Association of TLR2 and TLR4 Polymorphisms with Risk of Cancer: A Meta-Analysis

Longbiao Zhu1,2,*, Hua Yuan1,2,*, Tao Jiang3, Ruixia Wang1, Hongxia Ma2,3,*, Shuangyue Zhang4

1 Institute of Stomatology, Nanjing Medical University, Nanjing, China, 2 Section of Clinical Epidemiology, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China, 3 Department of Epidemiology and Biostatistics, MOE Key Laboratory of Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China, 4 Central Lab, Huai’an First People’s Hospital, Nanjing Medical University, Huai’an, China

Abstract

Backgrounds: The activation of Toll-like receptors (TLRs) may be an important event in the immune evasion of tumor cell. Recently, numerous studies have investigated the associations between TLR2 -196 to -174 del and two SNPs of TLR4 (rs4986790 and rs4986791) and the susceptibility to different types of cancer; however, the results remain conflicting. The aim of this study was to assess the association between TLR2 and TLR4 polymorphisms and cancer risk in a meta-analysis with eligible published studies.

Methodology/Principle Findings: A dataset composed of 14627 cases and 17438 controls from 34 publications were included in a meta-analysis to evaluate the association between overall cancer risk or cancer-specific risk and three SNPs of TLRs (TLR2 -196 to -174 del, TLR4 rs4986790 and rs4986791). The results showed that all of these three polymorphisms were significantly associated with the increased cancer risk (dominant model: OR = 1.64, 95% CI: 1.04–2.60 for TLR2 -196 to -174 del; OR = 1.19, 95% CI: 1.01–1.41 for TLR4 rs4986790; and OR = 1.47, 95% CI: 1.12–1.80 for TLR4 rs4986791; respectively). In stratified analysis, we found the effect of TLR2 -196 to -174 del on cancer risk remained significant in the subgroup of Caucasians and South Asians, but not in East Asians. However, the association between rs4986791 and cancer risk was significant in both South Asians and East Asians, but not in Caucasians. Furthermore, the association between rs4986790 and cancer risk was statistically significant in digestive cancers (dominant model: OR = 1.76, 95% CI: 1.13–2.73) and female-specific cancers (dominant model: OR = 1.50, 95% CI: 1.16–1.94). However, no significant association with risk of digestive system cancers was observed for TLR2 -196 to -174 del and TLR4 rs4986791.

Conclusions/Significance: This meta-analysis presented additional evidence for the association between TLR2 and TLR4 polymorphisms and cancer risk. Further well-designed investigations with large sample sizes are required to confirm this conclusion.

Introduction

Toll-like receptors (TLRs) are a family of membrane-spanning innate immune receptors that recognize ligands derived from bacteria, fungi, viruses, and parasite [1]. TLRs play a key role in the realization of innate and adaptive immune response, being involved in the regulation of inflammatory reactions and activation of the adaptive immune response to eliminate infectious pathogens and cancer debris [2,3]. Besides driving inflammatory responses, TLRs also regulate cell proliferation and survival by expanding useful immune cells and integrating inflammatory responses and tissue repair processes [4]. Furthermore, functional TLRs are expressed not only in immune cells, but also in cancer cells, thus implicating a role of TLRs in tumor biology [5,6]. Increasing bodies of evidence have suggested that TLRs can act as a double-edged sword in cancer cells because uncontrolled TLR signaling provides a microenvironment that is necessary for tumor cells to proliferate and evade the immune response [4,7]. In addition, activation of TLRs not only leads to the up-regulation of cellular defense mechanisms, but also results in up-regulation of DNA repair genes and increased functional DNA repair [8,9].

The TLR family includes 2 subgroups, extracellular and intracellular, depending on their cellular localization. TLR1, 2, 5, 6 and 10 are extracellular TLRs, which are largely localized on the cell surface. Conversely, TLR3, 7, 8 and 9 (intracellular TLRs) are localized in intracellular organelles. The subcellular localization of TLR4 is unique because it is localized to both the plasma membrane and endosomal vesicles [10]. TLR2 and TLR4 are major TLRs and have been actively investigated in inflammation and cancer. There is evidence that TLRs, particularly TLR2 and TLR4, directly regulate major proinflammatory and host

Citation: Zhu L, Yuan H, Jiang T, Wang R, Ma H, et al. (2013) Association of TLR2 and TLR4 Polymorphisms with Risk of Cancer: A Meta-Analysis. PLoS ONE 8(12): e82858. doi:10.1371/journal.pone.0082858

Editor: Xiaoping Miao, MOE Key Laboratory of Environment and Health, Huazhong University of Science and Technology, China

Received September 6, 2013; Accepted October 29, 2013; Published December 20, 2013

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: mahongxia927@gmail.com (HM); zsy2005edu@sina.com (SZ)

These authors contributed equally to this work.
defense functions of human neutrophils [11]. Additionally, TLR2 recognizes microbial pathogen-associated molecular patterns, such as cell wall peptidoglycan and lipoteichoic acid [12]. Positive TLR2 expression in the tumor microenvironment suggests that immune surveillance is activated against the altered epithelial cells, whereas TLR2 expression by malignant keratinocytes may be indicative of resistance to apoptosis as a prosurvival mechanism [13]. TLR4 ligation on tumor cells can enhance the secretion of immunosuppressive cytokines and induce resistance to TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis [14,15]. Studies have shown that lipopolysaccharide (LPS) ligation to TLR4 promotes tumor cell adhesion and invasion in a murine model by acting NF-kappa B [16], and the silencing of TLR4 increases tumor progression and metastasis in a murine model of breast cancer [17].

