Research Article

Siwen Tang*, Pengfei Liu, Zhen Su, Yu Lei, Qian Liu, and Deshun Liu

Preparation and cutting performance of nano-scaled Al$_2$O$_3$-coated micro-textured cutting tool prepared by atomic layer deposition

https://doi.org/10.1515/htmp-2021-0021
received January 07, 2021; accepted March 18, 2021

Abstract: Al$_2$O$_3$ nano-scaled coating was prepared on micro-textured YT5 cemented carbide cutting tool by atomic layer deposition ALD. The effect of Al$_2$O$_3$ nano-scaled coating, with and without combined action of texture, on the cutting performance was studied by orthogonal cutting test. The results were compared with micro-textured cutting tool and YT5 cutting tool. They show that the micro-texture and nano-scaled Al$_2$O$_3$ coated on the micro-texture both can reduce the cutting force and friction coefficient of the tool, and the tools with nano-scaled Al$_2$O$_3$ coated on the micro-texture are more efficient. Furthermore, the friction coefficient of the 100 nm Al$_2$O$_3$ coated micro-texture tool is relatively low. When the distance of the micro-pits is 0.15 mm, the friction coefficient is lowest among the four kinds of pit textured nanometer coating tools. The friction coefficient is the lowest when the direction of the groove in strip textured nanometer coating tool is perpendicular to the main cutting edge.

1 Introduction

Dry cutting technology, as an environment-friendly and cost-saving machining technology [1–4], is getting more attention because people keep a watchful eye on the environment problem. However, severe friction occurs between tool and chips during dry cutting process, which generate a large amount of heat, and then causes the tool to fail prematurely. Moreover, the oxidation of tools can reduce its mechanical properties and significantly affect its service performance [5]. To improve machining accuracy and efficiency, the coated cemented carbide tools have been more and more applied to the machining [6]. Among the coating materials, Al$_2$O$_3$ offers great chemical inertness and oxidation resistance and enhances the wear resistance [7–9]. Al$_2$O$_3$ retained hardness at elevated temperature, showing a high chemical and thermal stability, even at temperatures above 1,000°C, at which most nitride coatings suffer from severe and rapid oxidation [10,11]. Al$_2$O$_3$ coating is used as thermal barriers to protect the cemented carbide substrates from the high temperatures at the cutting edge [12]. The Al$_2$O$_3$ coating obtains higher hardness compared with ZrO$_2$, and the modest hardness of ZrO$_2$ limits their use for wear applications [13]. Numerous investigations carried out by various authors showed that the textured tools exhibited better performance than conventional non-textured tools during different machining conditions [14–26]. More recently, researches show that the micro-texture and coating on the tool surface are better than non-textured coating tool
and the textured tool without coating [27–30]. Applying nano-scaled coating has better performance than traditional micro-crystalline coating [31], and nano-scale coatings are isotropic, can be applied to three-dimensional objects having similar properties, this indicates that combination of the nano-scale coating and micro-texture has a good prospective in improving the performance of the cutting tool. However, Neves et al. [32] show defects in the coating may work as crack initiation points and lead to coating failure, thus it is very important to improve coating integrity and reduce coating defects.

Some researchers used atomic layer deposition (ALD) technology to prepare coating tools for processing and obtained good results. Mohseni and Scharf [33] reported the improvement of the wear resistance of carbon–carbon composites by ALD of ZnO/Al2O3/ZrO2 coatings. A study by Giorleo et al. [34] showed that the life of micro-drill bit was significantly improved when drilling the Ti-plates by ALD-coated Al2O3. ALD is able to meet the needs for atomic layer control and conformal deposition [35]; more importantly, ALD can fabricate pinhole-free nanometer coating. The basis of ALD thin film coating growth is the alternating saturated gas–solid phase reaction. When the chemical adsorption of the surface is saturated, the number of surface-reactive precursors no longer increases with time, so there is only one layer film grown per cycle. ALD can obtain coatings of nanometer or even atomic thickness. The self-limiting growth mechanism of ALD has many characteristics: good bonding strength, layer-by-layer deposition, uniform film thickness, good composition uniformity, step coverage, conformality, repeatability, and accuracy at the atomic scale. In addition, reaction temperature of ALD is around 200°C, largely lower than physical and general chemical vapor deposition (PVD and CVD), and this will be beneficial to the mechanical properties of the tool matrix material. ALD technology can improve coating adhesion to the substrate [36] and get better surface integrity [34] compared to PVD technology. Unlike CVD, ALD keeps the precursors strictly separated from each other in sequenced deposition cycles, thus preventing gas phase reactions and allowing atomic layer-by-layer deposition with nearly 100% step coverage [37]. The surface-controlled nature of ALD enables extremely uniform and conformal films on virtually any complex substrates [38]; thus, the ALD technology is suitable for micro-textured surface coatings.

