Assessing the reproducibility of discriminant function analyses

Rose L Andrew, Arianne YK Albert, Sebastien Renaut, Diana J Rennison, Dan G Bock, Tim Vines

Data are the foundation of empirical research, yet all too often the datasets underlying published papers are unavailable, incorrect, or poorly curated. This is a serious issue, because future researchers are then unable to validate published results or reuse data to explore new ideas and hypotheses. While data files may be securely stored and accessible, they must also be accompanied by accurate labels and identifiers. To assess how often problems with metadata or data curation affect the reproducibility of published results, we attempted to reproduce Discriminant Function Analyses (DFAs) from the field of organismal biology. DFA is a commonly used statistical analysis that has changed little since its inception almost eight decades ago, and therefore provides an excellent case study to test reproducibility. Out of 100 papers we initially surveyed, fourteen were excluded because they did not present the common types of quantitative result from their DFA or gave insufficient details of their DFA. Of the remaining 86 datasets, there were 15 cases for which we were unable to confidently relate the dataset we received to the one used in the published analysis. The reasons ranged from incomprehensible or absent variable labels, the DFA being performed on an unspecified subset of the data, or the dataset we received being incomplete. We focused on reproducing three common summary statistics from DFAs: the percent variance explained, the percentage correctly assigned and the largest discriminant function coefficient. The reproducibility of the first two was fairly high (20 of 26, and 44 of 60 datasets, respectively), whereas our success rate with the discriminant function coefficients was lower (15 of 26 datasets). When considering all three summary statistics, we were able to completely reproduce 46 (65%) of 71 datasets. While our results show that a majority of studies are reproducible, they highlight the fact that many studies still are not the carefully curated research that the scientific community and public expects.
Title: Assessing the reproducibility of discriminant function analyses

Authors: Rose L. Andrew¹,²,* Arianne Y.K. Albert³, Sebastien Renaut¹,⁴, Diana J. Rennison¹,
Dan G. Bock¹, Timothy H. Vines¹,⁵.

Affiliations: ¹Biodiversity Research Centre, University of British Columbia, 6270 University
Blvd Vancouver BC, Canada, V6T 1Z4.
²School of Environmental and Rural Science, University of New England, Armidale, NSW,
2351, Australia.
³Women’s Health Research Institute, 4500 Oak Street, Vancouver, BC, Canada V6H 3N1.
⁴Institut de recherche en biologie végétale, Département de sciences biologiques, Université de
Montréal 4101 Sherbrooke est, Montréal, QC, Canada
⁵Molecular Ecology Editorial Office, 6270 University Blvd Vancouver BC, Canada, V6T 1Z4.

*Author for correspondence: Tim Vines, vines@zoology.ubc.ca
Abstract

Data are the foundation of empirical research, yet all too often the datasets underlying published papers are unavailable, incorrect, or poorly curated. This is a serious issue, because future researchers are then unable to validate published results or reuse data to explore new ideas and hypotheses. While data files may be securely stored and accessible, they must also be accompanied by accurate labels and identifiers. To assess how often problems with metadata or data curation affect the reproducibility of published results, we attempted to reproduce Discriminant Function Analyses (DFAs) from the field of organismal biology. DFA is a commonly used statistical analysis that has changed little since its inception almost eight decades ago, and therefore provides an excellent case study to test reproducibility. Out of 100 papers we initially surveyed, fourteen were excluded because they did not present the common types of quantitative result from their DFA or gave insufficient details of their DFA. Of the remaining 86 datasets, there were 15 cases for which we were unable to confidently relate the dataset we received to the one used in the published analysis. The reasons ranged from incomprehensible or absent variable labels, the DFA being performed on an unspecified subset of the data, or the dataset we received being incomplete. We focused on reproducing three common summary statistics from DFAs: the percent variance explained, the percentage correctly assigned and the largest discriminant function coefficient. The reproducibility of the first two was fairly high (20 of 26, and 44 of 60 datasets, respectively), whereas our success rate with the discriminant function coefficients was lower (15 of 26 datasets). When considering all three summary statistics, we were able to completely reproduce 46 (65%) of 71 datasets. While our results show that a majority of studies are reproducible, they highlight the fact that many studies still are not the carefully curated research that the scientific community and public expects.
Introduction

Published literature is the foundation for future research, so it is important that the results reported in scientific papers be supported by the underlying data. After all, we cannot easily predict which aspects of a paper will prove useful in the future (Wolkovich et al. 2012), and if a portion of the results are wrong or misleading then subsequent research effort may well be wasted (e.g. Begley & Ellis 2012). One relatively simple way to judge the validity of published research is to obtain the original data analyzed in the paper and attempt to repeat some or all of the analyses: this allows researchers to retrace the path the authors took between the raw data and their results. The idea of reproducibility in research is becoming a topic of great interest and this movement is gaining traction with journals (Announcement: Reducing our irreproducibility 2013; McNutt 2014). There is clearly a need to quantify the validity of published research, yet there have been only a modest number of published studies that have tried to reproduce the results of published papers (e.g. Ioannidis et al. 2009; Gilbert et al. 2012; Errington et al. 2014), most likely because it is often difficult to access the underlying data (Wicherts et al. 2006; Savage & Vickers 2009; Drew et al. 2013; Vines et al. 2013).

Even when the data file is available, one common problem that hampers reanalysis is poor data curation: it is sometimes difficult to relate the dataset provided by the authors upon request or archived at publication to the one described in the paper (Michener et al. 1997; Ioannidis et al. 2009; Gilbert et al. 2012). For example, variable names may differ between the obtained dataset and the one described in the study, or there may be differences in the number of variables or data points (see White et al. 2013). It is typically not possible to reproduce the authors’ analyses in these cases, and moreover the data may not be considered sufficiently reliable for testing new hypotheses.

The current study had two goals: to assess a) how often poor data curation prevented re-analysis, and b) how often we could reproduce authors’ results when the obtained dataset did match the one described in the paper. We made use of 100 datasets acquired from authors as part of an earlier study assessing the effect of time since publication on data availability (Vines et al. 2014). The articles we chose had to i) contain morphometric data from plants or animals, ii) have analysed the morphometric data with a Discriminant Function Analysis (DFA), and iii) have not previously made the data available online. To make the data set manageable in size, we selected
only those studies published in odd years (between 1991 and 2011) as detailed in Vines et al. (2014).

We focused on morphometric data because it has been collected in a similar fashion for decades (e.g. with Vernier callipers or a binocular microscope), so datasets from a range of time periods are expected to be similar in size and format. We used similar logic when selecting the analysis to reproduce: Discriminant Function Analysis (Fisher 1936) has been applied to morphometric datasets for many decades. The function gives the best linear combination of morphometric variables that distinguishes between two or more known groups (e.g. sexes, populations, species). Typically, a sample of individuals with known affiliations is used to find the minimum set of variables that distinguishes the groups, and a discriminant function composed of the chosen variables is then used to classify unknown individuals. While computer processing power has greatly increased over the years, the way the analysis has been performed has remained the same. We can therefore reasonably compare DFAs from papers with a wide range of publication dates, allowing us to investigate how changing analysis software or date of publication affect reproducibility. In combination with Vines et al. (2014), our results quantify the extent of the challenges facing science publication, both in terms of acquiring the original data analysed in the paper, and in terms of the proportion of analyses that are poorly curated or cannot be reproduced.

