Molecular characterization of salmonella species and E. coli isolated from dogs and cats

Reham Mekky1, Abdel-Moneim Moustafa2, Rania Abo-Sakaya*, Khairy Abu-Zaid3

1Department of Pet Animals, Awsim Veterinary Hospital, Giza
2Department of Animal Medicine, Faculty of Veterinary Medicine, Benha University, Egypt
3Department of Bacteriology, Animal Health Research Institute Dokki branch

ARTICLE INFO

Keywords
Salmonella
E. coli
virulent
Resistant
PCR

ABSTRACT

In this study we aimed to investigate salmonella and E. coli serovars from fecal swabs collected from apparently healthy and diarrheic dogs and cats by bacteriological examination. 150 fecal samples of dogs and cats were examined for salmonella and E. coli species. Salmonella species were isolated from 40 cases out of 150, 30 of the salmonella positive samples were from dogs (31.6%), and 10 were from cats (18.2%) while 45 samples were positive for E. coli, 25 from dogs (26.4 %) and 20 from cats (36.4 %). E. coli and salmonella positive samples were subjected to antimicrobial disc diffusion susceptibility test by using 10 different antibiotic discs. Molecular investigation was done to detect the virulent gene of salmonella (inv A) and E. coli (eae A) and antibiotic resistant gene for both salmonella and E. coli (blaTEM) using PCR.

1. INTRODUCTION

E. coli is the most popular gram-negative bacteria isolated and identified in clinical microbiology labs. (Trepeta and Edberg 1984). PCR is used to detect the virulence markers associated with Enteropathogenic and Enterotoxigenic E. coli; both VT2e gene and eaeA gene are the most common virulence genes of E. coli in dogs and cats. The eaeA gene of Enter pathogenic E. coli (EPEC) is necessary for intimate attachment to epithelial cells. Also, detection of Escherichia coli resistance gene; blaTEM gene was carried out (Coquet et al 2002).

Pets are important reservoirs of antibiotic resistant bacteria (Guardabassiet al., 2004). Rapid, cost-effective, real-time PCR methods is available, but few clinical diagnostic laboratories have fully embraced this technology and there have been no multicenter validations for the use of PCR to detect Salmonella in infecting animals (Ward et al 2005). Antibiotic resistance may be naturally occurring or acquired. Natural or intrinsic antibiotic resistance is due to internal structural or physiological nature of microbes. It is chromosome encoded and non-transferable. It is plasmid or chromosome encoded and transferable to other bacteria (Davies and Davies 2010). Antibiotic resistance increases the cost of treatment and causes mortality and morbidity. Due to the close contact of pet animals and owners, pets are alarming reservoir of antibiotic resistance. Antibiotic resistant bacteria- of zoonotic importance pose substantial threat to public health as well (Damborger et al., 2015). For detection of Salmonella a harmonized method is used with several modifications, including the use of Rappaport-

siladias (RV) broth instead of modified semisolid Rappaport Vassiliadis (MSRV) for enrichment and the use of xylose-lysine-tergitol 4 (XLT4) and brilliant green with novobiocin (BGN) instead of xylose lysine deoxycholate (XLD) for the selective medium. Media in identical lots were obtained from the same vendor. Salmonella O antisera were used to confirm the presence of Salmonella (Reimschuessel, et al 2017). The aim of this study was to investigate salmonella and E. coli in dogs and cats by isolation, identification and determine their antibiotic resistance pattern.

