Visual faunistic exploration of geomorphological human-impacted deep-sea areas of the north-western Mediterranean Sea

ARIADNA MECHO1, JACOPO AGUZZI2, BEN DE MOL3, GALDERIC LASTRAS4, EVA RAMIREZ-LLODRA5, NIXON BAHAMON6, JOAN B. COMPANY2 AND MIQUEL CANALS4
1Universidad Católica del Norte, Millennium Nucleus of Ecology and Sustainable Management of Oceanic Island (ESMOI), Larrondo 1281, Coquimbo, Chile, 2Institut de Ciencies del Mar (ICM-CSIC), Passeig Maritim de la Barceloneta, 37-49, 08003 Barcelona, Spain, 3SENERGY, Postboks 720 Sentrum, NO-4003 Stavanger, Norway, 4Departament d’Estratigrafia, GRC Geociències Marines, Paleontologia i Geociències Marines, Facultat de Geologia, Universitat de Barcelona (UB), Martí i Franquès s/n, 08028 Barcelona, Spain, 5Norwegian Institute for Water Research (NIVA), Gaustadalleen 21, N-0349 Oslo, Norway, 6Centre d’Estudis Avançants de Blanes (CEAB-CSIC), Accés a la Cala Sant Francesc 14, 17300 Blanes (Girona), Spain

This study reports the composition and distribution of demersal megafauna from various north-western Mediterranean submarine areas such as canyons, seamounts and landslides between 60–800 m depth, based on remotely operated vehicle (ROV) observations. From a total of 30 h of video, 4534 faunistic observations were made and analysed in relationship to environmental factors (i.e. topography, substrate type and depth). In addition, anthropogenic impact was quantified by grouping observations in four categories: fishing nets, longlines, trawl marks and other litter. The different targeted environments showed similarities in faunal composition according to substrate, depth and topography. Our results also indicated the presence of anthropogenic impact in all the sampled areas in which litter and trawl marks were the most observed artefacts.

Keywords: North-western Mediterranean, ROV, submarine canyons, seamounts, landslides, faunal composition, anthropogenic impact, behaviour, benthos

Submitted 21 March 2016; accepted 6 March 2017; first published online 17 April 2017

INTRODUCTION

The identification of deep-sea ‘essential habitats’ is currently a major focus of European Community research programmes with the aim of furthering the conservation and management of benthic biodiversity (Salomon, 2009). In this context, faunistic surveys in cold seeps, mud volcanoes, seamounts and canyons as ‘hot spots’ for local biodiversity are of strategic relevance in the global context (Orejas et al., 2009; Fabri et al., 2014; Angeletti et al., 2015). In this scenario, in situ video observations of Mediterranean deep-sea fauna are still much reduced in comparison to those conducted to date in other oceans (Cunha de Jesus & Cancela da Fonseca, 1999; Stein et al., 2005; Buhl-Mortensen & Buhl-Mortensen, 2008). Nevertheless, the deep Mediterranean Sea hosts a complex collection of geologically and ecologically relevant environments that can vary across the short geographic scale of a few kilometres, hence resulting in a potentially highly variable faunal composition (Cartes et al., 2009; Orejas et al., 2009; Papiol et al., 2012; Fanelli et al., 2013; Mecho et al., 2014) that remains, to date, largely unknown in several areas, including the north-western (NW, hereafter) Mediterranean Sea (Danovaro et al., 2010).

Three distinctive geomorphological structures mostly occur in the NW basin: canyons, seamounts and open slopes. Large submarine canyons, deep incisions in the continental margin, occur just a few miles off the coastline in close proximity to each other. Canyons concentrate and then funnel downward all sediment, including organic particles (Puig et al., 2003; Canals et al., 2006; Company et al., 2012), hence affecting the local current regimes (Flexas et al., 2008; Bahamon et al., 2011). Their biodiversity has been the object of intense research in the past two decades in various oceans (Company et al., 2008; McClain & Barry, 2010; Duffy et al., 2014). Seamounts, defined as topographic structures that rise above the surrounding seafloor, also occur in the Mediterranean basin (Acosta et al., 2003). Typically, their morphology is characterized by an exposed hard substratum that makes them ideal spots for sessile filter-feeder fauna (Koslow, 1997; Samadi et al., 2006; Howell et al., 2010). Finally, a third type of structure is represented by muddy landslides which occur on continental shelves and slopes, resulting in mud plains with several outcrops (Camerlenghi et al., 2010). A broad knowledge of species distribution and biodiversity within these various different geomorphologies is still poor for the NW Mediterranean, with some areas (e.g. certain canyons...
or, in general, the slopes) more studied than others, relative to the commercial trawl fisheries. In these areas, scientific surveys have been conducted in an attempt to achieve faunal data for the integrated management of exploited stocks (Abello et al., 2002; De Mol et al., 2008; Bahamon et al., 2009). In general, one should bear in mind that most NW Mediterranean areas are presently threatened by a highly diversified typology of anthropogenic impacts. These are not only related to the commercial fishery itself (e.g. trawling) as well as lost or discarded gears and longlines: Martín et al., 2008; Ramirez-Llodra et al., 2010; Puig et al., 2012), but also from the accumulation of litter (Galgani et al., 1996; Hess et al., 1999; Ramirez-Llodra et al., 2013), whose decomposition acts on the metabolism of species and on the dynamics of the resulting trophic webs (Koenig et al., 2012, 2013a, b). For all these reasons, anthropogenic impacts on deep-sea ecosystems are presently a source of concern for both the science community and policymakers everywhere (Miyake et al., 2011; Ramirez-Llodra et al., 2011; Woodall et al., 2015).