Materials and methods

As part of the Vines et al. (2014) study, we received 100 datasets from authors. For papers reporting a classical DFA of morphometric data, linear or quadratic DFA were considered, as were stepwise analyses where a) the variables in the final model were presented and b) at least one of three common metrics (see below) was presented. This allowed us to attempt to reproduce the final model as a simple linear DFA. Studies employing stepwise analysis of relative warps or Fourier-transformed data were also excluded at this point, as these studies unfortunately did not indicate which variables were included in the final model. A study entirely written in a foreign language (Spanish) was also excluded.

For each remaining study, we followed the protocol below.
1) We first assessed the description of the methodology, checking whether the paper adequately described the groupings and morphometric variables used in the analysis.

2) We examined the data files (in some cases multiple files were supplied), which sometimes required specialised file formats to be converted to text. This was carried out using the R packages ‘foreign’ (R Core Team 2013) and ‘RODBC’ (Ripley & Lapsley 2013). If the data file was clearly wrong (e.g. a summary table, instead of raw data) we categorized the paper as ‘Incorrect data file’.

3) We assessed whether the metadata contained in the data file, in other files supplied by the author or in the accompanying email were complete and could be related to their description in the paper. We classified papers missing sample names and those with unclear population groupings as having ‘Insufficient metadata’. This category also included papers for which variable labels were in a foreign language and, even when translated in English (using http://translate.google.ca), could not be matched to the variables reported in the paper. However, we accepted files with unlabeled data columns where the identity of each column could be verified using information in the paper or supplied by the authors; the latter information came either from the files provided or their email message.

4) We then went through the data deleting rows that contained missing data or other samples that the paper stated were not included in the analysis. Once this was completed, we identified discrepancies between the paper and the dataset in terms of sample sizes or number of variables, and categorized papers for which variables were missing or for which sample sizes did not match those reported in the paper as ‘Data discrepancy’.

5) In addition to simple transformations (logarithm or square root), we conducted size adjustments based on multigroup principal components analysis (e.g. Burnaby’s (1966) back-projection) using the R packages ‘multigroup’ (Eslami et al. 2014) and ‘cpcbp’ (Bolker & Phillips 2012).

6) When there was more than one DFA analysis that met our criteria in a paper, we selected only the first one. We recorded whether raw or standardised coefficients were
presented, whether cross-validation was used in the classification of individuals, and the statistical software used. The year of publication was recorded for each paper.

Based on a preliminary survey of the papers, we identified three DFA metrics to reproduce: the percentage of variance explained (PVE), the percentage of samples assigned correctly (PAC), and the largest model coefficient. These three summary statistics are commonly reported for DFAs, and are useful for interpreting DFA in a meaningful manner (Reyment et al. 1984), although the detail in which DFAs are described varies greatly depending on the focus of the paper. PVE and PAC are complementary indicators of the discriminatory power of a discriminant function, whereas the function coefficients make up the formula for assigning unknown samples to one group or another.

Our reanalysis procedure was designed to produce a single value for each metric per paper. Where possible, we compared the PVE for the first axis, which explains the greatest amount of variance in the model. When PVE was reported as the sum of the first two or three axes, we compared the summed PVE. We calculated the overall PAC, or the PAC for a particular group if the overall percent assigned correctly was not reported in the paper. For the coefficient, we selected the variable with the largest absolute coefficient, and determined from the paper whether the raw or standardised coefficient was used.

Although the original analyses used diverse statistical packages, we performed all discriminant function reanalyses in the statistical software R v3.2.0 (R Core Development Team 2011), using the functions ‘lda’ (in the MASS package; Venables & Ripley 2002) with default parameters. Within R, we estimated each summary statistic using proportional or flat priors and used the value that was closest to the published value. Authors reported a variety of methods for assignment when calculating PAC, ranging from standard classification functions based on all data, to omitting one quarter of the data as a validation set. In our reanalysis, classification was carried out using leave-one-out (jackknife) cross-validation or direct prediction in ‘lda’, based on the description of the analysis in the paper. When authors did not specify whether cross-validation or direct prediction was used, we performed both and selected the value that was closest to the published result. While this approach biases the results towards the published value, it avoids unfair treatment of studies that used default parameters for their chosen software.
Our R code is provided in the Supplementary Materials, along with example datasets from Gugerli et al. (1997), Berzins et al. (2009), and Dechaume-Moncharmont et al. (2011). As we do not have explicit permission from the original authors, we are unable to share the remaining 97 datasets (see Vines et al. 2014). We considered the analysis to have been reproduced if the PVE, coefficient, or PAC was within 1% of the published value (termed ‘matched’), or was ‘close’ if it was within 5% of the published value.

We used generalised linear models (the core ‘glm’ function in R) to assess whether publication year affected the likelihood of problems in the data sets that would prevent attempts to reproduce the DFA results. Given a binomial model, we tested the effect of publication year on categorizing a study as ‘Insufficient metadata’ or ‘Data discrepancy’ (see points 3-4 above for categories description). A Fisher’s exact test was used to test the effect of statistical software on data problems and on the success of the reanalysis, combining software used in just one study (S-Plus, STATGRAPHICS, and LINDA (Cavalcanti 1999)) into a single category (“other”).

Although we contacted authors again to ask for their preferences regarding acknowledgment or anonymity, we did not seek further information (e.g. metadata or analysis parameters) to inform our reanalysis. We also note that we are unfortunately unable to provide all 100 of the datasets reanalysed here, in an attempt to make this study reproducible: the email sent by Vines et al (2014) requesting these datasets stated “Our analysis will not identify individual studies, but will instead focus on overall patterns and trends. Your responses will therefore be completely confidential.” Obtaining additional permission to make all datasets public alongside this paper would be very challenging, as evidenced by the 66% response rate to our email merely asking authors how they would prefer their work to be cited.

Results
The current study used 100 data sets originally gathered by Vines et al. (2014). Fourteen of those data sets were excluded from our reanalysis attempt (Tables 1 & 2): one paper was entirely in a language other than English (Spanish); two did not perform classical DFA; two used non-morphological data in their DFA; six did not present any of the metrics that we were attempting
to reproduce; and three were based on stepwise analysis for which the final set of Fourier-
transformed variables or relative warps were not specified.

Of the 86 remaining studies, the data files provided for two (2.3%) were classified as ‘Incorrect
data file’: summary tables were provided instead of morphometric data, or the data set provided
was used for a different analysis from the same paper (Figure 1, Table 1). Six others (7.0%) were
categorized as ‘Insufficient metadata’, as columns in the data files could not be matched to the
variables described in the paper. Assignment as ‘inadequate metadata’ was due to a combination
of incomprehensible abbreviations in column headings (studies #36 and #80), missing column
labels (#44), unclear row groupings (#13 and #43) and the use of a language other than English
(study #29 in Table 2). Seven were classified as ‘Data discrepancy’: five data sets (5.8%) did not
match the expected sample sizes, and two (2.3%) were missing variables.

We found no effect of publication year on the probability of having insufficient metadata (odds
ratio 0.98 [95% CI 0.84-1.15], P = 0.82) and no effect of year on the probability of incorrect or
inconsistent data (‘Data discrepancy’ or ‘Incorrect data’: odds ratio 1.06 [95% CI 0.90-1.26], P
= 0.45). Combining these main types of data problems that prevented us from attempting
reanalysis (‘Incorrect data file’, ‘Insufficient metadata’, ‘Data discrepancy’), there was no effect
of year (odds ratio 1.06 [95% CI 0.95-1.20], P = 0.28).

