Ionic Liquids and Polymeric Solvents.

Prof. Attilio Citterio
Dipartimento CMIC “Giulio Natta”
https://iscamapweb.chem.polimi.it/citterio/it/education/course-topics/
Ionic Liquids (LI) – Room-Temperature Ionic Liquids (RTIL).

Charged substance mixtures that form a liquid at ambient temperatures.

- Unusual solvent properties (for a wide range of organic, inorganic and polymeric compounds)
- Typically consist of bulky, poorly coordinating ions
- Negligible vapor pressure – attractive alternative to VOCs
- Most Ionic Liquids are thermally stable at temp. > 200 °C
- Wide liquid phase range (300°C)
- Very solvating, but weakly coordinating
- Immiscible with many organic solvents
 - Moderate to high viscosity
 - Frequently expensive, easy of separation uncertain
 - Some react with water and nucleophiles
 - Not necessarily innocuous.
Ionic Liquids – Structure.

Cations

imidazolium pyridinium ammonium fosfonium

\[\text{imidazolium} \quad \text{pyridinium} \quad \text{ammonium} \quad \text{fosfonium} \]

Ph-N^+(CH_3)_3 R-P^+(R')_3

Anions

\[\text{tetrafluoroborate} \quad \text{hexafluorophosphate} \quad \text{heptachloroalluminate} \quad \text{nonaflate} \]

\[\text{BF}_4^- \quad \text{PF}_6^- \quad \text{Al}_2\text{Cl}_7^- \quad (\text{CF}_3\text{SO}_2)_2\text{N}^- \]

Principle is to use large, not-symmetrical ions

– Lower lattice energy
General Properties of Ionic Liquids.

• Choice of cation and anion determine physical properties (i.e. melting point, density, water solubility, ...);

• Cations are typically big, bulky and asymmetric accounting for the low melting points;

• The anion contributes more to the overall characteristics of the LI and determines the air and water stability;

• Melting points can be easily changed by structural variation of one of the ions or combining different ions;

• LI have low or negligible vapor pressure at 20-150°C;

• Designer solvents: changing anion, the ionic liquid can adapt to specific applications.

Rogers R.D. *Chem. Comm.* 1998. 1765-1766.
Synthesis of Ionic Liquids.

A. \(\text{H}_3\text{C}^-\text{N}^+\text{N}^-\text{n-Bu} + \text{Cl}^-\text{Cl} \xrightarrow{\text{MeCN}, 60^\circ\text{C}} \text{H}_3\text{C}^-\text{N}^+\text{N}^-\text{n-Bu} \text{Cl}^- \)
N-alkylation

B. \(\text{H}_3\text{C}^-\text{N}^+\text{N}^-\text{n-Bu} + \text{KBF}_4 \xrightarrow{\text{H}_2\text{O}} \text{H}_3\text{C}^-\text{N}^+\text{N}^-\text{n-Bu} \text{BF}_4^- \)
Anion exchange

C. \(\text{H}_3\text{C}^-\text{N}^+\text{N}^-\text{n-Bu} + \text{KPF}_6 \xrightarrow{\text{H}_2\text{O}} \text{H}_3\text{C}^-\text{N}^+\text{N}^-\text{n-Bu} \text{PF}_6^- \)
Anion exchange

Huddlestone G.J., Rogers R.D., *Green Chemistry* 2001, 3, 156-164.
Effect of Alkyl Chain Length on the Melting Point of Liquid Salts [RMIM][X].

Holbrey J.D., Seddon, K.R. J. Chem. Dalton Trans 1998,
Thermal Properties of Imidazolium Ionic Liquids.

- Most LI salts are liquid at sub-ambient temperatures.
- Are glass at low temperatures and show minimal vapour pressures until to thermal decomposition temperature (> 400°C), but some IL can be distilled at very low pressure.
- Thermal decomposition is endothermic with inorganic anions and exothermic with organic anions.
- Imidazolium cations are thermally more stable than tetraalkyl ammonium cations; the same is true for tetraalkyl phosphonium cations.
- Phosphonium cations are thermally more stable than the corresponding ammonium cations.

