Strong decays of the $1P$ and $2D$ doubly charmed states

Li-Ye Xiao1,2,*, Qi-Fang Li3,4†, and Shi-Lin Zhu1,2,5‡

1) School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
2) Center of High Energy Physics, Peking University, Beijing 100871, China
3) Department of Physics, Hunan Normal University, and Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Changsha 410081, China
4) Synergetic Innovation Center for Quantum Effects and Applications (SICQEA), Hunan Normal University, Changsha 410081, China
5) Collaborative Innovation Center of Quantum Matter, Beijing 100871, China

We perform a systematical investigation of the strong decay properties of the low-lying $1P$- and $2D$-wave doubly charmed baryons with the 3P_0 quark pair creation model. The main predictions include: (i) in the Ξ_{cc} and Ω_{cc} family, the $1P$ ρ mode excitations with $J^P = 1/2^-$ and $3/2^-$ should be the fairly narrow states. (ii) For the $1P$ λ mode excitations, $|^2P_{1/2}\rangle$ and $|^4P_{3/2}\rangle$ have a width of $\Gamma \sim 150$ MeV, and mainly decay into the $J^P = 3/2^+$ ground state. Meanwhile, $|^2P_{3/2}\rangle$ and $|^4P_{5/2}\rangle$ are the narrow states with a width of $\Gamma \sim 40$ MeV, and mainly decay into the ground state with $J^P = 1/2^+$. (iii) The $2D_{\rho\rho}$ states mainly decay via emitting a heavy-light meson if their masses are above the threshold of $\Lambda_c D$ or $\Xi_c D$, respectively. Their strong decay widths are sensitive to the masses and can reach several tens MeV. (iv) The $2D_{\lambda\lambda}$ states may be broad states with a width of $\Gamma > 100$ MeV. It should be emphasized that the states with $J^P = 3/2^+$ and $5/2^+$ mainly decay into the ground state with $J^P = 3/2^+$ plus a light-flavor meson, while the states with $J^P = 1/2^+$ and $7/2^+$ mainly decay into the ground state with $J^P = 1/2^+$ plus a light-flavor meson.

PACS numbers:

I. INTRODUCTION

Fifteen years ago, the SELEX Collaboration announced a doubly charmed baryon Ξ_{cc}^{++} with mass 3519 ± 1 MeV [1]. One year later, another doubly charmed baryon Ξ_{cc}^{++} was reported at 3770 MeV by the same collaboration [2]. Unfortunately, those two signals $\Xi_{cc}^{++}(3519)$ and $\Xi_{cc}^{++}(3770)$ were not confirmed by other collaborations. Recently, the LHCb Collaboration discovered a doubly charmed baryon $\Xi_{cc}^{++}(3621)$ in the $\Lambda_c^+ K^- \pi^+ \pi^+$ mass spectrum [3]. Its mass was measured to be $3621.40 \pm 0.72 \pm 0.27 \pm 0.14$ MeV. The newly observed $\Xi_{cc}^{++}(3621)$ may provide an access point for the study of doubly heavy baryons and has attracted significant attention from the hadron physics community [4,19].

In the past score years, the properties of the doubly heavy baryons were extensively explored with various theoretical methods and models including the mass spectra [20,31] and semi-leptonic decays [6,31,42]. However, only a few discussions on the decay behavior exist in literature [17,19,43,45]. In our previous work [17], we first systematically investigated the both strong and radiative transitions of the low-lying $1P$-wave doubly heavy baryons with chiral and constituent quark model. In this work, we shall perform a systematic analysis of the two-body Okubo-Zweig-Iizuka (OZI) allowed strong decays of the $1P$ and $2D$ doubly charmed states with the quark pair creation (QPC) model, which may provide more information of their inner structures. The quark model classification, predicted masses [20], and OZI allowed decay modes [26] are summarized in Table I.

For the low-lying $1P$ and $2D$ doubly charmed baryons, their masses are large enough to allow the decay channels containing a heavy-light flavor meson. Thus, it is suitable to apply the QPC strong decay model. Meanwhile, for further understanding the strong decays of the doubly charmed baryons, it is necessary to make a comparison of the theoretical predictions with QPC model to the results with the chiral quark model [17].

The QPC strong decay model as a phenomenological method has been employed successfully in the description of the hadronic decays of the mesons [47,50] and singly charmed baryons [51,55]. Systematical study of the low-lying $1P$ and $2D$ doubly charmed states with the QPC model has not been performed yet. In the framework of the QPC model, we find that (i) our results of the decay patterns of the $1P$ states are highly comparable with those in our previous work [17]: (ii) the $2D_{\rho\rho}$ states mainly decay via emitting a heavy-light meson if their masses are above the threshold of $\Lambda_c D$ or $\Xi_c D$, respectively; (iii) although the $2D_{\theta\rho}$ states may be broad states with a width of $\Gamma > 100$ MeV, they still have the opportunity to be discovered via their main decay channels in future experiments.

This paper is structured as follows. In Sec. II we give a brief review of the QPC model. We present our numerical results and discussions in Sec. III and summarize our results in Sec. IV.

II. 3P_0 MODEL

The QPC model was first proposed by Micu [56], Carlitz and Kislinger [57], and further developed by the Orsay group [58,60]. For the OZI-allowed strong decays of hadrons,
this model assumes that a pair of quark \(q \bar{q} \) is created from the vacuum and then regroups with the quarks from the initial hadron to produce two outgoing hadrons. The created quark pair \(q \bar{q} \) shall carry the quantum number of 0+ and be in a \(\Lambda_{0} \) state. Thus the QPC model is also known as the \(3 \bar{P}_{0} \) model. This model has been extensively employed to study the OZI-allowed strong transitions of hadron systems. Here, we adopt this model to study the strong decays of the \(\bar{c}c \) system.

According to the quark rearrangement process, any of the three quarks in the initial baryon can go into the final meson. Thus three possible decay processes are taken into account as shown in Fig. 1. Now, we take the Fig. 1(a) decay process \(\Lambda \to B \) as an example to show how to calculate the decay width. In the nonrelativistic limit, the transition operator under the \(3 \bar{P}_{0} \) model is given by

\[
T = -3\gamma \sum_m \langle 1m;1-m|00 \rangle \int d^3p_4 d^3p_5 \Omega_{3} (p_4 + p_5) \tag{1}
\]

\[
\times \omega_{ij}^{35} \psi_0^{(i)} \chi_0^{(m)} \psi_1^{(m)} (p_4 - p_5) a_i^\dagger b_j^\dagger,
\]

where \(p_i \), \(i=4,5 \) represents the three-angle-momentum of the 4th quark in the created quark pair. \(\omega_{ij}^{35} = \delta_{ij} \) and \(\psi_0^{(m)} = (u\bar{u} + d\bar{d} + s\bar{s})/\sqrt{3} \) stand for the color singlet and flavor function, respectively. The solid harmonic polynomial \(\mathcal{Y}_{1}^{m}(p) \equiv |p|^{m} (\theta_{p}, \phi_{p}) \) corresponds to the momentum-space distribution, and \(\chi_0^{(m)} \) is the spin triplet state for the created quark pair. The creation operator \(a_i^\dagger b_j^\dagger \) denotes the quark pair-creation in the vacuum. The pair-creation strength \(\gamma \) is a dimensionless parameter, which is usually fixed by fitting the well-measured partial decay widths.

