Optimising colorectal cancer screening in Shanghai, China: a modelling study

Dayna Cenin, Pei Li, Jie Wang, Lucie de Jonge, Bei Yan, Sha Tao, Iris Lansdorp-Vogelaar

ABSTRACT

Introduction To reduce the burden of colorectal cancer (CRC) in Shanghai, China, a CRC screening programme was commenced in 2013 inviting those aged 50–74 years to triennial screening with a faecal immunochemical test (FIT) and risk assessment. However, it is unknown whether this is the optimal screening strategy for this population.

We aimed to determine the optimal CRC screening programme for Shanghai in terms of benefits, burden, harms and cost-effectiveness.

Methods Using Microsimulation Screening Analysis-Colon (MISCAN-Colon), we estimated the costs and effects of the current screening programme compared with a situation without screening. Subsequently, we estimated the benefits (life years gained (LYG), burden (number of screening events, colonoscopies and false-positive tests), harms (number of colonoscopy complications and costs (Rennminbi (¥)) of screening for 324 alternative screening strategies. We compared several different age ranges, screening modalities, intervals and FIT cut-off levels. An incremental cost-effectiveness analysis determined the optimal strategy assuming a willingness-to-pay of ¥193 931 per LYG.

Results Compared with no screening, the current screening programme reduced CRC incidence by 40% (19 cases per 1000 screened individuals) and CRC mortality by 67% (7 deaths). This strategy gained 32 additional life years, increased colonoscopy demand to 1434 per 1000 individuals and cost an additional ¥199 652. The optimal screening strategy was annual testing using a validated one-sample FIT, with a cut-off of 10 μg haemoglobin per gram from ages 45 to 80 years (incremental cost-effectiveness ratio, ¥62 107). This strategy increased LYG by 0.18% and costs by 27%. Several alternative cost-effective strategies using a validated FIT offered comparable benefits to the current programme but lower burden and costs.

Conclusions Although the current screening programme in Shanghai is effective at reducing CRC incidence and mortality, the programme could be optimised using a validated FIT. When implementing CRC screening, jurisdictions with limited health resources should use a validated test.

INTRODUCTION

Colorectal cancer (CRC) is a global health issue with significant incidence and mortality, however, this burden is unevenly distributed. Due to its large population, China is a noteworthy contributor to the global burden of CRC and is expected to account for approximately 28% of CRC cases and deaths in 2018. Moreover, CRC incidence and mortality has been steadily increasing in China: between 2003 and 2011, incidence rose from 12.8 to 16.8 per 100 000, while mortality rose from 5.8 to 7.8. This, coupled with a steadily ageing population suggests the large burden of CRC is set to remain in the foreseeable future and represents a significant public health challenge for the country.

Although screening has long been established as an effective method to reduce CRC incidence and mortality, it has not yet been universally implemented. While a diverse range of CRC screening programmes have been established throughout Europe, North America and Australia, to date, very few countries in Asia have implemented such programmes. In an effort to reduce the
burden of CRC, there is a growing trend for lower incidence countries to implement organised population CRC screening, as is the case in China, where region-specific programmes are currently being implemented. However, despite the rising CRC incidence and mortality, the first consensus on organised CRC screening in China was not available until 2014.

Shanghai, one of the largest and most developed cities in China, experiences some of the highest CRC incidence and mortality in China. CRC incidence rates have increased significantly from 1973 to 2010, with the age-adjusted incidence rates increasing from 13.6 to 28.2 per 100 000 in men and 11.9 to 22.3 per 100 000 in women. To address this, the Shanghai Municipal Government implemented a community-based CRC screening programme in 2013. The programme invited individuals aged 50–74 to participate in CRC screening, offering triennial screening with a locally produced faecal immunochemical test (FIT) and a risk questionnaire. This strategy was decided on after comprehensive evaluation of the capacity of health resources of the region. The initial results of the screening programme in Shanghai and the Pudong New Area (the largest district of Shanghai) have recently been published. These results highlight several challenges for the implemented screening programme, including poor uptake of initial offer of screening, suboptimal attendance at diagnostic colonoscopy and low rates of cancer detection.

Such results call into question whether the implemented CRC screening programme is optimal for the population. Therefore, the aim of this research is to determine the optimal CRC screening programme for Shanghai in terms of benefits, burden, harms and costs. Using microsimulation modelling, we compared and assessed the performance of the current screening strategy against standardised and validated FITs, varying screening interval and screening start-age and stop-age.

METHODS
We used the Microsimulation Screening Analysis-Colon (MISCAN-Colon) model to simulate a cohort of citizens of Shanghai aged 45 years in 2013. We assessed 324 different screening strategies to determine the benefits, burden, harms and costs of screening compared with the same population without screening. Subsequently, we performed an incremental cost-effectiveness analysis to identify strategies that provide good value for money and to determine the optimal strategy from a cost-effectiveness perspective.

MISCAN-Colon
MISCAN-Colon is a well-established microsimulation model for CRC developed at the Department of Public Health, Erasmus University Medical Center. The model has been extensively described previously and is described in the model description (online supplemental file 1).

In brief, the model simulates the life-histories of a large population of individuals from birth to death, first without and then with screening for CRC. As each simulated person ages, one or more adenomas may arise and some can progress in size from small (<5 mm) to medium (6–9 mm) to large (>10 mm). Some adenomas develop into preclinical cancer and subsequently progress through cancer stages I to IV. At any time during the development of the disease, symptoms may present and CRC may be diagnosed. The introduction of screening may alter the simulated life-histories through detection and removal of adenomas or through detection of CRC at an earlier stage with a more favourable survival. By comparing the life-histories of a simulated population being screened to the corresponding life-histories in a simulated population not screened, MISCAN-Colon quantifies the effectiveness and the costs of screening.

MISCAN-Colon was adjusted to match age-specific incidence of CRC in China before the introduction of screening in 2013. Stage distribution, localisation of cancers in the colorectum and 5-year relative survival after clinical diagnosis of a cancer were based on Chinese literature (online supplemental file 2, table 1). Additional assumptions of the MISCAN-Colon model are presented in the Supplementary Methods (online supplemental file 2).

Screening strategies
In this analysis, we assessed four screening modalities: the FIT as currently offered in the Shanghai screening programme (Shanghai FIT), the Shanghai FIT coupled with the risk assessment (Shanghai FIT+RA) and a standardised and validated FIT taking either one-sample (FIT 1) or two-samples (FIT 2, at least one-sample positive). For the validated tests, we considered five different cut-off values—10, 15, 20, 30 and 40 micrograms of haemoglobin per gram faeces (µg Hb/g, table 1).

For each modality and cut-off value, we assessed multiple start ages (45, 50 or 55 years), stop ages (70, 75 or 80 years) and intervals (annual, biennial and triennial). Individuals with a positive screening test were invited to a diagnostic colonoscopy. Surveillance was based on findings at diagnostic colonoscopy in accordance with the European Society of Gastrointestinal Endoscopy Guidelines. We elected to simulated surveillance consistent with these guidelines because there is conflicting advice in China about the post diagnostic colonoscopy pathway (including when to return to screening and the surveillance pathway). and the Asia Pacific Consensus Group did not provide precise guidelines on surveillance intervals, other than to suggest that such intervals should be tailored to the risk level. In a sensitivity analysis, we assessed a surveillance pathway derived from Chinese literature (online supplemental file 2, figure 1).

We assumed 100% adherence to all screening, diagnostic and surveillance tests because this allows for the determination of the optimal benefit of CRC screening.
All strategies were compared with a situation without screening. In total, 324 unique strategies were evaluated. For each strategy, we simulated a population of 10 million 45-year-olds, with life expectancy as observed in China in 2010.26 It was assumed that no screening occurred before or after the screening start and stop ages. Individuals were followed for life, until a maximum age of 100 years, commencing in 2015.

Test characteristics

Although the Shanghai screening programme reports that it is using a qualitative FIT with a pre-set cut-off of 100 nanograms of haemoglobin per millilitre of faeces (equivalent to 20 µg Hb/g faeces),7 laboratory tests have shown that the quantity of faeces in samples and diluents of the test were not standardised, with the actual cut-off being lower than the pre-set cut-off.27 Consequently, the characteristics and actual cut-off of the Shanghai FIT remain unknown. Therefore, the test characteristics of the Shanghai FIT and the Shanghai FIT+RA (table 1 and online supplemental file 2, table 2) were fitted to the positivity and detection rates observed in the first three years of screening in Pudong New Area, the largest district of Shanghai (online supplemental file 2, table 3). Data were provided by the Pudong Centre for Disease Control (Pudong CDC).

The test characteristics of the validated FIT 1 and FIT 2 were fitted to the positivity and detection rates of advanced neoplasia observed in the first screening round of two Dutch randomised trials, which used the OC-Sensor micro (Eiken Chemical, Tokyo, Japan, table 1).28-31 To estimate the two-sample FIT test characteristics, we followed the approach described in Goede and colleagues.32 The characteristics differ to those previously presented as the natural history of the MISCAN-Colon model has been updated since this publication.33

In all instances, the sensitivity and specificity of the test characteristics were estimated so that simulated positivity rates and detection rates for (non-)advanced adenomas and cancer matched the observed rates to within 1%. The test characteristics were adjusted to take into account the effect of systematic false-positive and false-negative results.
(individuals who always test positive but do not have adenomas and/or who test negative because of adenomas which do not bleed).34

For colonoscopy, test characteristics were based on a systematic review of polyp miss rates in tandem colonoscopy studies.35 The lack of specificity of colonoscopy reflects the detection of benign hyperplastic polyps, which are not cancer precursors.36 Complications of colonoscopy were measured as the number of perforations arising from colonoscopy.37

Costs of screening, surveillance and CRC care
Costs associated with colonoscopy, polypectomy, complications from colonoscopy and costs of cancer treatment were obtained from Chinese literature (table 2).19 38–40 The costs of the Shanghai FIT, FIT 1, FIT 2 and the RA were provided by Pudong CDC. The costs of all of the FITs were based on the current reimbursement funding arrangement. These costs include the test kits, their distribution, return and analysis and expenses in marketing. We also included costs associated with colonoscopy, such as costs for following-up individuals with a positive screening test to encourage them to attend diagnostic colonoscopy and general outpatient costs.19 All costs are presented in Chinese Renminbi (RMB, ¥) and where necessary are standardised to 2019 prices using the Consumer Price Index.41

Outcomes
For all strategies, the model estimated CRC incidence, the number of CRC deaths and the number of screening, diagnostic and surveillance tests required between ages 45 and 80 years per 1000 individuals. The benefits of screening were measured as the reduction in CRC incidence and mortality and the number of life years gained (LYG) per 1000 individuals. The number of screening events and colonoscopies were taken as measures of the burden of screening and for colonoscopy, both diagnostic and surveillance colonoscopies were included. Harms of screening were measured as the number of perforations arising from colonoscopy and the number of false-positive tests (which is defined as a positive screening test followed by a colonoscopy with no clinical findings).

Cost-effectiveness analysis
We conducted a cost-effectiveness analysis from the healthcare sector perspective, and discounted both future costs and life-years using a standard annual rate of 3%.42 (undiscounted results and results discounted at 5% were also assessed). We plotted all of the screening strategies in a cost-effectiveness plane and performed an incremental cost-effectiveness analysis to see which strategies were efficient. The efficient strategy with the highest incremental cost-effectiveness ratio (ICER) below the willingness-to-pay (WTP) threshold was considered optimal. The WTP threshold was set at three times the Chinese gross domestic product per capita in 2018 (¥193 931 RMB which is equal to US$29 313)13 for one LYG.

| Table 2 Costs associated with colorectal cancer screening and treatment* |
|---------------------------------|------------------|------------------|
| Cost parameter | ¥ | Probabilistic sensitivity analysis, ranges† |
| Per quantitative FIT—one-sample‡, § | 15.00 | 7.50 to 30.00 |
| Per quantitative FIT—two-sample‡, § | 25.00 | 12.50 to 50.00 |
| Per qualitative FIT—one-sample‡, § | 13.00 | 6.50 to 26.00 |
| Per risk assessment‡ | 3.48 | 1.74 to 6.96 |
| Per positive screening test¶¶ | 15.00 | 7.50 to 30.00 |
| Per colonoscopy** | 375.30 | 187.65 to 750.60 |
| Per polypectomy†† | 654.83 | 327.42 to 1309.66|
| Per perforation of colonoscopy†† | 19 761.04 | 9880.52 to 39 522.08 |
| Treatment by stage and location§§ | | |
| Stage I CRC | 35 227.92 | 17 613.96 to 70 455.84 |
| Stage II CRC | 37 342.58 | 18 617.29 to 74 685.58 |
| Stage III CRC | 37 481.16 | 18 740.58 to 74 962.32 |
| Stage IV CRC | 38 472.04 | 19 236.02 to 76 944.08 |
| General outpatient cost¶¶ | 23.30 | 11.65 to 46.60 |

*Costs are from a health system perspective and do not include patient time costs. All costs are presented in Chinese Renminbi (¥) and are indexed to 2019 prices.41
†Ranges of 95% CIs for the costs in the probabilistic sensitivity analysis were obtained by halving and doubling the base case values. Using these ranges, the shape parameter 𝜃 and the scale parameter 𝜆 are calculated as input for the gamma-distributions.
‡Costs provided by Pudong Centre for Disease Control and are based on the current reimbursement funding arrangement.
§Costs include the test kits, their distribution, return and analysis and expenses in marketing.
¶These costs are provided to encourage those with positive screening test to attend diagnostic colonoscopy, as well as support other activities related to colonoscopy.
**Costs for colonoscopy are based on sources from China38 and includes cost of bowel preparation.40
††Costs for polypectomy is based on sources from China38 and includes costs of biochemical and pathological testing.40 This cost is in addition to the cost for colonoscopy.
‡‡Costs for perforation during colonoscopy is based on sources from China.38
§§Costs of cancer treatment are taken from the Chinese setting.19 39
¶¶Co-payment made by patients when seeing a doctor and undergoing a colonoscopy.19 CRC, colorectal cancer; FIT, faecal immunochemical test.

Sensitivity analyses
We conducted a series of sensitivity analyses to assess the robustness of our assumptions. First, due to uncertainty about the performance of the validated FIT in the Chinese population, we conducted an analysis where we adjusted the characteristics such that the sensitivity and specificity were halfway between the calibrated Shanghai FIT and the validated FITs (online supplemental file 2, table 4). Second, due to uncertainty about the actual
cost of the validated FITs, we explored the impact of varying its cost by assuming a 50% reduction and a twofold increase. All other costs were held constant. Third, quality-adjusted life years were excluded from the main analysis because at present there is no available information on these measures in the Chinese setting. Therefore, we assessed the impact of using international quality of life measurements in a sensitivity analysis (online supplemental file 2, table 5).

Fourth, we assessed the impact of an alternative surveillance pathway, derived from Chinese literature (online supplemental file 2, figure 1). Finally, we assessed the impact of reducing the WTP threshold to the Chinese gross domestic product per capita in 2018 (¥64 644 RMB which is equal to US$9771) for one LYG.

Probabilistic sensitivity analysis

In the probabilistic sensitivity analysis, we assessed the uncertainty of the test characteristics and costs for four strategies: the current programme using the Shanghai FIT+RA, the current programme using a validated two-sample FIT, the strategy that was found to be cost-effective at the WTP threshold and the strategy on the efficient frontier with similar colonoscopy demand as the existing programme. For every strategy, we performed 1000 simulations each containing different parameter values drawn from corresponding probability distributions. The test characteristics were drawn from a beta distribution and costs from a gamma distribution (table 2 and online supplemental file 2, table 6).

RESULTS

Benefits of screening

MISCAN-Colon predicted that, compared with no screening, all screening strategies reduced CRC incidence and mortality (online supplemental file 3, table S1). Undiscounted results and results discounted to 3% are presented in (online supplemental file 3, table S2A,B) and (online supplemental file 4, figure S1A,B). In a situation without screening, CRC incidence was 49 per 1000 individuals while CRC mortality was 11 per 1000 individuals. Screening reduced CRC incidence by 16%–53% (8–26 cases) and CRC mortality by 41%–79% (4–9 deaths), depending on intensity of screening (online supplemental file 3, table S1). In addition, screening gained an additional 20–39 life years (LYs). The current screening programme (triennial screening with Shanghai FIT+RA from ages 50 to 75 years) reduced CRC incidence by 19 cases (40%) and mortality by 7 deaths (67%) and gained an additional 32 LYG.

Annual screening with the Shanghai FIT+RA, from ages 45 to 80 years was the most effective strategy at reducing CRC incidence, while annual screening with the FIT 2 with a cut-off of 10 µg Hb/g from ages 45 to 80 years was the most effective at reducing CRC mortality.

Screening burden

In general, screening strategies with a shorter screening interval and a greater number of years of screening required more screening tests than strategies with longer interval for fewer years. For example, annual screening with FIT 1, with a cut-off of 40 µg Hb/g, from ages 45 to 80 years required the greatest number of screening tests (29 329 tests), while triennial screening with the Shanghai FIT+RA, from ages 55 to 70 years required the least number of screening tests (3706 tests). The current screening programme required 5346 tests.

This pattern did not hold for the number of required colonoscopies. Although triennial screening with FIT 1, with a cut-off of 40 µg Hb/g, from ages 55 to 70 years required the least number of colonoscopies (265 colonoscopies) and annual screening with the Shanghai FIT+RA, from 45 to 80 years required the greatest number of colonoscopies (2609 colonoscopies), the order of strategies between this varied greatly. The current screening programme required 1434 colonoscopies. In general, the screening strategies that used the Shanghai FIT had a substantially greater colonoscopy requirement than those using the validated tests.

