Venous thromboembolism is a global problem, and in the United States alone, it affects up to 600,000 patients annually. Prolonged immobility is a cited risk factor for developing venous thromboembolism. Randomized controlled trials (RCTs) report significant reductions in venous thromboembolism events among surgical and medical patients who received pharmacological prophylaxis while in hospital. Clinical practice guidelines describe risk-specific recommendations by patient population, and accrediting bodies endorse prevention of venous thromboembolism as a top practice for patient safety.

At our hospital, we significantly increased the proportion of patients who were risk assessed for venous thromboembolism and were prescribed risk-appropriate venous thromboembolism prophylaxis, but also found up to 15% of prescribed doses were not administered to patients admitted to hospital. Upon surveying health care providers on the wards, we discovered that based on the patient’s ambulation status, many were presenting prophylaxis doses for venous thromboembolism as optional. Several national and international clinical guidelines recommend ambulation as a therapeutic prophylaxis for thrombosis and described an ambulation protocol. Five studies attempted to quantify amount and duration of patient ambulation and 3 reported ambulation distance. In the 5 studies rated as good or excellent statistical quality, findings were mixed. Incidence of venous thromboembolism was lowest when pharmacologic anticoagulants were added as part of the prescribed prophylaxis regimen.

Interpretation: We did not find high-quality evidence supporting ambulation alone as an effective prophylaxis for venous thromboembolism. Ambulation should not be considered an adequate prophylaxis for venous thromboembolism, nor as an adequate reason to discontinue pharmacologic prophylaxis for venous thromboembolism during a patient’s hospital admission.

Effectiveness of ambulation to prevent venous thromboembolism in patients admitted to hospital: a systematic review

Brandyn D. Lau MPH, Patrick Murphy MD MPH MS, Anthony J. Nastasi MHS, Stella Seal MLS, Peggy S. Kraus PharmD, Deborah B. Hobson MSN, Dauryne L. Shaffer MSN, Christine G. Holzmueller MS, Jonathan K. Aboagye MBChB MPH, Michael B. Streiff MD, Elliott R. Haut MD PhD

Abstract

Background: Patient ambulation is frequently recommended to help prevent venous thromboembolism during hospital admission. Our objective was to synthesize the evidence for ambulation as a prophylaxis for venous thromboembolism in hospital.

Methods: We conducted a systematic review. We searched MEDLINE, Embase, Scopus, Web of Science and Cochrane Central Register of Controlled Trials indexed from their inception through April 2020 for studies of adult patients admitted to hospital, in which ambulation or mobilization alone or concomitant with prophylaxis was indicated for prevention of venous thromboembolism. We searched ClinicalTrials.gov for unpublished trials. We included randomized controlled trials (RCTs) and observational studies. Two reviewers independently screened articles and assessed risk of bias using 2 validated tools. We scored studies on quality of reporting, internal and external validity and study power; combined scores determined the overall quality.

Results: Eighteen articles met the inclusion criteria: 8 retrospective and 2 prospective cohorts, 7 RCTs and 1 secondary analysis of an RCT. The intervention (ambulation or mobilized) groups varied across studies. Five studies examined exercise as a therapeutic prophylaxis for thrombosis and 9 described an ambulation protocol. Five studies attempted to quantify amount and duration of patient ambulation and 3 reported ambulation distance. In the 5 studies rated as good or excellent statistical quality, findings were mixed. Incidence of venous thromboembolism was lowest when pharmacologic anticoagulants were added as part of the prescribed prophylaxis regimen.

Interpretation: We did not find high-quality evidence supporting ambulation alone as an effective prophylaxis for venous thromboembolism. Ambulation should not be considered an adequate prophylaxis for venous thromboembolism, nor as an adequate reason to discontinue pharmacologic prophylaxis for venous thromboembolism during a patient’s hospital admission.
Our objective was to synthesize the evidence for ambulation as a prophylaxis for venous thromboembolism among patients admitted to hospital.

Methods

We used the Cochrane Handbook for Systematic Reviews of Interventions26 for guidance in designing and implementing this review.

Data sources and searches

The systematic review protocol was developed by a multidisciplinary group of clinicians, researchers and quality improvement experts focused on venous thromboembolism prevention (Appendix 1 available at www.cmajopen.ca/content/8/4/E832/suppl/DC1). A librarian with a master’s degree in library sciences (S.S.) helped develop the search strategy and search terms consistent with ambulation in patients admitted to hospital (Appendix 1 and Appendix 2 available at www.cmajopen.ca/content/8/4/E832/suppl/DC1). We searched MEDLINE (1948–Apr. 28, 2020), Embase (1980–Apr. 28, 2020), Scopus (Apr. 28, 2020), Web of Science (Apr. 28, 2020) and the Cochrane Central Register of Controlled Trials (Apr. 28, 2020). We hand searched reference lists from included articles. ClinicalTrials.gov was searched for unpublished RCTs (Aug. 27, 2018).

Study selection

Two reviewers (P.M. and A.J.N.) independently screened titles, abstracts and full-text articles in duplicate using inclusion and exclusion criteria and resolved any discrepancies through third-party adjudication. We included studies published in English and with adult patients admitted to hospital, in which ambulation was indicated for venous thromboembolism prevention, either as a single mode of prevention or concomitant with prophylaxis. We included all studies of ambulation prevention for venous thromboembolism even if the ambulation amount was not quantified by time, distance or frequency. Emed and colleagues found severe heterogeneity in definitions of their exposure variable, “immobility,” used in studies of thromboprophylaxis among patients admitted to medical wards, re-emphasizing the problem of inconsistency in definitions when performing studies without a standard measure.27 We excluded case-series reports, studies not specifying ambulation and studies done in outpatient, intensive care unit or rehabilitation settings. To be inclusive of all possible evidence regarding the efficacy and effectiveness of ambulation to prevent venous thromboembolism, we included both RCTs and observational studies.

Data extraction

Using standardized forms, each reviewer (P.M. and A.J.N.) independently extracted data and convened to compare and resolve any discrepancies. Data were extracted in duplicate from included studies for the following variables: country of origin, study design, patient population, participant characteristics (age, sex), interventions, comparisons, outcome and definition of ambulation.

Data analysis

DistillerSR (Evidence Partners, Ottawa, Canada) was used for screening and data extraction. We planned to conduct a meta-analysis when data were sufficient (from at least 3 RCTs) and studies were sufficiently homogeneous with respect to key variables (population characteristics, study duration and medication dosing).

Assessment of evidence

Two reviewers independently assessed the quality of the included studies and the risk of bias using the Downs and Black tool28 for nonrandomized trials and observational studies recommended by Cochrane (version 5.1).26 To maintain consistency of quality assessment, the Downs and Black tool was also used for assessment of RCTs. Each study was scored on the quality of reporting, both external and internal validity, and study power, and the combined scores determined overall quality (scale: poor, ≤ 14; fair, 15–19; good, 20–25; and excellent, 26–28).

The Agency for Healthcare Research and Quality evidence grading scheme for conducting comparative effectiveness reviews was adapted for use.29

The conclusion of this systematic review was based on a combination of both RCTs and other nonrandomized studies, as it is accepted that systematic reviews can be strengthened with observational studies after considering any study limitations. Evidence described as “high strength” probably reflected an actual effect, “moderate strength” indicated that further research may change the result and “low strength” indicated low confidence in an actual effect and that further research would be very likely to change the result. Insufficient evidence meant no evidence or that the body of evidence had unacceptable deficiencies that precluded a conclusion.

Ethics approval

As this study was solely based on literature, it was not eligible for institutional ethics approval, and none was sought.

Results

Of 20,917 titles identified from the different sources, 6545 duplicates were removed, leaving 14,372 articles. After title, abstract and full-text reviews using inclusion criteria, 14,354 articles were excluded, leaving 18 articles for analysis (Figure 1). Of the included articles, 2 studies were prospective cohort studies,10,31 1 was described as a case–control study, although it was a matched retrospective cohort study;7 7 were retrospective cohort studies involving surgical patients,13–19 and 7 were RCTs40–46 with an additional study of a secondary analysis of the randomized Medical Patients with Enoxaparin (MEDENOX) trial (Table 1).47

Study quality and heterogeneity

The studies varied in definitions of both ambulation and outcome (Table 2). The statistical quality ratings for included studies were poor (n = 3), fair (n = 10), good (n = 4) and excellent
Although 3 studies included a power calculation for the primary outcome, only 1 assessed if the sample size was appropriate to detect a clinically meaningful difference in venous thromboembolism, or appropriately powered if no difference was found. A venous thromboembolism event was a secondary outcome in 7 studies. The use of pharmacologic prophylaxis for venous thromboembolism varied: 6 studies prescribed prophylaxis for all patients, 8 did not report prophylaxis use, 2 did not use prophylaxis and 2 had different regimens by group. The heterogeneity of studies regarding patient populations, pharmacologic prophylaxis and ambulatory interventions precluded the aggregation of data for meta-analysis.

Ambulation definition

The intervention (ambulation) groups varied across studies. Six studies evaluated exercise (in or out of bed) as a therapeutic prophylaxis for thrombosis and 12 described an ambulatory protocol (Table 2). Five studies attempted to quantify the amount and duration of ambulation and 3 reported the distance of ambulation. Amin and colleagues had the most rigorous definition of ambulation (attain autonomous walking distance > 10 m), although they did not differentiate by time to achieve this measure. de Almeida and colleagues quantified ambulation, where ability to walk 3 m independently was the primary outcome. Most studies described “early mobilization” or specific prescriptions of mobility, such as walking 3 m independently.
Study	Year	Country	Study design	Patient population	Groups	n	Male no. (%)	Age, yr; mean ± SD
Miller et al³⁹	1976	US	RCT	Medicine (acute MI and heart failure)	Early ambulation	21	NR	NR
					Bed rest	8	NR	NR
Prerovský et al⁴⁰	1988	Amsterdam	RCT	Medicine (acute MI)	Active foot flexion	135	109 (81)	59 ± 9
					Heparin	133	101 (76)	58 ± 9
					Control	140	109 (78)	59 ± 8
Vioreanu et al⁴¹	2007	Ireland	RCT	Orthopedics (foot and ankle)	Cast immobilization	29	20 (69)	35 ± 16
					Early ambulation	33	21 (64)	37 ± 13
Sorbello et al⁴²	2009	Australia	RCT	Medicine (stroke)	Standard of care	33	16 (48)	75 ± 10
					Early mobilization	38	22 (58)	75 ± 15
Amin et al⁴⁶	2010	France	Secondary analysis of RCT	Medicine	Ambulatory	607	317 (52)	72 ± 11
					Nonambulatory	447	226 (47)	75 ± 10
Wang et al⁴³	2016	China	RCT	Orthopedics	Control	78	65 (83)	54 ± 6
					Active ankle movements	96	78 (81)	52 ± 7
de Almeida et al⁴⁴	2017	Italy	RCT	General surgery	Control	54	22 (41)	62 (51–68)*
					Early mobilization	54	21 (39)	61 (53–70)*
Guo et al⁴⁵	2019	China	RCT	Gynecology (surgical oncology)	Control	53	0 (0)	52 ± 13
					Functional exercises	62	0 (0)	48 ± 11
Lassen and Borris²⁹	1991	Denmark	Prospective cohort	Orthopedics (THA)	POD #4 mobilization (Gr1)	35	NR	NR
					POD #9 mobilization (Gr2)	16	NR	NR
					Gr2 mobilization to POD #4	19	NR	NR
Karic et al³⁰	2017	Norway	Prospective cohort	Neurosurgery (aneurysmal repair)	Control	77	28 (36)	54 (25–79)*
					Early mobilization	94	28 (30)	57 (25–81)*
as twice daily physiotherapy, but failed to report adherence to the defined protocol.

