Geraniol and Limonene Interaction with 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) Reductase for their Role as Cancer Chemo-preventive Agents

Madhumita Pattanayak1,2, P K Seth3, Suchi Smita4, Shailendra K Gupta1,5*

1Indian Institute of Toxicology Research, Lucknow (CSIR) India
2Centre for Cellular and Molecular Biology, Hyderabad (CSIR) India
3Biotech Park, Lucknow India
4Department of Biological Sciences, University of Rostock, Rostock Germany
5System Biology & Bioinformatics Group, University of Rostock, Rostock Germany

Abstract

Recent studies have shown that monoterpenes exhibit antitumor activities and suggest that these compounds are a new class of cancer chemo-preventive agents. Limonene, a main constituent of orange and citrus peel oils has been reported to exert antitumor activity against mammary gland, lung, liver, stomach and skin cancers in rodents whereas, geraniol, a principal constituent of Geranium and Ocimum inhibits the growth of human colon cancer cells. Prenylation of proteins is essential for progression of cells into the S phase and involves post-translational covalent attachment of a lipophilic farnesyl or geranylgeranyl isoprenoid group to numerous proteins. Suppression of prenylation of proteins leads to inhibition of DNA synthesis. Further, epidemiologic evidences suggest that suppression of hydrophilic 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase, a key enzyme of mevalonate biosynthesis, leads to reduction of the mevalonate pool and thus limits protein isoprenylation.

Geraniol and limonene inhibit the activity of HMG-CoA reductase subsequently reducing the possibility of cancer growth. In the present work, we analyzed binding affinity of limonene and geraniol with HMG-CoA and explored mechanism of interaction using in silico approaches. The binding positions were verified according to their energy, PMF (Potential of Mean Force) value, PLP (Piecewise Linear Potential) value and Ligand Internal energy. It was found that limonene had greater binding affinity with the receptor suggesting better antitumor agent in comparison to geraniol.

Keywords: Limonene; Geraniol; HMG CoA reductase; Cancer chemo-preventive agents; docking

Introduction

Essential oils are highly concentrated volatile aromatic essences of plants. They are mainstay of aromatherapy but are also used in flavoring, perfumes and even as solvents. Terpenes, aldehydes, esters, ketones, alcohol, phenol and oxides are major components of essential oils. Monoterpenes function physiologically as chemo-attractants or chemo-repellents, and they are largely responsible for the distinctive fragrance of many plants (McGravere et al., 1995). Significant scientific evidences are there to suggest that nutritive and non-nutritive plant-based dietary factors can inhibit the process of carcinogenesis effectively (Singletary, 2000). Monoterpenes are non nutritive dietary components found in the essential oils of plants having antitumor activity, exhibiting not only the ability to prevent the formation or progression of cancer, but also regress existing malignant tumors (Crowell, 1999). The human exposure to monoterpenes through the diet or environment is widespread.

Major monoterpenes includes limonene, pinenene, menthol, geraniol, camphene, sabinene, cadinene. Monoterpenes consist of two isoprene units with the molecular formula C_{10}H_{16}. Monoterpenes may be linear (acyclic) or contain rings. These 10 carbon isoprenoids are derived from the mevalonate pathway in plants but are not produced by mammals, fungi or other species (Loza-Tavera, 1999). Citrus fruit, orange and peppermint are the main sources of d-limonene i.e. p-metha-1,8-diene (Kodama et al., 1977). d-limonene (Figure 1) is a prevalent flavoring agent and because of its pleasant citrus fragrance, it is commonly added to cosmetics, soaps and other cleaning products. It is a cyclic monoterpenes and formed by the cyclization of geranylpyrophosphate in a reaction catalyzed by limonene synthase (Alonso et al., 1992; Kjønaas et al., 1983). Limonene has well-established chemo-preventive activity against many cancer types. Limonene has been shown to inhibit the development of spontaneous neoplasms in mice at the dose of 1200 mg/kg orally (National Toxicology Program, 1990). Dietary limonene also reduces the incidence of spontaneous lymphomas in p53–/– mice (Salim et al., 2003). When administered either in pure form or as orange peel oil (95% d-limonene), limonene inhibits the development of chemically induced rodent mammary (Asamoto et al., 2002), skin (Eleigbede et al., 1986), liver (Lu et al., 2004), lung and stomach (Raphael and Kuttan, 2003) cancers. In rat

