The role of the *Francisella tularensis* pathogenicity island in type VI secretion, intracellular survival, and modulation of host cell signaling

Jeanette E. Bröms*, Anders Sjöstedt* and Moa Lavander†

Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden

Edited by: John S. Gunn, The Ohio State University, USA
Reviewed by: Thomas C. Zehrt, Medical College of Wisconsin, USA
Tonyia Eaves-Pyles, University of Texas Medical Branch, USA

Correspondence: Anders Sjöstedt, Department of Clinical Microbiology, Clinical Bacteriology, Umeå University, SE-901 85 Umeå, Sweden. e-mail: anders.sjostedt@climi.umu.se
†Jeanette E. Bröms and Moa Lavander contributed equally to this article.

Francisella tularensis is a highly virulent gram-negative intracellular bacterium that causes the zoonotic disease tularemia (Oyston et al., 2004). Two main subspecies, *F. tularensis* subsp. *tularensis* and *F. tularensis* subsp. *holarctica* (also known as type A and type B, respectively), are responsible for the majority of infections and disease, which are particularly severe if caused by type A strains. Importantly, *F. tularensis* has the ability to infect a multitude of hosts, including mammals, fish, amphibians, protozoa and arthropods (reviewed in Mörner and Addison, 2001; Keim et al., 2007). Although primarily a vector-transmitted disease, *F. tularensis* infections can also occur through inhalation of contaminated materials, ingestion and skin abrasions (Dennis et al., 2001; Keim et al., 2007). From the site of infection, the bacteria will spread to regional lymph nodes, liver and spleen, where they rapidly grow and overwhelm the host's immune defenses (Fortier et al., 1991).

The pathogenicity of *F. tularensis* is believed to depend on its ability to replicate within host cells, particularly macrophages (Tärnvik, 1989). *F. tularensis* enters host macrophages by triggering the formation of asymmetric, spacious pseudopod loops (Clemens et al., 2005). It then modifies the endocytic pathway of the macrophage, preventing phagolysosomal fusion, upon which it escapes into the cytosol and multiplies (Golovliov et al., 2003b; Clemens et al., 2004; Santic et al., 2005a). Several factors that regulate or facilitate phagosome escape and intracellular survival of *F. tularensis* have been identified (Dean et al., 2009; Meibom and Charbit, 2009; Qin et al., 2009; Mohapatra et al., 2010), however, the underlying molecular mechanisms still remain largely unknown. A gene cluster frequently encountered in screens aimed at identifying elements important for intracellular growth and/or virulence, is the *Francisella* pathogenicity island (FPI; reviewed in Nano et al., 2004; Nano and Schmerk, 2007; Meibom and Charbit, 2009), which has been suggested to encode a type VI secretion system (de Bruin et al., 2007; Nano and Schmerk, 2007; Bingle et al., 2008; Ludu et al., 2008; Barker et al., 2009; Bröms et al., 2009).

Note: *F. tularensis* subsp. *novicida* will be referred to as *F. novicida* and the FPI nomenclature proposed by Ludu et al. (2008) will be used throughout (Table 1; Figure 1).

The Francisella Pathogenicity Island

Duplication of the FPI in Strains of *F. tularensis*

The 33-kb pathogenicity island, designated FPI (Figure 1), consists of 16–19 ORFs and its crucial role in the virulence of *F. tularensis* is well established (Golovliov et al., 2003b; Nano et al., 2004; Twine et al., 2005; Tempel et al., 2006; Santic et al., 2007, 2009; Weiss et al., 2007; Bönquist et al., 2008; Ludu et al., 2008; Vonkavaara et al., 2008; Bröms et al., 2009; Kraemer et al., 2009; Schmerk et al., 2009b; Åhlund et al., 2010; Bröms et al., unpublished). It was first identified in 2004 (Nano et al., 2004) by bioinformatic analysis of the partly sequenced genomes of *F. tularensis* subsp. *tularensis* strain Schu S4 (Karlsson et al., 2000; Prior et al., 2001) and *F. novicida* strain U112 (Nano et al., 2004). All subsequently sequenced *Francisella* genomes have confirmed the presence of the FPI, suggesting that it is part of the core genome (Larsson et al., 2009). However, in contrast to the rest of the genome, the FPI has lower G + C content, indicating horizontal gene transfer (Nano et al., 2004).

Interestingly, the FPI is duplicated in all the subsp. of *F. tularensis* (*F. tularensis* subsp. *holarctica, mediasiatica, and tularensis*), but is present in a single copy in *F. novicida* and *F. philomiragia* (Nano et al., 2004; Larsson et al., 2009).

Larsson et al. (2009) recently suggested that this duplication event was facilitated by the insertion of ISFtu1 insertion sequence element adjacent to the FPI and an rRNA operon of an ancestral genome,
Noteworthy, there is a gene cluster in *Francisella novicida*, encompassing ORFs FTN_0040–FTN_0052, which show homology to the FPI, albeit rudimentary, and with a different organization of the "true" FPI genes. The similarities are particularly pronounced for the core components IglA, IglB, PdpB/IcmF, and DotU where FTN_0042, FTN_0043, FTN_0040, and FTN_0051, respectively, show high (IglA and IglB) or intermediate (PdpB and DotU) protein sequence similarity, which enabled duplication of the FPI by non-reciprocal recombination. Interestingly, as deduced from the genomic locations of the units, one of them was identified as ancestral whereas the second, more recently acquired, has integrated in various locations in the different genomes. As a consequence of the duplication, FPI null mutants are easier to generate in *F. novicida*, which is also the species most extensively used to analyze the role of individual FPI proteins.

Table 1	FPI gene nomenclature.			
Schu S4	LVS	U112		
Locus 1	Locus 2	Locus 1	Locus 2	Locus 1
FTT1699	FTT1344	FTL_0126	FTL_1172	FTN_1309
FTT1700	FTT1345	FTL_0125	FTL_1171	FTN_1310
FTT1701	FTT1346	FTL_0124	FTL_1170	FTN_1311
FTT1702	FTT1347	FTL_0123	FTL_1169	FTN_1312
FTT1703	FTT1348	FTL_0122	FTL_1168	FTN_1313
FTT1704	FTT1349	FTL_0121	FTL_1167	FTN_1314
FTT1705	FTT1350	FTL_0120	FTL_1166	FTN_1315
FTT1706	FTT1351	FTL_0119	FTL_1165	FTN_1316
FTT1707	FTT1352	FTL_0118	FTL_1164	FTN_1317
FTT1708	FTT1353	FTL_0117	FTL_1163	FTN_1318
FTT1709	FTT1354	FTL_0116	FTL_1162	FTN_1319
FTT1710	FTT1355	FTL_0115	FTL_1161	FTN_1320
FTT1711	FTT1356	FTL_0114	FTL_1160	FTN_1321
FTT1712	FTT1357	FTL_0113	FTL_1159	FTN_1322
FTT1713	FTT1358	FTL_0112	FTL_1158	FTN_1323
FTT1714	FTT1359	FTL_0111	FTL_1157	FTN_1324
FTT1715	FTT1360	FTL_0110	FTL_1156,	FTN_1325
FTT1716	FTT1361	FTL_0109	FTL_1155	FTN_1326

1Adapted from http://www.francisella.org/
2anmK (anhydro-N-acetylmuramic acid kinase); clpV (virulent strain); dot (defect in organelle trafficking); hcp (hemolysin co-regulated protein); icm (intracellular multiplication); igl (intracellular growth locus); pdp (pathogenicity determinant protein); pig (pathogenicity island gene); pmcA (plasma membrane Ca²⁺ ATPase); vgr (valine–glycine repeat).

FIGURE 1 | The Francisella pathogenicity island (FPI). A schematic representation of the *Francisella tularensis* Schu S4 variant of the FPI with a consensus nomenclature adapted from Ludu et al. (2008). The ORFs of the FPI are essentially the same in all subspecies, with the exception of the *anmK*-pdpD region. In type A strains like Schu S4 (clade A.I) or WY96-3418 (clade A.II), *pdpD* encodes a 1,195 aa protein, which is somewhat larger in *F. novicida* (1,245 aa). The *anmK* gene product (371 aa in *F. novicida*) is truncated in WY96-3418, and may be expressed as two separate ORFs in Schu S4 (*anmK1* and *anmK2*). *F. tularensis* type B strains, e.g., LVS, lack *anmK* and most of the *pdpD* gene due to a large deletion within this region. The ORFs are drawn to scale, and their relative sizes indicated. Black arrows indicate gene products with no significant homology to other proteins; while white arrows represent products with homologs in other bacterial systems (see text for details).
homology (Larsson et al., 2009). Further, protein-BLAST (http://blast.ncbi.nlm.nih.gov/) reveals that there are genes encoding products with weak homology to PdpA, PdpC, PdpD, IglD, IglH, and IglI, interspersed with ORFs that reveal no FPI similarity. This gene cluster has not been widely discussed, nor its functionality investigated and its role in F. novicida virulence remains unknown.

Interestingly, combined work by several groups suggests that the second FPI locus may be functionally redundant in strains of F. tularensis, as transposon or deletion mutants for which only the second FPI locus may be functionally redundant in strains of F. novicida cluster has not been widely discussed, nor its functionality investigated. Blast.ncbi.nlm.nih.gov/) reveals that there are genes encoding products with weak homology to PdpA, PdpC, PdpD, IglD, IglH, and IglI (Nano and Schmerk, 2007).

