Nordhaus-Gaddum-type theorem for total proper connection number of graphs

Wenjing Li, Xueliang Li, Jingshu Zhang
Center for Combinatorics and LPMC
Nankai University, Tianjin 300071, China
liwenjing610@mail.nankai.edu.cn; lxl@nankai.edu.cn; jszhang@mail.nankai.edu.cn

Abstract

A graph is said to be total-colored if all the edges and the vertices of the graph are colored. A path P in a total-colored graph G is called a total-proper path if (i) any two adjacent edges of P are assigned distinct colors; (ii) any two adjacent internal vertices of P are assigned distinct colors; (iii) any internal vertex of P is assigned a distinct color from its incident edges of P. The total-colored graph G is total-proper connected if any two distinct vertices of G are connected by a total-proper path. The total-proper connection number of a connected graph G, denoted by $tpc(G)$, is the minimum number of colors that are required to make G total-proper connected. In this paper, we first characterize the graphs G on n vertices with $tpc(G) = n - 1$. Based on this, we obtain a Nordhaus-Gaddum-type result for total-proper connection number. We prove that if G and \overline{G} are connected complementary graphs on n vertices, then $6 \leq tpc(G) + tpc(\overline{G}) \leq n + 2$. Examples are given to show that the lower bound is sharp for $n \geq 4$. The upper bound is reached for $n \geq 5$ if and only if G or \overline{G} is the tree with maximum degree $n - 2$.

Keywords: total-proper path, total-proper connection number, complementary graph, Nordhaus-Gaddum-type.

AMS Subject Classification 2010: 05C15, 05C35, 05C38, 05C40.

1 Introduction

All graphs considered in this paper are simple, finite, and undirected. We follow the terminology and notation of Bondy and Murty in [1] for those not defined here. If G

*Supported by NSFC No.11371205 and 11531011, and PCSIRT.
is a graph and \(A \subseteq V(G) \), then \(G[A] \) denotes the subgraph of \(G \) induced by the vertex set \(A \), and \(G - A \) the graph \(G[V(G) \setminus A] \). If \(A = \{v\} \), then we write \(G - v \) for short. An edge \(xy \) is called a pendant edge if one of its end vertices, say \(x \), has degree one, and \(x \) is called a pendant vertex. For a vertex \(v \in V(G) \), we use \(N_G(v) \) to denote the neighborhood of \(v \) in \(G \) and use \(d_G(v) \) to denote the degree of \(v \) in \(G \), sometimes we simply write \(N(v) \) and \(d(v) \) if \(G \) is clear. For graphs \(X \) and \(G \), we write \(X \cong G \) if \(X \) is isomorphic to \(G \). Throughout this paper, \(\mathbb{N} \) denotes the set of all positive integers.

Let \(G \) be a nontrivial connected graph with an edge-coloring \(c : E(G) \to \{1, 2, \ldots, t\} \), \(t \in \mathbb{N} \), where adjacent edges may be colored with the same color. If adjacent edges of \(G \) receive different colors by \(c \), then \(c \) is a proper coloring. The minimum number of colors required in a proper coloring of \(G \) is referred as the chromatic index of \(G \) and denoted by \(\chi'(G) \). Meanwhile, a path in \(G \) is called a rainbow path if no two edges of the path are colored with the same color. The graph \(G \) is called rainbow connected if for any two distinct vertices of \(G \), there is a rainbow path connecting them. For a connected graph \(G \), the rainbow connection number of \(G \), denoted by \(rc(G) \), is defined as the minimum number of colors that are required to make \(G \) rainbow connected. These concepts were first introduced by Chartrand et al. in [3] and have been well-studied since then. For further details, we refer the reader to a book [9].

Motivated by rainbow connection coloring and proper coloring in graphs, Borozan et al. [2] introduced the concept of proper-path coloring. Let \(G \) be a nontrivial connected graph with an edge-coloring. A path in \(G \) is called a proper path if no two adjacent edges of the path are colored with the same color. The \(k \)-proper connection number of a connected graph \(G \), denoted by \(pc_k(G) \), is defined as the minimum number of colors that are required in an edge-coloring of \(G \) such that any two distinct vertices of \(G \) are connected by \(k \) internally pairwise vertex-disjoint proper paths. We write \(pc(G) \) for short when \(k = 1 \). For more details, we refer to a dynamic survey [8].

