Genome subtraction for novel target definition in *Salmonella typhi*

Bhawna Rathi*, Aditya N. Sarangi, Nidhi Trivedi

Biomedical Informatics Centre, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; Bhawna Rathi – Email: bhawna_rathi3@rediffmail.com; *Corresponding author

Received May 07, 2009; Revised August 24, 2009; Accepted September 11, 2009; Published October 11, 2009

Abstract:
Large genomic sequencing projects of pathogens as well as human genome projects have revolutionized the field of drug-discovery against threatening human pathogens [1]. These large sets of genomic data are useful in identification and characterization of the novel therapeutic targets and virulent factors prevalent in the pathogens. Subtractive genomic strategy is developed by assuming that the novel targets identified in the pathogen should be essential for the pathogen that is it should be involved in the replication, survival and an important component of various metabolic pathways and mechanisms occurring in the pathogen while at the same time should be absent on the host that is human and should have no homolog in human, so that when a drug or a lead compound is designed considering the potential target it should only be against the mechanism and functionality of the pathogen not the host. Subtractive genomics has been successfully used by authors to locate novel drug targets in *Pseudomonas aeruginosa* [2]. The work has been effectively complemented with the compilation of the Database of Essential Genes (DEG) for a number of pathogenic microorganisms [3]. The current studies make use of the subtractive genomics approach and DEG to analyze the complete genome of *Salmonella typhi* to search for potential vaccine candidates which would possibly lie on the surface membrane of the pathogen and drug targets.

Salmonella enterica serovar typhi is a human-specific gram-negative pathogen causing enteric typhoid fever, a severe infection of the reticuloendothelial system [4], [5], [6]. It has two strains CT18 (multiple drug resistant) [7] and Ty with a complete proteome of 4718 proteins. Worldwide, typhoid fever affects roughly millions of people annually, causing deaths. Infection of *S. typhi* leads to the development of typhoid, or enteric fever. This disease is characterized by the sudden onset of a sustained and systemic fever, severe headache, nausea, and loss of appetite. Other symptoms include constipation or diarrhea, enlargement of the spleen, possible development of meningitis, and/or general depression. Untreated typhoid fever cases result in mortality rates ranging from 12-30% while treated cases allow for 99% survival. The early administration of antibiotic treatment has proven to be highly effective in eliminating infections, but indiscriminate use of antibiotics has led to the emergence of multidrug-resistant strains of *S. enterica* serovar *Typhi* [8]. Chloramphenicol was the drug for the treatment of this infection till plasmid mediated chloramphenicol resistance was encountered [9]. Following this ciprofloxacin became the mainstay of treatment being a safer and more effective drug than Chloramphenicol but after clinical resistance to treatment with ciprofloxacin in the patients suffering from enteric fever, the choice left now is an expensive drug like ceftriaxone or cefexime.[10]. Resistance against ceftriaxone have been reported to CDC (Centre for Drug Control) [11] mild to moderate side effects have been shown for ceftriaxone. The novel targets identified by us using subtractive genomics will help enable understanding the biology of the pathogen to provide a more cost effective medication.

Methodology:
The systematic identification and characterization of potential targets in *salmonella typhi* is illustrated in Figure 1.

Retrieval of proteomes of host and pathogen:
The complete proteome of *Salmonella typhi* were retrieved from SwissProt [12] and protein sequences of *Homo sapiens* were downloaded from NCBI [13]. The Database of Essential genes was accessed from its location http://tubic.tju.edu.cn/deg/.

Identification of essential proteins in *S. typhi*:
The *S. typhi* proteins were purged at 60% using CD-HIT [14] to identify the paralogs or duplicates proteins within the proteome of *Styphi*. The paralogs are excluded and the remaining sets of protein were subjected to BlastP against *Homo sapiens* protein sequences with the expectation value (E-value) cutoff of 10⁻⁸. The resultant dataset obtained were with no homologs in *Homo sapiens*. BLASTP analysis was performed for the non homologous protein sequences of *S. typhi* against DEG with E-value cutoff score of 10⁻⁹⁰. A minimum bit-score cut-off of 100 was used to screen out genes that appeared to represent essential genes. The protein sequences obtained are non homologous essential proteins of *S. typhi*.

