Classical and Bayesian Analyses of a Mixture of Exponential and Lomax Distributions

Maqsood Alia*, Abdul Haqb, Muhammad Aslamc

aLudwig-Maximilians-Universität, Munich, Germany
bQuaid-i-Azam University, Islamabad, Pakistan
cRiphah International University, Islamabad, Pakistan

\textbf{Abstract:} The exponential and the Lomax distributions are widely used in life testing experiments in mixture models. A mixture model of exponential distribution and Lomax distribution is proposed. Parameters of the proposed model are estimated using classical and Bayesian procedures under type-I right censoring. Expressions for Bayes estimators are derived assuming noninformative (uniform and Jeffreys) priors under symmetric and asymmetric loss functions. Posterior predictive distributions of a future observation are derived and predictive estimates are obtained. Extensive Monte Carlo simulations are carried out to investigate performance of the estimators in terms of sample sizes, censoring times and mixing proportions. The analysis of mixture model is carried out using a data set of lifetime of transmitter receivers. Interesting properties of estimators are observed and discussed.

\textbf{Keywords:} mixture modeling, exponential distribution, Lomax distribution, importance sampling, type-I censoring, predictive intervals.

* Corresponding author: E-mail: maqsoodfsd@outlook.com
1. Introduction

The importance of finite mixture models in statistical analysis of data can be judged by the ever-increasing rate at which articles on applications of mixture model appear in literature. Because of the flexibility of mixture models, these models are being increasingly used in a variety of applications e.g., reliability and survival analysis, medical diagnosis and prognosis, ecology, fishery, biology, astronomy, quality control and econometrics. A variety of applications exist in mixture models e.g., beauty-contest data is analyzed using the finite mixture model in Bosch-Domènech et al. (2010). Joffe (1964) fits the frequency distribution of dust particles in mines using mixture models. Everitt and Hand (1981), Titterington et al. (1985), McLachlan and Peel (2000) and Erişoğlu et al. (2011) can be consulted for more applications.

In situations where the complete data sets are unavailable, we focus on the more difficult situations of incomplete data sets. Consider an object is put on life testing experiment and the complete life length cannot be determined or unknown, the object is then considered a censored object. Such a censoring is called right censoring of type-I, with fixed test termination time.

Mixtures of lifetime distributions such as Weibull-gamma, Weibull-exponential and exponential-gamma are proposed in Erişoğlu et al. (2011). Saleem et al. (2009) proposed a two-component mixture of power function distribution and addressed the problem of estimation through Bayesian approach. Al-Hussaini et al. (2001) used a two-component mixture model of Lomax distributions to obtain the Bayesian predictive bounds. The Lomax distribution is used for stochastic modeling of decreasing failure rate life components in accelerated life testing analyses. For example, the scale parameter of Lomax distribution is formed as a function of stress levels in Hassan and Al-Ghamdi (2009). It makes the motivation to propose a mixture of two different lifetime distributions, i.e., exponential and Lomax distributions. The proposed mixture model is useful in modeling the lifetimes of heterogeneous population which will be composed of exponential and Lomax distributions.

The mixture model is proposed in Section 2 and Section 3 deals with formation of likelihood function and construction of system of equations to find maximum likelihood (ML) estimates. Bayesian analysis of proposed model assuming uniform and Jeffreys priors is carried out in Section 4. Loss functions and importance sampling procedure used in this study are also highlighted in this section. The expressions for Bayes estimates and posterior variances are obtained. Bayes estimates are computed using importance sampling procedure too. Section 5 presents the posterior predictive distributions and Bayes point predictors. Predictive bounds are also constructed for future observation. Simulations are performed in Section 6 and analysis using real life data set is addressed in Section 7. This study finishes off by drawing some conclusions in Section 8.
2. The Model

In a mixture model, different probability distributions are mixed together. Probability distributions may be mixed in terms of different components or the same components having different parameters. A mixture model having two components with mixing proportion p may be defined as

$$f(x) = pf_1(x) + (1 - p)f_2(x), \quad 0 < p < 1.$$ \hspace{1cm} (2.1)

The probability density function of an exponential random variable X is

$$f(x; \theta) = \theta \exp(-\theta x), \quad x \geq 0, \ \theta > 0,$$ \hspace{1cm} (2.2)

where θ is the scale parameter of distribution. The distribution function of (2.2) is

$$F(x) = 1 - \exp(-\theta x).$$

The Lomax distribution of a random variable X having shape parameter θ_2 and scale parameter δ is

$$f(x; \theta_2, \delta) = \theta_2 \delta x^{(\theta - 1)} \exp(-\theta x), \quad x \geq 0, \ \theta_2, \delta > 0.$$ \hspace{1cm} (2.3)

The distribution function of (2.3) is

$$F(x) = 1 - \left(1 + \frac{x}{\delta}\right)^{-\theta_2}.$$ \hspace{1cm} (2.5)

where $F_1(x)$ and $F_2(x)$ are the distribution functions corresponding to (2.2) and (2.3) respectively.

3. The Likelihood Function

Suppose n units are put in a life testing experiment and let r units are failed up to the time T. And the remaining $n - r$ units are still functioning. Out of failed units, let r_1 and r_2 units belong to first and second subpopulations such that $r_1 + r_2 = r$. Let $x_{ij}, \ 0 < x_{ij} \leq T$, denotes the failure time of j^{th} unit belonging to i^{th} subpopulation, $i = 1, 2, \ j = 1, 2, 3, \ldots, r_i$. Our interest is to estimate the parameters of proposed mixture model (2.4) based on a sample
censored at a prefixed time T. The likelihood function of mixture model (2.4) for the observed random sample $x = (x_1, x_2, \ldots, x_i, x_{i+1}, x_{i+2}, \ldots, x_{i+n})$ is defined as

$$L(\theta \mid x) \propto \left\{ \prod_{j=1}^{n_1} p f_1 (x_j) \right\} \left\{ \prod_{j=1}^{n_2} (1-p) f_2 (x_j) \right\} [1 - F(t)]^{n-r},$$

$$L(\theta \mid x) \propto \left\{ \prod_{j=1}^{n_1} p \theta_1 \exp (-\theta_1 x_j) \right\} \left\{ \prod_{j=1}^{n_2} (1-p) \theta_2 \delta^{\theta_2} (x_j + \delta)^{-(\theta_1 + 1)} \right\} \times \left\{ \left(p \exp (-\theta t) + (1-p) \left(1 + \frac{t}{\delta} \right)^{-\theta_2} \right)^{n-r} \right\},$$

(3.1)

where $\theta = (\theta_1, \theta_2, p)$. After some simplification, it can be expressed in the following form

$$L(\theta \mid x) \propto \theta_1^k \theta_2^k \sum_{k=0}^{n-r} \left(\frac{n-r}{k} \right) \exp \left\{ -\theta_1 \left(\sum_{j=1}^{n_1} x_{i+j} + tk \right) \right\} \times p^{k+n} \left(1-p \right)^{n-k+n} \exp \left\{ -\theta_2 \left(\sum_{j=1}^{n_2} \ln \left(1 + \frac{x_{i+j}}{\delta} \right) + (n-r-k) \ln \left(1 + \frac{t}{\delta} \right) \right) \right\},$$

(3.2)

3.1. Maximum Likelihood Estimates

The maximum likelihood (ML) estimates of parameters θ_1, θ_2 and p are obtained by solving the non-linear system of equations given by (3.3)–(3.5). The system of equations is constructed by partially differentiating the natural logarithm of (3.2) with respect to θ_1, θ_2 and p respectively. Consider $l = \ln \{ L(\theta \mid x) \}$, for simplicity, then

$$l = \ln (\eta) + \eta \ln (p) + r_1 \ln (\theta_1) - \theta_1 \sum_{j=1}^{n_1} x_i + r_2 \ln (1-p) + r_2 \ln (\theta_2) + r_2 \theta_2 \ln (\delta) - (\theta_2 + 1) \sum_{j=1}^{n_2} \ln \left(\frac{x_{i+j}}{\delta} + 1 \right) + (n-r) \ln \left\{ p \exp (-\theta t) + (1-p) \left(1 + \frac{t}{\delta} \right)^{-\theta_2} \right\},$$

where η is constant of proportionality in (3.2) and $\ln (\cdot)$ is the natural logarithm.

$$\frac{\partial l}{\partial \theta_1} = r_1 - \sum_{j=1}^{n_1} x_i - \frac{1}{C} (n-r) pt \exp (-\theta t),$$

(3.3)

$$\frac{\partial l}{\partial \theta_2} = \frac{r_2}{\theta_2} - \sum_{j=1}^{n_2} \ln \left(\frac{x_{i+j}}{\delta} + 1 \right) - \frac{1}{C} (n-r) (1-p) \left(1 + \frac{t}{\delta} \right)^{-\theta_2} \ln \left(1 + \frac{t}{\delta} \right),$$

(3.4)

and

$$\frac{\partial l}{\partial p} = \frac{r_2}{p} - \frac{r_2}{1-p} + \frac{1}{C} (n-r) \left\{ \exp (-\theta t) - \left(1 + \frac{t}{\delta} \right)^{-\theta_2} \right\},$$

(3.5)
where \(C = p \exp(-\theta t) + (1-p)\left(1 + \frac{t}{\delta}\right)^{-\theta_2} \). The numerical methods are used to obtain the ML estimates of \(\theta_1, \theta_2 \) and \(p \).

