Adversarial Learning of Robust and Safe Controllers for Cyber-Physical Systems

Luca Bortolussi1,2, Francesca Cairoli1, Ginevra Carbone1 and Francesco Franchina1

1Department of Mathematics and Geoscience, University of Trieste, Trieste
2Modelling and Simulation Group, Saarland University, Germany

Abstract

We introduce a novel learning-based approach to synthesize safe and robust controllers for autonomous Cyber-Physical Systems and, at the same time, to generate challenging tests. This procedure combines formal methods for model verification with Generative Adversarial Networks. The method learns two Neural Networks: the first one aims at generating troubling scenarios for the controller, while the second one aims at enforcing the safety constraints. We test the proposed method on a variety of case studies.

1 Introduction

Controlling Cyber-Physical Systems (CPS) is a well-established problem in classic control theory \cite{cl}. State of the art solutions apply to all those models in which a complete knowledge of the system is available, i.e., scenarios in which the environment is supposed to follow deterministic rules. For such models a high level of predictability, along with good robustness, is achieved. However, as soon as these unpredictable scenarios come into play, traditional controllers are challenged and could fail. Ongoing research is trying to guarantee more flexibility and resilience in this context by using Deep Learning \cite{survey} and, in particular, Reinforcement Learning for robust control \cite{reinforcement}. State of the art solutions perform reasonably well, but they still present evident limits in case of unexpected situations. The so called open world scenarios are difficult to model and to control, due to the significant amount of stochastic variables that are needed in their modelling and to the variety of uncertain scenarios that they present. Therefore, while trying to ensure safety and robustness, we need to be cautious about not trading them with model effectiveness.

In this work we investigate autonomous learning of safe and robust controllers in open world scenarios. Our approach consists in training two neural networks, inspired by Generative Adversarial Networks...
(GAN) [4], that have opposite goals: the attacker network tries to generate troubling scenarios for the defender, which in turn tries to learn how to face them without violating some safety constraints. The outcome of this training procedure is twofold: on one side we get a robust controller, whereas on the other we get a generator of adverse tests.

The learned controller is a black-box device that should be able to deal with adverse or unobserved scenarios, but that does not provide worst-case guarantees. In this regard one could additionally rely on a shield-based approach, as proposed in [2].

2 Problem Statement

Safety of a system is guaranteed by the satisfaction of a set of requirements. Checking the satisfiability of properties in hybrid systems, where both discrete and continuous components are involved, is often too computationally complex or undecidable [10]; this especially holds true in the presence of stochastic components. A popular approach to mathematically express safety requirements is by means of Signal Temporal Logic (STL) [8]. Temporal logic is a logical formalism used in the context of formal verification to formalize the behaviour in time of systems. It extends propositional logic with a set of modal operators capturing the temporal properties of events [5]. STL, in particular, deals with properties of continuous-time signals [8] (i.e. multivariate time series), featuring time-bounded since and until modal operators. In our application, we rely on STL quantitative semantics, which returns a real valued measure of satisfiability capturing how much the input signal can be shifted without changing the truth value. Such measure is often referred to as robustness and is exploited in this work as the objective function of an optimization problem.

We model the interaction of an agent with an adversarial environment as a zero-sum game, similarly to the strategy behind GANs [8]. The concept of zero-sum game is borrowed from game theory and denotes those situations in which one player’s gain is equivalent to another’s loss. In such situations, the best strategy for each player is to minimize its loss, while assuming that the opponent is playing at its best. This concept is known in literature as minimax strategy. In practice, we use GAN architectural and theoretical design to reach two main objectives: a controller, that safely acts under adverse conditions, and an attacker, which gains insights about troubling scenarios for the opponent.

Agent-Environment Model. Due to coexistence of continuous and discrete components, CPSs are typically represented as hybrid models: the continuous part is represented by differential equations that describe the behaviour of the plant; the discrete part, instead, identifies the possible states of the controller. We decompose our model in two interacting parts: the agent a and the environment e. Both of them are able to observe at least part of the whole state space S, i.e. they are aware of some observable states $O_a \subseteq O$ and of the environment $O_e \subseteq O$, we are able to force uneven levels of knowledge between them.

