Fabric phase sorptive extraction combined with gas chromatography-mass spectrometry as an innovative analytical technique for the determination of selected polycyclic aromatic hydrocarbons in herbal infusions and tea samples

N. Manousia,b, A. Kabirc,d, Kenneth G. Furtonc, E. Rosenbergb*, G. A. Zachariadisa

a Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
b Institute of Chemical Technologies and Analytics, Vienna University of Technology, 1060 Vienna, Austria
c International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
d Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka-1207, Bangladesh

*Corresponding author: email: egon.rosenberg@tuwien.ac.at, Institute of Chemical Technologies and Analytics, Vienna University of Technology, 1060 Vienna, Austria
Figure S1. Structures of the selected PAHs

Figure S2. Representative chromatogram of a spiked herbal infusion sample (c = 10.00 ng mL\(^{-1}\))
Figure S3. Comparison of different sol-gel coated FPSE membrane for the extraction of the selected PAHs.

Figure S4. Study of the effect of sample volume on extraction efficiency.
Figure S5. Study of stirring rate effect on analytes recovery.

Figure S6. Study of salt addition effect on extraction efficiency.
Figure S7. Selection of the appropriate eluting solvent

Figure S8. Study of eluent volume effect on extraction efficiency.
Figure S9. Results of the reusability study of the sol-gel C$_{18}$ coated FPSE media
Phase	Substrate	Networking Precursor	Polymer/Precursor/Particle	Building block													
1. Sol-gel mixed mode	Cellulose	Methyl trimethoxysilane	Octadecysilane (C18)	![silicon structure]													
			3-Mercaptopropyl trimethoxysilane	![Sulfate group]													
2. Sol-gel graphene	Cellulose	Methyl trimethoxysilane	Graphene	![graphene structure]													
3. Sol-gel polytetrahydrofuran	Cellulose	Methyl trimethoxysilane	Poly(tetrahydrofuran)	![polytetrahydrofuran structure]													
4. Sol-gel CW20M	Cellulose	Methyl trimethoxysilane	Carbowax 20M	![carbowax structure]													
5. Sol-gel Graphene	Polyester	Methyl trimethoxysilane	Graphene	![graphene structure]													
6. Sol-gel polyethylene glycol 300	Cellulose	Methyl trimethoxysilane	Poly(ethylene glycol) 300	![polyethylene glycol structure]													
7. Sol-gel octadecyl	Cellulose	Methyl trimethoxysilane	Octadecysilane	![octadecyl structure]													
	Sol-gel poly(dimethyl diphenyl siloxane)	Cellulose	Methyl trimethoxysilane	Poly(dimethyl diphenyl siloxane)													
---	--	-----------	------------------------	--------------------------------													
8				![Chemical Structure](attachment:image)													
9	Sol-gel poly(diphenylsiloxane)	Cellulose	Methyl trimethoxysilane	Poly(diphenylsiloxane)													
				![Chemical Structure](attachment:image)													
10	Sol-gel poly(diphenylsiloxane)	Polyester	Methyl trimethoxysilane	Poly(diphenylsiloxane)													
				![Chemical Structure](attachment:image)													
11	Sol-gel octyl	Cellulose	Methyl trimethoxysilane	Octyl silane													
				![Chemical Structure](attachment:image)													
12	Sol-gel polycaprolactone-polydimethylsiloxane-polycaprolactone	Cellulose	Methyl trimethoxysilane	Poly(caprolactone)-b-Poly(dimethylsiloxane)-b-Poly(caprolactone)													
				![Chemical Structure](attachment:image)													
No.	System Description	Chain Components	Chemical Structure														
------	--	--	--														
13.	Sol-gel poly(caprolactone)-poly(dimethylsiloxane)-poly(caprolactone)	Polyester, Methyl trimethoxysilane, Poly(caprolactone)-b-poly(dimethylsiloxane)-b-poly(caprolactone)	![Chemical Structure](image1)														
14.	Sol-gel chitosan	Methyl trimethoxysilane, Chitosan	![Chemical Structure](image2)														
15.	Sol-gel poly(ethylene glycol)-poly(propylene glycol)-poly(ethylene glycol)	Cellulose, Methyl trimethoxysilane, Poly(ethylene glycol)-b-poly(propylene glycol)-b-poly(ethylene glycol)	![Chemical Structure](image3)														
16.	Sol-gel poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide)	Cellulose, Methyl trimethoxysilane, Poly(propylene oxide)-b-poly(ethylene oxide)-b-poly(propylene oxide)	![Chemical Structure](image4)														
Analyte	Added (ng mL⁻¹)	CH-1 Found (ng mL⁻¹)	CH-1 RR%	CH-2 Found (ng mL⁻¹)	CH-2 RR%	CH-3 Found (ng mL⁻¹)	CH-3 RR%	GMT Found (ng mL⁻¹)	GMT RR%	IN-1 Found (ng mL⁻¹)	IN-1 RR%	IN-2 Found (ng mL⁻¹)	IN-2 RR%	IN-3 Found (ng mL⁻¹)	IN-3 RR%	GT Found (ng mL⁻¹)	GT RR%
-----------	-----------------	----------------------	----------	----------------------	----------	----------------------	----------	----------------------	----------	----------------------	----------	----------------------	----------	----------------------	----------	----------------------	----------
Naphthalene	0 <LOD	<LOD	-	9.1 ± 0.5	91.0												
	10 9.1 ± 0.5	91.0	9.4 ± 0.4	94.0	9.8 ± 0.9	98.0	9.2 ± 0.3	92.0	10.7 ± 0.4	93.0	9.6 ± 0.5	96.0	10.1 ± 0.1	101.0			
Fluorene	0 <LOD	<LOD	-	10.2 ± 0.1	102.0												
	10 10.2 ± 0.1	102.0	9.7 ± 0.1	97.0	9.3 ± 0.2	93.0	9.8 ± 0.3	98.0	8.9 ± 0.3	89.0	10.5 ± 0.3	105.0	9.3 ± 0.3	93.0	9.3 ± 0.3	93.0	
Phenanthrene	0 <LOD	<LOD	-	10.3 ± 0.7	103.0												
	10 10.3 ± 0.7	103.0	10.6 ± 0.6	106.0	10.8 ± 0.4	108.0	10.3 ± 0.1	103.0	10.9 ± 0.1	109.0	10.9 ± 0.2	109.0	95.1 ± 0.3	95.0	10.1 ± 0.2	98.0	
Pyrene	0 0.52 ± 0.04	-	0.31 ± 0.02	<LOD	-	0.42 ± 0.01	-	<LOD	-	<LOD	-	<LOD	-	<LOD	-	10.4 ± 0.4	98.8
	10 10.4 ± 0.4	98.8	10.1 ± 0.1	97.9	10.0 ± 0.4	100.0	10.1 ± 0.3	96.8	10.0 ± 0.3	100.0	10.8 ± 0.1	108.0	9.9 ± 0.5	99.0	10.0 ± 0.1	100.0	