BETTI NUMBERS OF MULTIGRADED MODULES OF GENERIC TYPE

HARA CHARALAMBOUS AND ALEXANDRE TCHERNEV

Abstract. Let \(R = \mathbb{k}[x_1, \ldots, x_m] \) be the polynomial ring over a field \(\mathbb{k} \) with the standard \(\mathbb{Z}^m \)-grading (multigrading), let \(L \) be a Noetherian multigraded \(R \)-module, let \(\beta_{i,\alpha}(L) \) the \(i \)th (multigraded) Betti number of \(L \) of multidegree \(\alpha \). We introduce the notion of a generic (relative to \(L \)) multidegree, and the notion of multigraded module of generic type. When the multidegree \(\alpha \) is generic (relative to \(L \)) we provide a Hochster-type formula for \(\beta_{i,\alpha}(L) \) as the dimension of the reduced homology of a certain simplicial complex associated with \(L \). This allows us to show that there is precisely one homological degree \(i \geq 1 \) in which \(\beta_{i,\alpha}(L) \) is non-zero and in this homological degree the Betti number is the \(\beta \)-invariant of a certain minor of a matroid associated to \(L \). In particular, this provides a precise combinatorial description of all multigraded Betti numbers of \(L \) when it is a multigraded module of generic type.

Introduction

Throughout this paper \(\mathbb{k} \) is a field, \(R = \mathbb{k}[x_1, \ldots, x_m] \) is the polynomial ring over \(\mathbb{k} \) with the standard \(\mathbb{Z}^m \)-grading (multigrading), \(L \) is a Noetherian multigraded \(R \)-module with minimal multihomogeneous free presentation

\[
E \xrightarrow{\Phi} G \xrightarrow{} L \xrightarrow{} 0,
\]

and \(S \) is a (multi)homogeneous basis of \(E \). An ongoing project of the second author is to use the combinatorial properties of the free multigraded resolution \(T(\Phi, S)_\bullet \) of \(L \) and the matroid \(M(\Phi, S) \) from [12] to study the homological properties of \(L \). In this paper we apply this technique to investigate the multigraded Betti numbers \(\beta_{i,\alpha}(L) \) in a generic situation. We introduce the notion of a multigraded module of generic type which generalizes the notion of genericity introduced previously by the authors in [7]. Our definition is new even in the case of monomial ideals, where it properly (and in a strong sense) subsumes the notion of generic ideals from [1], and differs in an essential way from the notion of genericity introduced in [10], see Examples 2.4. We also introduce the finer notion of a generic (relative to \(L \)) multidegree (the module \(L \) is then of generic type if each multidegree \(\alpha \in \mathbb{Z}^m \) is generic relative to \(L \)).

When \(I \) is a monomial ideal and \(R/I \) is of generic type, as a first result we show that the algebraic Scarf complex is a minimal resolution of \(R/I \), Corollary 2.6. Later on we show that if \(I \) is a monomial ideal and \(\alpha \) is a generic multidegree

1991 Mathematics Subject Classification. 13D02, 13A02, 52B40.
Key words and phrases. multigraded modules, free resolutions, matroids.

The first author is grateful to the European Union for support in the framework of the program “Pythagoras” of the “Operational Program for Education and Initial Vocational Training” of the 3rd Community Support Framework of the Hellenic Ministry of Education, for part of the project.
then the ith Betti number of R/I is nonzero precisely when α belongs to the Scarf complex of I, Corollary 5.9.

The main result of this paper is the computation of the ith Betti number of L when α is generic relative to L, Theorem 5.8. We provide a Hochster-type formula for the multigraded Betti numbers $\beta_{i,\alpha}(L)$ in terms of the relative homology of a certain simplicial complex associated with α and the matroid $M(\Phi, S)$. We analyze the properties of that simplicial complex to show that the Betti numbers $\beta_{i,\alpha}(L)$ are zero except in at most one degree i, and in that degree the Betti number equals the β-invariant of a certain minor M_α of the matroid $M(\Phi, S)$. In particular, this provides a detailed combinatorial description of the multigraded Betti numbers for the class of multigraded modules of generic type.

The material is organized as follows. In Section 2 we introduce the notion of a generic element in the LCM-lattice of L, the notion of a generic multidegree relative to L, and the notion of a multigraded module of generic type. We compare the new notions with the existing notions of genericity. We show that if I is a generic in the sense of [1] monomial ideal then the module R/I is automatically of generic type. We show that when L is of generic type, then the proof of [7, Theorem 5.6] works and generalize the above theorem. In particular this implies that the algebraic Scarf complex is a minimal free resolution of R/I when R/I is a multigraded module of generic type.

In Section 3 we introduce the affine simplicial complexes of a matroid M on the set S. We show their homology equals the β-invariant of the matroid. When a representation ϕ of the matroid is given, then for any ordering ω of S we introduce a certain complex of vector spaces $V(\phi, \omega)$ with the same homology.

In Section 4 when α is a generic element we examine certain minors M_α and M^α of the matroid $M(\Phi, S)$ of L. We introduce a new complex of vector spaces $V(\alpha, \phi, \omega)$ whose homology is nonzero at precisely one position and equals the β-invariant of M_α.

Finally, in Section 5 we use the free multigraded resolution $T_{\bullet}(\Phi, S)$ of [12] to construct a certain double complex. According to the first filtration of this complex we recover the complex $V(\alpha, \phi, \omega)$, while according to the second filtration we can compute the α-graded Betti numbers of L. Thus we prove that when α is generic relative to L, the reduced homology of the affine simplicial complexes of M_α determines the α-Betti numbers of L. Moreover the α-Betti number of L is nonzero in exactly one position and equals the β-invariant of a minor of M_α.

1. Preliminaries

For the rest of this paper L is a Noetherian multigraded R-module, $\Phi: E \rightarrow G$ is a minimal free multigraded presentation of L, and S a homogeneous basis of E. All vector spaces, homomorphisms and unadorned tensor operations are over k.

