Calpain is required for macroautophagy in mammalian cells

Francesca Demarchi,1 Cosetta Bertoli,1 Tamara Copetti,1 Isei Tanida,2 Claudio Brancolini,3 Eeva-Liisa Eskelinen,4 and Claudio Schneider1,3

1Laboratorio Nazionale Consorzio Interuniversitario Biotecnologie, 34012 Trieste, Italy
2Department of Biochemistry, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
3Dipartimento di Scienze e Tecnologie Biomediche, Università degli Studi di Udine, 33100 Udine, Italy
4Department of Biological and Environmental Sciences, Division of Biochemistry, 00014 University of Helsinki, Helsinki, Finland

ubiquitously expressed micro- and millicalpain, which both require the calpain small 1 (CAPNS1) regulatory subunit for function, play important roles in numerous biological and pathological phenomena. We have previously shown that the product of GAS2, a gene specifically induced at growth arrest, is an inhibitor of millicalpain and that its overexpression sensitizes cells to apoptosis in a p53-dependent manner (Benetti, R., G. Del Sal, M. Monte, G. Paroni, C. Brancolini, and C. Schneider. 2001. EMBO J. 20:2702–2714). More recently, we have shown that calpain is also involved in nuclear factor κB activation and its relative prosurvival function in response to ceramide, in which calpain deficiency strengthens the proapoptotic effect of ceramide (Demarchi, F., C. Bertoli, P.A. Greer, and C. Schneider. 2005. Cell Death Differ. 12:512–522). Here, we further explore the involvement of calpain in the apoptotic switch and find that in calpain-deficient cells, autophagy is impaired with a resulting dramatic increase in apoptotic cell death. Immunostaining of the endogenous autophagosome marker LC3 and electron microscopy experiments demonstrate that autophagy is impaired in CAPNS1-deficient cells. Accordingly, the enhancement of lysosomal activity and long-lived protein degradation, which normally occur upon starvation, is also reduced. In CAPNS1-depleted cells, ectopic LC3 accumulates in early endosome-like vesicles that may represent a salvage pathway for protein degradation when autophagy is defective.

Introduction

Macroautophagy, which is usually referred to as autophagy, is responsible for degradation of the majority of intracellular proteins in mammalian cells, particularly during starvation-induced proteolysis. Cytosolic proteins, organelles, and selected regions of the nucleus can be cleared by autophagy to ensure cellular homeostasis and remove damaged or unwanted products (Klionsky, 2005). Cyttoplasmic constituents are first enclosed by a double-membrane autophagosome; next, the outer membrane of the autophagosome fuses with the lysosome, with the consequent destruction of the cargo and the inner membrane of the autophagosome by hydrolytic enzymes.

The autophagic pathway has been dissected at the molecular level in yeast, in which 27 genes, referred to as ATG, have been found to be required for autophagosome formation (Klionsky and Ohsumi, 1999; Yorimitsu and Klionsky, 2005). Two ubiquitin-like conjugation systems are involved in the process: one mediates the covalent attachment of Atg12 to Atg5, and the other mediates the conjugation of Atg8 to phosphatidylethanolamine (Ichimura et al., 2000). The resulting products, Atg12–Atg5 and Atg8-phosphatidylethanolamine, are essential for proper autophagosome formation. Only a small fraction of the Atg12–Atg5 complex localizes at the autophagic isolation membrane throughout elongation, and the complex dissociates when the phagosome is complete. On the other hand, Atg8 remains on the mature autophagosome constituting the recognized consensus marker of this structure. These two conjugation systems are highly conserved in mammalian cells. ATG5-deficient stem cells have been instrumental for demonstrating that the Atg12–Atg5 complex localizes at autophagosome precursors and plays an essential role in autophagosome formation (Mizushima et al., 2001). The production of ATG5-deficient mice has revealed that autophagy is required for neonatal...
Calpain is a regulator of adhesive contacts at days 10 and 11 as a result of severe defects in vascular development (Arthur et al., 2000). Indeed, the targeted disruption of CAPNS1 is embryonic lethal (Kroemer and Jaattela, 2005). A pivotal role for autophagy in growth control has emerged from studies on Beclin1, the mammalian homologue of ATG6. The Beclin1 gene is deleted in several types of breast cancer that are unable to activate autophagy (Liang et al., 1999) and functions as a haploinsufficient tumor suppressor gene (Yue et al., 2003). In addition to involvement in growth control, programmed autophagy plays a role in differentiation (Ghidoni et al., 1996; Lee et al., 2002) and tissue remodeling (Rusten et al., 2004). Moreover, autophagy may be artificially induced by radiation and treatment with certain drugs, including rapamycin (Noda and Ohsumi, 1998), ceramide (Scarlatti et al., 2004), arsenic trioxide (Kanzawa et al., 2003), and tamoxifen (Bursch et al., 2000); the final outcome of such induction is still a matter of debate (Kroemer and Jaattela, 2005).

