Stereodivergent Propargylic Alkylation of Enals via Cooperative NHC and Copper Catalysis

Yu-Hua Wen
University of Science and Technology of China

Zi-Jing Zhang
University of Science and Technology of China

Shuai Li
University of Science and Technology of China

Jin Song
University of Science and Technology of China

Liu-Zhu Gong (✉️ gonglz@ustc.edu.cn)
University of Science and Technology of China

Article

Keywords: asymmetric stereodivergent catalysis, Cu-allenylidene species, stereodivergent propargylic alkylation, enals

DOI: https://doi.org/10.21203/rs.3.rs-763524/v1

License: 🔥 This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Despite that asymmetric stereodivergent synthesis has experienced great success to provide unusual processes for the creation of chirality complexity, concepts appliable to asymmetric stereodivergent catalysis are still limited. The dependence on the unusual capacity of each catalyst to precisely control the reactive site planar in the region poses unprecedented constraint on this field. Here, we first demonstrate that the chiral Cu-allenylidene species can participate in the stereodivergent propargylic alkylation of enals, in concert with chiral N-heterocyclic carbenes (NHCs). Thus, all four stereoisomers were obtained with excellent enantioselectivity and diastereoselectivity (up to >99% e.e. and >95:5 d.r.) from the same starting materials by simply altering chiral Cu-Pybox complex and NHC combinations. The rich chemistry workable in the products enables the structurally diverse synthesis of chiral functional molecules and holds great potential in alkaloid synthesis, as showcased by the preparation of the key building block to access (-)-perophramidine.

Main Text

Contiguous carbon stereogenic centers prevalently distribute in complex natural products and important bioactive compounds, and their absolute and relative configurations commonly exert some impact on the shape of the structurally complex molecules, which are closely related to the properties and biological activities. Stereodivergent synthesis, a direct access to all product stereoisomers incorporating vicinal stereogenic centers from the same set of starting materials, offers more opportunities for the investigation of structure–activity relationships to advance drug discovery and chemical biology study. The recent decades have witnessed significant advances in cooperative catalysis, providing a preponderance of activation modes and stereochemical options to render asymmetric reactions, and the robustness of each individual chiral catalyst allocates cooperative catalysis to enable stereodivergent synthesis. Carreira and coworkers first introduced and validated the concept by an asymmetric catalytic α-allylation of branched aldehydes. All possible stereoisomers of the product were obtained by the orthogonal permutation of chiral amine and iridium complex of chiral phosphoramidite. Since this seminal work, substantial progress has been made on catalytic stereodivergent synthesis based on the cooperative action of different catalytic principles. In particular, the asymmetric coupling event of transient nucleophiles bonded with either chiral organocatalysts or Lewis acids with electrophilic π-allyl Ir/Rh/Pd intermediates has been intensively investigated and turns out to be the most general platform to establish stereodivergent synthesis. Still, while much has been accomplished, the exploration of chiral catalyst-coupled electrophiles beyond π-allyl metal complexes remains to be developed and is greatly desirable for broadening the domain of stereodivergent catalytic synthesis.

N-Heterocyclic carbene catalysis has seen appreciable research activity with the realization of abundant enantioselective transformations. Recently, considerable efforts have been invested in the integration of NHC and transition metal catalysis to access new reactions. However, stereoselective
annulation reactions to produce lactones and lactams appear to be easily accessible and most successful, presumably due to the requirement for an intramolecular acyl transfer to a proximal nucleophile to facilitate the regeneration of the NHC catalyst (Fig. 1b). Over the past decades, copper-catalyzed asymmetric propargylic substitution reaction has proven to be a powerful method to assemble carbon–carbon and carbon-hetero bonds, wherein chiral ligands are employed to control the stereoselectivity (Fig. 1c). In this context, we anticipated that the coupling of the key Cu-allenylidene intermediate I and an NHC-bonded nucleophile II using an external nucleophile as acyl acceptors might occur, leading to an NHC/copper cooperatively catalyzed asymmetric propargylation process (Fig. 1d). More significantly, the chiral Cu-allenylidene species I would be an ideal electrophile with high local stereocontrol, and thus presumably enables access to stereodivergent catalytic synthesis, in concert with the chiral NHC-mediated nucleophilic event. However, such a stereodivergent propargylaion reaction has not been described, yet. As a consequence, success in stereodivergent action of Cu-allenylidene species with NHC-bonded nucleophiles would add a new dimension to asymmetric catalysis. Herein, we report the first stereodivergent propargylic alkylation reaction of propargylic acetates with isatin-derived enals enabled by cooperative catalysis of chiral NHCs and copper complexes to deliver oxindole derivatives with excellent diastereoselectivity and enantioselectivity. The orthogonal alteration of enantiomers of NHCs and copper catalysts allows access to all four stereoisomers of the products.

