Infrared image processing devoted to thermal non-contact characterization—Applications to Non-Destructive Evaluation, Microfluidics and 2D source term distribution for multispectral tomography

Jean-Christophe Batsale¹, Christophe Pradere²

¹ Arts et Metiers ParisTech, I2M, UMR 5295, F-33400 Talence, France
² CNRS, I2M, UMR 5295, F-33400 Talence, France

Corresponding author: jean-christophe.batsale@ensam.eu

Abstract. The cost of IR cameras is more and more decreasing. Beyond the preliminary calibration step and the global instrumentation, the infrared image processing is then one of the key step for achieving in very broad domains. Generally the IR images are coming from the transient temperature field related to the emission of a black surface in response to an external or internal heating (active IR thermography). The first applications were devoted to the so called thermal Non-Destructive Evaluation methods by considering a thin sample and 1D transient heat diffusion through the sample (transverse diffusion). With simplified assumptions related to the transverse diffusion, the in-plane diffusion and transport phenomena can be also considered. A general equation can be applied in order to balance the heat transfer at the pixel scale or between groups of pixels in order to estimate several fields of thermophysical properties (heterogeneous field of in-plane diffusivity, flow distributions, source terms). There is a lot of possible strategies to process the space and time distributed big amount of data (previous integral transformation of the images, compression, elimination of the non useful areas...), generally based on the necessity to analyse the derivative versus space and time of the temperature field. Several illustrative examples related to the Non-Destructive Evaluation of heterogeneous solids, the thermal characterization of chemical reactions in microfluidic channels and the design of systems for multispectral tomography, will be presented.

1. Introduction

The processing of space and time temperature fields is more and more necessary because devices are now currently available in order to quickly measure, store and process thermal information. Infrared thermography devices are the most usual in the field of heat transfer analysis. But a lot of other possibilities with contact or non-contact sensors (with optical or mechanical scans) will appear in the future. A lot of questions about “how to process” and “how to estimate” thermophysical properties from such fields are posed. A 2D temperature field can be the signature of a lot of heat transfer phenomena at the surface of a solid or a liquid (heat conduction or diffusion through homogeneous or heterogeneous media, convective transport in complex systems...). One of the main intuitive way to process the signal is to study the time or space derivatives of such fields, in order to link the temperature observation to a heat...
transfer model. Several strategies for the temperature field processing in space and in time will be illustrated on a suitable analytical temperature field. The application examples devoted to Non-Destructive Evaluation, microfluidic systems and multispectral tomography subsequently presented are based on a derivation of the experimental signal. Such examples are also illustrating the main domains approached in our team in Bordeaux University.

2. Thermal processing of a 2D transient $T(x,y,t)$ field-Derivation

From a 2D transient $T(x,y,t)$ field, and a heat transfer model (even simplified) is it often possible to estimate a resultant thermophysical properties field. The diffusion and convection transport modes can be considered in order to set out an identification model. The simple observation of the evolution of the temperature field can give the intuition of such phenomena. The processing of such fields needs of course to be aware of the noise and perturbations considerations about the temperature field recording. The random noise with a zero mean and a uniform and diagonal covariance matrix will generally be taken into account. Several aspects related to the “bad pixels”, the space or time correlation and the non-regular time steps will here be assumed to be previously circumvented. Maybe, the first “natural” processing of such data is to try to set out the derivative (versus space or time) of such a discrete temperature field. The space or time derivation of noisy fields is a difficult task, because such operator is amplifying the random measurement noise, if no precaution is taken. A “filtering” is then necessary, but the risk is to lose a part of the original information. Several strategies will be here examined (the finite differences, the polynomial fit, the orthogonal basis decomposition and the convolution), in order to numerically implement the derivation of a discrete signal.

In order to test and illustrate the processing possibilities, it is here proposed to consider the 1D temperature relaxation of a solution to a system such as:

$$\frac{d}{dt} \frac{\partial^2 T}{\partial x^2} = \frac{\partial T}{\partial t}$$

with:

$$T(x,t=0)=1 \text{ if } 0<x<b \quad \text{and} \quad T(x,t=0)=0 \text{ if } b<x<L$$

and at $x=0$ \[\frac{\partial T}{\partial x} \] \[x=0 \] = 0 \quad \text{and at } x=L \quad \frac{\partial T}{\partial x} \mid _L = 0

After a time t, the temperature field is relaxed (or filtered) by diffusion, and an approximation of the field is then:

$$T(x,t) = b / L + 2 / L \sum_{n=1}^{N} \frac{\sin(\alpha_n b)}{\alpha_n} \exp(-a\alpha_n^2 t) \cos(\alpha_n x)$$

with:

$$\alpha_n = n \pi / L \quad \text{and} \quad n, N \text{ finite integers.}$$

Rigorously, the previous expression is a serie with N tending to infinity. A physical filter (due to the exponential term) is acting and limiting the space-frequency content of the signal. The parameter which allows to control the filter is here the observation time. This observation time will be fixed in this section and only the space field will be considered.

The observed temperature is a vector obtained from the previous expression at regularly spaced space steps and a white gaussian noise is added.
Figure 1. (a) Temperature field from the previous analytical expression at time $t=0.5s$; $a=10^{-5} m^2 s^{-1}$; $b=L/2$; $L=0.1m$; (continuous line: real signal, ‘o’: discrete noisy signal); (b) Derivative of the previous noisy signal by finite differences.

