Characteristics of the cultivated area and its structure under conditions of increasing average annual temperatures

Sergei Petrov1,*, Natali Mamaeva1,2, Evgenii Renev1 and Maksim Narushko1

1Tyumen Scientific Center SB RAS, Malygina str. 86, Tyumen 625026, Russia
2Industrial University of Tyumen, Volodarskogo str. 38, Tyumen 625000, Russia

*E-mail: tumiki@yandex.ru

Abstract. The climatic characteristics, the area and structure of arable land occupied by agricultural crops, including cereals and legumes, the area of agricultural land, including arable land in the Tyumen region without autonomous regions, as well as the content of mobile forms of heavy metals in the arable horizon. It was revealed that the climate is becoming more favorable for growing crops in the Northern Trans-Urals, thus, from the zone of risky farming, the region can move to a more favorable area for growing grain and leguminous crops. The content of mobile forms of Cu, Zn, Ni, Cd and Pb in the arable horizon does not exceed the MPC. Nevertheless, in recent years, the area and structure of arable land sown with agricultural crops, including cereals and legumes, the area of agricultural land, including arable land, has practically not changed.

1. Introduction

In recent years, there has been a global change in temperature[1 - 5], modern technogenesis leads to an increase in the intensity of pollution of land resources[6 - 8], including the soils of agricultural landscapes of the Northern Trans-Urals. As a result, the study of the patterns of spatio-temporal changes in arable soils, the development of recommendations for the formation of sustainable agricultural landscapes in the Northern Trans-Urals and the optimization of land use in this area is an urgent task. In this regard, it is necessary to carry out comprehensive work aimed at an interdisciplinary analysis of climatic and ecological trends and forecasting further changes in the state of arable soils over time. Therefore, monitoring the content and reserves of organic matter in soils of agricultural landscapes requires the introduction of new approaches, including a detailed and large-scale agrochemical study of the content of heavy metals in soils of agricultural landscapes. The insufficient level of such studies in land management design significantly complicates the consideration of the conditions for the formation of sustainable agricultural landscapes.

According to the Office of the Federal Service for State Registration, Cadastre and Cartography in the Tyumen Region, the land fund as of 01.01.2020 within the administrative boundaries of the region amounted to 16012.2 thousand hectares, of which 24.3% falls on agricultural land with a decrease in their area by 673.1 thousand hectares. At the same time, the land intended for agricultural work occupied 3379.4 thousand hectares (21.1%), and arable land - 1289.1 thousand hectares (38.1%). A feature of the lands of the Northern Trans-Urals is the presence of arable land with a low humus content (24.7%) and acidity (62.3%) with a gradual increase in their share in recent years, which can contribute to the transition of heavy metals to mobile forms and their accumulation in agricultural products[9].

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd
The purpose of the work was a spatial-temporal study of the climatic characteristics of the Tyumen region, the sown area of agricultural crops and the structure of sown areas, as well as the content of mobile forms of Cu, Zn, Ni, Cd and Pb in the arable horizon.

2. Materials and methods

Sown area of agricultural crops for the 2006 and 2016 harvest in the Tyumen region (excluding autonomous regions), including grain and leguminous crops, as well as the structure of sown areas for the considered types of crops was obtained according to the Results of the All-Russian Agricultural Census for 2006 and 2016 [10, 11]. Used area of agricultural land, including arable land for 2006 - 2018 given according to the Report on the ecological situation in the Tyumen region in 2018 [12]. Climate data for 2006 and 2016 were obtained from the site https://rp5.ru/Pogoda [13] from the Tyumen weather station. To study climatic conditions, air temperature, atmospheric pressure, relative humidity, wind speed, horizontal visibility range, dew point temperature are considered. Content of mobile forms of heavy metals in the arable horizon for 2011 - 2019 obtained according to the Reports on the ecological situation in the Tyumen region [9, 12, 14 - 20].

