multiomics: A user-friendly multi-omics data harmonisation R pipeline [version 1; peer review: 2 not approved]

Tyrone Chen1, Al J Abadi2, Kim-Anh Lê Cao2, Sonika Tyagi1,3

1School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
2Melbourne Integrative Genomics, School of Mathematics and Statistics, University of Melbourne, Parkville, VIC, 3010, Australia
3Department of Infectious Disease and Monash eResearch Centre, The Alfred Hospital and Monash University, Melbourne, VIC, 3004, Australia

\textbf{Abstract}

Data from multiple omics layers of a biological system is growing in quantity, heterogeneity and dimensionality. Simultaneous multi-omics data integration is a growing field of research as it has strong potential to unlock information on previously hidden biological relationships leading to early diagnosis, prognosis and expedited treatments. Many tools for multi-omics data integration are being developed. However, these tools are often restricted to highly specific experimental designs, and types of omics data. While some general methods do exist, they require specific data formats and experimental conditions. A major limitation in the field is a lack of a single or multi-omics pipeline which can accept data in an unrefined, information-rich form pre-integration and subsequently generate output for further investigation. There is an increasing demand for a generic multi-omics pipeline to facilitate general-purpose data exploration and analysis of heterogeneous data. Therefore, we present our R multiomics pipeline as an easy to use and flexible pipeline that takes unrefined multi-omics data as input, sample information and user-specified parameters to generate a list of output plots and data tables for quality control and downstream analysis. We have demonstrated application of the pipeline on two separate COVID-19 case studies. We enabled limited checkpointing where intermediate output is staged to allow continuation after errors or interruptions in the pipeline and generate a script for reproducing the analysis to improve reproducibility. A seamless integration with the mixOmics R package is achieved, as the R data object can be loaded and manipulated with mixOmics functions. Our pipeline can be installed as an R package or from the git repository, and is accompanied by detailed documentation with walkthroughs on two case studies. The pipeline is also available as Docker and Singularity containers.

\textbf{Keywords}

machine learning, multi-omics, data integration, data harmonisation, multivariate analysis

\textbf{Open Peer Review}

\textbf{Approval Status}

1	2
X	X

\textit{version 1}
06 Jul 2021

1. Javad Zahiri, University of California San Diego, La Jolla, USA

2. Arjun Krishnan, Michigan State University, East Lansing, USA

Any reports and responses or comments on the article can be found at the end of the article.
Corresponding authors: Tyrone Chen (tyrone.chen@monash.edu), Sonika Tyagi (Sonika.Tyagi@monash.edu)

Author roles: Chen T: Conceptualization, Data Curation, Formal Analysis, Software, Validation, Writing – Original Draft Preparation, Writing – Review & Editing; Abadi AJ: Methodology, Software, Validation, Visualization, Writing – Review & Editing; Lê Cao KA: Formal Analysis, Funding Acquisition, Methodology, Software, Supervision, Validation, Visualization, Writing – Review & Editing; Tyagi S: Conceptualization, Data Curation, Funding Acquisition, Project Administration, Resources, Supervision, Validation, Writing – Original Draft Preparation, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: S. T acknowledges the AISRF EMCR Fellowship by the Australian Academy of Science and Australian Women ResearchSuccess Grant at Monash University. T. C received funding from the Australian Government Research Training ProgramScholarship and Monash Faculty of Science Dean's Postgraduate Research Scholarship. K-A. L-C was supported in partby the National Health and Medical Research Council (NHMRC) Career Development fellowship (GNT1159458)

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2021 Chen T et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Chen T, Abadi AJ, Lê Cao KA and Tyagi S. multiomics: A user-friendly multi-omics data harmonisation R pipeline [version 1; peer review: 2 not approved] F1000Research 2021, 10:538 https://doi.org/10.12688/f1000research.53453.1

First published: 06 Jul 2021, 10:538 https://doi.org/10.12688/f1000research.53453.1
Introduction

A biological phenotype is an emergent property of a complex network of biological interactions. Since relying on a single layer of omics data to test a biological hypothesis results in an incomplete perspective of a biological system, interest in multi-omics data integration is steadily increasing as a means to decipher complex biological phenotypes.\(^1\)

We illustrate these points with a hypothetical case of measuring protein and transcript levels in a same set of matched samples. Each of these omics data layers contain independent information. A correlation score is then obtained between expression levels of the two blocks of omics data, resulting in an interpretable association measure. While correlation scores are a primitive metric, especially in this context of protein and transcript,\(^2\) they represent an additional layer of data summarising valuable relationships. Identifying highly correlated features across independent blocks of omics data could potentially reinforce the validity of the result, while highlighting interesting features (strong positive or negative correlations) for further investigation [Figure 1]. Hence, exploiting such parallel measurements from a multi-omics perspective allows a more comprehensive and cohesive view of such complex and often dynamic systems, and this resolution would be expected to improve as more omics layers are added. Published multi-omics studies discovering novel biological insights which are not possible with single-omics data further supports our points.\(^3\)\(^-\)\(^9\) With the increasing volume of multi-omics data present in publicly accessible biological data repositories,\(^10\)\(^-\)\(^12\) multi-omics data integration is expected to be the core strategy of modern and future biological data analyses.

