The Riesz hull of a semisimple MV-algebra

Denisa Diaconescu and Ioana Leuștean
Department of Computer Science,
Faculty of Mathematics and Computer Science, University of Bucharest,
Academiei nr.14, sector 1, C.P. 010014, Bucharest, Romania
Emails: ddiaconescu@fmi.unibuc.ro, ioana@fmi.unibuc.ro

Dedicated to Prof. Antonio Di Nola on the occasion of his 65th birthday.

Abstract

MV-algebras and Riesz MV-algebras are categorically equivalent to abelian lattice-ordered groups with strong unit and, respectively, with Riesz spaces (vector-lattices) with strong unit. A standard construction in the literature of lattice-ordered groups is the vector-lattice hull of an archimedean lattice-ordered group. Following a similar approach, in this paper we define the Riesz hull of a semisimple MV-algebra.

1 Introduction

MV-algebras were first defined by Chang [3] as algebraic structures corresponding to the \(\infty\)-valued Lukasiewicz logic. An MV-algebra is a structure \((A, \oplus, *, 0)\), where \((A, \oplus, 0)\) is an abelian monoid and the following identities hold for all \(x, y \in A\): \((x^*)^* = x\), \(0^* \oplus x = 0^*\) and \((x^* \oplus y)^* \oplus y = (y^* \oplus x)^* \oplus x\). One of the main engines of MV-algebra theory is the categorical equivalence between MV-algebras and abelian lattice-ordered groups with strong unit [13]. As a consequence, any MV-algebra is isomorphic to the unit interval \([0, u]\) of an abelian lattice-ordered group \((G, u)\), with operations defined by \(x^* = u - x\) and \(x \oplus y = u \wedge (x + y)\). MV-algebras stand to Lukasiewicz logic as boolean algebras stand to classical logic: an equation holds in any MV-algebra if and only if it holds in the real interval \([0, 1]\) endowed with the following operations

\[x \oplus y = \min\{1, x + y\}\] and \(x^* = 1 - x\),

for every \(x, y \in [0, 1]\). The real interval \([0, 1]\) with the above operations is the standard MV-algebra and it is usually denoted by \([0, 1]_{MV}\).
Adding a product operation to the signature of MV-algebras was a natural step, which led to fruitful results, both in logic and algebra. Once the MV-algebra structure is enriched, categorical equivalences with particular lattice-ordered structures are proved.

PMV-algebras are defined in [10] as MV-algebras endowed with a product operation \(\cdot : A \times A \to A \), satisfying some particular identities. The category of PMV-algebras is equivalent with the category of lattice-ordered rings with strong unit. In [11] the internal product is replaced by a scalar multiplication with scalars from \([0,1]\), so MV-algebras are endowed with a map \(\cdot : [0,1] \times A \to A \). The structures obtained in this way are called *Riesz MV-algebras* and they are categorically equivalent with Riesz spaces (vector-lattices) with strong unit. The real interval \([0,1]\) endowed with the natural product generates the variety of Riesz MV-algebras. Note that, in the case of PMV-algebras, \([0,1]\) generates only a proper quasi-variety [17].

A standard construction in the literature of lattice-ordered groups is the *vector-lattice hull* of an archimedean lattice-ordered group, defined by Conrad in [7] and further analyzed by Bleier in [3]. We also refer to [16] for an extensive treatment of hull classes for archimedean lattice-ordered groups.

We briefly remind Conrad’s definition. If \(G \) is an archimedean lattice-ordered group, then the *v-hull* of \(G \) is a vector-lattice \(U \) such that \(G \) is an essential subgroup of \(U \) and no proper \(\ell \)-subspace of \(U \) contains \(G \). Assume \(G_d \) is the divisible hull of \(G \) and \(\hat{G}_d \) is the Dedekind-MacNeille completion of \(G_d \). Hence the vector-lattice generated by \(G_d \) in \(\hat{G}_d \), denoted by \(\mathbf{R}(G) \), is the v-hull of \(G \). Moreover, Bleier proved that the correspondence \(G \mapsto \mathbf{R}(G) \) is functorial.

In this paper we investigate a similar construction for semisimple MV-algebras and semisimple Riesz MV-algebras. If \(A \) is a semisimple MV-algebra we say that a Riesz MV-algebra \(U \) is the *Riesz hull* of \(A \) if \(A \) is essentially embedded in \(U \) and \(A \) is a set of generators for \(U \). In Section 4 we prove that any *semisimple MV-algebra has a Riesz hull*. Moreover, the Riesz hull of the free MV-algebra over a set \(X \) is the free Riesz MV-algebra over \(X \). In Section 5 we prove that the construction of the Riesz hull is functorial. Moreover, the hull functor commutes with the categorical equivalences between the corresponding classes of MV-algebras and lattice-ordered groups.

We chose to make direct proofs in the theory of MV-algebras. Alternative proofs can be given using Conrad’s construction and various preservation properties of the categorical equivalence between MV-algebras and lattice-ordered groups, but we find the direct approach more relevant for our purpose.

In Section 2 and 3 we recall the basic results on MV-algebras and Riesz MV-algebras that are required for our development. We refer to [8] for background knowledge on lattice-ordered groups, to [15] for Riesz spaces and to [6] for universal algebra.
2 MV-algebras

Definition 2.1. An **MV-algebra** is a structure \((A, \oplus, *, 0)\) of type \((2,1,0)\) which satisfies the following:

(MV1) \((A, \oplus, 0)\) is an abelian monoid,
(MV2) \((a*)* = a,\)
(MV3) \(0* \oplus a = 0*,\)
(MV4) \((a* \oplus b)* \oplus b = (b* \oplus a)* \oplus a,\)

for any \(a, b \in A.\)

We refer to [5] for all the unexplained notions related to MV-algebras.

