Abstract. Motivated by the question of constructing certain rational functions (modular units) on the moduli stack of Drinfeld shtukas, we introduce the notion of toy shtukas. We prove basic properties of the moduli scheme of toy shtukas. Analogously to horospherical divisors on the moduli stack of Drinfeld shtukas, there are toy horospherical divisors on the moduli scheme of toy shtukas. We describe the space of principal toy horospherical divisors. There is a canonical morphism from the moduli stack of Drinfeld shtukas to the moduli scheme of toy shtukas. Our main result is a description of the space of principal horospherical divisors obtained from the pullback.

0. Introduction

0.1. Notation and conventions. The following notation and conventions will be used throughout the article.

Fix a prime number p and fix a finite field \mathbb{F}_q of characteristic p with q elements.

For any vector space V over \mathbb{F}_q, we denote P_{V^*} to be the set of codimension 1 subspaces of V, and we denote P_V to be the set of dimension 1 subspaces of V.

For any scheme S over \mathbb{F}_q, we denote Fr_S to be its Frobenius endomorphism relative to \mathbb{F}_q. For two schemes S_1 and S_2 over \mathbb{F}_q, $S_1 \times S_2$ denotes the product of S_1 and S_2 over \mathbb{F}_q, and by a morphism $S_1 \rightarrow S_2$ we mean a morphism over \mathbb{F}_q.

0.2. The notion of toy shtukas. Let V be a finite dimensional vector space over \mathbb{F}_q. Let Grass_V^n be the Grassmannian for subspaces of V of dimension n. We define a closed subscheme $\text{ToySh}_V^n \subset \text{Grass}_V^n$ whose $\overline{\mathbb{F}_q}$-points consist of subspaces $L \subset V \otimes \overline{\mathbb{F}_q}$ such that $L \cap \text{Fr}^*L$ has codimension at most 1 in L. (See Definition 1.1.1 for the description of $\text{ToySh}_V^n(S)$ for any scheme S over \mathbb{F}_q.)

A point of ToySh_V^n is called a toy shtuka for V of dimension n.

Analogously to Drinfeld shtukas, we have the notion of left and right toy shtukas, and there are partial Frobeniuses relating them. See Section 1 and Section 2.5 for more details.

0.3. Motivation. The motivation of our work is to construct certain rational functions on the moduli stack of Drinfeld shtukas and use them to generate linear relations between the classes of horospherical divisors to give an explicit version of Manin-Drinfeld theorem for shtukas. These rational functions are somewhat similar
to modular units. In [4], some rational functions are constructed and their divisors are calculated. The notion of toy shtukas introduced in this article not only allows us to construct more rational functions, but also gives more insight into the problem. We hope that Theorem 19.4.1 gives all principal horospherical $\mathbb{Z}[\frac{1}{p}]$-divisors.

0.4. Contents. The definition of toy shtukas is given in Section 1. In Section 2, we prove basic properties of ToySht$_V^n$. Analogously to horospherical divisors on the stack of shtukas, we have toy horospherical divisors on the scheme of toy shtukas. We give more details here. Let V be a finite dimensional vector space over \mathbb{F}_q with $\dim_{\mathbb{F}_q} V \geq 3$. Let $1 \leq n \leq N - 1$. For $J \in \mathbb{P}_V$, those toy shtukas for V of dimension n which contain J form a codimension 1 subscheme of ToySht$_V^n$. There is a similar statement for any $H \in \mathbb{P}_V^*$. When restricted to the smooth locus of ToySht$_V^n$, these codimension 1 subschemes are called toy horospherical divisors. We give $\mathbb{Z}[\frac{1}{p}]$-linear relations between the classes of toy horospherical divisors in Theorem 5.3.4. Restrictions of Schubert divisors of Grass$_V^n$ give divisors on the nonsingular locus of ToySht$_V^n$. In Section 3, we show that these divisors are toy horospherical divisors, and we give an explicit description of them. These divisors are related to the Knudsen-Mumford divisors on the stack of Drinfeld shtukas.

When dealing with shtukas, to get the action of the adelic group, we consider shtukas with structures of all levels. Correspondingly, we consider toy shtukas for Tate spaces. In Section 6.1, we give a brief survey of Tate spaces. Eventually the Tate space will be \mathbb{A}^d, where \mathbb{A} is the ring of adeles of some function field, and d is the rank of the shtukas.

Let T be a Tate space over \mathbb{F}_q. Roughly speaking, a Tate toy shtuka for T is a discrete lattice of T which is almost preserved by Frobenius. The moduli problem of Tate toy shtukas for T is representable by a scheme ToySht$_T^n$, which is a closed subschemes of the Sato Grassmannian Grass$_T^n$. Let oToySht$_T^n$ be the nontrivial locus of ToySht$_T^n$, i.e., the locus where the discrete lattice is not preserved by Frobenius. When T is nondiscrete and noncompact, oToySht$_T^n$ is not locally Noetherian. Therefore, one cannot hope to write a Cartier divisor of oToySht$_T^n$ as a sum of irreducible ones.

In Theorem 9.2.4, we identify the (partially) ordered abelian group of Tate toy horospherical divisors of oToySht$_T^n$ as a certain class of locally constant functions on the totally disconnected topological space $(T - \{0\}) \bigsqcup (T^* - \{0\})$. Here we are seriously working with Cartier divisors of schemes which are not locally Noetherian. This seems to be a novel feature of our work.

Our first main result is Theorem 11.1.2 which describes of the (partially) ordered abelian group of those principal $\mathbb{Z}[\frac{1}{p}]$-divisors of oToySht$_T^n$ supported on the union of
Tate toy horospherical subschemes. The appearance of Fourier transform there gives a link to the intertwining operator for Eisenstein series, which plays an important role in the theory of horospherical divisors on the stack of Drinfeld shtukas.

We relate Drinfeld shtukas with toy shtukas in Section 16. In Propositions 16.1.1 and 16.3.1 to a shtuka equipped with level structures satisfying certain vanishing conditions on its cohomology, we functorially associate a toy shtuka. In Section 17, we obtain the canonical morphism θ from the moduli scheme of shtukas with structures of all levels to the moduli scheme of Tate toy shtukas.

In Section 19, we calculate the pullback of a Tate toy horospherical divisor under the morphism θ. The pullback turns out to be an averaging operator, as shown in Theorem 19.3.4. Our second main result is Theorem 19.4.1, which gives a subspace of principal horospherical $\mathbb{Z}[\frac{1}{p}]$-divisors of the moduli scheme of shtukas with structures of all levels. We hope that this subspace actually equals the whole space.

0.5. Acknowledgements. The research was partially supported by NSF grant DMS-1303100. I would like to express my deep gratitude to my advisor Vladimir Drinfeld for his continual guidance and support.

1. A TOY MODEL OF SHTUKAS

Fix a vector space V over \mathbb{F}_q with $\dim_{\mathbb{F}_q} V = N < \infty$. Let S be a scheme over \mathbb{F}_q. For an \mathcal{O}_S-module \mathcal{F} and a point $s \in S$, we denote \mathcal{F}_s to be the pullback of \mathcal{F} to s.

1.1. Definition of toy shtukas.

Definition 1.1.1. A *toy shtuka* for V over S is an \mathcal{O}_S-submodule $\mathcal{L} \subset V \otimes \mathcal{O}_S$ such that $(V \otimes \mathcal{O}_S)/\mathcal{L}$ is locally free and the composition

$$\text{Fr}_S^* \mathcal{L} \hookrightarrow (\text{Fr}_S^* V) \otimes \mathcal{O}_S = V \otimes \mathcal{O}_S \twoheadrightarrow (V \otimes \mathcal{O}_S)/\mathcal{L}$$

has rank at most 1. (In other words, the corresponding morphism $\bigwedge^2 \text{Fr}_S^* \mathcal{L} \to \bigwedge^2 ((V \otimes \mathcal{O}_S)/\mathcal{L})$ is zero.)

Definition 1.1.2. A *right toy shtuka* for V over S is a pair of \mathcal{O}_S-submodules $\mathcal{L}, \mathcal{L}' \subset V \otimes \mathcal{O}_S$ such that $(V \otimes \mathcal{O}_S)/\mathcal{L}$ and $(V \otimes \mathcal{O}_S)/\mathcal{L}'$ are locally free, $\mathcal{L} \subset \mathcal{L}'$, $\text{Fr}_S^* \mathcal{L} \subset \mathcal{L}'$, and $\dim \mathcal{L}_s' - \dim \mathcal{L}_s = 1$ for every $s \in S$.

Remark 1.1.3. In the exact sequence

$$0 \longrightarrow \mathcal{L}'/\mathcal{L} \longrightarrow (V \otimes \mathcal{O}_S)/\mathcal{L} \longrightarrow (V \otimes \mathcal{O}_S)/\mathcal{L}' \longrightarrow 0,$$

both $(V \otimes \mathcal{O}_S)/\mathcal{L}$ and $(V \otimes \mathcal{O}_S)/\mathcal{L}'$ are locally free. So \mathcal{L}'/\mathcal{L} is also locally free. Hence the condition $\dim \mathcal{L}_s' - \dim \mathcal{L}_s = 1$ for every $s \in S$ implies that \mathcal{L}'/\mathcal{L} is invertible. Similarly $\mathcal{L}'/\text{Fr}_S^* \mathcal{L}$ is invertible.
Definition 1.1.4. A left toy shtuka for V over S is a pair of \mathcal{O}_S-submodules $\mathcal{L}, \mathcal{L}' \subset V \otimes \mathcal{O}_S$ such that $(V \otimes \mathcal{O}_S)/\mathcal{L}$ and $(V \otimes \mathcal{O}_S)/\mathcal{L}'$ are locally free, $\mathcal{L}' \subset \mathcal{L}$, $\mathcal{L}' \subset \text{Fr}_s \mathcal{L}$, and dim $\mathcal{L} - \dim \mathcal{L}' = 1$ for every $s \in S$.

Remark 1.1.5. Similarly to the above remark, \mathcal{L}/\mathcal{L}' and $(\text{Fr}_s \mathcal{L})/\mathcal{L}'$ are invertible.

2. The schemes of toy shtukas

In this section, schemes (e.g. Grassmannians, the schemes of matrices) are defined over \mathbb{F}_q.

Fix an vector space V over \mathbb{F}_q with dim$_{\mathbb{F}_q} V = N < \infty$.

For $0 \leq n \leq N$, let Grass$_V^n$ denote the Grassmannian of n-dimensional subspaces of V.

2.1. Definitions of the schemes of toy shtukas.

Definition 2.1.1. Let ToySht$_V^n$ (resp. LToySht$_V^n$, resp. RToySht$_V^n$) be the functor which associates to each \mathbb{F}_q-scheme S the set of isomorphism classes of toy shtukas $\mathcal{L} \subset V \otimes \mathcal{O}_S$ (resp. left toy shtukas $\mathcal{L}' \subset \mathcal{L} \subset V \otimes \mathcal{O}_S$, resp. right toy shtukas $\mathcal{L} \subset \mathcal{L}' \subset V \otimes \mathcal{O}_S$) such that rank $\mathcal{L} = n$.

Remark 2.1.2. From the definition of toy shtukas, we see that ToySht$_V^n$ (resp. LToySht$_V^n$, resp. RToySht$_V^n$) is representable by a subschemes of Grass$_V^n$ (resp. Grass$_V^{n-1} \times$ Grass$_V^n$, resp. Grass$_V^n \times$ Grass$_V^{n+1}$). For explicit local description of these schemes, see Sections [2.2.2] to [2.2.4].

Remark 2.1.3. There is a natural morphism LToySht$_V^n \to$ ToySht$_V^n$ which maps a left toy shtuka $\mathcal{L}' \subset \mathcal{L}$ to \mathcal{L}, and there is a natural morphism RToySht$_V^n \to$ ToySht$_V^n$ which maps a right toy shtuka $\mathcal{L} \subset \mathcal{L}'$ to \mathcal{L}.

2.2. Explicit local description of the scheme of toy shtukas.

2.2.1. Affine open charts of Grassmannians. For a finite dimensional vector space M over \mathbb{F}_q, we denote $M = \text{Spec Sym } M^*$. If $M = \text{Hom}(W', W)$, we write $\text{Hom}(W', W)$ instead of $\text{Hom}(W', W)$.

Fix an $(N-n)$-dimensional subspace W of V. Denote U_W to be the open subscheme of Grass$_V^n$ parameterizing those n-dimensional subspaces of V which are transversal to W. Fix an n-dimensional subspace W' of V such that $V = W \oplus W'$. Then we have an identification $U_W = \text{Hom}(W', W)$. For an \mathbb{F}_q-algebra R, an R-point of U_W is the graph of an R-linear map $W' \otimes R \to W \otimes R$.

Define the Artin-Schreier morphism $\text{AS}_{W', W} : \text{Hom}(W', W) \to \text{Hom}(W', W)$ by $\text{AS}_{W', W} = \text{Id} - \text{Fr}$. We know that $\text{AS}_{W', W}$ is surjective finite étale of degree $q^{n(N-n)}$.

Define a closed subscheme $U_W^{\leq 1} := \text{Hom}(W', W)^{\text{rank} \leq 1} \subset \text{Hom}(W', W) = U_W$ whose R-points are R-linear maps $A : W' \otimes R \to W \otimes R$ such that $\bigwedge^2 A = 0$.
2.2.2. Explicit local description of ToySht. We consider ToySht_V^n as a subscheme of Grass_V^n.

Lemma 2.2.1. When $1 \leq n \leq N - 1$, $\text{ToySht}_V^n \cap U_W$ is the inverse image of $U_{W,W}^\leq$ under $AS_{W,W}$. In particular, ToySht_V^n is a closed subscheme of Grass_V^n.

Proof. The statement follows from the definition of toy shtukas. □

2.2.3. Explicit local description of LToySht. For $0 \leq i \leq j \leq N$, let $\text{Flag}_V^{i,j}$ be the closed subscheme of $\text{Grass}_V^i \times \text{Grass}_V^j$ which consists of pairs (M_1, M_2) such that $M_1 \subset M_2$.

We consider LToySht_V^n as a subscheme of $\text{Flag}_V^{n-1,n}$.

Let R be an \mathbb{F}_q-algebra. Let $A : W' \otimes R \to W \otimes R$ be an R-linear morphism and Γ_A be its graph. Projection from Γ_A to $W' \otimes R$ induces a bijective correspondence between those submodules of Γ_A whose quotient is locally free and those submodules of $W' \otimes R$ whose quotient is locally free. This bijection is functorial in R. In this way we get an identification $\text{Flag}_V^{n-1,n} \cap (\text{Grass}_V^{n-1} \times U_W) = \text{Grass}_V^{n-1} \times U_W$.

Define a closed subscheme $C_{W,W'}^n \subset \text{Grass}_V^{n-1} \times U_W = \text{Grass}_V^{n-1} \times \text{Hom}(W', W)$ consisting of pairs (H, A) such that $H \subset \ker A$.

Lemma 2.2.2. When $1 \leq n \leq N - 1$, $\text{LToySht}_V^n \cap (\text{Grass}_V^{n-1} \times U_W)$ is the inverse image of $C_{W,W'}^n$, under $\text{Id}_{\text{Grass}_V^{n-1}} \times AS_{W,W}$. In particular, LToySht_V^n is a closed subscheme of $\text{Flag}_V^{n-1,n}$.

Proof. The statement follows from the definition of left toy shtukas. □

Lemma 2.2.3. When $1 \leq n \leq N - 1$, LToySht_V^n is smooth of pure dimension $N - 1$ over \mathbb{F}_q.

Proof. We observe that $C_{W,W'}^n$ is a $(N - n)$-dimensional vector bundle over Grass_V^{n-1}. Hence it is smooth of pure dimension $N - 1$. Since $\text{Id}_{\text{Grass}_V^{n-1}} \times AS_{W,W}$ is étale, the statement follows from Lemma 2.2.2. □

2.2.4. Explicit local description of RToySht. We consider RToySht_V^n as a subscheme of $\text{Flag}_V^{n,n+1}$.

Let R be an \mathbb{F}_q-algebra. Let $A : W' \otimes R \to W \otimes R$ be an R-linear morphism and Γ_A be its graph. Intersection with $W \otimes R$ induces a bijective correspondence between those submodules $M \subset V \otimes R$ containing Γ_A such that $(V \otimes R)/M$ is locally free and those submodules of $W \otimes R$ whose quotient is locally free. This bijection is functorial in R. In this way we get an identification $\text{Flag}_V^{n,n+1} \cap (U_W \times \text{Grass}_V^{n+1}) = U_W \times \text{Grass}_V^1$.

Define a closed subscheme $C_{W,W'}^n \subset U_W \times \text{Grass}_V^1 = \text{Hom}(W', W) \times \text{Grass}_V^1$ consisting of pairs (A, H) such that $\text{im }A \subset H$.
Lemma 2.2.4. When $1 \leq n \leq N - 1$, $R\text{ToySht}^n_V \cap (U_W \times \text{Grass}^{n+1}_V)$ is the inverse image of $C^d_{W,W'}$ under $AS_{W',W} \times \text{Id}_{\text{Grass}^1_W}$. In particular, $R\text{ToySht}^n_V$ is a closed subscheme of $\text{Flag}^{n,n+1}_V$.

Proof. The statement follows from the definition of right toy shtukas. \[\square\]

Lemma 2.2.5. When $1 \leq n \leq N - 1$, $R\text{ToySht}^n_V$ is smooth of pure dimension $N - 1$ over \mathbb{F}_q.

Proof. We observe that $C^d_{W,W'}$ is an n-dimensional vector bundle over Grass^1_W. Hence it is smooth of pure dimension $N - 1$. Since $AS_{W',W} \times \text{Id}_{\text{Grass}^1_W}$ is étale, the statement follows from Lemma 2.2.4. \[\square\]

2.3. Basic properties of ToySht. Determinantal varieties are proved to be Cohen-Macaulay in [9]. See Section 3 of Chapter 2 of [1] for a review of basic properties of determinantal varieties.

We know that for $1 \leq n \leq N - 1$, $\text{Mat}^\text{rank} \leq 1_{n \times (N-n)}$ is the affine cone over $(\mathbb{P}^\vee)^{N-n-1} \times \mathbb{P}^{n-1}$. In particular, it has pure dimension $N - 1$ and it is reduced.

Lemma 2.3.1. For $1 \leq n \leq N - 1$, ToyShtn_V is reduced and has pure dimension $N - 1$. We have ToySht$^1_V = \text{Grass}^1_V$, ToySht$^{N-1}_V = \text{Grass}^{N-1}_V$. For $n \in \{1, N - 1\}$, ToyShtn_V is smooth. For $2 \leq n \leq N - 2$, ToyShtn_V is smooth outside $\text{Grass}^n_V(\mathbb{F}_q)$ and the singularity at each point of $\text{Grass}^n_V(\mathbb{F}_q)$ is étale locally the vertex of the cone over $(\mathbb{P}^\vee)^{N-n-1} \times \mathbb{P}^{n-1}$.

Proof. A choice of bases of W and W' identifies $\text{Hom}(W', W)^{\text{rank} \leq 1}$ with $\text{Mat}^{\text{rank} \leq 1}_{n \times (N-n)}$. Since the Artin-Schreier morphism is finite étale, the statement follows from the corresponding properties of $\text{Mat}^{\text{rank} \leq 1}_{n \times (N-n)}$. \[\square\]

2.4. The scheme of nontrivial toy shtukas.

Definition 2.4.1. For a toy shtuka (resp. a right toy shtuka, resp. a left toy shtuka) \mathcal{L} over S, we say that it is nontrivial at $s \in S$ if $\text{Fr}_s^* \mathcal{L}_s \neq \mathcal{L}_s$, where \mathcal{L}_s is the pullback of \mathcal{L} to s.

Remark 2.4.2. A left/right toy shtuka is nontrivial at s if and only if it is as a toy shtuka.

Remark 2.4.3. A pointwise nontrivial left/right toy shtuka is the same as a pointwise nontrivial toy shtuka. See Corollary 2.4.8 for a more precise statement.

Remark 2.4.4. We know that the trivial locus of ToyShtn_V is equal to the Frobenius fixed points, or equivalently it is the intersection of the graph of Frobenius morphism and the diagonal. So the trivial locus of ToyShtn_V is $\text{Grass}^n_V(\mathbb{F}_q)$, a reduced 0-dimensional closed subscheme of Grassn_V.
Definition 2.4.5. Let $^0_{\text{ToySht}} V^n$ (resp. $^0_{\text{LToySht}} V^n$, resp. $^0_{\text{RToySht}} V^n$) be the nontrivial locus of $\text{ToySht} V^n$ (resp. $\text{RToySht} V^n$, resp. $\text{LToySht} V^n$).

Remark 2.4.6. Since nontrivialness is an open condition for toy shtukas (resp. left toy shtukas, resp. right toy shtukas), $^0_{\text{ToySht}} V^n$ (resp. $^0_{\text{LToySht}} V^n$, resp. $^0_{\text{RToySht}} V^n$) is an open subscheme of $\text{ToySht} V^n$ (resp. $\text{RToySht} V^n$, resp. $\text{LToySht} V^n$). We have $^0_{\text{ToySht}} V^n = \text{ToySht} V^n - \text{Grass}_V^n(F_q)$ from Remark 2.4.4. In particular, we know that $^0_{\text{ToySht}} V^n$ is smooth over F_q. We also see that $^0_{\text{ToySht}} V^n$ is nonempty if and only if $1 \leq n \leq N - 1$.

Lemma 2.4.7. Let L be a toy shtuka over S which is nontrivial at each $s \in S$. Then $L + Fr_S^* L$ and $L \cap Fr_S^* L$ are subbundles of $p_S^* V$. Also, $(L + Fr_S^* L)/L$ and $L/(L \cap Fr_S^* L)$ are invertible sheaves.

Proof. By the definition of toy shtukas, the morphism $Fr_S^* L \to p_S^* V/L$ has rank at most 1. It has strictly constant rank 1 since L is nontrivial at each $s \in S$. The statements now follow from Corollary A.1.5. □

Corollary 2.4.8. For $1 \leq n \leq N$, the natural morphisms $\text{LToySht} V^n \to \text{ToySht} V^n$ and $\text{RToySht} V^n \to \text{ToySht} V^n$ in Remark 2.1.3 induce isomorphisms $^0_{\text{LToySht}} V^n \to ^0_{\text{ToySht}} V^n$ and $^0_{\text{RToySht}} V^n \to ^0_{\text{ToySht}} V^n$.

2.5. **Partial Frobeniuses.** We have the following constructions for left/right toy shtukas:

(i) For a left toy shtuka $L'' \subset L$ over an F_q-scheme S, the pair $L'' \subset Fr_S^* L$ forms a right toy shtuka over S.

(ii) For a right toy shtuka $L \subset L''$ over an F_q-scheme S, the pair $Fr_S^* L \subset L''$ forms a left toy shtuka over S.

Definition 2.5.1. We define partial Frobeniuses $F^-_{V,n} : \text{LToySht} V^n \to \text{RToySht} V^{n-1}$, $(1 \leq n \leq N)$ and $F^+_{V,n} : \text{RToySht} V^n \to \text{LToySht} V^{n+1}$, $(0 \leq n \leq N - 1)$ induced by the above constructions.

Lemma 2.5.2. Let $f_1 : Y_1 \to Y_2, f_2 : Y_2 \to Y_3$ be two morphisms of schemes. If f_1 is surjective and $f_2 \circ f_1$ is a universal homeomorphism, then f_2 is also a universal homeomorphism.

Proof. This is Proposition 3.8.2(iv) of [7]. □

Lemma 2.5.3. For two morphisms $f_1 : Y_1 \to Y_2, f_2 : Y_2 \to Y_1$ between two schemes Y_1 and Y_2, if $f_2 \circ f_1$ and $f_1 \circ f_2$ are universal homeomorphisms, then f_1 and f_2 are universal homeomorphisms.
Proof. Since $f_1 \circ f_2$ is a homeomorphism, f_1 is surjective. Thus f_2 is a universal homeomorphism by Lemma 2.5.2. Similarly, f_1 is also a universal homeomorphism. □

Lemma 2.5.4. Assume $0 \leq n \leq N - 1$. We have $F_{V,n+1}^+ \circ F_{V,n}^- = Fr_{RToySht^V}$, $F_{V,n}^+ \circ F_{V,n+1}^- = Fr_{LToySht^V+1}$. In particular, $F_{V,n+1}^-$ and $F_{V,n}^+$ induce universal homeomorphisms between RToyShtn_V and LToySht$^{n+1}_V$.

Proof. The first statement follows from definition of partial Frobeniuses. The second statement follows from Lemma 2.5.3. □

2.6. Irreducibility of the scheme of toy shtukas. Recall that we have $\circ ToySht^n_V = \circ LToySht^n_V = \circ RToySht^n_V$, for $1 \leq n \leq N$ by Corollary 2.4.8.

Lemma 2.6.1. For $1 \leq n \leq N - 1$, $\circ ToySht^n_V$ is dense in ToyShtn_V, LToyShtn_V and RToyShtn_V.

Proof. Since ToyShtn_V has pure dimension $N - 1$ by Lemma 2.3.1, we see from Remark 2.4.6 that $\circ ToySht^n_V = ToySht^n_V - Grass^n_V(\mathbb{F}_q)$ is dense in ToyShtn_V.

Consider the morphism LToySht$^n_V \to ToySht^n_V$. It induces an isomorphism $\circ LToySht^n_V \to \circ ToySht^n_V$. For any $M \in Grass^n_V(\mathbb{F}_q)$, we see that the inverse image of M in LToyShtn_V is isomorphic to Grass$^{n-1}_M$, and we have dim Grass$^{n-1}_M = n - 1 < N - 1$. Since LToyShtn_V has pure dimension $N - 1$ by Lemma 2.2.3, $\circ LToySht^n_V$ is dense in LToyShtn_V.

The proof for RToyShtn_V is similar, with Grass$^{n-1}_M$ replaced by Grass$^1_{V/M}$. □

Proposition 2.6.2. For $1 \leq n \leq N - 1$, ToyShtn_V, LToyShtn_V and RToyShtn_V are geometrically irreducible.

Proof. The three schemes in question all contain a dense subscheme $\circ ToySht^n_V$ by Lemma 2.6.1. This is still true after base change to \mathbb{F}_q since the morphism Spec $\mathbb{F}_q \to$ Spec \mathbb{F}_q is universally open. Now Lemma 2.5.4 and Corollary 2.4.8 reduce the question to the case $n = 1$. We know that ToySht$^1_V = Grass^1_V$ is geometrically irreducible. □

3. A lemma for toy shtukas inspired by a fact about reducible shtukas

3.1. A fact about reducible shtukas. We have the following fact about reducible shtukas over a field from the paragraph before Proposition 4.2 of [5].

Let X be a smooth projective geometrically connected curve over \mathbb{F}_q. Let E be a field over \mathbb{F}_q. Denote $\Phi_E = Id_X \otimes Fr_E : X \otimes E \to X \otimes E$. Let $\alpha, \beta : Spec E \to X$ be two morphisms such that $\Gamma_\alpha \cap \Gamma_\beta = \emptyset$. Let $\Phi_E^*: \mathcal{F} \to \mathcal{F}'$ be a right shtuka of rank d over Spec E with zero α and pole β. Suppose there exists a nonzero subsheaf $\mathcal{E} \subset \mathcal{F}$ of rank $r < d$ such that $\Phi_E^*\mathcal{E} \subset \mathcal{E}(\Gamma_\beta)$. Let \mathcal{A} be the saturation of \mathcal{E} in \mathcal{F} and let $\mathcal{B} = \mathcal{F}/\mathcal{A}$. Then one of the two possibilities hold:
A TOY MODEL OF SHTUKAS

(i) \mathcal{A} is a right shtuka with zero α and pole β, and the image of the morphism $\Phi^*_E \mathcal{B} \to \mathcal{B}(\Gamma_\beta)$ is equal to \mathcal{B}.

(ii) The image of the morphism $\Phi^*_E \mathcal{A} \to \mathcal{A}(\Gamma_\beta)$ is equal to \mathcal{A} and \mathcal{B} is a right shtuka with zero α and pole β.

3.2. A lemma for toy shtukas. Let E be a field over \mathbb{F}_q and let $L \in \text{ToySht}_V(E)$; in other words, L is a subspace of $V \otimes E$ is a subspace such that $\dim L - \dim((\text{Fr}^*_E L) \cap L) = \dim \text{Fr}^*_E L - \dim((\text{Fr}^*_E L) \cap L) \leq 1$.

Let W be a subspace of V.

Denote $L' = L \cap (W \otimes E)$, $L'' = \text{im}(L \to (V/W) \otimes E)$. We have $\text{Fr}^*_E L' = (\text{Fr}^*_E L) \cap (W \otimes E)$, $\text{Fr}^*_E L'' = \text{im}(\text{Fr}^*_E L \to (V/W) \otimes E)$.

Lemma 3.2.1. At least one of the following two statements holds.

(i) $\text{Fr}^*_E L' = L'$;

(ii) $\text{Fr}^*_E L'' = L''$.

Proof. First note that $\dim L' = \dim \text{Fr}^*_E L'$, $\dim L'' = \dim \text{Fr}^*_E L''$. Suppose there exists $v \in \text{Fr}^*_E L'$ such that $v \notin L'$. Then $\text{Fr}^*_E L$ is contained in the linear span of L and v. Since v maps to 0 in $(V/W) \otimes E$, we have $\text{Fr}^*_E L'' \subset L''$. Hence $\text{Fr}^*_E L'' = L''$ by dimension comparison. □

4. SCHUBERT DIVISORS OF THE SCHEMES OF TOY SHTUKAS

Fix a finite dimensional vector space V over \mathbb{F}_q with $\dim_{\mathbb{F}_q} V = N \geq 3$.

Fix an integer n such that $1 \leq n \leq N - 1$, and a subspace $W \subset V$ of codimension n.

As in Section 2.2.1, for a codimension n subspace M in V, let U_M be the affine chart of Grass^n_V parameterizing those n-dimensional subspaces of V which are transversal to M.

4.1. Definition of Schubert divisors. Define the closed subscheme $\text{Schub}_W^V \subset \text{Grass}^n_V$ by the following equation:

$$\text{Schub}_W^V := \{ L \in \text{Grass}^n_V \mid \det(L \to V/W) = 0 \}.$$

It is easy to prove and well-known that $\text{Schub}_W^V \subset \text{Grass}^n_V$ is an irreducible divisor (a Schubert variety).

Lemma 4.1.1. $\text{Schub}_W^V \cap \text{ToySht}^n_V$ is a Cartier divisor in ToySht^n_V.

Proof. We know that ToySht^n_V is irreducible and reduced, and Schub_W^V is a Cartier divisor of Grass^n_V. To prove the statement, it suffices to show that ToySht^n_V is not contained in Schub_W^V. We have $U_W = \text{Grass}^n_V - \text{Schub}_W^V$, and we see in Section 2.2.2 that $\text{ToySht}^n_V \cap U_W$ is nonempty. □
We have a perfect complex

\[J^\bullet_{V,W} = (J^{-1}_{V,W} \to J^0_{V,W}) \]

on Grass\(\mathcal{V}_V^n\), where \(J^{-1}_{V,W} \subset V \otimes \mathcal{O}_{\text{Grass}_V^n}\) is the universal locally free sheaf on Grass\(\mathcal{V}_V^n\), \(J^0_{V,W} = (V/W) \otimes \mathcal{O}_{\text{Grass}_V^n}\), and the morphism \(J^{-1}_{V,W} \to J^0_{V,W}\) is the natural one.

Since \(W\) has codimension \(n\) in \(V\), the morphism \(J^{-1}_{V,W} \to J^0_{V,W}\) is an isomorphism on the dense open subscheme \(U_W \subset \text{Grass}_V^n\). So the complex \(J^\bullet_{V,W}\) is good in the sense of Knudsen-Mumford.

Remark 4.1.2. We have \(\text{Schub}_W^n = \text{Div}(J^\bullet_{V,W})\). (See Chapter II of [12] for the definition of Div.)

We call \(\text{Schub}_W^n \cap \text{ToySht}_{V^n}\) (resp. \(\text{Schub}_V^n \cap \text{ToySht}_{V^n}\)) the \textit{Schubert divisor} of \(\text{ToySht}_{V^n}\) (resp. \(\text{ToySht}_{V^n}\)) for \(W\).

4.2. \textbf{Description of Schubert divisors.} For any subspace \(H \subset V\), we have a natural closed immersion \(\text{ToySh}_{V^n}^n \to \text{ToySht}_{V^n}\). We consider \(\text{ToySh}_{V^n}^n\) as a subscheme of \(\text{ToySht}_{V^n}\). It is a Weil divisor if \(H\) has codimension 1 in \(V\). If \(H\) contains \(W\), then \(\text{ToySh}_{V^n}^n \subset \text{Schub}_V^n \cap \text{ToySht}_{V^n}\).

For a subspace \(J \subset V\), there is a natural bijection between subspaces of \(V/J\) and subspaces of \(V\) containing \(J\). So we get a natural closed immersion \(\text{ToySht}_{V^n}^{n-\dim J} \to \text{ToySht}_{V^n}\). We consider \(\text{ToySht}_{V^n}^{n-\dim J}\) as a subscheme of \(\text{ToySht}_{V^n}\). It is a Weil divisor if \(J\) has dimension 1. If \(J\) is contained in \(W\), then \(\text{ToySht}_{V^n}^{n-\dim J} \subset \text{Schub}_V^n \cap \text{ToySht}_{V^n}\).

The following statement describes the Schubert divisors. Note that by Proposition 2.6.2, \(\text{ToySht}_{V^n}^n\) is irreducible when \(n < \dim H\), and \(\text{ToySht}_{V^n}^{n-\dim J}\) is irreducible when \(n > \dim J\). Also note that by Remark 2.3.6, \(\text{Toysht}_{V^n}^n\) is empty when \(n = \dim H\), and \(\text{Toysht}_{V^n}^{n-\dim J}\) is empty when \(n = \dim J\).

Recall that we denote \(P_{V^n}\) to be the set of codimension 1 subspaces of \(V\) and we denote \(P_V\) to be the set of dimension 1 subspaces of \(V\).

Theorem 4.2.1. \textit{We have an equality of Cartier divisors of } \(\text{Toysht}_{V^n}^n\)

\[\text{Schub}_V^n \cap \text{Toysht}_{V^n}^n = \sum_{H \in P_{V^n}} \text{Toysht}_{V^n}^n + \sum_{J \in P_V} \text{Toysht}_{V^n}^{n-1} \].

Proof. Put \(Z^W_V = \text{Schub}_V^n \cap \text{Toysht}_{V^n}^n\).

From the above discussion we know that \(\text{Toysht}_{V^n}^n\) and \(\text{Toysht}_{V^n}^{n-1}\) are Weil divisors of \(\text{Toysht}_{V^n}\), hence Cartier divisors of \(\text{Toysht}_{V^n}\) since \(\text{Toysht}_{V^n}\) is smooth. We also see that \(\text{Toysht}_{V^n}^n \subset Z^W_V\) if \(H \supset W\) and \(\text{Toysht}_{V^n}^{n-1} \subset Z^W_V\) if \(J \subset W\).

On the other hand, if \(s \in Z^W_V\), then Lemma 3.2.1 implies that \(s \in \text{Toysht}_{V^n}^n\) for some \(H \in P_{V^n}\), \(H \supset W\) or \(s \in \text{Toysht}_{V^n}^{n-1}\) for some \(J \in P_V\), \(J \subset W\) (or both). This shows that the statement is set-theoretically true.
It remains to show that the multiplicity of Z_W^V at each $^0\text{ToySht}^n_H$ or $^0\text{ToySht}^{n-1}_{V/J}$ is one. This follows from Lemma 4.4.3. \hfill \Box

4.3. **An open subscheme of** $\text{Schub}_W^V \cap \text{ToySht}^n_V$. Define a closed subset $(\text{Schub}_W^V)^{\geq 2} \subset \text{Schub}_W^V$ by the condition

$$(\text{Schub}_W^V)^{\geq 2} := \{ L \in \text{Grass}^n | \text{rank}(L \to V/W) \leq n - 2 \}.$$

Let $(\text{Schub}_W^V)^1 = \text{Schub}_W^V - (\text{Schub}_W^V)^{\geq 2}$ be the open subscheme of Schub_W^V.

Remark 4.3.1. We know that $(\text{Schub}_W^V)^1 = \text{Schub}_W^V \cap (\cup U_M)$ where M runs through all codimension n subspaces of V whose intersection with W has codimension $n + 1$ in V.

Remark 4.3.2. Fix one such M as in Remark 4.3.1 and choose an n-dimensional subspace M' of V such that $V = M \oplus M'$ and $M' \cap W \neq 0$. Then dim($M' \cap W$) = 1. We identify U_M with $\text{Hom}(M', M)$ as in Section 2.2.1. We see that $\text{Schub}_W^V \cap U_M = (\text{Schub}_W^V)^1 \cap U_M$ as a subscheme of U_M is defined by the condition that the induced morphism $M' \cap W \to M/M \cap W$ is zero.

Lemma 4.3.3. $(\text{Schub}_W^V)^{\geq 2} \cap \text{ToySht}^n_V$ has codimension at least 2 in ToySht^n_V.

Proof. From Lemma 2.2.1 we see that $s \in (\text{Schub}_W^V)^{\geq 2} \cap \text{ToySht}^n_V$ implies $s \in \text{ToySht}^{n-2}_{V/J}$ for some 2-dimensional subspace $J \subset V$ or $s \in \text{ToySht}^n_H$ for some codimension 2 subspace $H \subset V$ (or both). The statement follows from the result about dimensions of ToySht in Lemma 2.3.1. \hfill \Box

4.4. **Transversality.** For $1 \leq a \leq s, 1 \leq b \leq t$, let $\text{Mat}^{(a,b)=0}_{s \times t}$ denote the subscheme of $\text{Mat}_{s \times t}$ consisting of matrices whose (a, b)-entry is zero.

Lemma 4.4.1. The locus of $\text{Mat}_{s \times t}^{\text{rank} \leq 1}$ where it does not meet $\text{Mat}^{(a,b)=0}_{s \times t}$ transversally is

$$\text{Mat}_{s \times t}^{\text{rank} \leq 1} \cap (\bigcap_{i=1}^s \text{Mat}_{s \times t}^{(i,b)=0}) \cap (\bigcap_{j=1}^t \text{Mat}_{s \times t}^{(a,j)=0}),$$

i.e., the locus where the a-th row and the b-th column is zero. In particular, this locus is isomorphic to $\text{Mat}_{(s-1) \times (t-1)}^{\text{rank} \leq 1}$ and it has codimension 2 in $\text{Mat}_{s \times t}^{\text{rank} \leq 1}$. \hfill \Box

Lemma 4.4.2. Let $AS = \text{Id} - Fr : \text{Mat}_{s \times t} \to \text{Mat}_{s \times t}$ be the Artin-Schreier morphism. Then $\text{Mat}^{(a,b)=0}_{s \times t} \cap AS^{-1}(\text{Mat}_{s \times t}^{\text{rank} \leq 1} - \{0\})$ as a divisor of $AS^{-1}(\text{Mat}_{s \times t}^{\text{rank} \leq 1} - \{0\})$ has multiplicity one at each irreducible component.