3.2. Variances of ML Estimates

The main diagonal of the inverted Fisher’s information matrix provides the variances of ML estimates. Unfortunately, the exact expressions for the expectations are not easy to find. Therefore, numerical methods can be used to approximate the expressions for the expectations. The information matrix is given by

\[
I(\theta) = -E \begin{bmatrix}
\frac{\partial^2 I}{\partial \theta_1^2} & \frac{\partial^2 I}{\partial \theta_1 \partial \theta_2} & \frac{\partial^2 I}{\partial \theta_1 \partial p} \\
\frac{\partial^2 I}{\partial \theta_2 \partial \theta_1} & \frac{\partial^2 I}{\partial \theta_2^2} & \frac{\partial^2 I}{\partial \theta_2 \partial p} \\
\frac{\partial^2 I}{\partial p \partial \theta_1} & \frac{\partial^2 I}{\partial p \partial \theta_2} & \frac{\partial^2 I}{\partial p^2}
\end{bmatrix},
\]

where \(\frac{\partial^2 I}{\partial \theta_1^2} = -\frac{r_1}{\theta_1} + \frac{1}{C} \frac{n-r}{p^2} \exp(-\theta t) + \frac{1}{C^2} \frac{n-r}{p^2} \exp(-2\theta t), \) \(r_2 \)

\[
\frac{\partial^2 I}{\partial \theta_2^2} = -\frac{r_2}{\theta_2} - \frac{1}{C^2} \frac{n-r}{(1-p)^2} \left(1 + \frac{t}{\delta}\right)^{-\theta_2} \left\{ \ln \left(1 + \frac{t}{\delta}\right) \right\}^2
\]

\[
+ \frac{1}{C} \frac{n-r}{(1-p)} \left(1 + \frac{t}{\delta}\right)^{-\theta_2} \left[(\ln \delta)^2 - 2 \ln \delta \ln(\delta + t) + \ln(\delta + t)^2 \right],
\]

\[
\frac{\partial^2 I}{\partial p^2} = -\frac{r_1}{p^2} - \frac{r_2}{(1-p)^2} - \frac{1}{C^2} \frac{n-r}{(1-p)^2} \left\{ \exp(-\theta t) - \left(1 + \frac{t}{\delta}\right)^{-\theta_2} \right\}^2,
\]

\[
\frac{\partial^2 I}{\partial \theta_1 \partial \theta_2} = \frac{\partial^2 I}{\partial \theta_2 \partial \theta_1} = -\frac{1}{C^2} \frac{n-r}{p(1-p) t} \exp(-\theta t) \left(1 + \frac{t}{\delta}\right)^{-\theta_2} \ln \left(1 + \frac{t}{\delta}\right),
\]

\[
\frac{\partial^2 I}{\partial \theta_1 \partial p} = \frac{\partial^2 I}{\partial p \partial \theta_1} = \frac{1}{C} \frac{n-r}{t} \exp(-\theta t) \left[-1 + \frac{1}{C} \left\{ \exp(-\theta t) - \left(1 + \frac{t}{\delta}\right)^{-\theta_2} \right\} \right]
\]

and \(\frac{\partial^2 I}{\partial \theta_2 \partial p} = \frac{\partial^2 I}{\partial p \partial \theta_2} = \frac{1}{C^2} \frac{n-r}{(1-p)} \left(1 + \frac{t}{\delta}\right)^{-\theta_2} \ln \left(1 + \frac{t}{\delta}\right) \left\{ \exp(-\theta t) - \left(1 + \frac{t}{\delta}\right)^{-\theta_2} \right\}
\]

\[
+ \frac{1}{C} \frac{n-r}{\left(1 + \frac{t}{\delta}\right)^{-\theta_2}} \ln \left(1 + \frac{t}{\delta}\right).
\]

4. Bayesian Estimation

This Section provides the expressions of Bayes estimators under squared error loss function (SELF) and general entropy loss function (GELF), and posterior variances using
uniform and Jeffreys priors. Below described importance sampling technique is also used to obtain approximate Bayes estimators.

4.1. Bayes Estimators under Loss Functions

A loss is associated with an estimate being different from either a true or a desired value. We use two loss functions (SELF and GELF) for the estimation of Bayes estimators. The SELF is symmetric in nature and is defined as

\[
SELF: \quad L(\theta, \hat{\theta}) = (\hat{\theta} - \theta)^2.
\]

The mean of the posterior distribution is Bayes estimator under SELF, i.e., \(\hat{\theta}_S = E_{\theta_S}(\theta) \). In some situations, asymmetric loss functions have been functional (see Zellner (1986) and Calabria and Pulcini (1996)). The asymmetric GELF is defined as

\[
GELF: \quad L(\theta, \hat{\theta}) = \omega \left\{ \left(\frac{\hat{\theta}}{\theta} \right)^c - c \ln \left(\frac{\hat{\theta}}{\theta} \right) - 1 \right\}, \quad \omega > 0, \ c \neq 0.
\]

It is assumed that \(\omega = 1 \). The constant \(c \) represents the effect of over or under estimation of parameters. Take \(c > 0 \), if over estimation (positive error) is more serious and \(c < 0 \) is used if under estimation (negative error) is more serious. The Bayes estimator of parameter \(\theta \) under GELF is:

\[
\hat{\theta}_G = \{ E_{\theta_S}(\theta^c) \}^{\frac{1}{2}}.
\]

4.2. Importance Sampling

It is a technique for assessing properties of a distribution under consideration when sampling is done from some other distribution(s). The basic idea of importance sampling is that certain values of input random variables can be easily sampled. So, we focus attention on locating such region in the form of a probability distribution (which is close to the distribution of interest) that encourages such certain values. Ghosh et al. (2006) provide a detailed insight to the importance sampling procedure. We use importance sampling to obtain Bayes estimators and call them approximate Bayes estimators.

4.3. Posterior Distribution Assuming the Uniform Priors

We assumed uniform distribution over \((0, \infty)\) as uniform priors for \(\theta_1 \) and \(\theta_2 \). And uniform prior over \((0,1)\) is taken for mixing parameter \(p \). The independent joint prior distribution of \(\theta_1, \theta_2 \) and \(p \) in density kernel form is

\[
\pi(\theta) \propto 1, \quad \theta_1, \theta_2 > 0, \ 0 < p < 1.
\]
The joint posterior distribution is obtained by incorporating the density kernel (4.1) with the likelihood (3.2). The marginal posterior distributions are obtained by integrating out the irrelevant parameters.

4.3.1. Bayes Estimators under SELF Assuming the Uniform Priors

Posterior means or Bayes estimators under SELF are obtained from marginal posterior distributions and the resultant expressions are

$$\hat{\theta}_{U/S} = \frac{\Gamma (r_1 + 1) \Gamma (r_2 + 1)}{H_2} \sum_{k=0}^{\infty} \binom{n-r}{k} A_{2k}^{-\left(r_1+1\right)} B_{2k}^{\left(r_2+1\right)} \text{Beta}(k + r_1 + 1, n - k - r_1 + 1),$$ \hspace{1cm} (4.2)

$$\hat{\theta}_{2/S} = \frac{\Gamma (r_1 + 1) \Gamma (r_2 + 2)}{H_2} \sum_{k=0}^{\infty} \binom{n-r}{k} A_{2k}^{-\left(r_1+1\right)} B_{2k}^{\left(r_2+2\right)} \text{Beta}(k + r_1 + 1, n - k - r_1 + 1)$$ \hspace{1cm} (4.3)

and

$$\hat{\theta}_{U/S} = \frac{\Gamma (r_1 + 1) \Gamma (r_2 + 1)}{H_2} \sum_{k=0}^{\infty} \binom{n-r}{k} A_{2k}^{-\left(r_1+1\right)} B_{2k}^{\left(r_2+1\right)} \text{Beta}(k + r_1 + 2, n - k - r_1 + 1).$$ \hspace{1cm} (4.4)

Here, $\Gamma (\cdot)$ and $\text{Beta} (\cdot)$ denote the gamma and the beta functions respectively. And where

$$H_2 = \Gamma (r_1 + 1) \Gamma (r_2 + 1) \sum_{k=0}^{\infty} \binom{n-r}{k} A_{2k}^{-\left(r_1+1\right)} B_{2k}^{\left(r_2+1\right)} \text{Beta}(k + r_1 + 1, n - k - r_1 + 1).$$

4.3.2. Bayes Estimators under GELF Assuming the Uniform Priors

The Bayes estimators under GELF are obtained by taking the expectations of the marginal posterior distributions as follows

$$\hat{\theta}_{U/G} = \left\{ E_{\theta_G} \left(\theta_{U/G}^{-c} \right)^{\frac{1}{c}} \right\}, \quad i = 1, 2 \quad \text{and} \quad \hat{P}_{U/G} = \left\{ E_{P_G} \left(P_{U/G}^{-c} \right)^{\frac{1}{c}} \right\}.$$

The expressions for the Bayes estimators under GELF are

$$\hat{\theta}_{U/G} = \left\{ \frac{\Gamma (r_1 + 1 - c) \Gamma (r_2 + 1)}{H_2} \sum_{k=0}^{\infty} \binom{n-r}{k} A_{2k}^{-\left(r_1+c-1\right)} B_{2k}^{\left(r_2+1\right)} \text{Beta}(k + r_1 + 1, n - k - r_1 + 1) \right\}^{\frac{1}{c}},$$ \hspace{1cm} (4.5)

$$\hat{\theta}_{2/G} = \left\{ \frac{\Gamma (r_1 + 1) \Gamma (r_2 + 1 - c)}{H_2} \sum_{k=0}^{\infty} \binom{n-r}{k} A_{2k}^{-\left(r_1+1\right)} B_{2k}^{\left(r_2+c-1\right)} \text{Beta}(k + r_1 + 1, n - k - r_1 + 1) \right\}^{\frac{1}{c}},$$ \hspace{1cm} (4.6)

and

$$\hat{P}_{U/G} = \left\{ \frac{\Gamma (r_1 + 1) \Gamma (r_2 + 1)}{H_2} \sum_{k=0}^{\infty} \binom{n-r}{k} A_{2k}^{-\left(r_1+1\right)} B_{2k}^{\left(r_2+1\right)} \text{Beta}(k + r_1 - c + 1, n - k - r_1 + 1) \right\}^{\frac{1}{c}}.$$ \hspace{1cm} (4.7)
4.3.3. Bayes Estimators with Importance Sampling Procedure

The joint uniform prior of \(\theta_1, \theta_2 \) and \(p \) given in (4.1) is incorporated with the likelihood (3.1), the resulting expression may be written as

\[
\psi_2 (\theta | x) \propto p^n (1 - p)^n \theta_1^n \theta_2^n \exp \left\{ \theta_1 \sum_{j=1}^{n_i} x_{ij} \right\}
\times \exp \left\{ -\theta_2 \sum_{j=1}^{n_i} \ln \left(1 + \frac{x_{2j}}{\delta} \right) \right\} \left\{ p e^{-\theta_1} + (1 - p) \left(1 + \frac{t}{\delta} \right)^{-\theta_2} \right\}^{n-r} \tag{4.8}
\]

\[
\psi_2 (\theta | x) \propto \Gamma_p \left(r_i + 1, \sum_{j=1}^{n_i} x_{ij} \right) \Gamma_p \left(r_j + 1, \sum_{j=1}^{n_j} \ln \left(1 + \frac{x_{2j}}{\delta} \right) \right) \text{Beta}_p \left(r_i + 1, r_j + 1 \right) h(\theta), \tag{4.9}
\]

where \(\Gamma_p (\cdot) \) and \(\text{Beta}_p (\cdot) \) denote the probability density functions of gamma and beta distributions respectively. And \(h(\theta) \) is given by

\[
h(\theta) = \left\{ p \exp (-\theta_1 t) + (1 - p) \left(1 + \frac{t}{\delta} \right)^{-\theta_2} \right\}^{n-r}. \tag{4.10}
\]

Bayes estimator with importance sampling (approximate Bayes estimators) can be found as

- Step 1: Generate \(\theta_1 \sim \Gamma_p \left(a_1 + r_i, \sum_{j=1}^{n_i} x_{ij} + b_1 \right), \theta_2 \sim \Gamma_p \left(a_2 + r_j, \sum_{j=1}^{n_j} \ln \left(1 + \frac{x_{2j}}{\delta} \right) + b_2 \right) \) and

\[
p \sim \text{Beta}_p \left(a_3 + r_i, b_3 + r_j \right).
\]

- Step 2: Obtain a set of points \((\theta_{11}, \theta_{21}, p_1), (\theta_{12}, \theta_{22}, p_2), \ldots, (\theta_{1M}, \theta_{2M}, p_M)\) as in Step 1.