ROV video-imaging surveys have increased worldwide in recent years as an efficient survey methodology, delivering key faunistic data on species composition, ethology and overall anthropic impacts (Galgani et al., 2000; Miyake et al., 2011; Ramirez-Llodra et al., 2011; Fabri et al., 2014; Mecho et al., 2014), in an ecologically more ethical manner (i.e. with no damage to the explored environments, unlike trawling). In this context, the objective of the present study is to describe, by means of ROV imagery, the megabenthic communities of various deep-sea geomorphological areas within the NW Mediterranean. Fauna from one canyon, two seamounts and two landslides were observed and quantitatively described. In addition, we quantified anthropogenic impact within each area, reporting at the same time relevant ethological observations, as an important ecological by-product of this exploration.

MATERIALS AND METHODS

Data collection

The ROV ‘Max Rover II’ of the Hellenic Centre of Marine Research (HCMR) was used to conduct visual observations during the research cruise EUROLEON, which was conducted in October 2007 on Mediterranean Spanish waters aboard the RV ‘BIO Hespérides’. The ROV was equipped with two wide-angle colour CCD cameras with a resolution of 3.2 Mpixel, 1Gb, offering a frontal and a lateral view, plus a third with a macro-zoom. Lighting was provided by 2 × 100 W HID lights and 4 × 150 W quartz lights. The ROV speed and height above the seabed during filming operations were ~1.2 knots and 1.5–2.0 m, respectively. The resolution was constant along transects. The limit of detection depended on the ROV distance to the bottom. In some cases, the presence of mud clouds could result in a diminution of the limit detection.

Seven transects (hereafter termed ‘dives’) were conducted for a total of 14.5 km surveyed (equivalent to a total of 30 h of video; Table 1). Three different NW Mediterranean distinct geomorphological zones were inspected (Figure 1): the continental margin off Blanes, the Gulf of Valencia, and the Eivissa Channel (also known as Ibiza Channel). In particular, dives occurred as follows (see Table 1): dives 1 (41°38′N – 02°52′E) and 2 (41°39′N – 02°53′E) at the head of the Blanes canyon; dive 3 on an unreported seamount in the Gulf of Valencia (39°50′N – 00°17′E); and dives 4–7 in the Eivissa Channel. In particular, for this latter area, two dives (4 and 5; 38°39′N – 00°55′E) were conducted along a small flat-topped seamount, and the other two (dives 6 and 7; 38°41′N – 00°50′E) were performed close to the escarpments of two large submarine landslides (named Jerse and Ana; Lastras et al., 2004; Berndt et al., 2012; Lafuerrza et al., 2012).

Data processing and analysis

All video footages considered for animal taxonomic identification and counting were obtained with the frontal camera and inspected in a time lapse mode (i.e. at 50% of acquisition rate). Video analysis was conducted using the software application Intervideo WinDVD 9.0 (Windows). All observed organisms larger than 5 cm were identified as faunistic entries (i.e. smaller animals were not visible), being classified to the lowest taxonomic level as possible. For a more precise taxonomic determination, digital frames were extracted after video partitioning. Classification was accomplished by the use of current taxonomic guides for the Mediterranean (Zarikuey, 1968; Riedl, 1983; Mercader et al., 2001).

Data on faunal composition were annotated according to their timing of occurrence in the video footage (hence allowing correlation with ROV navigation data for a precise geographic positioning) along with concomitant annotations on the substrate type, classified as mud, rock, sand, and coral rubble, as well as on anthropogenic artefacts.

Data analyses were carried out considering faunical entries grouped within classes, to avoid those classification mistakes that may occur in ROV studies when attempting a more precise classification when no concomitant sampled specimens
are available for comparison. Faunistic comparisons among different substrate types and depth ranges were carried out by grouping class entries by 100 m of ROV navigation track distance. Then, faunal data were compared across different geomorphologies. The same analysis was performed for anthropogenic impact.

Although all our statistical analyses were performed with class-level data (see below), for a better visualization of faunistic spatial trends, the numbers of individuals were plotted each 100 m according to the five most frequently observed phyla (Porifera, Cnidaria, Echinodermata, Brachiopoda and Chordata) and subphyla (i.e. Crustacea) and represented along the dive in the Appendix section. Finally, behavioural observations were reported and classified when occurring in videos more than twice (Stoner et al., 2008).

Statistical methods
The level of similarity of class sampling composition among 100 m splits within a dive and among dives in the same or different geomorphological areas was assessed using the Non-metric Multidimensional Scaling (NMDS) method (Minchin, 1987). The function metaMDS in the ‘vegan’ library in R (Oksanen et al., 2013) was used to find both non-parametric relationships and Bray–Curtis dissimilarities between classes. To fit the area parameters (gradients of depth, type of substrate and anthropogenic impact) to taxa ordination, two functions in the vegan library were used. The function ‘envfit’, based on permutation tests, allowed fitting centroids of the levels of the factor variables ‘sediment type’ and ‘study area’ into the ordination of the taxa. The variable ‘anthropogenic impact’ was not significant. Therefore, it was not plotted onto the taxa ordination. Finally, the function ‘ordisurf’, based on thinplate splines (Wood, 2003) with cross-validation selection of smoothness (Marra & Wood, 2011), allowed fitting smooth surfaces for the continuous variable ‘depth’ onto the taxa ordination using restricted maximum likelihood (REML) as smoothing parameter estimation method.

RESULTS

General remarks
We observed a total of 4534 individuals, considered different faunistic entries (Table 2) in the various geomorphological areas surveyed (i.e. canyon, seamount and landslide) (see Figure 1). A comprehensive list of these entries, classified to the species level (when possible), is provided in Appendix 1. The fauna belonging to the classes Actinopterygii, Malacostraca and Anthozoa were the most abundant, representing 24%, 20% and 14% of all observations, respectively (see Figure 2). The class Demospongiae was less abundant (12%), with an occurrence similar to those of Rhynchonellata (11%) and Scyphozoa (9%). The abundance

Table 1. Depth range (m) and surveyed seafloor (km) of the seven ROV dives conducted in different geomorphological deep-sea zones of the NW Mediterranean.

