Nonlinear finite element parametric analysis of prestressed steel reinforced concrete beams

Jie Xu*, Xiaobo Sun
School of Civil Engineering, Shandong Jianzhu University, Jinan, Shandong, 250101, China
*Corresponding author: xujie983@163.com

Abstract: Prestressed steel reinforced concrete beam (PSRCB) is a new type prestressed composite beam which uses prestressing technology in steel reinforced concrete beam (SRCB). The complete failure procedure of PSRCB was analysed by three-dimensional nonlinear finite element method. Numerical results agree well with experimental results. Then the numerical model was used to conduct some parametric studies including tensile rebar ratio, concrete compressive strength, H-section steel ratio, effective stress of prestressing strands and degree of prestressing.

1. Introduction
Prestressed steel reinforced concrete beam (PSRCB) is a new type prestressed composite beam which uses prestressing technology in steel reinforced concrete beam and combines the properties of SRC beam with Prestressing technique. The H-section steel inside increases its flexural strength and prestressing technique improves its working performance. Research indicates that PSRCB has a better serviceable performance by contrast to SRCB[1,2], better resistance to crack, lower strain of tensile rebar and smaller crack width, better crack closing performance, smaller deflection, displacement restoring capacity and higher ultimate bearing capacity.

The complete failure procedure of PSRCB was analysed by three-dimensional nonlinear finite element method. Some parametric studies including compressive strength of concrete, rebar ratio and cover thickness, H-section steel cover thickness and degree of prestressing were considered. The comparison between the numerical results and experimental results states that the analysis approach is valid.

2. Numerical program
Plasticity model were used to simulate rebar and H steel, which met the von Misses yield criterion and simulate the elastoplastic properties of metal materials.

Linear elastic were used to simulate relationship between stress and strain of the prestressed steel strand and Ramberg-Osgood curve[3] were used to simulate its plastic properties.

Elastoplastic damage model provided by ABAQUS were used to simulate concrete, which assumed that the concrete material is mainly due to tensile cracking, compressive fracture and damage[4-7].

PSRCB geometric parameters could be seen in [1,2].
3. numerical simulation results

As shown in Figure 1, the PSRCB numerical simulation has the characteristics as follows: smaller maximum bearing capacity at P_u, larger P-f curve simulation stiffness values before P_u and faster stiffness decrease after P_u. The numerical results agreed well with test results and the numerical model can simulate the PSRCB mechanical performance.

4. Parametrical analysis of PSRCB

PSRCB1 were used as a typical component, and some parametric studies including tension rebar diameter ($D = 14$ mm, 16 mm, 18 mm and 20 mm), the rate of H steel containing ($H_{200 \times 100 \times 4 \times 6}$, $H_{200 \times 100 \times 5.5 \times 8}$, $H_{200 \times 100 \times 7 \times 10}$), the prestressed steel strand effective stress ($A_p = 278$ mm2, $\sigma_{pe}=900$ N/mm2, 977 N/mm2, 1005 N/mm2, 1100 N/mm2 and 1200 N/mm2), the area of prestressed steel strand ($\sigma_{pe}=1005$ N/mm2, $A_p = 197.4$ mm2, 278 mm2, 348 mm2, 427 mm2 and 854 mm2) and strength of concrete (C_{40}, C_{50} and C_{60}) were carried out.

As shown in Figure 2, tensile reinforcement diameter D changes mainly affect the component P-f curve numerical value and has little influence on the shape of the curve. Before cracking, PSRCB P-f curve has little effect on elastic stage. After cracking, stress of tensile rebar increased rapidly. With the increase of tensile rebar diameter, P_u increased linearly, and the corresponding deflection at P_u decreased within 5%. With the increase of tensile rebar diameter D, H steel compressive yield range extended further to the compression flange web at P_u. Stress of tensile rebar and prestressed steel strand were basically the same before P_u.
The steel ratio can be expressed as the ratio of the inner H section area to the cross section area of the beam. T4-6 steel steel ratio were 2.9% and T7-10 steel steel ratio were 4.9%.

As shown in Figure 3, steel ratio has little effect on the P-f curve before cracking. With the increase of steel ratio increasement, PSRCB bearing capacity increased, but deflection becomes larger at P_u by about 10%. The increase of bearing capacity was dependent on improving the use of steel tension flange and web area, which increased larger deflection. Steel tensile yield increased range at P_u in order to make full use of H steel. Stress of tensile rebar and prestressed steel strand were basically the same before P_u.