The calpain family of cysteine proteases is composed of both ubiquitous and tissue-specific isoforms that share homology in their protease domain and are calcium dependent (Goll et al., 2003). The best-characterized ubiquitous calpains are the isoforms μ- and m-calpain, which are also known as calpain 1 and calpain 2, respectively. Both contain an 80-kD catalytic subunit and share a common 28-kD regulatory subunit commonly known as calpain 4 that is required for proper activity. Hereafter, calpain 4 will be referred to as calpain small 1 (CAPNS1) in accordance with the nomenclature reported at the calpain website (http://ag.arizona.edu/calpains). A homologue to CAPNS1, CAPNS2, has been described previously (Schad et al., 2002). This protein appears to be a functional equivalent to CAPNS1 in vitro; however, its in vivo function and tissue distribution are still controversial. Interestingly, ubiquitous calpains are associated with the endoplasmic reticulum and Golgi, a likely reservoir for autophagosome membranes (Hood et al., 2004), where the essential autophagy regulatory complex PI3K–Beclin also localizes (Kihara et al., 2001).

Figure 1. CAPNS1−/− MEFs lacking calpain activity are defective in autophagosome formation. (A and B) Wild-type and CAPNS1−/− MEFs were stimulated for 3 h with rapamycin or ceramide and analyzed by immunofluorescence using an anti-LC3–specific antibody and PI to stain nuclei (A). Actin was used as a loading control. (B) The ratio between the intensities of LC3II and LC3I bands is indicated below each lane. Bar, 20 μm.

Results

The lack of calpain activity is coupled to a block in autophagy

We have previously reported that calpain plays a crucial role in cell death regulation in response to ceramide. Indeed, we demonstrated that the lack of calpain activity results in a considerable survival before maternal feeding (Kuma et al., 2004). The analysis of endogenous LC3, which is one of the mammalian homologues of Atg8, and the production of transgenic mice expressing a fluorescent autophagosomal LC3 have shown that the regulation of autophagy is organ dependent and that the role of autophagy is not restricted to the starvation response (Mizushima et al., 2004).

A pivotal role for autophagy in growth control has emerged from studies on Beclin1, the mammalian homologue of ATG6. The Beclin1 gene is deleted in several types of breast cancer that are unable to activate autophagy (Liang et al., 1999) and functions as a haploinsufficient tumor suppressor gene (Yue et al., 2003). In addition to involvement in growth control, programmed autophagy plays a role in differentiation (Ghidoni et al., 1996; Lee et al., 2002) and tissue remodeling (Rusten et al., 2004). Moreover, autophagy may be artificially induced by radiation and treatment with certain drugs, including rapamycin (Noda and Ohsumi, 1998), ceramide (Scarlatti et al., 2004), arsenic trioxide (Kanzawa et al., 2003), and tamoxifen (Bursch et al., 2000); the final outcome of such induction is still a matter of debate (Kroemer and Jaattela, 2005).

The calpain family of cysteine proteases is composed of both ubiquitous and tissue-specific isoforms that share homology in their protease domain and are calcium dependent (Goll et al., 2003). The best-characterized ubiquitous calpains are the isoforms μ- and m-calpain, which are also known as calpain 1 and calpain 2, respectively. Both contain an 80-kD catalytic subunit and share a common 28-kD regulatory subunit commonly known as calpain 4 that is required for proper activity. Hereafter, calpain 4 will be referred to as calpain small 1 (CAPNS1) in accordance with the nomenclature reported at the calpain website (http://ag.arizona.edu/calpains). A homologue to CAPNS1, CAPNS2, has been described previously (Schad et al., 2002). This protein appears to be a functional equivalent to CAPNS1 in vitro; however, its in vivo function and tissue distribution are still controversial. Interestingly, ubiquitous calpains are associated with the endoplasmic reticulum and Golgi, a likely reservoir for autophagosome membranes (Hood et al., 2004), where the essential autophagy regulatory complex PI3K–Beclin also localizes (Kihara et al., 2001).

Calpain is required for normal embryonic development. Indeed, the targeted disruption of CAPNS1 is embryonic lethal at days 10 and 11 as a result of severe defects in vascular development (Arthur et al., 2000). Calpain is a regulator of adhesive complex dynamics in adherent cells (Bhatt et al., 2002); it plays an important role in osteoclastic bone resorption (Hayashi et al., 2005) and is required for phagocytosis in human neutrophils (Dewitt and Hallett, 2002).

We have become interested in calpain function because of our observation that the product of GAS2, a gene specifically induced at growth arrest, is in fact an inhibitor of millicalpain and that its overexpression sensitizes cells to apoptosis in a p53-dependent manner (Benetti et al., 2001). More recently, we have shown that calpain is also involved in NF-κB activation and in its relative prosurvival function in response to ceramide, in which calpain deficiency strengthens the proapoptotic effect of ceramide (Demarchi et al., 2005). In this study, we further explore the involvement of calpain in the apoptotic switch and find that in calpain-deficient cells, autophagy is impaired with a resulting dramatic increase in apoptotic cell death.

