ON SYMMETRIES OF KDV-LIKE EVOLUTION EQUATIONS

ARTUR SERGYEYEV*
Institute of Mathematics of NAS of Ukraine,
Tereshchenkivs'ka Str. 3, 252004 Kyiv, Ukraine
e-mail: arthurser@imath.kiev.ua, arthur@apmat.freenet.kiev.ua

The x-dependence of the symmetries of (1+1)-dimensional scalar translationally invariant evolution equations is described. The sufficient condition of (quasi)polynomiality in time t of the symmetries of evolution equations with constant separant is found. The general form of time dependence of the symmetries of KdV-like non-linearizable evolution equations is presented.

1. Introduction

It is well known that provided scalar (1+1)-dimensional evolution equation (EE) with time-independent coefficients possesses the infinite-dimensional commutative Lie algebra of time-independent non-classical symmetries, it is either linearizable or integrable via inverse scattering transform [1, 2]. This algebra is usually constructed with usage of the recursion operator [2], but it may be also generated by the repeated commuting of mastersymmetry with few time-independent symmetries [3]. In its turn, to possess the mastersymmetry, EE in question must have (at least one) polynomial in time t symmetry. This fact is one of the main reasons of growing interest to the study of whole algebra of time-dependent symmetries of EEs [4, 5, 6].

However, it is very difficult to describe this algebra even in the simplest case of scalar (1+1)-dimensional EE. To the best of author’s knowledge, in the class of scalar nonlinear EEs the complete algebras of time-dependent local symmetries were found only for KdV equation by Magadeev and Sokolov [7] and for KdV and Burgers equations by Vinogradov et al. [8]. In [8] there were also proved two no-go theorems, which show, when the symmetries of third order KdV-like and second order Burgers-like EEs are exhausted by Lie ones.

Surprisingly enough, using only the invariance of given EE under $\partial/\partial t$ and $\partial/\partial x$ and some simple observations on the explicit form of symmetries, we can show (vide Theorem 6 below) that any symmetry of KdV-like non-linearizable EE as a function of t is a linear combination of quasipolynomials (i.e. of the products of exponents by polynomials). Moreover, for the class of EEs with constant separant our approach allows to find a simple sufficient condition for such a situation to take place (Theorem 3), and for the generic EE it enables us to describe the dependence of its symmetries on variable x (Theorem 1).

* Current address (as of January 9, 2007): Silesian University in Opava, Mathematical Institute, Na Rybníčku 1, 746 01 Opava, Czech Republic. E-mail: Artur.Sergyeyev@math.slu.cz
2. Some general properties of symmetries of evolution equations

Consider the scalar (1 + 1)-dimensional EE

$$\frac{\partial u}{\partial t} = F(t, u, u_1, \ldots, u_n), \quad n \geq 2,$$

(1)

where \(u_l = \partial^l u / \partial x^l, l \in \mathbb{N}, u_0 \equiv u, \) and its symmetries, i.e. the right hand sides \(G \) of EEs

$$\partial u / \partial \tau = G(x, t, u, u_1, \ldots, u_k),$$

(2)

compatible with equation (1). The biggest number \(k \) such that \(\partial G / \partial u_k \neq 0 \) is called the order of symmetry and is denoted as \(k = \text{ord} \, G \).

For any sufficiently smooth function \(h(x, t, u, u_1, \ldots, u_r) \) introduce the quantities \[1\]

$$h^* = \sum_{i=0}^r \partial h / \partial u^i D^i$$

and

$$\nabla h = \sum_{j=0}^\infty D^j(h) D \partial / \partial u^j,$$

where \(D = \partial / \partial x + \sum_{i=0}^\infty u_{i+1} \partial / \partial u^i \).

Now we can define the Lie bracket, which endows \(S \) by the structure of Lie algebra, as

$$\{ h, r \} = h^*(r) - r^*(h) = \nabla r(h) - \nabla h(r).$$

This definition differs from the conventional one \[1, 2, 9\] by the sign, but is more suitable for our purposes. Note that \(S^{(1)} \) is Lie subalgebra in \(S \).

Equation (2) is compatible with (1) if and only if

$$\frac{\partial G}{\partial t} = \{ F, G \}.$$

(3)

From (3) one may easily derive \[2\] that

$$\frac{\partial G_*}{\partial t} \equiv (\partial G / \partial t)_* = \nabla h(F) - \nabla F(h) + [F, G_*],$$

(4)

where \(\nabla h(F) \equiv \sum_{i=0}^\infty D^i(h) \partial^2 F / \partial u^i \partial u^l \) and similarly for \(\nabla F(h) \); \([\cdot, \cdot]\) stands for the usual commutator of linear differential operators.

