Supplementary Information for

A structural framework for unidirectional transport by a bacterial ABC exporter

Chengcheng Fana, Jens T. Kaisera, and Douglas C. Reesa,b,1

a Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125

b Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125

1 Correspondence: Douglas C. Rees

Email: dcrees@caltech.edu

This PDF file includes:

- Figures S1 to S9
- Tables S1 to S9
- SI References
Figure S1. Screening candidate residues in NaAtm1 for disulfide crosslinking. (A) Partial sequence alignments of NBDs of various ABC transporters. (B) SDS-PAGE of the products of crosslinking with Cu (II)(1,10-phenanthroline)$_3$ under different conditions for the three cysteine variants in this report. RT = room temperature, SS = crosslinked species, SH = uncrosslinked (disulfide reduced) species.
Figure S2. NaA527C inward-facing occluded structures. (A) Location of selenium sites in the four transporters present in the selenomethionine-substituted NaA527C asymmetric unit. The selenium sites identified in Autosol of Phenix (1) are shown in red spheres, the sulfur atoms of methionine residues from the refined model are shown in yellow spheres, and nucleotides are shown in sticks with Mg$^{2+}$ shown in green spheres. (B) Disulfide bridges in the four transporters in the asymmetric unit. The Cα positions corresponding to C527 in the two chains are depicted as grey and yellow spheres for transporters #1-3, and grey and red spheres for transporter #4, separately. (C) Composite omit map showing the electron densities for the bound MgADP in different chains of NaA527C in the asymmetric unit.
Figure S3. Structural alignments of NaA527C in the inward-facing occluded conformations. (A) Alignment of NaA527C inward-facing occluded conformation #1 (yellow) to NaA527C inward-facing occluded conformation #2 (red) with an overall rmsd of 1.7 Å. The relative rotation of the α-helical subdomains in the NBDs between the two states is shown in (B). (C) Alignment of NaA527C inward-facing occluded conformation #1 (yellow) to NaAtm1 inward-facing conformation (PDB ID: 4MRN) (grey) with an overall rmsd of 2.1 Å. (D) Alignment of NaA527C inward-facing occluded conformation #2 (red) to NaAtm1 inward-facing conformation (PDB ID: 4MRN) (grey) with an overall rmsd of 4.4 Å. Nucleotides are shown in sticks with Mg$^{2+}$ shown as green spheres.
Figure S4. Binding of GS-Hg to NaA527C inward-facing occluded structures. Anomalous electron density maps calculated from data collected at the Hg edge, contoured at the 5σ levels (dark blue) for NaA527C crystallized in the presence of GS-Hg. For comparison, the structure of NaAtm1 with GS-Hg bound (PDB ID: 4MRV) is indicated (left) with mercury shown in purple sphere. Nucleotides are shown in sticks with Mg$^{2+}$ shown as spheres.
Figure S5. **NaAtm1 in the occluded conformations.** (A) Disulfide bridge formed by S526C in the NaS526C structure with the Cα positions shown as grey and blue spheres. (B) Composite omit map showing the electron densities for the bound ATP in the dimeric NaS526C structure. (C) T525C residues in the NaT525C occluded structure with the Cα positions shown as grey and purple spheres. (D) Composite omit map showing the electron densities for the bound ATP in the dimeric NaT525C structure. (E) Composite omit map showing the electron density for the bound ATP in the dimeric NaE523Q structure. (F) NaT525C overall structural alignment to NaS526C with an overall rmsd of 0.5 Å. (G) NaE523Q overall structural alignment to NaS526C with an overall rmsd of 0.5 Å. (H) NaE523Q overall structural alignment to NaT525C with an overall rmsd of 0.7 Å. In (F-H), NaS526C is colored in blue, NaT525C in purple, and NaE523Q in pink. Nucleotides are shown in sticks.
Figure S6. Structural alignments of wild type NaAtm1 with MgAMPPNP in the occluded conformation. (A) Composite omit map showing the electron densities for the bound MgAMPPNP in the three copies of NaAtm1 in the asymmetric unit. NaAtm1 occluded structure alignments to (B) NaS526C with an overall rmsd of 1.1 Å, (C) NaT525C with an overall rmsd of 0.9 Å, and (D) NaE523Q with an overall rmsd of 1.1 Å. In (B-D), NaAtm1 occluded structure colored in orange, NaS526C in blue, NaT525C in purple and NaE523Q in pink. Nucleotides are shown in sticks with Mg\(^{2+}\) shown as green spheres.
Figure S7. Single particle cryo-EM structure of NaAtm1 in the closed conformation stabilized with MgADPVO₄. (A) Examples of 2D classes. (B) Fourier shell correlation (FSC) curve showing the resolution estimate for the final reconstruction, generated from the final refinement in cryoSPARC 2 (2). (C) Density fitting for different TM helices and nucleotides (MgADPVO₄). Overall structural alignments to the occluded crystal structures of (D) NaS526C, (E) NaT525C, (F) NaE523Q and (G) NaAtm1 occluded with rmsds of 2.0 Å, 2.1 Å, 2.0 Å and 1.7 Å, respectively. In (D-G), the NaAtm1 closed structure is shown in green, NaS526C in blue, NaT525C in purple, NaE523Q in pink and NaAtm1 occluded structure is shown in orange. Nucleotides are shown as sticks and Mg²⁺ as green spheres.
Figure S8. Single particle cryo-EM structure of NaAtm1 in the wide-open inward-facing conformation. (A) Examples of 2D classes. (B) FSC curve showing the resolution estimate for the final reconstruction, generated from the final refinement in cryoSPARC 2 (2). (C) Density fitting for different TM helices. Overall structural alignments of the wide-open inward-facing conformation (cyan) to (D) NaAtm1 inward-facing conformation (PDB ID: 4MRN) (grey), (E) NaA527C inward-facing occluded state #1 (yellow), and (F) NaA527C inward-facing occluded state #2 (red) crystal structures with rmsds of 5.8 Å, 8.9 Å, and 9.3 Å, separately.
Figure S9. TM6 comparisons for different ABC transporter systems. (A) TM6 (residues 300 to 340) arrangements of representative NaAtm1 structures. (B) TM6 (residues 288 to 335) arrangements of representative PglK structures. (C) TM6 (residues 290 to 333 of chain A and residues 275 to 319 of chain B) arrangements of representative TmrAB structures. (D) TM6 (residues 324 to 370 and residues 968 to 1013) arrangements of representative ABCB1 structures. The corresponding PDB IDs and the conformational states are labeled below the structures.
Table S1. Coupling efficiencies between ATP hydrolysis and substrate translocation for ABC transporters. Coupling efficiencies for different ABC transporter systems (3-17). Coupling efficiencies are either presented in the corresponding reference or calculated based on the reported ATPase and transport activities of the transporter. Coupling efficiency = ATPase activity/transport activity.

