Advanced treatment planning strategies to enhance quality and efficiency of radiotherapy

The radiotherapy (RT) process is becoming increasingly complex. Advances in RT delivery devices with all the flavors of intensity-modulation techniques, new approaches for in-room image-guidance including magnetic resonance imaging (MRI), and the increased complexity of the input data (from multi-modality imaging to the choice of optimization strategies) overall require an advanced level of management combined with sophisticated skills and tools. Several novel approaches have been proposed for coping with the treatment planning challenges [1–3]. In this editorial, important developments in treatment planning over the last few years are briefly summarized. In particular, the important contributions from recent papers in the present journal are discussed and placed in context.

One aim of automation of treatment planning in RT is harmonization and standardization, in order to reduce undesired inter-patient and inter-institution quality variations. Apart from reducing variability, another goal of automated planning may be the search for (on average) better plan quality than delivered by manual planners. The basic idea behind the latter approach is that solving the complex and large multi-objective planning problems could possibly be better performed by computers. Ideally the automatically generated plans are then both Pareto-optimal and clinically favourable. It is well recognized that large patient loads and often limited resources in the clinics for manual treatment planning may conflict with the quest for high-quality, individualized treatments. The potential for increased productivity is also an important driver for automation.

The current state-of-the-art in automated planning has been described in several recent review papers [1–3]. Basically, the solutions can be divided in i) knowledge-based planning (KBP), ii) protocol-based automatic iterative optimization, and iii) multi-criterial optimization (MCO) [1]. Various systems for knowledge-based planning (KBP) have been described [4–6]. The basic idea behind these systems is that similar anatomies can be treated with similar, intentionally high-quality, dose distributions. Machine learning is used to correlate anatomy with dose. Protocol-based automatic iterative optimization entails iterative heuristic adjustment of optimization objectives and constraints [7–9]. After each iteration, the system evaluates the dose distribution and establishes objectives and constraints for the next iteration, based on a pre-established protocol. There are two flavors of MCO; a posteriori MCO [10–12] and a priori MCO [13–15]. In a posteriori MCO, for each patient a series of plans is automatically generated and the final plan is then selected by a user, using Pareto navigation. In a priori MCO, for each patient only a single plan is automatically generated that is both clinically favourable and Pareto optimal. All of these strategies are (or are just becoming) commercially available (a priori MCO is currently being prepared by one vendor).

Several fully automated workflows for plan generation have been developed, including automatic segmentation of targets and organs at risk, automatic setup of beams with heuristic optimization of gantry and collimator angles, and automatic creation objective functions with ad-hoc tools [16,17].

A different approach to tackle some of the challenges of current treatment planning is real-time interactive planning (RTIP) [18,19]. The idea is that the real-time steerring of the planning process based on a strong graphical user interface may result in fast generation of high-quality plans. RTIP does not require configuration (as for KBP, protocol-based automatic iterative optimization, and a priori MCO), or pre-computation of sets of Pareto-optimal plans (a posterior MCO).

The core of KBP consists of the development of mathematical models capable to predict achievable dose-volume and objective function constraints for new patients, based on their anatomy, i.e. a contoured planning CT-scan. Panettieri et al. [20] presented in this journal their results on a multi-centric investigation where a KBP model for prostate (based on commercial planning system) was developed, trained and validated by two centers and then distributed, re-validated according to local practice guidelines and then utilized clinically by six other institutions. The authors suggested the feasibility of developing and implementing at a multi-centric level an automated planning workflow. A general improvement in the quality of the dose distributions was observed. The results could be obtained even with the large heterogeneity in processes among the centers (particularly concerning contouring and planning protocols).

Roach et al. [21] investigated for another commercial auto-planning solution, the portability of system configurations through different centers. This was tested among three institutions. The study assessed also the level of adaptation of the pre-defined institutional configurations required to harmonize the results. The authors demonstrated the possibility to share automated planning configurations with simple adaptation of local protocols. Also this study was carried out on prostate patients.