1.1. Complexes of vector spaces. Let $C_{\bullet} = (C_i, \varphi_i)$ be a complex of vector spaces. The dual complex of C_{\bullet} is the complex

$$C^*_\bullet = (C^*_i, \varphi^*_i) = (\text{Hom}_k(C_{-i}, k), \text{Hom}_k(\varphi_{-i+1}, k)),$$

its shift by an integer k is the complex

$$C[k]_{\bullet} = (C[k]_i, \varphi[k]_i) = (C_{i+k}, (-1)^k \varphi_{i+k}).$$
its \emph{shift in homological degrees} by \(k \) is the complex
\[C^i[k] = (C^i, \varphi^i[k]) = (C^i_{i+k}, \varphi^{i+k}), \]
and its \emph{truncation} at \(k \) is the complex
\[C^i_{\geq k} = (C^i_{\geq k}, \varphi^i_{\geq k}) = (\tau^k_iC_i, \tau^k_i\varphi_i) \text{ where } \tau^k_i = \begin{cases} \text{id} & \text{if } i \geq k; \\ 0 & \text{otherwise.} \end{cases} \]
We call \(C^i \) \emph{acyclic} if \(H_i(C^i) = 0 \) for \(i \neq 0 \), and \emph{exact} if also \(H_0(C^i) = 0 \).

1.2. Maps and vector spaces. We recall here and in the following subsections some of the notation introduced in [12]. Let \(U_S \) be the vector space with basis the set of symbols \(\{e_a \mid a \in S\} \). For each subset \(A \subseteq S \) we denote by \(U_A \) the subspace of \(U_S \) spanned by the set \(\{e_a \mid a \in A\} \). Whenever a map of vector spaces \(\phi : U_S \to W \) is given and \(A \subseteq S \) we denote by \(V_A \) the subspace of \(W \) spanned by the set \(\{\phi(e_a) \mid a \in A\} \); thus \(V_A = \phi(U_A) \). We denote by \(\phi_A : U_A \to W \) the restriction of \(\phi \) to \(U_A \).

Next, we consider \(k \) as an \(R \)-module via the canonical \(k \)-algebra map \(R \to k \) that sends each variable \(x_i \) to \(1 \in k \). We denote by \(W(\Phi) \) the \(k \)-vector space \(G \otimes_R k \).
Since the set \(\{a \otimes 1 \mid a \in S\} \) forms a basis of the space \(E \otimes_R k \) we can canonically identify it with \(U_S \) by identifying \(e_a \) with \(a \otimes 1 \) for each \(a \in S \). We denote by \(\phi(\Phi) \) the \(k \)-linear map \(\Phi \otimes_R k \); thus we have \(\phi(\Phi) : U_S \to W(\Phi) \).

For \(A \subseteq S \) we let \(E_A \) denote the free direct summand of \(E \) generated over \(R \) by the set \(\{a \mid a \in A\} \), and let \(\Phi_A \) denote the restriction of \(\Phi \) to \(E_A \). It is straightforward that \(\phi(\Phi_A) = \phi(\Phi)_A \).

1.3. Matroids. For more details on the basic properties of matroids we refer the reader to [14, 11]. For a quick summary with notation in the spirit of this paper see [12, Section 1].

Let \(P(S) \) be the collection of all subsets of \(S \), partially ordered by inclusion. Recall that any matroid \(M \) on \(S \) is determined by a nonempty set \(\mathcal{I}(M) \subset P(S) \) (or \(\mathcal{I} \) if clear from the context) whose elements are called the independent sets of \(M \). The set \(\mathcal{I} \) has the following three properties:
- \(\emptyset \in \mathcal{I} \)
- if \(I \subseteq J \) and \(J \in \mathcal{I} \) then \(I \in \mathcal{I} \)
- if \(J \in P(S) \) and \(I_1, I_2 \) are two subsets of \(J \) maximal with respect to membership in \(\mathcal{I} \) then \(|I_1| = |I_2| \). (This common size is called the rank of \(J \) in \(M \) and is denoted by \(r(J) \)).

When a map of vector spaces \(\phi : U_S \to W \) is given, one obtains a matroid \(M(\phi) \) on \(S \) by letting the set \(\mathcal{I} \) consist of all subsets \(I \) of \(S \) for which \(|I| = \dim_k V_I \). In this case for any subset \(J \) of \(S \) we let \(r(J) = \dim_k V_J \). One says that \(M(\phi) \) is \emph{represented} by \(\phi \) over \(k \) and that \(\phi \) is a representation over \(k \) of \(M(\phi) \).

Recall that a \emph{circuit} of a matroid \(M \) is a minimal dependent set, and a \emph{loop} of \(M \) is an element \(a \in S \) so that \(\{a\} \) is a circuit. A \emph{T-flat} is a subset of \(S \) that is a union of circuits. A \emph{flat} of \(M \) is a subset \(B \subset S \) such that \(r(B) = r(B) + 1 \) for each \(c \notin B \). A \emph{hyperplane} of \(M \) is a maximal proper flat, i.e., a flat \(H \) such that \(r(H) = r(S) - 1 \). The collection of T-flats forms a lattice with respect to inclusion. The intersection of flats is a flat. The \emph{matroid closure} \(\overline{B} \) of a subset \(B \subseteq S \) is the
smithallest flat containing B it equals the intersection of all flats containing B. Two elements $a, b \in S$ are called \textit{parallel} if they are not loops and $\{a\} = \{b\}$. Let $J \subset S$. The \textit{restriction} of M to J is the matroid $M|J$ whose independent sets form the set $\mathcal{I}(M|J) = \mathcal{I}(M) \cap P(J)$. The \textit{contraction} of M to J is the matroid M, J whose independent sets form the set $\mathcal{I}(M, J) = \{I \subset J \mid I \cup I' \in \mathcal{I}(M), \forall I' \in \mathcal{I}(M|S \setminus J)\}$. The β-invariant of M is

$$\beta(M) = (-1)^{r(S)} \sum_{J \subset S} (-1)^{|J|} r(J).$$

One of the important properties of the β-invariant is that $\beta(M) = 0$ is zero whenever M has a loop, see [8, Theorem II].

