Exactly solvable interacting vertex models

Francisco C Alcaraz1 and Matheus J Lazo2,3

1 Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13560-590, São Carlos, SP, Brazil
2 Centro Tecnológico de Alegrete, Universidade Federal de Santa Maria/Unipampa, Alegrete, RS, Brazil
3 Departamento de Física, Universidade Federal de Santa Maria, 97111-900, Santa Maria, RS, Brazil
E-mail: alcaraz@if.sc.usp.br and lazo@smail.ufsm.br

Received 13 May 2007
Accepted 15 June 2007
Published 1 August 2007

Online at stacks.iop.org/JSTAT/2007/P08008
doi:10.1088/1742-5468/2007/08/P08008

Abstract. We introduce and solve a special family of integrable interacting vertex models that generalizes the well known six-vertex model. In addition to the usual nearest neighbour interactions among the vertices, there exist extra hard-core interactions among pairs of vertices at larger distances. The associated row-to-row transfer matrices are diagonalized by using the recently introduced matrix product ansatz. Like for the relation of the six-vertex model with the XXZ quantum chain, the row-to-row transfer matrices of these new models are also the generating functions of an infinite set of commuting conserved charges. Among these charges we identify the integrable generalization of the XXZ chain that contains hard-core exclusion interactions among the spins. These quantum chains have already appeared in the literature. The present paper explains their integrability.

Keywords: integrable spin chains (vertex models), quantum integrability (Bethe ansatz), solvable lattice models
Exactly solvable interacting vertex models

1. Introduction

The six-vertex model was introduced by Pauling in order to explain the residual entropy of ice at zero temperature. The model turns out to be of great interest for the physics and mathematics of many-body interacting systems, due to its integrability. The row-to-row transfer matrix of the six-vertex model is the generating function for an infinite set of commuting non-trivial charges in involution [1], the XXZ quantum chain being one of these charges. For a quantum system to be integrable its Hamiltonian should belong to an infinite set of commuting operators. The integrability of the XXZ quantum chain is then a consequence of the infinite number of commuting charges generated by the six-vertex model. For this reason the six-vertex model is considered as a paradigm of integrability in statistical mechanics [2]–[5].

The connection of vertex models and quantum chains was also observed in a great variety of general vertex models and quantum chains thanks to the development of the quantum inverse scattering method (QISM) [6]–[8]. The QISM allows the construction of vertex models and the associated quantum chains from the solutions of the Yang–Baxter equations (see [9]–[11] for reviews). Basically we should expect that associated with any integrable quantum chain in one dimension there should exist a vertex model whose row-to-row transfer matrix is the generating function for the quantum chain.

On the other hand, in recent years, it has been shown that it is possible to generalize several known integrable quantum chains by preserving their integrability. These generalizations are obtained through the introduction of suitable hard-core exclusion interactions. Examples of these generalizations were obtained for the XXZ quantum chain [12, 13], spin-1 Fateev–Zamolodchikov and Izergin–Korepin models [14], SU(N) Sutherland and Perk–Schultz models [12, 15] and the Bariev model [16, 17]. Some of these extended quantum chains appear in the description of the stochastic dynamics
of the asymmetric exclusion problem with particles with extended sizes [18, 15], [19]–
[23]. The exact solutions of these quantum chains were not obtained using the QISM
but directly, using the coordinate Bethe ansatz [24] or the matrix product ansatz [25]–
[28]. Consequently, the two-dimensional vertex model generating these quantum chains
is not known, and we could not explain their integrability, up to now. We expect that,
similarly to the quantum chains, the associated vertex models should have, beyond the
nearest neighbour interactions imposed by the lattice connectivity, also additional hard-
core interactions.

Recently an interacting five-vertex model in a square lattice was introduced and
solved [29]. In this model there exist hard-core interactions along the diagonal of the
square lattice. The exact solution was obtained only for the eigenspectra of the diagonal-
to-diagonal transfer matrix, that distinctly from the row-to-row transfer matrix does not
generate an infinite set of conserved charges.

In this paper we are going to introduce a family of integrable interacting vertex models
that generalize the six-vertex model and explain the integrability of the XXZ quantum
chains with hard-core interactions. The row-to-row transfer matrices associated with these
vertex models generate an infinite set of conserved charges, that include the Hamiltonians
of the hard-core interacting quantum chains.

In the six-vertex model the interactions are between nearest neighbour vertices and are
ruled by the geometrical connectivity of the allowed vertex configurations of the lattice.
The energy of interaction of two vertices is zero for allowed configurations and infinite
otherwise. The family of interacting vertex models that we introduce in this paper have
additional interactions. Besides the usual nearest neighbour interactions, imposed by the
lattice connectivity, there exist also interactions among vertices at larger distances.

The exact solutions for transfer matrices associated with vertex models or quantum
Hamiltonians are usually obtained through the Bethe ansatz [24] in its several
formulations. The ansatz asserts that the amplitudes of the eigenfunctions of these
operators are given by sums of appropriate plane waves. Instead of making use of the
Bethe ansatz, the solution that we derive will be obtained through a matrix product
ansatz (MPA).

Under the general name of MPA, several methods have been introduced in the
literature over the years. The first formulation was done for the description of the
ground state eigenfunctions of some special non-integrable quantum chains, the so called
valence-bond solid models [30]–[33]. MPA has also become a successful tool for the exact
calculation of the stationary probability distribution of some stochastic one-dimensional
systems [34]–[36]. An extension of this last MPA, called dynamical MPA, was introduced
in [37, 38] and extended in [39]. This last ansatz gives the time dependent probability
distribution for some integrable systems.

The MPA that we are going to use in this paper, in order to solve the new family of
integrable vertex models, was introduced in [25]–[28]. This ansatz was applied with success
in the evaluation of the eigenspectra of several integrable quantum Hamiltonians [25]–
[27], transfer matrices [29, 40] and the time-evolution operator of stochastic systems [28].
According to this ansatz, the amplitudes of the eigenfunctions are given in terms of a
product of matrices where the matrices obey appropriate algebraic relations. In the case
of the Bethe ansatz the spectral parameters and the amplitudes of the plane waves are
fixed, apart from a normalization constant, by the eigenvalue equation of the Hamiltonian

doi:10.1088/1742-5468/2007/08/P08008
Figure 1. The six possible vertex configurations allowed by the ice rules, with their respective energies and fugacities. In (a) we draw all arrows and in (b) we give a representation where only the arrows pointing down and left are drawn.
example (see figure 1(b)), the vertex with fugacity a_0 has an infinite interaction energy if the vertex on its right is one of the vertices (a_1, b_1, c_2) or the vertex on its left is one of the vertices (a_1, b_1, c_1). The model with no extra interactions, besides those given by the connectivity of the vertices on the lattice, is the well known six-vertex model. The partition function of the model is given by the sum of all possible vertex configurations with the Boltzmann weights given by the product of the fugacities of the vertices. The six-vertex model is exactly integrable for arbitrary values of the fugacities, and is considered a prototype of an exactly solvable model [2]–[4], [41, 42].