Screening harms

Overall, the risk of screening related perforations was very low—ranging between 0.01 and 0.09 per 1000 individuals. Complications were proportional to the number of colonoscopies, such that those strategies with fewer colonoscopies had fewer complications. The number of false-positive tests ranged from 21 to 1971 and was generally highest for the Shanghai FITs, particularly with risk assessment.

Costs and cost-effectiveness

Without screening, the cost of diagnosing and treating colorectal cancer was ¥869 648 per 1000 individuals. Screening increased costs by 1%–66% (¥884 995–¥1 443 552). The current screening programme cost an additional ¥152 565, an increase of 18% (¥1 022 213).

Of the 324 screening strategies, 10 were on the efficient frontier (ie, considered to provide good value for money, table 3, figure 1). The efficient strategies all had a low cut-off (10–15 µg Hb/g), and were an even mix of validated one-sample and two-sample tests. Screening start age varied from a relatively short-time period (50–70) years to the longest assessed period (45–80) years, and the screening interval ranged from 1 to 3 years. All screening strategies using the Shanghai FIT, either with or without the risk assessment, were dominated.

Using a WTP threshold of ¥193 931 per LYG, the optimal screening strategy was annual testing with FIT 1, using a cut-off of 10 µg Hb/g from ages 45 to 80 years (ICER, ¥39 218). Annual screening with FIT 2, using a cut-off of 10 µg Hb/g from ages 45 to 80 years was also on the efficient frontier, but with an ICER, ¥739 677 per LYG, it would not be considered as cost-effective.
Table 3 Costs and effects (discounted at 3%) per 1000 simulated 45-year-olds for a situation without screening, the current screening programme in Shanghai and screening strategies on the efficient frontier

Screening strategy	Start-stop age	Interval	FITs	Colonoscopies	False positives	Complications	CRC incidence	CRC mortality	Life years*	Total costs*†	ICER*†
No screening	0	49	0	0.01	49	11			21 482	869 648	
Current screening programme in Shanghai											
Shanghai FIT+RA	50–75	3	5346	1434	890	0.07	30	4	21 514	1 022 213	Dominated
Cost-effective screening strategies											
FIT-1–10	50–70	3	5901	514	151	0.03	36	5	21 509	874 095	164
FIT-2–10	50–70	3	5645	652	239	0.04	33	5	21 511	884 484	4027
FIT-2–10	50–75	3	6884	744	294	0.04	31	4	21 514	904 162	7778
FIT-2–10	50–80	3	7768	795	327	0.05	30	3	21 515	917 846	14 254
FIT-1–10	45–80	2	13 519	801	334	0.05	31	3	21 517	989 444	31 130
FIT-1–10	50–80	1	20 134	986	476	0.05	28	3	21 518	1 007 490	31 660
FIT-1–15	45–80	1	26 112	846	359	0.05	29	2	21 520	1 071 462	32 309
FIT-1–10‡	45–80	1	24 054	1 104	572	0.06	27	2	21 520	1 101 071	59 218
FIT-2–15	45–80	1	23 434	1 186	635	0.06	26	2	21 521	1 225 260	302 900
FIT-2–10	45–80	1	21 214	1 456	867	0.07	24	2	21 521	1 254 847	739 677

*Results are discounted at an annual rate of 3%.
†Costs are presented in Chinese Renminbi (¥).
‡Optimal screening strategy at the willingness-to-pay threshold
 CRC, colorectal cancer; FIT, faecal immunochemical test; FIT-1–10, one sample faecal immunochemical test, 10 µg Hb/g cut-off value; FIT-1–15, one sample faecal immunochemical test, 15 µg Hb/g cut-off value; FIT-2–10, two sample faecal immunochemical test, 10 µg Hb/g cut-off value; FIT-2–15, two sample faecal immunochemical test, 15 µg Hb/g cut-off value; ICER, incremental cost-effectiveness ratio.
Sensitivity analyses

Our results were robust to changes in the validated FIT characteristics, costs, the use of international quality of life measurements and the adoption of a Chinese surveillance pathway. For all of these analyses, the validated FITs outperformed the Shanghai FIT, both with and without the risk assessment (online supplemental file 3, table S1A–E and online supplemental file 4, figure S2A–E). At the WTP threshold, the cost-effective strategies varied in terms of the test (FIT 1 and FIT 2) and cut-off, however all strategies required annual testing from ages 45 to 80 years (table 4). The Shanghai FIT+RA was on the efficient frontier when the Chinese surveillance pathway was assessed, however, with an ICER of ¥750 686, it would not be considered cost-effective.

Probabilistic sensitivity analysis

The probabilistic sensitivity analysis suggests that at the WTP threshold of ¥193 931, of the four considered strategies, the optimal screening strategy (annual screening with FIT 1, with a cut-off of 10 µg Hb/g from 45 to 80 years) is the cost-effective strategy in more than 50% of the simulations (online supplemental file 4, figure S3). Above the WTP threshold, a strategy with similar colonoscopy demand to the existing programme (annual screening with FIT 2, with a cut-off of 10 µg Hb/g from 45 to 80 years) has the highest likelihood of being cost-effective. The current programme was not cost-effective in any of the 1000 simulations.

DISCUSSION

This microsimulation analysis assessed the performance of the Shanghai FIT, with and without the use of a risk assessment, compared with the use of validated one-sample and two-sample FITs. Our results suggest that the screening tests currently used in the Shanghai screening programme are not the most cost-effective as in all instances they were outperformed by validated screening tests. Although the Shanghai tests performed similarly terms of reductions in incidence and mortality...
Table 4

Screening strategy	Cost- effective strategy (discounted at 3%) for the sensitivity analyses. Outcomes are per 1000 45-year-olds					
Test	CRC incidence	CRC mortality	Life years*	QALYs*	Total costs*†	ICER*†
FIT-1–10 F1	1144	144	26	3	21,519	60,319
FIT-2–30 F1	26,476	807	320	0.05	21,520	1,018,114
FIT-1–10 F2	21,524	1,477,922	934	0.07	21,521	2,027,847
FIT-2–30 F2	21,524	1,477,922	934	0.07	21,521	2,027,847

*Results are discounted at an annual rate of 3%.
†Costs are presented in Chinese Renminbi (¥).
CRC, colorectal cancer; FIT, faecal immunochemical test; FIT-1–10, one sample faecal immunochemical test, 10 µg Hb/g cut-off value; FIT-2–30, two sample faecal immunochemical test, 30 µg Hb/g cut-off value.

Shanghai is one of the only regions in the world to implement a triennial screening programme. This strategy was chosen after the completion of a comprehensive evaluation of the capacity of health resources of the region. This suggests that an alternative programme could be implemented if it did not exceed the demand of health services such as colonoscopy. According to our analysis, the current programme requires a colonoscopy capacity of 1434 per 1000 individuals, while our proposed cost-effective strategy reduces colonoscopy demand by approximately 30% (to 1104 colonoscopies). If colonoscopy demand was a key driver of the selection of a triennial screening programme, there are several alternatives that could be implemented. For example, while not considered to be cost-effective (ICER: ¥739,677), annual screening of individuals from 45 to 80 years with a validated, two-sample FIT, with a cut-off of 10 µg Hb/g results in a similar colonoscopy demand (1456 colonoscopies). The probabilistic sensitivity analysis shows that above the current WTP threshold, this strategy has the highest probability of being cost-effective. Alternatively, to achieve the same number of LYG (21,514 per 1000), a programme of triennial screening from 50 to 75 years with a validated, two-sample FIT, with a cut-off of 10 µg Hb/g could be implemented. This strategy would half the colonoscopy demand (to 744 colonoscopies) at an ICER of ¥7778. Other strategies could also be selected depending on desired outcomes, however, all of these alternatives use a validated FIT.

The suboptimal performance of the Shanghai screening tests is not surprising given their characteristics (Table 2). Although the sensitivity of the Shanghai screening tests is comparable to the validated screening tests, the specificity is considerably lower, especially when the risk assessment is included. Low specificity increases the rate of false-positive tests and consequently, greater numbers of individuals are unnecessarily sent for colonoscopy. This impacts the cost-effectiveness of the screening programme by increasing the burdens, harms and costs of screening. Shifting to a validated, quantitative FIT could help alleviate these issues while also providing an
opportunity to assess stool haemoglobin concentrations which have been demonstrated to be a strong predictor for future cancer risk.46

The high rate of false positivity of the screening tests used in the Shanghai screening programme has been suggested as an explanation for the low uptake of diagnostic colonoscopy.7,13 Although failure to complete an appropriate follow-up test after a positive result further undermines the benefits of screening, the situation is not unique to the Shanghai screening programme - suboptimal compliance to diagnostic colonoscopy after a positive FIT has been noted in several screening programmes.47 Compliance to diagnostic colonoscopy is complex and multidimensional.28-30 In China, the results of primary screening test, perceived severity of the disease, personal or others experiences with colonoscopy and healthcare provider recommendation have also been shown to influence compliance.49 Cultural beliefs may also play a significant role.51 This suggests that health literacy related to CRC screening could be improved.

With compliance to diagnostic colonoscopy, and participation in screening in general, already demonstrated to be low in Shanghai and other locations in China,8 the optimal screening strategy suggested by this investigation may not be optimal in practice. Screening programmes have to consider their ‘real world’ application and as the effectiveness of a FIT screening programme relies heavily on participation, the implementation of an annual screening programme over an extended 35-year period may further diminish this already low participation rate. Participation may be further diminished as a result of ‘screening fatigue’—where motivation to participate is reduced due to a false perception of decreased CRC risk after several negative screening test results.52,53 As CRC risk increases with age1,2,54 participation of older individuals is important. With Shanghai being one of the most ageing cities in China,25 it has been suggested that offering screening to those aged 75–80 is potentially warranted. Therefore, it may be pertinent to consider an alternative cost-effective strategy such as annual screening from 50 to 80 years, using a validated, one-sample FIT, with a cut-off of 10 µg Hb/g (ICER: ¥31 660) or triennial screening from 50 to 80 years, using a validated, two-sample FIT, with a cut-off of 10 µg Hb/g (ICER: ¥14 254). Choosing either of these strategies would substantially reduce both the screening burden and costs, while still achieving comparable benefits.

There are four noteworthy limitations to our research. First, there remains some uncertainty about the accuracy of test characteristics and therefore the performance of the validated FITs in the Chinese population. We therefore conducted a sensitivity analysis where we reduced the performance of the validated FITs. Our results were robust to this change in test characteristics, although there was less difference in effectiveness, the analysis produced similar results as base case. Second, we simulated surveillance in our main analysis consistent with European Society of Gastrointestinal Endoscopy Guidelines,20 because there is conflicting advice in China about the post diagnostic colonoscopy pathway, (including when to return to screening and the surveillance pathway).15 21-24 When we assumed surveillance guidelines derived from Chinese literature, our results did not change significantly. Although annual screening from 45 to 80 years with the Shanghai FIT+RA was on the efficient frontier, it was still not cost-effective. Third, we did not assess screening using colonoscopy. While colonoscopy screening could be considered advantageous over FIT screening, providing at least 10 years of screening coverage, compared with FIT, it is expensive, invasive and not without risk. Moreover, it is unlikely to become the test of choice in Shanghai for primary screening, given the very low colonoscopy uptake, even after a positive FIT, and the lack of colonoscopy capacity. Finally, there is limited information on complications arising from colonoscopy in China which likely means our results provide an underestimate of complications and their associated costs. However, given that the Shanghai FIT, both with and without the risk assessment, had higher numbers of colonoscopy, we do not feel that this would significantly alter our results. Fortunately, there is research underway to address this gap in knowledge.56

Despite these limitations, our research has important implications. First, our results suggest that the CRC screening programme in Shanghai could achieve better outcomes and costs could be reduced if the programme was to switch to using a validated screening test. Based on our results the most cost-effective strategy is annual testing with the validated one-sample FIT, using a cut-off of 10 µg Hb/g and screening from ages 45 to 80 years. Second, although the current screening programme is not considered optimal based on our results, our findings support the implementation of screening in Shanghai; even the use of suboptimal screening tests result in a reduction of CRC incidence and mortality in a cost-effective way compared with no screening (cost-effectiveness ratio=¥4801). Given the recent trend of rising CRC incidence and mortality,10-12 coupled with the expectation that the burden is set to increase as the Chinese economy grows,5,57 efforts to reduce the impact of CRC are important. Moreover, despite the use of these tests, the programme already appears to be having an impact on survival—individuals diagnosed with CRC who participated in the screening programme and were compliant with the screening policy experienced better survival outcomes compared with those who did not participate.58 While this finding should be interpreted with caution given the short follow-up time and the potential for lead time and length bias,45 it adds support to the benefits of screening in this population. Finally, our results demonstrate that screening for CRC is a highly cost-effective method of reducing the burden of CRC in Shanghai. This is particularly salient in China where out-of-pocket expenses for treating cancer have been described as ‘catastrophic’ (defined as out-of-pocket expenditure in access of 40% of annual household income) for both
newly diagnosed and end stage cancer.50, 60 This finding may be relevant to other jurisdictions with limited health resources who are considering implementing CRC screening.

CONCLUSION
Screening for CRC in Shanghai is an attractive and cost-effective option for reducing the burden of CRC. Although the current screening programme reduces both the incidence and mortality of CRC, a programme using a standardised, validated FIT could save more lives at a lower cost. In addition, addressing barriers to screening, such as poor health literacy and financial concerns, may increase participation and therefore improve the effectiveness of the screening programme.

