ASYMPTOTIC BEHAVIOR OF NEURAL FIELDS IN AN UNBOUNDED DOMAIN

SEVERINO HORÁCIO DA SILVA AND MICHEL BARROS SILVA

Abstract. In this paper, we prove the existence of a compact global attractor for the flow generated by equation
\[
\frac{\partial u}{\partial t}(x, t) + u(x, t) = \int_{\mathbb{R}^N} J(x-y)(f(u(y, t)))dy + h, \quad h > 0, \quad x \in \mathbb{R}^N, \quad t \in \mathbb{R}_+
\]
in the weight space $L^p(\mathbb{R}^N, \rho)$. We also give uniform estimates on the size of the attractor and we exhibit a Lyapunov functional to the flow generated by this equation.

1. Introduction

In this work we consider the non local evolution equation
\[
\frac{\partial u}{\partial t}(x, t) = -u(x, t) + J \ast (f \circ u)(x, t) + h, \quad h > 0,
\]
where $u(x, t)$ is a real-valued function on $\mathbb{R}^N \times \mathbb{R}_+$, h is a positive constant, $J \in C^1(\mathbb{R}^N)$ is a non negative even function supported in the ball of center at the origin and radius 1, and, f is a non negative nondecreasing function. The \ast above denotes convolution product in \mathbb{R}^N, namely:
\[
(J \ast u)(x) = \int_{\mathbb{R}^N} J(x-y)u(y)dy.
\]

The function $u(x, t)$ denotes the mean membrane potential of a patch of tissue located at position $x \in \mathbb{R}^N$ at time $t \geq 0$. The connection function $J(x)$ determines the coupling between the elements at position x and position y. The non negative nondecreasing function $f(u)$ gives the neural firing rate, or averages rate at which spikes are generated, corresponding to an activity level u. The neurons at a point x are said to be active if $f(u(x, t)) > 0$. The parameter h denotes a constant external stimulus applied uniformly to the entire neural field.

For the particular case, where $N = 1$, there are already in the literature several works dedicated to the analysis of this model, (see, for example, [1], [4], [6], [11], [12], [14], [18], [19], [20], [21], [22], [23], [25] and [26]). Also there are some works for this model with $N > 1$, (see for example [7] and [14]).

In this paper we extend, for $L^p(\mathbb{R}^N, \rho)$, $N \geq 1$ and $1 < p < \infty$, the results (on global attractors) obtained in [20] in the phase space $L^p(\mathbb{R}, \rho)$. Furthermore, we exhibit a Lyapunov functional to the flow generated by (1.1).

2000 Mathematics Subject Classification. 45J05, 45M05, 34D45.
Key words and phrases. Well-posedness; global attractor; upper semicontinuity of attractors.

1Supported by CAPES/CNPq-Brazil.
2Supported by CNPq-Brazil.
This paper is organized as follows. In Section 2 we prove that, in the phase space $L^p(\mathbb{R}^N, \rho) = \{ u \in L^1_{\text{loc}}(\mathbb{R}^N) : \int |u|^p \rho(x) dx < +\infty \}$, the Cauchy problem for (1.1) is well posed with globally defined solutions. In Section 3 we prove that the system is dissipative in the sense of [9], that is, it has a global compact attractor, generalizing Theorem 3.5 of [20]. In our proof, we use the Sobolev’s compact embedding $W^{-1,p}(B(0, l)) \hookrightarrow L^p(B(0, l))$ and the same techniques used in [15] and [20] (see also [2], [16] and [17] for related work). In Section 4, we prove some estimates for the attractor and finally, in Section 5, using ideas from [8], [13] and [22], we exhibit a Lyapunov function for the flow generated by (1.1).

2. Well-posedness

In this section we consider the flow generated by (1.1) in the space $L^p(\mathbb{R}^N, \rho)$ defined by

$$L^p(\mathbb{R}^N, \rho) = \{ u \in L^1_{\text{loc}}(\mathbb{R}^N) : \int_{\mathbb{R}^N} |u(x)|^p \rho(x) dx < +\infty \},$$

with norm $\|u\|_{L^p(\mathbb{R}^N, \rho)} = \left(\int_{\mathbb{R}^N} |u(x)|^p \rho(x) dx \right)^{1/p}$. Note that, in this space, the constant function equal to 1 has norm 1.

