Ischemic preconditioning: Potential impact on exercise performance and underlying mechanisms

Masahiro Horiuchi

Division of Human Environmental Science, Mount Fuji Research Institute, 5597-1 Kamiyoshida, Fujiyoshida City, Yamanashi 403-0005, Japan

Received: December 13, 2016 / Accepted: December 28, 2016

Abstract Originally, in clinical settings, ischemic preconditioning (IPC) has been used to delay cardiac cell injury and protect against myocardial and vascular damage. Furthermore, as this manipulation is relatively easy and noninvasive, previous studies have examined how IPC may have beneficial effects on exercise performance. However, because of various factors, such as different populations, exercise modes and intensities, and IPC protocols, not enough evidence is available to achieve a consensus on the impact of IPC on exercise performance, e.g., time to failure during exercise, time trial performance, and peak power. Existing evidence suggests that IPC seems not to impair exercise performance, though one study found an impairment. However, about half of the previous studies showed beneficial effects of IPC on exercise performance. Similarly, the physiological responses from IPC are varied. It is still possible that various factors, such as exercise mode and intensity, heterogeneous population and IPC protocol may affect exercise performance. Previous studies showed that effective blood flow via an increase in nitric oxide and the improvement of metabolic efficiency might be candidate factors that can explain the effect of IPC on exercise performance, although no direct evidence has been obtained. This review aims to identify potential sources of variation in these effects on exercise performance with IPC.

Keywords: blood flow, metabolic efficiency, training status, whole-body exercise, local muscle contraction

Introduction

Ischemic preconditioning (IPC) relates to repeated periods of ischemia followed by reperfusion, which has been originally described to delay cardiac cell injury and protect against myocardial and vascular damage. Generally, the IPC protocol involves three or four cycles of 5 min circulatory occlusion above systolic blood pressure, followed by a 5 min reperfusion period. As this method is relatively easy to conduct and noninvasive, IPC may have various advantages in athletic and clinical settings. Regarding clinical relevance, the effects of repeated tissue exposure to ischemic preconditioning on cardiovascular function and potential mechanisms have been extensively reviewed. However, the mechanisms on how IPC may influence exercise performance are largely unknown; either vascular function or metabolic efficiency may relate to exercise performance in response to IPC. A common understanding on whether IPC may improve exercise performance is lacking.

In this review, we summarize studies that have investigated the impact of IPC on exercise performance and physiological responses. We also describe the potential physiological mechanisms that contribute to exercise performance in response to IPC.

Exercise performance in response to IPC

Recently, many studies have investigated the effects of IPC on exercise performance (mainly whole-body exercise). Table 1 shows a summary of studies that investigated the effects of IPC on exercise performance. Obtaining consensus has been difficult because of the large number of variables involved, such as age, gender, training status, intensity and exercise modality, and IPC protocol, including the number of ischemia/reperfusion injury cycles, applied sites, and time to pre-exercise after IPC (early or late), all of which may influence IPC effects. In the following section, we discuss the influence of IPC on exercise performance with regard to classification of exercise mode on the basis of current findings.

Sprint (cycle) performance. Recent research demonstrated that IPC increases the maximal power output during 6 s cycle sprint, whereas two studies did not show any beneficial effects during 6 s cycle sprint and/or the Wing-
ate test5-6,8. Similarly, IPC did not improve 30 m3 and 40 m sprint time3,9. Interestingly, one study revealed that IPC decreased the peak power output and the total anaerobic power during the Wingate test8.

Maximal incremental or constant load cycling performance. Findings on the impact of IPC on maximal incremental or constant load cycling performance have been equivocal. IPC prolonged the time to failure during maximal incremental leg cycling10,13 and constant load leg cycling11,12. Similarly, IPC improved peak power output during maximal incremental leg cycling5,10,13. By contrast, other studies reported no effect of IPC on exhaustion time during maximal incremental leg cycling14, constant load leg cycling at an intensity of 130\% of the peak power output10, the time needed to cycle 100 kJ of total work15. Additionally, IPC did not show any beneficial effects on increasing the maximal power output during maximal incremental leg cycling16.

Swim and water sport performance. Some studies have investigated the effect of IPC on swimming or water sport performance. Marocolo et al. (2015) reported that IPC improved the 100 m swimming sprint time compared to the control condition (without cuff inflation), but no difference was observed between IPC (applied pressure: \textasciitilde{}220 mmHg) and SHAM (lower applied pressure: \textasciitilde{}20 mmHg), suggesting that the improvement in sprint time with IPC was merely a placebo effect17. On the other hand, a recent study demonstrated that IPC improved 50 m swim sprint performance without the placebo effect18. IPC also improved the 100 m swim sprint time19 and prolonged the underwater swimming distance, 1-km rowing time, and static breath hold time20.

