Through microscopic analysis of veins and assessment of light- and CO₂-saturated rates of photosynthetic oxygen evolution, we investigated the relationship between minor loading vein anatomy and photosynthesis of mature leaves in three ecotypes of Arabidopsis thaliana grown under four different combinations of temperature and photon flux density (PFD). All three ecotypes exhibited greater numbers and cross-sectional area of phloem cells as well as higher photosynthesis rates in response to higher PFD and especially lower temperature. The Swedish ecotype exhibited the strongest response to these conditions, the Italian ecotype the weakest response, and the Col-0 ecotype exhibited an intermediate response. Among all three ecotypes, strong linear relationships were found between light- and CO₂-saturated rates of photosynthetic oxygen evolution and the number and area of either sieve elements or of companion and phloem parenchyma cells in foliar minor loading veins, with the Swedish ecotype showing the highest number of cells in minor loading veins (and largest minor veins) coupled with unprecedented high rates of photosynthesis. Linear, albeit less significant, relationships were also observed between number and cross-sectional area of tracheids per minor loading vein versus light- and CO₂-saturated rates of photosynthetic oxygen evolution. We suggest that sugar distribution infrastructure in the phloem is co-regulated with other features that set the upper limit for photosynthesis. The apparent genetic differences among Arabidopsis ecotypes should allow for future identification of the gene(s) involved in augmenting sugar-loading and transporting phloem cells and maximal rates of photosynthesis.

Keywords: Arabidopsis thaliana ecotypes, leaf vasculature, light acclimation, phloem, photosynthesis, temperature acclimation, xylem.

INTRODUCTION

Attempts to increase photosynthetic rate through overexpression of key components of the photosynthetic process have met with surprisingly little success (Micallef et al., 1995; Miyagawa et al., 2002), and do not measure the leaf’s intrinsic maximal capacity for transport of sugars and other substances from sources, such as mature leaves, to the plant’s sinks that utilize and store products of photosynthesis. A correlation between photosynthesis and xylem hydraulic conductivity (Hubbard et al., 2001; Brodribb et al., 2005; Nardini et al., 2005; Sack and Holbrook, 2006) has thus far been the focus of studies on the relationship between photosynthesis and leaf venation (Boyce et al., 2009; Beerling and Franks, 2010; Brodribb and Feild, 2010; Brodribb et al., 2010; McKown et al., 2010; Blonder et al., 2011; Walls, 2011). In contrast, little attention has been given to a possible relationship between sugar export via the phloem and photosynthesis (Adams et al., 2013). In the studies relating photosynthesis to xylem hydraulic conductivity, photosynthesis was assessed as CO₂ exchange between the leaf and the atmosphere. These measurements of the leaf’s CO₂ fixation rates also reflect barriers to CO₂ movement from the atmosphere to the carboxylation sites in the chloroplasts (cuticular, stomatal, mesophyll, cell wall, and chloroplast envelope resistances, Boyer et al., 1997; Tuzet et al., 2003; Tholen and Zhu, 2011; Flexas et al., 2012), and do not measure the leaf’s intrinsic maximal capacity for transport of water, nutrients, and other substances from the roots to the rest of the plant and phloem (responsible for transport of sugars and other substances from sources, such as mature leaves, to the plant’s sinks that utilize and store products of photosynthesis).
for photosynthesis per se. In contrast, all resistances to CO2 diffusion to the sites of carboxylation are eliminated (via saturation of the leaf with 5% CO2) through use of the leaf disc oxygen electrode (Delluci and Walker, 1981) that allows determination of the intrinsic maximal rate of photosynthesis. In order to reveal any correlations between plant vascular features associated with sugar or water flux capacity and the maximal intrinsic potential for photosynthesis, light- and CO2-saturated photosynthetic oxygen evolution unhindered by resistances to the movement of CO2 needs to be assessed. We conducted a thorough examination of the leaves of three A. thaliana ecotypes grown under multiple environmental conditions to determine the relationship between phloem or xylem structure and the light- and CO2-saturated rates of photosynthetic oxygen evolution in this species. We grew all three A. thaliana lines under several photon flux densities (PFD) and temperatures, resulting in leaves with a wide range of vascular anatomical features (Cohu et al., 2013) and light- and CO2-saturated rates of photosynthetic oxygen evolution.