For statistical processing of the obtained material, the integrated software package Excel and "IBM SPSS Statistics 21" were used (mean value (arithmetic mean), standard error of the arithmetic mean, variance and its derivative (standard deviation) with plotting a trend line and finding the confidence value approximation (R²)). The Student's criterion was used to assess the reliability of differences between the statistical characteristics obtained in the study.

3. Results and discussion

Sown area of agricultural crops for the 2006 and 2016 harvest in the Tyumen region (without autonomous regions), including grain and leguminous crops, as well as the structure of sown areas for the considered types of agricultural crops is presented in Table 1.

Table 1. Sown area of agricultural crops and its structure.

№	Name	Farms of all categories	including agricultural organizations		
		2006	2016	2006	2016
1.	Sown area of agricultural crops (ha), including:	998756	1055173.7	835652	854307.4
1.1	Cereals and legumes, of them:	696216	700610.4	578780	558011.3
1.1.1	Wheat	432665	430113.6	351366	326408.1
1.1.2	Rye	4199	2143.0	3284	1686.0
1.1.3	Barley	97293	144403.0	84274	130249.6
1.1.4	Buckwheat	229	229		
1.1.5	Oats	143750	91959.6	122197	71585.4
1.1.6	Maize	65.6	65.6	60.0	
1.1.7	Leguminous crops of them:	18012	26713.9	17429	23140.4
1.1.7.1	Peas	26165.8	22592.4		
2.	Structure of sown areas by grain and leguminous crops (% of the total sown area)	67	66.4	65.3	

It was found that the used area of agricultural land, including arable land for 2006 - 2018 remained practically unchanged (2340.24 + 14.74 and 1112.89 + 5.36 thousand hectares, respectively) and according to the trend line with finding the approximation reliability value it is not expected to increase (\(y = 10.486 x + 2266.8; R^2 = 0.59 \) and \(y = -0.3143x + 1115.1; R^2 = 0.004 \), respectively).

As for agricultural indicators, in 2016, compared to 2006, the sown area of barley and leguminous crops increased by about 1.5 times in farms of all categories, while the sown area of rye decreased by about 2 times and the sown area of oats by 1.6 times.

Climatic characteristics of Tyumen in 2006 and 2016 are presented in Table 2.
Table 2. Climatic characteristics of the area in 2006 and 2016 (average values).

Name	Year		
Air temperature, ºС	2006	1.88±0.27	2.76±0.28*
Atmospheric pressure, mm Hg	2006	752.44±0.15	754.49±0.16**
Relative humidity,%	2006	71.1±0.35	72.43±0.36*
Wind speed, m/s	2006	2.42±0.03	2.19±0.02**
Horizontal visibility range, km	2006	24.82±0.43	23.25±0.42*
Dew point temperature, ºС	2006	-3.42±0.25	-2.54±0.25*
	2016		

* p<0.05; ** p<0.001.

As can be seen from Table 2, significant changes are characteristic for all considered climatic characteristics. In 2016, an increase in air temperature (p < 0.05), atmospheric pressure (p < 0.001), relative humidity (p < 0.05), dew point temperature (p < 0.05), as well as a decrease in wind speed (p < 0.001) and horizontal visibility range (p < 0.05). Changes in climatic conditions are also observed in other regions of the Northern Trans-Urals [21].

The content of mobile forms of Cu, Zn, Ni, Cd and Pb in the arable horizon for 2011–2019 in the Tyumen region without autonomous regions is shown in Fig. 1. It was found that their level does not exceed the MPC, i.e., they are suitable for growing any crops without limitation. However, over 9 years, there has been a tendency towards the accumulation of copper (R² = 0.15), zinc (R² = 0.22), nickel (R² = 0.22) in the arable horizon, with no change in the content of lead (R² = 0.03) and cadmium (R² = 0.004).
4. Conclusions

In recent decades, the climate in the south of the Tyumen region has become milder, which is reflected in an increase in atmospheric temperature and dew point temperature, in an increase in relative humidity, as well as in a decrease in wind speed. Not exceeding the MPC for the content of mobile forms of copper, zinc, nickel, lead and cadmium in the arable horizon in the south of the Tyumen region indicates that the soils are suitable for growing any crops without restrictions.

