Antifungal Effect of \textit{Brachyglottis repanda} Ethanol Extract

Chan Nam Yook1, Young Soon Na2, Hwa Jung Choi3, Il Soo You4, Jong Min Baek5 and Seung Hwa Baek6

1Department of Food Science, Wonkwang Health Science, Iksan 570-750
2Division of Bionanochemistry, College of Natural Sciences, Wonkwang University, Iksan 570-749
3Department of Clinical Pathology, Daejeon Health Science College, Daejeon 300-111
4Department of Nanopolymer, National Chonbuk University, Jeonju 561-756
5R&D Center, BRNScience Co. LTD., Seoul National University, Seoul 151-897, Korea
6Department of Herbal Resources, Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan 570-749, Korea

(Received January 3, 2010; Revised March 23, 2010; Accepted March 24, 2010)

The crude ethanol extract of \textit{B. repanda} showed the cytotoxic activity against \textit{Polio virus} (25% activity at 150 μg/disk) and the minor cytotoxic activity against BSC cells (African green monkey kidney). However, the crude ethanol extract of \textit{B. repanda} was non-toxic to murine leukaemia cells CCL 46 P38SD1 (IC$_{50}$, > 62,500 ng/ml). Cytotoxic and antifungal activities were strongly shown by Fr. 64-3 which was eluted with 90% CH$_3$CN/H$_2$O, 100% CH$_3$CN, and 50% CH$_3$CN/H$_2$O (SM 2 at 150 μg/disk). The fraction 64-3 also showed the most cytotoxic activity against murine leukaemia cells (128 mg, IC$_{50}$, 10,051 ng/ml at 75 μg/disk). These results suggest that this fraction has a potent antifungal activity against the dermatophytic fungus \textit{Trichophyton mentagrophytes} ATCC 28185.

\textbf{Key words:} \textit{Brachyglottis repanda}, Cytotoxic activity, Murine leukaemia cell lines, \textit{Trichophyton mentagrophytes}, Antifungal activity, Antiviral activity

\section*{INTRODUCTION}

\textit{Brachyglottis} genus contains several shrubs, previously botanically classified in the \textit{Senecio} genus, and is closely related to the \textit{Olearia} genus. Many are especially useful garden plants for dry, sunny area and a number of excellent \textit{Brachyglottis} cultivars are now common in cultivation. \textit{Brachyglottis monroi} (Hook. f) B. Nordenstam (Asteraceae compositae), previously \textit{Senecio monroi}, is a shrub endemic to New Zealand (Connor and Edger, 1987; Allan, 1960). \textit{B. monroi} and \textit{B. repanda} have been widely used in Maori traditional medicine for treatment of sores and wounds (Riley, 1994). Bloor et al. (1993) have studied extracts of \textit{B. bidwillii}, a medium-sized shrub found in high altitude parts of central New Zealand. Extracts of the leaf and twig material showed inhibitory activity against one of our target bacteria, methicillin resistant \textit{Staphylococcus aureus}. Bioassay-guided fractionation showed that the activity was associated with labdane-type diterpenoids which were present in significant quantity. \textit{B. repanda} 'Purpurea' is a purple leaf form of \textit{B. repanda}. It needs to be planted in a dry are and plenty of air circulation is needed to counter moulds (http://www.google.co.nz). Mortimer et al. (1967) reported that a shrub endemic to New Zealand, \textit{B. repanda}, J. E. et G Forst. (family Compositae, Maori name “Rangiorea”), is suspected to poison farm animals, particularly horses. Feeding tests on sheep gave evidence of toxicity, but details are lacking. The presence of alkaloid (0.02%) in leaves was reported and from the close botanical alliance of \textit{Brachyglottis} to \textit{Senecio}, pyrrolizidine bases might be expected.

