POLYNOMIAL INDEX IN DEDEKIND RINGS

M.E. CHARKANI
Department of Mathematics, Faculty of Sciences Dhar-Mahraz, Morocco

A. DEAJIM
Department of Mathematics, King Khalid University, Saudi Arabia

Abstract. Let R be a Dedekind ring, p a nonzero prime ideal of R, $P \in R[X]$ a monic irreducible polynomial, and K the quotient field of R. We give in this paper a lower bound for the p-adic valuation of the index of P over R in terms of the degrees of the monic irreducible factors of the reduction of P modulo p. As an important application, when the lower bound is greater than zero for some p, we conclude that no root of P generates a power integral basis in the field extension of K defined by P.

1. Introduction

It is well-known that the problem of studying the integral closure of a Dedekind ring A in some finite separable extension of its quotient field is related to the problem of studying the integral closures of localizations of A at its nonzero prime ideals. As such localizations are discrete valuation rings, we consider some tools and relevant results over discrete valuation rings.

Let R be a discrete valuation ring and p its nonzero prime ideal. An important notion which we need here is the notion of index of an irreducible polynomial over R, whose definition we recall below for the sake of completion (see [3] for a more general treatment).

If M is a nonzero torsion R-module of finite type, then M admits a composition series of submodules

$$0 = M_0 \subseteq M_1 \subseteq \cdots \subseteq M_t = M,$$

where, for each $i = 0, 1, \ldots, t - 1$, the quotient R-module M_{i+1}/M_i is simple and is isomorphic to R/p. Note here that t is an invariant of M independent of the choice of composition series (see [1, Proposition 6.7] or [9, §11–Theorem 19]). Now, if M
is an R-module of finite type, we define the order ideal of M over R by (see [3]):

$$\text{ord}_R(M) := \begin{cases} R & \text{if } M = 0 \\ 0 & \text{if } M \text{ is not a torsion } R\text{-module} \\ p^t & \text{if } M \text{ is a nonzero torsion } R\text{-module.} \end{cases}$$

If $N \subseteq M$ are two projective R-modules of the same finite constant rank, then we define the index of M over N to be the ideal $\text{ord}_R(M/N)$, and we denote it by $[M : N]_R$. By definition, note that $M = N$ if and only if $[M : N]_R = R$.

Let K be the quotient field of R, L a finite separable extension of K, O_L the integral closure of R in L, $\alpha \in O_L$ a primitive element of L, and $P \in R[X]$ the minimal polynomial of α over R. As $R[\alpha] \subseteq O_L$ are projective R-modules of the same constant rank, $[O_L : R[\alpha]]_R$ is well defined. We call $[O_L : R[\alpha]]_R$ the index of P (or of α) and denote it by $\text{Ind}_R(P)$ (see [2] for instance). This notion of index is generalized to the case when R is a Dedekind domain (see [3]). Now recall the generalized discriminant-index formula (see [3])

$$\text{Disc}_R(P) = \text{Ind}_R(P)^2 D_R(O_L),$$

where $\text{Disc}_R(P) = \text{disc}(P)R$ is the principal ideal of R generated by the usual discriminant of P, and $D_R(O_L)$ is the relative discriminant of O_L over R in the sense of [3] (see also [5]).

If R is a Dedekind ring, p a nonzero prime ideal of R, and $P(X) \in R[X]$ is a monic irreducible polynomial defining a separable field extension L over the quotient field of R, then our main result, Theorem 1.1 below, gives a lower bound on the p-adic valuation of $\text{Ind}_R(P)$ in terms of the degrees of the monic irreducible factors of the reduction of P modulo p. An important application of this theorem is to conclude, when the lower bound is greater than zero for some p, that a root of $P(X)$ in L does not generate a power basis for the integral closure of R in L.

Theorem 1.1. Let R be a Dedekind ring, K its quotient field, L a finite separable extension of K, O_L the integral closure of R in L, $L = K(\alpha)$ for some $\alpha \in O_L$, $P \in R[X]$ the minimal polynomial of α over K, and $A = R[\alpha]$. Let p be a nonzero prime ideal of R, $\overline{P} = \prod_{i=0}^r \overline{P}_i^{t_i}$ the monic irreducible factorization of P modulo p, and $P_i \in R[X]$ a monic lift of \overline{P}_i for each i. Suppose that $T \in R[X]$ with \overline{T} nonzero and $P = \prod_{i=0}^r P_i^{t_i} + aT$ for $a \in p - p^2$. Let t_i be the highest power of \overline{P}_i that divides \overline{T} and set $s_i = \min\{\frac{t_i}{2}, t_i\}$. Then,

$$\nu_p(\text{Ind}_R(P)) \geq \sum_{i=1}^r s_i \deg(P_i) = \deg(\prod_{i=1}^r P_i^{s_i}).$$
2. Lemmas

For a nonzero fractional ideal \(\mathfrak{a} \) of an integral domain \(R \), denote by \(\text{Stab}_K(\mathfrak{a}) \) the fractional ideal

\[
(\mathfrak{a} :_K \mathfrak{a}) := \{ x \in K \mid x \mathfrak{a} \subseteq \mathfrak{a} \},
\]

where \(K \) is the quotient field of \(R \). We call \(\text{Stab}_K(\mathfrak{a}) \) the \(K \)-stabilizer of \(\mathfrak{a} \). Note that \(R \subseteq \text{Stab}_K(\mathfrak{a}) \). It is known that \(\text{Stab}_K(\mathfrak{a}) \) is the largest subring \(B \) of \(K \) such that \(\mathfrak{a} \) is a \(B \)-module. Further, if \(R \) is noetherian and \(\overline{R} \) is the integral closure of \(R \) in \(K \), then \(\overline{R} = \bigcup \mathfrak{a} \text{Stab}_K(\mathfrak{a}) \), where \(\mathfrak{a} \) runs over all nonzero fractional ideals \(\mathfrak{a} \) of \(R \) (see [8, Proposition 2.4.8]).

By \((\ldots)\) (resp. \([\ldots]\)) we mean the usual notation for the greatest common divisor (resp. least common multiple), and by \([\ldots]\) we mean the integral part of a number.

Now let \(R \) be a discrete valuation ring, \(\pi \) a uniformizer of \(R \), \(\mathfrak{p} = \pi R \) the prime ideal of \(R \), \(k = R/\mathfrak{p} \) the residue field of \(R \), \(K \) the quotient field of \(R \), \(L \) a finite separable extension of \(K \), \(O_L \) the integral closure of \(R \) in \(L \), \(L = K(\alpha) \) for some \(\alpha \in O_L \), \(P(X) \in R[X] \) the minimal polynomial of \(\alpha \) over \(R \), and \(A = R[\alpha] \). For a polynomial \(f(X) = \sum_{i=0}^{t} a_i X^i \in R[X] \), by \(\overline{f}(X) \) we mean the polynomial \(\sum_{i=0}^{t} \overline{a_i} X^i \in k[X] \) resulting from reducing all coefficients of \(f(X) \) modulo \(\mathfrak{p} \).

Lemma 2.1. Keep the notation as above. Let \(W \in R[X] \) be monic such that \(\overline{W} \) divides \(\overline{P} \) in \(k[X] \). Then \(M = A + (W(\alpha)/\pi) A \) is a free \(R \)-module with \([M : A]_R = \mathfrak{p}^{n-m}\), where \(n = \deg(P) \) and \(m = \deg(W) \).

Proof. Since \(R \) is a discrete valuation ring and \(A \) is a free \(R \)-module of finite rank \(n \) and \(\pi M \subseteq A \subseteq M \), it follows that \(\pi M \) and, thus, \(M \) are free \(R \)-modules of rank \(n \) as well. Since \(A/\pi M \cong k[X]/(\overline{W}) \cong k^m = (R/\mathfrak{p})^m \) as \(R \)-modules and \([A : \pi M]_R = \text{ord}_R(A/\pi M)\), \([A : \pi M]_R = \text{ord}_R((R/\mathfrak{p})^m) = \mathfrak{p}^m\). On the other hand, as \([M : A]_R [A : \pi M]_R = [M : \pi M]_R = \text{ord}(M/\pi M) = \mathfrak{p}^n\), it follows that \([M : A]_R = \mathfrak{p}^{n-m}\) as claimed.

Lemma 2.2. Keep the notation of Lemma 2.1. Let \(\mathfrak{a} = \pi A + f(\alpha) A \) for some monic \(f \in R[X] \) such that \(\overline{f} \) divides \(\overline{P} \) in \(k[X] \). Let \(g, T \in R[X] \) be such that \(P = fg + \pi T \) with \(\overline{T} \) nonzero, and \(D, h, U \in R[X] \) such that \(\overline{D} = (\overline{f}, \overline{g}, \overline{T}) \), \(\overline{h} = \overline{f}/(\overline{f}, \overline{T}) \), and \(\overline{U} = \overline{T}/\overline{D} \). Then we have the following:

(i) \(\overline{U} = [\overline{h}, \overline{f}] \).

(ii) \(\text{Stab}_L(\mathfrak{a}) = A + \frac{U(\alpha)}{\pi} A \subseteq O_L \).

(iii) \(\text{Stab}_L(\mathfrak{a}) \) is a free \(R \)-submodule of \(O_L \) and \([\text{Stab}_L(\mathfrak{a}) : A]_R = \mathfrak{p}^{\deg(D)}\).

Proof.

(i) \(\overline{U} = \frac{\overline{g} \overline{\overline{f}}}{(\overline{g}, \overline{f}, \overline{T})} = \frac{\overline{g} \overline{\overline{h}(\overline{f}, \overline{T})}}{(\overline{g}, (\overline{f}, \overline{T}))} = \overline{h}[\overline{g}, (\overline{f}, \overline{T})] = [\overline{h} \overline{g}, \overline{h}(\overline{f}, \overline{T})] = [\overline{h} \overline{g}, \overline{f}]. \)
(ii) Note, first, that \(a \) is a nonzero fractional ideal of \(A \). So, \(\text{Stab}_L(a) \subseteq O_L \) follows from the fact that \(O_L = \bigcup_a \text{Stab}_L(a), \) where \(a \) runs over all nonzero fractional ideals of \(A \) (see the paragraph preceding this lemma). It remains to show the proposed equality. By part (i), \(U = [h, r, f] \). So, it suffices to show that if \(x = Q(\alpha)/\pi \) for some \(Q \in R[X], \) then \(x \in \text{Stab}_L(a) \) if and only if both \(f \) and \(g(h) \) divide \(\overline{Q} \). Indeed, as \(x \in \text{Stab}_L(a) \) if and only if \(\pi x, xf(\alpha) \in a \), proving the equality will be complete by showing that \(\pi x \in a \) if and only if \(f \) divides \(\overline{Q} \), and \(xf(\alpha) \in a \) if and only if \(g(h) \) divides \(\overline{Q} \).

On the one hand, we see that \(\pi x \in a \) if and only if there exist \(F, G \in R[X] \) such that
\[
Q(\alpha) f(\alpha) = \pi(\pi Q_1(\alpha) + f(\alpha)Q_2(\alpha)).
\]
Since \(P \) is the minimal polynomial of \(\alpha \) over \(R \), (1) is equivalent to the existence of \(Q_3 \in R[X] \) such that
\[
Q f = \pi(\pi Q_1 + f Q_2) + P Q_3.
\]
Reducing modulo \(p \) we get that \(\overline{Q} = \overline{Q_3 f} \). Let now \(Q_4 \in R[X] \) be such that
\[
Q = \pi Q_4 + Q_3 g.
\]
Substituting in (2), we get
\[
Q_3(fg - P) = \pi(\pi Q_1 + f Q_2 - f Q_4).
\]
Now letting \(Q_5 = Q_4 - Q_2 \in R[X], \) we get that \(xf(\alpha) \in a \) if and only if there exist \(Q_1, Q_3, Q_5 \in R[X] \) such that
\[
Q_3 T = f Q_5 - \pi Q_1.
\]
Reducing modulo \(p \) again, we get \(\overline{Q_3 T} = \overline{f Q_5}. \) This is equivalent to saying that \(\overline{f} \) divides \(\overline{T} \overline{Q_3} \) or, equivalently, \(\overline{h} \) divides \(\overline{Q_3} \) since \(\overline{T} \) is nonzero. So \(xf(\alpha) \in a \) if and only if there exist \(Q_6, Q_7 \in R[X] \) such that
\[
Q_3 = h Q_6 + \pi Q_7.
\]
Substituting in (3) we get
\[Q = \pi(Q_4 + gQ_7) + ghQ_6 \]
\[= \pi Q_8 + ghQ_6, \]
where \(Q_8 = Q_4 + gQ_7 \in R[X]. \) It finally follows that \(xf(\alpha) \in a \) if and only if \(gh \) divides \(Q. \)

(iii) Apply Lemma 2.1 with \(U = W. \)

Remark. It should be noted here that Lemma 2.2 generalizes Lemma 6.1.5 of [4]. Furthermore, choosing \(f \) to be the radical of the square part of \(\overline{P} \) would give a refinement of Theorem 6.1.5 of [4] (by the radical of a polynomial over \(K \) we mean the product of all its distinct irreducible factors, and by the square part of a polynomial over \(K \) we mean the quotient upon dividing the polynomial by its radical).

3. **Lower Bounds of** \(\nu_p(\text{Ind}_R(P)) \)

Proposition 3.1. Keep the notation and assumptions of Lemma 2.2. Then
\[\nu(\text{Ind}_R(P)) \geq \text{deg}(D). \]

Proof. Indeed, \(A \subseteq \text{Stab}_L(a) \subseteq O_L \) and, therefore, \([\text{Stab}_L(a) : A]_R \) divides \([O_L : A]_R = \text{Ind}_R(P). \) Now, using Lemma 2.2 (ii) yields the claim.

Proposition 3.2. Keep the notation and assumptions of Lemma 2.2. If \(O_L = A, \) then \((\overline{f}, \overline{h}, \overline{T}) = \overline{1}. \)

Proof. It follows from Lemma 2.2 that \(\text{Stab}_L(a) = O_L \) and \(\text{deg}(D) = 0. \)

Now the proof of Theorem 1.1.

Proof. (Theorem 1.1) We localize at \(p \) and apply Proposition 3.1 to a suitable choice of a divisor \(\overline{f} \) of \(\overline{P}; \) namely, \(\overline{f} = \prod_{i=1}^r P_i^{s_i}. \) Let \(f = \prod_{i=1}^r P_i^{s_i} \) and \(h = \prod_{i=1}^r P_i^{l_i-s_i}. \) Then, \(P = fh + \pi T \) and, in this case, \(\overline{D} = (\overline{f}, \overline{h}, \overline{T}) = \prod_{i=1}^r P_i^{m_i}, \) where \(m_i = \min\{s_i, l_i-s_i, t_i\}. \) Since \(m_i = \min\{\frac{l_i}{2}, t_i\} = s_i, \) the assertion now follows from Proposition 3.1.

Example.

Let \(R \) be a Dedekind ring, \(K \) the quotient field of \(R, \) \(p = \pi R \) a nonzero principal prime ideal of \(R, \) and \(P(X) = g(X)^n + ag(X)^m + b \in R[X] \) irreducible over \(R, \) with \(g(X) \in R[X] \) monic, \(\overline{g}(X) \) irreducible modulo \(p, \) \(n > 1, n \geq m \geq 1, \nu_p(a) = 1, \) and \(\nu_p(b) \geq 2 \) (e.g. \(P(X) = X^3 + \sqrt{3}X^2 + 3 \in \mathbb{Z}[\sqrt{3}][X] \) with \(p = \sqrt{3}\mathbb{Z}[\sqrt{3}]). \) Then, \(\overline{P}(X) \equiv \overline{g}(X)^n \) modulo \(p. \) For \(T(X) = g(X)^m + b/\pi \in R[X], \) it is clear that \(\overline{T}(X) = \overline{g}(X)^m \) is nonzero and \(\overline{T}(X) \) divides \(\overline{P}(X) \) modulo \(p. \) As \(l = n > 1 \) and...
\(t = m \geq 1, \ s = \min\{\lfloor \frac{n}{2} \rfloor, m\} \geq 1. \) Thus, \(\nu_p(\text{Ind}_R(P)) \geq (1)\deg(g(X)) \geq 1. \) Hence, a root \(\alpha \) of \(P \) never generates a power basis for the integral closure of \(R \) in \(K(\alpha) \).

Remark. It was shown in [7, Theorem 1.1 and Corollary 1.2] that if \(P(X) = X^n + aX^m + b \in \mathbb{Z}[X] \) is irreducible with \(m|n, \ p|a, \ p^2|b \) for a prime integer \(p \), then \(p|\text{Ind}_\mathbb{Z}(P) \). This is a special case that follows from the example above without even requiring that \(m|n \).

References

[1] M. Atiyah and I. Macdonald, *Introduction to Commutative Algebra*, Addison-Wesley Company, 1969.

[2] M.E. Charkani and A. Deajim, *Generating a power basis over a Dedekind ring*, J. Number Theory 132 (2012), 2267–2276.

[3] M.E. Charkani and A. Deajim, *Relative index in extensions of Dedekind rings*, JP J. Algebra, Number Theory and Appl 27 (2012), 73–84.

[4] H. Cohen, *A Course in Computational Algebraic Number Theory*, GTM 138, Springer-Verlag, 1996.

[5] L. El Fadil and M.E. Charkani, *Generalization of the discriminant and applications*, Arab. J. Sci. Eng. 29 (2004), 93–98.

[6] A. Fröhlich and M. Taylor, *Algebraic Number Theory*, Cambridge Studies in Advanced Mathematics 27, 1993.

[7] A. Jakhar, S. Khanduja, and N. Sangwan, *On prime divisors of the index of an algebraic integer*, J. Number Theory 166 (2016), 47–61.

[8] I. Swanson and C. Huneke, *Integral Closure of Ideals, Rings, and Modules*, Cambridge University Press, 2006.

[9] O. Zariski and P. Samuel, *Commutative Algebra – V. 1*, GTM 28, Springer-Verlag, 1958.

(M.E. Charkani) Department of Mathematics, Faculty of Sciences Dhar-Mahraz, B.P. 1796, Fes, Morocco
E-mail address: mcharkani@gmail.com

(A. Deajim) Department of Mathematics, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
E-mail address: deajim@kku.edu.sa, deajim@gmail.com