I. INTRODUCTION

The inflationary paradigm has been successful over the past few decades to serve as a mechanism to produce the observed inhomogeneities in the universe such as the cosmic microwave background (CMB) anisotropies and large-scale structure (LSS), while resolving the conceptual difficulties in the hot big bang scenario. An important prediction in the framework is generation of the B-mode polarization in the CMB [1], whose signal is conventionally quantified by the tensor-to-scalar ratio \(r = \mathcal{P}_h / \mathcal{P}_\zeta \). The current bound is \(r < 0.07 \) at \(k_{\text{CMB}} = 0.05 \text{Mpc}^{-1} \) with 95% confidence [2], and a number of proposed missions are expected to improve the bound to \(O(10^{-3}) \) (see e.g. [3]). The conventional relationship between the tensor-to-scalar ratio and the Hubble parameter during inflation is

\[
 r = \mathcal{P}_\zeta^{-1} \frac{2 H_{\text{inf}}^2}{\pi^2 M_{\text{Pl}}^2} \approx 10^{-3} \left(\frac{H_{\text{inf}}}{8 \times 10^{12} \text{GeV}} \right)^2, \tag{1}
\]

where \(H_{\text{inf}} \) is the Hubble parameter during inflation and \(\mathcal{P}_\zeta \approx 2.2 \times 10^{-9} \) has been used [4]. An immediate implication of (1) is that detection of \(r \) would fix the inflationary scale at such high energy levels as beyond our current experimental reach.

Considering the ongoing and upcoming experimental efforts for B-mode detection, it is right time to test the validity of the conventional prediction (1). In general, the value of \(r \) at cosmological scales can be estimated as the spectrum of the energy fraction of gravitational wave (GW) at the horizon crossing divided by \(\mathcal{P}_\zeta \)

\[
 r \simeq \mathcal{P}_\zeta^{-1} \frac{1}{\rho_{\text{inf}}} \frac{\partial \rho_{\text{GW}}}{\partial \ln k} \bigg|_{k = a H_{\text{inf}}}, \tag{2}
\]

where \(\rho_{\text{inf}} \equiv 3 M_{\text{Pl}}^2 H_{\text{inf}}^2 \) and \(\partial \rho_{\text{GW}} / \partial \ln k \approx H^2 M_{\text{Pl}}^2 \mathcal{P}_h \) at the horizon crossing. The energy density of GW from the vacuum fluctuations produced during the quasi de Sitter expansion must be characterized by the Hubble scale \(\partial \rho_{\text{GW}} / \partial \ln k \approx H_{\text{inf}}^2 \), leading to the conventional relation \(r_{\text{vac}} \propto H_{\text{inf}}^2 \).

On the other hand, if GW is induced by another energy source, the conventional relation (1) may be altered. Provided that an energy source \(\rho_s \) generates GWs with efficiency \(\gamma \), one generally expects

\[
 r \simeq \mathcal{P}_\zeta^{-1} \frac{\gamma}{\rho_{\text{inf}}} \frac{d \rho_s}{d \ln k} \bigg|_{k = a H_{\text{inf}}}, \tag{3}
\]

which can be significant even if \(\rho_s \ll \rho_{\text{inf}} \) and \(\gamma \ll 1 \) thanks to the smallness of \(\mathcal{P}_\zeta \). Conventionally, however, an efficient energy transfer from a source to GW has been assumed to be rather difficult. The reasoning is rooted in the decomposition theorem in cosmology, which states that perturbations around a homogeneous and isotropic background can be decomposed into scalar, vector, and tensor sectors that are mutually decoupled at the linearized order. Since GW is the only tensor degree of freedom in the Einstein gravity, we have no choice but use the source term from scalar \(\delta S \) or vector perturbation \(\delta V_i \) which is schematically written as

\[
 \square h_{ij}(t, x) = O_{ij}^{(S)}(t, \vartheta) \delta S(t, x) + O_{ij}^{(V)}(t, \vartheta) \delta V_k(t, x), \tag{4}
\]

