Facile Synthesis of Heterostructured WS₂/Bi₂MoO₆ as High-Performance Visible-Light-Driven Photocatalysts

Jiyun Gao¹,²,³,⁴, Chenhui Liu¹,²,³,⁴, Fang Wang¹,²,³,⁴, Lijuan Jia¹,²,³,⁴, Kaijiao Duan¹,²,³,⁴ and Tiancheng Liu¹,²,³,⁴*

Abstract

In this paper, novel WS₂/Bi₂MoO₆ heterostructured photocatalysts were successfully fabricated via a facile solvothermal growth method using pre-exfoliated layered WS₂ nanoslices as a substrate. The structure, morphology, and optical properties of the as-prepared WS₂/Bi₂MoO₆ samples were characterized by XRD, XPS, SEM, TEM (HRTEM), and UV-vis diffuse reflectance spectra (DRS). Results confirmed the existence of an excellent nanojunction interface between layered WS₂ nanoslices and Bi₂MoO₆ nanoflakes. Under visible light (>420 nm), the WS₂/Bi₂MoO₆ composites exhibit significantly enhanced photocatalytic activity compared with pure Bi₂MoO₆ toward the decomposition of rhodamine B (RhB). Meanwhile, the active species trapping experiments indicated that holes (h⁺) were the main active species during the photocatalytic reaction. The enhanced photocatalytic performance can be ascribed to the effective light harvesting, fast photogenerated electron–hole pairs separation, and excellent charge carrier transport of the WS₂/Bi₂MoO₆ heterostructures. Moreover, the prepared WS₂/Bi₂MoO₆ composites also show good structural and activity stability in repeatability experiments.

Keywords: WS₂/Bi₂MoO₆, Solvothermal, Heterostructure, Visible-light driven, Photocatalysis

Background

The photocatalysis is widely regarded as one of the most promising environmental remediation techniques due to the clean energy utilization method [1, 2]. Generally, some accepted that high-efficient photocatalysts with wide forbidden gap, such as TiO₂ and ZnO, can only utilize ultraviolet light irradiation [3]. As to practical application, photocatalysis strategy will be a huge boost once a photocatalyst can favorably absorb the abundant solar energy in visible region. For this purpose, many attempts to probe visible-light photocatalyst for sufficient solar energy utilization by using the narrow band semiconductor [4–6]. Despite the single-phase photocatalyst can be excited smoothly by visible light, it still manifests low energy conversion efficiency due to poor charge separation efficiency resulting from rapid recombination of photo-induced electrons and holes [7]. It is widely accepted that the heterostructure can improve the separation probability of light-induced charge because the contact interfacial region of heterojunction will provide an internal electric field to restrain the recombination probability, thus resulting in an efficient photocatalytic performance. In general, the designed heterostructure will adopt at least one narrow band semiconductor to harvest more visual-light energy and then to generate more photo-induced charges [8, 9].

As a novel photocatalyst, Bi₂MoO₆ has received attention in the field of visual-light-driven photocatalysis because it possesses distinct sandwiched layered structure [10, 11]. As previously mentioned, the pure Bi₂MoO₆ is not suitable for the utilization as an efficient visible-light photocatalyst due to the high recombination probability of photogenerated charge carrier. Therefore, some effective strategies to meet this challenge by using the architecture of proper hybrid nanostructure and especially the introduction of two dimensional (2D) nanosheets have been proved as an effectual approach to strengthen interfacial charge transfer between two components in the process of photocatalytic reaction. Obviously, it is anticipated that...
the heterostructure between Bi₂MoO₆ and 2D layered material will increase photocatalytic efficiency by visible-light irradiation [8].

Layered transition metal dichalcogenides (TMDs) are widely regarded as a kind of promising loading material because of their analogous graphene reticulare structure [12, 13]. Especially, monolayer and few layers of TMDs have important application for catalysis and energy storage due to their distinct electronic properties and high specific surface areas [14, 15]. For example, monolayered and few-layer MoS₂ have recently paid attention of the scientific community in photocatalysis research, which ascribes the lack of interlayer coupling and the absence of inversion symmetry resulting in the photoelectric property that differ markedly from those of the bulk [14, 16, 17]. From the material design perspective for an efficient visible-light-driven sensitized heterojunctional photocatalyst, the primary concern is that the hybrid narrow band gaps (1.1–1.7 eV) can closely match the solar spectrum [18]. In fact, the typical 2D layered semiconductors, such as MoS₂ or g-C₃N₄, have received significant attention to explore potential photocatalysis applications, which lead to TMD nanosheet which is often utilized as a supporter to establish the heterostructured composite photocatalysts via different energy band hybrid strategies [19, 20]. For instance, the hierarchical MoS₂/Bi₂MoO₆ composites exhibited an efficient performance for photocatalytic oxidation of rhodamine B under visible-light irradiation [21]. However, the mono- or few-layer heterostructured architecture of WS₂/Bi₂MoO₆ as a visual-light photocatalyst has not been reported.

