Cbl-b Negatively Regulates B Cell Antigen Receptor Signaling in Mature B Cells through Ubiquitination of the Tyrosine Kinase Syk

Hae Won Sohn, Hua Gu, and Susan K. Pierce

Abstract

Members of the Cbl family of molecular adaptors play key roles in regulating tyrosine kinase-dependent signaling in a variety of cellular systems. Here we provide evidence that in B cells Cbl-b functions as a negative regulator of B cell antigen receptor (BCR) signaling during the normal course of a response. In B cells from Cbl-b–deficient mice cross-linking the BCRs resulted in sustained phosphorylation of Igα, Syk, and phospholipase C (PLC)-γ2, leading to prolonged Ca2+ mobilization, and increases in extracellular signal–regulated kinase (ERK) and c-Jun NH2-terminal protein kinase (JNK) phosphorylation and surface expression of the activation marker, CD69. Image analysis following BCR cross-linking showed sustained polarization of the BCRs into large signaling-active caps associated with phosphorylated Syk in Cbl-b–deficient B cells in contrast to the BCRs in Cbl-b–expressing B cells that rapidly proceeded to form small, condensed, signaling inactive caps. Significantly, prolonged phosphorylation of Syk correlated with reduced ubiquitination of Syk indicating that Cbl-b negatively regulates BCR signaling by targeting Syk for ubiquitination.

Key words: B cells • antigen receptor • ubiquitination • tyrosine kinase • capping

Introduction

B lymphocyte responses are initiated by the binding of multivalent antigens to the B cell antigen receptors (BCRs), an event that triggers signaling cascades resulting in the transcription of a variety of genes associated with B cell activation (1). The BCR is composed of antigen binding chains, the Ig molecules, and a noncovalently associated signal-transduction complex, Igα/Igβ, containing in its cytoplasmic domain immunoreceptor tyrosine-based activation motifs (ITAMs; reference 2). Cross-linking the BCR results in the phosphorylation of the ITAMs by the Src family kinase, Lyn followed by recruitment and activation of the nonreceptor protein tyrosine kinase, Syk (3–5). Recruitment of Syk by the phosphorylated BCR is a key event in the assembly of the BCR signalosome composed of the adaptor protein BLNK and key downstream signaling components including phospholipase C (PLC)-γ2, Vav, and Bruton’s tyrosine kinase (Btk) (6, 7). Syk deficiencies in mice result in aberrant B cell development (8, 9), and chicken DT40 B cells lacking Syk are unresponsive to BCR stimulation (10). Given the central role of Syk in B cell activation, regulation of Syk is likely to be essential to set the appropriate signaling thresholds for both the initiation and dampening of immune responses. However, the two known negative regulators of BCR signaling, namely SHIP and SHP-1, do not appear to target Syk. SHIP is a lipid phosphatase that influences the levels of PIP-3 (11–13) and SHP-1, a protein phosphatase, regulates BCR signaling by dephosphorylating Lyn (14).

Recent studies have provided evidence that two members of the Cbl family of molecular adaptors, c-Cbl and Cbl-b, function to regulate signaling in immune cells downstream of the immune receptors (15, 16). Members of the Cbl family share several highly conserved features including: a tyrosine kinase binding (TKB) domain composed of a four-helix bundle, a Ca2+-binding EF hand motif and an unusual SH2 domain; a RING finger domain that interacts with ubiquitin conjugating enzymes allowing Cbl proteins to function as ubiquitin ligases; a proline rich region involved in SH3-domain interactions; multiple tyrosine residues that when phosphorylated allow interactions with SH2 domains and luicine zippers (16). Current evidence indicates that Cbl-b negatively regulates BCR signaling by targeting Syk for ubiquitination.
tyrosine kinases in part through ubiquitination and degradation of their targets (17–19). Evidence for the role of c-Cbl and Cbl-b in lymphocyte cell signaling was provided by the phenotypes of c-Cbl- and Cbl-b-deficient mice, the most dramatic of which were in T cell compartments (20–23). These phenotypes provided evidence that c-Cbl and Cbl-b have distinct functions in T cells. Loss of c-Cbl resulted in severe defects in developing thymocytes but only mild defects in mature peripheral T cells. Thymocytes from c-Cbl^{−/−} mice showed enhanced activation of ZAP-70 after TCR engagement that was uncoupled from the need for CD4 costimulation and Lck activation. Consequently, positive selection of CD4⁺ thymocytes was enhanced in c-Cbl^{−/−} mice (20, 21). In contrast, thymocyte development was normal in Cbl-b-deficient mice but the peripheral T cells were hyperreactive. Activation of mature peripheral T cells from Cbl-b^{−/−} mice was independent of the engagement of the coreceptor CD28 and consequently Cbl-b^{−/−} mice were highly susceptible to autoimmunity (22, 23). The effect of Cbl deficiencies in B cells has not been as rigorously explored. B cells in c-Cbl^{−/−} mice were highly susceptible to autoimmunity (22, 23). Recent evidence indicates that Cbl-b plays a positive role in signaling in immature DT40 B cells (24). Here we provide evidence that in mature splenic B cells Cbl-b is a negative regulator of BCR-mediated B cell activation in part through its ubiquitination of Syk.

Materials and Methods

Mice. Cbl-b^{−/−} mice on a mixed genetic background between 129 and C57BL/6 were as described (22). Cbl-b^{+/−} mice on a mixed genetic background between 129 and C57BL/6 were obtained from Taconic. For some analyses, Cbl-b^{−/−} and Cbl-b^{+/−} littermates on the same mixed genetic background were used.

Reagents and Abs. The mouse IgM-specific rat IgG2a mAb (R6–60.2) used for BCR cross-linking was purchased from BD Biosciences. F(ab′)2 goat Abs specific for mouse IgG or for IgM + G, biotin-conjugated F(ab′)2 goat Abs specific for rat Ig, HRP-conjugated goat Abs specific for mouse IgG, Rhodamine Red X (RRX)-conjugated Fab goat Abs specific for mouse IgG, PE-conjugated F(ab′)2 donkey Abs specific for rabbit IgG, FITC-conjugated F(ab′)2 goat Abs specific for mouse IgG, and Texas Red-conjugated streptavidin were purchased from Jackson Immunoresearch Laboratories. Latrunculin B, Piceatannol, and Texas-Red–conjugated streptavidin were purchased from Jack-son-ImmunoResearch Laboratories. F(ab′)2 goat Abs specific for mouse IgM (1 μg/10⁶ cells) on ice for 30 min, washed and incubated with F(ab′)2 goat Abs specific for rat IgG Fcγ at 37°C. Alternatively, cells were incubated with F(ab′)2 goat Abs specific for mouse IgM at 37°C for the indicated times.

Immuno precipitation, Immunoblotting, and Lyn Kinase Assays. Immunoprecipitation and immunoblotting of cell lysates were as described previously (27). For immunoprecipitation of Syk, IgG, BLNK, phospho–Btk, Vav1, and PLC-γ2, 5 × 10⁷ cells per time point were lysed in the Tris or MES-buffered saline containing 1% NP-40, sodium orthovanadate, and protease inhibitors. For immunoprecipitation of Cbl-b and Lyn, 2 × 10⁷ cells were lysed in the RIPA buffer containing 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, sodium orthovanadate, and protease inhibitors. Lyn kinase activity was measured in Lyn immunoprecipitates by the transfer of P³² into a peptide substrate using the Sigma TECT protein tyrosine kinase assay system according to the manufacturer's protocol (Promega). Briefly, the Lyn immunoprecipitates were incubated with kinase buffer including biotin-conjugated Src kinase-specific peptide substrates and P³²-ATP for 20 min at 25°C. The reaction was stopped and the reaction mixtures dotted onto membranes to which streptavidin was coupled. The membranes were washed and counted using a β-scintillation counter. For immunoblotting of unfraccionated lysates, cells were lysed in the RIPA buffer and 20 μg of protein per time point was analyzed. The immunoblot bands were quantified by densitometry and expressed as a ratio of phosphoryrosine containing protein to total protein.