We consider a special family of interacting four-vertex models. Besides the previously mentioned nearest neighbour interactions (infinite or zero) imposed by the lattice connectivity, the models also contain interactions among pairs of vertices at larger distances. The allowed four-vertex configurations, with their respective configurations, are the vertices 1, 3, 5 and 6 shown in figure 1. Unlike for the six-vertex model the vertex configurations with fugacities a_1 and b_2 are forbidden. Such interacting four-vertex models are labelled with two fixed positive integers s_1 and s_2 that may take the values $s_1, s_2 = 1, 2, \ldots$. These parameters specify the additional interactions among the vertices that occur when there are vertices of types c_1 and c_2 at distances equal to s_1 or s_2, in lattice units along the horizontal lines of the square lattice. A pair of vertices at distance $(l = 1, 2, \ldots)$, in units of lattice spacing, along this horizontal line interact following the rules 4.

(a) The interaction energy is zero if one of the vertices is a_0 or b_1.
(b) If the pair of vertices is of type c_1-c_1 or c_2-c_2 the interaction energy is infinity if $l \leq s_1 + s_2$.
(c) If the pair of vertices is of type c_1-c_2 (c_2-c_1) the interaction energy is infinity if $l < s_1$ ($l < s_2$) and zero if $l > s_1$ ($l > s_2$). In the special case where $l = s_1$ ($l = s_2$) the interaction energy is finite and produces, besides the fugacity of the vertices, a contribution to the Boltzmann weight z_1 (z_2) given by

$$z_1 = \frac{b_1 b_2}{c_1 c_2} \quad \text{and} \quad z_2 = \frac{a_0 a_1}{c_1 c_2}.$$ \hspace{1cm} (1)

The use of the missing fugacities a_1 and b_1 to denote the interactions z_1 and z_2 in (1) is convenient for the forthcoming analysis. In figure 2 we show some examples of allowed and non-allowed configurations containing two arrows in the model with $s_1 = 2$ and $s_2 = 1$.

In general, the contribution of a given pair of vertices is zero if the pair is not allowed (infinite interaction energy) or is given by the product of their fugacities (zero interaction energy). The exception to this rule happens when we have the pair c_1-c_2 (c_2-c_1) at the distance s_1 (s_2) along the horizontal line (see figure 2). In this case, from (1), the total contribution to the Boltzmann weight is given by $c_1 c_2 z_1 = b_1 b_2$ ($c_1 c_2 z_2 = a_0 a_1$).

We can also extend our model to the cases where the interaction parameters s_1, s_2 may take the value zero. In these cases the interaction follows the previous rules (a)–(c) but instead of (1) we have the generalized form

$$z_1 = \frac{b_1 b_2}{c_1 c_2} a_0^{-s_1} \quad \text{and} \quad z_2 = \frac{a_0 a_1}{c_1 c_2} a_0^{-s_2},$$ \hspace{1cm} (2)

4 For simplicity we denote a given vertex by its fugacity, and a pair of vertices where the vertex fugacity c_1 is on the left (right) of c_2 by c_1-c_2 (c_2-c_1).

doi:10.1088/1742-5468/2007/08/P08008
Exactly solvable interacting vertex models

Figure 2. Configurations containing two arrows in a lattice of size $L = 9$, for the model with $s_1 = 2$ and $s_2 = 1$. The configurations (a) and (b) are allowed and their respective Boltzmann weight contributions are shown. Configuration (c) is not allowed due to the occurrence of a pair $c_1 - c_2$ at distance $1 < s_1$. Configuration (d) is also not allowed because the two vertices c_2 are at distance $3 \leq s_1 + s_2$.

where $\delta_{s,0}$ is the usual Kronecker delta. In this generalization we may have the pair of vertices $c_1 - c_2$ ($c_2 - c_1$) at distance $s_1 = 0$ ($s_2 = 0$). In this case the total contribution coming from the pair is now $c_1 c_2 z_1 = b_2$ ($c_2 c_1 z_2 = a_1$). The models where $s_1 = 0$ and $s_2 \neq 0$ ($s_2 = 0$ and $s_1 \neq 0$) are equivalent to interacting five-vertex models where only the vertex a_1 (b_2) of figure 1 is not allowed. The interactions on these models, according to rule (a), forbid arrows at distances smaller than $s_2 + 1$ ($s_1 + 1$). Moreover the pair of vertices $c_1 - c_2$ ($c_2 - c_1$) interacts as in rule (c). The special case where $s_1 = s_2 = 0$ recovers the standard six-vertex model, with interactions given only by the lattice connectivity and the ice rules.

In summary, the general vertex models defined by the rules (a)–(c) and by (2), contains interacting four-vertex models ($s_1 \neq 0, s_2 \neq 0$), interacting five-vertex models ($s_1 = 0, s_2 \neq 0$ or $s_1 \neq 0, s_2 = 0$) and the standard six-vertex model ($s_1 = s_2 = 0$).

It is important to notice that the interactions, due to rule (b), forbid two vertical arrows at distances smaller than $s_1 + s_2 + 1$ ($s_1, s_2 = 0, 1, 2, \ldots$). This can be interpreted as if the vertical arrows have an effective size $s_1 + s_2 + 1$ ($s_1, s_2 = 0, 1, 2, \ldots$), in units of lattice spacing. A vertical arrow on a given link has hard-core interactions that exclude the occupation of other vertical arrows at the link itself as well as the s_1 nearest links on its left and s_2 nearest links on its right. In figure 3 we represent pictorially an allowed (a) and a non-allowed (b) configuration of arrows for the interacting four-vertex model with $s_1 = 2$ and $s_2 = 1$. In this example the arrows have an effective size $s_1 + s_2 + 1 = 4$. In the particular case $s_1 = s_2 = 0$ the arrows have a unit size, as should be expected in the standard six-vertex model.

Like for the connection of the six-vertex model with the XXZ quantum chain [4] we are going to show in section 3 that our interacting model, with general parameters s_1 and s_2, is also related to quantum spin chains with hard-core exclusion interactions [12, 13]. The related models are the XXZ quantum chains with exclusion of up spins (σ^z-basis) at distances smaller than $s_1 + s_2 + 1$ [12, 13] and the time-evolution operator of the asymmetric exclusion problem of particles of size $s_1 + s_2 + 1$, in units of the lattice spacing [15, 28].

\textit{doi:10.1088/1742-5468/2007/08/P08008}
3. The row-to-row transfer matrix of the interacting vertex models

We denote a given configuration of n vertical arrows located at x_1, \ldots, x_n along the horizontal line of the lattice by $\{x_1, \ldots, x_n\}$. The row-to-row transfer matrix T_{s_1,s_2}, with elements

$$
\langle x_1, \ldots, x_n | T_{s_1,s_2} | x'_1, \ldots, x'_n \rangle = a_0^{n_1} b_1^{n_2} c_1^{n_3} c_2^{n_4} z_1^{n_5} z_2^{n_6},
$$

(3)
gives the Boltzmann weight contribution to the partition function due to vertical arrow configurations $\{x_1, \ldots, x_n\}$ and $\{x'_1, \ldots, x'_n\}$ on two consecutive rows\(^5\). In (3) n_i is the numbers of vertices of type i ($i = 1, 3, 5, 6$) and n_{z_1} (n_{z_2}) is the number of pairs c_1-c_2 (c_2-c_1) at a distance of s_1 (s_2) units along the horizontal line (see figure 2). The partition function of the interacting vertex model, due to the periodic boundary condition of the lattice, is given by

$$
Z = \text{Tr}[T_{s_1,s_2}^M].
$$

(4)

