Hepatitis B X-interacting protein promotes the formation of the insulin gene–transcribing protein complex Pdx-1/Neurod1 in animal pancreatic β-cells

Hang Li‡, Zhen Wang‡, Yinghui Li‡, Runping Fang‡, Huawei Wang§, Hui Shi§, Xiaodong Zhang§, Weiyong Zhang, and Lihong Ye

From the State Key Laboratory of Medicinal Chemical Biology, Departments of Biochemistry and Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China

Edited by Jeffrey E. Pessin

The activation of insulin gene transcription depends on multiple nuclear proteins, including the transcription factors PDX-1 and NEUROD1, which form a transcriptional complex. We recently reported that hepatitis B X-interacting protein (HBXIP, also termed LAMTOR5) can modulate glucose metabolism reprogramming in cancer cells. However, the physiological role of HBXIP in the modulation of glucose metabolism in normal tissues is poorly understood. Here, we report that Hbxip provides the insight into the mechanism by which Hbxip stimulates insulin enhancer activity by which the transcription factor complex Pdx-1/Neurod1 in animal pancreatic β-cells in vitro and in vivo. We found that pancreatic β-cell–specific Hbxip-knockout mice displayed higher fasting blood glucose levels and impaired glucose tolerance. Furthermore, Hbxip was involved in the regulation of insulin in the pancreas islets and increased insulin gene expression in rat pancreatic β-cells. Mechanistically, Hbxip stimulated insulin enhancer activity by interacting with Pdx-1 and recruiting Neurod1 to Pdx-1. Functionally, we provide evidence that Hbxip is required for Pdx-1/Neurod1-mediated insulin expression in rat pancreatic β-cells. Collectively, these results indicate that Hbxip is involved in the transcription of insulin by increasing the levels of the Pdx-1/Neurod1 complex in animal pancreatic β-cells. Our finding provides the insight into the mechanism by which Hbxip stimulates the transcription of the insulin gene.

This work was supported by National Basic Research Program of China Grant 973 Program No. 2015CBSS53905, National Natural Scientific Foundation of China Grants 81372186 and 31670771, and the Fundamental Research Funds for the Central Universities, Project of Prevention and Control of Key Chronic Non-Infectious Diseases Grant 2016YFC1303401. The authors declare that they have no conflicts of interest with the contents of this article.

This article contains Figs. S1–S12 and Tables S1–S4.

1 To whom correspondence may be addressed. E-mail: zhwybao@nankai.edu.cn.
2 To whom correspondence may be addressed. Tel.: 86-22-23501385; Fax: 86-22-23501385; E-mail: yelihong@nankai.edu.cn.

© 2018 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A.

© 2018 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A.
in this study. Interestingly, we showed that Hbxip was involved in the glucose-induced insulin gene transcription through a model of pancreatic β-cell–specific Hbxip-knockout mice. Our finding provides the insight into the mechanism by which Hbxip physiologically modulates the transcription of the insulin gene.

Results

Pancreatic β-cell–specific Hbxip-knockout mice are generated

To better understand the physiological significance of HBXIP, we first detected the expression level of HBXIP in human normal tissues. Our group has previously revealed the HBXIP levels in a variety of normal tissues (17). Here, we found that HBXIP was ubiquitously expressed in most normal tissues (Fig. 1A and Fig. S1A). Interestingly, Western blot analysis showed that among the tissues linked with metabolism, the expression level of HBXIP was higher in the pancreas than in the liver and stomach (Fig. 1A). Meanwhile, HBXIP was highly expressed in pancreas islets compared with other parts of pancreas as shown in the staining results (Fig. 1A). The above data implied that HBXIP might play a crucial role in pancreas islets.

Then, we constructed an Hbxip-knockout allele using the Cre-loxP approach (20, 21) and generated pancreatic β-cell–specific Hbxip-knockout mice (Hbxip-deficient mice). The protein levels of Hbxip from different groups of mice were quantified using ImageJ software as shown. Mean ± S.D., n = 3/group. Student's t test; **, p < 0.01. E, pancreatic morphology was examined by HE staining in the pancreas tissues of Ins2-cre and Hbxip-deficient mice. The expression levels of Hbxip were examined by IHC staining in the pancreas and liver tissues of Ins2-cre and Hbxip-deficient mice. Scale bars, 80 μm. Representative figures were presented from the analyses of five different mice per group. F, expression of Hbxip was measured by Western blot analysis in pure β- and non-β-cells obtained from flow cytometry using islets isolated from Ins2-cre and Hbxip-deficient mice. The protein levels of Hbxip from different groups of mice were quantified using ImageJ software as shown. Mean ± S.D., n = 3/group. Student's t test; **, p < 0.01. NS, not significant. G, body weight change on HFD. Mean ± S.D., n = 6/group. H, cumulative food intake on HFD. Food intake was measured from three different cages, and two mice were housed in each cage. Mean ± S.D., NS, not significant. Each experiment was repeated at least three times.

