Ultra-Deep Sequencing of Intra-host Rabies Virus Populations during Cross-species Transmission

Monica K. Borucki1,*, Haiyin Chen-Harris1, Victoria Lao1, Gilda Vanier1, Debra A. Wadford2, Sharon Messenger2, Jonathan E. Allen1

1 Lawrence Livermore National Laboratory, Livermore, California, United States of America, 2 California Department of Public Health, Richmond, California, United States of America

Abstract

One of the hurdles to understanding the role of viral quasispecies in RNA virus cross-species transmission (CST) events is the need to analyze a densely sampled outbreak using deep sequencing in order to measure the amount of mutation occurring on a small time scale. In 2009, the California Department of Public Health reported a dramatic increase (≥350%) in the number of gray foxes infected with a rabies virus variant for which striped skunks serve as a reservoir host in Humboldt County. To better understand the evolution of rabies, deep-sequencing was applied to 40 unpassaged rabies virus samples from the Humboldt outbreak. For each sample, approximately 11 kb of the 12 kb genome was amplified and sequenced using the Illumina platform. Average coverage was 17,448 × and this allowed characterization of the rabies virus population present in each sample at unprecedented depths. Phylogenetic analysis of the consensus sequence data demonstrated that samples clustered according to date (1995 vs. 2009) and geographic location (northern vs. southern). A single amino acid change in the G protein distinguished a subset of northern foxes from a haplotype present in both foxes and skunks, suggesting this mutation may have played a role in the observed increased transmission among foxes in this region. Deep-sequencing data indicated that many genetic changes associated with the CST event occurred prior to 2009 since several nonsynonymous mutations that were present in the consensus sequences of skunk and fox rabies samples obtained from 2003–2010 were present at the sub-consensus level (as rare variants in the viral population) in skunk and fox samples from 1995. These results suggest that analysis of rare variants within a viral population may yield clues to ancestral genomes and identify rare variants that have the potential to be selected for if environmental conditions change.

Introduction

Rabies virus (RABV) is one of the most deadly pathogens known and is able to infect a wide variety of mammalian hosts. RABV is present on all continents except for Antarctica and has reservoirs in terrestrial species as well as bats (Chiroptera). Although vaccination and antibiotic therapy is effective in treating known exposures to RABV, an estimated 55,000 human deaths occur annually mostly in developing countries [1]. RABV is a member of the Lyssavirus genus, family Rhabdoviridae. The genome is composed of negative-sense single-stranded RNA, about 12 kb in size which codes for five proteins—nucleoprotein (N), phosphoprotein (P), matrix protein (M), glycoprotein (G) and polymerase (L). Like other RNA viruses, RABV has a high mutation rate due to the high error rate of the polymerase, thus populations of RABV exist as a mutant swarm, or quasispecies [2]. RABV evolution is believed to be driven predominantly by purifying selection and RABV is not known to recombine [3–6].

Different RABV variants are associated with different reservoir hosts and geographical locations. Typically, interspecies transmission of rabies virus from reservoir to non-reservoir host produces a single fatal spillover event; secondary transmission has rarely been observed [7]. For example, a bat variant may infect and cause disease in skunks, but it does not transmit efficiently within the skunk population and skunks would be considered a “dead-end host” for this variant. The exception to this would be the case of cross-species transmission (CST) where the variant from one species adapts to transmission by a new species [8]. For example, in 2001, bat variant rabies adapted to transmission within the skunk population in Flagstaff Arizona [9], and in 2009 this variant adapted to transmission by foxes [7]. These events demonstrate the capacity of rabies virus for CST which may lead to increased exposure of humans to the pathogen and increase the geographical range of the virus.

Greater than 90% of North American rabies cases occur in wildlife [7,9], and striped skunks (Mephitis mephitis) serve as the most frequent source of terrestrial rabies cases in California [10]. Rabies in striped skunks was first documented in California in 1899 and skunk rabies has been considered enzootic since the 1950s [11]. The Northern Pacific coast region (which includes Humboldt Co.) is unusual in that this is the only region of CA where large numbers of gray foxes (Urocyon cinereoargenteus) are known to be infected with the skunk rabies variant [11].

In 2009, the number of rabid foxes in Humboldt County infected with the CA skunk variant increased 356% from an...
sequencing data indicated that many of the genetic changes associated with host jump occurred prior to 2009, and these mutations were present at very low frequencies in viral populations from samples dating back to 1995. These results suggest deep sequencing is useful for characterization of viral populations, and may provide insight to ancestral genomes and role of rare variants in viral emergence.