Long distance running performance. Bailey et al. (2012a) found that IPC improved 5 km treadmill running time21. Meanwhile, Tocco et al. (2015) reported that 5000 m self-paced running test results on an outdoor track were not improved22.

Resistance exercise performance. In addition to whole body exercise such as cycling, swimming and running, only a comparatively few studies examined the effect of IPC on the performance of local resistance exercise. For example, IPC prolonged the time to failure during rhythmic handgrip at an intensity of 45\% of maximal voluntary contraction (MVC)23. Marocolo et al. (2016a) also reported that IPC and SHAM conditions resulted in significantly greater repetitions versus the control condition on the first and second sets, but not on the third set during leg extension at a 12 RM load24. Furthermore, the authors reported that the number of repetitions during elbow flexion exercise significantly increased in the early sets, but they tended to decrease over four trials25. These two studies suggest that IPC has minor beneficial effects, but these apparently fade over time and may possibly have a placebo effect because, compared with control (CON), the SHAM condition also improved repetitions along with IPC24,25. Beaven et al. (2012) compared the early (immediate) and late (24 h later) effects of IPC on power production, and they found that IPC showed beneficial effects in both periods8. In addition, a recent study investigated the effects of IPC on static leg extension exercise and found that the endurance time to task failure was significantly longer in IPC than in CON26. Compared to its performance in whole-body exercise, it is possible that IPC may be more effective in improving exercise performance during local muscle contraction.

Physiological responses at maximal work load

Whether IPC may improve cardiorespiratory variables at a higher exercise intensity, e.g., failure to maintain exercise, remains to be established. In fact, the maximal or peak oxygen uptake (VO\textsubscript{max} or VO\textsubscript{peak}) was not improved with IPC during maximal incremental exercise and during constant-load leg cycling at a work load of 130\% peak power10 or at 70\% of the difference between the VO\textsubscript{2} at the gas exchange threshold and VO\textsubscript{2peak}12. Likewise, the heart rate peak (HR\textsubscript{peak}) was not increased with IPC during maximal incremental leg cycling13,14, during constant load leg cycling until exhaustion11,12, maximal HR during a 5 km running time trial13, and 100 m swimming21. Additionally, maximum pulmonary ventilation (V\textsubscript{Emax}) during maximal incremental leg cycling13,14 was not affected by IPC.

By contrast, some studies showed the beneficial effects of IPC on VO\textsubscript{2peak} during maximal incremental leg cycling13,14 or constant load leg cycling until exhaustion at an exercise intensity of 100\% VO\textsubscript{2peak}11. IPC also resulted in increases in HR\textsubscript{max} and V\textsubscript{Emax} during maximal incremental leg cycling13,14. Because the peak values of blood lactate concentration (LA\textsubscript{peak}) after exercise may be an indicator of anaerobic capacity, several studies compared the LA\textsubscript{peak} between IPC and the control (or SHAM), and no effect in LA\textsubscript{peak} after exercise with IPC was found4,9-14,18,19,22. Two studies focused on muscle activity, assessed by electromyography (EMG), between IPC and CON, and no differences in EMG were found during cycle sprints4 or isometric leg extension26.

Physiological responses at submaximal work load

Unlike the situation of exhaustion during exercise, i.e., at a submaximal work rate during exercise, lower physiological variables, such as a lower VO\textsubscript{2}, HR, and LA, may indicate a more effective energy turnover to optimize exercise performance. IPC had no beneficial effects on the mean VO\textsubscript{2}, V\textsubscript{E}, and HR during a 5 km running time trial23, the submaximal VO\textsubscript{2} during maximal incremental leg cycling13,14, or during leg cycling at an exercise...
intensity of 90% VO2peak at the gas exchange threshold. However, IPC decreased LA at the submaximal running speed compared to SHAM. A recent study also demonstrated that muscle deoxygenation (HHb) profiles, which are indicators of arterial-venous O2 differences, increased at the onset of exercise during moderate-intensity exercise. Altogether, the IPC protocol involves three or four cycles of 5 min circulatory occlusion above systolic blood pressure, followed by a 5 min reperfusion period. Indeed, applied pressure, cuff width, and IPC parts, may have affected exercise performance. As these confounding factors could not be ruled out, future studies that describe the optimal protocols for the implementation of IPC prior to exercise are therefore warranted.