As similarly assumed in [20], we assume here the following hypotheses on the functions f and ρ:

(H1) the function $f : \mathbb{R} \to \mathbb{R}$ is globally Lipschitz, that is, there exists $k_1 > 0$ such that

$$|f(x) - f(y)| \leq k_1|x - y|, \quad \forall x, y \in \mathbb{R}, \quad (2.1)$$

(H2) $\rho : \mathbb{R}^N \to \mathbb{R}$ is an integrable positive even function with $\int_{\mathbb{R}^N} \rho(x) dx = 1$ and there exists constant $K > 0$ such that

$$\sup\{\rho(x) : x \in \mathbb{R}^N, |x - y| \leq 1\} \leq K \rho(y), \quad \forall y \in \mathbb{R}^N.$$

The corresponding higher-order Sobolev space $W^{k,p}(\mathbb{R}^N, \rho)$ is the space of functions $u \in L^p(\mathbb{R}^N, \rho)$ whose distributional derivatives up to order k are also in $L^p(\mathbb{R}^N, \rho)$, with norm

$$\|u\|_{W^{k,p}(\mathbb{R}^N, \rho)} = \left(\sum_{i=1}^{k} \left\| \frac{\partial^i u}{\partial x^i} \right\|_{L^p(\mathbb{R}^N, \rho)}^p \right)^{1/p}.$$

Lemma 2.1. Suppose that (H2) holds. Then

$$\|J \star u\|_{L^p(\mathbb{R}^N, \rho)} \leq K^{1/p} \|J\|_{L^1} \|u\|_{L^p(\mathbb{R}^N, \rho)}.$$

Proof. Since J is bounded and compact supported, $(J \star u)(x)$ is well defined for $u \in L^1_{\text{loc}}(\mathbb{R}^N)$. Thus,

$$\|J \star u\|_{L^p(\mathbb{R}^N, \rho)}^p = \int_{\mathbb{R}^N} |(J \star u)(x)|^p \rho(x) dx$$

$$= \int_{\mathbb{R}^N} \left(\int_{\mathbb{R}^N} J(x - y)u(y) dy \right)^p \rho(x) dx$$

$$\leq \int_{\mathbb{R}^N} \left(\int_{\mathbb{R}^N} |J(x - y)||u(y)| dy \right)^p \rho(x) dx.$$

Using

$$\frac{p - 1}{p} + \frac{1}{p} = 1,$$

(2.2)
we obtain
\[\|J * u\|_{L^p(B(y,1),\rho)}^p \leq \int_{\mathbb{R}^N} (\int_{\mathbb{R}^N} |J(x-y)|^{(p-1)/p} |J(x-y)|^{1/p} |u(y)| dy)^p \rho(x) dx. \]

By Holder’s inequality (see [3]), we have
\[\|J * u\|_{L^p(B(y,1),\rho)}^p \leq \int_{\mathbb{R}^N} \left(\int_{\mathbb{R}^N} |J(x-y)| dy \right)^{(p-1)/p} \left(\int_{\mathbb{R}^N} |J(x-y)||u(y)| \rho(x) dx \right)^p \left(\int_{\mathbb{R}^N} |u(y)|^p dy \right) \rho(x) dx \]
\[= \int_{\mathbb{R}^N} |||J|||_{L^1}^{-1} \left(\int_{\mathbb{R}^N} |J(x-y)||u(y)| \rho(x) dx \right)^p \left(\int_{\mathbb{R}^N} |u(y)|^p dy \right) \rho(x) dx. \]

Denoting the closed ball of center y and radius 1 by B[y,1] and using (1.2) and (H2), follows that
\[\|J * u\|_{L^p(B(y,1),\rho)}^p \leq \int_{\mathbb{R}^N} \left(\int_{B[y,1]} J(x) \rho(x) dx \right) |u(y)|^p dy \]
\[\leq \|J\|_{L^1}^{-1} \int_{\mathbb{R}^N} \left(K \rho(y) \int_{B[y,1]} J(x) dx \right) |u(y)|^p dy \]
\[\leq K \|J\|_{L^1} \int_{\mathbb{R}^N} |u(y)|^p \rho(y) dy \]
\[= K \|J\|_{L^1} \|u\|_{L^p(B(y,1),\rho)}^p. \]

It concludes the result.

Proposition 2.2. Suppose that the hypotheses (H1) and (H2) hold. Then the function

\[F(u) = -u + J * (f \circ u) + h \]

is globally Lipschitz in L^p(\mathbb{R}^N, \rho).