The ORFs of the FPI are essentially conserved in all subspecies, with the exception of the annmK–pdpD region (Figure 1). In F. novicida, annmK (originally denoted pmca) is suggested to encode a 371 aa gene product, AnnmK, which shows high identity to members of COG2377 (predicted molecular chaperone distantly related to HSP70-fold metalloproteases) (Nano and Schmerk, 2007). However, in type A strains like Schu S4 and FSC033 (clade A.I), annmK may be expressed as two separate ORFs due to the presence of premature stop codons at positions 190 and 328, followed by an ATG start codon at position 194. In type A strains like WY96–341B and B38 (clade A.II), annmK has a premature stop codon at position 328, suggesting that this group encodes a truncated form of AnnmK (Nano and Schmerk, 2007). How these genetic differences affect AnnmK function has not been addressed so far, but AnnmK of F. novicida has been shown to contribute to virulence, albeit to a small degree (Nano and Schmerk, 2007; Ludu et al., 2008). Supporting the notion that AnnmK is not critical for Francisella pathogenicity is the fact that F. tularensis type B strains, virulent strains as well as LVS, lack the annmK gene due to a deletion that extends from 107 bp upstream of annmK and encompasses most of the adjacent pdpD gene (Nano et al., 2004; Champion et al., 2009). In F. novicida, pdpD encodes a 1,245 aa (1,195 aa in type A strains) outer membrane protein that has been shown to be important for virulence in mice (Ludu et al., 2008), while the deletion within type B strains is presumed to result in two minor ORFs (corresponding to residues 992–1124 and 1129–1195 of PdpD from type A strains) that are likely to be non-functional (Ludu et al., 2008; Champion et al., 2009). It has been speculated that the presence or absence of pdpD may account, in part, for the strain-to-strain specific difference in virulence between type A and type B strains (Nano et al., 2004).

FPI NOMENCLATURE – NAMING OF COMPONENTS

Over the years, the nomenclature of the FPI genes has been altered in attempts to adapt to the increasing knowledge of the function of individual proteins (Table 2). Already in 1997, the first FPI gene (later named iglC) was identified, and its expression shown to be prominently induced during intracellular growth (Golovliov et al., 1997). The gene was later recognized as a member of a four gene operon, which, due to its requirement for intramacrophage growth, was denoted iglABCD (intracellular growth locus) (Gray et al., 2002; Golovliov et al., 2003b, Figure 1; Tables 1 and 2). In 2004, at the time of the discovery of the FPI, a handful of the predicted ORFs were named, including pmcA (today annmK), which share homology to molecular chaperones, and the large ORFs pdpA, pdpB, pdpC, and pdpD (pathogenicity determinant protein) (Nano et al., 2004; Table 1). Later, pdpB was named icmF, based on its homology to this crucial T6SS core component (Ludu et al., 2008). In 2007, the remaining ORFs of the island were recognized as most likely functional genes and thus denoted pigA to I (pathogenicity island gene) (Nano and Schmerk, 2007; Table 1). Subsequently, limited homologies have been identified between vgrG, clpV, dotU, and hcp, respectively, so these Francisella genes have been renamed accordingly (Ludu et al., 2008; Barker et al., 2009; Table 1). Also the remaining pig genes, i.e., pigA, pigD, pigE, pigG, and pigH have been renamed iglE, iglG, iglH, iglI, and iglJ respectively (Ludu et al., 2008; Barker et al., 2009; Table 1), suggesting that these genes, similar to iglABCD, are required for intracellular growth. However, with the exception of iglJ of F. novicida (Barker et al., 2009), there is no published data to support that this is the case (Table 3). In fact, our data strongly suggest that iglG is dispensable for intracellular growth of F. tularensis strain LVS in both J774 macrophages and mouse peritoneal exudate (PEC) cells (Bröms et al., unpublished) (Table 3). Moreover, an iglJ null mutant of LVS is able to efficiently grow within J774 cells, which is in contrast to the results observed by Barker et al. (2009) for F. novicida (above) (Bröms et al., unpublished; Table 3). This is an exciting finding, since it suggests that the phenotypes of FPI mutants may be species-specific, but it clearly complicates the use of a common FPI nomenclature; thus, the name IgIG (Intracellular growth locus G) and IgII (Intracellular growth locus I) may perhaps be appropriate for F. novicida, but evidently not for LVS. Also, we do not see any obvious reason to distinguish pdpA from the iglABCD

Table 1

Gene	Function	Subspecies
pmcA	Molecular chaperone	A and B
pdpA	Outer membrane protein	A
pdpB	Outer membrane protein	B
pdpC	Outer membrane protein	A
pdpD	Outer membrane protein	B
annmK	Molecular chaperone	B
iglC	Protein A	A
iglD	Protein B	A
iglE	Protein C	B
iglF	Protein D	B

Table 2

Gene	Function	Subspecies
pmcA	Molecular chaperone	A and B
pdpA	Outer membrane protein	A
pdpB	Outer membrane protein	B
pdpC	Outer membrane protein	A
pdpD	Outer membrane protein	B
annmK	Molecular chaperone	B
iglC	Protein A	A
iglD	Protein B	A
iglE	Protein C	B
iglF	Protein D	B

Figure 1

The ORFs of the FPI are essentially conserved in all subspecies, with the exception of the annmK–pdpD region.
genes required for intracellular growth, since a pdpA mutant of F. novicida also clearly exhibits very limited replication in host cells (Schmerk et al., 2009a). Moreover, the homologies reported between some of the Francisella proteins and T6SS core components, e.g., PigC and ClpV (Barker et al., 2009), are weak and do not provide any convincing evidence for their relatedness, nor do they provide support when it comes to assigning a function to the specific FPI protein (Bröms et al., unpublished).

For these reasons, we believe that the existing FPI nomenclature should be modified to better reflect the current knowledge of FPI protein function, but also to take into account that for many of these proteins we still have no assigned functions. In fact, since the Francisella T6SS is so different from all other T6SS described so far (Bingle et al., 2008) it is not unlikely that some of the FPI proteins will exhibit functions distinct from their homologous T6SS core components. For simplicity, we therefore propose that all FPI genes should be named igl, regardless of function, but this will be discussed more thoroughly elsewhere.

THE FPI – ITS ROLE IN PHAGOSOME BIOGENESIS, INTRACELLULAR GROWTH AND VIRULENCE

Similar to other intracellular pathogens like Listeria monocytogenes, Shigella flexneri, and Rickettsia spp. (Ray et al., 2009), Francisella rapidly escapes from the phagosome into the host cell cytosol where it replicates (Clemens et al., 2004; Santic et al., 2005a,b; Bönquist et al., 2008). The Francisella containing phagosome (FCP) transiently acquires early (EEA-1 and Rab5) and late (Rab7, CD63, LAMP-1, and LAMP-2) endosomal markers, but no/little cathepsin D, suggesting limited fusion to lysosomes (Clemens et al., 2004; Santic et al., 2005a, 2008; Bönquist et al., 2008). Inhibition of the proton ATPase pump within 15–60 min post infection has been shown to result in a significant delay in phagosomal escape (Chong et al., 2008; Santic et al., 2008), indicating the importance of acidification for FCP disruption and bacterial escape. Importantly, these results have recently been challenged by Clemens et al. (2009).

Table 2 | Effects of FPI gene mutations on *Francisella* pathogenicity.

Requirement for:	Intracellular growth	Phagosome escape	Cytopathogenicity	Virulence
	Chick embryos	Mice	Drosophila	
pdpA	y1,18	y1	y1	
pdpB/icmF	y1,2,20	nt	y8	
iglE	y1	nt	nt	
vgrG	y1	nt	nt	
iglF	y1	nt	nt	
iglG	n1	n17	y17	
iglH	y1	nt	nt	
dotU	y1	nt	nt	
iglI	n1	y5	y17	
pdcC	n1	nt	nt	
pdcE	n1	nt	nt	
iglD	y1	n17	n17	
iglC	y1	y15	y15	
iglB	y1	y15	nt	
iglA	y1	n17	n17	
pdcD	n1	nt	nt	
anmK	n1	nt	nt	

"Y" indicates that the genes are required for the phenotype tested (gray boxes), "N" indicates that it is not (black boxes). NT, not tested (white boxes). For mutants, such as iglG and igl, contradicting results exist (dark gray boxes). For strains which carry duplications of the FPI genes, the stated phenotypes and references refer to mutants that contain deletions in both copies of the FPI gene.

Supporting data from: 1 Schmerk et al. (2009a), 2 Ludu et al. (2008), 3 Åhlund et al. (2010), 4 Kraemer et al. (2009), 5 Barker et al. (2009), 6 Rodriguez (2010), 7 Asare and Abu Kwaik (2010), 8 Brotske et al. (2008), 9 Tempel et al. (2008), 10 Golovliov et al. (2003a), 11 Lauriano et al. (2004), 12 Bröms et al. (2009), 13 de Bruin et al. (2007), 14 Santic et al. (2005b), 15 Bönquist et al. (2008), 16 Lindgren et al. (2004), 17 Bröms et al. (unpublished), 18 Weiss et al. (2007), 19 Gray et al. (2002), 20 Read et al. (2008), 21 Vonkavaara et al. (2008), 22 Lai et al. (2004).
Bröms et al. The pathogenicity island of Francisella tularensis

apoptosis of J774 cells (Lai et al., 2004; Table 3). Consequently, mglA and iglC mutations diminish intracellular survival and growth in many different macrophage-like cell lines (Gray et al., 2002; Golovliov et al., 2003a; Lauriano et al., 2003; Lindgren et al., 2004; Santic et al., 2005b), as well as ameba (Lauriano et al., 2004) and insect cells (Read et al., 2008; Vonkavaara et al., 2008; Santic et al., 2009; Table 3). To date, most of the genes located in the FPI, such as iglA, iglB, iglC, iglD, iglI, iglG, pdpA, pdpB, and pdpD, have been demonstrated to be required either for intramacrophage growth and/or virulence of at least one subspecies (Golovliov et al., 2003b; Lai et al., 2004; Nano et al., 2004; Tempel et al., 2006; de Bruin et al., 2007; Santic et al., 2007; Weiss et al., 2007; Bönquist et al., 2008; Chong et al., 2008; Ludu et al., 2008; Bröms et al., 2009; Schmerk et al., 2009b; Bröms et al., unpublished; Table 3). Interestingly,

Table 3 | In silico analysis of FPI proteins, demonstrated protein localization and protein–protein interactions.

