Title
Observed metallization of hydrogen interpreted as a band structure effect.

Permalink
https://escholarship.org/uc/item/7h96w425

Journal
Journal of physics. Condensed matter : an Institute of Physics journal, 33(3)

ISSN
0953-8984

Authors
Dogan, Mehmet
Oh, Sehoon
Cohen, Marvin L

Publication Date
2020-10-20

DOI
10.1088/1361-648x/abba8a

Peer reviewed
Observed Metallization of Hydrogen Interpreted as a Band Structure Effect

Mehmet Dogan1,2, Sehoon Oh1,2, Marvin L. Cohen1,2,*

1 Department of Physics, University of California, Berkeley, CA 94720, USA
2 Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
* To whom correspondence should be addressed: mlcohen@berkeley.edu

Abstract

A recent experimental study of the metallization of hydrogen tracked the direct band gap and vibron frequency via infrared measurements up to ~425 GPa [P. Loubeyre \textit{et al.}, \textit{Nature} \textbf{577}, 631 (2020)]. Above this pressure, the direct gap has a discontinuous drop to below the minimum experimentally accessible energy (~0.1 eV). The authors suggested that this observation is caused by a structural phase transition between the \textit{C2/c-24} molecular phase to another molecular phase such as \textit{Cmca}-12. Here, through \textit{ab initio} calculations of pressure dependent vibron frequency and direct band gap, we find that the experimental data is consistent with the \textit{C2/c-24} phase up to 425 GPa, and suggest that this consistency extends beyond that pressure. Specifically, we find that qualitative changes in the band structure of the \textit{C2/c-24} phase lead to a discontinuous drop of the direct band gap, which can explain the observed drop without a structural transition. This alternative scenario naturally explains the absence of hysteresis in the measurements.
Hydrogen was predicted to be a metal in its solid form in 1935 [1], and a superconductor with a high transition temperature in 1968 [2]. However, predicting the crystal structure of solid hydrogen proved difficult for many decades, until a list of leading candidates emerged in the 2000s [3–6]. With increasingly sophisticated computational methods and promising but limited experimental results as guides, the candidate crystal structures gradually got narrowed down to three molecular phases ($C2/c-24$, $Cmca-12$, $Cmca-4$) and one atomic phase ($I4_{1}/amd-2$) in the 2010s (number after the dash denotes the number of atoms in the unit cell) [7–16]. Computational studies have suggested that the metallization of hydrogen may occur via the closure of the band gap in the molecular phase, or a structural transition into an atomic phase. Because hydrogen nuclei are too light for the common static nuclei approximation to be accurate, predictions for the most stable phase at a given pressure and metallization pressure for a given phase depend heavily on how a particular method accounts for the zero-point motion of the nuclei. However, most recent computational studies predict the metallization to occur in the 300-500 GPa range.

Until recently, these pressures were beyond experimental reach at low temperatures. However, throughout the 2000s and the 2010s, the accessible pressure range gradually increased to reach 400 GPa, resulting first in the observation of black hydrogen at around 310-320 GPa, which is a semiconductor with a direct gap below the visible range [17–20], and second in the observation of an increase in conductivity around 350–360 GPa, where solid hydrogen potentially becomes semimetallic [21]. In 2017 the first experiment proposing the observation of solid metallic hydrogen at 495 GPa was reported [22,23]. A few computational studies attempted to reproduce the reported reflectance values for the atomic $I4_{1}/amd$ phase [15,24], however more experiments around 500 GPa are needed to confirm this phase transition and characterize the new phase. On the other hand, a recent experiment used infrared (IR) measurements to track the vibron
frequency and the direct electronic band gap of the molecular phase up to 425 GPa [25], and these measurements allow a comparison with calculations for the same range of pressures to determine the best candidates for the observed molecular phases of hydrogen.

