Electronic transport calculations showing electron-phonon separation in directions transverse to high current

S N Patitsas
University of Lethbridge, 4401 University Drive, Lethbridge AB, T1K 3M4, Canada
E-mail: steve.patitsas@uleth.ca

Keywords: transport theory, phonon Boltzmann transport equation, pattern formation, nonequilibrium thermodynamics, electron-phonon scattering, spontaneous symmetry breaking

Abstract
An electron-phonon Boltzmann transport equation is formulated which accounts for second order collisions with an electron-phonon vertex and a three-phonon vertex. This approach for electronic transport at second order reveals the existence of two forces perpendicular to the primary direction of electrical current, acting on the electrons and phonons. The force on electrons is equal and opposite to that on the phonons. Solutions for stationary states confirm that charge and thermal energy become separated. The force terms include both conservative and dissipative components, which for the phonons, lead to a modified Guyer-Krumhansl equation. The conservative components exist only when there exist explicit transverse gradients in the dissipated energy, and these terms may be incorporated into a Poisson kinematics. The dissipative force terms can cause threshold induced spontaneous symmetry breaking.

1. Introduction
While investigating electronic transport beyond first order calculations, a surprising pair of forces have been discovered that are perpendicular to the primary direction of electrical current. These forces act equally and oppositely on the electrons and phonons. This leads to a separation of charge and heat. This separation phenomenon builds on a previously discovered charge-spin separation that was predicted and eventually observed in one-dimensional systems [1–3].

The calculations presented here were performed up to second order scattering by incorporating both an electron-phonon vertex and a three-phonon vertex. The calculations also show that strong enough electrical current produces a bifurcation and spontaneous symmetry breaking. These results may be viewed within the context of nonlinear dynamics and pattern formation in nonequilibrium systems [4–7].

The first-principles scattering calculations are presented in sections 2 and 3. Discussion of these results in terms of phonon and electron dynamics is presented in sections 4 and 5. New terms are added to standard dynamical equations for electron and heat flow. Amongst these terms are both dissipative and conservative forces.

2. Electron-phonon Boltzmann transport equation
The microscopic approach presented here couples electrons and phonons through the quantum Boltzmann transport equation developed for electrons and for phonons [8–13], and is capable of dealing with second order scattering processes such as those depicted in figure 1. This is understood as a truncated approximation scheme under the BBGKY hierarchy [14]. This first principles approach leads to two equations for the electron and phonon distribution dynamics that can be called the electron-phonon Boltzmann transport equations (EPBTE). In particular a force equation for the phonon field is developed which displays the interesting heat induction effect.

© 2021 The Author(s). Published by IOP Publishing Ltd
The phonon Boltzmann equation has been used to derive the Guyer-Krumhansl equation for heat transfer. One application of the Guyer-Krumhansl equation is towards successful understanding of the phenomenon of second sound in liquid helium. One of the results reported here is an additional term to the Guyer-Krumhansl equation.

The transport equation for the phonon distribution, \(n_q \), for a given wave vector, \(q \), closely resembles the phonon BTE with the addition of an extra collision term. Accounting for the effect of both phonon-phonon collisions and electron-phonon collisions on \(n_q \) gives an extension of the phonon BTE as

\[
\frac{\partial n_q}{\partial t} + \mathbf{c}_q \cdot \nabla T \frac{\partial n_q}{\partial T} = \left. \frac{\partial n_q}{\partial t} \right|_{pp} + \left. \frac{\partial n_q}{\partial t} \right|_{epp}.
\]

(2.1)

This constitutes the phonon part of the EPBTE. The collision terms are on the right hand side of (2.1). The phonon-phonon (pp) collision term is normally evaluated for a single vertex with 3 or 4 phonons involved. This term is responsible for providing thermal conduction as a response to a thermal gradient, but will not contribute to the transverse force discussed below in section 3. The spin quantum numbers are suppressed in the notation here as no spin-dependence will be discussed. The important collision integral is

\[
\frac{\partial n_q}{\partial t} \bigg|_{pp} = \int \int \int \left[-g_k (1 - g_k) n_q (1 + n_q) A_k^{k'-q'} + g_k (1 - g_k) (1 + n_q) A_k^{k'-q'} - g_k (1 - g_k) (1 + n_q) A_k^{k,q'} - g_k (1 - g_k) n_q A_k^{k,q'} \right] dkdq'dq''.
\]

(2.2)

where \(g_k \) is the electronic distribution function for electron wave vector \(k \). The scattering diagrams of figure 1 represent the terms in (2.3). In particular diagrams a) and b) correspond to the first term, c) and d) to the second term, e) to the third term, and f) to the fourth and last term. Microscopic reversibility means that \(A_k^{k,q'} = A_k^{k',q} \) and \(A_k^{k,q,q'} = A_k^{k',q,q'} \). Swapping dummy indices \(k \) and \(k' \) in the 2nd and 4th terms gives

Figure 1. Second order electron-phonon scattering diagrams, covering all cases with 3-phonon scattering. Two vertices are present, labeled W for electron-phonon and Q for phonon-phonon interaction. Diagrams (a) and (b) differ only in the direction of the virtual phonon \(q'' \) (similarly for c and d). Diagram (e) plays the dominant role in these calculations, when the current density is high.
\[\frac{\partial n_q}{\partial t} \bigg|_{b_{p,2}} = \int \int \left[\{-g_k(1 - g_k)n_q(1 + n_q) + g_k(1 - g_k)(1 + n_q)n_q'\}A_{k,q}^{k,q'} + \{g_k(1 - g_k)(1 + n_q)(1 + n_q') - g_k(1 - g_k)n_qn_q'A_{k,q}^{k,q'}\} dkdk'dq'. \right] \]

Both momentum and energy conservation are built into the intrinsic transition factors \(A_{k,q}^{k,q'} \) and \(A_{k,q}^{k,q''} \). The four terms in (2.3) cover the possibilities of phonons \(q \) and \(q' \) being created or annihilated. For electron sums \(dq \equiv \frac{d^3q}{2\pi^2} \) while for phonons \(dq \equiv \frac{d^3q}{2\pi^2} \).

For the transition rate a cutoff time scale \(\tau_q \) is required so that, for example, the second-order transition rate \(A_{k,q}^{k,q'} \) can be factored into the following 2-vertex form that goes like: \(\tau_1 W_k^{k,q'} Q^{q,q'}(k - q - k' - q') \) with an electron phonon vertex and a 3-phonon vertex connected by a virtual phonon \(q'' \). The \(W_k^{k,q'} \) factor is an intrinsic transition probability and is associated with the electron-phonon scattering vertex while the other intrinsic transition probability \(Q_k^{q,q'} \) factor is associated with 3-phonon scattering. The time \(\tau_q \), which will be calculated below, must be long enough for both (relatively fast) electron-phonon scattering and (relatively slow) phonon-phonon scattering to take place, i.e. long enough for the Dirac delta function for energy to form [9].