Results

Optimization studies. To test the validity of our hypothesis, we began our investigation into the stereoselective propargylic alkylation reaction of isatin-derived enal 1a with propargylic acetate 2a under NHC/copper cooperative catalysis (Table 1 and Tables S1-S6 in Supporting Information). As expected, the desired propargylation oxindole product (R,R)-3aa was obtained in 70% yield with 93:7 diastereomeric ratio (d.r.) and 96% enantiomeric excess (e.e.) through the synergy of a chiral NHC catalyst generated in situ from 4a and a copper complex with a chiral pyridine bis(oxazoline) ligand (Pybox) L1, by using methanol as the nucleophile required for the catalyst turnover (entry 1). Screening of chiral organocatalysts (entries 1-6, and Table S1) revealed that the chiral NHC precatalyst 4a appeared to be the most efficient Lewis base catalyst capable of delivering the highest diastereo- and enantioselectivities (entry 1). Copper salts had considerable effect on the reaction performance and Cu(CH₃CN)₄PF₆ was identified as the optimal metal catalyst precursor (Table S2). The evaluation of Pybox L2-L4 and other ligands (entries 7-9, and Table S3) found that the combination of chiral NHC precatalyst 4a with Pybox L3 led to a significant enhancement in the stereoselectivity (entry 8). Either base or temperature also exerts impact on the reaction (Tables S4 and S5). The variation of solvents indicated that the reaction gave the best results in tetrahydrofuran (entry 11) as compared to that in any other counterparts tested (entries 8, 10, 12 and Table S6). Control experiments verified the necessity of each member of the combined catalyst system (entries 13-15), thus less than 5% yield was observed for the desired product in the absence of any of the NHC precatalyst, copper, and Pybox ligand.
Substrates scope with enals. The substrate scope of the asymmetric propargylic substitution reaction with respect to enals was initially investigated under optimized conditions (Fig. 2). The isatin-derived enals with different nitrogen protecting groups were found to be suitable substrates and afforded corresponding products 3ba-3da in high yields and with excellent levels of stereoselectivity (>95:5 d.r. and >99% e.e. for all). The presence of either electron-withdrawing or electron-donating substituents on the isatin ring was allowed to give corresponding products 3ea-3ma in good yields and with excellent diastereo- and enantioselectivities (up to >95:5 d.r. and >99% e.e.).
Substrates scope with enals. The substrate scope of the asymmetric propargylic substitution reaction with respect to enals was initially investigated under optimized conditions (Fig. 2). The isatin-derived enals with different nitrogen protecting groups were found to be suitable substrates and afforded corresponding products $3\text{ba}-3\text{da}$ in high yields and with excellent levels of stereoselectivity (>95:5 d.r. and >99% e.e. for all). The presence of either electron-withdrawing or electron-donating substituents on the isatin ring was allowed to give corresponding products $3\text{ea}-3\text{ma}$ in good yields and with excellent diastereo- and enantioselectivities (up to >95:5 d.r. and >99% e.e.).

Table 1 | Reaction optimization

Entry	Ligand	Solvent	Yield (%)	d.r.	e.e. (%)
1	4a	L1	70	93:7	96
2	4b	L1	20	87:13	94
3	4c	L1	76	92:8	92
4	4d	L1	74	67:33	29
5	4e	L1	22	71:29	59
6	4f	L1	83	50:50	18
7	4a	L2	42	60:40	73
8	4a	L3	51	>95:5	99
9	4a	L4	39	81:19	87
10	4a	L3	47	>95:5	99
11	4a	L3	79 (77)	>95:5	>99
12	4a	L3	22	73:27	84
13	-	L3	n.d.	-	-
14a	4a	-	THF	n.d.	-
15	4a	-	THF	<5	-

