Effects of the COVID-19 pandemic on the Colombian labour market: Disentangling the effect of sector-specific mobility restrictions

Leonardo Fabio Morales, Leonardo Bonilla-Mejía, Jose Pulido, Luz A. Flórez, Didier Hermida, Karen L. Pulido-Mahecha, Francisco Lasso-Valderrama
Labor Market Analysis Group, Banco de la República

Abstract. We assess the effect of the COVID-19 pandemic and particularly the sector-specific mobility restrictions on the Colombian labour market. We exploit the sectoral and temporal variation of the restriction policies to identify their effect. Mobility restrictions significantly reduced employment, accounting for approximately a quarter of the total job loss between February and April of 2020. The remaining three quarters of the job losses could be attributed to the disease’s regional patterns and other epidemiological and economic factors affecting the whole country. Therefore, we should expect important employment losses even in the absence of such restrictions. We also assess the effect of restrictions on the intensive margin, finding negative, although smaller effects on the number of hours worked and wages. Most of the employment effect is driven by salaried workers, while self-employment was more responsive to the disease spread. Finally, we find that women are disproportionally affected: mobility restrictions account for a third of the recent increase of the gender gap in salaried employment.

Résumé. Effets de la pandémie de COVID-19 sur le marché du travail colombien : analyse des répercussions liées aux restrictions de mobilité par secteur. Dans cet article, nous évaluons les répercussions de la pandémie de COVID-19, et notamment des restrictions en matière de mobilité propres à chaque secteur, sur le marché du travail colombien. Nous nous appuyons sur les variations temporelles et sectorielles des politiques de restriction pour déterminer leurs effets. Les restrictions de mobilité ont sensiblement détérioré l’emploi en détruisant environ un quart du nombre total d’emplois supprimés entre février et avril 2020, les trois-quarts restants pouvant être imputés aux caractéristiques régionales de la pandémie ainsi qu’à d’autres facteurs épidémiologiques et économiques touchant l’ensemble du pays. Nous pourrions donc nous attendre à d’importantes destructions d’emplois, même en l’absence de telles restrictions. Nous évaluons également les effets des restrictions à la marge intensive, et nous constatons des effets négatifs mais plus faibles sur le nombre d’heures travaillées ainsi que sur les salaires. Les effets de ces restrictions sur l’emploi sont motivés en grande partie par les travailleurs salariés, les travailleurs indépendants se montrant plus réactifs face à la propagation de la maladie. Enfin, nous constatons que les femmes sont touchées de façon disproportionnelle.
disproportionnée, les restrictions de mobilité comptant pour un tiers de l’accentuation récente de l’écart hommes-femmes en matière d’emploi salarié.

JEL classification: I14, I18, J21

1. Introduction

The COVID-19 pandemic is one of the most disruptive events the world has faced in recent history. By June 2020, over 10 million people had been infected, almost half a million people had died worldwide and the number was still growing. 1 In order to flatten the contagion curve and improve health system capacity, most countries implemented strict lockdown policies, with different types of mobility restrictions. The sanitary crisis and the mobility restrictions triggered an unprecedented global economic crisis, with particularly alarming effects on employment.

This paper assesses the pandemic’s impact on the Colombian labour market, emphasizing the role of sector-specific mobility restrictions implied by the first wide-reaching lockdown of the country. While some economic sectors, considered essential, were authorized to continue operating, the rest faced severe mobility restrictions. Using this variation source, we estimate difference-in-differences and event study models to assess the impact of these restrictions on employment, hours worked and wages. Our empirical framework controls for regional variation in the disease spread, time fixed effects accounting for other epidemiological and economic factors affecting the whole country and sector and city fixed effects capturing their observed and non-observed time-invariant characteristics. The sectorial restrictions were announced in mid-March 2020 and implemented simultaneously, and no additional sectors were excluded during our period of study, which ends in April 2020.

Our results indicate that sector-specific restrictions had a negative effect on employment. On average, between February and April, employment fell 9.4% more in the restricted sectors, compared with those excluded from the measures. A back-to-the-envelope calculation suggests this effect accounts for almost one quarter of the total employment loss during this period (−18.3%). The remaining three quarters of the job losses could be attributed to the disease’s regional patterns and other epidemiological and economic factors affecting the whole country during this period. These factors, captured by the time fixed effects coefficients, include all common shocks that hit the labour market during the pandemic crisis, for instance, the impact of general mobility restrictions, the average impact of the fear to contagion in the agents’ behavioural responses and the aggregate impact of external macroeconomic shocks as commodity prices, trade or remittances. Therefore, we should expect important employment losses even in the absence of sector-specific

1 Data from https://ourworldindata.org/.
restrictions. Furthermore, in the absence of sectoral restrictions, the disease’s spread could have been greater, with potentially negative effects on economic activity and employment.

We then assess the impact of the sector-specific restrictions on the intensive margin, estimating the effect of sector-specific restrictions on the average number of hours worked and wages. We also find negative effects, although smaller in magnitude than those found for employment. Further, we investigate whether the estimated effects differ across different segments of the labour market. We find that the effects on employment are mainly driven by salaried workers, while self-employment is more responsive to the disease spread. These results suggest that rigidities in the labour market may amplify the impact of the sector-specific mobility restrictions. Finally, we find considerably larger effects on women, but only in the salaried segment. Mobility restrictions account for a third of the widening of the salaried employment gender gap during the studied period.

Our paper contributes to the growing literature on the labour market effects of lockdown policies. Most of the existing studies indicate that mobility restrictions account for only a fraction of labour market weakening during the pandemic crisis. Other factors, such as the negative aggregate effect of the disease itself, play an important role (Aum et al. 2020, Forsythe et al. 2020, Gupta et al. 2020, Lozano Rojas et al. 2020, Goolsbee and Syverson 2021). Our results are in line with these findings. We provide a complete set of robustness checks confirming the validity of our causal claims regarding the effects of the sector-specific mobility restrictions. First, in the presence of intersectoral linkages, mobility restrictions might have affected the employment of excluded sectors as well. We estimate our main specification excluding industries in the control group with strong economic linkages to restricted sectors. The effects of sector-specific restrictions are overall unaltered. Second, contagion risk may vary by industry. We build a measure of potential risk on the basis of physical proximity between workers. We estimate our main specification controlling for the interaction between this measure and the city disease spread, finding similar results. Third, we extend our time framework until June. Since sector-specific restrictions are eliminated progressively, we test for heterogeneous treatment effects following De Chaisemartin and D’Haultfœuille (2020). The estimated effects are similar to those in our main specification.

While most of the existing literature focuses on high-income countries, this is one of the few studying a developing country. This is inherently interesting for at least two reasons. First, developing economies are characterized by a high prevalence of informality. The informal segment of the labour market is usually more flexible than the formal one because official regulations are challenging to enforce. Nevertheless, the informal market’s job quality is poor, and informal jobs might be more vulnerable in the pandemic economic crisis (Eslava and Isaacs 2020). Hence, the response of such segmented labour markets to lockdown policies may differ largely from the response observed in developed
countries. Second, in many emerging economies, the strict lockdown policies’ timing relative to the disease spread was different with respect to the developed world. In fact, lockdowns were implemented long before disease peaked, a setting that could be more favourable to isolate the effect of sector-specific mobility restrictions from the own effects of disease propagation.

The remaining of the paper is organized as follows. Section 2 summarizes the existing evidence on the pandemic as well as the lockdown policies and their impact on the labour market. Section 3 briefly describes the evolution of the disease in Colombia and the adopted mobility restriction measures between March and April 2020. Section 4 describes in detail our data and the empirical strategy. Sections 5 and 6 present the baseline results and the robustness checks, respectively. Section 7 concludes.

2. COVID-19 pandemic and mobility restriction policies

On December 31, 2019, Chinese authorities reported to the World Health Organization (WHO) the appearance of rare pneumonia cases in the eastern region of China; the epidemiological origins of this sickness remain unknown. Seven days later, Chinese authorities reported a new virus, initially called 2019-nCoV, which caused the respiratory disease COVID-19. On January 13, 2020, the first case of COVID-19 was detected outside of China (in Thailand). By January 31, 18 different countries had already reported the first case of COVID-19 within their borders (Kumar et al. 2020). On March 11, the WHO declared COVID-19 as a pandemic; at the time, there were over 118,000 cases detected worldwide. As of June 30, there were over nine million positive cases reported worldwide, causing the death of 505,000 people.\footnote{Data from \url{https://ourworldindata.org/}.

To flatten the contagion curve and reduce the pressure on the health system, most countries implemented different lockdown policies at different stages of the evolution of the disease. Evidence suggests that these measures effectively reduced mobility in public places, which in turn decreased the number of positive cases and deaths (Bilgin 2020, Engle et al. 2020, Fang et al. 2020, Glaeser et al. 2020, Kraemer et al. 2020, Yilmazkuday 2020). However, even in countries without initial mandatory restrictions measures, such as South Korea and Sweden, mobility also decreased, reflecting that individuals also took precautionary measures to prevent contagion (Aum et al. 2020).

Both the presence of the disease and the introduction of lockdown policies may have had adverse effects on the labour markets. On the one hand, the disease itself and the fear of contagion can increase work absenteeism and reduce the consumption of several goods and services, destroying jobs. On the other hand, lockdown measures may constrain economic activity, both throughout their impact on aggregate demand and supply, hurting employment. Regarding lockdowns, in most countries some sectors deemed essential, such as
agriculture and public utilities, were authorized to continue operating. The rest of the economy was restricted, so a differential impact on employment across sectors should be expected. Finally, there is a whole set of external macroeconomic shocks that might have hurt the economy simultaneously, indirectly impacting employment as well. For instance, numerous countries were affected by a sharp reduction in income from international trade and remittances and instability in commodity prices and exchange rates.

Multiple studies have assessed the effect of the pandemic and the mobility restriction policies on the labour market outcomes.\(^3\) Most of the papers are based on developed countries and conclude that, even though lockdown measures have negatively affected the labour market, they account for only a fraction of the crisis (see Baek et al. 2021, Forsythe et al. 2020, Gupta et al. 2020, Kong and Prinz 2020 and Lozano Rojas et al. 2020 for the United States; Barrot et al. 2020 for France; Hupkau and Petrungolo 2020 for the United Kingdom; Koebel and Pohler 2020 for Canada; Fadinger and Schymik 2020 for Germany, among others). In fact, the disease itself and the precautionary measures taken by individuals also affect employment, regardless of the mobility restrictions policies. Some studies have shown that, even in countries without mobility restrictions, there were important negative effects on the labour market (see Aum et al. 2020 for South Korea and Juranek et al. 2020 for Sweden relative to other Nordic countries).

The evidence for developing countries, where lockdowns were often implemented before the disease was widespread, remains scarcer but points in the same direction (see for instance Dang and Nguyen 2020 for Vietnam, Gottlieb et al. 2020b for 57 countries, Hoehn-Velasco et al. 2021 for Mexico and Nelson 2021 for 20 emerging countries). Nevertheless, most of these studies use firm surveys, which omit the impact of the pandemic on self-employment and informal workers, types of employment that hold a considerable share in the labour markets of developing countries.

Some of the recent literature focuses on the heterogeneous effects of the pandemic across different segments of the labour markets. Adams-Prassl et al. (2020), Béland et al. (2020) and Yasenov (2020) analyze differential effects by groups of workers, finding considerably larger impacts on low-skill workers and immigrants. Albanesi and Kim (2021), Alon et al. (2020), Andrew et al. (2020), Kalenkoski and Pabilonia (2020), Del Boca et al. (2020), Lee et al. (2021) and Sevilla and Smith (2020) study the effects on employment by gender. A widening of the gender gaps is documented because of the larger impact in high-contact sectors with higher proportion of female workers and the unequal intra-household distribution of childcare after the closure of schools and care services. Dingel and Neiman (2020), Delaporte and Peña (2020), Gottlieb et al. (2020a, 2020b) and Saltiel (2020)

---

\(^3\) For a more literature review on the economic effects of the pandemic, see Brodeur et al. (2020).
analyze the heterogeneous impact across occupations depending on the ability of perform tasks from home, while Béland et al. (2020) and Goolsbee and Syverson (2021) consider also the exposition to the disease and the physical proximity to coworkers. These studies suggest a reallocation of workers across occupations and sectors, a fact that may imply an increase in both frictional and long-term unemployment (Arango and Flórez 2020). It would also demand policies to improve the labour force’s skills toward digital and technological skills (Farné 2020).

3. The Colombian case

In Colombia, the first case of COVID-19 was detected on March 6, 2020, and cases began to rise in late April. By the end of June, there were approximately 95,000 detected cases and 3,200 deaths recorded in the country. While cases were probably underestimated because of testing limitations during the first months of the pandemic, these numbers remain relatively low compared with the Latin American region, which is due in part to the fact that Colombia implemented lockdown policies early in the pandemic (see figure 1).

