PERIODIC BILLIARD TRAJECTORIES IN SMOOTH
CONVEX BODIES

R.N. KARASEV

Abstract. We consider billiard trajectories in a smooth convex
body in \(\mathbb{R}^d \) and estimate the number of distinct periodic trajec-
tories that make exactly \(p \) reflections per period at the boundary
of the body. In the case of prime \(p \) we obtain the lower bound
\((d - 2)(p - 1) + 2\), which is much better than the previous esti-
mates.

1. Introduction

First, we give several definitions on billiards in convex bodies.

Definition. A billiard trajectory in a smooth convex body \(T \in \mathbb{R}^d \) is a
polygon \(P \subset T \), with all its vertices on the boundary of \(T \), and at each
vertex the direction of line changes according to the elastic reflection
rule.

Definition. Let \(P \) be a periodic billiard trajectory. Its number of
vertices is called its length.

From here on \(d \) will denote the dimension of convex body under
consideration. We encode periodic trajectories by the sequence of their
vertices \((x_1, x_2, \ldots, x_l)\). The indices are considered \(\mod l \). We do
not allow coincidences \(x_i = x_{i+1} \), but \(x_i \) may equal \(x_j \) if \(i - j \neq 0, \pm 1 \)
\(\mod l \). Of course, the polygon segments can have mutual intersections.

The problem of finding lower bounds on the number of distinct tra-
jectories of a given length has quite a long history. We mean by “dis-
tinct trajectories” the orbits of the dihedral group, acting naturally on
trajectories.

The first lower bound was obtained in \([1]\) for the two-dimensional
case.

2000 Mathematics Subject Classification. 55M30.

Key words and phrases. billiard trajectories, Lyusternik-Schnirelmann theory.

This research was supported by the Russian Foundation for Basic Research
grants No. 03-01-00801 and 06-01-00648, and by the President of the Russian
Federation grants No. MK-5724.2006.1 and No. MK-1005.2008.1.
In the case of length 2 and dimension d the paper [2] gives the lower bound d. This bound is tight, it may be seen by considering a generic ellipsoid.

The case of dimension 3 was considered in [5], but later an error was found, as noted in [8, 9].

In the book [7] the following problem was formulated (Problem 1.7):

Problem. Let $T \subset \mathbb{R}^d$ be a smooth convex body. Prove that it has at least d periodic billiard trajectories of length 3.

In the papers [8, 9] some lower bounds were obtained for length n. There were two cases: odd n without other assumptions, and odd prime n. In the latter case the bounds were better. Here we give another lower bound for prime lengths.

Theorem 1. Let $T \subset \mathbb{R}^d$ be a smooth convex body, $d \geq 3$, let $p > 2$ be a prime. Then there are at least $(d - 2)(p - 1) + 2$ distinct periodic billiard trajectories of length p in T.

The proof of this theorem is mainly based on results from [8, 9], calculating the cohomology ring of relevant configuration spaces. The case of non-prime length is not considered here.

2. COHOMOLOGICAL INDEX OF Z_p-SPACES

In the sequel, if we want to consider Z_p as a group of transformations, we denote it G. If it is used as a ring of coefficients for cohomology it is denoted Z_p.

Consider the cohomology algebra $A_G = H^*_G(pt, Z_p) = H^*(BG, Z_p)$. It is well known [3] that A_G has two generators v, y of dimensions 1 and 2 respectively, the relations being

$$v^2 = 0, \quad \beta(v) = y.$$

We denote $\beta(x)$ the Bockstein homomorphism. We see that A_G is Z_p in every dimension.

Definition. Let X be a G-space. The maximal n such that the natural map

$$H^n_G(pt, Z_p) \to H^n_G(X, Z_p)$$

is nontrivial, is called the **cohomological index** of X and denoted $\text{hind} X$.

Note that if the map $H^n_G(pt, Z_p) \to H^n_G(X, Z_p)$ is trivial for some n, it should be trivial for all larger n, since every element of A_G can be obtained from any nonzero element of less dimension by multiplications by v, y, elements of Z_p^*, and by applying the Bockstein homomorphism.
Every G-space X gives a fibration $$(X \times EG)/G \to BG.$$

If G acts on cohomology of X trivially, there exists a spectral sequence with E_2-term equal to $H^*(X, \mathbb{Z}_p) \otimes A_G$, converging to $H^*_G(X, \mathbb{Z}_p)$. If G has a nontrivial action on cohomology, E_2-term is $E_2^{x, y} = H^*(G, H^y(X, \mathbb{Z}_p))$, where $H^*(G, M) = \text{Ext}^{\ast}_{Z_G[M]}(M, \mathbb{Z}_p)$ is the cohomology of a G-module M.

