Research Article

Genetic Diversity of Escherichia coli Coharboring mcr-1 and Extended Spectrum Beta-Lactamases from Poultry

Arslan Jamil, Muhammad Asif Zahoor, Zeeshan Nawaz, Abu Baker Siddique, and Mohsin Khurshid

Department of Microbiology, Government College University Faisalabad, Pakistan

Correspondence should be addressed to Muhammad Asif Zahoor; drasifzahoor@gcuf.edu.pk

Received 14 July 2022; Revised 5 September 2022; Accepted 17 September 2022; Published 5 October 2022

Academic Editor: Aqeel Ahmad

Copyright © 2022 Arslan Jamil et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. The emergence of resistance to beta-lactam agents in poultry results in multidrug-resistant (MDR) phenotypes in Escherichia coli isolates from poultry birds. The appearance of mobile colistin resistance (mcr) genes in the poultry sector has further worsened the situation. Therefore, the current study is aimed at investigating the molecular epidemiology of mcr-harboring colistin-resistant E. coli among poultry.

Methods. The isolation and identification of colistin-resistant E. coli (CR-Ec) were done from the broiler’s fecal samples through culturing using selective media supplemented with colistin sulfate (4 μg/ml). The antibiogram studies of the isolates were performed using the disc diffusion method and broth microdilution method as per CLSI guidelines. The screening for the genes conferring resistance to colistin as well as beta-lactam agents was performed by PCR. The genetic diversity of mcr-positive strains was assessed by multilocus sequencing typing (MLST).

Results. Out of 500 fecal samples, 7% (35/500) were found positive for the presence of colistin-resistant E. coli (CR-Ec). Among the CR-Ec isolates, 74.28% (26/35) were detected as ESBL producers carrying the blaCTX-M-1 gene in 15/35 (42.85%) isolates and blaCTX-M-15 and blaTEM genes in 21/35 (60%) and 35/35 (100%) isolates, respectively. E. coli isolates were found positive for the presence of mcr-1, although none of the isolates exhibited the mcr-2 or mcr-3 genes. The MLST of CR-Ec has shown the ST1035 as the most prevalent genotype, while 82.85% (29/35) of CR-Ec strains belonged to clonal complex (CC) 131 comprising ST1035, ST131, ST1215, ST1650, and ST2279. Conclusions. The findings suggest a continuous monitoring system in veterinary and clinical settings to avoid unnecessary antibiotics. Further studies are needed at the national level to help control the increasing resistance among Enterobacterales in poultry settings.

1. Introduction

Escherichia coli is an emerging pathogen that is associated with multiple infections in humans such as urinary tract infection (UTI), bacteremia, meningitis, and travelers’ diarrhea [1]. Similarly, E. coli is also responsible to cause colibacillosis among animals. It is the most adaptable microorganism with multiple pathogenic strains among humans and animals that causes a variety of infections. In the case of poultry, E. coli is responsible for respiratory tract infections such as colibacillosis through the inhalation of fecal contaminated dust [2]. Escherichia coli strains isolated from commercial broilers are frequently resistant to antibiotics [3]. Numerous studies have indicated that improper use of antimicrobial agents in food animals including poultry leads to the emergence of antimicrobial-resistant strains [4]. The infections among the animals caused by E. coli are treated with the various routinely used antibiotics such as streptomycin, sulfonamide, colistin, ampicillin, polymyxins, cephalosporins, fluoroquinolones, and tetracycline, depending upon the type and nature of infection [5].

Extended-spectrum beta-lactamases (ESBLs) are a group of enzymes that frequently confer resistance against beta-lactam drugs such as third-generation cephalosporins, i.e., cefotaxime, cefazidime, and ceftriaxone [6–8]. The ESBLs are derived from narrow-spectrum beta-lactamase genes such as TEM-1, TEM-2, or SHV-1 that have undergone mutations altering the amino acid types and configurations, especially around the active site of the enzyme. They are usually encoded by the plasmids, and therefore, are readily
exchanged between the bacterial species. Thus far, more than 350 ESBL variants have been reported commonly among the members of the Enterobacteriaceae family mainly *Escherichia coli* and *Klebsiella pneumoniae* [9].

Colistin belongs to the polymyxin group of drugs that were considered a drug of last resort for the therapeutic management of infections caused by MDR Enterobacteriaceae family members such as *E. coli*. Colistin-resistant bacteria are worldwide important as they pose a major threat to public and animal health [8, 10]. After the first report of *mcr-1*, numerous mobile colistin resistance variants have been reported across many countries in the five continents. So far, 10 different *mcr* genes and their several variants have been reported from various parts of the world from different bacterial isolates, from the environment, animals, humans, food, and poultry farms [11, 12]. In Pakistan, the studies have reported *mcr-1* and *mcr-2* only. The *mcr-1* was reported in *E. coli* isolates from humans, broilers, and wildlife in Pakistan [13–15]. In a recent study, a total of 250 fecal samples were collected from poultry and livestock, and 153 strains of *E. coli* were recovered of which 49.01% were carrying *mcr-1* gene [16]. In a study from the clinical settings in Pakistan, 545 *E. coli* strains were obtained from the clinical samples, and only four (0.73%) were resistant to colistin and carrying *mcr-1* [17].

Therefore, the current study was designed to investigate the prevalence, characterization, and genetic diversity of colistin resistance *E. coli* (CR-Ec) isolated from fecal samples of commercial broilers that were harboring extended-spectrum beta-lactamases (ESBLs) and mobile colistin-resistant (*mcr-1*) genes.

2. Materials and Methods

2.1 Ethical Approval

The study was approved by the institutional review board (Government College University Faisalabad, Pakistan) before the isolation of bacterial strains and collection of the data.

