In recent years, some epidemiologic studies have attributed adverse effects of air pollutants on health not only to particles and sulfur dioxide but also to photochemical air pollutants (nitrogen dioxide and ozone). The effects are usually small, leading to some inconsistencies in the results of the studies. Furthermore, the different methodologic approaches of the studies used has made it difficult to derive generic conclusions. We provide here a quantitative summary of the short-term effects of photochemical air pollutants on mortality in seven Spanish cities involved in the EMECAM project, using generalized additive models from analyses of single and multiple pollutants. Nitrogen dioxide and ozone data were provided by seven EMECAM cities (Barcelona, Gijón, Huelva, Madrid, Oviedo, Seville, and Valencia). Mortality indicators included daily total mortality from all causes excluding external causes, daily cardiovascular mortality, and daily respiratory mortality. Individual estimates, obtained from city-specific generalized additive Poisson autoregressive models, were combined by means of fixed effects models and, if significant heterogeneity among local estimates was found, also by random effects models. Significant positive associations were found between daily mortality (all causes and cardiovascular) and NO$_2$, once the rest of air pollutants were taken into account. A 10 pg/m$^3$ increase in the 24-hr average 1-day NO$_2$ level was associated with an increase in the daily number of deaths of 0.43% [95% confidence interval (CI), −0.003–0.86%] for all causes excluding external. In the case of significant relationships, relative risks for cause-specific mortality were nearly twice as much as that for total mortality for all the photochemical pollutants. Ozone was independently related only to cardiovascular daily mortality. No independent statistically significant relationship between photochemical air pollutants and respiratory mortality was found. The results in this study suggest that, given the present levels of photochemical pollutants, people living in Spanish cities are exposed to health risks derived from air pollution. Key words: combined analysis, EMECAM project, GAM autoregressive models, mortality, photochemical air pollutants. Environ Health Perspect 110:221–228 (2002). [Online 5 February 2002] http://ehpnet1.niehs.nih.gov/docs/2002/110p221-228saez/abstract.html

Although O$_3$ is generally regarded as one of the most toxic components of the photochemical air pollution mixture (6, 7), not many studies have been conducted on the effects of photochemical air pollutants on mortality (5, 8–10). Several chamber studies (11, 12) as well as epidemiologic studies (13, 14) have suggested some significant effects of exposure to O$_3$ on morbidity, specifically on lung function decrements, exacerbation of asthma, respiratory symptoms, and increased number of hospital admissions. O$_3$ has also been associated with daily deaths (7). NO$_2$ has been found to increase morbidity, at least for respiratory diseases (13, 15–21).

In all of these studies, the adverse effects on health (specifically mortality), although important, are usually small. Presumably as a consequence of such moderate size, the results of these studies may present some inconsistencies. Some of the inconsistencies found in these studies could be due to a different distribution of confounders and effect modifiers between the population analyzed (6). Furthermore, the different methodologic approaches involved and the varying techniques that the studies used make it difficult to draw clear conclusions from them. For all of these reasons, and in order to assess the short-term relationship between air pollution and health, several multicenter collaborative studies were launched over the last few years, such as the APHEA project (22), beginning in 1993, and, more recently, the NMMAPS (23), the most well known.

Using the APHEA approach, a collaborative study for Spain was launched in 1997. The EMECAM project (24), an acronym for a combined analysis, EMECAM project, GAM autoregressive models, mortality, photochemical air pollutants. Environment Health Perspectives • VOLUME 110 | NUMBER 3 | March 2002
involved in the EMECAM project (24) using
generalized additive models from single
and multipollutant analyses.

