Review

Unsuccessful Stent Graft Repair of a Hepatic Artery Aneurysm Presenting with Haemobilia: Case Report and Comprehensive Literature Review

Xing Gao a,*, Jeroen de Jonge b, Hence Verhagen a, Wouter Dinkelaar c, Sander ten Raa a, Marie Josee van Rijn a

a Department of Vascular Surgery, Erasmus Medical Centre, Rotterdam, The Netherlands
b Department of Hepatobiliary and Transplantation Surgery, Erasmus Medical Centre, Rotterdam, The Netherlands
c Department of Interventional Radiology, Erasmus Medical Centre, Rotterdam, The Netherlands

Aims: To discuss treatment strategies for non-traumatic, non-iatrogenic hepatic artery aneurysms (HAAs) in the presence of an arteriobiliary fistula, illustrated by a case and followed by a comprehensive review of the literature.

Methods: Following the PRISMA guidelines, 24 eligible HAA cases presenting with haemobilia were identified. Characteristics of patients, aneurysms, treatment strategies and their outcomes were collected.

Results: A 69 year old patient with no previous hepatobiliary intervention or trauma, presented with jaundice and haemobilia caused by a HAA. Initial treatment by endovascular stenting was chosen to prevent ischaemic liver complications. Unfortunately, this strategy failed because of stent migration due to ongoing infection leading to a type 1A endoleak. The patient had to be converted to open surgery with ligation of the HAA. The patient recovered uneventfully and no complications occurred during the following 12 months.

Comprehensive literature review: Of the 24 cases, nine had a true HAA and 15 were pseudo/mycotic aneurysms, mainly caused by endocarditis or cholecystitis. The majority were located in the right hepatic artery. In 20 cases, an endovascular first approach was chosen with embolisation, none with covered stents. Three of these cases had to be converted to open surgery because of rebleeding. In all open (primary or secondary) cases, ligation of the HAA was performed. One patient in these series died. No liver ischaemia or abscesses were reported, although one patient developed an ischaemic gallbladder.

Conclusions: Patients who present with a HAA and haemobilia may be treated safely by embolisation or open ligation. Using a covered stent graft in these patients can cause problems due to ongoing infection and should be monitored closely by imaging. Publication bias and lack of long term follow up imply cautious interpretation of these findings.

© 2021 The Author(s). Published by Elsevier Ltd on behalf of European Society for Vascular Surgery. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Article history: Received 11 January 2021, Revised 31 May 2021, Accepted 17 June 2021.

Keywords: Hepatic aneurysm, Haemobilia, Arterio-biliary fistula, Graft infection, Liver ischemia, Embolization

INTRODUCTION

Hepatic artery aneurysms (HAAs) are the second most common visceral artery aneurysms (VAAs) and the most common visceral pseudo-aneurysms. Due to its close relationship with the biliary ducts, rupture into the biliary tree is more common than into the intraperitoneal cavity.1 Regarding the complex hepatobiliary anatomy, surgical repair in this region is challenging and may lead to uncontrollable bleeding. An endovascular first approach is often chosen as a safer alternative or to serve as a bridge to surgery.2 However, embolisation by occluding the inflow and outflow of the HAA means interrupting arterial blood flow to the liver, which can lead to liver abscess, biliary necrosis and acute or chronic liver failure. Alternatively, the use of a covered stent will preserve blood flow, but when placed in a contaminated area, may maintain ongoing infection.3

In this paper, a case is presented with a true HAA complicated by haemobilia, initially managed by endovascular stenting to maintain the hepatic arterial circulation.4 Unfortunately, this approach was unsuccessful and the case was converted to open ligation. A comprehensive review of the literature of cases with haemobilia caused by non-traumatic, non-iatrogenic HAAs is also presented, focusing on the patient and HAA characteristics, HAA aetiology, treatment strategies and their outcomes.

