A Scalable Framework for Sparse Clustering Without Shrinkage

Zhiyue Zhang1, Kenneth Lange2, Jason Xu1†

1Department of Statistical Science, Duke University
2Department of Human Genetics, University of California, Los Angeles

Abstract

Clustering, a fundamental activity in unsupervised learning, is notoriously difficult when the feature space is high-dimensional. Fortunately, in many realistic scenarios, only a handful of features are relevant in distinguishing clusters. This has motivated the development of sparse clustering techniques that typically rely on \(k\)-means within outer algorithms of high computational complexity. Current techniques also require careful tuning of shrinkage parameters, further limiting their scalability. In this paper, we propose a novel framework for sparse \(k\)-means clustering that is intuitive, simple to implement, and competitive with state-of-the-art algorithms. We show that our algorithm enjoys consistency and convergence guarantees. Our core method readily generalizes to several task-specific algorithms such as clustering on subsets of attributes and in partially observed data settings. We showcase these contributions via simulated experiments and benchmark datasets, as well as a case study on mouse protein expression.

Key Words: \(k\)-means, Non-convex Optimization, Unsupervised Machine Learning, Sparse Clustering, Sparsity Projection.

1 Introduction

Clustering is a ubiquitous task in unsupervised learning and exploratory data analysis. First proposed by Steinhaus (1956), \(k\)-means clustering is a widely used approach owing to its conceptual simplicity, speed, and familiarity. The method aims to partition \(n\) data points into \(k\) clusters, with each data point assigned to the cluster with nearest center (mean). Despite decades of refinement and generalization, Lloyd’s algorithm (Lloyd, 1982) remains the most popular algorithm to perform \(k\)-means clustering.

Lloyd’s algorithm Consider a dataset \(X \in \mathbb{R}^{n \times p}\) comprised of \(n\) samples and \(p\) features. Without loss generality, assume each feature is centered at the origin. To put features on the same footing, it is also recommended to standardize each of them to have unit variance (Mohamad and Usman, 2013). Given a fixed number of \(k\) clusters, \(k\)-means assigns each row \(x_i^t\) of \(X\) clusters \(C_j\) represented by optimal cluster centers \(\theta_j\) that minimize the objective

\[
\sum_{j=1}^{k} \sum_{x_i \in C_j} \|x_i - \theta_j\|_2^2 = \sum_{i=1}^{n} \min_{1 \leq j \leq k} \|x_i - \theta_j\|_2^2, \tag{1}
\]
where \(\| \cdot \|_2 \) denotes the usual Euclidean norm. Although the objective function is simple and intuitive, finding its optimal value is NP-hard, even if \(k = 2 \) or \(p = 2 \) (Dasgupta, 2008; Vattani, 2009; Mahajan et al., 2012). A greedy algorithm, Lloyd’s \(k \)-means algorithm alternates between two steps until cluster assignments stabilize and no further changes occur in the objective function: 1) The algorithm assigns each row \(x^t_i \) of \(X \) to the cluster \(C_j \) whose center \(\theta_j \) is closest. 2) It then redefines each center \(\theta_j \) as the center of mass \(\theta_j = \frac{1}{|C_j|} \sum_{i \in C_j} x_i \). While guaranteed to converge in finite iterations, Lloyd’s algorithm may stop at a poor local minimum, rendering it extremely sensitive to the initial starting point. Many initialization methods have been proposed to ameliorate this defect (Bradley and Fayyad, 1998; Al Hasan et al., 2009; Celebi et al., 2013); the most popular scheme to date is called \(k \)-means++ (Arthur and Vassilvitskii, 2007; Ostrovsky et al., 2012).

Feature selection and sparsity Despite its efficacy and widespread use, Lloyd’s \(k \)-means algorithm is known to deteriorate when the number of features \(p \) grows. In the presence of many uninformative features, the signal-to-noise ratio decreases, and the algorithm falls victim to poor local minima. In essence, the pairwise Euclidean distances appearing in the \(k \)-means objective (1) become less informative as \(p \) grows (Beyer et al., 1999; Aggarwal et al., 2001). One way of mitigating this curse of dimensionality is to cluster under a sparsity assumption. If only a subset of features distinguishes between clusters, then ignoring irrelevant features will not only alleviate computational and memory demands, but will also improve clustering accuracy. Feature selection may be desirable as an interpretable end in itself, shedding light on the underlying structure of the data.

Feature selection for clustering is an active area of research, with most of the well-known methods falling under the category of filter methods or wrapper models (Kohavi and John, 1997; Alelyani et al., 2018). Filter methods independently evaluate the clustering quality of the features without applying any clustering algorithm. Feature evaluation can be univariate (Zhao and Liu, 2007) or multivariate (Zhao and Liu, 2011). Filter criteria include entropy-based distances (Talavera, 1999) and Laplacian scores (He et al., 2006). Wrapper model methods (also called hybrid methods) first select subsets of attributes with or without filtering, then evaluate clustering quality based on the candidate subsets, and finally select the subset giving to the highest clustering quality. This process can be iterated until a desired clustering quality is met. The wrapper method of Dy and Brodley (2004) uses maximum likelihood criteria and mixture of Gaussians as the base clustering method. A variation of \(k \)-means called Clustering on Subsets of Attributes (COSA) (Friedman and Meulman, 2004) performs feature weighing to allow different clusters to be determined based by different sets of features. As formulated, COSA does not lead to sparse solutions.

