Use of Lipid Parameters to Identify Healthy Men at a Higher Risk of Arterial Stiffness Progression

Yu Sang
Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology

Ming Cao
Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology

Xiaofen Wu
Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology

Lei Ruan
Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology

Cuntai Zhang (ctzhang0425@163.com)
Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology

Research

Keywords: Lipids, triglyceride, TG/HDL-C, arterial stiffness, pulse wave velocity

DOI: https://doi.org/10.21203/rs.3.rs-87089/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Dyslipidemia contributes to the development and progression of arterial stiffness. We aimed to confirm the superiority of the serum lipids and their calculated ratios in predicting arterial stiffness progression.

Methods: Total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and brachial-ankle pulse wave velocity (baPWV) of 612 healthy males (47.0 ± 10.5 years) were measured at baseline. Values for non-HDL-C, TC/HDL-C, TG/HDL-C, LDL-C/HDL-C, and non-HDL-C/HDL-C were calculated. BaPWV was re-performed after 4.1 years follow-up. A baPWV cutoff of 1400 cm/s was used to diagnose arterial stiffness.

Results: Over the follow-up period, the mean baPWV value increased from 1330 cm/s to 1400 cm/s, and 309 individuals increased/persisted with high baPWV (outcome 1). Among the 430 subjects who were free of arterial stiffness at baseline, 90 arterial stiffness events occurred (outcome 2). Only logTG (OR 1.65 [95% CI: 1.14-2.40] for outcome 1; 2.08 [1.24-3.52] for outcome 2) and logTG/HDL-C (1.56 [1.15-2.13] for outcome 1; 1.69 [1.10-2.62] for outcome 2) were significantly associated with arterial stiffness progression after adjusting for confounding factors. Adding logTG or logTG/HDL-C to age and blood pressure improved the accuracy of risk predictions for arterial stiffness progression. These associations remained significant when lipids were analyzed as categorical variables.

Conclusions: Baseline serum TG and TG/HDL-C were independently associated with increases in/persistently high baPWV and incident arterial stiffness, and they performed more effectively than other lipid variables in identifying healthy men at a higher risk of arterial stiffness progression.

Background

Cardiovascular disease (CVD) has become the leading cause of death in China [1]. The increase in CVD risk is largely driven by adverse changes of the vasculature, including arterial stiffening. Brachial-ankle pulse wave velocity (baPWV) is the most widely used routine clinical practice in Asia to assess arterial stiffness and is being increasingly incorporated into studies in the US and Europe [2,3], since the measurement is valid, reproducible, minimal-risk, convenient, and cost-saving. Accumulating evidence demonstrates that arterial stiffness, evaluated by baPWV, is an independent predictor for CVD event and mortality in the general population and various patient populations [4-6]. Arterial stiffness is also one of the major age-related arterial phenotypes [7], and the ‘Vascular Aging Continuum’ has regarded increased arterial stiffness as the fundamental and vital link [8]. Pulse wave velocity is considered a physiological method for quantifying vascular aging [9,10]. Therefore, a relatively simple means to identify individuals who are at higher risk of arterial stiffness progression would be clinically useful.

Dyslipidemia characterized by the increase of total cholesterol (TC), triglyceride (TG), or low-density lipoprotein cholesterol (LDL-C), or the decrease of high-density lipoprotein cholesterol (HDL-C) contributes to arterial stiffness and has been proven to be associated with baPWV in extensive cross-sectional
studies [7,11]. However, associations observed in cross-sectional analyses limit inferences about temporality and longitudinal studies regarding the role of serum lipids on arterial stiffness progression are limited and far from conclusive. In addition, arterial stiffness progresses at different rates and can be accelerated by several long-standing cardiovascular risk factors [12], and participants enrolled in previous longitudinal studies were often affected by a variety of chronic diseases. Therefore we selected healthy individuals according to strict criteria in this study to reduce the potential bias from other diseases and capture the dyslipidemia-related atrial stiffness progression difference. We aimed to determine the association of baPWV progression with baseline serum lipids, including TC, TG, LDL-C, HDL-C, non-HDL-C, TC/HDL-C, TG/HDL-C, LDL-C/HDL-C, and non-HDL-C/HDL-C, and to confirm the superiority of those lipid parameters in identifying healthy men at a higher risk of arterial stiffness progression.

