Pd$^{2+}$-Initiated Formic Acid Decomposition: Plausible Pathways for C-H Activation of Formate

Won Jong Lee*,[a] Yeon Jin Hwang*,[a, b] Joohoon Kim,[b, c] Hyangsoo Jeong,*[a, b] and Chang Won Yoon*[a, b, d]

Formic acid (HCOOH, FA) has long been considered as a promising hydrogen-storage material due to its efficient hydrogen-release under mild conditions. In this work, FA decomposes to generate CO$_2$ and H$_2$ selectively in the presence of aqueous Pd$^{2+}$ complex solutions at 333 K. Pd(NO)$_3$ was the most effective in generating H$_2$ among various Pd$^{2+}$ complexes explored. Pd$^{2+}$ complexes were in situ reduced to Pd0 species by the mixture of FA and sodium formate (SF) during the course of the reaction. Since C–H activation reaction of Pd$^{2+}$-bound formate is occurred for both Pd$^{2+}$ reduction and H$_2$/CO$_2$ gas generation, FA decomposition pathways using several Pd$^{2+}$ species were explored using density functional theory (DFT) calculations. Rotation of formate bound to Pd$^{2+}$, β-hydride elimination, and subsequent CO$_2$ and H$_2$ elimination by formic acid were examined, providing different energies for rate determining step depending on the ligand electronics and geometries coordinated to the Pd$^{2+}$ complexes. Finally, Pd$^{2+}$ reduction toward Pd0 pathways were explored computationally either by generated H$_2$ or reductive elimination of CO$_2$ and H$_2$ gas.

1. Introduction

To address the increasing energy and environmental issues due to the ever-increasing use of fossil fuels, substantial efforts are being made to employ renewable energy resources for the future.[1] However, due to the intermittent and unpredictable nature of renewable energy production, an efficient energy carrier capable of storing and transporting the produced renewable energy on demand is needed. In this regard, hydrogen has long been recognized as a clean and sustainable energy carrier that meets the global energy demand because of its substantially high gravimetric energy density of 142 MJ kg$^{-1}$, much higher than those of gasoline and natural gas.[2] In addition, use of hydrogen in conjunction with fuel cells can maximize the efficiencies of relevant energy systems while releasing only water, which is environment-friendly. However, the low volumetric energy density of hydrogen (10.7 kJ L$^{-1}$)[3] limits its use in different stationary fuel cell applications such as hydrogen refueling stations, off-grid power generators, and distributed power generation systems. Thus, a safe and reliable method must be developed, which can store mass quantities of hydrogen in a unit volume for utilizing renewable energy in an efficient manner.

In this context, numerous liquid chemicals possessing high volumetric hydrogen storage densities of >50 g-H$_2$/L have been studied extensively. These liquid chemicals could also be economically viable for transport using the currently existing infrastructure. One such potentially promising liquid chemical is formic acid (FA, HCOOH) which has a high volumetric hydrogen storage capacity of 53 g-H$_2$/L. Furthermore, the hydrogen atoms stored chemically in FA can be released rapidly as molecular hydrogen at temperatures of <70°C, in the presence of an appropriate catalyst (Eq. 1, dehydrogenation pathway).[4] In addition to the H$_2$-release pathway, another thermodynamically favorable dehydration reaction is also possible during FA decomposition (Eq. 2, dehydration pathway), producing carbon monoxide that is detrimental to polymer electrolyte membrane fuel cell (PEMFC) applications.[5] Hence, for FA to be highly useful, the undesired dehydration reaction needs to be suppressed.

\[
\text{HCOOH} (l) \rightarrow \text{CO}_2 (g) + \text{H}_2 (g) \quad \Delta G^\circ = -32.9 \text{kJ mol}^{-1} \tag{1}
\]

\[
\text{HCOOH} (l) \rightarrow \text{CO} (g) + \text{H}_2\text{O} (l) \quad \Delta G^\circ = -12.4 \text{kJ mol}^{-1} \tag{2}
\]

In previous studies, significant attention has been focused on developing highly selective and active homogeneous and
heterogeneous catalysts for FA dehydrogenation pathway. For homogeneous catalysis, iron, rhodium, ruthenium, and iridium-based catalysts have been reported. For example, Laurenczy et al. reported the decomposition of FA using RuCl₂·xH₂O and water-soluble meta-trisulfonated triphenylphosphine (TPPTS) ligand.[80] Mechanistic studies indicated that formate anion binds to the metal center and undergoes subsequent β-elimination to yield ruthenium hydride species coordinated to CO₂ ligand. Subsequently, either the dissociation of CO₂ and H₂ by formic acid continues the catalytic cycle or the formate could bind to ruthenium hydride species and CO₂ and H₂ might be released via ruthenium dihydride intermediate.[77] Highly active iridium(III) bipyridine-based catalyst was developed by Himeda[86] while rhodium(III) bipyridine-based catalyst was reported by Fukuzumi et al. as active catalysts in FA dehydrogenation.[89] Moreover, a non-noble metal catalyst such as an iron complex was also shown to be highly active for FA dehydrogenation, as reported by Beller[81] and Hazari et al.[11]

In contrast, heterogeneous catalytic systems are mostly composed of Pd⁰ or Au⁰ nanoparticles on solid supports. Though these catalysts were developed by modification of support materials or active sites by the addition of secondary metals such as Ag⁰ or Au⁰, Pd⁰ remains the highly active metal in FA dehydrogenation.[112–115] Recently, in monometallic Pd-based catalysts, active catalytic systems containing both Pd⁰ and Pd²⁺ oxidation states have been reported, and reduction of Pd²⁺ has been proposed to be the reason for its decreased reactivity in FA dehydrogenation.[116] In 2016, single-site Pd²⁺ on N-doped carbon was reported to be the active site in FA dehydrogenation by near-edge X-ray absorption fine structure (NEXAFS) and X-ray photoelectron spectroscopy (XPS) studies.[117] DFT studies indicated that dehydrogenation proceeded through C–H activation to afford palladium hydride and a carboxyl fragment rather than O–H activation leading to formate binding pathway. However, there have not been many mechanistic studies reported in understanding the role of Pd²⁺ as an active site.