2. MATERIAL AND METHODS

2.1 Material:
2.1.1. Animals and Fecal swabs:
From January 2018 to January 2019 about 150 fecal samples were collected from dogs and cats of different ages (in dog’s age ranges from 6 months to 5 years and in cats from 3 months to 3 years) of both sexes; males and females.
Some animals are fed naturally homemade food and others are fed artificial dry or wet food.
Samples were collected from different vet clinics and hospitals in Giza governrate.
2.1.2. Media used:
A) Media used for isolation of Salmonellae and E. coli: Non- selective enrichment media (pre- enrichment) (Oxoid, UK) Buffered peptone water (BPW) broth. It was distributed as 9 ml tubes and was used for the optimal recovery of Salmonella and E. coli also for the reactivation.
Selective enrichment broth (Oxoid, UK):

* Corresponding author: Rania Abo-Sakaya, Department of Animal Medicine, Faculty of Veterinary Medicine, Benha University, Egypt. Email: rania.aboskayah@fvtm.bu.edu.eg
a. Rappaport-Vassiliadis broth: distributed as 10 ml tubes. This medium was used for selective isolation of *Salmonella* and *E. coli*.
b. Muller- Kauffmann tetrazionate/ novobiocin broth (MKTTn broth): distributed as 10 ml of tubes. A selective medium that allows *bacteria* to grow and multiply.

Selective plating media (Oxoid, UK)
1. Xylose Lysine Deoxycholate agar (XLD agar).
2. Brilliant Green agar (BGA).

B) Media used for biochemical identification of *Salmonella* and *E. coli*:
1. Christensen's Urea agar medium (Oxoid, UK). It was used to test the production of urease.
2. Glucose phosphate broth (Oxoid, UK). It was used for the methyl red (MR) and Voges-Proskauer (VP) tests.
3. Lysine iron agar medium (Oxoid, UK). It was used to test the production of lysine decarboxylase.
4. Simmon's citrate agar (MERCK, Germany). It was used to test citrate utilization test.
5. Triple Sugar Iron agar medium "TSI" (Oxoid, UK). It was used to detect the production of hydrogen sulfide (H2S) and glucose, lactose and sucrose fermentation.
6. Tryptone broth (Oxoid, UK). It was used for detection of indole production using Kovac's reagent.
7. Methyl red so
8. Voges-proskauer test strips (Oxoid, UK).
9. Mueller Hinton agar medium (LAB M, UK). It was used to preserve *Salmonella* isolates by repeated subculture for serotyping.
10. semi-solid (soft) nutrient agar medium 0.4% was used for serotyping and for detection of motility.
11. Tryptic soya agar (TSA) (Oxoid, UK). It was used to spread bacterial isolates as a non-selective medium.

D) Media and chemicals used for antibiogram assay:
1. nephelometer barium sulphate standard tube No (0.5) (PRO-LAB, UK). It was used for determination of the approximate number of bacteria by turbidity standard that corresponding to 1.5x10^8 organisms/ml.
2. Mueller Hinton agar medium (Oxoid, UK). It was used to test escherichia coli and to cryopreserve isolates with the silico-membrane.
3. Mueller Hinton broth (Oxoid, UK). Antimicrobial susceptibility testing medium was used for propagation of the isolates.

2.1.3. Chemicals and reagents used for biochemical and serological identification of *Salmonella* and *E. coli*:
H2O2 3% solution.
Kovac's Indole Reagent (Oxford, India).
McFarland nephelometer barium sulphate standards tube No (2.0) (Pro-Lab Diagnostic, U.K).
Oxidase test strips (Oxoid, UK).
Methyl red solution 0.04 % (Sigma-Aldrich).
Voges-Proskauer reagent.
Sterile normal saline solution 0.85%.
Urea solution 40% (Oxoid, UK).

2.1.4. Diagnostic *Salmonella* antigens:
Diagnostic: monovalent, polyvalent and monovalent *Salmonella* O and H (phase 1 and phase 2) antigens (DENKA SEIKEN CO., LTD) and (Pro- Lab Diagnostic, U.K).

2.1.5. Antimicrobial susceptibility discs materials (Oxoid, UK):
TenAntimicrobial discs containing six antimicrobial types. Every antimicrobial disc was selected to represent the corresponding class of antibiotics (β-lactam, amino glycosides, tetracycline, fluoroquinolones, potentiated sulfonamides and phenicol). In this study we used the group of aminoglycosides (gentamicin and streptomycin), the group of tetracyclines (doxycycline), the group of fluoroquinolones (norfloxacin, enrofloxacin, nalidixic acid and levofloxacin), the group of β-lactam (ampicillin), the group of potentiated sulfonamides (sulphamethaxozle / trimethoprim) and the group of phenicols (chloramphenicol) (Table 1).

