Biofertilizer as a tool for soil fertility management in changing climate

B Singh¹, A K Upadhyay², T W Al-Tawaha³, A R Al-Tawaha⁴, S N Sirajuddin⁵

¹School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, India.
²Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, 147 004, Punjab, India.
³Department of Biological Sciences, Al Hussein Bin Talal University, P.O. Box 20, Ma’an, Jordan
⁴Department of Crop Science, Faculty of Agriculture, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
⁵Department of socio economics, Faculty of Animal Husbandry, Hasanuddin University

E-mail: abdel-al-tawaha@ahu.edu.jo

Abstract. Many biotic and abiotic factors affect agriculture production worldwide. Biofertilisers of microbial origin can be a good option for sustaining productivity with more environment-friendly and integrated nutrient management approach. They have been advanced to use the naturally occurring nutrient mobility mechanisms, which promotes soil fertility and results in improved crop production.

1. Introduction

Many biotic and abiotic factors affect agriculture production worldwide [1–15]. The worldwide exponential growth of human population has boosted the urbanization and industrialization, as a result of which environment is being mutilated [16]. The present contest is to provide sufficient food to this increasing population [17]. Although, the large amount of chemical fertilizers has enabled the countries to provide enough food for their residing population but it has damaged the environment which affects the living of various organisms [18]. Mineral nutrients are considered very important factor that limits plant biomass and productivity in many ecosystems [19–36] The use of chemical fertilizers results in polluted soil, water and air. Use of chemical fertilizers has impacted the soil by increasing salinity, diminished soil fertility, loss of water holding potential and inconsistency in soil nutrients [37]. In order to counter the use of chemical fertilizers, organic farming has emerged as an alternative to provide safe food with improved shelf-life and to minimize the hazards to the environment [38]. In organic farming the use of biofertilizers came into picture, which contains living microbes and when used for the plants, seeds, soil and populate the rhizosphere and encourage the plant growth by enhancing nutrient flow to the plant [39]. These are employed to speed-up the microbial processes which elevate the accessibility of nutrients which can be absorbed by the plants comfortably [40]. Bio-fertilisers of microbial origin can be a good option for sustaining productivity with more environment-friendly and integrated nutrient management approach [41]. They have been advanced to use the naturally occurring nutrient mobility mechanisms, which promotes soil fertility
and results in improved crop production [10]. These biofertilizers in the form of PGPR (Plant Growth Promoting Rhizobacteria) possess direct mechanism, which has the immense potential to promote nitrogen fixation, solubilisation of potassium and phosphate, plant nodule formation, and production of phytohormones and siderophores in plants. The indirect mechanism of PGPR encourages induced system resistance, production of exo-polysaccharide and hydrolytic enzymes and promotes heavy-metals bioremediation. The most important factor is to find suitable plant microbe interaction, which results in improved crop yield. With the help of molecular biotechnology, the most suitable plant-microbe interaction can be well understood. The use of bio fertilizers in agriculture is at initial stage and the advances in genomics, technology-mediated microbial research, genetic engineering and plant pathogen interactions will definitely enhance the current protocols implement to use bio fertilizers. The use of bio fertilizer in agriculture can be extended to carry out research on evolving microbial strains, which are temperature resistant and effective. The key factors behind the utilization of bio fertilizers for sustainable agriculture lies in determining bio fertilizer strains, their properties and ongoing mechanisms which leads to enhanced properties of agricultural crops [3].

2. Biofertilizer and soil fertility
The farming practices with the use of non-chemical substances enhance the soil biodiversity and confirms the safety of food [42]. Organic farming relies on the use of soil microflora, which consists of various PGPR’s. The implication of biofertilizer retains the soil’s micro and macronutrients with the help of solubilisation of phosphate or potassium, fixation of nitrogen, antibiotic production, the liberation of plant growth regulating substances and performing biodegradation of organic matter present in soil [43]. The implication of biofertilizers, allows the mycorrhizal hyphae to keep the soil masses together and thus consolidate the soil structure and decreases soil erosion [44]. On applying biofertilizers as soil inoculant or seed, they proliferate and contributes to nutrient cycling and enhances crop yield [45].

