Targeting C-type lectin receptors for cancer immunity

Huimin Yan1,2, Tomomori Kamiya1,3, Papawee Suabjakyong1,4 and Noriko M. Tsuji1 *

1 Immune Homeostasis Laboratory, Biomedical Research Institute, National Institute for Advanced Industrial Science and Technology (AIST), Tsukuba, Japan, 2 Institute for Liver Disease, Fifth Hospital of Shijiazhuang, Shijiazhuang, China, 3 Research Institute for Biomedical Sciences, Tokyo University of Science, Noda-shi, Japan, 4 Department of Clinical and Analytical Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba-shi, Japan

C-type lectin receptors (CLRs) are a large family of soluble and trans-membrane pattern recognition receptors that are widely and primarily expressed on myeloid cells. CLRs are important for cell–cell communication and host defense against pathogens through the recognition of specific carbohydrate structures. Similar to a family of Toll-like receptors, CLRs signaling are involved in the various steps for initiation of innate immune responses and promote secretion of soluble factors such as cytokines and interferons. Moreover, CLRs contribute to endocytosis and antigen presentation, thereby fine-tune adaptive immune responses. In addition, there may also be a direct activation of acquired immunity. On the other hand, glycans, such as mannose structures, Lewis-type antigens, or GalNAc are components of tumor antigens and ligate CLRs, leading to immunoregulation. Therefore, agonists or antagonists of CLRs signaling are potential therapeutic reagents for cancer immunotherapy. We aim to overview the current knowledge of CLRs signaling and the application of their ligands on tumor-associating immune response.

Keywords: C-type lectin receptors, innate immunity, cancer immunity, immunoregulation

Introduction

Interaction between tumors and the immune system is a complex and dynamic process. The immune system consists of innate and adaptive immunity whose cooperative interactions are required for eliminating pathogens efficiently. Similar protective mechanisms are effective against cancer cells; the endogenous non-self which potentially grow into harmful cell mass. To prevent and suppress such tumor progression, the immune system utilize host defense mechanisms (1, 2).

Protecting self from harmful pathogens, and facilitating the symbiosis with harmless environmental microorganisms are the original mission of immune system. Above all, the innate immune system provides the first line of host defense against invading pathogens, with use of soluble factors, anti-microbial peptides, compliments, and natural antibodies. Initial activation of innate immune cells are mediated via pattern recognition receptors (PRRs) by recognizing characteristic structures of microorganisms (3, 4). Known PRRs are categorized into Toll-like receptors (TLRs), Nod-like receptors (NLRs), RIG-I-like receptors (RLRs), and cyclic GMP–AMP synthase (cGAS) that has been recently identified.

Toll-like receptors and CLRs are involved in antigen capture, presentation, and activation of immune responses by enhancing cytokine/chemokine production and up-regulation of MHC class II molecules (5–7). NLRs predominantly recognize microbial products and endogenous danger signals, and enhance caspase activity to produce activated IL-1β (8). RLRs and cGAS are involved in cytosolic recognition of nucleic acids and other microbial components, i.e., RLRs are sensors of...
C-type lectin receptors and cancer immunity

Cytosolic dsRNA and cGAS are sensors of DNA, respectively, and both induce type I IFN production (9, 10).

C-type lectin receptors are a large family of receptors that encompass upwards of 1000 members with diverse functions including cell adhesion, complement activation, tissue remodeling, platelet activation, endocytosis, phagocytosis, and activation of innate immunity (11, 12). CLRs contain one or more C-type lectin-like domains, which are important for the recognition of specific carbohydrate structures of pathogens and self-antigens (13). Because of their specificity for glycans, such as mannose structures, Lewis-type antigens, or GalNAc (14, 15), CLRs may also mediate specific interactions with tumor antigens and facilitate tumor rejection. On the other hand, tumor cells devise multiple strategies to inhibit effector anti-tumor immune responses through modulating CLRs signaling (16, 17). It is therefore important to identify CLRs signaling toward immune evasion and regulate them in a specific way, while making the best application of beneficial side of CLRs signaling to mount anti-tumor immunity (Figure 1).

The Immune Regulation by CLRs and Signaling Pathways

C-type lectin receptors are widely expressed on myeloid cells, such as macrophages, neutrophils, and dendritic cells (DCs). They contain one or more C-type lectin-like domains, which are important for recognition and internalization of glycosylated antigens. Ligand activation of CLRs initiates intracellular signaling pathways that regulate the immune response. Mounting evidence has been shown that CLRs play roles in shaping innate immune response. Many CLRs such as dectin-1, dectin-2, dectin-3, Mincle, and DEC-205 have been demonstrated to trigger cellular immune responses, including DC maturation, chemotaxis, reactive oxygen species production, and inflammasome activation (18, 19). The innate immune cells stimulated through CLRs acquire the capacity to secrete pro-inflammatory and anti-inflammatory cytokines such as TNF-α, IL-12, IL-6, IL-1β, and IL-10 (20–22). On the other hand, ligand engagement of some CLRs, such as MICL and DCIR, has inhibitory effects on host immunity through controlling DC maturation, activation, and proliferation (23–25).