Figure 1. Pancreatic β-cell–specific Hbxip-knockout mice are generated. A, expression level of HBXIP was tested in pancreas, liver, and stomach tissues of human by IHC staining. Scale bars, 80 μm. Representative figure was presented from the analyses of five different persons per group. The protein level of HBXIP between human pancreas, liver, and stomach of five different persons was examined by Western blot analysis. B, identification of Ins2-cre (wildtype), Hbxip+/−, and Hbxip−/− mice. C and D, relative mRNA and protein levels of Hbxip were examined in the pancreas islet and liver tissues of Ins2-cre and Hbxip-deficient mice. The protein levels of Hbxip from different groups of mice were quantified using ImageJ software as shown. Mean ± S.D., n = 3/group. Student's t test; **, p < 0.01. E, pancreatic morphology was examined by HE staining in the pancreas tissues of Ins2-cre and Hbxip-deficient mice. The expression levels of Hbxip were examined by IHC staining in the pancreas and liver tissues of Ins2-cre and Hbxip-deficient mice. Scale bars, 80 μm. Representative figures were presented from the analyses of five different mice per group. F, expression of Hbxip was measured by Western blot analysis in pure β- and non-β-cells obtained from flow cytometry using islets isolated from Ins2-cre and Hbxip-deficient mice. The protein levels of Hbxip from different groups of mice were quantified using ImageJ software as shown. Mean ± S.D., n = 3/group. Student's t test; **, p < 0.01. NS, not significant. G, body weight change on HFD. Mean ± S.D., n = 6/group. H, cumulative food intake on HFD. Food intake was measured from three different cages, and two mice were housed in each cage. Mean ± S.D., NS, not significant. Each experiment was repeated at least three times.
ing to previous research (22). Because the Ins2-Cre mice alone displayed glucose intolerance (23), the Ins2-cre littermates were used as wildtype controls. The mice were verified via PCR analysis, and our result showed that the floxed allele gave rise to a PCR product ~40 bp larger than the Ins2-cre (wildtype) allele PCR product (Fig. 1B). Our data showed that the mRNA and protein levels of Hbxip in pancreas islets were decreased in Hbxip-deficient mice relative to those of Ins2-cre mice (Fig. 1C). Meanwhile, the expression level of Hbxip had no distinction in the liver from Ins2-cre and Hbxip-deficient mice (Fig. 1D). Additionally, we observed the morphology of islets through hematoxylin and eosin (HE) staining, and the lower levels of Hbxip were validated by immunohistochemistry (IHC) staining in the pancreas of Hbxip-deficient mice (Fig. 1E). Moreover, the Hbxip levels showed no differences in the liver and in some other tissues of Ins2-cre and Hbxip-deficient mice (Fig. 1E and Fig. S1B). Therefore, the knockout of Hbxip was completed specifically in the pancreas of Hbxip-deficient mice. To quantitatively show how effectively Hbxip was removed from pancreatic β-cells, we examined the protein level of Hbxip in pure β-cells, as well as non-β-cells, obtained from the islets of Ins2-cre and Hbxip-deficient mice using flow cytometry (24). The result indicated that the expression level of Hbxip was decreased noticeably in β-cells from Hbxip-deficient mice, whereas no significant difference was observed between the non-β-cells of two mice models (Fig. 1F), further suggesting that Hbxip was markedly deleted from islet β-cell population by Ins2-Cre mice. In addition, the Hbxip-deficient mice exhibited normal body weight gain, food intake on high-fat diet (HFD), and normal liver mass either on normal chow diet (NCD) or HFD (Fig. 1, G–I), supporting that the pancreas-specific knock-out of Hbxip had no side effect on the Hbxip-deficient mice compared with the Ins2-cre mice. Additionally, we found that Hbxip was expressed little in the brain of model mice, and the difference of Hbxip expression between Ins2-cre and Hbxip-deficient mice brain was not significant (Fig. S1C). Therefore, the effect of the leaky expression of Cre in the model mouse brain (25) on the phenotype of the Hbxip-deficient mice was thought to be ignorable. Thus, the model of pancreatic β-cell–specific Hbxip-knockout mice was successfully established.

Hbxip is involved in the regulation of insulin in pancreas islets of mice

Next, we observed the phenotypes of Hbxip-deficient mice in glucose tolerance and insulin production. Interestingly, both NCD and HFD Hbxip-deficient mice, as opposed to Ins2-cre mice, exhibited higher blood glucose levels in fasting conditions (Fig. 2A). Furthermore, both NCD and HFD Hbxip-deficient mice developed glucose intolerance compared with Ins2-cre mice upon intraperitoneal glucose administration, and this effect was exacerbated in the obese state (Fig. 2B). Despite glucose intolerance, these mice exhibited normal insulin sensitivity, as shown by insulin tolerance testing (Fig. 2C), suggesting that a defect in insulin production caused hyperglycemia. Moreover, we examined circulating insulin levels during the intraperitoneal glucose tolerance tests (IPGTTs). The NCD and HFD Hbxip-deficient mice displayed decreased insulin levels compared with their Ins2-cre counterparts (Fig. 2D), indicating that Hbxip deficiency in the pancreas resulted in a β-cell insulin production defect. Meanwhile, we validated the glucose intolerance and the defect in insulin secretion in the Hbxip-deficient mice by intravenous glucose tolerance tests (IVGTTs) (Fig. 2, E and F). Given that the β-cell dysfunction is largely manifested as impaired glucose-stimulated insulin secretion (GSIS) (26), we measured insulin secretion under static incubation conditions by isolated islets obtained from NCD and HFD Ins2-cre and Hbxip-deficient mice. The result showed that the islets of Hbxip-deficient mice exhibited a marked decrease in GSIS that was more profound in islets obtained from HFD Hbxip-deficient mice (Fig. 2, G and H). Moreover, we performed the GSIS test using the isolated Hbxip floxed islets treated with adenovirus vector or adenov-Cre vector according to a previous report (27). The result also revealed that the islets treated with adenovirus showed a lower level of GSIS in NCD and HFD mice (Fig. 2, I and J), which further supported that the leaky effect of Cre in the brain on the model mice could be ignored. The reduced protein level of insulin in the Ad-Cre-treated Hbxip floxed islets was also validated by Western blot analysis (Fig. 2, G and J). In addition, IHC staining showed that the levels of insulin expression were lower in the pancreas of Hbxip-deficient mice relative to Ins2-cre mice (Fig. 2K). Furthermore, the insulin content in the isolated islets from Hbxip-deficient mice was decreased compared with the islets of Ins2-cre mice (Fig. 2L). Thus, our results reveal that Hbxip-deficient mice display the phenotypes of impaired glucose tolerance and reduced insulin production, suggesting that Hbxip is involved in the regulation of insulin in the pancreas islets of mice.

Hbxip is able to promote insulin transcription in rat pancreatic β-cells

Because our previous reports have revealed that HBXIP can function as a co-activator to enhance the activities of transcription factors for the transcription activation of many genes, we further investigated the effect of Hbxip on the insulin expression in β-cells. Given that rat pancreatic β-cell INS-1 is commonly used as a model of insulin secretion (28, 29), the insulin level of cell culture supernatant is able to indicate the expression level of insulin in the cells. We found that overexpression of Hbxip resulted in the increase of insulin in the culture supernatant of INS-1 cells in a dose-dependent manner (Fig. 3A), and knockdown of Hbxip by siRNA led to the opposite results in the system (Fig. 3B), suggesting that Hbxip could up-regulate insulin expression in rat pancreatic β-cells. Moreover, overexpression of Hbxip up-regulated two transcripts of insulin (insulin1 and insulin2) in INS-1 cells in a dose-dependent manner (Fig. 3C). In contrast, deletion of Hbxip could down-regulate insulin at mRNA levels in the cells (Fig. 3D). The result was confirmed at the protein levels (Fig. 3, E and F). It has been reported that a short portion of the rat insulin promoter between bp −247 and −197 upstream from the transcription initiation site has been used as a model of the types of synergistic interactions that combine to give the characteristic activity of the full promoter (10). Accordingly, we cloned the short portion of the insulin promoter, which was also called the E2A3/4 mini-enhancer, into the pGL3-Basic plasmid and named it Ins mini-enhancer (Fig. 3G). Then, we showed that Hbxip could increase the activ-
Hbxip participates in the transcription of insulin in mice.