*Reaction conditions: Cu(CH$_3$CN)$_2$PF$_6$ (5 mol%) and pyridine bis(oxazoline) ligand L (10 mol%) were stirred in solvent (0.5 mL) at 25 °C for 1 h, then NHC precatalyst 4 (5 mol%), 1a (0.15 mmol), 2a (0.1 mmol), MeOH (0.5 mmol), Na$_2$CO$_3$ (0.1 mmol) and solvent (0.5 mL) were added to the reaction mixture and stirred for 12 h under N$_2$. The yield was determined by 1H NMR spectroscopy (yield of isolated product given within parentheses). The diastereomeric ratio (d.r.) was determined by 1H NMR spectroscopy. The enantiomeric excess (e.e.) was determined by HPLC. In the absence of Cu(CH$_3$CN)$_2$PF$_6$, Mes = mesityl, DCM = dichloromethane, THF = tetrahydrofuran, n.d. = not detected.
Substrates scope with propargylic acetates. Substituted propargylic acetates were then examined under the optimized reaction conditions (Fig. 3). A broad range of propargylic acetates 2 bearing electron-withdrawing or electron-donating substituents on meta- or para-position of the benzene ring were well tolerated and gave the desired products 3ab-3ai in high yields and the excellent stereoselectivities. In addition, the presence of ortho-substituent at the aryl group of propargylic acetates also underwent an efficient and stereoselective coupling reaction (3aj-3ai). Moreover, the asymmetric reaction of both 2-naphthyl and 3-indolyl propargyl acetates proceeded smoothly and furnished the corresponding products (3am and 3an) with >95:5 d.r. and 99% e.e.

Diastereodivergent propargylic alkylations. The possibility to access diastereodivergent propargylic alkylation reaction of various isatin-derived enals 1 with propargylic acetates 2 was investigated by using a combination of chiral NHC precatalyst 4a and the enantiomer of chiral pyridine bis(oxazoline) ligand (ent-L3) (Fig. 4). To our delight, diastereomers of 3ca, 3ka, 3ab, 3ac, 3ad, 3ae, 3ag, and 3am were all obtained in good yields and with excellent stereoselectivities under the optimal reaction conditions.

Stereodivergent propargylic alkylation process. We then set out to explore the stereodivergence of the NHC/Cu cooperatively catalyzed propargylic alkylation process. As shown in Fig. 5, in the presence of the pairwise combination of NHC/Cu catalysts, both phenyl and 2-naphthyl propargylic acetates (2a and 2m) reacted smoothly with isatin-derived enal 1a to give all four stereoisomers of the corresponding products (3aa and 3am) in good yields and with excellent diastereo- and enantioselectivities. The absolute configurations of (R,R)-3aa and (R,S)-3aa were determined by X-ray crystallography.

Discussion

To get insight into the reaction mechanism, a series of experiments on the propargylic alkylation reaction between isatin-derived enal 1a and propargylic acetate 2a were carried out with different catalyst ratios of Cu:Pybox L3:NHC 4a ranging from 5:10:5 to 50:100:5 (Fig. 6a, see Supporting Information, Table S7 for details). The increase in the amount of copper catalyst did not affect the stereochemistry of the product (R,R)-3aa (>95:5 d.r., 99% e.e. for all), even when the amount of copper catalyst was tenfold that of the NHC catalyst (Cu:Pybox L3:NHC 4a = 50:100:5). These results indicated that the catalytic performance of NHC 4a involved in the organocatalytic cycle was not affected by the presence of excess amounts of the copper catalyst, even if the hybrid complex [Cu(I)(L3)(4a)] was formed44,49. ESI-MS analysis of the crude mixture of the standard reaction implied the existence of [Cu(I)(L3)(4a)] complex (see Supporting Information for details). Next, we searched for nonlinear effects using achiral Pybox ligand and chiral NHC precatalyst 4a with different optical purities (see Supporting Information, Table S8 for details). As depicted in Fig. 6b, the linear relationship between the e.e. values of 4a and those of the oxindole product (R,R)-3aa indicated that one molecule of NHC catalyst got involved in the stereochemical control events. These results clearly demonstrated that one molecular of NHC working as an organocatalyst was involved in the enantio-determining step, and the coordination event between NHC and copper center might exist42,47,49,57,58, however, had little effect on the stereochemical control. Based on our experimental results, a plausible reaction pathway is proposed and summarized in Fig 6c. In the copper catalytic cycle,
the chiral copper complex$^{59-61}$ interacts with the propargylic acetate \textit{2a} and forms a copper(I) alkyne π-complex \textit{I}. The subsequent deprotonation and elimination of an acetyl group deliver Cu–allenylidene complex \textit{II}. Meanwhile, in the organocatalytic cycle, the addition of the NHC catalyst \textit{4a} to the isatin-derived enal \textit{1a} gives the vinyl Breslow intermediate \textit{III}, which attacks at the Cγ atom of \textit{II} and gives the corresponding Cu–acetylide complex \textit{V}. The chiral NHC catalyst and the copper complex work cooperatively in the propargylic alkylation process and allow independent control of each chiral center, which is recognized as the key to success for achieving stereodivergent synthesis$^{2-8}$. Finally, the alcoholysis with MeOH completes the catalytic cycle to give the adduct \textit{3aa} and regenerates both catalysts.