*Corresponding author: Shailendra K Gupta, System Biology & Bioinformatics Group, University of Rostock, 18051, Rostock, Germany, Fax: +49 381 4987572; Tel: +49 381 4987578; E-mail: shailendra.gupta@uni-rostock.de

Received September 26, 2009; Accepted November 23, 2009; Published November 24, 2009

Citation: Pattanayak M, Seth PK, Smita S, Gupta SK (2009) Geraniol and Limonene Interaction with 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) Reductase for their Role as Cancer Chemo-preventive Agents. J Proteomics Bioinform 2: 466-474. doi:10.4172/jpb.1000107

Copyright: © 2009 Pattanayak M, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
mammary carcinogenesis models, the chemo-preventive effects of limonene are evident during the initiation phase of 7,12-dimethylbenz[a]anthracene (DMBA)-induced cancer (Elson et al., 1988) and during the promotion phase of both DMBA- and nitrosomethylurea (NMU)-induced cancers (Chander et al., 1994). Dietary limonene also inhibits the development of ras oncogene–induced mammary carcinomas in rats (Gould et al., 1994). Development of azoxymethane-induced aberrant crypt foci in the colon of rats was significantly reduced when they were given 0.5% limonene in the drinking water (Kawamori et al., 1996).

Main sources of geraniol i.e. trans-3,7-Dimethyl-2,6-octadien-1-ol (Figure 2) are bergamot, carrot, coriander, lavender, lemon, lime, nutmeg, orange, rose, blueberry, basil and blackberry. It is mainly used in perfumery and flavouring industries. Geraniol synthase is involved in the terpene biosynthetic pathway converting geranyl diphosphate to geraniol (Iijima et al., 2004). Geraniol, an acyclic monoterpene, has antitumor activity against murine leukemia, hepatoma and melanoma cells in vivo when administered before and after tumor cell transplantation. It has antiproliferative effects on hepatoma and melanoma cell growth (Polo and de Bravo, 2006). Geraniol (400 µM) caused a 70% inhibition of cell growth in human colon cancer cell lines. Geraniol has shown anti-tumoral efficacy on TC-118 human tumors transplanted in Swiss nu/nu mice. Geraniol (150 µM) has been identified to reduce thymidylate synthase and thymidine kinase expression in cancer cells. In nude mice, the combined administration of 5-fluorouracil (20 mg/kg) and geraniol (150 mg/kg) caused a 53% reduction of the tumor volume, whereas a 26% reduction was obtained with geraniol alone (Carnesecchi et al., 2004).

HMG-CoA reductase (Figure 3) is a polytopic, transmembrane protein that catalyzes a key step in the mevalonate pathway (conversion of HMG-CoA to mevalonate). Mevalonate is necessary for cell growth (Swanson and Hohl, 2006) and is involved in the synthesis of sterols, isoprenoids and other lipids. HMG-CoA reductase is the rate-limiting step in cholesterol synthesis and represents the sole major drug target for contemporary cholesterol-lowering drugs (Genser et al., 2008). HMG-CoA reductase is also an important developmental enzyme. Limonene and geraniol suppress HMG-CoA reductase synthesis in mammalian cells by decreasing the translational efficiency of HMG-CoA reductase transcripts (Peffley and Gayen, 2003) and thus reduce mevalonate production. Terpenoids reduce cancer formation by the simple reduction of synthesis of cholesterol and ubiquinone and other cholesterol derivatives that are necessary for the cell proliferation. It is speculated that mevalonate is probably involved in the post-translational modification of proteins involved in cell turnover. The reduction of the mevalonate pool limits protein isoprenylation, which involves the post-translational covalent attachment of a lipophilic farnesyl or geranylgeranyl isoprenoid group to numerous proteins (Clarke, 1992).

