ON RESOLVABILITY OF LINDELÖF GENERATED SPACES

MARIA A. FILATOVA AND ALEXANDER V. OSIPOV

Abstract. In this paper we study the properties of P generated spaces (by analogy with compactly generated). We prove that a regular Lindelöf generated space with uncountable dispersion character is resolvable. It is proved that Hausdorff hereditarily L-spaces are L-tight spaces which were defined by István Juhász, Jan van Mill in (Variations on countable tightness, arXiv:1702.03714v1). We also prove ω-resolvability of regular L-tight space with uncountable dispersion character.

Keywords: resolvable space, k-space, tightness, ω-resolvable space, Lindelöf generated space, P generated space, P-tightness.

1. Introduction

A Hausdorff space is said to be a k-space (also called compactly generated) if it has the final topology with respect to all inclusions $K \to X$ of compact subspaces K of X, so that a set A in X is closed in X if and only if $A \cap K$ is closed in K for all compact subspaces K of X. A space is Fréchet-Uryson if, whenever a point x is in the closure of a subset A, there is a sequence from A converging to x; it is proved in [1] that a space is hereditarily k, i.e., every subspace is a k-space, if and only if it is Fréchet-Uryson. For examples, any locally compact, or the first countably Hausdorff spaces are k-spaces.

An interesting common generalizations of k-spaces and the notion of tightness was given by A.V. Arhangel’skii and D.N. Stavrova in [2]. They defined the k, k_1, k_2, and P-tightness.
k^*-tightness as follows: the k-tightness of X does not exceed τ ($t_k(X) \leq \tau$) if and only if for every $A \subseteq X$ that is not closed there exists a τ–compact $B \subseteq X$ for which $A \cap B$ is not closed in X (a set B is called τ–compact if $B = \bigcup \{B_\alpha : \alpha \in \tau\}$, where B_α is a compact subset of X for all $\alpha \in \tau$); the k_1–tightness of X does not exceed τ ($t_{k_1}(X) \leq \tau$) if and only if for every $A \subseteq X$ and every $x \in \overline{A}$ there exists a τ–compact $B \subseteq X$ such that $x \in \overline{A \cap B}$; the k^*–tightness of X does not exceed τ ($t_k^*(X) \leq \tau$) if and only if for every $A \subseteq X$ and every $x \in \overline{A}$ there exists a τ–compact $B \subseteq A$ such that $x \in \overline{B}$.

In [4] István Juhász and Jan Van Mill defined and studied nine attractive natural tightness conditions for topological spaces. They called a space \mathcal{P}–tight, if for all $x \in X$ and $A \subseteq X$ such that $x \in A$, there exists $B \subseteq A$ such that $x \in \overline{B}$ and B has the property \mathcal{P}.

István Juhász and Jan Van Mill considered in [4] the following properties \mathcal{P} that a subspace of a topological space might have:

- ωD Countable discrete;
- ωN Countable and nowhere dense;
- C_2 Second-countable;
- ω Countable;
- hL Hereditarily Lindelöf;
- σ-cmp σ–compact;
- ccc The countable chain condition;
- L Lindelöf;
- wL Weakly Lindelöf.

Inspired by the researches above, in the first part of this paper we introduce and study \mathcal{P} generated spaces (by analogy with k-spaces). Since the space with property \mathcal{P} is not necessarily closed, there are two ways to determine the \mathcal{P} generated spaces.

Definition 1. A topological space X is \mathcal{P}–space (\mathcal{P} generated space) if a subspace A is closed in X if and only if $A \cap P$ is closed in P for any subspace $P \subseteq X$ which has the property \mathcal{P}.

Definition 2. A topological space X is $\mathcal{P}c$–space if a set A is closed in X if and only if $A \cap P$ is closed in P (or, is the same one, in X) for any closed subspace $P \subseteq X$ which has the property \mathcal{P}.

In this paper we will consider the property $\mathcal{P} \in \{\omega N, C_2, \omega, hL, \sigma$-cmp, $ccc, L, wL\}$ because each ωD-space is discrete. Note that every space with countable tightness (i.e. ω-tight) is ω–space [11].

The class of L-spaces generalizes the class of spaces with countable tightness and the class of k-spaces. Below (Theorem 1) we get the example of the space with countable tightness, but is not Lc-space.

Note that the relationships between the spaces of \mathcal{P}–tight where the property $\mathcal{P} \in \{\omega N, \omega D, C_2, \omega, hL, \sigma$-cmp, $ccc, L, wL\}$ were considered in [4].

