Sequence Analysis

Selfish: Discovery of Differential Chromatin Interactions via a Self-Similarity Measure

Abbas Roayaei Ardakany 1,∗, Ferhat Ay 2,3 and Stefano Lonardi 1,∗

1Department of Computer Science and Engineering, University of California, Riverside, 92521, USA
2La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
3UC San Diego, School of Medicine, La Jolla, CA 92037, USA

Abstract

Motivation: High-throughput conformation capture experiments such as Hi-C provide genome-wide maps of chromatin interactions, enabling life scientists to investigate the role of the three-dimensional structure of genomes in gene regulation and other essential cellular functions. A fundamental problem in the analysis of Hi-C data is how to compare two contact maps derived from Hi-C experiments. Detecting similarities and differences between contact maps is critical in evaluating the reproducibility of replicate experiments and identifying differential genomic regions with biological significance. Due to the complexity of chromatin conformations and the presence of technology-driven and sequence-specific biases, the comparative analysis of Hi-C data is analytically and computationally challenging.

Results: We present a novel method called Selfish for the comparative analysis of Hi-C data that takes advantage of the structural self-similarity in contact maps. We define a novel self-similarity measure to design algorithms for (i) measuring reproducibility for Hi-C replicate experiments and (ii) finding differential chromatin interactions between two contact maps. Extensive experimental results on simulated and real data show that Selfish is more accurate and robust than state-of-the-art methods.

Availability: https://github.com/ucrbioinfo/Selfish
Contact: aroay001@ucr.edu and stelo@cs.ucr.edu

1 Introduction

Recent studies have revealed that genomic DNA in eukaryotes is not arbitrarily packed into the nucleus. The chromatin has a well organized and regulated structure in accordance to the stage of the cell cycle and environmental conditions (Ma et al., 2015; Pederson, 1972). The chromatin structure in the nucleus plays a critical role in many essential cellular processes, including regulation of gene expression and DNA replication (Dixon et al., 2012, 2015; Rao et al., 2014; Sexton et al., 2012).

Technological and scientific advancements in genome-wide DNA proximity ligation (Hi-C) have enabled life scientists to study how chromatin folding regulates cellular functions (Lieberman-Aiden et al., 2009; Cavalli and Misteli, 2013; Chen et al., 2015; Gorkin et al., 2014). The analysis of Hi-C led to the discovery of new structural features of chromosomes such as topologically associating domains (TADs) (Dixon et al., 2012; Zufferey et al., 2018) and chromatin loops (Rao et al., 2014; Cao et al., 2018).

With the decreasing cost of Hi-C experiments and the higher availability of Hi-C data for different cell types in diverse conditions, there is a growing need for reliable and robust measures to systematically compare contact maps to discover similarities and differences. However, the comparative analysis of Hi-C data presents computational and analytical challenges which are due to technology-driven and sequence-specific biases. Technology-driven biases include sequencing depth, cross-linking conditions, circularization length, and restriction enzyme sites length (O’Sullivan et al., 2013; Cournac et al., 2012; Stansfield and Dozmorov, 2017). Sequence-specific biases include GC content of trimmed ligation junctions, sequence uniqueness, and nucleotide composition (Yaffe and Tanay, 2011). For instance, it is well-known that contact maps produced as a result of replicate experiments can contain significant difference solely due to these biases, which could be falsely interpreted as biological differences if these biases are not accounted for (Yardimci et al., 2018). Several normalization methods have been
developed to compensate for these biases and improve the reproducibility of Hi-C experiments, e.g., (Lieberman-Aiden et al., 2009; Yaffe and Tanay, 2011; Knight and Ruiz, 2013; Imakaev et al., 2012). While several computational methods have been proposed to extract statistically significant contacts from normalized contact maps (Rao et al., 2014; Ay et al., 2014; Cairns et al., 2016; Ron et al., 2017), their performance is still not entirely satisfactory due to the inherent complexity, inter-dependency and unaccounted biases in chromatin interaction data. There are two major domains of application for the comparative analysis of Hi-C contact maps. The first application domain is focused on quantifying the reproducibility of Hi-C biological/technical replicate experiments (Yardimci et al., 2018). For instance, Yang et al., 2017 defined a reproducibility measure based on the stratum-adjusted correlation coefficient statistic defined on the unique spatial features of Hi-C data. Their method HiCrep (i) reduces the effect of noise and biases by applying a 2D averaging filter on the data, (ii) addresses the distance-dependence of Hi-C data by stratifying the data with respect to the genomic distance, (iii) calculates a Pearson correlation coefficient for each stratum, and (iv) aggregates the computed stratum-specific correlation coefficients using a weighted average.