Materials and Methods

Data on NO₂ and O₃ were not available for
all sites. Only 7 of the 14 EMECAM cities
(Barcelona, Gijón, Huelva, Madrid, Oviedo,
Seville, and Valencia; Figure 1) contributed
data. In addition, data on carbon monoxide
were not available for Gijón or Seville (24).
Table 1 presents descriptive data for the
seven cities. Mortality data were extracted
from death records for the total population
living within the boundaries of the cities.
Only deaths occurring among residents were
considered. Mortality indicators included
daily total mortality from all causes excluding
external causes [International Classification
of Diseases, 9th Revision (ICD-9), 001–799,
daily cardiovascular mortality (ICD-9,
390–459) and daily respiratory mortality
(ICD-9, 460–519).

Daily air pollutants measurements
were provided by the monitoring network
established in each city. For NO₂ 1-hr maximum
and 24-hr average values (measured by
chemiluminescence) and for O₃ an 8-hr max-
imum value (measured by ultraviolet absorp-
tion) were the measurements considered.
A standardizing data collection procedure was
adopted. In the case of air pollutants, in par-
ticular, some criteria were followed (22,24):

~Total, all causes excluding external (ICD-9 < 800), respiratory (ICD-9 460–519), cardiovascular (ICD-9 390–459).
~Population covered by the data collection.
~All: all periods; warm: May–October; cold: November–April.
Table 2. Relative risks of mortality and 95% confidence intervals associated with a 10 µg/m³ increase in the level of pollutants across the EMECAM cities: all causes excluding external (ICD-9, 001–799).

|          | NO₂ or O₃ | NO₂–O₃ | NO₂–O₃ particles | NO₂–O₃ SO₂ | NO₂–O₃ CO | NO₂–O₃ all pollutants |
|----------|-----------|---------|------------------|------------|-----------|----------------------|
| NO₂ 24-hr average |           |         |                  |            |           |                      |
| Barcelona | 1.01067  | 1.01067 | 1.00722          | 1.00872   | 1.00946   | 1.00897              |
|           | (1.00732–1.0142) | (1.00714–1.0139) | (1.00483–1.0107) | (1.00635–1.0118) | (1.00714–1.0139) | (1.00597–1.0157) |
| Gijón     | 1.00954  | 1.00954 | 1.00666          | 1.00708   | 1.00836   | 1.00836              |
|           | (0.99950–1.0197) | (0.99940–1.0197) | (0.99850–1.0078) | (0.99700–1.0107) | (0.99700–1.0107) | (0.99600–1.0107) |
| Huelva    | 1.01054  | 1.01054 | 1.00722          | 1.00872   | 1.00946   | 1.00897              |
|           | (1.00732–1.0142) | (1.00714–1.0139) | (1.00483–1.0107) | (1.00635–1.0118) | (1.00714–1.0139) | (1.00597–1.0157) |
| Madrid    | 1.01067  | 1.01067 | 1.00722          | 1.00872   | 1.00946   | 1.00897              |
|           | (1.00732–1.0142) | (1.00714–1.0139) | (1.00483–1.0107) | (1.00635–1.0118) | (1.00714–1.0139) | (1.00597–1.0157) |
| Valencia  | 1.00954  | 1.00954 | 1.00666          | 1.00708   | 1.00836   | 1.00836              |
|           | (0.99950–1.0197) | (0.99940–1.0197) | (0.99850–1.0078) | (0.99700–1.0107) | (0.99700–1.0107) | (0.99600–1.0107) |
| All cities| 1.01054  | 1.01054 | 1.00722          | 1.00872   | 1.00946   | 1.00897              |
|           | (1.00732–1.0142) | (1.00714–1.0139) | (1.00483–1.0107) | (1.00635–1.0118) | (1.00714–1.0139) | (1.00597–1.0157) |