We summarize the relationships between \mathcal{P}–spaces (\mathcal{P}–s) and \mathcal{P}–tight (\mathcal{P}–t) where the property $\mathcal{P} \in \{\omega N, \omega, hL, \sigma$-cmp, $ccc, L, wL\}$ in next diagrams.
In 1943 E. Hewitt \cite{5} called a topological space τ-resolvable, if it can be represented as a union of τ dense disjoint subsets. A 2-resolvable space is called resolvable, and irresolvable space is one which is not resolvable. He also defined the dispersion character $\Delta(X)$ of a space X as the smallest size of a non-empty open subset of X. A topological space X is called maximally resolvable if it is $\Delta(X)$-resolvable.

The ω-resolvability of Lindel"of spaces whose dispersion character is uncountable was proved by I. Juhasz, L. Soukup, Z. Szentmiklossy in \cite{6}. E. Hewitt in \cite{5} constructed an example of countable irresolvable normal space, so condition $\Delta(X) > \omega$ is natural. V.I. Malyskin constructed an example of irresolvable Hausdorff Lindel"of space with uncountable dispersion character in \cite{7}, therefore, resolvability of regular Lindel"of spaces was studied.

The resolvability of locally compact spaces was proved by Hewitt in 1943 \cite{5}. The resolvability (maximal resolvability) of k-spaces was proved by N.V. Velichko in 1976 \cite{8} (E.G. Pytkeev in 1983 \cite{9}). In connection with these results, the question of the resolvability of L-spaces is natural.

Second part of this paper is devoted to resolvability of regular L-spaces of uncountable dispersion character. We also prove ω-resolvability of regular hereditarily L-spaces of uncountable dispersion character.

Throughout this paper the symbol ω denotes the smallest infinite cardinal, ω_1 stands for the smallest uncountable cardinal. For a subset A of a topological space X, the closure and interior set of A are respectively denotes by \overline{A} (or $[A]$) and $Int(A)$. We assume that all spaces are Hausdorff. Notation and terminology are taken from \cite{10}.

2. \mathcal{P} GENERATED SPACE

By Definitions \cite{1} and \cite{2}, a $\mathcal{P}c$-space is a \mathcal{P}-space. The following example shows that the converse is not true.
Theorem 1. There exists a space X such that X is a ω-space and $t_k(X) = t_k^*(X) = t(X) = \omega$.

Proof. Let $X = \beta N$, $M = \beta N \setminus N$. In a $x \in X$ we put the base of neighborhoods $\mathcal{B}(x) = \{x\}$, if $x \in N$ and $\mathcal{B}(x) = \{(U(x) \setminus M) \cup \{x\}\}$ where $U(x)$ is open in βN, if $x \in M$.

Now we show that X is a ω-space. Consider the set $A \subset X$ for which $A \cap P$ is closed in P for any countable subspace $P \subseteq X$. Let $x \in \overline{A}$. The set $P_1 = (A \cap N) \cup \{x\}$ is a countable. Then $A \cap P_1$ is closed in P_1 therefore $x \in A$.

Let us note that if P is a countable tightness is ω-space. Consider the set \mathcal{P} of ω-spaces. The converse statements are not true. Theorem 1 shows that even ω-spaces do not generalize a notion of countable tightness. Thus, a natural generalization of spaces with countable tightness and k-spaces is \mathcal{P}-spaces.

Theorem 2. There exists a space X such that X is a ω-space, but is not ωc-space.

Proof. For example, let D be the infinite discrete space of cardinality continuum \mathfrak{c}, and $X = \beta D$ be the Čech-Stone compactification of D. Being the compact space, X is a ω-space. Consider $p \in X \setminus \{\bigcup \overline{A} : A \in [D]^{\leq \omega}\}$. Since the space D has not an uncountable Lindelöf subspace, there is no Lindelöf subspace $B \subset D$ such that $p \in \overline{B}$.

In what follows we shall concentrate on the study of some properties of \mathcal{P}-spaces. Most of all we are interested in the resolvability of L-space. The following statements will be useful for these purpose.

Theorem 3. Let the property $\mathcal{P} \in \{\omega N, \omega, hL, \sigma$-cmp, $ccc, L, wL\}$. Then the following properties of a space X are equivalent.

(i) X is a \mathcal{P}-space;

(ii) a set $A \subset X$ is non-closed in X if and only if there exists $P \subseteq X$ which have a property \mathcal{P} such that $P \cap A$ is non-closed in X.

