991. Blockade of the PD-1/PD-L1 Immune Checkpoint Pathway Improves Mortality, Infection Severity, and Fungal Clearance in an Immunosuppressed Murine Model of Invasive Pulmonary Mucormycosis

Sebastian Wurster, MD,1 Nathaniel D. Albert,1 Dimitrios P. Kontoyiannis, MD,1 The University of Texas MD Anderson Cancer Center, Houston, TX

Session: P-55. Medical Mycology

Background. Emerging experimental evidence suggests that immune checkpoint inhibitors (ICIs) enhance antifungal immunity. In addition, there is anecdotal evidence of potential benefit of adjunct PD-1 pathway blockade in patients with intractable mucormycosis. However, proof-of-concept data in animal models are lacking. Therefore, we compared the efficacy of PD-1 and PD-L1 inhibition in an immunosuppressed murine model of invasive pulmonary mucormycosis (IPM).

Methods. Female 8-9-week-old BALB/c mice were immunosuppressed with cyclophosphamide (150 mg/kg on days 4 and 1, 100 mg/kg on day 1) and cortisone acetate (300 mg/kg on day 1) and infected intranasally with 50,000 Rhizopus arrhizus spores (clinical isolate Ra-749, day 0). On days 0, +2, +4, and +6, mice received intraperitoneal injections of 250 µg/kg PD-1 or PD-L1 blocking antibodies versus (vs.) 250 µg/kg of the corresponding isotype antibodies (all antibodies from Leinco Technologies). Survival was monitored for 7 days post-infection. Infection severity was scored using the murine sepsis score (MSS: 0 = healthy to 3 = moribund). Fungal burden in lung tissue was determined by an 185 quantitative PCR assay on day 7 or upon death. 20 mice per treatment were assessed in 2 independent experiments.

Results. Control mice with IPM receiving either of the unspecific isotype antibodies developed severe infection (median MSS on day 7: 2.5-3.0) and had a high 7-day mortality (50-55%). Compared to the corresponding isotype control, PD-L1 inhibition showed strong therapeutic benefit, significantly improving morbidity (median MSS = 1.0 vs. 2.5, p = 0.002), 7-day mortality (15% vs. 50%, p = 0.02) and fungal burden (3.66 vs. 27.2k spore equivalents/lung, p < 0.001). In contrast, blockade of PD-L1 modestly yet non-significantly reduced infection severity (median MSS = 2.1 vs. 3.0, p = 0.48), 7-day mortality (35% vs. 55%, p = 0.12), and fungal burden (5.6k vs. 40.7k spore equivalents/lung, p = 0.09) compared to isotype control.

Conclusion. Even without concomitant antifungals, blockade of PD-L1 and to a lesser extent of PD-1 improved mortality, infection severity, and fungal clearance in immunosuppressed mice with IPM. Immune phenotyping studies are in progress to better understand the protective antifungal activity of ICIs in IPM.

Disclosures. Dimitrios P. Kontoyiannis, MD, Astellas (Consultant/Cidarad Therapeutics (Advisor or Review Panel member)Gilead Sciences (Consultant, Grant/Research Support, Other Financial or Material Support, Honoraria)
Results.
CRISPRclean treatment of the fully contrived samples increases the fraction of reads that map to the SARS-CoV-2 genome by an average of ~10-fold

Figure 1: Schematic of the Jumpcode CRISPRclean protocol

Figure 2: CRISPRclean workflow easily integrates into next generation sequencing projects

Figure 3: Metatranscriptomics powered by CRISPR-mediated rRNA depletion offers a robust methodology to acquire viral genomic data, microbiome composition, co-infection information, and the transcriptional status of the host immune response in a single workflow.

Figure 4: CRISPRclean treatment of the contrived samples increases ~10 fold of reads after CRISPRclean depletion.

Table 1: SARS-CoV-2 fraction of total RNA

SARS CoV-2 fraction of total RNA	% of genome covered at 1X	% of genome covered at 10X
1.0000%	100%	100%
0.1000%	100%	100%
0.0100%	100%	100%
0.0010%	80%	48%
0.0001%	30%	7%

Coverage of the SARS-CoV-2 genome at 50 million reads.

Figure 5: For the sample containing 0.0001% SARS-CoV-2, (60 viral copies), the number of reads mapping to the SARS-CoV-2 genome increases from ~10,000 reads to ~70,000 reads after CRISPRclean depletion.

Figure 6: For the sample containing 0.0001% SARS-CoV-2, (60 viral copies), the number of reads mapping to the SARS-CoV-2 genome increases from ~10,000 reads to ~70,000 reads.

Conclusion. CRISPRclean treatment of the contrived samples increases ~10 fold of reads that map to the SARS-CoV-2 genome.

For the 60 viral copies of SARS-CoV-2 sample, the number of reads mapping to the SARS-CoV-2 genome increases from ~10,000 reads to ~70,000 reads. A similar increase in reads occurs for S. aureus. The percentage of SARS-CoV-2 genome covered at 1X and 10X also increases. Similar results were achieved even after downsampling the datasets to 5M reads. There is a ~4 fold increase in bacterial species detection in these stool samples after CRISPRclean treatment. Percentage of SARS-CoV-2 genome covered at 1X and 10X increases as a result of rRNA depletion.

Figure 7: For the sample containing 0.0001% SARS-CoV-2, (60 viral copies), the number of reads mapping to the SARS-CoV-2 genome increases from ~10,000 reads to ~70,000 reads.

Figure 8: CRISPRclean treatment of the contrived samples increases ~10 fold of reads that map to the SARS-CoV-2 genome.

Figure 9: For the 60 viral copies of SARS-CoV-2 sample, the number of reads mapping to the SARS-CoV-2 genome increases from ~10,000 reads to ~70,000 reads.

Figure 10: CRISPRclean treatment of the contrived samples increases ~10 fold of reads that map to the SARS-CoV-2 genome.

Figure 11: CRISPRclean treatment of the contrived samples increases ~10 fold of reads that map to the SARS-CoV-2 genome.

Figure 12: CRISPRclean treatment of the contrived samples increases ~10 fold of reads that map to the SARS-CoV-2 genome.

Figure 13: CRISPRclean treatment of the contrived samples increases ~10 fold of reads that map to the SARS-CoV-2 genome.

Figure 14: CRISPRclean treatment of the contrived samples increases ~10 fold of reads that map to the SARS-CoV-2 genome.

Figure 15: CRISPRclean treatment of the contrived samples increases ~10 fold of reads that map to the SARS-CoV-2 genome.