Tittel: Populasjonssykler hos bjørkemålere – små dyr med enorme svingninger!

Forfatterinformasjon
Ole Petter Laksforsmo Vindstad (f. 1982) har studert biologi ved Universitetet i Tromsø (UiT), hvor han i 2015 forsvarte en doktorgrad på bjørkemåleres interaksjoner med andre arter. Han arbeider i dag som forsker i økologi ved UiT.

Jane Uhd Jepsen (f. 1973) har doktorgrad i zoologi fra Københavns universitet, og har arbeidet med bjørkemålere siden 2006. Hun er i dag seniorforsker ved Norsk institutt for naturforskning (NINA) i Tromsø. Hennes forskningsfelt inkluderer blant annet populasjonsdynamikk hos bjørkemålere, og økologiske effekter av målerutbrudd på bjørkeskogen.

Sammendrag
Fjellbjørkemåler og liten høstmåler er nattsommerfugler som har sykliske populasjonssvingninger i fjellbjørkeskogen i Skandinavia. Populasjonstopper kommer med omtrent ti års mellomrom, og tettheten av målere i toppår kan være flere tusen ganger høyere enn i bunnpår. Selv om syklene er godt beskrevet ved hjelp av lange tidsserier er årsaken til svingningene dårlig forstått. Antibitestoffer hos bjørka blir ofte fremholdt som årsaken til årsaken til syklene i media, selv om denne hypotesen har svært begrenset støtte i forskningsresultater. Sykliske svingninger i solflekkaktivitet har også blitt forkastet som årsak til målersyklene. Naturlige fiendeders rolle i syklene er fortsatt omdiskutert på grunn av sprakkende forskningsresultater. Målersyklene spiller en viktig rolle i fjellbjørkeskogen, da målerne er mat for mange andre arter og kan forårsake alvorlige skader på skogen i toppår.

Hva er målere?
Målere er en familie av nattsommerfugler som bærer det latinske navnet Geometridae og er representert med litt over 280 arter i Norge. Sykliske populasjonssvingninger er kjent hos flere arter, men sykler har fått mest oppmerksomhet hos fjellbjørkemåler (Epirrita autumnata) og liten frostmåler (Operophtera brumata, også kalt liten høstmåler) (se figur 1). Begge artene forekommer naturlig over det meste av Eurasia. Artene er nært beslektet og har mange biologiske likhetstrekk. Begge arter overvintrer som små egg på om lag en millimeters lengde. Eggene er svært kuldetoålige og kan måle temperaturer på rundt 35 minusgrader. I Nord-Skandinavia klekker eggene omtrent samtidig med løvskuddet hos bjørka, vanligvis rundt midten av mai. De nyklekede målerlarvene går øyeblikkelig i gang med å spise på det ferske bjørkeløvet, og fortsatt med det til de har gjennomgått fem larvstadi der som adskilles av hudskifter. En fullt utviklet fjellbjørkemålerlarve er om lag 3 cm lang, mens frostmålerlarven bare er litt over 2 cm lang. Varigheten på larvenes utvikling er avhengig av temperatur og mattilgang, men i Nord-Skandinavia tar hele utviklingen vanligvis om lag 6 uker, slik at larvene er ferdigutviklet i månedsskiftet Juni-Juli. Larvene slipper seg da ned på bakken og forpupper seg noen cm nede i jorda. Her utvikler de seg til voksne sommerfugler. I Nord-Skandinavia flyr de voksne fjellbjørkemålerne fra midten av August til midten av September, mens liten frostmåler flyr om lag en måned senere. Hos fjellbjørkemåleren kan både hanner og hunner fly, men hos den lille frostmåleren er hunnen vingeløs og kan bare forflytte seg ved å bruke beina. Etter at målerne har paret seg legger hunnene eggene sine på greinene hos bjørka. De voksne målerne tar ikke til seg føde, og evnen til å produsere egg bestemmes av hvor mye næring hunnen har fått i seg som larver. Velfødde hunner kan legge over 200 egg hos begge arter. I Nord-Skandinavia spiser larvene hos både fjellbjørkemåler og liten frostmåler hovedsakelig bjørk, men begge arter kan spise et bredt utvalg av plantearter. Når målerpopulasjonene har toppår kan både rogn, vek, og blåbær få alvorlige beiteskader. Målerne kan også angripe pryd- og nyttevekster i folks hager,
slik som rosor, jordbær og epletrær. Den lille frostmåleren er særlig glupsk i så måte, og arten blir ansett som et alvorlig skadedyr på frukttrær lenger sør i Europa.

