Autonomous quantum error correction in a four-photon Kerr parametric oscillator

Sangil Kwon1, Shohei Watabe2, and Jaw-Shen Tsai1,2

Autonomous quantum error correction has gained considerable attention to avoid complicated measurements and feedback. Despite its simplicity compared with the conventional measurement-based quantum error correction, it is still far from practical because of significant hardware overhead. We propose an autonomous quantum error correction scheme for a rotational symmetric bosonic code in a four-photon Kerr parametric oscillator. Our scheme is the simplest possible error correction scheme that can surpass the break-even point—it requires only a single continuous microwave tone. We also introduce an unconditional reset scheme that requires one more continuous microwave tone in addition to that for the error correction. The key properties underlying this simplicity are protected quasienergy states of a four-photon Kerr parametric oscillator and the degeneracy in its quasienergy level structure. These properties eliminate the need for state-by-state correction in the Fock basis. Our schemes greatly reduce the complexity of autonomous quantum error correction and thus may accelerate the use of the bosonic code for practical quantum computation.

npj Quantum Information (2022) 8:40; https://doi.org/10.1038/s41534-022-00553-z

INTRODUCTION

The most serious obstacle towards fault-tolerant quantum computation is probably quantum error correction. The reason is that quantum error correction requires a large Hilbert space as well as high-fidelity measurement and control. The use of a harmonic oscillator, i.e., a bosonic system, is one strategy to obtain a large Hilbert space without too much hardware overhead1–4. In this system, information can be encoded as a symmetric pattern in phase space. Such a symmetry can be either translational (Gottesman–Kitaev–Preskill code)5,6 or rotational (cat or binomial code)7. In a superconducting circuit8–12, which is our working system, another advantage of using a harmonic oscillator is that the major loss mechanism is single-photon loss; thus, quantum error correction in this system can be achieved by detecting the number parity of the photon state13–15.

Recently, autonomous quantum error correction (AQEC) schemes have gained considerable attention to avoid complicated measurements and feedback16–25. Although AQEC is considered to be much easier to implement than the conventional measurement-based quantum error correction, there is still a serious hardware overhead—the need for many microwave tones. The origin of this problem is that the logical qubit states are composed of multiple Fock states, and errors are corrected by selective transitions induced by continuous microwave tones. Since each transition requires a separate continuous microwave tone, many microwave tones are required to handle all possible transitions. For example, eight microwave tones are used in ref. 24 although the logical qubit states in this reference are composed of only four Fock states. Moreover, the amplitude of each tone must be tuned independently to ensure identical transition rates that prevent leakage of which-path information. Thus, any scheme based on state-by-state correction in the Fock basis is difficult to scale up.

In this study, we propose an AQEC scheme that requires only a single continuous microwave tone—the simplest possible error correction scheme that can surpass the break-even point. This substantial reduction of hardware overhead is due to the protection of the Hilbert space for encoding and error correction such that the system remains in this protected Hilbert space under single-photon loss/drive. Such a protection is provided by a four-photon pump applied to a Kerr nonlinear oscillator—a system with a small anharmonicity of <1% of its resonance frequency16. Since this four-photon pump cannot be achieved by simple linear driving and must be achieved by parametric modulation of the Josephson junction energy27,28 (see Supplementary Note 1), we term this system a four-photon Kerr parametric oscillator (KPO). Although a KPO has received much attention very recently because of its use for the generation and stabilization of the cat states29–38, gate-based quantum computation30,34,38–42, measurement-based error correction43,44, quantum annealing45–51, and other physically interesting topics52–59, little attention has been paid to its applicability to AQEC. Our study reveals that a KPO can be a suitable system for AQEC.

