On Maximal Chains of Systems of Word Equations*

Juhani Karhumäki and Aleksi Saarela
Department of Mathematics and Statistics
University of Turku, 20014 Turku, Finland

Originally published in 2011
Note added in 2015

Abstract

We consider systems of word equations and their solution sets. We discuss some fascinating properties of those, namely the size of a maximal independent set of word equations, and proper chains of solution sets of those. We recall the basic results, extend some known results and formulate several fundamental problems of the topic.

Keywords: word equations, independent systems, solution chains

1 Introduction

Theory of word equations is a fundamental part of combinatorics on words. It is a challenging topic of its own which has a number of connections and applications, e.g., in pattern unification and group representations. There have also been several fundamental achievements in the theory over the last few decades.

Decidability of the existence of a solution of a given word equation is one fundamental result due to Makanin [16]. This is in contrast to the same problem on Diophantine equations, which is undecidable [17]. Although the complexity of the above satisfiability problem for word equations is not known, a nontrivial upper bound has been proved: it is in PSPACE [19].

Another fundamental property of word equations is the so-called Ehrenfeucht compactness property. It guarantees that any system of word equations is equivalent to some of its finite subsystems. The proofs (see [1] and [6]) are based on a transformation of word equations into Diophantine equations and then an application of Hilbert’s basis theorem. Although we have this finiteness property, we do not know any upper bound, if it exists, for the size of an equivalent subsystem in terms of the number of unknowns. And this holds even in the case of three unknown systems of equations. In free monoids an equivalent formulation of the compactness property is that each independent system of word equations is finite, independent meaning that the system is not equivalent to any of its proper subsystems. We analyze in this paper the size of the maximal independent systems of word equations.

*Supported by the Academy of Finland under grant 121419
As a related problem we define the notion of decreasing chains of word equations. Intuitively, this asks how long chains of word equations exist such that the set of solutions always properly diminishes when a new element of the chain is taken into the system. Or more intuitively, how many proper constraints we can define such that each constraint reduces the set of words satisfying these constraints. It is essentially the above compactness property which guarantees that these chains are finite.

Another fundamental property of word equations is the result of Hmelevskii [10] stating that for each word equation with three unknowns its solution set is finitely parameterizable. This result is not directly related to our considerations, but its intrigue gives, we believe, a strong explanation and support to our view that our open problems, even the simplest looking ones, are not trivial. Hmelevskii’s argumentation is simplified in the extended abstract [14], and used in [20] to show that the satisfiability problem for three unknown equations is in NP. A full version of these two conference articles has been submitted [15].

The goal of this note is to analyze the above maximal independent systems of equations and maximal decreasing chains of word equations, as well as search for their relations. An essential part is to propose open problems on this area. The most fundamental problem asks whether the maximal independent system of word equations with \(n \) unknowns is bounded by some function of \(n \). Amazingly, the same problem is open for three unknown equations, although we do not know larger than three equation systems in this case.

2 Systems and Chains of Word Equations

The topics of this paper are independent systems and chains of equations in semigroups. We are mostly interested in free monoids; in this case the equations are constant-free word equations. We present some questions about the sizes of such systems and chains, state existing results, give some new ones, and list open problems.

Let \(S \) be a semigroup and \(\Xi \) be an alphabet of variables. We consider equations \(U = V \), where \(U, V \in \Xi^+ \). A morphism \(h: \Xi^+ \to S \) is a solution of this equation if \(h(U) = h(V) \). (If \(S \) is a monoid, we can use \(\Xi^* \) instead of \(\Xi^+ \).

A system of equations is independent if it is not equivalent to any of its proper subsystems. In other words, equations \(E_i \) form an independent system of equations if for every \(i \) there is a morphism \(h_i \) which is not a solution of \(E_i \) but which is a solution of all the other equations. This definition works for both finite and infinite systems of equations.

We define decreasing chains of equations. A finite sequence of equations \(E_1, \ldots, E_m \) is a decreasing chain if for every \(i \in \{0, \ldots, m - 1\} \) the system \(E_1, \ldots, E_i \) is inequivalent to the system \(E_1, \ldots, E_{i+1} \). An infinite sequence of equations \(E_1, E_2, \ldots \) is a decreasing chain if for every \(i \geq 0 \) the system \(E_1, \ldots, E_i \) is inequivalent to the system \(E_1, \ldots, E_{i+1} \).

