RAMSEY, FOR AULD LANG SYNE

LABIB HADDAD

A stroll taken around the landscape of Ramsey’s Theory. One way, “Down from infinite to finite”, then, another way, “Up from disorder to order”. An exposé made at the “Rencontres arithmétique et combinatoire”, Saint-Etienne, June 2006.

RAMSEY’S THEOREMS

1 Introduction.

At any given time, in a given meeting, some of the pairs of persons have already shaken hands, others have not. Pick any group of six persons. You are sure to find one of the two following (not exclusive) situations: Either three of them have already shaken hands together, or three of them have not. Stated otherwise, either there is a trio who have or a trio who have not. Here is the explanation. Concentrate on one member \(M \) of the group. Then either \(M \) has shaken hands with at least three of the five others, or he has not with three of them. Say he has shaken hands with \(P, Q \) and \(R \). If one of the three pairs, say \(P \) and \(Q \), have shaken hands together, we are done, with the trio \(M, P, Q \), who have. Otherwise \(P, Q, R \), is our trio who have not!

This is a well-known popular teaser, and an easy way to introduce what is known as “Ramsey’s Theorem”.

In fact, Ramsey proved two theorems of this kind (see [9]), one in a finite setting, the other in the infinite setting. More about that in a moment.

So six persons is enough to get trios. A natural question arises: How about quartets? How many to be sure to get quartets?

Let us elaborate. For shortness sake, define a 2-coloured graph to be a complete symmetric graph whose edges are coloured either red or blue. Of course, a monochromatic graph is one all of whose edges have the same colour. Also define the size of a graph to be the number of its vertices. So, in any 2-coloured graph of size six, one is sure to
find a monochromatic triangle. That is the essence of our teaser. The simplest version of Ramsey’s Theorem goes like this.

2 Theorem. Given any integer \(h > 0 \), there is an integer \(k > 0 \) such that each 2-coloured graph of size at least \(k \) contains a monochromatic subgraph of size \(h \).

The least of all such integers \(k \) is denoted \(N(2, h) \) and called the Ramsey number (for 2-coloured graphs, relative to \(h \)). So, \(N(2, 3) \leq 6 \) and, in fact, it is easily seen that \(N(2, 3) \) is equal to 6. It is also known that \(N(2, 4) = 18 \), for instance. But no simple way is known which would determine the value of \(N(2, h) \) as a function of \(h \). The hunt for Ramsey numbers looks somewhat like that for prime numbers. Compared to the quantity of primes which we know, that of Ramsey numbers already “caught” is tiny, and almost no useful criteria are available.

A generalisation-oriented mind will certainly ask why should one stick to two colours? In fact, the theorem extends to \(r \)-coloured graphs as well. An edge in a (ordinary) graph is a sort of link that binds a pair of vertices. Again, why stick to those links by pairs. One can as well think of another sort of link, by bundles of \(n \) vertices. The theorem is still valid in this new setting as we will readily see.

3 A bit of terminology. For brevity’s sake, and simplicity, we shall deviate again from the traditional vocabulary and notations. An \(r \)-coloured \(n \)-graph is a configuration defined by a set \(V \) (the vertices), together with the set \(P_n(V) \) of all the \(n \)-element subsets of \(V \) (the edges), and a covering of \(P_n(V) \) by \(r \) sets \(C_1, \ldots, C_r \) (the colours) which might possibly overlap (that is, an edge might have more than one colour), and even overflow. The size of an \(n \)-graph is, again, the number of its vertices, be it finite or not. Of course, a monochromatic \(n \)-graph is one all of whose edges have a same colour (that is, it has \(P_n(V) \subset C_i \) for some index \(i \)).

So, a 2-coloured graph is nothing else but a 2-coloured 2-graph (provided some of the edges might be, at the same time, red and blue.)

One word more about subgraphs. Take any subset \(W \subset V \) of the set of vertices \(V \) of a given \(r \)-coloured \(n \)-graph \(G \). Restricting the set of vertices to \(W \) means considering the \(r \)-coloured \(n \)-graph whose set of vertices is \(W \) and whose colours are still \(C_1, C_2, \ldots, C_r \). The new \(r \)-colored \(n \)-graph thus obtained will be called the subgraph on \(V \) restricted to \(W \) or, equally well, the subgraph spanned by \(W \) in \(G \). Those are all of what will be called subgraphs in this context.

The full Ramsey Theorem now reads like this.

4 Ramsey’s Theorem. The Finite Version. Given integers \(r, n, h \), there is an integer \(k \) such that any \(r \)-coloured \(n \)-graph of size at least \(k \) contains a monochromatic \(n \)-subgraph of size \(h \).
The least of all such integers \(k \) is denoted \(N(r, n, h) \) and called the Ramsey number (for \(r \)-coloured \(n \)-graphs, relative to \(h \)).

[Let us mention, for the record, that a Ramsey Number of the kind \(f(n, q_1, \ldots, q_r) \) has also been introduced to be the least integer \(k \) for which every \(r \)-coloured \(n \)-graph of size \(k \) contains a monochromatic \(n \)-subgraph of size \(q_i \) and colour \(C_i \) for at least one of the indices \(i \). Then, of course, the inequality \(f(n, q_1, \ldots, q_r) \leq N(r, n, \max\{q_1, \ldots, q_r\}) \) holds.]

The theorem applies equally well, of course, to \(r \)-coloured 1-graphs. But what is a 1-graph? Well it is much the same as a set \(V \) of vertices. Then an \(r \)-coloured 1-graph is a set covered by \(r \) sets. What the theorem says about this configuration is precisely Dedekind’s **pigeon-hole principle**: Given \(r \) drawers and an integer \(h \), if \(k \) articles are to be distributed in the drawers and if \(k > r(h - 1) \), then one of the drawers must contain at least \(h \) of those articles, [le principe des tiroirs being the French name for this principle].

H. J. RYSER [10, page 38] puts it this way: “Ramsey’s theorem may be regarded as a profound generalization of this simple principle.”

Incidentally, we have \(N(r, 1, h) = r(h - 1) + 1 \).

As for the Infinite Version of Ramsey’s Theorem, it concisely says that

\[
N(r, n, \infty) = \infty,
\]

which, in expanded form, means the following.

5 Ramsey’ Theorem. The Infinite Version. Each infinite \(r \)-coloured \(n \)-graph contains an infinite monochromatic \(n \)-subgraph.

