Analysis of Clean Water Needs Rural Community Based
(A Case Study H IPPAM Campurrejo Makmur
Bojonegoro)

Sulton Arrahman Ali, F.Rooslan Edy Santosa
Faculty of Civil Engineering Departments, Engineering Study Program
Narotama University Surabaya, Indonesia
Surabaya, Indonesia
sultonarrahanal6@gmail.com, eddy.santosa@narotama.ac.id

Abstract

The problem of providing clean water is currently a special concern for both developed and developing countries. Indonesia as a developing country cannot be separated from the problem of providing clean water for its people. One of the main problems faced is the unavailability of clean water sources, the unequal distribution of clean water services, especially in rural areas and the existing clean water sources have not been utilized optimally. Village Campurrejo subdistrict Bojonegoro Regency is in dire need of adequate clean water, because so far residents have had difficulty getting clean water, especially during the dry season, some residents only rely on water in old springs/wells without adequate facilities. The research objectives are, 1) to know the speed of the need for clean water in the village of Campurrejo subdistrict Bojonegoro Regency to the year 2031, 2) What is the reservoir capacity needed to meet the need for clean water in 2031? Analysis of the calculation of population growth in the village Campurrejo subdistrict Bojonegoro the author uses the Geometric method. And it can be seen that the population in the village Campurrejo subdistrict Bojonegoro reached 6,829 people, and the water demand in 2031 according to the prediction of the population is 1,105 liters/second, the maximum daily needs is 1,326 liters/second, and the discharge at peak hours is 1,768 liters/second. And the demand for clean water in Campurrejo Village in 2031 according to the prediction of the number of HIPPAM customers is 1,623 liters/second, the maximum daily need is 1,948 liters/second, and water needs at peak hours are 2,567 liters/second. Prediction of the number of customers of HIPPAM "Campurrejo Makmur" in 2031 is 1298 SR. The need for reservoir capacity to meet the needs of clean water in 2031 is 157 m3. Since the reservoir capacity is only 18 m3, it is necessary to add another 139 m3 to meet the needs of HIPPAM customers "Campurrejo Makmur".

Keywords: Clean Water Needs, Distribution, HIPPAM, Population

1. Introduction

Clean water is a source of natural ecosystems for human survival that is needed in a sustainable manner. Everyone's condition of the availability of clean water is a daily necessity in community activities in sufficient and suitable quantities. The need for clean water in the household, industrial, plantation sectors and other facilities. It will continue to grow along with the increasing number of population and in terms of the development sector in various fields. Then the problem arises that the number of clean water providers is small, so that water needs are not fulfilled.

This clean water supply system is planned so that residents can meet their water needs without having to bother taking them directly to water sources that are very difficult to reach. By paying attention to the location and the existing potential, it is hoped that the need for clean water in Campurrejo Village, Bojonegoro District, Bojonegoro Regency can be fulfilled as a whole.

The level of economic growth and the increasing number of residents, the available facilities need to be optimized both in terms of services and the provision of clean water facilities themselves. Therefore, a clean water distribution pipe network plan was made in Campurrejo Village which seeks to provide an effective and efficient clean water drainage system in order to improve services to the community, from the wellbore water source HIPPAM Campurrejo Makmur Bojonegoro. The clean water supply system must be able to provide sufficient air for the required needs. Requirements The drinking water supply system must consist of technical provisions: Raw water unit, production unit, distribution unit, and service unit.

To find out the estimated amount of clean water needs to be planned from population growth in the coming years, several methods are used, including arithmetic methods, geometric methods. To find out the estimated
amount of clean water needs to be planned from population growth in the coming years, several methods are used, including arithmetic methods, geometric methods.

a. Arithmetic Method

This method is used when periodic data shows the number of additions that are relatively the same every year. This happens in cities with a relatively small area.

