In Vivo Cytotoxic T Lymphocyte Elicitation by Mycobacterial Heat Shock Protein 70 Fusion Proteins Maps to a Discrete Domain and Is CD4+ T Cell Independent

By Qian Huang,* Joan F.L. Richmond,* Kimiko Suzue,* Herman N. Eisen,†§ and Richard A. Young*‡

From the *Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142; and the †Department of Biology and the §Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Abstract

To gain insights into the mechanisms by which soluble heat shock protein (hsp) fusions can elicit CD8+ cytotoxic T lymphocytes (CTLs) against the fusion partner, mycobacterial (Mycobacterium tuberculosis) hsp70 was dissected to ascertain whether a particular hsp domain is necessary, and knockout mice were used to determine whether the fusion protein’s immunogenicity is dependent on CD4+ T lymphocytes. We found that the ability to elicit CD8+ CTLs depends on a discrete 200-amino acid protein domain, indicating that the fusion protein’s immunogenicity for CD8+ T cells does not require coupled chaperone function or peptide binding. Further, we found that ovalbumin (OVA).hsp70 fusion protein elicited anti-OVA CD8+ CTLs about equally well in CD4 knockout and wild-type C57BL/6 mice, and also when the hsp70 was of murine (self) origin. The ability of hsp70 fusion proteins to elicit CD4-independent CTL responses suggests that hsp70 fusion proteins may be useful for immunological prophylaxis and therapy against disease in CD4+ T cell–deficient individuals.

Key words: CD8+ • CD4+ • domain • knockout • vaccine

Introduction

There is now substantial evidence that heat shock proteins (hsp) isolated from tumors can be used as adjuvant-free antitumor vaccines in animals; hsp70 and the distantly related chaperones gp96 and calreticulin share this immunostimulatory activity (1–6). The fusion of large polypeptides (80–110 amino acids [aa] in length) to mycobacterial hsp70 (TBhsp70) creates potent immunogens that can elicit MHC class I–restricted, CD8+ CTL responses sufficient to mediate rejection of tumors expressing the fusion partner (7). The need for more effective immunological prophylaxis and therapy for cancer and infectious diseases caused by intracellular pathogens has spurred intense investigation of immunogens and immunization strategies aimed at eliciting effective CD8+ CTL responses. For example, CTL epitopes have been expressed in the context of Ty virus–like particles, or tagged with lipids (8). Antigenic peptides have been fused to toxins (9–11), cytokines (12, 13), and proteins that cross cell membranes, such as HIV-1 Tat (14), and hsp70 (7).

The means by which soluble hsp70 fusion proteins stimulate CD8+ CTL responses are unknown. Among the possible mechanisms are (a) strong hsp-specific CD4+ helper cell responses that enhance what might otherwise be a minimal response to the soluble proteins (15–18), and (b) the chaperone function of hsps that delivers the fusion protein to intracellular compartments of APCs for processing into short peptides and loading onto MHC class I (19, 20). We demonstrate here that hsp70 fusion proteins can elicit CD8+ CTLs in the absence of CD4+ T lymphocytes and that this function resides in a 200-aa segment of TBhsp70, indicating that chaperone activity is not required.

Materials and Methods

Expression Vectors. All constructs used to produce OVA.hsp70 fusion proteins were made in the bacterial expression plasmid pKS11h (7). Fusion constructs, consisting of OVA fused to the N terminus of various segments of hsp70, were inserted downstream of the histidine tag sequence. A portion of OVA (aa 230–359) was amplified from pOV230 (21) by PCR using upstream primer oQH025 and the downstream primer oQH027 (the sequences of these and other PCR primers are listed at the end of Materials and Methods). The OVA expression vector pQH07...
Results and Discussion

Our previous studies demonstrated that soluble, adjuvant-free TBhsp70 fusion proteins elicit substantial immune responses, including CD8+ CTLs, in mice (7, 16). The basis for the effectiveness of hsp70 fusions is unclear, as most soluble proteins do not elicit significant CD8+ T cell responses (for reviews, see references 22 and 23). Although there is evidence that the hsp moiety of TBhsp fusion proteins acts as an effective carrier in the classic sense, enhancing B cell responses to chemically conjugated pneumococcal polysaccharides (18) and malarial polypeptide (15), carriers are not known to stimulate CTL production. We thought it more likely that hsp70 fusion proteins provide hsp70-specific cognate CD4+ T cell help to OVA-specific CD8+ CTLs by activating shared professional APCs, as suggested by many and demonstrated recently (24–26).

