is to ensure this trend not to persist, i.e. that the number of RTA decreases.

However, the same jogged line (See Fig. 1) can be smoothed over by various lines drawn slightly higher or lower, steeper or flatter. Which of these direct dependencies shall be chosen? To answer this question we will use methods of mathematical statistics, which enable us to select the model with minimal error (See Fig. 2).

![Fig. 2. Development of the number of RTA: actual data; average curve of the number of RTA.](image-url)
On the presented trend line (See Fig. 2) the forecast number of RTA for 2020 is 1,816.

In 2016, there were 2092 road-traffic accidents in which 19 drivers and passengers, 31 pedestrians, and 1 cyclist were killed and 1432 – 893 – 42 people respectively were injured. In 2017, there were 2050 road-traffic accidents in which 12 drivers and passengers, 31 pedestrians, and 1 cyclist were killed and 1477 – 832 – 41 people respectively were injured. In 2018, there were 20,940 road-traffic accidents in which 17 drivers and passengers, 30 pedestrians, and 2 cyclists were killed and 1577 – 775 – 61 people respectively were injured.

Development of accident rates in 2016-2018 in relation to type of RTA is presented in Table 2.

Type of RTA	2016	2017	2018
Crash	878	859	925
Automobile-pedestrian accident	875	823	771
Passenger falling	182	224	195
Head-on crash	71	71	83
Automobile-cyclist accident	43	39	63
Hitting of a standing vehicle	19	15	23
Overturn	17	9	20
Other	7	10	14

Development of accident rates in 2016-2018 in relation to violations is presented in Table 3.

As evidenced in practice, the places of RTA are unevenly distributed on highways, roads and city streets. When studying the map showing the RTA areas, some places where RTAs occur more often, that is, concentrated places, stand out. These areas are termed variously – dangerous areas, black spots, accident hotbeds, etc. But they define the same notion: these are places where RTAs take place more often than totally on the street and road network.

Challenges related to the detection of the most dangerous road sections and the development of measures to eliminate the causes of their occurrence have been widely developing since 1960s. Currently, there are a lot of various criteria and methods for detecting and identifying such sections.

All accident hotbeds are primarily divided into two types. The first type includes RTA hotbeds at street crossings, intersections, road junctions, railway crossings, and complex engineering structures such as bridges, tunnels, high
banks, etc. It is in little doubt that these units of the street and road network belong to the sources of increased danger and no special proof is required to identify them as accident hotbeds. In this case different elements are simply compared to each other in terms of the danger degree.

All other areas of RTA concentration are classified as accident hotbeds of type 2, and their identification needs application of formal statistical criteria. Statistics in relation to the place next to RTA is presented in Table 4.

Table 3. Development of the number of RTA in 2016-2018 in relation to violations.

