Research Article

Lingyan Meng, Xiaomei Liu, Congfen He, Biyao Xu, Yaxuan Li, Yingkao Hu*

Functional divergence and adaptive selection of KNOX gene family in plants

https://doi.org/10.1515/biol-2020-0036
received March 04, 2020; accepted April 23, 2020

Abstract: KNOTTED-like homeodomain (KNOX) genes are transcriptional regulators that play an important role in morphogenesis. In the present study, a comparative analysis was performed to investigate the molecular evolution of the characteristics of the KNOX gene family in 10 different plant species. We identified 129 KNOX gene family members, which were categorized into two subfamilies based on multiple sequence alignment and phylogenetic tree reconstruction. Several segmental duplication pairs were found, indicating that different species share a common expansion model. Functional divergence analysis identified the 15 and 52 amino acid sites with significant changes in evolutionary rates and amino acid physicochemical properties as functional divergence sites. Additional selection analysis showed that 14 amino acid sites underwent positive selection during evolution, and two groups of co-evolutionary amino acid sites were identified by Coevolution Analysis using Protein Sequences software. These sites could play critical roles in the molecular evolution of the KNOX gene family in these species. In addition, the expression profiles of KNOX duplicated genes demonstrated functional divergence. Taken together, these results provide novel insights into the structural and functional evolution of the KNOX gene family.

Keywords: functional divergence, KNOX, phylogenetic tree, positive selection, segmental duplication

1 Introduction

Homeotic genes are the main genes that regulate the development of organisms. They represent a class of transcription factors (TFs) containing a highly conserved homeobox of 183 bp, which encodes a typical DNA-binding domain of 60 amino acids, also known as a homeodomain (HD). The first cloned homeobox gene was from Drosophila [1]. The highly homologous sequence of Knotted-1 (Kn1) to animal homeboxes was detected in maize by transposon tagging [2]. Homeobox genes are widely found in eukaryotes [3]. Genes encoding homologous proteins are classified into two classes: three amino acid length extension (TALE) and non-TALE [4]. Four types of TALE genes have been identified in animals: MEIS, IRO (Iroquois), TGIF, and PBC. Furthermore, according to differences in characteristic domains and functions, there are two types in plants: KNOX (KNOTTED-like homeobox) and BELL (BEL-Like) [5].

KNOX proteins can form heterodimers with BELL in the TALE superclass [3]. KNOX includes four domains: a C-terminal homeodomain (HD), KNOX1 and KNOX2 at the conserved N-terminal region, and an ELK domain upstream of the homologous domain. Owing to the similarity between the MEIS and KNOX family structures, the KNOX1 and KNOX2 domains are also known as the MEINOX domain, and there are three additional amino acids (P–Y–P) between the first and second helices in their homebox [5,6]. In addition, the ELK domain, which can function as a nuclear localization signal (NLS), spans ~21 amino acids rich in glutamic acid (Glu, E), leucine (Leu, L), and lysine (Lys, K) [7]. Between the ELK and KNOX2 domains is the GSE domain, which is rich in proline (Pro, P), glutamic acid (Glu, E), serine (Ser, S), and threonine (Thr, T). The residue sequence (PEST sequence) regulates protein stability and degrades its encoded protein through the ubiquitin degradation pathway [8]. Furthermore, Kerstetter et al. [9] classified the KNOX gene family into class I and class II KNOX subfamilies based on structural features, phylogenetic relationships, and expression patterns.
KNOX genes have been isolated from many plants, such as Nicotiana tabacum [10], Arabidopsis thaliana [11,12], Solanum lycopersicum [13], Medicago truncatula [14], and Physcomitrella patens [15]. In most monocots, the KNAT1 gene is expressed only in shoot apical meristems (SAM) and not in the primordium. In compound-leaf species, KNOX1 are expressed in both SAM and the leaf primordium [16], showing that they may play a significant role in maintaining diversity in leaf morphology [3]. The KNOX2 gene regulates the morphological transformation of haploid to diploid cells in terrestrial plants [17].

In A. thaliana, the class I subfamily includes STM (SHOOT MERISTEMLESS), KNAT1, KNAT2, and KNAT6 [18], and the class II subfamily includes KNAT3, KNAT4, KNAT5, and KNAT7 [3,19], which are widely distributed. STM and KNAT1 are used to establish and maintain SAM. Similarly, KNAT6 has previously been shown to function in the maintenance of borders during SAM and embryogenesis [20]. Furthermore, KNAT1 promotes inflorescence development, while KNAT2 regulates flower type [8,18,21]. The class I gene STM regulates the development of the plant meristem in Arabidopsis [8], and regulation of gene expression leads to the petal spurs rapidly evolving in Antirrhinum [22]. In summary, the class I KNOX gene is involved in the morphogenesis of lateral organs and maintains the function of SAM and the diversity of leaf morphology [3,22].

Meanwhile, the KNOX class homeobox genes Oskn2 and Oskn3 in rice are both expressed in the tissues of the SAM and participate in the regulation of SAM formation. For instance, class II KNOX genes, such as KNAT3, KNAT4, and KNAT5, contribute to the differentiation of tissues in organs in Arabidopsis [9,23,24]. The regulatory network within which KNAT7 functions contributes to the negative regulation of Arabidopsis and Populus secondary cell wall biosynthesis [24,25]. The class II subfamily lacks phenotypic due to mutations; however, there have been relatively few previous studies. In brief, KNOX genes are involved in the growth and development of different tissues and organs in different species [26–28]. Plants must constantly adjust their physiological processes to adapt to changes in the external environment [29]. TFs are considered to be key targets for studying the molecular mechanisms of abiotic stress response because they, either alone or collectively, regulate the expression of many downstream target genes [30].

In the present study, we identified KNOX genes in different species and classified them by reconstructing phylogenetic trees. Then, we identified the critical amino acid sites responsible for functional divergence, positive selection, and co-evolution. Together with expression profiles, we present some insights into the molecular evolution of the KNOX gene family, which can be useful for future research on the evolution of these genes.

2 Materials and methods

2.1 Identification of plant KNOX gene family

Genes from the plant KNOX gene family were identified from 10 species that represented monocotyledonous, dicotyledonous, and bryophyte plants. The KNOX gene family members from the Arabidopsis genome were obtained from the TAIR database (http://www.arabidopsis.org/) and then BLAST searched as seed sequences in the Phytozome database (http://www.phytozome.org) to obtain homologous sequences from nine other species (Glycine max, Populus trichocarpa, Gossypium raimondii, Solanum lycopersicum, Oryza sativa, Brachypodium distachyon, Sorghum bicolor, Zea mays, and Physcomitrella patens). If the E value of the sequence was \(\leq 1 \times 10^{-5} \), then it was listed as a candidate sequence. The Pfam (http://pfam.xfam.org) and SMART (http://smart.embl-heidelberg.de/) online tools were used to determine whether the candidate sequence contained the KNOX1, KNOX2, ELK, and HD to ensure that the sequence domain was intact and used for the next analysis. In addition, coding sequences, protein sequences, and genomic sequences of KNOX family members were downloaded from the Phytozome database. The physicochemical properties of the KNOX gene family were obtained from the ExPASy database (https://www.expasy.org/), including the amino acid number, isoelectric point (PI), and molecular weight (MW) of the protein [31].

