A Corpus-based Study of Temporal Signals

Leon Derczynski and Robert Gaizauskas

University of Sheffield
211 Portobello, S1 4DP, UK
L.Derczynski@dcs.shef.ac.uk, R.Gaizauskas@dcs.shef.ac.uk

Abstract

Automatic temporal ordering of events described in discourse has been of great interest in recent years. Event orderings are conveyed in text via various linguistic mechanisms including the use of expressions such as “before”, “after” or “during” that explicitly assert a temporal relation – temporal signals. In this paper, we investigate the role of temporal signals in temporal relation extraction and provide a quantitative analysis of these expressions in the TimeBank annotated corpus.

1. Introduction

The task of automatically determining the temporal relations that hold between events described in a text is a research challenge that has increasingly occupied researchers in computational language processing (Setzer and Gaizauskas, 2000; Pustejovsky et al., 2004; Verhagen et al., 2009; Verhagen et al., 2010). The mechanisms used to convey temporal relational information in text are complex and include tense, textual ordering, as well as specific lexical cues; and of course readers and writers bring to bear lexical and world knowledge, informing them of likely event sequences and inter-relationships. Of the mechanisms that play a part in conveying temporal relational information, one that has been under-investigated is the use of expressions, typically adverbials or conjunctions, which overtly signal temporal relations – words or phrases such as after, during and as soon as. Very few of the teams participating in the recent TempEval challenges (Verhagen et al., 2009; Verhagen et al., 2010) exploited these words as features in their automated temporal relation classification systems. Certainly no detailed study of these words and their potential contribution to the task of temporal relation detection has been carried out to date, despite their demonstrable utility (Derczynski and Gaizauskas, 2010b). This paper begins to address this deficiency. Using the TimeBank corpus, a corpus of news wire texts annotated with TimeML (Pustejovsky et al., 2003), in which a class of expressions referred to as temporal signals is explicitly annotated, we set out to answer the following questions:

1. What proportion of temporal relations annotated in TimeBank have an associated temporal signal? That is, are explicitly signalled using a signal word or phrase?
2. Of the expressions which can function as temporal signals, what proportion of their usage in the TimeBank corpus is as a temporal signal? E.g. how ambiguous are these expressions in terms of their role as temporal signals?
3. Of the occurrences of these expressions as temporal signals, how ambiguous are they with respect to the temporal relation they convey?

The following paper provides provisional answers to these questions – provisional as one of the difficulties we encountered was significant under-annotation of temporal signals in TimeBank. We have addressed this to some extent, but more work remains to be done. Nonetheless we believe the current study provides important insights into the behaviour of temporal signals and how they may be exploited by computational systems carrying out the temporal relation detection task. The remainder of the paper is divided into three parts. In section two we give a more detailed characterisation of temporal signals, further describe TimeBank and TimeML and discuss prior related work. In section three we describe the additional annotation work we have done on TimeBank and present the quantitative analysis that provides answers to the questions framed above. The fourth section considers, on a case by case basis, specific examples of expressions which are highly ambiguous as regards their role as temporal signals and discusses their behaviour in detail.

2. Temporal Signals

2.1. Linguistic Characterisation

Signal expressions explicitly indicate the existence and nature of a temporal relation between two events or states or between an event or state and a time point or interval. Hence a temporal signal has two arguments, which are the temporal “entities” that are related. One of these arguments may be deictic instead
of directly attached to an event or time; anaphoric temporal references are also permitted. For example, the temporal function and arguments of after in He slept after a long day at work are clear and available in the immediately surrounding text. With After that, he swiftly finished his meal and left we must look back to the antecedent of that to locate the second argument. Sometimes a signal will appear to be missing an argument; for example, sentence-initial signals with only one event in the sentence (“Later, they subdivided.”). These relate an event in their sentence with the discourse’s current temporal focus – for example, document creation time, the previous sentence’s main event, or reference time (Reichenbach, 1947; Dowty, 1979). In a more complex case, such as Example[1] we suggest that two temporal links are present. First, Later is attached to the current focus, as is surveyed. Secondly, after describes the relation between the storm and surveyed.

(1) It rained heavily. Later, after the storm, we surveyed the damage.

Sometimes a signal may appear to only take one argument, when the other is (implicitly) reference time. For example, afterwards and after that are temporally equivalent, though afterwards only takes one extra argument.

Signal surface forms have a compound structure consisting of a head and an optional qualifier. The head describes the temporal operation of the signal phrase and the qualifier modifies or clarifies this operation. An example of an unqualified signal expression is after, which provides information about the nature of a temporal link, but does not say anything about the absolute or relative magnitude of the temporal separation of its arguments. We can elaborate on this with phrases which give qualitative information about the relative size of temporal separation between events (such as very shortly after), or which give a specific separation between events using a duration as a modifying phrase (e.g. two weeks after).