The current process is highly reliable and scalable, and thus, a gram-scale reaction of \textit{1a} and \textit{2a} proceeds smoothly to generate \textit{(R,R)-3aa} with maintained reaction efficiency and stereoselectivity in comparison with the small-scale process (Fig. 7a). The highly enantioenriched oxindole products are highly synthetically useful and can be elaborated to complex molecules via classical and easily operational transformations (Fig. 7a). Sonogashira coupling introduced an aryl group onto \textit{(R,R)-3aa} to afford \textit{5}. Hydrogenation of the alkyne group over Pd(OH)$_2$/C catalyst led to an alkyl-substituted product \textit{6} in 98% yield and >99% e.e. Upon being treated with TsN$_3$, 1,2,3-triazole substituted oxindole \textit{7} was furnished in 99% yield and with maintained enantiopurity. Reduction of \textit{(R,R)-3aa} with LiAlH$_4$ in THF led to a furoindoline \textit{8}. Due to the intriguing oxindole structural feature established through this method, we sought to explore its further synthetic applications toward the synthesis of related natural alkaloids (Fig. 7b). Starting from the enal \textit{1n} and propargylic acetate \textit{2o}, the oxindole \textit{3no} was obtained in good yield and stereoselectivity. Reduction of the ester group of \textit{3no} with LiBH$_4$ furnished the corresponding primary alcohol \textit{9} in a 60% yield. The hydroxyl group of \textit{9} was then protected with the TBS group to afford \textit{10}. The following Lindlar reduction of \textit{10} delivered compound \textit{11} in 93% yield and 94% e.e., which could be applied in the total synthesis of (-)-perophpramidine62.

In summary, we have demonstrated that the synergistic catalysis of chiral copper complexes and NHCs can enable highly efficient stereodivergent synthesis, leading to the first stereodivergent propargylic alkylation of isatin-derived enals and propargylic acetates that provides a diverse set of oxindole derivatives bearing chiral quaternary stereocenters with a high level of enantiocontrol. All four possible stereoisomers of the resulting products containing two contiguous stereocenters are accessible by simple permutations of the enantiomers of the optimal copper catalysts and NHC catalysts. The structural modulation of products works well to allow the structurally diverse synthesis of chiral functional molecules and key chiral intermediate to access (-)-perophpramidine. More importantly, the stereodivergent nucleophilic addition of chiral N-heterocyclic carbene-activated intermediates to the electrophilic Cu-allenylidenes would offer new opportunities to the field of asymmetric cooperative catalysis.

\textbf{Data availability}
All data generated or analyzed during this study are included in the published Article and Supplementary Information. Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2094612 ((R,R)-3aa) and 2094609 ((R,S)-3aa). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

Declarations

Acknowledgements

We are grateful to the National Natural Science Foundation of China (grant nos. 21831007 and 22071229), and the Fundamental Research Funds for the Central Universities (WK2060190083).

Author Contributions

Y.H.W., Z.J.Z. and S.L. performed and analyzed the experimental studies. L.Z.G. and J.S. conceived and supervised the project. All authors analyzed the data and wrote the manuscript.

Competing interests

The authors declare no competing interests.

Additional Information

Supplementary information and chemical compound information are available in the online version of the paper. Reprints and permission information are available online at http://www.nature.com/reprints/.

References

1. Jozwiak, K., Lough, W. J. & Wainer, I. W., Eds. Drug stereochemistry: analytical methods and pharmacology, 3rd ed.; Informa: London, 2012.

2. Schindler, C. S. & Jacobsen, E. N. A new twist on cooperative catalysis. *Science* **340**, 1052 – 1053 (2013).

3. Oliveira, M. T., Luparia, M., Audisio, D. & Maulide, N. Dual catalysis becomes diastereodivergent. *Angew. Chem. Int. Ed.* **52**, 13149–13152 (2013).

4. Krautwald, S. & Carreira, E. M. Stereodivergence in asymmetric catalysis. *J. Am. Chem. Soc.* **139**, 5627–5639 (2017).