Let ord \(G = k \). Then equating the coefficients at \(D^l \) on both sides of (4) yields

$$\frac{\partial^2 G}{\partial u^l \partial t} = \sum_{m=0}^n D^m(G) \frac{\partial^2 F}{\partial u^m \partial u^l} - \sum_{r=0}^k D^r(F) \frac{\partial^2 G}{\partial u^r \partial u^l}$$

$$+ \sum_{j=\max(0, l+1-n)} \sum_{i=\max(l+1-j, 0)} \left[C^{i+j-l}_{i} \frac{\partial F}{\partial u^i} D^{i+j-l} \left(\frac{\partial G}{\partial u^j} \right) \right]$$

$$- C^{i+j-l}_{j} \frac{\partial G}{\partial u^j} D^{i+j-l} \left(\frac{\partial F}{\partial u^i} \right), \quad l = 0, \ldots, n + k - 1,$$

(5)

where \(C^p_q = \frac{q!}{p!(q-p)!} \) and we assume that \(1 / (-s)! = 0 \) for \(s \in \mathbb{N} \).
If \(k \geq 2 \), one easily obtains from (5) with \(l = n + k - 1, \ldots, n + 1 \) the formulas

\[
\frac{\partial G}{\partial u_k} = c_k(t)(\frac{\partial F}{\partial u_n})^{k/n},
\]

(6)

\[
\frac{\partial G}{\partial u_i} = c_i(t)(\frac{\partial F}{\partial u_n})^{i/n} + \sum_{p=i+1}^{k} \sum_{q=0}^{\lfloor \frac{p-i}{n} \rfloor} \chi_{pq}(t, x, u, \ldots, u_k) \frac{\partial^p c_p}{\partial t^q}, i = 2, \ldots, k-1,
\]

(7)

where \(c_j(t) \) are arbitrary functions of \(t \) (cf. [11]).

Furthermore, we see that by virtue of (11)

\[
[\nabla^p F - F, G] = 0 \pmod{D^p}, \quad p = \max(k, n)
\]

(8)

Equating the coefficients at powers of \(D \) in (8) yields the equations (5) with \(l = p + 1, \ldots, n + k - 1 \), from which we may find \(\partial G/\partial u_i, i = \max(k - n + 1, 2), \ldots, k \). By (7), the only arbitrary elements, which they may contain, are functions \(c_i(t) \), while their dependence on \(x, u, u \) is uniquely determined from (5).

On the other hand, since \(F \) is \(x \)-independent, the existence of the solution \(F_0 \) of (5) with \(p = n \) guarantees the solvability of the equations for \(\partial G/\partial u_i, i = \max(k - n + 2, 2), \ldots, k \), in terms of functions of \(u, \ldots, u_k \) and \(t \) only (cf. [10]). Therefore, \(\partial G/\partial u_i, i = \max(k - n + 2, 2), \ldots, k \), are \(x \)-independent. In particular, any \(G \in S^{(n)} \) has the form

\[
G = g(t, u, \ldots, u_k) + \Phi(t, x, u, u_1).
\]

(9)

Thus, for any symmetry \(G \in S \partial G/\partial x \in S \) and \(\text{ord} \partial G/\partial x \leq \max(1, \text{ord } G - n + 1) \). Applying this result to \(G = \partial G/\partial x \) and so on, we obtain that \(\partial^r G/\partial x^r \in S^{(n)} \) and hence is of the form (9), if \(r = r_{k,n,1} \), where for \(q = 0, 1 \)

\[
r_{k,n,q} = \begin{cases} \left\lfloor \frac{k}{n-1} \right\rfloor \text{ for } k \not\equiv 0, \ldots, q \pmod{n-1}, \\ \max(0, \left\lfloor \frac{k}{n-1} \right\rfloor - 1) \text{ for } k \equiv 0, \ldots, q \pmod{n-1}, \\ \end{cases} \quad \text{and } r_{k,n,-1} = \left\lfloor \frac{k}{n-1} \right\rfloor;
\]

\([s]\) denotes here the integer part of the number \(s \). The integration of \(\partial^r G/\partial x^r \) \(r \) times with respect to \(x \), taking into account the above, yields the following result:

Theorem 1. Any symmetry \(G \) of order \(k \) of (1) may be represented in the form

\[
G = \psi(t, x, u, u_1) + \sum_{j=0}^{s} x^j g_j(t, u, \ldots, u_{k-j(n-1)}), \quad s \leq r_{k,n,1}.
\]

(10)

Remark 2. In complete analogy with the above, one may show that if

\[
\frac{\partial F}{\partial u_{n-i}} = \phi_i(t), \quad i = 0, \ldots, j,
\]

(11)

where \(\phi_i(t) \) are arbitrary functions of \(t \), then in (5) \(p = \max(k, n-1-j) \) and it is possible to find from (5) \(\partial G/\partial u_i, i = \max(k - n + 2, \max(1-j,0)), \ldots, k \), which again turn out to be \(x \)-independent, and hence (cf. [10]) in (10) \(s \leq r_{k,n,-\min(1,j)} \) and \(\psi \) satisfies

\[
\frac{\partial \psi}{\partial x_r} = 0, \quad r = \max(1-j,0), \ldots, 1.
\]

(12)

Note that if (11) holds true, (6), (7) hold for \(k \geq \max(1-j,0), i = \max(1-j,0), \ldots, k-1. \)
3. Symmetries of the equations with constant separant

Let us turn to the particular case, when \(\partial F/\partial t = 0 \) and \(F \) has the form

\[
F = u_n + f(u, \ldots, u_{n-1}), \tag{13}
\]
i.e. when \(F \) has a constant separant, equal to unity \([10]\). Note that any \(F \) with constant separant, different from unity, may be reduced to the form \(F \) by rescaling of time \(t \).

For the sake of brevity we shall refer to EE \([11]\) with \(F \) \([13]\) as to EE with constant separant. Let us also mention that if \(\partial F/\partial t = 0 \), then in \([1]\) \(\partial \chi_{\partial g}/\partial t = 0 \).

Assume that \(\text{ord } G \equiv k > n - 1 \). Then, by \([13]\) and \([6]\), \([5]\) with \(l = k \) reads

\[
nD(\partial G/\partial u_{k-n+1}) = \partial c_k(t)/\partial t + R, \tag{14}
\]
where \(R \) stands for the terms which depend only on \(F \) and its derivatives and on \(\partial G/\partial u_i, i = k - n + 2, \ldots, k \). Moreover, \(R = D(K) \) for some \(x \)-independent \(K \), as it follows from the fact that if \(F \) has a constant separant, \(F_k \) as \(p = n - 1 \). Really, if the term \(\partial G_*/\partial t \) in \([4]\) would be absent, \(G_* \) would satisfy \([8]\) with \(p = n - 1 \) and the equation for \(\partial G/\partial u_{k-n+1} \) would be solvable in terms of functions of \(t, u, u_1, \ldots \) (cf. the proof of Theorem 1 and \([10]\)). But the only term in \([14]\), generated by \(\partial G_*/\partial t \), is \(\partial c_k(t)/\partial t \), while \(R \) is the same as if it would be in absence of \(\partial G_*/\partial t \) in \([4]\). Hence, \(R = D(K), \partial K/\partial x = 0, \) and

\[
\partial G/\partial u_{k-n+1} = (x/n)\partial c_k(t)/\partial t + K + c_{k-n+1}(t). \tag{15}
\]

Since \(\partial G/\partial u_i, i = k - n + 2, \ldots, k \), are \(x \)-independent by Theorem 1, by \([15]\) \(\text{ord } \partial G/\partial x = k - n + 1 \) and \(\partial^p G/\partial u_{k-n+1} \partial x = (1/n)\partial c_k(t)/\partial t \).

Iterating this process shows that for \(r = r_{k,n,0} Q = \partial^r G/\partial x^r \in S^{n-1} \) and

\[
\partial Q/\partial u_q = (1/n^r)\partial^r c_k(t)/\partial t^r, \quad q \equiv \text{ord } Q. \tag{16}
\]

Theorem 3. If the symmetries from \(S^{n-1} \) of the equation \([1]\) with constant separant either are all polynomial in \(t \) or are all linear combinations of quasipolynomials\(^1\) in \(t \), then so does any symmetry of this equation.

Proof. If the conditions of theorem are fulfilled, then by \([10]\) for any symmetry \(G \), \(k \equiv \text{ord } G \geq 1 \), the function \(c_k(t) = \partial G/\partial u_k \) is either polynomial or linear combination of quasipolynomials in \(t \). Hence, there exists a differential operator \(\Omega = \sum_{l=0}^{m} a_l \partial^l/\partial t^l \), \(a_l \in \mathbb{C} \), such that \(\Omega(c_k(t)) = 0 \). In particular, if \(c_k(t) \) is polynomial in \(t \) of order \(p \), we may choose \(\Omega_0 = \partial^{p+1}/\partial t^{p+1} \) as \(\Omega \).