2.2. TimeML and TimeBank

TimeML (Pustejovsky et al., 2004) is a temporal annotation language. It may be used to annotate events, time expressions or timex’s (times, dates, durations), temporal relations between events and times (such as before or during), and signal expressions – words or phrases (such as conjunctions, adverbials) that provide information about temporal relations. TimeBank (Pustejovsky et al., 2003) is currently the largest TimeML-annotated gold standard corpus available, including over 6 000 temporal relation annotations, as well as events, times and signals. It consists of around 65 000 tokens of English newswire text. TimeML offers the following definition of temporal signal. From the annotation guidelines[1]:

A signal is a textual element that makes explicit the relation holding between two entities (timex and event, timex and timex, or event and event). Signals are generally:

- Temporal prepositions: on, in, at, from, to, before, after, during, etc.
- Temporal conjunctions: before, after, while, when, etc.
- Prepositions signaling modality: to.
- Special characters: “-” and “/”, in temporal expressions denoting ranges.

In cases where a specific duration occurs as part of a complex qualifier-head temporal signal, e.g. two weeks after, TimeBank has followed the convention that the signal head alone is annotated as a signal and the qualifier is annotated as a TIMEX of type DURATION.

2.3. Previous Work

Signals help create well-structured discourse. Temporal signals can provide context shifts and orderings (Hitzeman, 1997). These signal expressions therefore work as discourse segmentation markers (Ho-Dac and Péry-Woodley, 2008). It has been shown that correctly including such explicit markers makes texts easier for human readers to process (Bestgen and Vonk, 1999).

Some prior work has approached linguistic characterisation of signals. Brée et al. (1986) performed a study of temporal conjunctions and prepositions and suggested rules for discriminating temporal from non-temporal uses of signal expressions that fall into these classes. However, this work is purely theoretical and not a corpus-based study. Schlüter (2001) identifies signal expressions used with the present perfect and compares their frequency in British and US English. Vlach (1993) presents a semantic framework that deals with duratives when used as signal modifiers (see Section[2,1]). Brée et al. (1993) later describe the ambiguity of nine temporal prepositions in terms of their roles as temporal signals. Our work differs from the literature in that it is the first to be based on gold standard annotations of temporal semantics and that it

[1] See http://timeml.org/site/publications/timeMLdocs/annguide_1.2.1.pdf.
encompasses all temporal signal expressions, not just those of a particular grammatical class.

Intuitively, signal expressions contain temporal ordering information that human readers can access easily. Once temporal conjunctions are identified, existing semantic formalisms may be applied to discourse semantics (Dowty, 1979). It is however ambiguous which temporal expression they attempt to convey (Hitzeman, 2005). Our work quantifies this ambiguity for a subset of expressions.

Previous work applying temporal signals has been related to the labeling of temporal links (Min et al., 2007) and question answering (Pustejovsky et al., 2005; Saquete et al., 2009). In particular, Lapata and Lascarides (2006) remove the temporal signal from sentences containing two temporally connected clauses and attempt to learn sentence-level temporal relations using the orderings suggested by the removed signal as training data. Directly applying signals to the temporal relation identification task, Derczynski and Gaizauskas (2010b) halved the error rate of TLINK classification for TLINKs that have a signal by adding features describing signals. This raised classification accuracy from 62% to 82%.

3. Signals in TimeBank

In this section, we give a detailed profiling of temporal signals in the TimeBank corpus. Statistics are generated using the CA-VA-T tool for TimeML-annotated corpus analysis. First, we note that in TimeML signals may be divided into three classes based on the type of relation they signal: temporal (tlink), sub-ordinating (slink) or aspectual (alink). The distribution of signals by class in Timebank is shown in Table 1. For the rest of the paper we discuss temporal signals only.

Annotated SIGNAL elements	758
Signals used by a TLINK	721
Signals used by an ALINK	1
Signals used by a SLINK	39
TLINKs that use a SIGNAL	787
Signals used by more than one TLINK	54

Table 1: How <SIGNAL> elements are used in TimeBank.

3.1. Additional Annotation

Upon examination of the non-annotated instances of words that often occur as a temporal signal (such as after) it became evident that TimeBank’s signals are under-annotated. As we are certain of some annotation errors in the source data, we revisited the original annotations. A subset of signal words was selected for re-annotation. This set consisted of signals that were ambiguous (occurred temporally close to 50% of the time) or that we expected contained, based on informal observations, would yield a number of missed temporal annotations. All temporal instances of these words were re-annotated with TimeML, adding EVENTS, TIMEX3s and TLINKs where necessary to create a signalled TLINK.