2.2 Isolation of Colistin-Resistant Escherichia coli

500 fecal samples were collected from the commercial broiler from five different farms located in Faisalabad, Pakistan. All samples were collected using the sterile spatula and transferred to 50 ml sterile tubes and were shifted to the laboratory immediately for initial processing. The samples were first processed on MacConkey agar and Eosin Methylene Blue agar (Oxoid™ UK) supplemented with colistin sulfate (4 μg/ml) and incubated at 37°C for 24 hours. Moreover, additional conformation, as well as precise identification of all isolates, was done through various biochemical tests including citrate utilization test, Voges-Proskauer test, indole formation, motility test, carbohydrate fermentation test, hydrogen sulfide production, catalase, oxidase, and urease tests, and methyl red tests followed by confirmation by API 20E (BioMerieux, France).

2.3 Molecular Identification of Escherichia coli

The extracted genomic DNA was investigated through polymerase chain reaction by using the species-specific primer (*uidA*) gene set (listed in Table 1) amplification conditions as initial denaturation (95°C for 03 minutes), 35 cycles of denaturation (95°C for 30 seconds), annealing (58°C for 30 seconds), the cyclic extension (72°C for 01 minute), as well as a final extension at 72°C for 10 minutes using the thermocycler (T100™ Thermal Cycler, Bio-Rad).

2.4 Antibiotic Susceptibility Test (AST)

Antibiotic susceptibility testing of isolates was performed using the disc diffusion method according to the Clinical and Laboratory Standard Institute Guideline (CLSI) (2022) to evaluate the antibacterial activity against the different antimicrobial agents which were all obtained from Oxoid (UK) such as amikacin (30 μg), gentamicin (10 μg), ciprofloxacin (5 μg), ceftazidime (30 μg) cefepime (30 μg), cefotaxime (30 μg), amoxycillin/clavulanic acid (30 μg), ampicillin/sulbactam (20 μg), piperacillin/tazobactam (110 μg), imipenem (10 μg), meropenem (10 μg), trimethoprim/sulfamethoxazole (25 μg), tetracycline (30 μg), and doxycycline (30 μg).

Using the broth microdilution method, minimum inhibitory concentration (MIC) of *E. coli* strains against several antimicrobials was performed including amikacin, gentamicin, tobramycin, ciprofloxacin, cefotaxime, ceftazidime, cefepime, imipenem, meropenem, colistin, as well as tigecycline. The results were interpreted according to CLSI (2022) guidelines. *Escherichia coli* (ATCC-25922) was used as a quality control strain for the susceptibility profiling.

2.5 Detection of ESBL and mcr Genes

The extracted bacterial genomic DNA was subjected to a polymerase chain reaction for screening of ESBL genes using the primers for different ESBL encoding genes conferring resistance such as \(\text{bla}_{\text{CTX-M}}, \text{bla}_{\text{CTX-M-1}}, \text{bla}_{\text{CTX-M-2}}, \text{bla}_{\text{CTX-M-9}}, \text{bla}_{\text{CTX-M-10}}, \text{bla}_{\text{CTX-M-14}}, \text{bla}_{\text{CTX-M-15}}, \text{bla}_{\text{SHV}}, \) and \(\text{bla}_{\text{TEM}} \) genes as well as colistin resistance genes (*mcr-1*, *mcr-2*, and *mcr-3*). The PCR run was on the Thermal Cycler (T100™, Bio-Rad, USA). The conditions for PCR were as follows: initial denaturation at 94°C for 3 minutes, cyclic denaturation at 94°C for 1 minute, annealing temperature (variable, Table 1) for 45 seconds, cyclic extension at 72°C for 1 minute, and final extension at 72°C for 7 minutes. The PCR data including sets of primer sequence, annealing temperature, and product size (bp) are mentioned in Table 1. Afterward, the amplified PCR product was subjected to Sanger sequencing (Macrogen, South Korea). The obtained sequence data was compared using the BLAST tool.

2.6 Multilocus Sequence Typing (MLST)

All *mcr-1*-positive strains were subjected to multilocus sequencing typing (MLST). According to the conditions described by Enterobase Database, the Achtman 7 Gene (MLST) was performed through the amplification of seven housekeeping genes as *adk*, *fumC*, *gyrB*, *gyrA*, *mdd*, *purA*, and *recA* as described previously [18]. Agarose gel PCR amplicons were extracted through the GeneJet Gel Extraction Kit (Thermo Scientific™) and were sequenced by Macrogen, South Korea. After initial editing from the ChromasPro (TechneLysium,
Australia), these sequences were aligned from the ClustalW Algorithm (MEGA software), whereas allelic numbers were assigned to each gene loci. The Entero-base Database was accessed to find the allelic profiles of isolates and to know the sequencing types (STs).

3. Results

3.1. Occurrence of E. coli. A total of 35 (7%) fecal samples were positive for the CR-Ec. The E. coli were identified by biochemical methods and further confirmed by the amplification of the uidA gene.

3.2. Antibiotic Susceptibility. The CR-Ec isolates were tested against the different antibiotics and showed variable resistance profiles. The 91.4% isolates were resistant to gentamicin (CN), 88.6% to tetracycline (TE), 74.3% to cefepime (FEP), ceftazidime (CAZ), cefotaxime, amoxicillin/clavulanic acid (AMC) and piperacillin/tazobactam, 71.4% to ampicillin/sublactam (SAM), 68.6% to ciprofloxacin (CIP), 62.9% to amikacin (AK) and doxycycline (DO), 60% to sulfamethoxazole/trimethoprim (SXT), and 31.4% to tobramycin (TOB). However, all isolates were found 100% susceptible to imipenem (IMP), meropenem (MEM), and tigecycline (TGC). The MIC results have shown that the MIC values for CR-Ec isolates varied from 4 to 16 μg/ml against colistin as shown in Table 2.