Formula: Arithmetic Method

\[P_n = P_t + K_a \times X \]

Where:
- \(P_n \) = Total population in the next \(n \) years
- \(P_t \) = Total population at the end of the data year
- \(P_o \) = Total population at the beginning of the data year
- \(X \) = Time lapse
- \(K_a \) = Ratio of average population increase per year
- \(t \) = Number of data minus one

b. Geometric Method

This method is used when the population data shows a rapid increase from time to time. This method is appropriate to be applied to the case of population growth in cities with high economic growth and rapid urban development.

Formula: Geometric Method

\[P_n = P_t \left(1 + r\right)^n \]

\[r = \left(\frac{P_t}{P_o}\right)^{\frac{1}{n}} - 1 \]

Where:
- \(P_n \) = Total population in the next \(n \) years
- \(P_t \) = Total population at the end of the data year
- \(P_o \) = Total population at the beginning of the data year
- \(n \) = nth year – last year
- \(r \) = Ratio of average population increase per year

c. Domestic Water Supply Standards

Domestic Water Supply Standards are determined by the number of domestic consumers who can be identified from existing population data. Standards for supplying domestic needs include drinking, bathing, cooking, and others.

Description	City Category Based on Population
	(Soul)
	>1.000.000
	500.000
	1.000.000 - 200.000
SR unit (l/o/hr)	City Metropolitan
	City Big
	City Medium
	City Small
	Village
1	2
	3
	4
	5
	6
SR unit (l/o/hr)	190
	170
	150
	130
	30
HUnit s (l/o/hr)	30
	30
Non Domestic Unit	20-30
Water Loss (%)	20-30
Maximum Day Factor	1,1
Peak-Hour Factor Factor	1,5
Number of Souls Per SR	5
Number of Souls Per HU	100
Operating Hours	24
Reservoir Volume (%)	20
SR : HU	50 : 80
Service Coverage	90

Source: Planning Criteria of the Directorate General of Public Works Cipta Karya, 1996
Domestic water needs for cities are divided into several categories, namely:
- City category I (Metropolitan)
- City category II (Big City)
- City category III (City Medium)
- City category IV (Small Town)
- City category V (Village)

d. Non-Domestic Water Supply Standard
Non-domestic water supply standards are determined by the number of non-domestic consumers which include facilities such as offices, health, industrial, commercial, public, and others.

Sector	Unit/Value
School	10 lt/student/day
Hospital	200 lt/bed/day
Public Health Center	2000 lt/units/day
Mosque	3000 lt/units/day
Market	12000 lt/ha/day
Hotel	150 lt/bed/day
Industrial Area	0.2-0.8 lt/second/day
Office	10 lt/person/day

Source: Planning Criteria of the Directorate General of Public Works Cipta Karya, 1996

Sector	Unit/Value
School	5 lt/student/day
Hospital	200 lt/bed/day
Public Health Center	1200 lt/units/day
Mosque	2000 lt/units/day
Market	10 lt/ha/day
Industrial Area	10 lt/second/day

Source: Planning Criteria of the Directorate General of Public Works Cipta Karya, 1996

Sector	Unit/Value
Airfield	5 lt/Person/second
Harbor	200 lt/Person/second
Bus Station	1200 lt/Person/second
Industrial Area	10 lt/Person/ha

Source: Planning Criteria of the Directorate General of Public Works Cipta Karya, 1996

To predict the development of non-domestic water needs, it is necessary to know the city development plan and its activities. If it is not known, then the prediction can be based on a population equivalent, where non-domestic consumers can be counted following the development of domestic water supply standards. Thus we need to know the type and number of future means or in other words we need to know: 1) Types and number of facilities currently available, this data is needed as a basis for calculating the estimated type and number of facilities in the future; 2) Estimated development of the type and number of facilities in the future.
2. Methodology

2.1. Workflow

Determination of Observation

Data Collection → Primary data → Interview, Documentation

Secondary Data → Population Data, Data of HIPPAM Customers

Data Analysis and Discussion → Conclusions And Results

2.2. Data Source

Data sources are anything that can provide information about data. Based on the source, the data is divided into two, namely primary data and secondary data:

Primary data collection methods are as follows:

1. Observation Method
 The location of a clean water source that is not far from the author's residence makes observations on the location and shape of the existing reservoir building optimal because it can be done repeatedly in order to get authentic and specific data.