In the same application domain aimed at quantifying reproducibility or concordance of contact maps, Ursu et al., 2018 presented a method called GenomeDISCO to measure the differences between smoothed contact maps. GenomeDISCO represents contact map as a graph, where each node represents a genomic locus and each edge represents an interaction between two loci. Edges are weighted by the normalized frequency of the corresponding pairs of loci. GenomeDisco executes iteratively the two following steps: (i) processes the graph by random walks, which has the effect of denoising (smoothing) the data, (ii) computes the normalized difference between smoothed contact maps using the L_2 distance between two contact maps.

The second application domain is aimed at finding statistically significant differences between contact maps for cells in different states (tissues, developmental states, healthy/diseased, time-points, etc). It is well-known that chromatin interactions that are mediated by specific protein can have distinct frequencies in different cell types or in different cell conditions (Patel et al., 2012; Gong et al., 2011). Differences in chromatin interactions can be associated with cell type-specific gene expression or mis-regulation of oncogenes or anti-oncogenes (Liu et al., 2008; Schmidt et al., 2016; Haase et al., 2016). Wang et al., 2013 proposed the first method to discover differences in Hi-C contact maps. The authors used a simple fold-change of the normalized local interactions to discover that estrogen stimulation significantly impacts chromatin interactions in MCF7 cells. Building on this idea, Dixson et al., 2015 proposed a method that (i) quantitively normalizes contact maps to compensate for the bias induced by different sequencing depth, and (ii) feeds the normalized differences of two contact maps (augmented by feature vectors representing epigenetic signals) to a Random Forest Model. Their method can (i) determine whether the epigenetic signal is predictive of changes in interaction frequency and (ii) discover which epigenetic signals are most predictive of changes in higher-order chromatin structure. Stansfield and Dozmorov 2017 developed a non-parametric method to account for between-datasets biases. They used locally weighted polynomial regression to fit a simple model trained on the difference between the two datasets. Based on the assumption that the majority of the interactions should be relatively unchanged among similar Hi-C datasets and by centering the average difference to zero, loci which are far from the average are considered potential differential interaction.

Unlike other methods which assume independence among pairwise interactions, which holds true only for low resolution Hi-C data, Dykdike et al., 2018 presented a method that takes into account the dependency of adjacent loci in higher resolutions. Based on the fact that interacting neighboring loci are known to interact, we have not considered structural difference can be detected by observing the differences in a neighborhood of the corresponding loci pair. In contrast, random noises tend to affect singular pairwise interactions only. By considering a three-dimensional space in which the x and y are the coordinates of the genomic loci and z is the pairwise interaction frequency, the authors define a chromatin interaction between two conditions to be differential when the intensity of the majority of k-nearest neighbors of (x, y) show a significant change.

In this work, we present new comparative methods for the analysis of Hi-C data based on the notion of self-similarity (Shechtman and Irani, 2007). We show that our self-similarity measure is robust to biases and does not need complex and computationally intensive normalization steps, such as MA (Dudoit et al., 2002) or MD (Stansfield and Dozmorov, 2017). In the first part of the paper we show that our self-similarity measure can be used in the first application domain described above, i.e., as a tool to quantify the reproducibility of Hi-C biological/technical replicate experiments. In the second part of this paper, we show that our measure can also be employed in the second application domain, i.e., for finding statistically significant differences between Hi-C contact maps. Our method is based on the observation that interactions that are not independent of each other can be represented by their respective neighboring interactions. In other words, any structural difference between two contact maps not only affects the interaction value between its corresponding loci but also affects that of neighboring loci.

2 Materials and methods

Although existing methods for comparing contact maps vary widely, they all share the assumption that there exists common underlying global structures between two similar contact maps. We believe that this approach is fundamentally flawed, because the inherent biases present in the Hi-C data are very hard to model and completely eliminate. Here we propose to use the intrinsic self-similarity structure in contact maps to avoid dealing with the modeling problem.

In the application domain of object detection in complex visual data, the notion of self-similarity was first introduced by Shechtman and Irani, 2007. The idea of self-similarity on images can be explained as follows. Shechtman and Irani, 2007 showed that given two images of a certain object, the most relevant correlations between them are not necessarily the raw values of pixels (or an underlying model describing those pixel values) but the internal organization of self-similarities of local regions at similar relative geometric positions. In fact, for two images of the same object, we expect the relation between these local self-similarities to be more preserved than the similarities between the images.

2.1 Self-similarity and reproducibility

As said, existing methods for measuring the reproducibility of Hi-C experiments compute correlations or distances between normalized interaction frequencies of loci pairs, which is error-prone due to technology-driven and sequence-specific biases. Here we show that this comparison can be done indirectly by using self-similarity.

