ML(θC)-Space in Topological Spaces

Nadia A. Nadhim¹, Haider J. Ali², Rasha N. Majeed³

¹ Department of Mathematics, Faculty of Education for pure sciences, University of AL-Anbar, IRAQ
² Department of Mathematics, College of Science, Mustansiriyah University, Baghdad, IRAQ.
³ Department of Mathematics, Faculty of Education for pure sciences Abn AL-Haitam, University of Baghdad, IRAQ.

Correspondent author email: na8496292@gmail.com

ABSTRACT

The purpose of this paper is to introduce a new concept of spaces which is called minimal $L(\theta C)$-space, namely $M\text{in}L(\theta C)$-space or $ML(\theta C)$-space, also given some properties, examples, theorems and the topological property of $M\text{in}L(\theta C)$-space are discussed.

KEYWORDS: θ-closed set, Lindelof, $L(\theta C)$-space, $Min\theta T_2$-space, $Min\mathcal{K}(\theta C)$-space

INTRODUCTION

The concept of Lindelof space was introduced in 1929 by Alexandroff and Urysohn [2], this space is an important in a topological space. Later, in 1979 Mukherji and Sarkar [10], provide the concept of LC-space. (A topological space X is called LC-space, if every Lindelof subset of a space X is a closed set). LC-space studied by many researchers such as [3]. Notices that LC-space is also known under the name L-closed such as [6, 9, 13].

The concept of θ-closed and θ-open set were first introduced by Velicko [16] in 1969. (Let (X,\mathcal{T}) be a topological space, \mathcal{F} be a subset of X and $x \in X$. A point x is called θ-interior point of \mathcal{F}, if there is $\mathcal{C} \in \mathcal{T}$, such that $x \in \mathcal{C}$ and $x \in \bar{\mathcal{C}} \subseteq \mathcal{F}$. θ-interior set which denoted by $Int_{\theta}(\mathcal{F})$ is the set of all θ-interior points. A subset \mathcal{F} of X is called θ-open set if $Int_{\theta}(\mathcal{F}) = \mathcal{F}$. And (Let (X,\mathcal{T}) be topological space, $H \subseteq X$, a point $b \in X$ is said to be θ-adherent point for a subset H of X, if $H \cap G \neq \emptyset$ for any open set G of X and $b \in G$. The set of θ-adherent points is said to be θ-closure of H which denoted by $Cl_{\theta}(H)$. A subset H of X is called θ-closed set if $H = Cl_{\theta}(H))$. These concepts have been studied by many authors such as [8, 12]. In 2011, Al-Taai and Haider [4], study the new term called $L(\theta C)$-space. (A topological space X is called $L(\theta C)$-space, if every Lindelof subset of a space X is θ-closed set), which is a strong than LC-space. And since the union of θ-closed set may be not θ-closed set. Encourage the author to define \mathcal{T}_{θ}-θ-closed set which is a countable union many θ-closed sets.

In 2005, H. J. Ali [3], introduce Minimal LC-space, any LC-space (X,\mathcal{T}) is $MinLC$-space, if $T^* \cap \mathcal{T}$ on X is not LC-space studied by [14, 15]. The aim of this paper is to introduce a minimal $L(\theta C)$-space (denoted by $M\text{in}L(\theta C)$-space), that is a space X which is $L(\theta C)$-space is called $M\text{in}L(\theta C)$-space, if $T^* \cap \mathcal{T}$ on X is not $L(\theta C)$-space. Note that every $M\text{in}L(\theta C)$-space is $L(\theta C)$-space, and study some properties of this space, also study the relation between this concept with $M\text{in}\mathcal{K}(\theta C)$-space and $M\theta T_2$-space. Also study some important property such as, a topological property of $M\text{in}L(\theta C)$-space.

PRELIMINARIES

Definition (2.1) [5]: A space X is called R_1-space, if e and d have a disjoint neighborhoods, whenever $Cl(e) \neq Cl(d)$.

Remark (2.2) [5]: A space X is T_2-space iff X is R_1 and T_1-space.
Definition (2.3) [16]: Let \((X, T)\) be a topological space, \(F\) be a subset of \(X\) and \(x \in X\). A point \(x\) is called a \(\theta\)-interior point of \(F\), if there is \(C \in T\) such that \(x \in C\) and \(x \in \overline{C} \subseteq F\). A \(\theta\)-interior set which denoted by \(\text{Int}_\theta(F)\) is the set of all \(\theta\)-interior points. A subset \(F\) of \(X\) is called \(\theta\)-open set iff \(\text{Int}_\theta(F) = F\).

Definition (2.4) [16]: Let \((X, T)\) be topological space, \(H \subseteq X\), a point \(b \in X\) is said to be \(\theta\)-adherent point for a subset \(H\) of \(X\), if \(H \cap \overline{G} \neq \emptyset\) for any open set \(G\) of \(X\) and \(b \in G\). The set of \(\theta\)-adherent points is said to be \(\theta\)-closure of \(H\) which denoted by \(\text{Cl}_\theta(H)\). A subset \(H\) of \(X\) is called \(\theta\)-closed set iff \(H = \text{Cl}_\theta(H)\).

Example (2.5): Any subset of a discrete space \((\mathbb{R}, D)\) on a real numbers \(\mathbb{R}\) is \(\theta\)-closed set and \(\theta\)-open set.

Remark (2.6) [16]: Every \(\theta\)-closed (resp. \(\theta\)-open) set is a closed (resp. open) set.

Lemma (2.7) [3]: Let \(Y\) be a subspace of a space \(X\). If \(P\) is \(\theta\)-closed in \(X\) then \(P\) is \(\theta\)-closed in \(Y\), whenever \(P \subseteq Y\).

Definition (2.8) [1, 4]: A subset \(F\) of a space \(X\) is said to be \(\mathcal{F}_\sigma\)-\(\theta\)-closed, if it is a countable union of \(\theta\)-closed sets. The complement of \(\mathcal{F}_\sigma\)-\(\theta\)-closed is said to be \(G_\sigma\)-\(\theta\)-open set.

