The Plant Propagation Algorithm for the Optimal Operation of Directional Over-Current Relays in Electrical Engineering

Muhammad Sulaiman1a, Muhammad Sulaman1b, Abdelwahed Hamdi2, Zubair Hussain1c

RECEIVED ON 16.01.2019, ACCEPTED ON 03.05.2019

ABSTRACT

In modern and large scale power distribution topologies, directional relays play an important role in the operation of an electrical system. These relays must be coordinated optimally so that their overall operating time is reduced to a minimum. They are sensor protection devices for the power systems and must be coordinated properly. The present work uses a metaheuristic optimization technique known as the Plant Propagation Algorithm (PPA) in order to suggest improved solutions for the optimization problem of coordination of directional overcurrent relays (DOCRs). We have obtained comparatively better solutions for the overall operating times taken by relays fitted on important positions in the system. Our findings are useful in isolating the faulty lines efficiently and in keeping the continuity of power supply. The difference in response times taken in coordination between primary relays and corresponding backup relays is minimized. The output of our experiments is compared with various algorithms and classical optimization techniques, which are found in the literature. Moreover, graphical analyses are presented for each problem to further clarify the results.

KEYWORDS: Nature-Inspired Algorithms, Constraint Optimization, Sensors, Engineering Optimization Problems, Directional over-current relays, Plant Propagation Algorithm.

1. INTRODUCTION

Power systems consist of different transmission systems [1], which are interconnected to other sub-transmission systems. Ideal protection for such transmission systems can be achieved by placing sensing devices like DOCRs in appropriate positions. Furthermore, these devices must be good in terms of cost and technicality. The function of DOCRs is to separate the faulty lines in the event of any fault in the system. They serve as logical units and they trip the line if a fault occurs in the neighborhood of relays fitted on both ends of the line. The coordination of these devices is always a challenging optimization problem for engineers and scientists. These problems are about to determine the specific relays to be operated for a fault in that location. This selection of a set of relays is based on the topology of the network, characteristic of relays and protection procedures.

The problem of DOCRs involves two types of decision variables: one for Plug Setting (PS) and the other for Time Dial Setting (TDS). By finding

1 Department of Mathematics, Abdul Wali Khan University Mardan, KPK, Pakistan
Email: asulaiman513@yahoo.co.uk, (Corresponding author), bkhsulaman@gmail.com, czubair.bsmaths@gmail.com
2 Department of Mathematics, Statistics & Physics, Qatar University, Qatar.
Email: abhamdi@qu.edu.qa

This is an open access article published by Mehran University of Engineering and Technology, Jamshoro under CC BY 4.0 International License.
suitable values for these variables, one can guarantee the efficient and proper coordination of the DOCRs to maintain power supply through healthy lines and avoid disruption.

The classical approach to solve the optimal coordination of DOCRs is the hit and trials approach [2]. The main drawback of classical approaches was slow convergence and hence an increased number of iterations to reach the best solution. In the beginning, Urdeneta et al. [3] implemented the optimization theory to solve this problem. They modeled the situation as a non-linear, non-convex objective function subject to several design constraints. They suggested a technique to consider the dynamic variations in the network's structure for the coordination of DOCRs using linear programming. A linear programming interior point algorithm is proposed for the solution of the problem of coordinating directional overcurrent relays in interconnected power systems considering definite time backup relaying [2, 3].

Yazdaninejadi et al. [4] presented a non-linear programming approach that is tackled based on genetic algorithm (GA) to solve the problem of minimizing the overall operating time of primary and backup relays. Moreover, many researchers have suggested optimization techniques to get a better solution of DOCRs problem, like, real coded genetic algorithm [5], Teaching Learning-Based Optimization (TLBO) algorithm [6], a multiple embedded crossover PSO (Particle Swarm Optimization) [7], opposition based chaotic differential evolution algorithm [8], interior point method [9], PSO-TVAC (Time Variant Acceleration Coefficients) based on Series Compensation [10], modified electromagnetic field optimization algorithm [11], Hybridised SA-SOS (Simulated Annealing based Symbiotic Organism Search) algorithm [12] and improved firefly algorithm [13].

