Abstract. Gastrointestinal stromal tumors (GIST) are the most common stromal-derived tumors of the gastrointestinal tract and have a potential metastatic capacity in almost half of all cases, with the most common sites of metastasis being the liver and peritoneum. However, there is evidence that GIST metastasizes to sites other than the liver and peritoneum, which poses challenges for clinical diagnosis and treatment. Therefore, the Cochrane and Medline databases were searched via PubMed in July 2022 using relevant keywords to acquire the literature associated with the metastasis of GIST to rare sites published since 2000 onwards. Study data comprising age, sex, primary location, metastatic site, mean survival time, clinical signs and symptoms, imaging, pathological features immunohistochemical indices, treatment and prognosis were recorded and analyzed. The 118 metastases at rare sites reported in the literature included bone (n=31), lung (n=10), lymph nodes (n=13), intracranial sites (n=13), skin and subcutaneous tissue (n=13), heart (n=7), skeletal muscle (n=7), orbit and choroid (n=6), pancreas (n=3), spleen (n=2), bone marrow (n=1), testis (n=3), scrotum (n=1), epididymis (n=1), penis (n=1), ovary (n=2), cervix (n=1), kidney (n=1), bladder (n=1), adrenal gland (n=2) and thyroid gland (n=2). From the reviewed studies, it may be concluded that when metastases from gastrointestinal stromal tumors occur at rare sites, the initial symptoms may help in the identification of these sites. In addition, the site-dependent imaging of different metastatic locations may further define the metastases, and the findings of pathological or immunohistochemical analyses may be used to confirm the diagnosis.

Keywords: gastrointestinal stromal tumor, rare metastatic site, tyrosine kinase inhibitor, clinical characteristics, prognosis
2. Materials and methods

Inclusion criteria. Literature published from 2000 onwards on GIST in humans with metastases to sites other than the liver or peritoneum following an initial diagnosis of GIST, treated or not, were included. The papers were required to have viewable abstracts online and full text that it was possible to download.

Search strategy. Cochrane and Medline databases were searched via PubMed using the following query: ['gastrointestinal stromal tumor’ (Title/Abstract) OR ‘GIST’ (Title/Abstract)] AND ['metastasis’ (Title/Abstract)]. A total of 969 articles were retrieved, and based on the inclusion criteria, 88 articles with 98 cases were finally obtained. Considering that the literature published prior to 2000 did not include complete clinical patient information, only articles published on or after 2000 were selected, with a search deadline of July 31, 2022 for published literature. The screening flow chart is shown in Fig. 1.

Statistical analysis. The included articles were analyzed to record the basic data used for the analysis. Study data included age, sex, primary site, metastatic site, immunohistochemical staining for CD117 and CD34, treatment of metastases and mean survival time. Given the differences in management and the limited number of cases identified, descriptive analyses were used and data were expressed as mean or median values.

3. Rare metastatic sites and basic characteristics of patients

It has been reported in the literature that >70% of GISTs originate from the stomach or small intestine and 1-5% from the colon and esophagus (19). The primary GIST sites found in the present review included the stomach and small intestine in 69 cases (70.41%), the rectum in 14 cases (14.29%), the esophagus in two cases (2.04%), the colon in one case (1.02%), the retroperitoneum in two cases (2.04%), the mesentery in one case (1.02%), the perisacrum in one case (1.02%), the liver in one case (1.02%), the pelvis in one case (1.02%) and unknown origin in six cases (6.12%).

4. Diagnosis of rare site metastasis of GIST

The diagnosis of GIST with rare metastases is based on clinical symptoms and signs, appropriate imaging and ultrasound to determine the site of the lesion, and the results of puncture or postoperative biopsy with molecular testing (6,91).

Clinical signs and symptoms of different rare metastatic sites. In cases of GIST with metastasis at rare sites, the symptoms will vary according to the organ affected by the metastatic lesion. In cases with synchronous unusual site metastases alongside the diagnosis of the primary GIST, the manifestations of the metastatic site are often dominant. For example, when intracranial GIST metastasis occurs, it usually affects the nervous system, resulting in dizziness, headache, memory impairment, loss of sensation and inability to move a single limb, the inability to maintain body balance and abnormal gait and posture, along with a series of neurological cements (27,32,35,40,51,61,70,87,89,92,93). In cases of bone metastasis, pain manifests in the affected bone area (29,37,48,52,53,63,69,75,80,94,95), in cases of skeletal muscle involvement, a mass can be palpated in the affected area (34,49,71,72,79), and when metastasis occurs deep in the bone marrow, anemia may be present (96). Furthermore, when GIST metastasizes to the lungs, signs and symptoms that may be observed include dyspnea, blood in the sputum, coughing and shortness of breath (18,85,88,97). When metastasis to superficial lymph nodes, skin or subcutaneous tissue occurs, a mass may be superficially palpable (28,42,45,55,68,68,73,98). However, when GIST metastasizes to the heart, although no clinical signs are evident in the early stages (24,82,83,99,100), the late stages may manifest as cardiogenic shock (43). When GIST metastasizes to the orbit, a mass may be palpable around the orbit (60) and may manifest as periorbital pain (101), and with involvement of the chroid, vision loss or diplopia may occur (44,48,51,67). Menstrual flow may increase when there is metastasis in the cervix (102), and when the testicles, penis or scrotum are involved, swelling of the testicles and scrotum, difficulty in achieving an erection and obstruction of the urinary tract are typical manifestations (21,38,64,74). When GIST metastasizes to the adrenal gland, the secretion of catecholamine hormones may become abnormal, and symptoms of hypertension may occur (59,103). In cases of metastasis to the thyroid gland, systemic manifestations such as weight loss, weakness and respiratory distress can be observed (23). The presence of rare site GIST metastasis may be initially discovered by the observation of the aforementioned early symptoms.