Ngo H.L. *Thermochimica Acta*. 2000, 357-358, 97-102.
Using Molecular Simulations.

- Detailed Geometric and Energetic model
- Adjustment of Force Field - Inter and Intermolecular Potential Functions

\[V_{total} = \frac{1}{2} \sum_{ij} \left[4\sigma_{ij} \left\{ \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right\} + \frac{q_i q_j}{r_{ij}} \right] + v(\phi) \]

\[v(\phi) = v_3 + \frac{v_1}{2} (1 + \cos(\phi)) + \frac{v_2}{2} (1 - \cos(2\phi)) + \frac{v_3}{2} (1 + \cos(3\phi)) \]

\[l = \text{Lennard Jones Plot} \quad \text{(includes both dispersive and electrostatic force)} \]

Shah. K.J, Brennecke. F.J, Magnin. E.J., *Green Chemistry*, 2002, 4, 112-116.
Low Volume Expansivity of IL.

Volume Expansivity (K⁻¹)	Ionic Liquid	Toluene (Molecular Solvent)	Water
αₚ	5-6 × 10⁻⁴	8-11 × 10⁻⁴	2.57-5.84 × 10⁻⁴

- IL do not expand on heating as normal liquids
- Strong coulomb interactions
- IL with long alkyl chains are more compressible
- Results were confirmed with the tait equation, i.e.

\[
\frac{\rho - \rho_0}{\rho} = C \ln \left(\frac{B + p}{B + p_0} \right)
\]

Which is useful for high pressure correlation.

Brennecke F.J., Gu J., J. Chem. Eng. Data 2002, 47, 339-345.
Comparison of Henry’s Constant, γ^∞ water in ionic liquid and conventional solvents.

$P_{\text{sat}} = 0.031$ bar, Temperature = 25 °C

Comp.	[C$_8$min] [BF$_4$]	[bmin] [PF$_6$]	[C$_8$min] [PF$_6$]	Benzene	CCl$_4$	Ethanol
H_1	0.033	0.09	0.11	10	37	0.10
γ^∞	2.65	6.94	8.62	323	1194	3.23
(IL) Water Solutions.

- Affinity for water is greater for anions such as $[\text{BF}_4]^- \text{ than } [\text{PF}_6]^-$
- Water affinity decreases with increase in alkyl length
- Entropy and Enthalpy are similar like dissolution of water in short chain alcohols
- Mutual solubility's increase with increase in temperature
- Contamination of water creates a waste water problem - activated carbon may be the answer.

Anthony J.L., Magnin J.E., Brennecke F.J. *J.Phys.Chem. B*. **2001**, *105*, 10942-10949.
Effect of Gas Solubility.

From solubility tests of nine different gases in [bmim][PF$_6$] was concluded:

- Carbon Dioxide: highest solubility followed by ethylene and ethane
- Argon and Oxygen showed very low solubility
- Solubility decreases with increase in temperature
- Enthalpy and Entropy changes also indicate strong molecular interactions for carbon dioxide.

Comparison of Henry’s Constants (Bar)

	[Bmim][PF$_6$]	Heptane	Benzene	Ethanol	Acetone
H$_2$O	0.17	-	1033	0.134	0.334
CO$_2$	53.4	84.3	104.1	159.2	54.7
C$_2$H$_4$	173	44.2	82.2	166	92.9
C$_2$H$_6$	355	31.7	68.1	148.2	105.2
CH$_4$	1690	293.4	487.8	791.6	552.2

Magnin J.E., Anthony J.L., Brennecke J.F. *J. Phy. Chem. B*. **2002**, 106,7315-7320.
Polarity.

- Important property to determine its solvent strength:
- Betaine dye was used with the help of Fluorescent tubes (E_T).