As we discussed in the last section in the cases where $s_1 = 0, s_2 \neq 0$ and $s_1 \neq 0, s_2 = 0$, the four-vertex models are equivalent to interacting five-vertex models. We can also verify directly that the corresponding transfer matrices T_{0,s_2} and $T_{s_1,0}$ are related to those of models with $s_1 \neq 0$ and $s_2 \neq 0$, namely,

$$
T_{s_1,s_2} = \left(\frac{b_1}{a_0} \right)^{n_{s_1}} \mathcal{P}^{-s_1} T_{0,s_1+s_2} = \left(\frac{a_0}{b_1} \right)^{n_{s_2}} \mathcal{P}^{s_2} T_{s_1+s_2,0},
$$

(5)

where \mathcal{P} is the horizontal translation operator, i.e., $\mathcal{P} \{x_1, \ldots, x_n\} = \{x_1 + 1, \ldots, x_n + 1\}$. This last relation enables us to relate transfer matrices of distinct models (s_1, s_2) and (s'_1, s'_2), provided that $s_1 + s_2 = s'_1 + s'_2$, i.e.,

$$
T_{s_1,s_2} = \left(\frac{b_1}{a_0} \right)^{n(s_1-s'_1)} \mathcal{P}^{s'_1-s_1} T_{s'_1,s'_2} = \left(\frac{a_0}{b_1} \right)^{n(s_2-s'_2)} \mathcal{P}^{s_2-s'_2} T_{s'_1,s'_2}.
$$

(6)

\(^5\) In the particular case where we have no vertical arrows ($n = 0$) or in the case where $s_1 = s_2 = 0$ (six-vertex model) and $x_i = x'_i$ ($i = 1, \ldots, n$) there exist two possibilities for connecting the vertical arrows. In this case equation (3) has two terms and should be replaced by $\langle x_1, \ldots, x_n | T_{s_1,s_2} | x_1, \ldots, x_n \rangle = a_1^{n_1} b_1^{n_2} + b_2^{n_3} a_2^{n_4}$.
4. The matrix product ansatz for the interacting vertex models

The transfer matrix (3) with toroidal boundary conditions has a \(U(1) \times Z_L \) symmetry due to the conservation of vertical arrows along the horizontal lines and the translation symmetry along the horizontal direction. Consequently the associated Hilbert space can be separated into block disjoint sectors labelled with the number \(n \) of vertical arrows \((n = 0, 1, \ldots, [L/(s_1 + s_2 + 1)]) \) (we denote by \([x]\) the integer part of \(x\)) and the momentum eigenvalues \(P (P = ((2\pi)/L)l, l = 0, 1, \ldots, L - 1) \) of the translation operator \(\mathcal{P} = e^{-iP} \). We want to solve, in each of these sectors, the eigenvalue equation

\[
T_{s_1,s_2} |\Psi_{n,P}\rangle = \Lambda_n |\Psi_{n,P}\rangle, \tag{7}
\]

where \(\Lambda_n \) and \(|\Psi_{n,P}\rangle \) are the eigenvalues and eigenvectors of \(T_{s_1,s_2} \), respectively. These eigenvectors can be written in general as

\[
|\Psi_{n,P}\rangle = \sum_{x_1,\ldots,x_n} A(x_1,\ldots,x_n) |x_1,\ldots,x_n\rangle, \tag{8}
\]

where \(A(x_1,\ldots,x_n) \) is the amplitude corresponding to the arrow configuration with \(n \) vertical arrows located at sites \((x_1,\ldots,x_n) \). The symbol (*) in the sum means the restriction to the configurations where \(x_{i+1} - x_i > s_1 + s_2 \) \((i = 1,\ldots,n-1) \), \(x_1 \geq 1 \), \(s_1 - s_2 < x_n - x_1 < L - (s_1 + s_2) \). Since \(|\Psi_{n,P}\rangle \) is also an eigenvector with momentum \(P \), then the amplitudes should satisfy

\[
\frac{A(x_1,\ldots,x_n)}{A(x_1+1,\ldots,x_n+1)} = e^{-iP} \tag{9}
\]

for \(x_n < L \), while for \(x_n = L \) we have

\[
\frac{A(x_1,\ldots,L)}{A(1,x_1+1,\ldots,x_{n-1}+1)} = e^{-iP}. \tag{10}
\]

The exact solution for the transfer matrix (3) is obtained by an appropriate ansatz for the unknown amplitudes \(A(x_1,\ldots,x_n) \). As shown in the last section our model reduces to the standard asymmetric six-vertex model in the case where \(s_1 = s_2 = 0 \). In this particular case the model is known to be exactly solvable through the Bethe ansatz [2,41,42] and also the MPA [40] introduced in [25]–[27]. In the present paper we are going to derive the exact solution of the interacting vertex models with \(s_1, s_2 = 0, \ldots \) by using the MPA that we propose in [27]. This ansatz asserts that for any amplitude in (8) there exists a one-to-one correspondence with an ordered matrix product

\[
A(x_1,\ldots,x_n) \leftrightarrow E^{x_1-1}AE^{x_2-x_1-1}A \ldots E^{x_n-x_{n-1}-1}AE^{L-x_n}, \tag{11}
\]

where the matrices \(A \) and \(E \) are associated with the sites where we have a vertical arrow or not, respectively. Actually the objects \(A \) and \(E \) are not necessarily matrices but can be abstract operators with an associative product\(^6\). Their commutation relations will be fixed by imposing the validity of the eigenvalue equation of the transfer matrix (7). A well defined eigenfunction is obtained, apart from a normalization factor, if all the amplitudes are uniquely related. Equivalently, in the subset of words (products of matrices) of the algebra containing \(n \) matrices \(A \) and \((L - n) \) matrices \(E \), there should exist only a single

\(^6\) In the original formulation [25, 26] of the ansatz an unnecessary additional matrix [43] and a trace operation appeared in the right-hand side of (11). The MPA in (11) is formulated as in the general formulation given in [27].
E matrix products appearing in the ansatz (11) with the components of \(w \) inserted (2) in the last two terms in the right-hand side. The eigenvalue is given by

\[
A \sum_{y=1}^{L} a_0^{y} b_1^{x+y-1} c_1 c_2 E^{y-1} A E^{L-y} = 0.
\]

The case \(n = 0 \)

In this case the solution of the eigenvalue equation (7) is trivial since we do not have vertical arrows between two successive rows. There are only two possible horizontal arrangements: either all bonds have a horizontal arrow or all of them are empty. In this case the vertices are all of type 1 or type 3 (see figure 1) and consequently the eigenvalue is given by

\[A_0 = a_0^L + b_1^L. \]

The case \(n = 1 \)