Antimicrobial agents	Disc code	Concentration (\(\mu g\))
Gentamicin	G	10
Streptomycin	S	10
Doxycycline	DO	30
Norfloxacin	NOR	10
Enrofloxacin	ENR	5
Nalidixic acid	NA	30
Levofloxacin	LEV	5
Ampicillin	AM	10
Sulphamethaxozle/trimethoprim	SXT	25
Chloramphenicol	C	30

2.1.6. Material used for DNA extraction:
QIAamp DNA Mini Kit (Catalogue no.51304): The QIAamp DNA Mini Kit provides silica-membrane-based nucleic acid purification from different types of samples. The spin-column procedure does not require mechanical homogenization, so total hands-on preparation time is only 20 minutes.

Ethanol 96% (Applichem)

PCR Master Mix used for cPCR:
Emerald Amp GT PCR master mix (Takara) Code No. RR310A Contains:
A) Emerald Amp GT PCR master mix (2x premix).
B) PCR grade water.

Oligonucleotide primers used in cPCR:
Source: Metabion, Germany (table 2).

DNA Molecular weight marker: 100 bp DNA ladder (cat. NO. SM0243) supplied from Fermentas.

Material used for agarose gel electrophoresis:

a. Agarose 1.5% (Sambrook et al., 1989)
A multi-purpose, high gel strength agarose suitable for a wide range of molecular biology techniques.

agarose powder (AB gene) 1.5 g
TBE 100 ml

b. Ethidium bromide solution 10 mg / ml (Sambrook et al., 1989)
Ethidium bromide powder (Sigma) 10 mg
Sterile DDW 1.0 ml
It was mixed and stored covered at 4°C
It was added to melted agarose to reach a final concentration of 0.1-0.5 \(\mu g/ml\).

Tris borate EDTA (TBE) electrophoresis buffer (1x) (WHO, 2002)

Primer	Sequence	Amplified product	Reference
Salmonell a invA	GTGAAATATTATGCAGGCCACGTTTCG	ACC	Oliveira et al., 2003
Salmonell a invA	TCACTGCACCAGTCGACAGGA	ACC	Oliveira et al., 2003
E. coli eaeA	ATGCTTTAGGCTTCGTTAGG	248 bp	Bisi-Johnson et al., 2011
blaTEM	GCCCTCTATCATGTTGCTTC	516 bp	Colom et al., 2003
2.2. Methods:

2.2.1. Clinical Examination of animals:
All animals were examined clinically for temperature, pulse and respiratory rates and for presence of any abnormal clinical signs. (AL-Kubaisi et al. 2020).

2.2.2. Fecal swabs:
One hundred and fifty rectal swabs were collected from household dogs and cats at Giza governorate from different vet. Clinics and hospitals. Swabs were transported to Animal health institute in Dokki under complete hygienic condition.

2.2.3. Isolation of Salmonella and E.coli:
The method for enterobacteriaceae detection, isolation and identification was applied according to (ISO 6579 2002), isolation requires three successive stages:

Stage 1: pre-enrichment in non-selective liquid broth:
Initially, the rectal swabs were inoculated into a non-inhibitory liquid medium to improve the repair and development of stressed or sub-lethal enterobacteriaceae due to heat exposure, freezing, large temperature fluctuation, and high osmotic pressure. Inoculated in tubes of 9 ml of buffered peptone water for 1/10 dilution (weight to volume) incubation at 37°C ±1°C for 18±2 hours.