Now assume that the theorem is already proved for the symmetries from \(S^{k-1} \) (it is obviously true for \(k \leq n \)). For EE \([11]\) with \(F \) \([13]\) \(S^{k} \) is closed under \(\partial/\partial t \), and therefore \(\Omega(G) \in S^{k} \). Moreover, since \(\Omega(c_k(t)) = 0, \text{ord } \Omega(G) \leq k - 1 \) and hence, by our assumption, \(G \equiv \Omega(G) \) is either polynomial or linear combination of quasipolynomials in \(t \). Obviously, so does any solution \(R \) of the equation \(\Omega(R) = G \), including \(R = G \). If all the

\(^1\)We call quasipolynomials the products \(\exp(\lambda t)P(t) \), where \(\lambda \in \mathbb{C} \) and \(P \) is a polynomial.
elements of $S^{(n-1)}$ are polynomial in t, then so does $c_k(t)$ and hence the polynomiality of G in t is guaranteed, because we may take $\Omega = \Omega_0$ and because \tilde{G} is polynomial in t by our assumption. The induction by k, starting from $k = n$, completes the proof. □

Theorem 3 is a natural generalization of the result of [7] on polynomiality in t of symmetries of KdV equation. It gives a very simple sufficient condition for all the symmetries of a given EE with constant separant to be polynomial in time t. Note that in such a situation all the time-dependent symmetries of EE in question may be constructed via the so-called generators of degree s for different $s \in \mathbb{N}$, using the results of Fuchssteiner [3].

4. Symmetries of KdV-like equations

Now let us consider the equations with constant separant, whose f satisfies
\[\partial f/\partial u_{n-1} = \text{const}. \] (17)

We shall call the EEs (11) with F (13), satisfying (17), KdV-like, since the famous Korteweg – de Vries equation has the form (11) with F (13), where $n = 3$ and $f = 6uu_1$ obviously satisfies (17).

Let G be the symmetry of KdV-like EE (11). Analyzing the leading term of $\partial^r G/\partial x^r$, $r = \left\lfloor \frac{\text{ord } G}{n-1} \right\rfloor$, like in the proof of Theorem 3, we obtain the following statement:

Corollary 4. If the symmetries from $S^{(n-2)}$ of KdV-like equation (11) either are all polynomial or are all linear combinations of quasipolynomials in t, then so does any symmetry of this equation.

Example 5. Consider third order formally integrable nonlinear KdV-like EEs (11):
\[
\begin{align*}
 u_t &= u_3 + uu_1, \\
 u_t &= u_3 + u_2^2 + c, \\
 u_t &= u_3 + u_2^2 u_1 + cu_1, \\
 u_t &= u_3 + u_2^2 + cu_1 + d, \\
 u_t &= u_3 - u_2^3/2 + (a \exp(2u) + b \exp(-2u) + d)u_1,
\end{align*}
\]
where $a, b, c, d \in \mathbb{C}$. All the symmetries of these EEs are polynomial in t by Corollary 4, since so do their symmetries of orders 0 and 1.

Now let us analyze in more detail the general form of time dependence of symmetries of KdV-like EE (11). Assume that the EE in question may not be linearized by means of contact transformations (for the sake of brevity we shall call it non-linearizable). Then $\dim \Phi \leq n$ [9], where $\Phi = \{ \varphi(x,t)|\varphi(x,t) \in S \}$. Let us show that in such a case $\dim S^{(k)} < \infty$ for any $k = 0, 1, 2, \ldots$

Let $G \in S^{(k)}/S^{(k-1)}$, $k > n - 2$. Then, obviously, it is completely determined by its leading term $h_k(t) \equiv \partial G/\partial u_k$. Like the above, but taking into account Remark 2, we may show that for KdV-like EE (11) $Q = \partial^r G/\partial x^r \in S^{(n-2)}$, if $r = \left\lfloor \frac{k}{n-1} \right\rfloor$, and
\[
\partial Q/\partial u_q = c_q(t) = (1/n^r)\partial^r h_k(t)/\partial t^r, q \equiv \text{ord } Q. \tag{18}
\]
Since \(h_k \) satisfies (18), for \(k > n - 2 \)
\[
\dim S^{(k)}/S^{(k-1)} \leq \dim S^{(k_0)} + \left[\frac{k}{n-1} \right], \quad k_0 = k - \left[\frac{k}{n-1} \right](n-1),
\] (19)
whence \(\dim S^{(k)} < \infty \) for \(k = 0, \ldots, n - 2 \) implies the same result for any \(k \).