Down from infinite to finite

Usually, textbooks on Combinatorial Theory contain proofs of the Finite Version of Ramsey’s Theorem. See, for instance, L. COMTET [2], Marshall HALL, Jr. [7], and H. J. RYSER [10]. Compare with the short proof for the Infinite Version given below.

As is often the case, the arithmetic of the infinite (cardinals) seems simpler to handle than that of the finite integers. This is no exception. Not only is the statement of the infinite version of the theorem simpler, but its proof is also much more straightforward (see the **Appendix** below). Moreover, as it turns out, with a bit of ingenuity, from the Infinite Version, one obtains an easy proof of the theorem in the Finite version, **with a little bonus.**
6 Ramsey’s Theorem, strengthened. Given integers \(r, n, h \), there is an integer \(k \) with the following property:

\[P(r, n, h; k) : \text{Any } r\text{-coloured } n\text{-graph whose vertices are } 1, 2, \ldots, k, \text{ contains a monochromatic } n\text{-subgraph spanned by } H \subset \{1, 2, \ldots, k\} \text{ and such that} \]

\[|H| \geq h \text{ and } |H| \geq \min(H). \]

Of course, it does not really matter where the vertices come from, as long as they are labelled with the integers from 1 to \(k \).

Here is (more than merely a sketch of) the proof.

7 The proof. Consider a suitable nonstandard extension \(^\ast \mathbb{N} \) of the natural integers \(\mathbb{N} \). Any ultrapower of \(\mathbb{N} \) relative to an incomplete ultrafilter would do. Let \(\Omega = ^\ast \mathbb{N} \setminus \mathbb{N} \). Then take any hyperfinite integer \(m \in \Omega \) and an \(r\text{-coloured } n\text{-graph whose set of vertices is } V = \{0, 1, \ldots, m\} \). The \(r\text{-coloured } n\text{-subgraph obtained by restricting the set of vertices to } \mathbb{N} \text{ is infinite and thus, by the Infinite Version of Ramsey’s Theorem, contains an infinite monochromatic } n\text{-subgraph with vertices in } \mathbb{N} : \]

\[v_1 < v_2 < \cdots < v_i < \ldots. \]

Take \(q \) to be a (finite) integer larger than both \(h \) and \(v_1 \). Then \(H = \{v_1, v_2, \ldots, v_q\} \) spans a monochromatic \(n\)-subgraph with

\[|H| \geq h \text{ and } |H| \geq \min(H). \]

This simply means that property \(P(r, n, h; m) \) is satisfied by each hyperfinite integer \(m \in \Omega \). The following subset, which is standard,

\[M = \{m \in ^\ast \mathbb{N} : P(r, n, h; m) \text{ is satisfied}\} \]

thus contains all the hyperfinite integers in \(\Omega \). So now, \(k = \min(M) \) is the required (standard) integer : Indeed, \(P(r, n, h; k) \) is satisfied and \(k \) belongs to \(\mathbb{N} \) for, otherwise, \(k - 1 \) would still belong to \(\Omega \)!

8 One or two hints more. Let us add some few words of explanation.

Though some familiarity with nonstandard methods could help in grasping the essence of this (short) proof, very little is needed to understand it. Indeed, all the knowledge needed can be summed up, loosely, as follows.

A statement concerning ordinary \(\mathbb{N} \) is true for \(\mathbb{N} \) if and only if it is true for nonstandard \(^\ast \mathbb{N} \).
To even better understand the last part of the proof, it might be helpful to consider it as pertaining to the adage: A statement \(S(m) \) true for each infinitely large integer \(m \) must be true for at least one finite integer \(k \). In fact, the saying goes even further: Such a statement as \(S(m) \) is true for all infinitely large integers \(m \) if and only if it is true for all sufficiently large finite integers.

9 Proofs for the Finite Version. The proofs usually given for the Finite Version of Ramsey’s Theorem do not use its Infinite Version but rely mainly on recursion, going from \(r \)-coloured to \((r+1) \)-coloured and from \(n \)-graphs to \((n+1) \)-graphs, along the combinatorial way. Those proofs are said to be elementary, with different acceptances for the term “elementary”. For instance, one such proof can be given using nothing more than \(\text{PA} \), Peano Arithmetic (not Pure Arithmetic!), which is the first order theory of arithmetic, built on the axioms of Peano.

But, as strange as it may seem, the Strengthened Version of the Theorem is unprovable in \(\text{PA} \). This undecidability result was established by J. Paris and L. Harrington [8].

Let us stress this fact again: Ramsey’s is a theorem in \(\text{PA} \), while the statement of its strengthened version is undecidable in \(\text{PA} \). This also means that Ramsey’s Theorem is true in every extension of \(\mathbb{N} \), while its strengthened version is true only in some of the extensions and false in others [not of the kind of ultrapowers, of course].

Also notice the following: True, Gödel proved the incompleteness of \(\text{PA} \) in the thirteens (and much more, of course), but the statements he used for that purpose did not look exactly like ordinary mathematical statements. To many, they still may seem a little bit artificial or too much ad hoc, somehow. Paris and Harrington, for the first time (to my knowledge) have shown that a quite ordinary mathematical statement can be undecidable in \(\text{PA} \). It is one of the very first incompleteness results for \(\text{PA} \) which produces a natural undecidable statement.

10 Whither undecidability.

The layman will, inevitably, wonder how such statements can be proved unprovable! Well, to figure it out, just a glimpse, think of the arithmetical functions that can be handled by \(\text{PA} \). They are infinite in number, no doubt, but still denumerable. So, they do not cover the whole spectrum of possible arithmetical functions. Using Cantor’s Diagonal Argument, one can define, outside \(\text{PA} \), a function that grows faster than all of them. Thus, from the outside, so to say, one can push integers up, or down, further than any function from the inside would do!

Gödel himself uses Cantor’s Diagonal Argument for his proofs which, nevertheless, are of a different kind, more syntactical than functional.
As Arithmeticians have long known, it is often easier to prove a theorem of arithmetic using alien tools, such as analytic tools for instance. Now, everybody should be aware that some of those theorems do indeed require such powerful tools which cannot be dispensed with.

Although Peano Arithmetic can serve the purpose of building a large part of mathematics as it goes, it does not even cover all of Arithmetic. There is a hierarchy in the affairs of proofs which, taken at its height, leads on to fortune. Zermelo-Frankel’s set theory ZFC is a much stronger theory than PA, even though it is not the top, of course. But “this is another story”.

