First direct observation of isomeric decay in neutron-rich odd-odd 186Ta

Y.X. Watanabe,1 P.M. Walker,2 Y. Hirayama,1 M. Mukai,3,4 H. Watanabe,5,4,1 G.J. Lane,6 M. Ahmed,3,1‡ M. Brunet,2 T. Hashimoto,7 S. Ishizawa,8,1,4 S. Kimura,4 F.G. Kondev,9 Yu. A. Litvinov,10 H. Miyatake,1 J.Y. Moon,7 T. Niwase,11,1,4 M. Oyaizu,1 J.H. Park,7 Zs. Podolyák,2 M. Rosenbusch,1 P. Schury,1 and M. Wada1

1 Wako Nuclear Science Center, Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Wako, Saitama 351-0198, Japan
2 Department of Physics, University of Surrey, Guildford, GU2 7XH, United Kingdom
3 University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan
4 RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 350-0198, Japan
5 School of Physics, and International Research Center for Nuclei and Particles in the Cosmos, Beihang University, Beijing 100191, China
6 Department of Nuclear Physics, Research School of Physics, Australian National University, Canberra, ACT 2601, Australia
7 Rare Isotope Science Project, Institute for Basic Science (IBS), Daejeon 305-811, Republic of Korea
8 Graduate School of Science and Engineering, Yamagata University, Yamagata 990-8510, Japan
9 Physics Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
10 GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
11 Department of Physics, Kyushu University, Nishiku, Fukuoka 819-0395, Japan

De-excitation γ rays associated with an isomeric state of 186Ta were investigated. The isomers were produced in multinucleon transfer reactions between a 136Xe beam and a natural W target, and were collected and separated by the KEK Isotope Separation System. Two γ transitions with energies of 161.1(2) and 186.8(1) keV associated with an isomeric decay were observed for the first time. The half-life of the isomeric state of the neutral atom 186mTa was deduced as 17(2) s. Based on the comparison with the previous measurements of the isomeric state using the ESR storage ring at GSI Darmstadt and the coupling of angular momenta of individual particle orbitals in odd-odd nuclei, a decay scheme of 186mTa was proposed.

PACS numbers: 21.10.Tg, 23.35.+g

I. INTRODUCTION

Heavy neutron-rich nuclei with mass number (A) between 180 and 200 reveal a variety of properties concerning their complex nuclear structures. Shape transitions from axially symmetric prolate shapes to oblate shapes through triaxial γ softness are known to take place along isotopic chains from the neutron midshell as one approaches the closed shell at $N = 126$ due to intertwining single-particle orbitals in a deformed nuclear potential [11,14]. High-K isomeric states characteristic of this nuclear region arise from the occupation of specific single-particle orbitals with the large angular momentum projection on the symmetry axis of the axial shape [5,6]. Experimental studies of K isomers and nuclear deformations in this nuclear region are essential to enlighten the interplay between single-particle and collective degrees of freedom which formulate midshell nuclear structures. In particular, odd-odd deformed nuclei, which have complex nuclear structures related to proton-neutron interactions, sometimes exhibit long half-lives of isomeric transitions [7]. For example, the isomeric state of 180Ta at an excitation energy of 77 keV has a half-life of $>4.5 \times 10^{16}$ yr which is much longer than the ground-state half-life, 8.15 h [8]. In spite of such interesting features of odd-odd nuclei in this mass region, experimental data of neutron-rich odd-odd nuclei are scarce in addition to their theoretical difficulties. Because most elements in the region are refractory, those neutron-rich isotopes are difficult to provide as a low-energy beam for their nuclear spectroscopy after their production. Recently, the KEK Isotope Separation System (KISS) [9] provides opportunities to perform spectroscopic studies of those neutron-rich refractory isotopes using multinucleon transfer (MNT) reactions [10] and in-gas laser ionization [11].