Dive	Location	Area	Substrate type	Depth Range	Coordinates	Surveyed area
1	Blanes	Canyon	Mud + Sand	70–450	41°38’N 02°52’E	2.5
2	Blanes	Canyon	Mud + Sand	60–450	41°39’N 02°53’E	0.7
3	Gulf of Valencia	Seamount	Mud + Rock	450–800	39°36’N 00°17’E	3.7
4	Eivissa Channel	Seamount	Sand + Rock	280–500	38°39’N 00°55’E	0.6
5	Eivissa Channel	Seamount	Sand + Rock	196–250	38°39’N 00°55’E	2.2
6	Eivissa Channel	Landslide	Mud + Rock + CoR	575–600	38°41’N 00°50’E	2.0
7	Eivissa Channel	Landslide	Mud	650–700	38°41’N 00°50’E	2.8

Typologies of observed substrate: CoR, coral rubble; Mud; Sand and Rock.

Table 2. Number of individuals by class observed at each geomorphological area.

Class	Canyon	Seamount	Landslide	Total
Demospongiae	5	546	5	556
Hidrozoa	1	26	4	31
Anthozoa	248	354	21	623
Scyphozoa	3	176	207	386
Polychaeta	40	29	8	77
Echiuroidea	5	14	3	22
Bivalvia	16	2	0	18
Gastropoda	4	21	3	28
Cephalopoda	0	0	12	12
Malacostraca	204	228	460	892
Rhynchonellata	56	429	2	487
Crinoidea	3	9	3	15
Asteroidea	17	1	0	18
Ophiuroidea	0	18	136	154
Echinoida	8	4	0	12
Holothuroidea	21	56	8	85
Thaliacea	1	2	2	5
Elasmobranchi	3	2	0	5
Actinopterygii	157	373	578	1108
TOTAL	792	2290	1452	4534

Fig. 2. Percentage per class of total faunistic observations.
of all other remaining invertebrate classes was less than 3% each.

NMDS results showed the presence of a significant effect of depth on species ordination, taking all the inspected areas both together and within each area (see Figure 3). Area and sediment type were significantly related to the class ordination only when areas were considered together (Table 3; see Case 1). No significant effect of anthropogenic factors was found. When we considered all the classes in the three areas taken together (see Figure 3A), we observed that Asteroidea,

![Fig. 3. Spatial ordination of class composition and abundances related to depth (m; grey curves), and sediment types, for (A) all the habitats together; (B) Canyon; (C) Seamount; (D) Landslide.](image)

Study case	Environmental variable	Type of data	P-value method	P-value	r²
1. Taxa in all habitats	Habitat	Factor	Permutations	0.036*	0.11
	Sediment	Factor	Permutations	0.002*	0.24
	Depth	Continuous	REML	<0.001*	0.31
	Anthropogenic impact	Vector	Permutations	0.759	0.01
2. Taxa in the canyon	Sediment	Factor	Permutations	0.788	0.02
	Depth	Continuous	REML	<0.001*	0.02
	Anthropogenic impact	Vector	Permutations	0.211	0.17
3. Taxa in the seamount	Sediment	Factor	Permutations	0.041*	0.33
	Depth	Continuous	REML	<0.001*	0.29
	Anthropogenic impact	Vector	Permutations	0.068	0.54
4. Taxa in the landslide	Sediment	Factor	Permutations	0.026	0.33
	Depth	Continuous	REML	<0.001*	0.46
	Anthropogenic impact	Vector	Permutations	0.078	0.56

Data type determined methods for calculating P-values (permutations test and restricted maximum likelihood – REML).
*indicates significant (P ≤ 0.05) values.
Echinoidea and Holothuroidea were associated with shallower sandy areas, whereas Ophiuroida, Crinoidea and Cephalopoda occurred primarily in deeper zones on muddy flat slopes.

Canyon head

A total of 792 faunistic observations were made on the western flank of the Blanes canyon head (see Table 2 and Figure 1). Both dives were similar in setting, with the exception of the southern dive 2, which crossed an area with a steeper slope in its deepest section. Two types of substrates were observed: a muddy area in the deepest part and a sandy area with strong tanathocenosis (i.e. assemblages of dead shells within the sediment), this latter on the shallower part of both dives 1 and 2. Globally, the class Anthozoa was the most reported in the Blanes Canyon head, with 31% of the total observations (Figure 4). This group also had the highest number of individuals per group (i.e. the Anthozoan *Pennatula* spp. with 158 observations, see Appendix 1). Class Malacostraca represented 26% of the total observations, most of them corresponding to the infraorder Brachyura (i.e. crabs). Malacostraca was followed by Actinopterygii (20%) and Rhynochelata (7%), with all the remaining classes representing less than 5% each.

On the western flank of the Blanes canyon head, we could distinguish three different faunistic distributions (Appendix 2) coinciding with depth and slope changes. The deepest part surveyed (450–250 m) showed a low number of observations and a high number of classes. In general, canyon dives showed a two-step slope change at 250–300 m and 150 m depths. The deeper areas with steep muddy slopes were dominated by crustaceans. From 150 to 60 m depth, the seafloor is covered by motile fauna such as classes Malacostraca and Echinoidea and was related to subtle changes of slope and substrate.

Seamount

Two seamount dives were analysed (see Figure 1), one in the Gulf of Valencia and the other in the Eivissa Channel (see Table 1). The first seamount presented a conical morphology surrounded by a muddy plain. A total of 10 h of images were recorded at this site. The second seamount, in the Eivissa Channel was surveyed separately on its eastern flank and on its flat top. The results are described separately below for each seamount, and a general analysis is then presented for both seamounts.