Imaging of rare metastatic sites. In cases of extrahepatic/extra-peritoneal GIST metastasis, imaging examinations can be performed according to the individual patient's symptoms and signs to clarify the site of metastasis; however, the imaging manifestations vary depending on the site. For example, when GIST metastasizes to the intracranial area, computed tomography (CT) scans show high density with cerebral edema and enhancement scans show homogeneous enhancement. The magnetic resonance imaging (MRI) of cranial GIST metastasis shows equivocal masses in T1- and T2-weighted terms, with circumferential enhancement in T1-weighted sequences and inhomogeneous enhancement in T2-weighted sequences (40,61,70,104), while
the intracranial aggregation of 18F-fluorodeoxyglucose is not reported as being visible when examined using positron emission tomography (PET) (27,86,87,92). When GIST metastasizes to bone, it is primarily present in the spine (17), with CT plain scanning showing osteolytic bone destruction of the vertebral body (29,31,37,47,52,53,69,76,78,81,84,94,95). Additionally, MRI reveals dural protrusion and compression of the spinal cord, usually with spinal stenosis, T1 and T2 high signals on
enhancement scans and partial necrosis and non-uniform enhancement of the lesion (29,31,48,63,76,78,81,95). The PET-CT imaging of bone metastasis shows hypermetabolic changes at the site of a vertebral lesion (37,47,62,63,75,76). In cases with the involvement of skeletal muscle, T2-weighted images show a mass with high signal intensity (71,72). When GIST metastasizes to the lungs, a dense mass is visible in one or both lungs (18,85,88,97), and in the lymph nodes, GIST metastasis appears on CT images as a hypodense mass with no enhancement when examined using enhanced MRI (39,57,58) and as a hypoechoic cystic or solid mass when examined using ultrasound (28,33,29). No enhancement is seen on chest enhancement CT images when GIST metastasizes to the heart (85,100), with echocardiograms showing a hypoechoic mass in the ventricle or atrium (24,83,89,100). When GIST metastasizes to the orbit, CT shows a hypodense mass with well-defined lesions, and enhanced MRI shows uniform enhancement (20,60). Optical coherence tomography may reveal edema of the optic disc and retinal neuroepithelia (44), while MRI presents a well-defined round nodule with isointensity to eye muscles in T1-weighted sequences and high signal T2-weighted sequences (44,82) and enhancement scans show homogeneous enhancement (20). Ultrasonography of metastasis to the orbit also shows a well-defined homogeneous hypoechoic mass around the orbit without retinal detachment (44). In cases of choroidal involvement, funduscopic examination may reveal an enlarged choroidal mass surrounded by a flat retinal detachment, while ultrasonography reveals a choroidal mass with moderate-to-low reflectivity (51,67). When GIST metastasizes to the ovaries, transvaginal ultrasound detects a solid pelvic hypoechoic mass with irregular margins, and energy Doppler ultrasound presents a grade 3 blood flow signal (41). In ovarian metastasis, the presence of a mass in the pelvis may also be detected by CT, and enhanced CT shows heterogeneous enhancement of the mass (41,102). When GIST metastasizes to the male genital system, metastatic GIST in the scrotum appears as a vascular-rich hypoechoic mass on ultrasound (38). In addition, CT may reveal multiple satellite nodules distributed along the spermatic cord (74,77), while contrast-enhanced T1-weighted MRI does not show mass enhancement (64). Lastly, when GIST metastasizes to the spleen, a low-density mass in the spleen is shown using abdominal CT and enhancement is observed on enhanced scans (59).

Pathological features and gene mutation detection. Upon pathological examination, GIST can be morphologically classified into three types: Spindle cell (70%), epithelioid (20%) and mixed spindle and epithelioid types (10%) (14,19,105). Spindle cells are microscopically viewed as spindle-shaped with uniform cytoplasm, eosinophilic cytoplasmic staining, ovoid nuclei and juxtaposed nuclear vesicles (106). Epithelioid cells are round with round or oval nuclei (107), and mixed types are observed as a mixture of epithelial and spindle cells within pathological sections, or as a transitional pattern between the two (91). In the present review, 57 cases (58.16%) were of spindle cell type, 15 cases (15.31%) were of epithelial cell type, 12 cases (12.24%) were of mixed spindle cell type and 14 cases were of unknown type and 14 cases (14.29%) were of unknown type. A total of 69 cases were immunohistochemically tested, with 62 cases being positive for CD117 and 54 cases being positive for CD34, revealing that the latter is less often positive. In addition, bone marrow biopsy is essential for the analysis of gastrointestinal stromal tumors that have metastasized to the bone marrow (96).

