for one individual who had to discontinue sirolimus treatment due to painful oral ulcers (grade 3).

Oral ulceration was experienced by the majority of patients in our study and has been frequently reported in prior prospective trials. mTOR inhibitor-associated stomatitis appears similar to aphthous ulceration and distinct from oral mucositis caused by chemotherapy. Acneiform eruptions have been reported in about one-quarter of patients taking mTOR inhibitors; our findings suggest that this may be more common than previously considered. Previous trials have also reported infections, particularly of the respiratory tract, and our results indicate that skin and soft tissue infections may occur. Remarkably, 20 (67%) experienced changes relating to the pilosebaceous unit, including changes in hair growth. This may result directly from mTOR inhibition through effects on hair follicle stem cells and hair follicle cycling, or indirectly through inhibition of signalling through epidermal growth factor (EGF). Several hair-related side-effects, including acne, trichomegaly and scalp hair changes, have been associated with EGF inhibitors. A potential limitation of our study is partial reliance on patient history for documenting side-effects. Furthermore, the retrospective nature of the study limited our ability to assess the timing and dose-dependence of side-effects.

Dermatological side-effects of oral mTOR inhibitors are common but generally do not necessitate treatment discontinuation. For side-effects that are particularly bothersome or complicated, routine monitoring by dermatologists can be vital for optimizing quality of life during therapy. Painful mouth ulcers that hinder oral intake may lead to poor nutrition. Patients may benefit from avoidance of foods that may traumatize the oral mucosa as well as from topical corticosteroids or analgesics. Acneiform eruptions, which may be painful and cause psychological distress, may be managed with conventional acne therapies. Patients should be cautioned prior to undergoing skin biopsies regarding the risks of poor wound healing and cutaneous infections. For individuals who are refractory to direct management of dermatological side-effects, dosage reduction or transient discontinuation of treatment may be pursued, especially if the risks of stopping therapy outweigh the benefits.

D.J. Pithadia, A.M. Treichel, A.M. Jones, P. Julien-Williams, T. Machado, J. Moss and T.N. Darling

1Department of Dermatology, Uniformed Services University, Bethesda, MD, USA; and 2Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA

Correspondence: Thomas N. Darling.
Email: thomas.darling@usuhs.edu

This work was presented at the 2019 International Tuberous Sclerosis Complex Research Conference, June 20–22, 2019, Toronto, Ontario, Canada. The opinions and assertions expressed herein are those of the authors and do not necessarily reflect the official policy or position of the Uniformed Services University, the Department of Defense, or the National Institutes of Health.

References

1 Franz DN, Krueger DA. mTOR inhibitor therapy as a disease modifying treatment for tuberous sclerosis complex. Am J Med Genet C Semin Med Genet 2018; 178:365–73.
2 Boers-Doets CB, Raber-Durlacher JE, Treister NS et al. Mammalian target of rapamycin inhibitor-associated stomatitis. Future Oncol 2013; 9:1883–92.
3 Bissler JJ, Kingswood JC, Radzikowska E et al. Everolimus long-term use in patients with tuberous sclerosis complex: four-year update of the EXIST-2 study. PLOS ONE 2017; 12:e0180939.
4 Deng Z, Lei X, Zhang X et al. mTOR signaling promotes stem cell activation via counterbalancing BMP-mediated suppression during hair regeneration. J Mol Cell Biol 2015; 7:62–72.
5 Mahé E, Morelon E, Lechaton S et al. Acne in recipients of renal transplantation treated with sirolimus: clinical, microbiologic, histologic, therapeutic, and pathogenic aspects. J Am Acad Dermatol 2006; 55:139–42.
6 Fabbrocini G, Panariello L, Caro G, Cacciapuoti S. Acneiform rash induced by EGFR inhibitors: review of the literature and new insights. Skin Appendage Disord 2015; 1:31–7.
7 Zheng H, Zhang H, Zhang T et al. Trichomegaly and scalp hair changes following treatment with erlotinib in pulmonary adenocarcinoma patients: a case report and literature review. Exp Ther Med 2016; 12:1287–92.
8 Chambers MS, Rugo HS, Litton JK, Meiller TF. Stomatitis associated with mammalian target of rapamycin inhibition: a review of pathogenesis, prevention, treatment, and clinical implications for oral practice in metastatic breast cancer. J Am Dent Assoc 2018; 149:291–8.

Funding sources: this research was funded in part by the Intramural Research Program, National Institutes of Health (NIH), National Heart, Lung, and Blood Institute (NHLBI); it was also made possible by the NIH Medical Research Scholars Program, a public-private partnership supported jointly by the NIH and generous contributions to the Foundation for the NIH from the Doris Duke Charitable Foundation, the American Association for Dental Research, Colgate-Palmolive, Genentech, and other private donors. For a complete list, see the foundation website at http://www.fnih.org. Additionally, this work was funded by the Doris Duke Charitable Foundation Clinical Research Mentorship grant #2018042.

Conflicts of interest: the authors declare they have no conflicts of interest.

Patients with bullous skin disease in a high-epidemic COVID-19 area, Bergamo, Italy

DOI: 10.1111/bjd.19266

Dear Editor, A severe outbreak of coronavirus disease 2019 (COVID-19) emerged in China in December 2019 and rapidly spread worldwide. The number of people with COVID-19 has dramatically increased in Italy, and it still remains a severe public health emergency.1,2 Bullous pemphigoid (BP) and
pemphigus vulgaris (PV) are blistering disorders associated with barrier disruption, immune dysregulation and use of immunosuppressing systemic therapy. Patients with BP and PV have higher potential risk factors for infections secondary to skin alterations, comorbidity, and chronic treatment with immunosuppressing agents.3

We decided to advise patients affected by bullous diseases to comply with hygiene rules and use of protective devices. We encouraged them to observe social distancing measures and discouraged spontaneous suspensions of ongoing therapy, and recommended they inform their dermatologist in case of onset of symptoms, as suggested by the Italian Society of Dermatologists4 and several papers.5–7 We report below our experience in Bergamo, a highly epidemic area for COVID-19.

Our patients with BP and PV are residents in the provinces of Bergamo (52 BP, 26 PV; 84%), Milan (6 BP, 0 PV; 6%), Brescia (2 BP, 2 PV; 4%), Lecco (1 BP, 1 PV; 2%), Cremona (1 BP, 1 PV; 2%) and Sondrio (0 BP, 1 PV; 1%) – areas of Lombardy with a high incidence of COVID-19.8 There were 62 patients with BP (34 male, 28 female; mean age 78.6 ± 10.1 years, range 52–98) and 31 with PV (17 male, 14 female, mean age 62.5 ± 16.4 years, range 19–95) (Table 1). All patients were contacted by telephone 45–50 days after the beginning of the spread of COVID-19 in the Bergamo area.

Ten patients with BP (16%) experienced suspected COVID-19 symptoms. Seven of these reported coming into contact with patients with suspected (n = 3) or known (n = 4, positive nasal swab) COVID-19. Six patients with BP (10%) experienced ‘mild-to-moderate’ symptoms (e.g. flu-like symptoms, cough, low-grade fever or anosmia/ageusia, resolved without hospitalization), and four patients with BP (6%) experienced ‘severe’ symptoms (e.g. pneumonia with respiratory failure) that needed hospitalization (all hospitalized patients received hydroxychloroquine). All hospitalized patients had a positive COVID-19 nasal swab; three of these patients died (5%, mean age 85–0 years). All of the patients who died had severe cognitive impairment; the mean age of patients with COVID-19 who died in our region was 79–0 years.8 In March 2020 in Italy, nasal swabs

Table 1 Characteristics of patients with bullous pemphigoid and pemphigus vulgaris

	Bullous pemphigoid (n = 62)	Pemphigus vulgaris (n = 31)	
	Suspected COVID-19 symptoms	Asymptomatic	P-value
	(n = 10)	(n = 52)	
Age (years), mean ± SD (range)	79.5 ± 11.2 (61–98)	78.0 ± 10.2 (52–95)	0.70
Age at onset (years), mean ± SD (range)	75.4 ± 10.1 (57–89)	75.7 ± 10.2 (51–94)	0.94
Duration of disease (months), mean ± SD (range)	48.4 ± 40.6 (13–113)	28.2 ± 26.5 (1–123)	0.04
Male	60 (6/10)	54 (28/52)	0.72
Contact with person with suspected or confirmed COVID-19	70 (7/10)	2 (1/52)	< 0.001
Principal comorbidities			
Diabetes	30 (3/10)	37 (19/52)	
Hypertension	30 (3/10)	27 (14/52)	
Neurological or psychiatric diseases	30 (3/10)	21 (11/52)	
Cardiovascular diseases	30 (3/10)	35 (18/52)	
Chronic kidney failure	30 (3/10)	6 (3/52)	
Dyslipidemia	20 (2/10)	13 (7/52)	
Neoplasia	10 (1/10)	6 (3/52)	
Therapy			
Systemic steroid	60 (6/10)	88 (46/52)	0.03
Dosage (mg per day), mean ± SDa	5.2 ± 1.7	6.0 ± 3.6	0.56
Azathioprine	0 (0/10)	8 (4/52)	0.36
Doxycycline	0 (0/10)	12 (6/52)	0.26
Cyclophosphamide	–	–	0 (0/7)
Dapsone	–	–	0 (0/7)

The data are presented as % (n/N) unless stated otherwise. Means and SDs were compared between patients using a t-test for independent samples. Categorical variables were summarized as the number and percentage of all patients and were evaluated using the χ²-test or Fisher’s exact test. Significance was set at P < 0.05. aPrednisone or equivalent.

© 2020 British Association of Dermatologists

British Journal of Dermatology (2020) 181, pp564–595
were taken only in hospitalized patients; serological tests are currently still limited to regional regulations.

Seven patients with PV (23%) experienced suspected symptoms of COVID-19. Four patients with PV (suspected or asymptomatic) reported contact with patients with suspected (n = 3) or known (n = 1) COVID-19. Six patients with PV (19%) experienced 'mild-to-moderate' symptoms (as described above) and one patient with PV (3%) experienced 'severe' symptoms that needed hospitalization. This patient (69 years old, comorbidity of previous breast cancer), confirmed with a positive COVID-19 nasal swab, has now recovered.

For all those taking systemic steroid therapy, the current dosage was not considered immunosuppressive (> 20 mg per day). No patient independently discontinued the current therapy for fear of recurrence of bullous lesions. Ongoing steroid or immunosuppressive therapy has been stopped for hospitalized patients. All patients with pemphigoid and pemphigus were in remission, even 10 newly diagnosed patients (duration of disease < 6 months). One patient with pemphigus had been treated with rituximab 6 months earlier; he reports no COVID-19 symptoms.

Observation of these data shows that the main risk factor for developing suspected COVID-19 symptoms was contact between the patient and an individual with known or suspected COVID-19. Furthermore, we have seen that longer disease duration is more frequently associated with patients with suspected COVID-19 symptoms. A longer duration of therapy, although not at immunosuppressive dosages, probably creates a condition of infectious risk predisposition. Contact with COVID-19 is probably the most important factor: in patients with BP we found statistical significance, while in patients with PV we found no significance but a consistent trend. It must be considered that, given that many tests were performed, it is possible that some lower P-values arose by chance. Observations of a larger number of patients will be required to evaluate whether these trends can be confirmed.

It is therefore important to create a communication channel with these patients to give clinical and human support and to help in managing therapies. We found it essential to advise and empower patients on activities that limit the risk of infection (hand hygiene, social distancing, use of protective devices), especially the most fragile, elderly and comorbid patients.

Acknowledgments: We wish to express our gratitude to Dr Fabio Maria Carugno and Dr Alberto Ferrari for their precious help and advice.

A. Carugno 1, P. Sena, 1 F. Raponi, 1 E. Robustelli Test 2 and P. Vezzoli 1

1Dermatology Unit, ASST Papa Giovanni XXIII Hospital, Lombardy, Bergamo, Italy; and 2Dermatology Clinic, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy

Correspondence: Pamela Vezzoli. Email: p.vezzoli@asst-pg23.it

References
1. Grasselli G, Pesenti A, Cecconi M. Critical care utilization for the COVID-19 outbreak in Lombardy, Italy: early experience and forecast during an emergency response. JAMA 2020; in press [https://doi.org/10.1001/jama.2020.4031]
2. Buoro S, Di Marco F, Ruzzi M et al. Papa Giovanni XXIII Bergamo Hospital at the time of the COVID-19 outbreak: letter from the warfront. Int J Lab Hematol 2020; 42(Suppl. 1):8–10.
3. Ren Z, Narla S, Hsu DY, Silverberg JI. Association of serious infections with pemphigus and pemphigoid: analysis of the Nationwide Inpatient Sample. J Eur Acad Dermatol Venereol 2018; 32:1768–76.
4. Società Italiana di Dermatologia Medica, Chirurgica, Estetica e delle Malattie Sexualmente Trasmesse (SIDeMaST). Vademecum per i pazienti affetti da malattie bollose e malattie autoimmune [Guide for patients with bullous diseases and autoimmune diseases]. Available at: https://www.sidemast.org/blog/infezione-da-coronavirus-vademecum-per-i-pazienti-affetti-da-malattie-bollose-e-malattie-autoimmuni (last accessed 27 May 2020).
5. Rademaker M, Baker C, Foley P et al. Advice regarding COVID-19 and use of immunomodulators, in patients with severe dermatological diseases. Australas J Dermatol 2020; 61:158–9.
6. Price KN, Frew JW, Hsiao JL, Shi YY. COVID-19 and immunomodulator/immunosuppressant use in dermatology. J Am Acad Dermatol 2020; 82:e173–5.
7. Torres T, Puig L. Managing cutaneous immune-mediated diseases during the COVID-19 pandemic. Am J Clin Dermatol 2020; 31:307–11.
8. Istituto Superiore di Sanità — EpiCentro Epidemiology for Public Health. SARS-CoV-2. Available at: https://www.epicentro.iss.it/en/coronavirus (last accessed 27 May 2020).

Funding sources: none.

Conflict of interest: The authors declare they have no conflicts of interest.

Thrombotic occlusive vasculopathy in a skin biopsy from a livedoid lesion of a patient with COVID-19

DOI: 10.1111/bjd.19222

Dear Editor, Some authors have reported the presence of cutaneous lesions related to the new coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, in up to 20–4% of cases. However, these lesions are not well characterized either clinically or histopathologically. A recently highlighted finding is congested and oedematous blood vessels along with hyaline thrombi in the alveolar septum, and also in the heart, liver and kidney of three autopsied patients who died due to severe infection by SARS-CoV-2. Thus, anticoagulant treatment has been proposed to decrease mortality in certain cases of severe COVID-19 disease. We report a case of livedoid purple lesions along with acrocyanosis in a patient with confirmed SARS-CoV-2 infection with positive nasopharyngeal swab, showing an underlying obstructive cutaneous vasculopathy.