High proliferation of *Pseudo-nitzschia* cf. *arenysensis* in the Adriatic Sea: ecological and morphological characterisation

Jasna ARAPOV1, Mia BUŽANČIĆ1, Antonella PENNA2,3, Silvia CASABIANCA2,4, Samuela CAPELLACCI1,3, Francesca ANDREONI2, Sanda SKEJIĆ1, Ana BAKRAČ1, Maja STRAKA1, Jelena MANDIĆ1 and Živana Ninčević GLADAN3

1 Institute of Oceanography and Fisheries, Laboratory of Plankton and Shellfish Toxicity, Šetalište I. Meštrovića 63, 21000 Split, Croatia
2 University of Urbino, Department of Biomolecular Sciences, Campus E. Mattei, 61029 Urbino, Italy
3 CoNISMa, National Inter-University Consortium for Marine Sciences, 00196 Roma, Italy
4 IRBIM CNR, Institute for Biological Resources and Marine Biotechnology, 60125 Ancona, Italy

Handling Editor: Yelda AKTAN

Received: 14 April 2020; Accepted: 22 October 2020; Published online: 1 December 2020

Abstract

The aim of this study is to characterise the diatom *Pseudo-nitzschia* community during a bloom period in relation to environmental conditions. High proliferation of *Pseudo-nitzschia* spp. was observed in September 2017 at the shellfish breeding area in Krka River estuary (Central eastern Adriatic Sea). The peak of abundance (1.8 x 10^6 cells L^-1) was recorded at 7 m depth, and the increased abundance persisted for four weeks. Morphological analyses of field samples based on scanning electron microscopy (SEM) revealed that *Pseudo-nitzschia* cf. *arenysensis* prevailed (94%) in the *Pseudo-nitzschia* assemblage. Several strains were successfully isolated from net samples in order to better define morphological features and phylogenetic characterisation. The isolated *Pseudo-nitzschia* strains corresponded morphologically to *P. cf. arenysensis* from the field samples, based on our SEM observations. Phylogenetic analysis demonstrated that the Croatian strains grouped with *P. arenysensis* using the ITS and LSU rDNA sequences.

The Spearman rank correlation showed that salinity was an important environmental factor affecting the vertical distribution of *Pseudo-nitzschia* spp. in this highly variable area. Availability of increased concentration of orthophosphates and ammonium and a low Si:TN ratio may have promoted the bloom of *P. cf. arenysensis* in the estuary.

Keywords: Adriatic Sea; *Pseudo-nitzschia* bloom; SEM; ribosomal genes.

Introduction

To date, the genus of marine diatoms *Pseudo-nitzschia* H. Pergallo consists of 54 described species (Bates et al., 2018; Huang et al., 2019). *Pseudo-nitzschia* species are distributed worldwide, from tropical to polar areas (Lelong et al., 2012; Trainer et al., 2012; Bates et al., 2018). This genus received significant attention from the scientific community after 1987, when the first ASP (Amnesic Shellfish Poisoning) outbreak was caused by a bloom of *P. multiseries* Hasle (Hasle) (Wright et al., 1989). Since then, the number of toxic *Pseudo-nitzschia* species that produce domoic acid (DA) increased to 26 (Bates et al., 2018; Lundholm, 2019). Domoic acid is a potent neurotoxin, found in various marine organisms such as zooplankton, shellfish, crustaceans, echinoderms, worms, marine mammals and birds, which can cause severe human intoxication and harmful impact on marine wildlife (Trainer et al., 2012; La Barre et al., 2014). The genus *Pseudo-nitzschia* is a common member of the phytoplankton community in the Adriatic Sea (Viličić et al., 2007; Bužančić et al., 2012; Marić et al., 2012; Skejić et al., 2014; Ninčević Gladan et al., 2020; Turk Dermastia et al., 2020). Previous taxonomical studies of *Pseudo-nitzschia* diversity from the central part of the Eastern Adriatic coast were mainly based on morphological data and included reports on species, such as: *P. pseudodelicatissima*, *P. delicatissima*, *P. subfraudulenta*, *P. calliantha*, *P. fraudulenta*, *P. pungens*, *P. manii* (Burić et al., 2008; Marić Pfanmuchen, 2013; Arapov et al., 2016; Arapov et al., 2017). A phylogenetic description of Croatian *Pseuodo-nitzschia* spp. was found only in the study of *P. manii* (Grbin et al., 2017).

Regular toxin analyses of shellfish samples indicated that domoic acid had been sporadically determined at shellfish breeding areas along the Eastern Adriatic...
Coast (Ujević et al., 2010; Ljubešić et al., 2011; Arapov et al., 2016; Arapov et al., 2017). Reported concentrations of DA were always far below regulatory limits, as well as are reported values from other Adriatic regions (EU, 2004; Ciminiello et al., 2005; Ujević et al., 2010; Ljubešić et al., 2011; Pistocchi et al., 2012; Penna et al., 2013; Arapov et al., 2016; Arapov et al., 2017).

Despite significant interest in this genus, determination to species level remains challenging. The existence of cryptic and pseudo-cryptic species within this genus makes their identification, based solely on morphological characteristics, inadequate. Therefore, identification of *Pseudo-nitzschia* species, especially those belonging to the *P. pseudodelicatissima* and *P. delicatissima* groups, requires an integrated approach of morphological studies using light and electron microscopy with molecular phylogenetic analysis. Detailed taxonomic studies of *Pseudo-nitzschia* species can contribute to a better understanding of genus diversity and toxicity issues.

The aim of this study was to characterise *Pseudo-nitzschia* species composition during a high abundance period and to describe environmental conditions that enable *Pseudo-nitzschia* blooms in the Krka River estuary.

Material and Methods

Study area and sampling

The Krka River estuary is one of the major aquaculture areas along the Eastern Adriatic coast that, since 2000, is included in the National Monitoring Programme of regular shellfish and seawater quality controls. It is a highly stratified, 25 km long estuary, located in the central part of the Eastern Adriatic coast. A sharp halocline exists throughout the whole year in layers of 1m to 4m depth. Previous studies have confirmed that the halocline plays an important role in biogeochemical processes (Svensen et al., 2007) and represents an accumulation layer for freshwater and marine phytoplankton species (Viličić et al., 1989). Sampling was conducted in the middle estuary, at station Strmica (43.776320°N, 15.848007°E, depth 28 m, Fig. 1), over a two-month period, on the following sampling dates: 30th August, 13th September, 27th September, 2nd October, 10th October, 16th October and 25th October 2017.

