Optimization models of agricultural production with heterogeneous land resources

Ya Ivanyo, S Petrova and M Polkovskaya
Irkutsk State Agricultural University named after A.A. Ezhevsky, Molodezhny,
Irkutsk district, Irkutsk region, 664038, Russia
E-mail: polk_mn@mail.ru

Abstract. The paper identifies information that takes into account the heterogeneity of agricultural land on the basis of the use of a precision farming system and geographic information technologies. The tasks of optimizing the production of agricultural products are formulated, describing the heterogeneity of land resources, for averaged and extreme weather and climatic conditions. These models are implemented for an agricultural enterprise in the Irkutsk region. Two variants of the problem are considered: with deterministic and stochastic parameters. As a random variable, the problem uses the crop yield corresponding to the probability of a drought that occurred in the region in 2015. According to the calculations, the use of various technologies of precision farming, taking into account the heterogeneity of arable land, makes it possible to increase the income of the enterprise, reducing the dispersion of the coefficients included in the optimization model agricultural production. At the same time, it is possible to reduce the risks associated with extreme hydrometeorological events, in particular, with drought.

1. Introduction

The digital transformation of agricultural production is aimed at increasing crop yields and animal productivity, reducing costs and obtaining better products and is based on the introduction of various technologies: IoT, sensors, UAVs (unmanned aerial vehicles), GPS and GLONASS, automated systems, etc. [1-6]. The use of various sensors is an important element of precision farming technology. At the same time, sensors designed to control and monitor the operating mode of engines and agricultural machines have long been referred to the standards of modern agricultural machinery, and sensors for the control and monitoring of technological parameters are still little used in practice [7]. At the same time, information on production and natural resources is an important component in planning agricultural production, since it allows a detailed assessment of the possibilities of arable land, characterized by heterogeneity in fertility, mechanical, chemical and biological composition, moisture capacity and other indicators [8, 9].

The use of precision farming technologies ensures the achievement of a number of positive effects, including: 1) cost reduction due to the rational use of equipment (increased working speed, longer use of equipment, the ability to work at night); 2) effective management of crops, higher quality of agrotechnological techniques, strict compliance with agrotechnical deadlines; 3) improving and stabilizing the crop and its quality; 4) improving the environmental safety of agricultural production; 5) the possibility of implementing new innovative technological approaches; 6) the implementation of the concept of sustainable development of agriculture.
The elements of precision farming that find practical application include the following:
1) determination of field boundaries using a global positioning system; 2) remote sensing (aerial or satellite photography); 3) systems for parallel driving of aggregates; 4) local sampling in the coordinate system; 5) mapping of soil electrical conductivity; 6) mapping of yield; 7) differentiated application of fertilizers, lime, plant protection products; 8) differentiated mechanical tillage; 9) differentiated sowing; 10) differentiated application of nitrogen and growth regulators; 11) monitoring of the phytosanitary condition of crops (weeds, diseases, pests); 12) monitoring of yield using the global positioning system; 13) monitoring of crop quality.

The increase in data flows in agricultural production and the development of modern technologies have contributed to the creation of a new concept of agricultural activity, called “smart agriculture”. To substantiate the possibility of digital transformation of agriculture with the use of modern world and domestic IT technologies by the staff of the Department of Informatics and Mathematical Modeling of the Irkutsk State Agricultural University by order of the Ministry of Agriculture of the region, the concept of digitalization of agriculture in the Irkutsk region was developed.

In continuation of research on this project, models were created for planning the production of agricultural products in conditions of heterogeneity of land resources, data on which are received from sensors of technological operations.

The purpose of the article is to describe the results of creating models for optimizing the production of agricultural products, taking into account the heterogeneity of land resources, data on which can be obtained using sensors of technological operations.

The research tasks included:
- determination of the information necessary to take into account the heterogeneity of fields based on the use of a precision farming system and geoinformation technologies;
- formulation and implementation of the task of optimizing the production of agricultural products, taking into account the heterogeneity of land resources for averaged and extreme weather and climatic conditions.

2. Materials and methods
As the initial data, the paper uses information on meteorological indicators for 1971-2018; statistical data on crop yields in the Irkutsk region for 1996-2019. When solving the problem of mathematical programming, data on production and economic indicators from the accounting reports of LLC “Irkutsk seeds” were used.

The calculations used probabilistic methods for estimating rare events and methods for solving linear programming problems.

