Dynamical shapes of droplets of cyclodextrin-surfactant solutions

J. Roberto Romero-Arias¹, Alberto S. Luviano², Miguel Costas², Aurora Hernandez-Machado³,⁴ & Rafael A. Barrio⁵*

We present a series of experiments with droplets of aqueous cyclodextrin-surfactant solutions, in which the volume is reduced after the equilibrium spherical shape is reached. The final shape of the drop after this perturbation is found to be dependent on the concentration of inclusion complexes in the bulk of the solution. These inclusion complexes are formed by two cyclodextrin molecules and one surfactant molecule. We propose a model to describe these dynamical processes. Dipole–dipole interactions on the surface of the drop trigger a competition between water surface tension and dipole–dipole interaction energies. The results of the model reproduce the spherical and rod-like shapes found in the experiments.

Shape of vesicles play a critical role in many processes, including coating, cosmetics, drug delivery, therapeutics and others, in which the scale varies from nanometers to micrometers. As an important example of this is that the cellular intake efficiency of drug delivery depends on the shape of the capsule carrying the drug⁴. Encapsulation of drugs in liposomes has proved to be very promising in cancer treatment⁵. Vesicles and annular rings of surfactant-cyclodextrin complexes have been found at the high concentration regime, well above the surfactant critical micelle concentration⁶,⁷. Furthermore, producing emulsions with two immiscible liquids one can obtain carrier vehicles of the appropriate size⁸. Usually the droplets are stabilized with a surfactant at low concentration, obtaining spherical carriers with low encapsulation efficiency⁹. On the other hand, it has been demonstrated that other shapes, as rods, are more convenient to use in certain cases¹⁰. Hydrophobins have attracted great attention due to their roles in fungal growth¹¹, mostly related to surface-chemical properties. They also present high activity to adhere to surfaces. It remains a challenge to understand the role of their rod-like shape to change the surface affinity to surfaces of superhydrophobic properties, their viscoelasticity and other multifunctional properties for interface engineering, such as hydrophobic drug solubility and delivery biosensing¹². In here we found a way of producing non-spherical shapes of hanging drops (the radius of the drops is 1.68 mm, about half the capillary length of water), by taking advantage of the interesting physical properties of drops of aqueous cyclodextrin-surfactant solutions.

In Ref.¹³ we have studied the rheological behavior of a cyclodextrin-surfactant solution in water in the low concentration regime using the hanging drop technique as a function of the concentration. The striking increase of the viscoelastic response of this system and the unexpected variation of the surface tension when varying the composition was demonstrated to be due to the dipole–dipole interactions of the polar molecular complexes that order themselves on the surface of the droplet.

The surface tension and dilatational rheology of the adsorbed material at the liquid/air interface for the mixture C₁₄SO₄ (S) + α-cyclodextrin (α-CD) + water with $R = [S]/[α-CD]$ at 283.15K were measured by the hanging drop technique using an image drop profile tensiometer. The experimental setup and the employed methodology are described in detail in Ref.¹⁴. In the experiment one measures the surface tension and dilatational rheology of the adsorbed material at the liquid/air interface at equilibrium, then, the drop is sucked in to a fraction of its volume forming a thin neck, which is concentration dependent, and one waits until the drop acquires its final equilibrium shape.

In this work we have performed experiments to study the dynamic evolution from an unstable equilibrium state of the droplet shape by changing the concentrations of the cyclodextrin and surfactant in the solution. In Fig. 1, we show snapshots of the dynamic evolution. In a, b and c we show sequences with drops of different R values. Initially the drop volume was 20 µl and was left to equilibrate (constant surface tension), then the volume
was reduced to 14 µl and the drop develops a neck of different widths, depending on R. As time goes by, the snapshots show that the constant volume drop widens its neck, finally forming a sphere in a, or a rod-like shape in c and an intermediate shape in b. These snapshots have been extracted from the videos shown in the Supplementary Material (SM). The drop behavior seen in Fig. 1 for different values of the ratio R is remarkable. We observe that the drop changes shape following a favorable curvature to avoid the unfavorable curvature of its neck.