MATERIALS AND METHODS

Arabidopsis thaliana LINES

Three different ecotypes of A. thaliana (L.) Heynhold were investigated. Two were obtained from populations growing in north-central Sweden and central Italy, i.e., from the latitudinal extremes of this species' natural geographic range (Ågren and Schemske, 2012). The third was the wild-type Columbia (Col-0) line procured from The Arabidopsis Information Resource (http://www.arabidopsis.org/).

GROWTH CONDITIONS

Plants were grown from seed under controlled growth-chamber conditions (leaf temperature of 24–26°C day/20°C night resulting from air temperature 25°C day/20°C night, or leaf temperature of 12–16°C day/12.5°C night resulting from air temperatures of 8°C day/12.5°C night; elevated leaf temperature above air temperature due to daytime radiant heat gain). 9 h photoperiod (15 h dark) of 400 or 1000 μmol photons m−2 s−1, and fertilized with nutrients every other day. Plants grown under conditions with an average daytime leaf temperature of 14°C (8°C air temperature during photoperiod) were germinated at an air temperature of 25°C until cotyledons emerged, then transferred to an air temperature of 15°C for 1 week before transfer to an air temperature of 8°C. Only fully expanded mature leaves of non-flowering plants at a similar stage of development (6–8 weeks old, with the plants subject to the two-step transfer to low temperature exhibiting a slightly offset development; see Cohu et al., 2013 for additional detail) that emerged under final growth conditions were characterized. Leaf temperatures were determined with a fine thermocouple thermometer (Wescor TH-65 meter, Logan, UT, USA) approxessed to the lower surface of the leaves with porous (Transpore, 3M) tape.

PHOTOSYNTHESIS AND VEIN MEASUREMENTS

Measurements of light- and CO2-saturated rates of photosynthetic oxygen evolution at 25 or 12.5°C and leaf vein density, as well as leaf tissue embedding in Spurr resin were conducted as previously described (Amiard et al., 2005). Leaf minor loading veins (third- and fourth-order veins) consisted of phloem tissue with 14 or fewer sieve elements per vein while maintaining a greater than 50% phloem to vein cross-sectional area as established for A. thaliana by Cohu et al. (2013). Ven transverse cross-sectional areas were determined by Image-Pro Plus (Rasband W.S., ImageJ, U.S. National Institute of Health, Bethesda, MD, USA, 1997–2012). Phloem and xylem parameters were quantified from 7–10 vein cross-sections per plant. Comparison of mean values (All pairs, Tukey HSD for Figure 1, and t-test for Figure 3), correlation coefficient, and level of significance (ANOVA) were determined using JMP statistical software (SAS Institute, Cary, NC, USA).

RESULTS

When the present study was initially undertaken, it was unknown which feature(s) of leaf vasculature, if any, may be adjusted in response to the environment. An extensive and comprehensive characterization of many different aspects of phloem anatomy was thus initially conducted (see Cohu et al., 2013). Those characteristics of the phloem (and xylem) that exhibited the greatest co-variation in response to the environment were explored here with respect to their relationship with photosynthesis.