Figure 2. Hbxip is involved in the regulation of insulin in pancreas islets of mice. A–H, WT-NCD, Ins2-cre-NCD; KO-NCD, Hbxip-deficient-NCD; WT-HFD, Ins2-cre-HFD; KO-HFD, Hbxip-deficient-HFD. A, blood glucose level was examined by using Bayer Brand glucometer in Ins2-cre and Hbxip-deficient mice under fasting conditions (n = 6/group, 16-h fasting). Mean ± S.D., p < 0.05 WT-NCD versus KO-NCD; **, p < 0.01 WT-HFD versus KO-HFD. B, intraperitoneal glucose tolerance test. Mean ± S.D., n = 6/group. ##, p < 0.01 WT-NCD versus KO-NCD; ***, p < 0.01 WT-HFD versus KO-HFD. Area under the curve (AUC) is shown in the right panel. C, insulin tolerance test. Mean ± S.D., n = 6/group. ##, p < 0.01 WT-NCD versus KO-NCD; NS, not significant. Area under the curve is shown in the right panel. D, plasma insulin levels of NCD and HFD mice during IPGTT in A. Mean ± S.D., #, p < 0.05 WT-NCD versus KO-NCD; ##, p < 0.01 WT-HFD versus KO-HFD; *, p < 0.05 WT-HFD versus KO-HFD; **, p < 0.01 WT-HFD versus KO-HFD. E and F, intravenous glucose tolerance test (E) and plasma insulin level during IVGTT (F). Mean ± S.D., n = 6/group, #, p < 0.05; ##, p < 0.01 WT-NCD versus KO-NCD. G and H, static GSIS test using primary mouse islets from Ins2-cre and Hbxip-deficient mice fed NCD or HFD for 10 weeks. Mean ± S.D., n = 6/group. #, p < 0.05 WT-NCD versus KO-NCD; ##, p < 0.01 WT-NCD versus KO-NCD; *, p < 0.05 WT-HFD versus KO-HFD; **, p < 0.01 WT-HFD versus KO-HFD. I and J, islets from floxed Hbxip mice fed NCD or HFD for 10 weeks were transduced with adeno-LacZ or adeno-Cre. Twenty four hours later, static GSIS test was performed using the islets. Mean ± S.D., n = 6/group, #, p < 0.05 LacZ-NCD versus Cre-NCD; ##, p < 0.01 LacZ-NCD versus Cre-NCD; *, p < 0.05 LacZ-HFD versus Cre-HFD. The expression level of insulin was tested by Western blot analysis in islets. K, the expression level of insulin was tested in the pancreas tissues of Ins2-cre and Hbxip-deficient mice by IHC staining. Scale bars, 80 μm. The results were quantified using ImageJ software as shown. Mean ± S.D. Student’s t test; **, p < 0.01. L, insulin content of isolated islets from Hbxip-deficient mice and Ins2-cre mice. The expressions of Hbxip, insulin1, and insulin2 at the level of mRNA were examined by RT-PCR in pancreas islet tissues from Ins2-cre and Hbxip-deficient mice. Each experiment was repeated at least three times.
ities of the Ins mini-enhancer in INS-1 cells (Fig. 3H). Conversely, the silencing of Hbxip attenuated the activities of Ins mini-enhancer in the cells (Fig. 3I). Thus, we conclude that Hbxip is able to promote insulin transcription in rat pancreatic β-cells.

Hbxip co-activates the transcription factor Pdx-1 to stimulate the mini-enhancer of insulin

According to previous research, the transcription level of insulin is regulated by a variety of regulators, especially the transcription factor Pdx-1, which also interacts with the A3/4 element of the mini-enhancer (10, 30, 31). Thus, we cloned the construct of Ins mini-enhancer with a mutant Pdx-1 element (termed pGL3-Ins-mut) (Fig. 4A) and found that Hbxip failed to activate pGL3-Ins-mut in the cells (Fig. 4B), suggesting that Hbxip might activate Ins mini-enhancer through transcription factor Pdx-1. Moreover, overexpression of Hbxip failed to work when Pdx-1 was silenced (Fig. 4C). The interference efficiency of Pdx-1 siRNA was validated by Western blot analysis in INS-1 cells (Fig. 4D). In addition, the knockdown of Hbxip or HBXIP...
Hbxip participates in the transcription of insulin

markedly attenuated the increased activities of *Ins mini-enhancer* mediated by Pdx-1 or PDX-1 in INS-1 or HEK293T cells (Fig. 4, E and F), supporting that Hbxip stimulated *Ins mini-enhancer* through activating the transcription factor Pdx-1. Moreover, both overexpression of Hbxip and Pdx-1 increased the *Ins mini-enhancer* activities relative to single use in INS-1 cells (Fig. 4G). Thus, Hbxip stimulates the enhancer of insulin through co-activating the transcription factor Pdx-1.

Hbxip forms a complex with Pdx-1 and Neurod1 in the insulin mini-enhancer in pancreatic β-cells

Next, we tried to validate the interaction of Hbxip with Pdx-1 during insulin transcription. As expected, confocal images showed that most of Hbxip and Pdx-1 co-localized in the nuclei of INS-1 cells (Fig. 5A), implying that Hbxip could interact with Pdx-1. Moreover, co-IP assays confirmed that Hbxip could bind to Pdx-1 and vice versa (Fig. 5B). GST pulldown assays indicated that Hbxip directly interacted with Pdx-1 *in vitro* (Fig. 5C). To identify the Pdx-1-binding domain for Hbxip, we proceeded to divide the full-length Pdx-1 into three fragments according to previous a report (Fig. 5D) (10). Interestingly, the fragment Pdx-1–2 (amino acids 138–213), including the homeodomain, could directly bind to Hbxip, rather than others (Fig. 5E), suggesting that Hbxip directly interacted with the Pdx-1–2. Furthermore, ChIP assays revealed that Hbxip could occupy the *Ins mini-enhancer*, but Pdx-1 siRNA could block the occupation (Fig. 5F). Meanwhile, we chose a short portion between bp −500 and −350 upstream from the transcription initiation site of the insulin gene, which was without Pdx-1-binding sites, as negative control regions according to Ref. 31. The result showed that Hbxip could not bind to the negative control regions (Fig. 5F). These results suggest that Hbxip occupies the *Ins mini-enhancer* via Pdx-1 as indicated in Fig. 5G.