Component	E_T (30)	Cost (€/kg)
[Bmim][PF$_6$]	52.39	260
[C$_8$mim][PF$_6$]	46.84	300
[BuPy][BF$_4$]	44.91	180
Acetonitrile	45.30	10
Methanol	55	0.8

Samanta A., Brennecke F.J. *Chem. Comm.* **2001**, 413-414.
Acid and Base Solutions.

Reversible partitioning of Thymol Blue between water and IL.
Correlation Between Partitioning in IL/Water and 1-Octanol/water Biphasic Systems.

Distribution Ratio (D) in Ionic Liquid/Water System vs. 1-octanol/water Partition Coefficient (P)
Ionic Liquids – Uses.

• Chemical Processing (solvents for catalysis)
• Pharmaceuticals
• Petroleum Refining (i.e. desulfurisation)
• Microelectronics
• Metal deposition (e.g. Aluminum)
• Organic Polymer Processing
• Pulp and Paper
• Nuclear Fuels
• Textiles
• Lubricants
• Anti-static agents
• Agents for the elimination of trace components.
Recent Applications of Ionic Liquids.

Author	Topic
E. Beckman	sc CO$_2$ Stripping after extraction
P. Bonhote	Conductive IL
R. Carlin	Ionic Liquid - polymer gel electrolytes
J. Dupont	Catalytic hydrogenation Reactions
C. Hussey	Electrochemistry in IL
H. Oliver	Butene dimerization
B. Osteryoung	Benzene polymerization
R.D. Rogers	Two-phase separations
K. Seddon	Friedel-Crafts reactions; regioselective alkylat.
T. Welton	Organometallic syntheses.

P. Wasserscheid, T. Welton *Ionic Liquid in Synthesis*, Wiley Ed. 2008
Industrial Processes with Ionic Liquids.

Company	Process	IL function	Scale
BASF	Acid Scavenging	Auxiliary	commercial
	Extractive distillation	Extractant	pilot
IFP	Chlorination	Solvent	pilot
	Olefin Dimerization	Solvent	commercial
Degussa	Hydrosilylation	Solvent	pilot
	Compatibilizer	Perform. additive	commercial
Arkema	Fluorination	Solvent	pilot
Chevron Philips	Olefin Oligomeriz.	Catalyst	pilot
Eastman	Rearrangement	Catalyst	commercial
Eli Lilly	Cleavage of Ether	Catalyst/Reagent	pilot
Air Products	Storage of gases	Liquid Support	commercial
Iolitec/Wandres	Cleaning Fluid	Perform. additive	commercial
Examples of Reactions in IL.

Pd(II) Compounds in [bmim][BF$_4$] catalyze butadiene and butene hydrodimerization.

\[
\text{butadiene} \quad \xrightarrow{\text{Pd(II)}} \quad \text{butene dimer}
\]

Dupont J. Et al. *Organometallics* 1998, 17, 815

Product insoluble in Ionic Liquid

97% catalyst retained in IL phase
Asymmetric Catalytic Hydrogenation on Solid Support with Ionic Liquid.

\[R^1 \underbrace{\cdots} + H_2 \underset{\text{CO}_2}{\text{R}^1} \rightarrow \text{R}^1 \underbrace{\cdots} \]

Supported Ionic Liquid Phase (SILP)
- Silica based support
- Catalyst is soluble in Ionic Liquid
- Ionic Liquid and Catalyst are fixed in the silica pores
- Diffusion pathway is reduced

Catalyst
- Rhodium (Rh) based
- Uses chiral Quinaphos Ligand
- More efficient when applied in continuous flow
- Deactivates with time

Chiral Quinaphos Ligand

Ionic Liquid

Inert Support
Extractive Distillation and Breaking Azeotropes.

