Dyeing of cotton fabric by *Caesalpinia sappan* aqueous extract at different temperatures and mordants

K. Kannathasan*, P. Kokila

PG and Research Department of Botany, A.P.A. College of Arts and Culture, Palani-624601, Tamil Nadu, India

ABSTRACT

The colour is one of the most important features in textile industry and customers requirements. Synthetic colours are available at affordable prices due to their bulk production. On the other hand, they pose undesirable taste (in case of foods) and harmful effects to ecosystem. The natural colours when used in textiles do not threaten the environments and do not cause any skin allergy, toxicity and other hazards to living things as compared to the synthetic counterparts. In the present study, dyeing experiments were conducted with the aqueous extract of bark chips of *Caesalpinia sappan* at 60, 80 and 100° C and using different mordant treatments. The fastness to washing for most of cotton fabrics showed fair grey scale rating. Among the mordants Alum, CuSO₄, and Myrobalan used, the natural mordant myrobalan showed poor fastness properties compared to other two mordants. The staining tests showed that most of fabrics exhibited only slight/ completamente no pilling in majority of the treatments.

KEYWORDS: *Caesalpinia sappan*, natural dye, cotton fabric, myrobalan

INTRODUCTION

Synthetic colours are more stable, easily available and attracting consumers. They are also available at affordable prices due to their bulk production. On the other hand, the synthetic colours pose undesirable taste (in case of foods) and harmful effects to ecosystem. Natural colours are safe, renewable, eco-friendly and bio-degradable. The natural colours when used in textiles found eco-friendly, causes no skin allergy, leave no hazardous chemicals to soil and water bodies. In India, there are more than 450 plant species which are reported to yield natural dyes. In addition to their dye yielding characteristics, some of these plants possess rich medicinal uses. Due to lack of availability of precise technical knowledge on the extracting and dyeing technique, the natural dyes have not commercially succeeded like the synthetic dyes (Siva 2007). *Caesalpinia sappan* L. is a tree species, belongs to the family Leguminosae. It is commonly called as Sappan wood tree or Brazil wood tree. In Tamil, it is called “Pathimugam”. The wood was traditionally used to treat tuberculosis, diarrhoea, dysentery, skin infection and anaemia among the people (Badami et al., 2003). The heartwood of *C. sappan* contains a red pigment called as “Brazilin”. The plant has been found to contain medicinal properties such as antioxidant, antibacterial, anti-inflammatory and antiacne activities. Saefudin et al. (2014) reported that the sappan wood cures blood vomiting and is used as one of the ingredients during malarial drug preparation. The bark chips are soaked in water and used as a popular thirst quencher in Kerala. Ahn (2007) established the standard extraction procedures for examining brazilin, the major chromophoric substance of sappanwood, using GL-MS with the ultimate goal of identifying, the sappan wood dye in severely faded archaeological textiles. The dye extracted from sappan wood has indeed long been added into several foods and beverages (Sinsawasdi, 2012). Taif et al. (2019) used sappan extract to dye silk fabrics and reported that the intensity of colour absorbed by silk fibre and its fastness properties against light. Boiling method was applied to extract its nature colourant; and mordanting and dyeing were conducted by them through pre-mordanting, simultaneous mordanting and post-mordanting procedures. Although this natural dye may have potential as an alternative to synthetic red dye, scientific information, especially on the color and storage stabilities of this colorant is still limited (Ngamwonglumlert, 2020). The present study is aimed to use of natural pigment of *Caesalpinia sappan* to dye cotton fabrics with three different temperature conditions and mordants.

MATERIALS AND METHODS

Plant Material

The bark chips of *Caesalpinia sappan* was purchased commercially and used for the aqueous extraction of dye.
Preparation of Aqueous Extract

The aqueous extract was prepared at 5% (w/v). 20 gm of C. sappan bark was boiled with 400 ml of water for 30 minutes. Then it was allowed to cool and the extract was filtered using muslin cloth filter. The pH of dye extract is calculated using digital pH meter.

Mordanting and Dyeing

Mordants are any natural or synthetic chemical/material used to enhance the affinity of fabric and dye extracts. The mordants used in this study were Alum (Aluminium Potassium Sulphate), CuSO₄, (Copper Sulphate) and Myrobalan. The mordanting experiments were simultaneous (treating mordant and aqueous extract in same time), pre-mordanting and post mordanting methods. The aqueous extract without any mordant was considered as control. The concentration of mordant used in this study is 2%. The mordanting and dyeing experiments were conducted in a hot air (60, 80 and 100°C) for 1 hour. The material to Liquor Ratio (MLR) 2:40 (Fabric weight: Extract in w/v). After the treatment the cotton fabrics were taken out and allowed to dry at room temperature. The dried fabric was washed in running tap water and once again allowed to dry before it was packed in a self-lock covers safely for further wash fastness and staining tests. In pre-mordanting 2% mordant solution was prepared and used for treatment of cotton fabric. Once the pre-treatment with mordants was completed the fabrics were washed and dried before dyeing experiment. In post-mordanting experiment the cotton fabrics were treated initially with dye solution (2:40 MLR) in the respective temperature conditions for 1 hour and mordant treatments were carried out afterwards.

