Towards Bridging the Performance Gaps of Joint Energy-based Models
Supplementary Material

Xiulong Yang, Qing Su, and Shihao Ji
Georgia State University
{xyang22,qsu3,sji}@gsu.edu

A. Experimental Details

To have a fair comparison, we largely follow the settings of JEM [2] and JEM++ [5], and train our models based on the Wide-ResNet 28x10 architecture [6] for 200 epochs. We use SGD for CIFAR10 and CIFAR100 with an initial learning rate of 0.1 and 0.01, respectively, and decay the learning rate by 0.2 at epoch [60, 120, 180] for most cases. Apart from this, we find that the cosine learning rate scheduler can be adopted for SADA-JEM, which achieves much better accuracy and FID on CIFAR10. The hyper-parameters used in our experiments are listed in Table 1.

Table 1. Hyper-parameters of SADA-JEM for CIFAR10 and CIFAR100.

Variable	Value		
Number of SGLD steps K	5, 10, 20		
Buffer size $	B	$	10,000
Reinitialization freq. γ	5%		
SGLD step-size α	1		
SGLD noise σ	0		
SAM noise radius ρ	0.2		

B. Visualizing Generated Images

Table 1 in the main text reports the quantitative performance comparison of different stand-alone generative models and hybrid models. Here in Figure 1 we provide a qualitative comparison of generated images from (a) SADAJEM, (b) VERA [3], and (c) DiffuRecov [1]. As we can see, the perceived image qualities of them are comparable even though DiffuRecov has a much better FID score than that of VERA (9.58 vs. 30.5), indicating that visualizing generated images is less effective to evaluate image quality.

C. Energy Landscapes

Figure 2 illustrates the energy landscapes of different models trained on CIFAR10. The energy landscape is generated by visualizing $E(\theta) = \sum_{x \in X} E_\theta(x)$ with the technique introduced in [4], where X is a 10% random samples from CIFAR10 training data. As we can see, SADAJEM’s energy landscapes are much smoother than those of the competing methods (see different scales of the y-axes).

D. Out-of-Distribution Detection

Table 2 reports the OOD detection performances of different models and SADA-JEM with different Ks, where the input density $\log p_\theta(x)$ is used as $s_\theta(x)$ for OOD detection on CIFAR10.

E. Additional Generated Samples

Additional SADA-JEM generated class-conditional (best and worst) samples of CIFAR10 are provided in Figures 3-12.

References

[1] Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, and Diederik P. Kingma. Learning Energy-Based Models by Diffusion Recovery Likelihood. In ICLR, 2021.
[2] Will Grathwohl, Kuan-Chieh Wang, Joern-Henrik Jacobsen, David Duvenaud, Mohammad Norouzi, and Kevin Swersky. Your classifier is secretly an energy based model and you should treat it like one. In International Conference on Learning Representations (ICLR), 2020.
[3] Will Sussman Grathwohl, Jacob Jin Kelly, Milad Hashemi, Mohammad Norouzi, Kevin Swersky, and David Duvenaud. No mcmc for me: Amortized sampling for fast and stable training of energy-based models. In ICLR, 2021.
[4] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the Loss Landscape of Neural Nets. In Neural Information Processing Systems (NeurIPS), 2018.
[5] Xiulong Yang and Shihao Ji. JEM++: Improved Techniques for Training JEM. In International Conference on Computer Vision (ICCV), 2021.
[6] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In BMVC, 2016.

1This is because the combination of SAM and single branched DA improves the training stability significantly. As a result, the cosine learning rate decay can be adopted to improve the overall performance. JEM, JEM++ and other SADA-JEM ablation configurations are less stable to enable the cosine learning rate decay.
Figure 1. Generated images from SADA-JEM, VERA, and DiffuRecov.

Figure 2. Energy landscapes of different models trained on CIFAR10. Please note the different scales of the y-axes.
Table 2. Histograms of $\log p_\theta(x)$ for OOD detection. Green corresponds to in-distribution dataset, while red corresponds to OOD dataset.
Figure 3. SADA-JEM generated class-conditional samples of **Plane**.

Figure 4. SADA-JEM generated class-conditional samples of **Car**.

Figure 5. SADA-JEM generated class-conditional samples of **Bird**.

Figure 6. SADA-JEM generated class-conditional samples of **Cat**.
Figure 7. SADA-JEM generated class-conditional samples of Deer.

Figure 8. SADA-JEM generated class-conditional samples of Dog.

Figure 9. SADA-JEM generated class-conditional samples of Frog.

Figure 10. SADA-JEM generated class-conditional samples of Horse.
Figure 11. SADA-JEM generated class-conditional samples of Ship.

Figure 12. SADA-JEM generated class-conditional samples of Truck.