Genetic studies have identified a polymorphism of TLR2 that causes a 22-bp nucleotide deletion (−196 to −174 del) in the promoter region, which may influence the promoter activity of TLR2 and lead to the decreased transcription of TLR2 gene. Additionally, two SNPs in TLR4 have also been identified; one is an A→G substitution at 896 base pair (bp) which results in an aspartic acid to glycine replacement at the codon 299 (D299G, rs4986790) and the other is a C→T substitution at 1196 bp which results in a threonine to isoleucine exchange at codon 399 (T399I, rs4986791). It has been shown that these two polymorphisms (rs4986790 and rs4986791) affect the extracellular domain of the receptor and may cause decreased ligand recognition [18]. The associations of these three polymorphisms with cancer risk have been widely studied, including bladder cancer [19,20], breast cancer [21,22], gastric cancer [23–31], prostate cancer [32–37], hepatocellular cancer [38,39], gallbladder cancer [40], cervical cancer [41], nasopharyngeal cancer [42], leukemia [43], melanoma [44], endometrial cancer [45], lymphoma [46–50], esophageal cancer [51] and colorectal cancer [51,52]. However, the results remained inconsistent rather than conclusive.

Considering the relatively small sample size in each single study might have low power to detect the effect of the polymorphisms on cancer risk and the underlying heterogeneity among different studies need be explored, we conducted a meta-analysis on all eligible published case-control studies to establish a relatively comprehensive picture of the relationship between these genetic variants (−196 to −174 del in TLR2, rs4986790 and rs4986791 in TLR4) and cancer risk.
Table 1. Characteristics of literatures included in the meta-analysis.

Reference	Year	Country	Ethnicity	Cancer type	Genotype-case	Genotype-control	MAF	HWE	
Singh V17	2012	India	South Asian	Bladder	ins/ins	del/del	0.223	0.437	
de Oliveira JG21	2012	Greece	Caucasian	Breast	110	119	73	0.052	0.518
Mandal RK50	2012	India	South Asian	Prostate	116	189	34	0.084	0.733
Zeng HM37	2011	China	East Asian	Gastric	119	187	26	0.375	0.195
Nischalke HD36	2011	Germany	Caucasian	Hepatocellular	115	248	92	0.153	0.649
Hishida A23	2010	Japan	East Asian	Gastric	243	304	116	0.339	0.819
Singh V17	2012	India	South Asian	Bladder	201	250	33	0.071	0.024
de Oliveira JG21	2012	Brazil	Caucasian	Gastric	154	215	10	0.022	0.773
Yang ZH40	2012	China	East Asian	Nasopharyngeal	205	151	28	0.078	0.256
Shen Y18	2012	China	East Asian	Bladder	431	519	1	0.055	0.000
Miedema KG61	2011	Netherlands	Caucasian	Leukemia	168	151	28	0.072	0.104
Gast A42	2011	Germany	Caucasian	Malignant Melanoma	665	659	73	0.054	0.525
Ashton KA43	2010	Australia	Caucasian	Endometrial	163	258	31	0.060	0.326
Balistreri CR23	2010	Italy	Caucasian	Prostate	49	111	13	0.060	0.383
Rigoli L27	2010	Italy	Caucasian	Gastric	42	80	7	0.023	0.696
Etokebe GE20	2009	Croatia	Caucasian	Breast	110	84	15	0.076	0.449
Pandey S29	2009	India	South Asian	Cervical	114	126	53	0.070	0.235
Purdue MP44	2009	US	Mixed	Non-Hodgkin lymphoma	1195	1126	131	0.058	0.055
Wang MH32	2009	US	Caucasian	Prostate	230	216	35	0.070	0.235
Trejo-de la OA24	2008	Mexico	Mixed	Gastric	34	138	6	0.021	0.798
Ture-Ozdemir F46	2008	Greece	Caucasian	Gastric MALT lymphoma	38	39	12	0.118	0.341
Santini D25	2008	Italy	Caucasian	Gastric	159	140	11	0.036	0.642
Garza-Gonzalez E50	2007	Mexico	Mixed	Gastric	72	175	14	0.037	0.518
Hold GL28	2007	Poland, US	Caucasian	Gastric	414	451	47	0.041	0.518
Hold GL28	2007	US	Mixed	Oesophageal	97	194	16	0.043	0.299
Cheng F35	2007	US	Mixed	Prostate	439	456	48	0.051	0.544
Nielsen A55	2006	Germany	Caucasian	Lymphoma	590	596	71	0.055	0.456
Boraska Jelavic T69	2006	Croatia	Caucasian	Colorectal	77	84	4	0.023	0.827
Landi S50	2006	Spain	Caucasian	Colorectal	251	232	37	0.069	0.226
Forrest M57	2006	US/UK	Caucasian	Non-Hodgkin lymphoma	794	1254	172	0.064	0.969
Hellimig S58	2005	Germany/Austria	Caucasian	Gastric MALT lymphoma	83	313	45	0.063	0.204
Chen YC35	2005	USA	Caucasian	Prostate	588	605	59	0.052	0.011
Zheng SL34	2004	Sweden	Caucasian	Prostate	1241	693	79	0.057	0.103
TLR4 rs4986791	2008	Mexico	Mixed	Gastric	34	138	6	0.021	0.798
Singh V17	2012	India	South Asian	Bladder	163	173	26	0.070	0.983
de Oliveira JG21	2012	Brazil	Caucasian	Gastric	253	466	14	0.015	0.746
Yang ZH40	2012	China	East Asian	Nasopharyngeal	188	254	32	0.059	0.994
Agundez JA27	2012	Spain	Caucasian	Hepatocellular	143	341	47	0.065	0.783
Shen Y18	2012	China	East Asian	Bladder	433	517	3	0.007	0.000
Srivastava K28	2010	India	South Asian	Gallbladder	195	232	24	0.065	0.747
Balistreri CR31	2010	Italy	Caucasian	Prostate	48	118	7	0.028	0.747
Rigoli L27	2010	Italy	Caucasian	Gastric	57	81	6	0.034	0.739
Materials and Methods