Methods

Subjects

This retrospective longitudinal study was conducted at the physical examination center of the geriatric department of Tongji Hospital and was approved by the medical ethics committee of Tongji Hospital (TJ-IRB20190410). The study protocol conforms to the Declaration of Helsinki. We collected physical examination records from March 2011 to July 2019. In total, 612 healthy males aged 18 years or older were selected. All of them had measurements of baPWV and a complete lipid panel (including TC, TG, LDL-C, and HDL-C) at baseline and had their second baPWV measurement after a delay of more than three years. The exclusion criteria were: inheritable dyslipidemia, use of lipid-lowering medications, hypertension [defined as systolic blood pressure (SBP) ≥ 140 mm Hg, diastolic blood pressure (DBP) ≥ 90 mm Hg, or use of antihypertensive drugs], diabetes [defined as fasting blood glucose (FBG) of ≥ 7.0 mmol/L, HbA1c ≥ 6.5%, or use of hypoglycemic drugs], coronary disease, stroke, obvious arrhythmia (persistent atrial fibrillation, frequent premature beats, or wearing a pacemaker), cardiomyopathy, valvular heart disease, chronic liver or kidney disease, cancer, ankle-brachial index (ABI) less than 0.9, and missing data.

Clinical characteristics

Every time the patients visited the physical examination center, trained personnel conducted standardized in-person interviews with the patients to collect information regarding age, sex, current cigarette smoking, medical history, and medication use. Anthropometric indexes including height and weight were measured. Body mass index (BMI) was computed as the weight in kilograms divided by the square of the height in meters. Blood pressure and heart rate were measured using an OMRON sphygmomanometer (OMRON Corporation, Japan). The blood pressure and heart rate used in the analysis were calculated as the average of three measured values. Mean arterial pressure (MAP) was calculated from the standard equation MAP = (2/3)DBP + (1/3)SBP (in mm Hg). Fasting venous blood samples were collected and sent to the hospital’s clinical chemistry laboratory. TC, TG, LDL-C, HDL-C, FBG, HbA1c, creatinine, and uric acid were measured using standard certified assays. We also calculated values for non-HDL-C (TC minus
HDL-C), TC/HDL-C (TC divided by HDL-C), TG/HDL-C (TG divided by HDL-C), LDL-C/HDL-C (LDL-C divided by HDL-C), and non-HDL-C/HDL-C (non-HDL-C divided by HDL-C).

Arterial stiffness measurements and definition of the outcomes

BaPWV and ABI were measured using the Vascular Profiler BP-203RPE system (Omron, Kyoto, Japan). Trained technicians placed the pressure cuffs on the subjects, i.e., one on the upper part of each arm and one on each ankle. Then, the subjects were examined after ten minutes of rest in the supine position. The device simultaneously recorded the bilateral pulse waves of the brachial and posterior tibial arteries using an oscillometric method. BaPWV was calculated as the ratio of the traveled distance (which was automatically estimated from the body height) divided by the transit time of the pulse wave between the brachial and posterior tibial arteries. We classified the outcome in 2 different manners. Outcome 1: the baseline and follow-up baPWV were both divided into quartiles, respectively. Then we classified subjects into two subgroups: those who decreased their quartile distribution or persisted within the two lower quartile groups, and those who increased their quartile distribution or persisted within the two higher quartile groups [13]. Outcome 2: a cutoff value of more than 1400 cm/s for baPWV was used to diagnose arterial stiffness [4,14]. Individuals without arterial stiffness at baseline were divided into “non-arterial stiffness” and “incident arterial stiffness” groups based on their follow-up baPWV levels.

Statistical analysis

Data were analyzed using R and RStudio 3.6.2. Continuous variables were presented as the means ± standard deviation or medians (interquartile range), as appropriate for the distribution. Categorical variables were shown as counts and proportions. Paired t-tests were used to determine if the baPWV levels changed over the follow-up period. We compared the baseline variables between groups using unpaired t-test, Mann-Whitney U test, and Chi-squared test accordingly. Crude and multivariable-adjusted binary logistic regression models were developed to estimate odd ratios (ORs) and 95% confidence intervals (CIs) for the two outcomes associated with each serum lipid, respectively. Prior to regression analysis, TG and TG/HDL-C were log-transformed to achieve normality. Age and MAP, the most important determinants for baPWV, were controlled for in the first model. Further adjustments were made for BMI, smoking (current smoker and non-current smoker), heart rate, FBG, HbA1c, creatinine, and uric acid in the second model. The improvement in the ability of each serum lipid to predict outcomes was summarized using area under receiver operating characteristic (ROC) curves (AUC), positive net reclassification improvement (NRI), and integrated discrimination improvement (IDI) [15]. In sensitivity analyses, TC, TG, HDL-C, LDL-C, and non-HDL were divided into three or two levels by clinical cut-points [16]; TC/HDL-C, TG/HDL-C, LDL-C/HDL-C, and non-HDL-C/HDL-C ratios were divided into three levels by tertile cut-points. ORs and 95% CIs for the outcomes across categories of each serum lipid were also calculated, using the most favorable category as the reference. Trends in ORs across categories of each lipid were calculated by modeling the lipid categories as an ordinal variable. Two-tailed p-values < 0.05 were considered significant.
Results