2. Interview Method
 The author also uses the interview method, namely by interviewing HIPPAM technical employees, in Campurrejo Village, Kec. Bojonegoro Regency, Kab. Bojonegoro.

Secondary data was obtained through various sources, namely literature, articles, and sites on the internet related to the research carried out. And archival data obtained from relevant agencies, as well as data - data that affect the research, among others:

1. Topographical Data
 The topographic data used by the author here comes from a Google Earth map which contains regional contour data in Campurrejo village district, Bojonegoro, Bojonegoro Regency.

2. Population Data
 Population data is used to calculate the average population growth from year to year (Projection of the next 10 years) Source BPS (Central Statistics Agency) Bojonegoro.

3. HIPPAM Customer Number Data
 Data on the number of HIPPAM customers is used to calculate the average increase in HIPPAM subscribers per SR (house connection) from year to year. Source Chairman of HIPPAM, Campurrejo Makmur Village.

2.3. Analysis Stage

The data analysis technique used in this research is qualitative descriptive analysis. The data analyzed are:

1. Perform population projection analysis. This population projection analysis is carried out in order to find out how much population growth is estimated for the next 10 years (until 2031) so that the amount of water needed can be calculated. Residents of Campurrejo Village Bojonegoro. The method used in population projection analysis is the Geometric method, Arimatic method, used and then the average value is taken.

2. Calculate the water needs that will be needed by the village community until the predicted year 2031. The calculated water needs in the Campurrejo village include Domestic water needs and Non-Domestic water needs. The calculation of this water demand refers to the clean water planning criteria for categories I, II, III, IV and V cities required by the Directorate General of Human Settlements of the Public Works Agency, 1996.

3. Analysis how much discharge is generated from water sources so that it can be supplied by the community of Campurrejo village, especially HIPPAM customers, Campurrejo Makmur.
3. Result and Discussion

3.1. Population Prediction

Estimated population in Ds. Campurrejo was analyzed using 2 methods, namely the Geometric Method and the Arithmetic Method to obtain the accuracy of the population. Population data obtained from the Central Statistics Agency from 2017 to 2021, with predictions until 2031.

| Table 5. Population data of Ds. Campurrejo district, Bojonegoro |
|------------------|------------------|------------------|
| No. | Year | Quantity |
| 1 | 2017 | 5,472 |
| 2 | 2018 | 5,266 |
| 3 | 2019 | 5,780 |
| 4 | 2020 | 5,856 |
| 5 | 2021 | 6,085 |

Source: Central Bureau of Statistics of Bojonegoro Regency

Selection of Methods Used With the correlation value (r) of the two methods, it can be determined the choice of the two methods for calculate service area projection up to 10 the coming year. Selection of the method based on the correlation coefficient (r) must be 1 or -1 or close to both values. (Permen PU No. 18 year 2007).

Table 6. Correlation Coefficient Results
Method
Aritmatik
Geomatik

Source: Calculation Results

| Table 7. Population Growth Geometry Selected Method |
|------------------|------------------|
| Year | Total population |
| 2022 | 6156 |
| 2023 | 6227 |
| 2024 | 6299 |
| 2025 | 6372 |
| 2026 | 6446 |
| 2027 | 6521 |
| 2028 | 6597 |
| 2029 | 6673 |
| 2030 | 6751 |
| 2031 | 6829 |

Source: Calculation Results

From the analysis above, it is found that the population of Campurrejo Village in 2031 is 6829 people (10 years projection), then Campurrejo Village is included in the village category with a population ranging from <20,000 people. Planning criteria of the Directorate General of Human Settlements of the Public Works Service, then:

a. Consumption of household connections: 70 liters/person/day.
b. General hydrant connection consumption is: 30 liters/person/day.
c. The comparison between household connections and public hydrants is: SR : HU = 70 : 30