In any MV-algebra \(A\) we can define the following:

\[\begin{align*}
1 & \overset{\text{def}}{=} 0*, \\
\overline{a \cdot b} & \overset{\text{def}}{=} (a* \oplus b*), \\
\overline{a \lor b} & \overset{\text{def}}{=} (a \cdot b*) \oplus b, \\
\overline{a \land b} & \overset{\text{def}}{=} (a + b*) \cdot b,
\end{align*}\]

for any \(a, b \in A.\) Hence \((A, \overline{\lor}, \overline{\land}, 0, 1)\) is a bounded distributive lattice such that \(a \leq b\) if and only if \(a \cdot b* = 0.\)

The notions of MV-homomorphism and MV-subalgebra are defined as usual.

We recall that a **lattice-ordered group** (an \(\ell\)-group) is a structure \((G, +, 0, \leq)\) such that \((G, +, 0)\) is a group, \((G, \leq)\) is a lattice and any group translation is isotone [8]. An element \(u \in G\) is a **strong unit** if \(u \geq 0\) and for any \(x \in G\) there is a natural number \(n\) such that \(x \leq nu.\) An \(\ell u\)-group will be an abelian \(\ell\)-group which has a strong unit. If \((G, u)\) is an \(\ell u\)-group, we define

\[0, u] = \{ x \in G \mid 0 \leq x \leq u \}\]

and

\[x \oplus y = (x + y) \land u, \ x* = u - x, \text{ for any } x, y \in [0, u].\]

Then \([0, u]_G = ([0, u], \oplus, *, 0)\) is an MV-algebra.

We denote by \(\mathcal{MV}\) the category of MV-algebras and by \(\mathcal{AG}_u\) the category of unital abelian lattice-ordered groups with unit-preserving \(\ell\)-morphisms. In [18] the functor \(\Gamma : \mathcal{AG}_u \to \mathcal{MV}\) is defined as follows:

\[\Gamma(G, u) = [0, u]_G, \text{ for any unital } \ell\text{-group } (G, u),\]

\[\Gamma(f) = f|[0, u], \text{ for any } \ell\text{-morphism } f : (G, u) \to (G', u') \text{ from } \mathcal{AG}_u.\]

Theorem 2.1. [18] The functor \(\Gamma\) establishes a categorical equivalence between \(\mathcal{AG}_u\) and \(\mathcal{MV}\).

The standard MV-algebra is \([0, 1] = \Gamma(\mathbb{R}, 1)\).
Theorem 2.2. An equation holds in $[0,1]$ if and only if it holds in any MV-algebra. As a consequence, the variety of MV-algebras is generated by $[0,1]$.

Theorem 2.3. Any MV-algebra A is isomorphic with an algebra of $*[0,1]$-valued functions, where $*[0,1]$ is the unit interval of the lattice-ordered group of nonstandard reals $*\mathbb{R}$.

If A is an MV-algebra, $a \in A$ and $n \geq 0$ is a natural number, we define

$$0a \overset{df}{=} 0 \text{ and } na \overset{df}{=} (n-1)a \oplus a, \text{ if } n > 0.$$

Definition 2.2. If $\iota : A \rightarrow B$ is an MV-embedding then we say that:

1. ι is order dense if for any $b > 0$ in B, there exists $a > 0$ in A such that $\iota(a) \leq b$,
2. ι is essential if for any $b > 0$ in B, there exists $a > 0$ in A such that $\iota(a) \leq nb$, for some natural number $n \geq 0$.

For any MV-algebra A, a nonempty set $I \subseteq A$ is an MV-ideal if the following hold:

1. $a \leq b$ and $b \in I$ implies $a \in I$,
2. $a, b \in I$ implies $a \oplus b \in I$.

Remark 2.1. An embedding $\iota : A \rightarrow B$ is essential if and only if for any ideal I of B, $I \neq \{0\}$ implies $I \cap \iota(A) \neq \{0\}$.

Lemma 2.1. Let $\iota : A \rightarrow B$ be an essential embedding. If C is an MV-algebra and $f_A : A \rightarrow C$, $f_B : B \rightarrow C$ are MV-homomorphisms such that $f_B \circ \iota = f_A$ and f_A is an embedding then f_B is an embedding.

Proof. Assume $b \in B$ such that $f_B(b) = 0$. If $b \neq 0$ there is $a > 0$ in A such that $a \leq nb$, so $f_A(a) = f_B(\iota(a)) = 0$. Since f_A is an embedding we infer that $a = 0$, which is a contradiction, so $b = 0$ and f_B is an embedding. \qed

An ideal I of A is proper if $I \neq A$. A maximal ideal is a maximal element of the set of proper ideals ordered by inclusion. We denote by Max(A) the set of all maximal ideals of A. Remember that, for any MV-algebra A, Max(A) endowed with the spectral topology is a compact and Hausdorff space. An MV-algebra is semisimple if $\bigcap\{I \mid I \in \text{Max}(A)\} = \{0\}$.

Recall that an $}\ell$u-group (G, u) is archimedean if, for any $x, y \in G$, we have

$$nx \leq y, \text{ for any } n \in \mathbb{N}, \text{ implies } x \leq 0.$$
Remark 2.2. [5] Let A be an MV-algebra and (G, u) an ℓu-group such that $A \simeq \Gamma(G, u)$. Then A is semisimple if and only if G is archimedean.

The semisimple MV-algebras are the algebras of $[0, 1]$-valued functions, i.e. for any semisimple MV-algebra A there exists a set X such that $A \simeq \Gamma(G, u)$. If X is a topological space, we set $C(X) = \{ f : X \to [0, 1] \mid f \text{ continuous} \}$, which obviously is a semisimple MV-algebra.

Theorem 2.4. [5] Any semisimple MV-algebra A is isomorphic with a separating subalgebra of $C(\text{Max}(A))$.

For a semisimple MV-algebra A we denote by A the subalgebra of $C(\text{Max}(A))$ such that $A \simeq A$ and by $\varphi_A : A \to A$ the corresponding isomorphism.

Definition 2.3. An MV-algebra A is divisible if for any element $a \in A$ and $n > 1$ in \mathbb{N} there exists $x \in A$ such that $nx = a$ and $(n - 1)x \leq x^*$.

