Extracting structure of Bayesian network from data in predicting the damage of prefabricated reinforced concrete buildings in mining areas

Janusz Rusek a*, Karol Firek a, Leszek Słowik b

a AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
b Building Research Institute ITB, ul. Filtrowa 1, 00-611 Warsaw, Poland

Abstract

This article presents the results of the research on the construction of a model for assessing the risk of damage to building structures located in mining areas. The research was based on the database on the structure, technical condition and mining impacts regarding 129 prefabricated reinforced concrete buildings erected in the industrialised large-block system, located in the mining area of the Legnica-Glogow Copper District (LGCD). The methodology of the Bayesian Belief Network (BBN) was used for the analysis. Using the score-based Bayesian structure learning approach (Hill-Climbing and Tabu-Search) as well as the selected optimisation criteria, 16 Bayesian network structures were induced. All models were subjected to quantitative and qualitative evaluation by verifying their features in the context of accuracy of prediction, generalisation of acquired knowledge and cause-effect relationships. This allowed to select the best network structure together with the corresponding optimisation criterion. The analysis of the results demonstrated that the Tabu-Search method adopting the optimisation criterion in the form of Locally Averaged Bayesian Dirichlet score (BDla) led to obtaining a model with the best features among all the selected models. The results justified the adoption of the BBN methodology as effective in the context of assessing the extent of damage to building structures in mining areas.

Keywords

Bayesian network, damage, risk, prefabricated reinforced concrete structures.

1. Introduction

Damage to existing building structures in mining areas can be caused by a number of construction and environmental factors, including mining impacts. They can be seen on the surface in the form of continuous or non-continuous ground deformations [6, 38] and mining tremors [23, 41]. The damage may concern both structural and secondary members [8]. This is also the case with prefabricated reinforced concrete buildings erected in industrialised construction systems [15], currently accommodating circa 1/3 of Poland’s inhabitants (approx. 12 million people). In addition, these are usually large-sized multi-family or public buildings, where disturbances in the comfort of use resulting from their damage are of great importance.

Most frequently, the process of damage is initiated not by a single factor but by many factors at the same time. This makes the problem regarding the evaluation of the causes of damage complex and difficult to describe from an analytical point of view. In the context of mining impacts, the situation is further complicated by uncertainty regarding predictions of deformations that may occur on the ground surface as well as mining tremors [19].

In practice, it is often necessary to carry out such an evaluation procedure for a large number of building structures erected on a given mining area. This fact disqualified the FEM numerical approach, which is ineffective in this case. Statistical models seem to be the only way to deal with the problem.

A group of popular and very effective methods for detecting damage in concrete structures also includes the so-called non-destructive methods, such as the Acoustic Emission (AE) [22], the Digital Image Correlation (DIC) [10] or the ultrasonic [31] methods. In addition to crack detection itself, non-destructive methods allow a more detailed analysis of reinforced concrete member degradation, which also includes determination of reinforcing bar corrosion [28]. This is particularly important in assessing damage in prefabricated large-block buildings, where the basic issue is to determine the technical condition of joints and their reinforcement. Moreover, in recent years, alternative approaches based on the use of Machine Learning (ML) methods have become increasingly popular, e.g. [28, 29].

Given the specificity of the problem being analysed, especially in the context of predicting damage to a large number of building struc-
tures, ML methods have been selected for further research, as they allow the presentation of the phenomenon in probability notation.

The effectiveness of ML tools has been demonstrated in the previously performed research studies [25, 27]. However, all of the tested methods assumed mutual independence of potential causes that might affect the damage process. For this reason, it was decided to use the so-called Bayesian Network (BN) or Bayesian Belief Network (BBN) methodology which, according to [24], allows the possibility of taking conditional independence into account. This allows to build a model in which the correlations between individual factors are closer to the physical reality associated with the damage emergence process. As a result, the established BN structure can be identified with the damage risk model.

An additional feature of Bayesian networks, which is a very important advantage as far as the issue of assessing damage to building structures subject to e.g. mining impacts is concerned, is the possibility to use the created model not only for prediction, but also for the diagnosis of damage. This allows for a much broader implementation of such a system in practice.

Unfortunately, in the case of a large number of variables describing the modelled process, the lack of knowledge of the Bayesian network structure is frequently a significant problem. There are methods, however, that allow to induce the network structure from data. According to [18], they are divided into 3 groups: constraint-based structure learning, score-based structure learning and hybrid approach. The score-based approach has been used in this research paper, and the reasons for this selection are explained in Chapter 4.