5. Lin, L. & Feng, X. Catalytic strategies for diastereodivergent synthesis. *Chem. Eur. J.* **23**, 6464–6482 (2017).

6. Beletskaya, I. P.; Nájera, C. & Yue, M. Stereodivergent catalysis. *Chem. Rev.* **118**, 5080–5200 (2018).

7. Romiti, F. et al. Different strategies for designing dual-catalytic enantioselective processes: from fully cooperative to non-cooperative systems. *J. Am. Chem. Soc.* **141**, 17952–17961 (2019).
8. Blacker, A. J. & Williams, M. T., Eds. Pharmaceutical process development: current chemical and engineering challenges; Royal Society of Chemistry: Cambridge, (2011).

9. Allen, A. A. & MacMillan, D. W. C. Synergistic catalysis: a powerful synthetic strategy for new reaction development. *Chem. Sci.* **3**, 633–658 (2012).

10. Du, Z. & Shao, Z. Combining transition metal catalysis and organocatalysis-an update. *Chem. Soc. Rev.* **42**, 1337–1378 (2013).

11. Chen, D.-F., Han, Z.-Y., Zhou, X.-L. & Gong, L.-Z. Asymmetric organocatalysis combined with metal catalysis: concept, proof of concept, and beyond. *Acc. Chem. Res.* **47**, 2365–2377 (2014).

12. Afewerki, S. & Córdova, A. Combinations of aminocatalysts and metal catalysts: a powerful cooperative approach in selective organic synthesis. *Chem. Rev.* **116**, 13512–13570 (2016).

13. Fu, J., Huo, X., Lia, B. & Zhang, W. Cooperative bimetallic catalysis in asymmetric allylic substitution. *Org. Biomol. Chem.* **15**, 9747–9759 (2017).

14. Krautwald, S., Sarlah, D., Schafroth, M. A. & Carreira, E. M. Enantio- and diastereodivergent dual catalysis: α-allylation of branched aldehydes. *Science* **340**, 1065–1068 (2013).

15. Krautwald, S., Schafroth, M. A., Sarlah, D. & Carreira, E. M. Stereodivergent α-allylation of linear aldehydes with dual iridium and amine catalysis. *J. Am. Chem. Soc.* **136**, 3020–3023 (2014).

16. Næsborg, L., Halskov, K. S., Tur, F., Mønsted, S. M. N. & Jørgensen, K. A. Asymmetric γ-allylation of α,β-unsaturated aldehydes by combined organocatalysis and transition-metal catalysis. *Angew. Chem. Int. Ed.* **54**, 10193–10197 (2015).

17. Sandmeier, T., Krautwald, S., Zipfel, H. F. & Carreira, E. M. Stereodivergent dual catalytic α-allylation of protected α-amino- and α-hydroxyacetaldehydes. *Angew. Chem. Int. Ed.* **54**, 14363–14367 (2015).

18. Zhang, M.-M. et al. Synergetic iridium and amine catalysis enables asymmetric [4 + 2] cycloadditions of vinyl aminoalcohols with carbonyls. *Nat. Commun.* **10**, 2716 (2019).

19. Xu, S.-M. et al. Stereodivergent assembly of tetrahydro-γ-carbolines via synergistic catalytic asymmetric cascade reaction. *Nat. Commun.* **10**, 5553 (2019).

20. Jiang, X., Beiger, J. J. & Hartwig, J. F. Stereodivergent allylic substitutions with aryl acetic acid esters by synergistic iridium and Lewis base catalysis. *J. Am. Chem. Soc.* **139**, 87–90 (2017).

21. Pearson, C. M., Fyfe, J. W. B. & Snaddon, T. N. A regio- and stereodivergent synthesis of homoallylic amines by a one-pot cooperative-catalysis-based allylic alkylation/Hofmann rearrangement strategy. *Angew. Chem. Int. Ed.* **58**, 10521–10527 (2019).

22. Singha, S., Serrano, E., Mondal, S., Daniliuc, C. G. & Glorius, F. Diastereodivergent synthesis of enantioenriched α,β-disubstituted γ-butyrolactones via cooperative N-heterocyclic carbene and Ir catalysis. *Nature Catal.* **3**, 48–54 (2020).

23. Zhang, J. et al. Cooperative N-heterocyclic carbene and iridium catalysis enables stereoselective and regiodivergent [3 + 2] and [3 + 3] annulation reactions. *ACS Catal.* **11**, 3810–3821 (2021).

