Algebraic Operators for Querying Pattern Bases

Rokia Missaoui^1, Léonard Kwuida^1, Mohamed Quafafou^2, Jean Vaillancourt^1

^1 Université du Québec en Outaouais
Gatineau (Québec) Canada, J8X 3X7
^2 LSIS - CNRS UMR 6168
Université Aix-Marseille, France
{rokia.missaoui,leonard.kwuida,jean.vaillancourt}@uqo.ca^*,
mohamed.quafafou@univmed.fr

Abstract. The objectives of this research work which is intimately related to pattern discovery and management are threefold: (i) handle the problem of pattern manipulation by defining operations on patterns, (ii) study the problem of enriching and updating a pattern set (e.g., concepts, rules) when changes occur in the user’s needs and the input data (e.g., object/attribute insertion or elimination, taxonomy utilization), and (iii) approximate a “presumed” concept using a related pattern space so that patterns can augment data with knowledge. To conduct our work, we use formal concept analysis (FCA) as a framework for pattern discovery and management and we take a joint database-FCA perspective by defining operators similar in spirit to relational algebra operators, investigating approximation in concept lattices and exploiting existing work related to operations on contexts and lattices to formalize such operators.

1 Introduction

The recent research topic of pattern discovery and management refers to a set of activities related to the extraction, description, manipulation and storage of patterns in a similar (but more elaborated) way as data are managed by database applications. In pattern management and inductive databases [4,5,16,24], patterns are knowledge artifacts (e.g., association rules, clusters) extracted from data using data mining procedures (generally run in advance), and retrieved upon user’s request. A pattern is then a concise and semantically rich representation of raw data. An example of a pattern could be a cluster that represents a set of Star Alliance members with their common features (e.g., fleet size, set of destinations).

In many database and data warehouse applications, users tend to be drowning in data and even in patterns while they are actually interested in a very limited set of knowledge pieces. Moreover, the scope of patterns to explore differs

* partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).
from one user to another and changes over time. Finally, one is frequently interested in an exploratory and iterative process of data mining (DM) to discover patterns under different scenarios and different hypotheses. In order to reduce the memory overload of the user and his working space induced by the large set of mined patterns, we propose to define a set of algebraic operators similar in spirit to operators of relational algebra. Such operators will allow “data mining on demand” (i.e., data mining according to user’s needs and perspectives) and rely on key operations on concept lattices such as selection, projection and join. Additional operations will be defined either to enrich the pattern basis or to identify the patterns that best approximate a “presumed” concept. The following example is an elementary way to display information. It presents the Star Alliance members in year 2000 with their destinations [8].

![Figure 1](image.png)

Fig. 1. Star Alliance members and their flying destinations in year 2000.

2 Contexts, Concept Lattices and their Ideals

Formal Concept Analysis is a branch of applied mathematics, which is based on a formalization of concept and concept hierarchy [9]. It has been successfully used for conceptual clustering and rule generation. Let $\mathbb{K} = (G, M, I)$ be a formal context, where G, M and I stand for a set of objects, a set of attributes,
and a binary relation between G and M respectively. Two functions, f_1 and f_2, summarize the links between subsets of objects and subsets of attributes induced by I. Function f_1 maps a set of objects into a set of common attributes, whereas f_2 is the dual for attribute sets:

$$f_1 : \mathcal{P}(G) \to \mathcal{P}(M), A \mapsto A' := \{a \in M \mid \forall o \in A, oIa\},$$

$$f_2 : \mathcal{P}(M) \to \mathcal{P}(G), B \mapsto B' := \{o \in G \mid \forall a \in B, oIa\}.$$

Furthermore, the compound operators $f_2 \circ f_1$ and $f_1 \circ f_2$ (denoted by "") are closure operators on G and M respectively. In particular, $Z \subseteq Z''$ and $(Z'')'' = Z''$ for $Z \in \mathcal{P}(M) \cup \mathcal{P}(G)$. The set Z is closed if $Z'' = Z$. A formal concept c is a pair of sets (A, B) with $A \subseteq G$, $B \subseteq M$, $A = B'$ and $B = A'$. A is called the extent of c (denoted by $\text{ext}(c)$) and B its intent (denoted by $\text{int}(c)$). In the closed itemset mining framework $[15, 29]$, A and B correspond to the notion of closed tidset and closed itemset respectively. The set of all concepts of \mathbb{K} is denoted by $\mathfrak{B}(\mathbb{K})$. Ordered by $(A, B) \leq (C, D) : \iff A \subseteq C$, it forms a complete lattice called the concept lattice of \mathbb{K} and denoted by $\mathfrak{B}(\mathbb{K})$. For (A, B) and (C, D) in $\mathfrak{B}(\mathbb{K})$ we have

$$(A, B) \vee (C, D) = ((A \cup C)'', B \cap D) \quad \text{and} \quad (A, B) \wedge (C, D) = (A \cap C, (B \cup D)'').$$

The sets G and M are related to $\mathfrak{B}(G, M, I)$ by the following mappings, where x' stands for $\{x\}'$ with $x \in G \cup M$.

$$\gamma : G \to \mathfrak{B}(G, M, I) \quad g \mapsto \gamma g := (g'', g')$$

$$\mu : M \to \mathfrak{B}(G, M, I) \quad m \mapsto \mu m := (m'', m'),$$

with $gIm \iff \gamma g \leq \mu m$. The γg’s and the μm’s form the building blocks of the concept lattice. In fact, any concept is the join of some γg’s and the meet of some μm’s; i.e. if c is a concept of (G, M, I), then there are sets $C_1 \subseteq G$ and $C_2 \subseteq M$ such that $c = \bigvee \{\gamma g \mid g \in C_1\}$ and $c = \bigwedge \{\mu m \mid m \in C_2\}$. We call C_1 a generator of the extent of c, and C_2 a generator of the intent of c. In fact $C_1'' = \text{ext}(c) = \{g \in G \mid \gamma g \leq c\}$ and $C_2'' = \text{int}(c) = \{m \in M \mid \mu m \geq c\}$.

