Molecular and phenotypic characterization of Colletotrichum species associated with anthracnose disease in peppers from Sichuan Province, China

Fangling Liu¹, Guiting Tang¹, Xiaojuan Zheng¹, Ying Li², Xiaofang Sun¹, Xiaobo Qi¹, You Zhou¹, Jing Xu¹, Huabao Chen¹, Xiaoli Chang¹, Sirong Zhang² & Guoshu Gong¹

The anthracnose caused by Colletotrichum species is an important disease that primarily causes fruit rot in pepper. Eighty-eight strains representing seven species of Colletotrichum were obtained from rotten pepper fruits in Sichuan Province, China, and characterized according to morphology and the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) sequence. Fifty-two strains were chosen for identification by phylogenetic analyses of multi-locus sequences, including the nuclear ribosomal internal transcribed spacer (ITS) region and the β-tubulin (TUB2), actin (ACT), calmodulin (CAL) and GAPDH genes. Based on the combined datasets, the 88 strains were identified as Colletotrichum gloeosporioides, C. siamense, C. fructicola, C. truncatum, C. scovillei, and C. brevisporum, and one new species was detected, described as Colletotrichum sichuanensis. Notably, C. siamense and C. scovillei were recorded for the first time as the causes of anthracnose in peppers in China. In addition, with the exception of C. truncatum, this is the first report of all of the other Colletotrichum species studied in pepper from Sichuan. The fungal species were all non-host-specific, as the isolates were able to infect not only Capsicum spp. but also Pyrus pyrifolia in pathogenicity tests. These findings suggest that the fungal species associated with anthracnose in pepper may inoculate other hosts as initial inoculum.

Pepper (Capsicum annuum), an important fruit that is also used as a spice, is rich in vitamins, capsaicin and capsochrome. One of the primary pepper-growing provinces in China is Sichuan Province, where the crop is cultivated over an area of approximately 70 thousand hm², with approximately 1,000 thousand tons of annual output.

Colletotrichum is an important pathogenic genus worldwide. These fungi cause disease symptoms that are generally known as anthracnose in a wide range of vegetables, fruits and other crops¹. In pepper, anthracnose is a destructive disease caused by a complex of Colletotrichum species that causes extensive yield losses at both the pre- and post-harvest stages during warm and rainy seasons².

Anthracnose in pepper is associated with at least eleven Colletotrichum species, including C. truncatum³⁻⁶, C. gloeosporioides⁶⁻⁹, C. acutatum⁶,¹⁰,¹¹, C. coccodes¹²⁻¹⁵, C. fructicola⁷,¹⁶,¹⁷, C. siamense¹⁷,¹⁸, C. dematium¹⁴, C. boninense¹⁹, C. brevisporum, C. cliviae¹, and C. scovillei²¹. Eight of these species have been reported in China, whereas C. siamense, C. dematium and C. scovillei have not. To date, only three species (C. acutatum²¹, C. truncatum² and C. boninense¹¹) have been reported in Sichuan Province, although previous studies have not fully investigated the Colletotrichum species associated with pepper anthracnose in this province.

Colletotrichum gloeosporioides is a species complex that was formerly regarded as a cosmopolitan species that infects various hosts, including pepper; however, it might have been misidentified as the causative agent. For example, Phoulivong et al.¹⁶ failed to isolate C. gloeosporioides sensu stricto from tropical fruits, although C. gloeosporioides was previously thought to be the cause of tropical fruit rot. Similarly, Lima et al.¹³ found that none of the strains isolated from mango (a tropical fruit) belonged to C. gloeosporioides sensu stricto; instead,

¹College of Agronomy & Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, P.R. China. ²College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, P.R. China. Correspondence and requests for materials should be addressed to G.G. (email: guoshugong126.com)
phylogenetic analysis revealed that most of the strains belonged to the ‘gloeosporioides’ complex. Although the nuclear ribosomal internal transcribed spacer (ITS) region is the most commonly used region for differentiating fungi24, it has also been widely acknowledged that this region cannot fully differentiate among \textit{Colletotrichum} species18,23–27. Multi-locus phylogeny is broadly applied for identifying \textit{Colletotrichum} spp. Weir et al.18 have suggested that the \textit{C. gloeosporioides} complex consists of 23 taxa, according to multi-locus phylogeny. Several new species have also been described on the basis of multi-locus phylogeny, e.g., \textit{C. anthrisci}, \textit{C. liriopes}, \textit{C. rusci} and \textit{C. verruculosum}; \textit{C. blettium}, \textit{C. caudasporum}, \textit{C. dyyvynensis}, \textit{C. endophytum}, \textit{C. excisum-altitudum}, \textit{C. guizhouensis} and \textit{C. ochracea};24 \textit{C. asiarnum}, \textit{C. fructicola} and \textit{C. siamense};26 \textit{C. cliviae}, \textit{C. hippaeastri} and \textit{C. hymenocallidis};27 \textit{C. corchorum-capsularis};28 and \textit{C. endophyticum}29.

Despite several reports of \textit{Colletotrichum} species in pepper from limited collection areas5,19,22, little is known about the association of these species with pepper in Sichuan Province, China. Further, it remains unclear whether all of the species isolated from pepper are equally pathogenic and host specific.

The objective of this study was to characterize the \textit{Colletotrichum} species associated with anthracnose in pepper from different geographic areas of Sichuan Province, China, according to morphological, multi-locus phylogenetic and pathogenic characteristics.

\section*{Results}

\textbf{Symptom types of pepper anthracnose caused by \textit{Colletotrichum} species.} A total of 173 symptomatic samples were collected from primary pepper-producing regions, covering 31 districts in Sichuan Province, China. Based on the morphological characteristics coupled with the microscopic observations, the following three typical symptom types in the infected pepper fruits in the fields were noted (Fig. 1): Type I: the typical symptoms were variation in colour from dark brown to black, sunken lesions and many black acervuli on the surface, which usually produced dirty white conidial masses under humid conditions. In some cultivars with less pelt, these typical conidial masses were infrequently observed in black acervuli (Fig. 1a–c). The conidia responding for this symptom type had the typical falcate and sunken necrotic tissues ranging in colour from brown to black, with concentric rings of acervuli (Fig. 1d–f). The main Type II symptoms were similar to the main Type I symptoms, except that the acervuli produced viscous, flesh-pink conidial masses under wet conditions and cylindrical to long cylindrical conidia; and Type III: the typical symptoms included light brown to dark brown tissues, and sunken, orange conidial masses that were powdery in a dry environment; in addition, the conidia were fusiform (Fig. 1g–i). Notably, more than one type of disease symptom was often observed in a single pepper fruit in the field.

\textbf{Colletotrichum species collection.} A total of 352 single-spore cultures were isolated from 173 symptomatic samples. Eighty-eight isolates were subsequently selected for further determination on the basis of their origins, colony characteristics and conidial morphologies (Table 1).

\textbf{Morphological and cultural characteristics.} Eighty-eight isolates were classified into six morphological groups according to morphological and cultural characteristics. \textbf{Group 1} included 23 isolates fitting the description of the \textit{C. gloeosporioides} complex, and \textbf{Group 2} included 16 isolates fitting the description of \textit{C. fructicola}. In addition, \textbf{Group 3} consisted of 32 isolates matching the description of \textit{C. truncatum}, \textbf{Group 4} had seven isolates fitting the description of the \textit{C. acutatum} complex, and \textbf{Group 5} consisted of six isolates matching the description of \textit{C. brevisporum}. \textbf{Group 6} contained four isolates that did not fit the description of any currently known \textit{Colletotrichum} species. \textbf{Group 3} (\textit{C. truncatum}) was the predominant group, accounting for 36.4\% of the total isolates. A summary of the morphological data for the \textit{Colletotrichum} species in Groups 1–6 is presented in Table 2.

