Review

Nocturnal pruritus and sleep disturbance associated with dermatologic disorders in adult patients

Indrashis Podder MD, Himel Mondal MD, George Kroumpouzos MD, PhD, FAAD

Abstract

Nocturnal pruritus (NP) is a relatively common reason for dermatologic consultation. Its pathophysiology is partially understood. Skin conditions such as atopic dermatitis, psoriasis, urticaria, and prurigo nodularis are well-described causes of NP. The most distressing sequela of NP is sleep deficit, which can lead to physical and mental disturbances (e.g., daytime somnolence and fatigue) and negative emotional states that profoundly affect quality of life. However, this aspect of NP is often overlooked by dermatologists. It is essential to assess sleep quality in such patients and adopt appropriate measures to arrest the problem at an early stage. We conducted an evidence-based literature review to highlight the pathogenetic mechanisms of NP, identify dermatologic etiologies, and explore methods that have been used to assess the quality of sleep. Furthermore, we performed a systematic review of studies on sleep disturbance relevant to NP in patients with dermatologic conditions. Finally, we discuss the evidence on treatment options for NP and indicate therapies that may target both NP and sleep disturbance.

Keywords:
Nocturnal pruritus
Sleep disturbance
Skin diseases
Quality of life
Therapy

Contents
Introduction.. 404
Physiology of sleep.. 404
Pathophysiology of nocturnal pruritus ... 404
Thermoregulation variation.. 404
Barrier function and fluid balance alteration... 404
Hormonal dysregulation... 404
Cytokine involvement... 405
Itching and pain.. 405
Itching and psyche... 405
Methods that assess sleep quality... 405
Methods and materials.. 405
Results... 405
Dermatologic conditions associated with nocturnal pruritus and sleep disturbance...... 405
Treatment of nocturnal pruritus.. 406
Nonpharmacologic treatments... 406
Emollients and coolants.. 406
Addressing bathing habits.. 406
Sleep hygiene.. 408
Psychotherapeutic interventions.. 408
Pharmacologic treatments.. 408

* Corresponding author.
E-mail addresses: gk@gkderm.com, gkroumpouzos@gmail.com (G. Kroumpouzos).

https://doi.org/10.1016/j.ijwd.2021.02.010
2352-6475/© 2021 The Author(s). Published by Elsevier Inc. on behalf of Women's Dermatologic Society. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
Introduction

Pruritus commonly exhibits nocturnal exacerbation, disturbing normal sleep patterns and quality (Tivoli and Rubenstein, 2009). Sleep is an active process coupled with the circadian rhythm (CR) that is essential for optimal physical and mental health. Pathophysiologic mechanisms, such as skin barrier dysfunction and altered serum levels of endogenous substances (e.g., cortisol and signaling molecules), may be responsible for NP (Lavery et al., 2016). NP is a common dermatologic complaint, typically associated with sleep deficits and impaired quality of life. However, sleep disturbance (SD) is often overlooked in the current assessment instruments of quality of life in skin disorders, which results in a practice gap. Unfortunately, most studies in dermatologic conditions have evaluated sleep as a secondary outcome using subjective methods.

Physiology of sleep

A person passes from wakefulness to sleep when a network of cortical structures that maintain cortex activation is suppressed by inhibitory neurons. A high concentration of adenosine has been suggested to play an important role in such inhibition (Potter et al., 2016). Behavioral and physiologic monitoring has divided the sleep cycle into two distinct stages with distinct physiochemical changes: nonrapid eye movement (NREM) sleep and rapid eye movement (REM) sleep. When a person enters from wakefulness to sleep, they first enter the NREM stage (75%-80% of sleep) and then the REM stage (20%-25% of sleep; Fig. 1). This is repeated cyclically, with each cycle lasting 90 to 110 minutes and 4 to 6 cycles occurring per night (Carley and Farabi, 2016).