Figure 2. CAPNS1 depletion is coupled to a block in autophagosome formation in human cells. (A and B) U2OS cells were silenced with control siRNA or CAPNS1 siRNA and, 72 h later, were stimulated with ceramide for 3 h to trigger macroautophagy, as indicated in the figure. Afterward, the cells were fixed and decorated with anti-LC3 and PI (A) or were lysed to perform Western analysis against endogenous LC3 (B). Actin was used as a loading control; anti-CAPNS1 antibody was used to check silencing efficiency. (B) The ratio between the intensities of LC3II and LC3I bands is indicated below each lane. Bar, 20 μm.
increase in apoptotic cell death (Demarchi et al., 2005). To further investigate the involvement of calpain in the modulation of alternative types of cell death, in this study, we address the role of calpain in autophagy. LC3 is the only available specific marker to detect autophagosomes in mammalian cells (Kabeya et al., 2000).

To directly tackle the question of whether calpain is required in autophagy, we analyzed endogenous LC3 in response to ceramide and rapamycin by means of immunofluorescence in wild-type and CAPNS1−/− mouse embryonic fibroblasts (MEFs). CAPNS1−/− MEFs, which are also known as calpain 4−/− MEFs, were derived from CAPNS1 (calpain 4) knockout mice and were shown to lack calpain activity (Arthur et al., 2000). Wild-type and CAPNS1−/− MEFs were induced with each stimulus for 3 h or were left untreated. Afterward, the cells were fixed and subjected to immunofluorescence analysis with an anti-LC3 antibody. As shown in Fig. 1 A (top), wild-type MEFs are faintly labeled by anti-LC3 antibody and show a clear induction of autophagosome formation after rapamycin or ceramide treatment. On the other hand, CAPNS1−/− MEFs show a higher diffuse background that does not substantially vary after stimulation with rapamycin or ceramide (Fig. 1 A, bottom).

In a parallel experiment, rapamycin and ceramide were used to stimulate wild-type and CAPNS1−/− MEFs, and the lysates were analyzed by Western blotting to detect both cytoplasmic LC3-I and its proteolytic derivative LC3-II that preferentially associates with autophagosomal membranes (Kabeya et al., 2004). In agreement with the immunofluorescence data, both rapamycin and ceramide trigger an increase of LC3II with respect to LC3I in wild-type cells, whereas the ratio between the two LC3 forms is not considerably altered by both stimuli in CAPNS1−/− MEFs (Fig. 1 B).

The fate of endogenous LC3 upon autophagy induction was also addressed in human U2OS cells. U2OS cells were transfected with a scrambled siRNA (siRNA control) or with a CAPNS1-specific siRNA. 72 h later, autophagy was induced by a 3-h incubation with ceramide, and the cells were either fixed and analyzed by immunofluorescence or lysed and subjected to Western blot analysis. As shown in Fig. 2 A, CAPNS1 depletion prevents the formation of bona-fide autophagosomes upon induction with ceramide. Accordingly, the increase in the endogenous membrane-bound LC3II after ceramide treatment is clearly defective after CAPNS1 silencing (Fig. 2 B).

Calpain-deficient cells show a defect in lysosomal activation and long-lived protein degradation

To further assess the requirement of calpain for the autophagic process, we followed the increase of lysosomal activity occurring...
after autophagy induction by means of LysoTracker staining and FACS analysis. Wild-type and CAPNS1−/− MEFs were incubated with rapamycin for 24 h, trypsinized, stained with LysoTracker green, and analyzed by FACS. The results obtained in a typical experiment are reported in Fig. 3 (A–D). A net increase in the percentage of cells that are highly labeled with LysoTracker occurs after rapamycin treatment of wild-type MEFs (Fig. 3 C) as compared with control untreated cells (Fig. 3 A), clearly showing that rapamycin results in an increase in lysosomal activity. On the contrary, in CAPNS1−/− MEFs, rapamycin is ineffective in inducing an increase in LysoTracker fluorescence intensity (Fig. 3, compare B with D). The mean values of the percentage of cells highly labeled by LysoTracker obtained in four independent experiments are reported in Fig. 3 E. To determine whether the increase in lysosomal activity was dependent on macroautophagy induction, 3-methyladenine (3MA) was added just before stimulation with rapamycin. 3MA clearly inhibits the increase in LysoTracker staining, indicating the specificity of the induction (Fig. 3 E). Next, other autophagic stimuli, namely etoposide, starvation in Earle’s balanced salt solution (EBSS) or serum-free medium, and ceramide, were used to induce autophagy in wild-type and CAPNS1−/− MEFs using the same type of assay. As shown in Fig. 3 F, all four stimuli induce autophagy-dependent lysosomal activation after 3 h in wild-type MEFs but not in CAPNS1−/− MEFs; moreover, the increase in LysoTracker labeling is dramatically reduced upon the addition of 3MA just before induction (Fig. 3 G).