REFERENCES
1 Ferlay J, Ervik M, Lam F. Global cancer Observatory: cancer today [online]. Lyon, France: International Agency for Research on Cancer, 2018. https://gco.iarc.fr/today
2 Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:394–424.
3 Zhu J, Tan Z, Hollis-Hansen K, et al. Epidemiological trends in colorectal cancer in China: an ecological study. Dig Dis Sci 2017;62:235–43.
4 World Health Organization. China country assessment report on ageing and health [online]. Geneva: World Health Organization, 2015, https://www.who.int/ageing/publications/china-assessment/en/
5 Ferlay J, Ervik M, Lam F. Global cancer Observatory: cancer tomorrow [online]. Lyon, France: International Agency for Research on Cancer, 2018. https://gco.iarc.fr/tomorrow
6 Schreuders EH, Ruco A, Rabeneck L, et al. Colorectal cancer screening: a global overview of existing programmes. Gut 2015;64:1637–49.
7 Gong Y, Peng P, Bao P, et al. The implementation and first-round results of a community-based colorectal cancer screening program in Shanghai, China. Oncologist 2018;23:928–35.
8 Lin G, Feng Z, Liu H, et al. Mass screening for colorectal cancer in a population of two million older adults in Guangzhou, China. Sci Rep 2019;9:10424.
9 Fang J-Y, Zheng S, Jiang B, et al. Consensus on the prevention, screening, early diagnosis and treatment of colorectal tumors in China. Chinese Society of gastroenterology, October 14-15, 2011, Shanghai, China. Gastrointest Tumors 2014:1;53–75.
10 Ferlay J, Colombet M, Bray F. Cancer incidence in five continents, CI5plus: IARC cancer base No. 9 [online]. Lyon, France: International Agency for Research on Cancer, 2018. http://ci5.iarc.fr
11 Bao P-P, Zheng Y, Wu C-X, et al. Colorectal cancer incidence in urban Shanghai, 1973-2010: an updated trend and age-period-cohort effects. BMC Cancer 2016;16:284.
12 Li H-lan, Gao Y-tang, Zheng Y, et al. [Incidence trends of colorectal cancer in urban Shanghai, 1973 - 2005]. Zhonghua Yi Xue Za Zhi 2006;43:675–9.
13 Li X, Qian M, Zhao G, et al. The performance of a community-based colorectal cancer screening program: evidence from Shanghai Pudong new area, China. Prev Med 2019;118:243–50.
14 Loeve F, Boer R, van Dorpmanen GJ, et al. The MISCAN-COLON simulation model for the evaluation of colorectal cancer screening. Comput Biomed Res 1999;32:13–33.
15 Loeve F, Boer R, van Ballegooijen M. Final report MISCAN-COLON microsimulation model for colorectal cancer: report to the National Cancer Institute Project NO. NO1-CNS5186. Rotterdam: Department of Public Health, Erasmus University, 1998.
16 van Hees F, Zauter AG, van Veldhuizen H, et al. The value of models in informing resource allocation in colorectal cancer screening: the case of the Netherlands. Gut 2015;64:1985–97.
17 Shanghai Shi Ji Bing Yu Fang Kong Zhi Zhong Xin [Shanghai Municipal Center for Disease Control and Prevention], 2015. Shanghai Shi Ji Bing Yu Fang Kong Zhi Zhong Xin [Shanghai Municipal Center for Disease Control and Prevention], 2015.
18 Gong YM, Wu C, Zhang M, Shanghai Ren Qun Jie Zhi Chang Ai Sheng Cun Lv Fen Xi [Colorectal cancer survival analysis in major areas in Shanghai China]. Zhongguo Ai Zheng Za Zhi [China Oncology] 2015;25:497–504.
19 Shanghai Shi Ji Bing Yu Fang Kong Zhi Zhong Xin [Shanghai Municipal Center for Disease Control and Prevention], 2015. Shanghai Shi Ji Bing Yu Fang Kong Zhi Zhong Xin [Shanghai Municipal Center for Disease Control and Prevention], 2016.
20 Hassan C, Quinette E, Dumonceau J-M, et al. Post-polypectomy colonoscopy surveillance: European Society of gastroenteral endoscopy (ESGE) guideline. Endoscopy 2013;45:842–51.
21 Gong YM, Yu K, Peng P, She Qu Ju Min Dan Chai Ai Da Yi Yun Ping Gu Bao Gao [Evaluation report of the first-round colorectal cancer screening program in Shanghai]. Shanghai: Shanghai Shi Ji Bing Yu Fang Kong Zhi Zhong Xin [Shanghai Municipal Center for Disease Control and Prevention], 2016.
22 Hassan C, Quinette E, Dumonceau J-M, et al. Post-polypectomy colonoscopy surveillance: European Society of gastrointestinal endoscopy (ESGE) guideline. Endoscopy 2013;45:842–51.
23 Zhonghua Yi Xue Hui Xiaou Hua Nei Jing Xue Fen Hui [Chinese Society of Digestive Endoscopy of the Chinese Medical Association], 2015. Chinese guideline on the screening and endoscopic management of early colorectal cancer (Beijing, 2014). Wei Chang Bing Xue [Chinese Journal of Gastroenterology] 2015;20:21.
23 Diagnosis And Treatment Guidelines For Colorectal Cancer Working Group. Chinese Society of clinical oncology (CSCO) diagnosis and treatment guidelines for colorectal cancer 2018 (English version). Chin J Cancer Res 2019;31:117–34.
24 Zhonghua Yi Xue Hui Nei Jing Xue Fen Hui Xiu Hua Xi Zao Ai Nei Jing Zhen Duan Yu Zhi Liao Xue Zu Zu, [Digestive Early Cancer Endoscopic Diagnostics and Treatment Groups of the Chinese Society of Digestive Endoscopyopology], Zhonghua Yi Xue Hui Xiu Hua Xue Fen Hui Xiu Hua Da Zhao LIng Xie Xue Zu Z u [Digestive System Oncology Group of Chinese Society of Gastroenterology], Zhongguo Zao Qie Jie Zhi Chang Ai Ai Qian Bian Bian Shai Chai Yu Zhen Zhi Gong Shi [Consensus on screening and diagnosis of early colorectal cancer and precancerous lesions in China], Zhongguo Shi Yong Nei Ke Za Zhi [Chinese Journal of Practical Internal Medicine] 2015;35.
25 Sung JY, Ng SC, Chan FKL, et al. An updated Asia Pacific consensus recommendations on colorectal cancer screening. Gut 2015;64:121–32.
26 Guo Wu Yuan Ren Kou Pu Cha Ban Gong Shi [Population Census Office under the State Council], Guo Jia Tong Ji Ju Xiao Hui He Jiu Ye Tong Ji Ji Si [Department of Population and Employment Statistics National Bureau of Statistics]. Zhongguo 2010 Nian Ren Kou Pu Cha Zi liao [Tabulation of the 2010 population Census of the People’s Republic of China], Table 6-4 Quan Guo Fen Nian Ling Xing Die Xie Bie Si Wiang Ren Kou Zuang Huang [Nationalwide death population by age and sex] (2009.11.1-2010.10.31) [online]. Zhongguo Tong Ji Ji Chu Ban She [China Statistics Press], 2010. Available: http://www.stats.gov.cn/english/Statisticaldata/CensusData/Rkpc2010/indexe.htm [Accessed 15 Aug 2018].
27 Li P, Zhu P, Song R, Shi Qi Zhong Mian Yi Fu Fen Bian Qian Xue Shi Yan Jian Ce Xing Neng Ping Gu [Performance evaluation of 17 abdominal biochemical tests], Jian Yan Yi Xue [Laboratory Medicine] 2019;34;.
28 Hol L, van Leerdat ME, van Balkwegnooij M, et al. Screening for colorectal cancer: randomised trial comparing guaiac-based and immunochromatological faecal occult blood testing and flexible sigmoidoscopy. Gut 2010;59:62–8.
29 Hol L, Wilschut JA, van Balkwegnooij M, et al. Screening for colorectal cancer: randomised comparison of guaiac and immunochromatological faecal occult blood testing at different cut-off levels. Br J Cancer 2009;100:1103–10.
30 van Rossum LG, van Rijn AF, Laheij RJ, et al. Random comparison of guaiac and immunochromatological faecal occult blood tests for colorectal cancer in a screening population. Gastroenterology 2008;135:82–90.
31 van Roon AHC, Wilschut JA, Hol L, et al. Diagnostic yield improves with collection of 2 samples in faecal immunochromatographic test screening without affecting attendance. Clin Gastroenterol Hepatol 2010;8:133–9.
32 Goede SL, van Roon AHC, Reijerink JCIJ, et al. Cost-effectiveness of one versus two sample faecal immunochromatographic testing for colorectal cancer screening. Gut 2013;62:727–34.
33 Rutter CM, Knudsen AB, Marsh TL, et al. Validation of models used to inform colorectal cancer screening guidelines: accuracy and implications. Med Decis Making 2016;36:604–14.
34 van der Meulen MP, Lansdorp-Vogelaar I, van Heijningen EMB, et al. Nonbleeding adenomas: evidence of systematic false-negative results and their implications for screening effectiveness-A modeling study. Cancer 2016;122:1680–8.
35 van Rijn JC, Reitsma JB, Stoker J, et al. Polyp miss rate determined by tandem colonoscopy: a systematic review. Am J Gastroenterol 2006;101:343–50.
36 Schroy PC, Coe A, Chen CA, et al. Prevalence of advanced colorectal neoplasia in white and black patients undergoing screening colonoscopy in a safety-net Hospital. Ann Intern Med 2013;159:13–20.
37 Shi X, Shan Y, Yu E, et al. Lower rate of colonoscopic perforation: 110,785 patients of colonoscopy performed by colorectal surgeons in a large teaching hospital in China. Surg Endosc 2014;28:2300–6.
38 Wang Z-H, Gao Q-Y, Fang J-Y. Repeat colonoscopy every 10 years or single colonoscopy for colorectal neoplasm screening in average-risk Chinese: a cost-effectiveness analysis. Asian Pac J Cancer Prev 2012;13:1761–6.
39 Wu Y, Jia HK, Zhu J, Da Chang Ai Bing Zhong Zhi Yuan Fei Yong Yang Xiang Yin Yu De Yan Jiu [Study on affecting factors of medical expenses of colorectal cancer]. Yi Yao Qian Yan [Medical Frontier] 2014;10:2.
40 Huang QC, Ye D, Jiang XY, et al. Cost-effectiveness analysis on colorectal cancer screening program. Zhonghua Liu Xing Bing Xue Za Zhi 2017;38:65–8.
41 Inflation Tool. Inflation calculator - Chinese Renminbi [online]. 2019. Available: https://www.inflationtool.com/chinese-renminbi [Accessed 14 Jun 2019].
42 Sanders GD, Neumann PJ, Basu A, et al. Recommendations for conduct, methodological practices, and reporting of cost-effectiveness analyses: second panel on cost-effectiveness in health and medicine. JAMA 2016;316:1093–103.
43 The World Bank Group. GDP per capita (constant LCU) - China [online]. 2019. Available: https://data.worldbank.org/country/china [Accessed 6 Jan 2020].
44 Ness RM, Holmes AM, Klein R, et al. Utility values for outcome states of colorectal cancer. Am J Gastroenterol 1999;94:1650–7.
45 Marcus P. Assessment of cancer screening: a primer. Bethesda, Maryland: National Cancer Institute (US), 2019.
46 Kooyker AI, Toes-Zoutendijk E, Opstal-van Winden AWJ, et al. The second round of the Dutch colorectal cancer screening program: impact of an increased faecal immunochemical test cut-off level on yield of screening. Int J Cancer 2020;147:1088–106.
47 Gingold-Belter R, Liebovithz H, Botlin D, et al. The compliance rate for the second diagnostic evaluation after a positive faecal occult blood test: a systematic review and meta-analysis. United European Gastroenterol J 2019;7:44.
48 Jetelina KK, Yudkin JS, Miller S, et al. Patient-reported barriers to completing a diagnostic colonoscopy following abnormal faecal immunochemical test among uninsured patients. J Gen Intern Med 2019;34:1730–6.
49 He L, Gao S, Tao S, et al. Factors associated with colonoscopy compliance based on health belief model in a community-based colorectal cancer screening program Shanghai, China. Int Q Community Health Educ 2020;41:25–33 https://pubmed.ncbi.nlm.nih.gov/31876256/.
50 Deng S-X, Gao J, An W, et al. Colorectal cancer screening behavior and willingness: an outpatient survey in China. World J Gastroenterol 2011;17:3133–9.
51 Goss PE, Strasser-Weippl K, Lee-Bychkovsky BL, et al. Challenges for effective cancer control in China, India, and Russia. Lancet Oncol 2014;15:489–538.
52 Greuter MJE, Berkhof J, Canfell K, et al. Resilience of a FIT screening programme against screening fatigue: a modelling study. BMC Public Health 2016;16:1009.
53 Marteau TM, Kinmonth AL, Thompson S, et al. The psychological impact of cardiovascular screening and intervention in primary care: a problem of false reassurance? British family heart Study Group. Br J Gen Pract 1996;46:577–82 http://www.ncbi.nlm.nih.gov/pubmed/8945794.
54 Ferlay J, Colombet M, Soerjomataram I, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 2019;144:1941–53.
55 Wu W-M, Wang Y, Jiang H-R, et al. Colorectal cancer screening modalities in Chinese population: practice and lessons in Pudong new area of Shanghai, China. Front Oncol 2019;9:399.
56 Chen H, Li N, Shi J, et al. Comparative evaluation of novel screening strategies for colorectal cancer screening in China (TARGET-C): a study protocol for a multicentre randomised controlled trial. BMJ Open 2019;9:e025935.
57 Zhang Y, Shi J, Huang H, et al. [Burden of colorectal cancer in China]. Zhonghua Liu Xing Bing Xue Za Zhi 2015;36:709–14 http://www.ncbi.nlm.nih.gov/pubmed/26564898.
58 Li X, Zhou Y, Luo Z, et al. The impact of screening on the survival of colorectal cancer in Shanghai, China: a population based study. BMC Public Health 2019;19:1016.
59 Huang H-Y, Shi J-F, Guo L-W, et al. Expenditure and financial burden for the diagnosis and treatment of colorectal cancer in China: a hospital-based, multicenter, cross-sectional survey. Chin J Cancer 2017;36:438.
60 Leng A, Jing J, Nicholas S, et al. Factors associated with colorectal cancer at the end of life: a retrospective observational study in China. BMC Palliat Care 2019;18:43.
61 Lansdorp-Vogelaar I, van Balkwegnooij M, Boer R, et al. A novel hypothesis on the sensitivity of the fecal occult blood test: results of a joint analysis of 3 randomized controlled trials. Cancer 2009;115:2410–9.
MISCAN-Colon Model Description

Table of Contents

Model Overview .. 2
Demography module ... 3
Natural history module .. 3
Screening module ... 9
Integration of the model components .. 9
Model Outputs... 11
Demography ... 11
Natural history ... 11
Screening .. 11
References ... 12

List of Figures

Figure 1: Structure of MISCAN-Colon ... 2
Figure 2: Schematic representation of the natural history module of the MISCAN-Colon model. ... 4
Figure 3: Adenoma prevalence observed in selected autopsy studies vs simulated by MISCAN-Colon (% of individuals with adenomas).* .. 5
Figure 4: CRC incidence observed before the introduction of screening vs simulated by MISCAN-Colon (total (A), stage I CRC (B), stage II CRC (C), stage III CRC (D), stage IV CRC (E); cases per 100,000 person years). .. 6
Figure 5: Distal CRC incidence observed in the intervention group of the UK Flexible Sigmoidoscopy Trial vs simulated by MISCAN-Colon (per year of follow-up (A), cumulative (B); cases per 100,000 person years). .. 8
Figure 6: Integrating modules: two example individuals (A and B). 10
Model Overview

The Microsimulation Screening Analysis-Colon (MISCAN-Colon) model is a stochastic, semi-Markov, microsimulation model that is useful in explaining and predicting trends in CRC incidence and mortality and to quantify the effects and costs of primary prevention of CRC, screening for CRC and surveillance.

The term ‘microsimulation’ implies that individuals are moved through the model one at a time (i.e. as individuals), rather than as proportions of a cohort. This allows future state transitions to depend on past transitions, giving the model a ‘memory’. Furthermore, unlike most traditional Markov models, MISCAN-Colon does not use yearly transition probabilities; instead it generates durations in states, thereby increasing model flexibility and computational performance. The term ‘stochastic’ implies that the model simulates sequences of events by drawing from distributions of probabilities/durations, rather than using fixed values. Hence, the results of the model are subject to random variation. Possible events are birth and death of a person, adenoma incidence and transitions from one state of disease to another.

At two expert meetings at the National Cancer Institute (Bethesda, Maryland, United States of America) held on June 5–7, 1996, and May 12–13, 1997, the structure of the model was devised in agreement with the currently accepted model of the adenoma–carcinoma sequence (Figure 1). MISCAN-Colon consists of 3 modules: a demography module, natural history module, and screening module (Figure 1). Although these parts are not physically separated in MISCAN-Colon, it is useful to consider them separately.

![Figure 1: Structure of MISCAN-Colon](image)

Cenin D, et al. BMJ Open 2022: 12:e048156. doi: 10.1136/bmjopen-2020-048156
Demography module

The demography module of MISCAN-Colon simulates individual life histories without colorectal cancer (CRC) to form a population. Using birth tables and life tables representative of the population under consideration, the model draws a date of birth and a date of non-CRC death for each simulated individual. The model restricts the maximum age a person can achieve to 100 years.

Natural history module

In the natural history module, MISCAN-Colon simulates the development of CRC in the population. It was assumed that all CRCs are preceded by adenomas. As each simulated individual ages, one or more adenomas may develop (Figure 2). These adenomas can be either progressive or non-progressive and both can grow in size from small (≤5 mm), to medium (6–9 mm), to large (≥10 mm). Only progressive adenomas can develop into preclinical cancer and these may progress through stages I to IV. In every stage there is a chance of the cancer being diagnosed because of symptoms. After clinical diagnosis, CRC survival is simulated using age-, stage-, and localisation-specific survival estimates for clinically diagnosed CRC obtained from a study by Rutter and colleagues. For individuals with synchronous CRCs at time of diagnosis, the survival of the most advanced cancer is used. The date of death for individuals with CRC is set to the earliest simulated death either because of CRC or because of another causes (Demography model).

The average duration between onset of a progressive adenoma and the transition to preclinical cancer was estimated based on the interval cancer rate after a once-only sigmoidoscopy in a randomized controlled trial from the United Kingdom. The duration of cancer in preclinical stages was estimated based on the results of three large randomised controlled screening trails. This resulted in the average duration of 2.5 years, 2.5 years, 3.7 years, and 1.5 years, for stages I-IV respectively, with a total average duration of 6.7 years because not every cancer reaches stage IV before clinical diagnosis. All durations were governed by an exponential probability distribution. Durations in each of the invasive cancer stages as well as durations in the stages of the non-invasive adenomas were assumed to be 100% associated with each other, but the durations in invasive stages as a whole were independent of durations in non-invasive adenoma stages that precede cancer. These assumptions resulted in an exponential distribution of the total duration of progressive non-invasive adenomas and of the total duration of preclinical cancer, which has also been used in other cancer screening models.
Figure 2: Schematic representation of the natural history module of the MISCAN-Colon model.

Abbreviations: CRC, colorectal cancer
The arrows between the states show which types of transitions can occur. In every state before death, a transition to “death from other causes” can occur (state and connect arrows not shown).

a. Cancer stages correspond to the American Joint Committee on Cancer / International Union Against Cancer staging system for CRC.

Based on expert opinion, it is assumed that 30% of the cancers arise from adenomas of 6–9 mm and that 70% arise from larger adenomas. The preclinical incidence of non-progressive adenomas that will never grow into cancer was varied until the simulated prevalence of all adenomas matched with data from autopsy studies. The size distribution of adenomas over all ages was assumed to be 73% for stages less than or equal to 5 mm, 15% for stages 6–9 mm, and 12% for stages greater than or equal to 10 mm.

An individual's risk of developing adenomas depends on the individual's age and a personal risk index. As a result most individuals will not develop adenomas, whilst others develop many.

The distribution of adenomas over the colon and rectum is assumed to equal the distribution of cancers observed before the introduction of screening. The age-specific onset of adenomas and the personal risk index were calibrated to data on the prevalence and multiplicity distribution of adenomas as observed in autopsy studies (Figure 3). The age-specific probability of adenoma-progressivity and the age- and localization-specific transition probabilities between preclinical cancer stages and between preclinical and clinical cancer

Cenin D, et al. BMJ Open 2022; 12:e048156. doi: 10.1136/bmjopen-2020-048156
stages were simultaneously calibrated to SEER data on the age-, stage-, and localization-specific incidence of CRC as observed before the introduction of screening (Figure 4).

Figure 3: Adenoma prevalence observed in selected autopsy studies vs simulated by MISCAN-Colon (% of individuals with adenomas).*

*Observed results are shown only for the 2 largest studies on which the model has been calibrated. The model has additionally been calibrated to eight other autopsy studies.
The average durations of the preclinical cancer stages were calibrated to the rates of screen-detected and interval cancers observed in randomized controlled trials evaluating screening using guaiac faecal occult blood tests.\(^{17-19}\) This exercise has been described extensively in a publication by Lansdorp-Vogelaar and colleagues.\(^3\) The average duration from the emergence of an adenoma until progression into preclinical cancer (i.e., the adenoma dwell-time) was calibrated to the rates of interval cancers (including surveillance detected cancers) observed in a randomized controlled trial evaluating once-only sigmoidoscopy screening (Figure 5).\(^2\)
Furthermore, we assume: i) an equal overall dwell-time for adenomas developing into CRC from a medium size (30% of all CRCs) and from a large size (70% of all CRCs); exponential distribution for all durations in the adenoma and preclinical cancer phase; perfect correlation for the duration in the adenoma and preclinical cancer (meaning that if a small adenoma progresses rapidly to a medium-sized adenoma, it will also progress rapidly to a large adenoma or to a preclinical cancer stage I); and absence of correlation between durations in the adenoma phase and duration in the preclinical cancer phase.