The sleep–wake cycle is interwoven with the CR of the body. The hypothalamic suprachiasmatic nucleus plays a key role in controlling the CR, resulting in diurnal and nocturnal variations (Carley and Farabi, 2016). Any disruption of the CR may cause behavioral (e.g., eating and physical activity) and biological (e.g., renal dysfunction) imbalances. Lifestyle (e.g., duty in night shift) and environmental factors (e.g., bright lights during the nighttime) can disrupt the CR, thus hampering sleep hygiene (Folkard, 2008; Potter et al., 2016). Excessive daytime sleepiness, mood disturbance, and insomnia are some notable sequelae of disturbed sleep. Several metabolic functions may also be deranged by sleep deprivation, which increases the risks of diabetes mellitus, sympathetic nervous system hyperactivity, hypertension, ischemic heart disease, and impaired immunity (Parish, 2009).

NP exerts a detrimental effect on the sleep pattern. Arousal does not occur prior to itching, but scratching behavior ensues (Lavery et al., 2016). Itching is more prevalent in stage N1 but may also occur in stage N2 of NREM and REM (Fig. 1; Monti et al., 1989). The deeper, slow-wave, N3 sleep stage is the least affected by NP, possibly due to reduced sensory perception (Lavery et al., 2016).

Pathophysiologic of nocturnal pruritus

Several key functions of the skin may be altered during sleep, including thermoregulation, maintenance of fluid balance, and barrier function (Lavery et al., 2016). Aberrations in such regulatory mechanisms can contribute to NP. Additionally, hormonal variations may be involved (Patel et al., 2007).

Thermoregulation variation

Along with playing a major role in maintaining the CR, the hypothalamic changes the core body temperature (Gupta and Gupta, 2013). It is highest in late evening and lowest in early morning. The core body temperature is also reduced in the NREM stages of sleep. Hence, the skin becomes hot while dissipating heat to the environment, and this heat can increase intensity of pruritus, resulting in NP (Gupta and Gupta, 2013).

Barrier function and fluid balance alteration

The stratum corneum acts as a physical barrier to allergens and pruritogens. Therefore, a defective barrier function may exacerbate NP. The barrier function is assessed by estimating transepidermal water loss (TEWL). TEWL increases during the night and decreases in the early morning. Therefore, barrier function decreases during the night, which may allow entry of pruritogens to stimulate itching. Notably, higher TEWL has been reported in patients with atopic dermatitis (AD; Gupta et al., 2016; Patel et al., 2007).

Hormonal dysregulation

Cortisol secretion parallels the CR. Its concentration is lower during the evening and at midnight and gradually builds up overnight to peak in the early morning. As the concentration of corticosteroids is at a nadir during the evening and night, their anti-inflammatory effects reflect this pattern, possibly resulting in increased nocturnal itching. The concentration of melatonin increases during the night and subsequently decreases during the daytime to baseline level. In patients with AD, melatonin levels decrease during the night (Lavery et al., 2016). Reduced melatonin...
levels at nighttime may contribute to NP (Chang and Chiang, 2016). Also, melatonin levels may be reduced when normal nighttime sleep is disturbed by pruritus (Gupta et al., 2016).

Cytokine involvement

Interleukin (IL) 1β and tumor necrosis factor-alpha regulate NREM sleep. SD can increase the level of plasma proinflammatory cytokines IL-1β and tumor necrosis factor-alpha. These may cause increased itching by stimulating the inflammatory cascade of dermatitis. The level of IL-2, a pruritogenic cytokine, increases at night and may result in NP (Lavery et al., 2016).

Itching and pain

A reduction in pain can induce itching. The μ-opioid receptor agonists and κ-opioid receptor antagonists can induce itching. The dysfunctional release of different opioids may induce NP (Lavery et al., 2016; Patel et al., 2007).

Itching and psyche

Stress alters the thermoregulation and hemodynamic balance of the body and subsequently elevates the serum levels of histamine and other endogenous pruritogens. Also, stress may impair the hypothalamic–pituitary–adrenal axis, leading to reduced serum cortisol concentration, as reported in patients with AD (Schut et al., 2016). Depression can lower the central itch threshold by increasing opiate levels and disturbing the balance between the μ- and κ-opioid receptor pathways (Jafferany and Davari, 2019).