Transporters	ATPase activity (nmol/min/mg)	Transport Activity (nmol/min/mg)	Coupling efficiency	References
ABCC3	200	1.200	0.17	Zehnpfennig et al (2009)
MpfFGK	~1.5 - 3	~0.5 - 2	1.4 - 17	Davidson et al (1990)
OpuA	~80 - 120	~30 - 70	2	Patzlaff et al (2003)
GlnPQ	15 (min⁻¹)	8.5 (min⁻¹)	2	Lyoklama et al (2018)
Pgp	~750 - 1,300	~500	2	Eytan et al (1996)
ABCG5/8	50	2.2		Wang et al (2006)
MpfFGK	~1.2 - 8	~0.3 - 2	4 - 10	Dean et al (1989)
Pgp	~110	~6	18	Dong et al (1996)
HisP	580	19	31	Nikaido and Ames (1999)
ABCG2	~750	~22	34	Manolaridile et al (2018)
TmrAB	~1,100	~30	37	Hofmann et al (2019)
BltCDF	~400	~4	100	Borths et al (2005)
NaAtm1	150	1.5	100	This study
HmuUV	~130	~1.1	120	Woo et al (2012)
MpfFGK	4,000	1.2	3,300	Chen et al (2001)
ABCB6	610	0.03	20,000	Chavan et al (2013)
Table S2. Raw ATPase activities of NaAtm1 and variants in both proteoliposomes and detergent. The ATPase activities were measured in triplicate at 10 mM MgATP and 2.5 mM GSSG at 37 °C.

