NOTES ON DISPERSIONFUL AND DISPERSIONLESS VORTEX FILAMENT EQUATIONS IN 1+1 AND 2+1 DIMENSIONS

R. Myrzakulov

Institute of Physics and Technology, 480082, Alma-Ata, Kazakhstan

Abstract

The vortex filament equations (VFE) in 1+1 and 2+1 dimensions are considered. Some of these equations are integrable. Also the VFE with potentials and with self-consistent potentials are presented. Finally several examples of integrable dispersionless VFE (dVFE) are considered.

Contents

1 Introduction 1
2 Integrable VFE in 1+1 2
3 VFE with the potentials 3
4 VFE with the self-consistent potentials 3
5 VFE with the electromagnetic interaction 5
6 Integrable VFE in 2+1 6
7 Integrable planar VFE 7
8 Integrable dispersionless VFE 8
9 Conclusion 8

1 Introduction

The vortex filament equation (VFE) has the form

$$\gamma_{st} = \gamma_s \times \gamma_{sss}, \quad (1a)$$

where $\gamma(s,t)$ denotes the position of the vortex filament in R^3 with t and s being the time and the arclength parameter respectively. Sometimes we use the following standard form of the VFE

$$\gamma_t = \gamma_s \times \gamma_{ss} \quad (1b)$$

which follows from (1a). Hence we obtain

$$\gamma_{tt} = -\frac{1}{2}(\gamma_{ss})^2 \gamma_s - (\gamma_{ss})^2 \gamma_{ss}. \quad (2)$$
Hasimoto [13] introduced a map $h : \gamma \rightarrow q = ke^{\int^s \tau(z) dz}$, in order to transform the VFE into the nonlinear Schrodinger equation (NLSE) for q

$$i q_t + q_{ss} + 2|q|^2 q = 0.$$ \hspace{1cm} (3)

Here k and τ respectively denote the curvature and the torsion along γ. In this paper we consider some dispersionful and dispersionless VFE in 1+1 and 2+1. Some of these equations are integrable. Some properties of the VFE from the the various points of view were studied in [1-42].

2 Integrable VFE in 1+1

First in this section we consider the some well-known (1+1)-dimensional isotropic and anisotropic VFE. Some examples as follows.

a) The anisotropic VFE. It has the form

$$\gamma_t = \gamma_s \times \gamma_{ss} + V,$$ \hspace{1cm} (4)

where V is the vector function. As well-known this equation is integrable in the following cases:

1) For the case $V = 0$.

$$\gamma_t = \gamma_s \times \gamma_{ss} + V, \hspace{1cm} (5a)$$

$$V_s = \alpha (\gamma_{ss}) \gamma_{ss}. \hspace{1cm} (5b)$$

2)

$$\gamma_t = \gamma_s \times \gamma_{ss} + V, \hspace{1cm} (6a)$$

$$V_s = \gamma_s \times A \gamma_s, \hspace{1cm} (6b)$$

where $A = \text{diag}(A_1, A_2, A_3)$, $A_k = \text{const}$.

b) The isotropic VFE. It looks like

$$\gamma_{st} = \gamma_s \times \gamma_{sss}, \hspace{1cm} (7)$$

or

$$\gamma_t = \gamma_s \times \gamma_{ss} + f(t). \hspace{1cm} (8)$$

Hence as $f = 0$ we obtain (1b).

c) Next well-known example can be written as [26-27]

$$\gamma_{st} = \gamma_{sss} + \frac{3}{2} (\gamma_{ss})^2 \gamma_{ss}. \hspace{1cm} (9)$$

d) One of the interesting example is the following VFE [1]

$$\gamma_{st} = \alpha (\gamma_s \times \gamma_{ss}) + \beta (\gamma_{sss} + \frac{3}{2} (\gamma_{ss})^2 \gamma_{ss}). \hspace{1cm} (10)$$

e) Finally we present the following known generalization of the VFE

$$\gamma_{st} = \gamma_s \times \gamma_{ss} + \frac{1}{s} \gamma_s \times \gamma_{ss} + \gamma_s \times A \gamma_s. \hspace{1cm} (11)$$

In the isotropic case we have

$$\gamma_{st} = \gamma_s \times \gamma_{ss} + \frac{1}{s} \gamma_s \times \gamma_{ss} \hspace{1cm} (12)$$

and so on.
3 VFE with the potentials

One of interesting generalizations of the VFE (1) are the VFE with potentials. May be the simplest example of the such equations is the following anisotropic Myrzakulov LV (M-LV) equation

\[
\gamma_{st} = (\alpha \gamma_{ss}^2 + \beta u + \delta) \gamma_s \times \gamma_{ss} + \gamma_s \times A \gamma_s, \tag{13}
\]

where \(u \) is the scalar real function (potential). In the isotropic case, the M-LV equation (13) takes the form

\[
\gamma_s = (\alpha \gamma_{ss}^2 + \beta u + \delta) \gamma_s \times \gamma_{ss}. \tag{14}
\]