Proof. From triangle inequality and Lemma 2.1, it follows that
\[\|F(u) - F(v)\|_{L^p(\mathbb{R}^N, \rho)} \leq \|v - u\|_{L^p(\mathbb{R}^N, \rho)} + \|J * (f \circ u) - J * (f \circ v)\|_{L^p(\mathbb{R}^N, \rho)} \]
\[\leq \|v - u\|_{L^p(\mathbb{R}^N, \rho)} + K^{1/p} \|J\|_{L^1} \|(f \circ u) - (f \circ v)\|_{L^p(\mathbb{R}^N, \rho)}. \]

We have
\[\|(f \circ u) - (f \circ v)\|_{L^p(\mathbb{R}^N, \rho)} \leq \int_{\mathbb{R}^N} k_1^p |u(x) - v(x)|^p \rho(x) dx = k_1^p \|u - v\|_{L^p(\mathbb{R}^N, \rho)}. \]

Then
\[\|F(u) - F(v)\|_{L^p(\mathbb{R}^N, \rho)} \leq (1 + K^{1/p} \|J\|_{L^1} k_1) \|u - v\|_{L^p(\mathbb{R}^N, \rho)}. \]

Therefore, F is globally Lipschitz in L^p(\mathbb{R}^N, \rho).

Remark 2.3. From Proposition 2.2 and standard results of ODEs in Banach spaces (see [4]), follows that the Cauchy problem for (1.1) is well posed in L^p(\mathbb{R}^N, \rho) with globally defined solutions.
3. Existence of a global attractor

In this section, we prove the existence of a global maximal invariant compact set \(\mathcal{A} \subset L^p(\mathbb{R}^N, \rho) \) for the flow of (1.1), which attracts each bounded set of \(L^p(\mathbb{R}^N, \rho) \) (the global attractor, see [9] and [24]), generalizing Theorem 3.3 in [20]. For this, beyond (H1) and (H2) we assume the following additional hypotheses:

(H3) there exists \(a > 0 \) such that \(|f(x)| \leq a, \quad \forall x \in \mathbb{R}^N\);

(H4) the non negative, symmetric bounded function \(J \) has bounded derivative with

\[
\sup_{x \in \mathbb{R}^N} \int_{\mathbb{R}^N} \partial_x J(x - y) dy \leq S \quad \text{and} \quad \sup_{y \in \mathbb{R}^N} \int_{\mathbb{R}^N} \partial_y J(x - y) dx \leq S,
\]

for some constant \(0 < S < \infty \).

From now on we denote by \(S(t) \) the flow generated by (1.1).

We recall that a set \(B \subset L^p(\mathbb{R}^N, \rho) \) is an absorbing set for the flow \(S(t) \) in \(L^p(\mathbb{R}^N, \rho) \) if, for any bounded set \(B \subset L^p(\mathbb{R}^N, \rho) \), there is a \(t_1 > 0 \) such that \(S(t)B \subset B \) for any \(t \geq t_1 \), (see [24]).

Lemma 3.1. Suppose that the hypotheses (H1), (H2) and (H3) hold and let \(R = aK^{1/p}\|J\|_{L^1} + \varepsilon \) is an absorbing set for the flow \(S(t) \) in \(L^p(\mathbb{R}^N, \rho) \) for any \(\varepsilon > 0 \).

Proof. Let \(u(x, t) \) be the solution of (1.1) with initial condition \(u(\cdot, 0) \in L^p(\mathbb{R}^N, \rho) \). Then, by the variation of constants formula,

\[
u(x, t) = e^{-t}u(x, 0) + \int_0^t e^{s-t}J \ast (f \circ u)(x, s) + h) ds.
\]

Hence

\[
\|u(\cdot, t)\|_{L^p(\mathbb{R}^N, \rho)} \leq \|e^{-t}u(\cdot, 0)\|_{L^p(\mathbb{R}^N, \rho)} + \int_0^t e^{s-t}\|J \ast (f \circ u)(\cdot, s) + h\|_{L^p(\mathbb{R}^N, \rho)} ds
\]

\[
\leq e^{-t}\|u(\cdot, 0)\|_{L^p(\mathbb{R}^N, \rho)} + \int_0^t e^{s-t}\|J \ast (f \circ u)(\cdot, s)\|_{L^p(\mathbb{R}^N, \rho)} + h) ds.
\]

Then, using Lemma 2.1 it follows that

\[
\|u(\cdot, t)\|_{L^p(\mathbb{R}^N, \rho)} \leq e^{-t}\|u(\cdot, 0)\|_{L^p(\mathbb{R}^N, \rho)} + \int_0^t e^{s-t}[K^{1/p}\|J\|_{L^1}\|f(u(\cdot, 0))\|_{L^p(\mathbb{R}^N, \rho)} + h) ds
\]

