Exploring the Link between Germline and Somatic Genetic Alterations in Breast Carcinogenesis

Núria Bonifaci¹, Bohdan Górski², Bartłomiej Masojć², Dominika Wokolorczyk², Anna Jakubowska², Tadeusz Dębniak², Antoni Berenguer¹, Jordi Serra Musach¹, Joan Brunet³, Joaquín Dopazo⁴, Steven A. Narod⁵, Jan Lubinski², Conxi Lázaro⁶, Cezary Cybulski², Miguel Angel Pujana¹,º,

¹Biomarkers and Susceptibility Unit, Spanish Biomedical Research Centre Network for Epidemiology and Public Health, Catalan Institute of Oncology, L’Institut d’Investigación Biomédica de Bellvitge (IDIBELL), L’Hospitalet, Barcelona, Spain, ²Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland, ³Hereditary Cancer Programme, Catalan Institute of Oncology, IDIBGI, Girona, Spain, ⁴Department of Bioinformatics and Genomics, Centro de Investigación Príncipe Felipe, Functional Genomics Node and Spanish Biomedical Research Centre Network for Rare Diseases, Valencia, Spain, ⁵Womens College Research Institute, University of Toronto and Women’s College Hospital, Toronto, Ontario, Canada, ⁶Hereditary Cancer Programme, Catalan Institute of Oncology, IDIBELL, L’Hospitalet, Barcelona, Spain

Abstract

Recent genome-wide association studies (GWASs) have identified candidate genes contributing to cancer risk through low-penetration mutations. Many of these genes were unexpected and, intriguingly, included well-known players in carcinogenesis at the somatic level. To assess the hypothesis of a germline-somatic link in carcinogenesis, we evaluated the distribution of somatic gene labels within the ordered results of a breast cancer risk GWAS. This analysis suggested frequent influence on risk of genetic variation in loci encoding for “driver kinases” (i.e., kinases encoded by genes that showed higher somatic mutation rates than expected by chance and, therefore, whose deregulation may contribute to cancer development and/or progression). Assessment of these predictions using a population-based case-control study in Poland replicated the association for rs3732568 in EPHB1 (odds ratio (OR) = 0.79; 95% confidence interval (CI): 0.63–0.98; Ptrend = 0.031). Analyses by early age at diagnosis and by estrogen receptor α (ERα) tumor status indicated potential associations for rs6852678 in CDKL2 (OR = 0.32, 95% CI: 0.10–1.00; Pinteraction = 0.044) and rs10878640 in DYSK2 (OR = 2.39, 95% CI: 1.32–4.30; Pdominant = 0.003), and for rs12765929, rs9836340, rs4707795 in BMP1A, EPHA3 and EPHA7, respectively (ERα tumor status Pinteraction < 0.05). The identification of three novel candidates as EPH receptor genes might indicate a link between perturbed compartmentalization of early neoplastic lesions and breast cancer risk and progression. Together, these data may lay the foundations for replication in additional populations and could potentially increase our knowledge of the underlying molecular mechanisms of breast carcinogenesis.

Introduction

With the advent of technical and methodological advances, several GWASs identifying common genetic variation associated with risk of developing cancer have been completed recently [1]. Thus, initiatives such as the National Cancer Institute’s Cancer Genetic Markers of Susceptibility (CGEMS) and efforts carried out by deCODE Genetics and the Breast Cancer Association Consortium have led to the identification of breast cancer risk alleles in single nucleotide polymorphisms (SNPs) replicated across populations [2–6]. Intriguingly, illustrating the unbiased nature of GWASs, most hits have corresponded to a priori unexpected candidate genes. In this context, the involvement of biological processes beyond the canonical DNA damage response in breast cancer is further suggested by the observed differential influence of low-penetration risk alleles among BRCA1 and BRCA2 mutation carriers [7–9].

