A Novel *UMOD* Gene Mutation Associated with Uromodulin-associated Kidney Disease in a Young Woman with Moderate Kidney Dysfunction

Akihiro Kuma¹, Masahito Tamura², Nana Ishimatsu¹, Tetsu Miyamoto¹, Ryota Serino², Shingo Ishimori³, Naoya Morisada¹, Kazumoto Iijima¹, Sohsuke Yamada⁴, Masaaki Takeuchi¹, Haruhiko Abe¹ and Yutaka Otsuji¹

Abstract

Uromodulin-associated kidney disease (UAKD) is an autosomal dominant disease caused by a mutation in the *uromodulin* (*UMOD*) gene, leading to end-stage renal disease. We herein report the case of a family with UAKD caused by a novel mutation (C135G) in the *UMOD* gene. A 31-year-old woman had a low estimated glomerular filtration rate (59.7 mL/min per 1.73 m²). Her father, grandfather and paternal aunt had received maintenance hemodialysis therapy since their 40’s. This case underscores the importance of performing genetic testing in young patients even in cases involving only moderate abnormalities in the kidney function.

Key words: medullary cystic kidney disease type 2, familial juvenile hyperuricemic nephropathy, uromodulin, UMOD, hyperuricemia, chronic kidney disease

(Intern Med 54: 631-635, 2015)
(DOI: 10.2169/internalmedicine.54.3151)

Introduction

Uromodulin, also called the Tamm-Horsfall protein, is produced in the kidneys by cells of the thick ascending limb of the loop of Henle (TALH) and distal tubules. Healthy individuals excrete approximately 20-70 mg of uromodulin per day (1). Mutations within the *uromodulin* (*UMOD*) gene cause uromodulin storage diseases and chronic kidney disease (CKD) (2-5). *UMOD* gene mutations in chromosome 16p12 result in uromodulin-associated kidney disease (UAKD), including medullary cystic kidney disease (MCKD) type 2 and familial juvenile hyperuricemic nephropathy (FJHN) (6). A distinct clinical entity from MCKD type 1 is associated with a mutation in chromosome 1q21 (7). MCKD type 2 follows a pattern of autosomal-dominant inheritance, with end-stage renal disease (ESRD) occurring in the fourth decade of life or later (8).

In most CKD patients, the disease is detected based on routine laboratory tests, such as urinalyses. However, a small number of patients exhibit mild abnormalities (e.g., a low glomerular filtration rate) of unknown cause without proteinuria or other common sequelae of CKD. We herein report the case of a family with UAKD, which caused early-onset CKD without evident proteinuria when the members were young adults.

Case Report

The patient was a 31-year-old Japanese woman who had not been previously diagnosed with organ abnormalities or taken conventional or traditional Chinese medications. Laboratory results showed CKD stage 3 (estimated glomerular filtration rate 59.7 mL/min per 1.73 m²), mild hyperuricemia...
(6.9 mg/dL), protein excretion of urinalysis within the normal limits (0.02 g per day) and the absence of microscopic hematuria or casts. On presentation, she had a normal blood pressure and body mass index (20.9 kg/m²). There were no electrolyte imbalances or immune markers irregularities. Magnetic resonance imaging of the kidneys showed no medullary cysts or abnormalities of the urinary tract. On echographic images, the patient’s kidneys were smaller than those of healthy individuals (right: 87×44 mm, left: 85×37 mm), although no other structural abnormalities were apparent. A histological analysis showed diffuse tubulointerstitial fibrosis with inflammatory cell infiltration and tubular atrophy; however, no cystic formations were observed in the kidney biopsy specimens (Fig. 1). Of the 40 glomeruli examined, 25% showed global sclerosis. There was no evidence of segmental sclerosis, crescent formation or mesangial increases in the other glomeruli. The immunofluorescence results did not indicate immunoglobulin or complement deposition in the glomeruli.