In order to identify the optimal structure of the Bayesian network, two algorithms were tested: Hill-Climbing (HC) and Tabu-Search (TS), which belong to the score-based structure learning methods [18].

A database containing information on damage to a group of 129 prefabricated reinforced concrete structures erected in the WBL (large-block) industrialised system located in the LGCD mining area formed the basis for the analysis (Fig. 1). The information on the technical condition, including damage, was collected during the “in-situ” surveys and based on the reports. These data were used to induce the structures of Bayesian networks and for their subsequent testing. The quality of the created models was verified in the context of correct classification and generalisation features. Additionally, having an explicit representation of correlations between network nodes, verification was carried out in terms of model compliance with the observed, real nature of the modelled process. It was a subjective evaluation based on expert knowledge.

Based on the results obtained, the structure of the Bayesian network was induced, which could represent a complex damage risk model.

The basis for the evaluation here was primarily the compliance of model classification with learning and testing data.

2. Literature overview

The methodology of Bayesian Networks (BN) or Bayesian Belief Networks (BBN) is currently widely used in the analysis of risk [3], security [12], reliability [43] and predicting the extent of damage [16]. In recent years, implementation of this type of methodology in the field of civil engineering has become increasingly popular. However, the expert approach dominates here, where the Bayesian network structure is imposed, and only model parameters are subject to learning. When specifying areas convergent to the subject matter discussed in this research paper, the issues related to the analysis of the risk of damage in building structures could be mentioned. The subject of these analyses are mainly linear structures, such as pipelines, bridge structures [1] or tunnels [40], but there are also examples regarding the evaluation of the risk of damage in buildings [30]. Bayesian networks are also used in a broader sense regarding reliability analyses [39], including safety assessment [5]. This methodology is used to construct diagnostic systems for building structure maintenance management [20], as well as for the assessment of their technical condition [21]. In the narrower range, they also appear as systems that allow the evaluation of strength parameters of existing structures, both static [4] and fatigue [44] ones.

As far as the diversity of building construction types is concerned, the Bayesian network methodology is also used for masonry [17] and steel structures [7]. In a broader context, it is also frequently used as a tool to predict random environmental impacts such as floods, earthquakes, tsunamis [13], climate change [37] or land settlement [42]. The information obtained from such analyses is, in turn, used at both the design stage and the risk assessment of existing building structures.

It should be emphasised that the Bayesian network methodology has been recently applied in construction engineering also in Poland, e.g. to assess the influence of traffic vibrations on surface development [36] and to analyse the risk in construction investment of a tunnel under the Martwa Wisła river in Gdańsk [14].

However, despite numerous applications of Bayesian network methodology in civil engineering, the use and development of methods for network structure discovery from data is still the domain of the sciences such as medicine, biology, genetics, e.g. [9]. For this reason, the research presented in this paper is an extension of the methodology used so far in civil engineering, which may allow for the analysis of more complex engineering problems regarding damage risk analysis or structural reliability. The issue being discussed, on Bayesian network structure discovery from the data for constructing a damage risk model.
for building structures subject to mining impacts is, according to the authors, an interdisciplinary and innovative approach to the subject.

It should be noted that the Bayesian network methodology, in addition to the issues related to the reliability and safety of building structures, is also an indirect tool used in the risk analysis.

3. Characteristics of the database

The database which formed the basis of the research contained detailed information on a group of 129 prefabricated reinforced concrete large-sized multi-family and public buildings erected in the industrialised large-block WBL system, e.g. [26]. In each case, at the location of the building, indices describing the intensity of mining impacts for the duration of the survey were determined (MC, AH and ASG - see Table 1). The ASG variable was determined based on the original index of mining tremors a_{mg} [41] and it expresses the effect of multiple impacts of mining tremors on the technical wear of buildings. The database was supplemented with information on construction and material properties, history and quality of maintenance, repairs and recorded damage. For damage, the damage index w_u developed by one of the authors of this research paper was used, referred to both structural members and finishing elements [8].

During the initial database analysis, all variables were categorised for further use during learning Bayesian networks. It involved assigning labels to individual categories. A list of all variables with the assigned range of labels is presented in Table 1. At the later stage, each variable will reflect individual nodes in the Bayesian network.