24. Cruz, F. A. & Dong, V. M. Stereodivergent coupling of aldehydes and alkynes via synergistic catalysis using Rh and Jacobsen’s amine. *J. Am. Chem. Soc.* **139**, 1029–1032 (2017).
25. Huo, X., He, R., Zhang, X. & Zhang, W. An Ir/Zn dual catalysis for enantio- and diastereodivergent α-allylation of α-hydroxyketones. J. Am. Chem. Soc. 138, 11093–11096 (2016).
26. Wei, L., Zhu, Q., Xu, S.-M., Chang, X. & Wang, C.-J. Stereodivergent synthesis of α,α-disubstituted α-amino acids via synergistic Cu/Ir catalysis. J. Am. Chem. Soc. 140, 1508–1513 (2018).
27. Jiang, X., Boehm, P & Hartwig, J. F. Stereodivergent allylation of azaaryl acetamides and acetates by synergistic iridium and copper catalysis. J. Am. Chem. Soc. 140, 1239–1242 (2018).
28. Huo, X., Zhang, J., Fu, J., He, R. & Zhang, W. Ir/Cu dual catalysis: enantio- and diastereodivergent access to α,α-disubstituted α-amino acids bearing vicinal stereocenters. J. Am. Chem. Soc. 140, 2080–2084 (2018).
29. He, Z.-T., Jiang, X. & Hartwig, J. F. Stereodivergent construction of tertiary fluorides in vicinal stereogenic pairs by allylic substitution with iridium and copper catalysts. J. Am. Chem. Soc. 141, 13066–13073 (2019).
30. Zhang, Q. et al. Stereodivergent coupling of 1,3-dienes with aldimine esters enabled by synergistic Pd and Cu catalysis. J. Am. Chem. Soc. 141, 14554–14559 (2019).
31. He, R. et al. Stereodivergent Pd/Cu catalysis for the dynamic kinetic asymmetric transformation of racemic unsymmetrical 1,3-disubstituted allyl acetates. J. Am. Chem. Soc. 142, 8097–8103 (2020).
32. Yang, S.-Q., Wang, Y.-F., Zhao, W.-C., Lin, G.-Q. & He, Z.-T. Stereodivergent synthesis of tertiary fluoride-tethered allenes via copper and palladium dual catalysis. J. Am. Chem. Soc. 143, 7285–7291 (2021).
33. Kim, B., Kim, Y. & Lee, S. Y. Stereodivergent carbon–carbon bond formation between iminium and enolate intermediates by synergistic organocatalysis. J. Am. Chem. Soc. 143, 73–79 (2021).
34. Bugaut, X. & Glorius, F. Organocatalytic umpolung: N-heterocyclic carbenes and beyond. Chem. Soc. Rev. 41, 3511–3522 (2012).
35. Hopkinson, M. N., Richter, C., Schedler, M. & Glorius, F. An overview of N-heterocyclic carbenes. Nature 510, 485 – 496 (2014).
36. Flanigan, D. M., Romanov-Michailidis, F., White, N. A. & Rovis, T. Organocatalytic reactions enabled by N-heterocyclic carbenes. Chem. Rev. 115, 9307–9387 (2015).
37. Chen, X., Wang, H., Jin, Z. & Chi, Y. R. N-Heterocyclic carbene organocatalysis: activation modes and typical reactive intermediates. Chin. J. Chem. 38, 1167–1202 (2020).
38. Wang, M. H. & Scheidt, K. A. Cooperative catalysis and activation with N-heterocyclic carbenes. Angew. Chem. Int. Ed. 55, 14912–14922 (2016).
39. Li, H.-Y., Lu, H., Liu, J.-Y. & Xu, P.-F. Recent developments in N-heterocyclic carbene and transition-metal cooperative catalysis. Acta Chim. Sin. 76, 831–837 (2018).
40. Nagao, K. & Ohmiya, H. N–Heterocyclic carbene (NHC)/metal cooperative catalysis. Top. Curr. Chem. 377, 35 (2019).
41. DiRocco D. A. & Rovis, T. Catalytic asymmetric α-acylation of tertiary amines mediated by a dual catalysis mode: N-heterocyclic carbene and photoredox catalysis. J. Am. Chem. Soc. 134, 8094–8097 (2012).
42. Namitharan, K. et al. Metal and carbene organocatalytic relay activation of alkynes for stereoselective reactions. *Nat. Commun.* **5**, 3982 (2014).

