A Study of The Practical Use of Green Engineering-Based Technology for Building Sustainability: Users’ Perspective

Amirul Hakim Hasan¹, Sushilawati Ismail²

¹,² Department of Civil Engineering, Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, MALAYSIA
Corresponding author: sushila@uthm.edu.my

Abstract. Sustainable construction has been the main priority in the global construction industry. For that reason, Malaysia is moving towards green building approach to promote built environment sustainability. Therefore, it is essential to raise awareness about the environmental-responsible practice among construction players particularly on the implementation of green engineering-based technology. This study aims to explore the existing green engineering-based technology and to investigate the preferred green engineering-based technology to upgrade the sustainability of existing residential buildings. The study focuses on the existing technology to be incorporated in the operation of buildings. A comprehensive literature review was carried out and 384 feedback was collected from questionnaire survey distribution among respondents in Johor Bahru. Various green engineering-based technology includes solar energy, wastewater treatment, rainwater harvesting, window shading, housing landscape, natural ventilation, smart PDLC film glasses, roof thermal insulation, and smart home control panel are discussed in this paper. From this study, it was found that that the housing landscape is the most preferred with the highest mean index value followed by daylighting system and solar panel. The results indicate the preferred green engineering-based technology is because of low cost and familiarity among users. The future study should consider relating the awareness of individuals on sustainability with their preferred green technology. Perhaps, the coverage of this study should be extended by involving respondents from all over Malaysia.

1. Introduction
Sustainable development is an important aspect of building construction in modern times. The development that incorporated a sustainability approach required sustainable principles in construction to be practiced. Thus, one of the solutions to support sustainable practice in construction is green engineering-based technology. It is a method to promote sustainable techniques like incorporating smart and advanced equipment in buildings to ensure more economical, high efficiency, and environmental-friendly. The adoption of green engineering-based technology in construction activities could promote sustainable buildings in terms of energy usage and minimization of waste. It enhances the use of wastes to be reused and recycled into useful products. This promotes less usage of natural resources and saves money. Sustainability is achieved by re-evaluating the issue that causes environmental pollution to design a more constructive way of green engineering to be more sensible to be applied in building [1].

In order to promote building sustainability, every phase of the building life cycle has to be guided by sustainable principles. Energy efficiency and application of renewable energy are among the important element to attend to. Many contractors recently implementing a sustainable approach to preserve the environment at the same time conducting their construction activities [2]. Materials should be selected
based on their significance of impacts to the environment as well as to the well-being of humans throughout the construction lifecycle. Besides, sustainable building features perhaps could maximise operational efficiency which contributing to the energy consumption efficiencies. However unfortunately, green practice in construction has been neglected among contractors due to unfamiliar exposure to this approach [3]. This situation needed further attention to make sure the construction practitioners aware of the technology that exists for protecting the environment, while simultaneously improving human health and well-being, and conserving valuable resources like water and energy. Therefore, the exploration of green engineering-based technology is necessary. The objectives of this study are to discover green engineering-based technology that contributing to building sustainability as well as preferred choice of users incorporating such technologies into their residence.

1.1. Green engineering-based technology
Green engineering-based technology is the incorporation of sustainable features in a product by modifying the existing technology to reduce implications towards ecosystem [4]. The equipment or technology based on sustainability purposes need to be designed to be practical to install and show benefits towards consumers. Commonly known as eco designs, which has endless conveniences that serve towards sustainable practices among users [5]. Eco design equipment able to reduce usage of energy and reduce emission of greenhouse gases towards environment [6]. This means eco design need to be environmentally efficient when in operation. The execution of eco design in retrofitting buildings need to focus towards achieving green building criteria. Thus, the green based technology is appropriate to replace the conventional technology in order to operate better towards sustainability focused.

Green engineering-based technology must ensure to not neglect the detrimental effects towards environment during production and operation [7][8]. The green technology needs to be durable and user friendly. The high durability of technology avoid frequent replacement as this will save resources in production [9]. The technology which is sustainability driven need to consume minimal amount of energy as this will provide great energy saving. For instance, power utilization can be reduced with installation of green engineering for the operation of buildings [7]. Addition to this, the ecoefficiency growth increases in time when existing buildings are been retrofit with green engineering.

