PROFILING NATIVE AND INTRODUCED PERENNIAL GARDEN PLANTS IN PUERTO RICAN URBAN RESIDENTIAL YARDS

Elvia Meléndez-Ackerman and Julissa Rojas Sandobal
Simposio de Manejo de Cuencas Hidrográficas

10 de Diciembre 2020
Biodiversity conservation and role of urban areas – CoP.

- COP 09 – CBD; Bonn, Germany: Today’s emphasis is on inclusion of urban areas in conservation planning.
- We are running out of space
- Emphasizes the role of the urban matrix to the connectivity of protected areas
- Recognizes a hierarchy in the management of biodiversity and that there is responsibility at all levels.
- Advocates integration of urban planning and design, with conservation goals.
Biodiversity in Cities

- Biological invasions are considered one of the most important global biodiversity threats

- Cities are dominated by non-natives (Pyšek and Richardson 2010; Rojas-Sandoval et al. 2016; Vilà and Hulme 2017).

- Some non-native species may provide important ecosystem services that may create management conflicts (Lugo 2004; Dickie et al. 2014, Novoa et al. 2018).
San Juan ULTRA Network (Sanjuanultra.org)

- Started as an NSF-funded Exploratory Project with long-term expectations

- Interdisciplinary evaluation of the San Juan Urban Socio-Ecological System

- Lifts baseline socio-ecological knowledge to reduce urban vulnerabilities or enhance adaptive capacity to local and global environmental changes.

- Uses the Rio Piedras Watershed (RPWS) as the unit of study

From Lugo et al. 2011
Household-level approach
Social and vegetation surveys; N = 432
10 species are invasives of mature forests

Shrub/Vine	Tree
Jasminum fluminense	*Schinus terebinthifolius*
Jatropha curcas	*Spathodea campanulata*
Syngonium podophyllum	*Syzygium jambos*
Ricinus communis	*Schefflera actinophylla*
Triphasia trifolia	*Mangifera indica*
Meléndez-Ackerman and Rojas Sandoval, Journal of Urban Ecology *In Press*

What is the profile of native and non-native species occurring in residential yards of the Rio Piedras Watershed?

Objectives:

1) Evaluate functional traits of residential vegetation that may facilitate invasion.

2) Use results from this and other studies to develop species list of high risk or low risk of invasion.
Table 1. Description of the parameters assessed for each plant species growing in 400 patios in San Juan, Puerto Rico. Information was obtained from: Acevedo-Rodríguez (2005), Acevedo-Rodríguez and Strong (2005, 2012); Liogier (1985-1997), Rojas-Sandoval and Acevedo, 2015; The Plant List, USDA-PLANTS and USDA-GRIN

Parameters	Description
Native range	Geographic distribution where native. Modified from Weber (2003) as: Africa, Asia, Europe, Australia-Pacific, continental America, West Indies
Life-form	Herb, shrub, tree, vine
Life-span	Annual, biennial, perennial
Reproduction type	Hermaphrodite, monococious, dioecious, gynomonoecious, andromonoecious, polygamous
Breeding system	Selfing (species rely almost exclusively on apomixis or autonomous self-pollination) outercrossing (species rely almost exclusively on cross-pollination) mixed (selfing + outercrossing)
Pollination type	Animal, wind, water, unspecialized
Fruit type	Achene, berry, capsule, caryopsis, cone, drupe, follicle, legume, nutlet, samara, syncarp, utricle
Seed size	Five size categories: 1 = seeds < 1 mm, 2 = 1–2 mm, 3 = 2–5 mm, 4 = 5–10 mm, 5 = seeds > 10 mm
Dispersal mode	Animal, wind, water, unspecialized
Vegetative propagation	Yes/No
259 introduced species (72%)
Parameters included in the best-fit model explaining the probability that non-native ornamental plants growing in urban residential yards may become invasive.