2.1. Detailed factorization of matrix element \(A \)

With a focus for a moment just on the three phonon processes then the textbook equation for the rate of change of \(n_q \) is

\[\frac{\partial n_q}{\partial t} \bigg|_{b_{p,2}} = \int \int \left[-n_q n_q'(1 + n_q) Q^{q,q'} + (1 + n_q)(1 + n_q') n_q Q_{q,q}^{q,q'} \delta(q'' - q - q') + \frac{1}{2} (n_q(1 + n_q)(1 + n_q') Q_{q,q}^{q,q'} + (1 + n_q) n_q n_q' Q_{q,q}^{q,q'}) \delta(q - q' - q'') \right] dq'dq'', \]

where the \(\frac{1}{2} \) is to avoid double-counting. By the principle of detailed balance, this rate is zero if all occupation factors \(n_q \) take the equilibrium forms \(n_q^0 \). Because of electron-phonon scattering and the production of phonons \(q'' \), \(n_q' \) will not take the equilibrium form. For this specific factor a form \(n_q' = n_q^0 + n_q^{*0} \) is used. The physical reasoning is that one focuses only on 3-phonon scattering that occurs subsequently to the production of a phonon \(q'' \) by (first order) electron-phonon scattering via \(W_k^{k,q'} \).

For the remainder of this subsection it suffices to consider just one of the four terms in (2.4). It will be shown below in this section that the second term dominates the others so this is the term discussed immediately, which leaves:

\[\frac{\partial n_q}{\partial t} \bigg|_{b_{p,2}} = \int \int (1 + n_q^0)(1 + n_q^0) n_q^{*0} Q_{q,q}^{q,q'} \delta(q'' - q - q') dq'dq''. \]

As mentioned above, \(n_q^{*0} \) is produced by electron-phonon scattering. The phonons produced from these events will decay with a lifetime \(\tau_{q''} \) that is the lifetime of hot phonons produced from the electron-phonon scattering. The distribution \(n_q^{*0} \) is described by

\[\frac{\partial n_q^{*0}}{\partial t} = -n_q^{*0} \tau_{q''} + \frac{\partial n_q^{*0}}{\partial t} \bigg|_{b_{p,2}}, \]

(2.6)

where the first order electron-phonon scattering rate is given by

\[\frac{\partial n_q^{*0}}{\partial t} \bigg|_{b_{p,2}} = \int \int g_k(1 - g_k)(1 + n_q^0) W_k^{k,q'} \delta(k - k' - q'') dkdk'. \]

(2.7)

The steady-state solution to (2.6) is given by

\[n_q^{*0} = \int_0^\infty \frac{\partial n_q^{*0}}{\partial t} \bigg|_{b_{p,2}} \exp(-t/\tau_{q''}) dt, \]

(2.8)

which can be substituted into (2.5) to give:

\[\frac{\partial n_q}{\partial t} \bigg|_{b_{p,2}} = \int \int \int e^{-t/\tau_{q''}} g_k(1 - g_k)(1 + n_q^0)(1 + n_q^0) \times (1 + n_q^0) W_k^{k,q'} Q_{q,q}^{q,q'} \delta(k - k' - q - q') dkdk'dq'dt. \]

(2.9)
Comparison to the (dominant) third term in (2.3) leads to the conclusion that $\gamma_1 = (1 + n_q^0)\tau_{q'}$ and
\[
A^{K,q,q'}_k = \int_0^\infty e^{-t/\tau} (1 + n_q^0) W_k^{K,q,q'} Q_{q,q'} \delta(k - k' - q - q') dt.
\] (2.10)

2.2. Useful result for phonon q_q lifetime

Focusing on a single $Q_{q,q'}$ vertex, such as depicted in the right part of figure 1e, one derives an equation similar to (2.6) for $\tau_{q'}$ as:
\[
\frac{1}{\tau_{q'}} = \int \int (1 + n_q^0)(1 + n_q^0) Q_{q,q'} \delta(q' - q') dq'dq'.
\] (2.11)

This expression for the decay rate will be useful in the analysis which follows.

3. Transverse force terms for phonons and electrons

Returning to (2.3), for the phonons, the force per unit volume from collisions, is given by
\[
f_{ph,coll} = \hbar \int \frac{\partial n_q}{\partial t} \bigg|_{pp} q dq.
\] (3.1)

With electron flow directed along the longitudinal, or primary, z-axis the x-axis defines the transverse direction. The transverse force $f_{ph,x}$ is the x-component of $f_{ph,coll}$. This force is added in with all other contributions to the rate of change of phonon momentum density, $\partial p_{ph,x}/\partial t$.

The phonon force is calculated from (2.3) and using an explicit nonequilibrium form of g_k. The expression for $f_{ph,x}$ is split into a sum $f_{ph,x} = f_{1>} + f_{1<} + f_{2>} + f_{2<} + f_3 + f_4$ such that
\[
f_{1>} = -\hbar \int \int \int \int g_k (1 - g_k)n_q^0(1 + n_q^0)A^{K,q,q'}_k q_4 dk'dq'dq',
\] (3.2.a)
\[
f_{1<} = -\hbar \int \int \int \int g_k (1 - g_k)n_q^0(1 + n_q^0)A^{K,q,q'}_k q_4 dk'dq'dq',
\] (3.2.b)
\[
f_{2>} = \hbar \int \int \int \int g_k (1 - g_k)n_q^0(1 + n_q^0)A^{K,q,q'}_k q_4 dk'dq'dq',
\] (3.2.c)
\[
f_{2<} = \hbar \int \int \int \int g_k (1 - g_k)n_q^0(1 + n_q^0)A^{K,q,q'}_k q_4 dk'dq'dq',
\] (3.2.d)
\[
f_3 = \frac{\hbar}{2} \int \int \int \int g_k (1 - g_k)(1 + n_q^0)(1 + n_q^0)A^{K,q,q'}_k q_4 dk'dq'dq',
\] (3.2.e)
\[
f_4 = -\frac{\hbar}{2} \int \int \int \int g_k (1 - g_k)n_q^0n_q^0A^{K,q,q'}_k q_4 dk'dq'dq',
\] (3.2.f)

where it is explicit that equilibrium phonon distributions are used. The subscript $>$ implies that only those processes with the virtual phonon q'_q leaving the electron-phonon vertex W and entering the 3-phonon vertex Q are considered. The $<$ denotes the opposite case. The $\frac{1}{2}$ factors for f_3 and f_4 are included to avoid double-counting after considering the integration over both q and q'. The six terms are in the same order as in the corresponding diagrams of figure 1.

Utilizing a standard technique [8, 9] for offsetting with a drift velocity $\nu_0 \hat{z}$, using the group velocity for electrons, $\hbar k/m$, one implements a drift or offset wave vector $k_0 = m\nu_0 /\hbar$. Defining $\tilde{E}_k = \hbar^2(k - k_0\hat{z})^2 /2m$, this offset is used to convert the equilibrium electron distribution
\[
g_k^0 = \frac{1}{e^{\beta(\tilde{E}_k - \mu)} + 1},
\] (3.3)

to a nonequilibrium form:
\[
g_k = \frac{1}{e^{\beta(\tilde{E}_k - \mu)} + 1},
\] (3.4)

where $\beta = 1/k_BT$. Expanding in terms of small k_0 gives: $\tilde{E}_k \approx E_k - \hbar^2k_0 k_0/m + \hbar^2k_0^2/2m$. Defining, for convenience, $b = \beta(E_k - \mu)$, $\gamma_1 = \beta\hbar^2k_0 k_0/m$ and $\gamma_2 = \beta\hbar^2k_0^3/2m$, such that $g_k = [e^{b(\gamma_1 - \gamma_2)} + 1]^{-1}$, allows for expansion up to second order in k_0:
$$S_k \approx g_k^0 + g_k^0(1 - g_k^0)\gamma_1 + g_k^0(1 - g_k^0)\left[-\gamma_2 + \frac{1}{2}\gamma_1^2 \tanh\frac{b}{2}\right]$$ \hspace{1cm} (3.5)

and

$$1 - g_k \approx 1 - g_k^0 - g_k^0(1 - g_k^0)\gamma_1 - g_k^0(1 - g_k^0)\left[-\gamma_2 + \frac{1}{2}\gamma_1^2 \tanh\frac{b}{2}\right].$$ \hspace{1cm} (3.6)

