Estimation for Drying Shrinkage of Concrete by Composite Model
Using Coarse Aggregate Properties

by

Hiroshi YAMADA*, Hiroshi KATAHIRA** and Hiroshi WATANABE***

The factors which affect drying shrinkage of concrete are material properties and environmental conditions, and so on. It is said that the type of coarse aggregate is one of the most dominant factors which affect concrete drying shrinkage. Therefore, it is important that the length-change properties of coarse aggregate particle are grasped when concrete drying shrinkage strain is estimated. Moreover, it is a practical benefit that concrete drying shrinkage strain is estimated by using coarse aggregate properties to be obtained the result early, regardless of the mix proportion of concrete. From the above backgrounds, in this research, we tried to estimate concrete drying shrinkage strain by composite model which has been proposed by KISHITANI & BABA, and investigated applicability of the model by using the initial tangent modulus or the secant modulus for coarse aggregate. For this study we used 19 types of crushed stone from different regions and of different qualities. As a result, the estimation of concrete drying shrinkage strain by KISHITANI & BABA equation was made different results of accuracy due to types of modulus of elasticity to be used for calculation. The calculated value against the experimental value was a range of -30 to +10% when using the initial tangent modulus, and was a range of -30 to +30% when using the secant modulus.

Key words:
Drying Shrinkage, Coarse Aggregate, Initial Tangent Modulus, Secant modulus, Composite Model

1 Introduction

There is a growing interest in controls of cracking of concrete due to shrinkage, therefore concrete drying shrinkage related regulations are being reviewed and revised. In JSCE standard specifications for concrete structures, as a general rule, the design values of the shrinkage strain of concrete must be determined on the basis of the values obtained from shrinkage strain tests of the concrete to be used or past performance data.

Concrete drying shrinkage is determined as the length change after 6 months of drying, using the method indicated in JIS A 1129: Methods of Measurement for Length Change of Mortar and Concrete. However, this test takes a long time. There has therefore been a need for a method for simply estimating concrete drying shrinkage strain.

There are many factors which affect concrete drying shrinkage. Recently, among the constituent materials of concrete, it has been reported that the type of coarse aggregate is one of the most dominant factors which affect drying shrinkage of concrete. We have demonstrated that the mean value of the coarse aggregate drying shrinkage strain measured by using wire strain gauges and concrete drying shrinkage strain are high mutually related.

On the other hand, it is a practical benefit that drying shrinkage of concrete is estimated by using coarse aggregate properties to be obtained the result early, regardless of the mix proportion of concrete. In general, the estimation of concrete drying shrinkage is used the empirical equations which are based on a large amount of experimental data. However, as an entirely different approach, composite model for estimating the influence of aggregate contents and properties on concrete shrinkage has been proposed, and it has been said good accuracy on prediction.

Considering these circumstances, in this research, we tried to estimate concrete drying shrinkage by composite model. Young’s modulus of coarse aggregate is included in a parameter of the model, and is used the secant modulus in general. However, it has been reported that the mutual relationship with concrete drying shrinkage strain is better the initial tangent modulus rather than the secant modulus for concrete. Therefore, we investigated the relationship between the drying shrinkage strain of concrete and the calculated Young’s modulus of coarse aggregate, and considered the applicability of estimation by composite model by using the initial tangent modulus or the secant modulus for coarse aggregate.

2 Composite Model

Recently, it is said that a new composite model is TERANISHI & SATO equation which is regarded the concrete as 3-phase materials composed of cement hardened

+ Received Feb.10, 2017 © 2018 The Society of Materials Science, Japan
* Member: Hiroshima Pref., Hiroshima Port and Harbor Promotion Office. Engineer, Minami-ku, Hiroshima, 734-0011 Japan
** Public Works Research Institute, iMaRRC. Principal Senior Researcher, Minamihara, Tsukuba, 305-8516 Japan
*** Public Works Research Institute, iMaRRC. Director of Materials and Resources Research Group, Minamihara, Tsukuba, 305-8516 Japan
Shrinkage of concrete is estimated by using coarse aggregate. It has been reported that the type of coarse aggregate is one of the most dominant factors which affect concrete drying shrinkage. Recently, among the constituent materials of concrete, it has been said good accuracy to estimate concrete drying shrinkage strain by composite model which has been proposed by Hashin & Hansen (2018). The composite model which has been proposed by HASHIN & HANSEN (1964) is written as equation (1).

\[
\frac{E_c}{E_m} = \frac{n + 1 + (n - 1)\psi_c}{n + 1 - (n - 1)\psi_c}
\]

where, \(m = \varepsilon_0 / \varepsilon_m\), \(n = E_c / E_m\), \(\varepsilon\) is drying shrinkage strain, \(E\) is Young’s modulus (N/mm²), \(\psi_c\) is volume ratio of coarse aggregate, suffix of \(c\), \(a\) and \(m\) is concrete, coarse aggregate and mortar, respectively.

