Analytic Bethe ansatz related to a one parameter family of finite dimensional representations of the Lie superalgebra $sl(r + 1|s + 1)$

Zengo Tsuboi
Institute of Physics, University of Tokyo,
Komaba 3-8-1, Meguro-ku, Tokyo 153, Japan

Abstract
As is well known, the type I Lie superalgebra $sl(r + 1|s + 1)$ admits a one parameter family of finite dimensional irreducible representations. We have carried out an analytic Bethe ansatz related to this family of representations. We present formulae, which are deformations of previously proposed determinant formulae labeled by a Young superdiagram. These formulae will provide transfer matrix eigenvalues in dressed vacuum form related to the solutions of a graded Yang-Baxter equation, which depend not only on the spectral parameter but also on a non-additive continuous parameter. A class of transfer matrix functional relations among these formulae is briefly mentioned.

Journal-ref: J. Phys. A: Math. Gen. 31 (1998) 5485-5498
DOI: 10.1088/0305-4470/31/24/010

Short title: Analytic Bethe ansatz

1 Introduction

The Analytic Bethe ansatz [1, 2] is a powerful method that postulates the eigenvalues of transfer matrices in solvable lattice models associated with complicated representations of underlying algebras, which are difficult to derive by other method. We can construct systematically them in the dressed vacuum form (DVF) by using Yangians $Y(\mathcal{G})$ [3] analogue of skew-Young tableaux as done in [4, 5, 6] for $\mathcal{G} = A_r, B_r, C_r$ and D_r.

Recently a similar analysis has been done [7, 8] for the Lie superalgebra $\mathcal{G} = sl(r + 1|s + 1)$ [9] case. These results are related to the tensor representations.
A class of DVFs are obtained and shown to satisfy a set of functional relations. However, it is well known that the type 1 Lie superalgebras admit a one parameter family of finite dimensional irreducible representations, which is not tensor-like [10]. This is also the case with their quantum analogue. Associated with this family of representations, there are solutions [11, 12, 13] of a grade d Yang-Baxter equation, which depend on non-additive continuous parameter. We pointed out [7] a possibility of extending the DVF related to the tensor representations to the DVF related to a one parameter family of finite dimensional representations.

The purpose of this paper is to extend the DVF [7] to such representations. One of the simplest example is \(sl(2|1) \) case (cf [14, 15]):

\[
\tilde{T}^2_{1+c}(u) = \frac{Q_2(u-1-c)}{Q_2(u+1+c)} - \psi_3(u-1+c) \frac{Q_1(u+c)Q_2(u-1-c)}{Q_1(u+2+c)Q_2(u+1+c)} \\
- \psi_3(u-1+c) \frac{Q_1(u+4+c)Q_2(u-1-c)}{Q_1(u+2+c)Q_2(u+3+c)} \\
+ \psi_3(u+1+c)\psi_3(u-1+c) \frac{Q_2(u-1-c)}{Q_2(u+3+c)}. \tag{1.1}
\]

Note that this function depend on continuous parameter \(c \) and still nontrivially pole-free under the Bethe ansatz equation (BAE) (3.1). We shall construct a large family of the DVF having such features. The auxiliary space of the function (1.1) is related to the finite dimensional representation with the highest weight \((1+c)(\epsilon_1 + \epsilon_2)\). For \(c \in \mathbb{Z}_{\geq 0} \), it is tensor representation labeled by the Young superdiagram with shape \(((1+c)^2)\); while for \(c \notin \mathbb{Z} \), it is not tensor-like.

We execute the analytic Bethe ansatz based on BAE (3.1) associated with the distinguished simple root systems of \(sl(r+1|s+1) \) [9]. Reshetikhin and Wiegmann observed [16] remarkable phenomena that the BAE can be expressed by the root system of a Lie algebra (see also [17] for \(sl(r+1|s+1) \) case). Furthermore, Kuniba et. al. [6] conjectured that the left hand side of the BAE (3.1) can be expressed as a ratio of some ‘Drinfeld polynomials’ [3]. Then one can express the left hand side of the Bethe ansatz equation using the Kac-Dynkin label, which characterizes the quantum space. In view of the fact [10] that one can construct a finite dimensional representation of \(sl(r+1|s+1) \) whose \((r+1) \) th Kac-Dynkin label takes not only a non-negative integer value but also a complex value, we assume this is also the case with the LHS of the BAE (3.1). We introduce the Young superdiagram \(\lambda \subset \mu \) [18, 19] and define the function \(T_{\lambda \subset \mu}(u) \) (3.19), which should be the transfer matrix in the DVF whose auxiliary space is a finite dimensional tensor module of super Yangian [20, 21] or quantum affine superalgebra [22, 23], labeled by the skew-Young superdiagram \(\lambda \subset \mu \); while the quantum space is a one parameter family of finite dimensional representations which is not tensor-like. One can prove the pole-freeness of \(T^a(u) = \tilde{T}_{(1^a)}(u) \) by the same method as in [7]. This is also the case with the function \(T_{\lambda \subset \mu}(u) \) since this function has determinant expressions whose matrix...
elements are only the functions associated with Young superdiagrams with shape $\lambda = \phi$; $\mu = (m)$ or (1^a). Correspondingly to the complex valued $(r + 1)$ th Kac-Dynkin label b_{r+1}, we consider a deformation $\tilde{T}_{\mu c}(u)$ of the function $T_\mu(u)$ by a continuous parameter c. This deformation is compatible with the so called top term hypothesis [5, 6]. We prove the pole freeness of the function $\tilde{T}_{\mu c}(u)$, an essential property in the analytic Bethe ansatz. Then one may think of the function $\tilde{T}_{\mu c}(u)$ as a DVF whose auxiliary space and quantum space are both parameter dependent. We present a class of transfer matrix functional relations among the DVF. It may be viewed as a kind of the T-system [24] (see also [4, 6, 7, 8, 11, 15, 25, 26, 27, 28, 29, 30, 31, 32, 33]).

The outline of this paper is given as follows. In section 2, we briefly review the Lie superalgebra $\mathcal{G} = sl(r + 1|s + 1)$. In section 3, we execute the analytic Bethe ansatz based upon the BAE (3.1) associated with distinguished simple root systems. We note that if we replace the function $\psi_a(u)$ with the one labeled by the Young superdiagram with shape (1^1), we can reproduce many of our earlier results [7] for the function $T_{\lambda \subset \mu}(u)$. We prove pole-freeness of the function $\tilde{T}_{\mu c}(u)$. We briefly mention functional relations for the DVF defined in this section. Our main results are the relation (3.23) and Theorem 3.2. Section 4 is devoted to summary and discussion. Appendix A provides an example of the BAE for $sl(2|1)$ with the grading $p(1) = 1, p(2) = p(3) = 0$. Appendix B gives an example of the DVF for $sl(1|2)$.

2 The Lie superalgebra $sl(r + 1|s + 1)$

In this section, we briefly review the Lie superalgebra $\mathcal{G} = sl(r + 1|s + 1)$. A Lie superalgebra [9] is a \mathbb{Z}_2 graded algebra $\mathcal{G} = \mathcal{G}_0 \oplus \mathcal{G}_1$ with a product [,], whose homogeneous elements obey the graded Jacobi identity.