Remark (2.9) [1]: Every \(\theta\)-closed set is \(\mathcal{F}_\sigma\)-\(\theta\)-closed set. But the converse need not be true.

Example (2.10): Let \((\mathbb{R}, T_u)\) be a usual topology on a real line \(\mathbb{R}\), and \(G_n = [1/n, 1]\), where \((n = 2, 3, 4, ...)\), be a \(\theta\)-closed sets, then \(U_n G_n = (0, 1] \subseteq \mathcal{F}_\sigma\)-\(\theta\)-closed, but neither closed nor \(\theta\)-closed.

Definition (2.11) [1, 3, 4]: A space \(X\) is said to be:

1. A \(\theta\)-space, if every \(\mathcal{F}_\sigma\)-\(\theta\)-closed is \(\theta\)-closed.
2. A \(\mathcal{K}(\theta C)\)-space, if every \(\mathcal{K}\) compact subset of \(X\) is \(\theta\)-closed set.
3. A \(\mathcal{L}(\theta C)\)-space, if every Lindelof subset of \(X\) is \(\theta\)-closed set.

Example (2.12): Let \((Z, T_\emptyset)\) be a topological space where \(T_\emptyset\) be a discrete topology on an integer numbers \(\mathbb{Z}\), \((Z, T_\emptyset)\) is \(\mathcal{L}(\theta C)\)-space.

Definition (2.13) [4]: A subset \(A\) of a space \(X\) is said to be \(\theta\)-dense, if \(\text{Cl}_\theta(A) = X\).

Proposition (2.14) [3]: The property of \(\mathcal{L}(\theta C)\)-space is a topological property.

Proposition (2.15) [3]: The property of \(\mathcal{L}(\theta C)\)-space is a hereditary property.

Theorem (2.16) [4]:

1. If a space \(X\) is \(\theta\)\(L_1\)-space and \(\theta\)\(L_2\)-space, then \(X\) is \(\mathcal{L}(\theta C)\)-space.
2. Every \(\theta\)\(P\)-space is \(\theta\)\(L_1\)-space.

Definition (2.17) [7]: A space \(X\) is called \(\theta\)\(T_1\) (resp. \(\theta\)\(T_2\))-space, if every two distinct points \(a, b\) belong to \(X\), there are two \(\theta\)-open (resp. open) sets each one contain one point but not contain the other.

Theorem (2.18) [7]: A space \(X\) is called \(\theta\)\(T_1\)-space if and only if every singleton set is \(\theta\)-closed set.

Definition (2.19) [7]: A space \(X\) is called \(\theta\)\(T_2\)-space (resp. \(\theta\)\(T_2\)-space), if every two points \(a, b\) belong to \(X\), \(a \neq b\) there is two disjoint \(\theta\)-open (resp. open) sets \(M\) and \(N\) containing \(a\) and \(b\) respectively.

Remarks (2.20):

1. Every \(\mathcal{L}(\theta C)\)-space is \(\theta\)\(T_1\)-space.
2. Every \(\theta\)\(T_1\)-space is \(\theta\)\(T_1\)-space.
3. Every \(\mathcal{L}(\theta C)\)-space is \(\theta\)\(T_1\)-space.

Proof:

1. Let \(\{x\}\) be a Lindelof subset of a space \(X\), for each \(x \in X\), which is \(\mathcal{L}(\theta C)\)-space, so \(\{x\}\) is \(\theta\)-closed set, then from Theorem (2.37), a space \(X\) is \(\theta\)\(T_1\)-space.

2. Let \(a, b\) be two distinct point in a space \(X\) which is \(\theta\)\(T_1\)-space, so there exist two \(\theta\)-open sets \(G\) and \(H\) containing \(a, b\) respectively with \(a \notin H\) and \(b \notin G\), from Remark 2.21, \(G\) and \(H\) are open set in \(X\), containing \(a, b\) respectively with \(a \notin H\) and \(b \notin G\), that means \(X\) is \(\theta\)\(T_2\)-space.

3. Let a space \(X\) be \(\mathcal{L}(\theta C)\)-space, from part (1) of this Remark, \(X\) is \(\theta\)\(T_1\)-space and from part (2), \(X\) is \(\theta\)\(T_1\)-space.

Definition (2.21) [11]: A space \(X\) is called \(\theta\)\(R_1\)-space, if \(e\) and \(d\) have a disjoint \(\theta\)-neighbourhood, whenever \(\text{Cl}_\theta(e) \neq \text{Cl}_\theta(d)\).

Remark (2.22) [11]: A space \(X\) is \(\theta\)\(R_2\)-space iff \(X\) is \(\theta\)\(R_1\) and \(\theta\)\(R_2\)-space.

Definition (2.23) [8]: Let \((X, T)\) and \((Y, T')\) be two topological space and \(f: (X, T) \rightarrow (Y, T')\) be a function. Then \(f\) is called:

1. \(\theta\)-closed function [1], if \(f(F)\) is \(\theta\)-closed in \(Y\) for each closed subset \(F\) of \(X\).

2. Closed function [10], if \(f(F)\) is closed set in \(Y\) for each closed subset \(F\) of \(X\).
Remark (2.24) [1]: Every θ-closed function is closed function.

Definition (2.25) [11]: Let $(Χ, T)$ be $K(\theta C)$-space, a space $Χ$ is said to be $\text{Min} K(\theta C)$-space, if $T^* \subseteq T$ on $Χ$, then $(Χ, T^*)$ is $\text{Min} K(\theta C)$-space.

Example (2.26): Let (R, T_u) be a usual topology defined on the real numbers, (R, T_u) is $\text{Min} K(\theta C)$-space.

Theorem (2.27) [11]: If a space $Χ$ is compact $K(\theta C)$-space, then it is $\text{Min} K(\theta C)$-space.