In this paper, we have successfully implemented PPA [14-24], for the solution of standard IEEE (3, 4, and 6 bus) test systems. The two types of decision variables were PS and TDS and the sum of operating times taken by all main relays which were needed to operate for clarity of fault(s) in their respective sections. They were estimated along with the minimization objective function bounded by several constraints. These constraints were further classified as selectivity constraints and bounds on each term of the objectives.

The rest of this paper is organized such that, Section 2 contains the problem complexity and our suggested optimization technique, Section 3 presents the problem formulation and a detailed description of three case studies (IEEE 3, 4 and 6 bus models) of DOCRs problem. Section 4 reviews the basic Plant Propagation Algorithm. In Section 5, results and discussion are given. Subsequently, Section 6 concludes this paper by summarizing the achievements and future challenges of this study.

1. PROBLEM COMPLEXITY AND SUGGESTED ALGORITHM

The coordination of relays is a highly non-linear and complex optimization problem subject to various constraints, with the objective to minimize the overall operating time of each primary relay. The optimal relay coordination of DOCRs leads to a multimodal/non-convex constrained optimization problem with complex search space. The problem gets more difficult to solve, due to nonlinearity, as the number of relays increases [12, 13, 25, 26].

PPA is chosen to solve the above-mentioned problem of DOCRs. PPA was earlier implemented to design engineering problems such as gearshift problem, spring design problem and welded beam problem [14-24]. These problems are related to design engineering and the results obtained by PPA were good as compared to other state-of-the-art. So efforts were made to check further efficiency of PPA in solving the problem of DOCRs.

2. PROBLEM FORMULATION

The time taken by a relay, denoted by T, is a non-linear function of the variables PS and TDS. The mathematical formulation of operating time is given in equation (1)

$$ T = \frac{(a)(TDS)}{(1/PS(CT_{pri_rating}))^{b \cdot c}} $$

(1)
In this equation, PS and TDS are unknown decision variables. a, b and c are based on the experiments and are predefined values for the behavior of the system. These values are fixed as 0.14, 0.02 and 1 respectively. The current transformer CT and the number of turns it has, defines the value of CT_{pri_rating}. To bear the current, CT performs the role of reducing the level of the current for relays involved. Each relay is associated with each CT and thus CT performs the role of reducing the level of the current for relays involved. The fault current I is known value in the problem. The fault current I is continuously read by the measuring tools and it is a system-dependent value and is pre-assigned to it.

The number of constraints on the system is according to the number of lines involved in the system. These details are given in Table 4 for the problems considered in this paper. Real power systems may be made up of bigger sizes involving several types of DOCRs [2-13].

3.1 Objective Function

The objective involved in the problem of coordination of DOCRs, by implementing a suitable optimization technique, involves the minimization of total operating times subject to constraints on the decision variables. Those relays which are first to be operated are called primary relays. The fault, which is closed to a relay, is called pri_close fault while a fault away from the relay on the other side of the line is called pri_far fault. Thus, the objective function is a sum of operating times taken by all primary relays involved whether the time is taken to clear a pri_close fault or pri_far fault. Mathematically, the objective function is presented in equation (2).

$$\text{min} \sum_{i=1}^{N} T_i(TDS^i, PS^i)_{pri_close} + \sum_{j=1}^{N2} T_j(TDS^j, PS^j)_{pri_far}$$ \hspace{1cm} (2)

where

$$T_i(TDS^i, PS^i)_{pri_close} = \frac{0.14 \times TDS^i}{\left(\frac{\mu^i}{PS^i \times \nu^i}\right)^{0.02}} - 1$$ \hspace{1cm} (3)

$$T_j(TDS^j, PS^j)_{pri_far} = \frac{0.14 \times TDS^j}{\left(\frac{\phi^j}{PS^j \times \psi^j}\right)^{0.02}} - 1$$ \hspace{1cm} (4)

where

N_1 = total number of relays involved in clearing pri_close fault,

N_2 = total number of relays involved in clearing pri_far fault,

$T(TDS, PS)_{pri_close} = \text{total time taken by primary relays to } pri_close \text{ fault,}$

$T(TDS, PS)_{pri_far} = \text{total time taken by primary relays to } pri_far \text{ fault,}$

where $\alpha^i, \beta^i, \eta^i$ and ξ^i are the constants given in Tables (5-6) and [3].