Additionally, the Neurod1 functioning in the E2 element of the *Ins mini-enhancer* is crucial for the activity of Pdx-1 by forming a dimer with Pdx-1 during the transcription of insulin (8, 32). Therefore, we were concerned whether Neurod1 was also involved in the insulin transcription induced by Hbxip. Co-IP assays revealed that Neurod1 was involved in the complex of Hbxip and Pdx-1 (Fig. 5H), suggesting that Hbxip, Neurod1, and Pdx-1 formed a complex in pancreatic β-cells. Then, silencing of Hbxip could attenuate the interaction of Pdx-1 with...
Figure 5. Hbxip forms a complex with Pdx-1 and Neurod1 in the insulin mini-enhancer in pancreatic β-cells. A, localization of both GFP-Hbxip and Pdx-1 was observed by confocal microscopy in the INS-1 cells. Scale bar, 25 μm for immunofluorescence. B, interaction between Hbxip and Pdx-1 was detected by co-IP assays in INS-1 cells in vivo. C, direct interaction between recombinant GST-Hbxip and His-Pdx-1 proteins was detected by GST pulldown assays followed by Western blot analysis (WB) in vitro. D and E, Pdx-1 is divided into three fragments. GST pulldown assays were performed with GST or GST fusion proteins and His tag fusion proteins containing the indicated amino acid residues of Pdx-1. The proteins were purified from bacteria by glutathione-Sepharose beads. F, INS-1 cells were transfected with Pdx-1 siRNA. ChIP assays were conducted 24 h after transfection. G, schematic showing the Ins mini-enhancer regions with Pdx-1-binding sites or negative control regions without Pdx-1-binding sites. H, interaction between Hbxip, Pdx-1, and Neurod1 was detected by co-IP assays in INS-1 cells in vivo. I, interaction of Pdx-1 with Neurod1 was detected by co-IP assays in the primary β-cells isolated from floxed Hbxip mice. J, interaction of Hbxip with Neurod1 was detected by co-IP assays in INS-1 cells transfected with si-Control or si-Pdx-1. K, Venn diagram shows the overlapping target genes of HBXIP and Pdx-1. L, real-time PCR analysis was performed to measure 10 of the 149 candidate target genes in pancreas islets of Hbxip-deficient mice and Ins2-cre (wildtype) mice; right, functional assignments for candidate target genes were verified in real-time PCR analysis. Mean ± S.D., n = 5/group. Each experiment was repeated at least three times.
Hbxip participates in the transcription of insulin

Figure 6. Hbxip increases the insulin expression in pancreatic β-cells through activating Pdx-1 and Neurod1. A–C, insulin levels were examined by insulin assay kit in the culture supernatant of INS-1 cells transfected with relative plasmids and siRNAs. D, interference efficiency of Neurod1 siRNA in INS-1 cells was validated by Western blot analysis in INS-1 cells. The protein levels of Neurod1 from three independent experiments were quantified using ImageJ software as shown. Mean ± S.D. Each experiment was repeated at least three times. Student’s t test; *, p < 0.05; **, p < 0.01.

Neurod1 in INS-1 cells (Fig. 5L), suggesting that Hbxip enhanced the interaction between Pdx-1 and Neurod1. This conclusion was further confirmed in the primary β-cells isolated from floxed Hbxip mice according to previous research (Fig. 5, J and K) (33). Moreover, down-regulation of Pdx-1 was able to attenuate the interaction of Hbxip with Neurod1 (Fig. 5L), revealing that Hbxip interacted with Neurod1 through Pdx-1. Together, Hbxip forms a complex with Pdx-1 and Neurod1 in the insulin enhancer in rat pancreatic β-cells.

In addition, we asked whether Hbxip was involved in the modulation of other target genes of Pdx-1. Comparing HBXIP target genes (Table S3), we found that HBXIP was highly expressed in pancreas islets compared with other parts of the pancreas. Because the insulin from pancreatic β-cells can function in modulating blood glucose levels, we wondered whether HBXIP as a co-activator played a crucial role in transcriptional regulation of insulin. The peptide hormone insulin is produced in the β-cells of the pancreas and is very crucial in the maintenance of blood glucose homeostasis (37). Our group has reported that HBXIP is able to induce glucose metabolism reprogramming in the development of breast cancer (18, 19). However, the physiological role of HBXIP in glucose metabolism in normal tissues is not well documented. In this study, we investigated the significance of Hbxip in modulation of insulin transcription in animal pancreatic β-cells.

We first found that HBXIP was highly expressed in pancreas islets compared with other parts of the pancreas. Because the insulin from pancreatic β-cells can function in modulating blood glucose levels, we wondered whether HBXIP as a co-activator played a crucial role in transcriptional regulation of insulin, the key gene for maintaining normoglycemia. Then, we developed the pancreatic β-cell–specific Hbxip-knockout mice. As expected, we found that pancreatic Hbxip deletion resulted in the higher blood glucose and attenuated glucose tolerance in fasting conditions in mice. Thus, we supposed that Hbxip might be involved in the regulation of insulin. Then, we showed that Hbxip was able to increase the production of insulin in the supernatant of INS-1 cells. Moreover, Hbxip was able to up-regulate insulin expression in INS-1 cells. Next, we try to identify the mechanism by which Hbxip increases the expression level of insulin. As the E2A3/4 mini-enhancer is able to give the characteristic activity of the full promoter, the Ins miRNA enhancer cloning in the pGL3-Basic plasmid can be used to identify the relationship between Hbxip and the insulin promoter. It has been reported that Pdx-1 as a key transcription factor can up-regulate insulin at the transcription level (38, 39). Because Hbxip acts as a co-activator of transcription factors, we speculated that Hbxip might activate Pdx-1 to stimulate the insulin enhancer. As expected, we found that Hbxip as a co-activator of transcription factor Pdx-1 increased insulin enhancer activity through direct interaction with Pdx-1 in pancreatic β-cells. Moreover, growing evidence has revealed that Neurod1 is crucial for the activity of Pdx-1 by forming a dimer with Pdx-1 during the transcription of insulin (8). Interestingly, we demonstrated that Hbxip, Neurod1, and Pdx-1 formed a complex to activate the insulin enhancer in pancreatic β-cells. In addition,
Our data revealed that Hbxip was also involved in the expression of many other Pdx-1 target genes. Interestingly, although Hbxip functioned as a co-activator in the nuclei of β-cells, it was still observed both in the nuclei and cytoplasm of islet cells under physiological conditions as shown in Fig. 1. This finding may indicate other functions of Hbxip in pancreas islets. Finally, our data confirmed that Hbxip increased the insulin expression in pancreatic β-cells by activating Pdx-1 and Neurod1.