General characteristics

The clinical characteristics of the study subjects are shown in Table 1. The population had a mean baseline age of 47.0 ± 10.5 years and the median duration of the follow-up was 4.1 years. The mean baPWV value increased from 1330 ± 204 cm/s to 1400 ± 240 cm/s over the follow-up period, with a mean annual baPWV change of 16 cm/s and the difference showed a statistical significance (p < 0.001).

Of all the study participants, 309 (50.5%) individuals had increased/persisted with high baPWV (outcome 1), and they had higher levels of age, blood pressure, heart rate, ABI, TG, TC/HDL-C, TG/HDL-C, and non-HDL-C/HDL-C, compared with those who presented a reduction or persisted with low baPWV. There were no statistical differences in other lipids, including TC, LDL-C, non-HDL-C, HDL-C, and LDL-C/HDL-C.

A total of 430 subjects were free of arterial stiffness at baseline, and 90 (20.9%) of them developed arterial stiffness during the follow-up period (outcome 2). Individuals with incident arterial stiffness had higher levels of age, blood pressure, ABI, FBG, TG, and TG/HDL-C, compared with those who stayed arterial health. Other lipids, including TC, LDL-C, non-HDL-C, HDL-C, TC/HDL-C, LDL-C/HDL-C, and non-HDL-C/HDL-C had no statistical difference.

Arterial stiffness progression and lipid parameters as continuous variables

Only logTG and logTG/HDL-C were significantly associated with increased risk of arterial stiffness progression in both crude and adjusted logistic regression models (all p <0.05; Figure 1). After adjusting for potential confounding factors, a unit increase in logTG and logTG/HDL-C resulted in ORs for outcome 1 of 1.65 (95% CI: 1.14-2.40) and 1.56 (95% CI: 1.15-2.13), respectively. Meanwhile, the ORs for outcome 2 per unit increase in logTG and logTG/HDL-C was 2.08 (95% CI: 1.24-3.52) and 1.69 (95% CI: 1.10-2.62), respectively. TC/HDL-C and non-HDL-C/HDL-C were not significantly associated with arterial stiffness progression in the adjusted models, while the ORs of TC, LDL-C, non-HDL-C, HDL-C, and LDL-C/HDL-C did not reach statistical significance in all the models.

We further performed ROC analyses to study the predictive power of logTG and logTG/HDL-C (Figure 2 and Table 2). When adding logTG or logTG/HDL-C to the basic model, the prediction of the outcomes showed an increase in AUC. For example, AUC for outcome 2 increased from 0.72 to 0.74 when logTG was added. Positive NRI and IDI indicated that adding logTG or logTG/HDL-C significantly improved risk reclassification for both outcomes (p < 0.05).

Arterial stiffness progression and lipid parameters as categorical variables

The association between each serum lipid and arterial stiffness was also present when serum lipids were analyzed as categorical variables (Figure 3 and Figure 4). TG and TG/HDL-C were significantly associated with both outcome 1 and outcome 2 (all p-trend < 0.05). The ORs associated with the increased versus appropriate level of TG (≥ 2.30 versus ≤ 1.69 mmol/L) was 2.00 (95% CI: 1.20-3.38) for
outcome 1 and 2.86 (95% CI: 1.35-6.04) for outcome 2. The ORs associated with the highest versus
lowest quartile of TG/HDL was 2.03 (95% CI: 1.24-3.37; ≥ 1.58 versus ≤ 0.91) for outcome 1 and 2.98
(95% CI: 1.44-6.36; ≥ 1.47 versus ≤ 0.86) for outcome 2. ORs for outcome 1 among participants with the
highest tertile compared with those with the lowest tertile of TC/HDL-C or non-HDL-C/HDL-C also had
statistical significance.