Prediction	Amino acids¹	Size (kDa)²	Secretion signal³	TM domains⁴	Bacterial localization⁵	COGs⁷	Bacterial localization	Interaction partner
pdpA	820	95.4	N	0	OM			Soluble⁸
pdpB/icmF	1093	127.6	N	2	OM	COG3223		IM²⁹
iglE	125	14.5	Y	1	Unknown (lipid attachment site⁸)			
vgrG	164	17.5	N	0	Unknown			
iglF	574, (554/576)	67.6	N	0	Unknown			
iglG	173	18.4	N	0	Unknown			
iglH	476	55.3	N	0	Unknown			
dotU	207	24.6	N	1	Unknown	COG3455		
iglJ	383	44.6	N	0	Unknown			Secreted¹², Soluble, IM, OM¹⁶
iglL	257	30.9	N	0	Unknown			
pdpC	1328, (1328/1325)	156.2	N	0	Unknown			
pdpE	191, (191/188)	22.1	Y	0	Unknown			OM¹⁶
iglD	401, (398/398)	46.5	N	0	Unknown			
iglC	211, (209/209)	22.4	N	0	Unknown			
iglB	514, (506/506)	58.9	N	0	Unknown	COG3517		CP¹³, surface⁹
iglA	196, (184/184)	21.0	N	0	CP	COG3516		CP¹⁴, surface⁹
pdpD	1195, (67, 133/1245)	135.4	N	0	OM			IgIA¹⁴,¹⁵
annK	189, 134 (NA/381)	20.4 + 15.2	N	0	OM	COG2377		

¹Number of amino acids predicted for FPI proteins from F. tularensis, subsp. tularensis Schu S4. Sizes for homologous proteins from F. tularensis subsp. holarctica LVS and F. novicida U112 are only indicated when they deviate from the Schu S4 sequence in length.
²Predicted size in kDa of proteins from Schu S4 according to SAPS.
³SignalP 3.0 prediction of the presence (Y) or absence (N) of a secretion signal.
⁴Number of transmembrane (TM) domains predicted with TMHMM 2.0.
⁵Protein localization predicted by PSORTb.
⁶A lipid attachment site predicted (Rodriguez, 2010).
⁷Relatedness to COGs (cluster of orthologous groups; Tatusov et al., 2000).
⁸Schmerk et al. (2009a).
⁹Surface localization of IgIA, IgIB, and IglC occurs upon overexpression of PdpD (Ludu et al., 2008).
¹⁰Mutation of the putative site of lipidation (C22G) prevents OM localization of IgIE–FLAG (Rodriguez, 2010).
¹¹Melillo et al. (2006).
¹²Barker et al. (2009).
¹³Golovliov et al. (1997).
¹⁴de Bruin et al. (2007).
¹⁵Bröms et al. (2009).
¹⁶Bröms et al. (unpublished).
NA, not applicable.
OM, outer membrane; IM, inner membrane; CP, cytoplasmic.
some gene products, such as IgLg, have been shown to be required for virulence but dispensable for intracellular growth, while PdpE appears to be dispensable for both processes (Bröms et al., unpublished; Table 3). Noteworthy, many of the earlier FPI studies lacked the tools for precise genetic analysis and proper complementation controls, and this should be taken into account when discussing the phenotypes of Francisella strains with lesions in FPI genes.

FPI-MEDIATED MANIPULATION OF THE HOST INFLAMMATORY RESPONSE

The pathogenesis of tularemia appears to be critically dependent on the ability of *F. tularensis* to modulate the host immune response by a number of mechanisms, including degradation of serum antibodies (Crane et al., 2009), induction of immunosuppressive cytokines and prostaglandin E2 in the lungs of infected mice (Bosio et al., 2007; Woolard et al., 2008), suppression of responses to secondary stimuli *in vivo* (Bosio and Dow, 2005), inhibition of the respiratory burst in human neutrophils (McCaffrey and Allen, 2006), impairment of phosphatidylinositol 3-kinase-mediated signaling (Parsa et al., 2006) and IFN-γ-mediated signaling (Parsa et al., 2008) and downregulation of several TLRs in monocytes (Telepnev et al., 2003), rapid induction of apoptosis in J774 cells and mouse tissue macrophages (Lai et al., 2004; Wickstrum et al., 2009), activation of the ASC inflammasome (Mariathasan et al., 2004; Fernandes-Alnemri et al., 2010; Jones et al., 2010; Rathinam et al., 2010), as well as rapid activation of Ras (Al-Khodor and Abu Kwaik, 2010). Several of these mechanisms are directly or indirectly linked to FPI proteins since specific FPI mutants or mutants within mglA show phenotypes deviant from the parent strain.

Already within 15 min after monocytic ingestion of wild-type *F. novicida*, recruitment of PKCα and PKCβI to the SOS2/GrB2 complex occurs, leading to activation of Ras (Figure 2). None of these events take place after infection with an *iglC* mutant of *F. novicida*, instead rapid activation of caspase-3 and cell death follows (Al-Khodor and Abu Kwaik, 2010; Figure 2). Thus, Ras activation is advantageous to the bacterium since it allows a prolonged replication in the cytosol. As it occurs so rapidly, the phagosomal localization of the *iglC* mutant may not necessarily be the reason for the aberrant Ras activation, instead, the effect may directly or indirectly relate to the function of IglC.

The proinflammatory response to *F. tularensis* in monocytic cells is TLR2-dependent (Cole et al., 2006, 2007; Katz et al., 2006; Li et al., 2006; Thakran et al., 2008; Abplanalp et al., 2009). Moreover, it has been demonstrated that *Francisella* colocalizes with TLR2 and MyD88 inside macrophages (Cole et al., 2007; Figure 3), signals through TLR2 from within the phagosome (Cole et al., 2008;...
which triggers formation of the AIM2 inflammasome by inducing AIM2 oligomerization (Fernandes-Alnemri et al., 2009; Figure 2). The AIM2-DNA complex then recruits and subsequently oligomerizes the caspase-1-activating adaptor protein ASC into the large ASC pyroptosome, which in turn activates caspase-1 leading to cleavage of IL-1β and subsequent apoptosis (Fernandes-Alnemri et al., 2007; Figure 2). By infecting AIM2-deficient mice with *F. novicida*, it was concluded that cytosolic invasion by *F. tularensis* leads to STING-mediated production of type I interferons, such as IFN-β, which is a prerequisite for the subsequent AIM2 activation, leading to caspase-1 activation, IL-1β and IL-18 secretion and inflammasome-mediated cell death (Gavrilen et al., 2006; Mariathasan et al., 2006; Henry et al., 2007; Cole et al., 2008; Figure 2). This chain of events critically depends on a cytosolic localization of bacteria as shown by infections with FPI mutants unable to escape the phagosome, such as *iglC*, or mutants within *mglA*, the positive regulator encoded outside of the FPI (Gavrilen et al., 2006; Cole et al., 2008). Similarly, *F. novicida* vgrG and *iglI* mutants, both unable to escape from the phagosome, were recently shown to be defective for IL-1β release (Barker et al., 2009). Thus, for *F. novicida*, there appears to be a strong correlation between the degree of phagosomal escape and inflammasome activation. In view of this, it was somewhat surprisingly that one of the studies found that the endosomal-acidification inhibitor bafilomycin completely prevented the production of type I interferons, implying the phagosome as the source of DNA for inflammasome activation. The role of bafilomycin in this context may be to prevent the type I interferon-enhanced killing of *F. tularensis* in the phagosome.

Francisella tularensis infection leads to interference of several signaling pathways crucial for the control of intracellular infection. One such example is the IFN-γ signaling pathway, which is essential although alone not sufficient to control *F. tularensis* infection of monocytic cells (Anthony et al., 1989; Lindgren et al., 2004; Edwards et al., 2009). The role of this pathway has been analyzed by studies of the IFN-γ-induced STAT1 activation in human and murine monocytic cells (Parsa et al., 2008; Roth et al., 2009). The interference with IFN-γ per se was dependent on upregulation of SOCS3, a well-known inhibitor of IFN-γ-mediated signaling, and accompanied by the suppression of IP-10 and iNOS production, resulting in increased intracellular bacterial survival (Figure 2). This signaling interference is independent of phagosomal escape and replication since mutants in *mglA* or *iglD* were still able to efficiently suppress IFNγ-induced STAT1 (Parsa et al., 2008). The important role of IFN-γ has been corroborated by determining its role when added to *F. tularensis*-infected cell cultures. Then, it was observed that treatment of mouse PEC cells conferred a static effect on wild-type LVS bacteria, whereas the treatment had a bactericidal effect on the *iglC* mutant demonstrating that the
effect of IFN-γ is dependent on the subcellular localization of *Francisella* (Lindgren et al., 2004). There are conflicting data on the mechanisms effected by IFN-γ since one study reported that IFN-γ treatment did not affect the phagosomal escape and subcellular localization of Schu S4 in murine bone marrow-derived macrophages or human monocyte-derived macrophages (Edwards et al., 2009); two others that the subcellular localization of LVS was marginally affected in murine PEC (Lindgren et al., 2004), but not in murine J774A.1 cells (Bönquist et al., 2008); and a fourth that *F. novicida* was completely confined to the phagosome of human monocyte-derived macrophages (Santic et al., 2005a). Some of the discrepancies may relate to the use of different infection models and strains of *F. tularensis*, but additional studies are required to clarify this.