Similarly we define increasing chains of equations. A sequence of equations \(E_1, \ldots, E_m \) is an increasing chain if for every \(i \in \{1, \ldots, m\} \) the system \(E_i, \ldots, E_m \)
is inequivalent to the system E_{i+1}, \ldots, E_m. An infinite sequence of equations E_1, E_2, \ldots is an increasing chain if for every $i \geq 1$ the system E_i, E_{i+1}, \ldots is inequivalent to the system E_{i+1}, E_{i+2}, \ldots.

Now E_1, \ldots, E_m is an increasing chain if and only if E_m, \ldots, E_1 is a decreasing chain. However, for infinite chains these concepts are essentially different. Note that a chain can be both decreasing and increasing, for example, if the equations form an independent system.

We will consider the maximal sizes of independent systems of equations and chains of equations. If the number of unknowns is n, then the maximal size of an independent system is denoted by $\text{IS}(n)$. We use two special symbols ub and ∞ for the infinite cases: if there are infinite independent systems, then $\text{IS}(n) = \infty$, and if there are only finite but unboundedly large independent systems, then $\text{IS}(n) = \text{ub}$. We extend the order relation of numbers to these symbols: $k < \text{ub} < \infty$ for every integer k. Similarly the maximal size of a decreasing chain is denoted by $\text{DC}(n)$, and the maximal size of an increasing chain by $\text{IC}(n)$.

Often we are interested in the finiteness of $\text{DC}(n)$, or its asymptotic behaviour when n grows. However, if we are interested in the exact value of $\text{DC}(n)$, then some technical remarks about the definition are in order. First, the case $i = 0$ means that there is a solution which is not a solution of the first equation E_1; that is, E_1 cannot be a trivial equation like $U = U$. If this condition was removed, then we could always add a trivial equation in the beginning, and $\text{DC}(n)$ would be increased by one. Second, we could add the requirement that there must be a solution which is a solution of all the equations E_1, \ldots, E_m, and the definition would remain the same in the case of free monoids. However, if we consider free semigroups, then this addition would change the definition, because then E_m could not be an equation with no solutions, like $xx = x$ in free semigroups. This would decrease $\text{DC}(n)$ by one.

3 Relations Between Systems and Chains

Independent systems of equations are a well-known topic (see, e.g., [8]). Chains of equations have been studied less, so we prove here some elementary results about them. The following theorem states the most basic relations between IS, DC and IC.

Theorem 3.1. For every n, $\text{IS}(n) \leq \text{DC}(n), \text{IC}(n)$. If $\text{DC}(n) < \text{ub}$ or $\text{IC}(n) < \text{ub}$, then $\text{DC}(n) = \text{IC}(n)$.

Proof. Every independent system of equations is also a decreasing and increasing chain of equations, regardless of the order of the equations. This means that $\text{IS}(n) \leq \text{DC}(n), \text{IC}(n)$.

A finite sequence of equations is a decreasing chain if and only if the reverse of this sequence is an increasing chain. Thus $\text{DC}(n) = \text{IC}(n)$, if $\text{DC}(n) < \text{ub}$ or $\text{IC}(n) < \text{ub}$.

A semigroup has the *compactness property* if every system of equations has an equivalent finite subsystem. Many results on the compactness property are
collected in [8]. In terms of chains, the compactness property turns out to be equivalent to the property that every decreasing chain is finite.

Theorem 3.2. A semigroup has the compactness property if and only if $DC(n) \leq \text{ub}$ for every n.

Proof. Assume first that the compactness property holds. Let E_1, E_2, \ldots be an infinite decreasing chain of equations. As a system of equations, it is equivalent to some finite subsystem E_{i_1}, \ldots, E_{i_k}, where $i_1 < \cdots < i_k$. But now E_1, \ldots, E_{i_k} is equivalent to $E_1, \ldots, E_{i_{k+1}}$. This is a contradiction.

Assume then that $DC(n) \leq \text{ub}$. Let E_1, E_2, \ldots be an infinite system of equations. If there is an index N such that E_1, \ldots, E_i is equivalent to E_1, \ldots, E_{i+1} for all $i \geq N$, then the whole system is equivalent to E_1, \ldots, E_N. If there is no such index, then let $i_1 < i_2 < \cdots$ be all indexes such that E_1, \ldots, E_{i_k} is not equivalent to $E_1, \ldots, E_{i_{k+1}}$. But then E_{i_1}, E_{i_2}, \ldots is an infinite decreasing chain, which is a contradiction.