Methods that assess sleep quality

Subjective and objective methods are listed in Table 1. Although objective methods are more accurate, they are difficult to implement and may be reserved for more severe cases. Subjective methods are multi-item scales that assess the quality of sleep and are easier to apply on an outpatient basis. However, none of these scales have been validated in chronic pruritus (CP; persistent itch >6 weeks; Sullmann et al., 2018). The Pittsburg Sleep Quality Index is one of the most widely used indices in clinical studies and has been used most commonly in AD and psoriasis (Kaaz et al., 2019). Interestingly, some authors found the Regensburg Insomnia Scale to be most suitable for use in CP (Sullmann et al., 2018). Questionnaires specifically developed for AD have been validated (Lei et al., 2020a; 2020b).

Methods and materials

We conducted an evidence-based, systematic review on the prevalence and types of SD in adult patients with dermatologic disorders per the Preferred Reporting Items for Systematic Reviews and Meta-analysis guidelines. Figure 2 depicts the study selection. We searched for articles in the English language in the MEDLINE, Scopus, and Cochrane databases using the following search items: NP OR nocturnal itching AND impaired quality of sleep OR SD AND dermatology OR skin OR cutaneous OR psychocutaneous. Randomized controlled trials, case-control studies, and cohort studies were included. Studies performed in children and adolescents, animal studies, reviews, expert opinions, and book chapters were excluded. Additionally, the reference lists of selected or review articles were screened for additional studies. We evaluated the quality of the studies and assessed their bias using the Cochrane Handbook for Systematic Reviews of Interventions. Studies with a high risk of bias were excluded, as were those in which SD was not among the primary outcomes. All authors reviewed the eligible articles, and disagreements among the authors were discussed until a consensus was reached.

Results

A total of 35 studies were obtained from the systematic review (Table 2).

Dermatologic conditions associated with nocturnal pruritus and sleep disturbance

The dermatologic conditions association with NP and SD are detailed in Table 2. Most of these disorders manifest with CP, and NP has been reported in almost 90% of patients with CP (Lavery et al., 2017). The severity of NP correlated with the severity of SD and overall itching in a CP population (Lavery et al., 2017). Psychocutaneous conditions have also been associated with NP and SD; however, there are scarce data (Gupta and Gupta, 2013; Kuhn et al., 2017a; 2017b). Similarly, there have been only small series on prurigo nodularis and lichen simplex chronicus (Gwillim et al., 2020; Koca et al., 2006). In a recent study, SD was more common in patients with skin diseases compared with healthy controls (Shen et al., 2020). AD and rosacea were the most common associated skin disorders in the study. Systemic inflammation has been suggested as a possible link between chronic pruritic dermatoses and SD because an increased serum C-reactive protein level was documented in patients with SD (Patel et al., 2021).
Table 1
Methods that assess sleep quality

Subjective	Objective
• Stanford sleepiness scale (Hoddes et al., 1973): One-item scale that assesses alertness on the following day	• Polysomnography (Togieiro and Smith, 2005): Criterion standard method; consists of electroencephalogram, electrooculogram, and electromyogram; requires a sleep center
• Epworth sleepiness scale (Johns, 1991): Eight-item scale that estimates the risk of falling asleep in eight daily situations	• Actigraphy (Bender et al., 2003; Jeon et al., 2017; Togieiro and Smith, 2005): Wrist-worn device monitors sleep activity and records awakenings; although less accurate than polysomnography, this method is easier, cost effective, and deemed suitable for dermatological disorders
• Medical outcomes study sleep scale (Allen et al., 2009): 12-item scale that also addresses respiratory impairment	•
Table 2
Dermatologic conditions associated with NP and SD