Green engineering-based technology need to be profitable with the inclusion of eco-friendly requirements [10]. Underdeveloped nations faced barriers in practicing green engineering for buildings such as shortage of venture capital and exposure of its application [7]. Insufficient of proper execution of green engineering-based technology among stakeholders is caused by their ignorance about the applications and practicability [11]. This study perhaps could provide collective insight and idea in incorporating green engineering-based technology into building project development or even in redevelopment of existing building.

2. Materials and methods
There were two parts involved in this study which are comprehensive literature review and questionnaire survey.

2.1. Literature review
Literature review is important to gain information about related scope of research from past studies. In this study, comprehensive literature review was carried out to achieve the main objective of the study which is to explore the existing green engineering-based technology in promoting sustainable building. The green engineering-based technology explored in literature review are based on existing technology. The most used databases for literature review were ScienceDirect, Scopus, ResearchGate and Springer Link as they provide interdisciplined research databases. The Boolean operators consist of ‘AND’ or ‘OR’ were used with keywords in identifying chosen journals. The keywords and Boolean operators were used together which consist of “solar energy” AND “sustainability” OR “energy saving”, “wastewater treatment” AND “sustainability”, “rainwater harvesting” AND “sustainability”, “window shading” OR “window tint” AND “sustainability”, “landscape” AND “sustainability”, “natural ventilation” AND “sustainability”, “PDLC” OR “smart window” AND “sustainability”, “roof insulation” AND “sustainability”, “smart home” OR “building automation system” AND
“sustainability”. Next, the results were filtered according to publication years which were between 2010 to 2021.

2.2. Questionnaire survey
A questionnaire survey was used to investigate the preferred green engineering-based equipment to upgrade the sustainability of existing residential building. The questionnaire was distributed to respondents which are residents in Johor Bahru. A total of 384 feedbacks were collected and considered sufficient for analysis based on Krejcie and Morgan’s sample size table [12]. A brief information with photo of each green engineering-based technology were included in the questionnaire form. This is to give an idea to respondents regarding the green engineering-based technology in helping them to answer the survey. The first section of questions was using 5-point Likert scale to identify their preferable on the listed technologies, meanwhile the second section asking on price ranges that they willing to spend for each of the item. The IBM SPSS Statistics software is used to analyse the data obtained based on the mean index as shown in equation (1).

\[
\text{Mean Index} = \frac{\sum (X_1 + 2X_2 + 3X_3 + 4X_4 + 5X_5)}{\sum (X_1 + X_2 + X_3 + X_4 + X_5)}
\]

where;
- \(X_1\) = Number of respondents on scale 1
- \(X_2\) = Number of respondents on scale 2
- \(X_3\) = Number of respondents on scale 3
- \(X_4\) = Number of respondents on scale 4
- \(X_5\) = Number of respondents on scale 5

3. Results and discussion
This section presents in details the findings of the study from comprehensive literature review and analysis of the questionnaire survey.

3.1. Exploration of the existing green engineering-based technology in promoting sustainable building
From the literature study, there are nine types of green engineering-based technology were identified and chose for this study includes solar energy, wastewater treatment, rainwater harvesting, window shading, housing landscape, natural ventilation, smart PDLC film glasses, roof thermal insulation and smart home control panel. All of them were found significantly contributed to the sustainability of a building in many ways as shown in Table 1.

Table 1. Contribution of green engineering-based technology towards sustainability.