The patient’s grandfather, father and paternal aunt had developed ESRD of unknown cause, without proteinuria, and started maintenance hemodialysis while in their 40’s (Fig. 2). Her grandfather and father also had hyperuricemia and gout as young adults before starting maintenance hemodialysis therapy. Based on her family history of kidney dysfunction, we speculated that the patient and her family carried a UMOD gene mutation and subsequently performed a DNA analysis of the patient and her father after obtaining their consent. The DNA analysis was approved by the Ethics Committee of Kobe University Graduate School of Medicine. Briefly, genomic DNA was extracted from peripheral blood mononuclear cells using the Quick Gene DNA whole blood kit S (Fuji Film, Tokyo, Japan). All 10 coding exons of UMOD were amplified via polymerase chain reaction (PCR), and the PCR products were analyzed using direct sequencing (3100 Genetic Analyzer, Life Technologies Japan, Tokyo, Japan). A mutation analysis of UMOD showed that both the patient and her father harbored a novel T403G substitution in exon 4 that resulted in a C135G amino acid ex-
change (Fig. 3). Therefore, the patient was diagnosed as having UAKD and treated with allopurinol for hyperuricemia.

Discussion

In order to predict the functional effects of missense mutations in this study, we used the Polyphen 2 (Polymorphism Phenotyping v2, http://genetics.bwh.harvard.edu/pph2/) and Sorting Intolerant From Tolerant (SIFT, http://sift.jcvi.org/) systems. The Polyphen 2 score for the mutation was 0.958 (sensitivity: 0.63 and specificity: 0.92) and the SIFT score was 0.006 (9). We found no UMOD mutations in the DNA samples obtained from 100 healthy Japanese individuals using the same techniques, indicating that the T403G substitution is the likely cause of the current patient’s pathogenic condition.

UAKD is characterized by several features of hereditary nephropathy associated with UMOD gene mutations. MCKD type 2 and FJHN are considered forms of UAKD. However, UAKD is distinguished by its variable severity of symptoms, including hyperuricemia, gout and CKD (10, 11). Meanwhile, MCKD type 2 is a rare type of progressive tubulointerstitial nephropathy with autosomal dominant inheritance that results in the development of ESRD in adulthood. Compared to MCKD type 1, MCKD type 2 is associated with a more severe phenotype involving hyperuricemia and gout (12). Moreover, MCKD type 2 exhibits a younger median age at onset (32 years for MCKD type 2 versus 62 years for MCKD type 1) (7).

The uromodulin protein contains three epidermal growth factor (EGF) domains, a cysteine-rich region and a zona pellucida domain (10). The entire protein consists of 640 amino acids, including 48 cysteine residues (7.5%) required for the formation of disulfide bonds (12). To date, 76 distinct UMOD mutations have been identified (Table 1), many of which are missense changes in one of the conserved cysteine residues clustered in exon 4 encoding the first EGF domain. Furthermore, of the 74 known nucleotide polymorphisms, 38 involve cysteine residues (51.4%), and cysteine residues clustered in exon 4 encoding the first EGF domain.