Measurement of Intracellular Ca²⁺ Mobilization. For detection of cytosolic Ca²⁺, 10⁷ splenocytes were incubated with 0.75 μM Indo-1 acetoxymethyl ester (Indo-1; Molecular Probe) in 1% HBSS-FBS containing 0.01% F-127 (Molecular Probe) for 45 min at 30°C. Cells were subsequently stained with PE-conjugated B220 specific mAb to detect B220⁺ cells in flow cytometry. The primary IgM-specific Ab was added followed by the secondary Ab and cytosolic Ca²⁺ fluxes were recorded in real time using a FACS vantage (Becton Dickinson) and analyzed by the FlowJo software program (True Star, Inc.).

Determination of F-actin Polymerization and CDC42 Activation. F-actin was detected by phalloidin staining quantified by flow cytometry. GTP-bound CDC42 was detected using WASP-GBD-GFP fusion protein as described previously (25). Cells were fixed, permeabilized with 0.05% saponin and stained with rabbit Abs specific for GFP followed by FITC-labeled goat Abs specific for rabbit Ig and analyzed by flow cytometry (FACScanTM; Becton Dickinson).

Detection of Phospho-Btk. The level of intracellular phosphoryl-Btk was determined by flow cytometry using phospho-Btk-specific antibodies. Splenic B cells (10⁷ cells/ml) were incubated in HBSS for 1 h at 37°C and stimulated by adding 20 μg/ml F(ab′)2 goat Abs specific for mouse IgG for the indicated time periods. After washing twice with PBS containing 0.2% sodium azide,
cells were fixed, permeabilized, blocked with 10% normal mouse and donkey sera on ice, stained with rabbit Abs specific for phospho-Btk (Y223)- or as a control nonspecific rabbit IgG detected using PE-conjugated F(ab\(^{\prime}\))_2, donkey Abs specific for rabbit IgG. After acquisition by FACScan (Becton Dickinson), the data were analyzed by the FlowJo software program. The percentage of the phospho-Btk–positive cells relative to control Ab stained cells was calculated after gating on live cells by the forward- and side-scatter.

Immunofluorescence Microscopy. To quantify the number of cells showing patch, Cap I or Cap II BCR structures, purified splenic B cells were treated with a rat mAb specific for mouse IgM at 4°C for 30 min then transferred to poly-l-lysine treated coverslips at 4°C. Biotin–conjugated goat antibodies specific for rat IgG were added to further cross-link the BCR and the cells warmed to 37°C for the times indicated. At the end of each time point the cells were fixed with 3.7% paraformaldehyde, quenched with 50 μM NH\(_4\)Cl, blocked with PBS containing 1% BSA (PBS-BSA) for 30 min at room temperature (RT) and stained with AlexaFluor 488–conjugated streptavidin in the dark for 30 min at RT. The coverslips were mounted in Prolong Antifade (Olympus IX70 microscope, 100 W mercury lamp, a cooled CCD camera, 60 × 1.4 oil objectives). The cells having a BCR patch, Cap I, or Cap II morphology were counted at each time point.

To image IgM and phosphoryrosine in patch–, Cap I–, Cap II– positive cells, splenic B cells were incubated with a rat mAb specific for IgM at 4°C, washed, allowed to settle on coverslips on ice, and further cross-linked with biotin-conjugated goat Abs specific for rat IgG for 5 min for patch and Cap I and for 30 min for Cap II at 37°C. Fixed cells were incubated with Texas Red–conjugated Streptavidin washed, permeabilized with 0.05% saponin in PBS-BSA, blocked with 50 μg/ml of purified normal goat IgG for 30 min at RT, and incubated with PY20 mAb specific for phosphoryrosine for 1 h at RT. The secondary FITC-conjugated goat F(ab\(^{\prime}\))_2 anti–mouse, Fc_γ-specific Ab, was added for 30 min at RT. For imaging of IgM and phospho-Syk, and IgM and Syk, splenic B cells were incubated with Fab goat Abs specific for mouse IgM conjugated with Rhodamine Red-X (RXR) for 15 min at RT, washed, and allowed to settle onto an poly-l-lysine coated 8-well glass-bottom chamber slide (Labtek/Nunc) on ice for 30 min. Cells were stimulated with 50 μg/ml of F(ab\(^{\prime}\))_2 goat Abs specific for mouse IgM + G at 37°C for the indicated times and fixed. After quenching, cells were permeabilized with 0.05% saponin in PBS–Gelatin (PBS containing 1% fish skin gelatin), blocked with 10% normal mouse sera and 50 μg/ml of purified normal goat IgG for 30 min at RT. Cells were stained with rabbit Abs specific for Syk or phospho-Syk (Y519/520) detected using goat Abs specific for rabbit IgG conjugated with AlexaFluor 488.

For two–color confocal and differential interference contrast (DIC) images, a confocal laser scanning microscope (Zeiss Axiovert 200M LSM 510 META; Carl Zeiss Microimaging, Inc.) fitted with a 1.4 oil planapochromat ×63 objective was used. Images were acquired with configuration of Ex488/Em 505–530BP for AlexaFluor 488 or FITC and Ex543/Em 560LP for Texas Red Dye or RRX and under the scan control of fixed pixel density at 512 × 512 pixels, 8 bit (phosphoryrosine) or 12 bit (phospho-Syk and Syk) pixel depths, linear contrast of grayscale, 7.8 ms scan time, and pinhole size of 45 μm (phosphoryrosine and IgM) or 66 μm (phospho–Syk/Syk and IgM). No significant signal saturation was noted in any of the images used for analysis. To quantify the colocalization between IgM and phosphoryrosine, phospho–Syk or Syk, the LSM5 imaging examiner software program was used. To compare the intensity of phospho–Syk colocalized with IgM between Cbl-b\(^{-/-}\) and Cbl-b\(^{-/-}\) splenic B cells, the images from five randomly chosen fields each containing at least 400 cells were acquired as grayscale with linear contrast. The mean fluorescence intensity (MFI) of phospho–Syk colocalized with IgM was calculated based on the colocalization scatter diagrams by multiplying both IgM and phospho–Syk positive, matched pixel numbers by the MFI of the matched pixels and then dividing by the number of cells in a chosen field.

Results

Prolonged Phosphorylation of Igα and Syk after BCR Cross-linking in Cbl-b\(^{-/-}\) B Cells. B cells from Cbl-b–deficient mice were shown previously to hyper-proliferate in response to BCR cross-linking suggesting a role for Cbl-b in the negative regulation of B cell signaling. One of the earliest events in BCR signaling is the tyrosine phosphorylation of the Igα/Igβ complex by the Src-family kinase Lyn (3). The phosphorylation of Igα results in the recruitment of Syk to Igα via its SH2 domains and the subsequent phosphorylation of Syk (4). The subsequent Syk–mediated phosphorylation of the B cell adaptor protein BLNK links the BCR to both PLC-γ2 and Btk. To investigate the molecular mechanisms underlying the hyper–responsiveness of B cells from Cbl-b\(^{-/-}\) mice, we began by monitoring the tyrosine phosphorylation of Cbl-b, Lyn, Igα, and Syk after BCR cross-linking. B cells from Cbl-b\(^{-/-}\) and Cbl-b\(^{-/-}\) mice were incubated with F(ab\(^{\prime}\))_2 IgM-specific Abs to cross-link the BCR for increasing lengths of time at 37°C and at the end of each time point the phosphorylation state of Cbl-b, Lyn, Igα, and Syk was determined by immunoprecipitation of each protein followed by immunoblots probing with a phosphoryrosine–specific mAb.

