Stochastic Continuous Submodular Maximization: Boosting via Non-oblivious Function

Qixin Zhang1,2 Zengde Deng2 Zaiyi Chen2 Haoyuan Hu2 Yu Yang1

Abstract

In this paper, we revisit Stochastic Continuous Submodular Maximization in both offline and online settings, which can benefit wide applications in machine learning and operations research areas. We present a boosting framework covering gradient ascent and online gradient ascent. The fundamental ingredient of our methods is a novel non-oblivious function F derived from a factor-revealing optimization problem, whose any stationary point provides a $(1-e^{-\gamma})$-approximation to the global maximum of the γ-weakly DR-submodular objective function $f \in C_{\text{L}}$1(\mathcal{A})$. Under the offline scenario, we propose a boosting gradient ascent method achieving $(1-e^{-\gamma}-\epsilon^2)$-approximation after $O(1/\epsilon^2)$ iterations, which improves the $(\gamma^2/(1-e^{-\gamma}))$ approximation ratio of the classical gradient ascent algorithm. In the online setting, for the first time we consider the adversarial delays for stochastic gradient feedback, under which we propose a boosting online gradient algorithm with the same non-oblivious function F. Meanwhile, we verify that this boosting online algorithm achieves a regret of $O(\sqrt{D})$ against a $(1-e^{-\gamma})$-approximation to the best feasible solution in hindsight, where D is the sum of delays of gradient feedback. To the best of our knowledge, this is the first result to obtain $O(\sqrt{T})$ regret against a $(1-e^{-\gamma})$-approximation with $O(1)$ gradient inquiry at each time step, when no delay exists, i.e., $D = T$. Finally, numerical experiments demonstrate the effectiveness of our boosting methods.

1School of Data Science City University of Hong Kong, Kowloon Hong Kong, China 2Cainiao Network, Hang Zhou, China. Correspondence to: Yu Yang <yuyang@cityu.edu.hk>.

Proceedings of the 39th International Conference on Machine Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copyright 2022 by the author(s).

1. Introduction

Due to the relatively low computational complexity, first-order optimization methods are widely used in machine learning, operations research, and statistics communities. Especially for convex objectives, there is an enormous literature (Bertsekas, 2015; Nesterov, 2013) deriving the convergence rate of first-order methods. Recent studies have shown that first-order optimization methods could also achieve the global minimum for some special non-convex problems (Netrapalli et al., 2014; Arora et al., 2016; Ge et al., 2016; Du et al., 2019; Liu et al., 2020), although it is in general NP-hard to find the global minima of a non-convex objective function (Murty & Kabadi, 1987). Motivated by this, some recent work focused on the structures and conditions under which non-convex optimization is tractable (Bian et al., 2017; Hazan et al., 2016a). In this paper, we investigate the stochastic γ-weakly continuous submodular maximization problem where an unbiased gradient oracle is available under both offline and online scenarios.

Continuous DR-Submodular Maximization has drawn much attention recently due to that it admits efficient approximate maximization routines. For instance, under the offline deterministic setting, Bian et al. (2020; 2017) proposed the vanilla Frank-Wolfe method and its variant achieving $1/2$ and $(1-1/e)$ approximations, respectively. When the stochastic estimates of the gradient is available, Mokhtari et al. (2018) and Hassani et al. (2020) proposed some improved variants of the Frank-Wolfe algorithm, equipped with variance reduction techniques. In (Hassani et al., 2020), assuming the Lipschitz continuity of stochastic Hessian, a $[(1-1/e)OPT-\epsilon]$ solution is achieved using $O(1/e^2)$ stochastic gradient. Such a result provides the tightest approximation as well as the optimal stochastic first-order oracle complexity.

However, when generalizing Frank-Wolfe methods to the online setting, some other tricks should be involved, which makes the algorithm design more complicated. For example, Chen et al. (2018b) and Zhang et al. (2019) took the idea of meta actions (Streeter & Golovin, 2008) and blocking procedure to propose online Frank-Wolfe algorithms. Moreover, in these aforementioned studies, the environment/adversary reveals the reward and stochastic first-order information im-
mediately after the action is chosen by the learner/algorithm.
In practice, the assumption of immediate feedback might be
too restrictive. The feedback delays widely exist in many
real-world applications, e.g., online advertising (Mehta et al.,
2007), influence maximization problem (Chen et al., 2012;
Yang et al., 2016).

To tackle these issues, instead of Frank-Wolfe, we adopt
Gradient Ascent and aim to propose a uniform algorithmic
framework for both offline and online Stochastic Continuous
Submodular Maximization. To make the online setting
more realistic, we also consider adversarial feedback de-
lays (Quanrud & Khashabi, 2015). Note that our online
setting degenerates to the standard online setting if no delay
exists. One big challenge in front of us is that the sta-
tionary points of a γ-weakly submodular function f only
provide a limited $(\frac{\gamma^2}{1+\gamma^2})$-approximation to the global
maximum (Hassani et al., 2017). As a result, we need to boost
stochastic gradient ascent and its online counterpart (Has-
sani et al., 2017) as they only attain a $(\frac{\gamma^2}{1+\gamma^2})$-approximation.

To tackle this challenge, we hope to devise an auxiliary func-
tion whose stationary points provide a better approximation
guarantee than those of f itself. Motivated by (Filmus &
Ward, 2012; 2014; Feldman et al., 2011; Feldman, 2021;
Harshaw et al., 2019; Mitra et al., 2021), we first consider
a family of auxiliary functions whose gradient at point x
allocates different weight to the gradient $\nabla f(z * x)$ where $z \in [0, 1]$. By solving a factor-revealing optimization
problem, we select the optimal auxiliary function F whose sta-
tionary points provide a tight $(1 - e^{-\gamma})$-approximation to
the global maximum of f. Then, based on this optimal auxil-
ary function F, we propose a simple first-order framework
that makes it possible to boost the performance of classical
gradient ascent algorithm converging to stationary points.

Based on this boosting framework, we present a boosting
gradient ascent and a boosting online gradient ascent
to improve the approximation guarantees of vanilla gradient
ascent and its online counterpart. To be specific, we make the
following contributions:

1. We develop a uniform boosting framework, includ-
ing gradient ascent and online gradient ascent meth-
ods. The essential element behind our framework is an
optimal auxiliary function F derived from a factor-
revealing optimization problem for each γ-weakly DR-
submodular function f. The stationary points of F
provide a $(1 - e^{-\gamma})$-approximation guarantee to
the global maximum of f. This approximation is better
than the $(\frac{\gamma^2}{1+\gamma^2})$-approximation provided by stationary
points of f itself.

2. With this non-oblivious function F, under the off-
line setting, we propose the boosting gradient ascent
method achieving a $(1 - e^{-\gamma} - \epsilon^2)$-approximation
after $O(1/\epsilon^2)$ iterations, which improves the $(\frac{\gamma^2}{1+\gamma^2})$
approximation of the classical projected gradient as-
cent algorithm and weakens the assumption of high
order smoothness on the objective functions (Hassani
et al., 2020).

3. Next, we consider an online submodular maximization
setting with adversarial feedback delays. When an un-
biased stochastic gradients estimation is available, we
propose an online boosting gradient ascent algorithm
that theoretically achieves the optimal $O(1 - e^{-\gamma})$-regret
of $O(\sqrt{D})$ with one gradient evaluation for each f_t,
where $D = \sum_{t=1}^{T} d_t$ and d_t is a positive integer delay
for round t. To the best of our knowledge, our work
is the first to investigate the adversarial delays in on-
line submodular maximization problems. Moreover,
when $D = T$ for the standard no-delay setting, our
proposed online boosting gradient ascent algorithm,
requiring only $O(1)$ stochastic gradient estimate at
each round, yields the first result to achieve $(1 - e^{-\gamma})$-
approximation with $O(\sqrt{T})$ regret.

4. Finally, we empirically evaluate our proposed boosting
methods using the special example of (Hassani et al.,
2017) and the simulated non-convex/non-concave
quadratic programming. Our algorithms have supe-
orious performance in the experiments.

1.1. Related Work

Submodular Set Functions: Submodular set func-
tions originate from combinatorial optimization problems
(Nemhauser et al., 1978; Fisher et al., 1978; Fujishige,
2005), which could be either exactly minimized via Lovász
extension (Lovász, 1983) or approximately maximized via
multilinear extension (Chekuri et al., 2014). Submodu-
lar set functions find numerous applications in machine

Method	Setting	Hess Lip	Utility	Complexity
Submodular FW (Bian et al., 2017)	det.	No	$(1-1/e)OPT - \epsilon$	$O(1/e)$
Classical FW (Bian et al., 2020)	det.	No	$(1/2)OPT - \epsilon$	$O(1/e^2)$
SGA (Hassani et al., 2017)	sto.	No	$(1-1/e)OPT - \epsilon$	$O(1/e^2)$
SCG (Molitiari et al., 2018)	sto.	No	$(1-1/e)OPT - \epsilon$	$O(1/e^2)$
SCGve (Hassani et al., 2020)	sto.	Yes	$(1-1/e)OPT - \epsilon$	$O(1/e^2)$
Non-Oblivious FW (Mitra et al., 2021)	det.	No	$(1-1/e)OPT - \epsilon$	$O(1/e^2)$
Boosting GA (This paper)	sto.	No	$(1-1/e)OPT - \epsilon$	$O(1/e^2)$
Table 2. Comparison of regrets for stochastic online continuous DR-submodular function maximization with full-information feedback, where the functions are monotone and constraint set C is convex. Note that ‘# Grad. Evaluations’ means the number of stochastic gradient evaluations at each round. ‘Ratio’ means approximation ratio, and ‘Delay’ indicates whether the adversarial delayed feedback is considered. For simplicity, we set $\gamma = 1$ for our results which reduces to the standard monotone DR-submodular setting, and $D = T$ which means no delay exists.