1.4. Multigraded resolutions. For the rest of the paper we denote by $T_\bullet(\Phi, S)$ the free multigraded resolution of L from [12, Theorem 4.5]. In homological degrees 0 and 1 the resolution $T_\bullet(\Phi, S)$ is simply the minimal presentation Φ. For $n \geq 2$, the R-components of $T_\bullet(\Phi, S)$ are:

$$T_n(\Phi, S) = \bigoplus_I (T_I \otimes R)[-\deg I]$$

where the index $I \subset S$ runs through all T-flats of M such that $r(I) = |I| - n + 1$, $\deg I$ is the componentwise maximum of the multidegrees of the elements of I, T_I is a certain k-vector space associated to I, see [12, Definition 2.2.3], and $(T_I \otimes R)[-\deg I]$ is the free module $T_I \otimes R$ shifted by multidegree $\deg I$: $(T_I \otimes R)[-\deg I],_\alpha = (T_I \otimes R),_\alpha + \deg I$ for any $a \in \mathbb{Z}^m$. While in general the resolution $T_\bullet(\Phi, S)$ is not minimal, we will use it to obtain information about the minimal multigraded resolution of L. We denote by $\beta_{i, \alpha}(L)$ the ith multigraded Betti number of L:

$$\beta_{i, \alpha}(L) = \dim_k H_i(T(\Phi, S) \otimes k),_\alpha = \dim_k \text{Tor}_i^R(L, k),_\alpha.$$

2. Multigraded modules of generic type

First we recall the definition of LCM-lattice of the multigraded module L.

\textbf{Definition 2.1.} Let $\Lambda = \Lambda(L)$ be the lattice in \mathbb{Z}^m (with the join operation being componentwise maximum) join-generated by the multidegrees of the elements of S. We call Λ the LCM-lattice of L. Since the collection of multidegrees $\{\deg a \mid a \in S\}$ of the elements of S is independent of the choice of the basis S, the LCM-lattice is an invariant of L.

\textbf{Remark 2.2.} The multidegrees of the free modules in $T_\bullet(\Phi, S)$ are elements of the LCM-lattice $\Lambda(L)$. It follows that the minimal syzygies of L can occur only in multidegrees α that belong to $\Lambda(L)$. Consequently, for $i \geq 1$ the Betti numbers $\beta_{i, \alpha}(L)$ can be nonzero only if $\alpha \in \Lambda(L)$.

Consider the \textit{degree map} of posets

$$\deg : P(S) \longrightarrow \mathbb{Z}^m$$

given by $\deg A = \bigvee \{\deg a \mid a \in A\}$ for each subset $A \subset S$, and note that $\Lambda(L)$ is precisely the image of the map \deg. For each $\alpha \in \Lambda(L)$ there always is a unique maximal set I^α in $P(S)$ of degree α: I^α equals the union of all sets of degree $\leq \alpha$.

Definition 2.3. We say that \(\alpha \in \Lambda(L) \) is a *generic element of \(\Lambda(L) \) if the fiber \(\deg^{-1}(\alpha) \) is a closed interval in \(P(S) \), i.e. if there is a unique minimal subset of \(S \) of degree \(\alpha \) denoted by \(I_\alpha \) and \(\deg^{-1}(\alpha) = [I_\alpha, I^\alpha] \).

We say that \(\alpha \in \mathbb{Z}^n \) is *generic relative to \(L \) if either \(\alpha \notin \Lambda(L) \) or if \(\alpha \) is a generic element of \(\Lambda(L) \).

We say that \(\Lambda(L) \) is of *generic type* if each \(\alpha \in \mathbb{Z}^n \) is generic relative to \(L \) and in this case we say that \(L \) is also of *generic type*.

It is immediate that if \(L \) is of generic type then no two elements of \(S \) have the same multidegree. The notion of generic type only depends on the multidegrees of the basis elements of \(S \) and is independent of the choice of the particular basis \(S \). Below we give some examples to differentiate between the different notions of generic.

Examples 2.4.

- The Scarf simplicial complex of \(\Phi \), \(\Delta(\Phi) \) is the subcomplex of \(P(S) \) consisting of all subsets \(I \) so that \(\deg^{-1}(\deg I) = \{1\} \).
- Let \(J = (x^2, xy, xz) \). Then \(R/J \) is of generic type as can be readily checked, and \(J \) is not generic in the sense of [1] or [10].
- If \(J \) is a monomial ideal generic in the sense of [1], then \(R/J \) is of generic type. Indeed, for \(\alpha \in \Lambda(R/J) \) take \(s_i \in S \) to be the unique monomial generator of \(I \) that agrees with \(\alpha \) in the \(i \)-th coordinate. The unique minimal set \(I_\alpha \) of degree \(\alpha \) is the collection of the distinct \(s_i \) obtained this way.
- Let \(J = (x^3z^2, x^2y^3, xy^2z, y^3z^2) \). Then \((3, 3, 2) \) is not a generic element of \(\Lambda(R/J) \) as \(\{1, 2\}, \{1, 4\} \) are minimal in \(\deg^{-1}(3, 3, 2) \). We note that \(J \) is generic in the sense of [10].
- Let \(I \) be a monomial ideal, \(L = R/I \), and \(\Delta_L \) be the Scarf complex of \(L \), see [1] or [10]. If \(\sigma \in \Delta_L \) then the multidegree \(\alpha \) of \(\sigma \) is a generic element of \(\Lambda(L) \) and \(\deg^{-1}(\alpha) = I^\alpha = I_\alpha \) is just a point.
- Let \(I \) be a monomial ideal in \(R \) and \(J \) the polarization of \(I \) in a polynomial ring \(S \). It is clear that \(R/I \) is of generic type if and only if \(S/J \) is of generic type. This is not the case when \(I \) is generic in the sense of [10] as the simple example \((x^2, xy) \) demonstrates.
- If \(I \) is generic in the sense of [10] then \(I^* = I + (x^D, \ldots, x^D_m) \) (where \(D \) is sufficiently large) is also generic in the sense of [10]. Let \(I = \langle xy, xz \rangle \). \(R/I \) is of generic type and as we will see below the algebraic Scarf complex is a minimal free resolution of \(R/I \). However for \(D > 1 \) the ideal \(I^* = I + (x^D, y^D, z^D) \) is not of generic type since \(\deg^{-1}((1, D, D)) \) is not an interval.

