Anomalous stepped-hysteresis and T-induced unit-cell-volume reduction in carbon nanotubes continuously filled with faceted Fe₃C nanowires

JiaChen Xia¹,², Jian Guo¹,²,⁶, Xi Zhang¹,², Mu Lan¹,³, Jiqiu Wen¹, Shanling Wang⁴, Yi He⁴, Gang Xiang¹,³*, Anna Corrias⁵*, and Filippo S Boi¹*,²*

¹ College of Physics, Sichuan University, Chengdu, People’s Republic of China
² Department of Chemistry, University College London, London, United Kingdom
³ Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu, People’s Republic of China
⁴ Analytical & Testing Center, Sichuan University, Chengdu, People’s Republic of China
⁵ School of Physical Sciences, University of Kent, Canterbury, United Kingdom
⁶ These authors contributed equally to this work.

* Authors to whom any correspondence should be addressed.
E-mail: f.boi@scu.edu.cn, a.corrias@kent.ac.uk and gxiang@scu.edu.cn

Keywords: carbon nanotubes, Fe₃C, hysteresis, faceted nanowires, ferromagnetism, antiferromagnetism

Supplementary material for this article is available online

Abstract

Ferromagnetically-filled carbon nanotubes have been recently considered important candidates for application into data recording quantum disk devices. Achievement of high filling rates of the ferromagnetic materials is particularly desirable for applications. Here we report the novel observation of carbon nanotubes continuously filled along the capillary with unusual μm-long faceted Fe₃C nanowires. Anomalous magnetic features possibly due to strain effects of the crystal facets are reported. Magnetization measurements revealed unusual stepped magnetic hysteresis-loops at 300 K and at 2 K together with an anomalous decrease in the coercivity at low temperature. The observed unusual shape of the hysteresis is ascribed to the existence of an antiferromagnetic transition within or at the boundary of the ferromagnetic facets. The collapse in the coercivity value as the temperature decreases and the characteristic width-enhancement of the hysteresis with the field increasing appear to indicate the existence of layered antiferromagnetic phases, possibly in the strain-rich regions of the nanowire facets. Zero field cooled (ZFC) and field cooled (FC) magnetic curves evidenced presence of magnetic irreversibilities, an indicator of a possible spin-glass-like behavior induced by competing antiferromagnetic and ferromagnetic interactions. Characterization performed with low temperature XRD measurements, further revealed a slight variation in the average Fe₃C unit cell parameters, suggesting the absence of additional unit-cell volume induced ferromagnetic transitions at low temperature.

Introduction

Molecular clusters behaving as single molecular magnets are typically able to show quantum tunnelling of magnetization at low temperatures [1–9] due to a ground state with a giant spin and an easy-axis of magnetization. These properties are different with respect to those measured in typical nano-ferromagnetic systems [10–16] where, owing to a large number of spins (10⁵–10⁸), the observation of quantum tunnelling is not trivial [16–31]. Interestingly Wernsdorfer et al showed that 5 types of stepped-hysteresis loops could be obtained in the case of ferromagnetic nanoparticles [16]. It was also shown that the magnetization reversal of a single ferromagnetic nanoparticle could be described by thermal activation over a single-energy barrier [17]. However, in agreement with the predicted cross-over temperature [18, 19] (T = 20 mK), no quantum effects were
reported. Observation of staircase-like hysteresis loops has been reported also in diluted magnetic semiconductors, examples of these systems include (In, Mn)As at low temperatures. In these systems formation of multiple magnetization jumps have been generally attributed to the depinning processes of magnetic domain walls [32]. Also, the formation of unusual magnetization steps, so-called Barkhausen jumps, has been reported in the presence of structural defects which strongly affect the magnetization process [33–35]. These effects have been recently observed in the specific cases of iron carbide/iron interfaces [35] and polycrystalline α-Fe-filled materials encapsulated within carbon nanotubes (CNTs) [33].

Possible influence of Kondo effects in such phenomena has been also excluded in recent Seebeck-studies [36].

Differently from these examples, other types of stepped hysteresis loops have been reported to arise in materials where coexistence of superparamagnetic- and ferromagnetic-single-domain- grains is present [37–40]. Existence of such magnetic phenomena has been also reported in conditions of: (I) coexistence of two magnetic components with contrasting coercivities, (II) relatively high ratios of the coercivity remanence to coercive force and (III) low coercivity components as large fraction of the total volume of the magnetic grains [37–40].

