CD8+ tissue-resident memory T cells promote liver fibrosis resolution by inducing apoptosis of hepatic stellate cells

Yuzo Koda1,2, Toshiaki Teratani1, Po-Sung Chu1, Yuya Hagihara1, Yohei Mikami1, Yosuke Harada1, Hanako Tsujikawa3, Kentaro Miyamoto1, Takahiro Suzuki1, Nobuhito Taniki1, Tomohisa Sujino1, Michiie Sakamoto3, Takanori Kanai1,4 & Nobuhiro Nakamoto1

Non-alcoholic steatohepatitis (NASH) is a leading cause of chronic liver disease that can progress to liver fibrosis. Recent clinical advance suggests a reversibility of liver fibrosis, but the cellular and molecular mechanisms underlying NASH resolution remain unclarified. Here, using a murine diet-induced NASH and the subsequent resolution model, we demonstrate direct roles of CD8+ tissue-resident memory CD8+ T (CD8+ Trm) cells in resolving liver fibrosis. Single-cell transcriptome analysis and FACS analysis revealed CD69+CD103−CD8+ Trm cell enrichment in NASH resolution livers. The reduction of liver CD8+ Trm cells, maintained by tissue IL-15, significantly delayed fibrosis resolution, while adoptive transfer of these cells protected mice from fibrosis progression. During resolution, CD8+ Trm cells attracted hepatic stellate cells (HSCs) in a CCR5-dependent manner, and predisposed activated HSCs to FasL-Fas-mediated apoptosis. Histological assessment of patients with NASH revealed CD69+CD8+ Trm abundance in fibrotic areas, further supporting their roles in humans. These results highlight the undefined role of liver CD8+ Trm in fibrosis resolution.
Non-alcoholic fatty liver disease (NAFLD) is currently the leading cause of chronic liver disease worldwide. NAFLD ranges from isolated hepatic steatosis to non-alcoholic steatohepatitis (NASH) characterized by lobular inflammation, and hepatocyte ballooning. Up to one third of patients with NAFLD progress to advanced fibrosis, leading to increased liver-related mortality owing to decompensated cirrhosis or development of hepatocellular carcinoma. Accumulating evidence indicates that immune cells play a critical role in the development of NASH, which is preceded by multiple bouts of liver inflammation induced by lipotoxicity, gut-derived molecules, and oxidative stress. Repeated hepatocyte destruction creates an inflammatory milieu in which infiltrating immune cells release a myriad of cytokines and chemokines, leading to hepatic stellate cell (HSC) activation and extracellular matrix accumulation, thereby causing tissue fibrosis. Complex immune networks play a key role to maintain the homeostasis in the liver, and the balance between HSC activation and deactivation defines the overall state of liver fibrosis. Although advanced liver fibrosis with activated HSCs has been considered to be irreversible, recent clinical studies demonstrating substantial fibrosis resolution following successful antiviral treatment in patients with chronic hepatitis B virus (HBV) or hepatitis C virus (HCV) infection overturned this dogma. Accordingly, significant efforts have been made to control fibrosis progression through inflammatory milieu modulation by targeting specific chemokines, cytokines, or immune cells. Meanwhile, genuine fibrinolitic factors or immune cells in NASH livers have not been identified in part due to the dearth of appropriate approach to examine the cellular and molecular networks involved in the resolution process. In particular, although both pathogenic and suppressive properties of CD8 T cells have been highlighted in NASH progression, functional and phenotypical characteristics of intrahepatic CD8 T cells associated to NASH resolution are largely unknown.

In the current study, a high-fat high-cholesterol (HFHC) diet-induced murine NASH model followed by a switch to normal diet is used to examine the dynamic change of intrahepatic immune cells during NASH development and resolution. By combining a single-cell transcriptome and parabiotic analysis, we here identify a unique subset of CD8 T cells with a resident memory phenotype (CD8+ Trm) that promote recovery from liver fibrosis.

Results

NASH resolution model in mice. High-fat and high-cholesterol (HFHC) diet-induced NASH model recapitulates the main characteristics of human NASH in elevated liver enzymes (Supplementary Fig. 1a), body weight (Supplementary Fig. 1b), histopathology with inflammatory infiltrates of the liver, and glucose metabolism. To explore key features associated with the resolution process in liver fibrosis, we here applied a unique murine model, in which mice were fed HFHC diet for 24 weeks, and then continued with the HFHC diet (HFHC mice) or switched to a normal diet (RES mice) (Fig. 1a). We confirmed that RES mice recovered to the normal condition 8 weeks after the diet switch (Fig. 1b, c and Supplementary Fig. 1c–e). Note, liver fibrosis (Fig. 1d, e) as well as lipid and glucose metabolism (Supplementary Fig. 1f, g) were almost fully recovered by the time point. Next, to explore the immunological characteristics associated with NASH fibrosis/resolution, we examined detailed immune profiles in the liver by flowcytometry (Supplementary Fig. 1h, i). We noted that both the frequency and number of intrahepatic CD8+ T cells remained significantly high in RES mice compared to normal diet (ND)-fed mice (ND mice), while other cell subsets tended to return to the normal condition (Fig. 1f, g and Supplementary Fig. 1i, j). Of note, the frequency of Ly-6cCD11b+ macrophages, known as a fibrinolitic immune subset in other models, was not increased in the resolution phase (Supplementary Fig. 1i, j).

Involvement of liver CD8+ Trm cells in liver fibrosis resolution. To elucidate the role of CD8+ T cells in NASH resolution, we treated mice with either anti-CD8a killing antibody or the isotype control during the recovery phase (Fig. 2a). Results confirmed that the CD8+ T cell subset was efficiently depleted 5 weeks following initiation of resolution (Fig. 2b). Although depletion of CD8+ T cells did not affect body weight or liver weight (Fig. 2c, d), recovery from liver inflammation and fibrosis was prevented in the absence of CD8+ T cells (Fig. 2e–i), while not prevented in mice depleted of natural killer (NK) cells and NKT cells (Supplementary Fig. 2a–d), other known antibiotic cell subsets, nor in mice depleted of conventional dendritic cells (DCs) or plasmacytoid DCs (Supplementary Fig. 2e–h), a part of which express CD8. Notably, depletion of CD8+ T cells increased hepatic stellate cells (HSCs) (Fig. 2j), while the number of macrophages remained unchanged (Fig. 2k). These data collectively support that CD8+ T cells as a whole play a substantial role in resolving the fibrosis.