Expanding on COSA, Witten and Tibshirani (2010) proposed a framework for feature selection that can result in feature-sparse centers. Their sparse \(k \)-means method (SKM) aims to maximize the objective

\[
\sum_{m=1}^{p} w_m \left(\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} d_{ijm} - \sum_{l=1}^{k} \frac{1}{|C_l|} \sum_{i,j \in C_l} d_{ijm} \right)
\]

(2)
with respect to the clusters \(C_l \) and the feature weights \(w_m \) subject to the constraints \(\|w\|_2 \leq 1 \), \(\|w\|_1 \leq s \), and \(w_m \geq 0 \) for all \(m \). Here \(d_{ijm} \) denotes a dissimilarity measure between \(x_{im} \) and \(x_{jm} \), the most natural choice being \(d_{ijm} = (x_{im} - x_{jm})^2 \). The \(\ell_1 \) penalty \(\|w\|_1 \leq s \) on the weight vector \(w \) ensures a sparse selection of the features, while the \(\ell_2 \) penalty \(\|w\|_2 \leq 1 \) on \(w \) gives more smoothness to the solution. Without smoothness, often only one component of \(w \) is estimated as positive. Maximization of the objective (2) is accomplished by block descent: holding \(w \) fixed, the objective is optimized with respect to the clusters \(C_l \) by the \(k \)-means tactic of assigning \(x_i \) to the cluster with the closest center. In this context the weighted distance \(\|y\| = \sum_m w_m y_m^2 \) is operative. Holding the \(C_l \) fixed, the objective is minimized with respect to \(w \). To handle outliers, Kondo et al. (2012) trims observations in the SKM framework, and Brodinová et al. (2017) assigns weights to observations.

Proposed contributions We propose a scheme that incorporates feature selection within Lloyd’s algorithm by adding a sorting step. This simple adjustment preserves the algorithm’s speed and scalability while addressing sparsity directly. Called Sparse \(k \)-Means with Feature Ranking (SKFR), the method forces all cluster centers \(\theta_j \) to fall in the \(s \)-sparse ball \(B_0(s) := \{ x \in \mathbb{R}^p, \|x\|_0 \leq s \} \). One may interpret the algorithm as projecting \(\theta_j \) onto \(B_0(s) \) at each iteration via ranking the components of \(\theta_j \) according to their reduction of the loss. Computing the projection amounts to truncating all but the top \(s \) ranked components to 0. As we will show, the ranking criterion can be computed without making a second pass through the data. Projection onto \(B_0(s) \) guarantees an interpretable sparsity structure in \(\theta_j \), in contrast to \(\ell_1 \) penalty approaches that are known to introduce unwanted shrinkage and do not always yield sparse solutions. The simplicity of the SKFR framework leads to straightforward modifications that extend to many salient data settings, allowing the method to account for missing values, outliers, and cluster specific sparsity sets.

The rest of the paper is organized as follows. The proposed algorithms are detailed in Section 2, and its properties are discussed in Section 3. We demonstrate the flexibility of our core routine by deriving various extensions in Section 4. The methods are validated empirically via a suite of simulation studies and real data in Sections 5 and 6. We close with a discussion and future directions in Section 7.

2 Sparse \(k \)-means with Feature Ranking

We present two versions of the SKFR algorithm, which both begin by standardizing each feature to have zero mean and unit variance. The first version, which we will refer to as SKFR1, chooses an optimal set of \(s \) globally informative features based on a ranking criterion defined below. Each informative component \(\theta_{jl} \) of cluster \(j \) is then set equal to the within-cluster mean

\[
\mu_{jl} = \frac{1}{|C_j|} \sum_{i \in C_j} x_{il},
\]

(3)
Algorithm 1 SKFR1 algorithm pseudocode

Input: data $X \in \mathbb{R}^{n \times p}$, number of clusters k, sparsity level s, initial clusters C_j

repeat
 for each cluster j: do
 $\mu_j = \frac{1}{|C_j|} \sum_{x_i \in C_j} x_i$
 end for
 for each feature l: do
 Rank l by criterion $d_l = \sum_j |C_j| \mu_{jl}^2$
 end for
 Let L be the set of features l with rank$(l) \leq s$
 for each sample i: do
 Assign x_i to the cluster C_j such that j minimizes $\sum_{l \in L} (x_{il} - \mu_{jl})^2 + \sum_{l \notin L} x_{il}^2$
 end for
until convergence

and the $p - s$ uninformative features are left at zero.

A second local version SKFR2 allows for the set of relevant features to vary across clusters: the ranking of top s features is performed for each cluster—akin to the COSA algorithm (Friedman and Meulman, 2004)—to permit richer distinctions between clusters. Within each cluster j, the s informative components are again updated by setting θ_{jl} equal to μ_{jl} defined in (3) with remaining uninformative components left at zero. Both versions of SKFR alternate cluster reassignment with cluster re-centering. In cluster reassignment, each sample is assigned exactly as in Lloyd’s algorithm to the cluster with closest center.

The choice of top features are determined based on the amount they affect the k-means objective. For SKFR1 (the global version), the difference

$$d_l = \sum_{i=1}^{n} (x_{il} - 0)^2 - \sum_{j=1}^{k} \sum_{i \in C_j} (x_{il} - \mu_{jl})^2$$

$$= -\sum_{j=1}^{k} \mu_{jl}^2 |C_j| + 2 \sum_{j=1}^{k} \mu_{jl} \sum_{i \in C_j} x_{il} = \sum_{j=1}^{k} |C_j| \mu_{jl}^2$$

measures the reduction of the objective as feature l passes from uninformative to informative status. The final equality in (4) shows that d_l can be written in a form that does not involve x_{il}, which suggests that surprisingly it can be computed without taking a second pass through the data. The s largest differences d_l identify the informative features. Alternatively, one can view the selection process as a projection to a sparsity set. This simple observation leads to a transparent and efficient Algorithm 1.

