The continuum limit of the Kuramoto model on sparse random graphs

Georgi S. Medvedev

December 4, 2018

Abstract

In this paper, we study convergence of coupled dynamical systems on convergent sequences of graphs to a continuum limit. We show that the solutions of the initial value problem for the dynamical system on a convergent graph sequence tend to that for the nonlocal diffusion equation on a unit interval, as the graph size tends to infinity. We improve our earlier results in [Medvedev, The nonlinear heat equation on W-random graphs, Arch. Rational Mech. Anal., 212(3), pp. 781803] and extend them to a larger class of graphs, which includes directed and undirected, sparse and dense, random and deterministic graphs.

There are three main ingredients of our approach. First, we employ a flexible framework for incorporating random graphs into the models of interacting dynamical systems, which fits seamlessly with the derivation of the continuum limit. Next, we prove the averaging principle for approximating a dynamical system on a random graph by its deterministic (averaged) counterpart. The proof covers systems on sparse graphs and yields almost sure convergence on time intervals of order $\log n$, where n is the number of vertices. Finally, a Galerkin scheme is developed to show convergence of the averaged model to the continuum limit.

The analysis of this paper covers the Kuramoto model of coupled phase oscillators on a variety of graphs including sparse Erdős-Rényi, small-world, and power law graphs.

Keywords: continuum limit, random graph, sparse graph, graph limit, Galerkin method.

1 Introduction

Understanding principles of collective dynamics in large ensembles of interacting dynamical systems is a fundamental problem in nonlinear science with applications ranging from neuronal and genetic networks to power grids and the Internet. The key distinction of coupled dynamical systems considered in this paper from classical spatially extended systems such as partial differential equations or lattice dynamical systems is that the spatial domain of the former class of models is a general graph. Given an enormous variety of graphs and their complexity, analyzing dynamical systems on large and, in particular, on random graphs is a challenging problem.

*Department of Mathematics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, medvedev@drexel.edu
In [11, 12], we initiated a study of the continuum limit of systems of coupled phase oscillators on convergent families of graphs. We used the fact that a large class of (dense) graphs, including many of those of interest in applications, can be conveniently described analytically by a measurable function on a unit square, called a graphon [8]. Roughly speaking, a graphon represents a limit of the adjacency matrix of a graph as its size tends to infinity. Using graphons, we were able to derive and justify the continuum limit for the Kuramoto model (KM) on a great variety of graphs, which led to new studies of the KM on nontrivial graphs [13, 14, 16, 3]. Importantly, the same approach can be successfully applied to justify the mean field limit for coupled dynamical systems on graphs [2, 7].

The analysis in [11, 12] did not cover the KM on sparse graphs. The progress in this direction became possible with the theory of L_p graphons used to define graph limits for sparse graphs of unbounded degree [1]. Using the insights from [1], we addressed the problem of the continuum limit of the KM on sparse graphs in [6]. While we were able to extend many of our techniques to the KM on a large class of sparse graphs (including power-law graphs), some of the results in [6] apply only to systems with linear diffusion. In the present work, we unify and, in the case of the KM on random graphs, significantly improve the results in [11, 12, 6]. The contribution of this paper is twofold. First, we propose a flexible framework for describing directed and undirected, sparse and dense, random and deterministic graphs to be used in interacting dynamical systems models. This framework naturally leads to continuum models approximating dynamical systems on large graphs. Second, we refine our techniques to obtain stronger results on convergence to the continuum limit, which, in addition, apply to a wider class of graphs than in [12, 6]. Even for the KM on dense graphs, our results are much stronger: we show convergence of solutions on the time intervals of order $\log n$, compared to finite intervals in [12]¹. Furthermore, in the present work, convergence is shown with probability 1 versus convergence in probability in the earlier papers [12, 6]. Finally, our results apply to the KM on sparse directed graphs, which have not been considered in [12, 6]. Taken together, the results of this paper reveal a fuller potential of our method for proving convergence of discrete problems on graphs to a continuum limit.

As in [12], the main result of this work is the proof of convergence of solutions of the initial value problems (IVPs) for the KM on graphs to the solution of that for the limiting nonlocal diffusion equation as the size of the graph tends to infinity. In its most basic version, the result may be seen as convergence of numerical discretization of a nonlocal diffusion equation. The contribution of this paper, however, is much deeper and more interesting. For starters, we consider dynamical problems on random graphs. This situation is not treated in classical numerical analysis. More importantly, we use minimal regularity assumptions on the limiting graphon W. The only assumption is that W is a square integrable function on a unit square. This allows us to treat a huge class of graphs and affords great flexibility in applications. The fact that W does not require any regularity beyond integrability means, in particular, that the order, in which vertices are sampled, is irrelevant. Last but not least, the convergence problem analyzed in this work is motivated by concrete questions about the dynamics of large networks [17, 15, 3].

There are three main ingredients in our proof of convergence. First, as we commented above, we construct convergent families of graphs in the spirit of W-random graphs [9]. This description covers a broad class of graphs and fits seamlessly with the analysis of convergence of the discrete models to the continuum limit. In particular, the limit of the graph sequence, given by a measurable real-valued function W on the

¹The very last step in the proof of Theorem 3.3 of [12] estimating $\mathbb{P} \left(\sup_{t \in [0, T]} \| z_n(t) \|_2^n > Cn^{-1} \right)$ is incorrect (see [10] for corrections).
unit square, is used later in the derivation of the continuum model as a kernel of a nonlocal diffusion term. Many random graph models like small-world, Erdős-Rényi, and even power law graphs have relatively simple graph limits, which makes the corresponding continuum models amenable to analysis \cite{[12],[16],[15]}. The key tool for dealing with the models on random graphs is the averaging principle, which justifies approximation of a coupled system on a random graph by an averaged deterministic model on a complete weighted graph. Finally, the proof of convergence of the discrete deterministic models to the continuous one employs the interpretation of the discrete problems as Galerkin approximation of the continuum limit (cf. \cite{[4]}). The Galerkin method is used to show existence and uniqueness of the weak solution of the IVP for the continuous problem. The fixed point argument used in \cite{[11],[6]} does not apply the more general problem considered in this paper.

The organization of the paper is as follows. In the next section, we define convergent graph sequences that are used in the remainder of this paper and formulate the KM on random graphs. In Section 3 we state the main result about the convergence of the discrete model on graphs to the continuum model. Here, we also explain the main steps of the proof. In Section 4 we prove the averaging principle, the first main ingredient of the proof of convergence to the continuum limit. It allows to approximate the KM on a random graph by a deterministic model via averaging over all realizations of the random graph model. The averaged model then suggests the continuum limit in the form of a nonlinear nonlocal diffusion equation. In Section 5 we introduce Galerkin approximation of the continuum model and state Theorem 3.1 about the convergence of the Galerkin scheme. The use of the Galerkin method is twofold. First, it establishes the wellposedness of the IVP for the continuum model. Second, it is used to show convergence of the discrete models to the continuum limit. This is the second ingredient of our method. Together with the averaging principle and some auxiliary estimates, it implies the convergence of the KM on random graphs. Section 6 presents the proof on the convergence of the Galerkin method.

2 The KM on graphs

Let $\Gamma_n = (V(\Gamma_n), E_d(\Gamma_n), A_n)$ be a weighted directed graph on n nodes. $V(\Gamma_n) = [n]$ stands for the node set of Γ_n. $A_n = (a_{n,ij})$ is an $n \times n$ weight matrix. The edge set

$$E_d(\Gamma_n) = \{(i,j) \in [n]^2 : a_{n,ij} \neq 0\}.$$

An edge (i, j) is an ordered pair of nodes. We will also use $j \rightarrow i$ to denote the edge (i, j). Loops are allowed.

We will also consider undirected weighted graphs $\Gamma_n = (V(\Gamma_n), E(\Gamma_n), A_n)$. In this case, A_n is a symmetric matrix and the edges are unordered pairs of nodes

$$E(\Gamma_n) = \{\{i, j\} \in [n]^2 : a_{n,ij} \neq 0\}.$$

We will use $i \sim j$ as a shorthand for $\{i, j\} \in E(\Gamma_n)$.
Consider a system of coupled oscillators on a sequence of weighted (directed or undirected) graphs Γ_n.

\begin{align}
\dot{u}_{n,i} &= f(u_{n,i}, t) + (n\alpha_n)^{-1}\sum_{j=1}^{n} a_{n,ij} D(u_{n,j} - u_{n,i}), \quad i \in [n], \quad (2.1) \\
u_{n,i}(0) &= u_{n,i}^0. \quad (2.2)
\end{align}

Here, $u_{n,i} : \mathbb{R} \to \mathbb{T} := \mathbb{R}/2\pi\mathbb{Z}$ stands for the phase of oscillator $i \in [n]$ as a function of time. D is a 2\pi-periodic Lipschitz continuous function, $\text{Lip}(D) = L_D$. Without loss of generality,

$$\max_{u \in \mathbb{T}} |D(u)| = 1. \quad (2.3)$$

Function $f(u, t)$ is a Lipschitz continuous in u, $\text{Lip}_u(f) = L_u$, and continuous in t. The sum on the right-hand side of (2.1) models the interaction between oscillators. Finally, unless otherwise specified $\alpha_n = 1$. The scaling factor α_n will be needed for the KM on sparse random graphs, as explained below.

