Auditory sensation with affective agnosia: A prevalence of alexithymia among tinnitus patients

Ajay Kumar Bakhla, Meenakshi Dayal¹, Rajni Bala, Ashit Toppo¹
Departments of Psychiatry and ENT, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India

Address for correspondence:
Dr. Ajay Kumar Bakhla,
Department of Psychiatry,
Rajendra Institute of Medical Sciences, Ranchi - 834 009,
Jharkhand, India.
E-mail: ajaybakhla@gmail.com

Received: 28 September 2018
Revised: 26 April 2020
Accepted: 03 September 2020
Published: 07 November 2020

ABSTRACT

Objectives: The aim of the present study was to determine the prevalence and association of alexithymia, depression, and anxiety in patients affected by tinnitus. Methods: The study was conducted among the patients referred for audiometric evaluation for tinnitus. They were further evaluated with the Hospital Anxiety and Depression Scale, the Tinnitus Handicap Inventory, and the Toronto Alexithymia Scale. Analysis was done for prevalence and the sample was categorized as high and low tinnitus handicap subgroups, and mean scores of alexithymia, anxiety, and depression were compared. Results: A total of 70 patients (55.7% – male and 44.3% – female) with a mean age of 33.17 ± 12.24 years were finally analyzed. The severity of tinnitus was most severe (34.3%), followed by moderate (20%), catastrophic (18.6%), mild (17.1%), and slight (10%). The prevalence of alexithymia, anxiety, and depression among patients of tinnitus was found to be 65.7%, 37.1%, and 20%, respectively. The high tinnitus handicap group showed higher scoring on total alexithymia score, anxiety, and depression and higher scoring with describing emotion and identification of emotion, but there was no difference for the subscale of externally oriented thinking. Conclusions: The study found a prevalence of alexithymia, anxiety, and depression as 65.7%, 37.1%, and 20%, respectively, among patients of tinnitus, and problem of describing and identification of emotion are associated with higher tinnitus handicap.

Keywords: Alexithymia, anxiety, depression, tinnitus

THIS is a symptoms of hearing sound sensation without external auditory stimulation of various etiology.[1] Tinnitus may be associated with annoyance, concentration difficulties, distress, sleep problems, psychological disorders, anxiety, depression, and suicidal ideations.[2] Tinnitus is a common problem.[3] In a systemic review of all published papers in 35 years, McCormack et al. found an overall prevalence of 5.1%–42.7%.[4] Another systemic review reported 4.7%–46% in the general pediatric population and 23.5%–62.2% among children with hearing loss.[5] Gender-wise men are more affected than women,[6] and menstrual cycle irregularity may also be a related factor of tinnitus in women.[6] Many associated factors such as abnormal tympanic membrane, unilateral hearing loss, bilateral hearing loss, different noise exposures, use of earphones, smoking history, less sleep (≤6 h), smaller households, hyperlipidemia, osteoarthritis, rheumatoid arthritis, asthma, thyroid disease, stress, and depression.[7]

Many psychological problems are associated with tinnitus such as anxiety, depression, stress, and sleep problems.[8,9] The relationship between psychological problems and tinnitus is reciprocal, as studies reported that psychological distress is related to patients of tinnitus,[10] whereas 48%–78% of patients with chronic tinnitus developed major depression.[11] Yet, another study found a lifetime
prevalence of major depression in 62% and current depression in 48% of their sample. A study on a large sample of 51,574 from the general population found that persons with tinnitus scored significantly higher on anxiety and depression and lower on self-esteem and well-being than people without tinnitus.

Alexithymia is a trait that comprises impairments in the perception of bodily states, their cognitive representation, and verbal communication; very recently, it has been conceptualized as “Affective Agnosia.” The concept of alexithymia has attained great relevance in a psychological construct such as emotional regulation and associated disorders. Numerous studies have shown that alexithymia is associated with a variety of medical and psychiatric disorders including physical disorders such as hypertension, substance use disorders, eating disorders, somatic symptoms and somatization disorders, functional gastrointestinal disorders and depression. Studies have also found a strong correlation between alexithymia and somatization in depressed patients.

The present study aimed to determine the prevalence of alexithymia, depression, and anxiety among the patients affected by tinnitus.