Discussion

In this study, we compared the predictive power of serum lipid parameters on arterial stiffness
progression in a sample of apparently healthy Chinese men. We found that even after adjusting for the
confounding factors, high TG and TG/HDL-C were correlated with a higher risk of increases
in/persistently high baPWV and incident arterial stiffness. In addition, we also found that serum TG was
positively associated with baPWV and low TG was a protective factor for vascular aging in healthy
elderly subjects in a previous study [10]. Hence we confirmed the superiority of TG and TG/HDL-C in mid-
and late-life.

High TG is a traditional risk factor for CVD [17]. However, previous investigations, which have included TG
in multivariable regression analyses for arterial stiffness progression, were conflicting. Some studies
showed that baseline TG levels and changes of TG levels over time independently predicted arterial
stiffness progression after adjusting for other cardiovascular risk factors [18-21], while others have not
[22-25]. TG/HDL-C has been considered as an independent predictor of insulin resistance [26,27], diabetes
mellitus [28], and CVD [29]. High-level TG/HDL-C ratio was also proved to be associated with higher
arterial stiffness in cross-sectional studies [30-32], and the relationship might be non-linear [30]. TG/HDL-
C was also found to be an independent determinant of arterial stiffness in adolescents and young adults
[33]. Consistent with our study, subjects with high TG/HDL-C ratio also had a higher risk of carotid-
femoral pulse wave velocity (cfPWV) progression in healthy individuals [34]. However, the result of
another investigation revealed that higher cfPWV in late-life was not related to faster annual rates of
change in TG/HDL-C from mid-life [32]. The conflicting results of these investigations were likely based
on the differences in the study populations and the evaluation indexes of arterial stiffness and we
provided evidence of the independent predictive value of baseline TG and TG/HDL-C for baPWV
progression in Chinese healthy males.

It has long been thought that arterial stiffness is only a feature of hypertension-mediated organ damage,
while more recent studies show that arterial stiffness precedes hypertension [35,36]. Arterial stiffness
reflects the cumulative damage of cardiovascular risk factors on the vascular wall and is even better than
the blood pressure in reflecting the risk of CVD [37]. Arterial stiffness begins in early childhood and shows
increasing progression in adults [7]. Our study population displayed a mean baPWV increase of 16 cm/s
per year. The progression rate was quite similar to that of another group of Chinese males, in which the 5-
year change was 70 cm/s for the healthy men [19]. The average annual change of baPWV of a
Japanese/American population-based cohort study was 9 cm/s, but this study merely focused on men
aged 40 to 49 years [38]. Valid baPWV progression rates have not been established so far.
We have some limitations to consider. First, although the results were adjusted for multiple covariates that may be associated with baPWV, the possibility of residual confounds remains. Second, we referred to some articles about cfPWV, because data regarding baPWV progression is limited. Although baPWV is highly correlated with cfPWV, we do not think the results are interchangeable. Moreover, whether controlling for TG and HDL-C can attenuate progression of arterial stiffness or whether any long-term reduction in arterial stiffness can translate into a reduction in cardiovascular events has not been directly demonstrated in randomized controlled trials.

Conclusions

In conclusion, we provided evidence in this longitudinal study that baseline TG and TG/HDL-C which could be obtained from routine serum lipids independently predicted increases in/persistently high baPWV and incident arterial stiffness, and they were superior to other traditional lipid variables in identifying healthy men who are at an increased risk of arterial stiffness progression. This positive association between TG, TG/HDL-C, and baPWV progression should be considered in the management of vascular health.

Abbreviations

CVD: Cardiovascular disease; BaPWV: Brachial-ankle pulse wave velocity; TC: Total cholesterol; TG: Triglyceride; LDL-C: Low-density lipoprotein cholesterol; HDL-C: High-density lipoprotein cholesterol; SBP: Systolic blood pressure; DBP: Diastolic blood pressure; FBG: Fasting blood glucose; ABI: Ankle-brachial index; BMI: Body mass index; MAP: Mean arterial pressure; OR: Odd ratio; CI: Confidence interval; ROC: Receiver operating characteristic; AUC: Area under ROC; NRI: Net reclassification improvement; IDI: Integrated discrimination improvement; CfPWV: Carotid-femoral pulse wave velocity

Declarations

Ethics approval and consent to participate

The study was approved by the Ethics Committee of the Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (NO: TJ-IRB20190410) in compliance with the Declaration of Helsinki, and all participants provided informed consent.