In B cells from Cbl-b\(^{-/-}\) and Cbl-b\(^{-/-}\) B cells Lyn showed a high level of constitutive phosphorylation that increased slightly upon BCR cross-linking (Fig. 1 A). Phosphorylation of Cbl-b increased after 2 min at 37°C then decreased approaching unactivated levels by 30 min. In control experiments, Cbl-b was not detected in Cbl-b\(^{-/-}\) B cells (Fig. 1 A). The phosphorylation of Cbl-b following BCR cross-linking suggests that it plays a direct role in BCR signaling.

In both Cbl-b\(^{-/-}\) and Cbl-b\(^{-/-}\) B cells Lyn showed a high level of constitutive phosphorylation that increased slightly upon BCR cross-linking and remained phosphorylated for the 30-min time course (Fig. 1 B). The level of Lyn phosphorylation, assessed by the ratio of the densities of the Lyn bands in immunoblots to the densities of the Lyn band in unstimulated cells, was slightly higher (≈10%) in B cells from Cbl-b\(^{-/-}\) as compared with Cbl-b\(^{-/-}\) mice. Otherwise, the absence of Cbl-b did not appear to have a significant effect on Lyn phosphorylation. Direct measurements of the kinase activity of Lyn in vitro showed no significant differences in Lyn activity in Lyn immunoprecipitates from cell lysates prepared from B cells from Cbl-b\(^{-/-}\) as compared with Cbl-b\(^{-/-}\) mice after BCR cross-linking (Fig. 1 C). Resting Cbl-b\(^{-/-}\) B cells may have a slightly higher...
The phosphorylation of Syk was similarly prolonged in Cbl-b−/− B cells (Fig. 2 B). BCR cross-linking resulted in slightly higher phosphorylation of Syk immediately following cross-linking in Cbl-b−/− B cells (a ratio of 1.1) as compared with Cbl-b+/+ B cells (a ratio of 0.9). Syk remained phosphorylated for a longer period of time in Cbl-b−/− B cells compared with Cbl-b+/+ B cells (a ratio of 0.8 versus 0.4 measured at 10 min). The phosphorylation of Syk on Y519/520 within its activation loop is essential for Syk’s activity (17, 28). Immunoblots of Syk immunoprecipitates probed with polyclonal Abs specific for Syk phosphorylated on Y519/520 showed approximately twofold more Y519/520 phospho-Syk in Cbl-b−/− as compared with Cbl-b+/+ B cells 2 min after BCR cross-linking (Fig. 2 C). Significantly, phosphorylated Syk remained associated with Igα for longer periods of time in Cbl-b−/− B cells as compared with Cbl-b+/+ B cells (Fig. 2 A, right panel). Syk was immunoprecipitated with Igα in resting cells, however, the Igα-associated Syk was not phosphorylated. Immediately upon BCR cross-linking the Syk associated with Igα was phosphorylated. The amount of phospho-Syk associated with Igα showed a significant decrease in Cbl-b−/− B cells 10 min after BCR cross-linking relative to that in Cbl-b−/− B cells (a ratio of 0.2 versus 0.9).

The association of phospho-Syk with the BCR was imaged in B cells following BCR cross-linking. B cells were incubated with RRX-conjugated Fab goat Ab specific for Igμ, washed and allowed to settle on coverslips before cross-linking the BCR by addition of goat Abs specific for mouse IgM. Cells were incubated at 37°C for 0 to 30 min, fixed, permeabilized, and stained for phospho-Syk using phospho-Syk (Y519/520)-specific rabbit Abs detected using AlexaFluor 488-conjugated goat Abs specific for rabbit IgG. The cells were imaged by laser scanning confocal microscopy and representative merged images acquired 2 min after BCR cross-linking are shown (Fig. 2 D, top). In untreated resting cells no phospho-Syk was detected in either Cbl-b+/+ or Cbl-b−/− B cells. 2 min after BCR cross-linking the images appeared to show a larger number of cells with cap structures in which the BCR and phospho-Syk were colocalized in Cbl-b−/− as compared with Cbl-b+/+ B cells. To quantify the amount of BCR and phospho-Syk that were colocalized, the images were analyzed pixel by pixel and the Fl of the IgM RRX and phospho-Syk (Y519/520) AlexaFluor 488 within each pixel plotted in a histogram (Fig. 2 D, bottom). Pixels that lie along the diagonal contain equal amounts of colocalized IgM and phospho-Syk (Y519/520). For those above the diagonal the intensity of the phospho-Syk (Y519/520) is less than that of the BCR and for pixels below the diagonal the phospho-Syk (Y519/520) intensity is greater than that of the BCR. The histograms indicate less colocalization of phospho-Syk with the BCR at the 2 min time point in Cbl-b+/+ B cells as compared with Cbl-b−/− B cells (Fig. 2 D, bottom). For each time point, the MFI of the phospho-Syk (Y519/520) colocalized with the BCR was quantified (Fig. 2 E). The degree of colocalization of phospho-Syk and the BCR was similar immediately after the addition of the BCR cross-
linking Abs (the 0 min time point) in Cbl-b+/− and Cbl-b−/− B cells. 2 min after BCR cross-linking the amount of phospho-Syk (Y519/520) associated with the BCR increased significantly in Cbl-b−/− B cells and then decreased with time. In contrast, in Cbl-b+/− B cells the amount of phospho-Syk (Y519/520) colocalized with the BCR had already decreased 2 min after BCR cross-linking. These results taken together with those above indicate that Syk is a target of Cbl-b activity after BCR cross-linking resulting in the rapid turnover of active phospho-Syk (Y519/520) associated with Igα.

