DENSITY OF DOMESTIC PIGEONS (*Columba livia domestica* GMELIN, 1789) IN THE NEW PUBLIC MARKET OF SINCELEJO, SUCRE, COLOMBIA

Carmen Villalba-Sánchez¹, Alejandro De La Ossa-Lacayo², Jaime De La Ossa V.³

¹Zootecnista, Maestría en Ciencias Ambientales. Universidad de Sucre –SUE, Caribe, Colombia, e-mail: carmenvillabasanchez@gmail.com; ²Ecólogo, Magister, Grupo de Investigación en Biodiversidad Tropical. Universidad de Sucre, Colombia, e-mail: alejandrodelaossa@yahoo.com; ³Ph.D., Grupo de Investigación en Biodiversidad Tropical, Facultad de Ciencias Agropecuarias. Universidad de Sucre, Colombia, calle 13 A N° 20-45, Apto. 402. Edif. El Cairo. Barrio Ford. Sincelejo, Sucre, Colombia, e-mail: jaimedelaossa@yahoo.com

Rev. U.D.C.A Act. & Div. Cient. 18(2): 497-502, Julio-Diciembre, 2015

SUMMARY

The present study determined the population density of *Columba livia domestica* in the new market of Sincelejo, Sucre, Colombia. It is known that, when populations of this species increase excessively, a serious public health problem is created that must be dealt with in order to avoid the transmission of zoonotic diseases. In the city of Sincelejo, especially in the study area, the magnitude of this species’ population is unknown, as is the case in many cities in Colombia where this bird has become a serious environmental threat. For ten continuous days, between 06:00 and 08:00, fixed point sampling was used with timed counts; likewise, measurements were taken for the noise levels found in the study area. There were no statistical differences for the population detected in each sampling site for the ten sampling days or the study sites and hours. The estimated population was 257 individuals with a SD= 10.7; the estimated density was 574 ind/km²; the peak noise levels fluctuated between 68.2 and 83.5 decibels. The calculated density was lower when compared to other studies but higher than the density that has been established as harmful for this species in urban populations. During the sampling hours, the noise levels found in the population were high but tolerable. Population studies of this species in urban environments are necessary in order to implement management plans and programs that prevent the possible proliferation of zoonotic diseases.

Key words: Abundance, Columbiformes, urban environment, Sucre.

RESUMEN

El presente trabajo determinó la densidad poblacional de *Columba livia domestica* en el nuevo mercado de la ciudad de Sincelejo, Sucre, Colombia. Se conoce que cuando las poblaciones de esta especie se incrementan desmedidamente, se convierte en un serio problema de salud pública, que debe ser atendido, para evitar la transmisión de enfermedades zoonóticas. En Sincelejo, especialmente en la zona de estudio, se tenía desconocimiento de la magnitud de su población, al igual que sucede para muchas otras ciudades de Colombia, en donde esta ave es una seria amenaza ambiental. Durante diez días consecutivos, entre las 06:00 y las 08:00 horas, con conteos cronometrados, se aplicó el método de muestreos en punto fijo; igualmente, se hicieron medidas de los niveles de ruido existente en el área de trabajo. No se determinaron diferencias estadísticas para la población detectada en cada sitio de muestreo, ni durante los diez días de muestreo, ni entre los sitios de trabajo y los horarios. La población estimada fue 257 individuos, con una DS= 10,7, la densidad estimada fue de 574 ind/km²; los niveles sonoros máximos oscilaron entre 68,2 y 83,5 decibeles. La densidad calculada es menor al compararla con otros estudios, pero sobrepasa la densidad establecida como nociva, para esta especie, en poblaciones urbanas; durante el horario de muestreo, los niveles de ruido que soportó la población se establecen como altos y tolerables. Los estudios poblacionales de esta especie, en ambientes urbanos, se hacen necesarios para poder implementar planes o programas de manejo, que eviten posibles proliferaciones zoonóticas.
Por: Bernal et al. (2012) concluyó que, entre las especies de pollo doméstico, hay problemas de acumulación de excremento que afectan el patrimonio histórico de las ciudades. Además, esta especie puede transmitir enfermedades zoonóticas, con 30 enfermedades que pueden ser transmitidas en entornos domésticos, causando problemas de salud pública (Pfeiffer & Ellis, 1992; Ordóñez & Castañeda, 1994). Generalmente, estas enfermedades son transmitidas por el excremento, a través de transporte por aire o contacto directo (Pfeiffer & Ellis, 1992; Ordóñez & Castañeda, 1994).