UP FROM DISORDER TO ORDER

We have just seen an instance of the downgoing influence of the Infinite on the Finite. Let me tell you now about an example of an upgoing construction leading from disorder to order.

11 Ramsey and the ordinals. Among the very many generalizations of Ramsey’s Theory, one is about ordinals. The n-graphs in this generalization have their vertices well-ordered, instead of just being labelled by integers. To make a long story short, given an ordinal γ, let us define an (n, γ)-graph to be an n-graph with a well-order of type γ on the vertices. Of course, this can be identified with an n-graph whose vertices are the ordinals $\kappa \in [0, \gamma[\setminus \{\gamma\}$ from 0 to γ not included.

P. Erdős and R. Rado [3, Corollary to Theorem 39], offered the following generalization.

12 Ramsey for ordinals. Given ordinals α, β, there is an ordinal γ such that each 2-coloured (n, γ)-graph either contains a red (n, α)-subgraph or a blue (n, β)-subgraph.

Sticking to the case where $n = 2$, define

$$f(\alpha, \beta)$$

to be the least of all ordinals γ such that each 2-coloured $(2, \gamma)$-graph

either contains a red $(2, \alpha)$-subgraph or a blue $(2, \beta)$-subgraph.

[This is an analog of Ramsey Numbers $f(2, q_1, q_2)$ mentionned above.]

13 An example. Since thirty seven years now, in a joint note, L. Haddad and G. Sabbagh [5,(1969)], there is a half-page proof of the fact that

$$f(m, \omega^2) = \omega^2$$

for each integer $m > 0$.
As it was, the proof was written down, bare, with no comments or hints. Our note got very little attention, in fact it got almost none! So no further details were ever published. True, the result was already known: E. Specker [11] had already given a proof of it, using an ultrafilter, among other ingredients.

Here is an expanded form of this short proof in [5], hoping it will thus illustrate a construction, going upwards, from disorder to order.

14 \(f(m, \omega^2) = \omega^2 \).

Consider a 2-coloured \((2, \omega^2)\)-graph whose set of vertices is \(\mathbb{N} \times \mathbb{N}\), ordered lexicographically, and an integer \(m > 0\). We are bound to show the following: Either there is a red subgraph of size \(m\) or else a blue \((2, \omega^2)\)-sugraph. We shall show a bit more.

Either there are red subgraphs of each size \(m > 0\) or else a blue \((2, \omega^2)\)-subgraph.

We cover the set \(\mathcal{P}_4(\mathbb{N})\) of all quadruples with eight subsets in the following way: Let

\[
X = \{n_1, n_2, n_3, n_4\}, \quad n_1 < n_2 < n_3 < n_4.
\]

Starting from \((n_1, n_2, n_3, n_4)\), one gets \(4! = 24\) permutations. We keep an eye on three of them:

\[
X_1 = (n_1, n_2, n_3, n_4), \quad X_2 = (n_1, n_3, n_2, n_4), \quad X_3 = (n_1, n_4, n_2, n_3).
\]

Let then \(X_i = (a, b, a', b')\) for some \(i \in \{1, 2, 3\}\). Two things can occur: Either the edge \(((a, b), (a', b'))\) is red, and we set \(X_i = +\) [for red], or it is blue, and we set \(X_i = -\) [for blue]. We call the ordered triple \((X_1, X_2, X_3)\) the signature of \(X\) [a kind of multicolour]. Since there are only \(2^3 = 8\) possible signatures, we get a covering of \(\mathcal{P}_4(\mathbb{N})\) with those 8 multicolours. Let us ponder a moment on the 8-coloured 4-graph we thus obtain and whose set of vertices is \(\mathbb{N}\).

What does it really mean that \(X = \{n_1 < n_2 < n_3 < n_4\}\) has signature \((+, -, +)\) [that is, (red, blue, red)], for instance. Well, this means that the edge

\[
((n_1, n_2), (n_3, n_4)) \text{ is red}, \quad ((n_1, n_3), (n_2, n_4)) \text{ is blue}, \quad ((n_1, n_4), (n_2, n_3)) \text{ is red}.
\]

We have transferred, in a sense, (part of) the structure of the initial 2-coloured \((2, \omega^2)\)-graph on \(\mathbb{N} \times \mathbb{N}\) to an 8-coloured 4-graph on \(\mathbb{N}\). We now use Ramsey’s Theorem to get an infinite subset \(A\) of \(\mathbb{N}\) all of whose quadruples have a same signature, say \((c_1, c_2, c_3)\). Restricting the initial graph to the set of vertices \(A \times A\), a moment’s thought is enough to see that we can suppose we already started with a 2-coloured \((2, \omega^2)\)-graph such that all of \(\mathcal{P}_4(\mathbb{N})\) have that same signature \((c_1, c_2, c_3)\). Now, only two cases can occur:

1) Either there is an index \(i\) such that \(c_i = +\).
2) Or, for each i, $c_i = -$

So, the proof has two more steps. In the first case, we show that there are red subgraphs of each (finite) size $m > 0$. In the second case, we show that, unless there are red subgraphs of each (finite) size $m > 0$, there must be a blue $(2, \omega^2)$-subgraph.

The first case. Suppose $c_1 = +$. That is, all the edges $((a, b), (a', b'))$ such that $a < b < a' < b'$, are red. So the infinite sugraph with vertices $(0, 1), (2, 3), (3, 4), \ldots, (2k, 2k + 1), \ldots$ is red.

Suppose $c_2 = +$. That is, all the edges $((a, b), (a', b'))$ such that $a < a' < b < b'$, are red. The subgraph with vertices $(0, m), (1, m + 1), \ldots, (k, m + k), \ldots, (m - 1, 2m - 1)$, is red and of size m.

Suppose $c_3 = +$. This means that the edges $((a, b), (a', b'))$ such that $a < a' < b' < b$, are red. This time, the subgraph with vertices $(0, 2m), (1, 2m - 1), \ldots, (k, 2m - k), \ldots, (m - 1, m + 1)$, is red of size m.

