Power System Dynamic State Estimation Based on a New Particle Filter

CHEN Huanyuana, LIU Xindongb, SHE Caiqi, Yao Cheng

College of Electrical Information Engineering Jinan University Zhuhai, China
achenhuanyuan1989@126.com ; bbaiom@126.com

Abstract

In order to improve the performance of power system dynamic state estimation, a new particle filter for nonlinear filtering problems (Mixed Kalman Particle Filter, MKPF) is introduced. The MKPF method which based on the extended Kalman filter (EKF) and the unscented Kalman filter (UKF), can obtain a more accurate approximate expression of the true distribution. Combined with the real-time data of mixed measurement (WAMS/SCADA), a simulation of power system dynamic state estimation is established. Finally, the simulation results show that the method can quickly follow to the real value after the power system is disturbed and obtain higher estimated accuracy and robustness than the EKF and UKF methods.

© 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of the Intelligent Information Technology Application Research Association.

Keywords: Power system; Dynamic state estimation; Mixed Kalman Particle Filter; mixed measurement; simulation

1. Introduction

Dynamic state estimation is a branch of state estimation. The actual power system is a complex, nonlinear and dynamic system. Dynamic state estimation is more in line with the nature of the power system than the static state estimation. Dynamic state estimation, which has forecasting capabilities, can provide the real-time operational status of the power system. Therefore, it is an important part of the energy management system (EMS)[1-2]. Currently, the power system dynamic state estimation method is based on extended Kalman filter (EKF) method. In normal operating conditions, it is comparatively accurate to use EKF method to obtain the power system dynamic state estimation. While in some specific cases, such as load or generator output power mutates, the limitation of EKF method will produce a large error. In order to improve its prediction and filtering performances, Chinese and overseas scholars had made some improvements: On the basis of load forecasting model, reference [3] used a dynamic method which was able to truly predict the trend of the system load. But this load model could not use the original Kalman filter model for iterating. Reference [4] used Adaptive Kalman filtering (AKF) to improve the filtering accuracy. But due to its online estimate
model parameters and statistical characteristics of noise, the calculated amount was too large and was
difficult to meet the online requirements. Reference [5] used the Unscented Kalman filter (UKF) method
for power system dynamic state estimation, and achieved a more accurate estimation than traditional EKF
method. However, UKF has certain restrictions on use. It applies only to ordinary Gaussian distribution
model. While the actual power system is a nonlinear system, especially after the large disturbances. The
load will change and the generators will also appear large oscillation. This change and oscillation are
highly nonlinear, and the entire system is a time variant nonlinear system, that using UKF method for
dynamic state estimation has certain defects.

Based on the above considerations, a new particle filter for nonlinear filtering problems proposed by
reference [6] is introduced in this paper. This method, which mixes the EKF and UKF method as
recommenced distribution, can achieve a more accurate approximate expression to the real distribution and
with more forecasting and filtering accuracy. Combined with the real-time data of mixed-measurement, a
power system dynamic state estimation simulation is established. Finally, the simulation results verify the
validity of this method.

2. EKF Dynamic State Estimation

The general transfer and measurement equations of the power system dynamic state estimation can be
written as:

\[
\begin{aligned}
 x_{k+1} &= f(x_k) + w_k \\
 z_k &= h(x_k) + v_k
\end{aligned}
\] (1)

Where \(x_k \) and \(z_k \) are state and measurement vectors at moment \(k \); \(f \) and \(h \) are non-linear state
transfer function and non-linear measurement function; \(w_k \) and \(v_k \) are model and measurement noise;
\(w_k \propto N(0,Q_k) \), \(v_k \propto N(0,R_k) \), \(Q_k \) is the model errors variance, \(R_k \) is the measurement errors covariance.

Currently, the common power system dynamic state estimation method is the EKF method. Specifications of EKF method see reference [7]. While in practical application of power system, EFK
method has certain disadvantages: When the load or generator output power mutates, the entire system is
strongly nonlinear. That EKF ignores the second-order and higher-order entries will greatly affect the
estimate accuracy, or even causes serious distortion. Moreover, the conditional distribution of the power
system is strong non-Gaussian, that EKF method uses Gaussian distribution conditions will give rise to
considerable error.

3. UKF Dynamic State Estimation

Unscented Kalman filter (UKF) is also a kind of recursive Bayesian estimation method\[^8\], which
applies unscented transform (UT) method to use a group determine sampling points to approximate a
posterior probability. But it does not have to linearism the nonlinear state equation or measurement
equation. It directly uses the nonlinear state equation to estimate the probability density function of state
vectors. Specifications of UKF method see reference [8]. Reference [5] applied UKF method to the power
system dynamic state estimation, which had solved the traditional EKF method’s shortcomings such as
slow convergence speed and poor robustness, but still not solved the nonlinear problems of power system.

4. Mixed Kalman Particle Filter Dynamic State Estimation

On the basis of EKF and UKF methods, preference [6] introduced a new type of particle filter, called
mixed Kalman particle filter (MKPF). It mixed the EKF and UKF methods as the recommended
distribution. At moment \(k \), UKF method is used to produce the system state estimation first, and then EKF
دریافت فوری
متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات