Identities for the generalized Fibonacci polynomial

Rigoberto Flórez
Department of Mathematics and Computer Science
The Citadel
Charleston, SC
U.S.A.
rigo.florez@citadel.edu

Nathan McAnally
Department of Mathematics and Computer Science
The Citadel
Charleston, SC
U.S.A.
nmcanall@citadel.edunmcanall@citadel.edu

Antara Mukherjee
Department of Mathematics and Computer Science
The Citadel
Charleston, SC
U.S.A.
antara.mukherjee@citadel.edu

Abstract

In this paper we generalize identities from Fibonacci numbers to the generalized
Fibonacci polynomial (GFP). We classify the GFP into two types, namely Fibonacci
type and Lucas type. A Fibonacci type polynomial is equivalent to a Lucas type
polynomial if they both satisfy the same recurrence relations. Most of the identities
provide relationships between two equivalent polynomials. In particular, each type of
identities in this paper relate the following GFP: Fibonacci with Lucas, Pell with Pell-
Lucas, Fermat with Fermat-Lucas, both types of Chebyshev polynomials, Jacobsthal
with Jacobsthal-Lucas and both types of Morgan-Voyce.

1 Introduction

The Generalized Fibonacci Polynomial (GFP) is a natural generalization of the sequence
$F_n(x) = xF_{n-1}(x) + 1F_{n-2}(x)$ where $F_0(x) = 0$, $F_1(x) = 1$ called the Fibonacci polynomial
However, there is no unique generalization of this sequence, one can refer to articles by several authors like Andrè-Jeannin [1, 2], Bergum et al. [4], and Flórez et al. [5, 6], to see this. In this paper we use the definition of the GFP introduced by Flórez, Higuita, and Mukherjee [5, 6]. Flórez et al. [5], proved the strong divisibility property for the GFP, but while working on it the authors needed some identities involving the polynomials. When searching through the existing literature they realized that there were a limited number of those identities, even just for Fibonacci polynomials.

The study of identities for Fibonacci polynomials and Lucas polynomials have received less attention than their counterparts for numerical sequences, even if many of these identities can be proved easily. A natural question to ask is: under what conditions is it possible to extend identities that already exist for Fibonacci and Lucas numbers to the GFP? We observe here that the identities involving Fibonacci and Lucas numbers extend naturally to the GFP that satisfy closed formulas similar to the Binet formulas satisfied by Fibonacci and Lucas numbers.

While this paper does not intend to prove new numerical identities, we have concluded with a substantial list of known numerical identities extended to the GFP. We also adapt some known identities given for Fibonacci or Lucas polynomials to the GFP.

Bergum and Hoggatt [4] gave a list of more than twenty identities for their definition of generalized Fibonacci polynomials. We generalize or adapt some of the identities given by Bergum and Hoggatt [4, 13] to our definition of the GFP. Most of the numerical identities for Fibonacci and Lucas numbers that we extend to GFP can be found in the books, articles or webpages on Fibonacci and Lucas numbers and their applications, [7, 9, 10, 11, 8, 12].

We note that once we have an identity—from literature—for numerical sequences it is not too complicated to extend this to GPFs. However, the numerical identities do not extend automatically to GPFs; they need some adjustments (some of the identities in the paper were balanced using Mathematica®). Therefore, the aim of this paper is to give a collection of identities for the GFP. In particular, the identities that we give here apply to the following familiar polynomial sequences: Fibonacci polynomials, Lucas polynomials, Pell polynomials, Pell-Lucas polynomials, Fermat polynomials, Fermat-Lucas polynomials, Chebyshev first kind polynomials, Chebyshev second kind polynomials, Jacobsthal polynomials, Jacobsthal-Lucas polynomials, and Morgan-Voyce polynomials.

2 Generalized Fibonacci polynomials

In this section we introduce the generalized Fibonacci polynomial sequences. This definition gives rise to some familiar polynomial sequences which are mentioned below. The definition matches the definitions of polynomial sequences given in other papers on this topic, for example the definition given by Flórez et al. and Koshy [5, 9], respectively.

For the remaining part of this section we reproduce the definitions by Flórez et al. [5] and [6], for generalized Fibonacci polynomials.

The generalized Fibonacci polynomial sequence, is defined by the recurrence relation

\[G_0(x) = p_0(x), \quad G_1(x) = p_1(x), \quad \text{and} \quad G_n(x) = d(x)G_{n-1}(x) + g(x)G_{n-2}(x) \quad \text{for} \quad n \geq 2 \]

(1)
where $p_0(x)$ is a constant and $p_1(x)$, $d(x)$, and $g(x)$ are non-zero polynomials in $\mathbb{Z}[x]$ with $\gcd(d(x), g(x)) = 1$.

If we classify this family of polynomials by the nature of their initial conditions, we obtain two distinguishable subfamilies. We say that a sequence is of Lucas type if $2p_1(x) = p_0(x)d(x)$ with $|p_0(x)| = 1$ or 2 and we say that a sequence is of Fibonacci type if $p_0(x) = 0$ with $p_1(x) = 1$. Table 1 shows some familiar examples of those types of polynomial sequences.