Where stated, the type of software (SAS ® (SAS Institute, Cary, NC, USA), SYSTAT (SYSTAT
Software Inc., Richmond, CA, USA), SPSS (SPSS Inc., Chicago, IL, USA), MATLAB
(Mathworks, Natick, MA, USA), STATISTICA (Statsoft, Tulsa, OK, USA), JMP (SAS Institute,
Cary, NC, USA), R (R Core Development Team 2011), S-Plus ® (TIBCO Software Inc., Palo
Alto, CA, USA), STATGRAPHICS (StatPoint Inc., Rockville, MD, USA) and LINDA
(Cavalcanti 1999)) used for the initial study had a significant effect on the probability of data
problems (Fisher’s exact test, P = 0.012). This was largely due to a high likelihood of data
problems (26.7%) among data sets originally analysed with SAS, compared with the overall
proportion (17.4%; see Table 1).

We attempted a reanalysis of the DFA for the remaining 71 studies, and the results are
summarised in Table 2. Our results regarding the PVE were generally close to the published
values (Pearson correlation coefficient, r = 0.94, P < 0.0001; Figure 2). Of the 26 reanalysed data
sets reporting this statistic, our reproduced value was within 1% of the published value in 20
cases (80%), and within 5% of the published value in 24 cases (92%). The PAC statistic was also
often reproduced (Pearson’s $r = 0.95$, $P < 0.0001$; Figure 3). Of 60 reanalyses of PAC attempted,
our values differed from the published value by 1% or less in 44 (73%) cases, while 55 (93%)
were within 5%. Discriminant function coefficients were reproduced less frequently in the
reanalysis. Using the absolute value of the coefficient to exclude sign differences, reproduced
values were within 5% of the published value for 15 (58%) of the 26 data sets reanalysed for this
statistic, and each of these values was also within 1%. There was still a strong correlation
between the published value and our estimate (using absolute values, Pearson’s $r = 0.96$, $P <
0.0001$; Figure 4).

Of all 112 reanalysed PVE, PAC and coefficient values, 79 (71%) were within 1% of the
published value, and 95 (85%) were within 5% (Table 2). Considering the reported summary
statistics together for each paper, our reanalysis failed to replicate any value in the paper at the
most stringent level (within 1%) in 12 studies (17% of the total 71 data sets; Table 1); however,
we were able to partially reproduce 13 (18%) studies and completely reproduce the results in 46
studies (65%). The reanalysed values were within 5% of the published value for all three
statistics for 56 (79%) of studies.

There was no effect of publication year on discrepancies between the published and our values
for PVE, coefficients or PAC (Fisher exact test, $P > 0.2$ in each case). Sample sizes were
sufficient for a reliable test of the software effect for PAC only and this effect was not significant
(Fisher’s exact test, $P = 0.81$). There was also no effect of software on the overall reanalysis
success (Fisher’s exact test, $P = 0.81$).

Discussion

Confidence in scientific research is boosted when published results can be independently
reproduced by other scientists (Price 2011). Assuming that the raw data can be obtained (which
is typically difficult, e.g. Wicherts et al. 2006; Wicherts et al. 2011; Vines et al. 2013; Vines et
al. 2014), several obstacles still remain. First, poor data curation (e.g. unintelligible column
headings or missing samples) or inadequate methods description can mean that the dataset
obtained cannot be matched to the one described in the paper, preventing reanalysis at the outset.
Second, even when the datasets do match, some aspects of the results may be inherently harder
to reproduce than others, perhaps because there are multiple calculation methods for the same
summary statistic, or because the calculation involves ‘random walk’ estimation (e.g. Gilbert et
al. 2012). By following recommended data sharing practices (e.g. White et al. 2013), we can aim
towards reproducible research, and re-usable datasets.

In this paper we attempted to reproduce the results of Discriminant Function Analyses (DFA) for
100 datasets of papers published between 1991 and 2011. In contrast to the striking decline in
data availability over time (Vines et al. 2014), we found no evidence that the reproducibility of
DFAs decreased with time since publication. There was also no relationship between publication
year and the proportion of datasets with data problems that prevented reanalysis, or with the
proportion of reproducible results.

We could not attempt reanalysis for 17% (15 of 86 papers) of data sets because of obvious
problems in the data file. These problems included the wrong data file being provided, missing
data (individuals or variables), differences in the labels of variables between data files and
published work, or unspecified subsetting of the data files prior to the analytical steps. While
some of these problems could be solved through further communication with the authors, we
wanted our study to reflect the long-term reusability of the data, when contacting the authors
becomes increasingly difficult (Vines et al. 2014). Digital information is rapidly moving towards
a more centralised online system (“the cloud”, Armbrust et al. (2010)). Similarly, the
responsibility for data preservation is being lifted from scientists to online repositories (e.g.:
Dryad (www.datadryad.org), figshare (www.figshare.com), NCBI (www.ncbi.nlm.nih.gov)).

Given this paradigm shift, we recommend more attention be given to metadata quality and to the
curation of the archived files (Michener et al. 1997). For instance, if data are size-adjusted or
manipulated in other ways, both pre- and post-transformation data should be archived. Perhaps
the most critical piece of information is the link between column labels in the data file and the
variables described in the paper. We were unable to determine the correct columns or rows for
7% of datasets. While we were able to convert all data files to text format, the loss of metadata
may stem from this conversion (in one case, this had to be typed by hand, because data file
provided was from a scanned hardcopy of the data in a MSc thesis appendix). In line with
previous authors on this topic (Borer et al. 2009; Whitlock 2011), we recommend storing data in
text-based data formats (such as comma- or tab-separated files), as these are non-proprietary and accessible across the range of statistical software packages. Also in line with previous papers, we recommend publishing the code used in analysis as it is often difficult to provide a full description of the parameters used for a given analysis in the methods section of a journal article (Wolkovich et al. 2012). This can be done as part of the supplementary material or in online repositories such as GitHub (see Ram 2013) or Zenodo, which provides a DOI and archives the permanent version of the code.

Among the 71 data sets that were suitable to be reanalysed, we were able to get within 1% of the published value for at least one of the three statistics that we focused on (PVE, PAC and the largest (absolute) coefficient) for 59 studies (83%). There were strong positive correlations between published and reanalysed values for statistics reported in DFA, which suggests that replication, in the broad sense, is possible when the proper metadata are provided and with adequate curation of the data file. Slight discrepancies could be due to differences in rounding, or differences in how data are handled by the various software packages. Although data file problems that preclude reanalysis appear to be associated with some software (particularly SAS, see Table 1), there was no effect of software on the reproduction of the published results in our reanalyses.

Evaluating whether the DFA metrics analysed here fall within 5% of the published values is, in our view, a reasonable test of reproducibility. However, it is uncertain how much the original conclusions from these studies would change based on the values we have obtained. The reproducibility of inference is an aspect of reproducibility that we admittedly did not explicitly address in this study. Additionally, while DFA was not always a central or essential component of the original study, its reproducibility is an important indicator of the underlying data’s quality and completeness. Such checks are a worthwhile consideration when archived data are being reused for new purposes.