Table 1. List of variables in the database with the assigned label range

LIST OF VARIABLES	TYPE OF VARIABLE/ VARIABLE LABEL	
Denotation	Description	
DATA ON MINING IMPACTS AT THE LOCATION OF A GIVEN BUILDING STRUCTURE		
MC	mining area category	category / 3 categories
AH	maximum horizontal component of acceleration of ground vibrations	category / 4 categories
ASG	mining tremors intensity index [41]	category / 4 categories
INDICES OF DAMAGE TO STRUCTURAL MEMBERS AND FINISHING ELEMENTS		
w_{u2}	index of damage to basement or foundation walls	category / 4 categories
w_{u3}	index of damage to overground internal and external load-bearing walls (including lintels and spandrels)	category / 4 categories
w_{u7}	index of damage to higher ceilings, flat roof (covering)	category / 4 categories
w_{u11}	index of damage to partition walls	category / 2 categories
w_{u12}	index of damage to internal plasters and wall coverings	category / 3 categories
w_{u13}	index of damage to floors (floor layers)	category / 3 categories
w_{u17}	index of damage to façade (façade layers)	category / 4 categories
w_{u19}	index of damage to roofing	category / 4 categories
DATA ON MAINTENANCE AND REPAIRS		
CR	current repairs	category / 4 categories
FR	façade repairs	category / 5 categories
RR	roof repairs	category / 6 categories
IR	interior renovations	category / 7 categories
CONSTRUCTION AND BUILDING GEOMETRY DATA		
LEN	building length (longer of the dimensions)	category / 6 categories
NoST	number of storeys	category / 6 categories
NoSE	number of segments	category / 8 categories
LoSE	length of segment	category / 6 categories
DIL	dilatation (width)	category / 3 categories
SHA	building shape	category / 4 categories
ToF	type of foundation	category / 5 categories
SW	curtain walls	category / 4 categories
BC	basement ceiling	category / 4 categories
DP	design protection	category / 3 categories
EP	existing protection	category / 5 categories
DATA ON DURABILITY		
AGE	building age	category / 4 categories
DUR	durability	category / 5 categories
TS	technical state	category / 4 categories
4. Research methodology

Bayesian Networks (BN), also known as Bayesian Belief Networks (BBN) can be represented in the form of a Directed Acyclic Graph (DAG) [18]. The structure of the graph (G) encodes information about correlations between individual variables \(X = \{X_1, \ldots, X_N\} \), which is represented by the edges of the graph (E) and nodes (V). In general, BBN represents the total probability distribution over a set of random variables \(X \), which can be presented as [34]:

\[
P(X | G, \Theta) = \prod_{i=1}^{N} P(X_i | \Pi X_i, \Theta X_i)
\]

gdzie:

\[G = G(X,E,V)\] – a structure of an acyclic directed graph

\[X = \{X_1, \ldots, X_N\}\] – a set of all variables present in the graph nodes

\[X_i = \{x^{(1)}_i, \ldots, x^{(k)}_i\}\] – states of \(j \)-th variable

\[E\] – a set of all edges

\[V\] – a set of all nodes

\[\Pi X_i = \{x^{(1)}_i, \ldots, x^{(k)}_i\}\] – a set of parents, i.e. all nodes of the graph determining the state of the node \(X_i \)

\[\Theta = \{\theta_{X_1,\ldots,\theta_{X_N}}\}\] – a set of all parameters of conditional relations between individual nodes \(X_i \), and a set of their parents \(\Pi X_i \)

In the case of discrete variables, the parameters of the model \(\theta_{ik} = \theta_{ijkl} \) are represented in the form of a multivariate Conditional Probability Table (CPT), whose elements are expressed as [11]:

\[
\theta_{ik} = P(X_j = x^{(l)}_j | \Pi X_i = \pi^{(k)}_i)
\]

According to the relationship (1), the total probability distribution \(P(X | G, \Theta) \) is subject to decomposition based on conditional local distributions \(P(X_i | \Pi X_i, \Theta X_i) \), described over each random variable \(X_i \) relative to the set of conditioning variables corresponding to it, the so-called parents \(\Pi X_i \). This formulation is possible thanks to the concept of conditional independence introduced by Pearl in [24]. It also allows for an effective analysis of changes in the value of the adopted criterion during the search for the optimal network structure.