Additionally, the values of magnetic moment for certain types of ferromagnetic crystals (i.e. iron carbide Fe3C) have been reported to change under certain conditions of unit cell volume contraction [28, 41–44]. Interestingly, observation of temperature-driven structural transitions in CNTs filled with Fe3C nano-crystals was reported in a recent work by Boi et al [41]. In that study, temperature dependent x-ray diffraction (T-XRD) measurements from 12 K to 298 K and Rietveld refinement analyses revealed a cooperative reversible 2θ-shift in both the 002 peak of the graphitic CNTs-walls and the 031 and 131 peaks of the encapsulated Fe3C nano-crystals, evidencing a contraction in the average unit-cell volume of Fe3C with the decrease of the temperature [41].

Unusual variation of the magnetization with temperature and applied field in CNTs films containing a large quantity of Fe3C were also reported by Karmakar et al by SQUID magnetometry [43] and attributed to exchange bias effects resulting from magnetic interaction with secondary γ-Fe-phases (inside the CNTs) [43].

Appearance of butterfly shaped signal in the magnetization hysteresis has been also indicated as a hint to ferrimagnetism (see Mihalik et and Wollan et al in ferrimagnetic oxide-based materials (NdMn1−xFeO3) and [(1−x)La, xCa]MnO3 systems [45, 46]). Unusual hysteresis shapes were reported also by Hellwig et al in presence of an antiferromagnetic-coupling effect between ferromagnetic multilayers [47].

In this work we report the novel observation of anomalously stepped hysteresis loops exhibiting a temperature-induced collapse in the magnetic coercivity parameter, in multiwall carbon nanotubes (MWCNTs) filled with faceted long ferromagnetic Fe3C nanowires (diameter of 40–60 nm and length of 1–5 micrometres).

The encapsulated nanowires were found to exhibit a unit-cell with averagely large atomic-parameters $a = 0.510 \, 9243 \, \text{nm}, b = 0.667 \, 5692 \, \text{nm}, c = 0.454 \, 3652 \, \text{nm}$ and an average volume of $0.157 \, 06 \, \text{nm}^3$.

The observed magnetic phenomenon is ascribed to the possible existence of layerd antiferromagnetic interactions at the defective grain boundaries of the Fe3C-facets (created by the fast cooling) within the μm-long faceted nanowires. The change in the coercivity parameters with the decrease of the temperature from 300 K to 2 K cannot be explained on the basis of previous works on Fe-filled nanotubes. The appearance of such strained faceted features (as revealed by high resolution transmission electron microscopy (HRTEM)) in the encapsulated nanowires and the observed Fe3C-unit cell reduction, as revealed by T-XRD and Rietveld refinements, implies instead the possible formation of ferromagnetic-antiferromagnetic interfaces at low temperature. Zero field cooled (ZFC) and field cooled (FC) magnetic curves highlighted the presence of magnetic irreversibilities, an indicator of a possible spin-glass-like behavior induced by competing antiferromagnetic and ferromagnetic interactions.

The observed small variation in the average Fe3C unit cell parameters, as extracted by Rietveld refinements, further suggest the absence of unit-cell volume induced magnetic moment transitions [28].