State \(N^{25+1}_{0} \)	Wave function	Mass	Strong decay channel	Mass	Strong decay channel
\(0S_{\frac{1}{2}} \rangle \)	\(\psi_{0}^{1} \)	3620	\(\cdots \)	\(\cdots \)
\(0S_{\frac{1}{2}} \rangle \)	\(\psi_{0}^{1} \)	3727	\(\cdots \)	\(\cdots \)
\(1p_{\frac{1}{2}} \rangle \)	\(\psi_{1}^{1} \)	3838	\(\cdots \)	\(\cdots \)
\(1p_{\frac{3}{2}} \rangle \)	\(\psi_{0}^{1} \)	3959	\(\cdots \)	\(\cdots \)
\(1p_{\frac{3}{2}} \rangle \)	\(\psi_{1}^{1} \)	4136	\(\Xi_{-}^{(+)} \)	4271
\(1p_{\frac{5}{2}} \rangle \)	\(\psi_{0}^{1} \)	4196	\(\Xi_{-}^{(+)} \)	4325
\(1p_{\frac{5}{2}} \rangle \)	\(\psi_{1}^{1} \)	4053	\(\Xi_{-}^{(+)} \)	4208
\(1p_{\frac{3}{2}} \rangle \)	\(\psi_{0}^{1} \)	4101	\(\Xi_{-}^{(+)} \)	4252
\(1p_{\frac{3}{2}} \rangle \)	\(\psi_{1}^{1} \)	4155	\(\Xi_{-}^{(+)} \)	4303
\(2s_{\frac{1}{2}} \rangle \)	\(\psi_{0}^{2} \)	\(\Lambda_{D} \)	\(\Xi_{D} \) & \(\Xi_{D} \)	
\(2s_{\frac{1}{2}} \rangle \)	\(\psi_{1}^{2} \)	\(\Lambda_{D} \)	\(\Xi_{D} \) & \(\Xi_{D} \)	
\(2s_{\frac{3}{2}} \rangle \)	\(\psi_{0}^{2} \)	\(\Lambda_{D} \)	\(\Xi_{D} \) & \(\Xi_{D} \)	
\(2s_{\frac{3}{2}} \rangle \)	\(\psi_{1}^{2} \)	\(\Lambda_{D} \)	\(\Xi_{D} \) & \(\Xi_{D} \)	

FIG. 1: Doubly charmed baryons decay process in the \(3 \bar{P}_{0} \) model.
The radial excitation is

\[
\sqrt{2E_C \varphi_{ab}^C \omega_{ab}^C} \sum_{M_{L_C}, M_{I_C}} \langle L_C M_{L_C}; S_C M_{S_C}; J_C M_{J_C} \rangle
\times \int d^3p_a d^3p_b \delta^3(p_a + p_b - p_C) \times \Psi_{N_{I_C} M_{I_C}}(p_a, p_b, \Psi_{S_{M_I} C_{M_C}}) |q_{S_{M_I}}(p_a) q_{B_{M_C}}(p_b)|. \tag{3}
\]

The \(p_i (i = 1, 2, 3 \text{ and } a, b) \) denotes the momentum of quarks in hadron \(A \) and \(C \). \(\Psi_{N_{I_C} M_{I_C}}(p_a, p_b) \) are the momentum of the hadron \(A(C) \). The \(3P_0 \) model gives a good description of the decay properties of many observed mesons with the simple harmonic oscillator space-wave functions, which are adopted to describe the spatial wave function of both baryons and mesons in the present work. The spatial wave function of a baryon without the radial excitation is

\[
\psi_{I_{M_{I_C} M_{I_C}}}^0(p_a) = (-i)^{l_a/2} \frac{2^{l_a + 1/2}}{\sqrt{(2l_a + 1)!}} \left(\frac{1}{\alpha} \right)^{1/2} \exp \left(-\frac{p^2}{2\alpha^2} \right) \psi_{I_{M_{I_C} M_{I_C}}}^0(p). \tag{4}
\]

The ground state spatial wave function of a meson is

\[
\psi_{0,0} = \left(\frac{R^4}{\pi} \right)^{1/2} \exp \left(-\frac{R^2 p_{ab}^2}{2} \right). \tag{5}
\]

where the \(p_{ab} \) stands for the relative momentum between the quark and antiquark in the meson. Then, we can obtain the partial decay amplitude in the center of mass frame,

\[
\mathcal{M}_{M_{I_A} M_{I_B} M_{I_C}}(A \rightarrow B + C) = \gamma \sqrt{8E_A E_B E_C} \sum_{\lambda, \gamma} \langle \lambda_{S_{M_{I_A}} S_{M_{I_B}} S_{I_{M_C}}}^{123} \rangle \langle \lambda_{S_{M_{I_A}} S_{M_{I_B}} S_{I_{M_C}}}^{123} \rangle \langle \varphi_{I_{M_{I_C}}}^{124} \psi_{I_{M_{I_C}}}^{35} \psi_{I_{M_{I_C}}}^{45} \rangle \mathcal{I}_{M_{I_A} M_{I_B} M_{I_C}}^m(p). \tag{6}
\]

Here, \(\mathcal{I}_{M_{I_A} M_{I_B} M_{I_C}}^m(p) \) stands the spatial integral and more detailed information is presented in the Appendix A and B. The \(\Pi_{A, B, C} \) denotes the Clebsch-Gordan coefficients for the quark pair, initial and final hadrons, which come from the couplings among the orbital, spin, and total angular momentum. Its expression reads

\[
\sum_{L_{M_{L_A}} S_{M_{S_A}} J_{M_{J_A}}} |L_{M_{L_A}} S_{M_{S_A}} J_{M_{J_A}} \rangle \langle L_{M_{L_A}} S_{M_{S_A}} J_{M_{J_A}} \rangle \times \langle \lambda_{S_{M_{I_A}} S_{M_{I_B}} S_{I_{M_C}}}^{123} \rangle \langle \lambda_{S_{M_{I_A}} S_{M_{I_B}} S_{I_{M_C}}}^{123} \rangle \langle \varphi_{I_{M_{I_C}}}^{124} \psi_{I_{M_{I_C}}}^{35} \psi_{I_{M_{I_C}}}^{45} \rangle \mathcal{I}_{M_{I_A} M_{I_B} M_{I_C}}^m(p). \tag{7}
\]

Finally, we take the same value as in Ref. \[49\], the value of the harmonic oscillator strength \(R = 2.5 \text{ GeV}^{-1} \), which is from Ref. \[20\]. The value of the harmonic oscillator strength \(R = 2.5 \text{ GeV}^{-1} \), for all light flavor mesons while it is \(R = 1.67 \text{ GeV}^{-1} \) for the \(D \) meson and \(R = 1.54 \text{ GeV}^{-1} \) for the \(D_s \) meson \[49\]. The parameter \(\alpha_p \) of the \(p \)-mode excitation between the two charm quarks is taken as \(\alpha_p = 0.66 \text{ GeV} \), while \(\alpha_s \), between the two light quarks is taken as \(\alpha_s = 0.4 \text{ GeV} \). Another harmonic oscillator parameter \(\alpha_{lA} \) is obtained with the relation:

\[
\alpha_{lA} = \frac{3m_s}{2m_1 + m_3} \alpha_p. \tag{10}
\]

For the strength of the quark pair creation from the vacuum, we take the same value as in Ref. \[49\], \(\gamma = 6.95 \). For the strange quark pair \(s\bar{s} \) creation, we use \(\gamma_{s\bar{s}} = \gamma/\sqrt{2} \).