*p-value)*

| O₂ 8-hr maximum | NO₂ or O₃ | NO₂–O₃ | NO₂–O₃ particles | NO₂–O₃ SO₂ | NO₂–O₃ CO | NO₂–O₃ all pollutants |
|-----------------|-----------|---------|------------------|------------|-----------|----------------------|
| Barcelona       | 1.00564  | 1.00564 | 1.00377          | 1.00409   | 1.00492   | 1.00377              |
|                 | (0.99971–1.0100) | (0.99961–1.0099) | (0.99880–1.0059) | (0.99800–1.0039) | (0.99800–1.0039) | (0.99500–1.0039) |
| Gijón           | 1.00564  | 1.00564 | 1.00377          | 1.00409   | 1.00492   | 1.00377              |
|                 | (0.99971–1.0100) | (0.99961–1.0099) | (0.99880–1.0059) | (0.99800–1.0039) | (0.99800–1.0039) | (0.99500–1.0039) |
| Huelva          | 1.00564  | 1.00564 | 1.00377          | 1.00409   | 1.00492   | 1.00377              |
|                 | (0.99971–1.0100) | (0.99961–1.0099) | (0.99880–1.0059) | (0.99800–1.0039) | (0.99800–1.0039) | (0.99500–1.0039) |
| Madrid          | 1.00564  | 1.00564 | 1.00377          | 1.00409   | 1.00492   | 1.00377              |
|                 | (0.99971–1.0100) | (0.99961–1.0099) | (0.99880–1.0059) | (0.99800–1.0039) | (0.99800–1.0039) | (0.99500–1.0039) |
| Valencia        | 1.00564  | 1.00564 | 1.00377          | 1.00409   | 1.00492   | 1.00377              |
|                 | (0.99971–1.0100) | (0.99961–1.0099) | (0.99880–1.0059) | (0.99800–1.0039) | (0.99800–1.0039) | (0.99500–1.0039) |
| All cities      | 1.00564  | 1.00564 | 1.00377          | 1.00409   | 1.00492   | 1.00377              |
|                 | (0.99971–1.0100) | (0.99961–1.0099) | (0.99880–1.0059) | (0.99800–1.0039) | (0.99800–1.0039) | (0.99500–1.0039) |

*p-value)*

*Random effects model; fixed effects model otherwise. *Chi-square of heterogeneity (p-value).
of the associations. Further details of the site-specific analyses have been presented elsewhere (24–26).

The relations between mortality and explanatory variables were mostly nonlinear (28). This nonlinearity could have limited the statistical methodology used due to its potential residual confounding and/or over-adjustment. In the absence of any hypothesis about the precise form of the relations, a flexible approach to covariate control is appropriate. We used generalized additive models (GAM) (29). The use of GAM for time series of counts was first introduced in 1993 (30). We used generalized additive models (GAM) (29). The use of GAM for time series of counts was first introduced in 1993 (30). Since then this approach has become standard in air pollution epidemiology (31). The GAM extends the standard GLM by fitting nonparametric smooth functions to estimate the relations between the response and the predictors. In the estimation of these functions, we distinguished between observed confounders (i.e., weather variables), which we believe are connected to deaths in a causative way, and other unobserved confounders. For the former we consider estimating those unknown, infinite-dimensional parameter functions by using smoothing splines (32) of the meteorologic variables (average of the current value and the first lag of temperature and humidity, and average of lags two to four of temperature and humidity). Unobserved confounders, but with a systematic variation in time, were controlled for in two ways. First, we used Loess smooth functions (33) of time. Loess is a weighted moving regression with a window centered about each value of the explanatory variable (29,33). Using this strategy we tried to remove long wavelength patterns (i.e., trend and seasonality) (28). Other unobserved confounders such as short wavelengths, say, less than 2 months, were controlled for by means of weekday indicators. Furthermore, to control for the effect of influenza on mortality, we used smoothing splines of daily counts of influenza cases (28,31). Finally, indicator variables were used to fit local characteristics such as holidays and unusual events such as health care worker strikes, the Olympics in Barcelona, and the Universal Exhibition in Seville (both in 1992).