Now, from (H3), we have

\[
\|f(u(\cdot, s))\|_{L^p(\mathbb{R}^N, \rho)}^p = \int_{\mathbb{R}^N} |f(u(x, s))|^p \rho(x) dx
\]

\[
\leq a^p \int_{\mathbb{R}^N} \rho(x) dx = a^p.
\]
Thus
\[
\|u(\cdot, t)\|_{L^p(\mathbb{R}^N, \rho)} \leq e^{-t}\|u(\cdot, 0)\|_{L^p(\mathbb{R}^N, \rho)} + \int_0^t e^{s-t} aK^{1/p} \|J\|_{L^1} + h \, ds
\]
\[
= e^{-t}\|u(\cdot, 0)\|_{L^p(\mathbb{R}^N, \rho)} + R.
\]
Therefore, for any \(t > \ln \left(\frac{\|u(\cdot, 0)\|_{L^p(\mathbb{R}^N, \rho)}}{\varepsilon} \right) \), we have \(\|u(\cdot, t)\|_{L^p(\mathbb{R}^N, \rho)} < \varepsilon + R \), and the proof is complete. \(\Box \)

Lemma 3.2. Suppose that the hypotheses \((H1)-(H4)\) hold. Then, for any \(\eta > 0 \), there exists \(t_\eta \) such that \(S(t_\eta)B(0, R+\varepsilon) \) has a finite covering by balls of \(L^p(\mathbb{R}^N, \rho) \) with radius smaller than \(\eta \).

Proof. From Lemma 3.1 it follows that \(B(0, R+\varepsilon) \) is invariant. Now, the solution of \((1.1)\) with initial condition \(u_0 \in B(0, R+\varepsilon) \) is given, by the variation of constant formula, by
\[
u(x, t) = e^{-t}u_0(x) \text{ and } w(x, t) = \int_0^t e^{s-t}[(J * (f \circ u))(x, s) + h]ds.
\]
Write
\[
v(x, t) = e^{-t}u_0(x) \text{ and } w(x, t) = \int_0^t e^{s-t}[(J * (f \circ u))(x, s) + h]ds.
\]
Let \(\eta > 0 \) given. We may find \(t(\eta) \) such that if \(t \geq t(\eta) \), then \(\|v(\cdot, t)\|_{L^p(\mathbb{R}^N, \rho)} \leq \frac{\eta}{2} \).