Figur 1

Populasjonssyklar hos målere

Masseforekomster (ofte kalt utbrudd) av målere i Skandinavia har lenge vært et velkjent fenomen for både forskere og lokalbefolkningen. Den første kjente skriftlige omtalen av fenomenet stammer fra presten Hermann Ruge fra Valdres, som i et skriv fra 1762 fastslo at målerlarver kan «blive saa mangfoldige at de skjule træerne og øde alt grønt av dem». Den første Norske statsentomologen – Wilhelm M. Schøyen – publiserte allerede i 1891 en oversikt over utbruddene som til da var kjent i Norge. Utover første halvdel av 1900-tallet påpekte flere forskere og skogfolk at utbruddene så ut til å være periodiske og forekomme med relativt faste tidsintervaller. Den første som fremskaffet god dokumentasjon på denne regulariteten var den svenske forskeren Olle Tenow. I sin doktorgradsavhandling fra 1972 sammenstilte han alle tilgjengelige rapporter om målerutbrudd i Skandinavia, inkludert offentlig skogsarbeiderapporter, entomologisk fagpublikasjoner, personlige meddelelser og egne observasjoner (Tenow 1972). Materialet hans viste tydelig at utbrudd av både fjellbjørkemåler og liten frostmåler forekom med omtrent 10 års mellomrom når man så på Skandinavia som helhet (se figur 2a for fjellbjørkemåler). Disse regulære svingningene vakte stor interesse blant økologer, og i årene som fulgte startet både norske, svenske og finske miljø- og miljøforskning på målerenes populasjondynamikk. En viktig del av denne forskningen var å etablere systematiske tellinger av målerlarver (og i noen tilfeller voksne målere), slik at man fikk nøyaktige tall på tettheten av dyr hvert år, snarere enn bare registreringer av om det forekom utbrudd eller ikke. Flere av disse målertidsseriene vedlikeholdes den dag i dag, og de har gitt oss mye verdifull informasjon om målerpopulasjonenes dynamikk.

Figur 2

Én viktig observasjon fra målerseriene er at tidsintervallet mellom populasjonstopper (syklenes periode) vanligvis ligger på 9-10 år, men også kan vise betydkelig variasjon både innen og mellom lokaliteter. Intervaller på alt mellom 7 og 15 år er observert i Skandinavia. Det er også stor variasjon i hvor høy tetthet målerpopulasjonene oppnår i toppår. Tettheten i toppår er ofte ikke høy nok til at man i streng forstand kan snakke om et utbrudd – hvor bjørka blir alvorlig nedbeitet – men tettheten som oppnås ved de største toppene kan være forbløffende. I 2014 observerte vi at enkelte lokaliteter i Troms hadde gjennomsnittet tettheten på over 100 larver per bjørkegren. Dette gjennomsnittet er regnet over 100 bjørkegrener med en standardisert lengde på 80 cm. Hvis vi sammenligner toppår og bunnår av syklus (dvs. syklenes amplitude), finner vi at tettheten av både fjellbjørkemåler og liten frostmåler på bjørk kan være over 7000 ganger høyere ved de mest ekstreme toppene enn ved bunn av syklus. Utrolig nok er det virkelige tallet antageligvis enda høyere, da bjørka blir helt avspist ved slike tettheter, slik at noen larver forlater grenene for å lete etter mat på bakken.

Fjellbjørkemåler og liten frostmåler opptrer ofte sammen, og det er vanlig å finne larver av de to artene på samme gren. Populasjonstopper av de to artene inntreffer vanligvis med 1-3 års mellomrom, men rekkefolgen på toppene følger en pussig lovmessighet der fjellbjørkemåleren toppar først. Maksimal tetthet av frostmåleren ser vi vanligvis ikke før populasjonen av fjellbjørkemåler har kollapset og er nesten helt borte (se figur 2b), og vi kjenner ingen dokumenterte tilfeller hvor frostmåleren har toppet først når de to artene har opptrådt sammen. Den karakteristiske tidsforsinkelsen mellom målerartene er godt dokumentert i Lange...
tidsserier fra både Trøndelag, Troms og Finnmark, men de underliggende mekanismene er dårlig forstått.

Et mye omdiskutert trekk ved amplitude n på målersykler, er at svingningene dempes når vi beveger oss sørover i Skandinavia. I Nord-Skandinavia kan vi observere målerutbrudd i lavlandet, men i Sør-Skandinavia forekommer utbruddene nesten utelukkende i fjellbjørkeskogen i fjellet (Klemola mfl. 2002). Interessant nok kan vi observere et lignende mønster på mindre skala i lokale høydegradienter. Når vi beveger oss oppover en åsside som er dekket av bjørkeskog vil tettheten av målere ofte øke etter hvert som vi kommer høyere. I kyststrekene i Troms, hvor topografien er preget av bratte åssider, kan skogen ved havnivå være frisk og grønn, mens skogen i tregrensa (om lag 250 meter over havet) kan være helt avspist av målere. Målerutbrudd kan derfor ofte ses på lang avstand som et brunt belte av avspist skog nær tregrensa (se figur 3) (Hagen mfl. 2007). Årsaken til disse romlige mønstrene er dårlig forstått, men det er verdt å merke seg at forflytning både nordover og oppover i høyden vil være forbundet med et systematisk fall i temperatur. Dette kan begunstige målerne direkte eller indirekte via bjørka eller naturlige fiender.

Figur 3.