The second case. Suppose $c_1 = c_2 = c_3 = -$. This means that, whenever

$$a < b < a' < b' \text{ or } a < a' < b < b' \text{ or } a < a' < b' < b,$$

then the edge $((a, b), (a', b'))$ is blue. In order to settle matters easily, we restrict the vertices of the graph to the subset

$$L = \{(p, p^n) : p \text{ prime and } n > 1\}.$$

Suppose that the size of red subgraphs does not exceed m. Consider the subgraphs $G(p)$ restricted to $L(p) = \{(p, p^n) : n > 1\}$. Each one of them contains an infinite blue subgraph, according to Ramsey’s Theorem. So, there is an infinite subset $M(p)$ of $L(p)$ such that the restriction of $G(p)$ to $M(p)$ is an infinite blue subgraph. Set $M = \bigcup M(p)$. This is a subset of L and is well-ordered of type ω^2.

All we have to do now is to show that the restriction of the graph on L to M is blue. Take any two different vertices $(p, p^s) \neq (q, q^t)$ in M. If $p = q$, then both vertices are in $M(p)$ and the edge $e = ((p, p^s), (q, q^t))$ is blue. Otherwise, let $p < q$. Then either

$$p < p^s < q < q^t \text{ or } p < q < p^s < q^t \text{ or } p < q < q^t < p^s$$

holds: In all three cases the edge e is blue, due to the signature. \square

Appendix

Here is a proof of the Infinite Version of Ramsey’ Theorem :

$R(r, n)$ Each infinite r-coloured n-graph contains an infinite monochromatic n-subgraph.
15 Proof. [The result is obvious for \(r = 1 \) and each \(n > 0 \) because a 1-coloured \(n \)-graph is already monochromatic!]

For \(n = 1 \) and each \(r > 0 \), the vertices are covered by \(r \) subsets one of which must be infinite, so the result obtains. We then proceed by induction on \(n \).

Suppose the result is proved for given \(r \) and \(n \). Take any infinite \(r \)-coloured \((n+1)\)-graph whose set of vertices is \(V \) and colours are \(C_1, C_2, \ldots, C_r \). Starting from any vertex \(v_0 \), and using \(R(r, n) \), define by induction a sequence of vertices

\[
v_0, v_1, \ldots, v_k, \ldots,
\]

a sequence of infinite subsets

\[
V \supset V_0 \supset V_1 \supset \cdots \supset V_k \supset \cdots,
\]

and a function \(c : \mathbb{N} \to \{1, \ldots, r\} \) such that \(v_k \in V_{k-1} \setminus V_k \) and the \((n+1)\)-element subset \(\{v_k\} \cup A \) has colour \(C_{c(k)} \) for each \(A \in \mathcal{P}_n(V_k) \). At least one of the subsets \(M(i) = \{k \in \mathbb{N} : c(k) = i\} \) is infinite, say \(M(j) \). Set \(W = \{v_k : k \in M(j)\} \) : This is an infinite subset of \(V \) and the sugraph restricted to \(W \) is clearly monochromatic with colour \(C_j \). \(\square \)

This proof is exercice n°28 in BOURBAKI [1, E III.92]. It should be compared to the proof suggested by BOURBAKI [1, E III.86, exercice 17] for the Finite Version.

Here is a French version of the text

Ramsey, for Auld Lang Syne (French version)

Résumé

Une promenade dans le décor des théorèmes de Ramsey, en descendant, de “l’infini au fini”, puis en remontant, du “désordre vers l’ordre”. On y développe, entre autre, une très ancienne démonstration du fait que \(f(m, \omega^2) = \omega^2 \) pour tout entier \(m > 0 \).

Pour un exposé aux “Rencontres arithmétique et combinatoire” de Saint-Étienne, juin 2006

UNE VERSION EN FRANÇAIS
LES THÉORÈMES DE RAMSEY

1 Introduction.

À un moment donné, dans une assemblée quelconque, quelques unes des paires de ses membres ont déjà fait connaissance et d’autres pas. Choisissons au hasard six de ces membres. On est alors assuré de se trouver dans l’une ou l’autre des deux situations suivantes (voire les deux à la fois) : ou bien trois de ces six membres ont déjà fait connaissance entre eux ou bien trois d’entre eux ne l’ont pas encore fait. Autrement dit, ou bien il y a un trio qui a fait connaissance ou bien un trio qui ne l’a pas fait. Voici l’explication. Portons notre attention sur l’un de ces six membres, soit M. Ou bien M a déjà fait la connaissance d’au moins trois des cinq autres ou bien il ne l’a pas fait avec trois autres. Supposons qu’il ait déjà fait connaissance avec P, Q et R. Si deux d’entre ces derniers, disons P et Q, ont déjà fait connaissance, nous tenons un trio M, P, Q, qui l’ont déjà fait. Sinon, P, Q, R, est un trio qui ne l’ont pas fait!

C’est un de ces petits problèmes assez répandu et bien connu. C’est aussi un moyen rapide pour faire connaître ce que l’on appelle, communément, “le théorème de Ramsey”.

En réalité, Ramsey a établi deux théorèmes de ce genre (voir [9]), l’un dans le cadre du fini, l’autre dans le cadre infini. On en reparlera un plus tard.

Ainsi six membres suffisent pour avoir des trios. Une question vient naturellement à l’esprit : qu’en est-il des quatuors? Combien de membres pour être certain d’avoir des quatuors?

Rentrons dans les détails. Pour faire court, on appellera graphe bicolore tout graphe complet et symétrique dont les arêtes sont colorées en rouge ou en bleu. Bien entendu, un graphe monochrome est un graphe dont toutes les arêtes sont d’une même couleur. La taille d’un graphe désigne le nombre de ses sommets. Ainsi, dans un graphe bicolore quelconque de taille six, on est sûr de trouver un triangle monochrome. C’est le contenu de ce petit problème. La version la plus simple du théorème de Ramsey dit ceci.

2 Théorème. Pour tout entier $h > 0$, il existe un entier $k > 0$ tel que tout graphe bicolore de taille (au moins) égale à k contient un sous-graphe monochrome de taille h.

Le plus petit de tous ces entiers k est désigné par $N(2, h)$ et s’appelle le nombre de Ramsey (pour les graphes bicols, relatif à h). Ainsi, $N(2, 3) \leq 6$ et on voit facilement que $N(2, 3)$ est en fait égal à 6. On sait également que $N(2, 4) = 18$, par exemple. Cependant, on ne connaît encore aucun moyen simple pour déterminer la valeur de $N(2, h)$ en fonction de h. La chasse aux nombres de Ramsey ressemble un peu à celle des nombres premiers. Cela étant, comparée à la quantité des nombres premiers connus, celle des nombres de Ramsey déjà “capturés” est infime, et l’on ne dispose quasiment d’aucun critère utile.
Un esprit tourné vers la généralisation (plutôt que les spécialisations) ne peut s’empêcher de se demander pourquoi on devrait s’en tenir à deux couleurs seulement. Le théorème s’étend tout aussi bien aux graphes \(r \)-colorés. Une arête dans un graphe (ordinaire) est une sorte de lien entre une paire de sommets. De même, pourquoi s’en tenir à ces liens par paires. On peut très bien envisager une autre sorte de lien, par paquets de \(n \) sommets. Le théorème vaut également dans ce cadre général comme on va le voir tout de suite.