III. Calculations and Results

For the \(P \)-wave doubly charmed states, the masses are adopted from Ref. \[20\] (showed in Table \[II\]) due to a good agreement with the mass of the lowest doubly charmed baryon \(\Xi_{cc}^{+}(3621) \) observed by the LHCb collaboration. However, there is no prediction for the masses of the \(D \)-wave states. So the masses of the \(D \)-wave baryons are varied in a rough range when their decay properties are investigated.

A. The \(P \)-wave doubly charmed states

Within the quark model, there are two \(1P_{\frac{3}{2}} \) doubly heavy baryons with \(J^P = \frac{1}{2}^+ \) and \(J^P = \frac{3}{2}^+ \), respectively. Their masses are above the threshold of \(\Xi_{cc}, \pi \) or \(\Xi_{c}, K \). However, the OZI-allowed two body strong decays are forbidden since the spatial wave functions for the \(1P \) and \(0S \) states are adopted with the simple harmonic oscillator wave functions which are orthogonal. In this work, we focus on the strong decays of the \(1P_{\frac{3}{2}} \) states.

We analyze the decay properties of the \(1P_{\frac{3}{2}} \) states in the \(\Xi_{cc} \) and \(\Omega_{cc} \) family, and collect their partial strong decay
and their strong decays are dominated by the Ξ^* widths. This broad state may be observed in future experiments. These results are in good agreement with the predictions in Ref. [17].

The states of $\Xi_{cc}^+P_{3/2}$ and $\Xi_{cc}^4P_{5/2}$ are most likely to be the moderate states with a width of $\Gamma \sim 130$ MeV, and the $\Xi_{cc}^*-\pi$ decay channel is their dominant decay mode. The partial decay width of $\Gamma[\Xi_{cc} \rightarrow \Xi_{cc}^*-\pi]$ is considerable. The partial decay width ratio is

$$\frac{\Gamma[\Xi_{cc} \rightarrow \Xi_{cc}^*-\pi]}{\Gamma[\Xi_{cc} \rightarrow \Xi_{cc}^*-\pi]} \approx 0.18.$$ \hspace{1cm} (12)$$

This ratio may be a useful distinction between $|\Xi_{cc}^2P_{3/2} \rangle$ and $|\Xi_{cc}^4P_{5/2} \rangle$ in future experiments. These results are in good agreement with the predictions in Ref. [17].

The state $|\Xi_{cc}^4P_{3/2} \rangle$ has a broad width of $\Gamma \approx 201$ MeV, and the $\Xi_{cc}^*-\pi$ decay channel almost saturates its total decay widths. This broad state may be observed in $\Xi_{cc}^*-\pi$ channel in future experiments.

From the Table III the state $|\Xi_{cc}^4P_{3/2} \rangle$ may be a narrow state with a total decay width around $\Gamma \sim 60$ MeV, which is about one half of that in Ref. [17]. This state decays mainly through the $\Xi_{cc}^*-\pi$ channel. The predicted partial width ratio between $\Xi_{cc}^*-\pi$ and $\Xi_{cc}^*-\pi$ is

$$\frac{\Gamma[\Xi_{cc} \rightarrow \Xi_{cc}^*-\pi]}{\Gamma[\Xi_{cc} \rightarrow \Xi_{cc}^*-\pi]} \approx 3.64,$$

which can be tested in future experiments.

In the Ω_{cc} family, the $|\Omega_{cc}^2P_{3/2} \rangle$ and $|\Omega_{cc}^4P_{5/2} \rangle$ might be two narrow states with a total decay width of $\Gamma \sim 40$ MeV, and their strong decays are dominated by the Ξ_{cc}^*-K channel.

![FIG. 2: The strong decay partial widths of the 1P3-wave Ξc states as a function of the mass.](image)

The decay width of the state $|\Omega_{cc}^4P_{3/2} \rangle$ is about $\Gamma \sim 380$ MeV. Meanwhile, its strong decays are governed by the $\Xi_{cc}^*-\pi$ channel. In this case, the $|\Omega_{cc}^4P_{3/2} \rangle$ might be too broad to be observed in experiments. However, for the states $|\Omega_{cc}^2P_{3/2} \rangle$ and $|\Omega_{cc}^4P_{5/2} \rangle$, if their masses lie below the threshold of Ξ_{cc}^*-K, they are likely to be two fairly narrow states with the total decay widths of $\Gamma \sim 9$ MeV and $\Gamma \sim 2$ MeV, respectively.

Table III: The comparison of the partial decay widths of the 1P3 states from the QPC model and the chiral quark model [17]. Γ_{total} stands for the total decay width and β represent the ratio of the branching fractions $\Gamma[\Xi_{cc}^*-\pi]/\Gamma[\Xi_{cc}^*-\pi]$. The unit is MeV.

State	Mass	$\Gamma[\Xi_{cc}^*-\pi]$ (This work)	$\Gamma[\Xi_{cc}^*-\pi]$ (Ref [17])	Total (This work)	Total (Ref [17])	β (This work)	β (Ref [17])	
$	\Xi_{cc}^2P_{3/2} \rangle$	4136	21.9	18.6	40.5	49.5	1.18	0.46
$	\Xi_{cc}^2P_{3/2} \rangle$	4196	13.7	117	131	123	0.18	0.21
$	\Xi_{cc}^2P_{3/2} \rangle$	4053	200	60	201	134	333	110
$	\Xi_{cc}^2P_{3/2} \rangle$	4101	4.43	127	131	92.2	0.03	0.09
$	\Xi_{cc}^2P_{3/2} \rangle$	4155	45.9	12.6	58.5	98.1	3.64	3.30

The decay widths in Table III In the Ξ_{cc} family, the total decay width of $|\Xi_{cc}^2P_{3/2} \rangle$ is about $\Gamma \sim 40$ MeV, which is compatible with the result in Ref. [17]. The dominant decay modes are $\Xi_{cc}^*-\pi$ and $\Xi_{cc}^*-\pi$ with the partial decay ratio

$$\frac{\Gamma[\Xi_{cc}^*-\pi]}{\Gamma[\Xi_{cc}^*-\pi]} \approx 1.18.$$ \hspace{1cm} (11)$$

This value is about 2.5 times of the ratio in Ref. [17].

The states of $|\Xi_{cc}^2P_{3/2} \rangle$ and $|\Xi_{cc}^4P_{5/2} \rangle$ are most likely to be the moderate states with a width of $\Gamma \sim 130$ MeV, and the $\Xi_{cc}^*-\pi$ decay channel is their dominant decay mode. The partial decay width of $\Gamma[\Xi_{cc} \rightarrow \Xi_{cc}^*-\pi]$ is considerable. The partial decay width ratio is

$$\frac{\Gamma[\Xi_{cc} \rightarrow \Xi_{cc}^*-\pi]}{\Gamma[\Xi_{cc} \rightarrow \Xi_{cc}^*-\pi]} \approx 0.18.$$ \hspace{1cm} (12)$$

This ratio may be a useful distinction between $|\Xi_{cc}^2P_{3/2} \rangle$ and $|\Xi_{cc}^4P_{5/2} \rangle$ in future experiments. These results are in good agreement with the predictions in Ref. [17].

