On SO(N) Spin Vertex Models

Vladimir Belavina, Doron Gepnerb, Hans Wenzlc

a Physics Department, Ariel University, Ariel 40700, Israel
b Department of Particle Physics and Astrophysics, Weizmann Institute, Rehovot 76100, Israel
c Department of Mathematics, University of California, San Diego, California

ABSTRACT

We describe the Boltzmann weights of the D_k algebra spin vertex models. Thus, we find the SO(N) spin vertex models, for any N, completing the B_k case found earlier. We further check that the real (self–dual) SO(N) models obey quantum algebras, which are the Birman–Murakami–Wenzl (BMW) algebra for three blocks, and certain generalizations, which include the BMW algebra as a sub–algebra, for four and five blocks. In the case of five blocks, the B_4 model is shown to satisfy additional twenty new relations, which are given. The D_6 model is shown to obey two additional relations.
1. Introduction.

Solvable lattice models in two dimensions are a fruitful ground to test phase transitions, universality, integrability [1] and conformal field theory [2]. For reviews see [3, 4].

We will concentrate here on a type of solvable lattice models which are called vertex models. Well known among these are the six, eight and nineteen vertex models [3, 4]. For recent works on vertex models see, e.g., [5, 6, 7, 8, 9]. Our purpose here is to introduce vertex models based on the algebra D_k and the spin representation. This completes the SO(N) spin vertex models for all N, where the B_k models were described before in ref. [10].

We are also interested in the algebraic structure underlying these models. We use the more general results of [11, 12], which describe the three, four and five blocks algebras (where the number of blocks is the degree of polynomial equation obeyed by the Boltzmann weights), assuming only a certain ansatz for the Baxterization, described in [13], and the Yang–Baxter equation. We describe and check numerically, the algebras of B_4, which is a five blocks theory, and the algebra of D_6, which is a four blocks theory.

The algebras include a version of the Birman–Murakami–Wenzl algebra (BMW) [14, 15], along with two new relations for four blocks and twenty new relations for the five blocks theory, which are given here for B_4. We check that the BMW algebra is obeyed for D_k, for any small even k, with a different skein relation.
2. D_k spin vertex models.

We wish to describe a vertex model based on the algebra $D_k = SO(2k)$ and the spin representation. This solution is an element of $\text{End}(V \otimes V)$ where V is the spin representation of D_k. We denote by $\alpha_n = \epsilon_n - \epsilon_{n+1}$, for $n = 1, 2, \ldots, k-1$ and $\alpha_k = \epsilon_{k-1} + \epsilon_k$ the simple roots of D_k, where ϵ_i are orthogonal unit vectors. The spin representation, denoted by S has the weights $\sum_{i=1}^{k} p_i \epsilon_i/2$, where $p_i = \pm 1$ and $\prod_{i=1}^{k} p_i = 1$. The last product is -1 for the anti-spinor representation, denoted by \bar{S}. We find it useful to add $1/2$ to these weights, and to represent weights of the spinor (anti-spinor) representation by the vector m, where $m_i = 0$ or 1.

To start constructing the vertex model, we need a solution which commutes with the co-product of $U_q^2(SO(2k))$. We find it convenient to first describe a solution for the larger representation $\tilde{V} = S \oplus \bar{S}$, namely the sum of the spinor and anti-spinor representations. Such a solution was described recently in [16]. It is the element C of $\text{End}(\tilde{V} \otimes \tilde{V})$, given by

$$C_{m,n}^{b,c} = \sum_{j=1}^{k} \delta_{m_j,1-n_j} (-q^2)^{\{m-n\}_j} \delta_{b,\bar{m}_j} \delta_{c,\bar{n}_j},$$

where

$$\{m\}_j = \sum_{r=1}^{j} m_r,$$

and \bar{n}_j is equal to n_j except at the jth coordinate where it is $1-n_j$. Here $m, n, b, c = 0$ or 1 are weights of the spin or anti-spin representations shifted by $1/2$. The eigenvalues of the matrix C were computed in ref. [16], and are

$$\lambda_j = \pm s(k-j), \quad \text{for } j = 0, 1, \ldots, k,$$

where

$$s(x) = \frac{q^{2x} - q^{-2x}}{q^2 - q^{-2}}.$$

The solution C has the disadvantage of mapping both the spin and anti-spin
representations. We note, however, that C maps the representation $S \otimes S$ to $\tilde{S} \otimes \tilde{S}$, and vice versa. Thus, to get a solution in $\text{End}(S \otimes S)$ all we need to do is to square the matrix C and to equate to zero all the $C_{m,n}^{b,c}$ for weights m, n, b, c which are not in S. Thus, C^2 gives the solution we want. Of course, since C commutes with the co–product, so does C^2.