Et annet spennende romlig mønster i målernes populasjonsdynamikk er at populasjoner som ligger langt fra hverandre ofte svinger i takt. Slik samvariasjon er regelen snarere enn unntaket for populasjoner som ligger noen titalls kilometer fra hverandre, men er også relativt vanlig i populasjoner som er adskilt av større avstander. I økologien kalles dette fenomenet «romlig synkronitet». Synkronitet kan oppstå fordi målere eller naturlige fiender beveger seg mellom populasjoner, eller fordi ulike populasjoner opplever lignende miljøforhold, for eksempel samme værforhold. Synkronitet over distanser på hundrevis av kilometer skyldes nok primært samvariasjon i miljøet, men på mindre skala har vi gode beviser for at bevegelse av målere også er viktig. Én indikasjon på dette er at synkroniteten jevnt over er svakere hos liten frostmåler – hvor de voksne hunnene ikke kan fly – enn hos fjellbjørkemåler – hvor begge kjønn har vinger (Vindstad mfl. 2019). En annen indikasjon på at spredning er viktig, er at synkroniteten ser ut til å å være sterkest når man beveger seg parallelt med den fremherskende vindretningen. Dette mønster oppstår antageligvis fordi nyklekte målerlarver kan la seg bære av vinden ved hjelp av lange silketråder – såkalt «ballongflukt» – og at denne spredningsmekanisk hovedsakelig vil bære larvene i samme retning som vinden blåser.

Et kontroversielt spørsmål i forbindelse med målernes romlige dynamikk er om målerutbrudd beveger seg som bølger. Det som skjer ved en slik «bølge» er egentlig at populasjoner med stadig større avstand til hverandre oppnår oppnår populasjonstopper med en stadig større tidsforsinkelse. På den måte kan det oppstå en illusion av at en bølge av målere sveiper over landskapet, selv om det ikke trenger å foregå forflytning av individer i bølgeretningen. Illusjonen av en bølge kan sammenlignes med den som oppstår på et stadion hvor folk lofter hendene etter tur når man beveger seg bortover seteradene. Det har lenge vært spekulert i at målerutbrudd kan vise bølgedynamikk, men den første formelle testen av denne hypotesen ble publisert først i 2013. Basert på registreringer av målerutbrudd over hele Europa fra 1950 til 2010, konkluderte Tenow mfl. (2013) da med at en utbruddsbølge beveger seg fra øst til vest over Europa hvert tiår. Bølgen ble beregnet til å ha en fart på 330 kilometer i året og en total bølgelengde 3135 kilometer. Arbeidet ble imidlertid kritisert for svakhet både i de statistiske analysene og i tallmaterialet som lå til grunn. I tillegg finnes det ingen kjent mekanisme som kan frembringe en bølge på så stor skala.

Hva er årsaken til målersyklenes?
Når vi skriver 2019 kan vi se tilbake på over 40 års forskning på årsaken til målersykl. Denne forskningen har gitt oss mye kunnskap om biologien til både målere, bjørk og naturlige fiender. Dette til tross kan vi fortsatt ikke påberope oss å ha en god forståelse av hva som skaper sykliske svingninger i målerpopulasjonene. I dette avsnittet skal vi gjøre opp en kort status over hvordan de viktigste hypotesene (se figur 4) står i dag, og diskutere utfordringene som har bidratt til at vi fortsatt ikke forstår hvorfor målerpopulasjonene svinger.

Hvis man bruker fantasien kan man nok forestille seg at populasjonssykl kan oppstå på mange ulike måter. Simulering av populasjonsdynamikk ved hjelp av matematiske modeller har imidlertid hjulpet oss til å forstå hvilke mekanismer som er mest sannsynlige. For å skape syklker trenger vi for det første en faktor som har negativ effekt på populasjonsveksten hos målere. Videre må den negative påvirkningen tilta i styrke når tettheten av målere øker. I økologien sier man gjerne at en slik faktor påfører «negativ tetthetsavhengighet» og at den kan virke «regulerende», da den vil tendere til å drive ned en populasjon som har bygd seg opp til høy tetthet. For å få syklker er det imidlertid avgjørende at den regulerende faktoren virker med en viss tidsforsinkelse, slik at populasjonen ikke umiddelbart opplever tiltagende negative effekter når den begynner å øke. Dette tillater populasjonen å vokse raskt en stund, slik at den kan bygge seg opp til en topp, før den negative faktoren tar tak og driver populasjonen ned igjen. Når populasjonstettheten har vært lav en tid, vil den negative faktoren avta i styrke, slik at populasjonen kan begynne å øke igjen. På denne måten kan det oppstå regulære svingninger i populasjonstettheten. Vi vet i dag at en slik forsinket negativ tetthetsavhengighet vanligvis forårsakes av biologiske faktorer, snarere enn fysiske faktorer som vær og klima. For målere kan vi skille grovt mellom tre typer av biologiske faktorer som kan operere med en tidsforsinkelse, nærmere bestemt bjørka, naturlige fiender og selvregulerende mekanismer innad i målerpopulasjonen (se figur 4).

Figur 4.