In their experiment, Loubeyre et al. [25] found that at low-temperature (80 K) the IR-active vibron frequency linearly decreases with pressure from 150 GPa to 425 GPa, indicating that there is likely no phase transition in this range. They also observed that the direct band gap gradually decreases between 360–420 GPa and then abruptly drops below the minimum experimentally available value of ~0.1 eV. This is interpreted by the authors as suggesting a possible structural phase transition around 425 GPa [25]. Observations in the Raman spectra around 440 GPa are interpreted by Eremets et al. in a similar way [21]. However, the fact that there was an absence of hysteresis in these measurements suggests being cautious about the possibility of a structural phase transition, unless the hysteresis is too small to be observed within the limited experimental precision for pressure and wavenumber.

Here, we investigate the vibrational and electronic structures of molecular hydrogen at a pressure range of 300 – 500 GPa using density functional theory (DFT) calculations and related theoretical techniques. We consider the three low-enthalpy structures: $C2/c$-24, $Cmca$-12 and $Cmca$-4 [7–15]. which have been proposed in the recent literature. We find the enthalpies of these phases to be within 10 meV/atom of each other in this pressure range. We refer the readers who are interested in more details regarding enthalpy-based structure determination to the cited literature. Instead, here we focus on the direct comparison with the experimental data to confirm the crystal structure in the aforementioned pressure range.
We employ density functional perturbation theory (DFPT) [26,27] to calculate the zone center vibrational modes in the harmonic approximation for the pressures of 100-500 GPa. We apply the anharmonic corrections using the self-consistent phonon method as implemented in the ALAMODE package for the pressures of 400, 425, 450 and 500 GPa [28,29], using supercells to calculate the force constants [30]. The IR-active vibron frequency measured in Ref. [25] is around 4000 cm\(^{-1}\) and changes linearly with pressure. The computed frequencies of the top vibron modes also behave this way in both the \(C2/c-24\) and \(Cmca-12\) phases. In order to distinguish between the two phases, we compute their IR activities within DFPT at 190 GPa, which is shown in Figure 1(a) along with the experimental results for comparison. The calculated IR absorption spectrum of the \(C2/c-24\) phase agrees well with the experimental data while that of the \(Cmca-12\) structure does not. In Figure 1(b), we present the calculated frequencies of IR-active phonon and vibron modes as functions of pressure, which closely agree with the experimental data, especially after anharmonic corrections are applied. Although anharmonic effects are important in hydrogen-rich systems [31,32], because of the high computational cost, we have applied them only for 400, 425, 450 and 500 GPa. The experimental data from Ref. [25] is presented by the linear fits to the observed wavenumbers, extrapolated using dashed lines. Figure 1(c-d) show one of the IR-active vibron modes in real space. The displacement patterns cause two out of the three molecules in a layer to vibrate with a 180° phase difference, while the third molecule vibrates much less. Further discussion in the vibrational properties can be found in the Supplemental Material.
Figure 1. Vibrational properties of the molecular phase. (a) Theoretical simulations of the IR spectra for the $C2/c$-24 and $Cmca$-12 phases within the harmonic approximation, along with the experimentally reported IR absorption spectrum from Ref. [25]. (b) Wavenumbers of the IR-active phonon and vibron modes as functions of pressure. The blue squares and green triangles represent our theoretical results within the harmonic approximation and with anharmonic corrections, respectively. The red solid lines represent the linear fits of the experimental data in Ref. [25] and the red dashed lines extrapolate these fits out of the experimental range. (c-d) A vibron mode of the $C2/c$-24 phase is presented in real space. The red arrows represent the eigenvector of an IR-active vibron mode, and the black and white spheres represent the atoms on the top layer, and other atoms, respectively. (c) and (d) correspond to top and side views, respectively.

Based on its vibrational properties, the $C2/c$-24 phase emerges as the leading contender for the experimentally observed molecular phase up to 425 GPa. However, the question of a structural phase transition at \sim425 GPa
remains unresolved, due to the fact that the vibron frequencies above this pressure are not experimentally available. To explore this question, we now turn to the other physical quantity provided in the experiment, namely the direct electronic gap (E_{dir}). For the electronic structure calculations, we use norm-conserving pseudopotentials generated within the Perdew-Burke-Ernzerhof generalized gradient approximation (PBE GGA) [33,34]. The calculations are conducted using the QUANTUM ESPRESSO package, and the Fermi surfaces are plotted using the XCrySDen package [35,36].

