Original Research Article

Study on serum copper, zinc and selenium trace element levels in Psoriasis

Vijaya Mohan Rao¹*, M Deepthi¹, K Ramalingam², M Prasad Naidu², Mahaboob V. Shaik³

¹Dept. of Dermatology, Narayana Medical College and Hospital, Nellore, Andhra Pradesh, India
²Dept. of Biochemistry, Narayana Medical College And Hospital, Nellore, Andhra Pradesh, India
³Narayana Medical College and Hospital, Nellore, Andhra Pradesh, India

A R T I C L E I N F O

Article history:
Received 13-06-2019
Accepted 20-08-2019
Available online 14-09-2019

Keywords:
Psoriasis
Zinc
Copper
Selenium

P Value 0667 0266

A B S T R A C T

Introduction: Psoriasis is one of the skin disorder, mainly characterized by scaly papules and plaques. The etiology of psoriasis is multifactorial and still not properly understood. In our study, we tried to elucidate the relation between psoriasis and trace elements namely Zinc, Copper and Selenium.

Materials and Methods: This study enrolled 50 psoriasis patients with 37 males and 13 females, with 10-80 years age. The patients were randomly selected from the outpatient clinic of Dermatology, Venereology and Leprosy Department, Narayana medical college and hospital. The age, sex matched 50 healthy volunteers included as controls in this study. Levels of serum Copper (Cu), Zinc(Zn), and Selenium(Se) analysed using Atomic absorption Spectrophotometery.

Results: In our study, the mean Serum Zinc, Selenium and Copper levels were 61.9680 ± 15.96824, 64.2060 ± 17.44780 and 56.4120 ± 8.51976 respectively, lower than the controls which was stastically significant (P < 0.05).

Conclusion: In psoriasis, serum Cu, Zn and Se levels were observed to be low, needs to manage therapeutically by oral supplementation. More studies are required to carryout to standardize the diagnostic levels of Cu, Zn and Se and their role in psoriasis pathogeneis.

© 2019 Published by Innovative Publication.

1. Introduction

Psoriasis, chronic inflammatory and hyper proliferative papilosquamous skin disease, characterized by erythematous papules and plaques with silvery white scales cover. It ranges in severity from a few plaques to involvement of almost the entire body surface.¹ The pathogenesis of psoriasis is still poorly understood. It results from the interactions between genetic predisposition and a large spectrum of environmental risk factors, such as diet, alcohol consumption, stress, obesity, smoking.² Essential trace elements like copper, Zinc, selenium, manganese, iodine, iron, cobalt, tin, molybdenum, and chromium.³

There is very limited data available on role of trace elements in etiopathogenesis of psoriasis. In the current study, the role of trace elements in psoriasis was investigated.⁴ The environment and skin metabolism may contribute to treatment of psoriasis, by producing oxygen species which causes the oxidative stress.⁵,⁶ Trace elements influences the immune responses and enzymatic activities, the imbalance in trace elements leads changes in the enzymatic dependant

Table 1: Mean serum levels of Zn, Cu and Se in cases and controls.

	Cases N=50	Control N=50	p value
Zinc	61.9680 ± 15.96824	78.2280 ± 12.80776	< 0.0001
Copper	64.2060 ± 17.44780	114.5800 ± 19.71284	< 0.0001
Selenium	56.4120 ± 8.51976	85.6300 ± 11.95779	< 0.0001

*Corresponding author.
E-mail address: drmahaboobvs@gmail.com (V. Mohan Rao).
Table 2: Correlation between the trace elements in Psoriasis subjects

Trace Element	Pearson Correlation	P Value	N	SELENIUM (r value)	Pearson Correlation	P Value	N
ZINC	1	0.667	50	0.009	-0.062	1	50
COPPER	-0.062	1	50	0.160	0.266	1	50
SELENIUM	-0.009	0.266	50	1			

Table 3: Paired sample t test was performed between the two different trace elements in psoriasis patient to identify significance difference between them.

Pair	Trace Element 1	Mean	N	Std. Deviation	t-value	P value*
1	ZINC	78.2280	50	12.80776	-16.87	<0.0001
	COPPER	114.5800	50	19.71284		
2	ZINC	78.2280	50	12.80776	-3.142	0.003
	SELENIUM	85.6300	50	11.95779		
3	COPPER	114.5800	50	19.71284	8.581	<0.0001
	SELENIUM	85.6300	50	11.95779		

*P<0.05 – Statistically significant

3. Results

Out of 50 psoriatic patients 37(74%) were male and 13 female (26%). The mean age of psoriasis patients and controls was 50 year. The mean serum levels of three trace elements in cases and controls and p value are shown Table 1.

4. Discussion

Psoriasis is an immune-mediated skin disease characterized by the production of reactive oxygen species due to the over expression of proinflammatory cytokines. Trace elements are essential to biochemical processes in the body and are involved in immunological and inflammatory reactions. The process of keratinization and melanin formation are enzyme dependent processes and influenced by the deficiencies/excess of trace elements. Zinc, Copper and Selenium are involved in the destruction of free radicals through cascading enzyme systems.