Selection Criteria and Identification of Eligible Studies

Candidate studies were identified through computer-aided literature searching in PubMed for relevant articles in English and Chinese (last search was in January, 2013). The following keywords were used for this search: ‘TLR2 or Toll like receptor 2’ or ‘TLR4 or Toll like receptor 4’ and ‘cancer’ and ‘polymorphism’. We also included additional studies by a hands-on search of references of original studies. Abstracts, case-only articles, editorials, review articles and repeated literatures were excluded. The inclusion criteria of studies in the current meta-analysis were defined as follows: (1) original papers containing independent data; (2) case-control design on the association of TLR4 (rs4986790 and rs4986791) polymorphisms and cancer risk; (3) providing sufficient information to calculate the odds ratio (OR) or \(p \)-value; (4) written in English or Chinese.

Data Extraction

Two investigators (Zhu LB and Jiang T) independently extracted data and reached a consensus on all items. For each study, the following information was extracted: first author, publication date, country, ethnicity, total number of cases and controls, the numbers of cases and controls grouped by different genotypes and Hardy-Weinberg equilibrium test in control subjects.

Statistical Analysis

The crude odds ratios (ORs) and 95% confidence intervals (95% CIs) of TLR2 (196 to 174 del) and TLR4 (rs4986790 and rs4986791) polymorphisms and cancer risk were estimated for each study. In addition, we also performed stratification analyses by cancer types and races. Digestive system included gastric, esophageal, colorectal, gallbladder and hepatocellular cancer; blood system included leukemia and lymphoma; female-specific included endometrial, breast and cervical cancer; male-specific included prostate cancer. If one cancer type contained less than three individual studies, they were combined into the ‘other’ group. All subjects were categorized as Caucasian, East Asian (China and Japan), South Asian (India) and mixed. The pooled ORs were performed by allele comparisons and genetic models comparisons. The HWE was assessed via \(\chi^2 \) test. A Chi-square based Q test and \(F \)-statistic test were performed to assess the potential heterogeneity among the studies [53]. If the result of heterogeneity test was \(p > 0.05 \), ORs were pooled according to the fixed-effect model [54]. Otherwise, the random-effect model was used.

Table 1. Associations between TLRs polymorphisms and overall cancer risk by races.

Polymorphism	Ethnicities	Studies	Allele comparison	Dominant model	Recessive model
			OR(95% CI)	OR(95% CI)	OR(95% CI)
rs4986790		Total	1.67(1.09–2.43)	1.64(1.04–2.60)	2.28(1.23–4.20)
		Caucasian	3.29(1.14–9.51)	3.56(1.10–11.51)	7.29(1.75–30.37)
		East Asian	1.04(0.71–1.52)	0.96(0.66–1.40)	1.27(0.55–2.95)
		South Asian	1.32(1.11–1.58)	1.37(1.11–1.68)	1.72(0.94–3.14)
rs4986791		Total	1.17(1.00–1.37)	1.19(1.01–1.41)	1.72(0.94–3.14)
		Caucasian	1.17(0.95–1.45)	1.18(0.95–1.47)	1.72(0.94–3.14)
		East Asian	1.04(0.79–1.36)	1.08(0.81–1.45)	1.72(0.94–3.14)
		South Asian	1.37(0.82–2.30)	1.44(0.82–2.52)	1.72(0.94–3.14)
		Mixed	1.05(0.87–1.27)	1.08(0.89–1.32)	1.72(0.94–3.14)
rs4986791		Total	1.47(1.21–1.78)	1.47(1.20–1.80)	1.47(1.20–1.80)
		Caucasian	1.51(0.84–2.71)	1.55(0.85–2.83)	1.55(0.85–2.83)
		East Asian	1.72(1.14–2.62)	1.77(1.12–2.77)	1.77(1.12–2.77)
		South Asian	1.58(1.16–2.16)	1.55(1.11–2.17)	1.55(1.11–2.17)
		Mixed	0.75(0.28–2.01)	0.75(0.28–2.02)	0.75(0.28–2.02)

The results were in bold, if the \(p < 0.05 \).