By Theorem 1 and Remark 2 for KdV-like EE (1) (6) and (7) for \(k \leq n - 2 \) read
\[
\frac{\partial G}{\partial u_i} = c_i(t) + \sum_{p=i+1}^{k} \chi_p(u, \ldots, u_k) c_p(t), \quad i = 0, \ldots, k - 1,
\] (20)
\[
\frac{\partial G}{\partial u_k} = c_k(t),
\] (21)
and thus any symmetry \(G \) of order \(k \leq n - 2 \) has the form
\[
G = \psi(t, x) + g_0(t, u, \ldots, u_k).
\] (22)

Without loss of generality we can assume that the function \(g_0 \) is completely determined by \(\partial G/\partial u_i, \ i = 0, \ldots, k \). Since \(\partial \psi/\partial x \in \Phi \), we have
\[
\psi(t, x) = \gamma(t) + \sum_{p=1}^{\dim \Phi} a_p \int_0^x \varphi_p(y, t),
\] (23)
where \(a_p \in \mathbb{C}, \ \gamma(t) \) is arbitrary function of \(t \), and \(\varphi_p(x, t), \ p = 1, \ldots, \dim \Phi \), stand for some basis in \(\Phi \).

The substitution of \(G \) (22) with \(\psi \) (23) into equations (5) with \(l = 0, \ldots, n - 1 \) and into (3) yields in final account the system of first order linear ordinary differential equations in \(t \) (and, possibly, algebraic equations) for \(c_i(t), \ i = 0, \ldots, k \) and \(\gamma(t) \). Note that we must use (3) in order to obtain an ODE of the form \(\partial \gamma(t)/\partial t = \cdots \), allowing to find \(\gamma(t) \).

Obviously, the general solution of this system of ODEs for \(k \leq n - 2 \) may contain at most \(N_{k,n} = \dim \Phi + k + 2 \) arbitrary constants (including \(a_p, p = 1, \ldots, \dim \Phi \)).

Hence, \(\dim S^{(k)} \leq N_{k,n} < \infty \) for \(k \leq n - 2 \) and thus by (19) for any \(k = 0, 1, \ldots \)
\[
\dim S^{(k)} = \dim S^{(k_0)} + \sum_{j=k_0+1}^{k} \dim S^{(j)}/S^{(j-1)} < \infty.
\] (24)

Thus, for any \(k \) the space \(S^{(k)} \) is finite-dimensional. Since in addition this space is invariant under \(\partial/\partial t \), the dependence of its elements on \(t \) is completely described by Theorem 3.1 [12]. Namely, any symmetry of order \(k \) of KdV-like non-linearizable EE (1) is a linear combination of \(\dim S^{(k)} \) linearly independent symmetries of the form
\[
H = \exp(\lambda t) \sum_{j=0}^{m} t^j h_j(x, u, \ldots, u_k), \ \lambda \in \mathbb{C}, \ m \leq \dim S^{(k)} - 1.
\] (25)
Theorem 6. For any non-linearizable KdV-like EE \((2) \) \(\dim S^{(k)} = k, k = 0, 1, 2, \ldots \) and any symmetry \(Q \) of order \(k \) is a linear combination of the symmetries \((26) \). Thus, all the symmetries of non-linearizable KdV-like EEs are linear combinations of quasipolynomials in \(t \). This partially recovers the result of Corollary 4, but this corollary still remains of interest, providing the convenient sufficient condition of polynomiality of symmetries in time \(t \).

It is interesting to note that some general properties of time-dependent symmetries, which are linear combinations of the expressions \((26) \), were studied by Ma [6]. However, while he considered this form as given a priori, we have proved that all the symmetries of non-linearizable KdV-like EE \((1) \) indeed have this form.

Moreover, acting on any symmetry \((25) \) by \((\partial/\partial t - \lambda)^m \) for \(\lambda \neq 0 \) or by \(\partial^{m-1}/\partial t^{m-1} \) for \(\lambda = 0 \), we obtain the symmetry which is either linear or exponential in \(t \). Hence, there is a very simple test of existence of any time-dependent symmetries for given non-linearizable KdV-like EE \((1) \). Namely, it suffices to check whether there exist the symmetries of the form

\[
G = \exp(\lambda t)Q_0, \lambda \in \mathbb{C}, \lambda \neq 0
\]

or of the form

\[
G = G_0 + tG_1, G_1 \neq 0,
\]

where \(Q_0, G_0 \) and \(G_1 \) are time-independent. If non-linearizable KdV-like EE \((1) \) (with time-independent coefficients!) has no time-dependent symmetries of the form \((26) \) or \((27) \), then it has no time-dependent symmetries at all (but of course it may have time-independent symmetries).