Proof. (i) \Rightarrow (ii). Let X is a \mathcal{P}-space, $A \subset X$ is non-closed in X. Then there exists $P \subseteq X$ which have a property \mathcal{P} such that $P \cap A$ is non-closed in P, therefore $P \cap A$ is non-closed in X. Let for a set A there exists $P \subseteq X$ which have a property \mathcal{P} such that $P \cap A$ is non-closed in X. Consider $x \in \overline{P} \cap A \setminus (P \cap A)$. If $x \in A$ then $x \in \overline{A} \setminus P$, i.e. $P \cap A$ is non-closed in P, consequently a set A is non-closed in X. If $x \in P$ then $x \in \overline{A} \setminus A$, i.e. a set A is non-closed in X.
(ii) → (i). Consider $A \subset X$ such that $A \cap P$ is closed in P for any subspace $P \subset X$ which has the property \mathcal{P}. Suppose that $A \neq \emptyset$. Then exists $P \subset X$ which have a property \mathcal{P} such that $P \cap A$ is non-closed in X. Consider $x \in \overline{P \cap A \setminus (P \cap A)}$. Let $P_1 = P \cup \{x\}$. Then P_1 has the property \mathcal{P} and $P_1 \cap A$ is not closed in P_1, contradiction. □

Corollary 2. A space X is \mathcal{P}-space if and only if for any A non-closed in X there are $x \in \overline{A \setminus A}$ and $P \subset X$ with a property \mathcal{P} such that $x \in \overline{P \cap A}$.

Corollary 3. For any non-isolated point x in \mathcal{P}-space X there is a subspace $P \subset X$ with a property \mathcal{P} such that $x \in \overline{P \setminus \{x\}}$.

We give the following definition.

Definition 3. The property \mathcal{P} is ICS (independent of the containing subspace) in X if $P \subset X$ has a property \mathcal{P} in X if and only if P has a property \mathcal{P} in Y for any subset Y such that $P \subset Y$.

The next theorem shows that hereditarily \mathcal{P}-space is \mathcal{P}-tight if property \mathcal{P} is ICS in X.

Theorem 4. Let property \mathcal{P} be ICS in X. A space X is hereditarily \mathcal{P}-space if and only if for any $A \subset X$ and $x \in \overline{A \setminus A}$ there exists $P \subset A$ which have a property \mathcal{P} such that $x \in \overline{P}$.

Proof. Let X be a hereditarily \mathcal{P}-space, $A \subset X$ and $x \in \overline{A \setminus A}$. The subspace $B = A \cup \{x\}$ is \mathcal{P}-space, x is non-isolated point in B. Then there is $P \subset A$ with a property \mathcal{P} such that $x \in \overline{P}$.

Converse, let $B \subset X$, $A \subset B$ and $A \cap P$ is closed in B for any $P \subset B$ which have a property \mathcal{P}. If $x \in \overline{A \setminus A}$ then there exists $P \subset A$ which have a property \mathcal{P} such that $x \in \overline{P}$, i.e. $A \cap P$ is non-closed in B. □

Corollary 4. Let property \mathcal{P} be ICS in X. A space X is \mathcal{P}-tight if and only if each subspace Y of X is \mathcal{P}-tight.

Note that ωN-tight is not hereditarily property. The real numbers \mathbb{R} is ωN-tight, but its subspace $Y = \{\frac{1}{n} : n \in \mathbb{N}\} \cup \{0\}$ is not ωN-tight.

3. On resolvability of L-spaces

The maximal resolvability of ω-tight spaces whose dispersion character is uncountable was proved by E.G. Pytkeev in [9]. Therefore ω-spaces with uncountable dispersion character are maximally resolvable. A. Bella and V.I. Malykhin was proved that ωN-tight spaces are maximally resolvable [12].

E. Hewitt in [5] constructed an example of countable irresolvable normal space. Such space is obviously ω-tight (hL-, σ-cmp-, ccc-, L-, wL-tight) space with countable dispersion character. Therefore, in studying the resolvability of these spaces, it is necessarily to consider the spaces with uncountable dispersion character.

In this section we prove ω-resolvability of regular L-tight spaces which dispersion character is uncountable. Consequently, hL-, σ-cmp-, ccc-, wL-tight spaces are also ω-resolvable (if X is regular space then properties ccc-tight, L-tight, wL-tight are equivalent).
The ω-resolvability of ωD-spaces was proved by P.L. Sharma and S. Sharma in [13]. V.I. Malychin constructed an example of irresolvable Hausdorff Lindelöf space with uncountable dispersion character [7].

It is clear that any Lindelöf space is L-space. Therefore, the resolvability of L-spaces must be investigated in the class of regular spaces.

We will use a following

Theorem 5. (Hewitt’s criterion of resolvability [12]) A topological space X is resolvable (τ-resolvable) if and only if for all open subset U of X there exist nonempty resolvable (τ-resolvable) subspace without isolated points.

A.G. El’kin proved the following elegant result

Theorem 6. (Theorem 1 in [3]) Let X be a collectionwise Hausdorff σ-discrete normal space that satisfies the following condition:

(*) For each point $x \in X$ there exists a discrete set $D \subset X$ such that $x \in \overline{D} \setminus D$.