Now, using (H3), we obtain
\[
\|J * (f \circ u)(\cdot, s)\|_{L^p(\mathbb{R}^N, \rho)}^p = \int_{\mathbb{R}^N} |J * (f \circ u)(x, s)|^p \rho(x)dx
\]
\[
= \int_{\mathbb{R}^N} \left| \int_{\mathbb{R}^N} J(x-y)f(u(y))dy \right|^p \rho(x)dx
\]
\[
\leq \int_{\mathbb{R}^N} \left(\int_{\mathbb{R}^N} J(x-y)|f(u(y))|dy \right)^p \rho(x)dx
\]
\[
\leq \int_{\mathbb{R}^N} \left(a \int_{\mathbb{R}^N} J(x-y)dy \right)^p \rho(x)dx
\]
\[
= \int_{\mathbb{R}^N} (a\|J\|_{L^1})^p \rho(x)dx
\]
\[
= (a\|J\|_{L^1})^p \int_{\mathbb{R}^N} \rho(x)dx
\]
\[
= (a\|J\|_{L^1})^p.
\]
Thus,
\[
\|J * (f \circ u)(\cdot, s)\|_{L^p(\mathbb{R}^N, \rho)} \leq a\|J\|_{L^1}.
\]
Hence
\[
\|w(\cdot, t)\|_{L^p(\mathbb{R}^N, \rho)} \leq \int_0^t e^{-(t-s)}(\|J * (f \circ u)(\cdot, s)\|_{L^p(\mathbb{R}^N, \rho)} + \|h\|_{L^p(\mathbb{R}^N, \rho)})ds
\]
\[
\leq \int_0^t e^{-(t-s)}(a\|J\|_{L^1} + h)ds
\]
\[
= a\|J\|_{L^1} + h.
\]
(3.1)
On the other hand, by (H3), we have
\[
|w(x,t)| \leq \int_0^t e^{-(t-s)}\left[|J \ast (f \circ u)(x,s)| + h\right]ds
\]
\[
= \int_0^t e^{-(t-s)} \left| \int_{\mathbb{R}^N} J(x-y) f(u(y,t))dy \right| + h \ ds
\]
\[
\leq \int_0^t e^{-(t-s)} \left(\int_{\mathbb{R}^N} J(x-y) \|f(u(y,t))\|dy + h \right) ds
\]
\[
\leq \int_0^t e^{-(t-s)} \left(a \int_{\mathbb{R}^N} J(x-y)dy + h \right) ds
\]
\[
= \int_0^t e^{-(t-s)} (a\|J\|_{L^1} + h) ds
\]
\[
= a\|J\|_{L^1} + h. \quad (3.2)
\]
Furthermore, differentiating with respect to \(x_i\), for \(t \geq 0\), we have
\[
\frac{\partial w}{\partial x_i}(x,t) = \int_0^t e^{-(t-s)} \frac{\partial}{\partial x_i} J \ast (f \circ u)(x,s)ds, \quad i = 1, \ldots, N.
\]
Thus
\[
\left| \frac{\partial w}{\partial x_i}(x,t) \right| \leq \int_0^t e^{-(t-s)} \left| \frac{\partial}{\partial x_i} J \ast (f \circ u)(x,s) \right| ds.
\]
But, using (H4), obtain
\[
|\frac{\partial}{\partial x_i} J \ast (f \circ u)(x,s)| \leq \int_{\mathbb{R}^N} a |\frac{\partial}{\partial x_i} J(x-y)| dy
\]
\[
\leq aS < \infty,
\]
it follows that
\[
\left| \frac{\partial w}{\partial x_i}(x,t) \right| \leq \int_0^t e^{-(t-s)} aS ds \leq aS < \infty. \quad (3.3)
\]
Now, let \(l > 0\) be chosen such that
\[
(a\|J\|_{L^1} + h) \left(\int_{\mathbb{R}^N} (1 - \chi_{B[0,l]})^{p/2}/(p-1) \rho(x)dx \right)^{(p-1)/p^2} \leq \frac{\eta}{4}, \quad (3.4)
\]
where \(\chi_{B[0,l]}\) denotes the characteristic function of the ball \(B[0,l]\). Then, using (3.1), (3.2) and (3.4), we obtain
\[
\| (1 - \chi_{B[0,l]}(\cdot) w(\cdot, t) \|_{L^p(\mathbb{R}^N, \rho)}^p = \int_{\mathbb{R}^N} |(1 - \chi_{B[0,l]}(x))w(x,t)|^p \rho(x)dx
\]
\[
= \int_{\mathbb{R}^N} |(1 - \chi_{B[0,l]}(x))^p|w(x,t)|^p \rho(x)dx.
\]
Using (2.2) and Holder’s inequality, follows that
\[\| (1 - \chi_{B(0,l)})(\cdot)w(\cdot, t) \|_{L^p(R^N, \rho)}^p = \]
\[= \left(\int_{R^N} |w(x, t)|r(x)|1/p|(1 - \chi_{B(0,l)}(x))|w(x, t)|^{p-1}\rho(x)^{(p-1)/p}dx \right)^{p/(p-1)} \]
\[\leq \left(\int_{R^N} |w(x, t)|r(x)dx \right)^{1/p} \left(\int_{R^N} |(1 - \chi_{B(0,l)}(x))|w(x, t)|^{p-1}\rho(x)dx \right)^{(p-1)/p} \]
\[= \|w(\cdot, t)\|_{L^p(R^N, \rho)} \left(\int_{R^N} |(1 - \chi_{B(0,l)}(x))|w(x, t)|^{p-1}\rho(x)dx \right)^{(p-1)/p} \]
\[\leq \left(a\|J\|_{L^1} + h \right) \left(\int_{R^N} |(1 - \chi_{B(0,l)}(x))|w(x, t)|^{p-1}\rho(x)dx \right)^{(p-1)/p} \]
\[= \left(a\|J\|_{L^1} + h \right) \left(\int_{R^N} |(1 - \chi_{B(0,l)}(x))|w(x, t)|^{p-1}\rho(x)dx \right)^{(p-1)/p} \]
\[< \frac{\eta}{4} \]

Also, by (3.2) and (3.3), the restriction of \(w(\cdot, t)\) to the ball \(B(0,l)\) is bounded in \(W^{1,p}(B(0,l))\) (by a constant independent of \(u_0 \in B(0, R + \varepsilon)\) and of \(t\)), and therefore the set \(\{\chi_{B(0,l)}w(\cdot, t)\} \) with \(w(\cdot, 0) \in B(0, R + \varepsilon)\) is relatively compact subset of \(L^p(R^N, \rho)\) for any \(t > 0\) and, hence, it can be covered by a finite number of balls with radius smaller than \(\frac{\eta}{4}\).