Choi et al. (2010) reported the antiviral and anticancer activities of 13(\(E\))-labd-13-ene-8a,15-diol (I) isolated from \textit{B. monroi}, which was examined against human rhinovirus 2 (HRV 2) and 3 (HRV 3), and human cancer cells (A549 and Hep2). 13(\(E\))-Labd-13-ene-8a,15-diol (I) showed strong anti-HRV 2 and HRV 3 activity with a 50% inhibitory concentration (IC$_{50}$) of 2.68 and 0.87 mg/ml, respectively, and a 50% cytotoxicity concentration (CC$_{50}$) of 59.45 mg/ml. Furthermore, A549 and Hep2 cells incubated with 32 mg/ml of 13(\(E\))-labd-13-ene-8a,15-diol (I) for 48 hrs exhibited antilung and antilaryngeal cancer activities, with a viability of less than 50% (Choi et al., 2010). Lim et al. reported that the cytotoxic and antimicrobial activities of 13(\(E\))-labd-13-
ene-8a,15-diol (I) against tumor cell lines, bacteria, and fungi. 13(E)-Labd-13-ene-8a,15-diol (I) was active against various tumor cell lines. The potencies (IC₅₀ 8.3–21.3 µg/ml) are similar to those reported (IC₅₀ 11.4–50 µg/ml) for 13(E)-labd-13-ene-8a,15-diol (I) isolated from another plant, Cistus creticus (Cistaceae). 13(E)-Labd-13-ene-8a,15-diol (I) was the most effective growth inhibitor of P388 murine leukaemia cell lines, producing approximately 8.3 µg/ml of IC₅₀ in the MTT method. 13(E)-Labd-13-ene-8a,15-diol (I) also inhibited the growth of the Gram-positive bacteria (Staphylococcus aureus, Bacillus cereus and Listeria monocytogenes) and Gram-negative bacteria (Bacillus subtilis (Vibrio para-hae-molyticus, Escherichia coli and Salmonella enteritidis) with minimum inhibitory concentration (MIC) ranging from 0.092 to 0.598 µg/ml. However, gram-negative bacteria were more sensitive to 13(E)-labd-13-ene-8a,15-diol (I, MIC 0.092 µg/ml).

In this study, the antiviral and antimicrobial activities and cytotoxicity of crude ethanol extract from Brachyglottis repanda were examined and their cytotoxic and antifungal fractions were investigated.

MATERIALS AND METHODS

General experimental procedures. All solvents were distilled before use. Removal of solvents from chromatography fractions were removed by rotary evaporation at temperature up to 40°C. Initial fractionation of crude plant extract using reverse phase column chromatography was performed with octadecyl-functionalized silica gel (C-18 Aldrich) as the adsorbent. Further column fractionation was performed using Davisil silica 60 Å (35–70 µm silica gel, Allth) as adsorbent. TLC was carried out using Merck DC-plastikfolien Kieselgel 60 F₂₅₄ visualized first with a UV lamp, then by dipping in a vanillin solution (1% vanillin, 1% H₂SO₄ in EtOH) followed by heating. NMR spectra, of CDCl₃ solutions at 25°C, were recorded at 300 MHz for ¹H-NMR on a Varian VXR-300 spectrometer. Chemical shifts are given in parts per million on the δ scale referenced to the solvent peak CHCl₃ at 7.25 ppm and are referenced to TMS at 0.00 ppm.

Plant material. Brachyglottis repanda (B. repanda) was collected from Botanical garden, Dunedin, in December 1999. This was identified by D. Glenny, Landcare Research, Dunedin, New Zealand, and a voucher specimen, OTA 990119, has been kept in the Otago University herbarium, Dunedin, New Zealand.

Preparation of the extract. Air-dried B. repanda (82.6 g) was ground and macerated in redistilled ethanol (800 ml) in a Waring Blender, then filtered. The residual marc was re-extracted wisely with ethanol (800 ml) and chloroform (400 ml). The combined filtrates were evaporated under reduced pressure to give a crude extract (4.26 g, 5.2%), which was stored at 4°C until tested.

Screening for antiviral activity. The extract was applied (15 µl of a 5 mg/ml solution) to a small filter-paper disc, dried, and assayed for antiviral activity using Schroeder et al. (1981) methods.

Screening for antibacterial and antifeud yeast activities. Activity against the following bacterial strains and yeast (Canterbury, Christchurch, NZ) were tested: multi-resistant Bacillus subtilis ATCC 19659, and Candida albicans ATCC 14053. Extracts were dissolved and diluted in an appropriate solvent (usually ethanol : water) to a concentration of 5 mg/ml. Test plates are prepared from Mueller Hinton agar containing extract to give a final concentration of 100 µg extract/ml agar. Activity growing cultures of the test strains were diluted in saline to deliver 10⁴ colony forming units onto the test, control (solvent), and blank (agar only) plates with a multipoint inoculators. Inoculated plates were incubated overnight at 37°C. Growth on the blank and control plates was checked and, if satisfactory, growth on the test plates was scored for each test strain.

Screening for antifungal activity. Fungal spore suspensions of Trichophyton mentagrophytes ATCC 28185 were applied to dextrose agar plates. Aliquots of the extract solutions were applied to filter paper discs, at 30 µg extract/disc, and dried at 37°C for two hours. These discs were applied to the agar plates, two per plate, and incubated for 28°C.