Proof. If we identify the tangent spaces at each point of $\text{Mat}_{s \times t}$ with the vector space $\text{Mat}_{s \times t}$ itself, then AS induces the identity on the tangent spaces. Now the statement follows from Lemma 4.4.1 and the fact that AS is finite. \hfill \Box
Lemma 4.4.3. \(\text{Schub}^W_V \cap \circ \text{ToySht}^n_V \) is a reduced scheme.

Proof. By Lemma 4.3.3, it suffices to show that \((\text{Schub}^W_V) \cap \circ \text{ToySht}^n_V \) as a divisor of \(\circ \text{ToySht}^n_V \) has multiplicity one at each irreducible component. By Remark 4.3.1, it suffices to show that \((\text{Schub}^W_V) \cap \circ \text{ToySht}^n_V \cap U_M \) as a divisor of \(\circ \text{ToySht}^n_V \cap U_M \) has multiplicity one at each irreducible component, where \(M \) is any codimension \(n \) subspace of \(V \) whose intersection with \(W \) has codimension \(n + 1 \) in \(V \). From the description of \((\text{Schub}^W_V) \cap U_M \) in Remark 4.3.2, the statement follows from Lemma 2.2.1 and Lemma 4.4.2. □

5. Toy Horospherical Divisors

5.1. Notation. Fix a finite dimensional vector space \(V \) over \(\mathbb{F}_q \) with \(\dim_{\mathbb{F}_q} V = N \geq 3 \). Fix \(n \in \mathbb{Z} \) such that \(1 \leq n \leq N - 1 \).

As in Section 4.2, for any \(H \in \mathbf{P}_V \), we consider \(\circ \text{ToySht}^n_H \) (resp. \(\text{LT} \text{ToySht}^n_H \), resp. \(\text{RT} \text{ToySht}^n_H \)) as a Cartier divisor of \(\circ \text{ToySht}^n_V \) (resp. \(\text{LT} \text{ToySht}^n_V \), resp. \(\text{RT} \text{ToySht}^n_V \)). For any \(J \in \mathbf{P}_V \), we consider \(\circ \text{ToySht}^{n-1}_J \) (resp. \(\text{LT} \text{ToySht}^{n-1}_J \), resp. \(\text{RT} \text{ToySht}^{n-1}_J \)) as a Cartier divisor of \(\circ \text{ToySht}^n_V \) (resp. \(\text{LT} \text{ToySht}^n_V \), resp. \(\text{RT} \text{ToySht}^n_V \)). These divisors are called toy horospherical divisors of \(\circ \text{ToySht}^n_V \) (resp. \(\text{LT} \text{ToySht}^n_V \), resp. \(\text{RT} \text{ToySht}^n_V \)).

As in Definition 2.5.1, we have partial Frobeniuses \(F^-_{V,n} : \text{LT} \text{ToySht}^n_V \to \text{RT} \text{ToySht}^{n-1}_V, (1 \leq n \leq N) \) and \(F^+_{V,n} : \text{RT} \text{ToySht}^n_V \to \text{LT} \text{ToySht}^{n+1}_V, (0 \leq n \leq N - 1) \).

5.2. Short complexes related with principal toy horospherical divisors. Let \(Y \) be a smooth scheme over \(\mathbb{F}_q \) and \(U \subset Y \) be a dense open subscheme. Then we have a short complex

\[
0 \longrightarrow C^0(Y, U) \xrightarrow{d} C^1(Y, U) \longrightarrow 0,
\]

where \(C^0(Y, U) := H^0(U, \mathcal{O}_Y), C^1(Y, U) := \{ \text{divisors on } Y \text{ with zero restriction to } U \}\).

The complex \(C^\bullet(Y, U) \) is a contravariant functor in \((Y, U) \).

Remark 5.2.1. Let \(Z, Z' \subset Y \) be closed subsets of codimension at least 2 such that \(U - Z' \subset Y - Z' \). Then the map \(C^\bullet(Y, U) \to C^\bullet(Y - Z, U - Z') \) is an isomorphism.

Remark 5.2.2. The endomorphism of \(C^\bullet(Y, U) \) corresponding to \(\text{Fr} : (Y, U) \to (Y, U) \) is multiplication by \(q \).

We denote

\[
\circ \circ \text{ToySht}^n_V := \text{ToySht}^n_V \cap (\bigcup_{H \in \mathbf{P}_V} \circ \text{ToySht}^n_H) \cup (\bigcup_{J \in \mathbf{P}_V} \circ \text{ToySht}^{n-1}_{V/J})
\]

to be the open subscheme of \(\circ \text{ToySht}^n_V \). We have \(\circ \circ \text{ToySht}^n_V \subset \circ \text{ToySht}^n_V \).
When $2 \leq n \leq N - 2$, the complement of ^o ToySht^n_V has codimension at least 2 in $L\text{ToySht}^n_V$ or $R\text{ToySht}^n_V$. Remark 5.2.1 implies that the natural maps of complexes

$$C^\bullet(L\text{ToySht}^n_V, \text{^o ToySht}^n_V) \rightarrow C^\bullet(\text{^o ToySht}^n_V, \text{^o ToySht}^n_V),$$

$$C^\bullet(R\text{ToySht}^n_V, \text{^o ToySht}^n_V) \rightarrow C^\bullet(\text{^o ToySht}^n_V, \text{^o ToySht}^n_V)$$

are isomorphisms. We denote

$$C^\bullet_{V,n} = C^\bullet(Y, \text{^o ToySht}^n_V)$$

for $Y = \text{^o ToySht}^n_V, L\text{ToySht}^n_V, R\text{ToySht}^n_V$.

We define

$$C^\bullet_{V,1} = C^\bullet(R\text{ToySht}^1_V, \text{^o ToySht}^1_V),$$

$$C^\bullet_{V,N-1} = C^\bullet(L\text{ToySht}^{N-1}_V, \text{^o ToySht}^n_V).$$

We see that for $1 \leq n \leq N - 2$, $C^1_{V,n} = C^1(R\text{ToySht}^n_V, \text{^o ToySht}^n_V)$ is freely generated by $R\text{ToySht}^n_H(H \in P_V)$ and $R\text{ToySht}^{n-1}_{V/J}(J \in P_V)$. For $2 \leq n \leq N - 1$, $C^1_{V,n} = C^1(L\text{ToySht}^n_V, \text{^o ToySht}^n_V)$ is freely generated by $L\text{ToySht}^n_H(H \in P_V)$ and $L\text{ToySht}^{n-1}_{V/J}(J \in P_V)$.

5.3. Partial Frobeniuses and toy horospherical divisors. Partial Frobeniuses induce morphisms of complexes

$$C^\bullet_{V,1} \overset{(F^+_{V,2})^*}{\longrightarrow} C^\bullet_{V,2} \overset{(F^+_{V,3})^*}{\longrightarrow} \cdots \overset{(F^+_{V,N})^*}{\longrightarrow} C^\bullet_{V,N-1}$$

Lemma 5.3.1. For $1 \leq n \leq N - 2$ and $H \in P_V$, $(F^+_{V,n})^* L\text{ToySht}^{n+1}_H = R\text{ToySht}^n_H$. For $2 \leq n \leq N - 1$ and $J \in P_V$, $(F^+_{V,n})^* R\text{ToySht}^{n-2}_{V/J} = L\text{ToySht}^{n-1}_{V/J}$.

Proof. Since $L\text{ToySht}^{n+1}_H$ and $R\text{ToySht}^n_H$ are reduced and irreducible by Lemma 2.2.3 and Lemma 2.2.5 to prove the first statement, it suffices to show that $(F^+_{V,n})^{-1} L\text{ToySht}^{n+1}_H \subset R\text{ToySht}^n_H$.

We have a Cartesian diagram

$$(F^+_{V,n})^{-1} L\text{ToySht}^{n+1}_H \longrightarrow R\text{ToySht}^n_V.$$

Suppose we have a morphism $S \rightarrow (F^+_{V,n})^{-1} L\text{ToySht}^{n+1}_H$. From the above Cartesian diagram, we get a right toy shtuka $\mathcal{L} \subset \mathcal{L}'$ of rank n over S, such that $\mathcal{L}' \subset H \otimes \mathcal{O}_S$. This shows that the morphism $S \rightarrow (F^+_{V,n})^{-1} L\text{ToySht}^{n+1}_H$ factors through $R\text{ToySht}^n_H$. Hence $(F^+_{V,n})^{-1} L\text{ToySht}^{n+1}_H \subset R\text{ToySht}^n_H$.

The proof of the second statement is similar. □
Lemma 5.3.2. For $1 \leq n \leq N - 2$ and $J \in P_V$, $(F_{V,n}^+)^* \text{LToySht}_{V/J}^n = q \cdot \text{RToySht}_{V/J}^{n-1}$. For $2 \leq n \leq N - 1$ and $H \in P_V^*$, $(F_{V,n}^-)^* \text{RToySht}_{H}^{n-1} = q \cdot \text{LToySht}_{H}^n$.

Proof. Since the $F_{V,n}^+ : \text{RToySht}_V^n \to \text{LToySht}_{V+1}^n$ and $F_{V,n+1}^- : \text{LToySht}_{V+1}^n \to \text{RToySht}_V^n$ are universal homeomorphisms and their composition is the Frobenius morphism, the statements follow from Lemma 5.3.1.

The following statement about finite Radon transform is standard.

Lemma 5.3.3. For $1 \leq n \leq N - 1$, The following two conditions for the two sets of numbers $\{\lambda_H\}_{H \in P_{V^*}}, \{\mu_J\}_{J \in P_V} \subset \mathbb{Z}[\mathbb{F}_p]$ are equivalent.

$\text{(i)} \sum_{J \in P_V} \mu_J = 0 \text{ and } \lambda_H = q^n-(N-1) \sum_{J \in P_V} \mu_J \text{ for any } H \in P_{V^*}$.

$\text{(ii)} \sum_{H \in P_{V^*}} \lambda_H = 0 \text{ and } \mu_J = q^{1-n} \sum_{H \in P_{V^*}} \lambda_H \text{ for any } J \in P_V$.

For $J \in P_V, H \in P_{V^*}$, we denote

$$Z_{V,1,H} = \text{RToySht}_{V/J}^1 \in C_{V,1}, \quad Z_{V,1,J} = \text{RToySht}_{V/J}^0 \in C_{V,1},$$

$$Z_{V,N-1,H} = \text{LToySht}_{V+1}^{N-1} \in C_{V,N-1}, \quad Z_{V,N-1,J} = \text{LToySht}_{V+1}^{N-2} \in C_{V,N-1}.$$ When $2 \leq n \leq N - 2$, we denote

$$Z_{V,n,H} = \text{RToySht}_V^n \in C_{V,n}, \text{ or equivalently, } Z_{V,n,H} = \text{LToySht}_V^n \in C_{V,n},$$

$$Z_{V,n,J} = \text{RToySht}_{V/J}^{n-1} \in C_{V,n}, \text{ or equivalently, } Z_{V,n,J} = \text{LToySht}_{V/J}^{n-1} \in C_{V,n}.$$

Theorem 5.3.4. The element $\sum_{H \in P_{V^*}} \lambda_H \cdot Z_{V,n,H} \oplus \sum_{J \in P_V} \mu_J \cdot Z_{V,n,J}$ belongs to $\text{im}(C_{V^n}^0 \to C_{V^n}^1) \otimes \mathbb{Z}[\mathbb{F}_p]$ if and only if $\{\lambda_H\}_{H \in P_{V^*}}, \{\mu_J\}_{J \in P_V}$ satisfy condition (i) or equivalently condition (ii) in Lemma 5.3.3.

Proof. Lemmas 5.3.1 and 5.3.2 show that $(F_{V,n}^+)^* Z_{V,n+1,H} = Z_{V,n,H}, (F_{V,n}^+)^* Z_{V,n+1,J} = q \cdot Z_{V,n,J}$ for $1 \leq n \leq N - 2, H \in P_{V^*}, J \in P_V$. In view of Remark 5.2.2, it suffices to prove the statement in the case $n = N - 1$.

We know that the morphism $\pi_{L,N-1} : \text{LToySht}_{V}^{N-1} \to \text{ToySht}_{V}^{N-1}$ is the blow-up at the points of $\text{ToySht}_{V}^{N-1}(\mathbb{F}_q)$. For $H \in \text{ToySht}_{V}^{N-1}(\mathbb{F}_q) = P_{V^*}$, the exceptional divisor with center H is LToySht_{V}^{N-1}. Thus for $J \in P_V$, we have an identity of divisors of LToySht_{V}^{N-1}

$$(\pi_{L,N-1})^* \text{ToySht}_{V/J}^{N-2} = \text{LToySht}_{V/J}^{N-2} + \sum_{H \in P_{V^*}} \text{LToySht}_{H}^{N-1}.$$ Also note that $C_{V,N-1}^0$ consists of rational functions on $\text{ToySht}_{V}^{N-1} = \mathbb{P}^V(V)$ with zeros and poles supported on the hyperplanes $\text{ToySht}_{V/J}^{N-2}(J \in P_V)$. Hence the statement is true in the case $n = N - 1$. □
5.4. Degree of partial Frobeniuses. Recall that we denote $\text{Flag}^{i,j}_V$ be the closed subscheme of $\text{Grass}^i_V \times \text{Grass}^j_V$ which consists of pairs (M, M') such that $M \subset M'$.

For $0 \leq n \leq N - 1$, we define a scheme $\text{Flag}^{n,n+1}_V$ by the following Cartesian diagram

\[
\begin{array}{ccc}
\text{Flag}^{n,n+1}_V & \longrightarrow & \text{Flag}^{n,n+1}_V \\
\downarrow & & \downarrow \\
\text{Grass}^{n+1}_V & \longrightarrow & \text{Grass}^{n+1}_V
\end{array}
\]

where the right vertical arrow is the projection. So $\text{Flag}^{n,n+1}_V$ parameterizes pairs (M, M') such that $M \subset \text{Fr}^* M'$.

The commutative diagram

\[
\begin{array}{ccc}
\text{Flag}^{n,n+1}_V & \longrightarrow & \text{Flag}^{n,n+1}_V \\
\downarrow & & \downarrow \\
\text{Grass}^{n+1}_V & \longrightarrow & \text{Grass}^{n+1}_V
\end{array}
\]

induces a morphism $f_n : \text{Flag}^{n,n+1}_V \to \text{Flag}^{n,n+1}_V$, which is finite.

Lemma 5.4.1. The morphism $f_n : \text{Flag}^{n,n+1}_V \to \text{Flag}^{n,n+1}_V$ has degree q^n.

Proof. In commutative diagram (5.1), denote $g : \text{Flag}^{n,n+1}_V \to \text{Flag}^{n,n+1}_V$. We have $g \circ f_n = \text{Fr}_{\text{Flag}^{n,n+1}_V}$. Since $\text{Fr}_{\text{Grass}^{n+1}_V}$ is finite and flat, we have $\deg g = \deg \text{Fr}_{\text{Grass}^{n+1}_V}$. Thus

\[
\deg f_n = \frac{\deg \text{Fr}_{\text{Flag}^{n,n+1}_V}}{\deg g} = \frac{\deg \text{Fr}_{\text{Flag}^{n,n+1}_V}}{\deg \text{Fr}_{\text{Grass}^{n+1}_V}} = q^{\dim \text{Flag}^{n,n+1}_V - \dim \text{Grass}^{n+1}_V} = q^n
\]

\[\square\]

Proposition 5.4.2. For $0 \leq n \leq N - 1$, we have $\deg F_{V,n}^+ = q^n$. For $1 \leq n \leq N$, we have $\deg F_{V,n}^- = q^{N-n}$.

Proof. The first statement follows from Lemma 5.4.1 and the Cartesian diagram

\[
\begin{array}{ccc}
\text{RToySht}^n_V & \longrightarrow & \text{Flag}^{n,n+1}_V \\
\downarrow F_{V,n}^+ & & \downarrow f_n \\
\text{LToySht}^{n+1}_V & \longrightarrow & \text{Flag}^{n,n+1}_V
\end{array}
\]

where the morphism $\text{RToySht}^n_V \to \text{Flag}^{n,n+1}_V$ sends a right toy shtuka $\text{Fr}^* L \subset L' \supset L$ to the pair (L, L'), and the morphism $\text{LToySht}^{n+1}_V \to \text{Flag}^{n,n+1}_V$ sends a left toy shtuka $\text{Fr}^* M \supset M' \subset M$ to the pair (M', M).

The second statement follows from duality. \[\square\]
6. Tate toy shtukas

6.1. Tate linear algebra. We recall some basic definitions and facts in Tate linear algebra. See Section 6 of Chapter 2 of [14], Section 2.7.7 of [3], Section 3.1 of [6] and Section 1 of [10] for more details.

We consider topological vector spaces over a discrete field E.

For a topological vector space M, its dual M^* is by definition the space of all continuous linear functionals $M \rightarrow E$.

For a discrete topological vector space Q, the topology on its dual Q^* is the weakest one such that the linear functional $\langle v, - \rangle : Q^* \rightarrow E$ is continuous for all $v \in Q$.

Definition 6.1.1. A Tate space is a topological vector space isomorphic to $P \oplus Q^*$, where P and Q are discrete.

Remark 6.1.2. The topology on a Tate space is Hausdorff.

Definition 6.1.3. Let T be a Tate space. A linear subspace $\Lambda \subset T$ is said to be linearly compact (resp. linearly cocompact) if it is closed and for any open vector subspace $U \subset T$ one has $\dim \Lambda/(\Lambda \cap U) < \infty$ (resp. $\dim T/(\Lambda + U) < \infty$).

For a Tate space T, we equip its dual T^* with a topology as follows. We require the topology on T^* to be linear, i.e., its open linear subspaces form a basis of open neighborhoods of 0. A linear subspace of T^* is open if and only if it is the orthogonal complement of a linearly compact linear subspace of T.

Note that when T is discrete, the topology on T^* agrees with the one given before.

Remark 6.1.4. For a Tate space T, its dual T^* is again a Tate space. The canonical map $T \rightarrow T^{**}$ is an isomorphism. Any discrete vector space is a Tate space. Any linearly compact topological vector space is a Tate space. Duality interchanges discrete and linearly compact Tate spaces.

Remark 6.1.5. A Tate space over a finite field is locally compact. A linearly compact Tate space over a finite field is compact.

Definition 6.1.6. A linear subspace of a Tate space is called a c-lattice if it is open and linearly compact. A linear subspace of a Tate space is called a d-lattice if it is discrete and linearly cocompact.

Remark 6.1.7. Suppose $T = P \oplus Q^*$ is a Tate space, where P and Q are discrete. Then P is a d-lattice of T, and Q^* is a c-lattice of T. Thus there exist c-lattices and d-lattices in every Tate space.

Remark 6.1.8. c-lattices of a Tate space form a basis of neighborhood of 0.

Definition 6.1.9. For a Tate space T and two c-lattices L_1, L_2 of T, we define the relative dimension $d_{L_1}^{L_2} := \dim(L_2/L_1 \cap L_2) - \dim(L_1/L_1 \cap L_2) \in \mathbb{Z}$.
Definition 6.1.10. A *dimension theory* on a Tate space T is a function

$$d : \{\text{c-lattices of } T\} \to \mathbb{Z}$$

such that $d(L_2) - d(L_1) = d_{L_1}^{L_2}$ for any L_1, L_2.

A dimension theory exists and is unique up to adding an integer. So dimension theories on a Tate space T form a \mathbb{Z}-torsor, denoted by Dim_T.

For a d-lattice I and a c-lattice L of a Tate space T, we denote

$$\chi(I, L) = \dim(I \cap L) - \dim(T/(I + L)).$$

For any d-lattice $I \subset T$, the function $L \mapsto \chi(I, L)$ is a dimension theory.

Definition 6.1.11. For a Tate space T, we define a function

$$\dim : \{\text{d-lattices of } T\} \to \text{Dim}_T$$

$$I \mapsto (L \mapsto \chi(I, L))$$

We call $\dim(I)$ the *dimension* of I.

We borrow the definition of relative determinant from Section 4 of [2].

Definition 6.1.12. For a Tate space T and two c-lattices L_1, L_2 of T, we define their *relative determinant* to be the one-dimensional vector space

$$\det_{L_1}^{L_2} := \det(L_1/L_1 \cap L_2)^* \otimes \det(L_2/L_1 \cap L_2).$$

6.2. Sato Grassmannians. Let E be a discrete field.

For an E-vector space V and a Tate space M over E, we denote

$$M \widehat{\otimes} V := \lim_{\Lambda \to} (M/\Lambda) \otimes V,$$

where the projective limit is taken over all c-lattices Λ of M.

For an E-scheme S and a quasi-coherent sheaf \mathcal{G} on S, we denote $M \widehat{\otimes} \mathcal{G}$ to be the sheaf of \mathcal{O}_S-modules such that

$$(M \widehat{\otimes} \mathcal{G})(U) = \lim_{\Lambda \to} (M/\Lambda) \otimes \mathcal{G}(U)$$

for all open subset $U \subset S$, where the projective limit is taken over all c-lattices Λ of M.

Let T be a Tate space over E and fix $n \in \text{Dim}_T$.

Definition 6.2.1. We define a functor Grass^n_T from the category of E-schemes to the category of sets. For an E-algebra R, an R-point of Grass^n_T is an R-submodule $L \subset T \widehat{\otimes} R$ such that there exists a c-lattice Λ' of T such that the morphism $L \to (T/\Lambda') \otimes R$ is injective and its cokernel is a finitely generated projective R-module of rank $-n(\Lambda')$.
The definition below is due to Kashiwara. (Cf. Section 2 of [11].) Definition 6.2.1 and Definition 6.2.2 are equivalent by Lemma 6.2.3.

Definition 6.2.2. For an E-scheme S, an S-point of Grass_T^n is an O_S-submodule $F \subset T \hat{\otimes} O_S$ such that locally in the Zariski topology there exists a c-lattice $\Lambda \subset T$ such that $n(\Lambda) = 0$ and $F \to (T/\Lambda) \otimes O_S$ is an isomorphism.

Lemma 6.2.3. Let $S = \text{Spec } R$, where R is an E-algebra. Let G_1 (resp. G_2) be the set $\text{Grass}_T^n(S)$, where Grass_T^n is the functor in Definition 6.2.1 (resp. Definition 6.2.2). Then we have a canonical bijection $G_2 \to G_1$.

Proof. Since S is quasi-compact, we get a map $G_2 \to G_1$.

For $L \in G_1$ and $s \in S$, we can find a c-lattice Λ containing Λ' such that $n(\Lambda) = 0$ and $L \otimes k(s) \to (T/\Lambda) \otimes k(s)$ is an isomorphism of vector spaces, where $k(s)$ is the residue field of s. Let $\mathcal{F} = L \hat{\otimes}_R O_S$. Since $((T/\Lambda') \otimes R)/L$ is projective, we see that for the fixed c-lattice $\Lambda \subset T$ and the fixed O_S-submodule \mathcal{F} the condition in Definition 6.2.2 is open on S. Hence there exists a Zariski neighborhood of s in which $\mathcal{F} \to (T/\Lambda) \otimes O_S$ is an isomorphism. This shows that $\mathcal{F} \in G_1$. So we get a map $G_1 \to G_2$.

It is easy to see that the above two maps are inverse of each other. \qed

Proposition 6.2.4. Grass_T^n is representable by a separated scheme over E.

Proof. This is Proposition 2.2.1 of [11]. \qed

Remark 6.2.5. If R is a field over E, then $\text{Grass}_T^n(R)$ is the set of d-lattices of dimension n of the Tate space $T \hat{\otimes} R$ over R.

6.3. Determinant of a family of d-lattices relative to a c-lattice.

Let T be a Tate space over a field E.

We denote

$$\text{Grass}_T = \coprod_{n \in \text{Dim}_T} \text{Grass}_T^n.$$

We see that Grass$_T$ parameterizes d-lattices of T.

Definition 6.3.1. Let S be a scheme over E. For $\mathcal{L} \in \text{Grass}_T(S)$ and a c-lattice W of T, the **determinant** of \mathcal{L} relative to W, denoted by $\det(\mathcal{L}, W)$, is defined to be the invertible sheaf $\det(\mathcal{L} \to (T/W) \otimes O_S)$ on S, where \mathcal{L} is in degree 0.

Remark 6.3.2. The above definition commutes with base change, i.e., for a morphism of schemes $f : S_1 \to S_2$ over E, an element $\mathcal{L} \in \text{Grass}_T(S_2)$ and a c-lattice W of T, we have a canonical isomorphism $\det(f^* \mathcal{L}, W) \cong f^* \det(\mathcal{L}, W)$.
Lemma 6.3.5. Suppose the base field E is a field, and S is a scheme over E. For $\mathcal{L} \in \text{Grass}_T(S)$ and two c-lattices W_1, W_2 of T, we have a canonical isomorphism $\det(\mathcal{L}, W_1) \otimes \det_{W_1}^{W_2} \cong \det(\mathcal{L}, W_2)$. In particular, the two invertible sheaves $\det(\mathcal{L}, W_1)$ and $\det(\mathcal{L}, W_2)$ are isomorphic.

Lemma 6.3.4. Let S be a scheme over E and let W be a c-lattice of T. For $\mathcal{L}_1, \mathcal{L}_2 \in \text{Grass}_T(S)$ such that $\mathcal{L}_1 \subset \mathcal{L}_2$, we have a canonical isomorphism

$$\det(\mathcal{L}_1, W) \otimes \det(\mathcal{L}_2/\mathcal{L}_1) \cong \det(\mathcal{L}_2, W)$$

which commutes with base change. □

Remark 6.3.3. Let S be a scheme over E. For $\mathcal{L} \in \text{Grass}_T(S)$ and two c-lattices W_1, W_2 of T, we have a canonical isomorphism $\det(\mathcal{L}, W_1) \otimes \det_{W_1}^{W_2} \cong \det(\mathcal{L}, W_2)$. In particular, the two invertible sheaves $\det(\mathcal{L}, W_1)$ and $\det(\mathcal{L}, W_2)$ are isomorphic.

Definition 6.4.1. A Tate toy shtuka for T over an \mathbb{F}_q-scheme S of dimension $n \in \text{Dim}_T$ is an element $\mathcal{L} \in \text{Grass}_T^n(S)$ such that the composition

$$\text{Fr}_S^* \mathcal{L} \to \text{Fr}_S^*(T \otimes \mathcal{O}_S) = T \otimes \mathcal{O}_S \to (T \otimes \mathcal{O}_S)/\mathcal{L}$$

has rank at most 1. (In other words, the corresponding morphism $\bigwedge^2 \text{Fr}_S^* \mathcal{L} \to \bigwedge^2((T \otimes \mathcal{O}_S)/\mathcal{L})$ is zero.)

For $n \in \text{Dim}_T$, let ToySht_T^n be the functor which associates to each \mathbb{F}_q-scheme S the set of isomorphism classes of Tate toy shtukas for T over S of dimension n.

As in the finite dimensional cases, ToySht_T^n is representable by a closed subscheme of Grass_T^n.

We denote $\overset{\sim}{\text{ToySht}}_T^n := \text{ToySht}_T^n - \text{Grass}_T^n(\mathbb{F}_q)$. As in Remark 2.4.6 we know that $\overset{\sim}{\text{ToySht}}_T^n$ is an open subscheme of ToySht_T^n.

7. Open charts of the scheme of Tate toy shtukas

7.1. Notation. For a finite dimensional vector space V over \mathbb{F}_q and two subspaces $V' \subset V''$ of V, denote $\text{Grass}_{V,V'}^{V,V''}$ to be the open subscheme of Grass_V^n, such that for any \mathbb{F}_q-algebra R, $\text{Grass}_{V,V'}^{V,V''}(R)$ consists of $L \in \text{Grass}_V^n(R)$ satisfying the following two conditions:

(i) the morphism $L \to (V/V') \otimes R$ is injective and its cokernel is projective;

(ii) the morphism $L \to (V/V'') \otimes R$ is surjective.

We have a morphism $\text{Grass}_{V,V'}^{V,V''} \to \text{Grass}_{V'',V''}^{V,V''}$ which maps $L \in \text{Grass}_{V,V'}^{V,V''}(R)$ to $\im(L' \to (V''/V') \otimes R) \in \text{Grass}_{V'',V''}^{V,V''}(R)$, where $L'' = \ker(L \to (V/V'') \otimes R)$.

Let $^\circ\text{Grass}^{n,V',V''}_V$ be the fiber product

\[
\xymatrix{\text{Grass}^{n,V',V''}_V \ar[r] & ^\circ\text{Grass}^{n,V',V''}_V \ar[d]^f \ar[r] & \text{Grass}^{n,V',V''}_V \ar[d]}
\]

(7.1)

We denote $^\circ\text{ToySht}^{n,V',V''}_V = ^\circ\text{ToySht}^n_V \cap ^\circ\text{Grass}^{n,V',V''}_V$. We have a morphism $^\circ\text{ToySht}^{n,V',V''}_V \to ^\circ\text{ToySht}^{n-\dim V/V''}_V$ induced by f.

Lemma 7.1.1. For a finite dimensional vector space V over \mathbb{F}_q and two subspaces $V' \subset V''$ of V, the morphism $\text{Grass}^{n,V',V''}_V \to \text{Grass}^{n-\dim V/V''}_V$ is affine. \qed

Lemma 7.1.2. For finite dimensional \mathbb{F}_q-vectors spaces $V'_1 \subset V_1' \subset V_0'' \subset V''_1 \subset V_2''$, the morphism $^\circ\text{Grass}^{n,V'_2/V'_2,V''_2/V'_2}_V \to ^\circ\text{Grass}^{n-\dim V'_2/V'_2,V''_2/V'_2}_V$ is affine. \qed

For a nondiscrete noncompact Tate space T over \mathbb{F}_q, two c-lattices $\Lambda' \subset \Lambda''$ of T and $n \in \text{Dim}_T$, we define the notation $\text{Grass}^{n,\Lambda',\Lambda''}_T$, $^\circ\text{Grass}^{n,\Lambda',\Lambda''}_T$ and $^\circ\text{ToySht}^{n,\Lambda',\Lambda''}_T$ similarly.

7.2. Admissible pairs of c-lattices.

Let T be a nondiscrete noncompact Tate space over \mathbb{F}_q.

For two pairs of c-lattices $(\widetilde{\Lambda}', \widetilde{\Lambda}'')$ and (Λ', Λ'') of T, we say that $(\widetilde{\Lambda}', \widetilde{\Lambda}'')$ is greater than (Λ', Λ'') (denoted by $(\widetilde{\Lambda}', \widetilde{\Lambda}'') \succ (\Lambda', \Lambda'')$), if $\widetilde{\Lambda}' \subset \Lambda'$ and $\Lambda'' \subset \widetilde{\Lambda}''$. All pairs of c-lattices of T form a directed set under this partial order.

If $(\widetilde{\Lambda}', \widetilde{\Lambda}'') \succ (\Lambda', \Lambda'')$, then $\text{Grass}^{n,\widetilde{\Lambda}',\widetilde{\Lambda}''}_T \subset \text{Grass}^{n,\Lambda',\Lambda''}_T$, $^\circ\text{Grass}^{n,\Lambda',\Lambda''}_T \subset ^\circ\text{Grass}^{n,\widetilde{\Lambda}',\widetilde{\Lambda}''}_T$, $^\circ\text{ToySht}^{n,\Lambda',\Lambda''}_T \subset ^\circ\text{ToySht}^{n,\widetilde{\Lambda}',\widetilde{\Lambda}''}_T$.

A pair of c-lattices (Λ', Λ'') of T is said to be admissible with respect to $n \in \text{Dim}_T$ if $n(\Lambda') \leq -2$, $n(\Lambda'') \geq 2$, and $\Lambda' \subset \Lambda''$. Let $\text{AP}_n(T)$ denote the set of pairs of c-lattices of T that are admissible with respect to n. It is a directed set with respect to the partial order above. We see that $^\circ\text{ToySht}^n_T$ is covered by the union of $^\circ\text{ToySht}^{n,\Lambda',\Lambda''}_T$ for all $(\Lambda', \Lambda'') \in \text{AP}_n(T)$.

7.3. $^\circ\text{ToySht}^{n,\Lambda',\Lambda''}_T$ as a projective limit.

Let T be a nondiscrete noncompact Tate space over \mathbb{F}_q. Let $n \in \text{Dim}_T$ and $(\Lambda', \Lambda'') \in \text{AP}_n(T)$.

In this subsection we describe the open subscheme $^\circ\text{ToySht}^{n,\Lambda',\Lambda''}_T$ of $^\circ\text{ToySht}^n_T$ as a projective limit of schemes.

For any $(\widetilde{\Lambda}', \widetilde{\Lambda}'') \succ (\Lambda', \Lambda'')$, we denote $U^{n,\Lambda',\Lambda''}_{\widetilde{\Lambda}',\widetilde{\Lambda}''} = ^\circ\text{ToySht}^{n,\widetilde{\Lambda}',\widetilde{\Lambda}''}_{\Lambda',\Lambda''}$. In particular, $U^{n,\Lambda',\Lambda''}_{\Lambda',\Lambda''} = ^\circ\text{ToySht}^{n,\Lambda'}_{\Lambda''}$. We have a morphism $^\circ\text{ToySht}^{n,\Lambda',\Lambda''}_T \to U^{n,\Lambda',\Lambda''}_{\Lambda',\Lambda''}$ induced by the morphism $^\circ\text{Grass}^{n,\Lambda',\Lambda''}_T \to ^\circ\text{Grass}^{n,\Lambda',\Lambda''}_{\Lambda',\Lambda''}$. For any $(\Lambda_2', \Lambda_2'') \succ (\Lambda_1', \Lambda_1'')$, we have a transition map $U^{n,\Lambda',\Lambda''}_{\Lambda_2',\Lambda_2''} \to U^{n,\Lambda',\Lambda''}_{\Lambda_1',\Lambda_1''}$, which is affine by Lemma 7.4.3.
Lemma 7.3.1. The morphisms \(\circ \text{ToySht}^n_{\Lambda', \Lambda''} \to U_{\Lambda', \Lambda''}^{n, \Lambda'} \) induce an isomorphism

\[
\circ \text{ToySht}^n_{\Lambda', \Lambda''} \simeq \lim_{\lambda \to (\Lambda', \Lambda'')} \frac{U_{\Lambda', \Lambda''}^{n, \Lambda'}}{U_{\Lambda', \Lambda''}^{n, \Lambda'}}.
\]

7.4. Transition maps are affine.

Lemma 7.4.1. Let \(f : Y_1 \to Y_2 \) be a morphism of schemes over a scheme \(S \). If \(Y_1 \) is affine over \(S \) and \(Y_2 \) is separated, then \(f \) is affine. \(\square \)

Lemma 7.4.2. Let \(V'_2 \subset V'_1 \subset V'_0 \subset V''_1 \subset V''_2 \) be finite dimensional vector spaces over \(\mathbb{F}_q \). Then the morphism \(\circ \text{ToySht}^{n, V'_2/V'_2, V'_0/V'_2}_V \to \circ \text{ToySht}^{n, V''_2/V''_2, V''_0/V''_2}_V \) is affine.

Proof. The morphism \(\circ \text{ToySht}^{n, V'_2/V'_2, V'_0/V'_2}_V \to \circ \text{Grass}^{n, V'_2/V'_2, V'_0/V'_2}_V \) is affine since it is a closed immersion. The morphism \(\circ \text{Grass}^{n, V'_2/V'_2, V'_0/V'_2}_V \to \circ \text{Grass}^{n, V''_2/V''_2, V''_0/V''_2}_V \) is affine by Lemma 7.1.2. Applying Lemma 7.4.1 with \(Y_1 = \circ \text{ToySht}^{n, V'_2/V'_2, V'_0/V'_2}_V \), \(Y_2 = \circ \text{ToySht}^{n, V''_2/V''_2, V''_0/V''_2}_V \), \(S = \circ \text{Grass}^{n, V''_2/V''_2, V''_0/V''_2}_V \), the statement follows. \(\square \)

Lemma 7.4.3. Let \(T \) be a nondiscrete noncompact Tate space over \(\mathbb{F}_q \). Let \(n \in \dim_T \) and \((\Lambda'_0, \Lambda''_0) \in \text{AP}_n(T) \). Let \((\Lambda'_1, \Lambda'_0), (\Lambda'_2, \Lambda'_0) \) be two c-lattices such that \((\Lambda'_2, \Lambda'_0) \succ (\Lambda'_1, \Lambda'_0) \). Then the morphism \(U^{n, \Lambda'_0, \Lambda''_0}_{\Lambda'_1, \Lambda'_2} \to U^{n, \Lambda'_0, \Lambda''_0}_{\Lambda'_1, \Lambda'_1} \) is affine.

Proof. The statement follows from Lemma 7.4.2. \(\square \)

7.5. Transition maps are smooth.

Lemma 7.5.1. Let \(V \) be a finite dimensional vector space space over \(\mathbb{F}_q \). Let \(W \) be a subspace of \(V \). Then the morphism \(\circ \text{ToySht}^{n, 0, W}_V \to \circ \text{ToySht}^{n, \dim V/W}_W \) is smooth.

Proof. \(\text{Grass}^{n, \dim V/W}_W \) is covered by \(\text{Grass}^{n, \dim V/W, W', W'}_W \) when \(W' \) runs through all subspaces of \(W \) of dimension \((\dim V - n) \). So in view of the Cartesian diagram

\[
\begin{array}{ccc}
\text{Grass}^{n, W', W'}_V & \longrightarrow & \text{Grass}^{n, 0, W}_V \\
\downarrow & & \downarrow \\
\text{Grass}^{n, \dim V/W, W', W'}_W & \longrightarrow & \text{Grass}^{n, \dim V}_W
\end{array}
\]

it suffices to show that the morphism

\[f : \circ \text{ToySht}^{n, 0, W}_V \cap \text{Grass}^{n, W', W'}_V \to \circ \text{ToySht}^{n, \dim V/W}_W \cap \text{Grass}^{n, \dim V/W, W', W'}_W \]

is smooth for each subspace \(W' \subset W \) of dimension \((\dim V - n) \).

Fix one such \(W' \). Choose splittings \(W = W' \oplus W'', V = W \oplus V' \).
We define \mathbb{P}_q-schemes M, M', M'' where
\[
M = \{ a \in \text{Hom}(W'' \oplus V', W') | \text{rank } a = \text{rank}(W'' \rightarrow_{a} W') = 1 \}
\]
\[
M' = \text{Hom}(V', W'), \quad M'' = \text{Hom}_{\text{rank}=1}(W'', W')
\]
So M is a locally closed subscheme of $\text{Hom}(W'' \oplus V', W')$ and M'' is a locally closed subscheme of $\text{Hom}(W'', W')$.