Green engineering-based technology	Contribution towards sustainability
Solar panel	The most environmental-friendly to generate power [13]
	Enhance ecofriendly value of building [14]
	Produce more renewable energy [15]
	Reduce consumption of raw materials by replacing roof with building integrated photovoltaics (BIPV) [16]
	Promote production of solar energy which considered as finest renewable energy [17]
Wastewater treatment	Conserve water consumption [18]
	Reduce pollutants to be released into catchment areas [19]
	Curb scarcity of water supply [20]
	Reduce power consumption and substitute for fertilizers [21]
	Microfiltration to treat laundry wastewater require less expenses and polluted water not generated [22]
Rainwater harvesting	Decrease consumption of water [23]
	Prevent water wastage [24]
	Decrease non-renewable energy usage [25]
Green engineering-based technology | Contribution towards sustainability
---|---
Lessen utilization of clean water [26] |
Conservation of water [27] |
Window shading | Reduce energy consumption of cooling load [28]
Enables conservation of energy from consumption of artificial lighting [29]
Decrease thermal loading decrease, therefore consequently requires less cooling load [30]
Minimise cooling loads consumption [31]
Provide optimum natural lighting, thus save energy usage on electricity [32] |
Housing landscape | Contribute to less gain of heat energy that requires high power consumption [33]
Reduce consumption of cooling energy [34]
Provide cooling effect to surrounding area consequently provide natural cooling [35]
Provide catchment areas for runoff and contribute to indoor comfort temperature with minimal power required [36]
Minimize heat gain, therefore requiring less air conditioning usage [37] |
Natural ventilation | Decrease usage of energy in building [38]
Provide comfort temperature, consequently reduce utilization of air conditioning and fans [39]
Improve air flow without using so much electricity for cooling [40]
Better efficiency of air flow and reduce power usage [41]
Reduce cooling loads [42] |
Smart PDLC | Decrease heat gain, then reduce usage of air conditioning [43]
Lower the usage of lighting [44]
Regulate thermal gain of building consequently lessen cooling loads [45]
Promote energy efficiency [46]
Enhance the performance of cooling loads with minimal power [47] |
Roof thermal insulation | Decrease thermal radiation [48]
Enhance thermal reflectance and requires less energy to cool the building [49]
Enhance efficiency of building energy [50]
Declining temperature in building for optimum usage of mechanical cooling [51]
Minimise heat gain and deduction of energy required in building [52] |
Smart home control panel | Saves energy consumption at home [53]
Reduce unnecessary wastage of electrical consumption [54]
Reduce the usage of artificial lighting [55]
Decrease the usage of energy [56]
Managing energy consumption with integrated automation system monitors power consumption of building [57] |

Solar energy is recognized for its practicality as green energy. It is stated as the most environmentally-friendly in generating electricity [58]. Solar energy can be produced by integrating solar panels at home which able to harvest sunrays. With continuous evolving for the betterment of solar panels, the generation of electricity will be more significant with solar energy causing less dependent on fossil fuels. Hence, a significant reduction of carbon and greenhouse gas emissions can be achieved.

For wastewater treatment, reusing and treating wastewater enable to conserve the usage of freshwater [20]. Wastewater can also be reused for watering crops, even can be converted to fertilizers[18,21]. On the other hand, treating wastewater could reduce pollutants to be released into catchment areas and this prevents water contamination [19].

Besides that, consumption of water can be reduced by implementing rainwater harvesting [23][27]. The usage of daily water demand supplied from harvesting rainwater causing less burden on freshwater supply. With the demanding usage of water due to the increasing of the human population, practicing rainwater harvesting might conserve water for important usage.

Contributing to indoor comfort, window shading is significant to control sunrays entering the building. This is proven when upgrading window with double glazing and solar film reduces energy consumption of cooling loads [28]. Besides, optimization of blinds and louvers provides optimum...
natural lighting during daytime [32]. Thus, window shading is required to reduce the usage of cooling loads and artificial lighting in the building [29].

For the housing landscape, thermal gain inside the building can be controlled with a better shading mechanism [37]. Suitable tress can provide shading for housing from direct rays of sunlight. Another point, evapotranspiration from plants provides a cooling effect to the surrounding area of the building [35]. Hence, housing landscape is beneficial to ensure better efficiency of mechanical cooling performance in the building, thus contributes to lesser energy consumption.

Furthermore, natural ventilation is identified as a way to naturally cool the house with minimal usage of mechanical ventilation [38]. Night-time ventilation is identified as the best time to allow cool air from outside to cool the building [39]. Thus, incorporating natural ventilation and mechanical ventilation separately or together will reduce the power consumption of cooling loads required [42]. This lead building to be more energy efficient in operation.

Next, smart PDLC film glasses are advancements of green technology which able to regulate the thermal gain inside a building with minimal power required to operate. It is shown that utilizing PDLC contribute to lesser heat gain in a building [43,46]. The adoption of smart PDLC film glasses is beneficial to achieve thermal comfort in buildings with reducing consumption of cooling loads.