3. Results and discussion
For qualitative analysis and processing of arrays of long-term data on the parameters used in precision agriculture, it is necessary to use Big Data technologies [7]. According to the conceptual scheme given in [7], agricultural producers accumulate information in databases that display current business processes. Data on the results of the activities of enterprises of the agro-industrial complex (balance sheets and other reports) are consolidated in the ministries of agriculture of the regions, and in the future can be used for production planning based on mathematical programming problems [10, 11]. The paper [8] presents a model of irrigation optimization taking into account the risk in conditions of uncertainty. The study [12] is devoted to the problem of the placement of agricultural crops taking into account irrigation. In addition, an important task in planning the production of agricultural products is the use of forecasts of humidity and temperature [13]. A multicriteria optimization model for solving the problem of using polluted waters according to ecological and economic criteria is considered in [14].

When planning agricultural production, an important task is to take into account the heterogeneity of land resources, since data on the state of fields or plots can reduce costs and, accordingly, increase profits. In this case, the information received from the sensors is used.

The target function of the model is focused on getting the maximum income:
\[f = \sum_{k \in K} \sum_{j \in J} \sum_{i \in I} c_{ijk} x_{ijk} \rightarrow \text{max}, \]

where \(c_{ijk} \) is the cost of a unit of production \(j \) from section \(k \) of field \(i \) (thousand rubles /ton); \(x_{ijk} \) are the volumes of the received product \(j \) from the section \(k \) of the field \(i \) (tons).

Restrictions associated with the area of cultivation of agricultural crops, the volume of the resulting product, labor costs, costs of fertilizers and means of protection and cost of production:

\[\sum_{k \in K} \sum_{i \in I} x_{ijk} \leq S_j, \]

(2)

\[\sum_{k \in K} \sum_{i \in I} x_{ijk} \geq V_j, \]

(3)

\[\sum_{k \in K} k_{ijk} x_{ijk} \leq K_j, \]

(4)

\[\sum_{k \in K} w_{mijk} x_{ijk} \leq W_{mi}, \]

(5)

\[\sum_{k \in K} \sum_{j \in J} d_{ijk} x_{ijk} \leq D, \]

(6)

\[x_{ijk} \geq 0, \]

(7)

where \(y_{ijk} \) is the bioproductivity of agricultural crop \(j \) on site \(k \) of field \(i \) (metric tons/ha); \(S_j \) is the area of agricultural crops \(j \); \(V_j \) is the guaranteed volume of production of culture products \(j \); \(k_{ijk} \) are the labor costs to obtain a unit of production \(j \) in the site \(k \) of field \(i \) (thousand man-hours/metric ton); \(K_j \) is the limitation of labor costs (thousand man-hours/metric ton) for the production of culture \(j \); \(w_{mijk} \) is the consumption of fertilizer \(m \) (plant protection products) on the site \(k \) of the field \(i \) of the crop \(j \) (metric tons/ha); \(W_{mi} \) is the presence of fertilizer of the type \(m \) for the field \(i \); \(d_{ij} \) is the reduced costs for obtaining products \(j \) at site \(k \) of field \(i \) (dollar/metric ton); \(D \) is the total allowable production costs (US$ million).

Since agricultural production is influenced by natural and climatic parameters, it is necessary to assess the risks of crop loss. Satellite images can be used to predict extreme natural phenomena [15]. Usually climatic and biological events are probabilistic values [8, 11], therefore, as an optimization model, you can use the linear stochastic programming problem, which is written in the form:

\[f = \sum_{k \in K} \sum_{j \in J} \sum_{i \in I} (c_{ijk} + c_{ijk}^p) x_{ijk} \rightarrow \text{max}, \]

(8)

\[\sum_{k \in K} \sum_{i \in I} \frac{x_{ijk}}{y_{ijk} - y_{ijk}^p} \leq S_j, \]

(9)

\[\sum_{k \in K} \sum_{i \in I} x_{ijk} \geq V_j - V_j^p, \]

(10)

\[\sum_{k \in K} (k_{ijk} + k_{ijk}^p) x_{ijk} \leq K_j, \]

(11)

\[\sum_{k \in K} \sum_{j \in J} (w_{mijk} + w_{mijk}^p) x_{ijk} \leq W_{mi}, \]

(12)

\[\sum_{k \in K} \sum_{i \in I} \sum_{j \in J} (d_{ijk} + d_{ijk}^p) x_{ijk} \leq D, \]

(13)
In this model c_{ijk}^c is the additional cost of production due to crop losses; y_{ijk}^p is an indicator of a decrease in crop yields associated with the influence of climatic and biological events, corresponding to a certain probability p; V_j^p is the loss of production; k_{ijk}^p are labor resources for performing additional technological operations w_{ijk}^p are additional costs of fertilizers and plant protection products; d_{ijk}^p are additional production costs, p is the probability of the event, determined by the law of probability distribution.

