FORMING GLOBULAR CLUSTER SYSTEMS SEMI-ANALYTICALLY

M. A. Beasley,1 C. M. Baugh,2 D. A. Forbes,1 R. M. Sharples,2 and C. S. Frenk,2

RESUMEN

Describimos el escenario para la formacion de sistemas de cumulos globulares en galaxias elipticas utilizando un modelo semi-analitico de formacion de galaxias. Trabajando en una cosmologia de tipo ΛCDM, asumimos que los cumulos globulares de baja metalicidad se forman a altos redshifts en fragmentos pre-galacticos, y que la consiguiente fusion rica en gas de estos fragmentos conduce a la formacion de los cumulos globulares de alta metalicidad. Comparamos nuestros resultados con datos contemporaneos y estudiamos el caso particular de la funciones de distribucion de metalicidad estelar y de los cumulos globulares de la galaxia eliptica cercana Centaurus A.

ABSTRACT

We describe a scheme for the formation of globular cluster systems in early-type galaxies using a semi-analytic model of galaxy formation. Operating within a ΛCDM cosmology, we assume that metal-poor globular clusters are formed at high-redshift in pre-galactic fragments, and that the subsequent gas-rich merging of these fragments leads to the formation of metal-rich clusters. We compare our results with contemporary data, and look at the particular case of the globular cluster and stellar metallicity distribution function of the nearby elliptical Centaurus A.

Key Words: STARS: STAR CLUSTERS — GALAXIES: ELLIPTICAL

1. GENERAL

Globular clusters (GCs) are long-lived tracers of star formation, ranging from ancient, metal-poor stellar populations (e.g., Galactic halo GCs) to young, solar-metallicity stellar populations created during interactions (e.g., Schweizer et al. 1996). Due to their relatively “simple” nature (they are idealised simple stellar populations), the ages and metallicities of GCs can in principle be unambiguously determined. Hence, the study of GC systems affords a unique insight into the formation histories of galaxies.

We have investigated the formation of the GC systems of elliptical galaxies using the fiducial semi-analytic model of Cole et al. (2000). We (Beasley et al. 2002a) assume GC formation occurs in two modes; in pre-galactic fragments with GC formation truncated at high redshift, and during the dissipative merging of these fragments.

With these assumptions, we produced 450 realisations of elliptical galaxy GC systems of over a range of halo masses i.e., \(1.0 \times 10^{13} h^{-1} M_\odot \leq M_h \leq 1.3 \times 10^{15} h^{-1} M_\odot \).

Using simple stellar population models (Kurth, Fritz-v. Alvensleben & Fricke 1999), we can transfer our predictions into the observable plane. We have

1 Astrophysics & Supercomputing, Swinburne, Australia.
2 Department of Physics, University of Durham, UK.
compared our model results to contemporary data for the GC systems of elliptical galaxies, and the principle results from our study are as follows:

(i) the total number of GCs (N) scales with host galaxy luminosity as $N \propto L^{1.25}$, rather than the expected $N \propto L^{1.0}$ for constant GC formation efficiencies. This scaling is very similar to the observational data, and in the model is due to a $M/L \propto L^\alpha$ dependence for L_\star ellipticals.

(ii) the formation of metal-rich GCs in low-redshift mergers does not significantly alter the S_N (number of GCs per unit starlight) of the host elliptical. This reflects the small gas-fractions of merger progenitors at later epochs.

(iii) the metal-poor GCs have mean ages of ~ 12 Gyr, whilst the metal-rich GCs have mean ages of ~ 9 Gyr (e.g. Fig 1). However, the age range of the metal-rich GCs in many individual galaxies is significant ($5 \sim 12$ Gyr) with a small fraction forming at the present epoch.

Our results suggest that metal-rich GCs may directly trace the merger history of their host galaxy whenever star formation occurs. Therefore, the metal-rich GCs are remnants of both star formation at later times, and the dynamical assembly of their host galaxies, possibly providing a key to probing the formation epoch of elliptical galaxies.

Furthermore, our model provides explicit information on the ages and abundances of both the GCs and the “field” stars which aggregate to produce the final galaxy. Recently, Harris & Harris (2002) have constructed a metallicity distribution function (MDF) for the nearest giant elliptical galaxy Centaurus A (NGC 5128) using HST. By selecting model ellipticals occupying similar environments to this galaxy, we can directly compare its predicted and observed stellar content (see Beasley et al. 2002b).

Such a comparison is shown in Fig 2 for the stellar MDF of NGC 5128 and its GC system. The model MDFs are qualitatively similar to those observed; both model and data have stellar components which are predominantly metal-rich ($\sim 0.8 Z_\odot$), but possess a small number of metal-poor stars extending down to $0.002 Z_\odot$. Early gas infall in the model ameliorates the so-called “G-dwarf” problem (e.g. Kauffmann 1996).

Interestingly, we find that the model MDFs harbour a greater fraction of stars at $Z > Z_\odot$ than the observations, yielding a broader (by ~ 0.1 dex), more metal-rich MDF. This is possibly a result of the fact that these outer-bulge observations are missing some of the highest-metallicity stars in NGC 5128. Such a comparison facilitates the possible reconstruction of the star formation history of this nearby elliptical galaxy.

REFERENCES

Beasley, M.A., Baugh, C.S., Forbes, D.A., Sharples, R.M., Frenk, C.S., 2002a, MNRAS, 333, 383
Beasley, M.A., Harris, W.E., Harris, G.L.H., Forbes, D.A., 2002b, submitted MNRAS
Cole, S., Lacey, C.G., Baugh, C.M., Frenk, C.S., 2000, MNRAS, 319, 168
Forbes, D.A., Forte, J.C., 2001, MNRAS, 322, 257
Harris, W.E., Harris, G.L.H., 2002, AJ, 123, 3108
Kauffmann, G., 1996, MNRAS, 281, 475
Schweizer, F., Miller, B.W., Whitmore, B.C., Fall, S.M., 1996, AJ, 112, 1839

Michael Beasley, Duncan A. Forbes: Astrophysics & Supercomputing, Swinburne University, Hawthorn, VIC 3122, Australia (mbeasley@astro.swin.edu.au).
Carlton M. Baugh, Carlos S. Frenk, Ray M. Sharples: Department of Physics, University of Durham, Durham DH1 3LE, UK.