We denote Artin-Schreier maps
\[
\text{AS} = \text{Id} - \text{Fr} : \text{Hom}(W'' \oplus V', W') \rightarrow \text{Hom}(W'' \oplus V', W'),
\]
\[
\text{AS}' = \text{Id} - \text{Fr} : \text{Hom}(V', W') \rightarrow \text{Hom}(V', W'),
\]
\[
\text{AS}'' = \text{Id} - \text{Fr} : \text{Hom}(W'', W') \rightarrow \text{Hom}(W'', W').
\]

From the explicit local description of ToySht in Section 2.2 and the Cartesian diagram (7.1), we know that
\[
\text{Hom}(W'' \oplus V', W') \rightarrow \text{Hom}(W'' \oplus V', W'),
\]
and that the morphism $\mathfrak{f} : \text{AS}^{-1}(M) \rightarrow (\text{AS}'')^{-1}(M'')$ is induced by the projection $\text{Hom}(W'' \oplus V', W') \rightarrow \text{Hom}(W'', W')$.

We denote
\[
\mathbb{P}_{W'} \star M' = \{ (L, A) \in \mathbb{P}_{W'} \times M' | L \supset \text{im } A \}
\]
to be the closed subscheme of $\mathbb{P}_{W'} \times M'$.

We have to prove that the morphism $\mathfrak{f} : \text{AS}^{-1}(M) \rightarrow (\text{AS}'')^{-1}(M'')$ is smooth. To this end, we will construct a Cartesian diagram
\[
\begin{array}{ccc}
\text{AS}^{-1}(M) & \xrightarrow{g} & \mathbb{P}_{W'} \star M' \\
\downarrow \mathfrak{f} & & \downarrow \mathfrak{h} \\
(\text{AS}'')^{-1}(M'') & \xrightarrow{u} & \mathbb{P}_{W'}
\end{array}
\]
and prove that \mathfrak{h} is smooth.

The maps in the diagram are as follows. The morphism \mathfrak{h} is the composition $\mathbb{P}_{W'} \star M' \xrightarrow{\text{Id} \times \text{AS}'} \mathbb{P}_{W'} \star M' \xrightarrow{pr} \mathbb{P}_{W'}$. The composition $\text{AS}^{-1}(M) \hookrightarrow \text{Hom}(W'' \oplus V', W') \xrightarrow{\text{res}_{W''}} M'' \rightarrow \mathbb{P}_{W'}$ and the projection $\text{AS}^{-1}(M) \rightarrow M'$ induce a morphism $\text{AS}^{-1}(M) \rightarrow \mathbb{P}_{W'} \times M'$ which factors through $\mathbb{P}_{W'} \star M'$. This gives g. The morphism u is the composition $(\text{AS}'')^{-1}(M'') \xrightarrow{\text{AS}''} M'' \hookrightarrow \mathbb{P}_{W'}$.

One can check that the diagram is commutative and Cartesian.

The morphism $\mathbb{P}_{W'} \star M' \xrightarrow{\text{Id} \times \text{AS}'} \mathbb{P}_{W'} \star M'$ is smooth since AS' is étale. The morphism $\mathbb{P}_{W'} \star M' \rightarrow \mathbb{P}_{W'}$ is smooth since it is the projection morphism for a vector bundle. So \mathfrak{h} is smooth. Hence is \mathfrak{f}. \square

The following statement is dual to Lemma 7.5.1.
Lemma 7.5.2. Let V be a finite dimensional vector space over \mathbb{F}_q. Let W be a subspace of V. Then the morphism $\circ\text{ToySht}_{V}^{n,W,V} \to \circ\text{ToySht}_{V/W}^{n}$ is smooth. \hfill \Box

Proposition 7.5.3. Let $V' \subset V'' \subset V$ be finite dimensional vector spaces over \mathbb{F}_q. Then the morphism $\circ\text{ToySht}_{V}^{n,V',V''} \to \circ\text{ToySht}_{V'/V''}^{n-\dim V/V''}$ is smooth. \hfill \Box

Proof. The statement follows from Proposition 7.5.1 and Lemma 7.5.2. \hfill \Box

Corollary 7.5.4. With the same notation and assumptions of Lemma 7.4.3, the morphism $U_{\Lambda_2,\Lambda_2'}^{n,n,n'} \to U_{\Lambda_1,\Lambda_1'}^{n,n,n'}$ is smooth. \\
Proof. The statement follows from Proposition 7.5.3. \hfill \Box

8. Functorial properties of toy horospherical divisors

In this section, we use the notation of Sections 7.1 and 7.2.

8.1. Notation. Suppose M is a vector space over \mathbb{F}_q such that $3 \leq \dim M < \infty$.

For $J \in P_M$, we consider $\text{ToySht}_{M/J}^{n-1}$ as a closed subscheme of ToySht_M^n as before. Denote $\Delta_{M,J}^{n} = \text{ToySht}_{M/J}^{n-1} \cap \circ\text{ToySht}_M^n$. For two subspaces $M' \subset M''$ of M, denote $\Delta_{M,J}^{n,M',M''} = \Delta_{M,J}^{n} \cap \circ\text{Grass}_M^{n,M',M''}$.

For $H \in P_M$, we consider $\text{ToySht}_{M,H}^{n}$ as a closed subscheme of ToySht_M^n as before. Denote $\Delta_{M,H}^{n} = \text{ToySht}_{M,H}^{n} \cap \circ\text{ToySht}_M^n$. For two subspaces $M' \subset M''$ of M, denote $\Delta_{M,H}^{n,M',M''} = \Delta_{M,H}^{n} \cap \circ\text{Grass}_M^{n,M',M''}$.

We denote $\Delta_{M}^{n} = (\bigcup_{H \in P_M} \Delta_{M,H}^{n}) \cup (\bigcup_{J \in P_M} \Delta_{M,J}^{n})$ and $\Delta_{M}^{n,M',M''} = \Delta_{M}^{n} \cap \circ\text{Grass}_M^{n,M',M''}$. They are the union of toy horospherical divisors of $\circ\text{ToySht}_M^n$ and $\circ\text{ToySht}_M^{n,M',M''}$ respectively.

By Proposition 2.6.2, each $\Delta_{M,J}^{n}, \Delta_{M,J}^{n,M',M''}, \Delta_{M,H}^{n,M',M''}$ is reduced and irreducible if it is nonempty.

8.2. Pullbacks of toy horospherical divisors under transition maps. In this subsection, we calculate the pullback of a toy horospherical divisor under transition maps. (The fact that this pullback is well-defined is clear from Corollary 7.5.4.)

Lemma 8.2.1. Let $W \subset V$ be finite dimensional vector spaces over \mathbb{F}_q. Let $J' \in P_{V/W}$ and denote $\mathfrak{J} = \{J \in P_V | \text{im}(J \to (V/W)) = J'\}$. Let E be a field over \mathbb{F}_q. Suppose $L \in \circ\text{ToySht}_V^{n,W,V}(E)$ satisfies $\text{im}(L \to ((V/W) \otimes E)) \supset J' \otimes E$. Then $L \supset J \otimes E$ for some $J \in \mathfrak{J}$.

Proof. Let J'' be the unique subspace of V containing W such that $J''/W = J'$. Denote $L' = L \cap ((W + J'') \otimes E), L'' = \text{im}(L \to (V/(W + J'')) \otimes E), L''' = \text{im}(L \to (V/W) \otimes E)$. Since L''' is a nontrivial toy shtuka and $L''' \supset J' \otimes E$, L''' is also a nontrivial toy shtuka. Applying Lemma 3.2.1 to L and $W + J''$, we get $\text{Fr}_E L' = L'$. Since $L \in \circ\text{ToySht}_V^{n,W,V}(E)$, we have $L \cap (W \otimes E) = 0$. Hence $\dim_E L' = 1$. Thus $L' = J \otimes E$ for some $J \in \mathfrak{J}$. \hfill \Box
Lemma 8.2.2. Let V be a finite dimensional vector space over \mathbb{F}_q. Let W be a subspace of V such that $\dim(V/W) \geq 3$. Let $u : \text{ToySht}^n_{V,W} \to \text{ToySht}^n_{V/W}$ be the transition map. Let $H' \in P(V/W)^\ast$ and let H be the hyperplane of V such that $H \supseteq W$ and $H/W = H'$. Let $J' \in P_{V/W}$ and denote $\mathcal{J} = \{ J \in P_V | \im(J \to (V/W)) = J' \}$.

When $1 \leq n \leq \dim(V/W) - 2$, we have an equality of divisors $u^*(\Delta^n_{V/W,H'}) = \Delta^n_{V,H'}$. When $2 \leq n \leq \dim(V/W) - 1$, we have an equality of divisors $u^*(\Delta^n_{V/W,J'}) = \sum_{J \in \mathcal{J}} \Delta^n_{V,J}$.

Proof. Since u is smooth by Corollary 7.5.4 and $\Delta^n_{V/W,H'}, \Delta^n_{V,H'}, \Delta^n_{V/J}, \Delta^n_{V,J'} (J \in \mathcal{J})$ are reduced by Lemma 2.3.1, it suffices to prove the statements set-theoretically.

When $1 \leq n \leq \dim(V/W) - 2$, it is obvious that $u^{-1}(\Delta^n_{V/W,H'}) = \Delta^n_{V,H'}$ as subsets of $\text{ToySht}^n_{V,W}$.

When $2 \leq n \leq \dim(V/W) - 1$, we have $u(\Delta^n_{V,J'}) \subseteq \Delta^n_{V,J'}$ for $J \in \mathcal{J}$, and the inclusion $u^{-1}(\Delta^n_{V/J'}) \subseteq \bigcup_{J \in \mathcal{J}} \Delta^n_{V,J'}$ is set-theoretically true by Lemma 8.2.1. \qed

Lemma 8.2.3. Let V be a finite dimensional vector space over \mathbb{F}_q. Let W be a subspace of V such that $\dim W \geq 3$. Let $u : \text{ToySht}^n_{V,0,W} \to \text{ToySht}^n_{V,W}$ be the transition map. Let $J \in P_W$, $H' \in P_W^\ast$ and denote $\mathcal{J} = \{ H \in P_V | H \cap W = H' \}$.

When $\dim(V/W) + 2 \leq n \leq \dim V - 1$, we have an equality of divisors $u^*(\Delta^n_{W,H'}) = \Delta^n_{V,W}$. When $\dim(V/W) + 1 \leq n \leq \dim V - 2$, we have an equality of divisors $u^*(\Delta^{n-\dim(V/W)}_{W,H'}) = \sum_{H \in \mathcal{J}} \Delta^n_{V,H}$.

Proof. The statement is dual to Lemma 8.2.2. \qed

Proposition 8.2.4. Let T be a nondiscrete noncompact Tate space over \mathbb{F}_q. Let $n \in \operatorname{Dim}_T$ and let $(\Lambda_0, \Lambda_0') \in AP_n(T)$. Let $(\Lambda_1', \Lambda_1'')$, $(\Lambda_2', \Lambda_2'')$ be two pairs of c-lattices of T such that $(\Lambda_2', \Lambda_2'') \succ (\Lambda_1', \Lambda_1'') \succ (\Lambda_0, \Lambda_0')$. Let $u : U^{m}_{\Lambda_2', \Lambda_2''} \to U^{m}_{\Lambda_1', \Lambda_1''}$ be the transition map as in Section 7.3.

For $J_1 \in P_{\Lambda_1'/\Lambda_1}^\ast$ such that $J_1 \not\subseteq \Lambda_0'/\Lambda_1'$, put $\mathcal{J}_2 = \{ J_2 \in P_{\Lambda_2'/\Lambda_1}^\ast | \im(J_2 \cap \Lambda_2' \to \Lambda_0'/\Lambda_1') = J_1 \}$. For $H_1 \in P_{(\Lambda_2'/\Lambda_1)'},$ such that $H_1 \not\supseteq \Lambda_0'/\Lambda_1'$, put $\mathcal{J}_2 = \{ H_2 \in P_{(\Lambda_2'/\Lambda_1)'}^\ast | \im(H_2 \cap \Lambda_2' \to \Lambda_0'/\Lambda_1') = H_1 \}.$

Then we have equalities of divisors
\[
u^*(\Delta^{m}_{\Lambda_1'/\Lambda_1'} \cap U^{m}_{\Lambda_1', \Lambda_1''}) = \sum_{J_2 \in \mathcal{J}_2} \Delta^{m}_{\Lambda_2'/\Lambda_2''} \cap U^{m}_{\Lambda_1', \Lambda_1''},
\]
\[
u^*(\Delta^{m}_{\Lambda_1'/\Lambda_1', H_1} \cap U^{m}_{\Lambda_1', \Lambda_1''}) = \sum_{H_2 \in \mathcal{J}_2} \Delta^{m}_{\Lambda_2'/\Lambda_2'', H_1} \cap U^{m}_{\Lambda_1', \Lambda_1''}.
\]

Proof. The statement follows from Lemmas 8.2.2, 8.2.3 and 8.2.5. \qed

Lemma 8.2.5. With the same notation as in Proposition 8.2.4, the following commutative diagram is Cartesian. \qed
Proof. Fix a splitting \mathcal{Sht}. Let $J_2 \in \mathcal{J}_2$. Put $Y_1 = \Delta_{n(A''_0)}^n \cap U^n_{\Lambda''_0 \Lambda''_1}$ and $Y_2 = \Delta_{n(A''_1)}^n \cap U^n_{\Lambda''_1 \Lambda''_2}$. Then Proposition 8.2.4 from Corollary 7.5.4.

\square

Lemma 8.2.6. Use the same notation of Proposition [8.2.4] Let $J_2 \in \mathcal{J}_2$. Put $Y_1 = \Delta_{n(A''_0)}^n \cap U^n_{\Lambda''_0 \Lambda''_1}$ and $Y_2 = \Delta_{n(A''_1)}^n \cap U^n_{\Lambda''_1 \Lambda''_2}$. Then we have $u(Y_2) \subset Y_1$, and the morphism $Y_2 \to Y_1$ induced by u is dominant.

Proof. It is clear that $u(Y_2) \subset Y_1$. Since $(\Lambda_0, \Lambda''_0) \in AP_n(T)$, both Y_1 and Y_2 are nonempty. Hence they are irreducible by Proposition 2.6.2. Then Proposition 8.2.4 shows that Y_2 is an irreducible component of $u^{-1}(Y_1)$. Now the statement follows from Corollary 7.5.4.

8.3. Functoriality for non-horospherical toy shtukas.

Lemma 8.3.1. Let $V' \subset V'' \subset V$ be finite dimensional vector spaces over \mathbb{F}_q. Then the morphism $\circ \mathsf{ToySht}^{n(V'')}_{V''/V'} \to \circ \mathsf{ToySht}^{n-\dim V/V''}_{V''/V'}$ is surjective.

Proof. Fix a splitting $V = V' \oplus V''/V' \oplus V/V''$. Let $L \in \circ \mathsf{ToySht}^{n-\dim V/V''}_{V''/V'}(E)$, where E is a field over \mathbb{F}_q. Then $\widetilde{L} = L \oplus ((V/V'') \otimes E) \subset V \otimes E$ is an E-point of $\circ \mathsf{ToySht}^{n(V'')}_{V''/V'}$ which maps to L.

\square

Lemma 8.3.2. Let $V' \subset V'' \subset V$ be finite dimensional vector spaces over \mathbb{F}_q such that $\dim V''/V' \geq 3$. Suppose $J \in \mathcal{P}_V$ satisfies $J \not\subset V''$. Then the composition $\Delta_{n(V)',V''} \hookrightarrow \circ \mathsf{ToySht}^{n(V'')}_{V''/V'} \to \circ \mathsf{ToySht}^{n-\dim V/V''}_{V''/V'}$ is smooth.

Proof. We choose a subspace $V''' \subset V$ such that $V''' \supseteq V''$ and $V''' \oplus J = V$. Then we get an isomorphism $\circ \mathsf{ToySht}^{n-1,V''}_V \isom \Delta_{n(V'),V''}$. The composition $\circ \mathsf{ToySht}^{n-1,V''}_V \to \circ \mathsf{ToySht}^{n(V'')}_{V''/V'} \to \circ \mathsf{ToySht}^{n-\dim V/V''}_{V''/V'}$ is the natural one, and is smooth by Proposition 7.5.3. The statement follows.

\square

Recall that the notation $\circ \circ \mathsf{ToySht}^n_V$ is defined in Section 5.2.

Lemma 8.3.3. Let $V' \subset V'' \subset V$ be finite dimensional vector spaces over \mathbb{F}_q such that $\dim V''/V' \geq 3$. Assume $\dim V/V' + 1 \leq n \leq \dim V/V' - 1$. Then $\circ \circ \mathsf{ToySht}^n_V$ is contained in $\circ \mathsf{ToySht}^{n(V'')}_V$.

Proof. Let $L \in \circ \circ \mathsf{ToySht}^n_V(E)$, where E is a field over \mathbb{F}_q. From the description of Schubert divisors in Theorem 4.2.1, we see that $L \cap (W \otimes E) = 0$ for any subspace $W \subset V$ of codimension n. Thus $\dim_E(V \cap (U \otimes E)) = \max\{0, n - \dim V/U\}$ for any subspace $U \subset V$. In particular, we have $L \in \mathsf{Grass}^{n(V'')}_V(E)$.
Let $\mathcal{L} = \text{im}(L \cap (V'' \otimes E) \to (V''/V') \otimes E)$. Then
\begin{equation}
(8.1) \quad \dim_E(\mathcal{L} \cap (M \otimes E)) = \max\{0, n - \dim V/V' + \dim M\}
\end{equation}
for any subspace $M \subset V''/V'$. Suppose $\mathcal{L} = M \otimes E$ for some subspace $M \subset V''/V'$.
Then $\dim_E(\mathcal{L} \cap (M \otimes E)) = \dim_E(\mathcal{L}) = n - \dim V''$. On the other hand, $\dim_E(\mathcal{L} \cap (M \otimes E)) = \dim M$. We get a contradiction to (8.1) from the assumption $\dim V'' + 1 \leq n \leq \dim V/V' - 1$. Thus \mathcal{L} is a nontrivial toy shtuka for V''/V'.

Corollary 8.3.4. For (Λ', Λ''), $(\widetilde{\Lambda}', \widetilde{\Lambda}'') \in A_{\text{Fin}}(T)$ such that $(\widetilde{\Lambda}', \widetilde{\Lambda}'') \succ (\Lambda', \Lambda'')$, \(^{\circ}\text{ToySht}_{\frac{n(\Lambda'')}{\Lambda'-'\Lambda''}}\) is contained in $U_{\frac{n(\Lambda'')}{\Lambda'-'\Lambda''}}$.

Recall that Δ^n_v denotes the union of all toy horospherical divisors of \(^{\circ}\text{ToySht}_V^n\).

Lemma 8.3.5. Let $V' \subset V'' \subset V$ be finite dimensional vector spaces over \mathbb{F}_q such that $\dim V''/V' \geq 3$. Assume $\dim V/V'' + 1 \leq n \leq \dim V/V' - 1$. Then the inverse image of $\Delta_v^{n-\dim V/V''}$ under the morphism \(^{\circ}\text{ToySht}^n_{V''/V'} \to \text{ToySht}^n_{V'/V'}\) is set-theoretically contained in Δ^n_v.

Proof. The statement follows from Lemma 8.2.1 and the dual of it.

Remark 8.3.6. Let $V' \subset V'' \subset V$ be finite dimensional vector spaces over \mathbb{F}_q such that $\dim V''/V' \geq 3$. Assume $\dim V/V'' + 1 \leq n \leq \dim V/V' - 1$. Then Lemma 8.3.3 and Lemma 8.3.5 show that the morphism \(^{\circ}\text{ToySht}^n_{V''/V'} \to \text{ToySht}^n_{V'/V'}\) induces a morphism \(^{\circ\circ}\text{ToySht}_V^n \to \text{ToySht}^n_{V'/V'}\).

Lemma 8.3.7. Let $V' \subset V'' \subset V$ be finite dimensional vector spaces over \mathbb{F}_q such that $\dim V''/V' \geq 3$. Assume $\dim V/V'' + 1 \leq n \leq \dim V/V' - 1$. Then the morphism \(^{\circ\circ}\text{ToySht}_V^n \to \text{ToySht}^n_{V'/V'}\) is affine, smooth and surjective.

Proof. The morphism is affine by Lemma 7.4.2 and is smooth by Proposition 7.5.3. Now we prove that the morphism is surjective.

Denote $u : \text{ToySht}^n_{V''/V'} \to \text{ToySht}^{n-\dim V/V''}_{V'/V'}$. Let x be a point of \(^{\circ\circ}\text{ToySht}_V^n\). We show that $u^{-1}(x) \cap \text{ToySht}_V^n$ is nonempty.

The morphism u is surjective by Lemma 8.3.1. Hence $u^{-1}(x)$ is nonempty.

We have
\[
^{\circ\circ}\text{ToySht}_V^n = \text{ToySht}^n_{V'',V'} - \left(\bigcup_{H \in P_{V''}} \Delta_{v,H}^{n,V'',V'} \right) \cup \left(\bigcup_{J \in P_{V'}} \Delta_{v,J}^{n,V',V''} \right).
\]

For $J \in P_V$ such that $J \subset V''$ and $J \not\subset V'$, we have $u(\Delta_{v,J}^{n,V'',V'}) \subset \Delta_{V''/V',J}^{n-\dim V/V''}$, where $\bar{J} = \text{im}(J \to V''/V')$. So $u^{-1}(x) \cap \Delta_{v,J}^{n,V'',V'}$ is empty. For $J \in P_V$ such that $J \not\subset V''$, Lemma 8.3.2 implies that $u^{-1}(x) \cap \Delta_{V,J}^{n,V',V''}$ has codimension 1 in $u^{-1}(x)$. Thus $u^{-1}(x) \cap \left(\bigcup_{J \in P_{V'}} \Delta_{v,J}^{n,V',V''} \right)$ has codimension 1 in $u^{-1}(x)$.
Similarly, $u^{-1}(x) \cap (\bigcup_{H \in \mathcal{P}_T} \Delta_{T,H}^{n,n'})$ has codimension 1 in $u^{-1}(x)$.

The statement follows. \hfill \Box

Let T be a nondiscrete noncompact Tate space over \mathbb{F}_q and $n \in \text{Dim}_T$. We denote

$$^\circ \text{ToySht}_T^n = \lim_{(\Lambda', \Lambda'') \in \text{AP}_n(T)} ^\circ \text{ToySht}_{n,\Lambda'/\Lambda''}$$

Lemma 8.3.8. We have

$$^\circ \text{ToySht}_T^n = ^\circ \text{ToySht}_T^n - (\bigcup_{H \in \mathcal{P}_T^*} \Delta_{T,H}^n) \cup (\bigcup_{J \in \mathcal{P}_T} \Delta_{T,J}^n).$$

Proof. Let $J \in \mathcal{P}_T$ and $x \in \Delta_{T,J}^n$. Choose $(\Lambda', \Lambda'') \in \text{AP}_n(T)$ such that $J \not\subset \Lambda'$, $J \subset \Lambda''$ and $x \in ^\circ \text{ToySht}_{n,\Lambda'/\Lambda''}$. Then the image of x under the morphism $^\circ \text{ToySht}_{n,\Lambda'/\Lambda''} \rightarrow ^\circ \text{ToySht}_{n,\Lambda'/\Lambda''}$ is contained in $\Delta_{n,\Lambda'/\Lambda''}$. There is a similar statement for $y \in \Delta_{T,J}^n$, $H \in \mathcal{P}_T^*$.

On the other hand, Lemma 7.3.1 and Lemma 7.3.5 imply that for any $(\Lambda', \Lambda'') \in \text{AP}_n(T)$ the inverse image of $\Delta_{n,\Lambda'/\Lambda''}$ under the morphism $^\circ \text{ToySht}_{n,\Lambda'/\Lambda''} \rightarrow ^\circ \text{ToySht}_{n,\Lambda'/\Lambda''}$ is set-theoretically contained in the union of $\Delta_{T,H}^n$ for $H \in \mathcal{P}_T^*$ and $\Delta_{T,J}^n$ for $J \in \mathcal{P}_T$.

The statement follows. \hfill \Box

Lemma 8.3.9. For $(\Lambda', \Lambda'') \in \text{AP}_n(T)$, $^\circ \text{ToySht}_T^n$ is contained in $^\circ \text{ToySht}_{n,\Lambda'/\Lambda''}$.

Proof. The proof is similar to that of Lemma 8.3.8. \hfill \Box

Lemma 8.3.10. For $(\Lambda', \Lambda'') \in \text{AP}_n(T)$, the morphism $^\circ \text{ToySht}_T^n \rightarrow ^\circ \text{ToySht}_{n,\Lambda'/\Lambda''}$ is surjective.

Proof. The statement follows from Lemma 8.3.7. \hfill \Box

9. **Tate toy horospherical subschemes**

Fix a nondiscrete noncompact Tate space T over \mathbb{F}_q and fix $n \in \text{Dim}_T$.

In this section, we use the notation of Sections 7.1 and 7.2. We also frequently use Lemma 7.3.1 to describe open charts of $^\circ \text{ToySht}_T^n$ as a projective limit.

9.1. **Basic properties of Tate toy horospherical subschemes.**

Proposition 9.1.1. $^\circ \text{ToySht}_T^n$ is irreducible.

Proof. For (Λ', Λ''), $(\Lambda', \Lambda'') \in \text{AP}_n(T)$ satisfying $(\Lambda', \Lambda'') \supset (\Lambda', \Lambda'')$, $U_{\Lambda',\Lambda''}^n$ is a nonempty open subscheme of $^\circ \text{ToySht}_{n,\Lambda'/\Lambda''}^{\Lambda'/\Lambda''}$, hence is irreducible by Proposition 2.6.2.

So $^\circ \text{ToySht}_T^n$ is irreducible as the projective limit. Note that $^\circ \text{ToySht}_T^n$ is the union of $^\circ \text{ToySht}_{T,n,\Lambda'/\Lambda''}$ for all $(\Lambda', \Lambda'') \in \text{AP}_n(T)$, and $(\Lambda', \Lambda'') \supset (\Lambda', \Lambda'')$ implies $^\circ \text{ToySht}_{T,n,\Lambda'/\Lambda''} \subset ^\circ \text{ToySht}_{T,n,\Lambda'/\Lambda''}$. Thus $^\circ \text{ToySht}_T^n$ is irreducible. \hfill \Box
For $J \in \mathbb{P}_T$, denote $\Delta^n_{T,J} = {^\circ}_{\text{ToySht}}^n T \cap \text{ToySht}_{T/J}$. It is called a Tate toy horospherical subscheme of $^\circ_{\text{ToySht}}^n T$. Since T/J is a nondiscrete noncompact Tate space over \mathbb{F}_q, Proposition 9.1.1 implies that $\Delta^n_{T,J}$ is irreducible. Let η^n_j be the generic point of $\Delta^n_{T,J}$. For two c-lattices $\Lambda' \subset \Lambda''$ of T, denote $\Delta^{n,\Lambda',\Lambda''}_{T,J} = \Delta^n_{T,J} \cap {^\circ}_{\text{Grass}}^n_{T} \overline{\Lambda'} \cdot \overline{\Lambda''}$.

For $H \in \mathbb{P}^1_T$, denote $\Delta^n_{T,H} = {^\circ}_{\text{ToySht}}^n T \cap \text{ToySht}_H$. It is called a Tate toy horospherical subscheme of $^\circ_{\text{ToySht}}^n T$. Since H is a nondiscrete noncompact Tate space over \mathbb{F}_q, Proposition 9.1.1 implies that $\Delta^n_{T,H}$ is irreducible. Let η^n_H be the generic point of $\Delta^n_{T,H}$. For two c-lattices $\Lambda' \subset \Lambda''$ of T, denote $\Delta^{n,\Lambda',\Lambda''}_{T,H} = \Delta^n_{T,H} \cap {^\circ}_{\text{Grass}}^n_{T} \overline{\Lambda'} \cdot \overline{\Lambda''}$.

Lemma 9.1.2. Let E be a field over \mathbb{F}_q. Let P be a d-lattice of the Tate space $T \otimes E$ over E. Let W be a finite dimensional subspace of T such that $P \cap (W \otimes E) = 0$. Then there exists a c-lattice L of T such that $L \supset W$ and $P \cap (L \otimes E) = 0$. □

Lemma 9.1.3. Let $J \in \mathbb{P}_T$ and $(\Lambda', \Lambda'') \in \mathcal{A}_n(T)$. For any $(\tilde{\Lambda}', \tilde{\Lambda}'') > (\Lambda', \Lambda'')$ such that $J \subset \tilde{\Lambda}'$, we denote $J_{\tilde{\Lambda}', \tilde{\Lambda}''} = \text{im}(J \to \tilde{\Lambda}' / \tilde{\Lambda}'') \in \mathbb{P}_{\tilde{\Lambda}'' / \tilde{\Lambda}'}$ and $Z_{\tilde{\Lambda}', \tilde{\Lambda}''} = \Delta^{n,\Lambda',\Lambda''}_{\tilde{\Lambda}', \tilde{\Lambda}''} \cap \mathcal{Z}_{\tilde{\Lambda}', \tilde{\Lambda}''}$. Then the isomorphism in Lemma 7.3.1 induces an isomorphism

$$\Delta^{n,\Lambda',\Lambda''}_{T,J} \xrightarrow{\sim} \varprojlim_{(\tilde{\Lambda}', \tilde{\Lambda}'')} Z_{\tilde{\Lambda}', \tilde{\Lambda}'''}.$$

Proof. It is clear that the image of $\Delta^{n,\Lambda',\Lambda''}_{T,J}$ is contained in $Z_{\tilde{\Lambda}', \tilde{\Lambda}'''}$. Suppose $x \in {^\circ}_{\text{ToySht}}^n T \otimes (\Lambda', \Lambda'')$ but $x \notin \Delta^{n,\Lambda',\Lambda''}_{T,J}$. Then Lemma 9.1.2 shows that there exists a c-lattice Λ'_0 of T such that $P \cap (\Lambda'_0 \otimes E) = 0$. Let $\tilde{\Lambda}' = \Lambda' \cap \Lambda'_0$ and $\tilde{\Lambda}'' = \Lambda''$. Then the image of x in $U_{\tilde{\Lambda}', \tilde{\Lambda}''}$ is not contained in $Z_{\tilde{\Lambda}', \tilde{\Lambda}''}$. Therefore, the intersection of the preimages of $Z_{\tilde{\Lambda}', \tilde{\Lambda}''}$ in $^\circ_{\text{ToySht}}^n T$ for all $(\tilde{\Lambda}', \tilde{\Lambda}'') > (\Lambda', \Lambda'')$ is set-theoretically equal to $\Delta^{n,\Lambda',\Lambda''}_{T,J}$. Since $\Delta^{n,\Lambda',\Lambda''}_{T,J}$ and all $Z_{\tilde{\Lambda}', \tilde{\Lambda}''}$ are reduced, the statement follows. □

Lemma 9.1.4. For $J \in \mathbb{P}_T$ and $(\Lambda', \Lambda'') \in \mathcal{A}_n(T)$, $\eta^n_J \in {^\circ}_{\text{ToySht}}^n \Lambda' \cdot \Lambda''$ if and only if $J \not\subset \Lambda'$. For $H \in \mathbb{P}^1_T$ and $(\Lambda', \Lambda'') \in \mathcal{A}_n(T)$, $\eta^n_H \in {^\circ}_{\text{ToySht}}^n \Lambda' \cdot \Lambda''$ if and only if $H \not\supset \Lambda''$.

Proof. If $J \subset \Lambda'$, then $\text{ToySht}_{T/J} \cap {^\circ}_{\text{ToySht}}^n \Lambda' \cdot \Lambda''$ is empty, so $\eta^n_J \notin {^\circ}_{\text{ToySht}}^n \Lambda' \cdot \Lambda''$. Suppose $J \not\subset \Lambda'$. For any $(\tilde{\Lambda}', \tilde{\Lambda}'') > (\Lambda', \Lambda'')$ such that $J \subset \tilde{\Lambda}'$, let $J_{\tilde{\Lambda}', \tilde{\Lambda}''}$ and $Z_{\tilde{\Lambda}', \tilde{\Lambda}''}$ be as in Lemma 9.1.3. Since $(\Lambda', \Lambda'') \in \mathcal{A}_n(T)$, we have $n(\tilde{\Lambda}') \geq 2$, so $Z_{\tilde{\Lambda}', \tilde{\Lambda}''}$ is nonempty. Lemmas 9.1.3 and 8.2.6 imply that $\Delta^{n,\Lambda',\Lambda''}_{T,J}$ is nonempty. Since $^\circ_{\text{ToySht}}^n \Lambda' \cdot \Lambda''$ is open in $^\circ_{\text{ToySht}}^n T$, we deduce that $\eta^n_J \in {^\circ}_{\text{ToySht}}^n \Lambda' \cdot \Lambda''$. The proof about η^n_H is similar. □
Lemma 9.1.5. A filtered inductive limit of discrete valuation rings with common uniformizer is a discrete valuation ring with the same uniformizer.

Lemma 9.1.6. For \(J \in \mathbb{P}_T \), the local ring of \(\eta^p_J \) viewed as a point of \(^°\text{ToySht}_T^n\) is a discrete valuation ring.

Proof. Choose \((\Lambda', \Lambda'') \in AP^n(T)\) such that \(J \not\subset \Lambda' \) and \(J \subset \Lambda'' \). By Lemma 9.1.1, \(\eta^p_J \) is in \(^°\text{ToySht}_{T'}^{n, \Lambda', \Lambda''}\). For any \((\tilde{\Lambda}', \tilde{\Lambda}'') \succ (\Lambda', \Lambda'')\) such that \(J \subset \tilde{\Lambda}' \), let \(J(\tilde{\Lambda}', \tilde{\Lambda}'') \) and \(Z(\tilde{\Lambda}', \tilde{\Lambda}''), J \) be as in Lemma 9.1.3. Since \(J \subset \Lambda'' \), each \(Z(\tilde{\Lambda}', \tilde{\Lambda}''), J \) is nonempty, hence irreducible by Proposition 2.6.2. Let \(A(\tilde{\Lambda}', \tilde{\Lambda}''), J \) denote the local ring of \(Z(\tilde{\Lambda}', \tilde{\Lambda}''), J \) in \(U_{\tilde{\Lambda}', \tilde{\Lambda}'', J}^{n, \Lambda', \Lambda''} \). It is a discrete valuation ring since each \(Z(\tilde{\Lambda}', \tilde{\Lambda}''), J \) has codimension 1 in \(U_{\tilde{\Lambda}', \tilde{\Lambda}'', J}^{n, \Lambda', \Lambda''} \). Let \(A_J \) be the local ring of \(\eta^p_J \) viewed as a point of \(^°\text{ToySht}_T^n\). We see that \(A_J \) is the local ring of \(\Delta_{T, J}^{n, \Lambda', \Lambda''} \) in \(^°\text{ToySht}_{T'}^{n, \Lambda', \Lambda''}\). Then the projective limit \(\Delta_{T, J}^{n, \Lambda', \Lambda''} = \lim_{\to \left(\tilde{\Lambda}', \tilde{\Lambda}'' \right)} Z(\tilde{\Lambda}', \tilde{\Lambda}''), J \) gives an isomorphism \(A_J = \lim_{\to \left(\tilde{\Lambda}', \tilde{\Lambda}'' \right)} A(\tilde{\Lambda}', \tilde{\Lambda}'', J) \). Proposition 8.2.3 shows that for any \((\Lambda'_1, \Lambda''_1) \succ (\Lambda'_2, \Lambda''_2) \succ (\Lambda', \Lambda'')\), the morphism \(A(\Lambda_1, \Lambda_2), J \to A(\Lambda'_1, \Lambda'_2), J \) maps the uniformizer to the uniformizer. So the statement follows from Lemma 9.1.3. □

The following statement is dual to Lemma 9.1.6.

Lemma 9.1.7. For \(H \in \mathbb{P}_{T^*} \), the local ring of \(\eta^p_H \) viewed as a point of \(^°\text{ToySht}_T^n\) is a discrete valuation ring.

Remark 9.1.8. Although \(\Delta_{T, J}^n(J \in \mathbb{P}_T) \) and \(\Delta_{T, H}^n(J \in \mathbb{P}_{T^*}) \) have codimension 1 in \(^°\text{ToySht}_T^n\), they are not Cartier divisors. (See Theorem 9.2.4.)

9.2. The group of divisors supported on the union of Tate toy horospherical subschemes.

9.2.1. Formulation of the main result. For an open subset \(U \) of a Tate space \(M \), we denote \(C^\infty(U) \) to be the (partially) ordered abelian group of locally constant \(\mathbb{Z} \)-valued functions on \(U \), and denote \(C_\circ^\infty(U) \) to be the (partially) ordered abelian group of locally constant \(\mathbb{Z} \)-valued functions on \(U \) with compact support. We define

\[
C_+(U) := \{ f \in C^\infty(U) \mid \text{supp } f \text{ is contained in some compact subset of } M \}
\]

Lemma 9.2.1. We have an isomorphism of ordered abelian groups \(C_+(M - \{0\}) \cong \varprojlim C_\circ^\infty(M - \Lambda) \), where the projective limit is taken with respect to the directed set of all \(c \)-lattices \(\Lambda \) of \(M \).

Proof. Remark 6.1.2 and Remark 6.1.8 imply that \((M - \{0\}) \) is the union of \((M - \Lambda) \) for all \(c \)-lattices \(\Lambda \) of \(M \). The statement follows. □
Definition 9.2.2. Let \mathcal{D}_T^n denote the ordered abelian group of those Cartier divisors of $^\circ \text{ToySht}_T^n$ whose restrictions to $^\circ \text{ToySht}_T^n$ are zero. Elements in \mathcal{D}_T^n are called (Tate) toy horospherical divisors of $^\circ \text{ToySht}_T^n$.

Remark 9.2.3. Lemma 8.3.8 shows that a Cartier divisor of $^\circ \text{ToySht}_T^n$ is an element of \mathcal{D}_T^n if and only if its support is contained in the union of $\Delta_{T,H}^n$ and $\Delta_{T,J}^n$ for all $H \in P_T$ and $J \in P_T$.

From Lemmas 9.1.6 and 9.1.7, we get an ordered homomorphism $\mathcal{D}_T^n \to \text{Maps}(P_T, \coprod P_T, \mathbb{Z})$, where $\text{Maps}(P_T, \coprod P_T, \mathbb{Z})$ is the ordered abelian group of \mathbb{Z}-valued functions on P_T.

The goal of this section is to prove the following explicit description of \mathcal{D}_T^n.