Equation (2.1) generalizes the original KM by allowing nonlinearity $f(u, t)$ and sequence $\{\Gamma_n\}$ as a spatial domain. We are interested in the large n limit of (2.1), (2.2). One can expect a limiting behavior of solutions of (2.1), (2.2), only if the graph sequence $\{\Gamma_n\}$ has a well defined asymptotic behavior in the limit as $n \to \infty$. We define the asymptotic structure of $\{\Gamma_n\}$ using function $W \in L^1(I^2)$, called a graphon. To define $\{\Gamma_n\}$, we discretize the unit interval by points $x_{n,j} = j/n, \ j \in \{0\} \cup [n]$ and denote $I_{n,i} := (x_{n,i-1}, x_{n,i}], \ i \in [n]$. We chose the uniform mesh $\{x_{n,i}, \ i = 0, 1, \ldots, n\}, \ n \in \mathbb{N}$, for simplicity, as this is sufficient for the applications we have in mind. In general, any dense set of points from $[0, 1]$ can be used. In particular, one could use random points sampled from the uniform distribution on $[0, 1]$, as was done in [12].

The following constructions are used to model a variety of dense and sparse, directed and undirected, random and deterministic graphs.

(DDD) Deterministic directed graphs $\Gamma_n = \langle V(\Gamma_n), E_d(\Gamma_n), A_n = (a_{n,ij}) \rangle$:

$$a_{n,ij} = \langle W \rangle_{I_{n,i} \times I_{n,j}} := n^2 \int_{I_{n,i} \times I_{n,j}} W(x,y) dx dy. \quad (2.4)$$

(DDU) If W is a symmetric function, the same formula defines an undirected graph $\Gamma_n = \langle V(\Gamma_n), E(\Gamma_n), A_n \rangle$.

(RDD) W-random graphs. Let $W : I^2 \to I$ be a nonnegative measurable function. $\Gamma_n = G_d(n, W)$ is a directed random graph on n defined as follows:

$$\mathbb{P}(j \to i) = \langle W \rangle_{I_{n,i} \times I_{n,j}}. \quad (2.5)$$

(RDU) If W is a symmetric function, define an undirected random graph $\Gamma_n = G(n, W)$ as follows

$$\mathbb{P}(i \sim j) = \langle W \rangle_{I_{n,i} \times I_{n,j}}. \quad (2.6)$$

(RSD) Sparse directed W-random graph $\Gamma_n = G_d(n, W, \alpha_n)$. Here, we assume that $W \in L^1(I^2)$ is a nonnegative function and $1 \geq \alpha_n > 0$ such that $n\alpha_n \to \infty$ as $n \to \infty$. The probability of connection between two nodes is defined as follows

$$\mathbb{P}(j \to i) = \alpha_n \langle \tilde{W}_n \rangle_{I_{n,i} \times I_{n,j}}, \quad \tilde{W}_n(x,y) := \alpha_n^{-1} \wedge W(x,y). \quad (2.7)$$

\footnote{Throughout this paper, $a \wedge b := \min\{a, b\}$.}
The undirected sparse W-random graph $\Gamma_n = G(n, W, \alpha_n)$ is defined in exactly the same way

$$P(i \sim j) = \alpha_n \langle \hat{W}_n \rangle_{I_{n,i} \times I_{n,j}},$$

(2.8)

assuming that W is a symmetric nonnegative function.

In the KM (2.1) on random graphs, we assume that $a_{n,ij}$ are Bernoulli random variables with the probability of success defined by (2.5)-(2.8). For undirected graphs, we assume that $a_{n,ij} = a_{n,ji}$.

Remark 2.1. The sequences of undirected graphs constructed above are convergent in the sense of convergence of dense graphs [8] and its generalization to sparse random graphs of unbounded degree [1]. In this paper, we will refer to any of the graph sequence constructed above as a convergent sequence of graphs. The graphon W determines the asymptotic properties of each of these graph sequences. For this reason, W is called a graph limit.

Example 2.2.
1. Sparse power law graph. Let $0 < \beta < \gamma < 1$, $\alpha_n = n^{-\gamma}$ and

$$W(x, y) = (1 - \beta)^2 (xy)^{-\beta}.$$
(2.9)

Then the probability of connections in $\Gamma_n = G(n, W, \alpha_n)$ is given by

$$P(i \sim j) = n^{-\gamma} \langle n^\gamma \wedge W \rangle_{I_{n,i} \times I_{n,j}}.$$
(2.10)

The expected degree $\mathbb{E} \deg(i) = C(\beta, \gamma, n) i^{-\beta}$ for some positive constant $C(\beta, \gamma, n)$ [6, Lemma 2.2]. Thus, this is a power law graph. On the other hand the expected edge density is $O(n^{-\beta})$. Thus, $\{\Gamma_n\}$ is a sparse sequence.

If (2.10) is replaced by

$$P(j \rightarrow i) = n^{-\beta} \langle n^\beta \wedge W \rangle_{I_{n,i} \times I_{n,j}},$$

we obtain a sequence of sparse directed graphs with power law distribution.

2. Sparse Erdős-Rényi graph. Let $\alpha_n = n^{-\gamma}$, $0 < \gamma < 1$ and $W \equiv 1$. $\Gamma_n = G(n, W, \alpha_n)$ is a graph on n nodes with the probability of edges being

$$P(i \sim j) = n^{-\gamma}.$$
(2.11)

The expected value of the edge density in this case is $n^{-\gamma}$ and it is vanishing as $n \to \infty$. However, the expected degree $n^{1-\gamma}$ remains unbounded.

If (2.11) is replaced by

$$P(j \rightarrow i) = n^{-\gamma},$$

we obtain a sequence of sparse directed Erdős-Rényi graphs.

Let $\Gamma_n = G(n, W, \alpha_n)$ be a random sparse directed graph (cf. (RSD)). The number of directed edges pointing to $i \in [n]$ is called an in-degree of i:

$$d_{n,i}^+ = \sum_{j=1}^{n} 1_{\{j \rightarrow i\}},$$
(2.12)
Similarly,
\[d_{n,i}^- = \sum_{j=1}^{n} 1_{\{i \rightarrow j\}} \]
(2.13)
is called an out-degree of \(i \in [n] \).

From the definition of \(\Gamma_n = G(n, W, \alpha_n) \), we immediately have
\[\mathbb{E} d_{n,i}^+ = \sum_{j=1}^{n} \alpha_n \langle \bar{W} \rangle_{I_{n,i} \times I_{n,j}} = \alpha_n n \int_0^1 \bar{W}_n(x, y) dy, \ x \in I_{n,i}, \]
(2.14)
\[\mathbb{E} d_{n,i}^- = \sum_{j=1}^{n} \alpha_n \langle \bar{W} \rangle_{I_{n,j} \times I_{n,i}} = \alpha_n n \int_0^1 \bar{W}_n(y, x) dy, \ x \in I_{n,i}, \]
(2.15)
where \(\bar{W}_n = \sum_{i,j=1}^{n} \langle \bar{W} \rangle_{I_{n,i} \times I_{n,j}} 1_{I_{n,i} \times I_{n,j}} \).

The following assumptions will be needed below:

(W-1)
\[\sup_{n \in \mathbb{N}} \sup_{y \in I} \int_0^1 W_n(x, y) dx =: W_1 < \infty, \]
(W-2)
\[\sup_{i \in [n]} \sup_{x \in I} \int_0^1 W_n(x, y) dy =: W_2 < \infty, \]
where
\[W_n(x, y) = \sum_{i,j=1}^{n} \langle \bar{W} \rangle_{I_{n,i} \times I_{n,j}} 1_{I_{n,i} \times I_{n,j}}(x, y). \]
(2.16)

Conditions (W-1) and (W-2) clearly imply
\[\sup_{n \in \mathbb{N}} \sup_{y \in I} \int_0^1 \bar{W}_n(x, y) dx \leq W_1, \ \ \sup_{i \in [n]} \sup_{x \in I} \int_0^1 \bar{W}_n(x, y) dy \leq W_2. \]
(2.17)

Remark 2.3. Conditions (2.17) apply to undirected random graphs as well. In the undirected case, the two conditions are equivalent, since \(W \) is a symmetric function. Furthermore, by setting \(\alpha_n \equiv 1 \) and restricting to \(W \in L^\infty(I^2) \), both conditions apply to directed and undirected dense \(W \)-random graphs. With these conventions, below it will be always assumed that conditions (2.17) hold for any of the above types of graphs.

Conditions (2.17) mean that the (in-) and out-degree of any node in \(\Gamma_n \) are \(O(\alpha_n n) \). The uniformity here is the key. Both conditions clearly hold for all dense graphs (i.e., \(W \in L^\infty(I^2) \)) and many sparse graphs. For instance, sparse Erdős-Rényi and small-world graphs satisfy this condition. However, not every
\(\Gamma_n = G_d(n, W, \alpha_n) \) satisfies (2.17). For instance, the power law graph defined in Example 2.2 does not satisfy (2.17). At the end of the next section, we show that the KM on the power law graphs, after a suitable rescaling of the coupling term, can still be analyzed with the techniques of this paper.

The nonnegativity assumption \(W \geq 0 \) is used for convenience and can be dropped. Indeed, writing \(W = W^+ - W^- \), assume that positive and negative parts of \(W \), \(W^+ \) and \(W^- \), satisfy (W-1) and (W-2). Then one can define graphs on \(n \) nodes, \(\Gamma_n^+ \) and \(\Gamma_n^- \), whose edge sets are defined using the graphons \(W^+ \) and \(W^- \) respectively. Thus, the original model can be rewritten as

\[
\dot{u}_{n,i} = f(u_{n,i}, t) + (n\alpha_n)^{-1} \left(\sum_{j=1}^{n} a_{n,ij}^+ D(u_{n,j} - u_{n,i}) - \sum_{k=1}^{n} a_{n,ik}^- D(u_{n,k} - u_{n,i}) \right), \quad i \in [n],
\]

(2.18)

where \((a_{n,ij}^+) \) and \((a_{n,ij}^-) \) are weighted adjacency matrices of \(\Gamma_n^+ \) and \(\Gamma_n^- \). The derivation and analysis of the continuum limit for (2.1) with nonnegative \(W \) translates verbatim for (2.18). To simplify presentation, we restrict to the case of nonnegative \(W \).

3 The main result

Having defined the discrete model (2.1), (2.2), we now present the main result of this work. Our goal is to describe the limiting behavior of the coupled system as \(n \to \infty \). Specifically, we are going to compare the solutions of the discrete model (2.1), (2.2) for large \(n \) with the solution of the IVP for the continuum model

\[
\partial_t u(t, x) = f(u, t) + \int_I W(x, y)D(u(t, y) - u(t, x)) dy, \quad x \in I, \quad (3.1)
\]

\[
u(0, x) = g(x).
\]

(3.2)

For simplicity of exposition, we state our main result for the KM on a sparse directed graph. Clearly, the statement of the theorem translates easily to the KM on sparse undirected graphs, as well as both directed and undirected dense random graphs, as explained in Remark 2.3.

Below, we use the bold font to denote \(X \)-valued functions. In particular, \(u(t) \) stands for the map \(t \mapsto u(t, \cdot) \in X \). Further, given the solution of the IVP for the KM (2.1), (2.2) \(u_n(t) = (u_{n,1}(t), u_{n,2}(t), \ldots, u_{n,n}(t)) \), we define

\[
u_n(t, x) = \sum_{i=1}^{n} u_{n,i}(t) \phi_{n,i}(x),
\]

(3.3)

where \(\phi_{n,i}(x) = 1_{I_{n,i}}(x) \) is the characteristic function of \(I_{n,i}, i \in [n] \). The corresponding vector-valued function is denoted by \(u_n(t) \).

Theorem 3.1. Let \(u_n(t) = (u_{n,1}(t), u_{n,2}(t), \ldots, u_{n,n}(t)) \) be the solution of the IVP for the KM (2.1), (2.2) on \(\Gamma_n = G_d(n, W, n^{-\gamma}) \), \(0 < \gamma < 0.5 \), with nonnegative \(W \in L^2(I^2) \) satisfying (W-1) and (W-2) and subject to the initial condition (2.2) with

\[
u_{n,0}^{(0)} = (g)_{I_{n,i}}, \quad i \in [n],
\]

\(\text{It is sufficient to assume: ess sup}_{x \in I} \int_I |W(x, y)| dy \leq W_1, \quad \text{ess sup}_{y \in I} \int_I |W(x, y)| dx \leq W_2. \)
and \(g \in L^2(I) \).

Then for any \(T > 0 \),
\[
\lim_{n \to \infty} \| u_n - u \|_{C([0,T];L^2(I))} = 0 \quad a.s.,
\]
where \(u(t) \) is the solution of the IVP for the continuum limit (3.1), (3.2) and \(u_n(t) \) is defined by (3.3).

Theorem 3.1 establishes convergence of the discrete models on graphs to the continuum limit under the minimal assumptions on \(W \). We only ask that the graphon \(W \in L^2(I^2) \) satisfies technical conditions (W-1) and (W-2). This allows us to treat the KM on a variety of graphs in a uniform fashion. In particular, Theorem 3.1 contains as special cases convergence of the KM on dense deterministic and random graphs analyzed in [11, 12], as well as convergence of the KM on sparse graphs considered in [6]. In the case of the KM on random graphs, in this paper the convergence is proved in the almost sure sense compared to the convergence in probability in [12, 6]. In addition, the setting of this paper includes the KM on directed graphs, while the even symmetry of \(W \) was used in certain arguments in [6]. All in all, the main result of this paper shows convergence of the KM to the continuum limit in the stronger sense and for a more general class of graphs than in the previous work on this subject.

The proof of Theorem 3.1 follows the scheme developed in [12, 6]. The first step of the proof is estimating proximity between the solution on the IVP (2.1), (2.2) and that for the averaged equation:
\[
\dot{v}_{n,i} = f(v_{n,i}, t) + \left(n \alpha_n \right)^{-1} \sum_{j=1}^{n} \bar{W}_{n,ij} D(v_{n,j} - v_{n,i}), \quad i \in [n],
\]
(3.4)
\[
v_{n,i}(0) = u_{n,i}^0.
\]
(3.5)
Here, we replaced \(a_{n,ij}, i, j \in [n] \), with their expected values. In Theorem 4.1 below, we prove that the solutions of the original and averaged models with probability 1 become closer and closer in the appropriate norm for increasing values of \(n \). On the other hand, (3.4) has the form of a cartesian discretization of the continuum limit (3.1). Thus, the second step in the proof is to show that the averaged model approximates the nonlocal equation (3.1). This step is accomplished by showing that the averaged model is asymptotically equivalent to a Galerkin approximation of the continuum model. Here, we employ the corresponding argument from [6].

The new challenges in implementing this plan are twofold. On the one hand, we significantly relaxed the assumptions on \(\bar{W} \), compared to \(W \in L^\infty(I^2) \) used in [11, 12]. On the other hand, we consider the nonlinear interaction function \(D \) compared to the linear diffusion in [6]. To overcome these problems we refined our techniques. This includes the use of the concentration inequalities in the proof of Theorem 4.1 to obtain finer estimates on the solutions of the averaged model, and the revision of the Galerkin scheme from [6] so that it covers the model with nonlinear interaction function \(D \). While the overall approach remains the same as in [12, 6], the analysis in the present paper reflects a better understanding of the method of the proof of convergence to the continuum limit, and fuller reveals its potential.
4 Averaging

For KM on random graphs, the key step in the derivation of the continuum limit is the averaging procedure, when a stochastic model is approximated by a deterministic (averaged) system. In this section, we focus on the justification of the averaging.

Throughout this section, we consider the KM on random graphs (cf. RDD, RDU, RSD, RSU). Without loss of generality, we consider the KM on a random sparse directed graph $\Gamma = G_d(n,W,\alpha_n)$, as it represents the most general case.

For convenience, we rewrite the KM on $\Gamma = G_d(n,W,\alpha_n)$:

$$\dot{u}_{n,i} = f(u_{n,i},t) + \frac{1}{\alpha_n} \sum_{j=1}^{n} \alpha_{n,ij} D(u_{n,j} - u_{n,i}), \quad i \in [n],$$

(4.1)

Taking the expected value of the right-hand side of (4.1) on Γ

$$E a_{n,ij} = \mathbb{P}(j \rightarrow i) = \alpha_n \langle \tilde{W}_n \rangle_{I_n,i \times I_n,j},$$

we arrive at the following averaged model

$$\dot{v}_{n,i} = f(v_{n,i},t) + \frac{1}{n} \sum_{j=1}^{n} \bar{W}_{n,ij} D(v_{n,j} - v_{n,i}), \quad i \in [n],$$

(4.2)

where $\bar{W}_{n,ij} := \langle \tilde{W}_n \rangle_{I_n,i \times I_n,j}$.

To compare the solutions of the IVPs for the original and the averaged KMs, we adopt the discrete L^2-norm:

$$\|u_n - v_n\|_{2,n} = \left(\sum_{j=1}^{n-1} (u_{n,i} - v_{n,i})^2 \right)^{1/2}.$$

(4.3)

Theorem 4.1. Let nonnegative $W \in L^1(I^2)$ satisfy (W-1), (W-2), and $\alpha_n = n^{-\gamma}, \quad \gamma \in (0,0.5)$, and

$$L = L_f + L_D \left(2 + \frac{3}{2} W_1 + \frac{1}{2} W_2 \right) + \frac{1}{2}.$$

(4.4)

Then for solutions of the original and averaged equations (4.1) and (4.2) subject to the same initial conditions and any $T \leq C \ln n$, $0 \leq C < (1 - 2\gamma)L^{-1}$, we have

$$\lim_{n \to \infty} \sup_{t \in [0,T]} \|u_n - v_n\|_{2,n} = 0 \quad \text{almost surely (a.s.)}.$$

(4.5)

For the KM on an undirected graph, assume, in addition, that W is symmetric. In the dense case, restrict to $0 \leq W \leq 1$ and set $\alpha_n \equiv 1$.

4For the KM on an undirected graph, assume, in addition, that W is symmetric. In the dense case, restrict to $0 \leq W \leq 1$ and set $\alpha_n \equiv 1$.

9
Proof. Recall that $f(u, t)$ and D are Lipschitz continuous function in u with Lipschitz constants L_f and L_D respectively. In addition, $f(u, t)$ is a continuous function of t and $D(u)$ is 2π-periodic function satisfying (2.3).

Further, $a_{n,ij}$, are Bernoulli random variables

$$P(a_{n,ij} = 1) = \alpha_n \bar{W}_{n,ij}.$$ (4.6)

Denote $\psi_{n,i} := v_{n,i} - u_{n,i}$. By subtracting (4.1) from (4.2), multiplying the result by $n^{-1}\psi_{n,i}$, and summing over $i \in [n]$, we obtain

$$\frac{1}{2} \frac{d}{dt} \|\psi_n\|_{2,n}^2 = n^{-1} \sum_{i=1}^{n} \left(f(v_{n,i}, t) - f(u_{n,i}, t) \right) \psi_{n,i}$$

$$+ n^{-2} \alpha_n^{-1} \sum_{i,j=1}^{n} (\alpha_n W_{n,ij} - a_{n,ij}) D(v_{n,j} - v_{n,i}) \psi_{n,i}$$

$$+ n^{-2} \alpha_n^{-1} \sum_{i,j=1}^{n} a_{n,ij} [D(v_{n,j} - v_{n,i}) - D(u_{n,j} - u_{n,i})] \psi_{n,i}$$

$$=: I_1 + I_2 + I_3,$$ (4.7)

where $\| \cdot \|_{2,n}^2$ is the discrete L^2-norm (cf. (4.3)).

Using Lipschitz continuity of f in u, we have

$$|I_1| \leq L_f \|\psi_n\|_{2,n}^2.$$ (4.8)

Using Lipschitz continuity of D and the triangle inequality, we have

$$|I_3| \leq L_D n^{-2} \alpha_n^{-1} \sum_{i,j=1}^{n} a_{n,ij} \left(|\psi_{n,i}| + |\psi_{n,j}| \right) |\psi_{n,i}|$$

$$\leq L_D n^{-2} \alpha_n^{-1} \left(\frac{3}{2} \sum_{i,j=1}^{n} a_{n,ij} \psi_{n,i}^2 + \frac{1}{2} \sum_{i,j=1}^{n} a_{n,ij} \psi_{n,j}^2 \right).$$ (4.9)

Choose $0 < \delta < 1 - 2\gamma$ and denote

$$A_{n,i} = \left\{ S_{n,i} \geq \alpha_n \sum_{j=1}^{n} \bar{W}_{n,ij} + n \frac{\delta}{4} \right\}, \quad n \in \mathbb{N}, \quad i \in [n],$$ (4.10)

$$A_n = \bigcup_{i=1}^{n} A_{n,i}, \quad n \in \mathbb{N},$$ (4.11)
where
\[S_{n,i} = \sum_{j=1}^{n} a_{n,ij}, \quad i \in [n]. \] (4.12)

Noting \(0 \leq a_{n,ij} \leq 1 \), \(\mathbb{E} S_{n,i} = \alpha_n \sum_{j=1}^{n} \bar{W}_{n,ij} \), we apply Chernoff-Hoeffding inequality\(^5\) to bound
\[P(A_{n,i}) \leq e^{-2n\delta}. \] (4.13)

By the union bound,
\[P(A_n) \leq ne^{-2n\delta}. \] (4.14)

By Borel-Cantelli lemma, with probability 1 there exists \(N_\delta \in \mathbb{N} \) such that
\[S_{n,i} < \alpha_n \sum_{j=1}^{n} \bar{W}_{n,ij} + n \frac{1+\delta}{2}, \] (4.15)

for all \(n \geq N_\delta \) and \(i \in [n] \). Below, we restrict to the subset of probability 1, where (4.15) holds.

With (4.15) in hand, we return to bounding the right-hand side of (4.9)
\[n^{-2} \alpha_n^{-1} \sum_{i,j=1}^{n} a_{n,ij} \psi_{n,i}^2 \leq n^{-1} \sum_{i=1}^{n} \left[n^{-\frac{1+\delta}{2}} \alpha_n^{-1} + n^{-1} \sum_{j=1}^{n} \bar{W}_{n,ij} \right] \psi_{n,i}^2 \] (4.16)
\[\leq (1 + W_1) \|\psi\|_{n,2}^2, \]

where we used \(n^{-\frac{1+\delta}{2}} \alpha_n^{-1} = n^{-\frac{1+2\gamma+\delta}{2}} \leq 1 \) and the definition of \(W_1 \) (cf. (2.17)).

Similarly,
\[n^{-2} \alpha_n^{-1} \sum_{i,j=1}^{n} a_{n,ij} \psi_{n,j}^2 \leq (1 + W_2) \|\psi\|_{n,2}^2, \] (4.17)

By plugging (4.16) and (4.17) into (4.9), we have
\[|I_3| \leq L_D \left(2 + \frac{3}{2} W_1 + \frac{1}{2} W_2 \right) \|\psi\|_{n,2}^2, \] (4.18)

It remains to bound \(I_2 \). To this end, we will need the following definitions:
\[
Z_{n,i}(t) = n^{-1} \sum_{j=1}^{n} b_{n,ij}(t) \eta_{n,ij},
\]
\[
b_{n,ij}(t) = D (v_{n,j}(t) - v_{n,i}(t)),
\]
\[
\eta_{n,ij} = a_{n,ij} - \alpha_n \bar{W}_{n,ij},
\]

\(^5\) Here and below, we are using
\[P \left(\sum_{i=1}^{N} X_i \geq \sum_{i=1}^{N} \mathbb{E} X_i + t \right) \leq e^{\frac{-2t^2}{\sum_{i=1}^{N} (b_i - a_i)^2}}, \quad \text{and} \quad P \left(\left| \sum_{i=1}^{N} X_i - \sum_{i=1}^{N} \mathbb{E} X_i \right| \geq t \right) \leq 2e^{\frac{-2t^2}{\sum_{i=1}^{N} (b_i - a_i)^2}}, \]

which hold for collectively independent random variables \(a_i \leq X_i \leq b_i, \quad i \in [N] \). [5]
and \(Z_n = (Z_{n,1}, Z_{n,2}, \ldots, Z_{n,n}) \). With these definitions in hand, we estimate \(I_2 \) as follows:

\[
|I_2| = |n^{-1} \alpha_n^{-1} \sum_{i=1}^{n} Z_{n,i} \psi_{n,i}| \leq 2^{-1} \alpha_n^{-2} \|Z_n\|_{2,n}^2 + 2^{-1} \|\psi_n\|_{2,n}^2. \tag{4.19}
\]

The combination of (4.7), (4.8), (4.18) and (4.19) yields

\[
\frac{d}{dt} \|\psi_n(t)\|_{2,n}^2 \leq L \|\psi_n(t)\|_{2,n}^2 + \frac{1}{\alpha_n^2} \|Z_n(t)\|_{2,n}^2, \tag{4.20}
\]

where \(L \) is defined in (4.4).

Using the Gronwall’s inequality, we have

\[
\|\psi_n(t)\|_{2,n}^2 \leq \alpha_n^{-2} e^{LT} \int_0^T e^{-Ls} \|Z_n(s)\|_{2,n}^2 ds.
\]

and

\[
\sup_{t \in [0,T]} \|\psi_n(t)\|_{2,n}^2 \leq \alpha_n^{-2} e^{LT} \int_0^\infty e^{-Ls} \|Z_n(s)\|_{2,n}^2 ds. \tag{4.21}
\]

Our next goal is to estimate \(\int_0^\infty e^{-Ls} \|Z_n(s)\|_{2,n}^2 ds \). To this end, note

\[
\mathbb{E} \eta_{n,ij} = \mathbb{E}(a_{n,ij} - \alpha_n \bar{W}_{n,ij}) = 0, \tag{4.22}
\]

\[
\mathbb{E} \eta_{n,ij}^2 = \mathbb{E}(a_{n,ij} - \alpha_n \bar{W}_{n,ij})^2 = \alpha_n \bar{W}_{n,ij} - (\alpha_n \bar{W}_{n,ij})^2 \leq 1. \tag{4.23}
\]

Further,

\[
\int_0^\infty e^{-Ls} Z_{n,i}(s)^2 ds = n^{-2} \sum_{k,l=1}^{n} c_{n,ikl} \eta_{n,ik} \eta_{n,il}, \tag{4.24}
\]

where

\[
c_{n,ikl} = \int_0^\infty e^{-Ls} b_{n,ik}(s) b_{nil}(s) ds \quad \text{and} \quad |c_{n,ikl}| \leq L^{-1}. \tag{4.25}
\]

Further, from (4.24) and (4.25), we have

\[
\int_0^\infty e^{-Ls} \|Z_n(s)\|_{2,n}^2 ds = n^{-3} \sum_{i,k,l=1}^{n} c_{n,ikl} \eta_{n,ik} \eta_{n,il}. \tag{4.26}
\]

Our final goal is to bound the sum on the right–hand side of (4.26). To this end, we write

\[
\sum_{i,k,l=1}^{n} c_{n,ikl} \eta_{n,ik} \eta_{n,il} = \sum_{i,k=1}^{n} c_{n,ikk} \eta_{n,ik}^2 + 2 \sum_{i=1}^{n} \sum_{1 \leq l < k \leq n} c_{n,ikl} \eta_{n,ik} \eta_{n,il}. \tag{4.27}
\]
Both sums on the right–hand side of (4.27) are formed of independent bounded random random variables. By Chernoff-Hoeffding inequality, for an arbitrary $\delta > 0$, we have

$$P\left(\sum_{i,k=1}^{n} c_{n,ikk} \eta_{n,ik}^2 \geq \sum_{i,k=1}^{n} c_{n,ikk} E \eta_{n,ik}^2 + n^2 \right) \leq e^{-n^2 L^2}, \quad (4.28)$$

$$P\left(\sum_{i=1}^{n} \sum_{1 \leq l < k \leq n} c_{n,ikl} \eta_{n,ik} \eta_{n,il} \geq n^{3\frac{3}{2} + \delta} \right) \leq 2e^{-n^{2}\delta L^2}, \quad (4.29)$$

where we used the bound on $c_{n,ikl}$ (see (4.25)). By Borel-Cantelli lemma, we now have

$$\sum_{i,k=1}^{n} c_{n,ikk} \eta_{n,ik}^2 \leq \sum_{i,k=1}^{n} c_{n,ikk} E \eta_{n,ik}^2 + n^2 < (L^{-1} + 1)n^2, \quad (4.30)$$

$$\sum_{i=1}^{n} \sum_{1 \leq l < k \leq n} c_{n,ikl} \eta_{n,ik} \eta_{n,il} < n^{3\frac{3}{2} + \delta}, \quad (4.31)$$

for sufficiently large n a.s.. Plugging in these bounds into (4.27) and (4.26), we obtain

$$\alpha_n^{-2} \int_{0}^{\infty} e^{-Ls} \|Z_n(s)\|_{2,n}^2 ds \leq \alpha_n^{-2} \left((L^{-1} + 1)n^{-1} + 2n^{-\frac{3}{2} + \delta} \right) \leq C_1 \alpha_n^{-2} n^{-1} \quad (4.32)$$

for some $C_1 \geq 0$ a.s.. Using (4.32), from (4.21) we have

$$\sup_{t \in [0,T]} \|\psi_n(t)\|_{2,n}^2 \leq C_1 e^{LT} \alpha_n^{-2} n^{-1}. \quad (4.33)$$

For $\alpha_n = n^{-\gamma}$, $0 < \gamma < \frac{1}{2}$ the right–hand side of (4.33) tends to zero on the time interval with $T \leq C \ln n$ for any $0 < C < \frac{1-2\gamma}{L}$. \hfill \Box

If we restrict to finite time intervals then (4.33) yields the rate of convergence estimate.

Corollary 4.2. For fixed $T > 0$, we have

$$\lim_{n \to \infty} n^{\frac{1}{2} - \gamma - \delta} \sup_{t \in [0,T]} \|\psi_n(t)\|_{2,n} = 0 \quad a.s., \quad (4.34)$$

where $0 < \delta < \frac{1}{2} - \gamma$ is arbitrary.

Remark 4.3. Theorem 4.1 and Corollary 4.2 clearly apply to the KM on undirected sparse graphs. Furthermore, by setting $\gamma = 0$, these results translate to the KM on dense W–random graphs.

Remark 4.4. As we pointed out earlier, not every sparse random graph defined in (RSD, RSU) meets (2.17). However, the averaging can still be justified for the KM on such graphs if the original model is suitably rescaled. For simplicity, we explain the new scaling for the KM on undirected graphs.
Let $\Gamma_n = G(n, W, \alpha_n)$, where $W \in L^1(I^2)$ is a symmetric nonnegative function and $\alpha_n \searrow 0$, $\alpha_n n \to \infty$ as before. Consider

$$\dot{u}_{n,i} = f(u_{n,i}, t) + d_{n,i}^{-1} \sum_{j=1}^{n} a_{n,ij} D(u_{n,j} - u_{n,i}), \quad i \in [n],$$

where $d_{n,i} := d_{n,i}^+ = d_{n,i}^-$ is a degree of node $i \in [n]$. We claim that the conclusion of Theorem 4.1 holds for the rescaled model (4.35) for any nonnegative symmetric $W \in L^1(I^2)$. Indeed, the averaged system in this case takes the following form

$$\dot{v}_{n,i} = f(v_{n,i}, t) + n^{-1} \sum_{j=1}^{n} U_{n,ij} D(v_{n,j} - v_{n,i}), \quad i \in [n],$$

where

$$U_{n,ij} = \bar{W}_{n,ij} n^{-1} \sum_{k=1}^{n} \bar{W}_{n,ki}, \quad (i, j) \in [n]^2.$$

(4.36)

Using $\bar{W}_{n,ij} = \bar{W}_{n,ji}$ and (4.37), we have

$$n^{-1} \sum_{k=1}^{n} U_{n,kj} = n^{-1} \sum_{k=1}^{n} U_{n,ik} = 1 \quad \forall i, j \in [n].$$

Thus, the bounds in (4.16) and (4.17) hold with $W_1 = W_2 = 1$. The rest of the proof remains unchanged.

5 The continuum limit

We now turn to the IVP for the continuum model (3.1), (3.2). The solution of the IVP (3.1), (3.2) will be understood in a weak sense. Specifically, let $T > 0$ and X stand for $L^2(I)$. Denote

$$K(u(t, \cdot)) := \int_I W(\cdot, y) D(u(t, y) - u(\cdot, t)) dy.$$

(5.1)

K is viewed as an operator on $L^2(I)$.

Definition 5.1. $u \in H^1(0, T; X)$ is called a weak solution of the IVP (3.1), (3.2) on $[0, T]$ if

$$(u'(t) - K(u(t))) - f(u(t), t), v = 0 \quad \forall v \in X$$

(5.2)

almost everywhere (a.e.) on $[0, T]$ and $u(0) = g$.

The averaged equation (4.2) can be rewritten as a diffusion equation on $[0, 1]$ for the step function

$$v_n(t, x) = \sum_{i=1}^{n} v_{n,i}(t) \phi_{n,i}(x),$$

(5.3)
where $\phi_{n,i}(x), i \in [n]$, is the step function defined right after (3.3). Specifically, the IVP for (4.2) has the following form

$$\begin{align*}
\partial_t v_n(t, x) & = f(v_n(t, x), t) + \int_I \bar{W}_n(x, y) D(v_n(t, y) - v_n(t, x)) dy, \\
v_n(0, x) & = g_n(x),
\end{align*}$$

where

$$
\begin{align*}
g_n(x) & = \sum_{i=1}^n g_{n,i}(x), \quad g_{n,i} = \langle g \rangle_{I_{n,i}} := n \int_{I_{n,i}} g(x) dx, \\
\bar{W}_n(x, y) & = \sum_{i,j=1}^n \bar{W}_{n,ij} \phi_{n,i}(x) \phi_{n,j}(y).
\end{align*}
$$

The following theorem establishes the continuum limit for the IVP for the averaged equation (5.4), (5.5).

Theorem 5.2. Let $W \in L^2(I^2)$ satisfy (W-1), (W-2) and $g \in L^2(I)$. Recall that $f(u, t)$ and $D(u)$ are Lipschitz continuous functions in u. In addition, $f(u, t)$ is a continuous function of t.

For $T > 0$, there is a unique weak solution of the IVP (3.1), (3.2). Moreover,

$$\lim_{n \to \infty} \|v_n - u\|_{C(0,T;L^2(I))} = 0,$$

where $u(t)$ is the solution of the IVP for the continuum limit (3.1), (3.2) and $v_n(t) = v_n(t, \cdot)$ is the solution of the IVP (5.4), (5.5).

Theorem 5.2 combined with Theorem 4.1 implies Theorem 3.1 which provides a rigorous justification for the continuum limit of the KM on sparse graphs.

6 Proof of Theorem 5.2

In this section, we prove existence and uniqueness of solution of the IVP (3.1), (3.2). We show that the solutions of the finite-dimensional Galerkin problems converge to the unique weak solution of the IVP (3.1), (3.2). The Galerkin problem, in turn, is very close to the IVP for the averaged equation (5.4), (5.5). Thus, convergence of Galerkin problems to the continuum limit (3.1), the main result of this section, almost immediately implies Theorem 3.1.

6.1 Galerkin problems

Recall

$$\phi_{n,i}(x) = 1_{I_{n,i}}(x) = \begin{cases} 1, & x \in I_{n,i}, \\ 0, & x \notin I_{n,i}, \end{cases} \quad i \in [n],$$

where $I_{n,i}$ is the interval defined right after (3.3).
and consider a finite dimensional subspace of X, $X_n = \text{span}\{\phi_{n,1}, \phi_{n,2}, \ldots, \phi_{n,n}\}$. We now consider a Galerkin approximation of the continuum problem (3.1), (3.2):

\[
(u'_n(t) - K(u_n(t))) - f(u_n(t)), \phi) = 0 \quad \forall \phi \in X_n,
\]

where

\[
u_n(0) = \sum_{i=1}^{n} g_{n,i} \phi_{n,i},
\]

By plugging

\[
u_n(t) = \sum_{i=1}^{n} u_{n,i}(t) \phi_{n,i}.
\]

into (6.2) with $\phi := \phi_{n,i}$, $i \in [n]$, we obtain the following system of equations for the coefficients $u_{n,i}(t)$:

\[
u_{n,i} = f(u_{n,i}, t) + \frac{1}{n} \sum_{j=1}^{n} W_{n,ij} D(u_{n,j} - u_{n,i}), \quad i \in [n],
\]

\[
u_{n,i}(0) = g_{n,i},
\]

where $W_{n,ij} = \langle W \rangle_{I_{n,i} \times I_{n,j}}$ (cf. (5.7)).

The following lemma shows wellposedness of the IVP for (3.1), (3.2). It also justifies using (3.1) as the continuum limit for the KM (6.5) on dense graphs (DDD, DDU, RDD, RDU).

Lemma 6.1. There is a unique weak solution of (3.1), (3.2), $u \in H^1(0, T; X)$. The solutions of the Galerkin problems (6.2), (6.3), u_n converge to u in the $L^2(0, T; X)$ norm as $n \to \infty$.

Remark 6.2. Under additional condition $\int_I W(x, y) dy = 1$ a.e. $x \in I$, there exists a unique strong solution of (3.1), (3.2), $u \in C^1(0, T; X)$ (cf. [6, Theorem 3.1]).

We rewrite (6.5), (6.6) as a nonlocal diffusion equation

\[
u_t u_n(t, x) = f(u_n(t, x), t) + \int_I W_n(x, y) D(u_n(t, y) - u_n(t, x)) dy,
\]

\[
u_n(0, x) = g_n(x),
\]

where

\[
u_n(t, x) = \sum_{i=1}^{n} u_{n,i}(t) \phi_{n,i}(x)
\]

and W_n is defined in (5.7).

Throughout the remainder of this paper, $\| \cdot \|$ stands for the norm in $X = L^2(I)$. Equation (6.9) establishes one-to-one correspondence between $u_n(t, \cdot) \in C(\mathbb{R}, X_n)$ and $u_n(t) = (u_{n,1}(t), u_{n,2}(t), \ldots, u_{n,n}(t)) \in C(\mathbb{R}, \mathbb{R}^n)$. Moreover, $\|u_n(t, \cdot)\| = \|u_n(t)\|_{2,n}$.

Lemma 6.3. For every $n \in N$, there exists a unique solution of the discrete problem (6.5), (6.6) defined on \mathbb{R}.

16
Proof. Denote the right-hand side of (6.7) by $R_n(u_n(t, x))$. We show that R_n is Lipschitz continuous with Lipschitz constant independent on n. From (6.7), using triangle inequality, for $u_n, v_n \in C(0, T; X_n)$ we have

\[
\|R_n(u_n(t, \cdot), t) - R_n(v_n(t, \cdot), t)\| \leq \|f(u_n(t, \cdot), t) - f(v_n(t, \cdot), t)\| + \left\| \int_I W_n(\cdot, y) [D(u_n(t, y)) - D(v_n(t, y))] \, dy \right\| =: R^{(1)} + R^{(2)}.
\]

Using Lipschitz continuity of f, we have\(^6\)

\[
R^{(1)} \leq L_f \|u_n(t, \cdot) - v_n(t, \cdot)\|.
\]

Using Lipschitz continuity of D and the triangle inequality, we have

\[
R^{(2)} \leq L_D \left\| \int_I W_n(\cdot, y) (|u_n(t, y) - v_n(t, y)| + |u_n(t, \cdot) - v_n(t, \cdot)|) \, dy \right\| \leq L_D \left(\left\| \int_I W_n(\cdot, y) |u_n(t, y) - v_n(t, y)| \, dy \right\| + \left\| \int_I W_n(\cdot, y) dy |u_n(t, \cdot) - v_n(t, \cdot)| \right\| \right) =: L_D \left(R^{(3)} + R^{(4)} \right).
\]

By the Cauchy-Schwarz inequality,

\[
R^{(3)} \leq \|W_n\|_{L^2(I^2)} \|u_n(t, \cdot) - v_n(t, \cdot)\|.
\]

Since W_n is an L^2-projection of W onto $X_n \otimes X_n$, $\|W_n\|_{L^2(I^2)} \leq \|W\|_{L^2(I^2)}$. Thus, (6.13) yields

\[
R^{(3)} \leq \|W\|_{L^2(I^2)} \|u_n(t, \cdot) - v_n(t, \cdot)\|.
\]

Finally, using (W-2), we estimate

\[
R^{(4)} \leq W_2 \|u_n(t, \cdot) - v_n(t, \cdot)\|.
\]

The combination of (6.10)-(6.15) yields

\[
\|R_n(u_n(t, \cdot)) - R_n(v_n(t, \cdot))\| \leq (L_f + L_D (\|W\|_{L^2(I^2)} + W_2')) \|u_n(t, \cdot) - v_n(t, \cdot)\|,
\]

i.e., R_n is uniformly Lipschitz continuous. Recall that (6.7) with the step functions (6.9) and (5.7) is equivalent to the system of ordinary differential equations (6.5). In turn, (6.16) is equivalent to Lipschitz continuity of the right-hand side of (6.5) with respect to discrete L^2-norm. Thus, for every $n \in N$, the IVP (6.5), (6.6) has a unique solution, which can be extended to \mathbb{R}.

\(^6\)Recall that L_D and L_f are Lipschitz constants of $D(u)$ and $f(u, t)$ as functions of u.

17
6.2 A priori estimates

Denote
\[F := \max_{t \in [0,T]} |f(0, t)| \]
and recall (2.3).

Lemma 6.4. There exist positive constants \(C_1 \) and \(C_2 \) depending on \(T \) but not on \(n \), such that
\[
\max_{t \in [0,T]} \| u_n(t) \| \leq C_1 \quad \text{and} \quad \max_{t \in [0,T]} \| u_n'(t) \| \leq C_2, \tag{6.17}
\]
uniformly in \(n \).

Proof. (Lemma 6.4) Multiplying both sides of (6.7) by \(u_n(t, x) \) and integrating over \(I \), we obtain
\[
\frac{1}{2} \frac{d}{dt} \| u_n(t, \cdot) \|^2 \leq \int |f(u_n(x, t), t)||u_n(x, t)|dx + \int |W(x, y)| \| D(u_n(t, y) - u_n(t, x)) \| u_n(t, x)|dxdy
\]
\[
\leq \int |f(u_n(x, t), t) - f(0, t)||u_n(x, t)|dx + F \int |u_n(x, t)|dx
\]
\[
+ \int |W(x, y)| |u_n(t, x)|dxdy
\]
\[
\leq L_f \| u_n(t, \cdot) \|^2 + (F + \| W \|_{L^2(I^2)}) \left(\| u_n(t, \cdot) \|^2 + 1 \right)
\]
\[
\leq \left(L_f + F + \| W \|_{L^2(I^2)} \right) \| u_n(t, \cdot) \|^2 + (F + \| W \|_{L^2(I^2)}), \tag{6.18}
\]
where we used the Cauchy-Schwarz inequality and the bound \(\| u_n(t, \cdot) \| \leq \| u_n(t, \cdot) \|^2 + 1. \)

Thus,
\[
\frac{d}{dt} \| u_n(t, \cdot) \|^2 \leq C_3 \| u_n(t, \cdot) \|^2 + C_4, \tag{6.19}
\]
with \(C_3 = 2 \left(L_f + F + \| W \|_{L^2(I^2)} \right) \) and \(C_4 = 2 \left(F + \| W \|_{L^2(I^2)} \right) \). Using Gronwall’s inequality and taking maximum over \(t \in [0, T] \), we have
\[
\max_{t \in [0,T]} \| u_n(t) \|^2 \leq e^{C_3 T} \left(\| g \|^2 + C_4 \right). \tag{6.20}
\]
Here, we also used \(\| u_n(0) \| \leq \| g \| \), because \(u_n(0) \) is an \(L^2 \)-projection of \(g \) onto \(X_n \).

We now turn to bounding \(\| u_n'(t) \| \). To this end, multiply (6.7) by \(v \in X \) and integrate both sides over \(I \) to obtain
\[
(u_n'(t), v) = \int f(u_n(t, x)) v(x)dx + \int I^2 W_n(x, y) D (u_n(t, x) - u_n(t, y)) v(x)dxdy.
\]

Proceeding as in (6.18), we obtain
\[
| (u_n'(t), v) | \leq (L_f + F + \| W \|_{L^2(I^2)}) \| v \| \quad \forall v \in X.
\]

Thus,
\[
\sup_{t \in \mathbb{R}} \| u_n'(t) \| \leq C_2, \quad C_2 := L_f + F + \| W \|_{L^2(I^2)}.
\]
\[
\square
\]
6.3 Existence

With Lemma 6.4 in hand, we are now ready to show existence of a weak solution of (3.1). Furthermore, we show that the weak solution of (3.1) is the limit of the solutions of the discrete problems (6.7), i.e., the limit of solutions of (6.5), (6.6).

From Lemma 6.4, we have

\[\| u_n \|_{C(0,T;X)} \leq C_1, \quad \| u_n(t+h) - u_n(t) \| \leq C_2 |h|. \]

(6.21)

From (6.21), we further obtain

\[\| u_n \|_{L^2(0,T;X)} \leq C_2 T, \quad \int_0^T \| u_n(t+h) - u_n(t) \|^2 dt \leq C_2^2 h^2 T. \]

(6.22)

By the Frechet-Kolmogorov theorem \[18\], \(\{ u_n \} \) is precompact in \(L^2(0,T;X) \). Let \(\{ u_{n_k} \} \) be a convergent subsequence of \(\{ u_n \} \). Denote its limit by \(u \).

By Lemma 6.4,

\[\| u_n' \|_{L^2(0,T;X)} \leq C_2 \sqrt{T}. \]

Therefore, \(\{ u_{n_k}' \} \) is weakly precompact in \(L^2(0,T;X) \). Let \(\{ u_{n_k}' \} \) be a subsequence converging to \(w \in L^2(0,T;X) \).

We show that \(w = u' \). Indeed, for arbitrary \(\phi \in C^1_c(0,T) \) and \(w \in X \), we have

\[\int_0^T \left(u_{n_k}'(t), \phi(t)w \right) dt = -\int_0^T \left(u_{n_k}(t), \phi'(t)w \right) dt. \]

(6.23)

Sending \(k \to \infty \) in (6.23), and using \(u_{n_k}' \rightharpoonup w \) and \(u_{n_k} \rightharpoonup u \), we obtain

\[\int_0^T (w(t), \phi(t)w) = -\int_0^T (u(t), \phi'(t)w) dt. \]

By \[18\] Corollary 2,

\[\left(\int_0^T w(t)\phi(t) dt, w \right) = \left(-\int_0^T u(t)\phi'(t) dt, w \right) \quad \forall w \in X. \]

We conclude that \(u \in L^2(0,T;X) \) is weakly differentiable and \(u' = w \in L^2(0,T;X) \). Thus, \(u \in H^1(0,T;X) \).

Next, we show that \(u \in H^1(0,T;X) \) is a weak solution of (3.1), (3.2). To this end, fix \(N \in \mathbb{N} \) and choose a function of the form

\[v(t) = \sum_{j=1}^N d_j(t)\phi_{N,j}, \]

(6.24)

where \(d_j(t) \) are continuously differentiable functions. Adding up (6.2) with \(n > N \) and \(\phi := d_j(t)\phi_{nj} \) by \(d_j(t), j \in [n] \) and integrating the result from 0 to \(T \), we obtain

\[\int_0^T (u'_{n}(t) - K(u_n(t)) - f(u_n(t), t), v(t))dt = 0, \]

(6.25)
where \(v \) is as in (6.24). Passing to the limit along \(n = n_k \), we have

\[
\int_0^T (u'(t) - K(u(t)) - f(u(t), t), v(t))dt = 0. \tag{6.26}
\]

This equality holds for an arbitrary \(v \) in the form of (6.24). Since such functions for \(N \in \mathbb{N} \) are dense in \(L^2(0, T; X) \), we conclude that (6.26) holds for all \(v \in L^2(0, T; X) \). Therefore,

\[
(u' - K(u) - f(u, t), v) = 0 \quad \forall v \in L^2(0, T; X) \text{ a.e. on } [0, T] \tag{6.27}
\]

In particular, (6.27) holds for any \(v \in X \).

Next, we verify \(u(0) = g \). From (6.27) for any \(v \in C^1(0, T; X) \) vanishing at \(t = T \) via integration by parts we have

\[
-\int_0^T (u(t), v'(t)) dt = \int_0^T (K(u(t)) + f(u(t), t), v(t)) dt + (u(0), v(0)). \tag{6.28}
\]

Likewise, by (6.25),

\[
-\int_0^T (u_n(t), v'(t)) dt = (K(u_n(t)) + f(u_n(t), t), v(t)) dt + (u_n(0), v(0)). \tag{6.29}
\]

Passing to the limit (along a subsequence) in (6.29) yields

\[
-\int_0^T (u(t), v'(t)) dt = \int_0^T (K(u(t)) + f(u(t), t), v(t)) dt + (g, v(0)). \tag{6.30}
\]

As \(v(0) \in X \) is arbitrary, from (6.29) and (6.30) we conclude \(u(0) = g \). Thus, \(u \) is a weak solution of (3.1), (3.2).

6.4 Uniqueness

Suppose the solution of the IVP (3.1), (3.2) is not unique. Then there are two functions \(u, w \in H^1(0, T; X) \) satisfying the same initial condition \(u(0) = v(0) \) and such that

\[
(u'(t) - K(u(t)) - f(u(t), t), v) = 0, \tag{6.31}
\]

\[
(w'(t) - K(w(t)) - f(w(t), t), v) = 0, \text{ a.e. on } [0, T]. \tag{6.32}
\]

for any \(v \in L^2(0, T; X) \). Set \(\xi = u - w \) and \(\nu = \xi \). After subtracting (6.32) from (6.31), and using Lipschitz continuity of \(f \) and \(D \), we obtain

\[
\frac{1}{2} \frac{d}{dt} \|\xi(t, \cdot)\|^2 \leq L_f \|\xi(t, \cdot)\|^2 + L_D \int_{I^2} |W(x, y)| (|\xi(t, y)| + |\xi(t, x)|) |\xi(t, x)| dxdy.
\]

and, thus,

\[
\frac{d}{dt} \|\xi(t)\|^2 \leq (2L_f + 4L_D \|W\|_{L^2(I^2)}) \|\xi(t)\|^2. \tag{6.33}
\]
By Gronwall’s inequality,
\[
\max_{t \in [0, T]} \| \xi(t) \|^2 \leq e^{(2L_f + 4L_D)\|W\|_{L^2(I^2)}T} \| \xi(0) \|^2 = 0.
\]
Thus, \(u = w \). By contradiction, there is a unique weak solution of the IVP (3.1), (3.2).

The uniqueness of the weak solution entails \(u_n \to u \) as \(n \to \infty \). Indeed, suppose on the contrary that there exists a subsequence \(u_{n_l} \) not converging to \(u \). Then for a given \(\epsilon > 0 \) one can select a subsequence \(u_{n_{l_i}} \) such that
\[
\| u_{n_{l_i}} - u \|_{L^2(0, T; X)} > \epsilon \quad \forall i \in \mathbb{N}.
\]
However, \(\{ u_{n_{l_i}} \} \) is precompact in \(L^2(0, T; X) \) and contains a subsequence converging to a weak solution of (3.1), which must be \(u \) by uniqueness. Contradiction.

6.5 Convergence of solutions of the averaged equation

We now show that like the solutions of the Galerkin problems, the solutions of the IVP for the averaged equation (5.4), (5.5) converge to the solution of the IVP for the continuum limit (3.1), (3.2).

First, we need to develop several auxiliary estimates. For the truncated function \(\bar{W} \), we have
\[
\| \bar{W}_n \|_{L^2(I^2)} \leq \| W \|_{L^2(I^2)}.
\]

Lemma 6.5.
\[
\lim_{n \to \infty} \| \bar{W}_n - W \|_{L^2(I^2)} = 0.
\]

Proof. Since \(W_n \to W \) in \(L^2 \)-norm, it is sufficient to show that \(\| \bar{W}_n - W \|_{L^2(I^2)} \) tends to 0 as \(n \to \infty \).