For roof thermal insulation, heat gain in a building can be reduced [49][51]. It was found that the adoption of aluminium insulation is better in efficiency to reduce the absorption of heat compared to low emissivity paint [48]. By reducing the thermal gain, excessive cooling energy needed can be reduced to achieve indoor thermal comfort.

Another technology, a smart home control panel is an integrated technology to control the usage of electrical appliances at home. More importantly, energy monitoring is possible with this technology. This enables the building occupants to optimize the energy consumption and manage the operating electrical appliances [54]. Thus, the integration of building automation system into homes or buildings is believed could significantly minimize the usage of electricity [54][56].

3.2. Users’ preference of the green engineering-based technology

Data of the preferred green engineering-based technology of the users to be incorporated into their homes is shown in Figure 1. Based on the mean value shown, the highest mean reflects the most preferred green engineering-based technology while the lowest mean reflects the least preferred green engineering-based technology in terms of upgrading existing houses to be more sustainable. According to the analysis shown, the highest mean value is 4.40 which is housing landscape, ranked as first. The second rank with a mean of 4.33 is a daylighting system. Both of these are more preferred among other technologies perhaps because they are easy to execute. Besides, they are also a low-cost solution. On the contrary, even the solar panel known as one of the expensive technology to adopt, it was ranked third with mean value 4.27. Probably this might due to the potential of electrical savings that could be earned by the users.

![Preferred green engineering-based technology to increase sustainability of existing house](image-url)

Figure 1. Mean for the preferred green engineering-based technology.
The least mean ranked is smart PDLC film glasses with a value of 3.68. This shows the retrofitting with this technology is the lowest preferred among respondents. The high cost and unfamiliar technology of smart PDLC film glasses might be reasons for respondents to not install it at their houses. Besides, most respondents are living in terrace houses and they perceived this technology is not necessary to be installed as their houses are not categorized as luxury type.

Table 2 shows the willingness to spend on green engineering-based technology among respondents. The price ranges for each item are shown in the table. For the solar panel, the highest chosen price range is ‘RM5000-RM20,000’ with 65.10%. This is the most chosen among respondents due to the affordable range to spend on solar panels. Only 0.8% willing to spend at the highest price range. For other items such as rainwater harvesting kit, tint film, housing landscape, exhaust fan, roof insulation and smart home system, high percentage of respondent are also willing to spend but with minimal range of spending. Differently for smart PDLC film glasses, it was found the percentage of respondents that unwilling to spend and willing to spend with minimal range is quite closed which are 43% and 40.1% respectively. This might because the cost of the technology is high and expensive. Most respondents probably are not familiar with the advanced technology of smart glasses. Consider among the cheapest solution, for wastewater treatment and daylighting system, the majority of respondents willing to spend as required. Perhaps both fall under affordable expenses.

Cost to spend on Green Engineering-Based Technology	Frequency Percentage (%)
Solar panel	
Not willing to spend	29.40
RM5000-RM20,000	65.10
RM20,000-RM40,000	4.70
>RM40,000	0.80
Wastewater treatment	
Not willing to spend	17.70
Spend as required	82.30
Rainwater harvesting kit	
Not willing to spend	24.00
RM1000-RM5000	70.80
RM5000-RM10,000	4.70
>RM10,000	0.50
Install tint film on windows	
Not willing to spend	15.60
RM100-RM300	47.90
RM300-RM500	24.20
>RM500	12.20
Daylighting system	
Not willing to spend	16.10
Spend as required	83.90
Housing landscape	
Not willing to spend	11.50
RM100-RM300	44.80
RM300-RM500	27.30
>RM500	16.40
Exhaust fan	
Not willing to spend	11.50
RM100-RM200	55.20
RM200-RM300	22.40
4. Conclusion
This study emphasizes on retrofitting existing residential buildings with practical green engineering-based technology for building sustainability. The green engineering-based technology that has been recognized are solar energy, wastewater treatment, rainwater harvesting, window shading, housing landscape, natural ventilation, smart PDLC film glasses, roof thermal insulation, and smart home control panel as comprehensively discussed. From a total of 384 feedbacks, it was found that the most three preferred green engineering-based technology are housing landscape, daylighting system, and solar panel with mean values 4.40, 4.33, and 4.27 respectively. From the willingness-to-spend survey, respondents are likely to spend as required for the daylighting system. Meanwhile for both housing landscape and solar panels, most of them only willing to spend in a minimum range. Thus, it can be concluded that the low cost and familiarity among users were the main criteria that contributed to green engineering-based technology preferred in this study. The findings of the study may be useful for construction practitioners to embed the green engineering-based technology to retrofit the existing residential buildings to enhance energy efficiency and sustainability.