Mobility restrictions were announced in March 20, 2020, and implemented on March 25 (Decree 457 of 2020), when there were only 378 reported positive cases and three deaths. The government enacted a nationwide lockdown, restricting the mobility of all individuals except those working in a small set of sectors classified as essential. These essential sectors included public administration, finance, agriculture and public utilities and the sectors that were part of their supply chains. Workers in these sectors were authorized to continue working under relatively strict protocols. Everyone else was restricted to leave home, except for some basic activities such as groceries and medical consultations. These exceptions were further regulated by local authorities, which implemented additional restrictions in each city or region. The most common ones were: (i) the restriction to mobility based on gender or the last digit of the national identification number and (ii) mandatory curfews on weekends and nights.

Both the pandemic and the introduction of mobility restrictions to curb contagion had an enormous impact on the Colombian economy. GDP shrank by 6.8% in 2020, implying that the pandemic originated the worst economic depression in modern Colombian history. Regarding the labour market, in the second quarter of 2020 the country registered its highest urban unemployment rate in recent history, 23% (see appendix figure A1). The impact on the labour

4 Before March 20, some regions of the country such as Bogotá, Santander, Boyacá and Nariño decreed mandatory preventive isolation measures. Therefore, in specifications controlling our empirical strategy we include March as the beginning of the treatment period.

5 A more detailed analysis of the intersectoral linkages is presented in section 6.1.
market was largely heterogeneous across sectors. For instance, appendix figure A2 presents the annual growth rate of each one-digit ISIC employment in April 2020. The sectors with the largest decreases were artistic activities and manufacturing, two of the most affected by the mobility restrictions, whereas public utilities, an excluded sector, had a remarkable increase (although its weight is small). We characterize in detail the behaviour of employment in both excluded and non-excluded sectors in the next section.

As in most countries, there were numerous additional policies to prevent contagion and deaths and to mitigate the economic crisis. These include large investments in the health system capacity, general mobility restrictions, cash transfers for poor households and tax breaks and credit lines for firms.\footnote{Additional non-pharmaceutical policy interventions that might have an impact on the labour market include the following. On March 16, 2020, the government issued the restriction of transit to non-resident foreigners and closed the borders for 75 days. On March 19, the government announced the suspension of international flights. The government also created special credit lines to severely affected industries, such as tourism or aviation. Likewise, tax subsidies covered up to 40% of the payroll of firms in any economic sector who experienced an income reduction of 20% or more.} While

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1}
\caption{COVID-19 cases and deaths in Colombia and Latin American average} \label{fig:1}
\end{figure}
we should not expect health system investments and cash transfers to benefit some economic sectors in particular, tax breaks and credit lines may have disproportionally benefited the industries that were more affected by the mobility restrictions. However, both of these policies were implemented after April. Hence, we argue that our baseline estimates, which consider data only until April, are not contaminated by those policies.

4. Data and empirical strategy

4.1. Data

Our analysis is based on repeated cross-sections data from the Colombian National Household Survey (GEIH) collected by the Bureau of National Statistics (DANE). The survey includes both formal and informal workers and is the official source for the calculation of the unemployment rate and other labour market statistics in the country. The survey is representative for the 23 cities in Colombia and an aggregate of other municipalities and rural areas on a monthly basis. For our primary analysis, we classify four-digit ISIC activities as restricted or excluded from the mobility restriction policy following the decree issued by the Colombian Government. Since the survey is not representative at the four-digit ISIC and city level, we use more aggregate partitions in our analysis. Specifically, we add up the employment of excluded and non-excluded sectors in each one-digit sector and city, which yields a balanced panel with 528 cells per month. To further ensure the representativeness of the sample, our main estimates are based on two-month moving averages. We also estimate the model using monthly data or three-month moving averages in the robustness section, finding similar results.

Since policies changed rapidly during the pandemic and we are interested in its short-run effects, we opt for a relatively narrow window before and after the mobility restrictions were implemented. Therefore, our baseline study period finishes in April 2020, before any changes in the mobility restrictions were made, and our pre-treatment period includes three months. Since May, the group of excluded sectors started to expand gradually, with the reactivation of construction, manufacturing, communications, retail and communications. Real state and professional services joined in June. In section 6.3, we extend the study period until June and estimate the effect of mobility restrictions with heterogeneous treatment effects as De Chaisemartin and D’Haultfœuille (2020), finding relatively similar results.

Table 1 presents the summary statistics of the sample we use for our baseline estimations. The study unit is an economic subsector in a given city; the subsector divides a one-digit ISIC sector into its excluded and non-excluded (by the lockdown policy) components. Summary statistics show that 288 city–sectors belong to the excluded subset and 240 city–sectors belong to the non-excluded subset. On average, in the excluded subsector, hourly wages were
4,789 COP in January (1.4 USD) and approximately the same in April, while, in the non-excluded subsector, they fell from 3,499 (1.1 USD) to 3,366 between these same two months. In contrast, the average employment of the

|                      | Excluded |       |       | Non-excluded |       |       |
|----------------------|----------|-------|-------|--------------|-------|-------|
|                      | Observations | Mean  | Std. dev. | Observations | Mean  | Std. dev. |
| A. January (2020)    | 288      | 4,789 | 2,551  | 240          | 3,499 | 1,582  |
| Hourly wage          |          |       |       |              |       |       |
| Employment           | 288      | 37,471| 215,989| 240          | 48,312| 124,916|
| % workers 25–45      | 288      | 38.3  | 1.5    | 240          | 38.3  | 1.5    |
| Deaths per million in working age population | 288      | 0.0   | 0.0    | 240          | 0.0   | 0.0    |
| Cases per million in working age population | 288      | 0.0   | 0.0    | 240          | 0.0   | 0.0    |
| B. February (2020)   | 288      | 4,880 | 2,810  | 240          | 3,508 | 1,555  |
| Hourly wage          |          |       |       |              |       |       |
| Employment           | 288      | 37,121| 211,849| 240          | 47,525| 122,731|
| % workers aged 25–45 | 288      | 38.2  | 1.5    | 240          | 38.2  | 1.5    |
| Deaths per million in working age population | 288      | 0.0   | 0.0    | 240          | 0.0   | 0.0    |
| Cases per million in working age population | 288      | 0.0   | 0.0    | 240          | 0.0   | 0.0    |
| C. March (2020)      | 288      | 4,905 | 2,643  | 240          | 3,564 | 1,976  |
| Hourly wage          |          |       |       |              |       |       |
| Employment           | 288      | 36,231| 203,453| 240          | 45,481| 117,878|
| % workers aged 25–45 | 288      | 38.0  | 1.6    | 240          | 38.0  | 1.6    |
| Deaths per million in working age population | 288      | 1.1   | 1.8    | 240          | 1.1   | 1.8    |
| Cases per million in working age population | 288      | 25.9  | 21.0   | 240          | 25.9  | 21.0   |
| D. April (2020)      | 288      | 4,869 | 3,011  | 240          | 3,366 | 1,941  |
| Hourly wage          |          |       |       |              |       |       |
| Employment           | 288      | 34,709| 197,636| 240          | 40,311| 104,663|
| % workers aged 25–45 | 288      | 37.9  | 1.6    | 240          | 37.9  | 1.6    |
| Deaths per million in working age population | 288      | 8.6   | 8.5    | 240          | 8.6   | 8.5    |
| Cases per million in working age population | 288      | 162.4 | 185.3  | 240          | 162.4 | 185.3  |

**NOTE:** The unit of observation is a partition of the economic sector in a metropolitan area.  
**SOURCE:** Calculations by the authors based on data from DANE (GEIH)
non-excluded subsector was 48,312 employees in January but dropped to 40,311 in April.\(^7\)

To obtain a general overview of the shares of employment possibly affected by mobility restrictions across sectors, we first add up the pre-pandemic employment of our observations units at the national level and present their levels for each one-digit sector in panel A of figure 2 (panel B plots the corresponding shares). As can be seen, the most restricted sectors were artistic activities, lodging and food and real estate, with shares of employment in restricted subsectors close to 100%. On the contrary, sectors like public utilities, financial, mining and public administration were completely excluded, suggesting a wide dispersion in the shares of employment possibly affected across sectors.

In figure 3, we present the employment growth rate distribution between February and March 2020 for excluded and non-excluded subsectors. There is a larger mass of negative growth realizations in excluded subsectors relative to non-excluded ones, implying that restricted sectors had on average a worse performance relative to excluded ones. Finally, in appendix figure A3, we add up employment for both total excluded and total non-excluded subsectors and compare their mean growth rates (February to April 2020) for each considered city. The non-excluded subsectors experienced more significant employment reductions, which is the case for most of the cities, but important heterogeneities across cities can be

\(^7\) Our measures of COVID-19 cases and deaths come from the Colombian National Institute of Health (INS acronym in Spanish). Throughout the INS, the Colombian government publishes daily updates on the positive cases and deaths at a national and a regional level, and the media regularly report these statistics. We should, therefore, expect individuals to incorporate this information into their decision-making process.
observed that, in part, justify our choice of observations units. In appendix table A1, we present detailed summary statistics of employment, wages and sickness variables for each of the 24 labour markets we study; the table presents pre- and post-pandemic averages for each city separating by affected or excluded sectors. The table shows that average employment losses from February to April range from –29.5% to –9.5% (–14.8% to 0.8%) across the cities for affected (excluded) sectors.

4.2. Empirical strategy

We exploit the variation in the excluded and non-excluded sectors and the timing of the restriction policies to disentangle the effect of sector-specific restriction policies from regional variations in disease spread and all other aggregate shocks related to the pandemic. Our baseline specification is the following difference-in-differences (DID) model:

\[ y_{jct} = \beta q_j \cdot post_t + \gamma d_{ct} + \delta_t + \phi_{jc} + u_{jct}, \]

where \( y_{jct} \) is the labour market outcome of sector \( j \), in city \( c \) and period \( t \). The differential effect of sector-specific restrictions is captured by \( \beta \), the coefficient of the interaction between \( q_j \), which takes value one if sector \( j \) is restricted and \( post_t \), which is equal to 1 starting March 2020. Controls include \( d_{ct} \), a time-varying measure of the regional variation in disease spread (positive cases or deaths per million) in city \( c \) and period \( t \), and time fixed effects (\( \delta_t \)), hereafter referred to as the aggregate shock, which

![FIGURE 3 Employment growth of excluded and non-excluded sectors](source: Calculations by the authors based on data from DANE (GEIH))
accounts for any epidemiologic and economic factor that homogeneously affects the country’s labour market in each period. These factors include: (i) the impact of general mobility restrictions, as well as any multiplier effects affecting excluded and non-excluded sector, (ii) the average impact of the disease itself on work absenteeism, consumption and investment decisions and (iii) the impact of other external macroeconomic shocks related to the pandemic, including sharp variations in commodity prices, trade and remittances. Since the sanitary crisis began in March in Colombia, we use February as the reference period. Finally, the models also control for sector–city fixed effects ($\phi_{jc}$), which account for the time-invariant observed and unobserved characteristics of each labour market. Errors are clustered at the sector–city level.

As a complementary analysis, we use event study models to estimate the differential effect of the sector-specific restrictions in each period. Instead of interacting the restriction term with a post-treatment dummy, we interact it with a set of time dummy variables, excluding February. The estimated equation can be represented as

$$y_{jct} = \sum_{t}^{T} \beta_{t} q_{j} \ast 1\{\text{period} = t\} + \gamma d_{ct} + \delta_{t} + \phi_{jc} + u_{jct}, \quad (2)$$

where $1\{\text{period} = t\}$ is a set of dummy variables equal to 1 in the respective period, and 0 otherwise. The reference period is February 2020.

The effect of the sector-specific restrictions can be interpreted as causal as long as the common trends assumption is satisfied, i.e., the excluded and non-excluded sectors have similar employment trends before the policy was implemented. Graphical evidence not presented for the sake of brevity suggests that this is the case; employment in excluded and non-excluded sectors shows parallel trends until February, and the difference between them grows in the following months. We provide further confirmation of the common trends assumption with the event study models presented in the following section, which show no significant differences in employment between excluded and non-excluded sectors before February.

We identify at least two sources of potential bias for the regional variation in disease spread. First, the virus testing capacity may vary by region, leading to serious measurement error, whether we use the positive confirmed cases or deaths metrics. Second, it is reasonable to assume that more active labour markets can contribute to the spread of the virus, which would lead to reverse causality. While we cannot make causal claims, results suggest that at least part of the shock is driven by the regional variation in the disease spread. Likewise, the aggregate impact of the broader set of mobility restrictions implied by the lockdown cannot be fully identified from other sources of variation. While it is reasonable to assume that general mobility restrictions have a direct negative effect on employment, they may also slow down the disease spread, which may, in turn, benefit the economy.
Goodman-Bacon and Marcus (2020) point out different sources of potential bias in DID designs in the context of the COVID-19 pandemic. The following are some of the issues that could potentially threaten our identification. First, there were multiple policies in place, and some of them could disproportionally benefit the sectors that were more affected by the mobility restrictions. This is particularly true for the tax breaks and credit lines for firms. However, both of these policies were implemented after April, leaving our main estimates unaltered by them.