The reproducibility of the DFA varied depending on the summary statistic examined, ranging from 58% within 1% of the original value for the largest coefficient to 73% for the more complex PAC analyses, and 77% for PVE. The discriminant function coefficients were less likely to be reproduced, even when PVE and/or PAC matched. The procedures used to standardise model coefficients and calculate PAC differed among statistical packages and studies. For
instance, if we had used only jackknifing for all PAC reanalyses, only 56% of published values
would have been reproduced (results not shown). While this clearly does not invalidate the
original results, it does highlight another obstacle to successfully reproducing the authors’
results: some summary statistics may be inherently harder to reproduce, particularly when there
are numerous calculation methods, as is the case here, or when the estimation procedure makes
use of stochastic numerical optimisation methods (e.g. Gilbert et al. 2012).

In comparison with our previous study of reproducibility of analysis using the genetic analysis
program STRUCTURE (Gilbert et al. 2012), the proportion of studies with inadequate data or
metadata was similar to the current reanalysis (17 of 60 studies (28%) in Gilbert et al., and 15 of
86 (17%) here). The proportion of studies where we could not reproduce the analysis was also
broadly similar: 9 of 30 analyses (30%) in Gilbert et al., and 12 of 71 studies (17%) here. Despite
the somewhat lower percentage of successful reanalyses, the correlation between published and
reanalyzed results was consistently greater for DFA ($r = 0.94-0.96$) than for STRUCTURE ($r =
0.59$). In attempts to reanalyse microarray data sets, which are much more complex than
morphological data sets, approximately half of the results could be reproduced from available
data (Ioannidis et al. 2009). It is not surprising that analyses with more steps and parameter
choices are harder to reproduce, and this is echoed within our study, where we had to explore a
wide range of analysis options to obtain close matches for the most complex DFA statistic, PAC.
At the same time, DFA represents a relatively simple, well documented scientific analysis, and it
is likely that complex analyses with more subcomponents, larger datasets, complex software
dependencies and a less objective decision process will require much more information
(metadata) to re-analyse and eventually reproduce. The wider adoption of metadata standards
like the Ecological Metadata Language (Michener et al 1997,
https://knb.ecoinformatics.org/#tools) would go a long way towards ensuring that crucial details
about more complex datasets are not lost over time.

Shared data is an important substrate for science and is one of the levers that may be used to
improve the reliability of research (Ioannidis 2014). The system of having data re-users directly
contact data generators to obtain access to their data has been in place for decades, and is
absolutely necessary for data re-use within embargo periods (Roche et al. 2014), but it is not a
long-term solution for the preservation of research data (Vines et al. 2014). We argue that in
order for archived data to retain their full value, all of the necessary data and metadata must be stored at the time of archiving, which typically happens at or soon before/after publication. We have determined some of the common problems that can occur in self-archived data even when authors can be contacted and are able to share their data. The same factors are relevant to communal data archives. While sequence repositories such as NCBI Genbank have made the provision of metadata a key part of the submission, the decision of what additional information to archive to more generalised databases such as Dryad, figshare, Zenodo or GitHub, lies with the authors. The results presented here and those of previous studies (Savage & Vickers 2009; Gilbert et al. 2012; Drew et al. 2013; Vines et al. 2013; Vines et al. 2014) illustrate the need for our research community to make data availability and curation a central part of the research and publication process.

Acknowledgments
We are extremely grateful to the authors who kindly provided their data, without which this research would not have been possible. We also thank our collaborators on the first part of this project, Florence Débarre, Michelle Franklin, Kim Gilbert and Jean-Sébastien Moore. We thank Michael Whitlock and Heather Piwowar for useful discussions during the planning of the project and Mary O’Connor for thoughtful comments on our manuscript.

References
2013. Announcement: Reducing our irreproducibility. Nature. p 398.
Amado S, Armada-da-Silva PA, João F, Maurício AC, Luís AL, Simões MJ, and Veloso AP. 2011. The sensitivity of two-dimensional hindlimb joint kinematics analysis in assessing functional recovery in rats after sciatic nerve crush. *Behavioural Brain Research* 225:562-573.
Amini F, Zamini A, and Ahmadi M. 2007. Intergeneric hybridization between Kutum, *Rutilus frisii kutum*, and Bream, *Abramis brama orientalis*, of the Caspian Sea. *Journal of the World Aquaculture Society* 38:497-505.
Aparicio E, García-Berthou E, Araguas R, Martínez P, and García-Marín J. 2005. Body pigmentation pattern to assess introgression by hatchery stocks in native Salmo trutta from Mediterranean streams. *Journal of Fish Biology* 67:931-949.

Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Konwinski A, Lee G, Patterson D, Rabkin A, Stoica I, and Zaharia M. 2010. A view of cloud computing. *Communications of the ACM* 53:50-58.

Asanidze Z, Akhalkatsi M, and Gvritishvili M. 2011. Comparative morphometric study and relationships between the Caucasian species of wild pear (Pyrus spp.) and local cultivars in Georgia. *Flora-Morphology, Distribution, Functional Ecology of Plants* 206:974-986.

Audisio P, Belfiore C, De Biase A, and Antonini G. 2001. Identification of *Meligethes matronalis* and *M. subaeneus* based on morphometric and ecological characters (Coleoptera: Nitidulidae). *European Journal of Entomology* 98:87-98.

Begley CG, and Ellis LM. 2012. Drug development: Raise standards for preclinical cancer research. *Nature* 483:531-533.

Berzins LL, Gilchrist HG, and Burness G. 2009. No assortative mating based on size in black guillemots breeding in the Canadian Arctic. *Waterbirds* 32:459-463.

Bolker B, and Phillips PC. 2012. cpcbp: common principal components/back-projection analysis. R package version 0.3.3.

Borer ET, Seabloom EW, Jones MB, and Schildhauer M. 2009. Some simple guidelines for effective data management. *Bulletin of the Ecological Society of America* 90:205-214.

Bourgeois K, Curé C, Legrand J, Gómez-Díaz E, Vidal E, Aubin T, and Mathevon N. 2007. Morphological versus acoustic analysis: what is the most efficient method for sexing yelkouan shearwaters *Puffinus yelkouan? Journal of Ornithology* 148:261-269.

Brysting A, Elven R, and Nordal I. 1997. The hypothesis of hybrid origin of *Poa jemtlandica* supported by morphometric and isoenzyme data. *Nordic Journal of Botany* 17:199-214.

Buczkó K, Wojtal AZ, and Jahn R. 2009. *Kobayasiella* species of the Carpathian region: morphology, taxonomy and description of *K. tintinnus* spec. nov. *Diatom Research* 24:1-21.

Bulgarella M, Wilson RE, Kopuchian C, Valqui TH, and McCracken KG. 2007. Elevational variation in body size of crested ducks (*Lophonetta specularioides*) from the central high Andes, Mendoza, and Patagonia. *Ornitologia Neotropical* 18:587-602.
Burnaby TP. 1966. Growth-invariant discriminant functions and generalized distances. *Biometrics* 22:96-110.

Cadrin SX. 1995. Discrimination of American lobster (*Homarus americanus*) stocks off southern New England on the basis of secondary sex character allometry. *Canadian Journal of Fisheries and Aquatic Sciences* 52:2712-2723.

Capoccioni F, Costa C, Aguzzi J, Menesatti P, Lombarte A, and Ciccotti E. 2011. Ontogenetic and environmental effects on otolith shape variability in three Mediterranean European eel (*Anguilla anguilla, L.*) local stocks. *Journal of Experimental Marine Biology and Ecology* 397:1-7.

