Conditioning equine athletes on water treadmills significantly improves peak oxygen consumption

Persephone Greco-Otto,1 Stephanie Bond,1 Raymond Sides,2 Warwick Bayly,2 Renaud Leguillette

Abstract
Equine water treadmills (WT) were initially designed for rehabilitation of musculoskeletal injuries, but are also commonly used for conditioning sport horses, however the effects are not well documented. The purpose of this study was to test the effect of an 18-day WT conditioning programme on peak oxygen consumption (VO₂peak). Nine unfit Thoroughbreds were used in a randomised controlled trial. Six horses worked daily for 18 days in stifle-height water (WT group), while 3 control horses worked without water (dry treadmill group (DT)). Preconditioning and postconditioning maximal exercise racetrack tests (800 m) were performed using a portable ergospirometry system. Measured outcomes were VO₂, tidal volume, minute ventilation, breathing frequency, heart rate, blood lactate and instantaneous and average speed. The workload as assessed by VO₂ was 21.7 per cent of preconditioning VO₂peak values for WT horses. VO₂peak on the racetrack increased by 16.1 per cent from preconditioning to postconditioning in the WT horses (P=0.03), but did not change in the DT horses. Therefore, exercising horses in high water heights may improve conditioning.

Introduction
High-intensity exercise (‘hard’ to ‘maximal’ intensities: 60 per cent to 100 per cent VO₂max) is important in improving fitness in horses. However, traditional training programmes with strenuous exercise over ground may cause excessive strain and overloading on skeletal support structures, resulting in lower limb injuries in horses. It has been shown in humans and dogs that buoyancy during water treadmill (WT) training reduces ground reaction forces (GRFs), likely reducing the pressure on joints. The high degree of resistance created by water increases the workload without an increase in concussive forces. Previous studies with humans suggest that WT training can achieve the same submaximal and maximal physiological responses and cardiorespiratory fitness as land treadmill training.

WTs are gaining popularity in the equine world as an aid in equine rehabilitation and conditioning. However, there is a lack of controlled research findings regarding the effects of exercising horses in water. Unlike traditional treadmills, workload in a WT is a function of water height and, to a lesser extent, treadmill speed. This is because the presence and height of water increases resistance and influences gait biomechanics. With increasing water height, the horse adopts an increased flight arc resulting in decreased stride frequency and increased stride length. Previously conducted work has shown that water at the height of the stifle significantly increases oxygen consumption (VO₂) and heart rate (HR) when compared with water at the height of the mid-cannon bone, or no water at all (dry treadmill). Previous studies investigated the effects of a mild four-week and a more strenuous eight-week WT conditioning protocol on horses. However, neither of these protocols was able to elucidate significant cardiocirculatory (V₂00 (the speed at which HR=200 bpm) and haematocrit) or muscular property (gluteal and superficial digital flexor) changes.

In order to better understand the effects of WT conditioning, consideration of a wider range of indicators of fitness may be warranted. HR, whole blood lactate concentration (LA) and VO₂ are typically
measured to assess athletic fitness. $\dot{V}O_2$ is considered to be the single best measure of skeletal muscle aerobic capacity and cardiovascular fitness. Its periodic measurement serves as a reference for assessing changes in fitness, with horses with higher $\dot{V}O_2\text{max}$ values having a greater aerobic capacity.
periods of 20 minutes total). The WT is housed indoors in a climate-controlled room. Water temperature was a median of 14.0°C (13.0–15.0).

Racetrack fitness testing

All horses underwent an incremental exercise test on a racetrack before and postcompletion of the treadmill training period. The pretraining field fitness test occurred one week before the beginning of the training period. The post-training field fitness test occurred two days after the completion of the training period. All horses were tested on the same day. The first step consisted of 300 m at ~4 m/s, which was followed by two 300 m steps at ~6 and 8 m/s, respectively, and culminated in an 800 m gallop at the fastest speed that the horse was capable of. The jockey was a high-quality rider that was able to illicit maximal responses from the horses. The same jockey was used throughout. The approximate speed at each step was determined using Global Positioning System (GPS) technology, and constantly directly communicated to the jockey via mobile phone. The track was groomed with mechanical equipment on each morning that testing occurred.

Measured outcomes

Oxygen consumption and ventilation

A portable ergospirometer (Department of Veterinary Clinical Sciences, Pullman, USA) was used, as has been previously described. The mask was installed on the horses and connected to a gas analysis and data acquisition system in a backpack on the jockey immediately before the maximal intensity test. VO₂ was also measured on the WT once during conditioning on day 9. The same ergospirometry system was used, with the exception that a full facemask was placed over the horse’s face (no bit and bridle). Both masks were padded to minimise dead space.