Jiang et al. [7] introduced the analogous concept of total-proper connection of graphs. Let \(G \) be a nontrivial connected graph with a total-coloring \(c : E(G) \cup V(G) \to \{1, 2, \ldots, t\} \), \(t \in \mathbb{N} \). We use \(c(u), c(uv) \) to denote the colors assigned to the vertex \(u \in V(G) \) and the edge \(uv \in E(G) \), respectively. A path \(P \) is called a total-proper path if (i) any two adjacent edges of \(P \) are assigned distinct colors; (ii) any two adjacent internal vertices of \(P \) are assigned distinct colors; (iii) any internal vertex of \(P \) is assigned a distinct color from its incident edges of \(P \). A total-coloring \(c \) is a total-proper coloring of \(G \) if every pair of distinct vertices \(u, v \) of \(G \) is connected by a total-proper path in \(G \). A graph with a total-proper coloring is said to be total-proper connected. If \(k \) colors are used, then \(c \) is referred as a total-proper \(k \)-coloring. The total-proper connection number of a connected graph \(G \), denoted by \(tpc(G) \), is the minimum number of colors that are required to make \(G \) total-proper connected. For the total-proper connection number of graphs, the following observations are immediate.

Proposition 1. Let \(G \) be a connected graph on \(n \) vertices. Then

(i) \(tpc(G) = 1 \) if and only if \(G = K_n \);

(ii) \(tpc(G) \geq 3 \) if \(G \) is noncomplete.
A Nordhaus-Gaddum-type result is a (tight) lower or upper bound on the sum or product of the values of a parameter for a graph and its complement. The name “Nordhaus-Gaddum-type” is given because Nordhaus and Gaddum [10] first established the following type of inequalities for chromatic number of graphs in 1956. They proved that if \(G \) and \(\overline{G} \) are complementary graphs on \(n \) vertices whose chromatic number are \(\chi(G) \) and \(\chi(\overline{G}) \), respectively, then \(2\sqrt{n} \leq \chi(G) + \chi(\overline{G}) \leq n + 1 \). Since then, many analogous inequalities of other graph parameters have been considered, such as diameter [5], domination number [4], proper connection number [6], and so on. In this paper, we consider analogous inequalities concerning total-proper connection number of graphs. We prove that if both \(G \) and \(\overline{G} \) are connected, then

\[
6 \leq \text{tpc}(G) + \text{tpc}(\overline{G}) \leq n + 2.
\]

The rest of this paper is organized as follows: In Section 2, we list some useful known results on total-proper connection number. In Section 3, we first characterize the graphs \(G \) on \(n \) vertices with \(\text{tpc}(G) = n - 1 \). Based on this result, we give the upper bound and show that this bound is reached for \(n \geq 5 \) if and only if \(G \) or \(\overline{G} \) is the tree with maximum degree \(n - 2 \). In the final section, we give the lower bound and show that it is sharp for \(n \geq 4 \).

2 Preliminaries

In this section, we list some preliminary results and definitions on the total-proper coloring which can be found in [7].

Proposition 2. [7] If \(G \) is a nontrivial connected graph and \(H \) is a connected spanning subgraph of \(G \), then \(\text{tpc}(G) \leq \text{tpc}(H) \). In particular, \(\text{tpc}(G) \leq \text{tpc}(T) \) for every spanning tree \(T \) of \(G \).

Proposition 3. [7] Let \(G \) be a connected graph of order \(n \geq 3 \) that contains a bridge. If \(b \) is the maximum number of bridges incident with a single vertex in \(G \), then \(\text{tpc}(G) \geq b + 1 \).

In [7], the authors determined the total-proper connection numbers of trees and complete bipartite graphs.

Theorem 1. [7] If \(T \) is a tree of order \(n \geq 3 \), then \(\text{tpc}(T) = \Delta(T) + 1 \).

A Hamiltonian path in a graph \(G \) is a path containing every vertex of \(G \) and a graph having a Hamiltonian path is a traceable graph.

Corollary 1. [7] If \(G \) is a traceable graph that is not complete, then \(\text{tpc}(G) = 3 \).