Condition	Prevalence and major SD types	Possible mechanisms of SD	Comments
Atopic dermatitis	SD in 33%-90% of pts; ↓ SQ; ↓ sleep efficiency, ↓ SL; premature sleep awakening; total scratching time at night, correlates to disease severity; scratching occurs mainly in N1 and N2 stages; ↑ daytime fatigue, ↓ activity of daily living/QoL.	CP in 87%-100% of pts; NP and scratching are the most important determinants of SD; epidermal barrier dysfunction can facilitate entry of pruritogens; immune system-mediated release of pruritogenic cytokines; nighttime changes in skin physiology and cytokines can exacerbate atopic inflammation, itch, SD	Severity of AD correlates with SD (↑ total scratching time at night correlates to disease severity); SD and AD may be intricately related (vicious cycle); degree of SD correlates with ↓ QoL; dupilumab treatment decreases SD (Cork et al., 2020; Fargnoli et al., 2019, Tsinakas et al., 2018)
Psoriasis	SD in 39%-82% of pts; ↓ SQ; ↓ SL; ↓ sleep duration/efficiency, ↓ premature sleep awakening, trouble sleeping due to being too hot and experiencing pain; ↑ daytime somnolence; ↓ QoL.	Disorder of thermoregulation and heat loss mechanism leading to ↑ CBT (↑ CBT necessary for sleep initiation); ↓ itch threshold leading to NP; multiple factors affect sleep including pruritus, disease severity, obesity, OAHS, smoking, comorbid conditions (especially depression), cognitive and somatic arousal.	SD showed positive correlation with itch and PASI scores; etanercept (Mrowietz et al., 2015), adalimumab (Strober et al., 2012), and betamethasone dipropionate/calcipotriol (Jalili et al., 2019; Kontochristopoulos et al., 2016) treatments ↑ SQ; psoriasis not a/w SD in 1 study (Stinco et al., 2013)
Hidradenitis suppurrativa	SD in 70.4% of pts; ↓ sleep duration, ↑ SL, habitual sleep efficiency; daytime dysfunction.	Itch and pain a/w SD; activation of Th17 and Th2 pathways serum level of pruritogenic cytokines; itch and pain have an important impact on insomnia and SQ.	Often a/w anxiety, fatigue, depression and stigmatization; pain is a crucial factor in SD
Chronic spontaneous urticaria	SD in 48.8% of pts; ↑ sleep latency, ↓ sleep duration, ↑ daytime somnolence.	Release of histamine, substance P, and CGRP, which ↑ NP and affect SQ.	Urticaria severity score – 7 items is proportional to degree of SD; oral insomnia treatment may improve SQ (Gimenez et al., 2016)
Infestations (e.g., scabies)	SD in 87.5% of pts; ↓ SQ; ↓ sleep duration, ↓ premature awakenings.	Scabies mites more active at night; feces (scybala) activate protease activating receptor-2 (pruritic receptor); Th2 immunity against mite results in production of potent pruritogens, such as IL-31.	Only cause of NP with acute onset and short duration; SD improves promptly with ivermectin treatment

a/w, associated with; CBT, core body temperature; CGRP, calcitonin gene related peptide; CP, chronic pruritus; IL, interleukin; NP, nocturnal pruritus; OAHS, obstructive sleep apnea hypopnea syndrome; PASI, psoriasis area severity index; pts, patients; QoL, quality of life; SD, sleep disturbance; SL, sleep latency; SQ, sleep quality; Th, T helper cell

* Sleep efficiency refers to the proportion of time in bed spent sleeping.
† SL refers to the time between going to be asleep and sleep onset.

Table 3
Therapeutic options for nocturnal pruritus with respective level of evidence and grade of recommendation