where \(O_{ij}^{(S)} \) and \(O_{ij}^{(V)} \) are operators traceless and transverse in the indices \(ij \) that depend on time and spatial derivatives. However, the decomposition theorem bans the existence of such operators at the linear order. Although the second order effects (e.g. \(\partial_i \delta S \partial_j \delta S, \delta V_i \delta V_j \))
are allowed to generate GW, the efficiency of the energy transfer is suppressed, because the coefficients of the source term effectively becomes the order of perturbation, $O(ij)^{(S)}$, $O(ij)^{(V)} = O(\Delta S, \Delta V_j)$ [5].

There is a loophole in this argument. If $O(ij)^{(V)}$ in (4) consists of the background vector field $V_i(t)$, GW can be sourced at linear order by $V_i \delta V_j$. It is known that SU(2) gauge fields can achieve this without disrupting background isotropy by taking a particular configuration. Moreover this isotropic configuration is realized as an attractor solution, if SU(2) gauge fields are coupled to a rolling pseudo-scalar field [6]. Therefore SU(2) gauge fields can source the GW through the terms $V_i \delta V_j$ without violating the isotropy of the universe at the linear order, thus with a high efficiency of the energy transfer.

As we shall see later, the energy source ρ_s to generate GW is the (linear) perturbation of an SU(2) gauge field. It is produced as quantum fluctuations and thus acquires the amplitude $O(H_{\text{inf}})$ around the horizon crossing. In addition, however, it experiences a transient instability around horizon crossing and is amplified by an exponential factor. As a result, the energy fraction of the source and the efficiency factor of energy transfer in (3) are given by

$$
\frac{1}{\rho_{\text{inf}}} \frac{d\rho_s}{dk} \sim \frac{H_{\text{inf}}^2}{M_{\text{Pl}}^2} \epsilon^{2m_Q}, \quad \gamma \sim \frac{\rho_A}{\rho_{\text{inf}}} \equiv \Omega_A,
$$

where s now denotes the perturbation of SU(2) gauge field, ρ_A is its background energy density, and m_Q is the SU(2) mass parameter in the units of H_{inf}. For values of m_Q with $H_{\text{inf}} \sqrt{\Omega_A} e^{2m_Q} \gtrsim O(10^{12})$ GeV, one can realize a detectable r even in the case of low-energy inflation.

II. SPECTATOR AXION-SU(2) MODEL

In our consideration of GW production, we leave the gravity sector as the standard Einstein-Hilbert and the inflation model unspecified, which is also responsible for generating the observed curvature perturbation. We then consider the axion-SU(2) sector with the action [7] (see also [8]):

$$
\mathcal{L}_A = -\frac{1}{2} (\partial_\mu \chi)^2 - V(\chi) - \frac{1}{4} F_{\mu\nu}^a F^{\mu\nu}_a + \frac{\lambda}{4 f} \chi F_{\mu\nu}^a F^{\mu\nu}_a,
$$

where χ is a pseudo-scalar field (axion) with a cosine-type potential $V(\chi) = \mu^4 [1 + \cos(\chi/f)]$ with dimensionful parameters μ and f; $F_{\mu\nu}^a = 2 \partial_\mu A_\nu^a - g \epsilon^{abc} A_\mu^b A_\nu^c$ and $F_{\mu\nu}^{\alpha\beta}$ are the field strength of SU(2) gauge field and its dual, respectively, and λ is a dimensionless coupling constant.

At the background level, it is shown that the isotropic configuration of the SU(2) gauge fields, $A_0^a = 0$ and $A_\nu^a = \delta_\nu^a a(t) Q(t)$, is an attractor solution while the vev of $\chi(t)$ slowly rolls down its potential [6, 7]. At the perturbation level, δA_ν^a contains two scalar δQ, M_i two vector M_i and two tensor t_{ij} polarizations as dynamical degrees of freedom [6, 7]. Interestingly, t_{ij} is coupled to the metric tensor modes h_{ij} already at the linear order, and only one circular polarization mode of t_{ij} is substantially amplified due to a transient instability around the horizon crossing. It then efficiently sources one polarization of GW h_{ij} at the linear order, if $m_Q \equiv gQ/H > \sqrt{2}$ [9]. Therefore we focus on t_{ij} among the perturbations of A^a_ν.