43. Guo, C., Fleige, M., Janssen-Müller, D., Daniliuc, C. G. & Glorius, F. Cooperative N-heterocyclic carbene/palladium-catalyzed enantioselective umpolung annulations. *J. Am. Chem. Soc.* **138**, 7840–7843 (2016).

44. Guo, C. et al. Mechanistic studies on a cooperative NHC organocatalysis/palladium catalysis system: uncovering significant lessons for mixed chiral Pd(NHC)(PR$_3$) catalyst design. *J. Am. Chem. Soc.* **139**, 4443–4451 (2017).

45. Chen, J., Yuan, P., Wang, L. & Huang, Y. Enantioselective β-protonation of enals via a shuttling strategy. *J. Am. Chem. Soc.* **139**, 7045–7051 (2017).

46. Singha, S., Patra, T., Daniliuc, C. G. & Glorius, F. Highly enantioselective [5 + 2] annulations through cooperative N-heterocyclic carbene (NHC) organocatalysis and palladium catalysis. *J. Am. Chem. Soc.* **140**, 3551–3554 (2018).

47. Zhang, Z.-J. et al. N-heterocyclic carbene/copper cooperative catalysis for the asymmetric synthesis of spirooxindoles. *Angew. Chem. Int. Ed.* **58**, 12190–12194 (2019).

48. Zhou, L. et al. Gold and carbene relay catalytic enantioselective cycloisomerization/cyclization reactions of ynamides and enals. *Angew. Chem. Int. Ed.* **59**, 1557–1561 (2020).

49. Zhang, Z.-J., Wen, Y.-H., Song, J. & Gong, L.-Z. Kinetic resolution of aziridines enabled by N-heterocyclic carbene/copper cooperative catalysis: carbene dose-controlled chemo-switchability. *Angew. Chem. Int. Ed.* **60**, 3268–3276 (2021).

50. Detz, R. J., Delville, M. M. E., Hiemstra, H. & van Maarseveen, J. H. Enantioselective copper-catalyzed propargylic amination. *Angew. Chem. Int. Ed.* **47**, 3777–3780 (2008).

51. Hattori, G., Matsuzawa, H., Miyake, Y. & Nishibayashi, Y. Copper-catalyzed asymmetric propargylic substitution reactions of propargylic acetates with amines. *Angew. Chem. Int. Ed.* **47**, 3781–3783 (2008).

52. Ding, C.-H. & Hou, X.-L. Catalytic asymmetric propargylation. *Chem. Rev.* **111**, 1914–1937 (2011).

53. Nishibayashi, Y. Transition-metal-catalyzed enantioselective propargylic substitution reactions of propargylic alcohol derivatives with nucleophiles. *Synthesis* **2012**, 489–503 (2012).

54. Zhang, D.-Y. & Hu, X.-P. Recent advances in copper-catalyzed propargylic substitution. *Tetrahedron Lett.* **56**, 283–295 (2015).

55. Wang, L. et al. Asymmetric synthesis of spirobenzazepinones with atroposelectivity and spiro-1,2-diazepinones by NHC-catalyzed [3 + 4] annulation reactions. *Angew. Chem. Int. Ed.* **55**, 11110–11114 (2016).

56. Chan, A. & Scheidt, K. A. Conversion of α,β-unsaturated aldehydes into saturated esters: an umpolung reaction catalyzed by nucleophilic carbenes. *Org. Lett.* **7**, 905–908 (2005).

57. Díez-Gonzállez, S., Marion, N. & Nolan, S. P. N-Heterocyclic carbenes in late transition metal catalysis. *Chem. Rev.* **109**, 3612–3676 (2009).
58. Wang, Y. et al. Catalytic asymmetric [4 + 3] annulation of C,N–cyclic azomethine imines with copper allenylidenes. *Org. Lett.* **20**, 6506–6510 (2018).

59. Díez, J., Gamasa, M. P. & Panera, M. Tetra-, Di-, and Mononuclear copper(I) complexes containing (S,S)-Pr-pybox and (R,R)-Ph-pybox ligands. *Inorg. Chem.* **45**, 10043–10045 (2006).

60. Panera, M., Díez, J., Merino, I., Rubio, E. & Gamasa, M. P. Synthesis of copper(I) complexes containing enantiopure Pybox ligands. First assays on enantioselective synthesis of propargylamines catalyzed by isolated copper(I) complexes. *Inorg. Chem.* **48**, 11147–11160 (2009).