Then the space X is ω-resolvable.

Recall that a set $D \subset X$ is strongly discrete if for every $x \in D$ there is an open neighborhood U_x such that $U_x \cap U_y = \emptyset$ for $x \neq y$.

A point x of a space X is called lsd-point (a limit point of a strongly discrete subspace) if there exists a strongly discrete subspace $D \subset X$ such that $x \in \overline{D} \setminus D$.

By using idea of the proof of El’kin’s Theorem 6, P.L. Sharma and S. Sharma proved the following result [13].

Theorem 7. (P.L. Sharma, S. Sharma) Let X be a T_1-space. If each $x \in X$ is a limit point of a strongly discrete subspace of X then X is a ω-resolvable.

Definition 4. A discrete set D of cardinality ω_1 is a correct discrete, if any $Y \subseteq D$ such that $|Y| = \omega_1$ has a ω_1-accumulation point.

The following lemma is a generalized version of the lemma 2.1 in [15].

Lemma 1. Let X be a regular space such that for each $x \in X$ there exists a correct discrete set D_x of cardinality ω_1 such that x is a ω_1-accumulation point of D_x. Then X is resolvable.

Proof. By Theorem 5 it suffices to prove that each non-empty open set V of X contains dense-in-itself Y such that \overline{Y} is resolvable.

Denote by $P(D)$ the set of ω_1-accumulation points of a correct discrete set D. Let us note that $P(D) = P(D)$ and for any open set U such that $P(D) \subset U$, the set $D \setminus U$ is at most countable.

Let $y \in V$, $D_y \subset V$ is a correct discrete set of cardinality ω_1, such that $y \in P(D_y)$. Let $Y_1 = D_y$, $Y_n = \bigcup\{D_y : y \in Y_{n-1}\}$, where D_y is correct discrete set, y is ω_1-accumulation of D_y, we put $Y = \bigcup_{n=1}^{\infty} Y_n$. It is clear that $|Y| = \omega_1$ and any $y \in Y$ is a ω_1-accumulation point of correct (in \overline{Y}) discrete subset D_y of Y.

Now we prove that \overline{Y} is resolvable.

First, we renumber the space $Y = \{y_\alpha : \alpha < \omega_1\}$.
For $\alpha < \omega_1$ we construct sets $A^i_\alpha \subset \overline{Y}$, $A_i = \bigcup_{\alpha < \omega_1} A^i_\alpha$, where $i = 1, 2$, such that $A_1 \cap A_2 = \emptyset$ and $\overline{A_1} = \overline{A_2} \supset Y$.

Consider y_1. Let D_1 be a correct (in X) discrete space of cardinality ω_1, such that $y_1 \in P(D_1)$. Let $A^1_1 = D_1$, $A^2_1 = P(D_1)$, $P_1 = P(D_1)$. Obviously, $A^1_1 \cap A^2_1 = \emptyset$ and $\overline{A^1_1} \cap \overline{A^2_1} \supset P_1$.

Suppose that for each $\alpha < \beta < \omega_1$ we construct sets $P_\alpha \subset \overline{Y}$, $D_\alpha \subset Y$, A^1_α, A^2_α with the following properties.

1. If $y_\alpha \in \left[\bigcup_{\eta < \alpha} P_\eta \right]$, then $P_\alpha = D_\alpha = \emptyset$, $A^i_\alpha = \bigcup_{\eta < \alpha} A^i_\eta$, $i = 1, 2$.

2. If $y_\alpha \notin \left[\bigcup_{\eta < \alpha} P_\eta \right]$ and $y_\alpha \in \left[\bigcup_{\eta < \alpha} A^1_\eta \right] \cap \left[\bigcup_{\eta < \alpha} A^2_\eta \right]$, then $P_\alpha = \{ y_\alpha \}$, $D_\alpha = \emptyset$, $A^1_\alpha = \bigcup_{\eta < \alpha} A^1_\eta$, $A^2_\alpha = \bigcup_{\eta < \alpha} A^2_\eta$.

3. If $y_\alpha \notin \left[\bigcup_{\eta < \alpha} P_\eta \right]$ and $y_\alpha \notin \left[\bigcup_{\eta < \alpha} A^1_\eta \right] \cap \left[\bigcup_{\eta < \alpha} A^2_\eta \right]$, then D_α is a correct discrete set of cardinality ω_1, such that $y_\alpha \in P(D_\alpha)$, $\left(\bigcup_{\eta < \alpha} D_\eta \right) \cap D_\alpha = \emptyset$, $P_\alpha = P(D_\alpha)$. In this case $A^1_\alpha = \bigcup_{\eta < \alpha} A^1_\eta \cup P_\alpha$, $A^2_\alpha = \bigcup_{\eta < \alpha} A^2_\eta \cup D_\alpha$.