Proposition (2.28) [11]: If a space $Χ$ is Locally compact, $K(\theta C)$-space then $Χ$ is θT_2-space.

Definition (2.29) [11]: A space $Χ$ is θT_2-space, we say that $Χ$ is $\text{Min} T_2$-space, if there is $T^* \subseteq T$ on $Χ$, then $(Χ, T^*)$ is not θT_2-space.

Theorem (2.30) [11]: If a space $Χ$ is θT_2 and $\text{Min} K(\theta C)$-space then $Χ$ is $\text{Min} \theta T_2$-space.

$\text{Min} L(\theta C)$-Spaces

Definition (3.1): Let $(Χ, T)$ be $L(\theta C)$-space, a space $Χ$ is said to be $\text{Min} L(\theta C)$-space, if $T^* \subseteq T$ on $Χ$, then $(Χ, T^*)$ is not $L(\theta C)$-space.

Example (3.2): Let $(Χ, T_D)$ be a discrete topology defined on countable set $Χ$, $(Χ, T_D)$ is $\text{Min} L(\theta C)$-space, since, if we take any subset H of a space $Χ$, which is countable then H is countable, so H is Lindelof, let $x \notin H$, also $\{x\}$ is open set containing x, also $\{x\} \cap H = \emptyset$, so H is θ-closed set and then $Χ$ is $L(\theta C)$-space, also since $T_{ind} \subseteq T_D$, but $(Χ, T_{ind})$ is not $L(\theta C)$-space. Therefore $Χ$ is $\text{Min} L(\theta C)$-space.

Theorem (3.3): If a space $Χ$ is Lindelof $L(\theta C)$-space, then it is $\text{Min} L(\theta C)$-space.

Proof: Let $(Χ, T)$ be $L(\theta C)$-space and suppose $Χ$ is not $\text{Min} L(\theta C)$-space, that is there is a topology $T^* \subseteq T$ on $Χ$ and $(Χ, T^*)$ is $L(\theta C)$-space. Let $I_x: (Χ, T) \rightarrow (Χ, T^*)$ be the identity function on $Χ$. Now I_x is continuous, bijective and θ-closed function since (if N is a closed subset of $Χ$, and $Χ$ is Lindelof, so N is Lindelof), also I_x is continuous, then $I_x(N)$ is Lindelof subset of $(Χ, T^*)$ which is $L(\theta C)$-space, hence $I_x(N)$ is θ-closed and then I_x is θ-closed function, by Remark 2.24, I_x is a closed function that is I_x is homeomorphism function, so $T^* \cong T$ and this is contradiction, so $Χ$ is $\text{Min} L(\theta C)$-space.

Example (3.4): Let $Χ = \mathbb{R}$ be a real numbers, and $T_{\text{Exc}} = \{ U \subseteq \mathbb{R}: x \notin U, \text{for some } x \in \mathbb{R} \} \cup \{ R \}$, be excluded point topology, (R, T_{Exc}) is not $\text{Min} K(\theta C)$-space, since (R, T_{Exc}) is compact, so (R, T_{Exc}) is Lindelof, but not $L(\theta C)$-space because, if we take $x = 5$ and $C = \{ \{x\} \}_{x \in \mathbb{R}} \cup R$ is an open cover to R, then we can reduce to just R that is (R, T_{Exc}) is Lindelof, also $\{1, 5\}$ is finite set, then it is countable, so it is Lindelof set and $\emptyset \not\in \{1, 5\}$, therefore $2 \in \theta$-adherent point, that is $\{1, 5\}$ is not θ-closed set, hence (R, T_{Exc}) is not $L(\theta C)$-space and from Theorem 3.3, this topological space is not $\text{Min} L(\theta C)$-space.

Corollary (3.5): Every compact and $L(\theta C)$-space is $\text{Min} L(\theta C)$-space.

Proof: From Theorem 3.3. And every compact space is Lindelof space.

Remark (3.6): The continuous image of $\text{Min} L(\theta C)$ is not necessarily $\text{Min} L(\theta C)$, the following example explain this Remark:

Example (3.7): Let $f: (R, T_D) \rightarrow (R, T_{\text{ind}})$ be a function from a discrete topology T_D into indiscrete topology T_{ind}, defined by $f(x) = x, \forall x \in R$, so f is continuous and (R, T_D) is $L(\theta C)$, also $T_{\text{ind}} \subseteq T_D$, but (R, T_{ind}) is not $L(\theta C)$, and from Proposition 2.14, (Y, T') is $L(\theta C)$-space, suppose (Y, T') is not $\text{Min} L(\theta C)$-space, then there is a topology $T'^* \subseteq T'$ on Y, implies (Y, T'^*) is $L(\theta C)$-space.

Proposition (3.8): The property of being $\text{Min} L(\theta C)$-space is a topological property.

Proof: Let $(Χ, T)$ be $\text{Min} L(\theta C)$-space, $f: (Χ, T) \rightarrow (Y, T')$ is a homeomorphism function, to prove (Y, T') is $\text{Min} L(\theta C)$-space. Now from Proposition 2.14, (Y, T') is $L(\theta C)$-space, suppose (Y, T') is not $\text{Min} L(\theta C)$-space, then there is a topology $T'^* \subseteq T'$ on Y, implies (Y, T'^*) is $L(\theta C)$-space.