Experimental

MWCNTs filled with Fe3C nanowires (diameter of 40–60 nm) were produced by sublimation and pyrolysis of ferrocene and dichlorobenzene mixtures (40 mg of ferrocene were mixed with one drop of dichlorobenzene). A quartz tube reactor of 1.5 m and an Ar flow rate of 11 ml min$^{-1}$ were used. The samples were cooled down with cooling times of 10–20 min by removing the furnace along a rail system (quench). Different sublimation temperatures were used (the value of sublimation temperature was measured within the area occupied by the ferrocene-containing quartz boat, within the quartz tube reactor), and the pyrolysis temperature was 990 °C. The duration of each reaction was 10 min. Fe3C filled carbon nano-onions (CNOs) were produced for comparative purposes, following the method reported in [48]. Different average unit-cell volumes (determined via Rietveld refinement of the XRD patterns) were obtained for the MWCNTs depending on the used
sublimation temperature: 0.155 28 nm\(^3\) with 630 °C–700 °C; 0.156 08 nm\(^3\) with 530 °C–600 °C; 0.157 06 nm\(^3\) with 460 °C–530 °C and 0.157 78 nm\(^3\) with 360 °C–460 °C. Note that the observed effect was then found to vanish for larger quantities of ferrocene (i.e. ~100–200 mg), owing to the increase of the overall CNTs-diameter and systematic differences in the carbon to metal ratios within the pyrolyzed vapor. A 200 kV American FEI Tecnai G2F20 HRTEM and a Philips X’pert Pro MPD powder x-ray diffractometer (Cu K-\(\alpha_{1,2}\), \(\lambda = 0.154 18\) nm) were employed for the crystal characterization. The magnetic characterization was performed at 300 K with a vibrating sample magnetometry 2.5 Tesla electromagnet East Changing 9060 by using a magnetic field of 13 000 Oe and at 2 K with a Quantum Design Superconducting Quantum Interference Device by using the magnetic field of 10 000 Oe. T-XRD measurements were performed on a PANalytical Empyrean.

Figure 1. TEM (A), (B) and HRTEM (C) micrographs of a typical Fe\(_3\)C crystal encapsulated inside a MWCNT. The inset in C shows the reduced Fourier transform of the lattice (see text for lattice indexing).

Figure 2. XRD pattern (acquired at ~298 K) of a typical powder sample of MWCNTs filled with Fe\(_3\)C (unit cell volume of 0.15706 nm\(^3\)). The red line represents the Rietveld refinement of the measured data (black line). Each peak is indicated with the corresponding lattice reflection.
powder x-ray diffractometer, equipped with a primary Johansson monochromator (Cu K-\(\alpha_1\), \(\lambda = 0.154\,\text{06 nm}\)), an Oxford Cryosystems PheniX cryostat operating under vacuum below 10–2 Pa, and a X’celerator linear detector. Measurements were collected from 12 K to 298 K (12 K, 20 K, 30 K, 40 K, 50 K, 60 K, 70 K, 80 K, 90 K, 100 K, 120 K, 140 K, 160 K, 180 K, 200 K, 220 K, 240 K, 260 K, 280 K and 298 K). See also [49] for comparative SQUID magnetometry measurements on Fe3C filled CNOs, in absence of nanowire facets.

Figure 3. In A HRTEM micrograph of typical faceted Fe3C crystal inside a MWCNT. The inset profile analysis shows the size of a selected faceted-like area of the nanowire where a variation in the unit cell volume is found. Note the presence of repeated bright and dark areas implying existence of strain in the nanowire lattice, which could be at the origin of the formation of antiferromagnetic regions in the sample. In B HRTEM micrographs of another area of a typical Fe3C crystal inside the MWCNT. The inset profile analysis shows the size of a selected faceted-like area of the nanowire where a variation in the unit cell volume is found. Note also in this case the presence of repeated bright and dark areas implying existence of strain in the nanowire lattice. In C and D HRTEM micrographs showing other examples of faceted Fe3C crystals inside a MWCNT with atomic resolution.

Figure 4. Profile analyses of the Fe3C nanowire. Note the variation of the lattice parameters in the dark region (which represents a zone of nanowire bending) from the value of 0.498 nm to the value of 0.509 nm. Such lattice variation along the nanowire volume implies possible presence of multiple magnetic contributions to the observed hysteresis, as a consequence of nanowire localized lattice–stress in the faceted areas. Possible strain–induced formation of antiferromagnetic–ferromagnetic interfaces due to the fast cooling used in the experimental methods is suggested.
Results and discussion