Theorem 2. [7] Let \(G = K_{s,t} \) denote a complete bipartite graph with \(s \geq t \geq 2 \). Then \(\text{tpc}(G) = 3 \).
Given a total-colored path \(P = v_1v_2 \ldots v_{s-1}v_s \) between any two vertices \(v_1 \) and \(v_s \), we denote by \(\text{start}_e(P) \) the color of the first edge in the path, i.e. \(c(v_1v_2) \), and by \(\text{end}_e(P) \) the last color, i.e. \(c(v_{s-1}v_s) \). Moreover, let \(\text{start}_v(P) \) the color of the first internal vertex in the path, i.e. \(c(v_2) \), and by \(\text{end}_v(P) \) the last color, i.e. \(c(v_{s-1}) \). If \(P \) is just the edge \(v_1v_s \), then \(\text{start}_e(P) = \text{end}_e(P) = c(v_1v_s) \), \(\text{start}_v(P) = c(v_s) \) and \(\text{end}_v(P) = c(v_1) \).

Definition 1. Let \(c \) be a total-coloring of a graph \(G \) that makes \(G \) total-proper connected. We say that \(G \) has the strong property if for any pair of vertices \(u, v \in V(G) \), there exist two total-proper paths \(P_1, P_2 \) between them (not necessarily disjoint) such that (1) \(c(u) \neq \text{start}_v(P_i) \) and \(c(v) \neq \text{end}_v(P_i) \) for \(i = 1, 2 \), and (2) both \(\{c(u), \text{start}_e(P_1), \text{start}_e(P_2)\} \) and \(\{c(v), \text{end}_e(P_1), \text{end}_e(P_2)\} \) are 3-sets.

The authors in [7] studied the total-proper connection number of 2-connected graphs and gave an upper bound.

Theorem 3. [7] Let \(G \) be a 2-connected graph. Then \(tpc(G) \leq 4 \) and there exists a total-coloring of \(G \) with 4 colors such that \(G \) has the strong property.

From Definition 1 and Theorem 3 we get the following.

Corollary 2. Let \(H = G \cup \{v\} \) such that \(H \) is connected. If there is a total-proper \(k \)-coloring \(c \) of \(G \) such that \(G \) has the strong property, then \(tpc(H) \leq k \).

We also study the total-proper connection number of \(H \) when \(G \) is a complete bipartite graph, and get the exact value of \(tpc(H) \).

Lemma 1. Let \(H = K_{s,t} \cup \{v\} \) such that \(H \) is connected, where \(s \geq t \geq 2 \). Then \(tpc(H) = 3 \). Moreover, \(tpc(H') = 3 \).

Fig 1: The graph \(H' \)

*Proof. Let \(U \) and \(W \) be the two partite sets of \(K_{s,t} \), where \(U = \{u_1, \ldots, u_s\} \) and \(W = \{w_1, \ldots, w_t\} \). Since \(H \) and \(H' \) are both noncomplete, we only need to prove \(tpc(H) \leq 3 \) and \(tpc(H') \leq 3 \), i.e., demonstrating a total-proper 3-coloring of \(H \) or \(H' \). We divide our discussion according to the value of \(t \).

Case 1. \(t = 2 \)
If v is adjacent to W, say $vw_1 \in E(H)$, then set $c(w_1) = c(u_1w_2) = 1$, and $c(w_2) = c(u_1w_1) = 2$. Assign all the remaining vertices and edges with color 3. Thus, there is a total-proper path $u_iw_1u_2w_2u_j$ connecting u_i and u_j, where $2 \leq i,j \leq s$. As for the rest of vertex pairs, we can always find a path contained in the path $vw_1u_1w_2u_i$ for some $2 \leq i \leq s$. If there is another vertex v' adjacent to w_2, based on the above coloring, set $c(v') = c(v'w_2) = 3$, then we obtain a total-proper 3-coloring of H', see Fig.1.

If v is adjacent to U, say $vu_1 \in E(H)$, then set $c(w_1) = c(u_2) = c(u_1w_2) = 1$, and $c(w_2) = c(u_1w_1) = c(u_2w_1) = c(vu_1) = 2$. Assign all the remaining vertices and edges with color 3. Thus, there is a total-proper path, contained in the path $vu_1w_2u_2w_1$ or $vu_1w_2u_i$ for some $3 \leq i \leq s$, connecting v and any other vertex in H. And for vertex pairs in $U \cup W$, there is a total-proper path contained in the path $u_iw_2u_1w_1u_j$ for some $2 \leq i < j \leq s$.