Environmental parameters and shellfish toxin analyses

During the sampling period, seawater temperature and salinity were measured using a YSI Pro 1030 probe at four depths (surface, halocline, 5 m, 7 m). Concurrently with temperature and salinity measurements, phytoplankton and nutrient samples were collected using Nansen bottles at the same depths, except for 5 m (surface, halocline and 7 m depth).

Water samples for nutrient analyses were stored in the freezer immediately after sampling and transferred to the laboratory for further analyses. Concentrations of nitrates (NO₃⁻), nitrites (NO₂⁻), ammonium(NH₄⁺), total nitrogen (Ntot), orthophosphates (PO₄³⁻), total phosphates (Ptot) and orthosilicates (SiO₄⁴⁻) were determined by a Seal Analytical Autoanalyzer III, according to the modified method used for nutrient determination in seawater (Grasshoff et al., 1999). Total inorganic nitrogen (TIN) was calculated as a sum of nitrates (NO₃⁻), nitrites (NO₂⁻) and ammonium(NH₄⁺). Organic nitrogen (Norg) was calculated as a difference between concentrations of total nitrogen (Ntot) and total inorganic nitrogen (TIN), whereas organic phosphates (Porg) were calculated as a difference between total phosphates (Ptot) and orthophosphates (PO₄³⁻) concentrations.

For the toxin analyses, samples of the mussel *Mytilus galloprovincialis* were collected concurrently with sampling of all other previously mentioned parameters throughout the investigated period. Domoic acid (DA) and epi-DA in shellfish samples were analysed by HPLC-DAD-UV system (Varian ProSTAR) according to Quilliam et al. (1995). Approximately 100 g of soft shellfish tissue was homogenised, and then a subsample of 8 g was prepared following the protocol proposed by Quilliam et al. (1995), including strong anion exchange (SAX) to avoid interference with tryptophan. A volume of 20 μL of sample was injected into the HPLC-DAD-UV system. The retention time of DA was close to 13 min. The limit...
of detection (LOD) was 0.1025 μg DA g⁻¹ and the limit of quantification was determined as 3 x LOD and was found to be 0.3415 μg DA g⁻¹. A detailed description of the HPLC method and composition of the mobile phase has been specified by Ujević et al. (2010) and Arapov et al. (2016).

Phytoplankton analyses (LM and SEM)

Phytoplankton composition and abundance were analysed using a Leica DM14000B inverted light microscope (LM), according to the Utermöhl method (Utermöhl, 1958). After collection, the seawater samples (250 mL) were preserved with Lugol’s solution and stored in the dark until the analyses. Subsamples of 25 mL were settled in counting chambers for at least 24 h, and then the cells were counted in one transect at 400x magnification and in half of the chamber bottom at 200x magnification.

The composition of *Pseudo-nitzschia* species was analysed using Field Emission Scanning Electron Microscopy (SEM, Tescan MIRA3), at the depth with the highest *Pseudo-nitzschia* spp. abundance determined by LM. Organic material from the valves was removed by adding 10% hydrochloric acid (HCl), 30% sulphuric acid (H₂SO₄), concentrated potassium permanganate (KMnO₄) and, after 24 h, concentrated oxalic acid (COOH). Subsequently, the sample was rinsed three times in distilled water, as described by Arapov et al. (2017). In each sample, the first 50 valves were measured: the length, width, number of fibulae and interstriae in 10 μm, as well as the number of poroids in 1 μm and number of sectors observed within poroid. The observed morphological characteristics were compared to the data available in the literature in order to determine *Pseudo-nitzschia* species.

Samples for morphological analyses of established *Pseudo-nitzschia* cultures were prepared according to Hasle & Fryxell (1970) in order to observe the characteristics of the girdle band. Subsamples of 500 μL of the cleaned samples were filtered through polycarbonate membrane filters (pore size 1 μm, Nucleopore, Whatman), dried for at least 24 h in a desiccator, coated with gold and examined with SEM. The first twenty intact valves of each cultured strain were measured.

Cell isolation and molecular analyses

Pseudo-nitzschia strains were isolated from field seawater samples collected with a plankton net (20 μm pore size), towed from 7 m to the surface. Single-cells or a chain was isolated under a Leica DMI4000B inverted light microscope using a sterile glass micropipette. Isolated cells were transferred to a 24-well tissue culturing plate, containing 1 mL of f/2 medium and kept at 21°C, with a 12:12 (light:dark) photoperiod at 108 μmol photons m⁻² s⁻¹. Upon the observed growth, isolates were transferred to culturing flasks containing 30 mL of f/2 medium and were further isolated. Isolated strains were fixed with Lugol’s solution on the seventh day of transfer of the strains to a culturing flask for detailed morphological analyses by SEM, as described above.

Moreover, two cultured strains of *Pseudo-nitzschia* spp. were analysed for species-specific taxonomical assignment by LSU and ITS-5.8S rDNA sequence alignment. The sequences of ribosomal genes obtained from two *Pseudo-nitzschia* cultured isolates were deposited in the NCBI GenBank. The accession number of P2B5 and P2E5 strains are MN545365 and MN545366 for the LSU gene, respectively and MN545442 and MN545443 for the ITS-5.8S gene, respectively. For genomic DNA extraction, the exponential phase cultures of *Pseudo-nitzschi* spp. were harvested by centrifugation at 4,000xg for 20 min at room temperature. Total genomic DNA was extracted from cell pellets using a DNase Plant Kit (Qiagen, Valencia, CA, USA), according to the manufacturer’s instructions. Quantification was performed using a Qubit fluorometer with a Quant-iT dsDNA HS Assay Kit (Invitrogen, Carlsbad, CA, USA). Then, the LSU rDNA was amplified and sequenced using D1R and D2C primers (Scholin et al., 1994) targeting the D1-D2 region. The ITS-5.8S region of the rDNA was amplified and sequenced using the universal primers ITS4 and IT5S (Adachi et al., 1994). The PCR reaction for LSU rDNA and ITS-5.8S rDNA was as follows: tubes contained 25 μl of 1X reaction buffer (Hot Start Taq DNA Polymerase 5U/μl, Biotechrabbit GmbH, Germany), 2.5 mM of MgCl₂, 0.75X PCR Enhancer, 200 μM of dNTPs, 200 nM or 400 nM of each primer for ITS and LSU, respectively, 1U Taq DNA Polymerase and 0.5-1 ng of DNA template. PCR thermal cycling conditions were the same as reported in Pugliese et al. (2017). All amplified PCR products were purified using a MinElute Gel Extraction Kit (Qiagen), and the products were directly sequenced with the ABI PRISM BigDye Terminator Cycle Sequencing Kit v. 1.1 on an ABI 310 Genetic Analyzer (Applied Biosystem, Foster City, CA, USA). Standard thermal cycling conditions were used for both templates, setting the annealing temperature according to the template (60°C and 50°C for ITS and LSU PCR specific primers, respectively). Difficult templates and repeated regions were solved by increasing initial denaturation time and modifying the thermal cycling condition as follows: 40 cycles of denaturation at 96°C for 10 s and annealing/extension at 50°C for 4 min.