The Einstein equation at the background yields

$$
3 M_{\text{Pl}}^2 H^2 = \rho_\phi + \rho_\chi + \rho_A + \rho_4,
$$

$$
-\dot{H}/H^2 = \epsilon_\phi + \epsilon_\chi + \epsilon_A + \epsilon_t,
$$

where $\rho_\chi = \frac{\dot{\chi}^2}{2} + V(\chi)$, $\rho_A = 3\epsilon_A M_{\text{Pl}}^2 H^2/2$, $\epsilon_A = \epsilon_E + \epsilon_B$, $\epsilon_E \equiv (\dot{Q} + H Q^2)/M_{\text{Pl}}^2 H^2$, $\epsilon_B \equiv g^2 Q^4/M_{\text{Pl}}^2 H^2$, $\epsilon_t = \dot{\chi}^2/2M_{\text{Pl}}^2 H^2$, and dot denotes the cosmic time derivative. The inflaton part ρ_ϕ and $\epsilon_\phi \equiv -\dot{\phi}/6M_{\text{Pl}}^2 H^4$ depend on the inflation model, and ρ_4 and $\epsilon_t \equiv -\dot{t}/6M_{\text{Pl}}^2 H^2$ denote the contributions from the perturbation t_{ij} on the background dynamics, which will be discussed later. The equations of motion for $\chi(t)$ and $Q(t)$ are

$$
\ddot{\chi} + 3H \dot{\chi} - \frac{H^4}{f} \sin \left(\frac{\chi}{f} \right) + \frac{3g\lambda}{f} Q^2 \left(\dot{Q} + H Q \right) + T_{BR}^\chi = 0,
$$

$$
\ddot{Q} + 3H \dot{Q} + \left(\dot{H} + 2H^2 \right) Q + 2g^2 Q^3 - \frac{gA}{2} Q^2 \dot{\chi} + T_{BR}^Q = 0,
$$

where we include the backreaction terms, T_{BR}^Q and T_{BR}^χ, from t_{ij}. Without the backreaction, one can show that the effective potential of Q uplifted by the coupling to χ acquires a non-zero minimum at $Q_{\text{min}} \equiv (\mu^4 \sin(\chi/f)/3g\lambda H)^{1/3}$, if χ slowly rolls and the coupling is sufficiently strong [6, 7].

The tensor perturbations consist of t_{ij} and h_{ij}, and each of them can be decomposed into the circular polarization modes $t_{R,L}$ and $h_{R,L}$, respectively. At the linearized order, one finds their equations of motion coupled together among the same polarizations, written in the Fourier space as [7],

$$
\partial^2_x t_{R,L} + \left[1 + \frac{2m_Q A^4}{x^2} + \frac{2m_Q + A^4}{x} \right] t_{R,L} \approx 0
$$

(11)

$$
\partial^2_x \psi_{R,L} + \left(1 - \frac{2}{x^2} \right) \psi_{R,L} \approx S^\psi_{R,L},
$$