Define $T_{\phi} = \{ f^{-1}(U): U \subseteq T' \}$, so $(Χ, T_{\phi})$ is a topology on $(Χ, T)$ and $T_{\phi} \subseteq T$ and $(Χ, T_{\phi})$ is $L(\theta C)$-space, (let S be a Lindelof subset of $Χ$, then S is θ-closed in $Χ$, since f is continuous and then we have $f(S)$ is Lindelof set in Y which is $L(\theta C)$-space, then $f(S)$ is θ-closed in (Y, T'^*), to show S is θ-closed set, that is to show $S = C_{\theta}(S)$, since $S \subseteq C_{\theta}(S)$, let $s \in C_{\theta}(S)$ and $s \notin S$, since f is injective, then $f(s) \notin f(S)$ and f is surjective, so $w \notin f(S)$ where $w = f(s)$, but $f(S)$ is θ-closed in Y, then there is open set W in Y with $w \in W$ and $\overline{W} \cap f(S) = \phi$, so $f^{-1}(\overline{W}) \cap f(S) = f^{-1}(\phi) = \phi$, and $f^{-1}(\overline{W}) \cap f^{-1}(f(S)) = \phi$, then $f^{-1}(\overline{W}) \cap S = \phi$, since f is
homeomorphism, then $f^{-1}(\overline{W}) \cap S = \phi$, we have
s is not θ-adherent point to S. Therefore S is θ-
closed in X). which is contradiction, since X is
$\text{MinL} L(\theta C)$-space. Hence (Y,T^*) is
$\text{MinL} L(\theta C)$-space.

Lemma (3.9): In Lindelof space, any θ-closed set
is Lindelof set.

Proof: Let X be a Lindelof space and A be
θ-closed subset of X. From Remark 2.6, A is a
closed subset of X. Then A is Lindelof set.

Proposition (3.10): Let (Y,T) be a subspace of a
Lindelof $L(\theta C)$-space (X,T), Y is Lindelof iff Y
is θ-closed.

Proof: Suppose Y is Lindelof subspace of X,
since X is $L(\theta C)$-space, then Y is θ-closed.
Conversely, suppose Y is θ-closed in X, which is
Lindelof, then by Lemma 3.9, Y is Lindelof.

Example (3.11): The discrete topology T_D on an
integer numbers Z, (Z,T_D) is Lindelof $L(\theta C)$-
space, also subspace (N,T_D) is Lindelof and θ-
closed, where N is a natural number.

Proposition (3.12): If (X,T) is a Lindelof
$L(\theta C)$-space, then every θ-closed subspace of X
is $\text{MinL} L(\theta C)$-space.

Proof: Let Y be θ-closed in X, but X is Lindelof,
then by Proposition 3.10, Y is Lindelof. Now let
N be a Lindelof subset of Y, then N is Lindelof in
$L(\theta C)$-space, so N is θ-closed in X. Now $N = N \cap Y$, since $N \subseteq Y$, by Lemma
2.7, N is θ-closed in Y, hence Y is $L(\theta C)$-space
and by Theorem 3.3, Y is $\text{MinL} L(\theta C)$-space.

Lemma (3.13): A subset H of a space X is G_δ-
θ-open set if and only if every point in H is G_δ-
θ-interior point to H.

Proof: Suppose H is G_δ-θ-open set and $x \in H$,
then there exists $A = H$ which is G_δ-θ-open set
and $x \in A = H \subseteq H$, so x is G_δ-θ-interior point
to H, but x is an arbitrary point, so any point in A
is G_δ-θ-interior point to A. Conversely, suppose
any point in H is G_δ-θ-interior point to H, that is,
for each $x_i \in H$, there is A_{x_i} is G_δ-θ-open
subset of H, we get $H = \bigcup_{x_i \in H} A_{x_i}$, then H is G_δ-θ-
open set.

Proposition (3.14): Every Lindelof set in θT_2-
space is F_σ-θ-closed set.

Proof: Let A be a Lindelof subset of a space X,
and $p \in A$, then for each $q \in A$, $p \neq q$ and
p, $q \in X$, since X is θT_2-space, then there exist
two θ-open sets U and V, with $q \in U$, $p \in V$ and
$U \cap V = \emptyset$. Let $U_{q \in A} U_q$ is θ-open cover to A,
then it is open cover to A which is Lindelof, so
$A \subseteq \bigcup_{i \in \mathbb{N}} U_{q_i}$, then $U^* = \bigcap_{i \in \mathbb{N}} U_{q_i}(p)$, since V^* is the intersection of
countable many θ-open set, then V^* is G_δ-θ-open
set and $V^* \cap U^* = \emptyset$, so $p \in V^* \subseteq \mathcal{A}^c$, then p is
G_δ-θ-interior point to A^c, from Lemma 3.13, \mathcal{A}^c
is G_δ-θ-open set. Therefore A is F_σ-θ-closed set.

Proposition (3.15): Every F_σ-θ-closed set in
Lindelof space is Lindelof.

Proof: Let H be F_σ-θ-closed subset of a space X,
that is $H = \bigcup_{i \in \mathbb{N}} F_i$, where F_i is θ-closed set in
X, but X is Lindelof space, so by Lemma 3.9, F_i ,
i \in \mathbb{N}, is Lindelof. Now, $\bigcup_{i \in \mathbb{N}} F_i$ is Lindelof and
$H = \bigcup_{i \in \mathbb{N}} F_i$, so H is Lindelof.

Remark (3.16): Let (\mathcal{R}, T_D) be a discrete
topology on a real numbers \mathcal{R}. Every singleton
set is θ-closed, then it is F_σ-θ-closed set and
Lindelof, but (\mathcal{R}, T_D) is not Lindelof.

Theorem (3.17): Let a space X is θT_2, Lindelof
space, then X is $\text{MinL} L(\theta C)$-space iff X is θP-
space.

Proof: Let X be $\text{MinL} L(\theta C)$-space, to prove
X is θP-space. Let A be F_σ-θ-closed subset in X,
which is Lindelof, by Proposition 3.15, A is
Lindelof subset of X, which is $L(\theta C)$-space, then
A is θ-closed set in X. Therefore X is θP-space.

Conversely, suppose X is θP-space, to prove X is
$\text{MinL} L(\theta C)$-space, let H be a Lindelof subset of X,
but X is θT_2-space, then by Proposition 3.14 ,
H is F_σ-θ-closed set, also X is θP-space, then H
is θ-closed subset of X, that means X is $L(\theta C)$-
space and it is Lindelof, so from Theorem 3.3, X is
$\text{MinL} L(\theta C)$-space.