Treatment	Level of evidence*	Grade of recommendation	
Nonpharmacologic			
Emollients and wet-wrap therapy (González-López et al., 2017; Pereira and Stånder, 2017)	2b	B	
Coolants (Kuhn et al., 2017b)	2b	B	
Address bathing habits (Haghayegh et al., 2019)	1a	A	
Sleep hygiene (Chang and Chiang, 2016)	2b	B	
Psychotherapeutic interventions (Bae et al., 2012; Jafferany and Davari, 2019; Schut et al., 2016)	2b	B	
Pharmacologic-topical (Kontochristopoulos et al., 2016; Pereira and Stånder, 2017; Kuhn et al., 2017b)			
Anesthetics	1b	A	
Corticosteroids	1b	A	
Calcineurin inhibitors	4	C	
Miscellaneous agents (naltrexone, polidocanol, aprepitant)	5	D	
Pharmacologic – systemic			
H1 antihistamines (Lavery et al., 2016; Yamanaka et al, 2015)Antidepressants (Khanna et al., 2019; Kuhn et al., 2017b; Lavery et al., 2016; Savin et al., 1970; Yosipovitch and Samuel, 2008)	1a	A	
Mirtazapine	1b	A	
Doxepine	1b	A	
Gamma-aminobutyric acid agonists (Lavery et al., 2016; Pereira and Stånder, 2017)	4	C	
	Opioid receptor modulators (Kozono et al., 2018; Dawn and Yosipovitch, 2006)	5	D
	Biologics (dupilumab, adalimumab, etanercept; Cork et al, 2020; Fargnoli et al., 2019; Mrowietz et al., 2015; Strober et al., 2012; Tsinakas et al, 2018)	2b	B
	Phototherapy (Becker et al., 2011; Kuhn et al., 2017b; Yosipovitch and Bernhard, 2013)	2b	B

* Level of evidence and grade of recommendation were assigned according to validated scale developed by Oxford Centre for Evidence-based Medicine (Burns et al., 2011).
involves increased blood perfusion to the palms and soles, thus augmenting the distal-to-proximal skin temperature gradient and facilitating body heat dissipation. As the skin loses heat, it becomes cooler, which may reduce the intensity of NP.

Sleep hygiene
Sleep hygiene refers to having a bedroom environment and daily routine that promote uninterrupted sleep. Sleep hygiene plays a role in reducing NP. Blue light from electronic screens is known to suppress melatonin secretion, resulting in impaired sleep quality (Chang and Chiang, 2016). Thus, a dark sleep environment is recommended, and light produced by mobile and computer screens should be eliminated.

Psychotherapeutic interventions
In disturbed sleep due to NP that is unresponsive to the former measures, psychotherapeutic interventions, such as relaxation techniques, habit-reversal training, rational emotive therapy, and cognitive behavioral therapy, can be tried, especially because stress and anxiety are usually involved (Jafferany and Davari, 2019; Schut et al., 2016). Progressive muscle relaxation has been helpful in reducing CP and loss of sleep in AD (Bae et al., 2012). Patients’ understanding about the disease and associated aggravating/relieving factors and their perception is of paramount importance (Jafferany and Davari, 2019).

Pharmacologic treatments
Systemic agents are the mainstay of therapy; however, topical therapies may provide additional benefit.

Topical therapies
Anesthetics
Capsaicin (0.025%-0.1%), pramoxine (1%-2.5%), and a mixture of lidocaine (2.5%-5%) and prilocaine (2.5%) have been used alone or in combination to obtain relief from CP (Kuhn et al., 2017b). These agents are especially beneficial in neuropathic itching because their primary mode of action involves the desensitization of the peripheral nerves and depleting substance P, a known pruritogen.

Corticosteroids
Although topical corticosteroids are essentially anti-inflammatory rather than antipruritic agents, they have been beneficial for pruritus and SD in adults with inflammatory conditions such as psoriasis (Kontochristopoulos et al., 2016). Their therapeutic role may be explained by counteracting the nighttime reduction of serum cortisol (Chang and Chiang, 2016).

Calcineurin inhibitors
Although studies on calcineurin inhibitor (i.e., tacrolimus, pimecrolimus) use in NP are lacking, their use for NP associated with inflammatory skin diseases, such as AD and psoriasis, may be attempted based on experience with CP (Pereira and Ständer, 2017).

Miscellaneous agents
Naltrexone (1% cream), polidocanol (3% cream), and aprepitant cream have been beneficial in treating pruritic skin disorders, such as AD, psoriasis, prurigo nodularis, and lichen simplex chronicus (Kuhn et al., 2017b).

