Autophagy and mitochondrial alterations in human retinal pigment epithelial cells induced by ethanol: implications of 4-hydroxy-nonenal

M Flores-Bellver 1,5, L Bonet-Ponce 1,5, JM Barcia 1, JM Garcia-Verdugo 6, N Martinez-Gil 1, S Saez-Atienzar 1, J Sancho-Pelluz 7, J Jordan 3, MF Galindo 4 and FJ Romero 1*

Retinal pigment epithelium (RPE) is a single neuroectodermal layer placed in the outermost part of the eye cup faced to photoreceptors. 1,2 Owing to its anatomical location and function, RPE is continuously exposed to potential cell damage caused by oxidative stress, specifically due to oxygen and nitrogen reactive species. 3 This is probably one of the reasons why these cells are more resistant to oxidative stress. 4 Oxidative stress is present as part of the pathophysiology in several retinal degenerations associated with blindness, for example, age-related macular degeneration, 3 where RPE is considered a key factor for its development. 5 Studies with the human-derived cell line ARPE-19 have proven to be very useful in the elucidation of the role of these cells in disease.

Autophagy is a catabolic process aimed to degrade damaged organelles, proteins and cellular debris by engulfing them into a double membrane vesicle called the autophagosome and eliminating them by posterior fusion with the lysosome. Activation of macroautophagy, a form of autophagy, has been recently confirmed to be a primary response of ARPE-19 cells to stress. 6 Furthermore, the two major functions of RPE, phagocytosis of the photoreceptor outer segments and visual cycle performance, where RPE is considered a key factor for its development. 5 Thus, autophagy seems to have a cytoprotective role in ARPE-19 cells under ETOH damage, by degrading fragmented mitochondria and 4-HNE aggresomes. Herein, we describe the central implication of autophagy in human retinal pigment epithelial cells upon oxidative stress induced by ETOH, with possible implications for other conditions and diseases.

*Corresponding author: FJ Romero, Facultad de Medicina y Odontología, Universidad Católica de Valencia ‘San Vicente Martir’, Calle Quevedo 2, Valencia 46010, Spain. Tel: +34 96 383 74 12; Fax: +34 96 394 45 90; E-mail: fj.romero@ucv.es

1Department of Physiology, School of Medicine and Dentistry, Catholic University of Valencia, Valencia, Spain; 2Department of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain; 3Neuropharmacology Group, Department of Medical Sciences, School of Medicine, University of Castilla la Mancha, IDINE, Albacete, Spain and 4Unit of Translational Neuropsychopharmacology, University of Castilla la Mancha and Albacete Hospital, Albacete, Spain

Abbreviations: RPE, retinal pigment epithelium; LC3, microtubule-associated protein 1A/1B-light chain 3; ETOH, ethanol; ROS, reactive oxygen species; PD, Parkinson’s disease; AD, Alzheimer’s disease; HD, Huntington’s disease; HAE, hydroxyalkenals; 4-HNE, 4-hydroxy-2,3-trans-nonenal; V-FITC, V- fluorescein isothiocyanate; PI, propidium iodide; TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling; ER, endoplasmic reticulum; ERAD, associated degradation; PE, phosphatidyethanolamine; CQ, chloroquine; GFP, green fluorescent protein; RFP, red fluorescent protein; 3-MA, 3-methyl-adenine; DCFH, 2',7'-dichlorofluorescein; MDA, malondialdehyde; HDAC6, histone deacetylase 6; DCF, dichlorofluorescein; GADPH, glyceraldehyde 3-phosphate dehydrogenase; IgG, immunoglobulin G; ECL, enhanced chemiluminescence; DAPI, 4,6-diamidino-2-phenyindole; LSM, laser scanning microscope

Received 21.3.14; revised 05.6.14; accepted 06.6.14; Edited by GM Fimia
mitochondria, a main source of ROS, seem to be removed by autophagy (known as mitophagy), in order to guarantee cell survival. As a matter of fact, deregulation of mitophagy has been implicated in several neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD) and Huntington's disease (HD).

Peroxidation of polyunsaturated fatty acids is intensified in cells subjected to oxidative stress, and results in the generation of various bioactive compounds, among others 4-hydroxyalkenals (HAE). ROS-induced lipid peroxidation and the resulting HAE markedly contribute to the development and progression of different diseases. Specifically, 4-hydroxy-nonenal (4-HNE), a major \(\alpha,\beta \)-unsaturated aldehyde product of n-6 fatty acid oxidation, has been shown to be involved in a great number of maladies. It has been reported that 4-HNE induces apoptosis in ARPE-19 cells and its ability to form protein adducts, thus it seems to be a key factor in aggresome formation. Aggresome is a term referred to cytoplasmic perinuclear inclusion bodies formed by aggregated proteins. Indeed, the presence of aggresomes is a pathological hallmark of most neurodegenerative diseases, and 4-HNE seems to be involved in their formation in AD, PD, HD and amyotrophic lateral sclerosis.

These aggresomes depend on the protein type to be cleared, and their degradation by autophagy, known as aggrephagy, has been proposed to increase cell viability in neurodegeneration models. Interestingly, 4-HNE aggregates have been also found in hepatic cells from alcoholic patients. Recent data provide no clear cut evidence of a link between PD risk and alcohol consumption with both positive and negative results.

In this study, we report the cellular effects of EtOH on ARPE-19 cells and determine that EtOH exposure induces the formation of 4-HNE-aggresomes, together with other neurodegenerative hallmarks such as mitochondrial damage and autophagy activation. Considering the central role of RPE in retinal physiology and pathophysiology, and its neural origin, these findings render new insights into the mechanism of neurodegeneration caused by alcohol toxicity in retinal cells, and may contribute to the development of therapeutic strategies in several nervous and retinal diseases.

Results

EtOH induces toxicity in ARPE-19 cells. EtOH treatment produced a statistically significant reduction of mitochondrial...
activity in a concentration-dependent manner after 24 h of exposure, starting at 600 mM (Figure 1a). Ki-67 immunocytochemistry showed a reduction of the number of positive cells, suggesting cell cycle suppression (Figure 1b). Interestingly, a statistically significant reduction of MTT-positive cells occurred in the first 60 min of treatment, and a more gradual decrease was observed during the following 8 h after the addition of 600 mM EtOH (Figure 1c). Annexin V-fluoroscein isothiocyanate (V-FITC) and propidium iodide (PI) staining were analyzed by flow cytometry, demonstrating a tendency but no statistically significant differences in cell death at this concentration of EtOH (Figures 1d and e). As a positive control, we confirmed that EtOH produced a significant increase in cell death at 1200 mM (Figure 1f) as previously described. The terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay was also performed and significant changes were observed between control (Figure 1g) and treated cells only at 600 mM EtOH concentration (Figures 1h and i). Although such small change seems unimportant, it marks the beginning of a cascade, which may threat the destiny of the cell.