To reveal the transcriptome profiling-based subtypes of CD8+ T cells present during the NASH resolution phase, we performed single-cell RNA sequencing (scRNA-seq) analysis using sorted CD8+ T cells from the livers of ND, HFHC, and RES mice, respectively. First, a total of 25,851 cells were clustered into 17 clusters based on the gene signatures (Fig. 3a, b). Of interest, the composition of clusters and corresponding gene expression of sorted CD8+ T cells were clearly distinct from each other (Fig. 3c and Supplementary Fig. 3). Based on the combination of Cd44, Sell, and Slpr1 genes expression, the clusters were divided into four groups composed of Cd44+ Sell+ Slpr1+ naïve T cells (cluster 0, 4) expressing Ccr7, Klf2, and Sell, Cd44+ Sell+ Slpr1+ central memory T cells (Tcm; cluster 5, 10), Cd44+ Sell+ Slpr1+ effector memory T cells (Tem; cluster 1, 11, 12), Cd44+ Sell+ Slpr1+ resident memory T cells (Trm; cluster 2, 3, 6, 7, 8, 9) expressing Cxcr6, Eomes, Gzma, Ccl5, Ccl4, Tox, and Lag3, and others (cluster 13–16), demonstrating that >60% of ND CD8+ T cells were naïve T cells, while RES CD8+ T cells were abundant in Tem cells with fewer naïve T cells (Fig. 3d). Of the Trm subsets, cluster 3 (characteristic in RES CD8 T cells) featured Gzma and Il2rb, while cluster 8 (characteristic in HFHC CD8 T cells) contained Lag3 and Cll14 (Fig. 3e). These findings were further validated by flowcytometry demonstrating that Cd44+CD62L− CD69+CD8+ T cells, characteristic of Trm cells, were significantly increased in the liver of RES mice (Fig. 4a, b). A large proportion of liver CD8+ Trm cells expressed Cxcr3 and Cxcr6, while few CD103 expression was shown (Supplementary Fig. 4). Tissue residency of these cells with lower circulating potential was confirmed in parabiosis mice in which blood circulation was shared between Ly5.1 and Ly5.2 RES mice (Fig. 4c). Furthermore, bulk RNA-seq analysis of isolated cells (ND naïve, HFHC Tem, HFHC Trm, and RES Trm) revealed that both Trm subsets from HFHC mice and RES mice expressed core signature genes of Trm21–24 with exceptions including Itgae (CD103) and Eomes (Fig. 4d). Six clusters were classified based on the gene expression profiles by K-means clustering, demonstrating that featured genes in scRNA-seq analysis were consistently expressed in each cell subset (Fig. 4e). These four cell types were distinct from each other in global transcriptome (Fig. 4f), while GO analysis demonstrated upregulation of genes related to chemotaxis and inflammatory pathways in Trm (Supplementary Fig. 5a). Moreover, genes associated with cytotoxic mediators including Gzma, Gzmb, Gzmk, Fasl, and chemotaxis mediators including Ccl3 and Ccl4.
were found to be highly expressed in RES Trm compared to HFHC Tem (Supplementary Fig. 5b). Meanwhile, RES Trm showed higher expression of Gzma and Serpin families, while showed lower expression of Spp1, Ltb, and Tgfβ3, compared to HFHC Trm (Supplementary Fig. 5c). Of the genes related to chemotaxis and inflammatory pathways, we confirmed that the absolute transcript levels of CC3, CC4, CC5, Prf1, FasL, Ifng, and Gzma was abundant in Trm, while previously reported fibrolysis-associated genes including Tnfsf10, Mmp9, Mmp12, Mmp13 were not expressed in Trm (Supplementary Fig. 5d). TCR repertoire analysis suggested that multiple antigenicity could predispose the differentiation of CD8+ Trm cells during NASH progression/resolution (Supplementary Fig. 6a). Meanwhile, scTCR-seq analysis further revealed the clonal enrichment mainly in the Cd44+/Selt−Slpr1− liver Trm fractions (Fig. 4g, h and Supplementary Fig. 6b). In addition, TCR clonotypes enriched in liver CD8+ Trm cells of RES mice were expanded compared to those in liver CD8+ T cells of ND mice, and rarely detected in spleen CD8+ T cells (Fig. 4h, i and Supplementary Fig. 6b, c), suggesting that these cells originated from the liver rather than recruited from the spleen. These results collectively demonstrate that unique CD8+ Trm cells are present in NASH resolution livers, suggesting a specific role in resolving liver fibrosis.

To elucidate the comprehensive role of CD8+ T cells in NASH resolution, we applied a methionine choline deficient (MCD) diet model, another widely used murine NASH model characterized by the rapid progression, followed by a switch to ND (Supplementary Fig. 7a). Liver inflammation and liver fibrosis, as assessed by serum ALT levels, hepatic Cola1 gene expression, and hydroxyproline levels, were restored to the original level by day 7 after the diet switch (Supplementary Fig. 7b–d). Consistently, the proportion of CD8+ Trm cells was significantly increased in the liver of fibrosis-resolved mice compared to that in the liver of MCD mice (Supplementary Fig. 7e), while ablation of CD8+ T cells negated the resolution of fibrosis (Supplementary Fig. 7f–i), reinforcing the role of CD8+ T cells in NASH resolution.

Resolution phase CD8+ T cell transfer inhibits NASH development. To further determine the specific role of CD8+ T cells in NASH progression, we isolated CDT cells and non-CDT cells from HFHC mice or RES mice (Ly5.1). Each cell subset was then continuously injected to MCD diet-fed Ly5.2 mice in which the effect of cell transfer can be efficiently evaluated for its rapid fibrosis progression (Fig. 5a). While CD8+ T cells efficiently migrated in the recipient livers, a large proportion of the accumulated CD8+ T cells in the livers of mice transplanted with CDT cells was Cd44+/Cd62L−Cd69+CD8+ Trm (Fig. 5b, c). Although mice transplanted with HFHC CD8+ Trm cells demonstrated a modest reduction in liver inflammation and fibrosis, RES CD8+ T cells achieved a significant superior effect (Fig. 5d–h) partly by inducing cell death of HSCs with less contribution of macrophages (Fig. 5i–k), underpinning a role for RES CD8+ Trm cells in suppressing NASH progression, in addition to their role in NASH resolution. More specifically, we confirmed that transfer of sorted CD8+ Trm cells derived from RES mice