2.2 Phylogenetic tree construction

Multiple sequence alignment of the sequences from KNOX family members was performed with the MUSCLE program [32,33]. Three methods were used to construct the phylogenetic tree: Bayesian phylogenetic trees in MrBayes 3.2.5 [34] and neighbor-joining (NJ) and maximum-likelihood (ML) trees in MEGA 7.0 [35]. The reliability of interior branches was assessed with 1,000 bootstrap samples [35].
2.3 Exon–intron structure and motif analysis

The exon–intron structure was analyzed using the online tool GSDS (http://gsds.cbi.pku.edu.cn/) with the coding sequences (CDS) and genomic sequences of KNOX family members [36]. Conserved motifs of KNOX family members were identified using the online tool MEME (http://meme-suite.org/tools/meme) [37]. The maximum number of motifs = 10, and the remaining parameters were set to the default settings.

2.4 Duplication event analysis

Tandem duplication and segmental duplication were used to determine the main amplification methods of the KNOX gene family. The synonymous substitution rates (K_s) of gene pairs produced by segmental repeat events were identified using the Plant Genome Duplication Database (http://chibba.agtec.uga.edu/duplication) [38]. To avoid the risk of saturation and improve the accuracy of the results, the K_s value greater than 1 and anchors less than 3, the approximate age of the segmental duplication event was estimated by the following formula: $T = K_s/2\lambda$ [39]. The synonymous substitutions per year (λ) were 1.5 × 10⁻⁸ for Arabidopsis [40], 6.1 × 10⁻⁹ for Glycine max, 6.5 × 10⁻⁹ for Brachypodium distachyon [41], 9.1 × 10⁻⁷ for Populus trichocarpa [42], 1.5 × 10⁻⁸ for Gossypium raimondii [43], 6.5 × 10⁻⁹ for Oryza sativa, 6.1 × 10⁻⁹–6.5 × 10⁻⁹ for Sorghum bicolor [44], and 6.5 × 10⁻⁹ for Zea mays [45].

2.5 Functional divergence analysis

DIVERGE 3.0 was used to detect the functional divergence between clusters of the KNOX gene family [46]. The extent of divergence can be measured using the type I (site-specific altered selective constraints) and type II (radical shift in amino acid physiochemical properties) functional divergence coefficients (θ_I and θ_{II}) between subfamilies [47–49]. Moreover, Bayesian posterior probability (Q_k) can detect specific amino acid sites where functional divergence has occurred. In our study, the threshold of Q_k was set to 0.9.

2.6 Positive selection analysis

Positive selection was investigated using the maximum likelihood approach in the CODEML procedure in PAML [50,51]. Site models, including null models (M0 and M3) and alternative hypothesis models (M7 and M8), were implemented in this program. A detailed description of the positive selection site test method can be found in Wang et al. [52].

2.7 Coevolution analysis

Coevolution analysis using protein sequences (CAPS) was performed with PERL-based software [53]. A detailed description of the coevolution sites test method can be found in Song et al. [54].

2.8 Protein structure prediction

The 3D structure of the KNOX protein was predicted using online software PHYRE2 (http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index) [55]. We used protein sequences to construct the 3D structure of KNOX family member AT1G08150 and then to screen important amino acids sites that were labeled on the 3D structure.

2.9 Expression analysis of KNOX genes

RNA-Seq data were introduced to further analyze the expression of plant KNOX genes. The Arabidopsis eFP Browser (http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi) tool and the rice eFP Browser (http://www.bar.utoronto.ca/efprice/cgi-bin/efpWeb.cgi) tool were used to search data from Arabidopsis and rice, respectively. A heat map was generated using the TBtools program [56].

3 Results

3.1 Identification of KNOX gene family

Nine KNOX genes of Arabidopsis were obtained from the TAIR database. The gene AT1G14760 was not analyzed because it contains only two KNOX domains, which belong to the KNATM class, that were not included in this analysis. Furthermore, 121 candidate KNOX gene sequences from nine other species were obtained through BLAST searches in the Phytozome database (Table A1). The Pfam [57] and SMART [58] online tools were used to ensure the wholeness of the domains.
Figure 1: Phylogenetic relationship, exon–intron structure, and motif structure of plant KNOX gene family members. (a) The rooted Bayesian phylogenetic tree. The branches of the two different colors represent different subfamilies: blue represents the class I KNOX gene and red represents the class II KNOX gene. (b) Exon and intron structure of KNOX genes. Yellow boxes, exons; lines, introns. The lengths of boxes and lines are scaled according to gene length. (c) MEME motif structures. Numbers and different colors were used to represent conservative motifs.
3.2 Phylogenetic analysis of the KNOX gene family

To investigate the phylogenetic relationships of KNOX genes in 10 plant species (Arabidopsis thaliana, Glycine max, Populus trichocarpa, Gossypium raimondii, Solanum lycopersicum, Oryza sativa, Brachypodium distachyon, Sorghum bicolor, Zea mays and Physcomitrella patens), we used the MUSCLE software [32,33] to perform multiple sequence alignments of 129 protein sequences and then used three methods to construct phylegetic trees: neighbor-joining (Figure A1), maximum-likelihood (data not displayed), and Bayesian inference [34,35] (Figure 1a). According to the results, the topology of the three methods was consistent; the subsequent study uses the Bayesian phylegetic tree. The 129 homeobox genes from 10 species, including monocots and dicots and P. patens, were divided into two subfamilies: class I and class II [59]. The sequence analysis and expression pattern analysis supported this result, which was also consistent with other previous research [9]. The class I subfamily includes 80 members, while the class II subfamily includes 49 members. This difference may be due to the method of gene amplification, which leads to the difference in the number of subfamily members.

Figure 1b shows the exon–intron structure of KNOX gene family members analyzed by the GSDS online system [60]. Most members of the subfamily contained five exons. The number of exons was conservative within the subfamily, and there was no significant difference in the number of exons in the same subfamily. Of the class I members, 78.75% contained five exons, whereas 13 members contained four exons (Figure 1b), and 91.84% of the members of the class II subfamily contained five exons. The number of exons in P. patens was significantly different. For example, PplS154_83V6 contained 10 exons, indicating that exons may have been lost during evolution to adapt to the environment.

