Planar graphs are $9/2$-colorable

Daniel W. Cranston
Virginia Commonwealth University
dcranston@vcu.edu

Joint with Landon Rabern
Slides available on my webpage

Connections in Discrete Math
Simon Fraser
16 June 2015
The 5 Color Theorem

Fact 1: Every n-vertex triangulation has $3n - 6$ edges.

Cor: K_5 is non-planar. (Since $3(5) - 6 = 9 < 10 = \binom{5}{2}$.)

Thm: Every planar graph G is 5-colorable.

Pf: Add edges to get a triangulation. Now $\sum_{v \in V} d(v) = 2|E| = 2(3n - 6) < 6n$. So some vertex v is a 5-vertex. When v is a 4-vertex, we 5-color $G - v$ by induction, then color v. Now, since K_5 is non-planar, v has non-adjacent neighbors w_1 and w_2. Contract vw_1 and vw_2; 5-color by induction. This gives 5-coloring of $G - v$. Now extend to v, since w_1 and w_2 have same color. ■
The 5 Color Theorem

Fact 1: Every n-vertex triangulation has $3n - 6$ edges.
The 5 Color Theorem

Fact 1: Every n-vertex triangulation has $3n - 6$ edges.

Cor: K_5 is non-planar. (Since $3(5) - 6 = 9 < 10 = \binom{5}{2}$.)
The 5 Color Theorem

Fact 1: Every n-vertex triangulation has $3n - 6$ edges.

Cor: K_5 is non-planar. (Since $3(5) - 6 = 9 < 10 = \binom{5}{2}$.)

Thm: Every planar graph G is 5-colorable.
The 5 Color Theorem

Fact 1: Every n-vertex triangulation has $3n - 6$ edges.

Cor: K_5 is non-planar. (Since $3(5) - 6 = 9 < 10 = \binom{5}{2}$.)

Thm: Every planar graph G is 5-colorable.

Pf: Add edges to get a triangulation.
The 5 Color Theorem

Fact 1: Every \(n \)-vertex triangulation has \(3n - 6 \) edges.

Cor: \(K_5 \) is non-planar. (Since \(3(5) - 6 = 9 < 10 = \binom{5}{2} \).)

Thm: Every planar graph \(G \) is 5-colorable.

Pf: Add edges to get a triangulation. Now
\[
\sum_{v \in V} d(v) = 2|E| = 2(3n - 6) < 6n.
\]
The 5 Color Theorem

Fact 1: Every n-vertex triangulation has $3n - 6$ edges.

Cor: K_5 is non-planar. (Since $3(5) - 6 = 9 < 10 = \binom{5}{2}$.)

Thm: Every planar graph G is 5-colorable.

Pf: Add edges to get a triangulation. Now
\[
\sum_{v \in V} d(v) = 2|E| = 2(3n - 6) < 6n.
\]
So some vertex v is a 5^--vertex.
The 5 Color Theorem

Fact 1: Every n-vertex triangulation has $3n - 6$ edges.

Cor: K_5 is non-planar. (Since $3(5) - 6 = 9 < 10 = \binom{5}{2}$.)

Thm: Every planar graph G is 5-colorable.

Pf: Add edges to get a triangulation. Now

$$\sum_{v \in V} d(v) = 2|E| = 2(3n - 6) < 6n.$$

So some vertex v is a 5^{-}-vertex. When v is a 4^{-}-vertex, we 5-color $G - v$ by induction, then color v.

\[
\begin{array}{c}
\includegraphics[width=0.2\textwidth]{k5.png}
\end{array}
\]
The 5 Color Theorem

Fact 1: Every n-vertex triangulation has $3n - 6$ edges.

Cor: K_5 is non-planar. (Since $3(5) - 6 = 9 < 10 = \binom{5}{2}$.)

Thm: Every planar graph G is 5-colorable.

Pf: Add edges to get a triangulation. Now $\sum_{v \in V} d(v) = 2|E| = 2(3n - 6) < 6n$. So some vertex v is a 5^--vertex. When v is a 4^--vertex, we 5-color $G - v$ by induction, then color v. Now, since K_5 is non-planar, v has non-adjacent neighbors w_1 and w_2.

\begin{center}
\begin{tikzpicture}
\node[draw, circle] (v) at (0,0) {};
\node[draw, circle] (w1) at (1,1) {};
\node[draw, circle] (w2) at (1,-1) {};
\draw (v) -- (w1);
\draw (v) -- (w2);
\end{tikzpicture}
\end{center}
The 5 Color Theorem

Fact 1: Every n-vertex triangulation has $3n - 6$ edges.

Cor: K_5 is non-planar. (Since $3(5) - 6 = 9 < 10 = \binom{5}{2}$.)

Thm: Every planar graph G is 5-colorable.