Phylogenetic analyses

Analyses on the D1-D2 region of LSU rDNA and ITS-5.8S were conducted separately. The LSU and ITS-5.8S sequences were aligned using MAFFT software. Short aligned sequences and ambiguously aligned positions were excluded from the alignment, manually or using Gblocks (http://molevol.cimia. csic.es/castresana/ Gblocks.html) with default settings. The neighbor-joining (NJ), maximum parsimony (MP) and maximum likelihood (ML) analyses were performed in MEGA v. 7.0. The robustness of the NJ, MP and ML trees was tested by bootstrapping using 1000 pseudo-replicates. Distance and
maximum likelihood trees were built based on the substitution model selected through the Akaike Information Criterion option implemented in MEGA v. 7.0 (Kumar et al., 2016). The most appropriate evolutionary models for LSU and ITS-5.8S gene rDNA alignment were found to be HKY + G + I and Tamura-Nei + G, respectively, with gamma distribution values of 0.59 and 0.35, respectively. The MP analyses were performed using the Tree-Bisection-Redrafting (TBR) algorithm with search level 1, in which the initial trees were obtained by the random addition of sequences (10 replicates). All positions containing gaps and missing data were eliminated. Bayesian analyses were performed using MrBayes ver. 3.2.6 (Ronquist & Huelsenbeck, 2003) as implemented in Genious Prime 2019.2 (Kearse et al., 2012) using the GTR + G model for all analyses. Four independent Markov Chain Monte Carlo simulations were run simultaneously for 2,000,000 generations. Trees were sampled every 100 generations, and 2,001 trees were discarded as burn-in. The sequences of *Fragilariopsis rhombica* 5–17 AF7656 and *Fragilaropsis* sp. NL2010 GU170665 were used as an outgroup for the *Pseudo-nitzschia* LSU and ITS-5.8S gene phylogenetic analyses, respectively.

Statistical analyses

Vertical distribution of temperature and salinity were presented using Ocean Data View software-ODV (Schlitzer, 2018), while nutrient concentrations were presented with graphs created using the Statistica 13.0 software package. The Pairwise Spearman rank correlations were performed using the Statistica 13.0 software package on non-transformed data of *Pseudo-nitzschia* spp. abundance and environmental data and between salinity and nutrient concentrations. In order to explore the relationship between *Pseudo-nitzschia* abundance and environmental parameters Principal Component Analysis (PCA) was performed on a transformed (log(x+1) for *Pseudo-nitzschia* abundance) and normalized dataset, using the PRIMER 6 (Clarke & Warwick, 2001) software package.

Results

Description of environmental parameters

The highest seawater temperature (24° C) was recorded in the surface layer at the beginning of sampling (30th August). On the following sampling date (13th September), seawater temperature was uniform at all sampling depths, while afterwards a cooling of the surface layer was noticed. Salinity in the upper two sampling layers was very variable, and an halocline was continuously present in the layer between 1 m to 3 m depth. The most pronounced halocline was recorded at the end of September, when the lowest value of surface salinity was measured (14.3). Salinity values at 7 m depth were rather constant, ranging from 37.7 to 38.7 (Fig. 2).

The pre-bloom period was characterised by the highest concentration of ammonium (6.51 µM), orthophosphates (0.26 µM) and organic phosphates (0.69 µM). The elevated concentrations and maximum values of other inorganic nitrogen forms were: NO$_3^-$=9.61 µM; NO$_2^-$=0.24 µM, organic nitrogen 15.80 µM, and orthosilicates 31.96 µM. These values were determined at the end of September and thereafter, coinciding with a period of decreased surface salinity due to higher river discharge (https://hidro.dhz.hr/) (Fig. 3).

Fig. 2: Vertical profile of temperature and salinity at Strmica sampling station during the investigated period.
Light microscopy analyses demonstrated that diatoms were dominant at the sampling depth of 7 m, representing 77.8-96.3% of the phytoplankton community throughout the investigated period. In the upper two sampling layers (surface and halocline), intense coccolithophore blooms were recorded in August and October, representing 72.6 and 90.6% of the phytoplankton assemblage, respectively (data not shown).

The highest abundance of *Pseudo-nitzschia* spp. was recorded on the 13th of September at 7m depth, reaching 1.8 x 10^6 cells L^-1, at a temperature of 21.8°C and a salinity of 37.9. Within the following four weeks, abundance decreased, but it was still high, in the range of 3.0 x 10^5 to 7.2 x 10^5 cells L^-1. At the end of October, abundance notably dropped to 2.8 x 10^3 cells L^-1, and was recognised as the end of blooming. Comparing the sampling layers, the highest abundance of *Pseudo-nitzschia* was recorded at 7 m depth, except at the end of August when slightly higher values were recorded at the surface and halocline.
which was at 2 m. The contribution of *Pseudo-nitzschia* spp. to the diatom community showed a similar pattern to that of abundance. The maximum percentage, above 90%, was recorded on the 13th of September at all sampling depths, and remained high during the following three weeks, representing over 85% in 7 m deep layer (Fig. 4A).

Toxin analyses of shellfish samples confirmed that concentrations of DA and epi-DA were always below LOD, throughout the entire investigated period.

Morphological characterisation by Scanning Electron Microscopy analyses revealed that \textit{P. cf. arenysensis} \textit{contributed to 94\% of the Pseudo-nitzschia community at the peak of abundance. During the investigated period, P. cf. arenysensis} mostly dominated over the other species, except in the pre-bloom period (30th Aug) and at the end of October when \textit{P. pseudodelicatissima/cuspidata} prevailed. Besides the mentioned species, other taxa of *Pseudo-nitzschia* were identified in low contribution, including \textit{P. lundholmiae, P. multistriata, P. fraudulenta, P. subfraudulenta} and *Pseudo-nitzschia* sp.-a morphotype similar to \textit{P. pseudodelicatissima/cuspidata} (Fig. 4B). The species \textit{P. lundholmiae} was documented for the first time in the Adriatic Sea, as well as \textit{P. multistriata} along the Eastern Adriatic coast. The morphological characteristics of the species observed in the field samples are presented in Table 1.