Case 2. $t \geq 3$

If $s = t = 3$, then H is traceable so that $tpc(H) = 3$. If $s \geq 4$, we consider two subcases.

1) Assume there is a 6-cycle C_6 in $K_{s,t}$ such that $H - C_6$ is still connected. Without loss of generality, we suppose $C_6 = u_1w_1u_2w_2u_3w_3$. We color C_6 with the colors 1, 2, 3 by the sequence of vertices and edges on the cycle. That is, set $c(u_1) = c(w_2) = c(w_1) = c(u_3w_3) = 1$, $c(u_2) = c(w_3) = c(u_1w_1) = c(w_2u_3) = 2$, and $c(w_1) = c(u_3) = c(u_2w_2) = c(w_3u_1) = 3$. Let $i,j \geq 4$ be two integers. Assign u_i and u_3w_j (if any) with color 1, and assign w_j and w_1u_i with color 2. The remaining vertices and edges are all colored 3. Then we claim that this total-coloring makes H total-proper connected. Any pair $(u_i,w_j) \in U \times W$ is connected by the edge u_iw_j. The total-proper path for the pairs from $U \times U$ is contained in the path $P = u_iw_1u_2w_2u_3w_3u_j$ for some $1 \leq i,j \leq s$. And the total-proper path for the pairs from $W \times W$ is contained in the path $P = w_1u_1w_2w_2u_3w_j$ for some $1 \leq i,j \leq t$. Now consider the pairs of $(v) \times (U \cup W)$. By the assumption, we know that $vu_\ell \in E(H)$ or $vw_\ell \in E(H)$ for $\ell \geq 4$. Without loss of generality, suppose $\ell = 4$. If $vu_4 \in E(H)$, then for pairs (v,u_i) $(1 \leq i \leq s)$ there is a total-proper path contained in the path $P = vu_4w_1u_2w_2u_3w_3u_j$ for some $1 \leq j \leq s$, and for pairs (v,w_j) $(1 \leq i \leq t)$ there is a total-proper path contained in the path $P = vu_4w_1u_2w_2u_3w_j$ for some $1 \leq j \leq t$. The case when $vw_4 \in E(H)$ is similar.

2) Assume there is not such a 6-cycle in subcase 1). As $s \geq 4$ we can deduce that $t = 3$ and v is only adjacent to W, say $vw_2 \in E(H)$. Then we color H as above. Then it is sufficient to check the pairs in $(v) \times (U \cup W)$. For pairs in $(v) \times U$, there is a total-proper path $P = vw_2u_3w_3u_i$ for some $1 \leq i \leq s$, and for pairs in $(v) \times W$, we can find a total-proper path contained in the path $P = vw_2u_3w_3u_iu_1w_1$.

The proof is complete. □
3 Upper bound on $tpc(G) + tpc(\overline{G})$

At the beginning of this section, we give total-proper connection numbers of four unicyclic graphs, which are useful to characterize the graphs on n vertices that have total-proper connection number $n - 2$.

Lemma 2. Let H_1, H_2, H_3 and H_4 be the graphs on $n \geq 5$ vertices shown in the Fig. 2, respectively. Then $tpc(H_1) = n - 2$; $tpc(H_2) = n - 2$ if $n = 5$, $tpc(H_2) = n - 3$ if $n \geq 6$; and for $i = 3, 4$, $tpc(H_i) = n - 2$ if $n = 5$ or 6, $tpc(H_i) = n - 3$ if $n \geq 7$.

![Fig 2: The graphs H_1, H_2, H_3 and H_4.](image)

Proof. By Proposition 3 we get $tpc(H_1) \geq n - 2$ and $tpc(H_i) \geq n - 3$ for $i \in \{2, 3, 4\}$.

For $i = 1, 2, 3$, let uvw be the triangle in H_i and let e_1, e_2, . . . , and e_{n-3} denote the bridges in H_i. Assume that $e = e_{n-3}$ in the graphs H_2 and H_3, and the edge e is incident with the vertex x and adjacent to the bridge e_1 in H_2, and e is incident with the vertex v in H_3. We first consider the graph H_1 and demonstrate a total-coloring of it with $n - 2$ colors. Let $c(u) = c(vw) = 1$, $c(e_j) = j + 1$ for $1 \leq j \leq n - 3$, $c(uv) = c(w) = 2$ and $c(v) = c(wu) = 3$. The remaining vertices are all colored 1. It is easy to check this total-coloring makes H_1 total-proper connected. Hence, we have $tpc(H_1) = n - 2$ when $n \geq 5$.