In this paper, we report our preliminary study of decomposition of FA using Pd²⁺ complexes in aqueous solution. Though the reduction of Pd²⁺ to form metallic Pd was observed under the reaction condition, the dissociation of C–H bond of FA by Pd²⁺ should be occurred. Computational pathways of the FA dehydrogenation using isolated Pd²⁺ species are explored. Mechanistic pathways through the coordination of formate, β-hydride elimination, and subsequent dissociation of CO₂ and H₂ by formic acid are calculated by density functional theory (DFT) studies. Finally, ligand modifications varying electronics were examined to explore energy barriers in the dehydrogenation reaction.

2. Results and Discussion

2.1. Formic Acid Decomposition over Pd(II) Complexes

A number of Pd²⁺ complexes were initially employed to accelerate FA decomposition in the presence of formate as an additive at 60 °C. As depicted in Figure 1, the rates of H₂-release were highly dependent upon the kind of Pd²⁺ compound. For instance, Pd²⁺ complexes with chloride ligands such as PdCl₂, Na₃PdCl₆, and Pd(NH₃)₂Cl₂ showed nearly no activity in FA decomposition for over 1 h, with less than 50 mL of gases being produced. In contrast, the dehydrogenation kinetics improved significantly upon utilization of Pd(NO₃)₂ and Pd(OAc)₂, suggesting the importance of coordinating ligands. In particular, Pd(NO₃)₂ exhibited the highest activity among the complexes employed, releasing ~330 mL of gases over 3 h. It was notable that the initial orange color of the aqueous solution containing Pd²⁺ complex turned black, along with the formation of black particles, as the reaction proceeded. The results indicated that the reduction of Pd²⁺ ion occurred under the reaction conditions in the presence of the mixture of formic acid and sodium formate.

UV-Vis spectroscopy was employed to monitor the rate of Pd²⁺ reduction in situ. Figure 2 presents a fast decrease in
absorbance at $\lambda = 345$ nm attributed to Pd$^{2+}$ at Pd(NO$_3$)$_2$, again indicating the reduction of Pd$^{2+}$ species. For Pd$^{2+}$ to be reduced, the formate reactant needed to be coordinated to it by ligand exchange reactions. If a ligand is coordinated strongly at the Pd$^{2+}$ center, the ligand exchange reaction with formate would be slow, resulting in retardation of the reduction process. In this context, an additional ligand, 2,2'-bipyridine (bipy) was employed to induce strong interaction between Pd$^{2+}$ and bipy. When a sonicated aqueous solution of 2,2'-bipy and Pd(NO$_3$)$_2$ in the molar ratio of 1:1 was tested, the solution showed slow decrease in absorbance at $\lambda = 345$ nm, indicating sluggish Pd$^{2+}$ reduction (Figure 2). Furthermore, the aqueous solution containing Pd(NO$_3$)$_2$ and 2,2'-bipy in the molar ratio of 1:2 did not show any activity towards FA decomposition over 1 h at 60°C. It is thought that 2,2'-bipy is coordinated strongly to Pd(NO$_3$)$_2$, which might hinder the ligand exchange between nitrate and formate. When Na$_2$PdCl$_4$ was used, the corresponding absorbance peak could not be observed presumably due to the rapid reduction. The relatively slow decomposition rate with Pd complexes coordinated with chlorides may result from rapid aggregation following reduction, which is possibly induced by weakening zeta-potential of the initially formed Pd nanoparticles.[18]

Formate anion is known to reduce Pd$^{2+}$ complexes such as Pd(OAc)$_2$ by ligand exchange between acetate and formate, and produce Pd0 species along with the generation of CO$_2$ and H$_2$.[19,20] Recently, a Pd$^{2+}$ complex was in situ reduced by FA or formate and the generated Pd0 species exhibited high catalytic activity towards dehydrogenation of FA.[21] An alternative explanation for the observed experimental results is that the Pd$^{2+}$ cation also acted as a homogeneous catalytic site for FA decomposition, thus releasing CO$_2$ and H$_2$. Subsequently, the generated H$_2$ could reduce Pd$^{2+}$ ion into Pd0 species, which could then participate in FA dehydrogenation reaction. Experimentally, Pd$^{2+}$ complexes were reduced rapidly upon direct exposure to molecular hydrogen with a rate of 30 ml/min under the reaction conditions without FA or sodium formate addition. Nonetheless, it cannot be concluded which pathway is responsible for the experimental observation, and both reaction pathways are possible. However, in either case, the formation of Pd–H species via C–H bond activation of formate is one of the important processes for FA decomposition over Pd$^{2+}$ cation. Accordingly, we followed plausible reaction pathways for FA decomposition using different Pd$^{2+}$ complexes.

2.2. Possible Pathways for Formic Acid Decomposition over (X–CO$_2$)Pd(O$_2$C–H) (X=F, H, CH$_3$; and NH$_2$)

Previously, iridium(III)-based catalyst exhibited good activities for aqueous phase FA dehydrogenation, and possible pathways were also explored using DFT calculations in the gas phase.[22] We employed Pd complexes coordinated with formate and X–CO$_2$ (X=H, CH$_3$, NH$_2$ and F) anions to follow plausible pathways for FA dehydrogenation over Pd$^{2+}$ ion. Diverse functionalities (X) with different electronic properties were introduced to generate four complexes, (X–CO$_2$)Pd(O$_2$C–H) (1, X=H; 2, X=CH$_3$; 3, X=NH$_2$; and 4, X=F) (Scheme 1). Note that the coordinated formate ligand in 1–4 also acts as the reactant for FA decomposition.