(12)

where $x \equiv k/aH$ and $\psi_{R,L}(t,k)$ are the mode functions of the canonical gravitational wave, $\psi_{ij} \equiv aM_{\text{Pl}} h_{ij}$/2.
While $t_{R,L}$ are sourced by $\psi_{R,L}$ in principle, the former is always parametrically larger than the latter for our concern, and thus ignoring the right-hand side of (11) is a justified approximation. We have also neglected slow-roll suppressed and subdominant terms in (11) and (12). Here, $\xi(t) \equiv \lambda \chi/2fH$ is well approximated by $m_Q + m_Q^{-1}$ in the slow-roll regime. Without loss of generality m_Q is assumed to be positive, and then t_R becomes unstable for $x_{\text{max}} > x > x_{\text{min}}$, with $x_{\text{max,min}} \equiv (m_Q + \xi) (m_Q^{-1} + \xi^2)^{1/2}$. Assuming $m_Q =$ const., we obtain the homogeneous solution to (11) as

$$t_R(t, k) = \frac{1}{\sqrt{2k}} e^{\frac{x}{H}(m_Q + \xi)} W_{\beta, \alpha} \left(-\frac{2ik}{aH} \right),$$

where $W_{\beta, \alpha}(z)$ is the Whittaker function with $\alpha \equiv -i\sqrt{2m_Q} \xi - 1/4$ and $\beta \equiv i(m_Q + \xi)$. We have used the WKB solution in the sub-horizon limit, $t_R(k/aH \to \infty) = (2k)^{-1/2}(2x)^{3/2} e^{ix}$, as the initial condition. Then t_R is amplified around the horizon crossing by the factor of $e^{1.85 m_Q}$, while it decays as matter, $\rho_t \propto a^{-3}$ i.e. $t_R \propto a^{-1/2}$, on super-horizon scales. The source term for $\psi_{R,L}$ reads

$$S_{\psi_{R,L}} = \frac{2\sqrt{x}}{x} \partial_x t_{R,L} + \frac{2\sqrt{\hat{E}_R}}{x^2} (m_Q + x) t_{R,L},$$

and the generated t_R sources ψ_R, producing additional GW. Using (13), one can obtain the sourced ψ_R by using Green’s function method, giving the GW power spectrum

$$P_h^{(s)} = \frac{\epsilon_B H^2}{\pi^2 M_{Pl}^2} F^2(m_Q),$$

where $F^2 \approx 2 e^{3.62 m_Q}$ and its full expression can be found in [7]. Note that (13) and (15) assume constant ϵ_B, m_Q and ξ, while to determine their values and time variations one needs to solve the background dynamics, (7)–(10).

III. CHECKLIST

In order to settle the final allowed strength of GW signals from this model, we need to ensure some computational and observational consistencies. We list them and show the resulting parameter region in the following subsections.

A. Backreaction

The produced t_R (13) backreacts on the background dynamics through eqs. (7)–(10) with the terms

$$\rho_t = \frac{1}{2a^2} \int \frac{d^3k}{(2\pi)^3} \left[|t_R|^2 + \frac{k^2}{a^2} - 2m_Q H \frac{k^3}{a} |t_R|^2 \right],$$

$$T_{BR}^x = -\frac{1}{2a^2 \hat{f}} \frac{d}{dt} \int \frac{d^3k}{(2\pi)^3} (am_Q H - k) |t_R|^2,$$

$$T_{BQ}^Q = \frac{g}{3a^2} \int \frac{d^3k}{(2\pi)^3} \left(\frac{\xi H - k}{a} \right) |t_R|^2,$$

where we ignore the sub-leading backreaction from t_L or $\psi_{R,L}$. We first estimate these contributions analytically. Using (13) and background relation $\xi \equiv m_Q + m_Q^{-1}$ and changing variables into $x = k/aH$ with the integration domain $0 < x < x_{\text{max}}$, one can write $|\rho_t| = H^4 T_\rho (m_Q)$, $|T_{BR}^x| = \lambda H^4 T_\chi (m_Q)/f$ and $T_{BQ}^Q = gH^3 T_Q (m_Q)$, where all the T’s approximately follow $T_{\rho, \chi, Q} \propto e^{3.7 m_Q}$. For a given value of g, these terms would easily dominate (7), (9) and (10) for large m_Q, if one took m_Q as a free parameter. However, this would infer that strong backreaction prevents the system from reaching such a parameter region. The conditions to ensure that each of ρ_t and T_{BR}^x is subdominant in (7), (9) and (10) are translated into upper bounds on g,

