Relation of Biochemical Parameters with Flow-mediated Dilatation in Patients with Metabolic Syndrome

Nurver Tufaner Sipahioglu1, Bans Ilerigelen2, Zeynep B. Gungor2, Gulsel Ayaz1, Hakan Ekmecki2, Cigdem Bayram Gureti4, Gunay Can6, Huseyin Sonmez3, Turgut Ulutin4, Fikret Sipahioglu6

1Department of Family Medicine, Cerrahpasa Medical Faculty, Istanbul University, Istanbul 34303, Turkey
2Department of Cardiology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul 34303, Turkey
3Department of Biochemistry, Cerrahpasa Medical Faculty, Istanbul University, Istanbul 34303, Turkey
4Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul 34303, Turkey
5Department of Public Health, Cerrahpasa Medical Faculty, Istanbul University, Istanbul 34303, Turkey
6Department of Internal Medicine, Cerrahpasa Medical Faculty, Istanbul University, Istanbul 34303, Turkey

Abstract

Background: Metabolic syndrome (MetS) is one of the high cardiovascular (CV) situations. Endothelial dysfunction, which is a common finding in patients with MetS, is related with increased CV risk. In patients with MetS, the effect of the major CV risk factors, not included in the MetS definition, on endothelial dysfunction is not well known. The aim of this study was to determine the effect of major CV risk factors such as gender, smoking, family history, and biochemical parameters on endothelial dysfunction in patients with MetS.

Methods: The study was performed between December 2010 and August 2014. A total of 55 patients (15 females and 40 males) with MetS and 81 healthy controls (37 females and 44 males) with a body mass index <25 kg/m² were enrolled in the study. Endothelial dysfunction was measured by flow-mediated dilatation (FMD), oxidative stress parameters; high-sensitivity C-reactive protein (hs-CRP), oxidized low-density lipoprotein (ox-LDL), endothelial nitric oxide synthase (e-NOS), nitric oxide, and cell adhesion markers; von Willebrand factor, and e-selectin. Platelet aggregation (endothelial adenosine diphosphate), total platelet count, and mean platelet volume were additionally analyzed and demographic parameters were explored. Student’s t-test, Mann-Whitney U-test, and Chi-square test were used to analyze the results.

Results: The fasting blood glucose (z = 3.52, P = 0.001), hs-CRP (z = 3.23, P = 0.004), ox-LDL (z = 2.62, P = 0.013), and e-NOS (z = 2.22, P = 0.026) levels and cardiac risk score (z = 5.23, P < 0.001) were significantly higher in patients with MetS compared with the control group. Smoking was correlated with decreased FMD (r² = 9.26, P = 0.002) in MetS patients but not in the control group.

Conclusions: Increased ox-LDL, hs-CRP, and e-NOS are likely to be a result of oxidative stress, a condition in which an imbalance occurs between the production and inactivation of reactive nitrogen and oxygen species. In addition, in patients with MetS, smoking is independently related to endothelial dysfunction.

Key words: Endothelial Dysfunction; Metabolic Syndrome; Oxidative Stress; Smoking

INTRODUCTION

Endothelial dysfunction is one of the key components of metabolic syndrome (MetS), which is characterized by an imbalance between endogenous vasodilatory substances and vasoconstrictive substances. Furthermore, endothelial dysfunction is an early functional disturbance in the natural progress of atherosclerosis and a powerful preclinical marker of future cardiovascular (CV) events.[1]

There are various techniques (invasive and noninvasive) for exploring of the pathobiology of the endothelium. Brachial flow-mediated dilatation (FMD) is a marker of endothelial function that reflects nitric oxide (NO) release from vascular endothelial cells and an accepted method for the assessment of endothelial function. E-mail: nurverdi@gmail.com

Address for correspondence: Dr. Gunay Can, Department of Public Health, Cerrahpasa Medical Faculty, Istanbul University, Istanbul 34303, Turkey. E-Mail: nurverdi@gmail.com

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

© 2017 Chinese Medical Journal | Produced by Wolters Kluwer - Medknow

Received: 08-02-2017 Edited by: Peng Lyu
How to cite this article: Sipahioglu NT, Ilerigelen B, Gungor ZB, Ayaz G, Ekmecki H, Gurel CB, Can G, Sonmez H, Ulutin T, Sipahioglu F. Relation of Biochemical Parameters with Flow-mediated Dilatation in Patients with Metabolic Syndrome. Chin Med J 2017;130:1564-9.
of individual CV risk.[2] Recently, studies have shown that oxidative stress plays an important role in the pathogenesis of vascular alterations by triggering the biochemical processes in endothelial dysfunction in MetS.[3-5] Still, comprehensive studies on the interaction between oxidative stress parameters and endothelial function evaluated by FMD in both genders in MetS are rare.

In this study, we have investigated the relationship between FMD and endothelial nitric oxide synthase (e-NOS), NO, e-selectin, von Willebrand factor (vWF), oxide low-density lipoprotein (ox-LDL), high-sensitivity C-reactive protein (hs-CRP), and thrombocyte aggregation as indicators of endothelial function in MetS patients and in a control group without MetS.

METHODS

Ethical approval

The study was conducted in accordance with the Declaration of Helsinki. Ethical approval was received from the University Ethical Committee of Clinical Research (No: 268573). Informed consent was obtained from all patients.

Between December 2010 and August 2014, 136 patients admitted to the family medicine outpatient clinic run by our faculty were recruited into the study. MetS was present in 55 patients, and there were 81 healthy controls. The female/male ratio was 37/44 in the control group and 15/40 in the MetS group. The standard definition of the National Cholesterol Education Program’s Adult Treatment Panel III report was used to select MetS patients.[6] Participants were classified as having MetS if they had three or more of the following criteria: abdominal obesity defined as waist circumference >102 cm in males and >88 cm in females; hypertriglyceridemia defined as triglycerides (TGs) >1500 mg/L; low-high-density lipoprotein (HDL) cholesterol with an HDL <400 mg/L in males and <500 mg/L in females; hypertension defined as systolic blood pressure (SBP) >130 mmHg (1 mmHg = 0.133 kPa) or diastolic blood pressure (DBP) >85 mmHg; and impaired fasting glucose defined by fasting glucose >1010 mg/L. The control group selection criterion was the absence of MetS, CV disease, and diabetes.

Physical examination of the patients was conducted before testing. Patients with malignant disease, chronic inflammatory disease, chronic obstructive pulmonary disease, chronic renal disease, chronic liver disease, pregnancy, ischemic coronary artery disease, serious systemic infections, endocrine disease, or cerebrovascular disease were excluded from the study and the control groups. Patients taking medications affecting endothelial function (angiotensin converting enzyme inhibitors and antihyperlipidemics) were also excluded from the study. The international score system was used to predict their cardiac risk. All patients were asked about their family history, smoking, and concomitant diseases. Blood pressure was measured while patients were in the sitting position after a resting period of at least 5 min. Height was measured with a wall-mounted stadiometer to the nearest 0.1 cm. Weight was determined to the nearest 0.1 kg on the scale. Body mass index (BMI) was calculated from the measured body weight and height and expressed as kg/m\(^2\). Waist circumference was measured as the horizontal distance around the abdomen at the level of the umbilicus.

Measurements of flow-mediated dilatation

Endothelial functions were assessed by measuring the FMD using Vingmed System V ultrasonography with a transducer (GE Healthcare, Little Chalfont, Buckinghamshire, UK) that has an appropriate frequency. All measurements were performed by the same operator. After 12 h of fasting, in a quiet room heated to 20°C–22°C, longitudinal images were taken from the proximal antecubital fossa of the brachial artery of the fixed arm. The base measurement of the artery diameter was performed after 10 min of rest. A sphygmomanometer was inflated to 300 mmHg on the arm for 4–5 min and the second measurement was performed 45–60 s after its deflation (reactive hyperemia). The last measurement was made after 15 min of rest, by giving 0.5 mg of sublingual glyceryl trinitrate and waiting for 3–4 min. FMD was calculated as the difference between the maximum diameter postocclusion and the average baseline diameter, which was expressed as a percentage relative to the average baseline diameter.[7] A normal healthy FMD response was accepted as 7–10%.[8]

Sample collection and preparation

Clinical parameters, including routine biochemical analysis, were measured using standard protocols. Blood samples were collected in ethylenediaminetetraacetic acid-containing tubes and anticoagulant-free tubes after an overnight fast. After immediate centrifugation (3000 g) for 10 min at 4°C, the plasma and serum were separated in Eppendorf tubes and frozen immediately at −80°C until analysis.