The stage-specific survival of patients with screen-detected cancer is assumed to be the same as the survival of patients with cancers clinically diagnosed in the same stage, except if screen-detection occurs in the same stage as the cancer would have been diagnosed without screening. In that case, survival is assumed to be similar to survival of one stage more favourable (i.e. stage II cancer gets stage I survival). Only if screen-detected in stage IV, we assume no possibility for within-stage shift and stage IV screen detected cancers always have the same survival as clinically diagnosed cancers in stage IV. Removal of an adenoma always prevents development of any subsequent cancer that may have arisen from this adenoma.
Figure 5: Distal CRC incidence observed in the intervention group of the UK Flexible Sigmoidoscopy Trial vs simulated by MISCAN-Colon (per year of follow-up (A), cumulative (B); cases per 100,000 person years).
Screening module

Screening interrupts the development of CRC and therefore alters some of the simulated life histories. With screening, some cancers will be prevented by the detection and removal of adenomas; other cancers will be detected in an earlier stage than with clinical diagnosis which offers a more favourable survival. In this way, screening prevents CRC incidence or CRC death. The life-years gained by screening are calculated by comparing the model-predicted life-years lived in the population with and without screening. The effects of different screening policies can be compared by applying them to identical natural histories. As seen in RCTs on guaiac faecal occult blood testing, the stage-specific survival of screen-detected CRC was more favourable compared with clinically detected CRC, even after the lead-time bias correction. We therefore assign screen-detected cancers that would have been clinically detected in the same stage the survival corresponding to a cancer that is one stage less progressive. For example, a cancer which is screen-detected in stage II, that would also have been clinically diagnosed in stage II, is assigned the survival of a clinically diagnosed stage I cancer. The only exceptions were screen-detected stage IV cancers. These cancers were always assigned the survival of a clinically diagnosed stage IV cancer.

In addition to modelling positive health effects of screening, we also model colonoscopy-related complications, over-diagnosis and over-treatment of CRC (ie, the detection and treatment of cancers that would not have been diagnosed without screening).

Integration of the model components

For each individual, the demography module of MISCAN-Colon simulates a date of birth and a date of death of other causes than CRC, creating a life history without adenomas or CRC.

In patient A in Figure 6, the natural history module generates an adenoma. This adenoma progresses into preclinical cancer (diagnosed as stage II CRC because of symptoms) and results in CRC death before non-CRC death would have occurred. However, in the screening module, a screening examination is introduced (indicated by the blue arrow). During this examination, the adenoma is detected and then removed, and both CRC and CRC death prevented. Hence, in Patient A, the positive effect of the screening intervention is indicated by the green arrow and represents the increased LYG for this patient because of screening.

Patient B also develops an adenoma, and although this adenoma does progress into preclinical cancer, Patient B would never have been diagnosed with CRC in a scenario without screening (see life history 2). However, during the simulated screening examination (blue arrow) CRC is screen-detected in stage I and for this patient, the screening results in over-diagnosis and overtreatment of CRC: in this situation, screening does not prolong life, but it
does result in additional LYs with CRC care (over-treatment) as indicated by the red arrow.

Figure 6: Integrating modules: two example individuals (A and B).
Model Outputs

The model generates the following output, both undiscounted and discounted:

Demography

1. Life-years lived in the population by calendar year and age
2. Deaths from other causes than CRC by calendar year and age

Natural history

1. CRC cases by calendar year, stage and age
2. CRC deaths by calendar year and age
3. Life-years lived with CRC by calendar year, stage and age
4. Total number of life years with surveillance for adenoma patients
5. Total number of life years with initial therapy after screen-detected or clinical invasive cancer by stage
6. Total number of life years with continuing therapy after screen-detected or clinical invasive cancer by stage
7. Total number of life years with terminal care before death from other causes by stage
8. Total number of life years with terminal care before death from CRC by stage

Screening

1. Number of invitations for screen-tests, screen-tests, diagnostic tests, surveillance and opportunistic screen tests by calendar year
2. Number of positive and negative test results per preclinical state and per year
3. Total number of life years lived, life years lost due to cancer, number of specific deaths and non-specific deaths
4. Number of screenings that prevented cancer by year of screening
5. Number of screenings that detected cancer early by year of screening
6. Number of surveillance tests that prevented cancer by year of surveillance
7. Number of surveillance tests that detected cancer early by year of surveillance
8. Number of life years gained due to screening by year of screening
References

1. Rutter CM, Knudsen AB, Marsh TL, et al. Validation of Models Used to Inform Colorectal Cancer Screening Guidelines: Accuracy and Implications. *Med. Decis. Making*. 2016.

2. Atkin WS, Edwards R, Kralj-Hans I, et al. Once-only flexible sigmoidoscopy screening in prevention of colorectal cancer: a multicentre randomised controlled trial. *Lancet*. 2010;375(9726):1624-1633.

3. Lansdorp-Vogelaar I, van Ballegooijen M, Boer R, Zauber A, Habbema JD. A novel hypothesis on the sensitivity of the fecal occult blood test: Results of a joint analysis of 3 randomized controlled trials. *Cancer*. 2009;115(11):2410-2419.

4. Gyrd-Hansen D, Sogaard J, Kronborg O. Analysis of screening data: colorectal cancer. *Int. J. Epidemiol.* 1997;26(6):1172-1181.

5. Launoy G, Smith TC, Duffy SW, Bouvier V. Colorectal cancer mass-screening: estimation of faecal occult blood test sensitivity, taking into account cancer mean sojourn time. *Int. J. Cancer*. 1997;73(2):220-224.

6. Arminski TC, McLean DW. Incidence and Distribution of Adenomatous Polyps of the Colon and Rectum Based on 1,000 Autopsy Examinations. *Dis. Colon Rectum*. 1964;7:249-261.

7. Blatt L. Polyps of the colon and rectum. *Dis. Colon Rectum*. 1961;4:277-282.

8. Bombi JA. Polyps of the colon in Barcelona, Spain. An autopsy study. *Cancer*. 1988;61(7):1472-1476.

9. Chapman I. Adenomatous polypi of large intestine: incidence and distribution. *Ann. Surg.* 1963;157:223-226.

10. Clark JC, Collan Y, Eide TJ, et al. Prevalence of polyps in an autopsy series from areas with varying incidence of large-bowel cancer. *Int. J. Cancer*. 1985;36(2):179-186.

11. Jass JR, Young PJ, Robinson EM. Predictors of presence, multiplicity, size and dysplasia of colorectal adenomas. A necropsy study in New Zealand. *Gut*. 1992;33(11):1508-1514.

12. Johannsen LG, Momsen O, Jacobsen NO. Polyps of the large intestine in Aarhus, Denmark. An autopsy study. *Scand. J. Gastroenterol*. 1989;24(7):799-806.

Cenin D, et al. *BMJ Open* 2022; 12:e048156. doi: 10.1136/bmjopen-2020-048156
13. Rickert RR, Auerbach O, Garfinkel L, Hammond EC, Frasca JM. Adenomatous lesions of the large bowel: an autopsy survey. Cancer. 1979;43(5):1847-1857.

14. Vatn MH, Stalsberg H. The prevalence of polyps of the large intestine in Oslo: an autopsy study. Cancer. 1982;49(4):819-825.

15. Williams AR, Balasooriya BA, Day DW. Polyps and cancer of the large bowel: a necropsy study in Liverpool. Gut. 1982;23(10):835-842.

16. Stoop EM, de Haan MC, de Wijkerslooth TR, et al. Participation and yield of colonoscopy versus non-cathartic CT colonography in population-based screening for colorectal cancer: a randomised controlled trial. Lancet Oncol. 2012;13(1):55-64.

17. Hardcastle JD, Chamberlain JO, Robinson MH, et al. Randomised controlled trial of faecal-occult-blood screening for colorectal cancer. The Lancet. 1996;348(9040):1472-1477.

18. Mandel JS, Church TR, Ederer F, Bond JH. Colorectal cancer mortality: effectiveness of biennial screening for fecal occult blood. J. Natl. Cancer Inst. 1999;91(5):434-437.

19. Jorgensen OD, Kronborg O, Fenger C. A randomised study of screening for colorectal cancer using faecal occult blood testing: results after 13 years and seven biennial screening rounds. Gut. 2002;50(1):29-32.

20. Kronborg O, Fenger C, Olsen J, Jorgensen OD, Sondergaard O. Randomised study of screening for colorectal cancer with faecal-occult-blood test. The Lancet. 1996;348(9040):1467-1471.

21. Warren JL, Klabunde CN, Mariotto AB, et al. Adverse events after outpatient colonoscopy in the Medicare population. Ann. Intern. Med. 2009;150(12):849-857, W152.

22. Gatto NM, Frucht H, Sundararajan V, Jacobson JS, Grann VR, Neugut AI. Risk of perforation after colonoscopy and sigmoidoscopy: a population-based study. J. Natl. Cancer Inst. 2003;95(3):230-236.

23. van Hees F, Zauber AG, Klabunde CN, Goede SL, Lansdorp-Vogelaar I, van Ballegooijen M. The appropriateness of more intensive colonoscopy screening than recommended in Medicare beneficiaries: a modeling study. JAMA Intern Med. 2014;174(10):1568-1576.
Supplementary Methods

Table of Contents

MISCAN-Colon Model Quantification ... 1
Model parameters .. 1
Demography parameters ... 1
Natural history parameters .. 1
Screening parameters ... 3
Parameters for the Sensitivity Analyses ... 7
Changes to test characteristics .. 7
Quality-adjusted life years ... 8
Chinese surveillance pathway .. 8
Parameters for the Probabilistic Sensitivity Analyses 10
References .. 11
List of Tables

Table 1: Main natural history assumptions in the MISCAN-Colon model 2

Table 2: Test characteristics of the faecal immunochemical tests and colonoscopy 4

Table 3: Positive and detection rate per 1,000 obtained by estimation and provided by Pudong CDC for the first three years of screening. ... 5

Table 4: Test characteristics of the validated faecal immunochemical tests used in the sensitivity analysis .. 7

Table 5: International utility losses associated with colorectal cancer screening and treatment ... 8

Table 6: Test characteristics including mean and ranges used in the probabilistic sensitivity analysis ... 10

List of Figures

Figure 1: Screening pathway as reported by Gong and surveillance pathway as reported in Chinese clinical practice guidelines ... 9
MISCAN-Colon Model Quantification

Model parameters

The quantification of the demography and natural history parameters in the model may vary depending on the population simulated. The following data is the description of the model quantification used in the present analysis.

Demography parameters

In these analyses, a cohort of 45 year old males or females was modelled. Life tables and birth tables were based on data from China's 6th population census in 2010 (most recent available data). Although there was no organised screening in Shanghai at this time, there was a small screening pilot project in communities of Qibao Town in Shanghai from 2008-2011. These life tables include CRC mortality and the demography part simulates mortality from causes other than CRC. However, no adjustment was made to the life tables because the percentage of CRC mortality in overall mortality is small and the data on CRCs deaths by age and sex in this setting are sparse.

Natural history parameters

Colorectal cancer incidence and mortality data was derived from data sourced from Shanghai Municipal Center for Disease Control and Prevention. The incidence of progressive adenomas was chosen to reproduce the CRC incidence by age, stage, and localisation in Shanghai. Stage-specific survival was based on data from 2015 in Shanghai. As the survival data was divided into colon and rectal cancer and MISCAN-Colon uses survival for CRC, the data was transformed into a weighted CRC survival.

The anatomic site distribution of both progressive and non-progressive adenomas and thus of preclinical and clinical cancers is assumed to be equal to the site distribution of CRCs as reported by the Shanghai Municipal Center for Disease Control and Prevention.

Table 1 contains a detailed summary of the natural history input values and data sources.
Table 1: Main natural history assumptions in the MISCAN-Colon model

Model parameter	Value	Source
Heterogeneity of risk for adenomas over the general population	Gamma distributed, mean 1, variance sex dependent	Fit to multiplicity distribution of adenomas in autopsy studies⁶⁻¹⁵ and cancer incidence from Shanghai in 2015³
Adenoma incidence per year	Age and sex dependent.	Fit to adenoma prevalence in autopsy studies⁶⁻¹⁵ Cancer incidence from Shanghai in 2015³
Probability that a new adenoma is progressive		Fit to adenoma prevalence in autopsy studies⁶⁻¹⁵ Cancer incidence from Shanghai in 2015³
Regression of adenomas	No significant regression of adenomas	Expert opinion
Mean duration of development of progressive adenomas to preclinical cancer	14 years	Estimated from randomized controlled trial of once-only sigmoidoscopy¹⁶
Average duration of preclinical cancer by stage	Stage I: 2.5 years	Estimated from FOBT trials¹⁷
	Stage II: 2.5 year	
	Stage III: 3.7 years	
	Stage IV: 1.5 year	
Mean duration of preclinical cancer	6.7 years	Estimated from FOBT trials¹⁷
Per cent of non-progressive adenomas that stay 6-9mm	25%	Fit to size distribution of adenomas in colonoscopy trial (corrected for colonoscopy sensitivity)¹⁸
Per cent of non-progressive adenomas that become 10mm or larger	75%	
Per cent of cancers that develops from 6-9mm adenoma and from 10+mm adenoma	30% develop from 6-9mm 70% develop from 10+mm	Expert opinion
Localisation distribution of adenomas and cancer	Cecum: 5.41% Ascending colon: 16.67% Transverse colon: 8.33% Descending colon: 4.62% sigmoid: 20.54% Rectosigmoid junction: 0.00% rectum: 44.43% unknown: 0.00%	Estimated from Shanghai cancer incidence in 2015³
5-year survival after clinical diagnosis of CRC	Dependent on age and stage at diagnosis, and localization	

Abbreviations: CRC, colorectal cancer; FOBT, faecal occult blood test
Screening parameters

Data and assumptions for occult blood screening

We estimated the test characteristics of the Shanghai FIT and the Shanghai FIT+RA (Table 2) so that the model predicted positivity and detection rates for advanced neoplasia are similar to those observed in the first three years of screening in Pudong (2013-2015). These observed rates were provided by the Pudong Centre for Disease Control (Table 3). The algorithm used for this estimation is the Nelder-Mead Simplex method.19 This iterative parameter search method constructs a simplex consisting of a number of sets of potential test characteristics equal to the number of test characteristics plus 1. For each set, the goodness-of-fit (GOF) is computed and a better set (in terms of GOF) replaces the worst set.20 Since the data consists of rates, the Poisson likelihood was used as the GOF during the calibration.

The test characteristics of the validated FIT 1 and FIT 2 were fitted to the positivity and detection rates of advanced neoplasia observed in the first screening round of two Dutch randomised trials, which utilised the OC-Sensor micro (Eiken Chemical, Tokyo, Japan, Table 2).21-24 To estimate the two-sample FIT test characteristics we followed the approach described in Goede and colleagues.25 The characteristics differ to those previously presented as the natural history of the MISCAN-Colon model has been updated since this publication.26

The sensitivity of the stool tests for cancer was split to take into account the variance in test sensitivity at different time points before clinical diagnosis (shortly before and longer before). It was assumed that the probability a CRC bleeds, and thus the sensitivity of stool tests for CRC, depends on the time until clinical diagnosis, hence the distinction between ‘early’ and ‘late’ preclinical CRC. This is to be expected when cancers that bleed do so increasingly over time, starting with occult blood loss and progressing to clinically visible bleeding.17 In addition, the effect of systematic false negative FIT (that is, adenomas that do not bleed) and systematic false positive (individuals who always test positive but do not have adenomas) results were taken into account.27
Table 2: Test characteristics of the faecal immunochemical tests and colonoscopy

Test	Sensitivity (%)	Specificity (%)				
	Adenoma ≤5mm	Adenoma 6-9mm	Adenoma ≥10mm	CRC early preclinical	CRC late preclinical	
Shanghai FIT b	0.0	8.7	20.3	44.6	78.9	87.4
Shanghai FIT + RA b	0.0	9.4	33.0	74.2	93.1	79.3
One-sample FIT10 c	0.0	11.0	39.4	65.5	90.0	96.1
One-sample FIT15 c	0.0	6.5	33.3	58.5	87.0	97.3
One-sample FIT20 c	0.0	5.0	29.3	52.0	83.5	97.9
One-sample FIT30 c	0.0	3.3	26.6	50.5	83.0	98.4
One-sample FIT40 c	0.0	2.6	22.1	50.0	82.5	98.7
Two-sample FIT10 c,d	0.0	16.2	63.3	75.0	93.5	94.1
Two-sample FIT15 c,d	0.0	8.9	52.7	71.0	92.0	95.7
Two-sample FIT20 c,d	0.0	7.1	46.9	66.0	90.0	98.7
Two-sample FIT30 c,d	0.0	4.6	42.5	66.5	90.5	97.4
Two-sample FIT40 c,d	0.0	4.9	12.5	66.0	90.0	97.7
Colonoscopy e,f	75.0	85.0	95.0	95.0	95.0	86.0

Abbreviations: CRC, colorectal cancer; FIT10, faecal immunochemical test; RA, risk assessment; 10 µg Hb/g faeces cut-off value; FIT15, faecal immunochemical test, 15 µg Hb/g cut-off value; FIT20, faecal immunochemical test, 20 µg Hb/g faeces cut-off value; FIT30, faecal immunochemical test, 30 µg Hb/g cut-off value; FIT40, faecal immunochemical test, 40 µg Hb/g cut-off value; µg Hb/g, micrograms of haemoglobin per gram faeces.

a. It was assumed that the probability a CRC bleeds and thus the sensitivity of a FIT for CRC depends on the time until clinical diagnosis.17

b. Specificity and sensitivity based on the positivity rates and detection rates of advanced neoplasia observed in the first screening round in Pudong, Shanghai. This data for this was provided by Pudong Centre for Disease Control. Sensitivity for adenomas smaller than 5 mm was assumed to be 0% for all tests.

c. Specificity and sensitivity based on the positivity rates and detection rates of advanced neoplasia observed in the first screening round of two Dutch randomised trials.21-24 Sensitivity for adenomas smaller than 5 mm was assumed to be 0% for all tests, at any cut-off level.

d. A two-sample FIT is considered positive when at least one-sample contains detectable blood at the specified cut-off value.

e. Specificity for colonoscopy is based on Schroy et al, 2013.28 The lack of specificity with endoscopy reflects the detection of non-adenomatous lesions, which, in the case of colonoscopy, leads to unnecessary polypectomy, which is associated with an increased risk complications.

f. Sensitivity of colonoscopy for the detection of adenomas and CRC within the reach of the endoscope was obtained from a systematic review on miss rates observed in tandem colonoscopy studies.29
Table 3: Positive and detection rate per 1,000 obtained by estimation and provided by Pudong CDC for the first three years of screening.