Proposition (3.18): Every θT_2-space and θP-
space is $L(\theta C)$-space.

Proof: Let M be a Lindelof subset of X, but X is
θT_2-space, so by Proposition 3.14, M is F_σ-θ-
closed set in X, which is θP-space, hence M is θ-
closed set in X, therefore X is $L(\theta C)$-space.

Theorem (3.19): Every Lindelof θT_2 and θP-
space is $\text{MinL} L(\theta C)$-space.

Proof: Let a space X be θT_2 and θP-space, by
Proposition 3.18, X is $L(\theta C)$-space and it is
Lindelof, so by Theorem 3.3, X is $\text{MinL} L(\theta C)$-
space.

Proposition (3.20): Every $L(\theta C)$-space is
$K(\theta C)$-space.

Proof: Let B be a compact subset of a space X,
then B is Lindelof in X, but X is $L(\theta C)$-space, so
B is θ-closed. Hence X is $K(\theta C)$-space.

The convers of Proposition 3.20, is not true as
shown by the following example.
Example (3.21): Let \((\mathcal{R}, \mathcal{T}_\mathcal{U})\) be a usual topology on a real numbers \(\mathcal{R}\). The compact subset of this space is only finite sets or closed interval, also they are \(\theta\)-closed. Therefore, \((\mathcal{R}, \mathcal{T}_\mathcal{U})\) is \(\mathcal{K}(\mathcal{C})\)-space. Also, the rational numbers \(\mathbb{Q}\) is Lindelof but not \(\theta\)-closed. Hence \((\mathcal{R}, \mathcal{T}_\mathcal{U})\) is not \(L(\mathcal{C})\)-space.

Theorem (3.22): If a space \(\mathcal{X}\) is compact and \(\theta\)-P-space, then \(\mathcal{X}\) is \(Min\theta\mathcal{T}_2\)-space iff \(\mathcal{X}\) is \(\mathcal{T}_2\)-space and \(MinL(\mathcal{C})\)-space.

Proof: Suppose a space \(\mathcal{X}\) is \(Min\theta\mathcal{T}_2\)-space, then \(\mathcal{X}\) is \(\theta\mathcal{T}_2\)-space, by Proposition 3.18, \(\mathcal{X}\) is \(L(\mathcal{C})\)-space. Also \(\mathcal{X}\) is compact, then \(\mathcal{X}\) is Lindelof, hence by Theorem 3.3, \(\mathcal{X}\) is \(MinL(\mathcal{C})\)-space. Conversely, suppose \(\mathcal{X}\) is \(\theta\mathcal{T}_2\)-space and \(MinL(\mathcal{C})\)-space, so \(\mathcal{X}\) is \(\theta\mathcal{T}_2\)-space and \(L(\mathcal{C})\)-space, by Proposition 3.20, \(\mathcal{X}\) is \(\mathcal{T}_2\)-space and \(\mathcal{K}(\mathcal{C})\)-space, and since \(\mathcal{X}\) is compact \(\mathcal{K}(\mathcal{C})\)-space, so from Theorem 2.27, \(\mathcal{X}\) is \(MinK(\mathcal{C})\)-space, and by Theorem 2.30, \(\mathcal{X}\) is \(Min\theta\mathcal{T}_2\)-space.

Corollary (3.23): If a space \(\mathcal{X}\) is compact and \(MinL(\mathcal{C})\)-space, then \(\mathcal{X}\) is \(MinK(\mathcal{C})\)-space.

Proof: Suppose \(\mathcal{X}\) is compact and \(MinL(\mathcal{C})\)-space, so \(\mathcal{X}\) is compact and \(L(\mathcal{C})\)-space, by Proposition 3.20, \(\mathcal{X}\) is compact and \(\mathcal{K}(\mathcal{C})\)-space, so from Theorem 2.27, we have \(\mathcal{X}\) is \(MinK(\mathcal{C})\)-space.

Corollary (3.24): If a space \(\mathcal{X}\) is compact and \(L(\mathcal{C})\)-space, then \(\mathcal{X}\) is \(MinK(\mathcal{C})\)-space.

Proof: Suppose \(\mathcal{X}\) is compact and \(L(\mathcal{C})\)-space, by Proposition 3.20, \(\mathcal{X}\) is compact and \(\mathcal{K}(\mathcal{C})\)-space, so from Theorem 2.27, \(\mathcal{X}\) is \(MinK(\mathcal{C})\)-space.

Corollary (3.25): Every countably compact, Lindelof and \(L(\mathcal{C})\)-space is \(MinK(\mathcal{C})\)-space.

Proof: Suppose \(\mathcal{X}\) is countably compact and Lindelof space, then \(\mathcal{X}\) is compact, from Corollary 3.24, \(\mathcal{X}\) is \(MinK(\mathcal{C})\)-space.

Theorem (3.26): If a space \(\mathcal{X}\) is compact and \(L(\mathcal{C})\)-space, then a closed subspace of \(\mathcal{X}\) is \(MinL(\mathcal{C})\)-space and \(MinK(\mathcal{C})\)-space.

Proof: Let \(\mathcal{Y}\) be a closed subspace of a compact space \(\mathcal{X}\), so \(\mathcal{Y}\) is compact set in \(\mathcal{X}\), then \(\mathcal{Y}\) is Lindelof. Also, \(\mathcal{X}\) is \(L(\mathcal{C})\)-space, so by Proposition 2.15, \(\mathcal{Y}\) is \(L(\mathcal{C})\)-space. Hence from Theorem 3.3, \(\mathcal{Y}\) is \(MinL(\mathcal{C})\)-space. Now, from Proposition 3.20, \(\mathcal{X}\) is \(\mathcal{K}(\mathcal{C})\)-space, so from Theorem 2.27, \(\mathcal{X}\) is \(MinK(\mathcal{C})\)-space.

