On the Semisimple Orbits of Restricted Cartan Type Lie Algebras W, S and H

Hao Chang1 · Ke Ou2

Received: 29 March 2021 / Accepted: 16 August 2021 / Published online: 25 August 2021
© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract
In this short note, we give a description of semisimple orbits in the restricted Cartan type Lie algebras W, S, H.

Keywords Weyl groups · Lie algebras of Cartan type · Semisimple orbits

Mathematics Subject Classification 2010 17B05 · 17B50

1 Introduction

Let $(g, [p])$ be a restricted Lie algebra with connected automorphism group $G_g := \text{Aut}_p(g)^0$. The algebraic group G_g acts naturally on the constructible set S_g of semisimple elements of g. A basic problem is to understand the set S_g/G_g of semisimple G_g-orbits.

In the classical case, where $g := \text{Lie}(G)$ is the Lie algebra of a connected reductive group G, all maximal tori of g are G-conjugate (hence G_g-conjugate) and there is a bijective correspondence $S_g/G_g \rightarrow t/W$, where t is a maximal torus and W its corresponding Weyl group (cf. [5, (7.12)]). If g is not an algebraic Lie algebra, then maximal tori are not necessarily G_g-conjugate. In fact, for the non-classical simple Lie algebras (which, by the classification theorem of Block-Wilson-Premet-Strade (cf. [9]), are of Cartan type provided that the characteristic of k is larger than 5), the maximal tori are not all conjugate under the action of the automorphism group [9, Chapter 7].
In this paper, we study Lie algebras of Cartan type $\mathfrak{g} := W, S, H$. In these cases, \mathfrak{g} possesses finitely many $G_{\mathfrak{g}}$-conjugacy classes of maximal tori. These algebras have a natural filtration

$$\mathfrak{g} = \mathfrak{g}(-1) \supseteq \mathfrak{g}(0) \supseteq \cdots \supseteq \mathfrak{g}(s) \supseteq (0)$$

by $[p]$-stable subspaces. Let $\langle x \rangle_p$ denote the torus generated by a semisimple element $x \in S_\mathfrak{g}$. We define a function

$$\text{Ind}_\mathfrak{g} : S_\mathfrak{g} \to \mathbb{N}_0; \ x \mapsto \dim_k \langle x \rangle_p / (\langle x \rangle_p \cap \mathfrak{g}(0)),$$

(1.1)

whose fibers are $G_{\mathfrak{g}}$-stable. Given a maximal torus $t_\mathfrak{g}$ of \mathfrak{g}, we consider the Weyl group $W(\mathfrak{g}, t_\mathfrak{g})$ relative to $t_\mathfrak{g}$, defined via $W(\mathfrak{g}, t_\mathfrak{g}) := N_{G_{\mathfrak{g}}}(t_\mathfrak{g})/C_{G_{\mathfrak{g}}}(t_\mathfrak{g})$, where $N_{G_{\mathfrak{g}}}(t_\mathfrak{g})$ and $C_{G_{\mathfrak{g}}}(t_\mathfrak{g})$ are the normalizer and the centralizer of $t_\mathfrak{g}$ in $G_{\mathfrak{g}}$, respectively. Using basic results on tori, due to Demushkin [2, 3], every maximal torus $t_\mathfrak{g} \subseteq \mathfrak{g}$ has the same dimension $\mu(\mathfrak{g})$.

Moreover, up to conjugacy, every integer $0 \leq r \leq \mu(\mathfrak{g})$ gives rise to a unique maximal torus $t_{\mathfrak{g},r}$ such that $\text{Ind}_\mathfrak{g}(x) \leq r$ for all $x \in t_{\mathfrak{g},r}$ and $t_{\mathfrak{g},r} := \text{Ind}_\mathfrak{g}^{-1}(r) \cap t_{\mathfrak{g},r} \neq \emptyset$. The $W(\mathfrak{g}, t_{\mathfrak{g},r})$-orbits on $t_{\mathfrak{g},r}$ are distinguished by the values of invariant functions, and the invariants were determined by the second author in [7, Proposition 3.2]. Actually, in the case $r = \mu(\mathfrak{g})$, the isomorphism $W(\mathfrak{g}, t_{\mathfrak{g},\mu(\mathfrak{g})}) \cong \text{GL}_{\mu(\mathfrak{g})}(\mathbb{F}_p)$ was established in [8] and [1], and the invariant functions on $t_{\mathfrak{g},\mu(\mathfrak{g})}$ under $\text{GL}_{\mu(\mathfrak{g})}(\mathbb{F}_p)$ action were determined in a classical work of L. Dickson [4].

The main result reads:

Theorem Let $r \in \{0, 1, \ldots, \mu(\mathfrak{g})\}$. Then there is a bijective correspondence

$$\text{Ind}_\mathfrak{g}^{-1}(r)/G_{\mathfrak{g}} \to t_{\mathfrak{g},r}'/W(\mathfrak{g}, t_{\mathfrak{g},r}).$$

More details refer to Theorem 3.6. We will give description the quotients $t_{\mathfrak{g},r}'/W(\mathfrak{g}, t_{\mathfrak{g},r})$ by employing p-polynomials in Proposition 3.7 respectively.

Throughout this paper, k denotes an algebraically closed field of characteristic $\text{char}(k) =: p > 3$.