As a result, methods have been developed to leverage the multitude of data modalities in characterising biological systems. While many tools are available, most of these methods are heavily customised to fit a specific experimental design, and are not generic enough to handle most use cases.\(^1\) Furthermore, many tools that claim to perform data integration actually

Figure 1. An illustration of a hypothetical multi-omics perspective on a simple biological system. The rectangles represent different layers of omics data (e.g. proteome, transcriptome and lipidome) while the circles represent features within their respective omics data layer. Black single-line arrows show correlation between features within the omics data (e.g. a regulatory factor) while blue double-lines show correlation between features across different omics data layers. A powerful abstraction of the system under study can be obtained by reviewing multiple layers of omics data holistically.
perform high-level data aggregation, where datasets are processed individually and only summarised, high level information is analysed together. Of these algorithms, few perform data integration of multiple layers of omics data simultaneously, which we refer to specifically as “data harmonisation” to distinguish it from the more general term of “data integration”.1

While some “data harmonisation” algorithms exist, it is important to note that at this time, no end-to-end pipeline or framework exists which allows the user to quickly and easily input unrefined data, run a pipeline and export output data which can be used for downstream analyses and further downstream analyses. Therefore, to facilitate this, we developed multiomics, a flexible, easy-to-install and easy-to-use pipeline.

We present a pipeline targeted at bioinformaticians called multiomics13 with some important features, implementing one of the state of the art tools in data harmonisation from the mixOmics R package.14 It is portable with multiple implementations, and can be installed as an R15 package or used by cloning the associated git repository.16 A series of diagnostic plots are generated automatically and compiled into a pdf file. There is seamless integration with mixOmics, where data generated by the pipeline is exported automatically as a R data object of mixOmics classes. As a form of checkpointing, the R data object is updated at every major stage of the pipeline, and can be loaded directly into the mixOmics suite of tools for further investigation or plot customisation. To increase reproducibility, command line arguments are also exported as a script file which can be rerun directly to reproduce the output. To improve usability, the option to provide command line arguments as a json file is also available.

Detailed documentation is provided both within the source git repository and as vignettes in the R package. Multiple installation methods are shown in the git repository to maximise accessibility of our pipeline for users. Additionally, walkthroughs of two case studies are included. Complete and detailed examples of input data format are also provided, including a sample dataset which can be loaded directly from the R package. In this manuscript, we summarise these information and show a minimum working example to highlight some of the features of our pipeline.

Methods
Implementation
Quick install

You can install this directly as a R package from gitlab:

```r
install.packages("devtools")
library("devtools")
install_gitlab("tyagilab/sars-cov-2", subdir="multiomics")
```

Docker and singularity containers

Docker17 and Singularity18,19 images are also available if the user prefers to use containers directly. Note that you typically need root access to run Docker, if this is not possible try Singularity.

```bash
# download the Docker image
docker pull tryronechen/multiomics:1.0.0

# check that it works correctly
docker run --rm -it tryronechen/multiomics:1.0.0 Rscript -e 'packageVersion("multiomics")'

# this opens a bash shell where you can use run_pipeline.R
docker run --rm -it --entrypoint bash tryronechen/multiomics:1.0.0

# copy the script from install location or repository as shown in the previous section
# once you have a copy of the script in your current working directory, you can run this commandRscript run_pipeline.R -h
```
If you don’t have root access, you can try Singularity. The Singularity image file is large and you may need to set
$SINGULARITY_TMPDIR to a custom location with at least 1 GB of free space.

```bash
# set singularity tmpdir to a location of your choice
# if you are not in a HPC you can usually skip this
export SINGULARITY_TMPDIR=/path/to/directory

singularity pull multiomics.sif docker://tyronechen/multiomics:1.0.0

# copy the script from install location or repository as shown above and run singularity exec multiomics.sif Rscript run_pipeline.R -h
```

Manual install

If the above automated install steps do not work, detailed manual installation instructions are available in the source git repository at https://gitlab.com/tyagilab/sars-cov-2/-/tree/master for conda and R.