3.3. Detection of ESBL Genes. The CR-Ec isolates were screened for the ESBL genes (blaCTX-M, blaCTX-M-1, blaCTX-M-2, blaCTX-M-8, blaCTX-M-9, blaCTX-M-10, blaCTX-M-14, and blaCTX-M-15 as well as blaSHV and blaTEM genes) using polymerase chain reaction. PCR results exhibited that 74.28% (26/35) isolates were found to harbor the ESBL genes. The blaCTX-M-1 was found in 42.85% (15/35) of CR-Ec isolates whereas both blaCTX-M-15 and blaTEM were found in 60% (21/35) of CR-Ec isolates (Table 3).

3.4. Mobile Colistin-Resistant Genes (mcr-1) Screening. The 35 CR-Ec isolates that were phenotypically confirmed were subjected to PCR for screening of mcr-1, mcr-2, and mcr-3 genes. PCR investigation confirmed that all of these isolates were positive for the presence of mcr-1, and none of the isolates were found positive for the mcr-2, or mcr-3 genes (Table 3).

3.5. Multilocus Sequence Typing (MLST). Multilocus sequence typing (MLST) has shown that E. coli belongs to multiple sequence types. ST1035 (n = 11, 31.4%) was found to be the most prevalent genotype, which was detected among 11 E. coli isolates, and eight CR-Ec isolates (n = 8, Table 1: PCR primers list for amplifications of resistance genes determinants.

Target gene name	Primers (name)	Sequences	Annealing (temperature)	Product
uidA	(uid-A)-(F)	CAACGAACTGAACCTGACGGCAGA	58	162
	(uid-A)-(R)	CATTCGGCTGGATGGAT		
blacTX-M	CTX-MU-(F)	ATGGCGAGYACCGTAAR1G	52	593
	CTX-MU-(R)	TGGGTTAARTARGTSAACGCA		
blacTX-M-1	CTX-M-1-(F)	GGTAAAAATACCTCGGCTC	50	873
	CTX-M-1-(R)	TTACAACCGTGYGGTACAGA		
blacTX-M-2	CTX-M-2-(F)	ATGATGACTCAGACATCAGT	56	833
	CTX-M-2-(R)	TCCCGAGGCCTTTCCGCGTT		
blacTX-M-8	CTX-M-8-(F)	TTTGCCCGTGCGATTTG	50	368
	CTX-M-8-(R)	CGACCTTCTGCCTCTGCTCT		
blacTX-M-9	CTX-M-9-(F)	ATGGTAAGAAGAGGATGCA	50	870
	CTX-M-9-(R)	CCGTTGCGGATGTTATCTC		
blacTX-M-10	CTX-M-10-(F)	GCAAGCACTAAAGTGATGCTA	56	524
	CTX-M-10-(R)	GGGATATCGTGTTGGTGACC		
blacTX-M-14	CTX-M-14-(F)	GAGAGCTGCAGAGGATGAG	56	941
	CTX-M-14-(R)	CGGGCGTGGGTTAATAG		
blacTX-M-15	CTX-M-15-(F)	CACACGTGGAATTAGGAGCT	50	995
	CTX-M-15-(R)	GCGCTTAAAGCGATAAACA		
blaTEM	TEM-(F)	TTGGTGCCAGATGGTGTATTA	55	506
	TEM-(R)	TATTTTGGCCGCCGAAGCTA		
blashV	SHV-(F)	ATGCCTTATATTGGCGCTCTG	56	869
	SHV-(R)	AGATAAACACACAAATGCGC		
mcr-1	mcr-1-(F)	AGTCCGGTGGTTGCTGGTCG	60	320
	mcr-1-(R)	AGATCGTCTGGTCCTGGTCG		
mcr-2	mcr-2-(F)	AGGCGGACCTTTAAGGCTGATGGAATTG	57	576
	mcr-2-(R)	GCGTGATGCACTATACTATGCTCTTG		
mcr-3	mcr-3-(F)	CGCTATGTTCTTTTGCGGACTGTATT	57	1067
22.8%) corresponding to ST131 that was harboring mcr-1 and ESBLs. Similarly, ST1215 corresponded to 5 (14.8%) isolates, whereas 4 (11.4%) isolates belonged to ST2279 and ST88. The ST1650 accounted for 3 (8.5%) isolates. Each of the 35 colistin-resistant E. coli (CR-Ec) strains, 82.85% (29/35) isolates belong to clonal complex (CC) 131 comprising ST1035, ST131, ST1215, ST1650, and ST2279 (Table 3).

4. Discussion

Globally, antimicrobial resistance is a serious issue, but in developing countries, the excessive use of antimicrobials in veterinary settings has made the situation even more, worse [4, 19]. In Pakistan, colistin is used extensively to treat colibacillosis and clostridial enteritis in poultry, either alone or in combination with other antibiotics [20]. The emergence of mcr genes among poultry-origin bacterial isolates and colistin resistance is directly related to the increased use of colistin [21]. Hence, the current study was designed to describe the genetic diversity of CR-Ec strains isolated from the fecal samples of commercial broilers and to find out the prevalence of ESBL and mobile colistin resistance genes.

In this study, 500 fecal samples were screened for CR-Ec and obtained 35 isolates and all of them harbored the mcr-1 gene. The comparison with some past studies has shown the variation among colistin resistance phenotypes in poultry samples. Recently, in a study from Egypt, 56 E. coli isolates were obtained from 120 poultry specimens, and 25% (14/56) isolates were positive for the mcr genes [22]. The incidence rate of colistin resistance among poultry birds was reported as 6.6% in Bangladesh [23]. In a study from China, the rate of colistin resistance among E. coli isolates from poultry farms increased from 4.1% (2014) to 16.2% (2019) [24].