Violations	2016	2017	2018							
Wrong spacing	299	369	402							
Violation of pedestrian crossing rules	287	298	310							
Other traffic violations made by the driver	146	297	298							
Violation of the priority rules at roundabouts	296	259	255							
Violation of traffic light	135	123	154							
Non-compliance with the lateral interval	83	77	113							
Crossing the roadway outside the pedestrian crossing in sight of it or within easy reach to an underground (above-ground) pedestrian crossing	133	132	110							
Violation of the lane-change rules	118	85	95							
Non-compliance with the conditions of back run	95	77	85							
Violation of the regulations on the use of public transport	47	72	71							
Speed mismatch to specific driving conditions	203	57	65							
Wrong-way driving	90	58	62							
Crossing the roadway in undesigned areas (with an intersection in sight)	77	53	54							
Other violations	49	47	41							
Non-compliance with highway traffic regulations	31	37	31							
Nonconformity with traffic signs	26	21	25							
Violation of the rules for the vehicle location on the roadway	35	30	20							
Speed enforcement	14	29	19							
Violation of stopping and parking rules	7	7	14							
Crossing the roadway in a prohibited area (equipped with pedestrian barriers)	4	-	9							
Violation of road marking	1	5	7							
Motion along the roadway granting the sidewalk in satisfactory condition	5	4	7							
Standing on the roadway without the purpose of crossing it	4	10	4							
Crossing into oncoming traffic with a U-turn, turn to the left or obstacle avoidance	4	2	4							
Unexpected emerge from the vehicle	4	3	4							
Crossing of the roadway by a cyclist at a pedestrian crossing	3	2	4							
Place nearby	1	2	3	4	5	6	7	8	9	10
--	-------	-------	-------	-------	-------	-------	-------	-------	-------	----
Apartment blocks	1128	1255	24	1348	1535	22	1389	1572	27	
Controlled intersection	778	924	16	737	881	11	794	948	16	
Public transport stop	600	666	16	557	599	14	713	801	19	
Signalised crossing	271	291	5	494	578	7	598	686	12	
Large retail facility	203	237	4	261	292	8	379	433	6	
Zebra crosswalk	320	327	8	344	357	10	311	333	8	
Administrative buildings	66	76	1	84	97	2	267	312	5	
Emerge from the surrounding area	133	150	1	160	177	1	232	257	7	
Residential individual buildings	147	172	2	154	189	5	199	244	7	
Uncontrolled intersection of non-equipotential streets (roads)	158	191	6	128	158	3	164	192	1	
Single retail facility	43	46	2	65	67	-	136	149	4	
Overhead road, overpass	96	119	1	101	142	5	135	172	3	
Fuel filling station	87	107	5	84	112	1	124	150	1	
Courtyard territory	146	147	1	130	129	3	103	104	-	
Sports and entertainment facilities	38	44	4	45	57	-	74	105	-	
Parking space (separated from the roadway)	48	52	-	50	55	-	73	78	-	
Underground pedestrian crossing	34	40	2	47	57	5	58	76	-	
Streetcar stop	25	26	1	25	33	-	57	65	1	
Overground pedestrian crossing	28	30	2	36	42	-	53	58	2	
Place nearby	2016	2017	2018							
---	------	------	------							
Medical treatment facilities	-	-	30							
Manufacturing facilities	31	36	1							
Bridge	36	41	1							
Uncontrolled intersection	75	85	2							
Object of religious faith	5	5	-							
Approach to the bridge, overhead road, and overpass	21	25	-							
Sidewalk, pedestrian precinct	35	40	31							
Other educational establishment	-	-	12							
School or other children's organization	13	13	-							
Uncontrolled intersection of equipotential streets (roads)	16	21	-							
Recreational area	14	15	-							

Note: Columns 2, 5, 8 indicate the number of RTA; Columns 3, 6, 9 – the number of injured people; Columns 4, 7, 10 – the number of fatalities.

It worth noting that any conclusion about the presence of an accident hotbed, made on the basis of statistical data, will be probabilistic, and one can speak only about the degree of confidence in the conclusions obtained.

4 Discussion

Mathematical research methods of complex systems and processes and their operation are becoming more significant in various branches of science and technology. It is generally recognized that the most complex managed processes studied on the basis of statistics run in economical and social systems, which include the road-traffic safety system.

Until recently, the analysis of the road-traffic safety activities was limited mainly to the study of the incidence dynamics and structure by selected indicators. However, nowadays, with the problem of road-traffic safety sharply aggravated, the requirements for the quality of analysis and
preparation of management decisions proposals have increased. It has proved impossible to keep to traditional research methods mainly because of the inability to process, understand and correctly interpret a huge amount of source data.

The following conclusions can be made based on Table 4:
- the largest number of RTA occur near apartment blocks, with the dynamics of increasing number of deaths;
- against 2016, in 2017 the number of RTA at regulated intersections and public transport stops declined, and in 2018 – increased;
- the number of RTA at regulated pedestrian crossings increased;
- the number of RTA near major shopping centers increased by 30 % (2018/2017);
- the number of RTA near administrative buildings increased by 218 % (2018/2017);
- the number of RTA when emerging from the surrounding area increased by 45 % (2018/2017);
- the number of RTA near residential individual buildings increased by 29 % (2018/2017);
- the number of RTA at uncontrolled intersections of non-equipotential streets (roads) increased of 28 % (2018/2017);
- the number of RTA near single retail facilities increased by 109 % (2018/2017);
- the number of RTA near overhead roads and overpasses increased by 34 % (2018/2017);
- the number of RTA near fuel filling stations increased by 48 % (2018/2017);
- the number of RTA near sports and entertainment facilities increased by 64 % (2018/2017);
- the number of RTA near school or other children's organization increased by 175 % (2018/2017);
- the number of RTA at courtyard territories reduced by 21 % (2018/2017);
- the number of RTA at uncontrolled intersections reduced by 29 % (2018/2017);
- the number of RTA at sidewalks and pedestrian precincts reduced by 26 % (2018/2017);

One section of applied mathematics called mathematical statistics considers the processing of statistical information and corresponding model-building. Due to the variety of models used in mathematical statistics it is
impossible to describe the methods of their construction even in special publications.