In Figure 2, we plot the direct gap for the three molecular phases in question for the 300 – 500 GPa pressure range. Before detailing how we arrive at these values, we first make some observations. (1) The $Cmca$-4 phase has an E_{dir} of zero throughout the pressure range, which eliminates it as a candidate. (2) The $Cmca$-12 phase shows an abrupt transition from an E_{dir} of \sim1.7 eV to zero around 335 GPa, which makes it very unlikely to be the observed structure. (3) The $C2/c$-24 phase has a series of transitions where the band structure changes abruptly. First, a semiconductor-semimetal transition occurs at \sim365 GPa (measured as an abrupt decrease in resistivity around 350-360 GPa by Eremets et al. [21]). In the pressure range where the E_{dir} values were measured by Loubeyre et al. [25], we observe that the computed E_{dir} values of the $C2/c$-24 phase match with their experimental counterparts up to a rigid shift of \sim0.2 eV. Furthermore, the fact that the experiment did not find a direct gap above \sim0.1 eV at 427 and 431 GPa is naturally explained by the fact that the computed E_{dir} drops to \sim0.2 eV around 405 GPa and to 0 eV around 430 GPa. We note that
Figure 2. Direct gap vs. pressure for molecular solid hydrogen. The computed direct gap \((E_{\text{dir}}) \) vs. pressure for the \(C2/c-24, \text{Cmca-12} \) and \(\text{Cmca-4} \) phases of solid molecular hydrogen at a pressure range of 300-500 GPa. The values obtained in Ref. [25] through IR absorption measurements are also plotted for comparison. The measurements for the rising and falling pressure are denoted by “Exp-1” and “Exp-2”, respectively. The error bars are based on the reported uncertainties in the reference. On top of the plot, the four types of the \(C2/c-24 \) band structures and the transition pressures between them are presented. The \(\text{Cmca-12} \) phase has an abrupt transition between semimetallic to metallic at 335 GPa, which is represented by a vertical red dashed line.

We note here that our computational method involves GGA which is known to underestimate band gaps. A more accurate method such as the GW approximation is expected to increase the band gaps by \(\sim 1.5 \) eV in this pressure range [7,10]. However, nuclear quantum effects expected to be present in these systems, which we do not take into account, are likely to lower the band gap by a similar amount in the semiconducting phase [37,38]. These opposite effects partially cancel out, which is likely responsible for such close agreements between the theoretical and
experimental direct gap and transition pressure values. Recent works that include nuclear quantum effects have found electronic band gap values that generally agree with ours but are only provided for coarser pressure grids [38,39]. By following a less computationally costly methodology, we are able to study this system on a finer pressure grid, and reveal a sequence of qualitative transitions in the band structure. This provides valuable physical insight into the nature of the system and should be robust with respect to the details of the computational method.

In short, the electronic and optical behavior of solid hydrogen up to ~480 GPa observed by the two most recent experiments (Refs. [21,25]) can be explained within a single crystal structure, i.e. C2/c-24. Although we cannot rule out a phase transition that coincides with the direct gap closure (Cmca-12 also has a zero direct gap at ~425 GPa), absence of a phase transition would also explain the lack of hysteresis in Loubeyre et al.’s measurements. Furthermore, the fact that this phase may be stable all the way up to the transition to the atomic phase was pointed out previously in a DFT + Quantum Monte Carlo study [10], and to the best of our knowledge, no previous work has presented findings that exclude this possibility.