Here we present a mathematical treatment that predicts the dynamical behavior of the experiments shown in Fig. 1, based on a phase field model. Phase-field approaches are suitable to model the dynamics of interfaces that change their shape under certain conditions. For example, in two dimensions, the competition between dipole–dipole interaction between charged molecules and line tension leads to the formation of non-circular domains, like starfish shapes\(^{13-21}\). In this work, we propose a dynamical phase-field theoretical model to study the shapes of a drop that initially is taken out of equilibrium. We show that there is a new contribution to the surface energy due to the dipole–dipole interactions because the polar heads of the surfactants, forming the \((\alpha\text{-CD})_2:S\) complexes, tend to be on the surface and conserve the total area of the drop, resulting in unusual equilibrium shapes.

Methods

Our phase field model is defined by means of a total bending energy formalism that can be written as

\[
\mathcal{F} = \frac{\kappa}{2} \int \nabla^2 \bar{\Psi} \, ds + \int \gamma \nabla \bar{\Psi} \cdot \nabla \bar{\Psi} \, ds + \int \lambda dU_s, \tag{1}
\]

where the first term represents the curvature contribution, the second term is the surface tension energy and the additional third term accounts for the surface energy contributions due to dipole–dipole interactions. Here \(\kappa\) is the bending modulus, \(\gamma\) is the effective surface tension coefficient, and \(\lambda\) is a functional of the local surface, since the action of the dipole–dipole energy \(U_s\) occurs only there.

The dipole–dipole energy density in Eq. (1) is

\[
dU_s = \frac{1}{2} \frac{\mu_e^2 \xi}{4\pi \varepsilon_0 d_s^3} \frac{h}{d_s} ds, \tag{2}
\]

where \(\mu_e\) is the electrical dipole moment for complexes \((\alpha\text{-CD})_2:S\), \(\xi\) is the number of first neighbors, \(\varepsilon_0\) is the vacuum permittivity, \(h\) is the thickness of the surface layer where the dipoles are accommodated, \(d_s\) is an effective distance between dipoles defined as \(d_s = d + 0.2c^{3/2}\), where \(d\) is the mean distance between dipoles used in Ref.\(^{11}\), in order to reproduce experimental data\(^{13}\) for \(\text{C}_{14}\text{SO}_{4}\) and \(ds\) is the element of area.

The behavior of the surface tension as a function of the concentration ratio \(R\) is shown in Fig. 2. In Ref.\(^{11}\), we showed that dipole–dipole interactions are responsible for the effective surface tension behavior as a function of the concentration of complexes in the bulk aqueous solution. These complexes are 2:1 entities i.e. formed by 2 cyclodextrin molecules and 1 surfactant molecule. At the temperature and concentration conditions used in this work we verified, using isothermal titration calorimetry\(^{12,22}\), that there is no formation of micelles and/or crystallization in the samples. The surface tension is written as
where γ_0 is the surface tension of water, γ_{dp} is the contribution of dipole charges on the surface and the term ηc_S arises from the action of surfactant molecules concentration in the bulk c_S. The surface tension due to charges is written as 11

$$\gamma_{dp} = \frac{\mu e^2 \zeta}{8\pi \varepsilon_0 d^4} \left(\frac{4\pi [S]}{3n} \right)^{2/3},$$

where N_S is number of dipoles that could be accommodated on a surface layer and n is the number of moles of these dipoles.

In Fig. 2 we show surface tension as function of the ratio R, obtained with the model presented in Ref. 11 and compared it with the experimental findings in Ref. 12. Notice that for small values of R (from 0 to = 0.3) the surface tension decreases reflecting the increasing concentration of surfactant at the liquid/air interface, then there is an intermediate regime in which contribution of the dipoles increases the surface tension and, finally at larger R values, where the surfactant becomes dominant, the surface tension of the system drops sharply. One concludes that the surface tension energy is dominant for small and large R and that for intermediate values the bending energy is the one that plays the main role 23.