The produced model complexes, 1–4 can result in C–H bond activation at formate anion via multiple steps, which could potentially release hydrogen from FA. For instance, 1 can be formed by the interaction between Pd$^{2+}$ ion and formate, i.e., FA gets dissociated into formate ion and proton (Eq. 3), and the formate anion (HCOO$^-$) coordinates to free Pd$^{2+}$ cation to produce 1 (Eq. 4). The Pd complex can then change oxygen binding mode from η^2 to η^1 by rotating one of the coordinated formate ions (Eq. 5), followed by consecutive β-hydride elimination to yield (HCOO)Pd(H)(CO$_2$) (Eq. 6). Lastly, the formed Pd–H species reacts with FA, releasing molecular H$_2$ and CO$_2$ along with the regeneration of 1 (Eq. 7). The overall reaction is the desired FA dehydrogenation (Eq. 8). The FA decomposition pathway involving sequential steps of formate rotation and β-hydride elimination was consistent with those using Fe$^{3+}$ system reported previously.[22–25]

Based on the hypothetical dehydrogenation pathway, relevant geometries for each intermediate (Int) and transition state (TS) associated with 1–4 were optimized, and their energies were calculated in the gas phase (Figure 3a).
optimized Int and TS structures were further employed to compute additional electronic energies to simulate an aqueous phase FA dehydrogenation using conductor-like polarizable continuum model (CPCM) (Figure 3b). For details, 1–4 undergo an isomerization reaction possibly via TS1 (Eq. 5) to produce Int1’, where oxygen and hydrogen atoms of a formate ligand interact simultaneously with the Pd2⁺ ion (Figure 3a). Compared to Pd–O1 and Pd–O2 (1, 2.106 Å; 2, 2.113 Å; 3, 2.116 Å) of Int1, the Pd–O1 bond lengths in Int1’ shortened slightly to 2.060 Å, 2.074 Å, and 2.075 Å for 1–3, respectively. Notably, the C–H bond length of the rotated formate ligand in Int1’ was found to be 1.292 Å, 1.305 Å, and 1.291 Å for 1–3, respectively, which indicated a significant elongation compared to those (1–3, 1.084 Å) of Int1 (Table 1). In addition, the bond distances between Pd and H atoms in Int1’ associated with 1–3 are 1.774 Å, 1.756 Å, and 1.769 Å, respectively. Moreover, the O1–C1–O2 bond angles are 140.4° (Int1’-1), 140.5° (Int1’-2), and 139.8° (Int1’-3), respectively, suggesting that the initial sp² hybridizations with the O1-C1-O2 angles of 116–117° at formate carbon of Int1 were altered significantly. The results strongly imply that the C–H bond in each Int1’ was activated partially either by changing the formate binding mode or by binding a free formate anion in this fashion. For 4, Int1’ structure could not be optimized successfully at the level of theory employed; instead, the initial structure was optimized directly to Int2, suggesting the complete C–H bond cleavage in the formate ligand. The result may originate from relatively electron deficient Pd2⁺ center of 4, which is prone to have more electron density by hydride abstraction. The optimized structures of Int1 and Int1’ for 1–3 are illustrated in Figure S1 in the supplementary information. The relative electronic energies of Int1’ with respect to Int1 were calculated to be 88.8, 88.4, and 88.4 kJ mol⁻¹ for 1–3, respectively, in the gas phase (Figure 3a). However, these energies changed considerably upon single
point energy computation with the conduct-like polarizable continuum model (CPCM) using the dielectric constant of water (Figure 3b). The relative energies for Int1' calculated with the CPCM model changed to 92.7 kJ mol⁻¹ (Int1'-1), 95.0 kJ mol⁻¹ (Int1'-2), and 94.7 kJ mol⁻¹ (Int1'-3), which are higher than those obtained in the gas phase. These results may likely be due to the relative extent of stabilization of the optimized intermediate structures upon utilization of the CPCM model.

The transition state, TS1 (see Eq. 5), which could be responsible for the rotational process from Int1 to Int1' involves the cleavage of C–O bond with the bond order of 1.5, but no relevant TS structures for 1–4 could be obtained properly upon optimization without any geometrical constraints at the level of theory employed. Further optimization was carried out to locate potential transition states by freezing the coordination of atoms not involved in the formate rotation; i.e., only oxygen and hydrogen atoms of the formate ion were fully relaxed upon optimization. The obtained optimized structures of TS1 associated with 1–4 are shown in Figure S2. The electronic energies of TS1 for 1–4 were computed to be 87.1 kJ mol⁻¹ (TS1-1), 11.4 kJ mol⁻¹ (TS1-2), 35.6 kJ mol⁻¹ (TS1-3), 113.4 kJ mol⁻¹ (TS1-4) in the gas phase. The results show that the relative TS1 energies decreased significantly upon utilization of stronger electron donating ligands. When the CPCM model was employed, however, the relative energy differences became small. In addition, compared to those obtained in the gas phase, the transition state energies increased to 123.3 kJ mol⁻¹ (TS1-1), 122.1 kJ mol⁻¹ (TS1-2), 121.4 kJ mol⁻¹ (TS1-3), and 125.5 kJ mol⁻¹ (TS1-4). Given the relative TS1 and Int1' energies, the TS1 structures obtained with geometry constraints may not be the true transition state geometries. It should be noted that TS1 is not necessary to follow FA dehydrogenation because formate can be bound directly to the Pd²⁺ center with a η¹-oxygen binding mode (Int1') in the gas phase or a condensed (aqueous) phase. In other words, Int1' is the reactant for H₂ release from FA.