We have in this case just one vertical arrow between two rows. The transfer matrix links a vertical solid line at position \(x \) \((x = 1, \ldots, L)\) above a row to a vertical line at any position \(y \) \((L \geq x \geq y + s_1 \) or \(y - s_2 \geq x \geq 1)\) under this row. The elements of the transfer matrix \(T_{s_1,s_2}(y,x) \) in this sector with momentum \(P \) are given by (3). They are given by the product of the Boltzmann weights of the vertex appearing on the row. The vertex configurations at the sites \(x \) and \(y \) will be of types \(c_2 \) and \(c_1 \). If the position of the line \(x \) is greater than or equal to \((\leq)\) \((x \geq y + s_1 \) or \(y - s_2 \geq x \geq 1)\), all the other vertices will be of types \(b_1 \) \((a_0)\) or \(a_0 \) \((b_1)\) depending on whether the vertices are between the positions \(x \) and \(y \) or not, respectively. However in the special cases where \(x = y + s_1 \) or \(x = y - s_2 \) we have also to include the fugacities \(z_1 \) \((z_2)\) due to the long range interaction (2) between these vertices. Consequently the eigenvalue equation (7) for the transfer matrix (3) associated with the components of \(|\psi_{n,P}\rangle \) (11), with \(n = 1 \) and momentum \(P \), gives us the algebraic relations for the matrix products

\[
A_1 E^{x-1} A E^{L-x} = \sum_{y=1}^{x-s_1-1} a_0^{L-x+y-1} b_1^{x+y-1} c_1 c_2 E^{y-1} A E^{L-y} + \sum_{y=x+s_2+1}^{L} \sum_{y=x+s_2+1}^{L} a_0^{y-x-1} b_1^{L-y+x-1} c_1 c_2 E^{y-1} A E^{L-y} + a_0^{L-s_1-1} b_1^{L-x-s_1-1} A E^{L-x-s_1-1} A E^{L-x-s_1} + b_1^{L-s_2-1} a_0^{L-s_2-1} a_0^{L-x+y-1} A E^{L-x-s_2},
\]

where we inserted (2) in the last two terms in the right-hand side.
The equation (15) is simplified by expressing all the matrix products in terms of a single one. This is done by imposing that the matrix A depend on a spectral parameter k. Without loss of generality, the matrix A can be written in terms of the matrix E and a spectral parameter dependent matrix 7A_k:

$$A = E^{-s_1}A_kE^{1-s_2},$$

with A_k satisfying the following algebraic relation with the matrix E:

$$EA_k = e^{ik}A_kE.$$

Inserting (16) in (15) and using (17) we can factorize (15):

$$\left\{ \Lambda_1 - \sum_{y=1}^{x-s_1-1} a_0^{L-x+y-1}b_1^{x-y-1}c_1c_2e^{ik(y-x)} - \sum_{y=x+s_2+1}^{L} a_0^{y-x-1}b_1^{L-y+x-1}c_1c_2e^{ik(y-x)} \
- a_0^{L-s_1-1}b_1^{s_1}b_2e^{-iks_1} - b_1^{L-s_2-1}a_0^{s_2}a_1e^{iks_2} \right\} E^{x-s_1-1}A_kE^{L-x+1-s_2} = 0. \tag{18}$$

In order to produce a non-zero norm state we should impose $E^{x-s_1-1}A_kE^{L-x+1-s_2} \neq 0$, for $x = 1, \ldots, L$. As a consequence we must have, by evaluating the sums in (18),

$$\Lambda_1 = a_0^L L(k) \left(\frac{b_1}{a_0} \right)^{s_1} e^{-iks_1} + b_1^L M(k) \left(\frac{a_0}{b_1} \right)^{s_2} e^{iks_2} + a_0^L C_1C_2 \left(\frac{b_1}{a_0} \right)^x \frac{e^{ik(1-x)}}{b_1 - a_0 e^{ik}} (1 - e^{ikL}), \tag{19}$$

where

$$L(k) = \frac{a_0b_2 + (c_1c_2 - b_1b_2)e^{-ik}}{a_0^2 - a_0b_1 e^{-ik}}, \quad M(k) = \frac{a_0a_1 - c_1c_2 - a_1b_1 e^{-ik}}{a_0b_1 - b_1^2 e^{-ik}}. \tag{20}$$

In order to satisfy (15), the eigenvalue Λ_1 in (19) should depend on the vertical line position x. Thus the last term in the right-hand side of (19) must vanish. The only way to cancel this term, for non-zero Boltzmann weights, is obtained by imposing $e^{ikL} = 1$, which fixes the spectral parameter k:

$$k = \frac{2\pi}{L} j \quad (j = 0, 1, \ldots, L - 1). \tag{21}$$

The eigenvalue (19) is then given by

$$\Lambda_1 = a_0^L L(k) \left(\frac{b_1}{a_0} \right)^{s_1} e^{-iks_1} + b_1^L M(k) \left(\frac{a_0}{b_1} \right)^{s_2} e^{iks_2}, \tag{22}$$

where the values of the spectral parameter k are given by (21).

Finally, by inserting (16) and using (17) in equations (12) and (13) we verify that k coincides with the momentum of the eigenstate:

$$k = P = \frac{2\pi}{L} j \quad (j = 0, 1, \ldots, L - 1). \tag{23}$$

7 The most general relation $A = \sum_{n=1}^\infty A^n A_k E^\beta$ could be used. However (16) is more convenient since otherwise the structure constants $S(k_j, k_i)$ that will appear in (32) will depend on the parameters s_1 and s_2.

doi:10.1088/1742-5468/2007/08/P08008
The case $n = 2$

In this sector there are two vertical arrows in the row. We have in general two types of relation for the amplitudes (11): relations where at least one of the vertical arrows (y_1, y_2) is at distance s_1 or s_2 from (x_1, x_2), and those where y_1 and y_2 interlace with x_1 and x_2: $(1 \leq y_1 < x_1 - s_1; x_1 + s_2 < y_2 < x_2 - s_1)$ and $(x_1 + s_2 < y_1 < x_2 - s_1; x_2 + s_2 < y_2 \leq L)$. Then, the eigenvalue equation (7) implies

$$\Lambda_2 E^{x_1-1} A E^{x_2-x_1-1} A E^{L-x_2} = \sum_{y_1=1}^{x_1-s_1} \sum_{y_2=x_1+s_2}^{x_2-s_1} a_0^{-L(x_2-y_1+1)} c_2 \times g(x_1, y_1) f(y_2, x_1) g(x_2, y_2) E^{y_1-1} A E^{y_2-y_1-1} A E^{L-y_2} + \sum_{y_1=x_1+s_2}^{x_2-s_1} \sum_{y_2=x_2+s_2}^{L} b_1^{L-(y_2-x_1+1)} c_1 f(y_1, x_1) \times g(x_2, y_1) f(y_2, x_2) E^{y_1-1} A E^{y_2-y_1-1} A E^{L-y_2},$$

(24)

where the symbol * in the sums means that terms with $|y_2 - y_1| \leq s_1 + s_2$ are excluded and

$$f(y, x) = \begin{cases} c_2 a_0^{y-x-1} & \text{if } y > x + s_2 \\ a_0^{y} a_1/c_1 & \text{if } y = x + s_2, \end{cases} \tag{25}$$

$$g(x, y) = \begin{cases} b_1^{x-y-1} c_1 & \text{if } x > y + s_1 \\ b_1^{s_1} b_2/c_2 & \text{if } x = y + s_1. \end{cases} \tag{26}$$

The relation (24) connects configurations where the arrangements of vertical arrows (x_1, x_2) above the row do not have the same distance as the vertical arrows (y_1, y_2) below the row. In other words, the distances of the incoming arrows $y_2 - y_1$ are in general different from the outgoing distances $x_2 - x_1$. To solve the relation (24) we need now to use a generalization of the algebraic relation (16) for the case of two arrows. The generalization of (16) is done by writing the matrix A in terms of two new spectral parameter matrices as

$$A = \sum_{j=1}^{2} E^{-s_1} A_{k_j} E^{1-s_2}, \tag{27}$$

with the commutation relations

$$E A_{k_j} = e^{i k_j} A_{k_j} E \quad (j = 1, 2), \tag{28}$$

where the spectral parameters k_1 and k_2 are up to now unknown complex numbers.