Polynomial	Initial value $G_0(x) = p_0(x)$	Initial value $G_1(x) = p_1(x)$	Recursive Formula $G_n(x) = d(x)G_{n-1}(x) + g(x)G_{n-2}(x)$
Fibonacci	0	1	$F_n(x) = xF_{n-1}(x) + F_{n-2}(x)$
Lucas	2	x	$D_n(x) = xD_{n-1}(x) + D_{n-2}(x)$
Pell	0	1	$P_n(x) = 2xP_{n-1}(x) + P_{n-2}(x)$
Pell-Lucas	2	$2x$	$Q_n(x) = 2xQ_{n-1}(x) + Q_{n-2}(x)$
Pell-Lucas-prime	1	x	$Q'_n(x) = 2xQ'_{n-1}(x) + Q'_{n-2}(x)$
Fermat	0	1	$\Phi_n(x) = 3x\Phi_{n-1}(x) - 2\Phi_{n-2}(x)$
Fermat-Lucas	2	$3x$	$\theta_n(x) = 3x\theta_{n-1}(x) - 2\theta_{n-2}(x)$
Chebyshev second kind	0	1	$U_n(x) = 2xU_{n-1}(x) - U_{n-2}(x)$
Chebyshev first kind	1	x	$T_n(x) = 2xT_{n-1}(x) - T_{n-2}(x)$
Jacobsthal	0	1	$J_n(x) = J_{n-1}(x) + 2xJ_{n-2}(x)$
Jacobsthal-Lucas	2	1	$J_n(x) = J_{n-1}(x) + 2xJ_{n-2}(x)$
Morgan-Voyce	0	1	$B_n(x) = (x + 2)B_{n-1}(x) - B_{n-2}(x)$
Morgan-Voyce	2	$x + 2$	$C_n(x) = (x + 2)C_{n-1}(x) - C_{n-2}(x)$

Table 1: Recurrence relation of some GFP.

We denote the GFP of Lucas type and Fibonacci type by $G_n^*(x)$ and $G'_n(x)$ respectively. We now give the Binet formulas for both types of GFPs namely, the Lucas and Fibonacci types that were proved by Flórez et al. [5]. The Binet formula for GFP of Lucas type is given by

$$L_n(x) = \frac{a^n(x) + b^n(x)}{\alpha}. \quad (2)$$

The Binet formula for GFP of Fibonacci type is given by

$$R_n(x) = \frac{a^n(x) - b^n(x)}{a(x) - b(x)}. \quad (3)$$

Note that $a(x) + b(x) = d(x)$, $a(x)b(x) = -g(x)$, and $a(x) - b(x) = \sqrt{d^2(x) + 4g(x)}$ where $d(x)$ and $g(x)$ are the polynomials defined on the generalized Fibonacci polynomial.

We say that a generalized Fibonacci sequence of Lucas (Fibonacci) type is equivalent to a sequence of the Fibonacci (Lucas) type, if their recursive sequences are determined by the same polynomials $d(x)$ and $g(x)$. Notice that two equivalent polynomials have the same $a(x)$ and $b(x)$ in their Binet representations (see Table 2).

Note. The definition of the Generalized Fibonacci Polynomial by Flórez et al. [6], differs from the definition in this paper due to the initial conditions of the Fibonacci type polynomials. Thus, the initial conditions for the Fibonacci type polynomials given by Flórez, Higuita, and Mukherjee, [6] are $G_0(x) = p_0(x) = 1$ and so implicitly $G_{-1}(x) = 0$. However, our definition for the Lucas type polynomial is identical to that found in the same article.
Table 2: Binet formulas for Lucas type $L_n(x)$ and its equivalent Fibonacci type $R_n(x)$.

Polynomial of	Polynomial of	α	$d(x)$	$g(x)$	$a(x)$	$b(x)$
First type $L_n(x)$ or $G_n^*(x)$	Second type $R_n(x)$ or $G_n^*(x)$					
$D_n(x)$	$F_n(x)$	1	x	$1(x + \sqrt{x^2 + 4})/2$	$(x - \sqrt{x^2 + 4})/2$	
$Q_n(x)$	$P_n(x)$	1	$2x$	1	$x + \sqrt{x^2 + 1}$	$x - \sqrt{x^2 + 1}$
$\delta_n(x)$	$\Phi_n(x)$	1	$3x$	-2	$(3x + \sqrt{9x^2 - 8})/2$	$(3x - \sqrt{9x^2 - 8})/2$
$T_n(x)$	$U_n(x)$	2	$2x$	-1	$x + \sqrt{x^2 - 1}$	$x - \sqrt{x^2 - 1}$
$j_n(x)$	$J_n(x)$	1	1	$2x$	$(1 + \sqrt{1 + 8x})/2$	$(1 - \sqrt{1 + 8x})/2$
$C_n(x)$	$B_n(x)$	$x + 2$	-1	$(x + 2 + \sqrt{x^2 + 4x})/2$	$(x + 2 - \sqrt{x^2 + 4x})/2$	

3 Identities

In this section we give a collection of identities for the GFP. These identities apply, in particular, to our familiar set of GFP. Thus, the identities apply to: Fibonacci polynomials, Lucas polynomials, Pell polynomials, Pell-Lucas polynomials, Fermat polynomials, Fermat-Lucas polynomials, Chebyshev first kind polynomials, Chebyshev second kind polynomials, Jacobsthal polynomials, Jacobsthal-Lucas polynomials and Morgan-Voyce polynomials. The identities below and their proofs are expressed in terms of α, $d(x)$, $g(x)$, $a(x)$, and $b(x)$. Table 2 gives those values for the familiar polynomials mentioned above.