Therefore, since
\[u(\cdot, t) = v(\cdot, t) + \chi_{B(0,l)}w(\cdot, t) + (1 - \chi_{B(0,l)})w(\cdot, t), \]
it follows that \(S(t\eta)B(0, R + \varepsilon)\) has a finite covering by balls of \(L^p(R^N, \rho)\) with radius smaller than \(\eta\), and the result is proved.

Denoting by \(\omega(C)\) the \(\omega\)-limit of a set \(C\), we obtain the result below, whose proof is omitted because it is very similar to Theorem 3.3 in [20].

Theorem 3.3. Assume the same hypotheses of Lemma 3.2. Then \(A = \omega(B(0, R + \varepsilon))\), is a global attractor for the flow \(S(t)\) generated by (1.1) in \(L^p(R^N, \rho)\) which is contained in the ball of radius \(R\).

4. BOUNDEDNESS RESULTS

In this section we prove uniform estimates for the attractor whose existence was given in the Theorem 3.3.

Theorem 4.1. Assume the same hypotheses of Lemma 3.2. Then the attractor \(A\) belongs to the ball \(\| \cdot \|_{L^\infty(R^N)} \leq r\), where \(r = a\|J\|_{L^1} + h\).

Proof. Let \(u(x, t)\) be a solution of (1.1) in \(A\). Then, as we see in (1.1),
\[u(x, t) = \int_{-\infty}^{t} e^{-(t-s)}[J * (f \circ u)(x, s) + h]ds, \]
where the equality above is in the sense of $L^p(\mathbb{R}^N, \rho)$. Thus, using (H3), obtain
\[|u(x, t)| \leq \int_{-\infty}^{t} e^{-(t-s)|J \ast (f \circ u)(x, s)| + h} ds \]
\[\leq \int_{-\infty}^{t} (a\|J\|_{L^1} + h)e^{-(t-s)} ds \]
\[= \int_{-\infty}^{t} r e^{-(t-s)} ds = r. \]

Proceeding as in [20], replacing $\|\cdot\|_{L^2(\mathbb{R}, \rho)}$ by $\|\cdot\|_{L^p(\mathbb{R}^N, \rho)}$, we obtain the following result.

Theorem 4.2. Assume the same hypotheses as in Lemma 3.2. Then, fixed J_0, for J close to J_0, the family of attractors $\{A_J\}$ satisfies:
\[\cup_J A_J \subset B[0, R], \]
and furthermore, it is upper semicontinuous with respect to J at J_0, that is
\[\sup_{x \in A_J} \inf_{y \in A_{J_0}} \|x - y\|_{L^p(\mathbb{R}^N, \rho)} \to 0, \quad \text{as } J \to J_0. \]

5. **Existence of energy functional**

In this section, we exhibit a energy functional for the flow of (1.1), which decreases along of solutions (1.1). For this, beyond hypotheses (H1)-(H4), we assume the following additional hypothesis on f:

(H5) the nondecreasing function f takes values between 0 and a and satisfying, for $0 \leq s \leq a$
\[\left| \int_0^s f^{-1}(r) dr \right| < L < \infty. \quad (5.1) \]

(H6) f satisfies
\[\int_{\mathbb{R}^N} |f(u(x)) - f(u_0)| dx < \infty. \]

Remark 5.1. The hypothesis (H6) always occurs, for example, in fields with finite excited region, which tend to resting state, when $|x| \to \infty$.

Motivated by energy functionals from [7], [8], [13] and [22], we define $F : L^p(\mathbb{R}^N, \rho) \to \mathbb{R}$ by
\[F(u) = \int_{\mathbb{R}^N} \left[-\frac{1}{2} f(u(x)) \int_{\mathbb{R}^N} J(x - y) f(u(y)) dy + \int_{\mathbb{R}^N} f^{-1}(r) dr - h f(u(x)) \right] dx. \quad (5.2) \]

Remark 5.2. The similar functional given in [22] is well defined in whole phase space. Unfortunately this does not occur here, because the functional given in (5.2) can take values $\pm \infty$. An example where this occurs is when whole field is at homogeneous resting state with constant membrane potential u_0. In this case, the external stimulus applied, h, satisfies $h = u_0 - \|J\|_{L^1} f(u_0)$.
Let \(u_0 \) be an equilibrium solution for (1.1), which is given implicitly by equation
\[
\|J\|_{L^1} f(u_0) + h.
\]
Write \(U = u - u_0 \) and \(g(U) = f(U + u_0) - f(u_0) \). Then the equation (1.1) can be write as
\[
\frac{\partial U}{\partial t}(x, t) = -U(x, t) + J \ast (g \circ U)(x, t).
\] (5.3)
For equation (5.3), we define the functional
\[
G(U) = \int_{\mathbb{R}^N} \left[-\frac{1}{2} g(U(x)) \int_{\mathbb{R}^N} J(x - y)g(U(y))dy + \int_0^{g(U(x))} g^{-1}(r)dr \right] dx. \quad (5.4)
\]
Thus we obtain the following result:

Theorem 5.3. Let \(U(\cdot, t) \) be a solution of (5.3). Then, under the hypotheses, (H3), (H5) and (H6), we have
\[
G(U) = \int_{\mathbb{R}^N} \left[-\frac{1}{2} [f(u(x)) - f(u_0)] \int_{\mathbb{R}^N} J(x - y)[f(u(y)) - f(u_0)]dy
+ \int_{f(u_0)}^{f(u(x))} f^{-1}(r)dr \right] dx < \infty \quad (5.5)
\]
and
\[
\frac{d}{dt} G(U(x, t)) = -\int_{\mathbb{R}^N} f'(u(x, t)) \left(\frac{\partial u}{\partial x} (x, t) \right)^2 dx \leq 0. \quad (5.6)
\]

Proof. Since \(g(U) = f(U + u_0) - f(u_0) \), from equation (5.4), we obtain
\[
G(U) = \int_{\mathbb{R}^N} \left[-\frac{1}{2} [f(U(x) + u_0) - f(u_0)] \int_{\mathbb{R}^N} J(x - y)[f(U(y) + u_0) - f(u_0)]dy
+ \int_0^{g(U(x))} g^{-1}(r)dr \right] dx.
\]
Now, using that \(U = u - u_0, g(0) = 0 \) and the fact that \(f^{-1} \) and \(g^{-1} \) differ only by translation, which is an isometry, follows that
\[
\int_{f(u_0)}^{f(u(x))} f^{-1}(r)dr = \int_0^{f(U(x) + u_0) - f(u_0)} f^{-1}(r)dr = \int_0^{g(U(x))} g^{-1}(r)dr.
\]
Hence
\[
G(U) = \int_{\mathbb{R}^N} \left[-\frac{1}{2} [f(u(x)) - f(u_0)] \int_{\mathbb{R}^N} J(x - y)[f(u(y)) - f(u_0)]dy
+ \int_{f(u_0)}^{f(u(x))} f^{-1}(r)dr \right] dx.
\]
From hypotheses (H5) and (H6), it follows that \(|G(U)| < \infty\).
Furthermore, proceeding as in the Theorem 4.4 of [22], it is easy to verify that
\[
\frac{d}{dt} G(U(x, t)) = -\int_{\mathbb{R}^N} g(U(x, t)) \left(\frac{\partial U}{\partial t} (x, t) \right)^2 dx.
\]
Hence
\[
\frac{d}{dt} G(U(x,t)) = - \int_{\mathbb{R}^N} g'(U(x,t)) \left(\frac{\partial U}{\partial t}(x,t) \right)^2 dx
\]
\[
= - \int_{\mathbb{R}^N} \left[f'(U(x,t) + u_0) - \frac{d}{dt}(f(u_0)) \right] \left(\frac{\partial u}{\partial t}(x,t) - \frac{\partial u_0}{\partial t} \right)^2 dx
\]
\[
= - \int_{\mathbb{R}^N} \left[f'(u(x,t)) \right] \left(\frac{\partial u}{\partial t}(x,t) \right)^2 dx.
\]
From hypothesis (H3) the result follows. □

Remark 5.4. From Theorem 5.3, it follows that the functional given in (5.4) is actually a Lyapunov functional for the flow generated by equation (5.3).

6. **Concluding Remarks**

In this paper we extend results on global dynamical of the neural fields equation considering fields in \(x \in \mathbb{R}^N \) and more abstracts phase spaces. Although realistically, \(N \) should be equal to 1, 2 or 3, we do not restrict the calculations to this case, because all estimates also are valid with \(N > 3 \). Furthermore, motivated by energy functional existing in the literature, we exhibit one functional energy (type Lyapunov functional), which is well defined throughout phase space, which it is a lot important for studying existence and stability of solutions of equilibria of equations neural fields.

Acknowledgments. The authors would like to thank the professors Antonio L. Pereira (USP), and Flank D. M. Bezerra (UFPB) for their suggestions for this work.

References

[1] S. Amari; *Dynamics of pattern formation in lateral-inhibition type neural fields*, Biol. Cybern., 27 (1977), 77-87.

[2] F. D. M. Bezerra, A. L. Pereira, S. H. da Silva; *Existence and continuity of global attractors and nonhomogeneous equilibria for a class of evolution equations with non local terms*, Journal of Mathematical Analysis and Applications, 396 (2012), 590-600.