Second, the estimated effects could be biased by the presence of spillover effects. On one side, there are intersectoral linkages; excluded sectors may suffer a reduction of the demand from a sector non-excluded sector, affecting his level of production and employment indirectly. Also, there could be a disruption in the supply of inputs required by excluded sectors produced by the non-excluded ones. In section 6.1, we assess this issue limiting our sample, dropping excluded sectors with important linkages with the restricted ones. Overall, results are similar. On the other hand, there could be regional spillovers in the disease spread. Given that there were strict travelling restrictions during our period of study, we should expect that this is not a big risk to our identification. We further address this point by controlling by the dynamics of cases and deaths in each city.

Third, our estimates could also be biased by unobserved characteristics that simultaneously affect the mobility restrictions and the labour market outcomes. In particular, the COVID-19 contagion risk may vary across sectors. We argue that the criteria to exclude sectors from the initial mobility restrictions is more related to how essential the sector is, than the contagion risk itself. In section 6.2, we also show that our main results hold in regressions in which we allow the risk of contagion to be heterogeneous across sectors.

Fourth, recent literature has pointed out that multi-period DID designs could be biased because of group-specific heterogeneous effects. The latter is especially true when treatment effects change in time (Callaway and Sant’Anna 2021, De Chaisemartin and D’Haultfœuille 2020, Goodman-Bacon and Marcus 2020, Imai and Kim 2021). In our baseline specification, we focus on a period in which sectors were restricted simultaneously and there are no major changes in the policy. Therefore, we should not be concerned about this source of heterogeneity. In section 6.4, we extend the timeframe until June. Since restrictions are progressively eliminated during these last months, we estimate with heterogeneous treatment effects following De Chaisemartin and D’Haultfœuille (2020), finding fairly similar results.

Finally, anticipation could be problematic in DID designs. However, in Colombia, mobility restrictions were announced and implemented only two weeks after the pandemic was declared, and in a relatively early stage of the disease spread. There were no announcements that could foresee the timing of the measures or which sectors would be excluded from the measures.
|                          | Log. employment | Log. average hours | Log. hourly wage |
|--------------------------|----------------|--------------------|------------------|
|                          | (1)            | (2)                | (3)             |
| Restricted × Post        | $-0.0991^{***}$| $-0.0937^{***}$   | $-0.0944^{***}$ |
|                          | (0.0222)       | (0.0229)           | (0.0227)        |
| Share reported cases    | $-0.0003^{***}$| $-0.0002^{**}$    | 0.0000          |
|                          | (0.0001)       | (0.0001)           | (0.0000)        |
| Share reported deaths    | 0.0001         | 0.0000             | 0.0000          |
|                          | (0.0000)       | (0.0000)           | (0.0000)        |
| Observations             | 2,640          | 2,640              | 2,640           |

**NOTES:** * significant at 10%; ** significant at 5%; *** significant at 1%. The variable Restricted × Post represents the interaction between $q_j$, which takes the value of 1 if sector $j$ is restricted, and post, which is equal to 1 starting in March 2020. Share report deaths and Share report cases stand for reported deaths and cases per one million working-age population in each city, respectively. In the fixed effects, by period, our base month is February (2020). Standard errors are presented in parentheses and clustered at the city–sector level. The regressions are weighted by each sector’s share of employment in total employment in the pre-treatment period. In all specifications, we control for study unit and time fixed effects.
5. Results

5.1. Employment

We begin our analysis with the impact on employment in table 2 (columns 1 to 4). In the first column, we focus on estimation equation (1) of the aggregate shock, including time and sector–city fixed effects, and the interaction of our interest. The time fixed effects are negatively and statistically significant for April, with estimated coefficients of –0.13. In this specification, the coefficient that measures the effect of sector-specific restrictions is negative and significant. The estimated coefficient is –0.099, equivalent to almost 9.4% additional jobs loss in the non-excluded sectors relative to the excluded sectors. In a back-to-the-envelope calculation, we approximate the total impact of the sector-specific restrictions by multiplying the estimated coefficient by the share of the labour force in restricted sectors in February (51%).8 Our results suggest that sector-specific restrictions are responsible for approximately 5 percentage points, less than a quarter of the total February to April job losses (18.3%).

In columns 2 and 3, we include the disease spread’s regional variation, measured with city-level indicators of COVID-19 confirmed cases and deaths. We consistently find that the time fixed effects coefficients are smaller in magnitude, while the disease coefficients are negative and significant. When we multiply the estimated coefficients for deaths by the average deaths in March and April 2020 (4.8), we find that the regional variation of the disease spread accounts for approximately 2.3 percentage points. While these results cannot be interpreted causally, they suggest that a non-trivial part of the pandemic effects on employment is related to the disease itself, which implies that controlling the virus should positively affect employment.

In column 4, we include all the model variables, finding similar coefficients for the sector-specific restrictions, the time fixed effects and the regional variation in the disease spread. The estimated coefficients for April fixed effect across all specifications range between –0.13 and –0.092; they account for most of the employment variation during this period. Overall, results suggest that we should expect important employment losses even in the absence of sector-specific restrictions. These findings are consistent with recent papers showing mild effects of the lockdown policies compared with those of the disease itself and other economic factors related to the pandemic (Aum et al.

---

8 Recent literature warns about calculations that extrapolate from well-identified elasticities to aggregates because the economic channels and shocks at the level of the variations used to identify the elasticities can differ from those present at the aggregate level (Beraja et al. 2019). For this reason, we consider this calculation as a very approximate decomposition.
We further explore sector-specific restriction policies’ dynamic impact using an event study design that interacts $q_j$ with the time fixed effect variables (equation (2)). We use the same time framework used in the DID regressions presented before. As we mentioned in section 4, the post-lockdown period comprises April and March months. In this period, all affected segments were lockdown simultaneously. There are no further exemptions or changes in the lockdown policy during these months, which helps to have a straightforward design. Therefore, we study a relatively narrow window before and after the policy and interpret our results only as short-run effects. Policies to tackle the effects of the pandemic evolve very fast; the literature on DID designs on the effects of the pandemic has remarked on the need to focus on small windows of time around policy changes (Goodman-Bacon and Marcus 2020).

Figure 4 presents the event study results for employment regressions and other outcomes we describe further. First, the estimate effects are small in magnitude and statistically insignificant before the policy was enacted; this confirms that there are common trends, and the model assumptions hold. Second, the sector-specific restrictions effects are particularly large in April. Finally, the coefficients are also negative in March, although smaller in magnitude and significance. This latter finding reflects that the policy took place only during the last days of March.

5.2. Worked hours and wages

We assess whether the sanitary crisis and the sector-specific restrictions also affect the number of hours worked. Table 2, columns 5 to 8, presents the effect on average hours worked, where each column displays the results from the same specifications used for employment. We find that the sector-specific restrictions have a negative and significant effect on hours, although smaller than the found for employment: the estimated coefficient is $-0.017$, equivalent to a reduction of $-1.7\%$. The magnitude of the effect does not change when controlling for the disease’s regional intensity variables (share of reported cases or deaths), whose coefficients are no longer significant. We estimate the impact on hourly wages in table 2, columns 9 to 12, also finding negative and significant effects of sector-specific restrictions, with an estimated effect near $-0.032$, equivalent to a reduction of $3.1\%$. When we explore the dynamic impact of sector-specific restriction policies using an event study design, we find that in both cases, hours and hourly wages, the pre-treatment period’s effects are not statistically significant (figure 4). The DID results suggest that the impact of the sector-specific restrictions took place both in the extensive and the intensive margin, with reductions on worked hours or wages.
5.3. Salaried work and self-employment

Colombia, as many other emerging economies, has a segmented labour market, in which there is a strong correlation between informality and self-employment. Previous literature has argued that excessive labour market regulation in these economies might increase the formal segment’s rigidity relative to what is observed on the informal sector (Blanchard and Portugal 2001, Flórez et al. 2021). This is particularly true for Colombia, where non-labour costs remain particularly high and are partly responsible for the high informality rate (Flórez et al. 2021). Given that self-employed workers face considerably fewer regulations, we should expect the sector-specific measures to be less binding in this segment.

**FIGURE 4** Event study coefficients log of employment

**NOTE:** Dots represent the point estimates with a 99% confidence interval.

---

9 Approximately 80% of the self-employed workers do not pay mandatory social security contributions. Given the informal nature of their work, they are not prone to strict compliance with labour regulations.

10 There is some evidence of yearly transitions from salaried workers to self-employed in the worse months of the crisis (11%). However, the most critical flow is the transition from salaried workers to unemployment (52.5%). In Colombia, as part of the labour market regulations, there is an unemployment insurance system; nevertheless, it is incipient, and workers can receive the benefit in only one unemployment episode. The unemployment benefit system includes payment of social security taxes up to six months and the payment of one minimum wage distributed monthly and up to six months as well.
TABLE 3
Employment effects for salaried and self-employed workers

|                     | Salaried                      |                      |                      | Self-employed       |                      |                      |                      |
|---------------------|-------------------------------|----------------------|----------------------|---------------------|----------------------|----------------------|----------------------|
|                     | (1)                           | (2)                  | (3)                  | (4)                 | (5)                  | (6)                  | (7)                  | (8)                  |
| Restricted × Post   | −0.2826***                    | −0.2762***           | −0.2776***           | −0.2762***          | −0.0051              | 0.0047               | 0.0036               | 0.0052               |
|                     | (0.0612)                      | (0.0566)             | (0.0575)             | (0.0565)            | (0.0383)             | (0.0368)             | (0.0372)             | (0.0370)             |
| Share reported cases| −0.0003*                      | −0.0003*             |                      | −0.0005***          |                      | −0.0003**            |                      | −0.0003**            |
|                     | (0.0002)                      | (0.0002)             |                      | (0.0002)            |                      | (0.0002)             |                      | (0.0002)             |
| Share reported deaths| −0.0051                       | −0.0000              |                      | −0.0089***          |                      | −0.0033              |                      | −0.0033              |
|                     | (0.0034)                      | (0.0022)             |                      | (0.0033)            |                      | (0.0030)             |                      | (0.0030)             |
| Observations        | 2,640                         | 2,640                | 2,640                | 2,640               | 2,640                | 2,640                | 2,640                | 2,640                |

NOTES: * significant at 10%; ** significant at 5%; *** significant at 1%. The variable Restricted × Post represents the interaction between $q_j$, which takes value 1 if sector j is restricted, and post, which is equal to 1 starting in March 2020. Share report deaths and Share report cases stand for reported deaths and cases per one million working-age population in each city, respectively. In the fixed effects, by period, our base month is February (2020). Standard errors are presented in parentheses and clustered at the city–sector level. The regressions are weighted by each sector’s share of employment in total employment in the pre-treatment period.
We test this hypothesis in table 3, where we estimate the impact on salaried and self-employed employment. As expected, the impact of sector-specific restrictions on employment is entirely driven by the salaried segment. The estimated coefficient for the effect of the restrictions in the specifications controlling for the disease’s evolution is around −0.28, equivalent to 24% additional salaried jobs loss in the non-excluded sectors relative to the excluded sectors. Following the same back-of-the-envelope calculation we use for total employment, we find that sector-specific restrictions account for almost half (49%) of the total job loss in this labour market segment. In contrast, sector-specific restrictions do not affect self-employment. These results suggest that labour market rigidities, affecting mainly salaried workers, might amplify the effects of mobility restrictions. Interestingly, the regional variation in the disease spread is particularly relevant for self-employed workers. Simultaneously, the coefficient is smaller or, in the case of controlling for deaths, statistically insignificant in the salaried segment. These results may reflect that self-employed workers have more flexible jobs and working hours, and thus they might restrict their mobility when local contagion increases.

5.4. Gender gap

Sector-specific restrictions may disproportionally affect female employment if sectors in which female work are predominant were more likely to be restricted (Alon et al. 2020). This compositional effect, along with other channels such as the unequal intra-household distribution of childcare after the closure of schools and care services (Boll and Schüller 2020, Del Boca et al. 2020, Sevilla and Smith 2020, Bonilla et al. 2021), could have contributed to the well-documented widening of the gender gaps in the labour market due to the pandemic (see Cuesta and Pico 2020, Garcia-Rojas et al. 2020 and Bonilla et al. 2021 for Colombia and Adams-Prassl et al. 2020, Alon et al. 2020, Albanesi and Kim 2021, Kalenkoski and Pabilonia 2020 and Lee et al. 2021 for other countries).