Based on the above analysis, this paper prepared nanometer coating on the micro-textured tools using ALD deposition method and studied their cutting performance, expecting to provide a new way for the development of new cutting tools. In this article, the nano-scaled Al2O3-coated micro-textured cutting tool is prepared to improve the wear resistance and friction reduction performance of the tool.

2 Experimental process

2.1 Preparation of micro-texted tool with nanometer coating

Two textures of stripe and pit were designed (named as ST and PT), and the micro-texture was prepared on the rake face of commercial YT5 (WC-10Co-5%TiC) tool by a laser marking machine. The stripe textures are parallel and vertical cutting edges, and 45° and 135° with the cutting edge (named as strip texture 1–4, respectively). The pit pitch of the micro-texture pit is 0.2, 0.15, 0.1, and 0.05 mm, respectively (named as pit texture 1–4, respectively).

Nanometer-Al2O3 coating was prepared on YT5 textured tool by ALD. First, YT5 tool was cleaned by an ultrasonic cleaner with acetone for 15 min and dried with high purity nitrogen. The stop/exposure mode was used for the ALD process, and each ALD cycle considers pulse, exposure, and purge times for each of the precursors. Thus, the pulse times of TMA and H2O in the cycle were 30 and 100 µs, respectively, while the exposure and purge times were both 10 µs. The thicknesses of the alumina thin films were 50, 100, and 200 nm measure by ellipsometer (named as FNST, HNFT, and TNFT correspond to 50, 100, and 200 nm coated stripe textured tools. Named FNPT, HNPT, and TNPT correspond to 50, 100, and 200 nm coated pit texture tools.). The morphology of the tools after coating is shown in Figure 1. Figure 2 shows the micro-morphology of textured tools surface obtained by AFM.

2.2 Cutting experiment

Orthogonal cutting experiments were carried out on a CNC lathe (Okuma Corp., Japanese). No cutting fluid was used in the machining processes. The cutting tool working geometry angle: rake angle γ0 = 0°, back angle α0 = 11°, main angle K = 75°, blade inclination ζ = 0°, tip radius r = 0.5 mm. The cutting parameters were as
follows: \(v_c = 100 \text{ m/min}, a_p = 1 \text{ mm}, \) and \(f = 0.1 \text{ mm/r}, \) and the work piece material was an AISI1045 steel sample with a hardness of 190 HB. The tools were made of cemented carbide (YT5) and textured using a laser maker and coated by ALD. A non-textured tool and textured tools were also tested to compare the machinability. Cutting force is measured by a three-way piezoelectric dynamometer and a charge amplifier, and the cutting forces in the three directions of \(X, Y, \) and \(Z \) are collected by a data collector and data acquisition software (Kistler Corp., Switzerland). Friction coefficient between tool and chips was calculated by the following equation [39,40]:

\[
\mu = \tan \left[\gamma_0 + \arctan \left(\frac{F_x}{F_y} \right) \right],
\]

(1)

where \(\gamma_0 \) is the rake angle, and \(F_x \) and \(F_y \) are the principle force and radial force, respectively.

A super depth of field microscope (Keyence Corp., Japan) and an electron microscope (SEM, JEOL Corp., Japan) were used to observe tool surface morphology and tool wear.

3 Results and discussion

3.1 Cutting force of cutting tools

The curve shown in Figure 3 is the change of YT5, PT4, and HNPT4 three-direction cutting forces with cutting time. The comparison in the figure shows that the principle force and radial force fluctuation amplitude of YT5, PT4, and HNPT4 decreased in turn under the same cutting conditions, which indicate that HNPT4 formed good sliding–rolling composite friction in the cutting process; thus, the vibration is smaller, and the cutting process is more stable.