Mitogen-activated protein kinase (MAPK) pathways, such as p42/p44 (Erk1/2), c-Jun terminal kinase (JNK) and p38, of monocyte cells are also modulated by *F. tularensis* during infection. Hrstka et al. (2005) observed that apoptosis induced by LVS was associated with reduced p38 MAPK activity and activation of p42/p44 kinases (Figure 2). Moreover, Telepnev et al. (2005) showed that LVS is able to rapidly downregulate the initial activation of p38 and c-Jun, and hence cytokine secretion and that IgIC is critical for this process. Thus, unlike the IgIC mutant, LVS eventually downregulates the initial proinflammatory response in mononuclear cells.

Moreover, phagosomal escape has been shown to be accompanied by marked downregulation of the phosphoinositide 3 kinase PI3K/Akt pathway and subsequent suppression of NF-κB-mediated production of inflammatory cytokines (Parsa et al., 2006; Rajaram et al., 2006; Figure 2). Suppression does not occur when an mglA mutant is used; instead it leads to increased proinflammatory production and lower IL-10 release (Rajaram et al., 2006; Figure 3). The pathway is under negative control of the inositol phosphatase SHIP, which becomes phosphorylated upon infection by *F. tularensis* (Parsa et al., 2006; Figure 2). Interestingly, the microRNA-155 (MiR-155) that targets and negatively regulates SHIP is induced by *F. novicida* but not Schu S4 (Figure 2), thereby leading to an enhanced proinflammatory response in the former case (Cremer et al., 2009). Furthermore, the expression of the PI3K/Akt pathway members is preferentially downregulated in macrophages infected with *F. tularensis* Schu S4 compared to *F. novicida* (Butçhar et al., 2008).

The PI3K/Akt pathway is also related to host-cell death. Phagosomal escape of *F. novicida* leads to activation of Sp-1/Sp-3, upregulation of Fas and recruitment of the DISC complex (Rajaram et al., 2009), which in turn activates caspases-3 and -8 leading to apoptosis (Lai and Sjöstedt, 2003; Santic et al., 2009; Figure 2). Since activation of PI3K/Akt promotes phagosome–lysosome fusion (Rajaram et al., 2009), this should limit intracellular bacterial growth and host-cell death. In corroboration of this scenario, it was found that constitutive activation of Akt, or deletion of SHIP, promotes phagolysosomal fusion and limits bacterial replication in the host cytosol, as well as preventing subsequent induction of Fas expression and cell death (Rajaram et al., 2009).

Akt is also involved in phagosome biogenesis through activation of Rab5 (Barbieri et al., 1998) and the assembly of NADPH oxidase leading to triggering of the oxidative burst (Chen et al., 2003; Hoyal et al., 2003). Thereby, modulation of the PI3K/Akt pathway by *F. tularensis* may serve multiple purposes; downmodulation of the proinflammatory response and the oxidative burst, induction of host-cell death and limiting the biogenesis of the FCP.

The exact roles of the FPI proteins in modulating essentially all of the aforementioned pathways described is enigmatic since it is possible that the bacterium, once in the cytosol, mediates the effects via non-FPI-dependent mechanisms, e.g., via signaling through cytosolic receptors. Thus, a possible scenario is that the essential role of the FPI proteins simply is to enable the phagosomal escape.

Regulation of the FPI – a complex story

Studies in pathogens such as *Burkholderia pseudomallei*, *Salmonella enterica*, *Vibrio cholerae*, *Pseudomonas aeruginosa*, and enterogaugreggative *Escherichia coli* have led to the identification of regulatory determinants and mechanisms underlying expression of T6SS gene clusters. These complex transcriptional regulatory networks involve two-component systems (Ishikawa et al., 2009; Syed et al., 2009), quorum sensing systems (Deziel et al., 2005; Ishikawa et al., 2009; Lesic et al., 2009), alternative sigma factor σ^54^ (Pukatzki et al, 2006; Ishikawa et al., 2009; Syed et al., 2009), transcriptional activators (Deziel et al., 2005; Dudley et al., 2006; Lesic et al., 2009; Sun et al., 2010), and histone-like proteins (Lucchini et al., 2006; Castang et al., 2008). In addition, upregulation of most T6SS clusters has been shown to depend on contact with, or intracellular growth within, the host cell during infection (Das et al., 2000; Parsons and Heffron, 2005; Chugani and Greenberg, 2007; Shalom et al., 2007). In *F. tularensis*, this is consistent with the demonstration that FPI genes are induced during growth within macrophages (Golovliov et al., 1997; Baron and Nano, 1998; Twine et al., 2006; de Bruin et al., 2007; Chong et al., 2008; Wehrly et al., 2009). To date, the environmental stimuli and mechanisms that govern regulation of the FPI genes and thus virulence of *Francisella* spp. are as yet unknown, although iron depletion (Deng et al., 2006; Lenco et al., 2007), and oxidative stress (Lenco et al., 2005) have been shown to induce expression of FPI genes.

Combined data from several research groups suggest the involvement of at least six regulatory proteins in controlling FPI gene expression: MglA, SspA, FevR (PigR), MigR, Hfq, and PmrA (Figure 4: Baron and Nano, 1998; Lauriano et al., 2004; Brotcke et al., 2006; Charity et al., 2007; Mohapatra et al., 2007; Buchan et al., 2006; Charity et al., 2009). Some of these also regulate expression of genes outside the FPI, however, whereas MglA, SspA, and FevR appear to regulate the same set of genes, PmrA and Hfq control separate groups of genes (Brotcke et al., 2006; Charity et al., 2007; Guina et al., 2007; Mohapatra et al., 2007; Brotcke and Monack, 2008; Meibom et al., 2009). Macrophase growth locus (MglA) and SspA are members of the stringent starvation protein A (SspA) family (Baron and Nano, 1998) and interact to form heterodimers that bind to the RNA polymerase, inducing the transcription of numerous genes, including fevR (Brotcke et al., 2006; Charity et al., 2007). FevR (*Francisella* effector of virulence regulation) has been shown to physically interact with MglA/SspA in a manner facilitated by the alarmone ppGpp, although there are conflicting data concerning this interaction (Brotcke and Monack, 2008; Charity et al., 2009). FevR positively autoregulates its own expression (Charity et al., 2009) and exhibits some homology to the helix-turn-helix region.
of the MerR family of transcriptional activators, suggesting that it may bind to target DNA (Brotcke and Monack, 2008). MigR (Macrophage intracellular growth regulator) may exert its positive effect on FPI gene expression indirectly through FevR, since it has been shown to be required for fevR expression, in contrast to that of mglA, sspA, or pmrA (Buchan et al., 2009). Moreover, fevR expression also requires the presence of MglA, SspA as well as PmrA (Brotcke et al., 2006; Charity et al., 2007; Mohapatra et al., 2007; Figure 4).

Importantly, current data suggest a connection between MglA/ SspA/FevR and a two-component regulatory system consisting of PmrA/KdpD (Bell et al., 2010). PmrA, which positively regulates its own transcription and that of the FPI, was originally assumed to be an orphan response regulator (Mohapatra et al., 2007; Sammons-Jackson et al., 2008). However, Bell et al. (2010) recently demonstrated that PmrA, upon phosphorylation by the histidine kinase KdpD, efficiently binds to regulated promoters of the pmrA operon and FPI-encoded pdpD. Moreover, using coimmunoprecipitation experiments it was revealed that PmrA, MglA, SspA as well as MigR, PmrA and MglA/SspA/FevR also regulate many additional genes outside of the FPI cluster, mainly in a positive manner, however their target genes appear to be different. At an unknown signal, the Hfq repressor specifically inhibits the expression of the putative pdpA to pdpE operon, presumably by binding to the predicted promoter upstream of pdpA. Hfq also regulates expression of genes outside of the FPI, mainly by acting as a repressor.

Finally, Hfq differs from all the other FPI regulators identified so far in that it seems to act primarily as a repressor of gene expression, both for genes located within the FPI as well as genes located outside (Meibom et al., 2009). Moreover, Meibom et al. (2009) were able to show that only a subset of FPI genes (pdpA to iglJ) are negatively regulated by Hfq (Figure 4), leading the authors to speculate that there is differential regulation of the two putative divergent operons in the FPI (pdpD to iglID and pdpA to pdpE). The G + C content of these two regions are significantly different from one another: 30.6% (pdpD to iglID) vs 26.6% (pdpA to pdpE),
comparatively to an average of 33% for the Francisella chromosome (NANO and SCHMERK, 2007), which supports the notion of two different origins for these regions. Nevertheless, this operon organization must still be shown experimentally and putative promoter(s), in addition to that located within the intergenic region of pdpD and annmK (Bell et al., 2010), identified. Importantly, the intergenic regions between pdpD and iglA (80 nt) and iglJ and pdpC (39 nt) are also, in theory, large enough to harbor promoters, suggesting the possibility of multiple overlapping promoters within the FPI (NANO and SCHMERK, 2007).

