PRIMER NOTE

EXON-PRIMED INTRON-CROSSING (EPIC) MARKERS FOR EVOLUTIONARY STUDIES OF Ficus AND OTHER TAXA IN THE FIG FAMILY (MORACEAE)¹

XIAOHONG YAO²,³, CHENHONG LI⁴, AND CHRISTOPHER W. DICK⁵,⁶

²Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, Hubei, People’s Republic of China; ³Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109-1048 USA; ⁴Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, People’s Republic of China; and ⁵Smithsonian Tropical Research Institute, P.O. Box 0843-03092, Balboa, Ancón, Republic of Panama

• Premise of the study: The genus Ficus (fig trees) comprises ca. 750 species of trees, vines, and stranglers found in humid tropical forests. As a year-round source of calcium-rich fig fruits, Ficus trees are often described as keystone species. However, Ficus may be best known for their pollination mutualism with small (1–2 mm), short-lived (1–2 d) “fig wasps” in the family Agaonidae (Weiblen, 2002; Herre et al., 2008). Female fig wasps pollinate flowers and oviposit within the enclosed inflorescence (syconium or “fig”), in which the larvae develop before emerging to pollinate and oviposit in the syconia of asynchronously flowering conspecific trees. For sustained reproduction of the figs and the wasps, the wasps must exhibit a high degree of host-specificity, and the host population must provide access to flowers (i.e., figs) throughout the year.

Although the fig-wasp pollination mutualism is one of the tightest known in terms of host-pollinator specificity, there are many exceptions to the one pollinator species/one host species rule. In some cases, two or more wasp species pollinate the same host species in different parts of its geographic range, and multiple wasp species have been found in a single host tree (Herre et al., 2008). Furthermore, in Central America and in South Africa some wasp species have been shown to use more than one fig species in the local fig community (reviewed in Herre et al., 2008). The nonspecificity of some pollinators, in addition to some genetic studies (e.g., Machado et al., 2005), suggests that hybridization is possible.

Most phylogenetic studies of Ficus have used chloroplast DNA and/or one or two commonly used nuclear DNA markers (e.g., internal transcribed spacer [ITS]) (e.g., Ronsted et al., 2005). These markers are insufficient in number for studies of introgression, and they do not resolve phylogenies of closely related species or phylogeographic structure in widespread species (C. Dick, unpublished). To address the deficiency in nuclear genomic markers for Ficus, we have developed a set of exon-primed intron-crossing (EPIC) markers by comparing an expressed sequence tag (EST)–library for F. elastica Roxb. ex Hornem. with the annotated genomes of Populus trichocarpa Torr. & A. Gray (Salicaceae) and Arabidopsis thaliana (L.) Heynh. (Brassicaceae) using a bioinformatics pipeline developed by Li et al. (2010).