Pseudo-nitzschia cf. arenysensis

In valve view, the cells are lanceolate and symmetric, gradually tapering towards the round apices. The eccentric raphe is divided by a central interspace with a central nodule. The central interspace occupies two to almost five striae. Fibulae are irregularly spaced. Each stria contains two rows of rounded poroids, located close to the interstriae (Fig. 5A).

Pseudo-nitzschia lundholmiae

The cells are lanceolate with rounded apices (Fig. 6A, C). A central interspace with central nodule is present and occupies four to five striae. The fibulae are irregularly spaced. Usually twice more interstriae than fibulae were observed in 10 μm. Each stria comprises of one row of poroids or two rows of small poroids (Fig. 6B). In general, poroids at uniseriate striae were mostly divided into two sectors (69.7\%) and rarely three (23.6\%) or four
In biseriate striae sectors within poroids were not observed.

Pseudo-nitzschia pseudodelicatissima/cuspidata

In the valve view, the cells are linear and symmetric with short tapering ends. A central interspace with central nodule is present and corresponds to 3 to 6 striae. On the eccentric raphe, the fibulae are irregularly spaced. The striae compose one row of large rounded to squared poroids, divided mainly in two (56.7%) or three (26.6%) sectors. Poroids that were not divided into sectors (2.9%) or comprising four (13.0%) or five sectors (0.8%) were rare.

Pseudo-nitzschia multistriata

In the valve view, the cells are slightly asymmetric and linear in the middle part, sharply tapered toward the ends (Fig. 6 D). The central nodule is absent. The frustules are weekly silicified, with wide striae and narrow interstiae. Furthermore, irregular interstiae are noticed where some neighbouring interstiae merge into one, close to the raphe canal (Fig. 6 E). The striae usually have two rows of poroids, but occasionally one or three rows were also noticed. The poroids are usually divided into several irregular sectors.

Pseudo-nitzschia fraudulenta

The cells are symmetric and lanceolate, in valve view. A central interspace with central nodule is present. The central interspace occupies three to five striae. The number of fibulae corresponds to the observed number of striae. Each stria usually has two rows of poroids, but occasionally one or three rows were also noticed. The poroids are usually divided into several irregular sectors.

Pseudo-nitzschia subfraudulenta

In the valve view, the cells are symmetric and linear in the middle part, with pointed ends. A central nodule is present, and the central interspace occupies three to five striae. Each stria usually consists of two rows of poroids, rarely one or three rows. The poroids are mainly divided into three to five sectors (83.4%) but poroids with two (6.9%), six (8.8%) or seven (1.0%) sectors were observed, albeit rarely.

Pseudo-nitzschia sp.

The cells are symmetric, linear to lanceolate, gradually tapering toward pointed apices (Fig. 6 H, J). A central nodule is present and the central interspace occupies three to five striae, while the fibulae are irregularly spaced (Fig. 6 I, J). Each stria contains one row of big squared poroids, which are mostly undivided into sectors or, occasionally, two sectors were noticed (Fig. 6 I).

Table 1. Morphological features of the observed Pseudo-nitzschia species obtained by SEM. Number of measured cells are given in parentheses (n), minimum and maximum values are given in bold, while the average ± standard deviation are specified below.

Species (n)	Width (μm)	Length (μm)	CN Fibulae (10μm)	Interstriae (10μm)	Poroids rows	Poroids (1μm)	Sectors in po-	Sectors in po-
P. cf. arenysensis (246)	0.99-1.77	44.39-76.87	+	20-26	37-42	2	9-12	/
	1.28±0.12	52.35±3.97		22.4±1.12	38.5±0.75			
P. lundholiae (7)	1.62-2.04	52.56-68.76	+	16-18	33-35	1-2	5-6	2-4 (208)
	1.83±0.13	59.61±8.31		17±0.82	33.7±0.75			
P. multistriata (10)	1.97-2.30	63.89-77.18	-	24-25	38-41	1-3	10-12	/
	2.13±0.11	71.04±4.59		24.8±0.42	39.2±1.03			
P.pseudodelicatissima/cuspidata (125)	1.1-1.48	75.24-134.83	+	16-22	32-37	1	4-6	1-5 (1076)
	1.26±0.07	105.57±12.08		19.2±1.28	35.5±0.79			
P. fraudulenta (4)	4.22-4.92	87.10-102.92	+	21-23	23-24	2-3	5-7	several
	4.50±0.32	97.63±7.41		21.75±0.95	23.5±0.58			
P. subfraudulenta (13)	3.16-3.93	100.66-139.40	+	14-16	23-26	1-3	5-6	2-7 (102)
	3.57±0.24	114.87±12.13		17.77±0.60	24.76±0.83			
Pseudo-nitzschia sp. (17)	1.01-1.40	48.29-63.52	+	21-24	40-41	1	5-7	1-2 (78)
	1.17±0.09	56.12±3.84		22.82±0.73	40.35±0.49			

(6.3%).
Morphological description of the cultured strains of *P. cf. arenysensis*

The valves of both isolated strains (P2B5 and P2E5) are lightly silicified and lanceolate with slightly rounded and blunt ends (Fig. 5 D). Morphologically, the valves of cultured strains showed minor differences in the measured valve length, minimum number of fibulae, maximum number of interstriae (Table 2). The cingulum is composed of three bands. The first band, valvolcopula, consists of one row of large rectangular poroids, divided mostly into 3-4 sectors, in general, two poroids wide and two high (2x2). The second band is perforated, and the third unperforated (Fig. 5 G). The morphological characteristics of the *P. cf. arenysensis* isolated strains observed by SEM are presented in Table 2, including data of other morphologically similar *Pseudo-nitzschia* species obtained from the literature.

Fig. 5: A-C) *Pseudo-nitzschia cf. arenysensis* in field samples obtained by SEM: A) whole valve; B) central part of the valve showing central interspace and structure of the striae; C) valve end. D-G) *Pseudo-nitzschia cf. arenysensis* (P2E5) in culture: D) whole valve; E) central part of the valve showing central interspace with central nodule; F) end of the valve; G) structure of cingulum. Scale bars represent: A, D = 10 µm; B, C, E, F, G = 1 µm.

Fig. 6: A-C) *Pseudo-nitzschia lundholmiiae* in SEM: A) whole valve; B) central part of the valve showing central interspace and structure of the striae; C) valve end. D-G) *Pseudo-nitzschia multistriata* in SEM: D) whole valve; E) central part of the valve showing the irregular structure of the striae; F-G) opposite ends of the same valve. H-J) *Pseudo-nitzschia* sp. observed by SEM: H) whole valve; I) central part of the valve showing central interspace with central nodule; J) end of the valve. Scale bars represent: A, D, H = 10 µm; B, C, E, F, G, I, J = 1 µm.