The substitution of \((26) \) and \((27) \) into \((3) \) yields

\[
\{ F, Q_0 \} = \lambda Q_0, \quad \{ F, G_0 \} = G_1, \quad \{ F, G_1 \} = 0.
\]

In the first case \(F \) is called scaling symmetry (or conformal invariance [13]) of \(Q_0 \). However, known scaling symmetries \(F \) of integrable hierarchies, such as KdV, depend usually only on \(x, u, u_1 \) but not on \(u_2 \) and higher derivatives [13] and hence do not generate EEs of the form \((1) \), which we consider here. We guess that if KdV-like EE \((1) \) is non-linearizable and integrable, there exist no functions \(Q_0 \), which satisfy \((28) \) with \(\lambda \neq 0 \). Moreover, it is believed [4] that in such a case the only polynomial in \(t \) symmetries \((2) \) that EE \((1) \) may possess are those linear in \(t \).

Now let us consider the second case. Assume that there exists some commutative algebra \(Alg \) of time-independent symmetries of KdV-like non-linearizable EE \((1) \), such that for any \(K \in Alg \) the Lie bracket \(\{ G_0, K \} \in Alg. \) Then \(G_0 \) is mastersymmetry of \((1) \), and hence \((1) \) possesses (under some extra conditions, vide [3]) the infinite set of time-independent symmetries and is probable to be integrable via inverse scattering transform. Let us mention that the condition of commutativity of \(Alg \) may be rejected if \(G_0 \) is scaling symmetry of \(F \), i.e. \(\{ F, G_0 \} = \mu F \) for some \(\mu \in \mathbb{C}, \mu \neq 0 \) [13].

Conjecture 7. For any KdV-like non-linearizable evolution equation \((1) \) either all its symmetries are polynomial in \(t \) or all they are linear combinations of exponents in \(t \).
Acknowledgements

It is my pleasure to express deep gratitude to Pros. A.G. Nikitin and R.Z. Zhdanov and Dr. R.G. Smirnov for the fruitful discussions on the subject of this work. I would also like to thank the organizers of XXX Symposium on Mathematical Physics, where this work was presented, for their hospitality.

REFERENCES
[1] V. V. Sokolov: Russian Math. Surveys 43, no. 5 (1988), 165.
[2] P. Olver: Applications of Lie Groups to Differential Equations, Springer, New York 1986.
[3] B. Fuchssteiner: Progr. Theor. Phys. 70 (1983), 1508.
[4] W. X. Ma, P. K. Bullough, P. J. Caudrey and W. I. Fushchych: J. Phys. A: Math. Gen. 30 (1997), 5141; preprint solv-int/9705014 (arXiv.org)
[5] B. Fuchssteiner: J. Math. Phys. 34 (1993), 5140; DOI: 10.1063/1.530295
[6] W. X. Ma: Science in China A 34 (1991), 769.
[7] B. A. Magadeev, V. V. Sokolov: Dinamika Sploshnoj Sredy, 52 (1981) 48 (in Russian).
[8] A. M. Vinogradov, I. S. Krasil’schik, V. V. Lychagin: Introduction to Geometry of Non-linear Differential Equations, Nauka, Moscow 1986 (in Russian).
[9] B. A. Magadeev: St. Petersburg Math. J. 5, no. 2 (1994), 345.
[10] N. H. Ibragimov: Transformation Groups Applied to Mathematical Physics, Reidel, Dordrecht 1985.
[11] A. V. Mikhailov, A. B. Shabat and V. V. Sokolov: The Symmetry Approach to Classification of Integrable Equations in What is Integrability?, V. E. Zakharov ed., Springer, New York 1991.
[12] A. V. Shapovalov, I. V. Shirokov: Theor. Math. Phys. 92 (1992), 697.
[13] W. Oevel: A Geometrical Approach to Integrable Systems Admitting Time-dependent Invariants in Proc. Conf. On Nonlinear Evolution Equations, Solitons and Inverse Scattering Transform, M. Ablowitz et al. eds., Singapore, World Scientific 1987.