In the local version (SKFR2), the choice of informative features for cluster j depends on the
\[
d_{jl} = \sum_{i \in C_j} (x_{il} - 0)^2 - \sum_{i \in C_j} (x_{il} - \mu_{jl})^2 = |C_j|\mu_{jl}^2. \tag{5}\]

The \(s \) largest differences \(d_{jl} \) identify the informative features for cluster \(j \). These informative features may or may not be shared with other clusters. The pseudocode summary appears as Algorithm 2.

Algorithm 2 SKFR2 algorithm pseudocode

Input: data \(X \in \mathbb{R}^{n \times p} \), number of clusters \(k \), sparsity level \(s \), initial clusters \(C_j \)

repeat

for each cluster \(j \):

\[\mu_j = \frac{1}{|C_j|} \sum_{x_i \in C_j} x_i \]

for each feature \(l \):

Rank \(l \) by criterion \(d_{jl} = |C_j|\mu_{jl}^2 \)

end for

Let \(L_j \) be the set of features \(l \) with \(\text{rank}(l) \leq s \)

end for

for each sample \(i \):

Assign \(x_i \) to the cluster \(C_j \) such that \(j \) minimizes \(\sum_{l \in L_j} (x_{il} - \mu_{jl})^2 + \sum_{l \not\in L_j} x_{il}^2 \).

end for

until convergence

As we detail in the next section, both versions of SKFR enjoy a descent property and are guaranteed to reduce the \(k \)-means objective at each iteration. Both versions dynamically choose informative features, while retaining the greedy nature and low \(O(npk) \) computational complexity of Lloyd’s algorithm. Like Lloyd’s algorithm, neither version is guaranteed to converge to a global minimum of the objective, though they are both guaranteed to converge in finite iterations.

Our proposed framework is more straightforward and interpretable than existing competitors. For instance, the SKM algorithm relies on proximal gradient descent with an inner bisection algorithm at each step to select dual parameters, and promotes sparsity through a less interpretable tuning constant \(\lambda \). The extensions for robust versions of such methods, for instance trimmed versions, entail even more computational overhead. In contrast, as we see in Section 4, robustification and other modifications accounting for specific data settings only require natural and simple modifications of SKFR.

3 Properties

Complexity We first note that in the extreme case where we set \(s = p \), our algorithm reduces to Lloyd’s original \(k \)-means algorithm. As the sorting step in ranking is only logarithmic in \(n \), it is straightforward to see that our algorithm enjoys the same \(O(npk) \) complexity.
Monotonicity of the Objective To establish convergence of the algorithm, it suffices to prove that it possesses a descent property as the objective is bounded below.

Proposition 1. Each iteration of Algorithm 1 and Algorithm 2 monotonically decreases the k-means objective function $h(C, \theta) = \sum_{j=1}^{k} \sum_{x \in C_j} \|x - \theta_j\|^2$.

This result shows that the descent property of Lloyd’s k-means objective is preserved. In each iteration, our proposed algorithms also optimize centroids under fixed labels and then vice versa; that a projection to sparsity occurs after the centroid update preserves monotonicity. For completeness an explicit proof of Proposition 1 is provided in the Supplement.

Strong consistency of centroids In addition to the algorithmic properties above, we establish convergence in the statistical sense in that our method enjoys strong consistency in terms of the optimal centroids. We state the assumptions and theorem statement of the result below, and defer its proof to the Supplement. In particular, Theorem 1 shows that our method inherits a property of standard k-means method established by Pollard (1981).

Let $\{x\}_n$ be independently sampled from a distribution P, and let $\Theta \subset B_0(s)$ denote a set of k points. Define the objective function

$$
\Phi(\Theta, P) = \int \min_{\theta \in \Theta} \|x - \theta\|^2 P(dx).
$$

Let Θ^* denote the minimizer of $\Phi(\Theta, P)$, and let Θ_n be the minimizer of $\Phi(\Theta, P_n)$, where P_n is the empirical measure. The following theorem establishes strong consistency under an identifiability assumption and a selection consistency assumption.

Theorem 1. Assume that for any neighborhood N of Θ^*, there exists $\eta > 0$ such that $\Phi(\Theta, P) > \Phi(\Theta^*, P) + \eta$ for every $\Theta \notin N$. Then if Θ_n eventually lie in the same dimension as Θ^*, we have $\Theta_n \overset{a.s.}{\to} \Theta^*$ as $n \to \infty$.

We remark that while the identifiability is a mild assumption, consistency of cluster centers relies on the top s features to be identified correctly. This second assumption is reasonably strong, and it will be of interest to investigate conditions in the data that lead to feature selection consistency in place of this assumption.

4 Extensions to SKFR

The simplicity of the SKFR framework allows for straightforward, modular extensions of our two basic algorithms. In the scenarios considered below, existing variations on k-means often require complex adjustments that must be derived on a case-by-case basis. Our simple core routine applies to a variety of common situations in data analysis.
Missing Data Missing data are common in many real-world data applications. To recover a complete dataset amenable to traditional clustering, practitioners typically impute missing features or delete incomplete samples in a preprocessing step. Imputation can be computationally expensive and potentially erroneous. Deleting samples with missing features risks losing valuable information and is ill advised when the proportion of samples with missing data is high. Chi et al. (2016) proposed a simple alternative called \(k\)-pod that does not rely on additional tuning parameters or assumptions on the pattern of missingness. Let \(\Omega \subset \{1,...,n\} \times \{1,...,p\} \) denote the index set corresponding to the observed entries of the data matrix \(X \). The \(k\)-means objective is rephrased as

\[
\sum_{j=1}^{k} \sum_{i \in C_j} \sum_{(i,l) \in \Omega} (x_{il} - \theta_{jl})^2.
\]