5. References
[1] McDonough W, Braungart M, Anastas P T and Zimmerman J B 2003 Applying the Principles of Green Engineering to Cradle-to-Cradle Design, *Environmental Science and Technology* 37 434A-441A
[2] Chi B, Lu W, Ye M, Bao Z and Zhang X 2020 Construction waste minimization in green building: A comparative analysis of LEED-NC 2009 certified projects in the US and China, *J. Clean. Prod.* 256 120749
[3] Shen L, Zhang Z and Long Z 2017 Significant barriers to green procurement in real estate development, *Resour. Conserv. Recycl.* 116 160-168
[4] ISO 14006:2020 2011 *Environmental management systems - Guidelines for incorporating ecodesign* (London: International Organization for Standardization)
[5] Triebswetter U and Wackerbauer K 2008 Integrated environmental product innovation in the region of Munich and its impact on company competitiveness, *J. Clean. Prod.* 16 1484-1493
[6] Quist J and Tukker A 2013 Knowledge collaboration and learning for sustainable innovation and consumption: Introduction to the ERSCP portion of this special volume, *Journal of Cleaner Production* 48 167-175
[7] Liu Y, Chen H and Wang X J 2021 Research on green renovations of existing public buildings based on a cloud model –TOPSIS method, *J. Build. Eng.* 34 101930
[8] Bohari A A M, Skitmore M, Xia B, Teo M and Khalil N 2020 Key stakeholder values in encouraging green orientation of construction procurement, J. Clean. Prod. 270 122246
[9] Nasier S 2020 Sustainable green materials for new construction in Materials Today: Proceedings 37
[10] Brambila-Macias S A and Sakao T 2021 Effective ecodesign implementation with the support of a lifecycle engineer, J. Clean. Prod. 279 123520
[11] Dekoninck E A, Domingo L, O’Hare J A, Pigosso D C A, Reyes T and Troussier N 2016 Defining the challenges for ecodesign implementation in companies: Development and consolidation of a framework, J. Clean. Prod. 135 410–425
[12] Krejcic R V and Morgan D W 1970 Determining Sample Size for Research Activities, Educational and Psychological Measurement 30 607–610
[13] Dixit S 2020 Solar technologies and their implementations: A review, Mater. Today Proc. 28 2137–2148
[14] Magadlely E, Kabha R and Yehia I 2021 Outdoor comparison of two organic photovoltaic panels: the effect of solar incidence angles and incident irradiance, Renew. Energy 173 721–732
[15] Sun W, Yuan P, Wang S, Du Y, Zou J, Cao Fengxian, Lan Z and Wu J 2021 Kalium persulfate as a low-cost and effective dopant for spiro-OMeTAD in high performance and stable planar perovskite solar cells, Electrochim. Acta 380 138233
[16] Strong S, Building Integrated Photovoltaics (BIPV) Retrieved on Dec 10, 2020 from https://www.wbdg.org/resources/building-integrated-photovoltaics-bipv
[17] Hafez A Z, Soliman A, El-Metwally K A and Ismail I M 2017 Tilt and azimuth angles in solar energy applications – A review, Renew. Sustain. Energy Rev. 77 147–168
[18] Radingoana M P, Dube D and Mazvimavi D 2020 Progress in greywater reuse for home gardening: Opportunities, perceptions and challenges, Phys. Chem. Earth 116 102853
[19] Salgot M and Folch M 2018 Wastewater treatment and water reuse, Curr. Opin. Environ. Sci. Heal. 2 64–74
[20] Bilad M R, Mat Nawi N I, Subramaniam D D, Shamsuddin N, Khan A L, Jaafar J and Nandiyanto A B D 2020 Low-pressure submerged membrane filtration for potential reuse of detergent and water from laundry wastewater, J. Water Process Eng. 36 101264
[21] Akpan V E, Omole D O and Bassey D E 2020 Assessing the public perceptions of treated wastewater reuse: opportunities and implications for urban communities in developing countries, Heliyon 6 e05246