3 Un brin de terminologie. Pour demeurer bref, et rester simple, on va s’écarter de nouveau des notations et du vocabulaire traditionnels. Un \(n \)-graphe \(r \)-coloré est une configuration définie par la donnée d’un ensemble \(S \) (les sommets), de l’ensemble \(\mathcal{P}_n(S) \) des parties de \(S \) de cardinal \(n \) (les arêtes), ainsi que d’un recouvrement de \(\mathcal{P}_n(S) \) par \(r \) ensembles \(C_1, \ldots, C_r \) (les couleurs) qui peuvent chevaucher (de sorte qu’une même arête puisse avoir, éventuellement, plusieurs couleurs à la fois) et même déborder. La taille d’un \(n \)-graphe désigne toujours le nombre de ses sommets, qu’il soit fini ou infini. Bien entendu, un \(n \)-graphe monocolore est celui dont toutes les arêtes ont une même couleur (autrement dit, tel que \(\mathcal{P}_n(S) \subset C_i \) pour un indice \(i \) donné).

Ainsi, un graphe bicolore n’est rien autre qu’un 2-graphe 2-colore (en acceptant qu’une arête puisse être, tout à la fois, rouge et bleue).

Un mot encore au sujet des sous-graphes. Soit \(T \subset S \) une partie quelconque de l’ensemble \(S \) des sommets d’un \(n \)-graphe \(r \)-coloré \(G \). Restreindre l’ensemble des sommets à \(T \) veut dire considérer le \(n \)-graphe \(r \)-coloré dont l’ensemble des sommets est \(T \) et dont les couleurs sont toujours \(C_1, C_2, \ldots, C_r \). Le nouveau \(n \)-graphe \(r \)-coloré ainsi obtenu sera appelé le sous-graphe sur \(S \) restreint à \(T \), ou encore, le sous-graphe sous-tendu par \(T \) dans \(G \). Ce sont les seuls qui seront appelés sous-graphes dans ce contexte.

Le théorème de Ramsey en sa généralité se présente comme suit.

4 Le théorème de Ramsey. La version “finie”. Les entiers \(n, r, h \), étant donnés, il existe un entier \(k \) tel que tout \(n \)-graphe \(r \)-coloré de taille \(k \) contienne un \(n \)-sous-graphe monochrome de taille \(h \).

Le plus petit de ces entiers \(k \) est désigné par \(N(n, r, h) \) et se nomme le nombre de Ramsey (pour les \(n \)-graphes \(r \)-colorés, relatif à \(h \)).

[On mentionnera, pour mémoire, qu’un nombre de Ramsey du genre \(f(n, q_1, \ldots, q_r) \) a été également introduit pour désigner le plus petit entier \(k \) tel que tout \(n \)-graphe \(r \)-coloré de taille \(k \) possède un \(n \)-sous-graphe monochrome de taille \(q_i \) et de couleur \(C_i \) pour l’un au moins des indices \(i \). Bien entendu, on a \(f(n, q_1, \ldots, q_r) \leq N(n, r, \max\{q_1, \ldots, q_r\}) \).

Évidemment, le théorème s’applique tout aussi bien aux 1-graphes \(r \)-colorés. Mais qu’est-ce qu’un 1-graphe? Eh bien! c’est, à tout prendre, la même chose qu’un ensemble \(S \) de sommets. Ainsi, un 1-graphe \(r \)-coloré est un ensemble recouvert par \(r \) ensembles.
Ce que le théorème dit à propos de cette configuration est précisément le **principe des tiroirs** de Dedekind : étant donné un colombier ayant \(r \) nids, et un entier \(h \), si \(k \) pigeons habitent ce colombier et si \(k > r(h - 1) \), alors l’un de ces nids devra abriter au moins \(h \) pigeons. [En anglais, ce principe porte le nom de *pigeon-hole principle*.

Signalons ce mot de H. J. RYSER [10, page 38] : le théorème de Ramsey peut être considéré comme une généralisation profonde de ce principe simple.

Incidentement, on a \(N(1, r, h) = r(h - 1) + 1 \).

Pour ce qui est du théorème de Ramsey en sa version “infinie”, il dit succinctement que l’on a

\[
N(n, r, \infty) = \infty,
\]

ce qui, sous une forme développée, veut dire ceci.

5 Le théorème de Ramsey. La version “infinie”. Tout \(n \)-graphe \(r \)-colore infini contient un \(n \)-sous-graphe monochrome infini.

DESCENTE DE L’INFINI AU FINI

Habituellement, les manuels d’analyse combinatoire contiennent des démonstrations de la version “finie” du théorème de Ramsey. Voir, par exemple, L. COMTET [2], Marshall HALL, Jr. [7] et H. J. RYSER [10]. On pourra comparer ces démonstrations avec celle, courte, de la version “infinie” présentée ci-dessous.

Comme c’est souvent le cas, l’arithmétique de l’infini (pour les cardinaux) paraît plus simple à manier que celle des entiers finis. Le cas présent ne fait pas exception. Non seulement l’énoncé de la version “infinie” du théorème est plus simple, mais sa démonstration est également plus directe (voir l’APPENDICE ci-dessous). De plus, avec un peu d’ingéniosité, il se trouve que, de la version “infinie” du théorème, on tire une démonstration facile du théorème dans sa version “finie”, avec une petite prime en plus.

6 Le théorème de Ramsey renforcé. Des entiers \(n, r, h \), étant donnés, il existe un entier \(k \) ayant la propriété suivante :

\[
P(n, r, h; k) : \text{Tout } n\text{-graphe } r\text{-colore dont les sommets sont } 1, 2, \ldots, k, \text{ contient un } n\text{-sous-graphe monochrome sous-tendu par } H \subset \{1, 2, \ldots, k\} \text{ et tel que}
\]

\[
|H| \geq h \text{ et } |H| \geq \min(H).
\]

Bien entendu la provenance des sommets importe peu, il suffit qu’ils soient numérotés à l’aide des entiers de 1 à \(k \).
Voici (davantage qu’une simple esquisse de) cette démonstration.