Systemic therapies
H1 antihistamines
Antihistamines are first-line therapy for managing NP. However, their use in NP as monotherapy is inadequate because NP has a complex pathophysiology. First-generation antihistamines, such as diphenhydramine, hydroxyzine, and promethazine, are considered more suitable because they can cross the blood–brain barrier and exert an additional sedative effect. Hydroxyzine has additional antiserotonergic properties that may help reduce anxiety, a common cause of SD (Lavery et al., 2016). Second-generation antihistamines are thought to be less suited for NP because they lack sedative properties. Olopatadine (5 mg twice daily) has been reported to reduce NP in moderate-to-severe AD (Yamanaka et al., 2015). Although first-generation antihistamines are more effective, they should be used cautiously in elderly patients owing to their anticholinergic adverse effects, including arrhythmias, dizziness, and urinary retention.

Antidepressants
Mirtazapine, an atypical antidepressant (noradrenaline, serotonin, and histamine antagonist), is one of the most studied drugs in CP and NP refractory to conventional therapy. Mirtazapine can reduce NP associated with dermatological conditions such as AD (Khanna et al., 2019). The anxiolytic (serotonin antagonism) and sedative (histamine antagonism) properties of the drug are considered important in itch reduction. Several authors have recommended mirtazapine (7.5-15 mg at bedtime) as first-line treatment for NP because of its favorable safety profile. Mirtazapine can be also be used in combination with gamma-aminobutyric acid agonists for synergistic action (Lavery et al., 2016). Weight gain due to increased appetite is an adverse effect of mirtazapine.

Doxepin, a tricyclic antidepressant with antihistaminergic properties, has been tried in NP (25-150 mg at bedtime) with varying success. This agent has been effective in neuropathic and psychogenic itch (Yosipovich and Samuel, 2008). Doxepin reduced sleep onset latency in adults with AD without any appreciable effect on NP in a small study (Savin et al., 1979). Amitryptiline, another tricyclic antidepressant (25-50 mg at bedtime), is frequently used for NP, and especially to treat psychogenic itching (Kuhn et al., 2017b). Selective serotonin reuptake inhibitors, especially paroxetine (25-50 mg/day), have been beneficial in NP and SD, particularly in the context of psychocutaneous disorders (Kuhn et al., 2017b).

Gamma-aminobutyric acid agonists
Gabapentin and pregabalin have been effectively used to treat NP. They have demonstrated efficacy in neuropathic and psychogenic pruritus, and their sedative action may play a beneficial role (Lavery et al., 2016; Pereira and Ständer, 2017).

Opioid receptor modulators
κ-opioid receptor agonists and κ-antagonists have demonstrated substantial efficacy in relieving intractable NP. Butorphanol, an agent having both properties, has been effective in NP associated with advanced age and chronic dermatoses, such as prurigo nodularis, at a dose 1 to 4 mg/day (inhaled; Dawn and Yosipovich, 2006). Nalbuphine hydrochloride (2.5-5 μg/g-day) has been effective and safe in treating intractable NP in hemodialysis patients (Kozono et al., 2018).

Benzodiazepines
Benzodiazepines (BZDs) are among the most frequently prescribed medications to treat insomnia. These agents act by prolonging the N2 and reducing the N3 duration of sleep (Roux and Kryger, 2010). However, their efficacy in NP is debatable because
a trial did not demonstrate any significant benefit of BZD in NP associated with AD (Etaba et al., 1998). Several adverse effects, such as tolerance, dependency, and exacerbation of symptoms on abrupt discontinuation, mandate the careful use of these agents. BZDs may increase daytime fatigue, somnolence, and psychomotor impairment due to their prolonged half-life (> 8 hours).

Melatonin

Melatonin is an established treatment for delayed sleep phase disorder. Evidence for its effectiveness in insomnia is mixed (Bawany et al., 2020). In a small, well-designed, crossover trial in atopic children, melatonin (3 mg at bedtime) significantly reduced sleep-onset latency compared with placebo (Chang et al., 2016). However, the trial did not show any benefit on pruritus in the AD group compared with the placebo. Studies in adults are lacking.