The initial gaussian noise is with zero mean and $\sigma = 0.01$. The resulting noise is amplified by the derivation operation.

2.1 Finite differences

The finite difference approach used on figure 1 is generally presented at each space step i, as:

$$\hat{T}_i = \frac{T_{i+1} - T_i}{\Delta x}$$

If it is assumed, that the relation between the observed temperature \hat{T}_i and the real temperature T_i is:

$$\hat{T}_i = T_i + e_{\hat{T}_i},$$

with $e_{\hat{T}_i}$ representing the random variable related to the gaussian noise, uniform whatever the position x_i. The asymptotic expansion around x_i is such as:

$$\hat{T}_i = \frac{T(x_{i+1}) - T(x_i)}{\Delta x} + \varepsilon(x_{i+1}) + \frac{e_{T_{i+1}} - e_T}{\Delta x}$$

With:

$$\lim_{x \to x_i} \varepsilon(x) = 0$$

Two kinds of errors have then to be considered: the approximation error $\varepsilon(x_i)$ related to the rest of the asymptotic expansion and the random error related to the random variable e_{T_i}. Unfortunately, when the space step Δx is tending to zero, the approximation error is effectively tending to zero, but the random error is tending to infinity! The difference of two random variables is a linear operation which amplify the initial noise. In order to avoid such a difficulty, it is necessary to “filter” the signal or to project the discrete observed information in a basis of functions. One of the simplest basis of function can be a polynomial basis.
2.2 Polynomial fitting

From the same previous measurements, a polynomial fitting can be implemented such as:

\[T(x) = \sum_{n=0}^{N} \beta_n x^n \]

The estimation of the \(\beta_n \) parameters in vector: \(\mathbf{B} = [\beta_1, \beta_2, \beta_3, \ldots, \beta_n]^T \) can then be obtained by a linear least-square relation such as:

\[\mathbf{B} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{T} \]

With:

\[\mathbf{X} = \begin{bmatrix} 1 & x_1 & x_1^2 & \cdots \\ 1 & x_2 & x_2^2 & \cdots \\ \vdots & \vdots & \vdots & \ddots \\ 1 & x_m & x_m^2 & \cdots \end{bmatrix} \]

In order to minimize the distance:

\[\left\| \mathbf{T} - \mathbf{XB} \right\| = (\mathbf{X}'\mathbf{XB})^T (\mathbf{X}'\mathbf{XB}) \]

The construction of the derivative will then consist in considering the derivative of the polynomial function. The Matlab software is convenient in order to implement such calculations because the \(\mathbf{X}'\mathbf{X} \) matrix can be bad conditioned (Wandermonde matrix) and must be inversed with special precautions. One example of such processing is shown on the figure 2.

![Figure 2](a) Polynomial fitting of the signal shown on figure 5; (b) Derivation. The chosen degree of the polynomial fitting is here: \(N=30 \). The number of observation points is \(100 \).

It is shown here that the direct derivation of the estimated polynomial expression is giving a suitable continuous approximation in the considered domain. Approximation errors are occurring at the boundary of the domain if no precautions or assumptions are taken. One other strategy is to chose a basis “near from the considered physical phenomenon”. Here, the ideal basis is the basis made of the
Fourier cosine functions, because the cosine vectors are here verifying the boundary conditions (null derivative at \(x=0\) and \(x=L\)) and are also the eigenvectors of the diffusion phenomenon (eigenvectors of the Laplacian operator in Cartesian coordinates and adiabatic boundaries).

2.3 Fourier cosine basis

The same processing as the polynomial fitting can be considered with such an expression:

\[
T(x) = \sum_{n=0}^{M} \beta_n \cos(\alpha_n x) \quad \text{with: } \alpha_n = n\pi / L
\]

The estimation of the parameter vector: \(\mathbf{B} = [\beta_1, \beta_2, \ldots, \beta_M] \) is then obtained by the same expressions as previously (in section 2.2), excepted that the \(\mathbf{X}'\mathbf{X} \) matrix is orthogonal, and then very easy to be inverted. The covariance matrix related to the parameters is then as diagonal as the observable vector. The result of the estimation is then, with 30 terms for the series, illustrated on figure 3.

![Figure 3](image)

Figure 3. (a) Fourier fitting of the signal shown on figure 1; (b) Derivation. The number of terms is \(N=30\). The number of observation points is 100.

2.4 Filtering with a convolution kernel

The filtering is a usual operation in signal processing, which consist in weighting the signal with a moving average. It must be noticed that the observable signal himself is maybe previously filtered by the proper instrument. A new approximation of the signal can then be considered by \(\tilde{T}(x) \) such as:

\[
\tilde{T}(x) = \int_0^L p(\chi)T(x-\chi)d\chi
\]

\(p(x) \) must be normed such as:

\[
\int_0^L p(\chi)d\chi = 1
\]

The derivative of \(\tilde{T}(x) \) is then conveniently considered by the commutability of the convolution product such as:

\[
\frac{d\tilde{T}}{dx}(x) = \int_0^L p(\chi) \frac{dT(x-\chi)}{dx}d\chi = \int_0^L T(\chi) \frac{dp(x-\chi)}{dx}d\chi
\]
The discrete approximation of the derivative is then conveniently considered by a convolution with a "derived" kernel. One very simple illustration is given on figure 4. The discrete convolution kernel of the filter is for example [1 2 1]/4 and an approximation of the convolution kernel for the derivation is then [1/2 0 -1/2]. It can be noticed that this "slight" convolution (affecting only a few number of neighbours and very similar to the finite difference method) allows to obtain good results with less effort. The main problem is to find a compromise between the bias caused by the filtering and the perturbation caused by the noise.