You may need to install **mixOmics** from source. Follow the installation instructions on https://github.com/aljabadi/mixOmics#installation:

```r
install_github("mixOmicsTeam/mixOmics")
```

The actual script used to run the pipeline is not directly callable but provided as a separate script. Running the following command will show you the path to the script. A copy of this is also available in the source git repository.

```bash
system.file("scripts", "run_pipeline.R", package="multiomics")
# outside of R
Rscript run_pipeline.R -h
```

Operation

Example input

Three elements are the minimum required input for the pipeline [Figure 2]. First, at least two files corresponding to omics data blocks are required. Next, a file containing biological class information is required. Finally, a list of unique names labelling each data block is required. Examples of these input files and their internal data structure as they appear in the pipeline are shown.

```r
# download omic data block 1
url <- paste(
  "https://gitlab.com/tyagilab/sars-cov-2/",
  "/raw/master/data/case_study_2/data_lipidomics.tsv",
  sep="-"
)
download.file(url, "data_lipidomics.tsv")

# download omic data block 2
url <- paste(
  "https://gitlab.com/tyagilab/sars-cov-2/",
  "/raw/master/data/case_study_2/data_metabolomics.tsv",
  sep="-"
)
download.file(url, "data_metabolomics.tsv")

# download class information
url <- paste(
  "https://gitlab.com/tyagilab/sars-cov-2/",
  "/raw/master/data/case_study_2/data_classification.tsv",
  sep="-"
)
download.file(url, "data_classification.tsv")
```
inspect the data
> lipid <- read.table(
 "data_lipidomics.tsv", sep="\t", header=TRUE, row.names=1
)
> head(lipid[,1:2])
AC.10.0_RT_6.936 AC.12.0_RT_7.955
C1 18.13745 16.84196
C10 20.48135 18.06048
C100 22.32588 21.30632
C101 20.56189 18.84777
C102 22.28591 17.98330
C103 18.18658 16.97716

> metab <- read.table(
 "data_metabolomics.tsv", sep="\t", header=TRUE, row.names=1
)
> head(metab[,1:2])
X1.2.Propanediol..2TMS.de X2.3.Dihydroxybutanoic.ac
C1 22.52599 13.89898
C10 22.63460 17.85105
C100 22.12956 13.34028
C101 21.94220 17.44137
C102 21.87579 17.88084
C103 21.37599 14.28262

> biological_classes <- read.table(
 "classes_diablo.tsv", sep="\t", header=TRUE, row.names=1
)
> head(biological_classes)
Hospital_free_days_45
C1 More severe
C10 More severe
C100 Less severe
C101 Less severe
C102 More severe
C103 More severe

> data_names
[1] "lipidome" "metabolome"

Note that column names and row names should be truncated to avoid bugs in the pipeline associated with name length. Furthermore, usage of non-alphanumeric characters in their names should be avoided as R quietly replaces these with periods.

Examples of these data and class files for two case studies are included in the source git repository.

Running the pipeline
The pipeline is run with the command `Rscript run_pipeline.R` and passing a list of command line arguments either as strings of text or in a json file (recommended). Running the actual pipeline can take some time. The main bottleneck is parameter tuning which scales exponentially with the number of omics data blocks, but it is possible to disable this if the user wants to perform a test run or is already aware of the parameters. We note that R Data objects are periodically exported that allow for seamless integration with functions in the underlying mixOmics package when needed. A secondary bottleneck is data imputation, which scales with the number of components used and the dimensions of the input data. If needed, it is possible to impute and export this imputed data either with the pipeline or with the
underlying mixOmics function, and then substitute that as input. The user can adjust the number of cpus if needed to speed up the process. Data imputation can be skipped if it is not required.

Code for the pipeline can be examined in detail from the git repository or individual functions can be inspected directly after loading the R multiomics package.
Example output

Output files include a pdf file compiling all graphical output.20-24 Note that this can be quite large, especially if you have a large dataset. A graphml file is also exported for input into cytoscape.25 Due to the size and volume of plots, we provide a link to some example plots here. A manuscript using figures generated from this pipeline is also available for reference.26

Each analysis generates a series of text files containing feature weights. In some ways, these are functionally analogous to differential expression analyses, where these coefficients summarise the features with the most phenotypically relevant information. At the same time, a table of feature correlations across multi-omics data is generated. Some examples of these are shown below:

```r
# download single-omic variable weights
url <- paste(
  "https://gitlab.com/tyagilab/sars-cov-2/",
  "-/raw/master/results/case_study_2/",
  "lipidome_sPLSDA_max.txt",
  sep=""
)
download.file(url, "lipidome_sPLSDA_max.txt")

# download multi-omic variable weights
# this is for a single block of omics data
url <- paste(
  "https://gitlab.com/tyagilab/sars-cov-2/",
  "-/raw/master/results/case_study_2/",
  "lipidome_DIABLO_max.txt",
  sep=""
)
download.file(url, "lipidome_DIABLO_max.txt")

# download multi-omic correlations
url <- paste(
  "https://gitlab.com/tyagilab/sars-cov-2/",
  "-/raw/master/results/case_study_2/",
  "DIABLO_var_keepx_correlations.txt",
  sep=""
)
download.file(url, "DIABLO_var_keepx_correlations.txt")

> lipid_splsda <- read.table(
  "lipidome_sPLSDA_max.txt", header=TRUE, sep="\t", row.names=1
)
> colnames(lipid_splsda)
# [1] "More.severe" "Contrib.Less.severe" "Contrib.More.severe" "Contrib"
# [5] "GroupContrib" "color" "importance"
> head(lipid_splsda[,1:2])
  More.severe Contrib.Less.severe
# Unknown_mz_794.50909_.R  0.5552234 -0.3042823
# Unknown_mz_784.5116_._RT -0.5015304  0.6519465
# Unknown_mz_632.40179_.R  -0.4719458  0.3883697
# Unknown_mz_594.49445_.R  -0.6700148  0.5980478
# Unknown_mz_481.04605_.R  -0.7062099  0.5334766
# Unknown_mz_289.07495_.R  -0.6902981  0.1644617

> lipid_diablo <- read.table(
  "lipidome_DIABLO_max.txt", header=TRUE, sep="\t", row.names=1
)
```

[95x210]F1000Research 2021, 10:538 Last updated: 16 SEP 2022
An R data file containing all of the information above and a script containing command line arguments which can be used to reproduce the analysis are also exported to enable full reproducibility.

Examples of these output files for two case studies are included in the source git repository.

Use cases
We demonstrate a sample use case of our pipeline with reference to an earlier re-analysis of a published dataset.13,26 Our tool takes as input at least two data files present as tables of quantitative information, with samples as rows and features as columns. A list of names corresponding to the names of these data blocks are required. A file containing class information is also required as a list of newline separated values. Examples of these data and class files for two case studies are included in the source git repository. Other command line arguments are also possible pertaining to distance metrics of choice for prediction, number of features to select and others. A full description of these can be obtained by running `Rscript run_pipeline.R -h`, which will list every flag in detail. Because of the number of command line arguments, an option is provided to pass these parameters as a json file to the pipeline. Examples of these json files for two case studies are included in the source git repository.

Example data included within the multiomics package
Regarding input data, some example data27 is provided as part of our R package.
Alternatively, you may download this from our git repository directly. This is a subset of anonymised clinical data provided in a separate publication.27

Example processing workflow

We provide a fully processed dataset as a guide for the user. The steps below can be reproduced by downloading the R data object with the following command:

```r
url <- paste("https://gitlab.com/tyagilab/sars-cov-2/", "/raw/master/results/case_study_2/RData.RData", sep="-"
)
download.file(url, "RData.RData")
load("RData.RData")
ls()
# [ 1] "argv" 	 "classes" 	 "data"
# [ 4] "data_imp" 	 "data_pca_multilevel" 	 "data_plsda"
# [ 7] "data_splsda" 	 "diablo" 	 "dist_diablo"
# [10] "dist_plsda" 	 "dist_splsda" 	 "linkage"
# [13] "mappings" 	 "pca_impute" 	 "pca_withna"
# [16] "pch" 	 "perf_diablo" 	 "tuned_diablo"
# [19] "tuned_splsda"
```

Inspecting the minimum required input (classes and data) reveals the following:

```r
> length(classes)
# [1] 100

> sapply(data, dim)
# Lipidome Metabolome Proteome Transcriptome
# [1,] 100 100 100 100
# [2,] 3357 150 517 13263

> table(classes)
# Classes
# Less Severe More Severe
# 49 51

> head(data$lipidome[,1:3])
# AC.10.0_RT_6.936 AC.12.0_RT_7.955 AC.13.0_RT_8.306
# C1 18.13745 16.84196 12.84435
# C10 20.48135 18.06048 15.17862
# C100 22.32588 21.30632 14.91515
# C101 20.56189 18.84777 14.46379
# C102 22.28591 17.98330 14.90019
# C103 18.18658 16.97716 13.36094
```
Data preprocessing

First, data is filtered if associated options are specified by the user. Features with missing values across sample groups are discarded by default. The user can also choose to filter out features (columns) exceeding a certain threshold of missing values.

Imputing missing values is optional as PLS-derived methods can function without this step. However, we include this information in case the user would like to perform this step manually. Remaining missing values can be imputed by the user-specified \(--icomp\) flag. Imputation is effective when the quantity of missing values is <20% of the data. To investigate if the data has been significantly changed, the user can plot a correlation plot of the principal components before and after imputation. Since imputation can take a long time, especially for large datasets, the imputed data is saved by default and the user can load it in directly as input if desired.

If the study design is longitudinal (e.g. has repeated measurements on the same sample), then the \(--pch\) flag should be enabled by the user. The user should pass in a file with the same format as the \(\text{classes}\) file, but containing information regarding the repeated measurements. Providing this information allows the pipeline to adjust for this internally.