Their strategy invokes the majorization-minimization (MM) principle (Becker et al., 1997), which involves majorizing the objective by a surrogate function at each iteration and then minimizing the surrogate. This action provably drives the objective downhill (Lange, 2016). At iteration \(n \) define \(y_{n,il} \) by \(x_{il} \) for \((i,l) \in \Omega \) and by \(\theta_{n,jl} \) for \((i,l) \notin \Omega \) and \(x_i \) assigned to cluster \(j \). The surrogate function is then defined by

\[
\sum_{i=1}^{n} \min_{1 \leq j \leq k} \| y_i - \theta_j \|_2^2.
\]

In other words, each missing \(x_{il} \) is filled in by the current best guess of its value. Because our sparse clustering framework shares the same skeleton as \(k\)-means, exactly the same imputation technique carries over. Every iteration under imputation then makes progress in reducing the objective, preserving convergence guarantees.

Outliers One popular way to deal with outlying data is via data trimming, but due to its additional computational overhead, this approach becomes quickly limited to only moderate dimensional settings (Kondo et al., 2012; Brodinová et al., 2017). A viable alternative to handle outliers is to replace squared Euclidean norms by a robust alternative. The \(\ell_1 \) norm is such a choice, which entails replacing within-cluster means (3) of SKFR1 by within-cluster medians, and the global distances (4) by

\[
d_l = \sum_{i=1}^{n} |x_{il} - 0| - \sum_{j=1}^{k} \sum_{i \in C_j} |x_{il} - \mu_{jl}|.
\]

An analogous expression holds for the local version of SKFR. Observe that the revised distances lose some the algebraic simplicity of the original distances; now we must pass through the data to compute \(d_l \). The overall algorithm remains identical to SKFR up to this substitution for \(d_l \).

Choice of Sparsity Level In contrast to penalized methods, SKFR deals with sparsity directly through an interpretable sparsity level \(s \). If one desires a particular level \(s \) or \(s \) is known in advance, then it does not require tuning. In sparse \(k\)-means (SKM) for instance (Witten and Tibshirani,
2010), prior information does not directly inform the choice of the continuous shrinkage \(\lambda \). When the sparsity level \(s \) must be learned, one can capitalize on a variant of the gap statistic (Tibshirani et al., 2001) to find an optimal value of \(s \). Witten and Tibshirani (2010) suggest a permutation test and a score closely related to the original gap statistic to tune the \(\ell_1 \) bound parameter on the feature weight vector. Here we adopt a similar approach, employing the gap statistic which depends on the difference

\[
O(X, s) = \sum_{x_i \in X} \| x_i - \bar{x} \|_2^2 - \sum_{j=1}^{k} \sum_{i \in C_j} \| x_i - \mu_j \|_2^2
\]

between the total sum of squares and the sum of the within cluster sum of squares at the optimal cluster. One now randomly permutes the observations within each column of \(X \) to obtain \(B \) independent datasets \(X_1, \ldots, X_B \). Finally, the parameter \(s \) is chosen to maximize

\[
\text{Gap}(s) = \log O(X, s) - \frac{1}{B} \sum_{b=1}^{B} \log O(X_b, s).
\]

Algorithm 3 SKFR permutation tuning pseudocode

Input: data \(X \in \mathbb{R}^{n \times p} \), class size \(k \), sparsity range \(S \), number of permutation replicates \(B \).

Create \(B \) permuted datasets \(X_b \) by independently permuting the observations within each column of \(X \).

for each \(s \in S \): do

- Compute the statistic \(O(s, X) \).

 for each \(b = 1 : B \): do

 - Perform SKFR with sparsity \(s \) on \(X_b \).
 - Compute \(O(X_b, s) \).

 end for

- Compute the gap statistic \(\text{Gap}(s) = \log O(X, s) - \frac{1}{B} \sum_{b=1}^{B} \log O(X_b, s) \).

end for

Choose \(s \in S \) to maximize \(\text{Gap}(s) \).

To illustrate the performance of the permutation test, summarized in Algorithm 3, we simulated two datasets with \(n = 400 \) samples and \(k = 10 \) equally sized clusters. There are \(s = 15 \) informative features in each, while the first dataset has an ambient dimension of \(p = 50 \) while the second involves only \(p = 20 \) total features. These settings contrast sparse and dense feature-driven data; a detailed description of the simulation is described in Section 5.1. The true \(s \) can be recovered in both settings, with gap statistics plotted in Figure 1.

5 Results and Performance

In this section, we use simulated experiments to validate SKFR and its extensions and to compare them to competing peer algorithms. We consider both locally and globally informative features
Gap statistic when the number of noisy variables is much greater than the number of informative variables.

Gap statistic when the number of noisy variables is much smaller than the number of informative variables.

Figure 1: Gap statistics in sparse and dense settings. The ground truth $s = 15$, labeled by the red circle in both plots, is selected by the permutation test in both settings.

to assess both variants, and then showcase SKFR’s adaptability in handling missing data. In all simulations, the number of informative features s is chosen to be 10, and we explore a range of sparsity levels by varying the total number of features $p \in (20, 50, 100, 200, 500, 1000)$. The SKFR variant and all the competing algorithms are seeded by the k-means++ initialization scheme (Arthur and Vassilvitskii, 2007). We use the adjusted Rand index (ARI) (Rand, 1971; Vinh et al., 2009) to quantify the performance of the algorithms. These values are plotted for ease of visual comparison, while detailed numerical ARI results are tabulated in the Supplement Section B. In addition, we also give the results evaluated by the normalized variation of information (NVI) (Vinh et al., 2010) in the Supplement.

