Relationship between Metabolic Syndrome Components and Periodontal Disease in a Japanese General Population: the Suita Study

Miki Kikui1, Yoshihiro Kokubo2, Takahiro Ono1, 3, Momoyo Kida1, Takayuki Kosaka1, Masaaki Yamamoto1, Makoto Watanabe2, Yoshinobu Maeda1 and Yoshihiro Miyamoto2

1 Department of Prosthodontics, Gerodontology and Oral Rehabilitation, Osaka University Graduate School of Dentistry, Osaka, Japan
2 Department of Preventive Cardiology, National Cerebral and Cardiovascular Center, Osaka, Japan
3 Division of Comprehensive Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan

Aim: A positive association between metabolic syndrome (MetS) and periodontal status has recently been noted. However, no study has evaluated the relationship by sex and in a general urban population using the uniform definition proposed in the 2009 Joint Interim Statement. The aim of this study was to clarify the relationship between MetS and periodontal status using the uniform definition in a general urban Japanese population.

Methods: A total of 1,856 Japanese men and women (mean age: 66.4 years) were studied using data from the Suita study. Periodontal status was evaluated by the Community Periodontal Index (CPI). MetS was defined using the 2009 Joint Interim Statement. The associations of the MetS and its components with periodontal disease were investigated using multiple logistic regression analysis adjusting for age, drinking, and smoking.

Results: Among the components of the MetS, low HDL cholesterol level was significantly associated with periodontal disease in men and women [odds ratios (OR)=2.39 and 1.53; 95% confidence intervals=1.36–4.19 and 1.06–2.19]. Furthermore, the risk of periodontal disease showed 1.43-, 1.42-, and 1.89-fold increases in those with 2, 3, and ≥4 components, respectively, compared with those having no components (PTrend<0.001). For the analysis by sex, the risk of periodontal disease was increased 2.27- and 1.76-fold in those with ≥4 components in men and women, respectively (both PTrend<0.001).

Conclusion: These findings suggest that MetS and lower HDL cholesterol are associated with periodontal disease. Subjects with two or more MetS components had a significantly higher prevalence of periodontal disease.

Key words: Metabolic syndrome, Periodontal disease, Low HDL cholesterol, Cross-sectional study, Suita study

Introduction

Metabolic syndrome is a complex medical disorder characterized by abdominal obesity, elevated blood pressure, high fasting plasma glucose, and hyperlipidemia1. It is becoming common worldwide2, including Japan3. Preventing metabolic syndrome is of great importance to prevent cardiovascular disease4-7.

Recently, there has been interest in the effects of oral health on prevention of systemic disease. Previous studies have reported an association between periodontal disease and the metabolic syndrome8-11 or its components12-19. However, these previous studies targeted a specific sex and used a local definition of metabolic syndrome. Some studies have recently evaluated the relationship between the new standardized definition of metabolic syndrome20 and periodontal status...
in a specific sex and in a rural area19, 21 and evaluated the relationship with severe periodontal disease10 using the new diagnostic criteria in Japan, but there is no evidence for the association by sex in an urban population. The purpose of the present study was, therefore, to investigate the association between the new international standardized definition of metabolic syndrome and periodontal status. In this study, the hypothesis that the metabolic syndrome and a higher number of its components are positively associated with periodontal status was tested in a general urban Japanese population.

Methods

Study Participants

The Suita study is a population-based cohort study of cardiovascular disease; the details of the study design have been described elsewhere22. During the biannual follow-up survey of the Suita study, 2,083 subjects were recruited to both medical check-ups and dental examinations between June 2008 and September 2013. Of these, 227 individuals were excluded due to non-fasting blood collection \((n = 109)\) and incomplete periodontal data \((n = 118)\). Finally, 1,856 subjects \((1,084\text{ women and 772 men, mean age } 66.4 \pm 7.8\text{ years})\) were included in the study. The study protocol was approved by the Ethics Committee of the National Cerebral and Cardiovascular Center (M19-62). Written, informed consent was obtained from all participants.

Periodontal Tissue Examination

Periodontal status was assessed using the Community Periodontal Index (CPI)23 by means of partial 10 index teeth recording. Ten teeth were examined, comprising eight designated molars (first and second molars) and two incisors (upper right and left central incisors), and if this test could not be performed because of loss of one or both of the central incisors concerned, the same tooth on the opposite side was examined. No evaluation was performed if all relevant teeth were missing. Periodontal status was examined using a CPI probe \((YDM,\text{ Tokyo, Japan})\) to evaluate each tooth with respect to six periodontal pockets according to the following criteria, and the highest-value code was recorded. The CPI codes were as follows: no sign of inflammation of the gingiva \((\text{Code } 0)\); evident bleeding after probing \((\text{Code } 1)\); dental calculus deposits \((\text{including those detected by probing } < 4\text{ mm beneath the gingival margin, Code } 2)\); periodontal pocket depth \(\geq 4\text{ mm}\) and \(< 6\text{ mm} (\text{Code } 3)\); periodontal pocket depth \(\geq 6\text{ mm} (\text{Code } 4)\). This examination was performed by five dentists who had undergone calibration in advance. Cohen’s \(\kappa\) value for the consistency of the periodontal tissue examinations among the five dentists was 0.78. In this study, periodontitis was defined as CPI Code \(\geq 3\).