There are several choices of simple root systems depending on the choices of Borel subalgebras. The simplest system of simple roots is the so called distinguished one [9]. For example, the distinguished simple root system $\{\alpha_1, \ldots, \alpha_{r+s+1}\}$ of $sl(r + 1|s + 1)$ has the following form

$$
\begin{align*}
\alpha_i &= \epsilon_i - \epsilon_{i+1}, \quad i = 1, 2, \ldots, r, \\
\alpha_{r+1} &= \epsilon_{r+1} - \delta_1 \\
\alpha_{j+r+1} &= \delta_j - \delta_{j+1}, \quad j = 1, 2, \ldots, s,
\end{align*}
$$

(2.1)

where $\epsilon_1, \ldots, \epsilon_{r+1}; \delta_1, \ldots, \delta_{s+1}$ are the basis of the dual space of the Cartan subalgebra with the bilinear form $(|)$ such that

$$(\epsilon_i|\epsilon_j) = \delta_{i,j}; \quad (\epsilon_i|\delta_j) = (\delta_i|\epsilon_j) = 0, \quad (\delta_i|\delta_j) = -\delta_{i,j}
$$

(2.2)

with an additional constraint:

$$
\epsilon_1 + \epsilon_2 + \cdots + \epsilon_{r+1} - \delta_1 - \delta_2 - \cdots - \delta_{s+1} = 0.
$$

(2.3)
\{\alpha_i\}_{i \neq r+1} \text{ are even roots and } \alpha_{r+1} \text{ is an odd root with } (\alpha_{r+1}|\alpha_{r+1}) = 0.

Any weight can be expressed in the following form:

\[\Lambda = \sum_{i=1}^{r+1} \Lambda_i \epsilon_i + \sum_{j=1}^{s+1} \bar{\Lambda}_j \delta_j, \quad \Lambda_i, \bar{\Lambda}_j \in \mathbb{C}. \tag{2.4} \]

Let \(\lambda \subset \mu \) be a skew-Young superdiagram labeled by the sequences of non-negative integers \(\lambda = (\lambda_1, \lambda_2, \ldots) \) and \(\mu = (\mu_1, \mu_2, \ldots) \) such that \(\mu_i \geq \lambda_i : i = 1, 2, \ldots; \lambda_1 \geq \lambda_2 \geq \ldots \geq 0; \mu_1 \geq \mu_2 \geq \ldots \geq 0 \) and \(\lambda' = (\lambda'_1, \lambda'_2, \ldots) \) be the conjugate of \(\lambda \). There are two kinds of irreducible tensor representations for \(sl(r+1|s+1) \). One of them is characterized by the Young superdiagram \(\mu \):

\[\Lambda_i = \mu_i \quad \text{for } 1 \leq i \leq r + 1 \]
\[\bar{\Lambda}_j = \eta_j \quad \text{for } 1 \leq j \leq s + 1, \tag{2.5} \]

where \(\eta_j = \max\{\mu'_j - r - 1, 0\}; \mu_{r+2} \leq s + 1 \). In this case, the Kac-Dynkin label of \(\Lambda \) is given [34] as follows:

\[b_j = \mu_j - \mu_{j+1} \quad \text{for } 1 \leq j \leq r \]
\[b_{r+1} = \mu_{r+1} + \eta_i \]
\[b_{j+r+1} = \eta_j - \eta_{j+1} \quad \text{for } 1 \leq j \leq s. \tag{2.6} \]

A classification theorem for the finite dimensional irreducible unitary representations of \(gl(r + 1|s + 1) \) was discussed in [35].

Theorem 2.1 Let \(\Lambda \) be a real dominant weight. The irreducible \(gl(r + 1|s + 1) \) module \(V(\Lambda) \) with the highest weight \(\Lambda \) is

1. **typical and type 1 unitary if**

\[(\Lambda + \rho, \epsilon_{r+1} - \delta_{s+1}) > 0, \]

2. **or atypical and type 1 unitary if there exists** \(1 \leq j \leq s + 1 \) **such that**

\[(\Lambda + \rho, \epsilon_{r+1} - \delta_j) = 0. \]

Here \(\rho \) is the graded half sum of positive roots:

\[\rho = \frac{1}{2} \sum_{i=1}^{r+1} (r - s - 2i + 1) \epsilon_i + \frac{1}{2} \sum_{j=1}^{s+1} (r + s - 2j + 3) \delta_j. \tag{2.7} \]

This theorem was generalized to the type 1 quantum superalgebra \(U_q(gl(r+1|s+1)) \) for \(q > 0 \) [36]. As remarked in [12], this theorem will be also valid for the type 1 quantum superalgebra \(U_q(sl(r+1|s+1)) \) for \(q > 0 \). Applying Theorem 2.1 to the
aforementioned irreducible tensor representation, one finds that \([35]\) \(\Lambda\) is typical and type 1 unitary if \(\mu_{r+1} \geq s+1\); atypical and type 1 unitary if \(\mu_{r+1} < s+1\).

There is a large class of finite dimensional representations [10], which is not tensor-like. For example, for the aforementioned irreducible tensor representations with the highest weight \(\Lambda\), a one parameter family of irreducible representations with the highest weight (cf. [12, 35])

\[
\Lambda(c) = \Lambda + c \omega, \tag{2.8}
\]

\(\omega = \epsilon_1 + \epsilon_2 + \cdots + \epsilon_{r+1}\)

is typical and type 1 unitary if

\[
(\Lambda(c) + \rho, \epsilon_{r+1} - \delta_{s+1}) = \mu_{r+1} + \eta_{s+1} - s + c > 0. \tag{2.9}
\]

Note that the \((r+1)\) th Kac-Dynkin label of \(\Lambda(c)\) takes non-integer value if the parameter \(c\) is non-integral.

The dimensionality of the typical representation of \(\mathfrak{sl}(r+1|s+1)\) with the highest weight \(\Lambda\) is given [10] as follows

\[
\dim V(\Lambda) = 2^{(r+1)(s+1)} \prod_{1 \leq i < j \leq r} \frac{b_i + b_{i+1} + \cdots + b_j + j - i + 1}{j - i + 1} \times \prod_{r+2 \leq i \leq j \leq r+s+1} \frac{b_i + b_{i+1} + \cdots + b_j + j - i + 1}{j - i + 1}. \tag{2.10}
\]

As for the atypical finite dimensional representation, the dimensionality is smaller than the right hand side of (2.10).