Table 1. Mutations in the *UMOD* Gene

No.	Exon	NC	ECS	Ref
1	4	95 G>A	C132Y	14
2	4	96 C>G	C131W	22
3	4	100 G>A	E34K	12
4	4	149 G>C	C50S	23
5	4	156 T>G	C52W	21
6	4	172 G>T	G58C	24
7	4	176 A>C	D50A	5
8	4	187 T>C	C63R	25
9	4	205 T>C	C69R	12
10	4	206 G>A	C69Y	24
11	4	229 T>G	C77G	10
12	4	230 G>A	C77Y	4
13	4	307 G>T	G103C	3
14	4	317 G>A	C106Y	24
15	4	334 T>C	C112R	5
16	4	376 T>C	C126R	5
17	4	383 A>G	N128S	4
18	4	403 T>G	C135G	present
19	4	403 T>A	C135S	21
20	4	442 T>C	C149R	12
21	4	443 G>A	C149Y	3
22	4	444 T>G	C148W	26
23	4	449 G>C	C150S	26
24	4	509 G>A	C170Y	5
25	4	514 G>C	C172R	12
26	4	520 T>C	C174R	27
27	4	529_555 del	177_185 del	3
28	4	552 G>C	W184C	12
29	4	553 C>T	R185C	12
30	4	553 C>A	R185S	5
31	4	553 C>G	R185G	22
32	4	554 G>A	R185H	12
33	4	563_661 del	188_221 del	5
34	4	584 G>T	R195F	21
35	4	585_586 CG>TA	D196N	32
36	4	586 G>T	D196Y	28
37	4	586 G>A	D196N	22
38	4	605 G>C	W202S	21
39	4	610 C>G	R204P	12
40	4	610 C>G	R204G	5
41	4	628 G>A	G210S	12
42	4	649 T>G	C217G	12
43	4	649 T>C	C217R	3
44	4	651 C>G	C217W	22
45	4	665 G>C	R222P	5
46	4	667 T>C	C223R	22
47	4	668 C>G	C223Y	29
48	4	674 C>T	T225M	5
49	4	674 C>A	T225K	30
50	4	686 G>T	M229R	14
51	4	688 T>C	W230R	31
52	4	707 C>T	P236L	21
53	4	710 C>G	S237C	12
54	4	743 G>C	C248S	24
55	4	744 C>G	C248W	10
56	4	749 A>T	H250L	12
57	4	764 G>A	C255Y	4
58	4	809 G>T	G270C	13
59	4	817 G>A	V273L	12
60	4	821 A>G	V274C	24
61	4	844 T>C	C282R	5
62	4	855 A>G	A285E	12
63	5	891 T>G	C297W	32
64	5	893 G>A	C297Y	12
65	5	898 T>G	C300G	4
66	5	899 G>A	C300Y	33
67	5	920 A>C	K307T	34
68	5	943 T>C	C315R	26
69	5	944 A>G	A315Y	12
70	5	947 A>C	Q316P	35
71	5	950 G>A	C317Y	26
72	6	1039 T>G	C347G	36
73	8	1382 A>G	A461E	12
74	8	1406 C>T	T469M	12
75	8	1462 G>C	C488R	22
76	9	1815 A>G	T605G	37
residues account for 25 of the 54 known mutation positions (46.3%) (Table 2). Similar to that observed in many previous cases, the UMOD gene mutation detected in our patient and her father was within exon 4 of the EGF domain 3, suggesting that the loss of a cysteine residue in the EGF domain leads to the initiation or progression of UAKD. In fact, the onset of ESRD occurs significantly earlier in individuals with UMOD mutations within EGF domain 2 or 3 (range, 45-52 years) compared to that associated with mutations within the cysteine-rich domains (range, 60-65 years) (10).

The diagnosis of UAKD is made based solely on the presence of UMOD mutations detected on a DNA analysis. Therefore, the clinical and pathologic features of patients with UMOD mutations are well known. For example, the pathologic findings of UAKD patients include tubular atrophy, interstitial fibrosis, tubular basement membrane thickening, lamellation and the presence of fibrillar inclusion bodies in TALH cells on light microscopy (13). The results of immunohistochemical staining for UMOD in our patient showed intense staining of dense and coarse intracytoplasmic aggregates within the cells of the TALH (Fig. 4). In contrast, kidney tissues without UMOD gene mutations exhibit diffuse staining for UMOD within the cells of the TALH (13). UMOD urinary excretion is generally decreased in MCKD type 2/FJHN patients (14). However, the decreased UMOD excretion may occur secondary to renal disease (15). Therefore, urine tests may be not effective for making the diagnosis of UAKD. An in vitro investigation recently revealed that the intracellular accumulation of mutant UMOD in the endoplasmic reticulum induces apoptosis and causes progressive kidney dysfunction (16). However, the pathophysiology of this condition remains unclear in the clinical setting.

Hyperuricemia has been reported to develop in approximately 80% of MCKD type 2/FJHN patients (17). A previous report showed that hyperuricemia is effectively treated with allopurinol (18) or uricosuric drugs such as benzbro-

Table 2. Numbers of Mutations of Amino Acid

Amino acid	Cases (n=74)	Positions (n=54)
Cys	38 (51.4%)	25 (46.3%)
Arg	7	3
Gly	5	5
Asp	5	3
Thr	4	3
Trp	3	3
Ala	2	2
Glu	1	1
His	1	1
Asn	1	1
Pro	1	1
Ser	1	1
Val	1	1
Met	1	1
Tyr	1	1
Lys	1	1
Gln	1	1