A phase-field model of the Cahn–Hilliard type can be defined from Eq. (1), as in Ref. 13, in which the authors express the free energy \mathcal{F} of the system as an expansion of powers of a smooth scalar field $\phi : \Omega \subset \mathbb{R}^3 \rightarrow \mathbb{R}$, that acts as an order parameter. One of the stable phases, typically defined by $\phi = 1$, corresponds to the interior of the volume delimitated by the interface located at $\phi = 0$, whereas $\phi = -1$ represents the outer environment 13.

Considering that the element of area in the phase-field approach is

$$\int_{\Gamma} d\sigma = \int_{\Omega} a[\phi] dV,$$

where

$$a[\phi] = \frac{3|\nabla \phi|^2}{4\sqrt{2}\varepsilon},$$

and $\propto a[\phi]$ in Eq. (1). Thus, the total free energy in Eq. (1) can be written as

$$\mathcal{F} = \frac{k}{2} \int_{\Omega} (\mu[\phi])^2 dV + \frac{\varepsilon^2}{2} \int_{\Omega} |\nabla \phi|^2 dV + \frac{\varepsilon_4}{4} \int_{\Omega} |\nabla \phi|^4 dV,$$

where

$$\mu[\phi] = -\phi + \phi^3 - \varepsilon^2 \nabla^2 \phi,$$
ε + 1 (κ = ∇·∇ − δεKBT 6γ 1ε∇ − {\partial φ/∂t})

Figure 3. Shapes of the interface φ = 0 for different values of R obtained from the numerical integration of Eq. (9). The shapes correspond to 10^5, 0.5 × 10^6, 10^6 and 2 × 10^6 dt interactions. In (a) R = 0.20, (b) R = 0.34 and (c) R = 0.41.

and κ = 3\sqrt{2κ}/8ε^3, γ = 6\sqrt{2γ}/4ε^3, δ = 1/2 μ^2κ^2 (6γ/4ε)^2. The parameter ε represents the width of the diffuse interface between the two phases.

The time evolution of the phase-field is set according to the Cahn–Hilliard dynamics, since the volume is supposed to be locally conserved15–18. The functional variations of the free energy with respect to interface between the two phases.

Observe that the two terms in |\partial φ/∂t| compete between them, one is due to the surface tension (炀) and the other to the dipole interaction (δ). The curvature term (κ) can induce a rod-like shape, instead of the usual spherical shape, when the slope of the surface tension in Fig. 2 changes sign.

Results and discussion
By solving Eq. (9), it is possible to find, for instance, the equilibrium shape attained by a drop after a sudden change in volume. Therefore, we performed three dimensional calculations using the same method of integration as in Ref. 13. We used a finite-difference scheme for the spatial discretization and an Euler method for the temporal derivatives with the appropriate time step of dt = 10^{-4} and ε = 1, small enough to avoid artifacts24.

Figure 3 shows the evolution of different drops using the phase-field model by numerically integrating the dynamical Eq. (9). By comparing these shapes with those from the experiment in Fig. 1 we confirm our hypothesis of the competition between surface tension and curvature due to dipole–dipole interactions. When R = 0.20 water surface tension dominates and the equilibrium shape is spherical, while for R = 0.41 the curvature energy is important and the drop develops a large thick neck, acquiring the experimentally observed rod-like shape.

As the initial condition we take the droplets that follows the snapshots that corresponds to 10 s in the Fig. 1. For different values of R. The numerical integration was performed in a cubic lattice of 40 units. The initial drops have 20 units of height, a radius of 6 units for the spherical part and a neck of radius equal to 2 units. The initial volume is 800 cubic units. We integrated Eq. (9) imposing zero flux boundary conditions on the walls of the domain and k = 10 K_B T. Taking into account the initial volume of the droplets, these values provide a unit distance of 0.25 mm per pixel and a bending modulus of k = 5.3 K_B T. The other parameters take the values: γ = 135.4 mN/m, γ = 122.9 mN/m, γ = 127.1 mN/m and; δ = 28.9 mN/m, δ = 27.7 mN/m, δ = 21.3 mN/m, for R = 0.20, R = 0.34 and R = 0.41, respectively. In the simulation we get a frame every 2000 steps of size dt.