Materials and Methods

Rabies virus tissue samples

The tissue samples used in this study were obtained from the archived collection of California Department of Public Health, Viral and Rickettsial Disease Laboratory (CDPH-VRDL). Gray foxes (*Urocyon cinereoargenteus*) and striped skunks (*Mephitis mephitis*) displaying symptoms of rabies were submitted for rabies testing in the Humboldt Co. Public Health Laboratory between March 2009 and January 2010. Brain tissue samples that were laboratory confirmed to be infected with rabies virus were forwarded to CDPH-VRDL for genetic characterization. Other earlier skunk and fox tissue samples from Humboldt Co. were also available from the CDPH-VRDL archives. As part of routine rabies surveillance in California, the VRDL genotypes rabies-positive samples received from local public health laboratories by RT-PCR and performs sequence analysis on RT-PCR products using forward primer 1066 deg 5'-GARAGAAGATTCTTCAGRGA-3' and reverse primer 304 targeting a portion of the nucleoprotein (N) gene as described in Trimarchi and Smith (2002) and Velasco-Villa, et al. (2006) [13–15]. Approximately 1 gram of brain tissue from foxes and skunks infected with the California skunk rabies virus variant were placed in TRIZol LS Reagent (Invitrogen, Carlsbad, CA) and sent to LLNL for further analysis. RNA was extracted from the tissue sample following the manufacturer's protocol.

RT-PCR, cloning, and sequencing

Reverse transcription was performed using random hexamers and the Superscript III RT reverse transcriptase kit (Invitrogen). The rabies virus cDNA templates were amplified using the Phusion polymerase kit (New England BioLabs, Ipswich, MA), following manufacturer's instructions. PCR conditions consisted of 98°C for 30 s, followed by 40 cycles of 98°C for 15 s, 64°C for 20 s, and 72°C for 1.2 min. The final cycle was 72°C for 10 min.

A plasmid control was generated to determine the error rate of the PCR and sequencing steps as described previously [17]. PCR products were prepared for sequencing using the QIAquick PCR Purification kit (Qiagen, Valencia, CA). Sequencing of an aliquot of a subset of 40 samples was carried out by Eureka Genomics, Hercules, CA using an Illumina Genome Analyzer IIx. Another aliquot of the same samples plus an additional 4 samples were set for 454 sequencing at the Brigham Young University DNA
Read mapping to reference

The open source read mapping software SHRiMP2, which was shown to have high read mapping sensitivity [19] was chosen for the tool’s ability to map as many reads as possible in the face of individual errors within each read [20]. All rabies reads were initially mapped to GenBank rabies reference sequence GI:260063801. This reference sequence was used as the common coordinate system for comparing samples and identifying coding frames. Based on a later observation that this newly sequenced rabies virus genome could differ by approximately 9% relative to our selected previously sequenced reference fox rabies sequence, we checked to see if observed error rates would increase by introducing random mutations at 9% of the control reference sequence, however, no noticeable increase in error rates were observed, suggesting that read mapping parameters were able to tolerate this rate of divergence.

The Binomial error model defines the expected number of non-consensus bases that should occur given the assumed PCR and sequencing error rate for a given number of observed reads, using a preset p-value (set to 0.01 with a Bonferroni correction). Non-consensus base calls were made when the number of reads with the rare variant exceeded the expected count threshold [17]. The sequencing data used in this study including reads and the analysis files used to make all base calls is available at NCBI’s archive BioProject # PRJNA216100.

Consensus agreement between sequencing runs

Data analysis include 44 samples sequenced using 454 across 10,330 genome positions and 40 samples sequenced using Illumina across 10,579 genome positions. The minimum coverage cutoff was 50×. After quality filtering, the mean coverage for the sequencing data was 980 × for 454 data and 17,448 × for Illumina ORP data, the median coverage was 777 × for 454 data and 15,758 × for Illumina ORP data (Fig. S1). In total, 10,451 positions of the rabies genomes were sequenced by either 454 or Illumina, of these, 10,030 positions (98.8% of 10,451 loci) were covered by both platforms, though not necessarily for all samples; an additional 36 positions (loci 5199–5206, 5215, 5216, 5218–5220, 5224, 9542–9563) were covered only by 454, and 85 positions (loci 183–267) were covered only by Illumina, also not necessarily for all samples. The few disagreements in consensus base calls between 454 and Illumina were resolved either by taking the base call with far superior coverage or omitting the base call from data analysis entirely. In most cases the disagreement was due to low coverage of the loci by one platform (just above the 50× cutoff) compared to coverage by the other platform (>500×). Hence the final consensus sequences of the two data sets contain no disagreement and can be considered accurate with high confidence.

