Elastic Constants of NdCu$_2$Ge$_2$

Naoyuki Sanada, Tomoyuki Yoshioka, Ryuta Watanuki, and Kazuya Suzuki
Department of Advanced Materials Chemistry, Yokohama National University, Yokohama 240-8501, Japan

Abstract. The components-separated magnetic transition in NdCu$_2$Ge$_2$ was investigated by measuring elastic constant and specific heat. The specific heat shows clear peak at $T_N = 4.8$ K. The magnetic entropy change reaches $R \ln 2$ at 6 K and $R \ln 8$ at 72 K with increasing temperature. This result indicates that the crystalline electric field ground state of NdCu$_2$Ge$_2$ is a Kramers doublet. In addition, the results of the elastic constant measurements suggest that no degeneracy of quadrupolar degrees of freedom exists below T_N. NdCu$_2$Ge$_2$ has a possibility of another mechanism that suppress the magnetic ordering of the ab-component unlike other compounds showing component-separated magnetic transition.

1. Introduction
The ternary compounds RT$_2$X$_2$ (R=rare earth, T=transition metal and X=Si, Ge) have attracted considerable interest because of a rich variety of magnetic behaviors or superconductivity. The compounds crystallize in the ThCr$_2$Si$_2$-type structure which has the body-centered tetragonal with space group $I4/mmm$ [1, 2]. Recently, Shigeoka et al. reported the magnetic properties of NdCu$_2$Ge$_2$ [3]. The magnetic susceptibility along the c-axis shows a cusp-like anomaly at $T_N = 4.7$ K while those in the ab-plane show no clear anomaly around T_N and increase even below T_N. The magnetic susceptibility in the c-axis is smaller than the one along ab-plane in the whole temperature range. Therefore it is unusual that the antiferromagnetic ordering of the c-component of the magnetic moments occurs at T_N whereas the ab-components are paramagnetic. The paramagnetic behavior along the ab-plane implies that the presence of another magnetic transition below T_N associated with the ordering of the ab-components. We have considered that the magnetic transition in NdCu$_2$Ge$_2$ is similar to the higher-temperature transition in "Successive components-separated magnetic transitions". CsNiCl$_3$ [4-6], DyB$_4$ [7] and TbCoGa$_5$ [8] are well known examples of compounds that show such successive transitions. More recently, this type of successive transitions is reported in HoRh$_2$Si$_2$ having the same crystal structure of NdCu$_2$Ge$_2$ [9].

In order to examine the magnetic transition in NdCu$_2$Ge$_2$, we grew single crystals and measured their elastic constant and specific heat.

2. Experimental
Single crystals of NdCu$_2$Ge$_2$ were grown by the tetra-arc Czochralski method and the flux method using Sn as flux. The direction of the single crystals were determined by the X-ray back Laue method. The elastic constants were examined by ultrasonic measurement in the temperature range from 1.8 K to 40 K using the single crystalline sample obtained by...
the Czochralski method. Ultrasonic measurement is an effective technique for investigating the quadrupolar effect in an f-electron system with an orbitally degenerate ground state, because the quadrupole moment of the f electron couples to the elastic strain. A relative change in the elastic constant, \(\Delta C/T \), of the sample was obtained using \(\Delta C/T = 2\Delta v/v + (\Delta v/v)^2 \), which is derived from \(C = \rho v^2 \), where \(v \) and \(\rho \) represent the sound velocity and the density of the crystal, respectively. \(\Delta v/v \) was measured with a phase comparator using double-balanced mixers. The specific heat of the single crystal obtained by the flux method was measured by the heat-relaxation method in the temperature range from 1.9 K to 100 K.

3. Experimental results and discussion

![Graph showing the temperature dependence of the relative change in the elastic constants of NdCu\(_2\)Ge\(_2\).](image)

Figure 1. Temperature dependence of the relative change in the elastic constants of NdCu\(_2\)Ge\(_2\).

Figure 1 shows the temperature dependence of the relative change in the elastic constants \(\Delta C_{11}/C_{11} \), \(\Delta C_{33}/C_{33} \), \(\Delta C_{44}/C_{44} \), and \(\Delta C_{66}/C_{66} \) of NdCu\(_2\)Ge\(_2\). The longitudinal mode \(\Delta C_{11}/C_{11} \) and \(\Delta C_{33}/C_{33} \) show the monotonic hardening with decreasing temperature down to 1.8 K and no clear anomaly at approximately \(T_N = 4.7 \) K. The transverse mode \(\Delta C_{44}/C_{44} \) and \(\Delta C_{66}/C_{66} \) exhibit the softening down to approximately 15 K and clear anomalies at \(T_N \). \(C_{11} \) and \(C_{33} \) are included in \(C_u = 1/6(C_{11} + C_{12} - 4C_{13} + 2C_{33}) \) and \(1/2(C_{11} - C_{12}) \) coupled with \(\Gamma_1 \) and \(\Gamma_3 \) symmetry in the \(D_{4h} \) of the ThCr\(_2\)Si\(_2\)-type structure (see Table 1). \(\Gamma_1 \) and \(\Gamma_3 \) are not coupled with any dipole moments, hence it is possible that \(C_{11} \) and \(C_{33} \) show no anomaly associated with a magnetic transition.

If the degeneracy of quadrupolar degrees of freedom exists in a 4f electron system, the elastic constant shows a Curie-type softening written by the equation \(C(T) = C^0(T - T^0_C)/(T - \Theta) \), which is deduced from the Curie term of the quadrupole-strain susceptibility [10, 11]. \(\Theta \) is proportional to the average quadrupole-quadrupole interaction. \(T^0_C = \Theta + E_{JT} \), where \(E_{JT} \) is the Jahn-Teller (4f electron-lattice) coupling. The measured elastic constants of NdCu\(_2\)Ge\(_2\) do not obey the above equation below \(T_N \). Therefore the quadrupolar degrees of freedom should not be degenerate below \(T_N \). These results indicate that the antiferromagnetic transition at \(T_N \) in NdCu\(_2\)Ge\(_2\) is not affected by the quadrupole moment system.

Figure 2 shows the temperature dependence of the specific heat \(C \), magnetic specific heat \(C_{mag} \) in the form of \(C_{mag}/T \), and magnetic entropy change \(S_{mag} \) of NdCu\(_2\)Ge\(_2\). The specific
Table 1. The symmetry of quadrupole moments, elastic constants and dipole moments in a tetragonal system with D_{4h}

Symmetry	Quadrupole Moments	Elastic constants	Dipole moments
Γ_1	$O_2^J = \frac{1}{2}(2J_z^2 - J_x^2 - J_y^2)$	$C_\text{u} = \frac{1}{16}(C_{11} + C_{12} - 4C_{13} + 2C_{33})$	J_z
Γ_2	$O_2^Z = \frac{1}{2}(J_x^2 - J_y^2)$	$\frac{1}{2}(C_{11} - C_{12})$	C_{66}
Γ_3	$O_{xy} = \frac{\sqrt{3}}{2}(J_x J_y + J_y J_x)$		
Γ_4	$O_{yz} = \sqrt{3}(J_y J_z + J_z J_y)$	C_{44}	J_x, J_y
Γ_5	$O_{zx} = \sqrt{3}(J_z J_x + J_x J_z)$		

Figure 2. (a) Temperature dependence of the specific heat C of NdCu$_2$Ge$_2$ and LaCu$_2$Ge$_2$. The inset shows the low-temperature data. (b) Temperature dependence of the magnetic specific heat C_{mag} in the form of C_{mag}/T (left axis) and magnetic entropy change (right axis) of NdCu$_2$Ge$_2$. The horizontal broken lines indicate the values of magnetic entropy.

The magnetic contribution C_{mag} to the specific heat of NdCu$_2$Ge$_2$ is deduced by subtracting the specific heat of the isostructural nonmagnetic compound LaCu$_2$Ge$_2$ from the total specific heat of NdCu$_2$Ge$_2$. Then, we obtained the temperature dependence of the magnetic entropy S_{mag} by numerically integrating the data of C_{mag}/T over temperature. The magnetic entropy change from 0 K to 1.9 K was estimated assuming that C_{mag}/T is proportional to the temperature. The specific heat of NdCu$_2$Ge$_2$ shows clear peak at 4.8 K. This anomaly is due to the antiferromagnetic ordering of the c-component. The magnetic specific heat shows a Schottky-like anomaly around 20 K. The magnetic entropy change reaches $R \ln 8$ at ~6.0 K and $R \ln 10$ at ~72 K. Thus the crystalline electric field (CEF) ground state of NdCu$_2$Ge$_2$ is a doublet. In addition, we consider that another magnetic phase transition is not likely to exist below T_N in NdCu$_2$Ge$_2$ for the following reason. If CEF ground state is a quartet or pseudo-quartet with an additional Kramers doublet, the magnetic entropy of $R \ln 2$ is added to the magnetic entropy change in Fig. 2. Then, total magnetic entropy in NdCu$_2$Ge$_2$ exceeds $R \ln 10$ expected for the
entire multiplet with $J = 9/2$ of Nd$^{3+}$ ion. However, the paramagnetic behavior of the magnetic susceptibility along [100] and [110] direction below T_N indicate the presence of the degeneracy of the internal degrees of freedom [3]. The reason for this discrepancy is still unclear.

In the triangular lattice antiferromagnet CsNiCl$_3$ and the Shastry-Sutherland lattice antiferromagnet DyB$_4$, geometrical frustration is important to suppress the magnetic ordering of particular components. However, the geometrical frustration is not the only keys to the occurrence of the successive components-separated magnetic transitions, because the transitions appear in TbCoGa$_5$ where the Tb atoms form a simple tetragonal lattice. The degeneracy of quadrupolar degrees of freedom exists in the intermediate phase in DyB$_4$ and TbCoGa$_5$ [7, 8]. This suggested that the presence of the degeneracy of quadrupolar degrees of freedom is also important to occur successive components-separated magnetic transitions. On the other hand, the behavior of the elastic constant of NdCu$_2$Ge$_2$ indicates that the quadrupolar degrees of freedom is not degenerate below T_N. Thus we conclude that NdCu$_2$Ge$_2$ has a possibility of another mechanism for the appearance of the components-separated magnetic transition that requires no degeneracy of the quadrupolar degrees of freedom unlike those in DyB$_4$ or TbCoGa$_5$. Moreover, the components-separated magnetic transition in NdCu$_2$Ge$_2$ seems to require no magnetic ordering of the ab-components below the transition temperature associated with the ordering of the c-component.

The magnetic properties of NdCu$_2$Si$_2$ are quite similar to those of NdCu$_2$Ge$_2$ but the magnetic entropy of NdCu$_2$Si$_2$ reaches $R \ln 4$ at transition temperature with magnetic ordering of the c-component [12-14]. This indicates the possibility that the quadrupole moment system influences the magnetic transition in NdCu$_2$Si$_2$. Investigations of the physical property, especially the elastic property, of NdCu$_2$Si$_2$ is very important to study the behavior of quadrupolar degrees of freedom and clarify the magnetic transition in NdCu$_2$Ge$_2$ in addition to NdCu$_2$Si$_2$.

Acknowledgments

We are very grateful to Dr. M Akatsu for technical assistance. This work was supported by a Grant-in-Aid for Scientific Research (C) (Grant No. 21540355) from Japan Society for the Promotion Science (JSPS). One of the authors (N. S.) acknowledges the support from the Research Fellowship of JSPS for Young Scientists.

References

[1] Rieger W and Parthé E 1969 *Monatsh. Chem.* **100** 444
[2] Venturini G, Malaman B and Roques B 1989 *J. Solid State Chem.* **79** 136
[3] Shigeoka T, Hirata K, Mitamura H, Uwatoko Y and Goto T 2004 *Physica B* **346-347** 117
[4] Achiwa N 1969 *J. Phys. Soc. Jpn.* **27** 561
[5] Clark R H and Moulton W G 1971 *Phys. Rev. B* **5** 788
[6] Kadowaki H, Ubuikoshi K and Hirakawa K 1986 *J. Phys. Soc. Jpn.* **56** 751
[7] Watamuki R, Sato G, Suzuki K, Ishihara M, Yanagisawa T, Nemoto Y and Goto T 2005 *J. Phys. Soc. Jpn.* **74** 2169
[8] Sanada N, Watamuki R, Suzuki K, Akatsu M and Sakakibara T 2009 *J. Phys. Soc. Jpn.* **78** 073709
[9] Shigeoka T, Fujiwara T, Munakata K, Matsubayashi K and Uwatoko Y 2011 *J. Phys.: Conf. Series* **273** 012127
[10] Luethi B, Mullen M E, Andres K, Bucher E and Maita J P 1973 *Phys. Rev. B* **8** 2639
[11] Levy P M 1973 *J. Phys. C* **6** 3545
[12] Shigeoka T, Hirata K and Uwatoko Y 2006 *J. Alloys Compd.* **408-412** 88
[13] Takeda Y, Nguyen D D, Nakano Y, Ishikura T, Ikeda S, Matsuda T D, Yamamoto E, Haga Y, Takeuchi T, Settai R and Onuki Y 2008 *J. Phys. Soc. Jpn.* **77** 104710
[14] Nguyen D D, Ota Y, Sugiyama K, Matsuda T D, Haga Y, Kindo K, Hagiwara M, Takeuchi T, Settai R and Onuki Y 2009 *J. Phys. Soc. Jpn.* **78** 024712