Herein, we demonstrated a facile strategy to fabricate heterostructured WS₂/Bi₂MoO₆ composite via a facile solvothermal growth method using pre-exfoliated layered WS₂ nanoslices as a supporter. The WS₂/Bi₂MoO₆ exhibits excellent photocatalytic activity towards the degradation of rhodamine B (RhB) under visible-light (λ > 420 nm) irradiation. According to the microstructure characterization analysis of XRD, XPS, SEM, and TEM, the possible photocatalytic mechanism of the few-layer WS₂/Bi₂MoO₆ composite was also elucidated. It is believed that the formation of junctions between Bi₂MoO₆ and WS₂ can allow the prompt migration of photogenerated charge and reduce the self-agglomeration. It is postulated that the excellent photocatalytic activity of WS₂/Bi₂MoO₆ should be ascribed to its high migration efficiency of photo-induced carriers and the interfacial electronic interaction. These results also probably provide a valuable perspective to insight into the design of other heterostructured photocatalysts.

Methods
Preparation of the Few-Layer WS₂ Nanoslices
The liquid exfoliation of layered commercial WS₂ was accomplished following the modified report method [22]. Briefly, 50 mg commercial WS₂ powder (purchased from Aladdin Industrial Corporation) was added to 20 mL of ethanol/water with EtOH volume fractions of 40% added as dispersion solvent. The sealed flask was sonicated for 10 h, and then the dispersion was centrifuged at 3000 rpm for 20 min to remove aggregations. Finally, the supernatant was collected to obtain few-layer WS₂ nanoslices. To determine the concentrations of 2D nanosheets in the supernatant, we estimated the mass remaining in the supernatant by measuring the UV-vis absorption spectrum at fixed wavelength of 630 nm. The calculation result by virtue of Lambert–Beer Law indicated that the exfoliated WS₂ dispersion concentration was about 0.265 ± 0.02 mg/ml.

Synthesis of Hierarchical WS₂/Bi₂MoO₆ Composites
The WS₂/Bi₂MoO₆ samples were synthesized using a facile solvothermal method. Typically, 2 mmol of Bi(NO₃)₃·5H₂O was added to 10 mL of ethylene glycol solution containing dissolved Na₂MoO₄·2H₂O with the Bi/Mo molar ratio of 2:1 under magnetic stirring. An appropriate amount of exfoliated WS₂ nanoslices was dispersed into 20 mL ethanol and ultrasonicated at room temperature for 45 min. Then, it was slowly added into the above solution, followed by stirring for 10 min to form a homogeneous phase. The resulting solution was transferred into a 50-mL Teflon-lined stainless steel autoclave and kept at 160 °C for 10 h. Subsequently, the autoclave was cooled to room temperature gradually. Finally, the precipitate was centrifuged and washed with ethanol and deionized water several times and dried in a vacuum oven at 80 °C for 6 h. According to this method, WS₂/Bi₂MoO₆ composites with different WS₂ mass ratios (1, 3, 5, and 7 wt%) were synthesized. For comparison, the blank Bi₂MoO₆ was prepared in the absence of WS₂ using the same experimental conditions.

Characterization of Photocatalysts
Structure and morphology of the sample was investigated by scanning electron microscopy (SEM; JSM-6701F, Japan), transmission electron microscopy (TEM; JEOL 2100, Japan), high-resolution transmission electron microscopy (HRTEM; JEOL 2100, Japan), and powder X-ray diffraction (XRD; Bruker D8 Advance using Cu-Kα radiation source, λ = 1.5406 Å, USA). The ultraviolet-visible diffuse reflectance spectra (DRS) of samples were performed at room temperature in the range of 200–800 nm on a UV-vis spectrophotometer (Cary 500 Scan Spectrophotometers,Varian, USA) equipped with an integrating sphere attachment. The electronic states of surface elements of the catalysts were identified using X-ray photoelectron spectroscopy (XPS; Shimadzu Corporation, Japan, Al-Kα X-ray source).
Measurement of Photocatalytic Activity