Calibration of the mask system (flowmeter and gas analyser) was conducted before each measurement as per the manufacturer’s instructions. Data were obtained using customised software provided with the ergospirometry system. Breath-by-breath recordings were analysed for the final 30 seconds of each exercise condition. Ambient temperature, barometric pressure, humidity, jockey weight (jockey + saddleweight = 88.0 kg) and horse weight were collected and included in calculations of VO₂peak and ventilatory volumes. VO₂peak was considered to be achieved when VO₂ plateaued and maximum heart rate was reached. VO₂peak was averaged over six breaths at this point, as per the manufacturers guidelines.

Heart rate measurements

HR was monitored continuously during the field fitness tests using a telemetric ECG device and software (Engel Engineering Service, Heusenstamm, Germany). Average HR was calculated for the final 30 seconds at each exercise speed.

Speed

Speed was measured using GPS data from the ECG. Instantaneous maximum speed was determined based on the sampling rate (one second) of the GPS, which meant that speed was reported at one-second intervals. Speed data were also averaged over the entire maximal intensity field test (800 m), as well as over the final 30 seconds.

Blood lactate measurements

Venous blood samples (2 ml) were collected in vacutainer tubes containing potassium oxalate 5, 60 and 80 minutes postmaximal exercise. LA concentration was immediately measured using a handheld analyser (EKF Diagnostics, Penarth, Wales) according to the manufacturer’s recommendations.

Statistical analysis

The data were not normally distributed. Mann-Whitney U tests were used to compare pretraining WT with pretraining DT and post-training WT with post-training DT data for all parameters (VO₂, respiratory frequency (RF), tidal volume (Vₜ), minute ventilation (Vₑ), blood lactate (5, 60, 80 minutes post), HRₘₚ, HR recovery and speed (maximum, average speed, final 30 seconds)). Wilcoxon matched-pairs rank-sum statistical tests were used to compare preconditioning versus postconditioning values for all parameters mentioned above. Statistical significance was set at P=0.05 for all tests. All values are reported as median and IQR to accommodate non-normal data.

Results

No horses were excluded from this study following enrolment (n=9), based on the exclusion criteria. Environmental conditions did not differ significantly between testing days: ambient temperature 15.0°C (13.5–19.5); barometric pressure 664.0 mm Hg (660.5–665.0 mm Hg); humidity 30 per cent (28–46). Racetrack conditions ranged between ‘good’ and ‘fast’ based on North American track standards.

Effect of water treadmill conditioning on peak oxygen consumption

All horses (n=9) were of a similar fitness level before conditioning (VO₂ of all horses preconditioning: 103.1 ml/(kg.min) (87.2–110.2)) (P=0.71). Postconditioning, VO₂ was significantly greater in the WT horses than the DT horses (P=0.02). VO₂ was significantly increased by an average of 16.1 per cent in the WT horses (n=6) (preconditioning: 96.3 ml/(kg.min) (87.5–113.1), postconditioning: 121.0 ml/(kg.min) (101.7–141.7)) (P=0.03) (table 2, figure 1a). In comparison, VO₂ did not significantly change, and
Table 2 Preconditioning and postconditioning physiological responses of Thoroughbreds during a maximal intensity field test after an 18-day WT or DT training protocol

	WT preconditioning	WT postconditioning	DT preconditioning	DT postconditioning
n=6			n=3	
\(\dot{V}O_2\) peak	96.3 (87.5–113.1)	121.0 (101.7–141.7)*	103.1 (92.8–106.7)	84.2 (76.8–86.3)†
(ml/(kg.min))				
RF (breaths/minute)	134.4 (132.0–141.0)	143.4 (129.8–149.2)	128.8 (125.5–136.2)	140.8 (135.4–146.0)
\(V_t\) (litre)	12.1 (11.9–13.3)	12.2 (12.0–13.6)	12.8 (11.2–13.7)	12.8 (11.6–13.7)
\(\dot{V}E\) (l/min)	1659.5 (1529.3–1852.0)	1763.0 (1730.5–1851.0)	1567.0 (1466.5–1725.0)	1797.5 (1691.3–1845.3)
HR_max (bpm)	218 (211–225)	212 (205–217)	212 (210–215)	209 (207–211)
5 minutes lactate	19.0 (17.3–20.8)	19.6 (18.0–20.4)	13.3 (11.5–16.0)	16.3 (13.8–16.7)
(mmol/l)				
60 minutes lactate	11.8 (11.2–12.9)	12.4 (11.6–12.7)	7.5 (7.0–9.0)	9.1 (8.2–9.5)
(mmol/l)				
80 minutes lactate	8.5 (7.9–9.1)	9.6 (8.7–10.3)	4.6 (4.2–5.0)	6.1 (5.8–6.6)