4. $A^1_\alpha \cap A^2_\alpha = \emptyset$; A^i_α form a monotonically nondecreasing sequence (by α), $\left[\bigcup_{\eta < \alpha} P_\eta \right] \subset \left[A^i_\alpha \right]$, and $A^i_\alpha \subset \bigcup_{\eta < \alpha} (P_\eta \cup D_\eta)$, $i = 1, 2$.

Consider y_β. If $y_\beta \in \left[\bigcup_{\alpha < \beta} P_\alpha \right]$, we suppose $P_\beta = D_\beta = \emptyset$, $A^i_\beta = \bigcup_{\alpha < \beta} A^i_\alpha$, $i = 1, 2$. It is easy to see $\left[\bigcup_{\alpha < \beta} P_\alpha \right] \subset \left[A^i_\beta \right]$, $i = 1, 2$ and $A^1_\beta \cap A^2_\beta = \emptyset$.

Indeed, by construction, $\left[\bigcup_{\alpha < \beta} P_\alpha \right] \subset \left[A^i_\beta \right]$, $i = 1, 2$, then $\left[\bigcup_{\alpha < \beta} P_\alpha \right] \subset \left[\bigcup_{\alpha < \beta} P_\alpha \right] \subset \left[A^i_\beta \right]$.

Let $y_\beta \notin \left[\bigcup_{\alpha < \beta} P_\alpha \right]$, but $y_\beta \in \left[\bigcup_{\alpha < \beta} A^1_\alpha \right] \cap \left[\bigcup_{\alpha < \beta} A^2_\alpha \right]$, then $P_\beta = \{ y_\beta \}$, $D_\beta = \emptyset$, $A^i_\beta = \bigcup_{\alpha < \beta} A^i_\alpha$, $i = 1, 2$.

It is easy to see that A^i_β satisfy item 4.

Finally the last case $y_\beta \notin \left[\bigcup_{\alpha < \beta} P_\alpha \right]$, and $y_\beta \notin \left[\bigcup_{\alpha < \beta} A^1_\alpha \right] \cap \left[\bigcup_{\alpha < \beta} A^2_\alpha \right]$.

Suppose, for definiteness, $y_\beta \notin \left[\bigcup_{\alpha < \beta} A^1_\alpha \right]$. Consider a neighborhood U_β of y_β, such that the closure of U_β is disjoint with $\left[\bigcup_{\alpha < \beta} A^1_\alpha \right]$ and $\left[\bigcup_{\alpha < \beta} P_\alpha \right]$.
In this neighborhood there is at most a countable of points of the set \(\bigcup_{\alpha<\beta} A^2 \) because it intersect with \(U_\beta \) can only with \(D_\alpha, \alpha<\beta \) (by 4).

For each \(\alpha \) such that \(D_\alpha \neq \emptyset \) and \(D_\alpha \) is a discrete, \(P(D_\alpha) \subset \overline{Y} \setminus [U_\beta] \), hence, \(D_\alpha \cap U_\beta \) is at most a countable. It follows that \(\left(\bigcup_{\alpha<\beta} D_\alpha \right) \cap U_\beta \) has a cardinality < \(\omega_1 \) and, by 4, \(\left(\bigcup_{\alpha<\beta} A^2 \right) \cap U_\beta \) is countable. Let \(D_\beta \) be a correct discrete set such that \(D_\beta \subset U_\beta, y_\beta \in P(D_\beta) \) and \(D_\beta \cap \left(\bigcup_{\alpha<\beta} A^2 \right) = \emptyset. \)

Let \(P_\beta = P(D_\beta), A^1_\beta = D_\beta \cup \left(\bigcup_{\alpha<\beta} A^1_\alpha \right), A^2_\beta = D_\beta \cup \left(\bigcup_{\alpha<\beta} A^2_\alpha \right). \)

By construction, \(A^1_\beta, A^2_\beta \) are disjoint sets and has the property 4.

We prove that \(Y \subset \left[\bigcup_{\alpha<\omega_1} P_\alpha \right. \). Suppose that \(Y \setminus \left[\bigcup_{\alpha<\omega_1} P_\alpha \right. \neq \emptyset, \) consider \(y_\gamma \in Y \setminus \left[\bigcup_{\alpha<\omega_1} P_\alpha \right. \). Then \(P_\gamma = \emptyset, \) because if \(P_\gamma \neq \emptyset, \) then \(y_\gamma \in P_\gamma. \) By 1, 2, 3, we have \(y_\gamma \in \left[\bigcup_{\alpha<\gamma} P_\alpha \right. \subset \left[\bigcup_{\alpha<\omega_1} P_\alpha \right. , \) a contradiction.