In Table 1 we presented some examples the VFE with potentials. Here and below \(\alpha, \beta, \delta = \text{consts}, \text{[\(\cdot\)],} \) is commutator,

\[
g = \mu \gamma_{ss}^2 - u + \nu, \quad \dot{\gamma} = \gamma \cdot \sigma, \quad \sigma = (\sigma_1, \sigma_2, \sigma_3). \tag{15}
\]

Table 1. The VFE with potentials

Name of equation	Equation of motion
The M-LVII equation	\(2i\dot{\gamma}_{st} = [\hat{\gamma}_s, \gamma_{ssss}] + u [\hat{\gamma}_s, \sigma_3]\)
The M-LVI equation	\(2i\dot{\gamma}_{st} = [\hat{\gamma}_s, \gamma_{ssss}] + u \gamma_{ss} [\hat{\gamma}_s, \sigma_3]\)
The M-LV equation	\(\gamma_s = (\mu \gamma_{ss}^2 - u + \nu) \gamma_s \times \gamma_{ss}\)
The M-LIV equation	\(2i\dot{\gamma}_{st} = n [\hat{\gamma}_s, \gamma_{ssssss}] + 2g [\hat{\gamma}_s, \gamma_{ss}] \gamma_s\)
The M-LIII equation	\(2i\dot{\gamma}_{st} = [\hat{\gamma}_s, \gamma_{ssss}] + 2i \nu \gamma_{ss}\)
The M-XCII equation	\(\dot{\gamma}_{st} = (\alpha \gamma_{ss}^2 + \beta u + \delta) \gamma_{ss}\)
The M-XCIII equation	\(\dot{\gamma}_{st} = (\alpha \sqrt{\gamma_{ss}^2 + \beta u + \delta}) \gamma_{ss}\)

4 VFE with the self-consistent potentials

The typical representative of the VFE with the self-consistent potentials is the Myrzakulov XLII equation having the form

\[
\gamma_{st} = \{ (\mu \gamma_{ss}^2 - u + m) \gamma_s \times \gamma_{ss} \} \gamma_s + \gamma_s \times A \gamma_s, \tag{16a}
\]

\[
u_t + u_s + \lambda (\gamma_{ss}^2)_s = 0. \tag{16b}
\]

As \(A = 0 \), hence we get the isotropic M-XLII equation

\[
\gamma_s = (\mu \gamma_{ss}^2 - u + \nu) \gamma_s \times \gamma_{ss}, \tag{17a}
\]

\[
u_t + u_s + \lambda (\gamma_{ss}^2)_s = 0. \tag{17b}
\]

In this section we present some VFE with the self-consistent potentials. Some of these equations are integrable, e.g. the Myrzakulov XXXIV equation, shortly, the M-XXXIV equation (about our notations, see e.g., Refs. [43-52] and also Refs. [53-59]).

Table 2.

Name of equation	Equation of motion
The M-LII equation	\(2i\dot{\gamma}_{st} = [\hat{\gamma}_s, \gamma_{ssss}] + u [\hat{\gamma}_s, \sigma_3]\)
	\(\rho u_{tt} = \nu_0^2 u_{ss} + \lambda (\gamma_{ss})_{ss}\)
The M-LI equation	\(2i\dot{\gamma}_{st} = [\hat{\gamma}_s, \gamma_{ssss}] + u [\hat{\gamma}_s, \sigma_3]\)
	\(\rho u_{tt} = \nu_0^2 u_{ss} + \alpha (u_s^2)_{ss} + \beta u_{ssss} + \lambda (\gamma_{ss})_{ss}\)
The M-L equation	\(2i\dot{\gamma}_{st} = [\hat{\gamma}_s, \gamma_{ssss}] + u [\hat{\gamma}_s, \sigma_3]\)
	\(u_t + u_s + \lambda (\gamma_{ss})_s = 0\)
The M-XIX equation	\(2i\dot{\gamma}_{st} = [\hat{\gamma}_s, \gamma_{ssss}] + u [\hat{\gamma}_s, \sigma_3]\)
	\(u_t + u_s + \alpha (u_s^2)_{ss} + \beta u_{ssss} + \lambda (\gamma_{ss})_s = 0\)
Table 3.