References

1. Pennica D, Kohr WJ, Glaister D, Aggarwal BB, Chen EY, Goeddel DV. Identification of human uromodulin as the Tamm-Horsfall urinary glycoprotein. Science 236: 83-88, 1987.
2. Hart TC, Gorry MC, Hart PS, et al. Mutations of the UMOD gene are responsible for medullary cystic kidney disease 2 and familial juvenile hyperuremic nephropathy. J Med Genet 39: 882-892, 2002.
3. Turner JJ, Stacey JM, Harding B, et al. UROMODULIN mutations cause familial juvenile hyperuremic nephropathy. J Clin Endocrinol Metab 88: 1398-1401, 2003.
4. Dahan K, Devuyst O, Smaers M, et al. A cluster of mutations in the UMOD gene causes familial juvenile hyperuremic nephropathy.
thy with abnormal expression of uromodulin. J Am Soc Nephrol 14: 2883-2893, 2003.

5. Kottgen A, Glazer NL, Dehghan A, et al. Multiple loci associated with indices of renal function and chronic kidney disease. Nat Genet 41: 712-717, 2009.

6. Scolari F, Puzzer D, Amoroso A, et al. Identification of a new locus for medullary cystic disease, on chromosome 16p12. Am J Hum Genet 64: 1655-1660, 1999.

7. Christodoulou K, Tsingis M, Stravrou C, et al. Chromosome 1 localization of a gene for autosomal dominant medullary cystic kidney disease. Hum Mol Genet 7: 905-911, 1998.

8. Hildebrandt F, Zhou W. Nephronophthisis-associated ciliopathies. Clin J Am Soc Nephrol 79: c31-c36, 2011.

9. Lhotta K, Gehringer A, Jennings P, et al. Familial juvenile hyperuricemic nephropathy: detection of mutations in the uromodulin gene in five Japanese families. Kidney Int 65: 1589-1597, 2004.

10. Wolf MT, Beck BB, Zaucke F, et al. Mutations of the uromodulin (Tamm-Horsfall glycoprotein) gene. Am J Kidney Dis 42: 1145-1154, 2003.

11. Rampoldi L, Scolari F, Amoroso A, Ghiggeri G, Devuyst O. Uromodulin strage disease. Kidney Int 73: 574-581, 2007.

12. Rampoldi L, Scolari F, Amoroso A, Ghiggeri G, Devuyst O. The rediscovery of uromodulin (Tamm-Horsfall protein): from tubulointerstitial nephropathy to chronic kidney disease. Kidney Int 80: 338-347, 2011.

13. Nasr SH, Lucia JP, Galgano SJ, Markowitz GS, D’Agati VD. Uromodulin strage disease. Kidney Int 73: 971-976, 2008.

14. Vylet’tal P, Kublová M, Kalbácová M, et al. Alterations of uromodulin biology: a common denominator of the genetically heterogeneous FJHN/MCKD syndrome. Kidney Int 70: 1155-1169, 2006.

15. Serafini-Cessi F, Malagolini N, Cavallone D. Tamm-Horsfall glycoprotein: biology and clinical relevance. Am J Kidney Dis 42: 658-676, 2003.

16. Ma L, Liu Y, Ei-Achkar TM, Wu XR. Molecular and cellular effects of Tamm-Horsfall protein mutations and their rescue by chemical chaperones. J Biol Chem 287: 1290-1305, 2012.

17. Bleyer AJ, Woodward AS, Shihibi Z, et al. Clinical characterization of a family with a mutation in the uromodulin (Tamm-Horsfall glycoprotein) gene. Kidney Int 64: 36-42, 2003.

18. Bleyer AJ, Zivna M, Kmoch S. Uromodulin-associated kidney disease. Nephron Clin Pract 118: c31-c36, 2011.

19. Lhotta K, Gruber J, Sgou R, Fend F, Konig P. Apoptosis of tubular epithelial cells in familial juvenile gouty nephropathy. Nephron 79: 340-344, 1998.