The above optimization models were tested at the agricultural enterprise LLC “Irkutsk seeds” using the methods of simulation. At the same time, the yields in the first task were determined depending on the properties of the field and the quality of agrotechnological operations, such as fertilization, pest and weed control (Table 1).

Table 1. Crop yields used in solving the linear programming problem.

A variant of solving the linear programming problem	Yield, metric tons/ha
Wheat, ha (Field 1)	Wheat, ha (Field 2)
Wheat, ha (Field 3)	Oats, ha (Field 1)
Oats, ha (Field 2)	Barley, ha (Field 1)
Barley, ha (Field 2)	
The condition of heterogeneity of land resources	
Lower rating	1.7
Median	1.2
Upper rating	1.9
Probabilistic estimates of indicators	1.11
Risk accounting (drought, similar to 2015)	1.22
	0.999
	0.968
	0.792
	0.737
	0.603

The values of grain yield for the second problem were modelled using the laws of probability distribution (Table 2). The normal law, the Pearson type III distribution, and the three-parameter gamma distribution were used [16, 17]. The table shows the yield values in the dry year 2015 according to the data of the Irkutsk district, as well as the coefficients of variation C_v and asymmetry C_s. On the basis of the distribution laws, the probabilities p of the occurrence of events in the form of low yields caused by drought are determined.

Table 2. Data on the bio-productivity of agricultural crops in the Irkutsk region in 2015 (severe drought).

Culture	Yield, metric tons/ha	C_v	C_s	Probability, p	The law of probability distribution
Wheat	1.11	0.20	0.0	0.0440	Normal
Barley	0.67	0.24	-0.24	0.0104	Three-parameter gamma distribution
Oats	0.88	0.21	-1.0	0.0340	Pearson Type III

Table 3 shows the results of modeling according to models (1)-(7) and (8)-(14). On the basis of the obtained optimal solutions within the framework of the lower and upper estimates of the yield of grain crops, the values of the objective function between the best and worst financial indicators fluctuate at the level of 13.0%. Compared with the results of solving the problem, in which land resources were considered as a homogeneous area, the range of optimal solutions obtained is lower.

It can be noted that the production of annual grasses for silage and green fodder (x_4, x_5) is not a priority for the farm, changing insignificantly. Therefore, the production volumes of these products are stable. The situation is similar for the production of annual grass seeds (x_6).
Table 3. Results of solving the linear programming problem.

A variant of solving the linear programming problem	Optimal plan, metric tons											
Wheat (field 1)	Wheat (field 2)	Wheat (field 3)	Oats (field 1)	Oats (field 2)	Barley (field 1)	Barley (field 2)	Annual grasses for silage	Annual herbs for green food	Area for seeds for annual grasses per silo	Target function, US$ million		
X_{11}	X_{12}	X_{13}	X_{21}	X_{22}	X_{31}	X_{32}	X_4	X_5	X_6			
Lower rating												1.958
170	13220	120	220	100	210	150	7200	16200	300			
Median												2.116
120	383	100	14748	230	120	150	7200	16200	300			
Upper rating												2.233
190	260	160	220	15562	200	180	7200	16200	300			
Probabilistic estimates of indicators												1.077
111	6780	100	241	79	120	60	7200	16200	300			

The condition of heterogeneity of land resources

- Lower rating: 170, 13220, 120, 220, 100, 210, 150, 7200, 16200, 300, 1.958
- Median: 120, 383, 100, 14748, 230, 120, 150, 7200, 16200, 300, 2.116
- Upper rating: 190, 260, 160, 220, 15562, 200, 180, 7200, 16200, 300, 2.233

Risk accounting (drought, similar to 2015)

- Lower rating: 111, 6780, 100, 241, 79, 120, 60, 7200, 16200, 300, 1.077

As for the simulation results under drought conditions like 2015, there is a strong discrepancy between the values of the optimality criterion between the median value and the value obtained for extreme conditions. It was 49%.

The planning of agricultural production, taking into account the risks associated with the impact on the yield of unfavourable climatic parameters, in particular, drought, allows the correct allocation of the resources of the economy.

4. Conclusions

The paper defines a scheme for obtaining data from technological operations, which allows to form information support for optimizing the production of agricultural products on heterogeneous agricultural lands. Two models are proposed for solving management problems - with and without taking into account the risks caused by climatic events.