The Gulf of Valencia seamount rises from a depth of 800 m (Appendix 3). Its top is at 450 m. It was characterized by two types of substrates: a rocky area constituted by steep slopes combined with rocky substrata (from 450 to 600 m depth) and a large muddy plain surrounding the rocky area, from 600 to 800 m depth. A significantly denser concentration of benthic fauna was observed in the shallowest rocky areas (Appendix 3A), in contrast with a drastic diminution of that fauna toward the deepest muddy zones (Appendix 3B). The seamount presented two well-separated faunistic distributions, which were related to these substrates and depth. The rocky substratum was located on the flank of the seamount (Appendix 3A) and presented a fauna composed basically of benthic species of the classes Demospongiae (31% of the total observations within the rocky area), Anthozoa (25%, benthic species such as corals, anemones and gorgonians) and Brachiopoda (28%). The second substratum, the muddy plain surrounding the rocky area (Appendix 3B), was dominated by crustaceans of the class Malacostraca (33% of the total observations), the class Actinopterygii (32%) and Anthozoa (mostly deep-sea anemones of the genus *Cerianthus*, 22%). In the case of the muddy plain, the distribution of the benthic communities was patchy along the dive and was related to subtle changes of slope and substrate (Appendix 3B).

On the Eivissa Channel seamount (see Figure 1), two areas were studied: the upper slope (flank) and the flat top (Appendix 4). At its bottom, we observed a flat area mainly composed of mud with boulders (Appendix 4A). This area was dominated by motile fauna such as classes Malacostraca (24% of the total flank observations) and Actinopterygii (22%), but included also sessile fauna (24%, as benthic cnidarians on cobbles). Moving upwards, the flank was constituted by rocky outcrops dominated by the benthic classes Demospongiae (14%) and Rhynochelata (8%).

Dive no. 5, over the flat top of the Eivissa Channel seamount encompassed only one substratum type, a bioclastic sand with sparse rocky outcrops (Appendix 4B). This transect covered the shallowest parts (196–250 m depth) of the surveyed area, and it was dominated by motile fauna, including Actinopterygii (48%), class Scyphozoa (26%, mainly *Pelagia*...
The different faunal groups identified fit well with the topographic features recognized on the bathymetry (see Appendix 5A, B). Landslide scars, deposits and undisturbed seafloor had different phyla compositions and abundances. The most observed fauna in the scars were the crustaceans of the class Malacostraca. Pelagic cnidarians (order Coronatae) and ophiurans (brittle stars) dominated the undisturbed sea-floor. Finally, crustaceans and ophiurans dominated the landslide deposits. These observations were supported by an NMDS analysis. In the landslide area (see Figure 3D), this analysis indicated that depth significantly influenced class composition (see also Table 3). In contrast, both the substrate type and anthropogenic impact did not influence the detected faunal distributions.

Anthropogenic impact

A noticeable level of anthropogenic impact was observed in all studied zones, with 158 recorded artificial objects of various types detected. These items included plastic bags, cans and bottles (see Figure 5A). Trawl marks were also consistently observed (see Figure 5B). Finally, lost or discarded fishing gears were also detected, including longlines (see Figure 5C) and the remains of hauling fishing nets (see Figure 5D).

Overall, litter was the most abundant observation (39%), followed by trawl marks (30%) and longlines (28%), with lost or discarded nets being less abundant (3%) (Figure 6A). In the canyon head, plastic bags and bottles represented 79% of the total observations, whereas longlines represented only 14%. A minority of the observations (7%) were related to trawl marks. No fishing nets were detected (see Figure 6B). On the seamounts and their surrounding areas, 58% of the anthropogenic impact referred to the presence of longlines, with a significant amount of other litter (22%), trawl marks (16%), and only 4% of discarded fishing nets (see Figure 6C). On the landslides, ~ half (45%) of the total anthropogenic observations were represented by trawl marks and other litter (44%), with longlines (9%) and fishing nets (3%) less representative (see Figure 6D).

Submarine landslide

Two submarine landslides (Jersi and Ana) were surveyed in the Eivissa Channel (see Figures 1 and Table 1). The landslide scars were made up by consolidated sediments and, in the Jersi, even rocky pebbles and coral rubble were observed. The depositional areas were instead composed of mud, similar in gross morphology to the undisturbed upslope area (i.e. above the scars). As for the seamount, the results are described first separately for each landslide and then in general terms (including both landslides).

When we considered the landslides separately, we found Jersi dominated by the classes Malacostraca (60% of the total observations of this landslide) and Actinopterygii (19%). None of the other groups exceeded 8% in this landslide. We observed an increase of crustaceans on the scar area in front of the depositional area. Nonetheless, this landslide presented a generally constant faunal composition along all its surveyed area (Appendix 5A).

The substratum along the Ana landslide was mostly mud (Appendix 5B). The sediment along the scar appeared more consolidated. Actinopterygii (44% of the total observations of this landslide) dominated that area, followed by the classes Malacostraca (24%), Scyphozoa (19%) and Ophiuroidea (10%). The latter class was more abundant here than on the mud plain.

Considering both landslides together, the most representative groups were the classes Actinopterygii and Malacostraca, representing 40% and 32% of the total observations, respectively (see Figure 4C), followed by Scyphozoa and Ophiuroidea (respectively 14% and 9%). The other classes represented 5% of all the observations.

Behavioural observations of identified species

Several behavioural observations were made for motile fauna during the ROV surveys. Within the class Malacostraca, individuals of the family Galatheoidea were observed to maintain their positions, extending forward their claws as the ROV approached, suggesting the performance of territorial and aggressive defence behaviour. Burrowing behaviour was observed in an isolated individual of Norway lobster (Nephrops norvegicus, Linnaeus, 1758) at 670 m depth (see Figure 7A). This animal showed motile activity in relationship to the patrolling of different burrow entrances, entering and exiting from them. Another behaviour displayed by Malacostraca was related to camouflage. This was observed in six individuals of the crab Paromola cuvieri (Risso, 1816), which were carrying white plastic bags and other artefacts on their carapace (see Figure 7B, C).