Stage 2: Enrichment on a selective liquid broth:
Each culture of pre-enrichment has been inoculated into two enrichment media to promote microbial proliferation by selectively inhibiting the growth of competing microorganisms. From the pre-enrichment cultures 0.1ml was transferred to tubes containing 10 ml Rappaport Vassiliadis broth and then incubated at 41.5°C ±1°C for 24±3 hour. One ml of the pre-enrichment culture was also transferred to tube contain 10ml Muller-Kauffmann tetrathionate /novobiocin broth and incubated at 37°C for 24±3 hour.

Stage 3: Plating into selective agar media:
Each enrichment culture was streaked into a minimum of two agars for isolation. 10µ loop-full of the inoculated Muller-Kauffman tetrathionatenovobiocin broth and Rappaport Vassiliadis broth were spread on the surface of Xylose Lysine Deoxycholate agar (XLD) and the surface of Brilliant Green agar and incubated at 37.0±1°C for 24±3 hour.

2.2.4. Identification of salmonellae and E. coli:
a. Detection of salmonella suspected colonies according to (ISO 6579 2002):
The suspected colonies on Xylose Lysine Deoxycholate agar and Brilliant Green agar were picked up and motility was tested by 0.4% soft nutrient agar then colonies were transferred into semisolid Tryptone soya agar (TSA) slope for preservation and further identification.

b. Biochemical identification of the isolates pure culture:
Biochemical identification was performed according to (Quinn et al. 2002).

2.2.5. Serological confirmation and serotyping of suspected salmonella isolates:
The biochemically positive colonies of salmonella were primarily confirmed by Omni valent antisera and serologically classified using slide agglutination tests, according to the modified Kaufman-White scheme as described by (WHOCC-Salm 2007), Diagnostic polyvalent and monovalent Salmonella O and H (phase 1 and phase 2) antisera. (Denka Seiken co., LTD) and (Pro-lab diagnostic, U.k.) were provided by serology unit, Animal health Research Institute, Dokki, Giza.

2.2.6. Antimicrobial Sensitivity Test:
Subculture from each salmonella serovars were prepared and the test was applied according to (Cruickshank et a2l 1975). The results were reported and compared to the standard levels to decide if salmonella isolates were sensitive, intermediate and resistant and the results were interpreted according to CLSI (2014) Clinical and Standards Institute.

Table 3 Zone diameter interpretive standards of different antimicrobial agent used for salmonella spp:

Antibiotic	Symbol	Disc Conc. (µg)	Resistant	Intermediate	Susceptible
Gentamicin	G	10	≤15	13-14	≥15
Streptomycin	S	10	≤11	12-14	≥15
Doxycycline	DO	30	≤10	11-13	≥14
Norfloxacin	NOR	10	≤12	13-16	≥17
Enoxofloxacin	ENR	5	≤15	16-20	≥21
nalidixic acid	NA	30	≤13	14-18	≥19
Lamofloxacin	LEV	5	≤13	14-16	≥17
Sulphamethaxox /trimethoprim	SXT	25	≤10	11-15	≤16
Chloramphenicol	C	30	≤12	13-17	≥18

2.2.7. Confirmation of results by PCR:
a. Extraction of DNA according to QIAamp DNA mini kit instructions
b. Preparation of PCR Master Mix: according to Emerald Amp GT PCR master mix (Takara) Code No. RR310Akit
The PCR reaction mixture consisted of 12.5 µL of Emerald Amp GT PCR master mix (Takara),1 µL of each set of forward and reverse primers (20 pmol), 5 µL of DNA as a template and nuclease free water to make 25 µL of reaction volume.
The PCR cycling conditions were programmed according to the reference of the primer (Table 1).
The amplified PCR products were resolved by agarose gel electrophoresis, using 1.5% agarose gel stained with ethidium bromide (0.5 µg/mL) and visualized and documented using UV gel documentation system (Alpha Innotech, Biometra).