The ability of CLRs to exhibit activation or inhibition of immune response is regulated by the specific motifs in their cytoplasmic tails. Intracellular signaling through CLRs with immune-receptor tyrosine-based activation motif (ITAM) domains result in cell activation, whereas CLRs which possess immune-receptor tyrosine-based inhibition motif (ITIM) domains usually mediate inhibitory functions (18, 26). The tyrosine residues are phosphorylated by Src family kinases and a tri-molecular complex composed of CARD9, Bcl10, and MALT1 is involved in the subsequent activation of NF-κB and expression of inflammatory cytokines.

FIGURE 1 | Effects of CLRs signaling on dendritic cells and anti-cancer immune response. Stimulation of CLRs enhances endocytosis of antigens and up-regulate antigen presentation. It also increases the production of mediators such as cytokines and interferons. Thus, CLRs–ligands possibly contribute to enhance anti-tumor immunity via two independent mechanisms. One mechanism leads to enhancement of tumoricidal activity of NK cells and cytotoxic T lymphocytes (CTL) via induction of IFN-γ and target cancer cells directly. The other mechanism support maturation of anti-inflammatory cells and lower the level of local inflammation, blocking inflammation-induced cancer.
Yan et al. C-type lectin receptors and cancer immunity

FIGURE 2 | Signaling pathways associated with CLRs on dendritic cells. CLRs are dominantly expressed on myeloid cells such as dendritic cells and macrophages. MR, MGL, DC-SIGN, Mincle, Dectin-1, Dectin-2, MICL are expressed on cDCs, and BDCA-2 is expressed on pDCs, whereas DCIR is expressed on both cDCs and pDCs. Syk kinase/CARD9 pathway is activated by some CLRs signaling and mediates cell activation. ITAM-containing FcR are associated with Mincle, dectin-2, dectin-3 (MCL), and BDCA-2. Dectin-1 and DC-SIGN contain ITAM-like motifs whereas MICL and DCIR contain ITIM motifs in their cytoplasmic tails.

cytokines (6, 27, 28). Syk/CARD9 pathway is utilized by dectin-1, dectin-2, dectin-3, or Mincle and plays important roles in bridging the innate immunity and adaptive immunity. Dectin-1 directly signals through Syk using cytoplasmic ITAM and activates NF-kB, whereas dectin-2, dectin-2/dectin-3 heterodimer, and Mincle couple to Syk via the FcRγ and mediate NF-kB activation (29–32) (summarized and depicted in Figure 2). Signaling through Syk/IRF5 is crucial for the production of dectin-1-mediated IFN-β (33). Furthermore, it is reported that dectin-1 activates inflammasomes and caspase-1, leading to production of IL-1β (34).

Stimulation of these CLRs has been shown to drive the development of Th1, Th17, and CD8⁺ cytotoxic T lymphocytes (CTLs) cells immune responses through triggering the production of multiple cytokines (26, 35–37). In particular, dectin-1 has been found to activate NFAT also and enhance IL-2 and IL-10 production in DCs (38). A further study found that Src-homology phosphatase (SHP)-2 is an essential component, which facilitates the recruitment of Syk to the dectin-1 or the ITAM-containing adaptor FcRγ of dectin-2/3 and Mincle, and mediates the induction of Th17 responses (39). Given that T-cell immunity is essential for anti-tumor immunity, activation of ITAM-based CLRs signaling should support the development of protective immunity.

Recently, the important role of CLRs in inducing immunological tolerance has also been demonstrated. In the case of inhibitory CLRs containing ITIMs, such as DCIR (on dendritic cells) or MICL (on granulocytes and monocytes), SHP is an essential element. Ligation of these CLRs results in phosphorylation of ITIM domain, leading to SHP-1 and SHP-2 activation and inhibits cellular activation (25). Ligation of DCIR increases the number and function of Foxp3⁺ Treg cells, thus attenuates airway hyperresponsiveness and inflammation (40). BDCA-2 and DC-SIGN do not contain a cytoplasmic ITIM motif but signaling through these CLRs has been shown to modulate TLR signaling through alternative pathways (41) and be critical for the maintenance of Foxp3⁺ Treg cells (42, 43). Moreover, several CLRs such as DC-ASGPR, SIGNR1, and dectin-1 are shown to play an important role in triggering IL-10-producing suppressive CD4⁺ T cells (44–47). Recently, it is highlighted that inflammation-induced cancers are prevented by anti-inflammatory mechanisms including Tregs (48). Therefore, the anti-inflammatory pathway lead by CLRs activation may also become a therapeutic strategy for reducing the risk of such diseases (Figure 1).