Consent for publication

Not applicable.

Availability of data and materials

The datasets analyzed during the current study are available from the corresponding author on reasonable request.
Competing interests

The authors declare that they have no competing interests.

Funding

This work was supported by the Natural Science Foundation of Hubei Provincial (Program No. 2017CFB351) and the Major Technology Innovation of Hubei Province (Program No. 2019ACA141).

Authors' contributions

C.Z. and L.R. conceived and designed this study; Y.S. analyzed the patient data and wrote the manuscript; M.C. and X.W. conducted the quality assurance and reviewed and edited the paper. All authors read and approved the final manuscript.

Acknowledgements

We appreciate the help and support from all participants who took part in the study and the staff at the physical examination center of the geriatric department of Wuhan Tongji Hospital.

References

1. Zhao D, Liu J, Wang M, Zhang X, Zhou M. Epidemiology of cardiovascular disease in China: current features and implications. Nat Rev Cardiol. 2019;16:203-212.

2. Hollands WJ, Tapp H, Defernez M, Perez Moral N, Winterbone MS, Philo M, et al. Lack of acute or chronic effects of epicatechin-rich and procyanidin-rich apple extracts on blood pressure and cardiometabolic biomarkers in adults with moderately elevated blood pressure: a randomized, placebo-controlled crossover trial. Am J Clin Nutr. 2018;108:1006-1014.

3. Endes S, Schaffner E, Caviezel S, Dratva J, Autenrieth CS, Wanner M, et al. Physical activity is associated with lower arterial stiffness in older adults: results of the SAPALDIA 3 Cohort Study. Eur J Epidemiol. 2016;31:275-285.

4. Maeda Y, Inoguchi T, Etoh E, Kodama Y, Sasaki S, Sonoda N, et al. Brachial-ankle pulse wave velocity predicts all-cause mortality and cardiovascular events in patients with diabetes: the Kyushu Prevention Study of Atherosclerosis. Diabetes Care. 2014;37:2383-2390.

5. Sheng CS, Li Y, Li LH, Huang QF, Zeng WF, Kang YY, et al. Brachial-ankle pulse wave velocity as a predictor of mortality in elderly Chinese. Hypertension. 2014;64:1124-1130.

6. Ohkuma T, Ninomiya T, Tomiyama H, Kario K, Hoshide S, Kita Y, et al. Brachial-Ankle Pulse Wave Velocity and the Risk Prediction of Cardiovascular Disease: An Individual Participant Data Meta-Analysis. Hypertension. 2017;69:1045-1052.

7. Lu Y, Pechlaner R, Cai J, Yuan H, Huang Z, Yang G, et al. Trajectories of Age-Related Arterial Stiffness in Chinese Men and Women. J Am Coll Cardiol. 2020;75:870-880.
8. O'Rourke MF, Safar ME, Dzau V. The Cardiovascular Continuum extended: aging effects on the aorta and microvasculature. Vasc Med. 2010;15:461-468.

9. Niiranen TJ, Lyass A, Larson MG, Hamburg NM, Benjamin EJ, Mitchell GF, et al. Prevalence, Correlates, and Prognosis of Healthy Vascular Aging in a Western Community-Dwelling Cohort: The Framingham Heart Study. Hypertension. 2017;70:267-274.

10. Sang Y, Wu X, Miao J, Cao M, Ruan L, Zhang C. Determinants of Brachial-Ankle Pulse Wave Velocity and Vascular Aging in Healthy Older Subjects. Med Sci Monit. 2020;26:e923112.

11. Zhan B, Huang X, Wang J, Qin X, Zhang J, Cao J, et al. Association Between Lipid Profiles and Arterial Stiffness in Chinese Patients With Hypertension: Insights From the CSPPT. 2019;70:515-522.

12. Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27:2588-2605.

13. Ferreira MT, Leite NC, Cardoso CR, Salles GF. Correlates of aortic stiffness progression in patients with type 2 diabetes: importance of glycemic control: the Rio de Janeiro type 2 diabetes cohort study. Diabetes Care. 2015;38:897-904.