Phototherapy

Narrowband ultraviolet B phototherapy has been effective in patients with CP (Yosipovitch and Bernhard, 2013). This modality may be tried in recalcitrant cases of NP, particularly those with generalized pruritus of unknown origin. Blue light has effectively reduced pruritus and SD in severe chronic AD (Becker et al., 2011). There are sporadic reports of effective use of psoralen plus ultraviolet light A therapy in prurigo nodularis (Kuhn et al., 2017b).

Conclusions and future directions

NP is prevalent in a wide spectrum of skin disorders and causes impaired sleep quality. SD can result in poor physical and mental health, as well as daytime somnolence and tiredness leading to social adversities and decreased work productivity. Dermatologists should be aware of the common dermatologic associations of NP and impaired sleep quality. A detailed clinical history is crucial to detect the associated dermatologic condition. The value of elevated serum C-reactive protein levels as a biomarker of NP needs to be validated in large-scale studies.

The authors recommend a questionnaire-based assessment of sleep quality in all patients presenting with NP, and objective tests and referral to specialists should be considered in severe cases. Treatment should be approached in a patient-centric manner. Medications with dual antipruritic and soporific effects, including tirapazamine, gamma-aminobutyric acid agonists, and δ-opioid receptor agonists (e.g., butorphanol), may simultaneously target both itching and sleep impairment (Lavery et al., 2017). Emerging pruritus therapies, including neuropeptide receptor 1 inhibitors (aprepitant, sertolipton, trapidipant), H4 antagonists, and mas-related G-protein coupled receptor blockers, appear promising in CP and possibly NP (Golpanian and Yosipovitch, 2020; Lonnadal et al., 2018). Large-scale studies are needed to evaluate the mechanisms of SD in dermatologic conditions and implement guidelines for effective management.

Conflicts of interest

None.

Funding

None.