3.3 Expansion analysis of plant KNOX gene family

Gene duplication is a major driving force of adaptive evolution in species [61]. In this study, we investigated the gene duplication mode of the KNOX gene family and mainly studied tandem duplication and segmental duplication. Tandem duplication gene pairs were detected in only three species; all of which were members of the monocotyledonous of the class I subfamily. Furthermore, segmental duplication genes were clearly detected in eight species (Table A3). Of the segmental duplication gene pairs, 93% were detected in dicotyledons, whereas only four KNOX segmental duplication gene pairs were detected in monocotyledons. We found that the class I subfamily contained both segmental and tandem duplication genes, which may explain the higher number of genes in class I than class II. In dicotyledonous plants, genes are mainly amplified through segmental duplication; in monocotyledonous plants, tandem duplication and segmental duplication coexist. To estimate the approximate time of segmental duplication events, the base synonymous mutation rate (K_s-values) was used [38] (Table A3). The results showed that the segmental duplication events of most species were consistent with the large-scale duplication events, and segmental duplications were preserved after genome duplication.

3.4 Functional divergence analysis of KNOX gene family

To determine the difference in the evolutionary rates and physicochemical properties of amino acid sites, the type
I and II functional divergence of the two subfamilies was estimated using DIVERGE [48,62]. Key amino acid sites for functional divergence were determined based on posterior probability (Q_k). The results in Table 1 show that the divergence coefficients of type I of the two subfamilies were significant ($\theta_1 = 0.442 \pm 0.052$; LRT = 71.696; $P < 0.01$), indicating that the amino acid sites between the two subfamilies have different evolutionary rates. Meanwhile, the type II coefficients of the two subfamilies were also significant ($\theta_{II} = 0.106 \pm 0.186$; $P < 0.01$), indicating the possible presence of type II divergence sites during evolution between the two subfamilies. Furthermore, the amino acid sites were analyzed between groups under stringent conditions ($Q_k > 0.9$) to confirm the amino acid sites where functional divergence had occurred [48].

The results identified 15 sites with a high probability of being associated with type I functional divergence. There were 52 type II functional divergence sites (Table 2), more than twice the sites identified for type I, of which eight points (140A, 155Q, 170A, 223I, 224R, 283H, 286K, and 345Q) occurred in both type I and type II functional divergence, indicating that they underwent changes in evolutionary rates and physicochemical properties simultaneously. Therefore, these sites are expected to play an important role in functional differences during evolution. Apart from this, the number of type I and type II functional divergence sites was different, and more critical amino acid sites were identified as type II functional divergence within each subfamily. Hence, the functional divergence between genes of the two subfamilies was attributed primarily to rapid changes in amino acid physicochemical properties, followed by a shift in evolutionary rates.

3.5 Positive selection and co-evolution in KNOX gene family

The site model was selected to determine the selection pressure on different amino acid codon sites [51]. The results are shown in Table 3. The selection pressure was significantly different between M0 (one-ratio) and M3 (discrete; $P < 0.01$). The M3 model was better than the M0 model, indicating that different sites experience different selection pressures. The $2\Delta \ln L$ of M7 (beta) vs. M8 (beta & $\omega > 1$) was 5795.66, the likelihood ratio test result was extremely significant (df = 2, $P < 0.01$), and the M8 model had an ω value of 2.63459, much >1, indicating that 14 amino acid positions were strongly affected by positive selection. Table 3 shows the positive selection sites with a posterior probability $>95\%$. Among them, 143H, 171R, and 228S were significant positive selection sites, and 130D, 133A, 134M, 140A, 149Q, 165D, 172Q, 232M, 315K, 318T, and 322L were extremely significant positive selection sites.

We used CAPS, which is significantly more sensitive than other methods, to analyze coevolved amino acid residues in the KNOX gene family [53]. We found two groups of coevolved sites: 248S and 249D, and 382L and 383Y. All sites were labeled according to their 3D structure to further investigate their interdependence (Figure 3).

Table 1: Functional divergence between subfamilies of the plant KNOX gene family

Group1	Group2	$\theta_1 \pm \text{s.e.}$	LRT	$Q_k > 0.9$	$\theta_{II} \pm \text{s.e.}$	$Q_k > 0.9$
Class I	Class II	0.442 \pm 0.052	71.696**	15	0.106 \pm 0.186	52

Note: θ_1 and θ_{II}, the coefficients of type-I and type-II functional divergence between class I and class II. LRT: likelihood ratio test. **$P < 0.01$, highly significant. Q_k: posterior probability.

Table 2: Amino acid divergence sites between subfamilies of the plant KNOX gene family

Type	Amino acid sites
Type I	138I, 140A, 155Q, 164U, 170A, 198M, 213T, 222F, 223I, 224R, 229Q, 283H, 286K, 345Q, 362P
Type II	133A, 137K, 140A, 145S, 146T, 151Y, 153D, 155Q, 158G, 159A, 161P, 163V, 166R, 169A, 170A, 171R, 175E, 196Q, 211E, 214R, 215P, 217Q, 220M, 221E, 223I, 224R, 225R, 253S, 256E, 257E, 278R, 282N, 283H, 285L, 286K, 287K, 300S, 305K, 310K, 312A, 313R, 317L, 318T, 322L, 324Y, 332S, 336A, 340S, 344D, 345Q, 359H, 372D

Note: amino acid sites in bold font indicate that they were responsible for both type I and type II functional divergence.
3.6 Three-dimensional structure prediction and critical amino acid site identification of plant KNOX proteins

We used PHYRE2 to predict the 3D structure of the KNOX family member AT4G08150 [55,63]. The critical amino acid sites were displayed by the multiple sequence alignment and 3D structure (Figures 2 and 3). These 14 sites were mainly dispersed on the KNOX1 domain, two positive selection sites were distributed on the KNOX2 domain, and three positive selection sites were distributed on the HD first alpha helix. The results indicated that the KNOX1 domain was more susceptible to positive selection pressure during the evolution of the KNOX gene family. Amino acid position 140A has undergone both functional divergence and positive selection and

Table 3: Positive selection analysis among KNOX genes using site-specific models

Model	lnL*	ZAI/DAI	Estimate of parameters	Positively selected sites b
M0	−2511.04	632.77**	(M0 vs. M3) ω = 0.07564	Not allowed
			ρ0 = 0.04377, ω0 = 0.00271, p0 = 0.37838, ω0 = 0.00271, p0 = 0.7838,	None
			ω = 0.05253, p0 = 0.20785, ω0 = 0.20938	
M7	−2434.60	5795.66**	(M7 vs. M8) p = 0.63964, q = 6.96441	Not allowed
			ρ0 = 0.99999, p = 0.980088, q = 1.39062, p1 = 0.00001, ω = 2.63459	
M8	−3023.26			

Note: * log likelihood. ** positive selection sites are inferred at posterior probabilities >95%. *P < 0.05; **P < 0.01. Amino acid sites in bold font also found to be involved in the functional divergence.
was located in the KNOXI domain and at the C-terminus of motif 8 (Figure 2). The two pairs of co-evolutionary sites we detected were marked on the 3D structure (Figure 3). We found that two sets of positive selection sites were located on the C-terminal non-functional domain and were close to each other, showing that they may play a certain role in maintaining the spatial structural stability of KNOX proteins.