To further investigate the requirement of calpain in autophagy, we monitored long-lived protein degradation upon amino acid starvation both in wild-type and CAPNS1−/− MEFs according to standard protocols (Pattingre et al., 2003). Amino acid starvation induces an increase in bulk protein degradation in both cell lines. However, such an increase is considerably lower in calpain-deficient cells as compared with wild-type cells (Fig. 3 H). A reduction in protein degradation occurs in the presence of the inhibitor 3MA in both cell lines, indicating that although considerably reduced, autophagy may still occur in CAPNS1−/− MEFs as a consequence of amino acid starvation. Alternatively, this result might be caused by an effect of 3MA on alternative degradation pathways, as a similar effect is also observed in autophagy-defective ATG5−/− cells (Mizushima et al., 2001). Similar results were obtained by studying long-lived protein degradation upon serum starvation (Fig. 3 I), confirming the importance of calpain in activating protein degradation through the autophagic process.

Calpain is required for autophagosome formation in response to rapamycin

Electron microscopy was used to directly analyze and quantify autophagosomes in wild-type and CAPNS1−/− MEFs grown in control serum-containing medium and after autophagy induction with rapamycin or amino acid–free medium (EBSS). The morphology of early autophagic vacuole (AV [AVi]) and late AV (AVd) profiles of wild-type MEFs are shown in Fig. 4 (A and B, respectively). The quantitative results obtained are represented in Fig. 4 C.

These electron microscopy experiments demonstrate that in CAPNS1−/− MEFs, autophagosome formation is completely abolished in response to rapamycin. In the case of EBSS-induced autophagy, CAPNS1−/− MEFs do show autophagosome formation but at a substantially reduced level compared with wild-type MEFs. In this last case, as shown in Fig. S2 (available at http://www.jcb.org/cgi/content/full/jcb.200601024/DC1), the morphology of the autophagosomes is not altered in CAPNS1−/− MEFs with respect to wild-type MEFs. This led us to conclude that the mechanics of autophagosome formation are still functional in CAPNS1−/− MEFs, however severely impaired in their efficiency. The diminished accumulation of autophagosomes in CAPNS1−/− MEFs maintained in EBSS medium may therefore suggest that the dramatic reprogramming of cell functions occurring upon amino acid deprivation may also involve the activation of some autophagic pathways not strictly requiring calpain function. Alternatively, because EBSS possibly represents a stronger and broader stimulus in respect to rapamycin, residual calpain activity caused by some other calpain isoforms may be sufficient to trigger autophagy, albeit at a reduced level.

This evidence prompted us to monitor Tor activity in both cell lines before and after rapamycin treatment using S6 kinase phosphorylation as readout. The results shown in Fig. S3 (available at http://www.jcb.org/cgi/content/full/jcb.200601024/DC1) clearly indicate that Tor is active in both cell lines, where it is inhibited with similar efficiency upon rapamycin addition.
Further studies are required to define the key regulatory elements targeted by calpain for the efficient induction of autophagosome formation.

Ectopic LC3 constitutively forms discrete bodies in calpain-deficient MEFs

A widely used method to study autophagy is monitoring the redistribution of the overexpressed autophagosome marker LC3 from a mostly diffused localization to a punctuated pattern upon the addition of an autophagic stimulus. Therefore, in parallel to the studies on endogenous LC3, we monitored autophagosome formation after overexpressed GFP-LC3 localization in wild-type and CAPNS1−/− MEFs. 16 h after transfection, the cells were preincubated with the macroautophagy inhibitor 3MA or solvent alone, and ceramide was added for 3 h to induce autophagy (Scarlati et al., 2004). The cells were subsequently fixed to analyze overexpressed LC3 by fluorescence microscopy. As shown in Fig. 5 A, in wild-type MEFs, LC3 produces a mostly diffuse staining in the absence of stimulus and after 3MA treatment. After induction with ceramide, LC3 accumulates in the autophagosomes, whose formation is prevented by 3MA pretreatment, indicating the specificity of autophagy induction. However, in CAPNS1−/− MEFs, LC3 accumulates in specific bodies even under basal conditions; incubation with the autophagy inhibitor 3MA in this case does not prevent the formation of LC3 spots. In addition, the number of cells with intensely stained bodies does not substantially increase after the addition of ceramide (Fig. 5 B). Each experiment was repeated at least four times, obtaining reproducible results. For each experiment, the percentage of cells with LC3 bodies was counted, and the mean value ± SD is reported in the figure. At least 200 cells were analyzed for each independent experiment.