We tested this cognate help hypothesis using CD4-deficient (knockout) mice (CD4-/-). Wild-type C57BL/6, CD4-/-, and β2m-/- mice were each immunized with OVA or OVA.TBhsp70 fusion protein. As expected, immunization of wild-type mice with OVA.TBhsp70, but not OVA, generated CTLs specific for the immunodominant epitope of OVA (SIINFEKL; Fig. 1 A). The same results were obtained when the CD4-/- mice were immunized with OVA.TBhsp70 (Fig. 1 B), β2m-/- mice, which have very few CD8+ T cells, did not develop OVA-specific CTLs after immunization with OVA.TBhsp70 or with OVA alone (Fig. 1 C).

Previous efforts to determine whether CD4+ T cell help is necessary for generation of CD8+ CTLs have drawn differing conclusions. CD4 knockout mice exhibit a range of CD8+ CTL responses: CD4-dependent, weakly dependent, or independent. CTL responses to murine hsp70 fusion proteins. Although it is possible that CD4-/CD8- double-negative T cells provide weak residual help in CD8+ mice, it is unlikely that such weak help is responsible for the anti-OVA CTLs seen in Fig. 1 B. The similarity of CD8+ T cell responses to OVA.TBhsp70 in CD4-/- and wild-type mice suggests that hsp70 fusion proteins are relatively
potent CD8+ CTL immunogens. A similar result, showing that CD4+ T cells are not required for the CD8+ CTL response elicited by another mycobacterial heat shock fusion protein (hsp65 fused to a polypeptide containing an epitope for 2C CD8+ T cells), has also been obtained using CD4-/- mice (Cho, B., personal communication). In addition, the ability of a nonhomologous hsp, gp96, to elicit tumor rejection requires CD4+ T cells at tumor challenge, but not during priming with tumor-derived gp96 (2).

It has been proposed that the immunostimulatory effects of certain hsp fusion proteins may be due to the bacterial origin of the hsp moiety (20). We examined this possibility by making OVA.hsp70 fusion proteins with the murine homologue of TBhsp70 (37), here referred to as mhsp70. Immunization of wild-type C57BL/6 mice with OVA.mhsp70, but not OVA, elicited CTL responses equivalent to those generated by the TBhsp70 fusion protein (Fig. 2 A). The response to OVA.mhsp70 was also independent of CD4 (Fig. 2 B). Since a CD4+ T cell response to self (murine) hsp70 is unlikely, the effectiveness of the murine hsp70 fusion protein is in accord with the more direct evidence for CD4 independence obtained using CD4-/- mice (see above).

The ability of hsp fusion proteins to elicit CTLs against the fusion partner may be a consequence of the hsp moieties' chaperone activity, assuming that this activity is preserved in the fusion protein. To investigate this issue, we divided TBhsp70 into four linear segments and fused OVA to the NH2 terminus of each segment, creating OVA.TBhsp70s I–IV (Fig. 3 A). Each segment corresponds to a distinct structural domain of hsp70, as described by Flaherty et al. (38) and Zhu et al. (39). As shown in Fig. 3 A, the NH2-terminal ATP-binding domain was divided into its two structural lobes I (aa 1–166) and II (aa 161–370). The COOH-terminal peptide-binding domain was divided into a β-sandwich domain, III (aa 360–517), and an α-helical domain, IV (aa 510–625).

Six groups of three C57BL/6 mice were immunized with 120 pmol of OVA, OVA.TBhsp70, and OVA fused to segments I, II, III, and IV. CTL assays showed that splenocytes from mice immunized with OVA.TBhsp70 and OVA fused to segment II lysed T2-Kb cells in the presence, but not absence, of the OVA Kb epitope, SIINFEKL (Fig. 4). In contrast, cells from mice immunized with OVA and OVA fused to segments I, III, and IV were ineffective, even at an E/T ratio of 80:1. Levels of cytolysis obtained with splenocytes from mice immunized with OVA.TBhsp70 and OVA fused to segment II were indistinguishable (Fig. 4). These results show that half of the ATP-binding domain of TBhsp70 (aa 161–370) is sufficient to stimulate substantial production of anti-OVA CTL response in the absence of adjuvant.