To assess the contribution of sector-specific restrictions on the widening of the employment gender gap, we estimate their effect by gender in panel A of table 4. We find that sector-specific restrictions had an impact only on total male employment. For men, the estimated coefficient for the effect of the restrictions is −0.10, accounting for around 30% of their total job loss. For women, the estimated coefficient, although negative, is statistically insignificant. A possible explanation for these results is that the composition of employment between salaried and self-employment jobs is different between men and women, an issue that might be driving the results. We thus re-estimate our specifications for the salaried and non-salaried segments for each gender separately. For non-salaried

---

11 In Colombia, during the two months prior to the pandemic being declared, on average, 15,500 women were employed in an excluded sector and 22,100 worked in a non-excluded one. In the case of women with children at home (≤12), on average, 6,000 women were employed in an excluded sector vs. 8,000 who worked in a non-excluded one; nevertheless, these differences are not statistically significant.
### TABLE 4
Employment effects by gender

|                        | Males | Females |       |       |       |       |       |       |
|------------------------|-------|---------|-------|-------|-------|-------|-------|-------|
|                        | (1)   | (2)     | (3)   | (4)   | (5)   | (6)   | (7)   | (8)   |
| A. Log employment     |       |         |       |       |       |       |       |       |
| Restricted × Post     | -0.1059*** | (0.0294) | -0.1012*** | (0.0309) | -0.1019*** | (0.0306) | -0.1010*** | (0.0310) |
|                        |       |         |       |       |       |       |       |       |
| Share reported cases  | -0.0002** | (0.0001) | -0.0002*  | (0.0022) | -0.0001  | (0.0020) | -0.0001  | (0.0020) |
|                        |       |         |       |       |       |       |       |       |
| Share reported deaths  |       | -0.0041* |         | -0.0010  |         |       | -0.0031  |       |
|                        |       | (0.0022) |         | (0.0020) |         |       | (0.0040) |         |
| Observations          | 2,640 | 2,640   | 2,640 | 2,640 | 2,640 | 2,640 | 2,640 | 2,640 |
| B. Log salaried employment |       |         |       |       |       |       |       |       |
| Restricted × Post     | -0.2662*** | (0.0457) | -0.2604*** | (0.0439) | -0.2624*** | (0.0445) | -0.2607*** | (0.0440) |
|                        |       |         |       |       |       |       |       |       |
| Share reported cases  | -0.0003 | (0.0002) | -0.0004** | (0.0002) | -0.0004  | (0.0002) | -0.0004  | (0.0002) |
|                        |       |         |       |       |       |       |       |       |
| Share reported deaths  |       | -0.0039  |         | 0.0020   |         |       | -0.0073  |       |
|                        |       | (0.0034) |         | (0.0027) |         |       | (0.0075) |         |
| Observations          | 2,640 | 2,640   | 2,640 | 2,640 | 2,640 | 2,640 | 2,640 | 2,640 |

**NOTES:** * significant at 10%; ** significant at 5%; *** significant at 1%. The variable $\text{Restricted} \times \text{Post}$ represents the interaction between $q_{j}$, which takes value 1 if sector $j$ is restricted, and $\text{post}_{t}$, which is equal to 1 starting in March 2020. $\text{Share report deaths}$ and $\text{Share report cases}$ stand for reported deaths and cases per one million working-age population in each city, respectively. In the fixed effects, by period, our base month is February (2020). Standard errors are presented in parentheses and clustered at the city–sector level. The regressions are weighted by each sector’s share of employment in total employment in the pre-treatment period.
workers, we estimate an insignificant coefficient for both men and women, similar to what we find for both genders in the previous section. Instead, for salaried workers, the estimated coefficients for women are significant and larger in absolute values relative to those for men (panel B).

Using our back-of-the-envelope calculations, on the basis of the model that controls for cases and deaths, we find that the sector-specific restrictions account for 0.88 percentage points of the difference between what the female salaried employment decreased relative to men (2.63 percentage points). This means that the channel of the sectoral restrictions explains around a third part of the widening of the gender gap in salaried employment. The effect is much smaller when we include self-employment, which is consistent with the fact that other channels, such as the closure of schools and daycare centres, still explain a considerable part of the widening of the gender gap during the pandemic.

6. Robustness checks

In this section, we assess different threats to identification. We begin by evaluating the robustness of our baseline results to alternative measurement of the outcomes. In section 6.2, we test for intersectoral spillovers, through which sector-specific restrictions may have indirect effects on the excluded sectors. In section 6.3, we account for potential heterogeneous contagion risk across sectors. Finally, we extend the time frame and estimate heterogeneous treatment effect models.

6.1. Measurement of main variables

Our baseline results use two-month moving averages to gain representativeness in our sample for each observation unit. Our estimates are robust to alternative specifications of this data handling. We estimate the model using monthly and three-month moving averages employment measures in appendix tables A2 and A3. As expected, the magnitude of the aggregate effect decreases as we smooth our employment measures, as does the sector-specific restriction coefficient. However, the significance and relative contribution to the total change in employment is similar across specifications.

6.2. Intersectoral spillover effects

One of the main threats to our identification strategy is the presence of complementarities between excluded and non-excluded sectors as a result of their input and output linkages. Those complementarities violate the assumption that the restrictions to the non-excluded sectors (our “treatment” group) do not affect the performance of excluded sectors (our “control” group). In the presence of strong intersectoral linkages, sector-specific restrictions might have affected the employment of excluded sectors as well, either by a reduction in the demand of
goods from excluded sectors used as inputs in the production of non-excluded ones or by the disruption in the supply of inputs required by excluded sectors produced by the non-excluded ones. In both cases, this would lead to underestimating the effect of sector-specific restrictions.

We re-estimate our main specification in a setting in which those linkages between excluded and non-excluded sectors do not threaten our identification. For this, we first quantify how important are those linkages using the Colombian input–output matrix. For each sector in the matrix (of a total 68 industries), an index between 0 and 1 is assigned according to the share of pre-pandemic employment that belongs to the affected subsectors (according to our classification at the four-digit level). Most industries in the matrix (54) are classified as entirely excluded or non-excluded from restrictions, so their index is either 0 or 1, respectively. In contrast, the remaining industries have values in the interval (0,1). Next, for each sector’s total intermediate purchases, we compute the share bought from non-excluded sectors, using the sum-product of our index and the values of each intersectoral purchase. Similarly, for each sector’s total intersectoral sales, we compute the share sold to non-excluded sectors. Appendix figure A4 shows the values of those two shares for the 54 industries of the matrix classified as entirely excluded or non-excluded from restrictions. The central insight is that excluded sectors have, on average, a smaller share of both sales to non-excluded sectors and purchases from non-excluded sectors relative to non-excluded sectors. This finding is not surprising since one of the criteria for excluding activities from the mobility restrictions was being part of the supply chain or an essential sector. This fact favours our identification strategy because it makes intersectoral linkages deeper within control and treatment groups and less prominent across them.

We drop industries in the control group with strong linkages to restricted sectors to guarantee that the treatment’s spillover effects do not affect our control group. For this, we first rank the two computed shares and exclude all subsectors of our initial four-digit classification that belong to industries that are in the fourth quartiles of both shares. We re-estimate our main specification without those industries in the control group. Results are presented in panel A of appendix table A4. As expected, excluding

12 We use the input–output matrix from the Colombian national accounts provided by DANE for the available last year (2017) at the constant prices of 2015.

13 Notice that columns 1 to 4 depict the same number of observations as in our baseline. This is because we exclude all the four-digit industries that belong to the input–output matrix’s selected industries and add up employment again to the subsector and city classification used as the unit of observation. Thus, the number of observations decreases in the only case where all its subsectors were dropped for a given final industry.
the control group sectors with strong linkages with the treatment amplifies the effect of sectoral restrictions. However, for all of our outcomes, the magnitudes of the increases are marginal. For instance, the new estimated coefficient for the effect of the restrictions in the specification controlling for cases and deaths is now \(-0.0936\). This effect was \(-0.0935\) in the baseline estimations. In panel B, we tighten our criterion and drop from the control group all subsectors with computed shares above both indicators’ medians. Most of our estimated coefficients rise in absolute terms, but again the magnitudes of the increases are not considerable. For example, in the specification that controls for cases and deaths, the new estimated coefficient is \(-0.0961\), implying an increase in the additional jobs loss in the non-excluded sectors relative to the excluded sectors of only 0.23 percentage points compared with the baseline. The only meaningful change is that, in the log of hourly wage regression, even though the DID coefficient’s magnitude is very similar to the baseline regression, the coefficient is no longer significant in this stricter robustness exercise. Therefore, our estimations seem to be robust to the presence of spillover effects from the treatment, at least regarding the effects of lockdown policies on employment, both in extensive and intensive margins. As we argued, the fact that intermediate inputs of excluded sectors were also excluded from the restrictions makes our strategy less prone to suffer from possible bias related to inter-industry spillovers.

6.3. Heterogeneous contagion risk across sectors

Given the wide variety of activities and technologies, the risk of contagion could differ across sectors. The fact that the risks of spreading the virus within cities and sectors are heterogeneous could configure a reverse causality issue even after controlling for the study units’ fixed effects. We address this potential source of bias by allowing the contagion risk to vary across sectors. For this, we measure the physical proximity between workers by sector, following Leibovici et al. (2020).\(^{14}\) We then interact this measure with the time-varying measures of disease spread (cases and deaths). In addition, we create interaction terms with the measures of spread and the baseline share of sector employment within the city.

We include these interactions as controls in our baseline regressions for all outcomes. Results are presented in appendix table A5. Columns 1 to 3 present results, including interactions with the proximity index. Columns 4 to 6 present results including interactions with the share of employment. Finally, columns 7 to 9 present results, including interactions with the proximity index and employment share. Results do not change significantly after including these new controls. For instance, in the regressions with the log of employment

---

\(^{14}\) For more details of the adaptation of this measure to Colombia see Bonilla et al. (2020).
as the dependent variable, the coefficient of interest remains around \(-0.09\). It continues to be significant after including the interaction of cases and deaths with physical proximity and the participation of sector employment and including both of them jointly. Therefore, our results are robust to any possible reverse causality bias due to the heterogeneous contagion risk across different sectors.

6.4. Time frame extension and heterogeneous treatment effects

Recent literature on DID estimation has pointed out that, in DID designs, when treatment effects vary over time, the two-way fixed effects estimates might be biased and the sign of the real treatment effect could be the opposite (Goodman-Bacon and Marcus 2020). In particular, the treatment effect captured by the DID design, with multiple periods, is a weighted average of specific group effects with weights that might be negative. Therefore, there could be the extreme case in which the effect in every particular group is of the same sign and the DID design estimate an opposite signed effect (Callaway and Sant’Anna 2021, De Chaisemartin and D’Haultfœuille 2020, Imai and Kim 2021). Several robust estimators are offered in this literature to control for this possible source of bias. In these robustness exercises, we implement the correction proposed in De Chaisemartin and D’Haultfœuille (2020). This method is general and can be applied to staggered and non-staggered designs; it also provides useful diagnostic tools for identifying negative weights in a particular DID application.

Negative weights are often a problem in designs when treatment effects vary in time. In the baseline estimations presented in section 5, all affected segments of the labour market were simultaneously impacted. The post-policy period includes only the periods in which no additional sectors are excluded from the policy (March and April). Therefore, we expect the possibility of bias to be small. Nevertheless, in May and June, subsectors affected in the policy’s initial stage became totally or partially excluded; in this case, heterogeneous effects could be a more relevant concern. In May of 2020, decrees 593 and 636 exclude sectors from the mobility restrictions, such as manufacture and construction. In June, decrees 639 and 749 exclude other sectors such as cleaning services, real estate, trade, professional activities, educational and research services.

For the baseline period and the extended period, we compute the diagnostic test and estimate the DID design using the method proposed by De Chaisemartin and D’Haultfœuille (2020) (multi-period DID). In all cases, appendix tables A6 and A7 also show the standard DID estimate. To extend the post-policy period, we follow two approaches. The first approach uses the baseline data structure and classifies as controls in the extended post-period subsectors that became totally or partially excluded. In the second approach, we use a more desegregated structure. In the extended period, the partitions excluded in the extended period are defined as independent industries
throughout the entire panel; therefore, control industries in the post-period have no single subsector partially affected. This structure increases the sample and allows identifying with more precision the excluded sectors in the extended post-treatment period but to the cost of reducing the representability of the data.

The diagnostics test proposed in De Chaisemartin and D’Haultfoeuille (2020) is based on the computation of the minimal standard deviation of group-specific ATT compatible with a standard DID of opposite sign to the real value under a reasonable amount of treatment effect heterogeneity. The more this standard deviation is computed away from zero, the less the concern of a biased standard DID coefficient. In appendix tables A6 and A7, we present a multi-period DID estimation and the diagnostic tests for the baseline and extended study periods, respectively.

