Arthrodesis of the proximal interphalangeal joint of the finger – a systematic review

Michael Millrose1,2, Markus Gesslein2, Till Ittermann3, Simon Kim4, Hans-Christoph Vonderlind5 and Mike Ruettermann6,7

1Department of Trauma Surgery and Sports Medicine, Garmisch-Partenkirchen Medical Center, Garmisch-Partenkirchen, Germany
2Department of Orthopaedics and Traumatology, Paracelsus Medical University, Nuremberg, Germany
3Institute for Community Medicine, SHIP/Clinical-Epidemiological Research, University of Greifswald, Greifswald, Germany
4Department of Trauma and Orthopedic Surgery, University Medicine Greifswald, Greifswald, Germany
5Department of Trauma Surgery, Helios Kliniken Schwerin, Schwerin, Germany
6Department of Plastic Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
7Institute for Hand- and Plastic Surgery, Oldenburg, Germany

• Arthrodesis of the proximal interphalangeal (PIP) joint of the finger is an established procedure for advanced osteoarthritis. As there are different techniques of fusion, it seems necessary to evaluate the results.
• Primary outcome of this review was to evaluate different arthrodesis methods of the PIP joint and describe different numbers of non-unions. Secondary outcome was to evaluate time to consolidation. Respective complications, if mentioned, were listed additionally.
• The review process was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The selected databases were PubMed, Medline, Embase, Google Scholar and Cochrane Library. Studies reporting outcomes of the arthrodesis with a defined technique and radiological consolidation were included. Complication rates and types were recorded. In total, 6162 articles could be identified, 159 full-texts were assessed and 64 studies were included. Methodological quality was assessed using Methodological Index for Non-Randomized Studies.
• A total of 1923 arthrodeses of the PIP joint could be identified. Twelve different surgical techniques were described, four of these techniques with compression at the arthrodesis site. The most frequently used techniques were K-wires (n = 743, 14 studies), tension-band (n = 313, 15 studies) and compression screws (n = 233, 12 studies). The lowest rate of described non-unions in compression techniques was 3.9% with the compression screw. The highest non-union rate of 8.6% was achieved by interosseous wiring.
• All the described techniques can achieve the goal of fusing an osteoarthritic joint. There is a tendency in the more recent literature for the use of compression techniques.

Introduction

Osteoarthritis of the proximal interphalangeal (PIP) joint, either primary or secondary, limits the range of motion and causes pain with or without instability, leading to significant global hand function impairment (1). Typical aetiologies leading to secondary osteoarthritis are posttraumatic changes, chronic instability or inflammatory diseases, for example rheumatoid arthritis or scleroderma. Operative treatment options include denervation, different arthroplasties, prosthesis or arthrodesis. The aim of arthrodeses is pain reduction in combination with a sufficient global hand function (2). With distinctive deformation of the joint and/or preexisting instability, there is a tendency to recommend arthrodesis because an unstable prothesis is prone to failure. In these cases, the fusion of the joint provides reliable results.

In posttraumatic osteoarthritis, especially of the radial digits with an instability not exceeding 30°, a prothesis could provide excellent results (3, 4). If more than one
joint is affected, especially in patients with rheumatoid arthritis, and only a moderate instability exists, silicone arthroplasty is still the method of choice (5).

Arthrodesis of the PIP joint is an established technique for advanced osteoarthritis or when other reconstruction methods have failed. Different techniques for arthrodesis of the PIP joint have been described and their main difference is if there is compression on the arthrodesis or not (6). There is no clear indication in the current literature as to which technique shows the most promising results in terms of union. Typical major complications of PIP joint arthrodesis are non-union and mal-union; minor complications are superficial infections (61).

The aim of this first systematic review was to clarify the following questions: Do different arthrodesis methods of the PIP joint for primary and secondary causes of osteoarthritis or destruction of the joint show (i) different numbers of non-unions? (primary outcome) and (ii) different times to consolidation? (secondary outcome). The different complications of each technique were additionally included but not further evaluated.

Methods

Search methods

The review process was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (7). Two reviewers (MM and HV) independently selected studies for inclusion. Disagreements were solved by discussion with a senior author (MR).

The search was conducted from January 1, 1946, to April 28, 2020, in the following databases: PubMed, Medline, Embase, Google Scholar and Cochrane Library by the main author. We initially searched without any language or publication type restrictions. The search algorithm is shown in Table 1.

Selection criteria

Full-text reports (original articles, randomized controlled trials, controlled clinical trials, retrospective or prospective observational studies, case series and technical descriptions) concerning PIP joint arthrodesis were screened.