When we compare two contact maps that are expected to be similar, e.g. for two technical replicates of the same biological experiment, we expect to have similar internal layout of interactions. More precisely, given two contact maps A and B for two replicates, if we observe more chromatin interactions in block c than in block d in contact map A, we expect to have more chromatin interactions in block c than block d in contact map B as well, for several local choices of c, d. In other words, to measure similarity we do not need to depend on the absolute number of interactions...
in each contact map, rather we can rely binary comparison between many local interactions. Here we claim that the Boolean vectors representing binary comparison between local interactions encode enough information to define a similarity measure that can be used to quantify reproducibility for contact maps.

Henceforth, a Hi-C contact map is a $N \times N$ matrix where entry (i,j) in the matrix denotes the frequency of interaction between locus (or bin) i and locus (or bin) j in the genome. First, we slide a square block of size $N/k \times N/k$ along the main diagonal of the contact map using a stride of $N/2k$ so each pair of adjacent blocks overlap by half of their size. For each position of the sliding block, we compute the sum of interaction frequencies inside the block. We store these sums in vector B, which has $2k$ components. We then compare all $2k^2$ pairs of block sums, and set the matrix $C(i,t) = 1$ if $B(i) > B(j)$ for all choices of $(i,t) \in [1, \ldots, 2k] \times [1, \ldots, 2k]$, where i is the indicator function.

We claim that the matrix C is a compact representation of the interaction distribution along the main diagonal of the contact maps, which is robust to noise and biases (thus does not require normalization) because it relies on comparing entities that belong to the same contact map, and not across maps. We compute the similarity $S(A,B)$ between contact map A and B as follows

$$S(A,B) = e^{-\|C(A)-C(B)\|_1} = e^{-\sqrt{\sum_{(i,j)\in[1,\ldots,2k]^2} (C(A)_{i,j} - C(B)_{i,j})^2}}$$

where c is a constant, $C(A)$ is the Boolean matrix for contact map A, $C(B)$ is the Boolean matrix for contact map B. The value of k should be chosen so that the size of the resulting blocks N/k is sufficient large to enclose important chromatin structures (e.g., TADs). Parameters c and k are determined experimentally.

2.2 Self-similarity and differential chromatin interactions

For the accurate detection of differential chromatin interactions (DCI), one needs to be able to distinguish true differences (which might have biological relevance) from differences caused by biases or other artifacts in the data. Since there is no ground truth for DCIs between cell types, conditions or developmental stages, there is no possibility of learning from real examples. The only differences that can be trusted are those that significantly exceed the differences observed between biological replicates. For this reason, we can also employ our self-similarity metric in a method for finding DCIs between two Hi-C contact maps.

In our self-similarity representation described below, each interaction frequency is represented by a series of comparison between its surrounding local regions.

We first observe that DCIs have locality properties. If contact map A and B have a DCI at coordinate (i,j), this is not only reflected in the interaction difference of $A(i,j) - B(i,j)$ but also in the neighborhood of (i,j). We call impact region the neighborhood affected by the DCI. We call impact radius the size of the neighborhood being affected, which is proportional to the magnitude of the DCI. We argue that what determines the statistical significance of a DCI in a particular location (i,j) does not only depend on the statistical significance of the difference $A(i,j) - B(i,j)$ but also on the statistical significance of the difference between their region centered at (i,j). We argue that the most significant DCIs are not necessarily those locations that have the largest differences for a single interaction frequency. In fact, an isolated difference observed for a single coordinate (i,j) is more likely to be caused by an artifact in the data.

To incorporate locality information in our self-similarity representation, each interaction $A(i,j)$ is represented by a linear combination of its neighboring interactions. To progressively penalize interactions which are farther and farther from (i,j), we weight these local interactions via a Gaussian filter centered at (i,j) (see Figure 1 for an example). By gradually increasing the size of the Gaussian filter, we capture impact regions with larger and larger radii. We denote with $G^k_{(i,j)}$ the matrix resulting from the convolution between a Gaussian filter with radius r_k and the contact map A. We first compute $G^k_{(i,j)}$ for a set of n radii $\{r_1, r_2, \ldots, r_n\}$, and collect them in vector G_k as follows

$$G_k(i,j) = \{G^1_{(i,j)}, G^2_{(i,j)}, \ldots, G^n_{(i,j)}\}$$

It is well-known that interactions in Hi-C contact maps are more frequent when the pairs of interacting loci are closer in genomic distance due to random polymer interactions driven by one-dimensional genome proximity. To account for this contact increase, we Z-normalize the interaction frequencies in A with respect to their genomic distances along each diagonal d as follows:

$$A(i,j) = \frac{A(i,j) - \mu_d}{\sigma_d}$$

where $d = |j-i|$, and μ_d, σ_d are the average and the standard deviation along the diagonal d, respectively.