Rare variant detection

To differentiate rare variants from sequencing errors, methodologies were developed to measure and control for sequencing and PCR errors and described in Fig. S1 legend [17,18]. Briefly, all mismatched read pairs in the ORPs were identified as sequencing errors and removed from analysis. Erroneous matching read pairs in the plasmid control were used to estimate the overall PCR error rate [17,18]. Rates of these two types of errors were then combined in a position-dependent binomial error model to make variant calls.

Figure 1. Phylogram generated from genomic sequences of Humboldt Co. skunk variant rabies samples collected between 1995–2010. The evolutionary history was inferred by using the Maximum Likelihood method based on the Tamura-Nei model. The tree with the highest log likelihood (-14363.5660) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically as follows. When the number of common sites was <100 or less than one fourth of the total number of sites, the maximum parsimony method was used; otherwise BIONJ method with MCL distance matrix was used. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 32 nucleotide sequences. All positions containing gaps and missing data were eliminated. There were a total of 9669 positions in the final dataset. Bootstrap values (percentage from 500 replications) are shown for the relevant nodes. Evolutionary analyses were conducted in MEGAS [28]. Samples in Figures 1, 3 and 4 are labeled according to Sample ID, date and region collected. Regions are abbreviated as follows: AC- Arcata, ER- Elk River, EU- Eureka, FE-Ferndale, FO- Fortuna, HC- Humboldt County (no other geographical information available), HY- Hydesville, KN- Kneeland, LO- Loleta, PP- Patrick’s Point State Park.

doi:10.1371/journal.pntd.0002555.g001
Results

Phylogenetic analysis of nucleotide and amino acid data grouped the samples from 2003 with the samples from the 2009–10 outbreak, thus the 2003 strains are included as outbreak strains (“2003–10”) in the subsequent descriptions of results (Figure 1). The samples collected in 2000 grouped separately from all other samples indicating that their haplotype was distinct from that associated with the outbreak, possibly due to geographical separation (Figures 2–4, Table S2).

Variation across samples in consensus sequence

Among all 10,451 genome positions sequenced, 243 positions contained more than one consensus nucleotide across the samples, and 4 of these positions showed 3 different consensus nucleotides across the samples. These consensus-level variations across the samples occurred in all five genes of the rabies genome as well as four intergenic regions (Fig. S2). The intergenic regions tended to have higher rates of consensus-level mutations compared to the 5 genes, with the region between G and L being the most variable (0.06 mutations per nucleotide, Table 1, Fig. S2 B). Separating outbreak samples from earlier samples showed that 67 of these positions remained variable at the consensus level across the samples collected during 2009 and 2010 (Table 1, Fig. S2 C, D). The intergenic region between G and L remained the most variable, followed by the intergenic region between P and M. The M protein had the highest rate of consensus-level variation across all samples, but the G protein had the highest rate of consensus-level variation in the outbreak samples.

Consensus sequence reconstruction in the genome coding regions

N protein. Sequence data was obtained from amino acid 76 through the end of the N protein coding region. One amino acid substitution, F80L, differentiated the 2003–10 samples from the 1995–96 samples (Table 2). The samples from 2000 also had an F at residue 80 but differed from the other Humboldt samples at residue 106 with D replaced by G. A subset of the 2009–10 samples from southernmost region of the outbreak area and collected early in the outbreak (foxes 5, 2, and 20) had an N to S substitution at site 119.

P protein. Phylogenetic analysis grouped samples primarily according to date, with limited grouping according to geography. Only one amino acid change, R30K, differentiated the 2003–10 samples from 1995–96 samples (Figure S3). This residue lies in a conserved region of the protein [21,22]. The samples from 2000 differed from the 1995–96 at two sites, R86K and E156G, and from the outbreak samples at amino acid 30 with an R at this site rather than a K. Sequence data for the P protein was available for other CA skunk samples in GenBank including one from neighboring Trinity Co. collected in 1997 (V650 CASK); all had an R at site 30, thus the R30K change is unique to the 2003/10 outbreak.

M protein. Phylogenetic analysis grouped samples according to collection date and geography. The samples from 1995 and 2000 shared the same amino acid sequence and differed from the 2003–10 samples with an H to N substitution at residue 21 (Figure S4). The 2009–10 samples from the northern region (Arcata and Trinidad), including Sk 5 had unique substitution, I155M, as compared to the 1995–96, 2000, and southern outbreak samples (Table 2).