	Positivity rate	Detection rate for non-advanced adenomas	Detection rate for advanced adenomas	Detection rate for CRC				
	Observed (95% CI)	Estimated b						
Shanghai FIT	145.26 (144.06–146.47)	145.32	25.05 (24.15–25.98)	25.07	17.51 (16.76–18.29)	17.52	3.63 (3.29–4.00)	3.63
Shanghai FIT+RA	231.37 (229.94–232.82)	231.37	38.32 (37.06–39.61)	38.32	25.82 (24.79–26.88)	25.82	4.80 (4.36–5.27)	4.79

Abbreviations: CRC, colorectal cancer; FIT, faecal immunochemical test; RA, risk assessment; CI, confidence interval.

a. The observed positivity rate is determined as the total number of positive tests divided by the total number of participants using the specific screening test. In case of the Shanghai FIT+RA, this screening test was considered positive when both Shanghai FIT and the risk assessment were positive. The total number of participants consists of only participants for the Shanghai FIT or only participants for both the Shanghai FIT and the risk assessment.

b. The estimated positivity and detection rates are obtained by the Nelder-Mead Simplex method as explained in the methods section.

c. The observed detection rates were determined by multiplying the observed positivity rate with the positive predictive value to correct for the assumed 100% adherence in the model estimation.
Data and assumptions for colonoscopy

For colonoscopy procedures the caecal intubation rate was assumed to be 95%.30-32 The percentage of the population without adenomas or cancer but with hyperplastic polyps, lipomas, or other lesions that lead to polypectomy and pathology after colonoscopy (colonoscopy lack of specificity) has been estimated as 16%.28 This percentage was assumed to be independent of the screening round. The sensitivity for each lesion within reach was based on back-to-back colonoscopy studies increasing from 75% for small adenomas (≤5 mm) to 85% for medium-sized adenomas (6-9 mm) and to 95% for large adenomas (≥10 mm) and CRC.29 At detection, lesions are removed immediately.

Risks of complications reported in organised screening programs33-35 are lower than those reported for general practice colonoscopies.36,37 The major complications of colonoscopy are perforations (which can occur with or without polypectomy), serosal burns, bleeds requiring transfusion and bleeds not requiring transfusion.33-37 For the purposes of this analysis, complications are conditional on polypectomy,38 and we assume that polypectomy is only performed if colonoscopy is positive.

Information on complications arising from colonoscopy are scarce in China. One study reported 14 perforations associated with polypectomy out of 110,785 colonoscopies over a 12 year period (rate of perforation equals 0.012%).39 Another found 99 bleeding events associated with 15,553 polypectomies performed in 5,600 patients.40 Unfortunately this research did not report how many individuals experienced bleeding and therefore it could not be used in our analysis. We were unable to find any information of deaths associated with colonoscopy. Therefore we did not report rates of death or bleeding. Fortunately, there is research underway to address this gap in knowledge.41 Complications of colonoscopy were based on hospital admissions within 30 days of index colonoscopy.

Follow-up and surveillance

For all strategies, it was assumed that after a positive stool test result, a diagnostic colonoscopy was offered. Adenomas identified at diagnostic colonoscopies were removed and the individual entered colonoscopy surveillance at intervals dependent on adenoma findings consistent with European Society of Gastrointestinal Endoscopy Guidelines.42 Individuals with low risk findings (less than 3 low risk (i.e. less than 10mm) adenomas at primary screening) did not receive any surveillance while individuals with high-risk findings were offered surveillance with colonoscopy after three years, and thereafter repeated colonoscopies with
intervals of three to five years depending on the findings. It was assumed that surveillance stopped at 80 years of age.

Parameters for the Sensitivity Analyses

Changes to test characteristics

We conducted a series of sensitivity analyses to assess the robustness of our assumptions. Due to uncertainty about the performance of the validated FIT in the Chinese population, we conducted an analysis where we adjusted the characteristics such that the sensitivity and specificity were halfway between calibrated Shanghai FIT and validated FITs (Table 4).

Table 4: Test characteristics of the validated faecal immunochemical tests used in the sensitivity analysis

Test	Adenoma ≤5mm	Adenoma 6-9mm	Adenoma ≥10mm	CRC early preclinical	CRC late preclinical	Specificity (%)
One sample FIT10	12.4	9.9	29.9	54.8	84.5	91.7
One sample FIT15	8.8	7.6	26.8	51.6	83.0	92.3
One sample FIT20	7.9	6.8	24.8	48.3	81.2	92.7
One sample FIT30	6.6	6.0	23.4	47.6	81.0	92.9
One sample FIT40	6.1	5.6	9.9	47.3	80.7	93.1
Two sample FIT10	12.4	12.4	41.8	59.8	86.2	90.8
Two sample FIT15	8.8	8.8	36.5	57.8	85.5	91.6
Two sample FIT20	7.9	7.9	33.6	55.3	84.5	92.0
Two sample FIT30	6.6	6.6	31.4	55.6	84.7	92.4
Two sample FIT40	6.1	6.1	12.4	55.3	84.5	92.6

Abbreviations: CRC = colorectal cancer; FIT10 = faecal immunochemical test, 10 µg Hb/g faeces cut-off value; FIT15 = faecal immunochemical test, 15 µg Hb/g cut-off value; FIT20 = faecal immunochemical test, 20 µg Hb/g faeces cut-off value; FIT30 = faecal immunochemical test, 30 µg Hb/g cut-off value; FIT40 = faecal immunochemical test, 40 µg Hb/g cut-off value; µg Hb/g = micrograms of haemoglobin per gram faeces

a. It was assumed that the probability a CRC bleeds and thus the sensitivity of a FIT for CRC depends on the time until clinical diagnosis.17

b. Original specificity and sensitivity based on the positivity rates and detection rates of advanced neoplasia observed in the first screening round of two Dutch randomised trials.21,24 This was then adjusted so that it was halfway between this and the specificity and sensitivity of the Shanghai FIT. Sensitivity for adenomas smaller than 5 mm was assumed to be 0% for all tests, at any cut-off level.

c. A two sample FIT is considered positive when at least one sample contains detectable blood at the specified cut-off value.
Quality-adjusted life years

As information on quality-adjusted life years is scarce in the Chinese setting, they were excluded from the main analysis. Therefore, we assessed the impact of utilising international quality of life measurements in a sensitivity analysis (Table 5).

Table 5: International utility losses associated with colorectal cancer screening and treatment

Per FIT	0			
Per colonoscopy	0.00274			
Per perforation during colonoscopy	0.00548			
Per LY with CRC Care d,e	Initial Care	Continuing Care	Terminal care (Death CRC)	Terminal care (Death OC)
Stage I	0.12	0.05	0.70	0.05
Stage II	0.18	0.05	0.70	0.05
Stage III	0.24	0.24	0.70	0.24
Stage IV	0.70	0.70	0.70	0.70

Abbreviations: CRC, Colorectal Cancer; FIT, faecal immunochemical test; OC, Other Cause; LY, Life Year
a. The loss of quality of life associated with a particular event.
b. Equal to 2 days per colonoscopy at a utility of 0.5.
c. Perforations associated with colonoscopy were assumed to be equal to 4 days at a utility of 0.5.
d. Care for CRC was divided in three clinically relevant phases: the initial, continuing, and terminal care phase. The initial care phase was defined as the first 12 months after diagnosis; the terminal care phase was defined as the final 12 months of life; the continuing care phase was defined as all months in between. In the terminal care phase, we distinguished between CRC patients dying from CRC and CRC patients dying from another cause. For patients surviving less than 24 months, the final 12 months were allocated to the terminal care phase and the remaining months were allocated to the initial care phase.
e. Utility losses for LYs with initial care were derived from a study by Ness and colleagues. For LYs with continuing care for stage III and IV CRC, we assumed the corresponding utility losses for LYs with initial care. For LYs with terminal care for CRC, we assumed the utility loss for LYs with initial care for stage IV CRC. For LYs with terminal care for another cause, we assumed the corresponding utility losses for LYs with continuing care.

Chinese surveillance pathway

Although there is conflicting advice in China about the post diagnostic colonoscopy pathway (including when to return to screening and the surveillance pathway), we assessed the impact of following a surveillance pathway derived from Chinese literature (Figure 1).
Figure 1: Screening pathway as reported by Gong44 and surveillance pathway as reported in Chinese clinical practice guidelines45

Note: In the sensitivity analysis, the surveillance interval used after finding a low risk adenoma is 3 years and after finding a middle risk adenoma is 2 years.
Parameters for the Probabilistic Sensitivity Analyses

Table 6: Test characteristics including mean and ranges used in the probabilistic sensitivity analysis.

	Shanghai FIT + RA Mean	One-sample FIT10 Mean	Two-sample FIT10 Mean	Two-sample FIT20 Mean
	Range	Range	Range	Range
Sensitivity (%)				
Adenoma 6-9mm	9.4 [9.2; 9.5]	11.0 [10.2; 11.9]	16.2 [15.1; 17.3]	7.1 [6.4; 7.7]
Adenoma ≥10mm	33.0 [32.4; 33.5]	39.4 [37.5; 41.4]	63.3 [61.1; 65.6]	46.9 [44.6; 49.1]
CRC early preclinical	74.2 [72.4; 76.0]	65.5 [59.2; 70.8]	75.0 [69.9; 80.1]	66.0 [60.5; 71.5]
CRC late preclinical	93.1 [91.9; 94.2]	90.0 [85.7; 94.3]	93.5 [90.3; 96.7]	90.0 [86.0; 94.0]
Specificity (%)				
	79.3 [79.3; 79.4]	96.1 [95.9; 96.3]	94.1 [93.9; 94.4]	96.7 [96.5; 96.9]
Probability of systematic test result for (%)a				
False positive	1.27 [1.27; 1.27]	1.27 [1.22; 1.32]	1.27 [1.23; 1.31]	1.27 [1.22; 1.32]
Adenoma 6-9mm	73.1 [73.0; 73.2]	73.1 [72.7; 73.5]	73.1 [72.7; 73.5]	73.1 [72.7; 73.5]
Adenoma ≥10mm	26.0 [26.0; 26.0]	26.0 [25.8; 26.2]	26.0 [25.8; 26.2]	26.0 [25.8; 26.2]

Abbreviations: CRC, colorectal cancer; FIT, faecal immunochemical test; RA, risk-assessment; FIT10, faecal immunochemical test, 10 µg Hb/g faeces cut-off value; FIT20, faecal immunochemical test, 20 µg Hb/g faeces cut-off value; µg Hb/g, micrograms of haemoglobin per gram faeces.

- a. The test characteristics were adjusted to take into account the effect of systematic false-positive and false-negative results (individuals who always test positive but do not have adenomas or who test negative because of adenomas which do not bleed). Ranges of the 95% confidence intervals differ between the tests due to different numbers of positive/negative tests and adenomas and/or CRCs detected.
- b. Ranges of the 95% confidence intervals for the test characteristics in the probabilistic sensitivity analyses are approximated using the binomial distribution, with p the probability of success (i.e. finding a lesion, or a positive/negative result) and n, the number of experiments (i.e. total number of lesions available, or total number of positive/negative tests). Using the formula \(\sigma = \sqrt{npr} \), we were able to compute ranges for the test characteristics and using these ranges, the two shape parameters \(\alpha \) and \(\beta \) for the beta-distribution.
References

1. Guo Wu Yuan Ren Kou Pu Cha Ban Gong Shi [Population Census Office under the State Council], Guo Jia Tong Ji Ju Ren Kou He Jiu Ye Tong Ji Si [Department of Population and Employment Statistics National Bureau of Statistics]. Zhongguo 2010 Nian Ren Kou Pu Cha Zi liao [Tabulation of the 2010 population Census of the People's Republic of China]. Table 6-4 Quan Guo Fen Nian Ling Xing Bie De Si Wnag Ren Kou Zhuang Kuang [Nationwide death population by age and sex] (2009.11.1-2010.10.31). [Internet]. 2010; [http://www.stats.gov.cn/english/Statisticaldata/CensusData/rkpc2010/indexce.htm]. Accessed 15 August, 2018.

2. Zheng Y, Gong YM, Gu K, et al. Shanghai Shi She Qu Ju Min Da Chang Ai Shai Cha Xiang Mu [Community colorectal cancer screening program in Shanghai]. Shanghai Yu Fang Yi Xue [Shanghai Journal of Preventive Medicine]. 2016;28(10):4.

3. Shanghai Shi Ji Bing Yu Fang Kong Zhi Zhong Xin [Shanghai Municipal Center for Disease Control and Prevention]. 2015 Shanghai Shi E Xing Zhong Liu Bao Gao [Shanghai Cancer Report 2015]. Shanghai: Shanghai Shi Ji Bing Yu Fang Kong Zhi Zhong Xin [Shanghai Municipal Center for Disease Control and Prevention];2015.

4. Gong YM, Wu C, Zhang M, et al. Shanghai Ren Qun Jie Zhi Chang Ai Sheng Cun Lv Fen Xi [Colorectal cancer survival analysis in major areas in Shanghai China]. Zhongguo Ai Zheng Za Zhi [China Oncology]. 2015;25(7):497-504.

5. Shanghai Shi Ji Bing Yu Fang Kong Zhi Zhong Xin [Shanghai Municipal Center for Disease Control and Prevention]. Shanghai Shi She Qu Ju Min Da Chang Ai Shai Cha Di Yi Lun Ping Gu Bao Gao [Evaluation report of the first-round colorectal cancer screening program in Shanghai]. Shanghai: Shanghai Shi Ji Bing Yu Fang Kong Zhi Zhong Xin [Shanghai Municipal Center for Disease Control and Prevention];2016.

6. Arminski TC, McLean DW. Incidence and Distribution of Adenomatous Polyps of the Colon and Rectum Based on 1,000 Autopsy Examinations. Dis. Colon Rectum. 1964;7:249-261.

7. Bombi JA. Polyps of the colon in Barcelona, Spain. An autopsy study. Cancer. 1988;61(7):1472-1476.

8. Chapman I. Adenomatous polypi of large intestine: incidence and distribution. Ann. Surg. 1963;157:223-226.
9. Clark JC, Collan Y, Eide TJ, et al. Prevalence of polyps in an autopsy series from areas with varying incidence of large-bowel cancer. *Int. J. Cancer.* 1985;36(2):179-186.

10. Jass JR, Young PJ, Robinson EM. Predictors of presence, multiplicity, size and dysplasia of colorectal adenomas. A necropsy study in New Zealand. *Gut.* 1992;33(11):1508-1514.

11. Johannsen LG, Momsen O, Jacobsen NO. Polyps of the large intestine in Aarhus, Denmark. An autopsy study. *Scand. J. Gastroenterol.* 1989;24(7):799-806.

12. Rickert RR, Auerbach O, Garfinkel L, Hammond EC, Frasca JM. Adenomatous lesions of the large bowel: an autopsy survey. *Cancer.* 1979;43(5):1847-1857.

13. Vatn MH, Stalsberg H. The prevalence of polyps of the large intestine in Oslo: an autopsy study. *Cancer.* 1982;49(4):819-825.

14. Williams AR, Balasooriya BA, Day DW. Polyps and cancer of the large bowel: a necropsy study in Liverpool. *Gut.* 1982;23(10):835-842.

15. Blatt L. Polyps of the colon and rectum. *Dis. Colon Rectum.* 1961;4:277-282.

16. Atkin WS, Edwards R, Kralj-Hans I, et al. Once-only flexible sigmoidoscopy screening in prevention of colorectal cancer: a multicentre randomised controlled trial. *Lancet.* 2010;375(9726):1624-1633.

17. Lansdorp-Vogelaar I, van Ballegooijen M, Boer R, Zauber A, Habbema JD. A novel hypothesis on the sensitivity of the fecal occult blood test: Results of a joint analysis of 3 randomized controlled trials. *Cancer.* 2009;115(11):2410-2419.

18. Stoop EM, de Haan MC, de Wijkerslooth TR, et al. Participation and yield of colonoscopy versus non-cathartic CT colonography in population-based screening for colorectal cancer: a randomised controlled trial. *Lancet Oncol.* 2012;13(1):55-64.