METHODS

The study was conducted at the department of ear, nose, and throat (ENT) at a Medical college and hospital. The study was approved by the institutional review board. The sample consisted of patients who visited the hospital for tinnitus and referred for audiometric evaluation to the Audiologist. Inclusion criteria were all patients with either unilateral or bilateral tinnitus, aged 18 years or above, consenting to participate in the study. The exclusion criteria were the patient’s condition too incapacitated to participate in the study due to poor medical status, presence of vertigo, gross language, and communication barrier. Information on patient demographics, history of alcohol or substance use, past history, and family history was obtained from interviews with patients and accompanying persons. A detailed physical, ENT, and neurological examination was done to exclude any comorbid general medical condition. All detailed evaluation and data collection were done by a team of an audiologist and a clinical psychologist.

Tools

Sociodemographic data sheet

The sociodemographic data sheet included age, marital status, religion, community, education, and occupation. Clinical variables recorded were alcohol and drug use, history of epilepsy, and past history of medical or psychiatric illness.

The Hospital Anxiety and Depression Scale

This is a very well-validated scale to assess anxiety and depression among hospital-based patients. It consists of 14 questions, 7 scoring anxiety and 7 scoring depression. Patients were asked to read each question and place a tick against the reply that came closest to how they had been feeling that day. Each answer was scored 0, 1, 2, or 3. The possible range of scores was, therefore, 0–21, with higher scores indicating greater levels of anxiety. A score of 0–7 is considered normal, scores of 8–10 are borderline abnormal, and scores of 11–21 are abnormal. The sensitivity and specificity for both Hospital Anxiety and Depression Scale (HADS) A and D subscales is approximately around 0.80; the mean Cronbach’s alpha for HADS-A is 0.83, and for HADS-D, it is 0.82.

The Tinnitus Handicap Inventory

The Tinnitus Handicap Inventory (THI) is a widely used self-administered test to determine the degree of distress suffered by the tinnitus patient. It consists of 25 questions divided into 3 subgroups: functional (11 items), emotional (9 items), and catastrophic (5 items). It has high internal consistency and reliability with the Cronbach’s alpha coefficient (0.88) and a high intraclass correlation coefficient (0.78–0.90).

The Toronto Alexithymia Scale

The Toronto Alexithymia Scale (TAS) is one of the most commonly used measures of alexithymia with good internal consistency (Cronbach’s alpha = 0.81) and test–retest reliability (0.77, P < 0.01). This self-report scale consists of 20 items which are rated on a five-point Likert scale 1 (strongly disagree) to 5 (strongly agree). The total alexithymia score is the sum of responses to all 20 items and a score of 61 or greater suggests alexithymia. Scores of 52–60 suggest possible alexithymia, and a score of 51 or less suggests nonalexithymia. It has three subscales: the first one consisting of five items numbered 2, 4, 7, 12, and 17 is for describing difficulty in feelings or emotions. The second one consists of seven items – 1, 3, 6, 9, 11, 13, and 14, which measures difficulty in identifying feelings or emotions. The third subscale consists of eight items – 5, 8, 10, 15, 16, 18, 19, and 20, which measures externally oriented (EO) thinking.

Statistical analysis

The collected data of all patients were statistically analyzed using the Statistical Package for the Social Sciences (SPSS, Inc., Chicago, Illinois, USA) version 16.0. Data analysis included means and standard deviations of continuous variables for the total sample. Descriptive statistics included frequency and percentage of categorical variables. The
Mann–Whitney U test was used to determine if differences of distribution existed between two groups of the sample. Statistically significant levels are reported for $P \leq 0.05$. Highly significant levels are $P < 0.001$.

RESULTS

Characteristics of the study sample

A total of 70 patients (55.7% – male and 44.3% – female) were included for the study. Table 1 summarizes the sample characteristics. The mean age of the group was 33.17 ± 12.24 years, and the mean years of education were 9.72 ± 5.61 years [Table 1]. The marital status of the sample was mostly married (64.3%) and 35.7% were single. Hindu religion dominated the sample size with 85.7%, followed by 12.9% of Muslims, and only one subject was Christian. 48.6% were unemployed and the remaining 12.9% were in service and 38.6% were self-employed.

Tinnitus severity and prevalence

The tinnitus severity as measured by THI was found to be most severe (34.3%), followed by moderate (20%), catastrophic (18.6%), mild (17.1%), and slight (10%). The prevalence of alexithymia, anxiety, and depression among patients of tinnitus was 65.7%, 37.1%, and 20%, respectively [Table 2]. The distribution of different grading of THI scoring and presence of alexithymia as per TAS-20 is shown in Table 3.