The state $|\Xi_{cc}^4P_{3/2} \rangle$ has a broad width of $\Gamma \sim 201$ MeV, and the $\Xi_{cc}^*-\pi$ decay channel almost saturates its total decay widths. This broad state may be observed in $\Xi_{cc}^*-\pi$ channel in future experiments.

From the Table III the state $|\Xi_{cc}^4P_{3/2} \rangle$ may be a narrow state with a total decay width around $\Gamma \sim 60$ MeV, which is about one half of that in Ref. [17]. This state decays mainly through the $\Xi_{cc}^*-\pi$ channel. The predicted partial width ratio between $\Xi_{cc}^*-\pi$ and $\Xi_{cc}^*-\pi$ is

$$\frac{\Gamma[\Xi_{cc} \rightarrow \Xi_{cc}^*-\pi]}{\Gamma[\Xi_{cc} \rightarrow \Xi_{cc}^*-\pi]} \approx 3.64,$$

which can be tested in future experiments.
decays of 2∧nant decay channel for most of states are sensitive to the mass. From the Figs. 2-3, the partial width of dominant decay channel for most of states are sensitive to the mass. In addition, in the Ξcc family, if the 1P1 states are above the threshold of Λc,D, they can decay via Λc,D with a partial width about several MeV.

B. The D-wave doubly charmed states

1. ρ-mode excitations

Since we adopt the simple harmonic oscillator spatial wave functions in present work, the strong decays of 2Dρρ doubly charmed states via emitting a light-flavor meson are forbidden due to the orthogonality of the spatial wave functions. So, we focus on the decay processes via emitting a heavy-light flavor meson. Due to the lack of the mass predictions for the D-wave doubly charmed states, we investigate the strong decay properties as the functions of the masses in a possible range.

First of all, we conduct systematic research on the strong decays of 2Dρρ states in the Ξcc family in Fig. 4. For the state |Ξcc 3/2⟩, we put the mass range between the Λc,D threshold (M = 4152 MeV) and M = 4300 MeV. From Fig. 4, we can see that the state |Ξcc 3/2⟩ is a fairly narrow state with a width of a few MeV when its mass varies in the range. Its strong decay is dominated by Λc,D.

Taking the masses of |Ξcc 5/2⟩ in the range of (4.152-4.450) GeV, they are two narrow states with a width of Γ < 4 MeV and mainly decay into Λc,D if their masses are below the threshold of Σ∗c,D. However, when the Σ∗c,D channel is open, the total decay widths of those two states are sensitive to the mass and can increase up to several tens MeV. If so, their dominant decay modes should be Σ∗c,D.

For the states |Ξcc 5/2⟩, if their masses are above the threshold of Λc,D, they mainly decay into Λc,D and have a width of several tens MeV.

Taking the mass of |Ξcc 7/2⟩ in the range of (4.20 - 4.60) GeV, we get that the decay width of this state is about Γ ≳ (0 - 120) MeV. Its strong decays are governed by the Λc,D channel in the whole mass region considered in the present work. When we take the mass of |Ξcc 7/2⟩ with M = 4373 MeV, the predicted branching ratio is

\[\frac{Γ[Λc,D]}{Γ_{total}} \approx 98\%. \]

So, this state is most likely to be observed in the Λc,D channel.

Then, we analyze the decay properties of the 2Dρρ states in the Ωcc family, and plot the partial decay widths and total decay width as functions of the masses in Fig. 3.

To investigate the decay properties of the Ωcc 3/2, we plot its decay widths as a function of the mass in the range of M = (4.34 - 4.45) GeV. From the figure, its strong decay width is around a few MeV. This state mainly decays through the Ξc,D channel.

For the states |Ωcc 3/2⟩, we take their masses in the range of M = (4.34 - 4.60) GeV. If they lie below the Σ∗c,D threshold, the total decay widths are about Γ < 3 MeV, and are dominated by Σ∗c,D. However, if their masses are above the threshold of Σ∗c,D, their dominant decay channels should be Σ∗c,D and their total decay widths may reach several tens MeV.

Taking the masses of |Ωcc 5/2⟩ in the range of (4.34 - 4.50) GeV, this state has a width of Γ ≳ (0 - 150) MeV. If we take the mass of |Ωcc 5/2⟩ with M = 4523 MeV, the total decay width is about Γ_{total} ≳ 12 MeV, and the predicted branching ratio is

\[\frac{Γ[Ωc,D]}{Γ_{total}} \approx 98\%. \]
we study the strong decay properties of the doubly charmed baryons. The orbitally excited state for the doubly charmed baryons. The orbitally excited state has relatively larger mass than a ρ-mode excited state. Thus, many other decay modes are allowed when we study the strong decay properties of $2D_{s\bar{s}}$ states.

In the $\Xi_{c\bar{c}}$ family, we estimate the mass of the $|\Xi_{c\bar{c}}^s\ell\bar{\ell}^{+}\rangle$ in the range of 4.50-4.90 GeV, and then investigate its strong decay properties as a function of the mass in Fig. 4. The decay width of the state $|\Xi_{c\bar{c}}^s\ell\bar{\ell}^{+}\rangle$ is about $\Gamma \approx (100-650)$ MeV. The main decay channel is $\Xi_{c\bar{c}}^s\pi$ and the predicted branching ratio is

$$\frac{\Gamma[\Xi_{c\bar{c}}^s\pi]}{\Gamma_{\text{total}}} \approx (77-87\%) \quad \text{(16)}$$

On the other hand, the partial decay width of $\Gamma[|\Xi_{c\bar{c}}^s\ell\bar{\ell}^{+}\rangle \to \Sigma^*D]$ is sizable. The partial width ratio between Σ^*D and $\Xi_{c\bar{c}}^s\pi$ is

$$\frac{\Gamma[|\Xi_{c\bar{c}}^s\ell\bar{\ell}^{+}\rangle \to \Sigma^*D]}{\Gamma[|\Xi_{c\bar{c}}^s\ell\bar{\ell}^{+}\rangle \to \Xi_{c\bar{c}}\pi]} \approx 3.2\% \quad \text{(17)}$$

when we fix the mass of this state on $M = 4.70$ GeV.

For the state $|\Xi_{c\bar{c}}^s\ell\bar{\ell}^{+}\rangle$, its mass might be in the range of 4.55-4.95 GeV. The dependence of the strong decay proper-
Meanwhile, the role of the Σ channel becomes more and more important as the mass increases. The branching ratio is

$$\frac{\Gamma(\Sigma \to \Xi \pi)}{\Gamma(\Sigma \to \Xi \pi)} \approx (30 - 38)\%.$$ (18)

We estimate the mass of $|\Xi_{cc}^3 D_{\perp}^{3/2} \rangle$ in the range of (4.20-4.60) GeV and calculate its strong decay widths, which are shown in Fig. 6. From the figure, the state $|\Xi_{cc}^4 D_{\perp}^{1/2} \rangle$ is a moderate state with a width of $\Gamma \approx (65 - 118)$ MeV, and its strong decays are governed by the $\Xi_{cc} \pi$ channel. The predicted branching ratio is

$$\frac{\Gamma(\Xi_{cc} \pi)}{\Gamma_{\text{total}}} \approx (36 - 91)\%.$$ (20)

It should be pointed out that if the decay channel $\Omega_{cc} K$ is opened, which is sensitive to the mass, the branching ratio of this decay channel may reach 41%. Since the predicted
width of $|\Xi_{cc}^+ D_{ll}^{4+}\rangle$ is not broad, this resonance might be observed in the $\Xi_{cc}^+ \pi$ channel.