Theorem 9.2.4. The homomorphism $\mathcal{D}_T^n \to \text{Maps}(P_T, \coprod P_T, \mathbb{Z})$ induces an isomorphism of ordered abelian groups $\mathcal{D}_T^n \cong C_+(T^* - \{0\})^{\mathbb{F}_q} \oplus C_+(T - \{0\})^{\mathbb{F}_q}$.

9.2.2. Reduction of Theorem 9.2.4 to Lemma 9.2.5. For two c-lattices $\Lambda' \subset \Lambda''$ of T, let $\mathcal{D}_{T,\Lambda',\Lambda''}$ denote the (partially) ordered abelian group of those Cartier divisors of $^\circ \text{ToySht}_T^{n,\Lambda',\Lambda''}$ whose restrictions to $^\circ \text{ToySht}_T^n$ are zero.

From Lemmas 9.1.4, 9.1.6 and 9.1.7, we get an ordered homomorphism $\mathcal{D}_{T,\Lambda',\Lambda''} \to \text{Maps}((T^* - (\Lambda'')^\perp) \coprod (T - \Lambda'), \mathbb{Z})$.

The isomorphism in Lemma 7.3.1 induces an isomorphism of ordered abelian groups

$$\mathcal{D}_T^n \cong \varprojlim_{(\Lambda',\Lambda'') \in AP_n(T)} \mathcal{D}_{T,\Lambda',\Lambda''}.$$

So Theorem 9.2.4 follows from Lemma 9.2.5.

Lemma 9.2.5. For $(\Lambda',\Lambda'') \in AP_n(T)$, the homomorphism $\mathcal{D}_{T,\Lambda',\Lambda''} \to \text{Maps}((T^* - (\Lambda'')^\perp) \coprod (T - \Lambda'), \mathbb{Z})$ induces an isomorphism of ordered abelian groups $\mathcal{D}_{T,\Lambda',\Lambda''} \cong C_\infty(T^* - (\Lambda'')^\perp)^{\mathbb{F}_q} \oplus C_\infty(T - \Lambda')^{\mathbb{F}_q}$.

9.2.3. Reduction of Theorem 9.2.4 to Lemma 9.2.6. Lemma 9.2.7 and Lemma 9.2.8.

Let $\Lambda',\Lambda'',\tilde{\Lambda}',\tilde{\Lambda}''$ be c-lattices of T such that $\tilde{\Lambda}' \subset \Lambda' \subset \Lambda'' \subset \Lambda''$. We have injective homomorphisms of ordered abelian groups

$$(\tilde{\Lambda}'')^{\perp} \to C_\infty((\tilde{\Lambda}'')^{\perp} - (\Lambda'')^{\perp})^{\mathbb{F}_q} \to C_\infty(\tilde{\Lambda}'')^{\perp} \to C_\infty(\Lambda'')^{\mathbb{F}_q}\,$$

where the first homomorphism is induced by the map $\tilde{\Lambda}'' - \Lambda' \to (\tilde{\Lambda}'') - (\Lambda'')^{\perp}$, the second homomorphism is extension by zero from $\tilde{\Lambda}' = \Lambda' - \Lambda'$ to $T - \Lambda'$. We consider $C_\infty((\tilde{\Lambda}'')^{\perp} - (\Lambda'')^{\perp})^{\mathbb{F}_q}$ as an ordered subgroup of $C_\infty(T - \Lambda')^{\mathbb{F}_q}$.

Similarly, we have injective homomorphisms of ordered abelian groups

$$(\tilde{\Lambda}'')^\perp \to C_\infty((\tilde{\Lambda}'')^\perp - (\Lambda'')^\perp)^{\mathbb{F}_q} \to C_\infty(\tilde{\Lambda}'')^\perp \to C_\infty(T^* - (\Lambda'')^\perp)^{\mathbb{F}_q}.$$

\footnote{The support of a divisor is the smallest closed subset such that the restriction of the divisor to its complement is zero.}
We consider $C^\infty((\tilde{\Lambda}''/\tilde{\Lambda}'))^\times$ as an ordered subgroup of $C^\infty_c(T^\times - (\Lambda''))^\times$. For $(\Lambda', \Lambda'') \in AP_n(T)$ and $(\Lambda', \Lambda'') > (\Lambda', \Lambda'')$, we define $\Omega^{\Lambda', \Lambda''}_{n, \tilde{N}}$ to be the ordered abelian group of those Cartier divisors of $U^n_{\tilde{N}, \tilde{N}}$ whose restrictions to $\sup^0 \text{ToySh}(\tilde{\Lambda}''/\tilde{\Lambda}')$ are zero.

Now Lemma 9.2.5 follows from Lemmas 9.2.6, 9.2.7, and 9.2.8.

Lemma 9.2.6. For $(\Lambda', \Lambda'') \in AP_n(T)$, the isomorphism

$$\text{ToySh}^n_{\tilde{\Lambda}', \tilde{\Lambda}''} \xrightarrow{\sim} \lim_{(\tilde{N}, \tilde{N}'') > (\Lambda', \Lambda'')} U^n_{\tilde{N}, \tilde{N}},$$

induces an isomorphism of ordered abelian groups

$$\xi : \lim_{(\tilde{N}, \tilde{N}') > (\Lambda', \Lambda'')} \Omega^{\Lambda', \Lambda''}_{n, \tilde{N}} \xrightarrow{\sim} \Omega^{\Lambda', \Lambda''}_{T, n}.$$

Lemma 9.2.7. Let Λ', Λ'' be two c-lattices of T such that $\Lambda' \subset \Lambda''$. Then the map ϕ induced by (9.7) and the map ψ induced by (9.2) are isomorphisms of ordered abelian groups.

$$\phi : \lim_{(\tilde{N}, \tilde{N}') > (\Lambda', \Lambda'')} C^\infty_c((\tilde{\Lambda}'/\tilde{\Lambda})^\times - (\Lambda'/\tilde{\Lambda}))^\times \xrightarrow{\sim} C^\infty_c(T - \Lambda')^\times,$$

$$\psi : \lim_{(\tilde{N}, \tilde{N}') > (\Lambda', \Lambda'')} C^\infty_c((\tilde{\Lambda}'/\tilde{\Lambda})^\times - (\Lambda''/\tilde{\Lambda}))^\times \xrightarrow{\sim} C^\infty_c(T^\times - (\Lambda'')^\times)^\times.$$

Lemma 9.2.8. For $(\Lambda', \Lambda'') \in AP_n(T)$, the composition $\Omega^{\Lambda', \Lambda''}_{n, \tilde{N}, \tilde{N}'} \rightarrow \Omega^{\Lambda', \Lambda''}_{T, n} \rightarrow \text{Maps}((T^\times - (\Lambda'')^\times) \coprod (T - \Lambda'), \mathbb{Z})$ induces an isomorphism of ordered abelian groups

$$\Omega^{\Lambda', \Lambda''}_{\tilde{N}, \tilde{N}'} \xrightarrow{\sim} C^\infty_c((\tilde{\Lambda}'/\tilde{\Lambda})^\times - (\Lambda''/\tilde{\Lambda}))^\times \oplus C^\infty_c((\tilde{\Lambda}'/\tilde{\Lambda})^\times - (\Lambda'/\tilde{\Lambda}))^\times.$$

9.2.4. **Proofs of Lemma 9.2.7 and Lemma 9.2.8.**

Proof of Lemma 9.2.7. It is obvious that each homomorphism $\phi_{(\tilde{N}, \tilde{N}')}$: $C^\infty_c((\tilde{\Lambda}'/\tilde{\Lambda})^\times - (\Lambda'/\tilde{\Lambda}))^\times \xrightarrow{\sim} C^\infty_c(T - \Lambda')^\times$ is injective, and $\phi_{(\tilde{N}, \tilde{N}')} : \phi_{(\tilde{N}, \tilde{N}')}(g) = \phi_{(\tilde{N}, \tilde{N}')} : g$ if and only if $f \leq g$.

Now to prove that ϕ is an isomorphism of ordered abelian groups, it suffices to show that ϕ is surjective.

Let $f \in C^\infty_c(T - \Lambda')^\times$. Since f is compactly supported, its support is contained in some c-lattice $\tilde{\Lambda}'$.

Since f is locally constant, from Remark 6.1.8 we see that for every $x \in (T - \Lambda')$ there is a c-lattice Λ_x of T such that f is constant on $x + \Lambda_x$. Since f is compactly supported, we can find finitely many $x_1, \ldots, x_r \in T$ and c-lattices $\Lambda_1, \ldots, \Lambda_r$ of T such that $\text{supp} f \subset \bigcup_{i=1}^r (x_i + \Lambda_i)$ and f is constant on each $x_i + \Lambda_i (1 \leq i \leq r)$. We get a c-lattice $\tilde{\Lambda}' = \bigcap_{i=1}^r \Lambda_i$.

Thus f is in the image of $C^\infty_c((\tilde{\Lambda}'/\tilde{\Lambda}')^\times - (\Lambda'/\tilde{\Lambda}'))^\times$. This shows that ϕ is surjective.

The proof for ψ is similar. □
proof of lemma 9.2.8 the statement follows from lemma 9.2.9 □

lemma 9.2.9. Let \((\Lambda', \Lambda'') \in AP_n(T)\) and \(Z \in \mathcal{O}_T^{n,\Lambda,\Lambda''}\). Assume that \(Z\) equals the pullback of a Cartier divisor \(\tilde{Z}\) on \(U_{N',\Lambda''}^{n,\Lambda,\Lambda''}\) for some \((\tilde{\Lambda}', \tilde{\Lambda}'') \succ (\Lambda', \Lambda'')\).

Suppose \(J \in P_T\) satisfies \(J \not\subset \Lambda'\). If \(J \not\subset \tilde{\Lambda}'\), the multiplicity of \(Z\) at \(\Delta_{T,J}^{n,\Lambda,\Lambda''}\) is zero. If \(J \in \tilde{\Lambda}'\), the multiplicity of \(Z\) at \(\Delta_{T,J}^{n,\Lambda,\Lambda''}\) equals the multiplicity of \(\tilde{Z}\) at \(\Delta_{T,J}^{n,\tilde{\Lambda}',\tilde{\Lambda}''} \cap U_{N',\tilde{\Lambda}'}, where \(J = \text{im}(J \to \tilde{\Lambda}'/\tilde{\Lambda}'')\).

Suppose \(H \in P_{T'}\) satisfies \(H \not\supset \Lambda''\). If \(H \not\supset \tilde{\Lambda}\), then the multiplicity of \(Z\) at \(\Delta_{T'H}^{n,\Lambda,\Lambda''}\) is zero. If \(H \supset \tilde{\Lambda}\), then the multiplicity of \(Z\) at \(\Lambda_{T'H}^{n,\Lambda,\Lambda''}\) equals the multiplicity of \(\tilde{Z}\) at \(\Delta_{T'H}^{n,\tilde{\Lambda}',\tilde{\Lambda}''} \cap U_{N',\tilde{\Lambda}'}, where \(\tilde{H} = \text{im}(H \cap \tilde{\Lambda}'/\tilde{\Lambda}'')\).

Proof. The statement follows from Proposition 8.2.4, Lemma 9.1.3 and Lemma 9.1.5 □

9.2.5. Proof of Lemma 9.2.6

Lemma 9.2.10. Let \((\tilde{\Lambda}', \tilde{\Lambda}'') \succ (\Lambda', \Lambda'')\). Suppose \(D\) is a Cartier divisor of \(U_{\tilde{\Lambda}',\tilde{\Lambda}''}^{n,\Lambda,\Lambda''}\) whose pullback to \(^c\text{ToySh}^n_{\tilde{T}}\) is an element of \(\mathcal{O}_{\tilde{T}}^{n,\Lambda',\Lambda''}\). Then \(D\) is an element of \(\mathcal{O}_{\tilde{\Lambda}',\tilde{\Lambda}''}^{n,\Lambda',\Lambda''}\).

Proof. The statement follows from Lemmas 8.3.8 and 8.3.10 □

10. Schubert divisors of \(^c\text{ToySh}^n_T\)

Fix a nondiscrete noncompact Tate space \(T\) over \(\mathbb{F}_q\) and fix \(n \in \text{Dim}_T\).

10.1. Schubert divisors of Sato Grassmannians. Let \(W\) be a c-lattice of \(T\) such that \(n(W) = 0\). We have a perfect complex

\[\mathcal{I}^* = (\mathcal{I}^{-1}_W \to \mathcal{I}^0_W) \]

on \(\text{Grass}^n_T\), where \(\mathcal{I}^{-1}_W \subset T \otimes \mathcal{O}_{\text{Grass}^n_T}\) is the universal locally free sheaf on \(\text{Grass}^n_T\), \(\mathcal{I}^0_W = (T/W) \otimes \mathcal{O}_{\text{Grass}^n_T}\), and the map \(\mathcal{I}^{-1}_W \to \mathcal{I}^0_W\) is the natural one.

Since \(n(W) = 0\), \(\mathcal{I}^{-1}_W \to \mathcal{I}^0_W\) is an isomorphism on the big cell \(\text{Grass}^n_{T,W,W}\), which is an open dense subscheme of \(\text{Grass}^n_T\). So the complex \(\mathcal{I}^*_W\) is good in the sense of Knudsen-Mumford.
A TOY MODEL OF SHTUKAS

We define the Schubert divisor of Grass_T^n for W to be
$$\text{Schub}_T^W := \text{Div}(\mathcal{L}_W^*)$$.

Lemma 10.11. $\text{Schub}_T^W \cap \circled{\text{ToySht}}_T^n$ is a Cartier divisor of $\circled{\text{ToySht}}_T^n$.

Proof. We know that $\circled{\text{ToySht}}_T^n$ is irreducible and reduced, and Schub_T^W is a Cartier divisor of Grass_T^n. To prove the statement, it suffices to show that $\circled{\text{ToySht}}_T^n$ is not contained in Schub_T^W. We have $\circled{\text{ToySht}}_T^n - \text{Schub}_T^W = \circled{\text{ToySht}}_T^{W,W}$. Choose $(\Lambda', \Lambda'') \in AP_n(T)$ such that $\Lambda' \subset W \subset \Lambda''$. Then $\circled{\text{ToySht}}_T^{n,\Lambda',\Lambda''} \subset \circled{\text{ToySht}}_T^{n,W,W}$, and $\circled{\text{ToySht}}_T^{n,\Lambda',\Lambda''}$ is nonempty by Lemma 7.3.1 and the nonemptiness of each $U_{\Lambda',\Lambda''}$ in the projective limit there. □

We call $\text{Schub}_T^W \cap \circled{\text{ToySht}}_T^n$ the Schubert divisor of $\circled{\text{ToySht}}_T^n$ for W.

10.2. Schubert divisors of the scheme of Tate toy shtukas.

Theorem 10.2.1. For a c-lattice W of T, the Schubert divisor $\text{Schub}_T^W \cap \circled{\text{ToySht}}_T^n$ corresponds to the function $(1_{W^+\setminus \{0\}}, 1_{W^\pm\setminus \{0\}})$ via Theorem 9.2.4.

Proof. Let \mathcal{L} be the universal Tate toy shtuka on $\circled{\text{ToySht}}_T^n$. Choose $(\Lambda', \Lambda'') \in AP_n(T)$ such that $\Lambda' \subset W \subset \Lambda''$.

On $\circled{\text{ToySht}}_T^{n,\Lambda',\Lambda''}$, the complex \mathcal{L}^* is quasi-isomorphic to its subcomplex

$$\mathcal{L} \cap (\Lambda'' \otimes \mathcal{O}_{\circled{\text{ToySht}}_T^n}) \to (\Lambda''/W) \otimes \mathcal{O}_{\circled{\text{ToySht}}_T^n}.$$

From the definition of the projection morphism $u : \circled{\text{ToySht}}_T^{n,\Lambda',\Lambda''} \to \circled{\text{ToySht}}_T^{n(\Lambda'')}$, in Section 7.1 we see that the complex (10.1) on $\circled{\text{ToySht}}_T^{n,\Lambda',\Lambda''}$ is isomorphic to the pullback of the complex $\mathcal{L}^*/\Lambda'/W'$ on $\circled{\text{ToySht}}_T^{n(\Lambda'')}$ by u. Then Remark 4.1.2 implies that

$$\text{Schub}_T^W \cap \circled{\text{ToySht}}_T^{n,\Lambda',\Lambda''} = u^* \left(\text{Schub}_T^{W/\Lambda', \Lambda''/\Lambda'} \cap \circled{\text{ToySht}}_T^{n(\Lambda'')} \right).$$

Since $\circled{\text{ToySht}}_T^n$ is covered by the union of $\circled{\text{ToySht}}_T^{n,\Lambda',\Lambda''}$ for $(\Lambda', \Lambda'') \in AP_n(T)$ such that $\Lambda' \subset W \subset \Lambda''$, the statement now follows from Lemma 9.2.9 and Theorem 4.2.1. □

Proposition 10.2.2. For two c-lattices W_1, W_2 of T satisfying $n(W_1) = n(W_2) = 0$, the two divisors $\text{Schub}_T^{W_1}$ and $\text{Schub}_T^{W_2}$ of Grass_T^n are linearly equivalent.

Proof. The statement follows from Theorem 3.3 of [15]. □

Corollary 10.2.3. For two c-lattices W_1, W_2 of T satisfying $n(W_1) = n(W_2) = 0$, the two divisors $\text{Schub}_T^{W_1} \cap \circled{\text{ToySht}}_T^n$ and $\text{Schub}_T^{W_2} \cap \circled{\text{ToySht}}_T^n$ of $\circled{\text{ToySht}}_T^n$ are linearly equivalent.

Proof. The statement follows from Theorem 10.2.1 and Proposition 10.2.2 □
11. Principal toy horospherical \(\mathbb{Z}[\frac{1}{p}] \)-divisors of \(\circ \text{ToySht}_T^n \)

Fix a nondiscrete noncompact Tate space \(T \) over \(\mathbb{F}_q \) and fix \(n \in \text{Dim}_T \).

We normalize the Haar measure on \(T \) by the condition that the measure of any \(c \)-lattice \(\Lambda \) equals \(q^n(\Lambda) \).

Recall that the notation \(\mathfrak{D}^{n,\Lambda',\Lambda''}_{\Lambda',\Lambda''} \) is defined in Section 9.2.3. In particular, for \((\Lambda', \Lambda'') \in \text{AP}_n(T) \), \(\mathfrak{D}^{n,\Lambda',\Lambda''}_{\Lambda',\Lambda''} \) is the ordered abelian group of horospherical divisors of \(\circ \text{ToySht}^{n(\Lambda'')}_{\Lambda'/\Lambda'} \).

11.1. Formulation of the main result. Recall that \(\mathfrak{D}_T^n \) is defined in Section 9.2.1.

Let \(\mathfrak{R}_T^n \) be the subgroup of \(\mathfrak{D}_T^n \) generated by principal divisors.

Fix a nontrivial additive character \(\psi : \mathbb{F}_q \to \mathbb{C}^\times \). We define the Fourier transform

\[
\text{Four}_\psi : C_c^\infty(T; \mathbb{C}) \to C_c^\infty(T^*; \mathbb{C})
\]
such that for any \(f \in C_c^\infty(T; \mathbb{C}), \omega \in T^* \), we have

\[
\text{Four}_\psi(f)(\omega) = \int_T f(v) \psi(\omega(v)) dv.
\]

Recall the Haar measure on \(T \) is normalized by the condition that the measure of any \(c \)-lattice \(\Lambda \) equals \(q^n(\Lambda) \).

When \(f \in C_c^\infty(T; \mathbb{Z}[\frac{1}{p}])_{\mathfrak{R}_T^n} \), we have \(\text{Four}_\psi(f) \in C_c^\infty(T^*; \mathbb{Z}[\frac{1}{p}])_{\mathfrak{R}_T^n} \), and \(\text{Four}_\psi(f) \) does not depend on the choice of \(\psi \).

For an open subset \(U \subset T \), we define \(C_0^\infty(U) := \{ f \in C_c^\infty(U) \mid \int_U f(v) dv = 0 \} \).

Note that the definition does not depend on the choice of the Haar measure on \(T \).

Lemma 11.1.1. \(\text{im}(C_0^\infty(T-S\{0\}; \mathbb{Z}[\frac{1}{p}])_{\mathfrak{R}_T^n} \xrightarrow{\text{Four}_\psi} C_c^\infty(T^*; \mathbb{Z}[\frac{1}{p}])_{\mathfrak{R}_T^n}) \subset C_0^\infty(T)^\infty - \{0\}; \mathbb{Z}[\frac{1}{p}])_{\mathfrak{R}_T^n} \).

We make identifications of ordered abelian groups via Theorem 9.2.1

\[
\mathfrak{D}_T^n \otimes \mathbb{Z}[\frac{1}{p}] \cong C^\infty(T^* - \{0\}; \mathbb{Z}[\frac{1}{p}])_{\mathfrak{R}_T^n} \oplus C^\infty(T - \{0\}; \mathbb{Z}[\frac{1}{p}])_{\mathfrak{R}_T^n}.
\]

The goal of this section is to prove the following statement.

Theorem 11.1.2. An element \((f_1, f_2)\) of \(C^\infty(T^* - \{0\}; \mathbb{Z}[\frac{1}{p}])_{\mathfrak{R}_T^n} \oplus C^\infty(T - \{0\}; \mathbb{Z}[\frac{1}{p}])_{\mathfrak{R}_T^n} \cong \mathfrak{D}_T^n \otimes \mathbb{Z}[\frac{1}{p}] \) is contained in \(\mathfrak{R}_T^n \otimes \mathbb{Z}[\frac{1}{p}] \) if and only if \(f_2 \in C_0^\infty(T - \{0\}; \mathbb{Z}[\frac{1}{p}])_{\mathfrak{R}_T^n} \) and \(f_1 = \text{Four}_\psi(f_2) \).

11.2. Descent of principal divisors. Recall that the notation \(U^{n,\Lambda',\Lambda''}_{\Lambda',\Lambda''} \) is defined in Section 7.3.

Lemma 11.2.1. Let \(h \) be a nonzero rational function on \(\circ \text{ToySht}_T^n \) such that \(\text{Div}(h) \in \mathfrak{D}_T^n \). Then there exists \((\Lambda', \Lambda'') \in \text{AP}_n(T)\) and a rational function \(f \) on \(\circ \text{ToySht}^{n(\Lambda'')}_{\Lambda'/\Lambda'} \), such that \(\text{Div}(f) \in \mathfrak{D}^{n,\Lambda',\Lambda''}_{\Lambda',\Lambda''} \) and the pullback of \(f \) to \(\circ \text{ToySht}^{n(\Lambda'')}_{\Lambda'/\Lambda'} \) equals \(h \).
Proof. Choose \((N', N'') \in AP_n(T)\). By Lemma 7.3.1, there exists \((N, N') \succ (N', N'')\) and a rational function \(f_0\) on \(U_{N, N'}^{m, n} \cup A_{N, N'}\) such that the pullback of \(f_0\) to \(Sht_T^{n, N', N''}\) equals \(h\). Let \(f\) be the (unique) rational function on \(Sht_T^{n, N', N''}\) extending \(f_0\). The pullback of \(f\) to \(Sht_T^{n, N', N''}\) equals \(h\) since \(Sht_T^{n, N', N''}\) is dense in \(Sht_T^n\).

Now Lemma 9.2.10 shows that \(\text{Div}(f) \in \mathcal{D}_{n, N', N''}\).

\[\square\]

11.3. Support of extension of pullback of principal toy horospherical divisors. Recall that in Section 8.1, we defined the notation \(\Delta_{m, V, J}^m, \Delta_{V, J}^m, \Delta_{V, H}^m, \Delta_{V, H}^m\) for \(H \in P_V, J \in P_V\). Also we denoted \(\Delta_{V, H}^m, \Delta_{V, J}^m := \text{ToySht}_H^m \cap Sht_{V, W}^m, V, W, V").

Lemma 11.3.1. Let \(V\) be a finite dimensional vector space over \(\mathbb{F}_q\) such that \(\dim V \geq 3\). Let \(W\) be a subspace of \(V\). When \(1 \leq m \leq \dim V/W - 1\), \(\Delta_{V, H}^m, \Delta_{V, J}^m\) is nonempty for any \(H \in P_V\).

Proof. Note that \(\Delta_{V, H}^m, \Delta_{V, J}^m = \text{ToySht}_H^m, W \cap H, H\). From the assumptions we know that \(\dim H \geq 2\) and \(\dim(W \cap H) + m \leq \dim H\). The statement follows. \[\square\]

Lemma 11.3.2. Let \(V' \subset V\) be finite dimensional vector spaces over \(\mathbb{F}_q\). Assume \(2 \leq m \leq \dim V/V' - 2\). Let \(f\) be a nonzero rational function on \(Sht_{V, W}^m\), such that the restriction of \(\text{Div}(f)\) to \(Sht_{W, V}^m\) is zero. Let \(g_0\) be the pullback of \(f\) under the morphism \(Sht_{W, V}^m \to Sht_{V, W}^m\). Let \(g\) be the (unique) rational function on \(Sht_{V, W}^m\) extending \(g_0\). Then \(\text{Div}(g)\) is supported on the union of \(\Delta_{V, H}^m, J \subset V', \Delta_{V, J}^m, J \subset V'\).

Proof. Lemma 8.3.3 implies that \(\text{Div}(g)\) is supported on \(\Delta_{V, H}^m\). So it suffices to show that the multiplicities of \(\text{Div}(g)\) are zero at \(\Delta_{V, H}^m, H \in P_V, H \not\supset V'\) and \(\Delta_{V, J}^m, J \subset V'\). Let \(H \in P_V\). Recall that \(\Delta_{V, H}^m\) is irreducible by Proposition 2.6.2. We denote \(\lambda_H\) to be the multiplicity of \(\text{Div}(g)\) at \(\Delta_{V, H}^m\), and we denote \(\lambda_{V, H}^m, V'\) to be the multiplicity of \(\text{Div}(f)\) at \(\Delta_{V, H}^m, H \not\supset V'\). Then Lemma 11.3.1 and Lemma 8.2.2 show that \(\lambda_H = \lambda_{V, H}^m, V'\) if \(H \supset V'\), and \(\lambda_H = 0\) if \(H \not\supset V'\).

Let \(J \in P_V\). Denote \(\mu_J\) to be the multiplicity of \(\text{Div}(g)\) at \(\Delta_{V, J}^m, J \subset V'\). Applying Theorem 5.3.4 to \(V\), we get

\[\mu_J = q^{1-m} \sum_{H \in P_V, H \supset J} \lambda_H.\]

Suppose \(J \subset V'\). Then the above result about \(\lambda_H\) shows that

\[\mu_J = q^{1-m} \sum_{H' \in P_{V', V'}^m} \lambda_{H'}^m.\]
Applying Theorem 5.3.4 to V/V', we have

$$\sum_{H' \in \mathcal{P}(V/V')} \chi_{H'} = 0.$$

The statement follows. \hfill \Box

The following statement is dual to Lemma 11.3.2.

Lemma 11.3.3. Let $V'' \subset V$ be finite dimensional vector spaces over \mathbb{F}_q. Assume $2 + \dim V/V'' \leq m \leq \dim V - 2$. Let f be a nonzero rational function on $\text{ToySht}^{m-\dim V/V''}_V$ such that the restriction of $\text{Div}(f)$ to $\text{ToySht}^{m-\dim V/V''}_{V''/V''}$ is zero.

Let g_0 be the pullback of f under the morphism $\text{ToySht}^{m,0,V''}_V \to \text{ToySht}^{m-\dim V/V''}_{V''/V''}$. Let g be the (unique) rational function on ToySht^{m}_V extending g_0. Then $\text{Div}(g)$ is supported on the union of $\Delta^n_{V,H}$ for $H \in \mathcal{P}_{V'}$, $H \not\subset V''$ and $\Delta^m_{V,J}$ for $J \in \mathcal{P}_V$, $J \subset V''$. \hfill \Box

Lemma 11.3.4. Let $V' \subset V'' \subset V$ be finite dimensional vector spaces over \mathbb{F}_q. Assume $\dim V/V'' + 2 \leq m \leq \dim V/V' - 2$. Let f be a nonzero rational function on $\text{ToySht}^{m-\dim V/V''}_{V'/V''}$ such that the restriction of $\text{Div}(f)$ to $\text{ToySht}^{m-\dim V/V''}_{V''/V'}$ is zero.

Let g_0 be the pullback of f under the morphism $\text{ToySht}^{m,V''}_{V'} \to \text{ToySht}^{m-\dim V/V''}_{V''/V'//V''}$. Let g be the (unique) rational function on ToySht^{m}_V extending g_0. Then $\text{Div}(g)$ is supported on the union of $\Delta^n_{V',H}$ for $H \in \mathcal{P}_{V'}$, $H \not\subset V''$ and $\Delta^m_{V,J}$ for $J \in \mathcal{P}_V$, $J \not\subset V'$, $J \subset V''$.

Proof. The statement follows from Lemmas 11.3.2 and 11.3.3. \hfill \Box

11.4. Extension of pullback of principal toy horospherical divisors.

For $(\Lambda', \Lambda'') \in AP_n(T)$, we define $\varepsilon_{\Lambda', \Lambda''}$ to be the composition of homomorphism of ordered abelian groups

$$\varepsilon_{\Lambda', \Lambda''} : C(\mathcal{P}_{\Lambda''/\Lambda'}) \to C^\infty(\Lambda'' - \Lambda') \to C_c^\infty(T - \{0\}),$$

where the first homomorphism is induced by the map $(\Lambda'' - \Lambda') \to \mathcal{P}_{\Lambda''/\Lambda'}$, and the second homomorphism is extension by zero.

Similarly, we define

$$\varepsilon_{\Lambda', \Lambda''}^* : C(\mathcal{P}_{(\Lambda''/\Lambda')^*}) \to C^\infty((\Lambda')^\perp - (\Lambda'')^\perp) \to C_c^\infty(T^* - \{0\}).$$

For $(\Lambda', \Lambda'') \in AP_n(T)$, we identify ordered abelian groups

$$\mathcal{O}_{\Lambda', \Lambda''}^n \cong C(\mathcal{P}_{(\Lambda''/\Lambda')^*}) \oplus C(\mathcal{P}_{\Lambda''/\Lambda'}).$$

As before, we make an identification via Theorem 5.3.2

$$\mathcal{O}_T^n \cong C_+(T^* - \{0\})^\mathbb{F}_q^* \oplus C_+(T - \{0\})^\mathbb{F}_q^*. $$

We view $\varepsilon_{\Lambda', \Lambda''}^* \oplus \varepsilon_{\Lambda', \Lambda''}$ as a homomorphism $\mathcal{O}_{\Lambda', \Lambda''}^n \to \mathcal{O}_T^n$.

Lemma 11.4.1. Let \((\Lambda', \Lambda'') \in \text{AP}_n(T)\) and let \(f\) be a rational function on \(^{\circ}\text{ToySh}^n_{\Lambda'/\Lambda''}\) such that \(\text{Div}(f) \in \text{\Omega}^n_{\Lambda'/\Lambda''}\). Let \(h_0\) be the pullback of \(f\) to \(^{\circ}\text{ToySh}^n_{\Lambda'/\Lambda''}\) and let \(h\) be the (unique) extension of \(h_0\) to \(^{\circ}\text{ToySh}^n_T\). Then \(\text{Div}(h) \in \text{\Omega}^n_T\) and
\[
\text{Div}(h) = (\varepsilon^*_{\Lambda'/\Lambda''} \oplus \varepsilon_{\Lambda'/\Lambda''})(\text{Div}(f)).
\]

Proof. Lemma 8.3.9 shows that \(\text{Div}(h) \in \text{\Omega}^n_T\).

From Lemma 11.3.4 we know that \(\text{Div}(h)\) is supported on the union of \(\Delta^n_{P,H}\) for \(H \in P_T, H \supset \Lambda', H \not\supset \Lambda''\) and \(\Delta^n_{P,J}\) for \(J \in P_T, J \not\supset \Lambda', J \subset \Lambda''\). So \(\text{Div}(h)\) is supported on \(((\Lambda')^\perp - (\Lambda'')^\perp) \coprod ((\Lambda'' - \Lambda'))\). For \(v \in (\Lambda'' - \Lambda')\), we have \(\text{Div}(h)(v) = \text{Div}(f)(\bar{v})\) by Lemma 9.2.9, where \(\bar{v}\) is the image of \(v\) in \(P_{\Lambda'/\Lambda''}\). There is a similar statement for \(\omega \in ((\Lambda')^\perp - (\Lambda'')^\perp)\). The statement follows. \(\square\)

11.5. Proof of Theorem 11.1.2 For a finite set \(S\), let \(C_0(S)\) denote the (partially) ordered abelian group of \(\mathbb{Z}\)-valued functions on \(S\) whose sum over \(S\) equals 0.

For \((\Lambda', \Lambda'') \in \text{AP}_n(T)\), we define a homomorphism (Radon transform)
\[
R^n_{\Lambda'/\Lambda''} : C_0(P_{\Lambda'/\Lambda''}; \mathbb{Z}[[\frac{1}{p}]]) \to C_0(P_{(\Lambda'/\Lambda'')}^\ast; \mathbb{Z}[[\frac{1}{p}]])
\]
such that for any \(f \in C_0(P_{\Lambda'/\Lambda''}; \mathbb{Z}[[\frac{1}{p}]])\), \(H \in P_{(\Lambda'/\Lambda'')}^\ast\), we have
\[
R^n_{\Lambda'/\Lambda''}(f)(H) = q^{n(\Lambda') + 1} \sum_{J \in P_{\Lambda'/\Lambda''}} f(J).
\]

Remark 11.5.1. Since we have \(n(\Lambda'') - (\dim(\Lambda''/\Lambda') - 1) = n(\Lambda') + 1\), Theorem 5.3.4 shows that \((f_1, f_2) \in C_0(P_{(\Lambda'/\Lambda'')}^\ast; \mathbb{Z}[[\frac{1}{p}]]) \oplus C_0(P_{\Lambda'/\Lambda''}; \mathbb{Z}[[\frac{1}{p}]])\) corresponds to a principal toy horospherical \(\mathbb{Z}[[\frac{1}{p}]]\)-divisor of \(^{\circ}\text{ToySh}^n_{\Lambda'/\Lambda''}\) if and only if \(f_1 = R^n_{\Lambda'/\Lambda''}(f_2)\).

Lemma 11.5.2. \(\text{im}(C_0(P_{\Lambda'/\Lambda''}) \xrightarrow{\varepsilon_{\Lambda',\Lambda''}} C_c^\infty(T - \{0\})^{\mathbb{F}_q^\times}) \subset C_0^\infty(T - \{0\})^{\mathbb{F}_q^\times}\). \(\square\)

Lemma 11.5.3. The following diagram is commutative.
\[
\begin{array}{ccc}
C_0(P_{\Lambda'/\Lambda''}; \mathbb{Z}[[\frac{1}{p}]]) & \xrightarrow{R^n_{\Lambda'/\Lambda''}} & C_0(P_{(\Lambda'/\Lambda'')}^\ast; \mathbb{Z}[[\frac{1}{p}]]) \\
\downarrow_{\varepsilon_{\Lambda',\Lambda''} \otimes \mathbb{Z}[[\frac{1}{p}]])} & & \downarrow_{\varepsilon_{\Lambda',\Lambda''} \otimes \mathbb{Z}[[\frac{1}{p}]])} \\
C_0^\infty(T - \{0\}; \mathbb{Z}[[\frac{1}{p}]])^{\mathbb{F}_q^\times} & \xrightarrow{\text{Four}_{\psi}} & C_0^\infty(T^* - \{0\}; \mathbb{Z}[[\frac{1}{p}]])^{\mathbb{F}_q^\times}
\end{array}
\]

Proof. Fix \(f \in C_0(P_{\Lambda'/\Lambda''}; \mathbb{Z}[[\frac{1}{p}]])\). Let \(g = (\varepsilon_{\Lambda',\Lambda''} \otimes \mathbb{Z}[[\frac{1}{p}]]) (f), h_1 = (\text{Four}_{\psi} \circ (\varepsilon_{\Lambda',\Lambda''} \otimes \mathbb{Z}[[\frac{1}{p}]]) (f),\) and \(h_2 = ((\varepsilon_{\Lambda',\Lambda''} \otimes \mathbb{Z}[[\frac{1}{p}]]) \circ R^n_{\Lambda'/\Lambda''}) (f)\).

Let \(\omega \in (T^* - \{0\})\).

Since \(\psi\) is nontrivial and \(g(v) = g(v + x)\) for any \(v \in (T - \{0\})\) and \(x \in \Lambda'\), we see that \(h_1(\omega) = 0\) when \(\omega \notin (\Lambda')^\perp\). Since \(\text{supp} \ g \subset \Lambda''\) and \(\sum_{J \in P_{\Lambda'/\Lambda''}} f(J) = 0\), we see that \(h_1(\omega) = 0\) when \(\omega \in (\Lambda'')^\perp\).

From the definition of \(\varepsilon_{\Lambda',\Lambda''}\) we see that \(h_2(\omega) = 0\) when \(\omega \notin (\Lambda')^\perp\) or \(\omega \in (\Lambda'')^\perp\).
Now we assume \(\omega \in ((\Lambda')^\perp - (\Lambda'')^\perp) \).

Denote \(H_\omega = \{ v \in T|\omega(v) = 0 \} \) and \(P^\omega_{N'/\Lambda'} = \{ J \in P_{N'/\Lambda'}|J \subset (H_\omega \cap \Lambda'')/\Lambda' \} \).

From the definitions of \(R^\omega_{\Lambda',\Lambda''} \) and \(\varepsilon^\ast_{\Lambda',\Lambda''} \) we see that

\[
h_2(\omega) = q^{n(\Lambda')} \sum_{J \in P^\omega_{\Lambda'/\Lambda'}} f(J).
\]

On the other hand, we have

\[
h_1(\omega) = \int_T g(v)\psi(\omega(v))dv = \mu(\Lambda') \sum_{z \in ((\Lambda''/\Lambda') \setminus \{0\})} f(z)\psi(\omega(z)).
\]

Since \(\psi \) is nontrivial, we get

\[
h_1(\omega) = \mu(\Lambda')(\sum_{J \in (P_{\Lambda'/\Lambda'} - P_{\Lambda''/\Lambda'})} - f(J) + \sum_{J \in P^\omega_{\Lambda'/\Lambda'}} (q - 1)f(J)).
\]

Since \(\sum_{J \in P_{\Lambda'/\Lambda'}} f(J) = 0 \), we get

\[
h_1(\omega) = q^{n(\Lambda')} \cdot q \cdot \sum_{J \in P^\omega_{\Lambda'/\Lambda'}} f(J).
\]

(Recall the Haar measure on \(T \) is normalized by the condition that the measure of any \(c \)-lattice \(\Lambda \) equals \(q^{n(\Lambda,.)} \)). Therefore, we have \(h_1 = h_2 \). \(\square \)

Lemma 11.5.4. We have

\[
C^\infty_c(T - \{0\}; \mathbb{Z}[1/p])_{\mathbb{F}_q^\times} = \bigcup_{(\Lambda',\Lambda'') \in \text{AP}_u(T)} \text{im}(C_0(P_{\Lambda'/\Lambda''}; \mathbb{Z}[1/p]) \xrightarrow{\varepsilon^\ast_{\Lambda',\Lambda''} \otimes \mathbb{Z}[1/p]} C^\infty_c(T - \{0\}; \mathbb{Z}[1/p])_{\mathbb{F}_q^\times}). \quad \square
\]

Proof of Theorem 11.1.2. The statement follows from Lemma 11.2.1 Lemma 11.4.1 Remark 11.5.1 Lemma 11.5.3 and Lemma 11.5.4 \(\square \)

12. Partial Frobeniuses for Tate toy shtukas

Fix a nondiscrete noncompact Tate space \(T \) over \(\mathbb{F}_q \). Let \(\text{Dim}_T \) denote the dimension torsor of \(T \).