In the employment regression, using baseline data structure and specification, the multi-period DID results are very similar to the ones obtained with the standard DID estimation. The multi-period DID point estimate coefficient of lockdowns’ effects is around –6%; the standard DID estimation effect coefficient is included in the robust multi-period DID estimation’s 99% confidence interval. The test suggests that standard DID coefficients can be of opposite signs from real value only under an implausibly large amount of treatment heterogeneity. When we extend the study period to include the months of May and June, the point estimate of the traditional DID treatment effect is around 7%. This effect is larger than the effect computed using the multi-period DID (around 4.3%), but it is included in the multi-period 99% confidence interval. As before, the De Chaisemartin and D’Haultfoeuille (2020) test suggests that an implausible amount of heterogeneity would be required for the standard DID treatment effects coefficient to be oppositely signed to the real value.

Robustness checks results are similar in regressions with the average hours log as the dependent variable. The standard DID coefficient is around –2%, in the baseline time framework as in the extended period. The multi-period DID point estimate effect of the lockdown policy is smaller, between 1.1% and 1.3% depending upon the time framework; in all cases, the DID coefficients are statistically significant. Even though the difference between traditional and multi-period is considerable, the De Chaisemartin and D’Haultfoeuille (2020) test suggest that the possibility of a biased standard DID coefficient is not a concern. We find that the estimations of the lockdown policy effects in the hourly wage case are not robust to using alternative multi-period methodologies. Nor are they robust to the extension of the study period. The effect coefficient is a reduction of around 3.1% in hourly wages; nevertheless, once we extend the period to include May and June, the Restricted*Post coefficient is no longer significant. Using the multi-period DID method, we obtain no significant coefficients in either of the two study periods.
Finally, in appendix table A7, we estimate a final set of robustness checks in a more disaggregated dataset, varying at the four-digit ISIC and city level. While this dataset may suffer from representativity problems, particularly in small cities, results are fairly similar. The log of employment coefficients are similar to the ones we present in our baseline estimation; in addition, the negative and significant effect of lockdowns is robust to the multi-period DID methodology in the baseline period and the extended one. The regressions with the log of hours as the dependent variables have similar results to the one we described in the previous paragraph. However, the multi-period DID coefficients are significant only at the 5% level. Finally, as in our baseline sample, we do not find any effects on wages. In the case of employment, our baseline results hold robust to using alternative estimators and expanding the post-period in the extensive and intensive margins.

7. Conclusions

Both the COVID-19 pandemic and the lockdowns required to flatten the contagion curve triggered a global economic crisis with substantial effects on the labour markets. We assess the effect of the sector-specific restrictions implied by the lockdown imposed in March and April in Colombia, a country characterized by a high prevalence of informality and an early implementation of the lockdown, shared features with many other emerging economies. We identify the effect of the sector-specific restrictions with difference-in-differences and event study models that exploit the variation in the excluded and non-excluded sectors and the timing of the restriction policies. Our main results are robustness to a number of alternative specifications, confirming that we are properly addressing the main threats to identification.

We find that sector-specific restrictions had a negative effect on employment, accounting for approximately one quarter of the total employment losses between February and April. Therefore, we should expect important employment losses even in the absence of such restrictions. The remaining three quarters of the variation is plausibly explained by the disease’s regional pattern spread and other epidemiological and economic factors homogeneously affecting the country during this period, captured by the time fixed effects coefficients. Even though we cannot make causal claims about these two factors, we find that the regional variation of the disease spread may explain about a fourth of the total employment variations, suggesting that containing the disease would have significant positive effects on employment. Overall, our findings are consistent with previous literature showing a moderate impact of the sector-specific restrictions implied by the lockdown in developed economies compared with the aggregate shocks implied by the pandemic (Aum et al. 2020, Forsythe
et al. 2020, Gupta et al. 2020, Lozano Rojas et al. 2020, Goolsbee and Syverson 2021).

In the intensive margin, we find that sector-specific restrictions had negative but smaller effects on average worked hours and wages. Our results also show that the impact of the sector-specific restrictions on employment losses was mainly driven by salaried jobs, which suggests that labour market rigidities may be amplifying the effect of sectoral lockdowns. In the salaried segmented, the contribution of the restrictions was around a half of the total job loss. This result has implications for the speed of recovery of employment because in Colombia, as well as in other emerging economies, there are important job creation costs for the salaried segment. Finally, we identify that within the group of salaried workers there is a differential impact of those restrictions by gender. Our results suggest that around a third part of the widening of the salaried employment gender gap could be attributable to the sector-specific restrictions.

Appendix

FIGURE A1 Urban unemployment rate
NOTES: Seasonally adjusted quarterly moving average. The historical urban unemployment rate is computed for seven cities: Bogotá, Cali, Medellín, Barranquilla, Bucaramanga, Manizales and Pasto.
SOURCE: Calculations by the authors based on data from DANE (GEIH)
FIGURE A2  Annual employment growth by sector in April 2020
NOTE: Seasonally adjusted quarterly moving average.
SOURCE: Calculations by the authors based on data from DANE (GEIH)

FIGURE A3  Employment growth of excluded and non-excluded sectors, by city (Feb. 2020 to Apr. 2020)
NOTES: Quarterly moving average. 90% confidence intervals. Weighted average.
SOURCE: Calculations by the authors based on data from DANE (GEIH)
FIGURE A4  Shares of sales and purchases to/from restricted sectors

NOTES: Only for the industries of the Colombian input–output matrix that were classified as entirely excluded (index = 0) or entirely restricted (index = 1) (54 of 68 industries). The remaining industries have index values between 0 and 1. Line markers show averages of each group.
|                  | Excluded Observations |          | April (2020) | Change | Non-excluded Observations |          | April (2020) | Change |
|------------------|------------------------|----------|--------------|--------|---------------------------|----------|--------------|--------|
|                  | Observations February (2020) Mean | February (2020) Mean | Number | % | Observations February (2020) Mean | February (2020) Mean | Number | % |
| BARRANQUILLA     |                        |          |              |        |                           |          |              |        |
| Hourly wage      | 12 4,794               | 4,741    | -53          | -1.1  | 10 3,166                  | 3,524    | 358          | 11.3  |
| Employment       | 12 26,437              | 25,563   | -873         | -3.3  | 10 59,538                 | 53,906   | -5,632       | -9.5  |
| Deaths per million in working age population | 12 0.0 | 11.5 | 11.5 | 10 0.0 | 11.5 | 11.5 |
| Cases per million in working age population | 12 0.0 | 152.5 | 152.5 | 10 0.0 | 152.5 | 152.5 |
| BUCARAMANGA      |                        |          |              |        |                           |          |              |        |
| Hourly wage      | 12 4,668               | 5,152    | 485          | 10.4  | 10 3,711                  | 3,391    | -320         | -8.6  |
| Employment       | 12 18,268              | 17,670   | -598         | -3.3  | 10 33,295                 | 29,407   | -3,888       | -11.7 |
| Deaths per million in working age population | 12 0.0 | 2.2 | 2.2 | 10 0.0 | 2.2 | 2.2 |
| Cases per million in working age population | 12 0.0 | 20.6 | 20.6 | 10 0.0 | 20.6 | 20.6 |
| BOGOTA D.C.      |                        |          |              |        |                           |          |              |        |
| Hourly wage      | 12 7,062               | 7,932    | 871          | 12.3  | 10 4,046                  | 4,032    | -14          | -0.3  |
| Employment       | 12 146,071             | 130,207  | -15,864      | -10.9 | 10 243,223                | 203,339  | -39,884      | -16.4 |
| Deaths per million in working age population | 12 0.0 | 17.0 | 17.0 | 10 0.0 | 17.0 | 17.0 |
| Cases per million in working age population | 12 0.0 | 324.4 | 324.4 | 10 0.0 | 324.4 | 324.4 |

(continued)
| TABLE A1 | Excluded | Non-excluded |
|----------|----------|--------------|
|          | Observations | February (2020) Mean | April (2020) Mean | Change Number | Change % | Observations | February (2020) Mean | April (2020) Mean | Change Number | Change % |
| MANIZALES | Hourly wage | 12 | 4,924 | 5,436 | 512 | 10.4 | 10 | 4,020 | 3,763 | 257 | 6.4 |
|          | Employment | 12 | 6,899 | 6,481 | -418 | -6.1 | 10 | 10,668 | 9,417 | -1,251 | -11.7 |
|          | Deaths per million in working age population | 12 | 0.0 | 0.0 | 0.0 | — | 10 | 0.0 | 0.0 | 0.0 | — |
|          | Cases per million in working age population | 12 | 0.0 | 30.4 | 30.4 | — | 10 | 0.0 | 30.4 | 30.4 | — |
| MEDELLÍN | Hourly wage | 12 | 6,936 | 6,022 | -914 | -13.2 | 10 | 4,484 | 4,554 | 70 | 1.6 |
|          | Employment | 12 | 59,883 | 53,606 | -6,277 | -10.5 | 10 | 111,456 | 96,202 | -15,253 | -13.7 |
|          | Deaths per million in working age population | 12 | 0 | 1 | 1 | — | 10 | 0 | 1 | 1 | — |
|          | Cases per million in working age population | 12 | 0 | 95 | 95 | — | 10 | 0 | 95 | 95 | — |
| CALI     | Hourly wage | 12 | 6,357 | 4,768 | -1,588 | -25.0 | 10 | 3,874 | 3,747 | -128 | -3.3 |
|          | Employment | 12 | 39,476 | 35,245 | -4,231 | -10.7 | 10 | 79,823 | 64,792 | -15,031 | -18.8 |
|          | Deaths per million in working age population | 12 | 0 | 20 | 20 | — | 10 | 0 | 20 | 20 | — |

(continued)
| Location       | Hourly wage Mean (February 2020) | Mean (April 2020) | Change | Employment Mean (February 2020) | Mean (April 2020) | Change | Deaths per million in working age population | Cases per million in working age population |
|---------------|----------------------------------|-------------------|--------|--------------------------------|-------------------|--------|---------------------------------------------|---------------------------------------------|
| PASTO         | 12 0 4,096 4,567 471 11.5        | 10 3,444 2,757 -687 11.5 | -20.0 | 12 0 6,866 6,705 -162 2.4     | 10 10,455 9,365 -1,087 11.4 | -11.4 |
| VILLAVICENCIO | 12 0 5,257 6,102 845 16.1        | 10 3,424 3,101 -323 9.4 | -9.4  | 12 0 8,101 7,034 -1,067 13.2 | 10 13,008 10,737 -2,271 17.5 | -11.4 |
| PEREIRA        | 12 0 5,062 4,425 -636 12.6       | 10 3,675 3,431 -244 6.6 | -6.6  | 12 0 9,037 8,822 -214 24.1   | 10 13,800 17,741 3,880 21.9 | (continued) |

The labour market effects of sector-specific mobility restrictions
|                  | Excluded          | Non-excluded       |
|------------------|-------------------|--------------------|
|                  | Observations      | February (2020)    | April (2020) | Change | Observations | February (2020) | April (2020) | Change |
|                  |                   | Mean          | Mean       | Number | %        | Mean          | Mean       | Number | %        |
| Deaths per million in working age population | 12                 | 0             | 11         | 11     | —        | 10             | 0          | 11     | 11     | —        |
| Cases per million in working age population | 12                 | 0             | 304        | 304    | —        | 10             | 0          | 304    | 304    | —        |
| CÚCUTA           | Hourly wage       | 12             | 3,831      | 4,862   | 1,030    | 26.9         | 10         | 2,636  | 2,243  | −393    | −14.9    |
|                  | Employment        | 12             | 10,295     | 9,862   | −433     | −4.2         | 10         | 21,160 | 17,946 | −3,214  | −15.2    |
|                  | Deaths per million in working age population | 12            | 0          | 7       | 7        | —            | 10         | 0      | 7      | 7       | —        |
|                  | Cases per million in working age population | 12            | 0          | 69      | 69       | —            | 10         | 0      | 69      | 69      | —        |
| CARTAGENA        | Hourly Wage       | 12             | 6,112      | 4,668   | −1,444   | −23.6        | 10         | 4,052  | 3,562  | −491    | −12.1    |
|                  | Employment        | 12             | 13,416     | 12,743  | −673     | −5.0         | 10         | 28,644 | 23,187 | −5,458  | −19.1    |
|                  | Deaths per million in working age population | 12            | 0          | 27      | 27       | —            | 10         | 0      | 27      | 27      | —        |
|                  | Cases per million in working age population | 12            | 0          | 280     | 280      | —            | 10         | 0      | 280    | 280     | —        |
| IBAGUÉ           | Hourly wage       | 12             | 4,325      | 4,357   | 33       | 0.8          | 10         | 3,825  | 3,597  | −227    | −5.9     |
|                  | Employment        | 12             | 8,174      | 7,178   | −996     | −12.2        | 10         | 12,539 | 10,231 | −2,308  | −18.4    |