3.2 Constraints

1. Limits on decision variables TDSs:
 $$0.05 \leq PS^i \leq 1.1, \text{ where } i \text{ ranges from 1 to } N_i.$$
2. Limits on decision variables PSs:
 $$1.25 \leq PS^i \leq 1.5, \text{ where } i \text{ ranges from 1 to } N_i.$$
3. Limit on primary operation times:
 $$0.05 \leq T_i(TDS^i, PS^i)_{pri_close} \leq 1.0$$
 $$0.05 \leq T_i(TDS^i, PS^i)_{pri_far} \leq 1.0$$
4. Pair of relays and the selection constraints:
 $$T_{pri_close} + CTI \leq 0$$

where

T_{pri_close} is operating time of primary relay and

T_{backup} is operating time of backup relay and CTI is coordinating time interval.

3.3 Problem-1: The IEEE 3 Bus Model

For the coordination problem of the IEEE 3-bus model, the value of each of N_1 and N_2 is six (equal to the number of relays or twice the lines). Accordingly, there are 12 decision variables (two for each relay) in this problem i.e. TDS^i to TDS^6 and PS^1 to PS^6. The value of CTI for Problem-1 is 0.3. Figure 1 shows the 3-bus model.

Mathematical form of the objective function for a 3-bus model is as follows:

$$\text{min} \sum_{i=1}^{6} T_i(TDS^i, PS^i)_{pri_close} + \sum_{j=1}^{6} T_j(TDS^j, PS^j)_{pri_far}$$ \hspace{1cm} (8)
3.4 Problem-2: The IEEE 4 Bus Model:

In the optimal coordination of 4-bus model, values of both type of variables \(N_1 \) and \(N_2 \) is taken as 8, which is double of total lines involved or same as the number of relays installed in the system. This model is illustrated in Fig.2. Furthermore, this problem is of 16 dimensions and thus involves 16 design variables. As discussed earlier, these two types of variables are named as TDS\(^1\)- TDS\(^8\) and PS\(^1\)- PS\(^8\). CTI=0.3 for Problem-2.

The mathematical form for a 4-bus model is as follows.

\[
\text{min} \sum_{i=1}^{8} T_i(TDS_i, PS_i)_{pri, close} + \sum_{j=1}^{9} T_j(TDS_j, PS_j)_{pri, far}
\]

3.5 Problem-3: The IEEE 6 Bus Model:

In the optimal coordination of 6-bus model, values of both type of variables \(N_1 \) and \(N_2 \) is taken as 14, which is double of total lines involved or same as the number of relays installed in the system. This model is illustrated in Fig.3. Furthermore, this problem is of 28 dimensions and thus involves 28 design variables. As discussed earlier, these two types of variables are named as TDS\(^1\)- TDS\(^14\) and PS\(^1\)- PS\(^14\). CTI=0.2 for Problem-3 6-bus model. For normal operation of a 6-bus model, a total of 48 selection constraints are imposed on the relays in case of detecting near-end/ far-end faults in the transmission lines. Moreover, ten constraints are relaxed based on the observations on [3].

\[
\text{min} \sum_{i=1}^{14} T_i(TDS_i, PS_i)_{pri, close} + \sum_{j=1}^{10} T_j(TDS_j, PS_j)_{pri, far}
\]

3. THE PLANT PROPAGATION ALGORITHM (PPA)

PPA is a Nature-inspired metaheuristic which simulates the way strawberry plants propagate to occupy the space in which they happen to grow. It is a population/ multi-solutions based technique. Unlike the single solution-based techniques like Simulated
The Plant Propagation Algorithm for the Optimal Operation of Directional Over-Current Relays in Electrical Engineering

Annealing (SA), it is initialized from a randomly generated population of solutions generated from a normal distribution. Two aspects of a metaheuristic, exploration, and exploitation [14-24], are very important to be balanced. Exploitation means to visit the neighborhood of a current solution very well. On the other hand, exploration is to introduce diversity in the population with solutions generated from approximately all over the domain space.

A mother plant P_k is in position X_k in n dimensional space i.e. $X_k = [x_{1k}, x_{2k}, \ldots, x_{nk}]$. Let N_{pop} denotes the number of candidate plants in the initial population. PPA is furnished in detail as in Algorithm1.