7 La démonstration. On considère une extension convenable \(\mathbb{N} \) des entiers naturels \(\mathbb{N} \). Une ultrapuissance quelconque de \(\mathbb{N} \) relativement à un ultrafiltre incomplet peut faire l’affaire. On pose \(\Omega = \mathbb{N} \setminus \mathbb{N} \). On prend ensuite un entier hyperfini quelconque \(m \in \Omega \) et un \(n \)-graphe \(r \)-colore dont l’ensemble des sommets est \(S = \{0, 1, \ldots, m\} \). Le \(n \)-sous-graphe \(r \)-colore obtenu par restriction de l’ensemble des sommets à \(\mathbb{N} \) est infini de sorte que, d’après la version “infinie” du théorème de Ramsey, il contient un \(n \)-sous-graphe monochrome infini ayant (dans \(\mathbb{N} \)) les sommets

\[
\begin{align*}
s_1 < s_2 < \cdots < s_i < \ldots
\end{align*}
\]

On prend un entier (fini) \(q \) plus grand que \(h \) et \(s_1 \). Ainsi \(H = \{s_1, s_2, \ldots, s_q\} \) sous-tend un \(n \)-sous-graphe monochrome et l’on a

\[
|H| \geq h \quad \text{et} \quad |H| \geq \min(H).
\]

Cela veut simplement dire que la propriété \(P(n, r, h; m) \) est satisfaite par chacun des entiers hyperfini \(m \in \Omega \). Le sous-ensemble (standard)

\[
M = \{m \in \mathbb{N}^* : P(r, n, h; m) \text{ est satisfaite}\}
\]

contient ainsi tous les entiers hyperfinis de \(\Omega \). De sorte que \(k = \min(M) \) est l’entier (standard) annoncé : en effet, \(P(n, r, h; k) \) est satisfaite et \(k \) appartient bien à \(\mathbb{N} \) car, sinon, \(k - 1 \) appartiendrait toujours à \(\Omega \! \). □

8 Une ou deux indications complémentaires. Ajoutons quelques mots d’explication.

Bien qu’une certaine familiarité avec les méthodes nonstandards puisse aider à mieux saisir l’essence de cette (courte) démonstration, très peu est requis pour la comprendre. En effet, tout ce que l’on a besoin de savoir peut se résumer, un peu rapidement, comme suit.

Un énoncé relatif à \(\mathbb{N} \) est vrai pour \(\mathbb{N} \) si et seulement s’il est vrai pour \(\mathbb{N}^* \) nonstandard.

Afin de mieux comprendre encore la dernière partie de la démonstration, il peut être utile de la considérer comme relevant de l’adage : un énoncé \(E(m) \) vrai pour tout entier \(m \) infiniment grand doit être vrai pour au moins un entier \(k \) fini. En réalité, le proverbe va plus loin : un énoncé tel que \(E(m) \) est vrai pour tous les entiers infiniment grands si et seulement s’il est vrai pour les entiers finis suffisamment grands.
9 Les démonstrations de la version “finie”. Les démonstrations que l’on donne habituellement de la version “finie” du théorème de Ramsey n’utilisent pas sa version “infinie”, mais reposent surtout sur la récurrence, allant des n-graphes aux $(n+1)$-graphes et de r couleurs en $(r+1)$ couleurs, combinatoirement. Ces preuves sont dites élémentaires en diverses acceptions du mot “élémentaire”. En particulier, une telle preuve existe qui n’utilise rien de plus que l’arithmétique de Peano, dite PA, qui est la théorie du premier ordre de l’arithmétique, construite à l’aide des axiomes de Peano.

Cependant, aussi étrange que cela puisse paraître, la version renforcée du théorème n’est pas démontrable dans PA. Cette indécidabilité a été établie par J. Paris et L. Harrington [8].

Insistons encore sur ce fait : le théorème de Ramsey est un théorème de PA tandis que l’énoncé de sa version renforcée est indécidable dans PA. Cela veut également dire que le théorème de Ramsey est vrai dans toute extension de \mathbb{N}, tandis que sa version renforcée est vraie dans certaines extensions et fausse dans d’autres [pas du genre ultrapuissances, bien entendu].

On observera également ceci : il est vrai que Gödel a établi l’incomplétude de PA (et bien davantage encore, sans aucun doute,) dans les années trente, mais les énoncés qu’il a utilisés pour ce faire ne ressemblent pas tout à fait à des énoncés mathématiques ordinaires. Pour beaucoup, ils peuvent encore apparaître un peu artificiels ou quelque peu trop ad hoc. Paris et Harrington, pour la première fois (pour autant que je le sache) ont montré qu’un énoncé mathématique tout à fait ordinaire peut être indécidable dans PA.

10 D’où vient l’indécidabilité.

Le profane s’étonnera, inévitablement : comment peut-on démontrer que de tels énoncés sont indémontrables. Eh bien! pour en avoir une idée, un très rapide coup d’œil, on doit penser aux fonctions arithmétiques que PA peut manier. Elles sont en nombre infini, certainement, mais toujours dénombrables. Elles ne couvrent donc pas tout le spectre des fonctions arithmétiques possibles. En utilisant le procédé diagonal de Cantor, on peut définir, à l’extérieur de PA, une fonction qui croît plus vite que chacune d’elles. Ainsi, de l’extérieur, pour ainsi dire, on peut pousser des entiers vers le haut, ou vers le bas, plus loin qu’aucune des fonctions de l’intérieur ne le ferait!

Gödel lui-même utilise une forme de procédé diagonal pour ses démonstrations lesquelles sont, néanmoins, d’une autre nature, davantage syntaxique que fonctionnelle.

Les arithméticiens le savent depuis longtemps, il est souvent plus facile de démontrer un théorème en utilisant des outils étrangers, tels que des outils analytiques, par exemple. Maintenant tout le monde devrait se rendre compte que quelques uns de ces théorèmes nécessitent de tels outils puissants dont on ne peut pas se dispenser.
Bien que l’arithmétique de Peano puisse servir le projet de bâtir une grande partie des mathématiques telles qu’elles sont, elle ne couvre même pas toute l’arithmétique. En matière de preuves, il y a une hiérarchie qui, dans les sommets, conduit au succès. La théorie des ensembles ZFC de Zermelo-Frankel est bien plus forte que PA, même si ce n’est pas le sommet, bien sûr. Mais “ceci est une autre histoire”.