3.7 Expression analysis of KNOX gene family

To investigate the expression patterns of homologous KNOX genes in subgroups involved in plant growth and development, a heat map was constructed using TBtools (Figures 4 and 5). Members of the same subfamily exhibited similar transcription abundance profiles; however, there were also members that had similar expression profiles but unique phylogenies, such as AT1G62990. It should be noted that AT4G08150 and AT1G62990 belong to the same subfamily (class I). They are expressed at high levels in the pedicels, hypocotyls, and stem but at lower levels in cotyledons and leaves. From the overall expression level, the higher expression levels of AT1G23380 and AT1G62360 in shoots may be related to their indispensability for the formation and maintenance of SAM (29). These results suggested that members in the same subfamily may play similar roles in the same organization. AT5G11060, AT5G25220, and AT4G32040 are from the class II subfamily. Their overall transcription was richer than that of the class I subfamily. The expression level was higher in senescing leaves. AT4G32040 was highly expressed in dry seeds. AT5G11060 was more highly expressed in leaves and different stages of flowers (Figure 4). LOC_Os02g08544 and LOC_Os06g43860 are also from the class II subfamily, and both of them were highly expressed in all tissues and organs (Figure 5). Three members, LOC_Os02g08544, LOC_Os06g43860, and LOC_Os08g19650, were highly expressed in mature and young leaves, whereas the other members exhibited relatively low expression levels. In addition, the expression of LOC_Os03g51690, LOC_Os07g03770, and LOC_Os05g03884 was higher in the seeds but lower in the leaves, which indicates that sub-functionalization had occurred.

4 Discussion

4.1 Genomic analysis of the KNOX gene family

In the present study, we isolated 129 candidate KNOX gene sequences after removing incomplete and redundant sequences from 10 different species. There were nine from Arabidopsis [64] and eight from Solanum lycopersicum [65], which are consistent with the results of previous studies. Genome-wide analysis showed that the KNOX gene family was divided into two subfamilies: class I and class II (Figure 1). Both subfamilies contain monocots, dicots, and P. patens. Class I subfamily KNOX genes are similar to zmkn1 and are mainly expressed on the SAM of monocots and dicots [3,66]. According to previous studies, only one KNOX gene had evolved before the emergence of terrestrial plants, indicating that KNOX genes originated during the divergence of the last common ancestor of moss and vascular plants. KNOX genes are divided into four domains: KNOXI, KNOX2, ELK, and HD [64,67]. The KNOXI domain has negative regulatory effects on the transcription of target genes. The KNOX2 domain mediates the interaction between KNOX and members of the BELL gene family. The HD consists of three helices and is conserved in eukaryotes and is involved in DNA binding [9,68]. Members in the same subfamily contain similar numbers of exons and introns, except for the number of exons in P. patens, which may also be due to the absence of exons for functional adaptation during evolution. Intriguingly, most members of the KNOX gene family contained five identical conserved motifs, except that
P. patens does not contain motif 8. A high degree of sequence identity and similar exon–intron structures of *KNOX* genes across families suggests that the *KNOX* family has undergone gene duplication events throughout evolution.

Although repeated genes may have evolved few novel functions, they play an important role in the origin of species and the evolution of biological functions [42,69]. Gene duplication plays a significant role not only in the process of genome rearrangement and expansion but also in the diversification of gene functions and the large number of gene families [70]. Segmental duplication, tandem duplication, and transposition events, such as retro and replicative transposition, are the three main forces that drive the expansion of gene families [61,70]. Transposition events are difficult to

![Figure 4: Expression profiles of Arabidopsis thaliana KNOX genes. The expression level is represented by a color: dark red indicates the highest expression level and dark blue indicates the lowest expression level. Other colors indicate medium levels of expression.](image-url)
identify based on sequence analysis alone; therefore, we focused on segmental and tandem duplication events. The results of the present study indicated that tandem duplication was detected in three species from the class I subfamily, indicating that the genes produced by tandem duplication did not undergo functional divergence (Table A3). Segmental duplication was detected in eight species from both subfamilies. Monocotyledonous plants had both tandem and segmental duplication, and dicotyledonous plants had only segmental duplication, especially, most of the KNOX genes in soybean and cotton. Therefore, the main amplification method of soybean and cotton is segmental duplication. Segmental duplication is likely to have played a pivotal role in KNOX gene expansion in dicots. In addition, the number of segmental duplication events in the two subfamilies was similar, and only segmental duplication occurred in the class II subfamily, which may be the reason for the larger number of class I subfamily members. Class I subfamily members are isolated from different angiosperms. They are expressed in meristems and not in differentiated tissues or organs that are related to maintaining the properties of meristems [9]. Large-scale duplication may have also been involved in the expansion of the KNOX gene family.

4.2 Functional divergence, positive selection, and co-evolution analysis

We selected the 3D structure of the Arabidopsis KNOX protein AT4G08150 for observation and marked the detected sites on the predicted 3D structure. The functional diversity between different subfamilies was mainly determined by specific amino acids in the subfamily, and the major reason for the functional divergence in repeated genes was possibly owing to the accumulation of amino acid mutation sites [42,71,72]. Type I and type II functional divergences between gene clusters of KNOX subfamilies were estimated by posterior probability analysis. By analyzing the functional divergence of the KNOX gene family, we identified a total of 15 type I functional divergence sites and 52 type II functional divergence sites from two subfamilies (Table 2). This result indicates diversification in the evolutionary rates of specific amino acid sites or significant changes in the physicochemical properties of amino acids. There are far more type II than type I functional divergence sites, which indicated that type II functional divergence is dominant. Besides, eight amino acid sites were identified as both type I and type II functional divergence sites, indicating that they had undergone simultaneous shifts in evolutionary rates and physicochemical properties. However, the lack of significant differences in the degree of functional divergence between most subfamily pairs suggests that genes belonging to these subfamilies might perform similar functions.

Positive selection has been associated with gene duplication and functional divergence. Here, we used computer simulations to evaluate the performance of Bayesian predictions for amino acids under positive selection [50]. However, the functions of most amino acid residues were conserved, and only a few amino acid sites can function in molecular adaptation [73]. In the present study, we detected 14 positive selection sites, three significant positive selection sites, and 11 extremely significant selection sites (Table 3). The positive selection sites were mainly distributed in the KNOXI domain, indicating that the KNOX gene family had been subjected to different selection pressures during evolution. Interestingly, we found that the site 140A experienced both type I and type II functional divergences and positive selection and may have an important role.