It has been reported that the onset of most type 1 diabetes is related to insulin production deficiency and injury of islet tissues (40, 41). Type 1 diabetes results from a chronic autoimmune process continuing for years after presentation (42). However, the significance of Hbxip in the onset of type 1 diabetes remains unclear.

In summary, we present a model that Hbxip contributes to the modulation of insulin transcription in Fig. 7. In this study, we show that Hbxip co-activates transcription factor Pdx-1 by enhancing the interaction between Pdx-1 and Neurod1 to promote the insulin transcription in pancreatic β-cells. Thus, our finding provides the insight into the mechanism by which Hbxip physiologically modulates the insulin expression in animal pancreatic β-cells.

Experimental procedures

Construction of pancreatic β-cell–specific Hbxip-knockout mice

The Hbxip conditional knockout mice (Hbxip-deficient mice) were generated using the Cre-loxP approach (20). LoxP was inserted into the flank regions of Hbxip exon2. The pancreas conditional knockout mice were generated by crossing floxed Hbxip mice with the Ins2-cre transgenic mice, B6.Cg-Tg(Ins2-cre)25Mgn/J (commonly called RIP-Cre), in which the Cre recombinase was expressed selectively in pancreatic β-cells (43, 44). The Ins2-cre transgenic mice were purchased from Model Animal Research Center of Nanjing University (n000117). The genotypes of filial mice were identified by PCR analysis using primers upstream and downstream of the loxP in the intron of Hbxip gene. Analysis of the phenotype was conducted in Hbxip-deficient mice, and Ins2-cre littermates were used as wildtype controls. The 7-week-old male Hbxip-deficient mice and Ins2-cre mice were used in this study. The mouse housing environment includes a 12:12-h light/dark cycle, constant room temperature (22–25 °C), and free access to water and diet. All procedures involving animals were performed according to the guidelines established by the National Institutes of Health Guide for the Care and Use of Laboratory Animals and were performed according to the institutional ethical guidelines for animal experiments. All experiments were approved by the Institute Research Ethics Committee at Nankai University. The primers used for the loxP and Cre identification were listed in Table S1.

Cell culture and treatment

Rat pancreatic β-cell lines, such as INS-1 and RIN-m5F (commonly called rat pancreatic insulinoma β-cells), were cultured in RPMI 1640 medium (Gibco) containing 11.2 mM glucose according to previous research (28, 36). Human kidney epithelial (HEK) 293T cells were maintained in Dulbecco’s modified Eagle’s medium (Gibco). All cell lines were supplemented with heat-inactivated 10% fetal bovine serum (Gibco), 100 units/ml penicillin, and 100 mg/ml streptomycin and grown at 5% CO₂ and 37 °C. Cells were collected and seeded in 6- or 24-well plates for 24 h and then transfected with plasmids or siRNAs. All transfections were performed using Lipofectamine 2000 reagent (Invitrogen) according to the manufacturer’s protocol.

HE and IHC staining

The tissues of human and mice were fixed in formalin and were dehydrated and embedded in paraffin for HE and IHC staining as described previously (22, 45). Some of the results were quantified using ImageJ software. The tissue microarray (No. AM00A01) was purchased from Aomeibio Co. (Xian, China). Written consent approving the use of tissue samples for research purposes was obtained from patients. Informed consent for study participation was also obtained from each patient. Detailed information of normal tissues is shown in Table S2. The study protocol was approved by the Institute Research Ethics Committee at Nankai University. All experiments were performed strictly in accordance with relevant guidelines and regulations.

Western blot analysis

Western blot analysis was carried out with the standard protocols (45). The primary antibodies used were rabbit anti-Pdx-1 (Proteintech Group, 20989-1-AP), mouse anti-Neurod1 (Wuhan Boster Biological Technology Ltd., BM3336), rabbit anti-Hbxip (Santa Cruz Biotechnology, Santa Cruz, CA, sc-373980), rabbit anti-insulin (Proteintech Group, 15848-1-AP), mouse anti-His tag (Proteintech Group, 66005-1-lg), and mouse anti-β-actin (Sigma, A1978). For relative experiments, protein was prepared from pure β-cells, as well as non-β-cells, obtained by flow cytometry according to previous work (24, 46). Some of the results were quantified using ImageJ software.

Figure 7. Model shows that Hbxip contributes to the modulation of insulin transcription. Hbxip acting as a co-activator promotes insulin transcription through binding to the mini-enhancer of insulin and activating transcription factor Pdx-1. Hbxip co-activates Pdx-1 through recruiting Neurod1 to Pdx-1 forming a transcription factor complex of Hbxip/Pdx-1/Neurod1. Thus, Hbxip increases the insulin expression by increasing levels of the Pdx-1/Neurod1 complex in animal pancreatic β-cells.
Hbxip participates in the transcription of insulin

Plasmid construction and small interfering RNA

pGL3-Basic vector was from Promega (Madison, WI), and RNA (siRNA), pCMV-tag2B, adeno-LacZ control vector, pCMV-Hbxip, and pCMV-HBXIP were kept in our laboratory. The complete human PDX-1 cDNA (GenBank accession number NM_001209.3), rat Pdx-1 cDNA (GenBank accession number NM_019218.2) was subcloned into the pCMV-tag2B vector to generate the pCMV-PDX-1, pCMV-Pdx-1, or pCMV-Neurod1 construct, respectively. The E2A3/4 mini-enhancer of the rat insulin promoter region (bp −247 to −197) with a wildtype or mutant Pdx-1-binding site (10) was synthesized from the Ribio Co. (Guangzhou, China), and subcloned into the pGL3-Basic vector to generate the pGL3-Ins or pGL3-Ins-mut construct. The 2′-O-methyl interfering RNAs directly against HBXIP or Hbxip, Pdx-1, Neurod1, and the control siRNAs were purchased from the Ribio Co. The sequences of siRNAs for HBXIP, Hbxip, and Neurod1 were described in Table S1.