Let \(A_i = \bigcup_{\alpha<\omega_1} A^i_\alpha, i = 1, 2. \) By construction, \(A_1 \cap A_2 = \emptyset \) and \(|A_1| = |A_2| \supset Y. \) So we have that \(Y \) is resolvable.

\[\square \]

Corollary 5. Let \(X \) be a regular space, \(Y = \{x \in X : \exists \text{ countable discrete set } D_x \text{ such that } x \in \overline{D_x} \setminus D_x \) or \(\exists \) correct discrete \(D_x \) of cardinality \(\omega_1 \) such that \(x \in \overline{D_x} \setminus D_x \) and \(\overline{Y} = X. \) Then \(X \) is resolvable.

Proof. Let \(A = \{x \in X : \exists \text{ countable discrete set } D_x \text{ such that } x \in \overline{D_x} \setminus D_x \} \) and \(B = Y \setminus A. \) By Theorem 4, the set \(\text{Int}(A) \) is resolvable. Hence, there are disjoint sets \(A_1, A_2 \subset \text{Int}(A) \) such that \(A_i \supset \text{Int}(A) \) for \(i = 1, 2. \) If \(\text{Int}(A) = \emptyset \) then we put \(A_i = \emptyset \) for \(i = 1, 2. \)

Now we prove that if \(\text{Int}(B) \neq \emptyset \) then \(\text{Int}(B) \) is resolvable. Let \(W \) be an non-empty open set such that \(\overline{W} \subset \text{Int}(B). \) Note that there is a set \(Y \subset W \) such that \(|Y| = \omega_1 \) and any \(y \in Y \) is a \(\omega_1 \)-accumulation point of correct (in \(Y \) and also in \(W \)) discrete subset \(D_y \) of \(Y. \) Then, by Lemma 4, \(\text{Int}(B) \) is resolvable.

Hence, there are disjoint sets \(B_1, B_2 \subset \text{Int}(B) \) such that \(\overline{B_i} \supset \text{Int}(B) \) for \(i = 1, 2. \) If \(\text{Int}(B) = \emptyset \) then we put \(B_i = \emptyset \) for \(i = 1, 2. \)

Let \(Z = X \setminus (\text{Int}(A) \cup \text{Int}(B)), A_z = A \cap Z, B_z = B \cap Z. \) Consider \(C = \text{Int}(A_z \cup B_z). \) Let \(C_1 = A \cap C, C_2 = B \cap C \) for \(C \neq \emptyset. \) Note that \(A \cap B = \emptyset, \) hence, \(C_1 \cap C_2 = \emptyset, \) \(\text{Int}(C_1) = \text{Int}(C_2) = \emptyset \) and \(C = C_1 \cup C_2. \) It follows that \(C \subset C_i \) for \(i = 1, 2. \) If \(C = \emptyset \) then we assume \(C_1 = C_2 = \emptyset. \)

Let \(D = X \setminus (\text{Int}(A) \cup \text{Int}(B) \cup \overline{C}). \) If \(D = \emptyset \) we assume \(D_1 = (A \cup B) \cap D \) and \(D_2 = (X \setminus (A \cup B)) \cap D. \) Note that \(D_1 \) and \(D_2 \) are disjoint sets and are dense in \(D. \) If \(D = \emptyset \) then we assume \(D_1 = D_2 = \emptyset. \) Note that \(X = \overline{\text{Int}(A) \cup \text{Int}(B) \cup \overline{C} \cup \overline{D}}. \)
Finally, let \(X_i = A_i \cup B_i \cup C_i \cup D_i \) for \(i = 1, 2 \). It is clear \(X = \overline{X_i} \) for \(i = 1, 2 \) and \(X_1 \cap X_2 = \emptyset \).

The following theorem is the main result of this work.

Theorem 8. The regular \(L \)-space with uncountable dispersion character is resolvable.

Proof. Let \(U \) be an open subset of \(X \) such that each Lindelöf subspace of \(U \) at most countable. Note that if \(U \neq \emptyset \) then \(U \) is maximally resolvable \([9]\) because it is a \(\omega \)-tight and has uncountable dispersion character.

Consider a set \(Z = \bigcup \{ U, \text{where } U \text{ is an open subset of } X \text{ such that each Lindelöf subspace of } U \text{ at most countable } \} \). Then the set \(Z \) is resolvable (as the union of resolvable subspaces \([14]\)) or \(Z = \emptyset \).