$$g < G_{\rho, \chi, Q} (m_Q),$$

FIG. 1. The allowed values of the SU(2) gauge self-coupling constant g. Since this constraints are proportional to $e^{3.62 m_Q}$ as mentioned in the main text, the coupling constant g shown in the plot is rescaled by this factor. In the upper yellow shaded region, the backreaction is expected to be strong and disrupts the background evolution. In the lower blue shaded region, the energy fraction of the gauge field is significant enough to make the scalar spectral index becomes too red beyond the 2σ region of Planck constraints for $r = 10^{-3}$. The black dotted contours for the values of H_{inf} are superimposed in the case with $r = 10^{-3}$.
where $G_{p,x,Q} \propto I_{p,x,Q}^{-1/2}$. In Fig. 1, we show the strongest constraints coming from G_{x}, though they are almost degenerate.

For large m_Q, the backreaction is not completely negligible even in the allowed region shown in Fig. 1. In those cases, one has to resort to full numerical calculations simultaneously solving all equations of motion for background fields, (8)–(10) and for perturbations, (11) and (12) with full source terms included. Fig. 2 shows our numerical result for the following parameters:

$$H_{\text{inf}} = 3 \times 10^{-22} \text{GeV}, \quad \mu = 0.055 \text{GeV},$$

$$f = 1.5 \times 10^{17} \text{GeV}, \quad \lambda = 3000, \quad g = 1.9 \times 10^{-36},$$

where the corresponding maximum of m_Q is around 44. The tensor-to-scalar ratio $r_R = P_{hij}/P_{zz}(k_*)$ where k_* is the pivot scale for CMB observations indeed exceeds the detectable limit 10^{-3} even with such a extremely low inflationary energy scale ~ 36 MeV.

B. Curvature Perturbation

Previous attempts to generate GW from scalar or vector fields are tightly constrained by the CMB observation on the curvature perturbation ζ [5, 10]. In our model, the inflaton fluctuation $\delta \phi$ is assumed to be responsible for generating ζ compatible with the CMB observation. Contributions from the other scalar modes $\delta \chi$, δQ and M to ζ are negligible, unless χ becomes a curvaton [7].

In addition, we investigate another channel in which the second order effect of t_R produces additional perturbations, $t_R t_R \to \delta \phi$, through the gravitational interaction. This effect arises only at the second order due to the absence of linear couplings between $\delta \phi$ and t_R, while the sourcing of t_R to the GW is first-order, thus $\zeta^{(s)} = -H \delta \phi^{(s)} / \dot{\phi} \propto (t_R/M_{\text{Pl}})^2$ is expected to be negligible for the parameter range of our interest. We will address this effect in detail in the upcoming work.

Even though the part of $\delta \phi$ sourced by the second order of t_R or the linear order of the scalar perturbations in the axion-$SU(2)$ sector only has negligible effects, that of $\delta \phi$ originated from its own vacuum fluctuations can be influenced by the background fields χ and Q, due to their contribution to H. As a result, the spectral index in our model reads,

$$n_s - 1 = 2 (\eta_\phi - 3 \epsilon_\phi - \epsilon_\chi - \epsilon_A) \simeq 2 (\eta_\phi - \epsilon_B),$$

where in the last step we have used $\epsilon_A \simeq \epsilon_B \gg \epsilon_\phi, \epsilon_\chi$, true with the parameters of our interest. The Planck measures $n_s = 0.9645 \pm 0.0049$ [4], and without assuming an accidental cancellation between ϵ_B and η_ϕ, we require a bound on ϵ_B as

$$\epsilon_B(t_*) \lesssim 2 \times 10^{-2};$$

where t_* denotes the time of the horizon crossing of the CMB modes. Note that this constraint can be relaxed if η_ϕ is positive. When η_ϕ saturates, in our model, ϵ_B can explain the red-tilted curvature perturbations without a huge hierarchy of slow-roll parameters $\eta_\phi \gg \epsilon_\phi$. It is a quite intriguing possibility for small-field inflationary models since all slow-roll parameters are naively expected to be equivalently small in that class of inflation. We numerically checked that $n_\eta(k_*)$ within 2σ of Planck constraints is realized solely by ϵ_B for the parameters (20).