A potential common characteristic of the unexpected low-penetration susceptibility genes is the previously identified contribution to tumorigenesis, but at the somatic level. Common genetic variation in loci encoding for FGFR2 and MAP3K1 influences risk of breast cancer [2,4], and these genes were previously found to be somatically mutated in diverse neoplasias including breast cancer [10,11]. In addition, and central to the understanding of cancer progression, common risk alleles showed differential influence according to ERα tumor status [12], and variation in the locus encoding for ERα, ESRI, also influences risk of breast cancer [13,14]. More recently, additional breast cancer susceptibility loci have been described that include CDKN2A/B as candidates [15]. While these observations suggest a “germline-somatic” link in breast carcinogenesis, an analogous situation may exist for other neoplasias. Variation in loci encoding for CDH1 and SMAD7 influences risk of colorectal cancer [16,17] and, similarly, these genes were previously identified as inactivated or deregulated.

Citation: Bonifaci N, Górski B, Masojć B, Wokolorczyk D, Jakubowska A, et al. (2010) Exploring the Link between Germline and Somatic Genetic Alterations in Breast Carcinogenesis. PLoS ONE 5(11): e14078. doi:10.1371/journal.pone.0014078

Copyright: © 2010 Bonifaci et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The work was supported by the Spanish Society of Medical Oncology 2009 grant to JB and MAP, the Ramón Areces Foundation XV and FIS (09/02483) grants, and the Biomedical Research Centre Network for Epidemiology and Public Health group 55 to MAP, and the “Roses contra el Cáncer” Foundation and RTICC RD06/0020/0028 grants to JB. MAP was supported by the “Ramon y Cajal” Young Investigator program of the Spanish Ministry of Science and Innovation and NB by an IDIBELL fellowship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: cezarycy@sci.pam.szczecin.pl (CC); mapujana@iconcologia.net (MAP)
in tumors [18–21]. Moreover, deregulated germline expression of a paradigmatic proto-oncogene, MYC, may be a common mechanism of tumorigenesis in epithelial tissues [22–25]. However, despite some evidence of a germline-somatic link, as yet there is no explicit evaluation of this hypothesis and its potential usefulness in replication studies. Here we present an examination of this link through analysis of the CGEMS GWAS breast cancer dataset and subsequent assessment of the predictions in a case-control study of incident breast cancer in Poland.

Results

Distribution of somatic gene sets in ordered breast cancer GWAS results

Previously, analysis of the CGEMS GWAS dataset using the lowest genotypic \(P \) value per gene locus suggested true associations in genes annotated with Gene Ontology (GO) biological process terms linked to somatic events [26,27]. However, since there is a positive correlation between the extension of a given locus and the number of SNPs it may contain (and, therefore, the possibility of significant association results being obtained by chance), an unadjusted GWAS rank is biased at its lowest \(P \) values for specific processes in which large gene products frequently participate [26,28,29] (Fig. 1A). Nevertheless, cancer genes tend to expand across large genomic regions [30], and examination of eight genes likely involved in breast cancer through low-penetration mutations—CASP8, COX11, ESR1, FGFR2, LSP1, MAP3K1, RAD51L1 and TOX3 [2–6,13,14]—showed a trend for larger genomic loci (mean \(\Xi \) genomic extension = 211 kilo bases (kb) and standard deviation \(\sigma \) = 283 kb; compared to \(\Xi \) = 66 kb and \(\sigma \) = 128 kb for all annotated genes in the CGEMS GWAS rank).

Having identified caveats to the ranking of GWAS results, we performed 10,000 permutations of case-control status and used the null distribution of \(t \) statistics from the age-adjusted partial correlation analysis to correct the original rank, which then showed an unbiased distribution (Fig. 1B). Prior to the evaluation of somatic sets, analysis of GO biological process terms in the GWAS permutation \(P \) values rank did not show any significant asymmetry using the Gene Set Enrichment Analysis (GSEA) tool [31] with multiple testing correction by the false discovery rate (FDR) approach [32]. Nonetheless, most processes with nominally significant \(P \) values were those previously highlighted, which are associated with somatic events [26,27] (Table S1). This observation appears to agree with recently described results of pathway-based analysis of the same GWAS dataset [33].