Corollary (3.27): If a space \(\mathcal{X}\) is Lindelof and \(L(\mathcal{C})\)-space, then a closed subspace of \(\mathcal{X}\) is \(MinL(\mathcal{C})\)-space.

Proof: Let \(\mathcal{Y}\) be a closed subset of a Lindelof space \(\mathcal{X}\), then \(\mathcal{Y}\) is Lindelof in \(\mathcal{X}\), and then by Proposition 2.15, \(\mathcal{Y}\) is \(L(\mathcal{C})\)-space, from Theorem 3.3, \(\mathcal{X}\) is \(MinL(\mathcal{C})\)-space.

Corollary (3.28): If a space \(\mathcal{X}\) is Lindelof and \(L(\mathcal{C})\)-space, then a \(\theta\)-closed subspace of \(\mathcal{X}\) is \(MinL(\mathcal{C})\)-space.

Corollary (3.29): If a space \(\mathcal{X}\) is hereditarily Lindelof and \(L(\mathcal{C})\)-space, then any subspace of \(\mathcal{X}\) is \(MinL(\mathcal{C})\)-space.

Proof: Let \(\mathcal{Y}\) be a subspace of a space \(\mathcal{X}\), since \(\mathcal{X}\) is hereditarily Lindelof, so \(\mathcal{Y}\) is Lindelof, also by Proposition 2.15, \(\mathcal{Y}\) is \(L(\mathcal{C})\)-space, from Theorem 3.3, \(\mathcal{X}\) is \(MinL(\mathcal{C})\)-space.

Theorem (3.30): If a space \(\mathcal{X}\) is compact \(\theta\)-P-space, then \(\mathcal{X}\) is \(MinK(\mathcal{C})\)-space if and only if \(\mathcal{X}\) is \(MinL(\mathcal{C})\)-space.

Proof: Suppose \(\mathcal{X}\) is \(MinK(\mathcal{C})\)-space, that means \(\mathcal{X}\) is \(\mathcal{K}(\mathcal{C})\)-space and by hypothesis \(\mathcal{X}\) is compact, so \(\mathcal{X}\) is locally compact space and then from Proposition 2.28, \(\mathcal{X}\) is \(\theta\mathcal{T}_2\)-space, also \(\mathcal{X}\) is Lindelof. Therefore, by Theorem 3.19, \(\mathcal{X}\) is \(MinL(\mathcal{C})\)-space. Conversely, suppose \(\mathcal{X}\) is \(MinL(\mathcal{C})\)-space, so \(\mathcal{X}\) is \(L(\mathcal{C})\)-space, by Proposition 3.20, \(\mathcal{X}\) is \(\mathcal{K}(\mathcal{C})\)-space and it is compact, hence from Theorem 2.27, \(\mathcal{X}\) is \(MinK(\mathcal{C})\)-space.

Definition (3.31): A space \(\mathcal{X}\) is said to be \(\theta\mathbb{Q}\)-set space, if any subset of \(\mathcal{X}\) is \(\mathcal{T}_\sigma\)-\(\theta\)-closed set in \(\mathcal{X}\).

Proposition (3.32):
1. Every \(\theta\mathbb{Q}\)-set space is \(L_{L_3}\)-space.
2. Every \(\theta\mathbb{Q}\)-set space and \(\theta\mathcal{L}_1\)-space is \(L(\mathcal{C})\)-space.
3. Every \(\theta\mathbb{Q}\)-set space and \(\theta\mathcal{P}\)-space is \(L(\mathcal{C})\)-space.
4. Every Lindelof \(\theta\mathcal{L}_1\)-space is \(\theta\mathcal{P}\)-space.
5. Every \(\theta\mathcal{P}\)-space and \(\theta\mathcal{L}_3\)-space is \(L(\mathcal{C})\)-space.

Proof:
1. Let \(\mathcal{H}\) be a Lindelof subset of \(\theta\mathbb{Q}\)-set space \(\mathcal{X}\), then \(\mathcal{H}\) is \(\mathcal{T}_\sigma\)-\(\theta\)-closed set in \(\mathcal{X}\). Therefore, \(\mathcal{X}\) is \(L_{L_3}\)-space.
2. Let \(\mathcal{X}\) be a \(\theta\mathbb{Q}\)-set space \(\mathcal{X}\), by part(1), \(\mathcal{X}\) is \(\theta\mathcal{L}_3\)-space, and from Theorem 2.16 part (1), \(\mathcal{X}\) is \(L(\mathcal{C})\)-space.
3. Let L be a Lindelof subset of θQ-set space X, then L is \mathcal{F}_α-θ-closed set in X which is θP-space, then L is θ-closed set in X. Therefore, X is $L(\theta C)$-space.

4. Let \mathcal{K} be \mathcal{F}_α-θ-closed set in a Lindelof space X, then $\mathcal{K} = \bigcup_{i \in \mathbb{N}} \mathcal{H}_i$, where \mathcal{H}_i is θ-closed set in a space X, for each $i \in \mathbb{N}$, by Lemma 3.9, \mathcal{H}_i is Lindelof, so \mathcal{K} is Lindelof and \mathcal{F}_α-θ-closed set, since X is θL_1-space, then \mathcal{K} is θ-closed set. Therefore, X is θP-space.

5. Suppose X is θP-space, by Theorem 2.16, part(2), X is θL_1-space, and it is θL_3-space, so by Theorem 2.16, part(1), X is $L(\theta C)$-space.

Proposition (3.33):

1. Every Lindelof θL_1-space and θL_3-space is $\text{Min} L(\theta C)$-space.
2. Every Lindelof θL_1-space and θT_2-space is $\text{Min} L(\theta C)$-space.
3. Every Lindelof θQ-set and θL_1-space is $\text{Min} L(\theta C)$-space.