Inserting (27) in (24) and using (28) and (20) we obtain, after a similar manipulation to that for the case $n = 1$, the following constraint:

$$\sum_{j,l=1}^{2} \left[A_2 - a_0^L \left(\frac{b_1}{a_0} \right)^{2s_1} e^{-i(k_j+k_l)s_1} L(k_j)L(k_l) - b_1^L \left(\frac{a_0}{b_1} \right)^{2s_2} e^{i(k_j+k_l)s_2} \right] \times M(k_j) M(k_l) e^{i k_j s_1} e^{-i k_l s_2} e^{i k_j x_1} e^{i k_l x_2} A_{k_j} A_{k_l}$$

doi:10.1088/1742-5468/2007/08/P08008
The algebraic relations between the matrices $A_{k_j}A_{k_l}$ are obtained by imposing that both the second and third terms in (29) are zero independently, i.e.,

$$A_{k_j}A_{k_l} = S(k_j, k_l)A_{k_l}A_{k_j}, \quad (A_{k_j})^2 = 0 \quad (j \neq l = 1, 2),$$

where

$$S(k_j, k_l) = \frac{L(k_j)M(k_l) - a_1b_2}{L(k_j)M(k_l) - a_1b_2/a_0b_1}.$$

with $L(k)$ and $M(k)$ given by (20). Note that the structure constants $S(k_j, k_l)$ are independent of s_1 and s_2 due to the choice (27) (see the footnote related to equation (16)). Finally, the vanishing of the last four terms in (29) will give us relations that fix the
The eigenvalues are obtained by inserting the solutions \((k_1, k_2)\) of these last equations in (30). The momentum \(P\) is obtained by using (27) and (28) in (12) and (13): \(P = k_1 + k_2\). The amplitudes of the corresponding eigenvectors are obtained from the algebraic relations (27), (28) and (31).

The case of general \(n\)

The general case follows straightforwardly from the \(n = 2\) case. The previous calculation can be extended to arbitrary values of the number \(n\) of vertical arrows. The eigenvalue equation for the transfer matrix connects the amplitudes \(A(x_1, \ldots, x_n)\) and \(A(y_1, \ldots, y_n)\) where \(1 \leq y_1 \leq x_1 - s_1, x_1 + s_2 \leq y_2 \leq x_2 - s_1, \ldots, x_{n-1} + s_2 \leq y_n \leq x_n - s_1\) and \(x_1 + s_2 \leq y_1 \leq x_2 - s_1, x_2 + s_2 \leq y_2 \leq x_3 - s_1, \ldots, x_n - s_2 \leq y_n \leq L\). To solve the eigenvalue equation we need to extend the definition (27) and the commutation relations (28) to general \(n\), i.e.,

\[
A = \sum_{j=1}^{n} E^{-s_1} A_{kj} E^{1-s_2}
\]

with

\[
EA_{kj} = e^{i k_j} A_{kj} E \quad (j = 1, \ldots, n).
\]

The parameters \(k_j\) \((j = 1, \ldots, n)\) are in general unknown complex numbers that will be fixed by the eigenvalue equation (7). Inserting (34) in (7) and using the commutation relations (35) we obtain, similarly to in the case \(n = 2\), the algebraic relations among the matrices \(A_{kj}\) \((j = 1, \ldots, n)\):

\[
A_{kj} A_{kl} = S(k_j, k_l) A_{ki} A_{kj}, \quad (A_{kj})^2 = 0 \quad (j \neq l = 1, \ldots, n),
\]

where \(S(k_j, k_l)\) is given by (32) and the spectral parameters \(k_j\) \((j = 1, \ldots, n)\) are fixed by the equation

\[
e^{i L k_j} = - \prod_{l=1}^{n} \left(\frac{e^{i k_j}}{e^{i k_l}} \right)^{s_1 + s_2} S(k_j, k_l) \quad (j = 1, \ldots, n).
\]

The acceptable set \(\{k_j\}\) of spectral parameters defining the eigenvectors \(|\Psi_{n,P}\rangle\) is given by the solutions of (37) where \(k_l \neq k_j\) \((j, l = 1, \ldots, n)\). Since \((A_{kj})^2 = 0\), solutions of (37) with coinciding roots give us null states.

No new algebraic relations appear for the matrices \(\{A_{kj}\}\) besides (35) and (36). This is not easy to verify. The difficulty here is similar to that in showing the absence of many-particle scattering in the standard coordinate Bethe ansatz for vertex models [2]–[5]. The product associativity of the algebra (35) and (36) follows from the property \(S(k_j, k_l)S(k_l, k_j) = 1\). From the eigenvalue equation (7) we obtain the eigenvalues

\[
\Lambda_n = a_0^0 \left(\frac{b_1}{a_0} \right)^{n s_1} \prod_{j=1}^{n} e^{-i k_j s_1} L(k_j) + b_1^{1} \left(\frac{a_0}{b_1} \right)^{n s_2} \prod_{j=1}^{n} e^{i k_j s_2} M(k_j),
\]

\[
doi:10.1088/1742-5468/2007/08/P08008
\]

13
where $L(k)$ and $M(k)$ are given by (20) and the spectral parameters $\{k_j\}$ are the solutions of (37). Finally, the momentum P follows from (12), (13), (34) and (35):

$$P = \sum_{j=1}^{n} k_j.$$

(39)

Before closing this section let us give a possible representation for the matrices E and A of the ansatz (11)[27]. For a given solution $\{k_1, \ldots, k_n\}$ of the spectral parameter equations (37), in the sector with n vertical arrows, the matrices E and $\{A_{k_1}, \ldots, A_{k_n}\}$ have the following $2^n \times 2^n$-dimensional representation:

$$E = \bigotimes_{i=1}^{n} \begin{pmatrix} 1 & 0 \\ 0 & e^{-ik_i} \end{pmatrix},$$

(40)

$$A_{k_j} = \left[\bigotimes_{i=1}^{j-1} \begin{pmatrix} S(k_j, k_i) & 0 \\ 0 & 1 \end{pmatrix} \bigotimes_{l=j+1}^{n} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \bigotimes_{l=1}^{n} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right],$$

(41)

where the $S(k_j, k_i)$ are given by (32) and A is obtained from (34). It is important to notice that the matrices E and A_{k_j} have the same functional form as was obtained for the formulation of the MPA for the Hamiltonian of the XXZ spin chain [27]. This happens because the matrices E and A_{k_j} satisfy the same algebraic relations (34)–(36) in both models. The only difference is in the values of the spectral parameters $\{k_1, \ldots, k_n\}$, that for the present model are fixed by equation (37).