The bound (22) is translated into a lower bound on

$$g = H m_Q^2 / (M_{\text{Pl}} \sqrt{\epsilon_B}),$$

where

$$\zeta \simeq 0.0049 \ [4], \quad \epsilon_\phi \simeq 2 \times 10^{-2};$$

We plot this as the light-blue shaded region in Fig. 1.

C. Perturbativity

Since the amplitude of t_R is substantially amplified due to the instability in our model, we need to ensure that it does not invalidate our perturbative calculation. We thus impose that the 1-loop contribution to the two-point function $\langle t_R(t_R) \rangle$ should be negligible to that of the tree level. The terms $-F_{\mu \rho} F^{\mu \nu} / 4 + \chi F_{\mu \rho} \tilde{F}^{\mu \nu} / (4f)$ lead to three- and four-point vertices, and it can be shown that their one-loop diagrams give contributions of the same order [10]. We here focus on the latter and demonstrate that the perturbativity condition gives no additional bounds on the model parameters. The four-point interaction Hamiltonian reads

$$\tilde{H}^{(4)}(\tau) = \frac{g^2}{4} \int d^3 x \left[(\hat{t}_{ij} \hat{t}_{ij}) - \hat{t}_{ij} \hat{t}_{ij} \delta m^2 \right],$$

where t_{ij} is the time of the horizon crossing of the CMB modes. Note that this constraint can be relaxed if η_ϕ is positive. When η_ϕ saturates, in our model, ϵ_B can explain the red-tilted curvature perturbations without a huge hierarchy of slow-roll parameters $\eta_\phi \gg \epsilon_\phi$. It is a quite intriguing possibility for small-field inflationary models since all slow-roll parameters are naively expected to be equivalently small in that class of inflation. We numerically checked that $n_\eta(k_*)$ within 2σ of Planck constraints is realized solely by ϵ_B for the parameters (20).

The bound (22) is translated into a lower bound on

$$g = H m_Q^2 / (M_{\text{Pl}} \sqrt{\epsilon_B}),$$

we plot this as the light-blue shaded region in Fig. 1.

IV. CONCLUSION

The main message of this Letter is that the detection of primordial gravitational waves does not necessarily exclude low-energy inflation. Once an $SU(2)$ gauge field
has a background configuration that respects the spatial rotation, its perturbations are coupled to the GW at the linear order. The former is amplified by instabilities around the horizon crossing, whose power is then linearly transferred to the latter. We have demonstrated that the GW power spectrum produced from this mechanism can be as significant as at detectable levels respecting all the consistency conditions, even if the inflationary energy scale is close to the BBN bound.

Having a possible alternative source of GW, it is crucial to discriminate the generation mechanism of primordial GW to reveal the true energy scale of inflation. Fortunately, our model has the following distinct predictions to be distinguished from the conventional vacuum GW. (i) The fully parity-violating GW may be detected through CMB temperature and B-mode (TB) or E-mode and B-mode polarization (EB) cross-correlation by the upcoming satellite mission such as LiteBIRD [11]. (ii) Our model produces a sizable tensor non-Gaussianity with a particular shape [12]. (iii) The conventional consistency relation, \(n_T = -r_{\text{vac}}/8 \), is broken, where \(n_T \) is the tensor spectral index. With the future observation, these signatures will carry important information for rigorous determination of inflationary energy scale.

ACKNOWLEDGEMENT

We would like to thank Emanuela Dimastrogiovanni, Matteo Fasiello, Shinya Mukohyama, Marco Peloso, Matthew Reece, Martin Sloth, Henry Tye and Yi Wang for useful discussions and correspondences. TF acknowledges the support by Grant-in-Aid for JSPS Fellows No. 29-9103. RN is supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada and by the Lorne Trottier Chair in Astrophysics and Cosmology at McGill University. YT is supported by Japan Society for the Promotion of Science Research Fellowship for Young Scientists and grants from Région Ile-de-France.