The next example shows that the values of IS, DC and IC can differ significantly.

Example 3.3. We give an example of a monoid where $IS(1) = 1$, $DC(1) = \text{ub}$ and $IC(1) = \infty$. The monoid is

$$\langle a_1, a_2, \ldots | a_i a_j = a_j a_i, \ a_i^{i+1} = a_i \rangle.$$

Now every equation on one unknown is of the form $x^i = x^j$. If $i < j$, then this is equivalent to $x^i = x^{i+1}$. So all nontrivial equations are, up to equivalence,

$$x = 1, \ x^2 = x, \ x^3 = x^2, \ldots,$$

and these have strictly increasing solution sets. Thus $IC(1) = \infty$, $DC(1) = \text{ub}$ and $IS(1) = 1$.

4 Free Monoids

From now on we will consider free monoids and semigroups. The bounds related to free monoids are denoted by IS, DC and IC, and the bounds related to free semigroups, by IS_+, DC_+ and IC_+.

We give some definitions related to word equations and make some easy observations about the relations between maximal sizes of independent systems and chains, assuming these are finite.

A solution h is *periodic* if there exists a $t \in S$ such that every $h(x)$, where $x \in \Xi$, is a power of t. Otherwise h is *nonperiodic*. An equation $U = V$ is *balanced* if every variable occurs as many times in U as in V.

The maximal size of an independent system in a free monoid having a nonperiodic solution is denoted by $IS'(n)$. The maximal size of a decreasing chain having a nonperiodic solution is denoted by $DC'(n)$. Similar notation can be used for free semigroups.
Every independent system of equations E_1, \ldots, E_m is also a chain of equations, regardless of the order of the equations. If the system has a nonperiodic solution, then we can add an equation that forces the variables to commute. If the equations in the system are also balanced, then we can add equations $x_i = 1$ for all variables x_1, \ldots, x_n, and thus get a chain of length $m + n + 1$. If they are not balanced, then we can add at least one of these equations.

In all cases we obtain the inequalities $IS'(n) \leq IS(n) \leq IS'(n) + 1$ and $DC'(n) + 2 \leq DC(n) \leq DC'(n) + n + 1$, as well as $IS(n) + 1 \leq DC(n)$ and $IS'(n) \leq DC'(n)$. In the case of free semigroups we derive similar inequalities. Thus IS' and DC' are basically the same as IS and DC, if we are only interested in their finiteness or asymptotic growth.

It was conjectured by Ehrenfeucht in a language theoretic setting that the compactness property holds for free monoids. This conjecture was reformulated in terms of equations in [2], and it was proved independently by Albert and Lawrence [1] and by Guba [6].

Theorem 4.1. $DC(n) \leq ub$, and hence also $IS(n) \leq ub$.

The proofs are based on Hilbert’s basis theorem. The compactness property means that $DC(n) \leq ub$ for every n. No better upper bounds are known, when $n > 2$. Even the seemingly simple question about the size of $IS'(3)$ is still completely open: the only thing that is known is that $2 \leq IS'(3) \leq ub$. The lower bound is given by the example $xyz = zyx, xyyz = zyyx$.

5 Three and Four Unknowns

The cases of three and four variables have been studied in [3]. The article gives examples showing that $IS'_+(3) \geq 2$, $DC'_+(3) \geq 6$, $IS'_+(4) \geq 3$ and $DC'_+(4) \geq 9$. We are able to give better bounds for $DC'_+(3)$ and $DC(4)$.

First we assume that there are three unknowns x, y, z. There are trivial examples of independent systems of three equations, for example, $x^2 = y, y^2 = z, z^2 = x$, so $IS'_+(3) \geq 3$. There are also easy examples of independent pairs of equations having a nonperiodic solution, like $xyz = zyx, xyyz = zyyx$, so $IS'_+(3) \geq 2$. Amazingly, no other bounds are known for $IS'_+(3), IS'_+(3), IS(3)$ or $IS'(3)$.