The mass of the state $|\Xi_{cc}^+ D_{ll}^3\rangle$ might be in the range of (4.25-4.65) GeV, which is ~ 50 MeV heavier than that of the state $|\Xi_{cc}^+ D_{ll}^{4+}\rangle$. We plot the strong decay properties of $|\Xi_{cc}^+ D_{ll}^3\rangle$ as a function of the mass in Fig. 4. The state $|\Xi_{cc}^+ D_{ll}^3\rangle$ may be a moderate state with a width of $\Gamma \sim (82 - 110)$ MeV, and its strong decays are dominated by the $\Xi_{cc}^+ \pi$ and $\Xi_{cc}^+ \rho$ channels. However, the partial width of $\Xi_{cc}^+ \pi$ decreases dramatically with the mass. So, the predicted branching ratio of the $\Xi_{cc}^+ \pi$ channel varies in a wide range of

$$\frac{\Gamma[|\Xi_{cc}^+ \pi\rangle]}{\Gamma_{\text{total}}} \approx (58 - 5)\%.$$

The branching ratio of the $\Xi_{cc}^+ \pi$ channel is stable, which is

$$\frac{\Gamma[|\Xi_{cc}^+ \pi\rangle]}{\Gamma_{\text{total}}} \approx (39 - 62)\%.$$

This state has good potential to be discovered in the $\Xi_{cc}^+ \pi$ and $\Xi_{cc}^+ \rho$ channels.

For the state $|\Xi_{cc}^+ D_{ll}^5\rangle$, we plot its partial decay widths and total widths as a function of the mass in the range of (4.30-4.70) GeV. From Fig. 6, its total decay width is about $\Gamma \sim (59 - 260)$ MeV. The partial decay width ratio of the main two decay channels $\Xi_{cc}^+ \pi$ and $\Xi_{cc}^+ \rho$ is

$$\frac{\Gamma[|\Xi_{cc}^+ D_{ll}^5\rangle \to \Xi_{cc}^+ \pi]}{\Gamma_{\text{total}}} \approx (11 - 44)\%.$$

Meanwhile, from the Fig. 6 we notice that the strong decays of the state $|\Xi_{cc}^+ D_{ll}^5\rangle$ are dominated by the $\Xi_{cc}^+ \pi$ and $\Xi_{cc}^+ \rho$ channels as well, when the mass lies in the range of (4.35-4.75) GeV. But the total decay width of $|\Xi_{cc}^+ D_{ll}^5\rangle$ is about $\Gamma \sim (52 - 610)$ MeV, which shows stronger dependence on the mass than that of $|\Xi_{cc}^+ D_{ll}^5\rangle$, and the predicted ratio between $\Xi_{cc}^+ \pi$ and $\Xi_{cc}^+ \rho$ is

$$\frac{\Gamma[|\Xi_{cc}^+ D_{ll}^5\rangle \to \Xi_{cc}^+ \pi]}{\Gamma[|\Xi_{cc}^+ D_{ll}^5\rangle \to \Xi_{cc}^+ \rho]} \approx (3.5 - 7.8).$$

In addition, we extract the strong decays of the $2D_{ll}$ states in the Ω_{cc} family, and plot their decay properties as functions of the masses in Fig. 7. Usually, the mass of the Ω_{cc} resonances is about 150 MeV larger than that of the Ξ_{cc} resonances [13, 20]. Thus we estimate the mass of the state $|\Omega_{cc}^+ D_{ll}^{3/2}\rangle$ might be in the range of (4.65-5.05) GeV. According to our theoretical calculations, $|\Omega_{cc}^+ D_{ll}^{3/2}\rangle$ is a broad state with a width of $\Gamma \approx (114 - 769)$ MeV, and $\Xi_{cc}^+ \pi$ almost saturates its total decay widths.

Meanwhile, the state $|\Omega_{cc}^+ D_{ll}^{5/2}\rangle$ is most likely to be a very broad state as well, and the total decay width is about $\Gamma \approx (280 - 1000)$ MeV with the mass in the range of (4.70-5.10) GeV. Its strong decays are governed by the $\Xi_{cc}^+ K$ and $\Xi_{cc}^+ \rho$ channels. The predicted partial width ratio between $\Xi_{cc}^+ K$ and $\Xi_{cc}^+ \rho$ is

$$\frac{\Gamma[|\Omega_{cc}^+ D_{ll}^{5/2}\rangle \to \Xi_{cc}^+ K]}{\Gamma[|\Omega_{cc}^+ D_{ll}^{5/2}\rangle \to \Xi_{cc}^+ \rho]} \approx (23 - 41)\%.$$

The partial width of $\Xi_{cc}^+ D_{ll}$ is sizable as well. This broad state might be hard to be observed in experiments.

Taking the mass of $|\Omega_{cc}^+ D_{ll}^{5/2}\rangle$ in the range of (4.35-4.75) GeV, the state $|\Omega_{cc}^+ D_{ll}^{5/2}\rangle$ might be a moderate state with a width of $\Gamma \approx (104 - 194)$ MeV, and mainly decays into the $\Xi_{cc}^+ K$ channel. Such a moderate state has some possibility to be observed in future experiments.

As to the state $|\Omega_{cc}^+ D_{ll}^{3/2}\rangle$, we plot its strong decay properties as a function of the mass in the range of (4.40-4.80) GeV in Fig. 7. The total decay width of $|\Omega_{cc}^+ D_{ll}^{3/2}\rangle$ is $\Gamma \approx (108 - 161)$ MeV. Its strong decays are dominated by the $\Xi_{cc}^+ K$ and $\Xi_{cc}^+ \rho$ channels, and the predicted partial decay width ratio is

$$\frac{\Gamma[|\Omega_{cc}^+ D_{ll}^{3/2}\rangle \to \Xi_{cc}^+ K]}{\Gamma[|\Omega_{cc}^+ D_{ll}^{3/2}\rangle \to \Xi_{cc}^+ \rho]} \approx (1.95 - 0.24).$$

The total decay width of $|\Omega_{cc}^+ D_{ll}^{3/2}\rangle$ is $\Gamma \approx (68 - 300)$ MeV with the mass in the range of (4.45-4.85) GeV. From the Fig. 7 this state mainly decays through the $\Xi_{cc}^+ K$ channel. The branching ratio is

$$\frac{\Gamma[|\Xi_{cc}^+ K\rangle]}{\Gamma_{\text{total}}} \approx (93 - 62)\%.$$

The partial width of the $\Xi_{cc}^+ K$ channel is sizable as well.