Increased Syk Ubiquitination in Cbl-b+/+ B Cells. The members of the Cbl family have been shown to function as E3 ubiquitin ligases and to target protein tyrosine kinase substrates for degradation (17). To investigate the possibility that Cbl-b influences Syk through ubiquitination, Syk was immunoprecipitated from lysates of Cbl-b+/+ and Cbl-b−/− B cells treated to cross-link the BCR for varying lengths of time and the immunoprecipitates analyzed by immunoblot probing for ubiquitin, Syk and phosphotyrosine-containing proteins, stripped, and reprobed for either Igα (left panel) or Syk (right panel) using specific Abs. (A) B cells from Cbl-b+/+ and Cbl-b−/− mice were treated as in panel A to cross-link the BCR and at the end of each time point cells were lysed and the lysates subjected to immunoprecipitation using Igα-specific Abs. The Igα immunoprecipitates were analyzed by SDS-PAGE and immunoblotting probing for phosphotyrosine-containing proteins, stripped, and reprobed for either Igα (left panel) or Syk (right panel) using specific Abs. (B) B cells from Cbl-b+/+ and Cbl-b−/− mice were treated as in panel A to cross-link the BCR and at the end of each time point cells were lysed and Syk immunoprecipitated from the lysates. The Syk immunoprecipitates were analyzed by SDS-PAGE and immunoblotting probing first with a phosphotyrosine-specific mAb, stripped, and reprobed for Syk. (C) Cbl-b+/+ and Cbl-b−/− B cells were treated in panel A to cross-link the BCR and incubated for 2 min at 37°C and lysed. Syk was immunoprecipitated from the lysates and the immunoprecipitates analyzed by SDS-PAGE and immunoblotting. The blots were first probed using phospho-Syk (Y519/520) specific Abs, stripped, and reprobed with Syk-specific Abs. (D) B cells from Cbl-b+/+ and Cbl-b−/− mice were imaged by laser scanning confocal microscopy to determine the colocalization of the BCR and phospho-Syk (Y519/520) as detailed in Materials and Methods. Briefly, B cells were incubated with RRX-conjugated Fab goat Abs specific for mouse IgM on ice for 30 min followed by incubation with Fab’ goat Abs specific for rat IgG at 37°C for the times indicated. At the end of each time point the cells were lysed, and the lysates subjected to immunoprecipitation using Igα-specific Abs. The Igα immunoprecipitates were analyzed by SDS-PAGE and immunoblotting probing for phosphotyrosine-containing proteins, stripped, and reprobed for either Igα (left panel) or Syk (right panel) using specific Abs. (B) B cells from Cbl-b+/+ and Cbl-b−/− mice were treated as in panel A to cross-link the BCR and at the end of each time point cells were lysed and Syk immunoprecipitated from the lysates. The Syk immunoprecipitates were analyzed by SDS-PAGE and immunoblotting probing first with a phosphotyrosine-specific mAb, stripped, and reprobed for Syk. (C) Cbl-b+/+ and Cbl-b−/− B cells were treated in panel A to cross-link the BCR and incubated for 2 min at 37°C and lysed. Syk was immunoprecipitated from the lysates and the immunoprecipitates analyzed by SDS-PAGE and immunoblotting. The blots were first probed using phospho-Syk (Y519/520) specific Abs, stripped, and reprobed with Syk-specific Abs. (D) B cells from Cbl-b+/+ and Cbl-b−/− mice were imaged by laser scanning confocal microscopy to determine the colocalization of the BCR and phospho-Syk (Y519/520) as detailed in Materials and Methods. Briefly, B cells were incubated with RRX-conjugated Fab goat Abs specific for mouse IgM on ice for 30 min followed by incubation with Fab’ goat Abs specific for phospho-Syk (Y519/520) detected using AlexaFluor 488-conjugated goat Abs specific for rabbit IgG. The cells were imaged by confocal laser scanning microscopy using a Zeiss Axiovert 200M LSM 510 META. A representative field is shown 2 min after BCR cross-linking (top) and the RRX and AlexaFluor 488 intensities of each pixel are plotted (bottom). (E) The average MFI of the AlexaFluor 488 colocalized with RRX for five fields of cells at each time point is given.
in Cbl-\(b^{-/-}\) B cells and appeared to involve primarily the most highly ubiquitinated forms of Syk detected in resting cells. In controls, there was no detectable ubiquitination of IgG in Cbl-b\(^{+/+}\) or Cbl-b\(^{-/-}\) B cells at any time following BCR cross-linking (unpublished data). However, it is possible that in addition to Syk proteins coimmunoprecipitated with Syk are ubiquitinated. Ubiquitination of Syk was maximal at two min following BCR cross-linking (unpublished data) at a time at which the levels of phospho-Syk (Y519/520) began decreasing in Cbl-b\(^{-/-}\) B cells (Fig. 2, D and E) suggesting that Cbl-b targets phospho-Syk for ubiquitination resulting in its subsequent degradation.

Prolonged Phosphorylation of BLNK, Btk and PLC-\(\gamma2\) and Ca\(^{2+}\) Fluxes in Cbl-b\(^{-/-}\) B Cells. A key downstream effect of BCR signaling is PLC-\(\gamma2\) that cleaves PIP2 (4, 5) releasing IP3 and DAG resulting in release of intracellular Ca\(^{2+}\) stores. PLC-\(\gamma2\) is phosphorylated by Syk and Btk which are activated by phosphorylation by Lyn (6). BLNK plays a key role in Ca\(^{2+}\) signaling by functioning as a scaffold for the assembly of complexes of PLC-\(\gamma2\) and Btk after Syk-mediated phosphorylation. Recent evidence indicates that normal Ca\(^{2+}\) signaling requires BLNK-dependent PLC-\(\gamma2\)-BLNK interactions and BLNK-independent Btk activation as well as the assembly of BLNK-PLC-\(\gamma2\)-Btk complexes (29). To determine if a Cbl-b deficiency influenced these events the levels of phosphorylation of BLNK, Btk, and PLC-\(\gamma2\) and Ca\(^{2+}\) fluxes were measured in Cbl-b\(^{+/+}\) or Cbl-b\(^{-/-}\) and Cbl-b\(^{-/-}\) B cells after BCR cross-linking.

In Cbl-b\(^{-/-}\) B cells the phosphorylation of BLNK was prolonged as compared with Cbl-b\(^{+/+}\) B cells (Fig. 4 A). In Cbl-b\(^{+/+}\) B cells maximal BLNK phosphorylation occurred immediately following BCR cross-linking and decreased rapidly thereafter. In contrast, BLNK remained significantly phosphorylated 10 min after BCR cross-linking in Cbl-b\(^{-/-}\) B cells. Thus, Cbl-b influenced the duration of the phosphorylation of BLNK.

Cbl-b also affects the phosphorylation state of Btk (Fig. 4 B). B cells from Cbl-b\(^{+/+}\) and Cbl-b\(^{-/-}\) mice were treated with IgM-specific antibodies to cross-link the BCR and at various times afterward the cells were permeabilized, stained with Abs specific for phospho-Btk (Y223) and analyzed by flow cytometry. The levels of phosphorylated Btk increased immediately after BCR cross-linking in B cells from both Cbl-b\(^{-/-}\) and Cbl-b\(^{+/+}\) mice. However, Btk phosphorylation reached higher levels in Cbl-b\(^{-/-}\) B cells as compared with Cbl-b\(^{+/+}\) B cells 2–10 min following BCR cross-linking.

To further characterize the phospho-Btk (Y223) in terms of its association with PLC-\(\gamma2\) and Syk, cells were lysed at various times after BCR cross-linking and the lysates subjected to immunoprecipitation using phospho-Btk (Y223)-specific Abs. The immunoprecipitates were immunoblotted probing for phosphotyrosine, stripped and reprobed for Btk, PLC-\(\gamma2\) and Syk using specific antibodies (Fig. 4 C). The phospho-Btk (Y223) immunoprecipitates contained Btk, only weakly detected in immunoblot, and phospho-PLC-\(\gamma2\) and phospho-Syk. Significantly, the phospho-Btk/phospho-PLC-\(\gamma2\)/phospho-Syk complex remains assembled for longer periods of time in Cbl-b\(^{-/-}\) as compared with Cbl-b\(^{+/+}\) B cells (Fig. 4 C).