The antibiotic susceptibility profiling of CR-Ec showed variable resistance to antibiotics such as gentamicin (91.4%), tetracycline (88.6%), cefepime, cefazidime, cefotaxime, amoxicillin/clavulanic acid, and piperacillin/tazobactam (74.3%), ampicillin/sulbactam (71.4%), ciprofloxacin (68.6%), amikacin and doxycycline (62.9%), sulfamethoxazole/trimethoprim (60%), and tobramycin (31.4%) (Figure 1). All isolates were found susceptible to imipenem, meropenem, and tigecycline. As the previous study from Pakistan, 98% of E. coli isolates were resistant to ampicillin, 95% to tetracycline, 72% to ciprofloxacin, 69% to colistin, 68% to chloramphenicol, 67% to sulfamethoxazole/trimethoprim, and 27% to cefotaxime, whereas all isolates were found susceptible to imipenem [25]. A study from Tunisia has reported that E. coli strains from poultry were found resistant against nalidixic acid (92%), flumequine (86%), doxycycline (82%), amoxicillin (78%), tetracycline (76%), amoxicillin/clavulanic (74%), enrofloxacin (68%), cefotaxime (68%), cefazidime (66%), aztreonam (62%), cefepime (58%), and colistin (24%), respectively [26].

In the current study, the MIC values of CR-Ec isolates for colistin ranged from 4 to 16 μg/ml. However, all colistin-resistant isolates were susceptible to imipenem, meropenem (MIC < 4 μg/ml), and tigecycline (MIC < 8 μg/ml).

The present study has evaluated the prevalence of ESBL genes among CR-Ec isolates from poultry fecal samples. A total of 74.28% (26/35) CE-Ec isolates were screened positive for ESBL genes (Table 3). The screening for ESBL genes has shown that blaCTX-M was the major ESBL genotype. The blaCTX-M1 was found in 42.85% (15/35), whereas 60% (21/35) of isolates were carrying the blaCTX-M1 and blaTEM genes (Table 3). A systematic review has described the data of 1329 E. coli strains, and the blaCTX-M and blaTEM were the common ESBL families in humans and 70 chicken-originating isolates [27]. The study has shown that ESBLs carrying E. coli from poultry birds carry multiple types of beta-lactamase genes, but the predominant combination was blaCTX-M and blaTEM [28]. This difference in the prevalence of ESBL gene could be due to specimen type and its processing, geographical changes, flock size as well as local practices for antibiotics use [29].

This study also screened for the incidence of mcr-1, mcr-2, and mcr-3 genes among colistin-resistant E. coli (CR-Ec) and found that 100% (35/35) of isolates were positive for mcr-1, and none of the isolates were found positive for mcr-2 and mcr-3 genes.

Table 2: Minimum inhibitory concentration distribution of colistin-resistant Escherichia coli isolates.

Antimicrobial agents	Breakpoints	≤0.25	0.5	1	No. of isolates with MIC (μg/ml) of	2	4	8	16	32	64	128	≥256
Amikacin	≥64	—	—	—	6	4	3	—	—	4	11	7	
Gentamicin	≥16	—	—	2	1	—	—	12	11	7	1		
Tobramycin	≥16	—	—	8	13	2	—	1	6	2	3	—	
Ciprofloxacin	≥1	11	—	—	2	12	5	4	1				
Cefotaxime	≥4	2	6	1	—	—	1	9	12	3	1	—	
Ceftazidime	≥16	1	7	1	—	2	16	7	1				
Cefepime	≥16	2	3	4	—	—	2	15	3				
Imipenem	≥4	25	10	—	—	—	—	—	—				
Meropenem	≥4	20	11	4	—	—	—	—	—				
Colistin	≥4	—	—	—	20	14	1	—	—				
Tigecycline	≥8	13	19	3	—	—	—	—	—				
Table 3: Sequence types of *Escherichia coli* isolates harboring ESBL and mcr genes.