5.1 Sparse Clustering Test

In this experiment, we test SKFR against Lloyd’s algorithm and SKM. The latter algorithm is implemented in the R package **sparcl**. We follow the simulation setup of Brodinová et al. (2017). We have $n = 400$ samples spread over $k = 10$ classes of equal size. The informative features of samples from class j follow a multivariate normal distribution $\mathcal{N}(\mu_j, \Sigma_j)$. The mean vector μ_j is constructed by first sampling a scalar μ from the distribution $\mathcal{U}[-6, -3] \cup \mathcal{U}[3, 6]$. If we assume for convenience that the informative features are numbered $1, \ldots, s$, then we set

$$
\mu_{jl} = \begin{cases}
\mu, & l \in \{a_{j1}, a_{j2}, \ldots\} \\
0, & \text{otherwise},
\end{cases}
$$

(8)

where a_{jn} is the sequence defined recursively by $a_{j1} = j$ and $a_{j(n+1)} = a_{jn} + k$. The covariance
matrix Σ_j is generated (Campello et al., 2015) as

$$\Sigma_j = Q \begin{pmatrix} 1 & \rho_j & \cdots & \rho_j \\ \rho_j & \ddots & \cdots & \vdots \\ \vdots & \cdots & \ddots & \rho_j \\ \rho_j & \cdots & \rho_j & 1 \end{pmatrix} Q^\top,$$

(9)

where Q is a random rotation matrix with $Q^\top = Q^{-1}$, and the value ρ_j in the off-diagonal entries is chosen uniformly over the interval $[0, 1, 0.9]$. The $p-s$ uninformative features are sampled from univariate standard normal distributions.

For each scenario we run 30 trials with 20 restarts per trial. Finally, we tune SKM’s ℓ_1 bound parameter over the range $[2, 10]$ by the gap statistic.

Figure 2a plots median ARI values over 30 trials under each simulation setting for the three algorithms. It is evident from the plot that Lloyd’s k-means algorithm eventually deteriorates as the dimension of the dataset and number of noisy features increase. Both SKFR and SKM ARI values remain close to 1 throughout the range of simulation settings. This finding illustrates the necessity of sparse clustering in high-dimensional settings.

Both SKFR and SKM have the ability to perform feature selection. With SKFR both false positive and false negative median rates over 30 trials are 0 under all 6 experimental settings. In other words SKFR is able to select the 10 informative features exactly and consistently. For SKM the entries of the weight vector w corresponding to the informative features have higher values than uninformative entries at convergence. However, SKM does not consistently deliver sparse solutions. For example, at convergence all entries of the weight vector w are non-zero for the $p=20$ setting, while for the $p=1000$ setting over 400 entries are non-zero. Therefore, we find SKFR preferable to SKM in terms of feature selection.

This experiment also allows us to time and record iteration counts for SKFR and standard k-means. Table 1 tabulates our results obtained in a Julia 1.1 implementation (Bezanson et al., 2017). For each simulation setting, the table shows average results over 20 runs. In almost all cases, SKFR takes much less run time. For $p=1000$, k-means terminates first but is unable to handle the high number of noisy features. In such cases, iterations until convergence can be misleading as k-means is stopping short at a poor local minimum, as evident from Figure 2a. Since competing methods such as SKM are of much higher computational complexity, as they call k-means as a subroutine per iteration, they are omitted from the timing comparison table. Our empirical study emphasizes that SKFR stands out in terms of runtime—not only is it on par with k-means in terms of complexity, but in practice may converge faster.

5.2 Robustness Against Outliers

To test the robustness of SKFR to outliers, we adopt our earlier simulation settings and replace a modicum of the observations in each class by outliers, again following a design by Brodinová
Figure 2: ARI of SKFR, k-means, and SKM for sparse clustering with and without outliers.

Table 1: Runtime in seconds of SKFR and Lloyd’s k-means and (number of iterations) below

	p= 20	50	100	200	500	1000
SKFR	0.002	0.003	0.004	0.011	0.014	0.04
Lloyd	0.017	0.021	0.030	0.045	0.053	**0.010**

	6.0	8.0	10.5	10.7	11.3	17.0
Lloyd	6.7	7.3	9.8	11.8	13.3	**2.02**

et al. (2017). Specifically, we contaminate 2 informative features in 10% of the observations with scatter outliers generated according to the $\mathcal{N}(\mu_j, \sigma I)$ distribution, where $\sigma \sim \mathcal{U}[3, 10]$, and μ_j is the mean vector described in Equation (8). Next, we contaminate 10% of the uninformative features in another 10% of the observations by uniformly distributed outliers $\sim \mathcal{U}[-12, 6] \cup \mathcal{U}[6, 12]$. For this experiment, we again generate $k = 10$ equally sized classes and a total of $n = 400$ observations. We compare SKFR to SKM, as well as the geometric k-median algorithm (Cardot et al., 2012), which is designed to be robust to outliers compared to k-means. The latter algorithm is available in R in the Gmedian package. We generate 30 trials for each setting and use 20 restarts for each algorithm.

Median ARI values are plotted in Figure 2b. The geometric k-median algorithm deteriorates severely in the high dimensional cases, where there are many more noise features than informative features. To show SKFR feature selection capability in the presence of outliers, we tabulate median false positive rates. For SKFR the false positive rate is equal to the false negative rate because for a specified sparsity value, the algorithm picks up as many noise features as missed informative features. For SKM Table 2 shows both median false positive and median false negative rates. Since
SKM did not typically result in a sparse solution, we set a threshold and choose weight components greater than 0.1 to be selected features. In all outlier settings, SKFR is noticeably superior to SKM in feature selection accuracy.