We now turn to the details of the band structures of the three molecular phases. We first compute their electronic structures between 300 and 500 GPa in 25 GPa increments. After a fine sampling of the first Brillouin zone, we determine the reciprocal space locations that states near the Fermi energy occupy. The next step is to visualize the Fermi surface to determine the paths on which the direct gap may reside. In Figure 3(a-d), the first Brillouin zone and the Fermi surface of the C2/c-24 phase at 350, 400, 425 and 450 GPa are shown.

Up to 350 GPa, the overall band gap is non-zero, the Fermi surface has zero area, and the direct gap resides at the Γ-point. At 375 GPa, electron pockets
around the Y-point and hole pockets around the Γ↔R’ path comprise the Fermi surface and remain so at 400 GPa. The band structure at 400 GPa is shown in Figure 3(e). The direct gap for these two pressures is near the Y-point, which is shown in the left inset. The direct transition energy at the Y-point at 375 and 400 GPa is 0.72 and 0.69 eV, respectively. However, the lower of the two bands shown in the inset has a smaller effective mass along the Y→H₃ direction and curves up more quickly than the upper band, resulting in direct transitions with lower energy than the Y-point (0.69 and 0.51 eV for 375 and 400 GPa, respectively). We have found that that this is the direction in which the smallest direct gaps reside (Figure S4). By interpolating the band energies between 350 and 375 GPa, we find that the overall gap closes at ~365 GPa with the direct gap exactly at the Y-point. At this pressure, the direct gap jumps from 1.03 eV at the Γ-point to 0.76 at the Y-point, and the electronic structure becomes semimetallic.

The next transition occurs when the direct gap moves to the vicinity of the Z-point. At 400 GPa, the two doubly degenerate bands at the Z-point near the Fermi energy are both unoccupied, and they remain unoccupied while dispersing from the Z-point in all directions (T←Z→Γ is shown in the right inset of Figure 3(e)). At 425 GPa, these doubly degenerate bands are still unoccupied at the Z-point, but the lower-energy band divides into two bands one of which crosses the Fermi energy along some reciprocal space directions (Figure 3(c,f)). The direct gap is the minimum energy difference between these two bands at the k-points where this crossing occurs, which we find to be along the Z→Γ direction (Figure S4). By interpolating the band energies between 400 and 425 GPa, we find that this crossing first occurs at ~405 GPa when the lower-energy band becomes tangent to the Fermi energy and the direct gap changes from 0.48 eV to 0.19 eV.

As the lower of the doubly degenerate band at the Z-point drops to the Fermi level, the smallest direct transition along the Z→Γ direction gradually reduces
to zero. At 450 GPa (Figure 3(d,g)), this doubly degenerate band at the Z-point is occupied. In the neighborhood of the Z-point, this band either stays degenerate (\(Z \rightarrow T\)) or divides into two bands (\(Z \rightarrow \Gamma\)) before crossing the Fermi energy. Therefore, by slightly perturbing the \(Z \rightarrow T\) direction toward the \(Z \rightarrow \Gamma\) direction, the direct gap between these resulting bands can be made arbitrarily small, hence the direct gap is zero. By interpolating between 425 and 450 GPa, we find that this Fermi level crossing at the Z-point happens at \(\sim 430\) GPa. At all the pressures above this last transition pressure, the direct gap should remain zero.

Figure 3. Fermi surface and band structure of the C2/c-24 phase. (a-d) The Fermi surface of the C2/c-24 phase of hydrogen at a pressure of 350, 400, 425 and 450 GPa, respectively. In (a), high-symmetry points in the reciprocal space are labeled and the Fermi surface has zero area (the material is a semiconductor at 350 GPa). (e-g) Band structure of the C2/c-24 phase of hydrogen at a pressure of 400, 425 and 450 GPa, respectively. Energies are relative to the Fermi energy. In (e), the details of the band structure in the vicinity of the Y-point around the Fermi energy is presented as an inset. The direct gap location is denoted by the two light green spots that mark the highest occupied and the lowest unoccupied energies.
corresponding to the k-point of the direct gap. In (e), (f) and (g), the details of the band structure in the vicinity of the Z-point around the Fermi energy is presented as an inset. At 400 GPa (e), the two doubly degenerate bands at the Z-point near the Fermi energy are both unoccupied at an around the Z-point. At 425 GPa (f), these doubly degenerate bands are still unoccupied at the Z-point, but the lower-energy band divides into two bands one of which crosses the Fermi energy. At 450 GPa (g), one of the doubly degenerate bands at the Z-point is occupied, leading to a direct gap of zero.