Ideals and filters play an important role in describing selection and approximation on concepts. An order ideal is a downward closed subposet. For a poset (P, \leq) and $X \subseteq P$, the intersection of all order ideals containing X is the smallest order ideal containing X. It is called the order ideal generated by X and denoted by $\downarrow X$. If $X = \{a\}$ then $\downarrow a := \downarrow X = \{x \in P \mid x \leq a\}$, and is called principal ideal. Dually, an order filter is an upward closed subposet. For $X \subseteq P$, the intersection of all order filters containing X is an order ideal.

1. This is a poset in which every subset X has an infimum ($\bigwedge X$) and a supremum ($\bigvee X$). We set $a \wedge b := \bigwedge \{a, b\}$ and $a \vee b := \bigvee \{a, b\}$.
Fig. 2. Concept lattice of the context of Figure [1].

filter containing X, called the order filter generated by X. If $X = \{a\}$ then $\uparrow a := \uparrow X = \{x \in P \mid x \geq a\}$ is called principal filter. In a lattice, a lattice ideal or simply ideal is an order ideal closed under finite suprema. For $X \subseteq P$, the intersection of all lattice ideals containing X is again a lattice ideal containing X, called the ideal generated by X. It always contains the order ideal generated by X. All principal ideals are also lattice ideals. If x, y are incomparable in L, then the order ideal generated by $\{x, y\}$ is $\downarrow x \cup \downarrow y$ which is not a lattice ideal. It is smaller than the lattice ideal generated by $\{x, y\}$. The notion of lattice filter or simply filter is defined dually [7].

3 Information Systems

Frequently, data are not directly encoded in a “binary” form, but rather as a many-valued context in the form of a tuple (G, M, W, I) of sets such that $I \subseteq G \times M \times W$, with $(g, m, w_1) \in I$ and $(g, m, w_2) \in I$ imply $w_1 = w_2$. G is called the set of objects, M the set of attributes (or attribute names) and W the set of attribute values. If $(g, m, w) \in I$, then w is the value of the attribute m for the object g. Another notation is $m(g) = w$ where m is a partial map from G to W. Many-valued contexts can be transformed into binary contexts, via conceptual scaling. A conceptual scale for an attribute m of (G, M, W, I) is a binary con-
text $S_m := (G_m, M_m, I_m)$ such that $m(G) \subseteq G_m$. Intuitively, M_m discretizes or groups the attribute values into $m(G)$, and I_m describes how each attribute value $m(g)$ is related to the elements in M_m. For an attribute m of (G, M, W, I) and a conceptual scale S_m, we derive a binary context $K_m := (G, M_m, I^m_m)$ with $g I^m_m s_m : \iff m(g) I_m s_m$, where $s_m \in M_m$. This means that an object $g \in G$ is in relation with a scaled attribute s_m if the value of m on g is in relation with s_m in S_m. With a conceptual scale for each attribute we get the derived context $K^S := (G, N, I^S)$ where $N := \bigcup\{ M_m \mid m \in M \}$ and $g I^S_m s_m \iff m(g) I^m_m s_m$. In practice, the set of objects remains unchanged; each attribute name m is replaced by the scaled attributes $s_m \in M_m$. An information system is a many-valued context (G, M, W, I) with a set of scales $(S_m)_{m \in M}$. The choice of a suitable set of scales depends on the interpretation, and is usually done with the help of a domain expert. A Conceptual Information System is a one-valued (or many-valued) context together with a set of conceptual scales (or hierarchies). Such a set of scales is called conceptual schema [21,22]. Other scaling methods have also been proposed (see for e.g., [19,20]).

4 Relations and Relation Schema

We first recall key notions on relation schema and relational algebra [15,1]. A relation scheme is a set of attribute names $R := \{A_1, \ldots, A_n\}$, denoted by $R(A_1, \ldots, A_n)$ or simply R, where $n \in \mathbb{N}$ is the arity of R. For each attribute name A_i, there is a set $\text{dom}A_i$, called the domain of A_i. A relation on the scheme R, denoted by $r(R)$ or $r(A_1, \ldots, A_n)$ or simply r, is a set $\{t_1, \ldots, t_p\}$ of mappings from R to $D := \bigcup\{ \text{dom}A_i \mid 1 \leq i \leq n \}$ such that $t(A_i) \in \text{dom}A_i$ for any tuple $t \in r$. The A-value of t is $t(A)$, and more generally, the Y-value of t is $t(Y)$, where $Y \subseteq \{A_1, \ldots, A_n\}$. A relation r can be interpreted as a table, where the rows are its tuples and the columns are headed by the attribute names.

We assume that each relation r has an attribute name K, that is a key (i.e., for $i, j \in \{1, \ldots, p\}$, $t_i \neq t_j$ iff $t_i(K) \neq t_j(K)$). Then a relation r on a scheme R is nothing else than a many-valued context (G, R, D, I) with

$$G := \{ t(K) \mid t \in r \} \quad \text{and} \quad (t(K), m, w) \in I : \iff t(m) = w.$$

Each many-valued context can be transformed into a binary context using a set of scales $(S_m)_{m \in M}$ [9]. Therefore, to each relation r we can associate a formal context $K(r)$ and a concept lattice $\mathfrak{B}(r)$, which depends on the chosen scales $(S_m)_{m \in M}$.