Isolate	ST	CC	MIC of antimicrobial agents	ESBL and colistin-resistant determinants											
			AK	CN	TOB	CIP	CTX	CAZ	FEP	IMP	MEM	CT	SXT	TGC	blα_{CTX-M-1}, blα_{CTX-M-15}, blα_{TEM}, mcr-1
CR-Ec1	131	ST131 Cplx	128	32	32	16	16	64	32	0.25	0.25	8	32	0.5	
CR-Ec2	1035	ST131 Cplx	128	128	4	16	32	64	64	0.25	0.25	4	8	0.5	
CR-Ec3	131	ST131 Cplx	256	64	32	32	16	128	16	0.5	0.5	8	32	0.5	
CR-Ec4	131	ST131 Cplx	128	32	32	16	32	64	32	0.25	0.25	8	32	0.25	
CR-Ec5	1215	ST131 Cplx	8	64	2	16	16	64	64	0.5	0.5	4	0.5	0.5	blα_{CTX-M-1}, mcr-1
CR-Ec6	1035	ST131 Cplx	256	32	2	8	32	64	64	0.25	0.5	4	8	1	
CR-Ec7	131	ST131 Cplx	256	64	128	16	16	64	64	0.25	0.25	8	16	0.5	
CR-Ec8	1035	ST131 Cplx	128	32	2	32	64	128	64	0.25	0.25	8	8	0.25	
CR-Ec9	131	ST131 Cplx	256	128	64	64	256	128	0.25	0.25	16	32	0.25		
CR-Ec10	1650	ST131 Cplx	4	32	2	0.25	0.5	1	1	0.25	0.25	4	0.25	0.5	mcr-1
CR-Ec11	1035	ST131 Cplx	64	16	1	8	32	64	64	0.25	0.25	4	8	0.5	
CR-Ec12	1035	ST131 Cplx	128	32	2	16	32	128	128	0.5	0.5	4	8	1	
CR-Ec13	1035	ST131 Cplx	64	32	1	16	32	64	64	0.5	0.5	4	8	0.5	
CR-Ec14	131	ST131 Cplx	128	32	64	16	32	64	64	0.25	0.5	8	32	0.25	
CR-Ec15	1215	ST131 Cplx	2	128	1	32	16	64	64	0.25	0.25	8	0.5	0.5	
CR-Ec16	2279	ST131 Cplx	128	64	32	0.25	32	64	64	0.5	1	8	8	0.5	
CR-Ec17	131	ST131 Cplx	256	64	16	64	16	64	16	0.25	0.25	8	32	0.5	
CR-Ec18	1650	ST131 Cplx	2	64	2	0.25	1	0.5	1	0.25	0.25	4	0.5	1	mcr-1
CR-Ec19	410	ST23 Cplx	2	256	128	0.25	0.5	1	0.5	0.25	0.5	4	0.5	0.25	
CR-Ec20	1035	ST131 Cplx	128	64	2	64	16	64	32	0.5	0.5	4	16	0.5	
CR-Ec21	1035	ST131 Cplx	64	32	1	16	64	128	128	0.25	0.25	4	8	0.25	
CR-Ec22	1035	ST131 Cplx	128	128	4	32	32	64	64	0.25	0.25	4	8	0.5	
CR-Ec23	1035	ST131 Cplx	64	32	1	16	128	128	64	0.25	0.25	4	16	0.25	
CR-Ec24	1215	ST131 Cplx	8	128	2	16	16	32	32	0.5	1	8	0.25	0.5	
CR-Ec25	131	ST131 Cplx	256	128	32	128	32	128	32	0.25	0.25	8	32	0.5	
CR-Ec26	2279	ST131 Cplx	128	128	0.25	32	128	64	0.25	0.25	8	8	0.25		

BioMed Research International
mcr-2 and mcr-3 gene (Table 3). In contrast, comparable studies in Nepal and Iran reported that the mcr-1 gene is less prevalent among poultry-origin CR-Ec strains [30–32]. However, identical studies conducted in Bangladesh and Denmark published a similar prevalence of the mcr-1 gene among ESBLs producing CR-Ec [33]. The study is identical to a study from Egypt that reported a 100% prevalence of the mcr-1 gene, whereas mcr-2, mcr-3, mcr-4, and mcr-5 genes were not found in any of the isolates [22]. In addition, similar findings with the presence of the mcr-1 gene only were published in Morocco, North Africa, Algeria, Tunisia, and many other countries [34, 35]. An investigation of chicken birds in Faisalabad, Pakistan, found that 8 out of 100 E. coli isolates were positive for mcr-1 [21]. Our results

Table 3: Continued.

Isolate	ST	CC	MIC of antimicrobial agents	ESBL and colistin-resistant determinants
CR-Ec27	1650	ST131 Cplx	AK 64 1 0.25 0.25 0.25 0.25 0.25 0.25	mcr-1
CR-Ec28	88	ST23 Cplx	2 1 2 0.25 0.5 0.25 0.25 0.5 0.5	mcr-1
CR-Ec29	10	ST10 Cplx	128 64 32 0.25 0.5 0.25 0.25 0.25 0.25	mcr-1
CR-Ec30	23	ST23 Cplx	4 32 2 0.25 0.5 0.25 0.25 0.25 0.25	mcr-1
CR-Ec31	1215	ST131 Cplx	4 64 1 32 16 64 64 0.5 0.5	bla_{CTX-M-1}, mcr-1
CR-Ec32	1215	ST131 Cplx	2 32 1 16 8 32 32 0.5 0.5	bla_{CTX-M-1}, mcr-1
CR-Ec33	1035	ST131 Cplx	256 64 2 64 32 64 64 0.5 0.5	bla_{CTX-M-1}, bla_{TEM}, mcr-1
CR-Ec34	88	ST23 Cplx	4 2 2 0.25 0.5 0.25 0.25 0.25 0.25	mcr-1
CR-Ec35	3059	—	2 1 2 0.25 0.5 0.25 0.25 0.25 0.25	mcr-1

MCR-1, ESBLs, and clonal complex (CC).

Figure 1: Antimicrobial susceptibility pattern of colistin-resistant *Escherichia coli* from poultry.
strongly agreed with various previous reports suggesting that mcr-1 is the most important and widespread gene among CR-Ec isolates from poultry [36].

The multilocus sequence type (MLST) analysis of CR-Ec has shown that the strains belong to various sequence types (STs). A total of thirty-five E. coli isolates were characterized by MLST, and 10 different STs were observed. Among the STs, the most prevalent sequence types are ST1035, ST131, ST1215, ST1650, and ST2279 which belong to clonal complexes (CC) 131 while other sequence types including ST410, ST88, ST23, and ST88 belonged to the clonal complexes 23 (CC). One isolate belonging to ST10 corresponded to clonal complex 10 (CC) as shown in Table 3. A study from China reported ST10 from clinical samples [37]. The ST10 sequence type was well known for being prevalent in food and human stool samples [38]. Previous reports have indicated that poultry harboring the mcr gene belonged to ST410 [39], ST156, and ST641 [40, 41]. In this study, there was one strain of E. coli belonging to ST410 harboring mcr-1. This ST410 strain represents its widespread distribution around the globe, has been previously reported from North America, Europe, South America, Asia, and Africa, and was indicating its ability to survive for a long time in a specific host [42]. Our findings disclosed that the majority, i.e., twenty-nine isolates, belonged to CC131. As far as the ST131 is concerned, it usually carries the ESBLs and contains blaCTX-M-15 in the majority of cases [43]. Moreover, ST131 was also found to harbor the mcr-1 gene and isolated among the chicken birds in various European countries including France, Germany, Hungary, Spain, and the United Kingdom [44]. In the present study, ST23 was reported in one isolate which harbored mcr-1. The ST23 was previously reported by China which harbored ESBL-resistant genes including blaCTX-M, blaTEM, and blaSHV [45]. Generally, it is fact that mcr genes have been identified on diverse STs in E. coli isolated from human, animal, and food samples suggesting the dissemination of genes successfully through the mobile genetic element (MGE) and plasmid rather than dissemination of specific clones of E. coli [46].

