Comment on “Phase Diagram of an Asymmetric Spin Ladder.”

In a recent letter S. Chen et al. \cite{1} investigated the so-called asymmetric spin ladder, a spin-half Heisenberg chain with alternation in the next-nearest-neighbor (n.n.n.) interaction \cite{2}. Based on bosonization and renormalization group analysis, they claimed that in the limit of small frustration \((J_2/J_1)\) the asymmetry in the n.n.n. integrals destabilizes the isotropic Heisenberg fixed point leading to a new phase with gapless excitations and vanishing spin-wave velocity.

In this comment, using Bethe ansatz and conformal field theory we show instead that the n.n.n. spin-Peierls operator

\[\hat{O}_{\text{n.n.n.}} = \sum_i (-1)^i \hat{S}_i \cdot \hat{S}_{i+2}, \]

represents an \textit{irrelevant} perturbation for the Heisenberg chain in the regime of weak frustration. Since the latter operator is the one associated with the alternation in the n.n.n. exchange, this clearly invalidates the mentioned claim and the conclusions of their paper.

For sake of generality, we refer to the anisotropic XXZ chain. In order to study the relevance of the operator \cite{2} we have to identify the quantum numbers \(\{j\}\) (referred to the ground state with energy \(E_0\) of the intermediate states appearing in the Lehmann representation of the associated susceptibility. These are total spin \(S^z = 0\), momentum \(k = \pi\), even parity under spatial reflection \((l \to -l)\ R = 1\), and even parity under spin-reflection \([S^x, S^y, S^z] \to (-S^x, S^y, -S^z)\). The only difference with the nearest-neighbor spin-Peierls operator, a well-known relevant perturbation, is the spatial-reflection quantum number, \(R = -1\). As it is known by conformal field theory, the scaling dimension \(X\) of a given operator (where \(X < 1\) characterizes a relevant operator) is related to the finite-size corrections of the energy of the lowest intermediate eigenstate \(j\) by the relation \cite{3}

\[\Delta E(L) = E_j(L) - E_0(L) = 2\pi v_s X/L, \]

where \(v_s\) is the spin-wave velocity and \(L\) is the number of sites of the ring. The finite-size corrections can be computed either by Bethe ansatz \((J_2/J_1 = 0)\) or by bosonization in the Luttinger regime \((J_2/J_1 \lesssim 0.241)\). For the nearest-neighbor spin-Peierls operator, due to the existence of a low-lying eigenstate with the correct quantum numbers, this procedure gives \(X = K\), where \(1/2 \leq K \leq 1\) (with \(K = 1/2\) at the isotropic point) is the dimensionless coupling constant of the model. In contrast, the finite-size spectrum of the Heisenberg model does not contain low-lying states simultaneously even under both spatial- and spin-reflection, yielding \(X = 9K > 1\), showing the irrelevance of the operator \cite{4}. This is illustrated in Fig. 1 using Lanczos exact diagonalization technique. However we stress that our conclusions follow directly from the exact analytical solution of the spin-half Heisenberg chain.

The recent bosonization analysis of Sarkar and Sen \cite{5} is consistent with our conclusion.

This work was partially supported by MURST (COFIN01). L.C. was supported by NSF grant DMR-9817242. A.P., L.C., and F.B. would like to acknowledge kind hospitality at SISSA.

Luca Capriotti,
Kavli Institute for Theoretical Physics,
University of California,
Santa Barbara, CA 93106-4030

Federico Becca,
Institut de Physique Théorique,
Université de Lausanne,
CH-1015 Lausanne, Switzerland

Sandro Sorella,
Istituto Nazionale di Fisica della Materia (INFM), and
International School for Advanced Studies (SISSA),
Via Beirut 4, I-34014 Trieste, Italy

Alberto Parola,
Istituto Nazionale di Fisica della Materia (INFM), and
Università dell’Insubria, via Valleggio 11,
I-22100 Como, Italy

PACS numbers: 75.10.Jm, 71.10.Hf, 75.10.-b

\[1\] S. Chen, H. Büttner, and J. Voit, Phys. Rev. Lett. \textbf{87}, 087205 (2001).

\[2\] According to the standard notation \(J_1\) and \(J_2\) indicate the nearest and next-nearest-neighbor antiferromagnetic couplings, respectively.

\[3\] J.L. Cardy, Nucl. Phys. \textbf{B270} [FS16], 186 (1986).

\[4\] S. Sarkar, and D. Sen, Phys. Rev. B \textbf{65} 172408 (2002).