3 Analytic Bethe ansatz

Consider the following type of the Bethe ansatz equation.

\[
-N \prod_{j=1}^{N} \left[\frac{u_k^{(a)} - u_j^{(a)}}{u_k^{(a)} - u_j^{(a)}} + \frac{b_j^{(a)}}{t_a} \right] = (-1)^{\deg(\alpha_a)} \prod_{b=1}^{r+s+1} \frac{Q_b(u_k^{(a)} + (\alpha_a|\alpha_b))}{Q_b(u_k^{(a)} - (\alpha_a|\alpha_b))}, \tag{3.1}
\]

\[
Q_a(u) = \prod_{j=1}^{N_a} [u - u_j^{(a)}], \tag{3.2}
\]

where \([u] = (q^u - q^{-u})/(q - q^{-1}); N_a \in \mathbb{Z}_{\geq 0}; u, w_j^{(a)} \in \mathbb{C}; a, k \in \mathbb{Z} (1 \leq a \leq r + s + 1, 1 \leq k \leq N_a); t_a = 1(1 \leq a \leq r + 1); t_a = -1(r + 2 \leq a \leq r + s + 1); b_j^{(a)} \in \mathbb{Z}_{\geq 0}(1 \leq a \leq r, r + 2 \leq a \leq r + s + 1); b_j^{(r+1)} \in \mathbb{C}\) and

\[
\deg(\alpha_a) = \begin{cases}
0 & \text{for even root} \\
1 & \text{for odd root}
\end{cases} = \delta_{a,r+1}. \tag{3.3}
\]
In the present paper, we suppose that q is generic. The left hand side of the BAE (3.1) is connected with the quantum space $W = \bigotimes_{j=1}^N W_j$. We assume W_j is a finite dimensional module of super Yangian [20, 21] or quantum affine superalgebra [22, 23] whose classical counterpart is characterized by the highest weight with the Kac-Dynkin label $(b_j^{(1)}, b_j^{(2)}, \ldots, b_j^{(r+s+1)})$. We can find various kinds of the Bethe ansatz equations, which are related to the special cases of the BAE (3.1) in many literatures (for example, [11, 15, 17, 37, 38, 39, 40]; see also [6, 14, 16, 41]). We suppose that the origin of the left hand side of the BAE (3.1) goes back to the ratio of some ‘Drinfeld polynomials’ $P_a(\zeta)$ $(1 \leq a \leq r+s+1)$ labeled by the Young superdiagram with shape μ:

$$P_a(\zeta) = \prod_{i=1}^{\mu_a-\mu_{a+1}} (\zeta - w + a - 2\mu_{a+1} + \mu_1 - \mu'_1 - 2i + 1), \quad 1 \leq a \leq r,$$

(3.4)

$$P_{r+1}(\zeta) = \prod_{i=1}^{\mu_{r+1}+\eta_1} (\zeta - w + r - 2\mu_{r+1} + \mu_1 - \mu'_1 + 2i),$$

(3.5)

$$P_{r+d+1}(\zeta) = \prod_{i=1}^{\eta_{d}+\eta_{d+1}} (\zeta - w - d + 2\eta_{d+1} + r + \mu_1 - \mu'_1 + 2i), \quad 1 \leq d \leq s,$$

(3.6)

where $\mu_{r+2} \leq s+1$; $\prod_{i=1}^0 (\cdots) = 1$; $w \in \mathbb{C}$. One can easily derive these polynomials (3.4)-(3.6) by the empirical procedures mentioned in [6]. And then we obtain the following ratio of ‘Drinfeld polynomial’:

$$\frac{P_a(u + \frac{1}{ta})}{P_a(u - \frac{1}{ta})} = \frac{u + \frac{b_a}{ta} - w(a)}{u - \frac{b_a}{ta} - w(a)}$$

(3.7)

where $w(a) \in \mathbb{C}$; the parameters $\{b_a\}$ denote the Kac-Dynkin label (2.6). In deriving the relation (3.7), we assume the parameters $\{b_a\}$ are nonnegative integers. However as is well known [10], one can construct a finite dimensional module whose highest weight is labeled by a Kac-Dynkin label with nonnegative integers $\{b_a\}_{a \neq r+1}$ and a complex b_{r+1}. And then we assume the parameter b_{r+1} in the relation (3.7) can take non-integer value by ‘analytic continuation’. Finally multiplying a natural q-analogue of (3.7) on each site, we obtain the left hand side of the BAE (3.1).

We define the sets

$$J = \{1, 2, \ldots, r+s+2\},$$

$$J_+ = \{1, 2, \ldots, r+1\}, \quad J_- = \{r+2, r+3, \ldots, r+s+2\}$$

(3.8)

with the total order

$$1 \prec 2 \prec \cdots \prec r+s+2$$

(3.9)
and with the grading
\[p(a) = \begin{cases}
0 & \text{for } a \in J_+ \\
1 & \text{for } a \in J_-
\end{cases} \quad (3.10) \]

For \(a \in J \), set
\[
z(a; u) = \psi_a(u) \frac{Q_{a-1}(u + a + 1)Q_a(u + a - 2)}{Q_{a-1}(u + a - 1)Q_a(u + a)} \quad a \in J_+, \\
z(a; u) = \psi_a(u) \frac{Q_{a-1}(u + 2r - a + 1)Q_a(u + 2r - a + 4)}{Q_{a-1}(u + 2r - a + 3)Q_a(u + 2r - a + 2)} \quad a \in J_-, \quad (3.11)
\]

where \(Q_0(u) = Q_{r+s+2}(u) = 1 \). From now on, we will consider the case where the quantum space \(W = \bigotimes_{j=1}^N W_j \) is a tensor-product of the module \(W_j \) labeled by Kac-Dynkin label of the form \(b_j^{(a)} = b_j\delta_{a r+1} \) \((1 \leq a \leq r + s + 1)\). In this case, the vacuum part of the function \(z(a; u) \) takes the following form:
\[
\psi_a(u) = \begin{cases}
1 & \text{for } a \in J_+ \\
\prod_{j=1}^N \frac{[u - w_j + r + 1 - b_j]}{[u - w_j + r + 1 + b_j]} & \text{for } a \in J_-
\end{cases} \quad (3.12)
\]

The generalization to the case of the more general quantum space will be achieved by suitable redefinition of the function \(\psi_a(u) \), and such redefinition will not influence the subsequent argument. We note that one can recover a function related to the ones in [17] if one set the parameters \(w_j^{(a)} \), \(q \) and \(\{ b_j^{(a)} \} \) in the BAE \((3.1)\) to 0, 1 and the ones in \((2.6)\) respectively. In this paper, we often express the function \(z(a; u) \) as the box \([a]\), whose spectral parameter \(u \) will often be abbreviated. Under the BAE \((3.1)\), we have
\[
\text{Res}_{u=-d+u_k^{(a)}}(z(d; u) + z(d + 1; u)) = 0 \quad 1 \leq d \leq r \quad (3.13)
\]
\[
\text{Res}_{u=-r-1+u_k^{(r+1)}}(z(r + 1; u) - z(r + 2; u)) = 0 \quad (3.14)
\]
\[
\text{Res}_{u=-2r-2+d+u_k^{(a)}}(z(d; u) + z(d + 1; u)) = 0 \quad r + 2 \leq d \leq r + s + 1. \quad (3.15)
\]

On the skew-Young superdiagram \(\lambda \subset \mu \), we assign a coordinates \((i, j) \in Z^2\) such that the row index \(i \) increases as we go downwards and the column index \(j \) increases as we go from left to right and that \((1, 1)\) is on the top left corner of \(\mu \). Define an admissible tableau \(b \) on the skew-Young superdiagram \(\lambda \subset \mu \) as a set of elements \(b(i, j) \in J \) labeled by the coordinates \((i, j)\) mentioned above, obeying the following rule (admissibility conditions).