To further monitor autophagy induction, wild-type and CAPNS1−/− MEFs overexpressing GFP-LC3 were challenged with several stimuli that were previously used to induce autophagy, namely rapamycin (Noda and Ohsumi, 1998), amino acid–free medium (Neely et al., 1977), serum starvation (Pfeifer, 1973), and etoposide (Shimizu et al., 2004). All of the treatments triggered autophagosome formation in wild-type MEFs (Fig. 5 C) while leaving unchanged the LC3 staining pattern in CAPNS1−/− MEFs (not depicted). Altogether, these results further suggest that autophagy is impaired in cells lacking calpain activity, where overexpressed LC3 constitutively accumulates into specific bodies.

Calpain silencing is coupled to the accumulation of overexpressed LC3 in human cells

To verify whether the constitutive accumulation of ectopic LC3 into the observed specific bodies in CAPNS1−/− MEFs was a peculiarity of the cell line used or a consequence of calpain inactivation, we monitored the effect of calpain silencing by siRNA on autophagosome formation in the human osteosarcoma cell line U2OS. An ATG5-specific siRNA that has been previously described (Boya et al., 2005) was used as a tool to prevent autophagy, allowing the distinction between true autophagosomes and other undefined structures containing ectopic LC3. U2OS cells were transfected with a scrambled siRNA (siRNA control) or with a CAPNS1-specific siRNA in combination with ATG5 siRNA or an ineffective siRNA as a control.

48 h later, the cells were transfected with GFP-LC3, and, after an additional 16 h, autophagy was induced by a 3-h incubation with ceramide. The fixed cells were finally analyzed by fluorescence microscopy. As shown in Fig. 6 A, LC3 appears diffuse in control U2OS cells and, after induction with ceramide, becomes associated with autophagosomes, which are not formed by specifically inhibiting autophagy through ATG5 silencing. On the other hand, CAPNS1-silenced U2OS cells show LC3-positive bodies in the absence of stimulation, and the distribution of GFP-LC3 is not altered by ATG5 silencing. In addition, the LC3 staining pattern is not considerably affected by ceramide (Fig. 6 B).

To mark and analyze the LC3 pattern specifically in the cells where CAPNS1 is silenced, we developed an siCAPNS1-GFP p-superior plasmid (siCAPNS1-GFP) allowing the simultaneous expression of CAPNS1 siRNA and GFP. In parallel, we produced a U2OS-derivative cell line expressing HcRed-LC3 (U2OS-LC3) as a tool to study autophagy induction. U2OS-LC3 cells were transfected with a control vector (sicontrol-GFP) or with siCAPNS1-GFP plasmid; after 48 h, they were stimulated or left unstimulated with ceramide for 3 h and were fixed and analyzed by fluorescence microscopy.

As shown in Fig. 6 C, in the cells transfected with the control plasmid, HcRed-LC3 appears diffuse before induction and forms autophagosomes after ceramide treatment as expected. However, siCAPNS1-GFP–transfected cells show a punctuated LC3 pattern both in the presence and absence of ceramide stimulation. Collectively, the data obtained in U2OS cells are in agreement with the data obtained comparing wild-type
with CAPNS1−/− MEFs, demonstrating that in CAPNS1-depleted cells, overexpressed LC3 accumulates in specific bodies independently of autophagy induction.

Ectopic LC3 bodies constitutively present in CAPNS1-depleted cells are enriched in endosome markers

To investigate the identity of LC3-containing structures in CAPNS1-depleted cells, we analyzed whether overexpressed LC3 would eventually colocalize with specific endosomal markers both in control and in CAPNS1-silenced U2OS-LC3 cells. 48 h after silencing with control or CAPNS1 siRNA, autophagy was induced by ceramide together with pepstatin to inhibit lysosomal activity and freeze any eventual transient colocalization event. Thereafter, the cells were fixed and subjected to immunofluorescence against the markers LAMP-2, EEA1, and transferrin receptor and were analyzed by a confocal microscope. Representative images are shown in Fig. 7. The colocalization of LC3 with the endosomal markers was quantified using ImageJ software (colocalizer plug-in). The Pearson correlation coefficient (R) is reported near each merged image. Altogether, the data indicate that overexpressed LC3 bodies are enriched in endosome markers specifically in calpain-depleted cells.

To precisely define the identity of the LC3-positive bodies that accumulate in calpain-deficient cells, immunoelectron microscopy studies were performed. U2OS cells were transfected with GFP-LC3 and siRNA specific for CAPNS1 as described in the first section of Results and were fixed in PFA. Double labeling with GFP and LAMP-2 antibodies allowed us to detect GFP-LC3 bodies and also mark endosomes in the same experiment. As expected, GFP-LC3 partly accumulates in specific bodies, as shown in Fig. 8 (A and B). The gold particles indicating the presence of GFP-LC3 bodies (Fig. 8, large gold dots) were associated with endosome-like structures, some of which were also positive for LAMP-2 (Fig. 8; small gold dots are indicated by arrowheads). The morphology and LAMP-2 labeling pattern of GFP-LC3 structures corresponded to that of early endosome-like vesicles, clearly confirming that GFP-LC3 bodies accumulating in CAPNS1-depleted cells are not autophagosomes.
The calpain-dependent impairment of autophagy sensitizes cells to apoptosis