Hvis vi begynner med å se på bjørka, så kan det i utgangspunktet virke rart at målernes egen matplante skulle kunne være kilden til negative effekter. Bjørka er imidlertid ikke forsvarelslos når den blir beitet på, og kan produsere antibeitestoffer som gjør bladene tyrngende for målere. Vi vet også at dette forsvaret kan operere med en tidsforsinkelse, slik at økt beitepress fra en voksende målerpopulasjon i et gitt år kan føre til økte konsentrasjoner av antibeitestoffer i de påfølgende årene. Det har blitt foreslått å konsentrasjonen av antibeitestoffer etter noen år blir så høy at målerpopulasjonen slutter å vokse og til slutt kollaps. Stoffkonsentrasjonen antas deretter å holde seg høy i noen år, før den gradvis avtar, slik at målerpopulasjonen kan begynne å vokse igjen. Denne elegante hypotesen ble først formulert omkring 1980 av den finske forskeren Erkki Haukioja, og den dag i dag kan man ofte se at forskere uforbeholdt fremholder antibeitestoffer som forklaringen på målersyklene når de uttaler seg i media. Nå som dessverre blir glemt alt for ofte er det å Haukioja selv forkastet beittestoffhypotesen etter 20 års møysommelig arbeid (Haukioja 2005). Selv om forskningsarbeidet hans påviste at bjørkas antibeitestoffer har en negativ effekt på målerlarvenes vekst, konkluderte Haukioja og kolleger med at effektene var for svake til å forklare de voldsomme svingningene i tettheten av målere. Eksterimenter hvor man brukte kunstig bladklipping for å fremkalle produksjon av antibeitestoffer gav dessuten svært varierende resultater både på laboratoriet og i felt. Dette tyder på at produksjonen av antibeitestoffer ikke er konsistent nok til å forklare de regulære svingningene hos målere. Kunnskapen vi har i dag tyder derfor på at antibeitestoffer alene ikke forårsaker målersyklene, og det er derfor uheldig at denne hypotesen ofte holdes frem som en litt lettvint forklaring på syklene.
Da beitestoffhypotesen begynte å tape terreng ble det satt større fokus på naturlige fiender som mulige drivere av målersykene. Å si at målerne har mange fiender er ingen overdrivelse. Fugler kan spise store mengder målerlarver, mens spissmus graver opp og spiser målerpupper. Puppene angripes også av både rovbiller og løpebiller, mens voksne målere ofte blir bytte for vevkjerringe. Dessuten angripes både måleregg, larver og pupper av små snytteveps – såkalte parasitoider – som legger egg inne i målerkroppen og spiser måleren opp innenfra mens den ennå er i live. Som om ikke dette var nok, kan målerlarvene infisieres av virus som får dem til å gå i oppløsning. I møte med dette mangfoldet av fiender skulle man kanskje tro at forskerne har slitt med å bestemme seg for hvilken gruppe de skulle fokusere på. Heldigvis har matematiske modeller og økologisk teori igjen kommet oss til unnsøttet og hjulpet oss til å forstå hvilke fiender vi bør sette søkelyset på. Teorien forteller oss at populasjonssyklar bare kan skapes av spesialiserte fiender, som livnærer seg av nesten utelukkende av målere. Når målerpopulasjonen øker vil slike fiender oppleve økt mattilgang, slik at de kan formere seg effektivt. Dermed vil også fiendepopulasjonen vokse, men dette vil ikke skje øyeblikkelig, da reproduksjon og vekst tar en viss tid. Følgelig vil målerpopulasjonen kunne vokse en tid uten å bli sterkt påvirket av sine spesialiserte fiender. Her ser vi altså at også fiender kan operere med den viktige tidsforsinkelsen som er nødvendig for å skape syklar. Teorien antar videre at fiendene etter hvert vil bli mange nok til å drive målerpopulasjonen til kollaps. Dermed mister fiendene næringsgrunnlaget, slik at fiendepopulasjonen også kollapser. Dette tillater målerpopulasjonen å begynne å vokse igjen, slik at vi får sykliske svingninger. Vi kan merke oss at fiender som er generalister – og spiser mye annet i tillegg til målere – ikke forventes å oppføre seg på denne måten. Disse fiendene kan nok ha gode dager når det er mye målere (se under), men de er ikke avhengige av målere for å brødfø seg. Derved vil ikke populasjonstettheten deres være tilstrekkelig sterk til å drive fiendepopulasjonen til å vokse igjen, slik at vi får sykliske svingninger.

De viktigste fiendene som er spesialiserte på målere er parasitoider. Det er imidlertid store praktiske utfordringer knyttet til å påvise at parasitoider skaper målersykene. Én fremgangsmåte er å stenge parasitoider ute fra eksperimentelle målerpopulasjoner ved hjelp av nettingbur for å se om målersykene forsvinner i fravær av parasitoider. Ulemper med slike forsøk er at de bare kan utføres på svært lokal skala. Dermed blir det usikkert om resultatene vil ha gyldighet over større områder. For målersykene er dette en alvorlig begrensning, da vi har sett at disse syklene er storskalafenomener som kan være synkroniserte over lange avstander. En annen metode er å estimere hvor stor andel av målerpopulasjonen som mister livet til parasitoider hvert år, og undersøke om det finnes en statistisk sammenheng mellom denne parasittismeraten og vekstraten til målepopulasjonen. Estimater av parasittischerater kan fremskaffes på større skala ved å gjøre innsamlinger på ulike punkter i et landskap. Dette er imidlertid svært arbeidskrevende og er i praksis bare en annen måte å estimere parasittismerater på. For å estimere parasittismerater i disse livsstadiene må man derfor telle opp living larver på lab, og sette ut individer i felt for å eksponere dem for parasitoider. Etter eksponering samles individerne inn og sjekkes for parasitoider. Dette krever møysommelig arbeid med utplassering, merking og gjeninnsamling, slik som for mange å skape en praksis som er beskrevet til småskalastudier. Dessuten vil det alltid være usikkert om parasittismeraten på kunstig utplasserte individer er representativ for den som oppleves av ville målere. Av disse årsakene har mesteparten av forskningen fokusert på larveparasitoider.

