Freshwater crustaceans of Bykovsky Peninsula and neighboring territory (Northern Yakutia, Russia)

A.A. Novichkova1,2, A.A. Kotov1*, E.S. Chertoprud1,2

1 A.N. Severtsov Institute of Ecology and Evolution, Leninsky Prospect 33, Moscow 119071, Russia.
2 Department of Hydrobiology, Biological Faculty, M.V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia.

*Corresponding author: alexey-a-kotov@yandex.ru

KEY WORDS: Crustacea, Cladocera, Copepoda, fauna, biodiversity.

ABSTRACT. Numerous water bodies in the northern portion of Eastern Siberia are poorly studied both in their species composition and community structure. The aim of this study is to provide an inventory of the freshwater microcrustaceans of Bykovsky Peninsula and neighboring territory (North Yakutia, Russia) and to analyse the community structure in the studied water bodies with the aim of revealing separate environmental factors affecting it. In toto, we identified 19 copepod species (belonging to 14 genera) and 16 branchiopod species (12 genera). Seven species were first records from this area of NE Siberia, namely calanoid copepods Acanthodiaptomus denticornis, Arctodiaptomus wierzejskii cyclopoid copepods Acanthocyclops venustus, Diacyclops crassicaudis, D. languidoides; cladocerans Eurycerus cf. glacialis, Pleuroxus cf. trigonellus. The fauna of Bykovsky Peninsula and neighbouring territory is very poor and mainly represented by eurybiotic taxa with wide Palearctic or Holarctic ranges. Differences in community structure of different water bodies could be explained mainly by abiotic preferences (i.e. in conductivity/salinity and temperature) of dominant species.

Introduction

Numerous water bodies of Eastern Siberia, especially in its northern portion, are poorly studied in terms of species composition and community structure. Few papers were published on the microscopic crustaceans of this vast part of Russia [Sars, 1898; Rylov, 1928; Behning, 1942; Urban, 1949; Vekhov, 1989]. During the last decade several detailed publications on zooplankton from a few regions of northern Yakutia have appeared, i.e. Yana River basin [Sobakina, 2013; Trofimova et al., 2018], Indigirka River basin [Frolova et al., 2016] and Anabar River basin [Sobakina et al., 2009; Frolova et al., 2013]. All such papers were based on data from a very limited number of water bodies. Moreover, author’s identifications need a substantial
re-evaluation keeping in mind recent progress in the taxonomy of different microcrustaceans [Korovchinsky et al., 2012; Kotov, 2015].

The best explored region is the Lena River Delta, one of the largest deltas in the world [Arep, Reimbitz, 2000]. Its total area is almost 30,000 km² and there are more than 29,000 lakes within this area [Bolshiyano et al., 2013]. Although zooplankton investigations in the Lena River Delta date back to a Russian Polar expeditions at the beginning of the 20th century (1901–1903), the information on the structure and functioning of zooplankton communities within this large region is limited, although first data on the zooplankton were published already by Rylov [1928] and Behning [1942]. The general list of fauna, based on their data, included about 50 species and forms.

Further analysis of the material collected throughout the Lena River from Yakutsk prior to the beginning of the delta, and also in Olenekskaya and Tumatskaya channels of the delta, the bay of Tiksi, the Olenesky Gulf and Neyelov’s Gulf, expanded this list to 75 taxa [Pirozhnikov, Shulga, 1957]. The studies of the zooplankton in the Lena River Delta, first of all, covered the largest river channels — Olenesky, Bykovsky, Tumatskaya and Trofimovskaya [Behning, 1942; Urban, 1949; Pirozhnikov, Shulga 1957; Serkina, 1969; Abramova, 1996; Nikanorov et al., 2011; Nigmatzyanova et al., 2014; 2016] or brackish estuarine areas around the delta [Virketis, 1932; Lutsik et al., 1981; Sorokin, Sorokin, 1996; Abramova, Tuschling, 2005]. It was noted that the structure of zooplankton of the Lena River is characterized by absence of some representatives of Copepoda and Cladocera, widespread in plankton of other large rivers of Siberia (for example, Yenisei and Ob) [Nigmatzyanova et al., 2014]. It was shown that rotifers are most numerous in the zooplankton of the channels. In general, the planktonic community of channels is characterized by low species richness and abundance [Nigmatzyanova et al. 2014]. The structure of the domination is unstable and varies considerably both on a time span of several years, and within one season [Nikanorov et al. 2011].

Compared to other arctic territories of Russia, information on the pelagic fauna of lakes, ponds and wetlands in the Lena River Delta is rather detailed (e.g. Rylov, 1928; Kerer, 1968; Abramova, 1996, 2003;...
Abramova, Sokolova, 1999; Abramova et al., 2009; 2017; Vishnyakova, Abramova, 2009; Nigmatzyanova et al., 2014; 2016, etc.). The fauna of such water bodies is found to be much richer than that of the Lena River Delta [Kerer, 1968]. It was also shown that the fauna of standing waters of a seaside part of the delta is slightly poorer than that in central and southern portions [Serkina, 1969]. Our knowledge on the water communities of the Lena River delta has been slowly but steadily growing during the last decades. The most recent and comprehensive study of the zooplankton of the Lena River Delta has resulted in the list of 125 zooplankton taxa belonging to Rotifera (67) and Arthropoda (58) [Abramova et al., 2017].