Metabolic pathway analysis:
Metabolic pathway analysis of the essential proteins of *S. typhi* was done by KAAS server at KEGG for the identification of potential targets. KAAS (KEGG Automatic Annotation Server) provides functional annotation of genes by BLAST comparisons against the manually curated KEGG GENES database. The result contains KO (KEGG Orthology) assignments and automatically generated KEGG pathways. [15]
Figure 1: Flow chart for systematic identification and characterization of potential targets in *Salmonella typhi*.

Sub-cellular Localization prediction:
Protein sub cellular localization prediction involves the computational prediction of where a protein resides in a cell. Prediction of protein sub cellular localization is an important component as it predicts the protein function and genome annotation, and it can aid the identification of targets. Sub-cellular localization analysis of the essential protein sequences has been done by Proteome Analyst Specialized Subcellular Localization Server v2.5 (PA-SUB) [16] to identify the surface membrane proteins which could be probable vaccine candidates.

Discussion:
The results obtained through computational analysis reveals that out of 4718 proteins in *Salmonella typhi* 159 were identified as duplicates through CD-HIT with 60% similarity. The remaining 4559 paralogs were subjected to subtractive genomics which leads to 3570 proteins. These 3570 proteins when subjected to blastp against DEG database showed 300 proteins, which were essential for the pathogen. The results for subtractive proteome approach, metabolic pathway analysis and sub cellular localization are listed in Table No. 1(Supplementary material). The purpose of the present studies was to locate those essential proteins of *S. typhi* that play vital roles in the normal functioning of the bacterium within the host and to pick out them in the view of targeting. Detection of non-human homologs in the essential proteins of *S. typhi* with subsequent screening of the proteome to find the resultant protein product are likely to lead to development of drugs that exclusively interact with the pathogen. The non-human homologs of the surface proteins would represent potential vaccine candidates. 300 of the essential proteins were without human homologs. Metabolic pathway analyses of these 300 essential proteins by KAAS server at KEGG revealed that out of 300, 149 proteins might be concluded to be unique and are invariably linked with essential metabolic and signal transduction pathways. Presumably, screening against such novel targets for functional inhibitors will result in discovery of novel therapeutic compounds active against bacteria, including the increased number of antibiotic resistant clinical strains [17].

Metabolic pathway analyses of the 149 essential proteins revealed that 15 proteins are involved in Carbohydrate Metabolism, 10 in Energy Metabolism, 5 in Lipid Metabolism, 4 in Nucleotide Metabolism, 30 in Amino Acid Metabolism, 20 in Glycan Biosynthesis and Metabolism, 16 in Metabolism of Co-factors and Vitamins, 20 in genetic information processing, 26 in environmental information processing and 2 in human disease. The results are summarized in Table 2 (Supplementary material). Comparative
analysis of the metabolic pathways of the host (*Homo sapiens*) and the pathogen (*Salmonella typhi*) by using Kyoto Encyclopedia of Genes and Genomes (KEGG) reveals 8 pathways which are unique to *S. typhi*. Thereafter, each selected pathway was screened for the unique enzymes and proteins involved. The peptidoglycan layer of the bacterial cell wall is the major structural element which plays an important role in pathogenesis as it provides resistance to osmotic lysis. D-alanine is the central molecule in the peptidoglycan assembly and cross-linking. D-alanine-D-alanine ligase (ddlA) is an important target as it is involved in D-alanine metabolism. Lipopolysaccharides (LPS) are also one of the main constituents of the outer cell wall of gram negative bacteria and play an important role for the survival of the pathogen. Out of the 14 enzymes involved in LPS biosynthesis pathway, 13 enzymes are found to be essential for the variability of the bacteria and could be probable drug targets and it did not show homology with any human protein.

Two-component systems of bacteria represent the primary signal transduction paradigm in prokaryotic organisms. 8 essential enzymes were found to be potential targets in this pathway. Tryptophan synthase beta chain (trpB) is an important enzyme as it is involved in tyrosine and tryptophan biosynthesis pathway. Chemotaxis protein (MotA) and chemotaxis protein methyltransferase (CheR) is essential enzyme due to its involvement in multiple metabolic pathways like cell Motility, bacterial chemotaxis and flagellar assembly. Phosphoenolpyruvate (ppc) has been identified as a possible target due to its involvement in carbon fixation in photosynthetic organism, pyruvate metabolism and reductive carboxylase cycle. The focus of the present studies was to hunt for potential targets in *S. typhi* by computational approach. The sub-cellular localization prediction done by PA-SUB identify 11 proteins lying on the surface of the pathogen which could represent promising candidates for further characterization and analysis with a support to vaccine design. The results are summarized in Table No. 3 (Supplementary material)