[22] Manouchehr M and Kargari A 2017 Water recovery from laundry wastewater by the cross flow microfiltration process: A strategy for water recycling in residential buildings, J. Clean. Prod., 168 227–238
[23] Pala G K, Pathivada A P, Velugoti S J H, Yerramsetti C and Veeranki S 2021 Rainwater harvesting - A review on conservation, creation & cost-effectiveness, Mater. Today Proc. 45 6567-6571
[24] Hanley S 2017 Inverted Umbrella Brings Clean Water & Clean Power To India Retrieved on Feb 14, 2021 from https://cleantechnica.com/2017/12/04/inverted-umbrella-brings-clean-water-clean-power-india/
[25] Pham D 2017 New rooftop solar hydropanels harvest drinking water and energy at the same time Retrieved on Jan 7, 2020 from https://inhabitat.com/new-rooftop-solar-hydropanels-harvest-drinking-water-and-energy-at-the-same-time/
[26] López Zavala M A, Prieto M J C and Rojas C A R 2018 Rainwater harvesting as an alternative for water supply in regions with high water stress, Water Sci. Technol. Water Supply 18 1946–1955
[27] Kashiwar S R and Dongarwar U R 2016 An Overview on the Ground Water Recharge by Rain Water Harvesting, Journal of Energy Research and Environmental Technology 3 146–148
[28] Somasundaram S, Thangavelu S R and Chong A 2020 Improving building efficiency using low-e coating based retrofit double glazing with solar films, Appl. Therm. Eng. 171 115064
[29] Hee W J, Alghoul M A, Bakhtyar B, Elaye B, Shameri M A, Alrubaih M S and Sopian K 2015 The role of window glazing on daylighting and energy saving in buildings, Renew. Sustain. Energy Rev. 42 323–343
[30] Li C, Tan J, Chow T T and Qiu Z 2015 Experimental and theoretical study on the effect of window films on building energy consumption, Energy Build. 102 129–138
[31] Edesiy M and Cecere C 2017 Envelope Retrofit in Hot Arid Climates, Procedia Environ. Sci. 38 264–273
[32] Reffat R M and Ahmad R M 2020 Determination of optimal energy-efficient integrated daylighting systems into building windows, Sol. Energy 209 258–277
[33] Misni A 2016 Strategically Designed of Landscaping around Houses Produce an Extensive Cooling Effect, Procedia - Soc. Behav. Sci. 222 693–701
[34] Zheng X, Dai T and Tang M 2020 An experimental study of vertical greeneries systems for window shading for energy saving in summer, J. Clean. Prod. 259 120708
[35] Georgi J N and Dimitriou D 2009 The contribution of urban green spaces to the improvement of environment in cities: Case study of Chania, Greece, Build. Environ. 45 1401–1414
[36] Larson K L, Andrade R, Nelson K C, Wheeler M M, Engebreton J M, Hall S J, Avolio M L, Groffman P M, Grove M, Heffernan J B, Hobbie S E, Lerman S B, Locke D H, Neill C, Roy R and Trammell T L E 2020 Municipal regulation of residential landscapes across US cities: Patterns and implications for landscape sustainability, J. Environ. Manage. 275 111132
[37] Misni A 2013 Modifying the Outdoor Temperature around Single-Family Residences: The Influence of Landscaping, Procedia - Soc. Behav. Sci. 105 664–673
[38] Bekkouche S M A, Benouaz T, Belarbi R, Cherier M K, Ferrão P, Corre O L e and I U De 2017 The Study Natural Ventilation by Using Buildings Windows: Case Assessing feasibility of using the heat demand-outdoor Study the in a Hot Dry Climate, Chardaïa, Algeria, Energy Procedia 139 475–480
[39] Kyritsi E and Michael A 2019 An assessment of the impact of natural ventilation strategies and window opening patterns in office buildings in the mediterranean basin, Build. Environ. 175 106384
[40] Zhang H, Yang D, Tam V Y W, Tao Y, Zhang G and Setunge S 2021 A critical review of combined natural ventilation techniques in sustainable buildings, Renew. Sustain. Energy Rev. 141 110795