Fig. 1 Abundance of CD8+ T cells in NASH resolution livers. a Study design: male C57BL/6 mice were fed a ND or HFHC diet for 24 weeks. After 24 weeks, HFHC diet-fed mice were either continued on a HFHC diet (HFHC group) or switched to ND (RES group) for 2, 5, or 8 weeks. b Body weight change following the diet switch (n = 7 mice for each group). c Representative photomicrographs of Masson trichrome staining of liver sections. Scale bars: 200 µm. d Cola1 mRNA levels in the whole liver. e Hydroxyproline levels in the liver (d, e: n = 3-6 mice for ND group, n = 6 mice for HFHC group, and n = 8 mice for RES group). f Frequency (left) and absolute numbers (right) of the indicated immune cells in CD45+ liver MNCs (n = 3 mice for ND, and HFHC groups, and n = 4 mice for RES groups). g Frequency of CD8+ T cells in CD45+ liver MNCs at week 8 following the diet switch (n = 6 mice for ND, and HFHC groups, and n = 8 mice for RES group). Data are presented as mean ± SEM. One-way ANOVA with Tukey’s multiple comparisons post-hoc test was applied. Source data are provided as a Source data file.
Fig. 2 CD8+ T cells play a direct role in NASH resolution. a Study design: resolution induced mice were treated with anti-CD8α antibody (RES+CD8T depletion group) or the isotype control (RES group) once every 3 days for 3 weeks starting from week 2 after the diet switch, and compared to ND-fed group (n = 3 mice for ND group, n = 6 mice for RES, and RES+CD8T depletion groups). b Representative CD4/CD8α staining of CD45+TCRβ+NK1.1− gated liver MNCs. c Body weight. d Wet liver weight. e Serum ALT levels. f Representative photomicrographs of Masson trichrome staining of liver sections. Scale bars: 200 µm. g Representative photomicrographs (left) and positive area (right) of Sirius Red staining of liver sections. Scale bars: 200 µm. h Hydroxyproline levels. i Fibrosis associated genes (Col1α1, Col1α2, Acta2, Timp1, Desmin, Spp1) mRNA levels. j (left) Representative fluorescent photomicrographs of liver sections stained with 4′,6-diamidino-2-phenylindole (DAPI: blue) and anti-desmin Ab (red). Scale bars: 200 µm. (right) HSCs count in unit area of liver section. k Number of CD45+CD11b+CD11c− macrophages in CD45+ liver MNCs. Data are presented as mean ± SEM. One-way ANOVA with Tukey’s multiple comparisons post-hoc test was applied. Source data are provided as a Source data file.
directly protected from MCD diet-induced fibrosis progression (Supplementary Fig. 8a–e).

IL-15 maintains liver CD8+ Trm cell population. Given that Trm has a potential to suppress liver fibrosis, we determined whether depletion of Trm exaggerate NASH progression. Since RES Trm cells highly expresses IL-15 receptor genes (Il15ra, Il2rb) (Figs. 3e and 4d), we antagonized IL-15 signaling to investigate the role of IL-15 in the maintenance of CD8+ Trm cells and the subsequent effect on NASH resolution (Fig. 6a). As expected, IL-15 neutralization resulted in a dramatic reduction in the number and proportion of CD8+ Trm, but not Tem, in the liver (Fig. 6b, c). Consistently, IL-15 gene expression was upregulated in HFHC livers, which was maintained throughout the resolution phase of NASH (Fig. 6d). Consequently, recovery from the established fibrosis with increased HSCs death was significantly inhibited, while little effect was observed in liver inflammation, as determined by serum ALT levels (Fig. 6e–l).

These results clearly suggest that IL-15 is crucial for the maintenance of CD8+ Trm cells and is directly involved in NASH resolution. Similarly, blockade of CXCR3, another retention marker of Trm in the liver, efficiently eliminated Trm and Tem cells from the resolution livers and partially inhibited fibrosis resolution (Supplementary Fig. 9a–e).

Interplay between CD8+ Trm cells and HSCs contributes to NASH resolution in a CCR5-dependent manner. We next sought to investigate the antifibrotic roles of CD8+ T cells during development and resolution of NASH. To this end, we explored the chemotactic factors that could facilitate close proximity between CD8+ T cells and HSCs in the liver of RES mice (Fig. 7a). RNA-seq analysis revealed robust upregulation of C_{Cl3}, C_{Cl4}, and C_{Cl5} genes in both HFHC and RES CD8+ Trm (Fig. 7b). Of note, these genes were also upregulated in hepatocytes during the fibrosis phase, however, were repressed in the resolution phase (Fig. 7c). Regarding the cells expressing the
corresponding receptor, CCR5, in the liver, HSCs exhibited the highest expression in the steady state, while its expression was lost at the peak of fibrosis and regained during the resolution phase. Conversely, macrophages showed the highest expression at the peak of fibrosis phase (Fig. 7d). Moreover, in vitro, HSCs demonstrated CCR5-dependent chemotaxis to RES CD8⁺ Tem, while that between HSCs and HFHC CD8⁺ Trm was less evident (Fig. 7e), suggesting that the interplay was regulated according to the fibrous niche. To further confirm the requirement for CCR5 in fibrosis resolution, we generated HSC-specific CCR5 deficient mice by administrating vitamin A-CCR5 siRNA liposomes during the NASH resolution phase (Fig. 7f). We confirmed that CCR5
gene expression was specifically abolished in HSCs (Fig. 7g). Notably, the proximity between CD8+ Trm cells and HSCs was less prominent by HSC-specific CCR5 knockdown (Fig. 7h). Consequently, the recovery from both inflammation and fibrosis with increased HSCs death was significantly attenuated (Fig. 7i-o). These results collectively reinforced the substantial role of CCR5-expressing HSCs in NASH resolution.

Trm cells induce HSC apoptosis via FasL-Fas during NASH resolution. Regarding the interplay between CD8+ Trm cells and HSCs, immunohistochemical analysis revealed that HSCs in RES mice exhibited apoptotic characteristics of cell death confirmed using TUNEL (Fig. 8a) and cleaved Caspase 3 staining (Supplementary Fig. 10a). Furthermore, RES CD8+ Trm cells demonstrated a direct cytotoxic effect on HSCs in vitro, while apoptosis was induced to a lesser extent by RES CD8+ naive T cells or HFHC CD8+ Trm cells (Fig. 8b, c). Of note, the apoptosis-inducing effect was not evident in hepatocytes (Supplementary Fig. 10b, c), suggesting a HSCS-specific action. Genes profile from transcriptome and immunohistochemical analyses illustrated the associated molecular mechanism underlying the HSC-targeted cytotoxicity (Fig. 8d, e and Supplementary Fig. 10d-g). Of the candidate apoptosis-inducing molecules, we confirmed that FasL as well as Perforin/Granzyme play substantial roles in the cytotoxic effect elicited by CD8+ Trm on HSCs (Fig. 8f). Consistently, Fas gene and protein expression was specifically upregulated in the HSCs derived from RES mice (Fig. 8g, h), suggesting a phase- and cell-dependent susceptibility to cytotoxicity. Finally, we confirmed that treatment with anti-Fasl. Ab during the resolution phase partially prevented the regression from NASH (Fig. 8i-o) and decreased apoptotic HSCs (Fig. 8p). These results collectively reveal a potential mechanism by which deactivation of HSCs by CD8+ Trm cells is regulated during NASH resolution.

CD69+CD8+ Trm cell number in human liver is associated with NASH progression. Finally, we determined whether our findings could be translated to human NASH patients. For this, liver samples from 13 NASH patients were evaluated (Supplementary Table 1). Immunohistochemical staining demonstrated that a proportion of CD8+ T cells accumulated in the portal area co-expressed CD69, while the number of co-expressing cells was significantly increased as liver fibrosis progressed (Fig. 9a-c), supporting a potential role for CD69+CD8+ Trm cells in regulating NASH development.

Discussion

Recent advance in the field of adaptive immune system have elucidated the role of CD8+ Trm cells in anti-tumor immunity25,26 or inflammatory autoimmune diseases27 in addition to their original role in infectious diseases28,29. Our study provides a previously unappreciated role of liver CD8+ Trm cells in fibrosis resolution. We here demonstrated that CD8+ Trm cells promote this process through the mechanism of CCR5-dependent chemotraction and direct cytotoxic effect on HSCs.

The principal hallmark of bona fide Trm is their long-term persistence in non-lymphoid tissues without recirculation in the blood due to a transcriptional loss of S1pr1 and Klf21,30. Differentiation of Trm is controlled by complex combinations of several transcription factors in each tissue, and the requirement differs between mice and humans31. Of the transcription factors responsible for Trm differentiation, hepatic CD8+ Trm cells from HFHC mice constitutively exhibit a HobithiβBlimp-1ihighEomeshigh phenotype. As downregulation of Eomes is required for CD103+CD8+ Trm development via TGF-β signaling32, insufficient local TGF-β signaling may result in sustained high Eomes expression and an abundance of CD103−CD69+CD8+ Trm cells in the liver, consistent with previous reports28,33. Furthermore, it has been reported that CD103 may not be fully responsible for the retention of intrahepatic Trm cells in mice28,34, suggesting another molecular mechanism underlying the global localization of CD8+ Trm cells in the liver sinusoids. In this regard, our current results, along with the previous findings28,35, suggest that chemokine receptor CXCR3 and CXCR6 may be required for the localization. Regarding the maintenance of CD8+ Trm cells in the liver, we found that Il2rb, a subunit of IL-15 receptor, is highly expressed in RES CD8+ Trm cells, whereas its neutralization during NASH resolution diminishes CD8+ Trm cells and prevents fibrosis resolution, underscoring the requirement for IL-15 in the maintenance of CD8+ Trm cells during NASH resolution. Besides cytokine signaling, differentiation of CD8+ Trm cells can be directed by local antigen presentation and TCR engagement. The TCR repertoire analysis suggested that multiple antigenic stimulation, including from gut-derived or intrinsic molecules, may contribute to the development of CD8+ Trm cells in NASH development and resolution. Enrichment of TCR clonotypes in RES livers, which is distinct from that in spleens, further suggests that the local antigenic stimulation can induce the development and expansion of CD8+ Trm cells during NASH resolution. Further studies are warranted to identify the specific antigens that contribute to this development in the liver.

Hepatic Trm cells recognize and target infected hepatocytes in viral and parasite infection38,39, however, it is unclear whether and how Trm cells interact with other non-parenchymal cells in the liver sinusoid. One key finding of our study is the CCR5-dependent interplay between CD8+ Trm cells and HSCs in NASH resolution. In contrast, during liver fibrosis progression, CCR5 plays a profibrotic role in the arc of hepatocytes, macrophages, and...
Fig. 5 Direct antifibrotic effect of CD8\(^{+}\) Trm cells in NASH progression. a Study design: male C57BL/6 (Ly5.2) mice were fed a MCD diet for 8 weeks. Mice were intravenously injected with either PBS, liver CD8\(^{+}\) cells isolated from Ly5.1 HFHC mice or Ly5.1RES (5 weeks) mice, or liver non-CD8\(^{+}\) cells isolated from RES mice (2 × 10\(^{6}\) cells each) on day 1, 6, and 11 starting from week six (n = 6 mice for MCD group, and n = 7 mice for the other groups). b Representative CD45.2/CD45.1 staining of CD45\(^{+}\) TCR\(\beta^{+}\)NK1.1\(^{-}\)CD8\(\alpha^{+}\) gated liver MNCs (left). Representative CD44/CD62L (center) and KLRG1/CD69 (right) staining of CD45\(^{+}\) TCR\(\beta^{+}\)NK1.1\(^{-}\)CD8\(\alpha^{+}\)CD45.1\(^{+}\) (Transferred CD8\(^{+}\)T) gated liver MNCs. c Frequency of the transferred CD8\(^{+}\) T cell subset in CD45\(^{+}\) liver MNCs of the indicated groups of mice. d Serum ALT levels. e Representative photomicrographs of Masson trichrome staining of liver sections. Scale bars: 200 µm. f Representative photomicrographs (left) and positive area (right) of Sirius Red staining of liver sections. Scale bars: 200 µm. g Hydroxyproline levels. h Fibrosis associated genes (Colla1, Colla2, Acta2, Timp1, Desmin, Spp1) mRNA levels. i HSCs count in unit area of liver section. j Number of CD45\(^{+}\)CD11b\(^{+}\)CD11c\(^{-}\) macrophages in CD45\(^{+}\) liver MNCs. k (left) Representative fluorescent photomicrographs of liver sections stained with DAPI (blue), anti-desmin Ab (green), and TUNEL (pink). Scale bars: 50 µm. (right) Count of TUNEL positive HSCs in unit area of liver section. Data are presented as mean ± SEM. One-way ANOVA with Tukey’s multiple comparisons post-hoc test was applied. Source data are provided as a Source data file.
The dynamics of CCR5 ligand gene expression in hepatocytes during fibrosis progression/resolution support that the inflammatory niche regulates the complex chemokine-dependent cellular network and the subsequent fate of HSCs. Of the proposed fate of activated HSCs, we demonstrated induction of FasL/Fas-dependent apoptosis by CD8+ Trm cells during fibrosis resolution. Notably, the cytotoxic effect of CD8+ Trm cells was regulated by the fibrosis phase as well as by the targeted cells. Meanwhile, potent anti-fibrotic effects of RES CD8+ Trm demonstrated in ongoing fibrosis by adoptive cell transfer suggests an alternative fibrinolytic mechanism aside from the niche-restricted interaction with HSCs. Toward this point, transcriptome analysis revealed several candidate genes responsible for the superior anti-fibrotic effect of RES CD8+ Trm over HFHC CD8+ Trm, including upregulation of Spp1 (Osteopontin) and Ltb (Lymphotoxin β) in HFHC CD8+ Trm, and upregulation of Gzma (Granzyme A) in RES CD8+ Trm. Of these, granzyme A has been reported to disrupt the extracellular matrix by cleaving type 4 collagen and fibronectin, in addition to the intracellular cytotoxic effect; thus, it may directly contribute to fibrosis.
Fig. 7 CD8\(^+\) Trm cells target HSCs in a CCR5-dependent manner in NASH resolution. a (Left) Representative fluorescent photomicrographs of liver sections of ND, HFHC, and RES (3 weeks) mice stained with 4′,6-diamidino-2-phenylindole (DAPI: blue), anti-CD8 Ab (green), and anti-desmin Ab (red). Insets show higher magnification. Scale bars: 50 \(\mu\)m. (Right) Count of CD8\(^+\) T cells co-localized with HSCs in unit area of liver section \((n = 4\) mice per group). b, c Ccl3, Ccl4, and Ccl5 mRNA levels in sorted CD8 T cell subsets \((b) (n = 3\) mice per group), and isolated hepatocytes \((c) (n = 4\) mice per group). d Frequency of CCR5\(^+\) cells in CD45\(^+\) liver MNCs and HSCs of the indicated groups \((n = 3\) mice per group). e Cell numbers of migrated HSCs in lower compartment containing supernatants of CD3/28-stimulated CD8\(^+\) T cell subset with or without CCR5 inhibitor, Marovenic (MVC) \((n = 3\) biologically independent samples per group). f Study design: RES mice were intravenously treated with vitamin A-control siRNA liposomes (RES group) or vitamin A-Ccr5 siRNA liposomes (RES+Ccr5KD group) twice per week starting from 2 weeks following the diet switch to 5 weeks \((n = 6\) mice per group). g Ccr5 mRNA levels in isolated HSCs, Kupffer cells, and hepatocytes of the indicated groups. h (left) Representative fluorescent photomicrographs of liver sections stained with DAPI (blue), anti-desmin Ab (red), and anti-CD8 Ab (green). Scale bars: 50 \(\mu\)m. (right) Count of CD8\(^+\) T cells co-localized with HSCs in unit area of liver section. i Serum ALT levels. j Hydroxyproline levels. k Representative photomicrographs (left) and positive area (right) of Sirius Red staining of liver sections. Scale bars: 200 \(\mu\)m. l Fibrosis associated genes \((Col1a1, Col1a2, Acta2, Timp1, Desmin, Spp1)\) mRNA levels. m HSCs count in unit area of liver section. n Number of CD45\(^+\)CD11b\(^+\)CD11c\(^-\) macrophages in CD45\(^+\) liver MNCs. o (Left) Representative fluorescent photomicrographs of liver sections stained with DAPI (blue), anti-desmin Ab (green), and TUNEL (pink). Scale bars: 50 \(\mu\)m. (right) Count of TUNEL positive HSCs in unit area of liver section. Data are presented as mean ± SEM. One-way ANOVA with Tukey’s multiple comparisons post-hoc test \(a-c, e\) or two-sided unpaired Student’s \(t\) test \(g-o\) was applied. Source data are provided as a Source data file.
resolution. However, further studies are required to clarify its actual contribution.

The current study collectively provides additional insights into the liver protective function of CD8\(^+\) Trm cells in NASH pathogenesis. As a larger number of CD69\(^+\) CD8\(^+\) Trm cells were observed in the liver of patients with advanced NASH, attempts to manipulate their number and/or function may serve as a potential therapeutic option for NASH in the future.

Methods

Animals. C57BL/6 mice were purchased from Japan CLEA. CD11c\(^{dTR/dTR}\) mice on a C57BL/6 background were provided from Dr. Kenya Honda (Keio University). Siglec\(^{dTR/dTR}\) mice on a C57BL/6 background were established previously\(^4\). C57BL/6-Ly5.1 mice were obtained from Taconic Laboratory. All mice were maintained under specific pathogen-free (SPF) conditions with a 12-h light/dark cycle, at a temperature of 22–25 °C and a relative humidity of 45–55% in the Animal Care Facility of Keio University School of Medicine. All animal experiments have complied with all relevant ethical regulation approved by Animal Ethics Committee of Keio University.
Fig. 8 CD8⁺ Trm cells induce HSCs apoptosis in a FasL dependent manner in NASH resolution. a (left) Representative fluorescent photomicrographs of liver sections from ND, HFFHC, and RES (3 weeks) mice stained with anti-desmin Ab (green) and TUNEL (pink). Scale bars: 50 μm. (right) Count of TUNEL positive HSCs in unit area of liver section (n = 4 mice per group). b, c Percent cytotoxicity of HSCs by CD8 Trm (red) or CD8 T naive (blue) isolated from RES 5 weeks mice (b) or HFFHC mice (c) (n = 3 biologically independent samples per group). d Fas mRNA levels in sorted CD8⁺ T cell subsets (n = 3 mice per group). e Count of FasL positive CD8⁺ T cells in unit area of liver section (n = 4 mice per group). f Percent cytotoxicity of HSCs co-cultured with CD8⁺ Trm cells in the presence of the indicated apoptosis inhibitors for 8 h (n = 3 biologically independent samples per group). g Fas mRNA levels in isolated HSCs and hepatocytes of the indicated mice (n = 4 mice per group). h (left) Representative fluorescent photomicrographs of liver sections stained with DAPI (blue), anti-desmin Ab (green), and anti-Fas (red). Scale bars: 50 μm. (right upper) Count of Fas positive HSCs in unit area of liver section (n = 4 mice per group). (right lower) Positive area of Fas positive HSCs in unit area of liver section. i Study design: resolution induced mice were intraperitoneally injected with anti-Fasl antibody (RES + FasL neutralization group) or the isotype control (RES group) once every 3 days for 3 weeks starting at week 2 following diet switch (n = 7 mice per group). j Serum ALT levels. k Hydroxyproline levels. l Representative photomicrographs (left) and positive area (right) of Sirius Red staining of liver sections. Scale bars: 200 μm. m Fibrosis associated genes (Col1α1, Col1α2, Acta2, Timp1, Desmin, Spp1) mRNA levels. n HSCs count in unit area of liver section. o Number of CD45⁺CD11b⁻CD11c⁺ macrophages in CD45⁺ liver MNCs. p (left) Representative fluorescent photomicrographs of liver sections stained with DAPI (blue), anti-desmin Ab (green), and TUNEL (pink). Scale bars: 50 μm. (right) Count of TUNEL positive HSCs in unit area of liver section. Data are presented as mean ± SEM. One-way ANOVA with Tukey’s multiple comparisons post-hoc test (a, d–h) or two-sided unpaired Student’s t test (j–p) was applied. Source data are provided as a Source data file.

Fig. 9 Abundance of CD69⁺ CD8⁺ Trm cells in human advanced NASH livers. a, b Representative (left) H&E staining and (right) immunofluorescent staining with anti-CD8α Ab and anti-CD69 Abs of resected liver tissues from normal control (a) and NASH LC (F4) patient (b). Middle and lower panels show each upper image at a higher magnification. Scale bars: 500 μm (normal control) or 1 mm (NASH F4) in the top panel, 250 μm in the middle panel. c Number of CD69⁺ and CD8⁺ co-stained cells in the liver of indicated groups of patients (n = 5 for normal control, n = 4 for F1–2, and n = 9 for F3–4). Data are presented as mean ± SEM. One-way ANOVA with Tukey’s multiple comparisons post-hoc test was applied. Source data are provided as a Source data file.

NASH resolution study design. To induce NASH, male C57BL/6 mice (6 weeks old) were fed a 60% high-fat 1% high-cholesterol (HFFHC) diet purchased from Japan CLEA (Tokyo, Japan) for 24 weeks43, or fed a MCD diet purchased from Research Diets Inc. (NJ, USA) for seven weeks. Mice were then switched from the NASH-inducing diets to a normal diet (CE2; Japan CLEA) to induce NASH resolution after randomization by the ALT value and body weight. The mice were fed a normal diet for either 2–8 weeks (HFFHC diet) or 1 week (MCD diet).

Isolation of liver immune cells, HSCs, and hepatocytes. Liver mononuclear cells (MNCs) were separated from the liver as described previously with slight modifications43. Briefly, livers were perfused through the postcaval vein with HBSS (Nacalai Tesque, Kyoto, Japan) and then minced and homogenized by gentle MACS (Miltenyi biotec Japan, Tokyo, Japan). The suspensions were passed through 100 μm nylon mesh, centrifuged at 50 for 5 min, and the supernatant was washed once. Cells were suspended in 0.1 μg/mL DNase I solution in DMEM, washed once and resuspended in FACS buffer or RPMI-1640 medium (Sigma-Aldrich, MO, USA) supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin (Nacalai Tesque). Liver HSCs and hepatocytes were isolated from mice. In brief, the method based on in situ protease/Collegenase perfusion was used. In all, 25 mL of PBS (Nacalai Tesque), 20 mL of 2 mg/mL protease (Sigma-Aldrich) solution in DMEM (Nacalai Tesque), and 40 mL of 0.5 mg/mL collagenase (Sigma-Aldrich) in DMEM solution were pre-warmed and subsequently perfused to mouse liver via portal vein under anesthesia. After perfusion, the liver was removed carefully and loosened to cell suspension in 50 mL of 0.2 mg/mL protease (Sigma-Aldrich) 0.1 μg/mL DNase I solution in DMEM. The cell suspension was incubated at 37 °C for 20 min while stirring and centrifuged at 50 g for 5 min. The pellet were collected in 0.1 µg/mL DNase I solution in DMEM, washed once and collected in DMEM as hepatocytes fraction. To perform Nycodenz density gradient centrifugation, the cell suspension was layered over 82% Nycodenz (Sigma-Aldrich) solution and centrifuged at 1400 x g for 4°C for 30 min. Following centrifugation, the intermediate layer over the 82% Nycodenz solution was collected in DMEM as HSCs fraction43.

Flow cytometry and cell sorting. After blocking with anti-FcR (CD16/32, BD Biosciences Pharmingen, NJ, USA) for 5 min, the cells were incubated with specific fluorescence-labeled Ab and/or 7-AAD (BD Biosciences Pharmingen)/Fixable viability dye (Thermo Fisher Scientific K.K, Tokyo, Japan) at 4°C for 20 min, followed by permeabilization and intracellular staining with anti-Foxp3 Ab and anti-Helios Ab in the case of Treg staining. The following primary Abs were used: anti-mouse CD45 (BioLegend, CA, USA, BV510, clone 30-F11), anti-mouse CD45.2 (BD Biosciences Horimzon, NJ, USA, FITC/BV510, clone 104), anti-mouse CD45.1 (BD Biosciences Pharmingen/BioLegend, FITC/PE-Cy7, clone A20), anti-mouse TCR-β (BD Biosciences Pharmingen/BioLegend, PerCP-Cy5.5/APC/APC-Cy7, clone H57-597), anti-mouse NK1.1 (BioLegend PE-Cy7, clone PK136), anti-mouse CD4 (BD Biosciences Pharmingen/BD Biosciences Horimzon, NJ, USA, FITC/BV510, clone RM4-5), anti-mouse CD8α (BD Biosciences Pharmingen/BD Biosciences Horimzon, FITC/PerCP-Cy5.5/APC/APC-Cy7, clone 53-6.7), anti-mouse CD69 (Thermo Fisher Scientific K.K, FITC, clone H1.2F3), anti-mouse CD103 (BioLegend, BV421, clone 2E7), anti-mouse CXCR3 antibody (Thermo Fisher Scientific K.K, APC, clone CXCR3-175), anti-mouse CXCR6 (BioLegend, APC, clone SA051D1), anti-mouse CD62L (BD Biosciences Pharmingen, PE, clone MEL-14), anti-mouse KLRG1 (BioLegend, PerCP-Cy5.5, clone 2F1/KLRG1), anti-mouse CD44 (BioLegend, BV421, clone IM7), anti-mouse Foxp3 (Thermo Fisher Scientific K.K, PE/PerCP-Cy5.5, clone EKJ-16E), anti-mouse Helios (BioLegend, clone 2F6), anti-mouse TCRγδ (BioLegend, PerCP-Cy5.5, clone GL3), anti-mouse CD19 (BD Biosciences Pharmingen, PE, clone 1D3), anti-mouse CD11b
(BD Biosciences, Pharmingen, PE-Cy7/APC-Cy7, clone M170), anti-mouse CD11c (BD Biosciences Pharmingen, FITC/PE-Cy7, clone I3L3), anti-mouse B220 (BioLegend, PerCP-Cy5.5, clone 5B11) and oligonucleotide probes (Firststrand, APC, clone 129K1), anti-mouse CCR5 (Thermo Fisher Scientific K.K, PE, clone 7A4). Events were acquired with FACS Canto II or Fortessa X-20 (BD, NJ, USA), and analyzed with FlowJo software (Tree Star Inc., OR, USA). Cell sorting was performed using FACS Aria III (BD), and over 95% purity of sorted cells was confirmed. The gating strategy for FACS analysis is presented in Supplementary Table 2.

Measurement of hydroxyproline concentration. Liver hydroxyproline concentrations were determined by hydroxyproline assay kit (QuickZyme Biosciences, Leiden, Netherlands) following the manufacturer’s recommendation.

qPCR analysis. Total RNA was extracted from cells using RNasy Mini kit (QiAGEN, Venlo, Netherlands) or TRIzol reagent (Thermo Fisher Scientific K.K). Complementary DNA was synthesized by reverse transcription using the iScript measurement of hydroxyproline Analyzer (Keyence, Osaka, Japan).

Serological and histological analysis. Serum alanine aminotransferase (ALT) and total cholesterol (TCHO) levels were measured using DRI-CHEM (Fuji Film, Tokyo, Japan) according to the manufacturer’s instructions. Livers were fixed in 10% formalin and embedded in paraffin. Hematoxylin and eosin (H&E) staining was used to assess hepatic inflammation and fibrosis. Histopathological analysis was done using a fluorescence microscope (Keyence). Quantification of Sirius red positive area was performed using BZ-X Analyzer (Keyence, Osaka, Japan).

cDC or pDC depletion in CD11c− or Siglec-H DTR mice during NASH resolution. All groups were normalized after HHFC diet treatment for 24 weeks, or MCD treatment for 7 weeks by body weight and serum ALT. Mice fed the HHFC diet were administered antibodies from 2 weeks to 5 weeks after switching to a ND, while those fed a MCD diet were administered antibodies from days 2−7 after switching to a ND. To deplete CD8+ T cells, the anti-mouse CD8a antibody (400 µg/head; Bioxcell, NH, USA, clone 2.43) or the isotype control (Bioxcell) was administered intraperitoneally once every 3 days for HHFC-fed mice, or on day 2 and day 5 for MCD-fed mice. To deplete NK and NK cells, an anti-mouse NK1.1 antibody (200 µg/head; Bioxcell, clone PK15/6) was intraperitoneally administered once every 3 days. To deplete CCR5+ cells, anti-mouse CCR5 antibody (500 µg/head; Bioxcell, clone 2B7) or isotype controls (Bioxcell) were administered intraperitoneally once every 3 days. To deplete CD4+ cells, anti-mouse CXCR3 antibody (500 µg/head; Bioxcell, clone CXC9-173) or isotype controls (Bioxcell) were administered intraperitoneally once every 3 days. Detailed information for the antibodies used in this study is summarized in Supplementary Table 2.
vitamin A (Sigma Aldrich). In brief, liposomes containing cationic lipids (Lipo-
Tract SR; Hokkaido System Science, Sapporo, Japan) were prepared at a con-
centration of 1 mM (cationic lipids) using RNase-free double-distilled water,
according to the manufacturer’s protocol. To prepare vitamin A-coupled lipo-
somes, vitamin A (200 nmol) (Sigma, St. Louis, MO, USA) and liposomes (100
nmol as cationic lipids) were mixed by vortexing at room temperature. The Ccr5-
siRNA and control-siRNA (Nippon Gene, Tokyo, Japan) were prepared at a con-
centration of 300 pmol/µL, and mixed well with vitamin A-coupled liposomes.
After incubation at 37 °C for 5 min, free vitamin A was removed from the liposome
preparations using a micro-partitioning system (Vivaspin 2 concentrator 30,000
MWCO PES; Vivasience, Götttingen, Germany).16

Immunohistochemistry. Antigens were activated by autoclaving and blocked
using Block Ace (Megmilk Snow Brand Co., Tokyo, Japan) followed by primary
antibody reaction at room temperature for 4 h. A mouse anti-mouse CD3 antibody
(1/50, Bio- Rad, CA, USA, sc 70-020), rabbit anti-mouse Desmin antibody (1/100,
Abcam, Cambridge, England, ab15200), mouse anti-mouse Desmin antibody (1/100,
Abcam, ab6322), anti-mouse cleaved caspase 3 antibody (1/100, R& D sys-
tems, MN, USA, MAB8553), anti-mouse Fasl antibody (1/100, Sino, Bio- system,
Beijing, China, 101984), anti-mouse Fas antibody (1/100, R& D systems, AF435),
anti-mouse Granzyme B antibody (1/100, R&D systems, AF1866), and anti-mouse
Perforin antibody (1/100, Abcam, Ab16074) were used as primary antibody.

After washing PBS, the sections were incubated with Alexa Fluor 488-, Alexa Fluor
555-, or Alexa Fluor 647-labeled secondary antibodies (Abcam) at room tem-
perature for 2 h. In situ apoptosis detection kit (Takara Bio, Shiga, Japan) was used
for TUNEL staining. Tissue samples were observed under the fluorescence
microscope BZ-X 700 (Keyence) or the LSM 710 confocal laser scanning micro-
scope (Carl Zeiss, Gena, Germany). HSCs were counted on randomly selected 5
fields of 540 µm × 720 µm at ×40 magnification and normalized to 1 field count for
each liver section using BZ-X 700. TUNEL–HCS–CD8 T cells co-localized with HSCs were counted on randomly selected 5 fields of 100
µm × 100 µm at ×200 magnification and normalized to 1 field count for each liver
section using LSM 710. CD8+ T cells attached to HSCs were defined as CD8+ T
cells co-localized with HSCs. Quantification of Fas+ HSCs positive area was
performed using Zen software (Carl Zeiss) and ImageJ (NIH). Detailed information for the antibodies used in this study is summarized in Supplementary Table 2.

TFR Vβ repertoire analysis. The TCR Vβ repertoire of liver CD8+ Trm cells was
determined by FACS analysis using anti-mouse TCR Vβ Screening panel (BD Bio-
sciences Pharmingen) according to the manufacturer’s instructions.

Patients. Liver tissue samples were obtained from patients with NASH (n = 13)
and patients affected by hepatic metastasis of gastrointestinal cancer with normal
liver function (n = 5) as the control group. Clinical characteristics and baseline
demographics are presented in Supplementary Table S1. Written informed consent
was obtained from all participants.

Immunohistochemistry of human liver tissues. IHC was performed using a
Bond-Max automated immunohistochemical staining machine (Leica Micro-
systems, Milton Keynes, UK). Evaluation of CD69+ CD8+ T cells was performed
using double fluorescent immunohistochemistry. Anti-human CD8 monoclonal
Ab (Nichirei, Japan, clone C8/144B) and anti-human CD69 monoclonal antibody
(Abcam, clone EPR21814) were used as primary Abs. The slides were scanned to
obtain multi-colored whole-slide images using a NanoZoomer 2.0HT scanner
(Hamamatsu Photonics K.K., Shizuoka, Japan) with a ×40 objective lens, according
to the manufacturer’s instructions. The slides were further stained with H&E and
rescanned to obtain merged images of H&E images on top of the pre-scanned
multi-colored images31. To quantify CD69+ CD8+ T cells, all portal areas were
checked for merged CD69+ CD8+ T cells using NDP.view2 software (Hamamatsu
Photonics K.K.), and the highest number in 1-mm2 areas was determined as the
maximum cell count. Detailed information for the antibodies used in this study is
summarized in Supplementary Table 2.

Study approval. Animal Ethics Committee of Keio University approved all animal
studies. The institutional review board of Keio University School of Medicine
approved all human studies (No. 20120395 and No. 20040034) according to the
guidelines of the 1975 Declaration of Helsinki (2008 revision). The human
study participants were prospectively recruited, and each participant provided prior
written informed consent for blood sampling, study participation, and analysis of
clinical data. All human study participants received standard care and treatment
according to their clinical presentations.

Statistics and reproducibility. Statistical analyses were performed using Graph-
Pad Prism software version 7.0g and 8.0g (GraphPad software Inc. CA, USA).
Differences between two groups were evaluated using two-tailed unpaired Student’s
t tests. Comparisons of more than two groups was performed with one-way
ANOVA followed by Tukey-Kramer’s multiple comparison test. For all analyses,
significance was accepted at a 95% confidence level (p < 0.05). Each experiment was
replicated more than two times with reproducible results.

Reporting summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability
The raw scRNA sequencing data have been deposited in the NCBI GEO database
under accession number GSE176210. The raw bulk-RNA sequencing data have been
deposited in the DNA Data Bank of Japan under accession number DRA012190. Source data are provided with this paper as a Source Data file. All other data are available from the
corresponding authors upon reasonable request. Source data are provided with this
paper.

Received: 2 November 2020; Accepted: 5 July 2021;
Published online: 22 July 2021
25. Park, S. L. et al. Tissue-resident memory CD8 T cells promote melanoma-immune equilibrium in skin. Nature 565, 366–371 (2019).

26. Ganesan, A. P. et al. Tissue-resident memory features are linked to the magnitude of cytotoxic T cell responses in human lung cancer. Nat. Immunol. 18, 940–950 (2017).

27. Zundler, S. et al. Hobit- and Blimp-1-driven CD4 T-cell tissue-resident memory T cells control chronic intestinal inflammation. Nat. Immunol. 20, 288–300 (2019).

28. Fernandez-Ruiz, D. et al. Liver-resident memory CD8 T cells form a frontline defense against malaria liver-stage infection. Immunity 45, 889–902 (2016).

29. Wakim, L. M., Miron, M. & Farber, D. L. Location, location, location: tissue resident memory T cells in mice and humans. Sci. Immunol. 4, eaas9673 (2019).

30. Kim, J. H. et al. Functions of human liver CD69+ T cells. Hepatology 67, 1270–1283 (2018).

31. Seki, E. et al. CCR1 and CCR5 promote hepatic fibrosis in mice. J. Clin. Invest. 119, 1858–1870 (2009).

32. Koga, H. et al. Flt1 regulates angiogenesis and liver function after acute liver injury. Hepatology 63, 708–718 (2016).

33. Teratani, T. et al. Aortic carboxypeptidase-like protein, a WNT ligand, exacerbates nonalcoholic steatohepatitis. Hepatology 64, 209–223 (2016).

34. McNamara, H. A. et al. Up-regulation of LFA-1 allows liver-resident memory T cells to patrol and remain in the hepatic sinusoids. Sci. Immunol. 2, eaaj996 (2017).

35. Kuribayashi, S. M., Eksteen, B., Glade, R. P., Lalor, P. & Adams, D. H. CXCR 3 activation promotes lymphocyte transendothelial migration across human hepatic endothelium under flow. Am. J. Pathol. 167, 887–899 (2005).

36. Pallett, L. et al. IL-2(high) tissue-resident T cells in the human liver: Sentinels for hepatotropic infection. J. Exp. Med. 214, 1567–1580 (2017).

37. Krenkel, O. et al. Therapeutic inhibition of inflammatory monocyte recruitment reduces steatohepatitis and liver fibrosis. Hepatology 67, 1270–1283 (2018).

38. Koga, H. et al. PEGylated TRAIL treatment ameliorates liver cirrhosis in rats by eliminating activated hepatic stellate cells. Hepatology 64, 209–223 (2016).

39. Kageyama, K. et al. Senescence of activated stellate cells limits liver fibrosis. Cell 134, 657–667 (2008).

40. van Daalen, K. R., Reijneveld, J. F. & Bovenschen, N. Modulation of hepatic stellate cells by inflammatory monocytes exacerbates nonalcoholic steatohepatitis. Hepatology 63, 708–718 (2016).

41. Seki, E. et al. Functions of human liver CD69+ T cells. Hepatology 67, 1270–1283 (2018).

42. Koga, H. et al. Flt1 regulates angiogenesis and liver function after acute liver injury. Hepatology 63, 708–718 (2016).

43. McNamara, H. A. et al. Up-regulation of LFA-1 allows liver-resident memory T cells to patrol and remain in the hepatic sinusoids. Sci. Immunol. 2, eaaj996 (2017).

44. Kuribayashi, S. M., Eksteen, B., Glade, R. P., Lalor, P. & Adams, D. H. CXCR 3 activation promotes lymphocyte transendothelial migration across human hepatic endothelium under flow. Am. J. Pathol. 167, 887–899 (2005).

45. Pallett, L. et al. IL-2(high) tissue-resident T cells in the human liver: Sentinels for hepatotropic infection. J. Exp. Med. 214, 1567–1580 (2017).

46. Krenkel, O. et al. Therapeutic inhibition of inflammatory monocyte recruitment reduces steatohepatitis and liver fibrosis. Hepatology 67, 1270–1283 (2018).

47. Seki, E. et al. CCR1 and CCR5 promote hepatic fibrosis in mice. J. Clin. Invest. 119, 1858–1870 (2009).

48. Oh, Y. et al. Systemic PEGylated TRAIL treatment ameliorates liver cirrhosis in rats by eliminating activated hepatic stellate cells. Hepatology 64, 209–223 (2016).

49. Križhanovský, V. et al. Senescence of activated stellate cells limits liver fibrosis. Cell 134, 657–667 (2008).

50. Sato, Y. et al. Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat. Biotechnol. 26, 431–442 (2008).

51. Masugi, Y. et al. Characterization of spatial distribution of tumor-infiltrating CD8+ T cells refines their prognostic utility for pancreatic cancer survival. Mod. Pathol. 32, 1495–1507 (2019).

Acknowledgements
We thank Y. Kitagawa, M. Shinoda, M. Kitagoh, Y. Abe, H. Yagi, and the medical staff of surgical department for collecting samples, H. Sato, S. Chiba, S. Fujimori, R. Aoki, A. Yamaguchi, S. Shibra, T. Katayama, Y. Takimoto, R. Morikawa, K. Yamataka, A. Ibra, R. Ishihara, and Y. Yoshimatsu (Keio University) for technical assistance. We thank Y. Imura, T. Amiya, and A. Matsunoto (Keio University) and S. Kato, K. Takara, A. Nishidate, and R. Sato (Mitsubishi Tanabe Pharma Corporation) for scientific discussion. We thank T. Miyamoto for bioinformatics support. We thank K. Sato (Miyazaki University) for providing Siglec10ΔΔ mice. This study was supported in part by Japan Society for the Promotion of Science (JSPS) KAKENHI Grant-in-Aid (B) JP20H04129; Japan Agency for Medical Research and Development (AMED) 20gm121001h0002 and 21fk021096b0001; Takeda Science Foundation; the Mishima Kaiun Memorial Foundation; Yakult Bio-Science Foundation; and Keio University Medical Fund. We would like to thank Editage (www.editage.jp) for English language editing.

Author contributions
Y.K., N.N., and T.K. designed experiments and interpreted data. Y.K., T.T., Y. Harada, K.M., and T. Suzuki performed murine experiments. P.S.C., H.T., and N.T. performed experiments using human samples. Y.M. and Y. Hagihara analyzed genomic data and generated figures. P.S.C., Y.M., T. Suino, and M.S. provided scientific discussions. T.K. provided supervision and support. Y.K., N.N., and T.K. wrote the manuscript with input from others.

Competing interests
This study was funded in part by Mitsubishi Tanabe Pharma Corporation. Y.K. is an employee of Mitsubishi Tanabe Pharma Corporation. The remaining authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-021-24734-0.

Correspondence and requests for materials should be addressed to T.K. or N.N.

Peer review information Nature Communications thanks Xiaowen Ren and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021