3. RESULTS

3.1. Infection rate of Salmonella and E. coli serotypes among dogs and cats:
Some animals that were clinically examined were apparently healthy and others were diseased with signs of fever, diarrhea, vomiting and loss of appetite.
Bacteriological culturing of 150 fecal samples (95 of dogs and 55 of cats) revealed a presence of different types of Enterobacteriaceae as salmonella, E. coli and some cases were negative for Enterobacteriaceae.
These results revealed that salmonella species were isolated from 40 cases out of 150, 30 from the salmonella positive samples were collected from dogs (31.6%) and 10 were collected from cats (18.2%) but 45 samples were positive for E. coli, 25 from dogs (26.3 %) and 20 from cats (36.4 %).
Our results showed that salmonella shedding in dogs was increased in adults (42.9%) than young (Figure 1), while E. coli shedding was increased in young dogs, (88%) than adults (Figure 5). Otherwise, salmonella shedding was increased in German Shepherded (46.7%) than Pitbull and Husky (Figure 3), while E. coli shedding was increased in Husky (34.3%) than Pitbull and German Shepherded (Figure 7).
For sex factor in dogs, salmonella shedding was increased in females (62.2%) than males (Figure 2), while E. coli shedding was increased in females (53.3%) than males (Figure 6). Otherwise, seasonal factor salmonella shedding was increased in winter (81.8%) than summer and autumn.
While E. coli shedding was increased in winter (66.7%) than summer and autumn (Figure 8). Infection rate in cats, salmonella was increased in adults (28.6%) than young (Figure 9). E. coli was higher in young (100%) than adult (Figure 13). Otherwise, salmonella was increased in males, (35%) than female (Figure 10) and E. coli was increased in females (51.4%) than males (Figure 14). While salmonella was increased in Persian cat (25%) than Himalaya (Figure 11), E. coli was increased in Persian (45%) than Hemalaya (Figure 15).

3.2. Identification of isolated strains:

The biochemical reactions (MR test-VP-Indole Test-Citrate utilization –Urease –Lysine decarboxylase –Sugar fermentation –Oxidase-Catalase tests) revealed that salmonella gives positive reaction with (MR- citrate utilization-Lysine decarboxylase-Sugar Fermentation-Catalase, and in TSI test the positive result is H2S production and gas formation) and E. coli gives positive reaction with (Indole- MR- Lysine decarboxylase-Catalase test) (Table 4).

By performing PCR for five salmonella positive samples and five E. coli positive samples, we detected the virulence gene of salmonella (invA gene) and of E. coli (eaeA gene) Figure 18. Also, we detected the antibiotic resistant gene for salmonella and of E. coli (blaTEM) Figure17. Salmonella strains are S.Typhimurium, S.Entertidis, S.Nitra, S.Bocker, and S.Ibaragi respectively and E.coli strains are O26, O157, O119, O55, and O111 respectively. The E. coli sample number 3 has no virulence gene. The antigenic structure of the Salmonella serotypes was illustrated in table 5.

Table 5 Antigenic Structure of Salmonella serotypes

Salmonella types	Somatic antigen (O)	Flagellar antigen (H)	Phase I	Phase II
S.nitra	2,12	g,m		
S.bocker	[1,4,12,25]	b.v.	1,7	
S.Typhimurium	1,4,12	I	1,2	
S.Entertidis	1,9,12	g.m.	1,7	
S.Ibaragi	21	Y	1,2	
4. DISCUSSION
Salmonellosis is a disease of major zoonotic importance, and all Salmonella organisms, with the exception of those causing human typhoid fever, infect humans and animals. Foodborne outbreaks of non-typhoid salmonellosis can occur in people through contaminated products of animal origin (meat, eggs, and milk) that have been improperly prepared, stored, or handled before consumption. (Marks et al. 2011). Pathogenic E. coli are transmitted from infected human or animal feces to new susceptible hosts via environmental reservoirs such as hands, water, and soil (Navab-Daneshmend et al. 2014). This study was planned to investigate the role of salmonella and E. coli in dogs and cats and determination of the effect of some factors such as age, sex, breed and the seasons on infection rates and detection of the antibiotic resistance gene of salmonella and E. coli (blaTEM).