CASE REPORT

A 69 year old man presented with diarrhoea, weight loss, night sweats and progressive jaundice. Laboratory results showed a total bilirubin level of 413 µmol/L, a C reactive

* Corresponding author. Department of Vascular Surgery, Erasmus Medical Centre Rotterdam, PO Box 2040, Rotterdam, 3000 CA, The Netherlands.
E-mail address: gaoxing1993@yahoo.com (Xing Gao).
2666-688X/© 2021 The Author(s). Published by Elsevier Ltd on behalf of European Society for Vascular Surgery. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1016/j.ejvsvf.2021.06.008
protein (CRP) level of 42 mg/L and a leucocyte count of 7.7 × 10^9/L. A computed tomography angiogram (CTA) showed a HAA of the common hepatic artery (CHA) of 53 mm at its bifurcation with the gastroduodenal artery (GDA), compressing and dilating the common bile duct (CBD) (Fig. 1). The left hepatic artery (LHA) originated from the left gastric artery. Through endoscopic retrograde cholangiopancreatography (ERCP), a papillotomy was performed with placement of a plastic endoprosthesis in the CBD. Antibiotics were started and the patient was transferred to the academic hospital.

Because of dysfunction of the endoprosthesis, replacement with an 8 cm covered self-expandable metal stent (SEMS) during a second ERCP was performed. In the next two days, bilirubin and infection parameters increased, combined with a drop in haemoglobin levels. During a third ERCP, blood clots were seen and removed from the CBD, indicating the presence of an arteriobiliary fistula. A CTA was performed immediately showing signs of pending rupture of the HAA. To maintain the hepatic arterial circulation, 2 covered stents (8 × 50 mm Viabahn) were placed, using a percutaneous femoral approach, after the GDA was coiled. A subtraction angiogram showed an excluded HAA with patent flow through the stents and the right hepatic artery (RHA) (Fig. 2). Because of the open connection between the stents and the bile duct, antibiotics were continued.

Three months later, the patient was readmitted with fever, increased infection parameters and positive blood cultures for *Pseudomonas aeruginosa*. A new CTA showed aerobilia without dilatation of intrahepatic bile ducts, an in-stent thrombosis with limited flow and an excluded HAA. Antibiotic management was adapted but the patient was soon readmitted, because of a recurrent fever. A new CTA showed migration of the SEMS towards the transverse colon, and the origin of the CHA had dilated enormously.

Figure 1. Computed tomography scan before intervention. Yellow arrow: dilated common bile duct, red arrow: true aneurysm of the common hepatic artery.

Figure 2. Day 1 post-endovascular intervention using a covered stent. Blue arrow: no flow in the hepatic artery aneurysm (HAA); green arrow: stent in HAA; red arrow: common hepatic artery origin.

Figure 3. Day 19 post-endovascular intervention. Blue arrow: flow in hepatic artery aneurysm (HAA); green arrow: stent in HAA; red arrow: common hepatic artery origin dilated.
creating a type 1A endoleak (EL). The aneurysm itself had grown in diameter with signs of local infection (Fig. 3).

After multidisciplinary consultation, open ligation of the HAA was considered to be the only permanent solution. Special consideration was given to the fact that ligating the CHA could result in ischaemia of the right side of the liver with risk of liver abscess formation. However, reconstruction of the artery in an infected area in the presence of possible continuous bile leakage, was considered too high risk. The operation was performed successfully by a team of vascular and hepatobiliary surgeons (Fig. 4). The post-operative course was uneventful. Liver enzymes on day one and 10 post-operatively were respectively; aspartate aminotransferase: 69→16 U/L, alanine aminotransferase: 155→22 U/L, gamma GT: 846→239 U/L, alkaline phosphatase: 600→141 U/L and bilirubin: 7→6 μmol/L. During his last follow up, 12 months after surgery, the patient had no signs of complications and the CTA showed no abnormalities. Written informed consent was obtained from the patient for publication of this case report.

COMPREHENSIVE LITERATURE REVIEW

Rationale and objective

Current guidelines recommend an endovascular first approach with emphasis on maintaining arterial flow to the liver to prevent ischaemic complications. However, this strategy, using a covered stent, failed in this patient and secondary open ligation of the HAA did not result in liver ischaemia or abscesses. A comprehensive review of cases presenting with haemobilia in the presence of a non-iatrogenic, non-traumatic HAA was performed, comparing treatment outcomes, complications and re-interventions.

METHODS

Two authors (X.G., M.R.) performed the search in November 2020 following the PRISMA guidelines. Studies were selected by searching the MEDLINE database. The following search quotes were used: (“Haemobilia” [Mesh] OR “arterio-biliary fistula” AND "Hepatic aneurysm"). Since endovascular approaches did not exist before 1994, only studies from then on were selected in order to take the choice of treatment into consideration. Only papers written in English were included. First, studies were screened by title and abstract. Second, all potentially relevant studies were selected (107 articles) according to availability and eligibility criteria using the full text article (Fig. 5). For the qualitative synthesis, studies of patients with multiple (>2) aneurysms and HAAAs resulting from recent surgery, trauma, or endovascular intervention in the hepatobiliary tract were...
Year and author	Age	Sex	Etiology of HAA	HAA diameter	Bilary obstruction	Location	First treatment	Intervention	Complication	Time to re-intervention	Type of re-intervention	Follow up time	
1997 Corr⁹	5	F	Ascariasis	unknown	No	Left HA	Endovascular	Embolisation: microcoil	None	2 weeks			
2003 Ferrari⁷	24	M	Tuberculosis	Unknown	Yes	Unknown	Endovascular	Embolisation: coils, gelfoam, lipiodol	Re-bleeding	1 week	Open ligation	1 day, patient died	
2003 Rai⁷	47	F	Cholangitis	"Small"	No	Middle HA	Endovascular	Embolisation: coils	None	2 years			
2004 Akatsu⁰	64	F	Cholecystitis	3.0	No	Right HA	Endovascular	Embolisation: n.s.	None	14 months			
2006 Hatzidakis¹¹	40	M	Behçet’s disease	Unknown	No	Right HA, from SMA	Endovascular	Embolisation: coils	None	2 months			
2006 Traversa¹²	49	F	Unknown, degenerative	4.0—5.0	Yes	Common HA	Endovascular	Embolisation: histocryl	None	5 months			
2008 Chirica¹³	61	M	Atherosclerosis	4.0	Yes	Common HA	Surgical	Ligation	None	9 months			
2009 Lin¹⁴	73	M	Cholecystitis	2.0	Yes	Right HA	Surgical/ Endovascular	HAA discovered during cholecystectomy. Embolisation (n.s.) 2 days later	None	2 years			
2010 Arroja¹⁵	52	M	Cholecystitis	Unknown	No	Right HA	Endovascular	Embolisation: n.s.	None	2 years			
2010 Trakarnsanga¹⁶	55	M	Cholecystitis	4.0—5.0	Yes	Common HA	Endovascular	Embolisation: coils	None	2 years			
2011 Mortimer¹⁷	51	M	Endocarditis	2.0	No	Right HA, from SMA	Endovascular	Embolisation (coils) after negative emergency laparotomy because of haemodynamically unstable patient with unknown source of bleeding	None	2 years			
2011 Mortimer¹⁷	51	M	Endocarditis	2.0	No	Right HA, from SMA	Endovascular	Embolisation (coils) after negative emergency laparotomy because of haemodynamically unstable patient with unknown source of bleeding	None	2 years			
2012 Bibyan¹⁸	64	M	Cholecystitis	"Large"	Yes	Right HA, from SMA	Endovascular	Embolisation: n.s.	Calculus of aneurysm blocking gallbladder "few" days	Laparoscopic cholecystectomy	None		
2012 Yu¹⁰	61	F	Pancreatitis	Unknown	Yes	Left HA	None	Removal of blood clots through ERCP, stable thrombus in pseudoaneurysm	None	3 months			
2014 Komatsu¹⁰	53	M	Marfan syndrome	6.8	Yes	Unkown (adjacent to PV)	Endovascular	Embolisation: coils	haemobilia	9 and 11 days	2nd and 3rd embolisation left HA and laparotomy with open resection and left hemihepatectomy	3 years	
2016 Vultaggio¹¹	89	F	Atherosclerosis	1.0	No	Right HA	Endovascular	Embolisation: microcoils	Cholangitis	2 months	Antibiotics	None	
2017 Bacalbasa²²	68	n.a.	Unknown, degenerative	Unknown	No	Common HA, proper HA and GDA (Left HA originated from the left GA)	Surgical embolisation for left liver hypertrophy followed by resection of the aneurysm without initially planned right heptectomy	None	None				

Continued
HAA = hepatic artery aneurysm; F = female; M = male; cm = centimetres; NHL = non-Hodgkin’s lymphoma; HA = hepatic artery; SMA = superior mesenteric artery; GDA = gastroduodenal artery; PV = portal vein; GA = gastric artery; ERCP = endoscopic retrograde cholangiopancreatography; CBD = common bile duct; n.s. = not specified.

RESULTS

Twenty-four cases with a non-traumatic, non-iatrogenic HAA presenting patient details and their outcomes. Nine cases had a true HAA and 15 were pseudo/mycotic. A total of 24 patients provided patient details as well as aetiology of the HAA, types of treatment and their outcomes. Nine cases had a pseudo-myotic HAA and 15 were pseudo/mycotic. Mycotic, symptomatic and pseudo/mycotic HAA are the second most common VAAs and most common visceral pseudo-aneurysms. Mycotic, symptomatic and pseudo/mycotic HAA are the second most common VAAs and most common visceral pseudo-aneurysms.

DISCUSSION

Twenty-four cases with a non-traumatic, non-iatrogenic HAA presenting patient details and their outcomes. Nine cases had a true HAA and 15 were pseudo/mycotic. A total of 24 patients provided patient details as well as aetiology of the HAA, types of treatment and their outcomes. Nine cases had a pseudo-myotic HAA and 15 were pseudo/mycotic. Mycotic, symptomatic and pseudo/mycotic HAA are the second most common VAAs and most common visceral pseudo-aneurysms.
pseudo-aneurysms, should always be treated regardless of size. An endovascular first approach with emphasis on maintaining arterial flow to the liver was recommended in the recently published Society for Vascular Surgery guidelines on the management of visceral aneurysms.3 These guidelines recommend stenting, open reconstruction, or in case of coiling large intrahepatic HAAs, resection of the involved part of the liver to prevent necrosis. Maintaining vessel patency is certainly mandatory when the PV is occluded, or even stenosed, to prevent liver failure.30 There are no specific recommendations for HAAs presenting with haemobilia.

HAAs causing haemobilia are extremely rare when compared with other causes like percutaneous interventions, ERCP, or surgery.30 Prompt diagnosis is essential, but often overlooked in the absence of previous interventions in the hepatobiliary region. The classic triad of right upper quadrant pain, jaundice, and overt upper gastrointestinal bleeding (Quincke’s triad) is only present in 25%–30% of the patients. Haemobilia can be diagnosed with upper endoscopy, ERCP, CTA, and/or endoscopic ultrasound. Simultaneously, the cause of haemobilia should be identified and treated. An HAA can be confirmed on CTA or angiography. Management is based on two main principles: haemostasis and maintaining bile flow.

Evidence based haemostatic treatment strategies for HAAs with haemobilia are hard to propose in the absence of large studies. A meta-analysis studied treatment of pseudo-aneurysms in 100 cases after laparoscopic cholecystectomy.2 The most common presentation was haemobilia (85.1%). The main treatment strategy was embolisation (72.3%), while stent grafts were used in only 4 patients. Ten patients (13.7%) developed liver abscesses and 9 (12.3%) hepatic ischaemia. In another study, 83% of patients developed ischaemic liver injury after hepatic artery embolisation for haemorrhage following hepatobiliary surgery.31 Last, Mezhir et al. showed that when liver tumours or haemorrhage are treated by hepatic artery embolisation, liver abscess formation was especially common in patients with a bilo-enteric anastomosis (33%) or an incompetent sphincter (10%).32 Based on these data, it was expected that embolisation of a HAA in the presence of a hepatobiliary fistula would also lead to liver ischaemia and abscesses. However, none of the 24 cases included in the review developed such a complication, even though no patients were treated by a blood flow preserving method. It is important to realise that long term follow up for most of these cases was missing and that transient liver ischaemia might have been missed or not reported. Publication bias might also have directed towards better outcomes.

Fifty per cent of the cases presented with biliary obstruction at time of haemobilia. It is hypothesised that if instrumentation of the biliary system has not yet been performed, percutaneous biliary stent placement without disruption of the papilla, may be useful to prevent bacterial contamination of the biliary tree, thereby reducing the risk of liver abscess formation after embolisation. In the endovascular group, 10 cases presented with jaundice of which 6 underwent an intervention (plastic stent, nasobiliary/ internalised drainage or stone extraction). Bile leakage was not reported in any of the uncomplicated endovascular treated cases. Of the 3 cases that were converted to open surgery, all underwent biliary diversion around the time of embolisation, as did the present case. During open surgery, biliary repair was performed only in 1 patient. Of the 4 primary open cases, 2 had per-operative T tube insertion, and all ended uneventfully. Overall, in 70% of all open surgery cases, a biliary repair or diversion was performed at some point. A recommendation on bile duct strategy is difficult to propose based on these small numbers.

CONCLUSION

Hepatic artery aneurysms presenting with haemobilia should be excluded promptly. These patients may be safely treated by embolisation or open ligation, as none of the 24 cases in this comprehensive review were treated with a blood flow preserving method and no ischaemic liver complications or abscesses were reported. Conversely, using a covered vascular stent in these patients can cause problems due to ongoing infection.

CONFLICT OF INTEREST

None.

FUNDING

None.

REFERENCES

1 van Rijn MJ, Ten Raa S, Hendriks JM, Verhagen HJ. Visceral aneurysms: old paradigms, new insights? Best Pract Res Clin Gastroenterol 2017;31:97—104.
2 Machado NO, Al-Zadjali A, Kakaria AK, Younus S, Rahim MA, Al-Sukaiti R. Hepatic or cystic artery pseudoaneurysms following a laparoscopic cholecystectomy: literature review of aetiology, pathogenesis, presentation, diagnosis and management. Sultan Qaboos Univ Med J 2017;17:e135—46.
3 Chaer RA, Abularrage CJ, Coleman DM, Eslami MH, Kashyap VS, Rockman C, et al. The Society for Vascular Surgery clinical practice guidelines on the management of visceral aneurysms. J Vasc Surg 2020;72:35—395.
4 Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol 2009;62:e1—34.
5 Tin K, Sobani ZA, Horovitz J, Rahmani R. Aortic and splanchnic artery aneurysms: unusual causes of biliary obstruction — a retrospective cohort from literature. Int J Surg 2017;39:e1—8.
6 Corr P, Smit J, Hadley GL. An unusual cause of haemobilia: biliary ascariasis. Pediatr Radiol 1997;27:348—9.
7 Ferrari AP, Ferreira JP, de Paulo GA, Libera Jr ED. Hemobilia caused by a mycotic aneurysm of the hepatic artery treated by embolization injection during ERCP. Gastrointest Endosc 2003;57:260—3.
8 Liu TT, Hou MC, Lin HC, Chang FY, Lee SD. Life-threatening hemobilia caused by hepatic artery pseudoaneurysm: a rare
complication of chronic cholangitis. World J Gastroenterol 2003;9:2883–4.
9. Rai R, Rose J, Manas D. An unusual case of haemobilia. Eur J Gastroenterol Hepatol 2003;15:1357–9.
10. Akatsu T, Hayashi S, Egawa T, Doi M, Nagashima A, Kitano M, et al. Hepatic artery pseudoaneurysm associated with chole-
ystis that ruptured into the gallbladder. J Gastroenterol 2004;39:900–3.
11. Hatzidakis A, Petrakis J, Tsetis D, Gourtsoyiannis N. Hepatic artery aneurysm presenting with hemobilia in a patient
with Behçet’s disease: treatment with percutaneous trans-
catheter embolization. Diagn Interv Radiol 2006;12:53–5.
12. Traversa G, Zippi M, Bruni A, Mancuso M, Di Stefano P,
Ochigrossi G. A rare case of hemobilia associated with aneu-
rysms of the celiac trunk, the hepatic artery, and the splenic
artery. Endoscopy 2006;38(Suppl. 2):E5–6.
13. Chirica M, Alkofer B, Sauvanet A, Vullerme MP, Levy Y,
Belghiti J. Hepatic artery ligation: a simple and safe technique
to treat extrahepatic aneurysms of the hepatic artery. Am J Surg 2008;196:333–8.
14. Lin SZ, Tseng CW, Chen CC. Hepatic artery pseudoaneurysm
presenting with Mirizzi syndrome and hemobilia. Clin Gastro-
enterol Hepatol 2009;7:e73.
15. Arroba B, Canhoto M, Barata P, Goncalves C, Silva F, Cotrim I,
et al. Hemobilia after pseudoaneurysm of a right hepatic artery branch. Rev Esp Enferm Dig 2010;102:386–7.
16. Trakarnsanga A, Siriprayoon T, Akaraviputh T, Tongdee T.
Massive hemobilia from a ruptured hepatic artery aneurysm
detected by endoscopic ultrasound (EUS) and successfully
treated. Endoscopy 2010;42(Suppl 2):E340–1.
17. Mortimer AM, Wallis A, Planner A. Multiphase multidetector
CT in the diagnosis of haemobilia: a potentially catastrophic
ruptured hepatic artery aneurysm complicating the treatment
of a patient with locally advanced rectal cancer. Br J Radiol
2011;84:e95–8.
18. Bibyan M, Khandelwal RG, Reddy PK, Hulbe S, Balachander TG.
Gallstone causing pseudoaneurysm of accessory right hepatic
artery. Indian J Gastroenterol 2012;31:213–4.
19. Yu YH, Sohn JH, Kim TY, Jeong JY, Han DS, Jeon YC, et al. Hepatic
artery pseudoaneurysm caused by acute idiopathic pancreatitis.
World J Gastroenterol 2012;18:2291–4.
20. Komatsu S, Iwasaki T, Nishioka N, Toyokawa A, Teramura K.
Hemobilia associated with a giant thrombosed aneurysm of the
hepatic artery requiring hepatectomy. Ann Vasc Surg 2014;28:
1934. e13–7.
21. Vultaggio F, Morere PH, Constantin C, Christodoulou M,
Roulin D. Gastrointestinal bleeding and obstructive jaundice: think of hepatic artery aneurysm. World J Gastrointest Surg
2016;8:467–71.
22. Bacalbasa N, Brezean I, Anghel C, Barbui B, Pautov M, Balescu I,
et al. Successful resection and vascular ligation of a large he-
patic artery aneurysm — a case report and literature review.
In Vivo 2017;31:979–82.
23. Bacalbasa N, Brezean I, Anghel C, Barbui B, Pautov M, Balescu I,
et al. Management of a fulminant upper gastrointestinal
bleeding exteriorized through hemobilia due to arteriobiliary
fistula between the common bile duct and a right hepatic
artery aneurysm — a case report. In Vivo 2017;31:983–9.
24. Barrientos Delgado A, Delgado Maroto A, Hallouc Toutouh S.
Biliary bleeding due to a hepatic artery pseudoaneurysm
rupture. Rev Esp Enferm Dig 2018;110:741.
25. Fong KL, Zwierzchoniewska M, Patel D, Mou L, Delriviere L.
Mycotic aneurysm of the hepatic artery causing haemobilia.
ANZ J Surg 2018;88:E350–1.
26. Warren JM, Beumer JD, Tan CP. Haemobilia due to hepatic
artery mycotic aneurysm. ANZ J Surg 2018;88:E206–7.
27. Das M, Volmar FH, Walayat S, Nolte R. Hemobilia from a right
hepatic artery pseudoaneurysm due to chronic cholecystitis.
SAGE Open Med Case Rep 2019;7. 2050313X19872075.
28. Zhu JY, Huang J, Fan W, Lv X, Ren YP, Yang XL. Massive
hemobilia due to a ruptured mycotic hepatic artery aneurysm
associated with streptococcal endocarditis: case report. J Int
Med Res 2020;48. 300060519883554.
29. Saeed H, Buxey KN, Milne CPE, Cox G. Quinke’s triad: haemobilia
secondary to hepatic artery aneurysm. ANZ J Surg 2019;89:E214–5.
30. Berry R, Han JY, Kardashhan AA, LaRusso NF, Tabibian JH. Hemo-
bilial: etiology, diagnosis, and treatment. Liver Res 2018;2:200–8.
31. Cho SK, Kim SS, Do YS, Park KB, Shin SW, Park HS, et al. Ischemic liver injuries after hepatic artery embolization in pa-
tients with delayed postoperative hemorrhage following hep-
atobiliary pancreatic surgery. Acta Radiol 2011;52:393–400.
32. Mezhib JJ, Fong Y, Fleischer D, Seo SK, D’Amico F, Petre E, et al.
Pyogenic abscess after hepatic artery embolization: a rare but
potentially lethal complication. J Vasc Interv Radiol 2011;22:
177–82.