Quorum Sensing Inhibitors against Chromobacterium violaceum CV026 Derived from an Actinomycete Metabolite Library

Toshiko Ohta, Atsushi Fukumoto, Yohei Iizaka, Fumio Kato, Yasumasa Koyama, and Yojiro Anzai*

Faculty of Pharmaceutical Sciences, Toho University; 2–2–1 Miyama, Funabashi, Chiba 274–8510, Japan.

Received July 9, 2019; accepted October 1, 2019

Quorum sensing (QS) is a microbial signaling system that regulates the expression of many virulence genes. Herein, we studied five compounds—No. 1: (E)-2-methyl-3-(4-nitro-phenyl)-acrylaldehyde; No. 29-2: pimprinine [5-(1H-indol-3-yl)-2-methylloxazole]; No. 48: (2E,4E)-2-methyl-5-phenyl-2,4-pentadienoic acid; No. 74: (3E,5E)-5-methyl-6-(4-nitrophenyl)-hexa-3,5-dien-2-ol; and No. 130: methylenazine-1-carboxylate—derived from an actinomycete metabolite library. These compounds were confirmed to be QS inhibitors that reduced violacein production in Chromobacterium violaceum CV026. Additionally, compounds No. 1, No. 74, and No. 130 significantly reduced fluorescent pigment production in Pseudomonas aeruginosa ATCC 27853.

Key words quorum sensing inhibitor; Pseudomonas aeruginosa; actinomycete metabolite library

INTRODUCTION

Quorum sensing (QS) is a signal transduction system in bacteria that is mediated by substances excreted from bacterial cells into the environment.1-3 This system regulates the expression of many virulence genes, including those encoding proteins for biofilm formation,2 swarming motility,3 antibacterial biosynthesis,4,5 and virulence factor production.6,7 A novel strategy to control microbial infections involves the use of agents that inhibit microbial virulence without inhibiting growth, because less selection pressure would generate less microbial resistance.8,9)

The disruption of the QS system in pathogenic Burkholderia cepacia and Burkholderia pseudomallei results in reduced pathogenicity in rat and mouse models of infection.10,11) At concentrations below the minimum inhibitory concentration (MIC), erythromycin inhibits biofilm formation in Pseudomonas aeruginosa.12) LED209 is a non-toxic compound that does not inhibit pathogen growth but markedly inhibits the expression of many virulence genes. Herein, we studied five compounds—No. 1: (E)-2-methyl-3-(4-nitro-phenyl)-acrylaldehyde; No. 29-2: pimprinine [5-(1H-indol-3-yl)-2-methylloxazole]; No. 48: (2E,4E)-2-methyl-5-phenyl-2,4-pentadienoic acid; No. 74: (3E,5E)-5-methyl-6-(4-nitrophenyl)-hexa-3,5-dien-2-ol; and No. 130: methylenazine-1-carboxylate—derived from an actinomycete metabolite library. These compounds were confirmed to be QS inhibitors that reduced violacein production in Chromobacterium violaceum CV026. Additionally, compounds No. 1, No. 74, and No. 130 significantly reduced fluorescent pigment production in Pseudomonas aeruginosa ATCC 27853.

MATERIALS AND METHODS

Bacterial Strains, Media, and Culture C. violaceum CV026(14) was cultured in Luria Broth [LB; 1.0% Bacto tryptone (Becton, Dickinson and Company, Sparks, MD, U.S.A.), 0.5% Bacto yeast extract (Becton, Dickinson and Company), and 0.5% NaCl (Wako Pure Chemical Corporation, Osaka, Japan), pH 7.2] at 27°C. P. aeruginosa ATCC 27853(13) is a quality control strain for dilution antimicrobial susceptibility tests, was cultured overnight in Nutrient Broth (NB; Eiken Chemical Co., Ltd., Tochigi, Japan) at 37°C.

Screening Samples In total, 322 samples from our actinomycete metabolite library, consisting of compounds obtained from actinomycete cultures and synthesized as partial structures of actinomycete metabolites, were used for screening. These compounds were stored by Professors Yasumasa Koyama and Fumio Kato, who studied metabolites (including antibiotics) produced by actinomycetes 40 to 50 years ago. The structures of the active samples were confirmed by 1H-NMR (500MHz) spectroscopy (JNM-ECA500, JEOL Ltd., Tokyo, Japan) and mass spectrometry (LCMS-8040, Shimadzu Co., Kyoto, Japan).