The β-decay properties of the ground state in the neutron-rich odd-odd nucleus 186Ta were intensively investigated [12,14] after its discovery in 1955 [13]. However, the information on its excited states was unknown for a long time. Xu et al. reported the identification of an isomeric state of 186Ta in 2004, which disintegrates to 186W via a β decay with a half-life of 1.54(5) min [16]. Recently, the excitation energy of an isomeric state of 186Ta was measured by the Experimental Storage Ring (ESR) at GSI Darmstadt [17]. They found the isomeric state at an energy of 336(20) keV, and observed five γ-decay and three β-decay or internal-conversion (IC) events with a half-life of $3.0^{+1.5}_{-0.8}$ min.
for the hydrogen-like 186mTa$^{72+}$ ion. Recent theoretical studies concerning the configuration of isomers in 186Ta using a two-quasiparticle rotor model (TQRM) indicates the assignment of $K^\pi = 5^-\{\pi 7/2^+ [404] \otimes \nu 3/2^- [512]\}$, $2^-\{\pi 7/2^+[404] \otimes \nu 3/2^- [512]\}$, and $8^-\{\pi 7/2^+[404] \otimes \nu 9/2^- [505]\}$ for the ground state and two isomeric states with the half-lives of 1.54 min and 3.0 min, respectively [18]. In spite of these efforts to understand the isomeric states both in experimental and theoretical studies, they have not been identified yet in terms of their energies, spins and parities by direct measurements of isomeric decays. Presently we report a new γ-ray measurement in coincidence with β rays and conversion electrons for 186Ta produced by MNT reactions, which has identified a single isomeric state and its decay scheme.

II. EXPERIMENT

The experiment was performed using the KISS at the RIKEN RIBF facility, Japan. It focused on the isomeric decay of 186,187Ta, and the properties of 187Ta revealed through its isomeric decay were reported in Ref. [19]. 136Xe beams accelerated up to 7.2 MeV/nucleon by the RIKEN Ring Cyclotron (RRC) accelerator were incident on a natural tungsten target of thickness 5 \(\mu\)m attached to a rotating wheel. The typical beam intensity was 50 pA on the target. Various nuclei produced by the MNT reactions between 136Xe and nat W were ejected from the target and passed through a polyimide film of thickness 5 \(\mu\)m into a doughnut-shaped gas cell [20], which was filled with high-purity argon gas of pressure 80 kPa. After thermalization and neutralization in the argon gas, the now neutral atoms were transported to the exit of the gas cell. They were irradiated with two-color lasers for element-selective ionization with the laser resonance ionization technique just before the exit of the gas cell. The ionization scheme of tantalum was investigated before the experiment [21]. The ions ejected from the gas cell were transported by a stack of three multi-pole RF ion guides, and were accelerated through a voltage of 20 kV. The ions with $A = 186$ were mass-separated by a dipole electromagnet with a resolving power of $A/\Delta A = 900$, and were implanted into an aluminized Mylar tape of thickness 12.5 \(\mu\)m.

The Multi-Segmented Proportional Gas Counter (MSPGC) [22, 23] was placed surrounding the tape to detect β rays, X rays and conversion electrons produced in the decay of the implanted radioactive nuclei. The MSPGC consists of two concentric layers with 16 proportional gas counter tubes in each layer. The geometry is 200 mm in height and 90 mm in outer diameter. Four High-Purity Germanium (HPGe) clover detectors were placed surrounding the MSPGC to detect γ rays. With the compact configuration of the experimental setup, where the distances between the surfaces of the HPGe clover detectors and the tape were about 5 cm, the total absolute detection efficiency for full-energy peaks was 15% for 150-keV γ rays. The beams from KISS were pulsed by an electrostatic deflector after the dipole electromagnet. Two kinds of time cycles were used; one was 1800-s beam-on and 1800-s beam-off periods (long cycle), and the other was 300-s beam-on and 300-s beam-off periods (short cycle). The tape was moved vertically by about 30 cm after each cycle to eliminate radioactivities from both the preceding implantation and the accumulated daughter nuclei. The data were accumulated in 3 long cycles and 71 short cycles with 186Ta beams of around 5 pps from the KISS.