Reference lists from included studies and reviews were screened for additional studies and included. Studies reporting outcomes of the arthrodesis with a defined technique and radiological consolidation were included. Complication rates and types were recorded. Clinical studies with an evidence level of I–IV were included. As there were studies which compared arthrodeses to other techniques of joint salvage, those reporting of five or less arthrodeses were also included.

Studies lacking original data, studies whose data were not doubtlessly concerning the PIP joint as well as studies whose full-text were not available were excluded. Doctoral theses were also excluded.

The search flowchart according to the PRISMA guidelines is depicted in Fig. 1. Initially, 6162 articles were identified. Thirteen additional records from reference lists were included. After removing 1914 duplicates, 4261 articles remained. By screening titles and abstracts, a further 4102 studies were excluded.

The full text of 159 articles was thoroughly assessed and evaluated for reporting the number of treated PIP joints, the technique used and the primary endpoint of consolidation. The 64 studies depicted in Table 2 were finally included, and data were extracted from these based on the inclusion criteria. Six studies that focused on diseases of connective tissue, for example rheumatoid arthritis, were mentioned separately from other indications.

Data extraction

Data were extracted from the included studies by two authors independently (MM and HV) according to a predefined data extraction sheet. The level of evidence, quality and risk of bias assessed with the standardized critical appraisal instrument, Methodological Index for Non-Randomized Studies (MINORS) score, where applicable, were recorded (8). The methodological quality score MINORS shows a mean of 8 with a global ideal score of 16. Fifty-five articles had level IV evidence, and nine articles had level III evidence. Nearly all studies were retrospective data analysis. We extracted the number of PIP joint arthrodesis, the technique used, time of immobilization, number of non-unions, time to radiological consolidation, and the incidence and type of complications. All patients regardless of their age with arthrodesis were included in this review.

Table 1 The respective search string of the different included databases.

Database	Search string
Pubmed	(((proximal interphalangeal joint[Title/Abstract]) OR (pipj[Title/Abstract]) OR (pip-joint[Title/Abstract]) OR (finger[Title/Abstract]) OR (digital[Title/Abstract]) OR (pip[Title/Abstract]) OR (proximal interphalangeal[Title/Abstract]) AND (arthrodesis[Title/Abstract]) OR (fusion[Title/Abstract])) NOT equine[Title/Abstract]
Embase	(`proximal interphalangeal joint'/exp OR pij:ab,ti OR `pip joint':ab,ti OR `proximal interphalangeal joint':ti,ab OR `digital':ab,ti OR `finger':ab,ti) AND (`arthrodesis':ti,ab OR `fusion':ab,ti) AND (embase)/lim
Cochrane Library	(pip OR pip-joint OR pij-joint OR proximal-interphalangeal-joint OR proximal interphalangeal-joint OR digital OR finger) AND (arthrodese OR fusion) allintitle: (`pip" OR "pip joint" OR "proximal interphalangeal joint" OR "digital" OR "finger") AND ("arthrodese" OR "fusion")
Google Scholar	(pip OR pip-joint OR pij-joint OR proximal-interphalangeal-joint OR proximal interphalangeal-joint OR digital OR finger) AND (arthrodese OR fusion) allintitle: (`pip" OR "pip joint" OR "proximal interphalangeal joint" OR "digital" OR "finger") AND ("arthrodese" OR "fusion")
Table 2

The included studies cover a time span of 74 years of studies) and compression screws (K-wires (n = 6162). Cochrane Library = 3021 database searching Embase = 3021 Google Scholar = 25 through other sources = 13

Included studies

A total of 1923 arthrodeses of the PIP joint could be extracted from the included papers (Table 2). The main indications for the arthrodesis of the PIP joint were primary or secondary osteoarthritis, joint infection or traumatic destruction. Included are six studies that consisted only of patients with rheumatic disease, for example rheumatoid arthritis or systemic sclerosis. These results are presented separately in Table 2.

Surgical techniques

Twelve different surgical techniques were described. Four of these techniques with compression at the arthrodesis site: interosseus wiring with/without K-wire, tension-band, cannulated screw as well as a lag screw – combined a total of 805 arthrodeses. The plate, external fixation and K-wire might hold some applied compression during the arthrodesis but do not hold any compression potential themselves. The most frequently used techniques were, with the number of arthrodesis in descending order, K-wires (n = 743, 14 studies), tension-band (n = 313, 15 studies) and compression screws (n = 233, 12 studies). The included studies cover a time span of 74 years of publication, and that there is an obvious trend towards techniques with compression of the arthrodesis, especially with compression screws.