Require: objective $f(X), X \in R^n$
Generate a population $P = \{p_i , i = 1, \ldots, m\}$
$g \leftarrow 1$
for $g \leftarrow 1$ to g_{max} do
compute $N_{\text{pop}} = f(p_i), \forall p_i \in P$
sort P in descending order of N
create new population \emptyset
for each $p_i , i = 1, \ldots, m$ do {best m only}
$r_i \leftarrow$ set of runners where both the size of the set and the distance for each runner (individually) is proportional to the fitness N_i
$\emptyset \leftarrow \emptyset \cup r_i$ {append to population; death occurs by omission above}
end for
$P \leftarrow \emptyset$ {new population}
end for
return P, the population of solutions.

ALGORITHM 1: PSEUDOCODE OF PLANT PROPAGATION ALGORITHM [26].

Two main steps followed by the strawberry algorithm are:
i) Plants in a position with enough food will send out many short runners.
ii) Those plants, which are situated in a position with poor conditions, will send few long runners.

It is obvious, that exploitation is implemented by using the idea of short runners while exploration of search space is done by sending a few long runners within the search space.

The main parameters involved in PPA are the size of population N_{pop}, maximum allowed generations g_{max} and maximum number of runners generated by a single plant n_{max}. The last condition of maximum runners by a plant is used as stopping criteria. The objective values are defined by the positions of plants $X_k, k = \{1, \ldots, N_{\text{pop}}\}$. The original version of PPA is denoted by a normalized function N_i. The normalization function is used as fitness criteria. The number of plants is calculated as in equation (11). The length of a runner based on the normalized function is calculated as in equation (12). After all parent plants in the population have generated their allocated runners, new child plants are evaluated and the population is sorted in ascending/ descending according to their fitness value. In this way, the poor plants with lower growth are truncated from the population. The number of runners allocated to a given parent solution is proportional to its fitness as in equation (11),

$$n_i^a = n_{\text{max}} \times N_i^a, \alpha \in (0,1)$$

Every solution X_i generates at least one runner and the length/perturbation added to each such runner is inversely proportional to its growth as in equation (12),

$$dx_{ij}^t = 2(1 – N_i) (\alpha – 0.5), \text{ for } j = 1, \ldots, n,$$

where n is the problem dimension. Having calculated dx_i, the extent to which the runner will reach, the search equation (13) that finds the next neighborhood to explore is

$$y_{ij} = x_{ij} + (b_j – a_j) \times dx_{ij}, \text{ for } j = 1, \ldots, n.$$
The Plant Propagation Algorithm for the Optimal Operation of Directional Over-Current Relays in Electrical Engineering

whole model of 3-bus and a complete setup of 12 design variables (TDS1-TDS6 and PS1-PS6) is depicted in Fig. 1. The 4-bus model has two generators, four lines and eight DOCRs fixed on these lines. A diagram showing this whole model of 4-bus and complete setup of 16 design variables (TDS1-TDS8 and PS1-PS8) is depicted in Fig. 2. The 6-bus model has three generators, seven lines, and fourteen DOCRs fixed on these lines. A diagram showing this whole model of 6-bus and a complete setup of 28 design variables (TDS1-TDS14 and PS1-PS14) is depicted in Fig. 3. The best solutions found in literature, as in Tables (1-3), by standard algorithms are presented along with the best values obtained by PPA, are compared with Differential Evolution (DE), Modified Differential Evolution-1 (MDE-1), Modified Differential Evolution-2 (MDE-2), Modified Differential Evolution-3 (MDE-3), Modified Differential Evolution-4 (MDE-4) and Modified Differential Evolution-5 (MDE-5) [8]. It is obvious that all the techniques have produced either similar or approximately the same objective values. On the other hand, PPA solved the problem feasibly and gave better minimized objective values as in Figures 4-9. It is interesting to note that with increasing the complexity, PPA produced better results as compared to the 3-bus and 4-bus cases.