As shown in Figure 4, stiffness and bearing capacity of PSRCB increased with the growth of concrete strength. The bearing capacity of PSRCB6 increased by 7.9% and deflection decreased by 4.6% at P_u compared with PSRCB1. Concrete in compression zone of PSRCB was crushed and tensile rebar, the prestressed steel strand and steel flange on the web reached yield stage at P_u.

As shown in Figure 5, the increase of steel wire effective stress can delay PSRCB cracking ,but the maximum bearing capacity is same. The increase of effective prestress can reduce corresponding deflection, which improves the PSRCB performance of normal use.

PSRCB prestressing degree can be defined as the ratio of the moment of resistance of the prestressed steel strand to the total flexural capacity of the member [8], and the influence of steel tension flange and web is considered.

$$
\lambda = \frac{M_p}{M_u} = \frac{f_{py}A_{p}}{f_{py}A_{p} + f_{y}A_{y} + f_{xw}(A_{sw} + \alpha A_{sw})}
$$
Where λ is prestressing degree, f_{py} is tensile strength of prestressed steel strand, f_y is tensile strength of tensile rebar and f_{sy} is tensile strength of tensile steel. Where A_p is area of prestressed steel strand, A_s is area of the tensile rebar, A_{ss} is area of the tensile steel flange and A_{sw} is area of tensile web area. Where α is equivalent tensile yield area coefficient of steel web.

Based on PSRCB1, λ value were improved by increasing the prestressed steel strand area. Take $\lambda=0.35$, 0.49, 0.55, 0.60, 0.65, and 0.75, corresponding to $A_p=197.4$ mm2, 278 mm2, 348 mm2, 427 mm2, 530 mm2, and 854 mm2 respectively.

As shown in Figure6, with the increase of prestressing degree, the anti cracking performance, stiffness and flexural capacity increased, but the mechanical property degenerated more serious after P_u. Tensile stress of rebar and prestressed steel strand can yield, when $\lambda \leq 0.6$.

With the increase of λ, steel tension yield in the range decreased at P_u. On the contrary, steel compressive yield range increased. The stress of compression flange developed faster than the stress of tensile flange, when $\lambda=0.6$.

5. Conclusions
1) The comparison between the numerical results and experimental results shows that the nonlinear finite element model can better simulate the mechanical properties of PSRCB.
2) Nonlinear finite element parametric analysis of PSRCB provides a theoretical basis for engineering application.

Acknowledgements
This work was financially supported by the natural science foundation of Shandong Province(ZR2013EEQ013), indigenous innovation program of jinan(201202081), innovation and building energy-saving wall foundation of Shandong Province(2012QG008) and doctoral foundation of Shandong Jianzhu University(XNBS1207).

References
[1] Xu Jie, Dai Hang, Fu Chuanguo. Experimental study on steel reinforce concrete beam and prestressed steel reinforced concrete beam[J]. Earthquake Resistant Engineering and Retrofitting. 2007.29 (5) : 57-62
[2] Xu Jie, Fu Chuanguo, Dai Hang. Experimental study and theoretical analysis on Crack control theory of prestressed steel reinforced concrete beam[J]. Industrial Construction. 2008.38 (416) : 88-92
[3] Hsu Thomas T C. Mo Y L. Softening of Concrete in Torsional Members-Prestressed Concrete. ACI Journal, 1981;78(3): 171-178
[4] Hibbitt, Karlsson & Sorensen Inc. ABAQUS/Standard User’s Manual; ABAQUS/CAE User’s Manual; ABAQUS Keywords Manual; ABAQUS Theory Manual; ABAQUS Example
Problems Manual; ABAQUS Benchmarks Manual; ABAQUS Verification Manual; U.S.A:HKS 2005

[5] Britel V, Mark P. Parameterised Finite Element Modeling of RC Beam Shear Failure. ABUQUS Users’ Conference 2006:95-108

[6] Lee J , Fenves G L. Plastic-damage model for cyclic loading of concrete structures. Journal of Engineering Mechanics 1998a. 124(8) :892-900

[7] Wang Jinchang,Chen Yekai. ABAQUS application in civil engineering .Hangzhou:Zhejiang university press,2006

[8] Lu Zhitao,Meng Shaoping. Design of modern prestressed concrete [M]. Beijing:China Architecture and Building Press, 1998.