Let \(\epsilon > 0 \) be given. Since \(W \in L^2(I^2) \), there is \(\delta > 0 \) such that
\[
\int_A W^2 < \epsilon^2
\]
for any \(A \subset I^2 \) of Lebesgue measure \(|A| < \delta \). For a given \(\lambda > 0 \), denote \(A_\lambda = \{(x, y) \in I^2 : W(x, y) > \lambda \} \). Since \(W \in L^1(I^2) \), \(W \) is finite a.e., i.e., there exists \(\lambda > 0 \) such that
\[
|A_\lambda| \leq \delta.
\]
Let \(N_\lambda \in \mathbb{N} \) such that
\[
\alpha_n^{-1} \geq \lambda \quad n \geq N_\lambda.
\]
For \(n \geq N_\lambda \), we have

\[
\| \bar{W}_n - W_n \|_{L^2(I^2)}^2 = \sum_{i,j=1}^{n} \int_{I_{n,i} \times I_{n,j}} (\bar{W}_n - W_n)^2
\]

\[
= \sum_{i,j=1}^{n} n^{-2} \left(\int_{I_{n,i} \times I_{n,j}} (\bar{W}_n - W)^2 \right)
\]

\[
\leq \sum_{i,j=1}^{n} \int_{I_{n,i} \times I_{n,j}} (\bar{W}_n - W)^2
\]

\[
= \int_{I^2} (\bar{W}_n - W)^2 = \int_{A_\lambda} (\bar{W}_n - W)^2
\]

\[
\leq \int_{A_\lambda} W^2 \leq \epsilon^2.
\]

Further, let

\[
K_n (v) = \int_{I} \bar{W}_n (\cdot, y) D (v(y) - v(\cdot)) \, dy
\]

be a nonlinear map from \(X \) to itself.

Lemma 6.6. \(K_n \) is a uniformly Lipschitz continuous map from \(X \) to itself

\[
\| K_n (v) - K_n (u) \| \leq L_K \| v - u \| \quad \forall u, v \in X,
\]

where \(L_K = 2 \| W \|_{L^2(I^2)} L_D \). In addition,

\[
\| K_n (v) - K (v) \| \leq \| \bar{W}_n - W \|_{L^2(I^2)} \quad \forall v \in X.
\]

Proof. Using Lipschitz continuity of \(D \), Cauchy-Schwartz inequality, and (6.34), we have

\[
\| K_n (u) - K_n (v) \| \leq \left\| \int_{I} W_n (\cdot, y) \{ D (u(y) - u(\cdot)) - D (v(y) - v(\cdot)) \} \, dy \right\|
\]

\[
\leq L_D \left\{ \left\| \int_{I} W_n (\cdot, y) |u(y) - v(y)| \, dy \right\| + \left\| \int_{I} W_n (\cdot, y) |u(\cdot) - v(\cdot)| \, dy \right\| \right\}
\]

\[
\leq 2L_D \| W \|_{L^2(I^2)} \| u - v \|.
\]

To show (6.40), we use (2.3) and Cauchy-Schwartz inequality:

\[
\| K_n (v) - K (v) \| \leq \left(\int_{I} (\bar{W}_n (\cdot, y) - W (\cdot, y)) D (v(y) - v(\cdot)) \, dy \right)
\]

\[
\leq \left\| \int_{I} |W_n (\cdot, y) - W (\cdot, y)| \, dy \right\|
\]

\[
\leq \| \bar{W}_n - W \|_{L^2(I^2)}.
\]
We rewrite the averaged equation (5.4) as

\[\left(v_n'(t) - K_n(v_n(t)) - f(v(t)), \phi \right) = 0 \quad \forall \phi \in X_n. \]

(6.41)

subject to the initial condition

\[v_n(0) = \sum_{i=0}^{n} g_{n,i} \phi_{n,i}. \]

(6.42)

We want to show that \(v_n \to u \) in \(L^2(0, T; X) \). To this end, note that a priori estimates in §6.2 hold for the averaged problem (6.42) due to (6.34). The rest of the proof is done by following the lines of the existence and uniqueness proof in §§6.3, 6.4. The only place, which requires a clarification is the following limit.

Lemma 6.7.

\[\int_0^T (K_n(v_n(t)), v(t)) \, dt \to \int_0^T (K(v(t)), v(t)) \, dt \]

(6.43)

for any \(v \in C^1(0, T; X) \), provided that \(v_n \to u \) in \(L^2(0, T; X) \).

Proof.

\[\left| \int_0^T (K_n(v_n(t)) - K(u(t)), v(t)) \, dt \right| \leq \int_0^T \left| (K_n(v_n(t)) - K(u(t)), v(t)) \right| \, dt \]

\[+ \int_0^T \left| (K_n(u(t)) - K(u(t)), v(t)) \right| \, dt =: I_1 + I_2. \]

(6.44)

Using (6.39) and Cauchy-Schwartz inequality, we have

\[I_1 = \int_0^T \| K_n(v_n(t)) - K_n(u(t)) \| \| v(t) \| \, dt \]

\[\leq L_K \left(\int_0^T \| v_n(t) - u(t) \|^2 \, dt \right)^{1/2} \| v \|_{L^2(0,T;X)} \]

\[\leq L_K \| v_n(t) - u(t) \|_{L^2(0,T;X)} \| v \|_{L^2(0,T;X)}. \]

(6.45)

Similarly, using (6.40) and the Cauchy-Schwartz inequality, we further obtain

\[I_2 = \int_0^T \| K_n(u(t)) - K(u(t)) \| \| v(t) \| \, dt \]

\[\leq \| \bar{W}_n - W \|_{L^2(I^2)} \| v \|_{L^2(0,T;X)}. \]

(6.46)

Plugging (6.45) and (6.46) in (6.44), we obtain

\[\left| \int_0^T (K_n(v_n(t)) - K(u(t)), v(t)) \, dt \right| \leq \left(L_K \| v_n(t) - u(t) \|_{L^2(0,T;X)} + \| \bar{W}_n - W \|_{L^2(I^2)} \right) \| v \|_{L^2(0,T;X)}. \]

The statement of the lemma follows the above inequality and Lemma 6.5.

\[\square \]

\[^7 \text{This limit is used in (6.26) and (6.30).} \]
Acknowledgements. The author thanks Gideon Simpson for insightful comments, which helped to improve the manuscript. This work was supported in part by the NSF grant DMS 1715161.
References

[1] C. Borgs, J. T. Chayes, H. Cohn, and Y. Zhao, An L^p theory of sparse graph convergence I: limits, sparse random graph models, and power law distributions, ArXiv e-prints (2014).

[2] H. Chiba and G. S. Medvedev, The mean field analysis for the Kuramoto model on graphs I. The mean field equation and transition point formulas, Discrete and Cont. Dyn. Syst. Ser. A, 39 (2019), 131-155.

[3] H. Chiba, G. S. Medvedev, and M. S. Mizuhara, Bifurcations in the Kuramoto model on graphs, Chaos 28 (2018), 073109.

[4] L. C. Evans, Partial differential equations, second ed., Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 2010.

[5] W. Hoeffding, Probability inequalities for sums of bounded random variables, J. Amer. Statist. Assoc. 58 (1963), 13–30.

[6] D. Kaliuzhnyi-Verbovetskyi and G. S. Medvedev, The semilinear heat equation on sparse random graphs, SIAM J. Math. Anal. 49 (2017), no. 2, 1333–1355.

[7] ———, The Mean Field Equation for the Kuramoto Model on Graph Sequences with Non-Lipschitz Limit, SIAM J. Math. Anal. 50 (2018), no. 3, 2441–2465.

[8] L. Lovász, Large networks and graph limits, AMS, Providence, RI, 2012.

[9] L. Lovász and B. Szegedy, Limits of dense graph sequences, J. Combin. Theory Ser. B 96 (2006), no. 6, 933–957.

[10] G. S. Medvedev, Correction to: The nonlinear heat equation on W-random graphs, Arch. Ration. Mech. Anal. (2018). https://doi.org/10.1007/s00205-018-1329-y

[11] ———, The nonlinear heat equation on dense graphs and graph limits, SIAM J. Math. Anal. 46 (2014), no. 4, 2743–2766.

[12] ———, The nonlinear heat equation on W-random graphs, Arch. Ration. Mech. Anal. 212 (2014), no. 3, 781–803.

[13] ———, Small-world networks of Kuramoto oscillators, Phys. D 266 (2014), 13–22.

[14] G. S. Medvedev and X. Tang, Stability of twisted states in the Kuramoto model on Cayley and random graphs, J. Nonlinear Sci. 25 (2015), no. 6, 1169–1208.

[15] ———, The Kuramoto model on power law graphs: synchronization and contrast states, J. Nonlinear Sci. (2018). https://doi.org/10.1007/s00332-018-9489-3.

[16] G. S. Medvedev and J. D. Wright, Stability of twisted states in the continuum Kuramoto model, SIAM J. Appl. Dyn. Syst. 16 (2017), no. 1, 188–203.

[17] D. A. Wiley, S. H. Strogatz, and M. Girvan, The size of the sync basin, Chaos 16 (2006), no. 1, 015103, 8.
[18] K. Yosida, *Functional analysis*, Classics in Mathematics, Springer-Verlag, Berlin, 1995, Reprint of the sixth (1980) edition.