Let U_a and U_e be the spaces of all possible actions for the two components. We discretize the evolution of the system as a discrete-time system with step Δt, which evolves according to a function $\psi: S \times U_a \times U_e \times R \rightarrow S$. By taking control actions at fixed time intervals of length Δt, we obtain a discrete evolution of the form $s_{i+1} = s_i + \psi(s_i, u^a_i, u^e_i, t_i)$, where $t_i := t_0 + i \cdot \Delta t$, $u^i := u(t_i)$ and $s_i := s(t_i)$. Therefore, we are able to simulate the entire evolution of the system over a time horizon H via ψ and to obtain a complete trajectory $\xi = s_0 \ldots s_{H-1}$ in the state space.
Controller-Environment architecture. The proposed framework builds on GAN architectural design, in which two NNs compete in a minmax game to reach opposite goals. One network, denoted by A, represents the attacker, while the other, denoted by D, represents the defender. The aim of the former is to generate environment configurations in which the defender is not able to act safely, whereas, the latter tries to keep the CPS as safe as possible. In practice, the defender D can be interpreted as a controller for the agent.

The safety requirement is expressed as a Signal Temporal Logic formula Φ over a finite time horizon H. We are leveraging the notion of robustness in quantitative semantics to measure the satisfiability of the STL property and to determine how safe the system is in a given configuration. We denote robustness as a function $R_{\Phi}: S^H \rightarrow \mathbb{R}$, measuring the maximum shift that can be applied to a given trajectory $\xi = s_0 \ldots s_{H-1}$ without violating the requirements of Φ. It is straightforward to use this measure as the objective function in the minmax game. When the system is in a state s_0, the evolution of ξ is obtained by evaluating ψ at time steps $t_i = t_0, \ldots, t_{H-1}$ over two sequences of actions $u_a = (u^0_a, \ldots, u^{H-1}_a)$ and $u_e = (u^0_e, \ldots, u^{H-1}_e)$. We introduce two policy functions, Π_A for the attacker and Π_D for the defender, with the aim of reducing the output dimension. The two policies $\Pi_A: \Theta_A \times \mathbb{R} \rightarrow \mathcal{U}_e$ and $\Pi_D: \Theta_D \times \mathbb{R} \rightarrow \mathcal{U}_a$ are represented by a finite set of basis functions of time, with coefficients given by the output of the networks; in this work they are polynomial functions. For example, Π_A can encode the output θ_A of network A as a polynomial function of degree d_A

$$u_e(t) = \Pi_A(\theta_A, t) := \sum_{j=1}^{d_A} \theta_{Aj} t^j$$

and the resulting $u_e(t)$ is evaluated at each time step, from t_0 to t_{H-1}, to produce the desired sequence of actions u_e. The same reasoning holds for Π_D and u_a. These policies have the benefit of producing a smoothing of the chosen actions, that prevents incoherent behaviours at subsequent instants.

Let w_A be the weights of the attacker’s network A and w_D the weights of the defender’s network D. The formalism introduced by the two policies transfers the problem of finding the best sequences of actions, u_a and u_e, to that of finding the best networks’ parameters, w_D and w_A. The minmax game can now be expressed in terms of the loss function $\mathcal{L}(w_A, w_D) := -R_{\Phi}(s_0, w_D, w_A)$ as

$$\min_{w_D} \max_{w_A} \mathcal{L}(w_A, w_D).$$

In this setting, the defender aims at generating safe actions by tuning its weights in favour of a loss minimization (i.e. robustness maximization). The attacker, instead, aims at generating troubling scenarios for the opponent by maximizing the loss (i.e., minimizing the robustness).