Figure 4 shows the comparison of the cutting forces of the conventional tool, the micro-textured tool, and the nano-coated micro-textured tool at a cutting speed of 100 m/min. We use the pit textured tool, and the pit pitch is 0.05 mm. Compared with traditional tools (YT5), the cutting force of micro-textured tools (PT4) has been reduced to a certain extent, which has been confirmed by many researchers [41,42]. The main cutting force and radial force of the nano-scaled Al\(_2\)O\(_3\)-coated micro-textured tool (HNPT4) are greatly reduced. All the axial force of the three is almost zero because it is an orthogonal cut.

3.2 Friction coefficient of cutting tools

3.2.1 Effect of nanometer coating thickness

Figure 5 shows the effect of different thickness nano-coating on the tool–chip friction coefficient of the tool rake face. For comparison, the friction coefficients of the conventional tool and the corresponding micro-textured tool are given together. It shows that 50, 100, and 200 nm nano-Al\(_2\)O\(_3\) coating can further reduce the
3.2.2 Effect of micro-texture morphology

The tool–chip friction coefficient of the four nano-coating tools with different shapes and texture is shown in Figure 6. For comparison, the friction coefficient of the corresponding uncoated textured tool is also given. The change in the stripe texture morphology has little effect on the friction coefficient between the tool and chip. Different stripe textures morphology and coating combinations have different effects on the friction coefficient of the tool–chip (Figure 6a). When the coating thickness is 50 nm and 200 nm, the micro-texture morphology has little effect on the tool–chip friction coefficient. The texture morphology has a great influence on the friction coefficient when the coating thickness is 100 nm. When the stripe micro-texture is perpendicular to the cutting edge, the friction coefficient of the coating tool is the smallest, 0.43, which is reduced by about 25% than that of the stripe texture parallel to the cutting edge. For pit-textured tools (Figure 6b), the lowest coefficient of friction is obtained when the distance between points is 0.15 mm, variation in the tool–chip friction coefficient of the coated pit textured tool is similar to that of the coated stripe textured tool (Figure 6b), and the 100 nm pit textured coating also has a small coefficient of friction. When the pit texture pitch is 0.15 mm, the tool–chip friction coefficient is the smallest and is 0.31, which is lower than that of the stripe textured tool.

Figure 7 shows the micrograph of the 100 nm Al₂O₃-coated stripe-textured tool after cutting when the stripe parallel and perpendicular to the major cutting edge. It can be seen that there is a certain adhesion on the tool rake face, and the stripe parallel to the main cutting edge has a significantly higher adhesion than that of tool with stripe perpendicular to the main cutting edge. The microscopic picture of the 100 nm Al₂O₃-coated pit-textured tool with different texture spacing is shown in Figure 8. It can be seen that when the pit texture spacing is 0.15 mm, the adhesion of the tool is obviously lower than the pit texture pitch of 0.05 mm. From the magnified view of the 100 nm Al₂O₃-coated pit micro-texture tool (pit texture pitch is 0.05), it can be seen that the chip is deposited in the micro-texture, and the micro-texture plays the role of collecting chips. At the same time, the energy spectrum analysis of Figure 9 shows that there is less adhesion (Figure 8c) on the surface of the coated tool, indicating that the coating has the function of reducing adhesion.

3.2.3 Effect of cutting speed

The effect of cutting speed on the tool–chip friction coefficient is shown in Figure 10. When the speed is increased from 100 to 200 m/min, the friction coefficient of stripe and pit micro-textured coating tools increases from 0.31 to 0.47 and from 0.43 to 0.60, respectively. It can be seen that as the cutting speed increases, the friction coefficient of the stripe textured and the pit textured nano-coating tool increases to some extent. It shows that the effect of nano-coating is more obvious at lower speeds.
3.3 Discussion on the anti-friction mechanism of nano-coating on micro-texture

The friction coefficient of Al₂O₃ and steel is about 0.66 [43], while the friction coefficient of WC-Co-TiC cemented carbide and steel is about 0.2–0.4 [44], which indicates that the application of nano-alumina on the surface of cemented carbide does not reduce the friction coefficient of cemented carbide cutting tools, and it is also impossible to lower the friction coefficient of micro-textured tools and steel. However, our experimental results are the opposite. This implies that the application of the nano-alumina coating to the surface of the micro-textured tool causes a fundamental change in the friction mechanism between the tool and chip during the cutting process.