Clearly, much more work is needed in order to understand the intricate regulatory network behind Francisella FPI gene expression, especially how the many regulators are able to coordinate this process. The fact that these also regulate genes outside of the FPI suggests there is cross-talk between T6S and other virulence determinants, which adds further complexity to the situation. Defining how these networks are coordinated and identifying the environmental signals that induce FPI expression and T6S may also help to identify the elusive effector proteins secreted by this system. Altogether, this will shed light on the critical role of the FPI in Francisella pathogenesis.

T6S – WHAT CAN WE LEARN ABOUT THE F. TULARENSIS SYSTEM FROM OTHER PATHOGENS?

To date, there is limited information about the functions of the putative T6SS encoded by the Francisella FPI gene cluster. However, as a phenomenon highly related to pathogenesis, bacterial secretion has received great interest from the scientific society. Today several comprehensive studies on T6S in various pathogens exist, which have contributed to the understanding of these complex secretion systems. An overview is presented below.

TYPE VI SECRETION SYSTEM GENE CLUSTERS ARE UBQUITOUS AMONG GRAM-NEGATIVE BACTERIA

When first discovered in V. cholerae, the T6SS gene clusters were denoted IAHF (IcmF associated homologous protein), since they include a gene with homology to icmF of the Legionella pneumophila Dot/Icm type IV secretion system (T4SS) (Das and Chaudhuri, 2003). Since then, similar clusters encompassing 15–25 ORFs have been identified in silico methods in approximately 100 bacterial species (~ ¼ of all bacterial genomes sequenced to date), some encoding more than one system (Bingle et al., 2008; Shrivastava and Mande, 2008; Boyer et al., 2009). Subsequently, the importance of T6SSs for virulence has been established for pathogens like V. cholerae, B. mallei, S. typhimurium, Edwardsiella tarda, Aeromonas hydrophila, enteroaggregative E. coli, and P. aeruginosa (Folkesson et al., 2002; Dudley et al., 2006; Mougos et al., 2006; Pukatzki et al., 2006; Schell et al., 2007; Zheng and Leung, 2007; Suarez et al., 2008; Wu et al., 2008; Pukatzki et al., 2009).

Due to the heterogeneity between the T6SS gene clusters, and the fact that empiric evidence exist from only a limited number of bacteria, it is not a trivial task to define the core T6SS components. However, most systems encode homologs to V. cholerae IcmF, DotU, ClpV, VipA, VipB, VgrG, and Hcp proteins (Boyer et al., 2009).

While contributing to stabilization of the L. pneumophila T4SS, but not being essential for its function (Sexton et al., 2004), IcmF–DotU homologs are absolutely required for functional T6S. These membrane proteins have been shown to interact and are found in all phylogenetic groups of T6SSs, suggesting that they are essential components of the secretion apparatus (Zheng and Leung, 2007; Boyer et al., 2009; MA et al., 2009). In Francisella, the suggested IcmF homolog PdpB has been shown to be essential for functional T6S of IglI (Barker et al., 2009).

Another defining trait is a bicistronic locus encoding homologs of VipA and VipB (denoted IglA and IglB in Francisella). These are only found in T6SS clusters and are suggested to form a functional pair, since they have been shown to interact in a number of bacterial species including F. tularensis and to depend on each other for stability (de Bruin et al., 2007; Bröms et al., 2009; Aubert et al., 2010). Interestingly, VipA–VipB of V. cholerae and the corresponding proteins BcsL–BcsK from B. cenocepaica assemble into tubular structures suggested to span the bacterial membranes (BÖNEMANN et al., 2009, 2010; AUBERT et al., 2010). Whether this also occurs for Francisella IglA and IglB is not known, especially since it lacks a ClpV homolog, with which the V. cholerae and B. cenocepaica homologs have been shown to interact. ClpV is a ClpV-like AAA + family adenosine triphosphatase (ATPase) which is required for secretion of T6SS substrates. It forms a hexameric complex at the inner membrane, and requires an intact ATPase domain to support secretion suggesting that it is the main energizer of T6S (Schlieker et al., 2005; Mougos et al., 2006; Zheng and Leung, 2007; BÖNEMANN et al., 2009). Intriguingly, ClpV is required for assembly of BcsL–BcsK tubules and for disassembly of VipA–VipB tubules. The latter is hypothesized to enable transport of VipA–VipB across
the inner membrane before reassembling into the tubular structure. Further, the VipA–VipB tube structurally resembles the T4 bacteriophage tail sheath. This sheath forms an outer layer to the rigid internal tail tube that, when the sheath is contracted, penetrates the outer bacterial membrane and intermembrane peptidoglycan (Kostyuchenko et al., 2005; Leiman et al., 2009). It is conceivable that the mechanism for T6S occurs in a similar manner, since also other T6SS components bear resemblance to phage proteins (below).

The two most well studied T6SS components are VgrG (valine-glycine repeat protein G) and Hcp (hemolysin co-regulated protein). Principally, a functional T6SS is defined by its ability to export these proteins into the extracellular milieu and they represent a class of secreted substrates that also are structural components of the secretion machinery. Hcp, which is the major secreted protein of T6SSs, forms hexameric donut-shaped rings that stack on top of each other to form tubules. These have large inner diameters, forming a conduit for delivery of macromolecules, and show great resemblance to phage tail tube structures (Mougous et al., 2006; Ballister et al., 2008; Leiman et al., 2009; Pell et al., 2009). VgrG contains two domains that structurally resemble the bacteriophage T4 gp27 and gp5 proteins (Figure 5). These assemble into (gp27)3–(gp5)3 needle complexes where the gp5 trimer forms the needle that pierces the bacterial membrane. Presumably, a VgrG trimer forms a similar structure with the ability to puncture both bacterial and eukaryotic membranes (Dudley et al., 2006; Mougous et al., 2006; Pukatzki et al., 2006, 2007, 2009; Schell et al., 2007; Zheng and Leung, 2007; Suarez et al., 2008; Wu et al., 2008; Chow and Mazmanian, 2010).

Apart from the needle complex domains, some evolved VgrGs have C-terminal functional extensions that upon delivery into the host cell can interfere with cellular functions, e.g., the actin cross-linking domain of V. cholerae VgrG1 (Pukatzki et al., 2007). Besides Hcp and VgrG, there is a small number of T6SS exported substrates that are not themselves required for functional secretion and hence are more similar to the “classical” effectors of T3SSs and T4SSs, e.g., EvpP of E. tarda (Zheng and Leung, 2007; Pukatzki et al., 2009).

A HYPOTHETICAL MODEL FOR TYPE VI SECRETION

Based on the current knowledge of T6S, and guided by the structural resemblance to phage tail-spike organelles, models of how the system functions have been proposed (Filloux, 2009; Pukatzki et al., 2009; Bönemann et al., 2010). A set of core components are suggested to form a pore complex in the bacterial plasma membrane, through which Hcp and VgrG are delivered to the periplasm. Here, Hcp assembles into a tubular structure, capped by the VgrG trimer and sheathed by the VipA–VipB tube. Upon elongation of the Hcp tube and contraction of the VipA–VipB sheath, VgrG pushes through the bacterial membrane. Depending on the localization of the bacterium, the VgrG tip may also puncture either the outer or the vesicular membrane of the host cell, allowing the delivery of the VgrG effector domain in the target cell cytosol. It is not known whether the active domain remains attached to VgrG or if it is cleaved off before it reaches its final destination. Further, the VgrG tip is too narrow to allow secretion and hence VgrG detaches from the Hcp tube to allow Hcp and other components with effector functions to be delivered into the host cell cytosol. The hexameric ATPase ClpV has been suggested to localize to the membrane pore complex where it energizes the T6S process, controlling disassembly and export of T6S components.

EVIDENCE OF A FRANCISIELLA PATHOGENICITY ISLAND ENCODED SECRETION SYSTEM

As discussed above, many of the components of the FPI are required for pathogenicity-related phenotypes such as phagosome escape, intracellular replication, cytotoxicity, and virulence in animal models (summarized in Table 2). Although information concerning the specific roles these proteins play in Francisella pathogenicity is scarce, they are likely to form part of a T6SS or a T6SS-like system (de Bruin et al., 2007; Bingle et al., 2008; Ludu et al., 2008; Barker et al., 2009).

IN SILICO ANALYSIS OF THE PATHOGENICITY ISLAND GENE PRODUCTS

A bioinformatic analysis of the FPI gene products was employed to predict the presence of secretion signals and transmembrane regions, protein localization, homology to known proteins and functional domains. However, this analysis (summarized in Table 3) only gives so much away. Most FPI components reveal no homology to any known proteins, display no functional domains and the predicted localization is primarily “unknown.” Nevertheless, five of them belong to different COGs (clusters of orthologous groups) (Tatusov et al., 2000; Table 3). COG2377, represented by AnmK, includes members of the anhydro-N-acetylmuramic acid...
kinase family, which contribute to the fitness of pathogenic and non-pathogenic bacteria alike but is unrelated to T6S. However, the other four COGs do indeed define proteins found in T6SS clusters, i.e., the canonical functional pairs IgIA–IgIB (COG3516, COG3517) and PdpB/IcmF–DotU (COG3523, COG3455) (Figure 1: Table 3). Moreover, both PdpB/IcmF and DotU display predicted transmembrane domains, which is logical if they, like the homologous protein pair of the Legionella T4SS, localize to the inner membrane. While the predicted localization for DotU is “unknown,” PdpB is predicted to localize to the outer membrane. However, fractionation experiments have revealed that PdpB is found exclusively in the bacterial inner membrane, a localization that better agrees with its homology to IcmF (Bröms et al., unpublished; Ludu et al., 2008). Together with the requirement of PdpB/IcmF and DotU for Francisella virulence (Table 2), this suggests that the functions of these core components, whatever they may be, are likely to be conserved in Francisella.

