Discovering structural motifs using a structural alphabet: Application to magnesium-binding sites

Minko Dudev¹ and Carmay Lim*¹,²

Address: ¹Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan and ²Department of Chemistry, National Tsing-Hua University, Hsinchu 300, Taiwan

Email: Minko Dudev - frater_ia@yahoo.com; Carmay Lim* - carmay@gate.sinica.edu.tw

* Corresponding author

Abstract

Background: For many metalloproteins, sequence motifs characteristic of metal-binding sites have not been found or are so short that they would not be expected to be metal-specific. Striking examples of such metalloproteins are those containing Mg²⁺, one of the most versatile metal cofactors in cellular biochemistry. Even when Mg²⁺-proteins share insufficient sequence homology to identify Mg²⁺-specific sequence motifs, they may still share similarity in the Mg²⁺-binding site structure. However, no structural motifs characteristic of Mg²⁺-binding sites have been reported. Thus, our aims are (i) to develop a general method for discovering structural patterns/motifs characteristic of ligand-binding sites, given the 3D protein structures, and (ii) to apply it to Mg²⁺-proteins sharing <30% sequence identity. Our motif discovery method employs structural alphabet encoding to convert 3D structures to the corresponding 1D structural letter sequences, where the Mg²⁺-structural motifs are identified as recurring structural patterns.

Results: The structural alphabet-based motif discovery method has revealed the structural preference of Mg²⁺-binding sites for certain local/secondary structures: compared to all residues in the Mg²⁺-proteins, both first and second-shell Mg²⁺-ligands prefer loops to helices. Even when the Mg²⁺-proteins share no significant sequence identity, some of them share a similar Mg²⁺-binding site structure: 4 Mg²⁺-structural motifs, comprising 21% of the binding sites, were found. In particular, one of the Mg²⁺-structural motifs found maps to a specific functional group, namely, hydrolases. Furthermore, 2 of the motifs were not found in non metalloproteins or in Ca²⁺-binding proteins. The structural motifs discovered thus capture some essential biochemical and/or evolutionary properties, and hence may be useful for discovering proteins where Mg²⁺ plays an important biological role.

Conclusion: The structural motif discovery method presented herein is general and can be applied to any set of proteins with known 3D structures. This new method is timely considering the increasing number of structures for proteins with unknown function that are being solved from structural genomics incentives. For such proteins, which share no significant sequence homology to proteins of known function, the presence of a structural motif that maps to a specific protein function in the structure would suggest likely active/binding sites and a particular biological function.
Background
Magnesium is one of the most versatile metal cofactors in cellular biochemistry, serving both intra and extracellular, catalytic and/or structural roles [1]. It is used to stabilize a variety of protein structures; e.g., the interface of the ribonucleotide reductase subunits [2]. It is also used to stabilize nucleic acids by alleviating electrostatic repulsion between negatively charged phosphates. Furthermore, Mg²⁺, together with Ca²⁺, stabilize biological membranes by charge neutralization after binding to the carboxylated and phosphorylated headgroups of lipids. It also activates enzymes that regulate the biochemistry of nucleic acids such as restriction nucleases, ligases, and topoisomerases, and is essential for the fidelity of DNA replication [1].

Divalent Mg²⁺ is a “hard” ion and prefers “hard” ligands of low polarizability like oxygen. It tends to bind directly to the amino acid residues, primarily to the Asp/Glu carboxylic side chains, followed by the Asn/Gln side chains or peptide backbone carbonyl groups [3]. The rest of the metal coordination sphere, which is usually octahedral, is complemented by water ligand(s).

Unlike Zn²⁺ and Ca²⁺-binding sites, only a few, relatively short, sequence motifs have been discovered for Mg²⁺-proteins with close sequence homology. These include the -NADF(D)G- motif, found in different RNA polymerases, DNA Pol I and HIV reverse transcriptase, and the -YXDD- or -LXDD- motifs in reverse transcriptase and telomerase, where residues in bold are the Mg²⁺ ligands [4]. As the known Mg²⁺ sequence motifs are short, they could easily be found in other nonMg²⁺-proteins and would not be expected to be Mg²⁺-specific. Interestingly, some homology in the 3D structure of the Mg²⁺-binding sites has been observed for certain classes of enzymes such as restriction enzymes, bacterial and viral RNase H domains, and viral integrases [4]. However, systematic studies of the structural preference/conservation of Mg²⁺-binding sites in nonhomologous proteins have not been reported; hence, no structural motifs of the Mg²⁺-binding sites have been extracted.

To address the aforementioned questions, we have developed a general strategy for discovering 3D motifs that are hidden in the local structure of the active/binding site, based on the fact that the local structure is generally more evolutionarily conserved than the amino acid sequence [5]. The 3D motifs of the metal-binding sites were obtained by encoding the 3D representation based on Cartesian coordinates into a 1D representation based on a 16-letter structural alphabet [6,7]. The structural alphabet represents recurring short structural prototypes and has been used to (i) compare/analyze 3D structures [8-10], (ii) predict protein 3D structures from amino acid sequences [6,11], (iii) reconstruct the protein backbone [12], and (iv) model loops [13]. However, it has not been used to discover structural motifs of metal/ligand-binding sites in proteins. First, the structural-alphabet based motif discovery approach was validated by using it to “rediscover” the structural motif of Cys₂ Zn-finger domains, which are known to adopt a specific structure. Next, it was used to discover structural motifs of Mg²⁺-binding sites in a set of nonredundant Mg²⁺-proteins sharing <30% sequence identity. The results reveal clear trends in the structural composition of Mg²⁺-binding sites, 4 Mg²⁺-structural motifs, and important relationships between these motifs and other features of the proteins. The specificity of the structural motifs discovered for certain Mg²⁺-binding sites was assessed by determining their occurrence in a set of nonredundant non-metal containing protein structures and in a set of nonredundant Ca²⁺-bound protein structures.