Non-unions and mean consolidation times

Non-unions were reported in all studies. Two studies included other finger joints besides the PIP and did not report the exact numbers of non-unions concerning the fused joint. In these cases, the studies were only included for the consolidation time, for they reported that explicitly. The lowest non-union rate in compression techniques was 3.9% with the compression screw. Interestingly, the non-union rate for the peg fixations (without compression) was even lower 3.6%. The highest non-union rate showed the interosseous wiring with 8.6% (Table 3).

Table 4 depicts the mean consolidation times. Further information on how non-unions were stratified by technique is presented in the Supplementary information and the results are presented in supplementary figures 1 and 2.

Complications

Four studies did not describe complications. All others either stated that they had no complications or did not describe them in detail. Most complications besides the non-unions were infections (mostly superficial), pain caused by the implant or mal-unions. The consequences of these complications, that is, if revisionary surgery had to be performed or if superficial infections could be treated by antibiotics, were not reported.

Discussion

A wide range of different surgical techniques for achieving fusion of the PIP joint have been published. Moberg already stated in 1960 that ‘the prime requisite of a good digital arthrodesis is a painless and stable union in proper position occurring in a reasonable space of time’ (39). Nevertheless, a proper comparison, although needed, proves to be difficult because of the variable quality of published studies, different indications for joint fusion, varying definitions of consolidation (radiological vs clinical) as well as lacking important data in large but older studies, where a personal communication with the author is no longer possible (73).

The two main groups of joint fusion techniques which can be differentiated, are techniques with and without compression of the arthrodesis site respectively (6). The most important advantage of the compression is the assumed shorter consolidation time because of higher primary stability, consolidation by primam intentionem with fewer non-unions as well as early functional occupational therapy (60, 64).
Table 2: Studies of arthrodeses of the PIP joint of the finger with different techniques.

Reference	Year	LoE	MINORS score	Technique	Arthrodeses, n	Non-union, n	Consolidation (t)	Finger	IMM (t)	PROM (type, data)	Complications (Y/N)			
Al-Qattan (9)	2016	N	11	Interosseous + K-wire	5	0	5 weeks	5 × DII	NR	NR	N	Y – Lateral deviation; infection		
Allende & Engleman (10)	1980	N	8	Tension-band	16	0	4–6 weeks	5 × DII, 3 × DII, 4 × DIV, 3 × DV	NR	NR	N			
Arata et al. (11)	2003	N	9	Bioabsorbable rod	1	0	7.9 weeks	NR	2 × DII	NR	3–4 weeks	NR	N	Y – 4x fracture dorsal cortex, 2x pain
Ayres et al. (12)	1988	N	10	Herbert screw	51	1	6 weeks	NR	2 × DII	NR	3 weeks	NR	N	
Bansky & Racz (13)	2005	N	3	Plate	2	0	NR	2 × DII	NR	3 weeks	NR			
Baruch & Kahanovich (14)	1980	N	4	Angulated bone peg	5	0	NR	2 × DII	NR	3 weeks	NR	N		
Biskop (15)	1985	N	11	Tension-band	25	0	12 weeks	7 × DII, 5 × DII, 9 × DIV, 4 × DV	–	NR	N	Y – 2x inflammation		
Breyer et al. (16)	2015	III	10	Tension-band	24	2	9.4 weeks	NR	2–3 weeks	NR				
Buechler & Alken (17)	1987	N	10	Bone graft and plate	25	2	45–90 days	5 × DII, 13 DIII, 6 DIV, 1 DV	NR	NR	TAM	Y – 2x superficial infection		
Buck-Gramcko & Oehme (18)	1988	III	6	Interosseus + K-wire	84	NR	7 weeks	NR	2–3 weeks	NR				
Burton et al. (19)	1986	N	12	Lag screw	6	NR	8.1 weeks	NR	NR	TAM				
Carroll & Hill (20)	1969	N	6	Cup/cone + K-wire	230	9	6–8 weeks	NR	6–8 weeks	NR				
Faithfull & Herbert (21)	1984	N	4	Lag screw	5	0	NR	NR	–	NR	N			
Goth & Konigsberger (22)	1976	N	9	Lag screw	20	NR	8.2 weeks	NR	NR	TAM				
Harrison & Nicolle (23)	1974	N	2	Harrison–Nicolle peg	51	0	10.6 weeks	NR	3–4 weeks	NR				
Herzog (24)	1961	N	5	Bone peg	35	1	9.2 weeks	NR	3–4 weeks	NR				
Hoffmann & Rossack (25)	1975	N	6	External fixation	23	NR	8 weeks	NR	6 weeks	TAM	Y – 2x delayed union, 1x arterial spasm			
Høeg & Jensen (26)	1982	N	9	Interosseus + K-wire	23	NR	8 weeks	NR	6 weeks	TAM	Y – 2x infection, 1x pain with amputation			
Hohendorff et al. (27)	2016	N	9	Tension-band	16	1	6 weeks	5 × DII, 4 × DII, 6 × DIV, 6 × DV	6 weeks	Pain VAS, DASH, PS				
Jones et al. (28)	2011	III	8	K-wires	2	1	9 months	1 × DII, 1 × DIV, 4 × DII, 4 × DV	NR	NR	MHOQ	Y – 2x malunion		
Khuri (29)	1986	N	8	Tension-band	10	0	10 weeks	1 × DV	NR	7–10 days	NR	N		
Kowalski & Manske (30)	1988	N	10	K-wires	6	0	6–12 weeks	2 × DII, 2 × DIV, 2 × DV	6 weeks	NR	N			
Study	Year	Methods	Duration	Complications										
-------	------	---------	----------	---------------										
et al.	2012	Compression screw	6 weeks	NR										
et al.	2019	Interosseus wiring	6 weeks	NR										
et al.	1991	Steinmann pin	8 weeks	NR										
et al.	2005	Interosseus + K-wire	6 weeks	NR										
et al.	2004	Interosseus + Steinmann pin	6 weeks	NR										
et al.	2006	Interosseus + K-wire	6 weeks	NR										
et al.	2001	Interosseus + Steinmann pin	6 weeks	NR										