Comparison of alexithymia across high and low distressed as measured by the Tinnitus Handicap Inventory

The mean score of the THI was 53.92 ± 2.46; hence, we categorized the patients based on the mean THI score of the sample: group with THI score of 54 and above and another group of below 54 THI score. This high THI scoring group consisted of 43 sample size, and the low THI scoring group was of 27 sample size. The mean scores of TAS total scores and subscales, HADS score, and Mann–Whitney U-test statistics were done and are tabulated in Table 4. There was a significant difference ($P = 0.000$) among these two groups for alexithymia, i.e., total TAS score. Among the subscales of TAS, the significant difference was found with identification ($P = 0.000$) and describing ($P = 0.001$) the emotions, whereas there was no difference in these groups in domains of EO thinking. Similarly, we found significantly higher depression and anxiety among the high THI scoring group as measured by HADS [Table 4].

DISCUSSION

Our study reveals significantly high alexithymia, anxiety, and depression in patients of tinnitus. Furthermore, as hypothesized, in this study, we found that the TAS-20 subscale assessing difficulty identifying and expressing feelings is more closely associated with tinnitus compared to other subscales of EO thinking. In accordance with our study, an earlier study addressed the association of

Variable	Total sample (n=70)
Mean age±SD in years	33.17±12.24
Mean years of education±SD	9.72±5.61
Gender	
Male	39 (55.7)
Female	31 (44.3)
Marital status	
Single	25 (35.7)
Married	45 (64.3)
Religion	
Hindu	60 (85.7)
Muslim	9 (12.9)
Christian	1 (1.4)
Occupation	
Unemployed	34 (48.6)
Service	9 (12.9)
Others/business	27 (38.6)
Habitant	
Rural	22 (31.4)
Urban	33 (47.1)
Semi-urban	15 (21.4)
Community	
Tribal	14 (20)
Nontribal	56 (80)
Economic status	
Lower	19 (27.1)
Middle	49 (70)
Higher	2 (2.9)
History of substance use	
No	53 (75.7)
Alcohol	9 (12.9)
Others	8 (11.4)
History of epilepsy	
No	69 (98.6)
Yes	1 (1.4)
History of medical illness	
No	55 (78.6)
Diabetes	4 (5.7)
Hypertension	6 (8.6)
Others	5 (7.1)
Family history	
Nil contributory	48 (68.6)
Hypertension	7 (10)
Diabetes	12 (17.1)
Others	3 (4.3)
Presenting complains	
Ear pain	58 (82.9)
Ear discharge	12 (17.1)

SD – Standard deviation
Bakhla, et al.: A prevalence of alexithymia among tinnitus patients

We found a 65.7% point prevalence of alexithymia among patients suffering from tinnitus; this is much higher than what is usually reported for the general population as 17%. Yet, another study that examined the prevalence of alexithymia in patients with two studies. The average age of our study was 33.17 years, whereas earlier study consisted of 70–85 years aged olders.

Although our sample was purposive, it indicates that men presented tinnitus more frequently than women (55.7% of males and 44.3% of females), in agreement with what was reported by Salviati et al. as 63.17% of males and the remaining 36.83% of females. Our sample consisted of 55.7% of male patients, which may partially contribute to the high prevalence of alexithymia, as the male gender is known to be associated with alexithymia.

Table 2: Prevalence of anxiety, depression, and alexithymia among patients of tinnitus

Diagnosis	Negative cases (n)	Borderline cases (n)	Definite cases (%)
Depression	40	16	14 (20)
Anxiety	28	16	26 (37.1)
Alexithymia	6	18	46 (65.7)

Table 3: Distribution of different grading of Tinnitus Handicap Inventory scoring and alexithymia

Tinnitus handicap	Nonalexithymic	Borderline	Alexithymic	Total	Pearson Chi-square	df	Asymptotic significant (two-sided)
Slight or no	4	2	1	7 (10)	38.79	8	0.000
Mild	0	4	8	12 (17.14)			
Moderate	2	7	5	14 (20)	14 (34.28)		
Severe	0	5	19	24 (34.28)			
Catastrophic	0	0	13	13 (18.57)			
Total	6 (8.57)	18 (25.71)	46 (65.71)	70			

Table 4: Mean scores, standard deviation, and Mann-Whitney U-test across low scoring and high scoring Tinnitus Handicap Inventory