Islet isolation from mouse pancreas

The pancreas islets were isolated from 7-week-old male Hbxip-deficient mice, Ins2-cre littermates, and floxed Hbxip mice according to a previous report (49).

Total RNA isolation, reverse transcription-PCR (RT-PCR), and real-time PCR

Total RNA was isolated from cells or tissues using TRIzol reagent (Invitrogen) according to the manufacturer’s instructions. First-strand cDNA was synthesized with the PrimeScript reverse transcriptase kit (TaKaRa Bio, Shiga, Japan). RT-PCR and real-time PCR were performed as described previously (50). The primers used for relative genes cDNA were described in Table S1.

Animal treatments

For the HFD study, 5-week-old mice were subjected to NCD or 60% HFD (Research Diets, Inc.) for 25 weeks. For IPGTT or IVGTT, overnight-fasted mice were injected intraperitoneally or intravenously with glucose (2 g/kg body weight). Blood glucose levels and insulin levels were measured from tail vein blood collected at the designated times using Bayer Brand glucometer (Bayer Health Care, Mishawaka, IN) and insulin assay kit (Joyee Biotechnics, Shanghai, China). Data were expressed as mean ± SD. The cell lines were transfected with plasmids or siRNAs as described previously (47, 48). The sequences of relative primers and siRNA for Pdx-1 were described previously (47).

Measurement of insulin secretory response from isolated islets

For static GSIS assays, mouse islets were incubated for 2 h in low glucose media at 37 °C, 5% CO2, and then incubated for 60 or 75 min with 2.8 or 16.7 mm glucose in the same conditions. The experiments were performed as described previously (51, 52).

Insulin level of cell culture supernatant

The cell culture supernatant of INS-1 and RIN-m5f cells transfected with plasmids or siRNAs was collected 48 h after transfection and measured by insulin assay kit (Joyee Biotechnics, Shanghai, China).

Luciferase reporter gene assays

Adherent cells were seeded into 24-well plates and co-transfected with pGL3-Ins, pGL3-Ins Basic, or pGL3-Ins-mut and the pRL-TK plasmid (Promega). Cell extracts were harvested after 36 h and lysed using lysis buffer (Promega). Luciferase reporter gene assays were implemented using the Dual-Luciferase® reporter gene assay system (Promega) according to the manufacturer’s instructions. All experiments were performed at least three times.

Confocal microscopy

Confocal microscopy was performed as described previously (53), and the cells were incubated with RPMI 1640 medium containing 15 mm glucose and transfected with relative plasmids. Cells were observed under the confocal microscopy (Leica TCS SP5).

Co-immunoprecipitation assays

The co-IP assays were performed according to previously published articles with INS-1 cells and primary β-cells isolated from floxed Hbxip mice (54). The cells were harvested and lysed in a lysis buffer (50 mmol/liter Tris-HCl, pH 8.0, 100 mmol/liter NaCl, 50 mmol/liter sodium fluoride, 1% Nonidet P-40, 1 mmol/liter dithiothreitol, 1 mmol/liter Na3VO4, 1 mmol/liter Microcystin-LR, 1 mmol/liter phenylmethylsulfonyl fluoride, 10 mg/ml leupeptin, and 10 mg/ml aprotinin). The precipitates washed six times with ice-cold lysis buffer, resuspended in PBS, followed by Western blot analysis. For Western blot analysis, the following were used: Pdx-1, primary antibody is rabbit anti-Pdx-1 (Proteintech Group, 20989-1-AP); secondary antibody is IPKine HRP mouse anti-rabbit IgG conjugated to horseradish peroxidase (Millipore). The precipitates were washed six times with ice-cold lysis buffer, resuspended in PBS, followed by Western blot analysis. For Western blot analysis, the following were used: Pdx-1, primary antibody is rabbit anti-Pdx-1 (Proteintech Group, 20989-1-AP); secondary antibody is IPKine HRP mouse anti-rabbit IgG light chain (Abbkine, A25022); Neurod1, primary antibody is mouse anti-Neurod1 (Wuhan Boster Biological Technology Ltd., BM3336); secondary antibody is IPKine HRP goat anti-mouse IgG light chain (Abbkine, A25012); Hbxip, primary antibody is rabbit anti-Hbxip (Santa Cruz Biotechnology, Santa Cruz, CA, sc-373980); and secondary antibody is IPKine HRP goat anti-rabbit IgG heavy chain (Abbkine, A25222).

GST pulldown assays

The cDNA of Hbxip was cloned into the pGEX-4T1 expression vector; the cDNA of Pdx-1 was divided into three frag-
ments according to a previous report (10), and the full-length or fragments of Pdx-1 were cloned into the pET-28a expression vector. The detailed procedure was performed according to published protocols (55).

ChiP assays and the overlap of HBXIP and Pdx-1 binding

The ChiP assays were performed using an EpiQuik™ chromatin immunoprecipitation kit from Epigentek Group Inc. (Brooklyn, NY) and according to the published methods (16, 56). Protein/DNA complexes were immunoprecipitated with anti-Hbxip antibody, with anti-RNA polymerase II as a positive control antibody, and with mouse IgG as a negative control antibody. Amplification of soluble chromatin prior to immunoprecipitation was used as an input control. DNA from these samples was then subjected to PCR analysis. Primer sets for the Ins mini-enhancer and negative control regions are shown in Table S1. Experiments were repeated three times. According to previous report (34), 817 Pdx-1 target genes were obtained from the datasets of ChiPseq for Pdx-1, which was produced by the Beta Cell Biology Consortium (Mouse PromoterChip BCBC-5B, see BCBC website). The ChiP-DNA Selection and Ligation (ChiP-DSL) and data analysis of HBXIP-bound genes were performed by CapitalBio Corp. according to protocol from Aviva Systems Biology. Experiments were repeated three times, and the results were analyzed using MAS (http://mas.capitalbiotech.com/mas3/4 with a p value cutoff of 1.0 × 10^-6 for promoter identification. The candidate target genes of HBXIP (2170) are shown in Table S3. According to the gene name, the Pdx-1 target genes were used to merge with the HBXIP-bound genes for overlapping. The datasets for 149 merged genes of Pdx-1 with HBXIP are provided in Table S4.

Isolation of primary β-cells

The primary β-cells were isolated from 8-week-old male floxed Hbxip mice according to a previous report (33).

Statistical analysis

Each experiment was repeated at least three times. Statistical significance, assessed by comparing mean values ± S.D., was assumed for p < 0.05 (*), p < 0.01 (**), and p < 0.001 (**). All statistical analysis was performed by Student’s t test or analysis of variance in Excel (Microsoft).