Next, Int1' undergoes β-hydride elimination, a hydrogen abstraction from C–H at the Pd²⁺ center via TS2 to produce Int2 where Pd–H species is present. The TS2 structures for 2 and 3 were optimized successfully without any symmetry constraints (Figure S3). Important geometrical parameters are listed in Table 1. The calculated C–H bond lengths for 2 and 3 are 1.478 Å and 1.515 Å, respectively, which are 30% and 33% longer than that of free formate ion (1.36 Å). In addition, the Pd–H bond distances were computed to be 1.663 Å (2) and 1.653 Å (3). Moreover, O1–C1–O2 angles of the formate moieties in 2 and 3 were 146.5° and 147.4°, respectively. These results suggest that the initial sp² hybridization at the formate carbon was altered significantly, and the C–H bond in the formate species was cleaved considerably, along with the partial formation of the Pd–H bond in TS2. Intrinsic reaction coordination (IRC) calculations were performed using the obtained TS2 structures, confirming the formation of Int1' and Int2 through the reaction coordinates. Note that the calculated energies of TS2 for 2 and 3 are 3.5–3.7 kJ mol⁻¹ lower than those of Int1', implying that potential energy surface near Int1' and TS2 could be nearly flat. However, the corresponding TS2 energies of 2 and 3 calculated using the CPCM model are 8.8 and 12.3 kJ mol⁻¹ higher than those obtained in the gas phase.

Table 1. Selected Geometrical Parameters of 1–3.

(H–COO)Pd(OOC–H) (1)	Pd–O1 [Å]	Pd–O2 [Å]	Pd–H1 [Å]	C–H1 [Å]	< O1–Pd–O2 [°]	< O1–C1–O2 [°]
Int1	2.105	2.106	–	1.084	63.2	116.6
Int1'	2.060	–	1.774	1.292	–	140.4
Int2	2.173	–	1.527	3.220	–	177.7
Int3	–	–	1.554	–	–	–
(CH₂–COO)Pd(OOC–H) (2)	Pd–O1 [Å]	Pd–O2 [Å]	Pd–H1 [Å]	C1–H [Å]	< O1–Pd–O2 [°]	< O1–C1–O2 [°]
Int1	2.113	2.113	–	1.084	63.0	116.9
Int1'	2.074	–	1.756	1.305	–	140.5
TS2	2.108	–	1.663	1.478	–	146.5
Int2	2.175	–	1.533	3.213	–	177.7
Int3	–	–	1.562	–	–	–
(NH₂–COO)Pd(OOC–H) (3)	Pd–O1 [Å]	Pd–O2 [Å]	Pd–H1 [Å]	C1–H [Å]	< O1–Pd–O2 [°]	< O1–C1–O2 [°]
Int1	2.116	2.116	–	1.084	63.0	117.0
Int1'	2.075	–	1.769	1.291	–	139.8
TS2	2.116	–	1.653	1.515	–	147.4
Int2	2.174	–	1.537	3.199	–	177.7
Int3	–	–	1.566	–	–	–
(F–COO)Pd(OOC–H) (4)	Pd–O1 [Å]	Pd–O2 [Å]	Pd–H1 [Å]	C1–H [Å]	< O1–Pd–O2 [°]	< O1–C1–O2 [°]
Int1	2.095	2.096	–	1.083	63.4	116.3
Int2	2.157	–	1.523	3.276	–	177.7
Int3	–	–	1.546	–	–	–
Figure 4. Additional Pd complexes coordinated with NH₃ as a neutral ligand and different anionic ligands (5–11 and 5'–11').

To further scrutinize the nature of TS2, additional analyses were needed.

Int2 was then obtained from Int1 via TS2. In Int2, Pd–H species was produced by complete cleavage of the C–H bond of the formate ion along with the interaction of CO₂ with the Pd²⁺ center. The optimized structures for Int2 are shown in Figure S4, and relevant geometrical parameters are listed in Table 1. The Pd–H bond lengths associated with 1–4 are 1.527 Å (Int2-1), 1.533 Å (Int2-2), 1.537 Å (Int2-3), and 1.523 Å (Int2-4), respectively, showing that a ligand with more electron donating ability resulted in an increased Pd–H bond length. Besides, the distance between carbon and hydrogen atoms in the formate anion increased drastically to >3.1 Å, clearly indicating the complete scission of the C–H bonds. Additionally, the O1–C–O2 angles in the optimized Int2 are nearly 180°, indicating the sp-hybridization around the carbon atom with two oxygen atoms. The gas phase electronic energies of Int2 are 29.8 kJ mol⁻¹ (Int2-1), 40.0 kJ mol⁻¹ (Int2-2), 45.1 kJ mol⁻¹ (Int2-3), and 18.8 kJ mol⁻¹ (Int2-4), and were found to increase in the order of 3 > 2 > 1 > 4. The trend appears to be correlated with the electronic properties of the ligands, and the Int2 energy increases as a ligand provides more electron density to the Pd²⁺ ion. With the CPCM model, these gas phase energies again increased to 39.8 kJ mol⁻¹ (Int2-1), 51.1 kJ mol⁻¹ (Int2-2), 58.7 kJ mol⁻¹ (Int2-3), 23.1 kJ mol⁻¹ (Int2-4).

Finally, the formed Int2 was interacted with FA to produce Int3, ultimately regenerating Int1 along with the release of H₂. The optimized structures are depicted in Figure S5, and relevant bond lengths and angles are listed in Table 1. Mulliken charge analyses with Int3 revealed that the negative charges of hydride attached to Pd increased as more electron donating ligands are coordinated: δ = −0.028 (Int3-1), δ = −0.042 (Int3-2), δ = −0.045 (Int3-3), δ = −0.047 (Int3-4). Consistent with the results, hydrogen atoms attached to FA had decreased positive charge as ligands with more electron donating functionalities were employed. Notably, dihydrogen bonding interactions between Pd-H (δ⁻) and HCOO-H (δ⁻) were found in the structures. Through the dihydrogen bonding interaction, molecular hydrogen can readily be released. The calculated energy differences between Int3 + CO₂ and Int1 + HCOOH increased with the strength of electron donating ligand: −54.8 kJ mol⁻¹ (Int3-1), −46.1 kJ mol⁻¹ (Int3-2), −42.1 kJ mol⁻¹ (Int3-3), −66.6 kJ mol⁻¹ (Int3-4). In contrast to other processes, this step was found to be exothermic, partly because of the dihydrogen bonding interaction. As in the case of Int2, the CPCM method showed increased energies of −37.1 kJ mol⁻¹ (Int3-1), −27.0 kJ mol⁻¹ (Int3-2), −20.8 kJ mol⁻¹ (Int3-3), −53.9 kJ mol⁻¹ (Int3-4). The energy of the overall reaction, HCOOH → H₂ + CO₂ was calculated to be −26.8 kJ mol⁻¹ in the gas phase and 16.9 kJ mol⁻¹ with the CPCM model. The enthalpy and Gibbs free energy of FA dehydrogenation calculated in the gas phase are −19.6 kJ mol⁻¹ and −49.8 kJ mol⁻¹, respectively, which are in good agreement with those obtained using NIST database. The enthalpies and Gibbs free energies of the intermediates and transition states of 1–4 calculated at 298.15 K and 1 atm are listed in Table 2. The reaction pathways with enthalpies and Gibbs free energies (ΔG) involving 1–4 are illustrated in Figure S6.