Screening for cytotoxic activity. This is to measure the ability of a sample to inhibit the multiplication of murine leukemia cells. The sample was dissolved in a suitable solvent, usually ethanol, at 5 mg/ml, and 15 µl of this solution was placed in the first well of a multwell plate. Seven two-fold dilutions were made across the plate. After addition of the cell solution, the concentration range in the test wells was 25,000 down to 195 ng/ml. After incubation for three days, the plates were read using an ELISA plate reader at 540 nm wavelength. Automated reading of the plates was possible with the addition of a MTT tetrazolium salt (yellow color). Healthy cells reduce this salt to MTT formazan (purple color) (Mosmann, 1983; Keepers et al., 1991).

RESULTS AND DISCUSSION

B. repanda, which contains a source of alkaloids, is a small tree native to New Zealand. The crude ethanol extract was not cytotoxic to murine leukemia cells (IC₅₀ > 62,500 ng/ml). However, this crude extract showed slight BSC cytotoxic activity. This plant showed much weaker cytotoxic activity than that of H. paucistipula extract (IC₅₀ 2,480 ng/ml) (Baek et al., 2003). The ethanol extract of B. monroi (IC₅₀ 23,960 ng/ml), which collected from the Dunedin
Antifungal Effect of *Brachyglottis repanda* Ethanol Extract

Botanical Gardens, showed stronger cytotoxic activity than that of *B. repanda* (Kwag et al., 2004). As indicated in Table 1, the extract showed 25% antiviral activity against *Polio* Type I virus (Pfizer vaccine strain) (5 mg/ml at 150 µg/disk). However, the ethanol extract of *B. monroi* (25% activity, 5 mg/ml at 75 µg/disk) indicated stronger antiviral activity against *Herpes simplex* Type I virus ATCC VR 733 than that of *B. repanda* (Kwag et al., 2004). This ethanol extract did not show any antimicrobial activity against microorganisms (Table 2) (Yook et al., 2007; Kim et al., 2009).

Our data showed the extremely weak cytotoxic activity of the crude ethanol extract against P388 murine leukaemia cell lines (Fig. 1). This weak cytotoxic activity of the crude extract was concentration-independent, when its concentration or absorbances were raised from 1.989 to 4.097 (Schroeder et al., 1981; Baek et al., 2000).

This method was used to coat the extract, containing compounds ranging from hydrocarbon to alkaloids, onto a reverse-phase support. This can then be loaded, as either aqueous slurry or a powder, onto a flash chromatography column that has been slurry-packed with the same support. Elution with H₂O, followed by a steep, stepped gradient through CH₃CN, CHCl₃, to EtOH generally gives very sat-

Table 1. Biological assays of the crude ethanol extract from *B. repanda*

Extract	BSC°	Herpes simplex virusb	Polio virusb
Mitomycin C			P388
Extract	> 62,500°		+

°% of well showing cytotoxic effects. @ 5 mg/ml, 150 µg/disk. +: minor effects located under the disk.

bCytotoxicity in antiviral assays. @ 5 mg/ml, 150 µg/disk; Zone of cytotoxic activity: +: 25% activity.

Our data showed the extremely weak cytotoxic activity of the crude ethanol extract against *T. mentagrophytes* and murine leukaemia cells ATCC CCL 46 P388D1 by the MTT method.

Table 3. In vitro cytotoxic and antifungal activities of the crude ethanol fractions of *B. repanda* on *T. mentagrophytes* and murine leukaemia cells ATCC CCL 46 P388D1 by the MTT method

Fraction No.	Eluent	Vol. (ml)	Mass (mg)	IC₅₀ (ng/ml)b	*T. mentagrophytes*c
64-1	H₂O, 1:1 CH₃CN/H₂O	66	1,707	> 62,500	−
64-2	1:1, 4:1, 9:1 CH₃CN/H₂O	96	709	> 62,500	−
64-3	9:1 CH₃CN/H₂O, CH₃CN	90	128	10,051	SM 2
64-4	1:1 CH₃CN/CHCl₃, CH₃CN	168	402	> 62,500	−
64-5	EtOH, 1:1 EtOH/H₂O	72	391	> 62,500	−
64-6	Hexane	30	152	57,139	−

Each fraction was examined in eight concentrations of triplicated experiments.

bIC₅₀ represents the concentration of a fraction required for 50% inhibition of cell growth. Mitomycin C was used as control and exhibited IC₅₀ of 75.0 ng/ml. Toxicity of sample to murine leukaemia cells in ng/ml at 75 µg/disk.