The partial decay widths of the $|\Omega_{cc}^+ D_{ll}^{3/2}\rangle$ strongly depend on its mass. Taking the mass of $|\Omega_{cc}^+ D_{ll}^{3/2}\rangle$ in the range of (4.50-4.90) GeV, the total decay width varies in a wide range of $\Gamma \approx (43 - 708)$ MeV. Its strong decays are governed by the $\Xi_{cc}^+ K$ and $\Xi_{cc}^+ \rho$ channels, and the partial decay width ratio is

$$\frac{\Gamma[|\Omega_{cc}^+ D_{ll}^{3/2}\rangle \to \Xi_{cc}^+ K]}{\Gamma[|\Omega_{cc}^+ D_{ll}^{3/2}\rangle \to \Xi_{cc}^+ \rho]} \approx (22 - 48)\%.$$

Meanwhile, the partial decay width of $\Xi_{cc}^+ D_{ll}$ is sizable, and the predicted partial width ratio between $\Xi_{cc}^+ D_{ll}$ and $\Xi_{cc}^+ K$ is

$$\frac{\Gamma[|\Omega_{cc}^+ D_{ll}^{3/2}\rangle \to \Xi_{cc}^+ D_{ll}]}{\Gamma[|\Omega_{cc}^+ D_{ll}^{3/2}\rangle \to \Xi_{cc}^+ K]} \approx (4.7 - 8.6)\%.$$

In conclusion, in the Ξ_{cc}^+ and Ω_{cc} family, the $2D_{ll}$ states with $J^P = 1/2^+$, $7/2^+$ mainly decay into the ground state with $J^P = 3/2^+$ through emitting a light-flavor meson, while the $2D_{ll}$ states with $J^P = 3/2^+$, $5/2^+$ mainly decay into the ground state with $J^P = 1/2^+$ plus a light-flavor meson. The states $|\Omega_{cc}^+ D_{ll}^{3/2}\rangle$ and $|\Omega_{cc}^+ D_{ll}^{5/2}\rangle$ are most likely to be the moderate states with the total widths of $\Gamma \sim 100$ MeV, which are insensitive to their masses, and might be discovered in their dominant decay channels.

IV. SUMMARY

In the present work, we have systematically studied the strong decay properties of the low-lying $1P$ and $2D$ doubly
charm and baryons in the framework of the 3P_0 quark pair creation model. Our main results are summarized as follows.

For the $1P$ ρ-mode doubly charmed baryons, their decay widths should be fairly narrow because of the absence of the strong decay modes. In addition, for the $1P$ λ-mode excitations, the states $|^2 P_{\frac{3}{2}, 1}^- >$ and $|^4 P_{\frac{3}{2}, 1}^- >$ are predicted to be moderate states with a width of $\Gamma \sim 150$ MeV. Their strong decays are governed by the $\Xi_{c, \pi}$ or $\Xi_{c, K}$ channel. However, the states $|^2 P_{\frac{3}{2}, 2}^+ >$ and $|^4 P_{\frac{3}{2}, 2}^+ >$ are most likely to be narrow states with a total decay width of $\Gamma \sim 40$ MeV, and their strong decays are dominated by the $\Xi_{c, \pi}$ or $\Xi_{c, K}$ channel. Such narrow states have good potential to be observed in future experiments. Meanwhile, the dominant decay mode of the state $|^2 P_{\frac{1}{2}, 1}^> + \pi \lambda \lambda$ and $|^4 P_{\frac{1}{2}, 3}^> + \pi \lambda \lambda$ is $\Xi_{c, \pi}$ or $\Xi_{c, K}$ as well, but the total decay width of this state is about $\Gamma > 200$ MeV.

Since the strong decays of $2D_{\rho \rho}$ doubly charmed baryons via emitting a light-flavor meson are forbidden, they mainly decay via emitting a heavy-light meson with a total decay width of several tens MeV if their masses are large enough. The partial strong decay widths of the $2D_{\rho \rho}$ doubly charmed baryons strongly depend on their masses. The measurement of masses in the future will be helpful to understand their inner structures.

Within the range of mass we considered, the $2D_{\lambda \lambda}$ states with $J^P = 1/2^+$, $7/2^+$ mainly decay through the $\Xi_{c, \pi}$ or $\Xi_{c, K}$ channels, respectively, while the $2D_{\lambda \lambda}$ states with $J^P = 3/2^+$, $5/2^+$ mainly decay through the $\Xi_{c, \pi}$ or $\Xi_{c, K}$ channels. It should be remarked that the states $|^4 D_{3/2, 1}^> + \pi \lambda \lambda$ and $|^4 D_{1/2, 3}^> + \pi \lambda \lambda$ are most likely to be discovered in their corresponding dominant decay channels because of their not broad widths of $\Gamma \sim 100$ MeV, which are insensitive to their masses.

Acknowledgements

We would like to thank Xian-Hui Zhong for very helpful discussions. This work is supported by the National Natural Science Foundation of China under Grants No. 11575008, No. 11705056, No. 11621131001 and 973 program. This work is also in part supported by China Postdoctoral Science Foundation under Grant No. 2017M620492.

Appendix A: The decay mode with doubly charmed baryon plus a light-flavor meson

The harmonic oscillator wave functions for the orbitally excited baryons in our calculation are

$$\psi(l_p, m_p, l_\lambda, m_\lambda) = (-i)^l \sqrt{\frac{2^{l+2}}{\sqrt{(2l_p + 1)!}}} \left(\frac{1}{\alpha_p} \right)^{\frac{l}{2} + l_p} Y_{l_p}^{m_p}(p_p)$$

$$\times (-i)^l \sqrt{\frac{2^{l+2}}{\sqrt{(2l_\lambda + 1)!}}} \left(\frac{1}{\alpha_\lambda} \right)^{\frac{l}{2} + l_\lambda} Y_{l_\lambda}^{m_\lambda}(p_\lambda)$$

$$\times \exp \left(- \frac{p_p^2}{2\alpha_p^2} - \frac{p_\lambda^2}{2\alpha_\lambda^2} \right).$$

where $p_p = \frac{1}{\alpha_p}(p_1 - p_2)$ and $p_1 = \frac{1}{\alpha_\lambda}(p_1 + p_2 - 2p_3)$.

The ground state wave function of the meson is

$$\psi(0, 0) = \left(\frac{R^2}{\pi} \right)^{\frac{l}{2}} \exp \left(- \frac{R^2 p_{ab}^2}{2} \right)$$

(A2)

where p_{ab} stands for the relative momentum between the quark and antiquark in a meson.

Since all the final states are in the S-wave ground states in the present work, the momentum space integration $I_{\ell \lambda, m_\lambda; m_p}$ can be further expressed as $\Pi(l_p, m_p, l_\lambda, m_\lambda, m_\lambda, m_\lambda, m_\lambda, m_\lambda)$.

Based on Fig. (1a), the explicit form of the momentum space integration $\Pi(l_p, m_p, l_\lambda, m_\lambda, m_\lambda, m_\lambda, m_\lambda, m_\lambda)$ is presented in the following.