A typical example of MWCNTs completely filled with Fe$_3$C nanowires is shown in the transmission electron micrograph of figure 1(A). It is interesting to notice that a variation in the volume distribution of the Fe$_3$C crystal along the MWCNT-core is present with the formation of unusually faceted atomic lattice periodicities characterized by repeated dark and bright contrasts within individual encapsulated nanowires. A typical XRD measurement confirming the presence of Fe$_3$C in the sample is shown in figure 2. The Fe$_3$C phase was identified by the 210, 002, 201, 211, 102, 220, 031, 112, 131, 221 and 122 reflections. The unit cell parameters determined via Rietveld refinement were: $a = 0.510\,9243\,nm$, $b = 0.676\,5692\,nm$, $c = 0.454\,3652\,nm$ (unit cell volume of 0.157\,06\,nm3). Detailed HRTEM measurements revealed further a high detail of the Fe$_3$C crystal-lattice. As shown in figures 1(B) and 3, slight variations in the lattice parameters could be probed in different regions of the encapsulated carbide nanowires. In the inset of figure 1(C), the reduced Fourier transform allowed to identify the 100 (cyan circles) and 001 (yellow circles) lattice planes of Fe$_3$C with space group Pnma corresponding to the spacings of approximately 0.51\,nm and 0.45\,nm respectively.

Presence of unusual hysteresis loops, characterized by a characteristic width-enhancement with the field increasing was revealed in the room-temperature magnetization versus applied field hysteresis (see rose-colored hysteresis figures 5(A) and (B)) of a powdered-sample comprising many randomly oriented filled MWCNTs as those shown in figure 1. Two steps were identified at approximately 492 Oe, 22.4 emu g$^{-1}$, and at -460 Oe, -22.9 emu g$^{-1}$. A saturation magnetization of 109 emu g$^{-1}$ and a coercivity of 850 Oe were measured.

The hysteresis loop was further measured also at 2 K (see figures 5(A) and (B), dark magenta hysteresis). These measurements revealed a temperature-induced shift in the step-position together with an increase in the
length parameter of each step. The two anomalously long step-features were found at 96.6 Oe, 37 emu g\(^{-1}\) and at -100 Oe, -37 emu g\(^{-1}\). The length of each step was found to be 58–62 emu g\(^{-1}\). An extremely low coercivity of 100 Oe and a higher saturation magnetization of 120 emu g\(^{-1}\) were also measured at low temperature. We can immediately notice that these properties are very different with respect to those reported at 0.2 K by Wernsdorfer et al [16]. Also, the observed trend is significantly different with respect to that measured by Boi et al in non-faceted Fe\(_3\)C filled CNOs in [49], where a progressive increase in the coercivity parameter with the decrease of the temperature was found.

Stepped hysteresis loops have been reported also in the case of single-molecule magnets [1, 9], nanomagnets [25, 26], FeC crystals and Fe/Sm multilayers [20–27]. However due to the large number of atomic periodicities comprised in the Fe\(_3\)C nanowires, the temperature of observation and the unusual dynamics of coercivity decrease, the origin of the observed step features is not attributable to quantum tunneling of magnetization effects or the possible presence of a wasp-waisted hysteresis loops. Instead, given the presence of strained regions in the encapsulated nanowires, the formation of ferromagnetic/antiferromagnetic interfacial features is possible [47]. Comparing the observed hysteresis in figure 5(B) with those observed in antiferromagnetically-coupled ferromagnetic multilayers, a similarity in the shape of the hysteresis is noticeable [47].

Additional investigation of this magnetic transition was considered by employing ZFC and FC methods to extract the variation of the magnetic moment with temperature. Figure 6 shows the ZFC and FC magnetization versus temperature signals acquired from 2 K to 300 K at the field of 300 Oe. It is important the notice the existence of a spin-glass-like behavior possibly arising from competing ferromagnetic and antiferromagnetic interactions. It is also important to highlight the presence of a negative magnetic moment within all the temperature range.

Figure 6. ZFC and FC magnetic curves in A and B, acquired from two different portions of the filled CNTs product. At ~70 K it is noticeable the presence of a spin-glass-like behavior possibly arising from competing ferromagnetic and antiferromagnetic interactions. It is also important to highlight the presence of a negative magnetic moment within all the temperature range.

Further investigation of the possible existence of T-induced structural variation in the Fe\(_3\)C unit-cell volume was considered by employing T-XRD and Rietveld refinements. These Rietveld refinements were performed on
the same dataset acquired in [41] for CNTs filled partially or continuously with Fe₃C. Repeated Rietveld refinements were performed on a narrower 2θ region of the XRD patterns reported in [41]. The improved quality of the refined data allowed for a more accurate estimation of the unit cell volume variation which appears to slightly decrease with the decrease of temperature in both cases. Note however that the observed change in unit cell volume values is not comparable to that required for the observation of significant transitions in magnetic moment values, as indicated in [28, 29].