As Bcl-2 and Bax are both mitochondrial membrane-related proteins, respectively, implicated in protection and apoptosis, we analyzed Bcl-2, Bax and uncleaved caspase-3 expression levels in order to foresee cellular fate in our experimental conditions. Bcl-2 and Bax expression levels were significantly enhanced 24 h after the addition of 600 mM EtOH, when compared with the control group (Figures 2a–c). Interestingly, a statistically significant increase of uncleaved caspase-3 expression was found at 600 mM EtOH treatment (Figure 2d).

EtOH exposure induces autophagy. LC3 is used as a specific marker of autophagosomes. LC3 exists in two different forms within the cell: LC3-I, which is distributed in the cytoplasm and LC3-II, which is converted from LC3-I and is covalently bound to the membrane lipid phosphatidylethanolamine in the autophagosomal membranes. LC3-II is therefore crucial to initiate the autophagosome formation. LC3-I function in the cell is autophagy independent. Indeed, LC3-I has been proposed to have a role in the vesicle-mediated removal of endoplasmic reticulum (ER)-associated degradation (ERAD) regulators. Defectively folded proteins in the ER are selectively degraded by a group of proteins called ERAD. An increase of ERAD activity could lead to a degradation of correctly folded proteins, thus a correct regulation of ERAD is crucial to maintain cellular

![Image of Figure 2](image-url)

Figure 2 Pro-survival and pro-apoptotic mitochondrial protein expression. Protein expression analyzed by western blot of Bcl-2, Bax, uncleaved caspase-3 and a-actin in control and EtOH-treated ARPE-19 cells (a). Graphic representations of semiquantitative analysis of Bcl-2 (b), Bax (c) and uncleaved caspase-3 (d). Values are expressed as mean ± S.E.M. (N = 3). Statistical significance was determined by two-tailed Student’s t-test (*P < 0.05 and **P < 0.01)
homeostasis. At steady-state, ERAD regulators are removed from the ER through a vesicle-mediated mechanism. LC3-I, therefore, has a role as a membrane-bound receptor that ensures the vesicle-mediated removal of ERAD regulators. Thus, GFP-LC3 overexpression is a well-accepted assessment of autophagosome formation. Small amounts of GFP-LC3 dots were observed (<9 dots) in control cells (Figure 3d) and treated at 80 mM (e), 200 mM (f), 400 mM (g) and 600 mM EtOH (h). Quantification of GFP-LC3 dots per cell (i) and autophagic cells at different EtOH concentrations (j). Representative analysis of cell death (percentage of TUNEL-positive cells) challenged or not with 80, 200, 400 and 600 mM of EtOH and 3-MA (k). Values are expressed as mean ± S.E.M. (N = 3). Statistical significance was determined by a two-tailed Student’s t-test (*P < 0.05, **P < 0.01 and ***P < 0.001). Scale bars: 12 μm.

Figure 3 EtOH treatment increases autophagosome number in ARPE-19 cells. Protein expression analyzed by western blot of LC3-II, p62 and GAPDH (a). Graphic representation of semiquantitative analysis of LC3-II (b) and p62 (c). Cells were transfected with GFP-LC3 plasmid. Expression of GFP-LC3 dots were observed in control cells (d) and treated at 80 mM (e), 200 mM (f), 400 mM (g) and 600 mM EtOH (h). Quantification of GFP-LC3 dots per cell (i) and autophagic cells at different EtOH concentrations (j). Representative analysis of cell death (percentage of TUNEL-positive cells) challenged or not with 80, 200, 400 and 600 mM of EtOH and 3-MA (k). Values are expressed as mean ± S.E.M. (N = 3). Statistical significance was determined by a two-tailed Student’s t-test (*P < 0.05, **P < 0.01 and ***P < 0.001). Scale bars: 12 μm.

Thus, based on the changes in the number of GFP-LC3 dots, these data indicated that there were not only an increase in autophagosome synthesis but also an increase in autophagic degradation (Figures 4a and b). For further analysis of autophagosome maturation, we took advantage of the mRFP-GFP-LC3 tandem reporter. Administration of EtOH resulted in an increase of the percentage of autolysosomes (GFP+/RFP+) dots, being significant at high EtOH concentrations (from 200 mM; Figures 4c and d). p62 is a key adaptor molecule associated with selective autophagy: it binds to both LC3 and ubiquitinated autophagic substrates so that they could be taken up by the autophagosome for degradation. Therefore, decrease of p62 seen in western blot (Figures 3a and c) in EtOH-treated cells would support an enhanced autophagic degradation. Hence, our results strongly suggest that EtOH enhances autophagosome–lysosome fusion.

Autophagy can be cytoprotective or cytotoxic. Thus, EtOH-treated cells were also exposed to 3-methyl-adenine (3-MA), which inhibits autophagy. TUNEL analysis revealed an increase in the number of cell death in EtOH groups treated...
with 3-MA (Figure 3k), more than twofold compared with EtOH groups alone. Our data propose autophagy has a cytoprotective role in EtOH-induced damage to ARPE-19 cells.

EtOH-induced mitochondrial fission and autophagic mitochondrial degradation. Mitochondrial morphology was analyzed by transfecting cells with the pDsRed2-Mito plasmid to express the DsRed2 protein fused to the mitochondrial targeting sequence of cytochrome c oxidase. After 24 h of transfection, untreated cultures presented mitochondria with long and tubular morphology (Figure 5a). EtOH exposure induced mitochondrial fragmentation and the formation of swollen, ball-shaped mitochondria in a concentration-dependent manner (Figure 5b) starting at 80 mM. Cell count of fragmented mitochondria is shown in Figure 5c. Mitochondrial degradation by autophagy was observed in a concentration-dependent manner (Figures 5d–i). In fact, fragmented mitochondria were significantly closer to the autophagy vacuoles as EtOH concentration increased, overlapping finally with the autophagosome at 400 and 600 mM EtOH (Figures 5g and h). Incubation of cells with vinblastine (a microtubule-depolymerizing agent that induces accumulation of autophagic vacuoles by preventing their degradation) rendered a higher number of colocalizations of mitochondria and LC3 in the presence of EtOH (Figures 5j–l), which suggested a mitophagy increase, as observed before.39

EtOH altered redox status, increased lipid peroxidation and 4-HNE aggresomes. EtOH treatment significantly increased 2′,7′-dichlorofluorescein (DCFH) fluorescence levels in ARPE-19 cells compared with non-treated cells (Figure 6a), reflecting the 'redox status' of the cell. Consistently with these values, statistically significant increases of 4-HNE, 4-hydroxy-hexenal and malondialdehyde (MDA) were also observed with all EtOH concentrations in a dose-dependent manner (Figure 6b). Stressing the interest of both results was the highly significant positive correlation found between DCFH fluorescence and lipid peroxidation levels (Figure 6c).