El pollo doméstico es un portador de más de 60 ectoparásitos, que incluyen sífonapteras y ácaros, que pueden contaminar la salud humana y animales. Algunas de las enfermedades que pueden ser transmitidas en pollos incluyen salmonelosis, psitacosis, criptococosis, aspergilosis, listeriosis, staphylococci y dermatosis, entre otros (Caicedo et al. 1996; Toro, 2000; Olalla et al. 2009).

Desde que se grupalen en grandes bandos, generalmente en zonas de alta circulación humana, son un problema de salud pública (CONABIO, 2012). Además, este pollo presenta un riesgo medio para aeropuertos (Garmendia-Zapata et al. 2009). De acuerdo con Olalla et al. (2009), los pollos han cumplido un rol como mensajeros, lo mismo en recreación, turismo, terapia y decoración, cuando las poblaciones no estaban controladas, es decir: un gran número de individuos, ideales localizaciones, y condiciones de salud óptimas. En el otro aspecto, cuando son encontrados en grandes números en áreas urbanas, se convierten en un perjudicial y capaz de transmitir enfermedades, contaminar el alimento y dañar estructuras, resultando en grandes pérdidas económicas. El pollo doméstico también ha creado un problema urbano serio, que se conoce como “rat with wings.” Este pollo es considerado un vertebrado nocivo (CONABIO, 2012). No obstante, en Chile, contribuyen a la dispersión de algunas especies de cardo, cuyas frutas consumen (Mann, 2008).

En Colombia, hay pocos estudios relacionados con este pollo (Méndez-Mancera et al. 2013) y la población de más de 40 especies de pollo doméstico, la cual ha sido controlada, es decir: un gran número de individuos, ideales localizaciones, y condiciones de salud óptimas. En el otro aspecto, cuando son encontrados en grandes números en áreas urbanas, se convierten en un perjudicial y capaz de transmitir enfermedades, contaminar el alimento y dañar estructuras, resultando en grandes pérdidas económicas. El pollo doméstico también ha creado un problema urbano serio, que se conoce como “rat with wings.” Este pollo es considerado un vertebrado nocivo (CONABIO, 2012). No obstante, en Chile, contribuyen a la dispersión de algunas especies de cardo, cuyas frutas consumen (Mann, 2008).

El presente estudio determinó la densidad de población de C. livia domestica en el mercado de Sincelejo, Sucre, Colombia, como el primer paso en la creación de guías para el manejo ambiental que ha comenzado a ser necesario debido a los efectos posibles que este pollo doméstico puede generar.
MATERIALS AND METHODS

Study area. This study was carried out in the new public market in Sincelejo, Sucre, Colombia. This market constructed in 2000, is located at 9°17′41″N and 75°23′11″W in the south of the city, and has a total area of 44,800m², with an open area of 14,000m² represented by broad causeways (Figure 1). This area, like in all of Sincelejo, does not have an environmental plan in place for the control of domestic pigeon populations or for the sanitation of said populations.

Sampling. Total sampling was used (Feninger, 1983; Geupel et al. 1992; Gregory et al. 2004; Torres et al. 2006) for ten days in the dry season between the 1st and 10th of January, 2015 in four strategic sites with simultaneous sampling (Figure 1) using open areas where the birds usually look for food. One session was used per day, between 06:00 and 08:00, with three counts at 06:00, 07:00, and 08:00 and one observer per site at a distance of 15m. The study hours were chosen based on the fact that the majority of feeding activity occurs early in the morning (Olalla et al. 2009) and that the feeding rhythms are more robust than the locomotion rhythms (Chabot & Menaker, 1992).