Thus, in 2 × 10^6 dt iterations we took 1000 frames. On the other hand, the tensiometer used in the experiment is equipped with a high-resolution CCD camera that saves 123 frames per second12. When comparing the number of frames in the simulation with the evolution of the droplets in Fig. 1, we have that the total simulation time is
approximately 8 s, which is of the same order of magnitude as in the experiment. Under these considerations, the time step dt of the simulation is equivalent to 2.5 μs.

Conclusions
Here we presented experiments and proposed a dynamical model to describe shape evolution and stationary states of droplets of cycloextrin-surfactant solutions. We have demonstrated that dipole–dipole interactions play a crucial role in determining the shape of the drops via a competition with surface tension. One can obtain spherical shapes and rod-like shapes by tuning the relative strength of the surface tension and mean curvature. The predictions of the model are in complete agreement with our experimental results. These findings are important, since when using liposomes in drug delivery technologies, the rod-like shape is crucial to determine the drug encapsulation control.

The systems that we have studied here contain cycloextrinsics that generated a considerable elastic response at interfaces. The essence of this effect is that the surfactant-stabilized cycloextrin pair generates a dipole and that interactions among dipoles strengthen the surface. This assembly is stiffer than typical surfactants, a property shared by hydrophobins, several of which also show strong elastic surfaces. Interesting filamentous fungi rod-like shapes are observed in hydrophobins and the typical rod-like shape is common in many aerial fungal structures. Hydrophobins are good potential candidates to be studied in the framework of the present theoretical model, and will be the subject of our future research.

Acknowledgements
J.R.R.A. thanks the IIMAS Department of Mathematics and Mechanics for allowing him to join its group

Received: 6 December 2021; Accepted: 4 February 2022
Published online: 28 March 2022