Note that $\gamma_1^2 = 2\gamma_2(\beta h^2 k_p^2/m)$. With these results one shows that:

$$g_k(1 - g_k) \approx g_k^0(1 - g_k^0)\left[1 - g_k^0\left[-\gamma_2' + \frac{1}{2}\gamma_1^2 \tanh\frac{b'}{2}\right]\right]$$

$$+ (1 - g_k^0)\left[-\gamma_2' + \frac{1}{2}\gamma_1^2 \tanh\frac{b'}{2}\right],$$ \hspace{1cm} (3.7)

and

$$g_k(1 - g_k) \approx g_k^0(1 - g_k^0)\left[1 - g_k^0\left[-\gamma_2' + \frac{1}{2}\gamma_1^2 \tanh\frac{b'}{2}\right]\right]$$

$$+ (1 - g_k^0)\left[-\gamma_2' + \frac{1}{2}\gamma_1^2 \tanh\frac{b'}{2}\right].$$ \hspace{1cm} (3.8)

where terms linear and bilinear in k and k' are dropped as these give zero when integrated.

Details of this derivation are left for appendix A. The result for the lateral force per unit volume $f_{ph,x}$ is

$$f_{ph,x} = 2\gamma_2\beta^2 \int \int \int \int \int g_k^0(1 - g_k^0)n_q^0(1 + n_q^0)$$

$$\times \{E_k(E_k - \mu)\cos^2\theta' - \cos^2\theta\} + e^2_q\cos^2\theta' + g_k^0\beta(E_k - \mu)e^2_q\cos^2\theta'$$

$$\times A_k^{\alpha'\beta'}d\omega_{\alpha'}d\omega_{\beta'}$$

$$\times \frac{1}{2}\gamma_2\beta^2 \int \int \int \int \int g_k^0(1 - g_k^0)(1 + n_q^0)(1 + n_q^0)$$

$$\times \{E_k(E_k - \mu)\cos\theta - \cos^2\theta'\} + e^2_q[2E_k - \mu]\cos^2\theta' - e^2_q\cos^2\theta'$$

$$\times A_k^{\alpha'\beta'}d\omega_{\alpha'}d\omega_{\beta'}',$$ \hspace{1cm} (3.9)

where e^2_q is the energy of the virtual phonon, θ is the spherical polar angle for k, and θ' is the spherical polar angle for k'.

3.1. Dominant term for force

Since the main contribution to the k sums comes from electronic states near the Fermi level where $2E_k - \mu \approx E_{ph}$ and the Fermi energy E_F always greatly exceeds e^2_q, the leading term in (3.9) comes from the $e^2_q[2E_k - \mu]$ term. In the results below only this term is considered:

$$f_{ph,x} \approx \frac{\beta \gamma_2 \beta^2 E_F}{2} \int \int \int \int \int g_k^0(1 - g_k^0)(1 + n_q^0)(1 + n_q^0)$$

$$\times e^2_q(\cos\theta')A_k^{\alpha'\beta'}d\omega_{\alpha'}d\omega_{\beta'}.$$ \hspace{1cm} (3.10)

The third and fourth terms of (2.3) produce the major contributions to the phonon transverse force $f_{ph,x}$. These main contributions occur because in the third and fourth terms $E_k > E_k$ always holds. This is not the case in the first and second terms of (2.3) since in these processes the virtual phonons q'' can go both into and out of the W vertex. The plus sign in the front of (3.10) means that the third term in (2.3) represented by the scattering diagram in figure 1(e) is the dominant one. The physical interpretation of this is that the process emitting two phonons into the heat bath creates the most entropy and receives an extra statistical weight for this.

Bringing back the explicit integral over q'':

$$f_{ph,x} \approx \frac{\beta \gamma_2 \beta^2 E_F}{2} \int \int \int \int \int g_k^0(1 - g_k^0)A_k^{\alpha'\beta'}$$

$$\times e^2_q(\cos\theta')(q_k'' - q_k')d\omega_{\alpha'}d\omega_{\beta'}$$

$$\times \delta(k - k' - q' - q'')A_k^{\alpha'\beta'}d\omega_{\alpha'}d\omega_{\beta'}.'$$ \hspace{1cm} (3.11)

In the next subsection 3.2, spatial variation in the transverse direction is treated. Leading terms have an extra factor of q_k'', producing a $(q_k'')^2$ in the integrand and thus giving a non-zero result. A factor of $q_k''q_k''$ is also produced that gives zero upon integration. This allows the $q_k'' - q_k'$ factor in (3.11) to be replaced by q_k'.

5
Substituting in for $A_k^{K,q,q'}$ from (2.10) into (3.11), while also implementing (2.11), gives

$$f_{ph,x} \approx \frac{\gamma_2 \beta E_F}{2} \int \int \int \delta_k (1 - g_k^0) (1 + n_q^0) e^{i q \cdot \xi} (\cos \theta')^2 q'' \delta (k - k' - q')d k d q' d t.$$

(3.12)

3.2. Spatial variation in the transition rate

The factor of q_x in (3.10) will make the integral zero by symmetry unless another q_x is produced. This can be accomplished if the transition rate $A_k^{K,q,q'}$ varies in the (transverse) x-direction. By (3.12) one way this can happen if the matrix element $W_k^{K,q,q'}$ varies in the x-direction. This can also happen if occupation factors g_k^0, g_q^0, n_q^0 vary in the x-direction, and lastly, if $\tau_{q',r}$ varies in the x-direction.

The two scattering vertices do not occur at the same time and place. The temporal separation is $\tau_{q',r}$ and the spatial separation is $cr_{q',r}$. If r is the location of the midpoint of the electron-phonon collision and the 3-phonon collision then $W_k^{K,q,q'}$ must be evaluated at $r - \frac{1}{2} \tau_{q',r} \frac{q'}{q} \bar{x}$. So also must $g_k^0, g_q^0,$ and n_q^0 be evaluated at $r - \frac{1}{2} \tau_{q',r} \frac{q'}{q} \bar{x}$. In contrast, since the lifetime $\tau_{q',r}$ involves phonon-phonon scattering with vertex $Q_k^{q,q'}$, it must be evaluated at position $r + \frac{1}{2} \tau_{q',r} \frac{q'}{q} \bar{x}$. Taking the first order expansion:

$$f_{ph,x} \approx \frac{\gamma_2 \beta E_F}{4} \int \int \int \left[- \frac{\partial}{\partial x} \left[g_k^0 (1 - g_k^0)(1 + n_q^0) W_k^{K,q,q'} \right]
+ g_k^0 (1 - g_k^0)(1 + n_q^0) W_k^{K,q,q'} \left(\frac{-1}{\tau_{q',r}} \frac{\partial \tau_{q',r}}{\partial x} \right) \right]
	imes \frac{e^{i q \cdot \xi} (q''^0)^2}{q''^0} (\cos \theta')^2 \delta (k - k' - q'')d k d q' d t.$$

(3.13)

Completing the integral over t gives

$$f_{ph,x} = -\frac{\gamma_2 \beta E_F}{4} \frac{\partial}{\partial x} \int \int \int \tau_{q',r} g_k^0 (1 - g_k^0)(1 + n_q^0) W_k^{K,q,q''}
\times \frac{e^{i q \cdot \xi} (q''^0)^2}{q''^0} (\cos \theta')^2 \delta (k - k' - q'')d k d q' d t.$$

(3.14)

As mentioned, one way this force can be non-zero is if the matrix element $W_k^{K,q,q'}$ varies in the x-direction. The derivative $\partial W_k^{K,q,q'}/\partial x$ represents an explicit variation in the material composition in the x-direction. A simple example of this is an interface between two conventional metals, for example a gold-aluminum interface, either created by thin film growth in the x-direction or as a metallic superlattice [15]. In many models for electron-phonon interaction, using the deformation potential potential (including the Bardeen model), the square of the matrix element scales inversely with the lattice mass density [9, 13]. Near any of these interfaces one will find a sharp change in W in the direction perpendicular to the interface.