Results
Validation against Proteins with known Structural Motifs
To test the structural alphabet-based strategy for discovering metal-binding site structural motifs, a database of 42 structural zinc sites from 29 proteins in previous work [14] was searched for proteins containing the C(2)C(13–15)C(2)C sequence motif, where the number in parentheses indicates the number of amino acid residues separating the conserved Zn-binding cysteines. Proteins with such a sequence motif belong to the Zn-finger family of the nuclear receptor type, having a Cys₂ Zn-binding site [15], which is known to adopt a specific structure. Each of the Zn-proteins containing the C(2)C(13–15)C(2)C sequence motif was represented by a 1D structural alphabet, as described in Methods and illustrated in Figure 1. All of these proteins were found to possess a f(2)C(13–15)f(2)C structural motif of the Zn-binding site (see Figure 1). This shows that the structural-alphabet based approach for discovering new structural motifs seems promising.

Structural Preference of Mg²⁺-Binding Sites
Although the 70 Mg²⁺-proteins used herein share <30% sequence identity, do their Mg²⁺-binding sites prefer cer-
tain local structures? To answer this question, the 3D structure of each of the 70 nonredundant Mg$^{2+}$ proteins was represented by a 16-letter structural alphabet (see Methods and Additional file 1), and the frequencies of the letters in all the first-and second-shells as well as in the entire Mg$^{2+}$ dataset were compared (see Figure 2). The results reveal a clear preference towards certain types of local structures in the Mg$^{2+}$-binding sites. The 'b', 'd', 'f', and 'h' frequencies of first-shell Mg$^{2+}$-ligands and the 'd', 'e', 'f' and 'k' frequencies of second-shell Mg$^{2+}$-ligands are statistically significantly higher than the respective frequencies of all the amino acid residues in the dataset (see Table 1). Both first and second-shell Mg$^{2+}$-ligands favor the 'd' and 'f' structures. Furthermore, the first-shell (but not the second-shell) Mg$^{2+}$-ligands strongly prefer the local structure 'h', whose frequency of first-shell ligands is 5.3-fold greater than that of all residues in Mg$^{2+}$ proteins. However, compared to all amino acid residues in the Mg$^{2+}$ proteins, both first and second-shell Mg$^{2+}$-ligands disfavor certain local protein structures such as the 'c' and 'm' structures: The 'c', 'i', 'm', and 'p' frequencies of first-shell Mg$^{2+}$-ligands and the 'a', 'c', 'm' and 'o' frequencies of second-shell Mg$^{2+}$-ligands are statistically significantly lower than the respective frequencies of all the amino acid residues in the dataset (see Table 1).

To relate the observed bias of the first-shell Mg$^{2+}$-ligands for certain structures to standard regular and irregular secondary structures, the percentage frequency distribution of first-shell, second-shell, and all amino acid residues that are found in α-helices, β-strands, or loops in the Mg$^{2+}$-proteins according to the secondary structure information in the Protein Data Bank [16] (PDB) files were computed (see Figure 3). The loop occurrence frequency of the first or second-shell Mg$^{2+}$-residues (47–50%) is significantly higher than that of all residues (~32%) with p-values ≤ 0.014 (see Table 1). However the β-sheet occurrence frequency of the first or second-shell Mg$^{2+}$-residues (~29%) is not significantly higher than that of all residues (~22%). In contrast, the α-helix occurrence frequency of
the first or second shell Mg2+-residues (22–23%) is nearly half of the respective frequency of all residues (~46%) with p-values ≤ 0.0004.

In summary, the Mg2+-binding sites generally prefer certain local structures: compared to all amino acid residues in the Mg2+ proteins, both first and second-shell ligands tend to prefer loops to helices. This may be due to the need to position not only the first and second-shell ligands, but also the helix dipole, in a proper orientation for metal binding.

Table 1: The letter and secondary structural element (SSE) frequency distributions and 2-sample T-tests of first-and second-shell amino acid residues vs. all amino acid residues in the Mg2+-proteins

Letter, x	1st-shell vs. all residues	2nd-shell vs. all residues				
	\(\nu_x/\nu_{x, \text{all}} \)	T-testc	\(\text{p-value}^{d} \)	\(\nu_x/\nu_{x, \text{all}} \)	T-testc	\(\text{p-value}^{d} \)
a	1.47	1.4037	0.0802	0.57	2.4731	0.0067
b	1.86	2.7909	0.0027	1.20	5.3100	0.1113
c	0.56	2.0160	0.0219	0.50	4.3510	<0.0001
d	1.23	1.7376	0.0412	1.23	3.1829	0.0008
e	1.46	1.0111	0.1560	2.03	4.1825	<0.0001
f	1.47	1.9389	0.0263	1.70	5.4060	<0.0001
g	1.15	0.2494	0.4015	1.18	0.5381	0.2953
h	5.29	9.3752	\(\text{<0.0001} \)	1.19	0.7921	0.2142
i	0	1.8928	0.0292	1.34	1.9100	0.1168
j	2.21	1.6156	0.0531	1.54	1.3401	0.0901
k	1.40	1.4992	0.0669	1.60	4.1820	\(\text{<0.0001} \)
l	0.76	0.9209	0.1786	1.08	0.5978	0.275
m	0.52	2.9377	\(\text{0.0017} \)	0.74	5.2192	\(\text{<0.0001} \)
n	0.53	1.1306	0.1291	0.88	0.5208	0.3013
o	1.52	1.4066	0.0798	0.35	3.3637	\(\text{0.0004} \)
p	0	3.1174	\(\text{0.0009} \)	0.77	1.3204	0.0934
SSE, x						
Loop	1.56	2.5575	\(\text{0.0053} \)	1.47	2.1874	0.0144
β-strands	1.30	1.0780	0.1405	1.34	1.2170	0.1118
α-helices	0.47	3.6454	\(\text{0.0002} \)	0.51	3.3621	\(\text{0.0004} \)