14. Yamashina A, Tomiyama H, Arai T, Hirose K, Koji Y, Hirayama Y, et al. Brachial-ankle pulse wave velocity as a marker of atherosclerotic vascular damage and cardiovascular risk. Hypertens Res. 2003;26:615-622.

15. Kundu S, Aulchenko YS, van Duijn CM, Janssens AC. PredictABEL: an R package for the assessment of risk prediction models. Eur J Epidemiol. 2011;26:261-264.

16. Polonis K, Hoffmann M, Szyndler A, Wolf J, Nowak R, Becari C, et al. A multilocus genetic risk score is associated with arterial stiffness in hypertensive patients: the CARE NORTH study. J Hypertens. 2018;36:1882-1888.

17. Do R, Willer CJ, Schmidt EM, Sengupta S, Gao C, Peloso GM, et al. Common variants associated with plasma triglycerides and risk for coronary artery disease. Nat Genet. 2013;45:1345-1352.

18. Yu KJ, Zhang JR, Li Y, Huang X, Liu T, Li C, et al. Gallstone disease is associated with arterial stiffness progression. Hypertens Res. 2017;40:31-34.

19. Li N, Zhang GW, Zhang JR, Jin D, Li Y, Liu T, et al. Non-alcoholic fatty liver disease is associated with progression of arterial stiffness. Nutr Metab Cardiovasc Dis. 2015;25:218-223.

20. Zachariah JP, Rong J, Larson MG, Hamburg NM, Benjamin EJ, Vasan RS, et al. Metabolic Predictors of Change in Vascular Function: Prospective Associations From a Community-Based Cohort. Hypertension. 2018;71:237-242.

21. McEniery CM, Spratt M, Munnery M, Yarnell J, Lowe GD, Rumley A, et al. An analysis of prospective risk factors for aortic stiffness in men: 20-year follow-up from the Caerphilly prospective study. Hypertension. 2010;56:36-43.

22. Benetos A, Adamopoulos C, Bureau JM, Temmar M, Labat C, Bean K, et al. Determinants of accelerated progression of arterial stiffness in normotensive subjects and in treated hypertensive subjects over a 6-year period. Circulation. 2002;105:1202-1207.
23. Utescu MS, Couture V, Mac-Way F, De Serres SA, Marquis K, Lariviere R, et al. Determinants of progression of aortic stiffness in hemodialysis patients: a prospective longitudinal study. Hypertension. 2013;62:154-160.

24. Cecelja M, Jiang B, Keehn L, Hussain T, Silva Vieira M, Phinikaridou A, et al. Arterial stiffening is a heritable trait associated with arterial dilation but not wall thickening: a longitudinal study in the twins UK cohort. Eur Heart J. 2018;39:2282-2288.

25. Tomiyama H, Hashimoto H, Tanaka H, Matsumoto C, Odaira M, Yamada J, et al. Continuous smoking and progression of arterial stiffening: a prospective study. J Am Coll Cardiol. 2010;55:1979-1987.

26. McLaughlin T, Abbasi F, Cheal K, Chu J, Lamendola C, Reaven G. Use of metabolic markers to identify overweight individuals who are insulin resistant. Ann Intern Med. 2003;139:802-809.

27. Gasevic D, Frohlich J, Mancini GB, Lear SA. The association between triglyceride to high-density lipoprotein cholesterol ratio and insulin resistance in a multiethnic primary prevention cohort. Metabolism. 2012;61:583-589.

28. Zheng D, Li H, Ai F, Sun F, Singh M, Cao X, et al. Association between the triglyceride to high-density lipoprotein cholesterol ratio and the risk of type 2 diabetes mellitus among Chinese elderly: the Beijing Longitudinal Study of Aging. 2020;8.

29. Edwards MK, Blaha MJ, Loprinzi PD. Atherogenic Index of Plasma and Triglyceride/High-Density Lipoprotein Cholesterol Ratio Predict Mortality Risk Better Than Individual Cholesterol Risk Factors, Among an Older Adult Population. Mayo Clin Proc. 2017;92:680-681.

30. Chen C, Dai JL. Triglyceride to high-density lipoprotein cholesterol (HDL-C) ratio and arterial stiffness in Japanese population: a secondary analysis based on a cross-sectional study. Lipids Health Dis. 2018;17:130.

31. Chung TH, Shim JY, Kwon YJ, Lee YJ. High triglyceride to high-density lipoprotein cholesterol ratio and arterial stiffness in postmenopausal Korean women. 2019;21:399-404.