2.3. Influence of Coordinated Ligands on FA Dehydrogenation over (X')(L')Pd(O₂C–H)

The model complexes, 1–4 possess the formate anion as a coordinating ligand with C–O bond order of 1.5. The two oxygen atoms in the formate anion can also be considered as a combination of a neutral (RC=O) and anionic (RC–O⁻) ligands. In this context, we generated a number of different Pd complexes, (L')(X')Pd(O₃C–H) (Int1) where L' and X' represent a neutral ligand and an anionic ligand, respectively (Figure 4), and continued to investigate potential influence of the coordinating ligands on FA decomposition. In particular, we chose ammonia as a neutral ligand for L' because amines are common neutral ligands that stabilize metal ions in numerous organometallic compounds. In contrast to 1–4, Int1 structures possessing distinct anionic ligands can follow two different pathways towards FA decomposition depending on the direction of formate rotation; i.e., rotation of the H–C–O moiety at formate along C–O2 axis produces 5–11 while that of H1–C–O2 at formate along C–O1 axis gives 5'–11'. Alternatively, the direction of formate coordination to Pd²⁺ ion, in conjunction with formate dissociation from a Pd²⁺ ion and consecutive coordination, could also affect the formation of either Int1 or Int1', ultimately affording a different FA decomposition pathway. Since energetics for FA decomposition would vary depending on the kind of ligand attached to Pd²⁺, relevant intermediates and transition states were optimized to elucidate key controlling factors for FA decomposition.

Figure 5 represents the gas phase FA dehydrogenation pathways over selected complexes coordinated with electron donating functionalities. Compared to Int1, the Int1'-S structure exhibits a lower energy of −29.2 kJ mol⁻¹ while Int1'-S', in which ammonia is located trans to hydride (H–Pd), shows a higher energy of 95.2 kJ mol⁻¹. Other complexes also display the similar trend. The calculated TS2 energies with respect to Int1 increase as X' is more σ-donating ligands (5, –CH₂₃, 6, –H) than π-donating ligands (8, –NH₂₃, 9, –OH). The relative energies (ΔES2,int) for 5 and 6 are nearly identical, but the energy
Table 2. Electronic energies, enthalpies, and Gibbs free energies of intermediates and transition states for FA dehydrogenation over 1–4, calculated at 298.15 K and 1 atm (Energies in Hartrees).

	E	H	G	E (water)[a]
H₂	-1.169505	-1.1662	-1.180995	-1.179726
CO₂	-188.638985	-188.635426	-188.660330	-188.653085
HCOH	-189.798285	-189.794169	-189.822364	-189.839230
HCO₂	-189.256234	-189.252309	-189.280035	-189.380156
(H₂COO)Pd(OOCH) (1)				
Int1	-506.193507	-506.185320	-506.226178	-506.258376
Int1'	-506.159702	-506.151168	-506.193238	-506.223061
Int2	-506.182145	-506.172693	-506.218335	-506.243233
Int3	-507.373672	-507.364215	-507.410479	-507.458638
TS1	-506.160349	-506.151074	-506.190074	-506.211403
(CH₃COO)Pd(OOCH) (2)				
Int1	-545.497019	-545.487043	-545.532869	-545.589249
Int1'	-545.463360	-545.453054	-545.499970	-545.553082
Int2	-545.481768	-545.470949	-545.521679	-545.567972
Int3	-546.673861	-546.662676	-546.713429	-546.785695
TS1	-545.492684	-545.483736	-545.522883	-545.542756
TS2	-545.464764	-545.456283	-545.501246	-545.549695
(NH₂COO)Pd(OOCH) (3)				
Int1	-561.564296	-561.554978	-561.598524	-561.650754
Int1'	-561.530642	-561.521015	-561.565466	-561.614694
Int2	-561.547124	-561.536576	-561.584920	-561.628415
Int3	-562.739614	-562.729122	-562.777030	-562.848262
TS1	-561.550718	-561.546411	-561.580909	-561.604525
TS2	-561.531945	-561.522430	-561.566885	-561.610014
(F₂COO)Pd(OOCH) (4)				
Int1	-605.453473	-605.444520	-605.487676	-605.510275
Int2	-605.466317	-605.456069	-605.491790	-605.501493
Int3	-605.468138	-605.458770	-605.503062	-605.516952
TS1	-605.410288	-605.405975	-605.440532	-605.462463

[a] Calculated using the conduct-like polarizable continuum model (CPCM) with the dielectric constant of H₂O.

