On \(\Lambda \)-positioning of an arc between two parallel support lines

Y. Movshovich

Abstract

We show that a rectifiable plane arc \(g \) has two parallel support lines and a triple of consecutive points \(g(r), g(s), g(t), \ r < s < t \), so that \(g(s) \) lies on one line, while \(g(r) \) and \(g(t) \) lie on the other. If the arc is simple, such a pair of lines is unique. \(^1\)

Introduction. In the articles [1, 3] we had to use the result in [2]: *If a convex set covers any simple polygonal unit arc, it covers any unit arc.* In [1, 3] the requirement on an arc to be simple and polygonal was used only in Theorem 5.1 of [1] establishing that *any simple polygonal arc assumes a so-called \(\Lambda \)-configuration* (Figure 1). Two proofs of Theorem 5.1 exist for simple arcs: one by Y. M. (Geometry Seminar, UIUC, 2009) and the other by R. Alexander, J. E. Wetzel, W. Wichiramala in their recently submitted paper "The \(\Lambda \)-property of a simple arc". In this note we prove Theorem 5.1 of [1] omitting both requirements: simple and polygonal.

Given a parametrization \(g(s), \ s \in [0, 1] \), for points \(p = g(s_1), \ q = g(s_2) \) with \(s_1 < s_2 \), we say that \(p \) precedes \(q \) and write it as \(p \prec q \). Points \(p_1, p_2, p_3 \) form a *triple of consecutive points* if either

\[
(1) \quad p_1 \prec p_2 \prec p_3 \ \text{or} \ \ p_3 \prec p_2 \prec p_1.
\]

We are seeking a pair of parallel support lines with and a triple of consecutive points \(p_1, p_2, p_3 \) such that \(p_1, p_3 \) lie on one line and \(p_2 \) lies on the other.

\[\text{Figure 1. } \Lambda \text{-configuration.} \]

\(^1\)AMS classification: 52C15 Keywords: rectifiable arc, support line
This is clearly true when \(g \) is closed or is a straight segment.

Lines \(l(\theta) \), walls \(W(\theta) \) and touch points in Figure 2. Let \(g(s) : [0,1] \to \mathbb{R}^2 \) be an open rectifiable plane arc in the horizontal \((x,y)\)-plane, whose thickness \(h \) is positive. We denote by \(l(\theta) \) a counter-clockwise oriented support line for \(g \) in the direction of polar angle \(\theta \) and assume that \(g \) lies above \(l(0) \).

Let \(G(s) = (g(s), s) : [0,1] \to \mathbb{R}^3 \times [0,1] \) be a simple lift of \(g \) to \(\mathbb{R}^3 \) with \(G(0) = A, G(1) = Z \). Given a direction \(\theta \), let us denote by \(W(\theta) \) the support plane (wall) to \(G \) through \(l(\theta) \) orthogonal to the \((x,y)\)-plane. The touch points \(G \cap W(\theta) \) are denoted by \(I_k \). Note that a set of touch points of a wall \(W(\theta) \) is its compact subset. The wall \(W(\theta) \) has its lowest most left \(I_1(\theta) \) and highest most right \(C(\theta) \) touch points with respect to the counter-clockwise orientation of the support line \(l(\theta) \). Let \(v(\theta) \) be the vertical unit segment through \(C(\pi+\theta) \).

Rotation of a support wall as a map. Note that for each \(\theta \in [0,2\pi) \), there is one support line \(l(\theta) \) and thus one support wall \(W(\theta) \). Referring to a
rotation of a support line around \(g \) as \(\theta \) changes from 0 to \(2\pi \), we think of two maps from \([0, 2\pi)\) : one is the map to the set of all lines in the \((x, y)\)-plane and the other is the map to all planes in the \((x, y, z)\)-space. The images of such maps are the set of oriented support lines \(l(\theta) \) of \(g \) and the set of support walls \(W(\theta) \) through \(l(\theta) \). Geometrically the first map is represented by a line moving in a plane so that it coincides with \(l(\theta) \) for each \(\theta \), while the second map is represented by a plane moving in the space so that it coincides with \(W(\theta) \) for each \(\theta \).

Local stability of a non-\(\Lambda \)-configuration. A subarc of \(g \) between points \(X \) and \(Y \) is denoted by \(\tilde{XY} \).

Lemma 1. The following set \(\Theta = \{ \theta \geq 0 : \ C(\theta) \prec C(\theta + \pi) \} \) is a half-open interval. That is if \(\theta \in \Theta \), then there exist \(\delta \) so that \(\theta + \varepsilon \in \Theta \) for any \(\varepsilon < \delta \).

Proof. To keep our proof transparent, we assume that \(v(\theta) \) has only finitely many touch points and we will use a particular configuration of Figure 2. Let points \(P, Q \in \tilde{I_4D} \) be so that

\[
(2) \quad I_4(\theta) \prec P \prec Q \prec C(\theta + \pi) \quad \text{and} \quad \text{length}(\tilde{I_4P}) = \text{length}(\tilde{QD}) = \frac{1}{3}h.
\]

Denote by \(R_v(\theta) \subset W(\theta) \) a half-plane of points to the right of \(v(\theta) \). Let

\[
\sigma(\theta) = \min \left\{ \text{dist}(\tilde{PZ}, R_v(\theta)), \text{dist}(\tilde{AQ}, R_v(\pi + \theta)) \right\}.
\]

Then \(\sigma > 0 \) and \(\text{dist}(\tilde{PZ}, v(\theta)) \) and \(\text{dist}(\tilde{AQ}, v(\theta + \pi)) \) are \(\geq \sigma \). We take any

\[
\varepsilon < \delta = \frac{\sigma(\theta)}{88 \text{ diameter}(G)}.
\]

The obstacles to the counter-clockwise rotation of the walls by \(\varepsilon \) could be only subarcs \(\tilde{QZ} \) and \(\tilde{AP} \). Therefore, \(C(\theta + \varepsilon) \in \tilde{AP} \) while \(D(\theta + \varepsilon) \in \tilde{QZ} \) and hence by (2), \(C(\theta + \varepsilon) \prec D(\theta + \varepsilon) \). ♦

Theorem 1. Let \(g \) be an open rectifiable arc with a thickness \(h > 0 \). Then there exist support lines \(l(\theta) \) and \(l(\pi + \theta) \) containing a triple of consecutive points \(p_1, p_2, p_3 \) of \(g \) with the lone middle point \(p_2 \).
Proof. We may assume that $A \prec C(0), C(\pi) \prec Z$. (Figure 2). If a triple of the theorem exists in the strip between $l(0)$ and $l(\pi)$ then $C(\pi) \prec C(0)$ (Figure 1). Otherwise,

\[(3) \quad C(0) \prec C(\pi).\]

By Lemma 1 this property is locally stable and so if Θ is the set given by this lemma and $\theta_T = \text{lub}(\Theta)$, then $\theta_T \notin \Theta$. That is $C(\theta_T + \pi) \prec C(\theta_T)$. However, limits of most right touch points in Θ preserve this property of Θ:

\[(4) \quad \lim_{\theta \uparrow \theta_T} C(\theta_T) \prec \lim_{\theta \uparrow \theta_T} C(\theta_T + \pi),\]

because they are separated in distance by h. Indeed,

Small rotations around G by a small angle ψ. Configurations of local behavior near a touch point are given in Figure 3:

$I(\theta+\psi)=I(\theta)$ in rotations without an obstacle, dist$(I(\theta+\psi),I(\theta))$ is small in rotations around smooth convex arcs.

Figure 3

Thus one or both $C(\theta_T)$ or $C(\theta_T + \pi)$ are not limits in (4). Suppose that $C(\theta_T)$ is not equal to $\lim_{\theta \uparrow \theta_T} C(\theta_T)$ Then the triples $p_1 \prec p_2 \prec p_3$ satisfying the theorem are either

\[\lim_{\theta \uparrow \theta_T} C(\theta_T) \prec \lim_{\theta \uparrow \theta_T} C(\theta_T + \pi) \prec C(\theta_T)\]

or

\[C(\theta_T + \pi) \prec C(\theta_T) \prec \lim_{\theta \uparrow \theta_T} C(\theta_T + \pi).\]

An assumption that there were no $\theta_T \leq \pi$ leads to a contradiction. Suppose that $\theta_T > \pi$, that is $C(\pi) \prec C(\pi + \pi)$. On the other hand, after a rotation by π, we arrive to the initial position of g between the same parallel support lines. In this configuration, the highest most right touch point on
the wall $W(\pi)$ is a successor to such point on the wall $W(\pi + \pi) = W(0)$ and (3) is true: $C(\pi + \pi) = C(0) \prec C(\pi)$. That is a contradiction. ■

Corollary (W. Wichirimala). If g is simple, then the pair of support lines with g positioned as in Figure 4 is unique.

![Figure 4](image)

Proof. In Figure 4, the point C divides the curve into two curves L_1 and L_2 where each point on L_1 is parametrically precedes each point on L_2. Consider a different pair of two parallel support lines. All touch points on one, say, the left line belong to L_1, therefore none of them can be parametrically between two touch points on the right line belonging to L_2. ♦

References

[1] P. Coulton and Y. Movshovich, Besicovitch triangles cover unit arcs, *Geom. Dedicata* 123 (2006), 79-88.

[2] J. M. Maki, J. E. Wetzel, and W. Wichirimala, Drapeability, *Discrete Comput. Geom.*, 34 (2005), 637-657.

[3] Y. Movshovich, Besicovitch triangles extended, *Geometriae Dedicata* 159(1) (2012), 99-107.