[3] H. Brezis; *Análisis funcional teoría y aplicaciones*, Alianza, Madrid, 1984.

[4] F. Chen, *Travelling waves for a neural network*, Electronic Journal Differential Equations, 2003 (2003), no. 13, 1-14.

[5] J. L. Daleckii, and M. G. Krein; *Stability of Solutions of Differential Equations in Banach Space*, American Mathematical Society Providence, Rhode Island, 1974.

[6] G. B. Ermentrout and J. B. McLeod; *Existence and uniqueness of travelling waves for a neural network*, Proceedings of the Royal Society of Edinburgh, 123A (1993), 461-478.

[7] D. A. French, Identification of a Free Energy Functional in an Integro-Differential Equation Model for Neuronal Network Activity. Applied Mathematics Letters; 17 (2004) 1047-1051.

[8] M. A. Giese; Dynamic Neural Field Theory for Motion Perception, Klumer Academic Publishers, Boston, 1999.

[9] J. K. Hale; *Asymptotic Behavior of dissipative Systems*, American Surveys and Monographs, N. 25, 1988.

[10] J. J. Hopfield; Neurons with graded response have collective computational properties like those of two-state neurons, Proceeding of the National Academy Sciences USA, 81 (1984) 3088-3092.

[11] K. Kishimoto and S. Amari; *Existence and Stability of Local Excitations in Homogeneous Neural Fields*, J. Math. Biology, 07 (1979), 303-1979.

[12] E. P. Krisner; *The link between integral equations and higher order ODEs*, J. Math. Anal. Appl., 291 (2004), 165-179.
[13] S. Kubota and K. Aihara; Analyzing Global Dynamics of a Neural Field Model, Neural Processing Letters, 21 (2005) 133-141.

[14] C. R. Laing, W. C. Troy, B. Gutkin and G. B. Ermentrout; Multiplos Bumps in a Neural Model of Working Memory, SIAM J. Appl. Math., 63 (2002), no. 1, 62-97.

[15] A. L. Pereira; Global attractor and nonhomogeneous equilibria for a non local evolution equation in an unbounded domain, J. Diff. Equations, 226 (2006), 352-372.

[16] A. L. Pereira and S. H. Silva; Existence of global attractor and gradient property for a class of non local evolution equation, São Paulo Journal Mathematical Science, 2, no. 1, (2008), 1-20.

[17] A. L. Pereira and S. H. Silva; Continuity of global attractor for a class of non local evolution equation, Discrete and continuous dynamical systems, 26, no. 3, (2010), 1073-1100.

[18] J. E. Rubin and W. C. Troy; Sustained spatial patterns of activity in neural populations without recurrent Excitation, SIAM J. Appl. Math., 64 (2004), 1609-1635.

[19] S. H. Silva and A. L. Pereira; Global attractors for neural fields in a weighted space. Matemática Contemporânea, 36 (2009), 139-153.

[20] S.H. da Silva; Existence and upper semicontinuity of global attractors for neural fields in an unbounded domain. Electronic Journal of Differential Equations, 2010, no. 138, (2010) 1-12.

[21] S.H. da Silva; Existence and upper semicontinuity of global attractors for neural network in a bounded domain. International Journal of Bifurcation and Chaos, 2011, no. 19, (2011) 1-23.

[22] S.H. da Silva; Properties of an Equation for Neural Fields in a Bounded Domain. Electronic Journal of Differential Equations, 2012, (2012), 1-9.

[23] S. H. da Silva; Lower semicontinuity of global attractors for equation of neural network in a bounded domain (submited).

[24] R. Teman; Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer, 1988.

[25] H. R. Wilson and J. D. Cowan; Excitatory and inhibitory interactions in localized populations of model neurons, Biophys. J., 12 (1972), 1-24.

[26] S. Wu, S. Amari and H. Nakahara; Population coding and decoding in a neural field: a computational study, Neural Computation, 14 (2002), 999-1026.

Severino Horácio da Silva
Unidade Acadêmica de Matemática e Estatística UAME/CCT/UFCG, Rua Aprígio Veloso, 882, Bairro Universitário CEP 58429-900, Campina Grande-PB, Brasil.
E-mail address: horacio@dme.ufcg.edu.br

Michel Barros Silva
Unidade Acadêmica de Matemática e Estatística UAME/CCT/UFCG, Rua Aprígio Veloso, 882, Bairro Universitário CEP 58429-900, Campina Grande-PB, Brasil.
E-mail address: michel@dme.ufcg.edu.br