Note: For the sake of simplicity throughout the rest of this paper, we will use d, g, a, and b instead of $d(x)$, $g(x)$, $a(x)$, and $b(x)$ respectively.

For example, suppose we want to apply the identity in Proposition 3 part (1) which is $(a - b)^2G_n^*(x) = \alpha(G_{n+1}^*(x) + gG_n^*(x))$, to Chebyshev polynomials of the first and second kind, namely $T_n(x)$ and $U_n(x)$ respectively. We begin by getting the appropriate information for $U_n(x)$ and $T_n(x)$ given in Table 2 line 4. Thus, $a(x) = x + \sqrt{x^2 - 1}$, $b(x) = x - \sqrt{x^2 - 1}$, $\alpha = 2$, and $g(x) = -1$. Next, we observe that $U_n(x)$ is Fibonacci type, so $G_n^*(x)$ equals $U_n(x)$ and from Table 2 line 4, we get that its equivalent Lucas type polynomial $G_n^*(x)$ equals $T_n(x)$. Note that $(a - b)^2 = 4x^2 - 4$. Now substituting all this information into the identity given in Proposition 3 part (1) we obtain,

$$(4x^2 - 4)U_n(x) = 2(T_{n+1}(x) + (-1)T_n(x)),$$

for all n.

If we want to apply the same identity for Jacobsthal $J_n(x)$, then we substitute the information given in Table 2 line 5 into Proposition 3 part (1). So, we have

$$(1 + 8x)J_n(x) = j_{n+1}(x) + (2x)j_{n-1}(x),$$

for all n.

The identities (1)–(3), (5)–(15), (42), (49)–(51), (56), (57), (63), (65), (67)–(69) are generalizations of numerical identities by Vajda [12]. The identities (16)–(39), (54), (55), (64), (82)–(94) are generalizations of numerical identities provided by Koshy [9]. The identities (4), (40), (41), (44)–(46), (52), (53), (58)–(62), (66), (70)–(81) are generalizations of numerical identities found in the webpage [8]. The identities (43), (47), (48) are generalizations of numerical identities by Benjamin and Quinn [3].
The expression \((a - b)^2\) appears very often in the following list of identities. It is easy to see that
\[
(a - b)^2 = \alpha G_n^*(x) + 2g, \quad (a - b)^2 = G_3'(x) + 3g \quad \text{and} \quad (a - b)^2 = d^2 + 4g.
\]

However, in the following list of identities we keep the factor \((a - b)^2\) as is.

Proposition 2 parts (1) and (2) are generalizations of Cassini and Catalan identities respectively. One can refer to the book by Koshy [9] to learn more about them. We have found that all of the identities in this paper can be proved by substituting the Binet formula on each side of the proposed identity. Since the reader can check it without major difficulty, we prove some identities and leave the others as exercises.

Proposition 1 ([5]). If \(\{G_n^*(x)\}\) and \(\{G_n'(x)\}\) are equivalent generalized Fibonacci polynomial sequences, then

1. \(G_{m+n+1}'(x) = G_{m+1}'(x)G_{n+1}'(x) + gG_m'(x)G_n'(x)\)
2. If \(n \geq m\), then \(G_{n+m}'(x) = \alpha G_n'(x)G_m^*(x) - (-g)^m G_{n-m}'(x)\)
3. If \(n \geq m\), then \(G_{n+m}'(x) = \alpha G_m'(x)G_n^*(x) + (-g)^m G_{n-m}'(x)\)
4. \((a - b)^2 G_{m+n+1}'(x) = \alpha^2 G_m^*(x)G_{n+1}'(x) + \alpha^2 g G_m'(x)G_n^*(x)\).

Proposition 2. If \(\{G_n^*(x)\}\) and \(\{G_n'(x)\}\) are equivalent generalized Fibonacci polynomial sequences, then

1. \(G_{n+1}'(x)G_{n-1}'(x) - (G_n'(x))^2 = (-1)^n g^{n-1}\)
2. If \(n \geq m\), then \((G_n'(x))^2 - (-g)^{n-m}(G_m'(x))^2 = G_{n+m}'(x)G_{n-m}'(x)\).

Proof of part (1). We prove this part using Binet formula (3) from Section 2. Therefore, substituting formula (3) in \(G_{n+1}'(x)G_{n-1}'(x) - (G_n'(x))^2\), we obtain,
\[
[(a^{n+1} - b^{n+1})(a^{n-1} - b^{n-1}) - (a^n - b^n)^2] / (a - b)^2.
\]

Simplifying this expression, we obtain \([2(ab)^n - (a^{n+1}b^{n-1} + b^{n+1}a^{n-1})] / (a - b)^2\). Factoring and simplifying further we see that the last expression reduces to \(-ab)^{n-1}\), and this is equal to \((-1)^n g^{n-1}\).

Proof of part (2). Using Binet formula (3) in \((G_n'(x))^2 - (-g)^{n-m}(G_m'(x))^2\), we have,
\[
[(a^n - b^n)^2 - (ab)^{n-m}(a^m - b^m)^2] / (a - b)^2.
\]

Simplifying the right hand side of the last expression we obtain,
\[
[a^{2n} + b^{2n} - a^{n+m}b^{n-m} - a^{n-m}b^{n+m}] / (a - b)^2.
\]

Factoring the last expression, we get \([(a^{n+m} - b^{n+m})(a^{n-m} - b^{n-m})] / (a - b)^2\), and this is equal to \(G_{n+m}'(x)G_{n-m}'(x)\).
Proposition 3. Let \(\{G_n^*(x)\} \) and \(\{G'_n(x)\} \) be equivalent generalized Fibonacci polynomial sequences. If \(m \) and \(n \) are positive integers, then

1. \((a - b)^2G'_n(x) = \alpha (G_{n+1}^*(x) + gG_{n-1}^*(x))\)
2. \(gG'_{n-1}(x) + G'_{n+1}(x) = \alpha G^*_n(x)\)
3. \(G'_{n+2}(x) - g^2G'_{n-2}(x) = \alpha^2G_1^*(x)G^*_n(x)\)
4. \(G'_{n+2}(x) + g^2G'_{n-2}(x) = (d^2 + 2g)G'_n(x)\)
5. \(G'_{n+2}(x) + g^2G'_{n-2}(x) = \alpha G^*_2(x)G'_n(x)\)
6. \(\alpha G^*_n(x)G'_n(x) = G^*_{2n}(x)\)
7. \(\alpha (G_{n+1}^*(x)G^*_n(x) - G'_n(x)G^*_n(x)) = G'_{2n+2}(x) - G'_{2n}(x)\)
8. \(\alpha (G^*_m(x)G'_n(x) + G^*_n(x)G'_m(x)) = 2G^*_{n+m}(x)\)
9. If \(n \geq m \), then \(\alpha (G^*_m(x)G'_n(x) - G^*_n(x)G'_m(x)) = 2(-g)^mG'_{n-m}(x)\)
10. If \(\alpha = 1 \), then \(2G^*_{2n}(x) - (G^*_n(x))^2 = (a - b)^2(G'_n(x))^2\)
11. \(G^*_{2n}(x) - 2(-g)^n = ((a - b)G^*_n(x))^2 - 2(\alpha - 1)(-g)^n / \alpha\)
12. If \(\alpha = 1 \), then \((a - b)^2(G'_n(x))^2 - (G^*_n(x))^2 = 4(-1)^{n+1}g^n\)
13. \(\alpha^2[g(G^*_n(x))^2 + (G^*_{n+1}(x))^2] = (a - b)^2[g(G'_n(x))^2 + (G'_n(x))^2] = (a - b)^2G^*_{2n+1}(x)\)
14. \(G^*_n(x)G'_n(x) + \alpha G^*_1(x)G^*_n(x) = 2G'_{n+2}(x) / \alpha\)
15. \((a - b)^2G^*_1(x)G'_n(x) + \alpha G^*_2(x)G^*_n(x) = 2G^*_{n+2}(x)\)
16. \(\alpha G^*_n(x)G'_n(x) = G^*_{2n+1}(x) + (-g)^n\)
17. If \(n \neq m \), then \(G^*_m(x)G'_n(x) + gG^*_m(x)G'_n(x) = G^*_n(x)\)
18. If \(n \geq m \), then \(\alpha^2(G^*_m(x)^2 + g^{2n}(a - b)^2(G^*_m(x))^2) = \alpha^2G^*_{2n}(x)G^*_{2m}(x)\)
19. If \(m \geq n \), then \(\alpha^2g^{2n}(G^*_m(x))^2 + (a - b)^2(G'_m(x))^2 = \alpha^2G^*_{2n}(x)G^*_{2m}(x)\)
20. If \(m \geq n \), then \(\alpha^2[(G^*_{2m+2n}(x))^2 - g^{4n}(G^*_{2m-2n}(x))^2] = (a - b)^2G^*_{4m}(x)G^*_{4n}(x)\)
21. \((a - b)^2(G'_n(x))^2 + 2g^n = \alpha G^*_n(x)\)
22. \((a - b)^2(G'_{n+1}(x))^2 - 2g^{2n+1} = \alpha G^*_{4n+2}(x)\)
23. \(\alpha G^*_n(x)G'_n(x) - (-g)^nG'_n(x) = G^*_{3n}(x)\)
24. \(G_n(x)[\alpha G^*_2n(x) + (-g)^n] = G^*_3n(x)\)
25. \(G'_{4n+1}(x) - g^{2n} = \alpha G^*_n(x)G'_n(x)\)
(26) \(G'_{n+3}(x) + (-g)^{2n+1} = \alpha G^*_n(x) G'_{2n+2}(x) \)

(27) \(\alpha G^*_n(x) - (a - b)^2 G'_n(x) = \alpha (-g) G^*_n(x) \)

(28) \(\alpha (G'_{n+1}(x) G^*_n(x) - dG'_{n+2}(x) G^*_n(x)) = g G'_{2n+1}(x) - (-g)^n (d^2 - g) \)

(29) If \(n \geq m \), then \((a-b)^2 ((G'_{n+m}(x))^2 + g^{2m}(G'_{n-m}(x))^2) = \alpha^2 G^*_n(x) G^*_m(x) - 4(-g)^{n+m} \)

(30) If \(n \geq m \), then

\[
(a-b)^2 (G'_{n+m}(x) G'_{n+m+1}(x) + g^{2m} G^*_n(x) G^*_m(x))
\]

equals

\[
\alpha^2 G^*_n(x) G^*_m(x) - 2(-g)^{n+m} d
\]

(31) \(G'_{n+4}(x)(G'_{n+1}(x))^2 - G'_n(x)(G'_{n+3}(x))^2 = \alpha d(-g)^n G^*_n(x) \)

(32) \(\alpha (G'_{n+4}(x)(G^*_n(x))^2 - G'_n(x)(G^*_n(x))^2) = d^3(-g)^n G^*_n(x) \)

(33) \(2\alpha G^*_n(x) = \alpha^2 G^*_n(x) G^*_n(x) + (a-b)^2 G'_n(x) G^*_n(x) \)

(34) \(\alpha (G^*_n(x) - (-g)^n G^*_m(x)) = (a-b)^2 G'_n(x) G^*_n(x) \)

(35) \(\alpha^2 G^*_n(x) G^*_n(x) = \alpha^2 (G^*_n(x))^2 - (a-b)^2 (g)^{2n+1} (G'_{m-n}(x))^2 \)

(36) If \(n \geq m \), then

\[
\alpha (a-b) G^*_n(x) G^*_m(x) - \alpha^2 G^*_n(x) G^*_n(x)
\]

equals

\[
(a-b)(G'_{2n+m}(x) - (-g)^n G^*_n(x)) - \alpha (G^*_n(x) - (-g)^m G^*_n(x))
\]

(37) \(\alpha^2 G^*_n(x) G^*_n(x) - (a-b)^2 (G^*_n(x))^2 = (-g)^n (\alpha G^*_n(x) - 2g) \)

(38) \((a-b)^2 G^*_n(x) G^*_n(x) = \alpha (G^*_n(x) - (-g)^n G^*_n(x)) \)

(39) \(G^*_n(x) = G^*_n(x) [\alpha G^*_n(x) - (-g)^n + (a-b)^2 (-g)^n (G^*_n(x))^2] \)

(40) \(G'_{n+5}(x) - g^2 G^*_n(x) = d\alpha G^*_n+3(x) \)

(41) \(G'_{n+5}(x) + g^2 G^*_n(x) = \alpha G^*_n(x) G^*_n+3(x) \)

(42) \(d(G'_{n}(x))^2 + 2g G^*_n(x) G^*_n+1(x) = G^*_2(x) \)

(43) \((G^*_n(x))^2 - g^2 (G^*_n-1(x))^2 = dG^*_n(x) \)

(44) \((G^*_n+3(x))^2 + g^3 (G^*_n(x))^2 = G^*_n(x) G^*_n+3(x) \)

(45) If \(n \geq m \), then \((G^*_n+1(x))^2 + g^{2m+1} (G^*_n(x))^2 = G^*_n+1(x) G^*_n+1(x) \)

(46) If \(n \geq m \), then \((G^*_n+1(x))^2 - g^{2m} (G^*_n(x))^2 = G^*_n(x) G^*_n+1(x) \)
(47) If \(n \geq m \), then \(G'_n(x)G'_{m+1}(x) - G'_m(x)G'_{n+1}(x) = (-g)^m G'_{n-m}(x) \)

(48) If \(n \geq m \), then \(G'_{n+1}(x)G'_{m+1}(x) - (g)^2 G'_{n-1}(x)G'_{m-1}(x) = dG'_{n+m}(x) \)

(49) If \(n \geq m \), then \(G'_{n+1}(x)G'_m(x) + gG'_n(x)G'_{n-1}(x) = G'_n(x) \)

(50) If \(n \geq m \), then \(G'_{n-m+1}(x)G'_m(x) + gG'_{n-m}(x)G'_m(x) = G'_n(x) \)

(51) \(G'_n(x)G'_{n+1}(x) - G'_{n-1}(x)G'_{n+2}(x) = d(-g)^{n-1} \)

(52) If \(i \geq 0 \), then \(G'_{n+i}(x)G'_i(x)G'_{n+i}(x) = (-g)^n G'_i(x)G'_i(x) \)

(53) \(\sqrt{a-b)^2(G'_{n}(x))^2 + 4(-g)^m} - gG'_{n-1}(x) = G'_n(x) \)

(54) If \(r \leq \min(m, n, s, t) \) and \(m + n = s + t \), then

\[
G'_m(x)G'_n(x) - G'_s(x)G'_t(x) = (-g)^r \left(G'_{m-r}(x)G'_{n-r}(x) - G'_{s-r}(x)G'_{t-r}(x) \right)
\]

(55) \(G'_{n+2}(x)G'_m(x) - g^2 G'_n(x)G'_{m-1}(x) = dG'_n(x)G'_m(x) \)

(56) \(G'_{2n}(x) \left[a^2(G'_{4n}(x) - g^{2n}/\alpha)^2 + g^{2n}(a-b)^2(G'_{2n}(x))^2 \right] = G'_{10n}(x) \)

(57) \(G'_{2n}(x) + 2(-g)^n/\alpha = \alpha(G'_n(x))^2 \)

(58) If \(n \geq m \), then \(G'_{n+m}(x) + (-g)^m G'_m(x) = \alpha G'_m(x)G'_n(x) \)

(59) \((a-b)\sqrt{(G'_{n}(x))^2 - 4(-g)^m/\alpha^2} - gG'_{n-1}(x) = G'_{n+1}(x) \)

(60) \((a-b)^2(G'_{n+2}(x))^2 + g^2 \alpha^2(G'_n(x))^2 = \alpha^2 G'_{2n}(x)G'_{2n+2}(x) \)

(61) \(\alpha^2 \left((G'_{n+1}(x))^2 - g^2(G'_{n-1}(x))^2 \right) = (a-b)^2G'_{2n}(x)G'_{2n}(x) \)

(62) \(\alpha^2(G'_{n+1}(x))^2 - (a-b)^2g(G'_{n}(x))^2 = \alpha^2 dG'_{2n+1}(x) \)

(63) If \(n \geq m \), then \(G'_{n+m}(x) + (-g)^m G'_m(x) = \alpha G'_n(x)G'_m(x) \)

(64) \(G'_{n+1}(x)G'_{n+1}(x) + gG'_{n}(x)G'_{n}(x) = G'_{2n+1}(x) \)

(65) If \(m \geq n \), then

\[
G'_m(x)G'_{2m}(x)G'_{3n}(x) = (G'_{m+n}(x))^3 - (-g)^3(G'_{n-m}(x))^3 - \alpha(-g)^m(G'_{n}(x))^3 G'_{m}(x)
\]

(66) \((a-b)^2 \left[(G'_n(x))^2 + (G'_{n+1}(x))^2 \right] = \alpha^2 \left[(G'_n(x))^2 + (G'_{n+1}(x))^2 \right] + 4(-g)^n(g-1) \)

(67) \(G'_m(x)G'_{n}(x) + gG'_{n-1}(x)G'_n(x) = G'_{m+n-1}(x) \)

(68) \(G'_{n+m+1}(x)G'_{n}(x) - G'_{n+m}(x)G'_{n+1}(x) = (-g)^n G'_{m}(x)G'_{1}(x) \)

(69) \(G'_{n+1}(x)G'_{n+m}(x) - G'_{n}(x)G'_{n+m+1}(x) = (-g)^n G'_{m}(x)G'_{1}(x) \)

(70) \(\alpha^2(G'_{n+m+1}(x)G'_n(x) - G'_{n+m}(x)G'_{n+1}(x)) = (-g)^n(a-b)^2G'_m(x)G'_1(x) \)
\[(71) \quad (-g)^k G'_n(x)G'_{m-k}(x) + (-g)^m G'_n(x)G'_k(x) + (-g)^n G'_m(x)G'_{k-n}(x) = 0\]

\[(72) \quad (-g)^k G'_n(x)G'_{m-k}(x) + (-g)^m G'_n(x)G'_k(x) + (-g)^n G'_m(x)G'_{k-n}(x) = 0\]

\[(73) \quad (a - b)^2 G'_{j+k}(x)G'_{j+k}(x) = \alpha \left[G'_{j+k}(x) - (-g)^{2u+v} G'_{j+k}(x) \right]\]

\[(74) \quad \alpha G'_{j+k}(x)G'_{j+k}(x) = \left[G'_{j+k}(x) + (-g)^{2u+v} G'_{j+k}(x) \right]\]

\[(75) \quad \alpha G'_{j+k}(x)G'_{j+k}(x) = \left[G'_{j+k}(x) + (-g)^{2u+v} G'_{j+k}(x) \right]\]

\[(76) \quad \text{If } m + n = s + t, \text{ then}\]

\[G'_m(x)G'_n(x) - G'_s(x)G'_t(x) = (-g)^t \left[G'_m(x)G'_n(x) - G'_s(x)G'_t(x) \right]\]

\[(77) \quad \text{If } m + n = s + t, \text{ then}\]

\[(a - b)^2 G'_m(x)G'_n(x) - \alpha^2 G'_s(x)G'_t(x)\]

\[(78) \quad (G''_n(x))^3 + gd(G'_n(x))^3 - g^3(G''_{n-1}(x))^3 = dG''_{3n}(x)\]

\[(79) \quad \alpha^2 \left[(G''_{n+1}(x))^3 + gd(G'_n(x))^3 - g^3(G''_{n-1}(x))^3 \right] = d(a - b)^2 G''_{3n}(x)\]

\[(80) \quad \alpha^2 \left[G''_{n+1}(x)(G''_{n+1}(x))^2 + gdG'_n(x)(G'_n(x))^2 - g^3G''_{n-1}(x)(G''_{n-1}(x))^2 \right] = d(a - b)^2 G''_{3n}(x)\]

\[(81) \quad G''_{n+1}(x)(G''_{n+1}(x))^2 + gdG'_n(x)(G'_n(x))^2 - g^3G''_{n-1}(x)(G''_{n-1}(x))^2 = dG''_{3n}(x)\]

\[(82) \quad G''_{3n}(x) = \alpha G''_3(x)G''_{3n-3}(x) + g^3G''_{3n-6}(x)\]

\[(83) \quad G''_{3n}(x) = (a - b)^2(G'_n(x))^3 + 3(-g)^nG''_{n}(x)\]

\[(84) \quad G'_{s+t}(x) = G'_{s+t}(x)G'_{s+t}(x)G'_{s+t}(x) + gdG'_r(x)G'_s(x)G'_t(x) - g^3G'_{s+t}(x)G'_{s+t}(x)G'_{s+t}(x)\]

\[(85) \quad \text{If } m > k \text{ and } m > s, \text{ then}\]

\[G'_{m+k}(x)G'_{m-k}(x) - \alpha^2 G'_{m+k}(x)G'_{m-k}(x) = (-g)^{m-s} G'_{s-k}(x)G'_{s+k}(x)\]

\[(86) \quad \text{If } m, n, \text{ and } r \text{ are positive integers and } n > r, \text{ then}\]

\[G'_{r}(x)G'_{m+n}(x) = G'_{m+r}(x)G'_n(x) - (-g)^r G'_{n-r}(x)G'_{m}(x)\]

\[(87) \quad \text{If } m \text{ and } r \text{ are positive integers and } m > r, \text{ then}\]

\[dG'_{2r}(x) \left[(a - b)^2(G'_m(x))^2 + 2(-g)^m \right] = dG'_{2r}(x) \left[(G'_m(x))^2 - g^2(G''_{m+r-1}(x))^2 - g^2G'_{m-r-1}(x))^2 \right] = g^{2r+2}(G''_{m-r-1}(x))^2\]
(88) If m and r are positive integers and $m > r$, then $\alpha^2G_1'(x)G_{2m}^*(x)G_{2r}(x)$ equals
\[
(G_{m+r+1}'(x))^2 - g^2(G_{m+r-1}'(x))^2 - g^{2r}(G_{m-r+1}'(x))^2 + g^{2r+2}(G_{m-r-1}'(x))^2.
\]

(89) If n is a positive integer, then \(((dG_{n+1}^*)^2 + (G_{n+2}')(x))^2\) equals
\[
(G_n'(x))^2 (G_{n+4}(x) - dG_{n+2}^*(x))^2 + (2dG_{n+1}(x)G_{n+2}^*(x))^2.
\]
(This is an adaptation of the Pythagorean Theorem for the Fibonacci type polynomials)

(90) If n is a positive integers, then \(((dG_{n+1}^*)^2 + (G_{n+2}^*)^2)^2\) equals
\[
(G_n^*(x))^2 (G_{n+4}^*(x) - d^2G_{n+2}^*(x))^2 + (2dG_{n+1}^*(x)G_{n+2}^*(x))^2.
\]
(This is an adaptation of the Pythagorean Theorem for the Lucas type polynomials)

(91) If n and m are positive integers, then
\[
(G_{n+2m+1}(x)) - g^m(G_n'(x))^2 = G_{2m+1}(x)G_{2n+2m+1}(x).
\]

(92) If m and n are positive integers, then
\[
\alpha^2 [(G_{m+n}^*(x))^2(G_{m+n}(x))^2 - g^{2n}(G_m'(x))^2(G_m^*(x))^2] = G_{2m}^*(x)G_{4m+2n}(x).
\]

(93) If $m > r$ are positive integers, then $\alpha^2(G_{m-r}^*(x)G_{2r}(x) - 2(-g)^{m+r-2}(2 + d^2))$ equals
\[
(a - b)^2 \left[G_{m+r}(x)G_{m+r-2}(x) + g^{2r}G_{m-r}(x)G_{m-r-2}(x) \right]
\]

(94) If m and n are positive integers, then
\[
\left(\frac{\alpha G_n^*(x) + (a - b)G_n'(x)}{2} \right)^m = \frac{\alpha G_m^*(x) + (a - b)G_m'(x)}{2}.
\]

Proof of part (1). We know $G_n'(x)$ is a Fibonacci type polynomial, so we can represent it using Binet formula (3). Therefore, $(a - b)^2G_n'(x)$ can be written as $(a - b)^2[(a^n - b^n)/(a - b)]$. Simplifying, we see the above expression equals $(a^{n+1} + b^{n+1} - ab^n - ba^n)$. This reduces to $a^{n+1} + b^{n+1} + g(a^{n-1} + b^{n-1})$, since we know that $ab = -g$. It is easy to see that
\[
a^{n+1} + b^{n+1} + g(a^{n-1} + b^{n-1}) = \alpha \left(\frac{a^{n+1} + b^{n+1}}{\alpha} + g \frac{a^{n-1} + b^{n-1}}{\alpha} \right).
\]

This and Binet formula (2) give us $\alpha(G_{n+1}^*(x) + gG_{n-1}^*(x))$ and the proof is complete.

Proof of part (2). Similar to part (1), we know $G_n'(x)$ is a Fibonacci type polynomial, so from Binet formula (3) and $g = -ab$, we have
\[
gG_{n-1}^*(x) + G_{n+1}^*(x) = (-ab(a^{n-1} - b^{n-1}) + a^{n+1} - b^{n+1})/(a - b).
\]
Simplifying the numerator we have $(a^n(a - b) + b^n(a - b))/(a - b)$. This and Binet formula (2) imply that $a^n + b^n = \alpha G_n^*(x)$.

Proof of part (3). Substituting $G'_n(x)$ by its Binet formula (3) and $-ab$ by g we obtain

$$G'_{n+2}(x) - g^2G'_{n-2}(x) = \left(a^{n+2} - b^{n+2} - a^2b^2(a^{n-2} - b^{n+2})\right)/(a-b).$$

Factoring the numerator we have $((a^2 - b^2)(a^n + b^n))/(a-b)$. This implies that,

$$G'_{n+2}(x) - g^2G'_{n-2}(x) = (a+b)(a^n + b^n).$$

Rewriting the right hand side we obtain

$$G'_{n+2}(x) - g^2G'_{n-2}(x) = a^2\left(\frac{a+b}{\alpha}\right)\left(\frac{a^n + b^n}{\alpha}\right).$$

This and Binet formula (2) for Lucas type polynomials complete the proof. \(\square\)

Proof of part (4). We use the Binet formula (3), $d = (a+b)$, and $g = -ab$ in the expression $[(d^2 + 2g)G'_n(x)]$, to obtain $[((a^2 + b^2)(a^n - b^n))/(a-b)]$. Expanding and simplifying we get $[(a^{n+2} - b^{n+2}) + (ab)^2(a^{n-2} - b^{n-2})]/(a-b)$ which is the same as $[G'_{n+2}(x) + g^2G'_{n-2}(x)]$. \(\square\)

4 Acknowledgement

The first and the last authors were partially supported by The Citadel Foundation.

References

[1] R. André-Jeannin, A note on a general class of polynomials, *Fibonacci Quart.* **32** (1994), 445–454.

[2] R. André-Jeannin, A note on a general class of polynomials, II, *Fibonacci Quart.* **33** (1995), 341–351.

[3] A. Benjamin and J. Quinn, *Proofs that really count*, The Dolciani Mathematical Expositions, 27, Mathematical Association of America, Washington, DC, 2003.

[4] G. E. Bergum and V. E. Hoggatt, Sums and products for recurring sequences, *Fibonacci Quart.* **13** (1975), 115–120.

[5] R. Flórez, R. Higuita, and A. Mukherjee, Characterization of the strong divisibility property for generalized Fibonacci polynomials, preprint, 2017, https://arxiv.org/abs/1701.06722.

[6] R. Flórez, R. Higuita, and A. Mukherjee, Alternating sums in the Hosoya polynomial triangle, *J. Integer Seq.* **17** (2014), Article 14.9.5.

[7] R. T. Hansen, Generating identities for Fibonacci and Lucas triples, *Fibonacci Quart.* **10** (1972), 571–578.
[8] R. Knott, Fibonacci and golden ratio formulae,
http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibFormulae.html.

[9] T. Koshy, *Fibonacci and Lucas numbers with applications*, John Wiley, New York, 2001.

[10] R. S. Melham, Families of identities involving sums of powers of the Fibonacci and Lucas numbers, *Fibonacci Quart.* 37 (1999), 315–319.

[11] J. Morgado, Note on some results of A. F. Horadam and A. G. Shannon concerning a Catalan’s identity on Fibonacci numbers, *Portugal. Math.* 44 (1987), no. 3, 243–252.

[12] S. Vajda, *Fibonacci and Lucas numbers, and the golden section. Theory and applications*, Ellis Horwood Series: Mathematics and its Applications, Ellis Horwood Ltd., Chichester; Halsted Press (John Wiley and Sons, Inc.), New York, 1989.

[13] Z. Wu and W. Zhang, Several identities involving the Fibonacci polynomials and Lucas polynomials, *J. Inequal. Appl.* 2013, 2013:205, 14 pp.

MSC 2010: Primary 11B39; Secondary 11B83.
Keywords: generalized Fibonacci polynomial, Fibonacci polynomial, Chebyshev polynomials, Morgan-Voyce polynomials, Lucas polynomials, Pell polynomials, Fermat polynomials.