Optimization strategy. The objective function $\mathcal{L}(s_0, u_a, u_e) := -R_{\Phi}(\xi)$ depends on the full trajectory ξ and our minmax problem is

$$\min_{u_a} \max_{u_e} \mathcal{L}(s_0, u_a, u_e). \quad (1)$$

The evolution starts from a given state of the system s_0 at time t_0, whose observable components are
\(o_e^0 \) for the attacker and \(o_a^0 \) for the defender. The attacking network

\[
A : W_A \times O_e \times Z \rightarrow \Theta_A
\]

\[
(\mathbf{w}_A, \mathbf{o}_e, \mathbf{z}) \mapsto \theta_A
\]

represents the generator in the underlying GAN model. Notice the presence of a noise term \(\mathbf{z} \in Z \), which allows \(A \) to learn the distribution of the observed states \(\mathbf{o}_e \). Similarly, the defender is defined as

\[
D : W_D \times O_a \rightarrow \Theta_D
\]

\[
(\mathbf{w}_D, \mathbf{o}_a) \mapsto \theta_D.
\]

The two policy functions use the outputs of the NNs to generate the sequences of actions \(\mathbf{u}_e = (u_e^0 \ldots u_e^{H-1}) \) and \(\mathbf{u}_a = (u_a^0 \ldots u_a^{H-1}) \) in the time horizon \(H \).

For convenience, we introduce

\[
F : S \times W_D \times W_A \rightarrow S^H
\]

\[
(s_0, \mathbf{w}_D, \mathbf{w}_A) \mapsto \xi,
\]

which iteratively applies \(\psi \) in the interval \([t_0, t_{H-1}]\) for each pair of actions

\[
u_a = \Pi_D(D(\mathbf{w}_D, \mathbf{o}_a^i), t_i)
\]

\[
u_e = \Pi_A(A(\mathbf{w}_A, \mathbf{o}_e^i, \mathbf{z}), t_i).
\]

This leads to the objective

\[
\mathcal{L}(\mathbf{w}_A, \mathbf{w}_D) = -R_\Phi[F(s_0, \mathbf{w}_D, \mathbf{w}_A)]
\]

and the minmax game is directly expressed in terms of the training parameters:

\[
\min_{\mathbf{w}_D} \max_{\mathbf{w}_A} \mathcal{L}(\mathbf{w}_A, \mathbf{w}_D).
\]

3 Experimental Results

Car platooning. A platoon [3] is a group of vehicles travelling together very closely and safely. This problem is usually faced with techniques that coordinate the actions of the entire pool of vehicles as a single entity [7]. This approach, though, requires specific hardware and a distributed system of coordination that might be difficult to realise in complex scenarios. Our method, instead, builds a robust controller for individual decision-making, hence it fits into the autonomous driving field. In this setting, we assume that all vehicles are equipped with an hardware component called *LIDAR scanner*, which is able to measure the distance between two cars by using a laser beam.

Training and Testing. Platooning involves \(n \) cars that can only move forward along a straight line. We first consider the simple case of two cars, one leader \(l \) and one follower \(f \), whose internal states are position \(x \), velocity \(v \) and acceleration \(a \). The follower \(f \) acts as the agent of this system, while the leader \(l \) is considered to be part of the environment, representing for instance a cyber-attack scenario. They have the same observable states \(\mathbf{o}_a = \mathbf{o}_e = (v_l, v_f, d) \), given by their velocities and by their relative
The leader acts according to the attacker’s policy, while followers are controlled by copies of the same defender’s network. Initial configuration: distance \(d_0 = 6.33 \) m and velocity \(v_0 = 2.87 \) m for all cars.

The policy functions \(\Pi_A \) and \(\Pi_D \) output the accelerations \(u_a = (a_f) \) and \(u_e = (a_l) \), which are used to update the internal states of both cars. We describe the dynamic of a car with mass \(m \) and velocity \(v \) as \(m \frac{dv}{dt} = ma_{in} - \nu mg \), where \(a_{in} \) is the input acceleration provided by one of the two policies, \(\nu \) is the friction coefficient and \(g \) is the gravity constant. We impose the STL requirement \(\Phi = \text{globally} \left(d \leq d_{\text{max}} \land d \geq d_{\text{min}} \right) \) on the distance \(d = x_l - x_f \) between the two vehicles, where \(d_{\text{min}} \) and \(d_{\text{max}} \) are the minimum and maximum distances allowed. Note that the globally operator forces the STL condition to hold for the whole trajectory of the car. We refer the reader to Sections 5 and 7 of the appendix for training and testing pseudocodes and parameters.