In the described problem concerning the construction of the damage risk model, both BBN structure and its parameters are unknown. In the previous research, significant, but subtle influence of individual factors on the damage process has been confirmed. Therefore, at the stage of selection of the BBN structure learning method from data, it was important that the final model had the largest possible number of variables potentially affecting the process of damage initiation. Based on the literature [18], constraint-based structure learning methods and a hybrid approach were rejected. It was found that in these learning methods, more weight is attributed to individual correlations between network nodes than to the global response of the model. Thus, the focus was placed on score-based structure learning methods. Eventually, two methods were used: Hill-Climbing (HC) and Tabu-Search (TS).

The HC optimisation approach is one of the greedy-search methods [35]. It consists in searching the closest environment around the current point in space to which a given value of the adopted optimisation criterion corresponds. Then, a point in the search space whose criterion value is higher than in the previous step is selected from the environment. The search space is the space of the structures of Directed Acyclic Graphs (DAGs), and the algorithm advances by adding, subtracting or swapping correlations between nodes.

The TS approach is a modification of the HC algorithm. This modification consists in storing a certain number of forbidden paths in the search space that have already been traversed in previous iterations, and thus limiting blind searching and getting stuck in the local optimum [33].

In this research paper, using the bnlearn package, a comparative analysis of both approaches was undertaken. In addition, their performance was tested when various optimisation criteria were adopted. For this purpose, criteria belonging to two groups were selected: Information-Theoretic scores (IT) [2] and Bayesian Dirichlet scores (BD) [32]. The first group included: Log-Likelihood (LL), Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). From the Bayesian Dirichlet scores (BD) group, according to [33], the following were used: Bayesian Dirichlet equivalent uniform (BDeu), modified Bayesian Dirichlet score (mBDe), locally averaged Bayesian Dirichlet score (BDla) and the K2 score. The chronological diagram of the performed research is presented in Figure 2.

5. Results of the conducted analyses

The research used the methodology described in Chapter 3, which assumed two approaches to the construction of the Bayesian belief network (BBN) structure from data. Both approaches belong to the group of score-based structure learning methods [18]. The Hill-Climbing (HC) algorithm was used as the first one. In the second one, its modification, the Tabu-Search (TS) algorithm was used.

The data set on building structures described in Chapter 2 was divided into training and test sets. The key here was to separate the sets in such a way that they maintained an even distribution of the values of the categorised variables listed in Table 1, i.e.: \(w_{22}, w_{32}, w_{72}, w_{11,22}, w_{12,3}, w_{12,3}, w_{22,3} \) and \(w_{20,9} \). This was finally done using the Stratified Sampling (SS) method. As a result, a training set with 105 patterns (81.36% of the total number of patterns in the database) and a test set whose number of patterns was 24 (18.6%) were obtained.

As far as the bnlearn package used in the analyses is concerned, it is possible to take the expert knowledge into account. This is carried out by entering a list representing forbidden (Blacklist) and forced
correlations. These are strong constraints that are not subject to modification during the learning process.

This research paper summarises the results of the performed analyses, which aimed to compare the two approaches used. Eventually, 16 BBN structures were induced and submitted to evaluation. This

Table 2. Accuracy of classification for individual nodes corresponding to damage indices - training set - algorithm teaching HC
criterion
LL
AIC
BIC
BDedu
BDs
mBDedu
BDla
K2

Table 3. Accuracy of classification for individual nodes corresponding to damage indices - test set - algorithm teaching HC
criterion
LL
AIC
BIC
BDedu
BDs
mBDedu
BDla
K2

Table 4. Accuracy of classification for individual nodes corresponding to damage indices - training set - algorithm teaching TS
criterion
LL
AIC
BIC
BDedu
BDs
mBDedu
BDla
K2
resulted from the adoption of two learning algorithms and eight optimisation criteria (Information-Theoretic scores (IT) and Bayesian Dirichlet scores (BD) - according to Chapter 3).

Before starting the calculations, strong constraints were introduced. They excluded from the network those correlations that were contrary to logic and were not observed in reality. In total, a set of 427 pairs between nodes was created, in which correlations were forbidden. It should be noted that no list of inductions was created, leaving freedom to individual learning algorithms.