Phylogenetic analyses of Pseudo-nitzschia spp. LSU and ITS-5.8 S ribosomal genes

The final alignment of *Pseudo-nitzschia* spp. ribosomal gene sequences, such as LSU and ITS-5.8S, with *Fragilariaopsis* as an outgroup, were as follows: LSU was 794 bp in length (A = 21.2%, T = 29.7%, C = 18.2%, G = 30.6%) with 777 total informative sites, excluding gaps, and 552 polymorphic sites, of which 529 were parsimony sites. ITS-5.8S was 1020 in length (A = 23.08%,...
Table 2. Comparison of morphological characteristics of two cultured strains of *P. cf. arenysensis* (P2B5, P2E5) and other similar *Pseudo-nitzschia* species reported in literature. Number of measured cells are given in parentheses (n), minimum and maximum values are given in bold, while the average ± standard deviation are specified below.

Species (n)	Width (μm)	Length (μm)	CN	Fibulae (10μm)	Interstriae (10μm)	Poroids rows	Poroids (1μm)	Band striae (10μm)	References
P. cf. arenysensis P2B5 (20)	1.51-1.84	46.51-54.54	3-4.5	20-23	37-41	2	9-11	44-46	This study
	1.66±0.10	51.53±2.55	3.79±0.38	21.75±0.97	38.15±0.93	10.30±0.57	44.8±0.7		
P. cf. arenysensis P2E5 (20)	1.54-1.97	54.05-56.33	3-6	18-23	37-39	2	9-11	43-45	This study
	1.73±0.10	55.74±0.59	4.13±0.78	20.65±1.04	37.95±0.60	10.23±0.53	44.4±0.6		
P. arenysensis	1.6-2.7	22-59	Yes	17-26	32-45	2	7-12	40-50	Quijano-Scheggia et al., 2009; Quijano-Scheggia et al., 2010; Ajani et al., 2013; Orive et al., 2013
P. delicatissima/P. arenysensis	1.2-2.2	32-70	Yes	20-27	32-41	2	8-12	48-49	Teng et al., 2013; Stonik et al., 2011
P. delicatissima	0.8-2.6	19-76	Yes	18-28	32-45	2	7-14	40-50	Lundholm et al., 2006; Quijano-Scheggia et al., 2008a; Moschandreou & Nikolaidis, 2010; Marić Pfannkuchen, 2013; Orive et al., 2013; Stonik et al. 2018; Turk Dermastia et al., 2020
P. decipiens	1.1-2.4	27-64	Yes	20-26	41-46	2	9-13	/	Lundholm et al., 2006; Teng et al., 2013
P. dolorosa	1.6-3.0	29.9-72	Yes	18-22	30-38	1-2	5-8	40-47	Lundholm et al., 2006; Marchetti et al., 2008; Rivera-Vilarelle et al., 2013; Teng et al., 2013
P. hallegraeffii	1.9-3.1	25.6-55.4	Yes	16-22	34-40	2(1)	6-8	43-56	Ajani et al., 2018
T = 30.3%, C = 22.9%, G = 23.71%) with 521 total informative sites excluding gaps and 244 polymorphic sites, of which 198 were parsimony sites. Based on single LSU and ITS-5.8S rDNA sequences, only minor differences among NJ, MP, ML and Bayesian inference analyses were found; therefore, only ML phylogenetic trees are presented. The LSU rDNA phylogeny that was obtained from 43 isolates of Pseudo-nitzschia spp. showed that Croatian strains, P2B5 and P2E5, grouped with isolates of P. arenysensis, a sister clade of P. delicatissima/micropora/doloresa. The clade was supported by high bootstrap and posterior probability values (Fig. 7 A). The ITS-5.8S rDNA phylogeny obtained from 34 isolates of Pseudo-nitzschia spp. showed similar topology to the LSU rDNA phylogeny, confirming that the Croatian strains identified as P. cf. arenysensis by microscopy analysis grouped into the clade of P. arenysensis, which segregated after P. delicatissima. These two clades diverged after P. micropora. All the clades were supported by high bootstrap and posterior probability values (Fig. 7 B).

Statistical analyses

Single Spearman rank correlations showed that Pseudo-nitzschia spp. abundance significantly correlated with salinity and inorganic nutrients. A positive correlation was recorded with salinity and orthophosphates and a
negative correlation with nitrates and orthosilicates (Table 3).

Principal Component Analysis (PCA) showed that the first two principal components PC1 (40.3%) and PC2 (17.7%) explain 58.0% of total variance within the dataset (Fig. 8). The first one (PC1) showed a positive association with orthosilicates (0.481), nitrates (0.462) and a negative one with salinity (-0.448). The second principal component (PC2) showed the strongest association with organic phosphorus (-0.602).

In the investigated area, the Krka River is the main source of nitrogen and silicates (Cetinić et al., 2006). Therefore, to determine the origin of nutrients, the Spearman rank correlation was performed between salinity and nutrient concentrations. A statistically significant negative correlation was confirmed for salinity with nitrates, TIN, Norg and orthosilicates and a positive correlation with orthophosphates (Table 3).

Discussion

Morphology of Pseudo-nitzschia spp.

In this study, the *Pseudo-nitzschia* assemblage was morphologically characterised before and during the blooming period in the Krka River estuary. Scanning Electron Microscopy and phylogenetic analyses confirmed *P. cf. arenysensis* as the dominant species in the *Pseudo-nitzschia* community during this bloom event. Although *Pseudo-nitzschia* species are abundant and often represent the majority of a diatom community along the eastern Adriatic coast, species composition during high proliferation events include only bloom report (>10⁶ cells L⁻¹) for *P. calliantha* (Burić et al., 2008; Ljubešić et al., 2011; Marić et al., 2011). In the majority of the previous studies, due to the limitation of the commonly used light microscopy technique (LM), bloom events were reported as a complex of *Pseudo-nitzschia* species (Viličić et al., 2009; Ujević et al., 2010; Bužančić et al., 2012; Marić et al., 2012).

Throughout the investigated period, seven *Pseu-

Table 3. Spearman rank correlation coefficients between salinity and *Pseudo-nitzschia* spp. abundance with physical and chemical parameters. Statistically significant correlations (p<0.05) are presented in bold; *p<0.01; **p<0.001.