Method	# Grad. Evaluations	Ratio	Regret	Delay
OGA (Chen et al., 2018b)	$O(1)$	$1/2$	$O(\sqrt{T})$	No
Meta-FW-VR (Chen et al., 2018a)	$T^{3/2}$	$1 - 1/e$	$O(\sqrt{T})$	No
Mono-FW (Zhang et al., 2019)	$O(1)$	$1 - 1/e$	$O(T^{1/3})$	No
Boosting OGA (This paper)	$O(1)$	$1 - 1/e$	$O(\sqrt{T})$	Yes

Continuous Submodular Maximization: Submodularity can be naturally extended to continuous domains. In deterministic setting, Bian et al. (2017) first proposed a variant of Frank-Wolfe (Submodular FW) for continuous DR-submodular maximization problem with $(1 - 1/e)$-approximation guarantee after $O(1/e)$ iterations. As for the stochastic setting, Hassani et al. (2017) proved that the stochastic gradient ascent (SGA) guarantees a $(1/2)$-approximation after $O(1/e^2)$ iterations. Then, Mokhtari et al. (2018) proposed the stochastic continuous greedy algorithm (SCG), which achieves a $(1 - 1/e)$-approximation after $O(1/e^3)$ iterations. Moreover, by assuming the Hessian of objective is Lipschitz continuous, Hassani et al. (2020) proposed the stochastic continuous greedy++ algorithm (SCG++), which guarantees a $(1 - 1/e)$-approximation after $O(1/e^5)$ iterations.

Online Continuous Submodular Maximization: Chen et al. (2018b) first investigated the online (stochastic) gradient ascent (OGA) with a $(1/2)$-regret of $O(\sqrt{T})$. Then, inspired by the meta actions (Streeter & Golovin, 2008), Chen et al. (2018b) also proposed the Meta-Frank-Wolfe algorithm with a $(1 - 1/e)$-regret bound of $O(\sqrt{T})$ under the deterministic setting. Assuming that an unbiased estimation of the gradient is available, Chen et al. (2018a) proposed a variant of the Meta-Frank-Wolfe algorithm (Meta-FW-VR) having a $(1 - 1/e)$-regret bound of $O(T^{1/2})$ and requiring $O(T^{3/2})$ stochastic gradient queries for each function. Then, in order to reduce the number of gradients evaluation, Zhang et al. (2019) presented the Mono-Frank-Wolfe taking the blocking procedure, which achieves a $(1 - 1/e)$-regret bound of $O(T^{4/5})$ with only one stochastic gradient evaluation in each round.

Non-Oblivious Search: In many cases, classical local search, e.g., the greedy method, may return a solution with a poor approximation ratio to the global maximum. To avoid this issue, Khanna et al. (1998) and Alimonti (1994) first proposed a technique named Non-Oblivious Search that leverages an auxiliary function to guide the search. After carefully choosing the auxiliary function, the new solution generated by the non-oblivious search, may have a better performance than the previous solution found by the classical local search. Inspired by this idea, for the maximum coverage problem over a matroid, Filmus & Ward (2012) proposed a $(1 - 1/e)$-approximation algorithm via a non-oblivious set function allocating extra weights to the solutions that cover some element more than once, which efficiently improves the traditional $(1/2)$-approximation greedy method. After that, Filmus & Ward (2014) extended this idea to improve the $(1/2)$-approximation greedy method for the general submodular set maximization problem over a matroid. Recently, for the continuous submodular maximization problem with concave regularization, a variant of Frank-Wolfe algorithm (Non-Oblivious FW) based on a special auxiliary function was proposed for boosting the approximation ratio of the submodular part from $1/2$ to $(1 - 1/e)$ in (Mitra et al., 2021). Compared to the proposed algorithm in this paper, i) The Non-Oblivious Frank-Wolfe method needs $O(1/e)$ gradient evaluations at each round under the deterministic setting, while our method only needs $O(1)$ evaluations per iteration under the stochastic setting; ii) The Non-Oblivious Frank-Wolfe method is designed only for the deterministic setting, while we present a uniform boosting framework covering the stochastic gradient ascent in both offline and online settings.

We present comparisons between this work and previous studies in Table 1 and Table 2 for offline and online settings, respectively.

2. Preliminaries

In this section, we define some concepts and notations that we will use throughout the paper.

2.1. Continuous Submodularity

Continuous Submodular Functions: A function $f : \mathcal{X} \to \mathbb{R}_+$ is a continuous submodular function if for any $x, y \in \mathcal{X}$,

$$f(x) + f(y) \geq f(x \wedge y) + f(x \vee y).$$

Here, $x \wedge y = \min(x, y)$ and $x \vee y = \max(x, y)$ are component-wise minimum and component-wise maximum, respectively. $\mathcal{X} = \prod_{i=1}^{n} \mathcal{X}_i$ where each \mathcal{X}_i is a compact interval in \mathbb{R}_+. Without loss of generality, we assume $\mathcal{X}_i = [0, a_i]$. If f is twice differentiable, the continuous
submodularity is equivalent to
\[\forall i \neq j, \forall x \in \mathcal{X}, \frac{\partial^2 f(x)}{\partial x_i \partial x_j} \leq 0. \]
Moreover, \(f \) is monotone if \(f(x) \geq f(y) \) when \(x \geq y \).

DR-Submodularity: A continuous submodular function \(f \) is DR-submodular if
\[f(x + ze_i) - f(x) \leq f(y + ze_i) - f(y), \]
where \(e_i \) is the \(i \)-th basic vector, \(x \geq y \) and \(z \in \mathbb{R}_+ \) such that \(x + ze_i, y + ze_i \in \mathcal{X} \). When the DR-submodular function \(f \) is differentiable, we have \(\nabla f(x) \leq \nabla f(y) \) if \(x \geq y \) (Bian et al., 2020). When \(f \) is twice differentiable, the DR-submodularity is also equivalent to
\[\forall i, j \in [n], \forall x \in \mathcal{X}, \frac{\partial^2 f(x)}{\partial x_i \partial x_j} \leq 0. \]
Furthermore, we call a function \(f \) weakly DR-submodular with parameter \(\gamma \), if
\[\gamma = \inf_{x \leq y} \inf_{i \in [n]} \frac{\|\nabla f(x)\|}{\|\nabla f(y)\|}. \]
Note that \(\gamma = 1 \) indicates a differentiable and monotone DR-submodular function.

2.2. Notations and Concepts

Norm: \(\| \cdot \| \) is the \(\ell_2 \) norm in Euclidean space.

Radius and Diameter: For any bounded domain \(C \subseteq \mathcal{X} \), the radius \(r(C) = \max_{x \in C} \|x\| \) and the diameter \(\text{diam}(C) = \max_{x,y \in C} \|x - y\| \).

Projection: We define the projection to the domain \(C \) as
\[P_C(x) = \arg \min_{z \in C} \|x - z\|. \]

Smoothness: A differentiable function \(f \) is called \(L \)-smooth if for any \(x, y \in \mathcal{X} \),
\[\|\nabla f(x) - \nabla f(y)\| \leq L \|x - y\|. \]

\(\alpha \)-Regret: Finally, we recall the \(\alpha \)-regret in (Chen et al., 2018b). For a \(T \)-round game, after the algorithm \(A \) choose an action \(x_t \in \mathcal{X} \) in each round, the adversary reveals the utility function \(f_t \). The objective of the algorithm \(A \) is to minimize the gap between the accumulated reward and that of the best fixed policy in hindsight with scale parameter \(\alpha \), i.e.,
\[R_\alpha(A, T) = \alpha \max_{x \in \mathcal{X}} \frac{1}{T} \sum_{t=1}^{T} f_t(x) - \frac{1}{T} \sum_{t=1}^{T} f_t(x_t). \]

3. Derivation of the Non-oblivious Function

In this section, we present in detail how to derive our non-oblivious function, which plays an important role in our boosting framework. To begin, we recall the definition of stationary points.

Definition 1. A point \(x \in C \) is called a stationary point for function \(f : \mathcal{X} \to \mathbb{R}_+ \) over the domain \(C \subseteq \mathcal{X} \) if
\[\max_{y \in C} \langle \nabla f(x), y - x \rangle \leq 0. \]

We make the following assumption throughout this paper.

Assumption 1.

(i) The \(f : \mathcal{X} \to \mathbb{R}_+ \) is a monotone, differentiable, weakly DR-submodular function with parameter \(\gamma \). So is each \(f_t \) in the online settings.

(ii) We also assume the knowledge of parameter \(\gamma \).

(iii) Without loss of generality, \(f(0) = 0 \). Also, in online settings, \(f_t(0) = 0 \) for \(t = 1, 2, \ldots, T \).

With this assumption, we have the following result.

Lemma 1 (Proof in Appendix A.1). Under Assumption 1, for any stationary point \(x \in C \) of \(f \), we have
\[f(x) \geq \frac{\gamma^2}{\gamma^2 + 1} \max_{y \in C} f(y). \]

Remark 1. Lemma 1 implies any stationary point of a \(\gamma \)-weakly DR-submodular function provides a \(\left(\frac{\gamma^2}{\gamma^2 + 1} \right) \)-approximation to the global maximum. As we know, projected gradient ascent method (Hassani et al., 2017) with small step size usually converges to a stationary point of \(f \), resulting in a \(\left(\frac{\gamma^2}{\gamma^2 + 1} \right) \) approximation guarantee.

In order to boost these classical algorithms, a natural idea is to design some auxiliary functions whose stationary points achieve better approximation to the global maximum of the problem \(\max_{x \in C} f(x) \). That is, we want to find \(F : \mathcal{X} \to \mathbb{R}_+ \) based on \(f \) such that \(\langle y - x, \nabla F(x) \rangle \geq \beta_1 f(y) - \beta_2 f(x) \), where \(\beta_1/\beta_2 \geq \frac{\gamma^2}{\gamma^2 + 1} \).

Motivated by (Feldman et al., 2011; Filmus & Ward, 2012; 2014; Harshaw et al., 2019; Feldman, 2021; Mitra et al., 2021), we consider the function \(F(x) : \mathcal{X} \to \mathbb{R}_+ \) whose gradient at point \(x \) allocates different weights to the gradient \(\nabla f(z \ast x) \), i.e.,
\[\nabla F(x) = \int_0^1 w(z) \nabla f(z \ast x)dz, \]
assuming that \(\nabla f(z \ast x) \) is Lebesgue integrable w.r.t. \(z \in [0, 1] \), the weight function \(w(z) \in C^1[0, 1] \), and \(w(z) \geq 0 \). Then, we investigate a property of \(\langle y - x, \nabla F(x) \rangle \) in the following lemma.

Lemma 2 (Proof in Appendix A.2). For all \(x, y \in \mathcal{X} \), we have
\[\langle y - x, \nabla F(x) \rangle \geq \left(\frac{\gamma}{\gamma + \beta_1} \right) \left(\frac{\gamma w(z) - w'(z)}{\gamma w(z)} \right) \int_0^1 f(w(z)dz) \]
where \(\theta(w) = \max_{f,x} \theta(w, f, x) \), \(\theta(w, f, x) = \frac{w(1) + \int_0^1 (\gamma w(z) - w'(z)) f(w(z)dz)}{\gamma \int_0^1 w(z)dz} \) and \(f(x) > 0 \).