[41] Meng X, Wang Y, Xing X and Xu Y 2020 Experimental study on the performance of hybrid buoyancy-driven natural ventilation with a mechanical exhaust system in an industrial building, Energy Build. 208 109674
[42] Ezzeldin S and Rees S J 2013 The potential for office buildings with mixed-mode ventilation and low energy cooling systems in arid climates, Energy Build. 65 368–381
[43] Shaik S, Gorantla K, Venkata Ramana M, Mishra S and Kulkarni K S 2020 Thermal and cost assessment of various polymer-dispersed liquid crystal film smart windows for energy efficient buildings, Constr. Build. Mater. 263 120155
[44] Baetens R, Jelle B P and Gustavsen A 2020 Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review, Sol. Energy Mater. Sol. Cells 94 87–105
[45] Ghosh A and Mallick T K 2018 Evaluation of optical properties and protection factors of a PDLC switchable glazing for low energy building integration, Sol. Energy Mater. Sol. Cells 176 391–396
[46] Hemaida A, Ghosh A, Sundaram S and Mallick T K 2020 Evaluation of thermal performance for a smart switchable adaptive polymer dispersed liquid crystal (PDLC) glazing, Sol. Energy 195 185–193
[47] Ghosh A and Norton B 2018 Advances in switchable and highly insulating autonomous (self-powered) glazing systems for adaptive low energy buildings, Renew. Energy 126 1003–1031
[48] Fantucci S and Serra V 2019 Investigating the performance of reflective insulation and low emissivity paints for the energy retrofit of roof attics, Energy Build. 182 300–310
[49] Pisello A L, Castaldo V L, Pignattag, Cotana F and Santamouris M 2016 Experimental in-lab and in-field analysis of waterproof membranes for cool roof application and urban heat island mitigation, Energy Build. 114 180–190
[50] Filho J P B and Santos T V O 2014 Thermal analysis of roofs with thermal insulation layer and reflective coatings in subtropical and equatorial climate regions in Brazil, Energy Build. 84 466–474
[51] Yew M C, Ramli Sulong N H, Chong W T, Poh S C, Ang B C and Tan K H 2013 Integration of thermal insulation coating and moving-air-cavity in a cool roof system for attic temperature reduction, Energy Convers. Manag. 75 241–248
[52] Lee S W, Lim C H and Salleh E @ I 2016 Reflective thermal insulation systems in building: A review on radiant barrier and reflective insulation, Renew. Sustain. Energy Rev. 65 643–661
[53] Grady T O, Chong H and Morrison G M 2021 A systematic review and meta-analysis of building automation systems, Build. Environ. 195 107770
[54] Gomes L, Ramos C, Jozi C, Serra B, Paiva L and Vale Z 2019 IoH: A Platform for the Intelligence of Home with a Context Awareness and Ambient Intelligence Approach, Future Internet 3 11030058
[55] Babu S, Zhou J, Wan M P, Lamano A S, Sarvaiya J N, Zhang Z, Kumar D E V S K, Gao C ping, Valliappan S, Goh A and Seoh A 2019 Investigation of an integrated automated blinds and dimmable lighting system for tropical climate in a rotatable testbed facility, Energy Build. 183 356–376
[56] Aghemo C, Blaso L and Pellegrino A 2014 Building automation and control systems: A case study to evaluate the energy and environmental performances of a lighting control system in offices, Autom. Constr. 43 10–22
[57] Mataloto B, Ferreira J C and Cruz N 2019 LoBEMS - IoT for Building and Energy Management Systems, Energy Management Based on Internet of Things 8 763
[58] Dixit M K, Fernández-Solis J L, Lavy S and Culp C H 2012 Need for an embodied energy measurement protocol for buildings: A review paper, Renewable and Sustainable Energy Reviews 16 3730-3743

Acknowledgments
The authors would like to thank the Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia for its support.