Medical Examination

Well-trained nurses measured blood pressure twice in a seated position with an automated sphygmomanometer \((\text{Colin BP-I03ill; Omron, Kyoto, Japan})\) and an appropriately sized cuff according to a standard protocol after at least 5 minutes of rest prior to the initial blood pressure reading. Systolic \((\text{SBP})\) and diastolic blood pressure \((\text{DBP})\) values were taken as the average of two measurements recorded \(\geq 1\) minute apart22.

At the baseline examination, routine blood tests were performed, including triglycerides, high-density lipoprotein \((\text{HDL})\) cholesterol, and fasting blood glucose. The metabolic syndrome was defined using the uniform definition proposed in the 2009 Joint Interim Statement20. Each component of the metabolic syndrome is as follows: high blood pressure \((\text{SBP } \geq 130\text{ mmHg and/or DBP } \geq 85\text{ mmHg, and/or taking antihypertensive medication})\), low serum HDL cholesterol \((< 40\text{ mg/dL in men and }< 50\text{ mg/dL in women})\), hypertriglyceridemia \((\text{triglycerides } \geq 150\text{ mg/dL, and/or taking antihyperlipidemia medication})\), high plasma glucose \((\text{fasting blood glucose } \geq 100\text{ mg/dL, and/or on diabetic therapy})\), and abdominal obesity measured by waist circumference \((\text{waist circumference } \geq 90\text{ cm in men and }\geq 80\text{ cm in women})\) according to the Asian diagnostic criteria. The presence of any three of the five risk factors constitutes a diagnosis of metabolic syndrome.

Lifestyle Variables

Information on lifestyle, including drinking and smoking habits, was collected with normalized questionnaires by well-trained nurses through interviews. Drinking and smoking were divided into never drinker/smoker, former drinker/smoker, or current drinker/smoker.

Statistical Analysis

The subjects were divided into two groups in each sex according to the presence/absence of periodontal disease. Odds ratios (ORs) and 95\% confidence intervals (95\% CI) for the risk of each component with respect to periodontal diseases were calculated by logistic regression analyses adjusted for age and smoking and drinking status, with components of metabolic syndrome as covariates in the multivariate analysis. In addition, the association between the presence of periodontal disease and the number of compo-
Table 1. Characteristics of the study subjects

Characteristic	Men (n=772)	Women (n=1084)		
	CPI=0,1,2	CPI=3,4	CPI=0,1,2	CPI=3,4
Number	326	446	596	488
Age, years	66.5±8.4	67.3±7.3	65.7±8.0	66.4±7.6
Waist circumference, cm	85.1±7.8	86.5±7.7	81.3±9.6	82.5±9.0
Blood pressure				
Systolic blood pressure, mmHg	130.0±10.9	131.0±17.5	125.6±20.0	128.4±20.9
Diastolic blood pressure, mmHg	80.0±10.9	80.9±10.5	75.2±10.9	76.8±11.2
Fasting blood glucose, mg/dL	107.9±19.4	110.0±24.7	100.4±14.1	101.4±14.5
HDL cholesterol, mg/dL	58.8±14.7	55.5±15.8	67.0±15.0	63.9±15.2
Triglycerides, mg/dL	108.7±64.3	117.6±72.1	96.5±78.2	100.9±48.6
Smoking status, %				
Current	16.3	19.7	4.2	3.3
Quitting	56.7	56.5	6.5	5.1
Never	27.0	23.8	89.3	91.6
Drinking status, %				
Current	68.4	70.2	26.5	29.3
Quitting	5.8	5.8	2.2	2.0
Never	25.8	24.0	71.3	68.6
CPI code, %				
0	30.6		39.5	
1	1.3		1.8	
2	10.4		13.7	
3	36.4		32.1	
4	21.4		12.9	

Results

The baseline characteristics of the study subjects by sex according to periodontal status are shown in Table 1. The subjects with periodontal disease were older and had higher SBP and DBP, triglycerides, and fasting blood glucose and greater waist circumference than those without periodontal disease (Table 1).

Table 2 shows the relationship between each component of metabolic syndrome and periodontal disease. Of the five components of the metabolic syndrome in the multivariate-adjusted analysis, low HDL cholesterol level was associated with periodontal disease in men and women (ORs=2.39 and 1.53; 95% CIs=1.36–4.19 and 1.06–2.19, respectively). In addition, the metabolic syndrome was associated with periodontal disease in men and women (ORs=1.40 and 1.42; 95% CIs=1.03–1.90 and 1.10–1.83, respectively).

Table 3 shows the relationship between the number of components of metabolic syndrome and periodontal disease. The subjects with two, three, and four or five components of metabolic syndrome had a higher prevalence of periodontal disease than the subjects without the components in multivariate-adjusted analysis. On stratified analysis by sex, subjects with four or five components of metabolic syndrome had a higher prevalence than subjects with no components in both men and women (ORs=2.27 and 1.76; 95% CIs: 1.20–4.28 and 1.11–2.78, respectively). Furthermore, with the addition of one more component, the risk of periodontal disease showed 1.23- and 1.17-fold increases in men and women, respectively.