Proof:

1. Let a space X is θL_1-space and θL_3-space, the by Theorem 2.16, part(1), X is $L(\theta C)$-space and it is Lindelof, so from Theorem 3.3, X is $\text{Min} L(\theta C)$-space.

2. Let a space X is Lindelof θL_1-space, the by Proposition 3.32 part(4), X is θP-space, and from Proposition 3.18, X is $L(\theta C)$-space, also from Theorem 3.3, X is $\text{Min} L(\theta C)$-space.

3. Let a space X is Lindelof θL_1-space, the by Proposition 3.32, part (4), X is θP-space, and from Proposition 3.32, part (3), X is $L(\theta C)$-space, also from Theorem 3.3, X is $\text{Min} L(\theta C)$-space.

Theorem (3.34): Every $L(\theta C)$-space having θ-dense Lindelof subset is $\text{Min} L(\theta C)$-space.

Proof: Let \mathcal{A} be a θ-dense Lindelof subset of a space X, but X is $L(\theta C)$-space, then \mathcal{A} is θ-closed, then $\mathcal{A} = Cl_\theta(\mathcal{A}) = X$, hence X is Lindelof and it is $L(\theta C)$-space, so from Theorem 3.3, X is $\text{Min} L(\theta C)$-space.

Proposition (3.35): Every Lindelof θQ-set space and θP-space is $\text{Min} L(\theta C)$-space.

Proof: From Proposition 3.32, part(3) and Theorem 3.3.

Proposition (3.36): Every compact θQ-set space and θP-space is $\text{Min} K(\theta C)$-space.

Proof: Let a space X be θQ-set space and θP-space, then from Proposition 3.32, part(3), X is $L(\theta C)$-space and by Proposition 3.20, X is $K(\theta C)$-space, since X is compact and $K(\theta C)$-space so by Theorem 2.27, X is $\text{Min} K(\theta C)$-space.

Theorem (3.37): Every compact θQ-set space and θL_1-space is $\text{Min} K(\theta C)$-space.

Proof: Let a space X be θQ-set space and θL_1-space, so by Proposition 3.32 part (3), X is $L(\theta C)$-space, and from Proposition 3.20, X is $K(\theta C)$-space, so we have a space X is compact $K(\theta C)$-space, hence by Theorem 2.27, X is $\text{Min} K(\theta C)$-space.

Corollary (3.38): Every compact θL_1-space and θL_3-space is $\text{Min} K(\theta C)$-space.

Proof: Let X be θL_1 and θL_3-space, from Proposition 2.16, part(1), X is $L(\theta C)$-space, also by Proposition 3.20, X is $K(\theta C)$-space and from Theorem 2.27, X is $\text{Min} K(\theta C)$-space.

Corollary (3.39): Every compact θP-space and θL_3-space is $\text{Min} K(\theta C)$-space.

Proof: Let X be θP-space, from Theorem 2.16, part(2), X is θL_1-space and from Corollary 3.38, X is $\text{Min} K(\theta C)$-space.

Theorem (3.40): If X and Y are \mathcal{T}_2-spaces, $L(\theta C)$-spaces, then $X \times Y$ is $L(\theta C)$-space.

Proof: Let L be a Lindelof subset of $X \times Y$, and let $(x_0, y_0) \notin L$, for each $(x, y) \in L$, then there exists open neighbourhoods U_x and V_y of x and y respectively, such that $(x_0, y_0) \notin \overline{U_x \times V_y}$, since $L \subseteq \bigcup \{U_x \times V_y : (x, y) \in L\}$, we have $L \subseteq \bigcup \{U_{x_n} \times V_{y_n} : n \in \mathbb{Z}^+ \}$. Now, let $E_1 = \{n \in \mathbb{Z}^+ : x_0 \notin \overline{U_{x_n}}\}$ and $E_2 = \{n \in \mathbb{Z}^+ : y_0 \notin \overline{V_{y_n}}\}$, then $E_1 \cup E_2 = \mathbb{Z}^+$. And, if $L_1 = \{L \cap (\overline{U_{x_n}} \times \overline{V_{y_n}}) : n \in E_1\}$ and $L_2 = \{L \cap (\overline{U_{x_n}} \times \overline{V_{y_n}}) : n \in E_2\}$, then L_1 and L_2 are Lindelof subset of $X \times Y$, such that $L_1 \cup L_2 = L$. Clearly $x_0 \notin \pi_1(L_1)$ and since L_1 is Lindelof and π_1 is continuous, then $\pi_1(L_1)$ is Lindelof in X, and since X is $L(\theta C)$-space, then $\pi_1(L_1)$ is θ-closed, by Remark 2.6, $\pi_1(L_1)$ is closed in X, so there is an open neighbourhood $G \subseteq X$ of x_0, with $G \cap \pi_1(L_1) = \emptyset$. In the same way, since $y_0 \notin \pi_2(L_2)$ and L_2 is Lindelof in Y, with π_2 is continuous, so $\pi_2(L_2)$ is Lindelof in Y, and since Y is $L(\theta C)$-space, then $\pi_2(L_2)$ is θ-closed, so $\pi_2(L_2)$ is closed in Y, so there is an
open neighbourhood \(H \subseteq Y \) of \(x_0 \), with \(H \cap \pi_2(L_2) = \emptyset \), we now claim \((G \times H) \cap L = \emptyset\), since\((x,y) \in L\), suppose\((x,y) \in (G \times H)\), then \(x \in G \), but \(G \cap \pi_1(L_1) = \emptyset \), then \(x \notin \pi_1(L_1) \), so \((x,y) \notin L_1\), also \((x,y) \notin L_2\), hence \((x,y) \notin L\), since \(L_1 \cup L_2 = L \) That is \((x,y) \notin L\) and this is contradiction, so \(X \times Y \) is \(L(\theta C) \)-space.

Corollary (3.41): If \(X \) and \(Y \) are compact \(T_2 \)spaces and \(L(\theta C) \)-spaces, then \(X \times Y \) is \(MinL(\theta C) \)-space and \(MinK(\theta C) \)-space.