The principal issue in the use of nonparametric smoothers is the choice of the fraction of the data (smoothing parameter) that will be included in the running smooth. We distinguished between smoothing splines and Loess. For the splines, we chose the number of degrees of freedom that minimized the Akaike’s Information Criterion (AIC) corrected for nonparametric models (34) within the range (2–4). Because the meteorologic variables varied across the cities, we allowed the number of degrees of freedom to vary between them (31). In the case of the window size for Loess of time, we chose the span that minimized partial auto-correlation in the residuals, with the restriction of not using a span of less than 2 months. Again, to allow for city-specific differences, the smoothing parameters were optimized separately in each location.

Once the city-specific baseline models were fitted, air pollutant variables were added to the model. In particular, for both pollutants we introduced the averages of the same-day concentration (on the day of death) and the first lag (previous day) and of lags two and three. In the case of NO2, we also included the average of lags four and five. We maintained the averages of air pollutant concentrations in all the final models without regarding their statistical significance. Because simultaneous exposure to other pollutants, especially particles, could be a potentially important source of variation, not only single pollutant but also multipollutant models were considered. In this way, we estimated for each city a model containing both photochemical air pollutants (NO2 and O3); both photochemical air pollutants and particles (either black smoke or PM10); both photochemical air pollutants and sulfur dioxide; both photochemical air pollutants and carbon monoxide; and both photochemical air pollutants and all other air pollutants.

One additional problem is the choice of the lags for the explanatory variables of the model. Too many lags could lead to identifying relations that actually occurred by chance. Because we were trying to analyze short-term relations, restrictions of a week or less seemed the most reasonable strategy.
The quantitative summary of all individual results (i.e., the results for each center), is given here using both graphical and analytic methods. The individual, as well as the combined relative risks (RR), associated with a 10 µg/m³ increase in the pollutant levels and their 95% confidence intervals are plotted graphically. To standardize the results, weights inversely proportional to the variances of the RR were used in the graphical representation. Logarithmic scale was used because confidence intervals are symmetric on this scale. The combined estimates were weighted by means of city-specific regression coefficients, in which the weights were the inverse of the local variances. This method, also called the fixed-effects model, is described in more detail elsewhere (36,37). If significant heterogeneity among local estimates was found, random effects models were also applied. In this case, the between-cities variance was estimated using the moment method of DerSimonian and Laird (36) and was added to the estimates of the local variance. The test for heterogeneity was a chi-square test under the fixed-effect hypothesis (36). Because few observations were combined and, therefore, the statistical power of the test was small, the null hypothesis was rejected with p-values ≤ 0.2 (6). Where heterogeneity was present, and when it was possible, the meta-analysis was repeated backward, taking out one city each time.

**Results**

NO₂ had a positive and statistically significant relationship with mortality when combining the results of single pollutant models (Tables 2–4). However, these associations were unstable (note the large confidence intervals) and not consistent across cities (there was great evidence of heterogeneity as shown by the Q-statistic). With the exception of cardiovascular mortality (Table 3), O₃ was not associated in a statistically significant way with mortality (although the sign of such relationships was always positive).

The picture changed in the case of multipollutant models (Figure 2). Carbon monoxide was confounding the relationship between NO₂ and mortality. The confounding role of particles was not so clear. In the case of O₃ other pollutants, except perhaps NO₂, did not confound the associations (although in general they were not statistically significant).

With respect to their statistical significance, results for 24-hr average NO₂ (Tables 2–4, Figures 3–5) and 1-hr maximum NO₂ were similar. Differences in RRs could be attributed simply to the different timing of the indicators. The RR for O₃ (8-hr maximum) was statistically significant only for cardiovascular mortality (Table 3, Figure 4), although this was not the case when the 1-hr maximum value was the indicator used for NO₂.

Photochemical air pollutants were not associated with respiratory mortality once other pollutants were taken into account (Table 4, Figure 5). Finally, RRs for cause-specific mortality were nearly twice as high as those for total mortality for all the photochemical pollutants. O₃ was only related to cardiovascular daily mortality. No independent, statistically significant relationship between photochemical air pollutants and respiratory mortality was found.