We obtained the value of the parameter for equation (1) by experiment except for Young’s modulus of coarse aggregate. An Elastic modulus of coarse aggregate is desired to be determined on the basis of the test by using a test piece sampling directly from a raw stone. However, in this study, we measured the modulus of elasticity of concrete and mortar, and estimated the Young’s modulus of coarse aggregate from equation (2) which has been proposed by Hashin & Hansen (1964).

\[
E_c = E_m \left(1 - (1 - mn)\psi_c, n + 1 - (n - 1)\psi_c\right)\left(n + 1 + (n - 1)\psi_c\right)
\]

Table 1 Coarse aggregate types and characteristics.

Classification	No.	\(G_{mm}\) - mm	Density - g/cm³	Water absorption - %	Soundness - %	Drying shrinkage strain of coarse aggregate - x10⁻⁶			
						Average	Standard deviation	Minimum	Maximum
Volcanic rock	G1	25	2.25	6.43	27.5	383	155	198	611
	G2	25	2.63	1.66	3.8	126	46	50	228
	G3	25	2.29	5.58	52.7	334	170	167	613
	G4	25	2.47	2.74	72.9	348	51	288	446
	G5	25	2.44	3.91	54.2	646	328	248	1296
	G6	15	2.65	2.67	14.8	416	129	210	628
	G7	25	2.29	6.53	56.5	550	494	130	1583
Plutonic rock	G8	25	2.53	1.47	22.3	180	89	33	348
	G9	25	2.37	4.96	89.7	1529	496	486	2753
	G10	25	2.45	3.33	56.4	620	138	408	828
	G11	25	2.65	0.5	3.3	86	30	29	147
	G12	20	2.64	0.69	11.4	139	31	78	198
	G13	20	2.57	1.56	34.8	459	62	357	561
	G14	20	2.59	1.54	27.9	935	413	267	1719
	G15	20	2.64	0.99	17.3	528	117	233	686
Clastic rock	G16	25	2.48	4.38	45.3	255	109	59	532
	G17	25	2.28	7.17	70.2	907	445	245	1766
	G18	20	2.71	0.26	1.5	21	6	10	31
	G19	20	2.7	0.29	0.7	26	4	18	31
Pyroclastic rock	G20	25	2.56	1.58	3.5	-	-	-	-
Biogenic rock	G21	25	2.25	6.43	27.5	383	155	198	611
	G22	25	2.63	1.66	3.8	126	46	50	228
	G23	25	2.29	5.58	52.7	334	170	167	613
	G24	25	2.47	2.74	72.9	348	51	288	446
	G25	25	2.44	3.91	54.2	646	328	248	1296
	G26	15	2.65	2.67	14.8	416	129	210	628
	G27	25	2.29	6.53	56.5	550	494	130	1583
River sand	-	2.56	1.58	3.5	-	-	-	-	

For the Young's modulus of concrete, mortar and coarse aggregate in equation (2), the initial tangent modulus and the secant modulus were used, respectively, to compare the applicability of composite model.

3 Outline of Experiment

3.1 Coarse aggregate

Table 1 shows the types and characteristics of coarse aggregate used in this research. The selected aggregates consisted of crushed stone from different regions and of different qualities, and in order to cover the impact of a wide range of coarse aggregate quality, some coarse aggregates selected satisfied JIS A 5005: Crushed Stone and Manufactured Sand for Concrete, while others did not.

Drying shrinkage strain of a coarse aggregate particle was measured by using wire strain gauges. In the measurement, a coarse aggregate particle of nearly maximum particle length-change was measured in an environment at a temperature of 20°C and a relative humidity of 60%, and the strain of change in length at ultimate was evaluated. A number of test pieces were more than 7 particles for each type of coarse aggregate.
of the aggregate.

3.2 Mix proportion for concrete and mortar

Ordinary Portland cement was used. River sand shown in Table-1 was used. Coarse aggregate shown in Table-1 was used respectively. AE water reducing agent (C×0.31%) was used. Mix proportions of concrete were identical as follows except for coarse aggregate to be used. Unit water content was 165 kg/m³. Water-cement ratio was 55%. Sand-total aggregate ratio was 46%. Target air content was 4.5%.

Other than the coarse aggregate, all dosage of the materials for the concrete was identical. Therefore, fresh properties of the concrete were varied dependent on the each coarse aggregate. Fresh concrete test results were as follows: slump of 3.5 to 18.6cm, air content of 4.0 to 6.2%.

The mortar was prepared using the river sand shown in Table 1 with the following mix proportion: water-cement ratio of 55%, sand-cement ratio of 2.73. Ordinary Portland cement was used. AE water reducing agent (C×0.31%) was used.

3.3 Length-change test for concrete and mortar

The specimens used in length-change test of concrete of the size of 100x100x400mm and mortar of the size of 40x40x160mm were removed from their molds at the age of 1 day, and then water curing was performed until the age of 7 days. The initial length of the specimens was measured after the curing, thereafter, the length-change of concrete and mortar was measured in accordance with JIS A 1129-3 (Method with Dial Gauge) in an environment at a temperature of 20°C and a relative humidity of 60%. The concrete length-change strain after 6 months of drying was evaluated, and the mortar length-change strain after 28 days of drying was evaluated.