Anti-4-HNE-immunocytochemistry was used to show the cellular location of the 4-HNE aggregates (Figures 7a and b), which were enhanced in number in a concentration-dependent manner, at every EtOH concentration (Figure 7c). 4-HNE-positive labeling was densely accumulated, forming large cytosolic ball-shaped aggregates (Figures 7d, g, j and m). We found that ARPE-19 cells exhibit a tendency to

Figure 4 EtOH exposure increases autophagic flux. Cells were transfected with GFP-LC3 plasmid and treated or not with CQ and EtOH at different concentrations (80, 200, 400 and 600 mM). Histogram shows the number of LC3-GFP dots per cell (a). A summary of the autophagic flux values for synthesis and degradation is shown in table b. Confocal microscopy images of ARPE-19 cells transfected with mRFP-GFP-LC3 showing autophagosomes (yellow dots) and autolysosomes (red dots) (c). Quantification of autolysosomes (d). Values are expressed as mean ± S.E.M. (N = 3). Statistical significance was determined by a two-tailed Student's t-test (*P < 0.05 and **P < 0.01). Scale bars: 12 μm.
generate ubiquitin-positive, peri-nuclear inclusions that colocalize with 4-HNE (Figures 7d–f). Furthermore, the centrosome marker, γ-tubulin (Figures 7g–i) and the histone deacetylase 6 protein (HDAC6), also colocalized with 4-HNE aggregates (Figures 7j–l). Upon treatment of ARPE cells with nocodozole, a microtubule-depolymerizing agent, the perinuclear-localized inclusions failed to aggregate properly (Figures 7m and n). Taken together, 4-HNE-positive inclusions thus exhibit the classical hallmarks of aggresomes.40

Thus, the increase in the number of aggresomes could be a direct response to EtOH exposure or because EtOH disrupts...
somehow its degradation by autophagy. To solve this question, we first perform a double staining 4-HNE/LC3 observing colocalization (Figures 7o–q). Furthermore, the fact that after challenging EtOH-treated cells with 3-MA, the percentage of cells with 4-HNE perinuclear protein inclusions increased, clearly demonstrates that autophagy is capable of clearing 4-HNE aggresomes (Figure 7r). These observations were confirmed by electron microscopy. As expected, no differences in chromatin or nucleoli could be set. However, non-EtOH-treated cells often showed long mitochondria with extensive ramifications and dense matrices with tubular crests (arrows in Figure 8f), whereas mitochondria from EtOH-treated cells were more dilated, tended to be spherical-shaped and matrices were clear with fewer crests (arrows in Figure 8g). It is interesting to note that endoplasmic cisterns occasionally formed structures adjacent to mitochondria and dense bodies, sometimes observed surrounding them (Figure 8h). Another observed feature was the frequent presence of vacuoles with heterogeneous content in cells treated with 600 mM EtOH, varying greatly in electrodensity, with high electron-lucent and even multilamellar aspects (arrows in Figure 8i). Ultrastructural analysis demonstrated filamentous structures organized occasionally in masses tending toward sphericity but also in bundles distributed throughout the cytoplasm (arrows in Figure 8j). Some of these mitochondria presented an increased size and contained heterogeneous dense bodies with very irregular crests that hindered their identification as such (Figure 8k).

Discussion

We report here for the first time that EtOH exposure induces mitochondrial damage and protein aggregation in ARPE-19 cells. Furthermore, EtOH promotes flux of autophagy in order to decrease cellular toxicity induced by degrading fragmented mitochondria and protein inclusions.

ARPE-19 cells are particularly resistant to EtOH-induced toxicity. Using MTT assay as an approach to study the toxic effects of EtOH on ARPE-19 cells, we found that EtOH significantly increases toxicity at 600 mM EtOH. According to previous works on nervous cells, EtOH induces cell damage by the same technique at 140 mM. This result, and the fact that EtOH increases ROS levels and lipid peroxidation products, agrees with previous reports, which indicated that ARPE-19 cells are extremely resistant to oxidative stress damage, when compared with other cell types. Furthermore, we also observed a slight decrease in cell proliferation after EtOH treatment. Cell toxicity was also measured by the study of Bax, Bcl-2, and uncleaved caspase-3 protein expression. The anti-apoptotic protein Bcl-2 and pro-apoptotic Bax were elevated in a concentration-dependent manner, as well as uncleaved caspase-3 levels, which significantly...
increases at 600 mM. Surprisingly, no significant cell death could be established at 600 mM by flow cytometry. However, TUNEL analysis showed a small but significant increase in cell death only at 600 mM of EtOH, although the number of degenerated cells was still very low (around 3.5% more than controls).

EtOH treatment activates autophagy in ARPE-19 cells. Electron microscopy analysis confirmed the presence of increased autophagic vacuoles induced by EtOH. These autophagic vacuoles presented heterogeneous structures with similar content to those described by others.\(^{41,42}\) Autophagosome content was significantly increased at every EtOH concentration in a concentration-dependent manner, starting at 80 mM, a concentration normally used to study autophagy under EtOH damage in other cell lines.\(^{14,15}\) This evidence was supported by the fact that EtOH promoted the formation of LC3-II as well as increased the number of GFP-LC3 dots per cell and the number of autophagic cells. Our data also indicated that the increase in the number of