The scientific interests have inclined toward the transmissible colistin resistance (mcr) mediated by the plasmids since their discovery in 2015 as plasmid-mediated resistance can more readily disseminate among the Enterobacteriales compared to the chromosomal-mediated resistance, especially in the livestock sector. It is assumed that with the reduction in the consumption of colistin in veterinary medicine, the prevalence of the mcr gene harboring plasmids could reduce due to the absence of selective pressure of colistin. In contrast, the Enterobacteriales isolates from humans mostly resist colistin due to chromosomal mutations, and their prevalence will keep on increasing as colistin is increasingly being used as a drug of last resort for the therapeutic management of infections caused by the carbapenemase-producing pathogens [47]. The systematic review of literature from high-income countries also indicates that ST10, ST88, ST410, and ST131 are commonly reported in E. coli isolates from poultry [48]. The current study highlighted the emergence of mcr-1 harboring E. coli in the poultry sector in Pakistan which poses a significant threat to public health. It is a need of the hour to monitor and control the use of antibiotics especially colistin in the poultry sector. Moreover, future studies are needed to screen for such resistant determinants on a larger scale.

5. Conclusion

The current study has reported the genetic diversity among CR-Ec isolates harboring mcr-1 and ESBLs from commercial broilers from Pakistan. The presence of mcr-1 in all of CR-Ec isolates associated with the clonal complex (CC) 131 is alarming as this clonal complex is also associated with a higher number of infections in clinical settings. Pakistan is the one of top poultry producers in Asia; therefore, the research should be widely extended toward the screening of MDR bacterial species in poultry to avoid any epidemic caused by such MDR pathogens. It is highly recommended to closely monitor the colistin and beta-lactam-resistant E. coli strains in veterinary and clinical settings.

Data Availability

All data used to support the findings of this study are included in the article.

Conflicts of Interest

The authors declare that they have no conflict of interest.

References

[1] M. Q. Alanazi, F. Y. Alqahtani, and F. S. Aleanizy, “An evaluation of E. coli in urinary tract infection in emergency department at KAMC in Riyadh, Saudi Arabia: retrospective study,” Annals of Clinical Microbiology and Antimicrobials, vol. 17, no. 1, p. 3, 2018.

[2] Z. R. Stromberg, J. R. Johnson, J. M. Fairbrother et al., “Evaluation of Escherichia coli isolates from healthy chickens to determine their potential risk to poultry and human health,” PLoS One, vol. 12, no. 7, article e0180599, 2017.

[3] X. Zhuge, Y. Ji, F. Tang et al., “Population structure and antimicrobial resistance traits of avian-origin mcr-1-positive Escherichia coli in Eastern China, 2015 to 2017,” Transboundary and Emerging Diseases, vol. 66, no. 5, pp. 1920–1929, 2019.

[4] B. Aslam, W. Wang, M. I. Arshad et al., “Antibiotic resistance: a rundown of a global crisis,” Infection and Drug Resistance, vol. 11, pp. 1645–1658, 2018.

[5] M. J. Trimble, P. Mlynárčík, M. Kolař, and R. E. Hancock, “Polymyxin: alternative mechanisms of action and resistance,” Cold Spring Harbor Perspectives in Medicine, vol. 6, no. 10, 2016.

[6] M. Saed, M. H. Rasool, F. Rasheed et al., “Extended-spectrum beta-lactamases producing extensively drug-resistant Salmonella typhi in Punjab, Pakistan,” Journal of Infection in Developing Countries, vol. 14, no. 2, pp. 169–176, 2020.

[7] Y. Wang, T. He, J. Han et al., “Prevalence of ESBLs and PMQR genes in fecal Escherichia coli isolated from the non-human primates in six zoos in China,” Veterinary Microbiology, vol. 159, no. 1–2, pp. 53–59, 2012.
[8] H. Bilal, M. N. Khan, T. Rehman, M. F. Hameed, and X. Yang, “Antibiotic resistance in Pakistan: a systematic review of past decade,” BMC Infectious Diseases, vol. 21, no. 1, p. 244, 2021.

[9] M. Shafig, J. Huang, S. U. Rahman et al., “High incidence of multidrug-resistant Escherichia coli coharboring mcr-1 and blaCTX-M-15 recovered from pigs,” Infection and Drug Resistance, vol. 12, pp. 2135–2149, 2019.

[10] R. Li, M. Xie, J. Zhang et al., “Genetic characterization of mcr-1-bearing plasmids to depict molecular mechanisms underlying dissemination of the colistin resistance determinant,” Journal of Antimicrobial Chemotherapy, vol. 72, no. 2, pp. 393–401, 2017.

[11] S. Huang, S. Wang, Y. Li et al., “Prevalence and transmission of mobilized colistin resistance (mcr-1) gene positive Escherichia coli in healthy rural residents in Shandong province, China,” Microbiological Research, vol. 253, article 126881, 2021.