If (i,j) is not a DCI between A and B, we expect vectors $G_k(i,j)$ and $G_k(j,i)$ to exhibit similar trends along their components, because they represents aggregate interaction frequency in gradually increasing neighborhood centered at (i,j). If (i,j) is a DCI with impact radius r, we expect to observe a significant difference between the k-th Gaussian representations of that interaction, where k is the index of the radius r_k closest to r. Due to biases in the interaction frequencies across different contact maps, the difference between the two feature vectors G_k and $G_{k'}$ cannot be directly used to indicate the significance of a change. We address this issue by take advantage of self-similarity, i.e., by using local comparison of local regions in contact maps.

As it was done in Lowe 2004, instead of using G_k to define the behavior of interaction frequency across a set of impact regions, we use the first order derivative of G_k with respect to impact radius r to determine the behavior of interaction frequency, as follows:

$$\frac{d}{dr}(i,j,k) \approx \Delta G_k(i,j,k) = G_{k+1}(i,j,k) - G_k(i,j,k)$$

The difference $G_{k+1} - G_k$ is sufficiently accurate to approximate the first order derivative because the difference $r_{k+1} - r_k$ is small. By computing the first order derivative for various choices of the impact radii, we carry out a comparison of local contact map regions ($G_{k+1} - G_k$).
Figure 2 shows the first order derivatives of Γ_A and Γ_B and the difference between them for the DCI reported later in Figure 7. Observe the sharp change between the derivatives at radius r_2 which corresponds to a DCI with that radius.

In the last step of our algorithm, we find mean μ and standard deviation σ of a normal distribution fitted on the difference of the first order derivatives $\Delta \Gamma_A - \Delta \Gamma_B$ for each radius r_k. Using these parameters of the normal distribution, we compute the p-value $P_{A,B}(i,j)$ for location (i,j) and radius r_k as follows.

$$P_{A,B}(i,j) = \Pr \left(X > \left(\frac{d\hat{\Gamma}_A}{dr}(i,j,k) - \frac{d\hat{\Gamma}_B}{dr}(i,j,k) \right) \right)$$

where X is normally distributed with parameters (μ, σ).

From the set of k p-values for each index (i,j), we choose the smallest as the p-value of the difference between two contact maps A and B at that index, as follows.

$$P_{A,B}(i,j) = \min_{k \in \{1, \ldots, n\}} \{ P_{A,B}(i,j) \}$$

These p-values $P_{A,B}(i,j)$ are finally fed into the Benjamini-Hochberg algorithm to calculate the final probabilities (Benjamini and Hochberg, 1995).

3 Results

3.1 Reproducibility

We evaluated our reproducibility measure on a Hi-C dataset obtained from Schmidt et al., 2016 that has a variable total number of interactions and resolution. The dataset consists of five different cell types hESC (H1), Mesendoderm (MES), Mesenchymal Stem Cell (MSC), Neural Progenitor Cell (NPC) and Trophoblast-like Cell (TRO). Each cell type has two biological replicates. All experiments were carried out on a single chromosome (chromosome 1 for this work) with resolution 40 kb. The parameters k, c were experimentally set to $k = 10$ and $c = 5$. We compared our method SELFISH against the two state-of-the-art reproducibility methods in the literature, namely HiCRep (Yang et al., 2017) and GenomeDisco (Ursu et al., 2018).

First, we assessed the effect of the total number of intra-chromosomal interactions captured by Hi-C experiment on different reproducibility measure. Given two biological replicates, we generated pseudo-replicates by first summing the two Hi-C matrices and then down-sampling the resulting matrix. Next, each individual replicate was down-sampled to a wide range of total interactions ($10^5, 5 \times 10^5, 10^6, 2 \times 10^6, 5 \times 10^6, 10^7$). For each of these choice, we computed the reproducibility score between all pairs.

Figure 3a-c illustrates the effect of the total number of interactions on the performance of reproducibility measures. A desirable feature for a reproducibility measure is to produce similar scores for the same pair of contact maps for different total number of interactions. Observe in Figure 3a-c that SELFISH is fairly invariant to the total number of interactions compared to HiCRep and GenomeDISCO, which failed to report stable reproducibility scores independently from the sequencing depth.