- IL have greater affinity for some components in a mixture.
- Results in a change in the activity coefficients that usually enhances separation.
- No IL in distillate.
- Arlt claims that virtually all azeotropes can be broken by the correct selection of an ionic liquid.

- Gmehling and Krummen, DE10154052
- Arlt et al., DE10136614/WO2002074718
Deep Eutectic Solvents (DES).

- DES is a fluid generally composed of two or three cheap and safe components that are capable of self-association, often through hydrogen bond interactions, to form a eutectic mixture with a melting point lower than that of each individual component. Complex formed between a quaternary ammonium salts and a hydrogen bond donor.
 - Example: $2\text{H}_2\text{NC(=O)NH}_2 / 1\text{HOC}_2\text{H}_4\text{N}^+(\text{CH}_3)_3$ (choline) or
 - Example: $[\text{Me}_3\text{NCH}_2\text{CH}_2\text{OH}]\Gamma / \text{Glycerol*}$ or urea / ethylene glycol.
- **Versatile, economic, environmentally compatible, biodegradable.**

*Jhong, H.R. et al. *Electroc. Comm.* 2009, 11, 209–211.*
Uses of Deep Eutectic Solvents.

- Metal Deposition, e.g. Cr
- Electropolishing
- Ore reprocessing
- Catalysis

Wide range of solutes show high solubility e.g. metal oxides.

Q. Zhang, K. De Oliveira Vigier, S. Royera, F. Jérôme Deep eutectic solvents: syntheses, properties and applications, Chem. Soc. Rev., 2012, 41, 7108-7146
Yan Shen, Xiaoxia He, and Francisco R. Hung, Structural and Dynamical Properties of a Deep Eutectic Solvent Confined Inside a Slit Pore, J. Phys. Chem. C 2015 119 (43), 24489-24500
Melting Points of Eutectic Liquid ChCl/Urea.

\[T_m \text{ ChCl} \]

\[T_m \text{ Urea} \]

ChCl = Choline chloride

Rengstl D, Fischer V, Kunz W. *Phys Chem Chem Phys*. 2014 Nov 7;16(41):22815-22
Comparison between Classical Solvents and Neoteric Solvents.

- **dielectric constant**
 - 78: water
 - 33: methanol
 - 25: ethanol
 - 21: acetone
 - 4.8: chloroform
 - 2.4: toluene
 - 2.2: CCl₄
 - 2: Hexane

- **solvents**
 - Alcohols
 - Ether
 - Hydrocarbons

- **solute**
 - Salts
 - Amino acids
 - Polar organic polymers
 - Fats
 - Oils

- **Solvents Types**
 - Classical Solvents
 - Neoteric Solvents
 - Ionic Liquids / Eutectics
 - SC Fluids
Solvent Formulations.

- The most appropriate solvent may contain a variety of components depending on the solute and the application
 - e.g. water, surfactants, alcohols, buffers, oils
- Formulation meets the operative functionality principle.
Polymeric /immobilized or derivatized Solvents.

- Solvents that are oligomeric, polymeric, or that are tethered to polymeric systems:
 - **Advantages:**
 - Low volatility
 - No ozone depleting potential (ODP)
 - No global warming potential (GWP)
 - Possible ease of separation
 - **Disadvantages:**
 - Expensive to manufacture
 - Life cycle impact uncertain
 - Possible separation difficulties
Derivatized/Polymeric Solvent Replacement for THF:

\[
\text{OH} \quad + \quad \text{Cl} \quad \xrightarrow{\text{Na}} \quad \text{O} \quad \xrightarrow{70^\circ C} \quad \text{O} \\
\xrightarrow{85^\circ C} \quad \text{O} \quad \text{n}
\]
How We can Select a Solvent.

• Solvent alternatives Guide
 clean.rti.org/

• Solvent data base
 solvdb.ncms.org/index.html

• Expert systems available on web
 www.epa.gov/greenchemistry/tools.htm

• Environmental fate data base
 esc.syrres.com/efdb.htm