\(a\) 16-letter structural alphabet defined by de Brevern and co-workers (see Methods and original reference) [6]. \(b\) The ratio of the letter/SSE ‘x’ frequency of first-shell amino acid residues to that of all amino acid residues in the 70 Mg2+ proteins. \(c\) The statistical analyses were carried out using the package, SAS/STAT version 8 (SAS Institute, NC). \(d\) P-values <0.05 are highlighted in bold. \(e\) The ratio of the letter/SSE ‘x’ frequency of second-shell amino acid residues to that of all amino acid residues in the 70 Mg2+ proteins.

In summary, the Mg2+-binding sites generally prefer certain local structures: compared to all amino acid residues in the Mg2+ proteins, both first and second-shell ligands tend to prefer loops to helices. This may be due to the need to position not only the first and second-shell ligands, but also the helix dipole, in a proper orientation for metal binding.

Structural Motifs of Mg2+-Binding Sites

Even when the Mg2+-proteins share no significant sequence homology (<30% sequence identity), do any of them share a common structure of the metal-binding site? Such structural motifs are defined in this work to exist if 3 or more Mg2+-binding sites have the same first-shell letters and similar interletter spacing (see Methods and Additional file 1). These structural motifs are listed in Table 2 and illustrated in Figure 4, while first-shell structural patterns that are common to only 2 Mg2+-binding sites are listed in Additional file 2. For the first shell, 4 structural motifs, representing about a fifth (16/77 or 21%) of all Mg2+-binding sites, were discovered. All 4 motifs occur in proteins whose functions are either Mg2+-dependent or whose native co-factors are Mg2+ according to UniProt and/or the literature. Consistent with the above finding that the ‘h’ structure is preferred by the first-shell Mg2+-ligands, it is in the middle of all 4 motifs and the partial motif ‘f(1–2)h’ accounts for half of the Mg2+-proteins with structural motifs. For the second shell, too many residues define the Mg2+-binding site; hence not enough Mg2+-binding sites possess the same second-shell letters and similar interletter spacing. However, 5 partial motifs for the second shell were found: These are \(f(1)lm, kl(0–1)m, d(1–2)ff, d(1)e(1)i(0–5)l, f(1)l(18–25)d\), with an occurrence frequency of 21, 12, 11, 8, and 6%, respectively.

Each of the 4 motifs in Table 2 is found in proteins containing Mg2+-binding domains belonging to the same superfamily. This is evidenced by the fact that proteins with the same Mg2+-structural motif have Mg2+-binding domains belonging to the same superfamily with the same CATH numbers (Table 2), implying structurally homologous domains. For example, all 3 proteins with the f(2)h(126–158)m motif possess in common a Mg2+-binding domain belonging to the fructose-1,6-bisphosphatase, subunit A, domain 1 superfamily (CATH number 3.30.540.10). Likewise, all 5 proteins with the k(26–29)h(1)a motif possess Mg2+-binding domains with the same CATH number, 3.40.50.970. The fact that the motifs...
are found in structurally homologous Mg2+-binding domains further supports the use of the structural alphabet to discover motifs.

The first-shell motifs discovered herein can also help to uncover relationships between proteins with unassigned CATH numbers. For example, 2 of the 3 proteins with the \(e(24–47)h(24)k \) motif (1SJC and 1TKK) possess Mg2+-binding domains pertaining to the enolase superfamily (CATH number 3.20.20.120), whereas the third protein (2AKZ) has not yet been assigned a domain and therefore has no CATH number. Although the n-acylamino acid racemase (1SJC) and gamma enolase (2AKZ) proteins do not share significant sequence homology (only 15.4% identity) and overall structure similarity (protein backbone rmsd = 17.5 Å), they possess similar Mg2+-binding site structures (backbone rmsd of the first-shell letters = 0.5 Å), as shown in Figure 5. In analogy, 3 of the 5 proteins with the \(f(1)h(109–349)b \) motif (1O08, 1WPG, and 2B82) possess Mg2+-binding domains with the same CATH number (3.40.50.1000), whereas the other 2 proteins (1U7P and 2C4N) have not yet been chopped into domains and therefore have not been assigned CATH numbers. The results in Table 2 predict that the Mg2+-dependent phosphatase (1U7P) and NagD (2C4N) proteins are likely to possess Mg2+-binding domains that are structurally homologous to those assigned with the CATH number 3.40.50.1000.