III. ANALYSIS AND RESULTS

A hit pattern analysis of the 32 gas counter tubes in the MSPGC makes it possible to separate different kinds of events. The hit pattern “$M = 2$”, where one telescope (a pair of both inner and outer counter tubes on the same radius vector) fires, is sensitive to energetic β rays. Figure 1(a) indicates the γ-ray energy spectrum in coincidence with the MSPGC hit pattern “$M = 2$” summed for those twelve transitions in coincidence with the K_α X rays of W indicates that the transitions in the daughter nuclei of the 186Ta β decay contribute when this hit pattern condition is applied. Twelve peaks labeled by energy values correspond to the known β-delayed transitions of 186Ta [24]. Figure 2 shows a γ-ray time spectrum summed for those twelve transitions in coincidence with the MSPGC hit pattern “$M = 2$” for the long-cycle run. The half-life was deduced by fitting the time spectrum to a combined function of a decay curve and a constant background for the decay period from 1800 to 3600 s; the fit is shown as a solid line. The half-life obtained in the fitting, with a reduced $\chi^2 = 1.09$, is 10.8(5) min, which agrees with the literature value of the 186Ta ground-state half-life, 10.5(3) min [24]. We could find no evidence for a
FIG. 2. γ-ray time spectrum summed for twelve transitions labeled in Fig. 1 in coincidence with the MSPGC hit pattern “M = 2”. The line through the data is a log-likelihood fit to the decay (beam off) period from 1800 to 3600 s, yielding a half-life of 10.8(5) min.

FIG. 3. Background-subtracted γ-ray energy projections measured with gates on (a) 161- and (b) 187-keV γ rays, respectively, and without MSPGC coincidence.

The γ-ray energy spectrum in coincidence with the MSPGC hit pattern “M = 1”, where only one counter tube in the inner layer fires. This detection mode is sensitive to X rays and low-energy conversion electrons by suppressing the events owing to the energetic β rays. It is found that the peak heights corresponding to the β-delayed γ rays decrease. Furthermore, the emergence of a peak corresponding to the Kα X rays of Ta indicates that the conversion electrons fire the MSPGC with this hit pattern condition. Two previously unreported peaks at energies of 161.1(2) keV and 186.8(1) keV were found. The inset enlarges the spectrum at the energies around 160 keV.

FIG. 4. Background-subtracted γ-ray time spectrum summed for 161- and 187-keV transitions in coincidence with the MSPGC hit pattern “M = 1”. The line through the data is a log-likelihood fit to the growth (beam on) and decay (beam off) periods, each of 300 s duration, yielding a half-life of 17(2) s.

To investigate a possible β-decay mode from the isomeric state, a γ-ray energy spectrum with a time gate from 400 s to 600 s was subtracted from a spectrum with a time gate from 100 s to 300 s in the short cycle runs with the coincidence of the MSPG hit pattern “M = 1” and “M = 2” as shown in Fig. 5. Because there are no γ-ray peaks that follow a decay curve with the half-life of 17 s, except for the 161- and 187-keV lines, the isomeric decay predominantly proceeds either with γ transition or with IC.

The energy of the isomeric state, 347.9(2) keV, was obtained from the sum of the two transition energies. It agrees with the excitation energy measured by the ESR at GSI Darmstadt, 336(20) keV [17].
It should be noted that the \(\beta \) and three \(\gamma \) transitions of the efficiency-corrected peak count of Ta K \(\alpha \)-ray is shorter than the half-life measured in the ESR, \(\omega_{\beta} \) and \(\omega_{\gamma} \). The difference is considered to come from the components of IC, which are suppressed in the hydrogen-like ion. The ratio of the half-lives, \(0.09^{+0.03}_{-0.05} \), should be compared to \(1 + \alpha_K(1e)/1 + \alpha_{tot} \), where \(\alpha_{tot} = 0.044 \) and \(\alpha_K(1e) = 0.047 \) are the total conversion coefficient for the neutral atom and the \(K \)-conversion coefficient for the hydrogen-like ion, respectively. Table I summarizes those calculated conversion coefficients of the 161-keV transition of \(^{186m}\text{Ta} \) for various multipolarities. The value of \(1 + \alpha_K(1e)/1 + \alpha_{tot} = 0.20 \) for the multipolarity E3 is the closest to the ratio of the measured half-lives. Furthermore, the ratio of the efficiency-corrected peak count of Ta K \(\alpha \)-ray is observed when \(1 + \alpha_K(1e)/1 + \alpha_{tot} \) is within two standard deviations. The 187-keV transition can most probably be considered as a mixed M1/E2 transition. Assuming \(\omega_K \) and \(\omega_K = 0.952(4) \) and \(p(K)/p(K_\alpha) = 0.267(4) \) are the K-shell fluorescence yield and the emission probability ratio of Ta, respectively, also agrees with the measured value. Therefore, the transition de-exciting the 17-s isomer is interpreted as having a multipolarity of E3.