Figure 2. Map of Humboldt Co. showing date and location of rabies samples. Left hand map shows outbreak region, right hand map shows location of pre-outbreak samples. Fox samples are labelled using sample number and collection date. Skunk sample numbers are preceded by “Sk”. Sample numbers marked with an asterisk indicate exact address of the sample was not available or ambiguous.

doi:10.1371/journal.pntd.0002555.g002
making primer design especially problematic for variable regions of the genome. This likely impacts the number of subconsensus variants detected in this region.

Phylogenetic analysis grouped samples according to date and geography (Figure 3). The sequence data obtained from samples collected between 1995–1996 differed from the 2003–10 samples by four amino acid changes in the G protein; L12Q, D427G, P485L, and S501P, and each involved a change in polarity (Table 2). One amino acid change, G428S, characterized samples obtained from the southern region versus the northern region. Samples from Arcata were also defined by nucleotide changes and samples from the southern region of Humboldt Co., Loleta, Fortuna, and Hydesville, grouped together as did most of the Eureka samples (Figure 3, Figure S5). The exceptions were Fx4 from mid Eureka and Fx34 from just east of Eureka, which consistently grouped with the Arcata samples (Figures 1 and 2). The samples collected in year 2000 grouped together and distant from all other samples indicating that these haplotypes were not represented in the outbreak and likely represent spillover events.

L protein. Surprisingly, phylogenetic analysis using 3979 nt positions showed the most resolution with subgroups present within both the south and north clusters. Although the samples from 2000 differed from the 1995–96 and 2003–2010 samples by six amino acids, the only change observed between the 1995–96 samples and 2003–2010 samples was a G1478S in the North Humboldt samples including Skunk 5 (Figure 4, Figure S6). Skunk 2 from 1995 differed from all other samples at site 69 where a Y was present rather than an H (Table 2).

Consensus sequence reconstruction in the genome noncoding regions

Reads from the noncoding regions were concatenated and consensus data from 454 and Illumina sequencing were compared (Fig. S7). Most samples clustered according to date and location. Noncoding nucleotide data from representative samples from 1995, 2000, 2003, 2007, and 2010 were Blasted to identify similarity to samples in GenBank. Data from all samples had the best match to CA982 (CA skunk from 1994, accession no. JQ685894) with all samples 97% similar except for the sample from 2000, which was 98% similar to CA982.

Changes in frequency of rare variants in intrahost viral populations. Deep-sequencing data indicated that CST likely occurred prior to 2003 since several nonsynonymous mutations that were present in the consensus sequences of skunk and fox rabies samples obtained from 2003–2010 were present at the subconsensus level (as rare variants in the viral population) in skunk and fox samples from 1995. For example, both samples from 1995 coded for an Arg at nt position 1601 and a Lys at sub-consensus levels at nt 1601, whereas a fox sample from 2003 coded for a Lys at nt 1601 in the consensus sequence and an Arg at sub-consensus levels, as did the 2009 samples which coded for a Lys at nt 1601 in the consensus sequence (Table 2, Figure 5).

In general, mutations in the consensus sequence could result either from selection for de novo mutations that occurred during host infection, or enrichment of sub-consensus variants that originated from the transmitting host. Since it is difficult to determine de novo mutations without complete sampling of an outbreak, we focused on those consensus mutations that 1) showed inversion between the historical and outbreak samples and 2) led to changes in the amino acids. Historical samples were defined as those collected between 1995 and 2000. Eleven loci were found to have such amino acid inversions, their frequency distributions for the historical and outbreak haplotypes are shown in Figure 5 A and B respectively. Although the frequencies of these two

Figure 3. Phylogram generated from G gene nucleotide sequences of Humboldt Co. skunk variant rabies samples. The evolutionary history was inferred by using the Maximum Likelihood method as described for Figure 1. The analysis involved 44 nucleotide sequences. All positions with less than 95% site coverage were eliminated. There were a total of 1498 positions in the final dataset. Samples and regions are labeled as previously described. No data regarding month or day of sample collection was available for sample Fx27, this missing information is shown in the sample label as “-1-1.00” to denote the year of collection as being 2000.

doi:10.1371/journal.pntd.0002555.g003
haplotypes sum up to 100% at a given loci in all samples (except for outlier entries colored white indicating no data and black indicating absence of these two haplotypes and presence of a third haplotype), the dominant haplotype tended to be near 100% (values below 100% have a median of 99.86%) and the minor variant had extremely low presence (median 0.15%, therefore could not be visualized if only one heatmap was presented). The outbreak haplotypes (shown in black letters at the bottom of the heatmaps) began as low frequency variants (0.04% to 6.03%) in the historical samples and rose sometime between 2003 and 2009 to become the dominant haplotypes (94%–100%) in most of the outbreak samples (Fig. 5B); while the historical haplotypes (shown in red letters in the heatmaps) went from being dominant (98%–100% presence) in the historical samples to low level variants (0.05%–1.95%) in most of the outbreak samples and even completely disappeared in seven of the outbreak samples (Fig. 5A). These data highlight the dynamic evolution of the rabies genome over time.

