Electrical Properties of Nano Bi$_2$O$_3$ Added (Bi,Pb)Sr-Ca-Cu-O Superconductor

Nurul Raihan Mohd Suib1,2, J. Nur-Akasyah 1, K. Muhammad Aizat1, R. Abd-Shukor1,

1School of Applied Physics, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia,
2Fakulti Sains Gunaan, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

ras@ukm.edu.my

Abstract. In this study, Bi$_2$O$_3$ nanoparticles were added into (Bi$_{1.6}$Pb$_{0.4}$)Sr$_2$Ca$_2$Cu$_3$O$_{10}$ (BPSCCO) superconductor. Ultrafine BPSCCO powders were prepared by the co-precipitation method. Bi$_2$O$_3$ with weight percent (wt. %) 0, 0.04, 0.06, and 0.10 was added during the final heating stage. The samples were investigated by x-ray powder diffraction method. Critical current density, J_c was measured between 40 K and 77 K with the 1 µV/cm criterion. DC electrical resistivity was measured using the four point probe method. This result showed that the highest J_c was observed for sample with 0.06 wt. % Bi$_2$O$_3$. A gradual decrease of J_c and transition temperature T_c was observed for samples with greater than 0.06 wt. % Bi$_2$O$_3$.

1. Introduction

There are many studies done to improve the critical current density of (Bi,Pb)Sr-Ca-Cu-O (BPSCCO) superconductor. The low operating temperature required by low-temperature metallic superconductors (LTS), with transition temperatures below 23 K has limited their practical use in power application [1]. Existing HTS wires technology need to be improved for grid application. The application of superconductor in power grid can be performed at liquid nitrogen temperature [2, 3].

The critical current density, J_c can be determined from the current-voltage characteristics. In transport measurements, electric field criterion such as 1 µV/cm are often used to determine J_c [4]. Addition of other element in BPSCCO can act as impurity for pinning center to improve J_c and transition temperature T_c [5-8]. Among the Bi-based materials, Bi$_2$Sr$_2$Ca$_2$Cu$_3$O$_{10}$ (Bi-2223) phase, which is also called high T_c phase, is of great interest due to its higher critical temperature (∼110 K), atmospheric stability and ability to be rolled into long wires or tapes [9].

In application of BSCCO phase superconductor, the major limitation is the intergrain weak links and flux pinning capability. Effective artificial flux pinning is introduced to enhance flux pinning capability. The flux pinning capability could be improved by microstructural control such as concentration of dislocations and planar faults, tiny secondary phase and irradiation damage zones [10]. From a previous study, HTSC tapes were prepared with the optimum amount 0.01 wt. % nano Bi$_2$O$_3$ addition. In the current study nanosize Bi$_2$O$_3$ were added into (Bi,Pb)Sr-Ca-Cu-O with 0 to 0.15 wt. % [11]. The objectives of this study were to investigate the effect of nano Bi$_2$O$_3$ on the transport properties of (Bi,Pb)Sr-Ca-Cu-O superconductor.
2. Experimental Details

Bi(Pb)-Sr-Ca-Cu-O high-temperature superconductor was prepared via the co-precipitation method. The chemicals used in this method were bismuth acetate 99.99 %, strontium acetate, not mentioned percentage (Aldrich), lead acetate 99.5 %, calcium acetate 90 %, (Fluka) and copper acetate 98 % (Alfa Aesar). Oxalic acid, acetic acid, 2-propanol and deionized water were used as solutions in this synthesis. The acetate powders were diluted in acetic acid solution with a stoichiometric amount (solution A). The mixture was stirred for about 2 h at 80 °C to dilute the entire chemical to form dark blue colour solution. Oxalic acid (0.5M) was mixed to the water: isopropanol with ratio 1:1.5 to form solution B.

Solutions A and B were mixed at 0-3 °C for 30 min to form blue navy slurry. The precipitate was filter and dried at 80-100 °C for 8 h. The blue powder was calcined at 730 °C for 12 h. This calcination was to remove impurities from the powder. The powder was reground and calcined again at 845 °C for 24 h. This was followed by the addition of Bi₂O₃ nanopowder Aldrich 99.9 % (0, 0.04, 0.06 and 0.10 wt. %). The powder was pressed into pellets and sintered at 845 °C for 48 h in a furnace. DC electrical resistivity was measured using the four point probe technique in combination with CTI cryogenics closed-cycle refrigerator (Model 22). The transport critical current density \(J_c \) was measured using pellets cut into bar shape using by the four-point probe method with the 1 µV/cm criterion between 40 and 77 K. The XRD patterns of the sample were recorded using a Bruker XRD diffractometer with CuKα radiation.