Effect of repeated IPC on exercise performance. As shown in Table 1, all studies examined the acute effects of IPC on exercise performance; therefore, little is known of the possible effects of repeated IPC. To the best of our knowledge, only one study investigated the effects of a regular routine of IPC on vasculature and fitness level for a period of eight weeks. As this recent study mainly focused on the effects of repeated IPC on vascular function, detailed outcomes with regard to exercise performance were not evaluated; the study failed to observe improvement in aerobic fitness level. Since this study is insufficient evidence of repeated IPC effects on exercise performance, future studies are needed.

Population differences

When we take into account the effects of IPC on exercise performance, we should consider population differences, as well. Previous studies used various populations, such as healthy volunteers and trained subjects (Table 1). Although an accurate classification is difficult because the detailed information of subjects is often not available, we attempted to classify subjects into 3 groups: healthy (including recreationally active) subjects, trained athletes, and elite athletes. This classification showed that the studies did not reach a consensus on the effects of IPC on exercise performance across different populations, i.e., different training levels. Six of eight studies on healthy (recreationally active) subjects showed an improvement in exercise performance (75%), whereas only four of 13 studies of trained athletes showed positive effects with IPC (31%). We identified only two studies of elite athletes that resulted in an improvement in exercise performance (100%). In general, highly trained athletes have higher baseline values, e.g., higher aerobic capacity. This observation may suggest that the higher the exercise capacity, the more difficult it is to improve exercise performance; however, the literature did not necessarily support this. In addition to different training levels, we should acknowledge individual differences, as well, such as responders versus non-responders, suggesting that additional evidence is needed.

Some studies examined the effects of IPC on the exercise performance of patients with coronary and peripheral arterial disease, and no improvements in exercise performance were found. However, these previous studies showed a significant improvement in clinically relevant markers. Notably, these studies used remote IPC, not IPC on the primary engaged limbs. In many clinical
Author (year)	Groups	Age	Sex	IPC cycle (pressure)	IPC parts	Exercise mode	Findings	Effect
Gibson et al. (2013)	Trained	23	16M, 9F	3 × 5 min (220mmHg)	Leg	3 × 30 m sprint	Sprint time	
Paixão et al. (2014)	Trained	30	15M	4 × 5 min (250mmHg)	Leg	Wingate test	Peak power, Anaerobic power	
Gibson et al. (2015)	Trained	24	7M, 9F	3 × 5 min (220mmHg)	Leg	5 × 6 s cycle sprints	Peak power, Total work	
Lalonde and Curnier (2015)	Healthy	29	8M, 9F	4 × 5 min (>50mmHg SBP)	Arm	6 × 6 s cycle sprint, Wingate test	Peak and mean power	
Patterson et al. (2015)	Trained	30	14M	4 × 5 min (220mmHg)	Leg	12 × 6 s cycle sprint	Peak power	
De Groot et al. (2010)	Trained	27	12M, 3F	3 × 5 min (220mmHg)	Leg	Incremental cycling	VO2max, HRpeak, LApeak, submax VO2	+
Crisafulli et al. (2011)	Active	35	17M	3 × 5 min (>50mmHg SBP)	Leg	Incremental cycling	Time to failure, Peak power, Vpeak, HRmax, VO2max	+
Foster et al. (2011)	Trained	39	6M, 2F	4 × 5 min (>20mmHg SBP)	Leg	Cycle sprint up to 100kJ	Time to failure, Vpeak, VO2peak, LApeak	~
Clevidence et al. (2012)	Trained	27	12M	3 × 5 min (220mmHg)	Leg	Incremental cycling	Time to failure, Vpeak, LApeak, submax VO2	~
Hüttinger et al. (2015)	Trained	30	15M	4 × 5 min (>15 mmHg SBP)	Leg	Incremental cycling	Time to failure, VO2peak	+
Cruz et al. (2015)	Trained	20-36	12M	4 × 5 min (220mmHg)	Leg	Cycling at 100 % Wpeak	Time to failure, Wpeak, HRpeak, LApeak	~
Kido et al. (2015)	Healthy	24	15M	3 × 5 min (>300mmHg)	Leg	Moderate and severe cycling	Time to failure, HHb (speeding up)	+
Kjeld et al. (2014)	Elite	23	10M, 4F	4 × 5 min (>40 mmHg SBP)	Arm	1 km rowing, Static breath hold	VO2peak, LApeak, HRpeak, submax VO2	~
Marocolo et al. (2015)	Trained	21	15M	4 × 5 min (220mmHg)	Arm	100 m swim	Rowing time, Breath hold time	+
Author (year)	Groups	Age	Sex	IPC cycle (pressure)	IPC parts	Exercise mode	Findings	Effect
-------------------------	----------	-----	-----	----------------------	-----------	---------------------	------------------------	--------
Ferreira et al. (2016)	Trained	30	M, F	3×5 min (220mmHg)	Leg	6×50 m swim	Swim time	+
							LA	~
Bailey et al. (2012a)	Healthy	25	M	4×5 min (220mmHg)	Leg	5 km treadmill running	Running time	+
							HR_{peak}	~
						Incremental treadmill running	LA (at submax)	+
							VO₂, VE, HR	~
Tocco et al. (2015)	Trained	35	M	4×5 min (>50mmHg SBP)	Leg	5 km running	Running time, LA_{peak}, VO₂, VE, HR (mean),	~
Beaven et al. (2012)	Healthy	32	M, F	2×3 min (220mmHg)	Leg	Squat jump, Leg press, 40 m sprint	Jump, Maximal strength, Sprint time	+
Barbosa et al. (2015)	Active	25	M	3×5 min (200mmHg)	Leg	Rhythmic hand grip at 45 % MVC	Time to failure	+
							Blood flow, EMG, HHb	~
Marocolo et al. (2016a)	Trained	26	M	4×5 min (220mmHg)	Leg	Leg extension (12RM load)	Repetitions, LA	~
Marocolo et al. (2016b)	Active	27	M	4×5 min (220mmHg)	Arm, Leg	Elbow flexion (12RM load)	Repetitions	~
Tanaka et al. (2016)	Healthy	22	M	3×5 min (>300mmHg)	Leg	Isometric leg extension	Time to failure, HHb (time delay)	+
							EMG	~

