Correlated Gaussian Systems exhibiting additive Power-Law Entropies

C. Vignat
E.E.C.S., University of Michigan, U.S.A.
and L.P.M., E.P.F.L., Lausanne, Switzerland

A. Plastino
Facultad de C. Exactas, National University La Plata and
Argentina’s National Research Council (CONICET)
C. C. 727, 1900 La Plata, Argentina

A. R. Plastino
Physics Department, University of Pretoria,
Pretoria 0002, South Africa

October 21, 2018

Abstract
We show, on purely statistical grounds and without appeal to any physical model, that a power-law \(q \)-entropy \(S_q \), with \(0 < q < 1 \), can be extensive. More specifically, if the components \(X_i \) of a vector \(X \in \mathbb{R}^N \) are distributed according to a Gaussian probability distribution \(f \), the associated entropy \(S_q(X) \) exhibits the extensivity property for special types of correlations among the \(X_i \). We also characterize this kind of correlation. PACS: 05.30.-d, 05.30.Jp

KEYWORDS: Extensivity, Gaussian systems, Power-law entropies.

1 Introduction
The Boltzmann-Gibbs logarithmic expression

\[
S_{BG}\{p(i)\} = -\sum_i p(i) \ln p(i),
\]

where one sums over microstates labelled by \(i \) constitutes a cornerstone of our present understanding of Nature. If one knows a priori the expectation value \(U = \langle H \rangle \) of the pertinent Hamiltonian, \(S_{BG} \) is maximized by Gibbs’ probability
distribution (PD) for the canonical ensemble \([1, 2, 3, 4]\), usually referred to as the equilibrium Boltzmann-Gibbs (BG) distribution

\[
p_G(i) = \frac{\exp(-\beta E_i)}{Z_{BG}}, \tag{2}
\]

with \(E_i\) the energy of the the microstate \(i\), \(\beta = 1/k_B T\) the inverse temperature, \(k_B\) Boltzmann’s constant, and \(Z_{BG}\) the partition function. This PD can safely be regarded as the most notorious and renowned PD in the field of statistical mechanics.

In the last 15 years this PD has found a counterpart in the guise of power-law distributions with which an “alternative” thermostatistics (usually referred to by the acronym “NEXT”) can be built that constitutes nowadays not only a very active field but also, for many people, a new paradigm for statistical mechanics, with applications to several scientific disciplines \([5, 6, 7, 8]\). Power-law distributions are certainly ubiquitous in physics (critical phenomena are just a conspicuous example \([9]\)). It is argued \([6]\) that, in the same manner that the BG-thermostatistics addresses thermal equilibrium states on the basis of Boltzmann’s molecular chaos hypothesis (Stosszahl-ansatz), the alternative thermostatistics deals with phenomena in natural, artificial, and social systems that do not accommodate with such a simplifying hypothesis. However, NEXT uses the whole BG theoretical machinery, as for instance, the maximum entropy principle (MaxEnt) \([4]\).

2 The extensivity question

The power law entropy \(S_q\), with nonextensity index \(q \in \mathbb{R}\) \([3]\)

\[
S_q = \frac{1}{q-1} \left(1 - \sum_i p_i^q\right); \quad S_1 = S_{BG}, \tag{3}
\]

is a nonextensive information measure: if \(A\) and \(B\) are independent systems then a priori \(S_q(A+B) \neq S_q(A) + S_q(B)\). This assertion has come into question quite recently \([6]\). There exist composite systems for which the correlation among its components is of such a nature that \(S_{BG}\) becomes nonextensive, while \(S_q\) becomes extensive \([6, 10, 11, 12]\). These references deal with exceedingly interesting examples of this new facet of \(q\)-thermostatistics. In particular, Refs. \([11, 12]\) need the special concept of asymptotic scale invariance. Ref. \([10]\) considers both a classical and a quantum example in the thermodynamic limit. In the present communication we address a somewhat more general situation in the sense that we do not have any particular model in mind but a whole class of systems: Gaussian ones, of enormous importance in several areas of scientific endeavor.
3 Our main result

We will not need appeal neither to the Stosszahl-ansatz nor to asymptotic scale invariance. Our arguments are of a purely statistical nature, which can be regarded as giving them more generality. We will concern ourselves in what follows with the continuous instance in \mathbb{R}^N. Let the N components of vector $X \in \mathbb{R}^N$ be distributed according to a probability distribution f and write Tsallis’ entropy $S_q(X)$ as

$$S_q(X) = \frac{1}{q-1} \left(1 - \int f^q \right). \tag{4}$$

Our main result is easily stated and reads as follows. Let f be of a Gaussian character. Then:

Theorem 1 If $0 \leq q \leq 1$ and $N \in \mathbb{N}$ then there exists a positive definite matrix K and an N–variate Gaussian vector X with covariance matrix K such that X verifies the extensivity condition

$$S_q(X) = \sum_{i=1}^{N} S_q(X_i). \tag{5}$$

3.1 Proof of the theorem

A centered Gaussian random variable with dimension N and covariance matrix K has a probability distribution function (PDF)

$$f_X(X) = \frac{1}{|2\pi K|^{1/2}} \exp \left(-\frac{1}{2} X^T K^{-1} X \right), \tag{6}$$

and thus its associated S_q entropy is easily seen to write

$$S_q(X) = \frac{1 - |2\pi K|^{\frac{1}{2-q}} q^{-N/2}}{q-1}. \tag{7}$$

One may assume without loss of generality that each component X_i of X has unit variance so that its associated q–sub-entropy reads

$$S_q(X_i) = \frac{1 - (2\pi)^{\frac{1}{2-q}} q^{-1/2}}{q-1}. \tag{8}$$

Now, the condition for extensivity adopts the appearance

$$S_q(X) = \sum_{i=1}^{N} S_q(X_i). \tag{9}$$

Alternatively one can write

$$1 - |2\pi K|^{\frac{1}{2-q}} q^{-N/2} = N \left(1 - (2\pi)^{\frac{1}{2-q}} q^{-1/2} \right), \tag{10}$$
or, equivalently,
\[
|K|^{1-q} = N (2\pi)^{(1-N) \frac{1-q}{2}} q^{\frac{N-1}{2}} - (N - 1) q^{N/2} (2\pi)^{\frac{N+1}{2}}. \tag{11}
\]
Notice that the right-hand side above is positive, since the function \(f_N (q) \)
\[
f_N (q) = \frac{N}{N - 1} \frac{(2\pi)^{\frac{1-q}{2}} q^{\frac{N-1}{2}}}{\sqrt{q}}, \quad 0 \leq q \leq 1 \tag{12}
\]
decreases with \(q \) in this interval, verifies \(f_N (1) = \frac{N}{N - 1} > 1 \) and thus \(f_N(q) > 1 \) on \([0, 1]\). Thus, equation (11) can be solved as
\[
|K| = \left(N (2\pi)^{(1-N) \frac{1-q}{2}} q^{\frac{N-1}{2}} - (N - 1) q^{N/2} (2\pi)^{\frac{N+1}{2}} \right)^{\frac{1}{1-q}}. \tag{13}
\]
It only remains now to find a matrix \(K \) with unit diagonal entries that satisfies the condition (13). This entails that one has to choose \(\frac{N(N-1)}{2} \) correlation coefficients
\[
K_{i,j} = E [X_i X_j] = \langle X_i X_j \rangle; \quad 1 \leq i < j \leq N. \tag{14}
\]
In the two following subsections, we provide two examples of such matrix.

3.2 Example: all uncorrelated components except for two of them

An obvious choice for the off-diagonal elements of \(K \) is
\[
K_{i,j} = \begin{cases}
\sigma & i = 2, j = 1 \text{ or } i = 1, j = 2 \\
0 & \text{else (} i \neq j \text{)}
\end{cases}
\]
so that \(|K| = 1 - \sigma^2 \) where \(\sigma \) should verify
\[
\begin{cases}
\sigma^2 = 1 - \left(N (2\pi)^{(1-N) \frac{1-q}{2}} q^{\frac{N-1}{2}} - (N - 1) q^{N/2} (2\pi)^{\frac{N+1}{2}} \right)^{\frac{2}{1-q}} \\
0 < \sigma < 1
\end{cases}
\]
which has a unique solution since function
\[
g_N : [0, 1] \rightarrow [0, 1]
\]
\[
g_N(q) = 1 - \left(N (2\pi)^{(1-N) \frac{1-q}{2}} q^{\frac{N-1}{2}} - (N - 1) q^{N/2} (2\pi)^{\frac{N+1}{2}} \right)^{\frac{2}{1-q}}, \tag{15}
\]
is decreasing with \(q \), verifies \(g_N(0) = 1 \) and \(g_N(1) = 0 \) and thus is one to one.