The following definition is made for an important time scale:

$$\tau^* \equiv \frac{3}{\int \int \int \tau_{q',r} G_k^{K,q,q'} (q''^0)^2 \delta (k - k' - q'')d k d q' d t}.$$

(3.15)

where $G_k^{K,q,q'} \equiv g_k^0 (1 - g_k^0)(1 + n_q^0) W_k^{K,q,q'} \cos \theta'$. The time τ^* can be thought of as a nonequilibrium transport mean value of $\tau_{q',r}$ for a virtual phonon. The denominator in (3.15) closely resembles the Joule heating rate \dot{E}_J. E which increases the phonon gas energy at rate \dot{n}_{ph}. Indeed, making use of (B.9) as derived in the appendix B allows (3.14) to be rewritten in a relatively concise form for the force per unit volume on the phonons as:

$$f_{ph,x} = \frac{1}{6} \frac{\partial}{\partial x} \{ \tau^* \dot{n}_{ph} \}.$$

(3.16)

The force $f_{ph,x}$ only exists while the electronic system is shifted away from equilibrium. In this case one may think of the phonons as being embedded in a nonequilibrium electronic system. This extra force term while being embedded will add onto any other force terms to dictate the phonon dynamics.
As expected from momentum conservation the transverse force on electrons is equal and opposite,

\[f_{\ell z} = -\frac{1}{6} \frac{\partial \nu}{\partial z} \{ \tau^* u_{ph} \}. \]

(3.17)

This force is not to be confused with the drag force in the \(-\hat{z}\) direction. The force \(f_{\ell z}\) can also be explicitly derived by setting up equations similar to (3.2a)-(3.2f) while anticipating the \(q_{\ell}^*\) factor from the spatial variation, and following the minus signs carefully.

Together (3.16) and (3.17) constitute the main result presented here.

4. Heat transfer equation

The force in (3.16) can cause acceleration of the phonon field and change the phonon momentum. The phonon momentum density \(p_{ph}\) is related to the heat flux vector \(\lambda\) by \(\lambda = c^2 p_{ph}\). One term contributing to \(\partial \lambda / \partial t\) is represented by (3.16). This gives dynamics more complex than the Fourier heat law, \(\lambda = -\kappa \nabla T\). Instead the Guyer-Krumhansl equation [11, 12, 16, 17] is invoked and the extra physics from (3.16) is added in to produce:

\[
\frac{\partial \lambda}{\partial t} + \frac{1}{3} c^2 c_T \nabla T = -c^2 c_T \lambda + \frac{\tau_N c^2}{5} [\nabla^2 \lambda + 2 \nabla (\nabla \cdot \lambda)] - \frac{c^2}{6} \left(\frac{\partial U_d}{\partial T} \right) \nabla T - \frac{c^2}{6} \nabla U_d
\]

(4.1)

where \(c_T\) is the volume specific heat, \(\kappa\) is the thermal conductivity, and the important quantity \(U_d\) is defined by

\[U_d \equiv \tau^* u_{ph}. \]

(4.2)

The first term on the right hand side of (4.1) comes from the thermal conduction, \(\partial q_{\ell} / \partial t\) term, in (2.1). The main contributions to the thermal conductivity are umklapp processes with 3-phonon and 4-phonon collisions [9], whereas \(\tau_N\) is the relaxation time for normal processes. Given the approach described above, it is understood that \(\lambda\) has no component in the \(z\)-direction and the \(x\) and \(y\) components do not depend on \(z\), i.e. (4.1) is effectively two-dimensional.

The quantity \(U_d\) has dimensions of an energy density but does not have its origins as a conventional energy does in physics. Indeed it can only be defined as the product of a time and a power (density). Since it arises from irreversible dissipation the term dissipation potential energy density might be apt for \(U_d\). This potential energy density differs from the Rayleigh dissipation function which is implemented differently by taking a derivative with respect to velocity to produce a force [18].

It is important to point out that \(U_d\) may vary spatially because the temperature does, or explicitly when for example, the material properties change in the directions perpendicular to \(z\). For example, for a uniform applied electric field, it could be the electrical conductivity that varies in the \(x\) and/or \(y\) directions and this would contribute to the last term in (4.1). This distinction is important since the \(\partial U_d / \partial T\) term is dissipative whereas the \(\nabla U_d\) term contributes to reversible kinematics. The \(\nabla U_d\) term can induce phonons to flow even when there is no temperature gradient.

Taking the divergence of both sides of (4.1), while noting that \(\nabla \cdot \lambda = -c_v \partial T / \partial t\) gives

\[
\frac{\partial^2 T}{\partial t^2} = \frac{1}{3} c^2 (1 - \kappa_{ph}) \nabla^2 T - \frac{c^2 c_T}{3 \kappa} \frac{\partial \nu}{\partial T} + \frac{3 \tau_N c^2}{5} \frac{\partial \nabla^2 T}{\partial t} + \frac{c^2}{6 c_T} \nabla^2 U_d
\]

(4.3)

where

\[\alpha_{ph} \equiv -\frac{1}{2 c_v} \frac{\partial U_d}{\partial T}, \]

(4.4)

is a dimensionless parameter describing the temperature dependence of \(U_d\). The partial differential equation (4.3) resembles the telegraph equation with an external driving function from the explicit variation of \(U_d\). When \(U_d\) is expressed as \(\tau^* \sigma_{el} E^2\), one can readily see that \(\alpha_{ph}\) is positive for materials for which the electrical conductivity \(\sigma_{el}\) decreases with increasing temperature, since the phonon lifetime is also expected to show the same trend. This should include all metals, while for the case of semiconductors having \(\sigma_{el}\) increasing with temperature, there is the possibility of negative \(\alpha_{ph}\). Defining the dimensionless number

\[\nu \equiv -\frac{\partial \ln U_d}{\partial \ln T}, \]

(4.5)

gives the following convenient form for \(\alpha_{ph}\):

\[\alpha_{ph} = \frac{\nu U_d}{2 c_v T}. \]

(4.6)
4.1. Case with symmetry previously broken
The stationary state solution for (4.3) is readily found when \(U_d \) explicitly depends on transverse coordinates. In this case the solution is

\[
T_{ss} - T_a = \frac{U_d}{2(1 - \alpha_{ph})c_V}, \tag{4.7}
\]

The result is a non-flat temperature profile superimposed on top of an otherwise uniform ambient temperature. Joule heating will raise the ambient temperature but in practice, effective external cooling can keep \(T_{ss} \) close to what ambient is when there is no electrical flow. The profile exists even when \(\alpha_{ph} = 0 \). In this case the profile is driven completely by any explicit spatial variation in \(U_d \). The temperature profile becomes flat when the electrical current is turned off and \(U_d = 0 \). This profile is entirely a nonequilibrium effect and the effect will be small with the system near equilibrium. A trickle of current will not suffice; Rather, the system will likely have to pushed quite hard before the profile becomes detectable. For example, if an amount of energy equal to about 1% of the internal thermal energy is dissipated in what is typically a short time \(\tau^* \), then a profile amplitude of about 1% of ambient could be observed. Thin samples with good heat-sinking would avoid excessive temperature rise from Joule heating and allow the opportunity for such profiles to be observed. Indeed, dissipated power levels need not be so high if ambient temperature is well below the Debye temperature where \(c_V \) is small.