Two FPI members, PdpE and IglE, are predicted to possess Sec secretion signals (Table 3). Both localize to the bacterial outer membrane (Bröms et al., unpublished; Rodriguez, 2010) and in the case of IglE, this localization depends on the presence of a lipid attachment site suggesting that IglE is a lipoprotein (Rodriguez, 2010).

Protein alignment studies suggest that the FPI encodes a VgrG homolog, which is significantly smaller than any known VgrG. A comparison to VgrG1 from V. cholerae reveals that Francisella VgrG aligns to the central part of this protein, corresponding to the most C-terminal part of protein gp27 and to the greater part of the membrane puncturing gp5 protein of bacteriophage T4 (Figure 5). Needless to say, the diminutive FPI VgrG has no C-terminal active domain. However, it cannot be ruled out that it still possesses an effector function, since VgrG export into the host cell cytosol was recently demonstrated (Pukatzki et al., 2007; Ludu et al., 2008; Barker et al., 2009).

It has also been suggested that PdpE encodes an Hcp-like protein (Barker et al., 2009), but this homology is faint and there has been no mechanistic evidence of PdpE executing similar functions as Hcp. In addition, Hcp-like proteins are often encoded by a monocistronic operon separated from the T6SS gene cluster. In the same context, IglF was proposed to be equivalent to ClpV, but it lacks the key ATPase domain of ClpV proteins. Overall, there is some homology between FPI members and T6SS gene clusters, but mechanistic data supporting the notion that the FPI truly encodes a T6SS is scarce.

IgIA–IgIB – FORMATION OF A TRANSMEMBRANE TUBULAR STRUCTURE?

The FPI components with the greatest homology to T6SS proteins are IgIA and IgIB, which have been shown to interact and also depend on each other for protein stability (de Bruin et al., 2007; Bröms et al., 2009). This interaction is vital for virulence and relies on a conserved α-helix within IgIA (Bröms et al., 2009). Furthermore, interactions between homologous components of pathogens like V. cholerae, P. aeruginosa, Y. pseudotuberculosis, and uropathogenic E. coli, also depend on the same α-helical domain suggesting that the mechanism of interaction is conserved (Bröms et al., 2009). Hence, it is conceivable that IgIA–IgIB, similar to V. cholerae VipA–VipB and B. cenocepacia BcsK\textsubscript{N}–BcsK\textsubscript{N}, form a tubular transmembrane structure that encases the internal components of a secretion conduit (Bönemann et al., 2009; Bröms et al., 2009; Aubert et al., 2010). There is, however, no existing evidence of IgIA–IgIB multimerization beyond dimers, and they primarily localize to the bacterial cytosol (Table 3), where they have been suggested to function as a chaperone complex (de Bruin et al., 2007). Nevertheless, in support of the notion that IgIA and IgIB may form a membrane spanning structure are reports of surface location of these components (Melillo et al., 2006; Ludu et al., 2008).

IgIC – A UNIQUE EFFECTOR PROTEIN?

A comparative study of protein expression in Francisella grown in liquid culture or in J774 cells revealed significant induction of a 23-kDa protein, later named IgIC, during intracellular growth (Golovliov et al., 1997; Gray et al., 2002). IgIC has no homology to any characterized bacterial proteins (Table 3), suggesting that it may be a novel virulence factor. Furthermore, it possesses no recognizable functional motifs but adopts a unique beta-sandwich structure, with weak structural similarity to gp27, a cell-puncturing device component of bacteriophage T4 (Sön et al., 2007).

Although predominantly cytoplasmic (Golovliov et al., 1997), a small fraction of IgIC localizes to the bacterial surface as determined by a biotinylation assay (Ludu et al., 2008). This led the authors to speculate that IgIC could play a role in a secretion channel in the outer membrane of Francisella, or alternatively, in forming a pore in the host cell membrane. The biological relevance of this observation is, however, not easily assessed since IgIC surface localization was demonstrated upon overexpression of PdpD (Ludu et al., 2008; Table 3). Nonetheless, IgIC-export did not occur in F. novicida strains mutated for the T6SS core components pdpB, dotU, igIA, or igIB, suggesting that it was T6SS dependent. This was in contrast to PdpD-mediated export of IgIA and IgIB, which occurred also in the absence of pdpB or dotU (Ludu et al., 2008; Table 3). Still, if IgIC depends on the outer membrane protein PdpD for export, and this export is an important feature of T6S, it is difficult to comprehend that a F. novicida pdpD mutant is able to grow as efficiently as the wild-type strain in all of 11 eukaryotic cell lines tested (Ludu et al., 2008).

SECRETION OF VgrG and IgI IN MACROPHAGES

The first evidence of translocation of FPI proteins was provided in a recent study by Barker et al. (2009) who demonstrated delivery of F. novicida VgrG and IgI, the latter lacking homology to known bacterial proteins, into the cytosol of infected J774 macrophages. VgrG and IgI export was demonstrated by several means: translocation of C-terminal CyaA fusions was observed based on the accumulation of cAMP in the host cell cytosol, and N-terminally FLAG-tagged proteins were visualized using immunofluorescence microscopy. Moreover, the latter proteins could also be detected in the culture supernatants of bacteria grown in broth (Barker et al., 2009).

Intriguingly, in all assays, VgrG secretion occurs in an FPI-independent manner, as seen when expressed in a ΔFPI F. novicida strain. In contrast, export of IgI within macrophages depends on the FPI and does not occur in ΔvgrG, ΔicmF, or ΔFPI backgrounds. However, IgI–FLAG is efficiently secreted to the extracellular medium of broth-grown ΔvgrG and ΔFPI mutants. Since neither VgrG nor IgI is secreted when expressed in trans in E. coli DH5α, this
suggests that they can exit via an FPI-independent but *Francisella*-specific export mechanism during growth in liquid culture (Barker et al., 2009). It would be interesting to investigate if the rudimentary gene cluster (FTN_0040–FTN_0052), which share homology with core components of the FPI (as described above), contributes to this export. Immunofluorescence staining of VgrG and Igl during infection shows that VgrG, when expressed in a ΔvgrG background, is released into the host cell cytosol forming a plume extending from the bacterium (Barker et al., 2009). In contrast, when secreted from an ΔFPI mutant, VgrG is localized more closely to the bacterium. Similarly, staining for IglI–FLAG in ΔvgrG, ΔvgrG, or ΔFPI backgrounds also reveals a close association between the protein and the bacteria. These data could be interpreted to suggest that VgrG is truly secreted while IglI is primarily exported to the bacterial surface. Combined with the data from Ludu et al. (2008) and Melillo et al. (2006) this may imply that the FPI-encoded secretion system exports proteins to form a surface located complex including IglA, IglB, IglC, IglI, and VgrG (Barker et al., 2009).

DOES THE FPI ENCODE A TRUE T6SS?

As discussed above, there is increasing evidence that *Francisella* does encode a T6SS-like system that may export FPI proteins such as IglI but this system truly appears to be unique from all other systems described so far. First of all, it is evolutionary distinct (Bingle et al., 2008), and only 3 out of the 17 FPI proteins share significant homology to T6SS core components, i.e., IglA, IglB, and DotU (Nano and Schmerk, 2007; Boyer et al., 2009). So far, no convincing homolog of ClpV, the AAA + ATPase and putative energizer of T6SSs (Mougous et al., 2006), has been identified in the genome, although Barker et al suggested that FTT1348 (IglF) may be a candidate (Barker et al., 2009). Moreover, while a protein with a short IcmF-related portion (PdpB) and a potential VgrG homolog have been recognized in the FPI (Nano and Schmerk, 2007; Barker et al., 2009; Boyer et al., 2009), the Walker A box commonly present in IcmF homologs is missing from *F. tularensis* PdpB (Zheng and Leung, 2007; Barker et al., 2009) and the *F. tularensis* VgrG homolog is much smaller than VgrG homologs from other species, and it also lacks the C-terminal extensions found in, e.g., the *V. cholerae* VgrG-1 and VgrG-3 proteins (Pukatzki et al., 2007; Barker et al., 2009). Altogether, these differences would suggest that the *Francisella* FPI system is clearly different compared to other T6SS. Further supporting this notion is the observation that *F. tularensis* VgrG, in contrast to all VgrG proteins reported so far, is exported into the extracellular milieu in an FPI-independent fashion (Barker et al., 2009), suggesting a novel mechanism of export. While IglI-translocation into host cells is dependent on FPI core components, it can also be secreted via an FPI-independent mechanism during *in vitro* growth.

Together, these observations raise the question whether the FPI actually encodes a true T6SS or just a system implicated in virulence that shares some components with T6SSs and T4SSs. Much more work is needed to distinguish between these possibilities.

ACKNOWLEDGMENTS

The work was funded in part by grant support from the Swedish Medical Research Council (K2009-5026) and the Umeå Biotech Incubator, Umeå, Sweden. The work was performed in part at the Umeå Centre for Microbial Research (UCMR).

REFERENCES

Abplanalp, A. L., Morris, I. R., Parida, B. K., Teale, J. M., and Bertoin, M. T. (2009). TLR-dependent control of *Francisella tularensis* infection and host inflammatory responses. *PLoS One* 4, e7920. doi: 10.1371/journal.pone.0007920.

Åhlund, M. K., Ryden, P., Jöststedt, A., and Stöven, S. (2010). Directed screen of *Francisella novicida* virulence determinants using *Drosophila melanogaster*. *Infect. Immun.* 78, 3118–3128.