1. For any elements of \(J_+ \)
\[
b(i, j) \prec b(i + 1, j), \quad (3.16)
\]

2. for any elements of \(J_- \)
\[
b(i, j) \prec b(i, j + 1) \quad (3.17)
\]
3. and for any elements of J

\[b(i, j) \leq b(i, j + 1), \quad b(i, j) \leq b(i + 1, j). \]

(3.18)

Let $B(\lambda \subset \mu)$ be the set of admissible tableaux on $\lambda \subset \mu$. For any skew-Young superdiagram $\lambda \subset \mu$, define the function $T_{\lambda \subset \mu}(u)$ as follows

\[T_{\lambda \subset \mu}(u) = \sum_{b \in B(\lambda \subset \mu)} \prod_{(i,j) \in \lambda \subset \mu} (-1)^{p(b(i,j))} z(b(i,j); u - \mu_1 + \mu'_1 - 2i + 2j), \]

(3.19)

where the product is taken over the coordinates (i,j) on $\lambda \subset \mu$. If we replace the vacuum part $\psi_a(u)$ (3.12) of the function $T_{(1 \, 1)}(u)$ with the one labeled by the Young superdiagram with shape (1^1), the function $T_{(1 \, 1)}(u)$ corresponds to the eigenvalue formula of the transfer matrix of the Perk-Schultz model [41, 42, 43] (see also [17]). In this case, a special case of the function $T_{(1 \, 1)}(u)$ reduces to the eigenvalue formula by the algebraic Bethe ansatz (For instance, [44]: $r = 1, s = 0$ case; [45]: $r = 0, s = 1$ case; [46, 47]: $r = s = 1$ case).

The following relations should be valid [7].

\[T_{\lambda \subset \mu}(u) = \det_{1 \leq i,j \leq \mu_1}(T^1_{\mu_i - \lambda_j - i + j}(u - \mu_1 + \mu'_1 - \lambda'_j + i + j - 1)) \]

(3.20)

where the product is taken over the coordinates (i,j) on $\lambda \subset \mu$. If we replace the vacuum part $\psi_a(u)$ (3.12) of the function $T_{(1 \, 1)}(u)$ with the one labeled by the Young superdiagram with shape (1^1), the function $T_{(1 \, 1)}(u)$ corresponds to the eigenvalue formula of the transfer matrix of the Perk-Schultz model [41, 42, 43] (see also [17]). In this case, a special case of the function $T_{(1 \, 1)}(u)$ reduces to the eigenvalue formula by the algebraic Bethe ansatz (For instance, [44]: $r = 1, s = 0$ case; [45]: $r = 0, s = 1$ case; [46, 47]: $r = s = 1$ case).

The following relations should be valid [7].

\[T_{\lambda \subset \mu}(u) = \det_{1 \leq i,j \leq \mu'_1}(T^1_{\mu_i - \lambda_j - i - j}(u - \mu_1 + \mu'_1 + \mu_j + \lambda_i - i - j + 1)), \]

(3.21)

where $T^a_m(u) = T_{(m^a)}(u)$. These relation will be verified by the same method mentioned in [6]. We remark that the formula (3.19) reduces to the (classical) super-character formula if we set

\[a \rightarrow \exp(\epsilon_a) \quad \text{for} \quad a \in J_+, \]

\[a \rightarrow \exp(\delta_{a-r-1}) \quad \text{for} \quad a \in J_. \]

(3.22)

In this case, the functions (3.20) and (3.21) reduce to the Jacobi-Trudi formulae on supersymmetric Schur functions [18, 19, 48, 49].

The following Theorem is essential in the analytic Bethe ansatz.

Theorem 3.1 ([7]) *For any integer a, the function $T^a_1(u)$ is free of poles under the condition that the BAE (3.1) is valid.*

Applying Theorem 3.1 to (3.20), one can show that $T_{\lambda \subset \mu}(u)$ is free of poles under the BAE (3.1).

Thanks to the admissibility conditions (3.16-3.18), for any Young superdiagram μ ($\mu_{r+1} \geq s + 1$, $\mu'_1 \geq r + 1$) and non-negative integer c, only such tableau $b \in$
Proof. Thanks to the [7], the function \(T(u) \) is free of poles under the BAE (3.1), which will be also valid for \(B(\mu + (c^r+1)) \). Then we have only to show that the function (3.25) is free of poles at \(\mu \), under the condition that the BAE (3.1) is valid. However these relations will be also valid for \(c \in Z \). However these relations will be also valid for \(c \in C \) by 'analytic continuation'. We can easily observe this fact from the right hand side of the relations (3.23) and (3.24). Denote the right hand side of the relations (3.23) and (3.24) by \(T_{\mu}(u) \) and \(T_{\mu}(u+c) \), respectively for arbitrary \(c \in C \). A crucial condition for the function \(T_{\mu}(u) \) to be the eigenvalue formula of a transfer matrix is given as follows:

\[
T_{\mu+c}^{r+1}(u) = T_{\mu+c}(u)\]

\[
= \frac{Q_{r+1}(u-c-s-1)}{Q_{r+1}(u+c-s-1)} \times T_{\mu+c}^{r+1}(u+c).
\]

In deriving the relations (3.23) and (3.24), we assume \(c \in Z \). However these relations will be also valid for \(c \in C \) by 'analytic continuation'. We can easily observe this fact from the right hand side of the relations (3.23) and (3.24). Denote the right hand side of the relations (3.23) and (3.24) by \(T_{\mu+c}(u) \) and \(T_{\mu+c}^{r+1}(u) \), respectively for arbitrary \(c \in C \). A crucial condition for the function \(T_{\mu+c}(u) \) to be the eigenvalue formula of a transfer matrix is given as follows:

Theorem 3.2 For any \(c \in C \), the function \(T_{\mu+c}(u) \) is free of poles under the condition that the BAE (3.1) is valid.

As a corollary, we have

Corollary 3.3 For any \(c \in C \), the function \(T_{\mu+c}^{r+1}(u) \) is free of poles under the condition that the BAE (3.1) is valid.

For any \(c \in Z \), Theorem 3.2 and Corollary 3.3 follow from [7], while for any \(c \in C \), they require proofs. In proving the Theorem 3.2, we use the following lemmas.

Lemma 3.4 The function

\[
\frac{T_{\mu}(u)}{Q_{r+1}(u-\mu_1)}
\]

is free of poles under the condition that the BAE (3.1) is valid.