Since it is highly unlikely that segment II retains chaperone activity, we conclude that the ability of the fusion proteins to elicit CD8+ T cells does not depend on the hsp moieties' chaperone properties. How then can one account for the ability of these heat shock fusion proteins to act as CD8+ CTL immunogens? Our data would support a model in which hsp70 bypasses the need for CD4+ help by directly or indirectly activating or affecting the maturation state of APCs, such as dendritic cells, in a manner similar to some viruses (40). According to this model, hsp70 fusion proteins may activate a few CD8+ T cells to release immunostimulatory cytokines in draining LNs. These cytokines may, in turn, provide the help required to upregulate expression of costimulatory molecules on APCs in the LN.
leading to further CD8\(^{+}\) T cell activation (40). Recent studies demonstrate that exposure of macrophages to bacterial and human hsp60 (41, 42), murine hsp70, and gp96 (3, 43) increases expression of adhesion molecules and cytokines. We are currently examining expression of costimulatory molecules, adhesion molecules, and cytokines by APCs after exposure to fusion proteins made with full-length hsp70 or segment II.

Whatever the underlying mechanism, the ability of hsp70 fusion proteins to elicit CTL responses in the absence of CD4\(^{+}\) cells suggests that hsp70 may be a useful vehicle for the development of prophylaxis and therapy of HIV-1 and its opportunistic infections. Infection by HIV and its cousin simian immunodeficiency virus (SIV) can lead to a substantial reduction in CD4\(^{+}\) T cells, thereby crippling the host’s immune response to HIV and other pathogens. This loss of CD4\(^{+}\) cells is thought to impair the development and maintenance of CD8\(^{+}\) CTL responses (44). Recent studies conclude that strong HIV-specific CTL responses are required to keep HIV-1 infection in check and to destroy HIV-infected cells (45–50). It will thus be of interest to determine whether hsp70 fusion constructs can elicit anti-SIV CTL responses in SIV-infected macaques having low CD4\(^{+}\) T cell counts, and if similar effects are observed in HIV-infected humans.

We are most grateful to Carol Mc Kinley for her generous and expert assistance with CTL assays. We thank Susan Byrne for her help with protein purification. We also thank Nir Hacohen and Jerry Nau for their many valuable discussions and insights.

This work was supported by National Institutes of Health grants AI44476 and AI44477 and by StressGen Biotechnologies.

Submitted: 23 September 1999
Revised: 14 October 1999
Accepted: 19 October 1999

References

1. Udono, H., and P.K. Srivastava. 1993. Heat shock protein 70–associated peptides elicit specific cancer immunity. J. Exp. Med. 178:1391–1396.
2. Udono, H., D.L. Levey, and P.K. Srivastava. 1994. Cellular requirements for tumor-specific immunity elicited by heat shock proteins: tumor rejection antigen gp96 primes CD8\(^{+}\) T cells in vivo. Proc. Natl. Acad. Sci. USA. 91:3077–3081.
3. Suto, R., and P.K. Srivastava. 1995. A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science. 269:1585–1588.
4. Blanchere, N.E., Z. Li, R.Y. Chandawarkar, R. Suto, N.S. Jaikaria, S. Basu, H. Udono, and P.K. Srivastava. 1997. Heat shock protein–peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte responses in SIV-infected macaques having low CD4\(^{+}\) T cell counts, and if similar effects are observed in HIV-infected humans.
10. King, C.A., M.B. Spellerberg, D. Zhu, J. Rice, S.S. Sahota, A.R. Thompsett, T.J. Hamblin, J. Reid, and F.K. Stevenson. 1998. DNA vaccines with a single-chain Fv fused to fragment C of tetanus toxin induce protective immunity against lymphoma and myeloma. Nat. Med. 4:1281–1286.

11. Carbonetti, N.H., T.J. Irish, C.H. Chen, C.B. O’Connell, and J. Rice. 1998. Intracellular delivery of a cytolytic T-lymphocyte epitope peptide by pertussis toxin to major histocompatibility complex class I without involvement of the cytotoxic class I antigen processing pathway. Inf. Immun. 67:602–607.

12. Maecker, H.T., D.T. Umetsu, R.H. De Kruyff, and S. Levy. 1996. Antigen presentation pathway to class I by conjugation to an HIV tat peptide. J. Immunol. 159:1666–1668.

13. Ballad, J.D., R.J. Collier, and M.N. Starnbach. 1996. Antigen presentation pathway to class I by conjugation to an HIV tat peptide. J. Immunol. 159:1666–1668.

14. Ballard, J.D., R.J. Collier, and M.N. Starnbach. 1996. Antigens that are presented to T cells by class I MHC molecules can be induced to cause lysis of tumor cells. J. Immunol. 156:873–876.

15. Horwitz, M.S., L.M. Bradley, J. Harbertson, J. Kralh, J. Lee, and N. Sarvetnick. 1997. Functional analysis of T lymphocyte subsets in antiviral host defense. J. Immunol. 158:2278–2281.