2 Preliminaries

2.1 Cartan Type Lie Algebras Type W, S, H

Let $A(n) := k[X_1, \ldots, X_n]/(X_1^p, \ldots, X_n^p)$ be the truncated polynomial ring in n variables. We write x_i for the image of X_i in $A(n)$. Note that $A(n)$ is a finite-dimensional local algebra, with maximal ideal $\mathfrak{m} := (x_1, \ldots, x_n)$. The Lie algebra $W(n) := \text{Der}(A(n))$ is called the n-th Jacobson-Witt algebra. It is an $(A(n))$-module in an obvious way, and has a standard basis $\{x_1^{\alpha_1} \cdots x_n^{\alpha_n} \partial_i; \ 0 \leq \alpha_j < p, 1 \leq i \leq n\}$ where ∂_i denotes the partial derivative with respect to the variable x_i.

Define the linear map $\text{div} : W(n) \to A(n)$ by

$$\text{div}(\partial) = \sum_{i=1}^n \partial_i(\partial(x_i)).$$

The Lie algebra $S(n)$ is defined via $S(n) := \{\partial \in W(n); \ \text{div}(\partial) = 0\}$ and the derived algebra $S(n)^{(1)}$ is called special algebra. If $n \geq 3$, then $S(n)^{(1)}$ is restricted and simple.
Let us move on to the family $H(2m)$. For $i \in \{1, \ldots, 2m\}$, we put
\[
\sigma(i) := \begin{cases}
1, & 1 \leq i \leq m, \\
-1, & m + 1 \leq i \leq 2m.
\end{cases}
\]
In addition, we define
\[
i' := \begin{cases}
i + m, & 1 \leq i \leq m, \\
i - m, & m + 1 \leq i \leq 2m.
\end{cases}
\]
Let $H(2m) := \{ \sum_{i=1}^{2m} f_i \partial_i \in W(2m); \ \sigma(i) \partial_{i'}(f_i) = \sigma(j) \partial_j(f_j) \ 1 \leq i, j \leq 2m \}$. The Lie subalgebra $H(2m)^{(2)}$ of $H(2m)$ is simple and restricted, and we call it a Hamiltonian algebra.

From now on we will (by abuse of notation) write $W(n)$, $S(n)$ and $H(n)$ for the corresponding simple derived subalgebra, with the convention that $n = 2m$ for the Hamiltonian type.

Suppose that $g = X(n)$, where $X \in \{W, S, H\}$. By definition, it possesses a restricted \mathbb{Z}-grading
\[
g = \bigoplus_{i=-1}^{s} g_i, \quad [g_i, g_j] \subseteq g_{i+j}, \quad g_i^{[p]} \subseteq g_{pi}, \quad s \geq 1. \tag{2.1}
\]
Given such an algebra g, we consider the associated descending filtration $(g(i))_{i \geq -1}$, defined via
\[
g(i) := \sum_{j \geq i} g_j. \tag{2.2}
\]

2.2 Automorphism Groups

Let us gather some facts on automorphisms. It is well known that we have an isomorphism $\text{Aut}(A(n)) \cong \text{Aut}_p(W(n))$; $\varphi \mapsto \sigma_\varphi$, given by
\[
\sigma_\varphi(\partial) = \varphi \circ \partial \circ \varphi^{-1} \tag{2.3}
\]
for all $\partial \in W(n)$. If $g \in \{W, S, H\}$, then the group $\text{Aut}_p(g)$ is connected, i.e. $G_g = \text{Aut}_p(g)$, and we have
\[
G_g \cong \{ g \in \text{Aut}_p(W(n)); \ g(g) \subseteq g \}.
\]
Moreover, the group G_g is a semidirect product $G_0 \rtimes U$, where G_0 consists of those automorphisms preserving the \mathbb{Z}-grading (2.1) of g and U is the unipotent radical [10]. It is a consequence of the semidirect product decomposition that
\[
g(g(i)) = g(i) \tag{2.4}
\]
for every $g \in G_g$ and $i \in \mathbb{Z}$.

Recall that the Poisson Lie algebra structure on $A(2m)$ is given by $\{f, g\} = D_H(f)(g)$ for all $f, g \in A(2m)$ (cf. [9, Section 4.2]), where the linear map D_H is defined by
\[
D_H : A(2m) \to W(2m); \ f \mapsto \sum_{i=1}^{2m} \sigma(i) \partial_i(f) \partial_{i'}.
\]
For ease of reference we record the following well-known result:

Lemma 2.1 [9, Theorem 7.3.4, 7.3.6] Let $\varphi \in \text{Aut}(A(n))$. Then σ_φ induces an automorphism of $S(n)$ if and only if

$$\det(\partial_i \varphi(x_j)) \in k \setminus \{0\},$$

and σ_φ induces an automorphism of $H(n)$ if and only if

$$\{\varphi(x_i), \varphi(x_j)\} = a\sigma(i)\delta_{i,j}$$

for some $a \in k \setminus \{0\}$ and all i, j.

2.3 Maximal Tori

Given a restricted Lie algebra $(g, [p])$, we let $\mu(g)$ denote the maximal dimension of all tori $t \subseteq g$ and let

$$\text{Tor}(g) := \{t \subseteq g; t \text{ torus, } \dim_k t = \mu(g)\}$$

be the set of tori of maximal dimension.

