Bloom, Jonathan; Saracino, Dan

Rook and Wilf equivalence of integer partitions. (English) Zbl 1387.05014 Eur. J. Comb. 71, 246-267 (2018).

Summary: The subjects of rook equivalence and Wilf equivalence have both attracted considerable attention over the last half-century. In this paper we introduce a new notion of Wilf equivalence for integer partitions, and, using this notion, we prove that rook equivalence implies Wilf equivalence. We also prove that if we refine the notions of rook and Wilf equivalence in a natural way, then these two notions coincide. In J. Bloom and D. Saracino [Discrete Math. Theor. Comput. Sci. 18, No. 2, Article No. 9, 22 p. (2016); Zbl 1348.05027] we prove that Wilf equivalence implies rook equivalence.

MSC:
05A17 Combinatorial aspects of partitions of integers
11P81 Elementary theory of partitions

Keywords:
rook equivalence

Full Text: DOI arXiv

References:
[1] M. Albert, M. Bouvel, A general theory of Wilf-equivalence for Catalan structures, ArXiv e-prints, 2014.
[2] Barrese, K.; Loehr, N.; Remmel, J.; Sagan, B. E., sn-level rook placements, J. Combin. Theory Ser. A, 124, 130-165, (2014) · Zbl 1283.05010
[3] Barrese, K.; Loehr, N.; Remmel, J.; Sagan, B. E., Bijections on sn-level rook placements, European J. Combin., 57, 13-35, (2016) · Zbl 1393.05035
[4] Bloom, J.; Elizalde, S., Pattern avoidance in matchings and set partitions, Electron. J. Combin., 20, (2013) · Zbl 1267.05021
[5] Bloom, J.; Saracino, D., Pattern avoidance for set partitions à la klazar, Discrete Math. Theor. Comput. Sci., 18, 2, (2016), Permutation Patterns 2015 · Zbl 1348.05052
[6] J. Bloom, D. Saracino, On criteria for rook equivalence, (submitted for publication). · Zbl 1387.05014
[7] Bona, M., Combinatorics of permutations, (Discrete Mathematics and Its Applications (Boca Raton), (2012), CRC Press Boca Raton, FL), xiv+458, With a foreword by Richard Stanley · Zbl 1255.05001
[8] Briggs, K. S.; Remmel, J. B., sn-rook numbers and a generalization of a formula of Frobenius to $C_m \wr S_n$, J. Combin. Theory Ser. A, 113, 6, 1138-1171, (2006) · Zbl 1096.05007
[9] Burstein, A., Enumeration of words with forbidden patterns, (1998), University of Pennsylvania, (Ph.D. thesis)
[10] Foata, D.; Schützenberger, M., On the rook polynomials of Ferrers relations, (Colloq. Math. Soc. János Bolyai, Vol. 4, (1970), North-Holland, Publishing Co.), 413-436 · Zbl 1257.05001
[11] Godlman, J. R.; Joichi, J. T.; White, D. E., Rook theory. I. rook equivalence of Ferrers boards, Proc. Amer. Math. Soc., 52, 1, 485-492, (1975) · Zbl 0310.05002
[12] Kaplansky, I.; Riordan, J., The problem of the rooks and its applications, Duke Math. J., 13, 2, 259-268, (1946) · Zbl 0060.02903
[13] Kitaev, S., Patterns in permutations and words, (2011), Springer Science & Business Media · Zbl 1257.68007
[14] Klazar, M., On $s b a b s$-free and $s a b b a$-free set partitions, European J. Combin., 17, 1, 53-68, (1996) · Zbl 0840.05004
[15] Knuth, D., The art of computer programming. vol. 1, (1968), Addison-Wesley · Zbl 0191.17901
[16] Loehr, N., Bijective combinatorics, (Discrete Mathematics and Its Applications, (2011), Chapman and Hall/CRC) · Zbl 1258.00001
[17] MacMahon, P., Combinatory analysis, vol. 1, (1915), Cambridge University Press · Zbl 45.1271.01
[18] Remmel, J. B., Bijective proofs of some classical partition identities, J. Combin. Theory Ser. A, 33, 3, 273-286, (1982) · Zbl 0491.05002

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.