A single annotator checked the source documents and annotated 70 extra signals, as well as adding 34 events, 1 temporal expression and 49 extra temporal links.

Part of speech	Frequency	Proportion
IN	521	77.3%
RB	73	10.8%
WRB	53	7.9%
JJ	14	2.1%
RBR	5	0.7%
VBG	4	0.6%
CC	2	0.3%
RP	1	0.1%
JJR	1	0.1%

Table 3: Distribution of part-of-speech in signals and the first word of multiword signals, using the Penn Treebank tag set.

TLINKs per signal

Number of signals	1	2	3	5
TLINKs per signal	597	41	12	1

Table 2: The number of TLINKs associated with each temporal signal word/phrase, in TimeBank. Signals not used on TLINKs (e.g. those used on aspectual or subordinate links, or for event cardinality) are excluded. The distribution is Zipfian.
Table 4: Frequency of candidate signal expressions in TimeBank. We include counts of how often these occur as signal expressions both before and after manual curation.

Expression	Count in corpus	As signal	Proportion as signals	After curation	Proportion
in	1214	161	13.3%	66	91.7%
after	72	56	77.8%	56	90.3%
for	621	52	8.4%	66	90.3%
if	65	37	56.9%	56	90.3%
when	62	35	56.5%	56	90.3%
on	344	33	9.6%	36	100.0%
until	36	25	69.4%	36	100.0%
before	33	23	69.7%	30	90.9%
by	356	20	5.6%	36	100.0%
from	366	20	5.2%	36	100.0%
since	31	17	54.8%	18	58.1%
through	69	15	21.7%	66	91.7%
as	271	14	5.2%	16	84.2%
over	59	14	23.7%	16	84.2%
already	32	13	40.6%	13	40.6%
ended	21	13	61.9%	16	84.2%
during	19	13	68.4%	16	84.2%
at	311	11	3.5%	16	84.2%
previously	19	11	57.9%	66	91.7%
within	23	8	34.8%	66	91.7%
s	10	8	80.0%	66	91.7%
later	15	7	46.7%	30	90.9%
earlier	50	6	12.0%	36	100.0%
while	39	6	15.4%	36	100.0%
then	23	5	21.7%	16	84.2%
once	15	5	33.3%	16	84.2%
still	35	4	11.4%	16	84.2%
following	15	4	26.7%	16	84.2%
meanwhile	14	4	28.6%	16	84.2%
at the same time	6	4	66.7%	16	84.2%
to	1600	3	0.2%	16	84.2%
into	63	3	4.8%	16	84.2%
follows	4	3	75.0%	16	84.2%
subsequently	3	3	100.0%	16	84.2%
followed	10	2	20.0%	16	84.2%
former	16	0	0.0%	12	75.0%

3.2. Proportion of Temporal Relations with Signals

TimeBank contains 6,418 TLINKs (6,467 after re-annotation) of which 718 (787) are explicitly indicated by a temporal signal – 11.2% (12.2%). This provides an answer to the first question we posed in Section 1. Thus while ability to successfully detect temporal signals will not solve the problem of assigning temporal relations, it is likely to make a noticeable difference (see Derczynski and Gaizauskas (2010b)). Perhaps of more interest is that so few temporal relations are explicitly signalled – we must look elsewhere for explanations of how temporal relations are conveyed in natural language.

While many TLINKs do not have any associated temporal signal it is also the case that some temporal signals are associated with more than one TLINK. Table 2 shows details of just how signals are being used by TLINKs.

3.3. Temporal vs Non-temporal Uses

The semantic function that a temporal signal expression performs is that of relating two temporal entities. However, the words that can function as temporal signals can also function in a non-temporal way.
Table 4 details the distribution of expressions that are found as temporal signals more than twice (after re-annotation) in TimeBank. The most frequent signal word was “in”, accounting for 24.8% of all signal-using TLINKs. However, only 13.3% of occurrences of the word “in” have a temporal sense. The word “after” is far more likely (91.7% of all occurrences) to have a temporal sense. In total TimeBank contains 62 unique signal words and phrases (ignoring case) and of these, over half (36) are also found in Table 4. As an aside, note that any thought that temporal signals might be easily picked out based on word class may be dispelled by examining the distribution of parts-of-speech possessed by temporal signals – see Table 3.