In many published studies on automated treatment planning, the algorithm was trained with manually generated plans that were clinically delivered, while the training procedure had no or only minor drive to enhance quality in case of an, on average, inferior quality of the training plans. In these situations, also the automatically generated plans for future patients will in general not be optimal. Wheeler et al. [22] studied the use of Pareto navigation techniques in combination with clinical training plans to derive planning goals and weighting factors in association to ‘protocol based’ automated iterative optimization that utilizes dynamic objectives (to ensure trade-off balancing). They applied their methodology (implemented through a commercial system), again to prostate cancer cases. The results demonstrated the possibility to achieve clinically acceptable, well balanced treatment plans in a fully automated manner. Also in a priori MCO, the applied wish-list with constraints and prioritized objectives may be configured
with an explicit aim to improve on the training plans (see [1] and references therein).

Creemers et al. [23] retrospectively compared automated vs manually optimized volumetric modulated arc therapy plans for 25 patients with advanced stage non-small cell lung cancer. The study demonstrated that in about 50% of the cases, the plans were ready after the automated phase. In the remaining cases, some manual adjustment was needed. In conclusion, the automated plans were superior to the manual ones in terms of dose/volume endpoints for organs at risk while with equivalent coverage of the target volumes. There was a time gain of about a factor four in favor of the automated process.

Baker et al. [24] investigated the use of real-time interactive planning (RTIP) as inspired by the seminal work of Otto [19]. They applied retrospectively their method to 20 head and neck cases comparing the RTIP plans against the clinical plans (optimized without MCO or KBP). All their plans were found preferable by the majority of the five oncologists who blindly assessed the results.

Recently, many papers have appeared on the prediction of dose distributions with deep learning [25–27]. Calculation speed is a highly attractive feature of this approach; 3D dose distributions can be generated in seconds. On the other hand, only dose distributions are generated. Dose delivery needs subsequent establishment of appropriate treatment machine parameters, which costs time and may also result in quality loss. Training of the applied networks has no intrinsic mechanism to improve on the quality of the input plans. So inferior training plans will result in inferior plans for future patients. It therefore remains essential to continue development of planning approaches that will result in (near) Pareto-optimal and clinically favourable plans. In the end, such plans could be used for training of deep learning networks.

Declaration of Competing Interest

L. Cozzi acts as Scientific Advisor to Varian Medical Systems and is Clinical Research Scientist at Humanitas Cancer Center. The Erasmus MC Cancer Institute has research collaborations with Accuray Inc and with Elekta AB.