Figure 7 4-HNE aggresomes induced by EtOH and its degradation by autophagy in ARPE-19 cells. 4-HNE-positive cells (green) are indicated by white arrows in both untreated (a) and EtOH-treated ARPE-19 cells (b) after 24 h. Significant differences between control and treated cells are observed at different concentrations (c). 4-HNE-positive labeling was densely accumulated forming large ball-shaped aggregates in the vicinity of the nucleus (d, g and j). Ubiquitin (e), gamma tubulin (h) and HDAC6 (k) positive labeling (red). Colocalization of 4-HNE with ubiquitin (f), gamma tubulin (i) and HDAC6 (l). 4-HNE-positive labeling in the presence of the solvent DMSO (m) and Nocodazole (1 μg/ml) (n). 4-HNE aggregate colocalize with LC3 dots after EtOH exposure (o–q). Cells were challenged with or without EtOH and 3-MA, after fixation 4-HNE immunostaining was performed. Histogram shows the percentage of cells with 4-HNE inclusion with or without EtOH and 3-MA exposure (r). Values are expressed as mean ± S.E.M. (N = 3). Statistical significance was determined by a two-tailed Student’s t-test (*P < 0.05; **P < 0.01; ***P < 0.001). Scale bars on (a, b): 50 μm; (d–q): 12 μm.
Autophagosomes was related to an increase of autophagic flux (synthesis and degradation) rather than a decrease in autophagosome–lysosome fusion as previously reported in HepG2 cells. Autophagy flux analysis revealed that EtOH promotes autophagosome synthesis in a concentration-dependent manner as well as autophagosome degradation. Furthermore, EtOH decreases p62 levels, a key adaptor molecule associated with selective autophagy: it binds to both LC3 and ubiquitinated autophagic substrates so that they could be taken up by the autophagosome for degradation. EtOH treatment also increases the percentage of GFP+/RFP+ dots. These two evidences demonstrated that EtOH increases autophagosome degradation by fusion with the lysosome. Although autophagosome synthesis is increased from 80 mM, autophagosome to lysosome fusion significantly increased only at high EtOH concentrations (above 200 mM). Our results are in agreement with previous works reporting that EtOH increases autophagy flux in liver and brain cells.

Figure 8 Optical and transmission electron microscopy in ARPE-19 cells. Nuclei of control cells with lax chromatin and multiple nucleoli (a). EtOH-treated cells at 600 mM show reduced cytoplasm and numerous vacuoles (arrows in b). Vacuoles can aggregate as clusters (arrows in c). Asterisk corresponds to a spherical area with less affinity for toluidine blue (d). Eventually, some EtOH-treated cells show absence of cytoplasm organelles (arrow in e). Under the electron microscope, control cells present long mitochondria with dense matrices and tubular crests (arrows in f). EtOH-treated cells present dilated mitochondria and spherical shape (arrows in g). Mitochondria inside vesicles next to ER were also observed (h). Vacuoles with heterogeneous content (arrows in i) and filamentous structures (arrows in j). Mitochondria show heterogeneous dense bodies and irregular crests (k) close to a double membrane vesicle. Scale bars: a–e: 25 μm; f–j: 5.5 μm; k: 1 μm.

EtOH exposure induces mitochondrial fragmentation and promotes mitophagy. The negative effects of EtOH on hepatic and neuronal mitochondria are well documented. Here, we report for the first time changes in ARPE-19 mitochondrial morphology following EtOH exposure leading to an increase of mitochondrial fragmentation in a concentration-dependent manner at every EtOH concentration, in agreement with previous works in liver and brain.
cells. Furthermore, electron microscopy analysis also indicated a loss of normal mitochondrial morphology, tended to spherical and a loss of mitochondrial crests, confirming mitochondrial damage induced by ETOH. As reported before, one of the most interesting forms of autophagy is the one related to the degradation of fragmented mitochondria. Interestingly, we observed a reduction in the distance between autophagosomes and fragmented mitochondria that could be a prelude for mitophagy. Some of the most important changes after ETOH exposure are the mitochondrial morphology alterations, the lack of crests and the presence of heterogeneous bodies surrounded by ER. This is relevant because the ER–mitochondria contact site has been suggested to be a key point to promote autophagy. Moreover, mitochondria inside vesicles were also observed. Besides, by using vinblastine (a microtubule-depolymerizing agent that induces accumulation of autophagic vacuoles by preventing their degradation, as mentioned above) we observed an increase of autophagosome–mitochondria colocalization. This observation, together with the mitochondria–autophagosome approximation, the unusual over-sized mitochondria with heterogeneous dense bodies, and the fact that mitochondria supply membranes for autophagosome genesis strongly suggest the occurrence of ETOH-induced mitophagosomes in ARPE-19 cells, in agreement with previous studies carried out in liver.

ETOH promotes protein aggregation and increases aggrephagy. 4-HNE is a good marker of lipid peroxidation, and its ability to form protein adducts has been demonstrated in human brain of PD patients as well as in hepatocytes after ETOH exposure. In addition, it has been shown that 4-HNE forms adducts with the proteasome and with the proteasome system are driven by the HDAC6, which recognizes the ubiquitin residue through microtubules to the proteasome, localized around the centrosome. Hence, the fact that 4-HNE colocalizes with ubiquitin, gamma-tubulin and HDAC6, and requires microtubules for its correct formation clearly demonstrated the aggresome nature of these 4-HNE aggregates. As reported previously, aggresomes could be degraded by autophagy depending on the proteins aggregated. The fact that 4-HNE colocalizes with LC3, and that 3-MA (an autophagy inhibitor) increases the percentage of cells with 4-HNE aggresomes strongly suggest that ETOH increases aggresome degradation by autophagy (aggrephagy), and that ETOH does not alter autophagosome cargo recognition, as observed in a model of HD. Interestingly, Cuervo’s group indicated that in their cell model, aggrephagy cannot be produced without inducing autophagy. However, in our model we found that control cells normally degrade 4-HNE inclusions. This can be due to the cells’ natural ability to degrade damaged organelles without inducing autophagy.

Autophagy has a cytoprotective role in ETOH-induced toxicity in ARPE-19 cells. Autophagy is a catabolic process, which has a cytoprotective role under oxidative conditions in most of the cases. However, a hyperactivation of autophagy can lead to cell death. Previous data demonstrated that autophagy formation attenuates ETOH-induced damage in liver and neuroblastoma cells. It has been shown that autophagy inhibition enhanced ETOH-induced ROS production and neurotoxicity, presumably due to the lack of clearance of damaged mitochondria and misfolded proteins. Thus, fragmented mitochondria are toxic for the cell, as well as aggresomes. Furthermore, after ETOH treatment, mitophagy and aggrephagy are enhanced. Therefore, we could hypothesize that autophagy promotes cell survival in ARPE-19 cells under ETOH exposure. Moreover, autophagy inhibition by 3-MA increases cell death (more than twofold) in ETOH-treated cells. Thus, our results strongly suggest that autophagy, by degrading fragmented mitochondria and protein inclusions, reduces cell toxicity produced by ETOH.