(Continued)
The assumption that techniques with compression are more reliable, as demonstrated by Leibovic in 1994, could not be clearly proven (32). One possible reason might be that the compression techniques are surgically more difficult and might tend to non-union if there are no ideal operative results. For example, there is the possibility that a tension-band fusion does not apply the compression to the whole arthrodesis site and therefore renders it unstable. The compression screw however might be easier and more forgiving to implant than tension-band or intraosseus wiring. That might be the reason why the superiority of this implant in contrast to K-wires is evident in different studies in the literature (32, 36).

Nevertheless, in the studies included in this systematic review, there is a trend towards techniques with compression over the course of time, especially towards compression screws (41, 42). With further development of the implants, the diameter of the screws got progressively smaller, as 8 mm diameter screws are commercially available now. Thus, these days they can be used in small bones too.

Newer implants like the Apex IP fusion device so far lack any evidence that they are easier to implant or provide a better outcome, maybe because they have not been available in the market long enough (42).

The most reported complications besides the primary outcome of non-unions were infection, mostly superficial.
As there is typically very little soft tissue around the PIP joint, protruding implants, like a tension-band, can cause irritation and subsequently a superficial infection. This emphasizes the need for a proper handling of soft tissues (36).

Rheumatoid arthritis and connective tissue diseases
Rheumatoid inflammatory diseases commonly affect the joint, especially the PIP joint, which may lead to contractures and deviations that are both disabling as well as cosmetically unacceptable (74). These diseases could affect the quality of the bones and therefore the stability of arthrodeses as well as the healing of soft tissues. The referenced papers by Gilbart et al. (69), Jones et al. (71) and Lipscomb et al. (72) relate to patients with systemic sclerosis. From a pragmatic point of view, one might state that if something works for this challenging group of patients it will probably work for a patient with osteoarthritis. Interestingly and somewhat counterintuitively, Lipscomb et al. (72) found quicker healing compared to other studies dealing with posttraumatic osteoarthritis.

Biomechanical properties and primary stability
The primary stability of different fusion techniques or implants could provide an interesting insight into the ability of the implant itself to withstand the forces of early function therapy as well as a short or even no immobilization. There are only a few papers that have tried to compare the results of different biomechanical studies (75, 76). Therefore, it seems reasonable to conduct a biomechanical study for comparing the different implants and techniques of interphalangeal arthrodesis so that postsurgical treatment can be standardized.

Strengths and limitations
There are several limitations of the existing literature as well as of this study. In order to do a reasonable meta-analysis and statistical evaluation of the different techniques, randomized controlled trials (RCT) are required. On the topic of arthrodesis of the PIP joint, there is no RCT published at all. Therefore, we did a qualitative systematic review with only descriptive data pooling of the different studies with respect to their published technique for greater clearness instead of a meta-analysis. Another limitation is that the literature review for this systematic review showed that there are predominantly studies with an evidence level IV, with a heterogenous MINORS score but a satisfying mean of 8. As the risk of bias as depicted in the MINORS score exists, one might suspect that the published technique makes the apparent effect appear better than it is. There were nine evidence level III studies which could be included. Nevertheless, these results imply a lack of good quality data to statistically compare the different techniques and to achieve recommendations. Especially the complications of different techniques, which we extracted from the studies, were reported very heterogeneously with no clear evidence on how to avoid them or of their consequences.