61. Nakajima, K., Shibata, M. & Nishibayashi, Y. Copper-catalyzed enantioselective propargylic etherification of propargylic esters with alcohols. *J. Am. Chem. Soc.* **137**, 2472–2475 (2015).

62. Trost, B. M., Osipov, M., Krüger, S. & Zhang, Y. A catalytic asymmetric total synthesis of (−)-perophoramidine. *Chem. Sci.* **6**, 349–353 (2015).

Figures

Figure 1

Stereodivergent synthesis via dual catalysis. a, Representative stereodivergent synthesis via cooperative catalysis, chiral catalyst (Cat*). b, NHC/transition metal cooperatively catalyzed enantioselective annulation reactions, substrate (sub). c, Asymmetric propargyl substitution reactions mediated by chiral
Cu-allenylidene complexes. This work: The first stereodivergent propargylation of enals via cooperative NHC/copper catalysis, leading to all four stereoisomers with excellent optical purity.

Figure 2

Substrate scope of isatin-derived enals. Reaction conditions: Cu(CH3CN)4PF6 (5 mol%) and pyridine bis(oxazoline) ligand L3 (10 mol%) were stirred in THF (0.5 mL) at 25 °C for 1 h, then NHC precatalyst 4a (5 mol%), 1 (0.15 mmol), 2a (0.1 mmol), MeOH (0.5 mmol), Na2CO3 (0.1 mmol) and THF (0.5 mL) were added to the reaction mixture and stirred for 12 h under N2. Diastereomeric ratio (d.r.) was determined by 1H NMR spectroscopic analysis. Isolated yields. The enantiomeric excess (e.e.) was determined by HPLC.
Figure 3

Substrate scope of propargylic acetates. Reaction conditions: Cu(CH3CN)4PF6 (5 mol%) and pyridine bis(oxazoline) ligand L3 (10 mol%) were stirred in THF (0.5 mL) at 25 °C for 1 h, then NHC precatalyst 4a (5 mol%), 1a (0.15 mmol), 2 (0.1 mmol), MeOH (0.5 mmol), Na2CO3 (0.1 mmol) and THF (0.5 mL) were added to the reaction mixture and stirred for 12 h under N2. Diastereomeric ratio (d.r.) was determined by 1H NMR spectroscopic analysis. Isolated yields. The enantiomeric excess (e.e.) was determined by HPLC.
Figure 4

Demonstration of diastereodivergence. Reaction conditions: Cu(CH3CN)4PF6 (5 mol%) and pyridine bis(oxazoline) ligand ent-L3 (10 mol%) were stirred in THF (0.5 mL) at 25 °C for 1 h, then NHC precatalyst 4a (5 mol%), 1 (0.15 mmol), 2 (0.1 mmol), MeOH (0.5 mmol), Na2CO3 (0.1 mmol) and THF (0.5 mL) were added to the reaction mixture and stirred for 12 h under N2. Diastereomeric ratio (d.r.) was determined by 1H NMR spectroscopic analysis. Isolated yields. The enantiomeric excess (e.e.) was determined by HPLC.
Figure 5

Stereodivergent synthesis of all four stereoisomers of oxindoles 3aa and 3am via cooperative NHC/Cu catalysis. Reaction conditions: Cu(CH3CN)4PF6 (5 mol%) and pyridine bis(oxazoline) ligand L3 or ent-L3 (10 mol%) were stirred in THF (0.5 mL) at 25 °C for 1 h, then NHC precatalyst 4a or ent-4a (5 mol%), 1a (0.15 mmol), 2 (0.1 mmol), MeOH (0.5 mmol), Na2CO3 (0.1 mmol) and THF (0.5 mL) were added to the reaction mixture and stirred for 12 h under N2. Diastereomeric ratio (d.r.) was determined by 1H NMR spectroscopic analysis. Isolated yields. The enantiomeric excess (e.e.) was determined by HPLC.
Figure 6

Mechanistic investigation and proposed catalytic cycles. a, Reaction outcomes with different catalyst loadings. b, Nonlinear experiments. c, Proposed catalytic cycles.
Figure 7

Scale-up reaction and synthetic transformations. a, Gram-scale process and functional group transformations. b, Preparation of synthetic precursors for (-)-perophramidine. See Supporting Information for experimental details.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupportingInformation.pdf
• RR3aa.cif
• RS3aa.cif
• RS3aacifreport.pdf
• RR3aacifreportupdate.pdf
• RR3aaupdate.cif
• Onlinefloatimage9.png