These epidemiologic findings are supported by different, although not consistent, biological evidence. Experimental exposure to high levels of NO₂ causes acute pulmonary toxic responses. Although O₃ also has acute pulmonary effects at ambient levels, epidemiologic studies have yielded inconclusive results (38). Several studies have found significant adverse effects of NO₂ mainly in respiratory symptoms among children or increased hospital admissions.
There are few studies relating photochemical air pollutants and mortality. This could be attributed to some of the inconsistencies found in those epidemiologic studies (6,13). Recent evidence on the effects on mortality (7,8) has weakened this line of argument. Likewise, when using daily data, mortality usually peaks in the winter, whereas O₃ levels peak in the summer (and daily NO₂ levels do not present peaks) (6,29). The unfamiliarity with advanced time-series statistical analysis techniques that deal with such problems (1,25,30,40) could also be a reason for the lack of studies. More controversial, however, is that the effects of photochemical air pollutants lack independence from the effects of other pollutants, such as particles, suggesting that photochemical pollutants could act as surrogates for particles (6,8,9,23,41). Recently, and mainly due to a higher familiarity with advanced time-series statistical analysis techniques (1,7,25,30,40), a growing number of studies have investigated the short-term effects of photochemical air pollutants on mortality (2,3). In general, as in the present study, significant effects were found in single-pollutant models. Regarding daily total mortality, Kinney and Ozkaynak (8) found significant RRs associated for both NO₂ and O₃ (analyzed independently) in Los Angeles County, California. For Belgium, Sartor et al. (42) showed a significant association between daily mortality and ambient O₃ concentration (although only for the elderly and during the hot summer). Likewise, several studies in Australia (43,44) found significant associations between O₃ and total daily mortality. In the Netherlands, Hoek et al. (7) found that daily mortality was associated with concentrations of O₃ on the previous day (RR = 1.06 for a change of 67 µg/m³). The relationship between O₃ and mortality could be stronger among the elderly (42–44).

With regard to cause-specific mortality, Kinney and Ozkaynak (8) found a significant relationship between photochemical air pollutants and cardiovascular mortality. Tobias et al. (45), in Barcelona, Spain, found that oxidant pollutants were related positively to cardiovascular mortality. They pointed out especially the role of O₃, noting that a reduction in O₃ levels of about 50 µg/m³ led to a 2.8% reduction in daily cardiovascular mortality. Simpson et al. (43), in Brisbane, and Morgan et al. (44) in Sydney, Australia, found statistically significant associations between O₃ and cardiovascular disease categories. Simpson et al. (43) pointed out that the coefficients, when significant, were higher for cardiovascular mortality than those for total mortality. Likewise, in the present study, RRs for cause-specific mortality were also higher than for total mortality.

However, as in our case, most of the studies found no statistically significant associations for respiratory mortality. Kinney and Ozkaynak (8) suggested that the small number of deaths from respiratory causes may have limited the ability to detect small pollution associations. Rather than the number of deaths, in absolute terms, we think that the failure in finding significant associations could be attributed to the low number of deaths from respiratory causes—that is, to the relation with its dispersion and, above all, to the limited number of cities in which air pollutant measurements were available.

In the context of the multicenter collaborative studies, the APHEA project (6) found significant short-term adverse effects of O₃ on total daily number. The RRs associated with a 50 µg/m³ increase in O₃ (1-hr maximum) ranged from 1.3 to 8.6% with a pooled estimate of 2.9% (95% CI, 1.0–4.9%). Concerning the short-term effects of NO₂, an overall significant increase in the total number of deaths by 1.3% (95% CI, 0.9–1.8%) for every 50 µg/m³ NO₂ (1-hr maximum) levels was found, and the individual RRs ranged from 0.5 to 2.7%. Likewise, O₃ was a significant predictor of respiratory mortality (44) (RR of 1.05 associated with a 50 µg/m³ increase) and cardiovascular mortality (RR = 1.02), and NO₂ was marginally significant for mortality due to cardiovascular causes (RR = 1.01).