Colony characteristics (Fig. 2): Distinct morphology on potato dextrose agar (PDA) was observed in each group after 7 days. The isolates from Group 1 produced pale yellowish colonies, with sparse white aerial mycelia. The reverse side of the colonies was white, and many bright orange conidial masses were observed near the inoculum point. The colonies produced by Group 2 isolates varied from white to black-green on PDA, with dense grey aerial mycelia and a few bright orange conidial masses near the inoculum point. The colonies produced by Group 3 isolates varied from pale grey to dark grey, with dense pale grey aerial mycelia and small black granules over the entire surface. The reverse side of the colonies was dark brown, and a few pale yellow conidial masses were observed near the inoculum point. The colonies produced by Group 4 isolates varied from white to pale orange, with dense white aerial mycelia, and the reverse side of the colonies was pale orange. Isolates belonging to Group 5 produced dark grey colonies with sparse grey aerial mycelia. The reverse side of the colonies was grey, and a few bright orange conidial masses were observed near the inoculum point, as well as some spots scattered over the colony surface. Lastly, the isolates from Group 6 produced pale grey colonies, with sparse white aerial mycelia. The colonies from Group 3, 4 and 5 were stable and unique, and the colonies from Group 2 were significantly different compared with those from the other groups under stable culture conditions.

Growth rate (Table 2): Group 4 exhibited a significantly different growth rate compared with the other five groups ($P = 0.05$). The isolates from Group 6 (6.1 ± 0.4 mm/day) grew the fastest, followed by those from Group 1 (5.6 ± 1.2 mm/day), Group 2 (5.9 ± 0.4 mm/day), Group 5 (5.3 ± 0.6 mm/day), Group 3 (4.5 ± 0.5 mm/day) and Group 4 (3.8 ± 0.4 mm/day).

Conidial morphology (Table 2 and Fig. 2): The following four types of conidia were observed: cylindrical (observed in Groups 1, 2 and 6), falcate (Group 3), fusiform (Group 4) and long cylindrical (Group 5). The conidial widths of Group 6 were significantly different from those of Groups 1 and 2; however, all of these groups had cylindrical conidia with obtuse to slightly rounded ends. The conidia produced by the Group 3 isolates were falcate, with gradual tapering towards each end. Group 4 produced fusiform conidia, whereas Group 5 produced long and cylindrical conidia, with obtuse to slightly rounded ends. The differences in the conidial shapes of...
Figure 1. Typical symptoms of pepper anthracnose in the field. (a–c) Type I symptoms were characterized by dark brown to black, sunken lesions with a slightly raised rim and many black acervuli on the surface, which produced dirty white conidal masses under humid conditions. (d–f) Type II symptoms included dark brown to black, sunken lesions with many black acervuli on the surface, which produced flesh pink, viscous conidal masses under humid conditions. (g–i) Type III symptoms included brown to light black to dark brown, sunken, lesions with orange conidal masses.

Groups 3, 4 and 5 were very significant, allowing these groups to be easily distinguished from one another. Almost all of the conidia were aseptate, but they often developed a septum after germinating and forming appressoria.

Conidial appressorium morphology (Table 2 and Fig. 2): There was little distinction among the groups in terms of the sizes and shapes of conidial appressoria, except for Groups 4 and 6, which exhibited significant differences compared with the other groups. The conidial appressoria of Groups 1, 2, 3 and 5 varied from ovoid to slightly irregular in shape and from brown to dark black in colour. Group 4 produced grey, globular and smaller...
Species	Isolate no.	Origin	Morphological group	Accession no. (GAPDH)
Colletotrichum truncatum	LJT11	Chenghua, Chengdu	Group 3	KP823771
C. fructicola	LJT12	Jiangyou, Mianyang	Group 2	KP823772
C. sichuanensis	LJT13	Jiangyou, Mianyang	Group 6	KP823773
C. siamense	LJT14	Jiangyou, Mianyang	Group 1	KP823774
C. siamense	LJT15	Dong, Panzhihua	Group 1	KP823775
C. truncatum	LJT16	Dong, Panzhihua	Group 3	KP823776
C. siamense	LJT17	Dong, Panzhihua	Group 1	KP823777
C. truncatum	LJT18	Dong, Panzhihua	Group 1	KP823778
C. truncatum	LJT19	Renshou, Meishan	Group 3	KP823779
C. fructicola	LJT20	Jiangyou, Mianyang	Group 2	KP823780
C. siamense	LJT21	Dong, Panzhihua	Group 1	KP823781
C. truncatum	LJT22	Jiangyang, Luzhou	Group 3	KP823782
C. gloeosporioides	LJT23	Jiangyang, Luzhou	Group 1	KP823783
C. gloeosporioides	LJT24	Yuechi, Guangan	Group 1	KP823785
C. sichuanensis	LJT25	Yuechi, Guangan	Group 6	KP823786
C. gloeosporioides	LJT26	Qianfeng, Guangan	Group 1	KP823787
C. fructicola	LJT27	Santai, Mianyang	Group 2	KP823788
C. truncatum	LJT28	Yanting, Mianyang	Group 3	KP823789
C. fructicola	LJT29	Yanting, Mianyang	Group 2	KP823790
C. fructicola	LJT30	Yanting, Mianyang	Group 2	KP823791
C. sichuanensis	LJT31	Wengjiang, Chengdu	Group 6	KP823792
C. siamense	LJT32	Wengjiang, Chengdu	Group 1	KP823793
C. brevisporum	LJT33	Xichang, Liangshan	Group 5	KP823794
C. fructicola	LJT34	Yucheng, Yaan	Group 2	KP823795
C. truncatum	LJT35	Yucheng, Yaan	Group 3	KP823796
C. brevisporum	LJT36	Yucheng, Yaan	Group 5	KP823797
C. fructicola	LJT37	Yucheng, Yaan	Group 2	KP823798
C. truncatum	LJT38	Baoxing, Yaan	Group 3	KP823799
C. sichuanensis	LJT39	Baoxing, Yaan	Group 6	KP823800
C. truncatum	LJT40	Baoxing, Yaan	Group 3	KP823801
C. truncatum	LJT41	Chenghua, Chengdu	Group 3	KP823802
C. fructicola	LJT42	Chenghua, Chengdu	Group 2	KP823803
C. fructicola	LJT43	Jinjiang, Chengdu	Group 2	KP823804
C. scovillei	LJT44	Renshou, Meishan	Group 4	KP823805
C. siamense	LJT45	Renshou, Meishan	Group 1	KP943522
C. fructicola	LJT46	Dongpo, Meishan	Group 2	KP943523
C. truncatum	LJT47	Rongxian, Zigong	Group 3	KP943545
C. truncatum	LJT48	Guangan, Guangan	Group 3	KP943546
C. truncatum	LJT49	Pixian, Chengdu	Group 3	KP943547
C. truncatum	LJT50	Pixian, Chengdu	Group 3	KP943541
C. scovillei	LJT51	Pujiang, Chengdu	Group 4	KP943516
C. truncatum	LJT52	Chaotian, Guanyuan	Group 3	KP943548
C. siamense	LJT53	Dujiangyan, Chengdu	Group 1	KP943531
C. truncatum	LJT54	Yuechi, Guangan	Group 3	KP943554
C. fructicola	LJT55	Pujiang, Chengdu	Group 2	KP943525
C. truncatum	LJT56	Pujiang, Chengdu	Group 3	KP943540
C. siamense	LJT57	Pengshan, Meishan	Group 1	KP823806
C. fructicola	LJT58	Hongya, Meishan	Group 2	KP823526
C. truncatum	LJT59	Hongya, Meishan	Group 3	KP943555
C. siamense	LJT60	Dujiangyan, Chengdu	Group 1	KP943532
C. truncatum	LJT61	Jiangyou, Mianyang	Group 3	KP943542
C. siamense	LJT62	Shuangliu, Chengdu	Group 1	KP943533
C. brevisporum	LJT63	Shuangliu, Chengdu	Group 5	KP943511
C. fructicola	LJT64	Shuangliu, Chengdu	Group 2	KP943534
C. fructicola	LJT65	Shuangliu, Chengdu	Group 2	KP943527

Continued
conidial appressoria. Most of the conidial appressoria produced by Group 6 were irregular and pale brown to dark brown, with a crenate edge.

Mycelial appressorium morphology (Table 2 and Fig. 2): The mycelial appressoria produced by the isolates of Groups 1 and 2 varied from ovoid, clavate and slightly irregular to irregular, smooth or slightly lobed, and they were light brown to brown in colour. The appressoria of Group 3 ranged from ovate, ellipsoidal or slightly irregular to irregular in shape, and they were smooth or lobate and brown to dark brown. The appressoria produced by Group 4 were globose or ovate to slightly irregular, and they were light brown to brown and smaller in size than those of the other groups. In addition, the appressoria produced by Group 5 varied from ovoid, clavate or slightly irregular to irregular in shape. They were smooth or slightly lobed and brown to dark brown and were sometimes black in the middle. Further, the appressoria of Group 6 were ellipsoidal or irregular, smooth or slightly lobed to strongly lobed, solitary or in chains, and light brown to brown in colour.