The dyeing experiments carried out at 60, 80 and 100°C separately in MLR ratio 2:40 (w/v) for 1 hour and the experiments were conducted in three replicates.

Wash Fastness and Staining Tests

The colour fastness to washing and staining tests were conducted at 40°C using ISO C10:2006 method. The change in colour refers to wash fastness. The fastness to washing was rated in a scale of 1 to 5. The scale 1 refers very poor, 2 refers poor, 3 refers fair, 4 refers good and 5 very good. The staining tests for dyed fabrics on cotton and wool materials were scaled from 1 to 5, where 1 means very severe pilling, 2 means severe pilling, 3 means moderate pilling, 4 means slight pilling and 5 means no pilling. After the fastness and staining tests, dyed cotton fabrics was cut (1.5 cm) and used for the preparation of shade card.

RESULTS

The bark chips (20g) of Caesalpinia sappan were extracted with water (400ml). The final quantity of extract was around 250ml. The pH of the extract is 6.60. The colour of the extract was pink.
DISCUSSION

In the present study the dyeing was carried out at three different temperatures i.e. 60, 80 and 100 °C. Generally the temperature plays an important role in dyeing at commercial scale. In our study the pigment was found very stable at higher temperatures of even at 80, 100 °C. The extracts after dyeing at these temperature did not show any notable change in the colour visibly after treatment. This showed the stability of the pigment. De Oliveira et al. (2002) reported that major pigment contained in crude extract of sappan wood is brazilin, which is classified as a neoflavanoid. According to them the pigment, exhibited colorless or yellow colour in nature, is very sensitive to air and light: But in our study the aqueous extract did not show any change in the colour in air and also in light.

Table 1: Wash Fastness properties of cotton fabrics dyed with sappan tree bark chip extract

Treatment	Name of mordants	Temperature (°C)		
		60	80	100
Control	No mordant	2	3	2
Simultaneous dyeing with mordants	Alum	2	3	3
	CuSO₄	3	3	3
	Myrobalan	2	2	2
Premordanting	Alum	2	2	2
	CuSO₄	3	4	4
	Myrobalan	2	2	2
Post-mordanting	Alum	3	3	3
	CuSO₄	3	3	3
	Myrobalan	2	2	2

Grey Scale Rating : 1 = Very Poor, 2 = Poor, 3 = Fair, 4 = Good, 5 = Very Good

Table 2: Staining properties of cotton fabrics dyed with sappan tree bark chip extract on cotton

Treatment	Name of mordants	Temperature (°C)		
		60	80	100
Control	No mordant	4-5	4-5	4-5
Simultaneous dyeing with mordants	Alum	4-5	4-5	4-5
	CuSO₄	3	4-5	4-5
	Myrobalan	4-5	4-5	4-5
Premordanting	Alum	4-5	4-5	4-5
	CuSO₄	4-5	4-5	4-5
	Myrobalan	4-5	4-5	4-5
Post-mordanting	Alum	4-5	4-5	4-5
	CuSO₄	4-5	4-5	4-5
	Myrobalan	4-5	4-5	4-5

Grey Scale Rating : 5 = No pilling, 4 = Slight pilling, 3 = Moderate pilling, 2 = Severe pilling, 1 = Very Severe pilling

Taif et al. (2019) used sappan extract to dye silk fabrics and reported that the intensity of colour absorbed by silk fibre and its fastness properties against light. Boiling method was applied to extract its natural pigment; and mordanting and dyeing were conducted through pre-mordanting, simultaneous mordanting and post-mordanting procedures. Though there are studies reporting the dyeing potential of sappan wood extract on silk husband.