Let \(r = \text{rank } \Phi \), \(g = \text{rank}_R(G) \). We recall from [7] that \(\Phi \) is of *uniform rank* if all \(g \times r \) submatrices of the coefficient matrix of \(\Phi \) have rank equal to \(r \). In [7] the Scarf complex of \(\Phi \), \(S_\bullet(\Phi) \) was introduced. When \(g = 1 \), \(S_\bullet(\Phi) \) is the algebraic Scarf complex, \(F_{\Delta(\Phi)} \), of [1]. In [7, Theorem 5.6] it is shown that when \(\Phi \) is of uniform rank and \(L \) is generic in the sense of [1] then \(S_\bullet(\Phi) \) is a minimal free multigraded resolution of \(L \). The condition needed for the proof of [7, Theorem 5.6] to work is that there is a unique minimal face of degree \(\alpha \), so that \(i \in I^\alpha \setminus I_\alpha \) if and only if \(\deg(I^\alpha \setminus i) = \deg(I^\alpha) = \alpha \) ([7, pg 547]). This condition is is equivalent to \(\alpha \) being a generic element of \(\Lambda(L) \). Thus the next theorem holds:
Theorem 2.5. Let $\Phi : E \rightarrow G$ be a minimal free multigraded presentation of the multigraded module L so that Φ is of uniform rank and L is of generic type. Then $S_\ast(\Phi)$ is a minimal free multigraded resolution of L.

We apply the above when R/I is of generic type:

Corollary 2.6. Let I be a monomial ideal so that R/I is of generic type and $\Phi : R^n \rightarrow R$ a minimal multigraded presentation of R/I. The algebraic Scarf complex $F_{\Delta(\Phi)}$ is a minimal free multigraded resolution of R/I.

Proof. Minimality of the presentation Φ implies that Φ is of uniform rank. □

3. AFFINE SIMPLICIAL COMPLEXES AND THE β-INVARIANT

Let M be an arbitrary matroid on the set S, $\phi : U_S \rightarrow W$ a representation of M and $\{e_a \mid a \in S\}$ a basis of U_S. For any $b \in S$ we introduce a simplicial complex and compute its homology.

Definition 3.1. Let $b \in S$. We let Δ_b be the simplicial complex

$$\Delta_b = \{ J \subset P(S) \mid b \notin J \}$$

We call Δ_b the affine simplicial complex of M away from b.

We note that the facets of Δ_b are the hyperplanes of the matroid M that do not contain b and that $J \in \Delta_b$ if and only if $V_J \neq V_J \cup b$.

Theorem 3.2. Let $b \in S$. Then for $i \geq 0$

$$\dim_k \tilde{H}_i(\Delta_b, k) = \begin{cases} \beta(M) & \text{if } i = r(M) - 2 \\ 0 & \text{otherwise.} \end{cases}$$

Furthermore, if b is not a loop then the above equality is true for all i.

Proof. If M has a loop c then $\beta(M) = 0$. Furthermore, in that case Δ_b is either the empty simplicial complex (when b is a loop) or a cone with apex c. Thus in the sequel we assume that M has no loops.

Next we define a new complex $\overline{\Delta}_b$ as follows: the set of vertices of $\overline{\Delta}_b$ is

$$\text{Vert}(\overline{\Delta}_b) = \{ J \mid J \text{ is a flat in } M \text{ of rank 1 such that } b \notin J \}.$$

The faces of $\overline{\Delta}_b$ are the sets

$$\{ J_1, \ldots, J_l \} : J_1 \cup \cdots \cup J_l \subset H, \text{ for some facet } H \text{ of } \Delta_b.$$

Since M has no loops we can define the simplicial map $\pi : \Delta_b \rightarrow \overline{\Delta}_b$ that sends each vertex y of Δ_b to its matroid closure $[y]$, which is a flat of rank 1. Since a facet of Δ_b contains y if and only if it contains $[y]$, it is straightforward that π is a quotient map arising from partitioning the vertices of Δ_b into classes of parallel elements. Therefore the Contractible Subcomplex Lemma [3, (2.2)] yields that π is a homotopy equivalence. Let L_b be the poset obtained by removing from the lattice of flats of M those flats that contain b. Then by the Crosscut Theorem [2, Theorem 2.3], $\overline{\Delta}_b$ is homotopy equivalent with the order complex of the poset.
\(L_b^o \) obtained by removing from \(L_b \) its minimal element. By the results of Wachs and Walker [13, Theorem 3.2 and Corollary 7.2] this order complex is a shellable simplicial complex, and its reduced homology has already been computed, see e.g. [3] and [15, Theorem 2.6] or [5, Theorem 3.12]. In particular, it is possibly nonzero only in dimension \(r(\mathbf{M}) - 2 \), and its rank there is precisely the \(\beta \)-invariant of \(\mathbf{M} \). □