Relation between Mg2+-Structural Motifs and PROSITE Sequence Motifs

To see if any of the Mg2+-proteins containing structural motifs match sequence motifs stored in the PROSITE database [17], the sequences of the proteins listed in Table 2 were scanned for the occurrence of PROSITE sequence motifs. None of the proteins match any PROSITE sequence motifs encompassing residues involved in Mg2+-binding. However, the halotolerance protein hal2 (1KA1) containing the \(f(2)h(126–158)m \) motif matched 2 inositol monophosphatase family signatures (PROSITE PDOC00547) containing conserved metal-binding residues. This supports the \(f(2)h(126–158)m \) motif as a signature of Mg2+-binding sites.

Relation between Mg2+-Structural Motifs and Protein Function

Do any of the structural motifs found for the Mg2+-proteins map to specific protein functions? To answer this question, for each of the Mg2+-proteins found with a structural motif, the functional group of the protein from the
PDB header and enzyme classification (EC) code, if applicable, are listed in Table 2. Note that proteins belonging to the same functional group have the same first EC number. The results in Table 2 show that most of the structural motifs found for the Mg$^{2+}$-proteins map to certain protein functions. For example, proteins with the partial $f(1-2)h$ motif are all hydrolases, catalyzing the hydrolytic cleavage of mostly ester bonds (EC3.1.-.-), except for beta-phosphoglucomutase (1O08), which is an isomerase converting beta-D-glucose 1-phosphate to beta-D-glucose 6-phosphate. Interestingly, although class b acid phosphatase (2B82) and the halotolerance protein hal 2 (1KA1) contain structurally nonhomologous Mg$^{2+}$-binding domains with different CATH numbers, both are phosphoric monoester hydrolases (EC3.1.3.-). Proteins with the $e(24-47)h(24)k$ motif are either lyases and/or isomerases, whereas proteins with the $k(26-29)h(1)a$ motif have even more diverse functions: 3 are oxidoreductases (1POX, 1UMD, 2C3M), one is a lyase (1ZPD) and the other is a transferase (1ITZ). This shows that even if the proteins share structurally homologous domains (CATH number 3.40.50.970) and structurally similar Mg$^{2+}$-binding sites, as represented by the $k(26-29)h(1)a$ motif, they can perform different functions.

Statistical Significance of the Mg$^{2+}$-Structural Motifs

Do the structural motifs found for Mg$^{2+}$-proteins in Table 2 occur in other proteins that do not bind metal ions? To address this question, de Brevern’s databank of protein structures that have been encoded into 1D structural sequences was searched for the occurrence of each of the 4 structural motifs listed in Table 2. Consistent with the Mg$^{2+}$ and Ca$^{2+}$ datasets, proteins in de Brevern’s databank sharing ≥30% sequence identity with ≥2.5-Å resolution X-ray structures were removed. Proteins in de Brevern’s databank whose structures are complexed with metal ions were also removed, yielding a set of 385 non-homologous test proteins. In order to eliminate those matched structural letters that cannot spatially bind Mg$^{2+}$, the maximum $C_{\alpha}-C_{\alpha}$ distance between any pair of Mg$^{2+}$-ligands belonging to proteins of a given structural motif in Table 2 was extracted; this distance is 9.32 Å for the $e(24-47)h(24)k$ motif, 8.32 Å for $f(1)h(109-349)b$, 8.44 Å for $f(2)h(126-158)m$, and 7.86 Å for $k(26-29)h(1)a$. For a given structural motif in Table 2, matched letters in the
test proteins whose C_α-C_α distances exceed the respective maximum distance were eliminated. This resulted in no matches for the $e(24–47)h(24)k$ and $f(2)h(126–158)m$ motifs, whereas 2 proteins (1C3K, 1GPE) contained the $f(1)h(109–349)b$ motif, and another 2 proteins (1A7U, 1JFR) contained the $k(26–29)h(1)a$ motif. A check of the literature confirmed that these 4 proteins (1C3K, 1GPE, 1A7U, 1JFR) do not bind metal ions. This suggests that (i) the 4 Mg$^{2+}$-structural motifs discovered are statistically significant, and (ii) the $e(24–47)h(24)k$ and $f(2)h(126–158)m$ motifs could be used to predict metal-binding sites.

Metal Preference of the Mg$^{2+}$-Structural Motifs

To check the specificity of the 4 structural motifs in Table 2 for Mg$^{2+}$, the same procedure used to represent the Mg$^{2+}$-binding sites in terms of their local structure was repeated for Ca$^{2+}$, which is the metal ion most similar to Mg$^{2+}$. Both Mg$^{2+}$ and Ca$^{2+}$ are closed-shell divalent cations belonging to the same group (IIA) with similar chemical properties: They are both "hard" dication relax to bind directly to "hard" oxygen-containing anions, and are often found to bind in the same protein cavity [18]. Thus, the 3D structure of each of the 177 nonredundant Ca$^{2+}$ proteins was represented by a 16-letter structural alphabet (see Methods), and the 1D structural letter representation of the 230 Ca$^{2+}$-binding sites is listed in Additional file 3.

None of the structural motifs in Table 2 or Additional file 2 were found in 3 or more Ca$^{2+}$-binding sites, and therefore cannot be classified as Ca$^{2+}$-structural motifs according to our definition. The $f(1)h(109–349)b$ motif is found in the Ca$^{2+}$-binding site of the haloacid dehalogenase family (2FI1), which appears to utilize Mg$^{2+}$ as a natural co-factor [19]. Although the $k(26–29)h(1)a$ motif is found in the calcium-binding sites of the transketolase protein (1TRK) and benzoylformate decarboxylase (1Q6Z), the latter is a Mg$^{2+}$-dependent enzyme [20]. The $e(24–47)h(24)k$ and $f(2)h(126–158)m$ motifs did not match any first-shell structural letters of the Ca$^{2+}$-binding sites, indicating that they seem to favor Mg$^{2+}$ over its competitor, Ca$^{2+}$.