A good example system is an alternating ABAB electrically conductive superlattice with the A layers having larger \(\kappa_d \) than the B layers. Electrical current running along the conducting layers will produce the temperature and charge profiles. The A layers will be warmer than the B layers and as will be shown below, electrons will tend to be pushed into the B layers. An applied bias to this superlattice results in the same electric field \(E \) in each layer. Reexpressing (4.7) explicitly in terms of \(E \) gives

\[
T_{ss} - T_a = \frac{\tau^* \sigma_d}{2(1 - \alpha_{ph})c_V}E^2, \tag{4.8}
\]

where it is understood that \(\sigma_{el}, c_V \), and \(\alpha_{ph} \) have a spatial dependence, changing sharply at each AB interface.

In order to make specific calculations and predictions for the induced temperature profile a good estimate for the phonon lifetime \(\tau^* \) is required. The simplest approach is to use the lattice thermal conductivity expression \(\kappa_{latt} = \frac{1}{2}c \nu c_V^2 \tau^* \), which changes (4.8) to

\[
T_{ss} - T_a = \frac{\alpha E^2}{2(1 - \nu \alpha E^2)}, \tag{4.9}
\]

where

\[
\alpha = \frac{3 \kappa_{latt} \sigma_d}{2c_V^2 c^2}. \tag{4.10}
\]

A good electrical conductor like silver would have a relatively large value for \(\alpha \) and be more likely to give measurable values of \(T_{ss} - T_a \). The lattice thermal conductivity for conductors such as Ag can be calculated from first principles [19, 20]. At room temperature (RT) the value is \(\kappa_{latt} = 5.2 \text{ W/mK} \) and at 77 K the value is 12 W/mK. Making use of well-known values for the electrical conductivity, specific heat capacity and speed of sound, [8] allows for easy calculation of the parameter \(\alpha \) and subsequent calculation of the curves shown in figure 2. If the AB superlattice consists of Ag and a relatively poor electrical conductor such as Bi, the result is square wave temperature profile with amplitude \(T_{Ag} - T_{Bi} \). The RT plot in figure 2 (solid black curve) shows an upwards trend with \(T_{Ag} - T_{Bi} \) going as \(E^2 \). Any effects from the \((1 - \nu \alpha E^2) \) factor in the denominator of (4.9) are not seen. A reasonable value for the minimum discernible temperature shift is 1 mK. For such a shift to be produced a 12.2 kV/m field would be required at RT. This is not easily achieved in practice as this temperature profile would be superimposed on top of significant Joule heating that would be difficult to heat sink, even for very thin, planar samples.

Moving to lower temperature does make the task easier as indicated by the 77 K curve (dashed blue). For most of the range of electric fields shown the trend is similar to RT but with larger values of \(T_{Ag} - T_{Bi} \). At fields above \(2 \times 10^7 \text{ V/m} \), the curve bends upwards because of the \((1 - \nu \alpha E^2) \) factor. A value of \(\nu = 3 \) is used since \(\sigma_d \) goes approximately as \(T^{-1} \) and \(\tau^* \) is expected to go as \(T^{-2} \). At 77 K, the minimal discernible temperature of 1 mK is predicted to occur at a field of 2.1 kV/m. This is about 6 times less than at RT. Though these calculations indicate that detection of this temperature profile would not be easy, there does not seem to be any fundamental reason ruling out this detection. To date no electrical transport measurements have shown the effect predicted here. These preliminary investigations suggest that such a predicted temperature profile would be more easily detected at lower temperatures.

It may also be worthwhile for researchers to investigate other dissipative systems as well. The form of (3.16) suggests that any system in which the dissipated energy has a spatial gradient will result in forces on some particles, with the forces on the phonons to ensure momentum conservation. It may be the case that in such
systems these forces are more readily detected. Examples of such systems include chemical reactions (reaction-diffusion dynamics) and front propagation (with dynamics) during phase transitions.

4.2. Case with spontaneous symmetry breaking

In the case where there is no explicit spatial dependence for U_d, the material properties would be assumed to be uniform and (4.3) becomes

$$\frac{\partial^2 T}{\partial t^2} = \frac{1}{3} \varepsilon^2 (1 - \alpha_{ph}) \nabla^2 T - \frac{\varepsilon^2 \gamma_N}{3 \kappa} \frac{\partial T}{\partial t} + \frac{3 \gamma_N \gamma_k^2}{5} \frac{\partial \nabla^2 T}{\partial t}$$ (4.11)

When the system is pushed very hard with high rates of dissipation such that at $\alpha_{ph} \geq 1$, (4.11) becomes unstable; there is a bifurcation, a solution would grow very quickly and would diverge if the system is strictly linear. Taking a spatial Fourier transform of ΔT to $\tilde{T}(k)$, and subsequently adding in an appropriate nonlinear term gives

$$\frac{\partial^2 \tilde{T}}{\partial t^2} = - \frac{1}{3} \varepsilon^2 (1 - \alpha_{ph}) k^2 \tilde{T} - \frac{\varepsilon^2 \gamma_N}{3 \kappa} \frac{\partial \tilde{T}}{\partial t} + \frac{3 \gamma_N \gamma_k^2}{5} \frac{\partial \tilde{T}}{\partial t} = \gamma_k \tilde{T}^2.$$ (4.12)

Adding the nonlinear term ensures a finite stationary solution of $\tilde{T}(k) = (\alpha_{ph} - 1) \varepsilon^2 / 3 \gamma_k$, valid when $\alpha_{ph} > 1$. Nonlinear terms like $\gamma_k \tilde{T}^2$ can arise when the coefficient of thermal conductivity depends on temperature [21]. The details of these nonlinear terms, in particular how they depend on wavevector k, determine which wavelengths are the most prominent. It is possible that this stationary state solution is not spatially uniform, and would therefore constitute spontaneous symmetry breaking.

The partial differential equation (4.12) bears some similarity to the Kuramoto-Sivashinsky (KS) equation, an important analysis tool used in the study of nonequilibrium systems that has been successfully utilized to model patterns formed in laminar flame fronts, certain types of Poiseuille flow, trapped ion modes in plasmas, and systems with Eckhaus instabilities such as Rayleigh-Bénard convection [4–6, 22–25]. Modeling with the KS equation can produce instabilities and interesting pattern formation when the diffusion coefficient is made negative. Though the KS equation has been used widely as a model, clear explanations are lacking in the literature for why a diffusion coefficient can be negative. The analysis presented here shows how a first principles approach can produce an effectively negative diffusion coefficient.