QS Inhibition Assay The microtiter plate assay was performed for QS inhibition screening, according to our previous study.16) In the checkerboard assay, 0.0625, 0.125, 0.25, or 0.5 mg/mL of the test compound and 0.008, 0.04, or 0.2 mg/mL of N-hexanoyl-l-homoserine lactone (N-HHL; Santa Cruz Biotech. Co., Santa Cruz, CA, U.S.A.) were added to each well.

Effect of Compounds on Fluorescent Pigment Production by P. aeruginosa In each well of a 96-well cell culture plate (CELLSTAR® 96 well plates No. 655180, Greiner Bio-One GmbH, Frickenhansen, Germany), 200 μL of NB containing 0.5 μL of P. aeruginosa ATCC 27853 culture broth and 0.5 mg/mL of the test compound were added. The microtiter plate was incubated at 37°C for 24 h with shaking. Equal volumes of the culture broth (100 μL) and dimethyl sulfoxide (DMSO) (100 μL) were added to each well of a 96-well black
plate (Nunc™ F96 MicroWell™ Black Polystyrene Plate No. 137101, Thermo Fisher Scientific, Roskilde, Denmark), and fluorescence intensity at an absorption wavelength of 470 nm and excitation wavelength of 365 nm was measured using a multimode plate reader EnSpire2300 (PerkinElmer, Inc., MA, U.S.A.).

Antibacterial Activity and Bacterial Growth Rate

The antibacterial activities of the compounds for *C. violaceum* CV026 and *P. aeruginosa* ATCC 27853 were evaluated by determining MICs using the microbroth dilution method with Mueller–Hinton medium (Becton, Dickinson and Company). The test compounds were serially diluted and added to the growth medium in 96-well plates. Each well was inoculated with the tested bacterial strains and incubated at 27 or 37°C for 20–24 h. Bacterial growth was evaluated by OD₆₀₀ measurement. The growth rates of both strains were also evaluated under pigment production culture conditions through OD₆₀₀ measurement in 96-well plates. *C. violaceum* CV026 was cultured in LB soft agar ± test compound (0.5 mg/mL) in the absence of N-HHL.

RESULTS

The QS inhibitory activity was determined using *C. violaceum* CV026 and 322 samples from the actinomycete metabolite library. At a concentration of 1 mg/mL, five compounds
reduced violacein production in C. violaceum to approximately half or less of its original value. As the structural formulae of other compounds were indeterminable in some samples from the library, the structures of these five compounds were confirmed (data not shown). These five compounds were identified as: No. 1, \((E)\)-2-methyl-3-(4-nitro-phenyl)-acrylaldehyde; No. 29-2, pimprinine \([5-(1H\text{-indol}-3\text{-yl})\text{-2-methyloxazole}];\) No. 48, \((2E,4E)\)-2-methyl-5-phenyl-2,4-pentadienoic acid; No. 74, \((3E,5E)\)-5-methyl-6-(4-nitrophenyl)-hexa-3,5-dien-2-ol; and No. 130, methyphenazine-1-carboxylate (Fig. 1).

A checkerboard assay was performed to determine if these compounds competed with \(N\text{-HHL}\), which was used as an inducer of QS (Fig. 2). Violacein production was completely suppressed by No. 1 and No. 74 at 0.25 mg/mL and by No. 130 at 0.5 mg/mL. A concentration-dependent competitive inhibition of \(N\text{-HHL}\) was observed below these concentrations for No. 1, No. 74, and No. 130. In contrast, No. 29-2 and No. 48 showed a concentration-dependent partial inhibition of \(N\text{-HHL}\); moreover, violacein production was not completely suppressed, even at 0.5 mg/mL.

The effects of these five compounds on fluorescent pigment production by \(P.\ aeruginosa\) were examined (Fig. 3). At 0.5 mg/mL, No. 1, No. 74, and No. 130 decreased fluorescent pigment production by 69, 70, and 67%, respectively. In contrast, No. 29-2 and No. 48 increased fluorescent pigment production by 14 and 11%, respectively, relative to the control.

The antibacterial activities of these compounds against \(C.\ violaceum\) and \(P.\ aeruginosa\) were tested based on the Clinical and Laboratory Standards Institute (CLSI) methods using Mueller–Hinton medium. No. 1 showed no antibacterial activity against any strain at concentrations from 1 to 512 \(\mu\)g/mL. However, \(P.\ aeruginosa\) culture turbidity decreased by 42% at 1024 \(\mu\)g/mL No. 1. The other compounds showed no antibacterial activity, even at 1024 \(\mu\)g/mL; moreover, none showed growth–inhibitory effects against \(C.\ violaceum\).