Results. Car platooning problem trivially extends to the case of \(n \) cars, where the first one is the leader and each of the other cars simply follows the one in front. Our simulations start from an initial configuration of equispaced vehicles, thus the first couple of subsequent cars acts as described in the two-cars model, while the other followers are controlled by copies of the same defender’s network.

This model has been tested in four different adverse configurations. The leader in Figure 1 acts according to the attacker’s policy, with sudden accelerations and brakes, and all followers are able to manage the unpredictable behaviour of the attacker by maintaining their relative distances within the safety range. The other settings are shown in Section 6.1 of the supplementary material. We ran 10\(k \) simulations of different trajectories for each possible scenario. At each time step we computed the total percentage of safe trajectories and 100\% of them achieved positive robustness.

4 Conclusions

Classical control theory fails in giving adequate safety guarantees in many complex real world scenarios. New reinforcement learning techniques aim at modelling the behaviour of complex systems and learning optimal controllers from the observed data. Therefore, they are particularly suitable for stochastic optimal control problems where the transition dynamics and the reward functions are unknown. We proposed a new learning technique, whose architecture is inspired by Generative Adversarial Networks, and tested its full potential against the vehicle platooning problem. Our approach has been able to enforce safety of the model, while also gaining insights about adverse configurations of the environment. As future work, we plan to test more scenarios and investigate the scalability of this approach. We also plan to extend this
control synthesis strategy to stochastic hybrid systems.¹

References

[1] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath. A brief survey of deep reinforcement learning. arXiv preprint arXiv:1708.05866, 2017.

[2] G. Avni, R. Bloem, K. Chatterjee, T. A. Henzinger, B. Könighofer, and S. Pranger. Run-time optimization for learned controllers through quantitative games. In International Conference on Computer Aided Verification, pages 630–649. Springer, 2019.

[3] L. Banjanovic-Mehmedovic, I. Butigan, F. Mehmedovic, and M. Kantardzic. Hybrid automaton based vehicle platoon modelling and cooperation behaviour profile prediction. Tehnicki vjesnik - Technical Gazette, 25(3), Jun 2018.

[4] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In Advances in neural information processing systems, pages 2672–2680, 2014.

[5] V. Goranko and A. Rumberg. Temporal logic. In E. N. Zalta, editor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, spring 2020 edition, 2020.

[6] S. Howes, I. Mohler, and N. Bolf. Multivariable identification and pid/apc optimization for real plant application. In ACHEMA–World Forum and Leading Show for the Process Industries, 2018.

[7] D. Jia, K. Lu, J. Wang, X. Zhang, and X. Shen. A survey on platoon-based vehicular cyber-physical systems. IEEE Communications Surveys & Tutorials, 18(1):263–284, 2016.

[8] O. Maler and D. Nickovic. Monitoring temporal properties of continuous signals. In Y. Lakhnech and S. Yovine, editors, Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems, Joint International Conferences on Formal Modelling and Analysis of Timed Systems, FORMATS 2004 and Formal Techniques in Real-Time and Fault-Tolerant Systems, FTRTFT 2004, Grenoble, France, September 22-24, 2004, Proceedings, volume 3253 of Lecture Notes in Computer Science, pages 152–166. Springer, 2004.

[9] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

[10] X. Zheng and C. Julien. Verification and validation in cyber physical systems: Research challenges and a way forward. In 2015 IEEE/ACM 1st International Workshop on Software Engineering for Smart Cyber-Physical Systems, page 15–18. IEEE, May 2015.