Next we compare the homology of \(\Delta_b \) with the homology of a complex of vector spaces determined by the subspaces of \(V_S \). Let \(\omega \) be an ordering on \(S \) and we use this ordering to identify each subset of \(S \) with the increasing sequence of its elements. For each \(J \subset S \) and \(c \notin J \), we have that \(V_J \) is a subset of \(V_{J,\{c\}} \). We let

\[
V(\phi, \omega)_i = \bigoplus_{B \subset S, |B| = |S| - i} V_B
\]

and \(V(\phi, \omega)_\bullet \) be the complex

\[
0 \to \bigoplus_{B \subset S, |B| = 1} V_B \to \ldots \to \bigoplus_{B \subset S, |B| = |S| - 1} V_B \to V_S \to 0
\]

where at the \(i \)th stage the maps componentwise are the inclusions \(V_B \to V_{B,\{c\}} \) times the sign of the permutation that arranges the sequence \((c, B)\) in increasing order then followed by composition with the natural inclusion \(V_{B,\{c\}} \hookrightarrow V(\phi, \omega)_{i+1} \).

Lemma 3.4. If \(b \in S \) is not a loop of \(\mathbf{M} \) then

\[
\text{H}_i(V(\phi, \omega)_\bullet) \cong \text{H}|S|_{i-1}(\Delta_b, k)
\]

for all \(i \).

Proof. Let \(\bar{Y} \) be the reduced chain complex of \(\Delta_b \) over \(k \). Since the complexes \(V(\phi, \omega)_\bullet \) are canonically isomorphic for different choices of \(\omega \), we may assume that \(b \) is the greatest element of \(S \) and that \(\omega \) induces the orientation on the faces of \(\Delta_b \) used to construct \(\bar{Y} \). We write \(V_* \) for \(V(\phi, \omega)_\bullet \). We consider a certain subcomplex \(D_* \) of \(V_* \). We let \(D_i = \bigoplus_j V_j \) where \(b \in J \) and \(|J| = |S| - i \). In particular \(D_0 = V_S \) and

\[
D_i : 0 \to V_b \to \ldots \to V_S \to 0
\]

where \(D_i \to D_i-1 \) are the restrictions of the maps from (3.3). Let

\[
E_* = (V_*/D_*)[1].
\]

If \(b \notin J \), we let \(\psi_J \) be the inclusion \(V_J \subset V_{J,\{b\}} \) taken with the sign \((-1)^{|J|}\). Then \(\psi : E_* \to D_* \) defined componentwise by the maps \(\psi_J \) is an injective map of complexes and the complex \(V_* \) is precisely the mapping cone of \(\psi \). We let

\[
\overline{D}_* \equiv D_* / \psi(E_*).
\]

It follows from the injectivity of \(\psi \) and the standard properties of mapping cones that \(\text{H}_i(V_*) \cong \text{H}_i(\overline{D}_*) \) for each \(i \). Next we note that the nonzero summands of \(\overline{D}_i \) are of the form \(V_{J,\{b\}}/V_J \) where \(V_J \neq V_{J,\{b\}} \) and \(|J| = |S| - 1 - i \). Thus the sets \(J \) involved are precisely the faces of \(\Delta_b \). We consider \(Y' = \bar{Y}'(\{S\} + 2) \), (so that that \(\text{Hom}_k(\overline{Y}_{i-1}, k) \) is in homological degree \(|S| - 1 \). For \(J \in \Delta_b \) we let \(\sigma_J^* \) be the standard generator of \(Y' \) associated to \(J \). Identifying \(\sigma_J^* \) with \(\phi(e_b) + V_J \) in \(V_{J,\{b\}}/V_J \) we see that \(Y'^{\{\{S\} + 2\}} \) can be identified with \(\overline{D}_* \) and the lemma follows. □

We are now ready to compute the homology of the complex \(V(\phi, \omega)_\bullet \):
Theorem 3.5.

\[\dim_k H_i(V(\phi, \omega)_*) = \begin{cases}
\beta(M) & \text{if } i = |S| - r(M) \\
0 & \text{otherwise.}
\end{cases} \]

Proof. If \(M \) has an element \(b \) that is not a loop, then the theorem is immediate by combining Theorem 3.2 and Lemma 3.4. If all elements of \(S \) are loops in \(M \) then \(r(M) = 0 \), the complex \(V(\phi, \omega)_* \) is zero, and the desired conclusion is immediate from the fact that \(\beta(M) = 0 \).

\[\square \]

4. Minors of \(M(\Phi, S) \) Associated with a Generic Multidegree

Let \(\alpha \in \Lambda(L) \) be a generic element. For the rest of this paper we fix \(M = M(\Phi, S) \), we set \(W = W(\Phi) \), and \(\phi = \phi(\Phi) : U_S \rightarrow W \) (see Section 1). We introduce some new matroids associated with \(\alpha \). Recall that \(\deg^{-1}(\alpha) = [I_\alpha, I_\alpha] \) is a closed interval in the boolean poset \(P(S) \).

Definition 4.1.

- We set \(I(\alpha) = I^\alpha \setminus I_\alpha \).
- We denote by \(M^\alpha \) the matroid that is the restriction of \(M \) to \(I^\alpha \). In standard matroid notation we have \(M^\alpha = M|I^\alpha \).
- We denote by \(M_\alpha \) the matroid that is the contraction of \(M^\alpha \) to \(I_\alpha \). In standard matroid notation we have \(M_\alpha = M^\alpha/I_\alpha \).

We discuss the above matroids in terms of some linear transformations associated with \(\alpha \).

Remarks 4.2.

- \(M^\alpha \) is represented by \(\phi_{I^\alpha} : U_{I^\alpha} \rightarrow W \) over \(k \).
- Let \(\pi_\alpha : W \rightarrow W/V_{I(\alpha)} \) be the canonical projection map, and let \(\tilde{\phi}_{I_\alpha} := \pi_\alpha \circ \phi_{I_\alpha} : U_{I_\alpha} \rightarrow W/V_{I(\alpha)} \).