Growth under higher PFD and lower temperature resulted in greater rates of light- and CO2-saturated photosynthetic oxygen evolution (Figure 1A) as well as greater cross-sectional areas of the phloem portion (Figure 1B) of foliar minor loading veins (veins active in loading sugars from the leaf’s photosynthetic mesophyll cells into sugar-transporting sieve elements; see Cohu et al., 2013) in the Italian, Col-0, and Swedish ecotypes. In addition to sieve elements, the phloem contains sieve-element-associated companion and parenchyma cells (Knoblauch and Oparka, 2012) in a ratio to sieve elements that is fairly constant among minor loading veins (Table 1; see also Amiard et al., 2007). Moreover, the Swedish ecotype exhibited significantly higher levels of both light- and CO2-saturated rates of photosynthetic oxygen evolution and phloem area than the Italian ecotype and the Col-0 line (Figures 1A,B) when grown under cool temperatures (14°C leaf temperature) at either moderate (400 μmol photons m−2 s−1) or high (1000 μmol photons m−2 s−1) PFD. In contrast to the phloem, the total cross-sectional area of the portion of minor loading veins occupied by the xylem tissue did not vary consistently among growth conditions or ecotypes over the range of growing conditions explored here (Figure 1C).

Since the Italian and Swedish ecotypes exhibited the greatest differences in both light- and CO2-saturated rates of photosynthetic oxygen evolution and phloem cell area, these two ecotypes were compared for differences in the cross-sectional area of various cell types in individual foliar minor loading veins for leaves grown under cool temperatures and moderate PFD. Figure 2A shows that total cross-sectional area of sieve elements per vein increased in proportion with the total cross-sectional area of those phloem cells (companion cells, CC; and phloem parenchyma cells, PC) sharing a surface with sieve elements over a range of minor loading vein sizes. Furthermore, there was a high degree of segregation of
between data points for the Swedish ecotype (with larger cross-sectional sieve element and CC + PC areas) versus the Italian ecotype. Moreover, plotting of the combined cross-sectional area of all water-transporting tracheids in a minor loading vein (Figure 2B) revealed an enhanced emphasis on sugar transport in the Swedish ecotype compared to the Italian ecotype. There was, again, almost complete segregation between data points for the Swedish versus the Italian ecotype, with a consistently larger cross-sectional area of the minor loading veins consisting of sieve elements versus tracheids in the Swedish ecotype (Figure 2B).

A greater responsiveness of sieve element size to a combination of cool temperature and higher PFD in the Swedish versus the Italian ecotype is illustrated in Figure 3. The cross-sectional area of minor loading veins occupied by sieve elements was modestly, albeit significantly, greater in the Swedish ecotype compared to the Italian ecotype when both ecotypes were grown under moderate PFD at 25°C (Figure 3, set of mean values to the left). Growth under the same moderate PFD but cooler temperature (14°C; Figure 3, middle set of mean values) did not result in increased sieve element area per vein in the ecotype from Italy. In contrast, in the Swedish ecotype sieve element area per vein was significantly greater under moderate PFD in plants grown at 14°C compared to 25°C, and more than twice that of the Italian ecotype when both ecotypes were grown at 14°C in moderate PFD (Figure 3, middle set of mean values). All three ecotypes exhibited significant additional increases in sieve element area when grown under high PFD at 14°C, with sieve element area per vein still significantly greater in the Swedish versus the Italian ecotype (Figure 3, set of mean values to the right). Total cross-sectional area of sieve elements per minor loading vein of the Col-0 line of A. thaliana exhibited intermediate values relative to the Italian and Swedish ecotypes, with significantly greater areas under cool temperature and increased growth light (Figure 3).

Multiple features of the phloem component of minor loading veins turned out to be excellent predictors of a leaf’s light- and
CO₂-saturated rate of photosynthetic oxygen evolution (Figure 4), including cross-sectional area of sieve elements (Figures 4A,B), total number of sieve elements (Figures 4C,D), cross-sectional area of companion and phloem parenchyma cells (CC + PC; Figures 4E,F), and number of CC + PC (Figures 4G,H). Figure 4 depicts significant linear relationships between the light- and CO₂-saturated rate of photosynthetic oxygen evolution versus the latter phloem features in minor loading veins of all three ecotypes grown under four different conditions (two leaf temperatures and two PFDs) when photosynthesis was measured at either 25 or 12.5°C. These positive linear relationships were strongest for light- and CO₂-saturated rates of photosynthetic oxygen evolution versus the number of either sieve elements (Figures 4C,D) or CC + PC (Figures 4E,H) per loading vein when compared to the areas of either sieve elements (Figures 4A,B) or CC + PC (Figures 4E,F).