Proof. Thanks to the [7], the function \(T_{\mu}(u) \) is free of poles under the BAE (3.1). Then we have only to show that the function (3.25) is free of pole at \(u = u_k^{(r+1)} + \mu_1 : k = 1, \ldots, N_{r+1} \). We will show that \(T_{\mu}(u) \) is divisible by

\[\text{See Appendix B for an example of } T_{\mu+c}(u).\]
$Q_{r+1}(u - \mu_1)$. In the set $\{z(a; u + \xi): a \in J, \xi \in \mathbb{C}\}$, only $z(r+1; u-r+1-\mu_1)$ and $z(r+2; u-r+1-\mu_1)$ have $Q_{r+1}(u - \mu_1)$ in their numerators. So we have only to show that every term in $T_\mu(u)$ contains $z(r+1; u-r+1-\mu_1)$ or $z(r+2; u-r+1-\mu_1)$. Then all we have to do is to show that $b(r+1,1) = r+1$ or $r+2$ in (3.19) for $\lambda = \phi, \mu = \hat{\mu}$ since the argument of $z(b(i,j); u - \mu_1 + r + 1 - 2i + 2j)$ in (3.19) becomes $u - r + 1 - \mu_1$ only when its coordinate is $(i,j) = (r+1,1)$. From the admissibility conditions, we can develop the following argument. If $b(r+1,1) \preceq r$ then $b(1,1) \prec 1$ since $b(r+1,1) \in J_+$; $b(1,1) \prec b(2,1) \prec \cdots \prec b(r+1,1) \preceq r$. This contradicts the fact $b(1,1) \in J$. If $b(r+1,1) \succeq r + 3$ then $b(r+1,1, \mu_{r+1}) \succ r + s + 2$ since $b(r+1,1) \in J_-$; $r + 3 \preceq b(r+1,2) \prec \cdots \prec b(r+1,1, \mu_{r+1})$; $\mu_{r+1} \succeq s + 1$. This contradicts the fact $b(r+1,1, \mu_{r+1}) \in J$. Thus $b(r+1,1)$ must be $r + 1$ or $r + 2$. In Ref. [7], we did not make use of the factor $Q_{r+1}(u - \mu_1)$ to prove the fact that $T_\mu(u)$ does not have a color $r + 1$ pole under the BAE (3.1). So division by $Q_{r+1}(u - \mu_1)$ does not influence the proof of the pole-freeness of $T_\mu(u)$ under the BAE (3.1). Therefore the function (3.25) is free of poles under the BAE (3.1).

Lemma 3.5

(1) The function $\mathcal{H}_\nu(u)$ is free of color b ($b \in J - \{r + 1, r + s + 2\}$) poles under the condition that the BAE (3.1) is valid.

(2) The function

$$Q_{r+1}(u - \nu_1 + \nu'_1 + r + 1)\mathcal{H}_\nu(u)$$

(3.26)

is free of poles under the condition that the BAE (3.1) is valid.

Proof. (1) One can verify the following relation in the same way as the relation (3.20).

$$\mathcal{H}_\nu(u) = \det_{1 \leq i,j \leq \nu_1} (\mathcal{H}_1^{\nu'_1-i+j}(u - \nu_1 + \nu'_1 - \nu'_1 + i + j - 1))$$

(3.27)

where $\mathcal{H}_\nu^b(u) = \mathcal{H}_{(\nu,\nu)}^b(u)$. Then we have only to show that the function $\mathcal{H}_1^b(u)$ is free of color b ($b \in J - \{r + 1, r + s + 2\}$) poles under the BAE (3.1). For simplicity, we assume that the vacuum parts are formally trivial, that is, the left hand side of the BAE (3.1) is constantly -1. The function $z(d; u) = \lfloor d \rfloor$, with $d \in J$ has the color b pole only for $d = b$ or $b+1$, so we shall trace only $\lfloor b \rfloor$ or $\lfloor b + 1 \rfloor$ ($b \in J - \{r + s + 2\}$). Denote S_k the partial sum of $\mathcal{H}_1^b(u)$, which contains k boxes among $\lfloor b \rfloor$ or $\lfloor b + 1 \rfloor$. Apparently, S_0 does not have color b pole. Thanks to the relation (3.15), S_1 does not have color b pole ($b \neq r + 1$) under the BAE (3.1).
The case \((k \geq 2)\): \(S_k\) is the summation of the tableaux of the form

\[
\begin{array}{c}
\xi \\
\vdots \\
b \\
\vdots \\
b + 1 \\
\vdots \\
b + 1 \\
\zeta
\end{array}
\]

\[f(k, n, \xi, \zeta, u) :=
\begin{array}{c}
\xi \\
\vdots \\
b \\
\vdots \\
b + 1 \\
\vdots \\
b + 1 \\
\zeta
\end{array}
\]

\[= \frac{Q_{b-1}(v + 2r + 3 - b - 2n)Q_b(v + 2r + 4 - b)}{Q_{b-1}(v + 2r - b + 3)Q_b(v + 2r + 4 - b - 2n)}
\times \frac{Q_b(v + 2r + 2 - b - 2k)Q_{b+1}(v + 2r + 3 - b - 2n)}{Q_b(v + 2r + 2 - b - 2n)Q_{b+1}(v + 2r + 3 - b - 2k)}X,
\]

\[0 \leq n \leq k,
\]

(3.28)

where \([\xi]\) and \([\zeta]\) are columns with total length \(a - k\), which do not contain \(b\) and \(b + 1\), \(b \in J_+ - \{r + s + 2\}\); \(v = u + h\): \(h\) is some shift parameter and is independent of \(n\); the function \(X\) does not have color \(b\) pole and is independent of \(n\). \(f(k, n, \xi, \zeta, u)\) has color \(b\) poles at \(u = -h - 2r - 2 + b + 2n + u_p^{(b)}\) and \(u = -h - 2r - 4 + b + 2n + u_p^{(b)}\) for \(1 \leq n \leq k - 1\); at \(u = -h - 2r - 2 + b + u_p^{(b)}\) for \(n = 0\); at \(u = -h - 2r - 4 + b + 2k + u_p^{(b)}\) for \(n = k\). Obviously, color \(b\) residue at \(u = -h - 2r - 2 + b + 2n + u_p^{(b)}\) in \(f(k, n, \xi, \zeta, u)\) and \(f(k, n + 1, \xi, \zeta, u)\) cancel each other under the BAE (3.1). Thus, under the BAE (3.1), \(\sum_{n=0}^{k} f(k, n, \xi, \zeta, u)\) is free of color \(b\) poles \((b \neq r + 1)\), so is \(S_k\).

(2) Among the boxes \(\{a\} : a \in J_+\), only the box \(\{r + 2\}\) has color \(r + 1\) pole. We shall show that the color \(r + 1\) poles in \(\mathcal{H}_\nu(u)\), which originate from the box \(\{r + 2\}\) are canceled by \(Q_{r+1}(u - \nu_1 + \nu'_1 + r + 1)\). Owing to the admissibility conditions, \(\{r + 2\}\) appears consecutively only at the points \((1, 1), (2, 1), \ldots, (k, 1) : k \leq \nu'_1\) in each term of \(\mathcal{H}_\nu(u)\). Then the contribution of \(\{r + 2\}\) to the term of \(\mathcal{H}_\nu(u)\) which contains \(k\)

\[
\prod_{j=1}^{k} z(r + 2, u - \nu_1 + \nu'_1 - 2j + 2)
\]

\[= \frac{Q_{r+1}(u - \nu_1 + \nu'_1 + r + 1 - 2k)Q_{r+2}(u - \nu_1 + \nu'_1 + r + 2)}{Q_{r+1}(u - \nu_1 + \nu'_1 + r + 1)Q_{r+2}(u - \nu_1 + \nu'_1 + r + 2 - 2k)}.
\]

(3.29)

Thus, the color \(r + 1\) poles in \(\mathcal{H}_\nu(u)\), which originated from \(\{r + 2\}\) are canceled by \(Q_{r+1}(u - \nu_1 + \nu'_1 + r + 1)\).