Figure 4. Phylogram generated from L gene nucleotide sequences of Humboldt Co. skunk variant rabies samples. The evolutionary history was inferred by using the Maximum Likelihood method as described for Figure 1. The analysis involved 38 nucleotide sequences. All positions with less than 95% site coverage were eliminated. There were a total of 3979 positions in the final dataset. Samples and regions are labeled as previously described.
doi:10.1371/journal.pntd.0002555.g004
and (4812, 4815) are adjacent amino acids in the G protein. Their frequency distributions in the heatmap suggest that their proximity does not imply linkage. Rather, it appears the historical haplotypes of these one-percent variants occur at loci with consensus-level mutations occurring at the consensus level (Figure S2). In fact, 58 of these one-percent variants occur in multiple samples with a cumulative frequency of 0.3%, indicating that the bulk of the variants detected are ultra rare. To examine where in the genome mutations are most likely to occur, only those mutations that occur at >1% in a sample or occur in multiple samples with a cumulative frequency >1% are retained for further analysis. There are 248 loci with such high occurrence/frequency variants (“one-percent variants”, Figure S9), their distribution across the coding and non-coding regions of the rabies genome (Figure S10) are very similar to that of the 243 consensus-level mutations found in 5 coding and 4 non-coding regions of the rabies genome. Nonsense mutations generate defective RNAs that may or may not be functional. Stop codon mutations were shown to be maintained within the dengue virus populations, leading to altered viral fitness and thus influencing transmission dynamics [23]. Likewise, it has been shown that human respiratory syncytial virus mutants lacking the G gene are still able to form infectious particles in vitro [24]. Multiple mutations resulting in a premature stop codon were observed in the deep sequencing data from this study. Sixty-seven and 116 stop codon mutations were detected across all samples in the 454 and Illumina data respectively, at the mean frequencies of 0.50% and 0.14%, respectively. At five genome locations, both 454 and Illumina detected stop codon mutations occurring in the same samples at comparable frequencies. These five positions are 1418 in Fx4 (>1%), 2790 in Fx23 (>1%), 2976 in Fx23 (<1%), 5060 in Fx45 (<1%), and 0470 in Fx40 (<1%). These pre-mature stop codons identified by both 454 and Illumina strongly support the presence of defective genomes present in the viral populations of multiple samples. Since many examples of pre-mature stop codons occur with low frequency values it was expected that many Illumina calls would be missed with the lower coverage of 454, hence Illumina results on the stop codon distribution are provided in Figure S8. For example, at locus 7375 almost all samples sequenced by Illumina showed a low frequency (0.1–0.2%) stop codon variant that were not detected by 454.

Across all samples and genome locations sequenced by Illumina, 5146 variants were detected at 2302 genomic locations, or 22% of the 10451 positions sequenced. The frequency of these variants range from extremely rare (0.02% at Fx5 genome location 2130, high detection sensitivity due to high coverage of >196,000x, see Figure S1) to very common (38% at Fx 40 genome location 1021, measured at 32% by 454). The mean frequency of the variant pool is 0.3%, indicating that the bulk of the variants detected are ultra rare. To examine where in the genome mutations are most likely to occur, only those mutations that occur at >1% in a sample or occur in multiple samples with a cumulative frequency >1% are retained for further analysis. There are 248 loci with such high occurrence/frequency variants (“one-percent variants”, Figure S9), their distribution across the coding and non-coding regions of the rabies genome (Figure S10) are very similar to that of the 243 mutations occurring at the consensus level (Figure S2). In fact, 58 of these one-percent variants occur at loci with consensus-level mutations.

Discussion

Although rabies virus has jumped species multiple times in the past [3,8,9,25], the event is relatively rare and deep genome sequence analysis has never been applied to examine the role of
Table 2. Amino acid changes according to genomic position, sample collection date, and location.