References

[1] Hussein M, Heijmen BJ, Verellen D, Nieters A. Automation in intensity-modulated radiotherapy treatment planning – a review of recent innovations. Br J Radiol 2018;91:20180270.
[2] Ge Y, Wu QJ. Knowledge based planning for intensity modulated radiation therapy: a review of data driven approaches. Med Phys 2019;46:2760–75.
[3] Moore K. Automated radiotherapy treatment planning. Semin Radiat Oncol 2019;29:209–18.
[4] Zhu X, Ge Y, Li T, Thongpiboon D, Yin FJ, Wu QJ. A planning quality evaluation tool for prostate adaptive IMRT based on machine learning. Med Phys 2011;38:719.
[5] Appenzoller L, Michalski J, Thorstad W, Mutic S. Predicting dose-volume histograms for organs at risk in RT planning. Med Phys 2012;39:7446.
[6] Yuan L, Ge Y, Lee WR, Yin FY, Kirkpatrick JP, Wu QJ. Quantitative analysis of the factors which affect the interpatient organ-at-risk dose sparing variation in IMRT plans. Med Phys 2012;39:6868–78.
[7] Xhaferrlli I, Wong E, Budzisz K, Lock M, Chen J. Automated IMRT planning with regional optimization using planning scripts. J Appl Clin Med Phys 2013;14:4052.
[8] Gintz D, Latifi K, Caudell J, Nelm B, Zhang G, Moros E, et al. Initial evaluation of automated treatment planning software. J Appl Clin Med Phys 2016;17:331–46.
[9] Kusters J, Budzisz K, Kumar P, van Kollenburg P, Kunze-Bush M, Wendling M, et al. Automated IMRT planning in Pinnacle. Strahlenther Onkol 2017;193:1031–8.
[10] Thiecke C, Kufer KH, Monz M, Schererr A, Alonso F, Oelfke U, et al. A new concept for interactive radiotherapy planning with multicriteria optimization: first clinical evaluation. Radiother Oncol 2007;85:292–8.
[11] Teichert K, Suso P, Sema J, Monz M, Kifer KH, Thiecke C. Comparative analysis of Pareto surfaces in multi-criteria IMRT planning. Phys Med Biol 2011;56:3669–84.
[12] Craft D, McQuaid D, Wala J, Chen W, Safari E, Bortfeld T. Multicriteria VMAT optimization. Med Phys 2012;39:898–96.
[13] Lee KW, McShan DL, Frazas BA. Lexicographic ordering: intuitive multicriteria optimization for IMRT. Phys Med Biol 2007;52:1845–61.
[14] Breedveld S, Storch P, Heijmen B. The equivalence of multi criteria methods for radiotherapy plan optimization. Phys Med Biol 2009/54:7199–209.
[15] Breedveld S, Storch P, Voet P, Heijmen BJ. Cycle: integrated multicriterial beam angle and profile optimization for generation of coplanar and noncoplanar IMRT plans. Med Phys 2012;39:951–63.
[16] Purdie T, Dinniweli R, LeTourneau D, Hill C, Sharpe M. Automated planning of tangential breast intensity modulated radiotherapy using heuristic optimization. Int J Radiat Oncol Biol Phys 2011;81:575–83.
[17] Clark G, Pople K, Spencer S, Thomas E, Guthrie B, Markert J. Plan quality and treatment planning technique for single isocenter cranial radiosurgery with volumetric modulated arc therapy. Pract Radiat Oncol 2012;2:306–13.
[18] Ziegenhein P, Ph Kamerling C, Oelfke U. Interactive dose shaping part 1: a new paradigm for IMRT treatment planning. Phys Med Biol 2016;61:2457–70.
[19] Otto K. Real-time interactive treatment planning. Phys Med Biol 2014;59:4845–59.
[20] Panettieri V, Ball D, Chapman A, Cristofaro N, Gathrop J, Griffin P, et al. Development of multicenter knowledge based planning models to reduce planning variability: results for prostate radiotherapy treatments. Phys Imag Radiat Oncol 2019;11:34–40.
[21] Roach D, Wortal G, Ochoa C, Jensen H, Damen E, Vial P, et al. Adapting automated treatment planning configurations across international centres for prostate radiotherapy. Phys Imag Radiat Oncol 2019;10:41–81.
[22] Wheeler P, Chu M, Holmes R, Smyth M, Maggs R, Spezi E, et al. Utilisation of Pareto navigation techniques to calibrate a fully automated radiotherapy treatment planning solution. Phys Imag Radiat Oncol 2019;10:41–81.
[23] Creemers I, Kusters J, van Kollenburg P, Bouwman L, Shinag D, Bussink J. Comparison of dose metrics between automated and manual radiotherapy planning for advanced stage non-small cell lung cancer with volumetric modulated arc therapy. Phys Imag Radiat Oncol 2019;8:932–4.
[24] Baker L, Olson R, Brasch T, Koulis T, Allinson Ye, Ahmed N, et al. Real time interactive planning for radiotherapy of head and neck cancer with volumetric modulated arc therapy. Phys Imag Radiat Oncol 2019;8:932–4.
[25] Fun J, Wang J, Chen Z, Hu C, Zhang Z, Hu W. Automatic treatment planning based on three-dimensional dose distribution predicted from deep learning technique. Med Phys 2019;46:370–81.
[26] Nguyen D, Jia X, Shen D, Lin MH, Iqbal Z, Liu H, et al. 3D radiotherapy dose prediction on head and neck cancer patients with a hierarchically densely connected U-net deep learning architecture. Phys Med Biol 2019;64:605202.
[27] Ma M, Kovalchuk N, Beyerounsui MK, Xing L, Yang Y. Incorporating dosimetric features into the prediction of 3D VMAT dose distributions using deep convolutional neural network. Phys Med Biol 2019;64:125017.