References
1. Li, Y., Kröger, M. & Liu, W.K. Shape effect in cellular uptake of pegylated nanoparticles: Comparison between sphere, rod, cube and disk. Nanoscale 7, 16631–16646. https://doi.org/10.1039/C5NR02970J (2015).
2. Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).
3. Jiang, L. et al. “annular ring” microtubes formed by sds/2prüf complexes in aqueous solution. Soft Matter 6, 1731–1736. https://doi.org/10.1039/B920608F (2010).
4. Jiang, L., Peng, Y., Yan, T. & Huang, J. Aqueous self-assembly of sds/2prüf complexes: Lamellae and vesicles. Soft Matter 7, 1726–1731. https://doi.org/10.1039/C0SM00917B (2011).
5. Ushida, A. S. et al. Monodisperse double emulsions generated from a microcapillary device. Science. 308, 537–541. https://doi.org/10.1126/science.1109164 (2005).
6. de Vocht, M. L. et al. Structural characterization of the hydrophobin sc3, as a monomer and after self-assembly at hydrophobic/hydrophilic interfaces. Biophys. J. 74, 2059–2068. https://doi.org/10.1016/S0006-3495(97)77912-3 (1998).
7. Wosten, H. A. B. & Wessels, J. G. H. Hydrophobins, from molecular structure to multiple functions in fungal development. Mycobiology 38, 363–374. https://doi.org/10.1017/BI02464999 (1997).
8. Torkkeli, M., Serimaa, R., Ikkala, O. & Linder, M. Aggregation and self-assembly of hydrophobins from Trichoderma reesei: Low-resolution structural models. Biophys. J. 83, 2240–2247. https://doi.org/10.1016/S0006-3495(02)73984-2 (2002).
9. Alexandrov, N. A. et al. Interfacial layers from the protein hβ1i hydrophobin: Dynamic surface tension, dilational elasticity and relaxation times. J. Colloid Interface Sci. 376, 286–306. https://doi.org/10.1016/j.jcis.2012.03.031 (2012).
10. Berger, B. W. & Sallada, N. D. Hydrophobins: Multifunctional biosurfactants for interface engineering. J. Biol. Eng. 13, 10. https://doi.org/10.1186/s13036-018-0136-1 (2019).
11. Romero-Arias, J. R., Luvisano, S. A., Costas, M., Hernández-Machado, A. & Barrio, R. A. Dipole–dipole interactions control the interfacial rheological response of cycloextrin/surfactant solutions. Soft Matter 17, 2652–2658. https://doi.org/10.1039/D0SM01796E (2021).
12. Luvisano, S. A. et al. Highly viscoelastic films at the water/air interface: α-cycloextrin with anionic surfactants. J. Colloid Interface Sci. 565, 601–613. https://doi.org/10.1016/j.jcis.2019.12.012 (2020).
13. Campelo, F. & Hernandez-Machado, A. Dynamic model and stationary shapes of fluid vesicles. Eur. Phys. J. E 20, 37–45 (2006).
14. Campelo, F. & Hernández-Machado, A. Model for curvature-driven pearling instability in membranes. Phys. Rev. Lett. 99, 088101 (2007).
15. Campelo, F. & Hernández-Machado, A. Polymer-induced tubulation in lipid vesicles. Phys. Rev. Lett. 100, 158103 (2008).
16. Campelo, F., Cruz, A., Pérez-Gil, J., Vázquez, I. & Hernández-Machado, A. Phase-field model for the morphology of monolayer lipid domains. Eur. Phys. J. E 35, 49 (2012).
17. Lázaro, G. R., Pagonabarraga, I. & Hernández-Machado, A. Phase-field theories for mathematical modeling of biological membranes. Chem. Phys. Lipids 185, 46–60 (2015).
18. Rueda-Contreras, M. D., Romero-Arias, J. R., Aragon, J. L. & Barrio, R. A. Curvature-driven spatial patterns in growing 3D domains: A mechanochemical model for phyllotaxis. PLoS One 13, e0201746 (2018).
19. Lázaro, G. R., Hernández-Machado, A. & Pagonabarraga, I. Rheology of red blood cells under flow in highly confined microchannels: I. Effect of elasticity. Soft Matter 10, 7195–7206 (2014).
20. Du, Q., Liu, C. & Wang, X. A phase field approach in the numerical study of the elastic bending energy for vesicle membranes. J. Comput. Phys. 198, 450–468 (2004).
21. Barrio, R., Alarcon, T. & Hernandez-Machado, A. The dynamics of shapes of vesicle membranes with time dependent spontaneous curvature. PLoS One 15, e0227562 (2020).
22. Ondo, D. & Costas, M. Complexation thermodynamics of α-cycloextrin with ionic surfactants in water. J. Colloid Interface Sci. 305, 445–453. https://doi.org/10.1016/j.jcis.2007.05.093 (2017).
23. Iwamoto, M. & Ou-Yang, Z.-C. Shape deformation and circle instability in two-dimensional lipid domains by dipolar force: A shape- and size-dependent line tension model. Phys. Rev. Lett. 93, 206101. https://doi.org/10.1103/PhysRevLett.93.206101 (2004).
24. Strikwerda, J. Finite Difference Schemes and Partial Differential Equations (Wadsworth & Brooks, 1989).
PID2019-106063GB-100. R.A.B. acknowledges financial support from Conacyt (Mexico) through project 283279, and PAPIIT, UNAM project IG200121. A.S.L. thanks the (CONACyT) for a doctoral fellowship within the CB-2012/182526 project, financial support from Ayudante de Investigador Nivel III program and a postdoctoral fellowship from DGAPA-UNAM. M.C. acknowledges financial supported from the grant number 5000-9018 of PAIP-FQ-UNAM.

Author contributions
M.C., A.H.M. and R.A.B. devised the project and the main conceptual ideas. A.S.L. and M.C. carried out experimental results. J.R.R.A., A.H.M. and R.A.B. developed the theory. J.R.R.A. performed the numerical simulations. All authors discussed the results and contributed to the final manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-022-09267-w.

Correspondence and requests for materials should be addressed to R.A.B.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022