In all catalytic activity of experiments, 50 mg of the samples were added to aqueous RhB solution (50 mL, 10 mg/L) magnetically stirred in a Pyrex glass vessel and then irradiated with a 300 W Xe arc lamp (PLS-SXE 300, Beijing Perfect Company, Labsolar-III AG) to provide visible light with $\lambda \geq 420$ nm by an ultraviolet UVCUT-420 nm cut-off filter (CE Aulight. Inc). The distance between the ultraviolet filter and aqueous RhB solution was about 6.5 mm. And the power density of visible light was 150 mW/cm2, which was estimated by the optical power meter (PD130, Thorlabs, USA). Prior to irradiation, the suspension was kept in the dark under magnetically stirred for 30 min to ensure the establishment of an adsorption/desorption equilibrium. At given time intervals, 2 mL were collected from the suspension and immediately centrifuged; the concentration of RhB after illumination was monitored at 553 nm by using UV-vis spectrophotometer (Shimadzu UV-2550, Shimadzu Corporation, Japan). The relative concentrations (C/C_0) of the RhB were determined by the absorbance (A/A_0) at 553 nm. All experiments were carried out at least in duplicate. The reported values were within the experimental error range of ±2%. Combining with Lambert–Beer law, the photocatalytic degradation rate constant (k) of RhB was obtained using the following formula:

$$\ln(C_0/C) = kt$$

where C is RhB concentration at reaction time t, C_0 is the adsorption/desorption equilibrium concentration of RhB at the starting reaction time, and A and A_0 are the corresponding absorbance values.

In addition, to identify the active species generated during photocatalytic reactivity, various scavengers were added into the solution of RhB, including 2 mM isopropanol (IPA, a quencher of ·OH), 2 mM disodium ethylenediamine tetraacetic acid (EDTA; a quencher of h$^+$), and 2 mM p-benzoquinone (BQ; a ·O$_2^-$ scavenger), and 40 mL/min N$_2$ (an electron quencher). The comparative trials of photocatalytic degradation were performed under the same reaction conditions as those mentioned above.

Results and Discussion

Micostructure and Morphology Analysis

In order to confirm the composition and crystal structure of the as-prepared samples, an XRD study was carried out. As shown in Fig. 1, it can be found that the pure WS$_2$, five peaks located at 14.4°, 33.6°, 39.6°, 49.8°, and 58.5°, have been observed, which matched well with the (002), (101), (103), (105), and (110) crystal planes of WS$_2$ (JCPDS card no. 84-1398). As for the pure Bi$_2$MoO$_6$, the diffraction peaks of (131), (200), (151), (260), (331), and (262) planes at $2\theta = 28.2^\circ$, 32.5°, 36.0°, 47.1°, 55.4°, and 58.5°, which can be indexed to orthorhombic phase of Bi$_2$MoO$_6$ (JCPDS card no. 76-2388). In the case of the few-layer WS$_2$/Bi$_2$MoO$_6$ composite materials, the XRD pattern only displays the characteristic diffraction peaks of hexagonal phase WS$_2$ and orthorhombic phase Bi$_2$MoO$_6$. Furthermore, compared with the standard data for Bi$_2$MoO$_6$ (no. 76-2388), the existence of few-layer WS$_2$ did not change the diffraction peak positions of Bi$_2$MoO$_6$ in the composite sample, indicating Bi$_2$MoO$_6$ nanoflakes grown on few-layer WS$_2$ nanoslices rather than incorporated into the WS$_2$ lattice. There is no trace of any impurity phase under the present resolution, which suggests the high purity of the as-prepared samples.

The morphologies of the as-synthesized samples were investigated using SEM. For comparison, SEM images of the bulk raw WS$_2$ without sonicated treatment and exfoliated nanoslices are shown in Fig. 2a, b. The former displays a distinct multi-layer laminated morphology with about 20 μm in thickness, while the latter exhibits 2D sheet-like morphology with thickness varying from dozens of nanometers to 1–2 μm. The results demonstrate that the layered commercial WS$_2$ have been stripped to few-layer WS$_2$ nanoslices. Figure 2c shows the SEM image of pure Bi$_2$MoO$_6$. It can be seen that the Bi$_2$MoO$_6$ exhibited microsphere morphology with rough surfaces. Closer examination reveals that the microspheres consist of numerous secondary Bi$_2$MoO$_6$ nanoplates. Furthermore, when Bi$_2$MoO$_6$ was deposited onto the 2D few-layer WS$_2$ via a facile solvothermal process (Fig. 2d), it can be clearly seen that the surfaces of WS$_2$ nanoslices were uniformly covered by numerous two-dimensional Bi$_2$MoO$_6$ nanoplates (Fig. 2d) and that formed a WS$_2$/Bi$_2$MoO$_6$ hierarchical structure.
Further information about the nano-structure of the few-layer WS$_2$/Bi$_2$MoO$_6$ composites was obtained from TEM (HRTEM) images. It is easy to observe in Fig. 3a that WS$_2$ (purple arrows) shows a clear nanosheet structure which is similar to that of graphene, proving that graphene-like tungsten disulfide is obtained. Meanwhile, Bi$_2$MoO$_6$ nanoplates with diameters of about 50–100 nm were observed to grow on the WS$_2$ nanosheets. HRTEM images (Fig. 3b, c) taken from Fig. 3a clearly display the resolved lattice fringes of 0.274 and 0.227 nm, which corresponds to the (200) planes of orthorhombic phase of Bi$_2$MoO$_6$ and the (103) planes of WS$_2$, respectively. Therefore, the experimental results indicated that a coherent and tight heterojunction interface between few-layer WS$_2$ and Bi$_2$MoO$_6$ was formed, which can benefit better charge separation and efficient electron transfer within the hybrid structure in comparison with pure Bi$_2$MoO$_6$.