Al-Khodor, S., and Abu Kwaik, Y. (2010). Triggering Ras signalling by intracellular *Francisella tularensis* through recruitment of PKCα and betal to the SOs2/GrB2 complex is essential for bacterial proliferation in the cytosol. *Cell Microbiol.* 12, 1604–1621.

Anthony, L. S., Ghadirian, E., Nestel, F. P., and Kongshavn, P. A. (1989). The requirement for gamma interferon in resistance of mice to experimental tularemia. *Microb. Pathog.* 7, 421–428.

Asare, R., and Abu Kwaik, Y. (2010). Molecular complexity orchestrates modulation of phagosome biogenesis and escape to the cytosol of macrophages by *Francisella novicida*. *Environ. Microbiol.* 12, 2559–2586.

Aubert, D., Macdonald, D. K., and Valvano, M. A. (2010). BskK is an essential protein for the Type VI secretion system activity in *Burkholderia cenocepacia* that forms an outer membrane complex with BclB. *J. Biol. Chem.* 285, 35988–35998.

Ballister, E. R., Lai, A. H., Zuckermann, R. N., Chen, Y., and Mougous, J. D. (2008). In vitro self-assembly of tailorable nanotubes from a simple protein building block. *Proc. Natl. Acad. Sci. U.S.A.* 105, 3733–3738.

Barbieri, M. A., Kohn, A. D., Roth, R. A., and Stahl, P. D. (1998). Protein kinase ClpV-mediated threading is crucial for type VI protein secretion. *EMBO J.* 17, 315–325.

Bönnemann, G., Pietrosiuk, A., Diemand, A., Zentgraf, H., and Mogk, A. (2009). Remodelling of VipA/VipB tubules by ClpV-mediated threading is crucial for type VI protein secretion. *EMBO J.* 28, 315–325.

Bönnemann, G., Pietrosiuk, A., and Mogk, A. (2010). Tubules and donuts: a type VI secretion story. *Mol. Microbiol.* 76, 815–821.

Böningt, L., Lindgren, H., Golovilov, I., Guina, T., and Sjöstedt, A. (2008). Identification of *fevR*, a novel regulator of virulence gene expression in *Francisella novicida*. *Infect. Immun.* 76, 3473–3480.

Brotcke, A., and Monack, D. M. (2008). Identification of VgrG, a novel chaperone involved in the recognition of Salmonella Typhimurium type VI secretion factors. *J. Exp. Med.* 205, 279–290.

Brosi, C. M., and Dow, S. W. (2005). *Francisella tularensis* induces aberrant activation of pulmonary dendritic cells. *J. Immunol.* 175, 6792–6801.

Boyer, F., Fichant, G., Berthod, J., Vandenbrouck, Y., and Attire, I. (2009). Dissecting the bacterial type VI secretion system by a genome wide *in silico* analysis: what can be learned from available genomic resources? *BMC Genomics* 10, 104. doi: 10.1186/1471-2164-10-104.

Bröms, J. E., Lavander, M., and Sjöstedt, A. (2009). Directed screen of *Francisella tularensis* virulence determinants using *Drosophila melanogaster*. *Infect. Immun.* 78, 2189–2198.

Bell, B. L., Mohapatra, N. P., and Gunn, J. S. (2010). Regulation of virulence gene transcripts by the *Francisella novicida* orphan response regulator PmrA: role of phosphorylation and evidence of MgA/SipA interaction. *Infect. Immun.* 81, 2035–2038.

Barker, J. R., Chong, A., Wehrly, T. D., Yu, J. L., Rodriguez, S. A., Liu, J., Celli, L., Arulandanam, B. P., and Klose, K. K. (2009). The *Francisella tularensis* pathogenicity island encodes a secretion system that is required for phagosome escape and virulence. *Mol. Microbiol.* 74, 1459–1470.

Baron, G. S., and Nano, F. E. (1998). MgA and MgB are required for the intramacrophage growth of *Francisella novicida*. *Mol. Microbiol.* 29, 247–259.

Barker, J. R., Chong, A., Wehrly, T. D., Yu, J. L., and Bitselas, J. T. (2007). Active suppression of the pulmonary immune response by *Francisella tularensis* Schu4. *J. Immunol.* 178, 4538–4547.

Bröms, J. E., Lavander, M., and Sjöstedt, A. (2009). A conserved α-helix essential for a type VI secretion-like system of *Francisella tularensis*. *J. Bacteriol.* 6, 6.

Brosi, C. M., and Monack, D. M. (2008). Identification of *fevR*, a novel regulator of virulence gene expression in *Francisella novicida*. *Infect. Immun.* 76, 3473–3480.

Brockhoff, M., Weiss, D. S., Kim, C. C., Chain, P., Malfatti, S., Garcia, E., and Monack, D. M. (2006). Identification of MgA-regulated genes reveals novel virulence factors in *Francisella tularensis*. *Infect. Immun.* 74, 6642–6655.

Buchan, B. W., McCaffrey, R. L., Lindemann, S. R., Allen, L. A., and Jones, B. D. (2009). Identification of
Kostyuchenko, V. A., Chipman, P. R., Leiman, P. G., Arisaka, F., Mesyanzhinov, V. V., and Rossmann, M. G. (2005). The tail structure of bacteriophage T4 and its mechanism of contraction. Nat. Struct. Mol. Biol. 12, 810–813.

Kraemer, P. S., Mitchell, A., Pelletier, M. R., Gallagher, L. A., Wasnick, M., Rohmer, L., Brittmarer, M. I., Manoli, C., Skerret, S. J., and Salama, N. R. (2009). Genome-wide screen in Francisella novicida for genes required for pulmonatory and systemic infection in mice. Infect. Immun. 77, 232–244.

Lai, X. H., Golovliov, I., and Sjöstedt, A. (2004). Expression of IgClC necessary for intracellular growth and induction of apoptosis in murine macrophages by Francisella tularensis. Microb. Pathog. 37, 225–230.

Lai, X. H., and Sjöstedt, A. (2003). Detection of the membrane-anchored nadA of Francisella tularensis-induced apoptosis in murine macrophages. Infect. Immun. 71, 4642–4646.

Larsson, P., Elsfark, D., Svensson, K., Wikström, P., Forsman, M., Brettin, T., Keim, P., and Johansson, A. (2009). Molecular evolutionary consequences of niche restriction in Francisella tularensis, a facultative intracellular pathogen. PLoS Pathog. 5, e1000472. doi: 10.1371/journal.ppat.1000472.

Lauriano, C. M., Barker, J. R., Nano, F. E., Arulananandam, B. P., and Kloe, K. E. (2003). Allelic exchange in Francisella tularensis using PCR products. FEBS Microbiol. Lett. 229, 195–202.

Lauriano, C. M., Barker, J. R., Yoon, S. S., Nano, F. E., Arulananandam, B. P., Hassett, D. J., and Kloe, K. E. (2004). Mgλ regulates transcription of virulence-essential genes necessary for Francisella tularensis intramacroae and intramacrophage survival. Proc. Natl. Acad. Sci. U.S.A. 101, 4246–4249.

Leiman, P. G., Clyne, R. M., Ramagopal, U. A., Bonanno, J. B., Sauber, J. M., Pukatzki, S., Burly, S. K., Almo, S. C., and Mekalanos, J. J. (2009). Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc. Natl. Acad. Sci. U.S.A. 106, 4154–4159.

Lenco, J., Hubalek, M., Larsson, P., Fucikova, A., Brychta, M., Macela, A., and Stulik, J. (2007). Proteomes analysis of the Francisella tularensis LVS response to iron restriction: induction of the F. tularensis pathogenicity island proteins IglABC. FEMS Microbiol. Lett. 267, 1–11.

Lenco, J., Pavkova, I., Hubalek, M., and Stulik, J. (2005). Insights into the oxidative stress response in Francisella tularensis LVS and its mutant DeltaiglC+1 +2 by proteomics analysis. FEMS Microbiol. Lett. 246, 47–54.

Lesi, B., Starkey, M., He, J., Hazan, R., and Rahne, L.G. (2009). Quorum sensing differentially regulates Pseudomonas aeruginosa type VI secretion locus I and homologous loci II and III, which are required for pathogenesis. Microbiology 153, 2845–2853.

Li, H., Nookala, S., Bina, X. B., Bina, J. E., and Fe, R. (2006). Innate immune response to Francisella tularensis is mediated by TLR2 and caspase-1 activation. J. Leukoc. Biol. 80, 766–773.

Lindgren, H., Golovliov, I., Baranov, V., Ernst, R.K., Telepnev, M., and Sjöstedt, A. (2004). Factors affecting the escape of Francisella tularensis from the phagolysosome. J. Med. Microbiol. 53, 953–958.

Luchini, S., Rowley, G., Goldberg, M. D., Hurd, D., Harrison, M., and Hinton, J. C. (2010). XI-NS mediates the silencing of laterally acquired genes in bacteria. PLoS Pathog. 6, e1000881. doi: 10.1371/journal.ppat.1000881.

Ludu, J. S., de Bruin, O. M., Duplantis, B. N., Schmerk, C. L., Chou, A. Y., Elkins, K. L., and Nano, F. E. (2008). The Francisella pathogenicity island protein PdpJ is required for full virulence and associates with homologues of the type VI secretion system. J. Bacteriol. 190, 4584–4595.