For the S-wave decay,

$$\Pi(0, 0, 0, 0, 0) = \beta |p| \Delta_{00}.$$

(A3)

For the P-wave decay,

$$\Pi(0, 0, 1, 0, 0) = \left(- \frac{1}{\sqrt[6]{l_2}} - \frac{\lambda_2}{24 l_2} \beta |p|^2 \right) \Delta_{01},$$

(A4)

$$\Pi(0, 0, 1, 1, -1) = - \frac{1}{\sqrt[6]{l_2}} \Delta_{01}$$

$$= \Delta(0, 0, 1, -1, 1).$$

(A5)

For the D-wave decay,

$$\Pi(0, 0, 2, 0, 0) = \left(\frac{\lambda_1}{24 l_2^2} \beta |p|^3 - \frac{\sqrt[6]{l_3}}{3 l_2^2} |p| \right) \Delta_{02},$$

(A6)

$$\Pi(0, 0, 2, 1, -1) = \frac{\lambda_3}{24 l_2^2} |p| \Delta_{02}$$

$$= \Delta(0, 0, 2, -1, 1).$$

(A7)

Here,

$$\lambda_1 = \frac{1}{\alpha_p^2}, \quad \lambda_2 = \frac{1}{\alpha_p^2} + \frac{R^2}{3}, \quad \lambda_3 = \frac{2}{\sqrt[6]{l_2}} + \frac{R^2}{\sqrt[6]{6 l_2}}$$

$$\lambda_4 = \frac{1}{3 \alpha_p^2} + \frac{R^2}{8}, \quad \beta = 1 - \frac{\lambda_3}{\sqrt[6]{6 l_2}}.$$

(A8)

for the above expressions and

$$\Delta_{00} = \left(\frac{1}{\alpha_p^2} \right)^{\frac{l}{2}} \left(\frac{1}{\alpha_p^2} \right)^{\frac{l}{2}} \left(\frac{R^2}{\pi} \right)^{\frac{l}{2}} \exp \left(- \lambda_4 - \frac{\lambda_2}{4 l_2} |p|^2 \right)$$

$$\times \left(- \frac{3}{4 \pi} \right)^{\frac{l}{2}} \left(\frac{1}{\alpha_p^2} \right)^{\frac{l}{2}} \left(\frac{1}{\alpha_p^2} \right)^{\frac{l}{2}},$$

(A10)

$$\Delta_{01} = \left(\frac{1}{\alpha_p^2} \right)^{\frac{l}{2}} \left(\frac{1}{\alpha_p^2} \right)^{\frac{l}{2}} \left(\frac{R^2}{\pi} \right)^{\frac{l}{2}} \left(\frac{1}{\alpha_p^2} \right)^{\frac{l}{2}} \exp \left(- \lambda_4 - \frac{\lambda_2}{4 l_2} |p|^2 \right)$$

$$\times \left(- \frac{3}{4 \pi} \right)^{\frac{l}{2}} \left(\frac{1}{\alpha_p^2} \right)^{\frac{l}{2}} \left(\frac{1}{3 \alpha_p^2} \right)^{\frac{l}{2}},$$

(A11)

$$\Delta_{02} = \left(\frac{1}{\alpha_p^2} \right)^{\frac{l}{2}} \left(\frac{1}{\alpha_p^2} \right)^{\frac{l}{2}} \left(\frac{R^2}{\pi} \right)^{\frac{l}{2}} \left(\frac{1}{\alpha_p^2} \right)^{\frac{l}{2}} \exp \left(- \lambda_4 - \frac{\lambda_2}{4 l_2} |p|^2 \right)$$

$$\times \left(- \frac{3}{4 \pi} \right)^{\frac{l}{2}} \left(\frac{1}{\alpha_p^2} \right)^{\frac{l}{2}} \left(\frac{1}{3 \alpha_p^2} \right)^{\frac{l}{2}}.$$
\[
\times \sqrt{15 \over 8\pi} \left(\frac{1}{\pi \alpha_p} \right)^{3 \over 2} \left(\frac{16}{15 \sqrt{\pi}} \right)^{1 \over 2} \left(\frac{1}{\alpha_f} \right)^{1 \over 2} \]
(A12)

Appendix B: The decay mode with a singly heavy baryon plus a heavy-light meson

From Fig. 1(c), the momentum space integration \(\Pi(\rho\Delta, m_{\rho\Delta}, M_{\rho\Delta}, m_{\rho\Delta}, m)\) can be expressed in the following.

For the S-wave decay,
\[
\Pi(0, 0, 0, 0, 0) = \beta|p|\Delta_{0,0}.
\]
(B1)

For the P-wave decay,
\[
\Pi(0, 0, 1, 0, 0) = -\frac{1}{2f_1} \left(f_2 \beta |p|^2 + \zeta \right) \Delta_{0,1},
\]
(B2)

\[
\Pi(0, 0, 1, 1, -1) = \frac{\zeta}{2f_1} \Delta_{0,1},
\]
(B3)

\[
\Pi(1, 0, 0, 0, 0) = \left(\beta \sigma |p|^2 + \frac{1}{2 \sqrt{2} \lambda_1} + \frac{\zeta \lambda_2}{4 \lambda_1 f_1} \right) \Delta_{1,0}, \quad (B4)
\]

\[
\Pi(1, 1, 0, 0, -1) = -\left(\frac{\zeta \lambda_2}{4 \lambda_1 f_1} + \frac{1}{2 \sqrt{2} \lambda_1} \right) \Delta_{1,0}
\]
\[= \Pi(1, -1, 0, 0, 1).
\]
(B5)

For the D-wave decay,
\[
\Pi(0, 0, 2, 0, 0) = \frac{f_2}{f_1} \left(\frac{1}{2} \beta f_2 |p|^3 + \zeta |p| \right) \Delta_{0,2}, \quad (B6)
\]

\[
\Pi(0, 0, 2, 1, -1) = -\frac{\sqrt{15} f_2}{2f_1} \zeta |p| \Delta_{0,2} = \Pi(0, 0, 2, -1, 1), \quad (B7)
\]

\[
\Pi(2, 0, 0, 0, 0) = 2 \left(\beta \sigma |p|^2 + \frac{\sigma}{\sqrt{2} \lambda_1} + \zeta \sigma \right) \Delta_{2,0}, \quad (B8)
\]

\[
\Pi(2, 1, 0, 0, -1) = -\left(\sqrt{6} \sigma \over 2 \lambda_1 + \sqrt{3} \zeta \sigma \over 2 \lambda_1 f_1 \right) \Delta_{2,0}, \quad (B9)
\]

\[
= \Pi(2, -1, 0, 0, 1),
\]

\[
\Pi(1, 0, 1, 0, 0) = \left(f_2 \beta |p|^2 \over 2f_1^3 \right) \left(\frac{1}{2} \beta f_2 |p|^3 + \zeta |p| \right) \Delta_{1,1}, \quad (B10)
\]

\[
\Pi(1, 0, 1, 1, -1) = -\frac{\sigma \zeta}{2f_1} |p| \Delta_{1,1} = \Pi(1, 0, 1, -1, 1), \quad (B11)
\]

\[
\Pi(1, 1, 1, 0, -1) = -\frac{\lambda \beta}{4 \lambda_1 f_1} |p| \Delta_{1,1} = \Pi(1, -1, 1, 1, 0), \quad (B12)
\]

\[
\Pi(1, 1, 1, 0, -1) = \left(\frac{\lambda_2 f_2 \zeta}{8 \lambda_1 f_1} + \frac{\sqrt{3} f_2}{8 \lambda_1 f_1} \right) |p| \Delta_{1,1}
\]
\[= \Pi(1, -1, 1, 0, 1),
\]
(B13)