[12] K. Changkaew, F. Utrarachkij, K. Siripanichgon, C. Nakajima, O. Suthienkul, and Y. Suzuki, “Characterization of antibiotic resistance in Escherichia coli isolated from shrimps and their environment,” Journal of Food Protection, vol. 77, no. 8, pp. 1394–1401, 2014.

[13] M. Mohsin, S. Raza, N. Roschanski, K. Schaufler, and S. Guenther, “First description of plasmid-mediated colistin-resistant extended-spectrum β-lactamase-producing Escherichia coli in a wild migratory bird from Asia,” International Journal of Antimicrobial Agents, vol. 48, no. 4, pp. 463–464, 2016.

[14] M. Mohsin, S. Raza, N. Roschanski, S. Guenther, A. Ali, and P. Schierack, “Description of the first Escherichia coli clinical isolate harboring the colistin resistance gene mcr-1 from the Indian subcontinent,” Antimicrobial Agents and Chemistry, vol. 61, no. 1, article e01945, 2017.

[15] M. Azam, M. Mohsin, T. J. Johnson et al., “Genomic landscape of multi-drug resistant avian pathogenic Escherichia coli recovered from broilers,” Veterinary Microbiology, vol. 247, article 108766, 2020.

[16] M. Shafig, S. U. Rahman, H. Bilal et al., “Incidence and molecular characterization of ESBL-producing and colistin-resistant Escherichia coli isolates recovered from healthy food-producing animals in Pakistan,” Journal of Applied Microbiology, vol. 133, no. 3, pp. 1169–1182, 2022.

[17] H. Bilal, T. U. Rehman, M. A. Khan et al., “Molecular epidemiology of mcr-1, blaKPC-2, and blaNDM-1 harboring clinically isolated Escherichia coli from Pakistan,” Infection and Drug Resistance, vol. 14, pp. 1467–1479, 2021.

[18] S. Ilyas, M. H. Rasool, M. J. Arshed et al., “The Escherichia coli sequence type 131 harboring extended-spectrum beta-lactamases and carbapenemases genes from poultry birds,” Infection and Drug Resistance, vol. 14, pp. 805–813, 2021.

[19] B. Aslam, M. Khurshid, M. I. Arshad et al., “Antibiotic resistance: one health one world outlook,” Frontiers in Cellular and Infection Microbiology, vol. 11, article 771510, 2021.

[20] M. K. Saleemi, M. F. U. Hussan, M. Z. Khan, A. Khan, R. Z. Abbas, and A. Ahmad, “Hematobiochemical effects of colistin administered intramuscularly in growing broiler birds,” Pakistan Veterinary Journal, vol. 34, pp. 78–81, 2014.

[21] J. Lv, M. Mohsin, S. Lei et al., “Discovery of a mcr-1-bearing plasmid in commensal colistin-resistant Escherichia coli from healthy broilers in Faisalabad, Pakistan,” Virulence, vol. 9, no. 1, pp. 994–999, 2018.

[22] H. Badr, A. Samir, E. I. El-Tokhi et al., “Phenotypic and genotypic screening of colistin resistant association with emerging pathogenic Escherichia coli isolated from poultry,” Veterinary Sciences, vol. 9, no. 6, 2022.

[23] M. A. Sobur, S. Ievy, Z. F. Haque, A. Nahar, S. B. Zaman, and M. T. Rahman, “Emergence of colistin-resistant Escherichia coli in poultry, house flies, and pond water in Mymensingh, Bangladesh,” Journal of Advanced Veterinary and Animal Research, vol. 6, no. 1, pp. 50–53, 2019.

[24] W. Zhang, T. Zhang, C. Wang et al., “Prevalence of colistin resistance gene mcr-1 in Escherichia coli isolated from chickens in Central China, 2014 to 2019,” Journal of Global Antimicrobial Resistance, vol. 29, pp. 241–246, 2022.

[25] M. Azam, M. Mohsin, R. Sajjad Ur, and M. K. Saleemi, “Virulence-associated genes and antimicrobial resistance among avian pathogenic Escherichia coli from colibacillosis affected broilers in Pakistan,” Tropical Animal Health and Production, vol. 51, no. 5, pp. 1259–1265, 2019.

[26] S. Dhaouadi, L. Soufi, A. Hamza et al., “Co-occurrence of mcr-1 mediated colistin resistance and β-lactamase-encoding genes in multidrug-resistant Escherichia coli from broiler chickens with colibacillosis in Tunisia,” Journal of Global Antimicrobial Resistance, vol. 22, pp. 538–545, 2020.

[27] L. Valentin, H. Sharp, K. Hille et al., “Subgrouping of ESBL-producing Escherichia coli from animal and human sources: an approach to quantify the distribution of ESBL types between different reservoirs,” International Journal of Medical Microbiology, vol. 304, no. 7, pp. 805–816, 2014.

[28] A. R. S. Putra, M. H. Effendri, S. Koeswarto, and W. Tyasningsih, “Molecular identification of extended spectrum beta-lactamase (ESBL) producing Escherichia coli isolated from dairy cows in East Java Province, Indonesia,” The Indian Veterinary Journal, vol. 96, no. 10, pp. 26–30, 2019.

[29] D. Karki, B. Dhungel, S. Bhandari et al., “Antibiotic resistance and detection of plasmid mediated colistin resistance mcr-1 gene among Escherichia coli and Klebsiella pneumoniae isolated from clinical samples,” Gut Pathogens, vol. 13, no. 1, p. 45, 2021.

[30] E. Liebana, A. Carattoli, T. M. Coque et al., “Public health risks of enterobacterial isolates producing extended-spectrum β-lactamases or AmpC β-lactamases in food and food-producing animals: an EU perspective of epidemiology, analytical methods, risk factors, and control options,” Clinical Infectious Diseases, vol. 56, no. 7, pp. 1030–1037, 2013.