In the first stage, individual structures were evaluated in terms of quantity. The basis here was the analysis of the accuracy of classification and generalisation features of the selected BBN structures. A relative measure was used here in the form of a percentage share of correctly classified patterns relative to the size of the entire data quantity. The basis here was the analysis of the accuracy of classification and generalisation features of the created models. The basis here was simulating network responses in nodes corresponding to individual damage indices: \(w_2, w_3, w_7, w_{11}, w_{12}, w_{17} \).

In the second stage, the obtained BBN structures were verified in terms of quality. This was dictated by practical considerations resulting from the possibility of later use of the created model to assess risk in construction. Here, the focus was placed on the detected cause-effect relationships. The evaluation was made in an expert manner, based on the authors' experience in the field of damage to building structures in mining areas.

Based on the results of the quantitative analysis, which is represented by the level of correctly classified patterns for training and test sets described by: \(ac^{HC-TR}, ac^{HC-TS}, ac^{TABU-TR}, ac^{TABU-TS} \) (Tables 2 ÷ 5), it was found that:
- LL optimisation criterion leads to the best fitting of training patterns (Tables 2 and 4), but generates the largest classification errors for test sets (Tables 3 and 5). It results therefrom that for both the HC and TS methods, the induced BBN structures do not have good generalisation features and lead to overfitting a model,
- the worst results were obtained for the prediction of damage indices \(w_2, w_7 \) - see Tables 3 and 5. The corresponding results in the training set reached the value of the correct classification at the accuracy level \(ac^{HC-TR}, ac^{HC-TS} \approx 90 \). The difference between the results for the training and test sets indicates overfitting the model in the prediction of \(w_2 \) and \(w_7 \) indices.

The best results in relation to the prediction of the values of damage indices \(w_7 \) and \(w_{17} \), both in the training and test sets, were obtained by adopting the BDla and K2 measures as the optimisation criterion - see Tables 3 and 5.

As part of the first stage, i.e. the quantitative evaluation, a total of 4 structures were induced for which the best prediction results were obtained for all damage indices (including the \(w_7 \) and \(w_{17} \) indices) and their generalisation features were confirmed. These were structures created by the HC and TS methods using the optimisation criteria BDla and K2. The results in graphical form are presented in Figures 3 to 6.

![Fig. 3. The BBN structure extracted by the HC method using the BDla optimisation criterion](image-url)

In the case of the BBN structure obtained by the HC method and BDla criterion (Fig. 3), it can be noticed that two nodes representing variables are omitted: NoSE and LoSE. The same applies to the structure selected by the TS method and the BDla criterion. Only one node indicating the LoSE variable is omitted here. The NoSE variable appears in the overall structure of the BBN network – Fig. 4.

On the other hand, in the case of the K2 criterion, regardless of the learning algorithm used, the LoSE, NoSE, LEN, DIL, and SHA nodes remain outside the selected structures (Figures 5 and 6).
Geometrical features of a given object (see Table 1) influence its durability [27], and thus also on the risk of damage. Therefore, based on the authors’ many years of experience, it seems that models represented by BBN network structures selected using the TS algorithm and the BDla criterion are closer to reality - see Figure 4. In this case, the most complete description of the analysed problem was obtained, taking into account the set of active variables included in the BBN network represented by individual nodes.

6. Summary

The paper presents the results of analyses regarding the construction of the Bayesian network (BN) for predicting the extent and evaluation of damage to building structures subject to mining impacts. Due to the fact that the established Bayesian network represents the resulting likelihood of the occurrence of damage and all factors determining their emergence, it can become a model for assessing the risk of damage. Ultimately, this model was developed based on the information on 129 large-sized multi-family and public buildings with a prefabricated reinforced concrete structure erected in the WBL (large-block) industrialisation system. The database collected information about the construction and material properties, quality of maintenance, as well as data on the evaluation of damage to members and mining impacts. Then, assuming two algorithms for learning Bayesian network structures from data (Hill-Climbing and Tabu-Search) and 8 different optimisation criteria, 16 Bayesian network structures were induced for the purpose of predicting the extent of damage and probability of its occurrence.