Recognition of Tumor-Associated Antigen by CLRs

Tumors are recognized by the immune system through tumor antigens, including membrane proteins and altered carbohydrate molecules of glycoproteins or glycolipids on the cell surface (49). Tumor-associated carbohydrate antigens (TACAs) can be specifically recognized by CLRs. It has been shown that DC-SIGN recognizes carcinoembryonic antigen (CEA), a well-known
tumor-associated antigen overexpressed on almost all human colorectal, gastric, and pancreatic adenocarcinomas, 70% of non-small cell lung carcinomas, and 50% of breast carcinomas (50). DC-SIGN also exhibits high affinity for Mac-2-binding protein (Mac-2BP), which increases in patients with pancreatic, breast, and lung cancers (51).

Macrophage galactose type C-type lectin (MGL) is involved in the recognition and binding of tumor-associated Neu5Ac-Tn and Neu5Gc-Tn antigens (52). It has also been demonstrated that DCs are able to recognize cancer-specific glycosylation changes of the mucin 1 (MUC1), in particular, the carbohydrate sialyl Lewis X, and the sialyl TN epitope through MGL and DC-SIGN (53, 54). In addition, MUC1, CA-125, and TAG-72 show strong binding activity to mannose receptor (MR) and induce its internalization (55–57). Further, mannose-binding lectin (MBL) has been shown to recognize glycoproteins from a human colorectal carcinoma cell line in a fucose-dependent manner (58–60).

A critical role of dectin-1, a receptor for β-glucans (61, 62), has recently been shown in recognition of N-glycan structures on tumor cells. N-glycosidase treatment markedly reduced the binding of dectin-1 to tumor cells. Importantly, tumoricidal activity of splenocytes was reduced when tumor cells were pretreated with N-glycosidase (63).

Plasmacytoid dendritic cells (pDCs) are responsible for production of type I interferons (IFN-α and β), type III IFNs (IFN-λ/IL-28/29), and pro-inflammatory cytokines. Antigen presentation by CpG-activated pDC influenced anti-tumor immune responses by promoting efficient Th17 differentiation (64). A study showed that BDCA-2 exclusively expressed on pDCs binds tumor cells via asialo-oligosaccharides containing terminal residues of galactose (65) and potently suppresses the ability of pDCs to produce type I IFNs. Such direct regulation and/or cross-regulation of TLRs signaling by BDCA-2, an inhibitory CLR, may also suppress beneficial adaptive immune response in vivo (Figure 3).

CLRs in Induction of Anti-Tumor Immune Response

Effective immunological eradication of tumors requires NK cells and tumor-specific CD8+ and CD4+ T cells. The potential role of CLRs improving anti-tumor activity of immune cells has been investigated. A study showed that MGL interacts with tumor-associated Tn antigens and efficiently internalized with antigens for presentation to CD4+ T cells (5). Furthermore, engagement of MGL using α-N-acetylgalactosamine-carrying tumor-associated antigens promotes the up-regulation of maturation markers of DCs, decrease phagocytosis, enhance motility, and most importantly increase antigen-specific CD8+ T-cell activation (54).

DC-SIGN is another important CLR in inducing anti-tumor immune responses. It is reported that Lewis X oligosaccharides–heparanase complex activate and enhance the maturation of DCs, leading to enhancement of antigen-specific IFN-γ production and cytotoxic T-cell response. Furthermore, the modified DCs also significantly suppress the established tumor growth and prolong the life span of tumor-bearing mice (66). In addition, glycan-modified liposomes lead to efficient antigen presentation of DCs in the presence of LPS and augment CD4+ and CD8+ effector T-cell activation via DC-SIGN-dependent pathway (67). The potency of MR to improve anti-tumor immune responses has also been conducted. Cross-presentation of antigen and strong antigen-specific immune response were induced by conjugation of glycan ligands to MR (68), which resulted in an efficient anti-tumor response and tumor clearance (69).

Dectin-1 is one of the most important CLRs and its contribution to anti-tumor immunity has been intensively studied.
Dectin-1 engagement is apparent to up-regulate costimulatory molecules such as CD80, produce TNF-α, IL-6, IL-2, IL-10, IL-12, and IL-23, and elicit potent CTL responses that protect mice from tumor challenge (35). Targeting of dectin-1 with its ligands β-glucan has been shown to increase the infiltration of activated T cells into the tumor. On the other hand, the number of tumor-caused immunosuppressive regulatory T cells and myeloid-derived suppressor cells are decreased (70, 71). More recently, the critical role of dectin-1 on enhancement of NK-mediated killing of tumor cells has been demonstrated. Dectin-1 recognize N-glycan structures on the surface of some tumor cells, and cause the activation of IRF5 transcription factor and downstream gene induction, for the full-blown tumoricidal activity of NK cells (63).