Cavalcanti MJ. 1999. LINDA—linear discriminant analysis and comparison of multivariate samples with randomisation tests. http://life.biosunysb.edu/morph/

Conde-Padín P, Grahame J, and Rolán-Alvarez E. 2007. Detecting shape differences in species of the *Littorina saxatilis* complex by morphometric analysis. *Journal of Molluscan Studies* 73:147-154.

Contrafatto G. 2005. Species with fuzzy borders: the taxonomic status and species limits of Saunders' vlei rat, *Otomys saundersiae* Roberts, 1929 (Rodentia, Muridae, Otomyini). *Mammalia* 69:297-322.

Darbyshire S, and Cayouette J. 1995. Identification of the species in the *Panicum capillare* complex (Poaceae) from eastern Canada and adjacent New York State. *Canadian Journal of Botany* 73:333-348.

de la Hera I, Pérez-Tris J, and Telleria JL. 2007. Testing the validity of discriminant function analyses based on bird morphology: the case of migratory and sedentary blackcaps *Sylvia atricapilla* wintering in southern Iberia. *Ardeola* 54:81-91.

Dechaume-Moncharmont F-X, Monceau K, and Cezilly F. 2011. Sexing birds using discriminant function analysis: a critical appraisal. *The Auk* 128:78-86.

Drew BT, Gazis R, Cabezas P, Swithers KS, Deng J, Rodriguez R, Katz LA, Crandall KA, Hibbett DS, and Soltis DE. 2013. Lost Branches on the Tree of Life. *PLoS Biol* 11:e1001636.

Ekrt L, Travnicek P, Jarolimova V, Vit P, and Urfus T. 2009. Genome size and morphology of the *Dryopteris affinis* group in Central Europe. *Preslia* 81:261-280.
Errington TM, Iorns E, Gunn W, Tan FE, Lomax J, and Nosek BA. 2014. *An open investigation of the reproducibility of cancer biology research.*

Eslami A, Qannari E, Bougeard S, and Sanchez G. 2014. multigroup: methods for multigroup data analysis. R package version 0.4.2.

Fernández IÁ, and Feliner GN. 2001. A multivariate approach to assess the taxonomic utility of morphometric characters in *Doronicum* (Asteraceae, Senecioneae). *Folia Geobotanica* 36:423-444.

Fisher RA. 1936. The use of multiple measurements in taxonomic problems. *Annals of Eugenics* 7:179-188.

Floate KD, and Whitham TG. 1995. Insects as traits in plant systematics: their use in discriminating between hybrid cottonwoods. *Canadian Journal of Botany* 73:1-13.

Foggi B, Rossi G, and Signorini M. 1999. The *Festuca violacea* aggregate (Poaceae) in the Alps and Apennines (central southern Europe). *Canadian Journal of Botany* 77:989-1013.

Forster MA, Ladd B, and Bonser SP. 2010. Optimal allocation of resources in response to shading and neighbours in the heteroblastic species, *Acacia implexa*. *Annals of Botany* 107:219-228.

Gabrielson PW, Miller KA, and Martone PT. 2011. Morphometric and molecular analyses confirm two distinct species of *Calliarthron* (Corallinales, Rhodophyta), a genus endemic to the northeast Pacific. *Phycologia* 50:298-316.

Gilbert KJ, Andrew RL, Bock DG, Franklin MT, Kane NC, Moore J-S, Moyers BT, Renaut S, Rennison DJ, Veen T, and Vines TH. 2012. Recommendations for utilizing and reporting population genetic analyses: the reproducibility of genetic clustering using the program STRUCTURE. *Molecular Ecology* 21:4925-4930.

Ginoris Y, Amaral A, Nicolau A, Coelho M, and Ferreira E. 2007. Development of an image analysis procedure for identifying protozoa and metazoa typical of activated sludge system. *Water Research* 41:2581-2589.

Gordo FP, and Bandera CC. 1997. Differentiation of Spanish strains of *Echinococcus granulosus* using larval rostellar hook morphometry. *International Journal for Parasitology* 27:41-49.
Gouws G, Stewart BA, and Reavell PE. 2001. A new species of freshwater crab (Decapoda, Potamanautidae) from the swamp forests of Kwazulu-Natal, South Africa: biochemical and morphological evidence. *Crustaceana* 74:137-160.

Gugerli F. 1997. Hybridization of *Saxifraga oppositifolia* and *S. biflora* (Saxifragaceae) in a mixed alpine population. *Plant Systematics and Evolution* 207:255-272.

Hata Y, Hashiba T, Nakamura T, Kitamura M, Ishida TA, Akimoto S-i, Sato H, and Kimura MT. 2011. Differences in leafminer (Phyllonorycter, Gracillariidae, Lepidoptera) and aphid (Tuberculatus, Aphididae, Hemiptera) composition among *Quercus dentata*, *Q. crispula*, *Q. serrata*, and their hybrids. *Journal of Forest Research* 16:309-318.

Hendriks IE, Van Duren LA, and Herman PM. 2005. Image analysis techniques: A tool for the identification of bivalve larvae? *Journal of Sea Research* 54:151-162.

Heraty JM, and Woolley JB. 1993. Separate species or polymorphism: a recurring problem in *Kapala* (Hymenoptera: Eucharitidae). *Annals of the Entomological Society of America* 86:517-531.

Hermida M, San Miguel E, Bouza C, Castro J, and Martínez P. 2009. Morphological variation in a secondary contact between divergent lineages of brown trout (*Salmo trutta*) from the Iberian Peninsula. *Genetics and Molecular Biology* 32:42-50.

Ibáñez AL, and O’Higgins P. 2011. Identifying fish scales: The influence of allometry on scale shape and classification. *Fisheries Research* 109:54-60.

Ioannidis JPA. 2014. How to make more published research true. *PLoS Med* 11:e1001747.

Ioannidis JPA, Allison DB, Ball CA, Coulibaly I, Cui X, Culhane AC, Falchi M, Furlanello C, Game L, Jurman G, Mangion J, Mehta T, Nitzberg M, Page GP, Petretto E, and van Noort V. 2009. Repeatability of published microarray gene expression analyses. *Nature Genetics* 41:149-155.

Katoh M, and Tokimura M. 2001. Genetic and morphological identification of *Sebastiscus tertius* in the East China Sea (Scorpaeniformes: Scorpaenidae). *Ichthyological Research* 48:247-255.

López-González C, Presley SJ, Owen RD, and Willig MR. 2001. Taxonomic status of *Myotis* (Chiroptera: vespertilionidae) in Paraguay. *Journal of Mammalogy* 82:138-160.
Magud BD, Stanisavljević LŽ, and Petanović RU. 2007. Morphological variation in different populations of *Aceria anthocoptes* (Acari: Eriophyoidea) associated with the Canada thistle, *Cirsium arvense*, in Serbia. *Experimental and Applied Acarology* 42:173-183.

Malenke JR, Johnson KP, and Clayton DH. 2009. Host specialization differentiates cryptic species of feather-feeding lice. *Evolution* 63:1427-1438.

Marhold K, Jongepierová I, Krahalcová A, and Kucera J. 2005. Morphological and karyological differentiation of *Gymnadenia densiflora* and *G. conopsea* in the Czech Republic and Slovakia. *Preslia* 77:159-176.

McNutt M. 2014. Journals unite for reproducibility. *Science* 346:679.