(continued)
| TABLE A1 |          | Excluded | Non-excluded |
|----------|----------|----------|--------------|
|          | Observations | February (2020) Mean | April (2020) Mean | Change Number % | Observations | February (2020) Mean | April (2020) Mean | Change Number % |
| Deaths per million in working age population | 12 | 0 | 2 | 2 | 10 | 0 | 2 | 2 |
| Cases per million in working age population | 12 | 0 | 119 | 119 | 10 | 0 | 119 | 119 |
| MONTERIA | Hourly wage | 12 | 4,378 | 3,730 | −648 | −14.8 | 10 | 3,022 | 3,252 | 230 | 7.6 |
| Employment | 12 | 4,879 | 4,911 | 32 | 0.7 | 10 | 9,622 | 8,331 | −1,291 | −13.4 |
| Deaths per million in working age population | 12 | 0 | 3 | 3 | 10 | 0 | 3 | 3 |
| Cases per million in working age population | 12 | 0 | 54 | 54 | 10 | 0 | 54 | 54 |
| TUNJA | Hourly Wage | 12 | 5,444 | 6,111 | 667 | 12.2 | 10 | 3,387 | 3,271 | −116 | −3.4 |
| Employment | 12 | 3,558 | 3,588 | 30 | 0.8 | 10 | 4,031 | 3,068 | −963 | −23.9 |
| Deaths per million in working age population | 12 | 0 | 6 | 6 | 10 | 0 | 6 | 6 |
| Cases per million in working age population | 12 | 0 | 31 | 31 | 10 | 0 | 31 | 31 |
| FLORENCIA | Hourly wage | 12 | 4,178 | 4,069 | −108 | −2.6 | 10 | 3,435 | 3,145 | −291 | −8.5 |
| Employment | 12 | 2,395 | 2,309 | −86 | −3.6 | 10 | 3,443 | 3,007 | −436 | −12.7 |

(continued)
TABLE A1
(Continued)

|                      | Excluded                                      | Non-excluded                                   |
|----------------------|-----------------------------------------------|-----------------------------------------------|
|                      | Observations | February (2020) Mean | April (2020) Mean | Change | Observations | February (2020) Mean | April (2020) Mean | Change |
| Deaths per million in working age population | 12 | 0 | 8 | 8 | — | 10 | 0 | 8 | 8 | — |
| Cases per million in working age population | 12 | 0 | 62 | 62 | — | 10 | 0 | 62 | 62 | — |
| **POPAYÁN**          |                |                          |                          |        |                |                          |                          |        |
| Hourly wage          | 12 | 3,881 | 3,899 | 19 | 0.5 | 10 | 4,392 | 3,824 | —568 | —12.9 |
| Employment           | 12 | 4,252 | 3,962 | —290 | —6.8 | 10 | 5,909 | 4,520 | —1,389 | —23.5 |
| Deaths per million in working age population | 12 | 0 | 0 | 0 | — | 10 | 0 | 0 | 0 | — |
| Cases per million in working age population | 12 | 0 | 46 | 46 | — | 10 | 0 | 46 | 46 | — |
| **VALLEDUPAR**       |                |                          |                          |        |                |                          |                          |        |
| Hourly wage          | 12 | 5,092 | 4,998 | —94 | —1.8 | 10 | 3,441 | 2,967 | —475 | —13.8 |
| Employment           | 12 | 5,555 | 5,333 | —221 | —4.0 | 10 | 9,817 | 8,568 | —1,249 | —12.7 |
| Deaths per million in working age population | 12 | 0 | 12 | 12 | — | 10 | 0 | 12 | 12 | — |
| Cases per million in working age population | 12 | 0 | 95 | 95 | — | 10 | 0 | 95 | 95 | — |
| **QUIBDO**           |                |                          |                          |        |                |                          |                          |        |
| Hourly wage          | 12 | 4,693 | 4,591 | —102 | —2.2 | 10 | 3,574 | 2,993 | —581 | —16.3 |

(continued)
| TABLE A1 | Excluded | Non-excluded |
|----------|----------|--------------|
|          | Observations | February (2020) Mean | April (2020) Mean | Change | Observations | February (2020) Mean | April (2020) Mean | Change |
|          |            | Number | % |            |            | Number | % |
| Employment | 12 | 1,271 | 1,083 | −188 | −14.8 | 10 | 1,915 | 1,651 | −264 | −13.8 |
| Deaths per million in working age population | 12 | 0 | 0 | 0 | — | 10 | 0 | 0 | 0 | — |
| Cases per million in working age population | 12 | 0 | 153 | 153 | — | 10 | 0 | 153 | 153 | — |
| NEIVA | Hourly wage | 12 | 5,135 | 4,810 | −324 | −6.3 | 10 | 3,341 | 2,992 | −349 | −10.5 |
| Employment | 12 | 5,195 | 4,723 | −473 | −9.1 | 10 | 7,480 | 6,043 | −1,437 | −19.2 |
| Deaths per million in working age population | 12 | 0 | 15 | 15 | — | 10 | 0 | 15 | 15 | — |
| Cases per million in working age population | 12 | 0 | 238 | 238 | — | 10 | 0 | 238 | 238 | — |
| RIOHACHA | Hourly wage | 12 | 4,782 | 4,599 | −183 | −3.8 | 10 | 3,153 | 3,494 | 342 | 10.8 |
| Employment | 12 | 3,105 | 2,902 | −203 | −6.5 | 10 | 5,591 | 4,086 | −1,505 | −26.9 |
| Deaths per million in working age population | 12 | 0 | 5 | 5 | — | 10 | 0 | 5 | 5 | — |
| Cases per million in working age population | 12 | 0 | 27 | 27 | — | 10 | 0 | 27 | 27 | — |
| SANTA MARTA | Hourly wage | 12 | 4,968 | 5,156 | 187 | 3.8 | 10 | 3,057 | 2,808 | −249 | −8.2 | (continued) |
### TABLE A1
(Continued)

|                                | Excluded | Non-excluded |
|--------------------------------|----------|--------------|
|                                | Observations | February (2020) Mean | April (2020) Mean | Change | Observations | February (2020) Mean | April (2020) Mean | Change |
|                                |           | Number | %       |           | Number | %       |           | Number | %       |
| Employment                     | 12        | 6,062  | 5,576   | −486  | −8.0   | 10        | 12,940  | 9,725   | −3,215 | −24.8  |
| Deaths per million in working age population | 12        | 0      | 33      | 33    | —      | 10        | 0      | 33      | 33    | —      |
| Cases per million in working age population | 12        | 0      | 368     | 368   | —      | 10        | 0      | 368     | 368   | —      |
| ARMENIA                        |           |        |         |       |        |           |         |         |       |        |
| Hourly wage                    | 12        | 4,177  | 4,934   | 757   | 18.1   | 10        | 3,119  | 3,068   | −51    | −1.6   |
| Employment                     | 12        | 4,345  | 3,763   | −582  | −13.4  | 10        | 7,404  | 5,223   | −2,181 | −29.5  |
| Deaths per million in working age population | 12        | 0      | 4       | 4     | —      | 10        | 0      | 4       | 4     | —      |
| Cases per million in working age population | 12        | 0      | 123     | 123   | —      | 10        | 0      | 123     | 123   | —      |
| SINCELEJO                      |           |        |         |       |        |           |         |         |       |        |
| Hourly wage                    | 12        | 3,321  | 3,167   | −154  | −4.6   | 10        | 2,959  | 4,325   | 1,366  | 46.2   |
| Employment                     | 12        | 3,913  | 3,727   | −186  | −4.7   | 10        | 7,650  | 6,154   | −1,496 | −19.6  |

(continued)
|                                | Excluded                        | Non-excluded                    |
|--------------------------------|---------------------------------|---------------------------------|
|                                | Observations | February (2020) Mean | April (2020) Mean | Change Number | % | Observations | February (2020) Mean | April (2020) Mean | Change Number | % |
| Deaths per million in working age population | 12 0 0 0 | — | — | — | — | 10 0 0 0 | — | — | — |
| Cases per million in working age population | 12 0 0 0 | — | — | — | — | 10 0 0 0 | — | — | — |
| **OTHER MUNICIPALITIES**        |                |                                |                              |                | | 10 2,950 2,942 | — | — | — |
| Hourly wage                    | 12 3,640 3,754 | 114 3.1 | 10 2,950 2,942 | −9 −0.3 |
| Employment                     | 12 493,460 470,015 | −23,444 −4.8 | 10 423,260 364,797 | −58,463 −13.8 |
| Deaths per million in working age population | 12 0 3 3 | — | 10 0 3 3 | — |
| Cases per million in working age population | 12 0 40 40 | — | 10 0 40 40 | — |

**SOURCE:** Calculations by the authors based on data from DANE (GEIH)
### TABLE A2
Log of employment (monthly regression)

|                      | Log. employment (1) | Log. average hours (4) | Log. hourly wage (7) |
|----------------------|---------------------|------------------------|----------------------|
| Restricted × Post    | -0.1309***          | -0.0147                | -0.0433              |
|                      | (0.0354)            | (0.0098)               | (0.0292)             |
| Share reported cases | -0.0004**           | -0.0000                | 0.0001               |
|                      | (0.0002)            | (0.0001)               | (0.0001)             |
| Share reported deaths| -0.0079***          | -0.0000                | 0.0003               |
|                      | (0.0029)            | (0.0006)               | (0.0026)             |
| Observations         | 2,640               | 2,640                  | 2,640                |

NOTES: * significant at 10%; ** significant at 5%; *** significant at 1%. The variable Restricted × Post represents the interaction between \( q_j \), which takes value 1 if sector \( j \) is restricted and \( post_t \), which is equal to 1 starting in March 2020. Share report deaths and Share report cases stand for reported deaths and cases per one million working-age population in each city, respectively. In the fixed effects, by period, our base month is February (2020). Standard errors are presented in parentheses and clustered at the city–sector level. For each outcome, we use the same specifications with control covariates as in table 2, in which we present baseline estimation results. The regressions are weighted by each sector’s share of employment in total employment in the pre-treatment period.
|                          | Log. employment | Log. average hours | Log. hourly wage |
|--------------------------|-----------------|-------------------|------------------|
| **Restricted × Post**    | -0.0520***      | -0.0526***        | -0.0520***       |
|                          | (0.0183)        | (0.0180)          | (0.0183)         |
| **Share reported cases** | -0.0001**       | -0.0001**         | 0.0000           |
|                          | (0.0001)        | (0.0001)          | (0.0000)         |
| **Share reported deaths**| -0.0019         | 0.0002            | -0.0001          |
|                          | (0.0012)        | (0.0012)          | (0.0004)         |

Observations: 2,640

**NOTES:** * significant at 10%; ** significant at 5%; *** significant at 1%. The variable Restricted × Post represents the interaction between $q_j$, which takes value 1 if sector $j$ is restricted and post$_t$, which is equal to 1 starting in March 2020. Share report deaths and Share report cases stand for reported deaths and cases per one million working-age population in each city, respectively. In the fixed effects, by period, our base month is February (2020). Standard errors are presented in parentheses and clustered at the city–sector level. For each outcome, we use the same specifications with control covariates as in table 2, in which we present baseline estimation results. The regressions are weighted by each sector’s share of employment in total employment in the pre-treatment period.
|                  | Log. employment | Log. average hours | Log. hourly wage |
|------------------|-----------------|-------------------|----------------|
|                  | (1)             | (2)               | (3)            |
|                  | (4)             | (5)               | (6)            |
|                  | (7)             | (8)               | (9)            |
| A. Exclude 4th quartile |                 |                   |                |
| Restricted × Post | -0.0939***      | -0.0946***        | -0.0936***     |
|                  | (0.0231)        | (0.0229)          | (0.0232)       |
| Share reported cases | -0.0003***      | -0.0002**         | 0.0000         |
|                  | (0.0001)        | (0.0001)          | (0.0000)       |
| Share reported deaths | -0.0051***      | -0.0017           | -0.0000        |
|                  | (0.0018)        | (0.0015)          | (0.0005)       |
| Observations     | 2,640           | 2,640             | 2,640          |
| B. Exclude 3rd and 4th quartile |               |                   |                |
| Restricted × Post | -0.0965***      | -0.0970***        | -0.0961***     |
|                  | (0.0246)        | (0.0243)          | (0.0247)       |
| Share reported cases | -0.0002**       | -0.0001           | 0.0000         |
|                  | (0.0001)        | (0.0001)          | (0.0000)       |
| Share reported deaths | -0.0047**       | -0.0025           | -0.0000        |
|                  | (0.0018)        | (0.0015)          | (0.0005)       |
| Observations     | 2,400           | 2,400             | 2,400          |

**NOTES:** * significant at 10%; ** significant at 5%; *** significant at 1%. Panel A drops from the control group industries in the Colombian input matrix with both shares of sales to restricted sectors and shares of purchases from restricted sectors in the fourth quartile of their corresponding distributions. Panel B drops industries with both shares above the median of their corresponding distributions. Standard errors are presented in parentheses and clustered at the city-sector level. For each outcome, we use the same specifications with control covariates as in table 2, in which we present baseline estimation results. The regressions are weighted by each sector’s share of employment in total employment in the pre-treatment period.
**TABLE A5**