The matroid \(M_\alpha \) is represented by \(\tilde{\phi}_{I_\alpha} \) over \(k \).

- We set \(\nabla_{I_\alpha} := V_{I_\alpha}/V_{I(\alpha)} \). For each \(B \subset I_\alpha \), \(V_{I(\alpha), I_\alpha} \) is a subspace of \(V_{I(\alpha), I_\alpha, B} \) and we set \(\nabla_B := V_{I(\alpha), I_\alpha, B}/V_{I(\alpha)} = \tilde{\phi}_{I_\alpha}(U_B) \).
- Let \(\omega \) be an ordering on \(I_\alpha \). According to the definition

\[V(\phi_{I_\alpha}, \omega)_* : 0 \rightarrow \bigoplus_{B \subset I_\alpha, |B|=1} \nabla_B \rightarrow \cdots \rightarrow \nabla_{I_\alpha} \rightarrow 0. \]

Next we define a new complex with the same homology as \(V(\phi_{I_\alpha}, \omega)_* \).

Definition 4.4. Let \(\omega \) be an ordering on \(I_\alpha \). We let

\[V(\alpha, \phi, \omega)_* = \bigoplus_{A \subset I_\alpha, |A|=1} V_{I_\alpha \setminus A} \]

and define a complex of vector spaces \(V(\alpha, \phi, \omega)_* \) as the sequence

\[0 \rightarrow V_{I(\alpha)} \rightarrow \cdots \rightarrow \bigoplus_{A \subset I_\alpha, |A|=1} V_{I_\alpha \setminus A} \rightarrow V_{I_\alpha} \rightarrow 0 \]
with maps that are componentwise the inclusions $V_{I^a \setminus (A \cup \{c\})} \subseteq V_{I^a \setminus A}$ times the
sign of the permutation that arranges the sequence $(c, I_\alpha \setminus A)$ in increasing order
then followed by composition with the natural inclusion.

Let \tilde{C} be the reduced chain complex over k for the full simplex on the set I_α as
oriented by ω. Let $C' = (\tilde{C})^* (-|I_\alpha| + 1)$, (so that $\text{Hom}_k(\tilde{C}_{-1}, k)$ is in homological
degree $|I_\alpha|$). We will consider the complex $V_{I(\alpha)} \otimes C'$. Let σ_A^* be the standard
generator of C' associated to $A \subset I_\alpha$. We identify $V_{I(\alpha)} \otimes \sigma_A^*$ with the subspace
$V_{I(\alpha)}$ of $V_{I(\alpha) \cup B}$ via the map $v \otimes \sigma_A^* \mapsto v$, where $B = I_\alpha \setminus A$. With this identification
it is easy to see that the following holds:

Proposition 4.6. The complex $V_{I(\alpha)} \otimes C'$ is a subcomplex of $V(\alpha, \phi, \omega)_\bullet$ and we
have the short exact sequence of complexes

\[0 \to V_{I(\alpha)} \otimes C' \to V(\alpha, \phi, \omega)_\bullet \to V(\bar{\phi}_{I_\alpha}, \omega)_\bullet \to 0. \]

We note that $V_{I(\alpha)} \otimes C'$ is an exact complex. Thus taking the long exact sequence
on the homology of (4.7) yields

Lemma 4.8. $H_i(V(\alpha, \phi, \omega)_\bullet) = H_i(V(\bar{\phi}_{I_\alpha}, \omega)_\bullet)$.

Combining Theorem 3.5 and Lemma 4.8 we obtain the following

Corollary 4.9. Let ω be an ordering on I_α. Then for all i we have

\[\dim_k H_i(V(\alpha, \phi, \omega)_\bullet) = \begin{cases}
\beta(M_\alpha) & \text{if } i = |I_\alpha| - r(M_\alpha) \\
0 & \text{otherwise.}
\end{cases} \]

We finish this section with an example to demonstrate the above.

Example 4.10. Let $R = \mathbb{Q}[x, y, z]$, $E \cong R^4$ a multigraded free module with basis
$S = \{a, b, c, d\}$ where $\deg a = (3, 1, 1)$, $\deg b = (1, 3, 1)$, $\deg c = (1, 1, 3)$, $\deg d = (1, 2, 2)$, $G \cong R^2$ and L multigraded with minimal multigraded free presentation

\[E \xrightarrow{\Phi} G \xrightarrow{\pi} L \xrightarrow{} 0, \]

and such that the matrix of $\phi(\Phi)$ according to the bases $\{e \otimes 1 \mid e \in S\}$ and the
canonical basis of G is given by the matrix

\[\begin{bmatrix} 1 & 1 & 1 & 1 \\
1 & 1 & 2 & 3 \end{bmatrix}. \]

First we examine the case where $\alpha = (3, 3, 3)$. Here $I^a = \{a, b, c, d\}$, $I_\alpha = \{a, b, c\}$
and $I(\alpha) = \{d\}$. Thus $\beta(M_\alpha) = 1$, $r(M_\alpha) = 1$ and for any ordering ω on I_α the
homology of the complex

\[V(\alpha, \phi, \omega) : 0 \to \mathbb{Q} \to \mathbb{Q}^6 \to \mathbb{Q}^6 \to \mathbb{Q}^2 \to 0 \]

is nonzero precisely for $i = 2$.