Let \(Y = X \setminus \overline{Z} \). By definition of \(Y \) and Corollary \([8]\) any open subset of \(Y \) contains uncountable Lindelöf subspace \(L \). If \(L \) is a heriditaraly Lindelöf then it contains subspace \(M \) of uncountable dispersion character. Then \(M \) is resolvable (see \([6]\)). Let \(H = \bigcup \{ M, \text{where } M \text{ is a heriditaraly Lindelöf of uncountable dispersion character } \} \). The set \(H \) is resolvable (as the union of resolvable subspaces \([13]\)) or \(H = \emptyset \).

Let \(K = Y \setminus \overline{H} \). It remains to prove that \(K \) is resolvable. Let us note that if a subspace \(L \subset K \) is not heridataraly Lindelöf, then it contains a closed set \(F \) which is not \(G_\delta \)-set. Let \(K \neq \emptyset \).

We claim that \(K \) has the conditions of Corollary \([6]\). Let \(V \) be an open set such that \(V \subset K \). Consider \(L \subset \overline{V} \) such that \(L \) is Lindelöf, but is not heridataraly Lindelöf and \(F \subset L \) such that \(F \) is a closed set of \(L \), but is not \(G_\delta \)-set in \(L \).

By induction on \(\alpha \), we construct the required discrete \(D \subset L \).

Let \(x_1 \in L \setminus F \). By the regularity of \(L \), there are open sets \(U_1 \) and \(V_1 \) such that \(U_1 \cap V_1 = \emptyset \), \(x_1 \in U_1 \) and \(F \subset V_1 \).

We constructed \(x_\alpha, V_\alpha, U_\alpha \) for \(\alpha < \beta \) such that \(\overline{V_\alpha} \cap \overline{U_\alpha} = \emptyset \), \(x_\alpha \in U_\alpha \) and \(F \subset V_\alpha \) and

1. \(x_\alpha \in \bigcap_{\gamma < \alpha} \overline{V_\gamma} \);
2. \(x_\alpha \notin U_\alpha \) for \(\alpha \neq \gamma \);
3. \(x_\alpha \notin F \);
4. \(\bigcup_{\gamma < \alpha} \{ x_\gamma \} \) are closed subsets of \(L \) for \(\alpha < \beta \).

If \(\beta = \omega_1 \) or \(\bigcup_{\gamma < \alpha} \{ x_\gamma \} \) is not closed set then inductive process is completed.

If \(\bigcup_{\gamma < \alpha} \{ x_\gamma \} \) is closed set then there is \(x_\beta \in \bigcap_{\gamma < \beta} \overline{V_\gamma} \setminus F \). There are open sets \(V_\beta \) and \(U_\beta \) such that \(F \subset V_\beta, x_\beta \in U_\beta, \overline{U_\beta} \cap \overline{V_\beta} = \emptyset, \overline{V_\beta} \cap \bigcup_{\gamma < \beta} \{ x_\gamma \} = \emptyset \) and \(\overline{U_\beta} \cap \bigcup_{\gamma < \beta} \{ x_\gamma \} = \emptyset \).

By construction, if \(|D| = \omega \) then \(\overline{D} \setminus D \neq \emptyset \).

If \(|D| = \omega_1 \), but \(D \) contains a countable is not closed (in \(K \)) subset \(D_1 \), then \(D = D_1 \).

If \(|D| = \omega_1 \) and each countable subset of \(D \) is closed set in \(K \) then \(D \) is a correct discrete set in Lindelöf space \(L \) and, hence, \(D \) is a correct discrete set in \(V \).
So K is resolvable. Then X is resolvable as the union of resolvable subspaces. □

Note that a regular wL-space is a L-space.

Corollary 6. Let $\mathcal{P} \in \{\omega N, \omega, hL, \sigma\text{-}cmp, ccc, L, wL\}$. The regular \mathcal{P}-space with uncountable dispersion character is resolvable.

Lemma 2. Let X be a regular resolvable space and $\Delta(X) > \omega$. Then there are disjoint dense in X subsets Y_1, Y_2 of X such that $\Delta(Y_1) > \omega$.

Proof. Let $X = X_1 \cup X_2$ and $X_i = X$ for $i = 1, 2$. Suppose that $\Delta(X_1) = \Delta(X_2) = \omega$. Consider an open set U_1 of X such that $\Delta(U_1 \cap X_1) = \omega$. Then $\Delta(U_1 \cap X_2) > \omega$. Let $Z^1_i = U_1 \cap X_2$, $Z^2_i = U_1 \cap X_1$. If $\Delta(X_1 \setminus \overline{U_1}) > \omega$ then inductive process is completed. Suppose that $\Delta(X_1 \setminus \overline{U_1}) = \omega$. Let U_2 be an open set of X such that $\Delta(X_1 \setminus \overline{U_2}) = \omega$. $Z^1_2 = U_2 \cap X_2$, $Z^2_2 = U_2 \cap X_1$ and so on. By inductive process, we construct a disjoint family $\{U_\alpha, \alpha < \beta\}$ of open subsets of X such that $\Delta(X \setminus \bigcup_{\alpha < \beta} U_\alpha)$ and disjoint sets $Z^1_\alpha \subset U_\alpha$, $Z^2_\alpha \subset U_\alpha$. Let $Y_1 = \bigcup_{\alpha < \beta} Z^1_\alpha$ and $Y_2 = \bigcup_{\alpha < \beta} Z^2_\alpha$. It is clear that $X = \overline{Y_i}$ for $i = 1, 2$ and $\Delta(Y_1) > \omega$. □