Three studies compared mobility with prolonged immobility. Miller and colleagues compared sitting and standing at the bedside for 30 minutes 3 times a day, starting the first day following myocardial infarction, to 5 days of bed rest. Lassen and Borris compared mobilization starting on postoperative day 4 to postoperative day 9, and Silver and colleagues compared 12-hour versus 24-hour bed rest following stroke.

Venous thromboembolism diagnosis

Most studies used clinical suspicion to test for venous thromboembolism, but 8 studies used screening modalities to determine the presence or absence of venous thromboembolism (Table 2). The most common screening modalities were 125I-fibrinogen and phlebography. Most studies failed to clarify the diagnostic modality used to confirm the clinical suspicion, particularly studies in which venous thromboembolism was not the primary outcome. Most studies did not report on pulmonary embolism separately.

Ambulation as prophylaxis

Most studies reported a reduction in venous thromboembolism events with either implementation of an ambulation protocol or promotion of ambulation (Table 2). In the 5 studies rated as good or excellent statistical quality, the findings were mixed.
Study	Ambulatory group description	Ambulation quantified?	Comparison group description	Pharmacological VTE prophylaxis	Outcome (definition)	Group sizes	Results	Study conclusion
Miller et al39	Sitting and standing at the bedside for 30 min 3 times/d; ate meals while sitting	No	Five days of bed rest with leg exercises hourly	No	DVT (125I-fibrinogen)	21 Amb	10%	Early mobilization program reduces the incidence of venous thrombosis in acute MI
Prerovský et al40	Dorsal and plantar flexion for 1–2 min every hour while awake	No	Standard of care without chemical VTE prophylaxis	No*	DVT (125I-fibrinogen)	135 Amb	5.2%	Moderate lower limb exercise is the simplest measure to prevent VTE
Vioreanu et al41	Custom made removable fiberglass cast with ankle exercises 3 times/d for 10 min	No	Non-removable fiberglass cast for 6 weeks	NR	VTE Clinical	29 Amb	0%	Postoperative immobilization may increase DVT risk
Sorbello et al42	Sitting or standing within 24 h for 6 d with aid of nurse or physiotherapist	No	Standard of care	NR	VTE (NR)	33 Amb	0%	No difference in complications after initiation of early mobilization
Amin et al46	Ability to attain autonomous walking distance > 10 m	Yes	Did not attain autonomous walking distance > 10 m	Yes†	VTE (clinical)	607 Amb	8.4%‡	In the prevention of VTE, reaching ambulatory status may not be a reason for stopping pharmacological prophylaxis
Wang et al43	Dorsal and plantar flexion 30 times/min, 20 times/d in first 7 postoperative days	No	Standard of care	NR	DVT (doppler or clinical)	78 Amb	7.6%	Significant reduction in all DVTs but no difference in symptomatic DVTs (2.2% v. 3.9%)
de Almeida et al44	Twice daily exercise program based on patient’s functional ability	Yes	Once daily exercise program	NR	VTE (clinical)	54 Amb	1.8%	Primary outcome was ability to walk but no difference in DVT
Guo et al45	Active ankle motions, calf massage and deep breathing	No	Standard of care	Yes	DVT (clinical or ultrasonography)	53 Amb	1.9%	Because of the sample size limitation, the authors could not draw any conclusion about the effects of exercise on the prevention of VTE
Lassen and Borris29	Mobilized from postoperative day 4 onward	No	Mobilized from postoperative day 9 onward	Yes	DVT (phlebography)	35 Amb	21%	Patients may lose benefit of pharmacological VTE prophylaxis if they are not mobilized
Karic et al30	Progressive mobilization from HOB elevation to sitting, standing and walking to restroom	No	Standard of care	Yes	VTE (clinical)	77 Amb	4.2%	No impact on VTE but reduced postoperative vasospasm
(Table 4). Sorbello and colleagues targeted patients admitted to hospital for stroke and found no difference in events among groups (randomized to very early mobilization with physiotherapy vs. standard of care). Cassidy and colleagues conducted a retrospective analysis using the National Surgical Quality Improvement Program database and found a reduction in events from 3% to 0.8% after introducing a hospital-wide quality improvement protocol for venous thromboembolism. The protocol included a standardized risk-stratification protocol combined with a postoperative mobilization program. This mobilization program required the patient to be out of bed at least 3 times a day starting the day of surgery and “early ambulation” was encouraged.

de Almeida and colleagues compared twice daily graduated exercise protocols to once daily in surgical oncology patients to determine if increased mobility improved functional capacity (ability to walk 3 m), and although events were secondary outcomes, no difference was seen. Guo and colleagues evaluated prescribed “functional exercises” including deep breathing, active ankle mobility and calf

Study	Ambulatory group description	Ambulation quantified?	Comparison group description	Pharmacological VTE prophylaxis	Outcome (definition)	Group sizes	Results	Study conclusion
Moses32	Forced respirations and 2-min bicycle exercise every day or twice daily while awake	No	Standard of care	NR	VTE (clinical)	74	Amb 0%	Bicycle or deep breathing reduce thrombotic complications
Flanc et al33	Supervised exercise 6 times/d with nursing reminders to exercise	No	Standard of care	NR	DVT (125I-fibrinogen)	65	Amb 25%	Strain on hospital resources and only benefit was in older patients
Pearse et al34	VTE prevention protocol including < 24 h mobilization	No	Routine ambulation on POD #2	Yes	DVT (Doppler)	97	Amb 1%	Early mobilization reduces radiographic DVT
Chandrasekaran et al35	Mobilized with first 24 h, at least twice daily, 15–30 min, by physiotherapists	Yes (sitting, 1–5 m, > 5 m)	Routine out of bed to chair and walking POD #2	Yes	VTE (Doppler or clinical)	50	Amb 16%	Early mobilization reduces postoperative DVT, particularly if > 5 m (no VTE in 15 patients)
Frantzides et al36	VTE prevention protocol including ambulation within 2 h	No	Standard of care with enoxaparin	Yes (control only)	VTE (NR)	1257	Amb 0.5%	Early ambulation as part of a comprehensive protocol obviates need for pharmacological prophylaxis except in high-risk patients
Cassidy et al37	New comprehensive VTE prevention protocol including mobilization 3 times/d	No	Prior to protocol with no predefined practice	Yes (according to risk assessment)	VTE (NSQIP)	1569	Amb 3%	Postoperative mobilization program, risk stratification and electronic recommendations reduce VTE
Bhatt et al38	Twice daily exercise program with pedal exerciser or POD#2 or when able to sit	Yes	Standard of care	NR	VTE (clinical)	30	Amb 0%	No impact on VTE but reduced infectious complications postoperatively
Silver et al39	Bedrest for ≥ 24 h	No	At least 12 h of bedrest	No	DVT (clinical)	203	Amb 0.5%	No effect on VTE but reduction in pneumonia and LOS

Note: Amb = ambulation, DVT = deep vein thrombosis, HOB = head of bed, LOS = length of stay, MI = myocardial infarction, NR = not reported, NSQIP = National Surgical Quality Improvement Program, POD = postoperative day, RCT = randomized controlled trial, VTE = venous thromboembolism.

*Ambulation and Enoxaparin 40 mg once daily had the lowest rate of VTE at 3.3%.
†Heparin was used in a third group but not ambulatory or control group.
‡Patients in both groups were randomly assigned to receive placebo, enoxaparin 40 mg or 20 mg once daily.
massage, and although ultrasonography screening was used, there was no difference in the rates of deep venous thrombosis among groups.46

Amin and colleagues’ study best quantified the actual ambulation of medically ill patients and accurately determined the use of pharmacologic prophylaxis for venous thromboembolism (placebo, enoxaparin 20 mg or enoxaparin 40 mg).47 In the ambulatory group, with patients achieving autonomous ambulation more than 10 m, the incidence of venous thromboembolism was 8.4%, which was half the incidence of the group not achieving autonomous ambulation. When pharmacologic prophylaxis (enoxaparin 40 mg) was considered with autonomous ambulation, the incidence of venous thromboembolism was further reduced to 3%. In patients achieving ambulation more than 10 m independently (but not receiving pharmacologic prophylaxis), the event rate was 10.6%.

Two additional studies at higher risk of bias quantified ambulation or exercise. Bhatt and colleagues did not report any venous thromboembolism events in their study of postoperative use of a pedal exerciser.32 Chandrasekaran and colleagues screened all included patients with a duplex ultrasonography on postoperative day 4 and found that patients walking more than 5 m did not have any deep venous thrombosis or pulmonary embolism compared with the control group (32% vs. 6% pulmonary embolism, respectively).36

Interpretation

Our systematic review showed a paucity of evidence to support ambulation as an adequate prophylaxis to prevent venous thromboembolism. We found 18 studies over a 69-year span that studied ambulation, most indirectly, to prevent venous thromboembolism; only one-quarter were rated good or excellent quality. We planned a meta-analysis, but the heterogeneity of studies and the varied ambulation definitions made it impossible to quantify any therapeutic ambulation dose.

Four of the 7 RCTs had fewer than 100 patients, and the largest RCT (n = 408) defined ambulation as dorsal and planter flexion for 1 to 2 minutes every hour.41 The highest quality study did quantify ambulation and conducted a secondary analysis to compare venous thromboembolism rates with and without pharmacologic prophylaxis.47 Although patients achieving autonomous walking in that study had a lower rate of venous thromboembolism events, it is unclear if there were uncontrolled variables to account for this difference. Moreover, the study was designed to investigate the effect of pharmacological prophylaxis on events, which showed a substantial effect in the study. The authors concluded that patients who ambulated more than 10 m independently and received 40 mg enoxaparin had fewer venous thromboembolism events.