While the total cross-sectional area of the entire xylem per vein, unlike phloem area, was not significantly associated with light- and CO₂-saturated rates of photosynthetic oxygen evolution (Figure 1C), the tracheid cells of the xylem did show some associations with photosynthesis. Light- and CO₂-saturated rates of photosynthetic oxygen evolution versus tracheid number per vein (Figures 5A–C) or total cross-sectional tracheid area per vein (Figures 5D–F) for Italian and Swedish ecotypes also yielded linear relationships, several of which were significant, while most were not significant. In contrast to the relationships with the cells of the phloem (Figure 4), light- and CO₂-saturated rates of photosynthetic oxygen evolution versus tracheids exhibited two separate linear relationships corresponding to the two different growth temperatures when photosynthesis was determined at either 25°C (Figures 5A,D) or 12.5°C (Figures 5C,F), but converged on a single linear relationship when photosynthesis was measured at the approximate respective growth temperatures (Figures 5B,E). Growth under higher PFD at a given temperature consistently resulted in greater numbers and a larger total cross-sectional tracheid area per minor loading vein (Figure 5). Furthermore, growth at higher temperature resulted in a greater number and a larger total cross-sectional tracheid area per minor loading vein in the Italian ecotype under a given growth light regime, but not in the Swedish ecotype (Figure 5). It is also important to note that foliar vein density was not significantly different among all three ecotypes under any of the growth conditions (mean ± standard deviation = 2.78 ± 0.25 mm vein length per mm² leaf area, n = 48 plants, Table 1).

DISCUSSION

We previously suggested that specialized architectural features of foliar phloem in plants (symplastic loaders) that load sugars into minor veins through plasmodesmata may provide a physical limitation to sugar export preventing full acclimation of photosynthesis in mature leaves acclimated to one condition and subsequently transferred to another (Amiard et al., 2005; Adams et al., 2007). Gifford and Evans (1981) and Wardlaw (1990) had previously speculated, based on the then-available evidence, that transport of photosynthetic products from sources to sinks was unlikely to be limiting. On the other hand, Ainsworth and Bush (2011) recently suggested that one might be able to enhance photosynthesis and plant productivity by increasing the capacity for exporting carbohydrates from leaves through the phloem.

The present report provides the first data linking photosynthesis to aspects of the basic phloem structure of leaves. The association reported here between a leaf’s light- and CO₂-saturated rate of photosynthetic oxygen evolution and the proportion of minor loading veins devoted to phloem, and particularly the
Our findings suggest that potential future leaves grown under high PFD and warm temperatures (close to 75°C) have a photosynthetic rate of photosynthesis when determined at the respective growth temperature (25 or 12.5°C) of each set of leaves, but two separate relationships when determined at one or the other temperature. This finding suggests that the architecture of water-transporting xylem cells is adjusted specifically for the temperature and PFD under which leaves develop, presumably to provide for physical delivery of water (along a water potential gradient) at a rate matching the demand of transpirational water loss to the specific environmental conditions under which plants were growing.

On the other hand, presumably as the integrated coordination of two processes that both rely on proteins (enzymes of the Calvin cycle in photosynthesis and transport proteins in phloem loading) subject to decreased activity with decreases in temperature, light- and CO2-saturated rates of photosynthetic oxygen evolution increased linearly with the number or cross-sectional area of phloem cells among all ecotypes and growth conditions when photosynthesis was determined at a single temperature. At any given temperature, the light- and CO2-saturated photosynthesis rate of leaves that developed at lower temperature was thus greater than that of leaves that developed at warm temperature, such that the overall effect allowed leaves to maintain a similar light- and CO2-saturated photosynthesis rate at the lower growth temperature as leaves growing under the warmer growth temperature. In other words, leaves growing at low temperature upregulated photosynthesis, as well as their apparent capacity to export products of photosynthesis through more phloem cells, to maintain a rate of photosynthesis similar to that of leaves growing at warm temperature. For A. thaliana, which is an apoplastic loader (Haritatos et al., 2000), the increased number of companion and phloem parenchyma cells in minor veins of leaves that developed under lower temperature and higher PFD presumably provide for an increased cell membrane area for greater numbers of transport proteins (sucrose-H+ co-transporters and adenosine triphosphatases) to drive the loading of sugars into the phloem.