Conidiophores (Fig. 2): The conidiophores of all groups were hyaline to pale brown, simple or septate, rarely branched, and smooth walled. Four types of conidiophores were observed: (i) nearly cylindrical, but narrower towards the end (as observed in Groups 1 and 2); (ii) cylindrical, with a truncate top (Groups 3 and 5); (iii) shortly ciliate, nearly hyaline, with a cylindrical base, and obviously inflated, with gradually tapering towards the top (Group 4); and (iv) frequently produced by mycelia, cylindrical, with swollen ends (oblong) and slight narrowing in some areas (Group 6).

Setae: All isolates from Groups 3 and 5 and some isolates from Group 1 produced setae; in contrast, the isolates from all the other groups rarely produced setae. The setae were commonly smooth, septate, and light brown to dark brown in colour, base cylindrical to conical, and sometimes slightly inflated, and the tips were acute to roundish. No obvious differences in setal characteristics (shape and dimensions) were found among the different groups when grown on PDA.

Sclerotia and Ascomata: Most Group 5 isolates steadily produced a large amount of black solids that appeared similar to sclerotia and were round to irregular and semi-immersed. Conidial masses and setae sometimes formed on the black solids. On PDA, Group 6 isolates always produced ascomata in clusters, which were brown

Species	Isolate no.	Origin	Morphological group	Accession no. (GAPDH)
C. fructicola	LJT157	Wengjiang, Chengdu	Group 2	KP943535
C. siamense	LJT158	Xining, Chengdu	Group 1	KP943536
C. brevisporum	LJT159	Yucheng, Yaan	Group 5	KP943531
C. gloeosporioides	LJT160	Yanjiang, Ziyang	Group 1	KP943528
C. scovillei	LJT161	Chenghua, Chengdu	Group 4	KP943517
C. truncatum	LJT162	Jinjiang, Chengdu	Group 3	KP943549
C. truncatum	LJT163	Jinjiang, Chengdu	Group 3	KP943543
C. truncatum	LJT164	Yuechi, Guangan	Group 3	KP943556
C. gloeosporioides	LJT165	Yuechi, Guangan	Group 1	KP943529
C. truncatum	LJT166	Yuechi, Guangan	Group 3	KP943557
C. brevisporum	LJT167	Qianfeng, Guangan	Group 5	KP943512
C. truncatum	LJT168	Qianfeng, Guangan	Group 3	KP943550
C. truncatum	LJT169	Longquanyi, Chengdu	Group 3	KP943558
C. scovillei	LJT170	Longquanyi, Chengdu	Group 4	KP943515
C. gloeosporioides	LJT171	Yanting, Mianyang	Group 1	KP943530
C. scovillei	LJT172	Yanting, Mianyang	Group 4	KP943514
C. siamense	LJT173	DongQu, Panzhihua	Group 1	KP943537
C. truncatum	LJT174	Wengjiang, Chengdu	Group 3	KP943559
C. truncatum	LJT175	Wengjiang, Chengdu	Group 3	KP943551
C. siamense	LJT176	Wengjiang, Chengdu	Group 1	KP943538
C. truncatum	LJT177	Wengjiang, Chengdu	Group 3	KP943552
C. truncatum	LJT178	Wengjiang, Chengdu	Group 3	KP943553
C. brevisporum	LJT179	Wengjiang, Chengdu	Group 5	KP943510
C. truncatum	LJT180	Wengjiang, Chengdu	Group 3	KP943560
C. truncatum	LJT181	Wengjiang, Chengdu	Group 3	KP943561
C. siamense	LJT182	Wengjiang, Chengdu	Group 1	KP943520
C. scovillei	LJT184	Xichang, Liangshan	Group 4	KP943519
C. scovillei	LJT185	Yucheng, Yaan	Group 4	KP943539
C. truncatum	LJT186	Yucheng, Yaan	Group 3	KP943521
C. gloeosporioides	LJT187	Yucheng, Yaan	Group 1	KP943544
C. truncatum	LJT188	Yucheng, Yaan	Group 3	KP943524
C. siamense	LJT189	Wengjiang, Chengdu	Group 1	KP943518

Table 1. *Colletotrichum* species isolated from peppers (*Capsicum* spp.) in Sichuan, China.
and globose to near globose and possessed a neck. The isolates from the other groups rarely produced ascomata, even in host tissues.

Phylogenetic analysis. A phylogram generated based on the GAPDH gene region revealed 5 primary clades (i.e., *C. truncatum*, *C. brevisporum*, *C. gloeosporioides* sensu lato, *C. acutatum* sensu lato and one unknown species (*Colletotrichum* sp.)) (Fig. 3). Fifty-two representative isolates were chosen from the morphological groups for molecular analysis, including 25 isolates from the *C. gloeosporioides* complex, 10 *C. truncatum* isolates, seven *C. acutatum* sensu lato isolates, six *C. brevisporum* isolates and four *Colletotrichum* sp. isolates.

Multi-locus phylogenetic analysis was conducted among 87 strains, with *Mamillulaeetus infuscans* (CBS 869.96) used as an outgroup (Table 3). The dataset for five genes (ITS, TUB2, ACT, GAPDH and CAL) contained 2,155 characters, including alignment gaps, of which 997 characters were parsimony-informative, 321 were parsimony-uninformative, and 837 were constant. This parsimony analysis resulted in the most parsimonious tree (TI = 2800, CI = 0.7257, RI = 0.9541, RC = 0.6924, and HI = 0.2743). The phylogram showed that the 52 pepper anthracnose isolates belonged to seven distinct clades. The isolates from Group 2 clustered with *C. truncatum*, those from Group 3 clustered with *C. truncatum*, those from Group 4 clustered with *C. scovillei*, and those from Group 5 clustered with *C. brevisporum*. The Group 1 isolates grouped with two clades; 4 isolates clustered with *C. truncatum* sensu stricto and *C. siamense*, respectively. The isolates from Group 6 were from an unknown species (*Colletotrichum* sp.). The submission number of the sequence alignment in TreeBASE is 18832.

Taxonomy. *Colletotrichum sichuanensis* G.S. Gong & F.L. Liu, sp. nov. (Fig. 5).

Mycobank: MB 815288.

Etymology: *sichuanensis*, in reference to the province where the type was found.

Description: Colonies on PDA at first white, later becoming pale grey and reverse pale grey, with a maximum diameter of 68.7 mm over 5 days at 28°C and a growth rate of 6.1–6.4 mm/day (\(\bar{X} = 6.3 \pm 0.1, n = 5 \)). Aerial mycelium white and sparse, with the frequent absence of conidial masses. Ascomata nearly always present in clusters on PDA. Conidiophores generated from mycelia are nearly hyaline, branched, and cylindrical, with slightly swollen ends, simple or occasionally branched. Conidia common on mycelia, one-celled, smooth-walled, hyaline, and cylindrical, with obtuse to slightly rounded ends, 15.0–18.9 × 5.4–6.5 μm (\(\bar{X} = 16.9 \pm 1.0 \times 6.2 \pm 0.3, n = 30 \)). Conidial appressoria light brown to dark brown, slightly irregular to irregular, crenate or lobed, 8.1–12.4 × 5.4–8.8 μm (\(\bar{X} = 10.2 \pm 1.0 \times 6.8 \pm 0.8, n = 30 \)). Appressoria in slide culture light brown to brown, ellipsoidal or irregular, smooth or slightly lobed to strongly lobed, solitary or in chains, 6.4–20.2 × 4.8–9.8 μm (\(\bar{X} = 11.5 \pm 3.0 \times 7.0 \pm 1.1, n = 30 \)). Setae absent.