Table 3: Quality of included studies and assessment of bias, as evaluated by Downs and Black28

Study	Year	Study design	Measure	Quality of reporting	External validity	Internal validity	Power	Score	Overall quality*
Moses32	1951	Retrospective cohort		2	1	1	0	4	Poor
Flanc et al33	1969	Retrospective cohort		7	2	6	0	14	Fair
Miller et al39	1976	RCT		5	1	6	0	12	Poor
Prerovsky et al40	1988	RCT		6	2	6	0	14	Fair
Lassen and Borris29	1991	Prospective cohort		3	1	4	0	8	Poor
Pearse et al34	2007	Retrospective cohort		9	0	6	0	15	Fair
Vioreau et al41	2007	RCT		7	3	6	0	16	Fair
Chandrasekaran et al31	2009	Retrospective cohort		8	1	8	0	17	Fair
Sorbello et al42	2009	RCT		10	3	7	0	20	Good
Amin et al46	2010	Secondary analysis of RCT		11	3	9	0	23	Good
Frantzides et al34	2012	Retrospective cohort		7	3	4	0	14	Fair
Cassidy et al35	2014	Retrospective cohort (NSQIP)		8	3	8	0	19	Good
Bhatt et al37	2017	Retrospective cohort		8	2	6	0	16	Fair
Wang et al43	2016	RCT		8	1	9	0	18	Fair
Karic et al40	2017	Prospective cohort		8	3	6	1	18	Fair
de Almeida et al44	2017	RCT		11	3	11	1	26	Excellent
Guo et al46	2019	RCT		11	2	11	1	25	Good
Silver et al38	2019	Retrospective cohort		9	3	5	0	17	Fair

Note: NSQIP = National Surgical Quality Improvement Program, RCT = randomized controlled trial.

*Scale for quality scores: poor: ≤ 14; fair: 15–19; good: 20–25; excellent: 26–28.
though the incidence was still 3.3%, and the ambulation-only group had an event rate of 10.6%. The only other RCT receiving an excellent quality rating primarily investigated the ability to walk after major oncologic resection, but observed no difference in deep venous thrombosis events among groups.

Ambulation or mobilization remains a commonly reported approach, often as the sole prophylaxis, against venous thromboembolism. Most concerning is that ambulation is often a cited reason to discontinue pharmacologic prophylaxis for venous thromboembolism. At our hospital, nurses and residents perceived that independently ambulating patients did not need pharmacologic prophylaxis for venous thromboembolism. However, there is overwhelming evidence supporting pharmacologic prophylaxis in nearly every applicable population admitted to hospital.

Table 4: Results of included studies rated “good” or “excellent” quality

Study	Study size	Study population	Study quality*	Ambulation quantified?	Pharmacological VTE prophylaxis	Outcome (definition)	Results	Study conclusion	Notes	
Sorbello et al⁴²	71	Medicine	Good	No	NR	VTE (NR)	Amb 0%	Control 0%	No difference in complications after initiation of early mobilization	Physiotherapy-directed OR physiotherapist-directed ambulation early in admission did not change VTE rates compared with standard of care
Amin et al⁴⁶	1054	Medicine	Good	Yes†	VTE (clinical)	Amb 8.4%	Control 16.2%	In the prevention of VTE, reaching ambulatory status may not be a reason for stopping chemical prophylaxis	The best study to quantify ambulation (> 10 m walking). Reinforces need for chemical VTE prophylaxis	
Cassidy et al³⁷	2892	Surgery	Good	No	VTE (NSQIP)	Amb 3%	Control 0.8%	Postoperative mobilization program, risk stratification and electronic recommendations reduce VTE	Large study with definition of VTE used widely. Wide implementation of a 3 times/d regimen failed to show a reduction in VTE	
de Almeida et al⁴⁴	108	Surgery	Excellent	Yes	NR	DVT (clinical)	Amb 1.8%	Control 0%	Primary outcome was ability to walk but no difference in DVT	VTE events were a secondary outcome. More ambulation (≥ 2 times/d compared with ≤ 1 time/d) did not reduce VTE events
Guo et al⁴⁵	115	Surgery	Good	No	Yes	DVT (clinical or ultrasonography)	Amb 1.6%	Control 1.9%	Because of the sample size limitation, the authors could not draw any conclusion about the effects of exercises on the prevention of VTE	Similar to other lower quality studies, ankle exercises do not seem to reduce risk of DVT

Note: Amb = ambulation, NR = not reported, NSQIP = National Surgical Quality Improvement Program, VTE = venous thromboembolism (pulmonary embolism or deep vein thrombosis [DVT]).

*Assessed using the Downs and Black tool.⁴⁶
†Patients in both groups were randomly assigned to receive placebo or enoxaparin 40 mg or 20 mg once daily.
‡Ambulation and enoxaparin 40 mg once daily had the lowest rate of VTE at 3.3%.
Immobility is a risk factor for development of venous thromboembolism. However, our systematic review found that mobility, ambulation or mobilization have not been shown to reduce VTE events. Many of the major guidelines recommend early ambulation for prevention of venous thromboembolism. For example, the American College of Chest Physicians recommends early ambulation as the only prophylactic measure needed for low-risk nonorthopedic surgical patients, as measured by the Caprini or Rogers risk assessment tool.46 Our results challenge early ambulation as appropriate prophylaxis for venous thromboembolism. A patient’s risk should be assessed and evidence-based treatment given, considering the risks and benefits. We are not suggesting that ambulation in medical and surgical inpatients is useless. Immobility has many deleterious effects and patients admitted to hospital should be actively encouraged to ambulate. Based on our results, however, we caution the use of ambulation as the sole prophylaxis for prevention of venous thromboembolism or as the impetus to hold pharmacological prophylaxis when ill patients are in a hypercoagulable state.

Although diagnostic and preventive practices for venous thromboembolism have evolved, we searched decades back because the concept of ambulation is long-lived and we needed to find where the concept originated. As early as 1951, Leithauser and colleagues described the “abuse of ambulation.”50 They suggest, and we agree, that early ambulation is not having the patient “dangle the feet over the edge of the bed or sit in a chair.”50 Several studies in our review described sitting or standing as ambulation.40,41 Cassidy and colleagues counted walking to the washroom as 1 of 3 required mobilization events,18 and Sorbello and colleagues defined ambulation as sitting or standing within 24 hours.45 Rather, the attending physician should prescribe ambulation therapy, including timing, frequency and duration, and the prescribed ambulation should be monitored to ensure the patient undertakes it. The results of our review suggest that such a program has not been studied.