Conditions	Variants	NaAtm1	NaA527C	NaS526C	NaT525C	NaE523Q
	In proteoliposomes					
+ 10mM MgATP		51.90	1.26	55.21	13.28	1.22
		77.01	2.97	52.58	15.39	1.86
		67.60	2.93	54.32	13.43	1.00
Average		66 ± 13	2 ± 1	54 ± 1	14 ± 1	1.4 ± 0.4
+ 10mM MgATP + 2.5mM GSSG		118.68	7.55	69.50	20.88	-0.06
		179.94	5.66	70.29	21.00	-0.46
		157.94	6.18	68.06	20.55	0.48
Average		152 ± 31	6 ± 1	69 ± 1	20.8 ± 0.2	0.0 ± 0.5
	In detergent (DDM/C12E8)					
+ 10mM MgATP		122.53	11.50	103.90	57.47	5.20
		125.12	13.32	111.80	57.37	5.76
		97.76	12.30	112.40	56.94	3.30
Average		115 ± 15	12.4 ± 0.9	111 ± 2	57.3 ± 0.3	5 ± 1
+ 10mM MgATP + 2.5mM GSSG		215.77	14.16	104.30	42.67	3.25
		200.91	15.01	103.80	42.01	4.76
		202.41	15.10	103.20	42.88	4.26
Average		206 ± 8	14.8 ± 0.5	103.8 ± 0.6	42.5 ± 0.5	4.1 ± 0.8
Table S3. Raw transport activities of NaAtm1 and variants. The transport activities for various controls and the different NaAtm1 variants were measured in triplicate at 10 mM MgATP and 2.5 mM GSSG at 37 °C.

Samples	Transport rate (nmol/mg protein) at various time points (min)	Transport rates (nmol/min/mg)					
	0	15	30	45	60	75	
NaAtm1 PLS +MgATP +GSSG	28.17	45.49	69.95	81.08	113.96	141.67	1.488
NaAtm1 PLS +GSSG	28.05	49.95	64.09	94.01	125.89	139.02	1.554
Average	26.57	54.53	77.96	83.45	114.33	149.99	1.528
NaAtm1 PLS +MgATP	26.69	26.22	30.82	34.07	34.73	39.73	0.179
NaAtm1 PLS +GSSG	26.08	28.78	37.44	36.06	38.74	32.31	0.1137
Average	26.5 ± 0.3	29 ± 2	35 ± 4	35 ± 1	35 ± 3	37 ± 4	0.14 ± 0.04
NaAtm1 PLS +MgATP	2.84	1.03	2.95	2.98	1.13	1.46	-0.0135
NaAtm1 PLS +GSSG	3.39	1.59	3.58	2.29	2.17	1.83	-0.01406
Average	3.2 ± 0.3	1.7 ± 0.7	3.5 ± 0.6	2.5 ± 0.5	1.7 ± 0.5	0 ± 2	-0.03 ± 0.03
NaAtm1 PLS +MgATP	3.30	1.80	3.34	2.64	1.48	1.76	-0.01782
NaAtm1 PLS +GSSG	3.39	1.75	3.75	2.18	1.31	1.59	-0.02279
Average	3.4 ± 0.1	1.2 ± 0.9	3.7 ± 0.3	2.7 ± 0.6	1.6 ± 0.4	2 ± 1	-0.01 ± 0.02
Liposomes +GSSG	20.25	22.67	29.57	17.30	20.47	16.88	-0.06508
NaAs27C PLS +MgATP +GSSG	23.88	19.64	31.19	30.18	26.25	37.11	0.1618
NaS526C PLS +MgATP +GSSG	24.36	26.97	32.05	31.50	33.88	35.79	0.1473
Average	23 ± 3	24 ± 4	32 ± 1	31.2 ± 0.9	30 ± 4	36.1 ± 0.9	0.16 ± 0.01
NaS526C PLS +MgATP +GSSG	22.86	42.06	53.21	66.26	77.55	79.59	0.7679
NaS526C PLS +MgATP +GSSG	21.26	41.68	59.75	61.69	84.84	92.92	0.9328
Average	22.2 ± 0.9	41 ± 2	58 ± 4	64 ± 2	82 ± 4	92 ± 12	0.9 ± 0.1
NaT525C PLS +MgATP +GSSG	23.32	25.75	15.61	49.92	58.39	63.36	0.6332
NaT525C PLS +MgATP +GSSG	20.60	26.69	40.53	51.72	52.88	37.39	0.3309
Average	22 ± 1	26.1 ± 0.5	32 ± 14	48 ± 5	57 ± 4	53 ± 14	0.5 ± 0.2
NaE523Q PLS +MgATP +GSSG	21.82	26.31	30.16	31.69	32.19	32.12	0.1345
NaE523Q PLS +MgATP +GSSG	16.01	24.62	30.91	8.99	35.00	33.71	0.1862
Average	19 ± 3	24 ± 2	28 ± 4	24 ± 13	34 ± 2	33 ± 1	0.19 ± 0.06
Table S4. Data collection and refinement statistics of \textit{NaA527C}.