The 24-h growth curve for each of these bacteria was determined under pigment production conditions to confirm the effects of these compounds (Fig. 4). The \(C.\ violaceum\) CV026 growth curves with No. 1 and No. 29-2 were similar to that of the control from 0 to 24 h, whereas No. 74 slightly suppressed the 24-h growth curve for each of these bacteria was determined under pigment production conditions to confirm the effects of these compounds (Fig. 4). The \(C.\ violaceum\) CV026 growth curves with No. 1 and No. 29-2 were similar to that of the control from 0 to 24 h, whereas No. 74 slightly suppressed the control (no compound) at \(p < 0.05\). † indicates a significant decrease compared to the control at \(p < 0.05\).
activity.\(^{18}\) An unsaturated ketone derivative of No. 1, synthesized by Gasha \textit{et al.}, inhibited the growth of \textit{Trichophyton mentagrophytes}.\(^{19}\) No. 29-2, pimpinmine \([5-(1H-indol-3-yl)-2-methylloxazole]–\) a metabolite produced by \textit{Streptomyces pimprina}–\(^{20}\) was reported to exhibit anti-tuberculosis activity.\(^{21}\) No. 48, \((2E,4E)-2\text{-}5\text{-}phenyl\text{-}2\text{-}4\text{-}pentadienonic acid, was synthesized by Koyama \textit{et al.} and used for structure determination of luteorecinulin produced by \textit{S. luteoreculi}.\(^{21}\) No. 74, \((3E,5E)-5\text{-}methyl\text{-}6\text{-}4\text{-nitropheny}l\text{-}hexa\text{-}3\text{-}5\text{-}dienn\text{-}2\text{-}ol, was synthesized as a derivative of aureothin, which was isolated as a by-product of the antibiotic aureothcin from \textit{Streptomycyes thioluteus}.\(^{22}\) No. 130, methyphenazin-1-carboxylate, was isolated as a metabolite from \textit{S. luteoreculi} in 1971.\(^{23}\)

Recently, No. 130 was reported as a metabolite produced by \textit{Pseudomonas chlororaphis} and strains of the genus \textit{Kitasatospora}; moreover, the antifungal and anti-Gram-positive-bacterial activities of No. 130 were demonstrated.\(^{24,25}\)

As No. 1, No. 74, and No. 130 act competitively with \textit{N-HHL}, an inducer of QS, in \textit{C. violaceum}, these compounds can inhibit the activity of the transcription factor \textit{CviR}, which is induced by \textit{N-HHL} in \textit{C. violaceum} CV026. Interestingly, the structures of No. 1 and No. 74 are very similar, and the sub-structures of both compounds consist of 1-nitro-4-(1-(1E)-propenyl)-benzene. Moreover, in our study, these three compounds significantly reduced fluorescent pigment production in \textit{P. aeruginosa}. On the contrary, all five compounds significantly reduced fluorescent pigment production in \textit{C. violaceum} CV026. In this study, all five compounds show no effect on the production of the green pigment pyocyanin, which is positively regulated by the RhlR/RhII QS system.\(^{20}\) \textit{P. aeruginosa} ATCC 27853 did not produce pyocyanin for up to 24h; however, pyocyanin was detected after 2d. There was no difference in pyocyanin production on the next day, when fluorescent pigment production was observed (data not shown). The QS response of \textit{P. aeruginosa} primarily depends on two transcriptional regulators of the LuxR family, LasR and RhlR.\(^{27}\) Moreover, the active site of LasR is structurally similar to that of CviR.\(^{28}\) Therefore, it is presumed that No. 1, No. 74, and No. 130 bind to the LasR protein of \textit{P. aeruginosa}. The production of a fluorescent pigment pyoverdine by \textit{P. aeruginosa} is reduced in the \textit{lasI}/\textit{lasR} mutant\(^{29}\) and enhanced by the cell-signaling protein PsQa.\(^{20}\) The transcription of \textit{psaA} is induced by the third transcriptional regulator PsR, which is positively regulated by the LasR/\textit{N}-3-oxododecanoyl-\textit{I}-homoserine complex.\(^{30}\) However, as the growth curves of \textit{C. violaceum} CV026 treated with No. 74 and No. 130 were slightly different from that of the control, the QS inhibition system of these active compounds including No. 1 should be further investigated. Conversely, No. 29-2 and No. 48 slightly increased fluorescent pigment production in \textit{P. aeruginosa}. As No. 29-2 and No. 48 only partially competed with \textit{N-HHL} in \textit{C. violaceum}, \textit{CviR} function might have been partially inhibited. The fluorescence intensity (excitation 365 nm, absorption 470 nm) of the compounds No. 29-2 and No. 48 was not detected (data not shown). However, as the increase in fluorescent pigment production was very less, this phenomenon may have been influenced by growth variations caused by cell aggregation during culture.