Group	Species	Colonies appearance	Growth rate (mm/day)	Conidia	Conidial appressoria	Characteristics of mycelial appressoria	
Group 1(23)	*Colletotrichum gloeosporioides, C. siamense*	pale yellowish colonies, reverse white	5.6±1.2 ab 4.7–6.7	Cylindrical	7.6±1.0 c 5.5–9.9	brown to dark brown, ovoid or slightly irregular	light brown to brown, ovoid or slightly irregular to irregular
Group 2(16)	*C. fructicola*	white to black green	5.9±0.4 ab 5.4–6.6	Cylindrical	7.9±0.6 bc 6.2–9.1	brown to dark brown, ovoid to slightly irregular	light brown to brown, ovoid, clavate and slightly irregular to irregular, smooth or slightly lobed
Group 3(32)	*C. truncatum*	pale grey to dark grey, reverse dark brown	4.5±0.5 b 3.9–5.4	Cylindrical	6.0±1.2 bc 4.2–9	brown to dark black, ovoid to slightly irregular	brown to dark brown, ovoid, clavate and slightly irregular to irregular, smooth or slightly lobed
Group 4(7)	*C. scovillei*	white to pale orange, reverse pale orange	3.8±0.4 c 3.3–4.2	Fusiform	7.8±1.0 bc 4.6–11.2	brown to dark brown, ovoid to slightly irregular	brown to dark brown, ovoid, clavate and slightly irregular to irregular, smooth or slightly lobed
Group 5(6)	*C. brevisporum*	pale grey, reverse black	5.3±0.6 b 5.0–5.8	Long cylindrical	8.0±0.8 b 6.1–9.5	brown to dark black, ovoid to slightly irregular	brown to dark brown, sometimes black in the middle, ovoid or slightly irregular to irregular
Group 6(4)	*C. sichuanensis*	pale grey, reverse pale grey	6.1±0.4 a 5.5–6.7	Cylindrical	11.1±1.7 a 8–14.2	brown to dark brown, irregular with a crenate edge	brown to dark brown, ovoid or slightly irregular to irregular

Table 2. Summary of morphological data for *Colletotrichum* isolates. *The numbers shown in parentheses represent the number of isolates in each group. *The mean difference is significant at the 0.05 level; the values with same letter in a column do not significantly differ according to Duncan’s multiple range test.*
Teleomorph: Glomerella sp.

Ascomata, light brown to brown, globose to subglobose, with a neck, arranged in clusters. Peridium of textura angularis, thick-walled. Asci 30.8–61.6 × 7.4–13.8 μm (x = 47.5 ± 8.0 × 9.5 ± 1.5, n = 30), unitunicate, thin-walled, and clavate. Ascospores 10.2–23.3 × 3.9–6.8 μm (x = 17.5 ± 2.6 × 5.4 ± 0.8, n = 30), one-celled, hyaline, and slightly curved to curved, with obtuse to slightly rounded ends.

Holotype: Baoxing, Yaan City, Sichuan Province, China, on fruit of Capsicum annuum, 5 September 2013, coll. G. S. Gong (holotype living culture LJTJ30). A living culture (strain LJTJ30) was deposited at the Department of Plant Pathology of Sichuan Agricultural University. Known distribution: Sichuan Province, China.

Additional examined specimens: Jiangyou, Mianyang City, Sichuan Province, China, on fruit of Capsicum annuum fruit, 26 July 2013, coll. G. S. Gong (holotype living culture LJTJ3); Yuechi, Guangan City, Sichuan Province, China, on Capsicum annuum fruit, 27 August 2013, coll. F. L. Liu (holotype living culture LJTJ16); and Wenjiang, Chengdu City, Sichuan Province, China, on Capsicum annuum fruit, 3 July 2013, coll. F. L. Liu (holotype living culture LJTJ22). A living culture (strain LJTJ3, LJTJ16 and LJTJ22) was deposited at the Department of Plant Pathology at Sichuan Agricultural University.

Pathogenicity tests. Fifty-two representative isolates selected from among the species were used for pathogenicity testing. All of these isolates were pathogenic to both pepper fruits and pears, although the pathogenicity of each species differed across experimental varieties, with different infection incidences. All species were able to infect Capsicum annuum L. var. conoides (Mill.) Irish and Pyrus pyrifolia at a high incidence. However, C. brevisporum and C. sichuanensis appeared to be only slightly virulent towards Ca. annuum var. dactylus M, with a rather low infection incidence (Table 4 and Fig. 6). These results indicated that some pepper varieties might be resistant to some Colletotrichum species.

Based on the description of the symptoms in pepper after inoculation, C. truncatum was determined to be the pathogen causing Type I symptom, characterized by copious black acervuli with seta and dirty white conidial masses produced on decaying tissues under humid conditions (Fig. 1a–c). C. scovillei induced Type III symptoms...
(Fig. 1g–i), and the other species caused Type II symptoms (Fig. 1d–f). Our results indicate that with the exception of *C. truncatum* and *C. scovillei*, it is difficult to differentiate among *Colletotrichum* species based solely on the symptom types in the field.

Discussion

The primary objective of this study was to identify the *Colletotrichum* species that are currently causing anthracnose disease in pepper grown in Sichuan Province, China. Based on the morphological characteristics and phylogenetic analysis, 88 isolates were identified as *C. gloeosporioides* sensu stricto (eight strains, 9.1%), *C. siamense* (16 strains, 18.2%), *C. fructicola* (15 strains, 17.0%), *C. truncatum* (32 strains, 36.4%), *C. scovillei* (seven strains, 8.0%), *C. brevisporum* (six strains, 6.8%) and *C. sichuanensis* (a new species, four strains, 4.5%). Additionally, *C. gloeosporioides* and *C. siamense* could only be distinguished by phylogenetic analyses and not by morphological

Figure 3. A neighbour-joining tree based on partial GAPDH gene sequences from 88 *Colletotrichum* isolates. Parsimony bootstrap values of more than 50% are shown at the nodes. Isolates selected for subsequent phylogenetic analyses are highlighted in red.
Species	Strain no.	Host	Location	GenBank accession number
Colletotrichum acutatum	BRIP 28519	*Carica papaya*	Australia	FJ 972601
C. acutatum	CBS 29467	*Carica papaya*	Australia	FJ 972610
C. boninense	CBS 128547	*Camellia sp.*	New Zealand	JQ005159
C. boninense	CBS 123755	*Crinum asiaticum*	Japan	JQ005153
C. brevipesporus	BCC 38876	*Neoregelia sp.*	Thailand	JN050238
C. brevipesporus	MFLUCC100182	*Pandanus pignatus*	Thailand	JN050239
C. brevipesporus	LJTJ24	*Capsicum sp.*	China	KP748215
C. brevipesporus	LJTJ27	*Capsicum sp.*	China	KP748218
C. brevipesporus	LJTJ54	*Capsicum sp.*	China	KP943578
C. brevipesporus	LJTJ59	*Capsicum sp.*	China	KP943579
C. brevipesporus	LJTJ67	*Capsicum sp.*	China	KP943580
C. brevipesporus	LJTJ79	*Capsicum sp.*	China	KP943581
C. cliviae	CBS 125375	*Clivia miniata*	China	JX19223
C. cliviae	CSSK4	*Clivia miniata*	China	GQ84607
C. cliviae	CSSS1	*Clivia miniata*	China	GU109479
C. coccodes	CBS 164.49	*Solanum tuberosum*	Nethrlands	HM171678
C. coccodes	CBS 369.75*	*Solanum tuberosum*	Nethrlands	HM171679
C. coccodes	CPOS1	*Solanum tuberosum*	China	GQ845588
C. dematium	CBS 125.25*	*Eryngium campestre, dead leaf*	France	GU227819
C. dematium	CBS 125340	*Apis inae*	Czech Rep	GU227820
C. fructicola	ICMP 18581, CBS 130416	*Coffea arabica*	Thailand	JX010165
C. fructicola	MFLUCC090228*	*Coffea arabica*	Thailand	FJ972603
C. fructicola	CBS 125397*, ICMP 18646	*Tetragastris panamensis*	Panama	JX010173
C. fructicola	CBS 238.49, ICMP 17921	*Ficus habrophylla*	Germany	JX010181
C. fructicola	LJTJ2	*Capsicum sp.*	China	KP748192
C. fructicola	LJTJ10	*Capsicum sp.*	China	KP748201
C. fructicola	LJTJ18	*Capsicum sp.*	China	KP748209
C. fructicola	LJTJ20	*Capsicum sp.*	China	KP748211
C. fructicola	LJTJ21	*Capsicum sp.*	China	KP748212
C. fructicola	LJTJ25	*Capsicum sp.*	China	KP748216
C. fructicola	LJTJ28	*Capsicum sp.*	China	KP748219
C. fructicola	LJTJ33	*Capsicum sp.*	China	KP748224
C. fructicola	LJTJ34	*Capsicum sp.*	China	KP748225
C. gloesporioides	CBS 95397	*Citrus sinensis*	Italy	FJ972609
C. gloesporioides	CBS 95.97*	*Citrus sinensis*	Italy	GQ845605
C. gloesporioides	IMI 356878*	*Citrus sinensis*	Italy	IX010152
C. gloesporioides	CORCG5	*Vanda sp.*	China	HM034809
C. gloesporioides	LJTJ13	*Capsicum sp.*	China	KP748204
C. gloesporioides	LJTJ14	*Capsicum sp.*	China	KP748205
C. gloesporioides	LJTJ15	*Capsicum sp.*	China	KP748206
C. gloesporioides	LJTJ17	*Capsicum sp.*	China	KP748208
C. gloesporioides	LJTJ87	*Capsicum sp.*	China	KT936448
C. scovillei	CBS 126529	*Capsicum sp.*	Indonesia	JQ498267
C. scovillei	CBS 126530	*Capsicum sp.*	Indonesia	JQ498268
C. scovillei	LJTJ35	*Capsicum sp.*	China	KP748226
C. scovillei	LJTJ42	*Capsicum sp.*	China	KP943572
C. scovillei	LJTJ61	*Capsicum sp.*	China	KP943573
C. scovillei	LJTJ70	*Capsicum sp.*	China	KP943574
C. scovillei	LJTJ72	*Capsicum sp.*	China	KP943575
C. scovillei	LJTJ74	*Capsicum sp.*	China	KP943576
C. scovillei	LJTJ85	*Capsicum sp.*	China	KP943577
C. siamense	ICMP 17795	*Malus x domestica*	USA	JX010162