![Figure 4](image)

(a) Filtering of the signal shown on figure 3, with a convolution kernel: [1 2 1]/4; (b) Derivation with a convolution kernel: [1/2 0 -1/2] (plot‘o’) and comparison with the finite difference derivative of the previously filtered signal (plot'+').

2.5 Singular Value Decomposition (SVD) of the whole space and time signal

The previous methods consists in finding a compromise between the "approximation error" and the "filtering". The number of terms of the serie (or the rank of basis), or the width of the convolution kernel are biasing the signal if they are "used too far". A lot of other methods can be considered (for example more sophisticated regularisation techniques, see [1]). When a large field must be processed the choice of the compromise between the filtering and the bias is made by trial and error. The key point is the knowledge of the random noise (at the minimum the standard deviation). Often, the experimenter does not know the characteristic of the noise in his proper experience. It is then difficult to implement an optimal filtering of the signal. One way to separate the “available signal” from the “random noise”, when the experimenter has a great amount of space and time information, consists in implementing the singular value decomposition (SVD) of the \(T(x, t) \) field, or the \(\hat{T}(x_i, t_j) \) discrete observable matrix. Applying the SVD to temperatures matrix \(\hat{T} \) yields (with \(n>m \)):

\[
\hat{T}_{n,m} = U_{n,n} \Sigma_{n,n} V_{n,m}^T
\]

Where \(\Sigma_{n,n} \) is a diagonal matrix

So that finally the following truncated formulation of the SVD is commonly accepted

\[
\hat{T}_{n,m} = U_{n,n} \Sigma_{n,n} V_{n,m}^T = \sum_{k=1}^{n} y_k (U_k V_k^T)
\]

Where the modes \(U_k \) and \(V_k \) are the column vectors of matrices \(U \) and \(V \) respectively, and the singular values \(y_k \) are the diagonal elements of \(\Sigma \) arranged in descending order.
Such a decomposition of the global space/time field is offering a lot of advantages. First, the examination of the singular values γ_k allows to select the really available signal. Thermal phenomena are often related to diffusion problems (naturally filtered), with only a few available singular values. The decomposition obtained with the reduced number of singular values is then offering a reduced representation of the field which allows a lot of possibilities (reduced computational effort for the further parameters estimations, low memory storage, new orthogonal basis and projection possibilities, see [2] to [5]). In the case illustrated on figure 5, the SVD is allowing an optimal filtering without any previous knowledge about the random noise at any time. The finite differences derivative is then available without precautions.

![Figure 5](image)

Figure 5. (a) $T(x,t)$ noisy temperature field (time extension from figure 5); (b) 3 first singular values; (c) and (d) First U and V vectors, coming from the SVD decomposition; (e) Reconstruction of the previous signal at time $t=0.02s$, with 3 term of the SVD decomposition; (f) “Noisy” derivation of the previous signal (initial noisy observation) compared the finite differences derivative of the SVD reconstruction.

The previous example is showing that the transient situation even non-stationary, is giving a greater amount of data than a unique image. The SVD decomposition is a mean to squeeze and to process the great amount of data quite with the same effort as in the stationary case. It must be noticed that the orthogonal basis U is more reduced than the basis of cosine functions used in section 2-4.
3. Applications

The approaches previously cited (finite differences, polynomial decomposition, Fourier analysis, Singular Value Decomposition, convolution …) are not only a range of tools for the derivation of the temperature fields but also widely used in classical applications for the processing of the fields recorded with infrared cameras.

In the case of Non-destructive evaluation with the 1D flash experiment, the time-logarithmic derivative of the transient signal is related to a transverse diffusivity variation which gives a suitable decomposition of the signal. Very often, the “temperature contrast” related to a defect detection can be considered with a derivation operator.

More recently, the transmission of wide-band multispectral infrared sources through heterogeneous objects can be detected by simple thin opaque screens where the temperature field must be processed in order to avoid the in-plane diffusion. The time and space derivatives of the temperature field will then be considered.

In the case of microfluidic devices characterization, it is necessary to discriminate and calibrate the convective transport in micro-channels from the purely diffusive in-plane heat transport. The comparison between a first derivative (convective transport) and a second derivative (diffusive transport) must be considered.

3.1 Application to NDE

Non-Destructive Evaluation (NDE) with infrared cameras consists generally to apply a heat pulse on a non-homogeneous parallelepipedic slab and to process the temperature response \(T(x,y,t) \) from one face of the sample (the front face or the rear face) (see [6]). The aim of such processing is to estimate some characteristics of the heterogeneities (structure, size, nature, position inside the sample…). Instead of a 3D heterogeneous geometry, it is often convenient to consider thin samples with thin heterogeneities such as the transfer is locally 1D (versus \(z \) direction). One asymptotic expansion assuming that the heterogeneities fluctuations are small compared to the mean value of one thermophysical property of the sample yields a linear relationship, such as:

\[
T(x,y,z,t) = q(x,y) \left(f(z,t,\beta_0) + \Delta\beta(x,y) \frac{\partial f}{\partial \beta}(z,t,\beta_0) \right)
\]

Where the functions \(q(x,y) \) is the spatial distribution of energy coming from a flash excitation and \(\Delta\beta(x,y) \) is the spatial thermophysical property variation (diffusivity, conductivity, thickness…). \(q(x,y) \) and \(\Delta\beta(x,y) \) have to be specified with a finite number of parameters which will be the object of the estimation procedure. Such procedure will then consist in processing the weighted sum of the images \(T(x,y,z,t) \) where the weighting functions are the sensitivity functions \(f(z,t,\beta_0) \) and \(\frac{\partial f}{\partial \beta}(z,t,\beta_0) \).

The temperature response of the front or the rear face of the sample will be recorded by a camera in order to estimate a map or a field of thermophysical properties. In the ideal case, the sample (a plane plate of small thickness \(L \)) is assumed to be thermally insulated and with a temperature field initially uniform \((T(x,y,z,t=0)=0) \). If the heat transfer is supposed 1-D, then, the temperature response related to a unique location \((x,y) \) corresponding to a pixel, to an instantaneous thermal pulse, is given (See [7]) on the front face \((z=0) \):
\[
T(z=0,t) = \frac{Q}{\rho c L} \left(1 + 2 \sum_{n=1}^{\infty} \exp \left(-\frac{n^2 \pi^2 \cdot a \cdot t}{L^2} \right) \right) = \frac{Q}{\rho c L} f(at/L^2)
\]

From the previous expression, the estimation problem of several parameters can be considered. Instead of the thermal diffusivity, the estimation problem of the sample thickness \(L \), the thermal conductivity \(\lambda \) and the volumic heat capacity \(\rho c \) can be considered. In each case, a reference approximated value of the parameter must be known (and noted: \(L_0, \lambda_0, \) and \(\rho c_0 \)).

In many cases such reference values can be obtained by a previous global measurement. The following first order asymptotic expansions can be for example written for the front face, at each time \(t_i \):

For example, if a thermal conductivity variation is to be estimated (see[8]):

\[
T(0,t_i) \approx \frac{Q}{\rho c L} f(\lambda_{0,i}/\rho c L^2) + \frac{Q}{\rho c L} \frac{\Delta \lambda}{\lambda_0} t \left(\frac{\partial f}{\partial t} \right)_{(z=0,t,b_0)}
\]

It is very important to notice that it is possible to replace the sensitivity functions \(f(z=0,t,b_0) \) and \(\frac{\partial f}{\partial \beta_{(z,t,b_0)}} \) by a linear combination of \(f(z=0,t,b_0) \) and the time logarithmic derivative \(t \left(\frac{\partial f}{\partial t} \right)_{(z=0,t,b_0)} \). It is then possible to implement a linear relationship such as:

\[
T(0,t_i) \approx \beta_1 X_{\beta_1}(t_i) + \beta_2 X_{\beta_2}(t_i)
\]

The functions \(X_{\beta_1}(t_i) \) are the sensitivity functions of \(T(0,t_i) \) to parameters \(\beta_j \). If other parameters combination estimation (such as thermal diffusivity estimation) is considered, the resulting sensitivity function will be a linear combination of functions \(f \) and \(t (\partial f/\partial \beta) \).

The parameters \(\beta_j \) are defined in each estimation situation such as: \(\beta_1 = \frac{Q}{\rho c L} \) and \(\beta_2 = \frac{Q}{\rho c L} \frac{\Delta \lambda}{\lambda_0} \).

That is to say with matrix notation, considering the vectors and matrices:

\[
\mathbf{T} = \begin{bmatrix} T(0,t_1) & \cdots & T(0,t_N) \end{bmatrix}^T, \quad \mathbf{X} = \begin{bmatrix} X_{\beta_1}(t_1) & \cdots & X_{\beta_1}(t_N) \\ X_{\beta_2}(t_1) & \cdots & X_{\beta_2}(t_N) \end{bmatrix}^T,
\]

and under matrix notations: \(\hat{\beta} = \left(\mathbf{X}' \mathbf{X} \right)^{-1} \mathbf{X}' \hat{\mathbf{T}} \)

If the measurement noise on each component of the experimental temperature vector \(\mathbf{\bar{T}} \) is assumed to be related with a constant standard deviation and not correlated, in the domain of validity of the previous asymptotic expansions, then, the optimal estimator of the parameters vector \([\beta_1 \beta_2] \) is obtained by:

\[
\begin{bmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \end{bmatrix} = \left(\mathbf{X}' \mathbf{X} \right)^{-1} \mathbf{X}' \hat{\mathbf{T}}
\]
The linear approximation allows not only the estimation of the parameters, but also the confidence interval of this estimation to be studied.

The method can be used whatever the length of the vector \hat{T}. These expressions can be implemented simultaneously with all of the pixels of the image. Thus, the matrix product $X^i\hat{T}$ can be incremented and consists in a real time weighting. The choice of the weighting is linked to the choice of the estimation strategy (estimation of L, ρc or λ). The terms of the sensitivity matrix are theoretically calculated with the references values or the averaged images. This sequential method considerably eases the problems of storage and images manipulation. It is very suitable for a simple Non Destructive Evaluation.