We should point out that for $i = 2, 3, 4$, the graph H_i is traceable when $n = 5$, hence $tpc(H_i) = 3$ by Corollary 1. So we assume $n \geq 6$. Consider the graph H_2. Color as H_1 only with the exception that $c(e_{n-3}) = 1$ and $c(x) = 3$. It is easy to check that under this total-coloring, H_2 is total-proper connected. Hence, we have $tpc(H_2) = n - 2$ when $n = 5$ and $tpc(H_2) = n - 3$ when $n \geq 6$.

Consider the graph H_3. When $n = 6$, we claim that $tpc(H_3) = 4$. From Proposition 2, we get that $tpc(H_3) \leq 4$. If we use 3 colors to total-color H_3, no matter how we color it, there always exist two pendant vertices not being connected by a total-proper path. When $n \geq 7$, it can be easily checked that the total-coloring of H_2, only with the exception that $c(e) = 4$, makes H_3 total-proper connected. Hence, we have $tpc(H_3) = n - 2$ when $n = 5, 6$ and $tpc(H_3) = n - 3$ when $n \geq 7$.

Now we consider the graph H_4. We use e_1, e_2, . . . , and e_{n-4} to denote the bridges incident with u, respectively, and use $uvwu$ to denote the quadrangle in H_4. First, we consider the case $n \geq 7$. We demonstrate a total-coloring of H_4 with $n - 3$ colors. Let $c(e_j) = j$ for $1 \leq j \leq n - 4$, $c(u) = n - 3$, $c(v) = c(x) = 2$, $c(vw) = c(xu) = 3$...
and \(c(w) = 4 \). The remaining edges and vertices are all colored 1. It is easy to check that under this total-coloring, \(H_4 \) is total-proper connected. When \(n = 6 \), we claim that \(tpc(H_4) = 4 \). From Proposition 2 we get that \(tpc(H_4) \leq 4 \). If we use 3 colors to total-color \(H_4 \), no matter how we color it, there always exists a vertex pair not being connected by a total-proper path. Hence, we have \(tpc(H_4) = n - 2 \) when \(n = 5, 6 \) and \(tpc(H_4) = n - 3 \) when \(n \geq 7 \).}

We use \(C_n \) and \(S_n \) to denote the cycle and the star on \(n \) vertices, respectively, and use \(T(a, b) \) to denote the double star that is obtained by adding an edge between the center vertices of \(S_a \) and \(S_b \). Given a cycle \(C_r = v_1v_2 \ldots v_r \), let \(C_r(T_1, T_2, \ldots, T_r) \) be the graph obtained from \(C_r \) and rooted trees \(T_i \) by identifying the root, say \(r_i \), of \(T_i \) with \(v_i \) on \(C_r \), \(i = 1, 2, \ldots, r \). We assume that \(|T_i| = n_i, n_i \geq 1, i = 1, 2, \ldots, r \). Then \(|C_r(T_1, T_2, \ldots, T_r)| = \sum_{i=1}^{r} |T_i| \). In particular, if \(|T_i| = 1 \) for each \(i \in \{1, 2, \ldots, r\} \), the graph \(C_r(T_1, T_2, \ldots, T_r) \) is just the cycle \(C_r \). For a nontrivial graph \(G \) such that \(G + uv \cong G + xy \) for every two pairs \((u, v), (x, y)\) of nonadjacent vertices of \(G \), we use \(G + e \) to denote the graph obtained from \(G \) by joining two nonadjacent vertices of \(G \).

Theorem 4. Let \(G \) be a connected graph of order \(n \geq 3 \). Then \(tpc(G) = n - 1 \) if and only if \(G \in \{T(2, n - 2), C_4, C_4 + e, S_4 + e\} \).