Name of equation	Equation of motion
The M-XLVIII equation	\(2i\gamma_{st} = [\gamma_s, \gamma_{ss}] + u\gamma_{3s}[\gamma_s, \sigma_3] + \rho u = v_0^2 u_{ss} + \lambda(\gamma_{ss}^2)_{ss}\)
The M-XLVII equation	\(2i\gamma_{st} = [\gamma_s, \gamma_{ss}] + u\gamma_{3s}[\gamma_s, \sigma_3] + \rho u = v_0^2 u_{ss} + \alpha(u^2)_{ss} + \beta u_{ssss} + \lambda(\gamma_{ss}^2)_{ss}\)
The M-XLVI equation	\(2i\gamma_{st} = [\gamma_s, \gamma_{ss}] + u\gamma_{3s}[\gamma_s, \sigma_3] + u_t + u_s + \lambda(\gamma_{ss}^2)_{s} = 0\)
The M-XLV equation	\(2i\gamma_{st} = [\gamma_s, \gamma_{ss}] + u\gamma_{3s}[\gamma_s, \sigma_3] + u_t + u_s + \alpha(u^2)_{s} + \beta u_{ssss} + \lambda(\gamma_{ss}^2)_{s} = 0\)

Table 4.

Name of equation	Equation of motion
The M-XLIV equation	\(\gamma_t = (\mu \gamma_{ss}^2 - u + m)\gamma_s \times \gamma_{ss}\)
The M-XLIII equation	\(\gamma_t = (\mu \gamma_{ss}^2 - u + m)\gamma_s \times \gamma_{ss}\)
The M-XLII equation	\(\gamma_t = (\mu \gamma_{ss}^2 - u + m)\gamma_s \times \gamma_{ss}\)
The M-XLI equation	\(\gamma_t = (\mu \gamma_{ss}^2 - u + m)\gamma_s \times \gamma_{ss}\)

Table 5.

Name of equation	Equation of motion
The M-XL equation	\(2i\gamma_{st} = [\gamma_s, \gamma_{ssss}] + 2[\mu \gamma_{ss}^2 - u + m][\gamma_s, \gamma_{ss}]_{s}\)
The M-XXXIX equation	\(2i\gamma_{st} = [\gamma_s, \gamma_{ssss}] + 2[\mu \gamma_{ss}^2 - u + m][\gamma_s, \gamma_{ss}]_{s}\)
The M-XXXVIII equation	\(2i\gamma_{st} = [\gamma_s, \gamma_{ssss}] + 2[\mu \gamma_{ss}^2 - u + m][\gamma_s, \gamma_{ss}]_{s}\)
The M-XXXVII equation	\(2i\gamma_{st} = [\gamma_s, \gamma_{ssss}] + 2[\mu \gamma_{ss}^2 - u + m][\gamma_s, \gamma_{ss}]_{s}\)

Table 6.

Name of equation	Equation of motion
The M-XXXVI equation	\(2i\gamma_{st} = [\gamma_s, \gamma_{ssss}] + 2iu\gamma_{ss}\)
The M-XXXV equation	\(2i\gamma_{st} = [\gamma_s, \gamma_{ssss}] + 2iu\gamma_{ss}\)
The M-XXXIV equation	\(2i\gamma_{st} = [\gamma_s, \gamma_{ssss}] + 2iu\gamma_{ss}\)
The M-XXXIII equation	\(2i\gamma_{st} = [\gamma_s, \gamma_{ssss}] + 2iu\gamma_{ss}\)

Table 7.

Name of equation	Equation of motion
The M-LXIX equation	\(\gamma_{st} = \frac{1}{\sqrt{\gamma_{ss}^2}}[-\sqrt{\gamma_{ss}^2} - u^2]_{ss} + u\gamma_s \times \gamma_{ss}\)
The M-LXXX equation	\(u_s = v\sqrt{\gamma_{ss}^2} - u^2\)
The M-LXXVI equation	\(v_t = -\gamma_s \cdot (\gamma_{st} \times \gamma_{ss})\)
Table 8.

Name of equation	Equation of motion	
The M-V equation	\(\gamma_t = \frac{1}{2} [\gamma_s, \gamma_{ss}] + \frac{1}{4} \gamma_s^2, (\gamma_{ss})_{ss}, \) \(\gamma_s \in osp(2	1) \)

5 VFE with the electromagnetic interaction

One of interesting problem is the interaction between the vortex filament and the electromagnetic field. In theory, this interaction describes by the coupled system of the VFE and the Maxwell equations. In the soliton limit, hence, we get the coupled system of the VFE and the Schrodinger-type equation. As example, we consider the following system of the coupled equations

\[
\begin{align*}
\gamma_{st} &= [(\alpha|\phi|^2 + \beta \gamma_{ss}^2 + \delta)\gamma_s \times \gamma_{ss}] + \gamma_s \times A_{\gamma_s}, \\
\frac{d\phi_t}{dt} + \phi_{ss} + (\mu|\phi|^2 + \nu \gamma_{ss}^2 + \lambda)\phi &= 0.
\end{align*}
\]

Hence in the isotropic case we have

\[
\begin{align*}
\gamma_t &= (\alpha|\phi|^2 + \beta \gamma_{ss}^2 + \delta)\gamma_s \times \gamma_{ss}, \\
\frac{d\phi_t}{dt} + \phi_{ss} + (\mu|\phi|^2 + \nu \gamma_{ss}^2 + \lambda)\phi &= 0.
\end{align*}
\]

In this section we present some systems of equations which describe interaction between the vortex filament and electromagnetic fields.