Method parameters

Most of the parameters for the machine learning algorithms are specified by the user. These cover the three methods PLSDA (partial least squares discriminant analysis), sPLSDA (sparse PLSDA) and multi-block sPLSDA (also known as DIABLO). The underlying methods are implemented within the \textit{mixOmics} software package and more information is available on their website http://mixomics.org/. For each method, a distance metric is specified, either “max.dist”, “centroids.dist” or “mahalanobis.dist”. Unlike PLSDA, sPLSDA and multi-block sPLSDA focus on selecting subset of the most relevant features and therefore require a user-specified list describing the quantity of features to be selected from the data. The number of components to derive for each method is also provided. For this section, several exploratory runs with a wide range can be carried out to find the optimal configuration of features, e.g. starting at 5,10,30,50,100, inspecting subsequent output and further narrowing the range. The user can specify a few additional special parameters to the multi-block sPLSDA (block.splsda) function. The linkage parameter is a continuous value from 0 to 1, and describes the type of analysis, with a value closer to 0 prioritising class discrimination and a value closer to 1 prioritising correlation between data sets. Meanwhile, setting the number of multi-block sPLSDA components to 0 causes the pipeline to perform parameter tuning internally. Note that this can take a long time, and scales exponentially per added block of omics data. The user can also specify the number of cpus to be used for parallel processing, which mainly affects parameter tuning. Using our example, these arguments are provided here:

```
> argv
# ...
# $ncpus
# [1] 16

# $diablocomp
# [1] 0

# $linkage
# [1] 0.1

# $diablo_keepx
# [1] "5,6,7,8,9,10,30"

# $pcomp
# [1] 10

# $plsdacomp
# [1] 2

# $splsdacomp
# [1] 2
```
Performance metrics

To examine the performance of each method, “M-fold” or “leave-one-out” cross-validation is performed to generate error rate plots. To account for cases where sample classes are imbalanced, balanced error rates which simply averages the class-wise error rates are also calculated and shown [Figure 3].

![Error Rate Plot](image.png)

Figure 3. Example error rate plot. Error rates are calculated by “leave-one-out” cross-validation implemented in mixOmics. These plots are generated for each analysis type (PLSDA/sPLSDA/DIABLO). An example showing error rates for DIABLO is shown here. This figure was originally published on gitlab under a CC-BY-3.0 AU license and is reproduced here with permission.
Result visualisation

Results are exported in a series of plots and compiled into a pdf [Figure 4]. They can also be accessed internally from our provided R data object.

Output control

Pipeline output can be controlled by specifying a number of flags. By default, the pipeline deposits data in the current working directory. This behaviour can be easily modified. Setting `outfile_dir` specifies the master output directory. An R data object containing objects shown in the loaded RData file can be renamed with the `rdata` option, generating a file similar to the one used in this example. The `plot` flag defines the pdf file containing all graphical output as a multi-page pdf of all plots generated in the pipeline. A reproducible script is generated and named by the user with the `args` flag (this defaults to Rscript.sh).
Reproducibility and integration with mixOmics
Finally, the pipeline has a limited check-pointing built-in. At each milestone in the pipeline, the relevant output is saved and written out as a RData file, similar to the one presented above. This allows the user to manually inspect the data and adjust it to their needs where needed. In the case of completed output, the user can further customise plots and data exports for publication or downstream analysis. Importantly, data objects are compatible with core mixOmics functions, and allows seamless integration with the mixOmics suite of tools if the user intends to extend or perform their own custom analysis workflows.

Data availability
Source data
Primary data was generated by third parties and is publicly available. For case study 1, translatome data is available from the source publication as Supplementary Table 1 and proteome data is available as Supplementary Table 2. For case study 2, the authors provided their data in a sql database.

Underlying data
Zenodo: Multi-omics data harmonisation for the discovery of COVID-19 drug targets. https://doi.org/10.5281/zenodo.4602867

This project contains the following data.

- Documentation in markdown format describing pipeline usage on two case studies.
- Input data files in plain text (see Source Data for more information).
- Graphical output as pdf files and feature weights as text files.
- Source code, including code to reproduce figures in this article and source code for the R package.
- Docker file specifications for use with Docker and singularity images.

Gitlab: SARS-CoV-2. https://gitlab.com/tyagilab/sars-cov-2

- Documentation in markdown format describing pipeline usage on two case studies.
- Input data files in plain text (see Source Data for more information).
- Graphical output as pdf files and feature weights as text files.
- Source code, including code to reproduce figures in this article and source code for the R package.
- Docker file specifications for use with Docker and singularity images.
The following underlying data is used in this article:

- `data_lipidome.tsv` (Text file as raw input data (lipidomics) for case study 2.)
- `data_metabolome.tsv` (Text file as raw input data (metabolomics) for case study 2.)
- `classes_diablo.tsv` (Text file as raw input data (biological classes) for case study 2.)
- `RData.RData` (R data object containing all input, intermediate and output data for case study 2.)
- `manuscript_figures` (Example output plots that can be generated by the pipeline.)

Code and data is available under the MIT license. Documentation is available under the CC-BY-3.0 AU license.

Extended data

The following extended data is available in the same repository:

- `data/case_study_1` (All raw input data for case study 1.)
- `data/case_study_2` (All raw input data for case study 2.)
- `results/case_study_1` (Example output data for case study 1.)
- `results/case_study_2` (Example output data for case study 2.)

Similar to underlying data, extended code and data is available under the MIT license. Documentation is available under the CC-BY-3.0 AU license.

Software availability

- Software available through R directly:

  ```r
  install.packages("devtools")
  library("devtools")
  install_github("mixOmicsTeam/mixOmics")
  install_gitlab("tyagilab/sars-cov-2", subdir="multiomics")
  ```

The actual script used to run the pipeline is not directly callable but provided as a separate script.

```r
# this will show you the path to the script
system.file("scripts", "run_pipeline.R", package="multiomics")
```

- Source code available from: https://gitlab.com/tyagilab/sars-cov-2
- Archived source code at time of publication: https://doi.org/10.5281/zenodo.4562009
- License: MIT License. Documentation provided under a CC-BY-3.0 AU license

The specific version numbers of the packages used are shown below, along with the version of the R installation.

```r
> library(multiomics)
> sessionInfo()
# R version 4.0.3 (2020-10-10)
```
Author contributions
Conceptualization, S. T, T. C; Data Curation, S. T, T. C; Formal Analysis, K-A. L-C, T. C; Funding Acquisition, K-A. L-C, S. T; Methodology, A. J. A, K-A. L-C; Project Administration, S. T; Resources, S. T; Supervision, K-A. L-C, S. T; Software, A. J. A, K-A. L-C, T. C; Validation, A. J. A, K-A. L-C, S. T, T. C; Visualization, A. J. A, K-A. L-C; Writing Original Draft Preparation, S. T, T. C; Writing Review & Editing, A. J. A, K-A. L-C, S. T, T. C.

Competing interests
There is no competing interest.

Grant information
S. T acknowledges the AISR EMCR Fellowship by the Australian Academy of Science and Australian Women Research Success Grant at Monash University. T. C received funding from the Australian Government Research Training Program Scholarship and Monash Faculty of Science Deans Postgraduate Research Scholarship. K-A. L-C was supported in part by the National Health and Medical Research Council (NHMRC) Career Development fellowship (GNT1159458).

Acknowledgements
The authors thank the HPC team at Monash eResearch Centre for their continuous personnel support. This work was supported by the MASSIVE HPC facility. We acknowledge and pay respects to the Elders and Traditional Owners of the land on which our 4 Australian campuses stand.

References
1. Chen T, Tyagi S: Integrative computational epigenomics to build data-driven gene regulation hypotheses. GigaScience. June 2020; 9(6):1-13. 2047-217X. PubMed Abstract | Publisher Full Text | Free Full Text
2. Maier T, Géall M, Serrano L: Correlation of mRNA and protein in complex biological samples. FEBS Lett. October 2009; 583(2): 3966-3973. 0014-5793. PubMed Abstract | Publisher Full Text
3. Benevento M, Tonge PD, Puri MC, et al.: Proteome adaptation in cell reprogramming proceeds via distinct transcriptional networks. Nat Commun. December 2014; 5(1). 2041-1723. PubMed Abstract | Publisher Full Text
4. Clancy JL, Patel HR, Hussein SMI, et al.: Small RNA changes en route to distinct cellular states of induced pluripotency. Nat Commun. December 2014; 5(1). 2041-1723. PubMed Abstract | Publisher Full Text
5. Hussein SMI, Puri MC, Tonge PD, et al.: Genome-wide characterization of the routes to pluripotency. Nature. December 2014; 516(7530): 198-206. 0028-0836, 1476-4687. PubMed Abstract | Publisher Full Text
6. Lee D-S, Shin J-Y, Tonge PD, et al.: An epigenomic roadmap to induced pluripotency reveals DNA methylation as a reprogramming modulator. Nat Commun. December 2014; 5(1). 2041-1723. PubMed Abstract | Publisher Full Text | Free Full Text
7. Tonge PD, Corso AJ, Monetti C, et al.: Divergent reprogramming routes lead to alternative states of two single-cell states. Nature. December 2014; 516(7530): 192–197. 0028-0836, 1476-4687. PubMed Abstract | Publisher Full Text

8. Gernsmeier C, Clark SJ, Lee HJ, et al.: Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat Methods. January 2016; 13(3): 229–232. 1548-7951, 1548-7105. PubMed Abstract | Publisher Full Text | Free Full Text

9. Argelaguet R, Clark SJ, Mohammed H, et al.: Multi-omics profiling of mouse gastrulation at single-cell resolution. Nature. December 2019; 576(7787): 487–491. 0028-0836, 1476-4687. PubMed Abstract | Publisher Full Text | Free Full Text

10. Leinonen R, Sugawara H, Shumway M: et al | The sequence read archive. *Nucleic Acids Res.* November 2010; 39(Database): D19–D21. 0305-1048, 1362-4962. PubMed Abstract | Publisher Full Text | Free Full Text

11. Mashima J, Kodama Y, Fujisawa T, et al.: DNA data bank of Japan. *Nucleic Acids Res.* October 2016; 45(D1): D25–D31. 0305-1048, 1362-4962. PubMed Abstract | Publisher Full Text | Free Full Text

12. Athar A, Fullgrabe A, George N, et al.: ArrayExpress update – from bulk to single-cell expression data. *Nucleic Acids Res.* October 2018; 47(2): D711–D715. 0305-1048, 1362-4962. PubMed Abstract | Publisher Full Text | Free Full Text

13. Chen T, Philip M, Lê Cao K-A, et al.: A multi-modal data harmonisation approach for discovery of COVID-19 drug targets. Brief. Bioinf. May 2021; 01467-5463, 1477-4054. PubMed Abstract | Publisher Full Text | Free Full Text

14. Rohart F, Gautier Be, Singh A, et al.: mixOmics: An r package for ’omics feature selection and multiple data integration. *PLoS Comput. Biol.* November 2017; 13(11): e1005752. 1553-7358. PubMed Abstract | Publisher Full Text | Free Full Text

15. R Core Team: R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2020. Reference Source

16. Chacón S, Straub B Pro Git. Apress; 2014. 9781484200773, 9781484200766. Publisher Full Text

17. Merkel D: Docker: Lightweight Linux containers for consistent development and deployment. *Linux J.* March 2014; 2014(239). 1075-3583.

18. Kurtzer GM: Singularity 2.1.2 - Linux application and environment containers for science. August 2016. Publisher Full Text

19. Kurtzer GM, Sochat V, Bauer MW: Singularity: Scientific containers for mobility of compute. *PloS ONE.* May 2017; 12(5): e0177459. 1932-6203. PubMed Abstract | Publisher Full Text | Free Full Text

20. Lê Cao K-A, Rossouw D, Robert-Granet Christèle, et al.: A sparse PLS for variable selection when integrating omics data. *Stat. Appl. Genet. Mol.* January 2008; 7(1), ISSN 1544-6115. PubMed Abstract | Publisher Full Text | Free Full Text

21. Lê Cao K-A, Boitard S, Besse P: Sparse PLS discriminant analysis: Biologically relevant feature selection and graphical displays for multiclass problems. *BMIC Bioinf.* June 2011; 12(1). 1471-2105. PubMed Abstract | Publisher Full Text | Free Full Text

22. González I, Lê Cao K-A, Davis MJ, et al.: Visualising associations between paired ‘omics’ data sets. *BioData Min.* November 2012; 2:1–23. 1756-0381. PubMed Abstract | Publisher Full Text | Free Full Text

23. Smoot ME, Ono K, Ruscheinski J, et al.: Cytoscape 2.8: New features for data integration and network visualization. *Method. Biochem. Anal.* December 2010; 27(3): 431–432. 1367-4803, 1460-2059. PubMed Abstract | Publisher Full Text | Free Full Text

24. Singh A, Shannon CP, Gautier B, et al.: DIABLO: An integrative approach for identifying key molecular drivers from multi-omics assays. *Method. Biochem. Anal.* January 2019; 35(17): 3055–3062. 1367-4803, 1460-2059. PubMed Abstract | Publisher Full Text | Free Full Text

25. Smoot ME, Ono K, Ruscheinski J, et al.: Cytoscape 2.8: New features for data integration and network visualization. *Method. Biochem. Anal.* December 2010; 27(3): 431–432. 1367-4803, 1460-2059. PubMed Abstract | Publisher Full Text | Free Full Text

26. Chen T, Philip M, Lê Cao K-A, et al.: A multi-modal data harmonisation approach for discovery of COVID-19 drug targets. *Brief. Bioinf.* May 2021; 01467-5463, 1477-4054. PubMed Abstract | Publisher Full Text | Free Full Text

27. Overmyer KA, Shishkova E, Miller IJ, et al.: Large-scale multi-omic analysis of COVID-19 severity. *Cell Systems.* January 2021; 12(1): 23–40.e7. 2405-4712. PubMed Abstract | Publisher Full Text | Free Full Text

28. Westerhuis JA, van Velzen El, Hoefsloot HCJ, et al.: Multivariate paired data analysis: Multilevel PLSOA versus OPLSDA. *Metabolomics.* October 2009; 6(1): 119–128. 1573-3882, 1573-3890. PubMed Abstract | Publisher Full Text | Free Full Text

29. Bojkova D, Klann K, Koch B, et al.: Proteomics of SARS-CoV-2-infected host cells reveals therapy targets. *Nature.* May 2020; 585(7816): 469–472. 0028-0836, 1476-4687. PubMed Abstract | Publisher Full Text
Open Peer Review

Current Peer Review Status: ✗ ✗

Version 1

Reviewer Report 08 December 2021

https://doi.org/10.5256/f1000research.56837.r89102

© 2021 Krishnan A. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Arjun Krishnan
Department of Computational Mathematics, Science, and Engineering & Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824-1226, USA

In this article, Chen and colleagues present an R pipeline for multi-omics data analysis that can potentially accept unrefined data and produce convenient outputs. The pipeline is available as an R package and as Docker/Singularity containers. It is built on top of and closely integrated with the popular mixOmics package. Though this work could be useful, in its current form, it is unfortunately unclear what the new contributions are.

Major comments

1. The authors talk about the “lack of a single or multi-omics pipeline which can accept data in an unrefined, information-rich form pre-integration and subsequently generate output for further investigation”. What does “unrefined and information-rich mean” mean? As this is the primary motivator for this new pipeline, it needs to be explained clearly, especially in terms of the content and structure of data that multiomics can accept but existing packages like mixOmics cannot?

2. How is this pipeline different from the one published by the same authors in Briefings in Bioinformatics: A multi-modal data harmonisation approach for discovery of COVID-19 drug targets (Chen et al. (2021¹))?

3. The proposed pipeline – multiomics – heavily relies on the mixOmics package for all its data preprocessing, multivariate analyses, and plotting. The authors note that the speed and memory bottlenecks (e.g. parameter tuning and data imputation) are still problems. So, is multiomics a convenient wrapper for mixOmics? What are the contributions of the multiomics pipeline in terms of features that are not already part of mixOmics or any other existing multi-omics packages?

4. The writing can be considerably tightened.
 ○ The first two paragraphs in Introduction can be condensed to a few sentences so that
the practicalities of multi-omics data analysis can be brought up soon.

○ Figure 1 is not contributing to the exposition and can be removed.

○ What do the following statements on Page 4 at the beginning of passage 3 mean?
 ○ “implementing one of the state of the art tools in data harmonisation from the mixOmics R package”.
 ○ “It is portable with multiple implementations”

○ Fix: “run a pipeline and export output data which can be used for downstream analyses and further downstream analyses”.

References
1. Chen T, Philip M, Lê Cao KA, Tyagi S: A multi-modal data harmonisation approach for discovery of COVID-19 drug targets. *Brief Bioinform.* 2021. PubMed Abstract | Publisher Full Text

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Partly

Are sufficient details of the code, methods and analysis (if applicable) provided to allow replication of the software development and its use by others?
Partly

Is sufficient information provided to allow interpretation of the expected output datasets and any results generated using the tool?
Partly

Are the conclusions about the tool and its performance adequately supported by the findings presented in the article?
No

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Computational biology, Bioinformatics, Machine learning, Software development

I confirm that I have read this submission and believe that I have an appropriate level of expertise to state that I do not consider it to be of an acceptable scientific standard, for reasons outlined above.
Javad Zahiri
Department of Neuroscience, University of California San Diego, La Jolla, California, USA

In the present study, "multiomics: A user-friendly multi-omics data harmonisation R pipeline" the authors tried to develop a tool for multiple omics integration and analysis. The problem is of utmost importance. However, the tool needs more work to be suitable for publication. The major problem is that installation is not easy at all for non-expert users. I had a bunch of biological researchers to install the tool, but they couldn't.

In addition the below codes produce errors:

```r
> metab <- read.table("data_metabolomics.tsv", sep="\t", header=TRUE, row.names=1)

> data_names
(the variable has not been defined)

> download.file(url, "RData.RData")
```

Another important point is comparing *multiomics* to other recent similar tools like MOVICS and CNet (among several tools) and showing the current tool's strength compared to others.

Is the rationale for developing the new software tool clearly explained?
Partly

Is the description of the software tool technically sound?
No

Are sufficient details of the code, methods and analysis (if applicable) provided to allow replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets and any results generated using the tool?
Partly

Are the conclusions about the tool and its performance adequately supported by the findings presented in the article?
No
Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Bioinformatics, computational genomics, machine learning

I confirm that I have read this submission and believe that I have an appropriate level of expertise to state that I do not consider it to be of an acceptable scientific standard, for reasons outlined above.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com