	Mean±SD	Mean rank	U	W	Z	P
Alexithymia describing						
Low	14.18±4.30	25.70	316.00	694.00	-3.212	0.001**
High	17.37±3.50	41.65				
Alexithymia identification						
Low	17.07±5.21	21.30	197.00	575.00	4.636	0.000**
High	24.16±4.97	44.42				
Alexithymia externally oriented thinking						
Low	26.96±4.34	36.50	553.50	1499.50	-0.327	0.743
High	26.81±3.26	34.87				
TotalTAS						
Low	58.22±11.22	24.17	274.50	652.50	-3.695	0.000**
High	68.34±8.73	42.62				
HADS Depression						
Low	4.33±2.96	20.22	168.00	546.00	-4.994	0.000**
High	9.06±3.46	45.09				
Anxiety						
Low	5.81±3.92	21.93	214.00	592.00	-4.433	0.000**
High	10.74±4.01	44.02				
Total						
Low	10.14±6.13	20.06	163.50	541.50	-5.038	0.000**
High	19.81±6.44	45.20				

P – Asymptotic significant (two-tailed), *Significant at P<0.05, **Significant at P<0.01. HADS – Hospital Anxiety and Depression Scale
psychogenic nonepileptic seizures and epileptic seizures reported 36.9% and 28.6%, respectively. These findings are in concordance to most of the previous studies which conclude that alexithymia seems to be a common feature of neurological disease. Tinnitus is also an overlapping illness of neurological, ear, and psychological problems. However, a review found most evidence available for patients with traumatic brain injury, stroke, and epilepsy. We also found a 20% prevalence of depression among our sample. This high point prevalence of depression directly contributes to the found high prevalence of alexithymia. Earlier studies and meta-analysis suggest a strong association between alexithymia and depression. Furthermore, depression poses as a confounding factor in studies of alexithymia. This comorbidity may be the reason for the very high found prevalence of alexithymia in our study.

We also found a 37.1% prevalence of anxiety in our study; this is the third dimension along with alexithymia and depression. The result of the study also shows that tinnitus is highly associated with alexithymia, anxiety, and depression; this conforms to earlier studies that demonstrated a higher prevalence of psychological problems such as depression, anxiety, somatization, and obsession. These findings may have important implications for understanding and promoting general psychological health among patients of tinnitus. Limitations of this study include lack of control group, very small sample size, and cross-sectional observation; these may be planned to overcome for future studies. These available findings have been based on questionnaire data, but future studies may employ structured psychiatric interviews adopting diagnostic criteria.

CONCLUSIONS

The prevalence of alexithymia, anxiety, and depression among the patients of tinnitus was found to be 65.7%, 37.1%, and 20%, respectively. The high tinnitus handicap group showed significantly higher scoring on total alexithymia score, anxiety, and depression compared to the low tinnitus handicap group. The high tinnitus handicap group also showed significantly higher scoring with describing emotion and identification of emotion, but there was no difference for the subscale of EO thinking.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