[1] M. Kamionkowski, A. Kosowsky, and A. Stebbins, Phys. Rev. Lett. **78**, 2058 (1997), arXiv:astro-ph/9609132 [astro-ph]; U. Seljak and M. Zaldarriaga, Phys. Rev. Lett. **78**, 2054 (1997), arXiv:astro-ph/9609169 [astro-ph].

[2] P. A. R. Ade et al. (BICEP2, Keck Array), Phys. Rev. Lett. **116**, 031302 (2016), arXiv:1510.09217 [astro-ph.CO].

[3] K. N. Abazajian et al., Astropart. Phys. **63**, 55 (2015), arXiv:1309.5381 [astro-ph.CO].

[4] P. A. R. Ade et al. (Planck), Astron. Astrophys. **594**, A20 (2016), arXiv:1502.02114 [astro-ph.CO].

[5] J. L. Cook and L. Sorbo, Phys. Rev. **D85**, 023534 (2012), [Erratum: Phys. Rev.D86,069901(2012)], arXiv:1109.0022 [astro-ph.CO]; L. Senatore, E. Silverstein, and M. Zaldarriaga, JCAP **1408**, 016 (2014), arXiv:1109.0542 [hep-th]; N. Barnaby, J. Moxon, R. Namba, M. Peloso, G. Shiu, and P. Zhou, Phys. Rev. **D86**, 103508 (2012), arXiv:1206.6117 [astro-ph.CO]; M. Biagetti, M. Fasiello, and A. Riotto, Phys. Rev. **D88**, 103518 (2013), arXiv:1305.7241 [astro-ph.CO]; M. Biagetti, E. Dimastrogiovanni, M. Fasiello, and M. Peloso, JCAP **1504**, 011 (2015), arXiv:1411.3029 [astro-ph.CO]; T. Fujita, J. Yokoyama, and S. Yokoyama, PTEP **2015**, 043E01 (2015), arXiv:1411.3658 [astro-ph.CO]; M. Mirbabayi, L. Senatore, E. Silverstein,
and M. Zaldarriaga, Phys. Rev. D91, 063518 (2015), arXiv:1412.0665 [hep-th].

[6] P. Adshead and M. Wyman, Phys. Rev. Lett. 108, 261302 (2012), arXiv:1202.2366 [hep-th]; P. Adshead, E. Martinec, and M. Wyman, JHEP 09, 087 (2013), arXiv:1305.2930 [hep-th]; A. Maleknejad and E. Erfani, JCAP 1403, 016 (2014), arXiv:1311.3361 [hep-th].

[7] E. Dimastrogiovanni, M. Fasiello, and T. Fujita, JCAP 1701, 019 (2017), arXiv:1608.04216 [astro-ph.CO].

[8] E. Dimastrogiovanni, M. Fasiello, and A. J. Tolley, JCAP 1302, 046 (2013), arXiv:1211.1396 [hep-th].

[9] E. Dimastrogiovanni and M. Peloso, Phys. Rev. D87, 103501 (2013), arXiv:1212.5184 [astro-ph.CO].

[10] R. Z. Ferreira and M. S. Sloth, JHEP 12, 139 (2014), arXiv:1409.5799 [hep-ph]; R. Z. Ferreira, J. Ganc, J. Noreña, and M. S. Sloth, JCAP 1604, 039 (2016), [Erratum: JCAP1610,no.10,E01(2016)], arXiv:1512.06116 [astro-ph.CO].

[11] B. Thorne, T. Fujita, M. Hazumi, N. Katayama, E. Komatsu, and M. Shiraishi, (in preparation).

[12] A. Agrawal, T. Fujita, and E. Komatsu, (in preparation).