Electronic Structure and Spectrum Analysis

The elemental composition and oxidation states of the few-layer WS$_2$/Bi$_2$MoO$_6$ composites were further determined by XPS spectra. Figure 4a shows the survey XPS spectra of the few-layer WS$_2$/Bi$_2$MoO$_6$ (5 wt%) sample, which exhibits W, S, O, Bi, Mo, and C peaks. No peaks corresponding to other elements are observed. The peak for Bi 4f in the Bi$_2$MoO$_6$ (Fig. 4b) which appeared at 164.4 and 159.2 eV belonged to Bi 4f$_{5/2}$ and Bi 4f$_{7/2}$ of Bi$^{3+}$ ions [23]. The Mo 3d binding energy (Fig. 4c) of 235.6 and 232.5 eV is consistent with the Mo 3d$_{3/2}$ and Mo 3d$_{5/2}$ of Mo$^{4+}$ ions [23]. The asymmetric peaks of O 1 s (Fig. 4d) are located at 530.0 eV, which are characteristic of the Mo-O [24]. However, the binding energies of Bi 4f, Mo 3d, and O 1 s in the XPS spectra (Fig. 4b–d) of the hierarchical WS$_2$/Bi$_2$MoO$_6$ slightly shift (about 0.2 eV) toward lower binding energies as compared with the pure Bi$_2$MoO$_6$. Meanwhile, in the hierarchical WS$_2$/Bi$_2$MoO$_6$ composite, the values of W 4f$_{5/2}$ (34.2 eV) and W 4f$_{7/2}$ (32.0 eV) peaks (Fig. 4e) corresponding to WS$_2$ are slightly lower (about 0.2 eV) than the pure WS$_2$ (34.4 and 32.2 eV). Similarly, the high-resolution S 2p spectrum (Fig. 4f) also slightly shifts toward lower binding energies of 0.3 eV. These results could be ascribed to the strong interaction between WS$_2$ and Bi$_2$MoO$_6$ resulting in an inner shift of Bi 4f, Mo 3d, O 1 s W 4f, and S 2p orbits [21, 25]. Therefore, by combining the XRD, SEM, TEM, and XPS investigations, it revealed that there are both WS$_2$ and Bi$_2$MoO$_6$ species in the hierarchical WS$_2$/Bi$_2$MoO$_6$ composite and that the heterojunctions are formed in their contact interface.
Figure 5a shows a comparison of the UV-vis diffuse reflectance spectra (UV-Vis-DRS) of the WS$_2$, Bi$_2$MoO$_6$ and hierarchical WS$_2$/Bi$_2$MoO$_6$ composite with different WS$_2$ contents. It can be clearly seen that the absorption spectrum of pure Bi$_2$MoO$_6$ extends from the UV region to visible light at about 450 nm. When WS$_2$ combined with Bi$_2$MoO$_6$, the absorption spectrum of the hierarchical composite exhibits an obviously redshift and more intensive absorption within the visible-light range in comparison with pure Bi$_2$MoO$_6$. Meanwhile, when the content of WS$_2$ increased to a relatively high (3 to 7 wt%), the hierarchical composite display surprisingly strong absorption around 450–800 nm. These results clearly indicate that the composite photocatalyst could absorb more photons during photocatalytic reaction. Therefore, it can be revealed that the addition of WS$_2$ nanoslices is beneficial for the visible-light absorbance of the WS$_2$/Bi$_2$MoO$_6$ composite.

In addition, the optical band gap energies (E_g) of samples were calculated by the following equation [26]:

$$ a h v = A (h v - E_g)^{n/2} $$

where a, $h v$, A, and E_g are absorption coefficient, photon energy, proportionality constant, and bandgap, respectively. The value of n is determined by the type of transition (direct ($n = 1$) or indirect ($n = 4$)) [27, 28]. A plot of $(ahv)^2$ versus (hv) is converted according the UV-Vis-DRS. As shown in Fig. 5b, the E_g values of pure WS$_2$ and Bi$_2$MoO$_6$ have been estimated to be 1.47 and 2.72 eV, respectively.