Concomitantly, the greater numbers of sieve elements per vein provide a greater cross-sectional area through which sugars can be transported, which may be important to accommodate greater sugar production resulting from higher rates of photosynthesis and/or a more viscous phloem sap that could arise from decreasing temperature (Cohu et al., 2013). Plants acclimated to lower
temperature, however, presumably incur higher costs in terms of the nitrogen and energy invested into greater numbers of cells and photosynthetic and transport proteins.

Exploration of differences among the three *A. thaliana* ecotypes revealed that the Swedish ecotype not only exhibited the greatest number and combined size of sieve elements, but also showed the most sensitive response to variation of growth conditions, with Col-0 (presumed origin in Germany) showing an intermediate response, and the Italian ecotype exhibiting the least ready response to temperature (Figure 3). This difference among ecotypes provides an opportunity to approach the identification of the gene(s) responsible for increased augmentation of the phloem in minor loading veins and high photosynthetic rates of the Swedish versus the Italian ecotype. Furthermore, the observed differences between the Swedish and Italian ecotypes may also be relevant to the performance of the two subject to reciprocal transplants. Both exhibited lower survival and lower reproductive fitness in comparison to the local populations when transplanted to the other’s habitat (Ågren and Schmukle, 2012). In the case of the Italian ecotype grown in Sweden, reduced performance might be due to an inability to increase the numbers of phloem cells to the same level as observed in the Swedish ecotype to facilitate enhanced rates of sugar export and transport and of photosynthesis at the lower temperatures prevailing in Sweden. On the other hand, the relatively poorer performance of the Swedish ecotype relative to the Italian ecotype when growing in Italy may be due to differences between the two in the response of the xylem to growth temperature. Minor veins of the Italian ecotype possessed a greater number, as well as a greater total cross-sectional area, of tracheids in leaves that developed under warmer compared to cool temperatures. Such a response may provide for a greater flux of water to meet the transpirational demands of plants experiencing warmer temperatures during growth, and thus would be more relevant for plants that grow in Italy (warmer and drier atmosphere) compared to Sweden. The minor vein tracheids of the Swedish ecotype exhibited the opposite response to growth temperature, with a greater number and cross-sectional area present in leaves that developed under cool compared to warm temperature. Such a response could be maladaptive(555,860),(995,914)
Cohu et al. Phloem anatomy and photosynthesis

FIGURE 5 | Light- and CO₂-saturated rate of oxygen evolution, determined at either 25 or 12.5 °C, versus (A–C) the number of tracheids per minor loading vein or (D–F) the cross-sectional area of tracheids per minor loading vein for Italian (circles) and Swedish (squares) ecotypes of A. thaliana grown at two leaf temperatures and two PFDs. Plants were grown under four different conditions (24–26 °C and 400 μmol photons m⁻² s⁻¹, open symbols; 24–26 °C and 1000 μmol photons m⁻² s⁻¹, light gray symbols; 12–16 °C and 400 μmol photons m⁻² s⁻¹, dark gray symbols; 12–16 °C and 1000 μmol photons m⁻² s⁻¹, black symbols). Mean ± standard deviation shown for light- and CO₂-saturated rates of photosynthetic oxygen evolution, and mean ± standard error of the mean shown for number and cross-sectional area of tracheids per minor loading vein (n = 4 plants). Linear regression lines are shown with the following equations: (A) growth at 14°C line by y = 28.4x − 93.4 and growth at 25°C line by y = 12.0x − 35.1, (B) y = 10.5x − 30.4, (C) growth at 14°C line by y = 3.3x − 9.6, (D) growth at 14°C line by y = 0.8x − 41.9 and growth at 25°C by y = 0.5x − 42.1, (E) y = 0.4x − 34.0, and (F) growth at 14°C line by y = 0.4x − 26.2 and growth at 25°C line by y = 0.1x − 70. Level of significance (in parentheses) indicated as follows: *P < 0.05, **P < 0.01, and n.s., not statistically significant.