Since the matrix C^2 commutes with the co–product, it has the same eigenvectors as our desired solution which obeys the Yang–Baxter equation, but not the same eigenvalues. Thus, we define the projection operators

$$
(P_{a}^{b,c})_{m,n} = \prod_{p \neq a} \left[\frac{C^2 - \lambda_p^2 I}{\lambda_a^2 - \lambda_p^2} \right],
$$

(2.5)

where the product is in $\text{End}(S \otimes S)$ and I is the identity map.

We note that for even k, $P^a = 0$ for a which is odd, whereas for odd k, $P^a = 0$ for a which is even. The jth eigenvalue corresponds to the representation $V_j = \wedge^j v$, where v is the vector representation, i.e., the anti–symmetric product of j vector representations [16]. The highest weight of the representation V_j is $\epsilon_1 + \epsilon_2 + \ldots + \epsilon_j$. Thus, the non–zero P^a are in one to one correspondence with the representations that appear in the tensor product,

$$
S \times S = \sum_{j=0}^{k} V_j,
$$

(2.6)

as they should. Thus, the projection P^a projects onto the representation V_a.

We wish to make the connection between the solution C^2 and the D_k WZW conformal model. For explanation of conformal field theory see the book [2], and references therein. To do this we define,

$$
q^2 = \exp[\pi i/(r + g)],
$$

(2.7)
Here r is the level of the representation and

$$g = 2k - 2,$$ \hspace{1cm} (2.8)

is the dual Coxeter number.

The dimension of the highest weight Λ in a WZW theory is given by

$$\Delta_\Lambda = \frac{\Lambda(\Lambda + 2\rho)}{2(r + g)},$$ \hspace{1cm} (2.9)

where ρ is half the sum of positive roots and $C_\Lambda = \Lambda(\Lambda + 2\rho)$ is the Casimir of the representation. The Casimir of the representation V_j is given by

$$C(V_j) = C_j = j(2k - j).$$ \hspace{1cm} (2.10)

As explained in [10], the eigenvalues of the R matrix are given by

$$\beta_j = p_j e^{-i\pi \Delta_j} = p_j q^{-C(V_j)},$$ \hspace{1cm} (2.11)

where $p_j = \pm 1$ is some sign which corresponds to whether the product in eq. (2.6) is symmetric or anti-symmetric. In our case, the sign is given by

$$p_j = (-1)^{(k-j)/2}.$$ \hspace{1cm} (2.12)

Thus, since we know the eigenvalues of the R matrix and the projection operators from eq. (2.5), we may construct the R matrix as

$$R_{m,n}^{a,b} = \sum_{j=0}^{k} \beta_j(P_j)^{a,b}_{m,n}.$$ \hspace{1cm} (2.13)

It can be verified that this R matrix satisfies the Yang–Baxter equation (YBE) which for the R matrix is the braiding relation,

$$\sum_{\alpha,\beta,\gamma} R_{j,k}^{\beta,\alpha} R_{i,\beta}^{l,\gamma} R_{m,\alpha}^{n} = \sum_{\alpha,\beta,\gamma} R_{i,j}^{\alpha,\beta} R_{\beta,k}^{\gamma,n} R_{\alpha,\gamma}^{l,m}.$$ \hspace{1cm} (2.14)

We checked that this R matrix obeys the YBE, numerically for $k = 2, 3, 4, 5, 6$ and it holds, indeed, for various weights and for general q.