Figure 5. The electronic energies (ΔE) for FA dehydrogenation over complexes coordinated with electron donating ligands (5, 6, 8, 9 and 5', 6', 8', 9').

difference between 8 and 9 is 15.5 kJ mol⁻¹. For TS2', the energy difference between 5' and 6' is 8.4 kJ mol⁻¹ while that between 8' and 9' is negligible. Although Int1'' is energetically higher than Int1', the C–H bond activation processes via TS2' appears
to have no kinetic barrier or have small activation energies. In contrast, the corresponding step from Int1 to Int2 via TS2 was found to need a much higher energy (\(E = 183.4\) kJ mol\(^{-1}\)). In the gas phase, the electronic energy of TS2-5 is slightly lower compared to that of Int1\(^{-\prime}\)-5 (\(\Delta E_{TS2-Int1} = 3.2\) kJ mol\(^{-1}\)), which increases to \(\Delta E_{TS2-Int1} = 20.4\) kJ mol\(^{-1}\) upon computation using the CPCM model with water. The difference in Gibbs free energies between Int1\(^{-\prime}\) and TS2 at 5° was calculated to be \(-3.3\) kJ mol\(^{-1}\) (Figure S7). Similarly, TS2 associated with the complex 8° showed slightly lower energy than the corresponding Int1\(^{-\prime}\), with \(\Delta E_{TS2-Int1} = -2.0\) kJ mol\(^{-1}\) being achieved. In the cases of 6° and 9°, however, the differences in electronic energies between Int1\(^{-\prime}\) and TS2 were found to increase significantly (6°, \(\Delta E_{TS2-Int1} = 6.7\) kJ mol\(^{-1}\); 9°, \(\Delta E_{TS2-Int1} = 18.6\) kJ mol\(^{-1}\)). As in the case of 1°-4, the negligible energy differences between Int1\(^{-\prime}\) and TS2 for 5° and 8° again imply that the potential energy surface around the species could be nearly flat. These obtained results suggest that FA decomposition likely proceeds from Int1 to Int1' to produce Int2 via TS2', which then reacts with an additional FA species to yield Int3' + CO\(_2\). Finally, the Int3' structure produces molecular hydrogen (H\(_2\)) with the regeneration of Int1.

Other complexes coordinated with electron withdrawing ligands (7, 10, 11, and 7°, 10°, 11°) were likewise found to undergo FA decomposition with the corresponding intermediates (Int1' for 7°, 10°, and 11°) involving the analogous transition states (TS2' for 7°, 10°, and 11°) (Figure 6). The relevant reaction pathways involving 7, 10, 7°, 10°, and 11° with Gibbs free energies are also depicted in Figure S8. Notably, at the Int3' structures shown in Figures 5 and 6, the H–H bond distances in Int3' that is coordinated with electron donating ligands (5°, 0.836 Å; 6°, 0.847 Å; 8°, 0.847 Å; 9°, 0.846 Å) are much shorter than those (1, 1.678 Å; 2, 1.630 Å; 3, 1.603 Å; 4, 1.741 Å) of 1°-4 but slightly longer than that (0.744 Å) of free hydrogen. On the other hand, the H–H distances in Int3' that is attached to electron withdrawing ligands (7°, 1.546 Å; 10°, 1.513 Å; 11°, 1.587 Å) are much elongated. The results originate partly from relative electron density of the Pd\(^{2+}\) ion. Relatively more electron-deficient Pd\(^{2+}\) ions may tend to have hydride as a ligand in the coordinating spheres to afford increased H(δ+)–H (δ+) distances, whereas electron-rich Pd\(^{2+}\) ions can interact with molecular hydrogen-like species in a sigma (σ) fashion to allow strong interaction between H(δ+) and H(δ+).

Based on these pathways described above, the C–H bond dissociation (TS2') and/or the formation of Int1' is the rate determining step in the FA decomposition (Figures 5 and 6). The HOMO and LUMO structures of TS2' for 5°-11° are summarized in Figure S9. We also examined the possibility of TS1 (Int1 to Int1') or TS1' (Int1 to Int1') as a potential rate controlling step by optimizing TS1 and TS1' structures. Efforts towards optimization of relevant transition state structures for the formate rotation step were not successful. To obtain the desired structures, geometry optimization was carried out by freezing the coordination of atoms not involving the formate rotation. The calculated energies for TS1' are much lower than those of Int1'. In case of TS1, most of the computed energies are higher than those of Int1'. The results strongly suggest that the TS1 and TS1' structures optimized using geometry constraints may not be true transition states responsible for the isomerization between Int1 and Int1' as well as between Int1
and Int1. In addition to TS1/TS1', we further explored a transition state alternative to TS2/TS2' involving interaction between formate hydrogen and Pd^{2+}, based on previous studies\(^2\) where the hydrogen atom of the formate ligand was coordinated in a sigma (σ) fashion at one of the sites at a Pd^{2+} center possessing the square planar geometry. Upon repeated geometry optimization using 1 as a base complex, the targeted structure initially employed was optimized to yield Int2 (see Figure 3a). The result likely comes from thermodynamically stable interaction between Pd^{2+} and η^1-OOC\(\text{H}^+\) using two sites of the square planar geometry; coordination of formate hydrogen in a η^1-fashion generates a vacant site around Pd^{2+}, which is thermodynamically unstable. The regenerated Int1 species can re-enter the catalytic cycle or the produced hydrogen can further reduce Pd^{2+} at Int1 to Pd^0. These reduced Pd^0 species can act as a new active site to accelerate FA decomposition continuously. The relative electronic energy for the Pd^{2+} reduction by H\(\text{2}\) was calculated to be ΔE = −240 kJ mol\(^{-1}\) (Int1 + H\(\text{2}\)→Pd^0 + 2 HCOOH). The high exothermicity of the Pd^{2+} reduction is consistent with the experimental observation.

Along with the pathways depicted in Figures 5 and 6, the Pd^{2+} reduction can also be facilitated by the produced Pd–H species, (L)(X)[Pd(H)(CO\(\text{2}\))] as an example with 1, (HCOO)Pd(H) (COO) (Int2 in Figure 1a) can react with NH\(\text{3}\) in the gas phase to produce 6 (Eq. 9; ΔE = −74 kJ mol\(^{-1}\)). The isomerization of Int1-6 again occurs to produce Int1'-'6' (Eq. 10; ΔE = −74 kJ mol\(^{-1}\), followed by β-hydride elimination to yield Int2'-'6' (Eq. 11; ΔE = −38 kJ mol\(^{-1}\)) via TS2' (ΔE\(_{TS2'-Int1'}\) = 6.7 kJ mol\(^{-1}\)). The palladium dihydride Int2'-'6' then proceeds reductive elimination to give the Pd^0 species (Eq. 12; ΔE = −158 kJ mol\(^{-1}\)). The overall ΔE for Eq. 13 is highly exothermic and computed to be −408 kJ mol\(^{-1}\), also supporting the Pd^{2+} reduction which was observed experimentally.