Table 2: False Positive Rate of SKFR and SKM, and (false negative rate for SKM) below

	p = 20	50	100	200	500	1000
SKFR	0.0	0.10	0.25	0.30	0.60	0.90
SKM	0.10	0.20	0.40	1.30	2.90	3.85
	(0.25)	(0.60)	(1.0)	(0.80)	(1.0)	(1.0)

5.3 Clustering on Different Subsets of Attributes

We next consider simulated data with different sets of distinguishing attributes for different underlying classes. We generate \(n = 250 \) samples spread unevenly over \(k = 5 \) classes. The \(s \) informative features of samples from each class are multivariate standard normal samples whose centers are initialized in the hypercube with entries \(\theta_{jl} \sim 6 \cdot \mathcal{U}(0,1) \) for \(l = 1, \cdots, s \), and the \(p - s \) uninformative features are sampled from \(\mathcal{N}(0,3) \). The set of informative features of each cluster is chosen by independently sampling a subset of size \(s \) from all the \(p \) dimensions. This simulation setting is modeled after a design that has appeared through numerous previous studies of \(k \)-means (Zhang, 2001; Hamerly and Elkan, 2002; Xu and Lange, 2019). We compare the local version SKFR2 to Lloyd’s \(k \)-means algorithm and SKM under the same levels of sparsity as the previous experiments. The median ARI results of the algorithms are plotted in Figure 3a.

Though SKM outperforms Lloyd’s \(k \)-means significantly, we observe that our SKFR method performs at least on par with SKM, and begins to outperform when \(p \) is large enough, despite its significantly lower computational cost.

5.4 Partially Observed Data

This simulation study follows a data generating mechanism similar to that described in Section 5.3. There are 10 informative features shared across all classes. \(n = 250 \) samples are generated and spread unevenly over \(k = 5 \) classes at random. The informative features are again multivariate standard normal samples with centers \(\theta_{jl} \sim 6 \cdot \mathcal{U}(0,1) \) for \(l = 1, \cdots, s \), while the uninformative features are sampled from \(\mathcal{N}(0,1.5) \). To simulate missingness, 10% of the entries of \(X = \{x_{ij}\} \) are replaced by \(\text{NA} \) values uniformly at random. We compare SKFR with imputation under the \(k \)-pod algorithm as implemented in the \texttt{kpodclust} \texttt{R} package. For each setting we run 30 trials, and report the best of 10 random restarts for each algorithm. The median ARI results of the 30 trials for both algorithms are plotted in Figure 3b. As in the complete data scenarios, SKFR remains competitive and actually outperforms \(k \)-pod for high-dimensional cases in the presence of noisy data.
Sparse clustering where classes have different subsets of discriminant attributes.

Figure 3: Performance of SKFR and its extensions compared with existing competitors; SKFR is competitive or superior despite its low computational cost.

6 Real Data Analysis

Mice Protein Case Study Having validated the algorithm on synthetic data, we begin our real data analysis by examining a mice protein expression dataset from a study of murine Down Syndrome (Higuera et al., 2015). The dataset consists of 1080 expression level measurements on 77 proteins measured in the cerebral cortex. There are 8 classes of mice (control versus trisomic, stimulated to learn versus not stimulated, injected with saline versus not injected). In the original paper, Higuera et al. (2015) use self-organizing maps (SOMs) to discriminate subsets of the 77 proteins. The authors employ SOMs of size 7×7 to organize the control mice into 49 nodes. For classifying trisomic mice, the size of SOMs is chosen to be 6×6. In our treatment of the data, we use SKFR to cluster the control mice and the trisomic mice into 49 and 36 groups, respectively, and compare our clustering results with those obtained using Lloyd’s algorithm, the SOMs from the original analysis, and the power k-means algorithm which was recently used to reanalyze this dataset (Xu and Lange, 2019). We evaluate clustering quality following measures proposed by Higuera et al. (2015): number of mixed class nodes, which result from assigning mice from more than one class, and the total number of mice in mixed-class nodes. All methods are seeded with k-means++ over 20 initializations, and the sparsity level for SKFR is chosen to be $s = 24$ as tuned via the gap statistic for both the control and trisomic mice data. The classification results are displayed in Table 3, showing that SKFR typically achieves a much higher clustering quality than its competitors.

In contrast to the other methods, our algorithm not only assigns labels to the mice, but also
produces interpretable output informing us of the most discriminating proteins. Out of the 24 selected proteins for the control group, 18 proteins are consistent with those identified by Higuera et al. (2015); for the trisomic mice group, 20 proteins match those from the original study. The complete lists of informative proteins selected by SKFR and further details of our analysis appear in the Supplement.

Table 3: Protein expression level clustering quality for a mouse trisomy learning study

	Control Mice	Trisomic Mice		
	Mixed Nodes	Total Mixed	Mixed Nodes	Total Mixed
SOM	8	110	5	84
SKFR	4	67	3	64
Power	7	92	4	70
\(k\)-means++	11	164	9	152

Benchmark Datasets To further validate our proposed algorithm, we compare SKFR to widely used competitors on 10 widely used benchmark datasets collected from the Keel, ASU, and UCI machine learning repositories. A brief description of each dataset is given in the Supplement. Our algorithm competes with Lloyd’s \(k\)-means algorithm, sparse \(k\)-means algorithm (SKM) from the \texttt{R} package \texttt{sparcl}, and entropy-weighted \(k\)-means (Jing et al., 2007) from the \texttt{R} package \texttt{wskm}. While \texttt{wskm} is not a sparse clustering method per se, it is a popular approach that assigns weights to feature relevance, and we do not know whether exact sparsity exists in real data scenarios. On each example, we run 20 independent experiments, in which each competing algorithm is given the same \(k\)-means++ initial seeding for fair comparison. Both SKM and SKFR1 are tuned using the gap statistic, and we run \texttt{wskm} using the default recommended settings. We evaluate the performance of the algorithms on each dataset with normalized mutual information (NMI) (Vinh et al., 2010) and report the results in Table 4. The performance evaluated by ARI is given in the Supplement. Out of the 10 datasets, our SKFR1 gives the best result in NMI for 9 datasets.