Pf: Add edges to get a triangulation. Now $\sum_{v \in V} d(v) = 2|E| = 2(3n - 6) < 6n$. So some vertex v is a 5^--vertex. When v is a 4^--vertex, we 5-color $G - v$ by induction, then color v. Now, since K_5 is non-planar, v has non-adjacent neighbors w_1 and w_2. Contract vw_1 and vw_2:

![Diagram](image)
The 5 Color Theorem

Fact 1: Every n-vertex triangulation has $3n - 6$ edges.

Cor: K_5 is non-planar. (Since $3(5) - 6 = 9 < 10 = \binom{5}{2}$.)

Thm: Every planar graph G is 5-colorable.

Pf: Add edges to get a triangulation. Now $\sum_{v \in V} d(v) = 2|E| = 2(3n - 6) < 6n$. So some vertex v is a 5^--vertex. When v is a 4^--vertex, we 5-color $G - v$ by induction, then color v. Now, since K_5 is non-planar, v has non-adjacent neighbors w_1 and w_2. Contract vw_1 and vw_2; 5-color by induction.
The 5 Color Theorem

Fact 1: Every n-vertex triangulation has $3n - 6$ edges.

Cor: K_5 is non-planar. (Since $3(5) - 6 = 9 < 10 = \binom{5}{2}$.)

Thm: Every planar graph G is 5-colorable.

Pf: Add edges to get a triangulation. Now $\sum_{v \in V} d(v) = 2|E| = 2(3n - 6) < 6n$. So some vertex v is a 5-vertex. When v is a 4-vertex, we 5-color $G - v$ by induction, then color v. Now, since K_5 is non-planar, v has non-adjacent neighbors w_1 and w_2. Contract vw_1 and vw_2; 5-color by induction. This gives 5-coloring of $G - v$.

![Diagram showing the process of 5-coloring a triangulated graph](image)
The 5 Color Theorem

Fact 1: Every \(n \)-vertex triangulation has \(3n - 6 \) edges.

Cor: \(K_5 \) is non-planar. (Since \(3(5) - 6 = 9 < 10 = \binom{5}{2} \).)

Thm: Every planar graph \(G \) is 5-colorable.

Pf: Add edges to get a triangulation. Now \(\sum_{v \in V} d(v) = 2|E| = 2(3n - 6) < 6n \).

So some vertex \(v \) is a \(5^- \)-vertex. When \(v \) is a \(4^- \)-vertex, we 5-color \(G - v \) by induction, then color \(v \). Now, since \(K_5 \) is non-planar, \(v \) has non-adjacent neighbors \(w_1 \) and \(w_2 \).

Contract \(vw_1 \) and \(vw_2 \); 5-color by induction. This gives 5-coloring of \(G - v \). Now extend to \(v \), since \(w_1 \) and \(w_2 \) have same color.
The 5 Color Theorem

Fact 1: Every n-vertex triangulation has $3n - 6$ edges.

Cor: K_5 is non-planar. (Since $3(5) - 6 = 9 < 10 = \binom{5}{2}$.)

Thm: Every planar graph G is 5-colorable.

Pf: Add edges to get a triangulation. Now $\sum_{v \in V} d(v) = 2|E| = 2(3n - 6) < 6n$. So some vertex v is a 5^--vertex. When v is a 4^--vertex, we 5-color $G - v$ by induction, then color v. Now, since K_5 is non-planar, v has non-adjacent neighbors w_1 and w_2. Contract vw_1 and vw_2; 5-color by induction. This gives 5-coloring of $G - v$. Now extend to v, since w_1 and w_2 have same color. ■
Between 4 Color Theorem and 5 Color Theorem

4CT is hard and 5CT is easy. What's in between?

- Two-fold coloring: color vertex “half red and half blue”
- 5CT implies that 10 colors suffice
- 4CT implies that 8 colors suffice
- $9_{\leq 2}$CT will show that 9 colors suffice.

Def: The Kneser graph K_t^k has as vertices the k-element subsets of $\{1, \ldots, t\}$. Vertices are adjacent whenever their sets are disjoint.

We'll show that planar graphs have a map to $K_9^{2\leq 2}$. G is t-colorable iff G has homomorphism to K_t^t.
Between 4 Color Theorem and 5 Color Theorem

4CT is hard and 5CT is easy. What’s in between?
Between 4 Color Theorem and 5 Color Theorem

4CT is hard and 5CT is easy. What’s in between?

- Two-fold coloring: color vertex “half red and half blue”
Between 4 Color Theorem and 5 Color Theorem

4CT is hard and 5CT is easy. What’s in between?

- Two-fold coloring: color vertex “half red and half blue”
 - 5CT implies that 10 colors suffice

\[
\text{Def:} \quad \text{The Kneser graph } K_t: k \text{ has as vertices the } k \text{-element subsets of } \{1, \ldots, t\}. \text{ Vertices are adjacent whenever their sets are disjoint.}
\]

\[\text{Want } f: V(G) \to V(K_t): f(u) \neq f(v) \iff uv \in E(G).\]

We’ll show that planar graphs have a map to \(K_{9:2}\).

\(G\) is \(t\)-colorable iff \(G\) has homomorphism to \(K_t\).
Between 4 Color Theorem and 5 Color Theorem

4CT is hard and 5CT is easy. What’s in between?