19. Nelder JA, Mead R. A simplex method for function minimization. *The computer journal.* 1965;7(4):308-313.

20. van der Steen A, van Rosmalen J, Kroep S, et al. Calibrating parameters for microsimulation disease models: a review and comparison of different goodness-of-fit criteria. *Medical Decision Making.* 2016;36(5):652-665.

21. Hol L, van Leerdam ME, van Ballegooijen M, et al. Screening for colorectal cancer: randomised trial comparing guaiac-based and immunochemical faecal occult blood testing.
and flexible sigmoidoscopy. Gut. 2010;59(1):62-68.

22. Hol L, Wilschut JA, van Ballegooijen M, et al. Screening for colorectal cancer: random comparison of guaiac and immunochemical faecal occult blood testing at different cut-off levels. Br. J. Cancer. 2009;100(7):1103-1110.

23. van Rossum LG, van Rijn AF, Laheij RJ, et al. Random comparison of guaiac and immunochemical fecal occult blood tests for colorectal cancer in a screening population. Gastroenterology. 2008;135(1):82-90.

24. van Roon AH, Wilschut JA, Hol L, et al. Diagnostic yield improves with collection of 2 samples in fecal immunochemical test screening without affecting attendance. Clin Gastroenterol Hepatol. 2011;9(4):333-339.

25. Goede SL, van Roon AH, Reijerink JC, et al. Cost-effectiveness of one versus two sample faecal immunochemical testing for colorectal cancer screening. Gut. 2013;62(5):727-734.

26. Rutter CM, Knudsen AB, Marsh TL, et al. Validation of Models Used to Inform Colorectal Cancer Screening Guidelines: Accuracy and Implications. Med. Decis. Making. 2016.

27. van der Meulen MP, Lansdorp-Vogelaar I, van Heijningen EM, Kuipers EJ, van Ballegooijen M. Nonbleeding adenomas: Evidence of systematic false-negative fecal immunochemical test results and their implications for screening effectiveness - A modeling study. Cancer. 2016;122(11):1680-1688.

28. Schroy PC, 3rd, Coe A, Chen CA, O'Brien MJ, Heeren TC. Prevalence of advanced colorectal neoplasia in white and black patients undergoing screening colonoscopy in a safety-net hospital. Ann. Intern. Med. 2013;159(1):13-20.

29. van Rijn JC, Reitsma JB, Stoker J, Bossuyt PM, van Deventer SJ, Dekker E. Polyp miss rate determined by tandem colonoscopy: a systematic review. Am J Gastroenterol. 2006;101(2):343-350.

30. Aslinia F, Uradomo L, Steele A, Greenwald BD, Kaufman JP. Quality assessment of colonoscopic cecal intubation: an analysis of 6 years of continuous practice at a university hospital. Am. J. Gastroenterol. 2006;101(4):721-731.

31. Cotterill M, Gasparelli R, Kirby E. Colorectal cancer detection in a rural community. Development of a colonoscopy screening program. Can. Fam. Physician. 2005;51:1224-
1228.

32. Rex DK, Bond JH, Winawer S, et al. Quality in the technical performance of colonoscopy and the continuous quality improvement process for colonoscopy: recommendations of the U.S. Multi-Society Task Force on Colorectal Cancer. Am. J. Gastroenterol. 2002;97(6):1296-1308.

33. Lieberman DA, Weiss DG, Bond JH, Ahnen DJ, Garewal H, Chejfec G. Use of colonoscopy to screen asymptomatic adults for colorectal cancer. Veterans Affairs Cooperative Study Group 380. N. Engl. J. Med. 2000;343(3):162-168.

34. Pox C, Schmiegel W, Classen M. Current status of screening colonoscopy in Europe and in the United States. Endoscopy. 2007;39(2):168-173.

35. Regula J, Rupinski M, Kraszewska E, et al. Colonoscopy in colorectal-cancer screening for detection of advanced neoplasia. N. Engl. J. Med. 2006;355(18):1863-1872.

36. Levin TR, Conell C, Shapiro JA, Chazan SG, Nadel MR, Selby JV. Complications of screening flexible sigmoidoscopy. Gastroenterology. 2002;123(6):1786-1792.

37. Levin TR, Zhao W, Conell C, et al. Complications of colonoscopy in an integrated health care delivery system. Ann. Intern. Med. 2006;145(12):880-886.

38. Warren JL, Klabunde CN, Mariotto AB, et al. Adverse events after outpatient colonoscopy in the Medicare population. Ann. Intern. Med. 2009;150(12):849-857, W152.

39. Shi X, Shan Y, Yu E, et al. Lower rate of colonoscopic perforation: 110,785 patients of colonoscopy performed by colorectal surgeons in a large teaching hospital in China. Surg. Endosc. 2014;28(8):2309-2316.

40. Zhang Q, An S, Chen Z, et al. Assessment of risk factors for delayed colonic post-polypectomy hemorrhage: a study of 15553 polypectomies from 2005 to 2013. PLoS One. 2014;9(10):e108290.

41. Chen H, Li N, Shi J, et al. Comparative evaluation of novel screening strategies for colorectal cancer screening in China (TARGET-C): a study protocol for a multicentre randomised controlled trial. BMJ Open. 2019;9(4):e025935.

42. Hassan C, Quintero E, Dumonceau JM, et al. Post-polypectomy colonoscopy surveillance: European Society of Gastrointestinal Endoscopy (ESGE) Guideline. Endoscopy. 2013;45(10):842-851.
43. Ness RM, Holmes AM, Klein R, Dittus R. Utility valuations for outcome states of colorectal cancer. *Am J Gastroenterol.* 1999;94(6):1650-1657.

44. Gong YM, Gu K, Peng P, Wu CX, Zheng Y. She Qu Ju Min Da Chang Ai Shai Cha Gong Zuo Gui Fan Jie Du [Interpretation of the Guidelines for Screening of Colorectal Cancer in Community Residents]. *Shanghai Yu Fang Yi Xue [Shanghai Preventive Medicine]*. 2017;29(2):3.

45. Zhonghua Yi Xue Hui Xiao Hua Nei Jing Xue Fen Hui [Chinese Society of Digestive Endoscopy of the Chinese Medical Association], Zhongguo Kang Ai Xie Hui Zhong Liu Nei Jing Xue Zhuan Ye Wei Yuan Hui [The Society of Tumor Endoscopy of the Chinese Anti-Cancer Association]. Zhongguo Zao Qi Jie Zhi Chang Ai Shai Cha Ji Nei Jing Zhen Zhi Zhi Nan (Beijing, 2014)]. [Chinese guideline on the screening and endoscopic management of early colorectal cancer (Beijing, 2014)]. *Wei Chang Bing Xue [Chinese Journal of Gastroenterology]*. 2015;20(6):21.
Supplementary Results Tables

Contents

Table S1: Costs and effects (discounted at 3%) of 324 screening scenarios and a scenario without screening, per 1,000 simulated 45-year-olds, assuming perfect adherence .. 1

Table S2: Costs and effects per 1,000 simulated 45-year-olds for screening scenarios on the efficient frontier. ... 12
 a) Results are undiscounted .. 12
 b) Results are discounted at 5% .. 12

Table S3: Costs and effects (discounted at 3%) per 1,000 simulated 45-year-olds for screening scenarios on the efficient frontier... 13
 a) Assuming adjusted FIT characteristic’s... 13
 b) Assuming a 50% reduction in the costs of the validated FITs.. 13
 c) Assuming a 200% increase in the costs of the validated FITs.. 14
 d) Assuming Chinese surveillance guidelines.. 14
 e) Assuming international quality of life estimates. .. 15
Table S1: Costs and effects (discounted at 3%) of 324 screening scenarios and a scenario without screening, per 1,000 simulated 45-year-olds, assuming perfect adherence