We have previously reported that ceramide triggers apoptosis and induces an NF-κB–dependent prosurvival pathway through calpain. Accordingly, in calpain-deficient cells, apoptosis is enhanced (Demarchi et al., 2005). In this study, we have demonstrated that calpain is required to induce autophagy in response to ceramide, etoposide, and amino acid or serum starvation. Recent studies indicate the existence of a negative cross-regulation between autophagy and apoptosis (Yu et al., 2004; Boya et al., 2005; Takacs-Vellai et al., 2005). However, there are examples of a mutual requirement between the two pathways (Camougrand et al., 2003; Martin and Baehrecke, 2004). Therefore, we decided to define the effect of the calpain-related autophagy block on apoptosis induction in the cellular systems used for this study.

Wild-type and CAPNS1−/− MEFs were incubated with the autophagy inducers etoposide, ceramide, serum-free medium, EBSS, or vinblastine for 20 h. Afterward, the cells were double labeled with annexin V and propidium iodide (PI) and were analyzed by FACS. The results obtained in a typical experiment of EBSS induction are reported in Fig. 9 (A–D). The histogram presented in Fig. 9 E summarizes the results of four independent experiments for each specific stimulus. A dramatic increase in apoptosis can be seen in calpain-deficient cells after induction with all of the stimuli, with the exception of vinblastine. Vinblastine is a microtubule-depolymerizing agent, and, although it can trigger an autophagic response, it has inhibitory functions on late autophagic events (Punnonen and Reunanen, 1990). Interestingly, we have previously reported that the toxicity of taxol, an indirect inhibitor of autophagy by virtue of its block of microtubule depolymerization, is almost comparable in wild-type and CAPNS1−/− MEFs (Demarchi et al., 2005). Collectively, the aforementioned data highlight the cytoprotective potential of autophagy in MEFs and strongly argue for a strict correlation between the impairment of autophagy in calpain-deficient cells and induction of the apoptotic switch.

To further confirm this hypothesis, a similar approach was followed using human U2OS cells silenced either with ATG5, CAPNS1-specific siRNA, or a combination of the two. 48 h after silencing, the cells were shifted to amino acid–free medium and incubated for a further 20 h to trigger autophagy. Cell death was then quantified by means of PI and annexin staining followed by FACS analysis. Fig. 10 (A–F) presents the results of a representative experiment and indicates that both ATG5 and CAPNS1 silencing sensitize U2OS cells to apoptosis induced by amino acid starvation. The mean values obtained in four independent experiments are reported in Fig. 10 G. The effect of CAPNS1 silencing is the most severe, suggesting that CAPNS1 depletion in addition to the block of autophagy also prevents other antiapoptotic mechanisms such as NF-κB activation (Demarchi et al., 2005).

Discussion

In this study, we demonstrate that calpain regulates macroautophagy in two cellular systems lacking calpain activity: MEFs derived from CAPNS1 knockout mice and CAPNS1-silenced...
The dual role of autophagy has been hypothesized that such LC3 bodies could represent a default autophagic program. As a consequence, the knockdown of autophagy could be a strategy for improving chemotherapy protocols.

Ectopic LC3 is a powerful tool to study autophagy. In this study, we confirmed that in MEFs and U2OS human osteosarcoma cells, the formation of LC3 autophagosomes is efficiently inhibited by treatment with the autophagy inhibitor 3MA and by siRNA-mediated depletion of the essential autophagy gene ATG5, respectively. However, in CAPNS1−/− MEFs and siCAPNS1-depleted cells, we observed that ectopic LC3 constitutively accumulates in the absence of any specific autophagic stimulus into cytoplasmic endosome-like bodies enriched with endosomal markers. Therefore, we hypothesize that such LC3 bodies could represent a default or salvage lysosomal pathway for protein degradation with slower clearance kinetics, which becomes manifest in a calpain-deficient cellular context. A similar pathway may be predicted for the endogenous proteins that accumulate in diseases coupled to autophagy defects.

Figure 10. Depletion of CAPNS1 results in increased apoptosis in human cells. U2OS cells were transfected with a siRNA specific for CAPNS1, ATG5, or a combination of the two. An ineffective siRNA was used as a negative control. 48 h later, the cells were shifted to amino acid-free medium for an additional 20 h, stained with PI and annexin-FITC, and analyzed by FACS. (A–F) Results of a set of representative experiments. (G) The mean of the values obtained in four independent experiments. Bars indicate the percentage of annexin-positive cells with high (h) PI staining (top right quadrant in A–F) and low (l) PI staining (bottom right quadrant in A–F). Error bars represent SEM.
Further studies are required to analyze the detailed mechanisms involving calpains in the formation of autophagosomes and in lysosomal-mediated protein degradation pathways. Given the strategic localization of milli- and microcalpain at the endoplasmic reticulum, it would be tempting to speculate that calpain may play a role in the delivery of membranes to the autophagosome. Alternatively, calpain could modulate one or more key components of the signaling networks, ultimately leading to autophagosome formation. The complete block of autophagosome formation occurring in rapamycin-treated CAPNS1−/− MEFs favors such a possibility.