Figure 7. Plots showing the variation of the 100, 010, 001 axis values and of the unit-cell-volume of Fe₃C nanowires encapsulated continuously (A)–(D) and partially (E)–(H) inside the CNTs. This was determined via repeated Rietveld refinements performed on a narrower 2θ region of the XRD patterns reported in [41]. The improved quality of the refined data allowed for a more accurate estimation of the unit cell volume variation which appears to slightly decrease with the decrease of temperature in both cases. Note however that the observed change in unit cell volume values is not comparable to that required for the observation of significant transitions in magnetic moment values, as indicated in [28, 29].
0.52% in the continuously filled CNTs case (figure 7(D)) and of 0.06% in the partially filled CNT case (figure 7(H)). The unit cell volume appears to slightly decrease with the decrease of the temperature. Note however that the observed volume change is not comparable to that required for the observation of significant transitions in unit-cell magnetic moment values [28].

In order to further verify this interpretation, additional comparative measurements were then performed on Fe$_3$C filled CNOs produced according with the method reported in [48] (see figure 8 for typical TEM images) in a comparable temperature range (see also supp. materials in [49] for comparative magnetization measurements). As shown in figures 9–11 also in this case a weak contraction in the average unit cell volume of Fe$_3$C and in the graphitic c-axis of the CNOs was found with the decrease of the temperature, with a small Fe$_3$C unit cell volume change of 0.27%.

This observation appears to confirm the above interpretation and suggests the absence of Fe$_3$C unit cell induced magnetic moment transitions at low temperature in these types of materials. Instead, a crucial role in the appearance of the observed stepped magnetization hysteresis appears to be taken by the faceted morphology of the nanowires. This observation is confirmed by direct comparison with other magnetization measurements performed in non-faceted Fe$_3$C-filled CNOs, reported in [49]; indeed, in this latter CNO-case an opposite trend involving a significant increase of the coercivity parameter with the decrease of the temperature was found.

Conclusions

In conclusion in this work we have shown that MWCNTs filled with Fe$_3$C nanowires can show unusual stepped-like hysteresis loops due to strain induced variation of the Fe$_3$C nanowire volume. The origin of the observed stepped hysteresis was attributed to existence of antiferromagnetic–coupling in ferromagnetic faceted-interfaces. These findings open new avenues towards investigation of antiferromagnetism in faceted Fe$_3$C filled CNTs systems for application in magnetic devices.
Acknowledgments

We are grateful for the financial support from the National Natural Science Foundation of China Grants Nos. 51671137, 11750110413 and 11950410752. We also acknowledge the analytical and testing center of Southwest Jiaotong University for the technical support in the magnetic measurements performed with SQUID.

Figure 9. XRD patterns and Rietveld refinements (colored lines) in the temperature range from 12 K to 298 K for the specific case of Fe$_3$C-filled CNOs.

Figure 10. Plot showing the variation of the unit cell c-axis of CNOs as a function of the change of the temperature from 12 K to 298 K. A contraction effect similar to that observed in [41] is observed, with decreasing temperature.
Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

Conflicts of interest

There are no conflicts of interest to declare.

ORCID iDs

Gang Xiang https://orcid.org/0000-0002-5060-975X
Anna Corrias https://orcid.org/0000-0002-5190-8196
Filippo S Boi https://orcid.org/0000-0002-1586-5141

References

[1] Mannini M et al 2010 Quantum tunnelling of the magnetization in a monolayer of oriented single-molecule magnets Nature 468 417–22
[2] Mannini M et al 2009 Magnetic memory of a single-molecule quantum magnet wired to a gold surface Nature Mater. 8 194–7
[3] Leuenberger MN and Loss D 2001 Quantum computing in molecular magnets Nature 410 789–93
[4] Bogani L and Wernsdorfer W 2008 Molecular spintronics using single-molecule magnets Nature Mater. 7 180–6
[5] Wernsdorfer W 2007 Molecular magnets, a long-lasting phase Nature Mater. 6 174–6
[6] Mougel V et al 2012 Uranium and manganese assembled in a wheel-shaped nanoscale single-molecule magnet with high spin-reversal barrier Nature Chem. 4 1012–7
[7] Wernsdorfer W 2009 Molecular magnets: chemistry brings qubits together Nat. Nanotechnol. 4 145–6
[8] Ardavan A et al 2007 Will spin-relaxation times in molecular magnets permit quantum information processing? Phys. Rev. Lett. 98 057201