3. Conclusions

In summary, a series of aqueous Pd^{2+} complexes were tested in FA dehydrogenation reaction and examined computational pathways by DFT method. Experimental results indicate that Pd (NO\(\text{3}\))\(_2\) was in situ reduced to metallic Pd^0 species during the course of the reaction and aqueous solution containing a Pd^{2+} precursor and mixtures of FA and SF generate effectively CO\(\text{2}\) and H\(\text{2}\) gas at 60°C. Computational pathways were examined focusing on the Pd^{2+} state starting from Pd^{2+} with η^2-bound formate, β-hydride elimination, and subsequent CO\(\text{2}\) and H\(\text{2}\) elimination by formic acid. When (X–CO\(\text{2}\))Pd(O\(\text{2}\)C–H) (X=F, H, CH\(\text{3}\)) and NH\(\text{3}\)) were examined, the formation of Int1 and/or the C–H bond dissociation (TS2) is the rate determining step in the FA decomposition. In addition, electronic energies of β-hydride eliminated form (X–CO\(\text{2}\))Pd(H)(CO\(\text{2}\)) (Int2) was found to be higher as X is more electron donating ligands. Influences of anionic coordinated ligands in FA dehydrogenation reaction with the formula (X')(NH\(\text{3}\))Pd(O\(\text{2}\)C–H) (X=CH\(\text{3}\), H, CF\(\text{3}\), NH\(\text{3}\), OH, NO\(\text{2}\), CN) were further explored. In all cases, rotation of formate where NH\(\text{3}\) trans to hydride ligand showed lower energy barriers than X trans to hydride ligand. Once η^2-bound formate with one oxygen and one hydrogen atoms interacts to Pd^{2+} center, scission of C–H bond proceeds with low activation barrier. Based on this study, further ligand design of Pd^{2+}-based catalysts is currently underway.

Experimental Section

General Information

Palladium(II) nitrate dihydrate (Pd(NO\(\text{3}\))\(_2\)·2H\(\text{2}\))O), palladium(II) chloride (PdCl\(\text{2}\)), sodium tetrachloropalladate(II) (Na\(_2\)PdCl\(\text{6}\)), tetraakis (acetonitrile)palladium(II) tetrabromoformate (Pd(CH\(\text{3}\)CN)\(_2\)(BF\(\text{4}\))\(_2\)), and palladium(II) acetate (Pd(O\(\text{2}\)CCH\(\text{3}\))\(_2\)) were purchased from Sigma Aldrich. Tetraaminepalladium(II) chloride monohydrate (Pd (NH\(\text{3}\))\(_2\)(Cl\(_2\)H\(_2\)O)), sodium formate (HCOONa), and 2,2'-bipyridine were purchased from Alfa Aesar. Unless otherwise noted, the compounds were used without further purification. UV-Vis spectra were measured on an Agilent Cary 100 UV-Vis spectrometer in the wavelength range from 300 to 800 nm, with a resolution of 1 nm. Standard quartz cuvettes with a 10-mm light path were used for all UV-Vis spectra measurements.

Dehydrogenation of Formic Acid/Formate over Pd(II) Complexes

In a typical reaction, a desired Pd^{2+} complex (94 μmol) was dissolved in distilled water (2.0 mL) in a glass tube, and purged by nitrogen and heated to 60°C. An aqueous mixture (2.5 mL) of formic acid (9 mmol) and sodium formate (9 mmol) was then injected into the reactor and stirred vigorously. The volume of released gas was measured using an automatic gas burette system, which was directly connected to the reactor for real-time volumetric measurement. For in situ UV-Vis spectroscopic analyses with different Pd(II) complexes, an aqueous solution (1.2 mL) containing a desired Pd compound (0.29 μmol) was added into a cuvette. Then an additional aqueous solution (1.5 mL) containing formic acid (5.4 mmol) and sodium formate (5.4 mmol) was added.
to it. The resulting mixture was monitored by UV-Vis spectroscopy at regular intervals of 5 min for 60 min.

Computational Details

Density functional theory (DFT) calculations with Pd species coordinated to different ligands were carried out using the B3LYP functional[20] with 6-311 + + G(2d,p) basis set for carbon, nitrogen, oxygen, and ﬂuorine atoms in conjunction with the SDD(MWB28) basis set[31] for Pd atom without any symmetry constraints except the rotational process (TS1 or TS2). The TS1 geometries were optimized by freezing the coordinates of atoms not involved in the rotational process; i.e., only the oxygen and hydrogen atoms of formate at both (X – CO)Pd (OCOH) (1–4) and (L)(X)Pd(OCOH) (5–9) were relaxed. Harmonic vibrational analyses were performed on the optimized geometries at the same level to establish the nature of stationary points as well as to compute zero point energies. All reported energies were corrected using the obtained zero point energies. All stationary points optimized had no imaginary vibrational frequency except (FCOO)Pd(H)HCOOH) (Int3) (1, (CH3)NH2Pd(H)HCOOH) (Int3) (2+), (CN)Pd(OCOH) (Int1 (11), and (CF3)NH2Pd(H)HCOO) (Int2) (7)) where small negative frequencies of less than −15 cm−1 were found. First-true saddle points (TS2 and TS2) had only one imaginary frequency. Intrinsic reaction coordinate (IRC) calculations were carried out in both the forward and reverse directions to conﬁrm the reaction pathways from the located stationary points. In addition to the energy calculation in the gas phase, a solvent (water) effect was further considered using the conductor-like polarizable continuum model (CPCM)[21][22] with the geometries optimized in the gas phase. The calculated electronic energies, enthalpies, and Gibbs free energies at 298.15 K and 1 atm for all reactions at the level of theory are summarized in Tables 2, S2 and S4.