It is important to notice that all the interacting four-vertex ($s_1 \neq 0, s_2 \neq 0$), five-vertex ($s_1 = 0, s_2 \neq 0$ and $s_1 \neq 0, s_2 = 0$) and six-vertex models ($s_1 = s_2 = 0$) have the same functional form for the operators A_{k_j} ($j = 1, \ldots, n$), the only difference being the structure constants $S(k_j, k_i)$, since the spectral parameters k_1, \ldots, k_n are solutions of distinct equations. By way of a test of our calculations we check that (37) for the case $s_1 = s_2 = 0$ coincides with the spectral parameter equations obtained by the well known Bethe ansatz calculation of the asymmetric six-vertex model [41,42]. Using the representation (40) and (41) we also obtain in this case the same amplitudes for the eigenfunctions as were derived using the Bethe ansatz.

We can also solve the interacting models introduced in this paper by the use of the same coordinate Bethe ansatz as was used for the six-vertex model [2]–[5]. In this case instead of obtaining the structure constants (32), with no dependence on s_1 or s_2, we obtain an S-matrix that depends on these parameters. Although the final spectral parameter equations (37) and the eigenfunctions for both ansätze are the same, we believe the derivation through our MPA is more elegant.

The phase diagram of the interacting vertex models introduced in this paper can be derived from that of the six-vertex model. This follows from the spectral parameter equations (37), that can be written as

$$e^{i[L-n(s_1+s_2)]k_j} e^{IP(s_1+s_2)} = -\prod_{l=1}^{n} S(k_j, k_l), \quad (j = 1, \ldots, n),$$

(42)

where we have used (39). Consequently the eigenvalues belonging to the eigensector with n vertical arrows and momentum P of the transfer matrix T_{s_1,s_2} with parameters s_1 and s_2.

doi:10.1088/1742-5468/2007/08/P08008
are related to those of the standard six-vertex model \((s_1 = s_2 = 0)\). The related six-vertex model is defined on a cylinder with perimeter \(L' = L - n(s_1 + s_2)\) and with a momentum dependent seam spanning its length\(^8\).

5. The interacting vertex models and generalized XXZ quantum chains

The connections between the XXZ quantum chain and the standard asymmetric six-vertex model are well known [4]. The row-to-row transfer matrix of the six-vertex model is the generating function of an infinite set of commuting charges, the XXZ quantum Hamiltonian being one of these charges. Since the six-vertex model is a particular case \((s_1 = s_2 = 0)\) of our general model it is natural to expect that we can also generate generalized exact solvable XXZ quantum chains for the general case where \(s_1, s_2 \geq 0\).

The first step towards the derivation of those generalized quantum chains is the identification of the row-to-row transfer matrix \(T_{s_1, s_2}\) for arbitrary values of \(s_1\) and \(s_2\), as a generating function of commuting charges.

It is important to notice that the structure constant \(S(k_j, k_l)\) given in (32) does not depend on the particular values of \(s_1\) and \(s_2\). It only depends on the parameters \(a_0, a_1, b_1, b_2, c_1\) and \(c_2\). Consequently it is convenient to use the same parametrization as was used in [44] for the asymmetric six-vertex model:

\[
a_0 = e^{-\beta \epsilon_1} = e^{h + \nu \sinh(\gamma + \epsilon \mu)} \frac{\sinh(\gamma + \epsilon \mu)}{\sinh \gamma},
\]

\[
a_1 = e^{-\beta \epsilon_2} = e^{-h - \nu \sinh(\gamma + \epsilon \mu)} \frac{\sinh(\gamma + \epsilon \mu)}{\sinh \gamma},
\]

\[
b_1 = e^{-\beta \epsilon_3} = e^{-h + \nu \sinh \gamma} \frac{\sinh \mu}{\sinh \gamma},
\]

\[
b_2 = e^{-\beta \epsilon_4} = e^{h - \nu \sinh \gamma} \frac{\sinh \mu}{\sinh \gamma},
\]

\[
c_1 = e^{-\beta \epsilon_5} = 1,
\]

\[
c_2 = e^{-\beta \epsilon_6} = 1,
\]

where \(\epsilon = \pm 1\) and \(\gamma, \mu, h\) and \(\nu\) are free parameters. The choice \(c_1 = c_2 = 1\) does not restrict the model since, due to the periodic boundary condition, these parameters always appear in pairs. The symmetric interacting models are obtained by setting \(h = \nu = 0\).

Inserting in (32) the parameters in (43) we obtain

\[
S(k_j, k_l) = -\frac{1 + e^{4h} e^{i(k_j + k_l)} - e^{2h} \cos \gamma e^{ik_l}}{1 + e^{4h} e^{i(k_j + k_l)} - e^{2h} \cos \gamma e^{ik_j}},
\]

which shows the independence of the structure constants of the algebra defining the MPA of the parameters \(\mu\) and \(\nu\).

The results of previous sections imply that, for a given solution \(\{k_1, \ldots, k_n\}\) of the spectral parameter equations (37), the amplitudes of the corresponding eigenfunction of \(T_{s_1, s_2}\) depend only on the algebraic relations (34)–(36). Consequently all the eigenfunctions

\(^8\) The phase \(e^{iP(s_1 + s_2)}\) in the left-hand side of (42) can be obtained by considering a vertex model with twisted boundaries. The twist is obtained by introducing a seam with distinct vertex fugacities along the vertical direction.
of T_{s_1,s_2}, for fixed values of s_1 and s_2, are the same for arbitrary values of μ and ν, i.e.,

$$[T_{s_1,s_2}(\mu,\nu), T_{s_1,s_2}(\mu',\nu')] = 0.$$ \hfill (45)

Moreover, since from (5) T_{s_1,s_2} and $T_{s_1',s_2'}$ differ in multiplication by a diagonal operator, we may write the general relation

$$[T_{s_1,s_2}(\mu,\nu), T_{s_1',s_2'}(\mu',\nu')] = 0, \quad s_1 + s_2 = s_1' + s_2'.$$ \hfill (46)

The conserved charges are derived by expanding $T_{s_1,s_2}(\mu,\nu)$ in terms of μ. Since we are interested only in the derivation of the quantum chain associated with $T_{s_1,s_2}(\mu,\nu)$, in the following we are going to consider only the two leading terms in the μ-expansion.