The following chain of equations shows that $DC(3) \geq 7$:

$$
\begin{align*}
xyz &= zyx, & x &= a, & y &= b, & z &= abab \\
xyz &= zyx, & x &= a, & y &= b, & z &= ab \\
xz &= zx, & x &= a, & y &= b, & z &= 1 \\
xy &= yx, & x &= a, & y &= a, & z &= a \\
x &= 1, & x &= 1, & y &= b, & z &= a \\
y &= 1, & x &= 1, & y &= 1, & z &= a \\
z &= 1, & x &= 1, & y &= 1, & z &= 1.
\end{align*}
$$
Here the second column gives a solution which is not a solution of the equation on the next row but is a solution of all the preceding equations. Also \(DC_+(3) \geq 7 \), as shown by the chain

\[
\begin{align*}
xxyz &= zxyx, \\
xyxz &= zyyxx, \\
xz &= zx, \\
xy &= yx, \\
x &= y, \\
x &= z, \\
xx &= x,
\end{align*}
\]

\[x = a, \ y = b, \ z = aabaaba \]

\[x = a, \ y = b, \ z = aaba \]

\[x = a, \ y = b, \ z = a \]

\[x = a, \ y = aa, \ z = a \]

\[x = a, \ y = a, \ z = aa \]

\[x = a, \ y = a, \ z = a \]

no solutions.

If there are three variables, then every independent pair of equations having a nonperiodic solution consists of balanced equations (see [3]). It follows that \(IS_+(3) + 4 \leq DC(3) \). There are also some other results about the structure of equations in independent systems on three unknowns (see [4] and [5]).

If we add a fourth unknown \(t \), then we can trivially extend any independent system by adding the equation \(t = x \). This gives \(IS_+(4) \geq 4 \) and \(IS'_+(4) \geq 3 \). For chains the improvements are nontrivial. The following chain of equations shows that \(DC(4) \geq 12 \):

\[
\begin{align*}
xz &= zx, \\
x &= a, \ y = b, \ z = 1, \ t = 1 \\
x &= a, \ y = b, \ z = ab, \ t = ab \\
x &= a, \ y = b, \ z = t = ab \\
x &= a, \ y = b, \ z = t = 1 \\
x &= a, \ y = b, \ z = 1, \ t = a \\
x &= a, \ y = b, \ z = 1, \ t = 1 \\
x &= a, \ y = a, \ z = a, \ t = a \\
x &= 1, \ y = 1, \ z = a, \ t = a \\
x &= 1, \ y = 1, \ z = 1, \ t = a \\
x &= 1, \ y = 1, \ z = 1, \ t = 1.
\end{align*}
\]

The next theorem sums up the new bounds given in this section.

Theorem 5.1. \(DC_+(3) \geq 7 \) and \(DC(4) \geq 12 \).

6 Lower Bounds

In [13] it is proved that \(IS(n) = \Omega(n^4) \) and \(IS_+(n) = \Omega(n^3) \). The former is proved by a construction that uses \(n = 10m \) variables and gives a system of \(m^4 \)
equations. Thus IS(n) is asymptotically at least $n^4/10000$. We present here a slightly modified version of this construction. By "reusing" some of the unknowns we get a bound that is asymptotically $n^4/1536$.

Theorem 6.1. If $n = 4m$, then $IS'(n) \geq m^2(m-1)(m-2)/6$.

Proof. We use unknowns x_i, y_i, z_i, t_i, where $1 \leq i \leq m$. The equations in the system are

$$E(i, j, k, l) : x_ix_jx_ky_iy_jy_kz_iz_iz_jz_kz_l = t_lx_ix_jx_ky_iy_jy_kz_iz_iz_jz_k,$$

where $i, j, k, l \in \{1, \ldots, m\}$ and $i < j < k$. If $i, j, k, l \in \{1, \ldots, m\}$ and $i < j < k$, then

$$x_r = \begin{cases} ab, & \text{if } r \in \{i, j, k\} \\ 1, & \text{otherwise} \end{cases} \quad y_r = \begin{cases} a, & \text{if } r \in \{i, j, k\} \\ 1, & \text{otherwise} \end{cases}$$

$$z_r = \begin{cases} ba, & \text{if } r \in \{i, j, k\} \\ 1, & \text{otherwise} \end{cases} \quad t_r = \begin{cases} ababa, & \text{if } r = l \\ 1, & \text{otherwise} \end{cases}$$

is not a solution of $E(i, j, k, l)$, but is a solution of all the other equations. Thus the system is independent. \[\square\]

The idea behind this construction (both the original and the modified) is that $(ababa)^k = (ab)^ka^kb(ab)^k$ holds for $k < 3$, but not for $k = 3$. It was noted in \[18\] that if we could find words u_i such that $(u_1 \ldots u_m)^k = u_1^k \ldots u_m^k$ holds for $k < K$, but not for $k = K$, then we could prove that $IS(n) = \Omega(n^{K+1})$. However, it has been proved that such words do not exist for $K \geq 5$ (see \[11\]), and conjectured that such words do not exist for $K = 4$.