Strengths of this systematic review is its novelty and uniqueness, since there are no systematic reviews with a high quality, like PRISMA methodology. It includes a very long-time span of nearly 74 years and covers the most extensive databases. A very large number of abstracts were screened to achieve the most complete systematic review.

Conclusion
The compression screw shows superior results with respect to non-unions in comparison to K-wires. There is a tendency of more published techniques with compression in the last 10 years which might implicate a shift towards compression techniques. Given the limited evidence of the available studies on arthrodesis of the PIP joint, there is a lack of clear indications for other special techniques. The three most often used techniques are K-wires, tension-band and compression screws. The K-wires still have their place in acute trauma with soft tissue defects or replantation. Only large multi-center RCTs can answer the question on which technique for arthrodesis of the PIP joint is the best.

Supplementary materials
This is linked to the online version of the paper at https://doi.org/10.1530/EOR-21-0102.

ICMJE Conflict of Interest Statement
The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the work reported here.

Funding Statement
This work did not receive any specific grant from any funding agency in the public, commercial or not-for-profit sector.

Author contribution statement
H-C Vonderlind and M Ruettermann: both authors contributed equally to this manuscript.

Acknowledgements
The authors would like to thank Stefanie Karpik for her support in preparing and correcting the manuscript with respect to spelling and grammar.
References

1. Murray PM. Treatment of the osteoarthritic hand and thumb. In Green's Operative Hand Surgery, 7th ed., pp. 345–372. Eds SW Wolfe, RN Hotchkiss, WC Pederson, SH Kozin & MS Cohen. Philadelphia: Elsevier Inc., 2017.

2. Herren D. The proximal interphalangeal joint: arthritis and deformity. EFORT Open Reviews 2019 4 254–262. (https://doi.org/10.1302/2058-5241.4.180042)

3. Schindele SF, Hensler S, Audigé L, Marks M & Herren DB. A modular surface gliding implant (CapFlex-PIP) for proximal interphalangeal joint arthrodesis: a prospective case series. Journal of Hand Surgery 2015 40 334–340. (https://doi.org/10.1016/j.jhsa.2014.10.047)

4. Reichenbeo V, Marks M, Herren DB & Schindele S. Surface replacing arthroplasty of the proximal interphalangeal joint using the CapFlex-PIP implant: a prospective study with 5-year outcomes. Journal of Hand Surgery, European Volume 2021 46 496–503. (https://doi.org/10.1016/j.ejhs.2020.07.024)

5. Boeckstyns MEH. My personal experience with arthroplasties in the hand and wrist over the past four decades. Journal of Hand Surgery, European Volume 2019 44 129–137. (https://doi.org/10.1016/j.ejhs.2019.07.004)

6. Jones BF & Stern PJ. Interphalangeal joint arthrodesis. Hand Clinics 1994 10 267–275. (https://doi.org/10.1016/S0749-0712(11)81289-0)

7. Moher D, Liberati A, Tetzlaff J, Altman DG & PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. International Journal of Surgery 2010 8 336–341. (https://doi.org/10.1016/j.ijsu.2010.02.007)

8. Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y & Chipponi J. Methodological index for non-randomized studies (minors): development and validation of a new instrument. ANZ Journal of Surgery 2003 73 712–716. (https://doi.org/10.1046/j.1445-2197.2003.02748.x)

9. Al-Qattan MM. Pollicization of the index finger requiring secondary fusion of the new metacarpophalangeal joint. Clinical Orthopaedics and Related Research 1994 302 93–100. (https://doi.org/10.1097/00003086-199411000-00029)

10. Allende BT & Engelem JC. Tension-band arthrodesis in the finger joints. Handchirurgie, Mikrochirurgie, Plastische Chirurgie 1998 20 99–106. (https://doi.org/10.1016/S0749-0712(88)80305-9)

11. Burton RI, Margles SW & Lunseth PA. Small-joint arthrodesis in the hand. Journal of Hand Surgery 1986 11 678–682. (https://doi.org/10.1016/S0363-5023(86)80011-9)

12. Carroll RE & Hill NA. Small joint arthrodesis in hand reconstruction. Journal of Bone and Joint Surgery: American Volume 1969 51 1219–1221. (https://doi.org/10.2106/00004623-196951060-00020)