REFERENCES

1. Galazyuk AV, Wenstrup JJ, Hamid MA. Tinnitus and underlying brain mechanisms. Curr Opin Otolaryngol Head Neck Surg 2012;20:409-15.
2. Malouff JM, Schutte NS, Zucker LA. Tinnitus-related distress: A review of recent findings. Curr Psychiatry Rep 2011;13:31-6.
3. Stohler NA, Reinau D, Jick SS, Bodmer D, Meier CR. A study on the epidemiology of tinnitus in the United Kingdom. Clin Epidemiol 2019;11:855-71.
4. McCormack A, Edmondson-Jones M, Somerset S, Hall DA. Corrigendum to “A systematic review of the reporting of tinnitus prevalence and severity.” Hear Res 2016;339:219.
5. Rosing SN, Schmidt JH, Wedderkopp N, Baguley DM. Prevalence of tinnitus and hyperacusis in children and adolescents: A systematic review. BMJ Open 2016;6:e010596.
6. Yu JN, Nam GE, Han K, Kim JS, Kim YH, Cho KH, et al. Association between menstrual cycle irregularity and tinnitus: A nationwide population-based study. Sci Rep 2019;9:14038.
7. Kim HJ, Lee HJ, An SY, Sim S, Park B, Kim SW, et al. Analysis of the prevalence and associated risk factors of tinnitus in adults. PLoS One 2015;10:e0127578.
8. Pattyn T, Van Den Eede F, Vanneste S, Cassiess L, Velman DJ, Van De Heyning P, et al. Tinnitus and anxiety disorders: A review. Hear Res 2016;333:255-65.
9. Trevis KJ, McLachlan NM, Wilson SJ. A systematic review and meta-analysis of psychological functioning in chronic tinnitus. Clin Psychol Rev 2018;60:62-86.
10. Koijima T, Oishi N, Nishiyama T, Ogawa K. Severity of tinnitus distress negatively impacts quality of life in patients with vestibular schwannoma and mimics primary tinnitus. Front Neurol 2019;10:389.
11. Belli H, Belli S, Oktay MF, Ural C. Psychopathological dimensions of tinnitus and psychopharmacological approaches in its treatment. Gen Hosp Psychiatry 2012;34:282-9.
12. Sahlin H, Taiminen T, Karukivi M, Sjosten N, Nikkilä J, Virtanen J, et al. Psychiatric (Axis I) and personality (Axis II) disorders and subjective psychiatric symptoms in chronic tinnitus. Int J Audiol 2018;57:302-12.
13. Krog NH, Engdahl B, Tambs K. The association between tinnitus and mental health in a general population sample: Results from the HUNT study. J Psychosom Res 2010;69:289-98.
14. Lane RD, Weihl KL, Herring A, Hishaw A, Smith R. Affective agnosia: Expansion of the alexithymia construct and a new opportunity to integrate and extend Freud’s legacy. Neurosci Biobehav Rev 2015;55:594-611.
15. Morie KP, Jackson S, Zhai ZW, Potenza MN, Dritsche B. Mood disorders in high-functioning autism: The importance of alexithymia and emotional regulation. J Autism Dev Disord 2019;49:2935-45.
16. Casagrande M, Mingarelli A, Guarino A, Favieri F, Boncompagni I, Germano R, et al. Alexithymia: A facet of uncontrolled hypertension. Int J Psychophysiol 2019;146:180-9.
17. Niek Haan HA, van der Palen J, Wijdenveld T, Buitelaar JK, De Jong CA. Alexithymia in patients with substance use disorders: State or trait? Psychiatry Res 2014;216:137-45.
18. Westwood H, Kerr-Gaffney J, Stahl D, Tchanturia K. Alexithymia in eating disorders: Systematic review and meta-analyses of studies using the Toronto Alexithymia Scale. J Psychosom Res 2017;99:66-81.
19. Kumar V, Avasthi A, Grover S. Correlates of worry and functional somatic symptoms in generalized anxiety disorder. Ind Psychiatry J 2019;28:29-36.
20. Kano M, Endo Y, Fukudo S. Association between alexithymia
and functional gastrointestinal disorders. Front Psychol 2018;9:599.
21. Leweke F, Leichsenring F, Kruse J, Hermes S. Is alexithymia associated with specific mental disorders? Psychopathology 2012;45:22-8.
22. Taycan O, Özdemir A, Erdoğan Taycan S. Alexithymia and somatization in depressed patients: The role of the type of somatic symptom attribution. Noro Psikiyat Br 2017;54:99-104.
23. Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand 1983;67:361-70.
24. Bjelland I, Dahl AA, Haug TT, Neckelmann D. The validity of the hospital anxiety and depression scale. An updated literature review. J Psychosom Res 2002;52:69-77.
25. Newman CW, Jacobson GP, Spitzer JB. Development of the Tinnitus Handicap Inventory. Arch Otolaryngol Head Neck Surg 1996;122:143-8.
26. Aksoy S, Firat Y, Alpar R. The tinnitus handicap inventory: A study of validity and reliability. Int Tinnitus J 2007;13:94-8.
27. Bagby RM, Parker JD, Taylor GJ. The twenty-item Toronto alexithymia scale – I. Item selection and cross-validation of the factor structure. J Psychosom Res 1994;38:23-32.
28. Salonen J, Johansson R, Joukamaa M. Alexithymia, depression and tinnitus in elderly people. Gen Hosp Psychiatry 2007;29:431-5.
29. Salviati M, Bersani FS, Terlizzi S, Melcore C, Panico R, Romano GF, et al. Tinnitus: Clinical experience of the psychosomatic connection. Neuropsychiatr Dis Treat 2014;10:267-75.
30. de Barros AC, Furlan AE, Marques LH, de Araújo Filho GM. Gender differences in prevalence of psychiatric disorders, levels of alexithymia, and coping strategies in patients with refractory mesial temporal epilepsy and comorbid psychogenic nonepileptic seizures. Epilepsy Behav 2018;82:1-5.
31. Myers L, Matzner B, Lancman M, Perrine K, Lancman M. Prevalence of alexithymia in patients with psychogenic non-epileptic seizures and epileptic seizures and predictors in psychogenic non-epileptic seizures. Epilepsy Behav 2013;26:153-7.
32. Ricciardi L, Demartini B, Fotopoulos A, Edwards MJ. Alexithymia in neurological disease: A review. J Neuropsychiatry Clin Neurosci 2015;27:179-87.
33. Li S, Zhang B, Guo Y, Zhang J. The association between alexithymia as assessed by the 20-item Toronto Alexithymia Scale and depression: A meta-analysis. Psychiatry Res 2015;227:1-9.