* \(p \)-values for heterogeneity test. If the result of the heterogeneity test was \(p > 0.05 \), ORs were pooled according to the fixed-effect model. Otherwise, the random-effect model was used.

[doi:10.1371/journal.pone.0082858.t002]
used [55]. The significance of the pooled ORs was determined by the Z-test. The sensitivity analysis was carried out to test the stability of the pooled effect by excluding each study individually and recalculating the ORs and 95% CI. To further explore the potential sources of heterogeneity among studies, meta regression was performed with some study characteristics, including ethnicity, genotyping methods, tumor types, sample size (≥500 or <500), minor allele frequency (MAF) in control subjects, and source of controls (population-based or hospital-based). Additionally, the inverted funnel plots and Begg’s funnel plot were used to evaluate publication bias [56]. The statistical analyses were performed by STATA 12.0 software. All P values were two-sided.

Results

Characteristics of Studies

115 articles were initially identified. Among them, 70 papers did not meet our criteria and were excluded. After reading the full texts of the remaining 45 papers, we found 10 papers had not enough genotype data and 1 paper was a review. Therefore, a total of 34 publications including 51 studies were remained (Figure 1). All studies were of case-control design, including fourteen kinds of cancers. Among them, 10 case-control studies focused on TLR2 rs196 to −174 del (2521 cases and 3247 controls), 27 on TLR4 rs4986790 (9743 cases and 10839 controls), and 14 on TLR4 rs4986791 (2363 cases and 3352 controls). Moreover, three publications focused on all three SNPs, ten publications focused on two SNPs, and twenty-one publications focused on only one SNP of all. The detailed characteristics of these studies, including first author, year of publication, country, ethnicity, cancer type, numbers of cases and controls, minor allele frequency (MAF) and HWE for all studies were summarized in Table 1. The distribution of genotypes in the controls of the studies was all in agreement with HWE except for four studies [20,35,40,42].

Meta-analysis Results

The main results of this meta-analysis were listed in Table 2 and Figure S1. For TLR2 polymorphism (−196 to −174 del), the meta-analysis showed a significantly increased risk for all cancers (allele comparison: OR = 1.62, 95% CI: 1.09–2.43, P < 0.001 for heterogeneity test; dominant model: OR = 1.64, 95% CI: 1.04–2.60, P < 0.001 for heterogeneity test; recessive model: OR = 2.28, 95% CI: 1.23–4.20, P < 0.001 for heterogeneity test). Similarly, both of TLR4 rs4986790 (allele comparison: OR = 1.17, 95% CI: 1.00–1.37, P < 0.001 for heterogeneity test; dominant model: OR = 1.19, 95% CI: 1.01–1.41, P < 0.001 for heterogeneity test) and rs4986791 (allele comparison: OR = 1.47, 95% CI: 1.21–1.78, P = 0.070 for heterogeneity test; dominant model: OR = 1.47, 95% CI: 1.20–1.80, P = 0.078 for heterogeneity test) also significantly increased the overall cancer risk.

Table 3. Associations between TLRs polymorphisms and overall cancer risk by cancer types.

Polymorphism	Cancer type	Studies	Allele comparison	Dominant model	Recessive model	
			OR(95% CI)	p*	OR(95% CI)	
rs196 to −174 del	Digestive	6	1.32(0.97–1.79)	<0.001	1.29(0.92–1.80)	<0.001
	Others	4	2.19(0.82–5.82)	<0.001	1.32(0.80–6.77)	<0.001
rs4986790	Digestive	9	1.79(1.14–2.81)	0.001	1.76(1.13–2.73)	0.003
	Blood	6	0.95(0.83–1.10)	0.170	0.95(0.83–1.11)	0.140
	Female-specific	4	1.44(1.14–1.83)	0.641	1.50(1.16–1.94)	0.537
	Male-specific	5	0.95(0.80–1.13)	0.068	0.99(0.82–1.18)	0.062
	other	3	1.11(0.87–1.43)	0.535	1.16(0.89–1.52)	0.666
rs4986791	Digestive	8	1.58(0.93–2.69)	0.014	1.60(0.94–2.74)	0.017
	Others	6	1.47(1.13–1.92)	0.607	1.47(1.11–1.96)	0.589

The results were in bold, if the P < 0.05.

*P values for heterogeneity test. If the result of the heterogeneity test was p > 0.05, ORs were pooled according to the fixed-effect model. Otherwise, the random-effect model was used.

doi:10.1371/journal.pone.0082858.t003

Table 4. Main result of pooled odds ratios (ORs) in gastric and prostate cancer.

Polymorphism	Cancer type	Studies	Allele comparison	Dominant model	Recessive model	
			OR(95% CI)	p*	OR(95% CI)	
−196 to −174 del	Gastric cancer	4	1.27(0.83–1.95)	<0.001	1.21(0.75–1.94)	<0.001
rs4986790	Gastric cancer	6	2.18(1.67–2.84)	0.068	2.20(1.67–2.89)	0.104
	Prostate cancer	5	0.95(0.80–1.13)	0.068	0.99(0.82–1.18)	0.062
rs4986791	Gastric cancer	5	1.93(1.20–3.12)	0.193	1.98(1.22–3.21)	0.177

The results were in bold, if the P < 0.05.

*P values for heterogeneity test. If the result of the heterogeneity test was p > 0.05, ORs were pooled according to the fixed-effect model. Otherwise, the random-effect model was used.

doi:10.1371/journal.pone.0082858.t004
We further performed stratification analysis by ethnicity and cancer types. The results indicated that variant genotypes of TLR2 -196 to -174 del tended to be associated with overall cancer risk in Caucasians (allele comparison: OR = 3.29, 95% CI: 1.14–9.51, \(P < 0.001 \) for heterogeneity test; dominant model: OR = 3.56, 95% CI: 1.10–11.51, \(P = 0.001 \) for heterogeneity test) and South Asians (allele comparison: OR = 1.32, 95% CI: 1.11–1.58, \(P = 0.785 \) for heterogeneity test; dominant model: OR = 1.37, 95% CI: 1.11–1.68, \(P = 0.870 \) for heterogeneity test), but not in East Asians (Table 2). However, the association between rs4986791 and cancer risk was significant in both South Asians (allele comparison: OR = 1.58, 95% CI: 1.16–2.16, \(P = 0.718 \) for heterogeneity test; dominant model: OR = 1.55, 95% CI: 1.11–2.17, \(P = 0.846 \) for heterogeneity test) and East Asians (allele comparison: OR = 1.72, 95% CI: 1.14–2.62, \(P = 0.870 \) for heterogeneity test; dominant model: OR = 1.77, 95% CI: 1.12–2.77, \(P = 0.192 \) for heterogeneity test), but not in Caucasians (Table 2). When stratified by cancer types, significantly increased risks of TLR4 rs4986790 were found in digestive cancers (allele comparison: OR = 1.79, 95% CI: 1.14–2.61, \(P = 0.001 \) for heterogeneity test; dominant model: OR = 1.76, 95% CI: 1.13–2.73, \(P = 0.003 \) for heterogeneity test) and female-specific cancers (allele comparison: OR = 1.44, 95% CI: 1.14–1.83, \(P = 0.641 \) for heterogeneity test; dominant model: OR = 1.50, 95% CI: 1.16–1.94, \(P = 0.537 \) for heterogeneity test), but not in blood cancers or male-specific cancers (Table 3). However, no significant association with risk of digestive cancers was observed for TLR2 -196 to -174 del and TLR4 rs4986791 (Table 3). We also further investigated the associations between three SNPs and gastric cancer or prostate cancer (involved in more than three studies) and found that both TLR4 rs4986790 (allele comparison: OR = 2.18, 95% CI: 1.67–2.84, \(P = 0.068 \) for heterogeneity test; dominant model: OR = 2.20, 95% CI: 1.67–2.89, \(P = 0.014 \) for heterogeneity test) and rs4986791 (allele comparison: OR = 1.90, 95% CI: 1.20–3.12, \(P = 0.193 \) for heterogeneity test; dominant model: OR = 1.98, 95% CI: 1.22–3.21, \(P = 0.104 \) for heterogeneity test) were associated with a significantly increased risk of gastric cancer, but not TLR2 -196 to -174 del (Table 4). Furthermore, we did not observe significant association between rs4986790 and prostate cancer risk.

Test of Heterogeneity

A meta-regression was conducted to explore the possible source of heterogeneity for -196 to -174 del and rs4986790 because both of \(P \) values for heterogeneity test were less than 0.05 in the comparisons. We identified that MAFs of -196 to -174 del and rs4986790 were significant sources of heterogeneity (\(P = 0.008 \) for -196 to -174 del, \(P = 0.039 \) for rs4986790, respectively). We also found that ethnicity was a significant source of heterogeneity for -196 to -174 (\(P = 0.036 \)). However, genotyping methods, tumor types, sample size, and source of controls could not substantially influence the initial heterogeneity.

Sensitivity Analyses and Publication Bias

The leave-one-out sensitivity analysis indicated that no single study changed the pooled ORs qualitatively (data not shown). Furthermore, we also conducted a sensitivity analysis on the TLR2 and TLR4 polymorphism and risk of cancer by excluding all four studies departure from HWE among controls [20,35,40,42] and their exclusion did not substantially affect the results of the meta-analysis (dominant model: OR = 1.68, 95% CI: 1.00–2.81 for -196 to -174del; dominant model: OR = 1.20, 95% CI: 1.00–1.44 for rs4986790; dominant model: OR = 1.49, 95% CI: 1.21–1.83 for rs4986791).
The inverted funnel plots (Figure 2) and Begg’s test were performed to assess the publication bias, and the results did not suggest any obvious evidence of asymmetry for TLR2 and TLR4 polymorphisms ($P=0.152$ for -196 to -174 del, TLR4 rs4986790 and rs4986791) were significantly associated with an increased risk of overall cancers. Furthermore, the stratification analysis showed that the risk effect of polymorphisms was more prominent in subjects with some special races or cancer types. All these findings suggested that polymorphisms of TLR2 and TLR4 might contribute to risk of human cancer.

The -196 to -174 del polymorphism in TLR2 located on chromosome 4 causes a 22-bp nucleotide deletion and it has been recently proposed to reflect differential trans-activation of TLR2 promoter constructs and expression levels of TLR2 [38]. However, population studies showed that TLR2 -196 to -174 del polymorphism might play conflicting roles for the risk of different types of cancer. For example, it was reported that the TLR2 -196 to -174 del polymorphism was associated with risk of several cancers, such as cervical cancer, gastric cancer, breast cancer and hepatocellular cancer [21,23,24,38,41], but not associated with other cancers including bladder, prostate cancer and gallbladder cancer [19,32,40]. And even the same kind of cancer, the results were inconsistent [23,25]. To comprehensively investigate the effect of this polymorphism on the risk of overall cancers, we conducted this meta-analysis and found that TLR2 -196 to -174 del polymorphism significantly increased risk of cancers, supporting the hypothesis that this SNP plays a role in changed expression of TLR2 and cancer development.

The TLR4 gene is mapped on chromosome 9 and consists of three exons. In exon 3, two non-synonymous SNPs (+896A/G rs4986790 and +1196C/T rs4986791) induces the substitution of amino acids Asp299Gly and Thr399Ile, respectively. The substitution of Asp299Gly disrupts the normal structure of the extracellular region of the TLR4, which may cause decreased ligand recognition or protein interaction and decreased responsiveness to lipopolysaccharide [57]. Consequently, such change can affect the transport of TLR4 to the cell membrane and lead to an exaggerated inflammatory response with severe tissue destruction. The results of previous studies regarding the association between these two SNPs and cancer risk were inconsistent. These pooled analysis did not find any significant association between the two SNPs and risk of prostate cancer [58] or gastric cancer [59]. However, a recent meta-analysis of 22 publications on six selected SNPs (rs1927914, rs4986790, rs4986791, rs11536889, rs1927911 and rs2149356) in TLR4 and cancer risk reported that TLR4 rs4986790 and rs4986791 were significantly associated with increased risk of overall cancer and significantly elevated risk of gastric cancer was observed for rs4986790 in a stratification study [60]. Our meta-analysis including more studies [27 studies for rs4986790 and 14 studies for rs4986791] and more cancer types provided additional evidence that these two SNPs may play a role in the development of cancer. In the stratification analysis by cancer types, we found that the effect of rs4986790 on cancer risk was more evident in female-specific cancers and digestive cancers, especially for gastric cancer. Similarly, the risk effect of rs4986791 was also prominent in gastric cancer. Studies have shown that H. pylori activates TLR4 expression in gastric epithelial cells and TLR4 can serve as a receptor for H. pylori binding [61,62]. Thus, potentially functional polymorphisms of TLR4 may affect the function of TLR4 and contribute to H. pylori-associated carcinogenesis. An important reason for the different findings by previously performed studies may be the insufficient study power to detect modest effects of polymorphisms.

In term of stratified analyses by races, our findings indicated that TLR2 -196 to -174 del had an significant association with cancer risk in Caucasians and South Asians, but not in East Asians. However, the association between TLR4 rs4986791 and cancer risk was significant in both South Asians and East Asians, but not in Caucasians. These differences may be induced by different genetic backgrounds and environmental exposures, as indicated by the difference of minor allele frequency in controls among the two populations (Table 1). For example, the MAF of TLR2 -196 to -174 del in Caucasian controls varied from 0.05 to 0.15, but that in Asians was from 0.12 to 0.38. Allele frequency might reflect the natural selection pressures or a balance by other related functional genetic variants and/or environmental exposures. We also searched some public databases, such as Hapmap (http://hapmap.ncbi.nlm.nih.gov/) and SNPinfo (http://snpinfo.niehs.nih.gov/), and found that rs4986790 was in high linkage disequilibrium (LD) with rs4986791 in Caucasians ($r^2 = 1$), but not data was available in Asians because of low allele frequency of these two SNPs. In our analysis, the associations of rs4986790 and rs4986791 with cancer risk were consistent in Caucasians, but inconsistent in Asians. These findings further indicate that the effect of genetic variants on cancer risk may be different between multiple ethnic groups. Some limitations and potential bias should be addressed. First, the subgroups may have a relatively lower power based on a small number of studies. Second, a more precise analysis should be conducted, if individual data were available, allowing for the adjustment by some co-variants such as age, gender and other environmental factors. However, these information were unavailable from most of studies. Third, the controls in the included studies were recruited from different ways and not uniformly defined, which may have induced some bias for the meta-analysis. Last, the gene-gene interaction is important for the development of complex diseases including cancer because single genetic variation may only have a modest effect [63,64]. However, the original genotyping data of each publication was unavailable and we could not carry out gene-gene interaction analysis in this study.

In conclusion, this meta-analysis provided statistical evidence that the TLR2 and TLR4 polymorphisms were associated with cancer risk, particularly for gastric cancer. However, due to the limitations of original studies included in the meta-analyses, well-designed prospective studies with larger samples are needed to confirm these findings.

Supporting Information

Checklist S1

(DOC)

Figure S1

(DOC)

Author Contributions

Conceived and designed the experiments: HM SZ. Performed the experiments: LZ HY. Analyzed the data: HY TJ RW. Contributed reagents/materials/analysis tools: HM SZ. Wrote the paper: LZ HY.
References

1. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11: 373–384.

2. Iwasaki A, Medzhitov R (2010) Regulation of adaptive immunity by the innate immune system. Science 327: 291–295.

3. Wang RF, Miyahara Y, Wang HY (2008) Toll-like receptors and immune regulation: implications for cancer therapy. Oncogene 27: 181–189.

4. Bauth S, Manzoor B, Yoo TH, Kim SG, Cho S (2012) Roles of toll-like receptors in cancer: a double-edged sword for defense and offense. Arch Pharm Res 35: 1297–1316.

5. Takekda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21: 353–376.

6. Aderem A, Ulevitch RJ (2000) Toll-like receptors in the induction of the innate immune response. Nature 406: 782–787.

7. Drexler SK, Foxwell BM (2010) The role of toll-like receptors in chronic inflammation. Int J Biochem Cell Biol 42: 506–518.

8. Menendez D, Shatz M, Azzam K, Garantziotis S, Fessler MB, et al. (2011) The Toll-like receptor gene family is integrated into human DNA damage and p53 networks. PLoS Genet 7: e1001360.

9. Habert E, Gaspari AA (2013) TLR signaling and DNA repair: are they associated? J Invest Dermatol 133: 296–302.

10. Kagan JC, Su T, Horig T, Chou A, Akira S, et al. (2008) TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. Nat Immunol 9: 361–368.

11. Sahsbee I, Dower SK, Whyte MK (2005) The role of Toll-like receptors in the regulation of neutrophil migration, activation, and apoptosis. Clin Infect Dis 41 Suppl 1: S421–426.

12. Takekata O, Kobayashi J, Kawai T, Sanjo H, Takekada H, et al. (1999) Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11: 443–451.

13. Huang B, Zhao J, Shen S, Li H, Ke KL, et al. (2007) Listeria monocytogenes promotes tumor growth via tumor cell toll-like receptor 2 signaling. Cancer Res 67: 4346–4352.

14. Chen R, Alvero AB, Silasi DA, Steffensen KD, Mor G (2008) Cancers take their Toll-the function and regulation of Toll-like receptors in cancers. Oncogene 27: 225–233.

15. He W, Lau Q, Wang L, Chen W, Li N, et al. (2007) TLR4 signaling promotes immune escape of human lung cancer cells by inducing immunosuppressive cytokines and apoptosis resistance. Mol Immunol 44: 2050–2059.

16. Wang JH, Manninen JJ, Wu QD, Blanckou S, Bouchier-Hayes D, et al. (2003) Endotoxin/lipopolysaccharide activates NF-kappa B and enhances tumor cell adhesion and invasion through a beta 1 integrin-dependent mechanism. J Immunol 170: 795–804.

17. Ahmed A, Wang A, Redmond HP (2012) Silencing of TLR4 Increases Tumor Progression and Lung Metastasis in a Murine Model of Breast Cancer. Ann Surg Oncol.

18. Ferwerda B, McCall MB, Verheijen K, Kullberg BJ, van der Ven AJ, et al. (2012) Toll-like receptor 2 (TLR2) polymorphisms may confer increased load and susceptibility to hepatocellular carcinoma in chronic hepatitis C. Int J Cancer 130: 1470–1475.

19. Agnudora JA, Garcia-Martín E, Devesa MJ, Garballo M, Martínez G, et al. (2011) Polymorphism of the TLR4 gene reduces the risk of hepatitis C virus-induced hepatocellular carcinoma. Oncology 82: 35–40.

20. Srivastava K, Srivastava A, Kumar A, Mittal B (2010) Significant association between toll-like receptor gene polymorphisms and gallbladder cancer. Liver Int 30: 1067–1072.

21. Pandey S, Mittal RD, Srivastava M, Srivastava K, Singh S, et al. (2009) Impact of Toll-like receptors [TLR] 2 (196→197 del) and TLR4 (A299G,Gly, Thr399Ile) in cervical cancer susceptibility in North Indian women. Gynecol Oncol 114: 501–505.

22. Yang ZH, Dai Q, Gu YJ, Guo QX, Gong L (2012) Cytokine and chemokine modification by Toll-like receptor polymorphisms is associated with nasopharyngeal carcinoma. Cancer Sci 103: 653–658.

23. Miedema KG, Tissing WJ, Te Poel EM, Kamp WA, Alischiez RD, et al. (2012) Polymorphisms in TLR4 genes associated with the inverse association between childhood acute lymphoblastic leukemia and atopic disease. Leukemia 26: 1203–1210.

24. Gast A, Bermejo JL, Claus R, Brandt A, Weires M, et al. (2011) Association of inherited variation in Toll-like receptor genes with malignant melanoma susceptibility and survival. PLoS One 6: e24370.

25. Ashton KA, Proietto A, Ootton G, Symonds I, McEvoy M, et al. (2010) Toll-like-receptor (TLR) and nucleotide-binding oligomerization domain (NOD) gene polymorphisms and endometrial cancer risk. BMC Cancer 10: 382.

26. Purdue MP, Lan Q, Wang SS, Kricker A, Menachis I, et al. (2009) A pooled investigation of Toll-like receptor gene variants and risk of non-Hodgkin lymphoma. Carcinogenesis 30: 275–281.

27. Nieters A, Beckmann L, Deeg H, Rüdiger I, Nousiainen M, et al. (2006) Polymorphisms in toll-like receptor genes with endometrial cancer risk. BMC Cancer 6: 15.