13. Faithfull DK & Herbert TJ. Small joint fusions of the hand using the Herbert Bone Screw. Journal of Hand Surgery 1984 9 167–168. (https://doi.org/10.1016/S0266-7681(84)80021-2)

14. Goth D & Konigsberger H. Arthrodesis of finger joints using the Lagscrew principle. Operative Orthopädie und Traumatologie 1996 8 118–128. (https://doi.org/10.1007/BF02512776)

15. Harrison SH & Nicolle FV. A new intramedullary bone peg for digital arthrodesis. British Journal of Plastic Surgery 1974 27 240–241. (https://doi.org/10.1016/S0007-1226(01)90920-1)

16. Herzog KH. Indication and technic of finger arthrodesis. Langenbecks Archiv fur Klinische Chirurgie: Vereinigung mit Deutschen Zeitschrift fur Chirurgie 1961 297 172–178.

17. Hoffmann B & Rossak K. Kirschner wires as simplified external fixation devices in finger joint arthrodesis. Handchirurgie 1975 7 91–93.

18. Høgh J & Jensen PO. Compression–arthrodesis of finger joints using Kirschner wires and cerclage. Hand 1982 14 149–152. (https://doi.org/10.1016/S0007-1226(74)90081-2)

19. Höndorff B, Franke J, Spies CK, Mueller LP & Ries C. Arthrodesis of the proximal interphalangeal joint of fingers with tension band wire. Operative Orthopädie und Traumatologie 2017 29 385–394. (https://doi.org/10.1007/s00064-016-0471-7)

20. Jones Jr DB, Ackerman DB, Sammer DM & Rizzo M. Arthrodesis as a salvage for failed proximal interphalangeal joint arthroplasty. Journal of Hand Surgery 2011 36 259–264. (https://doi.org/10.1016/j.jhsa.2010.10.030)

21. Khuri SM. Tension band arthrodesis in the hand. Journal of Hand Surgery 1986 11 41–45. (https://doi.org/10.1016/S0363-5023(86)80099-5)

22. Kowalski MF & Manske PR. Arthrodesis of digital joints in children. Journal of Hand Surgery 1988 13 874–879. (https://doi.org/10.1016/S0363-5023(88)90263-8)

23. Kvasnička J. Arthrodesis of interphalangeal joints of the hand by an external fixator in managing conditions resulting from septic arthritis. Acta Chirurgiae Orthopaedicae et Traumatologiae Cechoslovaca 2019 86 358–361.

24. Lebovic SJ & Strickland JW. Arthrodesis of the proximal interphalangeal joint of the finger: comparison of the use of the Herbert screw with other fixation methods. Journal of Hand Surgery 1994 19 181–188. (https://doi.org/10.1016/S0363-5023(94)90002-7)

25. Lebowitz TL & Capen DA. Compression arthrodesis of finger joints. Clinical Orthopaedics and Related Research 1979 145 193–198. (https://doi.org/10.1097/00003086-197911000-00029)

26. Lewis RC, Nordyke MD & Tenny JR. The tenon method of small joint arthrodesis in the hand. Journal of Hand Surgery 1986 11 567–569. (https://doi.org/10.1016/S0363-5023(86)80201-5)
35. Lister G. Intrasseous wiring of the digital skeleton. *Journal of Hand Surgery* 1978 3 427–435. (https://doi.org/10.1016/s0363-5023(78)80135-x)

36. Martin L. Arthrodeses of the thumb and long finger joints. *Handchirurgie* 1981 13 221–230.

37. McGlynn JT, Smith RA & Bogumill GP. Arthrodesis of small joint of the hand: a rapid and effective technique. *Journal of Hand Surgery* 1988 13 595–599. (https://doi.org/10.1016/0363-5023(88)80104-7)

38. Mikolyzk DK & Stern PJ. Steindamm pin arthrodesis for salvage of failed small joint arthroplasty. *Journal of Hand Surgery* 2011 36 1383–1387. (https://doi.org/10.1016/j.jhsa.2011.05.027)

39. Moberg E. Arthrodesis of finger joints. *Surgical Clinics of North America* 1960 40 465–470. (https://doi.org/10.1016/s0039-6109(16)36053-4)

40. Netscher DT & Hamilton KL. Interphalangeal joint salvage arthrodesis using the lister tubercle as bone graft. *Journal of Hand Surgery* 2012 37 2145–2149. (https://doi.org/10.1016/j.jhsa.2012.05.043)

41. Newman EA, Oraby MC, Nunez Jr FA & Nunez Sr F. Minimally invasive proximal interphalangeal joint arthrodesis using headless screw: surgical technique. *Techniques in Hand and Upper Extremity Surgery* 2018 22 39–42. (https://doi.org/10.1097/BTH.000000000000189)