32. Poon AK, Meyer ML, Tanaka H, Selvin E, Pankow J, Zeng D, et al. Association of insulin resistance, from mid-life to late-life, with aortic stiffness in late-life: the Atherosclerosis Risk in Communities Study. Cardiovasc Diabetol. 2020;19:11.

33. Urbina EM, Khoury PR, McCoy CE, Dolan LM, Daniels SR, Kimball TR. Triglyceride to HDL-C ratio and increased arterial stiffness in children, adolescents, and young adults. Pediatrics. 2013;131:e1082-1090.

34. Li G, Wu HK, Wu XW, Cao Z, Tu YC, Ma Y, et al. Small dense low density lipoprotein-cholesterol and cholesterol ratios to predict arterial stiffness progression in normotensive subjects over a 5-year period. Lipids Health Dis. 2018;17:27.

35. Humphrey JD, Harrison DG, Figueroa CA, Lacolley P, Laurent S. Central Artery Stiffness in Hypertension and Aging: A Problem With Cause and Consequence. Circ Res. 2016;118:379-381.

36. Mitchell GF. Arterial stiffness and hypertension: chicken or egg? Hypertension. 2014;64:210-214.
37. Nilsson PM, Boutouyrie P, Laurent S. Vascular aging: A tale of EVA and ADAM in cardiovascular risk assessment and prevention. Hypertension. 2009;54:3-10.

38. Guo J, Fujiyoshi A, Willcox B, Choo J, Vishnu A, Hisamatsu T, et al. Increased Aortic Calcification Is Associated With Arterial Stiffness Progression in Multiethnic Middle-Aged Men. Hypertension. 2017;69:102-108.

Tables

Table 1. Baseline characteristics of the individuals included in the analysis
Variables	Total (n = 612)	Reduction in/persistently low baPWV (n = 303)	Increase in/persistently high baPWV (n = 309)	p value\(^a\)	Non-arterial stiffness (n = 340)	Incident arterial stiffness (n = 90)	p value\(^b\)
Age, years	47.0 ± 10.5	43.4 ± 8.7	50.7 ± 10.8	<0.001	43.2 ± 8.8	49.2 ± 7.7	<0.001
Smoker, %	218 (35.6)	113 (37.3)	105 (34.0)	0.44	132 (38.8)	30 (33.3)	0.40
BMI, kg/m²	24.6 ± 2.7	24.6 ± 2.5	24.5 ± 2.9	0.41	24.6 ± 2.8	24.4 ± 3.2	0.56
SBP, mm Hg	120 ± 10	119 ± 10	121 ± 10	0.002	117 ± 9	120 ± 9	0.008
DBP, mm Hg	74 ± 9	73 ± 9	76 ± 8	<0.001	71 ± 8	75 ± 7	<0.001
MAP, mm Hg	90 ± 9	88 ± 9	91 ± 8	<0.001	86 ± 8	90 ± 7	<0.001
Heart rate, beats/min	66 ± 10	65 ± 10	68 ± 9	0.003	65 ± 9	66 ± 8	0.08
ABI	1.10 ± 0.08	1.09 ± 0.08	1.11 ± 0.07	0.02	1.09 ± 0.08	1.11 ± 0.08	0.04
FBG, mmol/L	5.04 ± 0.52	5.01 ± 0.50	5.08 ± 0.53	0.08	4.97 ± 0.50	5.09 ± 0.50	0.05
HbA1c, %	5.58 ± 0.30	5.56 ± 0.31	5.60 ± 0.30	0.10	5.54 ± 0.30	5.60 ± 0.26	0.06
creatinine, μmol/L	81.2 ± 10.8	81.2 ± 10.0	81.1 ± 11.5	0.88	81.5 ± 10.4	80.1 ± 11.5	0.31
Uric acid, umol/L	376 ± 77	374 ± 75	377 ± 78	0.64	372 ± 75	382 ± 82	0.28
TC, mmol/L	4.75 ± 0.87	4.73 ± 0.83	4.78 ± 0.90	0.47	4.71 ± 0.83	4.81 ± 1.00	0.37
TG, mmol/L	1.37 (1.03)	1.30 (0.81)	1.46 (1.15)	0.005	1.28 (0.78)	1.60 (1.17)	0.001
LDL-C, mmol/L	2.94 ± 0.74	2.95 ± 0.71	2.93 ± 0.78	0.76	2.96 ± 0.72	2.92 ± 0.84	0.65
	Baseline	Follow-up	p value				
------------------------------	----------	-----------	---------				
Non-HDL-C, mmol/L	3.58 ± 0.85	3.63 ± 0.92	0.30				
HDL-C, mmol/L	1.18 ± 0.27	1.18 ± 0.34	0.75				
TC/HDL-C	4.19 ± 1.03	4.27 ± 1.07	0.16				
TG/HDL-C	1.22 (1.05)	1.33 (1.29)	0.003				
LDL-C/HDL-C	2.59 ± 0.74	2.59 ± 0.82	0.77				
Non-HDL-C/HDL-C	3.19 ± 1.03	3.27 ± 1.07	0.16				
Baseline baPWV, cm/s	1330 ± 204	1270 ± 165	<0.001				
Follow-up baPWV, cm/s	1400 ± 240	1550 ± 238	<0.001				