Physiological responses during a maximal test of nine Thoroughbreds before and after 18 days of conditioning (WT training with water at the height of the stifle, 1.45 m/s; DT training without water, 1.45 m/s); 5, 60 and 80 minutes lactate=postexercise lactate. All values are presented as median (IQR).

*Values that are significantly different from WT preconditioning.
†Values that are significantly different from WT postconditioning.

Even showed a tendency to decrease in the DT horses (n=3) (preconditioning: 103.1 ml/(kg.min) (92.8–106.7), postconditioning: 84.2 ml/(kg.min) (76.8–86.3)) (table 2, figure 1b).

Workload of water treadmill exercise

Workload, as assessed by oxygen consumption, was significantly greater with a high water height compared with no water (P=0.04). With water at the height of the stifle and at a speed of 1.45 m/s, WT horses had a median \(\dot{V}O_2\) of 22.0 ml/(kg.min) (18.0–24.9), representing 21.7 per cent of their preconditioning \(\dot{V}O_2\) peak. While walking at the same speed without water, DT horses had a median \(\dot{V}O_2\) of 14.6 ml/(kg.min) (14.5–15.6), representing 15.5 per cent of their pre-conditioning \(\dot{V}O_2\) peak.

Ventilation during the maximal intensity field test

There was no difference in any measured ventilatory parameters (RF, \(V_t\), \(\dot{V}E\)) at baseline before conditioning or postconditioning between the two groups (WT and DT).

Respiratory frequency

Maximum RF did not change between preconditioning and postconditioning in both the WT and DT horses. The median of all horses’ RF values was 138.1 breaths/min (129.1–143.4) (table 2).

Tidal volume

Tidal volume did not change between preconditioning and postconditioning in both the WT and DT horses. The median of all horses’ \(V_t\) values was 12.6 litres (11.9–13.9) (table 2).
Minute ventilation
Minute ventilation did not change between preconditioning and postconditioning in both the WT and DT horses. The median of all horses’ \dot{V}_E values was 1741.0 l/min (1567.5–1879.8) (table 2).

Heart rate during maximal intensity field test
Baseline preconditioning and postconditioning HR_{max} values did not differ between the two groups (WT and DT) (table 2). Neither WT nor DT training affected postconditioning HR_{max} values (table 2). The median of all horses’ HR_{max} was 212 bpm (208–218).

HR recovery time (time needed to reach 50 per cent of HR_{max}) was unchanged by conditioning for both groups (353 seconds (265–445)).

Speed during maximal intensity field test
Preconditioning instantaneous maximal speeds were higher in the DT group than the WT group ($P=0.02$). Instantaneous maximal speeds did not change with either type of training (WT or DT). The instantaneous maximal speed achieved by WT horses was 16.0 m/s (15.7–17.0) pretraining and 17.1 m/s (16.3–17.3) post-training. The DT horses’ instantaneous maximum speed was 16.9 m/s (16.5–17.1) pre-training and 17.5 m/s (17.5–17.8) post-training.

To assess endurance, average speeds were also analysed. Average speed over the entire maximal intensity field test (800 m) increased by 17.4 per cent in the WT horses from 8.7 m/s (8.2–9.0) preconditioning to 10.5 m/s (9.7–10.8) postconditioning ($P=0.03$) (figure 2a). Elapsed time over the test (800 m) decreased from an average of 92 seconds preconditioning, to an average of 76 seconds postconditioning in the WT horses, but did not change in the DT horses. The average speed over the final bout of exercise (final 30 seconds before crossing the finish line) also increased by 12.1 per cent in the WT horses from 8.0 m/s (6.8–8.3) to 9.1 m/s (9.0–9.6) ($P=0.03$) (figure 2c). Average speed and final 30 seconds speed did not change in the DT horses (figure 2b and d).