This study showed that, infection rate of Salmonella in pets in this survey is (31.6 % in dogs and 18.2 % in cats). Also, infection rate of Salmonella in dogs located in Holeta town of Central Ethiopia is 17.1% and first of its kind in the country that agree with our study (Aliyi et al 2018). The infection rate of salmonella was 2.5% in dogs (apparently healthy dogs from a variety of housing conditions) and 6% in cats in USA (this is very low) (Lowden et al 2015), this disagrees with our study. The isolated Salmonella species were S. Ibargy, S. Enteritidis, S. Brokher, S. Typhimurium and S. Nitra, they were resistant to streptomycin, gentamycin and trimethoprim/sulphamethaxole, while, S.ibargy and S. Enteritidis were sensitive to chloramphenicol, enrofloxacin and nalidixic acid. This result were disagreed with previous results of (Al kocabiyik et al. 2006) who isolated the S.corvallis from the stray dogs in Turkey that were sensitive to chloramphenicol, enrofloxacin and nalidixic acid, trimethoprim/sulphamethaxole and resistant to streptomycin.

Outbreak of Escherichia coli O145:H28 infections in 2010 was the first known Shiga toxin-producing E. coli (STEC) outbreak traced to the southwest desert leafy green vegetable production region along the border between the United States and Mexico (Jay-Russell et al 2014), while in our study we isolated O157, O126, O114, O18, O26, O158, O111 and O18,01.

It is found that salmonella and E. coli infection was increased in winter and decreased in summer and autumn (Figure 4, 8, 12,16), this disagrees with the study of (Ishii et al. 2006) that found soil born E. coli was observed in higher ratio in summer to fall and lower in summer to spring. Density of it is the greatest in the summer to fall (June to October), and the lowest numbers, occurred during the winter to spring months (February to May). In the summer of 1999, an outbreak of human salmonellosis happened in Alberta (Canada). The cause of this outbreak was treats for dogs produced from processed pig ears contaminated with S. Infantis that was isolated in 51% treats for dogs from shops in Canada and from 41% samples of the same feed in shops in the USA (Milanov et al. 2019), this disagrees with our study.
Mekky et al. (2021)

Figure 13 Age prevalence of E. coli in cat.

Figure 14 Sex prevalence of E. coli in cat.

Figure 15 Breed prevalence of E. coli in cat.

Figure 16 Seasonal prevalence of E. coli in cat.

Fecal shedding of salmonella in naturally occurring infections may continue for a period of six weeks except in case when the lymph nodes harbor the agent. In the experimental canine infections with S. infantis shedding of the organism lasts for 117 days so salmonella shedding increases in adult than newborn (Morse et al 1976), this study was agreed with our study as salmonella was 42.9% in adult dog and 0% in young dogs (Figure1).

For this study we found that salmonella infection is higher in females (62.2%) than males (4%) Figure 2, this agreed with the study that found Salmonella was isolated from 4.1% to 9.1% of male and female dogs respectively (Akwuobu et al. 2018).

5. CONCLUSION

This study revealed that dogs or cats may be carrier for salmonella or E. coli without any signs. These diseases may be occupational for veterinarians and owners so, both of them must be aware of this. Both must take the safety precautions during treatment and dealing with a dog or a cat. Salmonella and E. coli may be detected in apparent healthy or diseased dogs or cats, of both sexes, at any age for any breed with difference in rate of infection.

Figure 17 Agarose gel electrophoresis revealed amplification product for (blaTEM) antibiotic virulence resistant gene at 516 bp. L 100bp DNA molecular Size marker, lanes P. and N positive and negative Controls, respectively. Lanes (E1- E5) referred to the examined E. coli isolates. While Lanes (S1- S5) to positive examined salmonella isolates.

Figure 18 Agarose gel electrophoresis revealed amplification product for Salmonella invA genes at 284 bp and E. coli eaeA virulence gene at 248 bp. L 100bp DNA molecular Size marker, lanes P. and N positive and negative Controls, respectively. Lanes (E1- E5) referred to the examined E. coli isolates. While Lanes (S1- S5) to positive examined salmonella isolates.