Controlling for heterogeneous risk of contagion across sectors

|          | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| A. Log employment |     |     |     |     |     |     |     |     |     |
| Restricted×Post | −0.0917*** | −0.0907*** | −0.0892*** | −0.0935*** | −0.0938*** | −0.0932*** | −0.0914*** | −0.0904*** | −0.0895*** |
| (0.0239) | (0.0243) | (0.0246) | (0.0232) | (0.0233) | (0.0235) | (0.0242) | (0.0245) | (0.0247) |     |
| Share reported cases | 0.0019* | −0.0028* | −0.0003*** | **−0.0056*** | −0.0017 | **0.0458*** | 0.0468** | **0.0192** | **0.0192** |
| (0.0111) | (0.016) | (0.0001) | (0.0021) | (0.0002) | (0.0011) | (0.0016) | (0.0001) | (0.0016) |     |
| Share reported deaths | **0.0917** | **0.0917** | **0.0917** | **0.0917** | **0.0917** | **0.0917** | **0.0917** | **0.0917** | **0.0917** |
| (0.0192) | (0.0319) | (0.0001) | (0.0002) | (0.0002) | (0.0002) | (0.0002) | (0.0002) | (0.0002) |     |
| Interactions with proximity index | YES | YES | YES | NO | NO | NO | YES | YES | YES |
| Interactions with share employment | NO | NO | NO | YES | YES | YES | YES | YES | YES |
| Observations | 2,640 | 2,640 | 2,640 | 2,640 | 2,640 | 2,640 | 2,640 | 2,640 | 2,640 |
| B. Log. Average hours |     |     |     |     |     |     |     |     |     |
| Restricted×Post | −0.0174** | −0.0172** | −0.0170** | −0.0170** | −0.0165** | −0.0168** | −0.0170** | −0.0165** | −0.0167** |
| (0.0082) | (0.0080) | (0.0079) | (0.0076) | (0.0074) | (0.0075) | (0.0076) | (0.0074) | (0.0074) |     |
| Share reported cases | −0.0001 | −0.0007 | −0.0001 | −0.0000 | −0.0000 | −0.0000 | −0.0000 | −0.0000 | −0.0000 |
| (0.0003) | (0.0005) | (0.0000) | (0.0001) | (0.0001) | (0.0001) | (0.0001) | (0.0001) | (0.0001) |     |
| Share reported deaths | 0.0008 | 0.0115 | 0.0010* | −0.0008 | −0.0008 | −0.0008 | −0.0012 | 0.0053 | 0.0053 |
| (0.0061) | (0.0101) | (0.0006) | (0.0007) | (0.0007) | (0.0007) | (0.0005) | (0.0006) | (0.0006) |     |
| Interactions with proximity index | YES | YES | YES | NO | NO | NO | YES | YES | YES |
| Interactions with share employment | NO | NO | NO | YES | YES | YES | YES | YES | YES |
| Observations | 2,640 | 2,640 | 2,640 | 2,640 | 2,640 | 2,640 | 2,640 | 2,640 | 2,640 |
| C. Log. Hourly wage |     |     |     |     |     |     |     |     |     |
| Restricted×Post | −0.0331** | −0.0331** | −0.0335** | −0.0328** | −0.0329** | −0.0334** | −0.0333** | −0.0336** | −0.0340** |
| (0.0163) | (0.0164) | (0.0162) | (0.0163) | (0.0163) | (0.0161) | (0.0162) | (0.0161) | (0.0160) |     |
| Share reported cases | −0.0004 | 0.0006 | 0.0001 | 0.0000 | −0.0004 | 0.0002 | 0.0013 | 0.0005 | 0.0018 |
| (0.0112) | (0.0019) | (0.0001) | (0.0002) | (0.0012) | (0.0002) | (0.0012) | (0.0012) | (0.0018) |     |

(continued)
|                                | (1)     | (2)     | (3)     | (4)     | (5)     | (6)     | (7)     | (8)     | (9)     |
|--------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Share reported deaths          | -0.0097 | -0.0199 | 0.0015  | 0.0013  | -0.0083 | -0.0153 |
|                                | (0.0194)| (0.0282)| (0.0016)| (0.0025)| (0.0201)| (0.0284)|         |         |         |
| Interactions with              | YES     | YES     | YES     | NO      | NO      | NO      | YES     | YES     | YES     |
| proximity index                |         |         |         |         |         |         |         |         |         |
| Interactions with              | NO      | NO      | NO      | YES     | YES     | YES     | YES     | YES     | YES     |
| share employment               |         |         |         |         |         |         |         |         |         |
| Observations                   | 2,640   | 2,640   | 2,640   | 2,640   | 2,640   | 2,640   | 2,640   | 2,640   | 2,640   |

NOTES: * significant at 10%; ** significant at 5%; *** significant at 1%. Columns 1 to 3 present results including interactions with the proximity index. Columns 4 to 6 present results including interactions with the share of employment. Finally, columns 7 to 9 present results, including interactions with the proximity index and employment share. For each outcome, we use the same specifications with control covariates as in table 2, in which we present baseline estimation results. The regressions are weighted by each sector’s share of employment in total employment in the pre-treatment period.
### TABLE A6
DID with heterogeneous treatment effects

|                | Log. employment |       | Log. average hours |       | Log. hourly wage |       |
|----------------|-----------------|-------|--------------------|-------|------------------|-------|
|                | (1)             | (2)   | (3)                | (4)   | (5)              | (6)   |
| A. Until April |                 |       |                    |       |                  |       |
| Restricted × Post | −0.0937** | −0.0944*** | −0.0935*** | −0.0173** | −0.0172** | −0.0173** |
| TEST           | 1.4787          | 1.5438 | 1.4312            | 0.2733 | 0.2818           | 0.2646 |
| Restricted × Post (did_multiplegt) | −0.0612*** | −0.0615*** | −0.0612*** | −0.0125** | −0.0126** | −0.0125** |
| se (did_multiplegt) | 0.0184        | 0.0182 | 0.0184            | 0.00547 | 0.00546          | 0.00549 |
| Observations   | 2,640           | 2,640  | 2,640             | 2,640  | 2,640            | 2,640  |
| B. Until June  |                 |       |                    |       |                  |       |
| Restricted × Post | −0.0674*** | −0.0673*** | −0.0677*** | −0.0212*** | −0.0212*** | −0.0212*** |
| TEST           | 0.2960          | 0.2957 | 0.2973            | 0.0931 | 0.0930           | 0.0929 |
| Restricted × Post (did_multiplegt) | −0.0439*** | −0.0438*** | −0.0437*** | −0.0106*** | −0.0106*** | −0.0107*** |
| se (did_multiplegt) | 0.0162        | 0.0162 | 0.0166            | 0.00405 | 0.00397          | 0.00369 |
| Observations   | 3,696           | 3,696  | 3,696             | 3,696  | 3,696            | 3,696  |

**NOTES:** * significant at 10%; ** significant at 5%; *** significant at 1%. In panel A of the table, we show regressions results for the baseline period; in panel B, we present results for the extended period. This estimation uses the data’s baseline structure; for the extended period, we consider as controls subsectors that were totally or partially excluded from the lockdown policy. Columns in each panel mimic the baseline specifications presented for each outcome in table 2. The coefficient Restricted × Post represents the standard DID coefficient presented in table 2. The coefficient Restricted × Post (did_multiplegt) represents the DID estimator using the De Chaisemartin and D’Haultfoeuille (2020) methodology. The test is based on the computation of the minimal standard deviation of group-specific ATE, compatible with a standard DID of opposite sign to the population with a reasonable amount of treatment effect heterogeneity. The more this standard deviation is computed away from zero, the less the concern of a biased standard DID coefficient. De Chaisemartin and D’Haultfoeuille (2020) suggest a simple way of evaluating the magnitude of this parameter. Let us call the DID traditional coefficient beta and assume there is a value B which in absolute value is greater than the effect in every group and period. If |beta|<sqrt(3)x and B<sqrt(3)x, where x represents the value of the test parameter, x would, therefore, be an implausibly high amount of treatment effect heterogeneity so beta could be of a different sign than the real treatment effect. In all regressions betal<sqrt(3)x and B<sqrt(3)x, the assumed B value could be several times the estimated beta and the second condition still holds. For each outcome, we use the same specifications with control covariates as in table 2, in which we present baseline estimation results. The regressions are weighted by each sector’s share of employment in total employment in the pre-treatment period.
### TABLE A7
DID with heterogeneous treatment effects (four-digit ISIC and city-level data)

|                          | Log. employment |              | Log. average hours |              | Log. hourly wage |              |
|--------------------------|-----------------|--------------|--------------------|--------------|-----------------|--------------|
|                          | (1)             | (2)          | (3)                | (4)          | (5)             | (6)          |
| **A. Until April**       |                 |              |                    |              |                 |              |
| Restricted × Post        | 0.0953***       | 0.0959***    | 0.0950***          | 0.0174**     | 0.0172**        | 0.0173**     |
|                          | (0.0231)        | (0.0229)     | (0.0231)           | (0.0084)     | (0.0084)        | (0.0084)     |
| Test                     | 1.3650          | 1.4542       | 1.3316             | 0.2493       | 0.2612          | 0.247        |
| Restricted × Post (did_multiplegt) | 0.0653***       | 0.0656***    | 0.0653***          | 0.0128**     | 0.0129**        | 0.0128**     |
| se (did_multiplegt)      | 0.0232          | 0.0231       | 0.0232             | 0.00767      | 0.00767         | 0.00766      |
| Observations             | 3,290           | 3,290        | 3,290              | 3,290        | 3,290           | 3,290        |
| **B. Until June**        |                 |              |                    |              |                 |              |
| Restricted × Post        | 0.0868***       | 0.0867***    | 0.0871***          | 0.0177***    | 0.0177***       | 0.0177***    |
|                          | (0.0214)        | (0.0212)     | (0.0215)           | (0.0062)     | (0.0062)        | (0.0062)     |
| Test                     | 0.3832          | 0.3830       | 0.3842             | 0.0781       | 0.7811          | 0.0781       |
| Restricted × Post (did_multiplegt) | 0.0513***       | 0.0511***    | 0.0511***          | 0.0118**     | 0.0117**        | 0.0120**     |
| se (did_multiplegt)      | 0.0218          | 0.0209       | 0.0209             | 0.00667      | 0.00666         | 0.00650      |
| Observations             | 4,606           | 4,606        | 4,606              | 4,606        | 4,606           | 4,606        |

**NOTES:** * significant at 10%; ** significant at 5%; *** significant at 1%. In panel A of the table, we show regressions results for the baseline period; in panel B, we present results for the extended period. This estimation uses a modified structure of the data structure in a way that, in the extended period and in all cases, the ones that are excluded have no single subsector partially affected; for the extended period we consider as controls subsectors that were totally or partially excluded from the lockdown policy, columns in each panel mimic the baseline specifications presented for each outcome in table 2. The coefficient Restricted × Post represents the standard DID coefficient presented in table 2. The coefficient Restricted × Post (did_multiplegt) represents the DID estimator using the De Chaisemartin and D’Haultfouille (2020) methodology. The test is based on the computation of the minimal standard deviation of group-specific ATE, compatible with a standard DID of opposite sign to the population with a reasonable amount of treatment effect heterogeneity. The more this standard deviation is computed away from 0, the less the concern of a biased standard DID coefficient. De Chaisemartin and D’Haultfouille (2020) suggest a simple way of evaluating the magnitude of this parameter. Let us call the DID traditional coefficient beta and assume there is a value B which in absolute value is greater than the effect in every group and period. If |beta|<sqrt(3)x and B<sqrt(3)x, where x represents the value of the test parameter, x would, therefore, be an implausibly high amount of treatment effect heterogeneity so beta could be of a different sign than the real treatment effect. In all regressions |beta|<sqrt(3)x, the assumed B value could be several times the estimated beta, and the second condition still holds. For each outcome, we use the same specifications with control covariates as in table 2, in which we present baseline estimation results. The regressions are weighted by each sector’s share of employment in total employment in the pre-treatment period.
Supporting information

Supplementary material accompanies the online version of this article.