Proof: Let \(X \) and \(Y \) are compact \(T_2 \)-spaces and \(L(\theta C) \)-space, then by Theorem 3.40, \(X \times Y \) is \(L(\theta C) \)-space and then \(X \times Y \) is compact, also \(X \times Y \) is Lindelof and \(X \times Y \) is \(L(\theta C) \)-space, by Theorem 3.3, \(X \times Y \) is \(MinL(\theta C) \)-space. Now, by Proposition 3.20, \(X \times Y \) is \(K(\theta C) \)-space and it is compact, then by Theorem 2.27, \(X \times Y \) is \(MinK(\theta C) \)-space.

Corollary (3.42): If \(X \) and \(Y \) are Lindelof \(T_2 \)-spaces and \(L(\theta C) \)-space, then \(X \times Y \) is \(Min(\theta C) \)-space.

Proof: Let \(X \) and \(Y \) are compact \(T_2 \)-spaces and \(L(\theta C) \)-spaces, then by Theorem 3.40, \(X \times Y \) is \(L(\theta C) \)-space and from hypothesis \(X \times Y \) is Lindelof, and the by Theorem 3.3, \(X \times Y \) is \(MinL(\theta C) \)-space.

Proposition (3.43): If \(X \) and \(Y \) are \(R_1 \), \(L(\theta C) \)-spaces, then \(X \times Y \) is \(L(\theta C) \)-space.

Proof: Let \(X \) and \(Y \) are \(L(\theta C) \)-spaces, by Remarks 2.20, part (3), \(X \) and \(Y \) are \(T_1 \)-spaces, but \(X \) and \(Y \) are \(R_1 \)-spaces, then \(X \) and \(Y \) are \(T_2 \)-space and by Theorem 3.40, \(X \times Y \) is \(L(\theta C) \)-space.

Theorem (3.44): If \(X \) and \(Y \) are compact \(R_1 \) and \(L(\theta C) \)-space, then \(X \times Y \) is \(MinL(\theta C) \)-space and \(MinK(\theta C) \)-space.

Proof: Let \(X \) and \(Y \) are \(R_1 \), \(L(\theta C) \)-space, then by Proposition 3.43, \(X \times Y \) is \(L(\theta C) \)-space. Also, \(X \) and \(Y \) are compact spaces, so \(X \times Y \) is compact and then \(X \times Y \) is Lindelof. Therefor from Theorem 3.3, \(X \times Y \) is \(MinL(\theta C) \)-space. Now, from Proposition 3.20, \(X \times Y \) is \(K(\theta C) \)-space and it is compact, then by Theorem 2.27, \(X \times Y \) is \(MinK(\theta C) \)-space.

Theorem (3.45): If \(X \) and \(Y \) are Lindelof \(R_1 \) and \(L(\theta C) \)-spaces, then \(X \times Y \) is \(MinL(\theta C) \)-space

Proof: Let \(X \) and \(Y \) are \(R_1 \), \(L(\theta C) \)-spaces, then by Proposition 3.43, \(X \times Y \) is \(L(\theta C) \)-space, also \(X \) and \(Y \) are Lindelof spaces, so \(X \times Y \) is Lindelof. Hence from Theorem 3.3, \(X \times Y \) is \(MinL(\theta C) \)-space.

REFERENCES

[1] H. A. Abu-Ragheef, Some type of \(Kc \)-spaces and \(Lc \)-spaces, M.Sc. Thesis, Al- Mustansiriya University, Baghdad, Iraq (2015).

[2] P. Alexandrof and P. Urysohn, Memoir sur les espaces topologiques compacts, Verb. Akkad. Welensch. Amsterdm. 14 (1929).

[3] H. J. Ali, Certain types of \(LC \)-spaces, Thesis submitted to the college of education, Al-Mustansiriya University, (2005).

[4] A. H. Al-Taai and H. J. Ali, Weak types of \(L(\theta C) \)-spaces, Vol.37, No. 4, 234-237, (2011).

[5] J. Dontchev, M. Ganster M., On the product of \(LC \)-spaces, Q & A in general topology 15.71-74, (1997).

[6] H. Z. Hdebib, A Note on \(L \)-closed spaces, Q & A in general topology 4, 67-72, (1988).

[7] S. Jafari, Some properties of quasi \(\theta \)-continuous functions, Far East J. Math. Sci. 6(5), (1988).

[8] R. M. Latif, Application of \(\theta \)-open sets, Journal King Fahd Univ, Science Riyadh Vol. 21, 243-250, (2009/1430H).

[9] R. Levy, A Non PL-closed spaces, Q & A in general topology 4(87), 145-146, (1986).

[10] T. K. Mukherji and M. Sarkar, On a class of almost discrete spaces, Math. Vesnik 3, 459-474, (1979).

[11] N. A. Nadhim, H. J. Ali and R. N. Majeed, \(MK(\theta C) \)-spaces and \(M\theta T_2 \)-spaces, submitted.

[12] M. Saleh, On \(\theta \)-closed sets and some forms of continuity, 40, 383-393, (2004).

[13] R. G. Ori, A note on \(L \)-closed spaces, Q & A in general topology 4, 141-143, (1987).

[14] I. M. Radhi, Minimal \(Kc \)-spaces and Minimal \(LC \)-spaces, Tishreen University Journal for studies and scientific Research-Basic science series Vol. 28, No. 1, (2006).

[15] D. A. Reyad and A.A. Adam, On MKC-spaces, MLG-spaces and MH-spaces, Journal of Al-Qadisiyah for Computer science and Mathematics,Vol.7, No. 1, (2015).

[16] N. V. Velicko, H-closed topological spaces, Trans. Amer. Math. Soc, Transi, 78 (series 2), 103-118, (1969).

[17] S. Willard, General topology”, Addison-Wesley, London, (1970).