cWidth of zone of inhibition in mm; 150 µg/disk; −: not detected, Nystatin; HM 6 at 100 unit/disk. SM; Sharp margin, numbers refer to zone of inhibition (mm).
isfactorily partitioning of crude extracts (Shin et al., 2001). The recovery of material was usually very good. The results of the partitioning are shown in Table 3. Reversed-phase flash column chromatography on C18 silica gel (35.0 g) with H2O, CH3CN/ H2O, CH3CN/CHCl3, and n-hexane gradient yielded six fractions. The column fractions were combined based on visually similar TLC results. These combined fractions were assayed against murine leukemia cells and T. mentagrophytes. The activity was found to be spread over two fractions 64-3 and 64-6 that were eluted with 90% CH3CN/H2O, 100% CH3CN, 50% CH3CN/H2O and 100% hexane. C18 silica gel column chromatography of the most polar fraction 64-1, which was eluted with 100% H2O and 50% CH3CN/H2O, yielded the highest quantity. Among them, fraction 64-3, which was eluted with 90% CH3CN/H2O, 100% CH3CN, and 50% CH3CN/H2O, showed the most cytotoxic activity against murine leukemia cells (IC50, 10.051 µg/ml). This fraction also indicated the most antifungal activity against the dermatophytic fungus T. mentagrophytes (SM 2). However, the other fractions were inactive against the dermatophytic fungus T. mentagrophytes. (Tables 2 and 3). A comparison of IC50 (ng/ml) values of these fractions in cancer cells showed that their susceptibility to these fractions decreased in the following order; Fr. 64-3 > Fr. 64-6 > Fr. 64-1 = Fr. 64-2 = Fr. 64-4 = Fr. 64-5 (Table 3) (Baek et al., 2003). The fraction 64-3 showed equal antifungal activity than that of the ethanol extract of B. monroi (SM 2, 5 mg/ml at 150 µg/disk) against the dermatophytic fungus T. mentagrophytes. However, the ethanol extract of B. monroi (SM 1, 5 mg/ml at 150 µg/disk) showed stronger antimicrobial activity than that of the fraction 64-3 against B. subtilis (Kwag et al., 2004).

As shown in Table 1, a potent cytotoxic activity of the crude ethanol extract from B. repanda against P388 murine leukemia cell lines (P 388 IC50 > 62,500 ng/ml) was not observed. However, fractions 64-3 and 64-6 showed the cytotoxic activity against P388 murine leukemia cell lines. The polar fraction 64-3 (P 388 IC50 10,051 ng/ml) indicated more cytotoxic activity than that of non-polar fraction 64-6. As indicated in Table 3, the least polar fraction 64-6 showed cytotoxic activity against P388 murine leukemia cell lines (P 388 IC50 57,139 ng/ml). In 1H-NMR spectrum, the fraction 64-3 indicated lactone-type compounds based on the chemical shift at 1.60–2.50 and 4.50–6.30 ppm. The cytotoxic activity of B. repanda ethanol extract and fractions inhibited cell proliferation in a concentration-dependent manner (Kwag et al., 2004; Yook et al., 2007). Among these fractions, the fraction 64-3 showed the most cytotoxic activity due to the presence of lactones which was shown in 1H-NMR spectrum (Williams and Fleming, 1995; Becconsall, 1993).

In general, the cytotoxic activity of these fractions was in a concentration-dependent manner (Fig. 2). All of these fractions showed a concentration-dependent increase of cell anti-proliferation after treatment with the crude ethanol fractions of B. repanda. However, the fractions 64-1, 64-2, 64-4 and 64-5 were inactive against murine leukemia cells (IC50 > 62,500 ng/ml). The susceptibility of P388 cancer cell lines to fraction 64-3 was highly sensitive and showed the most cytotoxic activity. This fraction-mediated cytotoxicity was rapidly increased in the MTT method when their concentrations or absorbances were raised from 2.892 to 3.798. The fraction 64-6 was sensitive to murine leukemia cells in a concentration-dependent manner. However, the other fractions were inactive (Fig. 2 and Table 3) (Yook et al., 2007; Kim et al., 2009). The separation of the main components from the bioactive fraction 64-3 of B. repanda extract needs be studied further and the results will be discussed elsewhere.

In conclusion, the crude ethanol extract of B. repanda showed the cytotoxic activity against Polio virus (25% activity at 150 µg/disk). It also had minor cytotoxic effect against BSC cells (African green monkey kidney) but was non-toxic to P388 murine leukemia cells (IC50 > 62,500 ng/ml). Cytotoxic and antifungal activities were strongly shown by Fr. 64-3 which were eluted with 90% CH3CN/ H2O, 100% CH3CN, and 50% CH3CN/H2O (SM 2 at 150 µg/disk). The fraction 64-3 showed the most cytotoxic activity against murine leukemia cells (128 mg, IC50 10,051 ng/ml at 75 µg/disk). This fraction indicated the most antifungal activity against the dermatophytic fungus T. mentagrophytes.