The measurements in the ESR reported five \(\gamma \)-decay and three \(\beta \)-decay or IC events from the isomeric state \(^{186m}\text{Ta} \). It should be noted that the \(\beta \)-decay and IC events cannot be distinguished in the ESR data. When the five \(\gamma \)-decay events are by the E3 transition with \(\alpha_K(1e) = 0.44, 2.2(10) \) events are expected by IC in average. Observation of three \(\beta \)-decay or IC events in the ESR support the dominance of \(\gamma \)-decay and IC modes from the isomeric state.

In Fig. 3, the 187-keV (161-keV) \(\gamma \) ray is observed when it is detected by the HPGe detectors in coincidence with a conversion electron from the 161-keV (187-keV) transition detected by the MSPGC. The detected counts of the 161- and 187-keV \(\gamma \) rays, \(N_{161} \), are written as,

\[
N_{161} = \varepsilon_{161} \times \frac{1}{1 + \epsilon_{161}} \times \varepsilon_{161} \times \varepsilon_{\gamma 161} \times \varepsilon_{\gamma 187} \times \varepsilon_{\gamma 187}.
\]

\[
N_{187} = \varepsilon_{187} \times \frac{1}{1 + \epsilon_{187}} \times \varepsilon_{187} \times \varepsilon_{\gamma 187} \times \varepsilon_{\gamma 187} \times \varepsilon_{\gamma 187}.
\]

where \(N_{ISO} \) is the number of isomeric decays, \(\epsilon_{161} \), \(\epsilon_{161} \), \(\epsilon_{\gamma 161} \), \(\epsilon_{\gamma 187} \), and \(\epsilon_{\gamma 187} \) are the conversion coefficients, the \(\gamma \)-ray full-energy peak efficiency and the conversion-electron detection efficiency for the 161(187)-keV transition. Therefore, the ratio of conversion coefficients for the 161- and 187-keV transitions is related to the ratio of their detected \(\gamma \)-ray counts through the equation,

\[
\frac{\epsilon_{161}}{\epsilon_{187}} = \frac{N_{187}}{N_{161}} = \frac{\varepsilon_{187}}{\varepsilon_{161}} \times \frac{\varepsilon_{161}}{\varepsilon_{187}}.
\]

where \(\varepsilon_{\gamma 187} = \varepsilon_{\gamma 187} \) is assumed. Table II summarizes the calculated conversion coefficients for the 187-keV transition for various electromagnetic multipolarities. The last column indicates the ratio of the conversion coefficients for an E3 161-keV transition compared to a 187-keV transition. The ratio of the efficiency-corrected \(\gamma \)-ray count for the 187-keV transition to the 161-keV transition is 12.8(28), which agrees with ratios for the pure M1 and E2 transitions in Table II within two standard deviations. The 187-keV transition can most probably be considered as a mixed M1/E2 transition. Assuming the theoretical conversion coefficient of the E3 161-keV transition in Table II \(\alpha_{E3} = 6.3 \), the conversion coefficient of the M1/E2-mixed 187-keV transition becomes \(\alpha_{M1/E2} = 0.49(11) \) from the measured \(\gamma \)-ray intensity ratio, 12.8(28).

Based on the above considerations, we propose a decay scheme of the isomeric state as shown in Fig. 4. The spin and parity of the ground state for the nearest neighbor odd-A isotope and isotope of \(^{186}\text{Ta} \), \(^{187}\text{Ta} \)
and 187W, is $(7/2^+)$ and $3/2^-$, respectively \cite{28,29}. They are considered to be due to the single-particle orbitals of the 73rd proton, $\pi 7/2^+[404]$, and the 113th neutron, $\nu 3/2^-[512]$, respectively. The coupling of the angular momenta of those individual particle states in 186Ta gives the lower energy state with the parallel-spin configuration $K^\pi = 5^−\{π7/2^+[404] \otimes ν3/2^-[512]\}$ \cite{18,30}, which is considered as the ground state of 186Ta. We assigned $6^−$ and 9^+ for the 187-keV excited state and the isomeric state, respectively, based on $5^−$ of the ground state and the multipolarities discussed above. The proposed decay scheme indicates that the $K^\pi = 9^+$ isomeric state decays to the first member of the rotational band of the $K^\pi = 5^−$ ground state. Sood and Gowrishankar suggested $K^\pi = 8^−$ for the isomeric state \cite{18}, however our measurements indicate $K^\pi = 9^+$. They also suggest that a $K^\pi = 9^+$ state is possible with an antiparallel-spin two-quasiparticle configuration $π7/2^+[404] \otimes ν11/2^+[615]$. The parallel-spin partner of the isomeric state, $K^\pi = 2^+\{π7/2^+[404] \otimes ν11/2^+[615]\}$, and the antiparallel-spin partner of the ground state, $K^\pi = 2^−\{π7/2^+[404] \otimes ν3/2^-[512]\}$, are located at excited energies between the isomeric state and the ground state \cite{18,30}. However the transition from the isomeric state to those states is strongly suppressed by the large K change $\Delta K = 7$.