Figure 11. Plot showing the variation of the unit cell (010), (100), (001) axis and calculated unit cell volume of Fe₃C filled CNOs by the change of the temperature from 12 K to 298 K. A 0.32% average unit cell volume change is shown in (D) in the temperature range from 12 K to 298 K.
[9] Udampilla M et al 2011 Molecular quantum spintronics: supramolecular spin valves based on single-molecule magnets and carbon nanotubes Int. J. Mol. Sci. 12 6656–67

[10] LR et al 2009 In situ synthesis and magnetic anisotropy of ferromagnetic buckypaper Carbon 47 1141–5

[11] Weissker U et al 2009 Perpendicular magnetization of long iron carbide nanowires inside carbon nanotubes due to magnetocrystalline anisotropy J. Appl. Phys. 106 054309

[12] Hampel S et al 2006 Growth and characterization of filled carbon nanotubes with ferromagnetic properties Carbon 44 2316–22

[13] Morelos-Gomez A et al 2010 Controlling high coercivities of ferromagnetic nanowires encapsulated in carbon nanotubes Journal of Material Chemistry 20 5996–14

[14] Leonhardt A et al 2003 Synthesis and properties of filled carbon nanotubes Diam. Relat. Mater. 12 790–3

[15] Prados C et al 2002 Hysteresis shift in Fe-filled carbon nanotubes due to Fe Phys. Rev. B 65 113405

[16] Wernsdorfer W et al 1995 DC-SQUID magnetization measurements of single magnetic particles J. Magn. Magn. Mater. 145 33–9

[17] Wernsdorfer W et al 1997 Experimental evidence of the Newb–Brown model of magnetization reversal Physical Rev. Letters 78 1791–1794

[18] Chudnovsky E M and Gunther L 1988 Quantum theory of nucleation in ferromagnets Phys. Rev. B 37 9453–9

[19] Chudnovsky E M and Gunther L 1988 Quantum theory of nucleation in ferromagnets Physical Rev. Letters 60 661–4

[20] Barbara B and Wernsdorfer W 1997 Quantum tunneling effect in magnetic particles Curr. Opin. Solid State Mater. Sci. 2 220–5

[21] Wernsdorfer W et al 1996 Nucleation of magnetization reversal in individual nanosized nickel wires Physical Rev. Letters 77 1873–6

[22] Buffet P and Borel J P 1976 Size effect on the melting temperature of gold particles Phys. Rev. A 13 2287

[23] Gangopadhyay S et al 1992 Magnetic properties of ultrafine iron particles Phys. Rev. B 45 9778

[24] Tae–Jin P et al 2007 Size-dependent magnetic properties of single-crystalline multiferroic BiFeO₃ nanoparticles Nano Lett. 7 776

[25] Thomas L et al 1996 Macroscopic quantum tunneling of the magnetization in a single crystal of nanomagnets Nature 383 145–7

[26] Friedman JR, Sarachik MP, Tejada J and Ziolo R 1996 Macroscopic measurement of resonant magnetization tunneling in high-spins molecules Phys. Rev. Letters 76 3830–3

[27] Zhang X et al 1992 Quantum tunneling effects in Fe/Sm multilayers. I Phys. Condens. Matter 4 L38–6

[28] Duman E 2005 Magnetic instabilities in Fe,S, cementite particles observed with Fe K-edge x-ray circular dichroism under pressure Phys. Rev. Lett. 94 075502

[29] Hofer L E and Cohn E M 1958 Saturation Magnetization of Iron Carbides. 81 1576–82

[30] Verdaguer M 1996 Molecular electronics emerges from molecular magnetism Science 272 698–9

[31] Rocha A R et al 2005 Towards molecular spintronics Nature Materials 4 335–9

[32] Otwa A, Endo A, Katsumoto S, Iye Y and Munekata H 2000 Staircase-like hysteresis loop in III–V compound diluted magnetic semiconductor (In,Mn)As at low temperatures Physica B 284–288 1173–4