Klemola mfl. (2010) brukte store nettingbur (4×4 meter) for å utestenge larveparasitoider fra eksperimentelle populasjoner av fjellbjørkemåler over fire år. Forsøket ble utført i et innlandsområde i finsk Lappland, hvor tettheten av målere var nedadgående etter en
populasjonstopp. Resultatene viste at eksperimentelle målerpopulasjoner i lukkede nettingbur økte i tetthet, mens man fikk kollapser både i ville kontrollpopulasjoner og kontrollpopulasjoner i bur med åpne dører. Innsamlinger av larver bekreftet at kontrollpopulasjoner opplevde høye parasittismerater. Dette resultatet antydet at larveparasittisme kan forårsake kollapsen i målrettet tetthet etter en populasjonstopp. På omtrent samme tid estimerte Schott mfl. (2010) parasittismerater hos fjellbjørkemåler og liten frostmåler over en femårspériode på kysten av Troms. Også dette studiet dekket nedgangfasen i målersyklusen. Til forskjell fra det finske eksperimentet gjorde imidlertid Schott mfl. (2010) innsamlinger i et belte av fjørkeskog som var to kilometer langt. Dette innebar innsamling av over 15 000 larver, men til gjengjeld kunne man beregne parasittismerater på landskapsskala. På denne skalaen fantes det ingen statistisk sammenheng mellom parasittismeraten og vekstraten til målerpopulasjonen for noen av målerartene. Dermed måtte man konkludere med at larveparasittisme ikke hadde forårsaket kollapsen i målerpopulasjonene i dette tilfellet. Det har i ettertid har vært diskutert hvorfør de to studiene kom til ulike konklusjoner. Larveparasitoider spiller kanskje ulike roller i målersyklene i innlandet og på kysten, men det kan også tenkes at de ulike resultatene skyldtes forskjell i metodikk mellom studiene. Klemola mfl. (2014) studerte også egg- og puppeparasittisme på fjellbjørkemåler over en tiårspériode i et kystnært område i Finnmark. Resultatene viste at det fantes negative sammenhenger mellom både egg- og puppeparasittisme og vekstraten hos målerpopulasjonen. Studiet ble imidlertid utført på svært lokal skala, og det finnes ingen tilsvarende studier fra andre områder eller på annen skala. For å oppsummere dagens kunnskapsstatus for parasitoider, så har forskningen vært preget av stor arbeidsinnsats men sprikende resultater som har vært vanskelige å tolke. Derfor mangler vi fortsatt en god forståelse av parasitoidenes rolle i målersyklene.

Selv om parasitoider og bjørkeforsvar har fått mye oppmerksomhet, kan vi også tenke oss andre regulerende mekanismer som kunne operere med en tidsforsinkelse. En annen fiendegruppe som kan vise høy grad av spesialisering er virus. Virus er kjent fra både fjellbjørkemåler og liten høstmåler, men de synes å opptre sporadisk og bare unntaksvis forårsake høy dødelighet hos målerne. Man har derfor ment at virus ikke er i stand til å drive de regulære svingningene i målerpopulasjonene. Videre kan det tenkes at målerpopulasjonene er gjenstand for forsinkte selvregulerende mekanismer. Hvis stress ved høye populasjonstettheter fører til at målerne produserer avkom av lavere kvalitet, kan høy tetthet i et gitt år ha negativ innvirkning på etterfølgende års generasjoner. Dette er en potensiell kilde til forsinket populasjonstetthet, og omtales gjerne som «maternele effekter» i den økologiske litteraturen. Det finnes imidlertid ingen resultater som har støttet denne hypotesen for målersykler (Ruohomäki mfl. 2000).

En annen mulighet er at målersykler drives av sykliske svingninger i det fysiske miljøet, snarere enn tettethetsavhengige tilbakakoblinger i populasjonsreguleringen. Dette forutsetter selvsagt at miljøsvingningene påvirker målerne enten direkte eller indirekte via effekter på bjørk eller fiender. Arbeidet med denne hypotesen har hovedsakelig bestått i å lete etter sykliske miljøfenomener som har omtrent samme periode som målersyklene, og undersøke om det finnes statistiske sammenhenger mellom miljøsvingningene og målersyklene. Dessverre er denne metoden behøftet med alvorlige fallgruver. Sykler som har omtrent samme periode vil over tid drive inn og ut av fase med hverandre, slik at de deler av tiden vil være godt synkronisert. Dermed er det også stor sannsynlighet for å finne rene statistiske sammenhenger mellom sykler som simpelthen ticker og går parallelt med hverandre, uten at det finnes årsaksmessige sammenhenger mellom dem. Dette problemet ble tydelig illustrert da man tidlig på 2000-tallet forsøkte å koble målersykler til sykliske svingninger i solflekkaktiviteten. Hypotesen gikk ut på at svingninger i solflekkaktiviteten forårsaket endringer i UV stråling, som igjen påvirket målerne ved å forårsake kjemiske endringer i bjørkebladene (en mekanisme som aldri ble testet). Hypotesen ble imidlertid gjendrevet av Nilssen mfl. (2007), som sammenstilte en 110 år lang
Målersyklenes rolle i fjellbjørkeskogen