Photocatalytic Activity

The photocatalytic activities of the as-prepared samples were measured by degrading rhodamine B (RhB) under
visible-light irradiation. For comparison, photocatalytic activities of pure Bi$_2$MoO$_6$ and mechanically mixed samples (5% WS$_2$ and 95% Bi$_2$MoO$_6$) have also been investigated. As shown in Fig. 6a, the self-degradation effect of RhB under visible-light irradiation could be ignored. It can be clearly seen that the photodegradation rate of RhB by the pure Bi$_2$MoO$_6$ was only ~39% after 100 min of visible-light irradiation. Obviously, all the hierarchical WS$_2$/Bi$_2$MoO$_6$ composites show better photocatalytic performance than the pure Bi$_2$MoO$_6$. ~48, ~74, ~95, and ~88% of RhB were degraded using 1% WS$_2$/Bi$_2$MoO$_6$, 3% WS$_2$/Bi$_2$MoO$_6$, 5% WS$_2$/Bi$_2$MoO$_6$, and 7% WS$_2$/Bi$_2$MoO$_6$, respectively. The results indicate that the optimal WS$_2$ content in WS$_2$/Bi$_2$MoO$_6$ composite exists when the mass ratio is 5%. Meanwhile, it was noted that the WS$_2$/Bi$_2$MoO$_6$ (5 wt%) composite exhibits remarkably superior photocatalytic activity than the mechanically mixed 5% WS$_2$ and 95% Bi$_2$MoO$_6$. This strongly suggests that an effective nanojunction interface contact and strong interactions between WS$_2$ and Bi$_2$MoO$_6$ are extremely useful to enhance the migration, transport, and separation processes of photogenerated carriers. Furthermore, such superior photocatalytic performances could be attributed to the good crystallization and high specific surface area of composites and the small sheet thickness of the WS$_2$ substrate.

In addition, the pseudo-first-order kinetics model was used to fit the experimental data of the photocatalytic degradation of the RhB solution, and the results are given in Fig. 6b. The rate constant k is 0.0280 min$^{-1}$ for the hierarchical WS$_2$/Bi$_2$MoO$_6$ (5 wt%) composites, which is 3.8 and 7.1 times greater than those of mechanically mixed WS$_2$ and Bi$_2$MoO$_6$ and pure Bi$_2$MoO$_6$, respectively. These results indicated that RhB could be degraded more efficiently by the hierarchical WS$_2$/Bi$_2$MoO$_6$ composite photocatalyst.

Figure 7 shows the UV-vis adsorption spectra changes of RhB solution degradation over the WS$_2$/Bi$_2$MoO$_6$ (5 wt%) composite photocatalyst, which was performed to further study the photocatalytic degradation process of RhB. It can be seen that the main absorption peak of
RhB gradually shifted from 552 to 537 nm, corresponding to the stepwise formation of a series of N-de-ethylated intermediates. As the visible-light irradiation process continues, the peak located at 537 nm is continued to shift and decrease, which indicates that the RhB molecules were further decomposed into smaller molecular fragments and the structure of RhB was also destroyed in the end. The two-step transition processes for photodegradation of RhB were also reported in several previous studies [29, 30]. Meanwhile, the suspension loses color gradually in the experiment, which further indicates that the structure of RhB has been destroyed in the end.

Catalyst Stability
The photocatalytic stability of the hierarchical WS2/Bi2MoO6 composites was investigated by repeatability experiments for degradation of RhB, as shown in Fig. 8a. It can be found that the photocatalytic activity of WS2/Bi2MoO6 remains stable in the first two-cycle experiments. After four recycles, the catalysts did not show an obvious decrease in photocatalytic activity, demonstrating that WS2/Bi2MoO6 composite retained a relatively high degradation activity during the photodegradation process. Furthermore, the catalyst samples collected after four cycles was characterized by XRD measurement (Fig. 8b). It can be seen that the crystal structure and phase composition of WS2/Bi2MoO6 composite do not change after four photocatalytic reactions. Thus, the good structural stability ensures the WS2/Bi2MoO6 composite efficient photocatalysts working under visible-light irradiation.