The aim of this study is to provide an inventory of the freshwater microcrustacean fauna of Bykovsky Peninsula and neighboring territory, closely located to the Lena Delta (Fig. 1A). We believe that our study of this remote and uninvestigated area will improve the knowledge of the diversity of microcrustacean species in the water bodies across the northeastern part of Siberia. We also aimed to analyse the community structure in the studied water bodies and to evaluate the main environmental factors affecting it.

Material and methods

The samples were collected in August 2015 in 60 shallow water bodies in the northern part of Yakutia (Sakha Republic, Russia): near the Settlement of Tiksi (Table 1, Fig. 1B: 1–13) and on Bykovsky Peninsula (14–60). Water bodies near Tiksi are tundra ponds and puddles with a moderate anthropogenic influence. Domestic and construction waste is present in littoral zone, the water in some cases is moderately polluted with fuel products. The anthropogenic influence in such water bodies was not estimated quantitatively, but its absence or presence was noted. Bykovsky Peninsula is a permafrost territory with typical water bodies of the “polygonal tundra” [Washburn, 1979; Veremeeva, Gubin, 2009]: ponds or mires in the centers of the polygons; ditches above the ice wedges; few large, shallow thermokarst

Table 1. List of water bodies and their main characteristics.

No	AREA	N	E	DEPTH	TEMP	PH	SALT	ORP	COND	TDS
01	TIK	71.63756	128.84471	0.15	10.6	6.56	0	362	34	21
02	TIK	71.63936	128.84564	0.5	9.5	6.55	0	322	0	0
03	TIK	71.63968	128.8419	0.2	9.3	7.07	0	327	0	0
04	TIK	71.64091	128.84087		9.6	6.74	0	0	0	0
05	TIK	71.64151	128.8438		10.7	5.80	0	100	0	0
06	TIK	71.63639	128.84198		8.3	5.80	0	100	0	0
07	TIK	71.64159	128.84276		8.3	5.80	0	100	0	0
08	TIK	71.63631	128.84201		8.3	5.80	0	100	0	0
09	TIK	71.63524	128.84177		8.3	5.80	0	100	0	0
10	TIK	71.63501	128.84239		8.3	5.80	0	100	0	0
11	TIK	71.63412	128.84486		8.3	5.80	0	100	0	0
12	TIK	71.63678	128.86964		8.3	5.80	0	100	0	0
13	TIK	71.63659	128.84352	0.2	10.6	6.56	0	362	34	21
14	MB	71.78642	129.40312	0.7	10.6	6.56	0	362	34	21
15	MB	71.7863	129.40292	0.7	9.5	6.55	0	322	0	0
16	MB	71.78641	129.40265	0.2	9.3	7.07	0	327	0	0
17	MB	71.78639	129.40186	0.3	9.6	6.74	0	0	0	0
18	MB	71.7866	129.40101	0.2	10.7	6.26	11	148	27	16
19	MB	71.78674	129.40062	0.5	10.0	5.95	20	149	41	28
20	MB	71.78687	129.40035	0.7	11.8	6.23	12	120	33	22
21	MB	71.78702	129.40028	0.7	9.5	5.76	15	140	31	20
22	MB	71.78702	129.39961	0.7	9.9	5.98	11	156	21	20
23	MB	71.78703	129.39934	0.7	8.3	5.73	33	106	66	44
24	MB	71.78718	129.39926	0.2	8.3	5.80	0	100	0	0
Abbreviations for regions: TIK — vicinities of settlement of Tiksi; MB — Mamontoviy Basagasa Alas, Bykovsky Peninsula; UM — Usun-Mas Alas, Bykovsky Peninsula.

No	AREA	N	E	DEPTH	TEMP	PH	SALT	ORP	COND	TDS
25	MB	71.78712	129.39755	8.5	5.90	104	88	214	110	
26	MB	71.78721	129.39703	9.5	5.66	27	70	46	34	
27	MB	71.79087	129.38036	0.1	11.5	5.26	8	202	31	15
28	MB	71.7911	129.38016	0.2	10.3	4.82	0	186	0	0
29	MB	71.79108	129.38022	8.3	2.77	0	190	0	0	
30	MB	71.79111	129.37953	0.5	9.6	5.10	16	164	27	21
31	MB	71.78645	129.39719	0.7	9.5	7.52	34	205	67	44
32	MB	71.78407	129.40381							
33	MB	71.78252	129.40111	0.3						
34	MB	71.78204	129.39914	8.1	4.22	32	180	66	44	
35	MB	71.78423	129.39674	8.0	4.08	17	175	33	23	
36	MB	71.78511	129.39992							
37	MB	71.78551	129.39653	0.3						
38	MB	71.78472	129.39511	0.4	8.3	5.21	0	181	0	0
39	MB	71.78382	129.39682	0.2	7.8	4.22	11	219	22	14
40	MB	71.78329	129.39862	7.9	5.06	16	181	30	19	
41	UM	71.85961	129.34065	8.7	5.22	177	100	344	228	
42	UM	71.85938	129.33861	9.1		164	126	338	228	
43	UM	71.85928	129.33788	9.1		205	127	415	269	
44	UM	71.85928	129.33707	8.7		170	116	346	229	
45	UM	71.85979	129.33681	9.3		223	56	461	307	
46	UM	71.85979	129.33482	8.2		284	-30	556	376	
47	UM	71.85995	129.33488							
48	UM	71.86027	129.3349							
49	UM	71.86027	129.33514							
50	UM	71.86101	129.33803	9.0	344	111	688	457		
51	MB	71.77942	129.41396	12.8	34		66	39		
52	MB	71.77934	129.41415	13.3	25		82	40		
53	MB	71.78687	129.38808	14.2	9		0	17		
54	MB	71.7868	129.38608	0.2	14.8	0	14	0		
55	MB	71.78629	129.38483	0.2	14.8	10	21	12		
56	MB	71.78607	129.38023	0.2	13.0	20	22	22		
57	MB	71.78567	129.37704	0.2	14.2	0	0	0		
58	MB	71.78523	129.37421	14.2	9		23	14		
59	MB	71.78568	129.37233	12.5	0		0	0		

Abbreviations for regions: TIK — vicinities of settlement of Tiksi; MB — Mamontoviy Basagasa Alas, Bykovsky Peninsula; UM — Usun-Mas Alas, Bykovsky Peninsula.