- Two-fold coloring: color vertex “half red and half blue”
 - 5CT implies that 10 colors suffice
 - 4CT implies that 8 colors suffice
Between 4 Color Theorem and 5 Color Theorem

4CT is hard and 5CT is easy. What’s in between?

- Two-fold coloring: color vertex “half red and half blue”
 - 5CT implies that 10 colors suffice
 - 4CT implies that 8 colors suffice
 - $\frac{9}{2}$CT will show that 9 colors suffice.
Between 4 Color Theorem and 5 Color Theorem

4CT is hard and 5CT is easy. What’s in between?

- Two-fold coloring: color vertex “half red and half blue”
 - 5CT implies that 10 colors suffice
 - 4CT implies that 8 colors suffice
 - \(\frac{9}{2} \)CT will show that 9 colors suffice.

Def: The Kneser graph \(K_{t:k} \) has as vertices the \(k \)-element subsets of \(\{1, \ldots, t\} \). Vertices are adjacent whenever their sets are disjoint.
Between 4 Color Theorem and 5 Color Theorem

4CT is hard and 5CT is easy. What’s in between?

- Two-fold coloring: color vertex “half red and half blue”
 - 5CT implies that 10 colors suffice
 - 4CT implies that 8 colors suffice
 - $\frac{9}{2}$CT will show that 9 colors suffice.

Def: The Kneser graph $K_{t:k}$ has as vertices the k-element subsets of $\{1, \ldots, t\}$. Vertices are adjacent whenever their sets are disjoint.
Between 4 Color Theorem and 5 Color Theorem

4CT is hard and 5CT is easy. What’s in between?

- Two-fold coloring: color vertex “half red and half blue”
 - 5CT implies that 10 colors suffice
 - 4CT implies that 8 colors suffice
 - $\frac{9}{2}$ CT will show that 9 colors suffice.

Def: The Kneser graph $K_{t:k}$ has as vertices the k-element subsets of \{1, \ldots, t\}. Vertices are adjacent whenever their sets are disjoint.

Want $f : V(G) \rightarrow V(K_{t:k})$ where $f(u)f(v) \in E(K_{t:k})$ if $uv \in E(G)$.
Between 4 Color Theorem and 5 Color Theorem

4CT is hard and 5CT is easy. What’s in between?

- Two-fold coloring: color vertex “half red and half blue”
 - 5CT implies that 10 colors suffice
 - 4CT implies that 8 colors suffice
 - $\frac{9}{2}$CT will show that 9 colors suffice.

Def: The Knieser graph $K_{t:k}$ has as vertices the k-element subsets of \{1, \ldots, t\}. Vertices are adjacent whenever their sets are disjoint.

Want $f : V(G) \rightarrow V(K_{t:k})$ where $f(u)f(v) \in E(K_{t:k})$ if $uv \in E(G)$.

We’ll show that planar graphs have a map to $K_{9:2}$.
Between 4 Color Theorem and 5 Color Theorem

4CT is hard and 5CT is easy. What’s in between?
▶ Two-fold coloring: color vertex “half red and half blue”
 ▶ 5CT implies that 10 colors suffice
 ▶ 4CT implies that 8 colors suffice
 ▶ \(\frac{9}{2}\)CT will show that 9 colors suffice.

Def: The Kneser graph \(K_{t:k}\) has as vertices the \(k\)-element subsets of \(\{1, \ldots, t\}\). Vertices are adjacent whenever their sets are disjoint.

Want \(f : V(G) \rightarrow V(K_{t:k})\) where \(f(u)f(v) \in E(K_{t:k})\) if \(uv \in E(G)\).

We’ll show that planar graphs have a map to \(K_{9:2}\). \(G\) is \(t\)-colorable iff \(G\) has homomorphism to \(K_t\).
9/2-coloring planar graphs

Thm:

Every planar graph has a homomorphism to $K_9:2$.

Pf:

Induction on n, like 5CT. If we can't do induction, then G:

1. has minimum degree 5
2. has no separating triangle
3. can't have "too many 6-vertices near each other"
 ▶ has no 5-vertex with a 5-nbr and a non-adjacent 6-nbr
 ▶ has no 6-vertex with two non-adjacent 6-nbrs
 ▶ has no 7-vertex with a 5-nbr and two non-adjacent 6-nbrs
 if so, then contract some non-adjacent pairs of nbrs;
 color smaller graph by induction, then extend to G

Use discharging method to contradict (1), (2), or (3).

▶ each v gets $\text{ch}(v) = d(v) - 6$, so

$\sum_{v \in V} \text{ch}(v) = -12$

▶ redistribute charge, so every vertex finishes nonnegative

▶ Now $-12 = \sum_{v \in V} \text{ch}(v) = \sum_{v \in V} \text{ch}^*(v) \geq 0$.

Contradiction!
9/2-coloring planar graphs

Thm: Every planar graph has a homomorphism to $K_{9:2}$.
9/2-coloring planar graphs

Thm: Every planar graph has a homomorphism to $K_{9:2}$.

Pf:
9/2-coloring planar graphs

Thm: Every planar graph has a homomorphism to $K_{9:2}$.

Pf: Induction on n, like 5CT. If we can’t do induction, then G:

1. has minimum degree 5
9/2-coloring planar graphs

Thm: Every planar graph has a homomorphism to $K_{9:2}$.

Pf: Induction on n, like 5CT. If we can’t do induction, then G:

1. has minimum degree 5
2. has no separating triangle
9/2-coloring planar graphs

Thm: Every planar graph has a homomorphism to $K_{9:2}$.

Pf: Induction on n, like 5CT. If we can’t do induction, then G:

1. has minimum degree 5
2. has no separating triangle
3. can’t have “too many 6^--vertices near each other”
9/2-coloring planar graphs

Thm: Every planar graph has a homomorphism to $K_{9:2}$.

Pf: Induction on n, like 5CT. If we can’t do induction, then G:

1. has minimum degree 5
2. has no separating triangle
3. can’t have “too many 6^--vertices near each other”
 - has no 5-vertex with a 5-nbr and a non-adjacent 6^--nbr
9/2-coloring planar graphs

Thm: Every planar graph has a homomorphism to $K_{9:2}$.

Pf: Induction on n, like 5CT. If we can’t do induction, then G:

1. has minimum degree 5
2. has no separating triangle
3. can’t have “too many 6^--vertices near each other”
 - has no 5-vertex with a 5-nbr and a non-adjacent 6^--nbr
 - has no 6-vertex with two non-adjacent 6^--nhrs

Use discharging method to contradict (1), (2), or (3).

\triangleright each v gets $ch(v) = d(v) - 6$, so $\sum v \in V ch(v) = -12$

\triangleright redistribute charge, so every vertex finishes nonnegative

\triangleright Now $-12 = \sum v \in V ch(v) = \sum v \in V ch^*(v) \geq 0$

Contradiction!
9/2-coloring planar graphs

Thm: Every planar graph has a homomorphism to $K_{9:2}$.

Pf: Induction on n, like 5CT. If we can’t do induction, then G:

1. has minimum degree 5
2. has no separating triangle
3. can’t have “too many 6^--vertices near each other”
 - has no 5-vertex with a 5-nbr and a non-adjacent 6^--nbr
 - has no 6-vertex with two non-adjacent 6^--nbrs
 - has no 7-vertex with a 5-nbr and two non-adjacent 6^--nbrs
9/2-coloring planar graphs

Thm: Every planar graph has a homomorphism to $K_{9:2}$.

Pf: Induction on n, like 5CT. If we can’t do induction, then G:

1. has minimum degree 5
2. has no separating triangle
3. can’t have “too many 6−-vertices near each other”
 - has no 5-vertex with a 5-nbr and a non-adjacent 6−-nbr
 - has no 6-vertex with two non-adjacent 6−-nbrs
 - has no 7-vertex with a 5-nbr and two non-adjacent 6−-nbrs

if so, then contract some non-adjacent pairs of nbrs; color smaller graph by induction, then extend to G
9/2-coloring planar graphs

Thm: Every planar graph has a homomorphism to $K_{9:2}$.

Pf: Induction on n, like 5CT. If we can’t do induction, then G:

1. has minimum degree 5
2. has no separating triangle
3. can’t have “too many 6^--vertices near each other”
 - has no 5-vertex with a 5-nbr and a non-adjacent 6^--nbr
 - has no 6-vertex with two non-adjacent 6^--nrs
 - has no 7-vertex with a 5-nbr and two non-adjacent 6^--nrs

if so, then contract some non-adjacent pairs of nrs; color smaller graph by induction, then extend to G

Use discharging method to contradict (1), (2), or (3).
9/2-coloring planar graphs

Thm: Every planar graph has a homomorphism to $K_{9:2}$.

Pf: Induction on n, like 5CT. If we can’t do induction, then G:

1. has minimum degree 5
2. has no separating triangle
3. can’t have “too many 6^--vertices near each other”
 - has no 5-vertex with a 5-nbr and a non-adjacent 6^--nbr
 - has no 6-vertex with two non-adjacent 6^--nbs
 - has no 7-vertex with a 5-nbr and two non-adjacent 6^--nbs

if so, then contract some non-adjacent pairs of nbs; color smaller graph by induction, then extend to G

Use discharging method to contradict (1), (2), or (3).

- each v gets $ch(v) = d(v) - 6$, so $\sum_{v \in V} ch(v) = -12$
9/2-coloring planar graphs

Thm: Every planar graph has a homomorphism to $K_{9:2}$.

Pf: Induction on n, like 5CT. If we can’t do induction, then G:

1. has minimum degree 5
2. has no separating triangle
3. can’t have “too many 6⁻-vertices near each other”
 ▶ has no 5-vertex with a 5-nbr and a non-adjacent 6⁻-nbr
 ▶ has no 6-vertex with two non-adjacent 6⁻-nhrs
 ▶ has no 7-vertex with a 5-nbr and two non-adjacent 6⁻-nhrs

if so, then contract some non-adjacent pairs of nhrs; color smaller graph by induction, then extend to G

Use discharging method to contradict (1), (2), or (3).