If G acts freely on X, we have $H^*_G(X, \mathbb{Z}_p) = H^*(X/G, \mathbb{Z}_p)$. In this case $	ext{hind} X$ does not exceed the dimension of X.

The following property is obvious by the definition of index:

Lemma 1 (Monotonicity of index). *If there is a G-equivariant map $X \to Y$, then* $$\text{hind} X \leq \text{hind} Y.$$

3. Lyusternik-Schnirelmann theory

We recall the definition of the Lyusternik-Schnirelmann category of a topological space.

Definition. The relative category of a pair $Y \subseteq X$ is the minimal cardinality of a family of contractible in X open subsets of X, covering Y. It is denoted $\text{cat}_X Y$. The number $\text{cat}_X X = \text{cat} X$ is called the category of X.

Here we state the Lyusternik-Schnirelmann theorem on the number of critical points in the form it is used in [8] for manifolds with boundary.

Theorem 2. *Let X be a compact smooth manifold with boundary. Let $f : X \to \mathbb{R}$ be a smooth function, its gradient at ∂X always having strictly outward (inward) direction. Then f has at least $\text{cat}_X X$ critical points.*

We will need the following lemma, that is a special case of the results of [6].

Lemma 2. *Let a space X have k cohomology classes $x_1, \ldots, x_k \in H^1(X, \mathbb{Z}_p)$ and l classes of arbitrary positive dimension $y_1, \ldots, y_l \in H^*(X, \mathbb{Z}_p)$. If* $$\beta(x_1)\beta(x_2)\ldots\beta(x_k)y_1\ldots y_l \neq 0,$$
then $\text{cat} X \geq 2k + l + 1$.

Actually, we use the following corollary of the previous lemma.
Lemma 3. Let a finite group G act freely on a space X, assume that for some subgroup of prime order $G' \subseteq G$ we have $\text{hind}_{G'} X \geq n$. Then $\text{cat } X/G \geq n + 1$.

Proof. As it was noted in [9] $\text{cat } X/G \geq \text{cat } X/G'$.

G' acts freely on X, hence $H^*(X/G', Z_p) = H^*_G(X, Z_p)$. The latter algebra has a nonzero product of A_G elements $y^{\frac{n}{2}}$ or $vy^{\frac{n+1}{2}}$, for even or odd n respectively. So we can apply Lemma 2.

4. The configuration space

Following the papers [8, 9] we describe the configuration spaces that arise naturally in the billiard problems. For a topological space X denote $G(X, p) = \{(x_1, \ldots, x_p) \in X^p : x_1 \neq x_2, x_2 \neq x_3, \ldots, x_{p-1} \neq x_p, x_p \neq x_1\}$.

The space $G(X, p)$ has an action of the dihedral group D_p, which has a subgroup of even permutations, isomorphic to $Z_p = G$.

Proposition 4.1 of [8] claims that $G(\partial T, p)$ contains a D_p-invariant compact manifold with boundary $G_\varepsilon(\partial T, p)$, which is D_p-equivariantly homotopy equivalent to $G(\partial T, p)$.

In this section we find the cohomological G-index of $G(\partial T, p)$, obviously equal to the index of $G_\varepsilon(\partial T, p)$. The space ∂T is homeomorphic to a $d - 1$-sphere, so we write $G(S^{d-1}, p)$.

The first lower bound on the index of $G(S^{d-1}, p)$ will be obtained by considering another space: $G(\mathbb{R}^d, p)$. Recall a special case of Proposition 2.2 from [8].

Theorem 3. Let $d \geq 2$. The cohomology algebra $H^*(G(\mathbb{R}^d, p), Z_p)$ is multiplicatively generated by $d - 1$-dimensional classes s_1, \ldots, s_p and relations

$s_1^2 = s_2^2 = \cdots = s_p^2 = 0, \quad s_1 s_2 \cdots s_{p-1} + s_2 s_3 \cdots s_p + s_3 s_4 \cdots s_p s_1 + s_p s_1 \cdots s_{p-2} = 0.$

The group G acts on s_1, \ldots, s_p by cyclic permutations.

Considering the action of G on $G(\mathbb{R}^d, p)$, we deduce a corollary.

Theorem 4. If $d \geq 2$, then $\text{hind } G(\mathbb{R}^d, p) = (d - 1)(p - 1)$.

Proof. Denote $Y = G(\mathbb{R}^d, p)$.

Consider a spectral sequence with $E_2^{x,y} = H^x(Y, Z_p)$. Note that $H^*(Y, Z_p)$ are free $Z_p[G]$-modules in dimensions between 0 and $(d - 1)(p - 1)$. In dimension 0 it is Z_p, in dimension $(d - 1)(p - 1)$ it is $Z_p[G]/Z_p$.