	\textit{NaA527C} native	\textit{NaA527C} SeMet
Beamline	SSRL 12-2	SSRL 12-2
Wavelength (Å)	0.97346	0.97949
Resolution range (Å)	39.37 - 3.70 (3.82 - 3.70)	39.72 - 4.50 (4.66 - 4.50)
Space group	P1	P1
Unit cell (Å, °)	129.18 133.61 134.26 110.619 98.282 101.2	129.19 133.14 134.27 109.61 98.51 101.87
Total reflections	863652 (61595)	972530 (99987)
Unique reflections	84628 (7646)	47277 (4067)
Multiplicity	7.1 (7.3)	20.6 (21.4)
Completeness (%)	97.55 (89.28)	99.3 (99.3)
Mean I/σ(I)	7.31 (0.74)	8.1 (1.4)
Wilson B-factor	141.79	163.94
R-merge	0.167 (3.050)	0.291 (3.241)
R-meas	0.180 (3.283)	0.258 (3.320)
R-pim	0.067 (1.206)	0.066 (0.712)
CC1/2	0.999 (0.412)	0.998 (0.761)
CC*	1.000 (0.764)	
Reflections used in refinement	83473 (7643)	
Reflections used for R-free	4185 (346)	
R-work	0.240 (0.356)	
R-free	0.288 (0.400)	
CC(work)	0.787 (0.709)	
CC(free)	0.841 (0.703)	
Number of non-hydrogen atoms	39839	
macromolecules	36015	
ligands	224	
Protein residues	4722	
RMS (bonds) (Å)	0.004	
RMS (angles) (*)	0.95	
Ramachandran favored (%)	97.95	
Ramachandran allowed (%)	1.96	
Ramachandran outliers (%)	0.09	
Rotamer outliers (%)	0.40	
Clashscore	6.13	
Average B-factor	178.14	
macromolecules	178.04	
ligands	194.08	

*Statistics for the highest-resolution shell are shown in parentheses.
Table S5. Data collection and refinement statistics of NaS526C.