One of the first and main issues discussed in mathematical statistics is the regularity and incidental correlation in the source data. In fact, the accidence features obtained for a sufficiently large group of RTA are governed by statistic patterns. The existence of statistic patterns is confirmed by the fact that although each specific RTA is a result of a combination of many factors and, therefore, may be random in nature, with sufficiently large sets of RTA these results become sustainable.

However, despite the size of RTA group used to calculate an accident rate, it remains finite, and the accident rates for this group will have some random fluctuations relative to stable trends.

It worth noting that incidental does not mean the absence of cause. There shall be objectively existing reasons for even the smallest differences and changes. The point is that no matter how detailed the source accidence data is there is always the possibility of an error in the results and conclusions obtained where this data is solely used. To receive more accurate results, new data should be obtained. This process is infinite, and it is important to set the "limit" so that to minimize the probability of improper conclusions. Causation in statistical studies is a separate and neglected issue.

5 Conclusions

Many tasks of accident rate analysis require the degree of dependency between various indices to be determined and estimated. The matter of data analysis is mainly in determining the interrelations between various variables. However, it is certainly not always about determining interrelation in the form of some math correlation. Analysis is often performed without building any formal model, but in any case, though unintentionally or intuitively, one has to make conclusions on the nature of interdependency of the indices under analysis in order to receive a final evaluation.

As a result of RTA statistics analysis by levelling longstanding tendencies with analytical dependencies, predicted number of RTAs in 2020 in case of linear dependency was equal to 2118 cases and 1816 cases in case of tendency line.

Common RTAs include collisions, hitting pedestrians and falling passengers. Most of RTAs occur near apartment buildings with death toll rise: 218 % rise (2018/2017) in the number of RTAs near nonresidential buildings, 45 % rise (2018/2017) in the number of RTAs attributed to exiting from the adjacent areas, 109 % rise (2018/2017) in the number of RTAs near individual commercial objects, 64 % rise (2018/2017) in the number of RTAs near sports
and entertainment objects, 175% rise (2018/2017) in the number of RTAs near schools or other children organizations.

The task of establishing causation is complicated by the fact that the relation between accident rate indices and factors influencing them is rarely simple and obvious in the Road Safety System. Difficult problems hardly ever have simple solutions, i.e. solutions related to only one variable or cause. Accident rate is influenced by many factors and impact of the one of them may be replaced and deformed by the other ones. Such dependency is not easy to understand and hard to determine. However, even insignificant or partial progress in understanding the occurrences may lead (though a long way it may take) to effective solution of highly complicated problems.