- Step 3: The approximate Bayes estimator of \(g(\theta) \) can be determined as

\[
\hat{g}_{ISUS} = \frac{\sum_{k=1}^{M} g(\theta_{1k}, \theta_{2k}, p_k) h(\theta_{1k}, \theta_{2k}, p_k)}{\sum_{k=1}^{M} h(\theta_{1k}, \theta_{2k}, p_k)}.
\]

The approximate Bayes estimators under SELF are

\[
\hat{\theta}_{ISUS} = \frac{\sum_{k=1}^{1000} \theta_{1k} h(\theta_{1k}, \theta_{2k}, p_k)}{\sum_{k=1}^{1000} h(\theta_{1k}, \theta_{2k}, p_k)}, \quad i = 1, 2 \quad \text{and} \quad \hat{\theta}_{ISUS} = \frac{\sum_{k=1}^{1000} p_k h(\theta_{1k}, \theta_{2k}, p_k)}{\sum_{k=1}^{1000} h(\theta_{1k}, \theta_{2k}, p_k)}.
\]

And the approximate Bayes estimators under GELF are

\[
\hat{\theta}_{ISUG} = \left\{ \sum_{k=1}^{1000} \theta_{1k} h(\theta_{1k}, \theta_{2k}, p_k) \right\}^{1/2} \left\{ \sum_{k=1}^{1000} h(\theta_{1k}, \theta_{2k}, p_k) \right\}^{1/2}, \quad i = 1, 2 \quad \text{and} \quad \hat{\theta}_{ISUG} = \left\{ \sum_{k=1}^{1000} p_k h(\theta_{1k}, \theta_{2k}, p_k) \right\}^{1/2} \left\{ \sum_{k=1}^{1000} h(\theta_{1k}, \theta_{2k}, p_k) \right\}^{1/2}.
\]
4.3.4. Posterior Variances Assuming the Uniform Priors

Posterior variances determine the amount of uncertainty in the parameters. The expressions for the posterior variances are obtained from marginal posterior distributions.

\[
Var_2(\theta_1 | x) = \frac{\Gamma(r_1 + 3)}{H_2} \sum_{k=0}^{n-r} \binom{n-r}{k} A_{2k}^{(r_1 + 3)} B_{2k}^{(r_1 + 1)} \text{Beta}(k + r_1 + 1, n - k - r_1 + 1)
\]

\[
- \left\{ \frac{\Gamma(r_1 + 2)}{H_2} \binom{n-r}{k} A_{2k}^{(r_1 + 2)} B_{2k}^{(r_1 + 1)} \text{Beta}(k + r_1 + 1, n - k - r_1 + 1) \right\}^2,
\]

\[
(4.11)
\]

\[
Var_2(\theta_2 | x) = \frac{\Gamma(r_2 + 3)}{H_2} \sum_{k=0}^{n-r} \binom{n-r}{k} A_{2k}^{(r_2 + 3)} B_{2k}^{(r_2 + 1)} \text{Beta}(k + r_2 + 1, n - k - r_2 + 1)
\]

\[
- \left\{ \frac{\Gamma(r_2 + 2)}{H_2} \binom{n-r}{k} A_{2k}^{(r_2 + 2)} B_{2k}^{(r_2 + 1)} \text{Beta}(k + r_2 + 1, n - k - r_2 + 1) \right\}^2
\]

\[
(4.12)
\]

\[
Var_2(p | x) = \frac{\Gamma(r_1 + 1)}{n-r} \frac{\Gamma(r_2 + 1)}{k} \sum_{k=0}^{n-r} \binom{n-r}{k} A_{2k}^{(r_1 + 1)} B_{2k}^{(r_2 + 1)} \text{Beta}(k + r_1 + 1, n - k - r_1 + 1)
\]

\[
- \left\{ \frac{\Gamma(r_1 + 1)}{n-r} \frac{\Gamma(r_2 + 1)}{k} \binom{n-r}{k} A_{2k}^{(r_1 + 1)} B_{2k}^{(r_2 + 1)} \text{Beta}(k + r_1 + 1, n - k - r_1 + 1) \right\}^2
\]

\[
(4.13)
\]

4.4. Posterior Distribution Assuming the Jeffreys Priors

Jeffreys prior is a very famous prior among noninformative priors. It is based on observed data (see Jeffreys (1961)) and extracted from Fisher’s information matrix. We assume the Jeffreys prior is a uniform distribution over (0,1), where \(\theta_i \) is given by \(-E\left\{\frac{\partial^2 f(x | \theta_i)}{\partial \theta_i^2}\right\} \), and \(f(x | \theta_i) \) are given in (2.2) and (2.3). And prior distribution of mixing parameter \(p \) is assumed a uniform distribution over (0,1). The independent joint prior distribution of \(\theta_1 \), \(\theta_2 \) and \(p \) in density kernel form is

\[
\pi_3(\theta) \propto \frac{1}{\theta_1 \theta_2}, \quad \theta_1, \theta_2 > 0, \quad 0 < p < 1
\]

(4.14)

The joint posterior distribution is obtained by incorporating the density kernel (4.14) with the likelihood (3.2). The marginal posterior distributions are obtained by integrating out the irrelevant parameters.

4.4.1. Bayes Estimators under SELF Assuming the Jeffreys Priors

The expressions for the Bayes estimators under SELF are

\[
\hat{\theta}_{JS} = \frac{\Gamma(r_1 + 1) \Gamma(r_2) n-r} {H_3} \sum_{k=0}^{n-r} \binom{n-r}{k} A_{2k}^{(r_1 + 1)} B_{2k}^{r} \text{Beta}(k + r_1 + 1, n - k - r_1 + 1)
\]

(4.15)
\[
\hat{\theta}_{2JS} = \frac{\Gamma(r_1)\Gamma(r_2 + 1)}{H_3} \sum_{k=0}^{n-r} \binom{n-r}{k} A_{2k}^{-\gamma} B_{2k}^{-\gamma} \text{Beta}(k + r_1 + 1, n - k - r_1 + 1)
\] (4.16)
and
\[
\hat{p}_{JS} = \frac{\Gamma(r_1)\Gamma(r_2)}{H_3} \sum_{k=0}^{n-r} \binom{n-r}{k} A_{2k}^{-\gamma} B_{2k}^{-\gamma} \text{Beta}(k + r_1 + 2, n - k - r_1 + 1).
\] (4.17)

Here, \(H_3 \) is a constant and is given by
\[
H_3 = \Gamma(r_1)\Gamma(r_2) \sum_{k=0}^{n-r} \binom{n-r}{k} A_{2k}^{-\gamma} B_{2k}^{-\gamma} \text{Beta}(k + r_1 + 1, n - k - r_1 + 1).
\]

4.4.2. Bayes Estimators under GELF Assuming the Jeffreys Priors
The expressions for the Bayes estimators under GELF are
\[
\hat{\theta}_{1JG} = \left\{ \frac{\Gamma(r_1 - c)\Gamma(r_2)}{H_3} \sum_{k=0}^{n-r} \binom{n-r}{k} A_{2k}^{-\gamma-c} B_{2k}^{\gamma-c} \text{Beta}(k + r_1 - c + 1, n - k - r_1 + 1) \right\}^{\frac{1}{\gamma-c}},
\] (4.18)
\[
\hat{\theta}_{2JG} = \left\{ \frac{\Gamma(r_1)\Gamma(r_2 - c)}{H_3} \sum_{k=0}^{n-r} \binom{n-r}{k} A_{2k}^{-\gamma} B_{2k}^{\gamma-c} \text{Beta}(k + r_1 + 1, n - k - r_1 + 1) \right\}^{\frac{1}{\gamma-c}},
\] (4.19)
and
\[
\hat{p}_{JG} = \left\{ \frac{\Gamma(r_1)\Gamma(r_2)}{H_3} \sum_{k=0}^{n-r} \binom{n-r}{k} A_{2k}^{-\gamma} B_{2k}^{\gamma-c} \text{Beta}(k + r_1 - c + 1, n - k - r_1 + 1) \right\}^{\frac{1}{\gamma-c}}.
\] (4.20)