Figure 2 Average speeds over an entire maximal intensity test (a, b) and over the final 30 seconds of the test (c, d) in two groups of horses preconditioning and postconditioning (a and c following 18 days of water treadmill (WT) training; b and d following 18 days of dry treadmill (DT) training). Asterisks (*) denote significant differences.
Lactate postmaximal intensity field test
Preconditioning and postconditioning LA concentrations 5, 60 and 80 minutes postexercise were the same for the two groups (table 2). LA levels were not affected by WT or DT training (table 2). Median LA concentrations for all horses, including preconditioning and postconditioning, were as follows: 5 minutes postexercise—17.9 mmol/L (16.5–20.1), 60 minutes postexercise—10.9 mmol/L (9.4–12.4) and 80 minutes postexercise—7.9 mmol/L (6.1–9.3).

Discussion
While equine WT conditioning is offered by many facilities, the effects of this exercise on cardiorespiratory parameters have not been well documented. The authors found that 18 days of WT conditioning significantly increased VO₂peak. While this WT training protocol did not increase the instantaneous maximum speed reached by the horses on the racetrack, it did improve their endurance, as seen by the maintenance of higher speeds during the duration of the gallop (increased average speed over entire test, increased average speed over the final 30 seconds).

Effect of water treadmill conditioning on peak oxygen consumption and ventilation
The authors were able to reliably measure oxygen consumption (VO₂ and VO₂peak), as well as ventilatory parameters (RF, Ve, V̇E) both during a maximal intensity field test and during WT training. Recently, the Cosmed K4b² system and Equimask were used to compare VO₂ measurements during incremental tests in Standardbred trotters on the track and treadmill. However, this system was found to restrict breathing due to resistance at high flow rates which may have caused premature fatigue in the horses. Due to lower resistance of the mask systems used in the current study, horses were able to perform to the best of their abilities.

Previous work has focused on the effect of traditional treadmill training on VO₂max of Thoroughbreds. Evans and Rose observed a 23 per cent increase in VO₂max after a seven-week protocol (4.0–8.3 m/s, 3–6° incline). Similarly, after a nine-week conditioning programme (6° incline; combination of light, aerobic and interval training), VO₂max increased by 25 per cent in another group of Thoroughbreds. In comparison, the WT conditioning protocol the authors used resulted in a 16.1 per cent increase in VO₂peak.

There are important differences between VO₂peak and VO₂max. VO₂peak is a measured parameter and uses a supramaximal intensity exercise of a long enough duration to reach steady state without specific speed requirements. On the other hand, VO₂max is a calculated parameter and necessitates the performance of a standardised exercise during steps of incremental intensity, which requires a tight control of the galloping speed. In the present study the testing was done on a racetrack, where, contrary to high-speed treadmill experiments, it is difficult to accurately control the speed imposed to the horses; a VO₂peak protocol was therefore implemented to report the effects of conditioning using a WT. Increases in VO₂peak might be detected because an exercise test is harder, of different duration or conducted under different ambient conditions. The existence of such factors make it impossible to attribute increases in VO₂peak to improved cardiovascular fitness alone.

Traditional treadmill training has been found to improve VO₂max through cardiac rather than respiratory adaptations. Previous studies have found no change in Ve following training, and noted that the change in VO₂max can likely be attributed to cardiovascular and haematological adaptations. In this study, cardiac output was not measured, as this is difficult to do in the field, especially on client-owned horses.

Increases in VO₂max in humans can occur through a change in the breathing strategy, where RF is decreased and V̇E is increased, effectively reducing the work of breathing. Similar to the findings of Art and Lekeux, maximum RF did not change in the present study, likely due to the locomotor-respiratory coupling that is present in Thoroughbreds at high speeds. It has previously been shown that ventilation is not affected by training in horses, so the authors would not expect to see a change in Ve or V̇E.

The non-significant trend to decrease VO₂peak in the DT horses was possibly the result of reduced exercise compared with pre-experiment conditions. Before baseline measurements, horses had been turned out in herds in large fields where, despite a lack of formal exercise, horses likely self-exercised. In comparison, for the duration of the study, horses were housed in much smaller paddocks and stall where their primary form of exercise was the treadmill. For the DT horses, the workload was very light, as reflected by previously reported HRs on the treadmill.

Workload of water treadmill exercise
While the mask used was designed for measurements of high intensity in mind, satisfactory measurements were obtained during the low intensities of WT training during this study. Despite variability in breathing patterns, there were sufficient sequences of breaths that were entrained with locomotion to allow accurate analysis.