¹This work has been partially supported by the PRIN project “SEDUCE” n. 2017TWR CNB.
Appendix

5 Training and testing pseudocodes

Algorithm 1 Train

1: procedure TrainStep
2: \(s_0 \leftarrow \text{SampleRandomState()} \)
3: for attacker_repetitions do \(\triangleright \) Train \(A \)
4: \(z \leftarrow \mathcal{N}(0, 1) \)
5: \(\theta_e \leftarrow A(w_A, o_e, z) \)
6: \(\theta_\alpha \leftarrow D(w_D, o_\alpha) \)
7:
8: states := []
9: states[0] \leftarrow s_0
10: for \(i \leftarrow 0 \ldots H - 1 \) do
11: \(u^i_a \leftarrow \Pi_D(\theta_\alpha, t_i) \)
12: \(u^i_e \leftarrow \Pi_A(\theta_e, t_i) \)
13: states[\(i + 1 \)] \leftarrow \psi(s_i, u^i_a, u^i_e, t_i) \)
14:
15: BackPropagation(\(A, R_\Phi \text{(states)} \))
16: Update(\(w_A \))
17:
18: \(s_0 \leftarrow \text{SampleRandomState()} \)
19: for defender_repetitions do \(\triangleright \) Train \(D \)
20: \(z \leftarrow \mathcal{N}(0, 1) \)
21: \(\theta_e \leftarrow A(w_A, o_e, z) \)
22: \(\theta_\alpha \leftarrow D(w_D, o_\alpha) \)
23:
24: states := []
25: states[0] \leftarrow s_0
26: for \(i \leftarrow 0 \ldots H - 1 \) do
27: \(u^i_a \leftarrow \Pi_D(\theta_\alpha, t_i) \)
28: \(u^i_e \leftarrow \Pi_A(\theta_e, t_i) \)
29: states[\(i + 1 \)] \leftarrow \psi(s_i, u^i_a, u^i_e, t_i) \)
30:
31: BackPropagation(\(D, R_\Phi \text{(states)} \))
32: Update(\(w_D \))
Algorithm 2 Test

1: procedure Execute(M, timesteps)
2: for $i ← 0$. . . timesteps do
3: \hspace{1cm} $s_0 ← \text{GetState}(M)$
4: \hspace{1cm} $z ← N(0, 1)$
5: \hspace{1cm} $\theta_e ← \text{A}(w_A, o_e, z)$
6: \hspace{1cm} $\theta_a ← \text{D}(w_D, o_a)$
7: \hspace{1cm} $u_e^i ← \Pi_A(\theta_e, t_i)$
8: \hspace{1cm} $u_a^i ← \Pi_D(\theta_a, t_i)$
9: \hspace{1cm} DoAction(M, u_e, u_a)

6 Additional experiments

6.1 Other car platooning settings

Car platooning has already been presented in Section ??, where all followers were robust to the adverse behaviour of the leader, which was controlled by the attacker’s policy. We also tested this model for three additional leader’s behaviours: sudden acceleration in Fig.2, sudden brake in Fig.3 and sudden acceleration followed by a sudden brake in Fig.4. In all such cases, the followers were able to keep their safety distances for the whole trajectory. Initial distances are sampled from a $U(5, 7)$ distribution, while initial velocities are sampled from a $U(2.5, 3)$ distribution. Gaussian noise is added to each sample.

Figure 2: Sudden acceleration of the leader. Initial configuration: distance $d_0 = 6.06 \text{ m}$, velocity $v_0 = 2.89 \text{ m/s}$.

Figure 3: Sudden brake of the leader. Initial configuration: distance $d_0 = 5.00 \text{ m}$, velocity $v_0 = 2.78 \text{ m/s}$.
6.2 Cruise control

The goal is to keep a vehicle running at constant velocity, regardless of the steepness of the road, which represents the environment component. Since the environment is not reactive - i.e. once defined, it should not vary - this problem does not exploit the full potential of our method and it is rather used as a baseline test. In this application, sensors measure the instantaneous car velocity v and the steepness of the road, while an actuator is able to vary the intake of the engine and to change the acceleration a according to the controller’s decision.