TABLE 1: BEST DECISION VARIABLES, OBJECTIVE VALUES, AND NUMBER OF FUNCTION EVALUATION OF PROBLEM-1 3-BUS MODEL BY PPA

Variables	PPA	MDE-1	MDE-2	MDE-3	MDE-4	MDE-5	DE
TDS^1	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050
TDS^2	0.2984	0.2178	0.1979	0.1988	0.1976	0.1976	0.2194
TDS^3	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050
TDS^4	0.1679	0.2090	0.2094	0.2090	0.2090	0.2090	0.2135
TDS^5	0.1525	0.1812	0.1847	0.1812	0.1812	0.1812	0.1949
TDS^6	0.1549	0.1807	0.1827	0.1807	0.1806	0.1806	0.1953
PS^1	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500
PS^2	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000
PS^3	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500
PS^4	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000
PS^5	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500
PS^6	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000
O.F.V	4.7802	4.8070	4.7873	4.7822	4.7806	4.7806	4.8422
N.F.E	3250	72350	73350	97550	69270	38250	78360

5. CONCLUSIONS

Optimization problems occurring in various engineering fields often have a complex mathematical model, which requires efficient algorithms to obtain a reasonably good solution (if not the global best solution). In the present paper, we have chosen three
test problems in electrical engineering. Specifically, coordination of directional over-current relays, IEEE (3, 4 and 6 bus) models are solved with a metaheuristic known as the Plant Propagation algorithm (PPA). The problem of DOCRs is highly non-linear with several constraint variables. The results obtained are compared with other state-of-the-art algorithms. The quoted results are presented along with the results of PPA. It is obvious that PPA outperformed the other techniques and can be potentially applied to higher bus problems in the future. The results are compared with six algorithms DE, MDE-1, MDE-2, MDE-3, MDE-4 and MDE-5 available in the literature. It is observed with the help of numerical results and graphical solutions that the Plant Propagation Algorithm (PPA) is quite efficient for solving the complex optimization models that arise in Electrical Engineering problems. Moreover, PPA is gaining momentum, as the problem was getting worse in terms of dimensions and complexity. In the future, we are intending to implement PPA for higher bus models.

Variables	PPA	MDE-1	MDE-2	MDE-3	MDE-4	MDE-5	DE
TDS¹	0.050	0.05000	0.05000	0.05000	0.05000	0.05000	0.05000
TDS²	0.2142	0.21210	0.21230	0.21210	0.21210	0.21210	0.22480
TDS³	0.050	0.05000	0.05000	0.05000	0.05000	0.05000	0.05000
TDS⁴	0.1514	0.15150	0.15150	0.15150	0.15150	0.15150	0.15150
TDS⁵	0.1251	0.12640	0.12640	0.12620	0.12620	0.12620	0.12640
TDS⁶	0.050	0.05000	0.05000	0.05000	0.05000	0.05000	0.05000
TDS⁷	0.1330	0.13380	0.13710	0.13380	0.13370	0.13370	0.13370
TDS⁸	0.050	0.05000	0.05000	0.05000	0.05000	0.05000	0.05000
PS¹	1.2801	0.12730	0.12730	0.12730	0.12500	0.12500	0.127340
PS²	1.4127	0.49980	0.49590	0.50000	0.50000	0.50000	0.50000
PS³	1.2505	0.25000	0.25000	0.25000	0.25000	0.25000	0.25000
PS⁴	1.4962	0.49960	0.49970	0.49950	0.50000	0.50000	0.49970
PS⁵	0.1500	0.50000	0.49970	0.50000	0.50000	0.50000	0.49970
PS⁶	1.2506	0.25000	0.25000	0.25000	0.25000	0.25000	0.25000
PS⁷	0.1500	0.49970	0.42740	0.49950	0.49980	0.49980	0.50000
PS⁸	0.1500	0.49970	0.12500	0.25000	0.25000	0.25000	0.25000
O.F.V	3.6549	3.6694	3.6734	3.6692	3.6674	3.6696	3.6774
N.F.E	35330	43400	67200	99700	55100	35330	95400
FIG. 4: BEST OBJECTIVE VALUES OBTAINED BY PPA ARE COMPARED WITH DE AND ITS VARIANTS IN SOLVING THE 3-BUS PROBLEM OF DOCRS.

TABLE 3: BEST DECISION VARIABLES, OBJECTIVES VALUES, AND NUMBER OF FUNCTION EVALUATION OF PROBLEM 3 6-BUS PROBLEM BY PPA.