METHODS AND RESULTS

Selection of taxa—Neotropical Ficus contains two distinct and phylogenetically distant subgenera, which represent two important neotropical life forms: the free-standing fig trees (subg. Pharmacosycea (Miq.) Miq. sect. Pharmacosycea) and other taxa in the fig family (Moraceae).
Locus	Primer sequences (5′→3′)	Total/intron length (bp) (+range)	No. of polymorphic sites	Nucleotide diversity	GenBank accession no.	Reference locus	Gene abbreviation
FA08190	F: CCAAATTGTCTCGAGGAGACCTC T: TTATAGAATGTGTCGTCGTAAGA	484/435 (+2)	24	0.0503	JQ341915	AT1G08190	ATVAM2
FA02580	F: CTAGATCTTCCACAGACAGACAG T: CTTGCGTGAGCCGACACAG	487/381 (+2)	22	0.0493	JQ341917	AT4G02580	T10P11_14
FA03310	F: GCCTGTCAATTGAGAGAACACAG T: GGTCATTGACCGACTCGTTA	740/581 (+2)	43	0.0586	JQ341919	AT3G03310	CAT3
FA07360a	F: GCTGATAAAATGGTTGCTGCTG T: CTTGAGGAGGACAGACAGACAG	540/287	29	0.0541	JQ341921	AT2G07360	T13E11.13
FA08510	F: TCGTCGACTCTGGTTGAGAT	893/741	51	0.0572	JQ341923	AT1G08510	FATB
FA11980	F: ATGGGAGGTCGTCGTCGTAAGA T: ACCCAAGTCTTGAGACACAG	851/734 (+4)	35	0.0414	JQ341925	AT5G11980	F14F18_150
FA14000	F: TCCAGTCGACTCTGGTTGAGAT	443/378 (+7)	23	0.0142	JQ341927	AT3G14000	F7A19_9
FA16180b	F: CGACTATGGAACAGACAGAACAGACAG T: CATCAGTCAATGGAACAGAG	417/281 (+3)	21	0.0514	JQ341928	AT4G16180	DL4130C
FA16990b	F: TCAACTTTCCTGGGTGAGAT	964/674 (+3)	40	0.0417	JQ341930	AT5G16990	ATORC3
FA19690a	F: ACTTGGCCTTCTTACTTCATGG T: AGCAATCCCAGACATGATGC	386/258 (+2)	12	0.0315	JQ341933	AT5G19690	STT3A
FA23640*	F: ATTCCTTTTGGTCCTCCACATC T: ACCCACTTCCAGGAGAAGA	1032/821 (+1)	55	0.0547	JQ341935	AT3G23640	HGL1
FA24620a	F: CCTTACAAGGACAGCCTTTTG T: CTCAAGTTCCTGGAAGAAGA	513/323	20	0.0421	JQ341937	AT4G24620	PG1
FA24620b	F: TGGCTAGATTTCCCATGTTTG T: CATCAGTCAATGGAACAGAG	980/827 (+4)	50	0.0514	JQ341939	AT4G24620	PG1
FA26990	F: GGANGCTAGCTGCTGAGAT	476/246	13	0.0276	JQ341941	AT2G26990	FUS12
FA32180	F: GGTGCAAGAAGAAGAAGAAGAAGA	741/628 (+13)	38	0.0516	JQ341943	AT4G32180	ATPK2
FA32910	F: GTGTGATAATGGTTGAGAT	455/284 (+2)	12	0.0265	JQ341947	AT4G32910	F26P21_30
FA36880b	F: GCTGTTGGGACATTGTTGAC	1044/896 (+6)	41	0.0514	JQ341948	AT5G36880	F5H8_15
FA45300	F: GGAGGACTTGGTCTTGGTTACTT	890/684	41	0.0462	JQ341949	AT3G45300	ATV1D
FA48520*	F: TCATCCATATTTGGTCGGAGAT	1059/890 (+4)	71	0.0730	JQ341951	AT5G48520	ATUAG3
FA73180	F: GACCACTTACTGGACTCGTTA T: ATGCAATCCCAGACACTCTCTC	470/235	18	0.0383	JQ341953	AT1G73180	T18K17_15
FP04090b	F: GAATGGCTAGCGACAGATGATA	438/275 (+10)	15	0.0529	JQ341955	POPTR_0006s00800	CYP97B3
FP08470	F: GCACTAGCTGCTGCTGAGAT	550/404 (+7)	25	0.0463	JQ341957	POPTR_0017s08470	BGA19
FP08550	F: CGCTGTACCTGCTGCTGAGAT	741/561 (+5)	36	0.0523	JQ341959	POPTR_0006s08550	F6E21_100
FP09670	F: GCACTAGCTGCTGCTGAGAT	642/509	32	0.0516	JQ341960	POPTR_0006s08550	F6E21_100
FP10430	F: GTGGAGTCTGAGTCTGCTGAGAT	1021/658 (+161)	44	0.0517	JQ341961	POPTR_0009s10430	FUT11
FP10550	F: GTGGAGTCTGAGTCTGCTGAGAT	473/325 (+1)	24	0.0517	JQ341963	POPTR_0008s10550	ALDH22a1
and the stranger fgs (subg. Urostigma (Gasp.) Miq. sect. Americana Miq.). Sect. Pharmacocysa is sister to all the other fgs subgenera, and therefore our sect. Americana and sect. Pharmacocysa samples share a most recent common ancestor that is the base of the entire Ficus crown clade, which, based on fossil records, dates back to at least 60 million years before present (Ronsted et al., 2005). All primers were tested on F. obtusifolia Kunth (sect. Pharmacocysa) and F. maxima Mill. (sect. Americana), which were collected from the Barro Colorado National Monument (BCNM) in central Panama. The subset of primers that amplified in both Ficus species were also tested on Poulsenia arnata (Miq.) Standl., which is a monotypic genus in the fig family Moraceae (Datwyler and Weiblen, 2004). Botanical vouchers (Dick and Gomes; 234, F. obtusifolia; Dick and Gomes; 240, F. maxima; and Dick and Gomes; 180, P. arnata) were deposited at the herbaria of the University of Panama (PMA) and University of Michigan, Ann Arbor (MICH). Genomic DNA was extracted with the cetyltrimethylammonium bromide (CTAB) method of Doyle and Doyle (1987).