For small values of n it is better to use ideas from the constructions showing that DC(3) ≥ 7 and DC(4) ≥ 12. This gives $IS'(n) \geq (n^2 - 5n + 6)/2$ and DC(n) $\geq (n^2 + 3n - 4)/2$. The equations in the system are

$$xyxiz_jyz_i = z_i z_j x_i z_i y_j x y,$$

where $i, j \in \{1, \ldots, n-2\}$ and $i < j$. The equations in the chain are

$$xyz_k = z_k x y,$$

$$xyzx_ky_zk = z_k x z_k y x y,$$

$$xyxiz_jyz_i = z_i z_j x_i z_j y x y,$$

$$x z_k = z_k x,$$

$$x y = y x,$$

$$x = 1,$$

$$y = 1,$$

$$z_k = 1,$$

where $i, j \in \{1, \ldots, n-2\}$, $i < j$ and $k \in \{1, \ldots, n-2\}$. Here we should first take the equations on the first row in some order, then the equations on the second row in some order, and so on.
We conclude this section by mentioning a related question. It is well known that any nontrivial equation on \(n \) variables forces a defect effect; that is, the values of the variables in any solution can be expressed as products of \(n - 1 \) words (see \cite{7} for a survey on the defect effect). If a system has only periodic solutions, then the system can be said to force a maximal defect effect, so \(IS'(n) \) is the maximal size of an independent system not doing that. But how large can an independent system be if it forces only the minimal defect effect, that is, the system has a solution in which the variables cannot be expressed as products of \(n - 2 \) words? In \cite{13} it is proved that there are such systems of size \(\Omega(n^3) \) in free monoids and of size \(\Omega(n^2) \) in free semigroups. Again, no upper bounds are known.

7 Concluding Remarks and Open Problems

To summarize, we list a few fundamental open problems about systems and chains of equations in free monoids.

Question 1: Is \(IS(3) \) finite?

Question 2: Is \(DC(3) \) finite?

Question 3: Is \(IS(n) \) finite for every \(n \)?

Question 4: Is \(DC(n) \) finite for every \(n \)?

A few remarks on these questions are in order. First we know that each of these values is at most ub. Second, if the answer to any of the questions is "yes", a natural further question is: What is an upper bound for this value, or more sharply, what is the best upper bound, that is, the exact value? For the lower bounds the best what is known, according to our knowledge, is the following

Question 1: \(IS(3) \geq 3 \),

Question 2: \(DC(3) \geq 7 \),

Question 3: \(IS(n) = \Omega(n^4) \),

Question 4: \(DC(n) = \Omega(n^4) \).

A natural sharpening of Question 3 (and 4) asks whether these values are exponentially bounded.

A related question to Question 1 is the following amazing open problem from \cite{2} (see, e.g., \cite{3} and \cite{4} for an extensive study of it):

Question 5: Does there exist an independent system of three equations with three unknowns having a nonperiodic solution?

As a summary we make the following remarks. As we see it, Question 3 is a really fundamental question on word equations or even on combinatorics on words as a whole. Its intriguity is revealed by Question 1 we do not know the answer
even in the case of three unknowns. This becomes really amazing when we recall
that still the best known lower bound is only 3!

To conclude, we have considered equations over word monoids and semigroups.
All of the questions can be stated in any semigroup, and the results would be dif-
ferent. For example, in commutative monoids the compactness property (Theorem
4.1) holds, but in this case the value of the maximal independent system of equa-
tions is ub (see [13]).

Note added on June 9, 2015

When writing the original version of this article, we were not aware of any previous
research on increasing chains. However, they were defined and studied already in
1999 by Honkala [12] (in the case of free monoids). They were called descending
chains in that article. Decreasing chains were called ascending chains and Theorem
3.2 was proved in the case of free monoids. Most of the paper was devoted to
descending chains and test sets.