IPC: ischemic preconditioning, M: males, F: females, SBP: systolic blood pressure, W: work, RM: repetition maximum, MVC: maximal voluntary contraction, VO₂: oxygen uptake, VE: pulmonary ventilation, HR: heart rate, LA: blood lactate concentration, HHb: muscle deoxygenation, EMG: electromyography.

+ indicates positive effects, − indicates negative effects, and ~ indicates no effects. If IPC improved exercise performance compared with the control, with no differences between the IPC and SHAM conditions, we identified this as no improvement in exercise performance, i.e., ‘~’ mark was checked.
studies, regular, repeated remote IPC has shown positive effects on vascular29,34-37, cardiac38-40, and brain functions41,42. Together, IPC did not improve exercise performance in these populations; however, it appears that remote IPC may have positive effects in clinical outcomes.

Potential factors

Although not enough evidence is available to explain the underlying mechanisms of IPC on exercise performance, secondary improvements in vascular function and/or metabolic efficiency may explain the impact of IPC on exercise performance. The underlying principle of this unorthodox technique is that the occlusive cuff pressure is higher than the systolic blood pressure; in this condition, ischemic reperfusion induced by cuff deflation simulates shear stress, followed by greater vasodilation and/or enhanced blood flow43,44. Indeed, as maximal dilation is observed after ischemic exercise45, IPC (repeated ischemia/reperfusion condition) might possibly have beneficial effects on vasculature, resulting in an improvement in exercise performance. For example, Kimura et al. (2007) was the first to examine the effects of repeated IPC on arterial endothelial function, and they found that arterial endothelial function was enhanced via increases in nitric oxide46. Similarly, repeated IPC may improve endothelial function47 and increase the flow velocity of coronary vessels46,47. Furthermore, Bailey et al. (2012b) found that acute IPC could prevent a decline in vascular function, which is typically observed after strenuous exercise48. These results suggest that either acute or chronic IPC may have positive effects on vascular function. During exercise, an increase in muscle oxygen saturation during 6 s cycle sprints was reported with IPC49. Further functional sympatholysis was improved (increase in muscle oxygen saturation in response to acute sympathetetic stimulation) with IPC during dynamic handgrip exercise with an intensity of 25% MVC49. Although muscle oxygen saturation represents only the tissue oxygenation level, these results may indicate that IPC-mediated increases in blood flow during exercise were induced. However, the failure of remote IPC to affect blood flow during rhythmic handgrip exercise compared with CON was also reported50.