3. Results and Discussion

Table 1 shows the onset transition temperature (\(T_{c-onset} \)), zero resistance temperature (\(T_{c-zero} \)), transition width \(\Delta T_c \), critical current density \(J_c \) at 77 K and volume fraction of Bi-2212 and Bi 2223 phase. The volume fraction of the highest Bi-2223 phase is the non-added sample. The low \(T_c \) phase of Bi-2212 was observed in the 0.10 wt. % sample.

Figure 1 shows the XRD patterns of the non-added sample, 0.04, 0.06, and 0.10 wt. % Bi₂O₃ added samples. Most of the peaks in both non-added and Bi₂O₃ added samples belong to the high \(T_c \) phase (Bi-2223) with a few peaks corresponding to the low \(T_c \) phase (Bi-2212). The addition at 0.10 wt % sample showed the lowest \(T_c \), which showed the intensity of high phase (Bi,Pb) -2223 (H) decreased with increase of the low phase of (Bi,Pb) -2212 (L). (Bi,Pb) -2212 (L) phase exists at 0.10 wt. % sample much more than other samples. For sample 0.06 wt. % XRD pattern (Bi,Pb) -2223 (H) was nearly same with 0.04 wt% except for (Bi,Pb) -2212 (L) peak 1115L which diminished.

Figure 2 shows the resistance versus temperature curve for all samples. The highest \(T_c \) achieved was at 0.04 wt. % (106 K), with optimum amount of addition during the final processing of BPSCCO samples can effectively improve the flux pinning and increased \(T_c \) as well [14]. Normally, the superconducting transition temperature decreases with the increase of impurities [15]. The sample with 0.10 wt. % showed the lowest \(T_c \) value with 103 K.
Table 1. Onset transition temperature ($T_{c\text{onset}}$), zero resistance temperature ($T_{c\text{offset}}$), transition width ΔT_c and critical current density J_c at 77 K

Bi_2O_3 (wt. %)	$T_{c\text{onset}}$ (K)	$T_{c\text{offset}}$ (K)	ΔT_c (K)	J_c (mA/cm2)	Volume fraction Bi-2223	Volume fraction Bi-2212
0	112	105	7	982	89	11
0.04	113	106	7	1322	85	15
0.06	112	105	7	5047	82	18
0.10	111	103	8	3757	77	23

Figure 1. XRD patterns for Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_{10}$ of the non-added sample and samples added with 0.04, 0.06 and 0.10 wt. % Bi_2O_3. (H) denotes the high- T_c phase (Bi-2223) and (L) denotes the low- T_c phase (Bi-2212).
Figure 2. Resistance versus temperature curves for Bi$_{1.4}$Pb$_{0.6}$Sr$_2$Ca$_2$Cu$_3$O$_{10}$ of the non-added sample and samples added with 0.04, 0.06 and 0.10 wt % Bi$_2$O$_3$. The inset shows the curve near T_c.

The critical current density, J_c of all samples were measured at 40 K, 50 K, 60 K, 70 K and 77 K are shown in Figure 3. The highest J_c was observed at 40 K for 0.06 wt. % with the highest value (7396 mA/cm2). J_c at 77 K for this sample was 5237 mA/cm2. The J_c of the non-added sample showed J_c at 40 K was 1833 mA/cm2 and J_c at 77 K was 982 mA/cm2. The J_c value of 0.10 wt. % sample at 40 K was 5237 mA/cm2 and at 77 K was 3757 mA/cm2. All samples with the addition of nano Bi$_2$O$_3$ showed a higher transport critical current density compared to the non-added sample. Overall, J_c decreased with increasing temperature and this due to the thermally activated flux creep [16].
Figure 3. Critical current density, J_c, of Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_{10}$, of the non-added sample and samples added with 0.04, 0.06 and 0.10 wt. % Bi$_2$O$_3$ at temperature 40, 50, 60, 70 and 77 K

4. Conclusion
Nano Bi$_2$O$_3$ addition in (Bi,Pb)-2223 superconductor improved J_c for all added samples. An appropriate amount of Bi$_2$O$_3$ optimized the critical current density of (Bi,Pb)-2223. The highest J_c was observed in the 0.06 wt. % sample. XRD pattern showed the increase of (Bi,Pb)-2212 phase which lowered T_c, but did not affect J_c. The excess amount of Bi$_2$O$_3$ for 0.10 wt. % sample contributed to the low T_c.

Acknowledgments
This work was supported by Universiti Kebangsaan Malaysia under grant number AP-2015-006 and the Ministry of Higher Education of Malaysia under grant number FRGS/1/2017/STG02/ UKM/01/1.

References
[1] A.P. Malozemoff, Does the electric power grid need a room temperature superconductor?, Physica C: Superconductivity, 494 (2013) 1-4.
[2] K. Funaki, M. Iwakuma, K. Kajikawa, M. Hara, J. Suchiro, T. Ito, Y. Takata, T. Bohno, S.I. Nose, M. Konno, Y. Yagi, H. Maruyama, T. Ogata, S. Yoshida, K. Ohashi, H. Kimura, K. Tsutsumi, Development of a 22 kV/6.9 kV single-phase model for a 3 MVA HTS power
transformer, IEEE Transactions on Applied Superconductivity, 11 (2001) 1578-1581.

[3] X. Ma, Q. Hao, G. Liu, H. Zheng, X. Xu, G. Jiao, S. Zhang, C. Li, P. Zhang, Influences of Pb content on the critical current of Bi-2223 multi-filamentary tapes, Materials Letters 162 (2016) 5-8.

[4] J.P. Rush, C.J. May-Miller, K.G.B. Palmer, N.A. Rutter, A.R. Dennis, Y.H. Shi, D.A. Cardwell, J.H. Durrell, Transport in Bulk Superconductors: A Practical Approach?, IEEE Transactions on Applied Superconductivity 26 (2016) 1-4.

[5] A. Agail, R. Abd-Shukor, Effect of Different Nanosized NiO Addition on Ag-Sheathed (Bi1.6Pb0.4)Sr2Ca2Cu3O10 Superconductor Tapes, Journal of Superconductivity and Novel Magnetism 27 (2013) 1273-1277.

[6] R. Abd-Shukor, I. Kong, E.L. Lim, N.A. Mizan, H.A. Alwi, M.H. Jumali, W. Kong, Enhanced Critical Current Density of FeF2 Added YBa2Cu3O7−δ, Journal of Superconductivity and Novel Magnetism 25 (2012) 957-960.

[7] R. Abd-Shukor, W. Kong, Magnetic field dependent critical current density of Bi−Sr−Ca−Cu−O superconductor in bulk and tape form with addition of Fe3O4 magnetic nanoparticles, Journal of Applied Physics 105 (2009) 07E311.

[8] A. Zelati, A. Amirabadizadeh, A. Kompany, H. Salamati, J. Sonier, Effect of Eu2O3 Nanoparticles Addition on Structural and Superconducting Properties of BSCCO, Journal of Superconductivity and Novel Magnetism 27 (2014) 1369-1379.

[9] M. Mubeen, M. Anis-ur-Rehman, Study of Superconducting Properties in Bismuth-Based Cerium Doped High-Tc Superconductors, Journal of Superconductivity and Novel Magnetism 26 (2012) 1123-1127.

[10] M. Roumié, S. Marhaba, R. Awad, M. Kork, I. Hassan, R. Mawassi, Effect of Fe2O3 Nanoxide Addition on the Superconducting Properties of the (Bi,Pb)-2223 Phase, Journal of Superconductivity and Novel Magnetism 23 (2010) 143-153.

[11] N.A.A. Yahya, A. Al-Sharabi, N.R.M. Suib, W.S. Chiu, R. Abd-Shukor, Enhanced transport critical current density of (Bi, Pb)-2223/Ag superconductor tapes added with nano-sized Bi2O3, Ceramics International 42 (2016) 18347-18351.

[12] T. Matsushita, A. Suzuki, T. Kishida, M. Okuda, H. Naito, The effect of Ag on the superconductivity of Bi2-x Pb, Sr2 Ca2 Cu3 Oy superconductors prepared by an optimum thermal procedure, Superconductor Science and Technology 7 (1994) 222.

[13] I. Hamadneh, S.A. Halim, C.K. Lee, Characterization of Bi1.6Pb0.4Sr2Ca2Cu3Oy ceramic superconductor prepared via coprecipitation method at different sintering time, Journal of Materials Science 41 (2006) 5526-5530.

[14] M. Annabi, A. M’Churgui, I. Ben Azzouz, M. Zououi, M. Ben Salem, Addition of nanometer Al2O3 during final processing of (Bi, Pb)-2223 superconductor, Physica C, 405 (2004) 25-33.

[15] P.K. Mukherjee, Effect of Non-magnetic Impurities on Iron-based Superconductors, Journal of Superconductivity and Novel Magnetism 29 (2015) 323-327.

[16] W. Kong and R. Abd-Shukor, Enhanced Electrical Transport Properties of Nano NiFe2O4 added (Bi1.6Pb0.4)Sr2Ca2Cu3O10 Superconductor, J Supercond Nov Magn 23 (2009) 257–263.