The micro-texture form and direction have a certain influence on the friction between the tool and chip. The main friction reduction mechanism of micro-textured tools is mainly the reduction in the contact area between the tool and chips on the tool rake face [45]. When the nano-coating is applied to the micro-textured tool, on one hand, the high-strength, high-hardness, and heat-resistance properties of the coating protect the micro-texture of the tool rake face. On the contrary, the micro-texture collects the Fe₂O₃ particles and nano-Al₂O₃ particles formed by the chipping and nano-coating detachment, and the nano-Al₂O₃ coating particles in the micro-texture are squeezed and infiltrated into the actual chip contact interface under the action of cutting force and cutting heat. Because of the high hardness of the Al₂O₃ particles, it formed a similar rolling element between the tool and chips, so that the direct contact between the two dies is transformed into a two-body–three-body compound contact, so that the friction between the tool–chip interfaces changes from sliding to sliding-rolling, as shown in Figure 11. We know that the friction coefficient of rolling friction is much lower than the sliding friction, and this change will effectively reduce the friction coefficient between the chips.

![Figure 6](image_url)

Figure 6: Tool–chip friction coefficient of nano-coating textured tools: (a) stripe texture, (b) pit texture.

![Figure 7](image_url)

Figure 7: Micromorphology of stripe micro-textured tool after cutting: (a) parallel, (b) perpendicular.
Different coating thicknesses have different chances of forming sliding-rolling friction between the chips. When the nano-coating thickness is 100 nm, the friction coefficient of the four micro-textured coating tools is significantly lower than that of the uncoated micro-textured tool and the 50 nm and 200 nm coated micro-texturing tool. The possible reason is that the particles formed by the 100 nm coating during the cutting process enter well between the tool and the chips, forming rolling friction. When the thickness of Al$_2$O$_3$ coating is 50 nm, the amount of nano-Al$_2$O$_3$ coating particles involved in the formation of three-body contact between the chips during cutting is too small to form a rolling friction state, which cannot achieve the effect of changing the friction mechanism; when the coated Al$_2$O$_3$ thickness is 200 nm, although the number of nano-Al$_2$O$_3$ coating particles generated

Figure 8: Micromorphology of pit micro-textured tool after cutting: (a) parallel, (b) perpendicular, (c) magnified view of (b).

Figure 9: Energy spectrum analysis.
during the cutting process increases, too many coating particles will appear to be stacked, and the friction coefficient between Al₂O₃ and Al₂O₃ particles is larger than that of Al₂O₃ and cemented carbides, so that the friction coefficient of the chip interface increases.

The probability of this transition in different micro-textured tool is also different. When the stripe texture is perpendicular to the main cutting edge, the nano-coated micro-textured tool has the lowest friction coefficient. This result is different from the pure micro-textured tool [6]. Under this condition, when the chip is perpendicular to the micro-texture direction and the nanoparticles are more easy to enter into micro-texture, coated particles are more likely to form a roll between the tool and the chip. At this time, the stripe-like micro-texture direction is parallel to the chip flow direction during the cutting process, so that the coating particles in the micro-texture can penetrate with the chip flow to enter into the actual chip contact portion, so that more nano-coating particles participate in the formed rolling friction. In the case of pit texture, the distance between the pit has an important effect on the friction form. The change in the pitch of the pit micro-texture causes a change in the micro-textured area occupancy of the rake face contact area. When the

Figure 10: Effect of cutting speed on the tool-chip friction coefficient.

Figure 11: Anti-friction mechanism of nanometer-coated textured tools: (a) tool-chip interface contact of different tools, (b) magnified view of point A and B in (a).
pit texture spacing is 0.15 mm, the nano-coating particles are more likely to exist in the micro-texture, forming rolling friction, and obtaining a lower tool–chip friction coefficient. Larger pit texture spacing cannot form effective rolling friction, and the smaller point texture spacing will obviously weaken the strength of the tool surface, which is easy to break, resulting in increased cutting force, which is not conducive to cutting.

As the cutting speed increases, the friction coefficient of the tool–chip interface increases during the cutting process of the nano-coated micro-textured tool. Low speed (100 m/min) is conducive to the formation of sliding friction during cutting. At high speed (200 m/min), because of the faster drag speed of the chips, the amount of chips generated per unit time increases, and the wear of the tool rake face is intensified, reducing the micro-texture anti-friction effect. At the same time, the increase in the chip removal speed removes the nano-Al2O3 coating particles formed by the coating peeling off, so that the rolling friction effect formed by the nano-Al2O3 particles between the chips during the cutting process becomes weak.