Parameters	Estimates	SE	P	Odds ratios
Intercept	5.246	2.648	0.002	
Vegetative propagation	1.481	0.393	<0.001	4.397
Unspecialized dispersion	0.495	0.618	0.003	1.641
Mixed breeding system	0.685	0.302	0.023	1.985
A. Reproductive traits only

Species	Family	Yard	Life Form	Breeding	Pollination	Fruits	Dispersion	Vegetative growth	Notes
Plectranthus amboinicus	Lamiaceae	14	shrub	mixed	animal	nutlet	unspecialized	YES	Weedy
Euphorbia nitida	Euphorbiaceae	10	herb	mixed	unspecialized	capsule	NO	YES	Bacteria carrier
Manihot esculenta	Euphorbiaceae	8	shrub	mixed	animal	capsule	animal	YES	Major pest carrier!
Ravenala madagascariensis	Strelitziaceae	8	tree	mixed	animal	capsule	animal	YES	Palm mite host
Aphel andra squarrosa	Acanthaceae	3	herb	mixed	animal	capsule	unspecialized	YES	Virus carrier

B. High C-scores and reproductive traits

Species	Family	Yard	Life Form	Breeding	Pollination	Fruits	Dispersion	Vegetative growth	Scores (%)		
Cananga odorata	Annonaceae	9	tree	outcross.	animal	fleshy	animal	YES	82.4 1.7	15.9	C/CR
Gliricidia sepium	Fabaceae	3	tree	outcross.	animal	legume	unspecialized	YES	81.8 12.6	5.6	C
Azadirachta indica	Meliaceae	2	tree	outcross.	animal	drape	animal	YES	78.9 15.9	5.1	C/CS
Annona muricata	Annonaceae	71	tree	outcross.	animal	fleshy	animal	YES	50.8 31.4	17.8	C/CSR

C. High R-scores and reproductive traits

Species	Family	Yard	Life Form	Breeding	Pollination	Fruits	Dispersion	Vegetative growth	Scores (%)		
Mentha pulegium	Lamiaceae	1	herb	mixed	animal	nutlet	unspecialized	YES	11.5 12.4	76.1	R/SR
Bougainvillea glabra	Nyctaginaceae	60	vine	outcross.	animal	dry	wind	YES	33.6 36.2	30.2	CSR
Origanum vulgare	Lamiaceae	1	herb	mixed	animal	nutlet	unspecialized	YES	5.1 70.0	24.9	S/SR
Annona muricata	Annonaceae	71	tree	outcross.	animal	fleshy	animal	YES	50.8 31.4	17.8	C/CSR
Cananga odorata	Annonaceae	9	tree	outcross.	animal	fleshy	animal	YES	82.4 1.7	15.9	C/CR

D. Yard Frequencies

Species	Family	Yard	Life Form	Breeding	Pollination	Fruits	Dispersion	Vegetative growth	Scores (%)		
Isora coccinea	Rubiaceae	173	shrub	outcross.	animal	fleshy	animal	YES	35.5 62.9	1.6	S/CS
Hibiscus rosa-sinensis	Malvaceae	76	shrub	mixed	animal	capsule	unspecialized	NO	44.4 38.1	17.5	CS/CSR
Theoharides, K. A. and Dukes, J. S. (2007),
Household

Age, Ownership, Others?

Top-Down Factors
Historical – e.g. Developer Landscaping Nursery Trade

Torres-Camacho et al 2016

Gift Exchange Network

Plant Dispersal Network

Historical – e.g. Prior Owner Landscaping

Bottom-up Factors
How to lower the potential of invasions

• Using a functional approach to management is recommended (i.e replace what may become invasive based on functional traits and services).

• Rojas Sandoval and Acevedo, 2016 – show that there are certain traits are associated with exotics that have become invasive in the Caribbean (introduced for horticultural purposes, mixed reproductive systems, weedy behavior, small seeds, clonal growth, long residence times).

• The majority of species in RPWS yards are introduced but only a fraction is currently invasive (18.6%)

 • Focus on species with “invasive” traits

 • Increase opportunity for native plants in the nursery market
Yard plant management also requires an ecosystem service approach.
Questions