▶ each v gets $ch(v) = d(v) - 6$, so $\sum_{v \in V} ch(v) = -12$
▶ redistribute charge, so every vertex finishes nonnegative
9/2-coloring planar graphs

Thm: Every planar graph has a homomorphism to $K_{9:2}$.

Pf: Induction on n, like 5CT. If we can’t do induction, then G:

1. has minimum degree 5
2. has no separating triangle
3. can’t have “too many 6−-vertices near each other”
 - has no 5-vertex with a 5-nbr and a non-adjacent 6−-nbr
 - has no 6-vertex with two non-adjacent 6−-nbrs
 - has no 7-vertex with a 5-nbr and two non-adjacent 6−-nbrs

if so, then contract some non-adjacent pairs of nprs; color smaller graph by induction, then extend to G

Use discharging method to contradict (1), (2), or (3).

- each v gets $ch(v) = d(v) - 6$, so $\sum_{v \in V} ch(v) = -12$
- redistribute charge, so every vertex finishes nonnegative
- Now $-12 = \sum_{v \in V} ch(v) = \sum_{v \in V} ch^*(v) \geq 0$,
\textbf{9/2-coloring planar graphs}

\textbf{Thm:} Every planar graph has a homomorphism to $K_{9:2}$.

\textbf{Pf:} Induction on n, like 5CT. If we can’t do induction, then G:

1. has minimum degree 5
2. has no separating triangle
3. can’t have “too many 6^--vertices near each other”
 - has no 5-vertex with a 5-nbr and a non-adjacent 6^--nbr
 - has no 6-vertex with two non-adjacent 6^--nbrs
 - has no 7-vertex with a 5-nbr and two non-adjacent 6^--nbrs

if so, then contract some non-adjacent pairs of nbrs; color smaller graph by induction, then extend to G

Use \textcolor{red}{discharging method} to contradict (1), (2), or (3).

- each v gets $ch(v) = d(v) - 6$, so $\sum_{v \in V} ch(v) = -12$
- redistribute charge, so every vertex finishes nonnegative
- Now $-12 = \sum_{v \in V} ch(v) = \sum_{v \in V} ch^*(v) \geq 0$, \textcolor{red}{Contradiction!}
Too many 6^-vertices near each other
Too many 6^--vertices near each other

Key Fact: Denote the center vertex of $\xymatrix{&*{2}{(a)}\ar@{-}[r] &*{2}{(b)} &*{2}{(c)}}$ by v and the other vertices by u_1, u_2, u_3.

Proof:

Give v a color available for at most one u_i, say u_1. Since $5 > 3$, now give v another color not available for u_1. Now color each u_i.

\[\begin{array}{c}
\xymatrix{ &*{2}{(a)} \
&*{2}{(b)} \\
{2}{(c)} &{2}{(a)} \\
{2}{(b)} &{2}{(c)} }
\end{array} \]
Too many 6^--vertices near each other

Key Fact: Denote the center vertex of \leq by v and the other vertices by u_1, u_2, u_3. If v has 5 allowable colors and each u_i has 3 allowable colors, then we can color each vertex with 2 colors, such that no color appears on both ends of an edge.

Proof:

Give v a color available for at most one u_i, say u_1.

Now give v another color not available for u_1.

Now color each u_i.
Too many 6^--vertices near each other

Key Fact: Denote the center vertex of \(\leq \) by \(\nu \) and the other vertices by \(u_1, u_2, u_3 \). If \(\nu \) has 5 allowable colors and each \(u_i \) has 3 allowable colors, then we can color each vertex with 2 colors, such that no color appears on both ends of an edge.

Pf: Give \(\nu \) a color available for at most one \(u_i \), say \(u_1 \).
Key Fact: Denote the center vertex of \leq by v and the other vertices by u_1, u_2, u_3. If v has 5 allowable colors and each u_i has 3 allowable colors, then we can color each vertex with 2 colors, such that no color appears on both ends of an edge.

Pf: Give v a color available for at most one u_i, say u_1. $2(5) > 3(3)$
Too many 6−-vertices near each other

Key Fact: Denote the center vertex of $\begin{array}{c} \text{A} \\ \text{B} \end{array}$ by v and the other vertices by u_1, u_2, u_3. If v has 5 allowable colors and each u_i has 3 allowable colors, then we can color each vertex with 2 colors, such that no color appears on both ends of an edge.

Pf: Give v a color available for at most one u_i, say u_1. $2(5) > 3(3)$ Now give v another color not available for u_1.

\[\begin{array}{c} \text{A} \\ \text{B} \\ \text{A} \\ \text{B} \\ \text{A} \\ \text{B} \end{array} \]
Key Fact: Denote the center vertex of 6^- by v and the other vertices by u_1, u_2, u_3. If v has 5 allowable colors and each u_i has 3 allowable colors, then we can color each vertex with 2 colors, such that no color appears on both ends of an edge.

Pf: Give v a color available for at most one u_i, say u_1. $2(5) > 3(3)$
Now give v another color not available for u_1. Now color each u_i.
Too many 6^--vertices near each other

Key Fact: Denote the center vertex of \blacklozenge by v and the other vertices by u_1, u_2, u_3. If v has 5 allowable colors and each u_i has 3 allowable colors, then we can color each vertex with 2 colors, such that no color appears on both ends of an edge.

Pf: Give v a color available for at most one u_i, say u_1. $2(5) > 3(3)$

Now give v another color not available for u_1. Now color each u_i.

![Graph diagram]
Too many 6−-vertices near each other

Key Fact: Denote the center vertex of \(\triangle \) by \(v \) and the other vertices by \(u_1, u_2, u_3 \). If \(v \) has 5 allowable colors and each \(u_i \) has 3 allowable colors, then we can color each vertex with 2 colors, such that no color appears on both ends of an edge.

Pf: Give \(v \) a color available for at most one \(u_i \), say \(u_1 \). \(2(5) > 3(3) \) Now give \(v \) another color not available for \(u_1 \). Now color each \(u_i \).
Discharging

Each vertex gets charge \(\text{ch}(v) = d(v) - 6 \).

Now 5-vertices need 1 from nbrs.

Def: \(H_v \) is subgraph induced by 6-nbrs of \(v \).

If \(d_{H_v}(w) = 0 \), then \(w \) is isolated nbr of \(v \);
otherwise \(w \) is non-isolated nbr of \(v \).

A non-isolated 5-nbr of vertex \(v \) is crowded (w.r.t. \(v \)) if it has two 6-nbrs in \(H_v \).

(R1) Each 8-vertex gives charge \(\frac{1}{2} \) to each isolated 5-nbr and charge \(\frac{1}{4} \) to each non-isolated 5-nbr.

(R2) Each 7-vertex gives charge \(\frac{1}{2} \) to each isolated 5-nbr, charge 0 to each crowded 5-nbr and charge \(\frac{1}{4} \) to each remaining 5-nbr.

(R3) Each 7-vertex gives charge \(\frac{1}{4} \) to each 6-nbr.

(R4) Each 6-vertex gives charge \(\frac{1}{2} \) to each 5-nbr.

Now show that \(\text{ch}^*(v) \geq 0 \) for all \(v \).
Discharging

Each v gets $ch(v) = d(v) - 6$.
Discharging

Each \(v \) gets \(ch(v) = d(v) - 6 \). Now 5-vertices need 1 from nbrs.
Discharging

Each v gets $ch(v) = d(v) - 6$. Now 5-vertices need 1 from nbrs.

Def: H_v is subgraph induced by $6^-\text{-nbrs of } v$.
Discharging

Each v gets $ch(v) = d(v) - 6$. Now 5-vertices need 1 from nbrs.

Def: H_v is subgraph induced by 6^--nbrs of v.

Discharging

Each v gets $ch(v) = d(v) - 6$. Now 5-vertices need 1 from nbrs.

Def: H_v is subgraph induced by 6^--nbrs of v. If $d_{H_v}(w) = 0$, then w is isolated nbr of v; otherwise w is non-isolated nbr of v.

![Diagram showing vertex v connected to vertices 5, 6, and 7, with arrows indicating directions.](image)
Discharging

Each \(v \) gets \(ch(v) = d(v) - 6 \). Now 5-vertices need 1 from nbrs.

Def: \(H_v \) is subgraph induced by 6\(^-\)-nbrs of \(v \).
If \(d_{H_v}(w) = 0 \), then \(w \) is isolated nbr of \(v \); otherwise \(w \) is non-isolated nbr of \(v \).
A non-isolated 5-nbr of vertex \(v \) is crowded (w.r.t. \(v \)) if it has two 6-nbrs in \(H_v \).
Discharging

Each v gets $\text{ch}(v) = d(v) - 6$. Now 5-vertices need 1 from nbrs.

Def: H_v is subgraph induced by 6^--nbrs of v. If $d_{H_v}(w) = 0$, then w is isolated nbr of v; otherwise w is non-isolated nbr of v.

A non-isolated 5-nbr of vertex v is crowded (w.r.t. v) if it has two 6-nbrs in H_v.

(R1) Each 8^+-vertex gives charge $\frac{1}{2}$ to each isolated 5-nbr and charge $\frac{1}{4}$ to each non-isolated 5-nbr.
Discharging

Each v gets $ch(v) = d(v) - 6$. Now 5-vertices need 1 from nbrs.

Def: H_v is subgraph induced by 6^--nbrs of v.
If $d_{H_v}(w) = 0$, then w is isolated nbr of v; otherwise w is non-isolated nbr of v.
A non-isolated 5-nbr of vertex v is crowded (w.r.t. v) if it has two 6-nbrs in H_v.

(R1) Each 8^+-vertex gives charge $\frac{1}{2}$ to each isolated 5-nbr and charge $\frac{1}{4}$ to each non-isolated 5-nbr.

(R2) Each 7-vertex gives charge $\frac{1}{2}$ to each isolated 5-nbr, charge 0 to each crowded 5-nbr and charge $\frac{1}{4}$ to each remaining 5-nbr.
Discharging

Each \(v \) gets \(ch(v) = d(v) - 6 \). Now 5-vertices need 1 from nbrs.

Def: \(H_v \) is subgraph induced by \(6^- \)-nbrs of \(v \).

If \(d_{H_v}(w) = 0 \), then \(w \) is isolated nbr of \(v \); otherwise \(w \) is non-isolated nbr of \(v \).

A non-isolated 5-nbr of vertex \(v \) is **crowded** (w.r.t. \(v \)) if it has two 6-nbrs in \(H_v \).

(R1) Each \(8^+ \)-vertex gives charge \(\frac{1}{2} \) to each isolated 5-nbr and charge \(\frac{1}{4} \) to each non-isolated 5-nbr.

(R2) Each 7-vertex gives charge \(\frac{1}{2} \) to each isolated 5-nbr, charge 0 to each crowded 5-nbr and charge \(\frac{1}{4} \) to each remaining 5-nbr.

(R3) Each \(7^+ \)-vertex gives charge \(\frac{1}{4} \) to each 6-nbr.
Discharging

Each \(v \) gets \(ch(v) = d(v) - 6 \). Now 5-vertices need 1 from nbrs.

Def: \(H_v \) is subgraph induced by 6\(^{-}\)-nbrs of \(v \).
If \(d_{H_v}(w) = 0 \), then \(w \) is isolated nbr of \(v \); otherwise \(w \) is non-isolated nbr of \(v \).
A non-isolated 5-nbr of vertex \(v \) is crowded (w.r.t. \(v \)) if it has two 6-nbrs in \(H_v \).

(R1) Each 8\(^{+}\)-vertex gives charge \(\frac{1}{2} \) to each isolated 5-nbr and charge \(\frac{1}{4} \) to each non-isolated 5-nbr.

(R2) Each 7-vertex gives charge \(\frac{1}{2} \) to each isolated 5-nbr, charge 0 to each crowded 5-nbr and charge \(\frac{1}{4} \) to each remaining 5-nbr.

(R3) Each 7\(^{+}\)-vertex gives charge \(\frac{1}{4} \) to each 6-nbr.

(R4) Each 6-vertex gives charge \(\frac{1}{2} \) to each 5-nbr.
Discharging

Each v gets $ch(v) = d(v) - 6$. Now 5-vertices need 1 from nbrs.

Def: H_v is subgraph induced by 6^--nbrs of v.
If $d_{H_v}(w) = 0$, then w is isolated nbr of v; otherwise w is non-isolated nbr of v.
A non-isolated 5-nbr of vertex v is crowded (w.r.t. v) if it has two 6-nbrs in H_v.

(R1) Each 8^{+}-vertex gives charge $\frac{1}{2}$ to each isolated 5-nbr and charge $\frac{1}{4}$ to each non-isolated 5-nbr.
(R2) Each 7-vertex gives charge $\frac{1}{2}$ to each isolated 5-nbr, charge 0 to each crowded 5-nbr and charge $\frac{1}{4}$ to each remaining 5-nbr.
(R3) Each 7^{+}-vertex gives charge $\frac{1}{4}$ to each 6-nbr.
(R4) Each 6-vertex gives charge $\frac{1}{2}$ to each 5-nbr.

Now show that $ch^*(v) \geq 0$ for all v.
Summary
Summary

- Coloring planar graphs
Summary

- Coloring planar graphs
 - 5CT is easy, 4CT is hard
Summary

- Coloring planar graphs
 - 5CT is easy, 4CT is hard; What’s in between?
Summary

- Coloring planar graphs
 - 5CT is easy, 4CT is hard; What’s in between?
 - Two-fold coloring: vertex is half red, half blue
Summary

- Coloring planar graphs
 - 5CT is easy, 4CT is hard; What’s in between?
 - Two-fold coloring: vertex is half red, half blue

- Planar graphs are $\frac{9}{2}$-colorable (homomorphism to $K_{9:2}$)
Summary

- Coloring planar graphs
 - 5CT is easy, 4CT is hard; What’s in between?
 - Two-fold coloring: vertex is half red, half blue

- Planar graphs are $\frac{9}{2}$-colorable (homomorphism to $K_{9:2}$)
 - induction on n, like 5CT
Summary

- Coloring planar graphs
 - 5CT is easy, 4CT is hard; What’s in between?
 - Two-fold coloring: vertex is half red, half blue

- Planar graphs are $\frac{9}{2}$-colorable (homomorphism to $K_{9:2}$)
 - induction on n, like 5CT; multiple possible induction steps
Summary

- Coloring planar graphs
 - 5CT is easy, 4CT is hard; What’s in between?
 - Two-fold coloring: vertex is half red, half blue

- Planar graphs are $\frac{9}{2}$-colorable (homomorphism to $K_{9:2}$)
 - induction on n, like 5CT; multiple possible induction steps
 - discharging proves that induction is always possible
Summary

- Coloring planar graphs
 - 5CT is easy, 4CT is hard; What’s in between?
 - Two-fold coloring: vertex is half red, half blue

- Planar graphs are $\frac{9}{2}$-colorable (homomorphism to $K_{9:2}$)
 - induction on n, like 5CT; multiple possible induction steps
 - discharging proves that induction is always possible

- Induction step is possible unless G has
Summary

- Coloring planar graphs
 - 5CT is easy, 4CT is hard; What’s in between?
 - Two-fold coloring: vertex is half red, half blue

- Planar graphs are $\frac{9}{2}$-colorable (homomorphism to $K_{9:2}$)
 - induction on n, like 5CT; multiple possible induction steps
 - discharging proves that induction is always possible

- Induction step is possible unless G has
 - no 4^--vertex, no separating 3-cycle
Summary

- Coloring planar graphs
 - 5CT is easy, 4CT is hard; What’s in between?
 - Two-fold coloring: vertex is half red, half blue

- Planar graphs are $\frac{9}{2}$-colorable (homomorphism to $K_{9,2}$)
 - induction on n, like 5CT; multiple possible induction steps
 - discharging proves that induction is always possible

- Induction step is possible unless G has
 - no 4-vertex, no separating 3-cycle
 - few 6-verts near each other; Key Fact for coloring
Summary

- Coloring planar graphs
 - 5CT is easy, 4CT is hard; What’s in between?
 - Two-fold coloring: vertex is half red, half blue

- Planar graphs are $\frac{9}{2}$-colorable (homomorphism to $K_{9:2}$)
 - induction on n, like 5CT; multiple possible induction steps
 - discharging proves that induction is always possible

- Induction step is possible unless G has
 - no 4-vertex, no separating 3-cycle
 - few 6-verts near each other; Key Fact for coloring

- Discharging Phase
Summary

- Coloring planar graphs
 - 5CT is easy, 4CT is hard; What’s in between?
 - Two-fold coloring: vertex is half red, half blue

- Planar graphs are $\frac{9}{2}$-colorable (homomorphism to $K_{9:2}$)
 - induction on n, like 5CT; multiple possible induction steps
 - discharging proves that induction is always possible

- Induction step is possible unless G has
 - no 4-vertex, no separating 3-cycle
 - few 6-verts near each other; Key Fact for coloring

- Discharging Phase
 - gives $ch(v) = d(v) - 6$, so $\sum_{v \in V} ch(v) = -12$
Summary

- Coloring planar graphs
 - 5CT is easy, 4CT is hard; What’s in between?
 - Two-fold coloring: vertex is half red, half blue

- Planar graphs are $\frac{9}{2}$-colorable (homomorphism to $K_{9,2}$)
 - induction on n, like 5CT; multiple possible induction steps
 - discharging proves that induction is always possible

- Induction step is possible unless G has
 - no 4-vertex, no separating 3-cycle
 - few 6-verts near each other; Key Fact for coloring

- Discharging Phase
 - gives $ch(v) = d(v) - 6$, so $\sum_{v \in V} ch(v) = -12$
 - redistribute charge, so $ch^*(v) \geq 0$
Summary

- Coloring planar graphs
 - 5CT is easy, 4CT is hard; What’s in between?
 - Two-fold coloring: vertex is half red, half blue

- Planar graphs are $\frac{9}{2}$-colorable (homomorphism to $K_{9:2}$)
 - induction on n, like 5CT; multiple possible induction steps
 - discharging proves that induction is always possible

- Induction step is possible unless G has
 - no 4^--vertex, no separating 3-cycle
 - few 6^--verts near each other; Key Fact for coloring

- Discharging Phase
 - gives $ch(v) = d(v) - 6$, so $\sum_{v \in V} ch(v) = -12$
 - redistribute charge, so $ch^*(v) \geq 0$
 - so $-12 = \sum_{v \in V} ch(v) = \sum_{v \in V} ch^*(v) \geq 0$,
Summary

- Coloring planar graphs
 - 5CT is easy, 4CT is hard; What’s in between?
 - Two-fold coloring: vertex is half red, half blue

- Planar graphs are $\frac{9}{2}$-colorable (homomorphism to $K_{9.2}$)
 - induction on n, like 5CT; multiple possible induction steps
 - discharging proves that induction is always possible

- Induction step is possible unless G has
 - no 4^--vertex, no separating 3-cycle
 - few 6^--verts near each other; Key Fact for coloring

- Discharging Phase
 - gives $ch(v) = d(v) - 6$, so $\sum_{v \in V} ch(v) = -12$
 - redistribute charge, so $ch^*(v) \geq 0$
 - so $-12 = \sum_{v \in V} ch(v) = \sum_{v \in V} ch^*(v) \geq 0$, Contradiction!