Аббревиатуры для районов: TIK — окрестности поселка Тикси; MB — Алас Мамонтовый Басагаса, Быковский полуостров; UM — Алас Усун-Мас, Быковский полуостров.
Freshwater crustaceans of Bykovsky Peninsula and Tiksi

Table 2. List of Cladocera and Copepoda species recorded in the vicinities of Tiksi and on Bykovsky Peninsula in August 2015, and number of water bodies in which each species was found.

Taxa	Frequency (No of water bodies)
COPEPODA	
Cyclopoida	
Acanthocyclops venustus (Norman et Scott, 1906)	12
Cyclops abyssorum (Sars, 1863)	7
Cyclops cf. strenuus Fischer, 1851	12
Cyclops kolensis Lilljeborg, 1901	2
Diacyclops crassicaudis (Sars, 1863)	2
Diacyclops languardoides (Lilljeborg, 1901)	11
Eucyclops sp.	1
Megacyclops gigas (Claus 1857)	16
Megacyclops viridis (Jurine, 1820)	11
Mesocyclops leuckartii (Claus, 1857)	1
Paracyclops sp.	1
Calanoida	
Acanthodiaptomus denticornis (Wierzejski, 1887)	3
Arctodiaptomus bacillifer (Koelbel, 1885)	1
Arctodiaptomus wierzejskii (Richard, 1888)	9
Eurytemora lacustris (Poppe, 1887)	3
Heterocope borealis (Fischer, 1851)	20
Leptodiaptomus angustilobus (Sars, 1898)	1
Mixodiaptomus theeli (Lilljeborg in Guerne et Richard, 1889)	10
Harpacticoida	
Canthocamptus glacialis Lilljeborg, 1902	14
CLADOCERA	
Daphnidae	
Daphnia middendorffiana Fischer, 1851	13
Daphnia cf. pulex Leydig, 1860	26
Bosminidae	
Bosmina cf. longispina Leydig, 1860	4
Euryceridae	
Euryercus cf. glacialis Lilljeborg, 1887	3
Euryercus lamellatus (O.F. Müller, 1776)	4
Chydoridae	
Acroperus harpae (Baird, 1834)	1
Alona cf. affinis (Leydig, 1860)	2
Alona guttata Sars, 1862	5
Alonella exigua (Lilljeborg, 1853)	6
Chydomus cf. sphaericus (O.F. Müller, 1776)	26
Pleuroxus cf. trigonellus (O.F. Müller, 1776)	1
Polyphemidae	
Polyphemus cf. pediculus (Linnaeus, 1761)	6

stagnant lakes and those originated as creek impoundments. Such water bodies could not be subdivided into discrete types (i.e. in their size).

At each site, zooplankton samples were collected qualitatively by hauling a plankton net (diameter 0.2 m, 50 µm mesh) through the water column, engaging the upper layer of the bottom with the detached sediment filtered through the net up to the surface. The samples were preserved with 96% ethanol. All the samples were taken from the shore. Environmental variables such as water temperature, pH, salinity, conductivity, TDS (total dissolved solids) and ORP (oxidation reduction potential) were measured by AMT03R meter (Amtast USA Inc.) only from the water bodies of Bykovsky Peninsula, but not from Tiksi region (Table 1).
Fig. 2. Analysis of the microcrustacean fauna and communities in the water bodies in the vicinities of Tiksi and on Bykovsky Peninsula. A — species (Cladocera and Copepoda) accumulation curves depending on the number of analyzed samples from Bykovsky Peninsula and its vicinities: empiric (lower blue dots) and estimated (upper red dots) curves; B — results of CCA of the microcrustacean communities in the studied water bodies on Bykovsky Peninsula (species indicated only outside the 95% confidence ellipse area); C — MDS ordination of waterbodies from different localities (Tiksi and Bykovsky) according the species composition.

Рис. 2. Анализ фауны и структуры сообществ микроскопических ракообразных водоемов окрестностей Тикси и Быковского полуострова. A — кумулятивная кривая накопления видов (Cladocera и Copepoda) в зависимости от числа проб с Быковского полуострова и прилегающих районов: эмпирическая (синие точки, нижняя) и модельная (красные точки, верхняя) кривые; B — результат анализа канонических соответствий (CCA) сообществ микроскопических ракообразных в исследованных водоемах Быковского полуострова (названия указаны только для видов не входящих в 95% доверительную область); C — MDS-шикавирование водоемов из разных участков исследованной территории (Тикси и Быковский) по видовому составу.
Freshwater crustaceans of Bykovsky Peninsula and Tiksi

Preliminary species identification and counting was carried out in Bogorov counting chambers; the total numbers of Cladocera and Copepoda were recorded. The qualitative data was used to reveal dominant and rare species and the ratio of species in the community. Statistical analyses performed for qualitative data, i.e. considered only presence or absence of species. High power microscope Olympus CX-41 was used for accurate crustacean identification followed both standard taxonomic treatises [Rylov, 1948; Borutsky, 1952; Dahms et al., 2006; Alekseev, Tsarolikhin, 2010] and recent taxonomic revisions [Sinev, 2002, 2009; Kotov, Bekker, 2016; Garibian et al., 2018].