Table 9.

Name of equation	Equation of motion
The M-LXXI equation	\(\gamma_{st} = \gamma_s \times \gamma_{ss} + \alpha
	\(\frac{d\phi_t}{dt} + \phi_{ss} + \lambda \gamma_{ss}^2 \phi = 0 \)
The M-LXXII equation	\(\gamma_{st} = \gamma_s \times \gamma_{ss} + \alpha
	\(\frac{d\phi_t}{dt} + \phi_{ss} + i\lambda (\gamma_{ss}^2 \phi)_s = 0 \)
The M-LXXIII equation	\(\gamma_{st} = \gamma_s \times \gamma_{ss} + \alpha
	\(\frac{d\phi_t}{dt} + \phi_{ss} + i\lambda \gamma_{ss}^2 \phi_s = 0 \)

Table 10.

Name of equation	Equation of motion
The M-LXXIV equation	\(\gamma_t = (\mu
	\(\frac{d\phi_t}{dt} + \phi_{ss} + \lambda \gamma_{ss}^2 \phi = 0 \)
The M-LXXV equation	\(\gamma_t = (\mu
	\(\frac{d\phi_t}{dt} + \phi_{ss} + i\lambda (\gamma_{ss}^2 \phi)_s = 0 \)
The M-LXXVI equation	\(\gamma_t = (\mu
	\(\frac{d\phi_t}{dt} + \phi_{ss} + i\lambda \gamma_{ss}^2 \phi_s = 0 \)

Table 11.

Name of equation	Equation of motion
The M-LXXVII equation	\(\gamma_t = \alpha \gamma_s \times \gamma_{ssssss} + (\mu
	\(\frac{d\phi_t}{dt} + \phi_{ss} + \lambda \gamma_{ss}^2 \phi = 0 \)
The M-LXXVIII equation	\(\gamma_t = \alpha \gamma_s \times \gamma_{ssssss} + (\mu
	\(\frac{d\phi_t}{dt} + \phi_{ss} + i\lambda (\gamma_{ss}^2 \phi)_s = 0 \)
The M-LXXIX equation	\(\gamma_t = \alpha \gamma_s \times \gamma_{ssssss} + (\mu
	\(\frac{d\phi_t}{dt} + \phi_{ss} + i\lambda \gamma_{ss}^2 \phi_s = 0 \)
6 Integrable VFE in 2+1

It is well-known that each (1+1)-dimensional integrable systems admits several (not one) integrable (and not integrable) systems in 2+1 dimensions. In the previous sections we presented some examples integrable and nonintegrable VFE in 1+1 dimensions. In this section we consider the several VFE in 2+1 dimensions which are the (2+1)-dimensional integrable extensions of the VFE (1) or (4). Some examples as follows.

i) The anisotropic (2+1)-dimensional VFE.

\[
\gamma_{st} = \gamma_s \times (\gamma_{sss} + \alpha^2 \gamma_{sy}) + u_s \gamma_{sy} + u_y \gamma_{ss} + W_s, \tag{20a}
\]
\[
u_s - \alpha^2 u_y = -2\alpha^2 \gamma_s (\gamma_{ss} \times \gamma_{sy}), \tag{20b}
\]
\[W_y = F_s. \tag{20c}\]

Hence we obtain the well-known isotropic version which has the form

\[
\gamma_{st} = \gamma_s \times (\gamma_{sss} + \alpha^2 \gamma_{sy}) + u_s \gamma_{sy} + u_y \gamma_{ss}, \tag{21a}
\]
\[
u_s - \alpha^2 u_y = -2\alpha^2 \gamma_s \cdot (\gamma_{ss} \times \gamma_{sy}). \tag{21b}\]

ii) The anisotropic Myrzakulov I equation (about our notations, see e.g., Refs [43-52] and also [53-59]). It reads as [44]

\[
\gamma_{st} = (\gamma_s \times \gamma_{sy} + u \gamma_s)_s + \gamma_s \times V, \tag{22a}
\]
\[
u_s = -\gamma_s \cdot (\gamma_{ss} \times \gamma_{sy}), \tag{22b}
\]
\[V_y = A \gamma_{sy}. \tag{22c}\]

In the isotropic case we get (the isotropic M-I equation)

\[
\gamma_{st} = (\gamma_s \times \gamma_{sy} + u \gamma_s)_s, \tag{23a}
\]
\[
u_s = -\gamma_s \cdot (\gamma_{ss} \times \gamma_{sy}), \tag{23b}\]

or

\[
\gamma_t = \gamma_s \times \gamma_{sy} + u \gamma_s, \tag{24a}
\]
\[
u_s = -\gamma_s \cdot (\gamma_{ss} \times \gamma_{sy}). \tag{24b}\]

iii) The Myrzakulov II equation [44]

\[
\gamma_{st} = (\gamma_s \times \gamma_{sy} + u \gamma_s)_s + 2b^2 \gamma_{sy} - 4cv \gamma_{ss}, \tag{25a}
\]
\[
u_s = -\gamma_s \cdot (\gamma_{ss} \times \gamma_{sy}), \tag{25b}
\]
\[\nu_s = \frac{1}{16b^2c^2}(\gamma_{ss})^2. \tag{25c}\]

iv) The Myrzakulov III equation [44]

\[
\gamma_{st} = (\gamma_s \times \gamma_{sy} + u \gamma_s)_s + 2b(cb + d) \gamma_{sy} - 4cv \gamma_{ss}, \tag{26a}
\]
\[
u_s = -\gamma_s \cdot (\gamma_{ss} \times \gamma_{sy}), \tag{26b}
\]
\[\nu_s = \frac{1}{4(2bc + d)^2}(\gamma_{ss})^2. \tag{26c}\]

v) The Myrzakulov XXII equation [44]

\[-i \gamma_{st} = \frac{1}{2}([\gamma_s, \gamma_{sy}] + 2iu \gamma_s)_s + i^2 \gamma_{ss} - 2ia^2 \gamma_{sy}, \tag{27a}\]
\[u_s = -\gamma_s \cdot (\gamma_{ss} \times \gamma_{sy}), \quad (27b) \]
\[v_s = \frac{1}{4a^2} (\gamma_{ss})_y. \quad (27c) \]

vi) The Myrzakulov VIII equation [44]

\[\gamma_{st} = \gamma_s \times \gamma_{sss} + u\gamma_{ss} + W_s, \quad (28a) \]
\[u_y = \gamma_s \cdot (\gamma_{ss} \times \gamma_{sy}), \quad (28b) \]
\[W_y = F_x. \quad (28c) \]

In the isotropic case, we obtain

\[\gamma_{st} = \gamma_s \times \gamma_{sss} + u\gamma_{ss}, \quad (29a) \]
\[u_y = \gamma_s \cdot (\gamma_{ss} \times \gamma_{sy}). \quad (29b) \]

vii) The Myrzakulov XX equation [44]

\[\gamma_{st} + \gamma_s \times \{ (b + 1)\gamma_{sss} - b\gamma_{syy} + bu\gamma_{sy} + (b + 1)u_s\gamma_{ss} = 0, \quad (30a) \]
\[u_{sy} = \gamma_s \cdot (\gamma_{ss} \times \gamma_{sy}). \quad (30b) \]

viii) The Myrzakulov IX equation [44]

\[i\dot{\gamma}_{st} + \frac{1}{2}[\hat{\gamma}_s, M_1 \hat{\gamma}_s] + A_2 \dot{\gamma}_{ss} + A_1 \dot{\gamma}_{sy} = 0, \quad (31a) \]
\[M_2 u = \frac{\alpha^2}{2l} tr(\gamma_s[\gamma_{ss}, \gamma_{sy}]). \quad (31b) \]

Finally we note that all of these (2+1)-dimensional VFE are integrable. And in 1+1 dimensions they reduce to the VFE (1) or (4). Of course, there are also nonintegrable (2+1)-dimensional extensions of the VFE (1) or (4). One of such extensions has the form

\[\gamma_{st} = \gamma_s \times (\gamma_{sss} + b\gamma_{syy}) + \gamma_s \times A\gamma_s. \quad (32) \]

The isotropic version of the (32) has the form

\[\gamma_{st} = \gamma_s \times (\gamma_{sss} + b\gamma_{syy}). \quad (33) \]

7 Integrable planar VFE

In this section we present some planar filament equations. Here \(\gamma(s, t) \) denotes an evolving planar curve, parametrized by arclength \(s \), \(k \) is its curvature. Such equations have been studied from the different point of views (see, for example, Ref. [27]).

Example 1. First we consider the following planar VFE [26-27]

\[\gamma_{st} = \gamma_{sss} + a\gamma_{ss} + b\gamma_s, \quad (34) \]

where

\[a = \gamma_{ss}^2 + \frac{3}{4} \sqrt{\gamma_{ss}^2}, \quad b = \frac{3}{2} (\gamma_{ss}^2)_s. \quad (35) \]

Example 2. The Myrzakulov X equation. It is integrable and has the form [44]

\[\gamma_{st} + \gamma_{sss} + 3 \sqrt{\gamma_{ss}^2} \gamma_{ss} - 3\alpha^2 \gamma_{yy} = 0. \quad (36) \]

Finally we note that the equations (34) and (36) are integrable.
8 Integrable dispersionless VFE

A considerable interest has been paid recently to dispersionless or quasi-classical limits of integrable equations and hierarchies. Study of dispersionless hierarchies is of great importance since they arise in the analysis of various problems in physics, mathematics and applied mathematics from the theory of quantum fields and strings to the theory of conformal maps on the complex plane.

Above we presented some dispersionful VFE. Now we want present some examples integrable dispersionless VFE (dVFE) in 1+1 and 2+1 dimensions. For simplicity, we consider only the planar dVFE.

Example 1. Simplest example integrable dVFE reads as
\[
\gamma_{st} = \frac{3}{4} \sqrt{\gamma_{ss}^2} \gamma_{ss},
\]
(37)

It is the Myrzakulov XCVIII equation [44]. As well-known it is L-equivalent to the dispersionless KdV (dKdV) equation (or the Riemann equation)
\[
k_t = \frac{3}{2} k k_s,
\]
(38)

where \(k \) is the curvature of the plane curve.

Example 2. The Myrzakulov XCVII equation. It is integrable and has the form [44]
\[
(\gamma_{st} - \frac{3}{4} \sqrt{\gamma_{ss}^2} \gamma_{ss})_s = - \frac{3}{4i} (\gamma_{syy} \cdot \sigma_2 \gamma_s),
\]
(39)

where
\[
\sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}.
\]
(40)

Example 3. The Myrzakulov XCVI equation. This equation is also integrable. It looks like [44]
\[
\gamma_{st} = [W - 3 \partial_z^{-1}(\sqrt{\gamma_{ss}^2})_z] \gamma_{sz},
\]
(41a)
\[
W_z = -3(\sqrt{\gamma_{zz}^2 \partial_z^{-1}(\sqrt{\gamma_{ss}^2})_z} z,
\]
(41b)

where \(z = s + iy \).

Example 4. The Myrzakulov XCV equation, which is integrable and reads as [44]
\[
\gamma_{st} = (\frac{3}{4} V - \frac{1}{2} \gamma_{ss}^2 + W) \gamma_{ss},
\]
(42a)
\[
V_s = (\sqrt{\gamma_{ss}^2})_y,
\]
(42b)
\[
(W \sqrt{\gamma_{ss}^2})_s = (\frac{3}{4} V_y - \frac{3}{2} \gamma_{ss}^2)_y.
\]
(42c)

Example 5. The Myrzakulov C equation which reads as [44, 60]
\[
\gamma_{st} = f_1 \gamma_s \times \gamma_{ss} + f_2 \gamma_{ss} + f_3 \gamma \times \gamma_s,
\]
(43)

where \(f_k(\gamma, \gamma_s, ...) \) is some scalar functions of the arguments. Note that the M-C equation (43) is L-equivalent to the Benney equation. Note that these dVFE are related with the integrable dispersionless spin systems (see, e.g. Ref. [43]).

9 Conclusion

In this paper we have presented some dispersionful and dispersionless VFE in 1+1 and 2+1 dimensions. Some of these equations are integrable. All of these equations admit different types exact solutions like solitons, knotes, breaking waves, etc. It is of great interest to study such solutions of the VFE in 1+1 and 2+1 dimensions and their integrability. We are currently investigating this issue and our finding will appear in a future paper.
References

[1] Cieslinski J. The Darboux-Bianchi-Backlund transformation and soliton surfaces. In book "Nonlinearity and Geometry", 81-107, (1998)

[2] Bishop R. There is more than one way to frame a curve. Am. Math. Monthly 82, 246-251, (1975)

[3] Calini A. Recent developments in integrable curve dynamics, in Geometric Approaches to Differential Equations. Austral. Math.Soc.Lect.Ser., 15, Cambridge University Press, 56-99, (2000)

[4] Calini A. A note on a Backlund transformations for the Continuous Heisenberg Model. Phys. Lett. A203, 512-520, (1995)

[5] Calini A., Ivey T. Backlund transformations and knots of constant torsion. J. Knot Theory Ramif, 7, 719-746,(1998)

[6] Calini A., Ivey T. Topology and Sine-Gordon Evolution of Constant Torsion Curves. Phys.Lett. A 254, 170-178, (1999)

[7] Calini A., Ivey T. Knot types, Floquet spectra, and finite-gap solutions of the vortex filament equation. Journal of Mathematics and Computers in Simulation, 55, 341-350, (2001)

[8] Calini A., Ivey T. Connecting geometry, topology and spectra for finite-gap NLS potentials. Physica D, 152/153, 9-19, (2001)

[9] Cieslinski J., Gragert P.K.H., Sym A. Exact solution to localized induction approximation equation modeling smoke ring motion. Phys. Rev. Lett, 57, 1507-1510, (1986)

[10] Grinevich P.G. Approximation theorem for the self-focusing nonlinear Schrodinger equation and for the periodic curves in R^3. Physica D, 152/153, 20-27, (2001)

[11] Grinevich P.G., Schmidt M.U. Period preserving nonisospectral flows and the moduli spaces of periodic solutions of the filament equation. Physica D, 87 (1995), 73-98.

[12] Grinevich P.G., Schmidt M.U. Closed curves in R^3: a characterization in terms of curvature and torsion, the hasimoto map and periodic solutions of the filament equation. (1997). SFB 288 preprint no. 254, and dg-ga/9703020

[13] Hasimoto R. A soliton on a vortex filament. J. Fluid Mech. 51, 477-485, (1972)

[14] Ivey T., Singer D. Knot types, homotopies and stability of closed elastic rods. Proc. London Math. Soc. 79, 429-450, (1999)

[15] Keener J.P. Knotted vortex filaments in an ideal fluid J.Fluid Mech. 211, 62-651, (1990)

[16] Kida S. A vortex filament moving without change of form. J.Fluid Mech. 112, 397-409, (1981)

[17] Kirwan F. Complex Algebraic Curves. Cambridge University Press. 1992.

[18] Lamb G.L. Elements of Soliton Theory. Wiley Interscience, New York, 1980.

[19] Langer J., Perline R. Poisson geometry of the filament equation. J.Nonlinear Sci. 1, 71-93, (1991)

[20] Langer J., Perline R. Lagrangian Aspects of the Kirchhoff Elastic Rod. SIAM Review 38, 605-618, (1996)

[21] Moffat H.K., Ricca R. The helicity of a knotted vortex filament. in Topological aspects of the dynamics of fluids and plasmas, NATO Adv. Sci.Inst.Ser. E. Appl.Sci, 218, Kluwer Acad. Publ. (1992), 225-236.
[22] Ricca R.L. *The contributions of Da Rios and Levi-Civita to asymptotic potential theory and vortex filament dynamics*. Fluid Dynam. Res. 18 (1996), no.2, 245-268.

[23] Sasaki N. *Differential geometry and integrability of the Hamiltonian system of a closed vortex filament*. Lett. Math. Phys. 39, (1997), no.3, 229-241.

[24] Sym A. *Vortex filament motion in terms of Jacobi theta functions*. Fluid Dynamics Reseach 3, (1988), 151-156.

[25] Zakharov V., Shabat A.B. *Exact theory of the 2-d self-focusing and 1-d self-modulation in nonlinear media*. Soviet Phys. JETP 34, (1972), 62-69.

[26] Nakayama K., Segur H., Wadati M. *Integrability and the motion of curves*. Phys. Rev. Lett. 69, 2603-2606, 1992

[27] Nakayama K., Wadati M. *Motion curves in the Plane*. J. Phys. Soc. Jpn. 62, 473-479, 1993

[28] Galini A., Ivey T. *Finite solutions of the vortex filament equation*. nlin.SI/0411065, 2004.

[29] Holm D.D., Stechmann S.N. *Hasimoto transformation and vortex soliton motion driven by fluid helicity*. nlin.SI/0409040, 2004

[30] Arms R.J., Hamma F.R. *Localized-induction concept on a curved vortex and motion of an elliptic vortex ring*. The Physics of fluids, 8, 555-559, [1965]

[31] Holm D.D. *Rasetti-Regge Dirac formulation of Lagrangian fluid dynamics of vortex filaments*. Mathematics and Computers in Simulations, 62, 53-63, [2003]

[32] Holm D.D., Marsden J.E., Ratiu T.S. *Hamiltonian structure and Lyapunov stability for ideal continuum dynamics*. University of Montreal Press. ISBN 2-7606-0771-2, [1987]

[33] Kuznetsov E.A., Mikhailov A.V. *On the topological meaning of canonical Clebsch variables*. Phys. Lett. A, 77, 37-41, [1980]

[34] Kuznetsov E.A., Ruban V.P. *Hamiltonian dynamics of vortex and magnetic lines in hydrodynamic type systems*. Phys.Rev. E, 61, 831-841, [2000]

[35] Marsden J.E., Ratiu T.S. *Introduction to Mechanics and Symmetry*, volume 17 of texts in Applied mathematics. vol.17; 1994, second edition, 1999. Springer-Verlag.

[36] Moffatt H.K. *The degree of knottedness of tangled vortex lines*. J.Fluid Mech. 35, 117, [1969]

[37] Newton P.K. *The N-vortex Problem: Analytical Techniques*. Springer:New York, [2001]

[38] Rasetti M., Regge T. *Vortices in He II, current algebras and quantum knots*. Physica A, 80, 217-233, [1975]

[39] Ricca R.L., Berger M.A. *Topological ideas and fluid mechanics*. Phys. Today, 49, (12)24-30, [1996]

[40] Saffman P.G. *Vortex Dynamics*. Cambridge University Press, [1992]

[41] Speliotopoulos A.D. *A topological string: the Rasetti-Regge Lagrangian, topological quantum field theory and vortices in quantum fluids*. J.Phys. A: Math.Gen. 35, 8859-8866, [2002]

[42] Thurston D. *Integral expressions for the Vassiliev knot invariants*. math.QA/9901110, 1999

[43] Belisarova F.B., Danlybaeva A.K., Rakhimov F.K., Satybaladin E.G., Myrzakulov R. *Integrable dispersionless spin sytems*. Izvestia NAN RK, ser.fis.-mat., N6, pp.67-77, 2001
[44] Myrzakulov R. *On some integrable and nonintegrable soliton equations of magnets*. Preprint HEPI, Alma-Ata, 1987.

[45] Myrzakulov R. *Spin systems and soliton geometry*. Almaty, 2001.

[46] Myrzakulov R., Danlybaeva A.K., Nugmanova G.N. *Geometry and multidimensional soliton equations*. Theor. Math. Phys., 39, 3765, 1998.

[47] Myrzakulov R., Nugmanova G.N., Syzdykova R.N. *Gauge equivalence between (2+1)-dimensional continuous Heisenberg ferromagnetic models and nonlinear Schrodinger-type equations*. J.Phys. A: Math.Gen. 1998. V. 31, P. 9535-9545.

[48] Myrzakulov R., Vijayalakshmi S., Syzdykova R.N., Lakshmanan M. *On the simplest (2+1)-dimensional integrable spin systems and their equivalent nonlinear Schrodinger equations*. J.Math.Phys. 1998. V. 39, No. 4, P. 2122-2140.

[49] Lakshmanan M., Myrzakulov R., Vijayalakshmi S., Danlybaeva A.K. *Motion of curves and surfaces and nonlinear evolution equations in (2+1) dimensions*. J. Math. Phys. 1998. V. 39, No.7, P. 3765-3771.

[50] Martina L., Myrzakul Kur., Myrzakulov R., Soliani G. *Deformation of surfaces, integrable systems and Chern-Simons theory*. J. Math. Phys. 2001. V. 42, No.3, P. 1397-1417.

[51] Rahimov F.K., Myrzakul Kur, Serikbaev N.S., Myrzakulov R. *On the geometry of stationary Heisenberg ferromagnets*. In book: "Nonlinear waves: Classical and Quantum Aspects”. NATO Science Series II. Mathematics, Physics and Chemistry. vol. 153. Kluwer Academic Publishers, Dordrecht, Netherlands, 2004, pp.543-549.

[52] Serikbaev N.S., Myrzakul Kur., Rahimov F.K., Myrzakulov R. *On continuous limits of some generalized compressible Heisenberg spin chains*. In book: "Nonlinear waves: Classical and Quantum Aspects”. NATO Science Series II. Mathematics, Physics and Chemistry. vol. 153. Kluwer Academic Publishers, Dordrecht, Netherlands, 2004, pp.535-542.

[53] Murugesh S., Lakshmanan M. *Nonlinear dynamics of moving curves and surfaces: application to physical systems*. [nlin.PS/0404005]. 2004.

[54] Lakshmanan M. *Geometrical interpretation of (2+1)-dimensional integrable nonlinear evolution equations and localized solutions*. Mathematisches Forschungsinstitut Oberwolfach. Report/40/97.ps, p.9.

[55] Gutshabash E.Sh. *Some notes on Ishimori’s magnet model*. [nlin.SI/0302002]

[56] Gutshabash E.Sh. *Generalized Darboux transform in the Ishimori magnet model on the background of spiral structures*. [nlin.PS/0409001] JETP Letter, v.278, N11, pp.740-744, 2003

[57] Esteves P.G., Hernaes G.A. *Lax pair, Darboux Transformations and solitonic solutions for a (2+1)-dimensional nonlinear Schrodinger equation*. [solv-int/9910005]

[58] Chou K.S., Qu C.Z. *Geometric Motion of surfaces and (2+1)-dimensional integrable equations*. Journal of the Physical Society of Japan, v.71, N4, pp.1039-1043 (2002)

[59] Qu C., Zhang S. *Motion of curves and surface in affine geometry*. Chaos, Solitons and Fractals, V.20, N5, pp. 1013-1019, 2004

[60] Serikbaev N.S., Rahimov F.K., Koshkinbaev A.D., Myrzakulov R. *Geometry of nonlinear models of magnets*. Dynamics Days-Asia-Pacific 3: The Third International Conference on Nonlinear Science. Singapore, 30 June - 2 July 2004. p.107.