Materials and Methods

Preparation of the Receptor and the Ligands

The structure file of HMG-CoA reductase complexed with atorvastatin (an inhibitor) was downloaded from Protein Data Bank (PDB id: 1HWK). Structure was resolved using x-ray crystallography experiment at 2.22 Å resolution with R-value 0.212 from Homo sapiens (Istvan and Deisenhofer, 2001). To study the interaction of HMG-CoA reductase with geraniol and limonene, water molecules and non-protein residues were deleted from the complex. CHARMM forcefield was applied to geraniol and limonene. J Proteomics Bioinform

ISSN:0974-276X JPB, an open access journal Volume 2(11) : 466-474 (2009) - 467
study the molecular dynamics. CHARMM uses a flexible and comprehensive empirical energy function that is a summation of many individual energy terms. The energy function is based on separable internal coordinate terms and pairwise nonbond interaction terms (Brooks et al., 1983). The total energy is expressed by equation 1.

$$ E = E_b + E_g + E_\theta + E_a + E_c + E_C + E_{Cp} $$

(1)

where, E is the total energy; E_b (bond potential), E_g (bond angle potential), E_θ (Dihedral angle potential), E_a (improper torsions) are internal energy terms; E_{vdw} (Van der Waals interactions), E_e (Electrostatic potential), E_{hb} (hydrogen bond energy) are nonbonded internal/external interactions energy terms, E_c (constraints) and E_{Cp} (user defined energy function) are special energy terms.

Identification of Binding Cavity on Receptor Surface

After energy minimization, the binding pockets of the receptor were determined by using “eraser” algorithm using Accelrys Discovery Studio. This algorithm is first used to remove all grid points outside the receptor. The boundary between the “inside” and “outside” region is determined by the “site opening” parameter. For the remaining grid points (i.e., those “inside” the site), a flood-filling algorithm is employed to find contiguous regions consisting of unoccupied, connected grid points. Each such region is identified as a possible site. A user-specified size cutoff was used to remove sites smaller than the specified volume for further consideration (Venkatachalam et al., 2003).

Interaction Protocol and Scoring Functions for Docking

The interaction of the ligand and the receptor was performed using “LigandFit” protocol on Accelrys Discovery Studio. In the first phase of LigandFit docking procedure, binding sites were indentified on the receptor surface. Site partitioning approach was followed to sample different parts of the larger binding site for docking. In the second phase, docking between receptor and ligand was performed in the specified site.

Docking ligands to the specified sites has different approaches like conformational search to generate candidate ligand conformations for docking, ligand/site shape matching to select ligand conformations that are similar to the shape of site or site partitions. Candidate ligand poses in the binding site are evaluated and prioritized according to the DockScore function on the basis of forcefield approximation (equation 2), Piecewise Linear Potential function (PLP) (equation 3), LigScore1, LigScore2, Potential of Mean Force (PMF) and Jain scores.

$$ \text{DockScore(forcefield)} = - (\text{ligand/receptor interaction energy} + \text{ligand internal energy}) $$

(2)

$$ \text{DockScore(PLP)} = - (\text{PLP potential}) $$

(3)

As shown in Eq. 2, this version of DockScore contain two energy terms, these are internal energy of the ligand and the interaction energy of the ligand with the receptor. The interaction energy is taken as the sum of the van der Waals energy and electrostatic energy. To reduce the time needed for the computation of the interaction energy, a grid-based estimation of the ligand/receptor interaction energy is employed. PLP is a fast, simple, docking function that has been shown to correlate well with protein-ligand binding affinities. PLP scores are measured in arbitrary units, with negative PLP scores reported in order to make them suitable for subsequent use in consensus score calculations. Higher PLP scores indicate stronger receptor-ligand binding (larger pK_a values). LigScore1 is a scoring function for predicting receptor-ligand binding affinities. vdW, C+pol and TotPol^2 descriptors are used to calculate LigScore1 (equation 4, 5), which is computed in units of pK_a (-log K_a). When scoring ligands, the individual contributions of these descriptors may also be provided along with the overall LigScore1 value. Two slightly different equations are used in the calculation of LigScore1 depending on the forcefield (Dreiding or CFF) employed for the calculation of the vdW descriptor and the corresponding charge model (Gasteiger or CFF) used to assign atoms as polar or nonpolar.