Let I_G^k be the ideal of A_G, consisting of elements of dimension at least k.
In E_2-term the bottom row is A_G, the top row is I_G^1 with shifted by -1 grading. The latter claim is deduced from the cohomology exact sequence for $0 \to Z_p \to Z_p[G] \to Z_p[G]/Z_p \to 0$.

All other rows of E_2 have nontrivial groups in 0-th column only. Every differential of the spectral sequence is a homomorphism of A_G-modules. Hence, the intermediate rows cannot be mapped non-trivially to the bottom row. The only nonzero differential can map the top row to a part of the bottom row, isomorphic to $I_G^{(d-1)(p-1)+1}$. This map has to be nontrivial because the index of Y is finite. \hfill \Box

We see that if X contains \mathbb{R}^d, then $G(X, p) \supseteq G(\mathbb{R}^d, p)$. By the monotonicity of index we have $\operatorname{hind}(G(X, p)) \geq (d-1)(p-1)$, in particular $G(S^{d-1}, p) \geq (d-1)(p-1)$.

Then we need more precise estimates on $\operatorname{hind}(G(S^{d-1}, p))$. Recall two theorems from \cite{9} (Theorem 18, Theorem 19), describing the algebra $H^\ast(G(S^{d-1}, p), Z_p)$. We use the notation $[n] = \{1, 2, \ldots, n\}$.

\textbf{Theorem 5.} Let $d \geq 4$ be even. Then $H^\ast(G(S^{d-1}, p), Z_p)$ is generated by the elements

$$u \in H^{d-1}(G(S^{d-1}, p), Z_p), \quad s_i \in H^{i(d-2)}(G(S^{d-1}, p), Z_p), i \in [p-2]$$

and relations

$$u^2 = 0, \quad s_is_j = \frac{(i+j)!}{i!j!}s_{i+j}, \text{ if } i + j \leq p-2, \text{ or otherwise } s_is_j = 0.$$

\textbf{Theorem 6.} Let $d \geq 3$ be odd. Then $H^\ast(G(S^{d-1}, p), Z_p)$ is generated by the elements

$$w \in H^{2d-3}(G(S^{d-1}, p), Z_p), \quad t_i \in H^{i(2d-4)}(G(S^{d-1}, p), Z_p), i \in \left[\frac{p-3}{2}\right]$$

and relations

$$w^2 = 0, \quad t_it_j = \frac{(i+j)!}{i!j!}t_{i+j}, \text{ if } i + j \leq \frac{p-3}{2}, \text{ or otherwise } t_it_j = 0.$$

Theorem 5 is formulated in \cite{9} for the cohomology coefficients \mathbb{Q}. But the proof is valid without change for Z_p, since we only have to divide by $i!$, where $i \leq p-2$.

Note that G acts on the cohomology in these theorems trivially, since the cohomology is either Z_p or 0 in every dimension.

Finally, let us give another lower bound for $\operatorname{hind}(G(S^{d-1}, p))$. We have a D_p-equivariant map from the Stiefel variety of 2-frames in \mathbb{R}^d $V_d^2 \to G(S^{d-1}, p)$, defined as follows. Take some regular p-gon in the plane. Every frame $(e_1, e_2) \in V_d^2$ gives an embedding of this p-gon to
S^{d-1}, which is D_{p}-equivariant. So hind $G(S^{d-1}, p) \geq$ hind V_d^2, the latter index being equal to (see [4]) $2d - 3$.

Theorem 7. If $d \geq 3$, then hind $G(S^{d-1}, p) = (d - 2)(p - 1) + 1$.

Proof. First, as it was mentioned in [5] [8], the Morse theory shows that $G(S^{d-1}, p)$ is homotopy equivalent to a CW-complex of dimension $(d - 2)(p - 1) + 1$. So the index is naturally bounded from above and we prove the lower bound only.

If $p = 3 (p - 1)(d - 2) + 1 = 2d - 3$ and the lower bound is already done. So we consider the case $p \geq 5$.

Note that $H^*(G(S^{d-1}, p), Z_p)$ is multiplicatively generated by (u, s_1) and (w, t_1) for even and odd d respectively.

First consider the case of even d.

Consider the spectral sequence with $E_2 = H^*(G(S^{d-1}, p), Z_p) \otimes A_G$. In this case the multiplicative generators of $H^*(G(S^{d-1}, p), Z_p)$ have dimension at most $d - 1$. If the differentials d_m were trivial for $m \leq d$, then they should be trivial for $m > d$ from the dimension of generators. But in this case hind $G(S^{d-1}, p) = +\infty$, which is false. So some of d_m is nontrivial for $m \leq d$.