4.4.3. Bayes Estimators with Importance Sampling Procedure
The joint Jeffreys prior of parameters given in (4.14) is incorporated with the likelihood (3.1) to produce the following expression
\[
\psi_3(\theta | x) \propto p^n (1 - p)^{n_p} \theta_1^{\gamma-1} \theta_2^{\gamma-1} \exp\left\{ -\theta_i \sum_{j=1}^{n_p} x_{ij} \right\}
\]
\[
\times \exp\left\{ -\theta_2 \sum_{j=1}^{n_p} \ln \left(1 + \frac{x_{ij}}{\delta} \right) \right\} \left\{ p e^{-\theta_1} + (1 - p) \left(1 + \frac{t}{\delta} \right) \right\}^{n-r}
\] (4.21)
\[
\psi_3(\theta | x) \propto \Gamma_p \left(r_1, \sum_{j=1}^{n_p} x_{ij} \right) \Gamma_p \left(r_2, \sum_{j=1}^{n_p} \ln \left(1 + \frac{x_{ij}}{\delta} \right) \right) \text{Beta}_p (r_1 + 1, r_2 + 1) h(\theta),
\] (4.22)
where \(h(\theta) \) is defined in (4.10). Following the procedure of determining approximate Bayes estimators described in Section 4.3.3, the expressions of approximate Bayes estimators under SELF are
\[
\hat{\theta}_{1IS JS} = \frac{\sum_{k=1}^{1000} \theta_i h(\theta_{1k}, \theta_{2k}, p_i)}{\sum_{k=1}^{1000} h(\theta_{1k}, \theta_{2k}, p_i)}, \quad i = 1, 2 \quad \text{and} \quad \hat{p}_{1IS JS} = \frac{\sum_{k=1}^{1000} p_i h(\theta_{1k}, \theta_{2k}, p_i)}{\sum_{k=1}^{1000} h(\theta_{1k}, \theta_{2k}, p_i)}.
\]
And the approximate Bayes estimators under GELF are
\[
\hat{\theta}_{ISG}^{(i)} = \left\{ \frac{\sum_{k=1}^{1000} \theta_i^k h(\theta_1^k, \theta_2^k, p_k)}{\sum_{k=1}^{1000} h(\theta_1^k, \theta_2^k, p_k)} \right\}^{1/2}, i = 1, 2 \quad \text{and} \quad \hat{p}_{ISG} = \left\{ \frac{\sum_{k=1}^{1000} p_k^k h(\theta_1^k, \theta_2^k, p_k)}{\sum_{k=1}^{1000} h(\theta_1^k, \theta_2^k, p_k)} \right\}^{1/2}.
\]

4.4.4. Posterior Variances Assuming the Jeffreys Priors

From the marginal posterior distributions assuming Jeffreys priors, the expressions for the posterior variances are
\[
\text{Var}_j(\theta_1 | x) = \frac{\Gamma(r_i + 2) \Gamma(r_z) \sum_{k=0}^{n-r} \binom{n-r}{k} A_{z+k}^{r-k} B_{z+k}^{r-k} \text{Beta}(k + r_i + 1, n - k - r_i + 1)}{H_3^{r_i} H_3^{r_z} \sum_{k=0}^{n-r} \binom{n-r}{k} A_{z+k}^{r-k} B_{z+k}^{r-k} \text{Beta}(k + r_i + 1, n - k - r_i + 1)}^{2}, (4.23)
\]
\[
\text{Var}_j(\theta_2 | x) = \frac{\Gamma(r_i) \Gamma(r_z + 2) \sum_{k=0}^{n-r} \binom{n-r}{k} A_{z+k}^{r-k} B_{z+k}^{r-k} \text{Beta}(k + r_i + 1, n - k - r_i + 1)}{H_3^{r_i} H_3^{r_z + 2} \sum_{k=0}^{n-r} \binom{n-r}{k} A_{z+k}^{r-k} B_{z+k}^{r-k} \text{Beta}(k + r_i + 1, n - k - r_i + 1)}^{2}, (4.24)
\]
and
\[
\text{Var}_j(p | x) = \frac{\Gamma(r_i) \Gamma(r_z) \sum_{k=0}^{n-r} \binom{n-r}{k} A_{z+k}^{r-k} B_{z+k}^{r-k} \text{Beta}(k + r_i + 3, n - k - r_i + 1)}{H_3^{r_i} H_3^{r_z} \sum_{k=0}^{n-r} \binom{n-r}{k} A_{z+k}^{r-k} B_{z+k}^{r-k} \text{Beta}(k + r_i + 3, n - k - r_i + 1)}^{2}. (4.25)
\]

5. Posterior Predictive Distributions

Statistical prediction deals with estimating the future value(s) of observed random variable using the limited information available at hand. Bayesian statistics provides techniques of predicting the future value(s) of observed random variable after observing only a single random variable. We derive posterior predictive distributions and obtain Bayes point predictors as well as predictive intervals.

5.1. Posterior Predictive Distribution Assuming the Uniform Priors

Using the joint posterior distribution assuming the uniform priors and the mixture model (2.4), the predictive distribution for the future observation \(Y = X_{n+1} \) given data is defined as
\[
f(y | x) = \int \int g_1(\theta | x) f(y | \theta) d\theta_1 d\theta_2 dp.
\]
After substituting the values and simplification, we get

\[
f(y|x) = \frac{1}{H_2} \left[\Gamma(r_1 + 2) \Gamma(r_2 + 1) \sum_{k=0}^{n-r} \binom{n-r}{k} (A_{2k} + y)^{-(r+2)} B_{2k}^{(r+1)} \right] \times \text{Beta} \left(k + r_1 + 2, n - k - r_1 + 1 \right) + \frac{\Gamma(r_1 + 1) \Gamma(r_2 + 2)}{y + \delta} \times \sum_{k=0}^{n-r} \binom{n-r}{k} A_{2k}^{(r_1+1)} \left[B_{2k} + \ln \left(1 + \frac{y}{\delta} \right) \right]^{-(r+2)} \text{Beta} \left(k + r_1 + 1, n - k - r_1 + 2 \right),
\]

where \(A_{2k}, B_{2k} \) and \(H_2 \) are defined as above. Suppose \(L \) and \(U \) be the lower and upper bounds of Bayesian predictive interval. A 100(1-\(\alpha \))% predictive interval i.e., \((L, U)\) is obtained as

\[
\int_0^L f(y|x) dy = \frac{\alpha}{2} = \int_U^\infty f(y|x) dy.
\]

After some simplifications, these equations may also be expressed as

\[
\alpha = \frac{1}{H_2} \left[\Gamma(r_1 + 2) \Gamma(r_2 + 1) \sum_{k=0}^{n-r} \binom{n-r}{k} \left(A_{2k}^{(r_1+1)} - (A_{2k} + L)^{-(r+1)} \right) B_{2k}^{(r+1)} \right] \times \text{Beta} \left(k + r_1 + 2, n - k - r_1 + 1 \right) + \frac{\Gamma(r_1 + 1) \Gamma(r_2 + 2)}{r_2 + 1} \times \sum_{k=0}^{n-r} \binom{n-r}{k} A_{2k}^{(r_1+1)} \left[B_{2k} + \ln \left(1 + \frac{L}{\delta} \right) \right]^{-(r+1)} \text{Beta} \left(k + r_1 + 1, n - k - r_1 + 2 \right),
\]

and

\[
\alpha = \frac{1}{H_2} \left[\Gamma(r_1 + 2) \Gamma(r_2 + 1) \sum_{k=0}^{n-r} \binom{n-r}{k} \left(A_{2k}^{(r_1+1)} - (A_{2k} + U)^{-(r+1)} \right) B_{2k}^{(r+1)} \right] \times \text{Beta} \left(k + r_1 + 2, n - k - r_1 + 1 \right) + \frac{\Gamma(r_1 + 1) \Gamma(r_2 + 2)}{r_2 + 1} \times \sum_{k=0}^{n-r} \binom{n-r}{k} A_{2k}^{(r_1+1)} \left[B_{2k} + \ln \left(1 + \frac{U}{\delta} \right) \right]^{-(r+1)} \text{Beta} \left(k + r_1 + 1, n - k - r_1 + 2 \right).
\]

5.2. Bayes Point Predictor Assuming the Uniform Priors

Bayes point predictor (median) is obtained using the posterior predictive distribution (4.26). A solution of the following equation gives Bayes point predictor (\(M \))

\[
\frac{1}{2} = \frac{1}{H_2} \left[\Gamma(r_1 + 2) \Gamma(r_2 + 1) \sum_{k=0}^{n-r} \binom{n-r}{k} \left(A_{2k}^{(r_1+1)} - (A_{2k} + M)^{-(r+1)} \right) B_{2k}^{(r+1)} \right] \times \text{Beta} \left(k + r_1 + 2, n - k - r_1 + 1 \right) + \frac{\Gamma(r_1 + 1) \Gamma(r_2 + 2)}{r_2 + 1} \times \sum_{k=0}^{n-r} \binom{n-r}{k} A_{2k}^{(r_1+1)} \left[B_{2k} + \ln \left(1 + \frac{M}{\delta} \right) \right]^{-(r+1)} \text{Beta} \left(k + r_1 + 1, n - k - r_1 + 2 \right).
\]
\[\times \text{Beta} \left(k + r_i + 2, n - k - r_i + 1 \right) + \frac{\Gamma(r_i + 1) \Gamma(r_2 + 2)}{r_2 + 1} \]
\[
\times \sum_{k=0}^{\nu-2} \binom{n-r}{k} A_{2k}^{\gamma} \left(B_{2k}^{\gamma} - \left(B_{2k} + \ln \left(1 + \frac{M}{\delta} \right) \right)^{\gamma} \right) \text{Beta} \left(k + r_i + 1, n - k - r_i + 2 \right) \].

5.3. Posterior Predictive Distribution Assuming the Jeffreys Priors

Using the joint posterior distribution assuming the Jeffreys priors and the mixture model (2.4), predictive distribution for the future observation \(Y = X_{n+1} \) given data is defined as

\[
f(y|x) = \frac{1}{H_3} \left[\Gamma(r_i + 1) \Gamma(r_2) \sum_{k=0}^{\nu-2} \binom{n-r}{k} \left(A_{2k} + y \right)^{(r_i+1)} B_{2k}^{\gamma} \right.
\]
\[
\times \text{Beta} \left(k + r_i + 2, n - k - r_i + 1 \right) + \frac{\Gamma(r_i) \Gamma(r_2 + 1)}{y + \delta} \]
\[
\times \sum_{k=0}^{\nu-2} \binom{n-r}{k} A_{2k}^{\gamma} \left(B_{2k} + \ln \left(1 + \frac{y}{\delta} \right) \right)^{(r_i+1)} \text{Beta} \left(k + r_i + 1, n - k - r_i + 2 \right) \],

where \(A_{2k} \), \(B_{2k} \) and \(H_3 \) are defined as above. A \(100(1-\alpha)\% \) predictive interval i.e., \((L,U)\) is obtained as

\[
\frac{\alpha}{2} = \frac{1}{H_3} \left[\Gamma(r_i + 1) \Gamma(r_2) \sum_{k=0}^{\nu-2} \binom{n-r}{k} \left(A_{2k}^{\gamma} - \left(A_{2k} + L \right)^{\gamma} \right) B_{2k}^{\gamma} \right.
\]
\[
\times \text{Beta} \left(k + r_i + 2, n - k - r_i + 1 \right) + \frac{\Gamma(r_i) \Gamma(r_2 + 1)}{r_2} \]
\[
\times \sum_{k=0}^{\nu-2} \binom{n-r}{k} A_{2k}^{\gamma} \left(B_{2k}^{\gamma} - \left(B_{2k} + \ln \left(1 + \frac{L}{\delta} \right) \right)^{\gamma} \right) \text{Beta} \left(k + r_i + 1, n - k - r_i + 2 \right) \] \quad (4.31)

and

\[
\frac{\alpha}{2} = \frac{1}{H_3} \left[\Gamma(r_i + 1) \Gamma(r_2) \sum_{k=0}^{\nu-2} \binom{n-r}{k} \left(A_{2k}^{\gamma} - \left(A_{2k} + U \right)^{\gamma} \right) B_{2k}^{\gamma} \right.
\]
\[
\times \text{Beta} \left(k + r_i + 2, n - k - r_i + 1 \right) + \frac{\Gamma(r_i) \Gamma(r_2 + 1)}{r_2} \]
\[
\times \sum_{k=0}^{\nu-2} \binom{n-r}{k} A_{2k}^{\gamma} \left(B_{2k} + \ln \left(1 + \frac{U}{\delta} \right) \right)^{\gamma} \text{Beta} \left(k + r_i + 1, n - k - r_i + 2 \right) \].