sinks. If this anatomical feature were to represent a bottleneck, its manipulation might allow photosynthesis to be increased to unprecedented levels. Furthermore, as atmospheric carbon dioxide levels continue to rise, the ability to increase the flux of sugars and other reduced carbon compounds out of the leaves to the rest of the plant may become critical to preventing the downregulation of photosynthesis that can result from the accumulation of sugars in leaves in response to elevated CO₂ levels (van Oosten and Besford, 1996; Makino and Mae, 1999; Moore et al., 1999; Paul and Foyer, 2001; Bloom, 2006). One important aspect of the present findings thus lies in the identification of a potential target to increase photosynthesis via selection, breeding, and/or engineering of crop varieties with the greatest propensity for enhancement of foliar sugar-export. Concomitant assessment of foliar minor loading vein phloem features and light- and CO₂-saturated rates of photosynthetic oxygen evolution of different species (Adams et al., 2013) can also serve to further test the generality of the fundamental relationship described here.

ACKNOWLEDGMENTS

Supported by the National Science Foundation (Award Numbers IOS-0841546 and DEB-1022236 to Barbara Demmig-Adams and William W. Adams III) and the University of Colorado at Boulder. We thank our colleagues Profs. Douglas Schemske and Jon Ågren for providing seeds and comments, Tyler Dowd for assistance with vascular characterization, Dr. Anna Dushnehouri for embedding and cutting of some tissue samples, and Dr. Jennifer Mathias for one set of photosynthesis measurements.
REFERENCES

Amiard, V., Demmig-Adams, B., Mueh, K. E., Armand, A., Demmig-Adams, W. W. III, Hoehn, A., and Ainsworth, E. A., and Bush, D. R. Blonder, B., Violle, C., Bentley, L. Beerling, D. J., and Franks, P. J. July 2013 | Volume 4 | Article 264 |

Cohu et al. Phloem anatomy and photosynthesis

V., et al. (2007). Photosynthetic acclimation mechanisms of phloem loading. Proc. Natl. Acad. Sci. U.S.A. 104, 12344–12349. doi: 10.1073/pnas.0702612104

Adams, W. W. III, et al. (2005). Anatomical and phloem loading in response to light and nitrogen in Arabidopsis thaliana. Planta 221, 75–85. doi: 10.1007/s00425-004-1597-7

Krapp, A., and Stitt, M. (1995). An evaluation of direct and indirect mechanisms for the sink-regulation of photosynthesis in spinach in response to gas exchange. Cell Environ. 19, 445–466. doi: 10.1111/j.1469-8761.1995.tb01338.x

Makino, A., and Ma, T. (1999). Photoassimilation and plant growth at elevated levels of CO2. Plant Cell 11, 165–178. doi: 10.1002/prpl.4281110310

Farquhar, G. D., and Sharkey, T. D. (1982). On the relationship between photosynthetic rate and chlorophyll concentration in leaves of different ages. Aust. J. Plant Physiol. 9, 345–359. doi: 10.1071/PP1982-v09n03-ab006

Conway, J. J., and Stitt, M. (1993). Regulation of photosynthetic gene expression in transgenic tobacco plants that have an increased capacity for sucrose synthesis. Planta 189, 327–334. doi: 10.1007/BF00202587

Talegani, E., Mesri, K., and Turgeon, R. (2000). Minor vein structure and sugar transport in Arabidopsis thaliana. Planta 211, 105–111.