Adopting the theoretical conversion coefficient 6.3 for the E3 161-keV transition in Table\[II\] its partial γ-decay half-life, $T^\gamma_{1/2}$, becomes 2.1(2) min, which gives a reduced transition strength of $B(E3) = 1.7(2) \times 10^{-3}$ W.u. The hindrance factor $F_W = T^W_{1/2}/T^\gamma_{1/2}$, where $T^W_{1/2}$ is the Weisskopf estimate of the half-life, is obtained as $5.9(7) \times 10^2$. This value is consistent with the experimental range for E3 transitions in Ref. \cite{31,32} with K forbiddenness $\nu = \Delta K − λ = 1$, where $\Delta K = 4$ and the transition multipolarity is $λ = 3$. The direct M4 348-keV transition from the isomeric state to the ground state with $\Delta K = 4$ and $λ = 4$ could have a lower hindrance factor $F_W \sim 10^{-1}$ \cite{31}. However, the corresponding partial half-life, 20 min, obtained by considering the theoretical conversion coefficient, 5.3 \cite{28}, is much longer than the measured half-life, 17(2) s, indicating that such a direct M4 transition is significantly suppressed.

V. SUMMARY

We have measured γ rays associated with the isomeric decay of a 348-keV state in 186Ta, and found two transitions with energies of 161.1(2) and 186.8(1) keV for the first time. The fit to the time spectrum for those two transitions indicates an isomeric state with a half-life of 17(2) s. The comparison with the previous measurement obtained with the ESR at GSI Darmstadt, suggests that the 161-keV isomeric transition has an electromagnetic multipolarity of E3, which is followed by the 187-keV transition (M1/E2). A decay scheme of 186mTa was proposed by considering the coupling of the angular momenta of individual particle orbitals in odd-odd nuclei, assigning spin-parities of 9^+, $6^−$ and $5^−$ to the isomeric, excited and ground states, respectively. It indicates that the $K^\pi = 9^+$ isomer decays to the first member in the rotational band of the $K^\pi = 5^−$ ground state. The hindrance factor for the isomeric transition is consistent with systematics \cite{31,32} supporting the proposed decay scheme. We could not find any evidence for $β$ decay from the observed isomer, or from any other state with a half-life around 1.5 min \cite{16}, in our measurements.

ACKNOWLEDGMENTS

This experiment was performed at RI Beam Factory operated by RIKEN Nishina Center and CNS, University of Tokyo. The authors gratefully acknowledge the accelerator staff for their support. This work was funded in part by Grants No. JP23244060, No. JP24740180, No. JP26247044, No. JP15H02096, No. JP17H01132, No. JP17H06090, and No. JP18H03711 from JSPS KAKENHI; No. ST/P005314/1 from United Kingdom STFC; No. 11921006 and No. 11835001 from NSFC; No. 682841 “ASTRUm” from ERC (Horizon 2020); and No. DE-AC02-06CH11357 from U.S. Department of Energy (Office of Nuclear Physics).