42. Novoa-Parra CD, Montaner-Alonso D, Pérez-Correa JI, Morales-Rodríguez J, Rodrigo-Pérez JL & Morales-Suarez-Varela M. Arthrodesis of the proximal interphalangeal joint of the 4th and 5th finger using an locking screw device to treat severe recurrence of Dupuytren’s disease. *Revista Española de Cirugía Ortopédica y Traumatología* 2018 62 216–221. (https://doi.org/10.1016/j.recot.2017.10.012)

43. Ono R, Komura S, Hirakawa A, Hirose H, Tsugita M, Masuda T, Ito Y & Akiyama H. Staged arthrodesis using the Masquelet technique for osteomyelitis of the finger with articular destruction: a report of two cases. *Archives of Orthopaedic and Trauma Surgery* 2019 139 1025–1031. (https://doi.org/10.1007/s00064-019-03197-5)

44. Pellegrini Jr WD & Burton RI. Osteoarthritic changes of the proximal interphalangeal joint of the hand: arthroplasty or fusion? *Journal of Hand Surgery* 1990 15 194–209. (https://doi.org/10.1016/0147-7447(90)90096-a)

45. Pfeiffer KM & Nigst H. Finger joint arthrodesis with surgical screws. *Handchirurgie* 1970 2 149–151.

46. Popova B & Yankev E. Arthrodesis of the interphalangeal joints of fingers using an inverted U-shaped staple. *Ortopedija i traumatologija* 1980 17 60–66.

47. Pribyl CR, Omer GE & McGinty L. Effectiveness of the chevron arthrodesis in small joints of the hand. *Journal of Hand Surgery* 1996 21 1052–1058. (https://doi.org/10.1016/S0363-5023(96)80315-7)

48. Prokes L & Lutonský M. Arthrodesis of interphalangeal joints by means of external frame fixation. *Acta Chirurgicae Orthopaedicae et Traumatologicae Cechoslovaica* 2005 72 111–115.

49. Reil P & Renne J. Indication and technic of finger joint arthrodesis for middle and distal joints using the AO-screw. *Zeitschrift fur Orthopadie und ihre Grenzgebiete* 1973 111 475–478.

50. Robertson DC. The fusion of interphalangeal joints. *Canadian Journal of Surgery* 1964 7 433–437.

51. Sabbagh W, Grobbelaar AO, Clarke C, Smith PJ & Harrison DH. Long-term results of digital arthrodesis with the Harrison-Nicolle peg. *Journal of Hand Surgery* 2001 26 568–571. (https://doi.org/10.1054/jhsb.2001.0649)

52. Sanderson PL, Morris MA & Fahmy NR. A long-term review of the Harrison-Nicolle peg in digital arthrodesis. *Journal of Hand Surgery* 1991 16 283–285. (https://doi.org/10.1016/0266-7817(91)90055-s)

53. Savvidou C & Kutz J. Interphalangeal and thumb metacarpophalangeal arthrodesis with an intramedullary implant. *Annals of Plastic Surgery* 2013 70 34–37. (https://doi.org/10.1097/SAP.0b013e31821d0757)

54. Seitz Jr WH, Sellman DC, Scarcella JB & Froimson AI. Compression arthrodesis of the small joints of the hand. *Clinical Orthopaedics and Related Research* 1994 304 116–121. (https://doi.org/10.3928/00099236-19940700-00019)

55. Stahl S & Rozen N. Tension-band arthrodesis of the small joints of the hand. *Orthopedics* 2001 24 981–983. (https://doi.org/10.3928/0147-7440-20011001-19)

56. Strzyzewski H, Woźny W & Jurczyk A. Value of compression arthrodesis of finger joints. *Chirurgia Narzadow Ruchu i Ortopedia Polska* 1971 36 741–745.

57. Tan M, Ho SWL & Sechachalam S. Acute arthrodesis of interphalangeal joints of the hand in traumatic injuries. *Journal of Hand and Microsurgery* 2018 10 1–5. (https://doi.org/10.1055/s-0037-1608691)

58. Taylor MF & Spencer JD. Complications of the use of the Harrison-Nicolle intramedullary Peg in digital arthrodesis. *Journal of Hand Surgery* 1994 19 205–207. (https://doi.org/10.1016/j.jhsa.2015.05.021)

59. Teoh LC, Yeo SJ & Singh I. Interphalangeal joint arthrodesis with oblique placement of an AO lag screw. *Journal of Hand Surgery* 1994 19 208–211. (https://doi.org/10.1016/0026-7681(94)90167-8)