The matrix elements of $T_{s_1,s_2}(\mu,\nu)$ in the eigensector with n arrows are given by\(^9\)

$$\langle y | T_{s_1,s_2}(\mu,\nu) | x \rangle = P_s(\{y\}) P_s(\{x\}) a_0^{-(x_n-y_1+1)} c_2 \times g(x_1, y_1) f(y_2, x_1) g(x_2, y_2) \cdots f(y_n, x_{n-1}) g(x_n, y_n),$$ \hfill (47)

if $x_1 \geq y_1 + s_1$, and

$$\langle y | T_{s_1,s_2}(\mu,\nu) | x \rangle = P_s(\{y\}) P_s(\{x\}) b_1^{-(y_n-x_1+1)} c_2 \times f(y_1, x_1) g(x_2, y_1) f(y_2, x_2) \cdots g(x_n, y_{n-1}) f(y_n, x_n),$$ \hfill (48)

if $x_1 \leq y_1 - s_2$. In these last equations $s = s_1 + s_2$ and $P_s(\{x\})$ projects out configurations not satisfying the hard-core exclusion constraint:

$$P_s(\{x\}) = \theta(x_n - x_1 - [L - (s + 1)]) \prod_{i=1}^{n-1} \theta(x_{i+1} - x_i - (s + 1)),$$ \hfill (49)

where

$$\theta(y) = \begin{cases} 1 & \text{if } y \leq 0 \\ 0 & \text{if } y < 0 \end{cases}$$ \hfill (50)

is the standard step function. In (47) and (48) the functions $f(y, x)$ and $g(x, y)$ are defined in (25) and (26) and have the leading behaviour in the μ-expansion

$$f(y, x) = e^{(h+\nu)(y'-x-s_1-2)} \{1 + [(y'-x-s_1-2) + 2\delta_{y'-x,s_1+1}] \epsilon \mu \coth \gamma \} \times \theta(y'-x-(s+1)) \delta_{y',y'-s_1-1} + O(\mu^2),$$ \hfill (51)

$$g(x, y) = \left(\frac{e^{\nu-h}}{\sinh \gamma} \right)^{s_1} \left[\delta_{x-y,0} + \frac{\mu}{\sinh \gamma} (e^{\nu-h} \delta_{x-y,1} + e^{h-\nu} \delta_{x-y,-1}) \right] \times \delta_{y,y'-s_1-1} + O(\mu^{s_1+2}).$$ \hfill (52)

\(^9\) The exceptional cases considered in footnote 5 should be considered separately, with no changes in the final results.
Using (51) and (52) in (47) we obtain

$$\langle y \rangle |T_{s_1,s_2}| \{ x \} = \left(\frac{e^{-h\mu}}{\sinh \gamma} \right)^{n s_1} e^{h+\nu} P_s(\{ y \}) \left\{ \prod_{i=1}^{n} \delta_{y_i,y_i'-s_1-1} \right\}$$

$$\times \left\{ 1 + \frac{\mu}{\sinh \gamma} \sum_{i=1}^{L} \left[e^{-2h} \delta_{x_i,y_i'+1} + e^{2h} \delta_{x_i,y_i'-1} + (L - 2n - ns_1) \right] \epsilon \cosh \gamma \right\} + O(\mu^2) \right\} P_s(\{ x \}),$$

(53)

where

$$\delta^{(L)}_{x_i+1, x_i, s+1} = \begin{cases} \delta_{x_i+1, x_i, s+1} & \text{for } i = 1, \ldots, n-1 \\ \delta_{x_n-x_1, L-(s+1)} & \text{for } i = n. \end{cases}$$

(54)

We can rewrite (53) in terms of spin-1/2 Pauli matrices by identifying an arrow at site i as $\sigma_i^x = +1$, and we obtain

$$T_{s_1,s_2}(\mu, \nu) = \exp \left(-[h(1 + s_1) + \nu] \sum_{i=1}^{L} (\sigma_i^x + 1) + L(h + \nu) \right)$$

$$\times \left(\frac{\mu}{\sinh \gamma} \right)^{s_1} \sum_{i=1}^{L} (\sigma_i^x + 1/2) \right\} P_{s_1+s_2} + \frac{\mu}{\sinh \gamma} H_{s_1,s_2} + O(\mu^2) \right\},$$

(55)

where

$$H_{s_1,s_2} = P_{s_1+s_2} \left\{ \sum_{i=1}^{L} \left[\epsilon_+ \sigma_i^- \sigma_{i+1}^- + \epsilon_- \sigma_i^+ \sigma_{i+1}^+ + \frac{\Delta}{2} (\sigma_i^\gamma \sigma_{i+s_1+s_2+1}^\gamma + 1) \right] \right\}$$

$$- h_m \sum_{i=1}^{L} (1 + \sigma_i^z) \right\} P_{s_1+s_2},$$

$$\epsilon_+ = e^{2h}, \quad \epsilon_- = e^{-2h}, \quad h_m = \frac{s_1}{2}, \quad \Delta = \epsilon \cosh \gamma, \quad \epsilon = \pm 1.$$

(56)

In this last equation a periodic boundary condition is imposed, $\sigma_i^x = (\sigma x \pm i\sigma y)/2$, and $P_{s_1+s_2}$ is the diagonal operator $\langle x \rangle |P_{s_1+s_2}| \{ x \} = P_{s_1+s_2}(\{ x \})$ defined in (49), that projects out configurations where two up spins are at distances smaller than $s_1 + s_2 + 1$. The same expressions (55) and (56) are also obtained by inserting (51) and (52) in (48).

We see from (56) that associated with the family of solvable interacting vertex models, with interacting parameters s_1 and s_2, we have a generalized asymmetric XXZ quantum chain. This quantum chain has hard-core exclusion interactions that forbid the occupation of up spins at distances smaller than $s_1 + s_2 + 1$. The important parameter controlling the exclusion effect is given by the combination $s = s_1 + s_2$. The effect of the parameter s_1 in (56) is the same as that of an external magnetic field $h_m = (s_1/2)$.

The Hamiltonian (56) for the case where $s_1 = s_2 = 0$ gives the standard asymmetric XXZ chain. The particular case where $\Delta = \epsilon_+ + \epsilon_- \epsilon$ gives the time-evolution operator of the asymmetric exclusion problem where the particles have hard-core size $s_1 + s_2 + 1$, in units of the lattice spacing [18, 15].

doi:10.1088/1742-5468/2007/08/P08008
The integrability of (56), for general values of s_1 and s_2, is already known from the literature [18, 15, 19]. What is unknown is why the inclusion of the hard-core exclusion constraints in the standard XXZ quantum chain model ($s_1 = s_2 = 0$), producing the Hamiltonian (56), does not destroy the integrability of the original model. This paper gives the explanation for this. The quantum chain (56), for a given value of s_1 and s_2, belongs to the infinite set of commuting charges generated by the row-to-row transfer matrix $T_{s_1+s_2}$ of our interacting vertex models.

6. Conclusions and generalizations

We have introduced in this paper a special family of exactly solvable interacting vertex models. These models are generalizations of the six-vertex model. Besides the usual nearest neighbour interactions imposed by the lattice connectivity, the models also contain hard-core interactions along the horizontal lines of the lattice. The range of the additional interactions depends on two fixed integer parameters $s_1, s_2 = 0, 1, \ldots$. This new family of models contains interacting four-vertex models ($s_1 \neq 0, s_2 \neq 0$), interacting five-vertex models ($s_1 = 0, s_2 \neq 0$, or $s_1 \neq 0, s_2 = 0$) and the standard six-vertex model ($s_1 = s_2 = 0$). These vertex models can also be interpreted as if the vertical arrows entering in the vertex configurations have an effective hard-core size $s = s_1 + s_2 + 1$.