As described above, MR and DC-SIGN are major players for both immune evasion and eradication of tumor cells. Further information is necessary to clarify how these CLRs signaling affect the direction of the immunological outcome. Whether cell types or expression level is important, or ligands and microenvironment is the key, or maybe both are closely related. It is known the nature of ligands (i.e., size, form, or chemical side chains of ligands) directly modulate CLRs signaling (62). Further investigation on such regulation of CLRs signaling should lead to make the best application of beneficial side of CLRs signaling to mount anti-tumor immunity.

CLR and Tumor Immune Evasion

C-type lectin receptors mediate beneficial effect on anti-tumor immunity via enhancement of type I and type II interferon production. On the other hand, CLRs signaling also play roles on induction of anti-inflammatory factors and molecules (23), and suppress TLRs-mediated protective immunity, thereby tolerating cancer cells escape from immune surveillance. Some examples of such process are induction of specific tolerance to tumor antigens, TGF-β and/or IL-10 production, down-regulation of MHC molecules, or up-regulation of FasL expression (72). Several studies have shown the involvement of CLRs on dysfunction of anti-tumor immune responses. The interaction between DC-SIGN and tumor-associated Le glycans results in enhanced IL-10 production, and impairs production of pro-inflammatory cytokines in tumor-associated macrophages (TAMs) from breast adenocarcinoma and melanoma patients, which leads to decrease cytokine production by TAMs (73). Ligation of DC-SIGN and tumor-associated Le glycans also strongly enhance LPS-induced anti-inflammatory cytokine secretion of IL-6 and IL-10 by monocyte-derived DCs (50). Therefore, ligation of DC-SIGN might cause tumor progression by contributing to the maintenance of an immunosuppressive environment.

Other CLR associated with tumor immune evasion is MR. The research study showed that tumor-activated liver sinusoidal endothelial cells (LSECs) affect liver sinusoidal lymphocytes (LSLs) anti-tumor cytotoxicity and IFN-γ/IL-10 secretion through MR-dependent mechanisms. Further, immunosuppressive effects of tumor-activated LSECs on LSLs were abrogated by way of anti-mouse MR antibodies or MR-/- mice (74).

Recently, the important role of CLRs on modulating the function of tumor-associated cells in tumor microenvironment has been demonstrated. TAMs are a major component of the tumor stroma, which contribute to the evasion of tumors from immune control by producing immune-suppressive cytokines such as IL-10 and TGF-β (75). It has been found that TAMs from human ovarian carcinoma abundantly express MR and dectin-1, MDL-1, MGL, DCIR. MR engagement by tumoral mucins and an agonist anti-MR antibody modulates cytokine production by TAMs toward an immune-suppressive profile: increase of IL-10, absence of IL-12, and decrease of the Th1-attracting chemokine CCL3, indicating that tumoral mucin-mediated activation of the MR on TAMs is important for their immune-suppressive phenotype (57).

In addition to expressing in immune cells, some CLRs have been shown to express on tumor cells, and involved in suppressing human immune system function. LSECtin, a cell-surface member of the C-type lectin DC-SIGN, has been found to express in B16 melanoma cells and inhibit tumor-specific T-cell responses (76). It is therefore important to identify such self-recognition toward immune evasion and regulate them in a specific way.

Genetic Variation of CLRs and Cancers

Host genetic background is one of important factors influencing susceptibility to cancer. Recently, study on single nucleotide polymorphisms (SNP) has been widely used to explore genetic susceptibility. SNPs in CLRs loci have been investigated to clarify its relationship to inflammatory responses. Because chronic inflammation is highly associated with the onset and progression of a multiplicity of human cancer, it is possible SNPs in CLRs associate with cancer susceptibility. Lu et al. (77) evaluated the correlation between colorectal cancer (CRC) risk and SNPs in three C-type lectin genes, i.e., DC-SIGN, MBL, and REG4. They found that polymorphisms in DC-SIGN gene promoter were associated with increased risk in CRC patients, while a SNP in REG4 might be a useful marker for CRC progression. The association of polymorphisms of genes encoding DC-SIGN with nasopharyngeal carcinoma risk has also been investigated. Three SNPs in the GG genotype of the rs2287886, AA genotype of the −939 promoter polymorphism, and the G allele of the rs735239 are connected with increased risk of nasopharyngeal carcinoma (78).