According to Verner & Milne (1989), simultaneous and timed sampling in fixed points guarantees the absence of samples moving between the sampling sites, in addition it takes into account the gregarious nature of this species, which demonstrates a high degree of congregation and the permanence of individuals within the groups (Olalla et al. 2009). At the same time, during the ten days of the study, the noise levels were measured in the study area with two daily readings at 07:00 and 08:00 using a Svan 971 ® sound level meter.

RESULTS AND DISCUSSION

The number of individuals registered per hour and per sampling site can be seen in table 1. When applying the ANOVA for the repeated measurements, there were no statistically significant differences for the number of individuals in the four sampling sites F(36, 42.092)=1.3411, p=0.17916; there were also no significant variations in the number of individuals for the sampling sites during the study when the Kruskal-Wallis test was applied: (H (10, N= 11) =10.00, p=0.4405). When comparing the study hours with the population detected in each of the four sampling sites, no statistical differences were determined with the Kruskal – Wallis test: (H (2, N= 3) =2.00, p=0.3679.

According to the registered means, there was a population of 257 individuals (SD=10.7). The estimated total density
was 57.36 ind/ha. The density seen in this study was lower than the range of 75 to 225 ind/ha determined for the city of Buenos Aires, Argentina (Feninger, 1983), but higher than the values reported by Senar & Sol (1991) for Barcelona, Spain, where 9.78 ind/ha were seen with a non-stratified census along with a range of 8.14 to 28.49 ind/ha with stratified sampling, without a correlation factor and with a correlation factor, respectively. Nevertheless, a density over 4 ind/ha is considered harmful and presents a serious environmental problem; however, this number can vary according to the environmental characteristics of the location (Botanical online, 2014).

The noise levels mainly result from automobiles. In the sampling hours and in the four study sites, the noise levels were similar and oscillated between 68.2 and 83.5 decibels. The noise level found in the present study area does not disturb the activity of the pigeons despite the high level. Feninger (1983) reported that the noise from motorized vehicles in a study area reached values between 80 and 110 decibels without provoking visible reactions in the mentioned species, which agrees with the results of the present study.

In nature, the values vary notably. In Spain, the Proyecto Alas (Wings Project) by Nerpio (2013) estimated a density of 0.006 ind/ha, which agreed with Olalla et al. (2009) and Bernal et al. (2012), who regarded this species as invasive, one that had successfully established itself in urban environments due to the fact that it had encountered suitable shelter and available food sources in these areas. Furthermore, according to Johnston (1992) and Olalla et al. (2009), the relative absence of predators has allowed large-scale increases in populations, as seen in the present research and in similar studies in urban zones (Feninger, 1983; Senar & Sol, 1991). The environmental conditions of a location influence the population abundance (Olalla et al. 2009; Bernal et al. 2012); the new market in Sincelejo offers food that enables a comparatively elevated density as seen in this study, which also occurs in other locations in this city, as well as in other cities in Colombia and the world (Gómez de Silva et al. 2005; Mann, 2008; Bernal et al. 2012).

The noise levels mainly result from automobiles. In the sampling hours and in the four study sites, the noise levels were similar and oscillated between 68.2 and 83.5 decibels. The noise level found in the present study area does not disturb the activity of the pigeons despite the high level. Feninger (1983) reported that the noise from motorized vehicles in a study area reached values between 80 and 110 decibels without provoking visible reactions in the mentioned species, which agrees with the results of the present study.

Taking into account the fact that *C. livia domestica* is regarded as a pest species that generates various negative effects, especially on human health (Pfeiffer & Ellis, 1992; Ordóñez & Castañeda, 1994; Bernal et al. 2012), recording its density, especially in areas such as public markets, is a priority for environmental management, which has become necessary for urban populations (Semarnat, 2009).