7 Discussion and Future Work

We present a novel framework (SKFR) for sparse \(k\)-means clustering with an emphasis on simplicity and scalability. In particular, SKFR does not rely on global shrinkage or \(l_1\) penalization. Because its ranking phase is very quick, SKFR preserves the low time-complexity of Lloyd’s algorithm. Further, it inherits properties such as monotonicity, finite-time convergence, and consistency. Because it is also a greedy algorithm, SKFR may also reach local minima. As noted previously, feature selection consistency is an interesting avenue for further theoretical investigation.
Table 4: NMI values of SKFR and competing algorithms on benchmark datasets, and (standard deviation) below

Dataset	SKFR	k-means++	SKM	EW k-means
Newthyroid	0.441	0.348	0.214	0.205
	(0.059)	(0.101)	(0.001)	(0.066)
WarpAR10P	0.189	0.187	0.131	0.183
	(0.056)	(0.027)	(0.025)	(0.020)
WarpPIE10P	0.251	0.240	0.229	0.190
	(0.031)	(0.045)	(0.054)	(0.042)
Iris	0.815	0.732	0.797	0.667
	(0.032)	(0.048)	(0.003)	(0.156)
Wine	0.729	0.414	0.416	0.406
	(0.054)	(0.018)	(0.016)	(0.029)
Zoo	0.825	0.703	0.705	0.683
	(0.047)	(0.066)	(0.054)	(0.072)
WDBC	0.585	0.421	0.421	0.384
	(0.002)	(0.001)	(0.001)	(0.080)
LIBRAS	0.565	0.564	0.551	0.486
	(0.024)	(0.022)	(0.017)	(0.030)
Ecoli	0.367	0.363	0.362	0.366
	(0.041)	(0.042)	(0.014)	(0.039)
Wall Robot 4	0.176	0.155	0.155	0.246
	(0.065)	(0.021)	(0.088)	(0.092)

We find empirically that SKFR is competitive with alternatives in sparse clustering despite incurring (often significantly) lower computational overhead. In contrast to its competitors, SKFR is highly scalable and modular. As demonstrated in Section 5, its extensions gracefully handle data settings including missing values and outliers. Finally, SKFR requires just one hyperparameter, the sparsity level s, which can be tuned using the gap statistic or cross-validation. In some cases, a desired or known level s may be specified in advance. As parameter tuning in unsupervised settings is often costly and may suffer from instability, our directly interpretable tuning parameter can be quite advantageous.

The core idea of ranking and truncating relevant features can be viewed as a special case of clustering under a general set constraint $\theta_j \in T$ on the cluster centers. Here the set $T \subset \mathbb{R}^p$ should be closed, but alternative constraints rather than the sparse ball may be relevant. Further exploration of this principle is warranted since it may be helpful in designing simple algorithms for related estimation tasks. In the cluster center recalculation step, for each cluster C_j the loss can be
improved by minimizing the criterion

\[\sum_{i \in C_j} \| x_i - \theta_j \|^2_2 = |C_j| \cdot \left\| \frac{1}{|C_j|} \sum_{i \in C_j} x_i - \theta_j \right\|^2_2 + d, \] (10)

where \(d \) is a constant irrelevant to the minimization process. The solution \(\theta_j = P_T \left(\frac{1}{|C_j|} \sum_{i \in C_j} x_i \right) \) can be phrased in terms of the center of mass of the data points and the projection operator \(P_T(y) \) taking a point \(y \) to the closest point in \(T \). Many projection operators can be computed by explicit formulas or highly efficient algorithms (Bauschke and Combettes, 2011; Beck, 2017), while the same principle may be employed for clustering under more general divergences such as Bregman divergences (Banerjee et al., 2005). The notion of projection carries over and remains computationally tractable for geometrically simple yet relevant sets such as box constraints or halfspaces. Thus, our novel framework and algorithmic primitive for sparse clustering apply to a broad class of constrained clustering problems. In our view, this is a fruitful avenue for future research.

References

C. C. Aggarwal, A. Hinneburg, and D. A. Keim. On the surprising behavior of distance metrics in high dimensional space. In International Conference on Database Theory, pages 420–434. Springer, 2001.

M. Al Hasan, V. Chaoji, S. Salem, and M. J. Zaki. Robust partitional clustering by outlier and density insensitive seeding. Pattern Recognition Letters, 30(11):994–1002, 2009.

S. Alelyani, J. Tang, and H. Liu. Feature selection for clustering: A review. In Data Clustering, pages 29–60. Chapman and Hall/CRC, 2018.

D. Arthur and S. Vassilvitskii. k-means++: The advantages of careful seeding. In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages 1027–1035. Society for Industrial and Applied Mathematics, 2007.

A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh. Clustering with Bregman divergences. Journal of machine learning research, 6(Oct):1705–1749, 2005.

H. H. Bauschke and P. L. Combettes. Convex Analysis and Monotone Operator Theory in Hilbert Spaces, volume 408. Springer, 2011.

A. Beck. First-order Methods in Optimization. SIAM, 2017.

M. P. Becker, I. Yang, and K. Lange. EM algorithms without missing data. Statistical Methods in Medical Research, 6(1):38–54, 1997.
K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is nearest neighbor meaningful? In International Conference on Database Theory, pages 217–235. Springer, 1999.