NaS526C SeMet		
Beamline	SSRL 12-2	
Wavelength (Å)	0.9738	
Resolution range (Å)	39.71 - 3.40 (3.522 - 3.40)	
Space group	P 21 21 21	
Unit cell (Å, °)	95.5 134.58 190.12 90 90 90	
Total reflections	916579 (84633)	
Unique reflections	34343 (3016)	
Multiplicity	20.7 (25.1)	
Completeness (%)	98.64 (89.27)	
**Mean	Sigmal(θ)	17.20 (1.19)
Wilson B-factor	138.15	
R-merge	0.148 (3.919)	
R-meas	0.151 (4.000)	
R-pilr	0.029 (0.792)	
CC1/2	1.000 (0.588)	
CC	1.000 (0.861)	
Relections used in refinement	33962 (3012)	
Relections used for R-free	1690 (153)	
R-work	0.192 (0.265)	
R-free	0.234 (0.377)	
CC(work)	0.727 (0.820)	
CC(free)	0.865 (0.750)	
Number of non-hydrogen atoms	8021	
macromolecules	8859	
ligands	62	
Protein residues	1147	
RMS (bonds) (Å)	0.002	
RMS (angles) (°)	0.57	
Ramachandran favored (%)	98.77	
Ramachandran allowed (%)	1.23	
Ramachandran outliers (%)	0.00	
Rotamer outliers (%)	0.88	
Clashscore	7.07	
Average B-factor	196.93	
ligands	197.86	

Statistics for the highest-resolution shell are shown in parentheses.
Table S6. Data collection and refinement statistics of NaT525C.

	NaT525C native	NaT525C SeMet
Beamline	APS GM/CA 23-IDB	APS GM/CA 23-IDB
Wavelength (Å)	1.033202	0.972338
Resolution range (Å)	39.1 - 3.65 (3.78 - 3.65)	39.31 - 3.90 (4.21 - 3.90)
Space group	P 21 21 21	P 21 21 21
Unit cell (Å, °)	94.164 135.415 191.592 90 90 90	93.78 136.37 192.48 90 90 90
Total reflections	246061 (222521)	237026 (49769)
Unique reflections	27912 (2712)	23170 (4675)
Multiplicity	8.8 (8.1)	10.2 (10.6)
Completeness (%)	97.77 (97.54)	99.9 (99.9)
Mean I/σI0	14.33 (1.11)	12.1 (1.6)
Wilson B-factor	172.32	180.32
R-merge	0.076 (0.002)	0.100 (1.852)
R-meas	0.080 (2.146)	0.106 (1.945)
R-pim	0.027 (0.758)	0.033 (0.590)
CC1/2	0.999 (0.634)	1.000 (0.596)
CC	1.000 (0.881)	
Reflections used in refinement	27348 (2699)	
Reflections used for R-free	1356 (128)	
R-work	0.251 (0.430)	
R-free	0.285 (0.475)	
CC(work)	0.713 (0.364)	
CC(free)	0.877 (0.304)	
Number of non-hydrogen atoms	8835	
Macromolecules	8773	
Ligands	62	
Protein residues	1135	
RMS (bonds) (Å)	0.003	
RMS (angles) (*)	0.63	
Ramachandran favored (%)	97.70	
Ramachandran allowed (%)	2.30	
Ramachandran outliers (%)	0.00	
Rotamer outliers (%)	0.22	
Clashscore	7.07	
Average B-factor	214.38	
Macromolecules	214.56	
Ligands	189.06	

Statistics for the highest-resolution shell are shown in parentheses.
Table S7. Data collection and refinement statistics of NaE523Q.

	NaE523Q SeMet	
Beamline	SSRL 12-2	
Wavelength (Å)	0.97946	
Resolution range (Å)	38.63 - 3.30 (3.419 - 3.30)	
Space group	P 21 21 21	
Unit cell (Å, °)	89.346 115.354 184.536 90.90 90	
Total reflections	387647 (39220)	
Unique reflections	29277 (2661)	
Multiplicity	13.2 (13.6)	
Completeness (%)	99.32 (98.72)	
Mean		
Wilson B-factor	103.58	
R-merge	0.190 (2.680)	
R-meas	0.200 (2.784)	
R-pim	0.054 (0.748)	
CC1/2	1.000 (0.700)	
CC*	1.000 (0.908)	
Reflections used in refinement	29179 (2645)	
Reflections used for R-free	1434 (127)	
R-work	0.234 (0.330)	
R-free	0.300 (0.439)	
CC(work)	0.684 (0.848)	
CC(free)	0.827 (0.615)	
Number of non-hydrogen atoms	8842	
macromolecules	8780	
ligands	62	
Protein residues	1136	
RMS (bonds) (Å)	0.002	
RMS (angles) (°)	0.63	
Ramachandran favored (%)	97.52	
Ramachandran allowed (%)	2.48	
Ramachandran outliers (%)	0.00	
Rotamer outliers (%)	1.77	
Clashscore	8.24	
Average B-factor	134.03	
macromolecules	133.82	
ligands	163.57	