12.1. Definition of left/right Tate toy shtukas.

Definition 12.1.1. A right Tate toy shtuka for \(T \) over an \(\mathbb{F}_q \)-scheme \(S \) of dimension \(n \in \text{Dim}_T \) is a pair \(\mathcal{L} \in \text{Grass}^n_T(S), \mathcal{L}' \in \text{Grass}^{n+1}_T(S) \), such that \(\mathcal{L} \subset \mathcal{L}' \), \(Fr_S^* \mathcal{L} \subset \mathcal{L}' \) with \(\mathcal{L}'/\mathcal{L} \) and \(\mathcal{L}'/Fr_S^* \mathcal{L} \) being invertible.

Definition 12.1.2. A left Tate toy shtuka for \(T \) over an \(\mathbb{F}_q \)-scheme \(S \) of dimension \(n \in \text{Dim}_T \) is a pair \(\mathcal{L} \in \text{Grass}^n_T(S), \mathcal{L}' \in \text{Grass}^{n-1}_T(S) \), such that \(\mathcal{L}' \subset \mathcal{L}, \mathcal{L}' \subset Fr_S^* \mathcal{L} \) with \(\mathcal{L}/\mathcal{L}' \) and \(Fr_S^* \mathcal{L}/\mathcal{L}' \) being invertible.
For $n \in \text{Dim}_T$, let $L_{\text{ToySht}}^n_T$ (resp. $R_{\text{ToySht}}^n_T$) be the functor which associates to each \mathbb{F}_q-scheme S the set of isomorphism classes of left (resp. right) Tate toy shtukas over S of dimension n.

As in the finite dimensional case, $L_{\text{ToySht}}^n_T$ (resp. $R_{\text{ToySht}}^n_T$) is representable by a closed subscheme of $\text{Grass}^n_T \times \text{Grass}^{n-1}_T$ (resp. $\text{Grass}^n_T \times \text{Grass}^{n+1}_T$).

12.2. Partial Frobeniuses

We have the following constructions for left/right Tate toy shtukas:

(i) For a left Tate toy shtuka $\mathcal{L}' \subset \mathcal{L}$ over an \mathbb{F}_q-scheme S, the pair $\mathcal{L}' \subset \text{Fr}_S^* \mathcal{L}$ forms a right Tate toy shtuka over S.

(ii) For a right Tate toy shtuka $\mathcal{L} \subset \mathcal{L}'$ over an \mathbb{F}_q-scheme S, the pair $\text{Fr}_S^* \mathcal{L} \subset \mathcal{L}'$ forms a left Tate toy shtuka over S.

For $n \in \text{Dim}_T$, we define partial Frobeniuses $F_{T,n}^- : L_{\text{ToySht}}^n_T \to R_{\text{ToySht}}^{n-1}_T$, $F_{T,n}^+ : R_{\text{ToySht}}^n_T \to L_{\text{ToySht}}^{n+1}_T$ induced by the above constructions.

We have $F_{T,n-1}^- \circ F_{T,n}^- = \text{Fr}_{L_{\text{ToySht}}^n_T}$, $F_{T,n+1}^+ \circ F_{T,n}^+ = \text{Fr}_{R_{\text{ToySht}}^n_T}$.

12.3. Identification of $L\mathcal{O}^n_T$ and $R\mathcal{O}^n_T$ with \mathcal{O}^n_T

As in the finite dimensional case, $^c_{\text{ToySht}}^n_T$ is an open subscheme of $L_{\text{ToySht}}^n_T$ and $R_{\text{ToySht}}^n_T$.

Let $L\mathcal{O}^n_T$ (resp. $R\mathcal{O}^n_T$) be the (partially) ordered abelian group of Cartier divisors of $L_{\text{ToySht}}^n_T$ (resp. $R_{\text{ToySht}}^n_T$) whose restrictions to $^c_{\text{ToySht}}^n_T$ are zero.

The goal of this subsection is to prove the following statement.

Lemma 12.3.1. The open immersion $^c_{\text{ToySht}}^n_T \hookrightarrow L_{\text{ToySht}}^n_T$ (resp. $^c_{\text{ToySht}}^n_T \hookrightarrow R_{\text{ToySht}}^n_T$) induces an isomorphism of ordered abelian groups $L\mathcal{O}^n_T \cong \mathcal{O}^n_T$ (resp. $R\mathcal{O}^n_T \cong \mathcal{O}^n_T$).

In the following we only prove the statement for $L_{\text{ToySht}}^n_T$, since the statements for $L_{\text{ToySht}}^n_T$ and $R_{\text{ToySht}}^n_T$ are dual to each other.

Lemma 12.3.2. Let E be a field over \mathbb{F}_q and let $L \in ^c_{\text{ToySht}}^n_{T,T'}(E)$ for two c-lattices $\Lambda' \subset \Lambda''$ of T. Put $L' = L \cap \text{Fr}_E^* L$. Then $L' \in \text{Grass}_{T,T'}^{n,\Lambda',\Lambda''}(E)$.

Proof. For any subspace M of T, we denote $M_E := M \otimes E$.

Since $L \in ^c_{\text{Grass}}^{n,\Lambda',\Lambda''}(E)$, we have $L \cap \Lambda'_E = 0$. Hence $L' \cap \Lambda'_E = 0$. So it suffices to show that $L' + \Lambda''_E = T_E$.

We have $L + \Lambda''_E = T_E$. Hence $\dim(L \cap \Lambda''_E) = \dim(L \cap \Lambda''_E) = n(\Lambda'')$. (See Definition 6.1.11 for the definition of the dimension of a d-lattice.) From the definition of $^c_{\text{Grass}}$ in diagram (7.1) we know that $L \cap \Lambda''_E$ is a nontrivial toy shtuka over $\text{Spec} E$. Thus $\dim(L' \cap \Lambda''_E) = \dim(L \cap \Lambda''_E) - 1 = n(\Lambda'') - 1$. Therefore, in the Tate space T_E over E, the d-lattice L' and the c-lattice Λ''_E satisfy $\dim(L')(\Lambda''_E) = \dim(L \cap \Lambda''_E)$. This implies that $L' + \Lambda''_E = T_E$. □
For \((\Lambda', \Lambda'') \in AP_n(T)\), denote \(\text{LToySh}_n^{\Lambda', \Lambda''} = \text{LToySh}_n^{\Lambda'} \cap (\text{Grass}^{n, \Lambda'}_T \times \text{Grass}^{n-1, \Lambda''}_T)\). Lemma 12.3.2 shows that \(\text{ToySh}_n^{\Lambda', \Lambda''} \subset \text{LToySh}_n^{\Lambda', \Lambda''}\).

For \((\Lambda', \Lambda'') \in AP_n(T)\), let \(\mathcal{O}_T^{n, \Lambda', \Lambda''}\) be the (partially) ordered abelian group of Cartier divisors of \(\text{LToySh}_n^{\Lambda', \Lambda''}\) whose restrictions to \(\text{ToySh}_n^{\Lambda', \Lambda''}\) are zero.

The isomorphisms
\[
\text{LToySh}_n^{\Lambda', \Lambda''} = \lim_{\to} \text{LToySh}_n^{\Lambda', \Lambda''},
\]

\[
\text{LToySh}_n^{\Lambda', \Lambda''} = \lim_{\to} \text{LToySh}_n^{\Lambda', \Lambda''}
\]
give isomorphisms of ordered abelian groups
\[
\mathcal{O}_T^{n, \Lambda', \Lambda''} \xrightarrow{\sim} \lim_{\to} \mathcal{O}_T^{n, \Lambda', \Lambda''},
\]

\[
\mathcal{L}O_T^{n, \Lambda', \Lambda''} \xrightarrow{\sim} \lim_{\to} \mathcal{L}O_T^{n, \Lambda', \Lambda''}.
\]

For different \((\Lambda', \Lambda'') \in AP_n(T)\), the open immersions \(\text{LToySh}_n^{\Lambda', \Lambda''} \subset \text{LToySh}_n^{\Lambda', \Lambda''}\) induce ordered homomorphisms \(\mathcal{O}_T^{n, \Lambda', \Lambda''} \rightarrow \mathcal{O}_T^{n, \Lambda', \Lambda''}\) which are compatible with transition homomorphisms. Thus Lemma 12.3.1 follows from Lemma 12.3.3.

Lemma 12.3.3. For \((\Lambda', \Lambda'') \in AP_n(T)\), the open immersion \(\text{LToySh}_n^{\Lambda', \Lambda''} \subset \text{LToySh}_n^{\Lambda', \Lambda''}\) induces an isomorphism of ordered abelian groups \(\mathcal{O}_T^{n, \Lambda', \Lambda''} \xrightarrow{\sim} \mathcal{O}_T^{n, \Lambda', \Lambda''}\).

Proof. For \((\tilde{\Lambda}', \tilde{\Lambda}'') \triangleright (\Lambda', \Lambda'')\), denote \(\text{LToySh}_n^{\tilde{\Lambda}', \tilde{\Lambda}''} = \text{LToySh}_n^{\tilde{\Lambda}' \cap \tilde{\Lambda}'' / \tilde{\Lambda}'}\), and denote \(\mathcal{O}_T^{n, \tilde{\Lambda}', \tilde{\Lambda}''} \subset \text{LToySh}_n^{\tilde{\Lambda}', \tilde{\Lambda}''}\) to be the ordered abelian group of Cartier divisors of \(\text{LToySh}_n^{\tilde{\Lambda}', \tilde{\Lambda}''}\) whose restrictions to \(\text{ToySh}_n^{\Lambda', \Lambda''}\) are zero.

The complement of \(\text{ToySh}_n^{\tilde{\Lambda}'}\) in \(\text{LToySh}_n^{\tilde{\Lambda}''}\) has codimension \(-n(\tilde{\Lambda}') \geq 2\) since \((\tilde{\Lambda}', \tilde{\Lambda}'') \in AP_n(T)\). Hence the complement of \(U_{\tilde{\Lambda}', \tilde{\Lambda}''}^{n, \Lambda', \Lambda''}\) in \(U_{\tilde{\Lambda}', \tilde{\Lambda}''}^{n, \Lambda', \Lambda''}\) has codimension at least 2. Therefore, the open immersion of regular schemes \(U_{\tilde{\Lambda}', \tilde{\Lambda}''}^{n, \Lambda', \Lambda''} \subset \text{LToySh}_n^{\tilde{\Lambda}', \tilde{\Lambda}''}\) induces an isomorphism of ordered abelian groups \(\mathcal{O}_T^{n, \Lambda', \Lambda''} \xrightarrow{\sim} \mathcal{O}_T^{n, \Lambda', \Lambda''}\). Such isomorphisms are compatible with transition homomorphisms for different pairs \((\tilde{\Lambda}', \tilde{\Lambda}'')\), and thus give rise to an isomorphism of ordered abelian groups
\[
\lambda : \lim_{\to} \mathcal{O}_T^{n, \Lambda', \Lambda''} \xrightarrow{\sim} \lim_{\to} \mathcal{O}_T^{n, \Lambda', \Lambda''}.
\]

Similarly to Lemma 7.3.1, we have an isomorphism
\[
\text{LToySh}_n^{\Lambda', \Lambda''} \xrightarrow{\sim} \lim_{\to} \text{LToySh}_n^{\Lambda', \Lambda''}.
\]
It induces an ordered homomorphism

\[L\xi : \lim_{(\tilde{\Lambda}',\tilde{\Lambda}'') \rightarrow (\Lambda',\Lambda'')} L\mathcal{O}^{n',\Lambda''}_{\mathcal{O},\tilde{\Lambda}'} \rightarrow L\mathcal{O}^{n',\Lambda''}_{\mathcal{O},\tilde{\Lambda}'} \]

Similarly to the proof of Lemma 9.2.6 in Section 9.2.5, one can show that \(L\xi \) is surjective using Lemma 8.3.10.

We get a commutative diagram of ordered abelian groups.

\[\begin{array}{ccc}
\lim_{(\tilde{\Lambda}',\tilde{\Lambda}'') \rightarrow (\Lambda',\Lambda'')} L\mathcal{O}^{n',\Lambda''}_{\mathcal{O},\tilde{\Lambda}'} & \xrightarrow{L\xi} & L\mathcal{O}^{n',\Lambda''}_{\mathcal{O},\tilde{\Lambda}'} \\
\downarrow \lambda & & \downarrow \lambda' \\
\lim_{(\tilde{\Lambda}',\tilde{\Lambda}'') \rightarrow (\Lambda',\Lambda'')} \mathcal{O}^{n',\Lambda''}_{\mathcal{O},\tilde{\Lambda}'} & \xrightarrow{\xi} & \mathcal{O}^{n',\Lambda''}_{\mathcal{O},\tilde{\Lambda}'}
\end{array} \]

We proved that \(\lambda \) is an isomorphism of ordered abelian groups. So is \(\xi \) by Lemma 9.2.6. Both \(L\xi \) and \(\lambda' \) are ordered homomorphisms, and we proved that \(L\xi \) is surjective. Hence \(\lambda' \) is an isomorphism of ordered abelian groups.

12.4. Pullback of Tate toy horospherical subschemes under partial Frobeniuses. We identify \(L\mathcal{O}^n_T \) and \(R\mathcal{O}^n_T \) with \(\mathcal{O}^n_T \) by Lemma 12.3.1.

Partial Frobeniuses induce homomorphisms between ordered abelian groups

\[\cdots \leftrightarrow \mathcal{O}^{n-1}_T \xrightarrow{(F_{T,n})^*} \mathcal{O}^n_T \xleftarrow{(F_{T,n-1})^*} \mathcal{O}^{n+1}_T \leftrightarrow \cdots \]

Similarly to Lemmas 5.3.1 and 5.3.2, we have the following statement.

Lemma 12.4.1. Identifying \(\mathcal{O}^{n-1}_T, \mathcal{O}^n_T, \mathcal{O}^{n+1}_T \) with \(C_+(T^* - \{0\})^\mathbb{F}_q \oplus C_+(T - \{0\})^\mathbb{F}_q \) via Theorem 9.2.4, the two homomorphisms

\[(F_{T,n})^* : \mathcal{O}^{n-1}_T \rightarrow \mathcal{O}^n_T, \]
\[(F_{T,n})^* : \mathcal{O}^{n+1}_T \rightarrow \mathcal{O}^n_T \]

are given by

\[(F_{T,n})^* : C_+(T^* - \{0\})^\mathbb{F}_q \oplus C_+(T - \{0\})^\mathbb{F}_q \rightarrow C_+(T^* - \{0\})^\mathbb{F}_q \oplus C_+(T - \{0\})^\mathbb{F}_q \]
\[(\lambda_1, \lambda_2) \mapsto (q\lambda_1, \lambda_2) \]

\[(F_{T,n}^+)^* : C_+(T^* - \{0\})^\mathbb{F}_q \oplus C_+(T - \{0\})^\mathbb{F}_q \rightarrow C_+(T^* - \{0\})^\mathbb{F}_q \oplus C_+(T - \{0\})^\mathbb{F}_q \]
\[(\lambda_1, \lambda_2) \mapsto (\lambda_1, q\lambda_2) \]

13. A canonical subgroup of \(\text{Pic}(^0\text{ToySht}^n_T) \)

Fix a nondiscrete noncompact Tate space \(T \) over \(\mathbb{F}_q \) and fix \(n \in \text{Dim}_T \).
Lemma 13.1.5. \(L \) for any \(\mathcal{L}_{T,n} \) be the universal Tate toy shtuka over \(\mathcal{O}_{\text{ToySht}^n_T} \). Let \(\mathcal{L}^L_{T,n} \subset \mathcal{L}^L_{T,n} \) (resp. \(\mathcal{L}^R_{T,n} \subset \mathcal{L}^R_{T,n} \)) be the universal left (resp. right) Tate toy shtuka over \(\mathcal{O}_{\text{ToySht}^n_T} \). Let \(\mathcal{L}^L_{T,n} \) (resp. \(\mathcal{R}^R_{T,n} \)) be the universal left (resp. right) Tate toy shtuka over \(\mathcal{O}_{\text{ToySht}^n_T} \). Let \(\mathcal{L}^L_{T,n} \) (resp. \(\mathcal{R}^R_{T,n} \)) be the universal left (resp. right) Tate toy shtuka over \(\mathcal{O}_{\text{ToySht}^n_T} \).

Denote \(\mathcal{L}^L_{T,n} = \mathcal{L}_{T,n} \cap \mathfrak{Fr}^*_{\text{ToySht}^n_T} \mathcal{L}_{T,n} \), \(\mathcal{L}^R_{T,n} = \mathcal{L}_{T,n} + \mathfrak{Fr}^*_{\text{ToySht}^n_T} \mathcal{L}_{T,n} \).

Remark 13.1.1. We see that \(\mathcal{L}^L_{T,n} \) is the pullback of \(\mathcal{L}^R_{T,n-1} \) under the composition \(\mathcal{O}_{\text{ToySht}^n_T} \rightarrow \mathcal{O}_{\text{ToySht}^n_T} \) and \(\mathcal{L}^R_{T,n} \) is the pullback of \(\mathcal{L}^L_{T,n+1} \) under the composition \(\mathcal{O}_{\text{ToySht}^n_T} \rightarrow \mathcal{O}_{\text{ToySht}^n_T} \).

Definition 13.1.2. We define two invertible sheaves \(\ell_{T,n,a} := \mathcal{L}_{T,n}/\mathcal{L}^L_{T,n}, \ell_{T,n,b} := \mathcal{L}^R_{T,n}/\mathcal{L}_{T,n} \) on \(\mathcal{O}_{\text{ToySht}^n_T} \).

Definition 13.1.3. For a c-lattice \(W \) of \(T \), we define an invertible sheaf \(\ell_{W, T,n, \det} := \det(\mathcal{L}_{T,n}, W) \). (See Definition 6.3.1 for the definition of \(\det(\mathcal{L}_{T,n}, W) \).)

Remark 13.1.4. For two c-lattices \(W_1, W_2 \) of \(T \), Remark 6.3.3 shows that there is a canonical isomorphism \(\ell_{W_1, T,n, \det} \otimes \det_{W_2} \cong \ell_{W_2, T,n, \det} \), and the two invertible sheaves \(\ell_{W_1, T,n, \det} \) and \(\ell_{W_2, T,n, \det} \) are isomorphic. Also, \(\ell_{W_1, T,n, \det} \otimes q^{-1} \) and \(\ell_{W_2, T,n, \det} \otimes q^{-1} \) are canonically isomorphic since \(\det_{W_1} q^{-1} \cong \mathbb{F}_q \).

Lemma 13.1.5. Let \(W \) be a c-lattice of \(T \). We have a canonical isomorphism \(\ell_{T,n,b} \otimes \ell_{T,n,a}^{-1} \cong (\ell_{W, T,n, \det} q)^{-1} \).

Proof. For any \(\mathcal{O}_{\text{ToySht}^n_T} \)-module \(\mathcal{E} \), denote \(\mathcal{E}^* = \mathfrak{Fr}^*_{\text{ToySht}^n_T} \mathcal{E} \).

The canonical isomorphism \(\mathcal{L}_{T,n}/\mathcal{L}^L_{T,n} \cong \mathcal{L}^R_{T,n}/\mathcal{L}^L_{T,n} \) induces a canonical isomorphism \(\det(\mathcal{L}_{T,n}, W) \otimes \det(\mathcal{L}^L_{T,n}, W)^{-1} \cong \det(\mathcal{L}^R_{T,n}, W) \otimes \det(\mathcal{L}^L_{T,n}, W)^{-1} \) by Lemma 6.3.4.

Lemma 6.3.3 gives a canonical isomorphism \(\det(\mathcal{L}_{T,n}, \mathcal{E}) \cong \det(\mathcal{L}_{T,n}, \mathcal{E}) q \).

Lemma 6.3.4 gives canonical isomorphisms

\[\ell_{T,n,a} \cong \det(\mathcal{L}_{T,n}, W) \otimes \det(\mathcal{L}^L_{T,n}, W)^{-1}, \]

\[\ell_{T,n,b} \cong \det(\mathcal{L}^R_{T,n}, W) \otimes \det(\mathcal{L}_{T,n}, W)^{-1}. \]

The statement follows.

\[\square \]

13.2. Some divisors in the classes of \(\ell_{T,n,a} \) and \(\ell_{T,n,b} \). We have an inclusion of ordered abelian groups

\[C_+^0(T^*) \mathbb{F}_q \oplus C_+^0(T) \mathbb{F}_q \subset C_+^0(T^* - \{0\}) \mathbb{F}_q \oplus C_+^0(T - \{0\}) \mathbb{F}_q. \]

For an invertible sheaf \(\ell \) on \(\mathcal{O}_{\text{ToySht}^n_T} \) and an element \((f_1, f_2) \in C_+^0(T^*) \mathbb{F}_q \oplus C_+^0(T) \mathbb{F}_q \), we write \(\ell \sim (f_1, f_2) \) if \([\ell] = [\mathcal{O}_{\text{ToySht}^n_T}(D_{(f_1, f_2)})] \) in \(\text{Pic}(\mathcal{O}_{\text{ToySht}^n_T}) \), where \(D_{(f_1, f_2)} \) is the Cartier divisor of \(\mathcal{O}_{\text{ToySht}^n_T} \) corresponding to \((f_1, f_2) \) via Theorem 9.2.3.
Lemma 13.2.1. Let W_{-1}, W_0, W_1 be c-lattices of T such that $W_{-1} \subset W_0 \subset W_1$ and $n(W_i) = i, (i = -1, 0, 1)$. Then we have

$$\ell_{T,n,a} \sim (q \cdot 1_{W_1} - 1_{W_0}, 1_{W_1-W_0}),$$
$$\ell_{T,n,b} \sim (-1_{W_{-1}-W_0}, -q \cdot 1_{W_{-1}} + 1_{W_0}).$$

Proof. Recall that we denoted $L_{T,n}^\prime = L_{T,n} \cap \text{Fr}_{\text{ToySh}_T^n}^* L_{T,n}, L_{T,n}^n = L_{T,n} + \text{Fr}_{\text{ToySh}_T^n}^* L_{T,n}$. Recall that $\ell_{T,n,a} = L_{T,n}/L_{T,n}'$. So Lemma 6.3.4 gives an isomorphism $\ell_{T,n,a} \cong \det(L_{T,n}, W_0) \otimes \det(L_{T,n}', W_0)^{-1}$. Hence $\ell_{T,n,a} \cong \det(L_{T,n}, W_0) \otimes \det(L_{T,n}', W_1)^{-1}$ by Remark 6.3.3.

Theorem 10.2.1 implies that $\det(L_{T,n}, W_0) \sim (-1_{W_0}, -1_{W_0})$.

Theorem 10.2.1 and Lemma [12.3.3] imply that $\det(L_{T,n}', W_1) \sim (-1_{W_1}, -1_{W_1})$.

Remark 13.1.1 and Remark 6.3.2 show that $\det(L_{T,n}', W_1)$ is the pullback of $\det(L_{T,n}', W_1)$ under the composition $^\circ \text{ToySh}_T^n \hookrightarrow L_{\text{ToySh}_T^n} \xrightarrow{F_{T,n}} R_{\text{ToySh}_T^n}^{-1}$. Then Lemma 12.4.1 implies that $\det(L_{T,n}', W_1) \sim (-q \cdot 1_{W_1}, -1_{W_1})$.

Therefore, we get

$$\ell_{T,n,a} \sim (-1_{W_0}, -1_{W_0}) - (-q \cdot 1_{W_1}, -1_{W_1}) = (q \cdot 1_{W_1} - 1_{W_0}, 1_{W_1-W_0}).$$

The proof of the statement about $\ell_{T,n,b}$ is similar. □

13.3. The preimage of $\text{Pic}_{\text{can}}(\circ \text{ToySh}_T^n) \otimes \mathbb{Z}[\frac{1}{p}]$ in $\mathfrak{O}_p^\times \otimes \mathbb{Z}[\frac{1}{p}]$. We normalize the Haar measure on T by the condition that the measure of any c-lattice Λ equals $q^n(\Lambda)$.

Fix a nontrivial additive character $\psi : \mathbb{F}_p \to \mathbb{C}^\times$.

The Fourier transform Four_ψ is defined by the equation (11.1).

We have a homomorphism

$$C_c^\infty(T; \mathbb{Z}[\frac{1}{p}])^{\mathbb{F}_p^\times} \xrightarrow{\text{Four}_\psi} C_c^\infty(T^*; \mathbb{Z}[\frac{1}{p}])^{\mathbb{F}_p^\times} \oplus C_c^\infty(T; \mathbb{Z}[\frac{1}{p}])^{\mathbb{F}_p^\times}$$

and an inclusion of abelian groups

$$C_c^\infty(T^*; \mathbb{Z}[\frac{1}{p}])^{\mathbb{F}_p^\times} \oplus C_c^\infty(T; \mathbb{Z}[\frac{1}{p}])^{\mathbb{F}_p^\times} \subset C_+(T^* - \{0\}; \mathbb{Z}[\frac{1}{p}])^{\mathbb{F}_p^\times} \oplus C_+(T - \{0\}; \mathbb{Z}[\frac{1}{p}])^{\mathbb{F}_p^\times}.$$

Theorem 9.2.1 gives a homomorphism

$$C_+(T^* - \{0\}; \mathbb{Z}[\frac{1}{p}])^{\mathbb{F}_p^\times} \oplus C_+(T - \{0\}; \mathbb{Z}[\frac{1}{p}])^{\mathbb{F}_p^\times} \to \text{Pic}(\circ \text{ToySh}_T^n) \otimes \mathbb{Z}[\frac{1}{p}].$$

The composition of above homomorphisms gives rise to a homomorphism

$$\gamma : C_c^\infty(T; \mathbb{Z}[\frac{1}{p}])^{\mathbb{F}_p^\times} \to \text{Pic}(\circ \text{ToySh}_T^n) \otimes \mathbb{Z}[\frac{1}{p}].$$

Remark 13.3.1. Theorem 11.1.2 implies that $\ker \gamma = C_0^\infty(T - \{0\}; \mathbb{Z}[\frac{1}{p}])^{\mathbb{F}_p^\times}$. Also note that $C_0^\infty(T - \{0\}; \mathbb{Z}[\frac{1}{p}])^{\mathbb{F}_p^\times} = \{f \in C_c^\infty(T; \mathbb{Z}[\frac{1}{p}])^{\mathbb{F}_p^\times} | f(0) = 0, \int_T f(v)dv = 0\}$.

Proposition 13.3.2. For \(f \in C_c^\infty(T; \mathbb{Z}[\frac{1}{p}])^{\mathbb{F}_q^\times} \), let \(a(f) = \int_T f(v)dv \) and \(b(f) = f(0) \). Then
\[
(q - 1)\gamma(f) = a(f)[\ell_{T,n,a}] - b(f)[\ell_{T,n,b}].
\]

Remark 13.3.3. In the definition of \(a(f) \), we normalize the Haar measure on \(T \) by the condition that the measure of any c-lattice \(\Lambda \) equals \(q^{\dim(\Lambda)} \).

Proof of Proposition 13.3.2. The statement follows from Lemma 13.2.1 and the facts that
\[
\begin{align*}
a(\mathbbm{1}_{W_1-W_0}) &= q - 1, \\
b(\mathbbm{1}_{W_1-W_0}) &= 0, \\
a(-q \cdot \mathbbm{1}_{W_{-1}} + \mathbbm{1}_{W_0}) &= 0, \\
b(-q \cdot \mathbbm{1}_{W_{-1}} + \mathbbm{1}_{W_0}) &= -(q - 1), \\
q \cdot \mathbbm{1}_{W_1} - \mathbbm{1}_{W_0} &= \text{Four}_\psi(\mathbbm{1}_{W_1-W_0}), \\
-q \cdot \mathbbm{1}_{W_{-1}} - \mathbbm{1}_{W_0} &= \text{Four}_\psi(\mathbbm{1}_{W_{-1}} + \mathbbm{1}_{W_0}).
\end{align*}
\]

Definition 13.3.4. Let \(\text{Pic}_{can}(\mathbb{O}_{\text{ToySht}_T^n}) \) be the subgroup of \(\text{Pic}(\mathbb{O}_{\text{ToySht}_T^n}) \) generated by \([\ell_{T,n,a}],[\ell_{T,n,b}]\) and \([\ell_{W,T,n,\det}]\), where \(W \) is a c-lattice of \(T \).

Remark 13.3.5. Remark 13.1.4 implies that the class of \(\ell_{W,T,n,\det} \) is independent of the choice of the c-lattice \(W \). Hence \(\text{Pic}_{can}(\mathbb{O}_{\text{ToySht}_T^n}) \) is well-defined.

Remark 13.3.6. Lemma 13.2.1, Theorem 10.2.1 and Theorem 9.2.4 show that the image of \(\mathfrak{D}_T^n \) in \(\text{Pic}(\mathbb{O}_{\text{ToySht}_T^n}) \) contains \(\text{Pic}_{can}(\mathbb{O}_{\text{ToySht}_T^n}) \).

As before, we identify \(\mathfrak{D}_T^n \otimes \mathbb{Z}[\frac{1}{p}] \) with \(C_+ (T^* - \{0\}; \mathbb{Z}[\frac{1}{p}])^{\mathbb{F}_q^\times} \oplus C_+ (T - \{0\}; \mathbb{Z}[\frac{1}{p}])^{\mathbb{F}_q^\times} \) via Theorem 9.2.4, and we consider \(C_c^\infty(T^*; \mathbb{Z}[\frac{1}{p}])^{\mathbb{F}_q^\times} \oplus C_c^\infty(T; \mathbb{Z}[\frac{1}{p}])^{\mathbb{F}_q^\times} \) as an ordered subgroup of \(\mathfrak{D}_T^n \otimes \mathbb{Z}[\frac{1}{p}] \).

Theorem 13.3.7. The preimage of \(\text{Pic}_{can}(\mathbb{O}_{\text{ToySht}_T^n}) \otimes \mathbb{Z}[\frac{1}{p}] \) in \(\mathfrak{D}_T^n \otimes \mathbb{Z}[\frac{1}{p}] \) is the ordered \(\mathbb{Z}[\frac{1}{p}] \)-submodule
\[
\{(f_1, f_2) \in C_c^\infty(T^*; \mathbb{Z}[\frac{1}{p}])^{\mathbb{F}_q^\times} \oplus C_c^\infty(T; \mathbb{Z}[\frac{1}{p}])^{\mathbb{F}_q^\times} | f_1 = \text{Four}_\psi(f_2)\}.
\]

Proof. Let \(W_0, W_1, W_{-1} \) be as in Lemma 13.2.1. By Lemma 13.2.1 and Theorem 10.2.1, the preimage is the \(\mathbb{Z}[\frac{1}{p}] \)-span of the three elements \((1_{W_1-W_0}), (q^{-1}1_{W_1-1_{W_0}}, 1_{W_{-1}}), 0\) and \((-q \cdot 1_{W_{-1}} + 1_{W_0}) \) and the \(\mathbb{Z}[\frac{1}{p}] \)-module \(\mathfrak{D}_T^n \otimes \mathbb{Z}[\frac{1}{p}] \). Note that the three elements are contained in the above \(\mathbb{Z}[\frac{1}{p}] \)-submodule of \(\mathfrak{D}_T^n \otimes \mathbb{Z}[\frac{1}{p}] \). So the statement follows from the description of \(\mathfrak{D}_T^n \otimes \mathbb{Z}[\frac{1}{p}] \) in Theorem 11.1.2.

14. Review of Drinfeld shtukas

14.1. Notation and conventions. The following notation and conventions will be used in the rest of the article.
Let X be a smooth projective geometrically connected curve over \mathbb{F}_q. Let k be the field of rational functions on X. Let A be the ring of adeles of k. Let O be the subring of integral adeles in A.

For any scheme S over \mathbb{F}_q, denote $\Phi_S = \text{Id}_X \times \text{Fr}_S : X \times S \to X \times S$, and let $\pi_S : X \times S \to S$ be the projection. We sometimes write Φ and π instead of Φ_S and π_S when there is no ambiguity about S.

For a scheme S over \mathbb{F}_q and two morphisms $\alpha, \beta : S \to X$, we say that they satisfy condition (\textcircled{1}) if

\[(*) \quad \Gamma_{\text{Fr}_X \circ \alpha} \cap \Gamma_{\text{Fr}_X \circ \beta}, (i, j \in \mathbb{Z}_{\geq 0}) \text{ are mutually disjoint subsets of } X \times S.\]

We say that they satisfy condition (\textcircled{2}) if

\[(+) \quad \Gamma_{\text{Fr}_X \circ \alpha} \cap \Gamma_{\text{Fr}_X \circ \beta} = \emptyset \text{ for all } i, j \in \mathbb{Z}_{\geq 0}.\]

Condition (\textcircled{1}) is equivalent to the combination of (\textcircled{2}) and the condition that α and β map S to the generic point of X.

For a morphism $\alpha : S \to X$, we sometimes write α instead of Γ_{α}.

14.2. Definition of Drinfeld shtukas. Let S be a scheme over \mathbb{F}_q. Denote $\Phi = \text{Id}_X \times \text{Fr}_S : X \times S \to X \times S$.

Definition 14.2.1 (Drinfeld). A left shtuka of rank d over S is a diagram

$$
\Phi^* \mathcal{F} \xleftarrow{i} \mathcal{F}' \xrightarrow{i} \mathcal{F}
$$

of locally free sheaves of rank d on $X \times S$, where i and j are injective morphisms, the cokernel of i is an invertible sheaf on the graph Γ_α of some morphism $\alpha : S \to X$, the cokernel of j is an invertible sheaf on the graph Γ_β of some morphism $\beta : S \to X$.

A right shtuka of rank d over S is a diagram

$$
\Phi^* \mathcal{F} \xleftarrow{f} \mathcal{F}' \xrightarrow{g} \mathcal{F}
$$

of locally free sheaves of rank d on $X \times S$, where f and g are injective morphisms, the cokernel of f is an invertible sheaf on the graph Γ_α of some morphism $\alpha : S \to X$, the cokernel of g is an invertible sheaf on the graph Γ_β of some morphism $\beta : S \to X$.

We say that α is the zero of the shtuka and β is the pole of the shtuka.

Definition 14.2.2 (Drinfeld). For two morphisms $\alpha, \beta : S \to X$, a shtuka of rank d over S with zero α and pole β is a locally free sheaf \mathcal{F} of rank d on $X \times S$ equipped with an injective morphism $\Phi^* \mathcal{F} \to \mathcal{F}(\Gamma_\beta)$ inducing an isomorphism $\Phi^* \det \mathcal{F} \xrightarrow{\sim} (\det \mathcal{F})(\Gamma_\beta - \Gamma_\alpha)$, such that the image of the composition $\Phi^* \mathcal{F} \to \mathcal{F}(\Gamma_\beta) \to \mathcal{F}(\Gamma_\beta)/\mathcal{F}$ has rank at most 1 at Γ_β.

A TOY MODEL OF SHTUKAS

45
Remark 14.2.3. When the zero and the pole have disjoint graph, Construction A in Section 14.3 shows that there is no difference between a shtuka, a left shtuka and a right shtuka. This remains true after applying any powers of partial Frobeniuses (see Section 2.5) if we impose condition (+) on the zero and the pole.

From now on, when the zero and the pole satisfy condition (+), we do not distinguish left and right shtukas, and simply call them shtukas.

Lemma 14.2.4. Let \mathcal{M} be a quasi-coherent sheaf on X and let $\tilde{\mathcal{M}}$ be the pullback of \mathcal{M} under the projection $X \times S \to X$. Then we have a canonical isomorphism $\Phi^* \tilde{\mathcal{M}} \cong \tilde{\mathcal{M}}$.

Definition 14.2.5 (Drinfeld). Let \mathcal{F} be a shtuka (resp. a left shtuka, resp. a right shtuka) of rank d over S with zero α and pole β. Let D be a finite subscheme of X such that α and β map to $X - D$. A structure of level D on \mathcal{F} is an isomorphism $\iota: \mathcal{F} \otimes \mathcal{O}_D \times S \cong O^d_D \times S$ such that the following diagram commutes:

\[
\begin{array}{ccc}
\mathcal{F} \otimes O_{D \times S} & \xrightarrow{\sim} & O^d_{D \times S} \\
\Phi^* \mathcal{F} \otimes O_{D \times S} & \xrightarrow{\Phi^* \iota} & \Phi^* O^d_{D \times S}
\end{array}
\]

14.3. General constructions for shtukas. We have the following constructions for shtukas, which induce morphisms between moduli stacks of shtukas.

Construction A:

(i) Let $\Phi^* \mathcal{G} \xleftarrow{i} \mathcal{F} \xrightarrow{g} \mathcal{H}$ be a left shtuka with zero α and pole β such that $\Gamma_\alpha \cap \Gamma_\beta = \emptyset$. We form the pushout diagram

\[
\begin{array}{ccc}
\mathcal{G} & \xrightarrow{g} & \mathcal{H} \\
i & \nearrow & j \\
\mathcal{F} & \xrightarrow{j} & \Phi^* \mathcal{G}
\end{array}
\]

Then $\Phi^* \mathcal{G} \xleftarrow{j} \mathcal{H} \xrightarrow{\iota} \mathcal{G}$ is a right shtuka of the same rank, with the same zero and pole.

(ii) Let $\Phi^* \mathcal{G} \xleftarrow{f} \mathcal{F} \xrightarrow{g} \mathcal{H}$ be a right shtuka with zero α and pole β such that $\Gamma_\alpha \cap \Gamma_\beta = \emptyset$. We form the pullback diagram

\[
\begin{array}{ccc}
\mathcal{G} & \xrightarrow{g} & \mathcal{F} \\
i & \nearrow & f \\
\mathcal{H} & \xrightarrow{j} & \Phi^* \mathcal{G}
\end{array}
\]

Then $\Phi^* \mathcal{G} \xleftarrow{j} \mathcal{H} \xrightarrow{i} \mathcal{G}$ is a left shtuka of the same rank, with the same zero and pole.