J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A fresh approach to numerical computing. SIAM Review, 59(1):65–98, 2017.

P. S. Bradley and U. M. Fayyad. Refining initial points for K-means clustering. In ICML, volume 98, pages 91–99. Citeseer, 1998.

Š. Brodinová, P. Filzmoser, T. Ortner, C. Breiteneder, and M. Rohm. Robust and sparse k-means clustering for high-dimensional data. Advances in Data Analysis and Classification, pages 1–28, 2017.

R. J. Campello, D. Moulavi, A. Zimek, and J. Sander. Hierarchical density estimates for data clustering, visualization, and outlier detection. ACM Transactions on Knowledge Discovery from Data (TKDD), 10(1):5, 2015.

H. Cardot, P. Cénac, and J.-M. Monnez. A fast and recursive algorithm for clustering large datasets with k-medians. Computational Statistics & Data Analysis, 56(6):1434–1449, 2012.

M. E. Celebi, H. A. Kingravi, and P. A. Vela. A comparative study of efficient initialization methods for the k-means clustering algorithm. Expert Systems with Applications, 40(1):200–210, 2013.

J. T. Chi, E. C. Chi, and R. G. Baraniuk. k-pod: A method for k-means clustering of missing data. The American Statistician, 70(1):91–99, 2016.

S. Dasgupta. The hardness of k-means clustering. Department of Computer Science and Engineering, University of California, 2008.

J. G. Dy and C. E. Brodley. Feature selection for unsupervised learning. Journal of Machine Learning Research, 5(Aug):845–889, 2004.

M. Eto. The concept of depth in statistics. Technical report, Tech. rep.(cited on page 31).

J. H. Friedman and J. J. Meulman. Clustering objects on subsets of attributes (with discussion). Journal of the Royal Statistical Society: Series B (Statistical Methodology), 66(4):815–849, 2004.

G. Hamerly and C. Elkan. Alternatives to the k-means algorithm that find better clusterings. In Proceedings of the Eleventh International Conference on Information and Knowledge Management, pages 600–607. ACM, 2002.

X. He, D. Cai, and P. Niyogi. Laplacian score for feature selection. In Advances in Neural Information Processing Systems, pages 507–514, 2006.

C. Higuera, K. J. Gardiner, and K. J. Cios. Self-organizing feature maps identify proteins critical to learning in a mouse model of down syndrome. PloS One, 10(6):e0129126, 2015.
L. Jing, M. K. Ng, and J. Z. Huang. An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data. IEEE Transactions on knowledge and data engineering, 19(8): 1026–1041, 2007.

R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial Intelligence, 97(1-2): 273–324, 1997.

Y. Kondo, M. Salibian-Barrera, and R. Zamar. A robust and sparse K-means clustering algorithm. arXiv preprint arXiv:1201.6082, 2012.

K. Lange. MM Optimization Algorithms, volume 147. SIAM, 2016.

S. Lloyd. Least squares quantization in pcm. IEEE Transactions on Information Theory, 28(2): 129–137, 1982.

M. Mahajan, P. Nimbhorkar, and K. Varadarajan. The planar k-means problem is NP-hard. Theoretical Computer Science, 442:13–21, 2012.

I. B. Mohamad and D. Usman. Standardization and its effects on K-means clustering algorithm. Research Journal of Applied Sciences, Engineering and Technology, 6(17):3299–3303, 2013.

R. Ostrovsky, Y. Rabani, L. J. Schulman, and C. Swamy. The effectiveness of Lloyd-type methods for the k-means problem. Journal of the ACM (JACM), 59(6):28, 2012.

D. Pollard. Strong consistency of k-means clustering. The Annals of Statistics, pages 135–140, 1981.

W. M. Rand. Objective criteria for the evaluation of clustering methods. Journal of the American Statistical association, 66(336):846–850, 1971.

H. Steinhaus. Sur la division des corp materiels en parties. Bull. Acad. Polon. Sci, 1(804):801, 1956.

L. Talavera. Feature selection as a preprocessing step for hierarchical clustering. In ICML, volume 99, pages 389–397. Citeseer, 1999.

R. Tibshirani, G. Walther, and T. Hastie. Estimating the number of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(2): 411–423, 2001.

A. Vattani. The hardness of k-means clustering in the plane. Manuscript, accessible at http://cseweb.ucsd.edu/avattani/papers/kmeans hardness.pdf, 617, 2009.

N. X. Vinh, J. Epps, and J. Bailey. Information theoretic measures for clusterings comparison: is a correction for chance necessary? In Proceedings of the 26th Annual International Conference on Machine Learning, pages 1073–1080. ACM, 2009.
N. X. Vinh, J. Epps, and J. Bailey. Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance. *Journal of Machine Learning Research*, 11(Oct):2837–2854, 2010.

D. M. Witten and R. Tibshirani. A framework for feature selection in clustering. *Journal of the American Statistical Association*, 105(490):713–726, 2010.

J. Xu and K. Lange. Power k-means Clustering. In *Proceedings of the 36th International Conference on Machine Learning*, volume 97 of *Proceedings of Machine Learning Research*, pages 6921–6931, Long Beach, California, USA, 09–15 Jun 2019. PMLR.

B. Zhang. Generalized k-harmonic means–dynamic weighting of data in unsupervised learning. In *Proceedings of the 2001 SIAM International Conference on Data Mining*, pages 1–13. SIAM, 2001.

Z. Zhao and H. Liu. Spectral feature selection for supervised and unsupervised learning. In *Proceedings of the 24th International Conference on Machine Learning*, pages 1151–1157. ACM, 2007.

Z. A. Zhao and H. Liu. *Spectral Feature Selection for Data Mining (Open Access)*. Chapman and Hall/CRC, 2011.