In the next experiment, we evaluated the effect of binning resolution of Hi-C data on the reproducibility methods. For this experiment, we used deeply sequenced Hi-C data of cell type GM12878 from Rao et al., 2014. Again, a desirable property of a reproducibility score is to be robust to changes in resolution. Figure 3d shows that reproducibility scores for 5kb, 10kb, 25kb, 50kb and 100kb are very stable for SELFISH, whereas HiCRep and GenomeDISCO scores are resolution-dependent, in particular for GenomeDISCO.

These experimental results clearly indicate that SELFISH outperforms existing methods in terms of robustness to changes in sequencing depth and binning size. Both of these are very desirable features which can significantly simplify Hi-C data analysis in terms of quality control for reproducibility in replicate experiments.

We also compared the average running time of the three methods (see Table 1). The experiment is done on two replicates of cell type GM12878 cell type from Rao et al., 2014. The results show that SELFISH is by far more efficient than HiCRep and GenomeDISCO.

Table 1. Average running time of HiCRep, GenomeDisco and SELFISH for different choices of the data resolution

Method	500kb	50kb	25kb	10kb	5kb
HiCRep	6s	636s	1045s	34479s	"
GenomeDisco	7s	2999s	4933s	30238s	61004s
SELFISH	0.75s	85s	184s	345s	474s

*HiCRep fails to run on 5kb data on a server machine with 256GB of RAM.
3.2 Differential Chromatin Interaction

We compared SELFISH to the current state-of-the-art method for detecting differential chromatin interaction called FIND Djekidell et al., 2018. To the best of our knowledge, FIND is the only DCI detection method which works on high resolution Hi-C data by taking into account the chromatin interactions inter-dependency. Extensive experimental results in Djekidel et al., 2018 show that FIND performs better than all prior methods for DCI detection. We experimentally set SELFISH’s parameters $n = 10$ and $r_1 = 8$.

We applied both methods on Hi-C contact maps for two cell types, namely GM12878 and K562, obtained from Rao et al., 2014. We replicated some of the experiments in Djekidel et al., 2018 in order to make a fair comparison. First, we analyzed the enrichment of epigenetic signals in the neighborhood of detected DCIs as well as the percentage of nearby genes having significant expression fold changes. We evaluated the enrichment of four well-known epigenetic markers, namely the binding of CTCF, POLII and P300, as well as the presence of histone modification H3K4me3. CTCF is widely accepted as a main driver of chromatin structure (Rao et al., 2014; Tang et al., 2015). We computed the enrichment of CTCF differential peaks (peaks that are different between two cell types) around detected DCIs. For this part of the analysis we directly obtained the detected DCIs for the mentioned dataset from Djekidel et al., 2018.

To compute the enrichment of each marker in the neighborhood of the detected DCIs, we calculated the distance of marker peaks to their closest anchor of DCIs. Figure 4 shows the enrichment of epigenetic markers near DCIs, highlighting especially for CTCF and H3K4me3 that these marks are more enriched around the reported DCIs for SELFISH compared with those detected by FIND, even though the number of reported DCIs for SELFISH is twice as large (30456 vs. 14131).

We also calculated the expression fold change of nearby genes for the two cell types. We first determined the set of genes which have overlap with any of the detected DCIs’ anchors. Then we computed the percentage of those genes having an expression fold change of two or greater. For the set of genes overlapping FIND’s DCIs, 71.46% of them were over-expressed. For SELFISH, 78.78%, were over-expressed. This analysis confirmed that the differences in chromatin structure are strongly associated with the changes in gene regulation. However, the DCIs detected by SELFISH have stronger associations to differences in gene regulation than FIND.

To quantify how well the Hi-C data supported the detected DCIs between two cell types GM12878 and K562, we generated a modified APA plots (Rao et al., 2014; Phanstiel et al., 2015). The interaction frequencies in contact maps are first Z-normalized by diagonal as explained in Methods section. Then, for each detected DCI we calculated the interaction differences between the contact maps in a ±50kb neighborhood. By averaging over all DCIs, we computed the APA plot for differences. The differential APA score, i.e. the value of the central index in the plot compared to neighboring regions, shows how different the interactions are at reported DCIs with respect to their expected interaction frequency with that genomic distance.

Figure 5 shows that SELFISH produces the expected Gaussian-shaped peak around its reported DCIs while the DCIs from FIND failed to generate a similar pattern. Correspondingly, the computed APA score is higher for SELFISH (4.46) compared to FIND (3.06) suggesting a stronger detection of DCIs. Finally the peak pixel of the APA plot for FIND (score of 4.17) is not centered on the called DCI pairs suggesting that SELFISH performs better at pinpointing anchor points of chromatin interactions at high resolution.