Observation of such an instability and/or pattern formation would likely require very high electrical current along the principal z-axis direction. Brining the system near $\alpha_{ph} = 1$ may dissipate so much energy such as to push the system near the point of irreparable damage, perhaps from melting, vaporization, or oxidation. Indeed, it may be the case that just before this threshold there is considerable channeling at short length scales with the higher temperature channels getting dangerously close to melting or vaporizing. This temperature channeling may be what happens just as the proverbial fuse blows. The above-mentioned positive feedback between channels may make it even more difficult to avoid blowing the fuse.
5. Electron dynamics and comparison

The electron gas motion (transverse to the drift velocity $v_0\hat{z}$) may be described by a mean velocity \mathbf{v} and the momentum density ρ_d is related to the flux vector \mathbf{j} by $\mathbf{j} = \rho_d \mathbf{v}$. The force in (3.17) gives a term contributing to $\partial \mathbf{j} / \partial t$ which otherwise is a simple equation taking into account the gradient in the electron chemical potential μ and ohmic drag. The modified dynamical equation is

$$\frac{\partial \mathbf{j}}{\partial t} + \frac{n_0}{m} \nabla \mu = -\frac{n_0 e^2 \rho_d}{m} - \frac{k_B T}{6m} \nabla n_d - \frac{1}{6m} \nabla U_d$$

(5.1)

where n_d is the electron number density with equilibrium value n_{eq}, ρ_d is the electrical resistivity, and

$$\alpha_d = \frac{1}{k_B T} \frac{\partial U_d}{\partial n_d}. \tag{5.2}$$

Again, the spatial variation of U_d is split into a purely dissipative part with the α_d term because the dissipated energy depends on electron density, as well as the the direct spatial dependence giving the last (reversible) term in (5.1).

Taking the divergence of both sides of (5.1), and noting that $\nabla \cdot \mathbf{j} = -\partial n_d / \partial t$, gives

$$\frac{\partial^2 \tilde{n}}{\partial t^2} + \frac{n_0 e^2 \rho_d}{m} \frac{\partial \tilde{n}}{\partial t} + \left[\omega_p^2 + \frac{3k_B T}{m} \left(1 + \frac{\alpha_d}{18} \right) k^2 \right] \tilde{n} = -\frac{\tilde{U}_d}{6m} k^2,$$

(5.3)

after the spatial Fourier transform to $\tilde{n}(k)$ and $\tilde{U}_d(k)$. The result is a modification of a plasma wave equation suitable for describing Langmuir waves, with the Bohm-Gross dispersion relation:

$$\omega^2(k) = \omega_p^2 + \frac{3k_B T}{m} k^2. \tag{5.4}$$

The stationary state solution is

$$\tilde{n}_d = -\frac{\tilde{U}_d k^2}{6m\omega_p^2 + 18k_B T \left(1 + \frac{\alpha_d}{18} \right) k^2}. \tag{5.5}$$

Unless α_d is particularly large, the dependence of U_d on n_d plays a minor role here. Also the general positive characteristic of α_d means that any spontaneous symmetry breaking will not come directly from the electrons.

5.1. Comparison to phonon results

Comparing (4.7) to (5.5) for stationary states shows that the temperature profile is anticorrelated to the electron density profile. The occurs as the direct result of the opposing nature of the phonon and electron forces. This anticorrelation is stronger for electrons at shorter length scales, since the charge profile falls off at large length scales. The interplay between phonon and electron displacements can be better understood in the case where a system that is initially uniform spatially, has enough electrical current applied such that the bifurcation point $\alpha_{ph} = 1$ has been reached. The instability is expected to make some regions hotter than others. By the definition of α_{ph} this means that the relatively cooler regions will experience an increase in U_d, thus making U_d no longer uniform. This means that for the expected positive α_d, the cooler regions will receive extra electrons. Not only is a non-flat charge profile created spontaneously, but the direction of the electronic relaxation is such as to increase U_d even more. This positive feedback for electrons works in concert with that of the phonons to increase and amplify any spatially non-uniform features in U_d.

5.2. Impact on general nonequilibrium approaches

This has interesting implications on research approaches that have been developed for the general treatment of nonequilibrium systems. One such approach is GENERIC (general equation for the nonequilibrium reversible-irreversible coupling), in which the dynamical equations for dissipative fluids is described by two distinct terms, one for reversible Poisson kinematics and one for dissipative Ginzburg-Landau kinematics [26–28]. Produced here is are dissipative terms which might be expected, except that they are forces perpendicular to the principle axis of conduction of the main variable. The dissipation potential energy density U_d may be closely related to the dissipative potential function Ψ, used in the GENERIC scheme.

The function U_d cannot be the same as Ψ because also produced here, and perhaps not as expected, are conservative terms that fit in perfectly well into the Poisson kinematics, and having dissipation as their fundamental source. More precisely, it is pure dissipation in the one principle direction that produces reversible terms in the Hamiltonian that are perpendicular to that direction. Thus the same function U_d winds up contributing to both sides, reversible and irreversible, of the GENERIC formalism.

What has happened is that the x and y directions have become coupled when double vertex scattering has been taken into account. The result of the perpendicular conservative forces is quite surprising.
6. Conclusions

In summary, the theoretical approach presented here predicts the existence of forces, equal and opposite, on electrons and phonons, perpendicular to the primary flow direction of electrons. The force terms include both conservative and dissipative components. The conservative components exist only when there exist explicit transverse gradients in the dissipated energy. The dissipative force terms can cause spontaneous symmetry breaking when the dissipation exceeds a threshold. It is hoped that these results represent a step towards establishing a clear link between fundamental scattering physics and the study of pattern formation in nonequilibrium systems.

Acknowledgments

I thank Cathy J Meyer for her assistance in editing the manuscript.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

Appendix A.

Here the six force terms (3.2.a)-(3.2.f) are explicitly evaluated when the electronic system is away from equilibrium.

A.1. Evaluation of $f_{1>} + f_{2>} + f_{1<} + f_{2<}$

Since states near the Fermi level are expected to make the most significant contributions to these integrals, one can assume b and b' are small and one arrives at the method for replacing nonequilibrium electron occupancies g_k and g_q with equilibrium functions:

$$-g_k(1 - g_k) n^0_q (1 + n^0_q) \approx g_k^0 (1 - g_k^0) n_q^0 (1 + n_q^0) a_{1>}$$ \hspace{1cm} (A.1)

with

$$a_{1>} = -1 + \gamma_3^0 g_k^0 \left[-1 + \beta^2 E_k (E_k - \mu) \cos^2 \theta \right] - \gamma_3^0 (1 - g_k^0) \left[-1 + \beta^2 E_k (E_k - \mu) \cos^2 \theta \right]$$ \hspace{1cm} (A.2)

noting that $\gamma_1^2 = 4 \gamma_3^0 E_k \cos^2 \theta$. Thus

$$f_{1>} = \hbar \int \int \int g_k^0 (1 - g_k^0) n_q^0 (1 + n_q^0) a_{1>} A_k^0 \sum_{q} \sum_{q'} dkdq'dq''.$$ \hspace{1cm} (A.3)

For $a_{1<}$ one simply replaces ϵ_q with $-\epsilon_q$. Proceeding similarly for the evaluation of $f_{2>}$, while using the principle of detailed balance [9] in the form:

$$g_q^0 (1 - g_q^0) n_q^0 (1 + n_q^0) = g_q^0 (1 - g_q^0) n_q^0 (1 + n_q^0)$$ \hspace{1cm} (A.4)

gives

$$f_{2>} = \hbar \int \int \int g_k^0 (1 - g_k^0) n_q^0 (1 + n_q^0) a_{2>} A_k^0 \sum_{q} \sum_{q'} dkdq'dq''.$$ \hspace{1cm} (A.5)

with

$$a_{2>} = 1 - g_k^0 \left[-\gamma_2 + \frac{1}{2} \gamma_2 \tanh \frac{b}{2} \right] + (1 - g_k^0) \left[-\gamma_2' + \frac{1}{2} \gamma_2' \tanh \frac{b'}{2} \right]$$ \hspace{1cm} (A.6)