For a given value of s_1 and s_2 the model can be parametrized with four parameters (γ, ν, μ and h; see (43)). The exact solution of the eigenspectra of the row-to-row transfer matrix shows the independence of the eigenfunctions of the parameters ν and μ, implying the commutativity of an infinite family of transfer matrices (see (45) and (46)). The expansion of the transfer matrix in terms of the free parameter μ gives an infinite set of commuting conserved charges. A member of this set is an XXZ quantum chain with hard-core interactions that exclude two up spins (σ^z-basis) at distances smaller than $s_1 + s_2 + 1$ [12, 13]. This quantum chain also describes the asymmetric diffusion of particles with hard-core size $s_1 + s_2 + 1$, in units of the lattice spacing [18, 15, 19]. The integrability of this quantum chain is already known [12, 13]. The present paper gives an explanation for this integrability, namely, the existence of an infinite set of commuting charges generated by the row-to-row transfer matrix of the interacting vertex models introduced.

The phase diagram of the interacting vertex models introduced, as discussed in section 4, can be obtained from the known results for the six-vertex model. The critical phases of the models are governed by a Coulomb gas type of conformal field theory with central charge $c = 1$. Since the spectral parameter equations are the same as those of the extended XXZ quantum chain [13], the compactification ratio, that fixes the critical exponents, depends on the density of vertical arrows n and on the parameters s_1 and s_2.

The exact solutions that we obtained for the interacting vertex models introduced in this paper were obtained by using the matrix product ansatz introduced in [25]–[28]. The most elegant solution of the six-vertex model is obtained by using the R-matrix approach in the quantum inverse scattering method. Can we solve the interacting vertex models introduced by generalizing the R-matrix of the six-vertex model? Due to the appearance of non-local operators in the row-to-row transfer matrix we were not able to find such generalization. That poses an interesting question to be answered in the future.

Similar to the hard-core generalization of the XXZ quantum chain, several known integrable quantum chains have been also generalized through the introduction of suitable
hard-core exclusion interactions. As examples we have hard-core generalizations of the spin-1 Fateev–Zamolodchikov and Izergin–Korepin models [14], $S_q U(N)$ Sutherland and Perk–Schultz models [19,20] and the Bariev model [11,16]. These quantum chains with no hard-core interactions, such as the standard XXZ chain, are known to be generated by the row-to-row transfer matrix of known vertex models. We believe that the same ideas as are presented in this paper for the generalization of the six-vertex model could also be extended to these vertex models. We expect the vertex models generating the quantum chains with only next neighbour interactions to be special cases of a larger family of integrable interacting vertex models.

Acknowledgments

This work was partly supported by FAPESP, CNPq and CAPES (Brazilian agencies).

References

[1] Tarasov V O, Takhtajan L A and Fadeev L D, 1983 Theor. Math. Phys. 57 1059
[2] Lieb E H, 1967 Phys. Rev. 162 162
[3] Sutherland B, Yang C N and Yang C P, 1967 Phys. Rev. Lett. 19 588
[4] Baxter R J, 1982 Exactly Solved Models in Statistical Mechanics (London: Academic)
[5] Gaudin M, 1983 La Fonction d’Onde de Bethe (Paris: Masson)
[6] Fadeev L D and Takhtajan L A, 1981 Sov. Sci. Rev. Math. C 1 107
[7] Takhtajan L A, 1983 J. Sov. Math. 23 2470
[8] Sklyanin E K, Takhtajan L A and Fadeev L D, 1979 Theor. Math. Phys. 40 688
[9] Korepin V E, Izergin A G and Bogoliubov N M, 1992 Quantum Inverse Scattering Method, Correlation Functions and Algebraic Bethe Ansatz (Cambridge: Cambridge University Press)
[10] Essler F H L and Korepin V E, 1994 Exactly Solvable Models of Strongly Correlated Electrons (Singapore: World Scientific)
[11] Schollmann P, 1977 Int. J. Mod. Phys. B 11 355
[12] Alcaraz F C and Bariev R Z, 1998 Phys. Lett. A 240 247
[13] Alcaraz F C, Bariev R Z, Alcaraz F C and Bariev R Z, 1999 Statistical Physics in the Eve of the 21st Century (Series on Advances in Statistical Mechanics) vol 14, ed M T Batchelor and L T Wille (Singapore: World Scientific) [cond-mat/9904042]
[14] Alcaraz F C and Bariev R Z, 1999 Phys. Rev. B 59 3373
[15] Alcaraz F C and Bariev R Z, 1999 Phys. Rev. E 60 79
[16] Yue R H and Schlottmann P, 2002 Nucl. Phys. B 647 539
[17] Yue R H and Schlottmann P, 2002 Phys. Rev. B 66 085114
[18] Szamato T and Wadati M, 1999 J. Phys. Soc. Japan 68 2618
[19] Alcaraz F C and Bariev R Z, 2000 Braz. J. Phys. 30 13
[20] Alcaraz F C and Bariev R Z, 2000 Braz. J. Phys. 30 655
[21] Shaw L B, Zia R K P and Lee K H, 2003 Phys. Rev. E 65 021910
[22] Ferreira A A and Alcaraz R Z, 2002 Phys. Rev. E 65 052102
[23] Schönherr G and Schütz G M, 2004 J. Phys. A: Math. Gen. 37 8315
[24] Bethe H A, 1931 Z. Phys. 71 205
[25] Alcaraz F C and Lazo M J, 2004 J. Phys. A: Math. Gen. 37 L1
[26] Alcaraz F C and Lazo M J, 2004 J. Phys. A: Math. Gen. 37 4149
[27] Alcaraz F C and Lazo M J, 2006 J. Phys. A: Math. Gen. 39 11335
[28] Alcaraz F C and Lazo M J, 2003 Braz. J. Phys. 33 533
[29] Ferreira A A and Alcaraz F C, 2006 Phys. Rev. E 74 011115
[30] Affleck I, Kennedy T, Lieb E H and Tasaki H, 1988 Commun. Math. Phys. 115 477
[31] Arovas D P, Auerbach A and Haldane F D M, 1998 Phys. Rev. Lett. 60 531
[32] Fannes M, Nachtergaele B and Werner R F, 1992 Commun. Math. Phys. 144 443
[33] Klumper A, Schadschneider A and Zittartz J, 1992 Z. Phys. B 87 251
[34] Derrida B, Evans M R, Hakim V and Pasquier V, 1993 J. Phys. A: Math. Gen. 26 1493
[35] Derrida B, 1988 Phys. Rep. 301 65
[36] Alcaraz F C, Dasmahapatra S and Rittenberg V, 1998 J. Phys. A: Math. Gen. 31 845

doi:10.1088/1742-5468/2007/08/P08008 19
[37] Stinchcombe R B and Schütz G M, 1995 Phys. Rev. Lett. 75 140
[38] Stinchcombe R B and Schütz G M, 1995 Europhys. Lett. 29 663
[39] Popkov V, Fouladvand M E and Schütz G M, 2002 J. Phys. A: Math. Gen. 35 7187
[40] Lazo M J, 2007 Physica A 374 655
[41] Nolden I M, 1992 J. Stat. Phys. 67 155
[42] Bukman D J and Shore J D, 1995 J. Stat. Phys. 78 1277
[43] Golinelli O and Mallick K, 2006 J. Phys. A: Math. Gen. 39 10647
[44] Albertini G, Dahmen S R and Wehefritz B, 1996 J. Phys. A: Math. Gen. 29 L369 [cond-mat/9509026]