6. REFERENCES

1. Alkocabiyik, C.C. and Dedicova, D. (2006). Detection of salmonella species in stray dogs in Bursa province, Turkey: first isolation of S.corvalis from dogs. Journal of Veterinary medicine. 53(4): 194-196.
2. AlKubaisi, S.M.A., Saed, O.A.S., Solaiman, J.M., Hasan, M.S., Owain, M.S. and Jarad, A.S. (2020). Isolation and identification of facultative anaerobic bacteria from feces of pet dogs. Medico-Legal Update. 20(1): 785-789.
3. Akwubu, C.A., Agbo, JO. and Ofukwu, R AP. (2018). Salmonella infection in clinically healthy dogs in Makurdi, Benue State, and North-central Nigeria: A potential source of infection to humans. Journal of Advanced Veterinary and Animal Research. 5(4):405-409.
4. Aliyi, S., Hirpa, E., Zewude, O. and Equa, Y. (2018). Isolation and identification of salmonella from apparently healthy pet dogs in Holeta town, Western Shoa, Ethiopia. Curr Trends Biomedical Eng. and Biosci. 15(2): 29 -35.
5. Beutin, L. (1999). Echereshea coli as a pathogen in dogs and cats. Vet. Research, Biomed Central. 30(2-3): 258-298
6. Bisi-Johnson, M.A., Obi, C.L., Vasaikar, S.D., Baba, K.A. and Hattori, T. (2011). Molecular basis of virulence in clinical isolates of Escherichia coli and Salmonella species from a
tertiary hospital in the Eastern Cape, South Africa. Gut Pathogenèses, 3(1): 3-9.

7. Colom K, Pérez, J., Alonso, R., Fernández-Arangüiz, A., Lariño, E., and Cisterna, R. (2003). Simple and reliable multiplex PCR assay for detection of blaTEM, blaSHV and blaOXA- genes in Enterobacteriaceae. FEMS Microbiology Letters. 223(1): 147-151.

8. Coque, T. M., Oliver, J., Perez-Diaz, A.O., Baquero, F., and Canton, R. (2002). Genes encoding TEM-4, SHV-2, and CTX-M-10 extended spectrum β-lactamases are carried by PCR (Madrid, 1989 to 2000). Antimicrob. Agents Chemother. 46: 500-510.

9. Cruickshank, R., Deguid, J. P., Marmion, B. P. and Swain, H. A. (1975). Medical microbiology. The Practice of medical microbiology12th, Vol. II. Churchill, Edinburgh.

10. Damborg, P., Broens, E.M. Chomel, B.B. Guenther, S. Pasmans, F. Wagenaar, J.A. Weese, J.S. Wieler, L.H. Windahl, U. Vanrompay, D. and Guardabassi, L. (2016). Bacterial zoonosis transmitted by household pets: state-of-the-art and future perspectives for targeted research and policy actions. J. Comp. Pathol. 155(1): 27-40.

11. Davies, J. and Davies, D. (2010). Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 74: 417-433.

12. Guardabassi, L., Schwarz, S. and Lloyd, D.H. (2004). Pet animals as reservoirs of antimicrobial-resistant bacteria. The Journal of Antimicrobial Chemotherapy. 54(2): 321 332.

13. International organization for standardization (ISO 6579) (2002). Microbiology of food and animal feeding stuffs. Horizontal method for the detection of Salmonella spp. (4th ed.): international organization for standardization.

14. Ishii, S., Ksoll, WB. Hicks, R.E. and Sadowsky, MG. (2006). Presence and growth of naturalised Escherichia coli in temperate soils from Lake Superior Watersheds. Appl Environ Microbiol. 72(1):612-621.