To further investigate the accuracy of detected DCIs we used simulated Hi-C data generated by the method proposed in Zhou et al., 2014. We generated a set of 100 pairs of simulated contact maps, each of which had known location for DCIs. After running SELFISH and FIND on these simulated datasets, we obtained a p-value for each DCI location for all 100 simulated pairs of contact maps. Given the p-values and the true locations of DCIs (true positives) we computed a precision-recall curve for each simulated pair of contact maps. We used the threshold averaging method proposed by Fawcett, 2006 to combine the 100 precision-recall curves to get the overall performance curve. We thresholded over the ratio of all indices in the contact map used for computing the precision and recall for each simulated pair. To combine the curves, we averaged all 100 calculated precision and recall values for each threshold. Figure 6a-c shows the performance of both methods for 2-fold, 5-fold and 10-fold DCIs. The vertical and horizontal bars represent the 95% confidence interval for precision and recall at that threshold respectively. For all fold change settings, SELFISH performs better than FIND confirming its superior performance on real Hi-C datasets. The performance difference is most striking for small fold change values, which are more relevant for comparisons of real Hi-C datasets and yet have very large effect on gene regulation (Greenwald et al., 2018). It is also important to note that SELFISH’s performance is quite consistent across different samples as indicated by small confidence intervals.
Fig. 6. Precision-recall curves for SELFISH (magenta) and FIND (green) for (a) 2-fold, (b) 5-fold and (b) 10-fold DCIs. The vertical and horizontal bars represent the 95% confidence interval for precision and recall at that threshold respectively. (d) The distribution of distances of FPs to closest TPs.

In our final experiment to assess the performance of two methods, we tested SELFISH and FIND on a real test case from Bonev et al., 2017. Figure 7 shows a 2-Mb region around the Brn2 promoter (also known as Pou3f2) for mouse embryonic stem cells (ES) and neuronal progenitor cells (NPC). Dashed circles show the contact between the Brn2 promoter and an NPC specific enhancer. Insets show the magnified view of this contact. Observe that the contact between the promoter and enhancer is strongly present in the NPC cell (Figure 7a) in contrast with the ES cell in which this interaction is weak (Figure 7b). The mentioned contrast shows itself...
as a subtle but important difference of interactions between two cell types. The highlighted regions of the epigenetic signals show the difference in the specified regions between two cell types. Detected DCLs by SELFISH and FIND for q-value < 10^{-4} are shown in magenta and green squares respectively. Observe that SELFISH can identify this contact region as a DCL between two cell types, but FIND fails to detect it.

4 Conclusion

We presented a new approach for comparative analysis of Hi-C data using a novel self-similarity measure. We showed the utility of our measure by providing solutions to two important problems in the analysis of Hi-C data, namely the problem of measuring reproducibility of Hi-C replicated experiments and the problem of finding differential chromatin interactions between two contact maps.

We showed that a simple binary comparison operation between blocks in the contact maps can be used to encode the local and global features in a manner that is robust to the data resolution and sequencing depth. This encoded information is used to build a feature vector for each contact map, which in turn allows to define a simple but effective similarity metric using the distance between their feature vectors. Experimental results showed that our self-similarity based measure outperformed two state-of-the-art methods (HiCRep and GenoMENeS) for measuring reproducibility of replicated Hi-C experiments.

We also introduced a new method for finding differential chromatin interactions between two contact maps. SELFISH is designed based on the idea that each pairwise chromatin interaction can be represented by its neighboring interactions. Therefore, each interaction difference reveal itself as a weighted impact on the neighboring interactions. We capture this impact using a set of gradually increasing Gaussian filters. By extensively testing SELFISH on simulated and real test data we show that it outperforms the state-of-the-art DCI detection method FIND both in accuracy and efficiency.

Funding

This work was supported in part by the US National Science Foundation [1OS-1543983, IIS-1526742, IIS-1814359].

References

Ay, F., Bailey, T. L., and Noble, W. S. (2014). Statistical confidence estimation for Hi-C data reveals regulatory chromatin contacts. *Genome Res.*, 24(5), 999–1011.

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. *J. R. Stat. Soc. Series B Stat. Methodol.*, 57(1), 289–300.

Boutros, P., Mendelsohn Cohen, N., Shamir, R., Nussinov, R., and Tegland, S. A. (2017). Multiscale 3D genome re-wiring during mouse neural development. *Cell*, 171(3), 557–572.e24.

Bueno, R., Mendicino Cohen, N., Stabo, Q., Fritsch, L., Papadopoulos, G. L., Lubling, Y., Xu, X., Li, X., Gustafsson, J.-P., Tanay, A., and Cavalli, G. (2017). Shape of the human 3D genome revealed by Hi-C. *Nature*, 546, 271–276.