Possible Photocatalytic Mechanism
Figure 9 shows the trapping experiment of main active species in the photocatalytic process of the WS2/Bi2MoO6 composite. Isopropanol (IPA), 1,4-benzoquinone (BQ), and disodium ethylenediamine tetraacetic acid (EDTA) acted as the scavengers for -OH, -O2, and h+, respectively. It can be observed that the addition of 2 mM IPA or BQ in the RhB solution had a little effect on the rate constant kapp, suggesting that -OH and -O2 are the secondary active species during the photocatalytic reaction, not the main active species during the photocatalytic reaction. On the contrary, the kapp for degradation of RhB obviously decreased after the addition of 2 mM EDTA. Therefore, it can be confirmed that h+ play a key role for degradation of RhB. Furthermore, N2 was bubbled into the RhB solution at the rate of 40 mL/min to ensure that the reaction was operated without O2 as an electron quencher. The degradation of RhB showed a slight decrease in comparison with the case of the air-equilibrated solution and further indicated that -O2 played a minor role.

To explain the enhanced photocatalytic performance, conduction band (CB) and valence band (VB) of WS2 and Bi2MoO6 potentials should be calculated. For a semiconductor, the bottom CB and top VB can be estimated by
the empirical formula [31]:

\[E_{CB} = X - E_0 - 0.5E_g \]

and

\[E_{VB} = E_{CB} + E_g \]

where \(E_{CB} \) (\(E_{VB} \)) is the CB (VB) edge potential; \(X \) is the electronegativity of the semiconductor; \(E_0 \) is the energy of free electrons of the hydrogen scale (~4.5 eV vs NHE); and \(E_g \) is the band gap energy of the semiconductor obtained from the UV-visible diffuse reflectance absorption. The \(X \) values for WS\(_2\) and Bi\(_2\)MoO\(_6\) are calculated to be 5.66 and 5.55 eV, respectively [28, 32, 33]. Thus, the \(E_{CB} \) and \(E_{VB} \) values of WS\(_2\) are determined to be +0.43 and +1.9 eV and Bi\(_2\)MoO\(_6\) are −0.31 and +2.41 eV, respectively.

On the basis of the above results, a possible photocatalytic mechanism scheme of the WS\(_2\)/Bi\(_2\)MoO\(_6\) composite is shown in Fig. 10. It can be found that WS\(_2\) and Bi\(_2\)MoO\(_6\) are excited under visible-light irradiation and generate electrons and holes in their CB and VB, respectively. The electrons on CB of Bi\(_2\)MoO\(_6\) will easily transfer to WS\(_2\) due to the CB potential of Bi\(_2\)MoO\(_6\) (−0.31 eV) is more negative than the CB potential of WS\(_2\) (0.43 eV) [29, 30]. The few-layer WS\(_2\) nanoslices could act as effective electron collectors, which was favorable to the separation of electron–hole pairs in Bi\(_2\)MoO\(_6\). Therefore, this fast electron and hole transfer process can decrease the recombination of charges and prolong the lifetime of holes on VB of Bi\(_2\)MoO\(_6\) [34]. The CB potential of WS\(_2\) (+0.43 eV) is more positive than \(E_0 \) (\(O_2/\cdot O_2^- \) (−0.046 eV) which suggests that the \(\cdot O_2^- \) radicals were not formed through electrons reducing the dissolved \(O_2 \) [35]. However, a few electrons on the CB of Bi\(_2\)MoO\(_6\) can react with dissolved \(O_2 \) to yield \(\cdot O_2^- \) radicals because its potential (−0.31 eV) is more negative than \(E_0 \) (\(O_2/\cdot O_2^- \)). Thus, the \(\cdot O_2^- \) active species played a minor role. Meanwhile, the photo-induced holes on VB of Bi\(_2\)MoO\(_6\) could not also directly oxidize the adsorbed \(H_2O \) molecules to \(\cdot OH \) radicals because its potential (+2.41 eV) was lower than \(E_0 \) (\(OH/H_2O \) (+2.68 V)) [36]. Finally, the main active species holes and minor active species \(\cdot O_2^- \) act as a strong oxidizing agent to oxidize the organic pollutants (RhB) to \(CO_2 \) and \(H_2O \). Therefore, the hierarchical WS\(_2\)/Bi\(_2\)MoO\(_6\) composites exhibit improved photocatalytic activity.

Fig. 9 Rate constant \(k_{app} \) of the WS\(_2\)/Bi\(_2\)MoO\(_6\) (5 wt%) composite for the degradation of RhB in the presence of different scavengers under visible-light irradiation.

Fig. 10 The proposed photocatalytic mechanism scheme of WS\(_2\)/Bi\(_2\)MoO\(_6\) composite under visible light (>420 nm).