Construction B:
(i) For a left shtuka $\Phi^* G \leftarrow F \rightarrow \mathcal{F}$ with zero α and pole β, we can construct a right shtuka $\Phi^* F \leftarrow \Phi^* F \rightarrow G$ of the same rank, with zero $\text{Fr}_X \circ \alpha$ and pole β.

(ii) For a right shtuka $\Phi^* F \leftarrow F \rightarrow \mathcal{G}$ with zero α and pole β, we can construct a left shtuka $\Phi^* G \leftarrow \Phi^* G \rightarrow \mathcal{F}$ of the same rank, with zero α and pole $\text{Fr}_X \circ \beta$.

Construction C: For a shtuka \mathcal{F} with zero α and pole β satisfying $\Gamma_\alpha \cap \Gamma_\beta = \emptyset$, its dual \mathcal{F}^\vee is a shtuka of the same rank, with zero β and pole α.

Construction D: Let \mathcal{F} be a shtuka over S. Let \mathcal{L} be an invertible sheaf on X, and let \mathcal{L}' be the pullback of \mathcal{L} under the projection $X \times S \rightarrow X$. Then $\mathcal{F} \otimes \mathcal{L}'$ is a shtuka of the same rank, with the same zero and pole.

Construction D’: Suppose in Construction D the shtuka \mathcal{F} is equipped with a structure of level D and the invertible sheaf \mathcal{L} is trivialized at D. Then the shtuka $\mathcal{F} \otimes \mathcal{L}'$ is naturally equipped with a structure of level D.

Construction E: Let \mathcal{F} be a shtuka of rank d equipped with a structure of level D. Suppose we are given an \mathcal{O}_D-submodule $\mathcal{R} \subset \mathcal{O}_D^d$. Let \mathcal{F}' be the kernel of the composition $\mathcal{F} \rightarrow \mathcal{F} \otimes_{\mathcal{O}_X \times S} \mathcal{O}_{D \times S} \rightarrow \mathcal{O}_{D \times S}^d / (\mathcal{R} \otimes \mathcal{O}_S)$. Then \mathcal{F}' is a shtuka of the same rank, with the same zero and pole.

Construction E’: Suppose in Construction E we are given a surjective morphism of \mathcal{O}_D-modules $\mathcal{R} \rightarrow \mathcal{O}_D^{d'}$, where D' is a subscheme of D. Then the composition $\mathcal{F}' \rightarrow \mathcal{R} \otimes \mathcal{O}_S \rightarrow \mathcal{O}^d_{D' \times S}$ defines a structure of level D' on \mathcal{F}'.

14.4. Group action. Let Sh^d_{all} be the moduli scheme of shtukas equipped with structures of all levels compatible with each other. We have a left action of $GL_d(\mathbb{A})$ on Sh^d_{all} as shown in Section 3 of [5]. In particular, we have the following statement.

Lemma 14.4.1. The action of $g \in GL_d(\mathbb{A})$ increases the Euler characteristic of a shtuka by $\deg g$. □

14.5. Partial Frobenius.

Definition 14.5.1. Let F_1 be the construction of first applying A(ii) and then applying B(i). Let F_2 be the construction of first applying B(ii) and then applying A(i). They are called partial Frobenius.

Proposition 14.5.2. For a shtuka \mathcal{F} over S with zero and pole satisfying condition (+), we have natural isomorphisms $F_1 F_2 \mathcal{F} \cong F_2 F_1 \mathcal{F} \cong \text{Fr}_S^* \mathcal{F}$. □

Remark 14.5.3. If a shtuka \mathcal{F} over S has zero α and pole β, then $F_1 \mathcal{F}$ has zero $\alpha \circ \text{Fr}_S = \text{Fr}_X \circ \alpha$ and pole β, and $F_2 \mathcal{F}$ has zero α and pole $\beta \circ \text{Fr}_S = \text{Fr}_X \circ \beta$.

15. Reducible shtukas over a field

In this section, we recollect the results in Section 2 of [4].
We use the notation and conventions of Section 14.1.

Fix a field E over \mathbb{F}_q. Denote $\Phi = \text{Id}_X \otimes \text{Fr}_E : X \otimes E \to X \otimes E$.

15.1. Definitions.

Definition 15.1.1. A shtuka \mathcal{F} over $\text{Spec} E$ of rank d with zero α and pole β is said to be **reducible** if \mathcal{F} contains a nonzero subsheaf \mathcal{E} of rank $< d$ such that the image of $\Phi^* \mathcal{E}$ in $\mathcal{F}(\beta)$ is contained in $\mathcal{E}(\beta)$.

Remark 15.1.2. Let the notation be the same as in Definition 15.1.1. Let G be the saturation of E in F. We have an exact sequence of locally free sheaves on $X \otimes E$

$$0 \to G \to F \to H \to 0.$$

Assume $\alpha \neq \beta$. Then one (and only one) of the following two possibilities holds.

1. G is a shtuka with zero α and pole β, and the morphism $\Phi^* G \to G(\beta)$ induces an isomorphism $\Phi^* H \cong H$.
2. H is a shtuka with zero α and pole β, and the morphism $\Phi^* F \to F(\beta)$ induces an isomorphism $\Phi^* G \cong G$.

15.2. Maximal trivial sub and maximal trivial quotient. The following three statements are proved in Section 2.2 of [4].

Lemma 15.2.1. Let $\alpha, \beta : \text{Spec} E \to X$ be two morphisms. If an effective divisor D of $X \otimes E$ satisfies $
\Phi^* D + \alpha = D + \beta$, then $\beta = \text{Fr}_X^n \circ \alpha$ for some $n \geq 0$.

Proposition 15.2.2. Let \mathcal{G} be a shtuka over $\text{Spec} E$ with zero α and pole β. Assume that there exists a subsheaf $\mathcal{E} \subset \mathcal{G}$ satisfying

(i) rank $\mathcal{E} = \text{rank} \mathcal{G}$;

(ii) the image of $\Phi^* \mathcal{E}$ in $\mathcal{G}(\beta)$ is contained in \mathcal{E}.

Then $\beta = \text{Fr}_X^n \circ \alpha$ for some $n \geq 0$.

Proposition 15.2.3. Let \mathcal{F} be a shtuka over $\text{Spec} E$ with zero α and pole β satisfying condition (+). Let S_1 (resp. S_2) be the poset of all subsheaves $\mathcal{E} \subset \mathcal{F}$ satisfying the following condition (1) (resp. (2)).

1. The image of $\Phi^* \mathcal{E}$ in $\mathcal{F}(\beta)$ is contained in $\mathcal{E}(\beta)$, the sheaf \mathcal{F}/\mathcal{E} is locally free, and the morphism $\Phi^*(\mathcal{F}/\mathcal{E}) \to (\mathcal{F}/\mathcal{E})(\beta)$ induces an isomorphism $\Phi^*(\mathcal{F}/\mathcal{E}) \cong (\mathcal{F}/\mathcal{E})$.

2. The image of $\Phi^* \mathcal{E}$ in $\mathcal{F}(\beta)$ is \mathcal{E}.

Then the poset S_1 has a least element, denoted by \mathcal{F}^I. The poset S_2 has a greatest element, denoted by \mathcal{F}^H, and $\mathcal{F}/\mathcal{F}^H$ is locally free.

Remark 15.2.4. Suppose \mathcal{F} is a right shtuka over $\text{Spec} E$ with zero and pole satisfying condition (+). Then \mathcal{F} is irreducible if and only if $\mathcal{F}^I = \mathcal{F}$ and $\mathcal{F}^H = 0$.
Corollary 15.2.5. Let $\mathcal{F}, \mathcal{F}^1, \mathcal{F}^\Pi$ be as in Proposition 15.2.3. Let \mathcal{M} be an invertible sheaf on X and let \mathcal{G} be the shtuka $\mathcal{F} \otimes (\mathcal{M} \otimes E)$ obtained by Construction E in Section 14.3. Then $\mathcal{G}^1 = \mathcal{F}^1 \otimes (\mathcal{M} \otimes E)$ and $\mathcal{G}^\Pi = \mathcal{F}^\Pi \otimes (\mathcal{M} \otimes E)$. □

16. Relation between shtukas and toy shtukas

We use the notation and conventions of Section 14.1.

Let S be a scheme over \mathbb{F}_q. For an $\mathcal{O}_{X \times S}$-module \mathcal{F} and a point $s \in S$, we denote \mathcal{F}_s to be the pullback of \mathcal{F} to $X \times s$. Put $\Phi = \text{Id}_X \times \text{Fr}_s : X \times S \to X \times S$. Let $\pi : X \times S \to S$ be the projection.

16.1. Right shtukas. Let $\Phi^* \mathcal{F} \hookrightarrow \mathcal{F}' \hookrightarrow \mathcal{F}$ be a right shtuka of rank d over S equipped with a structure of level D. Suppose that D viewed as an effective divisor is represented as $D'' - D'$ so that for every point $s \in S$ one has

\begin{align}
H^0(X \times s, \mathcal{F}'_s(D' \times s)) &= 0, \\
H^1(X \times s, \mathcal{F}'_s(D'' \times s)) &= 0.
\end{align}

Let $V = H^0(X, (\mathcal{O}_X(D''))/\mathcal{O}_X(D'))$, $\mathcal{L} = \pi_* \mathcal{F}(D'' \times S)$, $\mathcal{L}' = \pi_* \mathcal{F}'(D'' \times S)$.

Proposition 16.1.1. The pair $\mathcal{L}, \mathcal{L}'$ forms a right toy shtuka for V over S.

Proof. Consider the composition

$$
\mathcal{F} \longrightarrow \mathcal{F} \otimes \mathcal{O}_{D \times S} \longrightarrow \mathcal{O}^d_{D \times S}
$$

where the second morphism is the isomorphism from the structure of level D. Tensoring with $\mathcal{O}_{X \times S}(D'' \times S)$, we get a composition

$$
\mathcal{F}(D'' \times S) \longrightarrow \mathcal{F}(D'' \times S)/\mathcal{F}(D' \times S) \longrightarrow (\mathcal{O}_{X \times S}(D'' \times S)/\mathcal{O}_{X \times S}(D' \times S))^d.
$$

This induces a morphism $\mathcal{L} \to V \otimes \mathcal{O}_S$.

Similarly one gets a morphism $\mathcal{L}' \to V \otimes \mathcal{O}_S$.

Consider the exact sequence

$$
0 \longrightarrow \mathcal{F}'(D' \times S) \longrightarrow \mathcal{F}')(D'' \times S) \longrightarrow \mathcal{F}'(D'' \times S)/\mathcal{F}'(D' \times S) \longrightarrow 0.
$$

Assumption (16.1) and base change for cohomology imply that $\pi_* \mathcal{F}'(D' \times S) = 0$. Hence the morphism $\mathcal{L}' \to V \otimes \mathcal{O}_S$ is injective.

Since \mathcal{F}'/\mathcal{F} is torsion, assumption (16.2) implies $H^1(X \times s, \mathcal{F}'_s(D'' \times s)) = 0$ for every point $s \in S$. From base change for cohomology we get $R^1\pi_* \mathcal{F}'(D'' \times S) = 0$. So $(V \otimes \mathcal{O}_S)/\mathcal{L}' = R^1\pi_* \mathcal{F}'(D' \times S)$. For any point $s \in S$, we have $H^0(X \times s, \mathcal{F}'_s(D' \times s)) = 0$ by assumption (16.1), so in particular the base change morphism $k(s) \otimes \pi_* \mathcal{F}'(D' \times s) \to H^0(X \times s, \mathcal{F}'_s(D' \times s))$ is surjective. By Theorem 12.11(b) of Chapter 3 of [8], $(V \otimes \mathcal{O}_S)/\mathcal{L}' = R^1\pi_* \mathcal{F}'(D' \times S)$ is locally free.

A similar argument shows that $(V \otimes \mathcal{O}_S)/\mathcal{L}$ is locally free.
Since $\mathcal{F} \subset \mathcal{F}'$, we have $\mathcal{L} \subset \mathcal{L}'$. Since $\Phi^* \mathcal{F} \subset \mathcal{F}'$, we have $\text{Fr}^*_S \mathcal{L} \subset \mathcal{L}'$.

Assumption (16.2) and base change for cohomology imply that $R^1 \pi_* (\mathcal{F}/(D'' \times S))$. Since $\Gamma_{\beta} \cap D'' \times S = \emptyset$, we have an isomorphism $\mathcal{L}/\mathcal{L}' \sim \mathcal{L}/\mathcal{L}'$.

Similarly, $\mathcal{L}'/\text{Fr}^*_S \mathcal{L}$ is also invertible.

16.2. Left shtukas. Let $\Phi^* \mathcal{F} \leftrightarrow \mathcal{F}' \leftrightarrow \mathcal{F}$ be a left shtuka of rank d over S equipped with a structure of level D. Suppose that D viewed as an effective divisor is represented as $D'' - D'$ so that for every point $s \in S$ one has

\begin{align*}
H^0(X \times s, \mathcal{F}_s(D' \times s)) &= 0, \\
H^1(X \times s, \mathcal{F}'_s(D'' \times s)) &= 0.
\end{align*}

Let $V = H^0(X, (\mathcal{O}_X(D''/\mathcal{O}_X(D')^d))$, $\mathcal{L} = \pi_* \mathcal{F}(D'' \times S)$, $\mathcal{L}' = \pi_* \mathcal{F}'(D'' \times S)$.

Similarly to the case of a right shtuka, one can prove the following statement.

Proposition 16.2.1. The pair $\mathcal{L}, \mathcal{L}'$ forms a left toy shtuka for V over S.

16.3. Shtukas. Let \mathcal{F} be a shtuka of rank d over S equipped with a structure of level D. Suppose that D viewed as an effective divisor is represented as $D'' - D'$ so that for every point $s \in S$ one has

\begin{align*}
H^0(X \times s, \mathcal{F}_s(D' \times s)) &= 0, \\
H^1(X \times s, \mathcal{F}'_s(D'' \times s)) &= 0.
\end{align*}

Let $V = H^0(X, (\mathcal{O}_X(D''/\mathcal{O}_X(D')^d))$, $\mathcal{L} = \pi_* \mathcal{F}(D'' \times S)$.

Similarly to the case of a right shtuka, one can prove the following statement.

Proposition 16.3.1. \mathcal{L} forms a toy shtuka for V over S.

17. The morphism from the moduli scheme of shtukas with structures of all levels to the moduli scheme of Tate toy shtukas

We use the notation and conventions of Section 14.1.

Fix a field E over \mathbb{F}_q and two morphisms $\alpha, \beta : \text{Spec} E \to X$ satisfying condition [H]. Let d be a positive integer.

Let $\text{Sh}_{E, \text{all}}^d$ denote the moduli scheme of shtukas over $\text{Spec} E$ with zero α and pole β equipped with structures of all levels compatible with each other. Let $\text{Sh}_{E, \text{all}}^{d, \chi}$ be the components of $\text{Sh}_{E, \text{all}}^d$ on which the shtuka \mathcal{F} has Euler characteristic χ.
For any integer χ, let $n_\chi \in \text{Dim}_{A^d}$ be such that $n_\chi(O^d) = \chi$.

For a divisor D of X, we denote O_D to be the c-lattice

$$\lim_{D'} H^0(X, \mathcal{O}_X(D)/\mathcal{O}_X(D'))$$

of A, where D' runs through all divisors of X such that $D' \leq D$. In other words, O_D consists of those adeles with poles bounded by D. For two divisors D', D'' of X such that $D' \leq D''$, we have

$$O_{D''}/O_{D'} = H^0(X, \mathcal{O}_X(D'')/\mathcal{O}_X(D')).$$

We have an isomorphism

$$\lim_{D''} \lim_{D' \leq D''} O_{D''}/O_{D'} \sim A.$$

17.1. Construction of the morphism θ. We first construct the morphism from $\text{Sht}_{E,all}^{d, \chi}$ to $\text{ToySht}_{A^d}^{n_\chi}$. Let S be a scheme over $\text{Spec} E$ and let $\mathcal{F} \in \text{Sht}_{E,all}^{d, \chi}(S)$. Let $\pi : X \times S \to S$ be the projection.

Let $S^{D', D''}$ be the open subscheme of S such that all $s \in S^{D', D''}$ satisfy conditions (16.5) and (16.6). Proposition 16.3.1 shows that $\pi_* \mathcal{F}(D'')$ is a toy shtuka over S for $O_{D''}^{D'}/O_{D'}^{D'}$. Moreover, conditions (16.5) and (16.6) imply that $\pi_* \mathcal{F}(D'')$ has rank $\chi + d \cdot \text{deg} D''$.

For divisors \tilde{D}', \tilde{D}'' such that $\tilde{D}' \leq D' \leq D'' \leq \tilde{D}'$, we have $S^{D', D''} \subset S^{\tilde{D}', \tilde{D}''}$, and the composition

$$S^{\tilde{D}', \tilde{D}''} \to \text{ToySht}_{O_{D'}^{D'}/O_{D}^{D''}}^{\chi + d \cdot \text{deg} D''} \to \text{ToySht}_{O_{D''}^{D''}/O_{D'}^{D'}}^{\chi + d \cdot \text{deg} D''}$$

when restricted to $S^{D', D''}$ coincides with the morphism $S^{D', D''} \to \text{ToySht}_{O_{D''}^{D''}/O_{D'}^{D'}}^{\chi + d \cdot \text{deg} D''}$.

For each $s \in S$, there exists a pair of divisors $D' \leq D''$ such that $s \in S^{D', D''}$. Passing to the double limit, we see that

$$\mathcal{L} = \lim_{D''} \pi_* \mathcal{F}(D'')$$

is a Tate toy shtuka over S of dimension n_χ for A^d.

Proposition 17.1.1. For each $\chi \in \mathbb{Z}$, the above construction induces a morphism

$$\theta_{E}^{d, \chi} : \text{Sht}_{E,all}^{d, \chi} \to \text{ToySht}_{A^d}^{n_\chi}.$$

Proof. The above construction induces a morphism $\text{Sht}_{E,all}^{d, \chi} \to \text{ToySht}_{A^d}^{n_\chi}$. Let $\mathcal{M} = \text{Sht}_{E,all}^{d}$. Let \mathcal{F} be the universal right shtuka over \mathcal{M}. Denote $\Phi = \text{Id}_X \times \text{Fr}_\mathcal{M} : X \times \mathcal{M} \to X \times \mathcal{M}$.

For any point $s \in \mathcal{M}$, there exists a divisor $D'' \subset X$ such that $\mathcal{F}_s(D'' \times s)$ and $\Phi_s \mathcal{F}_s(D'' \times s)$ are generated by their global sections. Since $\alpha \neq \beta$, we have
$\mathcal{F}_s \neq \Phi^* \mathcal{F}_s$. Hence $\pi_{s*} \mathcal{F}_s(D'' \times s) \neq \pi_{s*} \Phi^* \mathcal{F}_s(D'' \times s) = Fr^*_s \pi_{s*} \mathcal{F}_s(D'' \times s)$. This shows that the image of s in $\text{ToySh}_\mathbb{A}^{n_\mathbb{A}}$ is contained in $\circ \text{ToySh}_\mathbb{A}^{n_\mathbb{A}}$. □

17.2. $GL_d(\mathbb{A})$-equivariance of the morphism θ. For $g \in GL_d(\mathbb{A})$, $L \in \text{Grass}_{\mathbb{A}^d}(R)$, where R is an \mathbb{F}_q-algebra, we define $g \cdot L$ to be the image of $L \hookrightarrow \mathbb{A}^d \otimes \mathbb{F}_q \stackrel{g \otimes 1}{\longrightarrow} \mathbb{A}^d \otimes R$. In this way we get a (left) action of $GL_d(\mathbb{A})$ on $\text{Grass}_{\mathbb{A}^d}$. We see that this action preserves $\circ \text{ToySh}_{\mathbb{A}^d}$.

Proposition 17.2.1. The morphism $\theta^d_E : \text{Sht}_{E, \text{all}}^d \rightarrow \circ \text{ToySh}_{\mathbb{A}^d}$ is $GL_d(\mathbb{A})$-equivariant.

Proof. Let S be a scheme over E. Let $\mathcal{F} \in \text{Sht}_{E, \text{all}}^d(S)$.

For any $g \in GL_d(\mathbb{A})$, the definition of the action of g in Section 3 of [5] implies that the following diagram commutes.

\[
\begin{array}{ccc}
\pi_*(\lim_{D''} \lim_{D' \leq D''} (g^* \mathcal{F})(D'' \times S)/(g^* \mathcal{F})(D' \times S)) & \longrightarrow & \pi_*(\lim_{D''} \lim_{D' \leq D''} \mathcal{F}(D'' \times S)/\mathcal{F}(D' \times S)) \\
\downarrow \sim & & \downarrow \sim \\
\pi_*(\lim_{D''} \lim_{D' \leq D''} (\mathcal{O}_{X \times S}(D'' \times S)/\mathcal{O}_{X \times S}(D' \times S))^d) & \longrightarrow & \pi_*(\lim_{D''} \lim_{D' \leq D''} (\mathcal{O}_{X \times S}(D'' \times S)/\mathcal{O}_{X \times S}(D' \times S))^d) \\
\downarrow & & \downarrow = \\
\mathbb{A}^d \otimes R & \longrightarrow & \mathbb{A}^d \otimes R
\end{array}
\]

The natural morphism

\[
\lim_{D''} (g^* \mathcal{F})(D'' \times S) \to \lim_{D''} \mathcal{F}(D'' \times S)
\]

induces an isomorphism

\[
\lim_{D''} \pi_*((g^* \mathcal{F})(D'' \times S)) \sim \lim_{D''} \pi_*(\mathcal{F}(D'' \times S))
\]

The statement follows. □

18. Review of horospherical divisors

The goal of Sections 18 and 19 is to prove Theorem 19.3.4, which relates horospherical divisors on the moduli scheme of shtukas with Tate toy horospherical divisors on the moduli scheme of Tate toy shtukas, and reduces algebraic geometry to representation theory.

We use the notation and conventions of Section 14.1.

Let η denote the generic point of $X \times X$. Let $\alpha, \beta : \eta \to X$ be the first and second projection. In this section, all shtukas will have zero α and pole β.

For a finite subscheme $D \subset X$, let $\text{Sht}_{\eta, D}^d$ denote the moduli stack which to each scheme S over η associates the groupoid of shtukas over S with zero α and pole β equipped with a structure of level D.
Let $\text{Sht}^d_{\eta, \text{all}}$ denote the moduli scheme which to each scheme S over η associates the set of isomorphism classes of shtukas over S with zero α and pole β equipped with structures of all levels compatible with each other.

For $\chi \in \mathbb{Z}$, we denote n_χ to be the element of Dim_A^d such that $n_\chi(O^d) = \chi$.

Let $\text{Vect}^d_{X,D}$ (resp. $\text{Vect}^d_{X,\text{all}}$) denote the set of isomorphism classes of locally free sheaves of rank d on X equipped with a structure of level D (resp. equipped with structures of all levels compatible with each other).

18.1. Trivial shtukas.

Definition 18.1.1. For $d \geq 1$ and an effective divisor $D \subset X$, let $\text{TrSh}_{d,D}$ denote the moduli stack which to each scheme S over \mathbb{F}_q associates the groupoid of locally free sheaves \mathcal{M} on $X \times S$ equipped with the following data:

(i) a structure of level D, i.e., an isomorphism $\gamma : \mathcal{M} \otimes \mathcal{O}^d_{D \times S} \sim \mathcal{O}^d_{D \times S};$

(ii) an isomorphisms $\Phi'_S : \mathcal{M} \sim \mathcal{M}$ such that the diagram

\[
\begin{array}{ccc}
\mathcal{M} \otimes \mathcal{O}^d_{D \times S} & \xrightarrow{\gamma} & \mathcal{O}^d_{D \times S} \\
\sim & & \sim \\
\Phi'_S : \mathcal{M} \otimes \mathcal{O}^d_{D \times S} & \xrightarrow{\gamma} & \Phi'_S \mathcal{O}^d_{D \times S}
\end{array}
\]

commutes.

An element of $\text{TrSh}_{d,D}(S)$ is called a **trivial shtuka** over S equipped with a structure of level D.

For $\mathcal{E} \in \text{Vect}^d_{X,D}$, let $\text{TrSh}_{\mathcal{E},D}$ denote the quotient stack $[\text{Spec} \mathbb{F}_q/ \text{Aut} \mathcal{E}]$.

The following statement is Theorem 2 of Section 3 of Chapter I of [13].

Proposition 18.1.2. The stack TrSh^d_{D} is a disjoint union

$$\text{TrSh}^d_{D} = \coprod_{\mathcal{E} \in \text{Vect}^d_{D}} \text{TrSh}_{\mathcal{E},D}.$$

Proposition 18.1.3. Let S be a projective scheme over \mathbb{F}_q. Let E be an separably closed field over \mathbb{F}_q. Then the functor $\mathcal{F} \mapsto \mathcal{F} \otimes E$ is an equivalence between the category of coherent sheaves \mathcal{F} on S and the category of coherent sheaves \mathcal{M} on $S \otimes E$ equipped with an isomorphism $\left(\text{Id}_S \otimes \text{Fr}_E\right)^* \mathcal{M} \sim \mathcal{M}$.

Remark 18.1.4. When E is algebraically closed, the above statement is Proposition 1.1 of [5]. The same proof applies when E is separably closed.

Corollary 18.1.5. If E is separably closed and $\mathcal{E} \in \text{Vect}^d_{X,D}$, for any $\mathcal{M} \in \text{TrSh}_{\mathcal{E},D}(E)$, we can find an isomorphism $\mathcal{M} \sim \mathcal{E} \otimes E$ compatible with the structure of level D.

Lemma 18.1.6. Let E be a field over \mathbb{F}_q. Let \mathcal{F} be a shtuka over $\text{Spec} \, E$ with zero α and pole β satisfying condition (3). Let \mathcal{G} be a subshtuka of \mathcal{F} of the same rank with the same zero and pole. Then $\Phi^*_E \mathcal{G} \subset \mathcal{F}$ and $\mathcal{G} \not\subset \Phi^*_E \mathcal{F}$.

Proof. We apply d-th exterior power to all sheaves involved to reduce the problem to the case $d = 1$.

Suppose $\Phi^*_E \mathcal{G} \subset \mathcal{F}$. Then we have $\mathcal{F} = \mathcal{G}(\beta + W)$ for some effective divisor W of $X \otimes E$. From the isomorphisms $\Phi^*_E \mathcal{G} \cong \mathcal{G}(\beta - \alpha)$ and $\Phi^*_E \mathcal{F} \cong \mathcal{F}(\beta - \alpha)$ we deduce that $\beta - \alpha + \text{Fr}_X \circ \beta + \Phi^*W = \beta + W + \beta - \alpha$. Hence $\beta + W = \text{Fr}_X \circ \beta + \Phi^*W$. Applying Lemma 15.2.1 to the two morphisms $\beta, \text{Fr}_X \circ \beta : \text{Spec} \, E \to X$, we see that $\beta = \text{Fr}_X^i \circ \beta$ for some $i \geq 1$, a contradiction to condition (3).

The proof of the second statement is similar. \square

Lemma 18.1.7. Let E be an algebraically closed field. Let \mathcal{F} be a shtuka of rank d over $\text{Spec} \, E$ with zero and pole satisfying condition (3). Let \mathcal{G} be a subshtuka of \mathcal{F} of the same rank with the same zero and pole. Then \mathcal{F}/\mathcal{G} is supported on $D \otimes E$ for some finite subscheme $D \subset X$. Moreover, for any structure of level D on \mathcal{F}, \mathcal{G} is obtained from \mathcal{F} by applying Construction E in Section 14.3 with respect to that level structure and an \mathcal{O}_D-submodule $\mathcal{R} \subset \mathcal{O}^d_D$.

Proof. Let $\mathcal{F}' = \Phi^*_E \mathcal{F} \cap \mathcal{F}, \mathcal{G}' = \Phi^*_E \mathcal{G} + \mathcal{G}$. Lemma 18.1.6 shows that $\mathcal{F} \cap \mathcal{G}' = \mathcal{G}$ and $\Phi^*_E \mathcal{F} \cap \mathcal{G}' = \Phi^*_E \mathcal{G}$. Thus the morphisms $\mathcal{F}/\mathcal{G} \to \mathcal{F}'/\mathcal{G}'$ and $\Phi^*_E(\mathcal{F}/\mathcal{G}) \to \mathcal{F}'/\mathcal{G}'$ are injective. The sheaves $\mathcal{F}/\mathcal{G}, \mathcal{F}'/\mathcal{G}'$, $\Phi^*_E(\mathcal{F}/\mathcal{G})$ are torsion sheaves on $X \otimes E$, and we have $h^0(\mathcal{F}/\mathcal{G}) = h^0(\mathcal{F}'/\mathcal{G}') = h^0(\Phi^*_E(\mathcal{F}/\mathcal{G}))$. Hence the morphisms $\mathcal{F}/\mathcal{G} \to \mathcal{F}'/\mathcal{G}'$ and $\Phi^*_E(\mathcal{F}/\mathcal{G}) \to \mathcal{F}'/\mathcal{G}'$ are isomorphisms. So we have $\Phi^*_E(\mathcal{F}/\mathcal{G}) \cong \mathcal{F}/\mathcal{G}$. Proposition 18.1.3 gives an isomorphism $\mathcal{F}/\mathcal{G} \cong \mathcal{M} \otimes E$ for some coherent sheaf \mathcal{M} on X. Since \mathcal{F} and \mathcal{G} have the same rank, \mathcal{M} is supported on a finite subscheme $D \subset X$.

Equip \mathcal{F} with a structure of level D. Let $\mathcal{P} = \mathcal{G}/\mathcal{F}(\text{Fr}_X \otimes E) \subset \mathcal{F}/\mathcal{F}(\text{Fr}_X \otimes E) \cong \mathcal{O}^d_{D \otimes E}$. Since $\mathcal{F}(\text{Fr}_X \otimes E)$ is a subshtuka of \mathcal{G}, we get an isomorphism $\Phi^*_E \mathcal{P} \cong \mathcal{P}$ which is compatible with the natural isomorphism $\Phi^*_E \mathcal{O}^d_{D \otimes E} \cong \mathcal{O}^d_{D \otimes E}$. Proposition 18.1.3 gives an isomorphism $\mathcal{P} \cong \mathcal{R} \otimes E$ for some \mathcal{O}_D-submodule $\mathcal{R} \subset \mathcal{O}^d_D$. We see that \mathcal{G} is obtained from \mathcal{F} by applying Construction E with respect to \mathcal{R}. \square

18.2. Definition of horospherical cycles. For $\mathcal{E} \in \mathfrak{Vect}^i_{X,D}$, denote $\text{TrSht}_{\eta,\mathcal{E},D}$ to be the base change of $\text{TrSht}_{\eta,\mathcal{E},D}$ from $\text{Spec} \, \mathbb{F}_q$ to η.

Definition 18.2.1. Given $d \geq 2$, $1 \leq i \leq d - 1$ and $\mathcal{E} \in \mathfrak{Vect}^i_{X,D}$, we denote $\text{RedSh}_{\eta,\mathcal{E},D}^{d,1}$ to be the moduli stack which to each scheme S over η associates the
groupoid of exact sequences

\[0 \rightarrow \mathcal{A} \rightarrow \mathcal{F} \rightarrow \mathcal{B} \rightarrow 0, \]

where

(i) \(\mathcal{A} \in \text{Sht}_{\eta,D}^{d-i}(S), \mathcal{F} \in \text{Sht}_{\eta,D}^{d,\chi=0}(S), \mathcal{B} \in \text{TrSht}_{\eta,\mathcal{E},D}(S); \)
(ii) the morphisms \(\mathcal{A} \rightarrow \mathcal{F} \) and \(\mathcal{F} \rightarrow \mathcal{B} \) are morphisms of shtukas with structures of level \(D; \)
(iii) the structures of level \(D \) give the following commutative diagram

\[0 \rightarrow \mathcal{A} \otimes \mathcal{O}_{D \times S} \rightarrow \mathcal{F} \otimes \mathcal{O}_{D \times S} \rightarrow \mathcal{B} \otimes \mathcal{O}_{D \times S} \rightarrow 0 \]

\[0 \rightarrow \mathcal{O}_{D \times S}^{d-i} \rightarrow \mathcal{O}_{D \times S}^{d} = \mathcal{O}_{D \times S}^{d-i} \oplus \mathcal{O}_{D \times S}^{i} \rightarrow \mathcal{O}_{D \times S}^{i} \rightarrow 0 \]

where the lower exact sequence is the standard one.

Definition 18.2.3. Given \(d \geq 2, 1 \leq i \leq d-1 \), and \(\mathcal{E} \in \text{Vect}_{X,D}^{i}, \) we define

\[\text{RedSht}_{\eta,\mathcal{E},D}^{d,i,I} := \lim_{\leftarrow D} \text{RedSht}_{\eta,\mathcal{E},D}^{d,i,I}, \]

\[\text{RedSht}_{\eta,\mathcal{E},D}^{d,i,II} := \lim_{\leftarrow D} \text{RedSht}_{\eta,\mathcal{E},D}^{d,i,II}, \]

where \(D \) runs through all finite subschemes of \(X. \)

Definition 18.2.4. Given \(d \geq 2, i,j \geq 1, i+j \leq d \) and \(\mathcal{A} \in \text{Vect}_{X,D}^{i}, \mathcal{B} \in \text{Vect}_{X,D}^{j}, \)
we define \(\text{RedSht}_{\eta,\mathcal{E},\mathcal{A},\mathcal{B},D}^{d,i,j,I,II} \) to be the moduli stack which to each scheme \(S \) over \(\eta \) associates the groupoid of the following data:
(i) an exact sequence of shtukas with structures of level D

$$0 \rightarrow \mathcal{A}' \rightarrow \mathcal{F} \rightarrow \mathcal{N} \rightarrow 0,$$

where $\mathcal{A}' \in \text{TrSh}_{\eta,D}(S)$, $\mathcal{F} \in \text{Sh}^{d,x=0}(S)$, $\mathcal{N} \in \text{Sh}_{\eta,D}(S)$, such that the structures of level D induce the standard exact sequence

$$0 \rightarrow \mathcal{O}^i_{D \times S} \rightarrow \mathcal{O}^d_{D \times S} \rightarrow \mathcal{O}^{d-i}_{D \times S} \rightarrow 0.$$

(ii) an exact sequence of shtukas with structures of level D

$$0 \rightarrow \mathcal{M} \rightarrow \mathcal{N} \rightarrow \mathcal{B}' \rightarrow 0,$$

where $\mathcal{M} \in \text{Sh}_{\eta,D}^{d-i-j}(S)$, $\mathcal{B}' \in \text{TrSh}_{\eta,B,D}(S)$, \mathcal{N} is as in (i), such that the structures of level D induce the standard exact sequence

$$0 \rightarrow \mathcal{O}^{d-i-j}_{D \times S} \rightarrow \mathcal{O}^{d-i}_{D \times S} \rightarrow \mathcal{O}^j_{D \times S} \rightarrow 0.$$

The above data (i), (ii) are equivalent to the following data:

(i') an exact sequence of shtukas with structures of level D

$$0 \rightarrow \mathcal{L} \rightarrow \mathcal{F} \rightarrow \mathcal{B}' \rightarrow 0,$$

where $\mathcal{L} \in \text{Sh}_{\eta,D}^{d-j}(S)$, $\mathcal{F} \in \text{Sh}_{\eta,D}^{d,x=0}(S)$, $\mathcal{B}' \in \text{TrSh}_{\eta,B,D}(S)$, such that the structures of level D induce the standard exact sequence

$$0 \rightarrow \mathcal{O}^{d-j}_{D \times S} \rightarrow \mathcal{O}^d_{D \times S} \rightarrow \mathcal{O}^j_{D \times S} \rightarrow 0.$$

(ii') an exact sequence of shtukas with structures of level D

$$0 \rightarrow \mathcal{A}' \rightarrow \mathcal{L} \rightarrow \mathcal{M} \rightarrow 0,$$

where $\mathcal{A}' \in \text{TrSh}_{\eta,D}(S)$, $\mathcal{M} \in \text{Sh}_{\eta,D}^{d-i-j}(S)$, \mathcal{L} is as in (i'), such that the structures of level D induce the standard exact sequence

$$0 \rightarrow \mathcal{O}^j_{D \times S} \rightarrow \mathcal{O}^{d-j}_{D \times S} \rightarrow \mathcal{O}^{d-i-j}_{D \times S} \rightarrow 0.$$

Remark 18.2.5. We have two Cartesian diagrams

(18.1)

$$\begin{array}{ccc}
\text{RedSh}_{\eta,\mathcal{A},\mathcal{B},D}^{d,i,j,1} & \rightarrow & \text{RedSh}_{\eta,\mathcal{A},\mathcal{B},D}^{d-i,j,1} \\
\downarrow & & \downarrow \\
\text{RedSh}_{\eta,\mathcal{A},\mathcal{B},D}^{d,i,j,II} & \rightarrow & \text{Sh}_{\eta,D}^{d-i} \\
\downarrow & & \downarrow \\
\text{RedSh}_{\eta,\mathcal{A},\mathcal{B},D}^{d,i,j,II} & \rightarrow & \text{Sh}_{\eta,D}^{d-j} \\
\end{array}$$

Definition 18.2.6. For $\mathcal{A} \in \text{Vect}^i_{X,\text{all}}$, $\mathcal{B} \in \text{Vect}^j_{X,\text{all}}$, we define

$$\text{RedSh}_{\eta,\mathcal{A},\mathcal{B},\text{all}}^{d,i,j,1} := \lim_{D} \text{RedSh}_{\eta,\mathcal{A},\mathcal{B},D}^{d,i,j,1} \Pi,$$

where D runs through all finite subschemes of X.
18.3. Basic properties of horospherical cycles. The following statement follows from Corollary 6 of Section 3 of Chapter I of [13].

Proposition 18.3.1. Let D be a finite subscheme of X. Then $\text{Sht}_{\eta,D}^d$ is a Deligne-Mumford stack and it is separated over η.

The following statement follows from Theorem 9 of Section 2 of Chapter I of [13].

Proposition 18.3.2. Let D be a finite subscheme of X. The natural morphism $\text{Sht}_{\eta,D}^d \to \eta$ is smooth of pure relative dimension $(2d - 2)$. \Box

The following statement is Proposition 5 of Section 3 of Chapter I of [13].

Proposition 18.3.3. For two finite subschemes $D_1 \subset D_2 \subset X$, the natural morphism $\text{Sht}_{\eta,D_2}^d \to \text{Sht}_{\eta,D_1}^d$ is representable, finite, étale and Galois.

The following statement is a consequence of Proposition 2.16(a) of [16].

Proposition 18.3.4. For every finite subscheme $D_1 \subset X$ and every quasi-compact open substack $U \subset \text{Sht}_{\eta,D_1}^d$, there exists an integer N such that $U \times_{\text{Sht}_{\eta,D_1}^d} \text{Sht}_{\eta,D_2}^d$ is a scheme for all finite subschemes $D_2 \subset X$ satisfying $D_2 \geq D_1$ and $\deg D_2 \geq N$.