$$ \text{LigScore1}_\text{Dreiding} = -0.3498 - 0.04673 * \text{vdW} + 0.14394 * \text{C+pol} - 0.001010 * \text{TotPol}^2 $$

(4)

$$ \text{LigScore1}_\text{CFF} = 0.4896 - 0.04551 * \text{vdW} + 0.14394 * \text{C+pol} - 0.001010 * \text{TotPol}^2 $$

(5)

$$ \text{LigScore2}_\text{Dreiding} = -0.3498 - 0.04673 * \text{vdW} + 0.16534 * \text{C+pol} - 0.001132 * \text{TotPol}^2 $$

(6)

$$ \text{LigScore2}_\text{CFF} = 1.900 - 0.0730 * \text{vdW} + 0.0626 * \text{C+pol} - 0.0007324 * \text{BuryPol}^2 $$

(7)

where the coefficients were obtained through regression analysis of the binding affinities of a series of protein-ligand complexes (Krammer et al., 2005).

The PMF scoring function (Muegge et al., 2005) is based on statistical analysis of the 3D structures of protein-ligand complexes. They were found to correlate well with protein-ligand binding free energies while being fast and simple to calculate. The scores are calculated by summing pairwise interaction terms over all interatomic pairs of the receptor-ligand complex.

The Jain score is a sum of five interaction terms (Jain, 1996). These are Lipophilic interactions, Polar attractive interactions, Polar repulsive interactions, Solvation of the protein and ligand and an entropy term for the ligand. Only proximate protein-ligand atoms are considered for the pairwise interaction terms. The lipophilic and polar interaction terms are each represented by a weighted sum of a Gaussian and a sigmoidal function. This functional form is short-ranged with a pronounced maximum that occurs at close surface contacts. It also incurs a significant penalty for short contacts between protein and ligand atoms.

Parameters for Docking Study

For docking study, the Energy Grid Force Field parameter was set to Dreiding, for computing ligand-protein interaction energy. The Energy Grid parameters control the grid bases dock-
ing used in the initial evaluation of the poses. In the Dreiding force field the Gasteiger charging method is employed to calculate the partial charges of ligands and proteins. The Energy Grid Extension from site was set to 5.0 Å. The Conformation search Number of Monte Carlo Trial was set to “0” to perform a rigid docking. Maximum poses for ligand in the receptor cavity was set to 10. Ligand poses in the receptor cavity were evaluated using LigScore1, LigScore2, PLP1, PLP2, PMF, Jain, Dock Score empirical scoring functions.

Result and Discussion

Molecular properties of genaniol and limonene were analysed, to identify if they are satisfying Lipinski rule of 5. According to Lipinski rule of 5, for any druggable compound, molecular weight should be less than 500; number of H-donors less than 5; number of H-acceptor less than 10; and octanol-water partition coefficient (ALogP) value should be less than 5. Calculated molecular properties values of geraniol and limonene are shown in Table 1. Rotatable bonds of genaniol and limonene are shown in Figure 3. Geraniol contains total 5 rotatable bonds, while limonene has only 1 rotatable bond. Ligand conformations were generated using search small molecule confirmation tools available in Accelrys discovery studio. Systematic search method was used with energy threshold 20 kcal/mol to generate total 56 conformation poses of geraniol (Table 2). Energy plot of all 56 conformation poses of geraniol is shown in Figure 4.

Table 1: Molecular properties of Geraniol and Limonene.