Fish behaviour was also noted in relationship to their reactions to the approaching ROV. Evasion was typically observed in individuals of the family Macrouridae (see Figure 7D), while other fishes (i.e. order Scorpaeniformes) did not show alterations in their behaviour. Schooling behaviour was reported for Trachurus sp. (Linnaeus, 1758), Pagellus bogaraveo (Brünich, 1768), Capros aper (Linnaeus, 1758) and Lepidopus caudatus (Euphrasen, 1788) (see Figure 7E).

Finally, a peculiar observation was reported in relation to jellyfishes, mostly Pelagia noctiluca (Forsskål, 1775) and specimens from the order Coronatae, which were observed swimming a few centimetres over the seabed. In particular, small groups of P. noctiluca were observed touching the seafloor over the top of the flat seamount in the Eivissa Channel (see Figure 7F).
DISCUSSION

We conducted ROV video-observations of the benthic communities inhabiting a group of diverse geomorphological areas in the NW Mediterranean Sea for which poor faunistic information is to date available. Classes’ composition was mostly related to canyon, seamount and landslide in a site-specific manner. Anyway, depth was the principal parameter that shaped the zonation in our faunistic observations as already reported for other Mediterranean areas (D’Onghia et al., 2003). This parameter constrained the presence of some species at certain locations, in a fashion that appeared

Fig. 5. Different types of anthropogenic impact observed. (A) Litter; (B) Trawl marks; (C) Longlines; (D) Fishing net.

Fig. 6. Percentage of total anthropogenic impact observed in the study and in each area. (A) Total anthropogenic impact detected in all areas; (B) Canyon; (C) Seamount; (D) Landslide.
to be independent of the different geomorphological character of the surveyed area and the type of substrate. For example, some shallow-water species, i.e. the anthozoan *Pennatula rubra* (Ellis, 1761), the asteroid *Anseropoda placentia* (Pennant, 1777), and the holothurian *Parastichopus regalis* (Cuvier, 1817), were never observed in deeper areas, even when suitable substrata were available, confirming species distribution ranges as observed by trawling (Sardà et al., 1994; Moranta et al., 1998; D’Onghia et al., 2003). Similarly, deep-living and highly motile species such as shrimps of the genus *Plesionika* spp. or fishes belonging to the order Stomiiformes and those within the family Myctophidae were only observed below a depth threshold.

Substrate type also plays a strong role in driving species composition in different geomorphological areas within a certain geographic region. Recurrent species composition across geography is of importance for the establishment of canyons, open slope, seamount and landslides as valid seascapes (Longhurst, 1998; Levin et al., 2010). According to these considerations, we decided to discuss our results separately for each geomorphological zone.

Canyons

The majority of the observations in the Blanes canyon corresponded to sessile fauna such as anemones, sea pens and fans, or tubeworms. All these taxonomic groups are suspension feeders and are common in canyons of the Catalan margin (Ramirez-Llodra et al., 2008, 2010; Company et al., 2012). A variable topography and physical characteristics has profound effects on the community structure within the canyon itself and in the surrounding slope areas (Genin 2004; Tecchio et al., 2011, 2013; Company et al., 2012; Papiol et al., 2012; Fanelli et al., 2013). In the specific case of Blanes canyon, an internal downstreaming flux of sediment takes place at a rate three times higher than on the surrounding open slope (Zúñiga et al., 2009).

Seamounts

Faunistic differences between the Gulf of Valencia and the Eivissa Channel seamounts were observed. These differences are related to their topographic characteristics and depth, in turn influencing substrate types, local hydrography, and, most likely, food availability. The seamount of Valencia, with its conical shape, presented a sponge’s community and a hard coral fauna, related to the abundance of hard substrate. On the other hand, the flat and shallower (195–250 m) topped seamount in the Eivissa Channel presented a dominance of motile fauna such as crustaceans and fishes, most likely associated with the shallow depth and the bioclastic sand.

Landslides

On the Eivissa Channel, two small submarine landslides and pockmarks were reported (Lastras et al., 2004). We considered them to be mud plains or slopes with escarpments because they were too old in geological time to presently still affect the community colonization (Lastras et al., 2004). Crustaceans and fishes dominated the faunal assemblages of both landslides, corroborating the preference of motile fauna for these types of geomorphologies. In fact, our results agree with those proposed by previous studies employing different sampling strategies (e.g. otter and Agassiz trawls) in these areas, highlighting these groups as the most abundant in terms of biomass (Stefanescu et al., 1993; Sardà et al., 1994; Abelló et al., 2002). Moreover, a high proportion of predators (fishes and cephalopods) were observed in both areas.

Anthropogenic impact

The Mediterranean Sea has been a human thoroughfare since pre-history time and hosts some of the most ancient coastal settlements along its coastlines, which are currently densely populated (Longhurst, 2007). As a result, it has been affected by all types of anthropogenic impacts for a longer time than
other seas (Ramirez-Llodra et al., 2013). Here, we observed noticeable levels of human impact, not only in relation to commercial fishery activity, but also to littering. We noticed several trawl marks as a proxy of intensive and repetitive fishing activity on canyon walls between 400–700 m. That activity produces a resuspension of sediment, which is mobilized towards deep areas with a potential significant impact on deep-sea communities (Palanques et al., 2006; Martin et al., 2008). The continuous trawling over the seafloor on the Catalan slope has had a ploughing effect on the seafloor, resulting in a change of the seabed geomorphology and characteristics (Puig et al., 2012).

Recent studies in this region reported biodiversity and community composition differences between fished and non-fished areas, with a decrease of sessile species in impacted zones (Ramirez-Llodra et al., 2008, 2010). Flat-topped sea hills and seamounts may present a modified faunal composition in relation to a previous undisturbed status (Clark et al., 2010), primarily caused by the impact of commercial fishing activity (Pham et al., 2014). In the present case, trawl marks were also observed at the top of the flat seamount. In our study area, we observed evidence of different fishing activities on both seamounts (not quantified here). There was a large amount of lost longlines (targeting fishes) tangled on the rocky substrate of the Gulf of Valencia seamount, while the flat-topped Eivissa Channel seamount presented a higher abundance of trawl marks (targeting mostly decapod crustaceans such as the red shrimp, Aristeus antennatus (Risso, 1816) (Garcia Rodriguez & Esteban, 2008)).