Propositions [18.3.2] and [18.3.3] imply the following statement.

Proposition 18.3.5. The scheme $\text{Sht}_{\eta,\text{all}}^d$ has pure dimension $(2d - 2)$. \Box

The following statement follows from Corollary 10 of Section 1 of Chapter II of [13].

Proposition 18.3.6. Let D be a finite subscheme of X and let $E \in \text{Vect}_{X,D}^i$. Then $\text{RedSht}_{\eta,E,D}^{d,i,1}$ (resp. $\text{RedSht}_{\eta,E,D}^{d,i,II}$) is a Deligne-Mumford stack and it is separated and locally of finite type over η.

The following statement follows from Theorem 5 of Section 1 of Chapter II of [13].

Proposition 18.3.7. Let D be a finite subscheme of X and let $E \in \text{Vect}_{X,D}^i$. Then the natural morphism

$$\text{RedSht}_{\eta,E,D}^{d,i,1} \to \text{Sht}_{\eta,D}^d$$

(resp. $\text{RedSht}_{\eta,E,D}^{d,i,II} \to \text{Sht}_{\eta,D}^d$)

is representable, quasi-finite, G-unramified and separated. \Box

The following statement is Theorem 11 of Section 1 of Chapter II of [13].

\[\text{We use the definition from Stack Project. A morphism is unramified (resp. G-unramified) if and only if it is locally of finite type (resp. locally of finite presentation) and formally unramified.}\]
Proposition 18.3.8. Let D be a finite subscheme of X and let $\mathcal{E} \in \mathcal{V}ect^i_{X,D}$. Then the natural morphism

$$\text{RedSh}_{\eta,\mathcal{E},D}^{d,i,1} \to \text{Sh}_{\eta,D}^d \times \text{TrSh}_{\eta,\mathcal{E},D}$$

(resp. $\text{RedSh}_{\eta,\mathcal{E},D}^{d,i,\Pi} \to \text{TrSh}_{\eta,\mathcal{E},D} \times \text{Sh}_{\eta,D}^{d-i}$)

is of finite type and smooth of pure relative dimension i. \hfill \Box

The following statement follows from Propositions 18.3.2 and 18.3.8.

Proposition 18.3.9. Let D be a finite subscheme of X and let $\mathcal{E} \in \mathcal{V}ect^i_{X,D}$. Then the natural morphisms $\text{RedSh}_{\eta,\mathcal{E},D}^{d,i,1} \to \eta$ and $\text{RedSh}_{\eta,\mathcal{E},D}^{d,i,\Pi} \to \eta$ are smooth of pure dimension $(2d - i)$. \hfill \Box

The following statement is Proposition 4 of Section 1 of Chapter II of [13].

Proposition 18.3.10. Let $D_1 \subset D_2$ be two finite subschemes of X. Suppose $\mathcal{E}_2 \in \mathcal{V}ect^i_{X,D_2}$ and let $\mathcal{E}_1 \in \mathcal{V}ect^i_{X,D_1}$ be the image of \mathcal{E}_2 under the natural map $\mathcal{V}ect_{X,D_2} \to \mathcal{V}ect_{X,D_1}$. Then the natural morphism $\text{RedSh}_{\eta,\mathcal{E}_2,D_2}^{d,i,1} \to \text{RedSh}_{\eta,\mathcal{E}_1,D_1}^{d,i,1}$ (resp. $\text{RedSh}_{\eta,\mathcal{E}_2,D_2}^{d,i,\Pi} \to \text{RedSh}_{\eta,\mathcal{E}_1,D_1}^{d,i,\Pi}$) is representable, finite, étale and Galois.

Propositions 18.3.9 and 18.3.10 imply the following statement.

Proposition 18.3.11. For $\mathcal{E} \in \mathcal{V}ect^i_{X,\text{all}}$, the schemes $\text{RedSh}_{\eta,\mathcal{E},\text{all}}^{d,i,1}$ and $\text{RedSh}_{\eta,\mathcal{E},\text{all}}^{d,i,\Pi}$ are reduced and of pure dimension $(2d - i)$. \hfill \Box

Propositions 18.3.7 and 18.3.9 imply the following statement.

Proposition 18.3.12. Let D be a finite subscheme of X and let $\mathcal{E} \in \mathcal{V}ect^i_{X,D}$. Then the closure of the image of the morphism $\text{RedSh}_{\eta,\mathcal{E},D}^{d,i,1} \to \text{Sh}_{\eta,D}^d$ (resp. $\text{RedSh}_{\eta,\mathcal{E},D}^{d,i,\Pi} \to \text{Sh}_{\eta,D}^d$) is reduced and has pure dimension $(2d - i - 2)$. \hfill \Box

Lemma 18.3.13. Let I be a directed set. Let $(X_i)_{i \in I}$, $(Y_i)_{i \in I}$ be two projective systems of schemes with affine surjective transition maps. Let $(X_i \to Y_i)_{i \in I}$ be morphisms compatible with transition maps. Denote Z_i to be the closure of the image of the morphism $X_i \to Y_i$. Then $\varprojlim Z_i$ equals the closure of the image of the morphism $\varprojlim X_i \to \varprojlim Y_i$. \hfill \Box

Proposition 18.3.14. For $\mathcal{E} \in \mathcal{V}ect^i_{X,\text{all}}$, the closure of the image of the morphism $\text{RedSh}_{\eta,\mathcal{E},\text{all}}^{d,i,1} \to \text{Sh}_{\eta,\text{all}}^d$ (resp. $\text{RedSh}_{\eta,\mathcal{E},\text{all}}^{d,i,\Pi} \to \text{Sh}_{\eta,\text{all}}^d$) is reduced and has pure dimension $(2d - i - 2)$. \hfill \Box

Proof. Let \mathcal{Y}_{all} denote the closure of the image of the morphism $\text{RedSh}_{\eta,\mathcal{E},\text{all}}^{d,i,1} \to \text{Sh}_{\eta,\text{all}}^d$. Pick an irreducible component W_{all} of \mathcal{Y}_{all}. For a finite subscheme $D \subset X$, let \mathcal{Y}_D denote the closure of the image of the morphism $\text{RedSh}_{\eta,\mathcal{E},D}^{d,i,1} \to \text{Sh}_{\eta,D}^d$, and let S_D denote the set of irreducible components...
of \mathcal{Y}_D that contain the image of \mathcal{W}_{all}. We see that the transition map $S_{D_2} \to S_{D_1}$ is surjective for any $D_1 \subset D_2$. Since the set of finite subschemes of X is countable, $\varprojlim_D S_D$ is nonempty. Thus we can find an irreducible component $\mathcal{W}_D \subset \mathcal{Y}_D$ for each D such that $\mathcal{W}_{\text{all}} \subset \varprojlim_D \mathcal{W}_D$. Since each \mathcal{W}_D is irreducible, $\varprojlim_D \mathcal{W}_D$ is also irreducible. Proposition [18.3.1] and Lemma [18.3.13] show that $\varprojlim_D \mathcal{Y}_D = \mathcal{Y}_{\text{all}}$. So $\varprojlim_D \mathcal{W}_D$ is an irreducible component of \mathcal{Y}_{all}. Hence we have $\mathcal{W}_{\text{all}} = \varprojlim_D \mathcal{W}_D$.

For two finite subschemes $D_1 \subset D_2 \subset X$, the transition map $\mathcal{W}_{D_2} \to \mathcal{W}_{D_1}$ is finite by Proposition [18.3.3]. Both \mathcal{W}_{D_2} and \mathcal{W}_{D_1} have dimension $(2d-i-2)$ by Proposition [18.3.12]. Thus the transition map $\mathcal{W}_{D_2} \to \mathcal{W}_{D_1}$ is finite and surjective. Then we see that the morphism $\mathcal{W}_{\text{all}} \to \mathcal{W}_\emptyset$ is integral and surjective. Therefore, $\dim \mathcal{W}_{\text{all}} = \dim \mathcal{W}_\emptyset = 2d-i-2$. This shows that \mathcal{Y}_{all} has pure dimension $(2d-i-2)$.

Reducedness of \mathcal{Y}_{all} follows from reducedness of $\text{RedSh}_{\eta,\mathcal{A},all}^{d,i,1}$ by Proposition [18.3.11]. The statement for the morphism $\text{RedSh}_{\eta,\mathcal{A},all}^{d,i,\Pi} \to \text{Sh}_{\eta,\mathcal{A},all}^d$ follows from duality. □

The following statement follows from Cartesian diagrams [18.1] and Propositions [18.3.8] and [18.3.9].

Proposition 18.3.15. For $\mathcal{A} \in \text{Vect}_{X,D}$, $\mathcal{B} \in \text{Vect}_{X,D}$, the morphism $\text{RedSh}_{\eta,\mathcal{A},\mathcal{B},D_2,D}^{d,i,j,1,\Pi,1} \to \eta$ is smooth of pure dimension $(2d-i-j-2)$. □

The following statement follows from Cartesian diagrams [18.1] and Propositions [18.3.3] and [18.3.10].

Proposition 18.3.16. For two finite subschemes $D_1 \subset D_2 \subset X$ and $\mathcal{A} \in \text{Vect}_{X,D}$, $\mathcal{B} \in \text{Vect}_{X,D}$, the natural morphism $\text{RedSh}_{\eta,\mathcal{A},\mathcal{B},D_2,D}^{d,i,j,1,\Pi,1} \to \text{RedSh}_{\eta,\mathcal{A},\mathcal{B},D_1,D}^{d,i,j,1,\Pi,1}$ is representable, finite, étale and Galois.

Propositions [18.3.15] and [18.3.16] imply the following statement.

Proposition 18.3.17. For $\mathcal{A} \in \text{Vect}_{X,\text{all}}$ and $\mathcal{B} \in \text{Vect}_{X,\text{all}}$, the scheme $\text{RedSh}_{\eta,\mathcal{A},\mathcal{B},\text{all}}^{d,i,j,1,\Pi,1}$ has pure dimension $(2d-i-j-2)$. □

18.4. Irreducibility of the scheme of reducible shtukas.

Theorem 18.4.1. Given $d \geq 2$, a finite subscheme $D \subset X$ and $\mathcal{E} \in \text{Vect}_{X,D}^1$, the stacks $\text{RedSh}_{\eta,\mathcal{E},D}^{d,1,1}$ and $\text{RedSh}_{\eta,\mathcal{E},D}^{d,1,\Pi}$ are irreducible.

Theorem 18.4.2. For $d \geq 2$ and $\mathcal{E} \in \text{Vect}_{X,\text{all}}^1$, the schemes $\text{RedSh}_{\eta,\mathcal{E},\text{all}}^{d,1,1}$ and $\text{RedSh}_{\eta,\mathcal{E},\text{all}}^{d,1,\Pi}$ are irreducible.

Proposition 18.4.3. Let $\mathcal{E} \in \text{Vect}_{X,\text{all}}^1$. Denote $\mathcal{Y}_{\text{all}}^d$ (resp. $\mathcal{Y}_{\text{all}}^H$) to be the closure of the image of the morphism $\text{RedSh}_{\eta,\mathcal{E},\text{all}}^{d,1,1} \to \text{Sh}_{\eta,\text{all}}^d$ (resp. $\text{RedSh}_{\eta,\mathcal{E},\text{all}}^{d,1,\Pi} \to \text{Sh}_{\eta,\text{all}}^d$). Then the local ring of $\mathcal{Y}_{\text{all}}^d$ (resp. $\mathcal{Y}_{\text{all}}^H$) in $\text{Sh}_{\eta,\text{all}}^d$ is a discrete valuation ring.
Proof. For a finite subscheme \(D \subset X \), denote \(\mathcal{V}_D^\eta \) to be the closure of the image of the morphism \(\text{RedSh}^{d,1}_\eta,\mathcal{E}_D \to \text{Sht}^d_\eta,\mathcal{D} \). Theorem 18.4.1 implies that \(\mathcal{V}_D^\eta \) is irreducible. Choose a quasi-compact substack \(U_0 \subset \text{Sht}^d_\eta,\emptyset \) such that \(U_0 \cap \mathcal{V}_D^\eta \) is dense in \(\mathcal{V}_\emptyset^\eta \). Denote \(U_D = U_0 \times_{\text{Sht}^d_\eta,\emptyset} \text{Sht}^d_\eta,\mathcal{D} \). Proposition 18.3.10 shows that the morphism \(\mathcal{V}_D^\eta \to \mathcal{V}_\emptyset^\eta \) is dominant. Thus \(U_D \cap \mathcal{V}_D^\eta \) is dense in \(\mathcal{V}_D^\eta \) for all \(D \). By Proposition 18.3.14 there exists an integer \(N \) such that \(U_D \) is a scheme when \(D \geq N \). Let \(A_D \) be the local ring of \(\mathcal{V}_D^\eta \) in \(U_D \) for those \(D \) satisfying \(D \geq N \). Let \(A_{all} \) be the local ring of \(\mathcal{V}_{all}^\eta \) in \(\text{Sht}^d_\eta,\mathcal{D} \). Then Lemma 18.3.13 implies that \(A_{all} = \lim_{\longrightarrow \text{deg} D \geq N} A_D \). For each \(D \), \(\text{Sht}^d_\eta,\mathcal{D} \) is smooth over \(\eta \) by Proposition 18.3.2 and \(\mathcal{V}_\emptyset^\eta \) has codimension 1 in \(\text{Sht}^d_\eta,\mathcal{D} \) by Propositions 18.3.10 and 18.3.12. Hence \(A_D \) is a discrete valuation. For two finite subschemes \(D_1 \subset D_2 \subset X \), the transition map \(U_{D_2} \to U_{D_1} \) is smooth by Proposition 18.3.3. Hence the transition homomorphism \(A_{D_1} \to A_{D_2} \) sends uniformizer to uniformizer. Now Lemma 9.1.5 implies that \(A_{all} \) is a discrete valuation ring.

The statement for \(\mathcal{V}_{all}^\eta \) follows from duality. \(\square \)

18.5. Criteria for a Tate toy horospherical subscheme to contain the image of a horospherical divisor. Fix an integer \(d \geq 2 \). For a shtuka \(\mathcal{G} \) over a perfect field with zero and pole satisfying condition \(\blacksquare \), the notation \(\mathcal{G}^\eta \) and \(\mathcal{G}^{\Pi} \) is defined in Proposition 15.2.3

Definition 18.5.1. Let \(Z_{\eta,1}^{d,\Pi} \) (resp. \(Z_{\eta,1}^{d,\Pi} \)) denote the closure of the image of the morphism \(\text{RedSh}^{d,1}_\eta,\mathcal{E}_{\Pi} \to \text{Sht}^d_\eta,\emptyset \) (resp. \(\text{RedSh}^{d,1,\Pi}_\eta,\emptyset \to \text{Sht}^d_\eta,\emptyset \)), where \(\mathcal{E}_X \in \text{Vect}^{d,1,\Pi} \) is equipped with the standard structures of all levels.

The following statement follows from Theorem 18.4.2 and Proposition 18.3.11

Theorem 18.5.2. \(Z_{\eta,1}^{d,\Pi} \) and \(Z_{\eta,1}^{d,\Pi} \) are reduced and irreducible.

Let \(\xi_{\eta,1}^{d,\Pi} \) (resp. \(\xi_{\eta,1}^{d,\Pi} \)) denote the generic point of \(Z_{\eta,1}^{d,\Pi} \) (resp. \(Z_{\eta,1}^{d,\Pi} \)).

Lemma 18.5.3. Let \(\xi' \) be a geometric generic point of \(Z_{\eta,1}^{d,\Pi} \). Let \(\mathcal{F} \) be the shtuka over \(\xi' \). Then \(\mathcal{F}^{\Pi} = 0 \).

Proof. Denote \(\mathcal{A}' = \mathcal{F}^{\Pi} \) and \(i = \text{rank} \mathcal{A}' \). By Proposition 18.1.3, we can find an isomorphism \(\mathcal{A}' \cong \mathcal{A} \otimes \xi' \otimes \mathcal{Q} \) for some \(\mathcal{A} \in \text{Vect}^{\text{rank} \mathcal{A}} \). Suppose \(\mathcal{A} \neq 0 \).

For a finite subscheme \(D \subset X \), denote \(\mathcal{L}_D \) to be the image of the composition \(\mathcal{A} \otimes \mathcal{O}_D \otimes \xi' \to \mathcal{F} \otimes \mathcal{O}_D \otimes \mathcal{Q} \). We see that there exists an \(\mathcal{O}_D \)-submodule \(\mathcal{L}_D \subset \mathcal{O}_D \) such that \(\mathcal{L}_D = \mathcal{L}_D \otimes \xi' \). Moreover, for two subschemes \(D_1 \subset D_2 \subset X \), we have \(\mathcal{L}_{D_2} = \mathcal{L}_{D_2} \otimes \mathcal{O}_{D_1} \). Thus we can find \(g \in GL_d(\mathcal{O}) \) such that \(g(\mathcal{O}_D \otimes 0) = \mathcal{L}_D \) for all finite subschemes \(D \subset X \). We equip \(\mathcal{A} \) with structures of all levels compatible with each other using the standard structures of all levels on \(\mathcal{O}_X \). Then the image of \(g \cdot \xi' \) is contained in the image of the morphism \(\text{RedSh}^{d,1,\Pi}_\eta,\emptyset \to \text{Sht}^d_\eta,\emptyset \). Proposition 18.3.14 implies that \(i = 1 \) for dimensional reasons.
From the definition of $\text{RedSht}_{d,1,1}^\eta,\delta_X,\text{all}$ we obtain an exact sequence of shtukas

$$0 \longrightarrow \mathcal{I} \longrightarrow \mathcal{F} \longrightarrow \mathcal{B}' \longrightarrow 0$$

where $\mathcal{B}' \in \text{TrSht}_{d,1,1}^\eta,\delta_X,\text{all}(\xi')$, $\mathcal{I} \in \text{Sht}_{d,1}^\eta,\text{all}(\xi')$

From the definition of \mathcal{F}^Π in Proposition [15.2.3] we know that \mathcal{A}' is saturated in \mathcal{F}. If the composition $\mathcal{A}' \rightarrow \mathcal{F} \rightarrow \mathcal{B}'$ is zero, we have an exact sequence of shtukas

$$0 \longrightarrow \mathcal{A}' \longrightarrow \mathcal{I} \longrightarrow \mathcal{M} \longrightarrow 0.$$

Then one can find $h \in GL_d(O)$ such that the image of $h \cdot \xi'$ is contained in the image of the morphism $\text{RedSht}_{d,1,1}^\eta,\delta_X,\text{all} \rightarrow \text{Sht}_{d,1}^\eta,\text{all}$. This is a contradiction to Propositions [18.3.14] and [18.3.17] for dimensional reasons. Thus the composition $\mathcal{A}' \rightarrow \mathcal{F} \rightarrow \mathcal{B}'$ is nonzero, and it is injective since rank $\mathcal{A}' = 1$. Therefore, the morphism $\mathcal{A}' \oplus \mathcal{I} \rightarrow \mathcal{F}$ is injective.

Lemma [18.1.7] implies that $\mathcal{A}' \oplus \mathcal{I}$ is obtained from \mathcal{F} by Construction E. Hence there exists $w \in GL_d(\mathbb{A})$ such that the image of $w \cdot \xi'$ is contained in the image of the morphism $\text{Sht}_{d,1}^\eta,\text{all} \rightarrow \text{Sht}_{d,1}^\eta,\text{all}$ which sends a shtuka \mathcal{F} of rank $(d - 1)$ to the shtuka $\mathcal{A}' \oplus \mathcal{I}$ of rank d. By Propositions [18.3.5] and [18.3.14] we get a contradiction for dimensional reasons.

As in Section [9.1] we denote $\Delta^n_{\mathbb{A},d,J} = \circ \text{ToySht}_{\mathbb{A},d}^n \cap \text{ToySht}_{\mathbb{A},d,J}^n$ for $J \in \mathbf{P}_{\mathbb{A},d}$, and we denote $\Delta^n_{\mathbb{A},d,H} = \circ \text{ToySht}_{\mathbb{A},d}^n \cap \text{ToySht}_{H}^n$ for $H \in \mathbf{P}_{(\mathbb{A},d)}$.

Denote $GL_d(\mathbb{A})_0 = \{ g \in GL_d(\mathbb{A}) | \deg g = 0 \}$.

Recall that for $\chi \in \mathbb{Z}$, we denote n_χ to be the element of $\text{Dim}_{\mathbb{A},d}$ such that $n_\chi(O^d) = \chi$. In particular, we have $n_0 \in \text{Dim}_{\mathbb{A},d}$ corresponding to $\chi = 0$.

Let $\theta^d_\eta : \text{Sht}_{d,1}^\eta,\text{all} \rightarrow \circ \text{ToySht}_{\mathbb{A},d}^n$ be the morphism defined in Proposition [17.1.1]

Lemma 18.5.4. For all $g \in GL_d(\mathbb{A})_0$ and $J \in \mathbf{P}_{\mathbb{A},d}$, we have $\theta^d_\eta(g \cdot \xi_{\eta,1}^d) \notin \Delta^n_{\mathbb{A},d,J}$.

Proof. Since θ^d_η is $GL_d(\mathbb{A})_0$-equivariant, it suffices to prove the statement in the case $g = 1$. Let ξ' be a geometric generic point of $Z_{\eta,1}$ for some $J \in \mathbf{P}_{\mathbb{A},d}$. Then there exists a divisor D' of X and a nonzero element $z \in H^0(X \times \xi', \mathcal{F}(D' \times \xi'))$ such that $\Phi_z \xi' = z$. Let \mathcal{G} be the subsheaf of $\mathcal{F}(D' \times \xi')$ generated by z. We see that $\mathcal{G} \neq 0$ and $\Phi_z \mathcal{G} = \mathcal{G}$. Thus $(\mathcal{F}(D' \times \xi'))^\Pi \neq 0$. Then Corollary [15.2.5] shows that $\mathcal{F}^\Pi \neq 0$. This is a contradiction to Lemma [18.5.3].

Lemma 18.5.5. Let E be a separably closed field over η. Let $\xi'' : \text{Spec } E \rightarrow Z_{\eta,1}^{d,\Pi}$ be a morphism over η whose image lands in the generic point of $Z_{\eta,1}^{d,\Pi}$. Let \mathcal{F} be the shtuka over ξ''. Then there exists an isomorphism $\Theta_{X \times \xi''} \sim \mathcal{F}^\Pi$, such that for every finite subscheme $D \subset X$, the composition

$$\Theta_{X \times \xi''} \sim \mathcal{F}^\Pi \rightarrow \mathcal{F} \rightarrow \mathcal{F} \otimes \Theta_{D \times \xi''} \sim \Theta_{D \times \xi''}$$
is the following standard morphism

\[\theta_{X \times \xi''} \to \theta_{D \times \xi''} \hookrightarrow \theta_{D \times \xi''} \oplus \theta_{D \times \xi''}^{d-1} = \theta_{X \times \xi''}^d. \]

Proof. From the definition of RedSht\(d,1,\Pi\) and Corollary \([18.1.5]\) we see that there exists an injective morphism \(\theta_{X \times \xi''} \hookrightarrow \mathcal{F}_{\Pi}\) satisfying the required conditions. Moreover, \(\theta_{X \times \xi''}\) is saturated in \(\mathcal{F}\). Thus it suffices to show that rank \(\mathcal{F}_{\Pi} = 1\).

Suppose rank \(\mathcal{F}_{\Pi} \geq 2\). Then we can find \(g \in GL_d(O)\) such that the image of \(g \cdot \xi''\) is contained in the image of the morphism RedSht\(d,2,\Pi\) \(\rightarrow\) Sht\(d,\mathcal{A}\) for some \(\mathcal{A} \in \mathcal{Vec}_{X,\text{all}}\). We get a contradiction by Proposition \([18.3.14]\) for dimensional reasons. \(\square\)

Recall that \(k\) denotes the field of rational functions on \(X\).

Proposition 18.5.6. For \(J \in \mathbf{P}_{A^d}\), \(\theta_d^n(Z_{n,1}^{d,\Pi}) \subset \Delta_{k^n,d,J}^{n_0}\) if and only if \(J = \mathbb{F}_q \cdot (a,0,\ldots,0)^t\) for some \(a \in k^\times\).

Proof. Recall that \(Z_{n,1}^{d,\Pi}\) is reduced and irreducible by Theorem \([18.5.2]\). Let \(\xi''\) be a geometric generic point of \(Z_{n,1}^{d,\Pi}\). Thus \(\theta_d^n(Z_{n,1}^{d,\Pi}) \subset \Delta_{k^n,d,J}^{n_0}\) if and only if the image of \(\theta_d^n \circ \xi''\) is contained in \(\Delta_{k^n,d,J}^{n_0}\).

Let \(\mathcal{F}\) be the shtuka over \(\xi''\) and let \(L \subset A^d \otimes \xi''\) be the corresponding Tate toy shtuka. Definition \([18.2.2]\) gives a subshtuka \(\mathcal{A} \subset \mathcal{F}\). Here \(\mathcal{A} \in \text{TrSht}_{1,\mathcal{A},\text{all}}(\xi'')\) and \(\mathcal{F}_X\) is equipped with the standard structure of all levels. Moreover, the morphism \(\mathcal{A} \otimes \theta_{D \times \xi''} \to \mathcal{F} \otimes \theta_{D \times \xi''}\) induces the standard inclusion of the first entry \(\theta_{D \times \xi''} \to \theta_{D \times \xi''}\) for all finite subscheme \(D \subset X\). Proposition \([18.1.3]\) shows that \(\mathcal{A} \cong \mathcal{F}_{X \times \xi''}\).

Thus the constant function \(1 \in H^0(X \times \xi'', \theta_{X \times \xi''})\) gives an element \((1,0,\ldots,0)^t\) \(\in L\).

Hence the image of \(\theta_d^n \circ \xi''\) is contained in \(\Delta_{k^n,d,J}^{n_0}\), where \(J_1 = \mathbb{F}_q \cdot (1,0,\ldots,0)^t \in \mathbf{P}_{A^d}\).

Since the \(k^\times\)-action on Sht\(d,\mathcal{X},\mathcal{A}\) is trivial and the morphism \(\theta_d^n\) is \(k^\times\)-equivariant, we deduce that \(\theta_d^n(Z_{n,1}^{d,\Pi}) \subset \Delta_{k^n,d,J}^{n_0}\) for all \(a \in k^\times\), where \(J_a = \mathbb{F}_q \cdot (a,0,\ldots,0)^t \in \mathbf{P}_{A^d}\).

Suppose that the image of \(\theta_d^n \circ \xi''\) is contained in \(\Delta_{k^n,d,J}^{n_0}\) for \(J \in \mathbf{P}_{A^d}\). From the definition of \(\theta_d^n\) we see that

\[J \otimes \xi'' \subset H^0(X \times \xi'', \mathcal{F}(D^n \times \xi'')) \]

for some divisor \(D^n\) of \(X\). Let \(\mathcal{F}_{\Pi}\) be as in Proposition \([15.2.3]\). Now Corollary \([15.2.5]\) shows that

\[J \otimes \xi'' \subset H^0(X \times \xi'', \mathcal{F}_{\Pi}(D^n \times \xi'')). \]

Applying Lemma \([18.5.3]\) we deduce that \(J = \mathbb{F}_q \cdot (a,0,\ldots,0)^t\) for some \(a \in k^\times\). \(\square\)

18.6. Irreducible components of horospherical divisors

We introduce two subgroups \(P_d^I = \left(\begin{smallmatrix} GL_{d-1} & * \\ 0 & 1 \end{smallmatrix} \right) \subset GL_d\) and \(P_d^{II} = \left(\begin{smallmatrix} 1 & GL_d \\ 0 & 1 \end{smallmatrix} \right) \subset GL_d\).

Let \(P_d^I(A)_{\text{deg} g = 0} = \{ g \in P_d^I(A) \mid \text{deg } g = 0 \}\), \(P_d^{II}(A)_{\text{deg} g = 0} = \{ g \in P_d^{II}(A) \mid \text{deg } g = 0 \}\).

Lemma 18.6.1. For \(g \in GL_d(A)\), \(g \cdot Z_{n,1}^{d,\Pi} = Z_{n,1}^{d,\Pi}\) if and only if \(g \in k^\times \cdot P_d^I(A)_{\text{deg} g = 0}\), \(g \cdot Z_{n,1}^{d,\Pi} = Z_{n,1}^{d,\Pi}\) if and only if \(g \in k^\times \cdot P_d^{II}(A)_{\text{deg} g = 0}\).
Proof. Recall that the k^x-action on $\text{Sht}^{d,\text{all}}_{\eta}$ is trivial.

Let $g \in P_{d}^{\text{II}}(\mathbb{A})_0$. Let $\mathcal{O}_X \in \mathfrak{Vec}_X^{1,\text{all}}$ be equipped with the standard structures of all levels. Recall that $Z_{\eta,1}^{d,\text{II}}$ is irreducible. Let ξ be the generic point of $Z_{\eta,1}^{d,\text{II}}$. Then ξ is contained in the image of the morphism $\text{RedSht}_{\eta,\mathcal{O}_X,\text{all}}^{d,\text{II}} \to \text{Sht}^{d,\text{all}}_{\eta}$. Let \mathcal{F} be the shtuka over ξ. We have an inclusion of shtukas $\mathcal{A} \subset \mathcal{F}$, where $\mathcal{A} \in \text{TrSht}_{\eta,\mathcal{O}_X,\text{all}}$. Moreover, for all finite subscheme $D \subset X$, the induced morphism $\mathcal{A} \otimes \mathcal{O}_{D \times X} \to \mathcal{F} \otimes \mathcal{O}_{D \times X}$ gives the standard inclusion of the first entry $\mathcal{O}_{D \times X} \to \mathcal{O}_D$. From the construction of the $GL_d(\mathbb{A})$-action on $\text{Sht}^{d,\text{all}}_{\eta}$, we see that $\mathcal{A} \subset g \cdot \mathcal{F}$, and for all finite subscheme $D \subset X$, the induced morphism $\mathcal{A} \otimes \mathcal{O}_{D \times X} \to (g \cdot \mathcal{F}) \otimes \mathcal{O}_{D \times X}$ gives the standard inclusion of the first entry $\mathcal{O}_{D \times X} \to \mathcal{O}_D$. This shows that $g \cdot \xi$ is contained in the image of the morphism $\text{RedSht}_{\eta,\mathcal{O}_X,\text{all}}^{d,\text{II}} \to \text{Sht}^{d,\text{all}}_{\eta}$, hence contained in $Z_{\eta,1}^{d,\text{II}}$.

Suppose $g \cdot Z_{\eta,1}^{d,\text{II}} = Z_{\eta,1}^{d,\text{II}}$. Lemma 14.4.1 shows that $g \in GL_d(\mathbb{A})_0$. Let $J_1 = \{ J \in P_{k^x} | J = F_q \cdot (a, 0, \ldots, 0)' , a \in k^x \}$. For $J \in P_{k^x}$, Proposition 18.5.6 shows that $\theta_d^{\text{II}}(Z_{\eta,1}^{d,\text{II}}) \in \Delta_{k^x,J}^{\neq 0}$ if and only if $J \in J_1$. Now $g \cdot Z_{\eta,1}^{d,\text{II}} = Z_{\eta,1}^{d,\text{II}}$ implies that $g \cdot J_1 = J_1$. Hence $g \in k^x \cdot P_{d}^{\text{II}}(\mathbb{A})_0$.

The second statement follows from duality.

Denote

$$^\infty \text{Sht}^{d,\text{all}}_{\eta} := \text{Sht}^{d,\text{all}}_{\eta} - \bigcup_{g \in GL_d(\mathbb{A})} g \cdot Z_{\eta,1}^{d,\text{II}} - \bigcup_{g \in GL_d(\mathbb{A})} g \cdot Z_{\eta,1}^{d,\text{II}}.$$

We denote $\Omega_{\eta}^{d,\text{II}} = GL_d(\mathbb{A})_0/(k^x \cdot P_{d}^{\text{II}}(\mathbb{A})_0)$, $\Omega_{\eta}^{d,\text{II}} = GL_d(\mathbb{A})_0/(k^x \cdot P_{d}^{\text{II}}(\mathbb{A})_0)$.

Definition 18.6.2. A Cartier divisor of $\text{Sht}^{d,\text{all}}_{\eta}$ is called a horospherical divisor if its support has empty intersection with $^\infty \text{Sht}^{d,\text{all}}_{\eta}$.

The following statement is a corollary of Lemma 18.6.1

Proposition 18.6.3. The set of irreducible components of horospherical divisors of $\text{Sht}^{d,\text{all}}_{\eta}$ is $\Omega_{\eta}^{d,\text{II}} \coprod \Omega_{\eta}^{d,\text{II}}$.

Lemma 18.6.4. The $GL_d(\mathbb{A})_0$-action on $\Omega_{\eta}^{d,\text{II}} \coprod \Omega_{\eta}^{d,\text{II}}$ is continuous.

Proof. The statement follows the construction of the $GL_d(\mathbb{A})$-action on $\text{Sht}^{d,\text{all}}_{\eta}$.

Lemma 18.6.5. Let E be an algebraically closed field over η. Suppose $\mathcal{F} \in \text{Sht}^{d,\text{all}}_{\eta}(E)$ satisfies $\mathcal{F}^{\text{II}} \neq 0$. Then there exists $g \in GL_d(\mathbb{A})$ such that $g \cdot \mathcal{F} \in Z_{\eta,1}^{d,\text{II}}$.

Proof. By Proposition 18.1.3 we have an isomorphism $\mathcal{F}^{\text{II}} \cong \mathcal{M} \otimes E$ for some $\mathcal{M} \in \mathfrak{Vec}_X^{\text{rank},\mathcal{F}}$. Choose an invertible subsheaf $\mathcal{A} \subset \mathcal{M}$ on X which is saturated in \mathcal{M}. Then we have an exact sequence of shtukas

$$0 \longrightarrow \mathcal{A} \otimes E \longrightarrow \mathcal{F} \longrightarrow \mathcal{Q} \longrightarrow 0.$$
For a finite subscheme \(D \subset X \), let \(\mathcal{L}'_D \) be the image of the composition \(\mathcal{A} \otimes \mathcal{O}_{D \otimes E} \to \mathcal{F} \otimes \mathcal{O}_{D \otimes E} \xrightarrow{\sim} \mathcal{O}_{D \otimes E} \). We see that \(\mathcal{L}'_D \) is invariant under the natural isomorphism \(\Phi_E^* \mathcal{O}_{D \otimes E} \xrightarrow{\sim} \mathcal{O}_{D \otimes E} \). By Proposition 18.4.3, we have \(\mathcal{L}'_D = \mathcal{L}_D \otimes E \) for some \(\mathcal{O}_D \)-submodule \(\mathcal{L}_D \subset \mathcal{O}_D^1 \). Moreover, for two finite subschemes \(D_1 \subset D_2 \subset X \), we have \(\mathcal{L}_{D_1} = \mathcal{L}_{D_2} \otimes \mathcal{O}_D \). Thus we can choose \(g_1 \in GL_d(O) \) such that \(g_1(\mathcal{O}_D \otimes 0) = \mathcal{L}_D \) for all finite subschemes \(D \subset X \). We equip \(\mathcal{A} \) with structures of all levels compatible with each other using the standard structures of all levels on \(\mathcal{O}_X \).

Since \(\mathbb{A}^1 \) acts transitively on \(\mathcal{V}ect^1_{X, \text{all}} \), we can choose \(a \in \mathbb{A}^1 \) such that \(a \cdot \mathcal{A} = \mathcal{O}_X \), where \(\mathcal{O}_X \) is equipped with the standard structures of all levels. Pick \(B \in GL_{d-1}(A) \) such that \(\text{deg } a + \text{deg } \det B + \chi(\mathcal{F}) = 0 \). Let \(g_2 = \begin{pmatrix} 0 & 0 \\ 0 & B \end{pmatrix} \).

Then we see that \(g_2 g_1 \cdot \mathcal{F} \in \mathcal{Z}^{d,\Pi}_{\eta,1} \).

The following statement is dual to Lemma 18.6.5.

Lemma 18.6.6. Let \(E \) be an algebraically closed field over \(\eta \). Suppose \(\mathcal{F} \in \mathcal{Sht}^d_{\eta, \text{all}}(E) \) satisfies \(\mathcal{F}^1 \neq 0 \). Then there exists \(g \in GL_d(A) \) such that \(g \cdot \mathcal{F} \in \mathcal{Z}^{d,1}_{\eta,1} \).

Proof. The statement follows from Lemmas 18.6.5 and 18.6.6.

Lemma 18.6.7. Let \(s \) be a geometric point of \(\mathcal{Sht}^d_{\eta, \text{all}} \) such that \(s \notin g \cdot \mathcal{Z}^{d,1}_{\eta,1}, s \notin g \cdot \mathcal{Z}^{d,\Pi}_{\eta,1} \) for all \(g \in GL_d(A) \). Then the shtuka over \(s \) is irreducible.

Proof. Proposition 17.1.1 shows that \(\theta^d_{\eta}(s) \in \mathcal{Sht}^d_{\eta, \text{all}} \).

We may assume that \(s \) is a geometric point of \(\mathcal{Sht}^d_{\eta, \text{all}} \). Let \(\mathcal{F} \) be the shtuka over \(s \). Then \(\mathcal{F} \) is irreducible by Lemma 18.6.7. Hence \(\mathcal{F}^{\Pi} = 0 \) by Proposition 15.2.3. Now Corollary 15.2.3 shows that \(\mathcal{F}(D'^{\Pi} \times s)^{\Pi} = 0 \) for any divisor \(D'^{\Pi} \) of \(X \). Thus \(\theta^d_{\eta}(s) \notin \Delta^{n_x}_{d,J} \) for any \(J \in \mathcal{P}_{\eta} \). By duality, \(\theta^d_{\eta}(s) \notin \Delta^{n_x}_{H} \) for any \(H \in \mathcal{P}(\eta) \). The statement follows.

19. Pullback of Tate toy horospherical divisors under \(\theta \)

We use the notation and conventions of Section 14.1.

Fix an integer \(d \geq 2 \).

Let \(\theta^d_{\eta} : \mathcal{Sht}^d_{\eta, \text{all}} \to \mathcal{Sht}^d_{\eta, \text{all}} \) be the morphism defined in Proposition 17.1.1.

For \(\chi \in \mathbb{Z} \), we denote \(n_\chi \) to be the element of \(\text{Dim}_{\eta} \) such that \(n_{\chi}(O^d) = \chi \). In particular, we have \(n_0 \in \text{Dim}_{\eta} \) corresponding to \(\chi = 0 \).

Denote \(\theta^{d,0}_{\eta} : \mathcal{Sht}^{d,0}_{\eta, \text{all}} \to \mathcal{Sht}^{n_0}_{\eta, \text{all}} \).