Mannose-binding lectin, soluble CLRs, is a plasma collectin and one of the key molecules involved in modulating innate immune system. Low level of serum MBL is associated with increased risk of colon cancer. Polymorphisms in the 3′-untranslated region of MBL2 at rs10082466, rs2120132, rs2099902, and rs10450310 reduce MBL plasma levels and activity (79). Odds ratio for homozygous variants versus wild-type ranged from 3.17 to 4.51, whereas the 3′-UTR region haplotype consisting of these four variants had an OR of 2.10.

Ligand Treatment or Blockade of CLRs and Cancer

Based on the immune-regulatory effects of CLRs on cellular immunity, application of their ligands to cancer therapy is a scheme of promising scope. Several CLR agonists or antagonists are candidates for anti-cancer drugs. β-glucan as dectin-1 agonists has been extensively investigated for their
anti-tumor activity. In murine lung carcinoma models, orally administered particulate β-glucans significantly inhibited tumor growth (71, 80). Both oral and intraperitoneal injection of highly purified soluble β-glucan derived from *Grifola frondosa* were reported to exert anti-tumor effects in experimental murine mammary and colon adenocarcinoma tumor models (70, 81). In addition to their direct effects on specific immunity, β-glucans significantly augment the therapeutic efficacy mediated by anti-tumor monoclonal antibodies (mAbs) in murine breast, liver metastasis, lung, and lymphoma tumor models as well as in human neuroblastoma, lymphoma, and melanoma xenograft models (82). In human, the combination therapy of β-glucan and conventional chemotherapy was reported to improve the long-term survival of patients with advanced gastric cancer as compared to chemotherapy alone (84).

Some mechanisms have been proposed to explain the therapeutic response of β-glucan on anti-tumor activity. First, β-glucans are capable of eliciting anti-tumor innate and adaptive immune response via dendin-1-dependent pathway. As discussed above, β-glucans play an essential role in activating DCs and macrophages both in vitro and in vivo, leading to enhanced antigen-specific CD4+ and CD8+ T-cell responses. Moreover, β-glucans modulate the suppressive tumor microenvironment and facilitate antitumoral cellular immunity.

The other important role of CLRs is to serve as sensors that transduce tumor antigen into DCs. Some CLRs, including MGL, MR, DNGR-1, and DEC-205, have been found to deliver exogenous antigens on MHC-I for inducing efficient CTL immune response and MHC-II for stimulation of CD4+ T cells (68, 85, 86). Moreover, targeted delivery of tumor antigens via DC-SIGN, DNGR-1, and DEC-205 with an appropriate adjuvant is capable to prevent development or mediate eradication of tumor in grafted mouse models (87–90).

Along with the rapid and thorough innate immune systems, targeting CLRs has emerged as a translational approach to treat a wide variety of cancers. However, there still are some problems yet resolved and further research is required for improving the anti-tumor strategies via CLRs. Some CLRs signaling results in immunosuppressive responses, for instance, and lead to tumor immune escape. Drugs targeting immune checkpoint molecules such as PD-1, PD-L1, and CTLA-4 have recently been demonstrated beneficial and safe (91, 92). The combination of strategy targeting CLRs and immune checkpoints may improve anti-tumor effectiveness.

Concluding Remarks

C-type lectin receptors are multifunctional receptors that have a key role in the recognition of pathogens and regulating innate and adaptive immune responses. In fact, abundant evidence supports that CLRs, especially on DCs, contribute to the recognition of TACA. CLRs also play important roles in inducing anti-tumor immune response and regulate tumor-promoting inflammation. On the other hand, the function of CLRs in tumor remains unknown, therefore CLRs may act as double-edged swords in tumor-associated immune response. Specific regulation of CLRs signaling by modulating tumor microenvironment such as glycoligands and immune cells should lead to the best application of CLRs biology.

Acknowledgments

This work was supported by a Grant-in-Aid from Strategic International Collaborative Research Program (SICORP), by the fund from Japan society for the promotion science 15H04504 (JSPS), by a Grant-in-Aid from Cross-ministerial Strategic Innovation Promotion Program (SIP), by Yakult Bio-Science Foundation, and by the Canon Foundation (to NMT).