Here,
\[
\lambda_1 = \frac{1}{2 \alpha_p^2} + \frac{1}{8 \alpha_p^2} + \frac{3}{8 \alpha_p^2} + \frac{R^2}{4},
\]
(B14)

\[
\lambda_2 = -\frac{\sqrt{3}}{4 \alpha_p^2} + \frac{\sqrt{3}}{4 \alpha_p^2} - \frac{\sqrt{3} R^2}{6},
\]
(B15)

\[
\lambda_3 = \frac{1}{2 \alpha_p^2} + \frac{3}{8 \alpha_p^2} + \frac{1}{8 \alpha_p^2} + \frac{R^2}{12},
\]
(B16)

\[
\lambda_4 = \frac{\sqrt{3}}{4 \alpha_p^2} + \frac{\sqrt{3}}{4 \alpha_p^2} + \frac{R^2}{4 \alpha_p^2} m_2 + m_5
\]
(B17)

\[
\lambda_5 = -\frac{\sqrt{6}}{4 \alpha_p^2} + \frac{\sqrt{6}}{12 \alpha_p^2} - \frac{R^2}{6 \alpha_p^2} m_2 + m_5,
\]
(B18)

\[
f_1 = \lambda_3 - \frac{\lambda^2}{2 \lambda_4},
\]
(B20)

\[
f_2 = \lambda_5 - \frac{\lambda^2}{2 \lambda_4},
\]
(B21)

\[
f_3 = \lambda_6 - \frac{\lambda^2}{2 \lambda_4},
\]
(B22)

for the above expressions and
\[
\Delta_{0,0} = \left(\frac{1}{\pi \alpha_p^2} \right)^{3 \over 2} \left(\frac{1}{\pi \alpha_p^2} \right)^{3 \over 2} \left(\frac{\pi^2}{\alpha_f} \right)^{3 \over 2} \exp \left[- f_1^2 \left(\frac{f_2^2}{4 \alpha_f^2} \right) \right] \quad \times \left(-\frac{3}{4 \pi} \right)^{1 \over 2} \left(\frac{1}{\pi \alpha_p^2} \right)^{1 \over 2} \left(\frac{1}{\alpha_f^2} \right)^{1 \over 2},
\]
(B23)

\[
\Delta_{0,1} = \left(\frac{1}{\pi \alpha_p^2} \right)^{3 \over 2} \left(\frac{\pi^2}{\alpha_f} \right)^{3 \over 2} \exp \left[- f_1^2 \left(\frac{f_2^2}{4 \alpha_f^2} \right) \right] \quad \times \frac{3i}{4 \pi} \left(\frac{1}{\pi \alpha_p^2} \right)^{1 \over 2} \left(\frac{1}{\alpha_f^2} \right)^{1 \over 2},
\]
(B24)

\[
\Delta_{1,0} = \left(\frac{1}{\pi \alpha_p^2} \right)^{3 \over 2} \left(\frac{1}{\alpha_f} \right)^{3 \over 2} \left(\frac{\pi^2}{\alpha_f} \right)^{3 \over 2} \exp \left[- f_1^2 \left(\frac{f_2^2}{4 \alpha_f^2} \right) \right] \quad \times \left(-\frac{3}{4 \pi} \right)^{1 \over 2} \left(\frac{1}{\pi \alpha_p^2} \right)^{1 \over 2} \left(\frac{1}{\alpha_f^2} \right)^{1 \over 2},
\]
(B25)

\[
\Delta_{0,2} = \left(\frac{1}{\pi \alpha_p^2} \right)^{3 \over 2} \left(\frac{1}{\pi \alpha_p^2} \right)^{3 \over 2} \left(\frac{\pi^2}{\alpha_f} \right)^{3 \over 2} \exp \left[- f_1^2 \left(\frac{f_2^2}{4 \alpha_f^2} \right) \right] \quad \times \frac{3i}{4 \pi} \left(\frac{8}{3 \pi \alpha_p^2} \right)^{1 \over 2} \left(\frac{1}{\alpha_f^2} \right)^{1 \over 2},
\]
(B26)

\[
\Delta_{2,0} = \left(\frac{1}{\pi \alpha_p^2} \right)^{3 \over 2} \left(\frac{1}{\pi \alpha_p^2} \right)^{3 \over 2} \left(\frac{\pi^2}{\alpha_f} \right)^{3 \over 2} \exp \left[- f_1^2 \left(\frac{f_2^2}{4 \alpha_f^2} \right) \right] \quad \times \frac{3i}{4 \pi} \left(\frac{8}{3 \pi \alpha_p^2} \right)^{1 \over 2} \left(\frac{1}{\alpha_f^2} \right)^{1 \over 2},
\]
(B27)
Here, the parameters α'_q and α'_l stand the harmonic oscillator parameters of the final singly heavy baryon.

\begin{equation}
\Delta_{1,1} = \left(\frac{1}{\pi \alpha'_q^2} \right)^{\frac{3}{4}} \left(\frac{1}{\pi \alpha'_l^2} \right)^{\frac{3}{4}} \frac{K_r^2}{\pi} \left(\frac{\pi}{2} \right)^{\frac{3}{4}} \exp \left[- \left(f_3 - \frac{f_3^2}{4} \right) \right] \left(f_4 \right)^{\frac{3}{4}} \left(\frac{\pi}{4} \right)^{\frac{3}{4}} \left(\frac{1}{\pi \alpha'_q \alpha'_l} \right)^{\frac{3}{4}}.
\end{equation}

\[B28 \]
[37] V. V. Kiselev and A. K. Likhoded, Baryons with two heavy quarks, Phys. Usp. 45, 455 (2002) [Usp. Fiz. Nauk 172, 497 (2002)].

[38] M. J. White and M. J. Savage, Semileptonic decay of baryons with two heavy quarks, Phys. Lett. B 271, 410 (1991).

[39] M. A. Sanchis-Lozano, Weak decays of doubly heavy hadrons, Nucl. Phys. B 440, 251 (1995).

[40] E. Hernandez, J. Nieves and J. M. Verde-Velasco, Heavy quark symmetry constraints on semileptonic form-factors and decay widths of doubly heavy baryons, Phys. Lett. B 663, 234 (2008).

[41] X. H. Guo, H. Y. Jin and X. Q. Li, Weak semileptonic decays of heavy baryons containing two heavy quarks, Phys. Rev. D 58, 114007 (1998).

[42] D. Ebert, R. N. Faustov, V. O. Galkin and A. P. Martynenko, Semileptonic decays of doubly heavy baryons in the relativistic quark model, Phys. Rev. D 70, 014018 (2004) Erratum: [Phys. Rev. D 77, 079903 (2008)]

[43] R. H. Hackman, N. G. Deshpande, D. A. Dicus and V. L. Teplitz, M1 Transitions in the MIT Bag Model, Phys. Rev. D 18, 2537 (1978).

[44] T. Branz, A. Faessler, T. Gutsche, M. A. Ivanov, J. G. Korner, V. E. Lyubovitskij and B. Oexl, Radiative decays of double heavy baryons in a relativistic constituent three–quark model including hyperfine mixing, Phys. Rev. D 81, 114036 (2010).

[45] A. Bernotas and V. Šimonis, Radiative M1 transitions of heavy baryons in the bag model, Phys. Rev. D 87, 074016 (2013).

[46] X. H. Zhong and Q. Zhao, Strong decays of psi-prime-prime (4.028) as a Radial Excitation of Charmonium, Phys. Lett. 71B, 397 (1977); Why Is psi-prime-prime-prime (4.414) SO Narrow?, Phys. Lett. 72B, 57 (1977).

[47] C. Hayne and N. Isgur, Beyond the Wave Function at the Origin: Some Momentum Dependent Effects in the Nonrelativistic Quark Model, Phys. Rev. D 25, 1944 (1982).

[48] C. Patrignani et al. [Particle Data Group], Review of Particle Physics, Chin. Phys. C 40, 100001 (2016).