Discussion and conclusion

Comparison with Previous Structural Motif Discovery Methods

Assuming that similarity in the local active site structure implies similarity in biological function, 3D patterns/templates of key active sites have been used to suggest the function of a protein whose structure is known. The 3D patterns/templates have been constructed either manually

Table 2: 1st-shell structural motifs in Mg$^{2+}$-proteins

Motif$^\alpha$	PDB code	Mg$^{2+}$-Ligands	CATH numberb	Functional Groupc	EC coded
$e(24–47)h(24)k$	1SJ C	D189, E114, D239	3.20.20.120	Lyasee, Isomerasef	-
	1TK K	D311, E119, D248	3.20.20.120	Isomerasef	-
2AKZ		D344, E392, D217	-	Lyasee	4.2.1.11
$f(1)h(109–349)b$	1IO08	D1008, D1010, D1170	3.40.50.1000	Isomerasef	5.4.2.6
	1U7 P	D111, D112, D123	NYC	Hydrolase	-
1WPG		D351, T153, D703	3.40.50.1000	Hydrolase	3.6.3.8
2B82		D44, D44, D167	3.40.50.1000	Hydrolase	3.1.3.2
2C4N		D9, D11, D201	NYC	Hydrolasef	-
$f(2)h(126–158)m$	1IAI	D142, D145, D294	3.30.540.10	Hydrolase	3.1.3.7
	1NU Y	D1118, D121, E1280	3.30.540.10+	Hydrolase	3.1.3.11
			3.40.190.80		
2BJI		E1096, D1093, D1220	3.30.540.10+	Hydrolasef	3.1.3.25
			3.40.190.80		
$k(26–29)h(1)a$	1lIT Z	D168, N198, E200	3.40.59.770	Transferaseh	2.2.1.1
	1PO X	D447, N474, Q476	3.40.59.770+	Oxidoreductasei	1.2.3.3
			3.40.59.1220		
1UMD		D175, N204, Y206	3.40.59.770	Oxidoreductasei	1.2.4.4
1ZPD		D440, N467, G469	3.40.59.770	Lyasee	4.1.1.1
2C3M		D963, T391, V289	3.40.59.770	Oxidoreductasei	1.2.7.1

$^\alpha$The number in parentheses indicates the number of residues separating the letters corresponding to the Mg$^{2+}$-bound residues. $^\beta$The CATH code of the domain containing the Mg$^{2+}$-ligands; a dash implies that no domain could be assigned to the PDB entry, while NYC means the protein has not yet been chopped. $^\gamma$The functional group from the PDB header. $^\delta$The enzyme class from PDBsum [25]; a dash means no EC code was found. $^\epsilon$Lyases (EC4---) catalyze C-C/O/N and other bond cleavage; e.g., RCOCOOH \rightarrow RCOH + CO$_2$. $^\zeta$Isomerases (EC5---) catalyze geometric changes within a molecule. $^\iota$Hydrolases (EC3---) catalyze hydrolytic bond cleavage: AB + H$_2$O \rightarrow AOH + BH. $^\kappa$Transferases (EC2---) catalyze AB + C \rightarrow A + BC. $^\lambda$Oxidoreductases (EC1---) catalyze oxido-reductions: AH + B \rightarrow A + BH (reduced) and A + O \rightarrow AO (oxidized).
or automatically using various methods, which have been reviewed recently by Watson et al. [21]. Recently, 3D templates in the absence of experimental data have been constructed using the evolutionary trace method to identify evolutionarily important, solvent accessible residues that cluster in the protein structure [22]. Furthermore, structural motifs for the metal-binding sites of 3 distinct metalloenzymes families; viz., DNase 1 homologs, dimetallic phosphatases, and dioxygenases, have been obtained by first identifying physical chemical property-based sequence motifs in homologous protein sequences, and subsequently identifying those motifs whose structures are conserved in members of a family/superfamily [23,24]. However, to the best of our knowledge, 3D patterns of key active sites and recurrent patterns (structural motifs) have not been identified using the structural alphabet to convert 3D structures to the respective 1D letter sequences. Also, systematic studies of the structural preference or conservation of Mg2+-binding sites in non-homologous proteins and Mg2+-specific structural motifs have not been reported.

Advantages of the Structural-Alphabet Based Motif Discovery Approach

This work presents the first application of the structural alphabet approach to define the 3D patterns of metal

Figure 4

The conserved local structures of the 4 Mg2+-structural motifs. (a) $e(24-47)h(24)k$, (b) $f(1)h(109-349)b$, (c) $f(2)h(126-158)m$, and (d) $k(26-29)h(1)a$.

...
active sites and to identify recurrent patterns (structural motifs). The method requires as input only the 3D protein structure to define a 1D structural representation of the respective active site. The structural alphabet-based approach has several advantages: (i) It is efficient at handling many structures as it takes less than a minute on a present-day PC to convert a 3D structure to the corresponding 1D structural sequence. (ii) It requires no sequence comparisons, no parameters or scoring functions and can thus produce consistent structural motifs, whose structures are readily visualized, as illustrated in Figures 4 and 5. (iii) It is general and can be used to define 3D patterns not only in metal-binding sites, but also in enzyme active sites, ligand-binding clefts and interacting regions between proteins and their respective partners. The 3D patterns/motifs discovered could be incorporated in methods to detect metal/ligand-binding sites to improve their prediction accuracy.