Hikosaka, K. (2004). Interspecific differences in the photosynthetic nitrogen assimilation capacity of rice (Oryza sativa L.) and Arabidopsis thaliana (Arabidopsis thaliana). Aust. J. Plant Physiol. 31, 485–499. doi: 10.1071/PP03148

Hackett, M. A., Givnish, T. J., Southon, M. E., and Hubbell, S. P. (2001). Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine. Plant Cell Environ. 24, 113–121. doi: 10.1046/j.1365-3040.2001.00714.x

Kleczkowski, L. A., Lloyd, J. C., and Raines, C. A. (2007). Overexpression of the chloroplast-encoded gene for carbonic anhydrase in Arabidopsis thaliana enhances photosynthesis and growth under salt stress in transgenic plants. Plant Physiol. 144, 1731–1741. doi: 10.1104/pp.107.104896

Ainsworth, E. A., and Rogers, S. (1997). Plant photosynthesis: more than just a molecule. Plant Physiol. 115, 887–894. doi: 10.1104/pp.115.2.887

Adams, W. W. III, Demmig-Adams, B., Mueh, K. E., Armand, A., Demmig-Adams, W. W. III, et al. (2012). Low temperature and stress in transgenic rice plants. Proc. Natl. Acad. Sci. U.S.A. 109, 10349–10354. doi: 10.1073/pnas.1203133109

Farquhar, G. D., and Sharkey, T. D. (1982). On the relationship between photosynthetic rate and chlorophyll concentration in leaves of different ages. Aust. J. Plant Physiol. 9, 345–359. doi: 10.1071/PP1982-v09n03-ab006

Makino, A., and Ma, T. (1999). Photoassimilation and plant growth at elevated levels of CO2. Plant Cell 11, 165–178. doi: 10.1002/prpl.4281110310

McKeeon, A. D., Goodall, H., and Jacob, L. (2010). Deciduous leaf hydraulicity with a spatially explicit model: principles of vascular architecture and implications for plant evolutionary history. New Phytol. 187, 987–1002. doi: 10.1111/j.1469-8137.2010.03419.x

Medrano, H., Escalette, J. M., Bota, J., Galán, I., and Fláz, J. (2002). Regulation of photosynthesis of C3 plants in response to progressive drought-stimulated conductance as a new quality parameter. Ann. Bot. 89, 895–905. doi: 10.1093/annbot/89.5.895

Miclea, B. J., Hawkins, K. A., Van Damme, P. F., Rh, K.-S., Sheen, M., and Stitt, M. (1995). Altered photosynthesis, flowering, and fruiting in transgenic tomato plants that have an increased capacity for sucrose synthesis. Planta 196, 327–334. doi: 10.1007/BF00221932

Mizuguchi, Y., Tamaki, M., and Shiogaki, S. (2001). Overexpression of cyanobacterial fucoxanthin-1,3-dioxygenase in tobacco enhances photosynthesis and growth. Nat. Biotechnol. 19, 593–599. doi: 10.1038/nbt1299

Koziel, M., and Oparka, K. (2012). The structure of the plasmid – still more questions than answers. Plant J. 70, 147–156. doi: 10.1111/j.1365-313X.2012.05041.X

Kronenberg, J., Hirth, H.-J., and Stitt, M. (1993). Regulation of the expression of ribulose biphosphate carboxylase/oxygenase – a mechanism for the sink regulation of photosynthesis. Plant J. 4, 817–826. doi: 10.1046/j.1365-313X.1993.00817.x

Krapp, A., and Stitt, M. (1995). An evaluation of direct and indirect mechanisms for the sink-regulation of photosynthesis in spinach in response to gas exchange. Cell Environ. 19, 445–466. doi: 10.1111/j.1469-8761.1995.tb01338.x

Makino, A., and Ma, T. (1999). Photoassimilation and plant growth at elevated levels of CO2. Plant Cell 11, 165–178. doi: 10.1002/prpl.4281110310