The present work reveals, for the first time, the existence of 4-HNE aggresomes induced by ETOH, without connection to any protein mutation (observed in PD, HD or AD). These data open new questions about the role of 4-HNE in protein aggregation. Interestingly, accumulation of aggresomes has been observed in post-mortem neurological histological preparations as indicators of chronic alcoholism. We also demonstrate that ETOH exposure induces mitochondrial fragmentation that leads to mitophagy in ARPE-19 cells. Both results are consistent with the effects of ETOH in brain cells. Furthermore, mitochondrial damage, protein aggregation and autophagy activation seem to be crucial processes in a RPE-related disease like AMD. Considering that aggresomes are of relevance in neuropathology as much as mitochondrial fragmentation, our results describing a neurodegenerative-like phenotype in ARPE-19 cells induced by ETOH are novel and deserve further research, as they may contribute to the better understanding of the pathophysiological mechanism of other neurodegenerative diseases, including the formerly proposed ‘alcoholic retinopathy’.

Materials and Methods

Cell culture. Human retinal pigment epithelial cell line ARPE-19 was obtained from American Type Culture Collection (ATCC, Barcelona, Spain). ARPE-19 cells were cultured in Dulbecco’s modified Eagle’s medium/Nutrient mixture F12 (DMEM/F12; Invitrogen, Grand Island, NY, USA) supplemented with 5 mM HEPES buffer, 7.5% NaHCO3, 10% fetal bovine serum and 1% penicillin/streptomycin and were maintained at 37 °C and 5% CO2. Cells were used from 18 to 20 passages and cultivated in six-cell culture well plates at a starting seeding density of 2 × 104 cells/cm². Two days after, cells were treated for 24 h at different ETOH (Ethanol absolute; Biosolve, Valkenswaard, The Netherlands) concentrations: 80, 200, 400 and 600 mM.

MTT assay. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay (Cell Proliferation Kit I; Roche, Mannheim, Germany) was used to determine cell proliferation in terms of mitochondrial activity. ARPE-19 cells were seeded at 1 × 10⁵ per well in a 96-cell culture well plate and grew to confluence for 24 h. Cells were treated with ETOH at different concentrations for 24 h. MTT labeling reagent (0.5 mg/ml) was added to each well and incubated for 4 h at 37 °C in 5% CO2. Then, solubilization solution was added and incubated overnight at 37 °C in 5% CO2. Absorbance was read at 550 nm by microplate reader (Victor 3, Perkin Elmer, Turku, Finland). Each treatment condition was repeated 10 times.
Flow cytometric analysis using V-FITC and PI staining. ARPE-19 cells were resuspended in 200 μl Annexin binding buffer at 200 × 10^5 cells/ml. V-FITC and PI solution were added. Then, samples were diluted with 400 μl binding buffer and analyzed with a FACScan flow cytometer (FACScan; Beckman Coulter, Brea, CA, USA). Ten thousand events were collected for each sample. Results were analyzed with BD FAC Suite software (Fullerton, CA, USA).

Determination of lipid peroxidation: hydroxyalkenals and MDA. Lipid peroxides are unstable and decompose to form a complex series of compounds, including MDA and HAE, upon decomposition, and the measurement of MDA and HAE has been used as an indicator of lipid peroxidation. MDA and HAE were determined by using the Lipid Peroxidation Microplate Assay Kit (Oxford Biomedical Research, Bicester, Oxfordshire, UK). Briefly, ARPE-19 cells were treated with EtOH for 24 h. Absorbance of the stable yielded chromophore was measured at 586 nm with a multicle plate reader (Victor 3; Perkin Elmer).

Determination of ROS levels. ROS levels were measured using 2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA; Santa Cruz Biotechnology, Santa Cruz, CA, USA), which is converted to a non-fluorescent derivative (H2DCF) by intracellular esterases. This molecule can be oxidized by ROS producing intracellular dichlorofluorescein (DCF), which is a fluorescent compound. Cells were incubated with 15 μM of H2DCFDA for 15 min at 37°C. Intracellular ROS production was measured by fluorescence multichannel reader (Victor X5; Perkin Elmer) excited at 485 nm and read at 530 nm.

Western blot analysis. Cells were subsequently scraped with ice-cold PBS and lysed with RIPA buffer (Sigma-Aldrich, St. Louis, MO, USA) containing 50 mM Tris-HCl, pH 8.0, 150 mM sodium chloride, 1.0% Igepal CA-630 (NP-40), 0.5% sodium deoxycholate, 0.1% sodium dodecyl sulfate and Protease Inhibitor Cocktail (Sigma-Aldrich). Equal amount of protein from each sample (35 μg) was measured by SDS-PAGE on 4–12% gels and electrophoresed onto polyvinylidene difluoride membranes (Millipore, Billerica, MA, USA). Membranes were incubated overnight at 4°C with a rabbit polyclonal antibody against uncleaved caspase-3 (1:500; Santa Cruz Biotechnology), Bax (1:250; Santa Cruz Biotechnology), Bcl-2 (1:500; Santa Cruz Biotechnology), LC3 (1:1000; Sigma-Aldrich) and mouse monoclonal antibody against β-actin (1:500; Santa Cruz Biotechnology), GAPDH (1:1000; Santa Cruz Biotechnology) and p62 (1:1000; Cell Signalling, Danvers, MA, USA). Subsequently, membranes were incubated 2 h at room temperature in horseradish peroxidase-conjugated anti-mouse and anti-rabbit IgG (1:10000; Santa Cruz Biotechnology). Bands were visualized with ECL (Pierce, Thermo Scientific, Rockford, IL, USA) and detected with Image Quant LAS-4000 mini (GE Healthcare, Uppsala, Sweden). Protein signals were quantified by densitometry using ImageJ software (National Institutes of Health, Bethesda, MD, USA). Protein expression intensity was normalized to β-actin or GAPDH.