Screening Strategy	Test	Start-Stop Age	Interval	FITs	Colonoscopies	False Positives	Complications	CRC Incidence	CRC Mortality	Life Years^a	Total Costs^b	ICER^{ab}										
No Screening				0	49	0	0.01	49	11	21,482	869,648											
FIT-1-10	50-70	3		5,901	514	151	0.03	36	5	21,509	874,095	164										
FIT-1-15	50-70	3		6,065	425	96	0.03	38	6	21,507	880,303	Dominated										
FIT-1-20	50-70	3		6,163	369	64	0.03	39	6	21,506	883,159	Dominated										
FIT-2-10	50-70	3		5,645	652	239	0.04	33	5	21,511	884,484	4,027										
FIT-1-30	50-70	3		6,246	321	37	0.02	40	6	21,505	888,156	Dominated										
FIT-1-10	50-75	3		7,208	583	188	0.04	34	4	21,511	889,841	Dominated										
FIT-2-15	50-70	3		5,844	551	169	0.04	35	5	21,510	891,807	Dominated										
FIT-2-20	50-70	3		5,973	484	123	0.03	36	5	21,509	893,295	Dominated										
FIT-1-15	50-75	3		7,419	480	121	0.03	36	5	21,510	896,283	Dominated										
FIT-1-40	50-70	3		6,301	282	22	0.02	42	6	21,504	897,592	Dominated										
FIT-2-30	50-70	3		6,081	426	87	0.03	38	6	21,508	898,845	Dominated										
FIT-1-20	50-75	3		7,547	415	82	0.03	38	5	21,508	898,949	Dominated										
FIT-1-10	50-80	3		8,171	620	209	0.04	34	4	21,512	902,544	Dominated										
FIT-2-10	50-75	3		6,884	744	294	0.04	31	4	21,514	904,162	7,778										
FIT-1-30	50-75	3		7,656	359	49	0.03	39	5	21,507	904,505	Dominated										
FIT-1-20	55-70	2		6,778	379	66	0.03	38	6	21,505	904,663	Dominated										
FIT-1-20	50-70	2		9,424	445	95	0.03	37	5	21,510	904,771	Dominated										
FIT-1-15	55-70	2		6,642	436	101	0.03	37	5	21,506	905,330	Dominated										
FIT-1-30	50-70	2		9,599	381	54	0.03	38	5	21,509	906,163	Dominated										
FIT-1-15	50-70	2		9,221	519	144	0.03	36	5	21,511	906,225	Dominated										
FIT-1-30	55-70	2		6,895	328	37	0.03	39	6	21,504	906,607	Dominated										
FIT-1-10	55-70	2		6,415	527	160	0.03	35	5	21,507	906,973	Dominated										
FIT-1-10	50-70	2		8,887	636	226	0.04	34	5	21,512	907,172	Dominated										
FIT-2-40	50-70	3		6,147	385	67	0.03	39	6	21,508	908,998	Dominated										
FIT-1-15	50-80	3	8,434	507	133	0.04	36	4	21,511	909,297	Dominated											
FIT-2-15	50-75	3	7,136	625	209	0.04	33	4	21,513	911,585	Dominated											
FIT-1-20	50-80	3	8,595	436	89	0.03	37	4	21,509	912,196	Dominated											
FIT-2-20	50-75	3	7,301	546	154	0.04	34	4	21,512	912,631	Dominated											
FIT-1-20	55-70	3	5,111	343	55	0.03	39	6	21,503	913,143	Dominated											
FIT-1-40	50-70	2	6,971	289	21	0.02	41	6	21,503	913,621	Dominated											
FIT-1-15	55-70	3	5,033	392	81	0.03	38	6	21,504	913,967	Dominated											
FIT-1-10	55-70	3	4,900	469	126	0.03	36	5	21,506	914,303	Dominated											
FIT-1-30	55-70	3	5,178	300	33	0.02	41	6	21,502	914,926	Dominated											
FIT-1-40	50-70	2	9,709	334	31	0.03	39	5	21,508	915,395	Dominated											
FIT-1-20	50-75	2	10,756	472	104	0.03	36	4	21,511	915,809	Dominated											
FIT-1-40	50-75	3	7,728	316	31	0.03	41	5	21,507	916,198	Dominated											
FIT-1-30	50-75	2	10,962	401	57	0.03	37	5	21,511	917,261	Dominated											
FIT-1-15	50-75	3	5,033	392	81	0.03	38	6	21,504	913,967	Dominated											
FIT-1-20	55-70	3	8,570	489	125	0.03	35	4	21,508	930,189	Dominated											
FIT-1-15	55-70	3	5,788	359	59	0.03	39	5	21,504	930,341	Dominated											
FIT-1-40	45-70	3	8,179	317	33	0.02	41	6	21,506	931,352	Dominated											
FIT-2-40	50-75	3	7,526	432	85	0.03	37	5	21,510	931,470	Dominated											
FIT-1-10	55-75	3	5,538	497	140	0.03	36	4	21,511	932,621	Dominated											
FIT-1-15	50-80	2	12,040	588	178	0.04	34	3	21,514	933,801	Dominated											
FIT-2-10	55-70	2	8,250	599	200	0.04	33	4	21,510	934,461	Dominated											
FIT-2-20	50-70	2	9,043	588	184	0.04	34	5	21,513	934,635	Dominated											
FIT-2-50	55-70	3	17,295	544	150	0.04	34	4	21,513	934,892	Dominated											
FIT-2-55	50-70	3	4,956	445	103	0.03	36	5	21,506	934,914	Dominated											
FIT-2-60	50-70	2	9,265	511	129	0.03	35	5	21,512	935,176	Dominated											
FIT-2-70	50-80	2	11,549	733	284	0.04	31	3	21,515	935,694	Dominated											
FIT-2-80	55-70	3	5,042	394	73	0.03	38	5	21,505	936,274	Dominated											
FIT-2-90	45-75	3	9,323	453	97	0.03	37	5	21,510	936,538	Dominated											
FIT-3-10	55-70	2	6,341	562	178	0.04	34	5	21,508	937,236	Dominated											
FIT-3-15	45-75	3	9,460	388	56	0.03	39	5	21,509	937,374	Dominated											
FIT-3-20	55-70	1	13,375	387	53	0.03	36	5	21,508	937,778	Dominated											
FIT-3-25	55-70	3	4,853	503	141	0.03	35	5	21,507	937,878	Dominated											
FIT-3-30	50-80	2	9,817	436	87	0.03	36	4	21,508	938,268	Dominated											
FIT-3-35	50-80	3	8,778	680	252	0.04	32	4	21,513	938,906	Dominated											
FIT-3-40	55-70	3	5,923	275	21	0.02	41	6	21,503	939,136	Dominated											
FIT-3-45	50-70	1	18,335	377	32	0.03	37	5	21,512	999,709	Dominated											
FIT-3-50	55-70	3	4,692	592	198	0.04	33	5	21,508	999,920	Dominated											
FIT-1-15	45-75	3	9,162	529	146	0.04	36	4	21,512	939,969	Dominated											
FIT-1-30	55-80	2	10,026	370	45	0.03	38	4	21,508	940,088	Dominated											
FIT-1-20	55-70	1	12,923	467	109	0.03	35	5	21,509	940,333	Dominated											
FIT-1-15	55-80	2	9,576	512	137	0.04	35	4	21,509	940,475	Dominated											
FIT-1-30	45-70	2	11,616	402	61	0.03	38	5	21,511	940,633	Dominated											
FIT-1-15	50-70	1	16,557	659	236	0.04	33	4	21,514	940,866	Dominated											
FIT-1-20	45-70	2	11,401	477	112	0.03	37	5	21,511	941,639	Dominated											
FIT-2-10	50-70	2	8,380	814	354	0.05	31	4	21,514	942,307	Dominated											
SH-FIT	50-70	3	5,054	906	491	0.05	35	5	21,507	942,515	Dominated											
FIT-2-40	55-70	3	5,097	357	57	0.03	39	6	21,505	942,926	Dominated											
FIT-1-40	55-70	1	13,648	335	22	0.03	38	5	21,508	942,965	Dominated											
FIT-2-10	55-70	2	6,070	665	251	0.04	32	5	21,509	943,029	Dominated											
FIT-1-20	45-80	3	9,867	462	101	0.03	37	4	21,511	943,151	Dominated											
FIT-2-40	50-70	2	9,398	460	99	0.03	36	5	21,511	943,650	Dominated											
FIT-1-10	45-75	3	8,897	649	230	0.04	34	4	21,514	944,174	Dominated											
FIT-1-30	45-80	3	10,017	394	57	0.03	39	5	21,510	944,223	Dominated											
FIT-1-10	55-80	2	9,183	631	220	0.04	33	4	21,510	944,505	Dominated											
FIT-1-15	45-70	2	11,150	562	172	0.04	35	5	21,513	945,081	Dominated											
FIT-1-20	55-80	3	6,905	382	67	0.03	38	5	21,505	945,763	Dominated											
FIT-1-40	50-80	2	12,766	362	32	0.03	38	4	21,511	946,182	Dominated											
FIT-1-40	45-75	3	9,549	339	34	0.03	40	5	21,508	946,385	Dominated											
FIT-1-15	45-80	3	9,691	541	153	0.04	36	4	21,512	946,541	Dominated											
FIT-1-15	55-70	1	12,409	557	173	0.04	34	5	21,509	947,045	Dominated											
FIT-1-40	45-70	2	11,749	350	33	0.03	39	6	21,510	947,433	Dominated											
FIT-1-30	55-80	3	7,009	329	38	0.03	40	5	21,505	947,443	Dominated											
FIT-1-15	55-80	3	6,783	442	102	0.03	37	4	21,507	947,731	Dominated											
FIT-2-40	50-80	3	8,569	453	93	0.03	37	4	21,511	948,558	Dominated											
FIT-1-10	55-80	3	6,582	538	163	0.04	35	4	21,508	949,512	Dominated											
FIT-1-40	55-80	2	10,159	322	22	0.03	39	4	21,507	950,435	Dominated											
FIT-1-10	45-80	3	9,402	667	241	0.04	33	4	21,514	950,599	Dominated											
FIT-2-20	50-75	2	10,308	631	206	0.04	32	4	21,514	950,649	Dominated											
FIT-2-30	50-75	2	10,569	544	143	0.04	34	4	21,514	951,052	Dominated											
FIT-1-10	50-70	1	15,401	834	372	0.05	31	4	21,515	951,596	Dominated											
FIT-1-10	45-70	2	10,739	697	273	0.04	34	5	21,514	952,510	Dominated											
FIT-1-40	45-80	3	10,115	343	34	0.03	40	5	21,509	954,258	Dominated											
FIT-2-30	45-70	3	7,886	485	118	0.03	37	5	21,511	955,616	Dominated											
FIT-2-15	50-70	2	9,997	733	283	0.04	31	4	21,515	956,251	Dominated											
FIT-1-40	55-80	3	7,080	289	21	0.02	41	5	21,504	956,745	Dominated											
FIT-2-20	45-70	3	7,740	555	166	0.04	35	5	21,512	956,870	Dominated											
FIT-2-20	55-75	3	5,605	469	114	0.03	36	5	21,507	958,261	Dominated											
FIT-2-30	55-75	3	5,707	414	80	0.03	37	5	21,507	958,887	Dominated											
FIT-1-30	50-75	1	21,270	473	83	0.03	34	4	21,515	958,984	Dominated											
FIT-1-10	55-70	1	11,590	694	275	0.04	32	4	21,510	959,511	Dominated											
FIT-2-40	50-75	2	10,724	488	109	0.03	35	4	21,513	960,696	Dominated											
FIT-2-10	50-75	2	9,533	882	398	0.05	29	3	21,516	961,132	Dominated											
FIT-2-40	45-70	3	7,973	437	92	0.03	38	5	21,510	962,292	Dominated											
FIT-2-15	55-75	3	5,483	533	156	0.04	34	5	21,508	962,404	Dominated											
FIT-1-20	50-75	1	20,462	591	171	0.04	32	3	21,516	963,312	Dominated											
FIT-1-30	45-75	2	13,657	431	66	0.03	37	4	21,513	963,951	Dominated											
FIT-2-15	45-70	3	7,566	637	226	0.04	34	5	21,513	964,178	Dominated											
FIT-1-30	55-75	1	16,694	418	61	0.03	35	4	21,510	964,751	Dominated											
FIT-1-20	45-75	2	13,392	516	125	0.04	35	4	21,514	965,533	Dominated											
FIT-2-10	55-75	3	5,295	630	221	0.04	32	4	21,509	965,721	Dominated											
FIT-2-40	55-75	3	5,771	374	62	0.03	38	5	21,506	966,173	Dominated											
FIT-2-30	50-75	2	8,610	481	111	0.03	35	4	21,509	966,183	Dominated											
FIT-1-40	50-75	1	21,753	397	33	0.03	35	4	21,515	966,993	Dominated											
FIT-2-20	55-75	2	8,397	554	162	0.04	33	4	21,510	967,096	Dominated											
FIT-1-20	55-75	1	16,084	514	130	0.04	33	4	21,511	968,995	Dominated											
FIT-2-30	45-75	3	9,192	525	132	0.04	35	4	21,513	970,158	Dominated											
FIT-1-15	45-75	2	13,084	613	196	0.04	34	4	21,515	970,183	Dominated											
FIT-1-40	55-75	1	17,061	356	22	0.03	36	4	21,510	970,593	Dominated											
FIT-2-20	45-75	3	9,016	604	187	0.04	34	4	21,514	970,860	Dominated											
Value	984,636	983,251	982,901	982,797	979,085	978,320	978,146	977,790	977,533	979,085	979,247	979,418	979,997	980,248	981,127	982,049	982,797	982,901	983,237	983,251	984,636	
---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------
-------	-------	-------	-------	-------	-------	-------																
FIT-2-10	55-80	3	6,272	688	258	0.04	31	4	21,510	984,859	Dominated											
FIT-2-10	45-75	3	8,490	838	362	0.05	30	3	21,516	985,512	Dominated											
FIT-2-15	45-80	3	9,303	717	269	0.04	32	3	21,515	986,059	Dominated											
FIT-2-40	55-80	3	6,883	397	70	0.03	38	4	21,507	986,287	Dominated											
FIT-1-40	50-80	1	24,514	408	33	0.03	35	3	21,516	986,462	Dominated											
FIT-1-10	50-75	1	18,132	925	433	0.05	29	3	21,517	987,112	Dominated											
FIT-2-40	55-80	2	9,785	450	91	0.03	35	4	21,510	987,262	Dominated											
FIT-2-15	55-80	2	9,055	675	246	0.04	31	3	21,511	987,391	Dominated											
FIT-2-40	45-80	3	9,840	481	105	0.03	36	4	21,513	987,618	Dominated											
FIT-1-20	55-80	1	18,561	544	147	0.04	33	3	21,512	987,882	Dominated											
FIT-1-10	45-80	2	13,519	801	334	0.05	31	3	21,517	989,444	31,130											
FIT-1-40	55-80	1	19,818	367	23	0.03	36	3	21,511	990,233	Dominated											
FIT-1-15	50-80	1	21,842	766	301	0.05	30	3	21,517	991,409	Dominated											
FIT-2-30	45-70	2	11,208	551	154	0.04	35	5	21,514	991,845	Dominated											
FIT-2-10	45-80	3	8,958	863	380	0.05	30	3	21,517	992,642	Dominated											
SH-FIT	55-70	2	5,267	939	504	0.05	33	5	21,506	994,525	Dominated											
FIT-2-20	45-70	2	10,934	641	222	0.04	34	5	21,514	994,905	Dominated											
FIT-1-10	55-75	1	14,316	786	334	0.05	30	4	21,512	994,922	Dominated											
FIT-2-10	55-80	2	8,592	810	347	0.05	29	3	21,512	996,526	Dominated											
SH-FIT	55-70	3	4,238	795	405	0.04	35	5	21,504	997,304	Dominated											
FIT-1-15	55-80	1	17,680	664	237	0.04	31	3	21,512	997,705	Dominated											
FIT-2-40	45-70	2	11,370	493	117	0.03	36	5	21,513	998,393	Dominated											
FIT-1-30	45-70	1	22,637	476	89	0.03	35	4	21,515	998,625	Dominated											
SH-FIT	50-80	3	6,824	1,144	663	0.06	32	4	21,510	999,827	Dominated											
FIT-1-40	45-70	1	23,144	398	34	0.03	36	5	21,515	1,001,944	Dominated											
FIT-2-15	45-70	2	10,605	748	305	0.04	33	4	21,515	1,004,414	Dominated											
FIT-2-30	55-70	1	12,547	538	154	0.04	34	5	21,510	1,004,668	Dominated											
FIT-2-30	50-70	1	16,758	634	211	0.04	32	4	21,515	1,004,976	Dominated											
FIT-2-40	55-70	1	12,875	479	114	0.03	35	5	21,509	1,006,756	Dominated											
FIT-1-20	45-70	1	21,782	600	185	0.04	33	4	21,516	1,007,233	Dominated											
FIT-1-10	50-80	1	20,134	986	476	0.05	28	3	21,518	1,007,490	31,660											
-----	-----	-----	-----	-----	-----	-----	-----															
FIT-2-20	50-70	1	15,965	754	304	0.04	31	4	21,515	1,009,036	Dominated											
FIT-2-40	50-70	1	17,224	560	157	0.04	33	4	21,515	1,009,612	Dominated											
FIT-2-20	55-70	1	11,988	632	224	0.04	32	4	21,510	1,010,209	Dominated											
FIT-2-10	45-70	2	10,114	904	429	0.05	31	4	21,516	1,015,357	Dominated											
FIT-1-10	55-80	1	16,312	846	378	0.05	29	3	21,513	1,015,619	Dominated											
FIT-2-15	50-70	1	15,051	891	413	0.05	30	4	21,515	1,018,164	Dominated											
FIT-2-15	55-70	1	11,340	739	305	0.04	31	4	21,511	1,020,540	Dominated											
FIT-1-15	45-70	1	20,815	739	295	0.04	32	4	21,517	1,021,111	Dominated											
SH-FIT-RA	50-75	3	5,346	1,434	890	0.07	30	4	21,514	1,022,213	Dominated											
FIT-2-30	45-75	2	13,155	599	175	0.04	33	4	21,516	1,025,466	Dominated											
FIT-1-30	45-75	1	25,966	506	97	0.04	33	3	21,518	1,025,486	Dominated											
SH-FIT	50-70	2	7,163	1,196	702	0.06	31	4	21,511	1,027,590	Dominated											
FIT-2-10	50-70	1	13,775	1,078	566	0.06	28	4	21,516	1,028,721	Dominated											
FIT-2-20	45-75	2	12,819	703	253	0.04	32	3	21,517	1,029,542	Dominated											
FIT-1-40	45-75	1	26,566	418	35	0.03	35	4	21,517	1,029,716	Dominated											
SH-FIT	55-75	3	4,762	863	454	0.05	34	5	21,505	1,033,501	Dominated											
FIT-2-40	45-75	2	13,354	534	132	0.04	35	4	21,516	1,033,662	Dominated											
FIT-2-10	55-70	1	10,419	887	420	0.05	30	4	21,511	1,035,548	Dominated											
FIT-1-20	45-75	1	24,955	646	206	0.04	32	3	21,518	1,035,902	Dominated											
FIT-2-30	45-80	2	14,176	621	186	0.04	32	3	21,517	1,038,484	Dominated											
FIT-2-15	45-75	2	12,417	826	350	0.05	30	3	21,517	1,041,086	Dominated											
FIT-2-20	45-80	2	13,792	730	270	0.04	31	3	21,517	1,042,339	Dominated											
FIT-1-30	45-80	1	28,627	524	103	0.04	32	3	21,519	1,043,702	Dominated											
SH-FIT-RA	50-80	3	5,860	1,539	973	0.07	29	3	21,514	1,045,156	Dominated											
FIT-1-10	45-70	1	19,306	952	468	0.05	30	4	21,517	1,045,692	Dominated											
FIT-2-40	45-80	2	14,403	551	139	0.04	34	3	21,517	1,047,603	Dominated											
FIT-1-40	45-80	1	29,329	429	35	0.03	34	3	21,518	1,049,078	Dominated											
FIT-2-30	55-75	1	15,580	598	186	0.04	32	4	21,512	1,050,769	Dominated											
FIT-2-30	50-75	1	19,799	693	243	0.04	30	3	21,517	1,051,216	Dominated											
SH-FIT	55-75	2	6,636	1,113	633	0.06	31	4	21,508	1,052,112	Dominated											
FIT-1-15	45-75	1	23,816	803	331	0.05	30	3	21,519	1,052,274	Dominated											
Group	Value Range	Value 1	Value 2	Value 3	Value 4	Value 5	Value 6	Value 7	Value 8	Value 9	Value 10	Ratio	Dominated									
---------	-------------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	--------	-----------									
FIT-2-40	55-75	16,018	528	137	0.04	33	4	21,512	1,052,886	Dominated												
FIT-2-15	45-80	13,331	861	373	0.05	29	3	21,518	1,053,960	Dominated												
FIT-1-20	45-80	27,443	677	223	0.04	31	3	21,519	1,054,448	Dominated												
FIT-2-10	45-75	11,820	1,004	494	0.05	28	3	21,518	1,055,227	Dominated												
FIT-2-40	50-75	20,373	608	180	0.04	32	3	21,517	1,055,675	Dominated												
SH-FIT-RA	55-70	3,706	1,071	603	0.05	32	5	21,508	1,056,505	Dominated												
FIT-2-20	50-75	18,824	831	353	0.05	29	3	21,517	1,057,255	Dominated												
SH-FIT	50-75	8,105	1,314	792	0.06	30	4	21,512	1,057,526	Dominated												
FIT-2-20	55-75	14,840	710	272	0.04	30	4	21,512	1,058,372	Dominated												
SH-FIT-RA	55-70	4,457	1,239	729	0.06	30	4	21,509	1,059,262	Dominated												
SH-FIT	55-80	5,576	965	529	0.05	34	4	21,506	1,064,117	Dominated												
SH-FIT	45-70	6,481	1,098	647	0.05	34	5	21,509	1,067,597	Dominated												
FIT-2-10	45-80	12,651	1,049	526	0.06	27	3	21,519	1,068,267	Dominated												
SH-FIT	55-80	7,201	1,182	686	0.06	31	4	21,509	1,068,421	Dominated												
FIT-2-15	50-75	17,703	990	480	0.05	28	3	21,517	1,069,207	Dominated												
SH-FIT	55-70	7,868	1,275	755	0.06	30	4	21,510	1,069,910	Dominated												
FIT-1-15	45-80	26,112	846	359	0.05	29	3	21,520	1,071,462	32,309												
FIT-2-15	55-75	13,989	839	372	0.05	29	3	21,512	1,071,578	Dominated												
SH-FIT	50-70	10,250	1,577	1,008	0.07	28	4	21,514	1,074,395	Dominated												
FIT-2-30	50-80	17,917	637	211	0.04	31	3	21,513	1,078,966	Dominated												
FIT-2-30	50-80	22,142	732	268	0.05	29	3	21,518	1,079,189	Dominated												
FIT-1-10	45-75	22,046	1,043	528	0.06	28	3	21,519	1,080,650	Dominated												
FIT-2-40	55-80	18,475	560	155	0.04	32	3	21,513	1,081,598	Dominated												
FIT-2-10	50-75	16,149	1,205	658	0.06	26	3	21,518	1,083,434	Dominated												
FIT-2-40	50-80	22,837	640	198	0.04	31	3	21,518	1,084,351	Dominated												
FIT-2-20	50-80	20,966	884	389	0.05	28	3	21,518	1,085,373	Dominated												
SH-FIT	50-80	9,016	1,423	877	0.07	29	3	21,513	1,085,652	Dominated												
FIT-2-20	55-80	16,976	763	308	0.05	29	3	21,513	1,086,709	Dominated												
SH-FIT-RA	50-70	6,002	1,574	1,006	0.07	28	4	21,514	1,087,581	Dominated												
FIT-2-10	55-75	12,800	1,014	512	0.05	28	3	21,513	1,090,473	Dominated												
FIT-2-15	50-80	19,618	1,055	528	0.06	27	3	21,518	1,097,581	Dominated												
SH-FIT	45-75	3	7,513	1,233	743	0.06	32	4	21,511	1,098,318	Dominated											
FIT-2-15	55-80	1	15,900	904	420	0.05	28	3	21,513	1,100,195	Dominated											
SH-FIT	45-70	2	8,575	1,366	854	0.06	31	5	21,513	1,100,494	Dominated											
SH-FIT-RA	55-75	3	4,158	1,167	676	0.06	31	4	21,509	1,100,988	Dominated											
FIT-1-10	45-80	1	24,054	1,104	572	0.06	27	2	21,520	1,101,071	59,218											
SH-FIT	45-80	3	7,888	1,278	777	0.06	32	4	21,512	1,110,020	Dominated											
FIT-2-10	50-80	1	17,765	1,286	720	0.06	25	2	21,518	1,111,829	Dominated											
FIT-2-30	45-70	1	21,081	708	263	0.04	32	4	21,517	1,114,413	Dominated											
SH-FIT-RA	50-70	1	7,715	1,920	1,303	0.08	26	4	21,515	1,115,459	Dominated											
FIT-4-0	45-70	1	21,688	619	195	0.04	33	4	21,517	1,115,466	Dominated											
FIT-2-10	55-80	1	14,414	1,095	574	0.06	27	3	21,513	1,119,186	Dominated											
SH-FIT-RA	50-75	2	6,768	1,733	1,134	0.08	27	3	21,515	1,126,386	Dominated											
FIT-2-20	45-70	1	20,045	854	381	0.05	30	4	21,518	1,126,396	Dominated											
SH-FIT-RA	55-75	2	5,534	1,463	907	0.07	28	3	21,511	1,129,147	Dominated											
SH-FIT	55-75	1	9,542	1,478	918	0.07	28	3	21,511	1,130,051	Dominated											
SH-FIT	50-75	1	11,862	1,771	1,164	0.08	26	3	21,516	1,133,633	Dominated											
SH-FIT-RA	55-80	3	4,810	1,301	782	0.06	30	3	21,510	1,138,803	Dominated											
SH-FIT-RA	55-80	2	5,890	1,535	965	0.07	28	3	21,511	1,144,689	Dominated											
FIT-2-15	45-70	1	18,851	1,021	520	0.05	29	4	21,518	1,146,170	Dominated											
SH-FIT-RA	55-70	1	6,074	1,577	1,003	0.07	27	4	21,511	1,151,265	Dominated											
SH-FIT	50-80	1	10,381	1,576	998	0.07	27	3	21,511	1,153,884	Dominated											
SH-FIT-RA	50-80	2	7,394	1,858	1,237	0.08	26	3	21,516	1,155,841	Dominated											
SH-FIT	50-80	1	12,721	1,872	1,247	0.08	26	3	21,516	1,157,678	Dominated											
SH-FIT	45-75	2	9,946	1,537	984	0.07	29	4	21,515	1,157,820	Dominated											
FIT-2-30	45-75	1	24,128	767	295	0.05	30	3	21,519	1,160,623	Dominated											
FIT-2-40	45-75	1	24,842	667	218	0.04	31	3	21,519	1,161,608	Dominated											
SH-FIT-RA	45-70	3	5,648	1,490	959	0.07	31	4	21,514	1,164,269	Dominated											
FIT-2-10	45-70	1	17,201	1,248	712	0.06	28	4	21,518	1,172,422	Dominated											
SH-FIT	45-80	2	10,516	1,606	1,037	0.07	29	3	21,515	1,174,222	Dominated											
FIT-2-20	45-75	1	22,910	932	430	0.05	28	3	21,520	1,174,611	Dominated											
FIT-2-30	45-80	1	26,476	807	320	0.05	29	2	21,520	1,188,375	Dominated											
Screening Strategy	Interval (Years)	Test Cut-off	Test Results	Success Rate	Total Test Cost (¥)	ICER (¥/QALY)	Notes															
--------------------	-----------------	--------------	--------------	--------------	---------------------	----------------	-------															
SH-FIT-RA	50-75	1	8,898	2,159	1,504	0.09	24	3	21,517	1,188,421	Dominated											
FIT-2-40	45-80	1	27,310	699	235	0.04	30	3	21,520	1,190,044	Dominated											
FIT-2-15	45-75	1	21,512	1,120	587	0.06	27	3	21,520	1,196,983	Dominated											
FIT-2-20	45-80	1	25,058	984	466	0.05	27	2	21,520	1,202,507	Dominated											
SH-FIT-RA	45-70	2	7,160	1,804	1,220	0.08	28	4	21,516	1,203,877	Dominated											
SH-FIT-RA	45-70	3	6,527	1,677	1,102	0.07	29	3	21,516	1,205,624	Dominated											
SH-FIT-RA	50-80	1	9,379	2,255	1,585	0.09	24	3	21,516	1,210,308	Dominated											
SH-FIT-RA	55-75	1	7,174	1,800	1,189	0.08	26	3	21,512	1,211,069	Dominated											
SH-FIT-RA	45-80	3	6,816	1,734	1,149	0.08	29	3	21,516	1,218,569	Dominated											
FIT-2-15	45-80	1	23,434	1,186	635	0.06	26	2	21,521	1,225,260	302,900											
FIT-2-10	45-75	1	19,588	1,375	804	0.07	25	3	21,520	1,226,525	Dominated											
SH-FIT-RA	55-80	1	7,529	1,871	1,248	0.08	25	3	21,512	1,227,673	Dominated											
SH-FIT	45-70	1	12,622	1,852	1,259	0.08	28	4	21,516	1,235,011	Dominated											
FIT-2-10	45-80	1	21,214	1,456	867	0.07	24	2	21,521	1,254,847	739,677											
SH-FIT-RA	45-75	2	8,256	2,030	1,402	0.08	26	3	21,518	1,275,517	Dominated											
SH-FIT-RA	45-80	2	8,626	2,104	1,463	0.09	26	3	21,518	1,291,208	Dominated											
SH-FIT	45-75	1	14,305	2,054	1,423	0.09	26	3	21,518	1,295,685	Dominated											
SH-FIT	45-80	1	15,186	2,157	1,508	0.09	25	3	21,518	1,320,127	Dominated											
SH-FIT-RA	45-70	1	9,490	2,265	1,629	0.09	26	4	21,517	1,350,956	Dominated											
SH-FIT-RA	45-75	1	10,746	2,519	1,841	0.10	24	3	21,519	1,422,729	Dominated											
SH-FIT-RA	45-80	1	11,197	2,609	1,917	0.10	23	3	21,519	1,443,352	Dominated											