4 Conclusion

Surface texturing was made on the rake face of the WC-Co-TiC carbide tools, and then, nanometer Al2O3 was coated on the surface texturing by ALD. Dry cutting tests were carried out with these tools, and the friction coefficient is mainly analyzed. The following conclusions were obtained:

1. The micro-texture and nano-scaled Al2O3 coated on the micro-texture both can reduce the friction coefficient of the tool, and the tools with nano-scaled Al2O3 coated on the micro-texture are more efficient.

2. The friction coefficient of the 100 nm Al2O3-coated micro-texture tool is relatively low. When the distance of the micro-pits is 0.15 mm, the friction coefficient is lowest among the four kinds of pit-textured tools. The friction coefficient is the lowest when the direction of the groove in stripe texture tool is perpendicular to the main cutting edge.

3. The main mechanism of the nano-scaled Al2O3 on the micro-textured tool to reduce in friction coefficient is that the nano-scaled Al2O3 form sliding friction between the tool and chip.

Acknowledgments: The authors gratefully acknowledge financial support by A Project Supported by Scientific Research Fund of Hunan Provincial Education Department (No.18B230), Natural Science Foundation of Hunan Province (No. 2020JJ4308) and National Natural Science Foundation of China (No.51305134).

Funding information: This work was funded by A Project Supported by Scientific Research Fund of Hunan Provincial Education Department (No. 18B230), Natural Science Foundation of Hunan Province (No. 2020JJ4308), and National Natural Science Foundation of China (No. 51305134).

Author contributions: Siwen Tang drafted the manuscript and conducted the ALD experiments, Pengfei Liu and Zhen Su carry out the cutting experiments, Yu Lei guiding ALD experiments, Qian Liu and Deshun Liu help to analyzed the experimental data and modified and polished the draft.

Conflict of interest: The authors declare no conflicts of interest.

Data availability statement: The data used to support the findings of this study are included within the article.

References

[1] Sreejith, P. S. and B. K. A. Ngoi. Dry machining: Machining of the future. Journal of Materials Processing Technology, Vol. 101, No. 1, 2000, pp. 287–291.

[2] Tang, S., R. Wang, P. Liu, Q. Niu, G. Yang, W. Liu, et al. Preparation of WC-TiC-Ni-Al2O3 functionally graded self-lubricating tool material by microwave sintering and its cutting performance. High Temperature Materials and Processes, Vol. 39, No. 1, 2020, pp. 45–53.

[3] Dudzinski, D., A. Devillez, A. Moufki, D. Larrouquère, V. Zerrouki, and J. Vigneau. A review of developments towards dry and high speed machining of Inconel 718 alloy, International Journal of Machine Tools and Manufacture, Vol. 44, No. 4, 2004, pp. 439–456.

[4] Tang, S., P. Li, D. Liu, P. Li, and Q. Niu. Cutting performance of a functionally graded cemented carbide tool prepared by microwave heating and nitriding sintering. High Temperature Materials and Processes, Vol. 38, No. 2019, 2019, pp. 582–589.

[5] Wu, X., J. Shen, F. Jiang, H. Wu, and L. Li. Study on the oxidation of WC-Co cemented carbide under different conditions. International Journal of Refractory Metals & Hard Materials, Vol. 94, 2021, id. 105381.

[6] Wang, F., K. Ji, and Z. Guo. Microstructural analysis of failure progression for coated carbide tools during high-speed milling of Ti-6Al-4V. Wear, Vol. 456–457, 2020, id. 203356.
[7] Ucaka, N., K. Aslantas, and A. Cicek. The effects of Al2O3 coating on serrated chip geometry and adiabatic shear banding in orthogonal cutting of AISI 316L stainless steel. Journal of Materials Research And Technology, Vol. 9, No. 5, 2020, pp. 10758–10767.

[8] PalDey, S. and S. C. Deevi. Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review. Materials Science and Engineering, Vol. A342, 2003, pp. 58–79.

[9] Kathrein, M., W. Schintilmeister, W. Wallgram, and U. Schleinkofer. Doped CVD Al2O3 coatings for high performance cutting tools. Surface and Coatings Technology, Vol. 163-164, 2003, pp. 181–188.

[10] Fallqvist, M., M. Olsson, and S. Ruppi. Abrasive wear of multilayer Al2O3–Ti(C,N) CVD coatings on cemented carbide. Wear, Vol. 263, 2007, pp. 74–80.