We refer to [14] for a systematic investigation of the divisible MV-algebras and their logic.

Remark 2.3. [14] An ℓu-group G is divisible if for any element $g \in G$ and any $n > 1$ in \mathbb{N} there exists $x \in G$ such that $nx = g$. One can easily see that an ℓu-group (G, u) is divisible if and only if the MV-algebra $[0, u]_G$ is divisible.

If X is a compact Hausdorff space then $C(X, \mathbb{R}) = \{ f : X \to \mathbb{R} \mid f \text{ continuous} \}$ is an ℓu-group and the constant function 1 is a strong unit.

Remark 2.4. It is well-known that any MV-algebra can be embedded in a divisible one (see, for example, [12]). We provide the details of this embedding for the semisimple case, which is relevant for our paper.

Assume $(G, 1)$ is an ℓu-subgroup of $(C(X, \mathbb{R}), 1)$ and $A = [0, 1]_G \subseteq C(X)$. We define $G_d = \{ \frac{g}{n} \mid g \in G, n \in \mathbb{N}, n \neq 0 \}$ and $A_d = [0, 1]_{G_d}$. Hence G_d is a divisible ℓu-group and A_d is a divisible MV-algebra. Let $g \in G$ and $n \in \mathbb{N}$ such that $\frac{g}{n} \in A_d$. It follows that $0 \leq g \leq n 1 \in G$, so there are $a_1, \ldots, a_n \in A$ such that $g = a_1 + \cdots + a_n$. Hence $\frac{g}{n} = \frac{a_1}{n} + \cdots + \frac{a_n}{n}$. In consequence $A_d = \{ a \in C(X) \mid a = \frac{a_1}{n} + \cdots + \frac{a_n}{n} \text{ for some } n \in \mathbb{N}, n \neq 0 \text{ and } a_1, \ldots, a_n \in A \}$, and it is straightforward that $A \subseteq A_d$.

If X is a compact Hausdorff space and $A \leq C(X)$ is a semisimple MV-algebra then we get an embedding $\iota_{A,d} : A \to A_d$.

We note that

Lemma 2.2. Under the above hypothesis, the following properties hold.

(a) The embedding $\iota_{A,d}$ is essential.
(b) If \(U \) is a semisimple divisible MV-algebra and \(f : A \to U \) is an MV-homomorphism then there exists a unique MV-homomorphism \(f_d : A_d \to U \) such that \(f_d(a) \circ_{I,A,d} = f \). Moreover, if \(f \) is an embedding then \(f_d \) is also an embedding.

Proof. (a) follows easily from the description of \(A_d \) from Remark 2.4.
(b) Assume that \(G \) and \(G_d \) are the \(\ell u \)-groups from Remark 2.4. One can easily see that whenever \((H, v)\) is a divisible \(\ell u \)-group and \(h : G \to H \) is an \(\ell u \)-morphism there exists a unique \(\ell u \)-morphism \(h^\# : G_d \to H \) extending \(h \), which is simply defined by \(h^\#(\frac{g}{n}) = \frac{h(g)}{n} \) for any \(g \in G \) and \(n \in \mathbb{N} \). Hence the extension result for MV-algebras follows using the functor \(\Gamma \). The embeddings are preserved by (a) and Lemma 2.1.

Recall that an MV-algebra \(A \) is complete if any subset \(\{a_i | i \in I\} \) of \(A \) has infimum and supremum.

Definition 2.4. For a semisimple MV-algebra \(A \) we say that \(\hat{A} \) is the Dedekind-MacNeille completion of \(A \) if \(A \subseteq \hat{A} \), \(\hat{A} \) is complete and for any element \(\hat{a} \in \hat{A} \) there exists a family \(\{a_i | i \in I\} \subseteq A \) such that \(\hat{a} = \bigvee\{a_i | i \in I\} \).

Since any complete MV-algebra is semisimple [5, Proposition 6.6.2], only semisimple MV-algebras admit completions.

Remark 2.5. Any semisimple MV-algebra \(A \) has a Dedekind-MacNeille completion \(\hat{A} \), which is unique up to isomorphism. Moreover, \(A \) is order dense in \(\hat{A} \).

We refer to [1] for a study of completions in the theory of MV-algebras, with a special focus on the Dedekind-MacNeille completion.

3 Riesz MV-algebras

Any MV-algebra is isomorphic with the unit interval of an \(\ell u \)-group. If we consider a Riesz space with strong unit instead of an \(\ell u \)-group, then the unit interval is closed under the scalar multiplication with scalars from \([0,1]\). The structures obtained in this way are studied in [11].

Definition 3.1. [11] A Riesz MV-algebra is a structure \((V, \cdot, \oplus, 0)\), where \((V, \oplus, 0)\) is an MV-algebra and \(\cdot : [0,1] \times V \to V \) is a function such that:

\[
\begin{align*}
\text{(RMV1)} \quad & r \cdot (a \oplus b^*) = (r \cdot a) \oplus (r \cdot b)^*, \\
\text{(RMV2)} \quad & \max(r - q, 0) \cdot a = (r \cdot a) \oplus (q \cdot a)^*, \\
\text{(RMV3)} \quad & (r \cdot q) \cdot a = r \cdot (q \cdot a),
\end{align*}
\]
1 \cdot a = a,

for any \(r, q \in [0, 1] \) and \(a, b \in V \).

In order to simplify the notation, we shall frequently write \(ra \) instead of \(r \cdot a \), for any \(r \in [0, 1] \) and \(a \in V \). For a Riesz MV-algebra \((V, \cdot, \oplus, ^*, 0) \) we denote by \(U(V) = (V, \oplus, ^*, 0) \) its MV-algebra reduct.

Remark 3.1. [11] If \(V \) is a Riesz MV-algebra and \(I \subseteq U(V) \) is an MV-algebra ideal, then \(r \cdot a \in I \) for any \(r \in [0, 1] \) and \(a \in I \). Hence a Riesz MV-algebra has the same theory of ideals as its MV-algebra reduct. In consequence, a Riesz MV-algebra is semisimple if and only if its MV-algebra reduct is semisimple.