28. Tier-Ozdemir F, Gazouli M, Tzivras M, Panagos C, Bovaretos N, et al. (2008) Microsatellite GT polymorphism in the toll-like receptor 2 is associated with oral cancer susceptibility. Carcinogenesis 29: 658–660.

29. Agundez JA, Garcia-Martín E, Devesa MJ, Carballo M, Martínez G, et al. (2011) Polymorphism of the TLR4 gene reduces the risk of hepatitis C virus-induced hepatocellular carcinoma. Oncology 82: 40–45.

30. Maldonado-Garza HJ, et al. (2007) Assessment of the toll-like receptor 4 (TLR4) gene polymorphism and lymphoma related to diffuse histotypes. Clin Exp Immunol 154: 360–364.

31. Wang MH, Helzlsouer KJ, Smith MW, Hoffman-Bolton JA, Clipp SL, et al. (2009) Association of IL10 and other immune response- and obesity-related genes with prostate cancer in CLUE II. Prostate 69: 874–885.

32. Chen YC, Giovannucci E, Lazarus R, Kraft P, Petkari S, et al. (2005) Sequence variants of Toll-like receptor 4 and susceptibility to prostate cancer. Cancer Res 65: 11771–11778.

33. Zheng SL, Augustsson-Balter K, Chang B, Heidel M, Li L, et al. (2004) Sequence variants of toll-like receptor 4 are associated with prostate cancer risk: results from the Cancer Prostate in Sweden Study. Cancer Res 64: 2918–2922.

34. Chopra I, Plummer SJ, Casey G, Wine JS (2007) Toll-like receptor 4 genetic variation and advanced prostate cancer risk. Cancer Epidemiol Biomarkers Prev 16: 352–353.

35. Schischalk BD, Coenen M, Berger C, Aldenhoff K, Muller T, et al. (2012) The toll-like receptor 2 (TLR2) (196→197 del) polymorphism affects viral loads and susceptibility to hepatocellular carcinoma in chronic hepatitis C. Int J Cancer 130: 1470–1475.

36. Landi S, Gemignani F, Bottari F, Gioia-Patricola L, Guino E, et al. (2006) A polymorphism within inflammatory genes and colorectal cancer. J Negat Results Biol 6: 9.

37. Cheng I, Plummer SJ, Casey G, Witte JS (2007) Toll-like receptor 4 genetic polymorphisms and breast cancer susceptibility. Cancer Res 67: 1086–1091.

38. Higuchi N, Nakata H, Kobayashi A, Fujita H, et al. (2008) Polymorphisms of the TLR4 and NOD2/CARD15 genes and their possible role in gastric carcinogenesis. Anticancer Res 30: 513–517.

39. Tahara T, Arisawa T, Wang F, Shihata T, Nakamura M, et al. (2005) Toll-like receptor 2-196→174del polymorphism influences the susceptibility of Japanese people to gastric cancer. Cancer Sci 96: 1790–1794.

40. Hold GL, Rakbin CS, Chow WH, Smith MG, Gammon MD, et al. (2007) A functional polymorphism of toll-like receptor 4 gene increases risk of gastric carcinogenesis and its precursor lesions. Gastroenterology 132: 905–912.

41. Mendez D, Shatz M, Azzam K, Garantziotis S, Fessler MB, et al. (2011) The Toll-like receptor gene family is integrated into human DNA damage and p53 networks. PLoS Genet 7: e1001360.
54. Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22: 719–748.
55. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7: 177–188.
56. Begg CB, Mazumdar M (1994) Operating characteristics of a rank correlation test for publication bias. Biometrics 50: 1008–1101.
57. Arbour NC, Lorenz E, Schutte BC, Zabner J, Kline JN, et al. (2000) TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet 25: 187–191.
58. Arbour NC, Lorenz E, Schutte BC, Zabner J, Kline JN, et al. (2000) TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet 25: 187–191.
59. Castano-Rodriguez N, Kaakoush NO, Goh KL, Fock KM, Mitchell HM (2013) The role of TLR2, TLR4 and CD14 genetic polymorphisms in gastric carcinogenesis: a case-control study and meta-analysis. PLoS One 8: e60327.
60. Zhang K, Zhou B, Wang Y, Rao L, Zhang L (2013) The TLR4 gene polymorphisms and susceptibility to cancer: a systematic review and meta-analysis. Eur J Cancer 49: 946–954.
61. Su B, Cepounis Pj, Lebel S, Huyhn H, Sherman PM (2003) Helicobacter pylori activates Toll-like receptor 4 expression in gastrointestinal epithelial cells. Infect Immun 71: 3496–3502.
62. Wroblewski LE, Peek RM, Jr. (2013) Helicobacter pylori in gastric carcinogenic mechanisms. Gastroenterol Clin North Am 42: 283–298.
63. Liu L, Wu C, Wang Y, Zhong R, Wang F, et al. (2011) Association of candidate genetic variations with gastric cardia adenocarcinoma in Chinese population: a multiple interaction analysis. Carcinogenesis 32: 336–342.
64. Zhong R, Liu L, Zou L, Sheng W, Zhu B, et al. (2013) Genetic variations in the TGFbeta signaling pathway, smoking and risk of colorectal cancer in a Chinese population. Carcinogenesis 34: 936–942.