Author contributions—H. L. performed experiments, analyzed data, and wrote the manuscript; Z. W., Y. L., and R. F. performed experiments and provided technical assistance; H. W. and H. S. generated tools and contributed to the preparation of the figures; X. Z. designed part of the study; L. Y. and W. Z. designed the study and wrote the paper.

References

1. Janus, A., Holz, G. G., Theise, N. D., and Hussain, M. A. (2003) In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. *J. Clin. Invest.* **111**, 843–850 CrossRef Medline

2. Merino, B., Alonso-Magdalena, P., Lluesma, M., Neco, P., Gonzalez, A., Marroqui, L., Garcia-Arévalo, M., Nadal, A., and Quesada, I. (2015) Pancreatic alpha-cells from female mice undergo morphofunctional changes during compensatory adaptations of the endocrine pancreas to diet-induced obesity. *Sci. Rep.* **5**, 11622 CrossRef Medline

3. Fan, B. S., Zhang, E. H., Wu, M., Guo, J. M., Su, D. F., Liu, X., and Yu, J. G. (2016) Activation of alpha 2* nicotinic acetylcholine receptor decreases on-site mortality in crush syndrome through insulin signaling-Na/K-ATPase pathway. *Front. Pharmacol.* **7**, 79 Medline

4. Bordone, L., Motta, M. C., Picard, F., Robinson, A., Jhala, U. S., Apfeld, J., McDonagh, T., Lemieux, M., McMuney, B., Milzavisi, A., Eason, E. J., Lin, S. J., and Guarente, L. (2015) Correction: Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. *PLoS Biol.* **13**, e1002346 CrossRef Medline

5. Li, H., Wei, S., Cheng, K., Goukou, N. V., Erickson, R. E., Xu, A., Hong, W., and Han, W. (2014) BIG3 inhibits insulin granule biogenesis and insulin secretion. *EHBO Rep.* **15**, 714–722 Medline

6. Furukawa, N., Shirotani, T., Araki, E., Kaneko, K., Todaka, M., Matsu-moto, K., Tsuruzoe, K., Motoshima, H., Yoshizato, K., Kishikawa, H., and Shichiri, M. (1999) Possible involvement of atypical protein kinase C (PKC) in glucose-sensitive expression of the human insulin gene: DNA-binding activity and transcriptional activity of pancreatic and duodenal homeobox gene-1 (PDX-1) are enhanced via calphostin C-sensitive but phorbol 12-myristate 13-acetate (PMA) and Go 6976-insensitive pathway. *Endocr. J.* **46**, 43–58 CrossRef Medline

7. Nomoto, H., Kondo, T., Miyoshi, H., Nakamura, A., Hida, Y., Yamashita, K., Sharma, A. J., and Atsumi, T. (2015) Inhibition of small Maf function in pancreatic beta-cells improves glucose tolerance through the enhancement of insulin gene transcription and insulin secretion. *Endocrinology* **156**, 3570–3580 CrossRef Medline

8. Liu, X. D., Ruan, J. X., Xia, J. H., Yang, S. L., Fan, J. H., and Li, K. (2014) The study of regulatory effects of Pdx-1, MafA, and NeuroD1 on the expression of porcine insulin promoter and the expression of human islet amyloid peptide. *Mol. Cell. Biochem.* **394**, 59–66 CrossRef Medline

9. Shao, S., Liu, Z., Yang, Y., Zhang, M., and Yu, X. (2010) SREBP-1c, Pdx-1, and GLP-1R involved in palmitate-EPA regulated glucose-stimulated insulin secretion in INS-1 cells. *J. Cell. Biochem.* **111**, 634–642 CrossRef Medline

10. Ohneda, K., Mirmira, R. G., Wang, J., Johnson, J. D., and German, M. S. (2000) The homeodomain of PDX-1 mediates multiple protein–protein interactions in the formation of a transcriptional activation complex on the insulin promoter. *Mol. Cell. Biol.* **20**, 900–911 CrossRef Medline

11. Melegari, M., Scaglioni, P. P., and Wandos, J. R. (1998) Cloning and characterization of a novel hepatitis B virus X binding protein that inhibits viral replication. *J. Virol.* **72**, 1737–1743 Medline

12. Bar-Peled, L., Schweitzer, L. D., Zoncu, R., and Sabatini, D. M. (2012) Regulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. *Cell* **150**, 1196–1208 CrossRef Medline

13. Liu, Q., Bai, X., Li, H., Zhang, Y., Zhao, Y., Zhang, X., and Ye, L. (2013) The oncoprotein HBXIP upregulates Lin28B via activating TF II D to promote proliferation of breast cancer cells. *Int. J. Cancer* **133**, 1310–1322 CrossRef Medline

14. Xu, F., Zhu, X., Han, T., You, X., Liu, F., Ye, L., Zhang, X., Wang, X., and Yao, Y. (2014) The oncoprotein hepatitis B X-interacting protein promotes the migration of ovarian cancer cells through the upregulation of S-phase kinase-associated protein 2 by Sp1. *Int. J. Oncol.* **45**, 255–263 CrossRef Medline

15. Li, H., Liu, Q., Wang, Z., Fang, R., Shen, Y., Cai, X., Gao, Y., Li, Y., Zhang, X., and Ye, L. (2015) The oncoprotein HBXIP modulates the feedback loop of MDM2/p53 to enhance the growth of breast cancer. *J. Biol. Chem.* **290**, 22649–22661 CrossRef Medline

16. Li, Y., Wang, Z., Shi, H., Li, H., Li, L., Fang, R., Cai, X., Liu, B., Zhang, X., and Ye, L. (2016) HBXIP and LSD1 scaffolded by lincRNA hotair modulate transcriptional activation by c-Myc. *Cancer Res.* **76**, 293–304 CrossRef Medline

17. Zhao, Y., Li, H., Zhang, Y., Li, L., Fang, R., Li, Y., Liu, Q., Zhang, W., Qiu, L., Liu, F., Zhang, X., and Ye, L. (2016) Oncoprotein HBXIP modulates abnormal lipid metabolism and growth of breast cancer cells by activating...
Hbxip participates in the transcription of insulin

the LXRs/SREBP-1c/FAS signaling cascade. *Cancer Res.* 76, 4696–4707

18. Shi, H., Fang, R., Li, Y., Li, L., Zhang, W., Wang, H., Chen, F., Zhang, S., Zhang, X., and Ye, L. (2016) The oncogene HBBXIP suppresses glucose-neogenesis through modulating PCK1 to enhance the growth of hepatoma cells. *Cancer Lett.* 382, 147–156