	T	S	NO₃⁻	NO₂⁻	NH₄⁺	TIN	Norg	PO₄³⁻	Porg	SiO₄⁴⁻
Salinity	/	/	-0.59*	-0.14	0.1	-0.46	-0.55*	0.48	-0.09	-0.82**
Pseudo-nitzschia spp.	0.12	0.52	-0.59*	-0.24	-0.27	-0.49	-0.35	0.61*	-0.14	-0.72**

Fig. 8: Scatterplot of the first two principal components, following PCA of environmental parameters and the abundance of *Pseudo-nitzschia* spp. (cells L⁻¹).
do-nitzschia species were morphologically determined. Besides the previously reported *P. pseudodelicatissima* and *P. subfraudulenta* (Arapov et al., 2016), species *P. arenysensis*, *P. multistriata*, *P. lundholmiae* and *P. fraudulenta* are newly described from Krka river estuary. The finding of *P. multistriata* is a new record for Central Adriatic waters, while *P. lundholmiae* morphologically corresponds to *Pseudo-nitzschia* sp. formerly described from Kaštela Bay (Arapov et al., 2017).

The dominant species *P. cf. arenysensis*, based on its morphological features, belong to the *P. delicatissima* species complex. Morphologically, the only difference between *P. arenysensis* and *P. delicatissima* is the range of the valve width. According to the data available in the literature (Table 2), the thicker specimens are reported for *P. arenysensis*, while the width range of *P. delicatissima* is much wider, including the minimum value (0.8 μm) documented from the Adriatic Sea (Marić Pfannkuchen, 2013). Considering that in this study the maximum measured valve width was greater than previously reported from the Central Adriatic Sea (Arapov et al., 2017), this species was characterised as *P. cf. arenysensis*. Phylogenetic analysis based on the ITS and LSU rDNA sequences confirmed that the Croatian strains grouped with *P. arenysensis*.

Specimens of *P. cf. arenysensis* from the field samples and cultures displayed similar morphological characteristics. Slightly larger valve width and a lower number of fibulae were observed in cultures (18 fibulae for cultured strain P2E5; Table 1, Table 2). In general, the number of fibulae for *P. arenysensis* ranges from 20 to 28 (as specified in Table 2), but a minimum of 17 fibulae has been reported by Orive et al. (2013). The number of bend striae in our cultured strains (43-46) perfectly fits the reported range for *P. arenysensis* from the Western Mediterranean: 40-50 (Quijano-Scheggia et al., 2009; Quijano-Scheggia et al., 2010) and south-east Australia: 40-46 (Ajani et al., 2013). The observed differences in morphology of cultured *Pseudo-nitzschia* cells and those observed in field samples could be due to the growing conditions. The morphology of diatom frustules can be affected and controlled by environmental conditions, such as temperature, salinity, light, pH, light, heavy metals, biotic factors, etc. (Su et al., 2018). In *Pseudo-nitzschia seriata*, an increase in temperature caused a decrease in the number of rows of poroids within striae and the density of poroids. However, no changes were observed in the density of interstriae and fibulae per 10 μm and in valve width (Hansen et al., 2011). Authors Montages & Franklin (2001) showed that cell size (volume) decreased with increasing temperature, while Marchetti & Harrison (2001) demonstrated that the valve transapical axis decreased in several *Pseudo-nitzschia* under iron-deficiency conditions.

The morphological features of *P. pseudodelicatissima/cuspidata*, *P. subfraudulenta*, *P. fraudulenta*, are consistent with those previously reported from the Adriatic Sea and worldwide (Ljubešić et al., 2011; Moschandreou et al., 2012; Marić Pfannkuchen, 2013; Teng et al., 2013; Arapov et al., 2016; Arapov et al., 2017; Turk Dermastia et al., 2020).

A comparison of the morphometry of *P. multistriata* from Krka river estuary with the data available in the literature, showed that the specimens found differ as to the length of the transapical axis. In our study, the measurements of valve width ranged between 1.97 and 2.30 μm, which corresponds to the range reported by Teng et al. (2013) but is narrower in comparison to 2.2-4.6 μm range reported by the majority of other authors (Orsini et al., 2002; Orlova et al., 2008; Quijano-Scheggia et al., 2008a; Moschandreou & Nikolaidis, 2010; Sahraoui et al., 2011; Stonik et al., 2011; Ajani et al., 2013; Riveria-Vilarelle et al., 2013; Stonik et al., 2018; Turk Dermastia et al., 2020).

The morphotype of *Pseudo-nitzschia lundholmiae* corresponds to the original description (Lim et al., 2013), including valve shape, length, width and number of fibulae and interstriae measured (10 μm). The main difference concerns the number of sectors within poroids. In specimens from our study, four sectors were observed in a low percentage of poroids (6.3%) as opposed to the three sectors at the most reported by Lim et al. (2013) and Teng et al. (2016).

In addition, undetermined *Pseudo-nitzschia* sp. morphologically resemble *P. pseudodelicatissima/cuspidata*, a species that commonly occurs in the waters of the central Adriatic. As it fits within the reported ranges of morphometric values for *P. pseudodelicatissima/cuspidata*, it could easily be included in this species complex. The main differences observed that distinguish *Pseudo-nitzschia* sp. from *P. pseudodelicatissima/cuspidata* were: shape of poroids that are mostly squared without sectors; larger number of interstriae, 40-41 in comparison to 32-37 observed for *P. pseudodelicatissima/cuspidata*; shorter transapical axis (Table 1, Fig 6 H-J). Apart from morphological characterisation, one of our future research focuses will be a confirmation of these species, combining morphology with molecular methods.

The majority of *Pseudo-nitzschia* species found are confirmed as potentially toxic, but the dominant *P. cf. arenysensis* is considered as non-toxic (Lundholm, 2019). Accordingly, toxin analyses of shellfish samples conducted throughout the investigated period confirmed that the concentration of toxins was always below the limit of detection (LOD=0.1025 μg DA g⁻¹). Low levels of domoic acid have been reported in shellfish tissue and plankton net samples from this area but in the winter period (Ujević et al., 2010; Arapov et al., 2016).

Distribution of Pseudo-nitzschia spp. in relation to environmental parameters

The bloom that occurred in the Krka River estuary was almost monospecific, involving *P. cf. arenysensis* (94%). The period with increased abundance lasted for one month. In the Mediterranean Sea, no *P. arenysensis* bloom has been recorded to date although this species has been originally described from the NW Mediterranean (Quijano-Schegia et al., 2009) and later confirmed in Greek coastal waters (Moschandreou et al., 2012), the NW Adriatic Sea (Penni...
et al., 2013; Pugliese et al., 2017) and the Gulf of Naples (Quijano-Schegia et al., 2010).