Page 5
Now, we wish to define a trigonometric solution for the YBE. For this purpose, we use the same general ansatz for Baxterization as in \[10, 13\]. First, we need to decide on the order of the primary fields in eq. (2.6). The order which solves the YBE is given by

\[(h_0, h_1, \ldots, h_{k/2}) = (0, 2, 4, \ldots, k), \quad (2.15)\]

for even \(k\). For odd \(k\) the order is

\[(h_0, h_1, \ldots, h_{(k-1)/2}) = (k, k-2, k-4, \ldots, 1). \quad (2.16)\]

The parameters are given by \[10, 13\],

\[\hat{\zeta}_j = \pi(\Delta_{h_{j+1}} - \Delta_{h_j})/2, \quad (2.17)\]

for \(j = 0, 1, \ldots, m - 1\), where \(m = k/2\) for even \(k\) and \(m = (k - 1)/2\) for odd \(k\). Thus, the \(D_k\) theory is an \(m + 1\) blocks theory. We thus define the parameters as

\[\zeta_j = (C_{h_{j+1}} - C_{h_j})/2. \quad (2.18)\]

We define

\[p(x) = q^x - q^{-x}. \quad (2.19)\]

Then the trigonometric solution to the YBE assumes the form \[10, 13\],

\[R_{m,n}^{a,b}(u) = \sum_{j=0}^{m} f_j(u)(P^{h_j})_{m,n}^{a,b}, \quad (2.20)\]

where

\[f_a(u) = \left[\prod_{j=1}^{a} p(\zeta_{j-1} - u) \prod_{j=a+1}^{m} p(\zeta_{j-1} + u) \right] / \left[\prod_{j=1}^{m} p(\zeta_{j-1}) \right], \quad (2.21)\]

where \(a = 0, 1, \ldots, m\).
For example, for $k = 6$, which is a four blocks theory, the parameters are $(\zeta_0, \zeta_1, \zeta_2) = (10, 6, 2)$. The crossing parameter is $\lambda = \zeta_0$. The D_k vertex models with k even are real (self–dual) as $S = S^\ast$. For odd k the theories are not real (not self–dual), as $S \neq S^\ast$.

We can check that the solution, eqs. (2.20, 2.21), obeys the Yang–Baxter equation, which is

$$\sum_{\alpha,\beta,\gamma} R_{j,k}^{\beta,\alpha}(u)R_{i,j}^{l,\gamma}(u+v)R_{\gamma,\alpha}^{m,n}(v) = \sum_{\alpha,\beta,\gamma} R_{i,j}^{\alpha,\beta}(v)R_{\beta,k}^{n}(u+v)R_{\alpha,\gamma}^{l,m}(u).$$

We checked this equation, numerically, for $k = 2, 3, 4, 5, 6$ and various values of u, v and q and various heights. It is indeed obeyed. This gives the trigonometric D_k spin vertex model.

3. BMW' algebra and SO(N) spin vertex models.

We repeat here the definition of the BMW’ algebra following [10]. We find it convenient to use an operator form for the R matrix. We define the matrix, following [4],

$$X_i(u) = \sum_{m,n,a,b} R_{m,n}^{a,b}(u) I^{(1)} \otimes \ldots \otimes I^{(i-1)} e_{am}^{(i)} \otimes e_{bn}^{(i+1)} \otimes I^{(i+2)} \otimes \ldots \otimes I^{(f)},$$

where $I^{(i)}$ is the identity matrix at position i and $(e_{rs})_{lm} = \delta_{rl} \delta_{sm}$. The YBE, eq. (2.22), then assumes a more compact form,

$$X_i(u)X_j(v) = X_j(v)X_i(u), \quad \text{if } |i - j| \geq 2,$$

$$X_i(u)X_{i+1}(u+v)X_i(v) = X_{i+1}(v)X_i(u+v)X_{i+1}(u).$$

Let us denote the number of blocks by n. For the D_k models, this is $n = m + 1 = k/2 + 1$ (k even), or $n = m + 1 = (k + 1)/2$ (for odd k). In this section,
we will assume that k is even, so that the theory is real (self-dual). It is assumed that the number of blocks is greater or equal to three, $n \geq 3$. The algebras of non-real theories are also interesting, but we shall not describe it here. We define the limit of the matrix $X_i(u)$ as

$$X_i = \lim_{u \to i\infty} e^{(n-1)u} X_i(u), \quad X_i^t = \lim_{u \to -i\infty} e^{-i(n-1)u} X_i(u). \quad (3.3)$$

We define the operators,

$$G_i = 2^{n-1} e^{-i(n-1)\zeta_0/2} \left[\prod_{r=1}^{n-1} \sin(\zeta_{r-1}) \right] X_i, \quad (3.4)$$

$$G_i^{-1} = 2^{n-1} e^{i(n-1)\zeta_0/2} \left[\prod_{r=1}^{n-1} \sin(\zeta_{r-1}) \right] X_i^t, \quad (3.5)$$

and

$$E_i = X_i(\zeta_0), \quad 1_i = X_i(0), \quad (3.6)$$

where ζ_i are the parameters defined in eq. (2.17). G_i^{-1}, so defined, is the inverse of G_i, or $G_i G_i^{-1} = 1_i$.

From the ansatz, eqs. (2.20, 2.21), and from the YBE, eq. (2.22), we can prove the following relations of the operators G_i, G_i^{-1} and E_i,

$$E_i E_{i+1} E_i = b E_i, \quad E_i^2 = b E_i, \quad E_i E_j = E_j E_i \quad \text{if} \ |i-j| \geq 2, \quad (3.7)$$

$$b = \prod_{r=1}^{n-1} \frac{\sin(\zeta_0 + \zeta_{r-1})}{\sin(\zeta_{r-1})}, \quad (3.8)$$

which is the Temperley–Lieb algebra [17], and

$$G_i G_j = G_j G_i \quad \text{if} \ |i-j| \geq 2, \quad G_i G_{i+1} G_i = G_{i+1} G_i G_{i+1}, \quad (3.9)$$
which is the braiding algebra. We can also prove the relations,

\[G_i E_i = E_i G_i = l^{-1} E_i, \]

where

\[l = i^{n-1} \exp \left[i(n-1)\zeta_0/2 + i \sum_{r=0}^{n-2} \zeta_r \right]. \]

The following is the skein relation which stems from the definition of the projection operators along with the ansatz, eqs. (2.20, 2.21),

\[G_i^{n-2} = a E_i + \sum_{r=-1}^{n-3} b_r G_i^r, \]

where \(a \) and \(b_r \) are some coefficients, which can be expressed in terms of the parameters, \(\zeta_r \). From the skein relation we prove,

\[G_{i\pm 1} G_i E_{i\pm 1} = E_i G_{i\pm 1} G_i. \]

The above relation, eqs. (3.7–3.13), are part of the Birman–Murakami–Wenzl algebra (BMW) [14, 15]. The rest of the relations of the BMW algebra are also obeyed, except of the skein relation, eq. (3.12), which is different for more than three blocks. These are

\[G_{i\pm 1} G_i E_{i\pm 1} = E_i E_{i\pm 1}, \quad G_{i\pm 1} E_i G_{i\pm 1} = G_i^{-1} E_{i\pm 1} G_i^{-1}, \]

\[G_{i\pm 1} E_i E_{i\pm 1} = G_i^{-1} E_{i\pm 1}, \quad E_{i\pm 1} E_i G_{i\pm 1} = E_{i\pm 1} G_i^{-1}, \]

\[E_i G_{i\pm 1} E_i = l E_i, \quad E_i G_{i\pm 1}^{-1} E_i = l^{-1} E_i. \]

We have verified that the full BMW’ algebra (BMW with a different skein relation) is obeyed by the \(D_k \) model, with \(k = 4 \) or \(6 \). We did this numerically,
using various heights and general q. We note that the BMW' algebra is obeyed also by the B_k spin vertex models [10], while substituting the relevant parameters ζ_r. For more than three blocks there are additional relations, except from the skein relation. These are described in the next two sections, for B_4 and D_6.

4. $n = 5$ blocks case and B_4 vertex models.

It was noticed in [10] that the structure of n-CB algebra, which follows from the Baxterization of IRF models, is also applicable for vertex models. In our case, the connection is between n-CB algebra and B_{n-1} models. This algebra was checked, in particular, for B_3 models obeying 4-CB algebra [10]. In the 5-block case, the n-CB algebra reduces to a set of 20 relations in addition to BMW' sub-algebra. We get these relations by expanding the YBE, eq. (2.22) and assuming the ansatz, eqs. (2.20, 2.21). The 5-CB relations are general for all the five blocks models obeying the ansatz for Baxterization, eq. (2.20, 2.21). We specify the algebra here only for the B_4 spin vertex models for calculation reasons. In this section we summarize the 5-CB relations for B_4 spin vertex model. We give the shorter relations explicitly, here. The complete list of 5-CB relations for B_4 models can be found in the attached Mathematica file.

For the general values of the parameters, the 5-CB skein relation as well as the explicit projectors have been found in [12]. The skein relation reads

$$G_i^3 = \alpha 1_i + \beta E_i + \gamma G_i + \delta G_i^{-1} + \mu G_i^2,$$

where denoting $s_k = q^{\xi_k}$ the parameters are
\[\alpha = -s_1\left(s_1^2s_2^2s_3 - s_2^2s_3^2 + s_3^2 - 1\right)\frac{s_0^3s_2s_3^3}{s_0s_1s_2s_3},\]
\[\beta = \left(s_1^2 - 1\right)\left(s_2^2 - 1\right)\left(s_0^2s_1s_2 + 1\right)\left(s_3^2 - 1\right)\left(s_0^2s_1s_2s_3 - 1\right)\frac{s_0^3s_1s_2^2}{s_0^3s_2^2 - 1s_3^2(s_0^3s_3^2 - 1)},\]
\[\gamma = \frac{s_1^2s_3^2s_2^4 + s_1^2s_2^2 - s_1^2s_3^2 + s_2^2 - s_2 + 1}{s_0^2s_2^2s_3^3},\]
\[\delta = -s_1^2\frac{s_0^4s_2^2}{s_0s_1s_2s_3}, \quad \mu = -s_2^2s_1 + s_2^2s_3s_1^2 + s_1^2 - 1 \frac{s_0s_1s_2s_3}{s_0s_1s_2s_3}.
\]

In the case of \(B_4\) models the crossing parameters are
\[\zeta_0 = 7, \quad \zeta_1 = 3, \quad \zeta_2 = -1, \quad \zeta_3 = -5\] (4.3)

Using the results of [12] with the above explicit parameters the desired 5-CB algebra relations for \(B_4\) models can be found. The \(B_4\) skein relation reads explicitly
\[G_i^3 = \left(\frac{q^{16} + q^{12} - q^{10} - q^6 + q^4 + 1}{q^{14}}\right)G_i - \frac{1}{q^{12}}G_i^{-1} + \frac{(q^2 - 1)(q^4 + 1)(q^6 - q^2 - 1)}{q^{10}}G_i^2 + \frac{(q^{12} - q^6 - q^2 + 1)}{q^{14}}1_i + \frac{(q^4 + 1)(q^4 - q^3 + q^2 - q + 1)(q^4 + q^3 + q^2 + q + 1)(q^{12} - q^6 + 1)(q^2 - 1)^2}{q^{38}}E_i.
\]

To shorten notation, we denote below by \(a_{l,m,n}\) the elements of the algebra \(A_l[i]A_m[i+1]A_n[i]\) and by \(b_{l,m,n}\) the elements of the algebra \(A_l[i+1]A_m[i]A_n[i+1]\), where \(A_l[r]\) stands for \(G_r, G_r^{-1}, E_r, G_r^2\) or \(1_r\) according to whether \(l = 1, 2, 3, 4, 5\), respectively. A few of the relations, which are sufficiently short, are listed below:

\[1) \left(\frac{q^{12} - q^{10} - q^6 + q^4 + 1}{q^{10}}\right) a_{5,2,3} + \left(\frac{q^{12} - q^{10} - q^6 + q^4 + 1}{q^{10}}\right) a_{5,3,1} - \left(\frac{q^{12} - q^{10} - q^6 + q^4 + 1}{q^{10}}\right) a_{5,1,3} - \left(\frac{q^{12} - q^{10} - q^6 + q^4 + 1}{q^{10}}\right) a_{5,3,2} - \left(\frac{q^{10} + q^6 - q^4 + q^2 - 1}{q^{20}}\right) \left(\frac{q^{12} - q^6 + 1}{q^{10}}\right) a_{5,5,3} - a_{4,3,3} - a_{5,3,4} + a_{5,4,3} + \left(\frac{q^{10} + q^6 - q^4 + q^2 - 1}{q^{20}}\right) \left(\frac{q^{12} - q^6 + 1}{q^{20}}\right) b_{5,5,3} + b_{3,3,4} = 0
\]
2) \[
\frac{(q^4 + 1)(q^{12} - q^6 + 1)}{q^{20}} a_{5,5.3} - \frac{(q^2 - 1)(q^4 + 1)(q^6 + q^4 - 1)}{q^{20}} b_{5,2.3} + \\
+ \frac{(q^2 - 1)(q^4 + 1)(q^6 + q^4 - 1)}{q^{20}} b_{5,3.2} + \frac{b_{5,4.3} - b_{5,3.4}}{q^6} - \\
- \frac{(q^4 + 1)(q^{12} - q^6 + 1)}{q^{20}} b_{5,5.3} + \frac{(q^2 - 1)(q^4 + 1)(q^6 - q^2 - 1)}{q^{16}} b_{5,3.1} - \\
- \frac{(q^2 - 1)(q^4 + 1)(q^6 - q^2 - 1)}{q^{16}} b_{5,1.3} + b_{1,4.3} - a_{3,4.1} = 0
\]

3) \[
\frac{(q^{10} + q^6 - q^4 + q^2 - 1)}{q^{10}} (q^{12} - q^6 + 1) \left(a_{5,4.3} - a_{5,3.4} + b_{5,3.4} - b_{5,4.3} \right) \left(a_{5,4.3} - a_{5,3.4} + b_{5,3.4} - b_{5,4.3} \right) - \\
- \frac{(q^{10} + q^6 - q^4 + q^2 - 1)^2 (q^{12} - q^6 + 1)^2 (a_{5,5.3} - b_{5,5.3})}{q^{30}} + \\
+ \frac{(q^{10} + q^6 - q^4 + q^2 - 1)(q^{12} - q^6 + 1)(b_{5,1.3} + b_{5,3.2} - b_{5,2.3} - b_{5,3.1})}{q^{20}} + \\
+ \frac{q^{10}(a_{4,3.4} - b_{4,3.4})}{q^{12} - q^{10} - q^6 + q^4 + 1} - a_{1,3.4} + a_{2,3.4} - b_{4,3.2} + b_{4,3.1} = 0
\]

4) \[
\frac{(q^2 - 1)(q^4 + 1)(q^{12} - q^6 + 1)(q^{18} - q^{16} + q^{10} - q^8 - 1)}{q^{20}} (b_{5,3.1} - b_{5,1.3}) + \\
+ \frac{(q^2 - 1)(q^4 + 1)(q^6 - q^2 - 1)}{q^{4}} (b_{5,2.3} - b_{5,3.2}) + b_{2,4.3} + \\
+ \frac{(q^4 + 1)(q^{12} - q^6 + 1)(q^{12} - q^{10} + q^8 - q^2 + 1)}{q^{6}} (a_{5,5.3} - b_{5,5.3}) + \\
+ (q^{12} - q^{10} - q^6 + q^4 + 1) q^{2}(b_{5,4.3} - b_{5,3.4}) - a_{3,4.2} = 0
\]

5) \[
\frac{(q^2 - 1)(q^4 + 1)(q^{12} - q^6 + 1)(q^{18} - q^{16} + q^{10} - q^8 - 1)}{q^{20}} (a_{5,1.3} - a_{5,3.1}) + \\
+ \frac{(q^4 + 1)(q^{12} - q^6 + 1)(q^{12} - q^{10} + q^8 - q^2 + 1)}{q^{6}} (a_{5,5.3} - b_{5,5.3}) + \\
+ \frac{(q^2 - 1)(q^4 + 1)(q^6 - q^2 - 1)}{q^{4}} (a_{5,3.2} - a_{5,2.3}) + \\
+ (q^{12} - q^{10} - q^6 + q^4 + 1) q^{2}(a_{5,3.4} - a_{5,4.3}) - a_{2,4.3} + b_{3,4.2} = 0
\]
We find that the whole list of 19 5-CB relations, which can be found in the attached Mathematica file, is fulfilled for the Boltzmann weights of B_4 models. The Boltzmann weights are stated in [10]. We checked the relations numerically for a general value of the parameter q and substituting various heights.

5. 4–CB relations for D_6.

We wish to check the 4–CB algebra for D_6 which is a four blocks model. The four blocks relations were given in [11]. The parameters for D_6 are, eq. (2.18).

$$\zeta_0 = 10, \quad \zeta_1 = 6, \quad \zeta_2 = 2,$$

and q is given by eq. (2.7).

The skein relation is [11],

$$G_i^2 = -iq^{-\frac{1}{2}}(-\zeta_0 - \zeta_1 - \zeta_2) \left(1 - q^{2\zeta_1} + q^{2\zeta_1+2\zeta_2}\right) G_i - iq^{-\frac{3}{2}}(-\zeta_0 + \zeta_1 - \zeta_2) G_i^{-1}$$

$$+ \frac{q^{-2\zeta_0 - 2\zeta_1 - 2\zeta_2} - \left(1 + q^{2\zeta_0 + 2\zeta_1 + 2\zeta_2}\right) \left(q^{2\zeta_2} - 1\right)}{\left(q^{2\zeta_0 + 2\zeta_2} - 1\right)} E_i$$

(5.2)
\[-q^{-\zeta_0 - 2\zeta_2} (1 - q^{2\zeta_2} + q^{2\zeta_1 + 2\zeta_2}) \].

The single additional relation is

\[g(i, i + 1, i) = g(i + 1, i, i + 1), \quad (5.3) \]

where

\[g = a_{1,2,4} + a_{1,3,1} + a_{4,2,1} - iq^{-\zeta_0/2 + \zeta_1 - \zeta_2}(a_{1,3,4} + a_{4,2,4} + a_{4,3,1}) \]

\[-iq^{\zeta_0/2 - \zeta_1 + \zeta_2}(a_{2,3,4} + a_{4,1,4} + a_{4,3,2}) - \]

\[i \frac{q^{\zeta_1 + \zeta_2}}{(q^{2\zeta_1} - 1)(q^{2\zeta_2} - 1)} \left(q^{\zeta_0/2}a_{1,2,1} + q^{-\zeta_0/2}a_{2,1,2}\right) + za_{4,3,4}, \quad (5.4) \]

where

\[z = \frac{q^{-\zeta_0 - 2\zeta_1 - 2\zeta_2}(q^{2\zeta_1} - 1)(q^{2\zeta_2} - 1)}{q^{2\zeta_0 + 2\zeta_2} - 1} \times \]

\[(2q^{2\zeta_0 + 2\zeta_2} + 2q^{2\zeta_0 + 2\zeta_1 + 2\zeta_2} + q^{4\zeta_0 + 2\zeta_1 + 4\zeta_2 + 1}). \quad (5.5) \]

We denoted by \(a_{i,j,k}(r, s, t) \) the element of the algebra \(a_i[r]a_j[s]a_k[t] \) where \(a_i[r] \)

is \(G_r, G_r^{-1}, E_r \) or \(1_r \), if \(i = 1, 2, 3, 4 \), respectively.

Finally, we proceed to check these two relations, for the \(D_6 \) vertex model substituting the explicit Boltzmann weights, eqs. (2.20, 2.21). Indeed they hold for various values of the heights and for general value of \(q \).

Acknowledgements: We thank Ida Deichaite for remarks on the manuscript.
REFERENCES

1. A.B. Zamolodchikov and A.B. Zamolodchikov, Ann. Phys. (NY) 120 253 (1979).

2. P. Francesco, P. Mathieu and D. Senechal, “Conformal field theory”, Springer (1997).

3. R.J. Baxter, “Exactly solved models in statistical mechanics”, Academic Press, London, England (1982).

4. M. Wadati, T. Deguchi and Y. Akutsu, Phys. Rep. 180 (4) (1989) 247.

5. B. Brubaker, arXiv: 1906.04140 (2019).

6. T.K. Kassenova, P. Yu and O.V. Razina, J. of Phys.: Conf. Series 1391 (2019).

7. A. Bossard and W. Galleas, J. of Math. Phys. 60, 103509 (2019).

8. J.H. Arbeitman, S. Mantilla and I. Sodeman, Phys. Rev. B 99 245108 (2019).

9. K.S. Nirov and A.V. Razumov, SIGMA 15 068 (2019).

10. D. Gepner, “B_k spin models and quantum algebras”, arXiv: 2005.02708, Nucl. Phys. B (in press) (2020).

11. V. Belavin, D. Gepner, J.R. Li and R. Tessler, JHEP 11 (2019) 155.

12. V. Belavin and D. Gepner, arXiv: 2001.09280 (2020).

13. D. Gepner, “Foundations of rational quantum field theory I”, arXiv: hep-th/9211100v2 (1992).

14. J.S. Birman and H. Wenzl, Trans. Am. Math. Soc. 313 (1) (1989) 313.

15. J. Murakami, Osaka J. Math. 24 (4) (1987) 745.

16. H. Wenzl, “Dualities for spin representation”, arXiv: 2005.11299, (2020).

17. N. Temperley and E. Lieb, Proc. R. Soc. A 322 (1971) 251.