Proof. By Theorem \(1 \) and Corollary \(1 \) we can easily check that \(tpc(G) = n - 1 \) if \(G \) is one of the above four graphs. So we concentrate on the verification of the converse of the theorem. Suppose that \(tpc(G) = n - 1 \). Then \(G \) cannot be complete, so \(tpc(G) \geq 3 \). If \(G \) is a tree, then by Theorem \(1 \) we have \(\Delta(G) = n - 2 \), thus \(G \cong T(2, n - 2) \). Now, we consider the case that \(G \) contains cycles. Pick a longest cycle \(C_k = v_1v_2 \ldots v_k \) of \(G \), where \(k \geq 3 \). If \(k = n \), then \(3 = tpc(C_k) = tpc(G) = n - 1 \). So \(n = 4 \). Thus \(G \cong C_4 \) or \(C_4 + e \). If \(k < n \), consider a unicyclic spanning subgraph \(H \) of \(G \) containing the cycle \(C_k \). Then \(H \) can be written as \(C_k(T_1, T_2, \ldots, T_k) \). Set \(r = \max\{\Delta(T_i) : 1 \leq i \leq k\} \) and let \(T_i \) be a tree with \(\Delta(T_i) = r \). Notice that \(\Delta(T_i) \leq |T_i| - 1 \leq n - k \), so \(r \leq n - k \). Then delete an edge \(e \) of \(H \), which is incident with \(v_i \) in \(C_k \), and denote the obtained graph as \(H' \), so \(H' \) is a spanning tree of \(G \) and \(\Delta(H') \leq n - k + 1 \), and the equality holds if and only if there is only one nontrivial subtree \(T_i = S_{n-k+1} \) in \(H \) whose center is \(v_i \) or there are exactly two pendant edges attaching to \(C_k \). Thus \(n - 1 = tpc(G) \leq tpc(H') = \Delta(H') + 1 \leq n - k + 2 \), therefore we have \(k \leq 3 \). So \(k = 3 \) and all the equalities must hold. Hence, there is only one nontrivial subtree in \(H \) and \(\Delta(H) = n - 1 \) or \(H \) is traceable on 5 vertices, the latter contradicting the condition \(tpc(G) = n - 1 \). So we can identify \(H \) as \(S_n + e \), and when \(n \geq 5 \), the graph \(H \) is just the graph \(H_1 \) in Fig. 2. By Lemma \(3 \) and Proposition \(2 \), we have \(tpc(G) \leq tpc(H_1) = n - 2 \), a contradiction. So \(n = 4 \) and \(G \cong S_4 + e \) since \(C_3 \) is a longest cycle of \(G \).
Lemma 3. Let G be a graph on 5 vertices. If both G and \overline{G} are connected, then we have

$$tpc(G) + tpc(\overline{G}) = \begin{cases}
7 & \text{if } G \cong T(2,3) \text{ or } \overline{G} \cong T(2,3); \\
6 & \text{otherwise.}
\end{cases}$$

Proof. If $G \cong T(2,3)$ or $\overline{G} \cong T(2,3)$, then from Theorem 4 we can easily get that $tpc(G) + tpc(\overline{G}) = 7$. Otherwise, we have $tpc(G) \leq n - 2 = 3$ and $tpc(\overline{G}) \leq n - 2 = 3$. Combining with Proposition 1 we get $tpc(G) + tpc(\overline{G}) = 3 + 3 = 6$ if $G \not\cong T(2,3)$ and $\overline{G} \not\cong T(2,3)$.

Theorem 5. Let G be a graph of order $n \geq 5$. If both G and \overline{G} are connected, then we have $tpc(G) + tpc(\overline{G}) \leq n + 2$, and the equality holds if and only if $G \cong T(2, n - 2)$ or $\overline{G} \cong T(2, n - 2)$.

Proof. It follows from Lemma 3 that the result holds for $n = 5$. So we assume that $n \geq 6$. If $G \cong T(2, n - 2)$, then \overline{G} contains a spanning subgraph H that is obtained by attaching a pendant edge to the complete bipartite graph $K_{2,n-3}$. So we have $tpc(G) = 3$ by Lemma 1. Combining with Theorem 4, the result is clear. Similarly, we get that $tpc(G) + tpc(\overline{G}) = n + 2$ if $\overline{G} \cong T(2, n - 2)$. In the following, we prove that $tpc(G) + tpc(\overline{G}) < n + 2$ when $G \not\cong T(2, n - 2)$ and $\overline{G} \not\cong T(2, n - 2)$. Under this assumption, we have $3 \leq tpc(G) \leq n - 2$ and $3 \leq tpc(\overline{G}) \leq n - 2$ by Proposition 1 and Theorem 4.