With the exception of O₃, the results of the present study were more pronounced than those found by the APHEA project, with increases in daily mortality associated with a 50 µg/m³ increase in NO₂ (24-hr average), equal to 2.15% for total mortality (compared to 1.3% in the APHEA case), 5% for cardiovascular mortality (compared to 1% in the APHEA case), and an RR associated with a 50 µg/m³ increase in O₃ (8-hr maximum), equal to 2.8% for cardiovascular mortality (compared to 5% in the APHEA case). Our findings, however, are similar to those found by Quéné et al. (46), except for those related to respiratory mortality. The RRs associated with a 50 µg/m³ increase in NO₂ were 1.038 for total mortality (1.0215 in our case), 1.046 for cardiovascular mortality (1.05 in our case), and the RR for cardiovascular mortality corresponding to O₃ was 1.024 (1.028 in our case).

As mentioned above, it is possible that photochemical air pollutants could be markers of exposure to other air pollutants, specifically particles, which could lead to a confounded association. Ostro et al. (10) in Santiago, Chile, found a significant association between O₃ and mortality when the pollutant was considered alone; however, the association was diminished when particulate matter < 10 µm in aerodynamic diameter was added to the model. Likewise, when analyzing multipollutant (photochemical and other air pollutants) models, Borja-Aburto and colleagues (47,48) in Mexico City, Lee et al. (49) in Seoul and Ulsan, Korea, and Bremmer et al. (50) in London found no independent effects of either O₃ or NO₂.

Some studies (6,44,51) found that photochemical air pollutants, even at low concentrations, were associated, independently, with mortality (all causes, cardiovascular and asthma mortality). As in the APHEA project (6), in all the EMECAM cities, the correlation between O₃ and black smoke was relatively low and in most cases negative (24). In the combined analysis of the ambient oxidant air pollution effects on total mortality, results from the models that included black...
smoke and O₃ simultaneously only slightly reduced the magnitude of the estimated O₃ effects (6). In the case of NO₂, however, although still significant at the nominal level, the effects were substantially reduced. The effects of O₃ and NO₂ are independent of each other, as indicated by the results of the two-pollutant models (7).

Some limitations could be present in our study. First, measurement error and nondifferential bias is a problem for pollutants. O₃, for instance, has higher concentrations in nonurban areas, which were not considered in this study. This fact could contribute to the lack of statistical significance of such air pollutants. In addition, O₃ is highly correlated with maximum temperature, implying that the effects can be hardly separated. In an attempt to further investigate this point, we re-analyzed some of the cities (those in which we found statistically significant parameters either in single or in multipollutant models) using daily maximum temperature instead of 24-hr average O₃ concentrations. In all cases results were similar, even with respect to the statistical significance of the parameters. We hypothesize that daily variations in temperature were small, at least in the three Spanish cities considered (Barcelona, Madrid, and Valencia).

Second, in general, the associations between daily mortality and photochemical air pollutants were heterogeneous. We investigated, in a very exploratory way, the role of some variables as effect modifiers. Levels of particles and sulfur dioxide and average temperature were the main source of such heterogeneity. The differences arose generally from the biggest city, Madrid, where those variables presented the highest coefficients of variation. The analysis of the between-study variability is an important issue in combined results. However, the small number of cities analyzed precludes any deeper investigation into this issue.