Limitations

While comprehensive, our review was limited by the quality of the literature. The RCTs were small and often rated as low quality, and most were negative studies. Most studies failed to define the quality and quantity of ambulation. Older studies did not report or did not use pharmacologic prophylaxis for venous thromboembolism. Therefore, the results must be considered in the modern practices of prevention, which include pharmacologic prophylaxis for venous thromboembolism for most patients admitted to hospital.

We considered only studies published in English and only the ClinicalTrials.gov registry for unpublished studies; it is possible that we failed to identify a relevant study.

Further, most studies were eliminated after title or abstract review, and we may have missed studies with ambulation as a secondary intervention or venous thromboembolism as a secondary outcome. Systematic reviews that find little to no evidence are still important to perform and publish. This key step is critical to delineate clear gaps in the published literature for several reasons. First, researchers can plan new studies to address these concerns.52 Second, concepts about the robustness of the evidence can be combatted. This is particularly true for ambulation, which is now ubiquitous as a preventive measure for venous thromboembolism despite a lack of evidence. Third, clinical practice might change, in particular using the concepts of implementation or de-implementation science.52,53 Although we used a study protocol, it was not registered with PROSPERO (https://www.crd.york.ac.uk/prospero/).

Conclusion

Our systematic review failed to find high-quality evidence to suggest that ambulation alone is an appropriate or effective prophylaxis for venous thromboembolism. Although some studies suggest that ambulation may reduce venous thromboembolism events among patients admitted to hospital, we could not draw conclusions about how early, how much, how vigorous or how often ambulation should occur to reduce events effectively. In the context of substantial evidence for pharmacologic prophylaxis to prevent venous thromboembolism, ambulation should not be considered an adequate prophylaxis, nor should ambulation be a reason to discontinue pharmacologic prophylaxis during hospital admission. Our findings point to an important function of systematic reviews, which is to evaluate existing evidence. We rigorously evaluated data from studies over a 69-year span and can conclude that research is needed to assess prescribed therapies for ambulation and determine whether any are effective in preventing venous thromboembolism events.

References

1. Office of the Surgeon General (US); National Heart, Lung, Blood Institute (US). The surgeon general’s call to action to prevent deep vein thrombosis and pulmonary embolism. Rockville (MD): Office of the Surgeon General (US); 2008.

2. Anderson FA Jr, Spencer FA. Risk factors for venous thromboembolism. The surgeon general’s call to action to prevent deep vein thrombosis and pulmonary embolism. Rockville (MD): Office of the Surgeon General (US); 2008.

3. Eikelboom JW, Taillefer L, Morrow DA, et al. Aspirin for prevention of venous thromboembolism in high-risk abdominal surgery. Br J Surg 2005;92:1212-20.

4. Schünemann HJ, Cushman M, Burnett AE, et al. American Society of Hematology 2018 guidelines for management of venous thromboembolism: prophylaxis for hospitalized and nonhospitalized medical patients. Blood Adv 2018; 2:1398-225.

5. Agnelli G, Bergqvist D, Cohen AT, et al; PEGASUS investigators. Randomized clinical trial of postoperative fondaparinux versus perioperative dalteparin for prevention of venous thromboembolism in high-risk abdominal surgery. Br J Surg 2005;92:1212-20.

6. Agnelli G, Bergqvist D, Cohen AT, et al; PEGASUS investigators. Randomized clinical trial of postoperative fondaparinux versus perioperative dalteparin for prevention of venous thromboembolism in high-risk abdominal surgery. Br J Surg 2005;92:1212-20.

7. Schiffman LF, Laing FC, Gaggioli A, et al. Randomized clinical trial of postoperative fondaparinux versus perioperative dalteparin for prevention of venous thromboembolism in high-risk abdominal surgery. Br J Surg 2005;92:1212-20.

8. Anderson DR, Morano GP, Bennett C, et al. American Society of Hematology 2018 guidelines for management of venous thromboembolism: prophylaxis for hospitalized and nonhospitalized medical patients. Blood Adv 2018; 2:1398-225.

9. Shekelle PG, Wachter RM, Pronovost PJ, et al. Making health care safer II: an updated critical analysis of the evidence for patient safety practices. Evid Rep Technol Assess (Full Rep) 2013;211:1-945.

10. Shekelle PG, Pronovost PJ, Wachter RM, et al. The top patient safety strategies that can be encouraged for adoption now. Ann Intern Med 2013;158:365-8.
12. Lau BD, Haut ER. Practices to prevent venous thromboembolism: a brief review. BMJ Qual Saf 2014;23:187-95.

13. Haut ER, Lau BD. Prevention of venous thromboembolism: brief update review. In: Making Health Care Safer II: An Updated Critical Analysis of the Evidence for Patient Safety Practices. Comparative Effectiveness Review No. 211 (Prepared by the Southern California-RAND Hospitalized Patient Center under Contract No. 290-2007-10006-H). AHRQ Publication No. 13-EHC130-1-EF. Rockville (MD): Agency for Healthcare Research and Quality; 2013.

14. Streiff MB, Carolan H, Hobson DB, et al. Lessons from the Johns Hopkins multi-disciplinary venous thromboembolism (VTE) prevention collaborative. BMJ 2012;344:e3915.

15. Haut ER, Lau BD, Kraenzlin FS, et al. Improved prophylaxis and decreased preventable harm with a mandatory computerized clinical decision support tool for venous thromboembolism (VTE) prophylaxis in trauma patients. Arch Surg 2012;147:901-7.