19.1. \(\theta^{d,0}_{\eta} \) as a direct sum. Recall that a Cartier divisor of \(\mathcal{Sht}^d_{\eta, \text{all}} \) is called a (Tate) toy horospherical divisor if its restriction to \(\mathcal{Sht}^d_{\eta, \text{all}} \) is zero. Lemma 18.6.8 shows that it makes sense to pullback Tate toy horospherical divisors under \(\theta^d_{\eta} \), and the pullback is a horospherical divisor of \(\mathcal{Sht}^d_{\eta, \text{all}} \).
Recall that $\Sigma_{\mathbf{A}_d}^{\text{rat}}$ denotes the space of Tate toy horospherical divisors on $\text{ToySht}_{\mathbf{A}_d}^{n_0}$. Theorem 9.2.4 gives an isomorphism

$$\Sigma_{\mathbf{A}_d}^{\text{rat}} \cong C_+((\mathbb{A}_d)^\times - \{0\})^{F_0} \oplus C_+(\mathbb{A}_d - \{0\})^{F_0}.$$

Proposition 18.6.3 shows that the set of irreducible components of horospherical divisors of $\text{Sht}_{\eta,\text{all}}^{d,\chi = 0}$ is $\Omega_{\eta}^{d,\Pi} \bigsqcup \Omega_{\eta}^{d,\Pi}$. Considering the multiplicity of pullback of Tate toy horospherical divisors under the morphism $\theta_{\eta}^{d,0} : \text{Sht}_{\eta,\text{all}}^{d,\chi = 0} \to \text{ToySht}_{\mathbf{A}_d}^{n_0}$, we get a homomorphism of (partially) ordered abelian groups

$$(\theta_{\eta}^{d,0})^* : C_+((\mathbb{A}_d)^\times - \{0\})^{F_0} \oplus C_+(\mathbb{A}_d - \{0\})^{F_0} \to C^\infty(\Omega_{\eta}^{d,\Pi}) \oplus C^\infty(\Omega_{\eta}^{d,\Pi}).$$

Lemma 19.1.1. The homomorphisms

$$C_+((\mathbb{A}_d)^\times - \{0\})^{F_0} \to C^\infty(\Omega_{\eta}^{d,\Pi}),$$

$$C_+(\mathbb{A}_d - \{0\})^{F_0} \to C^\infty(\Omega_{\eta}^{d,\Pi})$$

induced by $(\theta_{\eta}^{d,0})^*$ are zero.

Proof. The first homomorphism is zero by Lemma 18.5.4. By duality, the second one is also zero. \qed

The homomorphism $(\theta_{\eta}^{d,0})^*$ induces two maps

$$(\theta_{\eta}^{d,0,1})^* : C_+((\mathbb{A}_d)^\times - \{0\})^{F_0} \to C^\infty(\Omega_{\eta}^{d,\Pi}),$$

$$(\theta_{\eta}^{d,0,\Pi})^* : C_+(\mathbb{A}_d - \{0\})^{F_0} \to C^\infty(\Omega_{\eta}^{d,\Pi}).$$

The following statement is a corollary of Lemma 19.1.1.

Lemma 19.1.2. $(\theta_{\eta}^{d,0})^* = (\theta_{\eta}^{d,0,1})^* \oplus (\theta_{\eta}^{d,0,\Pi})^*$. \qed

19.2. **Definition of the averaging maps.** Recall that k denotes the field of rational functions on X. We introduced two subgroups $P_d^I = (GL_{d-1}^* \times GL_1) \subset GL_d$ and $P_d^H = (GL_{d-1}^* \times GL_d) \subset GL_d$ in Section 18.6. We also denoted $\Omega_{\eta}^{d,\Pi} = GL_d(\mathbb{A})_0/(k^\times \cdot P_d^I(\mathbb{A})_0)$, $\Omega_{\eta}^{d,\Pi} = GL_d(\mathbb{A})_0/(k^\times \cdot P_d^H(\mathbb{A})_0)$.

We introduce two varieties over \mathbb{F}_q.

$$Y_d^I := GL_d/P_d^I, \quad Y_d^H := GL_d/P_d^H.$$

We equip $Y_d^I(\mathbb{A})$ and $Y_d^H(\mathbb{A})$ with topologies as homogeneous spaces of $GL_d(\mathbb{A})$.

We identify $\Omega_{\eta}^{d,\Pi}$ (resp. $\Omega_{\eta}^{d,\Pi}$) with $Y_d^I(\mathbb{A})/k^\times$ (resp. $Y_d^H(\mathbb{A})/k^\times$).

Define a map

$$\iota_d^H : Y_d^H(\mathbb{A}) \to \mathbb{A}_d - \{0\}$$

$$g \mapsto g \cdot (1, 0, \ldots, 0)^t.$$
We see that ι_{d}^{H} is well-defined, injective and continuous, but the topology on $Y_{d}^{H}(\mathbb{A})$ is different from the subset topology.

Define an averaging map

$$\text{Av}_{d}^{H} : C_{+}(\mathbb{A}^{d} - \{0\})^{\mathbb{F}_{q}^{\times}} \to C^{\infty}(\Omega_{\eta}^{d,1})$$

by the composition

$$C_{+}(\mathbb{A}^{d} - \{0\})^{\mathbb{F}_{q}^{\times}} = C_{+}((\mathbb{A}^{d} - \{0\})/\mathbb{F}_{q}^{\times}) \overset{f_{1}}\to C_{+}(Y_{d}^{H}(\mathbb{A})/\mathbb{F}_{q}^{\times}) \overset{f_{2}}\to C^{\infty}(Y_{d}^{H}(\mathbb{A})/k^{\times}) = C^{\infty}(\Omega_{\eta}^{d,1})$$

where f_{1} and f_{2} are as follows. We identify $C^{\infty}(\mathbb{A}^{d} - \{0\})^{\mathbb{F}_{q}^{\times}}$ with $C^{\infty}((\mathbb{A}^{d} - \{0\})/\mathbb{F}_{q}^{\times})$, and $C_{+}((\mathbb{A}^{d} - \{0\})/\mathbb{F}_{q}^{\times})$ is the subgroup of $C^{\infty}((\mathbb{A}^{d} - \{0\})/\mathbb{F}_{q}^{\times})$ corresponding to $C_{+}(\mathbb{A}^{d} - \{0\})^{\mathbb{F}_{q}^{\times}}$. The inclusion ι_{d}^{H} gives a pullback $C^{\infty}((\mathbb{A}^{d} - \{0\})/\mathbb{F}_{q}^{\times}) \to C^{\infty}(Y_{d}^{H}(\mathbb{A})/\mathbb{F}_{q}^{\times})$.

Let $C_{+}(Y_{d}^{H}(\mathbb{A})/\mathbb{F}_{q}^{\times})$ be the image of $C_{+}((\mathbb{A}^{d} - \{0\})/\mathbb{F}_{q}^{\times})$. This gives f_{1}. The map f_{2} is the pushforward, i.e., for $\varphi \in C_{+}(Y_{d}^{H}(\mathbb{A})/\mathbb{F}_{q}^{\times})$, $f_{2}(\varphi)$ is defined by

$$(f_{2}(\varphi))(x) = \sum_{a \in k^{\times}/\mathbb{F}_{q}^{\times}} \varphi(ax), \quad (x \in Y_{d}^{H}(\mathbb{A}))$$

From the definition of C_{+} in Section 9.2.1, we see that all but finitely many summands are zero.

For a rational differential ω on X and an element $a \in \mathbb{A}$, we denote $\text{Res}_{\omega}(a)$ to be the sum of residues of $a\omega$ at all closed points of X.

For a rational differential ω on X, we define a map

$$\iota_{d,\omega}^{I} : Y_{d}^{I}(\mathbb{A}) \to (\mathbb{A}^{d})^{*} - \{0\}
\quad g \mapsto (v \mapsto \text{Res}_{\omega}((0, \ldots, 0, 1) \cdot g^{-1}v)), \quad (v \in \mathbb{A}^{d})$$

We see that $\iota_{d,\omega}^{I}$ is well-defined, injective and continuous, but the topology on $Y_{d}^{I}(\mathbb{A})$ is different from the subset topology.

Similarly to Av_{d}^{H}, we define an averaging map

$$\text{Av}_{d}^{I} : C_{+}((\mathbb{A}^{d})^{*} - \{0\})^{\mathbb{F}_{q}^{\times}} \to C^{\infty}(\Omega_{\eta}^{d,1})$$

by the composition

$$C_{+}((\mathbb{A}^{d})^{*} - \{0\})^{\mathbb{F}_{q}^{\times}} = C_{+}((\mathbb{A}^{d})^{*} - \{0\})/\mathbb{F}_{q}^{\times}) \overset{h_{1}}\to C_{+}(Y_{d}^{I}(\mathbb{A})/\mathbb{F}_{q}^{\times}) \overset{h_{2}}\to C^{\infty}(Y_{d}^{I}(\mathbb{A})/k^{\times}) = C^{\infty}(\Omega_{\eta}^{d,1}).$$

Here h_{2} is the pullback along $\iota_{d,\omega}^{I}$ for a nonzero rational differential ω on X. We see that the composition does not depend on the choice of ω.

19.3. Formula for pullback of horospherical divisors under θ. Recall that the homomorphism

$$(\theta^{d,0}_{\eta})^{*} : C_{+}((\mathbb{A}^{d})^{*} - \{0\})^{\mathbb{F}_{q}^{\times}} \oplus C_{+}(\mathbb{A}^{d} - \{0\})^{\mathbb{F}_{q}^{\times}} \to C^{\infty}(\Omega_{\eta}^{d,1}) \oplus C^{\infty}(\Omega_{\eta}^{d,II})$$

is defined in Section 19.1, and we have $(\theta^{d,0}_{\eta})^{*} = (\theta^{d,0,1}_{\eta})^{*} \oplus (\theta^{d,0,II}_{\eta})^{*}$ by Lemma 19.1.2

Proposition 19.3.1. $(\theta^{d,0,II}_{\eta})^{*} = \text{Av}_{d}^{H}$.

The proof of Proposition 19.3.1 will be given in Section 19.6.

Lemma 19.3.2. An element \(a \in \mathbb{A} \) is contained in \(k \) if and only if \(\text{Res}_\omega(a) = 0 \) for all rational differentials \(\omega \) of \(X \).

In view of Lemma 19.3.2, the following statement is dual to Proposition 19.3.1.

Proposition 19.3.3. \((\theta^{d,0,1}_\eta)^* = \text{Av}^I_d\).

Now we obtain the main theorem of this section.

Theorem 19.3.4. \((\theta^{d,0}_\eta)^* = \text{Av}^I_d \oplus \text{Av}^H_d\).

Proof. The statement follows from Propositions 19.3.1 and 19.3.3.

19.4. A subspace of principal horospherical \(Z^{[1/\mathfrak{p}]} \)-divisors. We normalize the Haar measure on \(A^d \) such that \(O^d \) has measure 1.

Fix a nontrivial additive character \(\psi : \mathbb{F}_q \to \mathbb{C}^\times \). We define the Fourier transform

\[\text{Four}_{\psi} : C_c^\infty(\mathbb{A}_d^d; \mathbb{C}) \to C_c^\infty((\mathbb{A}_d^d)^*; \mathbb{C}) \]

such that for any \(f \in C_c^\infty(\mathbb{A}_d^d; \mathbb{C}), \omega \in (\mathbb{A}_d^d)^* \), we have

\[\text{Four}_{\psi}(f)(\omega) = \int_{\mathbb{A}_d^d} f(v)\psi(\omega(v))dv. \]

When \(f \in C_c^\infty(\mathbb{A}_d^d; \mathbb{Z}^{[1/\mathfrak{p}]})^{\mathbb{F}_q^\times} \), we have \(\text{Four}_{\psi}(f) \in C_c^\infty((\mathbb{A}_d^d)^*; \mathbb{Z}^{[1/\mathfrak{p}]})^{\mathbb{F}_q^\times} \), and \(\text{Four}_{\psi}(f) \) does not depend on the choice of \(\psi \).

Denote \(C_0^\infty(\mathbb{A}_d^d) = \{ f \in C_c^\infty(\mathbb{A}_d^d) | f(0) = \int_{\mathbb{A}_d^d} fdv = 0 \} \).

Combining Theorems 11.1.2 and 19.3.4, we get the following statement.

Theorem 19.4.1. For \(d \geq 2 \), the (partially) ordered abelian group of principal horospherical \(Z^{[1/\mathfrak{p}]} \)-divisors of \(\text{Sh}^{d,\chi=0}_{\eta,\text{all}} \) contains the following subgroup

\[\{ (\text{Av}^I_d(\text{Four}_{\psi}(f)), \text{Av}^H_d(f)) \in C^\infty(\Omega^{1,1}_d; \mathbb{Z}^{[1/\mathfrak{p}]}) \oplus C^\infty(\Omega^{1,1}_d; \mathbb{Z}^{[1/\mathfrak{p}]}) | f \in C_0^\infty(\mathbb{A}_d^d; \mathbb{Z}^{[1/\mathfrak{p}]})^{\mathbb{F}_q^\times} \}. \]

19.5. Multiplicity one for pullback of toy horospherical divisors. Recall that the notation \(O_D \) for a divisor \(D \) of \(X \) is defined in Section 17. It is the c-lattice of \(\mathbb{A} \) which consists of those adeles with poles bounded by \(D \).

Let \(\chi \in \mathbb{Z} \). Let \(D', D'' \) be two divisors of \(X \) such that \((O^{d}_{D'}, O^{d}_{D'}) \in \text{AP}_{\chi}(\mathbb{A}_d^d) \). (See Section 7.2 for the definition of the notation \(\text{AP} \).)

Let \(E \) be a separably closed field over \(\mathbb{F}_q \) and fix two morphisms \(\alpha, \beta : \text{Spec } E \to X \) satisfying condition (*).

Let \(\text{Sh}^{d,\chi=D',D''}_{E,D'} \) be the moduli stack which to each scheme \(S \) over \(\text{Spec } E \) associates the groupoid of shtukas \(\mathcal{F} \) over \(S \) of rank \(d \) with zero \(\alpha \circ p_S \) and pole \(\beta \circ p_S \) equipped with a structure of level \(D \), satisfying the following conditions:

(i) \(\chi(\mathcal{F}) = \chi \).
(ii) For every \(s \in S \) one has \(H^0(X \times s, \mathcal{F}_s(D' \times s)) = 0 \) and \(H^1(X \times s, \mathcal{F}_s(D'' \times s)) = 0 \).

Proposition 16.3.1 gives a morphism \(\text{Sh}_{E,D}^{d,X,D',D''} \to \text{ToySh}_{O_{D''}/O_{D'}}^{x+d \cdot \deg D''} \otimes E \). The image of the morphism lands in \(\text{ToySh}_{O_{D''}/O_{D'}}^{x+d \cdot \deg D''} \) since we have \(\alpha \neq \beta \) by condition (\ast).

Define \(\text{Art}_E \) to be the category of local Artinian rings whose residue fields are identified with \(E \). Define \(\text{Art}^{(n)}_E \) to be the full subcategory of \(\text{Art}_E \) whose objects satisfy the condition that \(x^q = 0 \) for all \(x \) in the maximal ideal.

For a shtuka \(\mathcal{G} \) over a perfect field, the notation \(\mathcal{G}^I \) and \(\mathcal{G}^II \) is defined in Proposition 15.2.3.

Lemma 19.5.1. Let \(\mathcal{G} \in \text{Sh}_{E,D}^{d,X,D',D''}(E) \). Suppose that \(\mathcal{G}^II = \mathcal{A} \otimes E \), where \(\mathcal{A} \) is an invertible sheaf on \(X \). Let \(A \in \text{Art}^{(1)}_E \). Let \(\mathcal{G} \) be a shtuka over \(\text{Spec} A \) extending the one over \(\text{Spec} E \). Let \(\tilde{\mathcal{G}} = \pi_{A*}(\mathcal{G}(D'' \otimes A)) \in \text{ToySh}_{O_{D''}/O_{D'}}^{x+d \cdot \deg D''}(A) \) be the associated toy shtuka over \(\text{Spec} A \). Assume that \(\tilde{\mathcal{L}} \supset J \otimes A \) for some \(J \in \mathbb{P}_{O_{D''}/O_{D'}}^{d'} \). Then \(\tilde{\mathcal{G}} \) contains \(\mathcal{A} \otimes A \), and \(\tilde{\mathcal{G}} / (\mathcal{A} \otimes A) \) is locally free.

Remark 19.5.2. Since \(A \in \text{Art}^{(1)}_E \), we have \(\Phi_A^* \tilde{\mathcal{G}} = (\Phi_A^* \mathcal{G}) \otimes_E A \). We view \(\tilde{\mathcal{G}} \) as a subsheaf of \((\Phi_A^* \mathcal{G})(\Gamma_{\tilde{\mathcal{G}}}) \), where \(\tilde{\mathcal{G}} : \text{Spec} A \to X \) is the zero of \(\mathcal{G} \). We also have \(\Phi_A^* \mathcal{G} \supset \mathcal{A} \otimes A \). So \(\mathcal{A} \otimes A \) in the above lemma is viewed as a subsheaf of \(\Phi_A^* \mathcal{G} \).

Proof of Lemma 19.5.1. We have \(J \otimes E \subset H^0(X \otimes E, \mathcal{G}(D'' \otimes E)) \). Since \(\text{Fr}_E(J \otimes E) = J \otimes E \), Proposition 15.2.3 shows that \(J \otimes E \subset H^0(X \otimes E, (\mathcal{G}(D'' \otimes E))^II) \). Since \(\mathcal{G}^II = \mathcal{A} \otimes E \), Corollary 15.2.3 implies that \((\mathcal{G}(D'' \otimes E))^II = \mathcal{A}(D'') \otimes E \). Together with the fact that \(J \) is defined over \(\mathbb{F}_q \), we deduce that \(J \subset H^0(X, \mathcal{A}(D'')) \). Let \(J_0 \) be the subsheaf of \(\mathcal{A}(D'') \) generated by \(J \). Then \(\mathcal{J}_0 = \mathcal{A}(D'' - D_0) \), where \(D_0 \) is an effective divisor of \(X \). The assumption \(\tilde{\mathcal{L}} \supset J \otimes A \) implies that \(\tilde{\mathcal{G}}(D'' \otimes A) \supset J_0 \otimes A \). Hence

\[
(\ref{19.1}) \quad \tilde{\mathcal{G}} \supset (\mathcal{A} \otimes A)(-D_0 \otimes A).
\]

(19.1)

Since \(A \in \text{Art}^{(1)}_E \), we have \(\Phi_A^* \tilde{\mathcal{G}} = (\Phi_A^* \mathcal{G}) \otimes_E A \). From the definition of shtuka we see that \(\tilde{\mathcal{G}} \supset ((\Phi_A^* \mathcal{G}) \otimes A)(-\Gamma), \) where \(\Gamma : \text{Spec} A \to X \) is the pole of \(\tilde{\mathcal{G}} \). We also have \((\Phi_A^* \mathcal{G}) \otimes_E A \supset \mathcal{A} \otimes A \). Thus

\[
(\ref{19.2}) \quad \tilde{\mathcal{G}} \supset (\mathcal{A} \otimes A)(-\Gamma).
\]

(19.2)

Condition (\ast) implies that image of \(\Gamma : \text{Spec} E \to X \) is the generic point of \(X \). Hence \(D_0 \otimes A \) and \(\Gamma \) are disjoint. Now \((\ref{19.1}) \) and \((\ref{19.2}) \) imply that \(\tilde{\mathcal{G}} \supset \mathcal{A} \otimes A \).

The base change of the inclusion \(\mathcal{A} \otimes A \hookrightarrow \tilde{\mathcal{G}} \) to \(X \otimes E \) is the inclusion \(\mathcal{A} \otimes E \hookrightarrow \mathcal{G} \), which is injective at each point according to the definition of \(\mathcal{G}^II = \mathcal{A} \otimes E \) in Proposition 15.2.3. Since \(A \in \text{Art}^{(1)}_E \), the morphism \(X \otimes E \to X \otimes A \) is bijective.
on points. Thus the inclusion \(\mathcal{A} \otimes A \hookrightarrow \tilde{\mathcal{G}} \) has strictly constant rank 1. Now Lemma \[A.1.3\] implies that \(\tilde{\mathcal{G}} / (\mathcal{A} \otimes A) \) is locally free. \[\square\]

Recall that \(Z_{\eta,1}^{d,\Pi} \) is defined in Definition \[18.5.1\].

Now we consider the case \(\chi = 0 \). Denote \(\mu : \text{Sh}_{}^{d,\chi=0,D',D''} \to \text{ToySh}_{}^{d,\deg D''} \) to be the morphism given by Proposition \[16.3.1\].

Proposition 19.5.3. Let \(J \in P_{O_{D''}^{d}}/O_{D'}^{d} \). Let \(\Delta = \Delta^{d,\deg D''}_{} \) be a toy horospherical divisor of \(\text{ToySh}_{}^{d,\deg D''} \). Then the multiplicity of \(\mu^{-1}(\Delta) \) at \((g \cdot Z_{\eta,1}^{d,\Pi}) \cap \text{Sh}_{}^{d,D',D''} \) is \(\leq 1 \) for all \(g \in GL_{d}(\mathbb{A})_{\eta} \).

Proof. Let \(\xi = \text{Spec} L \) be the generic point of \((g \cdot Z_{\eta,1}^{d,\Pi}) \cap \text{Sh}_{}^{d,D',D''} \). Let \(R \) be the local ring of \(\xi \) in \(\text{Sh}_{}^{d,D',D''} \). Let \(S = \mu^{-1}(\Delta) \cap \text{Spec} R \).

Let \(E \) be a separable closure of \(\mathcal{F} \). Let \(\mathcal{F} \) be the shtuka over \(\text{Spec} E \). Lemma \[18.5.5\] shows that \((g^{-1} \cdot \mathcal{F})^{\Pi} \cong \mathcal{O}_{X} \). Hence \(\mathcal{F}^{\Pi} = \mathcal{A} \otimes \mathcal{E} \) for some invertible sheaf \(\mathcal{E} \) on \(X \).

Let \(\mathcal{Y} \) be the closure of the image of the morphism \(\text{RedSh}_{}^{d,1,\Pi} \to \text{Sh}_{}^{d} \). Proposition \[18.3.9\] shows that \(\mathcal{Y} \) is reduced. Proposition \[18.3.10\] shows that the inverse image of \(\mathcal{Y} \) under the morphism \(\text{Spec} R \to \text{Sh}_{}^{d} \) is equal to \(\xi \).

Lemma \[19.5.1\] shows that for any \(A \in \text{Art}_{E}^{(1)} \), a morphism \(\text{Spec} A \to S \) factors through \(\xi \) as long as the composition \(\text{Spec} E \to \text{Spec} A \to S \) equals the composition \(\text{Spec} E \to \text{Spec} L \to S \). Hence \(S = \xi \). \[\square\]

19.6. Description of \((\theta_{\eta}^{d,\Pi})^{*} \). In this subsection, we describe \((\theta_{\eta}^{d,\Pi})^{*} \) in terms of whether a Tate toy horospherical divisor of \(\text{ToySh}_{}^{d,\chi=0} \) contains the image of a horospherical divisor of \(\text{Sh}_{}^{d,\chi=0} \) (See Lemma \[19.6.1\]). Then we finish the proof of Proposition \[19.3.1\] to obtain a formula for \((\theta_{\eta}^{d,\Pi})^{*} \).

Let \(x \in \Omega_{d,\Pi}^{\eta} \). Denote \(Z_{\eta,x}^{d,\Pi} = x \cdot Z_{\eta,1}^{d,\Pi} \). Let \(\xi_{\eta,x}^{d,\Pi} \) denote the generic point of \(Z_{\eta,x}^{d,\Pi} \).

We denote
\[
J_{x} = \{ J \in P_{A^{d}} \mid \theta_{\eta}^{d}(\xi_{\eta,x}^{d,\Pi}) \in \Delta_{A^{d}}^{n_{0}} \}
\]

Lemma 19.6.1. Let \(f \in C_{+}(A^{d} - \{0\})^{\mathbb{R}^{+}} \). Then the set
\[
J_{x,f} := \{ J \in J_{x} \mid f(J) \neq 0 \}
\]
is finite, and we have
\[
((\theta_{\eta}^{d,\Pi})^{*}f)(x) = \sum_{J \in J_{x}} f(J).
\]

Proof of Proposition \[19.3.1\]. The group \(GL_{d}(\mathbb{A})_{0} \) acts transitively on \(\Omega_{d,\Pi}^{\eta} \). The morphism \(\theta_{\eta}^{d,0} \) is \(GL_{d}(\mathbb{A})_{0} \)-equivariant. Hence it suffices to show that \((((\theta_{\eta}^{d,\Pi})^{*}f)(1) = (Av_{d}^{\Pi} f)(1) \) for any \(f \in C_{+}(A^{d} - \{0\})^{\mathbb{R}^{+}} \). This follows from Lemma \[19.6.1\] and Proposition \[18.5.6\]. \[\square\]
Recall that the notation O_D for a divisor D of X is defined in Section 17. Choose two divisors D', D'' of X such that $(O_{D'}, O_{D''}) \in AP_{\eta_0} (\mathbb{A}^d)$ and $s_{y,x} \in \text{Sh}_{\eta, \alpha, \text{all}}^{d,x=0, D', D''}$.

For divisors $\bar{D}' \leq D' \leq D'' \leq \bar{D}''$ of X, we denote

$$U_{D', D''}^{n_0, D', D''} = \circ \text{ToySh}_{O_{D'}, O_{D''}}^{d, \deg \bar{D}''/O_{D'}, O_{D''}/O_{D'}}.$$

For $J \in \mathcal{P}_{O_{D'}, O_{D''}}$, we denote $Z_{D', D'', J} = (\Delta_{O_{D'}^{d, \deg \bar{D}''/O_{D'}, J} \cap U_{D', D''}^{n_0, D', D''})$. We denote

$$\mathcal{J}_{x, \bar{D}', \bar{D}''}^{D', D''} = \{ J \in \mathcal{P}_{O_{D'}, O_{D''}} \mid (u_{n_0, D', D''}^{\circ, \bar{D}'}, \theta_{\eta}^{d})(\xi_{y, x}^{d, \bar{D}'}, D'') \in Z_{D', D'', J} \}$$

where $u_{n_0, D', D''}^{\circ, \bar{D}'} : \circ \text{ToySh}_{\mathbb{A}^d}^{n_0, D', D''} \to U_{D', D''}^{n_0, D', D''}$ is the projection.

For $J \in \mathcal{J}_{x, \bar{D}', \bar{D}''}^{D', D''}$, we have $u_{n_0, D', D''}^{\circ, \bar{D}'}(\Delta_{\mathbb{A}^d, J}) \subset Z_{D', D'', J}$, where $\mathcal{J} = \text{im}(J \cap O_{D''}^{d} \to O_{D''}^{d, \deg \bar{D}''/O_{D'}})$. Thus we get a map

$$\mathcal{J}_{x, \bar{D}', \bar{D}''}^{D', D''} \to \mathcal{J}_{x, \bar{D}', \bar{D}''}^{D', D''},$$

$$J \mapsto \mathcal{J}$$

Lemma 19.6.2. The map $\mathcal{J}_{x, \bar{D}', \bar{D}''}^{D', D''} \to \mathcal{J}_{x, \bar{D}', \bar{D}''}^{D', D''}$ is bijective.

Proof. Let $J \in \mathcal{J}_{x, \bar{D}', \bar{D}''}^{D', D''}$. By Lemma 9.1.3, it suffices to show that for any two divisors \bar{D}', \bar{D}'' of X such that $\bar{D}' \leq \bar{D}' \leq \bar{D}''$, there is a unique $\tilde{J} \in \mathcal{J}$ such that $(u_{n_0, D', D''}^{\circ, \bar{D}'}, \theta_{\eta}^{d})(\xi_{y, x}^{d, \bar{D}'}, D'') \in Z_{D', D'', \tilde{J}}$, where the set \tilde{J} is defined by

$$\tilde{J} = \{ J \in \mathcal{P}_{O_{D''}^{d, \deg \bar{D}''/O_{D'}^{d}}} \mid \text{im}(J \cap O_{D''}^{d} \to O_{D''}^{d, \deg \bar{D}''/O_{D'}}) = \mathcal{J} \}.$$

Let $\Delta = Z_{D', D'', J}^{D', D''}$. Denote $u : U_{n_0, D', D''}^{D', D''} \to U_{n_0, D', D''}^{D', D''}$ to be the projection. Consider the composition of morphisms

$$\text{Sh}_{\eta, \alpha, \text{all}}^{d,x=0, D', D''} \theta_{\eta}^{d} \circ \text{ToySh}_{\mathbb{A}^d}^{n_0, D', D''} \to U_{D', D''}^{D', D''} \to U_{D', D''}^{n_0, D', D''}.$$

Proposition 8.2.4 implies that

$$u^*(\Delta) = \sum_{J \in \tilde{J}} Z_{D', D'', J}^{D', D''}.$$

Corollary 7.3.4 shows that the morphism u is smooth. Hence

$$u^{-1}(\Delta) = \bigcup_{J \in \tilde{J}} Z_{D', D'', J}^{D', D''}.$$

The assumption $\mathcal{J} \in \mathcal{J}_{x, \bar{D}', \bar{D}''}^{D', D''}$ implies that $(u \circ u_{n_0, D', D''}^{\circ, \bar{D}'}, \theta_{\eta}^{d})(\xi_{y, x}^{d, \bar{D}'}, D'') \in \Delta$. Hence

$$(u_{n_0, D', D''}^{\circ, \bar{D}'}, \theta_{\eta}^{d})(\xi_{y, x}^{d, \bar{D}'}, D'') \in Z_{D', D'', J}^{D', D''}$$

for some $\tilde{J} \in \tilde{J}$. This shows the existence of \tilde{J}.

Proposition [19.5.3] shows that the pullback of $\overline{\Delta}$ to $\text{Sht}^d_{\eta,\text{all}}$ has multiplicity ≤ 1 at $Z_{D''}^{d,\Pi}$. From formula (19.3), we see that there is at most one $\bar{J} \in \bar{J}$ such that $(u^{n_0,D''} \circ \theta^d_{J}) \in Z_{D',D''}^{d,D''}$. We obtain the uniqueness of \bar{J}.

Proof of Lemma [19.6.1]. Let $Q \in D^{n_0}_{A^d}$ be the divisor of $\text{ToySht}_{A^d}^{n_0}$ corresponding to $0 \oplus f$. Let $Q'_{D',D''} \in D^{n_0}_{A^d} \times D^{n_0}_{A^d}$ be the restriction of Z to $\text{ToySht}^{n_0}_{A^d}$. From Lemma (3.1) we see that there exist two divisors \bar{D}', \bar{D}'' of X such that $\bar{D}' \leq D' \leq D'' \leq \bar{D}''$ and that $Q'_{D',D''}$ equals the pullback of a toy horospherical divisor Z of $U^{n_0}_{D',D''}$. Thus we have an inclusion $J_{x,f} \subset J_{x,f}' \supset J_{x,f}''$. Since $J_{x,f}' \supset J_{x,f}''$ is also finite by Lemma [19.6.2] hence is $J_{x,f}$.

Proposition [19.5.3] implies that

$$(\theta^d_{\eta} \circ J)_{x,f}(x) = \sum_{J \in J_{x,f}'} m(f, \bar{J})$$

where $m(f, \bar{J})$ is the multiplicity of Z at $Z_{D',D''}^{d,\bar{J}}$. For any $\bar{J} \in J_{x,f}' \supset J_{x,f}''$, Lemma [19.6.2] shows that there is a unique $J \in J_{x,f}' \supset J_{x,f}''$ such that $\bar{J} = \text{im}(J \cap O_{D''}^{d} \rightarrow O_{D''}^{d}/O_{D''}^{d})$. Lemma [9.2.9] shows that $m(f, \bar{J}) = f(J)$. The statement follows.

A.1.

Definition A.1.1. For two coherent locally free sheaves \mathcal{F}, \mathcal{G} over a scheme S, we say that a morphism $\psi : \mathcal{F} \rightarrow \mathcal{G}$ has rank at most r if the induced morphism $\bigwedge^{r+1} \psi : \bigwedge^{r+1} \mathcal{F} \rightarrow \bigwedge^{r+1} \mathcal{G}$ is zero. In this case, we say that ψ has strictly constant rank r if the induced morphism $\bigwedge^r \psi : \bigwedge^r \mathcal{F} \rightarrow \bigwedge^r \mathcal{G}$ is nonzero at any point $s \in S$.

Lemma A.1.2. Let $\psi : M \rightarrow N$ be a morphism between finitely generated free modules over a local ring A. Put $e = \text{rank} \ N$. Then ψ has strictly constant rank r if and only if $\text{coker} \ \psi$ is free of rank $e - r$.

Proof. If ψ has strictly constant rank r, then the matrix for ψ under two bases of M, N has an $(r \times r)$-minor with determinant being a unit of A. Hence we can choose bases of M, N so that ψ has matrix

$$\begin{pmatrix} \text{Id}_{r \times r} & 0 \\ 0 & B \end{pmatrix}.$$

Since ψ has strictly constant rank r, we get $B = 0$. Hence $\text{coker} \ \psi$ is free of rank $e - r$.

If $\text{coker} \ \psi$ is free of rank $(e - r)$, then $\text{im} \ \psi$ is free of rank r, so ψ has rank at most r. Let E be the residue field of A. Then $\text{coker} (\psi \otimes E) = (\text{coker} \ \psi) \otimes E$ has dimension $(e - r)$ over E. Hence $\psi \otimes E$ has rank r. Therefore ψ has strictly constant rank r. □
Lemma A.1.3. Let S be a scheme. Let $\psi : \mathcal{F} \rightarrow \mathcal{G}$ be a morphism of coherent locally free sheaves on S. Put $g = \text{rank} \mathcal{G}$. Then ψ has strictly constant rank r if and only if $\text{coker} \psi$ is locally free of rank $g - r$.

Proof. Since $\text{coker} \psi$ is a finitely presented \mathcal{O}_S-module, it suffices to prove the statements for each stalks. This follows from Lemma A.1.2. □

Corollary A.1.4. Let $S, \psi, \mathcal{F}, \mathcal{G}$ be as in Lemma A.1.3, then the following two exact sequences split locally.

\begin{align*}
0 & \longrightarrow \ker \psi \longrightarrow \mathcal{F} \longrightarrow \text{im} \psi \longrightarrow 0, \\
0 & \longrightarrow \text{im} \psi \longrightarrow \mathcal{G} \longrightarrow \text{coker} \psi \longrightarrow 0.
\end{align*}

In particular, $\ker \psi$ and $\text{im} \psi$ are locally free.

Corollary A.1.5. Let $\mathcal{L}_1, \mathcal{L}_2$ be subbundles of a coherent locally free sheaf \mathcal{F} over a scheme S. Assume $\mathcal{L}_1, \mathcal{L}_2$ have rank n. Then the following conditions are equivalent:

(i) the morphism $\mathcal{L}_1 \rightarrow \mathcal{F}/\mathcal{L}_2$ has strictly constant rank r;
(ii) the morphism $\mathcal{L}_2 \rightarrow \mathcal{F}/\mathcal{L}_1$ has strictly constant rank r;
(iii) the morphism $\mathcal{L}_1 \oplus \mathcal{L}_2 \rightarrow \mathcal{F}$ has strictly constant rank $n + r$.

When the above conditions hold, $\mathcal{L}_1 + \mathcal{L}_2$ and $\mathcal{L}_1 \cap \mathcal{L}_2$ are subbundles of \mathcal{F}, and the four sheaves $(\mathcal{L}_1 + \mathcal{L}_2)/\mathcal{L}_1, (\mathcal{L}_1 + \mathcal{L}_2)/\mathcal{L}_2, \mathcal{L}_1/(\mathcal{L}_1 \cap \mathcal{L}_2), \mathcal{L}_2/(\mathcal{L}_1 \cap \mathcal{L}_2)$ are locally free of rank r.

References

[1] E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves. Vol. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 267, Springer-Verlag, New York, 1985. MR 770932
[2] E. Arbarello, C. de Concini, and V. G. Kac, The infinite wedge representation and the reciprocity law for algebraic curves, Theta functions—Bowdoin 1987, Part 1 (Brunswick, ME, 1987), Proc. Sympos. Pure Math., vol. 49, Amer. Math. Soc., Providence, RI, 1989, pp. 171–190. MR 1013132
[3] A. Beilinson and V. Drinfeld, Chiral algebras, American Mathematical Society Colloquium Publications, vol. 51, American Mathematical Society, Providence, RI, 2004. MR 2058353
[4] Z. Ding, Construction of certain rational functions on the moduli stack of Drinfeld shtukas, arXiv preprint arXiv:1810.08736 (2018).
[5] V. Drinfeld, Moduli varieties of F-sheaves, Funktsional. Anal. i Prilozhen. 21 (1987), no. 2, 23–41. MR 902291
[6] , Infinite-dimensional vector bundles in algebraic geometry: an introduction, The unity of mathematics, Progr. Math., vol. 244, Birkhäuser Boston, Boston, MA, 2006, pp. 263–304. MR 2181808
[7] A. Grothendieck and J. A. Dieudonné, Eléments de géométrie algébrique. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 166, Springer-Verlag, Berlin, 1971. MR 3075000
[8] R. Hartshorne, *Algebraic geometry*, Springer-Verlag, New York-Heidelberg, 1977, Graduate Texts in Mathematics, No. 52. MR 0463157

[9] M. Hochster and J. A. Eagon, *Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci*, Amer. J. Math. 93 (1971), 1020–1058. MR 0302643

[10] M. Kapranov, *Semiinfinite symmetric powers*, arXiv preprint math/0107089 (2001).

[11] M. Kashiwara, *The flag manifold of Kac-Moody Lie algebra*, Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988), Johns Hopkins Univ. Press, Baltimore, MD, 1989, pp. 161–190. MR 1463702

[12] F. Knudsen and D. Mumford, *The projectivity of the moduli space of stable curves. I. Preliminaries on “det” and “Div”*, Math. Scand. 39 (1976), no. 1, 19–55. MR 0437541

[13] L. Lafforgue, *Chtoucas de Drinfeld et conjecture de Ramanujan-Petersson*, Astérisque (1997), no. 243, ii+329. MR 1600006

[14] S. Lefschetz, *Algebraic Topology*, American Mathematical Society Colloquium Publications, v. 27, American Mathematical Society, New York, 1942. MR 0007093

[15] F. J. Plaza-Martín, *The Grassmannian of k((z)): Picard group, equations and automorphisms*, J. Math. Kyoto Univ. 40 (2000), no. 3, 567–580. MR 1794521

[16] Y. Varshavsky, *Moduli spaces of principal F-bundles*, Selecta Math. (N.S.) 10 (2004), no. 1, 131–166. MR 2061225