The effect of time delay for synchronisation suppression in neuronal networks

Matheus Hansen¹, Paulo R. Protachevicz², Kelly C. Iarosz³,⁴, Iberê L. Caldas², Antonio M. Batista⁵,⁶ and Elbert E. N. Macau¹

¹Institute of Science and Technology, Federal University of São Paulo - UNIFESP, São José dos Campos, São Paulo, SP, Brazil.
²Institute of Physics, University of São Paulo, São Paulo, SP, Brazil.
³Faculdade de Telemaco Borba, FATEB, Telemaco Borba, Paraná, Brazil.
⁴Graduate Program in Chemical Engineering Federal Technological University of Paraná, Ponta Grossa, PR, Brazil.
⁵Post-Graduation in Science, State University of Ponta Grossa, Ponta Grossa, PR, Brazil.
⁶Mathematics and Statistics Department, State University of Ponta Grossa, Ponta Grossa, PR, Brazil.

Abstract

We study the time delay in the synaptic conductance for suppression of spike synchronisation in a random network of Hodgkin Huxley neurons coupled by means of chemical synapses. In the first part, we examine in detail how the time delay acts over the network during the synchronised and desynchronised neuronal activities. We observe a relation between the neuronal dynamics and the synaptic conductance distributions. We find parameter values in which the time delay has high effectiveness in promoting the suppression of spike synchronisation. In the second part, we analyse how the delayed neuronal networks react when pulsed inputs with different profiles (periodic, random, and mixed) are applied on the neurons. We show the main parameters responsible for inducing or not synchronous neuronal oscillations in delayed networks.

Keywords: Neuronal network, Hodgkin Huxley, Synchronisation, Delayed conductance, Pulsed inputs

1. Introduction

The understanding of emergence, as well as the control, of neuronal synchronisation is one of the central points of contemporary neuroscience, mostly due to the fact that synchronous patterns can be related to some fundamental neuronal processes for life, such as memory [¹], perception [²] and also to some brain disorders, for instance epilepsy [³]. Specifically considering the case of
brain pathologies, many studies have been developed in order to find alternative methods to control synchronous neuronal activities. Protachevich et al. [4] indicated through numerical simulations that external perturbations can not only induce peak synchronisation, but also reduce the abnormal synchronous pattern. Recently, Cota et al. [5] observed in experimental analyses with rats that nonperiodic electrical stimulation can be a very promising alternative for the treatment of epileptic seizures. Inspired by this scenario, this work aims to contribute to the exploration of the effects of delayed conductance on neuronal synchronisation activities. We focus on cases in which the temporal delay has a positive performance in suppressing spike synchronisation.

In neuronal communication, the time delay is an intrinsic property, being associated with axonal, dendritic, and synaptic signal propagation [6, 7]. In the axons, the presence of myelination is responsible for the rapid signal transmission [8], while the demyelination causes a reduction in the conduction velocity [9]. In the chemical synapses, the time delay is between less than one millisecond and up to tens of milliseconds [10, 11]. For the dendritic, the time delay is smaller than one millisecond [12].

As a model to mimic neuronal activities, we use the Hodgkin Huxley (HH) neuron, that was proposed in 1952 by physiologists Alan Hodgkin and Andrew Huxley. This model was developed in a successful attempt to describe the mechanisms of action potential generation in experiments with the giant squid axon. In such a model it was reported that the generation of the action potential in the cell membrane is linked to variations in the ionic currents of potassium, sodium and a current defined by them as leak. Although various mathematical models have been proposed to reproduce the neuronal behaviour [14, 15], the HH neuron is still one of the most actual approaches to neuronal dynamics, inspiring several studies in the field of neuroscience [16, 17].

Our main finding in this work is to show the mechanism responsible for the emergence of spike synchronisation in networks composed of HH neurons, randomly coupled by means of chemical synapses. We explore the effects of delayed conductance on neuronal activities as an alternative method for suppressing or reducing of synchronous patterns. Such analyses are carried out in two different scenarios, where firstly the neuronal network has no external perturbation on the inputs, and secondly when pulse perturbations (for instance sensory stimulation) with periodic, random, and mixed profiles are considered [18]. In both cases, we discuss the conditions and parameters in which the time delay is able or not to hold low levels of spike synchronisation in neuronal networks.

The paper is organised as follows. In Section 2, we introduce the mathematical model of coupled HH neurons. In Section 3, we present the main diagnostics used in the study. Section 4, we exhibit the suppression of synchronised activities under constant current input due to the time delay. Section 5 shows the time delay effect under pulsed perturbed neuronal networks. Finally, we highlight the conclusions of our work in the last section.
2. Neuron model

The HH model \cite{HH} with time delay is given by

\begin{equation}
C \frac{dV_i}{dt} = -g_K n_i^4 (V_i - V_K) - g_{Na} m_i^3 h_i (V_i - V_{Na}) \\
- g_l (V_i - V_l) + I_i + I_{syn}^i (t - \tau),
\end{equation}

\begin{equation}
\frac{dx_i}{dt} = \alpha_{x_i}(v_i)(1 - x_i) - \beta_{x_i}(v_i)x_i,
\end{equation}

where $C$ is the capacitance of the cell membrane, $V_i$ is the membrane potential for the $i$-th HH neuron, and $t$ is the time. The parameters $g_K$, $g_{Na}$, and $g_l$ correspond to the potassium, sodium, and leak maximal conductance, respectively. The variables $n_i$ and $m_i$ are related to the possibility of the ionic channels of potassium ($K^+$) and sodium ($Na^+$) be open (active), while $h_i$ is associated with the possibility of the sodium channel ($Na^+$) be close (inactive). $V_K$, $V_{Na}$, and $V_l$ represent the potassium, sodium, and leak reversal potential, while $I_i$ and $I_{syn}^i$ correspond to the external and synaptic current density, respectively. In order to simplify the mathematical expression of opening and closing channels, we condense them as represented in Eq. (2), where $x_i$ can be $n_i$, $m_i$, and $h_i$. $\alpha_{x_i}$ and $\beta_{x_i}$ are different functions of $v_i$ that depend on $n_i$, $m_i$, and $h_i$. In this equation, $v_i = V_i/[mV]$ represents the value of the dimensionless membrane potential. The $\alpha_{x_i}$ and $\beta_{x_i}$ are experimental functions found by Hodgkin and Huxley and written as

\begin{align}
\alpha_n(v_i) &= \frac{0.01 v_i + 0.55}{1 - \exp(-0.1 v_i - 5.5)}, \\
\alpha_m(v_i) &= \frac{0.1 v_i + 4}{1 - \exp(-0.1 v_i - 4)}, \\
\alpha_h(v_i) &= 0.07 \exp\left(-\frac{v_i - 65}{20}\right), \\
\beta_n(v_i) &= 0.125 \exp\left(-\frac{v_i - 65}{80}\right), \\
\beta_m(v_i) &= 4 \exp\left(-\frac{v_i - 65}{18}\right), \\
\beta_h(v_i) &= \frac{1}{1 + \exp(-0.1 v_i - 3.5)}.
\end{align}

In this work, we consider that each $i$-th HH neuron is stimulated over time by an external current density $I_i = I_0^i + \xi(t)$, where $I_0^i$ is a current density with a constant amplitude and $\xi(t)$ is a pulse with amplitude $\Gamma$, which initially is equal to 0 for all times (absence of pulses), leading to $I_i = I_0^i$ (constant input). The external current density $I_i$ is responsible for the generation of the spike dynamics. As one of our main goals is to study spike synchronisation suppression, we uniformly distribute $I_0^i \in [10, 14] \mu A/cm^2$, once in this range.
all HH neurons are in spike activities with inter-spike intervals (ISI) in [13, 14.6] ms [18].

The behaviour of the HH neuron is separated into two different states. The first one is the spike state that is characterised by a sudden increase in the membrane potential value. The second state is the silent, in which the membrane potential exhibits a small oscillation amplitude around the resting potential. These two different patterns are displayed in Fig. 1(a), where the black and red lines are the spike and silent states, respectively. The spike dynamics can be understood when the neuron solution converges to a limit cycle (LC), while the silent behaviour occurs due to convergence to a fixed point (FP). The transition from one state to another is related to a Hopf bifurcation [20, 21]. Depending on the initial condition, the value of $I_i$ can be or not enough to contribute to the bifurcation, leading the neurons from the silent to spike states. Figure 1(b) displays the convergence to a limit cycle (black line) and a fixed point (red line) in the phase space $n \times V$. We observe that the activity of a single HH neuron $i$ depends on the external current density $I_i$ applied over it. Figure 1(c) exhibits a magnification of the green box in Fig. 1(b).

We build a network composed of HH neurons coupled by means of excitatory chemical synapses. The synaptic current density received by each $i$-th HH
neuron is given by

\[ I_{i}^{\text{syn}}(t - \tau) = (V_{r}^{\text{exc}} - V_i) \frac{g_{\text{exc}}}{N_i} \sum_{k=1}^{N} A_{ik} U(t - t_k) S_k(t - \tau), \quad (9) \]

where \( V_{r}^{\text{exc}} \) is the excitatory reversal potential, \( g_{\text{exc}} \) (mS/cm\(^2\)) is the maximal excitatory synaptic conductance, \( N_i \) is the number of excitatory connections received by the neuron \( i \), \( N \) is the number of neurons of the neuronal network, \( A_{ik} \) is the adjacency matrix, \( U(t - t_k) \) is the Heaviside function, and \( S_k(t - \tau) \) is a auxiliary function which describe the temporal evolution of the synaptic conductance from the pre-synaptic neuron \( k \) to the post-synaptic neurons \( i \). The \( S_k(t - \tau) \) function is written as \[22]\n
\[ S_k(t - \tau) = \exp \left[ - \left( \frac{t - t_k - \tau}{\tau_s} \right) \right], \quad (10) \]

where \( t_k \) represents the times in which the the pre-synaptic neuron \( k \) spikes along the numerical simulation, \( \tau \) is the time delay on the transmission of the synaptic conductance, and \( \tau_s \) is the decay time constant on the synaptic conductance. Essentially, \( \tau \) can be related to the time needed to the signal generated by the spike of the pre-synaptic neuron \( k \) achieves the post-synaptic neuron \( i \). In our simulation for \( t < t_k + \tau \), we assume that \( S_k \) is equal to 0. Figure 2 shows the neuronal spikes for a pre-synaptic neuron \( k \) over time and their correspondent \( S_k \) generate when different values of time delay are considered. In Fig. 2(a), we plot the membrane potential for the neuron \( k \). Figures 2(b), 2(c), and 2(d) exhibits
the values of $S_k$ for $\tau = 0$ ms, $\tau = 6$ ms, and $\tau = 13$ ms, respectively. For a
delay equal to zero (Fig. 2(b)), the peak of $S_k$ match with the time in which the
neuron $k$ spikes. For delay greater than zero (Figs. 2(c) and (d)), the $S_k$ curve
is shifted to right by the value of the time delay $\tau$. Such effect is very significant
for the system dynamics, once it indicates that the synaptic current received by
the post-synaptic neuron $i$ is not instantaneous. It is important to mention that
time delays are expected for the type of connections considered in this work,
given by chemical synapses. Differently from the electric synapses, in which
the interactions among neurons are practically instantaneous due to the direct
transfer of ions, chemical synapses depend on the release of neurotransmitters,
which are associated with some delay until the post-synaptic neuron $i$ receives
the signal sent from the pre-synaptic neuron $k$ [23].

Table 1: Description of the parameters, values, and units used in our numerical simulations.

| Description                  | Parameter | Values               |
|------------------------------|-----------|----------------------|
| Number of neurons            | $N$       | 100                  |
| Connection probability       | $p$       | 0.1                  |
| Membrane capacity            | $C$       | 1 $\mu$F/cm$^2$     |
| Max. potassium conductance   | $g_K$     | 36 mS/cm$^2$        |
| Max. sodium conductance      | $g_{Na}$  | 120 mS/cm$^2$       |
| Max. leak conductance        | $g_l$     | 0.3 mS/cm$^2$       |
| Potassium reversal potential | $V_K$     | -77 mV               |
| Sodium reversal potential    | $V_{Na}$  | 50 mV                |
| Leak reversal potential      | $V_l$     | -54.4 mV             |
| Exc. reversal potential      | $V_{exc}$ | 20 mV                |
| Exc. synaptic conductance    | $g_{exc}$ | [0,1] mS/cm$^2$     |
| Const. ext. current density  | $I_0^i$   | [10,14] $\mu$A/cm$^2$ |
| Period that pulse is ON      | $\Delta t^{(ON)}$ | [0,14] ms |
| Period that pulse is OFF     | $\Delta t^{(OFF)}$ | [0,14] ms |
| Adjacency matrix             | $A_{ik}$  | 0 or 1               |
| Time delay                   | $\tau$    | [0,14] ms            |
| Decay time constant          | $\tau_s$  | 2.728 ms             |
| Time step integration        | $\delta t$| $10^{-2}$ ms         |
| Initial time for analyses    | $t_{ini}$ | 5 s                  |
| Final time for analyses      | $t_{fin}$ | 10 s                 |

Inspired by some works in the area that present a reasonable configuration to
mimic the behaviour of a neuronal network [17, 18, 19, 24], we build a network
with $N = 100$ HH neurons randomly coupled with a probability of connections
$p = 0.1$. The initial conditions are randomly distributed in $V_i \in [-80, 0]$ mV and
$n_i = m_i = h_i = 0$. A range of initial conditions is considered in order to allow
that the HH neurons to start their dynamics at different points from each other,
i.e., conditions in which some of these neurons spike more easily than others.
We also assume that $S_k$ is equal to 0 for $t < t_k + \tau$. In our simulations, the
integration of the differential equations is done using the fourth-order Runge-
Kutta algorithm with a fixed integration time step $\delta t = 10^{-2} \text{ms}$ [21, 24, 25]. A short summary about the parameters, values, ranges, and units related to the neuronal description of this work can be found along of Table 1 [16, 19, 24].

3. Diagnostics

We consider a time interval from $t_{\text{ini}} = 5 \text{s}$ to $t_{\text{fin}} = 10 \text{s}$, where $t < t_{\text{ini}}$ is the transient time. In our simulation, this time interval is sufficient to perform analysis on the neuronal networks, since the system already presents stabilisation in the measurements. In order to extract an average behaviour, we compute the means over a set of 100 different numerical simulations.

3.1. Synchronisation

The diagnostic method chosen to evaluate the level of synchronicity is the mean value of the Kuramoto order parameter [26], which is calculated as

$$
\langle R \rangle = \frac{1}{t_{\text{fin}} - t_{\text{ini}}} \int_{t_{\text{ini}}}^{t_{\text{fin}}} \left| \frac{1}{N} \sum_{i=1}^{N} \exp \left[j\Phi_i(t)\right] \right| dt,
$$

where $j$ is an imaginary number defined as $j = \sqrt{-1}$. The phase $\Phi_i(t)$ is calculated by means of

$$
\Phi_i(t) = 2\pi m + 2\pi \frac{t - t_m^i}{t_{m+1}^i - t_m^i},
$$

where $t_m^i$ is the time in which occurs the $m$-th spike of the neuron $i$. The mean order parameter $\langle R \rangle$ is given in a range from 0 to 1, where the synchronisation is identified when $\langle R \rangle \approx 1$.

3.2. Mean synaptic current density

The synaptic current density plays an important role in the connection among the HH neurons. With this in mind, we calculate the mean synaptic current density for each time $t$ (after a transient) as

$$
\langle I_{\text{syn}}(t) \rangle = \frac{1}{N} \sum_{i=1}^{N} I_{\text{syn}}^i(t - \tau),
$$

where $I_{\text{syn}}^i(t - \tau)$ is given by Eq. (9), while the mean value for this time interval is given by

$$
\langle I_{\text{syn}} \rangle = \frac{1}{(t_{\text{fin}} - t_{\text{ini}})} \int_{t_{\text{ini}}}^{t_{\text{fin}}} \langle I_{\text{syn}}(t) \rangle dt.
$$
3.3. Synaptic current distribution

We define a measure $\zeta$ which indicates the distribution associated with the shape of $\langle I_{syn}(t) \rangle$. The $\zeta$ measure is written as

$$\zeta = \frac{\text{mod}(H)}{\text{mean}(H)},$$

where $\text{mod}(H)$ and $\text{mean}(H)$ represent, respectively, the mode and the mean value of the histogram $H$ associated with the shape of the time series of $\langle I_{syn}(t) \rangle$.

In our simulations, $\zeta$ tends to 1 if $H$ is gaussian-like, while $\zeta$ moves away from 1 for asymmetric and non gaussian-like $H$ histograms. The variation of $\zeta$ is related to the type of the synchronisation level developed by the neuronal network.

4. Time delay in unperturbed neuronal networks

For $\tau = 0$ ms and increasing the synaptic coupling $g_{exc}$, we observe that $\langle R \rangle$ increases, as shown in Fig. 3(a), where the neurons go from desynchronised to synchronised activities. In Figs. 3(b), 3(c), and 3(d), we plot the time series of $\langle I_{syn}(t) \rangle$ for (a) $g_{exc} = 0.01 \text{ mS/cm}^2$, (b) $g_{exc} = 0.06 \text{ mS/cm}^2$, and (c) $g_{exc} = 1.0 \text{ mS/cm}^2$. As one can see, as greater is $g_{exc}$, less noisy is the shape of $\langle I_{syn}(t) \rangle$. In order to extract a characteristic about these different shapes, we compute a normalised (by the mode value) histogram $H$ of $\langle I_{syn}(t) \rangle$ obtained during a time series of the last 5 s of the numerical simulations. Figures 3(e), 3(f), and 3(g) display the respective histograms $H$ associated with each $\langle I_{syn}(t) \rangle$. Comparing each one of these cases, it is possible to see that when $\langle R \rangle$ is small (Fig. 3(b)), the histogram is Gaussian-like (Fig. 3(e)). For spike synchronisation (Fig. 3(d)), the histogram has a specific shape (Fig. 3(g)), that is asymmetric and non Gaussian-like. For the intermediary case (Figure 3(f)), for instance $\langle R \rangle = 0.49$, we see that the histogram shape changes during the transition from desynchronised to synchronous patterns. The diagnostic via $\zeta$ measure for the cases discussed in Figs. 3(e), 3(f), and 3(g) are 0.98, 0.59, and 0.03, respectively. The Gaussian-like distribution shown in Fig. 3(e) approaches to 1, while another one go away from the unit value. The complete comparison between the mean order parameter and the characterisation from the spike desynchronisation to spike synchronisation via $\zeta$ measure, when no time delay is considered, is displayed in Fig. 4(a) and 4(b) (black line). The result indicates and confirms that the mechanism involved behind the spike synchronisation, that is obtained via the increasing of $g_{exc}$, is linked with the alterations in the shape of $\langle I_{syn}(t) \rangle$. In addition, in Fig. 4(c), we observe that $\langle I_{syn} \rangle$ increases with $g_{exc}$ (black line).

Now, we focus on the cases in which $\tau > 0$, denoted by the colour lines in Fig. 4. In Fig. 4(a) for $\tau \leq 1$ ms, it is possible to see a small reduction in the $\langle R \rangle$ value for larger $g_{exc}$. Although the time delay changes the instant that the synaptic current density arrives on the neurons, this time shift is not enough to promote relevant alteration in the collective behaviour of the HH neurons and consequently in the synchronisation. Therefore, for small time
delays, the neuronal dynamics remain closer to the case without time delay. However, for $\tau \geq 2$ ms, the time shift is able to produce significant changes in the neuronal network, mainly over the mean synaptic current density, leading to a strong suppression of synchronised activities for all $g_{\text{exc}}$ values. Figure 4(b) shows that $\tau \geq 2$ ms increases $\zeta$, while $\tau < 1$ ms cause only small changes. In Figs. 4(a) and 4(b), it is possible to verify that the transition between the desynchronous and synchronous states are linked once again to changes in the shape of $\langle I_{\text{syn}}(t) \rangle$, that is characterised by the $\zeta$ measure. The changes are effects of the introduction of the synaptic time delay in the neuronal connections. In Fig. 4(c), we identify a relation between the synaptic time delay and the value of $\langle I_{\text{syn}} \rangle$. Depending on the value of $\tau$ and $g_{\text{exc}}$, the system can exhibit an increase of $\langle I_{\text{syn}} \rangle$ (colour lines) when compared with the case without time delay (black line).

As illustrated in Fig. 5(a), if no time delay is considered, $S_k = 1$ achieves the post-synaptic neuron $i$ when the potential membrane is $V_i \approx 30$ mV (black dashed arrow), which makes $I_{\text{syn}} \propto -10 \times g_{\text{exc}}$ (see Eq. (9)). On the other hand, for $\tau = 2$ ms, $S_k = 1$ achieves the post-synaptic neuron $i$ when $V_i \approx -50$ mV (violet dashed arrow), producing $I_{\text{syn}} \propto 70 \times g_{\text{exc}}$, indicating an increase of the synaptic current for the neuron $i$ at that moment. If a similar effect occurs for more HH neurons in the network, it is reasonable to expected that, in average, $\langle I_{\text{syn}} \rangle$ might have its value increased.

In Figs. 6(a), 6(b), and 6(c), we compute the parameter space $g_{\text{exc}} \times \tau$, where the colour scales indicate $\langle R \rangle$, $\zeta$, and $\langle I_{\text{syn}} \rangle$, respectively. We consider $g_{\text{exc}} \in [0, 1]$ mS/cm$^2$ and $\tau \in [0, 14]$ ms. The range of $\tau$ is chosen in order to create a link with the mean inter-spike interval (ISI) of the HH neurons in the
network (about 14 ms). As can be seen in Fig. 4(a), for $0 < \tau \leq 1$ ms, the effects of the time delay are small in the synchronisation, which leads $\langle R \rangle$ to remain similar to the case in which $\tau = 0$ ms, in a way almost independently of the $g_{\text{exc}}$. However, for $1 < \tau \leq 5.5$ ms, we observe an interval of $\tau$ in which the neuronal synchronisation is suppressed for almost all $g_{\text{exc}}$. If $\tau > 5.5$ ms, it is also possible to verify the appearance of synchronisation. Our simulations show that there is a preferential range of the time delay in which the synchronisation can be suppressed. In Fig. 4(b), the transitions between desynchronised to synchronised spikes can be identified by means of the $\zeta$ measure, while in Fig. 4(c), it is possible to see that, depending on $\tau$ and $g_{\text{exc}}$, $\langle I_{\text{syn}} \rangle$ can increase. For $\tau \approx 14$ ms, the parameter spaces exhibit an appearance very close to the case in which the network has no time delay. A similarity can be verified in Figs. 4(d), 4(e), and 4(f), where we compute the parameter space $g_{\text{exc}} \times \tau$ in colour.
Figure 6: Parameter space $g_{\text{exc}} \times \tau$ for (a) $\langle R \rangle$, (b) the $\zeta$ measure related to the type of the histogram $H$ associated with $\langle I^{\text{syn}}(t) \rangle$, (c) $\langle I^{\text{syn}} \rangle$, (d) $\varepsilon(\langle R \rangle)$, (e) $\varepsilon(\zeta)$, and (f) $\varepsilon(\langle I^{\text{syn}} \rangle)$.

Depending on $\tau$, the panels (a), (b), and (c) shows that the time delay can suppress the spike synchronisation. In the panels (d), (e), and (f), the parameter spaces indicate that there are some values of the time delay which produce similar effects than for $\tau = 0.0$ ms.

The parameter $\varepsilon(y)$ can be written as

$$
\varepsilon(y) = \frac{y(\tau) - y(0)}{\varepsilon_{\text{Max}}}, \quad y = \langle R \rangle, \zeta, \langle I^{\text{syn}} \rangle
$$

where $y(\tau)$ represents the measure of $y$ for $\tau > 0$, $y(0)$ is the measure of $y$ for $\tau = 0$, and $\varepsilon_{\text{Max}}$ corresponds to the maximum difference for this parameter with and without time delay in all considered parameter space. For instance, if we consider $y = \langle R \rangle$, $\varepsilon(\langle R \rangle) \in [0, 1]$ is the difference of $\langle R \rangle$ between a network with $\tau = 0$ ms and $\tau > 0$ ms. If $\varepsilon(\langle R \rangle) \approx 0$, the network dynamics almost does not suffer changes due to the time delay. However, if $\varepsilon(\langle R \rangle) \approx 1$, the opposite is observed. As indicated by Figs. 6(d), 6(e), and 6(f) for $\tau > 0$ and $\tau \leq 1$ ms, the neuronal dynamics has a high similarity with the result for $\tau$ null. For the case in which $1 < \tau < 5.5$ ms, there are relevant alterations in the neuron dynamics due to the effect of the time delay. Considering $\tau > 5.5$ ms, it is possible to observe that some parts of the parameter space exhibit similarities with the case in which no time delay is considered. Dynamically, this effect can be explained by Figs. 2(b), 2(c), and 2(d). As the time delay increases, the $S_k$ function associated with the post-synaptic neuron $i$ exhibits a shift in $\tau$ milliseconds. As largers is $\tau$, further it is the $S_k$ from the original
point \((\tau = 0 \text{ ms})\), indicated by the green dashed line in Fig. However, for \(\tau = 13 \text{ ms}\), the \(S_k\) is very far from the original point (green dashed line), but it is delivered to the post-synaptic neuron \(i\) almost at the same time in which a new spike of the pre-synaptic neuron \(k\) occurs (orange dashed line). There is a kind of resonance due to the synaptic current density, indicating that even delayed, the synapse produces an equivalent effect of a neuronal network with instantaneous synaptic current density, namely a network with no time delay. Our results suggest that the values of \(\tau\), which are able to produce the suppression of synchronised activities, are in the interval \(1 < \tau < 7 \text{ ms}\), being more or less effective depending on \(g_{\text{exc}}\).

5. Time delay effect in perturbed neuronal networks

Recently, a great interest in the effect of external perturbations in neuronal networks is getting the attention of the scientific community. External perturbations can not only induce spike synchronisation, but also reduce the abnormal synchronous behaviour [4, 27]. Through experimental analyses in rats, Cota et al. [5] in 2021 reported that nonperiodic electrical stimulations can be a promising alternative for the treatment of epilepsy crises. Chatterjee and Robert [28] demonstrated that if some amount of noise is introduced into a stimulus, it is possible to improve the auditory perception in cochlear implants. With this in mind, we perform numerical analysis for a delayed network when three different types of pulsed perturbations (periodical, random and mixed) are introduced [18]. We study how the ranges of time delay can affect neuronal synchronous behaviour.

5.1. Periodic pulses

We begin our analysis for the case in which the pulsed perturbation is periodically applied over the neurons over time. In our simulations, we consider a perturbation \(\xi(t)\) in the external current density, in order that \(I_i\) is given as

\[
I_i = I_0^i + \xi(t),
\]

where \(\xi(t)\) represents the term which assumes an amplitude equal to 0 or \(\Gamma\), in an on-off configuration over time, generating a pulse profile. In the periodic pulse, the time in which the pulse is on \((\Delta t^{(\text{ON})})\) and off \((\Delta t^{(\text{OFF})})\) is the same. Figure 7 displays a schematic representation of a periodic pulsed perturbation with \(I_0^i = 10 \mu\text{A/cm}^2\), \(\Gamma = 3 \mu\text{A/cm}^2\) and \(\Delta t^{(\text{ON})} = \Delta t^{(\text{OFF})} = 8 \text{ ms}\).

In order to study the effect of pulsed perturbation over the neuronal network, we define two scenarios: (i) a network weakly coupled \((g_{\text{exc}} = 0.05 \text{ mS/cm}^2)\) and (ii) a network strongly coupled \((g_{\text{exc}} = 1.0 \text{ mS/cm}^2)\). An intermediary scenario \((g_{\text{exc}} = 0.5 \text{ mS/cm}^2)\) is also investigated, however, the numerical results found can be, without loss of generality, approached to the case (ii). In both scenarios, we apply the pulsed perturbation with a \(\Gamma\) amplitude, where the associated time interval assumes \(\Delta t^{(\text{ON})} = \Delta t^{(\text{OFF})} = t \in [0, 14] \text{ ms}\). The pulses assume the
on-off configurations in scales around the mean inter-spike interval (ISI) of the HH neurons in the network.

Figures 8(a), 8(b), and 8(c) display \( \langle R \rangle \) in the parameter space \( \Delta t \times \tau \) for a weakly coupled, where we consider \( \Gamma = 1 \, \mu A/cm^2 \), \( \Gamma = 3 \, \mu A/cm^2 \), and \( \Gamma = 10 \, \mu A/cm^2 \), respectively. If \( \Delta t \) is approximately lower than 2 ms, the periodic pulses are not able to alter the dynamic of the network, independently of the \( \Gamma \) value. However, when \( \Delta t > 2 \, ms \), it is possible to observe spike synchronisation due to the pulsed perturbations. Increasing the pulse amplitude, the range around \( \Delta t \sim 7 \, ms \) begins to be more relevant to induce spike synchronisation. In this case, the interval of each cycle (on-off) of the pulse perturbation, approximately, coincides with the mean inter-spike interval (ISI), i.e., \( 2\Delta t \approx 14 \, ms = \Delta t^{(ON)} \approx 7 \, ms + \Delta t^{(OFF)} \approx 7 \, ms \approx ISI \). This fact is clear in Fig. 8(a), where small amplitudes of pulsed perturbation are sufficient to induce synchronisation for \( \Delta t \sim 7 \, ms \). In Fig. 8(e), where \( \Gamma = 10 \, \mu A/cm^2 \), we find ranges approximately in \( 5 < \Delta t < 8 \, ms \) in which the pulse is able to induce all the HH neurons in spike synchronisation, for all \( \tau \) considered in this study.

Figures 8(d), 8(e), and 8(f) display \( \langle R \rangle \) in \( \Delta t \times \tau \) for strong coupling and the same \( \Gamma \) amplitudes considered in the weak coupling. In Figs. 8(d), we observe that \( \Gamma = 1 \, \mu A/cm^2 \) induces only small regions of the spike synchronisation in the parameter space for \( \Delta t \) around 7 ms. Therefore, under strong coupling, the neuronal network exhibits a greater resistance or a lesser influence of small external perturbations. On the other hand, as the amplitude \( \Gamma \) increases, the perturbation starts to be more capable to induce spike synchronisation, as shown in Figs. 8(e) and 8(f). As can be seen in Fig. 8(f) for \( \Gamma = 10 \, \mu A/cm^2 \), there is a large continuous range of \( 6 < \Delta t < 10 \, ms \) which reduces the capacity to observe desynchronised spikes for some delays.

The periodic pulses can reduce the ranges of the time delay which are able to suppress spike synchronisation in weakly and strongly coupled neurons. However, such reduction depends on the time intervals in that the pulses are applied. Our results suggest that for appropriate time intervals \( \Delta t^{(ON)} \) and \( \Delta t^{(OFF)} \), the transition from desynchronised activities to synchronised ones can be done by pulses with high or low amplitude, indicating that these parameters of the pulse have a crucial role in the alterations of the collective neuronal behaviour.
Figure 8: Parameter space $\Delta t \times \tau$ with the mean value of the Kuramoto order parameter $\langle R \rangle$ in colour scale. In the panels (a), (b), and (c), we show an analyse for a scenario of weak coupling ($g_{\text{exc}} = 0.05 \text{ mS/cm}^2$) in which the HH neurons are perturbed by periodic pulses with amplitude $\Gamma = 1 \mu\text{A/cm}^2$, $\Gamma = 3 \mu\text{A/cm}^2$, and $\Gamma = 10 \mu\text{A/cm}^2$, respectively. In the panels (d), (e), and (f), we consider the same pulse amplitudes, respectively, however, considering a scenario of strong coupling ($g_{\text{exc}} = 1.0 \text{ mS/cm}^2$). Depending on $\Delta t$, we observe that the periodic perturbation is able to reduce the ranges in which $\tau$ has high effectiveness on the suppression of synchronised activities, even when a small amplitude of the pulse is considered. For $\Delta t \sim 7 \text{ ms}$, the interval of each cycle (on-off) of the pulse perturbation, approximately, coincides with the mean inter-spike interval (ISI), i.e., $2\Delta t (14 \text{ ms}) = \Delta t^{(\text{ON})} (7 \text{ ms}) + \Delta t^{(\text{OFF})} (7 \text{ ms}) \approx \text{ISI} (14 \text{ ms})$, creating a kind of resonance that might be inducing spike synchronisation.

5.2. Random pulses

We consider a pulsed perturbation according to a random protocol for the choice of the time in which the pulses are on-off. We define that $\Delta t^{(\text{ON})}$ and $\Delta t^{(\text{OFF})}$ are randomly chosen (following a uniform distribution) in $[0, 14] \text{ ms}$. Figure 9 exhibits a schematic representation of the random pulses over time for $I^0 = 10 \mu\text{A/cm}^2$ and $\Gamma = 3 \mu\text{A/cm}^2$, where $\Delta t^{(\text{ON})}$ and $\Delta t^{(\text{OFF})}$ assume random values.

In order to study the effects of random pulses in the neuronal dynamics, we compute the parameter space. Figure 10(a), 10(b), and 10(c) display $\langle R \rangle$ in the parameter space $g_{\text{exc}} \times \tau$ for $\Gamma = 1 \mu\text{A/cm}^2$, $\Gamma = 3 \mu\text{A/cm}^2$, and $\Gamma = 10 \mu\text{A/cm}^2$, respectively. For $\Gamma = 1 \mu\text{A/cm}^2$, the neuronal network has no significant alterations, independently of $g_{\text{exc}}$ or $\tau$ used in this work. If the
pulse amplitude is increased to $\Gamma = 3 \, \mu A/cm^2$, the network begins to exhibit some changes, however, only for small values of $g_{exc}$. In this case, the random pulses can improve the level of spike synchronisation in the delayed neuronal network approximately for $\tau < 2$ ms and $\tau > 10$ ms. On the other hand, as $g_{exc}$ increases, the synchronisation does not show any remarkable changes, indicating a difference between the periodic and random pulses. For the periodic case and appropriate time intervals (Figs. 8(a), 8(b), 8(d), and 8(e)), the pulses with $\Gamma = 1 \, \mu A/cm^2$ and $\Gamma = 3 \, \mu A/cm^2$ are enough to promote alterations in the networks with weak and strong couplings. In Fig. 10(c), if $\Gamma = 10 \, \mu A/cm^2$, there are more synchronised ranges in the parameter space, including in strong couplings, what is not verified for random pulses with small amplitudes (Figs. 10(a) and 10(b)).

Our results show that random pulses can also reduce ranges of $\tau$ associated with desynchronised activities in the parameter space. However, such reduction is related to the amplitude values of the pulses. For the random pulses, $\Gamma$ needs to assume large values in order to induce synchronised regions along the parameter space. For the periodic pulses, even small amplitudes of $\Gamma$, if applied in appropriate time intervals, are enough to change the neuronal dynamics.

5.3. Mixed pulses

We consider that the mixed perturbation is composed of sequential time windows $\lambda_P$ and $\lambda_R$, where the pulses are assumed as periodic and random, respectively. In our numerical simulations, we define the relation about the sizes of these time windows as

$$\lambda_P = \lambda_P^0 - \lambda_R,$$

where $\lambda_P^0$ and $\lambda_R$ are the sizes of the time window for the periodic and random pulses, respectively. For $\lambda_R = 0$ ms, the pulse is formed only by sequences of windows $\lambda_P = \lambda_P^0$, configuring a complete periodic pulse. On the other hand, if we consider $\lambda_R > 0$ ms, the perturbation is composed of alternating sequence windows, $\lambda_P$ and $\lambda_R$, where the pulses assume the periodical and random profiles, respectively. Consequently, if $\lambda_R = \lambda_P^0$, only random pulses are observed, once there are no time windows $\lambda_P$ in the signal. In Fig. 11,
Figure 10: Parameter space $g_{exc} \times \tau$ with the mean value of the Kuramoto order parameter $\langle R \rangle$ in colour scale. In the panels (a), (b), and (c), we plot an analysis for the parameter space when random pulses with amplitude $\Gamma = 1 \mu A/cm^2$, $\Gamma = 3 \mu A/cm^2$, and $\Gamma = 10 \mu A/cm^2$ are applied over the HH neurons, respectively. We see that the random perturbation is able to reduce the ranges in which $\tau$ has high effectiveness on the suppression of synchronised activities. However, differently from the periodic case, the random pulses need to assume $\Gamma$ with larger amplitudes in order to promote changes in the delayed network.

In order to analyse the transition from a complete periodic pulse to a random one, we consider $\Delta t^{\text{(ON)}} = \Delta t^{\text{(OFF)}} = 8$ ms (for the periodic part of the pulse), $\lambda_P = 20$ ms, and $\lambda_R = 10$ ms.

In Fig. 12, we calculate the parameter space $\lambda_R \times \tau$ with $\langle R \rangle$ in colour scale. When the network is perturbed only by periodic pulses ($\lambda_R = 0$ ms), the region of desynchronised spike activity is reduced. For complete random pulses ($\lambda_R = 200$ ms), there are more values of $\tau$ that are able to suppress spike synchronisation. We find that $\lambda_R \approx 5$ ms is enough to change the parameter space in order to increase the interval of $\tau$ in which occurs suppression of spike synchronisation. Increasing $\lambda_R$, the range of $\tau$ becomes larger. Moreover, as
indicated by our numerical simulation for this case, the transition between a complete periodic pulse to a random one is given in a smooth way.

Our results indicate that small windows of random pulses embedded in a sequence of periodic ones can be enough to influence the neuronal dynamics more like a random perturbation than a periodic one. The neurons behave more similarly to the case in which the network is under random perturbations. This analysis is interesting and complement a recent observation which indicates that same effects appear in a scenario of weak coupling \cite{18}.

6. Conclusions

In this work, we study the effects of time delays in the synaptic conductance as a way to suppress spike synchronisation developed in coupled Hodgkin Huxley neurons. The time delays in the synaptic conductance are related to no instantaneous transmission of the synaptic currents between the neurons. Depending on the time delay and coupling strength values, changes in the synaptic current can induce or not spike synchronisation. Our results show that there
is an important range of time delays ($\tau > 1$ until $\tau \approx 5.5$ ms) in which the synchronised activities are suppressed, independently of the coupling strength value.

We analyse how a delayed neuronal network behaves when pulsed perturbations are applied in the neurons. Our results indicate that both periodic and random pulses can reduce the intervals of the time delay values in which the spike synchronisation is suppressed. For appropriate time intervals, the periodic pulses are able to generate synchronisation in the presence of time delays associated with desynchronized activities, even for pulses with small amplitudes. In this case, we find a type of resonance related to the intervals of pulsed cycles close to the mean inter-spike interval (ISI) of the HH neurons. For the random case, alterations in the synchronisation can be only observed for larger amplitude of the pulses. Our simulations demonstrate that if small windows of random pulses are embedded in a sequence of periodic pulses, the mixed perturbations can exhibit similar characteristics to the random pulses.

Considering that spike synchronisation can be associated with some brain pathologies, such as epilepsy, then the search for alternative methods that aims to avoid synchronous pattern are needed. As suggested by our findings in this work, the time delay can be an approach to reduce or even avoid spike synchronisation in generic neuronal networks, especially if the time delay is from $\tau > 1$ ms to $\tau \approx 5.5$ ms. In addition, such an interval is also capable of holding desynchronised spikes even for some perturbation conditions applied over the HH neurons, which is an important result due to the fact that perturbations can be associated for instance with some sensory stimulus. In such a scenario, the delay might be part of important steps toward to find an useful and applicable method to control synchronised activities, mostly considering that time delay is a common effect in chemical synapses. In this way, interventions that can change the time of neuronal transmission could bring new possibilities for synchronisation control.

Acknowledgements

The authors acknowledge the financial support from São Paulo Research Foundation (FAPESP, Brazil) (Grants Nos. 2015/50122-0, 2018/03211-6, 2019/09150-1, 2020/04624-2), National Council for Scientific and Technological Development (CNPq), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) and Fundação Araucária.

References

[1] M.J. Gruber, L.-T. Hsieh, B.P. Staresina, C.E. Elger, J. Fell, N. Axmacher, C. Ranganath, Theta phase synchronization between the human hippocampus and prefrontal cortex increases during encoding of unexpected information: A case study, Journal of Cognitive Neuroscience 30 (2018) 1646-1656.
[2] W. Jamal, S. Das, K. Maharatna, I. Pan, D. Kuyucua, Brain connectivity analysis from EEG signals using stable phase-synchronized states during face perception tasks, Physica A 434 (2015) 273-295.

[3] R.D. Traub, R.K.S. Wong, Cellular mechanisms of neuronal synchronization in epilepsy, Science 216 (1982) 745-747.

[4] P.R. Protachevicz, F.S. Borges, E.L. Lameu, P. Ji, K.C. Iarosz, A.H. Kihara, I.L. Caldas, J.D. Szezech, M.S. Baptista, E.E.N. Macau, C.G. Antonopoulos, A.M. Batista, J. Kurths, Bistable firing pattern in a neural network model, Frontiers in Computational Neuroscience 13 (2019) 1-19.

[5] V.R. Cota, J.C. de Oliveira, L.C.M. Damázio, M.F.D Moraes, Nonperiodic stimulation for the treatment of refractory epilepsy: Applications, mechanisms, and novel insights, Epilepsy & Behavior 121 (2021) 106609.

[6] M.M. Asl, A. Valizadeh, P.A. Tass, Dendritic and axonal propagation delays determine emergent structures of neuronal networks with plastic synapses, Scientific Reporters 7 (2017) 39682.

[7] M.M. Asl, A. Valizadeh, P.A. Tass, Dendritic and axonal propagation delays may shape neuronal networks with plastic synapses, Frontiers in Physiology 9 (2018) 1-8.

[8] A.H. Seidl, Regulation of conduction time along axons, Neuroscience 274 (2014) 126-134.

[9] S.G. Waxman, Conduction in Myelinated, Unmyelinated, and Demyelinated Fibers, Archives of Neurology 34(10) (1977) 585-589.

[10] D. Purves, G.J. Augustine, D. Fitzpatrick, W.C. Hall, A.-S. LaMantia, R.D. Mooney, M.L. Platt, L.E. White (2018) Neuroscience. 6th Edition, Sinauer Associates, New York.

[11] C.R. Stoelzel, Y. Bereshpolova, J.-M. Alonso, H. A. Swadlow, Axonal conduction delays, brain state, and corticogeniculate communication. J. Neurosci. 37 (2017) 6342-6358.

[12] M. J. Spencer, D.B. Grayden, I.C. Bruce, H. Meffin, A.N. Burkitt. An investigation of dendritic delay in octopus cells of mammalian cochlear nucleus, Frontiers in Computational Neuroscience, 6 (2012) 1-19.

[13] A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, The Journal of Physiology 117 (1952) 500-544.

[14] N. F. Rulkov, Modeling of spiking-bursting neural behavior using two-dimensional map, Phys. Rev. E 65 (2002) 041922.
[15] P. R. Protachevicz, M. Hansen, K. C. Iarosz, I. L. Caldas, A. M. Batista, Jürgen Kurths, Emergence of Neuronal Synchronisation in Coupled Areas, Front. Comput. Neurosci, 15 (2021) 663408.

[16] O.V. Popovych, P.A. Tass, Control of abnormal synchronization in neurological disorders, Frontiers in Neurology 5 (2014) 268.

[17] F.S. Borges, P.R. Protachevicz, E.L. Lameu, R.C. Bonetti, K.C. Iarosz, I.L. Caldas, M.S. Baptista, A.M. Batista, Synchronised firing patterns in a random network of adaptive exponential integrate-and-fire neuron model, Neural Networks 90 (2017) 1-7.

[18] M. Hansen, P.R. Protachevicz, K.C. Iarosz, I.L. Caldas, A.M. Batista, E.E.N. Macau, Dynamics of uncoupled and coupled neurons under an external pulsed current, Chaos, Solitons & Fractals 155 (2022) 111734.

[19] E.L. Lameu, F.S. Borges, K.C. Iarosz, P.R. Protachevicz, C.G. Antonopoulos, E.E.N. Macau, A. M. Batista, Short-term and spike-timing-dependent plasticity facilitate the formation of modular neural networks, Communications in Nonlinear Science and Numerical Simulation 96 (2021) 105689.

[20] J. Keener, J. Sneyd, Mathematical physiology, Springer, New York (1998).

[21] A.V. Andreev, N.S. Frolov, A.N. Pisarchik, A.E. Hramov, Chimera state in complex networks of bistable Hodgkin-Huxley neurons, Physical Review E 100 (2019) 022224.

[22] E.L. Lameu, E.E.N. Macau, F.S. Borges, K.C. Iarosz, I.L. Caldas, R.R. Borges, P.R. Protachevicz, R.L. Viana, A.M. Batista, Alterations in brain connectivity due to plasticity and synaptic delay, The European Physical Journal Special Topics 227 (2018) 673-682.

[23] R.B. Northrop, Introduction to dynamic modeling of neuro-sensory systems, Biomedical Engineering Series, CRC Press, (2001).

[24] R.R. Borges, F.S. Borges, E.L. Lameu, A.M. Batista, K.C. Iarosz, I.L. Caldas, R.L. Viana, M.A.F. Sanjuán, Effects of the spike timing-dependent plasticity on the synchronisation in a random Hodgkin–Huxley neuronal network, Communications in Nonlinear Science and Numerical Simulation 34 (2016) 12-22.

[25] J.C. Butcher, A history of Runge-Kutta methods, Applied Numerical Mathematics 20 (1996) 247-260.

[26] J.A. Acebrón, L.L Bonilla, C.J.P. Vicente, F. Ritort, R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Reviews of Modern Physics 77 (2005) 137-185.
[27] S.D. Jesus, M.S. Okun, K.D. Foote, D. Martinez-Ramirez, J.A. Roper, R.J. Hass, L. Shahgholi, U. Akbar, A.W. Shukla, R.S. Raike, L. Almeida, Square biphasic pulse deep brain stimulation for Parkinson’s disease: The BiP-PD study, Frontiers in Human Neuroscience 13 (2019) 368.

[28] M. Chatterjee, M.E. Robert, Noise enhances modulation sensitivity in cochlear implant listeners: Stochastic resonance in a prosthetic sensory system?, Journal of the Association for Research in Otolaryngology 02 (2001) 159-171.