Outcomes of Hematopoietic Cell Transplantation in Patients with Germline SAMD9/SAMD9L Mutations.

Ibrahim A. Ahmed
Children's Mercy Hospital

Midhat S. Farooqi
Children's Mercy Hospital

Mark T. Vander Lugt

Jessica Boklan

Melissa Rose

See next page for additional authors

Follow this and additional works at: https://scholarlyexchange.childrensmercy.org/papers

Part of the Hematology Commons, and the Pathology Commons

Recommended Citation
Ahmed, I. A., Farooqi, M. S., Vander Lugt, M. T., Boklan, J., Rose, M., Friehling, E. D., Triplett, B., Lieuw, K., Saldana, B., Smith, C. M., Schwartz, J. R., Goyal, R. K. Outcomes of Hematopoietic Cell Transplantation in Patients with Germline SAMD9/SAMD9L Mutations. *Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation* 25, 2186-2196 (2019).

This Article is brought to you for free and open access by SHARE @ Children's Mercy. It has been accepted for inclusion in Manuscripts, Articles, Book Chapters and Other Papers by an authorized administrator of SHARE @ Children's Mercy. For more information, please contact library@cmh.edu.
Outcomes of Hematopoietic Cell Transplantation in Patients with Germline SAMD9/SAMD9L Mutations

Ibrahim A. Ahmed1, Midhat S. Farooqi2, Mark T. Vander Lugt3, Jessica Boklan4, Melissa Rose5, Erika D. Friehling6, Brandon Triplett7, Kenneth Lieuw8, Blachy Davila Saldana9, Christine M. Smith10, Jason R. Schwartz11, Rakesh K. Goyal12,*

1 Division of Pediatric Hematology, Oncology and Blood and Marrow Transplantation, Department of Pediatrics, Children’s Mercy Kansas City, Kansas City, Missouri
2 Department of Pathology and Laboratory Medicine, Children’s Mercy Kansas City, Kansas City, Missouri
3 Division of Pediatric Hematology/Oncology, Department of Pediatrics, C. S. Mott Children’s Hospital, University of Michigan, Ann Arbor, Michigan
4 Department of Oncology, Phoenix Children’s Hospital, Phoenix, Arizona
5 Hematology & Oncology, Nationwide Children’s Hospital, Columbus, Ohio
6 Division of Pediatric Hematology/Oncology, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
7 Department of Bone Marrow Transplant, St. Jude Children’s Research Hospital, Memphis, Tennessee
8 Department of Pediatrics, Walker Reed National Military Medical Center, Bethesda, Maryland
9 Division of Blood and Marrow Transplantation, Children’s National Medical Center, Washington, DC
10 Division of Hematology-Oncology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
11 Hematology Department, St. Jude Children’s Research Hospital, Memphis, Tennessee
12 Division of Pediatric Hematology, Oncology and Blood and Marrow Transplantation, Department of Pediatrics, Children’s Mercy Kansas City, Kansas City, Missouri

ABSTRACT

Germline mutations in SAMD9 and SAMD9L genes cause MIRAGE (myelodysplasia, infection, restriction of growth, adrenal hypoplasia, genital phenotypes, and enteropathy) (OMIM: *610456) and ataxia-pancytopenia (OMIM: *611170) syndromes, respectively, and are associated with chromosome 7 deletions, myelodysplastic syndrome (MDS), and bone marrow failure. In this retrospective series, we report outcomes of allogeneic hematopoietic cell transplantation (HCT) in patients with hematologic disorders associated with SAMD9/SAMD9L mutations. Twelve patients underwent allogeneic HCT for MDS (n = 10), congenital amegakaryocytic thrombocytopenia (n = 1), and dyskeratosis congenita (n = 1). Exome sequencing revealed heterozygous mutations in SAMD9/SAMD9L genes in MIRAGE syndrome cases. Median age at HCT was 2.8 years (range, 1.2 to 12.8 years). Conditioning was myeloablative in 9 cases and reduced intensity in 3 cases. Syndrome-related comorbidities (diarrhea, infections, adrenal insufficiency, malnutrition, and electrolyte imbalance) were present in MIRAGE syndrome cases. One patient with a familial SAMD9L mutation, MDS, and morbid obesity failed to engraft and died of refractory acute myeloid leukemia. The other 11 patients achieved neutrophil engraftment. Acute post-transplant course was complicated by syndrome-related comorbidities in MIRAGE cases. A patient with SAMD9L-associated MDS died of diffuse alveolar hemorrhage. The other 10 patients had resolution of hematologic disorder and sustained peripheral blood donor chimerism. Ten of 12 patients were alive with a median follow-up of 3.1 years (range, 0.1 to 14.7 years). More data are needed to refine transplant approaches in SAMD9/SAMD9L patients with significant comorbidities and to develop guidelines for their long-term follow-up.

© 2019 American Society for Transplantation and Cellular Therapy. Published by Elsevier Inc.

INTRODUCTION

In recent years, advances in genetic interrogation of patient samples have led to discovery of several novel genes that underlie inherited bone marrow failure and myelodysplastic syndrome (MDS) [1]. These include SAMD9 (sterile α-motif domain-containing protein 9) and SAMD9L (SAMD9-like) genes, located head to tail on chromosome 7q21.2 in a region that is frequently deleted in myeloid malignancies [2,3].

Germline mutations in SAMD9 and SAMD9L cause the multisystem disorders, MIRAGE (myelodysplasia, infection, restriction of growth, adrenal hypoplasia, genital phenotypes, and enteropathy) and ataxia-pancytopenia syndromes, respectively [4-6]. Recent studies in children reported a rate of SAMD9 and SAMD9L mutations in 18.6% and 17% cases with suspected inherited bone marrow failure syndromes and those with primary MDS, respectively [7,8].

Keywords:
Germline
Inherited bone marrow failure syndromes
MIRAGE syndrome
Monosomy 7
Myelodysplastic syndrome
SAMD9/SAMD9L mutations

Article history:
Received 17 March 2019
Accepted 5 July 2019

Financial disclosure: See Acknowledgments on page 2196.
* Correspondence and reprint requests: Rakesh K, Goyal, MD, Division of Hematology/Oncology/BMT, Children’s Mercy Kansas City, 2401 Gillham Road, Kansas City, MO 64108.
E-mail address: rkgoyal@cmh.edu (R.K. Goyal).

https://doi.org/10.1016/j.bbmt.2019.07.007
1083-8791/© 2019 American Society for Transplantation and Cellular Therapy. Published by Elsevier Inc.
SAMD9 and SAMD9L proteins are involved in endosomal trafficking and negatively regulate cell proliferation [9]. Gain-of-function heterozygous mutations in these genes lead to cellular growth restriction and hypoplasia, resulting in cytopenias, bone marrow failure, and immunodeficiency. Interestingly, in many cases, there is a nonrandom loss of the mutated allele via full or partial deletion of chromosome 7 [4,10-12]. The resultant monosomy 7 or deletion 7q can result in the development of MDS and acute myeloid leukemia (AML) [8,11,12]. Conversely, other “genetic correction” events such as in cis misense, nonsense, or loss of heterozygosity through uniparental disomy can result in normal hematopoiesis.

Since the initial report of MIRAGE syndrome in 2016, a series of studies has described clinical and genetic findings in patients and families with SAMD9/SAMD9L mutations [7,11,13]. Hematopoietic cell transplantation (HCT) therapy has been included in some reports, but transplant details are lacking. A recent article by Sarthy et al. [14] documented 2 children with MIRAGE syndrome who succumbed to posttransplant complications due to syndrome-related comorbidities. We aimed to obtain a more complete assessment of transplant outcomes and the challenges and complications encountered in these patients.

METHODS

After management of 2 cases with MIRAGE syndrome, additional cases were identified by literature search and peer consultations. For inclusion, patients were required to have a confirmed heterozygous mutation in the SAMD9 or SAMD9L gene and a minimum of 1-year follow-up post-transplant. Deidentified data for each case were collected by using a standardized questionnaire. All studies involving human subjects were performed in accordance with site-specific protocols approved by the institutional review board and in accordance with Declaration of Helsinki guidelines.

The primary study endpoints were overall survival and event-free survival. Safety and tolerability of HCT and impact of pretransplant comorbidities were evaluated by occurrence and severity of post-transplant complications, need for life support measures, and risk of transplant-related mortality. Transplant outcomes were defined using Center for International Blood and Marrow Transplant Research criteria [15]. Grading of acute graft-vs-host disease (GVHD) and diagnosis of chronic GVHD were based on standard criteria [16]. Surviving patients were censored at last follow-up. Continuous variables were summarized as median and range of values and analyzed using the Mann-Whitney test.

RESULTS

Twelve patients underwent allogeneic HCT for hematologic disorders associated with germline SAMD9 (n = 6) or SAMD9L (n = 6) mutations (Table 1). Patients 3, 4, 6, 11, and 12 (Table 1) were included in previous reports [11,13,17]. Indication for transplant was MDS in 10 of 12 (83%) cases. One SAMD9 patient with markedly reduced megakaryocytic precursors in marrow underwent transplantation for a presumed diagnosis of congenital amegakaryocytic thrombocytopenia, and 1 patient with SAMD9L mutation and shortened telomeres underwent transplantation on a presumed diagnosis of dyskeratosis congenita.

Median age at presentation for patients with SAMD9 mutations (1.65 years; range, 0.17 to 4.8 years) was similar to those with SAMD9L mutations (1.43 years; range, 0.67 to 12.6 years). Six patients had pancytopenia, including 5 with thrombocytopenia and 1 with anemia. Bone marrow was hypocellular in 11 (92%) cases and showed dysplasia most prominently in the megakaryocytic lineage in most cases. Chromosome 7 abnormalities, including monosomy 7 and chromosome 7q deletions, were present in all cases. All except 1 case showed somatic mosaicism for chromosome 7 abnormalities (ie, detection of a monosomy 7 or chromosome 7 deletion clone in only a fraction of hematopoietic cells in bone marrow).

Exome sequencing revealed 5 different missense heterozygous mutations in the 6 SAMD9 cases and 4 different missense mutations in the 6 SAMD9L cases. Their genomic details and pathogenicity assessment of variants are summarized in Table 2 and cross-referenced [5,7,8,12,13,17-20]. Six of 12 cases were familial. Four SAMD9 patients had phenotypic features of MIRAGE syndrome (patients 1, 2, 5, and 6; Tables 1 and 2); unique findings included panhypopituitarism, laryngeal cleft, and glomerulosclerosis. Two other cases with a SAMD9 mutation had milder phenotypes with growth restriction in 1 and hypospadias and a bifid scrotum in another. The remaining patients had no phenotypic abnormalities.

Transplant details of individual cases are summarized in Table 3. Median age at HCT was 2.8 years (range, 1.16 to 12.8 years). Median age at HCT tended to be higher in SAMD9 patients versus SAMD9L patients at 4.15 years versus 2.2 years, respectively (P = .81). Median time from initial presentation to transplant was 0.45 years (range, 0.2 to 6.53 years). There was an interval of 5.5 and 6.53 years from initial diagnosis to HCT in 2 cases of MIRAGE syndrome because in these cases, blood counts seemed to show improvement before patients developed sustained marrow failure. Stem cell sources included bone marrow (matched unrelated, n = 7; HLA identical sibling, n = 2; and haploidentical parent, n = 1) and unrelated cord blood (n = 2). Nine patients received myeloablative conditioning (busulfan based, n = 7, or total-body irradiation based, n = 2). Three patients received reduced-intensity conditioning with fludarabine, cyclophosphamide, or melphalan, with rabbit antithymocyte globulin or alemtuzumab.

Clinically significant pretransplant comorbidities were present in SAMD9 cases with MIRAGE syndrome (Table 3). These included chronic diarrhea, electrolyte imbalance, infections, adrenal insufficiency, failure to thrive, lung disease, and renal dysfunction. One patient with SAMD9L mutation (patient 10, Table 2 and Table 3) had been treated for hemophagocytic lymphohistiocytosis, disseminated sepsis, invasive fungal infections before transplant.

Post-transplant complications included pericardial effusions (n = 3), veno-occlusive disease of liver (n = 3), thrombotic microangiopathy (n = 2), and diffuse alveolar hemorrhage (n = 1). Unique complications in several MIRAGE syndrome cases included large volume stool losses with dehydration and electrolyte imbalance, temperature and blood pressure instability, and hypoxia. Eight patients required transfer to intensive care for management of respiratory failure (n = 5), sepsis (n = 1), and severe hypertension (n = 1) and VOD of liver (n = 1).

One patient with a familial SAMD9L mutation, MDS, (patient 7, Table 3) and morbid obesity failed to engraft following reduced-intensity conditioning with double unrelated cord blood transplantation. All other patients achieved neutrophil and platelet engraftment at a median of 16 days (range, 12 to 19; n = 11) and 17 days (range, 12 to 40; n = 10) post-HCT, respectively. Two patients developed grade II to III acute GVHD, which resolved with treatment. Two patients developed mild skin chronic GVHD. Two patients have chronic lung disease, and 2 other patients have chronic kidney disease. One patient with SAMD9L mutation and MDS (patient 7, Table 3) with failed engraftment subsequently developed AML and died of its treatment complications. A second patient, with SAMD9L mutation and MDS (patient 10, Table 3), died of diffuse alveolar hemorrhage while receiving defibrotide for treatment of veno-occlusive disease of liver. Immune reconstitution data are summarized in Table 4.

Ten of 12 patients were alive with a median follow-up of 3.1 years (range, 0.1 to 14.7 years). All surviving patients (n = 10) at time of last follow-up had resolution of hematologic disorder,
Patient No.	1	2	3	4	5
Age at initial presentation, years	0.17	1	3.1	4.8	0.8
Gender	M	M	F	M	F
Race/Ethnicity	Hispanic	Caucasian	Caucasian	Caucasian	African American
Gene mutation	SAMD9 c.2471G>A; p.R824Q	SAMD9 c.4690G>A; p.G1564S	SAMD9 c.3406G>C; p.E1136Q	SAMD9 c.3406G>C; p.E1136Q	SAMD9 c.2407G>C; p.E803Q
Family member with same gene mutation	Parents negative	Parents negative	Patient no. 3 and 4 in this report, a younger sibling and their mother positive	Patient no. 3 and 4 in this report, a younger sibling and their mother positive	Parents negative
MIRAGE syndrome features (SAMD9 cases)	Infections, restriction of growth, adrenal, genital, enteropathy	MDS, infections, restriction of growth, adrenal, enteropathy	MDS	MDS, genital	MDS, infections, restriction of growth, enteropathy
Other clinical findings	Newborn Period: Born at 29 weeks, birth weight 982 grams, mechanical ventilation. Chronic lung disease of prematurity. Microcephaly, developmental delay, panhypopituitarism, laryngeal cleft, intussusception, FSGS	Newborn Period: Born at 34 weeks, birth weight 1425 grams, no mechanical ventilation. Achalasia of esophagus, developmental delay	–	–	Newborn Period: Born at 36 weeks, birth weight 1895 grams, no mechanical ventilation. Staphylococcal sepsis with respiratory failure. Developmental delay
Hematology	Thrombocytopenia followed by pancytopenia. Hypoplastic marrow, megalakaryocytic hypoplasia	Pancytopenia. Hypocellular marrow, reduced megalakaryocytes and dysplasia	Thrombocytopenia. Hypocellular marrow, trilineage dysplasia	Hypocellular marrow, trilineage dysplasia, refractory cytopenia of childhood	Pancytopenia. Normocellular marrow, megalakaryocytic dysplasia
Chromosome 7	Somatic mosaic monosomy 7, somatic mosaic chr. 7q deletion, UPD chr. 7	Somatic mosaic monosomy 7, somatic mosaic 7q31 deletion, UPD chr. 7	Monosomy 7	Somatic mosaic monosomy 7	Somatic mosaic monosomy 7
Patient No.	6	7	8	9	10
Age at initial presentation, years	2.3	12.6	0.9	8.1	0.7
Gender	M	F	M	F	M
Race/Ethnicity	Caucasian	Hispanic	Caucasian	African American	
Gene mutation	SAMD9 c.2318T>C; p.I773T	SAMD9L c.1877C>T; p.S626L	SAMD9L c.1877C>T; p.S626L	SAMD9L c.3538T>C; p.W1180R	SAMD9L c.4651G>C; p.V1551L
Family member with same gene mutation	Mother negative, father unavailable	Patients no. 7 and 8 in this report are nephews. Parents not tested. A maternal aunt is positive	Patients no. 7 and 8 in this report are nephews. Parents not tested. A maternal aunt is positive	Parents not tested	Parents negative
MIRAGE syndrome features (SAMD9 cases)	MDS, infections, restriction of growth, adrenal, genital, enteropathy	N.A.	N.A.	N.A.	N.A.
Other clinical findings	Newborn Period: Born at 34 weeks, birth weight 1853 grams, no mechanical ventilation. FSGS, short telomeres. Microcephaly, hypotelorism, strabismus, healed nose, reactive airway disease, warts	–	–	Hypogammaglobulinemia	HLH. Sepsis
Hematology	Thrombocytopenia. Hypocellular marrow, dysplastic megalakaryocytes	Hypocellular marrow, dyserythropoiesis	Hypocellular marrow, dyserythropoiesis and dysmegakaryopoiesis	Hypocellular marrow, atypical megalakaryocytes	Pancytopenia. Hypocellular marrow, dyserythropoiesis, dysgranulopoiesis
Chromosome 7	Mosaic chr. 7q deletion	Absence of heterozygosity chr. 7q (myeloid)	Mosaic monosomy 7	Mosaic monosomy 7	Mosaic monosomy 7

(continued)
had no chromosome 7 abnormalities, and sustained peripheral blood donor chimerism (90% to 100%). All patients were thriving. SAMD9 cases had varying degrees of developmental delays (n = 6) and chronic kidney disease (n = 3). All patients with clinical characteristics of MIRAGE syndrome (n = 4) were short for age, required supplemental feeds, and had persistent adrenal insufficiency. In SAMD9L cases (n = 4), no clinical neurologic manifestations have been observed so far.

DISCUSSION

In this report, we describe transplant details and outcomes in a series of patients with hematologic diseases associated with SAMD9/SAMD9L germline mutations. We found that most patients underwent transplantation for MDS with chromosome 7 abnormalities and received myeloablative conditioning with HCT from nonsibling donor graft sources. Allogeneic HCT led to successful resolution of MDS or marrow failure, with sustained donor chimerism and excellent survival.

On review of literature, we found 10 other cases with SAMD9 mutation who underwent HCT. A 4-year-old child with MIRAGE syndrome and monosomy 7 MDS underwent transplantation with active AML and died of Epstein-Barr virus-related lymphoproliferative disorder a year later [4]. Wilson and colleagues [21] reported a patient with MIRAGE syndrome who underwent reduced-intensity conditioning and unrelated donor HCT that led to resolution of monosomy 7 MDS. Sarthy et al. [14] described a patient with marrow failure and another patient with MDS who had severe MIRAGE phenotypes and underwent HCT after reduced-intensity conditioning. Comorbidities, including enteropathy, electrolyte imbalances, adrenal crises, bacteremia, and lung disease, significantly led to a complicated transplant course and ultimately death in both cases. Although transplant details in 6 other cases are limited, 1 patient without the MIRAGE phenotype died of unknown cause, and 5 were surviving following HCT [7,10]. There were 4 cases of MIRAGE syndrome in our series. Before transplant, 3 of 4 cases had chronic diarrhea, malnutrition, and adrenal insufficiency. Post-HCT, we observed severe gastrointestinal fluid losses, electrolyte imbalance, and acute dehydration in these 3 cases. Whether such dramatic stool losses without an infectious etiology were secretory and whether autonomic instability could have contributed are unknown. Patients also experienced temperature and blood pressure instability, respiratory distress, and acute renal dysfunction.

Several of these medical issues are similar to those reported in the report by Sarthy et al. [14]. Despite a complicated acute transplant course, all 4 patients with MIRAGE syndrome in our series survived.

We observed a high rate of ongoing medical issues in MIRAGE syndrome transplant survivors. These include adrenocortical insufficiency, diarrhea, need for supplemental nutrition, and developmental delays. Patients with pre-existing lung disease and nephropathy continue to have these issues following HCT. Most of these issues are related to pre-existing MIRAGE syndrome manifestations. The transplant survivor reported by Wilson et al. [21] had ongoing medical issues of adrenocortical insufficiency, growth and developmental delays, and chronic lung and chronic kidney diseases.

In this series, all 6 SAMD9L patients had cytopenias and MDS with chromosome 7 abnormalities. We did not observe ataxia, incoordination, or other neurologic manifestations before or following transplant. On review of the literature, we found 11 additional cases of patients with SAMD9L mutations who had undergone HCT [5,7,11]. Although transplant details are limited, 2 patients died of complications (cerebral

Patient No.	Age at initial presentation, years	Gender	Race/Ethnicity	Gene mutation	Family member with same gene mutation	Other clinical findings	Chromosome 7 abnormalities	Hematology	Affected organ system(s)
11	1.6	F	Caucasian	SAMD9L c.2957G>A; p.R986H	Patients no. 11 and 12 in this report are siblings. Father positive. Mother negative	Eczema, N/A	Mosaic monosomy 7	Mosaic monosomy 7	N/A
12	1.3	M	Caucasian	SAMD9L c.2957G>A; p.R986H	Patients no. 11 and 12 in this report are siblings. Father positive. Mother negative	Eczema, N/A	Mosaic monosomy 7	Mosaic monosomy 7	N/A

Abbreviations: Chr. 7 (chromosome 7); FSGS (Focal sclerosing glomerulosclerosis); HCT (hematopoietic cell transplantation); HLH (hemophagocytic lymphohistiocytosis); MDS (myelodysplastic syndrome); MIRAGE syndrome (myelodysplasia, infection, restriction of growth, adrenal hypoplasia, genital phenotypes, and enteropathy); and, UPD (uniparental disomy).
Table 2
Pathogenicity Assessment of Observed SAMD9 and SAMD9L Variants

Patient No.	Gene and Variant	Method of genetic diagnosis	SAMD9 / SAMD9L variant: De novo status	Germline source	Family tested for the same variant	ACMG* classification	How pathogenicity was ascribed	References
1	SAMD9. Heterozygous c.2471G>A (p.Arg824Gln)	WES confirmed by Sanger sequencing	SAMD9L. Heterozygous c.3406G>C (p.E1136Q)	Kidney	Sibling donor was not tested prior to BMT since the SAMD9 variant was discovered in the recipient afterwards. Parents subsequently tested and were negative.	Pathogenic		

PM2 – absent from controls
PM6 – assumed de novo
PP3 – in silico prediction: deleterious
PP4 – UPD7 together with MIRAGE features | Not found via literature search | Perisa et al. [17] |
| 2 | SAMD9. Heterozygous c.4690G>A | WES confirmed by Sanger sequencing | SAMD9L. Heterozygous c.3406G>C (p.E1136Q) | Sorted lymphocytes | Parents negative | Likely Pathogenic |

PS2 – de novo, parentage confirmed | Schwartz et al. [8] (Leukemia), Schwartz et al. [13] (Nat Comm) |
| 3 | SAMD9. Heterozygous c.3406G>C (p.E1136Q) | WES and WGS, targeted Sanger sequencing of parent | SAMD9L. Heterozygous c.3538T>C (p.W1180R) | Sorted lymphocytes | Patient no. 3 and 4 in this report, a younger sibling and their mother positive. The younger sibling had transient thrombocytopenia at birth requiring platelet transfusion. | VUS (Potentially Pathogenic) |

PS3 – functional study supports damaging effect
PM2 – absent from controls
BS4 – lack of segregation in family members | Schwartz et al. [8] (Leukemia), Schwartz et al. [13] (Nat Comm) |
| 4 | SAMD9. Heterozygous c.3406G>C (p.E1136Q) | WES confirmed by Sanger sequencing | SAMD9L. Heterozygous c.3538T>C (p.W1180R) | – | Patient no. 3 and 4 in this report, a younger sibling and their mother positive. The younger sibling had transient thrombocytopenia at birth requiring platelet transfusion. | VUS (Potentially Pathogenic) |

PS3 – functional study supports damaging effect
PM2 – absent from controls
BS4 – lack of segregation in family members | Schwartz et al. [8] (Leukemia), Schwartz et al. [13] (Nat Comm) |
| 5 | SAMD9L. Heterozygous c.2407G>C (p.E803Q) | WES confirmed by Sanger sequencing | SAMD9L. Heterozygous c.3538T>C (p.W1180R) | – | Parents negative | Likely Pathogenic |

PS3 – functional study supports damaging effect
PM2 – absent from controls | Ortolano et al. [19] |

(continued)
Patient No.	11	12
Gene and Variant	SAMD9L, Heterozygous c.2957G→A (p.R986H)	SAMD9L, Heterozygous c.2957G→A (p.R986H)
Method of genetic diagnosis	Sanger sequencing of peripheral blood. Confirmed by Sanger sequencing of hair follicles	Targeted NGS. Confirmed by Sanger sequencing of hair follicles
SAMD9 / SAMD9L variant:	Not de novo	Not de novo
Germline source	Hair follicles	Hair follicles
Family tested for the same variant	Patients no. 11 and 12 in this report are siblings. Father positive. Mother negative.	Patients no. 11 and 12 in this report are siblings. Father positive. Mother negative.
ACMG* classification	Likely Pathogenic	Likely Pathogenic
How pathogenicity was ascribed	PS3 – functional study supports damaging effect PM5 – another variant (p.R986C) at the same position is pathogenic	PS3 – functional study supports damaging effect PM5 – another variant (p.R986C) at the same position is pathogenic
References	Tesi et al. [5]; Bluteau et al. [7]; Wong et al. [12]	Tesi et al. [5]; Bluteau et al. [7]; Wong et al. [12]

Abbreviations: WES indicates whole exome sequencing; WGS, whole genome sequencing; BMT, blood and marrow transplantation; ACMG, American College of Medical Genetics, and VUS, variant of unknown significance; NGS, Next generation sequencing.

* Each pathogenic criterion was weighted as very strong (PVS1), strong (PS1–4); moderate (PM1–6) or supporting (PP1–5) and each benign criterion was weighted as stand-alone (BA1), strong (BS1–4) or supporting (BP1–6). From Richards et al. [20].

1 The SAMD9 variant c.3406G→C (p.E1136Q) was classified as a VUS using strict ACMG criteria. We believe this variant is pathogenic based on well-established functional data from two separate experimental studies showing that it has a deleterious effect on cells. The younger sibling of the patients above also carries the variant and had transient neonatal thrombocytopenia requiring transfusion. However, the mother of these patients carries the variant as well and presently lacks an apparent phenotype. Whether she was transiently affected in the past is unknown, but this is possible as somatic revertant mosaicism is a known associated phenomenon with SAMD9/SAMD9L variants. Other potential mechanisms that could account for the lack of phenotypic segregation include monoallelic gene expression, incomplete penetrance, or variable expressivity. We feel this is important to note for clinical reasons in case this variant is observed in another patient.
Patient No.	1	2	3	4	5
Gene involved	SAMD9 (MIRAGE syndrome)	SAMD9 (MIRAGE syndrome)	SAMD9	SAMD9	SAMD9 (MIRAGE syndrome)
Age at HCT, years	6.7	1.4	3.3	5	1.2
Interval from diagnosis to HCT, years	6.5	0.4	0.2	0.2	0.4
Indication for HCT	Presumed congenital amegakaryocytic thrombocytopenia	MDS	MDS	MDS	MDS
Significant pretransplant issues	Secretory diarrhea, adrenocortical insufficiency, lung disease, CKD, failure to thrive	Esophageal achalasia, gastroesophageal reflux, diarrhea, failure to thrive	—	—	Diarrhea, Failure to thrive.
Donor type	HLA-identical sibling, female, bone marrow	Unrelated, 10/10 allele match, male, bone marrow	Unrelated, 8/8 allele match, female, bone marrow	Unrelated, 8/8 allele match, male, bone marrow	Father, 5/10 allele match, bone marrow
Conditioning regimen; GVHD prophylaxis	Flu/Cy/ATG; Tac/MMF	Bu/Flu/ATG; Tac/Mtx	Bu/Cy/ATG; CsA/Mtx	Bu/Cy/ATG; CsA/Mtx	Bu/Flu; posttransplant Cy, Tac/MMF
Conditioning intensity (MA / RIC)	RIC	MA	MA	MA	MA
Neutrophil engraftment, days+	13	12	16	19	14
Platelet engraftment, days+	16	30	14	15	40
Posttransplant course	Temperature & blood pressure instability, electrolyte imbalance, dehydration, hypoxia	TMA, recurrent pericardial effusions, hypoxia	VOD of liver	Pericardial effusion	TMA, pericardial effusion, VOD of liver
Intensive care	Severe hypertension	No	Respiratory distress, did not require intubation	Respiratory distress, required intubation	Respiratory failure, did not require intubation
Acute GVHD / Chronic GVHD	No / No	No / Yes	No / No	No / No	No / No
Chimerism	99% donor	100% donor	100% donor	99% donor	100% donor
Post-HCT hematologic outcome	Normal blood counts, no monosomy 7	Normal blood counts, no monosomy 7, resolution of MDS	Resolution of MDS, no chr. 7 finding	Resolution of MDS, no chr. 7 findings	Normal blood counts, no monosomy 7, resolution of MDS
Survival status	Alive; 2.4 y post-HCT	Alive; 3.8 y post-HCT	Alive; 3.2 y post-HCT	Alive; 3 y post-HCT	Alive; 1.4 y post-HCT
Current health status	Secretory diarrhea, enteral feeds, low weight and height, thriving, developmental delay, CKD, hypertension, adrenal insufficiency	Recurrent aspiration pneumonias, chronic lung disease, malnutrition, diarrhea, developmental delay, thriving, adrenal insufficiency	School performance issues	Learning disabilities	Supplemental feeds, hypoglycemia episodes, diarrhea, low weight and height, thriving, developmentally delay
Patient No.	6	7	8	9	10
------------	---	---	---	---	----
Gene involved	SAMD9 (MIRAGE syndrome)	SAMD9L	SAMD9L	SAMD9L	SAMD9L
Age at HCT, years	7.8	12.8	2.3	8.3	2
Interval from diagnosis to HCT, years	5.5	0.2	1.4	0.2	1.3
Indication for HCT	MDS	Presumed dyskeratosis congenita	MDS	MDS	MDS
Significant pretransplant issues	Hypertension, chronic kidney disease, asthma	Obesity (BMI 34, >97th percentile for age)	Obesity (BMI 27, >97th percentile for age)	–	HLH therapy, E. coli sepsis, punculitis, eplemy gangrenosum, aspergilus and candida sepsis
Donor type	Unrelated, 10/10 allele match, male, bone marrow	Unrelated double cord blood, male (5/6 allele match), female (5/6 allele match)	Unrelated cord blood, 6/6 allele match, female	HLA-identical sibling, female, bone marrow	Unrelated, 9/10 allele match, bone marrow
Conditioning regimen; GVHD prophylaxis	Flu/Mel/Alemtuzumab; Tac/MMF	Flu/Mel/Alemtuzumab; Tac/MMF	Flu/Cy/TBI; CsA/MMF	Cy/TBI/Ara-C	Bu/Cy/ATG
Conditioning intensity (MA / RIC)	RIC	RIC	MA	MA	MA
Neutrophil engraftment, days*	19	No	13	17	18
Platelet engraftment, days*	19	No	12	31	No
Posttransplant course	Blood pressure instability, electrolyte imbalance, fever, hypoxia	Restrictive lung disease	Parainfluenza with respiratory failure, renal dysfunction	Culture negative sepsis, bleeding gastric ulcer, hemorragic cystitis	Coronavirus respiratory tract infection, VOD of liver with respiratory failure, defbrilatation, diffuse alveolar hemorrhage
Intensive care	No	No	Respiratory failure	Systemic inflammatory response syndrome	Respiratory failure, required intubation
Acute GVHD / Chronic GVHD	No / No	No / No	Yes (Grade II, GI, resolved) // No	No / No	Not evaluable / Not evaluable
Chimerism	98% donor	0% donor	90% donor	100% donor	Not done
Post-HCT hematologic outcome	Normal blood counts	Graft failure	Resolution of MDS, no chr. 7 finding	Resolution of MDS, no chr. 7 finding	Neutrophil engraftment. Bone marrow not assessed
Survival status	Alive; 4.1 y post-HCT	Died of refractory AML; 1.1 y post-HCT	Alive; 2.3 y post-HCT	Alive; 14.7 y post-HCT	Died at day +23 post-HCT from complications related to VOD of liver
Current health status	Adrenal insufficiency, diarrhea, hypotension, CKD, urethrocuffaneous fistula, developmental delay, thriving	N.A.	CXD	Doing well	N.A.

(continued)
Patient No.	11	12
Gene involved	SAMD9L	SAMD9L
Age at HCT, years	2.1	1.8
Interval from diagnosis to HCT, years	0.5	0.5
Indication for HCT	MDS	MDS
Significant pretransplant issues	Otitis media, croup, roseola	Alpha hemolytic streptococcal sepsis
Donor type	Unrelated, 10/10 allele match, female, bone marrow	Unrelated, 10/10 allele match, female, bone marrow
Conditioning regimen; GVHD prophylaxis	Bu/Cy; Tac/Mtx	Bu/Cy; Tac/Mtx
Conditioning intensity (MA / RIC)	MA	MA
Neutrophil engraftment, days*	19	9
Platelet engraftment, days*	17	12
Posttransplant course	Uneventful	VOD of liver, hemolysis, coagulopathy
Intensive care	No	VOD
Acute GVHD / Chronic GVHD	Yes (Grade II, skin, gut, resolved) / Yes skin, mild	No / No
Chimerism	100% donor	100% donor
Post-HCT hematologic outcome	Normal blood counts, no monosomy 7, resolution of MDS	Normal blood counts, no monosomy 7, resolution of MDS
Survival status	Alive; 5.3 y post-HCT	Alive; 1.3 y post-HCT
Current health status	Doing well	Doing well

Abbreviations: ATG (anti-thymocyte globulin); Ara-C (cytosine arabinoside); BU (busulfan); BMI (body mass index); Chr. 7 (chromosome 7); CKD (chronic kidney disease); Cy (cyclophosphamide); CsA (cyclosporine A); GI (gastrointestinal); Flu (fludarabine); HLH (hemophagocytic lymphohistiocytosis); MA (myeloablative); MDS (myelodysplastic syndrome); Mel (melphalan); MIRAGE syndrome (myelodysplasia, infection, restriction of growth, adrenal hypoplasia, genital phenotypes, and enteropathy); MMF (mycophenolate mofetil); Mtx (methotrexate); N.E. (not evaluable); RIC (reduced intensity conditioning); Tac (tacrolimus); TBI (total body irradiation); TMA (thrombotic microangiopathy); and VOD (veno-occlusive disease)
hemorrhage and infection, 1 each), 1 had unknown survival status, and 8 were alive. Of the surviving patients, 1 had pulmonary fibrosis, and 3 had neurologic issues.

Mutations in \textit{SAMD9} and \textit{SAMD9L} add to a growing list of recently described heritable conditions associated with cytopenias, marrow failure, MDS, and AML \cite{1,7,8}. Although these patients can be managed symptomatically with transfusions and treatment of infections, the only curative treatment is with allogeneic HCT.

Indications and timing of HCT in these patients are not straightforward because marrow cells can undergo somatic genetic correction events and spontaneous blood count recovery \cite{4,8,12,22}. In our series, there was an interval of several years from initial presentation to development of bone marrow failure or MDS in 2 cases. Most patients in our series underwent transplant conditioning, with a high rate of engraftment and resolution of MDS or marrow failure. Clinically significant comorbidities were common in \textsc{MIRAGE} syndrome cases and contributed to unique adverse events in the acute post-transplant phase. These patients continue to require ongoing management and multispecialty care for syndrome-related nonhematologic manifestations.

Table 4

Summary of Available Clinical Data on Immune Reconstitution

Characteristic	1	2	5	6	3	4	8	11	12
Gene mutation	SAMD9	SAMD9	SAMD9	SAMD9	SAMD9	SAMD9	SAMD9L	SAMD9L	SAMD9L
\textsc{MIRAGE} phenotype	Yes	Yes	Yes	Yes	No	No	No	No	No

Lymphocyte enumeration	1 month post-HCT	2 months post-HCT	3 months post-HCT					
ALC per cumm	570	678	470	252	924	546	288	1512
CD3 per cumm	1970	1000	1320	864	2368	240	826	NA
CD4 per cumm	2080	1307	1650	ND	ND	1125	410	NA
CD8 per cumm	375	891	ND	ND	ND	ND	ND	NA
NK cells per cumm	250	369	ND	ND	ND	ND	ND	NA
CD19 per cumm	83	486	ND	ND	ND	ND	ND	NA
CD19 per cumm	520	167	ND	ND	ND	ND	ND	NA
CD19 per cumm	1145	249	ND	ND	ND	ND	ND	NA

6 months post-HCT

ALC per cumm	2500	840	4630	1254	ND	935	980	981
CD3 per cumm	1150	726	2224	390	ND	ND	ND	451
CD4 per cumm	600	308	1308	277	ND	ND	ND	216
CD8 per cumm	500	377	828	ND	ND	ND	ND	212
NK cells per cumm	900	114	916	193	ND	ND	ND	193
CD19 per cumm	450	0	1264	662	ND	ND	ND	337
CD19 per cumm	346	254	915	752	522	218	ND	521

12 months post-HCT

ALC per cumm	6100	1801	8200	1938	ND	770	2220	1400
CD3 per cumm	3841	999	6232	1212	ND	ND	ND	1356
CD4 per cumm	1829	495	3526	737	ND	ND	ND	1548
CD8 per cumm	1890	459	2460	362	ND	ND	ND	884
NK cells per cumm	549	185	656	178	ND	ND	ND	422
CD19 per cumm	1646	617	1148	502	ND	ND	ND	1271
Serum IgG, mg/dL	379	623	371	ND	300	841	351	NA

15 months post-HCT

ALC per cumm	6100	1801	8200	1938	ND	770	2220	1400
CD3 per cumm	3841	999	6232	1212	ND	ND	ND	1356
CD4 per cumm	1829	495	3526	737	ND	ND	ND	1548
CD8 per cumm	1890	459	2460	362	ND	ND	ND	884
NK cells per cumm	549	185	656	178	ND	ND	ND	422
CD19 per cumm	1646	617	1148	502	ND	ND	ND	1271
Serum IgG, mg/dL	379	623	371	ND	300	841	351	NA

Patient 1 (\textit{SAMD9} with \textsc{MIRAGE}): Protein-losing enteropathy. Intravenous immunoglobulin (IVIG) infusions. Patient 2 (\textit{SAMD9} with \textsc{MIRAGE}): Chronic diarrhea. Patient 3 (\textit{SAMD9} without \textsc{MIRAGE}): Lymphocyte enumeration 3 years post-HCT, ALC 4555, CD3 3160, CD4 3330, CD8 1610. NK cells 480, CD19 740, all in per cumm. Patient 4 (\textit{SAMD9} without \textsc{MIRAGE}): Lymphocyte enumeration 3 years post-HCT, ALC 3700, CD3 2530, CD4 1090, CD8 1140. NK cells 400, CD19 770, all in per cumm. Patient 5 (\textit{SAMD9} with \textsc{MIRAGE}): IVIG infusions monthly until 1 year post-HCT. Patient 6 (\textit{SAMD9} with \textsc{MIRAGE}): IVIG infusions monthly until 6 months post-HCT. Patient 7 (\textit{SAMD9L}): Not included in the table. ALC 286 on day +60. Graft failure. Patient 8 (\textit{SAMD9L}): Lymphocyte enumeration 5 years post-HCT, ALC 3600, CD3 2630, CD4 1220, CD8 1310, NK cells 120, CD19 810, all in per cumm. Patient 9 (\textit{SAMD9L}): No data. The patient died of transplant complications on day +23. Patient 10 (\textit{SAMD9L}): No data. The patient died of transplant complications on day +23. Patient 11 (\textit{SAMD9L}): Intermittent IVIG infusions. Patient 12 (\textit{SAMD9L}): Intermittent IVIG infusions.

ALC indicates absolute lymphocyte count; ND, not done; NK, natural killer; IgG, immunoglobulin G.
More data are needed to define timing of HCT in SAMD9/ SAMD9L patients and further refine conditioning regimens as well as management of patients with significant syndrome-related comorbidities. National and international transplant registries should be queried to examine reported outcomes in larger patient cohorts. Finally, long-term follow-up and care guidelines are needed for the survivors.

ACKNOWLEDGMENTS

The authors thank the patients and their families, as well as the clinical teams involved in their management.

Disclaimer: The views expressed in this manuscript are those of the authors and do not reflect the official policy of the Department of Army/Navy/Air Force, Department of Defense, or US government.

Financial disclosure: The authors have nothing to disclose.

Conflict of interest statement: There are no conflicts of interest to report.

REFERENCES

1. Sieff CA. Introduction to acquired and inherited bone marrow failure. Hematol Oncol Clin North Am. 2018;32:569–580.

2. Hosono N, Makishima H, Jerez A, et al. Recurrent genetic defects on chromosome 7q in myeloid neoplasms. Leukemia. 2014;28:1348–1351.

3. Inaba T, Honda H, Matsui H. The enigma of monosomy 7. Blood. 2018;131:2891–2898.

4. Narumi S, Amano N, Ishii T, et al. SAMD9 mutations cause a novel multisystem disorder, MIRAGE syndrome, and are associated with loss of chromosome 7. Nat Genet. 2016;48:792–797.

5. Tesi B, Davidsson J, Voss M, et al. Gain-of-function SAMD9L mutations cause a syndrome of cytopenia, immunodeficiency, MDS, and neurological symptoms. Blood. 2017;129:2266–2279.

6. Cheon DH, Below JE, Shimamura A, et al. Ataxia-pancytopenia syndrome is caused by missense mutations in SAMD9L. Am J Hum Genet. 2016;98:1146–1158.

7. Bluteau O, Sebert M, Leblanc T, et al. A landscape of germ line mutations in a cohort of inherited bone marrow failure patients. Blood. 2018;131:717–732.

8. Schwartz JR, Ma J, Lamprecht T, et al. The genomic landscape of pediatric myelodysplastic syndromes. Nutr Commun. 2017;8:1557.

9. Nagamachi A, Matsui H, Asou H, et al. Haploinsufficiency of SAMD9L, an endosome fusion facilitator, causes myeloid malignancies in mice mimicking human diseases with monosomy 7. Cancer Cell. 2013;24:305–317.

10. Buonocore F, Kuhnen P, Suntharalingham JP, et al. Somatic mutations and progressive monosomy modify SAMD9-related phenotypes in humans. J Clin Invest. 2017;127:1700–1713.

11. Pastor VB, Sahoo S, Boklan J, et al. Constitutional SAMD9L mutations cause familial myelodysplastic syndrome and transient monosomy 7. Hematologica. 2018;103:427–437.

12. Wong JC, Bryant V, Lamprecht T, et al. Germline SAMD9 and SAMD9L mutations are associated with extensive genetic evolution and diverse hematologic outcomes. JCI Insight. 2018;3:1–12.

13. Schwartz JR, Wang S, Ma J, et al. Germline SAMD9 mutation in siblings with monosomy 7 and myelodysplastic syndrome. Leukemia. 2017;31:1827–1830.

14. Sartby J, Zha J, Babushok D, et al. Poor outcome with hematopoietic stem cell transplantation for bone marrow failure and MDS with severe MIRAGE syndrome phenotype. Blood Adv. 2018;2:120–125.

15. Center for International Blood and Marrow Transplant Research. Forms Instruction Manual. Available at: https://www.cibmtr.org/manuals/fin. Accessed June 10, 2019.

16. Przepiorka D, Weisdorf D, Martin P, et al. 1994 Consensus Conference on Acute GVHD Grading. Bone Marrow Transplant. 1995;15:825–828.

17. Perisa MP, Rose MJ, Varga E, Kamboj MK, Spencer JD, Bajwa MPS. A novel SAMD9 variant identified in patient with MIRAGE syndrome: further defining syndromic phenotype and review of previous cases. Pediatr Blood Cancer. 2019;66:e27726.

18. Jeffries I, Shima H, Ji W, et al. A novel SAMD9 mutation causing MIRAGE syndrome: an expansion and review of phenotype, dysmorphology, and natural history. Am J Med Genet A. 2018;176:415–420.

19. Ortolano R, Rosen BJ, Bryant V, et al. Novel V1551L mutation in SAMD9L inhibits cell cycle progression and results in pancytopenia that progresses to MDS with monosomy 7. Blood. 2018;132:3863.

20. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–424.

21. Wilson DB, Bessler M, Ferkol TW, et al. Comment on: Acquired monosomy 7 myelodysplastic syndrome in a child with clinical features of dyskeratosis congenita and IMiGE association. Pediatr Blood Cancer. 2018;65. https://doi.org/10.1002/pbc.26747. Accessed June 10, 2019. [e-pub ahead of print].

22. Davidsson J, Puschmann A, Tedgård U, Bryder D, Nilsson L, Cammenga J. SAMD9 and SAMD9L in inherited predisposition to ataxia, pancytopenia, and myeloid malignancies. Leukemia. 2018;32:1106–1115.