Variables	PPA	MDE-1	MDE-2	MDE-3	MDE-4	MDE-5	DE
TDS1	00.1164	00.11710	00.11490	00.10340	00.11440	00.10240	00.1173
TDS2	00.1691	00.18660	00.20370	00.18630	00.18640	00.18630	00.2082
TDS3	00.0581	00.09650	00.09820	00.09610	00.09470	00.09460	00.0997
TDS4	00.1136	00.11190	00.10360	00.11250	00.10600	00.10670	00.1125
TDS5	00.0500	00.05000	00.05000	00.05000	00.05000	00.05000	00.0500
TDS6	00.0500	00.05000	00.05000	00.05000	00.05000	00.05000	00.0580
TDS7	00.0500	00.05000	00.05000	00.05000	00.05000	00.05000	00.0500
TDS8	00.0505	00.05000	00.05000	00.05000	00.05000	00.05000	00.0500
TDS9	00.0500	00.05000	00.05000	00.05000	00.05000	00.05000	00.0500
TDS10	00.0500	00.07060	00.05750	00.07030	00.07010	00.05630	00.0719
TDS11	00.0656	00.06490	00.06670	00.06490	00.06490	00.06500	00.0649
TDS12	00.0522	00.06170	00.05660	00.05090	00.05090	00.05530	00.0617
TDS13	00.0573	00.05000	00.06350	00.05000	00.05000	00.05000	00.0500
TDS14	00.0824	00.08600	00.08590	00.08570	00.07090	00.07090	00.0856
PS1	01.3032	01.25150	01.26350	01.49950	01.26020	01.49910	01.2505
PS2	01.4973	01.49590	01.29930	01.49990	01.49870	01.49990	01.2500
PS3	01.2776	01.25250	01.26220	01.25750	01.27610	01.27710	01.2512
PS4	01.2617	01.26320	01.43220	01.25080	01.49920	01.36500	01.2515
PS5	01.2500	01.25000	01.25000	01.25000	01.25000	01.25000	01.2500

Mehran University Research Journal of Engineering and Technology, Vol. 39, No. 2, April 2020 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
The Plant Propagation Algorithm for the Optimal Operation of Directional Over-Current Relays in Electrical Engineering

Table 1

Algorithm	01.3554	01.38220	01.38850	01.38100	01.38180	01.2500
PS6						
PS7	01.2501	01.2500	01.25080	01.2500	01.2500	01.2500
PS8	01.2833	01.25010	01.2500	01.2500	01.25050	01.2500
PS9	01.2517	01.2500	01.25140	01.2500	01.2500	01.2502
PS10	01.5000	01.25010	01.49700	01.25210	01.2500	01.49960
PS11	01.5000	01.49990	01.47590	01.49980	01.49990	01.4998
PS12	01.4821	01.25290	01.4700	01.49970	01.5000	01.39310
PS13	01.2500	01.46640	01.27280	01.46470	01.46150	01.46130
PS14	1.3036	01.25000	0.126240	01.25400	01.49790	0.149740
O.F.E	9.9912	10.5067	10.6238	10.4370	10.3812	10.3514
N.F.E	18180	72960	18180	101580	100860	106200

Figures

FIG. 5: NUMBER OF TOTAL FUNCTION EVALUATIONS TAKEN BY PPA, DE AND ITS VARIANTS IN SOLVING THE 3-BUS PROBLEM OF DOCRS.

FIG. 6: BEST OBJECTIVE VALUES OBTAINED BY PPA ARE COMPARED DE AND ITS VARIANTS IN SOLVING THE 4-BUS PROBLEM OF DOCRS.
The Plant Propagation Algorithm for the Optimal Operation of Directional Over-Current Relays in Electrical Engineering

Mehran University Research Journal of Engineering and Technology, Vol. 39, No. 2, April 2020 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

FIG. 7: NUMBER OF TOTAL FUNCTION EVALUATIONS TAKEN BY PPA, DE AND ITS VARIANTS IN SOLVING THE 4-BUS PROBLEM OF DOCRS.

FIG. 8: BEST OBJECTIVE VALUES OBTAINED BY PPA ARE COMPARED WITH DE AND ITS VARIANTS IN SOLVING THE 6-BUS PROBLEM OF DOCRS.

FIG. 9: NUMBER OF TOTAL FUNCTION EVALUATIONS TAKEN BY PPA, DE AND ITS VARIANTS IN SOLVING THE 6-BUS PROBLEM OF DOCRS.

CONFLICT OF INTEREST

The authors declare that none of them have any competing interests in the manuscript.