The dress part of the function \(\tilde{T}_{\mu,c}(u)\) carries \(sl(r+1|s+1)\) weight \(\Lambda(c)\) (2.8). One
can observe this fact from the ‘top term’ [5, 6] of the function. The ‘top term’ is considered to be related with the highest weight vector. We speculate the ‘top term’ of the function $\mathcal{T}_{\mu,c}(u)$ for large $|q|$ is proportional to

$$
\begin{align*}
&Q_{r+1}(u - c + \mu' - \mu - r - 1) - Q_{r+1}(u + c + \mu' - \mu - r - 1) \\
&\times \prod_{i=1}^{r+1} \prod_{j=1}^{\mu'} z(i; u - \mu + \mu' + c - 2i + 2j) \\
&\times \prod_{j=1}^{s+1} \prod_{i=1}^{\eta_{j}} z(r + j + 1; u - \mu + \mu' + c - 2r - 2 - 2i + 2j) \\
&\approx q^{-2(\Lambda(c))} q^{r+s+1} N_{a,a_{0}} = q^{-2 \sum_{i=1}^{r+s+1} N_{t_{i} t_{i} - 2} N_{t_{s+1} t_{s+1}}} c,
\end{align*}
$$

(3.30)

where we omit the vacuum part. We may think of this circumstance as a generalization of the top term hypothesis [5, 6] to the case of the non-integral highest weight. We believe that the function $\mathcal{T}_{\mu,c}(u)$ yields actual spectra of the transfer matrix whose auxiliary space is characterized by the highest weight $\Lambda(c)$ at least as long as the typicality condition (2.9) is satisfied. In fact, special cases of the function $\mathcal{T}_{\mu,c}(u)$ are in agreement with the results: for example, for $sl(2|1); \mu = (2^1)$ case:[14, 15] (see also [11]). For the function $\mathcal{T}_{\mu,c}(u)$, one will be able to use the R matrix which is constructed by tensor product graph method [12, 13].

As for negative integer c, much care should be taken because atypicality condition may hold. In this case, the dimensionality of the module $V(\Lambda(c))$ is no longer the one given by the formula (2.10). For example, for $sl(2|2)$ case, $\mathcal{T}_{1}^{2}(u)$ has the form

$$
\mathcal{T}_{1}^{2}(u) = \mathcal{T}_{1}^{2}(u) + \psi_{3}(u - 3)\psi_{3}(u - 1)\mathcal{T}_{2}^{1}(u).
$$

(3.31)

In this case, the eigenvalue formula in the DVF labeled by the Young superdiagram with shape (1^2) will be the function $\mathcal{T}_{1}^{2}(u)$ rather than the function $\mathcal{T}_{1}^{2}(u)$.

Now we briefly mention the functional relations among the functions introduced in this section. Thanks to the Jacobi identity, the following relation holds.

$$
T_{m}^{\alpha}(u - 1)T_{m}^{\alpha}(u + 1) = T_{m-1}^{\alpha}(u)T_{m+1}^{\alpha}(u) + T_{m}^{\alpha-1}(u)T_{m+1}^{\alpha+1}(u),
$$

(3.32)

where $a, m \in \mathbb{Z}_{\geq 0}$. This functional relation is a specialization of the Hirota bilinear difference equation [50] and it is same as the functional relation discussed in [7] except the vacuum part. And other functional relations in [7] are also valid except the vacuum part. Note however that there are another functional relations, which arises from a one parameter family of finite dimensional representations. For example, $\mathcal{T}_{\mu,c}(u)$ satisfies

$$
\mathcal{T}_{\mu,c}(u - d)\mathcal{T}_{\mu,c}(u + d) = \mathcal{T}_{\mu,c-d}(u)\mathcal{T}_{\mu,c+d}(u),
$$

(3.33)

where $c, d \in \mathbb{C}$. For $\mu = (m^{r+1}), m \in \mathbb{Z}_{\geq s+1}; c = 0; d = 1$, this functional relation reduces to the one in [7].
4 Summary and discussion

In the present paper, we have executed the analytic Bethe ansatz related to a one parameter family of finite dimensional representations of the type 1 Lie superalgebra $sl(r + 1|s + 1)$ based on the Bethe ansatz equations (3.1) with distinguished simple root system of $sl(r + 1|s + 1)$. Eigenvalue formulae of transfer matrices in DVF are proposed for a one parameter family of finite dimensional representations. The key is the top term hypothesis and the observation that $(r + 1)$ th Kac-Dynkin label can take non-integer value. Pole-freeness of the DVF was shown. Functional relations have been given for the DVF.

We emphasize that our method explained in the present paper is still valid even if such factors like gauge factor, extra sign (different from $(-1)^{\text{deg}(\alpha_a)}$ in (3.1)), etc. appear in the BAE (3.1) as long as such factors do not influence the analytical property of the right hand side of the BAE (3.1).

There is a remarkable coincidence [51, 52] between the free field realization of the generators of $U_q(G^{(1)})$ associated with the classical simple Lie algebras G and the eigenvalue formulae [5] in the analytic Bethe ansatz. As for a Lie superalgebra G case, especially in relation with a one parameter family of finite dimensional irreducible representations, no one has discussed such a relation so far. An extensive study will be desirable.

The Lie superalgebras or their quantum analogues are not straightforward generalization of their non-super counterparts. They have several inequivalent sets of simple root systems depending on the choices of their Borel subalgebras. In view of this fact, we generalized [8] our result [7] to any simple root system of $sl(r + 1|s + 1)$. Then we discussed relations among sets of the Bethe ansatz equations for any simple root systems using the particle-hole transformation [53]. We pointed out that the particle-hole transformation is related with the reflection with respect to the element of the Weyl supergroup for odd simple root α with $(\alpha|\alpha) = 0$.

There is another type 1 superalgebra $osp(2|2n)$, which also admits a one parameter family of finite dimensional representations (see, [54, 55]). It will be an interesting problem to extend a similar analysis discussed in this paper related to $osp(2|2n)$.

Functional relations among fusion transfer matrices at finite temperatures have been given recently in [56] and these functional relations are transformed into TBA equations without using string hypothesis. These TBA equations do not carry continuous parameters, which we discussed in this paper. Whether we can derive TBA equations with continuous parameters from our functional relations is an open problem.