Floating litter was observed in the Eivissa Channel landslides. Plastic bags accumulated in depressions such as poomarks. This floating litter was also observed in Blanes canyon, where currents usually transport them from shallower to deeper areas. The impact of marine litter on deep-sea habitats is being addressed by several international initiatives (Galgani et al., 2006; Ramirez-Llodra et al., 2011, 2013; Pham et al., 2014). These studies provide a distribution of marine litter and its potential effects on the habitat and fauna, such as suffocation, physical damage to fragile sessile fauna (e.g. sponges, cold water corals) or the ingestion of microplastics in the NW Mediterranean Sea. Other studies have addressed the chemical contamination on deep-water fauna (Rolland et al., 2006; Koenig et al., 2013a, b) and sediments (Abi-Ghanem et al., 2013). The presence of lost or discarded fishing nets is also often observed (Vertino et al., 2010; Ramirez-Llodra et al., 2013), resulting in ghost fishing for long time periods.

Behavioural observations

In this study, schooling behaviour of fishes was observed near seamounts, as reported in similar studies in other oceans (Clark, 1999). Conversely, on the muddy open slope, isolated individuals were usually detected. The reaction of fishes to the ROV approach varied depending on the species. As a first instance, all avoidance reactions could have been generated by a combination of strong illumination from lamps, water displacement around the ROV and vehicle-generated noise. In relation to the absence of behavioural reaction detected in some species at ROV approach (i.e. Polyprion americanus; Atlantic wreckfish), some questions arise about the ecological value of that passivity (Herring et al., 1999). Behavioural observations for fishes are becoming abundant as ROV studies increase, since species are well visible, often being the focus of these surveys (Trenkel et al., 2004; Davis & Chakrabarty, 2011; Ayma et al., 2016). Several studies in the Atlantic ocean compared trawl data with ROV video-surveys to evaluate biases produced by both sampling methods (Lorance & Trenkel, 2006). These studies showed that fish reaction and response to both ROV lighting and net approach generates a different bias-dependent effect on observations. In our case, the ROV does not seem to be perceived as a potential threatening stimulus by some species.

We observed four individuals of Paromola cuvieri as carrying human artefacts, as already reported in other areas (Braga-Henriques et al., 2011). This behaviour in the Mediterranean populations could be the result of the availability of litter in deep-sea areas. Plastic bag camouflage reported for the genus Paromola can be considered as a common behavioural trait for several other species of crabs (Bedini et al., 2003), although they usually use gorgonians as camouflage (Wicksten, 1985).

We observed seabed aggregation of the pelagic jellyfish Pelagia noctiluca according to previous findings (Cartes et al., 2013). This species is known to have nycthemeral (alternated water column day and night) migrations (Franqueville, 1970), and individuals were observed near the bottom on the top of seamounts, probably in relation to those movements (Boehlert, 1988). The presence of P. noctiluca in the benthic boundary layer indicates that this species, previously classified as fully pelagic, has instead a benthopelagic life habit (i.e. animals enter contact with the seabed sediment once over the 24-h cycle; sensu Aguzzi & Company, 2010). Another interpretation could be that our observations were the result of some mass deposition of dead jellyfishes, probably resulting from some sort of schooling on the water column, which could be, potentially, a common behaviour in these animals (Billett et al., 2006).

The different targeted environments showed faunal composition according to substrate, depth and topography. This aspect justifies a seascape approach in further ecosystem studies within north-western Mediterranean deep-sea areas. Several canyons, seamounts and landslides with the same characteristics could be classified as seascape units because they share similar compositions and distributions of taxonomic groups. This would allow faunistic predictions in other presently unexplored but similar western Mediterranean areas.

SUPPLEMENTARY MATERIAL

The supplementary material for this article can be found at https://doi.org/10.1017/S0025315417000431

ACKNOWLEDGEMENTS

We thank the Officers and crew of ‘BIO Hespérides’ and the ROV ‘Max Rover’ technical team from HCMR. Dr K. Ballesteros helped with faunal observations. Finally, we would like to thank C. Rivera-Rondón for discussions held regarding data structure and analysis smoothing the way to successful data processing. Jacopo Aguzzi is Theme Leader of the ‘Life in the North-East Pacific’ for the NEPTUNE network (Ocean Network Canada-ONC).
REFERENCES

Abelló P., Carbonell A. and Torres P. (2002) Biogeography of epibenthic crustaceans on the shelf and upper slope of the Iberian Peninsula Mediterranean coasts: implications for the establishment of natural management areas. Scientia Marina 66, 183–198.

Aghiem C., Nahl H., Khalaf G. and Cossa D. (2011) Mercury distribution and methylmercury mobility in the sediments of three sites on the Lebanon coast, eastern Mediterranean. Archives of Environmental Contamination and Toxicology 60, 394–405.

Acosta J., Canals M., López-Martínez J., Muñoz A., Herranz P., Urgeles R., Palomo C. and Casamor J.L. (2003) The Balearic Promontory geomorphology (western Mediterranean): morphostructure and active processes. Geomorphology 49, 177–204.

Aguzzi J., Company J.B., Costa C., Matabos M., Azzurro E., Manuel A., Menesatti P., Sarda F., Canals M., Delory E., Cline D., Favallo P., Juniper K.S., Furushima Y., Fujinara Y., Chiesa J.J., Marotta L., Bahamon N. and Prieto I.M. (2010) Activity rhythms in the deep-sea crustacean: chronobiological challenges and potential technological scenarios. Frontiers in Bioscience 16, 131–150.