Theorem 9. The regular L-tight space X of uncountable dispersion character is ω-resolvable.

Proof. Let $X = Y_1 \cup X_1$, where X_1, Y_1 are disjoint and dense in X. Let $\Delta(Y_1) > \omega$. Let $Y_1 = Y_2 \cup X_2$, where X_2, Y_2 are disjoint dense in Y_1 and $\Delta(Y_2) > \omega$. A space Y_1 is dense in X, consequently X_2, Y_2 are dense in X too. And so on. By inductive process, we construct a countable disjoint family $\{X_\alpha, \alpha \in \omega\}$ of dense in X sets.

Note that a regular wL-tight is a L-tight.

Corollary 7. Let $\mathcal{P} \in \{\omega N, \omega, hL, \sigma\text{-}cmp, ccc, L, wL\}$. The regular \mathcal{P}-tight space with uncountable dispersion character is ω-resolvable.

References

[1] A. V. Arhangel’skii, A characterization of very k-spaces, Czechoslovak Mathematical Journal, 18 (1968), 392—396.

[2] A. V. Arhangel’skii and D. N. Stavrova, On a common generalization of k-spaces and spaces with countable tightness, Topology Appl., 51 (1993), 261—268.

[3] A.G. El’kin, Regular maximal spaces, Math. Notes, 27, 2, (1980), 150—151.

[4] István Juhasz, Jan van Mill, Variations on countable tightness, [arXiv:1702.03714v1 [math.GN]], 13 Feb. (2017).

[5] E. Hewitt, A problem of set-theoretic topology, Duke Math. J. 10 (1943), 309—333.

[6] I. Juhasz, L. Soukup, Z. Szentmiklossy, Regular spaces of small extent are ω-resolvable, Fundamenta Mathematicae, 228:1, (2015), 27—46. DOI: 10.4064/fm228-1-3

[7] V.I. Malykhin, Borel resolvability of compact spaces and their subspaces, Mathematical Notes, 64:5, (1998), 607–615. DOI: 10.1007/BF02316285

[8] N.V. Velichko, Theory of resolvable spaces, Math. Notes, 19:1, (1976), 65—68.

[9] E.G. Pytkeev, On maximally resolvable spaces, Trudy Matematicheskogo Instituta Imeni V. A. Steklova, 154, (1983), 209—213; [in russian] Zbl 0529.54005

[10] R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.

[11] E.A. Michael, A quintuple quotient quest, General Topology and Appl., 2, (1972),91—138. https://doi.org/10.1016/0016-660X(72)90040-2 PII: 0016-660X(72)90040-2

[12] A. Bella, VI Malykhin, Tightness and resolvability, Commentationes Mathematicae Universitatis Caroliniae, 39:1, (1998), 177–184. Persistent URL: http://dml.cz/dmlcz/118996
[13] P.L. Sharma, S. Sharma, *Resolution properties in generalized k-spaces*, Topology and its Applications, 29, (1989), 61–66.
[14] W.W. Comfort, L. Feng, *The union of resolvable spaces is resolvable*, Math. Japonica, 38, (1993), 413–414.
[15] M.A. Filatova, *About resolvability of finally compact spaces*, Mathematiceskii i pricladnoi analis: sb. nauch. tr.– Tumen : TSU, (2003), p. 204–212. [in russian]

MARIA ALEXANDROVNA FILATOVA
Ural Federal University,
19 Mira str.,
620002, Yekaterinburg, Russia
Krasovskii Institute of Mathematics and Mechanics,
16 S.Kovalevskaya str.
620990, Yekaterinburg, Russia
E-mail address: MA.Filatova@urfu.ru

ALEXANDER VLADIMIROVICH OSIPOV
Krasovskii Institute of Mathematics and Mechanics,
16 S.Kovalevskoy str.,
620990, Yekaterinburg, Russia;
Ural Federal University,
19 Mira str.,
620002, Yekaterinburg, Russia;
Ural State University of Economics,
62, 8th of March str.,
620219, Yekaterinburg, Russia.
E-mail address: oab@list.ru