Several new compounds, such as piericidin E and maniwamycins C–F, have been discovered in actinomycete culture broths and were used in our QS inhibitor screening study.\(^{15,16}\) In this study, five compounds from a library of actinomycete metabolites and their derivatives were identified as QS inhibitors against \textit{C. violaceum}. Additionally, they displayed positive or negative effects on fluorescent pigment production by \textit{P. aeruginosa}. Thus, these QS inhibitors can be potential lead compounds for the creation of more potent and specific QS inhibitors for further studies of QS systems.

Acknowledgments We thank Dr. Tsukasa Ikeda at Utsunomiya University for kindly providing \textit{C. violaceum} CV026. This work was supported by Private University Research Branding Project from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.

Conflict of Interest The authors declare no conflict of interest.

REFERENCES

1) Bassler BL, Losick R. Bacterially speaking. \textit{Cell}, \textbf{125}, 237–246 (2006).
2) McLean RJ, Whiteley M, Stickler DJ, Fuqua WC. Evidence of autoinducer activity in naturally occurring biofilms. \textit{FEMS Microbiol. Lett.}, \textbf{154}, 259–263 (1997).
3) Eberl L, Winson MK, Sternberg C, Stewart GS, Christiansen G, Chhabra SR, Bycroft B, Williams P, Molin S, Givskov M. Involvement of \textit{N}-acyl-\textit{I}-homoserine lactone autoinducers in controlling the multicellular behaviour of \textit{Serratia liquefaciens}. \textit{Mol. Microbiol.}, \textbf{20}, 127–136 (1996).
4) Slater H, Crow M, Everson L, Salmon GP. Phosphate availability regulates biosynthesis of two antibiotics, prodigiosin and carbapenem, in \textit{Serratia} via both quorum-sensing-dependent and -independent pathways. \textit{Mol. Microbiol.}, \textbf{47}, 303–320 (2003).
5) Finneran PC, Slater H, Everson L, Hughes K, Salmon GP. Biosynthesis of tripyrrole and beta-lactam secondary metabolites in \textit{Serratia}: integration of quorum sensing with multiple new regulatory components in the control of prodigiosin and carbapenem antibiotic production. \textit{Mol. Microbiol.}, \textbf{56}, 1495–1517 (2005).
6) Falcao JP, Sharp P, Sperandio V. Cell-to-cell signaling in intestinal pathogens. \textit{Curr. Issues Mol. Microbiol.}, \textbf{5}, 9–17 (2004).
7) Jovines L, Ferreira RB, Buckmaster MM, Finlay BB. Quorum sensing in bacterial virulence. \textit{Microbiology}, \textbf{156}, 2271–2282 (2010).
8) Finch RG, Pritchard DJ, Bycroft BW, Williams P, Stewart GS. Quorum sensing: a novel target for anti-infective therapy. \textit{J. Antimicrob. Chemother.}, \textbf{42}, 569–571 (1998).
9) Cegelski L, Marshall GR, Eldridge GR, Hultgren SJ. The biology and future prospects of antivirulence therapies. \textit{Nat. Rev. Microbiol.}, \textbf{6}, 17–27 (2008).
10) Baldwin A, Sokol PA, Parkhill J, Mahenthiralingam E. \textit{The Burkholderia cepacia} epidemic strain marker is part of a novel genomic island encoding both virulence and metabolism-associated genes in \textit{Burkholderia cenocepacia}. \textit{Infect. Immun.}, \textbf{72}, 1537–1547 (2004).
11) Valade E, Thibault FM, Gauthier YP, Palencia M, Popoff MY, Vidal DR. The PmrN–PmrR quorum-sensing system in \textit{Burkholderia pseudomallei} plays a key role in virulence and modulates production of the MprA protease. \textit{J. Bacteriol.}, \textbf{186}, 2288–2294 (2004).
12) Nagata T, Mukaie H, Kadota J, Hayashi T, Fujiji T, Kuroki M, Shirai R, Yanagihara K, Tomono K, Kojt T, Kohno S. Effect of erythromycin on chronic respiratory infection caused by \textit{Pseudomonas aeruginosa} with biofilm formation in an experimental murine model. \textit{Antimicrob. Agents Chemother.}, \textbf{48}, 2251–2259 (2004).
13) Rasko DA, Moreira CG, Li R, Reading NC, Ritchie JM, Waldor MK, Williams N, Tausig R, Wei S, Roth M, Hughes DT, Huntley JF, Fina MW, Falck JR, Sparranido V, Li D, Reading NC, Ritchie JM, Waldor MK, Williams N, Tausig R, Wei S, Roth M, Hughes DT, Huntley JF, Fina MW, Falck JR, Sparranido V. Targeting Quorum sensing and virulence for antibiotic development. \textit{Science}, \textbf{321}, 182

\textit{Biol. Pharm. Bull.}, Vol. 43, No. 1 (2020)
1078–1080 (2008).

14) McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Camara M, Davkin M, Lamb JH, Swift S, Bycroft BW, Stewart GS, Williams P. Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology, 143, 3703–3711 (1997).

15) Ooka K, Fukumoto A, Yamanaka T, Shimada K, Ishihara R, Anzai Y, Kato F. Novel Quorum-sensing inhibitors against Chromobacterium violaceum CV026, from Streptomyces sp. TOHO-Y209 and TOHO-O348. Open J. Med. Chemistry, 3, 93–99 (2013).

16) Fukumoto A, Murakami C, Anzai Y, Kato F. Maniwamycins: new quorum-sensing inhibitors against Chromobacterium violaceum CV026 were isolated from Streptomyces sp. TOHO-M025. J. Antibiot., 69, 395–399 (2016).

17) Pseudomonas aeruginosa (Schroeter) Migula (ATCC® 27853®). https://www.atcc.org/products/all/27853.aspx, accessed 29 August, 2019.

18) Koyama Y, Kyomura N, Onishi J, Yamaguchi S. On the metabolites of Streptomyces luteoreticuli KATOH et ARAI. III. The structure of luteoreticulum. (2). Yakugaku Zasshi, 95, 1210–1217 (1975).

19) Gasha M, Tsuji A, Sakurai Y, Kurumi M, Endo T, Sato S, Yamaguchi K. Antimicrobial activity of 5-oxothiazolidine-2-thione and rhodanine derivatives. Yakugaku Zasshi, 92, 490–497 (1972).

20) Koyama Y, Yokose K, Dolby LJ. Isolation, characterization and synthesis of pimprinine, pimprinethine and pimprinaphine, metabolites of Streptoverticillium olivoreticuli. Agric. Biol. Chem., 45, 1285–1287 (1981).

21) Intraudom C, Rachtawee P, Suvannakad R, Pittayakhajonwut P. Antimalarial and antituberculosis substances from Streptomyces sp. BCC26924. Tetrahedron, 67, 7593–7597 (2011).

22) Hirata Y, Nakata H, Yamada K, Okuhara K, Naito T. The structure of aureothin, a nitro compound obtained from Streptomyces thiolatus. Tetrahedron, 14, 252–274 (1961).

23) Yamagishi S, Koyama Y, Fukakusa Y, Kyomura N, Ohishi J. On the metabolites of Streptomyces luteoreticuli KATOH et ARAI. I. Isolation of the metabolites. Yakugaku Zasshi, 91, 351–357 (1971).

24) Wu C, van Wezel GP, Hae Choi Y. Identification of novel endophyte-derived antibiotics produced by Kitasatospora sp. MB166. J. Antibiot., 68, 445–452 (2015).

25) Puopolo G, Masi M, Raio A, Andolfi A, Zoina A, Cimmino A, Evdente A. Insights on the susceptibility of plant pathogenic fungi to phenazine-1-carboxylic acid and its chemical derivatives. Nat. Prod. Res., 27, 956–966 (2013).

26) Brint JM, Ohman DE. Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR-RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI family. J. Bacteriol., 177, 7155–7163 (1995).

27) Williams P, Cámara M. Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr. Opin. Microbiol., 12, 182–191 (2009).

28) Gnanendra S, Anusuya S, Natarajan J. Molecular modeling and active site analysis of SdiA homolog, a putative quorum sensor for Salmonella typhimurium pathogenicity reveals specific binding patterns of AHL transcriptional regulators. J. Mol. Model., 18, 2709–2729 (2012).

29) Stuntz A, Evans K, Meyer JM, Poole K. Quorum-sensing and siderophore biosynthesis in Pseudomonas aeruginosa: lasR/luxA mutants exhibit reduced pyoverdine biosynthesis. FEMS Microbiol. Lett., 166, 341–345 (1998).

30) Kang D, Turner KE, Kirienko NV. PqsA promote Pyoverdine production via Biofilm formation. Pathogens, 7, 3 (2017).

31) Farrow JM III, Pesci EC. Distal and proximal promoters co-regulate pqsR expression in Pseudomonas aeruginosa. Mol. Microbiol., 104, 78–91 (2017).