[33] Boi F S et al 2014 Controlling the quantity of α-Fe inside multiwall carbon nanotubes filled with Fe-based crystal: the key role of vapor flow-rate Appl. Phys. Lett. 105 243108

[34] Satishkumar B C, Govindaraj A, Vanitha P V, Raychaudhuri A K and Rao C N R 2002 Chem. Phys. Letters 362 301

[35] Taallah A, Willis M, Guo J, Xia J, Lan M, Zhang S, Wang S, He Y, Xiang G and Boi F S 2018 Observation of lamellar like fringes and Barkhausen effects in iron-carbon filled vertically aligned carbon nanotubes J. Applied Phys. 124 214303

[36] Boi F S, Guo J, Wang S, He Y, Xiang G, Zhang X and Baxendale M 2016 Fabrication of cm scale buckypapers of horizontally aligned multiwalled carbon nanotubes highly filled with Fe3C: the key roles of Cl and Ar-flow rates Chem. Commun. 52 4193

[37]uttoni G 1995 ‘Wasp-waisted’ hysteresis loops from a pyrrhotite and maghemite-bearing magnetized Triassic limestone Geophys. Res. Lett. 22 3167

[38] Bennet LA and Della Torre E 2005 Analysis of wasp- waist hysteresis loops J. Appl. Phys. 97 10E902

[39] Magna de Lima Alves T, Ferreira Amorim B, Antonio Morales Torres M, Gomes Bezerra C, Nobrega de Medeiros S, Lana Gastelois P, Bennetta L H and Della Torre E 2005 Analysis of wasp-waist hysteresis loops from a pyrrhotite and magnetite-bearing Triassic limestone Geophys. Res. Lett. 22 3167

[40] Roberts A P, Cui Y and Verosub K L 1995 Wasp-waisted hysteresis loops: mineral magnetic characteristics and discrimination of components in mixed magnetic systems Journal of Geophysical Research: Solid Earth 100 17909–24

[41] Boi F S, Zhang X and Corrias A 2018 Temperature driven structural transitions in the graphitic-arrangement of carbon onions filled with Fe/C nanocrystals Mater. Res. Express 5 025010

[42] Kumari R et al 2016 Fe,C filled carbon nanotubes: permanent cylindrical nanомagnets possessing exotic magnetic properties Nanoscale 8 4299–310

[43] Karmakar S, Sharma SM, Mukadam M D, Yusuf S M and Sood AK 2005 Magnetic behaviour of iron-filled multiwalled carbon nanotubes J. Applied Phys. 97 054306

[44] Mukh T, Eletfant D, Graff A, Kozuharova R, Leonhardt A, Mönch L, Ritschel M, Simon P, Groudeva-Zotova S and Schneider C M 2003 Magnetic properties of aligned Fe-filled carbon nanotubes J. Appl. Phys. 93 7894

[45] Mihalik M Jr, Mihalik M, Lazirulova J, Fitta M and Vavra M 2013 Magnetic properties of NdMn1−xFexO3+y system EPJ Web of Conferences 40 15007

[46] Wollan EO and Koehler W C 1955 Neutron diffraction study of the magnetic properties of the series of perovskite-type compounds (A−x)La,xcAlO3 Physical Rev. 100 545–63

[47] Hellwig O, Kik T L, Kortright J B, Berger A and Fullerton E E 2003 A new phase diagram for layered antiferromagnetic films Nat. Mater. 2 112–6

[48] Boi F S, Guo J, Xiang G, Lan M, Wang S, Wang W and He Y 2017 cm-size free-standing self-organized buckypaper of bucky-onions filled with ferromagnetic Fe,C RSC Adv. 7 849

[49] Boi F S, Ivaturi S, Wang S and Zhang X 2017 Temperature driven structural transitions in the graphitic-arrangement of carbon onions filled with Fe/Pd nano crystals Carbon 120 392–6 (see supplementary materials of this reference for hysteresis loops and temperature dependent measurement of the magnetization of Fe,C-filled CNOs)

[50] Tackett R J, Bhuinya A W and Botez C E 2009 Dynamic susceptibility evidence of surface spin freezing in ultrafine NiFe2O4 nanoparticles Nanotechnology 20 445705

[51] Nagata S, Keonon P H and Harrison H R 1979 Low-dc-field susceptibility of CuMn spin glass Phys. Rev. B 19 1633–8