TUNEL assay. The TUNEL assay is performed using an in situ cell death detection kit conjugated with tetra-methyl-rhodamine or fluorescein isothiocyanate (Roche). For controls, terminal deoxynucleotidyl transferase enzyme is either used to monitor the presence of autophagosomes. 58 A subset of GFP-LC3 autophagosomes were counted as autophagic. At least 200 transfected cells were counted for each condition. In addition, the total number of GFP-LC3 dots per cell was also measured, in at least 30 transfected cells per condition. To study the effect of EIOH on autophagosome maturation, ARPE-19 cells were transfected with an mRFP-GFP-LC3 tandem reporter that has been found to be useful to trace autophagosome maturation. 59 Hence, within lysosomes GFP-LC3 fluorescence was quenched because of the sensitivity of GFP to acidic environments, whereas mRFP-LC3 fluorescence was more stable upon acidification. Thus, autophagosomes with a physiological pH show both red and green fluorescence (yellow dots), whereas the latter was lost in autolysosomes with an acidic pH (red dots). After overlapping images in both channels, the number of LC3 dots in each cell was analyzed: RFP + /GFP + (yellow) dots as autophagosomes and RFP + /GFP − (red) dots as autolysosomes. Therefore, the percentage of red dots (RFP + /GFP −) in each cell is a measure of the number of autolysosomes. 59 At least, 30 transfected cells were counted for each condition. Cells were viewed under a laser scanning microscope (LSM 710; Carl Zeiss).

Transfections. Twenty-four hours before transfection, cells were plated at a density of 5 × 10^4 cells/cm² on IBID-coated glass dishes. Transfection was achieved using Lipofectamine 2000 reagent (Invitrogen) according to the manufacturer’s protocol. Cells were transfected with the different plasmids and after 4 h incubation, transfection mixture was removed and replaced with fresh complete medium. The pDsRed2 plasmid was purchased from Clontech (BD Biosciences, San Jose, CA, USA). GFP-LC3 is a gift from Dr JM Fuentes (Universidad de Extremadura, Spain) and mRFP-GFP-LC3 from Dr Erwin Knecht (Centro de Investigación Príncipe Felipe, Spain).

Analysis of mitochondrial morphology. Cells were transfected with pDsRed2-Mito plasmid, which leads to the expression of fluorescent DsRed2 in mitochondria, thereby labeling the organelles. The transfected cells were subjected to experimental treatments, and mitochondrial morphology was evaluated by fluorescence microscopy. For quantification, the percentage of cells with abnormal mitochondrial morphologies was determined and taken as a measure of the proportion of cells with fragmented mitochondria. Fluorescence images were recorded with a laser scanning microscope (LSM 710) and the ZEN Software from Carl Zeiss AG.

Autophagic flux assay. Autophagic flux was analyzed based on methods described. 15,60 The synthesis was defined as the values of ‘Control + CQ’ and ‘Control + CQ’, whereas degradation was defined as the difference between the values of ‘Control + CQ’ and ‘Control only’ (without CQ), and between the values of ‘EIOH + CQ’ and ‘EIOH only’ (treatment without CQ). Thus, the synthesis measures the increase of GFP-LC3 dots or autophagosomes, stimulated by the treatment while in the presence of CQ (which clamps the degradation). A higher value of ‘EIOH + CQ’ compared with ‘Control + CQ’ indicates a net increase in these parameters, thus suggesting a promotion of autophagy process. The degradation, assuming at steady state, measures the increase caused by CQ, which otherwise would be degraded in the absence of CQ. If the values of degradation in the EIOH group (‘EIOH + CQ’=‘EIOH only’) are higher than those in the Control group (‘Control + CQ’=‘Control only’), it may be inferred that the treatment used promotes autophagy degradation.

Inclusion formation and autophagic clearance. The susceptibility of 4-HNE inclusions formed upon EIOH treatment toward autophagic removal was analyzed as previously described. 63 Briefly, cells were challenged with EIOH (80, 200, 400 and 600 mM) either in the presence or absence of the autophagy inhibitor, 5 mM 3-MA (Sigma-Aldrich). Thus, an increase in the percentage of cells with 4-HNE inclusions in the presence of 3-MA would suggest that 4-HNE aggresomes are cleared by autophagy.

Electron microscopy. ARPE-19 cells were seeded at a density of 3 × 10^4 cells per well in eight-well Lab-Tek chamber slides (Nalge Nunc Int., Roskilde, Denmark) and fixed in 3.5% glutaraldehyde for 1 h at 37°C. The cells were then postfixed in 2% OsO4 for 1 h at room temperature and stained with 2% uranyl acetate in the dark for 2 h at 4°C. Finally, cells were rinsed in 0.1 M PBS, dehydrated in EIOH, and infiltrated overnight with Araldite (Durcupan, Fluka, Heidelberg, Germany). Following polymerization, embedded cultures were dehydrated in EtOH, and infiltrated overnight with Araldite (Durcupan, Fluka, Heidelberg, Germany). Following polymerization, embedded cultures were dehydrated in EtOH, and infiltrated overnight with Araldite (Durcupan, Fluka, Heidelberg, Germany). Following polymerization, embedded cultures were dehydrated in EtOH, and infiltrated overnight with Araldite (Durcupan, Fluka, Heidelberg, Germany). Following polymerization, embedded cultures were dehydrated in EtOH, and infiltrated overnight with Araldite (Durcupan, Fluka, Heidelberg, Germany). Following polymerization, embedded cultures were dehydrated in EtOH, and infiltrated overnight with Araldite (Durcupan, Fluka, Heidelberg, Germany). Following polymerization, embedded cultures were dehydrated in EtOH, and infiltrated overnight with Araldite (Durcupan, Fluka, Heidelberg, Germany). Following polymerization, embedded cultures were dehydrated in EtOH, and infiltrated overnight with Araldite (Durcupan, Fluka, Heidelberg, Germany). Following polymerization, embedded cultures were dehydrated in EtOH, and infiltrated overnight with Araldite (Durcupan, Fluka, Heidelberg, Germany). Following polymerization, embedded cultures were dehydrated in EtOH, and infiltrated overnight with Araldite (Durcupan, Fluka, Heidelberg, Germany). Following polymerization, embedded cultures were dehydrated in EtOH, and infiltrated overnight with Araldite (Durcupan, Fluka, Heidelberg, Germany). Following polymerization, embedded cultures were dehydrated in EtOH, and infiltrated overnight with Araldite (Durcupan, Fluka, Heidelberg, Germany). Following polymerization, embedded cultures were dehydrated in EtOH, and infiltrated overnight with Araldite (Durcupan, Fluka, Heidelberg, Germany). Following polymerization, embedded cultures were dehydrated in EtOH, and infiltrated overnight with Araldite (Durcupan, Fluka, Heidelberg, Germany). Following polymerization, embedded cultures were dehydrated in EtOH, and infiltrated overnight with Araldite (Durcupan, Fluka, Heidelberg, Germany). Following polymerization, embedded cultures were dehydrated in EtOH, and infiltrated overnight with Araldite (Durcupan, Fluka, Heidelberg, Germany). Following polymerization, embedded cultures were dehydrated in EtOH, and infiltrated overnight with Araldite (Durcupan, Fluka, Heidelberg, Germany). Following polymerization, embedded cultures were dehydrated in EtOH, and infiltrated overnight with Araldite (Durcupan, Fluka, Heidelberg, Germany). Following polymerization, embedded cultures were dehydrated in EtOH, and infiltrated overnight with Araldite (Durcupan, Fluka, Heidelberg, Germany). Following polymerization, embedded cultures were dehydrated in EtOH, and infiltrated overnight with Araldite (Durcupan, Fluka, Heidelberg, Germany). Following polymerization, embedded cultures were dehydrated in EtOH, and infiltrated overnight with Araldite (Durcupan, Fluka, Heidelberg, Germany). Following polymerization, embedded cultures were dehydrated in EtOH, and infiltrated overnight with Araldite (Durcupan, Fluka, Heidelberg, Germany). Following polymerization, embedded cultures were dehydrated in EtOH, and infiltrated overnight with Araldite (Durcupan, Fluka, Heidelberg, Germany).
Statistical analysis. Statistical analysis was done using SPSS 15 software (IBM, Armonk, NY, USA). Lipid peroxidation, ROS, MTT, immunocytochemistry, and statistical analysis were performed in triplicate and the analysis of the samples was performed in a blind manner.