5.4. Bayes Point Predictor Assuming the Jeffreys Priors

Bayes point predictor (median) is obtained using the posterior predictive distribution (4.26). A solution of the following equation gives Bayes point predictor \(M \)
\[
\frac{1}{2} = \frac{1}{H_3} \left[\frac{\Gamma(r_i + 1)\Gamma(r_2)}{r_i} \sum_{k=0}^{n-r} \binom{n-r}{k} \left\{ A_{2k}^{\gamma_i} - (A_{2k} + M)^{-\gamma_i} \right\} B_{2k}^{\gamma_i} \times \text{Beta} \left(k + r_i + 2, n-k-r_i + 1 \right) \right.
\]
\[
+ \Gamma(r_i + 1) \Gamma(r_2 + 1) \frac{\Gamma(r_2)}{r_2} \sum_{k=0}^{n-r} \binom{n-r}{k} A_{2k}^{\gamma_i} \left\{ B_{2k}^{\gamma_i} - \left(B_{2k} + \ln \left(\frac{1}{1+\frac{M}{\delta}} \right) \right)^{-\gamma_i} \right\} \text{Beta} \left(k + r_i + 1, n-k-r_i + 2 \right) \].
\]

\((4.33) \)

6. A Simulation Study

Following the procedure of simulation from Saleem et al. (2010), samples of different sizes \(n = 25, 50, 100 \) and 200 are generated from the mixture model given in (2.4). The censoring times \(T \in (0.30,0.40) \) are chosen for the parameters choice \((\theta_1,\theta_2) \in (10,10) \) and \(p \in (0.40,0.50) \). Each time 10000 samples are generated to obtain estimates as well as their estimated risks with the help of Mathematica software.

Tables 6.1–6.6 show the estimates and their estimated risks assuming uniform priors. In Tables 6.1 and 6.4, the estimates and their risks are computed under SELF. For small sample size, the ML method provides accurate estimates with small estimated risks as compared to the Bayes estimates. Actual and approximate Bayes estimates computed under SELF are approximately same and have small estimated risks. The estimates and their estimated risks are computed under GELF for \(c = 1.2 \) and \(c = -1.2 \) are shown in Tables 6.2 and 6.3, respectively. The performance of Bayes estimates computed under GELF are slightly poor than the Bayes estimates computed under SELF, however, the estimated risks are very small under GELF. It is also observed that the Bayes estimate of \(\theta_2 \) is over estimated for \(c = 1.2 \) in most of the cases. As the value of \(T \) increases, the estimates get more close to the assumed values and their estimated risks also decrease. The performance of proportion \(p \) is good under SELF with small estimated risk. Hence, it is concluded that the ML method gives more accurate estimates for the small sample size as compared to the Bayes estimates assuming uniform priors. For large sample size, ML estimates do not differ much from Bayes estimates. Also, the Bayes estimates are precise under SELF but estimated risks are small under GELF.

Tables 6.7–6.12 show the estimates and their estimated risks assuming Jeffreys priors. In Tables 6.7 and 6.10, the ML method provides accurate estimates for small sample size. But when the sample size increases the Bayes estimates assuming Jeffreys priors give more accurate estimates than ML estimates with small estimated risks. Actual and approximate Bayes estimates do not differ much but approximate Bayes estimates are precise than actual Bayes estimates. Large values of time \(T \) result in good agreement with assumed values of the parameters. The
approximate Bayes estimates have the smallest estimated risks for large values of \(T \). Tables 6.8 and 6.9 show the estimates and their estimated risks computed under GELF for \(c = 1.2 \) and \(c = -1.2 \) respectively. For \(c = -1.2 \), the under estimation is considered more serious but \(\theta_1 \) is under estimated in some cases using small sample sizes. And the over estimation is considered more serious for \(c = 1.2 \) but \(\theta_2 \) is over estimated in some cases using large sample sizes. Approximate Bayes estimates assuming Jeffreys priors are more precise than actual Bayes estimates. Approximate Bayes estimates are more reliable for medium and large sample sizes. The estimated risks of estimates are very small under GELF than under SELF and the risk decreases by increasing \(n \) and \(T \). It is observed that the approximate Bayes estimates are better in estimating the parameters \(\theta_1 \) and \(\theta_2 \) when the Jeffreys priors are assumed.

Table 6.13 shows the Bayes point predictors (medians) and 99% Bayesian predictive intervals. The length of predictive intervals assuming uniform priors are small for medium and large sample sizes. And the length decreases by increasing the value of \(T \). The predictive intervals assuming Jeffreys prior are wider than the intervals assuming uniform priors. More the proportion of exponential data in the mixture data, narrower the length of predictive interval becomes.

7. A Real Life Example

The analysis of mixture model (2.4) is carried out using a data set taken form Mendenhall and Hader (1958). The data represent the failure times of radio transmitter receivers in a commercial airline. The failure time is set at 630 hours due to general policy of the airline. The first 100 observations of mixture data seem to follow the mixture model developed in this study with parameters \(\theta_1 = 0.00476 \), \(\theta_2 = 149.370 \) and \(\delta = 28397 \). Since \(\delta \) is considered a known constant, so our job is to estimate \(\theta_1 \) and \(\theta_2 \) only. The parameters are estimated using ML and Bayesian methods along with their estimated risks.

Tables 7.1–7.3 show the estimates and their estimated risks using real data set. The ML method underestimates the parameters with larger risks. For small test time \(T \), the ML method fails to estimate the parameters precisely while Bayes estimators have small estimated risks. The risks of Bayes estimators decrease quickly when the termination time increases. Among the estimators, the performance of parameter of Lomax distribution (\(\theta_2 \)) is poor with larger risk. The estimated risks of Bayes estimators assuming Jeffreys priors are relatively large. The estimated risks of ML and Bayes estimators under GELF are significantly small. For \(c = 1.2 \), there is only one instance where the parameter \(\theta_2 \) is over estimated. The estimated risks show decreasing trend when \(T \) increases. The ML and approximate Bayes estimators have slightly larger risks for
\(c = -1.2 \). And Bayes estimators underestimate the parameters but retain less difference between assumed parameters and the Bayes estimates.

Table 7.4 presents the Bayes point predictor and 99\% Bayesian predictive intervals using real data set. For a maximum value of \(T = 630 \) hours, the median predicted lives of transmitter receivers are 137 hours and 140 hours assuming uniform and Jeffreys priors respectively. And the predicted lives are expected to fall between 0.98 hours to 1116 hours using uniform priors and between 1 hour to 1139 hours using Jeffreys priors. It is observed that the length of predicted interval is wide using Jeffreys priors.

8. Conclusion of the Study

In this study, a two-component mixture of two different lifetime distributions is proposed i.e., exponential and Lomax distributions. For small sample size, the ML method provides accurate estimates with small estimated risks. Actual Bayes estimators perform better for medium and large sample sizes and their estimated risks are small. The parameter \(\theta_2 \) is underestimated in some cases for \(c = 1.2 \), assuming uniform priors. We recommend actual Bayes estimators when uniform priors are taken and approximate Bayes estimators otherwise. Bayes estimators perform better for large values of \(T \). The estimated risks of component parameters \((\theta_1, \theta_2) \) are much small under GELF and the estimated risk of parameter \(p \) is small under SELF. For the estimation of component parameters, it is observed that Jeffreys priors are preferable over uniform priors. Another interesting remark is the reduction in risk of component parameter by increasing the proportion of that component in the mixture data.

For real data set, the ML method underestimates the parameters and their estimated risks are large. The estimated risks of Bayes estimators decrease quickly when the termination time increases. Among the estimators, the parameter \(\theta_2 \) has poor estimate and high estimated risk as well. The estimated risks of Bayes estimators assuming Jeffreys priors are relatively large when computed under SELF. The estimated risks computed under GELF are significantly small. The estimated risks show decreasing trend when the termination time increases. The real data set show that Bayes estimators perform better than ML estimators. Observing the predictive estimates, we can say that a maximum functional transmitter receiver can have an average predicted life of 140 hours. The approximate 99\% predicted lower bound is 1 hour and 1116 hours is predicted upper bound.
REFERENCES

Al-Hussaini, E. K., Jaheen, Z. F., Nigm, A. M. (2001). Bayesian prediction based on finite mixtures of Lomax components model and type-I censoring. *Statistics*, 35, 259–268.

Bosch-Domènech, A., Montalvo, J. G., Nagel, R., Satorra, A. (2010). A finite mixture analysis of beauty-contest data using generalized beta distributions. *Experimental Economics*, 13, 461−475.

Calabria, R., Pulcini, G. (1996). Point estimation under asymmetric loss functions for left truncated exponential samples. *Communication in Statistics: Theory and Methods*, 25, 585−600.

Everitt, B. S., Hand, D. J. (1981). *Finite Mixture Distributions*, Chapman and Hall, London.

Erişoğlu, Ü., Erişoğlu, M., Erol, H. (2011). A mixture model of two different distributions approach to the analysis of heterogeneous survival data. *International Journal of Computational and Mathematical Sciences*, 5, 75−79.

Ghosh, J. K., Delampady, M., Samanta, T. (2006). *An Introduction to Bayesian Analysis: Theory and Methods*. Springer.