Secondary Structure Preference of Mg²⁺-Binding Residues
In this work, the structural alphabet-based approach has been used to reveal the structural preference of Mg²⁺-binding sites. Even though helix-like segments represented by the letter ‘m’ is the most common building block of the Mg²⁺-proteins in the dataset, residues that bind Mg²⁺ disfavor helices, but favor loops. The similarity in the structural preference of the first and second-shell residues supports previous conclusions regarding the relationship between these 2 layers; namely, the structure and properties of the 2nd shell are dictated by those of the 1st layer [14].

Similar Mg²⁺-Binding Site Structures in Dissimilar Protein Sequences
The motif discovery method herein has revealed 4 structural motifs, comprising 21% of the Mg²⁺-binding sites. The 3D structural motifs discovered seems to have more predictive utility in identifying Mg²⁺-binding sites than 1D sequence motifs. A scan of the Mg²⁺-protein sequences in our dataset for the occurrence of sequence motifs stored in the PROSITE [17] database yielded only a single positive match, 1WC1, which contains a PROSITE sequence motif predicting the protein to bind Mg²⁺. However, the ScanProsite results did not identify any of the Mg²⁺ proteins with structural motifs.

Functional Preference of the Mg²⁺-Structural Motifs
The structural motifs discovered generally relate to the biological role of Mg²⁺ and the function of the respective proteins. They capture some essential biochemical and/or evolutionary properties, as proteins found to contain a specific structural motif possess structurally homologous Mg²⁺-binding domains, even though they share no significant sequence homology. Furthermore, the $f(2)h(126$–

Figure 5
The conserved binding site of 2 nonhomologous Mg²⁺-proteins. (a) Cartoon diagram of the metal-binding domain in N-acylamino acid racemase (1SJC). (b) Cartoon diagram of the metal-binding domain in gamma enolase (2AKZ). (c) Superposition of the first-shell structural letters of 1SJC (blue) and 2AKZ (yellow).
158)m motif maps to a specific functional group, namely, hydrolases, indicating the apparent importance of the local Mg\(^{2+}\)-binding site structure for the function of these hydrolases. As the \(f(2)h(126–158)m\) motif was not found in non-metalloproteins and in Ca\(^{2+}\)-binding proteins, the presence of this motif in a novel protein structure may suggest a likely Mg\(^{2+}\)-binding site and the protein function. On the other hand, the other 3 motifs map to more than one functional group, suggesting that the local Mg\(^{2+}\)-binding site structure is not the only determinant of the protein's function.

Why Mg\(^{2+}\)-Specific Structural Motifs are Not Found For Most Mg\(^{2+}\)-Proteins

Out of the 70 nonhomologous Mg\(^{2+}\)-proteins, only 16 have first-shell structural motifs, while the rest do not seem to possess any metal-binding site structural motifs—why? One reason might be that some Mg\(^{2+}\)-structural motifs may have been missed out in this work. As the dataset employed only proteins with Mg\(^{2+}\)-bound structures (see Database subsection below), some PDB structures complexed with heavier metal ions such as Mn\(^{2+}\) may in fact correspond to native Mg\(^{2+}\)-binding site(s); moreover, not all structures of proteins whose native co-factor is Mg\(^{2+}\) have been solved. A second reason is that for native Mg\(^{2+}\)-binding sites that can accommodate other metal ions such as Ca\(^{2+}\) or Mn\(^{2+}\), the binding-site structure need not be conserved in order to recognize a specific metal co-factor. A third reason is that although Mg\(^{2+}\)-occupied the binding site in the 3D structure, it is not the native co-factor. Although all 70 proteins are bound to Mg\(^{2+}\) in our dataset, according to PDBSUM [25] and from the UniProt annotation and references therein, 14 proteins do not employ Mg\(^{2+}\) as the native co-factor, while for 6 proteins, the native metal-cofactor is apparently not known (see Additional file 1). For example, calbindin d9K is a vitamin D-dependent calcium-binding protein, but in the 1IG5 structure, the native cofactor Ca\(^{2+}\) has been replaced by Mg\(^{2+}\). In Mg\(^{2+}\)-proteins with multiple Mg\(^{2+}\)-binding sites, one or more sites may be non-native, as they have been artificially induced by the high Mg\(^{2+}\) concentration used during crystallization. In these cases, the local structure of the non-native metal-binding site would not be expected to share any similarity with that of a native Mg\(^{2+}\)-binding site, where the conserved local structure (as in the \(f(2)h(126–158)m\) motif) plays an important role in the protein's function. The absence of structural motifs for non-native Mg\(^{2+}\)-binding sites indirectly supports our strategy.

Methods

Database

A set of 70 nonredundant Mg\(^{2+}\) proteins was created by searching the PDB [16] for structures with resolution < 2.5-Å containing Mg\(^{2+}\) with <30% sequence identity. Structures with residues missing in the middle of the sequence were excluded because such gaps in the structure could alter the spacing in the binding-site motifs (see below). Structures with Mg\(^{2+}\) bound to <3 protein ligands were also excluded, as 2-residue motifs cannot be considered specific enough for any practical use. The resulting Mg\(^{2+}\) dataset comprise 77 binding sites in 70 proteins. Note that although most Mg\(^{2+}\)-proteins have only one binding site, some proteins have more than one Mg\(^{2+}\)-binding sites (PDB entries 1MXG, 1NUY, 1VCL, 1WL6, 2BII, and 2BVC). A set of nonredundant Ca\(^{2+}\)-proteins was created following the same procedure used to create the Mg\(^{2+}\) dataset. This resulted in 230 Ca\(^{2+}\)-binding sites in 177 proteins. The PDB entries, EC code, and amino acid residues bound to the metal ion in the 77 Mg\(^{2+}\) and 230 Ca\(^{2+}\) sites are given in Additional files 1 and 3, respectively.