*Statistics for the highest-resolution shell are shown in parentheses.
Table S8. Data collection and refinement statistics of NaAtm1.

	NaAtm1 native	NaAtm1 SeMet
Beamline	SSRL 12-2	SSRL 12-2
Wavelength (Å)	0.97946	0.9793
Resolution range (Å)	39.33 - 3.35	39.65 - 3.60
Space group	P 21	P 21
Unit cell (Å, °)	169.648 92.498 237.691 90 110.34 90	170.10 92.21 237.47 90 110.58 90
Total reflections	688114 (60865)	559063 (30390)
Unique reflections	98507 (9041)	79094 (4376)
Completeness (%)	97.85 (91.11)	98.1 (95.8)
Mean / sigma(I)	9.43 (0.97)	7.5 (1.1)
Wilson B-factor	91.20	94.99
R-merge	0.174 (1.768)	0.211 (1.942)
R-meas	0.185 (1.927)	0.228 (2.100)
R-pick	0.071 (0.754)	0.086 (0.787)
CC1/2	0.999 (0.530)	0.994 (0.466)
CC	1.000 (0.832)	
Reflections used in refinement	97914 (9035)	
Reflections used for R-free	4897 (425)	
R-work	0.254 (0.353)	
R-free	0.282 (0.365)	
CC(work)	0.740 (0.685)	
CC(free)	0.529 (0.606)	
Number of non-hydrogen atoms	26975	
macromolecules	26783	
ligands	192	
Protein residues	3464	
RMS (bonds) (Å)	0.003	
RMS (angles) (°)	0.60	
Ramachandran favored (%)	97.35	
Ramachandran allowed (%)	2.59	
Ramachandran outliers (%)	0.06	
Rotamer outliers (%)	0.58	
Clashscore	8.33	
Average B-factor	120.02	
macromolecules	120.15	
ligands	101.67	

Statistics for the highest-resolution shell are shown in parentheses.
Table S9. Cryo-EM data collection, refinement and validation statistics

	Closed	Inward-facing
Data Collection and processing		
Microscope	Titan Krios at S2C2	Titan Krios at Caltech Cryo-EM facility
Camera	Gatan K3	Gatan K2 Summit
Magnification	x25,000	x165,000
Voltage (kV)	300	300
Exposure (e Å²)	48.6	36
Pixel size (Å)	0.823	0.834
Defocus Range (μm)	-1.7 to -2.4	-1.0 to -3.5
Initial Particle Image (no.)	3,978,816	1,145,444
Final Particle Image (no.)	166,278	102,076
Symmetry Imposed	C2	C2
Map Resolution (Å)	3.03	3.88
FSC Threshold	0.143	0.143
Map Resolution Range (Å)	2.8 - 3.8	3.8 - 4.5
Refinement		
Initial Model Used	PDB ID: 6PAR	PDB ID: 4MRN
Model Resolution (Å)	3.0	3.9
FSC Threshold	0.143	0.143
Map Sharpening B-factor (Å)	-86	-121
Model composition		
non-hydrogen atoms	9144	9156
protein residues	1198	1178
ligands	ADP; 2; Mg: 2; VO4: 2	
Average B-factors (Å)	94.1	22.5
protein		
ligands	66.7	-
R.m.s. deviations		
Bond length (Å)	0.000	0.007
Bond angles (°)	0.967	0.929
Validation		
MolProbity score	2.2	1.67
Clashscore	10.2	5.1
Rotamer outliers	4.9	1.7
Ramachandran plot		
Ramachandran favored (%)	97.3	96.6
Ramachandran allowed (%)	2.7	3.4
Ramachandran outliers (%)	0	0
SI References