Cao, Y., Chen, X., Ai, D., Chen, Z., McDermott, J., Huang, Y., and Han, X., Sun, Y. (2011). The BCL2 gene is regulated by a special AT-rich sequence binding protein 1-mediated long range chromosome interaction between the promoter and the distal element located within the 3‘-UTR. *Nucleic Acids Res.*, 39(11), 4640–4652.

Catanese, V. E., Ecker, J. R., Thomson, J. A., and Ren, B. (2015). Chromatin architecture reorganization during stem cell differentiation. *Nature*, 518(7539), 331–336.

Dekker, J. (2006). An introduction to ROC analysis. *Pattern Recognit. Lett.*, 27(8), 861–874.

Gong, F., Sun, L., Wang, G., Shi, J., Li, W., Wang, S., Han, X., and Sun, Y. (2011). The BCL2 gene is regulated by a special AT-rich sequence binding protein 1-mediated long range chromosome interaction between the promoter and the distal element located within the 3‘-UTR. *Nucleic Acids Res.*, 39(11), 4640–4652.

Gotkin, D. U., Leung, D., and Ren, B. (2014). The 3D genome in transcriptional regulation and pluripotency. *Cell Stem Cell*, 14(6), 762–775.

Greenwood, W. L., Li, H., Benagosti, P., Jakobsby, D., Matsumi, H., Schmitz, A., Selvaraj, S. D., Antonio, M., D’Antonio-Chemoskova, K. A. (2018). Integration of phased Hi-C and molecular phenotype data to study genetic and epigenetic effects on chromosome looping.

Hnisz, D., Weintraub, A. S., Day, D. S., Valtteri, F., Bak, R. O., Li, C. H., Goldmann, J., Lajoie, B. R., Fan, Y. P., Signors, A. A., Reddy, J., Borges-Rivera, D., Lee, T. I., Jarnikic, R., Porete, H. M., Dekker, J., and Young, R. A. (2016). Activation of proto-oncogenes by disruption of chromosome neighborhoods. *Science*, 351(6260), 1454–1458.

Imakaev, M., Fudenberg, G., McCord, P. R., Naumova, N., Goloborodko, A., Lajoie, B. R., Dekker, J., and Miny, L. A. (2012). Iterative correction of Hi-C data reveals hallmarks of chromosome organization. *Nature Methods*, 9(10), 999–1003.

Knight, P. A. and Batez, D. (2013). A fast algorithm for matrix balancing. *IMA J. Numer. Anal.*, 33(3), 1029–1047.

Lieberman-Aiden, E., van Berkum, N. L., Williams, L., Imakaev, M., Trapocy, T., Telling, A., Amit, I., Lajoie, B. R., Sabo, P. F., Dorschner, M. O., Sandstrom, R., Bernstein, B., Bender, M., A., Groudine, M., Gnirke, A., Stamatoyannopoulos, J., Miny, L. A., Lander, E. S., and Dekker, J. (2009). Comprehensive mapping of long-range interactions reveals folding principles of the human genome. *Science*, 326(5950), 289–293.

Liu, X., Yu, X., Zack, D. J., Zhu, H., and Qian, J. (2008). TiGER: a database for tissue-specific gene expression and regulation. *BMC Bioinformatics*, 9, 271.

Lopez, D. G. (2004). Distinctive image features from Scale-Invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110.

Ma, Y., Kanakouskas, K., and Buttitta, L. (2015). How the cell cycle impacts chromatin architecture and influences cell fate. *Front. Genet.*, 6, 472.

O’ Sullivan, J. M., Hendy, M. D., Pichignina, T., Wade, G. C., and Langowski, J. (2013). The statistical mechanics of chromosome conformation capture. *Nature*, 465(7305), 390–396.

Patel, R., Deng, C., Litt, M., St. Just Riberio, M., Cui, K., Kang, Y., Qiu, Y., Zhao, K., and Huang, S. (2012). CTCF mediated enhancer and promoter interaction regulates differential expression of TALL oncogene in normal and malignant hematopoiesis. *Blood*, 120(21), 281–281.

Pederson, T. (1972). Chromatin structure and the cell cycle. *Proc. Natl Acad. Sci. U. S. A.*, 69(4), 2224–2228.

Phanstiel, D. H., Boyle, A. P., Heidari, N., and Snyder, M. P. (2015). Mango: a tool for comprehensive mapping of chromosome interactions. *Nucleus*, 6(5), 392–398.

Parrinello, H., Tanay, A., and Cavalli, G. (2012). Three-dimensional folding and functional organization principles of the drosophila genome. *Cell*, 148(5), 271–282.