To handle the information stored in relations, a relational algebra has been defined to allow operations on relations (see for example [11,15]). Our aim is to
see how these operations can be encoded on concept lattices. Before we proceed, let us first recall some key operations. We start with a logic on the attributes. Let \(r \) be a relation on a schema \(R \). The atomic formulae are of the form \(A = a \) for \(A \in R \) and \(a \in \text{dom} A \). The connectors \(\land, \lor \) and \(\neg \) are defined as usual. Examples of formulae are

\[
\varphi_1 := (A = a \land B = b); \quad \varphi_2 := (A = a \lor B = b) \quad \text{and} \quad \varphi_3 := \neg (A = a).
\]

Selection. We consider a relation \(r(A_1, \ldots, A_n) \) and \((G, M, I)\) a binary context derived from \(r \) via the scales \((S_A)_{A \in R}\). We are interested in a relation whose tuples are those of \(r \) with a certain value \(a \) on a specified attribute \(A_j \). This is the *selection* operation denoted by \(\text{Select}(r, A_j = a) \) or \(\sigma_{A_j = a}(r) \) and defined by

\[
\text{Select}(r, A_j = a) := \{ t \in r \mid t(A_j) = a \}.
\]

This operation gives a special sub-context of \((G, M, I)\) with all attributes from \(M \) and all those objects in \(G \) that have the scaled attribute \(S_{A_j} = a \). On the concept lattice side, the above selection operation can be expressed as \(\text{Select}(\mathcal{B}(r), A_j = a) \) and corresponds to the order ideal \(\mu a \). In case of a conjunctive condition on atomic formulae, \(\varphi_\land := \land \{ A_j = a_j \mid j \in J \subseteq \{1, \ldots, n\} \} \), the operation \(\text{Select}(\mathcal{B}(r), \varphi_\land) \) gives the ideal \(\mu \{ \mu a_j \mid j \in J \subseteq \{1, \ldots, n\} \} \). For a disjunctive condition on atomic formulae, \(\varphi_\lor := \lor \{ A_j = a_j \mid j \in J \subseteq \{1, \ldots, n\} \} \), the operation \(\text{Select}(\mathcal{B}(r), \varphi_\lor) \) gives the order ideal \(\bigcup_{j \in J} \mu a_j \). The case of negation is to be handled with good care. For a concept \((A, B)\) of \((G, M, I)\), its *weak negation* (resp. *weak opposition*) is the concept \(((G \setminus A)'', (G \setminus A)'\) (resp. \(((M \setminus B)'', (M \setminus B)'\)) \([13][21][23]\). \(\text{Select}(\mathcal{B}(r), \neg (A = a)) \) will produce all concepts of \(\mathbb{B}(r) \) whose objects do not have the \(A \)-value \(a \). This is probably not an order ideal of \(\mathcal{B}(r) \). If \(G \setminus \{ t(K) \mid t(A) = a \} \) is closed, then \(\text{Select}(\mathcal{B}(r), \neg (A = a)) \) is an order ideal. Otherwise, the output of \(\text{Select}(\mathcal{B}(r), \neg (A = a)) \) is only a sub-hierarchy of the order ideal generated by \(\gamma(G \setminus \{ t(K) \mid t(A) = a \}) \).

Projection. Let \(r(A_1, \ldots, A_n) \) be a relation and \(Y \subseteq \{ A_1, \ldots, A_n \} \). Then \(\text{Project}(r, Y) = \Pi_Y(r) = \{ t(Y) \mid t \in r \} \) restricts the tuples of \(r \) to the attributes in \(Y \). The projection defined above is equivalent to having a sub-context \((G, N, J)\) of \((G, M, I)\) where \(N \) is the set of scaled values of the attributes in \(Y \). Two concepts \(c_1 \) and \(c_2 \) in \(\mathcal{B}(r) \) are \(Y \)-equivalent if \(\text{int}(c_1) \cap Y = \text{int}(c_2) \cap Y \).

5 If \(S_{A_j} \) is not a nominal scale, some objects that do not have exactly the \(A_j \)-value \(a \) can also be chosen, provided their \(A_j \)-value is in relation with the scaled attribute \(s_a \), that represents the group in which \(a \) belongs.
Every concept c has a greatest concept equivalent to it. Then Project(r, Y) translates in FCA into a projection on concepts Project($\mathcal{B}(r)$, Y) which is a copy of the sub-hierarchy

$$R_Y(r) := \{c \in \mathcal{B}(r) \mid c \text{ is the greatest element of its } Y\text{-equivalence class}\}, \leq,$$

and is a \land-subsemilattice of $\mathcal{B}(r)$. More precisely

$$\text{Project}(\mathcal{B}(r), Y) = \{(\text{int}(c) \cap Y)'', \text{int}(c) \cap Y) \mid c \in R_Y(r)\} = \mathcal{B}(G, N, J).$$

Figure 3 illustrates a projection on $Y := \{\text{Canada, Asia pacific}\}$ and a selection. The four Y-equivalence classes induced by this projection are identified (left) and their order displayed (right). The structure inside the lowest class (left) displays the selection of Star Alliance members whose destinations include Canada and Asia Pacific.

Fig. 3. Projection and selection.

Natural Join. The most frequently used binary operation is the natural join. Let $r(R)$ and $s(S)$ be two relations. The natural join of r and s, denoted by $r \Join s$ or Join(r, s), is the relation $q(T)$ with schema $T = R \cup (S \setminus R)$ containing all tuples t over T such that there are tuples $t_1 \in r$ and $t_2 \in s$ satisfying $t(R) = t_1$ and $t(S) = t_2$.

$$\text{Join}(r, s) := \{t_1|t_2 \mid t_1 \in r \text{ and } t_2 \in s \text{ such that } t_1(R \cap S) = t_2(R \cap S)\},$$
where \(t_1 | t_2 \) denotes the tuple of a relation on the scheme \(R \cup (S \setminus R) \) defined for all attribute name \(A \) by

\[
(t_1 | t_2)(A) := \begin{cases}
 t_1(A) & \text{if } A \in R \\
 t_2(A) & \text{if } A \in S \setminus R.
\end{cases}
\]

Note that \(t_1 | t_2 \) is defined only for tuples that coincide on \(R \cap S \). Those tuples are called joinable. If \(R \cap S \) is empty (i.e., there are no common attributes between the two relation schemes), then \(t_1 | t_2 \) is defined for all tuples of \(r \) and of \(s \), and Join\((r, s)\) gives the Cartesian product \(r \times s \). When the join attribute is the identifier of objects in two contexts, then the relational join operation is equivalent to the apposition (see Subsection 5.2) of \(K_1 := (G, M_1, I_1) \) and \(K_2 := (G, M_2, I_2) \) having the same set of objects to get a context \(K := (G, M_1 \cup M_2, I_1 \cup I_2) \). The lattice corresponding to the context \(K \) is isomorphic to a subdirect product of the \(\lor \)-semilattices \(\mathfrak{B}(K_1) \) and \(\mathfrak{B}(K_2) \) and can be expressed by nested line diagrams [9].

Other binary operations on relations include the set-based operations such as the intersection, the union and the difference \((r \cap s)\), \((r \cup s)\), \((r \setminus s)\). These operations will not be discussed in this paper. A query in the form of a relational algebra expression [15] is a well-formed expression that contains a finite number of relational algebra operators whose operands are relations.

5 Algebraic Operations on Contexts

In the following, we define a kernel of main operations on contexts and lattices.

5.1 Sub-contexts: local views of a context

Given a context \(K \), one can choose (or is required) to have a local view, by restricting it to some objects and some attributes of \(K \). In this subsection we show how the concepts of a sub-context are related to those of the initial context (see for example [9] Section 3.1). Formally, for a context \(K := (G, M, I) \), a sub-context is a triple \(\mathfrak{H} := (H, N, J) \) such that \(H \subseteq G \), \(N \subseteq M \) and \(J = I \cap (H \times N) \). The hierarchy of concepts in \(\mathfrak{H} \) can be seen as a sub-hierarchy of the concepts in \(K \). For each concept \(u := (U, V) \) of \(\mathfrak{H} \), its extent \(U \) is also a subset of \(G \) and its closure \(U'' \) in \(K \) induces a concept \((U'', U')\). The intent \(V \) is also a subset of \(M \) and its closure \(V'' \) in \(K \) induces a concept \((V', V'')\). We set \(\varphi_1 u := (U'', U') \) and \(\varphi_2 u := (V', V'') \). Then \(\varphi_1 \) and \(\varphi_2 \) define two mappings.

\(^6 \) We assume that the join attributes have the same name in the two tables \(R \) and \(S \).
from $\mathcal{B}(\mathbb{H})$ to $\mathcal{B}(\mathbb{K})$ that are order embeddings i.e. for $1 \leq i \leq 2$ we have

$$\forall u, v \in \mathcal{B}(\mathbb{H}), \begin{cases} u \leq v & \rightarrow \varphi_i u \leq \varphi_i v, \text{ preserving the order of } \mathcal{B}(\mathbb{H}) \\ \varphi_i u \leq \varphi_i v & \rightarrow u \leq v, \text{ reflecting the order of } \mathcal{B}(\mathbb{K}). \end{cases}$$

To avoid confusion, we usually replace the derivation $'$ by the name of the relation of the context in which the derivation is done. Thus, for a subcontext (H, N, J) of (G, M, I), $U \subseteq H$ and $V \subseteq N$ we have

$$U^J = U^I \cap N \text{ and } V^J = V^I \cap H. \quad (\dagger)$$

Next we compare the closures in \mathbb{H} and in \mathbb{K}. From the equalities in (\dagger) above, we have $U^J \subseteq U^I$ and $U^{JI} \supseteq U^{II}$. Therefore

$$U^{JJ} = U^{JI} \cap H \supseteq U^{II} \cap H \supseteq U. \quad (\ddagger)$$

This means that the closure of a set U of objects in \mathbb{H} is usually larger than the restriction on H of its closure in \mathbb{K}. If U is closed in \mathbb{H}, we have the equality, since (\ddagger) leads to $U = U^{JJ} \supseteq U^{II} \cap H \supseteq U$ and $U = U^{II} \cap H$. Similarly we get $V^{II} \cap N \subseteq V^{JJ}$ and $V^{II} \cap N = V$ if V is closed in \mathbb{H}. The context \mathbb{K} in Figure 4 and the sub-context \mathbb{H} given by $H := \{2, 3, 5, 6\}$ and $N := \{a, b, d, f\}$ illustrate the inclusion above. For $U := \{2, 3\}$ we have $U^I = \{a, b, d, e\}$ and $U^{JI} = \{2, 3, 4\}$ as well as $U^J = \{a, b, d\}$ and $U^{JJ} = \{2, 3, 5\}$. Thus the closures in \mathbb{H} and \mathbb{K} are not always comparable, but only their restrictions on H. We have $U^{II} \cap H = \{2, 3\} \subseteq U^{JJ}$. In \mathbb{H}, $\{5\}$ is closed since $5^{JJ} = \{5\}$; also $5^{II} = \{4, 5\}$ and $5^{II} \cap H = \{5\} = 5^{JJ}$. We have seen that if U is an extent and V an intent of \mathbb{H}, then $U^{II} \cap H = U$ and $V^{II} \cap N = V$. Thus if (U, V) is a concept of \mathbb{H}, then (U^{II}, U^I) and (V^I, V^{II}) are concepts of \mathbb{K} whose

\[\begin{array}{c|cccc} \mathbb{K} & a & b & c & d & e \\ \hline 1 & \times & \times & \times & \times & 1 \\ 2 & \times & \times & \times & \times & \times \\ 3 & \times & \times & \times & \times & \times \\ 4 & \times & \times & \times & \times & \times \\ 5 & \times & \times & \times & \times & \times \\ 6 & \times & \times & \times & \times & \times \end{array}\]

\[\begin{array}{c} \mathbb{B}(\mathbb{K}) \\ \mathbb{B}(\mathbb{H}) \\ \mathbb{B}(\mathbb{H}) \\ \mathbb{B}(\mathbb{K}) \end{array}\]

Fig. 4. A context \mathbb{K}, its concept lattice $\mathcal{B}(\mathbb{K})$ and a concept lattice of its sub-context $\mathcal{B}(\mathbb{H})$.

restrictions on \(\mathcal{H} \) are equal to \((U, V)\); i.e. \((U^H \cap H, U^I \cap N) = (U, V)\) and \((V^I \cap H, V^H \cap N) = (U, V)\). Note that \(U^H \subseteq V^I\) and \((U^H, U^I) \leq (V^I, V^H)\). Therefore, for every concept \((A, B)\) of \(\mathcal{K} \) in the interval \([(U^H, U^I); (V^I, V^H)] \) we have \((A \cap H, B \cap N) = (U, V)\). This means that the concepts of \(\mathcal{H} \) can be identified with some intervals of \(\mathcal{K} \) (see Section 6). If every concept of \(\mathcal{K} \) is in such an interval then the restriction on \(\mathcal{H} \) of every concept \((A, B)\) of \(\mathcal{K} \) is a concept \((A \cap H, B \cap N)\) of \(\mathcal{H} \). The mapping
\[
\Pi_{\mathcal{H}} : \mathfrak{B}(G, M, I) \rightarrow \mathfrak{B}(H, N, J)
\]
\[(A, B) \quad \mapsto \quad (A \cap H, B \cap N)\]
is a surjective complete lattice homomorphism. The mapping \(\Pi_{\mathcal{H}}\) from \(\mathfrak{B}(\mathcal{K})\) to \(\mathfrak{B}(\mathcal{H})\) or simply from the initial context \(\mathcal{K}\) to its sub-context \(\mathcal{H}\) coincides with a mixture of two relational operations: a selection of tuples \(t\) with \(t(K) \in H\) and a projection on attributes in \(N\). Therefore, the mixture of selection and projection operations commonly used in relational databases can be implemented for concept lattice manipulation by means of the theory described above.

5.2 Enlarging contexts

The reverse situation of local views is enlarging the context. One possibility is to enlarge the set of attributes. Two contexts \(\mathcal{K}_1 := (G, M_1, I_1)\) and \(\mathcal{K}_2 := (G, M_2, I_2)\), with the same set of objects can be combined to get a context \(\mathcal{K} := (G, M_1 \uplus M_2, I_1 \cup I_2)\). The context \(\mathcal{K}\) is called the apposition of \(\mathcal{K}_1\) and \(\mathcal{K}_2\), and denoted by \(\mathcal{K}_1 | \mathcal{K}_2\). The extent of the concepts in the resulting lattice is exactly the intersection of extents of \(\mathcal{K}_1\) and \(\mathcal{K}_2\) [20]. In general two contexts \((G_1, M_1, I_1)\) and \((G_2, M_2, I_2)\) can be put together to get a context \((G, M, I)\) with \(G := G_1 \cup G_2\), \(M := M_1 \cup M_2\) and \(I := I_1 \cup I_2\) if they agree on their intersections i.e. for any \(g \in G_1 \cap G_2\) and \(m \in M_1 \cap M_2\) we have \(gI_1m \iff gI_2m\). Here we have \(g \in G_1 \setminus G_2\) and \(m \in M_2 \setminus M_1\) imply \((g, m) \notin I\) as well as \(g \in G_2 \setminus G_1\) and \(m \in M_1 \setminus M_2\) imply \((g, m) \notin I\). Note that \((G_1, M_1, I_1) \subseteq (G, M, I) \supseteq (G_2, M_2, I_2)\).

Another possibility is to enlarge the set of objects. Two contexts \(\mathcal{K}_1 := (G_1, M_1, I_1)\) and \(\mathcal{K}_2 := (G_2, M, I_2)\) (having the same set of attributes) can be combined to get a context \(\mathcal{K} := (G_1 \uplus G_2, M, I_1 \cup I_2)\). The context \(\mathcal{K}\) is called the subposition of \(\mathcal{K}_1\) and \(\mathcal{K}_2\), and denoted by \(\mathcal{K}_1 | \mathcal{K}_2\). Such operation is useful to incrementally update the lattice \(\mathfrak{B}(\mathcal{K})\) when a set \(G_2\) of objects is added [25].

5.3 Generalized Patterns

The objective here is to exploit generalization hierarchies attached to properties to get a lattice with more abstract concepts. Producing generalized patterns
from concept lattices when a taxonomy on attributes is provided can be done in different ways with distinct performance costs that depend on the peculiarities of the input (e.g., size, density) and the operations used. One way consists to use context apposition to conduct the assembly (join) of the initial lattice of non generalized attributes (e.g., destinations of airline companies) with the lattice corresponding to the taxonomy of attributes (e.g., city, country, continent), and then perform a projection of the resulting lattice on the generalized attributes (e.g., country) only. Figure 5 shows generalized patterns when the attributes Canada and US are replaced with the generalized attribute North America, and Mexico and Latin America are replaced with South America.

Star Alliance	North America	South Pacific	Middle East	Africa	Caribbean	North America
Air Canada	X	X	X	X	X	X
Air New Zealand	X	X	X	X		
All Nippon Airways	X					
Ansett Australia						
Austrian Airl. Group						
British Midland						
Lufthansa	X	X	X	X	X	
Mexicana	X				X	
Scandinavian Airl.	X	X	X	X		
Singapore Airlines	X	X	X	X		
Thai Airways Int.						
United Airlines						
VARIG	X	X	X	X		

Fig. 5. Generalizing attributes

In the following we formalize the way generalized patterns are produced. Let $\mathbb{K} := (G, M, I)$ be a context. The attributes of \mathbb{K} can be grouped together to form another set of attributes, namely S, to get a context where the attributes are more general than in \mathbb{K}. For the Star Alliance example, each member is flying to an airport located in a city. Cities are generalized to countries and sometimes to regions or continents. Formally, S can be seen as an index set such that $\{M_s \mid s \in S\}$ covers M. The context (G, M, I) is then replaced with a context (G, S, J) as in the scaling process. There are mainly three ways to express the binary relation J between the objects of G and the (generalized) attributes of S:

(∃) $gJs : \iff \exists m \in s, gIm$. Consider an information table describing companies and their branches in North America. We first set up a context whose objects are companies and whose attributes are the cities where these companies have or may have branches. If there are too many cities, we can decide to group them in provinces (in Canada) or states (in USA) to reduce the number of attributes. Then, the (new) set of attributes is now a set S whose elements are states and provinces. It is quite natural to say that a company g has a branch in a province/state s if g has a branch in a city m which belongs to the province/state s. Formally, g has attribute s iff there is $m \in s$ such that g has attribute m.

(∀) $gJs : \iff \forall m \in s, gIm$. Consider an information system about Ph.D. students and the components of the comprehensive doctoral exam. Assume that components are: the written part, the oral part, and the thesis proposal, and that a student succeeds in his exam if he succeeds in the three components of the exam. The objects of the context are Ph.D. students and the attributes are the different exams taken by students. If we group together the different components, for example

$CE\text{-}written, CE\text{-}oral, CE\text{-}proposal \mapsto CE\text{-}exam$,

then it becomes natural to say that a student g succeeds in his comprehensive exam $CE\text{-}exam$ if he succeeds in all the exam parts of CE. i.e g has attribute $CE\text{-}exam$ if for all m in $CE\text{-}exam$, g has attribute m.

(α%) $gJs : \iff |\{m \in s \mid gIm\}| \geq \alpha_s$ where α_s is a threshold set by the user for the generalized attribute s. This case generalizes the (∃)-case (take $\alpha = \frac{1}{|M|}$) and the (∀)-case (take $\alpha = 1$). To illustrate this case, let us consider a context describing different specializations in a given Master degree program. For each program there is a set of mandatory courses and a set of optional ones. Moreover, there is a predefined number of courses that a student should succeed to get a degree in a given specialization. Assume that to get a Master in Computer Science with a specialization in “computational logic” (CL), a student must have seven courses from a set s_1 of mandatory courses and three courses from a set s_2 of optional ones. Then we can introduce two generalized attributes s_1 and s_2 so that a student g succeeds in the group s_1 if he succeeds in at least seven courses from s_1, and succeeds in s_2 if he succeeds in at least three courses from s_2. So, for $\alpha_{s_1} := \frac{7}{|s_1|}$ and $\alpha_{s_2} := \frac{3}{|s_2|}$, we have

$$gJs_i \iff \frac{|\{m \in s_i \mid gIm\}|}{|s_i|} \geq \alpha_{s_i}, \quad 1 \leq i \leq 2.$$
Attribute generalization reduces the number of attributes. One may therefore expect a reduction of the number of concepts (i.e., $\mathfrak{B}(G, S, J) \leq \mathfrak{B}(G, M, I)$).

Unfortunately, this is not always the case, as we can see from example in Fig. 6 below. Therefore, it is interesting to investigate (in the future) under which condition generalizing patterns reduces the size of the initial lattice. Moreover, finding the connections between the implications of the generalized context and the initial one is also an important open problem to be considered.

Fig. 6. A generalization increasing the size of the lattice. $|\mathfrak{B}(K)| = 7 < 8 = |\mathfrak{B}(K_{\text{gen}})|$.

A similar reasoning can be conducted with objects (rather than attributes) to replace some (or all) of them with generalized objects or clusters\[10\]. In such a case, the extraction can be done using an assembly of lattices having the same set of attributes, followed by a selection on generalized objects.

6 Approximation of Presumed Concepts: Real World concepts vs. Formal Concepts

While analyzing data, one may have a particular interest in a pair (X, Y) of objects/attributes. X can be for example some Star Alliance members and Y some destinations. The interest of the analyst is then represented by the pair (X, Y), here called presumed concept, as perceived by a user. A crucial question is then how a presumed concept can be approximated by formal concepts of a context K. Given a presumed concept $c := (X, Y)$, we set $p_{\text{ext}}(c) := X$ and $p_{\text{int}}(c) := Y$ to mean the presumed “extent” and “intent” of c, respectively. We assume that there is a formal context $K := (G, M, I)$ whose object set contains $p_{\text{ext}}(c)$ and whose attribute set contains $p_{\text{int}}(c)$. To approximate c, we first look at those concepts whose extent (resp. intent) has a non empty intersection with $p_{\text{ext}}(c)$ (resp. $p_{\text{int}}(c)$). This is done via selective (resp. projective) representations.

A presumed concept $c := (X, Y)$ has a projective conceptual representation $\pi_c : (A, B) \mapsto (f_2(B \cap p_{\text{int}}(c)), B \cap p_{\text{int}}(c))$, and a selective conceptual representation $\xi_c : (A, B) \mapsto (A \cap p_{\text{ext}}(c), f_1(A \cap p_{\text{ext}}(c)))$, defined on formal
concepts \((A, B)\) of \(\mathfrak{B}(K)\). The inverse image of \(c\) under \(\pi_c\) (i.e. \(\pi^{-1}_c(c)\)) contains all formal concepts whose intents contain the \(p\)-int\(\)ent of \(c\); the inverse image of \(c\) under \(\xi_c\) (i.e. \(\xi^{-1}_c(c)\)) contains all formal concepts whose extents contain the \(p\)-extent of \(c\). In fact \(\pi^{-1}_c(c)\) is a principal ideal of \(\mathfrak{B}(K)\) generated by \(H(c) := (p\text{-}\text{int}(c), p\text{-}\text{int}(c))\), and \(\xi^{-1}_c(c)\) is a principal filter of \(\mathfrak{B}(K)\) generated by \(L(c) := (p\text{-}\text{ext}(c), p\text{-}\text{ext}(c))\). Then \(L(c)\) is the smallest concept whose extent contains the \(p\)-extent of \(c\) and \(H(c)\) is the largest concept whose intent contains the \(p\)-intent of \(c\). Therefore \(L(c)\) (respectively \(H(c)\)) is the extensional (resp. intensional) approximation for \(c\). If \(c\) is a concept, then \(L(c) = c = H(c)\).

A very interesting case is when \(c\) is a preconcept of \(\mathfrak{B}(K)\) (i.e. \(X \subseteq Y\) or equivalently \(Y \subseteq X\)). Then \(X \times Y \subseteq I\) and \(L(c) \leq H(c)\). In this case \(c\) is a rectangle full of crosses and any element of \([L(c), H(c)]\) is a maximal rectangle full of crosses that contains \(c\). An approximation of \(c\) is then the interval \([L(c), H(c)]\).

A presumed concept \(c\) can be erroneous. In this case, \(c\) is not a preconcept of \(K\). There are some instances in the \(p\)-extent of \(c\) that do not have all attributes in the \(p\)-intent of \(c\) and some attributes in the \(p\)-intent of \(c\) that do not belong to all the instances of the \(p\)-extent of \(c\). We call such a presumed concept degenerated since there is no formal concept of \(K\) that covers \(c\).

Let assume that \(c\) is a preconcept. Then, the interval of all concepts containing \(c\) can be computed based on filters and ideals. We first compute the closure \(X''\) of the \(p\)-extent of \(c\). We get the concept \(L(c) = (X'', X')\), i.e., the smallest concept containing \(c\). The filter \(\downarrow L(c)\) contains all concepts whose extent is larger than \(p\)-extent\((c)\). Next, we compute the closure \(Y''\) of the \(p\)-intent of \(c\), and get the concept \(H(c) = (Y'', Y')\), that is the largest concept containing \(c\). The ideal \(\downarrow H(c)\) contains all concepts whose intent is larger than \(p\)-intent\((c)\). The approximation of \(c\) is then \([L(c), H(c)] = \downarrow L(c) \cap \downarrow H(c)\) and can be read easily on the lattice \(\mathfrak{B}(K)\).

Figure 7 shows that the preconcept \(c = \{\{\text{Air Canada, Lufthansa}\}, \{\text{Canada, Europe}\}\}\) is not a formal concept and highlights the interval \([L(c), H(c)]\) that approximate \(c\) where \(L(c) = \{\{\text{Air Canada, Lufthansa}\}, \{\text{Canada, Europe, Middle East, Asia-Pacific, US, Latin America, Mexico}\}\}\) and \(H(c) = \{\{\text{Air Canada, Lufthansa, Air New Zealand, The Austrian Airlines Group, Singapore Airlines, United Airlines}\}, \{\text{Canada, Europe, Asia-Pacific, US}\}\}\).

7 Related Work

Three main approaches towards handling the overwhelming size of mined knowledge (mainly rules) are proposed: (i) constrained-based rule mining which aims
to reduce the DM output by imposing constraints on the premise or the consequent of association rules \cite{14,17}, (ii) rule filtering using quality measures (e.g., support) and concise representations \cite{23,12}, and (iii) querying the DM output \cite{13,2,6,11,24}. In \cite{3}, the selection and discovery of actionable formal concepts from a pattern basis are studied, using constrained-based data mining and fault-tolerant pattern generation procedures.

Recent studies on pattern management \cite{5,24} provide a uniform framework to data and pattern management and define links between data and pattern spaces through bridging operations and cross-over queries such as finding data covered by a given pattern or identifying patterns related to a data set. Although many studies limit the management of patterns to association rules only, work conducted by Calders \textit{et al.} \cite{5}, and Terrovitis \textit{et al.} \cite{24} cover different types of patterns. In \cite{24}, a pattern base management system is defined for storing, processing and querying patterns. Moreover, languages for pattern definition and manipulation are proposed, and temporal aspects of patterns are handled. In \cite{5}, a data mining algebra and a 3-World model are defined, as well as a small set of data mining primitive operators are proposed to further formulate complex queries. The proposed model includes three worlds: \textit{D-World} for data definition and manipulation (e.g., projection, join), \textit{I-World} for region (set of constraints) definition and manipulation, and \textit{E-World} for operations on data contained in

\textbf{Fig. 7.} Approximation of a preconcept in the lattice shown in Figure [2]
regions. On the industry side, work was mainly done to design languages for pattern description, manipulation and exchange (e.g., PMML).

8 Conclusion

In this paper we have proposed a set of operators for filtering, manipulating, and approximating a set of concepts using formal concept analysis. To date, we have analyzed and implemented four algebraic operations on lattices: the selection on a lattice according to a conjunctive condition on attributes, the projection of a lattice on a set of attributes, the assembly of two lattices related to a same set of objects, and the approximation of a presumed concept c within a given related lattice.

Our future work concerns the following issues: (i) enrich the defined algebraic operators on concepts with additional ones borrowed from FCA theory, (ii) define new cross-over (mapping) operations between a data space (e.g., a relational table) and a pattern space expressed by a set of concepts, and (iii) study variants of the two kinds of mappings with their corresponding actual benefits in real-life applications.

References

1. Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley, 1995.
2. Elisa Bertino, Barbara Catania, and Anna Maddalena. Towards a language for pattern manipulation and querying. In Proc. of the 1st Int. Workshop on Pattern Representation and Management (PaRMa’04), 2004.
3. Jean-François Boulicaut and Jérémy Besson. Actionability and formal concepts: A data mining perspective. In Raoul Medina and Sergei A. Obiedkov, editors, ICFCA, volume 4933 of Lecture Notes in Computer Science, pages 14–31. Springer, 2008.
4. Jean-François Boulicaut, Luc De Raedt, and Heikki Mannila, editors. Constraint-Based Mining and Inductive Databases, European Workshop on Inductive Databases and Constraint Based Mining, Hinterzarten, Germany, March 11-13, 2004, Revised Selected Papers, volume 3848 of Lecture Notes in Computer Science. Springer, 2005.
5. Toon Calders, Laks V. S. Lakshmanan, Raymond T. Ng, and Jan Paredaens. Expressive power of an algebra for data mining. ACM Trans. Database Syst., 31(4):1169–1214, 2006.
6. Barbara Catania and Anna Maddalena. Pattern management: Practice and challenges. In Processing and Managing Complex Data for Decision Support, pages 280–317. Idea Group Publishing, 2006.
7. B.A. Davey and H.A. Priestley. Introduction to Lattices and Order. Cambridge University Press, 2002.
8. Bernhard Ganter. Formal concept analysis: Methods and applications in computer science. adapted and extended by Gerd Stumme, 2003.
9. Bernhard Ganter and Rudolf Wille. Formal Concept Analysis: Mathematical Foundations. Springer-Verlag New York, Inc., 1999. Translator-C. Franzke.
10. Andreas Hotho, Steffen Staab, and Gerd Stumme. Explaining text clustering results using semantic structures. In *In Principles of Data Mining and Knowledge Discovery, 7th European Conference, PKDD 2003*, pages 217–228. Springer, 2003.
11. Baptiste Jeudy, Christine Largeron, and François Jacquenet. A model for managing collections of patterns. In *SAC ’07: Proceedings of the 2007 ACM symposium on Applied computing*, pages 860–865, New York, NY, USA, 2007. ACM.
12. Marzena Kryszkiewicz and Marcin Gajek. Concise representation of frequent patterns based on generalized disjunction-free generators. In *PKDD ’02: Proceedings of the 6th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining*, pages 159–171, London, UK, 2002. Springer-Verlag.
13. Léonard Kwuida. *Discomplemented Lattices. A contextual generalization of Boolean algebras*, Shaker Verlag, 2004. Dissertation, TU Dresden.
14. Laks V. S. Lakshmanan, Raymond Ng, Jiawei Han, and Alex Pang. Optimization of constrained frequent set queries with 2-variable constraints. In *SIGMOD ’99: Proceedings of the 1999 ACM SIGMOD international conference on Management of data*, pages 157–168, New York, NY, USA, 1999. ACM Press.
15. David Maier. *The Theory of Relational Databases*. Computer Science Press, 1983.
16. Heikki Mannila. Theoretical frameworks for data mining. *SIGKDD Explorations*, 1(2):30–32, 2000.
17. Raymond T. Ng, Laks V. S. Lakshmanan, Jiawei Han, and Alex Pang. Exploratory mining and pruning optimizations of constrained associations rules. In *SIGMOD ’98: Proceedings of the 1998 ACM SIGMOD international conference on Management of data*, pages 13–24, New York, NY, USA, 1998. ACM Press.
18. Nicolas Pasquier, Rafik Taouil, Yves Bastide, Gerd Stumme, and Lotfi Lakhal. Generating a condensed representation for association rules. *J. Intell. Inf. Syst.*, 24(1):29–60, 2005.
19. Susanne Prediger. Logical scaling in formal concept analysis. In Dickson Lukose, Harry S. Delugach, Mary Keeler, Leroy Searle, and John F. Sowa, editors, *ICCS*, volume 1257 of *Lecture Notes in Computer Science*, pages 332–341. Springer, 1997.
20. Susanne Prediger and Gerd Stumme. Theory-driven logical scaling, conceptual information systems meet description logics. In *Proc. 6th Intl. Workshop Knowledge Representation Meets Databases, Heidelberg. CEUR Workshop Proc*, pages 46–49, 1999.
21. P. Scheich, M. Skorsky, F. Vogt, C. Wachter, and R. Wille. Conceptual data systems. In O. Opitz, B. Lausen, and R. Klar, editors, *Information and Classification*, pages 72–84. Springer, Berlin-Heidelberg, 1993.
22. Gerd Stumme. Conceptual on-line analytical processing. In *Information Organization and Databases*, pages 191–203. Kluwer, 2002.
23. Gerd Stumme, Rafik Taouil, Yves Bastide, Nicolas Pasquier, and Lotfi Lakhal. Computing iceberg concept lattices with titanic. *Data Knowl. Eng.*, 42(2):189–222, 2002.
24. Manolis Terrovitis, Panos Vassiliadis, Spiros Skiadopoulos, Elisa Bertino, Barbara Catania, Anna Maddalena, and Stefano Rizzi. Modeling and language support for the management of pattern-bases. *Data Knowl. Eng.*, 62(2):368–397, 2007.
25. Petko Valtchev, Mohamed Rouane Hacene, and Rokia Missaouï. A generic scheme for the design of efficient on-line algorithms for lattices. In Aldo de Moor, Wilfried Lex, and Bernhard Ganter, editors, *ICCS*, volume 2746 of *Lecture Notes in Computer Science*, pages 282–295. Springer, 2003.
26. Petko Valtchev, Rokia Missaouï, and Pierre Lebrun. A partition-based approach towards constructing galois (concept) lattices. *Discrete Math.*, 256(3):801–829, 2002.
27. Rudolf Wille. Boolean concept logic. In *Conceptual Structures: Logical, Linguistic, and Computational Issues, 8th International Conference on Conceptual Structures, ICCS 2000, Darmstadt, Germany, August 14-18, 2000, Proceedings*, pages 317–331, 2000.
28. Rudolf Wille. Preconcept algebras and generalized double boolean algebras. In Peter W. Eklund, editor, ICFCAP, volume 2961 of Lecture Notes in Computer Science, pages 1–13. Springer, 2004.

29. Mohammed Javeed Zaki and Ching-Jiu Hsiao. Charm: An efficient algorithm for closed itemset mining. In Proceedings of the Second SIAM International Conference on Data Mining, Arlington, VA, USA, April 11-13, 2002.