Confirmation index	Angle 1	Angle 2	Angle 3	Angle 4	Angle 5	Relative Energy	Energy
0	178.238	288.239	343.105	304.69	301.204	7.44572	50.0316
1	179.262	168.06	342.579	304.651	301.937	7.96441	50.5503
2	178.916	286.762	104.3	305.295	299.859	1.93152	44.5174
3	178.128	167.4	104.412	305.207	299.881	1.60827	44.1941
4	60.6897	171.495	100.998	304.873	300.957	18.4569	61.0428
5	178.176	288.753	343.164	65.0501	300.378	5.50335	48.0892
6	179.093	167.801	342.991	66.3717	298.548	7.02377	49.6096
7	180.618	165.701	101.815	69.0623	299.17	18.9884	61.5743
8	181.456	44.8951	225.639	61.0061	303.736	15.073	57.6589
9	174.811	170.853	227.034	60.0737	304.949	15.066	57.6519
10	178.19	288.769	343.133	65.0501	300.378	5.50335	48.0892
11	179.119	167.91	342.856	185.862	298.753	6.00853	48.5944
12	178.899	286.839	104.229	185.361	299.33	0.367932	42.9556
13	295.353	292.389	98.4318	185.164	298.612	17.8395	60.4254
14	178.18	167.447	104.337	185.311	299.288	0.018356	42.6042
15	60.8582	171.667	100.883	184.951	298.309	16.8683	59.4542
16	182.279	43.9313	226.301	187.387	295.475	14.6417	57.2276
17	175.09	170.56	226.68	187.671	295.75	12.1075	54.6933
18	177.996	289.147	342.882	303.963	60.7323	17.6641	60.25
19	179.726	168.673	341.645	303.091	62.4863	16.1245	58.7103

J Proteomics Bioinform

ISSN:0974-276X JPB, an open access journal

JPB/Vol.2/November 2009
Table 2: Confirmation poses of Geraniol generated using systematic search with energy threshold 20 kcal/mol.

Confirmation	Angle 1	Relative Energy	Energy
0	144.977	0	42.4817
1	264.12	5.57912	48.0608
2	24.1618	15.9883	58.47

Table 3: Confirmation poses of Limonene generated using systematic search with energy threshold 20 kcal/mol.

Table 3: Confirmation poses of Limonene generated using systematic search with energy threshold 20 kcal/mol.

Confirmation	Angle 1	Relative Energy	Energy
0	144.977	0	42.4817
1	264.12	5.57912	48.0608
2	24.1618	15.9883	58.47
limonene (Figure 7). Best poses for each geraniol and limonene with HMG-CoA reductase were analysed for different energy parameters.

HMG-CoA reductase -geraniol Interaction

Docking was performed with all 56 conformation poses of geraniol and top 8 poses were analysed in the binding cavity of HMG-CoA reductase (Table 4). The best pose of geraniol (with dock score = 9.448) interacting with threonine 809, aspartic acid 767 and glycine 765 of HMG-CoA reductase. The hydrogen atom at position 29 of geraniol interacts with hydrogen atom at position 22 of threonine present at position 809 of HMG-CoA reductase. Same hydrogen atom at position 29 of geraniol interacts with oxygen of the C=O of glycine present at position 765 of the receptor molecule. Hydrogen at position 20 of geraniol interacts with hydrogen beta 1 of aspartic acid at position 767. Total ligand internal energy for the best post is calculated to 7.642. (Figure 8).

HMG-CoA reductase -limonene Interaction

For limonene and HMG-CoA reductase interaction, we generated three conformations using small molecule conformation generation method. All three poses of limonene were analyzed in the binding cavity of HMG-CoA reductase. The best pose of limonene has dock score as high as 10.593, much more than the best dock score in case of geraniol (Table 4). Best pose of limonene has three atoms interacting with HMG-CoA reductase. These are hydrogen at position 20, 17 and carbon at position 3. Hydrogen at position 20 and carbon at position 3 form bond with hydrogen atom of glycine amino ter-
Figure 6: 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase (chain A). Molecular surface is colored based on calculated interpolated charges. Protein back bone is displayed as solid ribbon and colored by secondary structure type. Binding site 2 is shown with green dots.

