Supplementary Materials

880 nm NIR-Triggered Organic Small Molecular-Based Nanoparticles for Photothermal Therapy of Tumor

Yunying Zhao 1,†, Zheng He 1,†, Qiang Zhang 1, Jing Wang 1, Wenyong Jia 1, Long Jin 1, Linlin Zhao 1,2,* and Yan Lu 1

1 School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China; 17853483674@163.com (Y.Z.); 13752723282@163.com (Z.H.); zhangqiang@email.tjut.edu.cn (Q.Z.); wangjing@iccas.ac.cn (J.W.); jia15249238411@163.com (W.J.); KimYong0205@163.com (L.J.); luyan@tjut.edu.cn (Y.L.)

2 State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China

* Correspondence: linlinzhao@email.tjut.edu.cn

† These authors contributed equally to this work.

Figure S1. Zeta potential of TNP s in water.

Figure S2. Changes of hydrodynamic diameters of TNP s in DMEM with time, [TNP s] = 180 μg/mL.
Figure S3. (A) Temperature elevation of TNPs (180 μg/mL) under 880 nm irradiation at 0.7 W/cm² for 5 min, followed by subsequent cooling to room temperature and (B) Linear time data versus -Ln (θ) obtained from the cooling period of NIR laser off.