3.2. Clean Water Needs Analysis Domestic Sector

a. Household Connection (SR)
Table 8. Water Needs for Household Connections (SR)

No	Year	Total Population (soul)	Service Level (%)	Number Served	Average Water Consumption (Lt/Soul/Day)	Usage Amount (Lt/day)	Total Water Need (Lt/second)
(a)	1 2022	6156	7C	430891	70	30162371	349
2 2023	6227	7C	435889	70	30512255	353	
3 2024	6299	7C	440946	70	30866197	357	
4 2025	6372	7C	446061	70	31224245	361	
5 2026	6446	7C	451235	70	3158446	366	
6 2027	6521	7C	456469	70	31952849	370	
7 2028	6597	7C	461764	70	32323502	374	
8 2029	6673	7C	467121	70	32698455	378	
9 2030	6751	7C	472539	70	33077757	383	
10 2031	6829	7C	478021	70	33461459	387	

Source: Calculation Results

Table 9. Water Needs for Public Hydrants (HU)

No	Year	Total Population (soul)	Service Level (%)	Number Served	Average Water Consumption (Lt/Soul/Day)	Usage Amount (Lt/day)	Total Water Need (Lt/second)
(a)	1 2022	6156	30	184668	30	5540027	64
2 2023	6227	30	186810	30	5604292	65	
3 2024	6299	30	188977	30	5669302	66	
4 2025	6372	30	191169	30	5735065	66	
5 2026	6446	30	193386	30	5801592	67	
6 2027	6521	30	195630	30	5868891	68	
7 2028	6597	30	197899	30	5936970	69	
8 2029	6673	30	200195	30	6005839	70	
9 2030	6751	30	202517	30	6075506	70	
10 2031	6829	30	204866	30	6145982	71	

Source: Calculation Results

3.3. Clean Water Needs Analysis Non Domestic Sector

a. Educational Facilities

Table 10. Water Demand for Educational Facilities

No	Year	Student Number (person)	Average Water Consumption (Lt/Soul/Day)	Usage Amount (Lt/Day)	Total Water Need (Lt/second)
[a]	[b]	[c]	[d]	[e]	[f]
1 2022	5374	5	26868	0.311	
2 2023	5436	5	27180	0.315	
3 2024	5499	5	27495	0.318	
4 2025	5563	5	27814	0.322	
5 2026	5627	5	28137	0.326	
6 2027	5693	5	28463	0.329	
7 2028	5759	5	28793	0.333	
8 2029	5825	5	29127	0.337	
9 2030	5893	5	29465	0.341	
10 2031	5961	5	29807	0.345	

Source: Calculation Results
b. Worship Facilities

Table 11. Water Needs for Mosque facilities

No	Year	Amount (Unit)	Average Water Consumption (Lt/Unit/Day)	Usage Amount (Lt/day)	Total Water Need (Lt/Second)
[a]	[b]	[c]	[d]	[e]	[f]
1	2022	4	3000	12000	0.139
2	2023	4	3000	12000	0.139
3	2024	4	3000	12000	0.139
4	2025	4	3000	12000	0.139
5	2026	4	3000	12000	0.139
6	2027	5	3000	15000	0.174
7	2028	5	3000	15000	0.174
8	2029	5	3000	15000	0.174
9	2030	5	3000	15000	0.174
10	2031	5	3000	15000	0.174

Source: Calculation Results

Table 12. Water Needs for Musholla facilities

No	Year	Amount (Unit)	Average Water Consumption (Lt/Unit/Day)	Usage Amount (Lt/Day)	Total Water Need (Lt/second)
[a]	[b]	[c]	[d]	[e]	[f]
1	2022	20	2000	40000	0.463
2	2023	20	2000	40000	0.463
3	2024	20	2000	40000	0.463
4	2025	21	2000	42000	0.486
5	2026	21	2000	42000	0.486
6	2027	21	2000	42000	0.486
7	2028	22	2000	44000	0.509
8	2029	22	2000	44000	0.509
9	2030	22	2000	44000	0.509
10	2031	23	2000	46000	0.532