While working in water at the height of the stifle, horses had VO₂ values slightly higher than what the authors previously reported under similar conditions. Working at 21.7 per cent of VO₂peak is of low intensity and is not adequate to replace many forms of submaximal and maximal training (ie, gallop work). However, this study proves that these conditions are in fact sufficient to induce significant increases in VO₂peak. Additionally, research on humans has
indicated that WTs result in greater increases in lean muscle mass, compared with traditional treadmills. Although not established in horses, it is understood that the presence and height of water reduces the vertical ground reaction forces in dogs and humans, while encouraging increased range of motion through the back and joints. This indicates that WTs may have protective effects while improving cardiorespiratory fitness.

Heart rate

Previous work has indicated that HR max of horses does not change with training and the results for both groups are consistent with this. All horses had HR max values that were lower than previously described in Thoroughbreds, but were within the range suggested by Betros and others for middle-aged Standardbreds (213±3 bpm). Previous work on the WT with water at the height of the stifle at 1.39 m/s resulted in peak HR values of 69 bpm (65–78), similar to HR values of horses walking at 1.7 m/s (60–80 bpm).

HR recovery time did not change with either form of training. However, this may be more indicative of stress rather than fitness. Following the gallop, horses were led back to the barn where there were other horses, had equipment and tack removed and had blood drawn, as well as other forms of normal activity in a busy barn. As such, variation in recovery times may be due to varying levels of stress.

Speed

While horses consistently achieved the same maximal speeds preconditioning and postconditioning, WT training resulted in the maintenance of higher speeds across the duration of the maximal intensity test, with greater average finishing speeds (in the last 30 seconds of the maximal test). Although not measured in the current study, it is possible that average finishing speeds improved after WT training due to increased strength of propulsive muscles and improved postural stability. Depending on track surface and race distance, it is accepted in horse racing that five to six lengths—one second. Given the decrease in average time over the course of the sprint, this would result in an increase of 80–96 lengths over 800 m, which is a vast improvement.

Lactate

In this study, conditioning had no apparent effect on LA concentrations in either group. Five-minute postexercise LA values were similar to those previously reported (16.32±4.81 mmol/L) following a racetrack test (speed >11 m/s, time ≤180 seconds), however LAs may take up to 10 minutes to peak. Within 60 minutes, LA concentrations were approaching 50 percent of their peak value. This finding is in contrast to previous reports on the rate of postexercise disappearance of lactate in plasma in response to maximal exercise. Whereas, plasma LA concentrations usually decrease to 50 per cent of their peak postexercise value within 60 minutes of completing exercise, the rate of decrease of LAs is considerably slower. This is not surprising and is likely explained by the active movement of LA from plasma into erythrocytes postexercise in order to maintain as good a LA diffusion gradient as possible from skeletal muscle to plasma; that is, clearance of LA from plasma is partly due to its movement into erythrocytes which in turn hinders the clearance of LA from those cells. Additionally, the rate of LA clearance may have been reduced by a passive recovery (in stalls) rather than an active recovery (walking).

Conclusions

WT training under the conditions previously studied is considered to be submaximal exercise. However, despite the relatively low-intensity nature of WT exercises, a protocol employing a high water height was able to significantly increase VO2peak and endurance in Thoroughbreds. Therefore, the inclusion of WT protocols in the training programmes of athletic horses may have a beneficial conditioning effect.

Acknowledgements

The authors would like to thank the staff of Coulee Equine and Bar None Ranches for their assistance, especially the input of Katie Imler. The authors would also like to thank the owners who loaned their horses for this study.

Contributors

PG-O, RS, RB and RL collected the data. PG-O, SB, RS, WB and RL collected the data. PG-O and RL performed statistical analysis. PG-O drafted the manuscript with help from SB, RS, WB and RL. All authors read and approved the final manuscript.

Funding

This study was supported by the University of Calgary Veterinary Medicine, Clinical Research Fund.

Competing interests

None declared.

Ethics approval

This study was approved by the University of Calgary Veterinary Sciences Animal Care Committee.

Open access

This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, an indication of whether changes were made, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

© British Veterinary Association 2019. Re-use permitted under CC BY-NC. No commercial re-use. Published by BMJ.