Discussion

This is, to the best of our knowledge, the first study to show the relationship between the components of metabolic syndrome and periodontal status by sex in a general urban population using the criteria of the 2009 Joint Interim Statement. Periodontal dis-
associated with a high CPI score (Code 4)15, and Morita\textit{et al.} showed an association between periodontal pockets (CPI score ≥ 3) and a low HDL cholesterol level18. Based on these reports, HDL cholesterol has an anti-atherogenic action, and subjects with a low HDL cholesterol level had a higher risk for periodontal disease. Furthermore, Pussinen\textit{et al.} reported that the serum HDL cholesterol concentration increased after periodontal treatment25, meaning that the abnormal lipid metabolism was related to chronic inflammation caused by periodontal disease. The association between periodontal disease and metabolic syndrome with and without lower HDL cholesterol was evaluated. Metabolic syndrome without lower HDL cholesterol was associated with a high CPI score (Code 4)15, and Morita\textit{et al.} showed an association between periodontal pockets (CPI score ≥ 3) and a low HDL cholesterol level18. Based on these reports, HDL cholesterol has an anti-atherogenic action, and subjects with a low HDL cholesterol level had a higher risk for periodontal disease. Furthermore, Pussinen\textit{et al.} reported that the serum HDL cholesterol concentration increased after periodontal treatment25, meaning that the abnormal lipid metabolism was related to chronic inflammation caused by periodontal disease. The association between periodontal disease and metabolic syndrome with and without lower HDL cholesterol was evaluated. Metabolic syndrome without lower HDL cholesterol was associated with a high CPI score (Code 4)15, and Morita\textit{et al.} showed an association between periodontal pockets (CPI score ≥ 3) and a low HDL cholesterol level18. Based on these reports, HDL cholesterol has an anti-atherogenic action, and subjects with a low HDL cholesterol level had a higher risk for periodontal disease. Furthermore, Pussinen\textit{et al.} reported that the serum HDL cholesterol concentration increased after periodontal treatment25, meaning that the abnormal lipid metabolism was related to chronic inflammation caused by periodontal disease. The association between periodontal disease and metabolic syndrome with and without lower HDL cholesterol was evaluated.

Table 2. Relationships between components of the metabolic syndrome and periodontal status

	Men ($n = 772$)	Women ($n = 1084$)		
	Periodontal status, n	Periodontal status, n		
Participants, n	326	446	596	488
Abdominal obesity				
Cases, n	82	136	317	297
Age-adjusted ORs	1 (Ref)	1.31 (0.95-1.80)	1 (Ref)	1.34 (1.04-1.71)
Multivariable-adjusted ORs	1 (Ref)	1.23 (0.88-1.72)	1 (Ref)	1.23 (0.95-1.60)
High blood pressure				
Cases, n	206	302	303	280
Age-adjusted ORs	1 (Ref)	1.16 (0.85-1.58)	1 (Ref)	1.12 (0.88-1.44)
Multivariable-adjusted ORs	1 (Ref)	1.10 (0.79-1.52)	1 (Ref)	1.15 (0.89-1.50)
High fasting plasma glucose				
Cases, n	216	307	252	225
Age-adjusted ORs	1 (Ref)	1.14 (0.84-1.54)	1 (Ref)	1.16 (0.91-1.47)
Multivariable-adjusted ORs	1 (Ref)	1.03 (0.75-1.41)	1 (Ref)	1.06 (0.82-1.36)
Low HDL cholesterol				
Cases, n	18	57	68	83
Age-adjusted ORs	1 (Ref)	2.48 (1.42-4.28)	1 (Ref)	1.57 (1.11-2.22)
Multivariable-adjusted ORs	1 (Ref)	2.39 (1.36-4.19)	1 (Ref)	1.53 (1.06-2.19)
High triglycerides				
Cases, n	95	165	177	166
Age-adjusted ORs	1 (Ref)	1.42 (1.05-1.93)	1 (Ref)	1.19 (0.92-1.54)
Multivariable-adjusted ORs	1 (Ref)	1.32 (0.96-1.81)	1 (Ref)	1.07 (0.81-1.41)
Metabolic syndrome				
Cases, n	102	172	199	203
Age-adjusted ORs	1 (Ref)	1.36 (1.00-1.84)	1 (Ref)	1.39 (1.08-1.79)
Multivariable-adjusted ORs	1 (Ref)	1.40 (1.03-1.90)	1 (Ref)	1.42 (1.10-1.83)

- Periodontal disease: CPI code 0 to 2: $-$, CPI code 3 to 4: $+$
- Multivariable-adjusted for age, smoking status, drinking status, and metabolic syndrome components except a component entered as an objective variable
- Abdominal obesity: Men < 90 cm, Women < 80 cm: $-$, Men ≥ 90 cm, Women ≥ 80 cm: $+$
- High blood pressure: systolic < 130 and diastolic < 85 mmHg: $-$, systolic ≥ 130 and/or diastolic ≥ 85 mmHg: $+$
- High fasting plasma glucose: < 100 mg/dl: $-$, ≥ 100 mg/dl: $+$
- Low HDL cholesterol: Men ≥ 40 mg/dl, Women ≥ 50 mg/dl: $-$, Men ≤ 40 mg/dl, Women ≤ 50 mg/dl: $+$
- High triglycerides: < 150 mg/dl: $-$, ≥ 150 mg/dl: $+$
- Metabolic syndrome adjusted for age, smoking status, and drinking status

In this study, subjects with low HDL cholesterol levels had a higher risk for periodontal disease. This result was reasonable in the light of the previous studies, which reported that periodontal disease was associated with metabolic syndrome8 and changes in HDL subclass ratio comprise a useful marker for metabolic syndrome24. Similar to our results, several studies reported a significant relationship between dyslipidemia and periodontal disease. Katz\textit{et al.} reported that a low HDL cholesterol level was significantly
Women, but not in men. These previous reports suggested that there were sex differences in the association between metabolic syndrome and periodontal disease, but it was considered that this association was a consequence of smoking habits. In the results adjusting for smoking status, there was no sex difference.

Some studies of the association between periodontal disease and metabolic syndrome used the Japanese definition of metabolic syndrome where abdominal obesity is essential for the definition of metabolic syndrome (Supplemental Table 3). Yamamoto et al. showed no association between periodontal disease and metabolic syndrome, simply because of a small sample size. On the other hand, Morita et al. showed a close association in workers, which is compatible with the present study. In the present study, metabolic syndrome was associated with periodontal disease only in men (Supplemental Table 4).

In the present study, both men and women with two or more components and men or women with four or more components of the metabolic syndrome had a significantly higher prevalence of periodontal disease than those with no components. When considering the relationship between the combination of any two components and periodontal disease, subjects with the com-

| Table 3. Risk for periodontal status by number of components of metabolic syndrome |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|---------------------------------|
| | Number of components of metabolic syndrome | | | | | |
	0	1	2	3	4	ORs* trend P	
Men and Women							
Periodontal status, n							
-	141	246	234	203	98		
+	107	178	274	231	144		
Sex, age-adjusted OR	1	0.90 (0.65-1.23)	1.39 (1.01-1.89)	1.37 (0.99-1.89)	1.83 (1.27-2.64)	1.18 (1.09-1.27)	<0.001
Multivariable-adjusted OR	1	0.90 (0.65-1.24)	1.43 (1.05-1.96)	1.42 (1.03-1.96)	1.89 (1.31-2.73)	1.18 (1.10-1.27)	<0.001
Men							
Periodontal status, n							
-	40	86	98	74	28		
+	48	89	147	112	60		
Age-adjusted OR	1	1.08 (0.64-1.85)	1.55 (0.93-2.60)	1.56 (0.91-2.66)	2.19 (1.16-4.13)	1.22 (1.07-1.38)	0.002
Multivariable-adjusted OR	1	1.08 (0.63-1.84)	1.55 (0.93-2.59)	1.59 (0.93-2.72)	2.27 (1.20-4.28)	1.23 (1.08-1.39)	0.001
Women							
Periodontal status, n							
-	101	160	136	129	70		
+	69	89	127	119	84		
Age-adjusted OR	1	0.80 (0.54-1.20)	1.33 (0.90-1.99)	1.31 (0.87-1.97)	1.70 (1.08-2.68)	1.16 (1.06-1.27)	0.002
Multivariable-adjusted OR	1	0.80 (0.54-1.21)	1.35 (0.91-2.20)	1.34 (0.89-2.02)	1.76 (1.11-2.68)	1.17 (1.06-1.29)	0.001

*Adjusted for age, smoking status, and drinking status
**ORs*: odds ratios for increasing by one component
bination of high fasting plasma glucose and high tri-
glycerides had a higher prevalence of periodontal dis-
ease. Furthermore, when considering the combination of any three components, subjects with two combinations had a higher prevalence: the combination of high blood pressure, low HDL cholesterol, and (1) high fasting plasma glucose or (2) abdominal obesity (data not shown). However, one cannot reach any conclusions from the results of each combination analysis due to the small sample sizes.

Recent studies of the relationship between meta-

colic syndrome and periodontal disease focus on the physiologically active substances produced by adipose cells. In this research, the mechanism for metabolic syndrome as a possible risk factor for periodontal disease has been suggested\(^\text{14, 41, 42}\). Tumor necrosis factor-\(\alpha\) (TNF\(\alpha\)), one of the physiologically active substances, causes alveolar bone resorption and aggravates periodontal status\(^\text{43, 44}\). Furthermore, TNF\(\alpha\) produced by adipose cells raises insulin resistance and results in diabetes\(^\text{41}\), suggesting the possibility that TNF\(\alpha\) indirectly increases the risk of periodontal disease\(^\text{42}\). On the other hand, it has been suggested that not only does metabolic syndrome have an impact on periodontal disease, but also conversely, periodontal disease is likely to be involved in the pathogenesis of metabolic syndrome\(^\text{42, 45-47}\). It has been suggested that inflammatory cytokines caused by periodontal pathogenic bacteria, such as interleukin-1\(\beta\) or TNF\(\alpha\), may raise triglyceride or LDL cholesterol levels and induce abnormal lipid metabolism\(^\text{46, 47}\). Moreover, it has been suggested that TNF\(\alpha\) produced by periodontal disease may increase insulin resistance and induce or aggravate diabetes\(^\text{42}\). As mentioned above, many mechanisms may be involved in the relationship between metabolic syndrome and periodontal disease.