The direct effect of Cbl-b on PLC-\(\gamma2\) phosphorylation was measured. In resting B cells from both Cbl-b\(^{+/+}\) and Cbl-b\(^{-/-}\) mice there was no significant phosphorylation of PLC-\(\gamma2\) (Fig. 5, top). Upon BCR cross-linking PLC-\(\gamma2\) was phosphorylated in Cbl-b\(^{+/+}\) mice and by 15 min following BCR cross-linking the amount of phosphorylated PLC-\(\gamma2\) had decreased significantly. In Cbl-b\(^{-/-}\) B cells, PLC-\(\gamma2\) was phosphorylated upon BCR cross-linking but in contrast to the PLC-\(\gamma2\) in Cbl-b\(^{+/+}\) B cells, PLC-\(\gamma2\) was strongly phosphorylated at 15 min and a decrease in phosphorylation was not detected until 30 min after BCR cross-linking. Consistent with this observation Ca\(^{2+}\) fluxes after BCR cross-linking in Cbl-b\(^{-/-}\) B cells were more persistent as compared with those in Cbl-b\(^{+/+}\) B cells (Fig. 5, bottom). Taken together these results indicate that in the absence of Cbl-b, complexes containing phosphorylated Syk, BLNK, Btk and PLC-\(\gamma2\) persist leading to prolonged Ca\(^{2+}\) fluxes.

The Association of Vav-1 with Syk Is Prolonged in Cbl-b\(^{-/-}\) B Cells. Vav, a guanine-nucleotide exchange factor or GEF for the Rho/Rac family of GTPases, plays a central role in integrating signaling from the BCR. Vav activity is regulated, in part, by phosphorylation by Syk (30). Evidence for a role for Cbl-b in regulating the function of Vav in lymphocytes was provided by the observation that the phosphorylation of Vav-1 was increased in Cbl-b\(^{-/-}\) T cells as compared with Cbl-b\(^{+/+}\) T cells (22, 23). To investigate the effect of a Cbl-b deficiency on Vav-1 phosphorylation, Vav was immunoprecipitated from Cbl-b\(^{+/+}\) and
Cbl-b−/− B cells before and at various times after BCR cross-linking and the immunoprecipitates analyzed by immunoblot probing for phosphorytrosine. In resting B cells from both Cbl-b+/+ and Cbl-b−/− mice low levels of phosphorylated Vav-1 were detected (Fig. 6 A). BCR cross-linking resulted in the rapid phosphorylation of Vav-1 in both Cbl-b+/+ and Cbl-b−/− B cells which persisted for the 30-min course of the experiment. Densitometry analyses of the intensities of the bands in the Vav and phosphorytrosine immunobLOTS in Fig. 6 A indicated a small increase in the level of phosphorylation of Vav at the 2 and 5 min time point in Cbl-b−/− versus Cbl-b+/+ B cells, however, this increase was not completely reproducible. Significant, the association of Vav with Syk was prolonged in Cbl-b−/− B cells as compared with Cbl-b+/+ B cells. Probing immunobLOTS of Vav-1 immunoprecipitates for Syk showed larger amounts of Syk associated with Vav at early time points after BCR cross-linking that persisted for longer in Cbl-b−/− as compared with Cbl-b+/+ B cells (Fig. 6 A). Probing the immunoblot for phosphorytrosine-containing proteins indicated that the Syk associated with Vav was phosphorylated (Fig. 6 A). In addition to phosphorylated Syk, a phosphoprotein migrating at 77 kD was also more strongly associated with Vav-1 in Cbl-b−/− as compared with Cbl-b+/+ B cells. The identity of this protein is not known, however, given that Btk is phosphorylated upon BCR cross-linking (Fig. 4) and associates with phospho-Syk (Fig. 4) and based on its MW, Btk is a good candidate for this 77 kD phosphoprotein.

Syk has also been shown to play an important role in activating PI3K through phosphorylation (31). Little differences were detected in Cbl-b+/+ versus Cbl-b−/− B cells in the phosphorylation of PI3K (unpublished data) or Akt (Fig. 6 B), a downstream effector of PI3K. Thus, Cbl-b deficiencies do not appear to significantly affect the phosphorylation of proteins in the PI3-K pathway downstream of Syk.

Prolonged Phosphorylation of ERK and JNK in Cbl-b−/− B Cells. The MAP kinases, ERK and JNK, that regulate nuclear transcription events are also major downstream targets of BCR signaling cascades leading to B cell activation (4). To determine if these pathways were influenced by Cbl-b, the level of tyrosine phosphorylation of ERK 1 and 2 and JNK 1 and 2 were monitored at various times after BCR cross-linking. As compared with Cbl-b+/+ B cells, ERK was more strongly phosphorylated throughout a 20 min time course in Cbl-b−/− B cells (Fig. 7 A). Similarly, both forms of JNK were more strongly phosphorylated in Cbl-b−/− as compared to Cbl-b+/+ B cells (Fig. 7 A). Thus, the signaling pathways involving ERK and JNK appear to be regulated by Cbl-b. Consistent with the increased activation of ERK in Cbl-b−/− B cells, Cbl-b−/− B cells showed greater expression of the early activation...
The cells were treated at 37°C with a PE-conjugated B220-specific mAb to allow gating on the B cells. tom) B cells were incubated with Indo-1 for 45 min at 30°C. The immunoprecipitates were analyzed by immunoblot for phosphotyrosine-containing proteins, stripped, and reprobed for PLC-γ2. A representative result of three independent experiments is shown. (Bottom) B cells were incubated with Indo-1 for 45 min at 30°C and stained with a PE-conjugated B220-specific mAb to allow gating on the B cells. The cells were treated at 37°C with a rat mAb specific for IgM for 30 s followed by Fab' specific goat antibodies specific for rat IgG to cross-link the BCR. The cells were monitored for 512s by flow cytometry for bound (violet) and unbound (blue) Indo-1. The arrow indicates the time of addition of the secondary antibody.

Figure 5. PLC-γ2 phosphorylation and downstream Ca2+ fluxes are prolonged in activated Cbl-b−/− B cells. (Top) B cells from Cbl-b−/− and Cbl-b+/+ mice were treated to cross-link the BCR as in Fig. 1, lysed, and the lysates subjected to immunoprecipitation using PLC-γ2-specific antibodies. The immunoprecipitates were analyzed by immunoblot for phosphotyrosine-containing proteins, stripped, and reprobed for PLC-γ2. A representative result of three independent experiments is shown. (Bottom) B cells were incubated with Indo-1 for 45 min at 30°C and stained with a PE-conjugated B220-specific mAb to cross-link the BCR. The cells were monitored for 512s by flow cytometry for bound (violet) and unbound (blue) Indo-1. The arrow indicates the time of addition of the secondary antibody.

The association of phosphorylated Syk with Vav1 is prolonged in Cbl-b−/− B cells. Purified splenic B cells from Cbl-b−/− and Cbl-b+/+ mice were treated to cross-link the BCR as in Fig. 1. (A) The cells were lysed and the lysates subjected to immunoprecipitation using Vav1-specific Abs. The immunoprecipitates were analyzed by immunoblotting probing for phosphotyrosine using the mAb PY20. The blots were stripped and probed for Vav1 or Syk. (B) Alternatively, the unfractionated lysates were analyzed by immunoblot probing for phospho-Akt (S473) stripped and probed for Akt.