Selv om det har vært vanskelig å fastslå årsaken til målersyklene, hersker det ingen tvil om at de spiller en viktig rolle i fjellbjørkeskogen. En av grunnene til dette har vi allerede vært inne på: målere er mat for en rekke andre arter! Mange arter av spurvefugl mater ungene hovedsakelig med sommerfugllarver, og flere av disse opplever økt hekkesuksess når målere har toppår (se figur 5) (Hogstad 2005). Det er særlig de store og fine larvene til fjellbjørkemåleren som ser ut til å være ettertraktet barnemat, mens de mindre frostmålerlarvene synes å være mindre populære hos fuglene. Bjørkefinken er nomadisk art som foretrekker å slå seg ned for å hekke i områder hvor måleretthetene er høye, slik at man lokalt kan finne sterke sammenhenger mellom tettheten av målere og hekkepopulasjonen av bjørkefink. Ved hjelp av fuglekasser har vi også slått fast at hulerugende spurvefugl – hovedsakelig kjøttmeis og svarthvit fluesnapper – hekker i større antall i år med mye målere (Bjørkás 2017). Av mer anekdotiske observasjoner kan det nevnes at selv måkefugl – som er kjent for å ta livet av små ettertrukket mat til fjellbjørkemåleren – kan spise larver i målerrettpper. Vi vet mindre om hvordan tettheten av målere påvirker arter som angriper målerpupper og voksne målere. Imidlertid ser det ikke ut til at populasjonstettheten av hverken vevkjerringer, edderkopper, rovbiller eller løpebiller endrer seg i mer av nede i fjellbjørkeskogen. Målere bidra til foryngelse av skogen ved å ta livet av noen stammer. Hvis det blir så alvorlig at bjørka mister alle stammene får den imidlertid problemer med å produsere skudd. Faren er da stor for at rotas dør, slik at hele treet sverger med. I Varangerregionen i Øst-Finnmark forårsaket utbrudd av fjellbjørkemåler og liten frostmåler tap av over 95% av bjørkestammene i mange områder i perioden 2001-2010 (se figur 6) (Vindstad mfl. 2018). Skogen i disse områdene må hovedsakelig gjenetable ses naturlig fra frø. Dette er en prosess som tar svært lang tid og som ikke alltid lykkes, dels fordi klovdyr som rein og elg beiter på unge bjørkeplanter og dels fordi etableringen av ungplanter går bedre i nærverb unger av overlevende trær. I de hardest rammende områdene er det derfor fare for at skogen ikke kommer tilbake i det hele tatt. Slik varig tap av skogdekke er kjent fra områder i Nord-Finland som ble ødelagt av et utbrudd av fjellbjørkemåler på 1960-tallet. I dag har disse områdene gått over til en slags åpen hei, hvor alt som er igjen av skogen er de røvende stubben etter trær som ble drept av utbruddet.

Utbrudd som forårsaker massedød av skog er sjeldne, men de har store ringvirkninger i fjellbjørkeskogøkosystemet. For det første er det ikke bare bjørka som beites til døde. Når
bjørkebladene er oppspist slipper målerlarvene seg ned på bakken og spiser videre på det de måtte finne der. Dette kan gå hardt ut over overdugbuskene som ofte dominerer skogbunnen i fjellbjørkeskogen. Blåbærplanter er god larvemat og beites ofte i hjel. Larvene prøver seg også på å spise krekling. Selv om kreklingen vanligvis ikke beites ned i samme grad som blåbær, kan beiteskader fra larvene gjøre kreklingen sårbar for infeksjon av sopp. Dermed kan målerutbrudd også medføre massedød av krekling. Etter at overdugbuskene har ve ket plassen blir dominansen i bakkesjiktet raskt overtatt av gressarten smyle, som kan danne frodige gressplener i ellers ødelagt fjellbjørkeskog (Karlsen mfl. 2013). Overtakelsen av smyle skyldes sannsynligvis en kombinasjon av redusert konkurranse fra overdugbuskene, økt lystilgang og tilførsel av ekstra næring i form av larveskitt og døde larver. De gjennomgripende vegetasjonsendringene som forårsakes av målerutbrudd påvirker nødvendigvis også dyrelivet i fjellbjørkeskogen. Både elg, rein, rype og løvsanger trekker ut av døde skogområder, antageligvis grunnet mangel på mat eller skjul. Midlertidig er det også noen arter som begynstiges. Smågnagere som spiser gress nyter godt av oppblomstringen av smyle i bakkevegetasjonen, og kan øke kraftig i tetthet i skadd skog etter utbrudd (Jepsen mfl. 2013). De største vinnerne etter utbrudd er nok ikkevis nedbrytere. Billen runerisser har larver som lever i død ved, og denne arten kan nærmest eksplore in antall i skog som har blitt drept av utbrudd (Vindstad mfl. 2014). Under bakken ser vi også at dominansen i soppfunnet skifter fra arter som lever i symbiose med bjørka til arter som er nedbrytere (Saravesi mfl. 2015).