The Structural Alphabet

Each metalloprotein structure was encoded into its 1D structural sequence according to the original structural alphabet defined by de Brevnov and co-workers [6]. We refer the reader to the original work [6] for details of how this alphabet was devised, and briefly outline the procedure here. The backbone of each protein from a nonredundant protein structure database was represented by consecutive 5-residue segments, each described by a vector of 8 backbone dihedral angles \(V(\psi_{n-2}, \phi_{n-1}, \psi_{n}, \phi_{n+1}, \psi_{n+2}, \phi_{n+3}, \psi_{n+4}, \phi_{n+5})\). The dissimilarity between 2 vectors \(V_1\) and \(V_2\) of dihedral angles is measured by the root-mean-square deviations of the dihedral angle values (rmsda), which is defined as the Euclidean distance among the 4 links:

\[
rmsda(V_1, V_2) = \sqrt{\sum_{i=1}^{4} (\psi_{i}(V_1) - \psi_{i}(V_2))^2} + (\phi_{i+1}(V_1) - \phi_{i+1}(V_2))^2
\]

Using an unsupervised cluster analyzer based on the above rmsda of the segments, 16 letters (also called protein blocks) were identified, which in turn comprise the structural ‘alphabet’.

Converting 3D Structure to 1D Structural Alphabet

The 3D structures of the 70 Mg\(^{2+}\) and 177 Ca\(^{2+}\) proteins were converted into strings of structural letters using the program PBE published in ref. 9. For a given \(n\)-residue protein, \(n-4\) letter assignments were obtained by scanning the protein sequence using a 5-residue sliding window. The structure of each 5-residue segment is compared with that of each of the 16 letters and the letter that has the closest structure (as measured by the rmsda) to the 5-residue segment is assigned to the middle residue of that segment. This process is illustrated in Figure 6: The first letter is assigned to the 3rd residue, Val, representing the first 5-
residue segment. Its structure is closest to that of the structural letter 'd', therefore Val 3 is assigned 'd'. Note that no letters can be assigned to the first 2 and last 2 residues of each protein.

Definition of 1st and 2nd-Shell Metal Ligands

Analyses of high-resolution X-ray structures with crystallographic R factor ≤ 0.065 of small metal complexes in the Cambridge Structural Database [26] have shown that the mean 1st-shell Mg-O\textsubscript{water}, Mg-O\textsubscript{carboxylate}, and Mg-O\textsubscript{alcohol} distances do not exceed 2.11 Å, while the Ca-O\textsubscript{water}, Ca-O\textsubscript{carboxylate}, Ca-O\textsubscript{alcohol}, and Ca-N\textsubscript{imidazole} bond distances do not exceed 2.55 Å [27]. To account for the lower resolution of the PDB structures, a slightly larger cutoff was used to locate the 1st-shell amino acid ligands. Thus, the Mg2+ and Ca2+ ligands were defined as residues with a donor atom within 2.5 Å and 2.7 Å from the metal ion, respectively. The heavy atoms of the metal-bound amino acid residues were then selected as centers to search for the 2nd-shell protein ligands using a hydrogen-bonding cutoff of 3.5 Å [28]. Note that water molecules in the first and second shells were not identified, as they were not used to define a structural motif.

Definition of 1st and 2nd-Shell Structural Representation/Pattern

Since the 3D structure of each metalloprotein has been converted into the respective 1D letter sequence as described above, the letters that correspond to the metal-bound amino acid residues yielded a structural representation of the first-shell, as shown in the last columns of the 3D protein backbone into a 1D structural alphabet representation. The first 2 and the last 2 residues are assigned 'Z', meaning a letter cannot be assigned at these residues. The first valid assignment is 'd', at Val 3 and spanning residues 1 to 5. The next is assigned to Asp 4 and spans residues 2 to 6.

Definition of Structural Motifs

In previous work [29], all values of k between 2 and 20 were used to define a structural motif, where k is the number of first-shell structural patterns with the same structural letters and similar interletter spacing. Here, $k \geq 3$ was used to define a structural motif. Thus, if 3 or more proteins possess first-shell structural patterns with the same structural letters and similar interletter spacing, these proteins are assumed to share a common structural motif. For example, transketolase (1ITZ), pyruvate oxidase (1POX), 2-oxo-acid dehydrogenase alpha subunit (1UMD), pyruvate decarboxylase (1ZPD), and pyruvateferredoxin oxidoreductase (2C3M) share the first-shell structural pattern, $k(26–29)h(1)a$, which thus defines a structural motif.

Authors’ contributions

MD carried out all the calculations, including writing programs, and drafted the manuscript. CL conceived of the study, participated in its design and analysis/interpretation of data, and writing/revising the manuscript. Both authors have read and approved the final manuscript.
Acknowledgements

We thank anonymous reviewers for constructive comments/suggestions. We are grateful to Steven Wu, Michael J. B. Lin, and Backy Chen for assistance in the statistical analyses, and Leon Li, Todor Dudev, and Gopi Kuppuraj for literature assistance. This work was supported by NSC contract no. NSC 94-2113-M-001-018 to CL.