Study approval

N/A

References

Abdel Latif OM. Impact of severity of CSU on sleep, anxiety and depressive symptoms in adults. Eur Acad Res 2017;12:1145–57.
Allen RP, Kosinski M, Hill-Zabala CE, Calloway MO. Psychometric evaluation and tests of validity of the medical outcomes study 12-item sleep scale (MOS sleep). Sleep Med 2009;10:331–9.
Bae BC, Oh SH, Park CO, Noh S, Noh JY, Kim KR, et al. Progressive muscle relaxation therapy for atopic dermatitis: Objective assessment of efficacy. Acta Derm Venereol 2012;92:57–61.
Bawany F, Northcott CA, Beck LA, Pigeon WR. Sleep disturbances and atopic dermatitis: Relationships, methods for assessment, and therapies. J Allergy Clin Immunol 2020;2021;218(20):3133–8.
Becker D, Langer E, Seemann M, Seemann G, Fell I, Saloga J, et al. Clinical efficacy of blue light full body irradiation as treatment option for severe atopic dermatitis. PLoS One 2011;6:e20566.
Bender BC, Leung SB, Leung DY. Actigraphy assessment of sleep disturbance in patients with atopic dermatitis: An objective life quality measure. J Allergy Clin Immunol 2003;111:598–602.
Brookfield NM, Espie CA. Towards a valid, reliable measure of sleep effort. J Sleep Res 2005;14:401–7.
Burns PB, Rohrj BC, Chung KC. The levels of evidence and their role in evidence-based medicine. Plast Reconstr Surg 2011;128:305–10.
Buysses DJ, Reynolds CF, Monk TH, Berman SR, Kupfer DJ. Pittsburgh sleep quality index (PSQI): A new instrument for psychiatric practice and research. Psychiatry Res 1998;28:193–213.
Carley DW, Farabi SS. Physiology of sleep. Diabetes Spectr 2016;29:5–9.
Chang YS, Chang BL. Mechanism of sleep disturbance in children with atopic dermatitis and the role of the circadian rhythm and melatonin. Int J Mol Sci 2017;16:472.
Chang YS, Lin MH, Lee JH, Lee PL, Dai YS, Chu KH, et al. Melatonin supplementation for children with atopic dermatitis and sleep disturbance: A randomized clinical trial. JAMA Pediatr 2016;170:35–42.
Cork M, Eckert L, Simpson EL, Armstrong A, Barbaro S, Puig L, et al. Dupilumab improves patient-reported symptoms of atopic dermatitis, symptoms of anxiety and depression, and health-related quality of life in moderate-to-severe atopic dermatitis: Analysis of pooled data from the randomized trials SOLO 1 and SOLO 2. J Dermatol Treat 2020;31:506–14.
Cronlein T, Langguth B, Popp R, Lukesch P, Pieh C, Hajak G, et al. Regensburg Insomnia Scale (RIS): A new short rating scale for the assessment of psychological symptoms and sleep in insomnia; study design; Development and validation of a new short self-rating scale in a sample of 218 patients suffering from insomnia and 94 healthy controls. Health Qual Life Outcomes 2013;11:65.
Dawg AG, Yosipovitch G. Butorphanol for treatment of intractable pruritus. J Am Acad Dermatol 2006;54:527–31.
Etaba T, Aizawa H, Kamide R, Nimaura M. The characteristics of nocturnal scratching in adults with atopic dermatitis. Br J Dermatol 1999;141:82–6.
Etaba T, Izumi H, Aizawa H, Kamide R, Nimaura M. Effects of nitrazepam on nocturnal scratching in adults with atopic dermatitis: A double-blind placebo-controlled crossover study. Br J Dermatol 1998;138:631–4.
Fargnoli MC, Esposito M, Ferrucci S, Girolomoni G, Offidani A, Patrizi ADupilumab Italian National Access Program (Dup-INAP group). Real-life experience on effectiveness and safety of dupilumab in adult patients with moderate-to-severe atopic dermatitis. J Dermatol Treat 2019;30:1–10.
Folkard S. Do permanent night workers show circadian adjustment? A review based on the endogenous melatonin rhythm. Chronobiol Int 2008;25:215–24.
Gimenez-Arnau AM, Spector S, Antonova E, Trzaskoma B, Rosén K, Omachi TA, et al. Improvement of sleep in patients with chronic idiopathic/spontaneous urticaria treated with omalizumab: Results of three randomized, double-blind, placebo-controlled studies. Clin Transl Allergy 2016:6:32.
González-López G, Ceballos-Rodríguez RM, González-López JJ, Feito Rodríguez M, Herranz-Pinto P. Efficacy and safety of wet wrap therapy for patients with atopic dermatitis: A systematic review and meta-analysis. Br J Dermatol 2017;177:688–95.
Golpanian RS, Yosipovitch G. Current and emerging systemic treatments targeting the neural system for chronic pruritus. Expert Opin Pharmacother 2020;21:1629–36.
Gupta MA, Gupta AK. Sleep-wake disorders and dermatology. Clin Dermatol 2013;31:118–26.
Gwallon EC, Jannohamed SR, Yousaf M, Patel KR, Silverberg JI. The impact of prurigo nodularis on sleep disturbance and related impact: A systematic review. J Eur Acad Dermatol Venereol 2020;34:e815–17.
Haghayegh S, Khoshevis S, Smolenisky MH, Dillon KR, Castiotta RJ. Before-bedtime passive body heating by warm shower or bath to improve sleep: A systematic review and meta-analysis. Sleep Med Rev 2019;46:124–35.
Hawro T, Hawro M, Zalewska-Janowska A, Weller K, Metz M, Maurer M. Pruritus and sleep disturbances in patients with psoriasis. Arch Dermatol Res 2020;312:103–11.
Henry AL, Kyle SD, Chisholm A, Griffiths CEM, Bundy C. A cross-sectional survey of the nature and correlates of sleep disturbance in people with psoriasis. Br J Dermatol 2017;177:1052–9.
Hoddes E, Zarcone V, Smythe H, Phillips R, Dement WC. Quantification of sleepiness: A new approach. Psychophysiology 1973;10:431–6.
Jafferany M, Davari ME. Itch and psyche: Psychiatric aspects of pruritus. Int J Dermatol 2019;58:3–23.