Without a doubt, the high population density that was recorded in the present study for the public market, a place that mostly contains foods, led to the conclusion that this population could have a large, negative impact on sanitation, especially since there are no control plans or population management strategies in place.

This study led to the recommendations that, in general, population control measures that are based on eliminating individuals are not very effective, rather, as indicated by Senar et al. (2009), it is better to focus on control methods based on the limiting factors of this species, that is, the availability of food and nesting areas. In order to make elimination an effective method, at least 30% of the population must be sacrificed (Senar et al. 2009).

Table 1. Number of pigeons registered per hour, day, and sampling site for the new market in Sincelejo.

Hour	Day	Sampling site			
	1	2	3	4	
06:00	1	65	72	49	81
06:00	2	63	68	54	82
06:00	3	60	72	56	80
06:00	4	59	74	58	81
06:00	5	58	69	55	79
06:00	6	65	63	54	76
06:00	7	62	68	52	75
06:00	8	62	70	60	80
06:00	9	57	68	54	77
06:00	10	56	71	63	81
07:00	1	62	70	55	80
07:00	2	60	72	54	81
07:00	3	54	73	52	79
07:00	4	53	65	53	78
07:00	5	60	64	49	75
07:00	6	62	66	48	80
07:00	7	65	69	47	81
07:00	8	60	66	52	74
07:00	9	58	71	55	74
07:00	10	56	72	53	79
08:00	1	49	70	52	74
08:00	2	49	65	55	73
08:00	3	47	62	56	72
08:00	4	60	62	59	71
08:00	5	63	63	52	75
08:00	6	60	68	51	72
08:00	7	49	65	49	74
08:00	8	50	66	47	78
08:00	9	55	69	45	79
08:00	10	54	97	50	80
Mean		58	69	53	77
SD		5	6	4	3
For example, in Perugia, Italy, the pigeon population was reduced by 23% in one year by simply closing the ventilation openings in buildings with metal sheeting, thereby reducing the availability of nesting areas (Ragni et al. 1996). In Basel, Switzerland, controlling the amount of food offered by citizens reduced the pigeon population by 50% in one year (Haag-Wackernagel, 1995). In both cases, low-cost measures were taken that were effective and that could be applied to the new public market of Sincelejo.

Conflicts of interest: This manuscript was prepared and revised with the participation of all of the authors, who declare that there are no conflicts of interest that would affect the validity of the present results.

BIBLIOGRAPHY

1. BAPTISTE, M.P.; MÚNERA, C. 2010. Análisis de riesgo para especies introducidas de vertebrados terrestres en Colombia (anfibios, reptiles, aves y mamíferos). En: Baptiste M.P.; Castaño, N.; Cárdenas, D.; Gutiérrez, F.P.; Gil, D.L.; Lasso, C.A. (eds). Análisis de riesgo y propuesta de categorización de especies introducidas para Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (Bogotá, Colombia). p.149-199.

2. BERNAL, L.; RIVAS, M.; RODRÍGUEZ, C.; VÁSQUEZ, C.; VÉLEZ, M.P. 2012. Nivel de impacto de la sobrepoblación de palomas (*Columba livia domestica*) en los habitantes del perímetro del parque Principal del Municipio de Envigado en el año 2011. Available from internet in: http://marthanellymesag.weebly.com/uploads/6/5/6/5/6565796/palomas.pdf (accessed 28/08/2014).

3. BOTANICAL ON LINE. 2014. La paloma como plaga. Available from Internet in: http://www.botanical-online.com/animales/paloma_plaga.htm (accessed 20/11/2014).

4. CAICEDO, L.D.; ÁLVAREZ V., M.I.; LLANOS, C.E.; MOLINA, D. 1996. *Cryptococcus neoformans* en excretas de palomas del perímetro urbano de Cali. Colombia Médica (Colombia). 27:106-109.

5. CHABOT, C.C.; MENAKER, M. 1992. Circadian feeding and locomotor rhythms in pigeons and house sparrows. J. Biol. Rhythms. (USA). 7(4):287-99.