Laboratory analysis

Platelet aggregation method

Blood was obtained by venipuncture and collected into vacutainer tubes (BD) containing 3.2% sodium citrate to determine platelet function. Platelet functional studies were completed within 2 h of drawing blood. Platelet reactivity \textit{ex vivo} was assessed with a platelet-rich plasma (PRP) aggregometer using a ChronoLog after stimulating samples with collagen (2 μg/ml), epinephrine (0.1 mmol/L), and adenosine diphosphate (ADP) (1 μmol/L). Peak aggregation within 5 min of agonist stimulation was recorded in ohms. PRP (500 μL) was placed in the tube in which 3 × 10\(^4\) platelet/ml was included. Then, the tube was transferred to sample containers of the aggregometer and kept at 37°C for 3 min, and it was treated with 1 μmol/L ADP (ChronoLog) for 3 min. Platelet aggregation was observed and the aggregation curve taken from the aggregometer (ChronoLog 500, USA) was evaluated in terms of the slope and amplitude percentage.

The plasma ox-LDL, e-NOS, and e-selectin levels were measured using enzyme-linked immunosorbent assay
metS (−), χ2 = 0.015). Plasma NO levels were measured using a colorimetric assay kit (Oxis International Inc., Foster City, USA). Deionized water was used for reconstitute of NADH and standard preparation. Sensitivity of the NO kit is 0.5 μmol/L. The total cholesterol (TC), HDL, LDL, TG, and hs-CRP levels and fasting blood glucose (FBG) were analyzed in the autoanalyzer of the Central Biochemistry Laboratory. The total platelet count and mean platelet volume were also measured.

Statistical analyses

Analysis of data was performed with SPSS statistical analysis software (version 20.0; SPSS Inc, Chicago, IL, USA). The results were expressed as the means ± standard deviation (SD) or median (interquartile range). The hs-CRP and e-NOS levels were logarithmically transformed to achieve normal distributions. General linear measurement analysis was used for comparing anthropometric parameters, and biochemical parameters were compared using Student’s t-test, Mann-Whitney U-test, and Chi-square test. Pearson’s correlation analysis was used for correlations. Multiple stepwise regression analysis was applied to predict the variables that independently and significantly contributed to the dependent variable (FMD). All analyses were two-tailed, and P < 0.05 was considered statistically significant.

Results

The demographic and biochemical parameters in healthy individuals and MetS patients are displayed in Tables 1 and 2.

The hs-CRP (z = 3.23, P = 0.004), e-NOS (z = 2.22, P = 0.026), ox-LDL (z = 2.62, P = 0.013) levels, and cardiac risk score (z = 5.23, P < 0.001) were significantly higher in MetS patients [Table 2]. FMD was impaired in 58.3% of patients in the MetS group and 53% patients in the control group (z = 0.03, P = 0.576).

In the group with MetS, the percentage of smokers (χ2 = 8.07, P = 0.004) was significantly higher [Table 1]. In patients with MetS and endothelial dysfunction, the smoking frequency was significantly higher than that in patients with MetS and normal endothelial function (χ2 = 9.26, P = 0.002) [Table 3].

In male patients with MetS, only hs-CRP levels were higher than the control group (z = 2.41, P = 0.015), whereas in female patients, the ox-LDL (z = 2.03, P = 0.042), e-NOS (z = 2.12, P = 0.011) levels, and platelets (z = 2.95, P = 0.042) were higher than in the control group. In female patients, there were no differences in the demographic parameters and major CV risk factors between MetS and control groups. In male patients, the two groups were significantly different in terms of diabetes (χ2 = 4.90, P = 0.033), obesity (χ2 = 7.42, P = 0.006), and hypertension (χ2 = 5.18, P = 0.020).

Endothelial dysfunction was related to the hs-CRP and e-NOS levels in MetS patients (z = 2.65, P = 0.008; z = 2.58, P = 0.010, respectively). Endothelial dysfunction was only related to the hs-CRP level in the control group (z = 2.77, P = 0.006) [Tables 4 and 5].

There were no differences between the NO (z = 1.26, P = 0.207), vWF (z = −0.34, P = 0.394), e-selectin (z = −0.02, P = 0.555), and endothelial adenosine diphosphate (z = 1.17, P = 0.241) values between the MetS patients and control group.

Discussion

In the present study, the hs-CRP and ox-LDL levels in MetS patients were significantly elevated due to inflammation and oxidative stress. The e-NOS level was also paradoxically high which contrasts with the general knowledge. On the other hand, NO, cell adhesion markers (vWF and e-selectin), and thrombocyte aggregation parameters (ADP[e]) did not have a significant difference. FMD was not significantly different between the MetS patients and control group. Endothelial dysfunction was significantly affected by smoking in MetS patients, but smoking did not affect endothelial dysfunction in the control group.

Smoking is a strong, dose-dependent risk factor for atherosclerosis and CVD. Smokers have abnormalities in endothelial function.[9] Kang and Song[10] in a Korean study stated that the presence of MetS was significantly higher in smokers than nonsmokers for both men and women. They proposed that the relationship between MetS and smoking was mainly due to the association between smoking and dyslipidemia.

In a different study by Tsai et al.,[11] the authors concluded that the plasma zinc α2-glycoprotein level, which is an independent risk factor for MetS, significantly increased with smoking in men. In the present study, smoking was a significantly more common trait in MetS patients than that in the control group.

The relationship between FMD and MetS has been investigated in other studies.[12–16] In the Finns study,[12] there was a direct correlation between the number of MetS components and FMD. The FMD response was not impaired in young individuals with MetS. Another three studies by Wendelhag et al.,[13] Title et al.,[14] and Lind[15,16] reported no association between the brachial FMD and MetS, similar to this study. Lin et al. and Golledge et al.[16,17] demonstrated a relationship between FMD and MetS in peripheral artery disease patients and hypertensive patients.

Table 1: Demographic parameters of the study (n)
Parameters
Gender
Female/male
Smoking

MetS: Metabolic syndrome.
This effect was thought to be partially mediated by limiting the availability of NO, thereby exerting a negative feedback on NOS expression through activation of nuclear factor-κB.\[24\] Zhao et al.\[25\] also recently reported that endothelial dysfunction was associated with an increase rather than a decrease in e-NOS expression. The present study indicated that in women with MetS, the OSI and e-NOS levels are higher, whereas in men with MetS, the hs-CRP level is higher than that in the control group.

In a cohort study on 1702 Turkish participants,\[26\] who were followed up for 10 years, 546 of them developed MetS. In males, abdominal obesity, hs-CRP, and gamma glutamine transferase were related to MetS; in females, only hs-CRP was related to MetS and current smoking tended to be protective, which was a result different from this study.

Li et al.\[27\] observed that the hs-CRP levels were significantly high in the MetS patients in agreement with our results. The hs-CRP level has been found to be a powerful independent predictor of increased CV risk. This study further indicated that elevated hs-CRP levels were associated with reduced basal and stimulated NO release from arterial endothelial cells through various mechanisms. In the study, hs-CRP was the strongest indicator of MetS after controlling for demographic parameters such as gender and smoking.

ox-LDL plays an important role in endothelial dysfunction. It induces endothelial injury and inhibits apoptosis, monocyte adhesion, platelet aggregation, and e-NOS expression/activity, contributing to atherosclerosis.\[28\] A study by Bae et al.\[29\] showed that the ox-LDL (P < 0.05) and hs-CRP (P < 0.01) levels increased with the number of MetS risk factors in 108 MetS patients and 91 controls. Kosola et al.\[30\] reported that the ox-LDL levels were elevated in Finnish young men with MetS (odds ratio: 1.118). In two
In this study, there was a significant decrease in the brachial FMD in smokers compared to nonsmokers for patients with MetS. After controlling for smoking and gender, the significant difference between the MetS and control groups in oxidative stress parameters disappeared. This finding suggests that smoking negatively impacts endothelial function, particularly in the presence of MetS.

Other studies have shown that oxidative stress parameters (e.g., oxidized LDL [ox-LDL], eNOS, hs-CRP) are elevated in females, and platelet aggregability in response to ADP and collagen did not change in MetS patients when compared to the control group. The decrease in FMD in smokers compared to nonsmokers for patients with MetS is particularly important due to the potential adverse impact of obesity on systemic inflammation markers (hs-CRP) and platelet functions.

Acknowledgment

We would like to thank Prof. Fikret Sipahioglu for his valuable contribution to the study.
Financial support and sponsorship

This work was supported by Scientific Research Project Unit, Istanbul University (No: 268573).

Conflicts of interest

There are no conflicts of interest.

References

1. Abirwar AK, Jain A, Singh A, Goswami B, Bhatarag MK, Bhatacharjee J. The study of markers of endothelial dysfunction in metabolic syndrome. Horm Mol Biol Clin Physiol 2015;24:131-6. doi: 10.1515/hmcbci-2015-0039.

2. Betik AC, Luckham VB, Hughson RL. Flow-mediated dilation in human brachial artery after different circulatory occlusion conditions. Am J Physiol Heart Circ Physiol 2004;286:H442-8. doi: 10.1152/ajpheart.00314.200321.

3. Poredos P, Jezovnik MK. Testing endothelial function and its clinical relevance. J Atheroscler Thromb 2013;20:1-8. doi: 10.5551/jat.14340.

4. Fernandes IA, Sales AR, Rocha NG, Silva BM, Vianna LC, da Nóbrega AC. Preserved flow-mediated dilation but delayed time-to-peak diameter in individuals with metabolic syndrome. Clin Physiol Funct Imaging 2014;34:270-6. doi: 10.1111/cpf.12109.

5. Higashi Y, Noma K, Yoshizumi M, Kihara Y. Endothelial function and oxidative stress in cardiovascular diseases. Circ J 2009;73:411-8. doi: 10.1253/circj.CJ-08-1102.

6. Vykoukal D, Davies MG. Vascular biology of metabolic syndrome. J Vasc Surg 2011;54:819-31. doi: 10.1016/j.vascasurg.2011.01.003.

7. Ryliskyte L, Ghiadoni L, Plantinga Y, Janaviciene S, Petrulioniene Z, Yüksel H, et al. Plasma zinc alpha2-glycoprotein levels are elevated in smokers and correlated with metabolic syndrome. J Clin Endocrinol Metab 2002;252:305-13. doi: 10.1046/j.1365-2796.2002.01036.x.

8. Creager MA,芒果 J, Tanner MJ, Wang HY, Rutledge CM, et al. Endothelial‑type NO synthase expression in pathophysiology and in response to drugs. Nitric Oxide 2002;7:149-64. doi: 10.1016/S1089-4129(02)00002-3.

9. Jialal I, Devaraj S, Adams-Huet B, Chen X, Kaur H, et al. Sex-specific predictors of metabolic syndrome independent of its components. J Investig Med 2015;63:796-801. doi: 10.1097/IMJ.0000000000000203.

10. Rosado D, Davies MG. Vascular biology of metabolic syndrome. J Vasc Med 2011;54:819-31. doi: 10.1016/j.vascasurg.2011.01.003.

11. Tsai JS, Chen SC, Huang KC, Lue BH, Lee LT, Chiu TY, et al. Smoking and endothelial dysfunction as predictors of metabolic syndrome in young male smokers. Bratisl Lek Listy 2013;114:271-5. doi: 10.14149/BLL_2013_152.

12. Bozok S. A high oxidative stress index predicts endothelial dysfunction in young male smokers. Bratisl Lek Listy 2013;114:271-5. doi: 10.14149/BLL_2013_152.

13. Li H, Wallerath T, Münnel T, Förstermann U. Regulation of endothelial-type NO synthase expression in pathophysiology and in response to drugs. Nitric Oxide 2002;7:149-64. doi: 10.1016/S1089-4129(02)00002-3.

14. Ding Y, Aljofan M, Triggle CR. Oxidative stress and increased eNOS and NADPH oxidase expression in mouse microvessel endothelial cells. J Cell Physiol 2007;212:682-9. doi: 10.1002/jcp.21063.

15. Zhao Y, Vanhoutte PM, Lewis SW. Vascular nitric oxide: Beyond eNOS. J Pharmacol Sci 2015;129:83-94. Vascular nitric oxide: Beyond eNOS. J Pharmacol Sci 2015;129:83-94. doi: 10.1016/j.pjps.2015.09.002.

16. Onat A, Can G, Çakr H, Özcan K, Karadeniz Y, Atımtan G, et al. Increased cellular oxidative alterations are associated with visceral adiposity and liver steatosis in patients with metabolic syndrome. Biol Trace Elem Res 2013;151:1-8. doi: 10.1007/s12011-011-9485-z.

17. Jialal I, Devaraj S, Adams‑Huet B, Chen X, Kaur H. Endothelial dysfunction in metabolic syndrome. Clin Physiol Funct Imaging 2014;34:270-6. doi: 10.1111/cpf.12091.

18. Cao X, Wu LX, Chen ZH. Correlations between cigarette smoking and metabolic syndrome: The Korea National Health and Nutrition Examination Survey. Diabetes Care 2007;30:1111-8. doi: 10.2337/diacare.30.07.2006.

19. Skaug EA, Madssen E, Aspnes TS, Wiklind T. Higher levels of iron status and oxidative stress in self-reported healthy women than men in the HUNT3 Fitness study. PLoS One 2014;9:e101371. doi: 10.1371/journal.pone.0101371.

20. Karahan O, Manduz S, Bektasoglu G, Zorlu A, Turkdogan KA, Bozkoc S. A high oxidative stress index predicts endothelial dysfunction in young male smokers. Br J Pharmacol 2013;135:452-9. doi: 10.1016/j.bjp.2013.01.013.

21. Zhang J, Hu R, Wang XQ, Vaziri ND, Zhou XJ. Upregulation of endothelial and inducible nitric oxide synthase expression by reactive oxygen species. Am J Hypertens 2008;21:28-34. doi: 10.1038/ajh.2007.14.

22. Li H, Wallerath T, Münnel T, Förstermann U. Regulation of endothelial-type NO synthase expression in pathophysiology and in response to drugs. Nitric Oxide 2002;7:149-64. doi: 10.1016/S1089-4129(02)00002-3.

23. Jialal I, Devaraj S, Adams-Huet B, Chen X, Kaur H. Increased cellular and circulating biomarkers of oxidative stress in nascent metabolic syndrome. J Clin Endocrinol Metab 2012:97:E1844-50. doi: 10.1210/je‑c2012-2498.

24. Ding Y, Aljofan M, Triggle CR. Oxidative stress and increased eNOS and NADPH oxidase expression in mouse microvessel endothelial cells. J Cell Physiol 2007;212:682-9. doi: 10.1002/jcp.21063.

25. Zhao Y, Vanhoutte PM, Lewis SW. Vascular nitric oxide: Beyond eNOS. J Pharmacol Sci 2015;129:83-94. doi: 10.1016/j.pjps.2015.09.002.

26. Onat A, Can G, Cakir H, Ozcan K, Karadeniz Y, Atmtan G, et al. Increased cellular oxidative alterations are associated with visceral adiposity and liver steatosis in patients with metabolic syndrome. Biol Trace Elem Res 2013;151:1-8. doi: 10.1007/s12011-011-9485-z.

27. Palmiteri VO, Grattaglione I, Portincasa P, Palasciano G. Systemic oxidative alterations are associated with visceral adiposity and liver steatosis in patients with metabolic syndrome. J Nutr 2006;136:3022-6. doi: 10.1093/jn/136.6.3022.

28. Creager MA, Nourth C, Goel B, Waskom J, Zhao Y, et al. Effect of cigarette smoking on endothelial function and markers of oxidative stress in male veterans. Biol Trace Elem Res 2013;151:1-8. doi: 10.1007/s12011-012-9525-3.

29. Palmiteri VO, Grattaglione I, Portincasa P, Palasciano G. Systemic oxidative alterations are associated with visceral adiposity and liver steatosis in patients with metabolic syndrome. J Nutr 2006;136:3022-6. doi: 10.1093/jn/136.6.3022.

30. Lanza GA, Andreetti F, Sestito A, Sciabassi A, Crea F, Maseri A. Platelet aggregability in cardiac syndrome X. Eur Heart J 2001;22:1924-30. doi: 10.1053/euhj.2001.2624.

31. Lu K, Yang CS, Liao BH, Lee CL, Wang HY, et al. Adipose tissue gene expression in mice with different nitric oxide availability. J Physiol Pharmacol 2010;61:607-18.

32. Suboc TM, Dharmashankar K, Wang J, Ying R, Couillard A, Tanner MJ, et al. Moderate obesity and endothelial dysfunction in humans: Influence of gender and systemic inflammation. Physiol Rep 2013;1:e00058. doi: 10.1002/physr.2258.

33. Pechánová O, Varga ZV, Cebová M, Giricz Z, Pacher P, Ferdinandy P. Cardiac NO signalling in the metabolic syndrome. Br J Pharmacol 2015;172:1415-33. doi: 10.1111/bph.12960.