References

1. Kalb ML, Glaser A, Stary G, Koszik F, Stingl G. TRAIL(+) human plasmacytoid dendritic cells kill tumor cells in vitro: mechanisms of imiquimod- and IFN-α-mediated antitumor reactivity. *J Immunol* (2012) **188**:1583–91. doi:10.4049/jimmunol.1102437
2. Baginska J, Vry E, Paggetti J, Medves S, Berchem G, Moussay E, et al. The critical role of the tumor microenvironment in shaping natural killer cell-mediated anti-tumor immunity. *Front Immunol* (2013) **4**:490. doi:10.3389/fimmu.2013.00490
3. Huang B, Zhao J, Unkoles JC, Feng ZH, Xiong H. TLR signaling by tumor and immune cells: a double-edged sword. *Oncogene* (2008) **27**:218–24. doi:10.1038/sj.onc.1210904
4. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. *Nat Immunol* (2010) **11**:373–84. doi:10.1038/ni.1863
5. van Vliet SJ, Aarnoudse CA, Broks-van den Berg VC, Boks M, Geijtenbeek TB, van Kooyk Y. MGL-mediated internalization and antigen presentation by dendritic cells: a role for tyrosine-5. *Eur J Immunol* (2007) **37**:2075–81. doi:10.1002/eji.200636838
6. Hardison SE, Brown GD. C-type lectin receptors orchestrate antifungal immunity. *Nat Immunol* (2012) **13**:817–22. doi:10.1038/ni.2369
7. Miyake Y, Toyonaga K, Mori D, Kakuta S, Hoshino Y, Oyamada A, et al. C-type lectin MCL1 is an FcRγ-coupled receptor that mediates the adjuvantivity of mycobacterial cord factor. *Immunity* (2013) **38**:1050–62. doi:10.1016/j.immuni.2013.03.010
8. Koizumi Y, Toma C, Higa N, Nohara T, Nakasone N, Suzuki T. Inflammasome activation via intracellular NLRs triggered by bacterial infection. *Cell Microbiol* (2012) **14**(2):149–54. doi:10.1111/j.1462-5822.2011.01707.x
9. Chan YK, Gack MU. RIG-I-like receptor regulation in virus infection and immunity. *Curr Opin Virol* (2015) **12**(C):7–14. doi:10.1016/j.coviro.2015.01.004
10. Li XD, Wu J, Gao D, Wang H, Sun L, Chen ZI. Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. *Science* (2013) **341**(6152):1390–4. doi:10.1126/science.1244040
11. Weis WI, Taylor ME, Drickamer K. The C-type lectin superfamily. *Immunol Rev* (1998) **163**(39):19–34. doi:10.1111/j.1600-065X.1998.tb01185.x
12. Zelensky AN, Gready JE. The C-type lectin-like domain superfamily. *FEBS J* (2005) **272**(8):6179–217. doi:10.1111/j.1742-4658.2005.05031.x
13. Osorio F, Reis e Sousa C. Myeloid C-type lectin receptors in pathogen recognition and host defense. *Immunology* (2011) **34**:851–64. doi:10.1016/j.imun.2011.05.001
14. Denda-Nagai K, Aida S, Saka K, Suzuki K, Moriyama S, Osanai H, et al. Distribution and function of macrophage galactose-type C-type lectin receptors. *Cell Microbiol* (2005) **7**(11):2085–97. doi:10.1111/j.1462-5822.2005.00011.x
15. Miyake Y, Toyonaga K, Mori D, Kakuta S, Hoshino Y, Oyamada A, et al. C-type lectin MCL1 is an FcRγ-coupled receptor that mediates the adjuvantivity of mycobacterial cord factor. *Immunity* (2013) **38**:1050–62. doi:10.1016/j.immuni.2013.03.010
16. Koizumi Y, Toma C, Higa N, Nohara T, Nakasone N, Suzuki T. Inflammasome activation via intracellular NLRs triggered by bacterial infection. *Cell Microbiol* (2012) **14**(2):149–54. doi:10.1111/j.1462-5822.2011.01707.x
17. Chan YK, Gack MU. RIG-I-like receptor regulation in virus infection and immunity. *Curr Opin Virol* (2015) **12**(C):7–14. doi:10.1016/j.coviro.2015.01.004
18. Li XD, Wu J, Gao D, Wang H, Sun L, Chen ZI. Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. *Science* (2013) **341**(6152):1390–4. doi:10.1126/science.1244040
19. Weis WI, Taylor ME, Drickamer K. The C-type lectin superfamily. *Immunol Rev* (1998) **163**(39):19–34. doi:10.1111/j.1600-065X.1998.tb01185.x
20. Zelensky AN, Gready JE. The C-type lectin-like domain superfamily. *FEBS J* (2005) **272**(8):6179–217. doi:10.1111/j.1742-4658.2005.05031.x
21. Osorio F, Reis e Sousa C. Myeloid C-type lectin receptors in pathogen recognition and host defense. *Immunology* (2011) **34**:851–64. doi:10.1016/j.imun.2011.05.001
22. Denda-Nagai K, Aida S, Saka K, Suzuki K, Moriyama S, Ono-Puthinan S, et al. Distribution and function of macrophage galactose-type C-type lectin 2 (MGL2/CD201b): efficient uptake and presentation of glycosylated antigens by dendritic cells. *J Biol Chem* (2010) **285**(19):204–204. doi:10.1074/jbc.M110.113613
15. Geijtenbeek TB, Van Vliet SJ, Koppel EA, Sanchez-Hernandez M, Vandenbroucke-Grauls CM, Appelmelk B, et al. Mycobacteria target DC-SIGN to suppress dendritic cell function. J Exp Med (2003) 197:3–17. doi:10.1084/jem.2002122