Figure 6. The association of phosphorylated Syk with Vav1 is prolonged in Cbl-b−/− B cells. Purified splenic B cells from Cbl-b−/− and Cbl-b+/+ mice were treated to cross-link the BCR as in Fig. 1. (A) The cells were lysed and the lysates subjected to immunoprecipitation using Vav1-specific Abs. The immunoprecipitates were analyzed by immunoblotting probing for phosphotyrosine using the mAb PY20. The blots were stripped and probed for Vav1 or Syk. (B) Alternatively, the unfractionated lysates were analyzed by immunoblot probing for phospho-Akt (S473) stripped and probed for Akt.
The number of patch, Cap I and Cap II structures formed by B cells from Cbl-b^{+/−} and Cbl-b^{−−} B cells after BCR cross-linking were counted and compared (Fig. 8 d). Similar numbers of B cells from Cbl-b^{+/−} and Cbl-b^{−−} mice formed patches with nearly all B cells showing a patched morphology immediately after BCR cross-linking which decreased with time at 37°C (Fig. 8 d, top). Significantly, Cbl-b^{−−} B cells formed Cap I structures more rapidly as compared with Cbl-b^{+/−} B cells such that after 2 min at 37°C the BCR was in Cap I structures in 62% of Cbl-b^{−−} B cells as compared with 32% of Cbl-b^{+/−} B cells (Fig. 8 d, middle). In several experiments the time course of polarization varied by 2–3 min but the accelerated rate of polarization in Cbl-b^{−−} versus Cbl-b^{+/−} was observed in each experiment. The presence of BCR in Cap I structures was sustained in B cells over the course of polarization in Cbl-b^{−−} as compared with Cbl-b^{+/−} B cells (50% versus 32%) in agreement with the observation above (Fig. 2, D and E) that the BCR remained colocalized with phospho-Syk for longer in Cbl-b^{−−} as compared with Cbl-b^{+/−} B cells. In addition, more Cbl-b^{+/−} B cells progressed to form signaling inactive Cap II structures as compared with Cbl-b^{−−} B cells (Fig. 8 d, bottom) suggesting that Cbl-b by negatively regulating the BCR signaling promoted the condensing of the BCR into signaling inactive Cap II structures.

The capping of the BCR has been shown to be dependent on the association of the BCR with the actin cytoskeleton (35). The difference observed in the rate of BCR caps was reflected in the rate of activation of CDC42 and of F-actin polymerization (Fig. 9). CDC42 is a member of the Rac family of GTPases that when activated binds to WASP which promotes actin cytoskeleton association. The level of activated CDC42 in B cells from Cbl-b^{+/−} and Cbl-b^{−−} mice at various times after BCR cross-linking was determined by permeabilizing the cells and incubating with the recombinant fusion protein WASP-GBD-GFP. The GFP signal of the recombinant protein was amplified by incubation with GFP-specific Abs detected using FITC-conjugated secondary Abs. Cbl-b^{−−} B cells showed an immediate increase in active CDC42 which decreased by 2 min and remained at an elevated level for the course of the
The Journal of Experimental Medicine

1520 Cbl-b Negatively Regulates BCR Signaling

experiment (Fig. 9 A). In contrast Cbl-b^{+/+} B cells showed no immediate rapid increase in active CDC42 but rather active CDC42 increased slowly in Cbl-b^{-/-} B cells reaching levels comparable to those in Cbl-b^{−/+} B cells by 2 min. Actin polymerization was measured after BCR cross-linking in permeabilized and fixed cells using Alexa 488-conjugated phallolidin. Cbl-b^{-/-} B cells showed slightly accelerated actin polymerization as compared with Cbl-b^{-/-}/H11001/H11001 B cells (Fig. 9 B). Consistent with these observations a small but significantly larger proportion of the BCR was found associated with the actin cytoskeleton in a high-density pellet from lysates of Cbl-b^{-/-} as compared with Cbl-b^{-/-}/H11001/H11001 B cells (unpublished data).

To directly assess the requirements for signaling and the actin cytoskeleton in the formation of patch, Cap I and Cap II structures, Cbl-b^{-/-} B cells were treated with the following inhibitors: latrunculin (LN; reference 36) or CytD; PP2, an inhibitor of Src family kinases (37); and Piceatannol (Pic), an inhibitor of Syk (38) that has also been reported to inhibit additional protein tyrosine kinases (39). As shown in Fig. 9 C, 2 min after BCR cross-linking the BCR were patched on the majority of untreated cells. Patching at 2 min after BCR cross-linking was not affected by any inhibitor indicating that patching was not dependent on Src or Syk signaling nor on an intact cytoskeleton. Patching at 2 min after BCR cross-linking was not affected by any inhibitor indicating that patching was not dependent on Src or Syk signaling nor on an intact cytoskeleton. This is despite the observation that phospho-Syk (Y519/520) colocalized with the BCR in patches (Fig. 8 b). 10 min following BCR cross-linking the BCR were observed in Cap I structures and for Syk and phospho-Syk images at 0 min for patch, 2 min for Cap I, and 30 min for Cap II structures. The images were analyzed by the LSM 5 software program to quantify the colocalization of red and green fluorescence and the data plotted in histograms. (d) Purified splenic B cells from Cbl-b^{-/-} and Cbl-b^{-/-}/H11001/H11001 mice were treated as in panel a to cross-link the BCR and cells were incubated at 37°C for increasing lengths of time. At the end of each time point the cells were fixed with 3.7% paraformaldehyde, stained with Alexa 488-conjugated streptavidin, and examined by fluorescence microscopy. The mean percentage (+/−SD) of B cells exhibiting the patch, Cap I and Cap II structures with time after warming to 37°C is given. At least 500 cells at random were counted per time point.

Figure 8. Signaling active BCR caps are prolonged in Cbl-b^{-/-} B cells. (a) Splenic B cells from Cbl-b^{-/-}/H11002/H11002 mice were incubated with a rat mAb specific for IgM at 4°C, washed and incubated with biotin-labeled goat antibodies specific for rat IgG and warmed to 37°C for increasing lengths of time. At the end of each time point the cells were fixed and incubated with Texas Red-conjugated streptavidin to detect the BCR. The cells were permeabilized and incubated with the phosphotyrosine-specific mAb PY20 detected using FITC-conjugated Fab₁ goat Abs specific for mouse IgG (b and c). Splenic B cells from Cbl-b^{-/-} mice were incubated with RRX-conjugated Fab goat Abs specific for IgM for 15 min at 25°C and the BCR was cross-linked by the addition of goat Abs specific for mouse IgG. The cells were incubated at 37°C for increasing lengths of time, permeabilized, and incubated with either rabbit phospho-Syk (Y519/520)-specific Abs (b) or with rabbit Syk-specific Abs (c) each detected using AlexaFluor 488-labeled goat Abs specific for rabbit IgG. In each case, the cells were examined by confocal laser scanning microscopy and shown are the merged images of the optimal single planes at a magnification of ×63. Shown are typical images of patch, Cap I and Cap II structures taken for phosphotyrosine images at 5 min for patch and Cap I structures and 30 min for Cap II structures and for Syk and phospho-Syk images at 0 min for patch, 2 min for Cap I, and 30 min for Cap II structures. The images were analyzed by the LSM 5 software program to quantify the colocalization of red and green fluorescence and the data plotted in histograms. (d) Purified splenic B cells from Cbl-b^{-/-} and Cbl-b^{-/-}/H11001/H11001 mice were treated as in panel a to cross-link the BCR and cells were incubated at 37°C for increasing lengths of time. At the end of each time point the cells were fixed with 3.7% paraformaldehyde, stained with Alexa 488-conjugated streptavidin, and examined by fluorescence microscopy. The mean percentage (+/−SD) of B cells exhibiting the patch, Cap I and Cap II structures with time after warming to 37°C is given. At least 500 cells at random were counted per time point.
cells treated with PP2 the number of cells with Cap I structures decreased and the number of cells with a Cap II morphology increased indicating that when Src-dependent signaling is blocked the BCR progresses to signaling inactive Cap II structures.