We first consider the case that both G and \overline{G} are 2-connected. When $n = 6$, we claim that $tpc(G) = 3$. Suppose that the circumference of G is k. If $k = 6$, then $tpc(G) \leq tpc(C_6) = 3$. If $k = 4$, then G contains a spanning $K_{2,4}$, contradicting the fact that \overline{G} is connected. Next, we assume that G contains a 5-cycle $C = v_1v_2v_3v_4v_5$. Then G is traceable, so $tpc(G) = 3$ by Corollary 1. Thus, we have $tpc(G) + tpc(\overline{G}) \leq 3 + n - 2 < n + 2$. For $n \geq 7$, we have $tpc(G) \leq 4$ and $tpc(\overline{G}) \leq 4$ by Theorem 3. Hence, we get $tpc(G) + tpc(\overline{G}) \leq 4 + 4 < n + 2$.

Now, we consider the case that at least one of G and \overline{G} has cut vertices. Without loss of generality, we suppose that G has cut vertices. Let u be a cut vertex of G, let G_1, G_2, \ldots, G_k be the components of $G - u$, and let n_i be the number of vertices in G_i for $1 \leq i \leq k$ with $n_1 \leq \cdots \leq n_k$. We consider the following two cases.

Case 1. There exists a cut vertex u of G such that $n - 1 - n_k \geq 2$. Since $\Delta(G) \leq n - 2$, we have $n_k \geq 2$. We know that $\overline{G} - u$ contains a spanning complete bipartite graph K_{n-1-n_k,n_k}. Hence, it follows from Lemma 1 that $tpc(\overline{G}) = 3$. Combining with the fact that $tpc(G) \leq n - 2$, we get that $tpc(G) + tpc(\overline{G}) < n + 2$.

Case 2. Every cut vertex u of G satisfies that $n - 1 - n_k = 1$.

First, we suppose that G has at least two cut vertices, say u_1 and u_2. Let u_1v_1 and u_2v_2 be two pendant edges of G. Obviously, the edges u_1v_1 and u_2v_2 are disjoint. So $u_1v_2, u_2v_1 \in E(\overline{G})$, and $\overline{G} - \{u_1, u_2\}$ contains a spanning complete bipartite graph $K_{2,n-4}$ with two partitions $U = \{v_1, v_2\}$ and $W = V(G) \setminus \{u_1, u_1, v_1, v_2\}$. By Lemma 1 we have that $tpc(\overline{G}) = 3$. Together with the fact that $tpc(G) \leq n - 2$, we get that $tpc(G) + tpc(\overline{G}) < n + 2$.

8
Now, we consider the subcase that \(G \) has only one cut vertex \(u \) and let \(uw \) be the pendant edge of \(G \). Then \(G - v \) is 2-connected. By Theorem 3 and Corollary 2, we have \(\text{tpc}(G) \leq 4 \), thus \(\text{tpc}(G) + \text{tpc}(\overline{G}) \leq n + 2 \). Now, we prove that the equality cannot hold. Note that \(d_{\overline{G}}(v) = n - 2 \). Let \(N_{\overline{G}}(v) = \{ w_1, w_2, \ldots, w_{n-2} \} \). Since \(\Delta(G) \leq n - 2 \), there exists a vertex \(w_i \) (\(1 \leq i \leq n - 2 \)) not adjacent to \(u \) in \(G \), say \(uw_i \notin E(G) \). Then \(uw_i \in E(\overline{G}) \). If there is a vertex \(w_j \) (\(2 \leq j \leq n - 2 \)) adjacent to \(u \) in \(\overline{G} \), then \(\overline{G} \) contains \(H_3 \) in Fig. 2 as a spanning subgraph, so \(\text{tpc}(\overline{G}) \leq \max\{4, n - 3\} \). If there is a vertex \(w_j \) (\(2 \leq j \leq n - 2 \)) adjacent to \(u \) in \(\overline{G} \), then \(\overline{G} \) contains \(H_4 \) in Fig. 2 as a spanning subgraph, so \(\text{tpc}(\overline{G}) \leq \max\{4, n - 3\} \). If there are two vertices \(w_j, w_k \) (\(2 \leq j \neq k \leq n - 2 \)) adjacent in \(\overline{G} \), then \(\overline{G} \) contains \(H_2 \) in Fig. 2 as a spanning subgraph, so \(\text{tpc}(\overline{G}) \leq n - 3 \). We conclude that \(\text{tpc}(\overline{G}) \leq \max\{4, n - 3\} \) if \(G - v \) is 2-connected. For \(n \geq 7 \), we get the result \(\text{tpc}(G) + \text{tpc}(\overline{G}) \leq n + 1 < n + 2 \). For \(n = 6 \), since \(G - v \) is a 2-connected graph on 5 vertices, \(G - v \) contains a spanning 5-cycle or a spanning \(K_{2,3} \), implying that \(\text{tpc}(G) = 3 \) by Corollary 1 and Lemma 1. Thus, we have \(\text{tpc}(G) + \text{tpc}(\overline{G}) \leq 3 + 4 = 7 < 8 \).