Pevsner, J. (1972). Chromatin structure and the cell cycle. *Proc. Natl Acad. Sci. U. S. A.*, 69(4), 2224–2228.

Plasteris, D. H., Boyle, A. P., Heidari, N., and Snyder, M. P. (2015). Mango: a tool for comprehensive mapping of chromosome interactions. *Nucleus*, 6(5), 392–398.

Rao, S. S. P., Huntley, M. H., Durand, N. C., Stamenova, E. K., Bochkov, I. D., Robinson, J. T., Sunborn, A. L., Macich, I., Omer, A. D., Lander, E. S., and Aiden, E. L. (2014). A 3D map of the human genome at kilobase resolution reveals topological domains of chromosome looping. *Cell*, 157(7), 1665–1680.

Ron, G., Globerson, Y., Moron, D., and Kaplan, T. (2017). Promoter-enhancer interactions identified from Hi-C data using probabilistic models and hierarchical topological domains. *Nat. Commun.*, 8(1), 2327.

Schmidt, A. D., Hu, M., Jung, I., Xu, Z., Qiu, Y., Tan, C. L., Li, Y., Lin, S., Lin, Y., Bari, C. L., and Ren, B. (2016). A comprehensive of chromatin contact maps reveals spatially active regions in the human genome. *Cell Rep.*, 17(5), 2042–2049.

Selvaraj, S., D’Antonio-Chemoskova, K. A. (2017). Integration of phased Hi-C and molecular phenotype data to study genetic and epigenetic effects on chromosome looping. *Nature*, 546, 271–276.

Shen, C. M., He, J. G., Ma, Y., and Xu, Z. (2000). TiGER: a database for tissue-specific gene expression and regulation. *BMC Bioinformatics*, 9, 271.

Stansfield, J. and Dozmorov, M. G. (2017). Hiccompare: a method for joint normalization of hi-c datasets and chromatin interaction detection. bioRxiv.

Stamaty, D. and Dexter, N. M. (2015). How the cell cycle impacts chromatin architecture and influences cell fate. *Front. Genet.*, 6, 472.
Roayaei Ardakany et al.

Tang, Z., Luo, O. J., Li, X., Zheng, M., Zhu, J. J., Szalay, P., Tzankova, P., Magalska, A., Wlodarczyk, J., Roszczyk, B., Michalski, P., Pireaux, E., Wang, P., Wang, D., Tian, S. Z., Preud-Mohyed, M., Sach, L. M., Ruan, X., Wei, C.-L., Liu, E. T., Wilczynski, G. M., Plewczynski, D., Li, G., and Ruan, Y. (2015). CTCF-Mediated human 3D genome architecture reveals chromatin topology for transcription. *Cell*, 163(7), 1611–1627.

Ursu, O., Boley, N., Taranova, M., Wang, Y. X. R., Yardimci, G. G., Stafford Noble, W., and Kundaje, A. (2018). GenomeDISCO: a concordance score for chromosome conformation capture experiments using random walks on contact map graphs. *Bioinformatics*, 34(16), 2701–2707.

Wang, J., Lan, X., Hsu, P.-Y., Hsu, H.-K., Huang, K., Parvin, J., Huang, T. H.-M., and Jia, Y. X. (2013). Genome-wide analysis uncovers high frequency, strong differential chromosomal interactions and their associated epigenetic patterns in c2-mediated gene regulation. *BMC Genomics*, 14, 70.

Yaife, E. and Tanay, A. (2011). Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture. *Nat. Genet.*, 43(11), 1059–1065.

Yang, T., Zhang, F., Yardimci, G. G., Song, F., Hardison, R. C., Noble, W. S., Yue, F., and Li, Q. (2017). HiCRep: assessing the reproducibility of Hi-C data using a stratum-adjusted correlation coefficient. *Genome Res.*, 27(11), 1939–1949.

Yardimci, G. G., Ozadam, H., Sauria, M. E. G., Ursu, O., Yan, K.-K., Yang, T., Chakraborty, A., Kaul, A., Layton, B. R., Song, F., Zhan, Y., Ay, F., Gerstein, M., Kundaje, A., Li, Q., Taylor, J., Yue, F., Dekker, J., and Noble, W. S. (2018). Measuring the reproducibility and quality of Hi-C data. *bioRxiv*, page 188755.

Zhou, X., Lindsay, H., and Robinson, M. D. (2014). Robustly detecting differential expression in rna sequencing data using observation weights. *Nucleic Acids Research*, 42(11), e91.

Zufferey, M., Tavernari, D., Oticiaho, E., and Citrello, G. (2018). Comparison of computational methods for the identification of topologically associating domains. *Genome Biol.*, 19(1), 217.