References

Adams-Prassl, A., T. Boneva, M. Golin, and C. Rauh (2020) “Inequality in the impact of the coronavirus shock: Evidence from real time surveys,” *Journal of Public Economics* 189, 104245. https://doi.org/10.1016/j.jpubeco.2020.104245

Albanesi, S., and J. Kim (2021) “The gendered impact of the COVID-19 recession on the U.S. labor market,” NBER working paper no. 28505. https://doi.org/10.3386/w28505

Alon, T., M. Doepke, J. Olmstead-Rumsey, and M. Tertilt (2020) “The impact of COVID-19 on gender equality,” NBER working paper no. 26947. https://doi.org/10.3386/w26947

Andrew, A., M. C. Dias, C. Farquharson, L. Kraftman, S. Krutikova, A. Phimister, and A. Sevilla (2020) “The gendered division of paid and domestic work under lockdown,” IZA discussion paper no. 13500

Arango, L.E., and L. A. Flórez (2020) “Determinants of structural unemployment in Colombia: A search approach,” *Empirical Economics* 58(5), 2431–64. https://doi.org/10.1007/s00181-018-1572-y

Aum, S., S. Y. Lee, and Y. Shin (2020) “COVID-19 doesn’t need lockdowns to destroy jobs: The effect of local outbreaks in Korea,” NBER working paper no. 27264. https://doi.org/10.3386/w27264

Baek, C., P. B. McCrory, T. Messer, and P. Mui (2021) “Unemployment effects of stay-at-home orders: Evidence from high frequency claims data,” *Review of Economics and Statistics* 103(5) 979–93. https://doi.org/10.1162/rest_a_00996

Barrot, J.N., B. Grassi, and J. Sauvagnat (2020) “Estimating the costs and benefits of mandated business closures in a pandemic,” CEPR discussion paper no. 14757. https://doi.org/10.2139/ssrn.3599482

Bélanger, L.P., A. Brodeur, D. Mikola, and T. Wright (2020) “The short-term economic consequences of COVID-19: Occupation tasks and mental health in Canada,” IZA discussion paper no. 13254

Beraja, M., E. Hurst, and J. Ospina (2019) “The aggregate implications of regional business cycles,” *Econometrica* 87(6), 1789–833

Bilgin, N.M. (2020) “Tracking COVID-19 spread in Italy with mobility data,” *SSRN Electronic Journal*. https://doi.org/10.2139/ssrn.3585921

Blanchard, O., and P. Portugal (2001) “What hides behind an unemployment rate: Comparing Portuguese and U.S. labor markets,” *American Economic Review* 91(1), 187–207

Boll, C., and S. Schüller (2020) “The situation is serious, but not hopeless: Evidence-based considerations on the intra-couple division of childcare before, during and after the COVID-19 lockdown,” SOEP Papers on Multidisciplinary Panel Data Research, no. 1098. Available at www.econstor.eu/handle/10419/224087

Bonilla, L., L. A. Flórez, D. Hermida, F. J. Lasso-Valderrama, L. F. Morales, K. Pulido, and J. D. Pulido (2020) “Recuperación gradual del mercado laboral y efectos de la crisis sanitaria sobre las firmas formales,” *Reporte del Mercado*
Laboral 16(October). Available at https://repositorio.banrep.gov.co/bitstream/handle/20.500.12134/9931/reportede-mercado-laboral-octubre-2020.pdf

——— (2021) “Recuperación de la ocupación y dinámica reciente de la participación laboral,” Reporte del Mercado Laboral 17(January). Available at https://repositorio.banrep.gov.co/bitstream/handle/20.500.12134/9976/reportede-mercado-laboral-enero-2021.pdf

Brodeur, A., D. Gray, A. Islam, and S. J. Bhuiyan (2020) “A literature review of the economics of COVID-19,” IZA discussion paper no. 13411. Available at https://ssrn.com/abstract=3636640

Callaway, B., and P. H. C. Sant’Anna (2021) “Difference-in-differences with multiple time periods,” Journal of Econometrics 225, 200–30. https://doi.org/10.1016/j.jeconom.2020.12.001

Cuesta, J., and J. Pico (2020) “The gendered poverty effects of the COVID-19 pandemic in Colombia,” European Journal of Development Research 32(5), 1558–91. https://doi.org/10.1057/s41287-020-00328-2

Dang, H.H., and C. V. Nguyen (2020) “Did a successful fight against the COVID-19 pandemic come at a cost? Impacts of the outbreak on employment outcomes in Vietnam,” IZA discussion paper no. 13958

De Chaisemartin, C., and X. D’Haultfoeuille (2020) “Two-way fixed effects estimators with heterogeneous treatment effects,” American Economic Review 110(9), 2964–96. https://doi.org/10.1257/aer.20181169

Decreto 457 de 2020 [Ministerio del Interior]. Por el cual se imparten instrucciones en virtud de la emergencia sanitaria generada por la pandemia del Coronavirus COVID-19 y el mantenimiento del orden público. March 22, 2020

Decreto 593 de 2020 [Ministerio del Interior]. Por el cual se imparten instrucciones en virtud de la emergencia sanitaria generada por la pandemia del Coronavirus COVID-19, y el mantenimiento del orden público. April 24, 2020

Decreto 636 de 2020 [Ministerio del Interior]. Por el cual se imparten instrucciones en virtud de la emergencia sanitaria generada por la pandemia del Coronavirus COVID-19, y el mantenimiento del orden público. May 6, 2020

Decreto 639 de 2020 [Ministerio de Hacienda y Crédito Público]. Por el cual se crea el Programa de Apoyo al Empleo Formal (PAEF), en el marco del Estado de Emergencia Económica, Social y Ecológica declarado por el Decreto 637 de 2020. May 8, 2020

Decreto 749 de 2020 [Ministerio del Interior]. Por el cual se imparten instrucciones en virtud de la emergencia sanitaria generada por la pandemia del Coronavirus COVID-19, y el mantenimiento del orden público. May 28, 2020

Delaporte, I., and W. Peña (2020) “Working from home under COVID-19: Who is affected? Evidence from Latin American and Caribbean countries,” CEPR COVID Economics 14. Available at https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3610885

Del Boca, D., N. Oggero, P. Profeta, and M. Rossi (2020) “Women’s work, housework, and childcare before and during COVID-19,” Review of Economics of the Household 18(4), 1001–17

Dingel, J.I., and B. Neiman (2020) “How many jobs can be done at home?,” Journal of Public Economics 189(C). https://doi.org/10.1016/j.jpubeco.2020.104235
Engle, S., J. Stromme, and A. Zhou (2020) “Staying at home: Mobility effects of COVID-19,” SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3565703

Eslava, M., and M. Isaacs (2020) “La vulnerabilidad del empleo a la emergencia de COVID-19,” Nota Macroeconomía, no. 11, Universidad de los Andes. Available at https://uniandes.edu.co/sites/default/files/asset/document/nota-macro-11.pdf

Fadinger, H., and J. Schymik (2020) “The costs and benefits of home office during the COVID-19 pandemic: Evidence from infections and an input-output model for Germany,” CEPR COVID Economics 9, 107–34

Fang, H., L. Wang, and Y. Yang (2020) “Human mobility restrictions and the spread of the novel coronavirus (2019-nCoV) in China,” Journal of Public Economics 191, 104272. https://doi.org/10.1016/j.jpubeco.2020.104272

Farné, S. (2020, July 6) “Políticas laborales para combatir el desempleo,” El Tiempo. Available at www.eltiempo.com/opinion/columnistas/stefano-farne/politicas-laborales-para-combatir-el-desempleo-columna-de-stefano-farne-514650

Flórez, L.A., L. F. Morales, D. Medina, and J. Lobo (2021) “Labor flows across firm size, age, and economic sector in Colombia vs. the United States,” Small Business Economics 57, 1569–600. https://doi.org/10.1007/s11187-020-00362-8

Forsythe, E., L. B. Kahn, F. Lange, and D. Wiczer (2020) “Labor demand in the time of COVID-19: Evidence from vacancy postings and UI claims,” Journal of Public Economics 189, 104238. https://doi.org/10.1016/j.jpubeco.2020.104238

Garcia-Rojas, K., P. Herrera, L. F. Morales, N. Ramirez-Bustamante, and A. M. Tribin-Uribe (2020) “(She)cession: The Colombian female staircase fall,” Borradores de Economía, no. 1140. https://doi.org/10.32468/be.1140

Glaeser, E.L., G. Caitilin, and S. J. Redding (2020) “How much does COVID-19 increase with mobility? Evidence from New York and four other U.S. cities,” Journal of Urban Economics, 103292. https://doi.org/10.1016/j.jue.2020.103292

Goodman-Bacon, A., and J. Marcus (2020) “Using difference-in-differences to identify causal effects of COVID-19 policies,” SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3603970

Goolsbee, A., and C. Syverson (2021) “Fear, lockdown, and diversion: Comparing drivers of pandemic economic decline 2020,” Journal of Public Economics 193, 104311. https://doi.org/10.1016/j.jpubeco.2020.104311

Gottlieb, C., J. Grobovšek, and M. Poschke (2020a) “Working from home across countries,” CEPR COVID Economics 8, 71–91

Gottlieb, C., J. Grobovšek, M. Poschke, and F. Saltiel (2020b) “Lockdown accounting,” IZA discussion paper no. 13397. Available at https://ssrn.com/abstract=3636626

Gupta, S., L. Montenovo, T. D. Nguyen, F. L. Rojas, I. M. Schmutte, K. I. Simon, B. A. Weinberg, and C. Wing (2020) “Effects of social distancing policy on labor market outcomes,” NBER working paper no. 27280. https://doi.org/10.3386/w27280

Hoehn-Velasco, L., A. Silverio-Murillo, and J. R. Balmori de la Miyar (2021) “The long downturn: The impact of the great lockdown on formal employment,”
Hupkau, C., and B. Petrongolo (2020) “Work, care and gender during the COVID-19 crisis,” Fiscal Studies 41(3), 623–51
Imai, K., and I. S. Kim (2021) “On the use of two-way fixed effects regression models for causal inference with panel data,” Political Analysis 29(3), 405–15.
Juranek, S., J. Paetzold, H. Winner, and F. Zoutman (2020) “Labor market effects of COVID-19 in Sweden and its neighbors: Evidence from novel administrative data,” CESifo Working Paper Series, no. 8473. Available at https://voxeu.org/article/labour-market-effects-covid-19-sweden-and-its-neighbours
Kalenkoski, C.M., and S. W. Pabilonia (2020) “Initial impact of the COVID-19 pandemic on the employment and hours of self-employed coupled and single workers by gender and parental status,” IZA discussion paper no. 13443
Koebel, K., and D. Pohler (2020) “Labor markets in crisis: The causal impact of Canada’s COVID-19 economic shutdown on hours worked for workers across the earnings distribution,” CLEF Working Paper Series, no. 25
Kong, E., and D. Prinz (2020) “Disentangling policy effects using proxy data: Which shutdown policies affected unemployment during the COVID-19 pandemic?,” Journal of Public Economics 189, 104257. https://doi.org/10.1016/j.jpubeco.2020.104257
Kraemer, M.U.G., C. H. Yang, B. Gutierrez, C. H. Wu, B. Klein, D. M. Pigott, L. du Plessis, N. R. Faria, R. Li, W. P. Hanage, J. S. Brownstein, M. Layan, A. Vespignani, H. Tian, C. Dye, O. G. Pybus, and S. V. Scarpino (2020) “The effect of human mobility and control measures on the COVID-19 epidemic in China,” Science 368(6490), 493–97. https://doi.org/10.1126/science.abb4218
Kumar, D., R. Malviya, and P. Kumar Sharma (2020) “Corona virus: A review of COVID-19,” Eurasian Journal of Medicine and Oncology 4(1), 8–25. https://doi.org/10.14744/ejmo.2020.51418
Lee, Y.S., M. Park, and Y. Shin (2021) “Hit harder, recover slower? Unequal employment effects of the COVID-19 shock,” NBER working paper no. 28354. https://doi.org/10.3386/w28354
Leibovici, F., A. M. Santacreu, and M. Famiglietti (2020) “Social distancing and contact-intensive occupations,” St. Louis Federal Reserve. On the Economy blog. Available at www.stlouisfed.org/on-the-economy/2020/march/social-distancing-contact-intensive-occupations
Lozano Rojas, F., X. Jiang, L. Montenovo, K. I. Simon, B. A. Weinberg, and C. Wing (2020) “Is the cure worse than the problem itself? Immediate labor market effects of COVID-19 case rates and school closures in the U.S.,” NBER working paper no. 27127. https://doi.org/10.3386/w27127
Nelson, M.A. (2021) “COVID-19 closure and containment policies: A first look at the labour market effects in emerging nations,” CEPR COVID Economics 66, 89–114
Saltiel, F. (2020) “Who can work from home in developing countries?” CEPR COVID Economics 7, 104–18
Sevilla, A., and S. Smith (2020) “Baby steps: The gender division of childcare during the COVID-19 pandemic,” Oxford Review of Economic Policy 36, 169–86. https://doi.org/10.1093/oxrep/graa027
Yasenov, V. (2020) “Who can work from home?” IZA discussion paper no. 13197. https://doi.org/10.31219/osf.io/89k47

Yilmazkuday, H. (2020) “Stay-at-home works to fight against COVID-19: International evidence from Google mobility data,” Journal of Human Behavior in the Social Environment 31(1–4), 210–220. https://doi.org/10.1080/10911359.2020.1845903