Figure 5: Expression profiles of rice KNOX genes. The expression level is represented by a color: dark red indicates the highest expression level, and dark blue indicates the lowest expression level. Other colors indicate medium levels of expression.
The complexity of protein evolution is directly proportional to the potential function and structure of interactions between co-evolving sites within the molecule, and co-evolving amino acid sites interact between complex functional domains of a protein [74]. Detection of co-evolving sites will provide important evidence for the study of the mechanisms underlying molecular evolution. A co-evolution analysis of the KNOX gene family detected two sets of adjacent co-evolving sites: 248S and 249D, and 382L and 383Y, both of which were in the C-terminal domain. Based on the analysis of the 3D structure (Figure 3), the co-evolving sites are closer in the 3D structure. Thus, the interaction of these sites may have a stabilizing effect on the spatial structure of KNOX proteins.

4.3 Expression analysis of KNOX gene family

Most KNOX gene families exhibited variable expression levels in different tissues and organs (Figures 4 and 5). Class I KNOX genes are mainly expressed in the SAM and the class II genes are more widely expressed [9], as can be seen in the heatmap, which shows members of the class II subfamily expressed in most tissues and organs. The expression of KNOX genes mainly in the shoot may be related to important role within the SAM [29]. For example, the expression of KNOX genes in the shoot was upregulated in Arabidopsis. In addition, during the evolution of angiosperms, the KNOX1 gene was involved in the control of leaf shape. The expression pattern of KNOX1 in the primordium of a leaf is highly related to the shape of the leaf. We suspect that the key amino acid sites in the KNOX1 domain may be related to the expression of KNOX1 [16]. The expression of genes in different tissues reflects the diversity of functions. In summary, expression profiles of KNOX family members are largely organ specific, indicating that KNOX genes are differentially expressed in different groups and that regulatory regions of KNOX genes may have diverged. Importantly, the results also demonstrate divergence in the expression of KNOX duplicated genes during evolution.

5 Conclusions

In the present study, a total of 129 KNOX family members were identified from 10 species through extensive analysis of gene families, which were divided into two subfamilies by phylogenetic analysis. Monocots and dicots were amplified differently. Both tandem and segmental duplication are found in monocotyledonous plants, whereas dicotyledonous plants only have segmental duplication. Gene replication provides the main driving force for adaptive evolution of species. The large proportion of type II functional divergence that occurred indicated that the mode of functional divergence for KNOX proteins mainly relates to changes in the physicochemical properties of amino acids. The site-specific model analysis revealed that the KNOX gene family contains 14 positive selection sites, mainly located in the KNOX1 domain, which suffers from strong positive selection pressure. Two pairs of amino acid sites close to each other in 3D structure were identified by co-evolutionary analysis, indicating that they may play a key role in the stability of KNOX protein structure and function. Furthermore, KNOX genes exhibited different expression profiles in different organs as well as different functions. Our study provides a deeper understanding of the structural and functional evolution of the KNOX gene family and provides a basis for further research on KNOX proteins.

Acknowledgments: This work was supported by the Natural Science Foundation of Beijing, China (6192002) and the Science and Technology Development Project of the Beijing Education Commission (KM201710028010).

Conflict of interest: The authors state no conflict of interest.

References

[1] Gehring WJ, Affolter M, Bürglin T. Homeodomain proteins. Annu Rev Biochem. 1994;63:487–526.
[2] Vollbrecht E, Veit B, Sinha N, Hake S. The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature. 1991;350(6315):241–3.
[3] Hake S, Smith HM, Holtan H, Magnani E, Mele G, Ramirez J. The role of KNOX genes in plant development. Annu Rev Cell Dev Biol. 2004;20:125–51.
[4] Lee JH, Lin H, Joo S, Goodenough U. Early sexual origins of homeoprotein heterodimerization and evolution of the plant KNOX/BELL family. Cell. 2008;133(5):829–40.
[5] Bürglin TR. Analysis of TALE superclass homeobox genes (MEIS, PBC, KNOX, Iroquois, TGIF) reveals a novel domain conserved between plants and animals. Nucleic Acids Res. 1997;25(21):4173–80.
[6] Chen H, Rosin FM, Prat S, Hannapel DJ. Interacting transcription factors from the three-amino acid loop extension
superclass regulate tuber formation. Plant Physiol. 2003;132(3):1391–404.

[7] Hofer J, Gourlay C, Michael A, Ellis TH. Expression of a class 1 knotted1-like homeobox gene is down-regulated in pea compound leaf primordia. Plant Mol Biol. 2001;45(4):387–98.

[8] Scofield S, Dewitte W, Murray JA. The KNOX gene SHOOT MERISTEMLESS is required for the development of reproductive meristematic tissues in Arabidopsis. Plant J. 2007;50(5):767–81.

[9] Kerstetter R, Vollbrecht E, Lowe B, Velt B, Yamaguchi J, Hake S. Sequence analysis and expression patterns divide the maize Knotted1-like homeobox gene into two classes. Pln at Cell. 1994;6(12):1877–87.

[10] Sakamoto T, Nishimura A, Tamaoki M, Kuba M, Tanaka H, Iwahori S, et al. The conserved KNOX domain mediates specificity of tobacco KNOTTED1-type homeodomain proteins. Plant Cell. 1999;11(8):1419–32.

[11] Ori N, Eshed Y, Chuck G, Bowman J, Hake S. Mechanisms that control KNOX gene expression in the Arabidopsis shoot. Development. 2000;127(24):5523–32.

[12] Li E, Bhargava A, Qiang W, Friedmann MC, Forneris N, Savidge RA, et al. The Class II KNOX gene KNAT7 negatively regulates secondary wall formation in Arabidopsis and is functionally conserved in Populus. New Phytol. 2012;194(1):102–15.

[13] Jasinski S, Kaur H, Tattersall A, Tsiantis M. Negative regulation of KNOX expression in tomato leaves. Planta. 2007;226(6):1255–63.

[14] Peng J, Yu J, Wang H, Guo Y, Li G, Bai G, et al. Regulation of compound leaf development in Medicago truncatula by fused compound leaf1, a class M KNOX gene. Plant Cell. 2011;23(11):3929–43.

[15] Frangedakis E, Saint-Marcoux D, Moody LA, Rabinowitsch E, Langdale JA. Nonreciprocal complementation of KNOX gene function in land plants. New Phytol. 2017;216(2):591–604.

[16] Tsuda K, Hake S. Diverse functions of KNOX transcription factors in the diploid body plan of plants. Curr Opin Plant Biol. 2015;27:91–6.

[17] Sakakibara K, Ando S, Yip HK, Tamada Y, Hiwatashi Y, Murata T, et al. KNOX2 genes regulate the haploid-to-diploid morphological transition in land plants. Science. 2013;339(6123):1067–70.

[18] Byrne ME, Simorowski J, Martienssen RA. ASYMMETRIC LEAVES1 reveals KNOX gene redundancy in Arabidopsis development. 2002;129(8):1957–65.

[19] Reyes-Rivera J, Rodríguez-Alonso G, Petrone E, Vasco A, Vergara-Silva F, Shishkova S, et al. Expression of the knotted homeobox genes in the cactaceae cambial zone suggests their involvement in wood development. Front Plant Sci. 2017;8:218.