[1] K. Nomura et al., Spectroscopic calculations of the low-lying structure in exotic Os and W isotopes, Phys. Rev. C 83, 054303 (2011).
[2] L. Robledo et al., Role of triaxiality in the ground-state shape of neutron-rich Yb, Hf, W, Os and Pt isotopes, J. Phys. G 36, 115104 (2009).
[3] P. Sarriguren et al., Shape transitions in neutron-rich Yb, Hf, W, Os, and Pt isotopes within a Skyrme Hartree-Fock + BCS approach, Phys. Rev. C 77, 064322 (2008).
[4] P. Stevenson et al., Shape evolution in the neutron-rich tungsten region, Phys. Rev. C 72, 047303 (2005).
[5] G. D. Dracoulis, P. M. Walker, and F. G. Kondev, Review of metastable states in heavy nuclei, Rep. Prog. Phys. 79, 076301 (2016).
[6] P. M. Walker and G. D. Dracoulis, Exotic isotopes in deformed atomic nuclei, Hyperfine Interactions 135, 83 (2001).
[7] A. K. Jain et al., Nuclear structure in odd-odd nuclei, 144 ≤ A ≤ 194, Rev. Mod. Phys. 70, 843 (1998).
[8] B. Lehnert et al., Search for the decay of nature’s rarest isotope 186m Ta, Phys. Rev. C 95, 044306 (2017).
[9] Y. Hirayama et al., Laser ion source for multi-nucleon transfer reaction products, Nucl. Instrum. Methods B 353, 4 (2015).
[10] Y. X. Watanabe et al., Pathway for the production of neutron-rich isotopes around the N = 126 shell closure, Phys. Rev. Lett. 115, 172503 (2015).
[11] Y. Kudryavtsev et al., Beams of short-lived nuclei produced by selective laser ionization in a gas cell, Nucl. Instrum. Methods B 114, 350 (1996).
[12] E. Monnand et al., Désintégration radioactive du 186 Ta, Nucl. Phys. A 134, 321 (1969).
[13] B. P. Pathak et al., Decay of Ta 186 to levels in W 186, Phys. Rev. C 1, 1477 (1970).
[14] S. C. Gujrathi and S. K. Mark, Levels of 186 W from the decay of 186 Ta, Canadian Journal of Physics 51, 241 (1973).
[15] A. J. Poë, Radioactive 186m Ta Tantulum, Philosophical Magazine 46, 1165 (1955).
[16] Y. Xu et al., Identification of 186m Ta, J. Phys. Soc. Jpn. 73, 2588 (2004).
[17] M. Reed et al., Long-lived isomers in neutron-rich Z = 72–76 nuclides, Phys. Rev. C 86, 054321 (2012).
[18] P. C. Sood and R. Govrishankar, Configuration assignments to isomers in the neutron-rich 186 Ta (Z = 73) nucleus, Phys. Rev. C 90, 067303 (2014).
[19] P. M. Walker et al., Properties of 187 Ta revealed through isomeric decay, Phys. Rev. Lett. 125, 192505 (2020).
[20] Y. Hirayama et al., Doughnut-shaped gas cell for KEK isotope separation system, Nucl. Instrum. Methods B 412, 11 (2017).
[21] Y. Hirayama et al., Efficient two-color two-step laser ionization schemes of λ ~ 250 nm and λ = 307.9 nm for heavy refractory elements — measurements of ionization cross-sections and hyperfine spectra of tantalum and tungsten, Review of Scientific Instruments 90, 115104 (2019).
[22] M. Mukai et al., High-efficiency and low-background multi-segmented proportional gas counter for β-decay spectroscopy, Nucl. Instrum. Methods A 884, 1 (2018).
[23] Y. Hirayama et al., Three-dimensional tracking multi-segmented proportional gas counter for β-decay spectroscopy of unstable nuclei, Nucl. Instrum. Methods A 997, 165152 (2021).
[24] C. M. Baglin, Nuclear data sheets for A = 186, Nucl. Data Sheet 99, 1 (2003).
[25] T. Kibédì et al., Evaluation of theoretical conversion coefficients using BrIcc, Nucl. Instrum. Methods A 589, 202 (2008).
[26] T. Kibédì, Private communication.
[27] E. Schönfeld and H. Janßen, Evaluation of atomic shell data, Nucl. Instrum. Methods A 369, 527 (1996).
[28] S. C. Wu, Nuclear data sheets for A = 185, Nucl. Data Sheet 106, 619 (2005).
[29] M. S. Basunia, Nuclear data sheets for A = 187, Nucl. Data Sheet 110, 999 (2009).
[30] C. J. Gallagher, Jr. and S. A. Moszkowski, Coupling of angular momenta in odd-odd nuclei, Phys. Rev. 111, 1282 (1958).
[31] K. E. G. Löbner, Systematics of absolute transition probabilities of K-forbidden gamma-ray transitions, Phys. Lett. B 26, 369 (1968).
[32] F. G. Kondev, G. D. Dracoulis, and T. Kibédì, Configurations and hindered decays of K isomers in deformed nuclei with A > 100, At. Data Nucl. Data Tables 103–104, 50 (2015).