1. P. D. Adams et al., PHENIX: a comprehensive Python-based system for macromolecular structure solution. *Acta Crystallogr. D Biol. Crystallogr.* **66**, 213-221 (2010).
2. A. Punjani, J. L. Rubinstein, D. J. Fleet, M. A. Brubaker, cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. *Nature methods* **14**, 290-296 (2017).
3. B. Zehnpfennig, I. L. Urbatsch, H. J. Galla, Functional reconstitution of human ABCC3 into proteoliposomes reveals a transport mechanism with positive cooperativity. *Biochemistry* **48**, 4423-4430 (2009).
4. A. L. Davidson, H. Nikaido, Overproduction, solubilization, and reconstitution of the maltose transport system from *Escherichia coli*. *Journal of Biological Chemistry* **265**, 4254-4260 (1990).
5. J. S. Patzlaff, T. van der Heide, B. Poolman, The ATP/substrate stoichiometry of the ATP-binding cassette (ABC) transporter OpuA. *Journal of Biological Chemistry* **278**, 29546-29551 (2003).
6. A. N. J. A. Lycklama, R. Vietrov, G. K. Schuurman-Wolters, B. Poolman, Energy Coupling Efficiency in the Type I ABC Transporter GlnPQ. *Journal of Molecular Biology* **430**, 853-866 (2018).
7. G. D. Eytan, R. Regev, Y. G. Assaraf, Functional reconstitution of P-glycoprotein reveals an apparent near stoichiometric drug transport to ATP hydrolysis. *Journal of Biological Chemistry* **271**, 3172-3178 (1996).
8. J. Wang et al., Sterol transfer by ABCG5 and ABCG8: in vitro assay and reconstitution. *Journal of Biological Chemistry* **281**, 27894-27904 (2006).
9. D. A. Dean, A. L. Davidson, H. Nikaido, Maltose transport in membrane vesicles of *Escherichia coli* is linked to ATP hydrolysis. *Proc. Natl. Acad. Sci. U. S. A.* **86**, 9134-9138 (1989).
10. M. Dong, F. Penin, L. G. Baggetto, Efficient purification and reconstitution of P-glycoprotein for functional and structural studies. *Journal of Biological Chemistry* **271**, 28875-28883 (1996).
11. K. Nikaido, G. F. Ames, One intact ATP-binding subunit is sufficient to support ATP hydrolysis and translocation in an ABC transporter, the histidine permease. *Journal of Biological Chemistry* **274**, 26727-26735 (1999).
12. I. Manolaridis et al., Cryo-EM structures of a human ABCG2 mutant trapped in ATP-bound and substrate-bound states. *Nature* **563**, 426-430 (2018).
13. S. Hofmann et al., Conformation space of a heterodimeric ABC exporter under turnover conditions. *Nature* **571**, 580-583 (2019).
14. E. L. Borths, B. Poolman, R. N. Hvorup, K. P. Locher, D. C. Rees, In vitro functional characterization of BtuCD-F, the *Escherichia coli* ABC transporter for vitamin B12 uptake. *Biochemistry* **44**, 16301-16309 (2005).
15. J. S. Woo, A. Zeltina, B. A. Goetz, K. P. Locher, X-ray structure of the *Yersinia pestis* heme transporter HmuUV. *Nature structural & molecular biology* **19**, 1310-1315 (2012).
16. J. Chen, S. Sharma, F. A. Quiocio, A. L. Davidson, Trapping the transition state of an ATP-binding cassette transporter: evidence for a concerted mechanism of maltose transport. *Proc. Natl. Acad. Sci. U. S. A.* **98**, 1525-1530 (2001).
17. H. Chavan, M. M. Khan, G. Tegos, P. Krishnamurthy, Efficient purification and reconstitution of ATP binding cassette transporter B6 (ABCB6) for functional and structural studies. *Journal of Biological Chemistry* **288**, 22658-22669 (2013).