Materials and methods

Chemicals and reagents
C2 ceramide, bafilomycin, pepstatin A, 3MA, rapamycin, and etoposide were purchased from Sigma-Aldrich. LipofectAMINE reagent and Oligofectamine were purchased from Invitrogen. SMARTpool for CAPNS1 silencing was obtained from Dharmacon. Micro- and millicalpain siRNAs were purchased from Santa Cruz Biotechnology, Inc.

Plasmids and constructs
HcRed-hLC3 and pGFP-hLC3 were constructed by inserting human LC3 in HcRed and pGFP plasmid, respectively. The plasmid pGFP-lLC3 was a gift from T. Yoshimori (National Institute of Genetics, Shizuoka, Japan). The plasmid siCapns1–GFP was obtained by subcloning a double-stranded oligonucleotide containing a sequence complementary to CAPNS1 siRNA into commercial pSuperior–GFP plasmid according to the manufacturer’s instructions. All constructs were checked by sequence analysis.

Cell culture
Wild-type and CAPNS1−/− MEFs (Daurdin et al., 2001) were gifts from P.A. Greer (Queen’s University, Kingston, Ontario, Canada). U2OS cells and the aforementioned mouse fibroblasts were grown in DME supplemented with 10% FCS.

Immunological procedures and quantifications
Standard protocols for immunoblotting and immunofluorescence were used. Rabbit serum raised against LC3 was provided by T. Yoshimori. Monoclonal antitransferrin receptor (OKT9) was previously described (Eskelinen et al., 2004).

Transection
Stable transfections of U2OS cells with HcRed-LC3 were performed by the Transfection software (Carl Zeiss MicroImaging, Inc.). ImageJ software (National Institutes of Health) was used to quantify the colocalization observed by immunofluorescence.

Protein degradation assay
Cells were labeled in complete medium in the presence of 1 μM valine for 18 h, washed, and incubated with cold medium for 1 h to allow the degradation of short-lived proteins. Then, after extensive washing, the medium was replaced with EBSS for 4 h in the presence or absence of 10 μM 3MA. Finally, the proteins were precipitated with TCA, and radioactivity was measured. Protein degradation was calculated as the percentage of TCA-soluble counts on total radioactivity.

Electron microscopy
Monolayers were fixed in 2% glutaraldehyde in 0.2 M Hepes, pH 7.4, for 2 h and were scraped off the dish during fixation. The pellets were embedded in Epon using routine procedures. Approximately 60-nm sections were cut and stained with uranyl acetate and lead citrate and were examined with an electron microscope (JEOL 1200EXII, JEOL). The number of AVs and AVd profiles was counted under the microscope by systematically screening the sections at 12,000× using grid squares as sampling units, as previously described (Eskelinen et al., 2004).

Online supplemental material
Online supplemental material is available at http://www.jcb.org/cgi/content/full/jcb.200601024/DC1.

We are grateful to Stefania Mazinotto for technical support, Peter Greer for providing CAPNS1−/− calpain 4−/− MEFs, and Tamotzu Yoshimori for the gifts of anti-LC3 antibody and GFP-lLC3 plasmid. We thank Francesca Scarlatti (S. Paolo Medical School, Milan, Italy) and Patrice Codogno (Institut National de la Santé et de la Recherche Médicale, Villejuif, France) for providing protocols and useful suggestions and Georgine Faulkner (The International Centre for Genetic Engineering and Biotechnology [ICGEB], Trieste, Italy) for critically revising the manuscript. We are grateful to Mauro Giacca (ICGEB), for access to FACS and the confocal microscope.

This work was supported by grants AIRC 1214, MIUR FIRB2001, and MIUR PRIN2004 to C. Schneider. C. Bertoli is a recipient of a fellowship from FIRC. T. Copetti is a student at the International School for Advanced Studies (Tries, Italy).

Submitted: 5 January 2006
Accepted: 13 October 2006

We are grateful to Stefania Mazinotto for technical support, Peter Greer for providing CAPNS1−/− calpain 4−/− MEFs, and Tamotzu Yoshimori for the gifts of anti-LC3 antibody and GFP-lLC3 plasmid. We thank Francesca Scarlatti (S. Paolo Medical School, Milan, Italy) and Patrice Codogno (Institut National de la Santé et de la Recherche Médicale, Villejuif, France) for providing protocols and useful suggestions and Georgine Faulkner (The International Centre for Genetic Engineering and Biotechnology [ICGEB], Trieste, Italy) for critically revising the manuscript. We are grateful to Mauro Giacca (ICGEB), for access to FACS and the confocal microscope.