5. Therapy and prognosis for rare site GIST metastases

Treatment and prognosis details described in the literature for rare metastatic sites of GIST are shown in Table II (18,20-27,29-41,43,44,46,47,50-54,56-67,69-72,74,75,77-80,82-88,92,94-101,103,104,108-112). Treatment modalities included TKIs alone, surgical treatment or resection alone, radiotherapy alone, resection with TKIs, resection with radiation therapy, radiation therapy with TKIs, and resection with radiation therapy and TKIs. Surgical resection was performed at the primary site in 87 cases (92.31%). Among

Primary site	Metastatic site	(Refs.)
Small intestine	Bone, lung, ovary, lymph nodes, heart, skeletal muscle, intracranial sites, skin and subcutaneous tissue, orbit, thyroid, scrotum, testes, bladder and choroid	(18,20-53)
Stomach	Bone, lung, ovary, lymph nodes, heart, intracranial sites, skin and subcutaneous tissue, orbit, thyroid, adrenal gland, pancreas, spleen and choroid	(23,28,33,54-73)
Rectum	Bone, lung, skeletal muscle, heart, lung, kidney, eye socket, epididymis and penis	(37,63,74-84)
Retroperitoneum	Skin and lung	(45)
Pelvis	Lung	(85)
Perisacrum	Intracranial sites	(86)
Esophagus	Intracranial sites and lung	(87)
Colon	Lung	(88)
Liver	Adrenal gland	(84)

Table I. Primary and metastatic sites of gastrointestinal stromal tumors.
these cases, 17 had surgical resection of both primary and metastatic sites diagnosed at the same time, 67 had postoperative metastases from rare sites, 52 had surgical resection of rare metastatic site, and 39 cases had liver or peritoneal metastases prior to the surgical resection of rare sites, of which 21 cases had surgical treatment. Notably, a recent study by Pantuso et al (113) confirmed that positive surgical margins had no effect on the overall and recurrence-free survival of GIST patients. Therefore, surgical resection is an important treatment modality for GIST. In addition to surgical treatment, TKIs are also very valuable in pre- or postoperative adjuvant therapy. The TKI drugs imatinib, sunitinib, regorafenib and ripretinib have been approved for the first-, second-, third- and fourth-line treatment of GIST, respectively (114). A multicenter randomized controlled trial clearly demonstrated that imatinib treatment at a dose of 400 mg/day achieved objective remission in 81.6% of patients with unresectable or metastatic GIST (115). Further, other studies have confirmed that preoperative imatinib can effectively prevent tumor rupture and reduce the incidence of surgical complications (116,117). However, when patients experience imatinib resistance or intolerable adverse effects, treatment with the second-line drug sunitinib at a dose of 50 mg/day for 4 weeks followed by 2 weeks without treatment, or at 37.5 mg/day continuously is recommended (76,78). One study demonstrated improved patient compliance for continuous once-daily 37.5 mg sunitinib dosing compared with intermittent sunitinib dosing in patients following imatinib failure (118). Furthermore, sunitinib may achieve greater efficacy as a first-line therapy in patients with intracranial GIST metastases due to the inability of imatinib to cross the blood-brain barrier (BBB) (119,120); sunitinib can cross the BBB and achieve a sufficient drug concentration for improved therapeutic outcomes (35,121). While imatinib and sunitinib are clinically beneficial for the majority of patients with metastatic GIST, some patients experience progression as well as intolerable adverse effects following treatment. The third-line treatment regorafenib and the fourth-line treatment ripretinib have been demonstrated to be effective in such patients (50,77,85). Therefore, for patients with GIST at rare metastatic sites, TKIs used alone or in combination can be selected or replaced according to efficacy. In addition, radiotherapy may be used as an adjuvant treatment when GIST metastasizes to the skull and bone. At a typical dose of 30 Gy daily, radiation can effectively reduce tumor size and alleviate symptoms, while creating optimal conditions for surgery (40,61,62,78). The administration of 4 mg zolendronic acid intravenously has also been shown to reduce bone destruction in GIST bone metastases (36,75).

Based on the limited information reported in the literature, the mean survival time for patients with GIST at rare metastatic sites was >61.50 months, with a mean survival time of 59.59 months for men and 63.78 months for women. Among all

Table II. Treatments and mean survival times of patients with gastrointestinal stromal tumors at rare metastatic sites.

Metastatic site	Therapies for metastases	Mean survival time, months (Refs.)
Bone	R, TKIs, RT, R + RT + TKIs, R + TKIs and R + RT	63.50 (26,29,31,36,37,46,47,52,53,62,63,66,69,75,77,78,80,84,94,95)
Bone marrow	TKIs	8.00 (96)
Skeletal muscle	R, R + TKIs and RT + TKIs	38.00 (25,34,43,71,72,79)
Lymph nodes	R and R + TKIs	33.20 (22,23,27,30,33,39,54,57,58,108)
Heart	R and R + TKIs	76.50 (24,83,99,100)
Lung	R + TKIs	80.00 (18,50,56,85,88,97)
Intracranial sites	R, R + TKIs, R + RT, R + RT + TKIs	35.81 (27,32,35,40,51,61,70,86,87,92,104)
Skin or subcutaneous tissue	R + TKIs	60.00 (42,45,55,68,73,98)
Orbit or choroid	R, R + TKIs and R + RT	72.00 (20,44,51,60,67,82,101,109)
Thyroid	R	9.00 (23)
Pancreas	R + TKIs	57.00 (65,1110)
Inferior vena cava	R + TKIs	14.00 (111)
Spleen	R + TKIs	43.00 (59,110)
Kidney	R + TKIs	187.00 (37)
Adrenal gland	R + TKIs	12.50 (59,103)
Ovary	R + TKIs	NA (41,1112)
Scrotum	TKIs	24.00 (38)
Testicle	R and TKIs	NA (21,74)
Penis	R + TKIs	48.00 (64)
Bladder	R + TKIs	62.00 (46)

R, resection; TKIs, tyrosine kinase inhibitors; RT, radiation therapy; NA, not available.
the reported cases, 21 (15.31%) had a disease course ending in death. When intracranial metastases were present, patients had a poor prognosis with a mean survival time of 35.81 months, which may have been associated with the inability of imatinib to penetrate the BBB and maintain an effective therapeutic concentration. However, this point requires confirmation by future randomized controlled studies. The mean survival time of patients was 32.75 months for those treated with TKIs alone, 73.11 months for resection alone, 65.17 months for radiotherapy alone, 86.33 months for resection with TKIs, 36.4 months for resection with radiotherapy and 49.17 months for resection with radiotherapy and TKIs. The lower survival rate for patients whose treatment included radiotherapy may have been due to patients requiring radiotherapy being more symptomatic and unable to undergo surgery in a timely manner. Also, if the radiotherapy was administered as a palliative treatment, this may have resulted in a lower mean survival time compared with that for other treatment modalities. Although the mean survival times of patients with GIST metastases in the thyroid, adrenal gland and scrotum were markedly lower compared with those in other sites, the number of cases was small and the representative times may be higher in clinical practice; however, this pends confirmation with additional studies.

6. Summary and prospects

In addition to the liver and peritoneum, GIST can metastasize to rare sites, namely the bone, bone marrow, lungs, lymph nodes, intracranial area, skin, subcutaneous tissue, heart, skeletal muscle, orbit, pancreas, spleen, testes, scrotum, epididymis, penis, ovaries, cervix, kidneys, bladder, adrenal glands and thyroid. Based on the symptoms of the patients along with imaging and ultrasound examinations, the primary and metastatic site can be determined on a basic level; however, diagnosis must be confirmed by the immunohistochemical detection of CD117 and CD34. For primary localized GIST, surgery is the most important treatment, sometimes combined with pre- or postoperative neo-/adjuvant treatment, but for metastatic GIST, TKIs are the principal treatment. TKIs may be combined with surgery and/or with radiotherapy as an adjuvant treatment in cases of bone and intracranial metastases. In patients with a poor prognosis due to intracranial metastases, the use of sunitinib as the first-line treatment may improve prognosis; however, further studies are needed to confirm this.

The present review was constrained by the low incidence of GIST and the limited number of cases collected, unpublished data and associated literature not being available in the English language. However, rare metastatic sites of GIST other than the liver and peritoneum were summarized and reviewed, which may assist with their diagnosis and serve as a reference for selection of the appropriate treatment modality and estimation of prognosis. In addition, more high-quality research evidence such as large-sample, blinded randomized controlled trials is required, to improve clinicians' understanding of the management of GISTs with rare metastases.

Acknowledgements

Not applicable.

Funding

No funding was received.

Availability of data and materials

Not applicable.

Authors' contributions

XY, XL and KW conceived the study and drafted the manuscript. XY and KW made substantial contributions to the interpretation of the data, drafting the manuscript and revising it critically for important intellectual content. XY helped to organize the data collected, helped to collect information regarding the survival time of the patients and helped to write the manuscript. All authors revised the manuscript. Data authentication is not applicable. All authors read and approved the final version of the manuscript.

Ethics approval and consent to participate

Not applicable.

Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

1. Demetri GD, von Mehren M, Antonescu CR, DeMatteo RP, Ganjoo KN, Maki RG, Pisters PW, Raut CP, Riedel RF, Schuetze S, et al.: NCCN Task Force report: Update on the management of patients with gastrointestinal stromal tumors. J Natl Compr Canc Netw 8 (Suppl 2): S1-S44, 2010.
2. Søreide K, Sandvik OM, Søreide JA, Giljaca V, Jureckova A and Bulusu VR: Global epidemiology of gastrointestinal stromal tumours (GIST): A systematic review of population-based cohort studies. Cancer Epidemiol 40: 39-46, 2016.
3. Graadt van Roggen JF, van Velthuyzen ML and Hogendoorn PC: The histopathological differential diagnosis of gastrointestinal stromal tumours. J Clin Pathol 54: 96-102, 2001.
4. Corless CL, Fletcher JA and Heinrich MC: Biology of gastrointestinal stromal tumours. J Clin Oncol 22: 3813-3825, 2004.
5. Klug LR, Khosroyani HM, Kent JD and Heinrich MC: New treatment strategies for advanced-stage gastrointestinal stromal tumours. Nat Rev Clin Oncol 19: 328-341, 2022.
6. Nishida T, Yoshinaga S, Takahashi T and Naito Y: Recent progress and challenges in the diagnosis and treatment of gastrointestinal stromal tumors. Cancers (Basel) 13: 3158, 2021.
7. Debiec-Rychter M, Sciot R, Le Cesne A, Schlemmer M, Hohenberger P, van Oosterom AT, Blay JY, Leyvraz S, Stul M, Casali PG, et al.: KIT mutations and dose selection for imatinib in patients with advanced gastrointestinal stromal tumours. Eur J Cancer 42: 1093-1103, 2006.
8. Blanke CD, Demetri GD, von Mehren M, Heinrich MC, Eisenberg B, Fletcher JA, Corless CL, Fletcher CD, Roberts PJ, Heinz D, et al.: Long-term results from a randomized phase II trial of standard-versus higher-dose imatinib mesylate for patients with unresectable or metastatic gastrointestinal stromal tumours expressing KIT. J Clin Oncol 26: 620-625, 2008.
9. Keung EZ, Raut CP and Rutkowski P: The landmark series: Systemic therapy for resectable gastrointestinal stromal tumours. Ann Surg Oncol 27: 3659-3671, 2020.
10. Antonescu CR, Besmer P, Guo T, Arkun K, Hom G, Koryotowski B, Leversha MA, Jeffrey PD, Desantis D, Singer S, et al: Acquired resistance to imatinib in gastrointestinal stromal tumor occurs through secondary gene mutation. Clin Cancer Res 11: 4182-4190, 2005.

11. Serrano C, Maríño-Enríquez A, Tao DL, Ketzer J, Eilers G, Zhu M, Yu C, Mannan AM, Rubin BP, Demetri GD, et al: Complementary activity of tyrosine kinase inhibitors against secondary kit mutations in imatinib-resistant gastrointestinal stromal tumours. Br J Cancer 120: 612-620, 2014.

12. Wardellmann E, Merkelbach-Bruse S, Pauls K, Thomas N, Schildhaus HU, Heinicke T, Speidel N, Pletsch T, Buettner R, Pink D, et al: Polyclonal evolution of multiple secondary KIT mutations in gastrointestinal stromal tumors under treatment with imatinib mesylate. Clin Cancer Res 12: 1743-1749, 2006.

13. Desai J, Shankar S, Heinrich MC, Fletcher JA, Fletcher CD, Manola J, Morgan JA, Corless CL, George S, Tuncali K, et al: Clonal evolution of resistance to imatinib in patients with metastatic gastrointestinal stromal tumors. Clin Cancer Res 13: 5398-5405, 2007.

14. McDonnell MJ, Punnose S, Viswanath YKS, Wadd NJ and Dhar A: Gastrointestinal stromal tumours (GISTs): An insight into clinical practice with review of literature. Frontline Gastroenterol 8: 19-25, 2017.

15. Rubin BP: Gastrointestinal stromal tumours: An update. J Am Coll Surg 193: 83-96, 2006.

16. DeMatteo RP, Maki RG, Singer S, Gonen M, Brennan MF and Antonescu CR: Results of tyrosine kinase inhibitor therapy followed by surgical resection for metastatic gastrointestinal stromal tumor. Ann Surg 245: 347-352, 2007.

17. Yang J, Yan J, Zeng M, Wan W, Liu T and Xiao JR: Bone metastasis of gastrointestinal stromal tumor: A review of published literature. Cancer Manag Res 12: 1411-1417, 2020.

18. Kassim M, Berrada S, Habj J, Guerroum H, Chihabeddine M and Mahi M: Gastrointestinal stromal tumor of the small intestine with lung metastasis. Radiol Case Rep 17: 32-34, 2022.

19. Miettinen M and Lasota J: Gastrointestinal stromal tumours: Review of morphology, molecular pathology, prognosis, and differential diagnosis. Arch Pathol Lab Med 130: 1466-1478, 2006.

20. Akiyama K, Numaga J, Kagaya F, Takazawa Y, Suzuki S, Kosuki N, Kato S, Kaburaki T and Kawashima H: Case of optic nerve involvement in metastasis of a gastrointestinal stromal tumor. Jpn J Ophthalmol 48: 166-168, 2004.

21. Dorić M, Radičić S, Babić M, Čuković A, Kuskunović S, Tomić I and Selak I: Testicular metastasis of gastrointestinal stromal tumor occurs through secondary kit mutations in imatinib resistant gastrointestinal stromal tumors (GIST). J Gastrointest Surg 15: 1232-1236, 2011.

22. El Deemellawy D, Shokry P, Ing A and Khalifa M: Polypoid gastrointestinal stromal tumor of small bowel metastasizing to mesenteric lymph nodes: A case report. Pathol Res Pract 204: 197-201, 2008.

23. Paparini N, Di Matteo FM, Maturo A, Marzullo A and Campana FP: Unusual metastasis of gastrointestinal stromal tumor to the alanine hydroxylase circular tumor. Int J Surg 6: 415-417, 2008.

24. Cauchi C, Trent JC, Edwards K, Davey M, Lopez M, Yu JQ and Cichowitz A, Thomson BN and Choong PF: GIST metastasis to adductor longus muscle. ANZ J Surg 81: 490-491, 2011.

25. Slimack NP, Liu JC, Koski T, McClendon J Jr and O'Shaughnessy BA: Metastatic gastrointestinal stromal tumor to the thoracic and lumbar spine: First reported case and surgical treatment. Spine J 12: e7-e12, 2012.

26. Kang KY: Gastrointestinal stromal tumor with extensive lymphatic metastasis: A case report. J Gastric Cancer 13: 192-195, 2013.
51. Hughes B, Yip D, Goldstein D, Waring P, Beshay V and Chong G: Cerebral relapse of metastatic gastrointestinal stromal tumor during treatment with imatinib mesylate: Case report. BMC Cancer 2012; 12: e53, 2012.

52. Lutz JC, El-Bouihi M, Vidal N, Fricain JC, Robert M, Deminière C: Gastrointestinal stromal tumor of the stomach with lymph node metastasis. World J Surg Oncol 6: 97, 2008.

53. Feki J, Bouzguenda R, Ayedi L, Bradi M, Boudawara T, Daoud J and Frikha M: Bone metastases from gastrointestinal stromal tumor. J Geriatr Oncol 2012; 3: S92-S94, 2012.

54. Cana DA, Ossoy Y, Nalbant OA and Sagol O: Gastrointestinal stromal tumor of the stomach with lymph node metastasis. World J Surg Oncol 6: 97, 2008.

55. Kurashina K, Hosoya Y, Sakurai S, Endo S, Lefor A and Zhang Q, Yu JW, Yang WL, Liu XS and Yu JR: Gastrointestinal stromal tumor of stomach with inguinal lymph nodes metastasis: A case report. J Gastrointest Cancer 4: 74, 2004.

56. Yamada E, Oyaizu T and Miyashita T: A case of gastrointestinal stromal tumor: Place of radiotherapy. Cancer Radiother 18: 55-58, 2014 (In French).

57. Yamada E, Oyaizu T and Miyashita T: A case of gastrointestinal stromal tumor of the stomach with extremely slow-growing hematogenous metastasis. Int J Clin Oncol 14: 262-265, 2009.

58. Zhang Q, Yu JW, Yang WL, Liu XS and Yu JR: Gastrointestinal stromal tumor of stomach with inguinal lymph nodes metastasis: A case report. World J Gastroenterol 16: 1808-1810, 2010.

59. Kim HG, Ryu SY, Joo JK, Kang H, Lee JH and Kim DY: Recurring gastrointestinal stromal tumor with splenic metastasis. J Korean Soc Surg 81 (Suppl 1): S25-S29, 2011.

60. Woo D, Leong J, Waring D, Sharma A and Martin P: Orbital gastrointestinal stromal tumor. Orbit 31: 129-131, 2012.

61. Drazin D, Spitler K, Jeswani S, Shirzadi A, Bannykh S and George S: Intracranial metastasis from pediatric GI stromal tumor: A case report and review of the literature. Medicine (Baltimore) 99: e19346, 2020.

62. Heymann S, Imperiale A, Schlund-Schoettel E, Sauer B and Hammad S, Al‑Share B, Alloghbi A, Al Hallak MN, u ddin H, Azmi A, Park JC, Joung MK, Kim JG, Al‑Share B et al: Gastrointestinal stromal tumor to the epididymis. Mil Med 180: e618-e621, 2015.

63. Prayson RA: Metastatic gastrointestinal stromal tumor to the epididymis. BMJ Case Rep 2015: bcr2015211555, 2015.

64. Carlson J, Alobuia W and Mizell J: Rectal gastrointestinal stromal tumor: A case report and review of the literature. J Gastrointest Cancer 4: 74, 2004.

65. Perrone N, Serafini G, Vitali A, Lacelli F, Sconfienza L and Derchi LE: Gastrointestinal stromal tumor metastatic to the scrotum. J Ultrasound Med 27: 961-964, 2008.

66. Akolkar S, Melitas C and Piper M: Pelvic gastrointestinal stromal tumor with pulmonary metastasis. ACG Case Rep J 6: e00205, 2019.

67. Hamada S, Itami A, Watanabe G, Nakayama S, Tanaka E, Nishida T and von Mehren M: Gastrointestinal stromal tumors. Cancer Radiother 18: 172-176, 2012.

68. Mikuni M, Wakuta M, Masaki T, Hirose T, Takasu H, Kawano H, Aoki K, Ota M and Kimura K: Surgical resection of intraorbital metastasis of a gastrointestinal stromal tumor resistant to chemo‑therapy. Am J Ophthalmol Case Rep 25: 101353, 2022.

69. Shimizu T, Murakami H, Sangozawa Y, Ueda J, Arai H, Kakinuma D, Kanno H, Naito Z and Uchida E: Gastrointestinal stromal tumor: A review of current and emerging therapies. Cancer Metastasis Rev 40: 625-641, 2021.

70. Ohtukta T, Ohtukta T, Seki K, Sawauchi S, Numoto RT, Murakami K, Komine K and Abe F: Perisacral gastrointestinal stromal tumor with multisegmental spinal metastases as first presentation: A case report and review of the literature. World J Clin Cases 9: 1490-1498, 2021.

71. Akolkar S, Melitas C and Piper M: Pelvic gastrointestinal stromal tumor with pulmonary metastasis: A case report and review of the literature. World J Clin Cases 9: 1490-1498, 2021.

72. Carvalho J, Teixeira M, Silva FT, Estaves A, Ribeiro C and Da Cunha N: Gastrointestinal stromal tumor and isolated bone metastases as first presentation: A case report and review of the literature. World J Clin Cases 9: 1490-1498, 2021.

73. Shirota Y and Koç M: Gastrointestinal stromal tumor of the stomach: A case report and review of the literature. J Gastrointest Cancer 50: 926-934, 2019.

74. Hojo M, Yoshizawa A, Hirota S and Sakai Y: Intracranial metastases as first presentation: A case report and review of the literature. J Gastrointest Cancer 50: 926-934, 2019.

75. Suwauchi S, Ohtuka T, Ohtuka T, Seki K, Sawauchi S, Numoto RT, Murakami K, Komine K and Abe F: Perisacral gastrointestinal stromal tumor with multisegmental spinal metastases as first presentation: A case report and review of the literature. World J Clin Cases 9: 1490-1498, 2021.

76. Akolkar S, Melitas C and Piper M: Pelvic gastrointestinal stromal tumor with pulmonary metastasis: A case report and review of the literature. World J Clin Cases 9: 1490-1498, 2021.

77. Blay JY, Kang YK, Nishida T and von Mehren M: Gastrointestinal stromal tumors. Nat Rev Dis Primers 7: 22, 2021.

78. Al‑Share B, Alloghbi A, Al Hallak MN, Al‑Share B et al: Gastrointestinal stromal tumor of stomach with inguinal lymph nodes metastasis: A case report. Oncol Lett 9: 1814-1815, 2015.

79. Al‑Share B, Alloghbi A, Al Hallak MN, u ddin H, Azmi A, Al‑Share B et al: Gastrointestinal stromal tumor of stomach with inguinal lymph nodes metastasis: A case report. Oncol Lett 9: 1814-1815, 2015.

80. Al‑Share B, Alloghbi A, Al Hallak MN, u ddin H, Azmi A, Al‑Share B et al: Gastrointestinal stromal tumor of stomach with inguinal lymph nodes metastasis: A case report. Oncol Lett 9: 1814-1815, 2015.

81. Al‑Share B, Alloghbi A, Al Hallak MN, u ddin H, Azmi A, Al‑Share B et al: Gastrointestinal stromal tumor of stomach with inguinal lymph nodes metastasis: A case report. Oncol Lett 9: 1814-1815, 2015.

82. Al‑Share B, Alloghbi A, Al Hallak MN, u ddin H, Azmi A, Al‑Share B et al: Gastrointestinal stromal tumor of stomach with inguinal lymph nodes metastasis: A case report. Oncol Lett 9: 1814-1815, 2015.

83. Al‑Share B, Alloghbi A, Al Hallak MN, u ddin H, Azmi A, Al‑Share B et al: Gastrointestinal stromal tumor of stomach with inguinal lymph nodes metastasis: A case report. Oncol Lett 9: 1814-1815, 2015.
98. Zhou J, Yang Z, Yang CS and Lin H: Paraneoplastic focal segmental glomerulosclerosis associated with gastrointestinal stromal tumor with cutaneous metastasis: A case report. World J Clin Cases 9: 8120-8126, 2021.

99. Tamura Y, Tada H, Kato H, Iino K, Hayashi K, Kawashiri MA, Takemura H and Yamagishi M: Huge metastatic gastrointestinal stromal tumor occupying the right ventricle. Circ J 82: 1469-1470, 2018.

100. Siamekouris D, Schlesser M, Yousef A and Offers E: A rare case of gastrointestinal stromal tumor with a liver metastasis infiltrating the inferior vena cava and extending to the right atrium with an early recurrence after surgical extraction. Case Rep Cardiol 2019: e2623403, 2019.

101. Roelofs KA, Medicott S, Henning JW and Weis E: Gastrointestinal stromal tumor metastasis to the orbit. Ophthalmic Plast Reconstr Surg 34: e131-e133, 2018.

102. Gupta N, Mittal S, Lal N, Misra R, Kumar L and Bhalia S: A rare case of primary mesenteric gastrointestinal stromal tumor with metastasis to the cervix uteri. World J Surg Oncol 5: 137, 2007.

103. Lu L, Zhang M and Xu M: Primary hepatic gastrointestinal stromal tumor with right adrenal gland invasion: A case report and systematic literature review. Medicine (Baltimore) 98: e15482, 2019.

104. Prablek M, Srivivasan VM, Srivatsan A, Holdener S, Oneissi M, Heck KA, Jalali A, Mandel J, Visswanathan A and Patel AJ: Gastrointestinal stromal tumor with intracranial metastasis: Case presentation and systematic review of literature. BMC Cancer 19: 1119, 2019.

105. Hirota S: Differential diagnosis of gastrointestinal stromal tumor by histopathology and immunohistochemistry. Transl Gastroenterol Hepatol 3: 27, 2018.

106. Fletcher CD, Berman JJ, Corless C, Gorstein F, Lasota J, Heck KA, Jalali A, Mandel J, Visswanathan A and Patel AJ: Gastrointestinal stromal tumors: What is the best sequence of TKIs? Curr Treat Options Oncol 23: 749-761, 2022.

107. Petzer AL, Gunsilius E, Hayes M, Stockhammer G, Duba HC, Janicek M, et al: Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors: Management and prognostic role of R1 resections. Am J Surg 220: 359-364, 2020.

108. Demetri GD, von Mehren M, Blanke CD, Van den Abbeele AD, Eisenberg B, Roberts PJ, Heinrich MC, Tuveson DA, Singer S, Janicek M, et al: Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors (GISTs): A randomized, double-blind, placebo-controlled, phase III trial. J Clin Oncol 21: 4462-4472, 2003.

109. Wang SY, Wu CE, Lai CC, Chen JS, Tsai CY, Cheng CT, Yeh TS and Yeh CN: Prospective evaluation of neoadjuvant imatinib use in locally advanced gastrointestinal stromal tumors: Emphasis on the optimal duration of neoadjuvant imatinib use, safety, and oncological outcome. Cancers (Basel) 11: 424, 2019.

110. Zhang C, Zhang C, Zhang T, Liu H, Zhong J, Wang Z, Wang L and Hong L: Second-line sunitinib for Chinese patients with advanced gastrointestinal stromal tumor: 37.5 mg schedule outperformed 50 mg schedule in adherence and progression. Transl Cancer Res 10: 3206-3217, 2021.

111. Petzer AL, Gunsilius E, Hayes M, Stockhammer G, Duba HC, Schneller F, Grünewald K, Poewe W and Gastl G: Low concentrations of STI571 in the cerebrospinal fluid: A case report. Br J Haematol 117: 623-625, 2002.

112. Wolff NC, Richardson JA, Egorin M and Ilaria RL Jr: The CNS concentrations of STI571 in the cerebrospinal fluid: A case report. Br J Haematol 117: 623-625, 2002.

113. Wolff NC, Richardson JA, Egorin M and Ilaria RL Jr: The CNS concentrations of STI571 in the cerebrospinal fluid: A case report. Br J Haematol 117: 623-625, 2002.

114. Petroz Z, Nishihara M, Nakamura T, Maeda T and Hirota S: A rare case of extraluminally pedunculated gastrointestinal stromal tumor with postoperative metastasis to pancreas. J Surg Case Rep 2021: rjab422, 2021.

115. Yamaguchi T, Kinoshita J, Saito H, Shimada M, Terai S, Moriyama H, Okamoto K, Nakamura K, Tajima H, Nimmiyama I, et al: Gastrointestinal stromal tumor metastasis to the ovary: A case report. SAGE Open Med Case Rep 9: 208033X2111250313, 2021.

116. Pantuso G, Macaione I, Taverna A, Guercio G, Incorvaia L, Di Piazza M, Di Grado F, Cilluffo G, Badalamenti G and Cipolla C: Surgical treatment of primary gastrointestinal stromal tumors (GISTs): Management and prognostic role of R1 resections. Am J Surg 220: 359-364, 2020.

117. Ogasawara M, Nishihara M, Nakamura T, Maeda T and Hirota S: A rare case of extraluminally pedunculated gastrointestinal stromal tumor with postoperative metastasis to pancreas. J Surg Case Rep 2021: rjab422, 2021.