Another potential explanation might be an improvement in metabolic efficiency via activation of KATP channels. In animal experiments, prolonged ischemia of the skeletal muscle demonstrates that IPC attenuates ATP depletion50-53, secondary to the activation of KATP channels53-57. Previous work showed that the activation of KATP channels may contribute to more effective blood flow redistribution during exercise58,59. Furthermore, IPC suppressed ischemia-induced glycogen depletion60 and lactate production50,51 in skeletal muscles. These results may suggest that IPC can reduce muscle energy demand, resulting in an improvement in metabolic efficiency during muscle contraction. Indeed, several studies found that the LA at submaximal exercise with IPC was lower during exercise21, and mean response time in muscle HHb was accelerated at the onset of moderate cycling exercise21, and during isometric leg extension69. Conversely, whole-body VO\textsubscript{2} did not show any differences between IPC and CON70.

In summary, whether IPC can enhance actual volumetric blood flow and/or improve muscle metabolic efficiency, followed by a reduction in whole-body VO\textsubscript{2}, remains unclear. Further studies should be conducted to explain the potential mechanisms by which IPC affects exercise performance.

Summary and future perspectives

In this review, we focused on what is currently known (Table 1) about the impacts of IPC on exercise performance and the potential mechanisms to explain such effects. Current evidence, except for the findings of one study59, suggests that either IPC or remote IPC does not impair exercise performance. However, no consensus has been reached on whether IPC may have benefits in improving exercise performance. The relationship between exercise performance and physiological responses with IPC may also be different and more complex. Previous studies on IPC and exercise performance were mostly conducted on healthy and young trained athletes and elite athletes (see Table 1). All studies, except for one by Jones et al. (2014)59, were cross-sectional studies. Further research is therefore needed to explain the effects of training status (level) with IPC and/or repeated IPC on exercise performance. To date, no research has examined whether IPC may improve exercise performance for middle-aged and aged people. Similarly, previous studies investigated only male subjects or a combination of male and female subjects, so no direct evidence has been obtained on the effects of gender differences on exercise performance with IPC, including the impact of aging. Different IPC protocols, including but not limited to applied pressure, applied location, number of ischemia/reperfusion cycles, and time to pre-exercise after IPC, may have possibly affected exercise performance and physiological responses. However, the optimal methodology to implement IPC has yet to be established.

Conflict of Interests

The author declare that there is no conflict of interests regarding the publication of this article.

Acknowledgments

The author would like to thank Prof. Dick Thijssen at Liverpool John Moores University for his insightful comments throughout this work.
References

1) Murry CE, Jennings RB and Reimer KA. 1986. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74: 1124-1136.

2) Eisen A, Fisman EZ, Rubenfire M, Freimark D, McKechnie R, Tenenbaum A, Motro M and Adler Y. 2004. Ischemic preconditioning: nearly two decades of research. A comprehensive review. Atherosclerosis 172: 201-210.

3) Thijssen DH, Maxwell J, Green DJ, Cable NT and Jones H. 2016. Repeated ischemic preconditioning: a novel therapeutic intervention and potential underlying mechanisms. Exp Physiol 101: 677-692.

4) Patterson SD, Bezdos NE, Glaister M and Pattisson JR. 2015. The effect of ischemic preconditioning on repeated sprint cycling performance. Med Sci Sports Exerc 47: 1652-1658.

5) Gibson N, Mahony B, Tracey C, Fawkner S and Murray A. 2015. Effect of ischemic preconditioning on repeated sprint ability in team sport athletes. J Sports Sci 33: 1182-1188.

6) Lalonde F and Curnier DY. 2015. Can anaerobic performance be improved by remote ischemic preconditioning? J Strength Cond Res 29: 80-85.

7) Gibson N, White J, Neish M and Murray A. 2013. Effect of ischemic preconditioning on land-based sprinting in team-sport athletes. Int J Sports Physiol Perform 8: 671-676.

8) Beaven CM, Cook CJ, Kilduff L, Drawer S and Gill N. 2012. Intermittent lower-limb occlusion enhances recovery after strenuous exercise. Appl Physiol Nutr Metab 37: 1132-1139.

9) Paixao RC, da Mota GR and Marocolo M. 2014. Acute effects of ischemic preconditioning on maximal performance in cyclists. Int J Sports Med 35: 912-915.

10) Crisafulli A, Tanganian F, Tocco F, Concu A, Mameli O, Mulliri G and Caria MA. 2011. Ischemic preconditioning of the muscle improves maximal exercise performance but not maximal oxygen uptake in humans. J Appl Physiol 111: 530-536.

11) Cruz RS, de Aguiar RA, Turnes T, Pereira KL and Caputo F. 2015. Effects of ischemic preconditioning on maximal constant-load cycling performance. J Appl Physiol 119: 961-967.

12) Kido K, Suga T, Tanaka D, Honjo T, Fujita S, Hamaoka T and Isaka T. 2015. Ischemic preconditioning accelerates muscle deoxygenation dynamics and enhances exercise endurance during the work-to-work test. Physiol Rep 3: e12395.

13) de Groot PC, Thijssen DH, Sanchez M, Ellenkamp R and Hopman MT. 2010. Ischemic preconditioning improves maximal performance in humans. Eur J Appl Physiol 108: 141-146.

14) Clevendence MW, Mowery RE and Kushnick MR. 2012. The effects of ischemic preconditioning on aerobic and anaerobic variables associated with submaximal cycling performance. Eur J Appl Physiol 112: 3649-3654.

15) Foster GP, Westerdahl DE, Foster LA, Hsu JY and Anholm JD. 2011. Ischemic preconditioning of the lower extremity attenuates the normal hypoxic increase in pulmonary artery systolic pressure. Respir Physiol Neurobiol 179: 248-253.

16) Hittinger EA, Maher JL, Nash MS, Perry AC, Signorile JF, Kessler J and Jacobs KA. 2015. Ischemic preconditioning does not improve peak exercise capacity at sea level or simulated high altitude in trained male cyclists. Appl Physiol Nutr Metab 40: 65-71.

17) Marocolo M, da Mota GR, Pelegrini V and Appell Coriolano HJ. 2015. Are the beneficial effects of ischemic preconditioning on performance partly a placebo effect? Int J Sports Med 36: 822-825.

18) Ferreira TN, Sabino-Carvalho JL, Lopes TR, Ribeiro IC, Succi JE, DA Silva AC and Silva BM. 2016. Ischemic preconditioning and repeated sprint swimming: a placebo and nocebo study. Med Sci Sports Exerc 48: 1967-1975.

19) Jean-St-Michel E, Manhiot C, Li J, Troppak M, Michelsen MM, Schmidt MR, McCrindle BW, Wells GD and Redington AN. 2011. Remote preconditioning improves maximal performance in highly trained athletes. Med Sci Sports Exerc 43: 1280-1286.

20) Kjeld T, Rasmussen MR, Jattu T, Nielsen HB and Secher NH. 2014. Ischemic preconditioning of one forearm enhances static and dynamic aperture. Med Sci Sports Exerc 46: 151-155.

21) Bailey TG, Jones H, Gregson W, Atkinson G, Cable NT and Thijssen DH. 2012a. Effect of ischemic preconditioning on lactate accumulation and running performance. Med Sci Sports Exerc 44: 2084-2089.

22) Tocco F, Marongiu E, Ghiani G, Sanna I, Palazzotto G, Olla S, Pusceddu M, Sanna P, Corona F, Concu A and Crisafulli A. 2015. Muscle ischemic preconditioning does not improve performance during self-paced exercise. Int J Sports Med 36: 9-15.

23) Barbosa TC, Machado AC, Braz ID, Fernandes IA, Vianna LC, Nobrega AC and Silva BM. 2015. Remote ischemic preconditioning delays fatigue development during handgrip exercise. Scand J Med Sci Sports 25: 356-364.

24) Marocolo M, Willardson JM, Marocolo IC, Ribeiro da Mota G, Simaor R and Maioer AS. 2016a. Ischemic preconditioning and placebo intervention improves resistance exercise performance. J Strength Cond Res 30: 1462-1469.

25) Marocolo M, Marocolo IC, da Mota GR, Simaor R, Maioer AS and Coriolano HJ. 2016b. Beneficial effects of ischemic preconditioning in resistance exercise fade over time. Int J Sports Med 37: 819-824.

26) Tanaka D, Suga T, Tanaka T, Kido K, Honjo T, Fujita S, Hamaoka T and Isaka T. 2016. Ischemic preconditioning enhances muscle endurance during sustained isometric exercise. Int J Sports Med 37: 614-618.

27) Grassi B, Pogliaghi S, Rampichini S, Quaresima V, Ferrari M, Marconi C and Cerretelli P. 2003. Muscle oxygenation and pulmonary gas exchange kinetics during cycling exercise on-transitions in humans. J Appl Physiol 95: 149-158.

28) DeLorey DS, Kowalchuk JM and Paterson DH. 2003. Relationship between pulmonary O 2 uptake kinetics and muscle deoxygenation during moderate-intensity exercise. J Appl Physiol 95: 113-120.

29) Jones H, Nyakayiru J, Bailey TG, Green DJ, Cable NT, Sprung VS, Hopkins ND and Thijssen DH. 2015. Impact of eight weeks of repeated ischemic preconditioning on brachial artery and cutaneous microcirculatory function in healthy males. Eur J Prev Cardiol 22: 1083-1087.

30) Hopkins WG, Hawley JA and Burke LM. 1999. Design and analysis of research on sport performance enhancement. Med Sci Sports Exerc 31: 472-485.

31) Battipaglia I, Scalone G, Milo M, Di Franco A, Lanza GA and Crea F. 2011. Upper arm intermittent ischaemia reduces exercise-related increase of platelet reactivity in patients with obstructive coronary artery disease. Heart 97: 1298-1303.
32) Saes GF, Zerati AE, Wolosker N, Ragazzo L, Rosoky RM, Ritti-Dias RM, Cucato GG, Chehuen M, Farah BQ and Puech-Leão P. 2013. Remote ischemic preconditioning in patients with intermittent claudication. *Clinics (Sao Paulo)* 68: 495-499.

33) Delagarde H, Ouadraougo N, Grall S, Macchi L, Roy PM, Abraham P and Prunier F. 2015. Remote ischemic preconditioning in intermittent claudication. *Arch Cardiovasc Dis* 108: 472-479.

34) Kimura M, Ueda K, Goto C, Jitsuiki D, Nishioka K, Umemura T, Noma K, Yoshizumi M, Chayama K and Higashi Y. 2007. Repetition of ischemic preconditioning augments endothelial-dependent vasodilation in humans: role of endothelium-derived nitric oxide and endothelial progenitor cells. *Arterioscler Thromb Vasc Biol* 27: 1403-1410.

35) Luca MC, Liani A, McLaughlin K, Gori T and Parker JD. 2013. Daily ischemic preconditioning provides sustained protection from ischemia-reperfusion induced endothelial dysfunction: a human study. *J Am Heart Assoc* 2: e000075.

36) Jones H, Hopkins N, Bailey TG, Green DJ, Cable NT and Thijssen DH. 2014. Seven-day remote ischemic preconditioning improves local and systemic endothelial function and microcirculation in healthy humans. *Am J Hypertens* 27: 918-925.

37) Liang Y, Li YP, He F, Liu XQ and Zhang JY. 2015. Long-term, regular remote ischemic preconditioning improves endothelial function in patients with coronary heart disease. *Braz J Med Biol Res* 48: 568-576.

38) Kono Y, Fukuda S, Hanatani A, Nakanishi K, Otsuka K, Taguchi H and Shimada K. 2014. Remote ischemic conditioning improves coronary microcirculation in healthy subjects and patients with heart failure. *Drug Des Devel Ther* 8: 1175-1181.

39) Yamaguchi T, Izumi Y, Nakamura Y, Yamazaki T, Shiota M, Sano S, Tanaka M, Osada-Oka M, Shimada K, Miura K, Yoshiyama M and Iwao H. 2015. Repeated remote ischemic conditioning attenuates left ventricular remodeling via exosome-mediated intercellular communication on chronic heart failure after myocardial infarction. *Int J Cardiol* 178: 239-246.

40) Wei M, Xin P, Li S, Tao J, Li Y, Li J, Liu M, Li J, Zhu W and Redington AN. 2011. Repeated remote ischemic postconditioning protects against adverse left ventricular remodeling and improves survival in a rat model of myocardial infarction. *Circ Res* 108: 1220-1225.

41) Meng R, Asmaro K, Meng L, Liu Y, Ma C, Xi C, Li G, Ren C, Luo Y, Ling F, Jia J, Hua Y, Wang X, Ding Y, Lo EH and Ji X. 2012. Upper limb ischemic preconditioning prevents recurrent stroke in intracranial arterial stenosis. *Neurology* 79: 1853-1861.

42) Meng R, Ding Y, Asmaro K, Brogan D, Meng L, Sui M, Shi J, Duan Y, Sun Z, Yu Y, Jia J and Ji X. 2015. Ischemic conditioning is safe and effective for octo- and nonagenarians in stroke prevention and treatment. *Neurotherapeutics* 12: 667-677.

43) Pyke KE and Tschakovsky ME. 2005. The relationship between shear stress and flow-mediated dilatation: implications for the assessment of endothelial function. *J Physiol* 568: 357-369.

44) Thijssen DH, Black MA, Pyke KE, Padilla J, Atkinson G, Harris RA, Parker B, Widlansky ME, Tschakovsky ME and Green DJ. 2011. Assessment of flow-mediated dilation in humans: a methodological and physiological guideline. *Am J Physiol Heart Circ Physiol* 300: H2-H12.

45) Naylor LH, Weisbrod CJ, O’Driscoll G and Green DJ. 2005. Measuring peripheral resistance and conduit arterial structure in humans using Doppler ultrasound. *J Appl Physiol* 98: 2311-2315.

46) Shimizu M, Konstantinov IE, Kharbanda RK, Cheung MH and Redington AN. 2007. Effects of intermittent lower limb ischemia on coronary blood flow and coronary resistance in pigs. *Acta Physiol (Oxf)* 190: 103-109.

47) Zhou K, Yang B, Zhou XM, Tan CM, Zhao Y, Huang C, Liao XB and Xiao HB. 2007. Effects of remote ischemic preconditioning on the flow pattern of the left anterior descending coronary artery in normal subjects. *Int J Cardiol* 122: 250-251.

48) Bailey TG, Birk GK, Cable NT, Atkinson G, Green DJ, Jones H and Thijssen DH. 2012b. Remote ischemic preconditioning prevents reduction in brachial artery flow-mediated dilation after strenuous exercise. *Am J Physiol Heart Circ Physiol* 303: H533-H538.

49) Horiuchi M, Endo J and Thijssen DH. 2015. Impact of ischemic preconditioning on functional sympatholysis during handgrip exercise in humans. *Physiol Rep* 3: e12304.

50) Addison PD, Neligan PC, Ashrafpour H, Khan A, Zhong A, Moses M, Forrest CR and Pang CY. 2003. Noninnvasive remote ischemic preconditioning for global protection of skeletal muscle against infarction. *Am J Physiol Heart Circ Physiol* 285: H1435-H1443.

51) Pang CY, Yang RZ, Zhong A, Xu N, Boyd B and Forrest CR. 1995. Acute ischemic preconditioning protects against skeletal muscle infarction in the pig. *Cardiovasc Res* 29: 782-788.

52) Schroeder CA Jr, Lee HT, Shah PM, Babu SC, Thompson CI and Belloni FL. 1996. Preconditioning with ischemia or adenosine protects skeletal muscle from ischemic tissue reperfusion injury. *J Surg Res* 63: 29-34.

53) Mosse MA, Addison PD, Neligan PC, Ashrafpour H, Huang N, Zair M, Rassuli A, Forrest CR, Grover GJ and Pang CY. 2005. Mitochondrial ATP channels in hindlimb remote ischemic preconditioning of skeletal muscle against infarction. *Am J Physiol Heart Circ Physiol* 288: H559-H567.

54) Loukogeorgakis SP, Williams R, Panagiotidou AT, Kolvekar SK, Donald A, Cole TJ, Yellon DM, Deanfield JE and MacAllister RJ. 2007. Transient limb ischemia induces remote preconditioning and remote postconditioning in humans by a K(ATP)-channel dependent mechanism. *Circulation* 116: 1386-1395.

55) Pell TJ, Baxter GF, Yellon DM and Drew GM. 1998.Renal ischemia preconditioning myocardium: role of adenosine receptors and ATP-sensitive potassium channels. *Am J Physiol* 275: H1542-H1547.

56) Miura T, Kawamura S, Tatsuno H, Ikeda Y, Mikami S, Iwamoto H, Okamura T, Iwatate M, Kimura M, Dairaku Y, Maekawa T and Matsuzaki M. 2001. Ischemic preconditioning attenuates cardiac sympathetic nerve injury via ATP-sensitive potassium channels during myocardial ischemia. *Circulation* 104: 1053-1058.

57) Dickson EW, Tubbs RJ, Porcaro WA, Lee WJ, Blehar DJ, Carraway RE, Darling CE and Przyklenk K. 2002. Myocardial preconditioning factors evoke mesenteric ischemic toler-
Ischemic preconditioning and exercise via opioid receptors and K(ATP) channels. *Am J Physiol Heart Circ Physiol* 283: H22-H28.

58) Keller DM, Ogoh S, Greene S, Olivencia-Yurvati A and Raven PB. 2004. Inhibition of KATP channel activity augments baroreflex-mediated vasoconstriction in exercising human skeletal muscle. *J Physiol* 561: 273-282.

59) Thomas GD, Hansen J and Victor RG. 1997. ATP-sensitive potassium channels mediate contraction-induced attenuation of sympathetic vasoconstriction in rat skeletal muscle. *J Clin Invest* 99: 2602-2609.

60) Lintz JA, Dalio MB, Joviliano EE and Piccinato CE. 2013. Ischemic pre and postconditioning in skeletal muscle injury produced by ischemia and reperfusion in rats. *Acta Cir Bras* 28: 441-446.