Continued
Species	Strain no.	Host	Location	ITS	TUB2	ACT	GPDH	CAL
C. siamense	ICMP 18578*, CBS 130417	Coffea arabica	Thailand	JX010171	JX010404	FJ907423	JX009924	FJ917505
C. siamense	LJTJ4	Capsicum sp.	China	KP748194	KP823867	KP823755	KP823774	—
C. siamense	LJTJ5	Capsicum sp.	China	KP748195	KP823868	KP823756	KP823775	KP823825
C. siamense	LJTJ7	Capsicum sp.	China	KP748198	KP823869	KP823757	KP823777	KP823826
C. siamense	LJTJ8	Capsicum sp.	China	KP748199	KP823870	KP823758	KP823778	KP823827
C. siamense	LJTJ11	Capsicum sp.	China	KP748202	KP823871	KP823759	KP823781	KP823828
C. siamense	LJTJ23	Capsicum sp.	China	KP748214	KP823872	KP823760	KP823793	KP823829
C. siamense	LJTJ36	Capsicum sp.	China	KT936443	KT936438	KT936432	KP943522	—
C. siamense	LJTJ48	Capsicum sp.	China	KP748227	KP823873	KP823761	KP823806	KP823830
C. siamense	LJTJ51	Capsicum sp.	China	KT936444	KT936439	KT936433	KP943532	KT936427
C. siamense	LJTJ73	Capsicum sp.	China	KT936445	KT936440	KT936434	KP943537	KT936428
C. siamense	LJTJ76	Capsicum sp.	China	KT936446	KT936441	KT936435	KP943538	KT936429
C. sichuanensis	LJTJ3	Capsicum sp.	China	KP748193	KP823850	KP823738	KP823773	KP823808
C. sichuanensis	LJTJ16	Capsicum sp.	China	KP748207	KP823851	KP823759	KP823786	KP823809
C. sichuanensis	LJTJ22	Capsicum sp.	China	KP748213	KP823852	KP823740	KP823792	KP823810
C. sichuanensis	LJTJ30	Capsicum sp.	China	KP748221	KP823853	KP823741	KP823800	KP823811
C. simmondsii	CBS 12122*	Carica papaya, fruit	Australia	JQ948276	JQ949927	JQ949597	JQ948606	—
C. simmondsii	BRIP 28519*	Carica papaya, fruit	Australia	GQ485606	GQ856784	GQ849430	GQ856763	GQ849454
C. truncatum	CBS 151.35	Phaseolus lunatus	USA	GU227862	GU228156	GU227960	GU228254	—
C. truncatum	CBS 3540	Phaseolus lunatus	USA	GU227863	GU228157	GU227961	GU228255	—
C. truncatum	CBS 2222	Phaseolus lunatus	USA	GU227864	GU228158	GU227962	GU228256	—
C. truncatum	CBS 11918*	Phaseolus lunatus	USA	GU227865	GU228159	GU227963	GU228257	—
C. truncatum	CBS 120709	Capsicum frutescens	India	GQ485593	GQ849429	GQ856783	GQ856753	GQ849453
C. truncatum	LJTJ1	Capsicum sp.	China	KP748196	KP823840	KP823762	KP823771	KP823831
C. truncatum	LJTJ6	Capsicum sp.	China	KP748197	KP823841	KP823763	KP823776	KP823832
C. truncatum	LJTJ9	Capsicum sp.	China	KP748200	KP823842	KP823764	KP823779	KP823833
C. truncatum	LJTJ12	Capsicum sp.	China	KP748203	KP823843	KP823765	KP823782	KP823834
C. truncatum	LJTJ19	Capsicum sp.	China	KP748210	KP823844	KP823766	KP823789	KP823835
C. truncatum	LJTJ26	Capsicum sp.	China	KP748217	KP823845	KP823767	KP823796	KP823836
C. truncatum	LJTJ29	Capsicum sp.	China	KP748220	KP823846	KP823768	KP823799	KP823837
C. truncatum	LJTJ31	Capsicum sp.	China	KP748222	KP823847	KP823769	KP823801	KP823838
C. truncatum	LJTJ32	Capsicum sp.	China	KP748223	KP823848	KP823770	KP823802	KP823839
C. truncatum	LJTJ86	Capsicum sp.	China	KT936447	KT936442	KT936436	KP943521	KT936430
Mamillochaetes infuscans	CBS 869.96	Unknown	Unknown	JQ905780	JQ005864	JQ005843	—	—

Table 3. Details of the Colletotrichum isolates used in this study, including the hosts, locations and GenBank accession numbers of the generated sequences. ITS: rDNA-ITS region; TUB2: ß-tubulin; ACT: actin; GPDH: glyceraldehyde-3-phosphate dehydrogenase; and CAL: calmodulin. The isolates from this study are indicated in bold letters. ’Ex-type cultures.

Analyses. The morphological groupings based on colony characteristics, growth rate, conidial morphology, conidial appressorium morphology and mycelial appressorium morphology were almost completely consistent with the results of phylogenetic analysis derived from the molecular data.

In vitro culture-related characteristics were important for differentiating among Colletotrichum species26, C. truncatum, C. scovillei, C. brevisporum, C. sichuanensis isolates and some C. fructicola isolates with unique and relatively stable colonies could be easily distinguished. However, the colonies of C. gloeosporioides, C. siamense and some C. fructicola isolates overlapped in terms of their morphological characteristics, and phenotypic variations were identified among the species under different environmental conditions. The colony growth rate of C. scovillei was significantly slower than those of the species in the other groups. Previous studies have shown that C. acutatum can be differentiated from C. gloeosporioides based on its slower growth rate26, Than et al.2 have also suggested that colony growth rates are important for distinguishing among C. gloeosporioides, C. truncatum and C. acutatum. In the present study, the slow growth of C. scovillei conformed to the characteristics of the C. acutatum complex. The observed differences in conidial size were significant, with the exception of the lengths and widths of Groups 1 and 2. Denotes and Baudry35 used conidial shape to differentiate among Colletotrichum species that are pathogenic to strawberries, although Cai et al.25 and Crouch et al.32 have suggested that conidial appressa are taxonomically uninformative and of little use for species identification. In contrast, the conidial appressorium of C. scovillei could be easily distinguished from those of the other species examined in our study, in
agreement with the results of Du et al. Similarly, Crouch et al. have found that the shapes and sizes of mycelial appressoria in combination with the host range are useful for identifying grass-associated Colletotrichum species. We found that the mycelial appressoria produced by C. scovillei and C. brevisporum were typically smoother than those produced by the other species and that all C. truncatum and C. brevisporum isolates steadily produced setae. In addition, C. gloeosporioides has been reported to produce setae occasionally or under certain conditions, and many other Colletotrichum species are known to produce setae. In the present study, the cultural characteristics, colony growth rate, conidial shapes and sizes, and conidial and mycelial appressoria were the primary features used for classification.