Conclusions
In summary, a novel WS\(_2\)/Bi\(_2\)MoO\(_6\) heterostructured photocatalysts were successfully fabricated via a facile solvothermal growth method using pre-exfoliated layered WS\(_2\) nanoslices as a substrate. The hierarchical WS\(_2\)/Bi\(_2\)MoO\(_6\) exhibits excellent photocatalytic activity towards the degradation of rhodamine B (RhB) under visible-light irradiation. Based on the results of a series of structure and performance tests, it is believed that there formed a tight nanojunction interface between layered WS\(_2\) nanoslices and Bi\(_2\)MoO\(_6\) nanoflakes, which make the photo-induced electrons be easily transferred to the WS\(_2\) substrate. As a result, the recombination of charges was decreased and the lifetime of holes was prolonged. Therefore, the hierarchical WS\(_2\)/Bi\(_2\)MoO\(_6\) composites exhibit much higher visible-light-driven photocatalytic activity than the pure Bi\(_2\)MoO\(_6\). Furthermore, the WS\(_2\)/Bi\(_2\)MoO\(_6\) composites are very stable under visible-light irradiation and cycling photocatalytic tests. Thus, the as-prepared WS\(_2\)/Bi\(_2\)MoO\(_6\) photocatalyst has potential application for pollutant abatement.

Acknowledgements
The authors genuinely appreciate the financial support of this work by the National Natural Science Foundation of China (No. 51568068, No. 51568067).

Authors’ Contributions
JG carried out the sample preparation and experimental measurements and drafted the manuscript. CL and FW conceived the work, supervised the experiments, and revised the manuscript. LJ and KD helped to analyze the characterization results. TL supervised all of the study and provided financial support. All authors read and approved the final manuscript.
Competing Interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1 Joint Research Centre for International Cross-border Ethnic Regions Biomass Clean Utilization in Yunnan, Kunming 650500, China. 2 Education Department of Yunnan, Key Laboratory of Resource Clean Conversion in Ethnic Region, Kunming 650500, China. 3 Key Laboratory of Comprehensive Utilization of Mineral Resources in Ethnic Regions, Kunming 650500, China. 4 College of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, China.