Gene	Amino Acid No.	Genome Nucleotide no.	1995	1995	1996	2003	2007	20073	2008	2009	2009/10	2009	2000
			Sk2	Sk2	Sk2	Sk2	Sk2	Sk2	Sk1	South Humboldt	North Humboldt	Sk5	Fx27
			Fortuna	Ferndale	Fortuna	Eureka	Eureka	Eureka		Arcata	Redway		
N	AA 80¹	308	nd	F	F	L	L	L	L	L	F		
N	AA 106	387	D	D	D	D	D	D	D	D	G		
N	AA 119	426	N	N	N	N	N	N	N	N	N	N	N
P	AA 30	1601	R	R	R	K	K	K	K	K	K	K	K
P	AA 86	1770	R	R	R	R	R	R	R	R	R	R	R
P	AA 156	1980	E	E	E	E	E	E	E	E	E	E	E
M	AA 21	2556	H	H	H	N	N	N	N	N	N	N	H
M	AA 126	2872	D	D	G	D¹	D	D	D	D	D	D	D
M	AA 155	2960	I	I	I	I	I	I	I	I	M	M	I
G	AA 12	3349	L	L	L	Q	Q	Q	Q	Q	Q	Q	L
G	AA 427	4594	D	D	D	G	G	G	G	G	G	G	D
G	AA 428	4596	G	G	G	G	G	G	G	S	G	G	G
G	AA 433	4612/3	E	E	E	E	E	E	E	E	E	E	D
G	AA 485	4768	P	P	P	L	L	L	L	L	L	L	L
G	AA 491	4786	R	R	R	R	R	R	R	R	R	R	H
G	AA 500	4812/3	M	T	M	M	M	M	M	M	M	M	V
G	AA 501	4815	S	S	S	P	P	P	P	P	P	P	S
L	AA 17	5458	S	S	S	S	S	S	S	S	S	S	P
L	AA 69	5614	Y	H	H	H	H	H	H	H	H	H	H
L	AA 107	5730	H	H	H	H	H	H	H	H	H	H	Q
L	AA 233	6107	N	N	N	N	N	N	N	N	N	N	S
L	AA 1478	9841	G	G	nd	G	G	G	G	S	S	S	G
L	AA 1794	10789	I	I	I	I	I	I	I	I	I	I	V
L	AA 1804	10820	V	V	V	V	V	V	V	V	V	V	A
L	AA 1836	10915	V	V	V	V	V	V	V	V	V	V	I

Outbreak samples from South Humboldt County include those from Hydesville, Fortuna, Loleta, and Eureka. Samples from North Humboldt County include those from Arcata, Trinidad, and Patrick’s Point State Park.

¹No sequence data was obtained for the first 76 amino acids of the N gene.

²Hydesville and Fortuna samples have S residue at this site.

³Fx 32 has an E residue at this site.

doi:10.1371/journal.pntd.0002555.t002
intra-host viral populations in such an event. Importantly, the rabies outbreak samples collected by the CDPH were accompanied by epidemiologically important documentation such as exact date and location for most of the samples. Additionally, the CDPH's ongoing surveillance efforts provided a unique repository of samples for previous rabies host jumping events, which failed to be efficiently transmitted within the gray fox population. Next generation sequencing technology has recently been used to examine viral heterogeneity of rabies genomes present in infected tissues but has not yet been optimized for detection of rare genotypes (less than 1%) [26]. Deep genome sequencing of these recent and past samples allowed us to define the viral mutational dynamics that were associated with a skunk rabies virus variant that efficiently transmitted within a population of gray foxes, suggesting possible adaptation to a novel host species.

Historically, the skunk rabies virus variant present in Humboldt Co. has been detected in foxes more frequently than in any other region of the state but not until 2009 has transmission shifted so disproportionately to the fox population [11]. Our data indicate that the outbreak haplotype responsible is able to be transmitted readily by both skunks and foxes since no genetic changes viral sequence differentiated the skunks and the foxes from the epizootic. These results are similar to those from a study describing the genetic changes associated with the Arizona CST events in that the rabies genotype from the donor species (bats) could not be differentiated from that found in the recipient species (skunks or foxes) [8].

All of the Humboldt samples had an unusual sequence, ETGL, as the final four amino acids at the carboxyl end of G protein. A recent study demonstrated that the last four amino acids in this region impact the virulence of the virus [27]; if the final sequence is ETRL then the virus is attenuated due to induction of neuronal apoptosis. According to this study, virulent, wild type RABV haplotypes have QTRL as the terminal sequence, and do not cause apoptosis of the host cell. The impact of the ETGL haplotype on viral virulence is unclear, although it did not perceptibly impact virulence in skunks and foxes.

No amino acid changes were unique to the 2003 samples as compared to the 2009/10 outbreak samples from the Eureka area and further south (Table 2); however distinctive nucleotide changes were present in the noncoding and coding regions. Temporal and genetic data indicate that the outbreak began in south Humboldt Co. and spread north to Arcata and three amino acid changes characterized samples from Arcata area and further north (Table 2). Whether or not these genetic changes contributed to the explosive increase in fox rabies that occurred primarily in Arcata during 2009 would require further study (Fig. 2).