In Fig.1 below, the function \(g_N (q) \) is plotted versus \(q \) for values \(N = 2, 5, 10 \) and 20 from bottom to top.

It is apparent that, for large \(N \)-values, this curve approaches a constant (equal to unity) in the interval \([0, 1]\), while it vanishes for \(q=1 \). This means that, for a fixed value of \(q \), a more and more intense correlation degree becomes necessary between \(X_1 \) and \(X_2 \) as \(N \) grows so as to ensure extensivity for the system at hand.

The same conclusion is reached in Ref. [10] for their models.
3.3 Example: all equally correlated components

Another obvious choice is to select a correlation matrix of the form

\[K_{i,j} = \begin{cases}
\sigma & i \neq j \\
1 & \text{else}
\end{cases} \]

so that each pair of distinct components has the same degree of correlation. In such scenario we have

\[|K| = (1 - \sigma)^{N-1} (1 + (N - 1)\sigma) \]

which is, for a given \(N \), a decreasing function \(g(\sigma) \) of \(\sigma \) such that \(g(0) = 1 \) and \(g(1) = 0 \). Thus, for given values of \(N \) and \(q \), there exists a unique value of \(\sigma \) such that condition (13) holds. In Fig. 2 these values of \(\sigma \) are plotted as a function of \(q \) for \(N = 2, 3 \) and 5 respectively.

Identical conclusions to those of the preceding subsection are arrived at here, except that a smaller correlation degree is now needed to reach extensivity, because the correlation is in this instance spread over a larger number of components than previously.

4 Conclusion

We have shown that, for any Gaussian distributed vector in \(\mathbb{R}^N \), Tsallis’ entropy becomes extensive for \(q \in [0, 1] \) if an adequate type of correlation among its components exists. This correlation imposes special conditions on the covariance matrix that apply only to its determinant and can always be determined. Moreover, we provided a constructive proof that explicitly yields the covariance matrix that fulfills the desired purpose. We did not need appealing neither to the Stosszahl-ansatz nor to asymptotic scale invariance. Our arguments being of a purely statistical nature, they can be fairly said to considerably generalize the results described in [6].

References

[1] Gibbs J W 1948 Elementary principles in statistical mechanics in Collected Works (New Haven: Yale University Press; R. B. Lindsay R B and Margenau H 1957 Foundations of physics (NY: Dover).

[2] F. Reif, Statistical and thermal physics (McGraw-Hill, NY, 1965).

[3] B. H. Lavenda, Statistical Physics (Wiley, New York, 1991); B. H. Lavenda, Thermodynamics of Extremes (Albion, West Sussex, 1995).
[4] E. T. Jaynes, Phys. Rev. 106 (1957) 620; 108 (1957) 171; Papers on probability, statistics and statistical physics, edited by R. D. Rosenkrantz (Reidel, Dordrecht, Boston, 1987); A. Katz, Principles of Statistical Mechanics, The Information Theory Approach (Freeman and Co., San Francisco, 1967).

[5] M. Gell-Mann and C. Tsallis, Eds. Noneextensive Entropy: Interdisciplinary applications (Oxford University Press, Oxford, 2004); V. Latora, A. Rapisarda, and C. Tsallis, Physica A 305 (2002) 129 (and references therein); S. Abe and Y. Okamoto, Eds. Noneextensive statistical mechanics and its applications (Springer Verlag, Berlin, 2001); A. R. Plastino and A. Plastino, Phys. Lett. A 177 (1993) 177.

[6] Special Issue, Europhysics-news, 36 (2005).

[7] Kaniadakis G, Lissia M, and Rapisarda A., Eds., 2002 Noneextensive statistical mechanics and physical applications, Physica A (Special) 305, and references therein.

[8] A. Plastino, A. R. Plastino, Phys. Lett. A 193 (1994) 251.

[9] N. Goldenfeld, Lectures on phase transitions and the renormalization group (Addison-Wesley, NY, 1992).

[10] C. Zander and A.R. Plastino, Physica A (2005) in Press.

[11] C. Tsallis, M. Gell-Mann, and Y. Sato, cond-mat/0502274, also presented by C. Tsallis at the International Conference on Complexity and Non-Extensivity: New Trends in Statistical Mechanics, that took place at the Yukawa Institute, Kyoto on 14-18 March 2005.

[12] J. Marsch and S. Earl, Phys. Lett. A (2005) in Press.