ACKNOWLEDGEMENTS

We thank Dr. N.B. Perry at the Plant Extracts Research Unit, New Zealand Institute for Crop & Food Research Ltd, Department of Chemistry, University of Otago Box 56, Dunedin, New Zealand for supplying the sample. This work was supported by Wonkwang Health Science College, 2009 in South Korea.
REFERENCES

Allan, H.H. (1960). Flora of New Zealand. *Indigenous, Brachyglottis repanda, Psilopsida, Filicopsida, Gymnopermae, Dicotyledones*; DSIR: Wellington, Vol. 1.

Baek, S.H., Shin, J.H., Chung, W.Y. and Han, D.S. (2000). Antitumor evaluation of cannabidiol and its derivatives by colorimetric methods. *J. Toxicol. Pub. Health*, 16, 101-107.

Baek, S.H., Lim, J.A., Kwag, J.S., Lee, H.O., Chun, H.J., Lee, J.H. and Perry, N.B. (2003). Screening for biological activity of crude extract and fractions from *Brachyglottis monroi*. *Kor. J. Orien. Physiol. Pathol.*, 17, 826-828.

Becconsall, J.K. (1993). Basic One- and Two-Dimensional NMR Spectroscopy (2nd edition). VCH Publishers, New York, pp. 41-57.

Bloor, S.J. and Gainsford, G.J. (1993). A novel clerodane-ascorbate adduct from *Brachyglottis bidwillii*. *Aust. J. Chem.*, 46, 1099-1104.

Choi, H.J., Song, J.H., Kwon, D.H. and Baek, S.H. (2010). Antiviral and anticancer activities of 13(E)-labd-13-ene-8a,15-diol isolated from *Brachyglottis monroi*. *Phytother. Res.*, 24, 169-174.

Connor, H.E. and Edger, E. (1987). Name changes in the indigenous New Zealand Flora, 1960-1986 and Nomina Nova IV, 1983-1986. *N. Z. J. Bot.*, 25, 2255-2258.

Keepers, Y.P., Pozao, P.E., Peters, G.T., Otte, J.A., Winograd, B. and Pinedo, H.M. (1991). Comparison of the sulforhodamine B protein and tetrazolium (MTT) assays for in vitro chemosensitivity testing. *Eur. J. Cancer*, 27, 897-900.

Kim, M.J., Lee, J.S. and Baek, S.H. (2009). *In vitro* biological activity of germacranoide sesquiterpene lactones. *Orien. Pharm. Exp. Med.*, 9, 192-199.

Kwag, J.S., Na, Y.S., Perry, N.B., Kim, H.M. and Baek, S. H. (2004). Pharmacological effects of bioactive fractions from *Brachyglottis monroi*. *Kor. J. Orien. Physiol. Pathol.*, 18, 260-264.

Lim, J.A., Kwag, J.S., Yu, B.S. and Baek, B.S. (2004). Cytotoxic activity of 13(E)-labd-13-ene-8a,15-diol. *Kor. J. Orien. Physiol. Pathol.*, 18, 1163-1166.

Mortimer, P.H. and White, E.P. (1967). Hepatotoxic substance in *Brachyglottis repanda*. *Nature*, 214, 1255-1256.

Mosmann, T. (1983). Rapid colorimetric assays for cellular growth and survival: Application to proliferation and cytotoxicity assays. *J. Immunol. Methods*, 65, 55-63.

Riley, M. (1994). Maori Healing and Herbal. Paraaraumu, New Zealand: Viking Sevenseas N. Z. Ltd. pp 481.

Schroeder, A.C., Hughes, R.G. Jr. and Bloch, A. (1981). Synthesis and biological effects of acyclic pyrimidine nucleoside analogues. *J. Med. Chem.*, 24, 1078-1083.

Shin, J.H., Oh, J.H., Park, H.J., Kim, N.K., Jeong, Y.H., Lee, S.I. and Baek, S.H. (2001). Isolation of cytotoxic component from *Trichocolea hatcheri*. *Orien. Pharm. Exp. Med.*, 1, 49-56.

Williams, D.H. and Fleming, J. (1995). Spectroscopic methods in organic chemistry, Mcgraw-Hill, New York, pp. 28-62.

Yook, C.N., Lee, J.S. and Baek, S.H. (2007). Pharmacological screening of crude extracts from medicinal plants (II). *Kor. J. Orien. Physiol. Pathol.*, 21, 1004-1009.