Moreover, $f(t)$ can be “measured” on the data, because at each time step, the average of the image is a filtered approximation of $f(t)$. The computation of the logarithmic derivative of $f(t)$ would then give a suitable method applicable without any idea about the knowledge of the nominal values of the thermophysical properties of the considered sample.

Unfortunately, the logarithmic derivative of this experimental signal is not easy with simple finite differences methods. In order to overcome such difficulties Shepard et al [9] proposed intuitively a logarithmic time-fitting each pixel signal and Rajic[2] to consider the SVD of the global data cube. In order to conveniently process the great amount of data provided by the flash NDE experiment, Shepard proposed to decompose the signal with a polynomial fitting, such as:

$$\ln(T(x,y,z=0,t)) = \beta_0(x,y) + \beta_1(x,y)\ln(t) + \beta_2(x,y)(\ln(t))^2 + \ldots$$

Such decomposition has no physical meaning because the new parameter vector is not related to a physical model, but the time-logarithmic derivative (considered by Shepard) appears to be very well correlated with the depth or thermophysical properties changes of the tested samples. The calculation of the logarithmic derivative is then taking the advantages related in section 2-2. It is also a very efficient and convenient method in order to reduce and manipulate the great amount of data (only N images corresponding to the degree of the polynomial expressions are to be manipulated). An other way to reduce the amount of data consists in considering the SVD of the information cube. Rajic [2] proposed the SVD decomposition (explained in 2.5) such as:

$$T(x, y, z = 0, t) = \sum_{k=1}^{K} u_k(x) v_k(t)$$

Such data obtained from NDE experiments appears to be nicely reduced by 2 or 3 terms of the previous series. Generally, the U_1 vector (or $u_1(x)$ function) is giving a good approximation of the spatial energy distribution. The V_1 vector (or $v_1(t)$ function) is related to $f(t)$. The U_2 vector (or $u_2(x)$ function) is giving a good approximation of the defects localisation. Bamford et al [4] proposed to compare the asymptotic expansion firstly explained in this section to the previous SVD decomposition. The slight differences are coming from the non-orthogonality of the functions. In fact all the methods presented in section 3.1 are very similar. They consist in projecting the data cube in a suitable basis of functions (in space or in time, physical or not) and then to try to process the signal with a physical model. Such methods are suitable because every pixel the whole image related to the analysed field are of interest. Such asymptotic approaches are very convenient in the case where the thermophysical properties mapping is slightly varying for example versus mechanical stresses (see [10]).
3.2 Applications to thermal multispectral tomography

The transmission of wide-band multispectral infrared sources through heterogeneous objects can be detected by simple thin opaque or semitransparent thin screens. Such screens are then acting as bolometers where the transient temperature field can be analysed by a unique IR thermography device. Our team is developing at this moment a large range of instruments based on terahertz radiation (or long wave infrared radiation (see [11]) or wide band infrared multispectral radiation, coupled with thermal imaging systems (see [12]). One of the key obstacle is to detect the thermal effect of very low-energy sources absorbed in a short time by a thin screen.

One illustration of this estimation problem is corresponding to the 1D observation of the transient temperature response \(T(x,t) \) to a pulse heating of a laser spot on a beam graduated following the \(x \)-direction. Thanks to infrared thermography, the instantaneous temperature fields can be measured by infrared thermography at \(N_x \) different space steps \(x_i \) (lying between \(\theta \) and \(L \)) and at \(N_t \) different time steps \(t_j \) at \(N_t \) different time steps (lying between \(0 \) and \(t_{max} \)). It is classically assumed that the measurement errors at each space and time step are uncorrelated, of zero mean and on uniform variance \(\sigma^2 \) or standard deviation \(\sigma \). The processing of the observable temperature response: \(\hat{T}(x,t) \) will be illustrated in these examples. The objective, is to use the great amount of data \((N_x \times N_t)\) data) in order to filter the estimation of the initial temperature field \(T(x,t=0) \).

The general 1-D problem of diffusion with initial condition, without internal source, in an infinite medium can be presented under the following system

\[
\frac{\partial T}{\partial t} = \frac{d}{dx^2} T
\]

with at initial time : \(T(x,t=0) = f(x) \)

It is here assumed that the 1D medium is infinite and the temperature is zero for \(T(x,t) \) and \(f(x) \) when \(x \) tend to infinite.

A direct solution of this system is obtained by implementing a space Fourier transform (see [13], [14]). Once again the Fourier transform is a suitable way to consider the Laplacian or second derivative of the temperature versus space:

\[
\theta(\alpha,x,t) = \frac{1}{L} \int_0^L T(x,t) \cos(\alpha x) dx \quad \text{with} \quad \alpha = n \pi / L \quad ; \quad n > or = 0
\]

\(L \) is here assumed as a “large” bound of the \(x \)-domain, where the temperature is zero and no gradient is to be considered. The previous system becomes an ordinary differential equation, after Fourier transform:

\[
-\alpha^2 \theta(\alpha,t) = \frac{1}{a} \frac{d\theta}{dt}
\]

The initial condition becomes: \(\theta(\alpha,0) = F(\alpha) \)

The solution of the forward problem is then:

\[
\theta(\alpha,t) = \theta(\alpha,0) \exp(-a\alpha^2 t) \quad \text{for every } n;
\]
Or in the real space:

\[T(x,t) = \frac{1}{L} \left[\theta(0,0) + \frac{1}{2} \sum_{n=1}^{\infty} \cos(\alpha_n x) \theta(\alpha_n,0) \exp(-a \alpha_n^2 t) \right] \]

From these direct expressions, the estimation of the initial temperature field yields with a linear least square estimator:

\[\hat{\theta}(\alpha_n,0) = \frac{\sum_{j=0}^{N_j} \hat{\theta}(\alpha_n,t_j) \exp(-a \alpha_n^2 t_j)}{\sum_{j=0}^{N_j} \exp(-2a \alpha_n^2 t_j)} \]

Such an estimator is decreasing the influence of the measurement noise on the initial estimator: \(\hat{\theta}(\alpha_n,t_j) \) the terms of the covariance matrix of the previous estimator are then:

\[\text{cov}\left[\hat{\theta}(0,0) \right] = \frac{\sigma^2 L^2}{N_x N_t} \text{ and } \text{cov}\left[\hat{\theta}(\alpha_n,0) \right] = \frac{\sigma^2 L^2}{N_x} \left(\frac{1}{\sum_{j=0}^{N_j} \exp(-2a \alpha_n^2 t_j)} \right) \text{ if } n \text{ non zero.} \]

Then, the standard deviation of the estimator in the x-space (\(\sigma_E \)) are in the following interval:

\[\sigma / \sqrt{N_t} < \sigma_E < \sigma \]

It is necessary to remark that the processing of such amount of data is efficient if the time steps related to the observation are near from 0. It becomes then a convenient way to avoid the blurring effects due to diffusion. Unfortunately, the key parameter is here the perfect knowledge of the thermal diffusivity: \(a \). Very often such parameter is unknown and is not suitably measurable directly on the instrumental device. Once again a Singular Value Decomposition is a quite similar decomposition as Fourier, but does not require the knowledge of a physical model and the of the diffusivity parameter. An extension of these remarks to a 2D separable case are then even more efficient. If the initial condition is then depending on two space variables: \(x \) and \(y \) and that such initial condition is separable such as:

\[f(x,y) = f_x(x) f_y(y) \]

With the Fourier transform method, the solution of the 2D problem is then a product of two series depending on \(x \) and \(t \) and \(y \) and \(t \), such as:

\[T(x,y,t) = \frac{1}{L^2} \left[\theta(0,0,0) + \frac{4}{\pi} \sum_{n=1}^{\infty} \cos(\alpha_n x) \theta(\alpha_n,0,0) \exp(-a \alpha_n^2 t) \right] \left[\theta(0,0,0) + \frac{4}{\pi} \sum_{n=1}^{\infty} \cos(\beta_n y) \theta(0,\beta_n,0) \exp(-a \beta_n^2 t) \right] \]

\(\beta_n \) is a spatial frequency related to the \(y \)-direction, equivalent to \(\alpha_n \) related to the \(x \)-direction.

The analogous estimator in the 2D Fourier space is also separable and gives:
In such a particular case where each instantaneous temperature field is separable versus the x-direction and y-direction, it is suitable to consider preliminarily a SVD, versus x and y at each time step such as:

\[
\hat{T}(x_i, y_j, t) = \sum_k U_k(x_i, t) W_k(t) Y_j(y_j, t)
\]

Only the first term of such a decomposition is then to be taken into account. The order of magnitude of the second term must be much lower than the first one. It is then suitable to consider a secondary decomposition versus the x and y directions such as:

\[
U_k(x_i, t) = \sum_{r=1}^{r_0x} U_{k}^{x}(x_i) W_{k}^{x}(t_j) \\
V_k(y_j, t) = \sum_{r=1}^{r_0y} U_{k}^{y}(y_j) W_{k}^{y}(t_j)
\]

The advantage of such a truncated double-decomposition is to operate a strong data reduction. For example, if \(N_x = N_y = N_t = 1000\); the global number of data to be processed is \(10^7\). But the successive truncations allow to reduce the number of data to be considered to 12000 (if \(r_0x=r_0y=3\)). The measurement noise attenuation is then more than 100 times higher (see [13]).

Figure 6. Initial temperature field (upper left without noise; upper right with a high noise/signal ratio; above filtered and reduced by SVD with \(r_0=3\)).
The images in figure 6 are illustrating the 2D temperature response to a punctual heat pulse lost in the noise. It shows that even when the noise level is of the same order of magnitude as the signal, the SVD decomposition allows the detection of a very localised point source.

This argue in favour of the bolometric detection of localised radiative source of very low amplitude such as terahertz radiations (see [11]), or in the case of multispectral imaging where the low-energy of each radiative band must be considered (see [12]). From such detection method it is possible to set out tomography instruments with very large possibilities.

3.3 Application to microfluidic devices

The micro fabrication techniques originally devoted to electronics have reach spectacular advances in more general domains such as chemical micro reactors with micro fluidic channels (lab on chip see [15], [16]). Such systems are very profitable because the low fluid or solid mass requirements and small volumes induce low cost fabrication. It leads new ways to design and intensify the experiments such as screening for catalyst testing related to chemical engineering see [17]). Micro-devices also have a lot of interesting characteristics in the field of heat transfer (high speed of the diffusive transfer, possibility of implementing localised heat sources, high surface/volume ratio and intensive local heat flux with low global energy consumption). One of the main drawbacks is related to the instrumentation. Particularly, for temperature measurement, the IR thermography is a non intrusive, way for the recording and processing of a large amount of data. The main challenge is then to set out processing methods of the surface temperature field of such systems through a heat transfer model. Once again, the main characteristic of such data processing is related to temperature differences or derivatives versus time and space. This will be illustrated with the characterization of a simple transient in plane diffusion on a thin plate and then the characterization of convective effect caused by a micro-channel stuck on a thin conductive plate (see [18]).

The simple in plane diffusion with source term is met usually in microelectronics. The objective can be to estimate the space and time distribution of energy given on a silicon plate from electronic chips from the observed transient temperature fields. It can also illustrate the case where a single droplet of reactant is deposited on the homogeneous conductive plate (a glass or silicon thin layer). A classical model of the temperature field with simplified assumptions, is given with the following expression:

\[\frac{\partial T}{\partial t} = a \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) + Q(x, y, t) / \rho c \]

The estimation method of the source term field : \(Q(x, y, t) \) in \(Wm^{-3} \) from a sequence of temperature images illustrated by figure 7 consists in considering the Laplacian of the temperature field : \(\Delta T = \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) \) and the time derivative \(\frac{\partial T}{\partial t} \) at each time step and each pixel location, with a previous calibration for the knowledge of the thermal diffusivity \(a \).
Figure 7. Temperature response field obtained with a step heating made with a laser spot of 200 micrometers of diameter on a glass plate of 0.2 mm thick, at two different times; (left) Image obtained at a short time \((t=0.8s)\) after the beginning of the heating; (right) Image obtained at a longer time \((t=1.6s)\). The pixel size is 10µm.

One illustration of a possible processing is to study the linear relation between Laplacian and time derivative at each pixel of the image (see figure 8). Such derivatives are obtained from finite differences versus space or time of the temperature information related to the pixels regularly spaced versus time and space.

Figure 8. Time derivative versus Laplacian of temperature; a- for an irrelevant pixel out of the heating zone (in red), b- for a pixel inside the heating zone (in black).

On figure 8, the straight line with origin ordinate is corresponding to pixel where a constant heating occurs. The straight line passing through the origin is corresponding to a case of pure diffusion (when the temperature field is relaxing after the heating). The source term can then be estimated versus space independently of the transport property (the thermal diffusivity: \(\alpha\)). A criterion suitable to detect such zones is to consider the local correlation between the laplacian \(\Delta T\) and the time derivative \(\partial T/\partial t\).
\[\rho_{i,j}^{FF} = \frac{\sum F_t \Delta T_{i,j}^k \partial T_{i,j}^k}{\sqrt{\sum F_t \Delta T_{i,j}^k}^2 \sqrt{\sum F_t \partial T_{i,j}^k}^2} \]

where \(F_t \) is a temporal window such as: \(F_t = [k, k + lt] \) with \(k \in [1, N - lt] \), \(k \) is the time step number and \(lt \) the width of the time window. If such a coefficient is near from 1, a diffusivity parameter is then estimable. If the correlation coefficient is near from zero the pixel or the area is irrelevant and must be discarded.

This example is demonstrating that the great amount of thermographic data coupled with computer facilities is offering large possibilities to estimate not only one source term but also a regularly spaced distribution of sources. It offers then the possibility to design thousands of simultaneous independent experiments. It is then also possible to extend the experimental configurations to microchannels.

The idea which consists in implementing a slow in-plane transfer in a conductive plate can be also used to estimate the convective transport effect due to a flow in a micro channel (of diameter from 10 to 100 micrometres) stuck to a thermally conductive plate. The local laplacian of the temperature field is compared to the local temperature gradient versus the direction of the channel in order to estimate a non dimensional velocity field (Peclet Field). The details of such processing are described in [19]. From these considerations, the microfluidic applications have been largely improved. It is now possible to estimate the enthalpy of chemical reactions in a lot of channel configurations and micro or millifluidic devices (see [18] to [22]). A special attention was paid to droplet flows and the related analysis of the heat release of such complex systems (see [23]). More recently, a complementary step was devoted to the detection of the transmission of wide-band multispectral infrared sources in such chemical devices with the processing related in section 3.2. There is now a challenge to combine heat transfer and chemical analysis in order to estimate simultaneously thermophysical and thermochemical parameters related to coupled heat and mass transport in such devices.

4. Conclusion

The time-space thermal signal is offering a great amount of data which must be processed from several points of views. Several strategies are available in order to process the signal in relation with a physical model. Often it will consist in projecting the signal in a function basis which can come from intuition, statistical processing or physical analysis. This projection is advantageous in order to filter the random noise, to reduce the great amount of data and to conveniently manipulate and estimate the parameters. But the projection is not always the most suitable strategy. The direct consideration of a physical model will allow to eliminate or discriminate the data correlated or not with a chosen physical phenomenon (one example has been evocated with the estimation of a thermal diffusivity field).

Such considerations were also a common thread in order to present the IR thermography activities of our team at Bordeaux University.

The perspective of these works is now clearly devoted to the exploration of multispectral instrumentation with IR cameras. Especially, the spectral derivative of temperature or luminance fields will be a new direction for the signal processing of an amount of data always bigger with 4 dimensions to be considered.
References

[1] Thikonov A and Arsenine V 1977 Solutions for ill posed problems (Washington: Winston & Sons)

[2] Rajic N 2002 Principal component thermography for flaw contrast enhancement and flaw depth characterisation in composite structures Composite Structures 58 521-28

[3] Bamford M, Batsale J-C and Fudym O 2009 Nodal and Modal Strategies for longitudinal Thermal Diffusivity Profile Estimation. Application to the non-destructive Evaluation of SiC/SiC composites under uniaxial tensile tests Infrared Physics and technology 52 1-13

[4] Bamford M and Batsale J-C 2008 Analytical singular value decomposition of infrared image sequences : microcrack detection on ceramic composites under mechanical stresses Comptes Rendus - Mecanique 336 440–47

[5] Bamford M, Florian M, Vignoles GL, Batsale J-C, Cairo CAA and Maillé L 2009 Global and local characterization of the thermal diffusivities of sic/sic composites with infrared thermography and flash method Composites Science and Technology 69 1131–41

[6] Balageas D, Delpech P, Boscher D and Deom A 1991 New developments in stimulated infrared thermography applied to non-destructive evaluation of laminates Review on Progress in Quantitative Non-Destructive Testing, Eds. Thompson and Chimienti (New York: Plenum Press) 10 A 1073-81

[7] Parker WJ, Jenkins W and Abbott J 1961 Flash method of determining thermal diffusivity, Heat capacity and thermal conductivity Journal Appl. Phys. 32 1679-84

[8] Mourand D and Batsale J-C 2001 Sequential method for thermal diffusivities discrimination by infrared thermography High Temperatures - High Pressures 33 127-34

[9] Shepard SM, Hou YL, Ahmed T and Lhota JR 2006 Reference-free interpretation of Flash Thermography Data Insight 48 298-307

[10] El Yagoubi J, Lamon J, Batsale J-C, Dhote J and Le Flem M 2015 Multiscale Thermal characterization of Méchanically loaded Ceramic Matric Composites, Estimation of the Diffusivity at Micro/Mésoscale Experimental Mechanics 55 783-94

[11] Pradere C, Caumes JP, Salort S, Balageas D, Chassagne B and Batsale J-C 2010 Photothermal converters for quantitative 2D and 3D real-time terahertz imaging Quantitative infrared Thermography 7 217-35

[12] Romano M, Ndiaye C, Duphil A, Sommier A, Morikawa J, Mascetti J, Batsale J-C, Servant L and Pradere C 2015 Fast infrared imaging spectroscopy technique, (FIIST) Infrared Physics and Technology 68 152-8

[13] Avazyan V 2012 Etude de champs de temperature séparables avec une double decomposition en valeurs singulières Quelques applications à la caracterisation de proprietés thermophysiques de materiaux et au controle Non-Destructif Doctorate Thesis, Université de Bordeaux (France)

[14] Maillet D, André S, Batsale J-C, Degiovanni A and Moyne C 2000 Thermal Quadrupoles – Solving the Heat Equation through Integral transforms (Chichester: John Wiley & Sons)

[15] Jensen KF 2001 Microreaction engineering - is small better? Chemical Engineering Science 56 293-303

[16] Möllmann KP, Lutz N and Vollmer M 2004 Thermography of microsystems Inframation Proceedings, ITC 104 A 2004 07-27

[17] Senkan S, Krantz K, Ozturk S, Zengin V and Onal I 1999 High-throughput testing of heterogeneous catalyst libraries using array microreactors and mass spectrometry Angewandte Chemie- International Edition 38 2794-99

[18] Pradere C, Morikawa J, Toutain J, Batsale J-C, Hayakawa E and Hashimoto T 2009 Microscale thermography of freezing biological cells in view of cryopreservation QIRT Journal 6 37–61

[19] Pradere C, Joanicot M, Batsale J-C, Toutain J and Gourdon C 2006 Processing of temperature
field in chemical microreactors with infrared thermography QIRT Journal 3 117-35

[20] Ravey C, Pradere C, Regnier N and Batsale J-C 2012 New temperature field processing from IR camera for velocity, thermal diffusivity and calorimetric non-intrusive measurements in microfluidics systems QIRT Journal 9 79-98

[21] Hany C, Pradere J, Toutain J, Batsale J-C and Joanicot M 2008 A millifluidic calorimeter without contact for reaction enthalpy and kinetics measurements Proc. QIRT 2008 (Krakow, Poland, 02-05 July 2008)

[22] Hany C, Pradere J, Toutain J and Batsale J-C 2008 A millifluidic calorimeter with infrared thermography for the measurement of chemical reaction enthalpy and kinetics QIRT Journal 5 211-29

[23] Romano M, Pradere C, Sarrazin F, Toutain J and Batsale J-C 2015 Enthalpy, kinetics and mixing characterization in droplet flow millifluidic device by infrared thermography Chemical Engineering Journal 273 325-32