Table 3: Staining properties of cotton fabrics dyed with sappan tree bark chip extract on wool

Treatment	Name of mordants	Temperature (°C)		
		60	80	100
Control	No mordant	4-5	4-5	4-5
Simultaneous dyeing with mordants	Alum	4-5	4-5	4-5
	CuSO₄	4-5	4-5	4-5
	Myrobalan	4-5	4-5	4-5
Premordanting	Alum	4-5	4-5	4-5
	CuSO₄	4-5	4-5	4-5
	Myrobalan	4-5	4-5	4-5
Post-mordanting	Alum	5	5	5
	CuSO₄	5	5	5
	Myrobalan	5	5	5

Grey Scale Rating : 5 = No pilling, 4 = Slight pilling, 3 = Moderate pilling, 2 = Severe pilling, 1 = Very Severe pilling
fabrics, in the present study the cotton fabrics are dyed with the aqueous extract. Ohama and Trumpat (2014) reported that the cotton fabric dyed using sappan wood extracts without mordant had a shade of reddish brown, while those post-mordant with aluminium potassium sulphate, Ferrous sulphate and Copper sulphate produced a variety of wine red to dark purple colour shades. In their study, the observed colour strength was enhanced with an increase in mordant concentration. Ohama and Tumpat’s extraction method contained 1:3 of sappan wood:water which is very much higher concentration than this study. In most of the treatments the cotton fabrics showed fair wash fastness in our study.

Nirmal et al. (2015) reported that, Brazilin is the safe natural compound having potential to develop as a medicinal compound with application in food, beverage, cosmetics and pharmaceutical industries to screen its clinical use in modern medicine. He also reported that the sappan wood contains various structural types of phenolic compounds including xanthone, coumarin, chalcones, flavones, homoisoavonoids and brazilin, etc. This study support that when sappan dye is used for textile, this may additionally influence antibacterial activity through fabrics.

CONCLUSION

The fastness to washing tests of aqueous extract of sappan wood bark chips dyed cotton fabrics showed mostly fair grey scale rating. The staining tests showed that most of fabrics tested revealed only slight/completely no pilling in most of the treatments. The pilling grades were more or less similar both on cotton and wool. Though there are studies reporting the dyeing potential of sappan wood extract on silk fabrics, silk and cotton yarns, in the present study the cotton fabrics are dyed with the aqueous extract in lesser concentration of aqueous extract. Further improvement of this study with different pH and large scale dyeing tests will help to develop this sappan barks as a successful natural dye resource.

ACKNOWLEDGEMENT

The authors thank P Prabhakar, Principal(i/c) and M. Anandhi, Head of the Department, A.P.A. College of Arts and Culture, Palani for granted permission and providing laboratory facilities to conduct this experiment. The authors also thank the authorities of Textile Committee of India, Regional Centre, Coimbatore, Ministry of Textiles for conducting wash fastness and staining tests.

REFERENCES

Ahn, C., (2007). Separation of chromophoric substance from sappanwood under different extraction conditions. Journal of the Korean Society of Clothing and Textiles, 31(12), 1635-1661. https://doi.org/10.5850/JKSCT.2007.31.12.1653

Badami, S., Moorkoth, S., Rai, S., Kannan, E., & Bhojraj, S., (2003). Antioxidant activity of Caesalpiniasappan heartwood. Biological and Pharmaceutical Bulletin, 26(11), 1534-1537. https://doi.org/10.1248/bpb.26.1534

De Oliveira, L. F. C., Edwards, H. G. M., Velozo, E. S., & Nesbitt, M. (2002). Vibrational spectroscopic study of brazilin and brazilein, the main constituents of brazilwood from Brazil. Vibrational Spectroscopy, 28, 243-249. https://doi.org/10.1016/S0924-2031(01)00138-2

ISO 105-C10:2006.Textiles- Tests for colour fastness Part C10 Colour fastness to washing with soap or soda and soda.

Nirmal, N. P., Rajput, M. S., Prasad, R. G. S. V., & Ahmad, M., (2015). Brazilin from Caesalpinia sappan heartwood and its pharmaceutical activities. Asian Pacific Journal of Tropical Medicine, 8(6), 421-430. https://doi.org/10.1016/j.apjtm.2015.05.014

Ohama, P., & Tumpat, N. (2014). Textile dyeing with natural dye from sappan tree (Caesalpinia sappan Linn.) extract. International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, 8(5), 432-434. https://doi.org/10.5291/ZENODO.1092830

Saefudin, S., Pasaribu, G., Sofnie, S., & Basri, E., (2014). Effect of sappan wood (Caesalpinia sappan L.) extract on blood glucose level in white rats. Indonesian Journal of Forestry Research, 1(2), 109-115. https://doi.org/10.20886/ijfr.2014.1.2.109-115

Sinsawasdi, V. K. (2012). Sappanwood water extract: Evaluation of color properties, functional properties, and toxicity. Doctoral Dissertation, University of Florida.

Siva, R. (2007). Status of natural dyes and dye yielding plants in India. Current Science, 92(7), 916-925.

Taif, B., Tajuddin, R. M., & Som, S. H. M., (2019). Dyeing of Silk Fabric with Extract from Caesalpinia sappan. International Journal of Social Sciences, 5(1), 750-764.