Thus, the natural and ecological characteristics are favorable for the active economic use of the agricultural landscape, and the Northern Trans-Urals from the zone of risky agriculture are gradually moving to a more favorable area for growing, in particular, grain and leguminous crops.

Nevertheless, the sown area of agricultural crops for the harvest in 2006 and 2016 in the Tyumen region (excluding autonomous regions), the structure of sown areas, including grain and leguminous crops, the area of agricultural land, including arable land, practically did not change. In this regard, it is necessary to develop the necessary recommendations for making agrotechnical decisions to optimize the use of agricultural land in the Northern Trans-Urals.

Acknowledgments

The research work was carried out according to the state assignment for 2021-2030 Spatio-temporal phenomena and processes occurring in the waters of the land of Siberia in the modern technogenesis and climate change (Priority direction 1.5.11. Program 1.5.11.1).

References

[1] Ivanov V V, Alekseev V A, Alekseeva T A, Koldunov N V, Repina I A and Smirnov A V 2013 Exploration of the Earth from space 4 pp 50 – 65
[2] Shats M M and Skachkov Y B 2016 Climate and nature 2(19) pp 27 – 37
[3] Latysheva I V, Loshchenko K A and Shakhaeva E V 2013 Izvestia of Irkutsk State University 6 (1) pp 106-121
[4] Kislov A V, Grebenets V I, Evstigneev V M, Konishchev V N, Sidorova M V, Surkova G V and Tumel N V 2011 Bulletin of Moscow University 3 pp 3-8
[5] Kattsov V M and Porfiriev B N 2012 Arctic: ecology and economics 2(6) pp 66-79
[6] Osmanyan R G 2007 Ecological safety in the agro-industrial complex Abstract journal 4 p 901
[7] Maryina-Chernmykh O G, Maryn G S, Apaeva N N, Manishkin S G, Petukhov A S and Maryn S G 2012 Bulletin of Altai State Agrarian University 10(96) pp 72-77
[8] Bochkareva E O 2016 Anthropogenic transformation of the natural environment 2 pp 289-293
[9] 2020 Report on the environmental situation in the Tyumen region in 2019, https://admtumen.ru
[10] 2008 Results of the All-Russian Agricultural Census 2006 In 9 Volumes Federal State Service statistics Vol. 1 Main results of the All-Russian agricultural census of 2006 Book 2 Main results of the All-Russian agricultural census of 2006 for the constituent entities of the Russian
2018 Results of the All-Russian Agricultural Census of 2016 In 8 Volumes Federal State Statistics Service Vol. 1 Main Results of the All-Russian Agricultural Census of 2016 Book 2 Main results of the All-Russian agricultural census of 2016 for the constituent entities of the Russian Federation (Moscow: IIC “Statistics of Russia”) p 687

[11] 2019 Report on the environmental situation in the Tyumen region in 2018, https://admtyumen.ru

[12] 2019 Report on the environmental situation in the Tyumen region in 2017, https://admtyumen.ru

[13] 2019 Report on the environmental situation in the Tyumen region in 2016, https://admtyumen.ru

[14] 2019 Report on the environmental situation in the Tyumen region in 2015, https://admtyumen.ru

[15] 2019 Report on the environmental situation in the Tyumen region in 2014, https://admtyumen.ru

[16] 2019 Report on the environmental situation in the Tyumen region in 2013, https://admtyumen.ru

[17] 2019 Report on the environmental situation in the Tyumen region in 2012, https://admtyumen.ru

[18] 2019 Report on the environmental situation in the Tyumen region in 2011, https://admtyumen.ru

[19] 2019 Report on the environmental situation in the Tyumen region in 2010, https://admtyumen.ru

[20] 2019 Report on the environmental situation in the Tyumen region in 2009, https://admtyumen.ru

[21] Petrov S, Mamaeva N and Narushko M 2018 OIP Conference Series: Earth and Environmental Science 193(1) 012056