Training and testing At the beginning of each episode, position and velocity of the car are sampled from two sets of allowed values to define the initial state $s_0 = (x_0, v_0)$. The elevation of the road at a certain position x is described by a function $r(x; u_e)$, whose parameters u_e are generated by the attacker and its policy function. The steepness of the road is then computed as $r'(x_0)$. The defender takes as input the state $o_a = (v_0, r'(x_0))$ and, by means of Π_D, outputs the acceleration $u_a = (a_0)$. By iterating this procedure, we are able to generate the sequence of states ξ and to apply the STL requirement

$$\Phi = \mathcal{G}(v \geq \bar{v} - \varepsilon \land v \leq \bar{v} + \varepsilon)$$

on the velocity, within a range of values of tolerance ε around the desired constant velocity \bar{v}. After checking the requirements, the weights w_A of the attacker are updated. The defender D is subject to a similar strategy. The pseudocodes for both training and testing phases can be found in Section 5, while training parameters and constraints and presented in Section 7.

Results This model has been tested in three different road scenarios. In the first one (Fig.5) the elevation of the road $r(x)$ is described by a radial basis function with gaussian kernel

$$r(x) = \sum_{i=1}^{d} \omega_i \exp \left(-\frac{||x - \mu_i||^2}{\sigma_i^2} \right),$$

which is able to produce complex and realistic road profiles. The other two experiments take place on flat roads, with one hill in the second one (Fig. 6) and one valley in the third one (Fig.7). These two configurations are particularly suitable for identifying eventual pitfalls in the models.
Figure 5: Road elevation $r(x)$ (first column) is described by a radial basis function with gaussian kernel, whose parameters are generated by the attacker’s policy function. The initial configuration is set to $x_0 = 0 \text{ m}$ and $v_0 = -2.04 \text{ m/s}$.

Figure 6: Sudden change in the steepness of the road (first column) with one hill. Initial configuration: $x_0 = 0 \text{ m}$, $v_0 = 4.22 \text{ m/s}$.

Figure 7: Sudden change in the steepness of the road (first column) with one valley. Initial configuration: $x_0 = 0 \text{ m}$, $v_0 = 8.98 \text{ m/s}$.

Testing settings mirror the training ones, except for the initial position of the car, which is always assumed to be $x_0 = 0$. In all cases, the initial configuration of the defender is unsafe, but it is able to rapidly reach the desired velocity range. The trajectory presents a slight overshoot in the hill and valley examples (Fig.6, 7), although it always remains within the safety boundaries in the attacker’s scenario (Fig.5).
7 Training settings

Cruise control training
Iterations
Time step
Time horizon
Initial position
Initial velocity
Road steepness
Velocity
Acceleration
** Desired velocity and tolerance**
Constants
Attacker’s architecture
Defender’s architecture
Noise space
Policy degree
STL requirement

Table 1: Training parameters and constraints for cruise control model. Initial position is uniformly sampled from 51 equispaced points in the given interval, while initial velocity is uniformly sampled from 25 equispaced points in the given interval. In both cases, gaussian noise is added to each sample.
Car platooning training

Parameter	Description
Iterations	20k training iterations
	3 attacker steps
	5 defender steps
Time step	$\Delta t = 0.05 \text{ s}$
Time horizon	$H = 5 \text{ s}$
Initial distance	d_0 sampled from $U(1, 8)$
Velocity	v_i, v_f sampled from $U(1, 5)$
Acceleration	$a_i, a_f \in [-3 \text{ m/s}^2, 3 \text{ m/s}^2]$
Constants	$\nu = 0.01, g = 9.81 \text{ m/s}^2$
Networks’ architectures	3 layers with 10 neurons each and Leaky ReLU activations
Noise space	$\mathcal{Z} = \mathbb{R}^2$
Policy degree	$\Theta_A = \Theta_D = \mathbb{R}^3$
STL requirement	$\Phi = \mathcal{G}(d \leq 10 \land d \geq 2)$

Table 2: Training parameters and constraints for car platooning model. Initial position is uniformly sampled from 25 equispaced points in the given interval, while initial velocity is uniformly sampled from 100 equispaced points in the given interval. In both cases, gaussian noise is added to each sample.