3. Nitrogen fixation

![Diagrammatic overview of nitrogen fixation](image)

Figure 1: Diagrammatic overview of nitrogen fixation shows that the key nitrogenase complex consists of Dinitrogenase and Dinitrogenase reductase. The electrons shared by Dinitrogenase reductase were being utilized by Dinitrogenase, which results in the conversion of N_2 to NH_3. Oxygen molecule was the inhibitor of this enzyme complex. The enzyme couples with oxygen and gets deactivated. Figure 1 modified from [17].
4. Solubilization of phosphates

The process in figure 2 presents an overview of phosphorous solubilization mechanism by rhizobacteria. The hydroxy and carboxyl group of organic acids (low molecular weight like gluconic and citric acid) leads to chelation of cations coupled to phosphate. The chelation results in change of insoluble phosphorus to soluble organic one. With the help of hydrolysis by various phosphatases, mineralization of soluble phosphorous takes place.

![Diagram of phosphorus solubilization](image)

Figure 2: General overview of phosphate solubilisation. Figure 2 modified from [17]. Now we will point out various biofertilizers, which were used to maintain the soil fertility.

Impact on soil fertility	Biofertilizer name
Nitrogen fixation	Azocarbus, Azorhizobium, Burkholderia, Frankia
Phosphate solubilisation	R. leguminosarum, M. mediterraneum, B. japonicum, Bradyrhizobium sp.
Siderophore production	Pseudomonas fluorescens, R. meliloti, Chryseobacterium

5. Biofertilizer and environment

The growing population in India has put forward immense burden on agricultural lands and various other resources to produce sufficient food for the residing population [46]. The increased implication of chemical fertilizers in agriculture may lead to produce sufficient food for the country but on the other hand it declines the health of the environment and living organisms [47]. This increased use of chemical fertilizers on agriculture will result in poor soil quality and may lead to contaminated water resources [48]. The increased implication of soluble chemical fertilizers having phosphate and nitrate is among the principal contributors to water pollution [49]. To limit the use and negative impact of chemical fertilizers in agriculture, bio-fertilizers came into picture. With the help of actinorhizal plants and legumes, which have the potential of nitrogen fixation symbiotically, may limit the use of chemical nitrogen fertilizers. Implicating these practices, water and soil pollution arising from nitrates and associated contaminants by using chemical fertilizers, can be suppressed [50]. In 1990, a study concludes that vesicular-arbuscular endomycorrhizae, enhances fertilizer utilization coefficient by 2.7 to 5.6 times using rock phosphate as superphosphate in case of plants grown in phosphate-fixing, acidic soil. Vesicular-arbuscular fungi enhance phosphate fertilizer efficiency thereby decreasing their
input and using cost-effective, natural fertilizers [51]. Another study also suggests the role of this fungi in phosphate mobilization by plants using complex phosphates [52]. The above-mentioned work suggests ability of biofertilizers in minimizing fertilizers price and agriculture pollution. Considering the cost-effective and environment-competitive nature of biofertilizers, more research should be carried out to identify potential strains. Poor quality control and fickle supplies limit the use of this technology[46]. To attain sustainable agriculture, developing the biofertilizer which support growth of numerous-crops is the most crucial factor [40].

6. Biofertilizer and climate change
Climate change has led to alterations in temperature and rainfall patterns worldwide [53]. This alteration in rainfall pattern and temperature has a damaging impact on agriculture [54]. Elevation in liberation of greenhouse gases has resulted in temperature increase, droughts, floods, heatwaves and uncertainty of monsoons. The aforementioned biotic and abiotic pressures have intensive effect on the agricultural yield [55]. Conversion of habitable land into desert and soil erosion leads to deterioration and depletion of agricultural land. The reports of guesstimates suggest that abiotic factors such as salinity (10%), high temperature (20%), drought (9%), low temperature (7%) and other stress conditions (4%) lead to an average of 50% crop yield loss [56]. To overcome these unfavourable climatic conditions, it is necessary to implicate genetic engineering and plant breeding techniques to make crop cultivars which can bear the stress conditions. As these techniques are time consuming and expensive, the cost-effective and nature-friendly possibility is to implicate biofertilizers by inoculating microbes [57]. The microbes mostly used are free-living bacteria, fungi and arbuscular mycorrhizal fungi [58]. The studies have found that various microbial strain or species were able to make the plant bear abiotic stress conditions like drought, increased salinity and insufficiency of nutrients [59]. PGPR has immensely influenced the plant’s ability to bear biotic and abiotic stress conditions. PGPR reside concerning plant roots and impact their efficiency positively. PGPR significantly affect plant growth by various activities like by producing plant hormones (like cytokinin, auxin, gibberellin), enabling nutrient consumption from environment, by eliminating plant pathogens, mediating nitrogen fixation, phosphate solubilisation, iron sequestering and decreasing the concentration of plant ethylene[60,61]. “Induced Systematic Tolerance (IST)” was brought in knowledge to define action of PGPR in favour of plants. The IST triggers the chemical and physical alteration in plants which makes them bear abiotic stress conditions [55].

References
[1] Abu-Darwish M S, Abu-Dieyeh Z H, Mufeed B, Al-Tawaha A R M and Al-Dalain S Y A 2009 Trace element contents and essential oil yields from wild thyme plant (Thymus serpyllum L.) grown at different natural variable environments, Jordan J. Food Agric. Env. 7 920–4
[2] Al-Ajlouni M M, Al-Ghzawi A L A and Al-Tawaha A R 2010 Crop rotation and fertilization effect on barley yield grown in arid conditions J. Food, Agric. Environ. 8 869–72
[3] Al-Tawaha A R, Turk M A, Al-Tawaha A R M, Alu’datt M H, Wedyan M, Al-Ramamneh E and Hoang A T 2018 Using chitosan to improve growth of maize cultivars under salinity conditions Bulg J Agric Sci 24 437–42
[4] Bashabsheh N, Al-Ramamneh E A-D, Alhrouj H, Al-Tawaha A R and Al-Rawashdeh Z B 2018 Effects of pre-treatment solution, soaking period and cultivar on germination of pistachio (Pistacia vera) seeds Res. Crop. 19 211–6
[5] Sirajuddin S N, Sudirmian I, Bahar L D and Al-Tawaha A R 2018 Social economic factors that affect cattle farmer’s willingness to pay for artificial insemination programs Bulg. J. Agric. Sci. 24 574–80
[6] Al-Tawaha A M, Al-Tawaha A M, Alu’datt M H, Al-Ghzawi A A, Wedyan M, Al-Obaidy S A and Al-Ramamneh E M 2018 Effects of soil type and rainwater harvesting treatments in the growth, productivity and morphological trains of barley cultivars planted in semi-arid environment Aust. J. Crop Sci. 12 975–9
[7] Al-Ghzawi A L A, Al Khateeb W, Rjoub A, Al-Tawaha A R M, Musallam I and Al Sane K O 2019 Lead toxicity affects growth and biochemical content in various genotypes of barley (Hordeum vulgare L.) Bulg. J. Agric. Sci. 25 55–61

[8] Al-Tawaha A M, Yadav S S, Turk M, Ajlouni M, Abu-Darwish M S, Al-Ghzawi A A, Al-udatt A and Aladaleh S 2010 Climate Change and Drought Management in Cool Season Grain Legume Crops. (Springer) Crop Production and Management Technologies for Drought Prone Environments

[9] Al- Tawaha A M and Nidal O 2010 Use of sorghum and maize allelopathic properties to inhibit germination and growth of wild barley (Hordeum spontaneum) Not. Bot. Horti Agrobot. Cluj-Napoca 38 124–7

[10] Al-Tawaha A M 2011 Effects of soil type and exogenous application of yeast extract on soybean seed isoflavone concentration Int. J. Agric. Biol. 13 275–8

[11] Al-Tawaha A M and Al-Ghzawi A 2013 Response of barley cultivars to chitosan application under semi-arid conditions Res Crop. 14 427–30

[12] Al-Tawaha A R and Al-Tawaha A R M 2017 Response of soybean plants to exogenous application of yeast extract: growth and chemical composition Am. J. Sustain. Agric. 11 31–6

[13] Bhinchhar B K, Paswan V K, Yadav S P and Singh P 2017 Physical and morphometric characteristics of Gangatiri cattle. Indian J. Anim. Res. 51

[14] Abu Obaid A M, Melnyk A V, Onychko V I, Usmael F M, Abdullah M J, Rifae M K and Tawaha A M 2018 Evaluation of Six Sunflower Cultivar for Forage Productivity Under Salinity Condition

[15] Al-Tawaha A R, Al-Karaki G, Al-Tawaha A R, Sirajuddin S N, Makhadmeh I, Wahab P E M, Youssef R A, Al Sultan W and Massadeh A 2018 Effect of water flow rate on quantity and quality of lettuce (Lactuca sativa L.) in nutrient film technique (NFT) under hydroponics conditions Bulg. J. Agric. Sci. 24 791–8

[16] Glick B R 2012 Plant growth-promoting bacteria: mechanisms and applications Scientifica (Cairo). 2012

[17] Mahanty T, Bhattacharjee S, Goswami M, Bhattacharyya P, Das B, Ghosh A and Tribedi P 2017 Biofertilizers: a potential approach for sustainable agriculture development Environ. Sci. Pollut. Res. 24 3315–35

[18] Sujanya S, Chandra S, Suddick E C, Whitney P, Townsend A R and Davidson E A 2012 Bio fertilizers increasing soil fertility and crop productivity J Geosci 7 1–308

[19] Turk M A and Tawaha A M 2001 Common vetch (Vicia sativa L.) productivity as influenced by rate and method of phosphate fertilization in a Mediterranean environment Agric. Mediterr. 131 108–11

[20] Turk M A and Tawaha A M 2002 Onion (Allium cepa L.) as influenced by rate and method of phosphorus placement Crop Res. 23 105–7

[21] Tawaha A M and Turk M A 2004 Field pea seeding management for semi-arid mediterranean conditions J. Agron. Crop Sci. 190 86–92

[22] Turk M and Tawaha A R 2004 Effect of variable sowing ratios and sowing rates of bitter vetch on the herbage yield of oat-bitter vetch mixed cropping International Oat Conference/Pirjo Peltomäki-Tajo and Mari Topi-Hulmi (MTT)

[23] Abebe G, Hattar B and At-tawah A 2005 Nutrient availability as affected by manure application to cowpea (Vigna unguiculata L. Walp.) on calcarious soils J. Agric. Soc. Sci. 1 1–6

[24] Abera T, D F, Yusuf H, Nikus O and Al-Tawaha A R 2005 Grain yield of maize as affected by biogass slurry and NP fertilizer rate at Bako, Western Oromiya Ethiopia. Biosk 2 31–8

[25] Al-Kiyyam M A, Turk M, Al-Mahmoud M and Al-Tawaha A R 2008 Effect of plant density and nitrogen rate on herbage yields of marjoram under mediterranean conditions J. Am. J. Agric. Environ. Sci. 3 153–8
[26] Al-Juthery H W A, Habeeb K H, Altaee F J K, Al-Taey D K A and Al-Tawaha A R M 2018 Effect of foliar application of different sources of nano-fertilizers on growth and yield of wheat *Biosci. Res.* **15** 3976–85

[27] Elser J J, Bracken M E S, Cleland E E, Gruner D S, Harpole W S, Hillebrand H, Ngai J T, Seabloom E W, Shurin J B and Smith J E 2007 Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems *Ecol. Lett.* **10** 1135–42

[28] Al-Tawaha A M, Seguin P, Smith D L and Beaulieu C 2005 Biotic elicitors as a means of increasing isoflavone concentration of soybean seeds *Ann. Appl. Biol.* **146** 303–10

[29] Turk M A and Tawaha A-R M 2002 Impact of seeding rate, seeding date, rate and method of phosphorus application in faba bean (Vicia faba L. minor) in the absence of moisture stress *Biotecnol. Agron. Soc. Environ.* **6** 171–8

[30] Tawaha A M and Turk M A 2002 Lentil (Lens culinaris Medic.) productivity as influenced by rate and method of phosphate placement in a Mediterranean environment *Acta Agron. hungarica* **50** 197–201

[31] Tawaha A M, Singh V P, Turk M A and Zheng W 2003 A review on growth, yield components and yield of barley as influenced by genotypes, herbicides and fertilizer application *Res. Crop.* **4** 1–9

[32] Turk M A, Hameed K M, Aqeel A M and Tawaha A M 2003 Nutritional status of durum wheat grown in soil supplemented with olive mill by-products *Agrochimica* **47** 209–19

[33] Turk M A, Tawaha A M and El-Shatnawi M K J 2003 Response of lentil (Lens culinaris Medik) to plant density, sowing date, phosphorus fertilization and ethephon application in the absence of moisture stress *J. Agron. Crop Sci.* **189** 1–6

[34] Turk M, Tawaha A and Samara N 2003 Effects of seeding rate and date and phosphorus application on growth and yield of narbon vetch (Vicia narbonensis) *Agronomie* **23** 1–4

[35] Nikus O, Turk M A and Al-Tawaha A M 2004 Yield response of sorghum (Sorghum bicolor L.) to manure supplemented with phosphate fertilizer under semi-arid Mediterranean conditions *Int. J. Agric. Biol.* **6** 889–93

[36] Nikus O, Al-Tawaha A M and Turk M A 2004 Effect of manure supplemented with phosphate fertilizer on the fodder yield and quality of two sorghum cultivars (Sorghum bicolor L.) *Biosci. Res.* **1** 1–7

[37] Savci S 2012 An agricultural pollutant: chemical fertilizer *Int. J. Environ. Sci. Dev.* **3** 73

[38] Reddy B S 2013 *Soil Health: Issues and Concerns - A Review*

[39] Malusá E and Vassilev N 2014 A contribution to set a legal framework for biofertilisers *Appl. Microbiol. Biotechnol.* **98** 6599–607

[40] Mazid M and Khan T A 2014 Future of Bio-fertilizers in Indian agriculture: An Overview *Int. J. Agric. Food Res.* **3**

[41] Al-Taey D K A and Majid Z Z 2018 Study effect of kinetin, bio-fertilizers and organic matter application in lettuce under salt stress *J. Glob. Pharma Technol.* **10** 148–64

[42] Morshed L, Bashgarara F, Hosseini F, Jamal S and Omidi Najafabadi M 2017 The role of organic farming for improving food security from the perspective of fars farmers *Sustainability* **9** 2086

[43] Bhardwaj D, Ansari M W, Sahoo R K and Tuteja N 2014 Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity *Microb. Cell Fact.* **13** 66

[44] Rashid M I, Mujawar L H, Shahzad T, Almeelbi T, Ismail I M I and Oves M 2016 Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils *Microbiol. Res.* **183** 26–41

[45] Ju I 2018 A review: Biofertilizer - A key player in enhancing soil fertility and crop productivity *22 Microbiol Biotechnol Rep* **2** 22–8

[46] Barman M, Paul S, Choudhury A G, Roy P and Sen J 2017 Biofertilizer as prospective input
for sustainable agriculture in India *Int. J. Curr. Microbiol. Appl. Sci.* 6 1177–86

[47] Aktar W, Sengupta D and Chowdhury A 2009 Impact of pesticides use in agriculture: their benefits and hazards *Interdiscip. Toxicol.* 2 1–12

[48] Kashmir T 2010 Bio-fertilizers in organic agriculture *J. Phytol.* 2 42–54

[49] Khan M N, Mobin M, Abbas Z K and Alamri S A 2017 *Fertilizers and Their Contaminants in Soils, Surface and Groundwater* vol 5 (Elsevier Inc.)

[50] Mulongoy K, Gianinazzi S, Roger P-A and Dommergues Y 1992 Biofertilizers: agronomic and environmental impacts and economies *Biotechnol. Econ. Soc. Asp. Issues Dev. Ctries. Eds. EJ Da Silva, C Ratledge A Sasson* 55–69

[51] Gianinazzi B B M G-P C F 1990 Influence of vesicular-arbuscular mycorrhizae on phosphate fertilizer efficiency in two tropical acid soils planted with micropropagated oil palm (Elaeis guineensis jacq.) *Biol. Fertil. Soils* 9 43–8

[52] Bolan N S 1991 A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants *Plant Soil* 134 189–207

[53] Solhi M and Van Ginkel M 2014 Drought preparedness and drought mitigation in the developing world’s drylands *Weather Clim. Extrem.* 3 62–6

[54] Nciizah A and Wakindiki I I C 2014 Rainfall intensity effects on crusting and mode of seedling emergence in some quartz-dominated South African soils *Water SA* 40 587–94

[55] Kaur J, Pandove G and Gangwar M 2018 Mitigating the impact of climate change by use of microbial inoculants *Pharma Innov. J.* 7 279–88

[56] W. T 2006 A unique product: The story of the imidazolopid stress shield. *P flanzenschutz-Nachrichten Sci. Forum, Bayer* 59 73–86

[57] Grover M, Ali S Z, Sandhya V, Rasul A and Venkateswarlu B 2011 Role of microorganisms in adaptation of agriculture crops to abiotic stresses *World J. Microbiol. Biotechnol.* 27 1231–40

[58] Dodd I C and Ruiz-Lozano J M 2012 Microbial enhancement of crop resource use efficiency *Curr. Opin. Biotechnol.* 23 236–42

[59] Yang J, Kloepper J W and Ryu C M 2009 Rhizosphere bacteria help plants tolerate abiotic stress *Trends Plant Sci.* 14 1–4

[60] Abiye Anthony Ibiene, Josephine Udunma Agogbua, Iheanyi Omezuruike Okonko G N N 2012 Plant growth promoting rhizobacteria (PGPR) as bio-fertilizer: Effect on growth of Lycopersicum esculentus *J. Am. Sci.* 8 318–24

[61] Podile A R and Kishore G K 2007 Plant growth-promoting rhizobacteria *Plant-associated bacteria* ed Gnanamanickam S.S. (Dordrecht: Springer) pp 195–230