Zinc and Copper are an integral part of as many as 40 metalloenzymes, including Cu/Zn superoxide dismutase with antioxidant and antiinflammatory activity.

Skin is the third most Zinc abundant tissue in the body (skeletal muscle 60%, bones 30%, liver 5%, and skin 5%). The epidermis contains more Zinc compared with the dermis. In our study, serum zinc levels in psoriasis patients was found to be significantly lower than the control group. This is in accordance with several studies.

Copper is one of those nine minerals that are recognized as essential nutrients for humans, as it plays a crucial role in different physiological processes in all human tissues.
well as in the skin. The body of a 70-kg healthy individual has about 110 mg of copper, 50% of was found in bones and muscles, 15% in skin, 15% in bone marrow, 10% in liver and 8% in the brain. In our study, the serum level of Copper was significantly lower in psoriasis patients than the control group. This is similar to study done by Bhatnagar et al and Lee et al. However several other studies reported a higher level of Serum Copper levels.

Selenium is an essential trace element, which has antiproliferative and immune-modulating properties. The key role of Selenium in human metabolism is attributed to its presence in the glutathione peroxidase, which protects cells against harmful effects of free radicals. This active component can influence immune response and is involved in redox reactions which protect membranes from oxidative damage. This is caused by changing the expression of cytokines and their receptors or making immune cells more resistant to oxidative stress. Deficit of Se is one of the risk factors that may predispose to inflammatory skin disorders. In our study, the serum level of Selenium was significantly less in psoriasis than the control. These results showing similar to the previous studies.

In the study carried out by Elhaddad et al., found significant increased Selenium levels in psoriatic patients with different severity scores.

5. Conclusion

The lower levels of serum trace elements Zinc, Copper, Selenium in psoriasis patients which is in accordance with various studies showed that trace elements have role in the pathogenesis of psoriasis. However large randomised control studies are needed to establish their role.

6. Source of Funding

None.

7. Conflict of Interest

None.