The Fermi surfaces and the band structures for the Cmca-12 and Cmca-4 phases are presented in Figure S5 along with the corresponding discussion in the Supplemental Material. All the direct gap values and reciprocal space locations for the structures we have computed are listed in Table 1.

Table 1. Direct band gaps of the molecular phases of solid hydrogen.

Brillouin zone location and the value of the direct band gap (E_{dir}) for the C2/c-24, Cmca-12 and Cmca-4 phases of solid molecular hydrogen at a pressure range of 300-500 GPa. When the direct gap is in the vicinity of a high-symmetry point, it is indicated as e.g. ~Y. When the direct gap is along a reciprocal space path connecting two points, it is indicated as e.g. Γ↔Y. When the direct gap is in the vicinity of a high-symmetry point along a particular direction in the reciprocal space, it is indicated as e.g. ~Z (Z→Γ).

P (GPa)	C2/c-24		Cmca-12		Cmca-4	
	BZ	E_{dir} (eV)	BZ	E_{dir} (eV)	BZ	E_{dir} (eV)
300	Γ	1.54	Γ↔Y	2.01	~T	0
325	Γ	1.31	Γ↔Y	1.80	~T	0
350	Γ	1.13	~S	0	~T	0
375	~Y (Y→H₃)	0.69	~S, ~R	0	~T	0
400	~Y (Y→H₃)	0.51	~S, ~R	0	~T	0
In summary, among the three most likely candidates for the molecular phase of solid hydrogen, the C2/c-24 phase matches most closely with the recent experiments with regards to its vibron frequencies and direct gap. A detailed analysis of the band structure of this phase reveals that its electronic structure goes through a sequence of transitions as a result of its complicated Fermi surface, and its direct gap has a discontinuous drop to zero at ~430 GPa. This eliminates the need to postulate a structural phase transition around that pressure to explain the discontinuity in the experimental observations. Our findings suggest that the C2/c-24 phase may remain stable up to the transition to the atomic phase at a higher pressure.

Acknowledgements

This work was supported primarily by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under contract No. DE-AC02-05-CH11231, within the Theory of Materials program (KC2301), which supported the structure optimization and calculation of vibrational properties. Further support was provided by the NSF Grant No. DMR-1926004 which supported the determination of precise electronic structures. Computational resources were provided by the DOE at Lawrence Berkeley National Laboratory’s NERSC facility and the NSF through XSEDE resources at NICS.
References