ACKNOWLEDGMENT

This research was supported by the Department of Mathematics, Abdul Wali Khan University Mardan, Pakistan.
The Plant Propagation Algorithm for the Optimal Operation of Directional Over-Current Relays in Electrical Engineering

NOMENCLATURE

Symbol	Description
a, b, c	Constants according to IEEE standard
CT	Current Transformer
CT_{pri-rating}	Primary rating of current transformer
CTI	Coordination time interval
DE	Differential Evolution
DOCR	Directional over-current relays
MDE	Modified Differential Evolution
NFE	Number of function evaluations
OFV	Objective function value
PS	Plug settings
T_{backup}	Operating time of backup relay
T_{pri_close}	The relay operation time to clear near end fault
T_{pri_far}	The relay operation time in case of far end fault
T_{primary}	Operating time of primary relay
TDS	Time dial settings
NFE	Number of function evaluation

REFERENCES:

[1] Shaikh S.H., Malik T.N., “Short term economic emission power scheduling of hydrothermal energy systems using improved water cycle algorithm”, Mehran University Research Journal of Engineering and Technology, Vol. 36, No. 2, pp. 255, 2017.

[2] Urdaneta A.J., Perez L.G., Gomez J.F., Feijoo, B. and Gonzalez, M., "Presolve analysis and interior point solutions of the linear programming coordination problem of directional overcurrent relays", International Journal of Electrical Power and Energy Systems, Vol. 23, No. 8, pp. 819-825, 2001.

[3] Urdaneta A.J., Perez L.G., and Restrepo H., "Optimal Coordination of Directional Overcurrent Relays Considering Dynamic Changes in the Network Topology", IEEE Transactions on Power Delivery, Vol. 12, No. 4, pp. 1458-1464, 1997.

[4] Yazdaniejad A., Nazarpour D., and Golshannavaz S., "Dual-Setting Directional Over-Current Relays: An Optimal Coordination in Multiple Source Meshed Distribution Networks", International Journal of Electrical Power and Energy Systems, Vol. 86, pp. 163-176, 2017.

[5] Thakur M., and Kumar A., "Optimal coordination of directional over current relays using a modified real coded genetic algorithm: A comparative study", International Journal of Electrical Power and Energy Systems, Vol. 82, pp. 484-495, 2016.

[6] Singh, M., Panigrahi B.K., and Abhyankar A.R., "Optimal coordination of directional over-current relays using Teaching Learning-Based Optimization (TLBO) algorithm", International Journal of Electrical Power and Energy Systems, Vol. 50, pp. 33-41, 2013.

[7] Farzinfar M., Jazaeri M., and Razavi F., "A new approach for optimal coordination of distance and directional over-current relays using multiple embedded crossover PSO", International Journal of Electrical Power and Energy Systems, Vol. 61, pp. 620-628, 2014.

[8] Chelliah T.R., Thangaraj R., Allamsetty S., and Pant, M., "Coordination of directional overcurrent relays using opposition based chaotic differential evolution algorithm", International Journal of Electrical Power and Energy Systems, Vol. 55, pp. 341-350, 2014.

[9] Mancer N., Mahdad B., and Srairi K., "Optimal Coordination of Directional Overcurrent Relays Using PSO-TVAC Considering Series Compensation",
Advances in Electrical and Electronic Engineering, Vol. 13, No 2, pp. 96-106, 2015.

[11] Mancer N., Mahdad B., and Srairi K., "Optimal Coordination of Directional Overcurrent Relays Using PSO-TVAC Considering Series Compensation", Advances in Electrical and Electronic Engineering, Vol. 13, No 2, pp. 96-106, 2015.

[12] Boucekara H., Zellagui M., and Abido M.A., "Optimal coordination of directional overcurrent relays using a modified electromagnetic field optimization algorithm", Applied Soft Computing, Vol. 54, pp. 267-283, 2017.

[13] Sulaiman M., Ahmad A., Khan A. and Muhammad S., "Hybridized Symbiotic Organism Search Algorithm for the Optimal Operation of Directional Overcurrent Relays", Complexity, Vol. 2018, pp. 11, 2018.

[14] Sulaiman M., Waseem W., Muhammad S., and Khan A., “Improved Solutions for the Optimal Coordination of DOCRs Using Firefly Algorithm”, Complexity, Vol. 2018, pp. 15, 2018.