The task of optimizing the production of agricultural products in the conditions of heterogeneity of land resources is implemented on the example of an agricultural enterprise in the Irkutsk region. Comparison of the simulation results for generating income in conditions of homogeneity and heterogeneity of fields shows the advantages of the second models, which allow reducing the uncertainty of the model indicators.

References

[1] Reznik T et al 2021 Towards the development and verification of a 3d-based advanced optimized farm machinery trajectory algorithm (Sensors vol 21 ed 91)
[2] Goel R K, Yadav C S, Vishnoi S and Rastogi R 2021 Smart agriculture – Urgent need of the day in developing countries (Sustainable Computing: Informatics and Systems vol 30)
[3] Sparrow R, Howard M 2021 Robots in agriculture: prospects, impacts, ethics, and policy (Precision Agriculture vol 22 ed 3) pp 818-833
[4] Liu Y, Ma X, Shu L, Hancke G P and Abu-Mahfouz A M 2021 From Industry 4.0 to Agriculture 4.0: Current Status, Enabling Technologies, and Research Challenges (IEEE Transactions on Industrial Informatics vol 17 ed 6) pp 4322-4334
[5] Li F, Li D, Elsayed S, Hu Y and Schmidhalter U 2021 Using optimized three-band spectral indices to assess canopy N uptake in corn and wheat (European Journal of Agronomy vol 127)
[6] Cao W, Qiao Z, Gao Z, Lu S and Tian F 2021 Use of unmanned aerial vehicle imagery and a hybrid algorithm combining a watershed algorithm and adaptive threshold segmentation to extract wheat lodging (Physics and Chemistry of the Earth vol 123)

[7] Ivanyo Y, Bendik N and Asalkhanov P 2020 Big Data in Solving Applied Problems of Agricultural Producers and Procurers of Wild Food Resources (International Multi-Conference on Industrial Engineering and Modern Technologies)

[8] Zhang C, Li X, Guo P and Huo Z 2021 Balancing irrigation planning and risk preference for sustainable irrigated agriculture: A fuzzy credibility-based optimization model with the Hurwicz criterion under uncertainty (Agricultural Water Management vol 2541)

[9] Huttunen I, Hyytiainen K, Huttunen M, Sihvonen M, Veijalainen N, Korppoo M and Heiskanen A-S 2021 Agricultural nutrient loading under alternative climate, societal and manure recycling scenarios (Science of the Total Environment vol 78320)

[10] Ivanyo Y, Petrova S, Barsukova M and Gombo G 2020 Models of optimization of combination of production of agrarian products and harvesting of food and wild resources. (E3S Web of Conferences. International Scientific and Practical Conference “Development of the Agro-Industrial Complex in the Context of Robotization and Digitalization of Production in Russia and Abroad” volume 222)

[11] Ivanyo Y, Petrova S and Polkovskaya M 2020 Mathematical and information support of the program complex for planning of the harvesting of wild-growing products (Journal of Physics: Conference Series vol 1611(1))

[12] Luo B, Liu X, Zhang F and Guo P. 2021 Optimal management of cultivated land coupling remote sensing-based expected irrigation water forecasting (Journal of Cleaner Production vol 30825)

[13] Velandia J B, Quintana J S C and Ayala S C V 2021 Environment humidity and temperature prediction in agriculture using Mamdani inference systems (2021) International Journal of Electrical and Computer Engineering vol 11 ed. 4) pp 3502 - 3509

[14] Mirzaee M, Safavi H R, Taheriyoun M and Rezaei F 2021 Multi-objective optimization for optimal extraction of groundwater from a nitrate-contaminated aquifer considering economic-environmental issues: A case study (Journal of Contaminant Hydrology vol 241)

[15] Tsonis A A and Georgakakos K 2005 Observing extreme events in incomplete state spaces with application to rainfall estimation from satellite images (Nonlinear Processes in Geophysics vol 12) pp 195–200

[16] Singh V P 1998 Entropy-Based Parameter Estimation in Hydrology. Part of the Water Science and Technology Library book series (WSTL, vol 30 Springer Science+Business Media B.V.) p 368

[17] Korobkina E and Bolgov M 2013 Applying the Log Pearson type 3 distribution for modeling annual inflow to the closed lake. Conference: Water & Environmental Dynamics (6th International Conference on Water Resources and Environmental Research Proceedings At: Koblenz, Germany) pp 286-297