16. Zeidan AM, Streiff MB, Lau BD, et al. Impact of a venous thromboembolism prophylaxis “smart order set”: Improved compliance, fewer events. Ann J Hematol 2013;88:545-9.

17. Lau BD, Streiff MB, Hobson DB, et al. Beneficial “halo effects” of surgical resident performance feedback. J Surg Res 2016;205:179-85.

18. Lau BD, Arnaoutakis GJ, Streiff MB, et al. Individualized performance feedback to surgical residents improves appropriate venous thromboembolism prophylaxis prescription and reduces potentially preventable vte: a prospective cohort study. Ann Surg 2016;264:1181-7.

19. Shermock KM, Lau BD, Haut ER, et al. Patterns of non-administration of ordered doses of low-molecular-weight heparin: implications for novel intervention strategies. Plas One 2013;8:e66611.

20. Lau BD, Streiff MB, Kraus PS, et al. Missed doses of venous thromboembolism (VTE) prophylaxis at community hospitals: cause for alarm. J Gen Intern Med 2018;33:19-26.

21. Elder S, Hobson DB, Rand CS, et al. Hidden barriers to delivery of pharmacological venous thromboembolism prophylaxis: the role of nursing beliefs and practices. J Patient Saf 2016;12:63-8.

22. Wong A, Kraus PS, Lau BD, et al. Patient preferences regarding pharmacological venous thromboembolism prophylaxis. J Hosp Med 2015;10:108-11.

23. Kinnier CV, Ju MH, Kmiecik T, et al. Development of a novel composite process measure for venous thromboembolism prophylaxis. Med Care 2016;54:210-7.

24. Lau BD, Streiff MB, Kraus PS, et al. No evidence to support ambulation for postoperative venous thromboembolism prophylaxis. J Am Coll Surg 2014;219:1101-3.

25. Lau BD, Streiff MB, Pronovost PJ, et al. Venous thromboembolism quality measures fail to accurately measure quality. Circulation 2018;137:1278-84.

26. 13.5.2.3. Tools for assessing methodological quality or risk of bias in non-randomized studies of thromboprophylaxis. In: Higgins JPT, Green S, editors. Oxford (UK): Cochrane Collaboration; 2011.

27. Emin JD, Morrison DR, Des Rosiers L, et al. Definition of immobility in studies of prophylaxis in hospitalized medical patients: a systematic review. J Vasc Nurs 2010;28:54-66.

28. Downs SH, Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J Epidemiol Community Health 1998;52:377-84.

29. Bhatt NR, Sheridan G, Connolly M, et al. Postoperative exercise training is associated with reduced respiratory infection rates and early discharge: a case control study. Foot Ankle Int 2007;28:13-9.

30. Sorbello D, Dewey HM, Churilov L, et al. Very early mobilisation and complications in the first 3 months after stroke: further results from phase II of a Very Early Rehabilitation Trial (AVERT). Cerebrovasc Dis 2009;28:378-83.

31. Wang Z, Chen Q, Ye M, et al. Active ankle movement may prevent deep vein thrombosis in patients undergoing lower limb surgery. Ann Vasc Surg 2016;32:65-72.

32. Moses C. Bicycle exercises and deep breathing in the prevention of thrombosis. Angiology 1969;20:377-8.

33. Cassidy MR, Rosenkranz P, McAneny D. Reducing postoperative venous thromboembolism complications with a standardized risk-stratified prophylaxis protocol and mobilization program. J Am Coll Surg 2014;218:1095-104.

34. Silver B, Hamitt T, Khan M, et al. 12 versus 24 h bed rest after acute ischemic stroke thrombolysis: a preliminary experience. J Neurol 2020;409:116618.

35. Miller RR, Lies JF, Cooperberg PL. Evidence-Based Practice Guidance Center under Contract No. 290-2007-10006-H. AHRQ Publication No. 11-EHC010-EF. Rockville (MD): Agency for Healthcare Research and Quality; 2011.

36. Frantzides CT, Welle SN, Ruff TM, et al. Routine anticoagulation for venous thromboembolism by early mobilization. Confirmation in patients with acute myocardial infarction by 125I-fibrinogen uptake and venography. Ann Intern Med 1976;84:700-3.

37. Presovsky I, Niederle P, Simonovj J, et al. Deep vein thrombosis and its prevention in patients with acute myocardial infarction. Cor Vasa 1988;30:345-51.

38. Vioreanu M, Dudeney S, Hurson B, et al. Early mobilization in a removable cast compared with immobilization in a cast after operative treatment of ankle fractures: a prospective randomized controlled study. Foot Ankle Int 2017;38:210-7.

39. Lau BD, Haut ER, Kraus PS, et al. Missed doses of venous thromboembolism prophylaxis in patients undergoing lower limb surgery. Ann Vasc Surg 2016;32:65-72.

40. de Almeida EPM, de Almeida JP, Landoni G, et al. Early mobilization programme improves functional capacity after major abdominal cancer surgery: a randomized controlled trial. Br J Anaesth 2017;119:900-7.

41. Qiao M, Lu L, Sun Y, et al. Comprehensive functional exercises with patient education for the prevention of venous thrombosis after major gynecologic surgery: a randomized controlled study. Throm Res 2019;178:69-74.

42. Amm AN, Girard F, Samama MM. Does amputation modify venous thromboembolism risk in critically ill medical patients? Throm Haemost 2010;104:955-61.

43. Pechowski KL, Elder S, Efri E, et al. Prescriber knowledge and attitudes regarding non-administration of prescribed pharmacologic venous thromboembolism prophylaxis. J Thromb Thrombolysis 2012;34:463-70.