References

1. Cowan JA: Biological Chemistry of Magnesium. New York, VCH, 1995.
2. Nordlund P, Sjoberg BM, Eklund H: Three-dimensional structure of the free radical protein of ribonucleotide reductase. Nature 1990, 345:593.
3. Dudev T, Cowan JA, Lim C: Competitive Binding in Magnesium Coordination Chemistry: Water versus Ligands of Biological Interest. J Am Chem Soc 1999, 121:7665-7673.
4. Cowan JA: Metal activation of enzymes in nucleic acid biochemistry. Chem Rev 1998, 98:1067-1087.
5. Chotia C,Lesk AM: The relation between the divergence of sequence and structure in proteins. EMBO J 1986, 5:823-826.
6. de Brevern AG,Etchebest C, Hazout S: Bayesian probabilistic approach for predicting backbone structures in terms of protein blocks. Proteins Struct Funct Genet 2000, 41:271-287.
7. de Brevern AG: New assessment of a structural alphabet. In Silico Biol 2005, 5:26.
8. Unger R, Sussman JL: The importance of short structural motifs in protein structure analysis. J Comput Aided Mol Des 1993, 7:457-472.
9. Tyagi M, Sharma P,Swamy CS, Cadet F, Srinivasan N, de Brevern AG, Offmann B: Protein block expert (PBE): a web-based protein structure analysis server using a structural alphabet. Nucleic Acids Res 2006, 34:W119-W123.
10. Tyagi M, Gown VS, Srinivasan N, de Brevern AG, Offmann B: A substitution matrix for structural alphabet based on structural alignment of homologous proteins and its applications. Proteins: Structure, Function & Bioinformatics 2006, 65(1):32-39.
11. Bystroff C, Baker D: Prediction of local structure in proteins using a library of sequence-structure motifs. J Mol Biol 1998, 281(3):565-577.
12. Kolodny R, Koehl P,Guibas L, Levitt M: Small libraries of protein fragments model native structures accurately. J Mol Biol 2002, 323:297-307.
13. Fourrier L, Benros C, de Brevern AG: Use of a structural alphabet for analysis of short loops connecting repetitive structures. BMC Bioinformatics 2004, 5:58.
14. Dudev T, Lim YL, Dudev M, Lim C: First-Second Shell Interactions in Metal Binding Sites in Proteins: A PDB Survey and DFT/CDM Calculations. J Am Chem Soc 2003, 125:3168-3180.
15. Petrovich M,Brand NJ, Krust A,Chambon P: A human retinoid acid receptor which belongs to the family of nuclear receptors. Nature 1987, 330:444-450.
16. Grishin NV, Battistuz T, Bhat TN, Blum WF, Bourne PE, Burkhardt K,lype L, Jain S, Fagan P,Marvin J, Padilla D, Ravichandran V, Schneider B, Thamk N, Weissig H,Westbrook JD, Zardecki C: The Protein Data Bank. Acta Crystallogr D 2002, 58:899-907.
17. Sigrist CJ, Cerutti L, Hulo N, Gattiker A, Falquet L, Pagli M, Bairoch A, Bucher P: PROSITE: a documented database using patterns and profiles as motif descriptors. Brief Bioinform 2002, 3:265-274.
18. Dudev T, Lim C: Principles Governing Mg, Ca, and Zn Binding and Selectivity in Proteins. Chem Rev 2003, 103:773-787.
19. Lahiri SD, Zhang Q, Darnaway-Mariano D, Allen KN: Diversification of function in the haloacid dehalogenase enzyme superfamily: The role of the cap domain in hydrolytic phosphorussing bondcarbon bond cleavage. Bioinorg Chem 2006, 34:394-409.
20. Iding H, Dunnwald T, Greiner L, Lisse A, Muller M, Siegert P, Grottzinger J, Demir AS, Pohl M: Benzoylformate decarboxylase from Pseudomonas putida as stable catalyst for the synthesis of chiral 2-hydroxy ketones. Chemistry-A Eur J 2000, 6:1483-1495.
21. Watson JD, Laskowski RA, Thornton JM: Predicting protein function from sequence and structural data. Curr Op Struct Biol 2005, 15:275-281.
22. Kristensson DM, Chen BY, Fofanov YW, Ward RM, Lisevsky AM, Kimmel M, Kavraki L, Lightarge O: Recurrent use of evolutionary importance for functional annotation of proteins based on local structural similarity. J Mol Biol 2006, 362:367-377.
23. Mathura VS,Schein CH,Braun W: Identifying property based sequence motifs in protein families and superfamilies: application to DNase-I related endonucleases. Proteins: Structure, Function and Bioinformatics 2003, 19:1381-1390.
24. Schein CH, Zhou B, Oezguen N, Mathura VS, Braun M: Moleculare-based definition of the architecture and specificity of metal-binding sites. Proteins: Structure, Function and Bioinformatics 2005, 58:200-210.
25. Laskowski RA, PDBsum: summaries and analyses of PDB structures. Nucleic Acids Res 2001, 29(1):221-222.
26. Allen FH: The Cambridge structural database: a quarter of a million crystal structures and rising. Acta Cryst 2002, 58:380-388.
27. Harding HM: The geometry of metal-ligand interactions relevant to proteins. Acta Cryst 1999, D55:1432-1443.
28. McDonald IK, Thornton JM: Satisfying hydrogen bonding potential in proteins. J Mol Biol 1994, 238(5):777-793.
29. Jonassen I, Eidehammer I, Corniklin D, Taylor WR: Structure motif discovery and mining the PDB. Bioinformatics 2001, 18:362-367.