Corrigendum: STE-QUEST—test of the universality of free fall using cold atom interferometry (2014 Class. Quantum Grav. 31 115010)

D Aguilera¹, H Ahlers², B Battelier³, A Bawamia⁴, A Bertoldi³, R Bondarescu⁵, K Bongs⁶, P Bouyer⁷, C Braxmaier⁷, A Bawamia, L Cacciapuoti⁷, C Chaloner⁹, M Chwalla¹⁰, W Ertmer⁹, M Franz¹¹, N Gaaloul², M Gehler⁸, D Gerardi¹⁰, L Gesa¹², N Gürlebeck⁷, J Hartwig⁷, M Hauth¹³, O Hellmig¹⁴, W Herr¹², S Herrmann⁷, A Heske⁶, A Hinton⁶, P Ireland⁹, P Jetzer⁵, U Johann¹⁰, M Krutzik¹³, A Kubelka⁷, C Lämmerzahl⁷, A Landragin¹⁵, I Lioro¹⁵, D Massonnet¹⁰, I Mateos¹³, A Milke⁷, M Nofrarias¹², M Oswald¹¹, A Peters¹³, K Posso-Trujillo⁹, E Rasel⁵, E Rocco⁹, A Roua¹⁷, J Rudolph⁵, W Schleich¹⁷, C Schubert¹⁴, T Schuldt¹¹, S Seidel¹, K Sengstock¹⁴, C F Sopuerta¹², F Sorrentino¹⁸, D Summers⁹, G M Tino¹⁸, C Trenkel¹⁹, N Uzunoglu²⁰, W von Klitzing²¹, R Walser²², T Wendrich¹, A Wenzlawski¹⁴, P Weßels²³, A Wicht⁴, E Wille⁸, M Williams¹⁹, P Windpassinger¹⁴ and N Zahzam²⁴

¹German Aerospace Center (DLR), Institute for Space Systems, Robert-Hooke-Str. 7, 28359 Bremen, Germany
²Institute of Quantum Optics, Leibniz University Hanover, Welfengarten 1, 30167 Hanover, Germany
³Laboratoire Photonique, Numérique et Nanosciences-LP2N Université Bordeaux-IOGS-CNRS: UMR 5298, Talence, France
⁴Ferdinand-Braun-Institut, Gustav-Kirchhoff-Str. 4, 12489 Berlin, Germany
⁵Institute of Theoretical Physics, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
⁶School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, UK
⁷Center of Applied Space Technology and Microgravity (ZARM), University Bremen, Am Fallturm, 28359 Bremen, Germany
⁸ESA-European Space Agency, ESTEC, Keplerlaan 1, 2200 AGNoordwijk ZH, Netherlands
⁹SEA House, Bristol Business Park, Coldharbour Lane, Bristol BS16 1EJ, UK
¹⁰Astrium GmbH—Satellites, Claude-Dornier-Str., 88090 Immenstaad, Germany
¹¹Institute of Optical Systems, University of Applied Sciences Konstanz (HTWG), Brauneggerstr. 55, 78462 Konstanz, Germany
This sentence in the abstract:

‘… by performing a measurement of the gravitational redshift of the Sun and the Moon …’

should be:

‘… by performing a test of the gravitational redshift of the Sun and the Moon …’.

Moreover, the meaning of the following statement in the introduction was not very clear and led to unfortunate interpretation of the performance of the redshift test.

‘The microwave link will allow for a measurement of the gravitational redshift due to the Sun’s and the Moon’s gravitational potential by ground clock comparison, expected to reach an uncertainty of 5×10^{-7} and 9×10^{-5}, respectively. The former is presently measured to the few per cent level [19, 20]; the latter is not experimentally determined yet. In case the optional atomic cesium clock is included in the STE-QUEST payload, the redshift due to the Earth’s gravitational field will also be measured with an uncertainty of 2×10^{-7} resulting in a factor 350 improvement over the current best measurements by Gravity Probe A [21].’
It is more carefully stated if replaced by:

'Through null-redshift tests for the gravitational field of the Sun and the Moon based on ground clock comparison, the microwave link will allow us to put bounds on possible violations of LPI at the expected levels of 5×10^{-7} and 9×10^{-5}, respectively [http://arxiv.org/abs/1404.4307]. The gravitational redshift for the Sun has been measured at the percent level [19, 20], whereas for the Moon it has not been experimentally determined yet.'
STE-QUEST—test of the universality of free fall using cold atom interferometry

D N Aguilera, H Ahlers, B Battelier, A Bawamia, A Bertoldi, R Bondarescu, K Bongs, P Bouyer, C Braxmaier, L Cacciapuoti, C Chaloner, M Chwalla, W Ertmer, M Franz, N Gaaloul, M Gehler, D Gerardi, L Gesa, N Gürlebeck, J Hartwig, M Hauth, O Hellmig, W Herr, S Herrmann, A Heske, A Hinton, P Ireland, P Jetzer, U Johann, M Krutzik, A Kubelka, C Lämmerzahl, A Landragin, I Lloro, D Massonnet, I Mateos, A Milke, M Nofrarias, M Oswald, A Peters, K Posso-Trujillo, E Rasel, E Rocco, A Roura, J Rudolph, W Schleich, C Schubert, T Schultd, S Seidel, K Sengstock, C F Sopuerta, F Sorrentino, D Summers, G M Tino, C Trenkel, N Uzunoglu, W von Klitzing, R Walser, T Wendrich, A Wenzlawski, P Weßels, A Wicht, E Wille, M Williams, P Windpassinger and N Zahzam

1 German Aerospace Center (DLR), Institute for Space Systems, Robert-Hooke-Str. 7, D-28359 Bremen, Germany
2 Institute of Quantum Optics, Leibniz University Hanover, Welfengarten 1, D-30167 Hanover, Germany
3 Laboratoire Photonique, Numérique et Nanosciences-LP2N Université Bordeaux-1OGS-CNRS: UMR F-5298, Talence, France
4 Ferdinand-Braun-Institut, Gustav-Kirchhoff-Str. 4, D-12489 Berlin, Germany
5 Institute of Theoretical Physics, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
6 School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, UK
7 Center of Applied Space Technology and Microgravity (ZARM), University Bremen, Am Fallturm, D-28359 Bremen, Germany
8 ESA—European Space Agency, ESTEC, Keplerlaan 1, 2200 AG Noordwijk ZH, Netherlands
9 SEA House, Bristol Business Park, Coldharbour Lane, Bristol BS16 1EJ, UK
10 Astrium GmbH—Satellites, Claude-Dornier-Str., D-88090 Immenstaad, Germany
11 Institute of Optical Systems, University of Applied Sciences Konstanz (HTWG), Brauneggersr. 55, D-78462 Konstanz, Germany
12 Institut de Ciencies de l’Espai (CSIC-IEEC), Campus UAB, Facultat de Ciencies, E-08193 Bellaterra, Spain
13 Institute for Physics, Humboldt-University Berlin, Newtonstr. 15, D-12489 Berlin, Germany
Abstract

The theory of general relativity describes macroscopic phenomena driven by the influence of gravity while quantum mechanics brilliantly accounts for microscopic effects. Despite their tremendous individual success, a complete unification of fundamental interactions is missing and remains one of the most challenging and important quests in modern theoretical physics. The spacetime explorer and quantum equivalence principle space test satellite mission, proposed as a medium-size mission within the Cosmic Vision program of the European Space Agency (ESA), aims for testing general relativity with high precision in two experiments by performing a measurement of the gravitational redshift of the Sun and the Moon by comparing terrestrial clocks, and by performing a test of the universality of free fall of matter waves in the gravitational field of Earth comparing the trajectory of two Bose–Einstein condensates of 85Rb and 87Rb. The two ultracold atom clouds are monitored very precisely thanks to techniques of atom interferometry. This allows to reach down to an uncertainty in the Eötvös parameter of at least 2×10^{-15}.