44. Gould MK, Garcia DA, Wren SM, et al. Prevention of VTE in nonorthopedic surgical patients: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2012;141(Suppl):e227S-77S.

45. Leithauser DJ, Saraf L, Smiya S, et al. Prevention of embolic complications from venous thrombus after surgery; standardized regimen of early ambulation. J Am Med Assoc 1951;147:300-5.

46. Fahlan TC. Evidence-based medicine in trauma care: whither goest thou? J Trauma 1999;47:225-32.

47. Neuman HB, Kaji AH, Haut ER. Practical guide to implementation science. JAMA Surg 2020 Jan, 29 [Epub ahead of print]. doi: 10.1001/ jamasurg.2019.5189.

48. Ho VP, Dicker RA, Haut ER; Coalition for National Trauma Research Scientific Advisory Council. Dissemination, implementation, and de-implementation: the trauma perspective. Trauma Surg Acute Care Open 2020;5:e000423.

Competing interests: Elliott Haut, Michael Streiff, Brandyn Lau and Daunyer Shaff are supported by a grant from the Agency for Health Research and Quality (R18HS027415). Brandyn Lau, Michael Streiff and Elliott Haut are supported by a grant from the Agency for Health Research and Quality (1R01HS024547) entitled “Individualized Performance Feedback on Venous Thromboembolism Prevention Practice,” a pilot study to support the Patient-Centered Outcomes Research Initiative (PCORI) entitled “Preventing Venous Thromboembolism (VTE): Engaging Patients to Reduce Preventable Harm from Missed/Refused Doses of VTE Prophylaxis,” a contract CE-12-11-4489 “Preventing Venous Thromboembolism: Empowering Patients and Enabling Patient-Centered Care via Health Information Technology” from PCORI, and a grant from the National Institutes of Health/National Heart, Lung, and Blood Institute (R21HL129028) entitled “Analysis of the Impact of Missed Doses of Venous Thromboembolism Prophylaxis.” Brandyn Lau is supported by the Institute for Excellence in Education Berkheimer Faculty Education Scholar Grant and a contract (AD-1306-03980) from the PCORI entitled “Patient Centered Approaches to Collect Sexual Orientation/Gender Identity Information in the Emergency Department.” Deborah Holson has given expert witness testimony in various medical malpractice cases. Michael Streiff has received research funding from Boehringer-Ingelheim, Janssen, Portola and Roche, consulted for Bayer, CSL Behring, Daiichi-Sankyo, Janssen and Pfizer and has given expert witness testimony in various medical malpractice cases. Elliott Haut is a paid consultant and speaker for the “Preventing Avoidable Venous Thromboembolism — Every Patient, Every Time” VHA/Vizient IMPACT TVT Advantage Performance Improvement Collaborative. Elliott Haut receives royalties from Lippincott, Williams, Wilkins for a book — “Avoiding Common ICU Errors.” Elliott Haut is a paid consultant and speaker for the Illinois Surgical Quality Improvement Collaborative “ISQIC.” Elliott Haut was the paid author of a paper commissioned.
by the National Academies of Medicine, which was used to support the report titled “A National Trauma Care System: Integrating Military and Civilian Trauma Systems to Achieve Zero Preventable Deaths After Injury.” No other competing interests were declared.

Affiliations: Russell H. Morgan Department of Radiology and Radiological Science (Lau), Johns Hopkins University School of Medicine; Armstrong Institute for Patient Safety and Quality (Lau, Holzmueller, Streiff), Johns Hopkins Medicine, Baltimore, Md.; Department of Surgery (Murphy), Indiana University, Indianapolis, Ind.; Division of Acute Care Surgery, Medical College of Wisconsin, Wauwatosa, Wis.; London Health Sciences Centre, London, Ont. and Department of Surgery, Indiana University, (Murphy; during the conduct of the study); School of Medicine (Nastasi), Stanford University, Li Ka Shing Building, Stanford, Calif.; Welch Medical Library (Seal), Johns Hopkins University School of Medicine; Department of Pharmacy (Kraus), Johns Hopkins Hospital; Division of Acute Care Surgery (Hobson, Aboagye, Haut), Department of Surgery, School of Medicine, Johns Hopkins University; Department of Nursing (Hobson), Johns Hopkins Hospital; Department of Nursing (Shaffer), Johns Hopkins Hospital; Division of Hematology (Streiff), Department of Medicine, Johns Hopkins University School of Medicine; Department of Health Policy and Management (Haut), Johns Hopkins Bloomberg School of Public Health, Baltimore, Md.

Contributors: Brandyn Lau takes responsibility for the content of the manuscript, including the data and analysis. Brandyn Lau and Patrick Murphy contributed equally to the conception and design, search strategy development, acquisition of data and synthesis, drafting of the manuscript and approval of the final version of the manuscript. Patrick Murphy and Anthony Nastasi screened for relevant articles and scored the quality of included studies. Stella Seal helped develop the search strategy and both Stella Seal and Anthony Nastasi contributed to manuscript revisions and approval of the final version of the manuscript. Peggy Kraus, Deborah Hobson, Dauryne Shaffer, Christine Holzmueller, Jonathan Aboagye, Michael Streiff and Elliott Haut contributed to conception of study and interpretation of data, revisions of the manuscript and approval of the final version of the manuscript. Elliott Haut provided supervision of the study. Brandyn Lau and Patrick Murphy contributed equally and should be credited as co–first authors. All authors gave final approval of the version to be published and agreed to be accountable for all aspects of the work.

Data sharing: No data will be made available beyond the search strategy, which is described in the appendix.

Supplemental information: For reviewer comments and the original submission of this manuscript, please see www.cmajopen.ca/content/8/4/E832/suppl/DC1.