The following conjecture, which we state here using our notation, was given in
[12]: In free monoids IC(n) ≤ ub for all n. This appears to be a very interesting
and difficult problem. Proofs of Ehrenfeucht’s conjecture are ultimately based on
the fact that ideals in polynomial rings satisfy the ascending chain condition. As
pointed out in [12], the same is not true for the descending chain condition, so the
above conjecture could be expected to be significantly more difficult to prove than
Ehrenfeucht’s conjecture was. Of course, if DC(n) < ub, then IC(n) = DC(n) by
Theorem 3.1.

References

[1] M. H. Albert and J. Lawrence. A proof of Ehrenfeucht’s conjecture. Theoret.
Comput. Sci., 41(1):121–123, 1985.

[2] Karel Culik, II and Juhani Karhumäki. Systems of equations over a free
monoid and Ehrenfeucht’s conjecture. Discrete Math., 43(2–3):139–153, 1983.

[3] Elena Czeizler. Multiple constraints on three and four words. Theoret. Com-
put. Sci., 391(1–2):14–19, 2008.

[4] Elena Czeizler and Juhani Karhumäki. On non-periodic solutions of inde-
pendent systems of word equations over three unknowns. Internat. J. Found.
Comput. Sci., 18(4):873–897, 2007.

[5] Elena Czeizler and Wojciech Plandowski. On systems of word equations over
three unknowns with at most six occurrences of one of the unknowns. Theoret.
Comput. Sci., 410(30–32):2889–2909, 2009.

[6] V. S. Guba. Equivalence of infinite systems of equations in free groups and
semigroups to finite subsystems. Mat. Zametki, 40(3):321–324, 1986.
[7] Tero Harju and Juhani Karhumäki. Many aspects of defect theorems. Theoret. Comput. Sci., 324(1):35–54, 2004.

[8] Tero Harju, Juhani Karhumäki, and Wojciech Plandowski. Independent systems of equations. In M. Lothaire, editor, Algebraic Combinatorics on Words, pages 443–472. Cambridge University Press, 2002.

[9] Tero Harju and Dirk Nowotka. On the independence of equations in three variables. Theoret. Comput. Sci., 307(1):139–172, 2003.

[10] Ju. I. Hmelevski˘ı. Equations in free semigroups. American Mathematical Society, 1976. Translated by G. A. Kandall from the Russian original: Trudy Mat. Inst. Steklov. 107 (1971).

[11] Štˇepˇ an Holub. Local and global cyclicity in free semigroups. Theoret. Comput. Sci., 262(1–2):25–36, 2001.

[12] Juha Honkala. On chains of word equations and test sets. Bull. Eur. Assoc. Theor. Comput. Sci. EATCS, 68:157–160, 1999.

[13] Juhani Karhumäki and Wojciech Plandowski. On the size of independent systems of equations in semigroups. Theoret. Comput. Sci., 168(1):105–119, 1996.

[14] Juhani Karhumäki and Aleksi Saarela. An analysis and a reproof of Hmelevskii’s theorem. In Proceedings of the 12th DLT, volume 5257 of LNCS, pages 467–478. Springer, 2008.

[15] Juhani Karhumäki and Aleksi Saarela. Hmelevskii’s theorem and its complexity, Submitted.

[16] G. S. Makanin. The problem of the solvability of equations in a free semigroup. Mat. Sb. (N.S.), 103(2):147–236, 1977. English translation in Math. USSR Sb. 32:129–198, 1977.

[17] Y. Matijasevic. Enumerable sets are diophantine (Russian). Dokl. Akad. Nauk SSSR, 191:279–282, 1970. Translation in Soviet Math Doklady, Vol 11, 1970.

[18] Wojciech Plandowski. Test sets for large families of languages. In Proceedings of the 7th DLT, volume 2710 of LNCS, pages 75–94. Springer, 2003.

[19] Wojciech Plandowski. Satisfiability of word equations with constants is in PSPACE. J. ACM, 51(3):483–496, 2004.

[20] Aleksi Saarela. On the complexity of Hmelevskii’s theorem and satisfiability of three unknown equations. In Proceedings of the 13th DLT, volume 5583 of LNCS, pages 443–453. Springer, 2009.