To improve the approximation ratio, we consider the follow-
ing factor-revealing optimization problem:
\[
\min_w \theta(w) = \min_w \max_{f, x} \frac{w(1) + \int_0^1 (z w(z) - w'(z)) f(z \ast x) dz}{\gamma \int_0^1 w(z) dz}
\]
\[
\text{s.t. } w(z) \geq 0, \quad w(z) \in C^1[0, 1], \quad f(x) > 0, \quad \nabla f(x_1) \geq \gamma \nabla f(y_1) \geq 0, \quad \forall x_1 \leq y_1 \in \mathcal{X}.
\]

At first glance, problem (2) looks challenging to solve. Fortunately, we could directly find the optimal solution, which is provided in the following theorem.

Theorem 1 (Proof in the Appendix A.3). For problem (2), we have \(\hat{\omega}(z) = e^{z(1-\gamma)} \in \arg\min_w \theta(w)\) and \(\min_w \max_{f, x} \theta(w, f, x) = 1/e^{(1-\gamma)}\).

In the following sections, we consider an optimal auxiliary function \(F\) with \(\nabla F(x) = \int_0^1 \hat{\omega}(z) \nabla f(z \ast x) dz\), and \(\hat{\omega}(z) = e^{z(1-\gamma)}\). According to the definition of \(\hat{\omega}(w, f, x)\) in Lemma 2, we could derive that \(\hat{\omega}(w, f, x) = w(1)/(\gamma \int_0^1 w(z) dz) = 1/(1 - e^{-\gamma})\) such that \(\hat{\omega}(w) = 1/(1 - e^{-\gamma})\). Thus, we have \((y - x, \nabla F(x)) \geq 1 - e^{-\gamma}\) which implies that any stationary point of \(F\) provides a better \((1 - e^{-\gamma})\)-approximation solution to the problem \(\max_{x \in C} f(x)\), in contrast with the stationary points of \(f\) itself.

Next, we investigate some properties of this optimal auxiliary function \(F\). Following the same terminology in (Films & Ward, 2012; 2014; Mitra et al., 2021), we also call this \(F\) the non-oblivious function.

3.1. Properties about the Non-Oblivious Function

Without loss of generality, in this subsection, we assume \(f\) is \(L\)-smooth with respect to the norm \(\|x\|\), i.e., \(\|\nabla f(x) - \nabla f(y)\| \leq L \|x - y\|\). Then, we establish some key properties about the boundness and smoothness of the non-oblivious function \(F\) in the following theorem.

Theorem 2 (Proof in Appendix A.4). If \(f\) is \(L\)-smooth, and Assumption 1 holds, we have

(i) \(f(x) \geq (1 - e^{-\gamma}) \max_{y \in C} f(y)\), where \(x\) is a stationary point for non-oblivious function \(F\) over the domain \(C\).

(ii) \(F(x) = \int_0^1 e^{(z(1-\gamma)) - \gamma(1-e^{-\gamma})} f(z \ast x) dz\) and \(F(x) \leq (1 + \ln(\tau)) f(x) + c\) for any positive \(c \leq Lx^2(\mathcal{X})\), where \(\tau = \max(\frac{L}{1+\ln(\tau)}, \frac{Lx^2(\mathcal{X})}{c})\).

(iii) \(F\) is \(L_{\gamma}\)-smooth where \(L_{\gamma} = L \frac{2 + e^{-\gamma}}{\gamma^2}\).

Remark 2. Theorem 2.(i) demonstrates that any stationary point of the non-oblivious function \(F\) can attain \((1 - e^{-\gamma})\)-approximation of the global maximum of \(f\), which is better than the \((\frac{\gamma^2}{1 + \gamma})\)-approximation ratio of the stationary points of \(f\) itself provided in Lemma 1. Moreover, this result sheds light on the possibility of utilizing \(F\) to obtain a better approximation than classical gradient ascent method, which motivates our boosting methods in the following section.

We also investigate how to estimate \(\nabla F(x)\) with an unbiased stochastic oracle \(\tilde{\nabla} f(x)\), i.e., \(\mathbb{E}(\tilde{\nabla} f(x) | x) = \nabla f(x)\).

We introduce a new random variable \(Z\) where \(\mathbb{P}(Z \leq z) = \int_0^z \frac{e^{z(1-\gamma)}}{1 - e^{-\gamma}} I(u \in [0, 1]) du\) where \(I\) is the indicator function. When the number \(z\) is sampled from \(r.v. Z\), we consider \(\frac{1 - e^{-\gamma}}{\gamma} \tilde{\nabla} f(z \ast x)\) as an estimator of \(\nabla F(x)\) with statistical properties given in the following proposition.

Proposition 1 (Proof in Appendix A.5).

(i) If \(z\) is sampled from \(r.v. Z\) and \(\mathbb{E}(\tilde{\nabla} f(x) | x) = \nabla f(x)\), we have
\[
\mathbb{E} \left(\frac{1 - e^{-\gamma}}{\gamma} \tilde{\nabla} f(z \ast x) \bigg| x \right) = \nabla f(x).
\]

(ii) If \(z\) is sampled from \(r.v. Z\), \(\mathbb{E}(\tilde{\nabla} f(x) | x) = \nabla f(x)\), and \(\mathbb{E}(\| \tilde{\nabla} f(x) - \nabla f(x) \|^2 | x) \leq \sigma^2\), we have
\[
\mathbb{E} \left(\left\| \frac{1 - e^{-\gamma}}{\gamma} \tilde{\nabla} f(z \ast x) - \nabla F(x) \right\| \bigg| x \right) \leq \sigma_{\gamma}^2,
\]

where \(\sigma_{\gamma}^2 = 2(1 - e^{-\gamma})^2 \sigma^2 + \frac{2L^2 r^2(\mathcal{X})(1 - e^{-2\gamma})}{3\gamma^2}\).

Remark 3. Proposition 1 indicates that \(\frac{1 - e^{-\gamma}}{\gamma} \tilde{\nabla} f(z \ast x)\) is an unbiased estimator of \(\nabla F(x)\) with a bounded variance.

4. Boosting Framework

Up to this point, we present a boosting framework that covers both gradient ascent and online gradient ascent methods. We first present a Meta boosting protocol in Algorithm 1, highlighting the key features of the proposed algorithms. We then present several variants of the Meta protocol by employing different basic algorithms \(A\).

As shown in Algorithm 1, the core idea is to leverage the
stochastic gradient \(\nabla F(x_t) \) of the non-oblivious function \(F \), instead of the stochastic gradient \(\nabla f(x_t) \) of the original weakly DR-submodular function \(f \). Note that \(\nabla F(x_t) \) is generated by the sampling method in Proposition 1 (line 3-4 of Algorithm 1).

4.1. Boosting Gradient Ascent

In this subsection, we propose a boosting gradient ascent method under the offline scenario for the stochastic submodular maximization problem. In particular, we employ the classical stochastic projected gradient ascent method in the Meta boosting protocol and describe the boosting gradient ascent method in Algorithm 2.

As demonstrated in Algorithm 2, in each iteration, after calculating \(\nabla F(x) \), we make the standard projected gradient step to update \(x \). Finally, we return \(x_t \) chosen from \(\{ x_t \} \) with the given distribution.

With the previous outcomes, we establish the convergence result for Algorithm 2.

Theorem 3 (Proof in Appendix B). Assume \(C \subseteq X \) is a bounded convex set and \(f \) is \(L \)-smooth, and the gradient oracle \(\nabla f(x) \) is unbiased with \(\mathbb{E}(\| \nabla f(x) - \nabla f(x) \|^2) \leq \sigma^2 \). Let \(\eta_t = \frac{1}{\sqrt{n} + \lambda + \gamma} \) and \(c = O(1) \) in Algorithm 2, then we have

\[
\mathbb{E}(f(x_t)) \geq \left(1 - \epsilon - \frac{1}{T} \right) \text{OPT} - O\left(\frac{1}{\sqrt{T}} \right),
\]

where \(\text{OPT} = \max_{x \in C} f(x) \).

Remark 4. Theorem 3 shows that after \(O(1/c^2) \) iterations, the boosting stochastic gradient ascent achieves \((1 - 1/e - \epsilon^2) \text{OPT} - \epsilon \), which efficiently improves the \((1/2) \)-approximation guarantee of classical stochastic gradient ascent (Hassani et al., 2017) for continuous DR-submodular maximization. Moreover, we highlight that the overall gradient complexity is \(O(1/e^2) \) which is optimal (Hassani et al., 2020) under the stochastic setting.

4.2. Online Boosting Delayed Gradient Ascent

In this section, we consider the online setting with delayed feedback. To begin, recall the process of classical online optimization. In round \(t \), after picking an action \(x_t \in C \), the environment (adversary) gives a utility \(f_t(x_t) \) and permits the access to the stochastic gradient of \(f_t \). The objective is to minimize the \(\alpha \)-regret for \(T \) planned rounds. Then, we turn to the (adversarial) feedback delays phenomenon (Quanrud & Khashabi, 2015) in our online stochastic submodular maximization problem. That is, instead of the prompt feedback, the information about the stochastic gradient of \(f_t \) could be delivered at the end of round \(t + d_t - 1 \), where \(d_t \in \mathbb{Z}^+ \) is a positive integer delay for round \(t \). For instance, the standard online setting sets all \(d_t = 1 \) (Hazan et al., 2016b).

Next, we introduce some useful notations. We denote the feedback given at the end of round \(t \) as \(F_s = \{ u \in [T] : u + d_u - 1 = t \} \) and \(D = \sum_{t=1}^T d_t \). Hence, at the end of round \(t \), we only have access to the stochastic gradients of past \(f_s \) where \(s \in F_t \).

To improve the state-of-the-art \(1/2 \) approximation ratio of online gradient ascent and tackle the adversarial delays simultaneously, we employ the online delayed gradient algorithm (Quanrud & Khashabi, 2015) in the Meta boosting protocol, in which we utilize the stochastic gradient of the non-oblivious function \(F \). As shown in Algorithm 3, at each round \(t \), after querying the stochastic gradient \(\nabla F_t(x_t) \), we apply the received stochastic gradients feedback \(\nabla F_s(x_s) \) \((s \in F_t) \) in a standard projection gradient step to update \(x_t \).

We provide the regret bound of Algorithm 3.

Theorem 4 (Proof in Appendix C). Assume \(C \subseteq X \) is a bounded convex set and each \(f_t \) is monotone, differentiable, and weakly DR-submodular with \(\gamma \). Meanwhile, the gradient oracle is unbiased \(\mathbb{E}(\nabla f_t(x_t)) = \nabla f_t(x_t) \) and
We first consider offline DR-submodular maximization problem. It is worth mentioning that the (1 − e−γ)-regret of O(√T) result not only achieves the optimal (1 − e−γ) approximation ratio, but also matches the O(√D) regret of online convex optimization with adversarial delays (Quanrud & Khashabi, 2015).

Remark 5. When no delay exists, i.e., dt = 1 for all t, Theorem 4 says that the online boosting gradient ascent achieve a (1 − e−γ)-regret of O(√T). To the best of our knowledge, this is the first result achieving a (1 − e−γ)-regret of O(√T) with O(1) stochastic gradient queries for each submodular function ft.

Remark 6. Under the delays of stochastic gradients, Theorem 4 gives the first regret analysis for the online stochastic submodular maximization problem. It is worth mentioning that the (1 − e−γ)-regret of O(√D) result not only achieves the optimal (1 − e−γ) approximation ratio, but also matches the O(√D) regret of online convex optimization with adversarial delays (Quanrud & Khashabi, 2015).

5. Numerical Experiments

In this section, we empirically evaluate our proposed boosting algorithms in both offline and online settings by adopting continuous DR-submodular objective functions (γ = 1).

5.1. Offline Settings

We first consider offline DR-submodular maximization problems and compare the following algorithms:

Boosting Gradient Ascent (BGA(B)): In the frame work of Algorithm 2, we use the average of B independent stochastic gradients to estimate ∇F(x) in every iteration.

Gradient Ascent (GA): We consider Algorithm 1 in Hassani et al. (2017) with step size ηt = 1/√t.

Continuous Greedy (CG): Algorithm 1 in (Bian et al., 2017).

Stochastic Continuous Greedy (SCG): Algorithm 1 in Mokhtari et al. (2018) with ρt = 1/(t + 3)2/3.

Stochastic Continuous Greedy++ (SCG++): We consider Algorithm 4.1 in Hassani et al. (2020) where we set the minibatch size |M₀| = T² and |M| = T for T-round iterations.

5.1.1. Special Case

Hassani et al. (2017) introduced a special continuous DR-submodular function fk coming from the multilinear extension of a set cover function. Here, fk(x) = k + 1 − (1 − x_k+1) ∏k_{i=1}(1 − x_i) − (1 − x_k+1)(k − ∑k_{i=1} x_i) + ∑2k−i=1 x_i, where x = (x₁, x₂, ..., x_{2k+1}). Under the domain C = {x ∈ [0,1]^{2k+1} : ∑_{i=1}^{2k+1} x_i = k}. Hassani et al. (2017) also verified that x_loc = (1, 1, ..., 1, 0, ..., 0) is a local maximum with (1/2 + 1/(2k))-approximation to the global maximum. Thus, if start at x_loc, theoretically Gradient Ascent (Hassani et al., 2017) will get stuck at this local maximum point. In our experiment, we set k = 15 and consider a standard Gaussian noise, i.e., ∇f(x) = ∇f(x) + N(0, 1). First, we set the initial point of GA, BGA(1) and BGA(10) to be x_loc. From Figure 1(a), we observe that GA stays at x_loc as expected. Instead, BGA(1) and BGA(10) escape the local maximum x_loc and achieve near-optimal objective values. Then, we run all algorithms from the origin and present the results in Figure 1(b). It shows that GA, starting from the origin, performs much better than from a local maximum. Compared with GA, BGA(1) and BGA(10) converge to the optimal point x* = (0, ..., 0, 1, 1, ..., 1) more rapidly. Both Figure 1(a) and Figure 1(b) show that BGA(1) and BGA(10) also perform better than Frank-Wolfe-type algorithms with respect to the convergence rate and the objective value.

5.1.2. Non-Convex/Non-Concave Quadratic Programming

We consider the quadratic objective f(x) = 1/2 x^THx + h^Tx and constraints P = {x ∈ R^n : Ax ≤ b, 0 ≤ x ≤ u}. Following (Bian et al., 2017), we choose the matrix H ∈ R^{n×n} to be a randomly generated symmetric matrix with entries uniformly distributed in [−1,0], and the matrix A to be a random matrix with entries uniformly distributed in [0,1]. It can be verified that f is a continuous DR-submodular function. We also set b = u = 1, m = 12, and n = 25. To ensure the monotonicity, we set h = −H^Tu. Thus, the objective becomes f(x) = (1/2 x − u)^THx. Similarly, we also consider the Gaussian noise for gradient, i.e., ∇f(x) = ∇f(x) + δN(0, 1). We consider δ = 5 and start all algorithms from the origin.

As shown in Figure 1(c), BGA(1) and BGA(10) converge faster than GA and achieve nearly the same objective values as GA after 100 iterations. Similar to the previous experiment, BGA(1) and BGA(10) exceed Frank-Wolfe-type algorithms with respect to the convergence rate.

5.2. Online Settings

We also consider Online DR-submodular Maximization with/without adversarial delays. Here, we present a list of algorithms to be compared in these settings:

Meta-Frank-Wolfe (Meta-FW(κ)): We consider Algo-
Figure 1. In Figure 1(a), we test the performance of the six algorithms for the special submodular function in (Hassani et al., 2017) where the GA, BGA and BGA(10) start from \(x_{loc,0}\). Simultaneously, we present the results for all algorithm starting from the origin in Figure 1(b). Figure 1(c) show the performance of the algorithms versus the number of iterations in a simulated Non-convex/Non-concave submodular QP. Finally, Figure 1(d) and Figure 1(e) show the \((1-1/e)\)-regret of the seven algorithms, including OGA(10), OGA(50), OBGA(10), OBGA(50), Meta-FW(500), Meta-FW-VR(50), and Meta-FW-VR(500), for the simulated online submodular QP in both delayed setting and standard online setting.

We present the \((1-1/e)\)-regret of algorithms for the delayed setting and the standard online setting (Hazan et al., 2016b) in Figure 1(d) and Figure 1(e), respectively. Under both scenarios, our proposed OBGA with sample size \(B = 50\) exhibits the lowest regret among all algorithms. With the same sample size \(B = 10\) and 50, OBGA consistently achieves lower regrets than OGA, which confirms the effectiveness of our boosting framework.

6. Conclusion

In this paper, based on a novel non-oblivious function, we present a boosting framework, covering boosting gradient ascent and online boosting delayed gradient ascent, for the stochastic continuous submodular maximization problem, under both offline and online settings. In the offline scenario, our boosting gradient ascent provides \((1 - e^{-\gamma} - \epsilon^2)\)-approximation guarantees after \(O(1/\epsilon^2)\) iterations. Under the online setting, we are the first to consider delayed feedback for online submodular maximization problems. Moreover, when no delay exists, our online boosting delayed gradient ascent is the first result to guarantee \((1 - e^{-\gamma})\)-approximation with \(O(\sqrt{T})\) regret, where at each round we only estimate stochastic gradient \(O(1)\) times. Numerical experiments demonstrate the superior performance of our algorithms.
Acknowledgements

The authors would like to thank the anonymous reviewers for their helpful comments. Zhang and Yang’s research is supported in part by the Hong Kong Research Grants Council (ECS 21214720), City University of Hong Kong (Project 9610465) and Alibaba Group through Alibaba Innovative Research (AIR) Program.

References

Alimonti, P. New local search approximation techniques for maximum generalized satisfiability problems. In Italian Conference on Algorithms and Complexity, pp. 40–53. Springer, 1994.

Arora, S., Ge, R., Kannan, R., and Moitra, A. Computing a nonnegative matrix factorization—provably. SIAM Journal on Computing, 45(4):1582–1611, 2016.

Bertsekas, D. Convex optimization algorithms. Athena Scientific, 2015.

Bian, A. A., Mirzasoleiman, B., Buhmann, J., and Krause, A. Guaranteed non-convex optimization: Submodular maximization over continuous domains. In Artificial Intelligence and Statistics, pp. 111–120. PMLR, 2017.

Bian, Y., Buhmann, J. M., and Krause, A. Continuous submodular function maximization. arXiv preprint arXiv:2006.13474, 2020.

Chekuri, C., Vondrák, J., and Zenklusen, R. Submodular function maximization via the multilinear relaxation and contention resolution schemes. SIAM Journal on Computing, 43(6):1831–1879, 2014.

Chen, L., Harshaw, C., Hassani, H., and Karbasi, A. Projection-free online optimization with stochastic gradient: From convexity to submodularity. In International Conference on Machine Learning, pp. 814–823. PMLR, 2018a.

Chen, L., Hassani, H., and Karbasi, A. Online continuous submodular maximization. In International Conference on Artificial Intelligence and Statistics, pp. 1896–1905. PMLR, 2018b.

Chen, W., Lu, W., and Zhang, N. Time-critical influence maximization in social networks with time-delayed diffusion process. In Twenty-Sixth AAAI Conference on Artificial Intelligence, 2012.

Das, A. and Kempe, D. Submodular meets spectral: greedy algorithms for subset selection, sparse approximation and dictionary selection. In Proceedings of the 28th International Conference on Machine Learning, pp. 1057–1064, 2011.

Du, S. S., Zhai, X., Poczos, B., and Singh, A. Gradient descent provably optimizes over-parameterized neural networks. In International Conference on Learning Representations, 2019.

Elenberg, E. R., Khanna, R., Dimakis, A. G., and Negahban, S. Restricted strong convexity implies weak submodularity. The Annals of Statistics, 46(6B):3539–3568, 2018.

Feldman, M. Guess free maximization of submodular and linear sums. Algorithmica, 83(3):853–878, 2021.

Feldman, M., Nao, J., and Schwartz, R. A unified continuous greedy algorithm for submodular maximization. In 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, pp. 570–579. IEEE, 2011.

Films, Y. and Ward, J. The power of local search: Maximum coverage over a matroid. In 29th Symposium on Theoretical Aspects of Computer Science, volume 14, pp. 601–612. LIPIcs, 2012.

Films, Y. and Ward, J. Monotone submodular maximization over a matroid via non-oblivious local search. SIAM Journal on Computing, 43(2):514–542, 2014.

Fisher, M. L., Nemhauser, G. L., and Wolsey, L. A. An analysis of approximations for maximizing submodular set functions—ii. In Polyhedral Combinatorics, pp. 73–87. Springer, 1978.

Fujishige, S. Submodular functions and optimization. Elsevier, 2005.

Ge, R., Lee, J. D., and Ma, T. Matrix completion has no spurious local minimum. In Advances in Neural Information Processing Systems, pp. 2973–2981, 2016.

Harshaw, C., Feldman, M., Ward, J., and Karbasi, A. Submodular maximization beyond non-negativity: Guarantees, fast algorithms, and applications. In International Conference on Machine Learning, pp. 2634–2643. PMLR, 2019.

Hassani, H., Soltanolkotabi, M., and Karbasi, A. Gradient methods for submodular maximization. In Advances in Neural Information Processing Systems, pp. 5841–5851, 2017.

Hassani, H., Karbasi, A., Mokhtari, A., and Shen, Z. Stochastic conditional gradient++: (non) convex minimization and continuous submodular maximization. SIAM Journal on Optimization, 30(4):3315–3344, 2020.

Hazan, E., Levy, K. Y., and Shalev-Shwartz, S. On graduated optimization for stochastic non-convex problems. In International Conference on Machine Learning, pp. 1833–1841. PMLR, 2016a.
Stochastic Continuous Submodular Maximization

Hazan, E. et al. Introduction to online convex optimization. *Foundations and Trends® in Optimization*, 2(3-4):157–325, 2016b.

Kempe, D., Kleinberg, J., and Tardos, É. Maximizing the spread of influence through a social network. In *Proceedings of the ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, pp. 137–146, 2003.

Khanna, S., Motwani, R., Sudan, M., and Vazirani, U. On syntactic versus computational views of approximability. *SIAM Journal on Computing*, 28(1):164–191, 1998.

Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., and Glance, N. Cost-effective outbreak detection in networks. In *Proceedings of the 13th ACM SIGKDD international conference on Knowledge Discovery and Data Mining*, pp. 420–429, 2007.

Lin, H. and Bilmes, J. A class of submodular functions for document summarization. In *Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies*, pp. 510–520, 2011.

Liu, H., Deng, Z., Li, X., Chen, S., and So, A. M.-C. Non-convex robust synchronization of rotations. In *NeurIPS Annual Workshop on Optimization for Machine Learning*, pp. 1–7, 2020.

Lovász, L. Submodular functions and convexity. In *Mathematical programming the state of the art*, pp. 235–257. Springer, 1983.

Mehta, A., Saberi, A., Vazirani, U., and Vazirani, V. Adwords and generalized online matching. *Journal of the ACM*, 54(5):22–es, 2007.

Mitra, S., Feldman, M., and Karbasi, A. Submodular+ concave. In *Advances in Neural Information Processing Systems*, 2021.

Mokhtari, A., Hassani, H., and Karbasi, A. Conditional gradient method for stochastic submodular maximization: Closing the gap. In *International Conference on Artificial Intelligence and Statistics*, pp. 1886–1895. PMLR, 2018.

Murty, K. G. and Kabadi, S. N. Some np-complete problems in quadratic and nonlinear programming. *Mathematical Programming*, 39(2):117–129, 1987.

Nemhauser, G. L., Wolsey, L. A., and Fisher, M. L. An analysis of approximations for maximizing submodular set functions—i. *Mathematical Programming*, 14(1):265–294, 1978.

Nesterov, Y. *Introductory Lectures on Convex Optimization: A Basic Course*, volume 87. Springer Science & Business Media, 2013.

Netrapalli, P., U N, N., Sanghavi, S., Anandkumar, A., and Jain, P. Non-convex robust pca. In *Advances in Neural Information Processing Systems*, pp. 1107–1115, 2014.

Quanrud, K. and Khashabi, D. Online learning with adversarial delays. In *Advances in Neural Information Processing Systems*, pp. 1270–1278, 2015.

Streeter, M. and Golovin, D. An online algorithm for maximizing submodular functions. In *Advances in Neural Information Processing Systems*, pp. 1577–1584, 2008.

Yang, Y., Mao, X., Pei, J., and He, X. Continuous influence maximization: What discounts should we offer to social network users? In *Proceedings of the 2016 international conference on management of data*, pp. 727–741, 2016.

Zhang, M., Chen, L., Hassani, H., and Karbasi, A. Online continuous submodular maximization: From full-information to bandit feedback. In *Advances in Neural Information Processing Systems*, pp. 9206–9217, 2019.

Zinkevich, M. Online convex programming and generalized infinitesimal gradient ascent. In *Proceedings of the 20th International Conference on Machine Learning*, pp. 928–936, 2003.
A. Proofs in Section 3

A.1. Proof of Lemma 1

First, we review some basic inequalities for \(\gamma \)-weakly continuous DR-submodular function \(f \).

Lemma 3. For a monotone, differentiable, and \(\gamma \)-weakly continuous DR-submodular function \(f \), we have

1. For any \(x \leq y \), we have \(\langle y - x, \nabla f(x) \rangle \geq \gamma (f(y) - f(x)) \) and \(\langle y - x, \nabla f(y) \rangle \leq \frac{1}{\gamma} (f(y) - f(x)) \).
2. For any \(x, y \in X \), we also could derive \(\langle y - x, \nabla f(x) \rangle \geq \gamma f(x \lor y) + \frac{1}{\gamma} f(x \land y) - (\gamma + \frac{1}{\gamma}) f(x) \).

Proof. First, according to the definition of DR-submodular function and monotone property in Section 2, we have

\[
\nabla f(x) \geq \gamma \nabla f(y), \text{ if } x \leq y.
\]

Thus, for any \(x \leq y \), we have

\[
f(y) - f(x) = \int_0^1 \langle y - x, \nabla f(x + z(y - x)) \rangle dz \leq \frac{1}{\gamma} \langle y - x, \nabla f(x) \rangle,
\]

\[
f(y) - f(x) = \int_0^1 \langle y - x, \nabla f(x + z(y - x)) \rangle dz \geq \gamma \langle y - x, \nabla f(y) \rangle,
\]

where these two inequalities follow from \(y \geq x + z(y - x) \geq x \) such that \(\frac{1}{\gamma} \nabla f(x) \geq \nabla f(x + z(y - x)) \geq \gamma \nabla f(y) \) for any \(z \in [0, 1] \). We finish the proof of the first inequality in Lemma 3.

Then, from (3), we could derive that

\[
\langle y \lor x - x, \nabla f(x) \rangle \geq \gamma f(y \lor x) - \gamma f(x),
\]

\[
\langle x \land y - x, \nabla f(x) \rangle \geq \frac{1}{\gamma} (f(x \land y) - f(x)),
\]

where \(y \lor x \geq x \) and \(x \land y \leq x \).

Merging the two equations in (4), we have, for any \(x \) and \(y \in X \),

\[
\langle y - x, \nabla f(x) \rangle = \langle y \lor x - x, \nabla f(x) \rangle + \langle x \land y - x, \nabla f(x) \rangle \\
\geq \gamma f(x \lor y) + \frac{1}{\gamma} f(x \land y) - (\gamma + \frac{1}{\gamma}) f(x),
\]

where \(x \land y + x \lor y = x + y \). Thus, we prove the second inequality in Lemma 3. \(\square \)

Next, with the Lemma 3, we prove the Lemma 1.

Proof. From Equation (5), if \(x \) is a stationary point of \(f \) in domain \(C \), we have \((\gamma + \frac{1}{\gamma}) f(x) \geq \gamma f(x \lor y) + \frac{1}{\gamma} f(x \land y) \) for any \(y \in C \). Due to the monotone and non-negative property, \(f(x) \geq \frac{\gamma^2}{\gamma^2 + 1} \max_{y \in C} f(y) \). \(\square \)

A.2. Proof of Lemma 2

Proof. First, we obtain an inequality about \(\langle x, \nabla F(x) \rangle \), i.e.,

\[
\langle x, \nabla F(x) \rangle = \int_0^1 w(z) \langle x, \nabla f(z \ast x) \rangle dz \\
= \int_0^1 w(z) df(z \ast x) \\
= w(z)f(z \ast x) \big|_{z=0}^{z=1} - \int_0^1 f(z \ast x) w'(z) dz \\
\leq w(1)f(x) - \int_0^1 f(z \ast x) w'(z) dz.
\]

Stochastic Continuous Submodular Maximization
where the first inequality follows from
\[y \]
where the final inequality follows from
\[\theta \]
where

(1) Before going into the detail, we first consider a new optimization problem as follows:

\[
\min_{w} \theta(w) = \min_{w} \max_{x} \frac{w(1) + \int_{0}^{1} (\gamma w(z) - w'(z)) f(z)dz}{\gamma \int_{0}^{1} w(z)dz}
\]

s.t. \(w(z) \geq 0, \)
\[
w(z) \in C^{1}[0, 1],
\]
\[
f(x) > 0,
\]
\[
\nabla f(x_1) \geq \gamma \nabla f(y_1) \geq 0, \forall x_1 \leq y_1.
\]

(1) Before going into the detail, we first consider a new optimization problem as follows:

\[
\min_{w} \max_{R} \theta(w, R)
\]

s.t. \(w(z) \geq 0, \)
\[
w(z) \in C^{1}[0, 1],
\]
\[
\gamma \int_{0}^{1} w(z)dz = 1,
\]
\[
R(z) \geq 0,
\]
\[
R(1) = 1,
\]
\[
R'(z_1) \geq \gamma R'(z_2) \geq 0 (\forall z_1 \leq z_2, z_1, z_2 \in [0, 1]),
\]

where \(\theta(w, R) = w(1) + \int_{0}^{1} (\gamma w(z) - w'(z)) R(z)dz \).

Next, we prove the equivalence between problem (9) and problem (10). For any fixed point \(x \in C \), we consider the function \(m(z) = \frac{f(z)}{f(x)} \) (we assume \(f(x) > 0 \)), which is satisfied with the constraints of problem (10), i.e., \(m(z) \geq 0, m(1) = 1, \)

Finally, putting above the inequality (6) and inequality (7) together, we have

\[
\langle y - x, \nabla F(x) \rangle \geq (\gamma \int_{0}^{1} w(z)dz) (f(y) - w(1)f(x)) + \int_{0}^{1} w'(z) - \gamma w(z) f(z)dz \]

\[
\geq (\gamma \int_{0}^{1} w(z)dz) (f(y) - \theta(w, f, x)f(x))
\]

where the final inequality follows from \(\theta(w) = \max_{f,x} \theta(w, f, x) \).

\[
A.3. \text{Proof of Theorem 1}
\]

Proof. In this proof, we investigate the optimal value and solution about the following optimization problem:

\[
\min_{w} \theta(w) = \min_{w} \max_{x} \frac{w(1) + \int_{0}^{1} (\gamma w(z) - w'(z)) f(z)dz}{\gamma \int_{0}^{1} w(z)dz}
\]

s.t. \(w(z) \geq 0, \)
\[
w(z) \in C^{1}[0, 1],
\]
\[
f(x) > 0,
\]
\[
\nabla f(x_1) \geq \gamma \nabla f(y_1) \geq 0, \forall x_1 \leq y_1.
\]

(1) Before going into the detail, we first consider a new optimization problem as follows:

\[
\min_{w} \max_{R} \theta(w, R)
\]

s.t. \(w(z) \geq 0, \)
\[
w(z) \in C^{1}[0, 1],
\]
\[
\gamma \int_{0}^{1} w(z)dz = 1,
\]
\[
R(z) \geq 0,
\]
\[
R(1) = 1,
\]
\[
R'(z_1) \geq \gamma R'(z_2) \geq 0 (\forall z_1 \leq z_2, z_1, z_2 \in [0, 1]),
\]

where \(\theta(w, R) = w(1) + \int_{0}^{1} (\gamma w(z) - w'(z)) R(z)dz \).

Next, we prove the equivalence between problem (9) and problem (10). For any fixed point \(x \in C \), we consider the function \(m(z) = \frac{f(z)}{f(x)} \) (we assume \(f(x) > 0 \)), which is satisfied with the constraints of problem (10), i.e., \(m(z) \geq 0, m(1) = 1, \)
and $m'(z_1) = \left(\langle x, \nabla f(z_1, x) \rangle \right) \geq \gamma \langle x, \nabla f(z_2, x) \rangle = \gamma m'(z_2) \geq 0$ ($\forall z_1 \leq z_2, z_1, z_2 \in [0, 1]$). Therefore, the optimal objective value of problem (10) is larger than that of problem (9). Moreover, for any $R(z)$ satisfying the constrains in problem (10), we can design a function $f_1(x) = R(x_1/\alpha_1)$, where x_1 (we assume $x_1 \in [0, a_1]$ in the Section 2) is the first coordinate of point x. Also, $f_1(x) \geq 0$ and when $x \leq y$, we have $\nabla f_1(x) \geq \gamma \nabla f_1(y)$. Hence, f_1 is also satisfied with the constrains of problem (9). If we set $x_1 = (a_1, 0, \ldots, 0) \in \mathcal{X}$, then $f_1(x) = R(z)$ such that the optimal objective value of problem (9) is larger than that of problem (10). As a result, the optimization problem (10) is equivalent to the problem (9).

(2) Then, we prove the $\min_w \max_{f, x} \theta(w, f, x) \geq \frac{1}{1-e^{-\gamma}}$. Setting $\hat{R}(z) = \frac{1-e^{-\gamma}}{1-e^{-\gamma}}$, we could verify that, if $\gamma \int_0^1 w(z)dz = 1$,

$$
\theta(w, \hat{R}) = w(1) + \int_0^1 (\gamma w(z) - w'(z))\hat{R}(z)dz = w(1) + \int_0^1 \frac{\gamma w(z) - w'(z)}{1-e^{-\gamma}}dz \\
= w(1) + \frac{1 - w(1) + w(0) + e^{-\gamma}w(z)|_{z=0}^{z=1}}{1-e^{-\gamma}} \\
= w(1) + \frac{1 - w(1) + w(0) + e^{-\gamma}w(1) - w(0)}{1-e^{-\gamma}} = \frac{1}{1-e^{-\gamma}}.
$$

Also, \hat{R} is satisfied with the constraints of optimization problem (10), i.e., for any $z \in [0, 1], \hat{R}(z) \geq 0, \hat{R}(1) = 1$ and $\hat{R}'(z) = \frac{\gamma e^{-\gamma} - \gamma}{1-e^{-\gamma}} = \gamma \hat{R}'(y)$ where $z \leq y$ and $0 \leq \gamma \leq 1$. Therefore, $\max_R \theta(w, R) \geq \theta(w, \hat{R}) = \frac{1}{1-e^{-\gamma}}$ and $\min_w \max_{f, x} \theta(w, f, x) = \min_w \max_{f, x} \theta(w, f, x)$ and $e^{\gamma(z-1)} \in \arg \min_w \theta(w)$.

(3) We consider $\tilde{\omega}(z) = e^{\gamma(z-1)}$ and observe that $\tilde{\omega}'(z) = \gamma \tilde{\omega}(z)$ such that $\tilde{\theta}(\tilde{\omega}, f, x) = \frac{\tilde{\omega}(1) + \int_{\tilde{\omega}}^1 \langle \gamma \tilde{\omega}(z) - \tilde{\omega}'(z), L(x, x) \rangle dz}{\gamma \int_0^1 \tilde{\omega}(z)dz} = \frac{\tilde{\omega}(1)}{\gamma \int_0^1 \tilde{\omega}(z)dz} = \frac{1}{1-e^{-\gamma}}$ for any function f. Also, $\tilde{\omega}(z)$ is satisfied with the constraints in optimization problem (9), namely, $\tilde{\omega}(z) \geq 0$ and $\tilde{\omega} \in C^1[0, 1]$. Therefore, $\frac{1}{1-e^{-\gamma}} = \min_w \max_{f, x} \theta(w, f, x)$ and $e^{\gamma(z-1)} \in \arg \min_w \theta(w)$.

A.4. Proof of Theorem 2

Proof. From the definition of F, we have $(y - x, \nabla F(x)) \geq (1 - e^{-\gamma})f(y) - f(x)$ for any point $x, y \in C$. Hence, when $x \in C$ is a stationary point for F in the domain C, $0 \geq (y - x, \nabla F(x)) \geq (1 - e^{-\gamma})f(y) - f(x)$ for any point $y \in C$ such that $f(x) \geq (1 - e^{-\gamma})\max_{y \in C} f(y)$.

Then, for the second one, we first verify that the value $\int_0^1 \frac{e^{\gamma(z-1)}}{z}f(z * x)dz$ is controlled via $f(x)$ for any $x \in \mathcal{X}$. For any $\delta \in (0, 1)$, we first have

$$
\int_0^1 \frac{e^{\gamma(z-1)}}{z}f(z * x)dz = (\int_0^\delta + \int_\delta^1 \frac{e^{\gamma(z-1)}}{z}f(z * x)dz) \\
\leq \int_0^\delta \frac{f(z * x)}{z}dz + (\int_\delta^1 \frac{1}{z}dz)f(x) \\
= \int_0^\delta \frac{f(z * x)}{z}dz + \ln(\frac{1}{\delta})f(x) \\
= \int_0^\delta \frac{f(z * x)}{z}dz + \ln(\frac{1}{\delta})f(x),
$$

where the first inequality follows from $f(z * x) \leq f(x)$ and $\delta \in [0, 1]$, and the final equality from $\int_0^\delta \langle \nabla f(u * x) \rangle du = f(z * x) - f(0) = f(z * x)$.
where the final inequality is derived from 1
As a result, the value which is derived from the L
where the first equality follows from the Fubini’s theorem; in the first inequality, we use c >
For the final one,

\[\lim_{\delta \to 0} \delta = \frac{f(x) + c}{e + L \varepsilon^2} \in [0, 1] \] (0 ≤ γ ≤ 1 and 0 < c ≤ Lε^2(δ)), we have

\[F(x) \leq \ln(\frac{1}{\delta})(f(x) + c) + \delta(L \varepsilon^2(\delta) + \frac{f(x)}{\gamma}) \]

where the final inequality is derived from \(\frac{1}{\delta} \leq \tau \) and \(\tau = \max(\frac{1}{\gamma}, \frac{L \varepsilon^2(\delta)}{e}) \).

As a result, the value \(\int_0^1 \frac{e^{\gamma(z-1)}}{e} f(z \ast x)dz \) is well-defined. We also could verify that \(\nabla \int_0^1 \frac{e^{\gamma(z-1)}}{e} f(z \ast x)dz = \int_0^1 e^{\gamma(z-1)} \nabla f(z \ast x)dz \) so that we could set \(F(x) = \int_0^1 e^{\gamma(z-1)} f(z \ast x)dz \).

For the final one,

\[\|\nabla F(x) - \nabla F(y)\| = \left\| \int_0^1 e^{\gamma(z-1)} (\nabla f(z \ast x) - \nabla f(z \ast y))dz \right\|
\]

\[\leq \int_0^1 e^{\gamma(z-1)} \|\nabla f(z \ast x) - \nabla f(z \ast y)\| dz
\]

\[\leq L\int_0^1 e^{\gamma(z-1)} \|dz\| \|x - y\|
\]

\[= \gamma + e^{-\gamma} - 1 L \|x - y\| .
\]
A.5. Proof of Proposition 1

Proof. For the first one, fixed \(z \), \(E \left(\nabla f(z \ast x) \bigg| x, z \right) = \nabla f(z \ast x) \) such that \(E \left(\nabla f(z \ast x) \bigg| x \right) = E_{z \sim X} \left(\nabla f(z \ast x) \bigg| x, z \right) = E_{z \sim X} \left(\nabla f(z \ast x) \bigg| x \right) = f \left(z \ast x \right) = \frac{1}{1 - e^{-\gamma}} \int_{z=0}^{1} \gamma e^{-\gamma(z-1)} \nabla f(z \ast x) \, dz = \frac{\gamma}{1 - e^{-\gamma}} F(x) \). For the second one,

\[
E \left(\left\| \frac{1 - e^{-\gamma}}{\gamma} \nabla f(z \ast x) - \nabla F(x) \right\|^2 \bigg| x \right) = E \left(\left\| \frac{1 - e^{-\gamma}}{\gamma} \left(\nabla f(z \ast x) - \nabla f(z \ast x) \right) + \frac{1 - e^{-\gamma}}{\gamma} \nabla f(z \ast x) - \nabla F(x) \right\|^2 \bigg| x \right)
\leq 2 E_{z \sim X} \left(E \left(\left\| \frac{1 - e^{-\gamma}}{\gamma} \left(\nabla f(z \ast x) - \nabla f(z \ast x) \right) \right\|^2 \bigg| x, z \right) + \left\| \frac{1 - e^{-\gamma}}{\gamma} \nabla f(z \ast x) - \nabla F(x) \right\|^2 \right)
\leq 2 \left(\frac{1 - e^{-\gamma}}{\gamma^2} \right)^2 + 2 E_{z \sim X} \left(\left\| \frac{1 - e^{-\gamma}}{\gamma} \nabla f(z \ast x) - \nabla F(x) \right\|^2 \bigg| x \right)
\leq 2 \left(\frac{1 - e^{-\gamma}}{\gamma^2} \right)^2 + 2 E_{z \sim X} \left(\left\| \int_0^1 e^{\gamma(u-1)} (\nabla f(z \ast x) - \nabla f(u \ast x)) \, du \right\|^2 \bigg| x \right)
\leq 2 \left(\frac{1 - e^{-\gamma}}{\gamma^2} \right)^2 + 2 E_{z \sim X} \left(\left(\int_0^1 e^{\gamma(u-1)} |z - u| L \|x \| \, du \right) \|x \|^2 \bigg| x \right)
\leq 2 \left(\frac{1 - e^{-\gamma}}{\gamma^2} \right)^2 + 2 E_{z \sim X} \left(\int_0^1 e^{\gamma(u-1)} \int_{u=0}^1 e^{\gamma(u-1)} (z - u)^2 L^2 \|x \|^2 \, du \bigg| x \right)
\leq 2 \left(\frac{1 - e^{-\gamma}}{\gamma^2} \right)^2 + 2 \int_{z=0}^{1} \int_{u=0}^{1} e^{\gamma(u+z-2)} (z - u)^2 L^2 \|x \|^2 \, du \, dz
\leq 2 \left(\frac{1 - e^{-\gamma}}{\gamma^2} \right)^2 + \frac{2L^2L^2(1 - e^{-2\gamma})}{3\gamma},
\]

where the first and fifth inequalities come from Cauchy–Schwarz inequality.

\(\square \)

B. Proof of Theorem 3

First, we recall the projection theorem from (Bertsekas, 2015) in the following lemma.

Lemma 4. For the projection \(P_C(x) = \arg \min_{x \in C} \|z - x\| \), we have \(\langle P_C(x) - x, z - P_C(x) \rangle \geq 0, \forall z \in C \). (16)

Before verifying the Theorem 3, we first provide following lemma.

Lemma 5. In the t-round update in Algorithm 2, if we set the \(\nabla F(x_t) = \frac{1 - e^{-\gamma}}{\gamma} \nabla f(z_t \ast x_t) \), for any \(y \in C \) and \(\mu_t > 0 \), we have

\[
E \left(F(x_{t+1}) - F(x_t) + f(x_t) - (1 - e^{-\gamma}) f(y) \right)
\geq E \left(\frac{1}{2\eta_t} (\|y - x_{t+1}\|^2 - \|y - x_t\|^2) + \frac{1}{2\mu_t} \|\nabla F(x_t) - \nabla F(x_t)\|^2 + \left(\frac{1}{2\eta_t} - \frac{\mu_t + L^2}{2} \right) \|x_{t+1} - x_t\|^2 \right).
\]

Proof. From the Theorem 2, when \(f \) is \(L \)-smooth, the non-oblivious function \(F \) is \(L_\gamma \)-smooth. Hence

\[
F(x_{t+1}) - F(x_t) = \int_{z=0}^{1} (x_{t+1} - x_t, \nabla F(x_t + z(x_{t+1} - x_t))) \, dz
\geq \langle x_{t+1} - x_t, \nabla F(x_t) \rangle - \frac{L_\gamma}{2} \|x_{t+1} - x_t\|^2.
\]
Then,

\[
\langle x_{t+1} - x_t, \nabla F(x_t) \rangle = \langle x_{t+1} - x_t, \nabla F(x_t) \rangle + \langle x_{t+1} - x_t, \nabla F(x_t) - \tilde{\nabla} F(x_t) \rangle \\
\geq \langle x_{t+1} - x_t, \tilde{\nabla} F(x_t) \rangle - \frac{1}{2\mu_l t} \left\| \nabla F(x_t) - \tilde{\nabla} F(x_t) \right\|^2 - \frac{\mu_t}{2} \| x_{t+1} - x_t \|^2,
\]

where the first inequality from the Young’s inequality.

It is well known \(\tilde{\nabla} F(x_t) = \frac{1}{\eta_t} (y_{t+1} - x_t) \) such that

\[
\langle x_{t+1} - x_t, \tilde{\nabla} F(x_t) \rangle = \langle x_{t+1} - y, \tilde{\nabla} F(x_t) \rangle + \langle y - x_t, \tilde{\nabla} F(x_t) \rangle = \frac{1}{\eta_t} \langle x_{t+1} - y, y_{t+1} - x_t \rangle + \langle y - x_t, \tilde{\nabla} F(x_t) \rangle,
\]

where the first inequality follows from the Lemma 4.

From the Equation (17)-(19), we have

\[
F(x_{t+1}) - F(x_t) \\
\geq \frac{1}{2\eta_t} \langle y - x_{t+1}, y - x \rangle + \frac{1}{2\mu_l} \left\| \nabla F(x_t) - \tilde{\nabla} F(x_t) \right\|^2 - \frac{\mu_t + L_\gamma}{2} \| x_{t+1} - x_t \|^2 \\
\geq \frac{1}{2\eta_t} \langle y - x_{t+1}, y - x \rangle + \frac{1}{2\mu_l} \left\| \nabla F(x_t) - \tilde{\nabla} F(x_t) \right\|^2 + \left(\frac{1}{2\eta_t} - \frac{\mu_t + L_\gamma}{2} \right) \| x_{t+1} - x_t \|^2.
\]

From the Proposition 1, \(\mathbb{E}(\tilde{\nabla} F(x_t) | x_t) = \nabla F(x_t) \) and we also have

\[
\mathbb{E}(F(x_{t+1}) - F(x_t)) \\
\geq \mathbb{E} \left(\frac{1}{2\eta_t} \langle y - x_{t+1}, y - x \rangle + \frac{1}{2\mu_l} \left\| \nabla F(x_t) - \tilde{\nabla} F(x_t) \right\|^2 + \left(\frac{1}{2\eta_t} - \frac{\mu_t + L_\gamma}{2} \right) \| x_{t+1} - x_t \|^2 \right) \\
\geq \mathbb{E} \left(\frac{1}{2\eta_t} \langle y - x_{t+1}, y - x \rangle + \frac{1}{2\mu_l} \left\| \nabla F(x_t) - \tilde{\nabla} F(x_t) \right\|^2 + \left(\frac{1}{2\eta_t} - \frac{\mu_t + L_\gamma}{2} \right) \| x_{t+1} - x_t \|^2 \right) \\
\geq \mathbb{E} \left(\frac{1}{2\eta_t} \langle y - x_{t+1}, y - x \rangle + (1 - e^{-\gamma}) f(y) - f(x_t) \right) \\
\geq \frac{1}{2\eta_t} \left\| \nabla F(x_t) - \tilde{\nabla} F(x_t) \right\|^2 + \left(\frac{1}{2\eta_t} - \frac{\mu_t + L_\gamma}{2} \right) \| x_{t+1} - x_t \|^2,
\]

where the final inequality from the definition of \(F \).

Next, we prove Theorem 3.
Proof. From the Lemma 5, if we set $y = x^* = \arg \max_{x \in \mathcal{C}} f(x)$, we have
\[
\sum_{t=1}^{T-1} \mathbb{E}(F(x_{t+1}) - F(x_t) + f(x_t) - (1 - e^{-\gamma}) f(x^*))
\geq \sum_{t=1}^{T-1} \mathbb{E}\left[\frac{1}{2\eta_t} (\|x^* - x_{t+1}\|^2 - \|x^* - x_t\|^2) - \sum_{t=1}^{T-1} \frac{1}{2\mu_t} \left\| \nabla F(x_t) - \nabla F(x_1) \right\|^2 \right]
\geq -\sigma^2 \sum_{t=1}^{T} \frac{1}{2\mu_t} + \sum_{t=2}^{T-1} \mathbb{E}(\|x^* - x_t\|^2) \left(\frac{1}{2\eta_{t-1}} - \frac{1}{2\eta_t} \right) + \mathbb{E}(\|x^* - x_T\|^2 - \|x^* - x_1\|^2)
\geq \frac{\text{diam}^2(C)}{2\eta_{T-1}} - \sigma^2 \sum_{t=1}^{T} \frac{1}{\mu_t}
\geq - (\text{diam}^2(C) L_\gamma/2 + 3\sigma \gamma \text{diam}(C) \sqrt{T}/2)
\]
where the first inequality follows from $\eta_t = \frac{1}{\mu_t + L}$ if we set $\mu_t = \frac{\sigma \sqrt{2}}{\text{diam}(C)}$ in Lemma 5; the second inequality from the Proposition 1 and the Abel’s inequality; the third inequality from the definition of $\text{diam}(C)$.

Finally, we have:
\[
\mathbb{E}(\sum_{t=1}^{T-1} f(x_t) + F(x_T)) \geq (1 - e^{-\gamma})(T - 1) f(x^*) - (\text{diam}^2(C) L_\gamma/2 + 3\sigma \gamma \text{diam}(C) \sqrt{T}/2)
\] (23)

According to Theorem 2,
\[
\mathbb{E}(\sum_{t=1}^{T-1} f(x_t) + (1 + \log(\tau))(f(x_T) + c)) \geq (1 - e^{-\gamma})(T - 1) f(x^*) - (\text{diam}^2(C) L_\gamma/2 + 3\sigma \gamma \text{diam}(C) \sqrt{T}/2) + (1 + \log(\tau)) c
\] (24)

where $\tau = \max(\frac{1}{\gamma}, \frac{\gamma^2(x) L_c}{c})$.