60. Uhl RL & Schneider LH. Tension band arthrodesis of finger joints: a retrospective review of 76 consecutive cases. *Journal of Hand Surgery* 1992 17 518–522. (https://doi.org/10.1016/0363-5023(92)90363-v)

61. Vitale MA, Fruth KM, Rizzo M, Moran SL & Kakar S. Prosthetic arthroplasty versus arthrodesis for osteoarthrits and posttraumatic arthrits of the index finger proximal interphalangeal joint. *Journal of Hand Surgery* 2015 40 1937–1948. (https://doi.org/10.1016/j.jhsa.2015.05.021)

62. Vorderwinkler KP, Muehldorfer M, Pilukat T & van Schoonhoven J. Treatment of bacterial infection in the interphalangeal joints of the hand. *Operative Orthopaed and Traumatologie* 2011 23 192–203. (https://doi.org/10.10064/011-0024-2)

63. Wexler MR, Roussos M & Weinberg H. Arthrodesis of finger joints by dynamic external compression using dorsovenral Kirschner wires and rubber bands. *Plastic and Reconstructive Surgery* 1977 60 882–885. (https://doi.org/10.1097/00006534-197712000-00066)

64. Wright CS & McMurtry RY. AO arthrodesis in the hand. *Journal of Hand Surgery* 1983 8 932–935. (https://doi.org/10.1016/S0363-5023(83)80099-9)

65. Wuestner MC, Partecke BD & Buck-Gramcko D. Resorbable PDS splints in fracture stabilization and for arthrodeses of the hand. *Handchirurgie, Mikrochirurgie, Plastische Chirurgie* 1986 18 298–301.

66. Zolotov AS. Finger joint fusion with the aid of an aluminum template. *Techniques in Hand and Upper Extremity Surgery* 2004 8 193–196. (https://doi.org/10.1097/01.bth.0000134707.51560.cc)

67. Beisky MR, Feldon P, Millender LH, Nalebuff EA & Phillips C. Hand involvement in psoriatic arthritis. *Journal of Hand Surgery* 1982 7 203–207. (https://doi.org/10.1016/s0363-5023(82)80090-7)

68. Bracey DJ, McMurtry RY & Walton D. Arthrodesis in the rheumatoid hand using the AO technique. *Orthopedic Reviews* 1980 9 65–69.
69. Gilbart MK, Jolles BM, Lee P & Bogoch ER. Surgery of the hand in severe systemic sclerosis. *Journal of Hand Surgery* 2004 29 599–603. (https://doi.org/10.1016/j.jhsb.2004.03.013)

70. Granowitz S & Vainio K. Proximal interphalangeal joint arthrodesis in rheumatoid arthritis. A follow-up study of 122 operations. *Acta Orthopaedica Scandinavica* 1966 37 301–310. (https://doi.org/10.3109/17453676608989418)

71. Jones NF, Imbriglia JE, Steen VD & Medsger TA. Surgery for scleroderma of the hand. *Journal of Hand Surgery* 1987 12 391–400. (https://doi.org/10.1016/s0363-5023(87)80012-6)

72. Lipscomb PR, Simons GW & Winkelmann RK. Surgery for sclerodactyly of the hand. Experience with six cases. *Journal of Bone and Joint Surgery: American Volume* 1969 51 1112–1117. (https://doi.org/10.2106/00004623-196951060-00006)

73. Vonderlind HC, Eisenschken A, Juergensen I, Kim S & Millrose M. Arthrodesis of the proximal interphalangeal joint – a review. *Handchirurgie, Mikrochirurgie, Plastische Chirurgie* 2019 51 6–18. (https://doi.org/10.1055/a-0833-8729)

74. Nalebuff EA. Surgery in patients with systemic sclerosis of the hand. *Clinical Orthopaedics and Related Research* 1999 366 91–97. (https://doi.org/10.1097/00003086-199909000-00012)

75. Vonderlind HC, Zach A, Eichenauer F, Kim S, Eisenschken A & Millrose M. Proximal interphalangeal joint arthrodesis using a compression wire: a comparative biomechanical study. *Hand Surgery and Rehabilitation* 2019 38 307–311. (https://doi.org/10.1016/j.hansur.2019.07.002)

76. Millrose M, Zach A, Kim S, Guthoff C, Eisenschken A & Vonderlind HC. Biomechanical comparison of the proximal interphalangeal joint arthrodesis using a compression wire. *Archives of Orthopaedic and Trauma Surgery* 2019 139 577–581. (https://doi.org/10.1007/s00402-019-03119-5)