Local strains, calorimetry, and magnetoresistance in adaptive martensite transition in multiple nanostrips of Ni$_{39+x}$Mn$_{50}$Sn$_{11-x}$($x \leq 2$) alloys

A A Prasanna and Shanker Ram

Materials Science Centre, Indian Institute of Technology, Kharagpur 721 302, India
E-mail: sram@matsc.iitkgp.ernet.in

Received 6 August 2012
Accepted for publication 6 November 2012
Published 13 February 2013
Online at stacks.iop.org/STAM/14/015004

Abstract

Ni$_{39+x}$Mn$_{50}$Sn$_{11-x}$ ($x = 0.5, 1.0, 1.5$ and 2) alloys comprise multiple martensite nanostraps of nanocrystallites when cast in small discs, for example, ~ 15 mm diameter and 8 mm width. A single martensite phase with a L_1_0 tetragonal crystal structure at room temperature can be formed at a critical Sn content of 9.0 at.% ($x = 2$), whereas an austenite cubic L_2_1 phase turns up at smaller $x \leq 1.5$. The decrease in the Sn content from $x = 2$ to 0.5 also results in a gradual increase in the crystallite size from 11 to 17 nm. Scanning electron microscopy images reveal arrays of regularly displaced multiple martensite strips ($x \geq 1.5$) with an average thickness of 20 nm. As forced oscillators, these strips carry over the local strains, magnetic dipoles, and thermions simultaneously in a martensite–austenite (or reverse) phase transition. A net residual enthalpy change $\Delta H_{M\leftrightarrow A} = -0.12$ J g$^{-1}$ arises in the process that lacks reversibility between the cooling and heating cycles. A large magnetoresistance of $(-)26\%$ at 10 T is observed together with a large entropy change of 11.8 mJ g$^{-1}$ K$^{-1}$, nearly twice the value ever reported in such alloys, in the isothermal magnetization at 311 K. The $\Delta H_{M\leftrightarrow A}$ irreversibility accounts for a thermal hysteresis in the electrical resistivity. Strain induced in the martensite strips leads them to have a higher electrical resistivity than that of the higher-temperature austenite phase. A model considering time-dependent enthalpy relaxation explains the irreversibility features.

Keywords: Heusler alloys, martensite transition, magnetocaloric effect, magnetoresistance

1. Introduction

The martensite transition in ferromagnetic Ni–Mn–Sn Heusler alloys adapts unique properties of the shape-memory effect, inverse magnetocaloric effect, and magnetoresistance (MR) [1–11]. Functional properties crop up when structural transition coincides with a magnetic transition in the first-order diffusionless martensite transition, which is mediated through a thermoelastic strain arising in a shear-like atomic displacement. A fine compositional detuning from a stoichiometric Ni$_2$MnSn Heusler alloy results in a phase transition from a cubic (austenite, A) to a tetragonal/orthorhombic (martensite, M) structure near room temperature. Although it is yet unclear why non-stoichiometry is required for the martensite transition, a theoretical prediction [6] explains the features by excess Mn(3d54s2) over Ni(3d84s2) as follows. The cubic phase is destabilized with a tetragonal distortion when the local electronic structure changes by hybridization between 3d orbitals of the excess Mn atoms at the Sn and Ni sites. Despite...
extensive studies of magnetism and the magnetocaloric effect in Ni$_{50}$Mn$_{50-x}$Sn$_x$ (5 $\leq x \leq 25$) [1–3, 8–11], there are very few reports on electrical resistivity in alloys with 13 $\leq x \leq 16$ [4, 5, 7]. A ferromagnetic reordering occurs in a narrow $x = 13–15$ range, resulting in a ferromagnetic to paramagnetic transition in the martensite phase at the Curie point, T^A_C below a reverse ferromagnetic reordering takes place at the martensite to austenite transition temperature, T_A.

A large difference between magnetizations in the martensite and austenite phases in such Ni–Mn–Sn alloys results in a large inverse magnetocaloric effect and magnetic shape memory. The transition carries over a large thermoelastic strain and a small irreversibility in spin reordering. A concurrent magnetic transition near room temperature is required for applications. In Ni$_{50}$Mn$_{50-x}$Sn$_x$, the martensite transition falls either well below or above room temperature [4, 5, 7, 12, 13]. Also a Ni-deficient Ni$_{50-2x}$Mn$_{39+2x}$Sn$_{11}(5 \leq x \leq 7)$ alloy exhibits a large gap (30 K at $x = 5$, or 80 K at $x = 7$) between the two transitions and the transitions occur at temperatures $T_M \sim 190$ K at $x = 7$ or ~ 260 K at $x = 5$ [14], which are well below room temperature. Another Ni$_{33-3x}$Mn$_{77+5x}$Sn$_{10}(x \leq 5)$ series, which were studied as Ni-deficient alloys, has a T_M value well below room temperature [15]. In this system, the gap between T_M and the Curie point T^A_C (austenite) increased from 20 K at $x = 0$ to as much as 170 K at $x = 5$.

In the Ni$_{50}$Mn$_{50-x}$Sn$_x$ (5 $\leq x \leq 25$) phase diagram [3], the valence–electron concentration e/a (8.0–8.2 per atom) controls the structural and magnetic transitions that each other very closely at $e/a \sim 8.0$. In this paper, we study multiple nanostrips (of crystallites) in Ni$_{39+x}$Mn$_{50}$Sn$_{11-x}$ alloys ($x = 0.5, 1.0, 1.5$, and 2) with e/a varying sharply from 7.87 to 7.96, which is smaller than that (8.0) proposed in the phase diagram. As x approaches 2.0 ($e/a \to 7.96$), the two transitions concur with a large entropy change, nearly twice the value ever reported in such alloys, in alliance to a large MR.

2. Experimental details

The nanostrips of Ni$_{39+x}$Mn$_{50}$Sn$_{11-x}$ (0.5 $\leq x \leq 2$) were grown by cooling a melt in the shape of a disc (15 mm diameter and 8 mm width) in a mould of copper in a tungsten inert-gas arc-melting furnace. A master alloy made by melting and casting a stoichiometric mixture of pure metals in small discs was flipped and remelted three, four times ensuring a homogeneous mixing. The final compositions were measured using inductively coupled plasma optical emission spectroscopy (JY-ULTIMA spectrophotometer, France) and energy dispersive x-ray analysis performed with a Jeol JSM-5800 scanning electron microscope. Rectangular bars were freshly sliced from middle parts of the alloy discs by electrodischarge machining for x-ray diffraction (XRD) measurements. The measurements were carried out with a high-resolution diffractometer (X’Pert PRO PANalytical) operated at 40 kV and 40 mA, using filtered 0.15410 nm Cu$_K\alpha$ radiation. Nanostrips were observed in a field emission scanning electron microscope (FESEM, Zeiss SUPRA-40) at an accelerated voltage of 10 kV. Vickers microhardness was measured using a microhardness tester (UHL VMHT, Germany) with a load of 200 gf, at three different locations (including the disc center) with a 4 mm gap on the cross-section of the alloy disc sliced through the diameter. The heat outputs in the M ↔ A phase transitions were studied by heating and cooling a specimen at 10 K min$^{-1}$ in a differential scanning calorimeter (DSC Q100, TA Instruments). Electrical resistivity (ρ) was studied over the 10–300 K range using a standard four-probe method (Lakeshore Hall effect measurement instrument) by passing 100 mA of dc current through a sample of 10 \times 1 \times 1 mm3 size. Magnetic field (B) dependent isothermal magnetization and ρ were studied using a superconducting quantum interface device and a physical properties measurement system (Quantum design), respectively, with B varied up to 10 T.

3. Results and discussion

3.1. Local strains and microstructure in nanostrips

The XRD patterns shown in figures 1(a)–(d) reveal distinct changes in the number and/or relative intensities of the peaks when varying the Sn content as $x = 0.5, 1.0, 1.5$, or 2 in Ni$_{39+x}$Mn$_{50}$Sn$_{11-x}$ alloys marked as alloys 1, 2, 3, or 4, respectively. A simple pattern of only six peaks rises in a pure tetragonal $L1_0$ martensite phase in alloy-4, with lattice parameters $a = 0.7808$ nm, $c = 0.6954$ nm and density $d = 7.797$ g cm$^{-3}$ ($z = 8$ formula units). As many as fifteen XRD peaks occur in an $L2_1$ cubic crystal structure with the superlattice peaks (all h, k, l are odd) in alloy-1, with $a = 0.6039$ nm and $d = 7.615$ g cm$^{-3}$ ($z = 4$). The superlattice peaks no longer persist when the Ni content is raised, i.e. decreasing the Sn content to ~ 10 at. % ($x = 1$), in a strain-free fcc-$L2_1$ lattice having an enhanced $d = 7.696$ g cm$^{-3}$ ($a = 0.6034$ nm). With Ni increasing further, the $L1_0$ phase ($a = 0.7884$ nm and $c = 0.6841$ nm) co-precipitates with a simple fcc $L2_1$ phase ($a = 0.5980$ nm) at an intermediate Sn content of 9.5 at.%. A compressive strain that develops in an intergranular structure in both phases enhances the densities by 0.2–2.0% over the values in the single-phase alloys 1 and 4.

When reinforced by the martensite phase (~ 29 vol%) as per the XRD data of figure 1(c) an austenite phase compresses greatly in the lattice volume (V) by 3 versus 0.28% for the martensite phase (filler) because of a counterpart effect. This is a result of a surface-reinforced densification when one phase bounds the other phase with a rigid interface. A larger atomic radius of Sn (0.1405 nm) over Ni (0.1240 nm) results in a volume increase upon the Sn \rightarrow Ni substitution in a base Ni$_{31}$Mn$_{50}$Sn$_9$ alloy. Phenomenologically, the substitution takes place primarily in the austenite phase. In table 1, consistently, a large τ value of 3.5% (estimated from inhomogeneous broadening in the
behavior of the resulting alloy can arise in slipping and/or twinning in the local structure so as the strain-energy relieves in a pure martensite structure (figure 1(d)). A small (0.5 at.%) Sn inclusion above a pure martensite phase thus creates a compressive stress with s_m^L compressed by $\sim 29\%$, or V_m by 2.3%, in a martensite–austenite alloy composite ($x = 1.5$). The contraction of the strips with s_m^L reduced by 50% increases the density of strips. An elastic energy that the strips store during the $A \rightarrow M$ transition creates a compressive stress with in situ generated shear forces, which sets up a dynamic interfacial motion between the strips. A frictional force opposite to the interfacial motion, which boosts up when the s_m^L drops adiabatically, compels the strips to split up into finer strips ($s_m^L \sim 0.1 \mu m$) displaced between the parent strips (s_m^L), as observed in figure 2(b). At $x < 1.5$, the strips disappear as soon as the martensite phase converts to the austenite phase near room temperature (figures 2(c) and (d)).

The FESEM images shown in figures 3(a)–(d) reveal that the Ni$_{39x}$Mn$_{50}$Sn$_{11-x}$ (2.0 $\geq x \geq 1.5$) anisotropic bars consist of smaller substrips (4–16 in different regions). The region A of figure 3(a) ($x = 2.0$) enlarged in figure 3(c) displays the substrips (thin laminates) displaced in regular arrays, which represent a nanotwinned structure (a mirror-like stacking fault of the close-packed atomic layers) in the martensite $L1_0$ phase. In figures 3(b) and (d), less distinct laminates appear when two phases breed a net residual strain in an intergranular structure ($x = 1.5$). The nanotwins arise to overcome the lattice mismatch with entities in the intimate contacts. Figure 3(e) shows the model substrips of a rectangular bar as they are observed in the FESEM images in figure 3(c), with an average thickness of 20 nm. A geometrical theory of martensite by Wechsler et al [17] predicts a periodic twinning of a tetragonal lattice, expressed through the fraction of the twin lamellar widths w_1 and w_2 as $w_1/w_2 = (a_m - a_n)/(a_m - a_L)$, where a_n, a_m, and a_L are the lattice parameters with the subscripts m and a denoting martensite and austenite. The values $a_m = 0.7884$, $a_n = 0.6954 \text{nm}$, and $a_L = 0.6039 \text{nm}$ calculated from XRD patterns imply $w_1/w_2 \approx 2$, illustrating that periodically arranged nanotwin lamellae, with $w_1/w_2 = 2:1$, can interbridge martensite strips as modeled in figure 3(f). The bright (20 nm) and dark (10 nm) strips have thicknesses in the same ratio, $w_1/w_2 = 2:1$.

3.2. Vickers microhardness

To explore whether the composition and microstructure control the mechanical hardness in Ni$_{39x}$Mn$_{50}$Sn$_{11-x}$ ($x \leq 2.0$), we studied Vickers microhardness (H_V) at three different points on a vertical cross-section sliced from a disc, viz. close to (i) the upper (U) and (ii) lower (L) surfaces by 1.0 mm from the lateral faces and (iii) the midpoint (C). As shown in figure 4, the H_V value has an inverse relation with τ value, an atypical effect of the local strain on the alloy hardening. In Hooke’s law, the hardness is directly proportional to the local strain, i.e. the strain increases linearly against the stress within the elastic limit. A deviation arises here because the martensite strips that are pinned down at the nanotwins govern

Figure 1. XRD patterns (a)–(d) reflecting the transformation from (a) a cubic austenite L_2 to (d) a tetragonal martensite $L1_0$ phase in Ni$_{39x}$Mn$_{50}$Sn$_{11-x}$ ($x \leq 2.0$) crystallites.
Table 1. Structural parameters in martensite and austenite Ni$_{39+x}$Mn$_{50}$Sn$_{11-x}$ ($x \leq 2.0$) phases.

x	e/a	Phase	Lattice parameters (nm)	D (nm)	τ (%)	V (nm3)	d (g cm$^{-3}$)	V_d (cm3 g$^{-1}$)
0.5	7.87	L$_2$(A)	0.6039 –	17	2.5	0.2202	7.615	0.1315
1.0	7.90	L$_2$(A)	0.6034 –	13	0.9	0.2197	7.696	0.1300
1.5	7.93	L$_2$(A)	0.5980 –	12	3.5	0.2138	7.766	0.1290
2.0	7.96	L$_2$(M)	0.7808 0.6841 –	11	1.7	0.4252	7.797	0.1285

The values are accurate to the last reported digits, except V_d within ±0.05% error.

Figure 2. FESEM images showing that martensite Ni$_{39+x}$Mn$_{50}$Sn$_{11-x}$ strips (a) $x = 2.0$ and (b) $x = 1.5$ disappear on conversion to an austenite phase at (c) $x = 1.0$ and (d) $x = 0.5$.

The average value. As shown in table 2, the average H_V value 2.584 GPa ($x = 2.0$) is smaller compared to the values for $x \leq 1.0$ because of a significantly weak interfacial motion and weak pinning between effectively thick strips. The H_V value falls down by 13% when the pinning weakens further in the same kinds of strips in a mixed M–A phase ($x = 1.5$). A similar elastic softening is shown in ferroelastic domains that are pinned down weakly in the cubic \rightarrow tetragonal phase transition in SrTiO$_3$, KMnF$_3$, or KMn$_{0.97}$Ca$_{0.03}$F$_3$ at temperatures below 200 K [18,19]. In the Ni$_{39+x}$Mn$_{50}$Sn$_{11-x}$ ($x \leq 2.0$) series, a single austenite phase ($x = 1.0$) that grows at the expense of the interface with a residual martensite phase acquires a larger hardness $H_V = 3.321$ GPa, but a smaller residual strain $\tau = 0.9%$. Further, when a superlattice structure builds up with a local strain, the H_V drops marginally in the alloy-1 ($x = 0.5$).

The H_V values compared in table 2 for different regions of four Ni$_{39+x}$Mn$_{50}$Sn$_{11-x}$ ($x = 0.5, 1.0, 1.5$ and 2) alloys are the averaged values measured on three discs prepared under the same conditions. They were reproducible within a standard deviation of ±0.2%, illustrating the veracity of the hardness variation across the disc. The outer region, which had cooled faster in a bulk structure, is a softer austenite phase. During cutting from a disc, a compressive stress in the lower surface would breed surface hardening only. The hardness propagates with local strain that relieves when the martensite phase splits up and self-accommodates as illustrated with the FESEM image of figure 2(a).
3.3. Calorimetric signals in magnetostructural transitions

Now let us analyze how the martensite strips and local strains affect the caloric signals jointly in the magnetic and structural transitions. The heat output was measured during heating followed by cooling the Ni$_{39+x}$Mn$_{50}$Sn$_{11-x}$ alloy ($x \leq 2$) in the temperature range 200–400 K. The results so obtained are compared in figure 5 for three alloys ($x = 1.0$, 1.5, and 2.0). Upon heating, an exothermic peak ($x \geq 1.5$) appears at temperature A_p in the $M \rightarrow A$ transition, with $A_p > T_A$, where $T_A = (A_s + A_f)/2$ is a midpoint of the austenite start A_s and austenite finish A_f temperatures. A modified transition peak occurs at $M_p > T_M$ on cooling, where T_M is a midpoint of the martensite start M_s and finish M_f temperatures. In other words, both endothermic and exothermic peaks are asymmetric, and show a hysteresis $\Delta T = A_p - M_p$. At $x \sim 2.0$, the $T_M = 310.5$ K and $T_A = 322.5$ K are raised considerably above room temperature with a strong caloric signal of an enthalpy change $\Delta H_{M \rightarrow A} = 3.325$ J g$^{-1}$, or entropy $\Delta S_{M \rightarrow A} = 10.655$ mJ kg$^{-1}$ K$^{-1}$, and full-width at half maximum $\beta_{M \rightarrow A} = 29.7$ K. The local strains ($\tau = 1.7\%$) relieved in regular martensite strips have a higher $\Delta H_{M \rightarrow A}$ value compared to samples with $x = 1$ or 1.5 (table 3). Reheating gives a smaller $\Delta H_{M \rightarrow A} = 3.205$ J g$^{-1}$, or $\Delta S_{M \rightarrow A} = 9.800$ mJ g$^{-1}$ K$^{-1}$, in the process that lacks reversibility in the enthalpy, which is relieved slowly when the paramagnetic martensite state reverts back to the ferromagnetic austenite state. A thermal variation that sets up in the electrical conduction is modified in a spin disorder \rightarrow reorient transition. In comparison to Ni-rich alloys Ni$_{49}$Mn$_{38}$Sn$_{13}$ (8.35 J g$^{-1}$) and Ni$_{50}$Mn$_{35}$Sn$_{15}$ (5.1 J g$^{-1}$) [3, 20], these $\Delta H_{M \rightarrow A}$ values are smaller, but correspond to a larger $\beta_{M \rightarrow A} \sim 29.7$ K and a higher transition temperature ($T_M = 310.5$ K), 2.2 times the temperature in Ni$_{45}$Co$_{5}$Mn$_{40}$Sn$_{10}$ of an intermediate Ni content (bulk L_1_0 phase; $T_M = 130$ K) [21].
As shown by the hatched areas in the DSC peaks in figure 6(a), the martensite strips ($x = 2.0$) in cooling and heating exhibit not only a large irreversibility $\Delta H_{M\rightarrow A} - \Delta H_{M\rightarrow A} = 0.120 \ J \ g^{-1}$ ($\Delta G_{M\rightarrow A} = \Delta H_{M\rightarrow A} \Delta T / 2T_0 \approx 70.490 \ J \ g^{-1}$, with $T_0 = \frac{1}{2} (M_x + A_x)$), but also a thermal hysteresis ($\Delta T = 15.1 \ K$). Possible contributions to these effects arise from (i) well-displaced twinned martensite strips (figure 3(f)) that bear a strong magnetic spin-pinning barrier, (ii) residual stress on a granular structure, (iii) spin relaxation, (iv) magnetoelastic coupling between spins and lattice ordering, (v) thermal conductivity induced in dynamic spins and phonons, and (vi) different heat capacities in the two states ($\Delta C_{M\rightarrow A}^s$). Further, the strips divide the sample into domains by spins pin-down at the boundaries. A local spin–lattice reconfiguration that sets up in a transition thus adds a large frictional energy (or shear and compressive stresses) according to a large $\Delta H_{M\rightarrow A} = 3.325 \ J \ g^{-1}$ found in this alloy. Low electrical resistivity and stress in the austenite state ease a spin-lattice heat transfer in an exchange-coupled relaxation that drives in situ spin disorder (paramagnetic martensite) \rightarrow order (ferromagnetic austenite) transition by absorbing a large $\Delta H_{M\rightarrow A}$ over a large span $\beta_{M\rightarrow A}$ with $\Delta C_{M\rightarrow A}^s = 0.090 \ J \ g^{-1} \ K^{-1}$.

Table 2. Vickers microhardness (H_v) and gradient ($\partial H_v / \partial y$) in Ni$_{39+\delta}Mn_{60}Sn_{11-x}$ ($x \leq 2.0$) alloys.

x	H$_v$(GPa)	$\partial H_v / \partial y$(GPa mm$^{-1}$)			
	U	C	L	U \rightarrow C	C \rightarrow L
0.5	2.570	3.175	2.635	0.200	0.180
1.0	3.050	3.755	3.155	0.235	0.200
1.5	2.025	2.605	2.135	0.190	0.155
2.0	2.545	2.570	2.635	0.010	0.020

The data are measured on upper (U), central (C) and lower (L) cross-sections of three discs. The values are correct with $\pm 0.2\%$ error.

A model C_p-diagram in figure 6(b) explains a positive $\Delta C_{M\rightarrow A}^s = C_p(M_f) - C_p(M_x)$ value assuming a spin–lattice relaxation relieves heat before a heat uptake begins in the $M \leftrightarrow A$ transition from a point A_x (cooling). The heat dissipates faster in the conductive A-state. After the transition terminates at M_f, the C_p rises up further due to the spin disorder in a paramagnetic phase M_c. In reheating from point M_c, a value $\Delta C_{M\rightarrow A}^s = C_p(A_x) - C_p(A_f) \cong 0.068 \ J \ g^{-1} \ K^{-1}$ evolves, i.e. expectedly lower than $0.090 \ J \ g^{-1} \ K^{-1}$ observed in the transition in cooling, following part of the heat relieved in a spin-lattice relaxation. As indicated in figure 6(b), a C_p value of 0.270 mJ g$^{-1}$ K$^{-1}$ estimated at M_f ($> T_C^x$) from the DSC thermograms (figure 6(a)) is raised to 0.311 mJ g$^{-1}$ K$^{-1}$ upon heating to A_x. For a fixed ratio κ_e / γ ($\kappa_e =$ electronic thermal conductivity and $\gamma =$ electrical conductivity) in the Wiedemann–Franz law in a metal, a diminished κ_e value in the martensite strips accounts for the energy loss in a spin–lattice heat transfer, describing a lower $\Delta C_{M\rightarrow A}^s < \Delta C_{M\rightarrow A}^s$. A lower magnetization (σ) thus increases in the A-phase by 58% in a low magnetic field $B = 5 \ T$, or 12% in $B = 5 \ T$.

Qualitatively, κ_e enhanced in a mixed M/A phase Ni$_{39+\delta}$Mn$_{60}$Sn$_{11-x}$ ($x = 1.5$) yields smaller $\Delta C_{M\rightarrow A}^s - \Delta C_{M\rightarrow A}^s$, $\Delta H_{M\rightarrow A} - \Delta H_{M\rightarrow A} = 0.095 \ J \ g^{-1}$, $\Delta G_{M\rightarrow A} = 6.325 \ mJ \ g^{-1}$, and $\Delta T = 11.1 \ K$ (figure 6(c)). The residual martensite that transforms into austenite near 383 K (or the reverse transition near 367 K in the cooling cycle) leads to...
Table 3. M ↔ A caloric transition parameters in Ni_{39+x}Mn_{50}Sn_{11−x} (x ≤ 2.0) alloys.

x	RT phase	\(A_p \)	\(M_p \)	\(\Delta T \)	\(\Delta H (\text{J g}^{-1}) \)	\(\Delta S (\text{mJ g}^{-1} \text{K}^{-1}) \)	\(\Delta G (\text{mJ g}^{-1}) \)			
1.0	L21	225.0	212.0	13.0	0.130	−0.155	6.615	−0.695	3.640	−4.310
1.5	L21 + L10	276.2	265.1	11.1	0.435	−0.340	1.645	−1.225	8.155	−6.325
2.0	L21	327.1	312.0	15.1	3.325	−3.205	10.655	−9.800	73.110	−70.490

RT: room temperature. The \(A_p \), \(M_p \), and \(\Delta T \) are accurate within ±0.5 K error, while other entities within ±0.1% of the reported values.

Figure 6. DSC signals with irreversibile \(\Delta H \) in M ↔ A transition for \(x = 2 \) (a) and 1.5 (c). (b) A model \(C_p \)-diagram in Ni_{39+x}Mn_{50}Sn_{11−x} (x = 2.0). An IMT peak appears with a weak signal in a premartensite transition (marked by the vertical arrows in (c) in a mixed phase (x = 1.5). FMO: ferromagnetic ordering, SDO: spin disordering; ISRO: irreversible spin-reordering.

a superimposition of the DSC signal over a background due to the local structural changes. A similar phase transition between the micromodulated phase and a bcc austenite is known in Ni_{2}MnGa near 230 K, but with a smaller \(\Delta T \approx 7 \) K [22]. For \(x \geq 1.5 \), \(T_C^\Delta \) and \(T_M \) (or \(T_A \)) coincide in a single caloric signal, while a distinct \(T_C^\Delta \) appears near 270 K (figure 5(a)) at \(x = 1.0 \). An intermartensite transition (IMT) emerges in a distinct signal at lower temperature to the martensite transition peak, at 288 K for 9.5 at.% Sn (x = 1.5), or 315 K for 9.0 at.% Sn (x = 2.0). Any internal stress that
builds up during the local atomic redistribution is relieved in this process [23]. A characteristically faster ΔH change accounts for a stronger IMT signal in the M \rightarrow A transition (cooling).

The martensite strips $\text{Ni}_{39+y}\text{Mn}_{50}\text{Sn}_{11-x}$, $1.5 \leq x \leq 2.0$, assist both the $\Delta C_{p,M\rightarrow A}$ irreversibility and magnetocaloric effect. As shown in figures 7(a) and (b), upon heating from 309 to 312 K the σ value in the $x = 2.0$ alloy that exhibits a large irreversibility is enhanced by as much as 7.1 emu g$^{-1}$ in $B = 5$ T. This increase corresponds to a large magnetic entropy change $\Delta S_m \approx 11.8$ mJ g$^{-1}$ K$^{-1}$, or refrigerant capacity $\text{RC} = 133.1$ mJ g$^{-1}$, near $T_A \sim 312$ K in an inverse magnetocaloric effect in the standard relation

$$\Delta S_m = \sum_{i} \frac{\sigma_{i+1}(T_{i+1}, B) - \sigma_i(T_i, B)}{T_{i+1} - T_i} \Delta B.$$

A larger T_A of 322.5 K is observed in DSC revealing that magnetic field shifted the transition to lower temperatures. The RC was calculated from the area under the change in T_m versus T curve (inset in figure 7(a)) in a field of 5 T. Only a residual $\Delta S_m \sim 3.5$ mJ g$^{-1}$ K$^{-1}$ ($\text{RC} \sim 105.3$ mJ g$^{-1}$) lasts due to the reduction in the $\Delta C_{p,M\rightarrow A}$ irreversibility in a mixed M/A phase ($x = 1.5$) near $T_A \sim 254$ K, viz. the irreversibility helps the magnetocaloric effect. A minor austenite phase also suppresses ΔS_m to ~ 1.0 mJ g$^{-1}$ K$^{-1}$ ($\Delta B = 9$ T) in the Ni$_{50}$Mn$_{34}$Sn$_{16}$ alloy ($T_M = 190$ K) [13]. Pure martensite strips are thus required to enhance ΔS_m.

3.4. Forced oscillations and damping in multiple martensite strips

Let us consider that a compressive stress induced by thermal agitation in the M \rightarrow A transition compels substrips in a group to oscillate about their average positions. As small oscillators they carry over the local strains, magnetic dipoles, and thermions along effective force F exerted on the strips. A strip thus obeys the following equation of motion in a single degree of freedom:

$$m \frac{d^2 y}{dt^2} + h \frac{dy}{dt} + \alpha y = F_0 \sin \omega t,$$

with $F = F_0 \sin \omega t$, where F_0 is the oscillation amplitude, ω is angular frequency, m is the mass of a strip, h is the effective damping coefficient, α is the dynamic restoring coefficient in a strip, and y is displacement from the mean position; h arises from the internal friction between the strips $\text{Ni}_{39+y}\text{Mn}_{50}\text{Sn}_{11-x}$. Qualitatively, a larger value $h_{M\rightarrow A}$ arises in the M \rightarrow A transition because the oscillators transfer the strain, spin, and thermion from a low-strain point (M_1) to a higher value (M_2). A model diagram in figures 8(a)–(d) according to the observed $\Delta H_{M\rightarrow A}$ (DSC) indicates that the initial $h_{M\rightarrow A}$ decays faster with time t than $h_{M\rightarrow A}$ on the heating. Lesser interfacial friction in the strips decreases the damping ($h_{M\rightarrow A} < h_{M\rightarrow A}$) so that the separation of strips no longer ceases rapidly. Here, m is constant and α is a weak function of time.

A phase difference ϕ between the force and resultant motion $y = R \sin (\omega t - \phi)$ in an oscillator of amplitude R gives on substituting in equation (2),

$$\frac{y \alpha}{F_0} = \frac{\sin(\omega t - \phi)}{\sqrt{\left(1 - \frac{\omega^2}{\omega_n^2}\right)^2 + (2\xi \omega/\omega_n)^2}} = R_d \sin(\omega t - \phi),$$

with $\xi = h/h_c$, where h_c is the critical h value at which transmissibility Γ of spins and thermions approaches zero, and ω_n is the natural frequency of the strips. One can express

$$\phi = \tan^{-1}\left(\frac{2\xi \omega/\omega_n}{1 - \omega^2/\omega_n^2}\right).$$

Here, R_d is a dimensionless response factor, ~ 1 at very low ω values. It traces a peak near ω_n and approaches zero as...
Figure 8. Model damping of collective oscillations of multiple martensite strips under a compressive force during (a, b) cooling and (c, d) heating via an M ↔ A transition in Ni_{39+\chi}Mn_{50-Sn_{11-\chi}} (\chi \leq 2.0). Damping coefficient \(h_{M\rightarrow A} \) modified during heating inducts irreversibility in the process parameters.

\(\omega \rightarrow \infty \). The force that transmits through the strips in carrying over the strain, spin, and thermion can be expressed in a differential equation

\[F_T = h \frac{dy}{dt} + \alpha y. \]
(5)

The forces \(h \frac{dy}{dt} \) and \(\alpha y \) are phase-shifted by 90°, and thus the \(F_T \) magnitude is

\[|F_T| = \sqrt{h^2 \left(\frac{dy}{dt} \right)^2 + \alpha^2 y^2}. \]
(6)

The ratio \(F_T/F_0 = \Gamma \sin(\omega t - \psi) \) implies

\[\Gamma = \sqrt{1 + \left(\frac{2 \xi \omega/\omega_n}{\omega^2/\omega_n^2} + 4 \xi^2 \omega/\omega_n^2 \right)^2}. \]
(7)

\[\psi = \tan^{-1} \frac{2 \xi \omega/\omega_n}{1 - \omega^2/\omega_n^2 + 4 \xi^2 \omega/\omega_n^2}. \]
(8)

Equation (7) results in a weak peak in figure 9(A) with \(\Gamma \leq 5 \) at resonance \(\omega/\omega_n = 1 \) for \(\xi \geq 0.1 \) in an M ↔ A transition. This peak is intensified for a smaller \(\xi = 0.01 \), which is possible if strains and thermions flow collectively and rapidly with spins from a disordered configuration (lower \(\kappa_e \)) before the \(M_f \) sets in. A moderate \(\xi \) value on smaller \(h \) in a reverse transition gives a medium \(\Gamma \) peak. A maximum \(\psi \) determined in a wide transition over \(1 \leq \omega/\omega_n \leq 10 \) transmits a maximum energy (figure 9(B)).

As shown in figure 10(A), a net force in the oscillators can describe an ellipse \(F = \alpha R \sin \omega t + h R \cos \omega t \). It dissipates the following amount of heat energy per unit time:

\[\frac{\partial H}{\partial t} = \int_\mu^{\mu + 2\pi/\omega} F \frac{dy}{dt} \, dt = \pi \omega \xi^3 R^2. \]
(9)

Figure 9. Variations of (A) transmissibility and (B) phase angle against \(\omega/\omega_n \) when the damping parameter \(\xi \) is varied from 0.01 to 0.5.

Analogous to equation (3), \(\omega \) and \(\xi \) in a collective oscillation of the strips of period \(\mu \) describe

\[R = \frac{F_0/\alpha}{\sqrt{\left(1 - \frac{\omega^2}{\omega_n^2}\right)^2 + \left(2 \xi \omega/\omega_n\right)^2}}. \]
(10)

Integrating equation (9) between \(\mu \) and \(\mu + 2\pi \omega^{-1} \) yields

\[\frac{\partial H}{\partial t} = \frac{\chi \pi \omega \xi^3 F_0^2/\alpha^2}{\left(1 - \frac{\omega^2}{\omega_n^2}\right)^2 + (2 \xi \omega/\omega_n)^2}. \]
(11)

or

\[\frac{\partial H}{\partial t} = \frac{z \omega \xi^3}{\left(1 - \frac{\omega^2}{\omega_n^2}\right)^2 + (2 \xi \omega/\omega_n)^2}. \]
(12)

where \(z = \chi \pi h_0 F_0^2/\alpha^2 \) is a constant and \(\chi \) is a correlation factor. As shown in figure 10(B), a normalized \(\partial H/\partial t \) with \(z = 1 \) has a peak against \(\omega/\omega_n \) in an M ↔ A transition. As
shows the field dependence of M_{ρ} on heating, the transition results in a release of thermoelastic strains and spin disordering, which promotes electron transport in Ni$_{39+}$Mn$_{50}$Sn$_{1-x}$ (x ≤ 2.0), we studied ρ and MR in different conditions as follows. In figure 11, ρ displays a thermal hysteresis in cooling and heating, with a more resistive structure on the heating damping heat flow with moderate ξ value. For $x \sim 2.0$, the ρ value rises sharply in the M ↔ A transition at $T_{M} \sim 309$ K (table 4) due to enhanced local strains and spin disordering, which promotes electron scattering. A large change $\Delta \rho_{M-A} = 2.75 \mu \Omega \text{cm}$ along with $\kappa_{e} = LT/\rho$ is changed by $\Delta \kappa_{e}^{M-A} = \kappa_{e}(M_{a}) - \kappa_{e}(M_{i}) \equiv 2.49 -1.06 = 1.43 \text{ W m}^{-1} \text{ K}^{-1}$ using the Lorentz number $L = 2.45 \times 10^{-8} \text{ W} \text{ cm} \text{ K}^{-2}$ in the Wiedemann–Franz law. On heating, the transition results in a release of thermoelastic energy in a large ρ–T hysteresis $(\rho T)_{h} = 17.5 \text{ m}\Omega \text{ cm} K$, or $\Delta T = T_{A} - T_{M} \sim 15$ K. This sizeable irreversibility is important for tailoring MR and other properties. At $x \sim 1.5$, impeded strips turn up in the M ↔ A transition with a large residual strain (3.5%) resulting in a lowered $\Delta \rho_{M-A} = 62 \mu \Omega \text{ cm}$, or $\Delta \kappa_{e}^{M-A} = \kappa_{e}(M_{a}) - \kappa_{e}(M_{i}) \equiv 1.24 - 0.82 = 0.42 \text{ W m}^{-1} \text{ K}^{-1}$. $(\rho T)_{h}$ is markedly lowered to 1.85 m\Omega cm K ($\Delta T \sim 9.5$ K) in a transient fashion in the reverse transition. Relatively smaller strains stored on low irreversibility in the transition cycles result in average $(\rho T)_{h} = 5.5 \text{ m}\Omega \text{ cm} K$ at $x = 1.0$, or 3.6 m\Omega cm K at $x = 0.5$. The slope of the ρ–T curve changes at the $T_{C}^{i} \sim 265$ K ($x = 0.5$), or 270 K for $x \sim 1$.

Figure 12 shows the field dependence of ρ values at temperatures between 100 and 320 K in Ni$_{39+}$Mn$_{50}$Sn$_{1-x}$ of low ($x \sim 2$) and high ($x \sim 1.5$) strains. The data were measured by warming a zero-field-cooled sample from 100 K. A large MR = −26% arises near $T_{A} \sim 320$ K (figure 12(A)) in $B = 10$ T for a low strain of 1.7%. The MR decreases...
Delta 1 expressed as (cooling), or a reverse transition releases (heating), can be the final strips in spin disordering or reordering. In this approximation, by the frictional forces opposing the interfacial motions in the thermal hysteresis of the transition, describes the work done the lattice volume. A nonzero A states yields \(\Delta H_{\text{chem}} \), while \(\Delta H_{\text{elast}} \) arises in restoring the lattice volume. A nonzero \(\Delta H_{\text{int}} \) value, requisite of a thermal hysteresis of the transition, describes the work done by the frictional forces opposing the interfacial motions in the strips in spin disordering or reordering. In this approximation, the final \(\Delta H \) value that an M \(\leftrightarrow \) A transition absorbs (cooling), or a reverse transition releases (heating), can be expressed as

\[
\Delta H_{\text{M\leftrightarrow A}} = \Delta H_{\text{chem}} + \Delta H_{\text{elast}} + \Delta H_{\text{int}},
\]

\[
\Delta H_{\text{M\rightarrow A}} = \Delta H_{\text{chem}} + \Delta H_{\text{elast}} + \Delta H_{\text{int}}.
\]

The temperatures are accurate within \(\pm 0.5 \) K error in general.

Figure 12. Magnetic field dependence or resistivity \(\rho \) in Ni\(_{39+x}\)Mn\(_{50}\)Sn\(_{11-x}\) with (A) \(x = 2.0 \) and (B) \(x = 1.5 \). A lack of fully reversible spin reordering correlates with a large MR = (-)26% in the M \(\rightarrow \) A transition (\(x = 2.0 \)) at 320 K and \(\Delta B = 10 \) T.

The temperatures are accurate within \(\pm 0.5 \) K error in general.

Figure 13. Schematic of hystereses in (a) enthalpy and (b) ENTROPY in the M \(\leftrightarrow \) A transitions in Ni\(_{39+x}\)Mn\(_{50}\)Sn\(_{11-x}\) (\(x \leq 2.0 \)) martensite strips.

If \(\Delta H_{\text{chem}} \) dissipates rapidly, as observed in Cu–Al–X (X = Zn, Ni) and Fe–Pt alloys [24], a reversibility \(\Delta H_{\text{M\rightarrow A}} > \Delta H_{\text{M\leftrightarrow A}} \) could develop in Ni\(_{39+x}\)Mn\(_{50}\)Sn\(_{11-x}\) (\(x \leq 2.0 \)) martensite strips due to a time lag in the \(\Delta H_{\text{int}} \) relaxation process over heating and cooling via the transition. It can be described with an empirical relation, \(\Delta H_{\text{int}} \sim \Delta H_{\text{int}}^0 \exp \left\{ -(t_{\text{sp}}/t_{\text{st}})^N \right\} \), where \(t_{\text{sp}} \) is the spin-relaxation time and \(t_{\text{st}} \) is the structural relaxation time with an exponent \(N \). Setting \(N \approx 1 \) and \(t_{\text{sp}} \ll t_{\text{st}} \) in an ergodic transition accounts for the reversibility. A fractional \(\Delta H_{\text{M\rightarrow A}} \sim 0.964 \Delta H_{\text{M\leftrightarrow A}} \) at \(x = 2.0 \), or \(0.775 \Delta H_{\text{M\rightarrow A}} \) at \(x = 1.5 \), observed by DSC in Ni\(_{39+x}\)Mn\(_{50}\)Sn\(_{11-x}\) is reproduced well with \(t_{\text{sp}}/t_{\text{st}} = 0.01 \) and \(N = 0.72 \), viz. a nonergodic transition, \(t_{\text{sp}} < t_{\text{st}} \) and \(0 < N < 1 \), i.e. the time average of a physical quantity does not represent an estimate of the initial value. Arrested dynamics slow down relaxation of locally trapped carriers in such transitions [25]. Thus,
in the absence of full relaxation over the experimental timescale $\Delta H_{\text{ent}}^{M \rightarrow A}$ and $\Delta H_{\text{dis}}^{M \rightarrow A}$ exhibit a hysteresis in an entropy–temperature diagram, or a temperature lag ΔT in an enthalpy–temperature diagram. A controlled spin relaxation which determines $\Delta H_{\text{ent}}^{M \rightarrow A}$ is required in high-performance spintronics [26, 27].

4. Conclusions

The Ni$_{39+3}$Mn$_{50}$Sn$_{1-\gamma}$ alloys where Ni is partially substituted by nonmagnetic Sn ($x = 0.5, 1.0, 1.5, \text{and} 2.0$) illustrate that an inverse magnetocaloric effect concurs with a large MR in the multiple martensite layer nanostrains that transact the carriers in the M \leftrightarrow A transition. For an optimal Sn content of 9.0 at.\% ($x = 2.0$), the transition occurs well above room temperature, at $T_M \sim 310.5$ K, from a cubic L_2_1 austenite phase ($x \leq 1.0$) to a tetragonal L_1_0 martensite phase. A local strain, which builds up in the M \leftrightarrow A transition in cooling, propagates undisturbed through the anisotropic nanostrains that displace and transfer the energy as a forced oscillator. In a nanotwinning process, a martensite strip splits into a regular pattern of 4–16 substrips (~ 20 nm average thickness). The spins that are pinned down at the boundaries divide the substrips into the single magnetic domains. These spins also cause surface alloy hardening with effectively large shear stress, compressive stress, and frictional energy on account of a coupled spin–lattice system. A large part of the heat intake $\Delta H_{\text{ent}}^{M \rightarrow A} = 3.325$ J g$^{-1}$, such as 3.205 J g$^{-1}$, is relieved in the transition that reverts back (upon reheating) with reversibility of the heat carriers. A large MR $= -26\%$ is observed and it carries over a large entropy change $\Delta S_m \sim 11.8$ mJ g$^{-1}$ K$^{-1}$, nearly twice the value reported for such alloys [3, 20, 27]; this large MR is useful for room-temperature applications. The observed features degrade sharply on austenite phase precipitates ($x \leq 1.5$). A model enthalpy–temperature diagram with a time-dependent spin–lattice–thermion relaxation in a nonergodic nature of the M \leftrightarrow A transition explains how a local strain is generated with the spins pin-down at the domain boundaries thereby enhancing the $\Delta H_{\text{ent}}^{M \rightarrow A}$ and ΔS_m values.

Acknowledgments

AAP is thankful to AICTE, New Delhi, and Bahubali College of Engineering, Shravanabelagola, for a partial financial support of this work.

References

[1] Sutou Y, Imano Y, Koeda N, Omori T, Kainuma R, Ishida K and Oikawa K 2004 Appl. Phys. Lett. 85 4358
[2] Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Mañosa L and Planes A 2005 Nature Mater. 4 450
[3] Krenke T, Acet M, Wassermann E F, Moya X, Mañosa L and Planes A 2005 Phys. Rev. B 72 014412
[4] Koyama K, Okada H and Watanabe K 2006 Appl. Phys. Lett. 89 182510
[5] Khan M, Pathak A K, Paudel M R, Dubenko I, Stadler S and Ali A 2008 J. Magn. Magn. Mater. 320 L21
[6] Ye M et al 2010 Phys. Rev. Lett. 104 176401
[7] Bose S K, Kudrnovsky J, Drchal V and Turek I 2011 Phys. Rev. B 84 174422
[8] Banerjee A, Chaddah P, Dash S, Kumar K, Lakhanai A, Chen X and Ramanujan R V 2011 Phys. Rev. B 84 214420
[9] Umetsu R Y, Sheikh A, Ito W, Ouladdiaf B, Zeibek K K R A, Kanomata T and Kainuma R 2011 Appl. Phys. Lett. 98 042507
[10] Han Z, Chen J, Qian B, Zhang P, Jiang X, Wang D and Du Y 2012 Scr. Mater. 66 121
[11] Basso V, Sasso C P, Skokov K P, Gutfleisch O and Khovaylo V V 2012 Phys. Rev. B 85 014430
[12] Chatterjee S, Giri S, Majumdar S and De S K 2008 Phys. Rev. B 77 224440
[13] Shamberger P J and Ohuchi F S 2009 Phys. Rev. B 79 144407
[14] Han Z, Wang D H, Zhang C L, Xuan H C, Gu B X and Du Y W 2007 Appl. Phys. Lett. 90 042507
[15] Xuan H C, Zheng Y, X, Ma S C, Cao Q Q, Wang D H and Du Y W 2010 J. Appl. Phys. 108 103920
[16] Qadri S B, Skelton E P, Hsu D, Dinsmore A D, Yang J, Gray H F and Ratna B R 1999 Phys. Rev. B 60 9191
[17] Wechsler M S, Lieberman D S and Read T A 1953 Trans. Am. Inst. Min. Metall. Eng. 197 1503
[18] Kityk A V, Schranz W, Sondergeld P, Havlik D, Salje E K H and Scott J F 2000 Phys. Rev. B 61 946
[19] Salje E K H and Zhang H 2009 J. Phys.: Condens. Matter 21 035901
[20] Babita I, Ram S, Gopalan R and Chandrasekaran V 2009 Phil. Mag. Lett. 89 399
[21] Srivastava V, Chen X and James R D 2010 Appl. Phys. Lett. 97 014101
[22] Planes A, Obrado E, Gonzalez-Comas A and Manosa L 1997 Phys. Rev. Lett. 79 3926
[23] Kaufmann S, Rößler U K, Heiczko O, Wuttig M, Buschbeck J, Schultz L and Fähler S 2010 Phys. Rev. Lett. 104 145702
[24] Ortin J and Planes A 1988 Acta Metall. 36 1873
[25] Manno M, Bulone D, Martorana V and San Biagio P L 2004 Physica A 341 40
[26] Hai P N, Ohya S and Tanaka M 2010 Nat. Nanotechnol. 5 593
[27] Babita I, Pathi S I and Ram S 2010 J. Phys. D: Appl. Phys. 43 205002