It seems likely that a subset of the foxes infected during 2009/10 were part of a fox-to-fox transmission cycle, with limited skunk-to-fox transmission occurring as well. This is supported by the fact...
that the CDPH collected 24 rabid fox samples from the city of Arcata from October 2008 to January 2010 but only 4 rabid fox samples from Eureka during this time period. During this time there were also 2 samples obtained from rabid skunks, one from Eureka in October 2008 and one from Arcata in April 2009. The collection of 1 skunk to 4 fox samples seen in Eureka is not exceptional; there was 1 skunk sample and 4 fox samples collected in Humboldt Co. in 2007 (a nonepizootic year). In 2003, 4 skunk samples were collected along with 10 fox samples. Thus collection of 1 skunk sample and 21 fox samples from Arcata during 2009 is exceptional and one may speculate that this was driven primarily by fox-to-fox transmission. In support of this notion, the online postings of local papers (i.e. Times-Standard, Humboldt Sentinel, Arcata Eye) were searched for articles relating to rabid skunks and foxes during 2009. This search yielded mention of 14 rabid foxes, all were from Arcata.

Although relatively few amino acid changes were associated with the 2003/10 host jump, it is possible that one or more of these changes may have been required for efficient transmission of the virus in the local gray fox population. Despite an extensive search of the rabies virus literature, none of these amino acid changes were described by other studies as being associated with a change in viral phenotype. Transmission studies using reverse genetics are required to identify which genetic changes are responsible for increased transmissibility. Information from this type of analysis may provide important information on the risk of a similar host jump occurring in other regions, including regions where gray foxes overlap with populations of mesocarnivores that have threatened or endangered status.

Both consensus and deep-sequencing data indicate that the haplotype associated with sustained fox-to-fox transmission during the 2009 outbreak occurred prior to 2009 since several nonsynonymous mutations that were present in the consensus sequences of skunk and fox rabies samples obtained from 2003–2010 were present at the sub-consensus level (as rare variants in the viral population) in skunk and fox samples from 1995 (Figure 5). Analysis of the Illumina ultra-deep sequencing data supported the hypothesis that variants that were later enriched to become consensus could be detected at higher frequencies than variants that did not. In particular, all of the mutations that distinguish the 1995/96 haplotype from the 2003/10 haplotype were present as rare variants in Fx 31, the only 2003 sample for which there is deep sequencing Illumina data available. These results suggest that analysis of rare variants within a viral population may yield clues to ancestral haplotypes and identify rare haplotypes that have the potential to be selected for if environment conditions change.

Supporting Information

Figure S1 Coverage of the rabies genome by the two sequencing platforms. Red: Illumina-Eureka genomics. Blue: 454. Each trace corresponds to coverage for one sample. Color bars at the bottom denote locations of the 5 proteins in the rabies genome: N, P, M, G, L (from the left to right). Illumina data was generated using overlapping read pairs (ORP). ORP analysis is a new method that assesses genome position specific sequencing error. The approach uses paired-end sequencing to sequence a single DNA fragment twice. Sequencing is initiated once from each end of the DNA fragment to produce two distinct sequencer reads. In other applications paired-end sequencing uses larger fragment sizes to ensure that each read generated from the same DNA fragment covers different parts of the molecule to recover more of the original fragment. ORP uses shorter DNA fragments and longer read lengths to maximize the number of bases in the DNA fragment, which are sequenced twice. The redundant sequencing means reads with base calls that disagree with their overlapping pair are recognized as errors and are discarded to effectively lower the sequencing error rate. A position specific base call supported by a read pair can still disagree with the consensus base call leading to detection of rare variants. ORPs provide an important benefit over the alternative of adding higher sequencer coverage since the detected mismatches between read pairs give an empirically derived sequencing error rate, which is specific to each sequencer run.

Figure S2 Distribution of mutations occurring at the consensus level. Top: Distribution of 243 loci with variations at the consensus level across all samples. Bottom: Distribution of 67 loci with variations at the consensus level across the 2009–2010 samples. A. Number of consensus-level mutations at each region in the rabies genome – the N, P, M, G and L genes and the five intergenic regions. B. Rate of consensus-level mutation calculated by normalizing the number of loci in each region by the length of region, yielding per-nucleotide frequency of consensus-level mutations. C. Number of consensus-level mutations found among 2009–2010 samples. D. Per-nucleotide frequency of consensus-level mutations among 2009–2010 samples for each genomic region.