Morphological examination was conducted to classify the 88 isolates into six groups, although our multi-locus phylogenetic analysis actually identified seven Colletotrichum species. Groups 2–6 contained different Colletotrichum species, and Group 1 consisted of two species: C. gloeosporioides and C. siamense. Thus, morphological criteria alone are not always sufficient for species identification. Indeed, multi-locus phylogeny showed that the isolates with similar morphological characteristics belonged to the C. gloeosporioides, C. siamense and C. fructicola clades. Moreover, the C. gloeosporioides and C. siamense isolates could not be distinguished according to their morphological and cultural characteristics, indicating that multi-locus phylogenetic analysis is useful for differentiating among species in the Colletotrichum genus. Many investigators have suggested the use of multi-locus phylogenetic analysis to overcome the inadequacies of morphological criteria.
Figure 5. *Colletotrichum sichuanensis* (from holotype). (a,b) Colonies on PDA at 7 days, upper (a) and reverse (b); (c,d) conidia; (e) conidiogenous cells; (f,g) conidial appressoria; (h–j) mycelial appressoria; (k) ascomata on PDA; (l) peridium; (m–o) asci; (p,q) ascospores. Scale bars: c, d, f–j, p, q = 10 μm; e, l, m, o = 20 μm; n = 40 μm.

Species	Mean infection incidence (%)		
	Capsicum annuum var. dactylus M*	*Capsicum annuum* L. var. conoides (Mill.) Irish	*Pyrus pyrifolia*
Colletotrichum gloeosporioides	54	72	100
C. stamense	64	91	100
C. fructicola	58	83	100
C. truncatum	93	75	90
C. scovillei	100	100	67
C. brevisporum	8	60	67
C. sichuanensis	9	85	90
CK	0	0	0

Table 4. Pathogenicity testing of *Colletotrichum* species from *Capsicum* spp. *a*Disease symptoms were recorded at 14 days after inoculation of *Capsicum annuum* var. dactylus M. *b*Disease symptoms were recorded at 7 days after inoculation of *Capsicum annuum* L. var. conoides (Mill.) Irish and *Pyrus pyrifolia*.
Colletotrichum gloeosporioides was first described in citrus from Italy. The name C. gloeosporioides represents both C. gloeosporioides sensu lato, which encompasses the entire species complex, and C. gloeosporioides sensu stricto. C. gloeosporioides sensu lato consists of at least 22 species, including C. gloeosporioides, C. siamense, and C. fructicola. C. siamense and C. fructicola were originally known as opportunistic pathogens of Coffea arabica berries in Thailand, and both of these species are non-host-specific. C. fructicola has also been reported to be a pathogen causing pepper anthracnose in Thailand, India, and China. Although Than et al. first isolated
C. siamense from chilli pepper in Thailand, the isolates belonging to *C. siamense* were identified as *C. gloeosporioides* in that study, and Weir *et al.*\(^5\) later revised the classification. *C. siamense* has also been isolated from pepper in India. However, this species has not been reported to be a causative agent of pepper anthracnose in China. Therefore, this work is the first report of pepper anthracnose caused by *C. siamense*.

Colletotrichum truncatum, originally described on *Phaseolus lunatus*, was typified by Damm *et al.*\(^5\), and this species has been associated with anthracnose on legume crops and pepper, as well as on many other hosts.\(^3,9,34\) The *C. capsici* isolate typified by Shenoy *et al.*\(^42\) causes anthracnose in a wide range of hosts, including pepper and legume species.\(^1,43,44\) and Damm *et al.*\(^5\) synonymized the *C. capsici* taxon with *C. truncatum* on the basis of its multi-locus phylogeny and morphology. Regardless, not all researchers are in agreement with this viewpoint.\(^1\)

Colletotrichum acutatum is widely known as a fruit rot pathogen in strawberry,\(^2\) apple,\(^45\) pepper,\(^2,11\) and grape,\(^46\) and this fungus was first recorded in Australia on *Carica papaya*, *Capsicum frutescens* and *Delphinium ajacis* by Simmonds.\(^30\) *C. acutatum* is also a species complex containing at least 14 species, including *C. scovillei*.\(^47\)

The ex-type strain of *C. scovillei* was initially identified as *C. acutatum*,\(^48\) and Than *et al.*\(^2\) also identified *C. scovillei* as *C. acutatum* on chilli pepper from Thailand. Although *C. scovillei* was identified as *C. acutatum* in these two papers, it was later revised by Damm *et al.*\(^47\). Kanto *et al.*\(^2\) also isolated *C. scovillei* from sweet pepper in Japan. In our study, we only isolated *C. scovillei* belonging to *C. acutatum sensu* lato from the pepper fruits. Thus, the main species from the *C. acutatum* complex that is pathogenic to pepper in Sichuan Province might be *C. scovillei* rather than *C. acutatum sensu stricto*. To our knowledge, this work is also the first report of *C. scovillei* as a causative agent of pepper anthracnose in China.

Colletotrichum brevisporum has been recorded on *Neoregelia* sp. from Thailand, as well as on papaya fruits and *Pandanus pygmaeus* Thouars.\(^30,49\) Yang\(^5\) has also reported *C. brevisporum* on pepper from China. The conidial lengths of *C. brevisporum* in the present study were longer than those reported by Noireung *et al.*,\(^5\) but they were consistent with those reported by Yang.\(^5\)

The results of our phylogenetic analysis strongly support the *Colletotrichum sichuanensis* clade, which is closely related to *C. cliviae*. These two species have similar conidial shapes but different conidial sizes; *C. sichuanensis* has shorter conidia than *C. cliviae* (21.8 μm, with a mean length of 16.7 μm). *C. sichuanensis* also differs from *C. cliviae* with regard to colony colour. In addition, *C. sichuanensis* steadily produced ascomata on PDA, whereas the other species rarely produced ascomata. Further, *C. sichuanensis* grew more slowly in culture than *C. cliviae* (11.3–12.9 mm/day for *C. sichuanensis* compared with 15.2–16 mm/day for *C. cliviae*).

Given that they could infect not only *Capsicum* spp. but also *Pyrus pyrifolia*, all of the species isolated from pepper in our study were non-host-specific. In addition, *C. scovillei* was the most virulent species towards *Capsicum* spp. Tang\(^6\) found that *C. acutatum* and *C. truncatum* were more virulent than *C. gloeosporioides* and that the *C. acutatum* incubation period was the shortest. Further, Than *et al.*\(^2,14\) reported that *C. acutatum* was a very virulent species that could infect wound-resistant *C. chinense* PBC 932, whereas *C. gloeosporioides* and *C. capsici* (syn. *C. truncatum*) could not.

Colletotrichum acutatum, *C. truncatum* and *C. boninense*\(^9\) have been previously reported in Sichuan; however, *C. boninense* was not isolated in our study; it is possible that this species was missed during sampling or isolation. In summary, *C. siamense* and *C. scovillei* are recorded for the first time as causing anthracnose in pepper from China. Additionally, we have identified one new species, which has been introduced as *C. sichuanensis*.

Methods

Collection and isolation. In 2012 and 2013, pepper fruits with anthracnose symptoms were collected from primary production areas in Sichuan Province, China. Tissues of approximately 5 mm in diameter were collected from the edges of lesions, surface-sterilized with 75% ethanol for 1 min and 1% NaClO for approximately 1 min, washed three times with sterile distilled water, and then dried on sterile filter paper. The treated tissues were plated on PDA supplemented with 50 mg l\(^{-1}\) streptomycin. The plates were incubated at 27 ± 1°C for 5 days. Single-spore cultures were obtained for each *Colletotrichum* isolate according to the procedure described by Gong *et al.*\(^50\). The resulting strains were maintained on PDA slants at 4°C for short-term storage and in 25% glycerol at −70°C for long-term storage.

Morphological and cultural characterization. Mycelial discs (5 mm diameter) were collected from actively growing areas near the growing edges of 5-day-old cultures, transferred to PDA and incubated at 27°C in the dark for 10 days. Five replicates were employed. The colony diameter was recorded each day from two perpendicular cross-sections, and the colony characteristics were also recorded.

The sizes and shapes of conidia, asci and ascospores from each culture were recorded. The lengths and widths of 30 conidia, asci and ascospores were measured for each isolate.

Conidial appressoria were induced according to the method of Yang *et al.*\(^27\).

Mycelial appressoria were produced using an improved slide culture technique, as described by Sutton\(^31\) and Cai *et al.*\(^29\). One hundred microlitres of hot water agar (WA) was placed on a sterile slide. Mycelial plugs of approximately 2 mm in diameter were inoculated onto one-third of the WA and then incubated in a Petri dish with wet filter paper at 27°C. After 5–7 days, agar pieces containing the inoculated plugs were gently removed with a scalpel, and the shapes and sizes of the appressoria that formed along the WA were then recorded.

Samples for microscopy were prepared using clear water or lactic acid and observed with a Carl Zeiss Axio Imager Z2 microscope (Germany) or a Nikon Eclipse 80i microscope (Japan) using differential interference contrast (DIC) illumination.

DNA extraction. Fifty-two representative isolates were chosen according to the morphological and cultural characteristics and incubated on PDA at 27°C for 7–10 days. Mycelia were scraped from the colony surface using
a sterile medicine spoon. Total genomic DNA was extracted from the isolates using a modified protocol, as outlined by Guo et al.52.

PCR amplification and DNA sequencing. As an initial analysis of genetic diversity, the glyceraldehydes-3-phosphate dehydrogenase (GAPDH) gene was amplified from the isolates in this study with the primers GDF/GDR53. Fifty-two isolates representing wide ranges of genetic diversity and geographic origins were selected for further investigation.

The nuclear rDNA ITS region and the β-tubulin (TUB2), partial actin (ACT) and calmodulin (CAL) genes were amplified from 52 representative isolates using the primers ITS1/ITS454,55, Bt2a/Bt2b56, ACT52F/ACT783R57 and CL1/CL2A58, respectively. PCR was performed under the conditions described by Prihasusti et al.26.

The amplifications were performed in a 40 μl mixture containing 17 μl ddH2O, 20 μl 2 × PCR MasterMix (TIANGEN Co., China), 1 μl DNA template (30–50 ng/μl), and 1 μl of each primer (10 μM). DNA sequencing was performed by Sangon Biotech Co., Ltd. (Shanghai, China).

Phylogenetic analysis. Alignment of the GAPDH genes of all of the isolates was performed using Clustal X59. MEGA v. 5 was used to build a distance tree with the neighbour-joining (NJ) algorithm. The sequences were compared with those in the NCBI sequence database using the BLAST algorithm for approximate identification.

The sequences of the 52 isolates and the reference sequences obtained from GenBank (Table 3) were aligned using Clustal X. Then, a phylogenetic tree was constructed with the combined ITS, TUB2, ACT, GAPDH and CAL dataset.

 Parsimony trees were inferred by PAUP v4.0b10 using a heuristic search option with 1,000 random sequence additions60. All gaps were treated as missing data. Max trees were unlimited, zero-length branches were collapsed, and all multiple parsimonious trees were saved. Clade stability was assessed by bootstrap (BT) analysis with 1,000 replicates. In addition, descriptive tree statistics, such as parsimony (Tree Length [TL], Consistency Index [CI], Retention Index [RI], Related Consistency Index [RC] and Homoplasy Index [HI]), were calculated.

Pathogenicity tests. Pears were included in the pathogenicity tests for two main reasons: i) because peppers often are planted in pear orchards; and ii) to assess whether *Colletotrichum* species from pepper are host specific. Fruits of *Capsicum annuum* (Ca. annuum var. dactylus M and Ca. annuum var. conoides (Mill.) Irish) and *Pyrus pyrifolia* were surface-sterilized in 75% ethanol for 3 min and then rinsed three times in sterile distilled water. The fruits were stabbed lightly with a sterile needle, and a mycelial disc with a diameter of 5 mm from a 4-day-old colony obtained from an isolate grown on PDA at 27 °C was attached to each artificially wounded fruit. The PDA discs were covered with moistened cotton for 3 days. The cotton was then removed, and the fruits were incubated for 14 days in a growth chamber at 27 °C with a 12 h light/12 h dark cycle. Six replicates and an equal number of control fruits inoculated only with agar discs were included.

References

1. Hyde, K. D. et al. *Colletotrichum*-names in current use. *Fungal Divers.*, 39, 147–182 (2009).
2. Than, P. P. et al. Characterization and pathogenicity of *Colletotrichum* species associated with anthracnose on chilli (*capsicum spp.*) in Thailand. *Plant Pathol.*, 57, 562–572 (2008).
3. Damm, U., Woudeberg, J. H. C., Cannon, P. F. & Crous, P. W. *Colletotrichum* species with curved conidia from herbaceous hosts. *Fungal Divers.*, 39, 45–87 (2009).
4. Montri, P., Taylor, P. W. J. & Mongkolporn, O. Pathotypes of *Colletotrichum* capsici, the causal agent of chili anthracnose, in Thailand. *Plant Dis.*, 93, 17–20 (2009).
5. Li, N. Study on the species of anthracnose pathogens and the groups genetic diversity, Master’s thesis (Sichuan Agricultural University, 2012).
6. Tang, J. M. *A study on pathogens identification of pepper fruit anthracnose and their biological characteristics in Guangxi*, Master’s thesis (Guangxi University, 2012).
7. Yang, Y. L. *Multi-locus phylogeny of Colletotrichum species in Guizhou, Yunnan and Guangxi, China*. PhD thesis (Huazhong Agricultural University, 2010).
8. Anderson, J. M., Aitken, E. A. B., Dann, E. K. & Coates, L. M. Morphological and molecular diversity of *Colletotrichum* spp. causing pepper spot and anthracnose of lychee (*litchi chinensis*) in Australia. *Plant Pathol.*, 62, 279–288 (2013).
9. Ramdial, H. & Rampersad, S. N. Characterization of *Colletotrichum* spp. causing anthracnose of bell pepper (*Capsicum annuum L.*) in Trinidad. *Phytoparasitica* 43, 37–49 (2014).
10. Xia, H., Wang, X. L., Zhu, H. J. & Gao, B. D. First report of anthracnose caused by *Glomerella coccoides* with chili anthracnose in India. *Plant Dis.*, 95, 219 (2011).
11. Harp, T., Kuhn, P., Roberts, P. D. & Pernezy, K. L. Management and cross-infectivity potential of *Colletotrichum acutatum* causing anthracnose on bell pepper in Florida. *Phytoparasitica* 42, 31–39 (2014).
12. Shin, H. J., Xu, T., Zhang, C. L. & Cheng, Z. J. The comparative study of *capsicum* anthracnose pathogens from Korea with that of China. *Journal of Zhejiang University*, 26, 629–634 (2000).
13. Harp, T. L. et al. The etiology of recent pepper anthracnose outbreaks in Florida. *Crop Protect.*, 27, 1380–1384 (2008).
14. Than, P. P. et al. Chilli anthracnose disease caused by *Colletotrichum* species. *J. Zhejiang U. Sci.*, 9, B9, 764–778 (2008).
15. Sharma, P. N. et al. First report on association of *Colletotrichum* coccodes with chili anthracnose in India. *Plant Dis.*, 95, 1584–1584 (2011).
16. Phoulivong, S. et al. *Colletotrichum gloeosporioides* is not a common pathogen on tropical fruits. *Fungal Divers.*, 44, 33–43 (2010).
17. Sharma, G. & Shenoy, B. D. *Colletotrichum fructicola* and *C. Siamense* are involved in chilli anthracnose in India. *Arch. Phytopathol. Plant Protect.*, 47, 1179–1194 (2014).
18. Weir, B. S., Johnston, P. R. & Damm, U. The *Colletotrichum gloeosporioides* species complex. *Stud. Mycol.*, 73, 115–180 (2012).
19. Zhao, Y. Z., Fan, J. R., Wang, Z. W. & Liu, X. L. First report of *Colletotrichum boninense* causing anthracnose on pepper in China. *Plant Dis.*, 97, 138–138 (2013).
20. Toze, H. J. Jr. et al. First report of *Colletotrichum boninense* causing anthracnose on pepper in Brazil. *Plant Dis.*, 93, 106–106 (2009).
21. Kanto, T. et al. Anthracnose of sweet pepper caused by *Colletotrichum scovillei* in Japan. *J. Gen. Plant Pathol.*, 80, 73–78 (2014).
22. Zhang, G. Z. et al. Identification of pepper anthracnose and resistant screen of breeding materials in Sichuan. *Southwest China Journal of Agricultural Sciences*, 26, 1026–1029 (2013).
23. Lima, N. B. et al. Five Colletotrichum species are responsible for mango anthracnose in northeastern Brazil. Fungal Divers. 61, 75–88 (2013).
24. Tao, G. et al. Endophytic Colletotrichum species from Bletilla ochracea (Orchidaceae), with descriptions of seven new species. Fungal Divers. 61, 139–164 (2013).
25. Cai, L. et al. A polyphasic approach for studying Colletotrichum. Fungal Divers. 39, 183–204 (2009).
26. Pritastuti, H. et al. Characterization of Colletotrichum species associated with coffee berries in northern Thailand. Fungal Divers. 39, 89 (2009).
27. Yang, Y. L. et al. Colletotrichum antracnose of Amaryllidaceae. Fungal Divers. 39, 123–146 (2009).
28. Niu X. et al. Colletotrichum species associated with jute (Corchorus capsularis L.) anthracnose in southeastern China. Sci. Rep. 6, 25179, doi:10.1038/srep25179 (2016).

