Prevalence of *Clostridium perfringens* in Retail Meat and Meat Products with Some Decontamination Trials by some Essential Oils

Rasha M. El-Bayomi¹*,** Yasmn M. El-Mesalamy¹, Abdelsalam E. Hafez¹, Heba A. Ahmed²

¹Food Control Department, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt; ²Zoonoses Department, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt.

Abstract | Meat is a valuable contribution to diets because of its high nutritional values. *Clostridium perfringens* is a commensal inhabitant of animals and human intestinal tract as well as a common foodborne pathogen associated with food poisoning. The present study was carried out to investigate the prevalence of *C. perfringens* in meat and its products at Zagazig city, Sharkia Governorate, Egypt. In addition, toxin genes, antimicrobial susceptibility testing and biofilm formation of *C. perfringens* strains isolated from meat and its products were determined. The achieved results revealed the contamination of meat and meat products by *C. perfringens* with varying degrees. Alpha toxin gene was found in all isolated strains, while enterotoxin gene not detected. By disc diffusion method, *C. perfringens* isolates were found resistant to most of the tested antibiotics with high multiple antibiotic resistance (MAR) indices. Most of *C. perfringens* isolates were able to form biofilms at different temperatures. Finally, marjoram oil 2% was more effective than thyme oil 5% in reduction of *C. perfringens* count in vitro. The results suggested appropriate food safety practices in meat and meat product production and processing facilities in Zagazig city, Egypt.

Keywords | *C. perfringens*, Enterotoxin, Antibiotic, Biofilm, Essential oils

INTRODUCTION

Meat and meat products are valuable sources of various nutrients; mainly protein, fat, B-vitamins, iron, zinc and vitamin A, in addition to the essential amino acids. Meat products are preferred by many peoples because they are easily prepared meals of low price (Shaltout et al., 2016).

Clostridium perfringens is a Gram-positive, non-motile, spore-forming, anaerobic bacillus that commensally inhabits the intestinal tract of animals and humans. It is a cytoxin producing bacterium with an optimum growth temperature of 35°C–40°C (Dawson et al., 2009). *C. perfringens* type A strains are implicated in numerous human diseases such as food poisoning and gastrointestinal illness (Fisher et al., 2005).

The extensive use of antimicrobial agents for growth promotion and disease control is the main cause of antimicrobial resistance spread particularly in the normal enteric flora, including *C. perfringens*. Resistance of *C. perfringens* isolates to various antibiotics has been reported in different countries (Slavic et al., 2011).

Biofilm is structured communities of the bacterial cell encased in a self-produced extracellular polysaccharide matrix that provides an increased resistance to environmental stresses. Biofilm formed by *C. perfringens* protects it from exposure to the atmospheric oxygen and to the high concentrations of antibiotics (Charlebois et al., 2014).

Essential oils (EOs) are aromatic volatile oily liquids obtained from plant materials, particularly. Thyme (*Thymus vulgaris* L.) is an aromatic plant belongs to family...
Labiateae, used mainly for several culinary purposes. Marjoram (Origanum majorana L.) is another essential oil belongs to Lamiaceae family and has a broad inhibitory spectrum against wide range of Gram-negative and Gram-positive bacteria (Mohamed and Mansour, 2012).

Thus, the present study was planned for isolation of C. perfringens from meat and meat products, as well as detection of C. perfringens virulence genes, antimicrobial susceptibility test, and investigation of C. perfringens ability to form biofilms at different temperatures. In addition to investigate the antibacterial effect of some essential oils on C. perfringens.

MATERIALS AND METHODS

COLLECTION OF SAMPLES

A total of 40 fresh meat samples and 160 meat products (minced meat, burger, sausage and luncheon, 40 each) were randomly collected from different outlets at Zagazig city, Sharkia Governorate, Egypt.

ISOLATION OF C. PERFRINGENS

Under complete aseptic conditions, 10 g of each sample were aseptically homogenized in a sterile blender containing 90 ml of 0.1 % sterile Buffered Peptone Water (BPW, OXOID, CM9). The enrichment of each sample was performed by transferring 1 ml of each homogenized sample into a tube containing 9 ml of sterile Cooked Meat Broth (CMB; TM MEDIA) (ISO6887, 2003). The tubes were anaerobically incubated at 37°C for 24 h. For isolation of C. perfringens, a loopful from the enriched cultures were streaked on to the surface of Reinforced Clostridial Agar (RCA; Oxoid, CM0151), and were anaerobically incubated at 37°C for 24-48 h in anaerobic jar containing gas generating kits (anaeroGen, OXOID ltd, England). The suspected colonies of C. perfringens (shiny, pin headed and translucent) were picked and subjected to Gram staining and biochemical tests (Tizhe et al., 2015).

MOLECULAR CHARACTERIZATION OF C. PERFRINGENS VIRULENCE GENES

The extraction of the bacterial DNA was carried using QIAamp DNA Mini kit (Qiagen GmbH, Hilden, Germany, Cataloge no. 51304) according to the manufacturer's instructions. The amplification of C. perfringens plc gene encoding phospholipase C (alpha-toxin) and C. perfringens enterotoxin (cpe) was performed using primers from Midland Certified Reagent Company oígos (USA). The alpha-toxin primers were sense 5’ GTTGATAGCCAGG ACAATGTTAGG3’ and antisense 5’ CATGATGTCATCTGTTCCAGCATC3’ with a product size of 402 bp (Yoo et al., 1997). The primers used for detection of cpe gene were sense 5’ ACATCTGCAGATAGCTTAGGAAAT3’ and antisense 5’ CCAGTAGCTGAATATTGTAAGTGT3’ with a product size of 247 bp. (Kaneko et al., 2011).

ANTIBIOTIC SUSCEPTIBILITY TESTING

It was performed by the disc diffusion method according to Bauer et al. (1966). The types of antibiotics and concentrations of each antibiotic disc are listed in a supplementary Supplementary Table 1. The results were used to calculate the Multiple Antibiotic Resistance (MAR) index for the total number of isolates as: MAR index=a/b, where a is the number of antibiotics to which the isolate is resistant, and b is the total number of tested antibiotics.

DETECTION OF BIOFILM PRODUCTION BY MICROTITER PLATE ASSAY (MtP)

The biofilm production of C. perfringens isolates at different storage temperatures was determined by MtP assay as previously performed by Kirmusaoğlu (2019).

TRIALS TO IMPROVE MEAT QUALITY AND DECREASE C. PERFRINGENS COUNT

Nine Essential oils of watercress (Eruca Sativa), argan (Argania spinosa), marjoram (Origanum majorana), black seed (Nigella sativa), thyme (Thymus vulgaris), cumin (Cuminum cyminum), lemon grass (Cymbopogon citratus), rosemary (Rosmarinus officinalis) and lettuce (Lactuca sativa) were purchased from National Research Center, Dokki, Giza. These were used to determine the most effective oil on C. perfringens, by the disk diffusion method on Brain Heart Infusion agar (Nuno et al., 2016). The best effective oils in disk-diffusion method were thyme and marjoram essential oils, which were selected for further investigation in different concentrations and to calculate their minimum inhibitory concentration (MIC). The following concentrations: 10, 5, 2, 1, 0.5 and 0.25% v/v were prepared from these two oils. The MIC was taken from the lowest dosed disc concentration showing no growth after 24 h.

For the experimental trials was repeated in triplicates, a total of 1200 g of fresh meat was aseptically minced and divided into four groups (100 g, each). One ml of the C. perfringens broth that was adjusted to 0.5 McFarland was inoculated by pipetting over each 100 g of minced meat. The inoculated samples were left for 30 min at room temperature (25°C). Then it was divided in to four groups: 1st group, was inoculated with 1 ml sterile distilled water as a positive control; 2nd group, was inoculated with thyme oil 5%; 3rd group, was inoculated with marjoram oil 2% and 4th group, minced meat without inoculation of the microorganism as a negative control group. The control as well as the treated groups were examined for determination
of the antimicrobial effect of the above-mentioned oils against \textit{C. perfringens} after treatment for 0.5, 1, 2, 4, 6 and after 24 h.

\section*{Statistical Analysis}

All values of bacteriological analysis are presented as means ± standard error (S.E). Data were analyzed by SPSS and One-Way Analysis of Variance (ANOVA) at 95\% level of confidence. Significant differences among the means were determined by DUNCAN test considering \(p < 0.05 \) as significant.

\section*{Results and Discussion}

\subsection*{Occurrence of \textit{C. perfringens} in the Examined Meat and Meat Products}

The bacteriological analysis of meat and meat product samples showed the presence of \textit{C. perfringens} in 29 (14.5\%) of the examined samples (Table 1). It was found that all examined \textit{C. perfringens} isolates were positive for alpha toxin, while \textit{C. perfringens enterotoxin (cpe)}, not detected in all examined \textit{C. perfringens} isolates (Figure 1).

\begin{table}[h]
\centering
\begin{tabular}{|l|c|c|}
\hline
\textbf{Samples} & \textbf{Positive samples} & \\
 & \textbf{Number} & \textbf{Percentages} \\
\hline
Fresh meat & 6 & 15\% \\
Frozen minced meat & 6 & 15\% \\
Burger & 8 & 20\% \\
Sausage & 4 & 10\% \\
Luncheon & 5 & 12.5\% \\
\hline
Total & 29 & 14.5\% \\
\hline
\end{tabular}
\caption{Occurrence of \textit{C. perfringens} in the examined meat and meat product samples (N= 40, each).}
\end{table}

\subsection*{Antibacterial Effect of Some Essential Oils \textit{C. perfringens}}

The obtained results in Table 4 revealed that from the tested nine oils, marjoram and thyme oils were the highest effective antibacterial oils against \textit{C. perfringens}.

The data presented in Table 5 revealed the effect of different concentrations of thyme and marjoram essential oils on \textit{C. perfringens} by the disk diffusion method. The mean inhibition zone diameter from the effect of thyme oil 5\% and marjoram oil 2\% against \textit{C. perfringens} was 10±2.7 and 15.33±0.34 mm that were moderately inhibitory (10-20 mm) (Nuno et al., 2016). Thus, marjoram oil 2\% and thyme oil 5\% were chosen to investigate the chicken meat inoculated with \textit{C. perfringens} for 0.5, 1, 2, 4, 6 and 24 h at 4 \textdegree C.

After 0.05 h, the mean count of \textit{C. perfringens} in the control group was 5.59±0.36 log\textsubscript{10} CFU/g, while the mean values of treated groups with thyme oil 5\% and marjoram oil 2\% was decreased to 4.87±0.13 and 4.65±0.09 log\textsubscript{10} CFU/g. After treatment for 24 h, the mean \textit{C. perfringens} count in control group increased to 5.73±0.30 log\textsubscript{10} CFU/g, while the mean counts of treated groups with thyme oil 5\% was reduced to 4.99±0.17 log\textsubscript{10} CFU/g with a reduction percentage of 81.8\% and 4.89±0.17 log\textsubscript{10} CFU/gin marjoram oil 2\%. Statistical analysis by ANOVA revealed significance differences between control and treated samples at \(p < 0.05 \) (Table 6).

\textit{C. perfringens} is a normal inhabitant of the animals’ intestinal tract which can contaminate the carcass during unhygienic slaughtering process. The prevalence of \textit{C. perfringens} in the current study is higher than 11.2\% in India (Gurmu et al., 2013) and 5.6\% in Turkey (Yibar et al., 2018).
Table 2: Antimicrobial susceptibility and Resistance profile of *C. perfringens* (N=10).

Antimicrobial agent	Sensitive No.	%	Intermediate No.	%	Resistant No.	%
Oxytetracyclin (T)	0	0	0	0	10	100%
Erythromycin (E)	1	10%	0	0	9	90%
Neomycin (N)	1	10%	0	0	9	90%
Amoxicillin (AX)	0	0	1	10%	9	90%
Ampicillin (AM)	0	0	2	20%	8	80%
Streptomycin (S)	1	10%	1	10%	8	80%
Novobiocin (NV)	1	10%	2	20%	7	70%
Gentamicin (CN)	4	40%	0	0	6	60%
Norfloxacin (NOR)	3	30%	2	20%	5	50%
Enrofloxacin (ENR)	5	50%	0	0	5	50%

Pattern Resistance profile

Pattern	Resistance profile	Number of isolates (%)	Number of antibiotics	MAR
I	T, E, N, AX, AM, S, NV, CN, NOR, ENR	3(30%)	10	1
II	T, E, N, AX, AM, S, NV, NOR, ENR	2(20%)	9	0.9
III	T, E, N, AX, AM, S, NV, CN	2(20%)	8	0.8
IV	T, E, N, AX, AM, S, NV	1(10%)	7	0.7
V	T, E, N, AX, AM, S	1(10%)	6	0.6
VI	T	1(10%)	1	0.1

Average 0.68

N: Number of *C. perfringens* isolates; No.: Number of sensitive, intermediate or resistant *C. perfringens* isolates
%: Percentage of sensitive, intermediate or resistant *C. perfringens* isolates; MAR: Multiple Antibiotic Resistance index (a/b), where (a) is the number of antibiotics to which the isolates are resistant. (b): is the total number of tested antibiotics (10).

Table 3: Biofilm formation in *C. perfringens* isolates at 4 ºC, 25 ºC and 35 ºC.

Temperature	Non-producer	Degree of biofilm production (No, %, Average OD±SD)	Overall biofilm producers
4 ºC	5(50%)	2(20%) Moderate 3(30%) Strong 0.025249±0.04891 0.170283±0.06859 0.273894±0.0362	5(50%)
25 ºC	6(60%)	1(10%) Moderate 3(30%) Strong 0.09496±0.069 0.26357±0.004 0.62969±0.009	4(40%)
35 ºC	3(30%)	5(50%) Moderate Strong 0.241909±0.05810 0.526731±0.173907 0.713631±0.03229	10(100%)

OD: Optical Density; SD: Standard Deviation.

Table 4: Antibacterial effect of the used essential oils.

Pure oil	Mean inhibition zone diameter (mm)±SE	
Watercress (*Eruca Sativa*)	-	
Argan (*Argania spinosa*)	-	
Thyme (*Thymus vulgaris*)	22.67±7.5	
Black seed (*Nigella sativa*)	-	
Marjoram (*Origanum majorana*)	23.33±6.8	
Cumin (*Cuminum cyminum*)	16.66±7.4	
Lemon grass (*Cymbopogon citratus*)	13.33±4.7	
Rosemary (*Rosmarinus officinalis*)	5±0.59	
Lettuce (*Lactuca sativa*)	-	

Table 5: Antibacterial effect of different concentrations of thyme and marjoram essential oils.

Concentrations	Mean inhibition zone diameter of thyme (mm)	Mean inhibition zone diameter of marjoram (mm)
10%	18±0.59	16±0.59
5%	10±2.7	15.67±0.34
2%	5±0.58	15.33±0.34
1%	5±0.58	5±0.58
0.5%	5±0.58	5±0.58
0.25%	5±0.58	5±0.58
positive for alpha toxin, while C. Perfringens enterotoxin (cpe), not detected in all isolates. Similar findings were reported by Engstrom et al. (2003) who found that all strains of C. perfringens were non enterotoxin producers. Moreover, Lin and Labbe (2003) reported that all C. perfringens isolates possessed alpha toxin gene, but none of the isolates were identified as carrying the cpe gene. Heikinheimo and Korkeala (2005) who found that C. perfringens strains possessed alpha encoding genes and were negative for enterotoxin encoding genes. In India, 15.15% of C. perfringens isolates were positive for cpe (Gurmu et al., 2013). Meanwhile, Yibar et al. (2018) reported that 27.2% of C. perfringens isolated from raw, ready to cook and ready to eat meat and meat-based products in Turkey carried the cpe gene.

The variations of the results may be attributed to the method of manufacture and contamination level during the processing, packaging and storage (Borch and Arinder, 2002).

The occurrence of multidrug resistant C. perfringens in meat and its products raises the public health concerns. In the current study, the tested C. perfringens revealed high antimicrobial susceptibility.

C. perfringens isolates showed a relatively lower resistance rate (66% and 56.2%) to tetracycline (Tansuphasiri et al., 2005). Shojadoust et al. (2010) reported the resistance of C. perfringens isolates to neomycin (87.5%) and tetracycline (80%). Meanwhile, the percentage of resistance to amoxicillin and ampicillin was less than 7% (Osman and Elhariri, 2013). Silva et al. (2014) reported lower resistance to tetracycline (25.0%) was reported by Chon et al. (2018).

Higher resistance of 100% to gentamycin, erythromycin and streptomycin than the current study as well as 93% to neomycin was reported by Osman and Elhariri (2013). Hamza et al. (2017) reported that C. perfringens isolates from processed meat in Cairo, Egypt showed strong resistance (100%) to streptomycin. Mwangi et al. (2019) found the prevalence of C. perfringens resistance was 98% and 73% to streptomycin and gentamicin.

The MAR index of 0.2 or more indicates contamination from high risk sources, thus, posing risks to human consumers (Tambe et al., 2006). More than 50% of C. perfringens strains were resistant to more than five antibiotics (Shojadoust et al., 2010). While, in Iran 34.17% of C. perfringens strains showed MDR (Akhi et al., 2015). Mehdi and Wannas (2017) reported that all C. perfringens isolates showed MDR. High resistance rate of C. perfringens may be due to the wide spread of the antimicrobials.
The process of biofilms formation involves different stages including attachment, maturation and dispersion. The obtained results in this study are in accordance with the results obtained by Varga et al. (2008) where *C. perfringens* strains were shown to form biofilms with optical density values between 0.07 and 0.5. On the other hand, Donelli et al. (2012) were able to obtain a higher biofilm formation for *C. perfringens* strain with a mean optical density value of 3.2. Most of the *C. perfringens* were able to form biofilm (230/277) in Canada (Charlebois et al., 2014).

This study showed that the incubation temperature had a significant effect on the ability of *C. perfringens* to produce biofilm. Incubation at 35°C enhanced biofilm formation significantly more than incubation at 4°C and 25°C. Time-temperature abuse in markets could result in the propagation of the bacteria to dangerous levels (Sudha et al., 2012). Temperature has an adverse effect on biofilm formation by affecting flagellar motility, which enhances the movement of bacteria towards the biofilm surface (Bonsaglia et al., 2014). Thus, *C. perfringens* can produce biofilm at markets where temperature abuse occurs, resulting in probable risks to consumers.

Various studies have been conducted on the antimicrobial effects of plant essential oils and their constituents against foodborne pathogens. In a study conducted in Brazil, marjoram essential oil exhibited antibacterial activities against *C. perfringens* (Radaelli et al., 2016). Moreover, Nevas et al. (2004) reported the inhibitory effect of thyme oil against *C. perfringens* and Silva et al. (2013) used the disc diffusion methods to evaluate the antibacterial activity of thyme oil and reported a high antimicrobial activity (inhibition > 95%) against *C. perfringens*.

The best effective lowest concentration dosed of thyme oil was 5% and 2% for marjoram. The results obtained in the current study are comparable to Juneja et al. (2006) who reported that adding 0.1 to 2% thyme to the meat inhibited germination and outgrowth of *C. perfringens* spores at 12 h exponential chill rates. While, Juneja and Friedman (2007) reported that addition of thyme 2% on cooked ground beef and turkey, resulted in 3-5 log CFU/g reduction of spore germination and outgrowth. In addition, Du et al. (2015) reported strong antibacterial effects of thyme oil in *vitro* against a panel of pathogenic bacteria, including *C. perfringens*. In Brazil, a study conducted by Radaelli et al. (2016) revealed that marjoram and thyme with MIC of 5 mg/ml and 1.25 mg/ml exhibited antimicrobial activities against *C. perfringens*.

Antimicrobial activities of EOs are related to chemical characteristics such as their hydrophobicity which enables them to interact with the lipids of the bacterial cell membrane thus disturbing bacterial metabolism and cell wall and membrane permeability, leading to extensive leakage of critical molecules and ions from bacterial cells (Diaz Carrasco et al., 2016).

CONCLUSIONS AND RECOMMENDATIONS

Our study revealed a higher prevalence level of *C. perfringens* harbored Alpha toxin gene in raw meat and meat products. These results show that there is a need for applying appropriate food safety practices in meat and meat products production and processing facilities. The inhibition of biofilm formation needs for strict precautions to store food under different conditions. Our results suggest that treatment of meat with thyme oil 5% and marjoram oil 2% can greatly reduce *C. perfringens*, thus enhancing overall food safety. The reduction count was directly proportional.

AUTHOR'S CONTRIBUTION

All authors contributed equally.

CONFLICT OF INTEREST

The authors have declared no conflict of interest.

REFERENCES

• Akhi MT, Bidar-Asl, S, Pirzadeh T, Naghili B, Yeganeh F, Memar Y, Mohammadzadeh Y (2015). Antibiotic sensitivity of *Clostridium perfringens* isolated from faeces in Tabriz, Iran. Jundishapur J. Microbiol., 8: e20863. https://doi.org/10.5812/jjm.20863v2
• Atwa EI, Abou El-Roos NA (2011). Incidence of *Clostridium perfringens* in meat products at some Egyptian governorates. Int. J. Microbiol. Res., 2: 196-203.
• Bauer AW, Kirby WM, Sherris JC, Turck M (1966). Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol., 45: 493-496. https://doi.org/10.1093/ajcp/45.4.ts.493
• Bonsaglia ECR, Silva NCC, Fernades Júnior A, Araújo Júnior JP, Tsunemi MH, Rall VLM (2014). Production of biofilm by *Listeria monocytogenes* in different materials and temperatures. Food Contr., 35: 386-391. https://doi.org/10.1016/j.foodcont.2013.07.023
• Borch E, Arinder P (2002). Bacteriological safety issues in red meat and ready-to-eat meat products, as well as control measures. Meat Sci., 62: 381-390. https://doi.org/10.1016/S0309-1740(02)00125-0
• Charlebois A, Jacques M, Anchambault M (2014). Biofilm formation of *Clostridium perfringens* and its exposure to low-dose antimicrobials. Front Microbiol., 5: 183. https://doi.org/10.3389/fmicb.2014.00183
• Chon JW, Seo KH, Bae D, Park JH, Khan S, Sung K (2018). Prevalence, toxin gene profile, antibiotic resistance, and molecular characterization of *Clostridium perfringens* from diarrheic and non-diarrheic dogs in Korea. J. Vet. Sci., 19:
Dawson LF, Valiente E, Wren BW (2009). *Clostridium difficile*. A continually evolving and problematic pathogen. *Infection, Genet. Evol.*, 9: 1410-1417. https://doi.org/10.1016/j.ijmecev.2009.06.005

Diaz Carrasco JM, Redondo LM, Redondo EA, Dominguez JE, Chacana AP, Fernandez Miyakawa ME (2016). Use of plant extracts as an effective manner to control *Clostridium perfringens* induced necrotic enteritis in poultry. *Biomed. Res. Int.*, 2016: 3278359. https://doi.org/10.1155/2016/3278359

Donelli G, Vuotto C, Cardines R, Mastrantonio P (2012). Biofilm-growing intestinal anaerobic bacteria. *FEMS Immunol. Med. Microbiol.*, 65: 318-325. https://doi.org/10.1111/j.1574-695X.2012.00962.x

Du E, Gan L, Li Z, Wang W, Liu D, Guo Y (2015). *In vitro* antibacterial activity of thymol and carvacrol and their effects on broiler chickens challenged with *Clostridium perfringens*. *J. Anim. Sci. Biotechnol.*, 6. https://doi.org/10.1186/s40104-015-0055-7

Engstrom BE, Fermer C, Lindberg A, Saarinen E, Baverud Aström D, Fisher D, Miyamoto K, Harrison B, Akimoto S, Sarker M, Fohler S, Klein G, Hoedemaker M, Scheu T, Seyboldt C, Hassanien FS (2004). Bacterial hazards associated with *Clostridium perfringens* and its Enterotoxin in Food. *International Journal of Food Microbiology*, 85: 368-374. https://doi.org/10.1016/j.ijfoodmicro.2003.09.018

Fisher D, Miyamoto K, Harrison B, Akimoto S, Sarker M, McClane BA (2011). Detection of enterotoxicogenic *Clostridium perfringens* in meat samples by using molecular methods. *Appl. Environ. Microbiol.*, 77: 7526-7532. https://doi.org/10.1128/AEM.06216-11

Kirmusausgili S (2019). The methods for detection of biofilm and screening antibiofilm activity of agents. Open access peer reviewed chapter. https://doi.org/10.5772/intechopen.84411

Lin Y-T, Labbe R (2003). Enterotoxigenicity and genetic relatedness of *Clostridium perfringens* isolates from retail foods in the United States. *Appl. Environ. Microbiol.*, 69: 1642-1646. https://doi.org/10.1128/AEM.69.6.1642-1646.2003

Malti J, Amarouch H (2008). Microbiological and physicochemical characterization of natural fermented meat sausage. *J. Food Process. Preserv.*, 32: 159-177. https://doi.org/10.1111/j.1111.1745-4549.2007.00172.x

McClane B, Lyerly DM, Wilkins TD (2006). Enterotoxic clostridia: *Clostridium perfringens* type A and *Clostridium difficile*. *Gram-positive pathogens*, pp. 703-714. https://doi.org/10.1007/978-1-55581-6513.ch57

Mehdi L, Wannas N (2017). Isolation and Identification of *Clostridium perfringens* and its Enterotoxin in Food poisoning Patients. *J. Fac. Med. Baghdad*, 59: 145-150. https://doi.org/10.32007/j.fmdbagdad.v59i2.5922.9

Mišić Y, Miyamoto K, Kaneko-Hirano I, Fujuchi K, Akimoto S (2008). Prevalence and characterization of enterotoxin gene-carrying *Clostridium perfringens* isolates from retail meat products in Japan. *Appl. Environ. Microbiol.*, 74: 5366-5372. https://doi.org/10.1128/AEM.00783-08

Mohamed H, Mansour H (2012). Incorporating essential oils of marjoram and rosemary in the formulation of beef patties manufactured with mechanically deboned poultry meat to improve the lipid stability and sensory attributes. *LWT Food Sci. Technol.*, 45: 79-87. https://doi.org/10.1016/j.lwt.2011.07.031

Mwangi S, Timmons J, Fitz-Coy S, Parveen S (2019). Characterization of *Clostridium perfringens* recovered from broiler chicken affected by necrotic enteritis. *Poult. Sci.*, 98: 128-135. https://doi.org/10.3382/ps/ney332

Nevas M, Korhonen AR, Lindstrom M, Turkki P, Korkeala H (2004). Antibacterial efficiency of Finnish spice essential oils against pathogenic and spoilage bacteria. *J. Food Prot.*, 67: 199-202. https://doi.org/10.4315/0362-028X-67.1.199

Nuno S, Santos T, Marinho C, Sousa M, Teixeira J, Gonzalez D, Correia E, Igrejas G, Poeta P (2016). Effect of Mediterranean oils and spices against food-related pathogenic bacteria. *J. Food Dairy Technol.*, 4: 44-51.

Osman KM, Elhatri R (2015). Antibiotic resistance of *Clostridium perfringens* isolates from broiler chickens in Egypt. *Rev. Sci. Tech.*, 32: 841-850. https://doi.org/10.20506/rst.32.2.22212

Raddaelli M, da Silva BP, Weidlich L, Hoehne L, Flach A, da Costa LA, Ethur EM (2016). Antimicrobial activities of six essential oils commonly used as condiments in Brazil against *Clostridium perfringens*. *Braz. J. Microbiol.*, 47: 424-430. https://doi.org/10.1016/j.bjm.2015.10.001

Shaltout FA, Salem AM, Khater DF, Lela RA (2016). Impact of some natural preservatives on bacterial profile of minced meat in Egypt. *Benha Vet. Med. J.*, 31: 35–42. https://doi.org/10.21608/bvmj.2016.31215
Shojadoust B, Peygambari S, Nik PH (2010). Isolation, identification, and antimicrobial susceptibility of *Clostridium perfringens* isolates from acute necrotic enteritis of broiler chickens. *Int. J. Vet. Res.*, 4: 147-151.

Silva N, Alves S, Goncalves A, Amaral JS, Poeta P (2013). Antimicrobial activity of essential oils from Mediterranean aromatic plants against several foodborne and spoilage bacteria. *Food Sci. Technol. Int.*, 19: 503-510. https://doi.org/10.1177/102013214242198.

Silva ROS, Ferreira Junior, CA, Martins NRdS, Lobato FCF (2014). Genotyping and antimicrobial susceptibility of *Clostridium perfringens* isolated from Tinamidae, Cracidae and Ramphastidae species in Brazil. *Ciência Rural*, 44: 486-491. https://doi.org/10.1590/S0103-84782014000300016.

Slavic D, Boerlin P, Fabri M, Klotins KC, Zoethout JK, Weir PE, Bateman D (2011). Antimicrobial susceptibility of *Clostridium perfringens* isolates of bovine, chicken, porcine, and turkey origin from Ontario. *Can. J. Vet. Res.*, 75: 89-97.

Sudha S, Divya PS, Francis B, Hatha AA (2012). Prevalence and distribution of *Vibrio parahaemolyticus* in finfish from Cochin (south India). *Afr. J. Biotechnol.*, 5: 1562-1565.

Tambekar D, Dhankor D, Gulhane S, Khandelwal V, Dudhane M (2006). Antibacterial susceptibility of some urinary tract pathogens to commonly used antibiotics. *Afr. J. Biotechnol.*, 5: 1562-1565.

Tansuphasiri U, Matra W, Sangsuk L (2005). Antimicrobial resistance among *Clostridium perfringens* isolated from various sources in Thailand. *Southeast Asian J. Trop. Med. Publ. Health.*, 36: 954-961.

Tizhe J, Bello M, Kabir J, Musa JA, Lamurde NJ (2015). Isolation and biochemical identification of *Clostridium perfringens* from raw beef sold in retail outlets in zaria metropolis, Nigeria. *Int. J. Curr. Microbiol. Appl. Sci.*, 4: 23-29.

Varga JJ, Therit B, Melville SB (2008). Type IV pili and the CcpA protein are needed for maximal biofilm formation by the gram-positive anaerobic pathogen *Clostridium perfringens*. *Infect. Immun.*, 76: 4944-4951. https://doi.org/10.1128/IAI.00692-08.

Yibar A, Cetin E, Ata Z, Erkose E, Tayar M (2018). *Clostridium perfringens* contamination in retail meat and meat-based products in Bursa, Turkey. *Foodborne Pathog Dis.*, 15: 239-245. https://doi.org/10.1089/fpd.2017.2350.

Yoo HS, Lee SU, Park KY, Park YH (1997). Molecular typing and epidemiological survey of prevalence of *Clostridium perfringens* types by multiplex PCR. *J. Clin. Microbiol.*, 35: 228-232. https://doi.org/10.1128/JCM.35.1.228-232.1997.

Supplementary Table 1: Supplementary: Concentration and diameter of inhibition zone of antibiotics used for sensitivity test (n=10)

Antibiotic groups	Antimicrobial agent	Conc. (µg)	inhibition zone		
Penicillins	Amoxicillin (AX)	25	≤22	23-30	≥31
	Ampicillin (AM)	10	≤22	23-30	≥31
Quinolones	Enrofloxacin (ENR)	10	≤15	16-20	≥21
	Norfloxacin (NOR)	10	≤15	16-20	≥21
Aminoglycosides	Gentamicin (CN)	10	≤12	13-14	≥15
	Neomycin (N)	30	≤12	14-16	≥17
	Streptomycin (S)	10	≤11	12-14	≥15
Aminocoumarin	Novobiocin (NV)	30	≤17	18-21	≥22
Tetracyclines	Oxytetracyclin (T)	30	≤14	15-18	≥19
Macrolides	Erythromycin (E)	15	≤13	14-22	≥23

n: Number of tested antibiotics; Conc.: Concentration; R: Resistant; I: Intermediate; S: Sensitive.