Next, accounting for the phonon energy ϵ_q:

$$g^0 (E_k - \epsilon_q) \approx g^0 (E_k) + g^0 (E_k) [1 - g^0 (E_k)] \beta \epsilon_q.$$ \hspace{1cm} (A.7)

This is used with some algebra to give:

$$f_{1>} + f_{2>} = \hbar \int \int \int g_k^0 (1 - g_k^0) n_q^0 (1 + n_q^0) (a_{1>} + a_{2>}) A_k^0 \sum_{q} \sum_{q'} dkdq'dq''$$

$$- \hbar \int \int \int [g_k^0]^2 (1 - g_k^0) \beta \epsilon_q n_q^0 (1 + n_q^0) (a_{1>} + a_{2>}) A_k^0 \sum_{q} \sum_{q'} dkdq'dq''.$$ \hspace{1cm} (A.8)
where the arrows on the integrals are now dropped. With some more algebra the first four force terms add to:

\[
\begin{align*}
&f_1 + f_2 + f_3 + f_4 = -2i\gamma_2 \beta^2 \int \int \int \int g_k^0(1 - g_k^0) n_q^0(1 + n_q^0) E_k(E_k - \mu) \\
&\quad \times (\cos^2 \theta - \cos^2 \theta') A_{k,q}^{K,q'} q_k dkd'qdq' + 2i\gamma_2 \beta^2 \int \int \int \int g_k^0(1 - g_k^0) n_q^0(1 + n_q^0) \\
&\quad \times (\epsilon_{q'}^2 \cos^2 \theta') A_{k,q}^{K,q'} q_k dkd'qdq' + 2i\gamma_2 \beta^2 \int \int \int \int \int g_k^0(1 - g_k^0) n_q^0(1 + n_q^0) \\
&\quad \times (E_k - \mu) \epsilon_{q'}^2 \cos^2 \theta' A_{k,q}^{K,q'} q_k dkd'qdq'.
\end{align*}
\]

(A.9)

A.2. Evaluation of \(f_3 + f_4 \)

For the force terms \(f_3 \) and \(f_4 \),

\[
E_k = E_k - \epsilon_q. \text{ From (3.7)}
\]

\[
g_k(1 - g_k)(1 + n_q^0)(1 + n_q^0) \approx g_k^0(1 - g_k^0)(1 + n_q^0)(1 + n_q^0) a_3,
\]

(A.10)

with

\[
a_3 = 1 + (1 - g_k^0) \beta \cdot [1 - \beta^2 E_k(E_k - \mu) \cos^2 \theta] \\
\quad - \gamma_2 g_k^0[1 - \beta^2 E_k(E_k - \mu) \cos^2 \theta'] \\
\quad + \gamma_2 g_k^0 \beta^2 [\epsilon_{q'}(E_k - \mu) + \epsilon_{q'} \epsilon_q E_k - \epsilon_{q'}^2] \cos^2 \theta'.
\]

(A.11)

From (3.8)

\[
-g_k(1 - g_k) n_q^0 n_q^0 \approx -g_k^0(1 - g_k^0)(1 + n_q^0)(1 + n_q^0) a_4,
\]

(A.12)

with

\[
a_4 = 1 - g_k^0 \beta \cdot [1 - \beta^2 E_k(E_k - \mu) \cos^2 \theta] \\
\quad + \gamma_2 (1 - g_k^0)[1 - \beta^2 E_k(E_k - \mu) \cos^2 \theta'] \\
\quad + \gamma_2 (1 - g_k^0) \beta^2 [\epsilon_{q'}(E_k - \mu) - \epsilon_{q'} \epsilon_q E_k + \epsilon_{q'}^2] \cos^2 \theta'.
\]

(A.13)

Noting

\[
a_3 + a_4 = \gamma_2 \beta^2 E_k(E_k - \mu) \cos^2 \theta - \cos^2 \theta' \\
+ \gamma_2 \beta^2 e_{q'}[2E_k - \mu] \cos^2 \theta' - \gamma_2 \beta^2 \epsilon_{q'} \cos^2 \theta',
\]

(A.14)

one concludes

\[
f_3 + f_4 = \frac{\hbar}{2} \int \int \int \int g_k^0(1 - g_k^0)(1 + n_q^0)(1 + n_q^0)(a_3 + a_4) A_{k,q}^{K,q'} q_k dkd'qdq'.
\]

(A.15)

A.3. \(f_1 > + f_2 > + f_1 < + f_2 < + f_3 + f_4 \)

Bringing (A.9) and (A.15) together, \(f_1 > + f_2 > + f_1 < + f_2 < + f_3 + f_4 = f_{ph,x} \) with

\[
f_{ph,x} = 2i\gamma_2 \beta^2 \int \int \int \int g_k^0(1 - g_k^0) n_q^0(1 + n_q^0) \\
\times \{E_k(E_k - \mu)(\cos^2 \theta' - \cos^2 \theta) + \epsilon_{q'}^2 \epsilon_q^2 \cos^2 \theta' + g_k^0(1 - g_k^0) \epsilon_{q'}^2 \cos^2 \theta' \} \\
\times A_{k,q}^{K,q'} q_k dkd'qdq' + \frac{1}{2} i\gamma_2 \beta^2 \int \int \int \int g_k^0(1 - g_k^0)(1 + n_q^0)(1 + n_q^0) \\
\times \{E_k(E_k - \mu)(\cos^2 \theta - \cos^2 \theta') + \epsilon_{q'}^2[2E_k - \mu] \cos^2 \theta' - \epsilon_{q'}^2 \cos^2 \theta' \} \\
\times A_{k,q}^{K,q'} q_k dkd'qdq'.
\]

(A.16)

Appendix B.

Here only first order electron-phonon scattering is considered, with electron wavevectors \(k \) and \(k' \) and phonon wavevector \(q' \) that is either emitted or absorbed:

\[
\frac{\partial n_{q'}}{\partial t} \bigg|_{sp} = \int \int \left[g_k(1 - g_k)(1 + n_{q'}) - g_{k'}(1 - g_{k'}) n_{q'} \right] \\
\times W_k^{K,q'} \delta(k' + q'' - k)dkd'k.'
\]

(B.1)
The rates $\frac{\partial n_{\text{ph}}}{\partial t}$ for phonon density increasing with time, and $\frac{\partial u_{\text{ph}}}{\partial t}$ for phonon energy density increasing with time, are then readily obtained:

$$\frac{\partial n_{\text{ph}}}{\partial t} = \int \int \int [g_{k}(1 - g_{k}) (1 + n_{q'}) - g_{k'} (1 - g_{k}) n_{q'}] \times W^{k, q'}_k \delta(k' + q'' - k) \, dk' \, dq'' ,$$

(B.2)

and

$$\frac{\partial u_{\text{ph}}}{\partial t} = \int \int \int \epsilon_{q'} [g_{k}(1 - g_{k}) (1 + n_{q''}) - g_{k'} (1 - g_{k}) n_{q''}] \times W^{k, q''}_k \delta(k' + q'' - k) \, dk' \, dq'' .$$