Acknowledgements

This work was supported by the Technology Development Program to Solve Climate Changes of the National Research Foundation (NRF) funded by the Ministry of Science, ICT & Future Planning (2015M1A2A2074688) as well as by the KIST institutional program funded by the Korea Institute of Science and Technology (2E28272).

Conflict of Interest

The authors declare no conﬂict of interest.

Keywords: decomposition pathway · density functional theory · formic acid · hydrogen storage · palladium

[1] P. Moriarty, D. Honnery, Renewable Sustainable Energy Rev. 2012, 16, 244–252.
[2] S. Singh, S. Jain, V. Ps, A. K. Tiwari, M. R. Nouni, J. K. Pandey, S. Goel, Renewable Sustainable Energy Rev. 2015, 51, 623–633.
[3] K. Mazloomi, C. Gomes, Renewable Sustainable Energy Rev. 2012, 16, 3024–3033.
[4] K. Sordakis, C. Tang, L. K. Vogt, H. Junge, P. J. Dyson, M. Beller, G. Laurenczy, Chem. Rev. 2018, 118, 372–433.
[5] D. L. Trimm, Appl. Catal. A 2005, 296, 1–11.
[6] C. Fellay, P. J. Dyson, G. Laurenczy, Angew. Chem. Int. Ed. 2008, 47, 3966–3968; Angew. Chem. 2008, 120, 4030–4032.
[7] C. Fellay, N. Yan, P. J. Dyson, G. Laurenczy, Chem. Eur. J. 2009, 15, 3752–3760.
[8] Y. Himeda, Green Chem. 2009, 11, 2018.
[9] S. Fukuzumi, T. Kobayashi, T. Suenobu, ChemSusChem 2008, 1, 827–834.
[10] A. Boddien, D. Mellmann, F. Gartner, R. Jackstell, H. Junge, P. J. Dyson, G. Laurenczy, R. Ludwig, M. Beller, Science 2011, 333, 1733–1737.
[11] E. A. Bielinski, P. O. Lagaditis, Y. Zhang, B. Q. Mercado, C. Wurtele, W. H. Bernskoetter, N. Hazari, S. Schneider, J. Am. Chem. Soc. 2014, 136, 10234–10237.
[12] Zhong, M. Iguchi, M. Chattejee, Y. Himeda, Q. Xu, H. Kawanami, Adv. Sustainable Syst. 2018, 2, 1700161.
[13] J. H. Lee, J. Cho, M. Jeon, M. Ridwan, H. S. Park, S. W. Nam, J. Han, T.-H. Lim, H. C. Ham, C. W. Yoon, J. Mater. Chem. A 2016, 4, 14141–14147.
[14] W. Y. Yu, G. M. Mullen, D. W. Flaherty, C. B. Mullins, J. Am. Chem. Soc. 2014, 136, 11070–11078.
[15] Y. Ping, J.-M. Yan, Z.-L. Wang, H.-L. Wang, Q. Jiang, J. Mater. Chem. A 2013, 1, 12188.
[16] X. Wang, G.-W. Qi, C.-H. Tan, Y.-P. Li, J. Guo, X.-J. Pang, S.-Y. Zhang, Int. J. Hydrogen Energy 2014, 39, 837–843.
[17] D. A. Bulushev, M. Zacharska, E. V. Shlyakhov, A. L. Chuvilin, Y. Guo, S. Beloshapkin, A. V. Okotrub, L. G. Bulusheva, ACS Catal. 2016, 6, 681–691.
[18] L. Zhao, D. Jiang, Y. Cai, X. Ji, R. Xie, W. Yang, Nanoscale 2012, 4, 5071–5076.
[19] B. Basu, S. Das, P. Das, A. K. Nanda, Tetrabedron Lett. 2005, 46, 8591–8593.
[20] S. V. Ley, C. Mitchell, D. Pears, C. Ramarao, J. Q. Yu, W. Zhou, Org. Lett. 2003, 5, 4665–4668.
[21] Q. L. Zhu, F. Z. Song, Q. J. Wang, N. Tsumori, Y. Himeda, T. Autrey, Q. Xu, J. Mater. Chem. A 2018, 6, 5544–5549.
[22] R. Tanaka, M. Yamashita, L. W. Chung, K. Morokuma, K. Nozaki, Organo-metallics 2011, 30, 6742–6750.
[23] F. Bertini, I. Mellone, A. Ienco, M. Peruzzini, L. Gonsalvi, J. Mater. Chem. A 2015, 5, 1254–1265.
[24] X. Yang, Dalton Trans. 2013, 42, 11978–11991.
[25] R. Sánchez-De-Armas, L. Xue, M. S. G. Scalmani, G. A. Petersson, H. Nakatsuji, X. Li, J. Comput. Chem. 2013, 34, 11869–11873.
[26] R. H. Crabtree, Chem. Rev. 2016, 116, 8750–8769.
[27] NIST Chemistry WebBook, NIST Standard Reference Database Number 69, https://webbook.nist.govchemistry/ (accessed Nov 25, 2018).
[28] H. Ge, Y. Jing, X. Yang, Inorg. Chem. 2016, 55, 12179–12184.
[29] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, J. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, G. A. Perdew, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Izengard, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Barone, J. A. Foresman, D. J. Fox, Gaussian 09, revision A.02; Gaussian, Inc., Wallingford, CT, 2016.
[30] A. D. Beke, J. Chem. Phys. 1993, 98, 5648–5652.
[31] D. Andreae, U. Haeussermann, M. Dolg, H. Stoll, H. Preuss, Theor. Chem. Acc. 1990, 77, 123–141.
[32] M. Cossi, N. Rega, G. Scalmani, V. Barone, D. Chimica, F. Li, C. M. S. Angelo, J. Comput. Chem. 2003, 24, 669–681.