16. Kerkar SP, Restifo NP. Cellular constituents of immune escape within the tumor microenvironment. Cancer Res (2012) 72:3125–30. doi:10.1158/0008-5472.CAN-11-4094

17. Wang W, Guo H, Geng J, Wei H, Sun R, et al. Tumor-released Galectin-3, a soluble inhibitory ligand of human Nkp30, plays an important role in tumor escaping from NK cell attack. J Biol Chem (2014) 289:33311–9. doi:10.1074/jbc.M114.603464

18. Sancho D, Reis e Sousa C. Signaling by myeloid C-type lectin receptors in immunity and homeostasis. Annu Rev Immunol (2012) 30:491–529. doi:10.1146/annurev-immunol-031110-103152

19. Zhu LL, Zhao XQ, Jiang C, You Y, Chen XP, Jiang YY, et al. C-type lectin receptors Dectin-3 and Dectin-2 form a heterodimeric pattern-recognition receptor complex for host defense against fungal infection. Immunity (2013) 39(2):324–34. doi:10.1016/j.immuni.2013.05.017

20. Irfim DC, Joosten LA, Kullberg BJ, Jacobs L, Jensen T, Williams DL, et al. Candida albicans primes TLR cytokine responses through a Dectin-1/Raf-1-mediated pathway. J Immunol (2013) 190:4129–35. doi:10.4049/jimmunol.1202611

21. Yonekawa A, Saijo S, Hoshino Y, Miyake Y, Ishikawa E, Suzukawa M, et al. Dectin-2 is a direct receptor for mannose-capped lipoparabumin of mycobacteria. Immunity (2014) 41:402–13. doi:10.1016/j.immuni.2014.08.005

22. Behler F, Steinwede K, Balboa L, Ueberberg B, Maus R, Kirchhof G, et al. Role of Mincle in alveolar macrophage-dependent innate immunity against mycobacterial infections in mice. J Immunol (2012) 189:3121–9. doi:10.4049/jimmunol.1201399

23. Yan H, Ohno N, Tsuji NM. The role of C-type lectin receptors in immune recognition pathway for C-type lectins. Cell Microbiol (2013) 15(3):533–7. doi:10.1111/j.1462-5822.2013.01403.0014

24. Marshall AS, Willment JA, Pye Z, Denney KM, Reid DM, Dri P, et al. Human MICL (CLEC12A) is differentially glycosylated and is down-regulated following cellular activation. Eur J Immunol (2006) 36:2159–69. doi:10.1002/eji.200535628

25. Lambert AA, Barabé F, Gilbert C, Tremblay MJ. DCIR-mediated enhancement of alpha-beta TCR recognition of beta-2-microglobulin-PE-coupled target cells. Eur J Immunol (2010) 40:3504–18. doi:10.1002/eji.201041888

26. Geijtenbeek TB, Gringhuis SI. Signaling through C-type lectin receptors: shaping immune responses. Nat Rev Immunol (2009) 9:645–73. doi:10.1038/nri2569

27. Drummond RA, Brown GD. Signalling C-type lectins in antimicrobial immunity. PLoS Pathog (2013) 9:e1003417. doi:10.1371/journal.ppat.1003417

28. Hoving JC, Wilson GJ, Brown GD. Signalling C-type lectin receptors, microbial recognition and immunity. Cell Microbiol (2014) 16:185–94. doi:10.1111/cmi.12249

29. Rogers NC, Slack EC, Edwards AD, Nolte MA, Schweighoffer E, et al. Dectin-2 is a direct receptor for mannose-capped lipoparabumin of mycobacteria. Immunity (2014) 41:402–13. doi:10.1016/j.immuni.2014.08.005

30. Hara H, Saito T. CARD9 versus CARMA1 in innate and adaptive immunity. Annu Rev Immunol (2014) 32:465–79. doi:10.1146/annurev-immunol-031113-103515

31. Sato K, Yang XL, Yudate T, Chung JS, Wu J, Luby-Phelps K, et al. Dectin-2 is a direct receptor for mannose-capped lipoparabumin of mycobacteria. Immunity (2014) 41:402–13. doi:10.1016/j.immuni.2014.08.005