RESULTS

System and encoding

Our system of interest is a KPO driven by a four-photon pump whose frequency is ωp. In the rotating frame with the frequency ωKPO/4, the Hamiltonian of the KPO is given by (see the section “Gate operation and circuit implementation” and Supplementary Note 1 for circuit implementation and derivation of the Hamiltonian)

\[H_{\text{KPO}} = \hbar \Delta_{\text{KPO}} \hat{a}^{\dagger} \hat{a}^2 - \frac{\hbar}{2} \hat{a}^{\dagger} \hat{a}^{\dagger} \hat{a} \hat{a} + \frac{\hbar}{2} (\hat{a}^{\dagger} \hat{a} \hat{a}^{\dagger} \hat{a}^{\dagger} + \hat{a} \hat{a}^{\dagger} \hat{a}^{\dagger} \hat{a}). \] (1)

Here, \(\hat{a} \) and \(\hat{a}^{\dagger} \) are the ladder operators for the KPO, \(\Delta_{\text{KPO}} \equiv (\omega_{\text{KPO}} - \omega_p/4) \) is the KPO-pump frequency detuning, where \(\omega_{\text{KPO}} \) is the transition frequency of the KPO between \(|0\rangle \) and \(|1\rangle \) states, \(K \) is the Kerr coefficient, and \(P \) is the amplitude of the pump.
The four highest quasienergy states from Eq. (1) are energetically close and show fourfold rotational symmetry in phase space as shown in Fig. 1a. These states are represented by the modulus of 4 in the Fock basis:

\[|k_{\text{mod}}\rangle = \sum_{n=0}^{\infty} C_n^{(k)} |4n + k\rangle, \]

where \(|C_n^{(k)}|^2 \) \((k \in \{0, 1, 2, 3\})\) indicates the occupation probability of each Fock basis, which is plotted in the upper panel of Fig. 1a.

We encode information on the states with the odd number parity as \(|0\rangle \) and \(|3\rangle \), and the logical qubit states comprise the code space (warm colors in Fig. 1), whereas the remaining two states with even number parity constitute the error space (achromatic colors). In this work, we call the code space and error space together the information space provided by the four-photon pump. Double arrows \(\Rightarrow \) indicate induced transitions, and single arrows \(\rightarrow \) indicate spontaneous transitions caused by single-photon loss. Colors of bars and frames in this figure indicate the modulus of 4 in the Fock basis.

The crucial observation is that if \(|1\rangle \) (\(|3\rangle \)) loses one photon, the final state is likely \(|0\rangle \) (\(|2\rangle \)) because of the protection by the four-photon pump. This means that we can recover \(|1\rangle \) from \(|0\rangle \) (\(|3\rangle \) from \(|2\rangle \)) by applying a single-photon drive. Note that we cannot ask which Fock state loses or gains the photon as all Fock states comprising the logical qubit state change simultaneously. This eliminates the need to control the Fock states one by one, thus greatly reducing hardware overhead.

The second essential requirement, other than the protection of the information space, is the energy degeneracy between \(|0\rangle \) and \(|1\rangle \), as well as between \(|2\rangle \) and \(|3\rangle \). Remarkably, this can be achieved simply by tuning \(P \) in Eq. (1) to the value indicated by the vertical dashed line in the inset of Fig. 1a. The energy degeneracy allows us to induce transitions between \(|0\rangle \) and \(|1\rangle \) as well as between \(|2\rangle \) and \(|3\rangle \) using a single microwave tone with the frequency \(\omega_{\text{gap}}/4 \).

Other requirements for our AQEC scheme are (i) one-way transition: \(|0\rangle \leftrightarrow |1\rangle \) and \(|2\rangle \leftrightarrow |3\rangle \), and (ii) no transition: \(|1\rangle \leftrightarrow |2\rangle \) and \(|0\rangle \leftrightarrow |3\rangle \). The one-way transition can be realized by introducing an ancilla resonator whose ladder operators are \(\hat{b} \) and \(\hat{a} \), and applying \(\hat{a}^\dagger \hat{b} + \hat{a} \hat{b} \) instead of \(\hat{a}^\dagger + \hat{a} \). (Hereafter, we refer to the microwave tone for \(\hat{a}^\dagger \hat{b} + \hat{a} \hat{b} \) as the correction tone.) This ancilla resonator must be very lossy compared with the KPO to suppress transitions from the code space to the error space. The resulting process is as follows. For example, \(|0\rangle \) can be corrected with the ancilla, whose state is written with the subscript \(\text{an} \), as

\[|0_{\text{an}}\rangle \rightarrow |1_{\text{an}}\rangle \rightarrow |0\rangle \]

and may lose or gain a photon, whereas \(|1_{\text{an}}\rangle \rightarrow |0_{\text{an}}\rangle \) can be suppressed by an energy gap \(\omega_{\text{gap}} \) (different from the protection energy gap). Note that we have this energy gap already—see the inset of Fig. 1a.