19. Liu, F., Zhang, W., You, X., Liu, Y., Li, Y., Wang, Z., Wang, Y., Zhang, X., and Ye, L. (2015) The oncogene HBBXIP promotes glucose metabolism reprogramming via downregulating SCO2 and PDHA1 in breast cancer. *Oncotarget* 6, 27199–27213

20. Nagy, A. (2000) Cre recombinase: the universal reagent for genome tailoring. *Genesis* 26, 99–109

21. Peng, Z., Zhao, Z., Nath, N., Zhao, Z., Sheng, J., Li, F., Copeland, A. C., Pennacchio, L. A., and Chen, F. (2012) Generation of long insert pairs using a Cre-LoxP inverse PCR approach. *PLoS ONE* 7, e29437

22. Foti, D., Chieffari, E., Fedele, M., Iuliano, R., Brunetti, L., Paonessa, F., Manfioletti, G., Barbetti, F., Brunetti, A., Croce, C. M., Fusco, A., and Brunetti, A. (2005) Lack of the architectural factor HMGA1 causes insulin resistance and diabetes in humans and mice. *Nat. Med.* 11, 765–773

23. Lee, J. Y., Ristow, M., Lin, X., White, M. F., Magnuson, M. A., and Henningen, L. (2006) RIP-Cre revisited, evidence for impairments of pancreatic beta-cell function. *J. Biol. Chem.* 281, 2649–2653

24. Kalkarni, R. N., Bruning, J. C., Winnay, J. N., Postic, C., Magnuson, M. A., and Kahn, C. R. (1999) Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes. *Cell* 96, 329–339

25. Ristow, M., Mulder, H., Pomplun, D., Schulz, T. J., Müller-Schmehl, K., Krause, A., Fle, M., Puccio, H., Müller, J., Isken, F., Spranger, J., Müller-Wieland, D., Magnuson, M. A., Möhlig, M., Koenig, M., and Pfeifer, A. F. (2003) Frataxin deficiency in pancreatic islets causes diabetes due to loss of beta cell mass. *J. Clin. Invest.* 112, 527–534

26. Defronzo, R. A. (2009) Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. *Diabetes* 58, 773–795

27. Ozcan, L., Cristina de Souza, J., Harari, A. A., Backs, J., Olson, E. N., and Tabas, I. (2013) Activation of calcium/calcmodulin-dependent protein kinase II in obesity mediates suppression of hepatic insulin signaling. *Cell Metab.* 18, 803–815

28. Brun, T., Roche, E., Kim, K. H., and Prentki, M. (1993) Glucose regulates acetyl-CoA carboxylase gene expression in a pancreatic beta-cell line (INS-1). *J. Biol. Chem.* 268, 18905–18911

29. Hohmeier, H. E., Muller, H., Chen, G., Henkel-Rieger, R., Prentki, M., and Newgard, C. B. (2000) Isolation of INS-1-derived cell lines with robust acetyl-CoA carboxylase gene expression in a pancreatic beta-cell line (INS-1). *J. Biol. Chem.* 275, 256–257

30. Qi, Y., Guo, M., Huang, S., and Stein, R. (2002) Insulin gene transcription is mediated by interactions between the p300 co-activator and PDX-1, BETAI2, and E47. *Mol. Cell. Biol.* 22, 412–420

31. Hui, H., and Perfetti, R. (2002) Pancreas duodenum homeobox-1 regulates pancreas development during embryogenesis and islet cell function in adulthood. *Eur. J. Endocrinol.* 146, 129–141

32. Guo, Q. S., Zhu, M. Y., Wang, L., Fan, X. J., Lu, Y. H., Wang, Z. W., Zhu, S. I., Wang, Y., and Huang, Y. (2012) Combined transfection of the three transcriptional factors, PDX-1, NeuroD1, and Mafa, causes differentiation of bone marrow mesenchymal stem cells into insulin-producing cells. *Exp. Diabetes Res.* 2012, 627013

33. Skelin, M., Rupnik, M., and Cencic, A. (2010) Pancreatic beta cell lines and their applications in diabetes mellitus research. *AlTEX* 27, 105–113

34. Keller, D. M., McWeeny, S., Arsenlis, A., Drouin, J., Wright, C. V., Wang, H., Wollheim, C. B., White, P., Kaestner, K. H., and Goodman, R. H. (2007) Characterization of pancreatic transcription factor Pdx1 binding sites using promoter microarray and serial analysis of chromatin occupancy. *J. Biol. Chem.* 282, 32084–32092
51. Lee, Y. S., Morinaga, H., Kim, J. J., Lagakos, W., Taylor, S., Keshwani, M., Perkins, G., Dong, H., Kayali, A. G., Sweet, I. R., and Olefsky, J. (2013) The fractalkine/CX3CR1 system regulates beta cell function and insulin secretion. *Cell* 153, 413–425 CrossRef Medline

52. Alcarraz-Vizán, G., Castaño, C., Visa, M., Montane, J., Servitja, J. M., and Novials, A. (2017) BACE2 suppression promotes beta-cell survival and function in a model of type 2 diabetes induced by human islet amyloid polypeptide overexpression. *Cell. Mol. Life Sci.* 74, 2827–2838 CrossRef Medline

53. Zhang, Y., Zhao, Y., Li, H., Li, Y., Cai, X., Shen, Y., Shi, H., Li, L., Liu, Q., Zhang, X., and Ye, L. (2013) The nuclear import of oncoprotein hepatitis B X-interacting protein depends on interacting with c-Fos and phosphorylation of both proteins in breast cancer cells. *J. Biol. Chem.* 288, 18961–18974 CrossRef Medline

54. Marusawa, H., Matsuzawa, S., Welsh, K., Zou, H., Armstrong, R., Tamm, I., and Reed, J. C. (2003) HBXIP functions as a cofactor of survivin in apoptosis suppression. *EMBO J.* 22, 2729–2740 CrossRef Medline

55. Vikis, H. G., and Guan, K. L. (2004) Glutathione-S-transferase-fusion based assays for studying protein–protein interactions. *Methods Mol. Biol.* 261, 175–186 Medline

56. Nelson, J. D., Denisenko, O., and Bomsztynk, K. (2006) Protocol for the fast chromatin immunoprecipitation (ChIP) method. *Nat. Protoc.* 1, 179–185 CrossRef Medline