In the case of restricted Cartan type Lie algebras, every maximal torus has maximal dimension (cf. [9, Section 7.5]). Assume that $g \in \{W,S,H\}$. Since the natural filtration (2.2) is stable under the action of G_g, it follows that the function

$$\chi_0 : \text{Tor}(g) \to \mathbb{N}_0; t \mapsto \dim_k (t \cap g(0))$$

is constant on the G_g-orbits of $\text{Tor}(g)$. As shown by Demushkin in [2, 3], there are exactly $\mu(g) + 1$ orbits $O_0, \ldots, O_{\mu(g)}$ in $\text{Tor}(g)$ under the G_g-action, and these have the following description:

$$O_r = \{t \in \text{Tor}(g); \chi_0(t) = \mu(g) - r\}.$$

For each of the three Cartan types we have canonical orbit representatives $t_{g,r}$ of O_r given by

$$t_{g,r} = t_{g,r}' \oplus t_{g,r}'' \quad (2.7)$$

where

$$t_{g,r}' = \sum_{i=1}^r k(1 + x_i)\partial_i \quad \text{and} \quad t_{g,r}'' = \sum_{i=r+1}^n kx_i\partial_i, \quad \text{if } g = W(n) \quad (2.8)$$

$$t_{g,r}' = \sum_{i=1}^r k((1 + x_i)\partial_i - x_n\partial_n) \quad \text{and} \quad t_{g,r}'' = \sum_{i=r+1}^{n-1} k(x_i \partial_i - x_n \partial_n), \quad \text{if } g = S(n) \quad (2.9)$$

$$t_{g,r}' = \sum_{i=1}^r k((1 + x_i)\partial_i - x_{i'}\partial_{i'}) \quad \text{and} \quad t_{g,r}'' = \sum_{i=r+1}^m k(x_i \partial_i - x_{i'} \partial_{i'}), \quad \text{if } g = H(2m) \quad (2.10)$$

2.4 Weyl Groups of W, S, H

Let $(g, [p])$ be a restricted Lie algebra with connected automorphism group G_g. $t \subseteq g$ be a torus and we let $N_{G_g}(t)$ and $C_{G_g}(t)$ be the normalizer and the centralizer of t in G_g, respectively. The group

$$W(g, t) := N_{G_g}(t)/C_{G_g}(t)$$

is referred to as the Weyl group of g relative to t.
For the three Cartan types W, S and H, we are interested in the Weyl group relative to maximal torus. Let $t \in \text{Tor}(g)$. Since $W(g, g, t) \cong W(g, t)$ for every $g \in G_g$, the Weyl group $W(g, t)$ only depends on the orbit $G_g t \subseteq \text{Tor}(g)$. We may hence assume that $t = t_{g, r}$ (2.8), (2.9), (2.10) for some $0 \leq r \leq \mu(g)$.

The following result was proved by Jensen in [6], Prop. 3.6:

Proposition 2.2 Assume $g \in \{W, S, H\}$. Then $W(g, t_{g, r}) \cong (W_1 \times W_2) \rtimes W_3$, with

$$W_1 \cong \begin{cases} S_{n-r} & \text{if } g = W(n) \\ S_{n-r} & \text{if } g = S(n) \\ S_{m-r} \ltimes \mathbb{Z}^{m-r} & \text{if } g = H(n) \end{cases}$$ (2.11)

$$W_2 \cong \text{GL}_r(\mathbb{F}_p)$$ (2.12)

$$W_3 \cong \text{Mat}_{r, \mu(g)-r}(\mathbb{F}_p)$$ (2.13)

3 Semisimple Orbits in W, S, H

3.1 Semisimple Elements in the Standard Tori

Assume that $g \in \{W, S, H\}$. If $x \in S_g$ is a semisimple element, then $\langle x \rangle_p$ denotes the torus generated by x. We define a function $\text{Ind}_g: S_g \to \mathbb{N}_0; x \mapsto \dim_k \langle x \rangle_p / (\langle x \rangle_p \cap g(0))$. (3.1)

The index of an element x is defined as $\text{Ind}_g(x)$. In view of Section 2.3, we have $\text{Ind}_g(S_g) = \{r \in \mathbb{N}_0; 0 \leq r \leq \mu(g)\}$. Given $r \in \{0, 1, \ldots, \mu(g)\}$, it follows from (2.4) that each fiber $\text{Ind}_g^{-1}(r)$ is G_g-stable. Clearly, S_g is the disjoint union of all fibers, i.e.,

$$S_g = \bigcup_{r=0}^{\mu(g)} \text{Ind}_g^{-1}(r).$$

Indeed, $\dim_k t_{g, r} / (t_{g, r} \cap g(0)) = r$ implies that

$$\text{Ind}_g(x) \leq r \quad \text{for all } x \in t_{g, r}.$$ (3.2)

We denote by $t_{g, r}^0 := t_{g, r} \cap \text{Ind}_g^{-1}(r)$ the set of those elements of $t_{g, r}$ whose index is r. If $r = 0$, then Eq. 3.2 yields $t_{g, 0}^0 = t_{g, 0}$. Note that the dimension $\text{Ind}_g(x)$ does not change when x is replaced by its G_g-conjugate. Observing Eqs. 2.8, 2.9 and 2.10, we conclude that $\text{Ind}_g^{-1}(0)$ is just the G_g-saturation $\hat{G}_g t_{g, 0}$.

We put $y_i := x_i + 1$. In order to describe the set $\text{Ind}_g^{-1}(r)$, we introduce the following notations:

$$t_{g, r} = (d_1^{g, r}, \ldots, d_{\mu(g)}^{g, r}), \quad 0 \leq r \leq \mu(g).$$

$$d_i^{g, r} := \begin{cases} y_i \partial_i, & 1 \leq i \leq r, \\ x_i \partial_i, & r + 1 \leq i \leq n. \end{cases}$$ if $g = W(n)$ (3.3)

$$d_i^{g, r} := \begin{cases} y_i \partial_i - x_n \partial_n, & 1 \leq i \leq r, \\ x_i \partial_i - x_n \partial_n, & r + 1 \leq i \leq n - 1. \end{cases}$$ if $g = S(n)$ (3.4)

$$\hat{G}_g t_{g, 0}$$
\[d_{1}^{g,r} := \begin{cases}
 y_{i} \partial_{t} - x_{i} \partial_{t'}, & 1 \leq i \leq r, \\
 x_{i} \partial_{t} - x_{i} \partial_{t'}, & r + 1 \leq i \leq m.
 \end{cases} \]

(3.5)

The following lemma is well-known. We provide a proof here for convenience.