Finally, photochemical air pollutants were treated as linear terms in our analysis. However, the dose–response relationship of such air pollutants, O₃ in particular, could be nonlinear (31). We had three reasons to use a linear approximation in this study. First, we could not reject the null hypothesis of linear fit in the approximate partial tests (29) for some of the photochemical air pollutant averages. For a single variable in the model, this would be equivalent to testing for a difference between a linear fit and a smooth fit that includes a linear term along with the smooth term. We therefore had both linear and smooth functions of averages of the same pollutant that were difficult to compare. The second problem is that, with smoothing terms, it is not easy to derive straightforward pointwise estimates nor their pointwise standard errors of the RR's of death for a particular air pollutant change or for a specific level. Third, three studies have recently explored the possibility of the existence of a threshold in the dose–response curve for particulate air pollution, using multicity studies in the United States (52,53) and in Spain (31). In all cases, a linear–threshold relation was seen implying that, at least for particles, linear models provide an adequate estimation of the effect of air pollution on mortality at low to moderate concentrations. At any rate, this point deserves further research.

To conclude, the results presented here show an independent association between mortality and photochemical pollutants. NO₂, the 24-hr average values in particular, has a greater impact on mortality. In the case of significant relationships, this association is greater for groups of specific causes, particularly cardiovascular mortality. However, results are not homogeneous among the cities. In some cities, there was no evidence of association, or else the association is negligible. Although the estimates provided in this study cannot be considered as definitive due to the above mentioned limitations, the results do suggest that, given the present levels of photochemical pollutants, people living in Spanish cities are exposed to health risks derived from air pollution.