The Bayesian networks obtained were subjected to quantitative and qualitative evaluation. The quantitative evaluation consisted of verifying the compliance of prediction of individual networks with the data from training and test sets. Thus, the degree of generalisation of the acquired knowledge was also checked. As a result of these analyses, four structures were induced which were subjected to further qualitative analysis. During the qualitative analysis, the completeness of the created structures was assessed in terms of actively connected nodes representing individual variables potentially influencing the occurrence of the damage process. The result was a narrowing of pre-selected networks from the quantitative analysis stage to one model. This model was created using the Tabu-Search algorithm using the BDla optimisation criterion.

The risk model created in the form of a Bayesian network, resulting from learning the DAG structure based on data, has several very significant advantages:
- It offers the possibility to both predict the probability of damage occurrence as well as diagnose the causes of its occurrence. Therefore, it can be used as a tool to estimate the risk of damage for a large number of building structures located in a mining area.
- It enables the interpretation of cause-and-effect relationships, which broaden the knowledge about the modelled phenomenon, especially in the case of the effect of variables regarding the quality of object maintenance.
- It allows to make inferences about any variable contained in the DAG structure representing the Bayesian network.
- It can be used in the absence of accurate information on the state of variables in individual nodes. Therefore, it enables the model to be used in the uncertainty area.
- It can be easily updated when new data is recorded resulting from observation of the actual course of a given process.

In addition, this type of methodology has a much broader implementation than just for the assessment of mining impacts. Examples include: Structure Health Monitoring or Maintenance Management.

The obtained results give rise to further research in this area, both in terms of analysing other types of building structures as well as testing other methods that allow learning Bayesian network structures from data.
33. Scutari M. Learning Bayesian networks with the bnlearn R package. https://doi.org/10.18637/jss.v035.i03.
34. Scutari M, Graafland CE, Gutiérrez JM. Who learns better Bayesian network structures: Accuracy and speed of structure learning algorithms. International Journal of Approximate Reasoning 2019; 115: 235-53, https://doi.org/10.1016/j.ijar.2019.10.003.
35. Scutari M, Vitolo C, Tucker A. Learning Bayesian networks from big data with greedy search: computational complexity and efficient implementation. Statistics and Computing 2019; 1:1-14, https://doi.org/10.1007/s11222-019-09857-1.
36. Siemaszko A, Jakubczyk-Gałczyńska A, Jankowski R. The Idea of Using Bayesian Networks in Forecasting Impact of Traffic-Induced Vibrations Transmitted through the Ground on Residential Buildings. Geosciences 2019; 9: 339, https://doi.org/10.3390/geosciences9080339.
37. Sperotto A, Molina J-L, Torresan S, Critto A, Marcomini A. Reviewing Bayesian Networks potentials for climate change impacts assessment and management: A multi-risk perspective. Journal of Environmental Management 2017; 202: 320-31, https://doi.org/10.1016/j.jenvman.2017.07.044.
38. Tajduś K, Misa R, Sroka A. Analysis of the surface horizontal displacement changes due to longwall panel advance. International Journal of Rock Mechanics and Mining Sciences 2018; https://doi.org/10.1016/j.ijrmms.2018.02.005.
39. Tran T-B, Bastidas-Arteaga E, Aoues Y et al. Reliability assessment and updating of notched timber components subjected to environmental and mechanical loading. Engineering Structures 2018; 166: 107-16, https://doi.org/10.1016/j.engstruct.2018.03.053.
40. Wang F, Li H, Dong C, Ding L. Knowledge representation using non-parametric Bayesian networks for tunneling risk analysis. Reliability Engineering & System Safety 2019; 191: 106529, https://doi.org/10.1016/j.ress.2019.106529.
41. Wodyński A, Lasocki S. Assessment of mining tremor influence on the technical wear of building. Acta Geodynamica et Geomaterialia. Ser. A and Ser. B 2004; 50: 187-94.
42. Wu L, Wang J, Zhou J et al. Multi-scale geotechnical features of dredger fills and subsidence risk evaluation in reclaimed land using BN. Marine Georesources & Geotechnology 2019; 1-23, https://doi.org/10.1080/1064119X.2019.1644406.
43. Yazdani A, Shahidzadeh M-S, Takada T. Bayesian networks for disaggregation of structural reliability. Structural Safety 2020; 82: 101892, https://doi.org/10.1016/j.strusafe.2019.101892.
44. Yuan M, Liu Y, Yan D, Liu Y. Probabilistic fatigue life prediction for concrete bridges using Bayesian inference. Advances in Structural Engineering 2019; 22: 765-78, https://doi.org/10.1177/1369433218799545.