Figur 6.

Konklusjon og perspektiver
Målersykler er i dag et fenomen som er godt beskrevet, men som fortsatt er relativt dårlig forstått med henblikk på årsaken til syklene. Vi har faktisk bedre kunnskap om hvordan økosystemet i fjellbjørkeskogen påvirkes av syklene enn om hvordan syklene oppstår. Det er lite trolig at dette vil endre seg i nær fremtid, da mesteparten av målerforskningen i dag er fokuset på populasjonsovervåking og forståelse av utbruddseffekter. Dette skyldes at bjørkemålersystemet i dag er i endring. Sannsynligvis hjulpet av et mindre klima har utbrudd av liten frostmåler spredt seg stadig lengre nordover og østover, slik at arten nå er en viktig utbruddsart i områder som tidligere var domineret av den mer kuldetolerante fjellbjørkemåleren (Jepsen mfl. 2008). Dette har ført til lengre og mer ødeleggende utbrudd i områder der de to målerartene nå opptrer sammen. I tillegg er en tredje målerart – gul frostmåler (Agriopis aurantiaria) – i spreidning nordover. Arten etablerte seg som en ny utbruddsart i Troms på 2000-tallet, og er nå funnet i store deler av fylket. I Finnmark har man foreløpig ikke funnet den, men en nylig (2014) observasjon fra Kevo helt nord i finsk Lappland, kan tyde på at det er et spørsmål om tid. I møte med disse endringene har overvåkning og forståelse av utbrudd kommet høyere opp på prioriteringslisten enn de klassiske studiene på årsaken til syklene. Med andre ord må vi nok finne oss i å vente enda en stund før vi har et klart svar på hva som forårsaker de sykliske svingningene i målerpopulasjonene.

Referanser og videre lesning
Bjørkås R (2017). Spatio-temporal dynamics in breeding occurrence of passerine birds in subarctic birch forest. Masteroppgave, Universitetet i Tromsø - Norges Arktiske Universitet.

Hagen SB, Jepsen JU, Ims RA og Yoccoz NG (2007). Shifting altitudinal distribution of outbreak zones of winter moth Operophtera brumata in sub-arctic birch forest: a response to recent climate warming? *Ecography* 30(2): 299-307. DOI: 10.1111/j.2007.0906-7590.04981.
Haukioja E (2005). Plant defenses and population fluctuations of forest defoliators: mechanism-based scenarios. *Annales Zoologici Fennici* 42(4): 313-325.

Hogstad O (2005). Numerical and functional responses of breeding passerine species to mass occurrence of geometrid caterpillars in a subalpine birch forest: a 30-year study. *Ibis* 147(1): 77-91. DOI: 10.1111/j.1474-919x.2004.00338.

Jepsen JU, Biuw M, Ims RA, Kapari L, Schott T, Vindstad OPL og Hagen SB (2013). Ecosystem Impacts of a Range Expanding Forest Defoliator at the Forest-Tundra Ecotone. *Ecosystems* 16(4): 561-575. DOI: 10.1007/s10021-012-9629-9.

Jepsen JU, Hagen SB, Ims RA og Yoccoz NG (2008). Climate change and outbreaks of the geometrids *Operophtera brumata* and *Epirrita autumnata* in subarctic birch forest: evidence of a recent outbreak range expansion. *Journal of Animal Ecology* 77(2): 257-264. DOI: 10.1111/j.1365-2656.2007.01339.

Karlsen SR, Jepsen JU, Odland A, Ims RA og Elvebakk A (2013). Outbreaks by canopy-feeding geometrid moth cause state-dependent shifts in understorey plant communities. *Oecologia* 173(3): 859-870. DOI: 10.1007/s00442-013-2648-1.

Klemola N, Andersson T, Ruohomaki K og Klemola T (2010). Experimental test of parasitism hypothesis for population cycles of a forest lepidopteran. *Ecology* 91(9): 2506-2513. DOI: 10.1890/09-2076.1.

Klemola T, Andersson T og Ruohomäki K (2014). Delayed density-dependent parasitism of eggs and pupae as a contributor to the cyclic population dynamics of the autumnal moth. *Oecologia* 175(4): 1211-1225. DOI: 10.1007/s00442-014-2984-9.