For estimation of the contribution of the identified species to the potential species pool of the studied area, the accumulation curves of the number of species were plotted depending on the number of samples analyzed. We used the computer package EstimateS [Colwell, 2013] to estimate species richness of the cladocerans and copepods in the region.

A canonical correspondence analysis (CCA) was used to reveal the impact of environmental variables on the invertebrate community. The analysis was performed using PAST software [Hammer et al., 2001] for qualitative data on the water bodies of Bykovsky Peninsula (sites 14–60). The whole species list, including both rare and dominant species was applied.

To represent the faunistic relationships among water bodies from different localities in low-dimensional space, a non-metric multidimensional scaling (nMDS) ordination was performed using PRIMER software [Clarke, Gorley, 2001]. The faunal similarity was estimated using the Kulczynski index (K) for the qualitative data: \(K = (M/N1 + M/N2)/2 \), where N1 and N2 are the total numbers of taxa present in the compared lists and M is the number of common taxa. This index is independent of joint absence and is moderately sensitive to differences in the total length of the compared lists, making it preferential for potentially incomplete data [Clarke, Warwick, 2001].

Results

We identified 35 crustacean species and taxa: 19 copepod species (belonging to 14 genera) and 16 branchiopod species (12 genera) (Table 2). Seven of these crustaceans have not previously been recorded from the neighboring territories of NE Siberia, although they are quite widespread through the northern Palearctic: two calanoids (Anacanthodiaptomus denticornis, A. wierzejskii), three cyclopoids (Anacanthocyclops venustus, Diacyclops crassicaudis, D. languidoides) and two cladocerans (Eurycercus cf. glacialis, Pleuroxus cf. trigonellus).

Microcrustacean diversity in the studied water bodies was low, and averaged 4.7 species (ranging from 0 to 10). The most common and abundant species in the planktonic samples were the cladocerans Daphnia pulex and Chydorus cf. spharicus and copepod Heterocope borealis. They occurred in more than 20 localities each (34–45%). D. middendorfiana, Canthocamptus glacialis, Megacyclops gigas, M. viridis, D. languidoides, Cyclops cf. strenus and A. venustus were also quite frequent in the samples and occupied in 19–24% of the investigated water bodies. Almost half of the species (9 copepods and 6 cladocerans) were rare and occurred only in one to four water bodies. Our analysis reveals that neither sample-based rarefaction curve nor the best species richness estimator (Chao 1) curve reaches a plateau (Fig. 2A). Therefore, the cladoceran and copepod biodiversity of the region is still incompletely studied, but only few additional taxa could be found here, and a preliminary analysis on the biodiversity could be made in such a situation.

Majority of observed species (>80%) has wide Paleartic and Holarctic distribution areas (Table 3). Only five of the species (Heterocope borealis, Leptodiaptomus angustabilobius, Canthocamptus glacialis, Daphnia middendorfiana, Eurycercus cf. glacialis) are limited to the Arctic area and are specific only for high latitudes of the northern hemisphere.

The investigated lake analysis revealed that the zooplankton communities of most lakes and ponds are relatively similar both in community structure and species composition. Most of the lakes are characterized by a combination of high abundances of small and large crustaceans. Thus, large copepods like Heterocope borealis and large cladocerans Daphnia pulex and D. middendorfiana coexist with small cyclopoid copepods and small chydorids. The same trend was observed for the thermokarst lakes of the Lena River Delta region [Abramova et al., 2017]. The species composition of big foodplain lakes in the Lena River Delta region differs from the small ones. Several rather big lakes of Bykovsky Peninsula with rare species stay a little bit separately too (Fig. 2C).

CCA indicated complex relationships between assemblage composition and habitat variables measured in this study (Fig. 2B, Table 4). Vectors superimposed on the CCA ordination plot graphically represented the correlations between environmental variables and assemblage structures. First two canonical axes explained together 56% of the response table’s inertia. The first axis accounted for 36% of the total variation in zooplankton assemblage and mainly correlated with water salinity, conductivity; this axis discriminates sharply the two localities with the maximal values of salinity, and with the noticeable role of Eurycercus cf. glacialis and Megacyclops gigas. The salinity varied in the range from 0 to 344 ppm; the conductivity ranged from 0 to 688 μS. The second axis (20% of the total variation) was mainly related to water temperature (varied from 7.8 to 14.8°C). Along this axis, the stations were arranged gradually from cold-water bodies preferred by Eurymetora lacustris, Pleuroxus trigonellus, Mesocylops leuekarti and Acroperus harpae, to the warm waters, where Arcodiaptomus bacillus, Leptodiaptomus angustabilobius, Polyphemus cf. pediculus and Bosmina cf. longispina were the characteristic species.

The comparison of the samples by the nMDS (Fig. 2C) method does not show a significant separation of the crustacean assemblages in the water bodies of Tiksi vicinities, subjected to a moderate anthropogenic im-
Table 3. Crustacean species from Bykovsky Peninsula belonging to different groups and biogeographical regions.

Cladocera	Copepoda			
Anomopoda	Onycopoda	Calanoida	Cyclopoida	Harpacticoida
36%	3%	22%	36%	3%
11 species	1 species	7 species	11 species	1 species

Whole Holarctic | Whole Palaearctic | Arctic (north of Holarctic / Palaearctic) |
| 41% | 41% | 18% |
| 12 species | 12 species | 5 species |

Table 4. Results of the CCA of the taxonomical composition of the microcrustacean communities in the water bodies of Bykovsky Peninsula.

Axis 1	Axis 2	Axis 3	Axis 4	
Eigenvalue	0.26296	0.16155	0.1456	0.10749
%	35.96	22.09	19.91	14.7
Permutation	0.244	0.62	0.232	0.21

Intraset correlations of environmental variables with axes

TEMP	PH	SALT	ORP	COND	TDS
Axis 1	-0.0464	-0.1249	0.6529*	-0.0654	0.6094*
Axis 2	0.6161*	-0.2199	-0.2217	0.0503	-0.2866
Axis 3	0.0327	-0.2746	-0.0044	-0.0820	0.1481
Axis 4	0.0936	-0.1311	0.1837	-0.3322	0.0243

* verifiable correlations

Discussion

Following recent phylogeographic studies [Crease et al., 2012; Kotov et al., 2016] and conventional taxonomic revisions based mainly on the male characters [Kotov, Bekker, 2016; Garbian et al., 2018], we know that a significant portion of the cladoceran taxa revealed here belong in reality to cryptic species complexes. Therefore, in some cases we cannot make an accurate conclusion on the biogeographic traits of the taxa. But, surprisingly, only D. middendorffiana and Eurycercus cf. glacialis are truly Arctic species, while other Arctic taxa (for example, D. longiremis or D. umbra) are absent on Bykovsky Peninsula and neighbouring territory. The species diversity of the area investigated is significantly lower as compared to the total microcrustacean diversity of northeastern Siberia (from the lower reach of the Khatanga River to the Lena River Delta), where 98 species (34 Cladocera and 64 Copepoda) are reported [Pirozhnikov, Shulga, 1957; Colbourne et al., 1998; Abramova, 2003; Abramova et al., 2009, 2017; Sobakina et al., 2009; Vishnyakova, Abramova, 2009; Alekseev, Defaye, 2011; Abramova, Vishnyakova, 2012; Korovchinsky et al., 2012; Frolova et al., 2013, 2016; Nigamatzayanova et al., 2014; Abramova, Zhulay, 2016]. However, several species have not been previously documented from the neighboring regions: Acanthodiaptomus denticornis, Arcodiaptomus wierzejszkii, cyclopoid copepods Acanthocyclops venustus, Diacyclops crassicaudis, D. languidoides, Eurycercus cf. glacialis, Pleuroxus cf. trigonellus.

Among the copepods, calanoids A. denticornis and A. wierzejszkii, recorded for the first time for the NE Siberia, are eurybiotic species [Borutsky et al., 1991; Alekseev, Tsalolikhin, 2010]. Both species are eurythermic and euryhaline, living in freshwater and brackish...
water bodies of various hydrological types and size. *A. denticornis* is also characteristic for mountain lakes at altitudes from 500 to 2500 m [Borutsky et al., 1991]. *A. wierzejskii* is distributed in the Palaeartic in a large latitudinal range from the Bolshezemelsky Tundra to Central Asia, and *A. denticornis* has a Holarctic circumpolar range [Borutsky et al., 1991; Fefilova, 2015]. *A. venustus* and *D. languidoides*, as well as *D. crassicaudis*, are typical for the shallow-water swampy water bodies of the northern regions; to the south these species are found in springs or highland water bodies [Alekseev, Tsalolikhin, 2010; Rylov, 1948]. The first two species are Palaeartic, and the third has Holarctic circumpolar range [Alekseev, Tsalolikhin, 2010; Fefilova, 2015].

In general, most taxa recorded in this study are Palearctic or Holarctic with wide latitudinal ranges (Table 3); the latter are confirmed by genetic studies for several members of cryptic species complexes [Crease et al., 2012; Kotov et al., 2016]. Most taxa revealed in the region of this study have wide temperature ranges [Rylov, 1948; Borutsky et al., 1991; Alekseev, Tsalolikhin, 2010; Fefilova, 2015]. The exception is *Acanthocyclops venustus*, which, although widespread in the Palaeartic, is exceptionally cold-water, and is noted only in springs and wells south of the Polar Circle [Alekseev, Tsalolikhin, 2010]. Similar trend in the composition of species areas has been previously noted for plankton crustaceans of other high-altitude regions: Svalbard [Dimante-Deimantovica et al., 2014], Shokalsky island [Novichkova, Chertoprud, 2017] and Bering Island [Novichkova, Chertoprud, 2016].

Although the observed crustacean communities are relatively similar to those from the thermokarst lakes of the Lena River Delta, we found some exceptions from this rule. It was previously shown that the small cladocerans *Bosmina longirostris* and *Chydorus sphaericus* are typical inhabitants of the large thermokarst lakes on Samoylov Island, together with the larger *Daphnia pulex* and two anostraca species, *Polarthamnema forcipata* and *Branchinecta paludosa*. Among calanoid copepods, *Eudiaptomus graciloides*, *L. angustilobus* and *H. borealis* are the dominant copepods in the thermokarst lakes in August [Abramova et al., 2017]. Most of these species are also typical for the observed water bodies of the neighbourhood of Tiksi and Bykovsky Peninsula. Cyclopoid copepods occur in the samples regularly but are much less numerous.

The results of CCA indicated that assemblage structure was correlated mainly with conductivity/salinity and temperature. The correlation between the species composition of the zooplankton community and temperature and mineralization of water for small water bodies of high latitudes is noted in many previous publications [Novichkova, Chertoprud, 2017; Walseng et al., 2018; Jensen et al., 2019]. At the same time, the variability of mineralization of the water body usually correlates with the distance from the sea and/or nesting places of geese on the banks of the water body [Walseng et al., 2018; Jensen et al., 2019, etc.]. In turn, the temperature factor is usually related to the altitude and distance to the focuses of glaciation [Walseng et al., 2018]. It is known that inter-annual temperature fluctuations causing alternation of warm and cold summer seasons in high latitudes can significantly influence the composition of the fauna of Arctic water bodies [Novichkova, Chertoprud, 2017; Dimante-Deimantovica et al., 2018]. Due to the accumulation of the resting stages of microcrustaceans in bottom sediments of water bodies, species of more southern regions may temporarily appear in communities in case of favorable temperature conditions [Novichkova, Chertoprud, 2017].

According to our data, *Eury cercus* cf. *glacialis* and *Megacyclops gigas* are characteristic of water bodies with relatively high mineralization and conductivity (not more than 344 ppm and 688 IS, respectively). Both these species are able to inhabit a wide range of water bodies and have been previously documented for such lakes [Rylov, 1948; Bekker, Kotov, 2012]. The latter species occurs even in brackish-water lakes [Rylov, 1948]. However, variations in the hydrochemical parameters of the comparing lakes of the Bikovsky Peninsula are not significant, all the puddles and lakes considered are freshwater. The range of differences in temperature is also relatively small — only 7 °C. It is necessary to take into account that the temperature of water in Arctic water bodies can vary significantly during the day, which is connected both with their rapid warming due to small depth and mainly dark color of the bottom, and severe weather variability [Grigoriev, 1956]. Relatively warm waters are inhabited by *Arctodiaptomus bacillifer*, *Leptodiaptomus angustilobus*, *Polyphemus pediculus* and *Bosmina* cf. *longispina*. Apart from *L. angustilobus* all these species prefer quite warm water. Thus, the optimum temperature for the development of *P. pediculus* is 17–21 °C [Butorina, 1971]. Following recent climatic changes *B. cf. longispina* has propagated from temperate latitudes to Arctic water bodies [Walseng et al., 2018]. *A. bacillifer* is distributed in the wide temperature ranges and inhabits water bodies of both, steppe and tundra zones [Borutsky et al., 1991; Sergeeva, Yevdokimov, 2016]. The only typical coldwater species in this group is *L. angustilobus* inhabiting tundra water bodies [Borutsky et al., 1991]. For cold water bodies, *Eurytemora lacustris*, *Pleuroxus trigonellus*, *Mesocyclops leuckartii* and *Acrorpus harpae* are typical. However, only *E. lacustris* is a real cold-water taxon. This species is considered a ‘classical’ glacial relict species in central Europe [Maier et al., 2011]. *E. lacustris* requires cold (around 10 °C) and well-oxygenated (=1 mg O₂/L) waters [Patalas, Patalas 1966; Kasprzak et al., 2005; Karpowicz, Kalinowska, 2018]. Oppositely, *M. leuckartii*, is relatively warm-water, it develops in 15–20 °C [Rylov, 1948], but has a wider distribution range — from tropics to Arctic [Fefilova, 2015]. Two cladoceran species (*P. trigonellus*, *A. har-
pae) inhabit wide temperature range of water bodies, dwelling on the bottom and in the phytoplankton [Aleksseev, Tsalolikhin, 2010]. Thus, the dominance of certain species in a particular water body in some cases may result from stochastic processes and be determined by the founder effect and subsequent water body monopolization [De Meester et al., 2002]. Probably, the local dominance of cold-water species in warmed water bodies could be explained by such reasons.

According to the non-metric multidimensional scaling, the species composition of Cladocera and Copepoda does not differ in the water bodies from Tiksi and from Bykovsky Peninsula. The domination structure in the microcrustacean species assemblages of two compared regions is almost similar, while the number of species differs significantly (11 in Tiksi and 29 in Bykovsky Peninsula). The overlap between the species lists of these areas is only 81%. Only two species, Acanthocyclops denticornis and Diacyclops cassinus, were found exclusively in the water bodies within the settlement. The reduced species richness and simplification of the species assemblages structure is characteristic for the water bodies exposed to pollution [Walseng et al., 2018]. In general, zooplankton communities of high altitudes are very poor and driven, first of all, by the temperature factor and availability of food resources [Novichkova, Chertoprud, 2017; Walseng et al., 2018; Jensen et al., 2019]. Against this backdrop, a moderate anthropogenic impact has almost no effect on the distribution of dominant microcrustacean species, but leads to a significant reduction in taxonomic diversity due to the decrease of the number of rare species.

Acknowledgements. Many thanks to E.I. Izjumova, A.N. Maleeva, O.V. Levochkina, V.V. Skosar’, V.E. Tumskoy, A.A. Zharov for their assistance during the works at Bykovsky Peninsula, R.J. Shiel for linguistic corrections in earlier draft. The study of Cladocera is supported by the Russian Science Foundation (grant 18-14-00325).

References
Abramova E.N. 1996. [Copepoda (Crustacea) of the Lena Delta Reserve] // Gidrobiologicheskie isledovaniya v prirodnikh zapovednikakh. Vol.8. No.3. P.5–16 [in Russian].
Abramova E.N. 2003. Species composition, ecology, population structure and seasonal dynamic of zooplankton from tundra water basins in the Lena Delta // Berichte zur Polar- und Meeresforschung. Bd.642. P.30–35.
Abramova E., Vishnyakova I., Boike J., Abramova A., Solovyev G., Martynov F. 2017. Structure of freshwater zooplankton communities from tundra waterbodies in the Lena River Delta, Russian Arctic, with a discussion on new records of glacial relic copepoda // Polar Biology. Vol.40. No.8. P.1629–1643.
Abramova E.N., Zhulay I.A. 2016. The occurrence of the new zooplankton species in the Lena River Delta // Trudy Zoologicheskogo Instituta RAN. Vol.320. No.4. P.473–487 [in Russian].
Aleksseev V.R., Defaye D. 2011. Taxonomic differentiation and world geographical distribution of the Eucyclops serrulatus group (Copepoda, Cyclopidae, Eucyclopinae) // Crustaceana Monographs. Vol.16. P.41–72.
Aleksseev V.R., Tsalolikhin S.Y. (eds.). 2010. [Guide of freshwater zooplankton and zoobenthos of European Russia. Vol.1. Zooplankton.] Moscow: KMK Sci. Press. 495 p. [In Russian].
Are F., Reimmitz E. 2000. An overview of the Lena River Delta setting: geotectics, geomorphology, and hydrology // Journal of Coastal Research. Vol.16. No.4. P.1083–1093.
Bekker E.I., Kotov A.A. 2012. A revision of the subgenus Euryercus (Euryercus) Baird, 1843 emend. nov. (Cladocera: Euryecridae) in the Holartic with the description of a new species from Alaska // Zootaxa. Vol.3206. P.1–40.
Behning A.L. 1942. [About the Lena River plankton] // Izvestiya Biologo-Geograficheskogo Nauchno-issledovatelskogo Instituta pri Vostochno-Sibirskom Gosudarstvennom Universitete. Vol.6. P.217–230 [in Russian].
Bolshiyanov D.Yu., Makarov A.S., Shnayer V., Shitov G. 2013. [Origins and development of the Lena delta]. St. Petersburg: Arctic and Antarctic Research Institute Publishing. 268 p. [In Russian].
Borutsky E.V. 1952. [Crustaceans. Freshwater harpacticoids] // Fauna SSSR. Crustacea. Vol.3. Moscow–Leningrad: AN SSSR Publ. 429 p. [In Russian].
Borutsky E.V., Stepanova L.A., Kos M.S. 1991. [Key to identification of Calanoida from fresh waters]. St. Petersburg: Nauka. 504 p. [In Russian].
Butorina L.G. 1971. [Biologia and life cycle of Polyphemus pediculus (L)] // Trudy Institut biologii vnutrennikh vod AN SSSR. Vol.21. No.24. P.155–179 [in Russian].
Clarke K.R., Gorley R.N. 2001. Primer, user manual/tutorial, v5 edn. PRIMER-E Ltd, Plymouth.
Clarke K.R., Warwick R.M. 2001. Change in marine communities: an approach to statistical analysis and interpretation. Plymouth Marine Laboratory, Plymouth.
Colbourne J.K., Crease T.J., Weider L.J., Hebert P.D.N., Dufresne F., Hobaek A. 1998. Phylogenetics and evolution of a circumpolar species complex (Cladocera: Daphnia pulex) // Biological Journal of the Linnean Society. Vol.65. No.3. P.347–365.
Colwell R.K. 2013. EstimateS, Version 9.1: Statistical Estimation of Species Richness and Shared Species from Samples (Software and User’s Guide). URL: http://viceroy.eeb.uconn.edu/estimates/
Crease T.J., Omilari A.R., Costanzo K.S., Taylor D.J. 2012. Transcontinental phylogeography of the Daphnia pulex species complex // PLoS ONE. Vol.7. No.10. e46620. doi:10.1371/journal.pone.0046620.
Dahms H.-U., Fornshell J.A., Forshell B.J. 2006. Key to identification of crustacean Nana // Organisms Diversity and Evolution. Vol.6. No.1. P.47–56.
De Meester L., Gómez A., Okamura B., Schwenk K. 2002. The Monopolization Hypothesis and the dispersal-gene flow paradox in aquatic organisms // Acta Oecologica. Vol.23. No.3. P.121–135.
Dimante-Demantovač I., Walseng B., Chertoprud E., Novichkova A. 2018. New and previously known species of Copepoda and Cladocera (Crustacea) from Svalbard, Norway – who are they and where do they come from? // Fauna Norvegica. Vol.38. P.18–29.
Fefilova E.B. 2015. [Copepods (Copepoda). Fauna of the European North-East of Russia]. Moscow: KMK Sci. Press. 319 p. [In Russian].
Freshwater crustaceans of Bykovsky Peninsula and Tiksi

Frolova L.A., Nazarova L.B., Pestryakova L.A., Herzschuh U. 2013. Analysis of the effects of climate-dependent factors on the formation of zooplankton communities that inhabit arctic lakes in the Anabar River Basin // Contemporary Problems of Ecology. Vol.6. P.1–11.

Frolova L.A., Nigmatzyanova G.R., Pestryakova L.A., Subetto D.A. 2016. [Structural and functional characteristics of zooplankton community of lake Suturuokh (Indigirka River basin, eastern Siberia)] // Vodnye resursy: izuchenie i upravlenie. Materialy V Mezhduunarodnoi konferentsii molodykh uchenykh. Vol.2. P.395–400 [in Russian].