Discussion

Here we provide evidence that in B cells Cbl-b functions to negatively regulate BCR signaling by targeting Syk for ubiquitination. In Cbl-b-deficient B cells Syk fails to be ubiquitinated following BCR cross-linking in contrast to B cells from wild-type mice in which case BCR cross-linking leads to rapid ubiquitination of Syk. The results presented suggest that Cbl-b ubiquitinates active phosphorylated Syk and thus functions to dampen BCR signaling after signaling is initiated and thus plays a role in the normal down modulation of BCR signaling. Two additional negative regulators of BCR signaling have been described recently, namely SHIP and SHP-1. However, the targets of their regulation appear distinct from that described here for Cbl-b. SHIP, a 5’ inositol phosphatase, was first described to block BCR signaling when recruited to the low affinity Fc receptor, FcγRIIB, after the coligation of the BCR and FcγRIIB by the binding of immune complexes (40). SHIP dephosphorylates PIP(3,4,5)P3, the phospholipid product of PI3K activity, to PI(3,4)P2. Recently, SHIP-deficient B cells were shown to have elevated levels of PI(3,4,5)P3 (11) increased recruitment of Btk to the plasma membrane (12) and enhanced Ca^2+ signaling (13). However, ERK activation appeared unaffected in SHIP-deficient cells (13). In contrast, Cbl-b does not appear to effect PI3K activity or PI3K-downstream effectors but does influence ERK activity. SHP-1, a tyrosine phosphatase, was recently shown to down-regulate the activation of Lyn and Lyn-induced tyrosine phosphorylation of the CD19 receptor in B cells resulting in reduced B cell activation (14). As shown here, Cbl-b does not appear to affect Lyn activity. Thus, these three negative regulators of BCR signaling appear to target different elements of the BCR signaling pathways leading to down modulation of B cell responses. It will be of interest to understand the mechanisms which trigger the activity of these regulators and how their activities are coordinated.

Lymphocytes express both c-Cbl and Cbl-b. In T cells Cbl-b and c-Cbl appear to function at different stages of development and to target different substrates for ubiquitination. c-Cbl has been reported to target Syk for ubiquitination in human Ramos B cells upon BCR cross-linking and in this way to function as a negative regulator of B cell activation (17). Thus, Cbl-b and c-Cbl may have somewhat redundant functions in regulating mature B cell activation through the ubiquitination of Syk. However, recent studies suggest that Cbl-b and c-Cbl may function differently and regulate different targets in developing versus mature B cells. In immature DT40 chicken B cells evidence was provided that c-Cbl negatively regulates BCR signaling through its affect on the essential adaptot protein BLNK resulting in a block in the recruitment of PLC-γ2 to BLNK and PLC-γ2 phosphorylation (41). In contrast, Cbl-b was shown to positively regulate Btk-mediated activation of PLC-γ2 in immature DT40 B cells (24). Evidence was also provided that Cbl-b functioned similarly in
Cbl-b also appeared to influence the formation of stable, signaling active BCR caps after BCR cross-linking. In T cells the polarization of the TCR after ligation and the formation of the supramolecular activation complex and the immunological synapse appear to be crucial prerequisites for T cell activation (44). Evidence has been provided that Cbl-b influences this process by negatively regulating the coupling of the TCR to Vav-1 and downstream CDC42 and WASP, leading to actin cytoskeleton-dependent TCR clustering (45). In B cells, the BCR has been shown to polarize after cross-linking into structures that concentrate Syk, Vav, Btk, and Rac and thus appear analogous to the T cell immunological synapses (46). Here we show that in B cells from Cbl-b–deficient mice as compared with wild-type B cells the BCR remains in a signaling active Cap I structure for longer periods of time and less BCR is found condensed in signaling inactive Cap II structures. Although the functional significance of the Cap II structures is not known, it is possible that they represent preendocytic structures involved in the removal of signaling inactive BCR from the surface. However, although Cap II structures often appear near intracellular vesicles that contain internalized BCR we show here that the intracellular BCR is associated with Syk while the Cap II BCR is not. Earlier studies showed that internalization of the BCR is dependent on BCR signaling although the exact nature of the signals required is not known. The studies presented here suggest that BCRs may be internalized from active Cap I structures as a part of normal down modulation of the response. As receptors are internalized and signaling dampened the BCRs remaining on the surface may condense into Cap II structures which are then internalized and degraded.

In summary, the studies presented here provide evidence that Cbl-b negatively regulates Syk through ubiquitination. Thus, Cbl-b has the potential to block BCR signaling at an early step effectivly uncoupling the BCR from many downstream signaling pathways. Consequently, it will be of significant interest to determine the factors that induce and regulate Cbl-b activity.

The authors are grateful to Dr. Michael Rosen (University of Texas Southwestern Medical Center) for graciously providing the WASP-GBD-GFP fusion protein for analysis of CDC42 activation and to Dr. Tian Jin for his invaluable guidance in obtaining the confocal images shown here.

Submitted: 24 September 2002
Revised: 2 April 2003
Accepted: 7 April 2003

References

1. Reth, M., and J. Wienands. 1997. Initiation and processing of signals from the B cell antigen receptor. Annu. Rev. Immunol. 15:453–479.