McKeeon, A. D., Goodall, H., and Jacob, L. (2010). Deciduous leaf hydraulicity with a spatially explicit model: principles of vascular architecture and implications for plant evolutionary history. New Phytol. 187, 987–1002. doi: 10.1093/annbot/89.5.895

Miclea, B. J., Hawkins, K. A., Van Damme, P. F., Rh, K.-S., Sheen, M., and Stitt, M. (1995). Altered photosynthesis, flowering, and fruiting in transgenic tomato plants that have an increased capacity for sucrose synthesis. Planta 196, 327–334. doi: 10.1007/BF00221932

Mizuguchi, Y., Tamaki, M., and Shiogaki, S. (2001). Overexpression of cyanobacterial fucoxanthin-1,3-dioxygenase in tobacco enhances photosynthesis and growth. Nat. Biotechnol. 19, 593–599. doi: 10.1038/nbt1299

Koziel, M., and Oparka, K. (2012). The structure of the plasmid – still more questions than answers. Plant J. 70, 147–156. doi: 10.1111/j.1365-313X.2012.05041.X

Kronenberg, J., Hirth, H.-J., and Stitt, M. (1993). Regulation of the expression of ribulose biphosphate carboxylase/oxygenase – a mechanism for the sink regulation of photosynthesis. Plant J. 4, 817–826. doi: 10.1046/j.1365-313X.1993.00817.x

Krapp, A., and Stitt, M. (1995). An evaluation of direct and indirect mechanisms for the sink-regulation of photosynthesis in spinach in response to gas exchange. Cell Environ. 19, 445–466. doi: 10.1111/j.1469-8761.1995.tb01338.x
Moore, B. D., Cheng, S. H., Sims, D., and Seemann, J. R. (1999). The biochemical and molecular basis for photosynthetic acclimation to elevated atmospheric CO2. Plant Cell Environ. 22, 367–382. doi: 10.1046/j.1365-3040.1999.00452.x.

Moore, B. D., Cheng, S. H., Sims, D., and Seemann, J. R. (2003). Leaf anatomy and photosynthesis. Tree Physiol. 23, 235–242. doi: 10.1093/treephys/23.4.235.

Nishida, A., Gorter, E., and Salino, S. (2005). Hydraulic efficiency of the leaf venation system in sun- and shade-adapted species. Funct. Plant Biol. 32, 953–961. doi: 10.1071/FP05030.

Nikinmaa, E., Hikosaka, K., and Hirose, N. (1999). Photosynthetic responses of lobolly pine (Pinus taeda) to experimental reduction in sink demand. Tree Physiol. 19, 259–242. doi: 10.1093/treephys/19.4.555–669. doi: 10.1111/pce.12004.

Oguchi, R., Hikosaka, K., and Hirose, N. (2003). Leaf anatomy as a constraint for photosynthetic acclimation: differential response in leaf anatomy to increasing growth irradiance among three deciduous trees. Plant Cell Environ. 26, 916–927. doi: 10.1111/j.1365-3040.2003.01344.x.

Paul, M. J., and Royer, C. H. (2001). Sink regulation of photosynthesis. J. Exp. Bot. 52, 1385–1400. doi: 10.1093/jxb/erl1385.

Rosenthal, D. M., Locke, A. M., Orlova, T., Nardini, A., Gortan, E., and Salleo, A. (2011). The worldwide leaf economics spectrum. New Phytol. 191, 1–15. doi: 10.1111/j.1469-8137.2011.03264.x.

Sink regulation of photosynthesis. Tree Physiol. 26, 1097–1116. doi: 10.1046/j.1365-3040.2003.01155.x.

Urban, L., and Alphonseaut, L. (2007). Grazing decreases photosynthetic electron fluxes and induces sustained photoprotection in mango leaves. Tree Physiol. 27, 345–352. doi: 10.1093/treephys/27.5.345.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.