Note: Screening strategies: screening test - screening interval – test cut-off. Grey shading highlights screening scenarios on the efficient frontier.
Abbreviations: CRC, colorectal cancer; FIT, faecal immunochemical test; ICER, incremental cost-effectiveness ratio.

a. Results are discounted at an annual rate of 3%.
b. Costs are presented in Chinese Renminbi Yuan (¥).
Table S2: Costs and effects per 1,000 simulated 45-year-olds for screening scenarios on the efficient frontier.

a) Results are undiscounted

Screening Strategy	FITs	Colonoscopies	False Positives	Complications	CRC Incidence	CRC Mortality	Life Years	Total Costs*	ICER*
No Screening	0	49	0	0.01	49	11	35,247	1,860,008	
FIT-1-10	55-75	3	5,538	497	140	0.03	36	5	35,316
FIT-1-10	55-75	2	8,250	599	200	0.04	33	4	35,233
FIT-1-10	50-80	2	11,549	733	284	0.04	31	3	35,335
FIT-1-10	45-80	2	13,519	801	334	0.05	31	3	35,339
FIT-1-10	45-80	1	26,112	846	359	0.05	29	3	35,346
FIT-1-10	45-80	1	24,054	1,104	572	0.06	27	2	35,347
FIT-1-15	45-80	1	26,112	846	359	0.05	29	3	35,346
FIT-2-10	45-80	1	24,054	1,104	572	0.06	27	2	35,347
FIT-1-10	45-80	1	24,054	1,104	572	0.06	27	2	35,347

Note: Screening strategies: screening test - screening interval – test cut-off. Grey shading highlights optimal screening scenario at the willingness-to-pay threshold.

Abbreviations: CRC, colorectal cancer; FIT, faecal immunochemical test; ICER, incremental cost-effectiveness ratio.

a. Costs are presented in Chinese Renminbi (¥).

b. Results are discounted at an annual rate of 5%.

Table S2: Costs and effects per 1,000 simulated 45-year-olds for screening scenarios on the efficient frontier.

b) Results are discounted at 5%

Screening Strategy	FITs	Colonoscopies	False Positives	Complications	CRC Incidence	CRC Mortality	Life Years*	Total Costsab	ICERab
No Screening	0	49	0	0.01	49	11	16,550	561,215	
FIT-1-10	50-70	3	5,901	514	151	0.03	36	5	16,565
FIT-2-10	50-70	3	5,645	652	239	0.04	33	4	16,568
FIT-1-10	50-75	3	6,884	744	294	0.04	31	3	16,568
FIT-2-10	50-80	3	7,768	795	327	0.05	30	3	16,568
FIT-1-15	45-80	1	26,112	846	359	0.05	29	3	16,572
FIT-2-10	45-80	1	24,054	1,104	572	0.06	27	2	16,572
FIT-2-15	45-80	1	23,434	1,186	635	0.06	26	2	16,572
FIT-2-10	45-80	1	21,214	1,456	867	0.07	24	2	16,572

Note: Screening strategies: screening test - screening interval – test cut-off. Grey shading highlights optimal screening scenario at the willingness-to-pay threshold.

Abbreviations: CRC, colorectal cancer; FIT, faecal immunochemical test; ICER, incremental cost-effectiveness ratio.

a. Costs are presented in Chinese Renminbi (¥).

b. Results are discounted at an annual rate of 5%.
Table S3: Costs and effects (discounted at 3%) per 1,000 simulated 45-year-olds for screening scenarios on the efficient frontier

a) Assuming adjusted FIT characteristic’s

Screening Strategy	FITs	Colonoscopies	False Positives	Complications	CRC Incidence	CRC Mortality	Life Years\(^a\)	Total Costs\(^ab\)	ICER\(^ab\)	
No Screening							21,482	869,648		
FIT-1-10	50-70	3	5,443	729	335	0.04	35	21,508	914,230	1,700
FIT-2-10	50-70	3	5,324	797	373	0.04	34	21,509	928,340	9,344
FIT-2-10	50-75	3	6,473	920	456	0.05	32	21,512	959,707	13,124
FIT-1-10	45-70	3	7,250	991	506	0.06	29	21,515	1,031,672	27,739
FIT-1-10	45-70	1	15,621	1,538	949	0.07	26	21,517	1,107,699	42,153
FIT-1-10	45-70	1	18,630	1,758	1,144	0.08	26	21,519	1,242,210	60,319
FIT-1-10	45-80	1	17,690	1,873	1,240	0.08	24	21,520	1,344,893	256,708

b) Assuming a 50% reduction in the costs of the validated FITs.

Screening Strategy	FITs	Colonoscopies	False Positives	Complications	CRC Incidence	CRC Mortality	Life Years\(^a\)	Total Costs\(^ab\)	ICER\(^ab\)	
No Screening							21,482	869,648		
FIT-2-10	50-70	3	5,645	652	239	0.04	33	21,511	852,337	4,635
FIT-2-10	50-70	3	6,884	744	294	0.04	31	21,514	864,063	9,769
FIT-2-10	50-80	3	7,768	795	327	0.05	30	21,515	873,441	14,376
FIT-1-30	50-80	1	23,928	491	89	0.04	33	21,516	892,706	16,383
FIT-1-30	45-80	1	28,627	524	103	0.04	32	21,519	933,826	36,773
FIT-1-15	45-80	1	26,112	846	359	0.05	29	21,520	970,599	66,922
FIT-2-30	45-80	1	26,476	807	320	0.05	29	21,520	1,018,114	66,922
FIT-2-15	45-80	1	23,434	1,186	635	0.06	26	21,521	1,073,151	275,187
FIT-2-10	45-80	1	21,214	1,456	867	0.07	24	21,521	1,115,972	1,070,518
c) Assuming a 200% increase in the costs of the validated FITs.

Screening Strategy	Test	Start-Stop Interval	Age	FITs	Colonoscopies	False Positives	Complications	CRC Incidence	CRC Mortality	Life Years	Total Costs	ICER
No Screening				0	49	0	0.01	49	11	21,482	869,648	
FIT-1-10	50-70	3	49	5,901	514	151	0.03	36	5	21,509	914,585	1,662
FIT-1-10	50-75	3	49	7,208	583	188	0.04	34	4	21,511	940,484	10,078
FIT-2-10	50-75	3	49	6,884	744	294	0.04	31	4	21,514	984,361	17,274
FIT-2-10	50-80	3	49	7,768	795	327	0.05	30	3	21,515	1,006,655	23,223
FIT-1-10	45-80	2	49	13,519	801	334	0.05	31	3	21,517	1,098,355	39,869
FIT-1-10	45-80	1	49	24,054	1,104	572	0.06	27	2	21,520	1,288,058	62,198
FIT-2-10	45-80	1	49	21,214	1,456	867	0.07	24	2	21,521	1,532,598	543,423

d) Assuming Chinese surveillance guidelines.

Screening Strategy	Test	Start-Stop Interval	Age	FITs	Colonoscopies	False Positives	Complications	CRC Incidence	CRC Mortality	Life Years	Total Costs	LY ICER
No Screening				0	49	0	0.01	49	11	21,482	869,648	
FIT-1-10	50-70	3	49	6,572	638	343	0.03	39	6	21,509	932,920	2,357
FIT-2-10	50-70	3	49	6,563	801	449	0.04	35	5	21,512	946,907	4,632
FIT-1-10	50-75	3	49	8,108	949	561	0.04	32	4	21,515	980,771	10,924
FIT-2-10	50-80	3	49	9,185	1,008	601	0.05	31	3	21,516	995,748	11,432
FIT-1-15	50-80	1	49	25,386	967	570	0.05	31	3	21,519	1,073,331	27,808
FIT-1-10	50-80	1	49	25,130	1,291	815	0.06	28	2	21,520	1,112,751	34,579
FIT-1-15	45-80	1	49	30,333	1,113	695	0.05	30	2	21,522	1,173,484	35,516
FIT-1-15	45-80	1	49	30,063	1,499	993	0.06	27	2	21,523	1,232,248	46,638
FIT-2-10	45-80	1	49	29,675	2,123	1,499	0.08	22	2	21,524	1,487,932	164,958
SH-FIT-RA	45-80	1	49	27,798	6,290	5,290	0.18	16	1	21,526	2,433,797	750,886
e) Assuming international quality of life estimates.

Screening Strategy	Test	Start-Stop Age	FITs	Colonoscopies	False Positives	Complications	CRC Incidence	CRC Mortality	Life Years*	Total QALYs*	Total Costsab	ICERab
No Screening		0	49	0	0.01	49	11	21,482	19,035	869,648		
FIT-1-10	50-70	3	5,901	514	151	0.03	36	5	21,509	19,768	874,095	6
FIT-2-10	50-70	3	5,645	652	239	0.04	33	5	21,511	19,892	884,484	84
FIT-2-10	50-75	3	6,884	744	294	0.04	31	4	21,514	19,959	904,162	298
FIT-2-10	45-75	3	8,490	838	362	0.05	30	3	21,516	20,085	985,512	642
FIT-2-10	45-80	3	8,958	863	380	0.05	30	3	21,517	20,096	992,642	652
FIT-1-10	45-75	1	22,046	1,043	528	0.06	28	3	21,519	20,213	1,080,650	754
FIT-1-10	45-80	1	24,054	1,104	572	0.06	27	2	21,520	20,232	1,101,071	1,092
FIT-2-10	45-80	1	21,214	1,456	867	0.07	24	2	21,521	20,277	1,254,847	3,374

Note: Screening strategies: screening test - screening interval – test cut-off. Grey shading highlights optimal screening scenario at the willingness-to-pay threshold.

Abbreviations: CRC, colorectal cancer; FIT, faecal immunochemical test; ICER, incremental cost-effectiveness ratio; QALYs, quality-adjusted life-years.

a. Results are discounted at an annual rate of 3%.

b. Costs are presented in Chinese Renminbi (¥).
Supplementary Results Figures

Contents

Figure S1: Costs and life years gained (per 1,000 45-year-olds for all 324 colorectal cancer screening scenarios and a scenario without screening, assuming perfect adherence. The efficient frontier connects the economically efficient strategies.\(^{a}\) 1
 a) Results are undiscounted. ... 1
 b) Results are discounted at 5%. .. 2

Figure S2: Costs and life years gained (discounted at 3%) per 1,000 45-year-olds for all 324 colorectal cancer screening scenarios and a scenario without screening. The efficient frontier connects the economically efficient strategies.\(^{a}\) 3
 a) Assuming perfect adherence and adjusted FIT characteristic's. 3
 b) Assuming perfect adherence and a 50% decrease in the costs of the validated FITs. 4
 c) Assuming perfect adherence and a 200% increase in the costs of the validated FITs. 5
 d) Assuming perfect adherence and Chinese surveillance guidelines. 6
 e) Assuming perfect adherence and international quality of life estimates. 7

Figure S3: Cost-effectiveness acceptability curve and frontier .. 8
Figure S1: Costs and life years gained (per 1,000 45-year-olds for all 324 colorectal cancer screening scenarios and a scenario without screening, assuming perfect adherence. The efficient frontier connects the economically efficient strategies.
a) Results are undiscounted.
b) Results are discounted at 5%.

Abbreviations: FIT, faecal immunochemical test; ICER, incremental cost-effectiveness ratio, LYs, life years; µg Hb/g, micrograms of haemoglobin per gram faeces

a. Discounted costs and life years gained reflect total costs and life years gained of a screening program, accounting for time preference for present over future outcomes. Life years gained are plotted on the y-axis, and total costs are plotted on the x-axis. Each possible screening strategy is represented by a point. Strategies that form the solid line connecting the points lying left and upward are the economically rational subset of choices. This line is called the efficient frontier. The inverse slope of the line represents the incremental cost-effectiveness ratio of the connected strategies. Points lying to the right and beneath the line represent the dominated strategies.
Figure S2: Costs and life years gained (discounted at 3%) per 1,000 45-year-olds for all 324 colorectal cancer screening scenarios and a scenario without screening. The efficient frontier connects the economically efficient strategies.

a) Assuming perfect adherence and adjusted FIT characteristic's.
b) Assuming perfect adherence and a 50% decrease in the costs of the validated FITs.

Supplemental material

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance placed on this supplemental material which has been supplied by the author(s)
c) Assuming perfect adherence and a 200% increase in the costs of the validated FITs.

- Screening test
 - No Screening
 - Shanghai FIT
 - Shanghai FIT and Risk Assessment
 - One sample FIT 10μg Hgb
 - One sample FIT 15μg Hgb
 - One sample FIT 20μg Hgb
 - One sample FIT 30μg Hgb
 - One sample FIT 40μg Hgb
 - Two sample FIT 10μg Hgb
 - Two sample FIT 15μg Hgb
 - Two sample FIT 20μg Hgb
 - Two sample FIT 30μg Hgb
 - Two sample FIT 40μg Hgb

- Screening start and stop ages
 - 45-70 years
 - 45-75 years
 - 50-80 years
 - 50-70 years
 - 50-75 years
 - 55-70 years
 - 55-75 years
 - 55-80 years

Screen leaf	No/different FIT	FIT-1-10	FIT-1-10	FIT-2-10	FIT-2-10	FIT-1-10	FIT-1-10
Screen ages	50-70	50-75	50-75	50-80	45-80	45-80	45-80
Screen frequency	3	3	3	3	2	1	1
#CER (k)	1662	10078	17274	23023	38669	62198	543423
d) Assuming perfect adherence and Chinese surveillance guidelines.
e) Assuming perfect adherence and international quality of life estimates.

Abbreviations: FIT, faecal immunochemical test; ICER, incremental cost-effectiveness ratio, LY, life years; QALY, quality adjusted life years; µg Hb/g, micrograms of haemoglobin per gram faeces

- Discounted costs and life years gained reflect total costs and life years gained of a screening program, accounting for time preference for present over future outcomes. Life years gained are plotted on the y-axis, and total costs are plotted on the x-axis. Each possible screening strategy is represented by a point. Strategies that form the solid line connecting the points lying left and upward are the economically rational subset of choices. This line is called the efficient frontier. The inverse slope of the line represents the incremental cost-effectiveness ratio of the connected strategies. Points lying to the right and beneath the line represent the dominated strategies.
Figure S3: Cost-effectiveness acceptability curve from the probabilistic sensitivity analysis

The vertical dashed line represents the willingness-to-pay threshold in China (this threshold was set at three times the Chinese gross domestic product per capita in 2018 (¥193,931 RMB which is equal to $29,313 US) for one LYG.)