Michener WK, Brunt JW, Helly JJ, Kirchner TB, and Stafford SG. 1997. Nongeospatial metadata for the ecological sciences. *Ecological Applications* 7:330-342.

Mills SC, and Côté IM. 2003. Sex-related differences in growth and morphology of blue mussels. *Journal of the Marine Biological Association of the UK* 83:1053-1057.

Nishida S, Naiki A, and Nishida T. 2005. Morphological variation in leaf domatia enables coexistence of antagonistic mites in *Cinnamomum camphora*. *Canadian Journal of Botany* 83:93-101.

Okuda N, Ito S, and Iwao H. 2003. Female mimicry in a freshwater goby *Rhinogobius* sp. OR. *Ichthyological Research* 50:198-200.

Palma L, Mira S, Cardia P, Beja P, Guillemaud T, Ferrand N, and Cancela ML. 2001. Sexing Bonelli's Eagle nestlings: Morphometrics versus molecular techniques. *Journal of Raptor Research* 35:187-193.

Parent GJ, Plourde S, and Turgeon J. 2011. Overlapping size ranges of *Calanus* spp. off the Canadian Arctic and Atlantic Coasts: impact on species' abundances. *Journal of Plankton Research* 33:1654-1665.

Pearce TA, Fields MC, and Kurita K. 2007. Discriminating shells of *Gastrocopta pentodon* (Say, 1822) and *G. tappaniana* (CB Adams, 1842)(Gastropoda: Pulmonata) with an example from the Delmarva Peninsula, eastern USA. *Nautilus* 121:66-75.

Pérez-Farrera MA, Vovides AP, Martinez-Camilo R, Melendez NM, and Iglesias C. 2009. A reassessment of the *Ceratozamia miqueliana* species complex (Zamiaceae) of southeastern Mexico, with comments on species relationships. *Systematics and Biodiversity* 7:433-443.
509 Price M. 2011. To replicate or not to replicate? Science Careers.
510 R Core Development Team. 2011. R: A Language and Environment for Statistical Computing.
511 Version 3.1.0. Vienna, Austria: R Foundation for Statistical Computing.
512 R Core Team (2014). foreign: Read Data Stored by Minitab, S, SAS, SPSS, Stata, Systat, Weka,
dBase, … R package version 0.8-61. http://CRAN.R-project.org/package=foreign
514 Radloff SE, Hepburn HR, Fuchs S, Otis GW, Hadisoesilo S, Hepburn C, and Ken T. 2005.
Multivariate morphometric analysis of the *Apis cerana* populations of oceanic Asia.
Apidologie 36:475.
517 Reyment RA, Blackith RE, and Campbell NR. 1984. *Multivariate Morphometrics*. London:
Academic Press.
519 Rigby MC, and Font WF. 2001. Statistical reanalysis of the distinction between *Spirocamallanus
istiblelenni* and *S. monotaxis* (Nematoda: Camallanidae). *Journal of Parasitology* 87:1210-1213.
522 Rioux-Paquette S, and Lapointe F-J. 2007. The use of shell morphometrics for the management
of the endangered malagasy radiated tortoise (*Geochelone radiata*). *Biological Conservation* 134:31-39.
525 Ripley B, and Lapsley M. 2013. RODBC: ODBC Database Access.
526 Roche DG, Lanfear R, Binning SA, Haff TM, Schwanz LE, Cain KE, Kokko H, Jennions MD,
and Kruuk LEB. 2014. Troubleshooting public data archiving: suggestions to increase
participation. *PLoS Biol* 12:e1001779.
529 Ruedi M. 1995. Taxonomic revision of shrews of the genus *Crocidura* from the Sunda Shelf and
Sulawesi with description of two new species (Mammalia: Soricidae). *Zoological Journal
of the Linnean Society* 115:211-265.
532 Russell JC, Ringler D, Trombini A, and Le Corre M. 2011. The island syndrome and population
dynamics of introduced rats. *Oecologia* 167:667-676.
534 Salcedo N, Rodriguez D, Strauss R, and Baker R. 2011. The Fitzcarrald Arch: a vicariant event
for *Chaetostoma* (Siluriformes: Loricariidae) speciation? *Copeia* 2011:503-512.
536 Santiago-Alarcon D, and Parker PG. 2007. Sexual size dimorphism and morphological evidence
supporting the recognition of two subspecies in the Galápagos Dove. *The Condor*
109:132-141.
Savage CJ, and Vickers AJ. 2009. Empirical Study of Data Sharing by Authors Publishing in PLoS Journals. *PLoS ONE* 4:e7078.

Schagerl M, and Kerschbaumer M. 2009. Autecology and morphology of selected *Vaucheria* species (Xanthophyceae). *Aquatic Ecology* 43:295-303.

Semple JC, Chmielewski JG, and Leeder C. 1991. A multivariate morphometric study and revision of *Aster* subg. *Doellingeria* sect. *Triplopappus* (Compositae: Astereae): the *Aster umbellatus* complex. *Canadian Journal of Botany* 69:256-276.

Svagelj WS, and Quintana F. 2007. Sexual size dimorphism and sex determination by morphometric measurements in breeding imperial shags (*Phalacrocorax atriceps*). *Waterbirds* 30:97-102.

Thorogood R, Brunton D, and Castro I. 2009. Simple techniques for sexing nestling hihi (*Notiomystis cincta*) in the field. *New Zealand Journal of Zoology* 36:115-121.

Vanclay JK, Gillison AN, and Keenan RJ. 1997. Using plant functional attributes to quantify site productivity and growth patterns in mixed forests. *Forest Ecology and Management* 94:149-163.

Venables WN, and Ripley BD. 2002. *Modern Applied Statistics with S*. New York: Springer.

Vines Timothy H, Albert Arianne YK, Andrew Rose L, Débarre F, Bock Dan G, Franklin Michelle T, Gilbert Kimberly J, Moore J-S, Renaut S, and Rennison Diana J. 2014. The availability of research data declines rapidly with article age. *Current Biology* 24:94-97.

Vines TH, Andrew RL, Bock DG, Franklin MT, Gilbert KJ, Kane NC, Moore J-S, Moyers BT, Renaut S, Rennison DJ, Veen T, and Yeaman S. 2013. Mandated data archiving greatly improves access to research data. *The FASEB Journal* 27:1304-1308.

Wasowicz P, and Rostanski A. 2009. The use of quantitative characters in determination of frequently misdiagnosed species within *Lepidium* L. sect. *Dileptium* [Brassicaceae]. *Acta Societatis Botanicorum Poloniae* 78:221-227.

White EP, Baldridge E, Brym ZT, Locey KJ, McGlinn DJ, and Supp SR. 2013. Nine simple ways to make it easier to (re)use your data. *Ideas in Ecology and Evolution* 6:1-10.

Whitlock MC. 2011. Data archiving in ecology and evolution: best practices. *Trends in Ecology & Evolution* 26:61-65.
Wicherts JM, Bakker M, and Molenaar D. 2011. Willingness to Share Research Data Is Related to the Strength of the Evidence and the Quality of Reporting of Statistical Results. *PLoS ONE* 6:e26828.

Wicherts JM, Borsboom D, Kats J, and Molenaar D. 2006. The poor availability of psychological research data for reanalysis. *American Psychologist* 61:726-728.

Wicht B, Moretti M, Preatoni D, Tosi G, and Martinoli A. 2003. The presence of Soprano pipistrelle *Pipistrellus pygmaeus* (Leach, 1825) in Switzerland: first molecular and bioacoustic evidences. *Revue Suisse de Zoologie* 110:411-426.