This work was supported by grants AIRC 1214, MIUR FIRB2001, and MIUR PRIN2004 to C. Schneider. C. Bertoli is a recipient of a fellowship from FIRC. T. Copetti is a student at the International School for Advanced Studies (Tries, Italy).

Submitted: 5 January 2006
Accepted: 13 October 2006

We are grateful to Stefania Mazinotto for technical support, Peter Greer for providing CAPNS1−/− calpain 4−/− MEFs, and Tamotzu Yoshimori for the gifts of anti-LC3 antibody and GFP-lLC3 plasmid. We thank FrancescaScarlati (S. Paolo Medical School, Milan, Italy) and Patrice Codogno (Institut National de la Santé et de la Recherche Médicale, Villejuif, France) for providing protocols and useful suggestions and Georgine Faulkner (The International Centre for Genetic Engineering and Biotechnology [ICGEB], Trieste, Italy) for critically revising the manuscript. We are grateful to Mauro Giacca (ICGEB), for access to FACS and the confocal microscope.

This work was supported by grants AIRC 1214, MIUR FIRB2001, and MIUR PRIN2004 to C. Schneider. C. Bertoli is a recipient of a fellowship from FIRC. T. Copetti is a student at the International School for Advanced Studies (Tries, Italy).

Submitted: 5 January 2006
Accepted: 13 October 2006
Rusten, T.E., K. Lindmo, G. Juhasz, M. Sass, P.O. Seglen, A. Brech, and H. Stenmark. 2004. Programmed autophagy in the Drosophila fat body is induced by ecdysone through regulation of the PI3K pathway. Dev. Cell. 7:179–192.

Scarlatti, F., C. Bauvy, A. Ventritti, G. Sala, F. Cluzeaud, A. Vandewalle, R. Gijbels, and P. Codogno. 2004. Ceramide-mediated macroautophagy involves inhibition of protein kinase B and up-regulation of beclin 1. J. Biol. Chem. 279:18384–18391.

Schad, E., A. Farkas, G. Jekely, P. Tompa, and P. Friedrich. 2002. A novel human small subunit of calpains. Biochem. J. 362:383–388.

Shimizu, S., T. Kanaseki, N. Mizushima, T. Mizuta, S. Arakawa-Kobayashi, C.B. Thompson, and Y. Tsujimoto. 2004. Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat. Cell Biol. 6:1221–1228.

Sutherland, R., D. Delia, C. Schneider, R. Newman, J. Kernshead, and M. Greaves. 1981. Ubiquitous cell-surface glycoprotein on tumor cells is proliferation-associated receptor for transferrin. Proc. Natl. Acad. Sci. USA. 78:4515–4519.

Takacs-Vellai, K., T. Vellai, A. Puoti, M. Passannante, C. Wicky, A. Streit, A.L. Kovacs, and F. Muller. 2005. Inactivation of the autophagy gene bec-1 triggers apoptotic cell death in C. elegans. Curr. Biol. 15:1513–1517.

Tanabe, F., S.H. Cui, and M. Ito. 1998. Ceramide promotes calpain-mediated proteolysis of protein kinase C beta in murine polymorphonuclear leukocytes. Biochem. Biophys. Res. Commun. 242:129–133.

Turkmen, U., O. Varghese, J., G. Radhika, and A. Sarin. 2001. The role of calpain in caspase activation during etoposide induced apoptosis in T cells. Eur. J. Immunol. 31:2035–2041.

Webb, J.L., B. Ravikumar, J. Atkins, J.N. Skepper, and D.C. Rubinsztein. 2003. Alpha-Synuclein is degraded by both autophagy and the proteasome. J. Biol. Chem. 278:25009–25013.

Xu, L., and X. Deng. 2004. Tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butane induces phosphorylation of nucl- and m-calpain in association with increased secretion, cell migration, and invasion. J. Biol. Chem. 279:53683–53690.

Xue, I., G.C. Fletcher, and A.M. Tolkovsky. 1999. Autophagy is activated by apoptotic signalling in sympathetic neurons: an alternative mechanism of death execution. Mol. Cell. Neurosci. 14:180–198.

Yorimitsu, T., and D.J. Klionsky. 2005. Autophagy: molecular machinery for self-eating. Cell Death Differ. 12:1542–1552.

Yue, Z., A. Horton, M. Bravin, P.L. DeJager, F. Selimi, and N. Heintz. 2002. A novel protein complex linking the delta 2 glutamate receptor and autophagy: implications for neurodegeneration in lurcher mice. Neuron. 35:921–933.

Yue, Z., S. Jin, C. Yang, A.J. Levine, and N. Heintz. 2003. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc. Natl. Acad. Sci. USA. 100:15077–15082.