6. COMISIÓN NACIONAL PARA EL CONOCIMIENTO y USO DE LA BIODIVERSIDAD –CONABIO–. 2012. Fichas de especie *Columba livia*. Sistema de información sobre especies invasoras en México. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México, D.F. (México). 15p.

7. DEL HOYO, J.; ELLIOT, A.; SARGATAL, J. 1997. Handbook of the birds of the world. Vol. 4. Sandgrouse to Cuckoos. Lynx Ediciones, Barcelona. (España). 679p.

8. ESCALANTE P., B.P.; SADA, A.M.; ROBLES G., J. 1996. Listado de nombres comunes de las aves de México. CONABIO/Sierra Madre. México, D.F. (México). 32p.

9. FENINGER, O. 1983. Estudios cuantitativos sobre aves en áreas urbanas de Buenos Aires con densa población humana. El Hornero (Argentina). 12(1):174-191.

10. GARMENDIA-ZAPATA, M.; LÓPEZ, A.A.; MUÑOZ IZAGUIRRE, P.; MARTÍNEZ GADEA, A. 2011. Estudio sobre peligro aviario: análisis del riesgo de impactos entre aves y aeronaves en el Aeropuerto Internacional Augusto C. Sandino, Managua, Nicaragua. La Calera (Nicaragua). 11(16):33-42.

11. GEUPEL, G.R.; HOWELL, S.N.G.; PYLE, P.; WEBB, S. 1992. Ornitología de Campo Tropical, curso de identificación de aves neotropicales y métodos de monitoreo de sus poblaciones. Centro de Aves Migradoras de la Smithsonian Institution, U. S. Fish and Wildlife Service. Point Reyes Bird Observatory, Stinson Beach, California. (USA). 45p.

12. GÓMEZ DE SILVA, H.; OLIVERAS DE ITA, A.; MEDELLÍN, R.A. 2005. *Columba livia*. Vertebrados superiores exóticos en México: diversidad, distribución y efectos potenciales. Instituto de Ecología, Universidad Nacional Autónoma de México. Bases de datos SNIB -CONABIO. Proyecto U020. México. D.F. (México). 6p.

13. GREGORY, R.D.; GIBBONS, D.W.; DONALD, P.F. 2004. Bird census and survey techniques. En: Sutherland, W.J.; Newton, I.; Green, R.E. (eds): Bird Ecology and Conservation - A Handbook of Techniques. Oxford University Press Inc. New York. (USA). p.17-52.

14. HAAG-WACKERNAGEL, D. 1995. Regulation of the street pigeon in Basel. Wildl. Soc. Bull. (USA). 23:256-260.

15. JOHNSTON, R.F. 1992. Rock Pigeon (*Columba livia*). En: Poole, A. (ed.). The Birds of North America. Cornell Lab of Ornithology, Ithaca. Available from Internet in: http://bna.birds.cornell.edu/bna/species/013 (accessed 10/06/2014).
16. KREBS, C.J. 1989. Ecological methodology. Harper Collins, New York. (USA). 653p.

17. MANN, A. 2008. Vertebrados dañinos en Chile: desafíos y perspectivas. Actas del Seminario Taller 8. Enero de 2008. Universidad Santo Tomás, Santiago de Chile. Available from Internet in: http://www2.sag.gob.cl/Pecuaria/bvo/BVO_11_1_semestre_2010/PDF_articulos/vertebrados_exoticos_daninos_en_chile.pdf (accessed 23/06/2014).

18. MARQUES, T.A.; THOMAS, L.; FANCY, S.G.; BUCKLAND, S.T. 2007. Improving estimates of bird density using multiple covariate distance sampling. Auk (USA). 124:1229-1243.

19. MATHEWS, S. 2005. Sudamérica Invadida. Programa Mundial sobre Especies Invasoras- GISP. El creciente peligro de las especies exóticas invasoras. Unesco. (Uruguay) 80p.