In this study, the highest abundance of *Pseudo-nitzschia* spp. and its ratio in the diatom community was found in a less variable layer, below the halocline. Statistical analyses (PCA and Spearman rank correlation) indicated that *Pseudo-nitzschia* spp. abundance was positively correlated with salinity and orthophosphate concentrations but negatively correlated with nitrates and orthosilicate concentrations. In the Krka River estuary, concentrations of nitrates and orthosilicates are mainly related to river inflow (DHMZ, 2019). The highest abundance of *Pseudo-nitzschia* was found with higher salinities, at 7 m sampling depth. We believe that the distribution of *Pseudo-nitzschia* is strongly affected by salinity. A recent study by Ninčević Gladan et al. (2020) notes the highest abundance of *Pseudo-nitzschia* spp. in this area during the weakest halocline period. *Pseudo-nitzschia* species are considered as euryhaline species, occurring over a broad salinity range, but some studies have shown that better growth is obtained with higher salinities values (Thessen et al., 2005; Lelong et al., 2012). In agreement with our results, *Pseudo-nitzschia* species were positively associated with salinity in the studies of Caroppi et al. (2005) and Sahraoui et al. (2009). Regarding other environmental parameters, *Pseudo-nitzschia* was negatively correlated with nitrate and orthosilicate concentrations as observed in the southwestern Mediterranean (Sahraoui et al., 2012). In contrast, Quijano-Scheggia et al. (2008a, 2008b) found that high abundances of *P. delicatissima* were associated with a high concentration of nitrates while according to Macintyre et al. (2011) submarine groundwaters, rich in nitrate, are potential hot-spots for *Pseudo-nitzschia* blooms.

In this study, the peak of *Pseudo-nitzschia* spp. abundance coincided with the minimum value of Si:TIN ratio (0.34). At that time, the highest nitrate and the lowest orthosilicate concentrations were recorded for a layer at 7 m depth. We assume that in our study, the low Si:TIN ratio was a consequence of decreased orthosilicates concentration due to nutrient uptake for cell growth during the bloom and that nitrates were available for *Pseudo-nitzschia* development. A low Si:N ratio has been previously associated with *Pseudo-nitzschia* blooms in the Adriatic Sea and worldwide (Burić et al., 2008; Ljubešić et al., 2011; Thorel et al., 2017).

Furthermore, the intense proliferation of *Pseudo-nitzschia* spp. observed in our study may have been triggered by an increased concentration of ammonium and orthophosphates that characterised the pre-bloom period. Loureiro et al. (2009) showed that *P. delicatissima* successfully utilise ammonia and urea as a source of nitrogen for growth. Similar results were obtained for *P. multiseries*, which grow equally well on different N substrates: nitrates, ammonium, and urea (Radan & Cochlan, 2018). According to Klein et al. (2010) a sudden increase of nutrients, PO4³⁻ in particular, may promote the development of *Pseudo-nitzschia* blooms. A positive correlation of *Pseudo-nitzschia* abundance with phosphates concentration was found in several studies (Burić et al., 2008; Bosak et al., 2009; Ljubešić et al., 2011; Trainer et al., 2012; Ninčević-Gladan et al., 2015). The above results and our findings indicate that not only the availability of nutrients, but also the variation in their ratio can stimulate and cause a bloom of different *Pseudo-nitzschia* species.

Regarding the short sampling period in which seven *Pseudo-nitzschia* species were morphologically determined, the Krka river estuary can be characterised as a highly diverse and suitable environment for the development of *Pseudo-nitzschia* blooms.

Conclusion

Intense proliferation of *Pseudo-nitzschia* species occurred in a middle Adriatic estuary, an important aquaculture area. Morphological and phylogenetic analyses identified *P. cf. arenysensis* as the bloom-forming species but despite its high abundance no shellfish toxicity was recorded. In this highly variable environment, salinity was recognised as an important environmental factor affecting the vertical distribution of *Pseudo-nitzschia* species. The availability of the increased ammonium and orthophosphate concentrations, and the low Si:TIN ratio may have stimulated the bloom of *P. cf. arenysensis*. We believe that our results present valuable in-situ data on the distribution of this highly diverse diatom genus.

Acknowledgements

Special thanks are due to Mr. Roman Garber for his valuable assistance in field sampling and Mr. Ivan Pezo who performed the nutrient analyses. We greatly appreciate the suggestions of anonymous reviewers who improved our manuscript significantly. This study was fully funded by the Croatian Science Foundation under project IP-2014-09-3606 “Marine plankton as a tool for assessment of climate and anthropogenic influence on the marine ecosystem, MARIPLAN”.

References

Adachi, M., Sako, Y., Ishida, Y., 1994. Restriction fragment length polymorphism of ribosomal DNA internal transcribed spacer and 5.8S regions in Japanese *Alexandrium* species (Dinophyceae). *Journal of Phycology*, 30, 857-863.

Ajani, P., Murray, S., Hallegraeff, G., Lundholm, N., Gillings, M. et al., 2013. The diatom genus *Pseudo-nitzschia* (Bacillariophyceae) in New South Wales, Australia: morphology, molecular phylogeny, and distribution. *Journal of Phycology*, 49, 765-785.

Ajani, P.A., Verma, A., Lassudrie, M., Doblin, M.A., Murray, S.A., 2018. A new diatom species *P. hallegraeffii* sp. nov. belonging to the toxic genus *Pseudo-nitzschia* (Bacillario-
phyceae) from the East Australian Current. PLoS ONE, 13, e0195622.

Arapov, J., Ujević, I., Marić Pfannkuchen, D., Godrijan, J., Bakrač, A. et al., 2016. Domoic acid in phytoplankton net samples and shellfish from the Krka River estuary in the Central Adriatic Sea. Mediterranean Marine Science, 17, 340-350.

Arapov, J., Skejić, S., Bužančić, M., Bakrač, A., Vidjak, O. et al., 2017. Taxonomical diversity of Pseudo-nitzschia from the Central Adriatic Sea. Phycological Research, 65, 280-290.

Bates, S.S., Hubbard, K.A., Lundholm, N., Montresor, M., Leaw, C.P., 2018. Pseudo-nitzschia, Nitzschia, and domoic acid: New research since 2011. Harmful Algae, 79, 3-43.

Huang C.X., Dong, H.C., Lundholm, N., Teng, S.T., Zheng, G.C. et al., 2019. Species composition and toxicity of the genus Pseudo-nitzschia in Taiwan Strait, including P. chiniana sp. nov. and P. giana sp. nov. Harmful Algae, 84, 195-209.

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M. et al., 2012. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28, 1647-1649.

Klein, C., Claquin, P., Bouchart, V., Le Roy, B., Vérin, B., 2010. Dynamics of Pseudo-nitzschia spp. and domoic acid production in a macrotidal ecosystem of the Eastern English Channel (Normandy, France). Harmful Algae, 9, 218-226.

Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Big-ger Datasets. Molecular Biology and Evolution, 33, 1870-1874.

La Barre, S., Bates, S.S., Quiilliam, M.A., 2014. Domoic Acid. p. 189-215. In: Outstanding Marine Molecules: Chemistry, Biology, Analyses. La Barre, S., Kornprobost, J.-M. (Eds.). Wiley-VCH Verlag GmbH & Co. KGaA.

Marchetti, A., Harrison, P.J., 2007. Environmental correlates of community composition and toxicity during a bloom of Pseudo-nitzschia spp. in the Northern Gulf of Mexico. Journal of Plankton Research, 33, 273–295.

Marchetti, A., Hudson, N., Teng, S.T., Leaw, C.P., Lim, P.T., 2013. Three novel species in the Pseudo-nitzschia pseudodelicatissima complex: P. batesiana sp. nov., P.lundholmiae sp. nov., and P. fukuyoi sp. nov. (Bacillariophyceae) from the strait of Malacca, Malaysia. Journal of Phycology, 49, 902-916.

Macintyre, H.L., Stutes, A.L., Smith, W.L., Dorsey, C.P., Abraham, A. et al., 2011. Environmental correlates of community composition and toxicity during a bloom of Pseudo-nitzschia spp. in the Northern Gulf of Mexico. Journal of Plankton Research, 33, 273–295.

Marchetti, A., Harrison, P.J., 2007. Coupled changes in the cell morphology and the elemental (C, N, and Si) composition of the pennate diatom Pseudo-nitzschia due to iron deficiency. Limnology and Oceanography, 52 (5), 2270-2284.

Marchetti, A., Lundholm, N., Tokati, Y., Hubbard, K., Harrison, P. J. et al., 2008. Identification and assessment of domoic acid production in oceanic Pseudo-nitzschia (Bacillariophyceae) from iron-limited waters in the northeast subarctic Pacific. Journal of Phycology, 44, 650-61.
Medit. Mar. Sci., 21/3, 2020, 759-774
markers from globally distributed *Alexandrium* (Dinophyceae). II. Sequence analysis of fragments of the LSU rRNA gene. *Journal of Phycology*, 999-1011.

Skejić, S., Bojanić, N, Matijević, S., Vidjak, O., Grbec, B. et al., 2014. Analysis of the phytoplankton community in the vicinity of domestic sewage outflow during stratified conditions. *Mediterranean Marine Science*, 15, 574-586.

Stonik, I.V., Orlova, T.Y., Lundholm, N., 2011. Diversity of *Pseudo-nitzschia* H. Peragallo from the western North Pacific. *Diatom Research*, 26, 121-134.

Stonik, I.V., Isaeva, M.P., Aizdaicher, N.A., Balakirev, E.S., Ayala, F.J., 2018. Morphological and genetic identification of *Pseudo-nitzschia* H. Peragallo, 1900 (Bacillariophyta) from the Sea of Japan. *Russian Journal of Marine Biology*, 44, 192-201.

Su, Y., Lundholm, N., Ellegaard, M., 2018. Effects of abiotic factors on the nanostructure of diatom frustules-ranges and variability. *Applied Microbiology and Biotechnology*, 102, 5889-5899.

Svensen, C., Viličić, D., Wassmann, P., Arashkevich, E., Ratkova, T., 2007. Plankton distribution and vertical flux of biogenic matter during high summer stratification in the Krka river estuary (Eastern Adriatic). *Estuarine, Coastal and Shelf Science*, 71, 381-390.

Teng, S.T., Leaw, C.P., Lim, H.C., Lim, P.T., 2013. The genus *Pseudo-nitzschia* (Bacillariophyceae) in Malaysia, including new records and a key to species inferred from morphology-based phylogeny. *Botanica Marina*, 56, 375-398.

Teng, S.T., Tan, S.N., Lim, H.C., Dao, V.H., Bates, S.S. et al., 2016. High diversity of *Pseudo-nitzschia* along the northern coast of Sarawak (Malaysian Borneo), with descriptions of *P. bipeirtita* sp. nov. and *P. limii* sp. nov. (Bacillariophyceae). *Journal of Phycology*, 49, 973-989.

Thessen, A.E., Dortch, Q., Parsons, M.L., Morrison, W., 2005. Effect of salinity on *Pseudo-nitzschia* species (Bacillariophyceae) growth and distribution. *Journal of Phycology*, 41, 21-29.

Thorel, M., Claquin, P., Schapira, M., Le Gendre, R., Riou, P. et al., 2017. Nutrient ratios influence variability in *Pseudo-nitzschia* species diversity and particulate domoic acid production in the Bay of Seine (France). *Harmful Algae*, 68, 192-205.

Trainer, V.L., Bates, S.S., Lundholm, N., Thessen, A.E., Cochlan, W.P. et al., 2012. *Pseudo-nitzschia* physiological ecology, phylogeny, toxicity, monitoring and impacts on ecosystem health. *Harmful Algae*, 14, 271-300.

Turk Dermastia, T., Cerino, F., Stanković, D., Francé, J., Ramšak, A. et al. 2020. Ecological time series and integrative taxonomy unveil seasonality and diversity of the toxic diatom *Pseudo-nitzschia* H. Pergallo in the northern Adriatic Sea. *Harmful Algae*, 93.

Ujević, I., Ninčević Gladan, Ž., Roje, R., Skejić, S., Arapov, J. et al., 2010. Domoic acid – A New Toxin in the Croatian Adriatic Shellfish Toxin Profile. *Molecules*, 15, 6835-6849.

Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton Methodik. * Internationale Vereinigung für Theoretische und angewandte Limnologie*, 9, 1-38.

Viličić, D., Legović, T., Žutić, V., 1989. Vertical distribution of phytoplankton in a stratified estuary. *Aquatic Sciences*, 51 (1), 31-46.

Viličić, D., Bosak, S., Burić, Z., Caput-Mihalić, K., 2007. Phytoplankton seasonality and composition along the coastal NE Adriatic Sea during the extremely low Po River discharge in 2006. *Acta Botanica Croatica*, 66, 101-115.

Viličić, D., Djakovac, T., Burić, Z., Bosak, S. 2009. Composition and annual cycle of phytoplankton assemblages in the northeastern Adriatic Sea. *Botanica Marina*, 52, 291-305.

Wright, J.L.C., Boyd, R. K., De Freitas, A.S.W., Falk, M., Foxall, R.A. et al., 1989. Identification of domoic acid, a neuroexcitatory amino acid, in toxic mussels from eastern Prince Edward Island. *Canadian Journal of Chemistry*, 67, 481-490.