[20] Belles-Boix E, Hamant O, Wilti SM, Morin H, Traas J, Pautov V. KNAT6: an Arabidopsis homeobox gene involved in meristem activity and organ separation. Plant Cell. 2006;18(8):1900–7.

[21] Ragn L, Belles-Boix E, Gün M, Pautov T. Interaction of KNAT6 and KNAT2 with BREVIPEDICELLUS and PENNYWISE in Arabidopsis inflorescences. Plant Cell. 2008;20(4):888–900.

[22] Golz JF, Keck EJ, Hudson A. Spontaneous mutations in KNOX genes give rise to a novel floral structure in Antirrhinum. Curr Biol. 2002;12(7):S51–22.

[23] Furumiz C, Alvarez JP, Sakakibara K, Bowman JL. Antagonistic roles for KNOXI and KNOX2 genes in patterning the land plant body plan following an ancient gene duplication. PLoS Genet. 2015;11(2):e1004980.

[24] Wang S, Yamaguchi M, Grienengerber E, Martone PT, Samuels AL, Mansfield SD. The Class II KNOX genes KNAT3 and KNAT7 work cooperatively to influence deposition of secondary cell walls that provide mechanical support to Arabidopsis stems. Plant J. 2020;101(2):293–309.

[25] Liu Y, You S, Taylor-Teeples M, Li WL, Schultz M, Brady SM, et al. BEL1-LIKE HOMEO DOMAIN6 and knotted Arabidopsis THALIANA7 interact and regulate secondary cell wall formation via repression of revoluta. Plant Cell. 2014;26(12):4843–61.

[26] Cheng X, Li M, Abdullah M, Li G, Zhang JY, Manzoor MA, et al. In Silico genome-wide analysis of the pear (Pyrus bretschi nederi) KNOX family and the functional characterization of PbKNOXI, an Arabidopsis BREVI PEDICELLUS orthologue gene, involved in cell wall and lignin biosynthesis. Front Genet. 2019;10:623.

[27] Yoon J, Cho LH, Antt HW, Koh HJ, An G. KNOX Protein OSH15 induces grain shattering by repressing lignin biosynthesis genes. Plant Physiol. 2017;174(1):312–25.

[28] Jia P, Zhang CG, Xing LB, Li YM, Shah K, Zuo XY, et al. Genome-wide identification of the MdKNOX gene family and characterization of its transcriptional regulation in malus domestica. Front Plant Sci. 2020;11:128.

[29] Denison FC, Paul AL, Zupanska AK, Feri RJ. 14–33 proteins in plant physiology. Semin Cell Dev Biol. 2011;22(7):720–7.

[30] Bhathtagjee A, Jain M. Homeobox genes as potential candidates for crop improvement under abiotic stress. plant acclimation to environmental. Stress. 2012;7:163–76.

[31] Bjellqvist B, Basse B, Olsen E, Celis JE. Reference points for comparisons of two-dimensional maps of proteins from different human cell types defined in a pH scale where isoelectric points correlate with polypeptide compositions. Electrophoresis. 1994;15(3):529–39.

[32] Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2004;5:113.

[33] Edgar RC. MUSCLE: a multiple sequence alignment method with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–7.

[34] Ronquist F, Teslenko M, Pavan M, Ayres DL, Darling A, Höhna S, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61(3):539–42.

[35] Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–4.

[36] Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G. GS DS 2.0: an upgraded gene feature visualization server. Bioinformatics. 2015;31(8):1296–7.

[37] Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Li M, et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 2009;37(Web Server issue):W202–8.

[38] Tang H, Wang X, Bowers JE, Ming R, Alam M, Paterson AH. Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps. Genome Res. 2008;18(12):1944–54.

[39] Yin G, Xu H, Xiao S, Qin Y, Li Y, Yan Y, et al. The large soybean (Glycine max) WRKY TF family expanded by segmental
dissociation events and subsequent divergent selection among subgroups. BMC Plant Biol. 2013;13:148.

[40] Bowers JE, Chapman BA, Rong J, Paterson AH. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature. 2003;422(6930):433–8.

[41] Blanc G, Wolfe KH. Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell. 2004;16(7):1667–78.

[42] Lynch M, Conery JS. The evolutionary fate and consequences of duplicate genes. Science. 2000;290(5494):1151–5.

[43] Wang K, Wang Z, Li F, Ye W, Wang J, Song G, et al. The draft genome of a diploid cotton Gossypium raimondii. Nat Genet. 2012;44(10):1098–103.

[44] Vandepoele K, Simillion C, Van de Peer Y. Evidence that rice and other cereals are ancient aneuploids. Plant Cell. 2003;15(9):2192–202.

[45] Fan K, Wang M, Miao Y, Ni M, Bibi N, Yuan S, et al. Molecular evolution and expansion analysis of the NAC transcription factor in Zea mays. PLoS One. 2014;9(11):e111837.

[46] Gu X, Zou Y, Su Z, Huang W, Zhou Z,arendsee Z, et al. An update of DIVERGE software for functional divergence analysis of protein family. Mol Biol Evol. 2013;30(7):1713–9.

[47] Lichtarge O, Bourne HR, Cohen FE. An evolutionary trace method defines binding surfaces common to protein families. J Mol Biol. 1996;257(2):342–58.

[48] Gaucher EA, Gu X, Miyamoto MM, Benner SA. Predicting functional divergence in protein evolution by site-specific rate shifts. Trends Biochem Sci. 2002;27(6):315–21.

[49] Gu X. A simple statistical method for estimating type-II (cluster-specific) functional divergence of protein sequences. Mol Biol Evol. 2006;23(10):1937–45.

[50] Anisimova M, Bielawski JP, Yang Z. Accuracy and power of Bayes prediction of amino acid sites under positive selection. Mol Biol Evol. 2002;19(6):950–8.

[51] Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2002;19(2):401–3.

[52] Wang L, Wu N, Zhu Y, Song W, Zhao X, Li Y, et al. The divergence and positive selection of the plant-specific SURP-containing protein family. Ecol Evol. 2015;5(22):5394–5412.

[53] Fares MA, McNally D. CAPS: coevolution analysis using protein sequences. Bioinformatics. 2006;22(22):2821–2.

[54] Song W, Qin Y, Zhu Y, Yin G, Wu N, Li Y, et al. Delineation of plant caeleosin residues critical for functional divergence, positive selection and coevolution. Mol Biol Evol. 2014;14:124.

[55] Kelley LA, Sternberg MJ. Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc. 2009;4(3):363–471.

[56] Cao Y, Meng D, Chen Y, Abdullah M, Jin Q, Lin Y, et al. Comparative and expression analysis of ubiquitin conjugating domain-containing genes in two pyrus species. Cells. 2018;7:77.

[57] Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 2016;44(1):D279–85.