Note that in E_2 the bottom row is A_G, the next from bottom is $s_1 A_G$, then $u A_G$. Let d_m be the first nontrivial differential. The generators u and s_1 cannot be mapped non-trivially to the bottom row, since in this case hind $G(S^{d-1}, p)$ would be at most $d - 1$. The only possibility for nontrivial d_m is d_2 that has $d_2(u) = as_1 y (a \in Z_p^*)$. In this case E_3 will be multiplicatively generated by $v, y \in A_G$, the image of s_1 and of us^{k-2}, denote the latter by z. The relations would be (besides those of A_G):

$$s_1^{p-1} = 0, \quad s_1 y = 0, \quad z^2 = 0.$$

That means that E_3 has two full rows in the top and in the bottom, and several rows in between contain s_1^k and $s_1^k v$ for $k \in [p - 2]$.

The next d_m cannot map z non-trivially if $m \leq (p - 1)(d - 2) + 1 = \dim z$. They also cannot map s_1 non-trivially from the dimension considerations and the lower bound for index. The latter statement can also be deduced from the fact that all differentials are homomorphisms of A_G-modules. So finally $d_{(p-1)(d-2)+1}$ has to map z to the bottom row and we have hind $G(S^{d-1}, p) = (p - 1)(d - 2) + 1$.

Now consider the case of odd d. Everything is quite the same, but besides the alternative that gives hind $G(S^{d-1}, p) = (p - 1)(d - 2) + 1$ we have another alternative. It could happen that d_2 is trivial and the first nontrivial d_{2d-2} maps w non-trivially to the bottom row. But in this case hind $G(S^{d-1}, p) = 2d - 3$, which is less then the bound $(d - 2)(p - 1)$ for $p \geq 5$. □
5. Proof of Theorem 1

Consider the function on $G(\partial T, p)$

$$f : (x_1, \ldots, x_p) \mapsto \sum_{i=1}^{p} |x_i x_{i+1}|.$$

If $\frac{\partial f}{\partial x_i} = 0$, then at x_i the polyline $x_1 x_2 \ldots x_p x_1$ reflects by the elastic reflection rule. f can be considered as a function on $G(\partial T, p)/D_p$, its critical points being in one-to-one correspondence with distinct periodic billiard trajectories of length p.

If T is not strictly convex, some line segments of the trajectory can lie on ∂T. But in this case all the segments must lie on the same line, which is impossible.

Following [8] we consider $G_{\varepsilon}(\partial T, p)$ instead of $G(\partial T, p)$ and apply Theorem 2 to f.

Then we estimate $\text{cat} G(\partial T, p)/D_p \geq (d-2)(p-1) + 2$ by Theorem 7 and Lemma 3.

6. Conclusion

For an arbitrary d-manifold M ($d \geq 2$) hind $G(M, p)$ is between $(d-1)(p-1)$ (Theorem 4) and $(d-1)(p-1) + 1$ (by the dimension considerations). It seems probable that for closed M hind $G(M, p) = (d-1)(p-1) + 1$, as it is for spheres (Theorem 7).

The author would like to thank A. Yu. Volovikov for useful discussions on the subject of the paper.

References

[1] G. Birkhoff. Dynamical systems. // Amer. Math. Soc. Coll. Publ., 9, 1927
[2] N.H. Kuiper. Double normals of convex bodies. // Israel Journal of Mathematics, 2, 1964, 71–80
[3] Wu Yi Hsiang. Cohomology theory of topological transformation groups. Berlin-Heidelberg-New-York: Springer Verlag, 1975
[4] V.V. Makeev. Knaster’s problem and almost spherical sections. // Math. Sbornik, 180(3), 1989, 424–431
[5] I.K. Babenko. Periodic trajectories in three-dimensional Birkhoff billiards. // Math. Sbornik, 181(9), 1990, 1155–1169
[6] E. Fabell, S. Hussein. Category weight and Steenrod operations. // Boletin de la Sociedad Matemática Mexicana, 37, 1992, 151–161
[7] V. Klee, S. Wagon. Old and new unsolved problems in plane geometry and number theory. Dolciani Mathematical Expositions, The Mathematical Association of America, 1996
[8] M. Farber, S. Tabachnikov. Topology of cyclic configuration spaces and periodic trajectories of multi-dimensional billiards. // Topology, 41(3), 2002, 553–589

[9] M. Farber. Topology of billiard problems, II. // Duke Mathematica Journal, 115, 2002, 587–621

E-mail address: r_n_karasev@mail.ru

Roman Karasev, Dept. of Mathematics, Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, Russia 141700