15. Jay-Russell, M.T., Hake, A.F., Bengson, Y.,Thiptara, A. and Nguyen T. (2014). prevalence and characterization of Escherichia coli and Salmonella strains isolated from stray dog and Coyote feces in a major leafly greens production region at the United States-Mexico Borde. PLOS ONE. 9(11): 1-14.

16. Lowden, P., Wallis, C., Gee, NR. and Hilton, A.C. (2015). Investigating the prevalence of Salmonella in dogs within the Midlands region of the United Kingdom. BMC Veterinary Research. 11:239.

17. Marks, S.L, Rankin, S.C., Byrne, B.A. and Weese, J.S. (2011). Enter pathogenic bacteria in dogs and cats: Diagnosis, epidemiology, treatment, and control. Journal of Veterinary Internal Medicine. 25(6): 1195-1208.

18. Milanov, D.S., Aleksić, N.R., Vidaković, S.S., Ljubojević, D.B. and Čabarkapa, I.S. (2019). Salmonella spp. in pet and risk it possesses to humans. Food and Food Research. 46 (1): 137-145.

19. Navab-Daneshmand, T., Friedrich, M.N.D., Gächter, M., Montealegre, M.C., Mlamo, L.S., Ntiwatiwi, T., Mosler, H.I. and Julian, TR. (2014). Escherichia coli contamination across multiple environmental compartments (soil, hands, drinking water, and handwashing water) in Urban Harare: correlations and risk factors. The American Journal of Tropical Medicine and Hygiene. 98 (3): 803-813.

20. Morse, EV, Duncan, MA, Estep, DA, Riggs, WA. And Blackburn, BO. (1976). Canine salmonellosis: A review and report of dog to child transmission of salmonella enteritidis. Am J public Health. 66(1): 82-84.

21. Olivera, S.D., Rodenbusch, C.R., Ce, M.C., Rocha, S.L.S. and Canal, C.W. (2003). Evaluation of selective and non-selective enrichment PCR procedures for Salmonella detection. Lett. Appl. Microbiol. 36(1): 217-221.

22. Quinn, P.J., Markey, B.K., Carter, M. E., Donnelly, W. J. and Leonard, F.C. (2002). Veterinary microbiology and microbial diseases. Great Britain by HPG, Books Ltd., Bodmin, Cornwall: 114-118.

23. Reimschuessel, R., Grabenstein, M., Guag, J., Nemser, S.M., Song, K., Qiu, J., Clothier, K.A., Byrne, B.A., Marks, S.L., Cadmus, K., Fablonia, K., Sanchez, S., Rajeev, S., Ensley, S., Frana, T.S., Jergens, A.E., Chappell, K.H., Thakur, C., Byrum, B., Cui, J., Zhang, Y., Erdman, M.M., Rankin, S.C., Daly, R., Das, S., Ruesch, L., Lawhon, S.D., Zhang, S., Baszler, T., Diaz-Campos, D., Hartmann, F., and Okwunabua, O. (2017). Multilibrary Survey to evaluate Salmonella prevalence in diarrheic and non-diarrheic dogs and cats in the United States between 2012 and 2014. Microbiol. 55(5):1350-1368.

24. Sambrook, J., Fritsceg, E.F. and Mentiates (1989). Molecular cloning. A laboratory manual, cold spring Harbor Laboratory press, New York.

25. Trepeta, R.W. and Edberg, S.C. (1984). Methylumbelliferyl- D-glucuronide-based medium for rapid isolation and identification of Escherichia coli. Journal of clinical microbiology. 19 (2):172-174.

26. Ward, M.P., Alinovi, C.A., Coutil, L.L. and Wu, C.C. (2005). Evaluation of a PCR to detect salmonella in fecal samples of horses admitted to a veterinary teaching hospital. J. Vet. Diagn. Invest. 17 (2):118-123.

27. WHO (2002). World Health organization, Department of communicable diseases surveillance and response.

28. WHO Collaboration Center for References and Research on Salmonella (WHOCC_Salmonella) (2007). Antigenic Formulæ of the salmonella serovars, 9th Edition.