Frolova L.A., Nigmatzyanova G.R. 2019. [Structural and functional characteristics of zooplankton communities of thermokarst lakes of Somolovskiy island (Lena Delta, Sakha Republic (Yakutia))] // Uchenye Zapiski Kazanskogo Universiteta. Vol.1. No.1. P.158–172 [in Russian].

Garibian P.G., Neretina A.N., Klimovsky A.I., Kotov A.A. 2018. A new case of West-East differentiation of the freshwater fauna in Northern Eurasia: the Pleuromamma trigonellae species group (Crustacea: Cladocera: Daphniidae) // Zoologia. Vol.4532. No.4. P.451–482.

Grigoriev À.À. 1956. [Subarctic. Characterizing of the main types of regional environment]. Moscow–Leningrad: Geografija. 223 p. [in Russian].

Hammer Ø., Harper D.A.T., Ryan P.D. 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis // Palaeontologia Electronica. Vol.4. No.1. P.1–9. http://palaeo-electronic.org/2001_1/past/issue_01.htm

Jana expedition // Ezhegodnik zoologicheskogo Muzeja Im. O. F. Müller, 1785 // Zootaxa. Vol.3911. No.2. 321 p. [In Russian]

Kotov A.A., Necyn A.Yu., Bekker E.I. 2012. [Investigations of systematic diversity of Cladocera (Crustacea: Branchiopoda: Cladocera) of the Northern Eurasia – results of recent years] // Krylov A. (ed.) Zootaxa. Vol.2176. No.1. P.1–21.

Krylov A., Frisch D., Christoffersen K.S. 2019. Changes in trophic state and biodiversity in high Arctic ponds in response to increasing goose populations // Freshwater Biology. Vol.64. No.7. P.1241–1254. https://doi.org/10.1111/fwb.13299

Nigmatzyanova G.R., Frolova L.A., Abramova E.N. 2016. Zooplankton spatial distribution in thermokarst lake of The Lena River Delta (Republic of Sakha (Yakutia)) // Research Journal of Pharmaceutical, Biological and Chemical Sciences. Vol.7. No.5. P.1288–1297.

Patalas J., Patalas K. 1966. The crustacean plankton communities in polsh lakes // Verhandlungen des Internationalen Verein Limnologie. Vol.16. No.1. P.204–215.

Pirozhnikov P.I., Shulga E.L. 1957. [The main features of the zooplankton of the lower reaches of the Lena River] // Trudy Vsosoyuznogo Gibidrobiologicheskogo Obshchestva. Vol.8. P.219–230 [in Russian].

Prylov V.M. 1928. [Materials on the fauna of freshwater copepods (Copepoda, Calanoida) of the Northern Siberia] // Trudy komissii po izucheniyu Yaktoskoi ASSR. Vol.11. P.1–32 [in Russian].

Prylov V.M. 1948. [Cyclopoida of the fresh-water] // Fauna of SSSR Crustacea. Vol.2. Moscow–Leningrad: AN USSR Publ. 321 p. [in Russian].

Sers G.O. 1898. The Cladocera, Copepoda and Ostracoda of the Jana expedition // Ezhegodnik zoologicheskogo Muzeja Imperatorskoi Akademii Nauk. Vol.3. P.324–359.

Sobakina I.G., Sokolova V.A., Solomonov N.M. 2013. Anthropogenic transformation of biocenosis structural organization in Lena River mouth area // Water Resources. Vol.38. P.306–314.

Sobakina I.G., Evstigneeva T.D., Sheveleva N.G., Sokolova V.A. 2013. Zooplankton community of lake Suturuokh (Indigirka River basin, eastern Siberia) // Vestnik Vostochno-Vostochnogo Federal’nogo Universiteta. Nauk o Zemle. No.2(10). P.32–40 [in Russian].

Veimpner Ya.P., 2018. [Recent state of the lakes of the Yana River basin] // Vestnik Swvero-Vostochnogo Federal’nogo Universiteta. Nauk o Zemle. No.2(10). P.32–40 [in Russian].
Urban V.V. 1949. [Hydrobiological investigations in the Lena Delta] // Izvestya Vsesoyuznogo nauchno-issledovatelskogo instituta ozyornogo i rechnogo rybnoho khozyaystva. Leningrad. Vol.29. P.75–95 [in Russian].

Vekhov N.V. 1989. [Fauna and distributional features of branchiopods and tadpole shrimps (Crustacea: Anostraca; Notostacca) in the water bodies of the far north of Siberia and Far East] // Izvestiya Sibirskogo Otdeleniya AN SSSR. Vol.3. P.106–110 [in Russian].

Veremeeva A., Gubin S. 2009. Modern tundra landscapes of the Kolyma Lowland and their evolution in the Holocene // Permafrost and Periglacial Processes. Vol.20. No.4. P.399–406.

Virketis M.A. 1932. [New data on zooplankton from the southeastern Laptev Sea] // Issledovaniya morei SSSR. Leningrad. Vol.15. P.105–125 [in Russian].

Walseng B., Jensen T., Dimante-Deimantovica I., Christoffersen K.S., Chertoprud M., Chertoprud E., Novichkova A., Hessen D.O. 2018. Freshwater diversity in Svalbard; providing baseline data for ecosystems in change // Polar Biology. Vol.41. No.10. P.1995–2005.

Washburn A.L. 1979. Geocryology. A survey of periglacial processes and environments. London: Arnold. 406 p.

Responsible editor V.A. Spiridonov