Hassan, A. S., Al-Ghamdi, A. S. (2009). Optimum step stress accelerated life testing for Lomax distribution. *Journal of Applied Sciences Research*, 5, 2153−2164.

Jeffreys, H. (1961). *Theory of Probability*, Oxford University Press, London.

Joffe, A. D. (1964). Mixed exponential estimation by the method of half moments. *Journal of the Royal Statistical Society*, Series C, 13, 91–98.

McLachlan, G., Peel, D. (2000). *Finite Mixture Models*. Wiley, New York.

Mendenhall, W., Hader, R. J. (1958). Estimation of the parameter of mixed exponentially distributed random failure time distributions from censored life test data. *Biometrika*, 45, 504–520.

Saleem, M., Aslam, M., Economou, P. (2010). On the Bayesian analysis of the mixture of power function distribution using the complete and the censored sample. *Journal of Applied Statistics*, 37, 25–40.

Titterington, D. M., Smith, A. F. M., Makov, U. E. (1992). *Statistical Analysis of Finite Mixture Distributions*. Wiley, New York.

Zellner, A. (1986). Bayesian estimation and prediction using asymmetric loss functions. *Journal of the American Statistical Association*, 81, 446−451.
Appendix:

Table 6.1: ML Estimates, Bayes Estimates and their Estimated Risks under SELF Assuming the Uniform Priors with Parameters $\theta_1 = 10$, $\theta_2 = 10$ and $p = 0.4$.

T	n	ML Estimates	Approximate Bayes Estimates	Actual Bayes Estimates						
		$\hat{\theta}_{1ML}$	$\hat{\theta}_{2ML}$	\hat{p}_{ML}	$\hat{\theta}_{1ISUS}$	$\hat{\theta}_{2ISUS}$	\hat{p}_{ISUS}	$\hat{\theta}_{UUG}$	$\hat{\theta}_{US}$	\hat{p}_{US}
25	9.94910	9.92075	0.39973	10.83127	10.82868	0.40962	10.85804	10.83304	0.40940	
50	2.71689	2.58668	0.00021	3.74296	3.87495	0.00027	3.71213	3.85748	0.00027	
0.4	2.46188	2.09489	0.00014	2.60881	2.43809	0.00017	2.61155	2.33307	0.00014	
100	2.01693	1.63145	0.00008	2.09513	1.73647	0.00010	2.01581	1.73645	0.00008	
200	10.07153	10.09974	0.40038	10.16073	10.28195	0.40199	10.18235	10.22917	0.40186	
1.40577	1.00183	0.00004	1.45691	1.05285	0.00007	1.40837	1.04144	0.00004		
25	9.89073	9.89064	0.39993	10.81968	10.85877	0.40853	10.80154	10.69371	0.40854	
50	2.65203	2.48076	0.00007	3.77185	3.67141	0.00016	3.67959	3.50240	0.00014	
0.5	2.33753	2.01100	0.00005	2.59134	2.40947	0.00008	2.61669	2.23528	0.00007	
100	10.03285	10.05201	0.40017	10.25803	10.28567	0.40274	10.25639	10.26701	0.40260	
1.86271	1.53111	0.00003	2.04711	1.61013	0.00004	1.94461	1.61951	0.00003		
200	10.07638	10.08245	0.40018	10.18153	10.22504	0.40158	10.18575	10.19348	0.40145	
1.33166	0.90119	0.00002	1.36556	0.95999	0.00002	1.36528	0.93875	0.00002		

Table 6.2: ML Estimates, Bayes Estimates and their Estimated Risks under GELF Assuming the Uniform Priors with Parameters $\theta_1 = 10$, $\theta_2 = 10$, $p = 0.4$ and $c = 1.2$.

T	n	ML Estimates	Approximate Bayes Estimates	Actual Bayes Estimates						
		$\hat{\theta}_{1ML}$	$\hat{\theta}_{2ML}$	\hat{p}_{ML}	$\hat{\theta}_{1ISUG}$	$\hat{\theta}_{2ISUG}$	\hat{p}_{ISUG}	$\hat{\theta}_{UUG}$	$\hat{\theta}_{US}$	\hat{p}_{US}
25	9.89595	9.94443	0.39988	9.56690	9.99357	0.38378	9.55737	9.99027	0.38374	
50	0.01800	0.01884	0.00099	0.02071	0.01806	0.00221	0.02067	0.01778	0.00214	
0.4	9.93816	10.02108	0.40035	9.73385	10.05304	0.39232	9.72900	10.04334	0.39221	
100	0.01824	0.01570	0.00062	0.01771	0.01472	0.00091	0.01743	0.01461	0.00084	
200	9.99920	10.08621	0.40076	9.88023	10.12501	0.39687	9.87453	10.10424	0.39675	
0.01507	0.01173	0.00037	0.01442	0.01117	0.00047	0.01422	0.01117	0.00038		
100	0.01034	0.00716	0.00020	0.01002	0.00700	0.00031	0.00997	0.00698	0.00019	
25	9.90907	9.90989	0.39969	9.63868	9.92899	0.38300	9.63428	9.92363	0.38303	
50	0.02009	0.01866	0.00038	0.02114	0.01858	0.00178	0.02112	0.01842	0.00171	
0.5	9.95736	9.99371	0.40047	9.79373	10.00626	0.39196	9.79239	10.00387	0.39201	
100	0.01753	0.01515	0.00022	0.01735	0.01449	0.00055	0.01721	0.01440	0.00050	
200	0.01472	0.01036	0.00013	0.01444	0.01008	0.00022	0.01437	0.01006	0.00019	
0.00931	0.00630	0.00007	0.00919	0.00620	0.00010	0.00916	0.00623	0.00008		
Table 6.3: ML Estimates, Bayes Estimates and their Estimated Risks under GELF Assuming the Uniform Priors with Parameters $\theta_1 = 10$, $\theta_2 = 10$, $p = 0.4$ and $c = -1.2$.

T	n	$\hat{\theta}_{1\text{ML}}$	$\hat{\theta}_{2\text{ML}}$	\hat{p}_{ML}	$\hat{\theta}_{1\text{ISU}}$	$\hat{\theta}_{2\text{ISU}}$	\hat{p}_{ISU}	$\hat{\theta}_{\text{US}}$	$\hat{\theta}_{2\text{US}}$	\hat{p}_{US}
25	40	9.89748	9.90553	0.39942	10.94156	10.87540	0.41116	10.93392	10.87566	0.41117
		0.02143	0.02025	0.00104	0.02138	0.02014	0.00133	0.02125	0.01999	0.00126
50	40	9.98437	9.98520	0.40018	10.51008	10.49545	0.40654	10.50576	10.49616	0.40658
		0.01927	0.01651	0.00064	0.01701	0.01534	0.00074	0.01687	0.01526	0.00068
	100	10.03181	10.07862	0.40067	10.29665	10.35579	0.40422	10.29469	10.34436	0.40401
		0.01589	0.01154	0.00038	0.01442	0.01117	0.00047	0.01428	0.01112	0.00039
	200	10.06508	10.11790	0.40045	10.20963	10.28186	0.40224	10.19294	10.25689	0.40222
		0.01064	0.00673	0.00018	0.01019	0.00672	0.00030	0.01008	0.00672	0.00019

Table 6.4: ML Estimates, Bayes Estimates and their Estimated Risks under SELF Assuming the Uniform Priors with Parameters $\theta_1 = 10$, $\theta_2 = 10$ and $p = 0.5$.

T	n	$\hat{\theta}_{1\text{ML}}$	$\hat{\theta}_{2\text{ML}}$	\hat{p}_{ML}	$\hat{\theta}_{1\text{ISU}}$	$\hat{\theta}_{2\text{ISU}}$	\hat{p}_{ISU}	$\hat{\theta}_{\text{US}}$	$\hat{\theta}_{2\text{US}}$	\hat{p}_{US}
25	40	9.86741	9.89690	0.40006	10.88592	10.76596	0.41066	10.88822	10.76196	0.41072
		0.02187	0.01951	0.00031	0.02202	0.01956	0.00077	0.02193	0.01945	0.00074
50	40	9.93040	10.00538	0.40003	10.50419	10.45535	0.40576	10.50447	10.45288	0.40577
		0.01862	0.01561	0.00023	0.01744	0.01484	0.00038	0.01737	0.01480	0.00034
	100	10.03264	10.08778	0.40019	10.28633	10.32265	0.40316	10.28762	10.31833	0.40317
		0.01483	0.01057	0.00013	0.01407	0.01040	0.00019	0.01399	0.01038	0.00016
	200	10.07407	10.08402	0.40031	10.20106	10.20775	0.40185	10.19798	10.20445	0.40188
		0.00949	0.00640	0.00007	0.00928	0.00640	0.00010	0.00927	0.00640	0.00008
Table 6.5: ML Estimates, Bayes Estimates and their Estimated Risks under GELF Assuming Uniform Priors with Parameters $\theta_1 = 10$, $\theta_2 = 10$, $p = 0.5$ and $c = 1.2$.

T	n	ML Estimates	Approximate Bayes Estimates	Actual Bayes Estimates						
		$\hat{\theta}_{1ML}$	$\hat{\theta}_{2ML}$	\hat{p}_{ML}	$\hat{\theta}_{1SUG}$	$\hat{\theta}_{2SUG}$	\hat{p}_{SUG}	$\hat{\theta}_{1UG}$	$\hat{\theta}_{2UG}$	\hat{p}_{UG}
25	50	9.66722	9.05286	0.49152	9.06313	9.47625	0.47592	9.04546	9.43064	0.47569
	0.02235	0.02616	0.00088	0.02561	0.03079	0.00245	0.02539	0.02832	0.00234	
0.4	100	9.99429	9.92220	0.50003	9.84213	9.95345	0.49019	9.83457	9.93681	0.49006
	0.01735	0.01718	0.00043	0.01637	0.01603	0.00074	0.01628	0.01584	0.00067	
100	1.00064	10.03842	0.50007	10.02117	10.06657	0.49526	10.01313	10.04662	0.49506	
	0.01314	0.01305	0.00026	0.01240	0.01237	0.00034	0.01229	0.01229	0.00030	
200	10.08019	10.09835	0.50026	10.04918	10.14502	0.49808	10.03134	10.10805	0.49781	
	0.00878	0.00844	0.00014	0.00839	0.00816	0.00019	0.00840	0.00813	0.00015	

Table 6.6: ML Estimates, Bayes Estimates and their Estimated Risks under GELF Assuming Uniform Priors with Parameters $\theta_1 = 10$, $\theta_2 = 10$, $p = 0.5$ and $c = -1.2$.