Figure 7: Detail view of binding site in 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase (chain A). All amino acids, surrounding the binding sites are labeled. Surface is colored based on calculated interpolated charges.

Figure 8: Geraniol interaction with HMG-CoA reductase. All interacting amino acids with the ligand are labeled.

Table 4: Conformation poses of geraniol and limonene with different scoring functions. Poses are arranged with the descending dock score value.

Ligand	Conformation pose	LigScore1	LigScore2	-PLP1	-PLP2	Jain	-PMF	Dock Score
Geraniol	1	0.86	2.72	45.43	46.43	0.46	-7.24	9.448
	2	0.7	2.48	31.06	32.85	-0.28	-4.61	8.023
	3	0.77	2.57	30.55	32.64	-0.26	-4.77	7.93
	4	0.55	2.47	44.12	47.07	1.55	-11.37	5.818
	5	0.54	2.47	44.43	47.28	1.48	-11.1	5.805
	6	0.55	2.48	44.48	47.14	1.56	-10.45	5.786
	7	0.07	2.09	40.79	41.66	-0.25	-7.02	5.202
	8	0.23	2.29	51.9	53	1.05	-4.42	3.424
Limonene	1	0.32	2.6	26.07	25.32	-0.52	8.56	15.035
	2	0.03	2	25.88	28.97	1.67	-7.25	10.593
	3	-0.55	1.09	32.31	36.06	1.3	-15.66	0.736

Conclusion

Molecular docking studies provide lead to determine the potential of ligand interaction in the binding cavities of receptor molecules. Considering the high dock score and low ligand internal energy, it can be concluded that limonene has greater bind-

minus at position 808. The second interaction is in between hydrogen at position 17 of limonene and H-β1 of aspartic acid present at position 767 of HMG-CoA reductase (Figure 9).

Table 4: Conformation poses of geraniol and limonene with different scoring functions. Poses are arranged with the descending dock score value.

Ligand	Conformation pose	LigScore1	LigScore2	-PLP1	-PLP2	Jain	-PMF	Dock Score
Geraniol	1	0.86	2.72	45.43	46.43	0.46	-7.24	9.448
	2	0.7	2.48	31.06	32.85	-0.28	-4.61	8.023
	3	0.77	2.57	30.55	32.64	-0.26	-4.77	7.93
	4	0.55	2.47	44.12	47.07	1.55	-11.37	5.818
	5	0.54	2.47	44.43	47.28	1.48	-11.1	5.805
	6	0.55	2.48	44.48	47.14	1.56	-10.45	5.786
	7	0.07	2.09	40.79	41.66	-0.25	-7.02	5.202
	8	0.23	2.29	51.9	53	1.05	-4.42	3.424
Limonene	1	0.32	2.6	26.07	25.32	-0.52	8.56	15.035
	2	0.03	2	25.88	28.97	1.67	-7.25	10.593
	3	-0.55	1.09	32.31	36.06	1.3	-15.66	0.736

Figure 6: 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase (chain A). Molecular surface is colored based on calculated interpolated charges. Protein back bone is displayed as solid ribbon and colored by secondary structure type. Binding site 2 is shown with green dots.

Figure 7: Detail view of binding site in 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase (chain A). All amino acids, surrounding the binding sites are labeled. Surface is colored based on calculated interpolated charges.

Figure 8: Geraniol interaction with HMG-CoA reductase. All interacting amino acids with the ligand are labeled.
ing affinity with HMG-CoA reductase and thus having better antitumor activity in comparison to geraniol. Aspartic acid at position 767 of HMG-CoA reductase is interacting with both geraniol and limonene. This amino acid acts as a major anchor point for the ligands to interact with the receptor molecule for their anti-tumor activities.

Acknowledgements

SKG acknowledge Director, IITR, Lucknow for his generous support and CSIR NWP-17 project for providing necessary infrastructure for the work.