Source: Calculation Results

c. Market Facilities

Table 13. Water Demand for market facilities

No	Year	Total Population (soul)	Standard requirement (m2/Soul)	Broad requirement (m2)	Average Water Consumption (Lt/m2/Day)	Usage Amount (Lt/Day)	Total Water Need (Lt/Second)
[a]	[b]	[c]	[d]	[e]	[f]	[g]	[h]
1	2022	6156	36000/120000	1847	12000	22160110	256
2	2023	6227	36000/120000	1868	12000	22417167	259
3	2024	6299	36000/120000	1890	12000	22677206	262
4	2025	6372	36000/120000	1912	12000	22940262	266
5	2026	6446	36000/120000	1934	12000	23206369	269
6	2027	6521	36000/120000	1956	12000	23475563	272
7	2028	6597	36000/120000	1979	12000	23747879	275
8	2029	6673	36000/120000	2002	12000	24023354	278
9	2030	6751	36000/120000	2025	12000	24302025	281
10	2031	6829	36000/120000	2049	12000	24583929	285

Source: Calculation Results
Table 14. Water Demand for Office Facilities

No	Year	number of employees (person)	Average Water Consumption (Lt/person/day)	Usage Amount (Lt/day)	Total Water Need (Lt/second)
1	2022	455	10	4552	0.053
2	2023	461	10	4605	0.053
3	2024	466	10	4658	0.054
4	2025	471	10	4712	0.055
5	2026	477	10	4767	0.055
6	2027	482	10	4822	0.056
7	2028	488	10	4878	0.056
8	2029	493	10	4935	0.057
9	2030	499	10	4992	0.058
10	2031	505	10	5050	0.058

Source: Calculation Results

Table 15. Water Demand for Shopping Facilities

No	Year	number of employees (person)	Average Water Consumption (Lt/person/day)	Usage Amount (Lt/day)	Total Water Need (Lt/second)
1	2022	202	10	2023	0.023
2	2023	205	10	2047	0.024
3	2024	207	10	2070	0.024
4	2025	209	10	2094	0.024
5	2026	212	10	2119	0.025
6	2027	214	10	2143	0.025
7	2028	217	10	2168	0.025
8	2029	219	10	2193	0.025
9	2030	222	10	2219	0.026
10	2031	224	10	2244	0.026

Source: Calculation Results

Table 16. Water Needs for Health Center Facilities

No	Year	Amount (unit)	Average Water Consumption (Lt/unit/day)	Usage Amount (Lt/day)	Total Water Need (Lt/second)
1	2022	1	1200	1200	0.014
2	2023	1	1200	1200	0.014
3	2024	1	1200	1200	0.014
4	2025	1	1200	1200	0.014
5	2026	1	1200	1200	0.014
6	2027	1	1200	1200	0.014
7	2028	1	1200	1200	0.014
8	2029	1	1200	1200	0.014
9	2030	1	1200	1200	0.014
10	2031	1	1200	1200	0.014

Source: Calculation Results

From the calculations above, it is known that the clean water needs of Campurrejo Village in 2031 according to the predicted population is 1.105 liters/second, the maximum daily need is 1.326 liters/second, and the water needs at peak hours are 1.768 liters/second.

3.4. Prediction of water demand for HIPPAM customers in 2031

a. Prediction of customer HIPPAM in 2031
The prediction of clean water needs in 2031 is calculated referring to the predicted increase in customers HIPPAM Campurrejo Makmur or home connection.