Klemola T, Tanhuanpää M, Korpimaki E og Ruohomäki K (2002). Specialist and generalist natural enemies as an explanation for geographical gradients in population cycles of northern herbivores. *Oikos* 99(1): 83-94. DOI: 10.1034/j.1600-0706.2002.990109.x

Nilssen AC, Tenow O, Bylund H og Hogstad O (2007). Waves and synchrony in *Epirrita autumnata/Operophtera brumata* outbreaks. II. Sunspot activity cannot explain cyclic outbreaks. *Journal of Animal Ecology* 76(2): 269-275. DOI: 10.1111/j.1365-2656.2006.01205.x

Ruohomäki K, Tanhuanpää M, Ayres MP, Kaitaniemi P, Tammaru T og Haukioja E (2000). Causes of cyclicity of *Epirrita autumnata* (Lepidoptera, Geometridae): grandiose theory and tedious practice. *Population Ecology* 42(3): 211-223. DOI: 10.1007/PL00012000

Saravesi K, Aikio S, Wäli PR, Ruotsalainen AL, Kaukonen M, Huusko K, Suokas M, Brown SP, Jumpponen A, Tuomi J og Markkola A (2015). Moth Outbreaks Alter Root-Associated Fungal Communities in Subarctic Mountain Birch Forests. *Microbial Ecology* 69(4): 788-797. DOI: 10.1007/s00248-015-0577-8.

Schott T, Hagen SB, Ims RA og Yoccoz NG (2010). Are population outbreaks in sub-arctic geometrids terminated by larval parasitoids? *Journal of Animal Ecology* 79(3): 701-708. DOI: 10.1111/j.1365-2656.2010.01673.x.
Schott T, Kapari L, Hagen SB, Vindstad OPL, Jepsen JU og Ims RA (2013). Predator release from invertebrate generalists does not explain geometrid moth (Lepidoptera: Geometridae) outbreaks at high altitudes. *The Canadian Entomologist* 145(2): 184-192. DOI: 10.4039/tce.2012.109.

Tenow O (1972). The outbreaks of Oporinia autumnata Bkh. and Operophtera spp. (Lep., Geometridae) in the Scandinavian mountain chain and northern Finland 1862-1968. *Zoologiska bidrag från Uppsala*, Supplement, 2, 1-107.

Vindstad OPL, Jepsen JU, Ek M, Pepi A og Ims RA (2018). Can novel pest outbreaks drive ecosystem transitions in northern-boreal birch forest? *Journal of Ecology*. Foreløpig kun på nett. DOI: doi:10.1111/1365-2745.13093.

Vindstad OPL, Jepsen JU, Yoccoz NG, Bjørnstad ON, Mesquita MdS og Ims RA (2019). Spatial synchrony in sub-arctic geometrid moth outbreaks reflects dispersal in larval and adult lifecycle stages. *Journal of Animal Ecology*. Foreløpig kun på nett. DOI: doi:10.1111/1365-2656.12959.

Vindstad OPL, Schultze S, Jepsen JU, Biuw M, Kapari L, Sverdrup-Thygeson A og Ims RA (2014). Numerical Responses of Saproxylic Beetles to Rapid Increases in Dead Wood Availability following Geometrid Moth Outbreaks in Sub-Arctic Mountain Birch Forest. *PLoS ONE* 9(6): e99624. DOI: 10.1371/journal.pone.0099624.
Figurer

Figur 1. a) Larver av fjellbjørkemåler. b) Larver av liten frostmåler. c) Voksne frostmålere under parring. Legg merke til at hunnen (øverst) mangler vinger. Foto: Moritz Klinghardt (a), Rolf Anker Ims (b) og Jon Aars (c).

Figur 2. a) Tidsserie som viser antall utbrudd av fjellbjørkemåler registrert per år i Skandinavia fra 1860 til 2001. Etter Nilssen mfl. (2007). b) Tidsserie som viser årlig larvetetthet for fjellbjørkemåler (sort linje) og liten frostmåler (rød linje) på Reinøya i Troms fra 1999 til 2018. Larvetettheten er beregnet som summen av larver på 100 bjørkegrener, samlet på 10 punkter langs et transekt på 2 km. Det er tydelig at tettheten av frostmåler følger tettheten av fjellbjørkemåler med en tidsforsinkelse på 2-3 år. Legg merke til at begge tidsserier har logaritmiske akser.
Figur 3. Flyfoto fra Troms hvor skog som er nedbeitet av målere kan ses som et brunt belte nær tregrensa. Foto: Jane Uhd Jepsen.
Figur 4. Oversikt over hypoteser om årsaken til målersykler. 1) Solflekker og kosmisk stråling. 2) Parasitoider. 3) Kjemiske antibeittestoffer hos bjørka. 4) Maternale effekter. Grønne piler representerer målernes effekt på andre arter, mens røde piler representerer negative tilbakekoblinger til målerpopulasjonen. Foto: Ole Petter Laksforsmo Vindstad (larve og bjørkeblad). Malvern Cradley, Wikimedia Commons, CC BY 2.0 (parasitoid). NASA, Wikimedia Commons, offentlig eiendom (sol). Bildene av parasitoiden og sola er modifisert.
Fig. 5 Fugleunger kan det bli mange av når det er god tilgang på målere. Her ses er et kull av kjøttmeisunger fra en fuglekasse i Troms i et toppår for fjellbjørkemåleren (2014). Foto: Ole Petter Laksforsmo Vindstad.

Fig. 6. Skogskadene ved de verste målerutbruddene kan være svært omfattende. Her ses resultatet av et utbrudd av liten frostmåler i Polmak området i Øst-Finnmark i 2005-2008. De fleste trærne i dette landskapet er døde og har ikke klart å skyte fra rota. Skal det bli ny skog i dette området må den derfor gjenetablere seg fra frø. Foto: Jakob Iglhaut.