In Algorithm 2, we set
\[
\Delta_t = \begin{cases}
1 & t \neq T \\
\log(\tau) & t = T
\end{cases}
\] (25)

and $\Delta = \sum_{t=1}^{T} \Delta_t = T + \log(\tau)$.

\[
\mathbb{E}(\sum_{t=1}^{T} \frac{\Delta_t}{\Delta} f(x_t)) \geq (1 - e^{-\gamma} - \frac{1 + \log(\tau)}{T + \log(\tau)}) f(x^*) - \frac{(\text{diam}^2(C) L_\gamma/2 + 3\sigma \gamma \text{diam}(C) \sqrt{T}/2) + (1 + \log(\tau)) c}{T + \log(\tau)}
\] (26)

Therefore, when $c = O(1)$, we have
\[
\mathbb{E}(\sum_{t=1}^{T} \frac{\Delta_t}{\Delta} f(x_t)) \geq (1 - e^{-\gamma} - O(\frac{1}{T})) f(x^*) - O(\frac{1}{\sqrt{T}})
\]

\[\square\]

C. Proof of Theorem 4

Proof. We denote $\nabla F_t(x_t) = \frac{1 - e^{-\gamma}}{T} \nabla f(z_t + x_t)$ and $x^* = \arg \max_{x \in \mathcal{C}} \sum_{t=1}^{T} f_t(x)$. From the projection, we know that
\[
\|x_{t+1} - x^*\| \leq \|y_{t+1} - x^*\| = \left\| x_t + \eta \sum_{s \in \mathcal{F}_t} \nabla F_s(x_s) - x^* \right\|
\] (27)

where the first inequality from the projection; and the first equality from $y_{t+1} = x_t + \eta \sum_{s \in \mathcal{F}_t} \frac{1 - e^{-\gamma}}{T} \nabla f_s(z_s + x_s)$ in Algorithm 3.

We order the set $\mathcal{F}_t = \{s_1, \ldots, s_{|\mathcal{F}_t|}\}$, where $s_1 < s_2 < \cdots < s_{|\mathcal{F}_t|}$ and $|\mathcal{F}_t| = \#\{u \in [T] : u + d_u - 1 = t\}$. Moreover,
we also denote $F_{t,m} = \{ u \in F_t \text{ and } u < m \}, x_{t+1,m} = x_t + \eta \sum_{s \in F_{t,m}} \nabla F_s(x_s)$ and $s_{|F_t|+1} = t+1$. Therefore,

$$\|x_{t+1,s_k+1} - x^*\|^2 = \|x_{t+1,s_k} + \eta \nabla F_{s_k}(x_{s_k}) - x^*\|^2$$
$$= \|x_{t+1,s_k} - x^*\|^2 + 2\eta \langle x_{t+1,s_k} - x^*, \nabla F_{s_k}(x_{s_k}) \rangle + \eta^2 \|\nabla F_{s_k}(x_{s_k})\|^2$$

(28)

According to Equation (28), we have

$$\|y_{t+1} - x^*\|^2 - \|x_t - x^*\|^2$$
$$= \sum_{k=1}^{\lfloor \frac{t}{T} \rfloor} (\|x_{t+1,s_k+1} - x^*\|^2 - \|x_{t+1,s_k} - x^*\|^2)$$
$$= 2\eta \sum_{s \in F_t} \langle x_{t+1,s} - x^*, \nabla F_s(x_s) \rangle + \eta^2 \sum_{s \in F_t} \|\nabla F_s(x_s)\|^2$$

(29)

where the first equality follows from setting $x_{t+1,|F_t|+1} = y_{t+1}$; the second from Equation (28).

Therefore,

$$\mathbb{E}(\|y_{t+1} - x^*\|^2 - \|x_t - x^*\|^2)$$
$$= 2\eta \mathbb{E} \left(\left(\sum_{s \in F_t} \langle x_{t+1,s} - x^*, \nabla F_s(x_s) \rangle + \sum_{s \in F_t} \langle x_s - x^*, \mathbb{E}(\nabla F_s(x_s)) \rangle \right) + \eta^2 \mathbb{E}(\sum_{s \in F_t} \|\nabla F_s(x_s)\|^2) \right)$$
$$= 2\eta \mathbb{E} \left(\left(\sum_{s \in F_t} \langle x_{t+1,s} - x^*, \nabla F_s(x_s) \rangle + \sum_{s \in F_t} \langle x_s - x^*, \nabla F_s(x_s) \rangle \right) + \eta^2 \mathbb{E}(\sum_{s \in F_t} \|\nabla F_s(x_s)\|^2) \right)$$

(30)

where the first inequality from the definition of non-oblivious function F.

Therefore, we have:

$$2\eta \mathbb{E} \left(\left(\sum_{t=1}^{T} f_t(x^*) - \sum_{t=1}^{T} f_t(x_t) \right) \right)$$
$$= 2\eta \mathbb{E} \left(\left(\sum_{t=1}^{T} \sum_{s \in F_t} \left(\sum_{t=1}^{T} f_t(x^*) - f_s(x_s) \right) \right) \right)$$
$$\leq \sum_{t=1}^{T} \left(\mathbb{E}(\|x_t - x^*\|^2 - \|y_{t+1} - x^*\|^2) + 2\eta \mathbb{E}(\sum_{s \in F_t} \langle x_{t+1,s} - x^* - x_s, \nabla F_s(x_s) \rangle) + \eta^2 \mathbb{E}(\sum_{s \in F_t} \|\nabla F_s(x_s)\|^2) \right)$$
$$\leq \sum_{t=1}^{T} \left(\mathbb{E}(\|x_t - x^*\|^2 - \|y_{t+1} - x^*\|^2) + 2\eta \mathbb{E}(\sum_{s \in F_t} \langle x_{t+1,s} - x_s, \nabla F_s(x_s) \rangle) + \eta^2 \mathbb{E}(\sum_{s \in F_t} \|\nabla F_s(x_s)\|^2) \right)$$

(31)

$$\leq \text{diam}^2(C) + \sum_{t=1}^{T} \left(2\eta \mathbb{E}(\sum_{s \in F_t} \langle x_{t+1,s} - x_s, \nabla F_s(x_s) \rangle) + \eta^2 \mathbb{E}(\sum_{s \in F_t} \|\nabla F_s(x_s)\|^2) \right)$$

$$\leq \text{diam}^2(C) + \eta^2 \max_{t \in [T]} \left(\|\nabla F_t(x_t)\|^2 \right) + \sum_{t=1}^{T} \left(\mathbb{E}(\sum_{s \in F_t} \langle x_{t+1,s} - x_s, \nabla F_s(x_s) \rangle) \right)$$
For the final part in Equation (31),
\[
\langle x_{t+1,s} - x_s, \nabla F_s(x_s) \rangle \\
\leq \| \nabla F_s(x_s) \| \| x_{t+1,s} - x_s \| \\
\leq \| \nabla F_s(x_s) \| (\| x_{t+1,s} - x_t \| + \| x_t - x_s \|) \\
\leq \| \nabla F_s(x_s) \| (\| x_{t+1,s} - x_t \| + \sum_{m=s}^{t-1} \| y_{m+1} - x_m \|) \\
\leq \max_{t \in [T]} (\| \nabla F_t(x_t) \|)^2 \eta(|F_{t,s}| + \sum_{m=s}^{t-1} |F_m|)
\]
where the third inequality follows from \(\| x_t - x_s \| \leq \| y_t - x_s \| \leq \| y_t - x_{t-1} \| + \| x_{t-1} - x_s \| \leq \cdots \leq \sum_{m=s}^{t-1} \| y_{m+1} - x_m \| \).

Finally, we have
\[
\mathbb{E}\left((1 - e^{-\gamma}) \sum_{i=1}^{T} f_i(x^*) - \sum_{i=1}^{T} f_i(x_t) \right) \\
\leq \frac{\text{diam}^2(C)}{2\eta} + \max_{t \in [T]} (\| \nabla F_t(x_t) \|)^2 \left(\frac{\eta}{2} \sum_{i=1}^{T} |F_i| + \eta \sum_{i=1}^{T} \sum_{s \in F_i} (|F_{i,s}| + \sum_{m=s}^{t-1} |F_m|) \right)
\]

Firstly, \(\sum_{t=1}^{T} |F_t| \leq T \). Next, we investigate the \(|F_{t,s}| + \sum_{m=s}^{t-1} |F_m| \) when \(s \in F_t \).

When \(s \in F_t \), i.e., \(s + d_s - 1 = t \), for any \(q \in (F_{t,s} \cup (\cup_{m=s}^{t-1} F_m)) \), if \(s + 1 \leq q \leq t - 1 \), the feedback of round \(q \) must be delivered before the round \(t \), namely, \(q + d_q - 1 \leq t - 1 \). Moreover, if \(q \leq s - 1 \), the feedback of round \(q \) could be delivered between round \(s \) and round \(t \). Therefore,
\[
|F_{t,s}| + \sum_{m=s}^{t-1} |F_m| = |\{i|s + 1 \leq i \leq t - 1, \text{ and } i + d_i - 1 \leq t - 1\}| \\
+ |\{i|1 \leq i \leq s - 1, \text{ and } s \leq i + d_i - 1 \leq t\}|.
\]

When \(s \in F_t \), we can derive that \(|\{i|s + 1 \leq i \leq t - 1, \text{ and } i + d_i - 1 \leq t - 1\}| \leq t - s - 1 \leq d_s \). Thus, \(\sum_{t=1}^{T} \sum_{s \in F_t} |\{i|s + 1 \leq i \leq t - 1, \text{ and } i + d_i - 1 \leq t - 1\}| \leq \sum_{i=1}^{T} d_i = D \).

Next, for each \(b \in \{i|1 \leq i \leq s - 1, \text{ and } s \leq i + d_i - 1 \leq t\} \), we have \(b \leq s \leq b + d_b - 1 \leq s + d_s - 1 \) so that \(\sum_{t=1}^{T} \sum_{s \in F_t} |\{i|1 \leq i \leq s - 1, \text{ and } s \leq i + d_i - 1 \leq t\}| \leq \sum_{t=1}^{T} |\{s|s \leq i + d_i - 1 \leq s + d_s - 1\}| \leq \sum_{i=1}^{T} d_i \).

Hence,
\[
\mathbb{E}\left((1 - e^{-\gamma}) \sum_{i=1}^{T} f_i(x^*) - \sum_{i=1}^{T} f_i(x_t) \right) \\
\leq \frac{\text{diam}^2(C)}{2\eta} + \max_{t \in [T]} (\| \nabla F_t(x_t) \|)^2 \left(\frac{\eta}{2} T + 2\eta D \right) \\
\leq \frac{\text{diam}^2(C)}{2\eta} + \max_{t \in [T]} (\| \nabla F_t(x_t) \|)^2 3\eta D \\
\leq O(\sqrt{D}),
\]
where the final equality from \(\eta = \frac{\text{diam}(C)}{\max_{t \in [T]} (\| \nabla F_t(x_t) \|)} \sqrt{D} \).