[1] E. Wigner and H. B. Huntington, The Journal of Chemical Physics 3, 764 (1935).
[2] N. W. Ashcroft, Phys. Rev. Lett. 21, 1748 (1968).
[3] K. A. Johnson and N. W. Ashcroft, Nature 403, 632 (2000).
[4] M. Städele and R. M. Martin, Phys. Rev. Lett. 84, 6070 (2000).
[5] C. J. Pickard and R. J. Needs, Nature Physics 3, 473 (2007).
[6] P. Cudazzo, G. Profeta, A. Sanna, A. Floris, A. Continenza, S. Massidda, and E. K. U. Gross, Phys. Rev. Lett. 100, 257001 (2008).
[7] S. Lebègue, C. M. Araujo, D. Y. Kim, M. Ramzan, H. Mao, and R. Ahuja, PNAS 109, 9766 (2012).
[8] C. J. Pickard, M. Martinez-Canales, and R. J. Needs, Phys. Rev. B 85, 214114 (2012).
[9] M. A. Morales, J. M. McMahon, C. Pierleoni, and D. M. Ceperley, Phys. Rev. B 87, 184107 (2013).
[10] J. McMinis, R. C. Clay, D. Lee, and M. A. Morales, Phys. Rev. Lett. 114, 105305 (2015).
[11] N. D. Drummond, B. Monserrat, J. H. Lloyd-Williams, P. L. Ríos, C. J. Pickard, and R. J. Needs, Nature Communications 6, 7794 (2015).
[12] B. Monserrat, R. J. Needs, E. Gregoryanz, and C. J. Pickard, Phys. Rev. B 94, 134101 (2016).
[13] S. Azadi, N. D. Drummond, and W. M. C. Foulkes, Phys. Rev. B 95, 035142 (2017).
[14] B. Monserrat, N. D. Drummond, P. Dalladay-Simpson, R. T. Howie, P. López Ríos, E. Gregoryanz, C. J. Pickard, and R. J. Needs, Phys. Rev. Lett. 120, 255701 (2018).
[15] X.-W. Zhang, E.-G. Wang, and X.-Z. Li, Phys. Rev. B 98, 134110 (2018).
[16] C. Zhang, C. Zhang, M. Chen, W. Kang, Z. Gu, J. Zhao, C. Liu, C. Sun, and P. Zhang, Phys. Rev. B 98, 144301 (2018).
[17] P. Loubeyre, F. Occelli, and R. LeToullec, Nature 416, 613 (2002).
[18] R. T. Howie, C. L. Guillaume, T. Scheler, A. F. Goncharov, and E. Gregoryanz, Phys. Rev. Lett. 108, 125501 (2012).
[19] M. I. Eremets, I. A. Troyan, P. Lerch, and A. Drozdzov, High Pressure Research 33, 377 (2013).
[20] P. Loubeyre, F. Occelli, and P. Dumas, Phys. Rev. B 87, 134101 (2013).
[21] M. I. Eremets, A. P. Drozdzov, P. P. Kong, and H. Wang, Nature Physics 15, 1246 (2019).
[22] R. P. Dias and I. F. Silvera, Science eaal1579 (2017).
[23] I. F. Silvera and R. Dias, J. Phys.: Condens. Matter 30, 254003 (2018).
[24] M. Borinaga, J. Ibañez-Azpiroz, A. Bergara, and I. Errea, Phys. Rev. Lett. 120, 057402 (2018).
[25] P. Loubeyre, F. Occelli, and P. Dumas, Nature 577, 631 (2020).
[26] X. Gonze and C. Lee, Phys. Rev. B 55, 10355 (1997).
[27] S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001).
[28] T. Tadano, Y. Gohda, and S. Tsuneyuki, J. Phys.: Condens. Matter 26, 225402 (2014).
[29] T. Tadano and S. Tsuneyuki, Phys. Rev. B 92, 054301 (2015).
[30] M. L. Cohen, M. Schlüter, J. R. Chelikowsky, and S. G. Louie, Phys. Rev. B 12, 5575 (1975).
[31] M. Borinaga, I. Errea, M. Calandra, F. Mauri, and A. Bergara, Phys. Rev. B 93, 174308 (2016).
[32] M. Borinaga, P. Riego, A. Leonardo, M. Calandra, F. Mauri, A. Bergara, and I. Errea, J. Phys.: Condens. Matter 28, 494001 (2016).
[33] J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
[34] D. R. Hamann, Phys. Rev. B 88, 085117 (2013).
[35] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, Davide Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, Anton Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, Stefano Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, J. Phys.: Condens. Matter 21, 395502 (2009).
[36] A. Kokalj, Computational Materials Science 28, 155 (2003).
[37] M. A. Morales, J. M. McMahon, C. Pierleoni, and D. M. Ceperley, Phys. Rev. Lett. 110, 065702 (2013).
[38] V. Gorelov, M. Holzmann, D. M. Ceperley, and C. Pierleoni, Phys. Rev. Lett. 124, 116401 (2020).
[39] L. Monacelli, I. Errea, M. Calandra, and F. Mauri, ArXiv:1912.05514 [Cond-Mat] (2020).