Conflict of Interest
The authors declare no conflict of interest.

Acknowledgements. We thank Carlos Bueno-Betí (LINCE, UV) for his assistance with the FACScan flow cytometer, and Leticia Gozár (Laboratory of Cellular Biology, Centro de Investigación Príncipe Felipe (CIPF)) for kindly providing the mRFP-GFP-LC3 plasmid. We also would like to acknowledge Patricia García Tarraga and Mario Soriano Navarro for their technical support at the CIPF Transfection Laboratory. This study was supported in part by a grant from the Ministerio de Ciencia e Innovación, Spain (SAF2010-21317) and funds from the Universidad Católica de Valencia to FJR.

1. Reichenbach A, Pritz-Hohmeier S. Normal and disturbed early development of the eye. Prog Retin Eye Res 1995; 14: 1–45.
2. Strauss O, Stumpff F, Mergler S, Wienrich M, Wiederholt M. The Royal College of Surgeons rat: an animal model for inherited retinal degeneration with a still unknown genetic defect. Acta Anaž 1998; 162: 101–111.
3. Winkler BS, Bouthon ME, Gotsch JD, Stenberg P. Oxidative damage and age-related macular degeneration. Mol Vis 1999; 5: 32.
4. Kurz T, Karlsson M, Brunk UT, Nilsson SE, Frerenssov C. ARPE-19 retinal pigment epithelial cells are highly resistant to oxidative stress and exercise strict control over their lysosomal redox-active iron. Autophagy 2009; 5: 494–501.
5. Strauss O. The retinal pigment epithelium in visual function. Physiol Rev 2005; 85: 485–491.
6. Gianvanni V, Rodríguez GE, Savoldelli M, Gioia R, Forlino A, Mazzini G et al. Characterization of stress response in human retinal epithelial cells. J Cell Mol Med 2013; 17: 103–115.
7. Kim JY, Zhao H, Martínez J, Doggett TA, Kolesnikov AV, Tang PH et al. Noncanonical autophagy promotes the visual cycle. Cell 2013; 154: 365–376.
8. Ferguson TA, Green DR. Autophagy and phagocytosis converge for better vision. Autophagy 2014; 10: 165–167.
9. Miller L, Shapiro AM, Cheng J, Wells PG. The free radical spin trapping agent 5,5-dimethyl-1-pyrroline N-oxide (DMPO) reduces fetal brain DNA oxidation and postnatal cognitive deficits caused by in utero exposure to a non-structurally teratogenic dose of ethanol: a role for oxidative stress. Free Radic Biol Med 2003; 34: 495–502.
10. Kojicak I, Skrístik T, Kuščer A, Šturhal J, Prešnikar L. Effect of miR-23 on autophagy. Autophagy 2014; 10: 307–315.
11. Hata T, Piano A, Milner J. Oxidation of retinal pigment epithelial cells by 17β-estradiol results in a decrease in autophagy and is associated with the loss of small CUB-domain cell death inducing cell-free death (SCD)/STED1. Exp Cell Res 2014; 327: 257–268.
12. Lin H, Gao J, Castillo AC, Long B, Keyes KT, Chen G et al. Effect of mir-23 on oxidant-induced injury in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 2013; 54: 6386–6394.
13. Youle RJ, Narendra DP. Mechanisms of mitophagy. Nat Rev Mol Cell Biol 2011; 12: 9–14.
14. Cohen G, Riahi Y, Sunda V, Deplano S, Chatgilialoglu C, Ferret C et al. Signaling properties of 4-hydroxyalkenals formed by lipid peroxidation in diabetes. Free Radic Biol Med 2011; 52: 978–987.
15. Dalleau S, Baradat M, Guérard F, Huc L. Cell death and diseases related to oxidative stress: 4-hydroxyxenonial (HNE) in the balance. Cell Death Differ 2013; 20: 1615–1630.
16. Kaamranianta K, Ryhänen T, Karjalanen HM, Lammi MJ, Suuronen T, Hultala A et al. Geldanamycin increases 4-hydroxyxenonial (HNE)-induced cell death in human retinal pigment epithelial cells. Neurosci Lett 2005; 382: 187–190.
17. Johnston JA, Ward CL, Koptio RR. Aggresomes: a cellular response to mistfolded proteins. J Cell Biol 1998; 143: 1883–1898.
18. Siegel SJ, Bleschke J, Powers ET, Kelly JW. The oxidative stress metabolite 4-hydroxyxenonial promotes Alzheimer proteolipid formation. Biochemistry 2007; 46: 1503–1510.
19. Lee JJ, Kosarab D, Del Singsore SJ, Cormier K, Mok J, Ratan RR et al. Modulation of lipid peroxidation and mitochondrial function improves neuropathology in Huntington’s disease mice. Acta Neuropathol 2011; 121: 487–498.
20. Sekigawa A, Fujita M, Sekiyama K, Takamatsu Y, Hatanaka T, Rockenstein E et al. Distinct mechanisms of axonal glialue formation in mice expressing human wild type α-synuclein or dementia with Lewy bodies-linked P123H (A531V). Mol Brains 2012; 5: 34.
21. Ross CA, Porier MA. Protein aggregation and neurodegenerative disease. Nat Med 2004; 10(Suppl.): 10–17.
22. Wang ES, Tan JN, Soong WE, Hussein K, Nukina N, Dawson VL et al. Autophagy-mediated clearance of aggresomes is not a universal phenomenon. Hum Mol Genet 2008; 17: 2570–2582.
23. Wang E, Cuervo AM. Autophagy gone away in neurodegenerative diseases. Nat Neurosci 2010; 13: 805–811.
24. Harris H, Rubinstein DC. Control of autophagy as a therapy for neurodegenerative diseases. Nat Rev Neurosci 2011; 12: 108–117.
25. Aman F, French BA, Chung D, Holsted CH, Medici V, French SW. M30 and 4HNE are sequestered in different aggresomes in the same hepatocytes. Exp Mol Pathol 2007; 83: 296–300.
26. Bardag-Gorce F, French BA, Nan L, Song H, Nguyen SK, Yong H et al. CYP2E1 induced by ethanol causes oxidative stress, proteasome inhibition and cytokeratin aggresome (Mallory body-like) formation. Exp Mol Pathol 2008; 81: 191–201.
27. Laas R, Hagedal C. Hirano bodies and chronic alcoholism. Neuropathol Appl Neurobiol 1994; 20: 12–21.
28. Eriksson AK, Lithving S, Callaghan RC, Allebeck P. Alcohol use disorders and risk of Parkinson’s disease: findings from a Swedish national cohort study 1972-2008. BMC Neurosci 2013; 15: 190.
29. Van der Mark M, Nijsen PC, Vlaanderen J, Huis A, Mulleners WM, Sas AM et al. A case-control study of the protective effect of alcohol, coffee, and cigarette consumption on Parkinson disease risk: time-since-cessation modifies the effect of tobacco smoking. PLoS One 2014; 9: e95207.
30. Brossas JY, Tanguy R, Brignon-Baudouin F, Courtois Y, Torriglia A, Treton J et al. L-DNase II mediated clearance of aggresomes is not a universal phenomenon. Hum Mol Genet 2008; 17: 2570–2582.
31. Kimura S, Noda T, Yoshitomi T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 2007; 3: 452–460.
32. Nonaka I, Mochida Y, Kuroda K, Goto M, Ohno T, Kadowaki T et al. Increased levels of autophagy in the hippocampus of aging mice. J Neurochem 2010; 114: 390–398.
33. Kawaguchi Y, Kovacs JJ, Liao AJ, Ayo A, Yao TP. The deacetylase HDAC6-mediated clearance of aggresomes is not a universal phenomenon. Hum Mol Genet 2008; 17: 2570–2582.
34. Modec J, Ueda Y, Kimura Y, Hara H, Noguchi C, Nishimura Y et al. Selective inhibition of autophagy and mitochondrial damage by the selective and potent HDAC6 inhibitor MVK-9105. Autophagy 2010; 6: 598–605.
35. Kojicak I, Skrístik T, Kuščer A, Šturhal J, Prešnikar L. Effect of miR-23 on autophagy. Autophagy 2014; 10: 307–315.
36. Kojicak I, Skrístik T, Kuščer A, Šturhal J, Prešnikar L. Effect of miR-23 on autophagy. Autophagy 2014; 10: 307–315.
45. García-Ruiz C, Morales A, Ballesta A, Rodés J, Kaplowitz N, Fernández-Checa JC. Effect of chronic ethanol feeding on glutathione and functional integrity of mitochondria in periportal and perivenous rat hepatocytes. J Clin Invest 1994; 94: 193–201.