Williams CT, Dean Kildaw S, and Loren Buck C. 2007. Sex-specific differences in body condition indices and seasonal mass loss in Tufted Puffins. *Journal of Field Ornithology* 78:369-378.

Wolkovich EM, Regetz J, and O'Connor MI. 2012. Advances in global change research require open science by individual researchers. *Global Change Biology* 18:2102-2110.

Zaitoun IS, Tabbaa MJ, and Bdour S. 2005. Differentiation of native goat breeds of Jordan on the basis of morphostructural characteristics. *Small Ruminant Research* 56:173-182.
Summary of papers excluded from or included in the study, in total and listed by the statistical software originally used to analyse the data. Those included in the study are further broken down by the reasons that reanalysis was not attempted or by the results of the reanalysis. The reanalysis outcome was classified as a complete match when all reanalyzed summary statistics were within 1% of the published values, a partial match when at least one (but not all) met this criterion, and no match when none met this criterion. The metrics considered were PVE, a discriminant function coefficient, and PAC.
Tables

Table 1. Summary of papers excluded from or included in the study, in total and listed by the statistical software originally used to analyse the data. Those included in the study are further broken down by the reasons that reanalysis was not attempted or by the results of the reanalysis. The reanalysis outcome was classified as a complete match when all reanalyzed summary statistics were within 1% of the published values, a partial match when at least one (but not all) met this criterion, and no match when none met this criterion. The metrics considered were PVE, a discriminant function coefficient, and PAC.

Software	Excluded	Included	Incorrect data file	Insufficient metadata	Data discrepancy	No match	Reanalysed	Partial match	Complete match
TOTAL	14	86	2 (2.3%)	7 (8.1%)	7 (8.1%)	12 (14%)	46 (53.5%)	12 (14%)	
JMP	2	2	0 (0%)	1 (50%)	0 (0%)	0 (0%)	0 (0%)	1 (50%)	
MATLAB	1	2	0 (0%)	0 (0%)	1 (50%)	0 (0%)	0 (0%)	1 (50%)	
R	0	5	2 (40%)	0 (0%)	1 (20%)	1 (20%)	0 (0%)	1 (20%)	
SAS	1	15	0 (0%)	3 (20%)	2 (13%)	3 (20%)	2 (13%)	5 (33%)	
SPSS	6	30	0 (0%)	0 (0%)	2 (7%)	5 (17%)	6 (20%)	17 (57%)	
STATISTICA	0	9	0 (0%)	1 (11%)	1 (11%)	2 (22%)	0 (0%)	5 (56%)	
SYSTAT	0	8	0 (0%)	0 (0%)	0 (0%)	1 (12%)	2 (25%)	5 (62%)	
Other	1	2	0 (0%)	1 (50%)	0 (0%)	0 (0%)	0 (0%)	1 (50%)	
Unknown	3	13	0 (0%)	1 (8%)	0 (0%)	0 (0%)	2 (15%)	10 (77%)	
Table 2

Table 2.

Published results and reanalyzed values of DFAs based on data files received from authors. DFAs included in the current study were categorized according to the adequacy of data files and metadata, and the reproducibility of three metrics (percent variance explained, the largest coefficient and percent assigned correctly) among those that were able to be reanalyzed. Category indicates whether the data set was excluded from the study (E), was incorrect (I), had inadequate metadata (M), displayed data discrepancies (D) or was reanalysed (R). The reasons for excluding data sets from the study or preventing us from reanalyzing the data are summarized. The reanalysis outcome was classified as a complete match (C) when all reanalyzed summary statistics were within 1% of the published values, a partial match (P) when at least one (but not all) met this criterion, and no match (N) when none met this criterion. The same classification was applied to studies using the ‘close’ criterion (within 5%).
Table 2. Published results and reanalyzed values of DFAs based on data files received from authors. DFAs included in the current study were categorized according to the adequacy of data files and metadata, and the reproducibility of three metrics (percent variance explained, the largest coefficient and percent assigned correctly) among those that were able to be reanalyzed. Category indicates whether the data set was excluded from the study (E), was incorrect (I), had inadequate metadata (M), displayed data discrepancies (D) or was reanalysed (R). The reasons for excluding data sets from the study or preventing us from reanalyzing the data are summarized. The reanalysis outcome was classified as a complete match (C) when all reanalyzed summary statistics were within 1% of the published values, a partial match (P) when at least one (but not all) met this criterion, and no match (N) when none met this criterion. The same classification was applied to studies using the ‘close’ criterion (within 5%).