3.4. Relation Ambiguity

The nature of the temporal relation described by a signal is not constant, though each signal tends to describe a particular relation type most often. Table 5 gives an excerpt of data showing which temporal relations are made explicit by each signal expression. The variation in relation type associated with a signal is not as great as it might appear as the assignment of temporal relation type has an element of arbitrariness – one may choose to annotate a BEFORE or AFTER relation for the same event pair by simply reversing the temporal link’s argument order, for example. Nevertheless, it is possible to draw useful information from the table; for example, one can see that meanwhile is much more likely to suggest some sort of temporal overlap between events than an ordering where arguments occur discretely.

4. Per-expression details

We chose to curate signal annotations in TimeBank for a subset of candidate signal expressions (as described in Section 3.1.). During this curation, we attempted to determine distinguishing features that could aid automatic discrimination of temporal from non-temporal sense of the expressions. Details of our findings are given below.

Previously TimeBank contains eight instances of the word that were not annotated as a signal. Of these, all were being used as temporal signals. The word only takes one event or time as its direct argument, which is placed temporally before an event or time that is in focus. For example:

“X reported a third-quarter loss, citing a previously announced capital restructuring program”

In this sentence, the second argument of previously is “announced”, which is temporally situated before its first argument (“reported”). When previously occurs at the top of a section, the temporal element that has focus is either document creation time or, if one has been specified in previous discourse, the time currently in focus.

After Of the nineteen instances of this word not annotated as temporal, only three were actually non-temporal. The cases that were non-temporal were a different sense of the word. The temporal signals also play other roles.

Table 5: Signal expressions and the TimeML relations that they can denote, ordered as per Table 4 for comparison. Counts do not match because a single signal expression can support more than one temporal link.
are adverbial, with a temporal function. Two non-temporal cases used a positional sense. The last case was in a phrasal verb to go after, “whether we would go after attorney’s fees”.

When There are 35 annotated and 27 non-annotated occurrences of this phrase. It indicates either an overlap between intervals, or a point relation that matches an interval’s start. Twenty-three of the twenty-seven non-annotated occurrences are used as temporal signals. Two of the remaining four are in negated phrases and not used to link an interval pair. For example, “did not say when the reported attempt occurred”. The other two are used in context setting phrases, e.g. “we think he is someone who is capable of rational judgements when it comes to power”, which are not temporal in nature.

While The cases of while that have not been annotated as a signal – the majority class, 33 to 6 – are often used in a contrastive sense. This does suggest that the connected events have some overlap, often between statives. For example, “But **while** the two Slavic neighbours see themselves as natural partners, their relations since the breakup of the Soviet Union have been bedeviled”. As two states described in the same sentences are likely to temporally overlap and any events or times outside or bounding these states will be related to the state, it is unlikely that any contribution to TLINK annotation would be made by linking the two states with a “roughly simultaneous” relation; the closest suitable label is TempEval’s OVERLAP relation (Verhagen et al., 2010).

(2) “nor can the government easily back down on promised protection for a privatized company while it proceeds with . . . ”

The cases of while that were not of this sense were easier to annotate. Sometimes it was used as a temporal expression; “for a while”. Other times, it was not used in a contrastive sense, but instead as irreals – see Example 2. The four cases of non-contrastive usage were annotated as temporal signals.

Before Three of the ten negative examples are correctly annotated. They are before in the spatial sense of “in front of” (as in “The procedures are to go before the Security Council next week”) and also a logical before that does not link instantiated or specific events (“before taxes”). The remaining seven unannotated examples of the word are all temporal signals. These directly precede either an NP describing a nominalised event, or directly precede a subordinate clause (e.g. [IN before, S] – see Figure 1).

Until All eleven non-annotated instances of until should have been annotated as temporal signals. This word suggests a TimeML IBEFORE relation, unless qualified otherwise by something like “not until” or “at least until”.

Already There were thirteen positive examples of already. All of the non-annotated examples had a non-temporal sense as per our description of temporal signals. The word tends to be used for emphasis, but can also suggest a broad “BEFORE DCT” position, which goes without saying for any past and present tensed events. As already can be removed without changing the temporal links present in a sentence, we have not annotated any more examples of this beyond the thirteen present in TimeBank.

Meanwhile This word tends to refer to a reference or event time introduced earlier in discourse, often from the same sentence. As well as a temporal sense, it can have a contrastive “despite”-like meaning. Meanwhile tends to refer more to previous actions, instead of states specified in immediately prior sentences. Sometimes meanwhile is used with no previous temporal reference. In these cases, the implicit argument is DCT. Five of the ten non-annotated meanwhile were temporal signals.
In Example 3, there is a state’s utterance. As a result, we posit that a previously-mentioned (and in-focus) past event. In an analysis of the TimeBank corpus we have shown what proportion of temporal expressions. In an analysis of the TimeBank corpus we have shown what proportion of temporal expressions. In an analysis of the TimeBank corpus we have shown what proportion of temporal expressions.