REFERENCES AND NOTES

1. Schwartz J. Air pollution and daily mortality: a review and meta-analysis. Environ Res 64:36–52 (1994).
2. Bascom R, Bromberg PA, Costa DL, Devlin R, Dockery DW, Frampton MW, Lambert W, Samet JM, Speizer FE, Utell M. Health effects of outdoor air pollution. Part 1. Am J Respir Crit Care Med 130:1569–1590 (1989).
3. Tenías JM, Ballester F, Medina S, Daponte A. Review of the effects of air pollution in three Spanish cities. J Epidemiol Community Health 50(suppl 1):576–580 (1996).
4. Schwartz J. What are people dying of on high air pollution days? Environ Res 64:23–35 (1994).
5. Sunyer J, Castellsagué J, Saez M, Tobias A, Antó JM. Air pollution and mortality in Barcelona. J Epidemiol Community Health 50(suppl 1):576–580 (1996).
6. Touloumi G, Katsouyanni K, Zmirou D, Schwartz J, Spix C, Ponce de Leon A, Tobias A, Quenel P, Rabczenko D, Bacharova L, et al. Short-term effects of ambient oxidant exposure on mortality: a combined analysis within the APHEA project. Am J Epidemiol 146(2):177–185 (1997).
7. Hoek G, Schwartz JD, Groot B, Teunissen W, Eilers P. The effect of air pollution on mortality in Amsterdam, the Netherlands. Int Arch Occup Environ Health 70:145–164 (1999).
8. Neas LM, Dockery DW, Ware JH. Association of indoor nitrogen dioxide with respiratory symptoms and pulmonary function in children. Am J Epidemiol 134:204–210 (1991).
9. Braun-Fahrlander C, Ackermann-Liebrich U, Schwartz J. Air pollution and respiratory symptoms in preschool children. Am Rev Respir Dis 145:42–47 (1992).
10. Sunyer JM, Lambert WE, Skipper BJ. Nitrogen dioxide and respiratory illness in infants. Am Rev Respir Dis 146:1258–1263 (1992).
11. Hackney JD, Linn WS, Avol EL. Exposure of older adults with chronic respiratory illness to nitrogen dioxide. Am Rev Respir Dis 140:1480–1482 (1992).
12. Pantaopoulou A, Katsouyanni K, Kourou-Krestiniou J. Short-term effects of air pollution on hospital emergency patient visits and admissions in the Greater Athens, Greece area. Environ Res 54:173–180 (1992).
13. Neas LM, Dockery DW, Ware JH. Association of indoor nitrogen dioxide with respiratory symptoms and pulmonary function in children. Am J Epidemiol 134:204–210 (1991).
14. Hurvich CM, Simonoff JS, Tsai CL. Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion. J R Stat Soc, Ser B 60:271–293 (1998).
15. Brumback BA, Ryan LM, Schwartz J, Neas LM, Stark PC, Burge HA. Transitional regression models with application to environmental time series data. J Am Stat Assoc 95(449):16–22 (2000).
16. DerSimianin R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 7:177–188 (1986).
37. Whitehead A, Whitehead J. A general parametric approach to the meta-analysis of randomized clinical trials. Stat Med 10:1665–1677 (1991).
38. Berglund M, Bostrom CE, Bylin G. Health risk evaluation of nitrogen oxides. Scand J Work Environ Health 19(suppl 2):7–72 (1993).
39. Schwartz J. Lung function and chronic exposure to air pollution: a cross-sectional analysis of NHANES. Environ Res 50:309–321 (1990).
40. Touloumi G, Pockack SJ, Katsouyanni K, Trichopoulou D. Short-term effects of air pollution on daily mortality in Athens: a time series analysis. Int J Epidemiol 23:957–967 (1994).
41. Zmirou D, Schwartz J, Saez M, Antó JM. Impact of air pollution on mortality and emergency room visits by COPD and asthma in Barcelona [in Spanish]. Gac Sanit 12(5):495–503 (1998).
42. Sartor F, Demuth C, Snacken R, Walckiers D. Mortality in the elderly and ambient ozone concentration during the hot summer, 1995, Belgium. Environ Res 72(2):109–117 (1997).
43. Simpson RW, Williams G, Petroeschewsky A, Morgan G, Rutherford S. Associations between outdoor air pollution and daily mortality in Brisbane, Australia. Arch Environ Health 52(8):442–454 (1997).
44. Morgan G, Corbett S, Wlodarczyk J, Lewis P. Air pollution and daily mortality in Sydney, Australia, 1989 through 1993. Am J Public Health 88(5):759–764 (1998).
45. Tobias A, Sunyer J, Castellsagüé J, Saez M, Antó JM. Impact of air pollution on mortality and emergency room visits by COPD and asthma in Barcelona [in Spanish]. Gac Sanit 12(5):223–230 (1998).
46. Quénéh P, Cassadou S, Declerq C, Eilstein D, Filleul L, Le Goaster C, Le Tertre A, Medina S, Pascal L, Prouvost H, et al. Time-series analysis of air pollution and cause-specific mortality. Epidemiology 9(5):495–503 (1998).
47. Sartor F, Demuth C, Snacken R, Walckiers D. Mortality in the elderly and ambient ozone concentration during the hot summer, 1995, Belgium. Environ Res 72(2):109–117 (1997).
48. Loomis D, Castillejos M, Gold DR, McDonell W, Borja-Aburto VH. Air pollution and infant mortality in Mexico City. Epidemiology 10(2):118–123 (1999).
49. Lee J-T, Shin D, Chung Y. Air pollution and daily mortality in Seoul and Ulsan, Korea. Environ Health Perspect 107:149–154 (1999).
50. Bremmer SA, Anderson HR, Atkinson RW, McMichael AJ, Strachan DP, Bland D. Short-term associations between outdoor air pollution and mortality in London. Occup Environ Med 56(4):237–244 (1999).
51. Pönka A, Savela M, Virtanen M. Mortality and air pollution in Helsinki. Arch Environ Health 53(4):281–286 (1998).
52. Daniels MJ, Dominici F, Samet JM, Zeger SL. Estimating particulate matter mortality dose response curves and threshold levels: an analysis of daily time series for the 20 largest US cities. Am J Epidemiol 152:397–408 (2000).
53. Schwartz J, Zanobetti A. Using meta-smoothing to estimate dose-response trends across multiple studies, with application to air pollution and daily death. Epidemiology 11(6):666–672 (2000).