3.4 Measurement of Young’s modulus for concrete and mortar

The specimens used in measurement of Young’s modulus of concrete and mortar were removed from their molds at the age of 1 day, and then water curing was performed until the age of 28 days.

The secant modulus of concrete and mortar was measured in accordance with JIS A 1149 (Method of Test for Static Modulus of Elasticity of Concrete).

The initial tangent modulus of concrete and mortar was also measured. The strain for this measurement was obtained by every loading rate of 1.27 N/mm². The initial tangent modulus was determined from a slope of the tangent line connecting the origin to the point of 1.27 N/mm².

4 Results and Discussion

4.1 The relationship between drying shrinkage strain...
of concrete and Young's modulus of coarse aggregate

Fig. 1 shows the calculated results of Young's modulus of coarse aggregate. The initial tangent modulus and the secant modulus for coarse aggregate were calculated by equation (2) by using their experimental values obtained the concrete Young's modulus test, respectively. The secant modulus of coarse aggregate was about 60% against the initial tangent modulus of them.

Fig. 2 shows the relationship between the drying shrinkage strain of concrete and the calculated value of Young's modulus of coarse aggregate. It was observed that larger initial tangent modulus and larger secant modulus corresponded to smaller the drying shrinkage strain of concrete. However, there was not much correlation relationship between the calculated Young's modulus of coarse aggregate and the drying shrinkage strain of concrete.

4.2 Estimation by composite model for concrete drying shrinkage strain

Although it is possible that concrete drying shrinkage strain which changes with time is estimated by equation (1), it has been reported⁶ that the calculated values are larger than the experimental values. It has been said that this reason is due to difference of volume-surface area ratio (V/S) of specimens of mortar and concrete. However, it has been said that specimens size of mortar and concrete is hardly affected to estimate for the ultimate value of concrete shrinkage. Therefore, in this study, the composite model was used to estimate concrete drying shrinkage strain at ultimate. For values to be used in equation (1), the mortar drying shrinkage strain was 903×10^{-6}, and the initial tangent modulus and the secant modulus for mortar were 34.8 and 34.0kN/mm², respectively.

Fig. 3 shows the calculated results by composite model. Looking at the left figure, the calculated value by using the initial tangent modulus could be estimated the range of -30 to +10% against the experimental value, and it was observed that the calculated value was smaller trend than the experimental value. Looking at the left figure, the calculated value by using the secant modulus could be estimated the range of -30 to +30% against the experimental value. The values of the initial tangent modulus and the secant modulus for mortar by using calculation were not large difference. Therefore, it is able to be said that the difference of Young's modulus of coarse aggregate to be used for calculation was affected the estimation range against the experimental value.

Moreover, in 3-phase model, it has been reported⁷ that the calculated value is able to estimate the range of ±100µ against the experimental value. Therefore, it would not be said that our results are equally estimation accuracy comparing with the 3-phase model.

5 Conclusions

Our results were as follows.

(1) The secant modulus of coarse aggregate to be obtained by calculation was about 60% against the initial tangent modulus of coarse aggregate to be obtained by calculation.

(2) The calculated value by 2-phase composite model against the experimental value was a range of -30 to +10% when using the initial tangent modulus, and was a range of -30 to +30% when using the secant modulus. In 3-phase composite model, it is said that the calculated value is able to estimate the range of ±100µ against the experimental value. Therefore, it could not be said that our results are equally estimation accuracy comparing with the model. However, when to grasp the approximate value of concrete drying shrinkage, it
would be said that using 2-phase composite model is one of effective methods to estimate it.

References
1) T. Kanda, H. Momose, K. Imamoto, and H. Mihashi, “A field study for drying shrinkage of ready-mixed concrete and stochastic investigation”, Journal of Structural and Construction Engineering, No.629, pp.1019-1026 (2008).
2) H. Yamada, H. Katahira and H. Watanabe, “Study on the evaluation for drying shrinkage properties of coarse aggregate”, Journal of Japan Society of Civil Engineers, Ser. E2 (Materials and Concrete Structures), Vol.68, No.1, pp.63-71 (2012).
3) H. Watanabe, H. Katahira, K. Isami and H. Yamada, “Research on the influence of aggregate to freezing and thawing resistance and drying shrinkage of concrete”, Technical Note of PWRI, No.4199, pp.30-48 (2011).
4) K. Teranishi and Y. Sato, “Prediction equation of drying shrinkage of concrete based on composite model –Evolution to three-phase model and consideration of external factors–”, Journal of Structural and Construction Engineering, No.602, pp.21-28 (2006).
5) K. Eguchi and K. Teranishi, “Prediction equation of drying shrinkage of concrete based on composite model”, Journal of Structural and Construction Engineering, No.557, pp.15-22 (2002).
6) K. Kshitani, A. Baba, “Drying shrinkage mechanism of building materials, Cement and Concrete”, No.346, pp.30-40, (1975).
7) T. C. Hansen, “Influence of Aggregate and Voids on the Modulus of Elasticity of Concrete, Cement Mortar and Cement Paste”, Journal of the ACI, Vol.62, No.2, pp.193-216, (1965)