[58] Letunic I, Doerks T, Bork P. SMART: recent updates, new developments and status in 2015. Nucleic Acids Res. 2015;43(Database issue):D257–60.

[59] Hamant O, Pautot V. Plant development: a TALE story. C R Biol. 2010;333(4):371–81.

[60] Guo AY, Zhu QH, Chen X, Luo JC. GSDS: a gene structure display server. Hereditas. 2007;29(8):1023–6.

[61] Kong H, Landherr LL, Frohlich MW, Leebens-Mack J, Ma H, dePamphilis CW. Patterns of gene duplication in the plant SKP1 gene family in angiosperms: evidence for multiple mechanisms of rapid gene birth. Plant J. 2007;50(5):873–85.

[62] Gu X. Statistical methods for testing functional divergence after gene duplication. Mol Biol Evol. 1999;16(12):1664–74.

[63] Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10(6):845–58.

[64] Mukherjee K, Brocchieri L, Bürglin TR. A comprehensive classification and evolutionary analysis of plant homeobox genes. Mol Biol Evol. 2009;26(12):2775–94.

[65] Ye SG, Zai WS, Xiong ZL, Zhang HL, Ma YR. Genome-wide identification of KNOX gene family in tomato and their evolutionary relationship in Solanaceae. J Nucl Agric Sci. 2017;31(7):1263–71.

[66] Jackson D, Veit B, Hake S. Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development. 1994;120:405–13.

[67] Gao J, Yang X, Zhao W, Lang T, Samuelsson T. Evolution, diversification, and expression of KNOX proteins in plants. Front Plant Sci. 2015;6:882.

[68] Byrne ME, Groover AT, Fontana JR, Martienssen RA. Phyllotactic pattern and stem cell fate are determined by the Arabidopsis homeobox gene BELLRINGER. Development. 2003;130(17):3941–50.

[69] Kondrashov FA, Rogozin LB, Wolf YI, Koonin EV. Selection in the evolution of gene duplications. Genome Biol. 2002;3(2):research0008.

[70] Cannon SB, Mitra A, Baumgarten A, Young ND, May G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol. 2004;4:10.

[71] Moore RC, Purugganan MD. The early stages of duplicate gene evolution. Proc Natl Acad Sci U S A. 2003;100(26):15682–7.

[72] Ha M, Kim ED, Chen ZJ. Duplicate genes increase expression diversity in closely related species and allopolyploids. Proc Natl Acad Sci U S A. 2009;106(7):2295–300.

[73] Golding GB, Dean AM. The structural basis of molecular adaptation. Mol Biol Evol. 1998;15(4):355–69.

[74] Fares MA, Travers SA. A novel method for detecting intramolecular coevolution: adding a further dimension to selective constraints analyses. Genetics. 2006;173(1):9–23.
Figure A1: Neighbor-joining phylogenetic tree of the KNOX gene family. Two branches of different colors represent different subfamilies: blue represents class I KNOX genes, and red represents class II KNOX genes.
Table A1: Number of the KNOX genes in ten plant species

Plant taxa	Species	Number of KNOX genes
Dicotyledonous angiosperms	Arabidopsis thaliana	8
	Glycine max	29
	Populus trichocarpa	15
	Gossypium raimondii	21
	Solanum lycopersicum	8
Monocotyledonous angiosperms	Oryza sativa	11
	Brachypodium distachyon	11
	Sorghum bicolor	9
	Zea mays	13
Bryophyte	Physcomitrella patens	4

Table A2: Identified KNOX genes and their related information

Group	Gene ID	ORF (aa)	pI*	Mw (Da)
I	Glyma08g39170	321	4.99	36,284.8
I	Glyma18g20293	324	5.25	36,864.4
I	Glyma14g05150	311	6.72	35,759.5
I	Glyma20g22986	307	4.97	34,913.5
I	Glyma10g28820	296	5.06	33,654
I	Glyma19g41610	311	5.62	35,503.1
I	Glyma03g39041	307	5.6	35,332
I	Glyma04g35850	278	5.96	31,949.2
I	Glyma13g22530	346	5.59	39,797.2
I	Glyma17g11330	345	5.59	39,683.1
I	Glyma02g43761	295	5.7	33,383.3
I	Glyma04g06810	411	5.73	45,982
I	Glyma09g12820	369	5.51	41,611.2
I	Glyma06g06886	398	5.9	44,607.6
I	Glyma01g24210	281	6.43	32,145.4
I	Glyma11g02960	279	6.36	31,898.1
I	Glyma14g13750	412	5.67	45,926.9
I	Glyma05g03650	293	6.34	33,241.4
I	Glyma17g14180	292	6.24	33,080.3
I	Glyma17g32980	411	5.94	46,083.5
I	Potri.002G11330	368	5.98	42,459.4
I	Potri.011G01110	373	6.13	41,549.5
I	Potri.004G04700	369	6.14	41,189.2
I	Potri.015G07910	347	5.03	38,787
I	Potri.010G04350	309	4.88	35,200.6
I	Potri.012G08710	340	4.95	37,951.3
I	Potri.008G18870	341	5.51	38,685.4
I	Potri.005G01720	316	5.31	36,277.5
I	Potri.005G01420	317	5.31	36,324.5
I	Potri.013G00860	320	5.15	36,167.5
I	Potri.006G25940	432	5.91	48,185.5
I	Potri.018G11410	334	5.74	38,045.4
I	Potri.018G02270	426	5.88	47,762.8
I	Potri.001G12200	301	6.23	33,920.2
I	Potri.006G19000	338	5.81	38,563.1
I	Gora1.009G23320	369	5.8	42,516.5
I	Gora1.010G02900	364	6.14	41,729.5
I	Gora1.005G09810	310	7.1	35,620.9
I	Gora1.011G01170	351	6.01	39,746.5
I	Gora1.010G18380	355	6.21	39,951.8
I	Gora1.005G18050	314	5.01	35,440.9
Group	Gene ID	ORF (aa)	pIa	Mw (Da)
-------	------------------	----------	-----	---------
I	Gorai.009G181500	353	6	39,924.9
I	Gorai.009G36900	313	4.73	35,622.3
I	Gorai.013G129400	312	5.17	35,341.7
I	Gorai.008G296800	303	5.47	34,206.5
I	Gorai.007G306500	320	4.73	36,277.4
I	Gorai.004G236400	289	5.66	33,046
II	Gorai.009G060200	425	5.79	46,817.2
II	Gorai.010G17100	434	5.89	48,085.5
II	Gorai.009G242800	303	6.5	34,634.2
II	Gorai.001G35700	443	5.94	48,698
II	Gorai.003G163800	299	5.9	33,596.7
II	Gorai.010G56100	290	6.2	32,792.9
II	Gorai.004G206600	300	6.23	33,765
II	Gorai.013G213900	448	6.01	49,635.2
II	Gorai.009G12300	295	5.35	33,294.4
II	Soly04g077210.2	355	5.86	40,093.7
II	Soly02g081120.2	354	5.72	39,654.6
II	Soly05g005090.2	320	4.79	36,956.8
II	Soly01g100510.2	335	5.3	37,912.2
II	Soly08g041820.2	349	5.37	39,649.4
II	Soly08g080120.2	310	6.06	35,307.6
II	Soly07g007120.2	431	5.67	48,015.7
II	Soly12g010410.1	329	5.58	38,098.1
I	LOC_Os03g51690	361	6.37	39,898
I	LOC_Os07g03770	355	6.5	38,590.4
I	LOC_Os03g56110	341	6.31	37,235.7
I	LOC_Os01g9694	301	6.13	32,735.8
I	LOC_Os05g03884	311	5.21	33,348.2
I	LOC_Os03g5170	377	5.67	41,382.8
I	LOC_Os03g56140	385	6.41	41,456.7
I	LOC_Os08g19650	278	5.8	30,891.6
II	LOC_Os02g08544	313	5.72	33,875.9
II	LOC_Os06g43860	323	6.02	35,166.2
II	LOC_Os03g03164	314	5.73	34,607
I	Bradi1g10047	372	6.38	41,486.1
I	Bradi1g57607	321	6.2	35,556
I	Bradi1g07247	345	6.13	38,136.9
I	Bradi2g11540	290	5.6	32,008
I	Bradi2g38390	300	5.61	32,991.1
I	Bradi1g12690	313	5.49	34,969.6