29. Manamgoda, D. S. et al. Endophytic Colletotrichum from tropical grasses with a new species C. endophytica. Fungal Divers. 61, 107–115 (2013).
30. Simmonds, J. H. A study of the species of Colletotrichum causing ripe fruit rots in Queensland. Queensland Journal of Agricultural and Animal Science 22, 437–459 (1965).
31. Denoeyes, B. & Baudry, A. Species identification and pathogenicity study of French Colletotrichum strains isolated from strawberry using morphological and cultural characteristics. Phytopathology 85, 53–57 (1995).
32. Crouch, J. A., Clarke, B. R., White, J. F. & Hillman, B. J. Systematic analysis of the falcate-spored graminicolous Colletotrichum and a description of six new species from warm-season grasses. Mycologia 101, 717–732 (2009).
33. Du, M., Schardl, C. L., Nuckles, E. M. & Vaillancourt, L. J. Using mating-type gene sequences for improved phylogenetic resolution of Colletotrichum species complexes. Mycologia 97, 641–658 (2005).
34. Sawant, I. S. et al. Emergence of Colletotrichum gloeosporioides sensu lato as the dominant pathogen of anthracnose disease of grapes in India as evidenced by cultural, morphological and molecular data. Australasian Plant Pathol. 41, 493–504 (2012).
35. Noireung, P. et al. Novel species of Colletotrichum revealed by morphology and molecular analysis. Cryptogam. Mycol. 33, 347–362 (2012).
36. Huang, F. et al. Colletotrichum species associated with cultivated citrus in China. Fungal Divers. 61, 61–74 (2013).
37. Liu, F., Damm, U., Cai, L. & Crous, P. W. Species of the Colletotrichum gloeosporioides complex associated with anthracnose diseases of Proteaceae. Fungal Divers. 61, 89–105 (2013).
38. Udayanga, D. et al. What are the common anthracnose pathogens of tropical fruits? Fungal Divers. 61, 165–179 (2013).
39. Vieira, W. A. S. et al. Endophytic species of Colletotrichum associated with mango in northeastern Brazil. Fungal Divers. 67, 181–202 (2014).
40. Penzig, D. O. Funghi agrumicoli. Contribuzione allo studio dei funghi parasiti degli agrumi, Vol. 2, Michelia (1882).
41. Rueda-Hernández, K. R. et al. Differential organ distribution, pathogenicity and benzyl sensitivity of Colletotrichum spp. From blackberry plants in Northern Colombiia. J. Phytopathol. 161, 246–253 (2013).
42. Shenoy, B. D., Jeewon, R. & Lam, W. H. Morpho-molecular characterisation and epitypification of Colletotrichum truncatum (Gonellaceae, Sordariomycetes), the causative agent of anthracnose in chilli. Fungal Divers. 27, 197–211 (2007).
43. Pring, R. J., Nash, C., Zarkaria, M. & Bailey, J. A. Infection process and host range of Colletotrichum capsici. Physiol. Mol. Plant Pathol. 46, 137–152 (1995).
44. Chai, A. et al. Identification of Colletotrichum capsici (Syd.) butler causing anthracnose on pumpkin in China. Can. J. Plant Pathol. 36, 121–124 (2014).
45. Vichová, J., Stanková, B. & Pirkový, R. First report of Colletotrichum acutatum on tomato and apple fruits in the Czech Republic. Plant Dis. 96, 769–769 (2012).
46. Samuelian, S. K., Greer, L. A., Savociucha, S. & Steel, C. C. Application of Cabrio (a.i. pyraclostrobin) at flowering and veraison reduces the severity of bitter rot (Greeneria uvicola) and ripe rot (Colletotrichum acutatum) of grapes. Aust. J. Grape Wine Res. 20, 292–298 (2014).
47. Damm, U., Cannon, P. F., Woudenberg, J. H. & Crous, P. W. The Colletotrichum acutatum species complex. Stud. Mycol. 73, 37–113 (2012).
48. Niremberg, H. I., Feler, U. & Hagedorn, G. Description of Colletotrichum lupini comb. nov. in modern terms. Mycologia 94, 307–320 (2002).
49. Vieira, W. A. S. et al. First report of papaya fruit anthracnose caused by Colletotrichum brevipes in Brazil. Plant Dis. 97, 1659 (2013).
50. Gong, G. S. et al. A simple method for single fungal spore isolation. Journal of Matze Science 18, 126–127, 134 (2010).
51. Sutton, B. C. The Coelomycetes. Fung imperfecti with pycnidea, acervuli and perithecia (Commonwealth Mycological Institute, 1980).
52. Guo, L. D., Hyde, K. D. & Liew, E. C. Y. Identification of endophytic fungi from Livistona chinensis based on morphology and rDNA sequences. New Phytol. 147, 617–630 (2000).
53. Templeton, M. D., Rikkerink, E. H., Solon, S. L. & Crowhurst, R. N. Cloning and molecular characterization of the glyceraldehyde-3-phosphate dehydrogenase-encoding gene and cDNA from the plant pathogenic fungus Glomerella cingulata. Gene 122, 225–230 (1992).
54. White, T. J., Bruns, T., Lee, S. & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A Guide to Methods and Applications 18, 315–322 (1990).
55. Gardes, M. & Bruns, T. D. ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol. Ecol. 2, 113–118 (1993).
56. Glass, N. L. & Donaldson, G. C. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 61, 1323–1330 (1995).
57. Carbone, I. & Kohn, L. M. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91, 553–556 (1999).
58. O’Donnell, K., Niremberg, H. I., Aoki, T. & Cigelnik, E. A multigene phylogeny of the Gibberella fujikuroi species complex: detection of additional phylogenetically distinct species. Mycosenes 41, 61–78 (2000).
59. Thompson, J. D. et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4867–4882 (1997).

60. Swofford, D. PAUP* Beta10 phylogenetic analysis using parsimony (*and other methods). Version 4b10 (Sinauer Associates, 2002).

Acknowledgements
This study was funded by the Two-Way Support Project of Sichuan Agricultural University. We are grateful to our team at the Crop Disease Laboratory for helping to collect the samples.

Author Contributions
F.L.L. and G.S.G. conceived the experiments and were the main authors. F.L.L., G.S.G. and G.T.T. conducted and performed the experiments. F.L.L., G.S.G., G.T.T., X.J.Z., J.X., X.L.C., Y.L., X.F.S., X.B.Q. and Y.Z. analysed the results. G.S.G., H.B.C., S.R.Z., X.F.S. and X.B.Q. collected the samples. All authors reviewed the manuscript.
Additional Information

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Liu, F. et al. Molecular and phenotypic characterization of Colletotrichum species associated with anthracnose disease in peppers from Sichuan Province, China. Sci. Rep. 6, 32761; doi: 10.1038/srep32761 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2016