References
1. Menter A, Gottlieb A, Feldman SR, Voorhees ASV, Leonardi CL, et al. Guidelines of care for the management of psoriasis and psoriatic arthritis: Section 1. Overview of psoriasis and guidelines of care for the treatment of psoriasis with biologics. J Am Acad Dermatol. 2008;58(5):S26–S50.
2. Versini M, Jeandel PY, Rosenthal E, Shoenfeld Y. Obesity in autoimmune diseases: not a passive bystander. Autoimmunity reviews. 2014;13(9):981–1000.
3. Prashanth L, Kattapagari KK, Chitturi RT, Baddam VR, Prasad LK. A review on role of essential trace elements in health and disease. J NTR University of Health Sciences. 2015;4:75–85.
4. Basavaraj KH, Darshan MS, Shanmugavelu P, Rashmi R, Mhatre AY, et al. Study on the levels of trace elements in mild and severe psoriasis. Clinica Chimica Acta. 2009;405(1-2):66–70.
5. Trouba KJ, Hamadeh HK, Amin RP, Germolec DR. Oxidative stress and its role in skin disease. J Biotechnol Biochem. 2015;1:77–81.
6. Elhaddad H, Morsy R, Mourad B, Elnimr T. A comprehensive study on the content of serum trace elements in psoriasis. Journal of Therapeutics. 2017;22(1):31–42.
7. Ahmed F, Fanning K, Schuhmann H, Netzel M, Schenk PM. Microalgae: a valuable source of natural carotenoids with potential health benefits. Carotenoids: food sources, production and health benefits. New York; 2013.
8. Ei AJ. Effect of water stress on carbohydrate metabolism during Pisum sativum seedlings growth. Euphrates Journal of Agricultural Science. 2012;4(4):1–2.
9. Hi A, Kazi TG, Jamali MK, Gh K, Shar GQ. The status of trace and toxic elements in biological samples (scalp hair) of skin-disease patients and normal subjects. Turkish Journal of Medical Sciences. 2006;36(4):223–253.
10. Kleczkowski LA, Geisler M, Ciereszko I, Johannson H; 2004.
11. M. D. T. Dineapies: the etiology and global epidemiology of a common fungal infection. Critical reviews in microbiology. Jul. 2015;3(3):374–88.
12. ; 2013.
13. Nast A, Spuls PI, Kraaik GVD, Gisondi P, Paul C, et al. European S3-Guideline on the systemic treatment of psoriasis vulgaris Update. Apremilast and Secukinumab-EDF in cooperation with EAADV and IPC. Journal of the European Academy of Dermatology and Venereology. 2017;31(12):1951–63.
14. Occupational skin diseases in construction workers at a large construction site. European Journal of Pharmaceutical and Medical Research. 2017;4(12):383–385.
15. Nutritional Aspects of Essential Trace Elements in Oral Health and Disease: An Extensive Review. Scientificia; 2016.
16. Michalska-Mosiej M, Socha K, Soroczyska J, Karpiska E, azarczyk B, Borawska MH. Selenium, zinc, copper, and total antioxidant status in the serum of patients with chronic tonsillitis. Biol Trace Elem Res. 2016;173:30–34.
17. Zinc in human health: effect of zinc on immune cells. Mol Med. 2008;14:353–357.
18. Ogawa Y, Kinoshita M, Shimada S, Kawamura T. Zinc and skin disorders. Nutrients. 2018;10(2):199–199.
19. Al-Furtusie FS, Mohssan SN. Essential trace elements and their vital roles in human body. Indian J Adv Chem Sci. 2017;5(3):127–163.
20. Polefka TG, Bianchini RJ, Shapiro S. Interaction of mineral salts with skin. Int J Cosmet Sci. 2012;34:41623–41623.
21. Linder MC, Wooten L, P C. Copper transport. Am J Clin Nutr. 1998;67:965–71.
22. Shahidi-Dradras M, Namazi N, Younespour S; 2017.
23. Lee, Sy, Lee HK, Lee JY, Lee JS. Analyses of serum zinc and copper concentrations in psoriasis. Korean J Investig Dermatol. 1996;3:35–43.
24. Socha K, Kochanowicz J, Karpiska E, Soroczyska J, Jakoniu M, et al. Dietary habits and selenium, glutathione peroxidase and total antioxidant status in the serum of patients with relapsing-remitting multiple sclerosis. Nutr J. 2014;13:62–62.
25. Sheikh G, Masood Q, Majied S, Hassan I. Comparison of levels of serum copper, zinc, albumin, globulin and alkaline phosphatase in psoriatic patients and controls: A hospital based case control study. Indian Dermatol Online J. 2015;6(2):81–84.
26. Zucconi E, Oliveri M, Giometta C, Ratto D, Iorio D, et al. Nutritional strategies for psoriasis: Current scientific evidence in clinical trials. Eur Rev Med Pharmacol Sci. 2018;22:8537–51.
27. Wacewicz M, Socha K, Soroczyska J, Niczyporuk M, Aleksiejczuk P, et al. Concentration of selenium, zinc, copper, Cu/Zn ratio, total antioxidant status and c-reactive protein in the serum of patients with psoriasis treated by narrow-band ultraviolet B phototherapy: a case-control study. Journal of Trace Elements in Medicine and Biology. 2017;44:109–123.
28. Gajjar M, Sirajwala HB, Gajjar D, Pandy I. Role of serum copper and zinc in pathogenesis of psoriasis. J Biotechnol Biochem. 2015;1:77–81.
29. Role of micronutrients in skin health and function. Biomolecules & therapeutics. 2015;23(3):207–207.
30. Myliwiec H, Baran A, Harasim-Symbor E, Choromaska B, Myliwiec P, et al. 2017.
31. Habif TP, Chapman MS, Dinulos JG, Zug KA. Elsevier Health Sciences; 2017.
32. Rayman MP. The importance of selenium to human health. Lancet. 2000;356:233–234.
33. Michaeëlsson G, Edquist LE. Erythrocyte glutathione peroxidase activity in acne vulgaris and the effect of selenium and vitamin E treatment. ActaDermatol Venerol. 1984;64:9–14.
34. Serwin AB, Mysliwiec H, Hukalowic K, Porebski P, Borawska MH, Chodynicka B. Soluble tumor necrosis factor-alpha receptor type 1 during selenium supplementation in psoriasis patients. Nutrition. 2003;19:847–850.
35. Desilva B, Beckett GJ, Mclean S, Arthur JR, Hunter JA, et al. Lack of effect of oral selenium on pS3 associated gene expression during TL01 therapy of psoriasis patients. Photodermatol Photoimmunol Photomed. 2007;23:98–100.
36. Kadry D, Rashed L. Plasma and tissue osteopontin in relation to plasma selenium in patients with psoriasis. J Eur Acad Dermatol Venereol. 2012;26:66–70.
37. Wcewicza M, Sochab K, Soroczynskab J, Niczyporukcd M, Aleksiejczuk P, et al. Concentration of selenium, zinc, copper, Cu/Zn ratio, total antioxidant status and C-reactive protein in the serum of patients with psoriasis treated by narrow-band ultraviolet B phototherapy: A case control study. J Trauma. 2017;44:109–114.

Author biography

Vijaya Mohan Rao Professor and HOD
K Ramalingam Professor
M Prasad Naidu Assistant Professor
Mahaboob V. Shaik Scientist and HOD

Cite this article: Mohan Rao V, Deepthi M, Ramalingam K, Prasad Naidu M, V. Shaik M. Study on serum copper, zinc and selenium trace element levels in Psoriasis. Indian J Clin Exp Dermatol. 2019;5(3):239-242.