[15] Selamoğlu B.I., Salhi A., and Sulaiman M., "Strip Algorithms as an Efficient Way to Initialise Population-Based Metaheuristics", In Recent Developments in Metaheuristics, Springer, pp. 319-331, 2018.

[16] Salhi, A. and E.S. Fraga, "Nature-inspired optimisation approaches and the new plant propagation algorithm", In: Proceedings of the The International Conference on Numerical Analysis and Optimization (ICeMATH’11), Yogyakarta, Indonesia, 2011.

[17] Merrikh-Bayat F., "The runner-root algorithm: a metaheuristic for solving unimodal and multimodal optimization problems inspired by runners and roots of plants in nature", Applied Soft Computing, Vol. 33, pp. 292-303, 2015.

[18] Sulaiman M., Salhi A., and Fraga E.S., "The plant propagation algorithm: modifications and implementation", Science International (Lahore), Volume 28, No 1, pp. 201-209, 2015.

[19] Sulaiman M., Salhi A., Khan A., Muhammad S. and Khan W., "On the Theoretical Analysis of the Plant Propagation Algorithms", Mathematical Problems in Engineering, Vol. 2018, pp. 8, 2018.

[20] Sulaiman M., Salhi A., Selamoglu B.I. and Kirikchi, O.B., "A plant propagation algorithm for constrained engineering optimisation problems", Mathematical Problems in Engineering, Vol. 2014, pp. 10, 2014.

[21] Bozorg-Haddad O., Solgi M. and Loaiciga H.A., Meta-heuristic and evolutionary algorithms for engineering optimization, John Wiley & Sons, Vol. 294, pp. 223-230, 2017.

[22] Sulaiman M. and Salhi A., "A hybridisation of runner-based and seed-based plant propagation algorithms", Nature-Inspired Computation in Engineering, Springer, Vol. 2016, pp. 195-215, 2016.

[23] Sulaiman M. and Salhi A., "A seed-based plant propagation algorithm: the feeding station model", The Scientific World Journal, Vol. 2015, pp. 19, 2015.

[24] Selamoğlu B.I., Salhi A. “The Plant Propagation Algorithm for Discrete
The Plant Propagation Algorithm for the Optimal Operation of Directional Over-Current Relays in Electrical Engineering

[26] Hamdi A. and Mahey P., "Separable diagonalized multiplier method for decomposing nonlinear programs", Computational and Applied Mathematics, Vol. 19, No 1, pp. 1-29, 2000.

[27] Hamdi, A., "Two-level primal–dual proximal decomposition technique to solve large scale optimization problems", Applied Mathematics and Computation, Vol. 160, No 3, pp. 921-938, 2005.

APPENDICES

TABLE 4: PARAMETER SETTINGS OF THREE CASE STUDIES IN DOCRs PROBLEMS.

Items	IEEE 3-bus	IEEE 4-bus	IEEE 6-bus
No. of Lines	3	4	7
No. of DOCRs	6	8	14
No. of Decision Variables	12	16	28
No. of Selectivity Constraints	8	9	38
No. of Restricted Constraints	24	32	104

Table 5: VALUES FOR CURRENT TRANSFORMER AND CURRENT.

$T_{pri,close}$	$T_{pri,far}$	T_{pri}	I^i_k	$CT_{pri, rating}$	
TDS^1	9.46	2.06	100.63	2.06	
TDS^2	26.91	2.06	TDS^1	14.08	2.06
TDS^3	8.81	2.23	TDS^4	136.23	2.23
TDS^4	37.68	2.23	TDS^3	12.07	2.23
TDS^5	17.93	0.8	TDS^6	19.2	0.8
TDS^6	14.35	0.8	TDS^7	25.9	0.8
TABLE 6: CURRENT TRANSFORMER RATING AND DIFFERENT TIME SETTINGS OF BACKUP AND PRIMARY RELAYS.

T_{backup}^l	I_k^l	$CT_{pri, rating}^l$	$T_{primary}^l$	I_k^l	$CT_{pri, rating}^l$
m			n		
5	14.08	0.8	1	14.08	2.06
6	12.07	0.8	3	12.07	2.23
4	25.9	2.23	5	25.9	0.8
2	14.35	0.8	6	14.35	2.06
5	9.46	0.8	1	9.46	2.06
6	8.81	0.8	3	8.81	2.23
2	19.2	2.06	6	19.2	0.8
4	17.93	2.23	5	17.93	0.8