Next, evaluation of somatic sets related to cancer prognosis and treatment response prediction, and to genetic and genomic alterations (see Materials and Methods), revealed significant asymmetrical distribution of “driver kinases” [34,35]; that is, kinases whose deregulation through frequent somatic mutation contributes to tumor development and/or progression (“driver mutations”). In contrast, “passenger mutations” were defined as essentially neutral and linked to the inherent genetic instability in cancer cells [34,35]. Thus, the driver kinases set was found to be biased towards the top (nominal significant association results) of the GWAS permutation rank (GSEA nominal \(P \leq 0.001; \) FDR-adjusted \(P = 0.010 \)) (Fig. 1C and Table S2). Among the remaining of somatic sets evaluated, only cooperation response genes (CRGs) to oncogenic mutations [36] showed a trend for a distribution similar to that of driver kinases (GSEA nominal \(P = 0.080; \) FDR-adjusted \(P \) value = 0.25) (Fig. 1D), although the intersection between both sets only contained two genes (Table S2). Therefore, in somatic cancer genes, common genetic variation in driver kinase loci might frequently influence risk of breast cancer.

The set of driver kinases contained a benchmark gene, FGFR2 [2,4], and a locus recently replicated in an independent study, BMPRIB [37]. Nevertheless, a significant bias was still observed following exclusion of these two loci (GSEA nominal \(P = 0.001; \) FDR-adjusted \(P = 0.040 \)), which suggests that variation at additional driver kinase loci influences risk of breast cancer. Importantly, using the set of non-driver kinases—either the equivalent set as originally statistically ordered or the total set (\(n = 344 \)) [35]—did not reveal significant bias (GSEA nominal \(P = 0.99 \) and 0.66, respectively), which reinforces the idea of frequent involvement of driver kinases. However, if only the individual statistical data for each locus were considered, most of the driver kinase loci would perhaps not have been selected for replication in other populations.

Independent association results for common variation in driver kinase loci

Given the possible bias in GWAS rank identified above, we examined the top 20 driver kinase variants in the original rank (Table S3, including details of the CGEMS and results below) in a case-control study of incident breast cancer in Szczecin (Poland), previously used in other replications [30]. Applying genotyping quality controls and Hardy-Weinberg equilibrium analysis, 16 SNPs representing an identical number of driver kinase loci (i.e., a single SNP for each locus and representing the strongest potential statistical association) were examined for their association with risk of breast cancer using 880 controls and 1,173 cases (see Materials and Methods). In this analysis, the rs3732568 variant in the \(\text{ephrin}^\text{type-B receptor 1} \) (\(\text{EPHB1} \)) locus was found to be associated with risk of breast cancer: \(\text{OR} = 0.79, \ 95\% \ \text{CI}: \ 0.63–0.98; \ P_{\text{adj}} = 0.031 \) (Table 1). Further evaluation of this association through 10,000 case-control permutations in our study gave a similar significance value, \(P_{\text{adj}} = 0.034 \). Importantly, this association was in the same direction and with similar magnitude to the result in the CGEMS GWAS: age-adjusted \(\text{OR} = 0.78, \ 95\% \ \text{CI}: \ 0.64–0.94; \ P_{\text{adj}} = 0.009 \).

While deregulated expression or function of EPHs and EPH receptors is thought to play a critical role in the initial stages of epithelial neoplasia [39,40], recent analysis of early breast cancer expression changes suggests a link between disruption of cell adhesion and extracellular matrix pathways, and the risk of developing breast cancer [41]. Analysis of this recent dataset also revealed an early expression change of \(\text{EPHB1} \), between normal breast tissue and atypical ductal hyperplasia (Fig. 2). This alteration consisted of infra-expression in hyperplasia, akin to its potential role in the compartmentalization of early neoplastic lesions [42]. Together, association studies, early expression changes in carcinogenesis and the regulation of cell adhesion suggest the involvement of \(\text{EPHB1} \) in risk of breast cancer.

Next, given accepted models of inherited breast cancer susceptibility [43], we examined associations with risk at early age of diagnosis (≤40 years old). This analysis indicated two additional potential associations: rs8532678 in \(\text{CDKL2} \), recessive model \(\text{OR} = 0.32, \ 95\% \ \text{CI}: \ 0.10–1.00; \ P = 0.044; \) and rs10878640 in \(\text{DIRR2} \), dominant model \(\text{OR} = 2.39, \ 95\% \ \text{CI}: \ 1.32–4.30; \ P = 0.003 \) (Table 2). Results for rs8532678 appeared to be consistent with CGEMS GWAS analysis; age-adjusted recessive model \(\text{OR} = 0.71, \ 95\% \ \text{CI}: \ 0.53–0.95; \ P = 0.019; \) however, the pattern for rs10878640 might be more complex (CGEMS GWAS ORs = 1.05 and 0.68 for heterozygotes and minor allele homozygotes, respectively).

Having potential differences by ER\(\alpha \) tumor status, we next examined associations in ER\(\alpha \)-positive and -negative breast cancer patients. Thus, rs3732568 in \(\text{EPHB1} \) showed a similar influence on...
either type of breast cancer (Table 3)–which is consistent with an overall significant association–and rs12765929 in BMPR1A and rs9836340 in EPHA3 showed a potential major impact on the risk of ERα-negative breast cancer (P for difference in OR (interaction) by ERα status <0.05), while rs4707795 in EPHA7 showed a differential effect between ERα-negative versus ERα-positive breast cancer risk (P_{interaction} = 0.007) (Table 3). None of these additional candidates linked to ERα tumor status, or those linked to an early age of diagnosis above, showed significant expression differences at early stages of breast carcinogenesis as EPHB1. On the other hand, the remaining SNPs examined in this study after applying quality controls and Hardy-Weinberg equilibrium analysis (i.e., 10 out of 16), did not show significant associations following CGEMS evidence (Table S3). Together, the gene-set based analysis of GWAS data and the subsequent replication attempt might indicate that common genetic variation in specific driver kinase loci, and particularly in EPH receptor genes, influence risk of breast cancer.

Discussion

Evaluation of a germline-somatic link in breast carcinogenesis suggests a role for driver kinases and, perhaps to a lesser extent, genes with a synergistic response to oncogenic mutations. This study might be limited by the assignment of the lowest genotypic P value per gene locus within a defined genomic window (i.e.,
thus excluding a large proportion of variation that cannot be assigned to a specific known gene—and by its focus on the additive model of influence of risk alleles when adjusted through case-control permutations. Future analyses taking into account the potential perturbation of germline gene expression by, for example, common variation at distant regulatory regions may improve the identification of susceptibility genes using GWAS complete data. Another limitation in the interpretation of the results presented here may lie in the case-control study designs: the CGEMS addressed breast cancer risk in postmenopausal women, while the Polish study was relatively enriched in early-onset cases. Therefore, studies in additional populations, with diverse designs, are warranted to corroborate the results shown here.

The results of the replication study may be consistent with previously detected somatic genetic alterations and/or functional roles. Somatic mutations in CDKL2 were nonsense and were only detected in breast and ovarian cancer cell lines or tumors [11,35]. CDKL2 (also known as p56 or KKIAMRE) is the most distant member of the CDC2-related serine/threonine protein kinase family, involved in epidermal growth factor signaling [44], but with a mostly uncharacterized function. DYRK2 was found to be mutated in breast and central nervous system tumors, in nonsense and missense alterations, respectively [11,35]. The functional role of DYRK2 in the DNA damage response [45] may link to CGEMS GWAS results for RAD51L1 [3]: loss of DYRK2 function alters the activation of apoptosis in response to DNA damage via ATM [43], which may therefore promote carcinogenesis.

Having revealed potential associations linked to known somatic alterations, the most striking results of this study may concern the identification of risk alleles at three EPH receptor loci. EPH-mediated signaling regulates important biological process altered in carcinogenesis, such as cell-to-cell communication, and cell migration and adhesion via the actin cytoskeleton [39,40]. Thus, through RHO and RAS/MAPK activities [46], this signaling pathway has been implicated in the maintenance of epithelial tissue architectures and is therefore thought to act as a tumor suppressor [39,40]. These observations may indicate that, similarly to colorectal tumorigenesis [42], EPH-mediated compartmentalization of early breast tissue neoplastic lesions is critical to prevent the subsequent emergence of carcinoma. Therefore, through a germline expression or functional perturbation, EPHB1 may contribute to the observed variability in the transition from an in situ lesion to an invasive carcinoma [47]. While the associations revealed here warrant further replication in other populations, the existing data could potentially increase current knowledge of the genetic basis and molecular mechanisms of breast carcinogenesis.

Materials and Methods

CGEMS dataset

The National Cancer Institute CGEMS initiative has conducted genome-wide association studies to identify common genetic variants and the corresponding functionally affected genes involved in breast cancer and prostate cancer susceptibility. An initial CGEMS whole genome scan was designed to study the main effect of SNPs on breast cancer risk in postmenopausal women [2]. The study involved 1,145 invasive postmenopausal breast cancer cases and 1,142 matched controls from the Nurses’ Health Study nested case-control study [48]. Results of the CGEMS GWAS of breast cancer were obtained upon approval of a Data Access Request.

Table 1. Association between genetic variation in EPHB1 and risk of breast cancer in Poland.

EPHB1, rs3732568	Controls	Cases	OR 95% CI			
	n	%	n	%		
C/C	693	79.8	891	83.2	1.00	
C/A	165	19.0	172	16.1	0.79	0.62–1.00
A/A	10	1.2	8	0.7	0.60	0.23–1.55
Total	868	1,071				
Trend	0.79	0.63–0.98				

P trend = 0.031

Adjusted by age.

doi:10.1371/journal.pone.0014078.t001

Figure 2. Early change of EPHB1 expression in breast carcinogenesis. The graphs show expression profiles in histologically normal (HN) breast tissues versus patient-matched atypical ductal hyperplasia (ADH) and ductal carcinoma in situ (DCIS) [41]. Results of two EPHB1 microarray probes (names shown at the top) and the corresponding significance *P* values are shown.

doi:10.1371/journal.pone.0014078.g002
GWAS rank

In our previous analyses [26,27], ordered CGEMS GWAS results (i.e., ranks) corresponded to the lowest P value per gene for the genotypic test in a genomic region of +/- 10 kb at each gene locus, defined by the Ensembl human genome release 57. Assigned SNPs were curated using Ensembl gene annotations. We [26] and others [28] noted that such ranks were biased along with the genomic extension—and therefore with the number of SNPs—per gene locus. To adjust for this bias, several statistical strategies are possible [28], including carrying out permutations of the case-control status to correct the significance of the original statistic. In our analysis, considering typed and informative SNPs in each gene locus, we first chose the maximum absolute value of the t statistic from the age-adjusted partial correlation in the additive model. Next, 10,000 permutations of the same-control status to correct the significance of the original statistic. In our analysis, considering typed and informative SNPs in each gene locus, we first chose the maximum absolute value of the t statistic from the age-adjusted partial correlation in the additive model. Next, 10,000 permutations of the same informative SNPs were performed to create a null distribution for this maximum t statistic, which was used to assess its significance corrected by number of SNPs.

GSEA application

The distribution of gene sets in ranked GWAS results was examined using the non-parametric algorithm in the GSEA tool, with default values for all parameters [31] except for the set size when appropriated. In GSEA, a pre-defined gene set is mapped to a rank—in our case genes/loci ordered according to the adjusted association statistic—to assess potential bias using an enrichment score that reflects the degree to which this set is overrepresented at the extremes of the entire ranked list. In the interpretation of the results, caution should be taken when considering sets of different size. In our study, different hypotheses were examined independently (i.e., gene sets linked to prognosis, prediction or genetic/genomic somatic alterations), and P values were corrected for multiple testing within each group: 1) genes whose expression in primary breast tumors was associated with patient prognosis and/or metastasis [49-55]; 2) genes whose expression in primary breast tumors was associated with patient therapeutic treatment response [56-59]; 3) genes whose expression levels differed according to ERα breast tumor status or grade [60], or in response to 17β-estradiol [61]; and 4) genes with somatic genetic and/or genomic somatic alterations (Table S2). This last group was made up of five sets: i/ driver kinases (conditional probability of containing driver mutations >0.70, n = 119 as defined previously [35], of which 95 were uniquely mapped in the GWAS rank); ii/ CRGs to oncogenic mutations [36]; iii/ cancer gene census, somatically-mutated only [62,63]; iv/ genes affected by somatic chromosomal rearrangements and/or fusions [64]; and v/ amplified and over-expressed cancer genes [65] (Table S2).

Gene expression analysis

Raw expression microarray data on breast cancer progression [41] were downloaded from the Gene Expression Omnibus reference GSE16873 and normalized with robust multiarray average (RMA) [66] and significance analysis was performed using the significance analysis of microarray (SAM) algorithm [67].

Study samples in Poland and association study

A case-control study of unselected invasive breast cancer collected between 1996 and 2003 in Szczecin (Poland) was analyzed. The series included 976 cases of breast cancer unselected for age and an additional group of 367 cases of breast cancer diagnosed at age 50 or below. Therefore, the series was enriched for early-onset cases: mean age of diagnosis was 52.4 years (range 19–88). Subjects were unselected for family history and 15% of cases reported a first- or second-degree relative with breast cancer. The participation rate exceeded 70% among women with breast cancer invited to enroll. Collected information included year of birth, age at diagnosis of breast and/or ovarian cancer, tumor bilaterality, family history (first- and second-degree relatives with breast and/or ovarian cancer) and tumor pathological features in >80% of cases (ERα and progesterone receptor status, and grade).

Table 2. Associations between genetic variation in driver kinase loci and risk of breast cancer at ≤40 years of first age at diagnosis.

CDKL2, rs6852678	Controls	Cases				
	n	%	n	%	OR	95% CI
C/C	39	51.3	62	51.2	1.00	
C/T	28	36.8	54	44.6	1.21	0.66–2.23
T/T	9	11.8	5	4.1	0.35	0.11–1.12
Total	76		121			

DYRK2, rs10878640	Controls	Cases				
	n	%	n	%	OR	95% CI
G/G	42	56.8	44	35.5	1.00	
G/T	24	32.4	66	53.2	2.62	1.40–4.93
T/T	8	10.8	14	11.3	1.67	0.64–4.39
Total	74		124			

P_{dominant} = 0.003

P_{recessive} = 0.044
Table 3. Associations of genetic variation in driver kinase loci and risk of breast cancer by ERα tumor status†.

Locus	GPM1RA, rs12765929	EPHB1, rs3732568	EPHA3, rs9836340	EPHA7, rs4707795						
	Controls	ERα-negative	ERα-positive	Controls	ERα-negative	ERα-positive	Controls	ERα-negative	ERα-positive	
	n	%	OR 95% CI	n	%	OR 95% CI	n	%	OR 95% CI	
BMPR1A, rs12765929						**EPHB1, rs3732568**				
G/G	514	59.1	189	64.5	1.00	**EPHA3, rs9836340**				
G/T	306	35.2	96	32.8	0.87	**EPHA7, rs4707795**				
T/T	50	5.7	8	2.7	0.45					
Total	870		293	666						
Trend	0.79		0.62–1.00	1.02	**Precessive = 0.050**	**Precessive = 0.024**				
EPHB1, rs3732568						**EPHA3, rs9836340**				
C/C	693	79.8	242	82.6	1.00	**EPHA7, rs4707795**				
C/A	165	19.0	49	16.7	0.81					
A/A	10	1.2	2	0.7	0.55					
Total	868		293	663						
Trend	0.80		0.58–1.11	0.71	**Precessive = 0.007**	**Precessive = 0.96**				
EPHA3, rs9836340						**EPHA7, rs4707795**				
A/A	446	51.3	154	52.4	1.00					
A/G	341	39.2	99	33.7	0.84					
G/G	82	9.5	41	13.9	1.43					
Total	869		294	663						
Recessive	1.53		1.02–2.31	0.88	**Precessive = 0.040**	**Precessive = 0.007**				
EPHA7, rs4707795										
G/G	618	71.0	204	69.6	1.00					
G/A	239	27.5	87	29.7	1.18					
A/A	13	1.5	2	0.7	0.45					
Total	870		293	666						
Recessive	0.43		0.10–1.96	2.15	**Precessive = 0.034**	**Precessive = 0.007**				

†Adjusted by age.

Excluded from the association study (n = 50). The control group included cancer-free adult women from the same population (920 women with mean age of diagnosis of 56.7, range 20–91) taken from the healthy adult patients of five family doctors practicing in the Szczecin region. These individuals were selected randomly from the patient lists of the participating doctors. The study was carried out with informed consent of the probands and approved by local ethics committees. Genotypes were obtained using Sequenom iPLEX chemistry at the International Hereditary Cancer Center. Quality controls were of >95% calling for each SNP and >90% of calls per sample. Thus, in the set of 16 SNPs, we observed an average concordance rate of 98.7% of genotype calls using 3.3% replicates. Genotypes of 880 controls and 1,173 cases were effectively analyzed using conditional and unconditional logistic regressions (age adjustment using similar strata size; 20–46, 46–56, 56–66, and 66–91 years old).
Acknowledgments

The authors are indebted to the CGEMS initiative and to Dr. L.A. Nery and colleagues for making their data available. We also wish to thank the study participants in Poland for their generous contribution.

Author Contributions

Conceived and designed the experiments: CL CC MAP. Performed the experiments: NB BG BM DW CC. Analyzed the data: NB BG BM DW TD. Contributed reagents/materials/analysis tools: NB BG BM DW AJ TD AB JSM BD JD SN JL CL CC. Wrote the paper: MAP.
48. Colditz GA, Hankinson SE. (2005) The Nurses’ Health Study: lifestyle and health among women. Nat Rev Cancer 5: 388–396.
49. van ’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, et al. (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415: 530–536.
50. Chi JT, Wang Z, Nuyten DS, Rodriguez EH, Schaner ME, et al. (2006) Gene expression programs in response to hypoxia: cell type specificity and prognostic significance in human cancers. PLoS Med 3: e47.
51. Chang HY, Nuyten DS, Saeedon JB, Hastie T, Tibshirani R, et al. (2005) Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proc Natl Acad Sci U S A 102: 3738–3743.
52. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, et al. (2000) Molecular portraits of human breast tumours. Nature 406: 747–752.
53. Liu R, Wang X, Chen GY, Dalerba P, Gurney A, et al. (2007) The prognostic role of a gene signature from tumorigenic breast-cancer cells. N Engl J Med 356: 217–226.
54. Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, et al. (2005) Genes that mediate breast cancer metastasis to lung. Nature 436: 518–524.
55. Kamaswamy S, Ross KN, Lander ES, Golub TR. (2005) A molecular signature of metastasis in primary solid tumors. Nat Genet 33: 49–54.
56. Ayers M, Symmans WF, Stem J, Damokosh AI, Clark E, et al. (2004) Gene expression profiles predict complete pathologic response to neoadjuvant paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide chemotherapy in breast cancer. J Clin Oncol 22: 2284–2293.
57. Chang JC, Wooten EG, Ts melzon A, Hilsenbeck SG, Gutierrez MC, et al. (2005) Patterns of resistance and incomplete response to doctaxel by gene expression profiling in breast cancer patients. J Clin Oncol 23: 1169–1177.
58. Ma XJ, Wang Z, Ryan PD, Isakoff SJ, Barnetttler A, et al. (2004) A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell 5: 607–616.
59. Wang XD, Reeves K, Luo FR, Xu LA, Lee F, et al. (2007) Identification of candidate predictive and surrogate molecular markers for dasatinib in prostate cancer: rationale for patient selection and efficacy monitoring. Genome Biol 8: R255.
60. van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, et al. (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347: 1999–2009.
61. Carroll JS, Meyer CA, Song J, Li W, Geistlinger TR, et al. (2006) Genome-wide analysis of estrogen receptor binding sites. Nat Genet 38: 1299–1307.
62. Futreal PA, Coin L, Marshall M, Dosco T, Hobard T, et al. (2004) A census of human cancer genes. Nat Rev Cancer 4: 177–183.
63. Forbes SA, Tang G, Bindal N, Bamford S, Dawson E, et al. (2010) COSMIC (the Catalogue of Somatic Mutations in Cancer): a resource to investigate acquired mutations in human cancer. Nucleic Acids Res 38: D652–657.
64. Stephens PJ, McBride DJ, Lin ML, Vardia I, Pleasance ED, et al. (2009) Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature 462: 1005–1010.
65. Santarius T, Shipley J, Brewer D, Stratton MR, Cooper CS (2010) A census of amplified and overexpressed human cancer genes. Nat Rev Cancer 10: 59–64.
66. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, et al. (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4: 249–264.
67. Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98: 5116–5121.
68. Gorski B, Byski P, Huzarski T, Jakubowska A, Mrukuszak J, et al. (2000) Founder mutations in the BRCA1 gene in Polish families with breast-ovarian cancer. Am J Hum Genet 66: 1963–1968.