(B.3)

Making use of (3.7) and (3.8), the principle of detailed balance, while taking the Bloch assumption [9] $n_{q''} = n_{q''}^{0}$ gives

$$\frac{\partial u_{\text{ph}}}{\partial t} = \frac{1}{2} \int \int \int \epsilon_{q'} g_{k}^{0} (1 - g_{k}^{0}) (1 + n_{q'}^{0}) \left[-\gamma_{1}^{0} \tanh \frac{b'}{2} + \gamma_{1}^{0} \tanh \frac{b}{2} \right] \times W^{k, q'}_k \delta(k' + q'' - k) \, dk' \, dq'' .$$

(B.4)

Next note that

$$-\gamma_{1}^{0} \tanh \frac{b'}{2} + \gamma_{1}^{0} \tanh \frac{b}{2} \approx \frac{\gamma_{2}^{0} b^2}{2m} \left[-k_{z}^{0} b' + k_{z} b \right] .$$

(B.5)

So

$$\frac{\partial u_{\text{ph}}}{\partial t} = \frac{\gamma_{2}^{0} b^2}{4m} \int \int \int \epsilon_{q'} g_{k}^{0} (1 - g_{k}^{0}) (1 + n_{q'}^{0}) \times \left[-k_{z}^{0} b' \cos^{2} \theta' + k_{z} b \cos^{2} \theta \right] W^{k, q'}_k \delta(k' + q'' - k) \, dk' \, dq'' .$$

(B.6)

or

$$\frac{\partial u_{\text{ph}}}{\partial t} = \frac{\gamma_{2}^{0} b^2}{2} \int \int \int \epsilon_{q'} g_{k}^{0} (1 - g_{k}^{0}) (1 + n_{q'}^{0}) \times \left[-E_{k'} (E_{k'} - \mu) \cos^{2} \theta' + E_{k} (E_{k} - \mu) \cos^{2} \theta \right] W^{k, q'}_k \delta(k' + q'' - k) \, dk' \, dq'' .$$

(B.7)

Using $E_{k'} = E_{k} - \epsilon_{q''}$ gives

$$-E_{k} (E_{k} - \mu) \cos^{2} \theta' + E_{k} (E_{k} - \mu) \cos^{2} \theta = E_{k} (E_{k} - \mu) [\cos^{2} \theta - \cos^{2} \theta']$$

$$+ \epsilon_{q''} (E_{k} - \mu) \cos^{2} \theta' + \epsilon_{q''} E_{k} \cos^{2} \theta' - \epsilon_{q''}^{2} \cos^{2} \theta' .$$

(B.8)

This resembles the second term of the phonon x-force. Expecting the major contribution to the integral to come from states near $E_{k} \approx \mu \approx E_{k}$ gives

$$\frac{\partial u_{\text{ph}}}{\partial t} = \frac{\gamma_{2}^{0} b^2 E_{k}}{2} \int \int \int \epsilon_{q''} g_{k}^{0} (1 - g_{k}^{0}) (1 + n_{q''}^{0}) \times W^{k, q''}_k \cos^{2} \theta' \delta(k' + q'' - k) \, dk' \, dq'' .$$

(B.9)

ORCID iDs

SN Patitsas https://orcid.org/0000-0002-6432-0148

References

[1] Luttinger J M 1963 J. Math. Phys. 4 1134–62

[2] Haldane F D M 1981 Luttinger liquid theory of one-dimensional quantum fluids. I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas J. Phys. C: Solid State Phys. 14 2585–609

[3] Kim C, Matsura A Y, Eisaki H, Uchida S, Tohyama T and Maekawa S 1996 Observation of spin-charge separation in one-dimensional SrCuO2 Phys. Rev. Lett. 77 4054–7

[4] Cross M and Hohenberg P C 1993 Pattern formation outside of equilibrium Rev. Mod. Phys. 65 851–1112

[5] Cross M and Greenside H 2009 Pattern Formation and Dynamics in Nonequilibrium Systems (New York, NY: Cambridge)

[6] Desai R C and Kapral R 2009 Dynamics of Self-Organized and Self-Assembled Structures (New York, NY: Cambridge)

[7] Patitsas S N 2019 Nonequilibrium phase transitions and pattern formation as consequences of second-order thermodynamic induction Phys. Rev. E 100 022116
[8] Ashcroft N W and Mermin D N 1976 Solid State Physics 1st edn (Philadelphia: Saunders College)
[9] Ziman J 1960 Electrons and Phonons (London: Oxford University Press)
[10] Sussmann J A and Thellung A 1963 Thermal conductivity of perfect dielectric crystals in the absence of umklapp processes Proceedings of the Physical Society 81 1122–30
[11] Guyer R A and Krumhansl J A 1966 Solution of the linearized phonon Boltzmann equation Phys. Rev. 148 766–78
[12] Jackson H E and Walker C T 1971 Thermal conductivity, second sound, and phonon-phonon interactions in NaF Phys. Rev. B 3 1428–39
[13] Srivastava G 1990 The Physics of Phonons (New York, NY: Adam Hilger)
[14] Kreuzer H 1981 Nonequilibrium Thermodynamics and its Statistical Foundations (Oxford, England: Clarendon)
[15] Falco C M, Bennett W R and Boufelfel A 1985 Metal-metal superlattices Dynamical Phenomena at Surfaces, Interfaces and Superlattices ed F Nizzoli, K-H Rieder and R F Willis (Berlin Heidelberg: Springer) pp 35–47
[16] Krumhansl J A 1965 Thermal conductivity of insulating crystals in the presence of normal processes Proceedings of the Physical Society 85 921–30
[17] Joseph D D and Preziosi L 1989 Heat waves Rev. Mod. Phys. 61 41–73
[18] Goldstein H, Poole C and Safko J 2002 Classical Mechanics 3rd edn (New York, NY: Addison Wesley)
[19] Wang Y, Lu Z and Ruan X 2016 First principles calculation of lattice thermal conductivity of metals considering phonon-phonon and phonon-electron scattering J. Appl. Phys. 119 225109
[20] Jain A and McGaughey A J H 2016 Thermal transport by phonons and electrons in aluminum, silver, and gold from first principles Phys. Rev. B 93 081206
[21] Di Domenico M, Jou D and Sellitto A 2020 Nonlinear heat waves and some analogies with nonlinear optics Int. J. Heat Mass Transfer 156 119888
[22] Kuramoto Y and Tsuzuki T 1976 Persistent propagation of concentration waves in dissipative media far from thermal equilibrium Prog. Theor. Phys. 55 356
[23] Sivashinsky G 1977 Nonlinear analysis of hydrodynamic instability in laminar flames i. derivation of basic equations Acta Astronaut. 4 1177–206
[24] Michelson D 1986 Steady solutions of the Kuramoto-Sivashinsky equation Physica D 19 89–111
[25] Manneville P 1988 The Kuramoto-Sivashinsky Equation: A Progress Report (Berlin Heidelberg: Springer) pp 265–80
[26] Grmela M and Öttinger H C 1997 Dynamics and thermodynamics of complex fluids. I. Development of a general formalism Phys. Rev. E 56 6620–32
[27] Öttinger H C and Grmela M 1997 Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism Phys. Rev. E 56 6633–55
[28] Beris N B and Brian J E 1994 Thermodynamics of Flowing Systems: with Internal Microstructure (Oxford: Oxford University Press)