Conclusion:
The availability of full genomic and proteomic sequences generated from the sequencing projects along with the computer-aided softwares to identify and characterize probable drug targets is a new emerging trend in pharmacogenomics. The application of the Database of essential genes helps to identify the potential drug targets in pathogens. The current study helps in the characterization of the potential proteins that could be targets for efficient drug design against *Salmonella typhi*. As subtractive genomic approach is applied for the identification of drug targets, so the drug would be specific for the pathogen and not lethal to the host. Molecular modeling of the targets will decipher the best possible active sites that can be targeted by simulations for drug design. Virtual screening against these potential targets might be useful in the discovery of potential therapeutic compounds against *Salmonella typhi*.

References:

[1] L Miesel et al., Nat Rev Genet. 4: 442 (2003) [PMID: 12776214]
[2] K Sakharkar et al., In Silico Biol. 4: 28 (2004) [PMID: 15724285]
[3] R Zhang et al., Nucleic Acids Res. 37: D455 (2009) [PMID: 18974178]
[4] P Everest et al., Trends Microbiol. 9: 316 (2001) [PMID: 11435104]
[5] JE Galan Mol Microbiol. 20: 263 (1996) [PMID: 8733226]
[6] BD Jones et al., Annu Rev Immunol.14: 533 (1996) [PMID: 8717524]
[7] J Parkhill et al., Nature 413: (2001) [PMID: 11677608]
[8] B Rowe et al., Clin Infect Dis. 24: S106 (1997) [PMID: 8994789]
[9] A Kapil et al., Indian J Pathol Microbiol. 37: 179 (1994) [PMID: 7959985]
[10] A Kapil Indian J Med Res. 121: 83 (2005) [PMID: 15756040]
[11] E. Steinburg et al. Antimicrobial Resistance of *Salmonella typhi* in the United States: the National Antimicrobial Monitoring System (NARMS), 1999
[12] http://www.expasy.ch/sprot/
[13] http://www.ncbi.nlm.nih.gov/
[14] W Li et al., Bioinformatics 17: 282 (2001) [PMID: 11294794]
[15] Y Moriya et al., Nucleic Acids Res. 35: W182 (2007) [PMID: 17526222]
[16] Z Lu et al., Bioinformatics 20: 547 (2004) [PMID: 1499045]
[17] J Thanassi et al., Nucleic Acid Res. 30: 3152 (2002) [PMID: 12136097]

License statement: This is an open-access article, which permits unrestricted use, distribution, and reproduction in any medium, for non-commercial purposes, provided the original author and source are credit.
Table 1: Subtractive proteomic and metabolic pathway analysis result for *Salmonella typhi*

Salmonella typhi	Number
Total Number of proteins	4718
Duplicates (>60% identical) in CD-HIT	159
Non-paralogs	4559
Non-human homologous proteins (E-value 10^-4)	3570
Essential protein in DEG (E-value 10^-100)	300
Essential proteins involved in metabolic pathways	149
Pathways unique to the organism (*S*typhi)	8
Proteins involved in unique pathways	27
Membrane associated non-human homologs of essential genes	11