ORF = open reading frame; aa = amino acids; Mw = molecular weight.
aIsolelectric point of the deduced polypeptide.
Table A3: Estimates of the dates for the segmental duplication events of KNOX gene family in eight plants

Segmental pairs	K_s (mean ± SD)	Estimated time (MYA)	WGD (MYA)
AT5G11060 AT5G25220	0.765 ± 0.129	25.5	28–48
Glyma04g05210 Glyma0041s00360	0.664 ± 0.171	54.4	13, 59
Glyma14g10430 Glyma0041s00360	0.125 ± 0.039	10.2	
Glyma01g03450 Glyma08g39170	0.696 ± 0.169	57	
Glyma01g02410 Glyma05g03650	0.709 ± 0.111	58.1	
Glyma01g02410 Glyma11g02960	0.147 ± 0.142	12	
Glyma01g02410 Glyma17g14180	0.711 ± 0.127	58.3	
Glyma02g04190 Glyma08g39170	0.664 ± 0.146	54.4	
Glyma02g04190 Glyma18g20293	0.605 ± 0.035	49.6	
Glyma02g04190 Glyma14g05150	0.237 ± 0.220	19.4	
Glyma03g39041 Glyma10g28820	0.606 ± 0.136	49.7	
Glyma03g39041 Glyma19g41610	0.144 ± 0.071	11.8	
Glyma03g39041 Glyma20g22986	0.610 ± 0.154	50	
Glyma04g05210 Glyma14g10430	0.613 ± 0.170	50	
Glyma04g06810 Glyma06g06886	0.159 ± 0.119	13	
Glyma04g06810 Glyma17g32980	0.633 ± 0.045	51.9	
Glyma05g03650 Glyma11g02960	0.766 ± 0.103	62.8	
Glyma05g03650 Glyma17g14180	0.163 ± 0.059	13.4	
Glyma06g06886 Glyma17g32980	0.620 ± 0.029	50.8	
Glyma07g39350 Glyma09g01000	0.646 ± 0.142	53	
Glyma07g39350 Glyma15g11850	0.705 ± 0.164	57.8	
Glyma07g39350 Glyma17g01370	0.145 ± 0.120	11.9	
Glyma09g01000 Glyma15g11850	0.183 ± 0.157	15	
Glyma09g01000 Glyma17g01370	0.659 ± 0.168	54	
Glyma10g28820 Glyma19g41610	0.572 ± 0.082	46.9	
Glyma10g28820 Glyma20g22986	0.145 ± 0.059	11.9	
Glyma11g02960 Glyma17g14180	0.741 ± 0.113	60.7	
Glyma13g22530 Glyma17g1330	0.153 ± 0.106	12.5	
Glyma14g13750 Glyma17g32980	0.158 ± 0.045	13	
Glyma15g11850 Glyma17g01370	0.660 ± 0.178	54.1	
Glyma19g41610 Glyma20g22986	0.573 ± 0.101	47	
Potri.005G014200 Potri.013G008600	0.313 ± 0.113	17.2	8–13
Potri.005G017200 Potri.013G008600	0.332 ± 0.111	18.2	
Potri.006G190000 Potri.018G114100	0.241 ± 0.065	13.2	
Potri.006G259400 Potri.018G022700	0.294 ± 0.115	16.2	
Potri.008G188700 Potri.010G043500	0.268 ± 0.094	14.7	
Goral.001G035700 Goral.010G117100	0.515 ± 0.130	17.2	
Goral.001G035700 Goral.013G213900	0.530 ± 0.100	17.7	
Goral.001G035700 Goral.009G060200	0.495 ± 0.105	16.5	
Goral.003G163800 Goral.004G206600	0.535 ± 0.122	17.8	
Table A3: continued

Segmental pairs	K_s (mean ± SD)	Estimated time (MYA)	WGD (MYA)
Gorai.003G163800 Gorai.008G242800	0.626 ± 0.153	20.9	
Gorai.004G206600 Gorai.008G242800	0.534 ± 0.109	17.8	
Gorai.004G236400 Gorai.013G129400	0.420 ± 0.078	14	
Gorai.004G236400 Gorai.007G306500	0.519 ± 0.135	17.3	
Gorai.005G098100 Gorai.010G029000	0.710 ± 0.127	23.7	
Gorai.005G098100 Gorai.009G223200	0.528 ± 0.078	17.6	
Gorai.007G306500 Gorai.013G129400	0.425 ± 0.045	14.2	
Gorai.009G012300 Gorai.010G056100	0.484 ± 0.124	16.1	
Gorai.009G060200 Gorai.010G117100	0.530 ± 0.088	17.7	
Gorai.009G060200 Gorai.013G213900	0.526 ± 0.112	17.5	
Gorai.009G181500 Gorai.010G183800	0.482 ± 0.132	16.1	
Gorai.009G181500 Gorai.011G011700	0.617 ± 0.171	20.6	
Gorai.009G223200 Gorai.010G029000	0.637 ± 0.152	21.2	
Gorai.010G183800 Gorai.011G011700	0.683 ± 0.233	22.8	
LOC_Os02g08544 LOC_Os06g43860	0.660 ± 0.128	50.8	30–40, 66–70
Brad1g30730 Brad1g30730	0.863 ± 0.017	66.4	56–73
Sb04g005620 Sb04g005620	0.685 ± 0.140	52.7–56.1	70
GRMZM2G135447 GRMZM2G452178	0.597 ± 0.024	45.9	12, 70

MYA = million years ago.