Lemma 3.1 Given a restricted Lie algebra \((l, [p])\), we let \(t \subseteq \mathbb{T}\) be a torus with basis \(\{t_{1}, \ldots, t_{n}\}\) such that \(t_{i}^{[p]} = t_{i}\) for \(1 \leq i \leq n\). If \(t = \sum_{i=1}^{n} \lambda_{i} t_{i} \in t\), then \(t = \langle t, t^{[p]}, \ldots, t^{[p]^{p-1}} \rangle\) if and only if \(\lambda_{1}, \ldots, \lambda_{n}\) are \(\mathbb{F}_{p}\)-linearly independent.

Proof It is clear that \(\langle t, t^{[p]}, \ldots, t^{[p]^{p-1}} \rangle\) is linearly independent if and only if \(\det((\lambda_{i}^{p^{j-1}})_{1 \leq i, j \leq n}) \neq 0\). Since \(\det((\lambda_{i}^{p^{j-1}})_{1 \leq i, j \leq n}) = \prod_{i=1}^{n} \prod_{a_{1}, \ldots, a_{j-1} \in \mathbb{F}_{p}} (a_{1}\lambda_{1} + \cdots + a_{j-1}\lambda_{j-1} + \lambda_{i})\) (see [4, Section 2] for example), we have \(\det((\lambda_{i}^{p^{j-1}})_{1 \leq i, j \leq n}) \neq 0\) if and only if \(\lambda_{1}, \ldots, \lambda_{n}\) are \(\mathbb{F}_{p}\)-linearly independent. \(\Box\)

Lemma 3.2 Keep the notations as above. Let \(1 \leq r \leq \mu(g)\) and \(t_{g,r}\) be the standard maximal torus with basis \(\{d_{1}^{g,r}, \ldots, d_{\mu(g)}^{g,r}\}\). Suppose that \(d = \sum_{i=1}^{\mu(g)} \lambda_{i} d_{i}^{g,r} \in t_{g,r}\). Then \(d \in t_{g,r}\) if and only if \(\lambda_{1}, \ldots, \lambda_{r}\) are \(\mathbb{F}_{p}\)-linearly independent.

Proof If \(\lambda_{1}, \ldots, \lambda_{r}\) are linearly independent over the prime field \(\mathbb{F}_{p}\), then the coset of \(d\) modulo \(t_{g,r} \cap g(0)\) generates an \(r\) dimensional torus by Lemma 3.1, so that \(\text{Ind}_{g}(d) = \dim_{k}(d_{p})/(d_{p} \cap g(0)) = r\), i.e. \(d \in t_{g,r}\).

Conversely, if \(\lambda_{1}, \ldots, \lambda_{r}\) are \(\mathbb{F}_{p}\)-linearly dependent, then

\[d = \alpha_{1} t_{1} + \cdots + \alpha_{m} t_{m} \pmod{t_{g,r} \cap g(0)} \]

where \(m < r\), \(\alpha_{i} \in k\) and each \(t_{i}\) is a linear combination of \(d_{1}^{g,r}, \ldots, d_{\mu(g)}^{g,r}\) with coefficients in \(\mathbb{F}_{p}\). In this case

\[\langle d_{p} \rangle \subseteq k t_{1} + \cdots + k t_{m} + g(0), \]

and it is immediately clear that \(\text{Ind}_{g}(d) < r\). \(\Box\)

Lemma 3.3 Suppose that \(d = \sum_{i=1}^{\mu(g)} \lambda_{i} d_{i}^{g,r} \in t_{g,r}\). If \(\lambda_{1}, \ldots, \lambda_{r}\) are \(\mathbb{F}_{p}\)-linearly dependent, then there exists \(\sigma_{\varphi} \in G_{g}\) such that \(\sigma_{\varphi}(d) \in t_{g,r-1}\).

Proof By assumption, there exist \(u_{i} \in \mathbb{F}_{p}\) such that \(\sum_{i=1}^{r} u_{i} \lambda_{i} = 0\). We may assume without loss of generality that \(u_{r} = -1\), so that \(\lambda_{r} = \sum_{i=1}^{r-1} u_{i} \lambda_{i}\). We put \((u) := (u_{1}, \ldots, u_{r-1})\) and define \(y(u) := y_{1}^{u_{1}} \cdots y_{r-1}^{u_{r-1}}\).

Assume first that \(g = W(n)\). We define an automorphism of \(A(n)\) by

\[\varphi(x_{i}) = \begin{cases}
 x_{i} & \text{if } i \neq r, \\
 x_{r} + y(u) - 1 & \text{if } i = r.
 \end{cases} \]

Using Eq. 2.3 (see also the formula in [2, p. 234])) one can show by direct computation that

\[\sigma_{\varphi}(d) = \sum_{i=1}^{r-1} \lambda_{i} y_{i} \partial_{i} + \sum_{i=r}^{n} \lambda_{i} x_{i} \partial_{i} \in t_{W,r-1}. \]
Assume now \(g = S(n) \). Define \(\varphi \in \text{Aut}(A(n)) \) by

\[
\varphi(x_i) = \begin{cases}
 x_i & \text{if } i \neq r, \\
 x_r + y^{(u)} & \text{if } i = r.
\end{cases}
\]

As \(\det(\partial_i(\varphi(x_j))) = 1 \), Lemma 2.1 ensures that \(\sigma(\varphi) \in G_g \). Then we have:

\[
\sigma(\varphi)(d) = \sum_{i=1}^{r-1} \lambda_i(y_i \partial_i - x_n \partial_n) + \sum_{i=r}^{n-1} \lambda_i(x_i \partial_i - x_n \partial_n) \in t_{S,r-1}.
\]

Finally the case \(g = H(n) \), with \(n = 2m \) for some \(m \geq 1 \). Using multi-index notation (see [9, Section 2.1]), we define

\[
\varphi(x_i) = \begin{cases}
 x_i & \text{if } i \neq r \text{ and } 1 \leq i \leq m, \\
 x_r + y^{(u)} - 1 & \text{if } i = r, \\
 x_i - u_j y^{(u) - \epsilon_j} x_{m+r} & \text{if } m + 1 \leq i \leq m + r - 1, \\
 x_i & \text{if } m + r \leq i \leq 2m.
\end{cases}
\]

Observing \(\det(\partial_i(\varphi(x_j))) = 1 \), we thus obtain \(\varphi \in \text{Aut}(A(n)) \). Moreover, we claim that

\[
\{\varphi(x_i), \varphi(x_j)\} = \sigma(i)\delta_{i,j} \quad \text{for all } i, j.
\]

We just deal with \(i = r \), the other cases are similar. Suppose that \(1 \leq j \leq m \). Since both \(\varphi(x_r) \) and \(\varphi(x_j) \) lie in the algebra \(A(m) \), it follows that \(\{\varphi(x_r), \varphi(x_j)\} = 0 \). If \(m + 1 \leq j \leq m + r - 1 \), then

\[
\{\varphi(x_r), \varphi(x_j)\} = \{x_r + y^{(u)} - 1, x_j - u_j y^{(u) - \epsilon_j} x_{m+r}\}
\]

\[
= \sigma(r)\partial_r(x_r)\partial_{m+r}(-u_j y^{(u) - \epsilon_j} x_{m+r}) + \sigma(j)\partial_j(y^{(u)})\partial_j(x_j) = 0.
\]

Now for \(m + r \leq j \leq 2m \), so that \(\{\varphi(x_r), \varphi(x_j)\} = \{x_r + y^{(u)} - 1, x_j\} = \delta_{r,j} \). This establishes our claim. Consequently, Lemma 2.1 implies that \(\sigma(\varphi) \in G_g \). By the same token, we have

\[
\sigma(\varphi)(d) = \sum_{i=1}^{r-1} \lambda_i(y_i \partial_i - x_r \partial_r) + \sum_{i=r}^{m} \lambda_i(x_i \partial_i - x_r \partial_r) \in t_{H,r-1}.
\]

Corollary 3.4 Assume \(g \in \{W, S, H\} \) and let \(x \in S_g \) be a semisimple element of \(g \). Then

\[
\text{Ind}_g(x) = \min\{r; \ G_g x \cap t_{g,r} \neq \emptyset, \ 0 \leq r \leq \mu(g)\}. \tag{3.6}
\]

Let \(r \in \{0, 1, \ldots, \mu(g)\} \). In particular, up to conjugacy, there exists a unique maximal torus \(t \) such that \(t \cap \text{Ind}_g^{-1}(r) \neq \emptyset \) and \(\text{Ind}_g(x) \leq r \) for all \(x \in t \).

Proof We put \(l := \min\{r; \ G_g x \cap t_{g,r} \neq \emptyset, \ 0 \leq r \leq \mu(g)\} \). We may assume that \(x \in t_{g,l} \). Now Lemma 3.2 and Lemma 3.3 in conjunction with the minimality of \(l \) yields \(x \in t_{g,l} \). Consequently, \(\text{Ind}_g^{-1}(x) = l \).

To verify the last assertion, we note that \(\text{Ind}_g(x) \leq r \) for all \(x \in t_{g,i} \) and \(i \leq r \) (3.2). In view of Eq. 3.6, we obtain \(t_{g,i} \cap \text{Ind}_g^{-1}(r) = \emptyset \) whenever \(i < r \). This proves the uniqueness.
3.2 Semisimple Orbits

In this section, we turn to the set \(\text{Ind}_{g}^{-1}(r)/G_{g} \) for the restricted Cartan type Lie algebra \(g \in \{ W, S, H \} \). We have seen in the foregoing section that the set \(\text{Ind}^{-1}(r) \) coincides with the \(G_{g} \)-saturation \(G_{g} \cdot tr_{g} \cdot r \). It will be necessary to consider the \(G_{g} \)-conjugacy relation on the set \(tr_{g} \cdot r \).

Lemma 3.5 Assume that \(g \in \{ W, S, H \} \) with connected automorphism group \(G_{g} \). Let \(d, t \in tr_{g} \cdot r \). If \(d \) and \(t \) are conjugate under \(G_{g} \), then there exists \(\sigma_{\psi} \in N_{G_{g}}(tr_{g} \cdot r) \) such that \(\sigma_{\psi}(d) = t \).

Proof Let \(\sigma_{\psi} \in G_{g} \) be such that \(\sigma_{\psi}(d) = t \). We write \(d = \sum_{i=1}^{\mu(g)} \beta_{i} d_{i}^{g} \cdot r \) as well as \(t = \sum_{i=1}^{\mu(g)} \alpha_{i} d_{i}^{g} \cdot r \). Define

\[
 z_{i} = \begin{cases}
 y_{i} & \text{if } i = 1, \ldots, r, \\
 x_{i} & \text{otherwise.}
 \end{cases}
\] and \(f_{i} = \varphi(z_{i}) \).

Setting \(\beta = (\beta_{1}, \ldots, \beta_{\mu(g)}) \) and \(\alpha = (\alpha_{1}, \ldots, \alpha_{\mu(g)}) \), we apply Eq. 2.3 in conjunction with Eqs. 3.3–3.5 to see that

\[
 t \cdot (f_{i}) = \begin{cases}
 \beta_{i} f_{i}, & 1 \leq i \leq n - 1, \\
 -\sum_{j=1}^{n-1} \beta_{j} f_{j}, & i = n.
 \end{cases} \quad \text{if } g = S(n). (3.8)
\]

As a result, \(f_{i} \) is a weight vector with respect to the canonical action of \(t \) on \(A(n) \). We claim that

\[
 \tag{†} \text{there exists matrices } A, B, \tau \text{ such that } \beta = \alpha \left(\begin{array}{cc} A & B \\ 0 & \tau \end{array} \right), \text{ where } A = (a_{ij}) \in GL_{r}(\mathbb{F}_{p}), B = (b_{ij}) \text{ and } \tau \in W_{1}. (2.11)
\]

Suppose that \(g = W(n) \). Since \(\varphi \in \text{Aut}(A(n)) \), the weight space decomposition ensures that

\[
 f_{j} \text{ has the term } z_{a_{1}}^{r} \cdots z_{r}^{r} \text{ with weight } \sum_{i=1}^{r} a_{ij} 1 \leq j \leq r \quad (3.10)
\]

\[
 f_{j} \text{ has the term } c_{j} x_{\tau(j)}^{r} z_{a_{1}}^{r} \cdots z_{r}^{r} \text{ with weight } \sum_{i=1}^{r} a_{ij} + \alpha_{\tau(j)} 1 \leq j \leq r \quad (3.11)
\]

where \(\tau \) is a permutation on \(\{ r + 1, \ldots, n \} \).

Assume now \(g = S(n) \). We put \(\alpha_{n} := -\sum_{j=1}^{n-1} \alpha_{j} \). The same argument shows that

\[
 f_{j} \text{ has the term } z_{a_{1}}^{r} \cdots z_{r}^{r} \text{ with weight } \sum_{i=1}^{r} a_{ij} 1 \leq j \leq r \quad (3.12)
\]

\[\square \]
f_j has the term $c_j x_\tau(j) z_1^{b_{1j}} \cdots z_r^{b_{rj}}$ with weight $\sum_{i=1}^{r} \alpha_i b_{ij} + \alpha_{\tau(j)} r + 1 \leq j \leq n$ (3.13)

where τ is a permutation on \{r + 1, \ldots, n\}.

Finally consider the case $\mathfrak{g} = H(2m)$. As $\sigma_\varphi \in G_\mathfrak{g}$, it follows that f_j has the form (modulo the corresponding weight space) $z_1^{\alpha_{1j}} \cdots z_r^{\alpha_{rj}}$ with weight $\sum_{i=1}^{r} \alpha_i a_{i,j}$ for every $j \in \{1, \ldots, r\}$.

For $r + 1 \leq j \leq m$, combining Eqs. 2.6 with 3.9 one obtains that f_j has the term $z_1^{b_{1j}} \cdots z_r^{b_{rj}} x_{\tau(j)}$, where τ is a permutation on \{r + 1, \ldots, m, m + r + 1, \ldots, 2m\}. In view of Eq. 2.6, $\{f_j, f_{j'}\}$ is a non-zero constant. Direct computation shows that $\tau(j') = \tau(j)$.

So that τ can be identified with an element of $S_{m-r} \ltimes \mathbb{Z}_2^{m-r}$, where the copies of \mathbb{Z}_2 act by $'$. Consequently, f_j has weight $\sum_{i=1}^{r} \alpha_i b_{ij} + \sigma(\tau(j)) \alpha_{\omega(j)}$ with $(\omega, a) = \tau \in S_{m-r} \ltimes \mathbb{Z}_2^{m-r}$.

Thanks to Lemma 3.2, both $\{\alpha_1, \ldots, \alpha_r\}$ and $\{\beta_1, \ldots, \beta_r\}$ are \mathbb{F}_p-linearly independent. It follows that $A \in GL_r(\mathbb{F}_p)$. This proves (†). Now, Proposition 2.2 ensures the existence of σ_φ.

\begin{theorem}
Assume that $\mathfrak{g} \in \{W, S, H\}$. Let $r \in \{0, 1, \ldots, \mu(\mathfrak{g})\}$. Then there is a bijective correspondence

$$
\text{Ind}^{-1}_\mathfrak{g}(r)/G_\mathfrak{g} \rightarrow t^r_{\mathfrak{g},r}/W(\mathfrak{g}, t_{\mathfrak{g},r}).
$$

\end{theorem}

\begin{proof}
Let $x \in \text{Ind}^{-1}_\mathfrak{g}(r)$. Corollary 3.4 readily yields $G_\mathfrak{g} x \cap t_{\mathfrak{g},r} \neq \emptyset$. It follows that $\text{Ind}^{-1}_\mathfrak{g}(r)$ coincides with the $G_\mathfrak{g}$-saturation $G_\mathfrak{g} t^r_{\mathfrak{g},r}$. The assertion now follows from Lemma 3.5.

\end{proof}

\section{Quotients}
In this section, we would like to give a description of the quotients $t^r_{\mathfrak{g},r}/W(\mathfrak{g}, t_{\mathfrak{g},r})$ by employing p-polynomials. Recall that a p-polynomial is a polynomial of the form

$$
f(t) = a_0 t^p + a_{-1} t^{p-1} + \cdots + a_0 t \in k[t].
$$

For each $x \in \mathfrak{g}$, define $f(x) := a_0 x^{|p|} + a_{-1} x^{|p|-1} + \cdots + a_0 x \in \mathfrak{g}$. Let $t \subseteq \mathfrak{g}$ be a torus. Given a semisimple element $x \in t$, there exists a monic p-polynomial $f_x(t)$ of lowest degree such that $f_x(x) = 0$. It is unique and we call it the minimal p-polynomial of x. By general theory, the orbit of an element $x \in t$ with respect to the whole group $\text{Aut}_p(t)$ is completely determined by the minimal p-polynomial of x.

In the case $r = \mu(\mathfrak{g})$, according to Proposition 2.2 (see also [8, Theorem 1] and [1, Theorem 5.3]), there is an isomorphism $W(\mathfrak{g}, t_{\mathfrak{g},\mu(\mathfrak{g})}) \cong GL_{\mu(\mathfrak{g})}(\mathbb{F}_p)$. Let $x, y \in t_{\mathfrak{g}, \mu(\mathfrak{g})}$. The foregoing observation implies that x and y are in the same $W(\mathfrak{g}, t_{\mathfrak{g}, \mu(\mathfrak{g})})$-orbit if and only if $f_x = f_y$.

For general r, let $x \in t_{\mathfrak{g},r}$. We denote by \bar{x} the image of x under the canonical projection $\pi : t_{\mathfrak{g},r} \rightarrow t_{\mathfrak{g},r}/(t_{\mathfrak{g},r} \cap \mathfrak{g}(0))$. Let $f_{\bar{x}}(t)$ be the minimal p-polynomial of \bar{x}. It follows that $f_{\bar{x}}(t)$ is the monic p-polynomial of smallest degree such that $f_{\bar{x}}(x) \in \mathfrak{g}(0)$.

\begin{proposition}
Keep the notations as before. Let $x, y \in t_{\mathfrak{g},r}$. Then x and y are in the same $W(\mathfrak{g}, t_{\mathfrak{g},r})$-orbit if and only if $f_{\bar{x}} = f_{\bar{y}}$ and $f_{\bar{x}}(x), f_{\bar{y}}(y)$ lie in the same W_1-orbit (2.11).

\end{proposition}
Proof Let \(\sigma \in W(\mathfrak{g}, t_{\mathfrak{g}, r}) \) be such that \(\sigma(\mathfrak{g}) = y \). The Weyl group \(W(\mathfrak{g}, t_{\mathfrak{g}, r}) \) leaves invariant the subtorus \(t_{\mathfrak{g}, r} \cap \mathfrak{g}_0 \). It follows that \(\sigma \in \text{Aut}_p(t_{\mathfrak{g}, r} / (t_{\mathfrak{g}, r} \cap \mathfrak{g}_0)) \) and \(\sigma(\mathfrak{x}) = \bar{y} \).

Consequently, \(f_{\bar{y}} = f_{\mathfrak{y}} \). Now, let \(f_{\bar{y}}(t) = f_{\mathfrak{y}}(t) = t^{p^j} + a_{l-1}t^{p^{l-1}} + \cdots + a_0t \). We have

\[
\sigma(f_{\bar{y}}(x)) = \sigma(x^{p^j} + a_{l-1}x^{p^{l-1}} + \cdots + a_0x) = \sigma(x)^{p^j} + a_{l-1}\sigma(x)^{p^{l-1}} + \cdots + a_0\sigma(x) = f_{\mathfrak{y}}(y).
\]

Since \(W(\mathfrak{g}, t_{\mathfrak{g}, r}) \) acts on the subtorus \(t_{\mathfrak{g}, r} \cap \mathfrak{g}_0 \) via the classical Weyl group \(W_1 \), there exists an element \(w \in W_1 \) such that \(\sigma(f_{\bar{y}}(x)) = w(f_{\bar{y}}(x)) = f_{\bar{y}}(y) \).

Conversely, denote \(f := f_{\bar{y}} = f_{\mathfrak{y}} \). Let \(\tau \in W_1 \) be such that \(\tau(f(x)) = f(y) \).

We write \(x = (x', x'') \) and \(y = (y', y'') \) with \(x', y' \in t_{\mathfrak{g}, r} \) and \(x'', y'' \in t_{\mathfrak{g}, r}^0 \) (see Eq. 2.7). It is easy to see that \(\tau(x) = \tau(x') = x'' - \tau(x'') \). By the same token, there exists an invertible matrix \(g \) such that \(\tau(x) = \tau(x'') = \bar{y} \). Hence, \(f \) is the minimal \(p \)-polynomial of \(x' + y'' - \tau(x'') \). By the same token, there exists an invertible matrix \(\begin{pmatrix} B & C \\ D & E \end{pmatrix} \in \text{GL}_m(\mathbb{F}_p) \) such that \((x', 0) \begin{pmatrix} B & C \\ D & E \end{pmatrix} = (x', y'' - \tau(x'')) \). Consequently, \((x', x'') \begin{pmatrix} A & C \\ 0 & \tau \end{pmatrix} = (y', y'') \), and our assertion now follows directly from Proposition 2.2.

\[\square\]

4 Normalizers and Centralizers in \(W(n) \)

In this section, \(\mathfrak{g} \) always denotes the \(n \)-th Jacobson-Witt algebra. For convenience, we set \(t_r := t_{\mathfrak{g}, r}, 0 \leq r \leq n \) (see Eq. 2.8). We shall compute \(N_{G_{\mathfrak{g}}}(t) \) and \(C_{G_{\mathfrak{g}}}(t) \) for every \(t \in \text{Tor}(\mathfrak{g}) \). Up to conjugacy, we may thus assume that \(t = t_r \) for some \(r \in \{0, 1, \ldots, n\} \). It should be noted that the isomorphisms

\[N_{G_{\mathfrak{g}}}(t_n) \cong \text{GL}_n(\mathbb{F}_p) \quad \text{and} \quad C_{G_{\mathfrak{g}}}(t_n) \cong [\text{id}_{t_n}] \tag{4.1} \]

were established by Premet (see [8, p. 139]).

Recall that \(t_r = \sum_{i=1}^n k_{z_i} \partial_i \), where \(z_i = y_i \) for \(1 \leq i \leq r \) and \(z_i = x_i \) for \(r + 1 \leq i \leq n \) (3.3).

Proposition 4.1 Assume \(r \in \{0, \ldots, n\} \). Then

\[N_{G_{\mathfrak{g}}}(t_r) = \{ \varphi \in \text{Aut}(A(n)) \mid \varphi \text{ has form } (*) \} \]

\[(*) \text{ If } 1 \leq j \leq r, \varphi(z_j) = \prod_{i=1}^r z_i^{m_{ij}}, \text{ where } (m_{ij})_{1 \leq i, j \leq r} \in \text{GL}_r(\mathbb{F}_p). \text{ If } r + 1 \leq j \leq n, \varphi(z_j) = a_j z_{\tau(j)} \prod_{i=1}^r z_i^{m_{ij}}, \text{ where } a_j \in k^*, \tau \in S_{n-r}, m_{ij} \in \mathbb{F}_p. \]

Proof Let \(\varphi \in \text{Aut}(A(n)) \) be such that \(\sigma_{\varphi} \in N_{G_{\mathfrak{g}}}(t_r) \). There exists an invertible matrix \((m_{ij}) \in \text{GL}_n(k) \) such that

\[z_i \partial_i = \sum_{j=1}^n m_{ij} \varphi(z_j \partial_j) \quad 1 \leq i \leq n. \]

We put \(f_j := \varphi(z_j) \), then it is a simple exercise in linear algebra to show

\[z_i \partial_i f_j = m_{ij} f_j, \quad 1 \leq i, j \leq n. \tag{4.2} \]
Note that \(\{z_1^{a_1} \cdots z_n^{a_n} ; \ 0 \leq a_1, \ldots, a_n < p \} \) is a \(k \)-basis of \(A(n) \) consisting of weight vectors. Our assertion follows from Eq. 4.2 in conjunction with the weight space decomposition.

Corollary 4.2 \(C_{G_0}(t_r) \cong (k^*)^{n-r} \). In particular, \(C_G(t_r) = N_G(t_r)^0 \).

Proof As \(\sigma_\varphi \in C_{G_0}(t_r) \), direct computation shows that the weights \(z_i \) and \(\varphi(z_i) \) are the same. The assertion follows by applying the similar argument as in Proposition 4.1.

Acknowledgements This work is supported by NSFC (Nos. 11801204, 1210011696), NSF of Yunnan Province (No. 2020J0375), the Fundamental Research Funds of YNUFE (No. 80059900196). We are indebted to the referee for carefully reading the manuscript and providing numerous comments.

Data Availability The datasets supporting the conclusions of this article are included within the article and its additional files.

References

1. Bois, J.-M., Farnsteiner, R., Shu, B.: Weyl groups for non-classical restricted Lie algebras and the Chevalley restriction theorem. Forum Math. **26**, 1333–1379 (2014)
2. Demushkin, S.: Cartan subalgebras of simple Lie \(p \)-algebras \(W_n \) and \(S_n \). Siberian Math. J. **11**, 233–245 (1970)
3. Demushkin, S.: Cartan subalgebras of simple non-classical Lie \(p \)-algebras. Math. USSR Izv. **6**, 905–924 (1972)
4. Dickson, L.: A fundamental system of invariants of the general modular linear group with a solution of the form problem. Trans. Amer. Math. Soc. **12**, 75–98 (1911)
5. Jantzen, J.: Nilpotent Orbits in Representation Theory. Progress in Math., vol. 228. Birkhäuser, Boston (2004)
6. Jensen, M.: Invariant Theory of Restricted Cartan Type Lie Algebras. PhD-Thesis Aarhus University (2015)
7. Ou, K.: Modular invariants for some finite modular pseudo-reflection groups, preprint, arXiv:2003.03557 (2020)
8. Premet, A.: The theorem on the restriction of invariants, and nilpotent elements in \(W_n \). Math. USSR Sb. **73**, 135–159 (1992)
9. Strade, H.: Simple Lie Algebras Over Fields of Positive Characteristic I: Structure Theory de Gruyter Expositions in Mathematics, vol. 38. Walter de Gruyter, Berlin/New York (2004)
10. Wilson, R.: Automorphisms of graded Lie algebras of Cartan type. Comm. Algebra **3**, 591–613 (1975)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.