Angeletti L., Mecho A., Doya C., Micallef A., Huvenne V., Georgiopoulou A. and Taviani M. (2015) First report of live deep-water cnidian assemblages from the Malta Escarpment. Italian Journal of Zoology 82, 291–297.

Ayma A., Aguzzi J., Canals M., Lastras G., Bahamon N., Mecho A. and Company J.B. (2016) Behavioural observations of deep-water fauna in submarine canyons of the Northwestern Mediterranean Sea by ROV and Agassiz observations. Deep Sea Research Part I: Oceanographic Research 114, 149–159.

Bahamon N., Aguzzi J., Bernardello M., Ahumada-Senpolo A. and Huvenne V., Georgiopoulou A. and Taviani M. (2015) First report of live deep-water cnidian assemblages from the Malta Escarpment. Italian Journal of Zoology 82, 291–297.

Bahamon N., Sarda F. and Aguzzi J. (2009) Fuzzy die patterns in catchability of deep-water species on the continental margin. ICES Journal of Marine Science 66, 2211–2218.

Bedini R., Canali R.G. and Bedini R. (2011) Use of cloffing materials in some brachyuran crabs of the Mediterranean infralitoral zone. Cahiers de Biologie Marine 44. 375–383.

Berndt C., Costa S., Canals M., Camerlenghi A., De Mol B. and Saunders M. (2012) Repeated slope failure linked to fluid migration: the Ana submarine landslide complex, Eivissa Channel, Western Mediterranean Sea. Earth and Planetary Science Letters 319, 65–74.

Billett D., Bett B., Jacobs C., Rouse I. and Wingham B. (2006) Mass deposition of jellyfish in the deep Arabian Sea. Limnology and Oceanography 51, 2077–2083.

Boehlert G.W. (1988) Current-topography interactions at mid-ocean seamounts and the impact on pelagic ecosystems. Geofluids 16, 45–52.

Braga-Henriques A., Carreiro-Silva M., Tempera F., Porteiro F.M., Jakobsen K., Jakobsen J., Albuquerque M. and Serrão Santos R. (2011) Carrying behavior in the deep-sea crab Paromola caverni (Northeast Atlantic). Marine Biodiversity 42, 37–46.

Buhl-Mortensen P. and Buhl-Mortensen L. (2008) Occurrence of deepwater corals on the Mid-Atlantic Ridge based on MAR-ECO data. Deep Sea Research Part II: Topical Studies in Oceanography 55, 142–152.

Camerlenghi A., Urgeles R. and Fantoni L. (2010) A database on submarine landslides of the Mediterranean Sea. In Mosher D. et al. (ed.) Submarine mass movements and their consequences. Netherlands: Springer, pp. 503–513.

Canals M., Puig P., de Madron X.D., Heussner S., Palanques A. and Fabrés J. (2006) Flushing submarine canyons. Nature 444, 354–357.

Cartes J.E., Fanelli E., Lopez-Perez C. and Lebrato M. (2013) The distribution of deep-sea macropelleton (over 400 to 2300 m) at intermedi- ate and near bottom waters: relationships with hydrographic factors. Journal of Marine System 113–114, 75–87.

Cartes J.E., Maynou F., Fanelli E., Romano C., Maromourd V. and Papoulis I. (2009) The distribution of megabenthic, invertebrate epi- fauna in the Balearic Basin (Western Mediterranean) between 400 and 2300 m; environmental gradients influencing assemblages com- position and biomass trends. Journal of Sea Research 64, 244–257.

Clark M.R. (1999) Fisheries for orange roughy (Hoplostethus atlanticus) on seamounts in New Zealand. Oceanologica Acta 22, 593–602.

Clark M.R., Rowden A.A., Schlacher T., Williams A., Consalvey M., Stocks K.L., Rogers A.D., O’Hara T.D., White M., Shank T.M. and Hall-Spencer J.M. (2010) The ecology of seamounts: structure, function, and human impacts. Annual Review of Marine Science 2, 253–278.

Company J.B., Puig P., Sarda F., Palanques A., Latasa M. and Schark R. (2008) Climate influence on deep sea populations. PLoS ONE 3, e1431.

Company J.B., Ramirez-Lloreda E., Sarda F., Puig P., Canals M., Calafat A., Palanques A., Solé M., Sánchez-Vidal A., Martin J., Aguzzi J., Luestras G., Techio S., Koenig S., Fernandez de Arcaya U., Mecchio A. and Fernández P. (2012) Submarine canyons in the Catalan Sea (NW Mediterranean): megafaunal biodiversity patterns and anthropo- genic threats. In Mediterranean submarine canyons: ecology and gov- ernance. Gland and Malaga: IUCN, pp. 133–144.

Cunha de Jesus D. and Cancela da Fonseca L. (1999) First records of 13 echinoderm species on the southwest coast of Portugal. Boletín del Instituto Español de Oceanografía 15, 345–349.

D’Onghia G., Mastrofotaro F., Matease A., Politou C. and Metrione C. (2003) Biodiversity of the upper slope demersal community in the eastern Mediterranean: preliminary comparison between two areas with and without trawl fishing. Journal of Northwest Atlantic Fishery Science 31, 265–273.

Danovaro R., Company J.B., Corinaldesi C., D’Onghia G., Galil B., Gambi C., Gooday A.J., Lampadariou N., Luna G.M., Morigli C., Olu K., Polymenakou P., Ramirez-Lloreda E., Sabatini A., Sarda F., Sibuet M. and Tselepidis A. (2010) Deep-sea biodiversity in the Mediterranean Sea: the known, the unknown, and the unknowable. PLoS ONE 5, e11832.

Davis M. and Chakrabarty P. (2011) Tripodfish (Aulopiformes: Bathynopteroid) locomotion and landing behaviour from video observa- tion at bathypelagic depths in the Campos Basin of Brazil. Marine Biology Research 7, 297–303.

De Mol B., Huvenne V. and Canals M. (2008) Cold-water coral banks and submarine landslides: a review. International Journal of Earth Sciences 98, 885–899.