References

[1] Adesiyun A, Avenoso A, Dionelis K, Cela L, Nicodème C, Goger T and Polidori C 2017 Joint road safety operations in tunnels and open roads. Building up Efficient and Sustainable Transport Infrastructure 2017 (BESTInfra2017) pp 1-9 IOP DOI: 10.1088/1757-899X/236/1/012096
[2] Benlagha N and Charfeddine L 2020 Risk factors of road accident severity and the development of a new system for prevention: New insights from China. Accident Analysis and Prevention 136 105411 DOI: 10.1016/j.aap.2019.105411
[3] Budzynski M, Jamroz K, Kustra W, Michalsk L and Gaca S 2017 Road Infrastructure Safety Management in Poland. IOP Conference Series: Materials Science and Engineering 245(4) DOI: 10.1088/1757-899X/603/4/042052
[4] Drosu A, Cofaru C and Popescu M V 2020 Influence of Weather Conditions on Fatal Road Accidents on Highways and Urban and Rural Roads in Romania International Journal of Automotive Technology 21(2) pp 309-317 DOI: 10.1007/s12239-020-0029-4
[5] Lee J, Chae J, Yoon T and Yang H 2018 Traffic accident severity analysis with rain-related factors using structural equation modeling – A case study of Seoul City Accident Analysis and Prevention 112 pp 1-10 DOI: 10.1016/j.aap.2017.12.013
[6] Persia L, Usami D S, De Simone F, Beaumelle V F D L, Yannis G, Laiou A, Han S, Machata K, Pennisi L, Marchesini P and Salathè M 2016 Management of Road Infrastructure Safety Transportation Research Procedia 14 pp 3436-45 DOI: 10.1016/j.trpro.2016.05.303
[7] Resolution of the government of the Russian Federation on Federal Target Program "Improvement of road-traffic safety in 2013-2020" No. 864 dated October 3, 2013.
[8] Sakhapov R, Nikolaeva R 2018 Traffic safety system management. Transportation Research Procedia 36 pp 676-81 DOI: 10.1016/j.trpro.2018.12.126
[9] Sakhapov R, Nikolaeva R 2017 Economic Aspects of Traffic Safety Administration Transportation Research Procedia 20 pp 578-83 DOI: 10.1016/j.trpro.2017.01.093
[10] Shaaban K and Abdur-Rouf K 2019 Development, validation, and application of School Audit Tool (SAT): An effective instrument for assessing traffic safety and operation around schools Sustainability 11(22) 6438 DOI: 10.3390/su11226438
[11] Spitzhüttl F, Goizet F, Unger T and Biesse F 2020 The real impact of full hydroplaning on driving safety. Accident Analysis and Prevention 138, 105458 DOI: 10.1016/j.aap.2020.105458
[12] Vankov D 2015 Status, trends and problems of the road safety field in Bulgaria. Periodica Polytechnica Transportation Engineering 43(1) pp 9-14 DOI: 10.3311/PPtr.7570
[13] Chike N H, Godwin N I 2015 Statistical Model of Road Traffic Crashes Data in Anambra State Nigeria: A Poisson Regression Approach. International Journal of Scientific and Technology Research 4(9) pp 226-233
[14] Huang H, Yin Q, Schwebel D C, Li L and Hu G 2016 Examining road traffic mortality status in China: A simulation study PLoS ONE 11(4) 0153251 DOI: 10.1371/journal.pone.0153251
[15] Martínez P and Contreras D 2020 The effects of Chile's 2005 traffic law reform and in-country socioeconomic differences on road traffic deaths among children aged 0-14 years: A 12-year interrupted time series analysis Accident Analysis and Prevention 136 105335 DOI: 10.1016/j.aap.2019.105335
[16] Ognjenovic S, Donceva R and Vatin N 2015 Dynamic homogeneity and functional dependence on the number of traffic accidents, the role in urban planning Procedia Engineering 117(1) pp 551-558 DOI: 10.1016/j.proeng.2015.08.212
[17] Singh S K 2017 Road Traffic Accidents in India: Issues and Challenges Transportation Research Procedia 25 pp 4708-19 DOI: 10.1016/j.trpro.2017.05.484
[18] Zagidullin R 2017 Model of Road Traffic Management in the City during Major Sporting Events Transportation Research Procedia 20 pp 709-716 DOI: 10.1016/j.trpro.2017.01.115
[19] Abu Mansor S N, Ahmad Saman M S, Tengku Razman T M S and Masnel H 2018 Road safety audit – What we have learnt? 10th Malaysian Road Conference & Exhibition (IOP Publishing, Selangor, Malaysia) pp 1-11 DOI: 10.1088/1757-899X/512/1/012023

[20] Arranz Cuenca A and Canovas Masero J 2019 Road safety audits in the federal road network in Ecuador [Auditores de seguridad vial en las carreteras nacionales de Ecuador] Carreteras 4(224) pp 38-46

[21] Aydin C and Balla N 2017 Road safety audit: A case study. Proceedings of International Structural Engineering and Construction 4 pp 124

[22] Huvarinen Y, Svatkova E, Oleshchenko E and Pushchina S 2017 Road Safety Audit Transportation Research Procedia 20 pp 236-241

[23] Jain N and Aggarwal S K 2019 Risk rating index for prioritizing of road accident prone segments on highways International Journal of Scientific and Technology Research 8(9) pp 1433-38