References

1. Alonso WR, Rajanarivony JI, Gershenzon J, Croteau R (1992) Purification of 4S-limonene synthase, a monoterpane cyclase from the glandular trichomes of peppermint (Mentha x piperita) and spearmint (Mentha spicata). J Biol Chem 267: 7582-7. »CrossRef » PubMed » Google Scholar
2. Asamoto M, Ota T, Toriyama-Baba H, Hokaïwado N, Naito A, et al. (2002) Mammary carcinomas induced in human c-Ha-ras proto-oncogene transgenic rats are estrogen-independent, but responsive to d-limonene treatment. Jpn J Cancer Res 93: 32-5. »CrossRef » PubMed » Google Scholar
3. Brooks BR, Brucoleri RE, Olafson BD, States DJ, Swaminathan S, et al. (1983) CHARMM: A program for macromolecular energy minimization and dynamics calculations. J Comput Chem 4: 187-217. »CrossRef » PubMed » Google Scholar
4. Carnesecchi S, Bras-Gonçalves R, Bradaia A, Zeisel M, Gossé F, et al. (2004) Geraniol, a component of plant essential oils, modulates DNA synthesis and potentiates 5-fluorouracil efficacy on human colon tumor xenografts. Cancer Lett 215: 53-9. »CrossRef » PubMed » Google Scholar
5. Chander SK, Lansdown AG, Luqmami YA, Gomm JJ, Coope RC, et al. (1994) Effectiveness of combined limonene and 4-hydroxyandrostenedione in the treatment of NMU-induced rat mammary tumours. Br J Cancer 69: 879-82. »CrossRef » PubMed
6. Clarke S (1992) Protein isoerythronol and methylation at carboxyl-terminal cysteine residues. Annu Rev Biochem 61: 355-86. »CrossRef » PubMed » Google Scholar
7. Crowell PL (1999) Prevention and therapy of cancer by dietary monoterpenes. J Nutr 129: 775S-778S. »CrossRef » PubMed » Google Scholar
8. Elegebea JA, Maltzman TH, Verma AK, Tanner MA, Elson CE, et al. (1986) Mouse skin tumor promoting activity of orange peel oil and d-limonene: a re-evaluation. Carcinogenesis 7: 2047-9. »CrossRef » PubMed » Google Scholar
9. Elson CE, Maltzman TH, Boston JL, Tanner MA, Gould MN (1988) Anti-carcinogenic activity of d-limonene during the initiation and promotion/progression stages of DMBA-induced rat mammary carcinogenesis. Carcinogenesis 9: 331-2. »CrossRef » PubMed » Google Scholar
10. Genser B, Grammer TB, Stojakovic T, Siekmeier R, März W (2008) Effect of HMG CoA reductase inhibitors on low-density lipoprotein cholesterol and C-reactive protein: systematic review and meta-analysis. Int J Clin Pharmacol Ther 46: 497-510. »PubMed » Google Scholar
11. Gould MN, Moore CJ, Zhang R, Wang B, Kennan WS, et al. (1994) Limonene chemoprevention of mammary carcinoma induction following direct in situ transfer of v-Ha-ras. Cancer Res 54: 3540-3543. »CrossRef » PubMed » Google Scholar
12. Iijima Y, Davidovich-Rikanati R, Fridman E, Gang DR, Bar E, et al. (2004) The Biochemical and molecular basis for the divergent patterns in the biosynthesis of terpenes and phenylpropanes in the pettate glands of three cultivars of Basil. Plant Physiol 136: 3724-3736. »CrossRef » PubMed » Google Scholar
13. Istvan ES, Deisenhofer J (2001) Structural mechanism for statin inhibition of HMG-CoA reductase. Science 292: 1160-4. »CrossRef » PubMed » Google Scholar
14. Jain AN (1996) Scoring noncovalent protein-ligand interactions: a continuous differentiable function tuned to compute binding affinities. J Comput Aided Mol Des 10: 427-40. »CrossRef » PubMed » Google Scholar
15. Kawamori T, Tanaka T, Hirose Y, Ohnishi M, Mori H (1996) Inhibitory effects of d-limonene on the development of colonic aberrant crypt foci induced by azoxymethane in F344 rats. Carcinogenesis 17: 369-372. »CrossRef » PubMed » Google Scholar
16. Kjonaas R, Croteau R (1983) Demonstration that limonene is the first cyclic intermediate in the biosynthesis of oxygenated p-menthane monoterpenes in Mentha Piperita and other Mentha species. Arch Biochem Biophys 220: 79-89. »CrossRef » PubMed » Google Scholar
17. Kodama R, Yano T, Furukawa K, Noda K, Ide H (1976) Studies on the metabolism of d-limonene (p-mentha-1,8-diene). IV. Isolation and characterization of new metabolites and species differences in metabolism. Xenobiota 6: 377-89. »CrossRef » PubMed » Google Scholar
18. Krammer A, Kirchhoff PD, Jiang X, Venkatachalam CM, Waldman M (2005) LigScore: a novel scoring function for predicting binding affinities. J Mol Graph Model 23: 395-407. »CrossRef » PubMed » Google Scholar
19. Loza-Tavares H (1999) Monoterpenes in essential oils. Biosynthesis and properties. Adv Exp Med Biol 464: 49-62. »PubMed » Google Scholar
20. Lu XG, Zhan LB, Feng BA, Qu MY, Yu LH, et al. (2004) Inhibition of growth and metastasis of human gastric cancer implanted in nude mice by d-limonene. World J Gastroenterol 10: 2140-4. »CrossRef » PubMed » Google Scholar
21. McGarvey DJ, Croteau R (1995) Terpenoid metabolism. Plant Cell 7: 1015-1026. »CrossRef »Pubmed »Google Scholar