Remontée du désordre vers l’ordre

Nous venons de voir un exemple de l’influence descendante de l’infini sur le fini. Voici, à présent, l’exemple d’une construction qui remonte du désordre vers l’ordre.

11 **Ramsey et les ordinaux.** Parmi les très nombreuses généralisations de la théorie de Ramsey, il en est une relative aux ordinaux. Dans cette généralisation, les n-graphes ont leurs sommets bien ordonnés, au lieu d’être seulement numérotés à l’aide d’entiers. Pour faire court, étant donné un ordinal γ, convenons d’appeler (n,γ)-graphes les n-graphes dont les sommets sont bien ordonnés suivant l’ordre γ. Bien entendu, ceux-ci peuvent être identifiés aux n-graphes dont les sommets sont les ordinaux $\kappa \in [0,\gamma]$ de 0 à γ non inclus.

P. Erdős et R. Rado [3, corollaire au théorème 39], ont présenté la généralisation suivante.

12 **Ramsey et les ordinaux.** Étant donnés des ordinaux α, β, il existe un ordinal γ tel que tout (n,γ)-graphe bicolore contienne ou bien un (n,α)-sous-graphe rouge ou bien un (n,β)-sous-graphe bleu.

En s’en tenant au cas où $n = 2$, on définit

$$f(\alpha, \beta)$$ le plus petit des ordinaux γ tels que chaque $(2,\gamma)$-graphe bicolore contienne ou bien un $(2,\alpha)$-sous-graphe rouge ou bien un $(2,\beta)$-sous-graphe bleu.

[C’est l’analogue des nombres de Ramsey $f(2,q_1,q_2)$ mentionnés ci-dessus.]

13 **Un exemple.** Depuis trente sept ans, dans une note conjointe, L. HADDAD et G. SABBAGH [5,(1969)], on trouve une démonstration d’une demi-page qui établit le fait que l’on a

$$f(m,\omega^2) = \omega^2$$ pour tout entier $m > 0$.

Telle quelle, la démonstration apparaissait nue, rédigée sans commentaires ni indications. Notre note n’attira que très peu d’attention, en réalité, elle n’en obtint presque aucune. Aussi, aucun autre détail ne fut-il jamais publié. Il est vrai que ce résultat était déjà connu: E. SPECKER [11] en avait donné une démonstration, faisant intervenir un ultrafiltre, parmi d’autres ingrédients.
Voici une forme déployée de cette courte démonstration dans [5], en espérant ainsi qu’elle puisse illustrer une construction remontant du désordre vers l’ordre.

14 $f(m, \omega^2) = \omega^2$.

On considère un $(2, \omega^2)$-graphe bicoleur dont l’ensemble des sommets est $\mathbb{N} \times \mathbb{N}$, ordonné lexicographiquement, et un entier $m > 0$. Nous devons montrer ceci : il existe un sous-graphe rouge de taille m, sinon il existe un $(2, \omega^2)$-sous-graphe bleu. Nous allons établir un petit peu plus.

Il y a des sous-graphes rouges de toute taille finie $m > 0$, sinon il existe un $(2, \omega^2)$-sous-graphe bleu.

On recouvre l’ensemble $\mathcal{P}_4(\mathbb{N})$ de tous les quadruplets à l’aide de huit sous-ensembles de la manière suivante. Soit

$$X = \{n_1, n_2, n_3, n_4\}, \quad n_1 < n_2 < n_3 < n_4.$$

En commençant par (n_1, n_2, n_3, n_4), on obtient $4! = 24$ permutations. On garde un œil sur trois d’entre elles :

$$X_1 = (n_1, n_2, n_3, n_4), \quad X_2 = (n_1, n_3, n_2, n_4), \quad X_3 = (n_1, n_4, n_2, n_3).$$

Soit alors $X_i = (a, b, a', b')$ pour un indice $i \in \{1, 2, 3\}$ donné. Deux choses peuvent arriver: ou bien l’arête $((a, b), (a', b'))$ est rouge, et on posera $X_i = +$ [pour le rouge], ou bien elle est bleu, et on posera $X_i = -$ [pour le bleu]. On appelle le triplet (X_1, X_2, X_3) la signature de X [une espèce de multicouleur]. Comme il n’y a que $2^3 = 8$ signatures possibles, on obtient un recouvrement de $\mathcal{P}_4(\mathbb{N})$ à l’aide de ces 8 multicouleurs. Scrutons un peu le 4-graphe 8-colore que l’on obtient et dont l’ensemble des sommets est \mathbb{N}.

Que signifie exactement le fait que $X = \{n_1 < n_2 < n_3 < n_4\}$ ait pour signature $(+, -, +)$ [autrement dit, (rouge,bleu,rouge)], par exemple. Et bien! cela veut dire que l’arête

$$((n_1, n_2), (n_3, n_4)) \text{ est rouge} , \quad ((n_1, n_3), (n_2, n_4)) \text{ est bleu} , \quad ((n_1, n_4), (n_2, n_3)) \text{ est rouge.}$$

Nous avons transféré, en un sens, (une partie de) la structure du graphe de départ sur $\mathbb{N} \times \mathbb{N}$ à un 4-graphe 8-colore sur \mathbb{N}. Utilisons, à présent, le théorème de Ramsey afin d’obtenir une partie infinie A de \mathbb{N} dont tous les quadruplets ont une même signature, soit (c_1, c_2, c_3). En restreignant le graphe initial à l’ensemble des sommets $A \times A$, un moment de réflexion suffit pour voir que l’on peut supposer être parti, d’emblée, d’un $(2, \omega^2)$-graphe bicoleur pour lequel l’ensemble tout entier $\mathcal{P}_4(\mathbb{N})$ a la même signature (c_1, c_2, c_3). À présent, seul deux cas peuvent se présenter :
1) Ou bien il y a un indice i pour lequel $c_i = +$.

2) Ou bien on a $c_i = -$ pour chaque i.

Il faut donc encore deux étapes dans la démonstration. Dans le premier cas, on montre qu’il y a des sous-graphes rouges de toute taille (finie) $m > 0$. Dans le second cas, on montre qu’il existe nécessairement un $(2, \omega^2)$-sous-graphe bleu, à moins qu’il n’y ait des sous-graphes rouges de toute taille (finie) $m > 0$.