The present study has several limitations. The primary limitation is a dilution bias. This study was based on a single-day measurement of metabolic syndrome components, which may lead to a misclassification of the components. Such inaccuracy in exposure measurement may lead to underestimation, but there was a positive association between metabolic syndrome and periodontal disease. Second, due to the cross-sectional study design, causality cannot be inferred from the present study. However, it could be speculated that the physiologically active substances produced by the adipose cells aggravate periodontal status, but some studies showed that inflammatory cytokines caused by periodontal pathogenic bacteria induce components of metabolic syndrome\(^\text{43, 47}\).

Third, in this study, waist circumference was measured at the umbilical level of participants in the standing position. The joint statement\(^\text{20}\) recommends waist circumference should be measured in a horizontal plane, midway between the inferior margin of the ribs and the superior border of the iliac crest. Albert\(^\text{20}\) reported that if the higher waist circumference cut points were used to diagnose the metabolic syndrome, fewer individuals with metabolic syndrome should be identified than if the lower cut points were used. However, when the NHLBI/AHA definition is used for the United States with the higher or lower cut points, the difference in metabolic syndrome prevalence is relatively small, because abdominal obesity is highly correlated with the other 4 components of the syndrome and because the prevalence of obesity is so high. In addition, a previous study reported that even if the cutoff value of waist circumference was changed, the risk of cardiovascular disease was almost the same\(^\text{48}\). Therefore, measurement difference is not likely to have contributed to the outcome. Fourth, the sample size for examining the combinations of metabolic syndrome components was still insufficient. However, this is the first study of the association between metabolic syndrome and periodontal disease involving a general population.

In conclusion, low HDL cholesterol and meta-

colic syndrome were positively associated with peri-
odental disease. Subjects with two or more compo-

\[\text{Sources of Funding}\]

This study was supported by Intramural Research Fund of the National Cerebral and Cardiovascular Center (22-4-5), and Grants-in-Aid from the Ministry of Education Science and Culture of Japan (Nos. 15K11157, 15H06384, 26893141, and 26293411).

\[\text{Acknowledgments}\]

The authors would like to thank all members of the Suitsa Medical Association, the Suitsa Dental Associa-
tion, the Suitsa City Health Center, Satsuki-Junyu-

\[500\]
Disclosures

The authors declare that they have no conflict of interests.

References

1) Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adults Treatment Panel III) final report. Circulation 2002; 106: 3143-3421
2) Cameron AJ, Shaw JE, Zimmet PZ. The metabolic syndrome: prevalence in worldwide populations. Endocrinol Metab Clin North Am 2004; 2: 351-375
3) Ministry of Health, Labour and Welfare. Specific health examination and specific health guidance http://www.mhlw.go.jp/seisaku/2009/09/02.html
4) Isomaa B, Almgren P, Tuomi T, Forsen B, Lahti K, Nissen M, Taskinen M, Groop L. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabet Care 2001; 24: 683-689
5) McGill HC Jr, McMahan CA, Herderick EE, Zieske AW, McGill HC Jr, McMahan CA, Herderick EE, Zieske AW, Zieske AW, McGill HC Jr, McMahan CA, Herderick EE, Zieske AW. Japanese adults. J Periodontol. 2009; 80: 1610-1615
6) Chei CL, Yamagishi K, Tanigawa T, Kitamura A, Imano H, Kiyama M, Sato S, Iso H. Metabolic syndrome and the risk of ischemic heart disease and stroke among middle-aged Japanese. Hypertens Res. 2008; 10: 1887-1894
7) Ouchi N. Adipocytokines in cardiovascular and metabolic disease. J Atheroscler Thromb. 2016; 23: 645-654
8) Watanabe K, Cho YD. Periodontal disease and metabolic syndrome: a qualitative critical review of their association. Arch Oral Biol. 2014; 59: 855-870
9) Yamamoto T, Tsuneisi M, Furuta M, Koyoma R, Ekuni Watanabe K, Cho YD. Periodontal disease and metabolic syndrome in middle-aged Japanese. J Periodontol. 2012; 83: 1363-1371
10) Albert KG, Eckel RH, Grundy SM, Zimmet PZ, Clee- man JJ, Donato KA, Frucht JC, James WP, Loria CM, Smith SC, Jr. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009; 120: 1640-1645
11) Furuta M, Shimazaki Y, Shinagawa T, Yamashita Y. Peri- odontal status and metabolic syndrome in middle-aged Japanese. J Periodontol. 2012; 83: 1363-1371
12) Kokubo Y, Kamide K, Okamura T, Watanabe M, Higashiyama A, Kawanishi K, Okayama A, Kawano Y. Impact of high-normal blood pressure on the risk of cardiovascular disease in a Japanese urban cohort: The Suitsa study. Hypertension. 2008; 52: 652-659
13) Ainamo J, Barmes D, Beagrie G, Cutress T, Martin J, Sardo-Infírri J. Development of the World Health Organiza- tion (WHO) community periodontal index of treat- ment needs (CPTIN). Int Dent J. 1982; 32: 281-291
14) Moriyama K, Takahashi E. HDL2/HDL3 ratio changes, metabolic syndrome markers, and other factors in a Japa- nese population. J Atheroscler Thromb. 2016; 23: 704-712
15) Furuta M, Shimazaki Y, Takeshita T, Shibata Y, Akifusa S, Eshima N, Kiyohara Y, Ninomiya T, Hickakawa Y, Mukai N, Naga T, Yamashita Y. Gender differences in the association between metabolic syndrome and periodontal disease: the Hisayama Study. J Clin Periodontol. 2013; 40: 743-752
16) Moore WE, Moore LV. The bacteria of periodontal dis- ease. Periodontol. 1994; 5: 66-77
17) Fukui N, Shimazaki Y, Shinagawa T, Yamashita Y. Peri- odontal status and metabolic syndrome in middle-aged Japanese. J Periodontol. 2012; 83: 1363-1371
18) Han DH, Lim S, Sun BG, Park D, Kim HD. The association of metabolic syndrome with periodontal disease is
confounded by age and smoking in a Korean population: the Shiwha-Banwol Environmental Health Study. J Clin Periodontol. 2010; 37: 609-616
30) Kwon TE, Ha JE, Paik DI, Jin BH, Bae KH. The relationship between periodontitis and metabolic syndrome among a Korean nationally representative sample of adults. J Clin Periodontol. 2011; 38: 781-786
31) Lee K-S, Kim E-K, Kim J-W, Choi Y-H, Merchant A, Song K-B, Lee H-K. The relationship between metabolic conditions and prevalence of periodontal disease in rural Korean elderly. Arch Gerontol Geriatr. 2014; 58: 125-129
32) Tu Y-K, D’Aiuto F, Lin H-J, Chen Y-W, Chein K-L. Relationship between metabolic syndrome and diagnoses of periodontal disease among participants in a large Taiwanese cohort. J Clin Periodontol. 2013; 40: 994-1000
33) Bensley L, VanEenwyk J, Ossander EM. Association of self-reported periodontal disease with metabolic syndrome and number of self-reported chronic conditions. Prev Chronic Dis. 2011; 8: 3-10
34) Nesbitt MJ, Reynolds MA, Shiau H, Choe K, Simonsick EM, Ferrucci L. Association of periodontitis and metabolic syndrome in the Baltimore Longitudinal Study of Aging. Aging Clin Exp Res. 2010; 22: 238-242
35) Holmlund A, Hulthe J, Lind L. Tooth loss is related to the presence of metabolic syndrome and inflammation in elderly subjects: a prospective study of the vasculature in Uppsala seniors (PIVUS). Oral Health Prev Dent. 2007; 5: 125-130
36) Benguigui C, Bongard V, Ruidavets JB, Chamontin B, Sixou M, Ferrieres J, Amar J. Metabolic syndrome, insulin resistance, and periodontitis: a cross-sectional study in a middle-aged French population. J Clin Periodontol. 2010; 37: 601-608
37) Andriankaja OM, Sreenivasa S, Dunford R, DeNardin E. Association between metabolic syndrome and periodontal disease. Aust Dent J. 2010; 55: 252-259
38) Matsuzawa Y, Ikeda Y, Katayama S, Kita T, Kugiyama K, Seino Y, Nakao K, Makino H, Fujita T. The definition and diagnosis criteria of metabolic syndrome. J Jpn Soc Intern Med. 2005; 94: 794-809 (in Japanese)
39) Iwasaki M, Yoshihara A, Miyazaki H. Relationship between screening test for periodontal disease and metabolic syndrome among participants in specific health checkups. J Dent Hlth. 2011; 61: 573-580
40) Minagawa K, Isawaki M, Ogawa H, Yoshihara A, Miyazaki H. Relationship between metabolic syndrome and periodontitis in 80-year-old Japanese subjects. J Periodontal Res. 2015; 50: 173-179
41) Hotamisligil GS, Spieqelman BM. Tumor necrosis factor alpha: a key component of the obesity-diabetes link. Diabetes. 1994; 43: 1271-1278
42) Taylor GW. Bidirectional interrelationship between diabetes and periodontal diseases: an epidemiologic perspective. Ann Periodontol. 2001; 6: 99-112
43) Tashjian AH, Voelkel EF, Lazzaro M, Goad D, Bosma T, Levine L. Tumor necrosis factor-alpha (Cachectin) stimulates bone resorption in mice calvaria via a prostaglandin-mediated mechanism. Endocrinology. 1987; 120: 2029-2036
44) Thomson BM, Mundy GR, Chamber TJ. Tumor necrosis factor alpha and beta induce osteoblastic cells to stimulate osteoclastic bone resorption. J Immunol. 1987; 138: 775-779
45) Tew WJ, Gerdes VE, Loo BG. Effect of periodontal treatment on glycemic control of diabetic patients: A systematic review and meta-analysis. Diabetes Care. 2010; 33: 421-427
46) Saito T, Murakami M, Shimazaki Y, Oobayashi K, Matsunoto S, Koga T. Association of alveolar bone loss and elevated serum C-reactive protein in Japanese men. J Periodontol. 2003; 74: 1741-1746
47) Hardardottir L, Grunfeld C, Feingold KR. Effects of endotoxin and cytokines on lipid metabolism. Curr Opin Lipidol. 1994; 5: 207-215
48) Furukawa Y, Kokubo Y, Okamura T, Watanabe M, Higashiyama A, Ono Y, Kawanishi K, Okamura A, Date C. The relationship between waist circumference and the risk of stroke and myocardial infarction in a Japanese urban cohort: the Suita study. Stroke. 2010; 41: 550-553
Supplemental Table 1.
Relationships between metabolic syndrome with or without low HDL cholesterol as a factor and periodontal status

	MetS (−)	MetS (+)	MetS (+)
	Low HDLC (−)	Low HDLC (+)	Low HDLC (+)
Men			
Periodontitis (−), n	224	13	89
Periodontitis (+), n	274	43	129
Adjusted OR (95%CI)	1 (Ref)	2.68 (1.40-5.14)	1.21 (0.87-1.67)
Women			
Periodontitis (−), n	397	54	145
Periodontitis (+), n	285	70	133
Adjusted OR (95%CI)	1 (Ref)	1.84 (1.24-2.72)	1.25 (0.94-1.67)

MetS, metabolic syndrome; HDLC, HDL cholesterol; OR, odds ratio; 95%CI, 95% confidence interval
Adjusted for age, smoking status, and drinking status
Supplemental Table 2. Periodontal disease and Metabolic Syndrome

Race	Number of subjects	Age range (years)	Criteria for periodontitis	Criteria for MetS	Odds ratio	Comments and modifying factors	Literature
Asia							
Japanese	584 all females	40-79, mean 55.7 ± 8.8	Subjects divided into 2 groups; (1) mean pocket depth (PD) < 2 mm and ≥ 2 mm, (2) mean clinical attachment loss < 3 mm and ≥ 3 mm.	NCEP ATP III	3.3 (1.2-8.8), p < 0.05	The more components of MetS, the higher the OR of having greater PD and CAD. Modifying factors: large waist circumference, Low HDL, high fasting glucose level enhances the strength of the association.	Shimazaki et al. (2007)
Japanese	1070	40-70, mean 60	Subjects divided into 2 groups based on CPI: low (code ≤ 3) and high (code 4)	NCEP ATP III	3 positive components, 2.13 (1.22-3.70) (p=0.008), 4-5 positive components, 2.54 (1.08-5.08) (p=0.032)	Modifying factor: hypertension and low HDL	Kushiyama et al. (2009)
Japanese	6421 (4944 males, 1477 females)	34-77	PD and CAL measured at MB sites; none/mild if ≤ 3 mm, moderate if ≥ 5 mm, severe if ≥ 6 mm	NCEP ATP III excluding waist circumferences (used BMI ≥ 25 kg/m²)	Severe periodontitis associated with MetS. 1.35 (1.03-1.77), p ≤ 0.05 PD ≥ 4 mm associated with MetS. 1.44 (1.22-1.70), p < 0.001	Severe PD and severe CAL or moderate PD and moderate CAL had significantly higher ORs for MetS. Severe CAL without severe PD was not significantly associated with MetS. Modifying factors: age, alcohol consumption, BMI, tooth brushing	Fukui et al. (2012)
Japanese	2370 (1040 males, 1330 females)	40-79	PD, CAL	Joint classification (waist circumferences ≥ 90 cm in male, ≥ 80 cm in females)	Mean PD ≥ 3 mm or 3.5 mm associated with MetS in females, but not in males	Modifying factor: sex	Furuta et al. (2013)
Korean	1046 (457 males, 589 females)	18-84, mean 42.3 ± 12.2	CPI	Joint classification (waist circumferences ≥ 90 cm in males, ≥ 85 cm in females), FGL > 110 mg/dL	CPI (3-4) associated with ≥ 3 positive components of MetS, OR 1.7 (1.22-2.37), p = 0.002	If 3 positive components, OR of having periodontitis 1.53 (1.05-2.23), if 4 or 5 positive components, OR 2.20 (1.28-3.78). Modifying factors: age, sex, smoking, high glucose and hypertension	Han et al. (2010)
Race	Number of subjects	Age range (years)	Criteria for periodontitis	Criteria for MetS	Odds ratio	Comments and modifying factors	Literature
---------------------	--------------------	-------------------	--	---	----------------------	---	-----------------------------
Asia							
Korean	6520	≥19	CPI code ≥ 3	NCEP ATP III except abdominal obesity ≥ 90 cm in males, ≥ 85 cm in females	OR 1.55 (1.32-1.83)	If < 40 years, 1.3 (0.91-1.86), MetS did not associated with periodontitis. If > 40 years, significantly associated 1.47 (1.23-1.76). No difference in sex. Modifying factors: age	Kwon et al. (2011)²⁸
Korean	399	≥60, mean 72.3	CPI code ≥ 3	Combination of different classifications: BMI ≥ 25 b kg/m², BP ≥ 140/90 mmHg, FGL ≥ 126 mg/dL, HGL ≥ 240 mg/dL	If 2 or more MetS components, more likely to have periodontal disease ($p < 0.05$)	Subjects with a greater number of MetS components, more likely to have periodontal disease.	Lee et al. (2013)²⁹
Taiwan	33740		Control: 50.55 ± 12.93 in male, 49.96 ± 12.43 in females, gingivitis: 47.06 ± 11.78 in male, 48.47 ± 11.48 in female, periodontitis: 53.22 ± 11.15 in male, 54.15 ± 11.08 in female	NCEP ATP III except waist circumference was modified for cutoff values for Asians (≥ 90 cm in males, ≥ 80 cm in females) or BMI ≥ 27 kg/m²	MetS associated with periodontitis in females: OR 1.52 (1.41-1.63) $p < 0.001$, in males OR 1.04 (0.96-1.12) $p = 0.317$ nonsignificant	Females but not males showed weak associated between MetS and periodontitis. Modifying factor: sex	Tu et al. (2013)³⁰
Europe and the United States							
America	13994	≥17	Moderate periodontitis: two sites, not on the same tooth, with CAL ≥ 4 mm, or one site with PD > 4 mm. Severe periodontitis: if two sites, not on the same tooth, had CAL ≥ 6 mm and at least one site had PD ≥ 4 mm	NCEP ATP III	Severe periodontitis and MetS associated. OR 1.74 (1.10-2.76), $p < 0.05$ if age > 44 years	After adjusting age, if ≥45 years with periodontitis, 2.31 × greater chance to have MetS (1.13-4.73). Modifying factor: age	D’Aiuto et al. (2008)¹⁰
America	456	≥25	Severe periodontitis: history of S/R or loose teeth; mild/moderate periodontitis: self-evaluation of own gum condition; no periodontal disease: self-evaluation of having excellent or good gums	AHA/NHLBI	1.5 × more likely to have MetS if severe periodontitis is present	Subjects with severe periodontal disease were 1.5 × more likely to have MetS compared with subjects without periodontal disease. Modifying factor: age	Bensley et al. (2011)³¹
Race	Number of subjects	Age range (years)	Criteria for periodontitis	Criteria for MetS	Odds ratio	Comments and modifying factors	Literature
--------------	--------------------	-------------------	--	---	---------------------	---	---------------------
Europe and the United States							
America	200	Mean 56.8 ± 12.7	Distance between CEJ and cleft of alveolar bone measured on panoramic radiograph. None or slight bone loss: 1-2 mm, moderate: 3-4 mm, or severe ≥ 5 mm	Modification of NCEP ATP III: 2 or more rather than 3 or more of the criteria outlined in NCEP ATP III	2.61 (1.1-6.1), p<0.05	Moderate to severe bone loss significantly more associated with MetS	Nesbitt et al. (2010)
Sweden	1016	70	Number of remaining teeth were self-reported	NCEP ATP III		Number of teeth is less in those with MetS compared with those without MetS (p = 0.0001)	Holmlund et al. (2007)
France	255	35-74, mean 58	Moderate periodontitis: two sites, not on the same tooth, with CAL ≥4 mm, or one site with PD > 4 mm. Severe periodontitis: if two sites, not on the same tooth, had CAL ≥6 mm and at least one site had PD ≥4 mm	NCEP ATP III plus HOMA-IR	p = 0.05	After adjusting confounders, only HOMA index remain associated with severe periodontitis. Modifying factor: increase in % of periodontal pockets and gingival bleeding	Benguigui et al. (2010)
Australia	7431	≥ 20	Periodontitis: mean PD < 2.5 mm. Moderate severe periodontitis: mean PD ≥ 2.5 mm	NCEP ATP III	4.7 (2.0-11.2), p < 0.001, only in females	In females, if 2 or more MetS, the higher OR of having periodontal disease. Modifying factors: abdominal obesity was highest contributing factor for associated between MetS and periodontal disease in both males and females	Andriankaja et al. (2010)
Supplemental Table 3. Periodontal disease and metabolic syndrome using domestic criteria