32. Saijo S, Ikeda S, Yamabe K, Kikuta S, Ishigame H, Akiyama T, et al. Recognition of alpha-beta TCR recognition of beta-2-microglobulin-PE-coupled target cells. Eur J Immunol (2010) 40:3504–18. doi:10.1002/eji.201041888

33. Geijtenbeek TB, Koppelaar EA, Sanchez-Hernandez M, Vandenbroucke-Grauls CM, Appelmelk B, et al. Mycobacteria target DC-SIGN to suppress dendritic cell function. J Exp Med (2003) 197:3–17. doi:10.1084/jem.2002122
55. Chiappa M, Bianchi G, Doni A, Del Prete A, Sironi M, Laskarin G, et al. Cross-linking of the mannose receptor on monocye-deprived dendritic cells activates an anti-inflammatory immunosuppressive program. J Immunol (2003) 171:4552–60. doi: 10.4049/jimmunol.171.9.4552

56. Hilthold EM, Vlad AM, Ciborowski P, Watkins SC, Finn OJ. The mechanism of unresponsiveness to circulating tumor antigen MUC1 is a block in intracellular sorting and processing by dendritic cells. J Immunol (2000) 165:3730–41. doi: 10.4049/jimmunol.165.7.3730

57. Allavena P, Chiappa M, Bianchi G, Solinas G, Fabbri M, Laskarin G, et al. Engagement of the mannose receptor by tumor mucins activates an immune suppressive phenotype in human tumor-associated macrophages. Clin Dev Immunol (2010) 2010:547179. doi: 10.1155/2010/547179

58. Terada M, Khoo KH, Inoue R, Chen CL, Yamada K, Sakaguchi H, et al. Characterization of oligosaccharide ligands expressed on SW116 cells recognized by mannann-binding protein. A highly fucosylated polyacatosamine type N-glycan. J Biol Chem (2005) 280:10897–913. doi: 10.1484/Mc14.302200

59. Kawasaki N, Lin CW, Inoue R, Khoo KH, Kawasaki N, Ma BY, et al. Highly fucosylated N-glycan ligands for mannann-binding protein expressed specifically on CD62D (DPFP1) isolated from a human colorectal carcinoma cell line, SW116. Glycobiology (2009) 19:437–50. doi: 10.1093/glycob/cwn158

60. Nonaka M, Imaeda H, Matsumoto S, Yong MA, Kawasaki N, Mekata E, et al. Mannann-binding protein, a C-type lectin receptor, recognizes primary colorectal cancers through tumor-associated Lewis glycans. J Immunol (2014) 192:1294–301. doi: 10.4049/jimmunol.1203023

61. Brown GD. Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat Rev Immunol (2006) 63:43–50. doi: 10.1484/Mr1745

62. Goodridge HS, Reyes CN, Becker CA, Katsumoto TR, Ma J, Wolf AJ, et al. Activation of the innate immune receptor Dectin-1 upon formation of a ‘phagocytic synapse’. Nature (2011) 472(7344):471–5. doi: 10.1038/nature10071

63. Chiba S, Ikushima H, Ueki K, Yanai H, Kimura Y, Hangai S, et al. Recognition of tumor cells by Dectin-1 orchestrates innate immune cells for anti-tumor responses. Elife (2014) e04177. doi: 10.7554/eLife.04177

64. Guery L, Dubrot J, Brighouse D, Malinge P, Irla M, et al. Ag-1 plays a role in tumour immune evasion. Nature (2014) 515:491–5. doi: 10.1038/nature13862

65. Riboldi E, Daniele R, Parola C, Inforzato A, Arnold PL, Bosisio D, et al. Engagement of the mannose receptor by tumoral mucins activates an immune suppressive phenotype in human tumor-associated macrophages. J Immunol Today (2015) 18(21):2739–45.

66. Oba K, Kobayashi M, Matsui T, Kodera Y, Sakamoto J. Individual patient based meta-analysis of lentinan for unresectable/recurrent gastric cancer. Anticancer Res (2009) 29(7):4171–6. doi: 10.4021/141758

67. Modak S, Koehne G, Vickers A, O'Reilly RJ, Cheung NK. Rituximab therapy of lymphoma is enhanced by orally administered (1–3,1–4)-D-beta-glucan. Leuk Res (2005) 29:679–83. doi: 10.1016/j.leukres.2004.10.008

68. Inoue M, Tanaka Y, Sugita N, Yamashita M, Yamakawa T, Minagawa J, et al. Improvement of long-term prognosis in patients with ovarian cancers by adjuvant sizofiran immunotherapy: a prospective randomized controlled study. Biotherapy (1993) 6(1):13–8. doi: 10.1080/08949399300687381

69. Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, et al. PD-1 blockade as a treatment for the non-small-cell lung cancer. N Engl J Med (2015) 372(21):208–28. doi: 10.1056/NEJMoa1501824
Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.