4 Lower bound on \(\text{tpc}(G) + \text{tpc}(\overline{G}) \)

As we have noted that \(\text{tpc}(G) = 1 \) if and only if \(G \) is a complete graph. In this case, the graph \(\overline{G} \) is not connected. So, if \(G \) and \(\overline{G} \) are both connected, then \(\text{tpc}(G) \geq 3 \). Similarly, we have \(\text{tpc}(\overline{G}) \geq 3 \). Hence, we obtain that \(\text{tpc}(G) + \text{tpc}(\overline{G}) \geq 6 \).

Theorem 6. Let \(G \) be a graph of order \(n \geq 4 \). If both \(G \) and \(\overline{G} \) are connected, then we have \(\text{tpc}(G) + \text{tpc}(\overline{G}) \geq 6 \), and the lower bound is sharp.

Proof. We only need to prove that there are graphs \(G \) and \(\overline{G} \) on \(n \geq 4 \) vertices such that \(\text{tpc}(G) = \text{tpc}(\overline{G}) = 3 \).

Let \(G \) be the graph with vertex set \(\{v\} \cup U \cup W \), where \(U = \{u_1, \ldots, u_{\frac{n}{2}}\} \) and \(W = \{w_1, \ldots, w_{\frac{n}{2}+1}\} \), such that \(N(v) = U \) and \(U \) is an independent set and \(G[W] \) is a clique, and for each vertex \(u_i, u_i \) is adjacent to \(w_i, w_i+1, \ldots, w_{i+\lceil\frac{n-1}{2}\rceil} \) where the subscripts are taken modulo \(\lceil\frac{n-1}{2}\rceil \). Obviously, the graphs \(G \) and \(\overline{G} \) are both traceable. It follows from Corollary 1 that \(\text{tpc}(G) = \text{tpc}(\overline{G}) = 3 \).

References

[1] J.A. Bondy, U.S.R. Murty, *Graph Theory with Applications*, The Macmillan Press, London and Basingstoke, 1976.

[2] V. Borozan, S. Fujita, A. Gerek, C. Magnant, Y. Manoussakis, L. Montero, Z. Tuza, *Proper connection of graphs*, Discuss. Math. 312(2012), 2550-2560.

[3] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, *Rainbow connection in graphs*, Math. Bohem. 133(1)(2008), 85-98.
[4] F. Harary, T.W. Haynes, *Nordhaus-Gaddum inequalities for domination in graphs*, Discrete Math. 155(1996), 99-105.

[5] F. Harary, R.W. Robinson, *The diameter of a graph and its complement*, Amer. Math. Monthly 92(1985), 211-212.

[6] F. Huang, X. Li, S. Wang, *Proper connection numbers of complementary graphs*, Bull. Malays. Math. Sci. Soc., DOI 10.1007/s40840-016-0381-8, in press.

[7] H. Jiang, X. Li, Y. Zhang, *Total proper connection of graphs*, arXiv preprint arXiv:1512.00726 [math.CO].

[8] X. Li, C. Magnant, *Properly colored notions of connectivity - a dynamic survey*, Theory and Appl. Graphs 0(1)(2015), Art. 2.

[9] X. Li, Y. Sun, *Rainbow Connections of Graphs*, New York, SpringerBriefs in Math., Springer, 2012.

[10] E.A. Nordhaus, J.W. Gaddum *On complementary graphs*, Amer. Math. Monthly 63(1956), 175-177.