[11] Åstrand, M., T. I. Selinder, F. Fietze, and H. Klostermann. PVD-Al2O3 coated cemented carbide cutting tools. Surface & Coatings Technology, Vol. 188–189, 2004, pp. 186–192.

[12] Garcia, J., R. Pitonak, R. Weißenbacher, A. Köpf, F. Soldera, S. Suarez, et al. Design and characterization of novel wear resistant multilayer CVD coatings with improved adhesion between Al2O3 and Ti(C,N). Advanced Engineering Materials, Vol. 12, 2010, pp. 929–934.

[13] Vanmeensel, K., G. Anné, D. Jiang, J. Vleugels, and O. Van der Biest. Processing of a graded ceramic cutting tool in the Al2O3-ZrO2-Ti(C,N) system by electrophoretic deposition. Materials Science, Vol. 492–493, 2005, pp. 705–710.

[14] Arumugaprabu, V., T. J. Ko, T. Kumaran, R. Kurniawan, and M. Uthayakumar. A brief review on importance of surface texturing in materials to improve the tribological performance. Reviews on Advanced Materials Science, Vol. 53, No. 1, 2018, pp. 40–48.

[15] Obikawa, T., A. Kamio, H. Takaoka, and A. Osada. Micro-texture at the coated tool face for high performance cutting. International Journal of Machine Tools and Manufacture, Vol. 51, No. 12, 2011, pp. 966–972.

[16] Koshy, P. and J. Tovey. Performance of electrical discharge textured cutting tools. CIRP Annals – Manufacturing Technology, Vol. 60, No. 1, 2011, pp. 153–156.

[17] Kawasegi, N., H. Sugimori, H. Morimoto, N. Morita, and L. Hori. Development of cutting tools with microscale and nanoscale textures to improve frictional behavior. Precision Engineering, Vol. 33, No. 3, 2009, pp. 248–254.

[18] Arrazola, P. J., A. Garay, L. M. Iriarte, M. Armendia, S. Marya, and F. Le Maître. Machinability of titanium alloys (Ti6Al4V and Ti555.3). Journal of Materials Processing Technology, Vol. 209, No. 5, 2009, pp. 2223–2230.

[19] Xie, J., M. J. Luo, K. K. Wu, L. F. Yang, and D. H. Li. Experimental study on cutting temperature and cutting force in dry turning of titanium alloy using a non-coated micro-grooved tool. International Journal of Machine Tools and Manufacture, Vol. 73, 2013, pp. 25–36.

[20] Ze, W., D. Jianxin, C. Yang, X. Youqiang, and Z. Jun. Performance of the self-lubricating textured tools in dry cutting of Ti-6Al-4V. The International Journal of Advanced Manufacturing Technology, Vol. 62, No. 9, 2012, pp. 943–951.

[21] Jianxin, D., W. Ze, L. Yunsong, Q. Ting, and C. Jie. Performance of carbide tools with textured rake-face filled with solid lubricants in dry cutting processes. International Journal of Refractory Metals and Hard Materials, Vol. 30, No. 1, 2012, pp. 164–172.

[22] Kim, D. M., V. Bajpai, B. H. Kim, and H. W. Park. Finite element modeling of hard turning process via a micro-textured tool. The International Journal of Advanced Manufacturing Technology, Vol. 78, No. 9–12, 2015, pp. 1393–1405.

[23] Lian, Y., J. Deng, G. Yan, H. Cheng, and J. Zhao. Preparation of tungsten disulfide (WS2) soft-coated nano-textured self-lubricating tool and its cutting performance. The International Journal of Advanced Manufacturing Technology, Vol. 68, No. 9–12, 2013, pp. 2033–2042.

[24] Xing, Y., J. Deng, J. Zhao, G. Zhang, and K. Zhang. Cutting performance and wear mechanism of nanoscale and microscale textured Al2O3/TiC ceramic tools in dry cutting of hardened steel. International Journal of Refractory Metals and Hard Materials, Vol. 43, 2014, pp. 46–58.

[25] Sugihara, T. and T. Enomoto. Improving anti-adhesion in aluminum alloy cutting by micro stripe texture. Precision Engineering, Vol. 36, No. 2, 2012, pp. 229–237.

[26] Lei, S., S. Devarajan, and Z. Chang. A study of micropool lubricated cutting tool in machining of mild steel. Journal of Materials Processing Technology, Vol. 209, No. 3, 2009, pp. 1612–1620.