When $\alpha = (3, 2, 3)$, $\deg^{-1}(\alpha)$ equals the point $\{a, c, d\}$, while $r(M_\alpha) = 2$ and
$\beta(M_\alpha) = 1$. For any ordering ω on I_α the homology of the complex

\[V(\alpha, \phi, \omega) : 0 \to \mathbb{Q}^3 \to \mathbb{Q}^6 \to \mathbb{Q}^2 \to 0 \]

is nonzero precisely for $i = 1$.
5. The Betti numbers of \(L \)

Let \(T_*(\Phi, S) \) be the multigraded free resolution of \(L \), see Section 1.4 and let \(\alpha \in \Lambda(L) \). We examine the \(\alpha \)-graded piece of \(T_n(\Phi, S) \) for \(n \geq 2 \) in order to compute \(\beta_{i,\alpha}(L) \). We have that

\[
T_n(\Phi, S) = \bigoplus_{J, \deg J + \beta = \alpha} (T_J \otimes R)[-\deg J]_\beta
\]

where the index \(J \subset S \) runs through all \(T \)-flats of \(M \) such that \(r(J) = |J| - n + 1 \). It follows that \(\deg J \leq \alpha \) and that \(J \subset I_{\alpha} \). Let \(m \) be the maximal multigraded ideal of \(R \). It is clear that

\[
mT_i(\Phi, S) \cap T_i(\Phi, S) = \bigoplus_{J, \deg J + \beta = \alpha} (T_J \otimes R)[-\deg J]_\beta.
\]

When \(\alpha \) is a generic element the condition \(\deg J < \alpha \) is equivalent to the existence of an element \(b \in I_{\alpha} \) such that \(J \subset I_{\alpha} \setminus \{b\} \).

Let \(A \subset S \). We let

\[
T_*(\phi_A) = T_*(\Phi_A, A) \cong 1 \otimes_R k.
\]

The complex \(T_*(\phi_A) \) was introduced in [12, Definition 2.4.1] where it was shown that

\[
T_*(\phi_A) \rightarrow V_A \rightarrow 0
\]

is exact. We note that \(T_0(\phi_A) = U_A \). We will need the following important property, see [12, Theorem 3.2(b) and Theorem 3.5]: if \(A \subset B \) then \(T_*(\phi_A) \) is canonically a subcomplex of \(T_*(\phi_B) \). The following Lemma is a straightforward consequence of the basic structure of these complexes.

Lemma 5.1. Let \(\omega \) be an ordering in \(Y \subset S \) and \(X_i \) a collection of subsets of \(Y \). There is a chain map \(p : \bigoplus_{b \in I_{\alpha}} T(\phi_{X_i}) \rightarrow T(\phi_Y) \) where \(p|_{T(\phi_X)} \) equals the canonical inclusion map times the sign determined by \(\omega \) to order the elements of \((Y \setminus X_i, Y) \).

Let \(\alpha \in \Lambda(L) \) be a generic element. Fix an ordering \(\omega \) in \(I_{\alpha} \) and consider the chain map

\[
p : \bigoplus_{b \in I_{\alpha}} T(\phi_{I_{\alpha} \setminus \{b\}}) \rightarrow T(\phi_{I_{\alpha}})
\]

as in Lemma 5.1. We introduce a new complex:

Definition 5.2. Let \(C(\alpha)_* \) be the following complex of vector spaces:

\[
C(\alpha)_* = T(\phi_{I_{\alpha}}) / p(\bigoplus_{b \in I_{\alpha}} T(\phi_{I_{\alpha} \setminus \{b\}})).
\]

We note that for \(i \geq 1 \) we have

\[
mT_i(\Phi, S) \cap T_i(\Phi, S) = p(\bigoplus_{b \in I_{\alpha}} T(\phi_{I_{\alpha} \setminus \{b\}}))_{i-1}
\]

and thus the following lemma holds:

Lemma 5.3. Let \(\alpha \in \Lambda \) be a generic element. Then for \(i \geq 1 \)

\[
\beta_{i,\alpha}(L) = \dim_k H_{i-1}(C(\alpha)_*).
\]
Proof. Since $\beta_{i,\alpha}(L) = H_i(T(\Phi, S) \otimes_R k)_\alpha$, we combine the above remarks to get
\[(T_i(\Phi, S) \otimes_R k)_\alpha = T_i(\Phi, S)_\alpha/mT_i(\Phi, S) \cap T_i(\Phi, S)_\alpha = C_{i-1}(\alpha).\]
In view of the minimality of the presentation Φ, the Lemma is now immediate. \[\square\]

We will reduce the study of the homology of $C(\alpha)$ to the study of a certain double complex. We will need the following lemma:

Lemma 5.4. Let $X \subset Y \subset S$, and ω be a linear ordering Y. Consider the sequence
\[
T(X, Y, \omega) : 0 \to T(\phi_X) \to \bigoplus_{b \in Y \setminus X} T(\phi_{X \cup \{b\}}) \to \bigoplus_{b,c \in Y \setminus X} T(\phi_{X \cup \{b,c\}}) \\
\to \ldots \to \bigoplus_{c \in Y \setminus X} T(\phi_{Y \setminus c}) \to T(\phi_Y) \to 0
\]
where the morphism component $T(\phi_{X \cup C}) \to T(\phi_{X \cup B})$ is 0 if $C \not\subset B$ and otherwise is the canonical inclusion times the sign determined by ω. Then $T(X, Y, \omega)$ is an acyclic complex.

Proof. We will do induction on $|Y \setminus X|$. If $|Y \setminus X| = 0$ then $Y = X$ and $T(X, Y, \omega) : 0 \to T(\phi_Y) \to 0$. Suppose now that $X \neq Y$ and let b be the biggest element of $Y \setminus X$. We set $X' = X \cup \{b\}$, $Y' = Y \setminus \{b\}$ and let ω' be the induced ordering on Y'. Then we get the short exact sequence
\[
0 \to T(X', Y, \omega') \to T(X, Y, \omega) \to T(X, Y', \omega')(-1) \to 0.
\]
Using the induction hypothesis and the long exact sequence in homology we get that if $i > 1$ then $H_i(T(X, Y, \omega)) = 0$ while if $i = 1$ then
\[
0 \to H_1(T(X, Y, \omega)) \to H_0(T(X, Y', \omega')) \to H_0(T(X', Y, \omega)).
\]
Thus it suffices to show that the map of complexes
\[
H_0(T(X, Y', \omega')) \to H_0(T(X', Y, \omega))
\]
induced by the inclusion map $T(\phi_{Y'}) \subset T(\phi_Y)$ is injective. This however is immediate since
\[
T_i(\phi_{Y'}) \bigcap \bigoplus_{c \in Y \setminus X} T_i(\phi_{Y \setminus c}) = \bigoplus_{c \in Y' \setminus X} T_i(\phi_{Y' \setminus c}),
\]
as follows from the structure of these sets, see [12, Definition 2.4.1]. \[\square\]

We apply Lemma 5.4 to the special case where $X = I(\alpha)$ and $Y = I^\alpha$. We have that $Y \setminus X = I_\alpha$.