Duffy N.A., Lundsten L., Kuhnz L.A. and Paul C.K. (2014) A compari- son of megafaunal communities in five submarine canyons off Southern California, USA. Deep Sea Research Part II: Topical Studies in Oceanography 104, 259–266.

Fabri M., Pedel L. and Beuck L. (2014) Megafauna of vulnerable marine ecosystems in French Mediterranean submarine canyons: spatial dis- tribution and anthropogenic impacts. Deep Sea Research Part II: Topical Studies in Oceanography 104, 184–207.

Fanelli E., Cartes J.E., Papoulis I. and López-Pérez C. (2013) Environmental drivers of megafaunal assemblage composition and biomass distribution over mainland and insular slopes of the Balearic Basin (Western Mediterranean). Deep-sea Research Part I: Oceanographic Research Papers 78, 79–94.
Ramirez-Llodra E., Company J.B., Sardà F. and Rotllant G. (2010) Megabenthic diversity patterns and community structure of the Blanes submarine canyon and adjacent slope in the Northwestern Mediterranean: a human overprint? Marine Ecology 31, 167–182.

Ramirez-Llodra E., De Mol B., Company J.B., Coll M. and Sardà F. (2013) Effects of natural and anthropogenic processes in the distribution of marine litter in the deep Mediterranean Sea. Progress in Oceanography 118, 275–287.

Ramirez-Llodra E., Tyler P.A., Baker M.C., Bergstad O.A., Clark M.R., Escobar E., Levin L.A., Menot L., Rowden A.A., Smith C.R. and Van Dover C.L. (2011) Man and the last great wilderness: human impact on the deep sea. PLoS ONE 6, e22588.

Riedl R. (1983) Fauna and flora of the Mediterranean: a systematic marine guide for biologists and nature lovers. Hamburg: Omega.

Rotllant G., Abad E., Sardà F., Ábalos M., Company J.B. and Rivera J. (2006) Dioxin compounds in the deep-sea rose shrimp Aristeus antennatus (Risso, 1816) throughout the Mediterranean Sea. Deep Sea Research Part I: Oceanographic Research Papers 53, 1895–1906.

Salomon M. (2009) Recent European initiatives in marine protection policy: towards lasting protection for Europe’s seas! Environmental Science and Policy 12, 359–366.

Samadi S., Bottan L., Macpherson E., Forges B.R. and Boisselier M.C. (2006) Seamount endemism questioned by the geographic distribution and population genetic structure of marine invertebrates. Marine Biology 149, 1463–1475.

Sardà F., Cartes J.E. and Company J.B. (1994) Spatio-temporal variations in megabenthos abundance in three different habitats of the Catalan deep-sea (Western Mediterranean). Marine Biology 120, 211–219.

Stefanesuc C., Lloris D. and Rucabado J. (1993) Deep-sea fish assemblages in the Catalan Sea (western Mediterranean) below a depth of 1000 m. Deep Sea Research Part I: Oceanographic Research Papers 40, 695–707.

Stein D., Felley J. and Vecchione M. (2005) ROV observations of benthic fishes in the Northwind and Canada Basins, Arctic Ocean. Polar Biology 28, 232–237.

Stoner A.W., Ryer C.H., Parker S.J., Auster P.J. and Wakefield W.W. (2008) Evaluating the role of fish behavior in surveys conducted with underwater vehicles. Canadian Journal of Fisheries and Aquatic Sciences 65, 1230–1243.

Tecchio S., Ramirez-Llodra E., Sardà F. and Company J.B. (2013) Seasonal fluctuations of deep megabenthos: finding evidence of standing stock accumulation in a flux-rich continental slope. Progress in Oceanography 118, 188–198.

Tecchio S., Ramirez-Llodra E., Sardà F. and Company J.B. (2011) Biodiversity of deep-sea demersal megafauna in Western and Central Mediterranean basins. Scientia Marina 75, 341–350.

Trenkel V., Francis R., Lorance P., Mahévas S., Rochet M. and Tracey D. (2004) Availability of deep-water fish to trawling and visual observation from a remotely operated vehicle (ROV). Marine Ecology Progress Series 284, 293–303.

Vertino A., Savini A., Rosso A., Di Geronimo L., Mastrototaro F., Sanfilippo R., Gay G. and Etope G. (2010) Benthic habitat characterization and distribution from two representative sites of the deep-water SML Coral Province (Mediterranean). Deep Sea Research Part II: Topical Studies in Oceanography 57, 380–396.

Wicksten M.K. (1985) Carrying behavior in the Family Homolidae (Decapoda: Brachyura). Journal of Crustacean Biology 5, 476–479.

Wood S.N. (2003) Thin plate regression splines. Journal of the Royal Statistical Society: Series B 65, 95–114.

Woodall L.C., Robinson L.F., Rogers A.D., Narayanaswamy B.E. and Paterson G.L.J. (2015) Deep sea litter?: a comparison of seamounts, banks and a ridge in the Atlantic and Indian Oceans reveals both environmental and anthropogenic factors impact accumulation and composition. Frontiers in Marine Science 2, 1–10.

Zariquiey R. (1968) Decápidos Ibéricos. Investigaciones pesqueras 24, 113–127.

and

Zúñiga D., Flexas M., Sanchez-Vidal A., Coenjaerts J., Calafat A., Jordà G., García-Orellana J., Puigdefàbregas J., Canals M., Espino M., Sardà F. and Company J.B. (2009) Particle fluxes dynamics in Blanes submarine canyon (Northwestern Mediterranean). Progress in Oceanography 82, 239–251.

Correspondence should be addressed to: A. Mecho
Universidad Católica del Norte, Millennium Nucleus of Ecology and Sustainable Management of Oceanic Island (ESMOI), Larrondo 1281, Coquimbo, Chile.
email: ariadna.mecho@ucn.cl