Data are mean ± standard deviation, median (interquartile range), or n (%).

p values were calculated by unpaired t-test, Mann-Whitney U test, or χ² test, as appropriate.

Reduction in/persistently low baPWV versus increase in/persistently high baPWV. Non-arterial stiffness versus incident arterial stiffness.

BMI indicates body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, mean arterial pressure; ABI, ankle-brachial index; FBG, fasting blood glucose; HbA1c, glycated hemoglobin A1c; TC, total cholesterol; TG, triglyceride; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol.

Table 2. Model Performance for arterial stiffness progression
Models	AUC (95% CI)	NRI(95% CI)	p value	IDI (95% CI)	p value
Outcome 1: increase in/persistently high baPWV					
Age + MAP	0.71 (0.67-0.75)	-	-	-	-
Age + MAP + LogTG	0.72 (0.68-0.76)	21.1% (5.4%-36.8%)	0.009	1.3% (0.4%-2.1%)	0.004
Age + MAP + LogTG/HDL-C	0.72 (0.68-0.76)	19.7% (3.9%-35.5%)	0.01	1.3% (0.4%-2.2%)	0.003
Outcome 2: incident arterial stiffness					
Age + MAP	0.72 (0.67-0.77)	-	-	-	-
Age + MAP + LogTG	0.74 (0.68-0.79)	42.8% (19.9%-65.6%)	<0.001	1.6% (0.2%-3.0%)	0.02
Age + MAP + LogTG/HDL-C	0.73 (0.68-0.79)	33.3% (10.4%-56.3%)	0.004	1.2% (0.02%-2.4%)	0.05

AUC indicates area under receiver operating curve; NRI, net reclassification improvement; IDI, integrated discrimination improvement; MAP, mean arterial pressure; TG, triglyceride; HDL-C, high-density lipoprotein cholesterol.

Figures
Figure 1

Forest plot of ORs of lipids for arterial stiffness progression. Left: outcome 1 (increases in/persistently high baPWV). Right: outcome 2 (incident arterial stiffness). Model 1: adjustment for age and mean arterial pressure. Model 2: adjustment for age, mean arterial pressure, body mass index, smoking, heart rate, fasting blood glucose, HbA1c, creatinine, and uric acid. BaPWV indicates brachial-ankle pulse wave velocity; TC, total cholesterol; TG, triglyceride; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol.
Figure 2

ROC analyses of logTG and logTG/HDL-C for the prediction of arterial stiffness progression. Left: outcome 1 (increases in/persistently high baPWV). Right: outcome 2 (incident arterial stiffness). BaPWV indicates brachial-ankle pulse wave velocity; MAP, mean arterial pressure; TG, triglyceride; HDL-C, high-density lipoprotein cholesterol.
Figure 3

Forest plot of ORs for outcome 1 (increases in/persistently high baPWV). All ORs were adjusted for age, mean arterial pressure, body mass index, smoking, heart rate, fasting blood glucose, HbA1c, creatinine, and uric acid. BaPWV indicates brachial-ankle pulse wave velocity; TC, total cholesterol; TG, triglyceride; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol.
Figure 4

Forest plot of ORs for outcome 2 (incident arterial stiffness). All ORs were adjusted for age, mean arterial pressure, body mass index, smoking, heart rate, fasting blood glucose, HbA1c, creatinine, and uric acid. BaPWV indicates brachial-ankle pulse wave velocity; TC, total cholesterol; TG, triglyceride; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol.