The Calderón commutator along a parabola†

BY ANTHONY CARBERY

Department of Mathematics and Statistics, University of Edinburgh,
Edinburgh EH9 3JZ

STEVE HOFMANN

Department of Mathematics, University of Missouri, Columbia, MO 65211 USA

AND JAMES WRIGHT

Department of Mathematics, University of New South Wales, Sydney, NSW 2052
Australia

(Received 28 November 1997)

Abstract

We introduce an analogue of Calderón’s first commutator along a parabola and establish its L^2 boundedness under essentially sharp hypotheses.

1. Introduction

During the past 30 years, many authors have investigated the L^p mapping properties of singular integral operators whose ‘kernels’ are actually singular measures supported on lower dimensional subvarieties. One may consult the survey article of Wainger [19] for a history of the subject up to the mid 1980s. The interested reader may also find a synopsis of more recent developments, along with numerous references, in the monograph of Stein [18, chapter XI, sections 4–5, 4–7, 4–17]. The prototypical example of such operators is the ‘Hilbert transform along a curve’:

$$H_\gamma f(x) \equiv p.v. \int_\mathbb{R} f(x - \gamma(t)) \frac{dt}{t},$$

(1.1)

where $x \in \mathbb{R}^n$ and $\gamma: \mathbb{R} \to \mathbb{R}^n$ is the parametrization of a smooth curve in \mathbb{R}^n. This sort of operator was first introduced by Fabes [8] who established L^2 boundedness of H_γ in the special case $n = 2$, $\gamma(t) = (t, (sgn(t)t^2))$. The original motivation for studying operators of this sort is that they arise when one tries to develop a ‘method of rotations’ (see [2] in the classical elliptic case) for parabolic singular integrals of convolution type. In turn, the method of rotations enables one to significantly relax the regularity hypotheses on kernels of singular integral operators.

In the present paper, motivated in part by formal analogy to Fabes’ goal of extending the method of rotations to the parabolic case and in part by recent

† The authors were supported in part by EPSRC. S.H. was supported in part by an NSF grant. J.W. was supported by an ARC grant. Research at MSRI was supported in part by NSF grant DMS-9701755.
developments in the theory and application of parabolic singular integrals which are not of convolution type \([12, 13, 15, 16]\), we introduce a certain bilinear analogue of \((1.1)\): the ‘Calderón commutator along a parabola’. To describe this operator, suppose that \(A : \mathbb{R}^2 \to \mathbb{R}\) satisfies the Lip \(_{1,1}\) condition
\[
|A(x+h) - A(x)| \leq B_0 r, \tag{1.2}
\]
for some constant \(B_0\), whenever \(h \equiv (h_1, h_2)\) satisfies \(|h_1| \leq r, |h_2| \leq r^2\). We remark that the results of the present paper may be readily extended to \(\mathbb{R}^n, n > 2\), by the same arguments which we shall give below, but to minimize technicalities we shall restrict our attention to the case \(n = 2\). Since the story here is not yet complete (we do not yet know how to treat the higher order commutators, for example), it does not seem crucial at this point that we state our results in the greatest generality.

For \(A\) as in \((1.2)\) and for \(\gamma(t) \equiv (t, t^2)\), we define
\[
T_A f(x) \equiv p.v. \int_\mathbb{R} |A(x) - A(x - \gamma(t))| f(x - \gamma(t)) \frac{dt}{t^2}, \tag{1.3}
\]
As mentioned above, the operator \(T_A\) has a connection with the results of \([12, 13, 15, 16]\), which may be understood as follows. Let \(K : \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}\) satisfy the parabolic homogeneity property
\[
K(\rho x_1, \rho^2 x_2) = \rho^{-4} K(x) \tag{1.4}
\]
and further suppose that \(K \in L^1(S^1)\) and that \(K(x_1, x_2)\) is even in \(x_1\), for each fixed \(x_2\). Then one may use parabolic polar co-ordinates to obtain a representation of the parabolic Calderón commutator in terms of \(T_A\). Indeed,
\[
C_A f(x) \equiv p.v. \int_{\mathbb{R}^2} |A(x) - A(y)| K(x - y) f(y) dy
\]
\[
\equiv p.v. \int_{S^1} K(\sigma) T_A^\gamma f(x)(1 + \sigma_2^2) d\sigma, \tag{1.5}
\]
where \(T_A^\gamma\) is defined as in \((1.3)\), with \(\gamma_{\sigma}(t) \equiv (t \sigma_1, t^2 \sigma_2), (\sigma_1, \sigma_2) \in S^1\). We have used here the parabolic polar coordinates
\[
x_1 = \rho \sigma_1, \quad x_2 = \rho^2 \sigma_2
\]
\[
dx = \rho^2 d\rho (1 + \sigma_2^2) d\sigma.
\]
When \(\sigma = (\pm 1, 0)\), \(L^2\) boundedness of \(T_A^\gamma\) reduces to that of Calderón’s original commutator on the line \([1]\); when \(\sigma = (0, \pm 1)\), matters reduce to a result of Murray \([17]\). Otherwise, \(L^2\) boundedness of \(T_A^\gamma\) is new and will be treated in this paper, although to simplify the notation we shall take \(\sigma_1 = 1 = \sigma_2\). The proof in the general case is identical and one obtains bounds independent of \(\sigma \in S^1\).

In \([12]\), it was shown that for the special case
\[
K(x_1, x_2) \equiv x_2^{-2} \exp \left\{ -\frac{|x_1|^2}{4x_2^2} \right\} \chi_{x_2 > 0}, \tag{1.6}
\]
a necessary and sufficient condition for the L^2 boundedness of C_A is that, for some $B < \infty$,

\begin{align}
\text{(i)} & \quad |A(x_1 + h, x_2) - A(x_1, x_2)| \leq B|h| \\
\text{(ii)} & \quad \|D_x A\|_{\text{BMO}} \leq B,
\end{align}

where

\[D_x A \equiv \left(\frac{\xi_2}{(\xi_1)^2 - \xi_2^2} A(\xi) \right)^\vee, \]

and \hat{f} and f^\vee denote the Fourier and inverse Fourier transforms of f, respectively. The BMO norm is defined as usual by

\[\|b\|_{\text{BMO}} = \sup |I|^{-1} \int_I |b - m_I b|, \]

where $m_I b$ denotes the mean value of b over I and where the sup runs over all parabolic ‘cubes’ of the form

\[I \equiv I(a, b) \equiv \left[a - \frac{r}{2}, a + \frac{r}{2} \right] \times \left[b - \frac{r^2}{2}, b + \frac{r^2}{2} \right]. \]

The higher dimensional case was also treated in [12]. The kernel (1–6) arises in the multilinear expansion of the parabolic double layer potential on a time varying graph $x_3 = A(x_1, x_2)$. A condition similar to (1–7) (later shown to be equivalent in [15]) has previously been shown to be sufficient for L^2 boundedness in [16]. It was also shown in [12] that (1–7) implies the $Lip_{\gamma, \frac{1}{2}}$ condition (1–2), with bound $B_0 \equiv CB$.

In this paper we prove:

Theorem 1. Suppose A satisfies (1–7). Then T_A^γ is bounded on L^2.

Remarks.

1. By our previous comments, one may then obtain a ‘method of rotations’ which permits us to deduce L^2 boundedness of C_A (defined in (1–5)) for K as in (1–4) satisfying only that $K \in L^1(S^1)$ and that $K(x_1, x_2)$ is even in x_1, for each fixed x_2. Previously, it had been required that K have some smoothness on S^1.

2. One can also show that T_A^γ is bounded on L^p, $1 < p < \infty$, by using the key estimate (2–4) below and Littlewood–Paley arguments adapted to rough singular integral operators. See, e.g., [14].

In the next section we begin the proof of Theorem 1 and complete it in Section 3.

We wish to dedicate this paper to the memory of Eugene B. Farber.

2. **Proof of Theorem 1**

We may assume, and do, that the constant B in (1–7) is one. By the parabolic version of [14] (whose proof is virtually identical that given in [14] and is therefore omitted here), it is enough to check the following ‘rough operator’ $T1$ criterion, which consists of three parts. We need to prove that

\[T_A^\gamma 1, (T_A^\gamma)^* 1 \in \text{BMO}, \]

where $(T_A^\gamma)^*$ is defined as a mapping from test functions to distributions by

\[\langle (T_A^\gamma)^* f, g \rangle \equiv \langle f, T_A^\gamma g \rangle, \]
for all \(f, g \in C_0^\infty(\mathbb{R}^2) \). Second, for all \(x \in \mathbb{R}^2, r > 0 \), let \(\Phi(x, r) \) denote the class of all \(\in C_0^\infty \), supported in \(I_r(x) \) (see (1.8)), and satisfying

\[
\begin{align*}
(\text{i}) & \quad \|x\| \leq 1 \\
(\text{ii}) & \quad |(y + h) - (y)| \leq \rho/r,
\end{align*}
\]

whenever \(|h_2| \leq \rho, |h_2| \leq \rho^2, h \equiv (h_1, h_2)\) and

\[
(\text{iii}) \quad \sup_{k + m \leq 2} \left\| \frac{\partial^k}{\partial x_1^k} \left(\frac{\partial^m}{\partial x_1^m} \right) \right\|_{\infty} \leq 1.
\]

We shall need to establish the Weak Boundedness Property (WBP):

\[
|\langle \psi, T_\lambda \phi \rangle| \leq C r^2,
\]

for all \(\psi, \phi \in \Phi(x, r) \), for any \(r > 0, x \in \mathbb{R}^2 \). Since the homogeneous dimension of parabolic \(\mathbb{R}^2 \) is \(d = 3 \), (2.1) and (2.3) are the usual David–Journe conditions \cite{7} in this context. However, in lieu of the standard Calderón–Zygmund kernel conditions considered in \cite{7}, we shall establish instead the weak smoothness condition of \cite{14}, which had also appeared in a similar connection in \cite{3}. Let \(Q_s \) denote the operator defined by convolution with a smooth function \(\psi_s \), which has mean value zero, is supported in \(I_s(0) \) and is normalized so that \(\|v_s\|_1 = 1 \). We shall prove that, whenever \(s \leq 2^j \),

\[
\|Q_s T_j\|_{L^2 \to L^2} \leq C \left(\frac{s}{2^j} \right)^\epsilon
\]

for some \(\epsilon > 0 \), where

\[
T_j f(x) \equiv \int_\mathbb{R} [A(x) - A(x - \gamma(t))] f(x - \gamma(t)) \eta \left(\frac{t}{2^j} \right) dt,
\]

and where \(\eta \in C_0^\infty ([\frac{1}{2}, 2) \cup (-2, -\frac{1}{2}]) \), \(0 \leq \eta \leq 1 \) and \(\sum_{j=\infty}^{\infty} \eta(\cdot / 2^j) \equiv 1 \) away from 0.

By \cite{14} (or rather its parabolic analogue), Theorem 1 follows immediately from (2.1), (2.3) and (2.4). In this section we shall prove (2.1) and (2.3). In the next section we prove (2.4).

To establish WBP (2.3), by dilation invariance we may assume \(r = 1 \), so it is clearly enough to prove that, for any \(x_0 \in \mathbb{R}^2 \),

\[
T_\lambda \in L^2(\mathbb{R}^2) + L^\infty(\mathbb{R}^2), \quad \forall \lambda \in \Phi(x_0, 4),
\]

where \(I = I_1(x_0) \). We claim that (2.5) also implies that \(T_\lambda 1 \in \text{BMO} \) (we omit the proof of the fact that \((T_\lambda)^*1 \in \text{BMO} \), since it is identical). To prove the claim, we need to consider

\[
\frac{1}{|I|} \int_I |T_\lambda 1 - C_I|,
\]

where \(I = I_1(x_0) \) and by dilation invariance we may take \(r = 1 \). We write

\[
1 = \phi + (1 - \phi),
\]

where \(\phi \equiv 1 \) in \(I_3(x_0) \) and \(\phi \in C_0^\infty(\mathbb{R}^2) \). Then up to a normalizing constant, \(\phi \in \Phi(x_0, 4) \), so by (2.5)

\[
\int_I |T_\lambda \phi| \leq C.
\]
We now set $C_I \equiv T^*_A(1 - \cdot) (x_\theta)$, so that, for all $x \in I$,
\[|T^*_A(1 - \phi)(x) - T^*_A(1 - \phi)(x_\theta)| \]
\[\leq \int |A(x) - A(x - \gamma(t)) - [A(x_\theta) - A(x_\theta - \gamma(t))]| |1 - \phi(x - \gamma(t))| \frac{dt}{t^2} \]
\[+ \int |A(x_\theta) - A(x_\theta - \gamma(t))| |\phi(x - \gamma(t)) - \phi(x_\theta - \gamma(t))| \frac{dt}{t^2} \]
\[\leq c \left(\int_{|r| > 1} \frac{dt}{t^2} + \int_{1 < |r| < 5} \frac{dt}{t} \right) = C, \]
by (1.2) (with $B_0 \equiv C$) and the definition of ϕ. Consequently, (2.6) is no larger than C, which proves the claim. Thus, we have reduced the proofs of (2.4) and (2.3) to that of (2.5).

We establish (2.5) under the a priori assumption that $A \in C^\infty$, but our quantitative estimates will depend only on the bounds in (1.7) (which we have normalized to be 1). Let $\phi \in \Phi(x_\theta, 4)$ and then integrate by parts; to do this rigorously requires truncation of the principal value integral in (1.3), but it is routine to verify that the boundary terms (which arise when integrating the truncated integrals by parts) are harmless. We shall therefore argue formally and ignore all such truncations and boundary terms, in order not to tire the reader with minutiae. Formally, then
\[T^*_A \phi(x) = \int_R \frac{\partial A}{\partial x}(x - \gamma(t))\phi(x - \gamma(t)) \frac{dt}{t} + 2 \int \frac{\partial A}{\partial t}(x - \gamma(t))\phi(x - \gamma(t)) \frac{dt}{t} \]
\[+ \int [A(x) - A(x_\theta - \gamma(t))] \left\{ \frac{\partial \phi}{\partial x}(x - \gamma(t)) + 2 \frac{\partial \phi}{\partial t}(x - \gamma(t)) \right\} \frac{dt}{t} \equiv I + II + III. \]
But I is precisely the Hilbert transform along the curve (t, t^2), acting on the L^2 function $(\partial A/\partial x)\phi$. Thus, $I \in L^2$. Also $III \in L^\infty(L^2(I))$, by (1.2) and the fact that $\phi \in \Phi(x_\theta, 4)$ (see (2.2)). The only delicate term is II. We recall that $(\partial A/\partial x) \in L^\infty, \mathbb{D}_2 A \in \text{BMO}$, with norm $B = 1$ (given our normalization). Define $a \equiv \mathbb{D}_2 A \equiv (\nabla |x|^2 - \nabla x \cdot A(\xi))^x$, which is therefore in BMO, with norm $CB = C$ by parabolic Calderón–Zygmund Theory [9, 10]. Then
\[\frac{\partial A}{\partial t} \equiv \mathbb{D}_2 (\mathbb{D}_2 A) \equiv \mathbb{D}_2 a, \]
so that
\[II = \int \mathbb{D}_2 a(x - \gamma(t))\phi(x - \gamma(t)) \frac{dt}{t}. \]
By [9, lemmas 1 and 2, pp. 111–113],
\[\mathbb{D}_2 a(x) \equiv p.v. \int k(x - y)a(y)dy, \]
where $k(x)$ is odd, belongs to $C^\infty(\mathbb{R}^2 \setminus \{0\})$ and satisfies the homogeneity property
\[k(Ax, \lambda^2 t) \equiv \lambda^{-d-1} k(x, t) \]
(we recall that $d = 3$ is the homogeneous dimension of parabolic \mathbb{R}^2). By the oddness of k, we may assume that a has mean value zero on $I_\gamma(x_\theta) \equiv I$. Let $\|x\| \equiv |x_1| + |x_2|^2$ be
the parabolic ‘norm’ of x. Let $\eta \in C_0^\infty([-10,10])$, $\eta \equiv 1$ on $[-9,9]$ and set $a_1(x) = a(x)\eta(\|x-x_0\|)$, $a_2 = a - a_1$. By (2.8) and the parabolic version of a standard estimate of [11],

$$|D_2 a_2(x)| \leq \int \frac{c}{1+\|x-y\|^{d+1}}|a(y)|dy$$

$$\leq C\|a\|_{BMO} \leq C,$$

whenever $x \in \text{supp } \phi \subseteq I_4(x_0)$. Consequently the contribution of a_2 to (2.7) yields a bounded term, as desired. The contribution of a_1 is

$$\int \phi(x-\gamma(t))\eta(t)D_2 a(x-\gamma(t))dt$$

(since $x \in I_4(x_0)$, $x-\gamma(t) \in I_4(x_0)$)

$$= \int \eta(t) \int k(x-\gamma(t)-y)[\phi(x-\gamma(t)) - \phi(y)]a_1(y)dydt$$

$$+ \int \eta(t)\mathbb{D}_2(\phi a_1)(x-\gamma(t))dt$$

$$\equiv II_1 + II_2.$$

By [12] (or even [9], since ϕ is smooth), the commutator $[\mathbb{D}_2, \phi]$ defines a bounded operator on L^2. Hence, by Minkowski’s inequality,

$$\|II_1\|_2 \leq \int \eta(t) \|\mathbb{D}_2 \phi|a_1(\cdot - \gamma(t))\|_2 dt$$

$$\leq c \|a_1\|_2 \leq c \|a\|_{BMO} \leq C.$$

Finally, since $\phi a_1 \in L^2$ and \mathbb{D}_2 is given by the multiplier $\xi_2(|\xi_1|^2 - i\xi_2)^{-\frac{1}{2}}$, it is enough to show that the operator

$$f \rightarrow \int f(x-\gamma(t))\eta(t)dt$$

is smoothing on L^2 of parabolic order 1; i.e. that the multiplier

$$m(\xi) \equiv \int e^{i(\xi_1 t + \xi_2 \tau)} \eta(t)dt$$

satisfies

$$|m(\xi)| \leq C(|\xi_1| + |\xi_2|)^{-1}$$

This estimate is well known and is an easy consequence of standard integration by parts arguments as may be found in [18, chapter VIII]. For the sake of completeness, we sketch the argument here.

Case 1. $|\xi_1| > 40|\xi_2|$. In this case,

$$|m(\xi)| = \left| \int e^{i(\xi_1 t + \xi_2 \tau)} \frac{1}{\xi_1 + 2i\xi_2} \eta(t)dt \right| \leq C|\xi_1|^{-1},$$

since sup $\eta \subseteq [-10,10]$.
Case 2. $|\xi| < 40|\xi_d|$

In this case we seek the estimate $|m(\xi)| \leq C|\xi_d|^{-\frac{1}{2}}$. We write

$$m(\xi) = \int e^{i\lambda \cdot \xi} \eta(t) dt,$$

where $\lambda \equiv |\xi_d|$ and $\phi_\xi(t) \equiv (\xi_d/|\xi_d|)t + \text{sgn} \xi_d t^2$. Note that $|\phi_\xi''(t)| = 2$. The desired bound now follows immediately from Van der Corput’s Lemma, or to be more precise, its corollary given in [18, p. 334, inequality (6)]. This concludes the proof of (2.5) and therefore also the proofs of (2.1) and (2.3). We finish the proof of our Theorem in the next section, in which we prove (2.4).

3. Proof of Theorem 1 (continued): estimate (2.4)

In this section, we give the proof of estimate (2.4), which will complete the proof of Theorem 1. This is the most technical part of the proof and follows ideas from [6]; see also [4] and [5].

By dilation invariance, we may take $j = 0$. We recall that $T_0 f$ is a sum of two terms

$$T_0 f(x) \equiv \int_\mathbb{R} [A(x) - A(x - \gamma(t))] f(x - \gamma(t)) \eta(t) \frac{dt}{t^2},$$

where η is an even smooth cut-off function supported in the ‘half annulus’ $\frac{1}{2} < t < 2$, plus another term with $-2 < t < -\frac{1}{2}$. By symmetry, we treat only the former. Let K_0 denote the kernel of $\hat{T}_0 \hat{T}_0^\star$, where \hat{T}_0^\star denotes the adjoint of \hat{T}_0. Following [6], we see that the desired bound (2.4) then follows easily (we omit the routine details) from Claim.

$$\int K_0(x + h, y) - K_0(x, y) \, dy \leq C|\lambda|^2, \quad (3.1)$$

whenever $|h_1| \leq \lambda$, $|h_2| \leq \lambda^2$, $\lambda \leq 1/1000$. Now, it is a routine matter to see that

$$\hat{T}_0^\star g(x) = -\int [A(x) - A(x + \gamma(s))] g(x + \gamma(s)) \eta(s) \frac{ds}{s^2}.$$

Thus,

$$\hat{T}_0 \hat{T}_0^\star f(w) = \int [A(w) - A(w - \gamma(t))] T_0^\star f(w - \gamma(t)) \phi(t) dt$$

$$= -\int \int [A(w) - A(w - \gamma(t))] [A(w - \gamma(t)) - A(w + \gamma(s) - \gamma(t))] f(w + \gamma(s) - \gamma(t)) \phi(t) \phi(s) dt ds, \quad (3.2)$$

where for convenience of notation we have defined

$$\phi(t) \equiv \eta(t)t^{-2}.$$

Now, the claim (3.1) amounts to saying that the operator

$$f \rightarrow \int [K_0(\cdot + h, y) - K_0(\cdot, y)] f(y) \, dy$$
By symmetry it suffices to consider only the case \(s > t \). Note that in the set where \(s - t \geq \lambda^2 \), the map

\[
\Phi_w : (s, t) \mapsto \omega + \gamma(s) - \gamma(t) = y
\]

\[
\left\{ \frac{1}{4} \leq s < t \leq 4 \right\} \to \mathbb{R}^2
\]

is injective and that the Jacobian matrix is

\[
\begin{bmatrix}
1 & -1 \\
2s & -2t
\end{bmatrix}
\]

with determinant \(2(s - t) \geq 2\lambda^2 \). Let \(S_s \) denote the part of the operator \(\tilde{\mathcal{T}}_0 \tilde{\mathcal{T}}_0^* \) in (3.2), with \((s - t) > 15\lambda^2 \). We have that

\[
|S_s f(x + h) - S_s f(x)| = \left| \int E_\lambda \phi(s)\phi(t) \left([A(x + h) - A(x + h - \gamma(t))] [A(x + h - \gamma(t))] \\
[A(x + h - \gamma(t)) - A(x + h + \gamma(s) - \gamma(t))] f(x + h + \gamma(s) - \gamma(t)) \\
- [A(x) - A(x - \gamma(t))] \\
[A(x - \gamma(t)) - A(x + \gamma(s) - \gamma(t))] f(x + \gamma(s) - \gamma(t)) dsdt \right|
\]

\[
= \left| \int E_\lambda \phi(s)\phi(t) \left(B(x + h, s, t) f(x + h + \gamma(s) - \gamma(t)) \\
- B(x, s, t) f(x + \gamma(s) - \gamma(t)) dsdt \right| dsdt \right|
\]

(\text{where } E_\lambda \equiv \left\{ (s, t): s - t \geq 15\lambda^2, \frac{1}{4} \leq t < s \leq 2 \right\} \text{ and } B(x, s, t) \equiv [A(x) - A(x - \gamma(t))] \times [A(x - \gamma(t)) - A(x + \gamma(s) - \gamma(t))])

\[
= \left| \int (I + H) dsdt \left| dsdt \right|
\]

Now suppose that \(\| f \|_{L^\infty} \). Taking the supremum over all such \(f \), we see that the contribution of \(\int I dsdt \) to (3.1) satisfies the claim, by virtue of the \(\text{Lip} (1, \frac{1}{4}) \) character of \(A \).

Next,

\[
\left| \int I dsdt \right| = \left| \int_{\Phi_{x+h}(E_\lambda)} B(x, \Phi_{x+h}^{-1}(y)) f(y) J\Phi_{x+h}^{-1}(y) dy \\
- \int_{\Phi_{x}(E_\lambda)} B(x, \Phi_{x}^{-1}(y)) f(y) J\Phi_{x}^{-1}(y) dy \right|
\]
where \(\Phi_s \) is the mapping defined in (3.3))
\[
\begin{align*}
&= \left| \int_{\mathcal{E}_h} \frac{[B(x, \Phi_{x+h}^{-1}(y)) - B(x, \Phi_{x}^{-1}(y))]}{J\Phi_{x+h}(\Phi_{x+h}^{-1}(y))} f(y) dy \right| \\
&\quad + \left| \int_{\mathcal{E}_h} \left[\frac{1}{J\Phi_{x}(\Phi_{x+h}^{-1}(y))} - \frac{1}{J\Phi_{x}(\Phi_{x}^{-1}(y))} \right] B(x, \Phi_{x}^{-1}(y)) f(y) dy \right| \\
&\quad + \left| \int_{\mathcal{E}_h} \frac{B(x, \Phi_{x}^{-1}(y))}{J\Phi_{x}(\Phi_{x}^{-1}(y))} f(y) dy - \int_{\mathcal{E}_h} \frac{B(x, \Phi_{x+h}^{-1}(y))}{J\Phi_{x+h}(\Phi_{x+h}^{-1}(y))} f(y) dy \right| \\
&\equiv \left| \int (III + IV + V + VI) dy \right|,
\end{align*}
\]

where we have used that \(J\Phi_s(s, t) \) is independent of \(x \). Then
\[
\left| \int \text{III} dy \right| \leq C \| f \|_x \int_{\mathcal{E}_h} |B(x, \Phi_{x+h}^{-1}(y)) - B(x, \Phi_{x}^{-1}(y))| J\Phi_{x+h}^{-1}(y) dy
\]
\[
= C \| f \|_x \int_{\mathcal{E}_h} |B(x, s, t) - B(x, s_h, t_h)| ds dt,
\]

(3.4)

where
\[
(s_h, t_h) \equiv \Phi_{x+h}^{-1}(\Phi_{x+h}(s, t)),
\]
i.e.
\[
x + \gamma(s_h) - \gamma(t_h) = x + h + \gamma(s) - \gamma(t)
\]
\[
\Leftrightarrow \gamma(s_h) - \gamma(t_h) = h + \gamma(s) - \gamma(t)
\]
\[
\Leftrightarrow (s_h - t_h, s_h^2 - t_h^2) = (h + s - t, h^2 + s^2 - t^2).
\]

(By definition of \(\gamma \)) i.e.,
\[
s_h = \frac{1}{2} \left(h + s - t + \frac{h^2 + s^2 - t^2}{h_1 + s - t} \right)
\]
\[
t_h = \frac{1}{2} \left(t - s - h + \frac{h^2 + s^2 - t^2}{h_1 + s - t} \right).
\]

Now,
\[
|B(x, s, t) - B(x, s_h, t_h)| \equiv \|A(x) - A(x - \gamma(t))\| |A(x - \gamma(t)) - A(x + \gamma(s) - \gamma(t))| \\
- |A(x) - A(x - \gamma(t_h))| |A(x - \gamma(t_h)) - A(x + \gamma(s_h) - \gamma(t_h))| \\
\leq |A(x) - A(x - \gamma(t))| |A(x - \gamma(t)) - A(x) - A(x) - A(x - \gamma(t_h))| |A(x - \gamma(t)) - A(x + \gamma(s) - \gamma(t))| \\
+ |A(x) - A(x - \gamma(t_h))| |A(x - \gamma(t_h)) - A(x - \gamma(t)) - A(x + \gamma(s) - \gamma(t))| \\
- |A(x - \gamma(t_h)) - A(x + \gamma(s_h) - \gamma(t_h))| \\
\leq C\|\gamma(t_h) - \gamma(t)\| + \|\gamma(s_h) - \gamma(s)\|,
\]

(3.6)

where \(\| \cdot \| \) denotes the parabolic metric \(\|(u, v)\| \equiv |u| + |v|^2 \). Notice that
\[
|t_h^2 - t^2| \equiv |t_h - t|,
\]

and similarly for \(s_h^2 - s^2 \), so that
\[
\|\gamma(t_h) - \gamma(t)\| \leq C |t_h - t|^\frac{1}{2}
\]
\[
\|\gamma(s_h) - \gamma(s)\| \leq C |s_h - s|^\frac{1}{2}.
\]
Furthermore

\[|t-t_h| = \frac{1}{2}\left| t+s+h_1 - \left(\frac{h_1 + s^2 - t^2}{h_1 + s - t} \right) \right| \]

\[= \frac{h_1 + 1}{2}\left(\frac{(h_1 + (s-t))(t+s)-(h_1 + s^2-t^2)}{h_1 + s - t} \right) \]

\[= \frac{h_1}{2}\left(\frac{h_1(t+s)-h_2}{h_1 + s - t} \right) \]

\[\leq \lambda^2. \quad (3.7) \]

since \(|h_1| \leq \lambda \leq 1, |h_2| \leq \lambda^2\) and \(s-t > 15\lambda^2, \frac{1}{2} \leq s, t \leq 2, \) on \(E_\lambda.\) A similar estimate holds for \(|s-s_h|\). Hence \(\int \int Vdy \leq C\lambda^2\) as desired, by virtue of (3.4) and (3.6). Next, we observe that

\[
\int IVdy \leq C \left\| f \right\|_x \int_{E_\lambda} \left| J\Phi_x(\Phi^{-1}_x(y)) - J\Phi_x(\Phi^{-1}_x(y)) \right| dy
\]

\[= C \left\| f \right\|_x \int_{E_\lambda} \frac{1}{(s-t)^2} |s-t| ds dt \]

where \((s_h, t_h)\) is defined as above (see (3.5)) and where we have used that \(J\Phi_x(s, t) = 2(s-t).\) As we have observed (see (3.7)), \(|t-t_h| + |s-s_h| \leq 2\lambda^2 \leq 15\lambda^2 \leq s-t,\) so that

\[
\int IVdy \leq C \left\| f \right\|_x \int_{E_\lambda} \frac{\lambda^2}{(s-t)^2} (s-t) ds dt
\]

\[\leq C \left\| f \right\|_x \lambda^2 \]

as desired.

Turning last to the term \(\int Vdy\) (the term \(\int IVdy\) can be handled by similar arguments, which we omit) we see that, since \(J\Phi_x(s, t) = 2(s-t),\)

\[
\int Vdy \leq C \left\| f \right\|_x \int_{E_\lambda} \frac{1}{(s-t)^2} (s-t) ds dt
\]

where \(F_\lambda = \Phi^{-1}_x(\Phi^{-1}_x(E_\lambda) \Phi_x(E_\lambda))\) and where \((s_h, t_h)\) is defined as above (see (3.5)). Since \(s_h - t_h \geq c\lambda^2,\) it is enough to show that \(\left\| F_\lambda \right\| \leq C\lambda^2.\)

To this end, suppose that \((s, t) \in \hat{E}_\lambda.\) Then, in particular, \((s, t) \in E_\lambda\) and \(y \equiv \Phi_x(s, t) \in \Phi^{-1}_x(E_\lambda) \Phi_x(E_\lambda),\) i.e. \(y \neq \Phi_x(s', t')\) for any \((s', t') \in E_\lambda.\) On the other hand, we have observed previously that \(y = \Phi_x(s_h, t_h)\) for some \((s_h, t_h)\) satisfying

\[|s_h-s| + |t_h-t| \leq 12\lambda^2. \]

Since \((s_h, t_h) \notin E_\lambda, \) \((s, t) \in E_\lambda;\) we must have \(\text{dist}((s, t), \hat{E}_\lambda) \leq C\lambda^2.\) Thus \(\left\| F_\lambda \right\| \leq C\lambda^2\) as desired, and the proof is done.
REFERENCES

[1] A. P. Calderón. Commutators of singular integral operators. *Proc. Nat. Acad. Sci., USA* 53 (1965), 1092–1099.
[2] A. P. Calderón and A. Zygmund. On singular integrals. *Amer. J. Math.* 78 (1956), 249–271.
[3] A. Carbery and A. Serger. Conditionally convergent series of linear operators on L^p spaces and L^p estimates for pseudodifferential operators. *Proc. Lond. Math. Soc.* 57 (1988), 481–510.
[4] A. Carbery, J. Vance, S. Wainger, D. Watson and J. Wright. L^p estimates for operators associated to flat curves without the Fourier transform. *Pacific J. Math.* 167 (1995), 243–262.
[5] A. Carbery, S. Wainger and J. Wright. The Hilbert transform and maximal function along flat curves in the Heisenberg group. *J. Amer. Math. Soc.* 8 (1995), 141–179.
[6] M. Christ. Hilbert transforms along curves I: nilpotent groups. *Ann. of Math.* 122 (1985), 575–596.
[7] G. David and J. L. Journé. A boundedness criterion for generalized Calderón–Zygmund operators. *Ann. of Math.* 120 (1984), 371–397.
[8] E. B. Fabes. Singular integrals and partial differential equations of parabolic type. *Studia Math.* 28 (1966), 81–131.
[9] E. B. Fabes and N. Riviere. Symbolic calculus of kernels with mixed homogeneity in *Singular integrals* (ed. A. P. Calderón) *Proc. Symp. Pure Math.* 10 (Amer. Math. Soc., 1967), pp. 106–127.
[10] E. B. Fabes and N. Riviere. Singular integrals with mixed homogeneity. *Studia Math.* 27 (1966), 19–38.
[11] C. Fefferman and E. M. Stein. H^p spaces of several variables. *Acta Math.* 129 (1972), 137–193.
[12] S. Hofmann. A characterization of commutators of parabolic singular integrals. In *Fourier analysis and partial differential equations* (eds J. Garcia-Cuerva, E. Hernandez, F. Soria and J.-L. Torrea) (CRC Press, Boca Raton, 1995).
[13] S. Hofmann. Parabolic singular integrals of Calderón-type, rough operators, and caloric layer potentials; *Duke Math. J.* 90 (1997), 209–259.
[14] S. Hofmann. On certain nonstandard Calderón–Zygmund operators. *Studia Math.* 109 (1994), 105–131.
[15] S. Hofmann and J. Lewis. L^3 solvability and representation by caloric layer potentials in time varying domains. *Ann. of Math.* 144 (1996), 349–420.
[16] J. Lewis and M. Murray. The method of layer potentials for the heat equation in time varying domains. Memoirs of the Amer. Math. Soc. 545 (1995).
[17] M. Murray. Commutators with fractional differentiation and BMO Sobolev spaces. *Indiana University Math. J.* 34 (1985), 205–215.
[18] E. M. Stein. *Harmonic analysis* (Princeton University Press, 1993).
[19] S. Wainger. Averages and singular integrals over lower dimensional sets; in *Beijing lectures in harmonic analysis*. *Ann. of Math. Studies* 112 (ed. E. M. Stein) (Princeton Univ. Press, 1986), pp. 357–421.