Ma, L. S., Lin, J. S., and Lai, E. M. (2009). An IcmE-family protein, ImpLM, is an integral inner membrane protein interacting with ImpKL, and its Walker A motif is required for type VI secretion system-mediated Hcp secretion in Agrobacterium tumefaciens. J. Bacteriol. 191, 4316–4329.

Maire, T. M., Casey, M. S., Becker, R. H., Dorey, C. W., Glass, E. M., Maltsev, N., Zahr, T. C., and Frank, D. W. (2007). Identification of Francisella tularensis Hirnarl-based transposon mutants defective for replication in macrophages. Infect. Immun. 75, 5376–5389.

Mariathasan, S., Newton, K., Monack, D. M., Vucic, D., Erickson, S. D., Nan, F. E., and Re, F. (2006). Innate immune response to Francisella tularensis SPP is mediated by TLR2 and caspase-1 activation of the inflammasome by TLR2 and caspase-1 activation. J. Immunol. 178, 4154–4159.

Mornier, T., and Addison, E. (2001). “Tularemia,” in Infectious Diseases of Wild Animals, 3rd Edn., ed. B. I. Williams (Ames, Iowa: Iowa State University), 303–312.

Mougeot, J. D., Cuff, M. E., Raunser, S., Shen, A., Zhou, M., Gifford, C. A., Goodman, A. L., Joachimiak, G. M., Ordonez, C. L., Lory, S., Walz, T., Joachimiak, A., and Mekalanos, J. J. (2006). A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312, 1526–1530.

Nano, F. E., and Schmerk, C. (2007). The Francisella pathogenicity island. Ann. N.Y. Acad. Sci. 1105, 122–137.

Nano, F. E., Zhang, N., Cowley, S. C., Klose, K. E., Cheung, K. K., Roberts, M. J., Luds, J. S., Letendre, G. W., Meierovich, A. I., Stephens, G., and Elkins, K. L. (2004). A Francisella tularensis pathogenicity island required for intramacrophage growth. J. Bacteriol. 186, 6430–6436.

Oyston, P. C., Sjöstedt, A., and Tibell, R. W. (2004). Tularemia: bioterrorism defence renews interest in Francisella tularensis. Nat. Rev. Microbiol. 2, 967–978.

Parsa, K.V., Butcher, J. P., Rajamari, M.V., Cremer, T. J., Gunn, J. S., Schlesinger, L. S., and Trindadapani, S. (2008). Francisella gains a survival advantage.
within mononuclear phagocytes by suppressing the host IFN-gamma response. Mol. Immunol. 45, 3428–3437.

Parsa, K. V., Ganesan, L. P., Rajaram, M. V., Gavrilin, M. A., Balagopal, A., Mohapatra, N. P., Wewers, M. D., Schlesinger, L. S., Gunn, J. S., and Trindadpanapi, S. (2006). Macrophage pro-inflammatory response to Francisella novicida infection is regulated by SHIP. PLoS Pathog. 2, e71. doi: 10.1371/journal.ppat.0020071.

Parsons, D. A., and Heffron, F. (2005). scf, an IcmF homolog in Salmonella enterica serovar Typhimurium, limits intracellular replication and decreases virulence. Infect. Immun. 73, 4338–4345.

Pell, L. G., Kanelis, V., Donaldson, L. W., Howell, P. L., and Davidson, A. R. (2009). The pathogenicity island of Salmonella enterica serovar Typhimurium influences intracellular replication and bacterial escape from the macrophage. Cell Microbiol. 11, 51–62.

Rajaram, M. V., Ganesan, L. P., Parsa, K. V., Butchar, J. P., Gunn, J. S., and Trindadpanapi, S. (2006). Akt/Protein kinase B modulates macrophage inflammatory response to Francisella infection and confers a survival advantage in mice. J. Immunol. 177, 6317–6324.

Rathinam, V. A., Jiang, Z., Waggoner, S. N., Sharma, S., Cole, L. E., Waggoner, L., Vanaja, S. K., Monks, B. G., Ganesan, S., Latz, E., Hornung, V., Vogel, S. N., Szmolomay-Tusa, E., and Fitzgerald, K. A. (2010). The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat. Immunol. 11, 385–402.

Ray, K., and Marteyn, B. (2007). Type VI secretion system is a major virulence determinant in Burkholderia mallei. Mol. Microbiol. 64, 1466–1485.

Schleier, C., Zentgraf, H., Dersch, P., and Mokg, A. (2005). CIP2, a unique Hsp100/Cip member of pathogenic proteobacteria. Biol. Chem. 386, 1115–1127.

Schmerk, C. L., Duplantis, B. N., Howard, P. L., and Nango, F. E. (2009a). A Francisella novicida pfpA mutant exhibits limited intracellular replication and remains associated with the lysosomal marker LAMP-1. Microbiology 155, 1498–1504.

Schmerk, C. L., Duplantis, B. N., Wang, D., Burke, R. D., Chou, A. Y., Elkins, K. L., Ludu, J. S., and Nango, F. E. (2009b). Characterization of the pathogenicity island protein PdpA and its role in the virulence of Francisella novicida. Microbiology 155, 1489–1497.

Sixton, J. A., Miller, J. L., Yoneda, A., Kehl-Fie, T. E., and Vogel, J. P. (2004). Legionella pneumophilia DotU and IcmF are required for stability of the Dot/Icm complex. Infect. Immun. 72, 5983–5992.

Shalom, G., Shaw, J. G., and Thomas, M. S. (2007). In vivo expression technology identifies a type VI secretion system locus in Burkholderia pseudomallei that is induced upon invasion of macrophages. Microbiology 153, 2689–2699.

Shrivastava, S., and Mande, S. S. (2008). Identification and functional characterization of gene components of Type VI Secretion system in bacterial genomes. PLoS One 3, e3295, doi: 10.1371/journal.pone.003295.

Su, J., Yang, J., Zhao, D., Kasula, T. H., Banas, I. A., and Zhang, J. R. (2007). Genome-wide identification of Francisella tularensis virulence determinants. Infect. Immun. 75, 3089–3101.

Suarez, G., Sireva, J. C., Sha, J., Wang, S., Erova, T. E., Faull, A. A., Felcht, S. M., Horneman, A. L., and Chopra, A. K. (2008). Molecular characterization of a functional type VI secretion system from a clinical isolate of Aeromonas hydrophila. Microb. Pathog. 44, 344–361.

Sun, G. W., Chen, Y., Liu, Y., Tan, G. Y., Ong, C. T., and Pan, G. Y. (2010). Identification of a regulatory cascade controlling Type III Secretion System 3 gene expression in Burkholderia pseudomallei. Mol. Microbiol. 76, 677–689.

Sun, P., Austin, B. P., Schubot, F. D., and Waugh, D. S. (2007). New protein fold revealed by a 1.65 Å resolution crystal structure of Francisella tularensis pathogenicity island protein IglC. Protein Sci. 16, 2550–2563.

Syl, K. A., Belyan, S., Correa, N., Queen, J., Liu, J., Peng, S., Satchell, K. I., Yildiz, F., and Klose, K. E. (2009). The Vibrio cholerae flagellar regulatory hierarchy controls expression of virulence factors. J. Bacteriol. 191, 6555–6570.

Tarnvik, A. (1989). Nature of protective immunity to Francisella tularensis. Rev. Infect. Dis. 11, 440–451.

Tatsuos, R. L., Galperin, M. Y., Natale, D. A., and Koonin, E. V. (2000). The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28, 33–36.

Telenev, M., Golovliov, I., Grundström, T., Tarnvik, A., and Sjöstedt, A. (2003). Francisella tularensis inhibits Toll-like receptor-mediated activation of intracellular signaling and secretion of TNF-alpha and IL-1 from murine macrophages. Cell Microbiol. 5, 41–51.

Telenev, M., Golovliov, L., and Sjöstedt, A. (2005). Francisella tularensis IVS initially activates but subsequently down-regulates intracellular signaling and cytokine secretion in mouse monocyctic and human peripheral blood mononuclear cells. Microb. Pathog. 38, 239–247.

Tempel, R. L., Luo, X. X., Cosa, L., Koslowicz, B., and Heffron, F. (2006). Attenuated Francisella novicida transposon mutants protect mice against wild-type challenge. Infect. Immun. 74, 5095–5105.

Thakran, S., Li, H., Lavine, C. L., Miller, M. A., Bina, J. E., Bina, X. R., and Re, F. (2008). Identification of Francisella tularensis lipoproteins that stimulate the toll-like receptor (TLR) 2/TLR1 heterodimer. J. Biol. Chem. 283, 3751–3760.

Twine, S., Byström, M., Chen, W., Forsman, M., Golovliov, I., Johansson, A., Kelly, J., Lindgren, H., Svensson, K.,
The pathogenicity island of Francisella tularensis

Bröms, J. E., Sjöstedt, A., and Lavander, M. (2010) The role of the Francisella tularensis pathogenicity island in type VI secretion, intracellular survival, and modulation of host cell signaling. Front. Microbiol. 1:136. doi: 10.3389/fmicb.2010.00136

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 09 November 2010; accepted: 02 December 2010; published online: 21 December 2010.

Citation: Bröms, J. E., Sjöstedt, A., and Lavander, M. (2010) The role of the Francisella tularensis pathogenicity island in type VI secretion, intracellular survival, and modulation of host cell signaling. Front. Microbiol. 1:136. doi: 10.3389/fmicb.2010.00136

This article was submitted to Frontiers in Cellular and Infection Microbiology, a specialty of Frontiers in Microbiology.

Copyright © 2010 Bröms, Sjöstedt, and Lavander. This is an open-access article subject to an exclusive license agreement between the authors and the Frontiers Research Foundation, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.