In this paper, we report about the results of the phase A mission study of the atom interferometer instrument covering the description of the main payload elements, the atomic source concept, and the systematic error sources.

Keywords: atom interferometry, equivalence principle, cold atoms, Bose–Einstein condensates, microgravity, quantum gravity, space physics

PACS numbers: 03.75.Dg, 37.25.+k, 42.50.Gy, 03.30.+p, 04.80.Cc

(Some figures may appear in colour only in the online journal)
1. Introduction

The current theory of gravity, general relativity, is based on Einstein’s equivalence principle. It consists of three parts: the universality of free fall (UFF), the local position invariance, and the local Lorentz invariance.

The UFF25 implies that the trajectories of test masses, for which tidal deformations, self-gravity, electromagnetic charges, spin, etc are negligible, depend only on their initial position and their initial velocity. The local Lorentz invariance postulates that the outcome of any non-gravitational experiment performed in a freely falling frame is independent of the velocity and of the orientation of that frame. The local position invariance states that the outcome of such an experiment is also independent of where and when in the universe it is carried out, cf [1–3].

Essentially all efforts to unify gravity with the other fundamental interactions (e.g. string theory, canonical quantum gravity, etc) predict a violation of Einstein’s equivalence principle at some scale [2, 4]. Therefore, a crucial step toward an unified theory requires experiments that test the assumptions and principles of general relativity and search for possible violations or set bounds to the possible deviations. Such deviations and also their absence could, indeed, shed some light on the quantum nature of gravity. This holds in particular for the low energy limits of string theory, where extra moduli fields arise, see, e.g., [5–7]. Moreover, theories with a fifth force, theories invoked to explain dark energy, and theories with varying fundamental constants and non-minimal coupling can entail a violation of the UFF, see, e.g., [8–12], and [13–15], respectively. Another violation scenario is described in [16]. A phenomenological framework describing a violation of the UFF is, for example, the standard model extension, see, e.g., [17, 18]. A violation of the UFF is quantified by the Eötvös ratio $\eta = |\Delta a| / (\vec{g} \cdot \vec{e}_a / \Delta a)$, where Δa denotes the differential acceleration of the two test bodies and $\vec{g} \cdot \vec{e}_a$ the projection of the local gravitational acceleration \vec{g} onto the sensitive axis \vec{e}_a of the accelerometer.

STE-QUEST (spacetime explorer and quantum equivalence principle space test) is a medium-size (M3) candidate satellite mission, which we proposed to ESA in the scope of the Cosmic Vision program. It is currently in the assessment phase (Phase A). The planned STE-QUEST satellite consists of a dual species (85Rb and 87Rb) atom interferometer (AI) and a microwave link. A microwave clock based on laser cooled caesium atoms and an optical link are considered as an optional payload. The AI shall test UFF with atomic wave packets of different masses to the unprecedented accuracy of about $\eta \leq 2 \cdot 10^{-15}$. The use of Bose–Einstein condensates (BECs) allows taking advantage of their intrinsic properties, i.e. long coherence length and slow expansion. The microwave link will allow for a measurement of the gravitational redshift due to the Sun’s and the Moon’s gravitational potential by ground clock comparison, expected to reach an uncertainty of 5×10^{-7} and 9×10^{-5}, respectively. The former is presently measured to the few per cent level [19, 20]; the latter is not experimentally determined yet. In case the optional atomic caesium clock is included in the STE-QUEST payload, the redshift due to the Earth’s gravitational field will also be measured with an uncertainty of 2×10^{-7} resulting in a factor 350 improvement over the current best measurements by Gravity Probe A [21]. The long common-view contacts required to compare ground clocks and the need for a strong gravity field for maximizing an eventual UFF-violating signal define the highly elliptic STE-QUEST orbit. The mission details were investigated in an independent industry study; its results are presented in [22]. Preliminary aspects of the mission were presented in a recent conference proceedings [23].

Many tests of the UFF on ground and in micro-gravity environments reported no violation down to the 1×10^{-13} level; we summarized them in tables 1 and 2. STE-QUEST performs a

25 The UFF is also called weak equivalence principle.
Table 1. Existing and planned UFF tests on ground.

Apparatus	Target precision for η	Species	Reference
Torsion balancec	$(0.3 \pm 1.8) \times 10^{-13}$	Ti, Be	[24]
Lunar laser rangingb,c	$(-0.8 \pm 1.8) \times 10^{-13}$	Moon, Earth	[25]
AI/FG5	$(7 \pm 7) \times 10^{-9}$	Cs, Glass	[26]
Dual AI (Garching)	$(1.2 \pm 1.7) \times 10^{-7}$	85Rb, 87Rb	[27]
Dual AI (ONERA)	$(1.2 \pm 3.2) \times 10^{-7}$	85Rb, 87Rb	[28]
Dual AI (Firenze)	7×10^{-7}	87Sr, 88Sr	[29]
Dual AIa (Hanover)	10^{-9}	85Rb, K	[30]
Dual AIa (Berkeley)	10^{-14}	6Li, 7Li	[31]
Dual AI tower initial/upgradee (Stanford)	$10^{-15/10^{-16}}$	85Rb, 87Rb	[32]

a Work in progress.
b LLR references the differential acceleration between Moon and Earth to the gravitational field of the Sun. All other tests in this table are referenced to the gravitational field of Earth.
c Macroscopic test masses.

Table 2. Planned and proposed UFF tests in space and zero-g environments. All tests in this table are referenced to the gravitational field of Earth.

Apparatus	Target precision for η	Species	Reference
SAI ground based/in zero-gb	$[10^{-7/1.8 \times 10^{-10}}]^b$	87Rb	[33]
ICE	10^{-11}	85Rb, K	[34]
QUANTUS	6.3×10^{-11}	87Rb, K	[35]
MICROSCOPEa	10^{-15}	Pt, Ti	[36]
STEPa	10^{-18}	Pt, Ir, Nb, Be	[37]
GGc	10^{-17}	c	[38]

a Macroscopic test masses.
b Single species experiment, sensitivity given in m s$^{-2}$ Hz$^{-1/2}$.
c Not yet decided.

quantum test of the UFF by tracking the propagation of matter waves in Earth’s gravitational field by means of a two species AI achieving an accuracy of at least 2×10^{-15}. The matter waves are generated from two ensembles of rubidium isotopes (85Rb and 87Rb), which are cooled down until Bose–Einstein condensation sets in, allowing an improvement of the UFF test by orders of magnitude compared to the non-condensate matter case, see [27]. The interferometer is based on previous studies like SAI (Space Atom Interferometer) [33], SpaceBEC (Quantum gases in microgravity), the french CNES project I.C.E. (Interférométrie Cohérente pour l’Espace) [34, 39] as well as the German DLR funded projects QUANTUS (Quantengase unter Schwerelosigkeit) and PRIMUS (Präzisionsinterferometrie unter Schwerelosigkeit). Within QUANTUS interferometry was already demonstrated with degenerate 87Rb atoms under microgravity in the drop tower at ZARM (Germany) [40, 41] and aims with the MAIUS experiments at realizing quantum gases interferometry on sounding rockets starting from 2014.

An advantage of using matter waves is that the center of mass positions of the BECs can be imaged independently for each wave packet and be brought to coincide. This assumption in the UFF can never be fully matched using classical bulk matter. At best the deviation caused by initially different positions can be simulated. The experiment proposed here monitors the motion of two BEC wave packets with initially superposed centers. It can be interpreted as a test of classical general relativity coupled to a Klein–Gordon field in a non-relativistic limit or, equivalently, a Schrödinger equation with an external gravitational potential.
2. Objectives, performance and operation

The objective of the STE-QUEST AI is to test the UFF using matter waves to an uncertainty in the Eötvös parameter better than 2×10^{-15} [42]. For STE-QUEST, $\Delta a = a_{87} - a_{85}$ denotes the differential acceleration between the two wave packets, the sensitivity axis $\vec{e}_{\Delta a}$ is given by the effective wave vector of the beam splitting light fields $\vec{k} \parallel \vec{e}_{\Delta a}$. A high common mode rejection ratio for the differential acceleration of $\approx 2.5 \times 10^{-9}$ is a driving requirement for the overall performance. This and the heritage from various precision and mixture experiments motivated the choice of 87Rb and 85Rb as atomic species for STE-QUEST. Following [7], which is one candidate theory describing violations of the UFF, one would expect an approximately 10–30 times larger violation of the UFF for other choices of isotopes like 87Rb and K. However, for these the common mode rejection rejection ratio would be ≈ 300 for a vibrational background acceleration comparable to STE-QUEST [34]. Thus, although the violation might be smaller the better common mode rejection for the choice of $^{85/87}$Rb counter-balances this effectively turning it into the superior choice. Compared to state of the art torsion balance [24] and LLR tests [25] as well as planned or proposed satellite missions [36–38] with macroscopic test masses, STE-QUEST offers a complementary approach as a test with a quantum sensor. Several advantages over proposed ground based AI experiments [32, 43, 44] are present due to the ‘free fall’ conditions in a space borne apparatus. Here, the center of mass of the atoms is at rest with respect to the experimental set-up. Consequently, long free evolution times $T = 10 \text{s}$ can be realized in a compact set-up. This is a key ingredient to reach a high sensitivity to accelerations \vec{a}, because the phase shift in the interferometer scales as $\phi_{\text{acc}} = \vec{k} \cdot \vec{a} T^2$ with the wave number k. For ground based experiments, suspension techniques [31] or large momentum beam splitters [32, 43, 44] are proposed to reach high scaling factors although additional constraints due to systematic errors have to be expected [45]. Using a satellite with inertial pointing mode avoids the necessity of a mirror counter rotation to maintain the interferometer contrast [43, 46]. Residual rotations of the satellite [42] are compatible with the requirements of the STE-QUEST AI. Moreover, the low background accelerations of $4 \times 10^{-7} \text{ m s}^{-2}$ in STE-QUEST compared to 9.8 m s^{-2} on ground reduce systematic effects and enable the use of weak traps during the preparation of the atomic ensembles. This is mandatory to reach atom numbers of 10^6 in dilute ensembles and to efficiently apply delta-kick cooling (DKC) techniques [40, 47–49] to reach low expansion rates. Furthermore, a symmetric beam splitting technique [50, 51] can be implemented which inherently suppresses systematic errors and associated noise sources. An additional distinctive advantage is the satellite motion which causes a modulation of a possible violation signal. As a result reorientation and rescaling of the gravity signal allow a separation of a possible violation signature from systematic biases that can always occur in a static terrestrial instrument. Systematic errors which are stable in time and do not depend on the Earth’s gravity field can thus be estimated and ruled out.

In STE-QUEST, a quantum projection noise limited sensitivity per cycle of $\sigma_{\Delta a}/\sqrt{T_c} \approx 3 \times 10^{-12} \text{ m s}^{-2}$ for 10^6 atoms of each species, a wave number $k = 8\pi/(780 \text{ nm})$, a free evolution time $T = 5 \text{ s}$, and a cycle time $T_c = 20 \text{ s}$ is anticipated. This value assumes a contrast $C = 0.6$. It is affected by a dephasing due to Earth’s gravity gradient T_{gg} coupled to
the initial size $w_r = 300 \, \mu m$ and expansion rate $w_v = 82 \, \mu m \, s^{-1}$ of the atomic ensembles and is estimated by the formula $C = \exp(-kwT_gT^2)/2 \cdot \exp(-kwT_gT^3)/2$ [52].

The STE-QUEST AI will measure for 0.5 h during each perigee pass of the highly elliptical orbit with a total duration of 16 h (see figure 1). At perigee, the proximity to Earth maximizes the signal of an eventual UFF-violating signal. The satellite will be non-rotating during this phase which leads to a varying projection of the local gravitational acceleration g and of the gravity gradient T_g onto the sensitive axis. Additionally, the interferometer contrast increases as the projection decreases. The altitude at perigee increases periodically during the mission from about 700–2200 km and then decreases back to 700 km. An integrated sensitivity per revolution to the Eötvös ratio of $\sigma_0^{1 \text{rev}} \approx 5 \times 10^{-14}$ is expected when taking into account the shot noise limit, altitude, and attitude of the satellite with respect to Earth.

Therefore, an integration time of about 1.5 years is required to reach the target sensitivity of $\sigma_0^{525 \text{revs}} \approx 2 \times 10^{-15}$ compatible with a total mission duration of 5 yr. Residual accelerations of the satellite will be controlled to avoid a signal drift [42]. Parameters of the AI payload will be re-calibrated or verified during the apogee phase of each orbit to ensure the reproducibility of the UFF test measurements at perigee. Byproduct of the mission will be the most extended evolution time of cold atoms in a free fall experiment.

3. System

3.1. Atom source

In order to reach the target performance, a Bose–Bose mixture of 10^6 atoms of each of the isotopes must be prepared in 10 s maximum. To this end, an atom chip [53–55] setup is used allowing for a fast evaporation and a low power consumption necessary for a satellite-borne device. Moreover, we opt for the use of quantum degenerate ensembles for several reasons. The most important are (i) keeping a reasonably small size of the mixture after a free evolution time of 10 s, (ii) reducing the size-related-systematics to an acceptable level and (iii) profiting from the additional control offered by a tunable interactions input state of the AI. It is important to notice that the dephasing associated to mean-field effects in AIs with interacting sources is
Figure 2. BEC generation and preparation sequence. The cycle starts with a loading phase of the main chamber by a 2D+ -MOT. In a rather short time the atoms are trapped in the chip magnetic trap. This allows to pre-evaporate the dual source for 3 s using RF fields. When the intra-species attractive collisions in 85Rb start to be severe due to the increased density of the gas, the Feshbach magnetic field is ramped up tuning these collisions to repulsive. The crossed-beam dipole trap is then loaded and the evaporation is performed by lowering the power of the tow laser beams. When the two gases reach degeneracy, they are released and freely expand. As soon as the linear regime of interactions is reached, a delta-kick cooling pulse is applied and the Feshbach field is switched-off. The two mixed clouds are pushed away from the chip surface by applying a Raman pulse normal to it. The same Raman beam is used to stop the atomic clouds when they reach a distance of about 15 mm from the surface avoiding the diffraction of the interferometry beams on it. This preparation phase is lasting less than 10 s in agreement with the science objectives.

Figure 2. BEC generation and preparation sequence. The cycle starts with a loading phase of the main chamber by a 2D+ -MOT. In a rather short time the atoms are trapped in the chip magnetic trap. This allows to pre-evaporate the dual source for 3 s using RF fields. When the intra-species attractive collisions in 85Rb start to be severe due to the increased density of the gas, the Feshbach magnetic field is ramped up tuning these collisions to repulsive. The crossed-beam dipole trap is then loaded and the evaporation is performed by lowering the power of the tow laser beams. When the two gases reach degeneracy, they are released and freely expand. As soon as the linear regime of interactions is reached, a delta-kick cooling pulse is applied and the Feshbach field is switched-off. The two mixed clouds are pushed away from the chip surface by applying a Raman pulse normal to it. The same Raman beam is used to stop the atomic clouds when they reach a distance of about 15 mm from the surface avoiding the diffraction of the interferometry beams on it. This preparation phase is lasting less than 10 s in agreement with the science objectives.

The source generation sequence depicted in figure 2 is initiated by loading an ultra-high vacuum (UHV) 3D-MOT from a high vacuum (HV) 2D+ -MOT through a differential pumping stage [35, 57] as illustrated in figure 3. The HV environment is intended for the atomic source, which operates at a Rubidium vapor pressure of a few 10^-7 mbar. This is the optimal vapor pressure range for the 2D+ -MOT that provides a pre-cooled beam of atoms toward the UHV chamber. Since the 2D+ -MOT gains an additional cooling mechanism through the means of two unbalanced counter propagating laser beams along the atom’s trajectory, the velocity and the velocity spread of the atoms can be controlled and fast loading (2 s at a flux of 10^10 87 Rb atoms per second) into the 3D-MOT can be achieved. Thanks to the natural abundance of the 85Rb isotope (≥72%) and the fact that two to three orders of magnitude less 85Rb atoms (compared to 87Rb) are necessary at the MOT stage, the same atom source will also be able to generate the envisioned flux of 10^9 85Rb atoms per second.

A multi-layer atom chip setup (figure 3) is used to trap the atoms from the atomic beam. In cooperation with external magnetic bias fields, the chip structures can generate a variety of trap configurations—from very shallow traps to collect the initial MOT to very tight confinement for fast evaporation [41]. Initially, the largest available (mesoscopic) chip structures are used for the 3D-MOT. For each species, three pairs of counter propagating laser beams, intersecting at the field minimum, are used to generate a mirror MOT [58]. The beams contain cooling and repumping light for 87/85Rb as well. Accordingly, more than 10^10 87Rb atoms and 10^9 85Rb atoms can be captured in a total loading time of 2 s.

reduced here by letting the atomic clouds freely expand until they reach the linear regime of interactions [56]. Only at this point, the interferometry sequence is started.
Once the atoms are captured in the chip MOT, the magnetic fields are switched-off for a few milliseconds (5 ms) to further cool the atoms through polarization gradient cooling. The final temperatures of the clouds after all laser cooling steps will be as low as 20 μK. After switching-on the offset magnetic field (5 ms), the 85Rb and the 87Rb atoms can be optically pumped to the weak-field seeking states $|F = 2, m_F = 2 \rangle_{^87}$ and $|F = 3, m_F = 3 \rangle_{^85}$ in a fraction of a millisecond.

After state preparation, the lasers are switched-off and the atoms are trapped solely by magnetic fields in a Ioffe–Pritchard trap created by the chip. One exquisite feature of this technology is the ability to generate quite shallow traps (geometric mean of about 7 Hz) being in the same time rather deep (around 100 μK trap depth in the three space directions). In this fashion, the atom loss during the MOT trapping is negligible. The temperatures, however, will rise because of heating and adiabatic compression of the trap.

A pre-cooling step is necessary to gain a sufficiently large phase space density (PSD of 10^{-5}–10^{-3}) before starting the all-optical evaporation. Radio frequency (RF) radiations are used to pre-evaporate 87Rb atoms solely. The number of 85Rb atoms remains approximately constant during this pre-cooling step thanks to the isotope selectivity of these radiations. The 85Rb atoms cool down sympathetically through collisions with 87Rb and rethermalize constantly. In about 3 s a temperature of a few μK and a size of about 10 μm are reached allowing to match the tight confinement of the optical trap and ensure efficient transfer. While the PSD is increased by an order of magnitude, the temperature rises due to an increase in inelastic collisions, especially for 85Rb atoms. This leads to a loss of one order of magnitude in atom numbers leaving the two ensemble with 10^{9} atoms for 87Rb and 10^{8} for 85Rb left at this step. No further cooling is possible since the 3-body losses of 85Rb due to its negative scattering length start to be severe at high densities.
Loading the optical trap is costing only another order of magnitude in particles number thanks to the size-compressed and pre-cooled samples. This loading is performed after ramping up a Feshbach field of about 158 G in 300 ms to avoid disturbing and heating the atoms with eddy currents. This field drives the ^{85}Rb atoms to a region of positive scattering lengths (ranging from $500\, a_0$ to $900\, a_0$) to allow for an efficient evaporation [59, 60]. Moreover, the magnetic field can be used to change the ratio between elastic and inelastic collisions in ^{85}Rb and thereby minimize losses by two- and three-body collisions. For all the range of values of the scattering lengths of ^{85}Rb mentioned above, the two degenerate gases should be in a miscible phase [59]. The two ensembles are loaded in a first dipole beam in 300 ms followed by a second one with a switch-on duration comparable to the first. Once in place, the final evaporation is carried out. The phase transition to Bose–Einstein condensation can be reached in 2–3 s using runaway all-optical evaporation [61]. When 10^6 atoms are obtained in the condensed phase for each isotope the far-off resonance lasers are turned-off in 50 ms.

An optimization step is starting at this point and lasts for less than 400 ms alternating free expansion and DKC pulse(s)[56]. A free expansion of the atomic clouds is starting in the Feshbach field. This expansion phase serves to damp down the density of ^{85}Rb to a level where the ensemble is stable even in the absence of an external magnetic field [56]. Not more than a few ms (3–6) are needed to this end. Nevertheless, the bias field is kept for about 10 ms after condensation in order to allow the two ensembles to reach the linear regime of interactions and avoid mean-field effects during interferometry. A DKC brief pulse(s) (a fraction of a ms) absorbs most of the kinetic energy of the atoms [40, 47–49]. This is achieved by suddenly turning -on and -off the final crossed laser traps acting as an atomic lens collimating the BEC clouds to a temperature equivalent expansion of 70 pK. This very low effective temperature accessible with DKC is necessary for keeping the size-related systematics at a low level enabling a direct read-out. Fringe patterns building up during the 10 s contribute solely to a loss of contrast. An alternative to this low expansion rate is to recover the contrast by unbalancing the time intervals between the interferometry pulses in a suitable way [62].

Since the last value of the magnetic field tunes solely the scattering length of ^{85}Rb, it is possible to optimize its magnitude to reject common size-related error sources such as wave-front curvatures [56]. This reduces the need for interferometry mirrors from extremely good quality ($\lambda/300$) to values of about $\lambda/30$. At this point the Feshbach field is switched-off without any influence on the free expansion of ^{85}Rb which recovers its negative scattering length of $-443\, a_0$.

A last manipulation before the interferometry first pulse consists in driving a Raman transition for the atoms in each cloud. One beam normal to the chip and its reflection from the surface are responsible for the 2-photon transition. As a result the atoms travel away from the chip surface. This serves to avoid wave front errors due to the diffraction of the interferometry beams on the chip. In a time interval of 1 s, the two ensembles are stopped by reversing the beams at a safe distance of about 15 mm.

3.2. Interferometry scheme

The interferometer scheme, detailed in [63], is based on a Mach–Zehnder like AI employing two photon Raman-transitions in a double diffraction setup for the coherent manipulation [50]. The interferometric sequence in this case is composed of a coherent splitting of the wave function into the two interferometer states, a mirroring of these states after a given interferometer time T and another subsequent splitting after a time T which closes the interferometer and encodes the phase difference between both paths into the population of the output ports. A two photon Raman-transition couples the two hyperfine levels of the rubidium
Figure 4. Interferometer scheme in a time series. The sequentially applied laser pulses split, reflect, and recombine the atomic wave-functions. The color of the balls represent the two hyperfine levels of the rubidium atoms. After release, the atoms are in the excited state (red balls), and during the atom interferometry sequence in the ground state (red circles). In this sketch perfect beam-splitting efficiency is assumed.

ground state while at the same time transferring a momentum of $2\hbar k_s$ to the atoms, where $\hbar k_s$ denotes the momentum transfer corresponding to the single photon transition. If the initial state has a vanishing momentum in comparison to the two-photon light field, the two momentum states with $\pm 2\hbar k_s$ are degenerated and a splitting into both states will occur as long as the effective momentum transfer is geometrically possible. This is obtained by retro-reflecting the light fields that are driving the Raman-transition. In this scheme, an effective momentum splitting of $4\hbar k_s = \hbar k$ is realized while the hyperfine state in the trajectories is always the same. The higher order coupling of the light fields yields to a stronger dependence of the transition probability on the velocity spread of the atomic cloud. Therefore as described in [56] an atomic ensemble with an effective temperature of 70 pK is used as initial interferometer state. Residual occupation of the state $0\hbar k_s$ is removed via a resonant light field since the internal state is different to the diffracted orders with $\pm 2\hbar k_s$. A sketch of the interferometric sequence can be seen in figure 4. Using a double diffraction scheme reduces the impact of phase shifts dependent on the hyperfine state. Examples are magnetic fields and off-resonant light fields coupling into the interferometer. Magnetic field gradients can still give rise to a residual phase shift. To circumvent this effect, the input hyperfine state can be switched between two successive measurements leading to a reversal of the effective coupling to magnet fields and thus suppressing gradient dependent phase shifts.

Gravimetric measurements based on AIs are usually limited by environmental noise, mainly vibrations of the experimental platform. The impact of these accelerations on the interferometer phase is determined by the sensitivity function which is dependent on the effective wave vector κ, the pulse timings and the Rabi-frequency of the two photon transition [64]. As long as these values are matched, environmental noise would lead to the same phase shifts for both species and thus vanish in the differential signal. The interferometer time T and
beam splitter pulse duration is set to be equal due to the use of common switching elements for all beams. To match the effective wave vectors and the Rabi-frequencies, the detuning of the Raman-beams to the single photon excitation and the power of the individual beams can be adjusted. The quality of this match directly influences the possible suppression of common mode accelerations (see section 4) and is discussed in more detail in [63].

4. Error budget

The choice of 87Rb and 85Rb is specifically attributed to the engineering of a large common mode rejection ratio. Still, several effects acting differently on the two isotopes can lead to a differential acceleration signal masking a possible violation signal. Additionally, every random fluctuation of a bias term has to stay below shot noise to not impede the targeted uncertainty. A detailed discussion can be found in [63].

Shot noise and contrast. Both atomic ensembles will feature $N = 10^6$ atoms. The effective wave vector of $k = 8\pi/(780\text{ nm})$, the free evolution time $T = 5\text{ s}$, and the contrast $C = 0.6$ are linked to the shot noise limited sensitivity per cycle $\sigma_{\text{SNL}}/\sqrt{T_c} = \sqrt{2/\pi N (CkT^2)^{-1}} \approx 2.93 \times 10^{-12} \text{ m s}^{-2}$ for a cycle time $T_c = 20\text{ s}$. Herein, the contrast is limited by velocity dependent phase shifts in the interferometer coupled to the velocity distribution of the atomic ensemble [46, 52]. The dominant contribution is given by Earth’s gravity gradient T_{gg}. Since the orientation and altitude of the satellite with respect to the Earth changes during perigee pass so does the contrast. Here, $C = 0.6$ is the minimum for an altitude of 700 km above Earth and $\vec{k} \parallel \vec{g}$. The rotation rates of $10^{-6} \text{ rad s}^{-1}$ in all three axes do not significantly affect the contrast in STE-QUEST. Velocity selectivity of the beam splitter neither threatens the contrast.

Spurious accelerations of the spacecraft. Any bias acceleration or vibration is suppressed in the differential signal. Suppression ratios of 140 dB were demonstrated in single species differential AIs [65]. This cannot directly be transferred to the dual species case, but the response of an AI to perturbations is well understood [34, 64]. Thus, the case of STE-QUEST can be modeled and from matching the wave vectors of the two species to 10^{-9} and the Rabi frequencies to 10^{-4} a suppression ratio of 2.5×10^{-9} can be obtained. This assumes the same switching element for both isotopes inherently matching the pulse duration and free evolution times.

Beam splitter laser linewidth. During the beam splitting process, one of the two light fields driving the Raman transition is reflected at the retro reflection mirror while the other is not. Consequently, a time delay between the arrival of the two phase locked laser beams results. This implies a sensitivity to frequency jitter of the beam splitter lasers during the time delay [66]. For a Lorentzian linewidth of 100 kHz integrated over the beam splitter pulse duration (100 μs) the noise contribution per shot is estimated to $8 \cdot 10^{-13} \text{ m s}^{-2}$, well below the STE-QUEST requirements.

Gravity gradients and rotations, photon recoil. In addition to the leading phase term $\propto kT^2$ several other phase terms arise due to the specified spurious rotation rates of $10^{-6} \text{ rad s}^{-1}$ in all three axes [42] and Earth’s gravity gradient of $T_{gg} \leq 2.5 \times 10^{-6} \text{ s}^{-2}$ as derived in [44, 67]. Most of these terms vanish due to the common mode suppression ratio, but those proportional to differential position and differential velocity of the atoms remain. The gravity gradient will induce a differential acceleration of $T_{gg} \Delta z$ due to an initial center of mass displacement...
Δz between the ensembles and TTzz,Δv due to differential center of mass velocity. Spurious rotations Ωx and Ωx coupled to differential center of mass velocities δv and δv will lead to differential accelerations 2Ωz,Δv and 2Ωx,Δv. Consequently, the center of mass overlap at the first beam splitter pulse has to be better than 1.1 nm and 0.31 nm s\(^{-1}\) in all three directions. To verify the requirements on relative positioning and velocity of the atomic samples, several images of the atomic ensembles will be taken during the apogee phase with an alternating time of flight of 1 and 10 s after the Raman kick. Fitting the images will reveal the differential center of mass positions. Averaging over a sufficient number of cycles will then allow a verification at the required precision. This procedure has the same sensitivity in all three directions. Therefore, the same overlap parameters for all three directions are considered.

These requirements imply restrictions on the magnetic field gradients during preparation which have to be below 3 μG m\(^{-1}\). The differential displacement in the optical trap with a trapping frequency of 42 Hz stays within the defined limit on relative spatial displacement for the gravity gradient of \(T_{gg} = 2.2 \times 10^{-6} \text{s}^{-2}\), and for rotation rates below 1.4 mrad s\(^{-1}\) imposing a Coriolis force coupled with the distance to the center of mass of the satellite defensively assumed to be 2 m, magnetic field gradients below 12 μG m\(^{-1}\), and bias accelerations below 20 μm s\(^{-2}\). This is compatible with operation both during inertially and nadir pointing phases. Contributions to the differential acceleration signal due to payload and spacecraft self-gravity will be subtracted by comparing perigee and apogee measurements. In first order, the gravity gradients are dominated by the Earth’s contribution.

Magnetic fields. During interferometry, both isotopes are in the magnetic substate \(m_f = 0\) to exclude a linear Zeeman shift. Still, the quadratic Zeeman effect coupled to the small offset field \(B_0 = 1 \text{ mG}\) and a magnetic field gradient \(\nabla B\) induce an acceleration [68, 69]. Since the coefficients for the quadratic Zeeman effect are different for the two isotopes, a differential acceleration signal results. This also impedes the overlap during the time between release from the optical trap and the delta kick and requires on magnetic field gradients below 3 μG m\(^{-1}\). Efficient suppression of external fields is shown in [70].

Effective wave front curvature. When the atomic ensembles expand in the time interval between two successive interactions with a curved effective beam splitter wave front a phase shift appears [71]. This effect is suppressed in the differential signal because of the similar expansion rates of the two ensembles. In table 4 the curvature of the retro reflector is assumed to be \(R = 250 \text{ km}\) and the resulting effective wave front for an initial collimation of the beam splitter telescope 400 m. By matching the expansion rates, the requirements on \(R\) will be reduced to be compatible with a retro reflection mirror surface planarity of \(\lambda/50\).

Mean field. Even in the regime of linear expansion there is a residual contribution from the mean field energy. This appears in the interferometer signal if the beam splitting at the first pulse is not perfect [72]. To mitigate this effect, the mean ratio between the two isotope populations will be tuned to \(N_{87}/N_{85} \approx 1.697(±0.001)\). Thus, negative energy shift due to \(^{85}\text{Rb}\) intra species interactions and positive energy shifts due to inter species and \(^{87}\text{Rb}\) intra species interactions nearly cancel with a remaining uncertainty of 2 \(\times 10^{-15} \text{ m s}^{-2}\). It is important to stress, that the ratio is allowed to fluctuate at a level of 20% between measurements but has to be controlled in the average to the given level. The stability of this ratio is continuously monitored as a byproduct of the detection scheme and can be tuned by changing the loading and evaporation parameters of the source.
Table 3. Preliminary assessment of statistical errors for the STE-QUEST AI.

Noise source	Conditions	Limit $(10^{-12} \text{m s}^{-2})$
Shot noise	10^6 atoms, $C = 0.6$	2.93
Linear vibrations	Suppression ratio 2.5×10^{-9}	≈ 1
Beam splitter laser	Linewidth 100kHz	0.8
Magnetic fields	$B_0 = 1 \text{ mG}$, $\nabla B_0 = 83\mu\text{G m}^{-1}$	0.11
Mean field	Beam splitting accuracy 0.001, 20% fluctuation in N_{87}/N_{85}	0.3
Overlap	10% fluctuation per cycle	< 0.1
Sum		3.2

Detection efficiency. Vibrations will wash out the fringe visibility, but the differential signal can still be extracted from an ellipse fitting technique \[73, 74\]. If the outputs of the two AIs are not balanced by a factor ϵ, this will be misinterpreted as an acceleration signal. The parameter ϵ can be estimated within parts per thousand contributing an error below 10^{-15} m s$^{-2}$.

Result. The estimated statistical errors compatible with a shot noise limited measurement are stated in table 3. An overview of the bias errors assessed at perigee for an altitude of 700 km is given in table 4. Herein, the differential acceleration of 7.9×10^{-15} m s$^{-2}$ has to be divided by the projection of local $g \approx 8 \text{ m s}^{-2}$ which leads to an error in the Eötvös ratio of 1×10^{-15}. During the arc at perigee, the projection of the Earth’s gravity gradient and local gravitational acceleration change implying an increase in the uncertainty to 2×10^{-15} at the edges. The maximum perigee altitude of 2200 km and the corresponding arc inhibit the same uncertainty figures.

A crucial point to stay within error budget is the initial overlap and differential velocity which will be measured by spatial imaging during each orbit around apogee. The specified gravity gradient, rotation rates, and magnetic field gradients which could cause a displacement in the optical trap combined with a distance to the satellite’s center of mass below 2 m are compatible with the performance budget presented in table 4.

5. Payload

The STE-QUEST AI payload is subdivided into three main functional units: (i) physics package (PP), laser system (LS) and (iii) electronics as shown in the functional diagram given in figure 5. The overall preliminary budgets concerning volume, mass and power are detailed in table 5. Furthermore, a telemetry budget of 110 kbps is allocated to the AI. The instrument design is based on current state-of-the-art cold atom experiments under microgravity, namely the German funded QUANTUS (QUANTengase Unter Schwere subredditigkeit) and MAIUS (MAteriewelleninterferometrie Unter Schwere subredditigkeit) projects operated in drop tower experiments and the French funded I.C.E. (Interférométrie Cohérente pour l’Espace) project operated in zero-g parabola flights.

The PP comprises the Titanium made vacuum chamber for cold atom preparation and manipulation including atom source, UHV science chamber, detection unit, vacuum pump system and Mu-metal magnetic shielding. The science chamber houses the three layer atom chip and features a dodecagon design providing the optical accesses for optical dipole trap (ODT), 3D-MOT, interferometry, fluorescence and absorption detection and Raman kick
Table 4. Preliminary error budget for the STE-QUEST AI. The differential acceleration of 7.9×10^{-15} m s$^{-2}$ was evaluated at perigee for an altitude of 700 km implying a gravity gradient of 2.2×10^{-6} s$^{-2}$ and a projection of the local gravitational acceleration of 8 m s$^{-2}$. Dividing the differential acceleration by the projection of local gravitational acceleration leads to the Eötvös ratio. Terms dependent on the overlap and effective wave front curvature were treated as correlated within their subset, while other terms are expected to be uncorrelated.

Error source	Limit (10$^{-15}$ m s$^{-2}$)	Conditions		
Gravity gradienta	2.6	$\Delta z = 1.1 \times 10^{-9}$ m		
Coriolis acceleration	3.5	$\Delta \nu_z = 3.1 \times 10^{-10}$ m s$^{-1}$		
Additional overlap dependent terms	0.62	$\Delta \nu_x = 3.1 \times 10^{-10}$ m s$^{-1}$		
Others	0.055	$\Delta x = 1.1 \times 10^{-9}$ m		
Photon recoil	0.046	Earth’s second order gravity gradient		
Static magnetic fieldsc	1	$B_0 = 1$ mG, $\nabla B_0 = 1$ μG m$^{-1}$		
Effective wave front curvatured	0.63	Mirror curvature		
Mean field	0.28	$R = 250$ km, initial collimation ≈ 400 m		
Spurious accelerations	1	Beam splitter accuracy 0.1%		
Detection efficiencye	<1	$	e - 1	< 0.003$
Total diff. acceleration	7.9			

a Connected to magnetic field gradient and distance to the center of mass.
b Calibration during apogee.
c Relieved by input state reversal.
d Relaxed by expansion rate match.
e Post correction from Bayesian fit.

Table 5. Preliminary budget table of the STE-QUEST atom interferometer payload detailing volume, mass and power for the three functional units. All numbers for mass and power include a 20% component level margin but no system level margin.

Volumes	Volume (l)	Mass (kg)	Average power (W)	Peak power (W)	
Physics package	1 cylinder	342	135	74	157
Laser system	3 boxes	59	52	103	114
Electronics	5 boxes	68	34	431	549
Total	221	608	820		

beams. The atom source consists of a heated Rb reservoir and a 2D-MOT which is attached to the science chamber using diffusion brazing. The homogeneous magnetic offset fields are generated using three pairs of coils in Helmholtz configuration. A four layer Mu-metal shielding with a suppression factor $>10,000$ is foreseen around the PP in order to suppress external magnetic stray fields. The shielding also has to withstand magnetic fields up to 160 G (Feshbach field) without permanent damage. The pump system needs to maintain an UHV at the 10^{-11} mbar level and uses a combination of an ion getter pump and a passive getter pump.
Figure 5. Functional diagram of the STE-QUEST atom interferometer payload. It consists of physics package (PP), laser system (LS) and electronics with given subsystems and interfaces.

The LS is housed in three boxes: (i) a telecom fiber technology based reference and ODT laser module, (ii) a micro-integrated, high-power 780 nm laser diode package module for atom manipulation, cooling and detection and (iii) a switching and distribution module delivering the laser beams according to the experimental sequence (cf section 3) to the PP. The switching module is based on Zerodur bonding technology and uses a combination of acousto-optic modulators for fast switching and mechanical shutters for highest extinction ratio, while the distribution module is realized as an optical fiber technology beam splitter array.

The AI instrument electronics includes a data management unit which controls all other electronics units and the overall payload, including housekeeping data gathering, a magnetic coil drive unit providing the low noise current drivers for magnetic field generation, a low-noise RF generator producing the 6.8 and 3 GHz signals corresponding to the hyperfine transitions in 87Rb and 85Rb, respectively and the signals for RF knife and driving electro-optical components, a laser control unit providing the low noise current supplies and temperature controls for the lasers, and an ion pump controller delivering the high voltage power supply for the ion getter pump.

6. Conclusion

The STE-QUEST mission aims to perform a quantum test of the universality of free fall using cold atom interferometry with unprecedented precision, exploring in this way the frontiers of the validity of General Relativity. The mission will track the propagation of two matter waves
of atomic species, i.e. two Bose–Einstein condensates consisting of ^{85}Rb and ^{87}Rb, which fall freely in Earth’s gravitational field. The goal of the mission is to reach an accuracy of $\eta \leqslant 2 \times 10^{-15}$ over the entire mission period, improving the best test performed on Earth so far by at least two orders of magnitude. With this accuracy a new window is opened to find experimental evidence of a quantum theory of gravity—today’s main open question in theoretical physics.

Acknowledgments

This work was supported by the German space agency ‘Deutsches Zentrum für Luft- und Raumfahrt (DLR)’ with funds provided by the Federal Ministry of Economics and Technology under grant numbers 50 OY 1302, 50 OY 1303, and 50 OY 1304, the German Research Foundation (DFG) by funding the Cluster of Excellence ‘Centre for Quantum Engineering and Space-Time Research (QUEST)’ and the research training group ‘Models of Gravity’, the French Space Agency Centre National d’Études Spatiales, and the European Space Agency (ESA).

References

[1] Will C M 2006 The confrontation between general relativity and experiment *Liv. Rev. Rel.* 9 3
[2] Lämmertzahl C 2011 Testing basic laws of gravitation are our postulates on dynamics and gravitation supported by experimental evidence? *Mass and Motion in General Relativity* ed L Blanchet, A Spallici and B Whiting vol 162 (Berlin: Springer) p 25
[3] Liberati S 2013 Tests of Lorentz invariance: a 2013 update *Class. Quantum Grav.* 30 133001
[4] Kiefer C 2012 *Quantum Gravity* 3rd edn (Oxford: Oxford University Press)
[5] Damour T and Polyakov A M 1994 The string dilaton and a least coupling principle *Nucl. Phys.* B 423 532
[6] Damour T, Piazza F and Veneziano G 2002 Runaway dilaton and equivalence principle violations *Phys. Rev. Lett.* 89 081601
[7] Damour T 2012 Theoretical aspects of the equivalence principle *Class. Quantum Grav.* 29 184001
[8] Fischbach E et al 1986 Reanalysis of the Eötvös experiment *Phys. Rev. Lett.* 56 3
[9] Fischbach E and Talmadge C 1998 *The Search for Non-Newtonian Gravity* (New York: Springer)
[10] Brans C and Dicke R H 1961 Mach’s principle and a relativistic theory of gravitation *Phys. Rev.* 124 925
[11] Dvali G and Zaldarriaga M 2002 Changing α with time: Implications for fifth-force-type experiments and quintessence *Phys. Rev. Lett.* 89 091303
[12] Puetzfeld D and Obukhov Y N 2013 Covariant equations of motion for test bodies in gravitational theories with general nonminimal coupling *Phys. Rev.* D 87 044045
[13] Carroll S M, Mantry S and Ramsey-Musolf M J 2010 Implications of a scalar dark force for terrestrial experiments *Phys. Rev.* D 81 063507
[14] Wetterich C 2003 Crossover quintessence and cosmological history of fundamental ‘constants’ *Phys. Lett.* B 561 10
[15] Chen J 2005 Probing scalar couplings through tests of the equivalence principle *PhD Thesis* The University of Chicago, Illinois, USA
[16] Gökkü E and Lämmertzahl C 2008 Metric fluctuations and the weak equivalence principle *Class. Quantum Grav.* 25 105012
[17] Will C 1993 *Theory and Experiment in Gravitational Physics* 2nd edn (Cambridge: Cambridge University Press)
[18] Colladay D and Kostelecký V 1998 Lorentz-violating extension of the standard model *Phys. Rev.* D 58 116002
[19] LoPresto J C, Schrader C and Pierce A 1991 Solar gravitational redshift from the infrared oxygen triplet *Astrophys. J.* 376 757
[20] Krisher T P, Morabito D D and Anderson J D 1993 The Galileo solar redshift experiment *Phys. Rev. Lett.* 70 2213
[21] Vessot R F C et al 1980 Test of relativistic gravitation with a space-borne hydrogen maser Phys. Rev. Lett. 45 2081
[22] Hechenblaikner G et al 2014 STE-QUEST mission and system design Experimental Astronomy 1–21 at press (http://dx.doi.org/10.1007/s10686-014-9373-6)
[23] Tino G M et al 2013 Precision gravity tests with atom interferometry in space Nucl. Phys. B 243 203
[24] Schlämmer S et al 2008 Test of the equivalence principle using a rotating torsion balance Phys. Rev. Lett. 100 041101
[25] Williams J G, Turyshev S G and Boggs D H 2012 Lunar laser ranging tests of the equivalence principle Class. Quantum Grav. 29 184004
[26] Peters A, Chung K Y and Chu S 1999 Measurement of gravitational acceleration by dropping atoms Nature 400 549
[27] Fray S et al 2004 Atomic interferometer with amplitude gratings of light and its applications to atom based tests of the equivalence principle Phys. Rev. Lett. 93 240404
[28] Bonnin A et al 2013 Simultaneous dual-species matter-wave accelerometer Phys. Rev. A 88 043615
[29] Tino G M 2013 Testing gravity with atom interferometry, Lecture II in ‘E Fermi’ School on Atom Interferometry, Varennna
[30] Homepage of the project: www.iqo.uni-hannover.de/atlas.html.
[31] Hamilton P et al 2012 Progress towards a test of the universality of free fall Phys. Rev. Lett. at press
[32] Dimopoulos S et al 2007 Testing general relativity with atom interferometry Phys. Rev. Lett. 98 111102
[33] Sorrentino F et al 2010 A compact atom interferometer for future space missions Microgravity Sci. Technol. 22 551
[34] Varoquaux G et al 2009 How to estimate the differential acceleration in a two-species atom interferometer to test the equivalence principle New J. Phys. 11 113010
[35] Rudolph J et al 2011 Degenerate quantum gases in microgravity Microgravity Sci. Technol. 23 287
[36] Toboul P et al 2012 The microscope experiment, ready for the in-orbit test of the equivalence principle Class. Quantum Grav. 29 184010
[37] Overduin J et al 2012 STEP and fundamental physics Class. Quantum Grav. 29 184012
[38] Nobili A M et al 2012 ‘Galileo Galilei’ (GG): space test of the weak equivalence principle to 10^{-17} and laboratory demonstrations Class. Quantum Grav. 29 184011
[39] Geiger R et al 2011 Detecting inertial effects with airborne matter-wave interferometry Nature Commun. 2 474
[40] Mundinga H et al 2013 Interferometry with Bose–Einstein condensates in microgravity Phys. Rev. Lett. 110 093602
[41] van Zoest T et al 2010 Bose–Einstein condensation in microgravity Science 328 1540
[42] Cacciapuoti L 2013 STE-QUEST Science Requirements Document, FPM-SA-DC-00001, issue 1, revision 5 (April 2013) Technical report European Space Agency http://sci.esa.int/ste-quest/
[43] Dickerson S M et al 2013 Multiaxis inertial sensing with long-time point source atom interferometry Phys. Rev. Lett. 111 083001
[44] Hogan J M, Johnson D M S and Kasevich M A 2009 Light-pulse atom interferometry Atom Optics and Space Physics ed E Arimondo et al (Amsterdam: IOS) p 411
[45] Cladé P et al 2010 Theoretical analysis of a large momentum beamsplitter using Bloch oscillations Eur. Phys. J. D 59 349
[46] Lan S-Y et al 2012 Influence of the Coriolis force in atom interferometry Phys. Rev. Lett. 108 090402
[47] Chu S et al 1986 Proposal for optically cooling atoms to temperatures of the order of 10 to the -6th K Opt. Lett. 11 73
[48] Ammann H and Christensen N 1997 Delta kick cooling: a new method for cooling atoms Phys. Rev. Lett. 78 2088
[49] Morinaga M et al 1999 Manipulation of motional quantum states of neutral atoms Phys. Rev. Lett. 83 4037
[50] Lévêque T et al 2009 Enhancing the area of a Raman atom interferometer using a versatile double-diffraction technique Phys. Rev. Lett. 103 080405
[51] Dubetsky B and Berman P R 2002 $\lambda/8$-period optical potentials Phys. Rev. A 66 043402
[52] Tackmann G et al 2012 Self-alignment of a compact large-area atomic Sagnac interferometer New J. Phys. 14 015002
[53] Hänsel W et al 2001 Bose–Einstein condensation on a microelectronic chip Nature \textbf{413} 498
[54] Folman R et al 2002 Adv. At. Mol. Opt. Phys. \textbf{48} 263
[55] Fortágh J and Zimmermann C 2007 Magnetic microtraps for ultracold atoms Rev. Mod. Phys. \textbf{79} 235
[56] Posso-Trujillo K et al Compact strongly interacting quantum mixtures for precision atom interferometry in preparation
[57] Dieckmann K et al 1998 Two-dimensional magneto-optical trap as a source of slow atoms Phys. Rev A \textbf{58} 3891
[58] Reichel J, Hänsel W and Hänsch T W 1999 Atomic micromanipulation with magnetic surface traps Phys. Rev. Lett. \textbf{83} 3398
[59] Papp S B, Pino J M and Wieman C E 2008 Tunable miscibility in a dual-species Bose–Einstein condensate Phys. Rev. Lett. \textbf{101} 040402
[60] Altin P A et al 2010 85Rb tunable-interaction Bose–Einstein condensate machine Rev. Sci. Instrum. \textbf{81} 063103
[61] Clément J-F et al 2009 All-optical runaway evaporation to Bose–Einstein condensation Phys. Rev. A \textbf{79} 061406
[62] Roure A, Zeller W and Schleich W P 2014 Overcoming loss of contrast in atom interferometry due to gravity gradients arXiv:1401.7699[physics.atom-ph]
[63] Schubert C et al 2013 Differential atom interferometry with 87Rb and 85Rb for testing the UFF in STE-QUEST arXiv:1312.5963[physics.atom-ph]
[64] Cheinet P et al 2008 Measurement of the sensitivity function in a time-domain atomic interferometer IEEE Trans. Instrum. Meas. \textbf{57} 1141
[65] McGuirk J M et al 2002 Sensitive absolute-gravity gradiometry using atom interferometry Phys. Rev. A \textbf{65} 033608
[66] Guéét J L et al 2007 Influence of lasers propagation delay on the sensitivity of atom interferometers Eur. Phys. J. D \textbf{44} 419
[67] Bongs K, Launay R and Kasevich M A 2006 High-order inertial phase shifts for time-domain atom interferometers Appl. Phys. B \textbf{84} 599
[68] Guéét J L et al 2008 Limits to the sensitivity of a low noise compact atomic gravimeter Appl. Phys. B \textbf{92} 133
[69] Steck D A 2008 Rubidium 87 D line data, revision 2.1, Online http://steck.us/alkalidata/rubidium87numbers.pdf
[70] Milke A et al 2014 Atom interferometry in space: thermal management and magnetic shielding arXiv:1402.1707[physics.ins-det]
[71] Louchet-Chauvet A et al 2011 The influence of transverse motion within an atomic gravimeter New J. Phys. \textbf{13} 065025
[72] Debs J E et al 2011 Cold-atom gravimetry with a Bose–Einstein condensate Phys. Rev. A \textbf{84} 033610
[73] Foster G T et al 2002 Method of phase extraction between coupled atom interferometers using ellipse-specific fitting Opt. Lett. \textbf{27} 951
[74] Stockton J K, Wu X and Kasevich M A 2007 Bayesian estimation of differential interferometer phase Phys. Rev. A \textbf{76} 33613