Number of subjects	Age range (years)	Criteria for periodontitis	Odds ratio	Comments and Modifying factors	Literature
246	30-64	CPI code ≥ 3	2.1 (1.0-4.5), $p < 0.05$	Subjects with a fasting blood glucose level ≥ 110 mg/dl were at increased risk of having periodontitis. Modifying factors: sex, age	Yamamoto et al. (2007)
2478 (2028 men and 450 women)	24-60, mean age 43.3 years	CPI code ≥ 3	If 2 or more MetS components, more likely to have periodontal disease ($p < 0.05$)	If 2 positive components, OR of having periodontitis 1.8 (1.4-2.3), if 3 or 4 positive components, OR 2.4 (1.7-2.7). Modifying factors: sex, smoking habits	Morita et al. (2009)
488 (190 men and 298 women)	40-74	Saliva occult blood test. Subjects were divided into two groups, screen-positive and screen-negative	2.49 (1.34-4.63)	Using the screen-negative group as a referent group, metabolic syndrome of the screen-positive group was calculated to be 2.49 (1.34-4.63). Modifying factors: sex, smoking habits	Iwasaki et al. (2011)
234	80 years old		2.24 (1.14-4.41)	MetS was associated with the presence and severity of periodontitis: OR 2.24 (1.14-4.41). There were no significant associations of each MetS components with periodontitis. Modifying factors: sex	Minagawa et al. (2015)

Supplemental Table 4. Relationships between metabolic syndrome using domestic criteria and periodontal status

Periodontitis	Men	Women	Men and Women			
	–	+	–	+	–	+
Participants, n	326	446	596	488	922	934
Metabolic syndrome Cases, n	80	158	58	53	138	211
Adjusted ORs (95%Cis)	1 (Ref)	1.72 (1.25-2.37)	1 (Ref)	1.12 (0.75-1.09)	1 (Ref)	1.43 (1.12-1.84)

Adjusted for age, smoking status, and drinking status