\[|0_{\text{an}}\rangle \rightarrow |1_{\text{an}}\rangle \rightarrow |0\rangle \]

where \(\Rightarrow \) indicates a transition induced by the correction tone, whereas \(\rightarrow \) indicates a spontaneous transition in the lossy ancilla. Transitions such as \(|1\rangle \leftrightarrow |2\rangle \) and \(|3\rangle \leftrightarrow |0\rangle \) can be suppressed by an energy gap \(\omega_{\text{gap}} \) (different from the protection energy gap). Note that we have this energy gap already—see the inset of Fig. 1a.
Consider only single-photon losses in the KPO and the ancilla. Here, "\(\omega\)" is the photon gain and dephasing. The time-dependent Hamiltonian \(\hat{H}_{\text{full}}(t)\) is given by

\[
\frac{\partial \rho(t)}{\partial t} = -i \left[\hat{H}_{\text{full}}(t), \rho(t) \right] + \{ \gamma_{\text{KPO}}(1 + n_{\text{th}})D[\hat{a}] + \gamma_{\text{KPO}}n_{\text{th}}D[\hat{a}^\dagger] + \gamma_{\phi}D[\hat{a}^\dagger \hat{a}] + \gamma_{\text{an}}D[\hat{b}^\dagger \hat{b}] \} \rho(t),
\]

where \(\gamma_{\text{KPO}}\) is the single-photon loss rate of the KPO, \(n_{\text{th}}\) is the number of thermal photons in the KPO, \(\gamma_{\phi}\) is the dephasing rate of the KPO, and \(\gamma_{\text{an}}\) is the single-photon loss rate of the ancilla resonator. In this subsection, we consider only single-photon losses in the KPO and the ancilla resonator. The effects of \(n_{\text{th}}\) and \(\gamma_{\phi}\) will be discussed in the section "Photon gain and dephasing." The time-dependent Hamiltonian \(\hat{H}_{\text{full}}(t)\) is given by

\[
\hat{H}_{\text{full}}(t) = \hat{H}_{\text{KPO}} + h\Delta_{\text{an}}\hat{b}^\dagger \hat{b} + h\gamma(\hat{a}^\dagger \hat{a} + \hat{a} \hat{a}^\dagger).
\]

Here, \(\Delta_{\text{an}} = \omega_{\text{an}} - \omega_{\text{an}}/4\) is the ancilla-pump frequency detuning, \(\omega_{\text{an}}\) is the resonance frequency of the ancilla resonator, \(g\) is the coupling constant between the KPO and the ancilla, and \(A_{\text{cor}}\) and \(\omega_{\text{cor}}\) are the amplitude and the frequency of the AQEC term, respectively.

The first thing that must be done for AQEC is to find the appropriate \(\omega_{\text{cor}}\). The result of such a frequency sweep is shown in Fig. 2a. We found a peak in the population of the logical qubit states for \(\omega_{\text{cor}}\) near \(\Delta_{\text{an}}\)—a signature of AQEC. This result is consistent with the \(\hat{a}^\dagger \hat{b} + \hat{a} \hat{b}^\dagger\) term because \(\Delta_{\text{an}}\) corresponds to \(\omega_{\text{an}} + \omega_{\text{an}}/4\) in the lab frame. In addition, we found a dip separated from the peak with \(\omega_{\text{an}}\) whose sign depends on the logical qubit state of interest. This dip activates the transitions suppressed by \(\omega_{\text{an}}\). Such a peak-dip structure can be understood with the diagram shown in the upper panel of Fig. 2b. In this diagram, our AQEC scheme can be understood as population transfer along the thick gray arrows.

Our main results, the relaxation times with and without AQEC, are presented in Fig. 2b and c. With optimal \(A_{\text{cor}}\) and \(\omega_{\text{an}}\) values (the optimization procedure for these quantities will be discussed in the section “Optimization”), the bit-flip time of the logical qubit states is increased by approximately one order of magnitude (the lower panel of Fig. 2b) and the phase-flip time is increased by over a factor of 6 (the lower panel of Fig. 2c). Note that the phase-flip time is not greater than \(T_2\) in \(\ket{0}\) and \(\ket{1}\) encoding. This limited performance of AQEC is likely due to different mean photon number between two logical qubit states (see the section “Optimization” for further discussion). The resulting relaxation time of the process fidelity\(^{16}\) surpasses the break-even point by ~20%. We believe that surpassing break-even point will not be too difficult in experiments. The reason is that dephasing due to the low-frequency noise\(^{10}\) was not considered in our simulation—that is \(T_2 = 2T_1\) in \(\ket{0}\) and \(\ket{1}\) encoding, where \(T_2\) and \(T_1\) are the transverse and longitudinal relaxation times, respectively—whereas all planar superconducting circuits are sensitive to low frequency noise, such that \(T_2\) is often significantly \(<2T_1\). Note that our encoding in a four-photon KPO is insensitive to such a noise. This is because the collapse operator that models the dephasing process, \(\sqrt{\gamma_{\phi}}\hat{a}^\dagger \hat{a}\), induces population leakage out of the information space (see the section “Photon gain and dephasing” and Fig. 4c) and this process requires an energy greater than the protection energy gap\(^{34,38,43}\).
Another relaxation process other than bit and phase flips is population leakage out of the code space. The origin of population leakage to the HEL space is finite-transition probability between the code and HEL spaces—for example, $|0_{mod}^n \rangle \langle 1_{mod}^n| = 0.073$ and $|2_{mod}^n \rangle \langle 3_{mod}^n|$ = 0.029—where the lowercase h indicates that the state is a part of the HEL space. By calculating the population of all states, including the HEL space (see Supplementary Table 1), we find that our AQEC scheme is effective in reducing the population of the error space, which is suppressed by more than one order of magnitude after 10 μs (the upper panel of Fig. 2c). The population of the HEL space is also suppressed by 44% at 100 μs. This population leakage has been called quantum heating—a heating process induced by quantum jumps due to dissipation (in this case, single-photon loss) in quasienergy levels of driven quantum nonlinear systems5,6. The steady-state solution in Supplementary Table 1 is indeed independent of k_{KPO}, which is a signature of quantum heating5,6,3. The AQEC process does not generate quantum heat because the correction tone is weak and continuous; thus, transitions over the protection gap do not occur. It can be said that AQEC cools quantum heat.

Optimization

A potential problem of our encoding is that the mean photon number of $|0\rangle$ and $|1\rangle$ are 2.9 and 3.8, respectively, thereby suggesting that our logical qubit does not satisfy Knill–Laflamme conditions5,6. One consequence of this is that the probabilities of single-photon loss events in the two logical qubit states are different, thereby resulting in information leakage directly to the environment or indirectly via the ancilla resonator. The information leakage path via the ancilla can be minimized by designing the dispersive shift due to the coupling between the KPO and the ancilla being much smaller than the linewidth of the ancilla. Simultaneously, g must be sufficiently large to generate a reasonably high A_{corr} from the correction tone because A_{corr} is determined by g, although these two are written as independent parameters in Eq. (5). We find that $g/2\pi = 7$ MHz used in Fig. 2 meets these criteria (see the end of Supplementary Note 1).

Remarkably, the phase-flip time increases significantly when the four-photon pump amplitude P is slightly higher than the value for energy degeneracy, when $g/2\pi > 4$ MHz (Fig. 3a). This slight detuning separates the population peaks of $|0\rangle$ and $|1\rangle$ as depicted in Fig. 3b. We set the frequency at the center of two peaks as the optimal ω_{corr}.

Other parameters, A_{corr}, and γ_{an} can be optimized to maximize the bit- and phase-flip times by sweeping the parameter space (Fig. 3c). The reason for existence of the optimal A_{corr} is that if A_{corr} is too large, the height of the peak decreases because the dip becomes broader and eventually undermines the peak, as presented in Fig. 2a.

Photon gain and dephasing

Our AQEC scheme corrects errors induced only by single-photon loss. Thus, it is important to check how other relaxation channels, photon gain and dephasing, degrade our AQEC scheme. Figure 4a and b shows how much the bit- and phase-flip rates increase with thermal photon number n_{th}, which characterizes the photon gain process, and dephasing rate γ_ϕ in Eq. (4). Note that photon gain and dephasing contribute differently to population leakage: photon gain increases populations in both the error and HEL spaces, while dephasing induces population leakage to the HEL space only, as shown in Fig. 4c.

Now, we discuss the upper bounds of n_{th} and γ_ϕ for reliable error correction. According to Fig. 4a, n_{th} must be less than 0.01 to keep the increase in the flip rates <20%. For γ_ϕ, although a four-photon KPO is insensitive to dephasing induced by low-frequency noise as pointed out in the section “Numerical simulation”, the

\begin{equation}
\gamma_\phi = \frac{\gamma_{\text{NQS}}}{2} \text{Re} \left[\sqrt{1 + \frac{2i\chi}{\gamma_{\text{NQS}}} + \frac{8i\chi}{\gamma_{\text{NQS}}^2} n_{th} - 1} \right].
\end{equation}

where γ_{NQS} and n_{th}^2 are the damping rate and the thermal photon number of the nearby quantum system, respectively, and χ is the dispersive shift between the KPO and the nearby quantum system. We first consider dephasing induced by the ancilla resonator. In this case, $\gamma_{\text{NQS}} = \gamma_{\text{an}}$ and $\chi = K(g/(\omega_{\text{an}} - \omega_{\text{KPO}}))^2$. Even if the thermal photon number of the ancilla is as large as 0.1, $\gamma_\phi/2\pi$ is still <1 Hz, which is completely negligible. Similarly, the partial population of the ancilla resonator during AQEC may be concerning. The mean photon number for this is ~0.02; thus, it is also negligible.

Another possible quantum system that can result in effective dephasing is a transmon or a resonator for readout. Here, we consider a transmon. In this case, $\chi \gg \gamma_{\text{NQS}}$, then Eq. (6) becomes $\gamma_\phi \approx \frac{n_{th}^2}{\gamma_{\text{NQS}}^2}$ if T_1 of the transmon is 20 μs, n_{th}^2 = 0.02 yields $\gamma_\phi/2\pi \approx 160$ Hz, where the bit- and phase-flip rates increase

![Fig. 3 Optimization procedure. a Upper panel: Four-photon pump amplitude as a function of the KPO–ancilla coupling constant. The solid circle indicates the pump amplitude where the phase-flip time is maximized and the empty triangle indicates the pump amplitude where quasienergy levels are degenerate. Lower panel: Phase-flip time with two different four-photon pump amplitudes. The symbols are the same as those in the upper panel, except the cross symbol indicates the phase-flip time without AQEC. The dashed horizontal line indicates T_2 in the $|0\rangle$ and $|1\rangle$ encoding. The dotted vertical line indicates the coupling constant that we used in this work, $g/2\pi = 7$ MHz. b Populations of the logical qubit states as a function of γ_{NQS}. c Phase-flip times as a function of A_{corr}.](image-url)
our simple AQEC scheme is not the only advantage of a four-photon KPO—now, we introduce an unconditional reset scheme that forces the state of the system to evolve to one of the logical qubit states regardless of the initial state. In this scheme, an additional microwave tone is required as well as the correction tone. This additional tone, which we call the reset tone, activates the transitions suppressed by the correction tone. The frequency of the reset tone is determined by the position of the reset tone (Fig. 5a). We simulate this scheme by adding the term \(\hbar A_{\text{reset}} \cos(\omega_{\text{reset}}t) (\hat{a}^\dagger \hat{b} + \hat{a} \hat{b}^\dagger) \) to Eq. (5), where \(A_{\text{reset}} \) and \(\omega_{\text{reset}} \) are the amplitude and frequency of this term, respectively.

Figure 5b shows the population of \(|0_L\rangle \) as a function of time when the system is exposed to the correction and the reset tones with \(\omega_{\text{reset}} = \Delta_{\text{an}} - \omega_{\text{gap}} \) which locks the system to \(|0_L\rangle \). Note that, the population of \(|0_L\rangle \) saturates at about 90% regardless of the initial state. Thus, we can reset the logical qubit simply by applying two microwave tones without any state preparation. If the initial state is in the information space, the KPO state can reach the target state in \(\approx 5 \mu s \) (the inset of Fig. 5b); however, if the initial state is outside of the information space, such as Fock states, the reset might take nearly \(100 \mu s \) mainly because of the protection energy gap. Reset to \(|1_L\rangle \) can be carried out by setting \(\omega_{\text{reset}} = \Delta_{\text{an}} + \omega_{\text{gap}} \) (Fig. 5c).

One may find some similarity between this reset scheme and dynamic nuclear polarization\(^{2,3}\), because the population transfer path in Fig. 5a is identical to that of dynamic nuclear polarization in an interacting nucleus–electron pair of spins 1/2. Transitions from the code space to the error space correspond to the electron spin excitation and transitions within the code space correspond to the nuclear spin excitation. We stress that, however, our scheme is more general than dynamic nuclear polarization because our scheme can reset even a state outside of the information space.

Gate operation and circuit implementation

Thus far, we have focused on error correction and state preparation. In this section, we briefly discuss gate operations and circuit implementation. Since our code relies on the fourfold rotational symmetry, the X gate can be implemented by a two-photon drive with the frequency \(\omega_\nu/2 \pm \omega_{\text{gap}} \) as shown in Figs. 1b

Fig. 4 Effects of single-photon gain and dephasing. a and b Bit- and phase-flip rates as a function of single-photon gain \(n_{\text{th}} \) and dephasing \(\gamma_p/2\pi \). The bit- and phase-flip rates are obtained via the same procedure depicted in Fig. 2b and c. c Population leakage to the error and HEL spaces with AQEC in the presence of single-photon gain and effective dephasing. The solid lines indicate the populations when \(n_{\text{th}} = 0 \) and \(\gamma_p/2\pi = 0 \); the dashed lines, \(n_{\text{th}} = 0.15 \) and \(\gamma_p/2\pi = 0.3 \) kHz. The result in c is the average of two evolutions from \(|0_L\rangle \) and \(|1_L\rangle \); the evolution from \(|1_L\rangle \) yields similar results.

Unconditional reset

Our simple AQEC scheme is not the only advantage of a four-photon KPO—now, we introduce an unconditional reset scheme that forces the state of the system to evolve to one of the logical qubit states regardless of the initial state. In this scheme, an additional microwave tone is required as well as the correction tone. This additional tone, which we call the reset tone, activates the transitions suppressed by the correction tone. The frequency of the reset tone is determined by the position of the reset tone (Fig. 5a). We simulate this scheme by adding the term \(\hbar A_{\text{reset}} \cos(\omega_{\text{reset}}t) (\hat{a}^\dagger \hat{b} + \hat{a} \hat{b}^\dagger) \) to Eq. (5), where \(A_{\text{reset}} \) and \(\omega_{\text{reset}} \) are the amplitude and frequency of this term, respectively.

Figure 5b shows the population of \(|0_L\rangle \) as a function of time when the system is exposed to the correction and the reset tones with \(\omega_{\text{reset}} = \Delta_{\text{an}} - \omega_{\text{gap}} \) which locks the system to \(|0_L\rangle \). Note that, the population of \(|0_L\rangle \) saturates at about 90% regardless of the initial state. Thus, we can reset the logical qubit simply by applying two microwave tones without any state preparation. If the initial state is in the information space, the KPO state can reach the target state in \(\approx 5 \mu s \) (the inset of Fig. 5b); however, if the initial state is outside of the information space, such as Fock states, the reset might take nearly \(100 \mu s \) mainly because of the protection energy gap. Reset to \(|1_L\rangle \) can be carried out by setting \(\omega_{\text{reset}} = \Delta_{\text{an}} + \omega_{\text{gap}} \) (Fig. 5c).

One may find some similarity between this reset scheme and dynamic nuclear polarization\(^{2,3}\), because the population transfer path in Fig. 5a is identical to that of dynamic nuclear polarization in an interacting nucleus–electron pair of spins 1/2. Transitions from the code space to the error space correspond to the electron spin excitation and transitions within the code space correspond to the nuclear spin excitation. We stress that, however, our scheme is more general than dynamic nuclear polarization because our scheme can reset even a state outside of the information space.

Gate operation and circuit implementation

Thus far, we have focused on error correction and state preparation. In this section, we briefly discuss gate operations and circuit implementation. Since our code relies on the fourfold rotational symmetry, the X gate can be implemented by a two-photon drive with the frequency \(\omega_\nu/2 \pm \omega_{\text{gap}} \) as shown in Figs. 1b
which are de
be too small. We
resulting amplitude of the four-photon pump \
\[\text{optimal bias. Such a functional separation allows us to design the} \]
\[\text{coef} \]
\[\text{Supplementary Note 1). Another consequence is that the Kerr} \]
\[\text{a few GHz. Thus, if the target} \]
\[\text{lower-order parametric processes}^{78,79}. \]
\[\text{technique that was originally developed for a dissipative} \]
\[\text{almost linear modulation of the junction energy can be obtained} \]
\[\text{primarily determined by the junction array at the} \]
\[\text{we can separate} \]
\[\text{thus, we can separate the system into a weakly nonlinear inductor (junction array) and a} \]
\[\text{the effective junction energy of a symmetric DC SQUID is given by} \]
\[\text{KPO, we obtain the four-photon pump and the two-photon} \]
\[\text{as shown in Figs. 2a and 3c. One interesting research} \]
\[\text{one continuous microwave tone. This scheme is based on (i) the protection of the information space by applying a four-photon} \]
\[\text{and analytic treatment on the physics underlying this scheme is} \]
\[\text{to combine our schemes and the automation procedure developed in ref.}^{25} \]
\[\text{we have proposed an AQEC scheme that requires} \]
\[\text{this scheme is based on (i) the protection of the information space by applying a four-photon} \]
\[\text{in Fig. 6, a DC SQUID is employed as a tunable coupler. In such a} \]
\[\text{DISCUSSION} \]
\[\text{Here, we list some comments on future research directions. First, the present work is based on numerical analysis. Further general} \]
\[\text{Second, a convenient single-shot readout scheme must be} \]
\[\text{In summary, we have proposed an AQEC scheme that requires only one continuous microwave tone. This scheme is based on (i) the protection of the information space by applying a four-photon} \]
\[\text{Complications in bosonic codes originate from state-by-state control in the Fock basis. This is a consequence of using the dispersive coupling between a bosonic system and a nonlinear ancilla for control}^{64,65} \]
\[\text{Fourth, the energy degeneracy between}^{64,65} \]
\[\text{involves the finite anharmonicity allows us to control the system without an ancilla, and the logical qubit states are quasienergy eigenstates such that AQEC and gate operation do not need to rely on the Fock basis. This suggests that we can apply the intuition acquired from conventional two-level-system qubits to a four-photon KPO; the similarity between our reset scheme and dynamic nuclear polarization can be an example of} \]
\[\text{We believe our AQEC and reset schemes reduce hardware overhead significantly, making a KPO an essential unit for future bosonic quantum computing systems.} \]
\[\text{DATA AVAILABILITY} \]
\[\text{Datasets generated from the simulation are available from the corresponding authors upon reasonable request.} \]

Received: 29 October 2021; Accepted: 17 March 2022; Published online: 22 April 2022
ACKNOWLEDGEMENTS

The authors would like to thank Akiyoshi Tomonaga for helpful discussion and the reviewers for constructive and thoughtful comments. This work was supported by the Japan Science and Technology Agency (CREST, JPMJCR1676; Moonshot R&D, JPMJMS2067) and the New Energy and Industrial Technology Development Organization (NEDO, JPNP16007).

AUTHOR CONTRIBUTIONS

S.K. and J.-S.T. conceived the project. S.K. constructed the schemes, performed the numerical simulations, and wrote the manuscript. S.K. and S.W. derived the equations in Supplementary Notes. J.-S.T. supervised the project. All authors edited the paper.

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41534-022-00553-z.

Correspondence and requests for materials should be addressed to Sangil Kwon or Jaw-Shen Tsai.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022