Table 2: Essential proteins of *S*typhi involved in several metabolic pathways

SN	KO	Protein Name	Gene Name	Pathway	EC
1	K02777	glucose-specific IIA component	crr	Phosphotransferase system	EC:2.7.1.69
2	K01643	citrate lyase subunit alpha	citF	Environmental Information Processing	EC:4.1.3.6
3	K00117	Quinoprotein dehydrogenase glucose	gcd	Pentose pathway phosphate	EC:1.1.1.130
4	K08092	3-dehydro-L-gulonate 2-Dehydrogenase	E1.1.1.130	Pentose and glucuronate Interconversions	EC:1.1.1.130
5	K02798	mannitol-specific IIA component	mtlA	Phosphotransferase system	EC:2.7.1.69
6	K01818	L-fucose isomerase	fucI	Fructose and mannose metabolism	EC:5.3.1.25
7	K02821	ascorbate-specific IIA component	sgaA	Phosphotransferase system	EC:2.7.1.69
8	K01788	-acylglucosamine-6-phosphate 2-epimerase	nanE	Aminosugars metabolism	EC:5.1.3.9
9	K03431	phosphoglucominase mutase	glmM	Aminosugars metabolism	EC:5.4.2.10
10	K00790	UDP-N-acetylglucosamine 1-carboxyvinyltransferase	murA	Aminosugars metabolism	EC:2.5.1.7
11	K00075	UDP-N-acetylMuraminate dehydrogenase	murB	Aminosugars metabolism	EC:1.1.1.158
12	K01595	phosphoenolpyruvate carboxylase	Ppc	Pyruvate metabolism	EC:4.1.3.31
13	K00656	formate C-acetyltransferase	pfDA	Pyruvate metabolism	EC:2.3.1.54
14	K00925	acetate kinase	ackA	Pyruvate metabolism	EC:2.7.2.1
15	K00932	propionate kinase	tdeD	Propanoate metabolism	EC:2.7.2.15

Carbohydrate metabolism

Carbohydrate metabolism	KO	Protein Name	Gene Name	Pathway	EC
1	K00425	cytochrome bd-I oxidase subunit I	cydA	Oxidative phosphorylation	EC:1.1.3.1
2	K00426	cytochrome bd-I oxidase subunit I	cydB	Oxidative phosphorylation	EC:1.1.3.1
3	K01595	phosphoenolpyruvate carboxylase	Ppc	Oxidative phosphorylation	EC:4.1.3.31
4	K00926	carbamate kinase	arc	Nitrogen metabolism	EC:2.7.2.2
5	K01916	NAD+ synthase	NADE	Nitrogen metabolism	EC:6.3.1.5
6	K01914	aspartate--ammonia ligase	AsnA	Nitrogen metabolism	EC:6.3.1.1
7	K00264	Glutamate synthase (NADPH/NADH)	GLT1	Nitrogen metabolism	EC:1.4.1.13
8	K03385	formate-dependent nitrite reductase	NrfA	Nitrogen metabolism	EC:1.7.2.2
9	K00369	nitrate reductase	E1.7.99.4	Nitrogen metabolism	EC:1.7.99.4
10	K00640	serine O-acetyltransferase	CysE	Sulfur metabolism	EC:2.3.1.30

Energy metabolism

Energy metabolism	KO	Protein Name	Gene Name	Pathway	EC
1	K00425	cytochrome bd-I oxidase subunit I	cydA	Oxidative phosphorylation	EC:1.1.3.1
2	K00426	cytochrome bd-I oxidase subunit I	cydB	Oxidative phosphorylation	EC:1.1.3.1
3	K01595	phosphoenolpyruvate carboxylase	Ppc	Oxidative phosphorylation	EC:4.1.3.31
4	K00926	carbamate kinase	arc	Nitrogen metabolism	EC:2.7.2.2
5	K01916	NAD+ synthase	NADE	Nitrogen metabolism	EC:6.3.1.5
6	K01914	aspartate--ammonia ligase	AsnA	Nitrogen metabolism	EC:6.3.1.1
7	K00264	Glutamate synthase (NADPH/NADH)	GLT1	Nitrogen metabolism	EC:1.4.1.13
8	K03385	formate-dependent nitrite reductase	NrfA	Nitrogen metabolism	EC:1.7.2.2
9	K00369	nitrate reductase	E1.7.99.4	Nitrogen metabolism	EC:1.7.99.4
10	K00640	serine O-acetyltransferase	CysE	Sulfur metabolism	EC:2.3.1.30

Lipid metabolism

Lipid metabolism	KO	Protein Name	Gene Name	Pathway	EC
1	K00648	3-oxoacyl-[acyl-carrier-protein] synthase III	fabH	Fatty acid biosynthesis	EC:2.3.1.180
2	K03527	4-hydroxy-3-methylbut-2-enyl diphosphate reductase	ispH	Biosynthesis of steroids	EC:1.1.7.12
3	K03526	(E)-4-hydroxy-3-methylbut-2-enyl-diphosphate synthase	isP	Biosynthesis of steroids	EC:1.1.7.7.1
4	K00919	1-dephosphocytidyl-2-C-methyl-D-erythritol kinase	ispE	Biosynthesis of steroids	EC:2.7.1.148
5	K00099	1-deoxy-D-xylulose-5-phosphate reductoisomerase	Dxr	Biosynthesis of steroids	EC:1.1.1.267

ISSN 0973-2063 (online) 0973-8894 (print) Bioinformation 4(4): 143-150 (2009) © 2009 Biomedical Informatics
Compound	Reaction	EC Number	Metabolism		
GTP pyrophosphokinase	relA	Purine metabolism	EC:2.7.6.5		
uridylyl kinase	pyrH	Pyrimidine metabolism	EC:2.7.4.22		
DNA-directed RNA polymerase subunit alpha	rpoA	Genetic Information Processing	EC:2.7.7.6		
DNA polymerase I	polB1	Purine metabolism	EC:2.7.7.7		
carbamate kinase	arc	Glutamate metabolism	EC:2.7.2.2		
glutamate racemase	mruI	Glutamate metabolism	EC:5.1.1.3		
alanine racemase	Alr	Alanine and aspartate metabolism	EC:5.1.1.1		
aminoacylhistidine dipeptidase	pepD	Alanine and aspartate metabolism	EC:3.4.13.3		
homoserine dehydrogenase	thrA	Glycine, serine and threonine metabolism	EC:1.1.1.3		
aspartate-semialdehyde dehydrogenase	asd	Glycine, serine and threonine metabolism	EC:1.2.1.11		
5-methyltetrahydropteroyltriglutamate—homocysteine	metE	Methionine metabolism	EC:2.1.1.14		
S-adenosylhomocysteine/5'-methylthioadenosine nucleosidase	mtnN, mtn,pfs	Methionine metabolism	EC:3.2.2.9		
dihydridopicolinate reductase	dapB	Lysine biosynthesis	EC:1.3.1.26		
2,3,4,5-tetrahydroxyproline-2-carboxylate N-succinyltransferase	dapD	Lysine biosynthesis	EC:2.3.1.117		
diaminopimelate epimerase	dapF	Lysine biosynthesis	EC:5.1.1.7		
UDP-N-acetyluramoylalanyl-D-glutamyl-2,6-diaminopimelate—D-alanine ligase	murF	Lysine biosynthesis	EC:6.3.2.10		
UDP-N-acetylmuramoylalanyl-D-glutamate—2,6-diaminopimelate ligase	murE	Lysine biosynthesis	EC:6.3.2.13		
succinylarginine dihydrolase	astB	Arginine and proline metabolism	EC:3.5.3.23		
arginine N-succinyltransferase	astA	Arginine and proline metabolism	EC:2.3.1.109		
ATP phosphoribosyltransferase	hisG	Histidine metabolism	EC:2.4.2.17		
phosphoribosyl-ATP pyrophosphohydrolase	hisE	Histidine metabolism	EC:3.6.1.31		
phosphoribosyl-AMP cyclohydrolase	hisI	Histidine metabolism	EC:3.5.4.19		
imidazoleglycerol-phosphate dehydratase	hisB	Histidine metabolism	EC:4.2.1.19		
imidazoleglycerol-phosphate dehydratase / histidinol- phosphate / histidinol-hosphate	hisB	Histidine metabolism	EC:4.2.1.19		
3-deoxy-7-phosphoheptulonate synthase	aroF,aroG, aroH	Phenylalanine, tyrosine and tryptophan biosynthesis	EC:2.5.1.54		
3-dehydroquininate synthase	ARO1	Phenylalanine, tyrosine and tryptophan biosynthesis	EC:4.2.3.4		
Tryptophan synthase beta chain	trpB	Phenylalanine, tyrosine and tryptophan biosynthesis	EC:4.2.1.20		
Tryptophan synthase alpha chain	trpA	Phenylalanine, tyrosine and tryptophan biosynthesis	EC:4.2.1.20		
chorismate synthase	aroC	Phenylalanine, tyrosine and tryptophan biosynthesis	EC:4.2.3.5		
chorismate synthase	E5.4.99.5	Phenylalanine, tyrosine and tryptophan biosynthesis	EC:5.4.99.5		
N-acetyl-gamma-glutamylphosphate reductase	argC	Urea cycle And metabolism of amino groups	EC:1.2.1.38		
UDP-N-acetylmuramoylalaneine—D-glutamate ligase	murD	D-Glutamine and D-glutamate metabolism	EC:6.3.2.9		
UDP-N-acetylmuramoylalaneine—D-glutamate ligase	murC	D-Glutamine and D-glutamate metabolism	EC:6.3.2.8		
D-alanine-D-alanine ligase	ddlA	D-Alanine metabolism	EC:6.3.2.4		
LpxA	Lipopolysaccharide	EC:2.3.1.129			
Acyltransferase biosynthesis	K02535	UDP-3-O-[3-hydroxymyristoyl] N-acetylglycosamine deacetylase	lpxC	Lipopolysaccharide biosynthesis	EC:3.5.1.
-----------------------------	--------	---	------	--------------------------------	----------
	K02536	UDP-3-O-[3-hydroxymyristoyl] glucosamine N-acetyltransferase	lpxD	Lipopolysaccharide biosynthesis	EC:2.3.1.
	K03269	UDP-2,3-diacylglycosamine hydrolase	lpxH	Lipopolysaccharide biosynthesis	EC:3.6.1.
Lipopolysaccharide	K00748	lipid-A-disaccharide synthase	lpxB	Lipopolysaccharide biosynthesis	EC:2.4.1.182
biosynthesis	K00912	3-deoxy-D-manno-octulosonic-acid transferase	lpxK	Lipopolysaccharide biosynthesis	EC:2.7.1.130
EC:3.5.1.	K02527	3-deoxy-manno-octulosonate cytidylyltransferase	lpxD	Lipopolysaccharide biosynthesis	EC:2.7.7.38
EC:2.4.1.182	K01627	2-dehydro-3-deoxyphosphoctonate aldolase	lpxC	Lipopolysaccharide biosynthesis	EC:2.5.1.55
Metabolism of Co-factors and Vitamins	K02841	heptosyltransferase I	waaC, rfaC	Lipopolysaccharide biosynthesis	EC:2.4.1227
	K02843	heptosyltransferase II	waaF, rfaF	Lipopolysaccharide biosynthesis	EC:2.4.1227
	K02840	Galactosyltransferase	waaB, rfaB	Lipopolysaccharide biosynthesis	EC:2.4.1227
	K02844	Glucosyltransferase	waaG, rfaG	Lipopolysaccharide biosynthesis	EC:2.4.1227
	K02847	O-antigen ligase	waaL, rfaL	Lipopolysaccharide biosynthesis	EC:2.4.1227
	K01921	D-alanine-D-alanine ligase	ddlA	Peptidoglycan biosynthesis	EC:6.3.2.4
	K01000	phospho-N-acetylmuramylpentapeptide-transferase	mraY	Peptidoglycan biosynthesis	EC:2.7.8.13
	K02563	UDP-N-acetylmuramyl-N-acetylmuramylpentapeptide pyrophosphoryl-undecaprenol N-acetylglycosamine transferase	murG	Peptidoglycan biosynthesis	EC:2.4.1227
	K01924	UDP-N-acetylmuramate-alanine ligase	murC	Peptidoglycan biosynthesis	EC:6.3.2.8
	K01925	UDP-N-acetylmuramoylalanine--D-glutamate ligase	murD	Peptidoglycan biosynthesis	EC:6.3.2.9
	K03587	cell division protein FtsI	ftsI	Peptidoglycan biosynthesis	EC:2.4.1.129
Metabolism of Co-factors and Vitamins	K03147	thiamine biosynthesis protein ThiC	thiC	Thiamine metabolism	EC:2.7.4.16
	K00946	thiamine-monophosphate kinase	thiL	Thiamine metabolism	EC:3.5.4.25
	K01497	GTP cyclohydrolase II	ribA	Riboflavin metabolism	EC:3.5.4.26
	K01498	diaminohydroxyphosphoribosylaminopyrimidine deaminase	ribA	Riboflavin metabolism	EC:3.5.4.26
	K00082	5-amino-6-(5-phosphoribosylamino) uracil reductase	E1.1.1.193	Riboflavin metabolism	EC:1.1.1.193
	K02858	3,4-dihydroxy 2-butanoate 4-phosphate synthase	ribB	Riboflavin metabolism	EC:2.5.1.9
	K00793	riboflavin synthase alpha chain	ribE	Riboflavin metabolism	EC:2.6.99.2
	K03474	pyridoxine synthase 5-phosphate	pdxJ	Riboflavin metabolism	EC:2.7.7.18
	K00969	nicotinate-nucleotide adenyltransferase	nadD	Nicotinate and nicotinamide metabolism	EC:2.8.1.6
	K03517	quinolinate synthase	nadA	Nicotinate and nicotinamide metabolism	EC:2.6.1.85
	K01012	biotin synthetase	bioB	Biotin metabolism	EC:2.8.1.6
	K01664	para-aminobenzoate synthetase component II	pabA	Folate biosynthesis	EC:2.6.1.85
	K02302	uroporphyrin-III C-methyltransferase / precorrin-2 dehydrogenase / sirohydrochlorin ferrochelatase	cysG	Porphyrin and chlorophyll metabolism	EC:2.1.1.107
	K02492	glutamyl-tRNA reductase	hemA	Porphyrin and chlorophyll metabolism	EC:1.3.1.76
	K02551	2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate synthase	mend	Ubiquinone and menaquinone biosynthesis	EC:1.2.1.70
	K03182	3-octaprenyl-4-hydroxybenzoate carboxy-lyase UbD	ubiD	Ubiquinone and menaquinone biosynthesis	EC:4.1.1.3

Xenobiotics Biodegradation and Metabolism

Metabolism of Co-factors and Vitamins	K03147	thiamine biosynthesis protein ThiC	thiC	Thiamine metabolism	EC:2.7.4.16
	K00946	thiamine-monophosphate kinase	thiL	Thiamine metabolism	EC:3.5.4.25
	K01497	GTP cyclohydrolase II	ribA	Riboflavin metabolism	EC:3.5.4.26
	K01498	diaminohydroxyphosphoribosylaminopyrimidine deaminase	ribA	Riboflavin metabolism	EC:3.5.4.26
	K00082	5-amino-6-(5-phosphoribosylamino) uracil reductase	E1.1.1.193	Riboflavin metabolism	EC:1.1.1.193
	K02858	3,4-dihydroxy 2-butanoate 4-phosphate synthase	ribB	Riboflavin metabolism	EC:2.5.1.9
	K00793	riboflavin synthase alpha chain	ribE	Riboflavin metabolism	EC:2.6.99.2
	K03474	pyridoxine synthase 5-phosphate	pdxJ	Riboflavin metabolism	EC:2.7.7.18
	K00969	nicotinate-nucleotide adenyltransferase	nadD	Nicotinate and nicotinamide metabolism	EC:2.8.1.6
	K03517	quinolinate synthase	nadA	Nicotinate and nicotinamide metabolism	EC:2.6.1.85
	K01012	biotin synthetase	bioB	Biotin metabolism	EC:2.8.1.6
	K01664	para-aminobenzoate synthetase	pabA	Folate biosynthesis	EC:2.6.1.85
	K02302	uroporphyrin-III C-methyltransferase / precorrin-2 dehydrogenase / sirohydrochlorin ferrochelatase	cysG	Porphyrin and chlorophyll metabolism	EC:2.1.1.107
	K02492	glutamyl-tRNA reductase	hemA	Porphyrin and chlorophyll metabolism	EC:1.3.1.76
	K02551	2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate synthase	mend	Ubiquinone and menaquinone biosynthesis	EC:1.2.1.70
	K03182	3-octaprenyl-4-hydroxybenzoate carboxy-lyase UbD	ubiD	Ubiquinone and menaquinone biosynthesis	EC:4.1.1.3
Bioinformation

www.bioinformation.net

Hypothesis	EC:1.12.99.6L	Xenobiotics biodegradation metabolism and EC:1.12.99.6

Genetic information processing

Transcription

Gene ID	Description	GO:0005647 (RNA polymerase activity)	GO:0005745 (transcription)
1 K06281	hydrogenase large subunit	E1.12.99.6L	Xenobiotics biodegradation metabolism and EC:1.12.99.6

Translation

Gene ID	Description	GO:0006412 (translation)
1 K02986	small subunit ribosomal RP-S4, rotein S4	rpsD
2 K01878	glycyl-tRNA synthetase alpha chain	glyQ

Folding, sorting and degradation

Gene ID	Description	GO:0006412 (translation)
1 K03070	Preprotein translocase SecA subunit	secA
2 K03076	preprotein translocase SecY subunit	secY
3 K03072	Preprotein translocase SecD subunit	secD
4 K03074	preprotein translocase SecF subunit	secF

Replication and Repair

Gene ID	Description	GO:0006412 (translation)
1 K02342	DNA polymerase III subunit DPO3E, epsilon	dnaQ
2 K02337	DNA polymerase III subunit DPO3A1, alpha	dnaE
3 K02341	DNA polymerase III subunit DPO3D2, delta	holB
4 K02338	DNA polymerase III subunit DPO3B, beta	dnaN
5 K02340	DNA polymerase III subunit DPO3D1, delta	holA

Environmental Information Processing

Membrane Transport

Gene ID	Description	GO:0006412 (translation)
1 K02047	sulfate transport system permease protein	cysW
2 K11070	spermidine/putrescine transport system permease protein	potC
3 K11069	spermidine/putrescine transport system substrate-binding protein	potD
4 K10540	methyl-galactoside transport system protein	mglB

Environmental Information Processing

Membrane Transport

Gene ID	Description	GO:0006412 (translation)
5 K02040	phosphate transport system substrate-binding protein	pstS
6 K10015	histidine transport system permease protein	hisM
7 K10002	glutamate/aspartate transport system permease protein	gltK
8 K10009	cystine transport system permease protein	ABC.CYST.P
9 K02035	peptide/nickel transport system substrate-binding protein	ABC.PE.S
10 K02016	iron complex transport system substrate-binding protein	ABC.FEV.S
11 K09808	lipoprotein-releasing system permease protein	ABC.LPT.P, lalC, lalE
12 K09811	cell division transport system permease protein	ftsX
13 K07091	lipopolysaccharide export system permease protein	lptF
14 K11720	lipopolysaccharide export system permease protein	lptG
15 K02778	PTS system, glucose-specific IIB component	PTS-Glc-EIIB, ptsG
16 K03475	PTS system, ascorbate-specific IIC component	PTS-Ula-EIIC, laA, sgaT
Signal Transduction

1. **K07636** two-component system, OmpR family, phosphate regulon sensor histidine kinase PhoR (PhoR) | Signal Transduction | EC:2.7.13.3
2. **K07639** two-component system, OmpR family, sensor histidine kinase RstB (RstB) | Signal Transduction | EC:2.7.13.3
3. **K02556** chemotaxis protein MotA (motA) | Signal Transduction
4. **K00370** nitrate reductase 1, alpha subunit (narG) | Signal Transduction | EC:1.7.99.4
5. **K00990** [protein-PHI] uridylyltransferase (glnD) | Signal Transduction | EC:2.7.7.59
6. **K03407** two-component system, chemotaxis family, sensor kinase CheA (cheA) | Signal Transduction | EC:2.7.13.3
7. **K00575** chemotaxis protein methyltransferase CheR (cheR) | Signal Transduction | EC:2.1.1.80

Human Diseases

Infectious Diseases

1. **K03092** RNA polymerase sigma-54 factor (SIG54, rpoN) | Vibrio cholerae pathogenic cycle
2. **K05851** adenylate cyclase, class I (E4.6.1.1A, cyaA) | Vibrio cholerae pathogenic cycle | EC:4.6.1.1

Table 3: List of the outer membrane proteins of *Salmonella typhi* identified by PA-SUB

S.N	Accession No	Name of Protein	Sub-Cellular Localization
1	Q56110	Outer membrane protein S1	Outer membrane
2	Q56119	Outer membrane pore protein	Outer membrane
3	Q8Z8P3	Outer membrane usher protein FimD	Outer membrane
4	Q8Z944	Outer membrane fimbrial usher protein	Outer membrane
5	Q8Z4Y8	Long chain fatty acid transport protein	Outer membrane
6	Q8Z1S4	Putative Type-I secretion protein	Outer membrane
7	Q8X1L5	Putative exported protein	Outer membrane
8	Q8Z9A3	Outer membrane protein assembly factor yaeT	Outer membrane
9	Q8Z9J6	LPS-assembly protein	Outer membrane
10	Q8Z4J0	Putative lipoprotein	Outer membrane
11	Q8Z6A0	Outer membrane lipoprotein lolB	Outer membrane