Study no.	Year	Software	PVE Published	Reanalyzed	COEF Published	Reanalyzed	PAC Published	Reanalyzed	Categ.	Reason	Reanalysis outcome	Citation*	
											Match (within 1%)		
											Close (within 5%)		
1	1991	SAS	47.3	45.8	93.2	93.2	R				P	(Semple et al. 1991)	
2	1993	SAS	83.2	84.2	18.94	20.609	R				N	(Heraty & Woolley 1993)	
3	1995	Other (STATGRA PHICS)	79.1	79.1	2.87	-2.868	72	71.9	R	C	C	(Darbyshire & Cayouette 1995)	
4	1995	SPSS	0.892	0.7	100	100	R				P	(Cadrin 1995)	
5	1995	SPSS	57.3	57.3	91.4	91.4	R				P	(Ruedi 1995)	
6	1995	SPSS	4.02	-3.805	100	100	R				C		
7	1995	SYSTAT	-1.09	1.091	92	86.9	R				C		
8	1995	SYSTAT	2.115	-2.115	100	100	R				C	(Floate & Whitham 1995)	
9	1997	Not stated								E	Not all variables are morphological	(Vanclay et al. 1997)	
10	1997	SPSS	67	66.9						R	C	(Brysting et al. 1997)	
11	1997	SPSS	96.7	92.6	1.5	-2.488	100	98.6	R	C	(Gordo & Bandera 1997)		
12	1997	SYSTAT	99.5	99	-0.57	0.611	89	88.7	R	P	(Gugerli 1997)		
13	1999	Not stated								M	Row groupings don't match paper		
14	1999	Not stated								E	No PVE, coef. or		
Study no.	Year	Software	PVE Published	PVE Reanalyzed	COEF Published	COEF Reanalyzed	PAC Published	PAC Reanalyzed	Categ.	Reason	Reanalysis outcome	Citation*	
----------	------	----------	---------------	----------------	----------------	----------------	---------------	----------------	--------	--------	-------------------	-----------	
15	1999	SAS	65	64.2	61	61.4	R				Match (within 1%)		
16	1999	SPSS					E			No PVE, coef. or PAC			
17	1999	SPSS	73.4	73.4	R		C	Close (within 5%)					
18	1999	SYSTAT	90	91.7	R		N	Close (within 5%)					
19	2001	Not stated					C	Close (within 5%)			C	Rigby & Font 2001	
20	2001	SAS	96.7	96.4	R		N	Close (within 5%)					
21	2001	SAS	71.3	93.8	R		N						
22	2001	SPSS	-1.072	-1.072	R		P					Palma et al. 2001	
23	2001	SPSS	100	100	R		C						
24	2001	SPSS	96	96	R		C					Fernández & Feliner 2001	
25	2001	SPSS	5.228	-5.228	R		P					Katoh & Tokimura 2001	
26	2001	STATISTICA					C						
27	2003	Not stated					C					Okuda et al. 2003	
28	2003	Not stated					C						
29	2003	SAS					M	Column labels in Spanish					
30	2003	SAS			D	Extra rows							
31	2003	SPSS	1.011	1.011	R		C					Mills & Côté 2003	
32	2003	SPSS	3.5	81	R		D	Extra rows					
33	2003	SPSS			D	Missing rows and row assignments unclear							
34	2003	SPSS	88.9	87.5	R		N						
35	2003	SPSS	0.772	0.766	R		C						
36	2003	STATISTICA					M	Column labels unclear					
37	2003	SYSTAT	1.28	-1.275	R		C					Wicht et al. 2003	
38	2005	JMP			E	No PVE, coef or PAC						Nishida et al. 2005	
39	2005	Not stated			R		C					Hendriks et al. 2005	
40	2005	Not stated	83	83.1	R		P						
41	2005	Not stated	100	100	R		C					Radloff et al. 2005	
	Year	Software	PVE	COEF	PAC	Categ.	Reason	Match	Citation*				
---	------	----------	-----	------	-----	--------	--------	-------	-----------				
44	2005	SAS				R							
45	2005	SAS		94.3	94.9	R	C	C	(Marhold et al. 2005)				
46	2005	SPSS	46	38.2		R	N	N	(Aparicio et al. 2005)				
47	2005	SPSS	55.1	55.6	0.352	0.779	R	P					
48	2005	STATISTICA	67.5	67		R	C	C					
49	2005	STATISTICA				R	N	C					
50	2005	SYSTAT	100	100		R	C	C					
51	2007	MATLAB					D						
52	2007	Not stated	1.1	1.097	97	96.6	R	C	(Svagelj & Quintana 2007)				
53	2007	Not stated			87.9	87.9	R	C	(de la Hera et al. 2007)				
54	2007	SAS	8.623	3.495	97.3	98.6	R	N					
55	2007	SAS	76	76.6		R	C	C	(Williams et al. 2007)				
56	2007	SAS					D						
57	2007	SPSS				E			(Pearce et al. 2007)				
58	2007	SPSS	76.9	76.9		R	C	C	(Rioux-Paquette & Lapointe 2007)				
59	2007	SPSS	0.689	0.647	100	85.4	R	N	(Santiago-Alarcon & Parker 2007)				
60	2007	SPSS	61.8	61.6		R	C	C					
61	2007	SPSS				E			(Conde-Padín et al. 2007)				
62	2007	SPSS	84	83.3		R	C	C					
63	2007	STATISTICA	96.1	96.2		R	C	C					
64	2007	STATISTICA	93.3	93.3	-0.951	-0.951	R	C	(Conde-Padín et al. 2007)				
65	2007	STATISTICA	1.68	1.678	83.7	83.7	R	C	(Bourgeois et al. 2007)				
Study no.	Year	Software	PVE	COEF	PAC	Categ.	Reason	Reanalysis outcome	Citation*				
----------	------	----------	-----	------	-----	--------	--------	--------------------	-----------				
			Publishe d	Reanalyzed	Published	Reanalyzed	Published	Reanalyzed	Match (within 1%)	Close (within 5%)			
66	2007	SYSTAT	90.4	90.4	90	R	C	C	(Hermida et al. 2009)				
67	2009	Not stated	91.2	91.2	90	R	C	C					
68	2009	Not stated	0.242	0.084	100	R	P	P	(Buczkó et al. 2009)				
69	2009	Not stated	40.8	41.1	79	R	E	Not DFA					
70	2009	Not stated	0.242	0.084	100	R	P	P	(Pérez-Farrera et al. 2009)				
71	2009	SAS	69	69.2	1.05	R	C	C	(Hermida et al. 2009)				
72	2009	SAS	0.95	0.604	80	R	P	P					
73	2009	SPSS	100	100	100	R	C	C					
74	2009	SPSS	67	77	76.4	R	C	C	(Thorogood et al. 2009)				
75	2009	SPSS	65	65	65	R	D	Missing rows					
76	2009	STATISTI CA	100	98.1	100	R	N	C					
77	2009	STATISTI CA	2.8	2.795	91	R	E	No PVE, coef or PAC					
78	2009	SYSTAT	-7.06	7.063	100	R	C	C	(Bazins et al. 2009)				
79	2011	JMP	58	88.3	56	R	N	P					
80	2011	JMP	80.4	80.4	80.4	R	C	C					
81	2011	JMP	-7.06	7.063	100	R	C	C	(Gabrielson et al. 2011)				
82	2011	MATLAB	65.5	65	65	R	C	C	(Salcedo et al. 2011)				
83	2011	MATLAB	-7.06	7.063	100	R	C	C	(Capocciioni et al. 2011)				
84	2011	Not stated	90	90.5	90	R	D	Missing rows					
85	2011	R	58	88.3	56	R	N	P					
86	2011	R	80.4	80.4	80.4	R	C	C					
87	2011	R	80.4	80.4	80.4	R	C	C	(Dechaume-Moncharmont et al. 2011)				
88	2011	SAS	100	100	100	R	C	C	(Parent et al. 2011)				
Study no.	Year	Software	PVE	COEF	PAC	Categ.	Reason	Reanalysis outcome	Citation*				
----------	------	----------	-----	------	-----	--------	--------	--------------------	-----------				
92	2011	SPSS	81.8	81.7	R			Match (within 1%)	C C				
93	2011	SPSS	97.7	97.7	87.5	87.5	R	Close (within 5%)	C C				
94	2011	SPSS	58.3	58.3	62.9	62.9	R		C C				
95	2011	SPSS	87.7	87.5			R		C C				
96	2011	SPSS	87.7	87.5			E	Final model not given	(Asanidze et al. 2011)				
97	2011	SPSS	100	100	R				C C				
98	2011	SPSS	95.7	93.9	R				N C				
99	2011	SPSS	96	89.7	1.202	0.068	100		P P				
100	2011	SPSS											

*Authors were contacted individually once reanalyses were performed. Only authors wishing to be identified are cited above. In addition, several authors agreed to be cited, but not identified directly (Amini et al. 2007; Audisio et al. 2001; Bulgarella et al. 2007; Ekrt et al. 2009; Foggi et al. 1999; Ginoris et al. 2007; Gouws et al. 2001; López-González et al. 2001; Magud et al. 2007; Malenke et al. 2009; Schagerl & Kerschbaumer 2009; Wasowicz & Rostanski 2009)
Figure 1 (on next page)

Figure 1

Summary of the reproducibility of the 71 reanalyzed data sets and of the problems preventing reanalysis of 15 papers (see Table 1).
Eligible data sets: 86 studies

- Reanalysed: 71 studies
 - Data discrepancy: 7 studies
 - Insufficient metadata: 6 studies
 - Incorrect data file: 2 studies

- Complete match: 46 studies
- Partial match: 13 studies
- No match: 12 studies
Figure 2 (on next page)

Figure 2

PVE values from reanalysis versus published DFA. Points on the 1:1 line represent analyses differing by 1% or less.
Figure 3 (on next page)

Figure 3

PAC values from reanalysis versus published DFA. Points on the 1:1 line represent analyses differing by 1% or less.
Figure 4

Discriminant function coefficients from the reanalysis versus the published results. Absolute values are used because the signs of coefficients depends on the order of variables. Points on the 1:1 line represent analyses differing by 1% or less.