Bioinformatics pipeline—Researchers from the United States Department of Agriculture (USDA) previously developed an EST library of F. elastica to characterize the genetic basis of rubber biosynthesis (McMahan and Whalen, personal communication). We compared 9289 unique F. elastica ESTs from the National Center for Biotechnology Information (NCBI) database with the annotated genomes of A. thaliana (Brassicaceae) and F. trichocarpa (Salicaceae) using the bioinformatics pipeline developed by Li et al. (2010). Briefly, we (1) retrieved coding sequences (CDS) that were longer than 100 bp from the annotated genomes of A. thaliana and F. trichocarpa. (2) We compared those CDS with the genome of the same species to identify “single-copy” CDS. (3) The candidate single-copy CDS thus identified were subsequently compared to the EST library of F. elastica to find markers that were conserved (identity >80%) among all three species. (4) After locating the single-copy conserved CDS, we screened for CDS flanking small introns, which were smaller than 1000 bp in the compared genomes, to facilitate the subsequent PCR and sequencing steps. Primers based on the F. elastica exons were initially designed by eye and subsequently checked with the Primer3 web program (Rozen and Skaltsky, 2000).

Primer assays—PCR was performed in a final volume of 20 μL containing 10 mM Tris–HCl (pH 8.4), 50 mM (NH₄)₂SO₄, 1.5 mM MgCl₂, 0.2 mM dNTPs, 0.1 μM each primer, 2 μg of genomic DNA, and 0.5 units of Taq polymerase (BioTherm, Gaithersburg, Maryland, USA). The amplification profiles included an initial denaturing at 94°C for 5 min; followed by 35 cycles of 50 s at 94°C, 50 s at 54°C, and 1 min at 72°C; and a final extension step of 10 min at 72°C. PCR products were ligated into the pmD18-T plasmid vector (Promega Corporation). Insert-positive plasmids were isolated using the E.Z.N.A. Plasmid Mini Kit I (Omega Bio-Tek, Norcross, Georgia, USA) and screened for CDS flanking small introns, which were smaller than 1000 bp in the compared genomes, to facilitate the subsequent PCR and sequencing steps. Primers based on the F. elastica exons were initially designed by eye and subsequently checked with the Primer3 web program (Rozen and Skaltsky, 2000).

Data analyses—DNA chromatograms were edited using the SEQUENCER program (Gene Codes Corporation, Ann Arbor, Michigan, USA). DNA sequences were initially aligned using ClustalX version 1.81 (Thompson et al., 1997) with default settings, and subsequently aligned manually using Se-Al (Rambaut, 1996). We determined number of polymorphic sites, nucleotide diversity (π), and GC content using MEGA5 software (Kumar et al., 2008).

Results—We identified 200 ESTs that satisfied our criterion of 80% exon identity with the published genomes. Based on intron length, we selected a subset of 80 ESTs for further marker development, of which 31 amplified successfully in Ficus species from both subgenera, 16 amplified in one species only, and 33 did not amplify in either species. The 31 cross-amplifying primer pairs were those that amplified in P. arnata of which 29 amplified successfully (Table 1). The number of polymorphic sites in F. obtusifolia and F. maxima comparisons ranged from 12 to 71 (mean = 32), whereas nucleotide diversity ranged from 0.02655 to 0.07305 (mean = 0.0470) (Table 1). In comparison, there were 45 variable sites in ITS between F. obtusifolia and F. maxima, falling within the range of the EPIC marker variation.

Table 1. Primer information for EPIC markers for Ficus

Locus	Primer sequences (5′–3′)	No. of polymorphic sites	GenBank accession no.	Reference genome	Nucleotide diversity	Gene abbreviation
FP11540b	F: GATTACAACAACCTCTGCCAGT; R: TCGTAAGGAGCACCAGCAAC	28	JQ341967	POPTR_0017s11540	0.04328	MZN14.21
		107/80 (+4)				
FP11540b	F: GGCACATTTGCTTCCATTCT; R: TGGGGTCTGCTCCTCCAGT	38	JQ341971	POPTR_0013s13070	0.04612	uncharacterized
		844/748 (+2)				
FP17290	F: GGCACATTTGCTTCCATTCT; R: TGGGGTCTGCTCCTCCAGT	33	JQ341973	POPTR_0001s17290	0.04465	F18B13_28
		781/642 (+2)				
FP35460	F: TCTCTGGTTGTTGCTGATTTTGG; R: TGGGGTCTGCTCCTCCAGT	41	JQ341975	POPTR_0001s35460	0.05840	unknown
		735/634 (+8)				
CONCLUSIONS

The 31 EPIC markers that amplified between the two Ficus subgenera indicate that these markers might be useful across the full phylogenetic breadth of the >60 Ma genus and its >750 species. The markers that transfer to Poulsenia indicate an even broader phylogenetic utility within the Moraceae (ca. 40 genera and 1000 species), which probably originated in the Cretaceous. These markers should therefore be extremely useful for phylogenetic analysis at the family level and potentially beyond. The markers show a level of intron divergence that is of a similar magnitude as ITS, which is one of the most informative and broadly used markers in plant molecular systematics. These EPIC loci should be useful for analyzing recent divergences in which incomplete lineage sorting and/or introgression may be factors, including recent speciation, hybridization, and comparative phylogeography. In combination with EPIC markers developed for chalcid wasps (Lohse et al., 2011), it should now be possible to jointly analyze wasp and host plant phylogenies to study coevolution at both population and phylogenetic scales.

LITERATURE CITED

DATWYLER, S. L., AND G. D. WEIBLEN. 2004. On the origin of the fig: Phylogenetic relationships of Moraceae from ndhF sequences. American Journal of Botany 91: 767–777.

DOYLE, J., AND J. L. DOYLE. 1987. Genomic plant DNA preparation from fresh tissue—CTAB method. Phytochemical Bulletin 19: 11–15.

HERRE, E. A., K. C. JANDE, AND C. A. MACHADO. 2008. Evolutionary ecology of figs and their associates: Recent progress and outstanding puzzles. Annual Review of Ecology Evolution and Systematics 39: 439–458.

KUMAR, S., M. NEI, J. DUDLEY, AND K. TAMURA. 2008. MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in Bioinformatics 9: 299–306.

LI, C., J. M. RIEHLOVEN, AND L. MA. 2010. Exon-primed intron-crossing (EPIC) markers for non-teleost fishes. BMC Evolutionary Biology 10: 90.

LOHSE, K., B. SHARANOWSKI, M. BLAUXTER, J. A. NICHOLLS, AND G. N. STONE. 2011. Developing EPIC markers for chalcidoid Hymenoptera from EST and genomic data. Molecular Ecology Resources 11: 521–529.

MACHADO, C. A., N. ROBBINS, M. T. P. GILBERT, AND E. A. HERRE. 2005. Critical review of host specificity and its coevolutionary implications in the fig/fig-wasp mutualism. Proceedings of the National Academy of Sciences, USA 102: 6558–6565.

RAMBAUT, A. 1996. Se-Al: Sequence Alignment Editor. Available at http://tree.bio.ed.ac.uk/software/ [accessed 11 September 2013].

RØNSTED, N., G. D. WEIBLEN, J. M. COOK, N. SALAMIN, C. A. MACHADO, AND O. SAVOLAINEN. 2005. 60 million years of co-divergence in the fig-wasp symbiosis. Proceedings of the Royal Society of London. Series B. Biological Sciences 272: 2593–2599.

ROZEN, S., AND H. J. SKALETSKY. 2000. Primer3 on the WWW for general users and for biologist programmers. In S. Misener and S. A. Krawetz [eds.], Methods in molecular biology, vol. 132: Bioinformatics methods and protocols, 365–386. Humana Press, Totowa, New Jersey, USA.

THOMPSON, J. D. T. J., F. GIBSON PLEWNIAK, F. JEANNIOGIN, AND D. G. HIGGINS. 1997. The CLUSTAL-X Windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25: 4876–4882.

WEIBLEN, G. D. 2002. How to be a fig wasp. Annual Review of Entomology 47: 299–330.