T	n	ML Estimates	Approximate Bayes Estimates	Actual Bayes Estimates						
		$\hat{\theta}_{1ML}$	$\hat{\theta}_{2ML}$	\hat{p}_{ML}	$\hat{\theta}_{1SUG}$	$\hat{\theta}_{2SUG}$	\hat{p}_{SUG}	$\hat{\theta}_{1UG}$	$\hat{\theta}_{2UG}$	\hat{p}_{UG}
25	50	9.6755	9.02880	0.49168	10.36385	10.74198	0.50031	10.35312	10.75053	0.50035
	0.02449	0.03095	0.00088	0.01944	0.02465	0.00064	0.01879	0.02443	0.00051	
0.4	100	10.01628	9.96110	0.50014	10.44830	10.56084	0.50218	10.44335	10.55547	0.50216
	0.01793	0.01755	0.00044	0.01609	0.01615	0.00042	0.01592	0.01599	0.00036	
100	10.07479	10.09460	0.50030	10.29331	10.41584	0.50151	10.29053	10.40440	0.50140	
	0.01385	0.01358	0.00027	0.01297	0.01292	0.00028	0.01271	0.01291	0.00023	
200	10.09905	10.08787	0.50014	10.20729	10.27358	0.50087	10.19708	10.24912	0.50076	
	0.00886	0.00837	0.00014	0.00854	0.00815	0.00018	0.00884	0.00814	0.00013	

T	n	ML Estimates	Approximate Bayes Estimates	Actual Bayes Estimates						
25	50	9.71313	8.71735	0.48936	10.18456	10.61564	0.49916	10.18170	10.61217	0.49925
	0.02594	0.03532	0.00069	0.02134	0.02576	0.00041	0.02096	0.02548	0.00033	
0.5	100	9.95977	9.83385	0.50012	10.37057	10.46882	0.50161	10.37002	10.46843	0.50171
	0.01795	0.01720	0.00018	0.01631	0.01586	0.00018	0.01626	0.01579	0.00015	
100	10.06259	10.07506	0.50027	10.26955	10.35087	0.50115	10.26929	10.34949	0.50112	
	0.01259	0.01230	0.00009	0.01203	0.01196	0.00010	0.01199	0.01199	0.00008	
200	10.05363	10.10845	0.50016	10.15421	10.25700	0.50066	10.15470	10.25102	0.50064	
	0.00779	0.00772	0.00005	0.00760	0.00771	0.00006	0.00758	0.00769	0.00005	
Table 6.7: ML Estimates, Bayes Estimates and their Estimated Risks under SELF Assuming the Jeffreys Priors with Parameters $\theta_1 = 10$, $\theta_2 = 10$ and $p = 0.4$.

T	n	ML Estimates	Approximate Bayes Estimates	Actual Bayes Estimates						
		$\hat{\theta}_{1ML}$	$\hat{\theta}_{2ML}$	\hat{p}_{ML}	$\hat{\theta}_{1ISJ}$	$\hat{\theta}_{2ISJ}$	\hat{p}_{ISJ}	$\hat{\theta}_{1JS}$	$\hat{\theta}_{2JS}$	\hat{p}_{JS}
25		9.94190	9.92075	0.39973	9.79394	10.12084	0.41026	9.78725	10.16030	0.40991
		2.71689	2.58668	0.00021	2.49244	2.77349	0.00030	2.52210	2.64754	0.00028
	50	9.97203	10.02542	0.40026	9.90624	10.16733	0.40606	9.93533	10.13489	0.40578
0.4		2.46188	2.09489	0.00014	2.21307	2.11436	0.00017	2.17325	1.97297	0.00015
	100	10.00462	10.11969	0.40081	9.96289	10.18121	0.40379	9.97304	10.19606	0.40369
		2.01693	1.63145	0.00008	1.88944	1.56831	0.00010	1.92080	1.58798	0.00008
	200	10.07153	10.09974	0.40038	10.05974	10.16620	0.40204	10.03097	10.15224	0.40210
		1.40577	1.00183	0.00004	1.35456	0.96436	0.00007	1.40870	0.98754	0.00005

Table 6.8: ML Estimates, Bayes Estimates and their Estimated Risks under GELF Assuming the Jeffreys Priors with Parameters $\theta_1 = 10$, $\theta_2 = 10$, $p = 0.4$ and $c = 1.2$.

T	n	ML Estimates	Approximate Bayes Estimates	Actual Bayes Estimates						
		$\hat{\theta}_{1ML}$	$\hat{\theta}_{2ML}$	\hat{p}_{ML}	$\hat{\theta}_{1ISJG}$	$\hat{\theta}_{2ISJG}$	\hat{p}_{ISJG}	$\hat{\theta}_{1JS}$	$\hat{\theta}_{2JS}$	\hat{p}_{JS}
25		9.89073	9.89064	0.39993	9.81401	10.02936	0.40863	9.80676	10.05540	0.40892
		2.65203	2.48076	0.00007	2.60340	2.70711	0.00016	2.59733	2.59436	0.00015
	50	9.97558	9.97751	0.40019	9.87637	10.09261	0.40526	9.88890	10.12829	0.40511
0.4		2.33753	2.01100	0.00005	2.28461	2.08761	0.00008	2.19818	2.04915	0.00007
	100	10.03285	10.05201	0.40017	10.00608	10.17936	0.40288	10.00244	10.13862	0.40267
		1.86271	1.53114	0.00003	1.92027	1.46743	0.00004	1.83514	1.48840	0.00003
	200	10.07638	10.08245	0.40018	10.03396	10.15592	0.40161	10.02727	10.11983	0.40153
		1.33166	0.90119	0.00002	1.33317	0.95944	0.00002	1.28362	0.91329	0.00002

21
Table 6.9: ML Estimates, Bayes Estimates and their Estimated Risks under GELF Assuming the Jeffreys Priors with Parameters $\theta_1 = 10$, $\theta_2 = 10$, $p = 0.4$ and $c = -1.2$.

T	n	ML Estimates	Approximate Bayes Estimates	Actual Bayes Estimates														
		$\hat{\theta}_{1ML}$	$\hat{\theta}_{2ML}$	$\hat{\theta}_{ISJG}$	$\hat{\theta}_{2ISJG}$	$\hat{\theta}_{ISJ}$	$\hat{\theta}_{2ISJ}$	$\hat{\theta}_{JS}$	$\hat{\theta}_{2JS}$	\hat{p}_{ML}	\hat{p}_{ISJG}	\hat{p}_{ISJ}	\hat{p}_{JS}	\hat{p}_{2JS}	\hat{p}_{ISJG}	\hat{p}_{ISJ}	\hat{p}_{JS}	\hat{p}_{2JS}
25	9.89748	9.90553	0.39942	9.93542	10.24441	0.41230	9.89065	10.23150	0.41175	0.02143	0.02025	0.00104	0.01971	0.01816	0.00141	0.02039	0.01799	0.00134
50	9.98437	9.98520	0.40018	9.98030	10.19941	0.40719	9.96620	10.18476	0.40708	0.01927	0.01651	0.00064	0.01750	0.01488	0.00079	0.01710	0.01427	0.00069
0.4	10.03181	10.07862	0.40067	10.02350	10.19386	0.40397	10.01503	10.22666	0.40406	0.01589	0.01154	0.00038	0.01460	0.01083	0.00044	0.01402	0.01068	0.00038
100	10.06508	10.11790	0.40045	10.09684	10.19107	0.40241	10.06013	10.14365	0.40226	0.01064	0.00673	0.00018	0.01054	0.00672	0.00030	0.01006	0.00675	0.00021

Table 6.10: ML Estimates, Bayes Estimates and their Estimated Risks under SELF Assuming the Jeffreys Priors with Parameters $\theta_1 = 10$, $\theta_2 = 10$ and $p = 0.5$.

T	n	ML Estimates	Approximate Bayes Estimates	Actual Bayes Estimates														
		$\hat{\theta}_{1ML}$	$\hat{\theta}_{2ML}$	$\hat{\theta}_{ISJS}$	$\hat{\theta}_{2ISJS}$	$\hat{\theta}_{ISJS}$	$\hat{\theta}_{2ISJS}$	$\hat{\theta}_{JS}$	$\hat{\theta}_{2JS}$	\hat{p}_{ML}	\hat{p}_{ISJS}	\hat{p}_{JS}	\hat{p}_{2JS}					
25	9.74755	9.04876	0.49151	9.45202	9.85789	0.49844	9.44383	9.79710	0.49832	2.89694	3.21290	0.00029	2.49825	4.40878	0.00019	2.47720	4.10812	0.00015
50	10.00643	9.98718	0.49995	9.98339	10.12774	0.50121	10.01174	10.09036	0.50100	2.30801	2.33901	0.00115	2.13435	2.14570	0.00014	2.09098	2.10356	0.00012
0.4	10.05847	10.07153	0.50021	10.04474	10.15863	0.50085	10.02948	10.10557	0.50085	1.84342	1.82859	0.00009	1.68836	1.71977	0.00009	1.71502	1.69263	0.00008
100	10.07012	10.11251	0.50027	10.06602	10.17557	0.50092	10.06031	10.14078	0.50050	1.18208	1.14247	0.00005	1.15145	1.15262	0.00007	1.14404	1.17480	0.00005

25	9.69237	8.73879	0.48899	9.25032	9.66399	0.49770	9.29842	9.62103	0.49736	3.00425	3.53382	0.00022	2.80012	4.41534	0.00015	2.78600	4.37184	0.00011
50	9.98550	9.97948	0.50024	9.97573	10.08857	0.50085	9.92663	10.07155	0.50104	2.25528	2.23378	0.00006	2.13911	2.15057	0.00006	2.09815	2.14013	0.00005
0.5	10.08498	10.07819	0.50012	10.03071	10.13204	0.50068	10.02744	10.10104	0.50064	1.75388	1.71472	0.00003	1.68429	1.57778	0.00004	1.61996	1.67402	0.00003
100	10.06994	10.08069	0.50016	10.05055	10.14487	0.50038	10.07780	10.13414	0.50024	1.10177	1.08271	0.00002	1.12281	1.05005	0.00002	1.09747	1.06709	0.00002
Table 6.11: ML Estimates, Bayes Estimates and their Estimated Risks under GELF Assuming the Jeffreys Priors with Parameters $\theta_1 = 10$, $\theta_2 = 10$, $p = 0.5$ and $c = 1.2$.