22. Muegge I, Martin YC (1999) A general and fast scoring function for protein-ligand interactions: a simplified potential approach. J Med Chem 42: 791-804. »CrossRef »Pubmed »Google Scholar

23. National Toxicology Program (1990) NTP Toxicology and Carcinogenesis Studies of d-Limonene (CAS No. 5989-27-5) in F344/N Rats and B6C3F1 Mice (Gavage Studies). Natl Toxicol Program Tech Rep Ser 347: 1-165. »Pubmed

24. Peffley DM, Gayen AK (2003) Plant-derived monoterpenes suppress hamster kidney cell 3-hydroxy-3-methylglutaryl coenzyme a reductase synthesis at the post-transcriptional level. J Nutr 133: 38-44. »CrossRef »Pubmed »Google Scholar

25. Polo MP, de Bravo MG (2006) Effect of geraniol on fatty-acid and mevalonate metabolism in the human hepatoma cell line Hep G2. Biochem Cell Biol 84: 102-11. »CrossRef »Pubmed »Google Scholar

26. Raphael TJ, Kuttan G (2003) Effect of naturally occurring monoterpenes carvone, limonene and perillic acid in the inhibition of experimental lung metastasis induced by B16F-10 melanoma cells. J Exp Clin Cancer Res 22: 419-24. »Pubmed »Google Scholar

27. Salim EI, Wanibuchi H, Morimura K, Wei M, Mitsuhashi M, et al. (2003) Carcinogenicity of dimethylarsinic acid in p53 heterozygous knockout and wild-type C57BL/6J mice. Carcinogenesis 24: 335-42. »CrossRef »Pubmed »Google Scholar

28. Singletery K (2000) Diet, natural products and cancer chemoprevention. J Nutr 130: 465S-466S. »CrossRef »Pubmed »Google Scholar

29. Swanson KM, Hohl RJ (2006) Anti-cancer therapy: targeting the mevalonate pathway. Curr Cancer Drug Targets 6: 15-37. »CrossRef »Pubmed »Google Scholar

30. Venkatachalam CM, Jiang X, Oldfield T, Waldman M (2003) LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites. J Mol Graph Model 21: 289-307. »CrossRef »Pubmed »Google Scholar