References

1. Pollock M, Gaesser G, Butcher J, et al. American College of sports medicine position stand. Medical Science Sports exercise 1998;30:975–91.
2. Thorpe CT, Clegg PD, Birch HL. A review of tendon injury: why is the equine superficial digital flexor tendon most at risk? Equine Vet J 2010;42:174–80.
3. Greene NP, Lambert BS, Greene ES, et al. Comparative efficacy of water and land treadmill training for overweight or obese adults. Med Sci Sports Exerc 2009;41:1806–15.
4. Levine D, Marcellin-Little DJ, Mills DL, et al. Effects of partial immersion in water on vertical ground reaction forces and weight distribution in dogs. Am J Vet Res 2010;71:1413–6.
5. Chauvet A, Laclair J, Elliott DA, et al. Incorporation of exercise, using an underwater treadmill, and active client education into a weight management program for obese dogs. Can Vet J 2011;52:491–6.
6. Martin D, Nankervis K. Equine exercise physiology. 1st ed. Wiley-Blackwell, 2002.
7. Wyatt FB, Milam S, Manske RC, et al. The effects of aquatic and traditional exercise programs on persons with knee osteoarthritis. J Strength Cond Res 2001;15:337–40.
8. Silvers WM, Rutledge ER, Dolny DG. Peak cardiorespiratory responses during aquatic and land treadmill exercise. Medicine & Science in Sports & Exercise 2007;39:969–75.
9. Nikolai AL, Novotny BA, Bohren CL, et al. Cardiovascular and metabolic responses to water aerobics exercise in middle-aged and older adults. Journal of Physical Activity Health 2009;6:333–8.

VET RECORD |
10 Rahmann AE, Brauer SG, Nitz JC. A specific inpatient aquatic physiotherapy program improves strength after total hip or knee replacement surgery: a randomized controlled trial. Arch Phys Med Rehabil 2009;90:745–55.

11 Brubaker P, Ozemek C, Gonzalez A, et al. Cardiorespiratory responses during underwater and land treadmill exercise in college athletes. Journal of the American Veterinary Medical Association 2011;235:345–54.

12 Tranquille CA, Nankervis KJ, Walker VA, et al. Current knowledge of equine water treadmill exercise: what can we learn from human and canine studies? Journal of Equine Veterinary Science 2017;50:76–83.

13 Greco-Ott O, Bond S, Sides R, et al. Workload of horses on a water treadmill: effect of speed and water height on oxygen consumption and cardiorespiratory parameters. BMC Vet Res 2017;13:1–9.

14 Scott R, Nankervis K, Stringer C, et al. The effect of water height on stride frequency, stride length and heart rate during water treadmill exercise. Equine Vet J 2010;42:662–4.

15 Borgia LA, Valberg SJ, Essem-Gustavsson B. Differences in the metabolic properties of gluteus medius and superficial digital flexor muscles and the effect of water treadmill training in the horse. Equine Vet J 2010;42:665–70.

16 Firshman AM, Borgia LA, Valberg SJ. Effects of training at a walk on conventional and underwater treadmills on fiber properties and metabolic responses of superficial digital flexor and gluteal muscles to high-speed exercise in horses. Am J Vet Res 2015;76:1058–65.

17 Gouvea SM, Staempfli H, McCutcheon LJ, et al. Comparison of aerobic capacity between racing standardbred horses. J Appl Physiol 1995;78:1447–51.

18 Evans DL. Physiology of equine performance and associated tests of function. Equine Vet J 2007;39:373–83.

19 van Eck E, Volton D-M, Serteyn D, et al. Evaluation of oxygen consumption during field exercise tests in standardbred trotters. Equine and Comparative Exercise Physiology 2007;4:43–9.

20 Sides RH, Kirkpatrick R, Renner E, et al. Validation of masks for determination of VO2 max in horses exercising at high intensity. Equine Vet J 2018;50:91–97.

21 Evans DL, Rose RJ. Cardiovascular and respiratory responses to submaximal exercise training in the thoroughbred horse. Pflugers Arch 1988;411:316–21.

22 Art T, Lekeux P. Training-induced modifications in cardiorespiratory and ventilatory measurements in thoroughbred horses. Equine Vet J 1993;25:532–6.

23 Tzankoff SP, Robinson S, Pyke FS, et al. Physiological adjustments to work in older men as affected by physical training. J Appl Physiol 1973;33:346–50.

24 Rasmussen B, Klausen K, Clausen JP, et al. Pulmonary ventilation, blood gases, and blood pH after training of the arms or the legs. J Appl Physiol 1975;38:250–6.

25 Art T, Lekeux P. Ventilatory and arterial blood gas tension adjustments to strenuous exercise in standardbreds. Am J Vet Res 1995;56:1332–7.