46. Han D, Ybanez MD, Johnson HS, McDonald JN, Mesriyan P, Sanchez H et al. Dynamic adaptation of liver mitochondria to chronic alcohol feeding in mice: biogenesis, remodeling, and functional alterations. J Biol Chem 2012; 287: 42165–42179.

47. Almansa I, Fernández A, García-Ruiz C, Murlich M, Barcia JM, Miranda M et al. Brain mitochondrial alterations after chronic alcohol consumption. J Physiol Biochem 2009; 65: 305–312.

48. Hamsali M, Furuta N, Matsu A, Nezu A, Yamamoto A, Fujita N et al. Autophagosomes form at ER-mitochondria contact sites. Nature 2013; 495: 389–393.

49. Altman BJ, Ramhert JC. Metabolic stress in autophagy and cell death pathways. Cold Spring Harb Perspect Biol 2012; 4: a008763.

50. Lin CW, Zhang H, Li M, Xiong X, Chen X, Chen X et al. Pharmacological promotion of autophagy alleviates steatosis and injury in alcoholic and non-alcoholic fatty liver conditions in mice. J Hepatol 2013; 58: 993–999.

51. Lumeng L, Crabbo DW. Alcoholic liver disease. Curr Opin Gastroenterol 2000; 16: 208–218.

52. Yontaka A, Hattori N, Uchida K, Tanaka M, Stadman ER, Mizuno Y. Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease. Proc Natl Acad Sci USA 1996; 93: 2696–2701.

53. Martinez-Vicente M, Tallozczy Z, Wong E, Tang G, Koga H, Kaushik S et al. Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease. Nat Neurosci 2010; 13: 567–576.

54. Levine B, Yuan J. Autophagy in cell death: an innocent convict? J Clin Invest 2005; 115: 2679–2688.

55. Kaumranta K, Sinha D, Blaschak J, Kaupinnen A, Verés Z, Salminen A et al. Autophagy and heterophagy dysregulation leads to retinal pigment epithelium dysfunction and development of age-related macular degeneration. Autophagy 2013; 9: 973–984.

56. Vieri J, Amadio M, Marchesani N, Hyttinen JM, Kivinen N, Sironen R et al. Autophagy activation clears ELAVL1/HuR-mediated accumulation of SQSTM1/p62 during proteasomal inhibition in human retinal pigment epithelial cells. PLoS One 2013; 8: e69563.

57. Cho DH, Nakamura T, Lipton SA. Mitochondrial dynamics in cell death and neurodegeneration. Cell Mol Life Sci 2010; 67: 3435–3447.

58. Klionsky DJ, Abdalla FC, Abellovich H, Abraham RT, Acevedo-Arozena A, Adeli K et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 2012; 8: 445–544.

59. Ghislat G, Aguado C, Knecht E. Annexin A5 stimulates autophagy and inhibits endocytosis. J Cell Sci 2012; 125: 92–107.

60. Mizushima N, Yoshimori T. How to interpret LC3 immunoblotting. Autophagy 2007; 3: 542–545.