Sealing of the cystic and appendix arteries with monopolar electrocautery during laparoscopic combined cholecystectomy and appendectomy

Gui-Bao Liu, MD, Yuan-Yuan Mao, MD, Chang-Ping Yang, MD, Jin-Lin Cao, MD

Abstract
The best method to ligate the arteries during laparoscopic cholecystectomy or appendectomy remains controversy. The aim of this study is to introduce a new approach during laparoscopic combined cholecystectomy and appendectomy using a monopolar electrocautery to seal the cystic and appendix arteries. We retrospectively reviewed data from 57 patients who underwent laparoscopic combined cholecystectomy and appendectomy between December 2006 and June 2016. Each laparoscopic combined cholecystectomy and appendectomy was performed by coagulating and sealing the cystic and appendix arteries. Absorbable clip or coils were then used to ligate the proximal of cystic duct and the stump of appendix. The other side of the cystic duct and appendix which subsequently were to be removed from abdomen were used titanium clips or silk ligature. Of the 57 patients, 3 patients (5.3%) were converted to open surgery due to severe abdominal adhesions or gallbladder perforation. The mean operative time was 56 minutes (range, 40–80 minutes). Mean blood loss was 12 mL (range, 5–120 mL), and the mean postoperative hospital stay was 3.0 days (range, 2–5 days). No postoperative bleeding, biliary leakage, infection, or mortality occurred. Monopolar electrocautery to seal the cystic and appendix arteries is a safe, effective, and economical surgical procedure during laparoscopic combined cholecystectomy and appendectomy. Further randomized controlled clinical trials are required to validate our findings.

Keywords: combined laparoscopic surgery, laparoscopic appendectomy, laparoscopic cholecystectomy, monopolar electrocautery

1. Introduction
With the advance of the laparoscopic techniques, combined surgeries are being increasingly performed by laparoscopy.[1–4] Laparoscopic combined cholecystectomy and appendectomy appear to be a technically feasible standard laparoscopic procedure to treat coexisting gallbladder and appendix benign disease.[5,6]

Nevertheless, there are still controversies about the details of the technique, particularly in the method of ligation of the arteries. Most surgeons utilize metal clips to seal arteries. However, many reports have described the disadvantages of using metal clips, which include endoclip slippage and migration into adjacent anatomic structures.[7,8] Absorbable clips and ultrasonic devices have been provided good to close the arteries, but they are costly.[9–12]

Recently, several reports have shown that monopolar electrocautery to control the cystic or appendix artery is a safe, effective, and cost-efficient approach during laparoscopic cholecystectomy or appendectomy,[13–16] but this procedure is seldom reported during the combined laparoscopic surgeries in the literature. Here we present our experience with the use of monopolar electrocautery to seal the arteries during laparoscopic combined cholecystectomy and appendectomy.

2. Materials and methods
2.1. Patients
From December 2006 to June 2016, 57 patients (32 women and 25 men) who underwent elective or emergency laparoscopic combined cholecystectomy and appendectomy for acute/chronic calculus cholecystitis combined chronic/acute appendicitis, or gallbladder polyps combined acute/chronic appendicitis at the 117th and 322th Hospitals of the People’s Liberation Army were considered. All the operations were performed by the same chief surgeon. An informed consent was obtained from all participants. The diagnosis of gallbladder disease and appendicitis was based on ultrasonographically or by computed tomography and accompanied by severe dyspepsia or pain, previous appendicitis, biliary pancreatitis, and abnormal blood test results. The preoperative data were recorded: sex, age, body mass index, American Society of Anesthesiologists risk class, disease, and associated comorbidities.
2.2. Surgical technique

The chief surgeon in the present study had performed over 300 laparoscopic cholecystectomies successfully. Once the general anesthesia was used, patients placed in the standard reverse Trendelenburg position with a 15° left tilt. Surgery was then performed using a 3 trocars technique, a 10mm trocar was placed at the edge of the umbilicus, the second 10mm port was placed below the xiphoid 2 to 3 cm at the right edge of the ligament teres hepatis, a 5-mm trocar was placed on the right side of the midclavicular line to the umbilical level.

After insertion of the trocars, we first exposed and dissected the triangle of Calot. The cystic duct was closed by applying one titanium clip on the gallbladder side (which subsequently was to be removed with the gallbladder later, in vitro), and applying 1 absorbable clip on the cystic duct side. Then, the cystic artery was sealed by using monopolar electrocautery, and point cautery was performed 2 or 3 times on the cystic artery with separate clamps. The cautery time was short, and cautery points were placed approximately 10mm apart (Fig. 1). Gallbladder bed was separated with the electrosurgical hook. Finally, the gallbladder was removed through the subxiphoid port.

Then, the patient was repositioned in the Trendelenburg position with a 25° left tilt. A fourth trocar (10mm) was placed over the pubic symphysis 5cm crossing of the ventral midline. After the appendix was freed from adhesions and the mesentery was exposed, we proceed to cauterize the appendicular artery with separate clamps from both sides of the mesentery (Fig. 2). After closure of the mesoappendix, the appendiceal stump was ligated with absorbable clip or absorbable coil. The other side of the appendix which subsequently was to be removed from abdomen used titanium clips or silk ligature. The appendix was sectioned and extracted through the fourth trocar. Drainage suction was only rarely left in place after the procedure.

3. Results

Of the 57 patients, 3 patients (5.3%) were converted to open surgery (severe abdominal adhesions in 2 patients and gallbladder perforation in 1 patient. As shown in Table 1, there were 32 females and 25 males. The mean age was 42.5 ± 13.8 years old. The body mass index was 22.5 ± 1.3kg/m². The number of patients for American Society of Anesthesiologists score 1, 2, 3 was 23, 24, 10, respectively. Fourteen patients were operated on for acute calculus cholecystitis combined with chronic appendicitis. Ten patients were operated on for chronic calculus cholecystitis combined with acute appendicitis. Eighteen patients were operated on for chronic calculus cholecystitis combined with chronic appendicitis. Six patients were operated on for gallbladder polyps combined with acute appendicitis. Nine patients were operated on for gallbladder polyps combined with chronic appendicitis. Thirty-two patients had associated comorbidities.

As shown in Table 2, the mean operative time was 56 minutes (range, 40–80 minutes). The mean blood loss was 12mL (range, 5–120mL). The mean postoperative hospital stay was 3 days (range, 2–5 days). There were no incidences of postoperative bleeding, biliary leakage, infection, or mortality occurred.

4. Discussion

It is not rare for a patient to have coexistent disease of the gallbladder and appendix during laparoscopic techniques. In parallel the simultaneous laparoscopic surgery appear to be a

| Table 1
Demographics of 57 patients.
Characteristic
Sex
Female
Male
Mean age, y
BMI, kg/m²
ASA score (1/2/3)
Disease
Acute calculus cholecystitis combined with chronic appendicitis
Chronic calculus cholecystitis combined with acute appendicitis
Chronic calculus cholecystitis combined with chronic appendicitis
Gallbladder polyps combined with acute appendicitis
Gallbladder polyps combined with chronic appendicitis
Comorbidity, %
Pulmonary
Cardiovascular
Diabetes
Liver dysfunction

| Table 2
Data of outcomes.
Variable
Operative time, min
Intraoperative blood loss, mL
Postoperative hospital stay, d
Conversion rate, %
Gallbladder perforation
Severe abdominal adhesions
Post-operative complications
technically feasible standard procedure to treat these diseases.[5,6] It offers patients the advantages of less visible scarring, reduced postoperative pain, shortened recovery times, and hospitalization.[1,6] However, surgeons are also should seek to make many advantages by decreasing the cost and improving the quality of life. We thought that the use of expensive devices such as the ultrasonic may not be necessary in routine cholecystectomy or appendectomy. In addition, the traditional metal clips swelling in the abdomen after surgery may lead to many complications, which include the metal clips eroded the cystic duct and migrated into the common bile duct.[7,8] The imaging properties of metallic clips on computed tomography and magnetic resonance imaging may interfere with imaging scans.[17,18] In this study, we used monopolar electrocautery to seal the cystic and appendix arteries, the proximal part of cystic duct and the stump of appendix that were occluded with 1 absorbable clip or absorbable coils during laparoscopic combined cholecystectomy and appendectomy. There was no postoperative bleeding, bilateral leakage, infection, or mortality occurred. Moreover, after 6 months, the absorbable materials will degrade by hydrolysis and left only a fibrous tissue scar. No artifacts are created on subsequent computed tomography or magnetic resonance imaging scans. Further randomized controlled clinical trials are required to validate the findings of the present study.

Author contributions

Conceptualization: C. Yang, J. Cao.

Data curation: C. Yang, G. Liu, J. Cao, Y. Mao.

Formal analysis: C. Yang, G. Liu, J. Cao, Y. Mao.

Investigation: C. Yang, G. Liu, J. Cao, Y. Mao.

Methodology: C. Yang, G. Liu, J. Cao, Y. Mao.

Project administration: C. Yang, J. Cao.

Supervision: C. Yang, J. Cao.

Writing – original draft: C. Yang, G. Liu, J. Cao, Y. Mao.

Writing – review & editing: C. Yang, G. Liu, J. Cao, Y. Mao.

References

[1] Galimov OV, Nurtdinov MA, Senderovich EI, et al. Associated laparoscopic interventions for gallstones. Vestn Khir Im Ii Grek 2002;161:82–6.

[2] Ojima T, Nakamoto M, Nakamura M, et al. Laparoscopic combined resection of synchronous gastric and colorectal cancer. Surg Laparosc Endosc Percutan Tech 2015;25:43–6.

[3] Wang H, Zhou A, Fan M, et al. Application of laparoscopy in the combined surgical procedures of gynecological and digestive disorders in obese women: a retrospective cohort study. Int J Surg 2015;16:83–7.

[4] Ferreri S, Tranchart H, Buell JP, et al. Laparoscopic simultaneous resection of colorectal primary tumor and liver metastases: results of a multicenter international study. World J Surg 2015;39:2032–60.

[5] Chen Y, Wu S, Kong J. Single-incision laparoscopic combined cholecystectomy and appendectomy. JLS 2014;18:e201400324.

[6] Chen Y, Wu S, Kong J. Transumbilical single-incision laparoscopic combined cholecystectomy and appendectomy: a retrospective comparative study. J Laparoendosc Adv Surg Tech A 2014;24:702–6.

[7] Yoshizumi T, Ieda T, Shimag T, et al. Clip migration causes choledocholithiasis after laparoscopic cholecystectomy. Surg Endosc 2000;14:1188.

[8] Hong T, Xu XQ, He XD, et al. Choledochoduodenal fistula caused by migration of endoclip after laparoscopic cholecystectomy. World J Gastroenterol 2014;20:4882–9.

[9] Yano H, Okada K, Kinuta M, et al. Efficacy of absorbable clips compared with metal clips for cystic duct ligation in laparoscopic cholecystectomy. Surg Today 2003;33:18–23.

[10] Rohangi A, Widdison AL. An audit of cystic duct closure in laparoscopic cholecystectomies. Surg Endosc 2006;20:875–7.

[11] Tebala GD. Three-port laparoscopic cholecystectomy by Harmonic disposable without cystic duct and artery clipping. Am J Surg 2006;191:778–20.

[12] Kandil T, El Nakeeb A, El Heftawy E. Comparative study between clipsless laparoscopic cholecystectomy by Harmonic scalpel versus conventional method: a prospective randomized study. J Gastrointest Surg 2010;14:323–8.

[13] Katri KM, Bessa SS, Elnahag GA, et al. Is monopolar electrocautery safe and effective for control of the cystic artery during laparoscopic cholecystectomy? J Laparoendosc Adv Surg Tech A 2012;22:557–60.

[14] Yang CP, Cao JL, Yang RR, et al. Efficacy of electrocoagulation in sealing the cystic artery and cystic duct occluded with only one absorbable clip during laparoscopic cholecystectomy. J Laparoendosc Adv Surg Tech A 2014;24:72–6.

[15] Ponsky TA, Rothenberg SS. Division of the mesoappendix with electrocautery in children is safe, effective, and costeffective. J Laparoendosc Adv Surg Tech A 2009;19(Suppl 1):S1–3.

[16] Davila D, Russek K, Franklin ME Jr. Laparoscopic appendectomy: vascular control of the appendicular artery using monopolar cautery versus clips. J Laparoendosc Adv Surg Tech A 2012;22:165–7.

[17] Gross SC, Kowalski JB, Lee SHH, et al. Surgical ligation clip artifacts on CT scans. Radiology 1985;156:831–2.

[18] Weishaupt D, Quick HH, Nanz D, et al. Ligating clips for three-dimension MR angiography at 1.5 T: in vitro evaluation. Radiology 2000;214:902–7.

[19] Balija M, Huis M, Nikolic V, et al. Laparoscopic visualization of the cystic artery anatomy. World J Surg 1999;23:703–7.
[20] Suzuki M, Akaishi S, Rikiyama T, et al. Laparoscopic cholecystectomy, Calot’s triangle, and variations in cystic arterial supply. Surg Endosc 2000;14:141–4.

[21] Larobina M, Nottle PD. Extrahepatic biliary anatomy at laparoscopic cholecystectomy: is aberrant anatomy important? ANZ J Surg 2005; 75:392–3.

[22] Ding YM, Wang B, Wang WX, et al. New classification of the anatomic variations of cystic artery during laparoscopic cholecystectomy. World J Gastroenterol 2007;13:3629–34.

[23] Strasberg SM, Hertl M, Soper NJ. An analysis of the problem of biliary injury during laparoscopic cholecystectomy. J Am Coll Surg 1995; 180:101–25.