Table 17. Prediction of customer HIPPAM

No.	Year	Amount (SR)
1	2022	41
2	2023	61
3	2024	89
4	2025	131
5	2026	192
6	2027	283
7	2028	415
8	2029	611
9	2030	897
10	2031	1298

Source: Calculation Results

Predicted customers of HIPPAM “Campurrejo Makmur” Bojonegoro in 2031 is 1298 SR (house connection)

b. Analysis Water Needs HIPPAM Customer

Calculation of clean water needs based on the prediction of the number of customers, HIPPAM house connection (SR) obtained the following results.

Table 18. Water Demand Discharge

No.	Year	Amount (SR)	Q (lt/second)
1	2022	41	0.5
2	2023	61	0.76
3	2024	89	1.11
4	2025	131	1.64
5	2026	192	2.40
6	2027	283	3.54
7	2028	415	5.19
8	2029	611	7.64
9	2030	897	11.21
10	2031	1298	16.23

Source: Calculation Results

c. Analysis Drilling Well Water Source Discharge HIPPAM

Table 19. water source discharge

No.	Year	Q Water Needs (lt/Second)	source capacity (lt/Second)	production capacity (lt/Second)	production shortage (lt/Second)
1	2022	0.5	5.0	5.0	-
2	2023	0.76	5.0	5.0	-
3	2024	1.11	5.0	5.0	-
4	2025	1.64	5.0	5.0	-
5	2026	2.40	5.0	5.0	-
6	2027	3.54	5.0	5.0	-
7	2028	5.19	5.0	5.0	0.19
8	2029	7.64	5.0	5.0	2.64
9	2030	11.21	5.0	5.0	6.21
10	2031	16.23	5.0	5.0	11.23

Source: Calculation Results

The discharge capacity of the HIPPAM bore well is still sufficient. Production capacity/pump discharge from 2022 to 2027 can meet the clean water needs of the HIPPAM “Campurrejo Makmur” unit, but from 2028 onwards the deep well pump discharge is no longer able to meet water needs.
4. Conclusion And Suggestions

4.1. Conclusion
From the results of the calculation of the analysis of clean water needs in Campurrejo Village, the following conclusions can be drawn:

1. Clean water needs of Campurrejo Village in 2031 whose population is analyzed using Geometric formulas with a total of 6,829 From the above calculation, it is known that the clean water needs of Campurrejo Village in 2031 according to the predicted population is 1,105 liters/second, the maximum daily requirement is 1,326 liters/second, the water demand at peak hours is 1.768 liters/second. And from the calculation of the clean water needs of Campurrejo Village in 2031 according to the prediction of the number of HIPPAM customers is 1.623 liters/second, the maximum daily need is 1.948 liters/second, and the water demand at peak hours is 2.567 liters/second.

2. Prediction of the number of customers of HIPPAM "Campurrejo Makmur" in 2031 is 1298 SR Reservoir capacity needs to meet clean water needs in 2031 is 139 m³

It is advisable to conduct a review of the reservoir capacity in the village of Campurrejo Makmur so that the prediction of water demand due to the increase in population and HIPPAM customers can be fulfilled. Considering that raw water for clean water is decreasing day by day, it is hoped that its use is as good as possible according to needs. In order to obtain an optimal service system, it is necessary to build clean water supply facilities.

References

Anonymous. 1998. Technical Guidelines for Planning, Master Plans for Systems, Urban Water Supply Systems. Department of Public Works, Directorate General of Human Settlements.
Anonymous. 1998. Practical Guidelines for Rural Water Supply System Development. Department of Public Works, Directorate General of Human Settlements.
Bojonegoro Regency Central Bureau of Statistics. 2017; 2018; 2019; 2020; 2021. Bojonegoro in Figures 2017; 2018; 2019; 2020; 2021 Bojonegoro Regency. Bojonegoro
Moegijantoro. 1996. Water Needs. PT Empat Sekawan: Surabaya.
Reksa. 2020. Analysis of Clean Water Needs at Muhammadiyah Hospital Palembang. Faculty of Civil Engineering, University of Palembang.
SK-SNI for Clean Water. 1990.