Acknowledgment
The author would like to thank Professor A. Kuniba for encouragement and useful comments on the earlier version of the manuscript.
Appendix A An example of the BAE for \(p(1) = 1, p(2) = p(3) = 0 \) grading

Base on the knowledge presented in [6], we will consider the BAE for \(sl(2|1) \) with the grading \(p(1) = 1, p(2) = p(3) = 0 \). In this case, the simple roots, the sets (3.8) and the functions (3.11) have the form \(\alpha_1 = \delta_1 - \epsilon_1, \alpha_2 = \epsilon_1 - \epsilon_2, J_+ = \{2,3\}, J_- = \{1\} \)

and

\[
\begin{align*}
\boxed{1} &= \psi_1(u) \frac{Q_1(u+1)}{Q_1(u-1)}, \quad \boxed{2} = \psi_2(u) \frac{Q_1(u+1)Q_2(u-2)}{Q_1(u-1)Q_2(u)}, \quad \boxed{3} = \psi_3(u) \frac{Q_2(u+2)}{Q_2(u)}
\end{align*}
\]

respectively (see, [7, 8]). The top term labeled by the Young superdiagram with shape (11) is proportional to \(\boxed{1} \), then we find that the ‘Drinfeld polynomial’ is

\[
P_a(\xi) = \begin{cases}
\xi - \omega & \text{for } a = 1 \\
1 & \text{for } a = 2
\end{cases}
\]

(A.2)

For any \(b \in \mathbb{Z}_{\geq 1} \), the top term labeled by the Young superdiagram with shape (b2) will be proportional to

\[
\begin{align*}
\boxed{12 \ldots 2} = \prod_{j=1}^{b+1} \frac{Q_1(u+2j+1-b-2)}{Q_1(u+2j-1-b-2)},
\end{align*}
\]

(A.3)

where we omit the vacuum part. Then we find that the ‘Drinfeld polynomial’ has the following form

\[
P_a(\xi) = \begin{cases}
\prod_{j=1}^{b+1}(\xi - \omega - 2j + b + 2) & \text{for } a = 1 \\
1 & \text{for } a = 2
\end{cases}
\]

(A.4)

Following [6], the BAE whose vacuum part corresponds to the quantum space \(W = \bigotimes_{j=1}^{N} W_j \) labeled by the Young superdiagrams with shape \((b^2) : j = 1 \) and \((1^1) : 2 \leq j \leq N \) reads as follows:

\[
\begin{align*}
&\frac{[u_k^{(1)}] - w_1 - b - 1}{[u_k^{(1)}] - w_1 + b + 1} \prod_{j=2}^{N} \frac{[u_k^{(1)}] - w_j - 1}{[u_k^{(1)}] - w_j + 1} = \frac{Q_2(u_k^{(1)} - 1)}{Q_2(u_k^{(1)} + 1)}, \\
&-1 = \frac{Q_1(u_k^{(2)} - 1)Q_2(u_k^{(2)} + 2)}{Q_1(u_k^{(2)} + 1)Q_2(u_k^{(2)} - 2)},
\end{align*}
\]

(A.5)

where the parameters \(\{t_a\} \) are \(t_1 = -1 \) and \(t_2 = 1 \). We assume that the parameter \(b \) can take non-integer value by ‘analytic continuation’ as in section 3. Note that this BAE is in relation to the one in [38]. The vacuum part \(\psi_a(u) \) of the function
is determined so as to make the function $T^1_1(u) = -[1] + [2] + [3]$ to be free of pole under the BAE (A.5). Up to an overall scalar function, we have

\begin{align}
\psi_1(u) &= 1 \\
\psi_2(u) &= \frac{[u - w_1 + b]}{[u - w_1 - b]} \prod_{j=2}^{N} \frac{[u - w_j]}{[u - w_j - 2]}.
\end{align}

(A.6)

(A.7)

Compare the BAE (A.5) to the one (3.1) for $sl(2|1)$ with the grading $p(1) = p(2) = 0, p(3) = 1$ and $b_j^{(1)} = 0, b_j^{(2)} = 1 : 2 \leq j \leq N; b_j^{(2)} = b_j^{(2)} = 0 : 2 \leq j \leq N$, whose vacuum part also originates from the quantum space $W = \otimes_{j=1}^{N} W_j$ labeled by the Young superdiagrams with shape $(b^2) : j = 1; (1^1) : 2 \leq j \leq N$ and analytic continuation argument. Note that this BAE is also in relation to the one in [38].

Appendix B An example of the DVF

In this section, we present an example of the DVF $\tilde{T}_{\mu \nu c}(u)$ and the theorem 3.2 for $sl(1|2) ; \mu = (2, 1) ; b_j = b$ (in (3.12)); $J_+ = \{1\}; J_- = \{2, 3\}$ case:

\begin{align}
\tilde{T}_{(2,1)c}(u) &= \frac{Q_1(u - c - 1)}{Q_1(u + c - 1)} T_{(2)}(u + c + 1) \mathcal{H}(u - c - 2) \\
&= \frac{\phi(-1 - b - c + u)}{\phi(-1 + b - c + u)} \left\{ - \frac{Q_1(-3 - c + u)Q_2(-c + u)}{Q_1(3 + c + u)Q_2(-2 + c + u)} - \frac{\phi(1 - b + c + u)\phi(3 - b + c + u)Q_1(-1 - c + u)Q_2(-4 - c + u)}{\phi(1 + b + c + u)\phi(3 + b + c + u)Q_1(1 + c + u)Q_2(-2 - c + u)} - \frac{\phi(1 + b + c + u)\phi(3 - b + c + u)Q_1(-3 - c + u)Q_2(-c + u)}{\phi(1 - b + c + u)\phi(3 - b + c + u)Q_1(1 - c + u)Q_2(-4 - c + u)} + \frac{\phi(3 - b + c + u)Q_1(-1 - c + u)Q_2(-4 - c + u)}{\phi(3 + b + c + u)Q_1(1 + c + u)Q_2(-2 - c + u)} + \frac{\phi(3 + b + c + u)Q_1(-3 - c + u)Q_2(-c + u)}{\phi(3 - b + c + u)Q_1(1 + c + u)Q_2(-2 - c + u)} + \frac{\phi(3 - b + c + u)Q_1(-1 - c + u)Q_2(-4 - c + u)}{\phi(3 + b + c + u)Q_1(3 + c + u)Q_2(-2 - c + u)} + \frac{\phi(3 + b + c + u)Q_1(-3 - c + u)Q_2(4 + c + u)}{\phi(3 - b + c + u)Q_1(3 + c + u)Q_2(2 + c + u)} + \frac{\phi(3 - b + c + u)Q_1(-1 - c + u)Q_2(4 + c + u)}{\phi(3 + b + c + u)Q_1(3 + c + u)Q_2(2 + c + u)} - \frac{Q_1(-1 - c + u)Q_2(-4 - c + u)}{Q_1(3 + c + u)Q_2(-2 - c + u)} \right\},
\end{align}

(B.1)

where

\begin{align}
T_{(2)}(u) &= \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 2 & 3 \end{bmatrix}
\end{align}
\[H(1)(u) = \begin{bmatrix} 2 & -3 \\ -2 & 3 \end{bmatrix} = -\frac{\phi(1-b+u)}{\phi(1+b+u)} \left\{ \frac{Q_1(-1+u)Q_2(2+u)}{Q_1(1+u)Q_2(u)} + \frac{Q_2(-2+u)}{Q_2(u)} \right\}, \quad (B.3) \]

\[\phi(u) = \prod_{j=1}^{N} [u - w_j]. \quad (B.4) \]