Lemma 5.6. Let $\alpha \in \Lambda$ generic, and let ω be an ordering on I^α. Then the natural sequence of morphisms of complexes
\[
(5.7) \quad 0 \to T(\phi_{I(\alpha)}) \to \bigoplus_{b \in I_\alpha} T(\phi_{I(\alpha) \cup \{b\}}) \to \cdots \bigoplus_{b \in I_\alpha} T(\phi_{I^\alpha \setminus b}) \to T(\phi_{I^\alpha}) \to 0
\]
is acyclic.

We can now prove the main result of this paper:

Theorem 5.8. Let $\alpha \in \Lambda$ be generic. There is at most one $i \geq 1$ such that $\beta_{i,\alpha}(L) \neq 0$. More precisely, we have for each $i \geq 1$
\[
\beta_{i,\alpha}(L) = \begin{cases}
\beta(M_\alpha) & \text{if } i = |I_\alpha| - \text{rank } M_\alpha + 1; \\
0 & \text{otherwise.}
\end{cases}
\]
Proof. Let $b \in I_a$ and let ω be an ordering on I^a so that b is the biggest element of I_a. The two standard spectral sequences associated with the double complex of Lemma 5.6 collapse. According to the first filtration we get the complex $V(\alpha, \phi, \omega)_*$, see the remarks preceding Lemma 5.1. According to the second filtration we get the complex $C(\alpha)_*$. Thus $H_i(C(\alpha)) = H_i(V(\alpha))$. Combining this with Lemma 5.3 and Corollary 4.9 we are done. □

We apply the theorem to monomial ideals. When J is a monomial ideal and α is generic we prove that $\beta_{i,\alpha}(R/J) \neq 0$ if and only if α corresponds to a face of the Scarf complex of R/J.

Corollary 5.9. Let J be a monomial ideal and let $\alpha \in \Lambda(R/J)$ be a generic element. If $I_{\alpha} \neq I^a$ then $\forall i \geq 1$, $\beta_{i,\alpha}(R/J) = 0$. Otherwise $\beta_{i,\alpha}(R/J) = \begin{cases} 1 & \text{if } i = |I_{\alpha}|; \\ 0 &\text{otherwise.} \end{cases}$

Proof. If $I_{\alpha} \neq I^a$ then M_{α} is the empty matroid and $\beta(M_{\alpha}) = 0$. Otherwise $\beta(M_{\alpha}) = \text{rank } M_{\alpha} = 1$. □

We finish this section with an example to show that in the general case it may be $I_{\alpha} \neq I^a$ and $\beta_{i,\alpha}(L) \neq 0$.

Example 5.10. Let L be the module of Example 4.10. For $\alpha = (3,3,3)$ we have the following data: $\beta(M_{\alpha}) = \text{rank } M_{\alpha} = 1$, $|I_{\alpha}| = 3$. Thus $\beta_{3,\alpha}(L) = 1$.

References

[1] D. Bayer, I. Peeva, and B. Sturmfels, Monomial resolutions, Math. Res. Lett. 5 (1998), 31–46.
[2] A. Björner, Homotopy type of posets and lattice complementation, J. Combin. Theory Ser. A 30 (1981), 90–100.
[3] A. Björner, The homology and shellability of matroids and geometric lattices, in Matroid Applications, N. White, ed., Cambridge Univ. Press, Cambridge, 1992, pp. 226–283.
[4] A. Björner and J. Walker, A homotopy complementation formula for partially ordered sets, European J. Combin. 4 (1983), 11–19.
[5] A. Björner and G. Ziegler, Broken circuit complexes: factorizations and generalizations, J. Combin. Theory Ser. B 51 (1991), 96–126.
[6] W. Bruns, J. Herzog, On multigraded resolutions, Math. Proc. Cambridge Philos. Soc. 118 (1995), 245–257.
[7] H. Charalambous and A. Tchernev, Free resolutions for multigraded modules: a generalization of Taylor’s construction, Math. Res. Lett. 10 (2003), 535–550.
[8] H. Crafo, A higher invariant for matroids, J. Combin. Theory 2 (1967), 406–417.
[9] E. Miller, B. Sturmfels, Combinatorial Commutative Algebra, Springer (2005).
[10] E. Miller, B. Sturmfels and K. Yanagawa, Generic and Cogeneric Ideals, J. Symb. Computation. 29 (2000), 630–645.
[11] J. Oxley, Matroid Theory, Oxford Sci. Publ., Oxford University Press, New York, 1992.
[12] A. Tchernev, Representations of matroids and free resolutions for multigraded modules, Adv. Math. 208 (2007) no. 1, 75–134.
[13] M. Wachs and J. Walker, On geometric semilattices, Order 2 (1986), 367–385.
[14] D. J. A. Welsh, Matroid Theory, L. M. S. Monographs 8, Academic Press, London–New York, 1976.
[15] G. Ziegler, Matroid shellability, β-systems, and affine hyperplane arrangements, J. Algebraic Combin. 1 (1992), 283–300.
Department of Mathematics, Aristotle University of Thessaloniki, Greece
E-mail address: hara@math.auth.gr

Department of Mathematics, University at Albany, SUNY, Albany, NY 12222
E-mail address: tchernev@math.albany.edu