2. Cambier, J.C. 1995. Antigen and Fc receptor signaling. The awesome power of the immunoreceptor tyrosine–based activation motif (ITAM). J. Immunol. 155:3281–3285.
3. Pleiman, C.M., D. D’Ambrosia, and J.C. Cambier. 1994. The B-cell antigen receptor complex: structure and signal transduction. *Immunol. Today.* 15:393–399.
4. Campbell, K.S. 1999. Signal transduction from the B cell antigen-receptor. *Curr. Opin. Immunol.* 11:256–264.
5. DeFranco, A.L. 1997. The complexity of signaling pathways activated by the BCR. *Curr. Opin. Immunol.* 9:296–308.
6. Fruman, D.A., A.B. Satterthwaite, and O.N. Witte. 2000. Xid-like phenotypes: a B cell signalosome takes shape. *Immunity.* 13:1–3.
7. Kurosaki, T. 2002. Regulation of B-cell signal transduction by adaptor proteins. *Nat. Rev. Immunol.* 2:254–363.
8. Cheng, A.M., B. Rowley, W. Pao, A. Hayday, J.B. Bolen, and T. Pawson. 1995. Syk tyrosine kinase required for mouse viability and B-cell development. *Nature.* 378:303–306.
9. Turner, M., P.J. Mee, P.S. Costello, O. Williams, A.A. Price, L.P. Duddy, M.T. Furlong, R.L. Gehlen, and V.L.J. Tybulewicz. 1995. Perinatal lethality and blocked B-cell development in mice lacking the tyrosine kinase Syk. *Nature.* 378:298–302.
10. Takada, S., Y. Ueda, N. Suzuki, Y. Murakawa, T. Hoshino, I. Green, A.D. Steinberg, D.A. Horwitz, and T. Sakane. 1985. Abnormalities in autologous mixed lymphocyte reaction-activated immunologic processes in systemic lupus erythematosus and their possible correction by interleukin 2. *Eur. J. Immunol.* 15:262–267.
11. Brauwasser, A., I. Tamir, J. Dal Porto, R.J. Benschop, C.D. Helgason, R.K. Humphries, J.H. Freed, and J.C. Cambier. 2000. Differential regulation of B cell development, activation, and death by the Src homology 2 domain-containing 5’ inositol phosphatase (SHIP). *J. Exp. Med.* 191:1545–1554.
12. Bolland, S., R.N. Pearse, T. Kurosaki, and J.V. Ravetch. 1998. SHIP modulates immune receptor responses by regulating membrane association of Btk. *Immunity.* 8:509–516.
13. Okada, H., S. Bolland, A. Hashimoto, M. Kurosaki, Y. Kabuyma, M. Iino, J.V. Ravetch, and T. Kurosaki. 1998. Role of the inositol phosphatase SHIP in B cell receptor-induced Ca2+ oscillatory response. *J. Immunol.* 161:5129–5132.
14. Somani, A.-K., K. Yuen, F. Xu, J. Zhang, D.R. Branch, and K.A. Siminovitch. 2001. The SH2 domain containing tyrosine phosphatase-1 down-regulates activation of Lyn and Lyn-induced tyrosine phosphorylation of the CD19 receptor in B cells. *J. Biol. Chem.* 276:1938–1944.
15. Liu, Y.-C., and H. Gu. 2002. Cbl and Cbl-b in T-cell activation. *Immunity.* 15:249–259.
16. Song, W., H. Cho, P. Cheng, and S.K. Pierce. 1995. Entry of the B-cell antigen receptor and antigen into the class II peptide-loading compartment is independent of receptor cross-linking. *J. Immunol.* 155:4255–4263.
17. Cheng, P.C., M.L. Dykstra, K.N. Mitchell, and S.K. Pierce. 1999. A role for lipid rafts in BCR signaling and antigen targeting. *J. Exp. Med.* 190:1549–1560.
18. Zhang, J., M.L. Billingsley, R.L. Kincaid, and R.P. Siragynian. 2000. Phosphorylation of Syk activation loop tyrosines is essential for Syk function. An in vivo study using a specific anti-Syk activation loop phosphotyrosine antibody. *J. Biol. Chem.* 275:35442–35447.
19. Chiu, C.W., M. Dalton, M. Ishiai, T. Kurosaki, and A.C. Chan. 2002. BLNK: molecular scaffolding through ‘cis’-mediated organization of signaling proteins. *EMBO J.* 21:6461–6472.
20. Bustelo, X.R. 2000. Regulator and signaling properties of the Vav family. *Nat. Cell. Biol.* 2:1461–1477.
21. Farber, L.O., C.M. Labno, G. Bosco, A. Seth, M.H.K. McGavin, K.A. Siminovitch, M.K. Rosen, and J.K. Burkhardt. 2001. WASP recruitment to the T cell:APC contact site occurs independently of CDC42 activation. *Immunity.* 15:249–259.
22. Song, W., H. Cho, P. Cheng, and S.K. Pierce. 1995. Entry of the B-cell antigen receptor and antigen into the class II peptide-loading compartment is independent of receptor cross-linking. *J. Immunol.* 155:4255–4263.
23. Cheng, P.C., M.L. Dykstra, K.N. Mitchell, and S.K. Pierce. 1999. A role for lipid rafts in BCR signaling and antigen targeting. *J. Exp. Med.* 190:1549–1560.
24. Zhang, J., M.L. Billingsley, R.L. Kincaid, and R.P. Siraganian. 2000. Phosphorylation of Syk activation loop tyrosines is essential for Syk function. An in vivo study using a specific anti-Syk activation loop phosphotyrosine antibody. *J. Biol. Chem.* 275:35442–35447.
25. Chiu, C.W., M. Dalton, M. Ishiai, T. Kurosaki, and A.C. Chan. 2002. BLNK: molecular scaffolding through ‘cis’-mediated organization of signaling proteins. *EMBO J.* 21:6461–6472.
26. Bustelo, X.R. 2000. Regulator and signaling properties of the Vav family. *Nat. Cell. Biol.* 2:1461–1477.
27. Beitz, L.O., D.A. Fruman, T. Kurosaki, L.C. Cantley, and A.M. Scharenberg. 1999. Syk is upstream of phosphoinositide 3-kinase in B cell receptor signaling. *J. Biol. Chem.* 274:32662–32666.
28. Richards, J.D., S.H. Dave, C.H. Chou, A.A. Mamchak, and A.L. DeFranco. 2001. Inhibition of the MEK/ERK signaling pathway blocks a subset of B cell responses to antigen. *J. Immunol.* 166:3855–3864.
29. Graziaidei, L., K. Riabowol, and D. Bar-Sagi. 1990. Co-capping of ras proteins with surface immunoglobulin. *Nature.* 347:396–400.
30. Ma, H., T.M. Yankee, J. Hu, D.J. Asai, M.L. Harrison, and R.L. Geahlen. 2000. Visualization of Syk-antigen receptor interactions using green fluorescent protein: differential roles for Syk and Lyn in the regulation of receptor capping and internalization. *J. Immunol.* 166:1507–1516.
31. dePetris, S., and M.C. Raff. 1973. Normal distribution, patching and capping of lymphocyte surface immunoglobulin studied by electron microscopy. *Nat. New Biol.* 241:257–259.
required for the trafficking of the B cell antigen receptor to the late endosomes. *Traffic.* 2:414–427.
37. Hanke, J.H., J.P. Gardner, R.I. Dow, P.S. Changelian, W.H. Brissette, E.J. Weringer, B.A. Pollok, and P.A. Connolley. 1996. Discovery of a novel, potent and Src family-selective tyrosine kinase inhibitor. *J. Biol. Chem.* 271:695–701.
38. Peters, J.D., M.T. Furlong, D.J. Asai, M.L. Harrison, and R.L. Geahlen. 1996. Syk, activated by cross-linking the B–cell antigen receptor, localizes to the cytosol where it interacts with and phosphorylates α-Tubulin on Tyrosine. *J. Biol. Chem.* 271:4755–4762.
39. Law, D.A., L. Nannizzi-Alaimo, K. Ministri, P.E. Hughes, J. Forsyth, M. Turner, S.J. Shattil, M.H. Ginsberg, V.L.J. Tubulewicz, and D.R. Phillips. 1999. Genetic and pharmacological analyses of Syk function in αIIbb3 signaling in platelets. *Blood.* 93:2645–2652.
40. Ono, M., S. Bolland, P. Tempst, and J.V. Ravetch. 1996. Role of the inositol phosphatase SHIP in negative regulation of the immune system by the receptor FcgammaRIIB. *Nature.* 383:263–266.
41. Yasuda, T., A. Maeda, T. Kurosaki, K. Tezuka, T. Hironaka, T. Yamamoto, and T. Kurosaki. 2000. Cbl suppresses B cell receptor-mediated phospholipase C (PLC)-γ2 activation by regulating B cell linker protein–PLC-γ2 binding. *J. Exp. Med.* 191:641–650.
42. Weissman, A.M. 2001. Themes and variations on ubiquitylation. *Nat. Rev. Mol. Cell Biol.* 2:169–178.
43. Yankee, T.M., L.M. Keshvara, S. Sawasdkosol, M.L. Harrison, and R.L. Geahlen. 1999. Inhibition of signaling through the B cell antigen receptor by the protooncogene product, c-Cbl, require Syk tyrosine 317 and c-Cbl phosphotyrosine-binding domain. *J. Immunol.* 163:5827–5835.
44. Krawczyk, C., and J.M. Penninger. 2001. Molecular controls of antigen receptor clustering and autoimmunity. *Trends Cell Biol.* 11:212–220.
45. Krawczyk, C., K. Bachamier, T. Sasaki, R.G. Jones, S.B. Snapper, D. Bouchard, I. Kozieradzki, P.S. Ohashi, F.W. Alt, and J.M. Penninger. 2000. Cbl-b is a negative regulator of receptor clustering and raft aggregation in T cells. *Immunity.* 13:463–473.
46. Phee, H., W. Rodgers, and K.M. Coggeshall. 2001. Visualization of negative signaling in B cells by quantitative confocal microscopy. *Mol. Cell. Biol.* 21:8615–8625.