Received: 29 March 2017 Accepted: 19 May 2017
Published online: 30 May 2017

References
1. Fujishima A, Honda K (1972) Photocatalysis-decomposition of water at the surface of an irradiated semiconductor [J]. Nature 238(5385):37–38
2. Limberegler AL, Lu GQ, Yates JT (1995) Interfacial photochemistry, fundamentals and applications [J]. Chem Rev 95(3):735–758
3. Xia Y, Yang P, Sun Y et al (2003) One-dimensional nanostructures: synthesis, characterization, and applications [J]. Adv Mater 15(5):553–589
4. Sang Y, Liu H, Umar A (2015) Photocatalysis from UV/Vis to near-infrared light: towards full solar light spectrum activity [J]. Chem Catal Chem Phys 7(4):559–573
5. Zhang Z, Wang W, Wang L et al (2015) Enhancement of visible-light photocatalysis by coupling with narrow-band-gap semiconductor: a case study on Bi5S3/Bi2WO6 [J]. ACS Appl Mater Interfaces 4(2):593
6. Guo S, Bao J, Hu T et al (2015) Controllable synthesis porous Ag2CO3 nanorods for efficient photocatalysis [J]. Nanoscale Res Lett 10(1):1–8
7. He W, Kim HK, Wang XG et al (2014) Photogenerated charge carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity [J]. J Am Chem Soc 136(2):750
8. Wang H, Zhang L, Chen Z et al (2014) Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances [J]. Chem Soc Rev 43(15):5234–5244
9. Bao J, Guo S, Gao J et al (2015) Synthesis of Ag2CO3/Bi2WO6 heterojunctions with enhanced photocatalytic activity and cycling stability [J]. RSC Adv 5(118):97195–97204
10. Yin W, Wang W, Sun S (2010) Photocatalytic degradation of phenol over cage-like Bi2MoO6 hollow spheres under visible-light irradiation [J]. Catal Commun 11(7):647–650
11. Yue D, Chen D, Wang Z et al (2014) Enhancement of visible photocatalytic performances of a Bi2MoO6-Based photocatalyst with plate-on-plate heterojunction structure [J]. Phys Chem Chem Phys 16(47):26314–26321
12. Wang QH, Kalantar-zadeh K, Kis A et al (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides [J]. Nat Nanotechnol 7(11):699–712
13. Xu M, Liang T, Shi M et al (2013) Graphene-like two-dimensional materials [J]. Chem Rev 113(5):3766–3798
14. Chhowalla M, Shin HS, Eda G et al (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets [J]. Nat Chemistry 5(4):263–275
15. Geim AK, Novoselov KS (2007) The rise of graphene [J]. Nature Mater 6(3):183–191
16. Albe K, Klein A (2002) Density-functional-theory calculations of electronic band structure of single-crystal and single-layer WS2 [J]. Phys Rev B 66(7):73413
17. Visic B, Dominko R, Gunde MK et al (2011) Optical properties of exfoliated MoS2, WSe2, and MoS2/WSe2 band-structures and photoluminescence spectroscopy [J]. Phys Rev B 83(12):125195
18. Coehoorn R, Haas C, Dijkstra J et al (1987) Electronic structure of MoSe2, MoS2, and WSe2: Band-structure calculations and photoelectron spectroscopy [J]. Phys Rev B 35(12):6195
19. Li Q, Zhang N, Yang Y et al (2014) High efficiency photocatalysis for pollutant degradation with MoS2/C3N4 heterostructures [J]. Langmuir 30(29):8965
20. Shi J, Tong R, Zhou X et al (2016) Temperature-Mediated selective growth of MoS2/WSe2 and WS2/MoS2 vertical stacks on Au foils for direct photocatalytic activities [J]. Adv Mater 28(48):10664
21. Chen Y, Tian G, Shi Y et al (2015) Hierarchical MoS2/3Bi2MoO6 composites with synergistic effect for enhanced visible photocatalytic activity [J]. Appl Catal B: Environmental 164:40–47
22. Zhou K, Mao N, Wang H et al (2011) A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues [J]. Angew Chem Int Ed 50(46):10839–10842
23. Tian G, Chen Y, Zhou J et al (2014) In situ growth of Bi2MoO6 on reduced graphene oxide nanosheets for improved visible-light photocatalytic activity [J]. Crystal Growth 16(5):842
24. Li H, Liu J, Hou W et al (2014) Synthesis and characterization of g-C3N4/Bi2MoO6 heterojunctions with enhanced visible light photocatalytic activity [J]. Appl Catal B: Environmental 160(1):89–97
25. Yan T, Yan Q, Wang X et al (2015) Facile fabrication of heterostructured g-C3N4/Bi2MoO6 microspheres with highly efficient activity under visible light irradiation [J]. Dalton T 44(4):1601–1611
26. Wu D, Long M (2011) Realizing visible-light-induced self-cleaning property of cotton through coating NiTiO3 film and loading AgI particles [J]. ACS Appl Mater Interfaces 3(2):4770
27. Long J, Wang S, Zhang H et al (2014) Bi2MoO6 nanobelts for crystal facet-enhanced photocatalysis [J]. Small 10(14):2791–2795
28. Yu H, Yu Y, Liu J et al (2015) Space-confined growth of Ag2PO4 nanoparticles within WS2 sheets: Ag2PO4/WS2 composites as visible-light-driven photocatalysts for decomposing dyes [J]. J Mater Chem A 3(38):19439–19444
29. Cheng Z, Wang Z, Shila TA et al (2015) Au plasmonics in a WS2–AuCuIn5 photocatalyst for significantly enhanced hydrogen generation [J]. Appl Phys Lett 107(22):223902
30. Chen G, Li F, Fan Y et al (2013) A novel noble metal-free ZnS–WS2/CdS composite photocatalyst for H2 evolution under visible light irradiation [J]. Catal Com 40(19):51–54
31. Zhang X, Zhang L, Xie T et al (2009) Low-temperature synthesis and high visible-light-induced photocatalytic activity of BiO1/2TiO2 heterostructures [J]. J Phys Chem C 113(7):7371–7378
32. Sang Y, Zhao Z, Zhao M et al (2014) From UV to near-infrared, WS2 nanosheet: a novel photocatalyst for full solar light spectrum photodegradation [J]. Adv Mater 27(2):363–369
33. Xu Y, Zhang W (2012) Monodispersed Ag3PO4 nanocrystals loaded on the surface of spherical Bi2MoO6 with enhanced photocatalytic performance [J]. Dalton T 42(4):1094–1101
34. Huo N, Yue Q, Yang J et al (2013) Abnormal photocurrent response and enhanced photocatalytic activity induced by charge transfer between WS2 nanosheets and WO3 nanoparticles [J]. Chem phys chem 14(18):4069–4073
35. Ye L, Liu J, Gong C et al (2012) Two different roles of metallic Ag on Agx/BiOX (X = Cl, Br) visible light photocatalysts: surface plasmon resonance and Z-scheme bridge [J]. ACS Catalysis 2(8):1677–1683
36. Song Y, Lei Y, Xu H et al (2015) Synthesis of few-layer MoS2 nanosheet-loaded Ag2PO4 for enhanced photocatalytic activity [J]. Dalton T 44(7):3057–3066