16. Krieger, N.R., D-P. Yin, and C.G. Fathman. 1996. CD4+ T-helper cell function in vivo: differential requirements for induction of antiviral cytotoxic T cell and antibody responses. J. Virol. 60:2102–2106.

17. Ahmed, R., L.D. Butler, and L. Bhattacharyya. 1994. T + T helper cell induction in vivo: requirements for induction of antiviral cytotoxic T cell and antibody responses. J. Virol. 60:2102–2106.

18. Leist, T.P., S.P. Cobbold, H. Waldmann, M. Aguet, and R.M. Zinkernagel. 1987. Functional analysis of T lymphocyte subsets in antiviral host defense. J. Immunol. 157:2278–2281.

19. Ahmed, R., L.D. Butler, and L. Bhattacharyya. 1994. T + T helper cell function in vivo: differential requirements for induction of antiviral cytotoxic T cell and antibody responses. J. Virol. 60:2102–2106.

20. Leist, T.P., S.P. Cobbold, H. Waldmann, M. Aguet, and R.M. Zinkernagel. 1987. Functional analysis of T lymphocyte subsets in antiviral host defense. J. Immunol. 157:2278–2281.

21. Kündig, S.R. Sambhara, A. Narendran, A. Arabian, A. Wakeham, C.J. Page, R.M. Zinkernagel, et al. 1991. Normal development and function of CD8+ cells but markedly decreased helper cell activity in mice lacking CD4. Nat. Immunol. 5:295–302.

22. Kol, A., T. Bourcier, A.H. Lichtman, and P. Libby. 1990. Chlamydial and human heat shock protein 60s activate human vascular endothelium, smooth muscle cells, and mac-
43. Breloer, M., B. Fleischer, and A. von Bonin. 1999. In vivo and in vitro activation of T cells after administration of Ag-negative heat shock proteins. J. Immunol. 162:3141–3147.

44. Kalams, S.A., S.P. Buchbinder, E.S. Rosenberg, J.M. Billingsley, D.S. Colbert, N.G. Jones, A.K. Shea, A.K. Trocha, and B.D. Walker. 1999. Association between virus-specific cytotoxic T-lymphocyte and helper responses in human immunodeficiency virus type 1 infection. J. Virol. 73:6715–6720.

45. Harrer, T., E. Harrer, S.A. Kalams, T. Elbeik, S.I. Staprans, M.B. Feinberg, Y. Cao, D.D. Ho, T. Yilmaz, A.M. Caliendo, et al. 1996. Strong cytotoxic T cell and weak neutralizing antibody responses in a subset of persons with stable nonprogressing HIV type 1 infection. AIDS Res. Hum. Retroviruses. 12:585–592.

46. Harrer, T., E. Harrer, S.A. Kalams, P. Barbosa, A. Trocha, R.P. Johnson, T. Elbeik, M.B. Feinberg, S.P. Buchbinder, and B.D. Walker. 1996. Cytotoxic T lymphocytes in asymptomatic long-term nonprogressing HIV-1 infection. Breadth and specificity of the response and relation to in vivo viral quasispecies in a person with prolonged infection and low viral load. J. Immunol. 156:2616–2623.

47. Yang, O.O., S.A. Kalams, M. Rosenzweig, S. Trocha, N. Jones, M. Koziel, B.D. Walker, and R.P. Johnson. 1996. Efficient lysis of human immunodeficiency virus type 1-infected cells by cytotoxic T lymphocytes. J. Virol. 70:5799–5806.

48. Yang, O.O., S.A. Kalams, A. Trocha, H. Cao, A. Luster, R.P. Johnson, and B.D. Walker. 1997. Suppression of human immunodeficiency virus type 1 replication by CD8+ cells: evidence for HLA class I-restricted triggering of cytolytic and noncytolytic mechanisms. J. Virol. 71:3120–3128.

49. Matano, T., R. Shibata, C. Siemon, M. Connors, H.C. Lane, and M.A. Martin. 1998. Administration of an anti-CD8 monoclonal antibody interferes with the clearance of chimeric simian/human immunodeficiency virus during primary infections of rhesus macaques. J. Virol. 72:164–169.

50. Wagner, L., O.O. Yang, E.A. Garcia-Zepeda, Y. Ge, S.A. Kalams, B.D. Walker, M.S. Pasternack, and A.D. Luster. 1998. Beta-chemokines are released from HIV-1-specific cytotoxic T cell granules complexed to proteoglycans. Nature. 391:908–911.