T	n	ML Estimates	Approximate Bayes Estimates	Actual Bayes Estimates						
		$\hat{\theta}_{1,ML}$	$\hat{\theta}_{2,ML}$	$\hat{\varphi}_{ML}$	$\hat{\theta}_{1,ISJG}$	$\hat{\theta}_{2,ISJG}$	$\hat{\varphi}_{ISJG}$	$\hat{\theta}_{1,JSJ}$	$\hat{\theta}_{2,JSJ}$	$\hat{\varphi}_{JSJ}$
25	9.66722	9.05286	0.49152	8.27173	8.62589	0.47596	8.29947	8.64193	0.47619	
	0.02235	0.02616	0.00088	0.04136	0.03790	0.00233	0.03998	0.03608	0.00216	
50	9.99429	9.92220	0.50003	9.48462	9.55482	0.48987	9.43701	9.55336	0.49020	
0.4	0.01735	0.01718	0.00043	0.01732	0.01732	0.00075	0.01733	0.01664	0.00069	
100	10.1064	10.03842	0.50007	9.80892	9.87934	0.49520	9.76246	9.83596	0.49489	
200	10.0819	10.09835	0.50026	9.95832	10.02677	0.49794	9.93937	10.00433	0.49784	
	0.00878	0.00844	0.00014	0.00799	0.00786	0.00020	0.00855	0.00810	0.00014	

Table 6.12: ML Estimates, Bayes Estimates and their Estimated Risks under GELF Assuming the Jeffreys Priors with Parameters $\theta_1 = 10$, $\theta_2 = 10$, $p = 0.5$ and $c = 1.2$.

T	n	ML Estimates	Approximate Bayes Estimates	Actual Bayes Estimates						
		$\hat{\theta}_{1,ML}$	$\hat{\theta}_{2,ML}$	$\hat{\varphi}_{ML}$	$\hat{\theta}_{1,ISJG}$	$\hat{\theta}_{2,ISJG}$	$\hat{\varphi}_{ISJG}$	$\hat{\theta}_{1,JSJ}$	$\hat{\theta}_{2,JSJ}$	$\hat{\varphi}_{JSJ}$
25	9.68755	9.02880	0.49168	9.52513	9.97786	0.50046	9.53128	9.96392	0.50057	
	0.02449	0.03095	0.00088	0.02277	0.02501	0.00053	0.02169	0.02383	0.00046	
50	10.01628	9.96110	0.50014	10.04822	10.12267	0.50237	10.04162	10.18201	0.50212	
0.4	0.01793	0.01755	0.00044	0.01647	0.01574	0.00042	0.01578	0.01483	0.00037	
100	10.07449	10.09460	0.50030	10.07668	10.09620	0.50148	10.05767	10.14682	0.50130	
	0.01385	0.01358	0.00027	0.01262	0.01232	0.00027	0.01276	0.01236	0.00024	
200	10.09005	10.08787	0.50014	10.09722	10.16796	0.50117	10.07301	10.13936	0.50087	
	0.00886	0.00837	0.00014	0.00823	0.00802	0.00019	0.00851	0.00802	0.00013	

Table 7: Bayes Point Predictor and 99% Predictive Intervals using Real Life Example.

T	Uniform Priors	Jeffreys Priors				
	Median	L	U	Median	L	U
300	151.908	1.06877	1358.37	156.095	1.09894	1392.77
400	148.562	1.05680	1260.57	152.106	1.08198	1291.18
630	137.993	0.98939	1116.02	140.776	1.09917	1139.74
Table 6.13: Bayes Point Predictor and 99% Predictive Intervals for $\theta_1 = 10$ and $\theta_2 = 10$.

T	n	Median	L	U	Median	L	U

Uniform Priors	$p = 0.4$	$p = 0.5$				
	0.4	0.5				
25	0.00044	0.06492	0.80122	0.00049	0.07348	1.01608
50	0.00047	0.06790	0.72639	0.00047	0.06769	0.71371
100	0.00048	0.06923	0.68013	0.00048	0.06899	0.66768
200	0.00049	0.06986	0.65871	0.00049	0.06967	0.64444

Jeffreys Priors	$p = 0.4$	$p = 0.5$				
	0.4	0.5				
25	0.00048	0.07079	0.89796	0.00054	0.08090	1.17153
50	0.00049	0.07069	0.76007	0.00049	0.07041	0.74918
100	0.00049	0.07078	0.69821	0.00049	0.07033	0.68307
200	0.00050	0.07082	0.66844	0.00050	0.07052	0.65362

Table 7.1: ML Estimates, Bayes Estimates and their Estimated Risks under SELF using Real Life Example.

T	$\hat{\theta}_{1ML}$	$\hat{\theta}_{2ML}$	\hat{p}_{ML}	$\hat{\theta}_{1ISUS}$	$\hat{\theta}_{2ISUS}$	\hat{p}_{ISUS}	$\hat{\theta}_{1US}$	$\hat{\theta}_{2US}$	\hat{p}_{US}
	Uniform Priors								
300	0.00443	127.92433	0.48775	0.00566	162.56980	0.48649	0.00478	137.38090	0.48814
	0.00000	459.91666	0.00015	0.00000	174.23380	0.00018	0.00000	143.73830	0.00014
	0.00459	130.14047	0.48175	0.00495	147.82710	0.48087	0.00479	135.86350	0.48253
	0.00000	369.77489	0.00033	0.00000	2.38040	0.00037	0.00000	182.42670	0.00031
	0.00476	146.94020	0.50000	0.00485	149.80450	0.50157	0.00486	149.87900	0.50000
630	0.00000	5.90380	0.00000	0.00000	0.18882	0.00000	0.00000	0.25911	0.00000

Jeffreys Priors	J	$\hat{\theta}_{1JS}$	$\hat{\theta}_{2JS}$	\hat{p}_{JS}	$\hat{\theta}_{1JS}$	$\hat{\theta}_{2JS}$	\hat{p}_{JS}		
300	0.00443	127.92433	0.48775	0.00768	128.65234	0.42190	0.00463	133.76613	0.48860
	0.00000	459.91666	0.00015	0.00001	429.22125	0.00610	0.00000	243.48079	0.00013
	0.00459	130.14047	0.48175	0.00459	152.50032	0.51130	0.00467	132.95324	0.48283
	0.00000	369.77489	0.00033	0.00000	9.79892	0.00013	0.00000	269.51009	0.00030
630	0.00476	146.94020	0.50000	0.00476	146.47420	0.50052	0.00476	146.94020	0.50000
	0.00000	5.90380	0.00000	0.00000	8.38563	0.00000	0.00000	5.90380	0.00000
Table 7.2: ML Estimates, Bayes Estimates and their Estimated Risks under GELF using Real Life Example with $c = 1.2$.

Uniform Priors	ML Estimates	Approximate Bayes Estimates	Actual Bayes Estimates						
T	$\hat{\theta}_{1ML}$	$\hat{\theta}_{2ML}$	$\hat{\theta}_{ML}$	$\hat{\theta}_{ISUG}$	$\hat{\theta}_{2SUG}$	$\hat{\theta}_{ISUG}$	$\hat{\theta}_{UJG}$	$\hat{\theta}_{2UG}$	$\hat{\theta}_{UG}$
300	0.00443	127.92433	0.48775	0.00751	126.54607	0.41972	0.00427	124.00001	0.47592
	0.00354	0.01627	0.00044	0.02248	0.00499	0.00061	0.00436	0.01758	0.00185
400	0.00459	130.14047	0.48175	0.00487	146.23000	0.47506	0.00456	129.83810	0.47450
	0.00099	0.01295	0.00098	0.00039	0.00032	0.00185	0.00136	0.01338	0.00193
630	0.00476	146.94020	0.50000	0.00475	146.71720	0.49633	0.00475	146.64530	0.49455
	0.00000	0.00019	0.00000	0.00001	0.00023	0.00004	0.00000	0.00024	0.00009

Table 7.3: ML Estimates, Bayes Estimates and their Estimated Risks under GELF using Real Life Example with $c = -1.2$.

Uniform Priors	ML Estimates	Approximate Bayes Estimates	Actual Bayes Estimates						
T	$\hat{\theta}_{1ML}$	$\hat{\theta}_{2ML}$	$\hat{\theta}_{ML}$	$\hat{\theta}_{ISUG}$	$\hat{\theta}_{2SUG}$	$\hat{\theta}_{ISUG}$	$\hat{\theta}_{UJG}$	$\hat{\theta}_{2UG}$	$\hat{\theta}_{UG}$
300	0.00443	127.92433	0.48775	0.00735	168.82486	0.46648	0.00482	138.38481	0.48929
	0.00375	0.01842	0.00045	0.11539	0.01028	0.00357	0.00010	0.00433	0.00034
400	0.00459	130.14047	0.48175	0.00588	127.88259	0.45218	0.00481	136.42813	0.48324
	0.00102	0.01446	0.00101	0.02938	0.01850	0.00758	0.00009	0.00613	0.00085
630	0.00476	146.94023	0.50000	0.00488	149.63829	0.50556	0.00486	150.17186	0.50049
	0.00000	0.00019	0.00000	0.00045	0.00000	0.00000	0.00034	0.00002	0.00000

Jeffreys Priors	ML Estimates	Approximate Bayes Estimates	Actual Bayes Estimates						
T	$\hat{\theta}_{1ML}$	$\hat{\theta}_{2ML}$	$\hat{\theta}_{ML}$	$\hat{\theta}_{ISUG}$	$\hat{\theta}_{2SUG}$	$\hat{\theta}_{ISUG}$	$\hat{\theta}_{UJG}$	$\hat{\theta}_{2UG}$	$\hat{\theta}_{UG}$
300	0.00443	127.92433	0.48775	0.00635	154.71462	0.43588	0.00467	134.71840	0.48971
	0.00357	0.01792	0.00045	0.05365	0.00088	0.01434	0.00029	0.00800	0.00031
400	0.00459	130.14047	0.48175	0.00516	143.90598	0.45927	0.00469	133.50591	0.48354
	0.00102	0.01446	0.00101	0.00454	0.00101	0.00358	0.0017	0.00950	0.00082
630	0.00476	146.94023	0.50000	0.00476	147.62833	0.50108	0.00477	147.23303	0.50049
	0.00000	0.00019	0.00000	0.00000	0.00010	0.00000	0.00000	0.00015	0.00000