Proposition 3.1. [11] If \(V_1 \) and \(V_2 \) are Riesz MV-algebra and \(f : U(V_1) \rightarrow U(V_2) \) is an MV-homomorphism, then \(f(ra) = rf(a) \), for any \(r \in [0, 1] \) and \(a \in V_1 \).

Remark 3.2. [11] By the previous proposition, it follows that Riesz MV-algebra homomorphisms are just MV-homomorphisms between Riesz MV-algebras, so we shall only state that a function is an MV-homomorphism, even if the domain and the codomain are Riesz MV-algebras.

We recall that a Riesz space (vector-lattice) [15] is a structure \((L, \cdot, +, 0, \leq) \) such that \((V, +, 0, \leq) \) is an abelian \(\ell \)-group, \((V, \cdot, +, 0) \) is a real vector space and, in addition, \(x \leq y \) implies \(r \cdot x \leq r \cdot y \), for any \(x, y \in L \) and \(r \in \mathbb{R} \), \(r \geq 0 \). A Riesz space is unital if the underlaying \(\ell \)-group is unital. If \((L, u) \) is a Riesz space with strong unit, then we denote by \(\Gamma_R(L, u) = ([0, u], \cdot, \oplus, ^*, 0) \), where \(\cdot \) is the scalar multiplication restricted to scalars from \([0, 1] \).

Remark 3.3. [11] For any unital Riesz space \((L, u) \), the structure \(\Gamma_R(L, u) \) is a Riesz MV-algebra.

In this way we can define a functor \(\Gamma_R : \mathcal{RS}_u \rightarrow \mathcal{RMV} \), where \(\mathcal{RS}_u \) is the category of unital Riesz spaces and \(\mathcal{RMV} \) is the category of Riesz MV-algebras. The categorial equivalence from Theorem 2.1 leads to the following one.

Theorem 3.1. [11] The functor \(\Gamma_R \) establishes a categorical equivalence.

The standard Riesz MV-algebra is \(([0, 1], \cdot, \oplus, ^*, 0) \) where \(([0, 1], \oplus, ^*, 0) \) is the standard MV-algebra and \(\cdot \) is the product of real numbers.

Theorem 3.2. [11] The variety of Riesz MV-algebras is generated by \([0, 1] \).

Lemma 3.1. The Dedekind-MacNeille completion of a semisimple divisible MV-algebra \(D \) is a Riesz MV-algebra \(\hat{D} \) in which \(D \) is order dense.
Proof. It is a straightforward consequence of the fact that the functor Γ preserves both divisibility $[14]$ and completeness $[13]$. Hence there exists a divisible ℓ-group (G, u) such that $D \simeq \Gamma(G, u)$ and $D = \Gamma(G, u)$, where G is the Dedekind-MacNeille completion of G. Now we use the fact that the Dedekind-MacNeille completion of a divisible abelian ℓ-group is a Riesz space $[8]$. The result can be directly proved by setting $ra = \bigvee \{qa \mid q \in [0, 1] \cap \mathbb{Q}, q \leq r\}$ for any $r \in [0, 1]$ and $a \in D$.

Remark 3.4. By Theorem 2.3 for any MV-algebra A there exists a set X such that A is embedded in the MV-algebra $\left(\ast [0, 1]\right)^X$. Since $\ast [0, 1]$ is obviously a Riesz MV-algebra, one can easily see that $\left(\ast [0, 1]\right)^X$ becomes a Riesz MV-algebra with the scalar multiplication defined componentwise. Hence any MV-algebra can be embedded in a Riesz MV-algebra.

In the following we prove that, for a semisimple MV-algebra A, we can define a unique (up to isomorphism) Riesz MV-algebra in which A is essentially embedded and we will further analyze the properties of this embedding.

4 The Riesz MV-algebra hull

In the sequel, we follow closely the similar construction for archimedean ℓ-groups from $[7]$ and $[3]$, but our proofs are made directly in the context of MV-algebras.

Due to Remark 3.2 in the rest of this paper we will make no distinction between MV-homomorphisms and Riesz MV-algebra homomorphisms. If A is an MV-algebra and X is a subset of A, we shall denote by $\langle X \rangle_{MV}$ the MV-subalgebra generated by X in A. Similarly, if V is a Riesz MV-algebra and X is a subset of V, we shall denote by $\langle X \rangle_{RMV}$ the Riesz MV-subalgebra generated by X in V.

If A is a semisimple MV-algebra, then its divisible hull A_d is also semisimple. If $X = Max(A_d)$ is the compact Hausdorff space of the maximal ideals of A_d, then

$$A \simeq A \subseteq A_d \subseteq C(X).$$

Let \hat{A}_d be the Dedekind-MacNeille completion of A_d. By Lemma 3.1 \hat{A}_d is a Riesz MV-algebra. We denote by $R(A)$ the Riesz MV-algebra generated by A in \hat{A}_d.

For a semisimple MV-algebra A, we assume the following:

$\varphi_A : A \rightarrow A$ is the canonical MV-algebra isomorphism,

$\iota_{A,d} : A \rightarrow A_d$ is the embedding of A in its divisible hull A_d,

$\hat{i}_{A,d} : A_d \rightarrow \hat{A}_d$ is the embedding of A_d in its Dedekind-MacNeille completion.
Hence we denote by $\iota_A : A \to R(A)$ the co-restriction to $R(A)$ of the homomorphism $\iota_{A,d} \circ \iota_{A,d} \circ \varphi_A$.

Theorem 4.1. If A is a semisimple MV-algebra and $R(A)$ is defined as above, then the following properties hold.

(a) There exists an embedding $\iota_A : A \to R(A)$ and $R(A) = \langle \iota_A(A) \rangle_{RMV}$.

(b) The embedding ι_A is essential.

(c) If V is a semisimple Riesz MV-algebra and $f : A \to V$ is an MV-embedding then there exists an MV-embedding $f_R : R(A) \to V$ such that $f_R(\iota_A(a)) = f(a)$, for any $a \in A$.

\[A \xleftarrow{\iota_A} R(A) \xrightarrow{f} V \]

Proof.

(a) follows by definition, since A is embedded in A_d and A_d is embedded in \hat{A}_d.

(b) is a straightforward consequence of Lemmas 2.2 and 3.1.

(c) Let V be a semisimple Riesz MV-algebra and $f : A \to V$ an MV-embedding. Since V is also divisible, by Remark 2.4 there is a unique MV-embedding $f_d : A_d \to V$ such that

$$f_d \circ \iota_{A,d} \circ \varphi_A = f.$$

If $\iota_V : V \to \hat{V}$ is the inclusion of V in its Dedekind-MacNeille completion, then there exists a unique MV-embedding $f_d : \hat{A}_d \to \hat{V}$ such that

$$f_d \circ \iota_{A,d} = \iota_V \circ f_d.$$

\[A \xleftarrow{\iota_{A,d} \circ \varphi_A} A_d \xrightarrow{f_d} V \]

\[A_d \xleftarrow{\iota_{A,d}} \hat{A}_d \xrightarrow{f_d} \hat{V} \]

It follows that
\[
\hat{f}_d \circ \iota_A = \hat{f}_d \circ \iota_{A,d} \circ \varphi_A = \iota_V \circ f_d \circ \iota_{A,d} \circ \varphi_A = \iota_V \circ f,
\]
and we get
\[
\hat{f}_d(R(A)) = \hat{f}_d(\langle \iota_A(A) \rangle_{RMV}) = \langle \hat{f}_d(\iota_A(A)) \rangle_{RMV} = \langle \iota_V(f(A)) \rangle_{RMV} = \langle f(A) \rangle_{RMV} \subseteq V.
\]

Therefore we define \(f_R : R(A) \to V \) as the co-restriction to \(V \) of the restriction \(\hat{f}_d|_{R(A)} \). If \(g : R(A) \to V \) is another MV-embedding such that \(g \circ \iota_A = f \), then \(g \) and \(f \) coincide on the generators of \(R(A) \), so they coincide on \(R(A) \).

Following [7], we define the Riesz hull of an MV-algebra.

Definition 4.1. We say that a Riesz MV-algebra \(U \) is a Riesz hull of \(A \) if there exists an essential embedding \(\eta : A \to U \) such that \(U = \langle \eta(A) \rangle_{RMV} \).

In consequence, Theorem 4.1 asserts that any semisimple MV-algebra has a Riesz hull which is unique, up to isomorphism.

Corollary 4.1. If \(A \) is a semisimple MV-algebra, then \(R(A) \simeq R(A_d) \).

Proof. It is a straightforward consequence of the construction.

Corollary 4.2. If \(A \) is a semisimple MV-algebra and \(V \) is a semisimple Riesz MV-algebra such that \(A \subseteq V \) and \(V = \langle A \rangle_{RMV} \), then \(V \simeq R(A) \).

Proof. By Theorem 4.1 (c), there exists an MV-embedding \(e : R(A) \to V \) such that \(e(\iota_A(a)) = a \) for any \(a \in A \). Hence
\[
e(R(A)) = e(\langle \iota_A(A) \rangle_{RMV}) = \langle e(\iota_A(A)) \rangle_{RMV} = \langle A \rangle_{RMV} = V,
\]
so \(e \) is an isomorphism.

Corollary 4.3. Let \(A \) be a semisimple MV-algebra and \(V \) be a semisimple Riesz MV-algebra such that \(A \subseteq V \) and \(\langle A \rangle_{RMV} = V \). Then the embedding \(A \to V \) is essential. If, in addition, \(A \) is divisible, then the embedding \(A \to V \) is order dense.

Proof. The first part follows by Corollary 4.2 and Theorem 4.1 (b). If \(A \) is divisible, then \(A \simeq A_d \). In this case, the conclusion follows by the fact that \(A_d \subseteq R(A) \subseteq A_d \) and Lemma 3.1.

Corollary 4.4. If \(V \) is a semisimple Riesz MV-algebra, then \(V \simeq R(V) \). In this case, \(\iota_V \) is an isomorphism.
Proof. It follows from Corollary 4.2.

Corollary 4.5. Assume V_1 and V_2 are semisimple Riesz MV-algebras with the same MV-algebra reduct. Then $V_1 \simeq V_2$.

Proof. If A is the MV-algebra reduct of V_1 and V_2 then, by Corollary 4.2, we get $V_1 \simeq R(A) \simeq V_2$.

The above result asserts that, given an MV-algebra A, there is at most one structure, up to isomorphism, of Riesz MV-algebra with the MV-algebra reduct A.

In the sequel we prove that the Riesz MV-algebra hull preserves freeness. For a nonempty set X, we shall denote by $\text{Free}_{\text{MV}}(X)$ the free MV-algebra over X and by $\text{Free}_{\text{RMV}}(X)$ the free Riesz MV-algebra over X. The free algebras exist in the classes of MV-algebras and Riesz MV-algebras since both classes are varieties.

Proposition 4.1. For any nonempty set X, $R(\text{Free}_{\text{MV}}(X)) \simeq \text{Free}_{\text{RMV}}(X)$. Therefore, the free MV-algebra generated by X is essentially embedded in the free Riesz MV-algebra generated by X. Moreover, the embedding can be chosen to be an inclusion.

Proof. If $T = [0, 1]^{[0,1]^X}$ then T is a Riesz MV-algebra with the operations defined component-wise. For any $x \in X$ we denote by $\pi_x \in T$ the corresponding projection function and we set $\hat{X} = \{\pi_x \mid x \in X\}$. Since the variety of MV-algebras is generated by $[0, 1]_{\text{MV}}$ and the variety of Riesz MV-algebras is generated by $[0, 1]_{\text{RMV}}$, by general properties in universal algebra, $\text{Free}_{\text{MV}}(X)$ is the MV-algebra generated by \hat{X} in T and $\text{Free}_{\text{RMV}}(X)$ is the Riesz MV-algebra generated by \hat{X} in T. We have that $\text{Free}_{\text{MV}}(X) = \langle \hat{X} \rangle_{\text{MV}}$ and $\text{Free}_{\text{RMV}}(X) = \langle \hat{X} \rangle_{\text{RMV}} = \langle \text{Free}_{\text{MV}}(X) \rangle_{\text{RMV}}$.

The conclusion follows from Corollary 4.2.

5 Categorical setting: the functor R

The main step for obtaining a functorial setting is to prove a general extension result for morphisms, as which we do in Proposition 5.2. The results of this section follow closely the ideas from [3].

Remark 5.1. Let A be a semisimple MV-algebra and $X \subset A$ such that $\langle X \rangle_{\text{MV}} = A$. Using Proposition 4.1, the free MV-algebra generated by X is essentially included in the free Riesz MV-algebra generated by X and we denote this inclusion by $\iota_X : \text{Free}_{\text{MV}}(X) \to \text{Free}_{\text{RMV}}(X)$. Let $\alpha : \text{Free}_{\text{MV}}(X) \to A$ be the unique
MV-homomorphism such that $\alpha(x) = x$ for any $x \in X$ and $\overline{\pi}: \text{Free}_{RMV}(X) \to R(A)$ be the unique MV-homomorphism such that $\overline{\pi}(x) = \iota_A(x)$ for any $x \in X$.

$$\text{Free}_{MV}(X) \xrightarrow{\iota_X} \text{Free}_{RMV}(X) \xleftarrow{\alpha} \text{Free}_{RMV}(X) \xrightarrow{\overline{\pi}} R(A)$$

Proposition 5.1. Under the above hypothesis, the following properties hold:

(a) $\overline{\pi} \circ \iota_X = \iota_A \circ \alpha$,

(b) α and $\overline{\pi}$ are surjective,

(c) $\ker \overline{\pi} = \bigcap \{J \mid J \in \mathcal{J}\}$, where

\[\mathcal{J} = \{J \subseteq \text{Free}_{RMV}(X) \mid J \text{ ideal, } \iota_X(ker \alpha) \subseteq J, \text{ and } \text{Free}_{RMV}(X)/J \text{ is semisimple}\}. \]

Proof.

(a) $(\overline{\pi} \circ \iota_X)(x) = \iota_A(x) = (\iota_A \circ \alpha)(x)$ for any $x \in X$, so the morphisms coincide on generators.

(b) $\alpha(\text{Free}_{MV}(X)) = \alpha(\langle X \rangle_{MV}) = \langle \alpha(X) \rangle_{MV} = A$ and

\[\overline{\pi}(\text{Free}_{RMV}(X)) = \overline{\pi}(\text{Free}_{MV}(X))_{RMV} = \langle \iota_A(\alpha(Free_{MV}(X))) \rangle_{RMV} = \langle \iota_A(A) \rangle_{RMV} = R(A). \]

(c) If $z \in ker \alpha$ then $\iota_A(\alpha(z)) = 0$, so $\overline{\pi}(\iota_X(z)) = 0$. It follows that $\iota_X(ker \alpha) \subseteq ker \overline{\pi}$. In fact, we have $\iota_X(ker \alpha) = ker \overline{\pi} \cap \iota_X(\text{Free}_{MV}(X))$. We set $\mathcal{J} = \bigcap \{J \mid J \in \mathcal{J}\}$ and $F = \text{Free}_{RMV}(X)/\mathcal{J}$. By a general result of universal algebra [6, Proposition 7.1], F is isomorphic with a subdirect product of the family $\{\text{Free}_{RMV}(X)/J \mid J \in \mathcal{J}\}$, so F is a subalgebra of a direct product of semisimple MV-algebras. Therefore, F is a semisimple MV-algebra. If we set $M = \{y/\mathcal{J} \mid y \in \iota_X(\text{Free}_{MV}(X))\}$ then $\langle M \rangle_{RMV} = F$, so $R(M) = F$ by Corollary 4.3 and the inclusion $M \subseteq F$ is essential.

It is clear that $\iota_X(ker \alpha) \subseteq \mathcal{J} \subseteq ker \overline{\pi}$. In order to prove that $\mathcal{J} = ker \overline{\pi}$, we assume that there exists an element $z \in ker \overline{\pi} \setminus \mathcal{J}$. Hence $z/\mathcal{J} \neq 0$ in F. Since the inclusion $M \subseteq F$ is essential it follows that there exists an element $y \in \iota_X(\text{Free}_{MV}(X))$ such that $0 < y/\mathcal{J} \leq nz/\mathcal{J}$. Note that $y/\mathcal{J} \neq 0$ in F. 12
We denote \(w = y \odot (nz)^* \), so \(w \in J \) and \(y \leq (nz) \lor (y) = (nz) \oplus w \). Note that \(w \in J \subseteq \ker \alpha \) and \(z \in \ker \alpha \), so we get \(y \in \ker \alpha \). But \(y \in l_X(Free_{MV}(X)) \), so \(y \in l_X(Free_{MV}(X)) \cap \ker \alpha = l_X(\ker \alpha) \). Since \(l_X(\ker \alpha) \subseteq J \), it follows that \(y/J = 0 \) in \(F \), which is a contradiction.

\[\]

Proposition 5.2. Let \(A \) be a semisimple MV-algebra. For any semisimple Riesz MV-algebra \(V \) and for any MV-homomorphism \(f : A \rightarrow V \) there exists a unique MV-homomorphism \(f_R : R(A) \rightarrow V \) such that \(f_R(\iota_A(a)) = f(a) \), for any \(a \in A \).

\[
\begin{array}{c}
A \xrightarrow{\iota_A} R(A) \xleftarrow{f_R} V \\
\end{array}
\]

Proof. Assume \(V \) is a semisimple Riesz MV-algebra and \(f : A \rightarrow V \) is an MV-homomorphism. We consider \(X \subseteq A \) such that \(\langle X \rangle_{MV} = A \) and we define \(\alpha : Free_{MV}(X) \rightarrow A \) and \(\overline{\alpha} : Free_{RMV}(X) \rightarrow R(A) \) as in Remark 5.1. Let \(\overline{f} : Free_{RMV}(X) \rightarrow V \) be the unique MV-homomorphism such that \(\overline{f}(x) = f(x) \) for any \(x \in X \). By Proposition 5.1 (b), we infer that \(Free_{RMV}(X)/\ker \overline{\alpha} \cong R(A) \) and we can safely identify them.

\[
\begin{array}{c}
Free_{MV}(X) \xleftarrow{\overline{\alpha}} R(A) \xrightarrow{f_R} Free_{RMV}(X) \\
A \xleftarrow{\iota_A} R(A) \xrightarrow{f_R} V \\
\end{array}
\]

We note that \(\overline{f}(Free_{RMV}(X)) \) is a Riesz MV-subalgebra of \(V \), so it is semisimple. Therefore, by Proposition 5.1 (c) it follows that \(\ker \overline{\alpha} \subseteq \ker \overline{f} \), so there exists a unique MV-homomorphism \(f_R : R(A) \rightarrow V \) such that \(f_R \circ \overline{\alpha} = \overline{f} \). It follows that

\[
f_R \circ \iota_A \circ \alpha = f_R \circ \overline{\alpha} \circ \iota_X = \overline{f} \circ \iota_X = f \circ \alpha.
\]
Since α is surjective, we get $f_R \circ \iota_A = f$.

In order to prove the uniqueness, assume that $g : R(A) \to V$ is an MV-homomorphism such that $g \circ \iota_A = f$. It follows that $g \circ \iota_X = g \circ \iota_A \circ \alpha = f \circ \alpha = f \circ \iota_X$ and we get $g = f_R$, since they coincide on the generators of $\text{Free}_{RMV}(X)$. We proved that g satisfies the property that uniquely defines f_R, so $g = f_R$.

Lemma 5.1. Let A and B be semisimple MV-algebras. For any homomorphism $h : A \to B$, there is a unique homomorphism $R(h) : R(A) \to R(B)$ such that

$$R(h) \circ \iota_A = \iota_B \circ h.$$

In addition, if h is an embedding, then $R(h)$ is also an embedding.

Proof. We apply Proposition 5.2 for $V = R(B)$ and for $f = \iota_B \circ h$. Therefore $R(h) = f_R$.

We consider the forgetful functor between the category \mathcal{RMV}_s of semisimple RMV-algebras and the category \mathcal{MV}_s of semisimple MV-algebras:

$$U : \mathcal{RMV}_s \to \mathcal{MV}_s,$$

which forgets the scalar multiplication.

We also define the functor

$$R : \mathcal{MV}_s \to \mathcal{RMV}_s$$

as follows:

- for any semisimple MV-algebra A, $R(A)$ is the Riesz hull of A.
- for any MV-homomorphism $h : A \to B$, $R(h)$ is the unique homomorphism such that $U(R(h)) \circ \iota_A = \iota_B \circ h$.

Theorem 5.1. Under the above settings, (R, U) is an adjoint pair.

Proof. One can easily see that R is a functor. If A is a semisimple MV-algebra we define $\eta_A : A \to U(R(A))$, $\eta_A(a) = \iota_A(a)$ for any $a \in A$. If V is a semisimple Riesz MV-algebra, let $\varepsilon_V = \iota_V^{-1} : R(U(V)) \to V$. By Corollary 4.4 ε_V is an isomorphism.

In order to prove that R is a left adjoint to U, we have to prove the following properties, for any MV-algebra A and Riesz MV-algebra V:
(1) for any \(f \in \mathcal{M}_s(A, U(V)) \), there exists \(g \in \mathcal{R}\mathcal{M}_s(R(A), V) \) such that \(U(g) \circ \eta_A = f \),

(2) for any \(g \in \mathcal{R}\mathcal{M}_s(R(A), V) \) there exists \(f \in \mathcal{M}_s(A, U(V)) \) such that \(\varepsilon_V \circ R(f) = g \).

\[
\begin{array}{ccc}
A & \xrightarrow{\eta_A} & U(R(A)) \\
\downarrow & & \downarrow U(g) \\
U(V) & \xrightarrow{g} & V \\
\end{array}
\]

\[
\begin{array}{ccc}
R(U(V)) & \xrightarrow{R(f)} & V \\
\downarrow & & \downarrow \varepsilon_V \\
R(A) & \xrightarrow{\varepsilon_V} & V \\
\end{array}
\]

The property (1) follows by Proposition 5.2 with \(g = f_R \) whenever \(f \in \mathcal{M}_s(A, U(V)) \). In order to prove (2), assume that \(g \in \mathcal{R}\mathcal{M}_s(R(A), V) \) and set \(f = U(g) \circ \iota_A \). Hence \(R(f) \) is the unique homomorphism such that

\[U(R(f)) \circ \iota_A = \iota_{U(V)} \circ f. \]

Therefore we have \(U(R(f)) \circ \iota_A = \iota_{U(V)} \circ U(g) \circ \iota_A \). Since \(\iota_A \) is an embedding, we get that \(U(R(f)) = \iota_{U(V)} \circ U(g) \).

We note that \(\iota_{U(V)} = U(\iota_V) = U(\varepsilon_V^{-1}) \). It follows that \(U(\varepsilon \circ R(f)) = U(g) \), so \(\varepsilon \circ R(f) = g \).

In the following we prove that the hull functor \(R \) and the functor \(\Gamma \) commute.

Remark 5.2. Let \(A \) be a semisimple MV-algebra and \((G, u)\) an \(\ell u \)-group such that \(A = \Gamma(G, u) \). If \(X \subseteq A \) and \(\langle X \cup \{u\} \rangle_\ell \) is the \(\ell \)-group generated by \(X \cup \{u\} \) in \(G \), then we note that \(\langle X \cup \{u\} \rangle_\ell \) is an \(\ell u \)-subgroup of \((G, u)\). As a consequence, we infer that \(\Gamma(\langle X \cup \{u\} \rangle_\ell, u) \) is an MV-subalgebra of \(A \). It is now straightforward that \(\langle X \rangle_{MV} = \Gamma(\langle X \cup \{u\} \rangle_\ell, u) \). Assume now that \(V \) is a Riesz MV-algebra, \((H, v)\) a unital Riesz space such that \(\Gamma_R(H, v) = V \) and \(X \subseteq V \). It is straightforward that \(\langle X \rangle_{R_MV} = \Gamma_R(\langle X \cup \{u\} \rangle_{\ell v}, u) \), where \(\langle X \cup \{u\} \rangle_{\ell v} \) is the Riesz space generated by \(X \cup \{u\} \) in \(H \).

Proposition 5.3. If \(A \) is a semisimple MV-algebra and \((G, u)\) an \(\ell u \)-group such that \(A = \Gamma(G, u) \), then \(R(A) = \Gamma_R(R(G), u) \).

Proof. We recall that \(A_d = \Gamma(G_d, u) \), so \(A_d \subseteq G_d \subseteq \hat{G}_d \). Moreover, \(\hat{G}_d \) is a Riesz space and \(R(G) = \langle G_d \rangle_{\ell v} \), i.e. \(R(G) \) is the Riesz space generated by \(G_d \) in \(\hat{G}_d \). Following Remark 5.2 we have \(R(A) = \langle A_d \rangle_{R_MV} = \Gamma_R(\langle A_d \cup \{u\} \rangle_{\ell v}, u) \). Since \(u \in A_d \) and \(\langle A_d \rangle_{\ell v} = \langle G_d \rangle_{\ell v} \), we get
\[\mathbf{R}(A) = \Gamma_R((G_d)_{v\ell}, u) = \Gamma_R(\mathbf{R}(G), u). \]

We denote by \(\mathcal{AG}_{ua} \) the category of archimedean \(\ell_u \)-groups and by \(\mathcal{RS}_{ua} \) the category of archimedean Riesz spaces with strong unit. By [3], the correspondence \(G \mapsto \mathbf{R}(G) \), which associates to an \(\ell \)-group its \(v \)-hull, is functorial. If \(G \) has a strong unit \(u \), following Conrad’s construction, one can easily see that \(u \) is also a strong unit of \(\mathbf{R}(G) \). Hence we get a functor \(\mathbf{R} : \mathcal{AG}_{ua} \rightarrow \mathcal{RS}_{ua} \).

Theorem 5.2. The following diagram is commutative:

\[
\begin{array}{ccc}
\mathcal{AG}_{ua} & \xrightarrow{\Gamma} & \mathcal{MV}_s \\
\downarrow{\mathbf{R}} & & \downarrow{\mathbf{R}} \\
\mathcal{RS}_{ua} & \xrightarrow{\Gamma_R} & \mathcal{RMV}_s
\end{array}
\]

Proof. It is a straightforward consequence of Proposition [3].

Acknowledgment. I. Leuștean was partially supported by the strategic grant POSDRU/89/1.5/S/58852, cofinanced by ESF within SOP HRD 2007-2013.

References

[1] R. Ball, G. Georgescu, and I. Leuștean. Cauchy completions of \(\text{MV} \)-algebras. *Algebra Universalis*, 47:367–407, 2002.

[2] L.P. Belluce. Semisimple algebras of infinite valued logic and bold fuzzy set theory. *Canadian Journal of Mathematics*, 38(6):1356–1379, 1986.

[3] R.D. Bleier. Minimal vector lattice covers. *Bull. Austral. Math. Soc.*, 5:331–335, 1971.

[4] C.C. Chang. Algebraic analysis of many valued logics. *Trans. A.M.S.*, 88:467–490, 1958.

[5] R. Cignoli, I.M.L. D’Ottaviano, and D. Mundici. *Algebraic Foundations of Many-Valued Reasoning*. Kluwer Academic, 2000.

[6] P.M. Cohn. *Universal Algebra*. Harper & Row, 1965.
[7] P.F. Conrad. Minimal vector lattice covers. Bull. Austral. Math. Soc., 4:35–39, 1971.

[8] M.R. Darnel. Theory of Lattice-Ordered Groups. Marcel Dekker, Inc., 1995.

[9] A. Di Nola. Representation and reticulation by quotients of MV-algebras. Ricerche di Matematica, 40(2):291–297, 1991.

[10] A. Di Nola and A. Dvurecenskij. Product MV-algebras. Multiple-Valued Logics, 6:193–215, 2001.

[11] A. Di Nola and I. Leuştean. Lukasiewicz logic and Riesz spaces. Soft Computing, to appear, 2013.

[12] A. Di Nola and I. Leuştean. Handbook of Mathematical Fuzzy Logic - volume 1, volume 37 of Studies in Logic, chapter Lukasiewicz logic and MV-algebras. College Publications, London, 2011.

[13] A. Di Nola and S. Sessa. On MV-algebras of continuous functions. In: Non classical logics and their applications to fuzzy subsets (U. Hölle and E. P. Klement, Eds.), Kluwer Acad. Publ., Dordrecht, pages 23–32, 1995.

[14] B. Gerla. Rational Lukasiewicz logic and DMV-algebras. Neural Networks World, 11:579–584, 2001.

[15] W.A.J. Luxemburg and A.C. Zaanen. Riesz Spaces I. North-Holland, Amsterdam, 1971.

[16] J. Martinez. Hull classes of archimedean lattice-ordered groups with unit: a survey. In: Ordered algebraic structures, Kluwer Acad. Publ., Dordrecht, pages 89–121, 2002.

[17] F. Montagna. Subreducts of MV-algebras with product and product residuation. Algebra Universalis, 53:109–137, 2005.

[18] D. Mundici. Interpretation of AF C*-algebras in Lukasiewicz sentential calculus. J. Functional Analysis, 65:15–63, 1986.