[27] Shum, P. W., Z. F. Zhou, and K. Y. Li. Investigation of the tribological properties of the different textured DLC coatings under reciprocating lubricated conditions. Tribology International, Vol. 65, 2013, pp. 259–264.

[28] Zhang, K., J. Deng, Y. Xing, S. Li, and H. Gao. Effect of microscale texture on cutting performance of WC/Co-based TiAlN coated tools under different lubrication conditions. Applied Surface Science, Vol. 326, 2015, pp. 107–118.

[29] Swain, N., V. Venkatesh, P. Kumar, G. Srinivas, S. Ravishankar, and H. C. Barshilia. An experimental investigation on the machining characteristics of Nimonic 75 using uncoated and TiAlN coated tungsten carbide micro-end mills. CIRP Journal of Manufacturing Science and Technology, Vol. 16, 2017, pp. 34–42.

[30] Romanus, H., E. Ferraris, J. Bouquet, D. Reynaerts, and B. Laouwers. Micromilling of sintered ZrO2 ceramic via cBN and diamond coated tools. Procedia CIRP, Vol. 14, 2014, pp. 371–376.

[31] Mishra, S. K. Toughening of nanocomposite hard coatings. Reviews on Advanced Materials Science, Vol. 59, No. 1, 2020, pp. 553–585.

[32] Neves, D., A. E. Diniz, and M. S. F. Lima. Microstructural analyses and wear behavior of the cemented carbide tools after laser surface treatment and PVD coating. Applied Surface Science, Vol. 282, 2013, pp. 680–688.

[33] Mohseni, H. and T. W. Scharf. Atomic layer deposition of ZnO/Al2O3/ZrO2 nanolaminates for improved thermal and wear resistance in carbon-carbon composites. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 30, No. 1, 2012, 01A149.

[34] Giorelo, L., E. Ceretti, and C. Giardini. ALD coated tools in micro drilling of Ti sheet. CIRP Annals, Vol. 60, No. 1, 2011, pp. 595–598.

[35] George, S. M. Atomic layer deposition: an overview. Chemical Reviews, Vol. 110, No. 1, 2010, pp. 111–131.

[36] Ucaka, N., K. Aslantas, and A. Cicek. Investigation of the structure and properties of PVD coatings and ALD + PVD hybrid
coatings deposited on sialon tool ceramics. *Vacuum*, Vol. 154, 2018, pp. 272–284.

[37] Liu, M., X. Li, S. K. Karuturi, A. I. Y. Tok, and H. J. Fan. Atomic layer deposition for nanofabrication and interface engineering. *Nanoscale*, Vol. 4, 2012, pp. 1522–1528.

[38] Meng, X., X. Wang, D. Geng, C. Ozgit-Akgun, N. Schneider, and J. W. Elam. Atomic layer deposition for nanomaterial synthesis and functionalization in energy technology. *Materials Horizons*, Vol. 4, No. 2, 2017, pp. 133–154.

[39] Chen, R. Y. *Principle of metal cutting*, China Machine Press, Beijing, 1992.

[40] Mc, S. *Metal cutting principles*, Oxford University Press, New York, 1984.

[41] Grguraš, D. and F. Pušavec. Influence of rake face texturing on machining performance of carbide tools. *Procedia CIRP*, Vol. 81, 2019, pp. 904–907.

[42] Ranjan, P. and S. S. Hiremath. Role of textured tool in improving machining performance: A review. *Journal of Manufacturing Processes*, Vol. 43, 2019, pp. 47–73.

[43] Broniszewski, K., J. Wozniak, K. Czechowski, L. Jaworska, and A. Olszyna. Al₂O₃-Mo cutting tools for machining hardened stainless steel. *Wear*, Vol. 303, No. 1–2, 2013, pp. 87–91.

[44] van der Merwe, R. and N. Sacks. Effect of TaC and TiC on the friction and dry sliding wear of WC-6wt% Co cemented carbides against steel counterfaces. *International Journal of Refractory Metals and Hard Materials*, Vol. 41, 2013, pp. 94–102.

[45] Jianxin, D., W. Ze, L. Yunsong, Q. Ting, and C. Jie. Performance of carbide tools with textured rake-face filled with solid lubricants in dry cutting processes. *International Journal of Refractory Metals and Hard Materials*, Vol. 30, No. 1, 2012, pp. 164–172.