20. Iseki K, Ikemiya Y, Inoue T, Iseki C, Kinjo K, Takishita S. Significance of hyperuricemia as a risk factor for developing ESRD in a screened cohort. Am J Kidney Dis 44: 642-650, 2004.

21. Bollee G, Daham K, Flamant M, et al. Phenotype and outcome in hereditary tubulointerstitial nephritis secondary to UMOD mutations. Clin J Am Soc Nephrol 6: 2429-2438, 2011.

22. Williams SE, Reed AA, Galvanovskis J, et al. Uromodulin mutations causing familial juvenile hyperuricaemic nephropathy lead to protein maturation defects and retention in the endoplasmic reticulum. Hum Mol Genet 18: 2963-2974, 2009.

23. Benetti E, Caridi G, Vella MD, et al. Immature renal structures associated with a novel UMOD sequence variant. Am J Kidney Dis 53: 327-331, 2009.

24. Zaucke F, Boehmlein JM, Steffens S, et al. Uromodulin is expressed in renal primary cilia and UMOD mutations result in decreased ciliary uromodulin expression. Hum Mol Genet 19: 1985-1997, 2010.

25. Lee MN, Jun JE, Kwon GY, Huh WS, Ki CS. A novel UMOD mutation (c.187T>C) in a Korean family with juvenile hyperuricemic nephropathy. Ann Lab Med 33: 293-296, 2013.

26. Rampoldi L, Caridi G, Santon D, et al. Allelism of MCKD, FJHN and GCKD caused by impairment of uromodulin export dynamics. Hum Mol Genet 12: 3369-3384, 2003.

27. Kado E, Kamatani N, Tezuka O, et al. Familial juvenile hyperuricemic nephropathy: detection of mutations in the uromodulin gene in five Japanese families. Kidney Int 65: 1589-1597, 2004.

28. Lhotta K, Gehringer A, Jennings P, et al. Familial juvenile hyperuricemic nephropathy: report on a new mutation and a pregnancy. Clin Nephrol 71: 80-83, 2009.

29. Bleyer AJ, Trachtman H, Sandhu J, Gorry MC, Hart TC. Renal manifestations of a mutation in the uromodulin (Tamm Horsfall protein) gene. Am J Kidney Dis 42: E20-E26, 2003.

30. Wolf MT, Mucha BE, Attanasio M, et al. Mutations of the Uromodulin gene in MCKD type 2 patients cluster in exon 4, which encodes three EGF-like domains. Kidney Int 64: 1580-1587, 2003.

31. Nakayama M, Mori Y, Ota N, et al. A Japanese family suffering from familial juvenile hyperuricemic nephropathy due to a rare mutation of the uromodulin gene. Case Rep Nephrol Urol 2: 15-19, 2012.

32. Schaffer P, Gombos E, Meichelbeck K, Kiss A, Hart PS, Bleyer AJ. Childhood course of renal insufficiency in a family with a uromodulin gene mutation. Pediatr Nephrol 25: 1355-1360, 2010.

33. Bleyer AJ, Hart TC, Willingham MC, Iskandar SS, Gorry MC, Trachtman H. Clinico-pathologic findings in medullary cystic kidney disease type 2. Pediatr Nephrol 20: 824-827, 2005.

34. Calado J, Gaspar A, Clemente C, Rueff J. A novel heterozygous missense mutation in the UMOD gene responsible for Familial Juvenile Hyperuricemic Nephropathy. BMC Med Genet 6: 5, 2005.

35. Lens XM, Banet JF, Outeda P, Barrio-Lucía V. A novel pattern of mutation in uromodulin disorders: autosomal dominant medullary cystic kidney disease type 2, familial juvenile hyperuricemic nephropathy, and autosomal dominant glomerulocystic kidney disease. Am J Kidney Dis 46: 52-57, 2005.

36. Tinschert S, Ruf N, Bernascone I, et al. Functional consequences of a novel uromodulin mutation in a family with familial juvenile hyperuricemic nephropathy. Nephrol Dial Transplant 19: 3150-3154, 2004.

37. Wei X, Xu R, Yang Z, et al. Novel uromodulin mutation in familial juvenile hyperuricemic nephropathy. Am J Nephrol 36: 114-120, 2012.