[31] B. Lazarus, D. L. Paterson, J. L. Mollinger, and B. A. Rogers, “Do human extraintestinal Escherichia coli infections resistant to expanded-spectrum cephalosporins originate from food-producing animals? A systematic review,” Clinical Infectious Diseases, vol. 60, no. 3, pp. 439–452, 2015.

[32] B. Muktan, U. Thapa Shrestha, B. Dhungel et al., “Plasmid mediated colistin resistant mcr-1 and co-existence of OXA-48 among Escherichia coli from clinical and poultry isolates: first report from Nepal,” Gut Pathogens, vol. 12, no. 1, p. 44, 2020.

[33] M. Mikhayel, S. O. Leclercq, D. K. Sarkis, and B. Doublet, “Occurrence of the colistin resistance gene mcr-1 and additional antibiotic resistance genes in ESBL/AmpC-producing Escherichia coli from poultry in Lebanon: a nationwide survey,” Microbiology Spectrum, vol. 9, no. 2, article e0002521, 2021.

[34] N. Rahmatallah, H. El Rhaffoulou, A. Laraqui et al., “Detection of colistin encoding resistance genes MCR-1 in isolates recovered from broiler chickens in Morocco,” Saudi Journal of Pathology and Microbiology, vol. 3, no. 12, pp. 520–521, 2018.
[35] S. Chabou, H. Leulmi, and J. M. Rolain, “Emergence of mcr-1-mediated colistin resistance in Escherichia coli isolates from poultry in Algeria,” *Journal of Global Antimicrobial Resistance*, vol. 16, pp. 115-116, 2019.

[36] A. A. Moawad, H. Hotzel, H. Neubauer et al., “Antimicrobial resistance in Enterobacteriaceae from healthy broilers in Egypt: emergence of colistin-resistant and extended-spectrum β-lactamase-producing Escherichia coli,” *Gut Pathogens*, vol. 10, no. 1, p. 39, 2018.

[37] Y. Zhang, K. Liao, H. Gao et al., “Decreased fitness and virulence in ST10 Escherichia coli harboring blaNDM-5 and mcr-1 against a ST4981 strain with blaNDM-5,” *Frontiers in Cellular and Infection Microbiology*, vol. 7, p. 242, 2017.

[38] S. Matamoros, J. M. van Hattem, M. S. Arcilla et al., “Author correction: global phylogenetic analysis of Escherichia coli and plasmids carrying the mcr-1 gene indicates bacterial diversity but plasmid restriction,” *Scientific Reports*, vol. 10, no. 1, p. 2963, 2020.

[39] I. V. Rocha, C. Andrade, T. L. Campos et al., “Ciprofloxacin-resistant and extended-spectrum β-lactamase-producing Escherichia coli ST410 strain carrying the mcr-1 gene associated with bloodstream infection,” *International Journal of Antimicrobial Agents*, vol. 49, no. 5, pp. 655-656, 2017.

[40] S. Pulss, T. Semmler, E. Prenger-Berninghoff, R. Bauerfeind, and C. Ewers, “First report of an Escherichia coli strain from swine carrying an OXA-181 carbapenemase and the colistin resistance determinant MCR-1,” *International Journal of Antimicrobial Agents*, vol. 50, no. 2, pp. 232–236, 2017.

[41] F. Rossi, R. Girardello, C. Morais et al., “Plasmid-mediated mcr-1 in carbapenem-susceptible Escherichia coli ST156 causing a blood infection: an unnoticeable spread of colistin resistance in Brazil?,” *Clinics (São Paulo, Brazil)*, vol. 72, no. 10, pp. 642–644, 2017.

[42] L. Roer, S. Overballe-Petersen, F. Hansen et al., “Escherichia coli sequence type 410 is causing new international high-risk clones,” *mSphere*, vol. 3, no. 4, 2018.

[43] M. H. Nicolas-Chanoine, X. Bertrand, and J. Y. Madec, “Escherichia coli ST131, an intriguing clonal group,” *Clinical Microbiology Reviews*, vol. 27, no. 3, pp. 543–574, 2014.

[44] F. El Garch, A. de Jong, X. Bertrand, D. Hocquet, and M. Sauget, “mcr-1-like detection in commensal Escherichia coli and Salmonella spp from food-producing animals at slaughter in Europe,” *Veterinary Microbiology*, vol. 213, pp. 42–46, 2018.

[45] X. Liu, X. Wei, L. Liu et al., “Prevalence and characteristics of extended-spectrum β-lactamases-producing Escherichia coli from broiler chickens at different day-age,” *Poultry Science*, vol. 99, no. 7, pp. 3688–3696, 2020.

[46] K. Zurfluh, M. Nüesch-Inderbinen, J. Klumpp, L. Poirel, P. Nordmann, and R. Stephan, “Key features of mcr-1-bearing plasmids from Escherichia coli isolated from humans and food,” *Antimicrobial Resistance & Infection Control*, vol. 6, no. 1, p. 91, 2017.

[47] U. Binsker, A. Käsbohrer, and J. A. Hammerl, “Global colistin use: a review of the emergence of resistant Enterobacteriales and the impact on their genetic basis,” *FEMS Microbiology Reviews*, vol. 46, no. 1, 2022.

[48] M. U. Anyanwu, I. F. Jaja, C. O. R. Okpala et al., “Potential sources and characteristic occurrence of mobile colistin resistance (mcr) gene-harbouring bacteria recovered from the poultry sector: a literature synthesis specific to high-income countries,” *PeerJ*, vol. 9, article e11606, 2021.