The first term in the right hand side of (B.1) is the top term, which is related to the highest weight \((2+c)\epsilon_1 + \delta_2\). Thanks to Theorem 3.2, the DVF (B.1) is free of pole under the following BAE:

\[
\begin{align*}
\frac{\phi(u_k^{(1)} + b)}{\phi(u_k^{(1)} - b)} &= \frac{Q_2(u_k^{(1)} + 1)}{Q_2(u_k^{(1)} - 1)}, \quad 1 \leq k \leq N_1, \\
-1 &= \frac{Q_1(u_k^{(2)} + 1)Q_2(u_k^{(2)} - 2)}{Q_1(u_k^{(2)} - 1)Q_2(u_k^{(2)} + 2)}, \quad 1 \leq k \leq N_2. \quad (B.5)
\end{align*}
\]

We note the fact that if the parameter \(c\) is positive integer, \(T_{(2,1);c}(u)\) has a determinant expression whose matrix elements are only the functions labeled by Young superdiagrams with one column:

\[\tilde{T}_{(2,1);c}(u) = T_{(2+c,1)}(u) = \det_{1 \leq i,j \leq c+2}(T_1^{\mu'_i-i+j}(u - c - \mu'_i + i + j - 1)), \quad (B.6) \]

where \(\mu'_1 = 2; \ \mu'_i = 1 : 2 \leq i \leq c + 2; \ c \in \mathbb{Z}_{\geq 0}. \]
References

[1] Reshetikhin N Yu 1983 *Sov. Phys. JETP* **57** 691
[2] Reshetikhin N Yu 1987 *Lett. Math. Phys.* **14** 235
[3] Drinfel’d V G 1988 *Sov. Math. Dokl* **36** 212
[4] Bazhanov V V and Reshetikhin N 1990 *J. Phys. A Math. Gen.* **23** 1477
[5] Kuniba A and Suzuki J 1995 *Commun. Math. Phys.* **173** 225
[6] Kuniba A, Ohta Y and Suzuki J 1995 *J. Phys. A Math. Gen.* **28** 6211
[7] Tsuboi Z 1997 *J. Phys. A Math. Gen.* **30** 7975
[8] Tsuboi Z 1998 *Physica A* **252** 565
[9] Kac V 1977 *Adv. Math.* **26** 8
[10] Kac V 1978 *Lecture Notes in Mathematics* **676** 597
[11] Maassarani Z 1995 *J. Phys. A: Math. Gen.* **28** 1305
[12] Delius G W, Gould M D, Links J R and Zhang Y Z 1995 *Int. J. Mod. Phys. A* **10** 3259
[13] Delius G W, Gould M D, Links J R and Zhang Y Z 1995 *J. Phys. A* **28** 6203
[14] Ramos P B and Martins M J 1996 *Nucl. Phys. B* **474** 678
[15] Pfennmüller M P and Frahm H 1996 *Nucl. Phys. B* **479** 575
[16] Reshetikhin N Yu and Wiegmann P B 1987 *Phys. Lett. B* **189** 125
[17] Kulish P P 1986 *J. Sov. Math.* **35** 2648
[18] Balantekin A B and Bars I 1981 *J. Math. Phys.* **22** 1149
[19] Dondi P H and Jarvis P D 1981 *J. Phys. A* **14** 547
[20] Nazarov M L 1991 *Lett. Math. Phys.* **21** 123
[21] Zhang R B 1996 *Lett. Math. Phys.* **37** 419
[22] Yamane H 1994 *Publ. RIMS, Kyoto Univ.* **30** 15
[23] Yamane H preprint 1996 *q-alg/9603015*
[24] Kuniba A, Nakanishi T and Suzuki J 1994 *Int. J. Mod. Phys.* **A9** 5215

[25] Krichever I, Lipan O, Wiegmann P and Zabrodin A 1997 *Commun. Math. Phys.* **188** 267

[26] Kuniba A 1994 *J. Phys. A Math. Gen.* **27** L113

[27] Klümper A and Pearce P 1992 *Physica* A183 304

[28] Kuniba A and Suzuki J 1995 *J. Phys. A Math. Gen.* **28** 711

[29] Suzuki J 1994 *Phys. Lett.* **A195** 190

[30] Kuniba A, Nakanishi T and Suzuki J 1994 *Int. J. Mod. Phys.* **A9** 5267

[31] Kuniba A, Nakamura S and Hirota R 1996 *J. Phys. A Math. Gen.* **29** 1759

[32] Tsuboi Z and Kuniba A 1996 *J. Phys. A Math. Gen.* **29** 7785

[33] Tsuboi Z 1997 *J. Phys. Soc. Jpn.* **66** 3391

[34] Bars I, Morel B and Ruegg H 1983 *J. Math. Phys.* **24** 2253

[35] Gould M D and Zhang R B 1990 *J. Math. Phys.* **31** 2552

[36] Gould M D and Scheunert M 1995 *J. Math. Phys.* **36** 435

[37] Bariev R Z, Klümper A and Zittartz J 1995 *Europhys. Lett.* **32** 85

[38] Bedürftig G, Essler F H L and Frahm H 1997 *Nucl. Phys.* **B 489** 697

[39] Hibberd K E, Gould M D and Links J R 1996 *Phys. Rev.* **B 54** 8430

[40] Hibberd K E, Gould M D and Links J R 1996 *J. Phys. A: Math. Gen.* **29** 8053

[41] Schultz C L 1983 *Physica* **A122** 71

[42] Perk J H H and Schultz C L 1983 in *Nonlinear Integrable Systems-Classical Theory and Quantum Theory*, eds. Jimbo M and Miwa T (World Scientific, Singapore)

[43] Perk J H H and Schultz C L 1981 *Phys. Lett.* **84A** 407

[44] Foerster A and Karowski M 1993 *Nucl. Phys.* **B 396** 611

[45] Essler F H L and Korepin V E 1992 *Phys. Rev.* **B 46** 9147

[46] Essler F H L, Korepin V E and Schoutens K 1992 *Phys. Rev. Lett.* **68** 2960
[47] Essler F H L, Korepin V E and Schoutens K : cond-mat/9211001; 1994 Int. J. Mod. Phys. B 8 3205

[48] Pragacz P and Thorup A 1992 Adv. Math. 95 8

[49] King R C 1990 Invariant Theory and Tableaux, IMA Volumes in Mathematics and its Applications (Springer, New York), Vol. 19 ed Stanton D

[50] Hirota R 1981 J. Phys. Soc. Jpn. 50 3787

[51] Frenkel E and Reshetikhin N 1996 Commun. Math. Phys. 178 237

[52] Frenkel E and Reshetikhin N preprint 1997 q-alg/ 9708006

[53] Bares P A, Carmelo I M P, Ferrer J and Horsch P 1992 Phys. Rev. B 46 14624

[54] Zhang R B and Gould M D 1990 J. Math. Phys. 31 1889

[55] Links J R and Gould M D 1995 J. Math. Phys. 36 531

[56] Jüttner G, Klümper A and Suzuki J 1998 Nucl. Phys. B 512 581