5. Conclusion

We have provided a characterisation of temporal signal expressions. In an analysis of the TimeBank corpus we have shown what proportion of temporal relations are explicitly signalled by these expressions and have given quantitative descriptions of how ambiguous these phrases are, both regarding their temporal/non-temporal senses and the type of temporal relation that they convey.

5.1. Acknowledgments

The first author would like to acknowledge the UK Engineering and Physical Science Research Council’s support in the form of a doctoral studentship.

6. References

Y. Bestgen and W. Vonk. 1999. Temporal Adverbials as Segmentation Markers in Discourse Comprehension. Journal of Memory and Language, 42(1):74–87.

D.S. Brée and R.A. Smit. 1986. Temporal relations. Journal of Semantics, 5(4):345.

D.S. Brée, A. Feddag, and I. Pratt. 1993. Towards a formalization of the semantics of some temporal prepositions. Time & Society, 2(2):219.

L. Derczynski and R. Gaizauskas. 2010a. Analysing Temporally Annotated Corpora with CAVaT. In Proceedings of the Language Resources and Evaluation Conference.

L. Derczynski and R. Gaizauskas. 2010b. Using signals to improve automatic classification of temporal relations. Proceedings of the ESSLLI StuS.

D.R. Dowty. 1979. Word meaning and Montague grammar: The semantics of verbs and times in generative semantics and in Montague’s PTQ, volume 7. Springer.

J. Hitzeman. 1997. Semantic partition and the ambiguity of sentences containing temporal adverbials. Natural Language Semantics, 5(2):87–100.

J. Hitzeman. 2005. Text type and the position of a temporal adverbial within the sentence. In Proceedings of the 2005 international conference on Annotating, extracting and reasoning about time and events, pages 29–40. Springer-Verlag.

L.M. Ho-Dac and M.P. Pery-Woodley. 2008. Temporal adverbials and discourse segmentation revisited. In Multidisciplinary Approaches to Discourse.

M. Lapata and A. Lascarides. 2006. Learning sentence-internal temporal relations. Journal of Artificial Intelligence Research, 27(1):85–117.

C. Min, M. Srikanth, and A. Fowler. 2007. LCC-TE: A hybrid approach to temporal relation identification in news text. In Proceedings of SemEval-2007, pages 219–222. ACL.

J. Pustejovsky, P. Hanks, R. Sauri, A. See, R. Gaizauskas, A. Setzer, D. Radev, B. Sundheim, D. Day, L. Ferro, et al. 2003. The TimeBank corpus. In Corpus Linguistics, volume 2003, page 40.
J. Pustejovsky, B. Ingria, R. Sauri, J. Castano, J. Littman, R. Gaizauskas, A. Setzer, G. Katz, and I. Mani. 2004. The specification language TimeML. *The Language of Time: A Reader*. Oxford University Press, Oxford.

J. Pustejovsky, R. Knippen, J. Littman, and R. Sauri. 2005. Temporal and Event Information in Natural Language Text. *Language Resources and Evaluation*, 39(2):123–164.

H. Reichenbach. 1947. The tenses of verbs. *Elements of Symbolic Logic*.

E. Saquete, J.L. Vicedo, P. Martinez-Barco, R. Munoz, and H. Llorens. 2009. Enhancing QA systems with complex temporal question processing capabilities. *Journal of Artificial Intelligence Research*, 35(1):755–811.

N. Schlüter. 2001. Temporal specification of the present perfect: a corpus-based study. *Language and Computers*, 36(1):307–315.

A. Setzer and R. Gaizauskas. 2000. Annotating events and temporal information in newswire texts. In *Proceedings of the Second International Conference on Language Resources And Evaluation*, pages 1287–1294, Athens.

M. Verhagen, R. Gaizauskas, F. Schilder, M. Hepple, J. Moszkowicz, and J. Pustejovsky. 2009. The TempEval Challenge: Identifying Temporal Relations in Text. *Journal of Language Resources and Evaluation*, 43(2):161–179.

M. Verhagen, R. Sauri, T. Caselli, and J. Pustejovsky. 2010. SemEval-2010 task 13: TempEval-2. In *Proceedings of the 5th International Workshop on Semantic Evaluation*, pages 57–62. ACL.

F. Vlach. 1993. Temporal adverbials, tenses and the perfect. *Linguistics and Philosophy*, 16(3):231–283.