Le premier cas. On suppose que $c_1 = +$. Cela veut dire que les arêtes $((a, b), (a', b'))$ pour lesquelles $a < b < a' < b'$, sont rouges. Ainsi, le sous-graphe infini dont les sommets sont $(0, 1), (2, 3), (3, 4), \ldots, (2k, 2k + 1), \ldots$ est-il rouge.

On suppose que $c_2 = +$. Cela veut dire que toutes les arêtes $((a, b), (a', b'))$ pour lesquelles $a < a' < b < b'$, sont rouges. Le sous-graphe dont les sommets sont $(0, m), (1, m + 1), \ldots, (k, m + k), \ldots, (m - 1, 2m - 1)$, est donc rouge et de taille m.

On suppose que $c_3 = +$. Cela veut dire que les arêtes $((a, b), (a', b'))$ pour lesquelles $a < a' < b' < b$, sont rouges. Cette fois, le sous-graphe dont les sommets sont $(0, 2m), (1, 2m - 1), \ldots, (k, 2m - k), \ldots, (m - 1, m + 1)$, est rouge et de taille m.

Le second cas. On suppose que $c_1 = c_2 = c_3 = -$. Cela veut dire que, dès que l’on a

$$a < b < a' < b' \quad ou \quad a < a' < b < b' \quad ou \quad a < a' < b' < b,$$

l’arête $((a, b), (a', b'))$ est bleue. Pour régler les choses simplement, on restreint les sommets du graphe au sous-ensemble

$$L = \{(p, p^n) : p \text{ premier et } n > 1\}.$$

On suppose que la taille des sous-graphes rouges ne dépasse pas un entier donné m. On considère le sous-graphe $G(p)$ restreint à $L(p) = \{(p, p^n) : n > 1\}$. Chacun de ces graphes contient un sous-graphe infini bleu, d’après le théorème de Ramsey. Il existe donc une partie infinie $M(p)$ de $L(p)$ telle que la restriction de $G(p)$ à $M(p)$ soit un sous-graphe infini bleu. Soit $M = \bigcup M(p)$. C’est une partie de L et elle est bien ordonnée de type ω^2.

Tout ce qui nous reste à faire c’est de démontrer que la restriction du graphe sur L à M est bleue. Soient $(p, p^s) \neq (q, q^t)$ deux sommets distincts dans M. Si $p = q$, les deux sommets sont dans $M(p)$ et l’arête $u = ((p, p^s), (q, q^t))$ est donc bleue. Sinon, soit $p < q$. Alors, ou bien on a

$$p < p^s < q < q^t \quad ou \quad p < q < p^s < q^t \quad ou \quad p < q < q^t < p^s,$$

et, dans les trois cas, l’arête u est bleue, grâce à la signature. □
Voici une démonstration de la version “infinie” du théorème de Ramsey :

\[R(n, r) \text{ Tout } n\text{-graphe } r\text{-colore infini contient un } n\text{-sous-graphe monochrome infini.} \]

15 Démonstration. [Le résultat est évident pour \(r = 1 \) quel que soit \(n > 0 \) car un \(n\)-graphe monocolore est monochrome!]

Pour \(n = 1 \) et chaque \(r > 0 \), les sommets sont recouverts par \(r \) sous-ensembles dont l’un au moins doit être infini, ce qui donne le résultat. On procède ensuite par récurrence sur \(n \).

On suppose le résultat acquis pour \(n \) et \(r \) donnés. On se donne un \((n + 1)\)-graphe \(r\)-colore quelconque dont l’ensemble des sommets est \(S \) et les couleurs sont \(C_1, C_2, \ldots, C_r \). On commence par un sommet quelconque \(s_0 \) et, en utilisant \(R(n, r) \), on définit par récurrence une suite de sommets

\[s_0, s_1, \ldots, s_k, \ldots \]

une suite de parties infinies

\[S \supset S_0 \supset S_1 \supset \cdots \supset S_k \supset \cdots \]

et une application \(c : \mathbb{N} \to \{1, \ldots, r\} \) tels que \(s_k \in S_{k-1} \setminus S_k \) et, pour chaque \(A \in \mathcal{P}_n(V_k) \), la partie \(\{s_k\} \cup A \) de cardinal \((n + 1)\) ait la couleur \(C_{c(k)} \). Au moins l’une des parties \(M(i) = \{k \in \mathbb{N} : c(k) = i\} \) est infinie, soit \(M(j) \). On pose \(T = \{v_k : k \in M(j)\} : \) c’est une partie infinie de \(S \) et le sous-graphe restreint à \(T \) est visiblement monochrome, de couleur \(C_j \). □

Cette démonstration est l’exercice no 28 dans BOURBAKI [1, E III.92]. On devrait la comparer avec la démonstration suggérée par BOURBAKI [1, E III.86, exercice 17] pour la version “finie”.

References

1. N. Bourbaki, Théorie des ensembles, Hermann, 1970.
2. Louis Comtet, Analyse combinatoire, I and II, (Collection Sup) P.U.F., 1970.
3. P. Erdös and R. Rado, A partition calculus in set theory, Bull. Am. Math. Soc. 62 (1956), 427-489.
4. Labib Haddad and Gabriel Sabbagh, Sur une extension des nombres de Ramsey aux ordinaux, C. R. Acad. Sc. Paris 268 (1969), 1165 – 1167.
5. ________, Calcul de certains nombres de Ramsey généralisés, ibid, 1233 – 1234.
6. ________, Nouveaux résultats sur les nombres de Ramsey généralisés, ibid, 1516 – 1518.
7. Marshall Hall, Jr., Combinatorial theory, Blaisdell, 1967.
8. J. Paris and L. Harrington, A mathematical incompleteness in Peano Arithmetic, Handbook of Mathematical Logic (J. Barwise, ed.), Noth-Holland, Amsterdam, 1977, pp. 1133–1142.
9. F. P. Ramsey, *On a problem of formal logic*, Proc. London Math. Soc. 30 (1930), 264 – 286.
10. H. J. Ryser, *Combinatorial mathematics*, The Carus Mathematical Monographs, no 14, The Mathematical Association of America, 1963.
11. E. Specker, *Teilmengen von Mengen mit Relationen*, Comment. Math. Helv. 31 (1957), 302–314.

120 rue de Charonne, 75011 Paris, France; e-mail: labib.haddad@wanadoo.fr