20. MÉNDEZ-MANCERA, V.M.; VILLAMIL JIMÉNEZ, L.C.; BUITRAGO MEDINA, D.A.; SOLÉR-TOVAR, D. 2013. La paloma (Columba livia) en la transmisión de enfermedades de importancia en salud pública. Rev. Cien. Anim. (Colombia). 6:177-194.

21. OJASTI, J. 2001. Estrategia Regional de Biodiversidad para los países del Trópico Andino. Especies exóticas invasoras. Convenio de cooperación CAN-BID, Caracas. (Venezuela). 64p.

22. OLALLA, A.; RUIZ, V.; RUIVALCABA, I.; MENDOZA, R. 2009. Palomas, especies invasoras. CONABIO. Biodiversitas (México). 82:7-10.

23. ORDÓÑEZ, N.; CASTAÑEDA, E. 1994. Serotipificación de aislamientos clínicos y del medio ambiente de Cryptococcus neoformans en Colombia. Biomédica (Colombia). 14:131-139.

24. PROYECTO ALAS PARA NERPIO. 2013. II Censo Coordinado de aves en los Noguerales de Nerpio. Available from Internet in: www.turismonerpio.com//informe-censo-aves-de-los-noguerales-2013. (accessed 10/10/2014).

25. PFEIFFER, T.J.; ELLIS, D.H. 1992. Environmental isolation of Cryptococcus neoformans var. gattii from Eucaliptus tereticornis. J. Med. Vet. Mycol. (UK). 30:407-408.

26. RAGHI, B.; VELATTA, F.; MONTEFAMEGLIO, M. 1996. Restrizione dell’habitat per il controllo della popolazione urbana di Columba livia. En: Control of Synanthropic bird populations: problems and prospective: WHO/FAO. Roma. (Italia). p.106-110.

27. SECRETARÍA DE MEDIO AMBIENTE Y RECURSOS NATURALES –SEMARNAT–. 2009. Plan de Manejo del tipo de palomas Dirección General de Vida Silvestre, México. Available from Internet in: www.semarnat.gob.mx (accessed 10/10/2014).

28. SENAR, J.C.; SOL, D. 1991. Censo de Palomas Columba livia var. de la ciudad de Barcelona: Aplicación del muestreo estratificado con factor de corrección. Bull. GCA (USA). 8:19-24.

29. SENAR, J.C.; CARRILLO, V.; ARROYO, L.; MONTALVO, T.; PERACHO, V. 2009. Estima de la abundancia de palomas (Columba livia var) de la ciudad de Barcelona y valoración de la efectividad del control por eliminación de individuos. Arxius de Miscellània Zoològica (España). 7:62-71.

30. TORO, H. 2000. Palomas: Historia, presencia en Chile y riesgos asociados. Tecno Vet. (Chile). 6:20-23.

31. TORRES, M.; QUINTEROS, Z.; TAKANO, F. 2006. Variación temporal de la abundancia y diversidad de aves limícolas en el refugio de vida silvestre Pantanos de Villa, Perú. Ecol. Apl. (Perú). 5(1-2):119-125.

32. VERNER, J.; MILNE, K.A. 1989. Coping with sources of variability when monitoring population trends. Ann. Zool. Fennici (Finlandia). 26:191-200.

33. VILLALBA-SÁNCHEZ, C.; DE LA OSSA-LACAYO, A. 2014. Columba livia domestica Gmelin, 1789: plaga o símbolo. Rev. Col. Cienc. Anim. 6(2):424-433.

34. ZAR, J.H. 1998. Biostatistical analysis. Prentice Hall. (USA). 662p.

Received: 17 April 2015
Accepted: 3 July 2015

How to cite (Cómo citar):
Villalba-Sánchez, C.; De La Ossa-Lacayo, A.; De La Ossa V., J. 2015. Density of domestic pigeons (Columba livia domestica GMELIN, 1789) in the new public market of Sincelejo, Sucre, Colombia. Rev. U.D.C.A Act. & Div. Cient. 18(2): 497-502.