Figure S3 Phylogram constructed from P gene amino acid sequence. The evolutionary history was inferred by using the Maximum Likelihood method based on the JTT matrix-based model. The tree with the highest log likelihood (-1510.8247) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically as follows. When the number of common sites was <100 or less than one fourth of the total number of sites, the maximum parsimony method was used; otherwise BIONJ method with MCL distance matrix was used. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 44 amino acid sequences. The coding data was translated assuming a Standard genetic code table. All positions containing gaps and missing data were eliminated. There were a total of 262 positions in the final dataset. Evolutionary analyses were conducted in MEGA5.

Figure S4 Phylogram constructed from M gene amino acid sequence. The evolutionary history was inferred by using the Maximum Likelihood method based on the JTT matrix-based model. The tree with the highest log likelihood (-631.6601) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using a JTT model, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 46 amino acid sequences. The coding data was translated assuming a Standard genetic code table. All positions containing gaps and missing data were eliminated. There were a total of 202 positions in the final dataset. Evolutionary analyses were conducted in MEGA5.

Figure S5 Phylogram constructed from G gene amino acid sequence. The evolutionary history was inferred by using
the Maximum Likelihood method as described for Fig. S3. The tree with the highest log likelihood (-1510.0247) is shown. The analysis involved 44 amino acid sequences. The coding data was translated assuming a Standard genetic code table. All positions containing gaps and missing data were eliminated. There were a total of 490 positions in the final dataset. Evolutionary analyses were conducted in MEGA5.

Figure S6 Phylogram constructed from L gene amino acid sequence. The evolutionary history was inferred by using the Maximum Likelihood method as described for Fig. S3. The tree with the highest log likelihood (-3901.1361) is shown. The analysis involved 38 amino acid sequences. The coding data was translated assuming a Standard genetic code table. All positions with less than 95% site coverage were eliminated. There were a total of 1322 positions in the final dataset. Evolutionary analyses were conducted in MEGA5.

Figure S7 Phylogram generated using nucleotide sequences from the noncoding regions. The evolutionary history was inferred by using the Maximum Likelihood method as described for Figure 1. The analysis involved 43 nucleotide sequences. All positions with less than 95% site coverage were eliminated. There were a total of 862 positions in the final dataset. Samples and regions are labeled as previously described.

Figure S8 Distribution of nonsense mutations. Abscissa: genome positions and gene locations of the stop codon mutations. Ordinate: sample ID. Colorbar indicates frequency of the mutations in logarithm scale.

Figure S9 Genomic distribution of rabies variants found by Illumina sequencing. Not all rare variants were included for this graph, only those variants (N = 248) that occurred at above 1% either in one sample or have a cumulative frequency >1% over all samples are included for this analysis. Dashes at the bottom indicate intergenic regions. A. Number of variants found in each genomic region. B. Per-nucleotide rate of occurrence of these variants in each genomic region.

Table S1 Primers used to amplify rabies samples.

Table S2 Sample metadata. Sample collection date and location (city or county) are listed. In many cases the street location was obtained for a sample and this information was used for placement of the sample in Figure 2.

Acknowledgments
The authors wish to thank Lauren Wold (Humboldt County Public Health Laboratory) for testing and shipping samples, Shannon Chandler (USDA APHIS Wildlife Services) for providing information on the rabies surveillance in Humboldt county, and José Peña (LLNL) for his helpful critique of the manuscript.

Author Contributions
Conceived and designed the experiments: MKB HCH JEA SM. Performed the experiments: GV VL DAW. Analyzed the data: HCH JEA MKB SM. Contributed reagents/materials/analysis tools: SM. Wrote the paper: MKB HCH SM JEA.
23. Aaskov J, Buzzacott K, Thu HM, Lowry K, Holmes EC (2006) Long-Term Transmission of Defective RNA Viruses in Humans and Aedes Mosquitoes. Science 311: 236–238.
24. Techaarpornkul S, Barretto N, Peeples ME (2001) Functional Analysis of Recombinant Respiratory Syncytial Virus Deletion Mutants Lacking the Small Hydrophobic and/or Attachment Glycoprotein Gene. Journal of Virology 75: 6825–6834.
25. Streicker DG, Lemey P, Velasco-Villa A, Rupprecht CE (2012) Rates of Viral Evolution Are Linked to Host Geography in Bat Rabies. PLoS Pathog 8: e1002728.
26. Marston D, McElhinney L, Ellis R, Horton D, Wise E, et al. (2013) Next generation sequencing of viral RNA genomes. BMC Genomics 14: 444.
27. Prehaud C, Wolff N, Terrier E, Lafage M, Megret F, et al. (2010) Attenuation of Rabies Virulence: Takeover by the Cytoplasmic Domain of Its Envelope Protein. Sci Signal 3: ra5.
28. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution 28: 2731–2739.