An Optimized Neuro-Bee Algorithm Approach to Predict the FRP-Concrete Bond Strength of RC Beams

AMAN KUMAR1,2, HARISH CHANDRA ARORA1,2, MAZIN ABED MOHAMMED3, KRISHNA KUMAR4 JAN NEDOMA5 (Senior Member, IEEE)

1AcSIR-Academy of Scientific and Innovative Research, Ghaziabad, 201002, India (e-mail: aman.civil16@outlook.com)
2Structural Engineering Department, CSIR-Central Building Research Institute, Roorkee, 247667, India (e-mail: hcarora@cbri.res.in)
3College of Computer Science and Information Technology, University of Anbar, 11, Ramadi 31001, Iraq (e-mail: mazinalshujeary@uoanbar.edu.iq)
4Department of Hydro and Renewable Energy, Indian Institute of Technology, Roorkee, 247667, India (e-mail: krishnanitald@gmail.com)
5Department of Telecommunications, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 70800 Ostrava, Czech Republic (e-mail: jan.nedoma@vsb.cz)

Corresponding author: Jan Nedoma (e-mail: jan.nedoma@vsb.cz).

This research work was partially supported by Ministry of Education of the Czech Republic (Project No. SP2021/45 and No. SP2021/32).

ABSTRACT Over the world, there is growing worry about the corrosion of reinforced concrete structures. Structure repair, rehabilitation, replacement, and new structures all require cost-effective and long-lasting technologies. Fiber Reinforced Polymer (FRP) has been widely employed in both retrofitting existing structures and building new ones. Due to its varied qualities in reinforced concrete and masonry constructions as a repair composite material, FRP have seen a rise in use over the last decade. This material have several advantages such as high stiffness-to-weight and strength-to-weight ratios, light weight, possibly high longevity, and relative ease of usage in the field. Among all the parameters the bond between concrete and FRP composite play an important role in the strengthening of structures. However, the bond behaviour of the FRP-concrete interface is complex, with several failure modes, making the bond strength difficult to forecast, resulting in the FRP strengthened concrete structure. To overcome such kind of issues machine learning models are sufficient to forecast the bond strength of FRP-concrete. In this article Artificial Neural Network (ANN), optimized Artificial Bee Colony (ABC)-ANN and Gaussian Process Regression (GPR) algorithms are deployed to predict the bond strength. The R-value of ABC-ANN and GPR models are 0.9514 and 0.9618 respectively. This research aids researchers in estimating bond strength in less time, at a lower cost, and with less experimental work.

INDEX TERMS ABC-ANN, ANN, Bond strength, FRP-concrete bond, FRP, Machine learning.

I. INTRODUCTION

Repairing deteriorating, damaged, and deficient civil infrastructure has become a major concern for civil engineers all around the world [1]. The rehabilitation of old structures is rapidly expanding, particularly in wealthy countries that finished the majority of their infrastructure in the mid-nineteenth century [2]. Furthermore, post-World War II constructions gave little consideration to durability concerns, and the United States and Japan lacked understanding of seismic design [3]. Chloride-induced corrosion of steel reinforcements is one of the most prevalent causes of deterioration in reinforced concrete (RC) structures [4]. Reinforcement corrosion reduces the structural performance and service life of RC structures, and affects life-cycle cost of RC structures rises as a result of the maintenance and repair interventions required to address this problem. This issue is particularly serious in some developed countries, where RC infrastructure components have been in use for decades [5,6]. Reinforcing steel corrosion may create cracks in the surrounding concrete owing to the expansion pressure generated during the production of corrosion products, in addition to the loss of effective cross-sectional area of the reinforcing steel [7,8]. The concrete cover may potentially spall as a result of the expansion pressure. In general, such degradation reduces the load carrying capacity of the RC member’s or structures and its stiffness [9-11]. The escalation of environmental contamination in recent decades has resulted in a substantial increase in corrosion phenomena in RC structures, which has
resulted in several collapses, particularly in those structures that have not received appropriate maintenance. [12-16]. The Swiss Federal Laboratory for Materials Testing and Research (EMPA) originally investigated this approach of reinforcing RC beams in the mid-1980s, although much of the research on FRP plate bonding for flexural strengthening has taken place in the last 20 years [17].

The Hyogoken-Nanbu earthquake struck Kobe, Japan, in 1995, causing widespread devastation [18]. As a result, the Japan Building Disaster Prevention Association (JBDPA, 1999) released the Seismic Retrofitting ‘Design and Construction Guidelines for Existing RC bridges using Fibre FRP Materials’ in September 1999 [19]. As a result, cost-effective and long-lasting solutions are required for concrete structure repair, rehabilitation, replacement, and new construction [20]. Building construction and maintenance might benefit from advanced FRP composite materials [21]. The advanced polymer composite is a hybrid material made up of two major components: fibre and polymer [22]. The fibres have high strength and modulus while matrix material or polymer have low modulus and strength [23]. The fibre uses the matrix’s plastic flow to transmit burden/load to the fibre under stress, resulting in a high-modulus and strength composite [24]. The high aspect ratio fibres in the primary phase must be properly distributed and bound with the matrix in the secondary phase. As a result, the fibre, matrix, and interface are the three main components of the composite [25]. To optimize the coupling between the two phases and therefore allow stresses to be dispersed over the matrix and hence transferred to the reinforcement, the interface between the fibre and the matrix must have sufficient chemical and physical bonding stability [26].

FRP has been widely used in civil structure strengthening as a composite material with eminent characteristics [27]. FRP offers several advantages, including corrosion resistance, long durability, and ease of construction, making it one of the finest materials for concrete structure rehabilitation [28]. Bonding is an essential factor in shear and flexural strengthening systems of RC structures. External Bonded FRP (EBF) is the most often used approach for reinforcing existing RC components; nevertheless, despite its simplicity of use, the EBR technique’s performance can be significantly harmed by different forms of delamination/debonding of FRP composite from concrete substrate [29].

In concrete sections reinforced with FRP material, the fracture generally begins in the concrete substructure near the FRP strip, and therefore the mechanical properties and failure of the concrete play a major role in retrofitting efficiency. In addition to bond length, FRP strip width, axial stiffness, and its ratio to concrete element width all impact the FRP concrete bond strength [30]. In order to determine the FRP-concrete bond strength, numerous investigational studies have been accompanied to examine the effect of various parameters for both concrete and FRP composite material including adhesive properties [31]. Afterwards on the basis of these investigational and theoretical analysis, several analytical prediction models were developed and implemented in appropriate repair and rehabilitation codes such as fib bulletin [32], Italian National Research Council CNR-DT200/2004 [33], ACI [34], HB305 [35] and CS-TR-55-UK [36].

The majority of these analytical models were developed based on the restricted experiment data, which predict the bond strength in a specific group of data samples, but for other set of data samples the accuracy of the model may be differ depending on the properties of concrete and FRP composite material. Because of the complexities in the offered analytical approaches and the majority of the numerical models given, they are unable to assess the true debonding behaviour. As an alternative and complementary approach, Multiple-linear Regression (MLR) methods are used for predicting bond behaviour: computational methods such as ANN, FL, SVM, FIS, GP, ANFIS, and GEP.

Metaheuristics are well-suited to combinatorial optimization issues because they can frequently discover a satisfactory solution in a reasonable period of time. As a result, they are a viable alternative to exhaustive search, which would require more time. Meta-heuristics are not problem-specific, they may be applied to a wide range of issues. Like, genetic algorithms are used in many possible problems, although they may not always be the best solution to each of these problems. The ABC method is relatively resilient, converges quickly, has a small number of parameters, and is very adaptable.

There are several studies reported in the literature that employed hybrid ANN models in civil engineering applications, and some of them are: Sarir et al. [37] used whale optimization and gene expression programming (GEP) tree-based to calculate the bearing capacity of concrete filled steel columns. The GEP tree-based models show the better performance among all the models (R^2 of Training and testing was 0.928 and 0.939 respectively). The accuracy of PSO-ANN model in terms of coefficient of determination was found as 0.910 and 0.904 for training and testing data respectively. Mansour et al. [38] explored the Neuro-Swarm algorithms to predict the pile settlement. The predicted results reveal that the neuro-swarm model has high accuracy up to a coefficient of determination of 0.892. Apostolopoulou et al. [39] and Sun et al. [40] used ANN and hybrid ABC-ANN to predict and optimized the compressive strength of mortar and concrete samples. Performance of FRP-concrete bond strength by utilizing the ANN and ABC-ANN was evaluated by Jahed et al. [41]. When compared to the ANN model, the anticipated results suggest that ABC-ANN can perform better. The author only employed 150 samples in his dataset, which limits the model’s usefulness.

Pajji et al. [42] investigated the compressive strength behaviour under fresh and magnetic salty water with machine learning models such as neuro-swarm and neuro-imperialism. The training and testing results present the better performance of neuro-swarm optimized algorithm. MLP-GWO (multilayer perceptron - gray wolf optimization) and
ANFIS-GWO (adaptive neuro-fuzzy inference system - gray wolf optimization) models were used to calculate the bearing capacity of the piles by Dehghanbanadaki et al. [43]. The results demonstrated that both the MLP and ANFIS approaches were capable of accurately predicting the piles’ ultimate bearing capacity. But, MLP-GWO model provided better results in terms of R^2-value 0.991 for test data. Khari et al. [44] used hybrid neuro-swarm method to forecast the lateral deflection of piles. In the lateral deflection prediction process, the suggested PSO–ANN model was proven to be capable of giving high accuracy while also having a low system error. The value of coefficient of determination of training and testing data were 0.953 and 0.944 respectively. Momeni et al. [45] worked on ANN model with two optimizing algorithms, Gravitational Search Algorithm (GSA) and PSO to forecast the deformation of geogrid-reinforced soil structures. The results of both the GSA-ANN and PSO-ANN models were good enough. However, GSA-based ANN prediction model outperforms, with a R-value of 0.981 and a system error of 0.0101 for testing data.

These computational algorithms each have their own structure, as well as various strengths and limitations. It has been demonstrated that their regression abilities are limited [46]. Many researches in the past already done their work in the bond prediction behaviour, but as a consequence, the prediction model established on them is still incomplete and requires additional development.

To accurately design and simulate buildings using FRP composite materials, it is critical to use an accurate and efficient model for forecasting the bond strength of FRP-concrete. Researchers will be able to use the findings of this study, to calculate the FRP-bond strength with greater precision and less experimentation work. The main limitations of this work is that a user can only use the proposed model of this article for an input vector that be within the interval of each input variable.

The work in this paper is divided into seven part. First section deals with the basic information of the degradation of concrete structures, rehabilitation, FRPs and machine learning approaches. In the second section the data related to FRP-concrete bond was collection from the literature and the performance indices used to evaluate the accuracy of this study. In third section, the previously used analytical models were collected and separates into two parts (i) codal models and (ii) models. Codal model are used in the internationally known standards such as Fib, ACI, HB 305 etc. and simple models are directly extracted from the previous articles and used by numerous authors. Section 4 introduces the ANN, ABC-ANN And GPR models. Section 5 deals with the compression of machine learning models with analytical models. In section 6, the proposed formula derived from ABC-ANN is described. The conclusion and future scope are mentioned in the last section.

II. COLLECTION OF DATA
Currently there is no appropriate code for the experimental investigation of FRP-concrete bond strength, and prior studies have only established a few traditional test configurations, such as beams bending tests, single and double shear tests. The bond strength testing setup is depicted in Figure 1. The collected database contains both single and double shear 744 samples results [47-73] and parameters which includes f'_{c} is the concrete with specified compressive strength (MPa), b_{f} is the width of the FRP laminate/fabric (mm), E_{f} is the modulus of elasticity of FRP material (GPa), t_{f} is the thickness of FRP material (mm), b_{w} is the width of concrete block (mm), f_{f} is the tensile strength of FRP composite (MPa) and L_{b} (mm) is the length FRP bonded material are tabulated in Table 1. Table 2 shows the statistical features of each major component in the database.

Figure 2 depicts the frequency classification of test data collected from the literature, represent the different parameters of concrete and FRP composite specimens, such as compressive strength of concrete (f'_{c}), width of concrete block (b_{w}), modulus of elasticity of FRP material (E_{f}), tensile strength of FRP material (f_{f}), thickness of FRP material (t_{f}), is the width of the FRP laminate/fabric (b_{f}) and (L_{b}) is the length FRP bonded material. Five frequently used performance indices, including mean absolute error (MAE), coefficient of determination R-squared (R^2), correlation coefficient (R), root mean squared error (RMSE), mean square error (MSE) and mean absolute percentage error (MAPE) are used to measure the performance of each FRP bond strength prediction model. These indexes’ relevant expressions are in Equation 1 to Equation 5.

\[
R^2 = 1 - \left(\frac{\sum_{i=1}^{N} (a_i - p_i)^2}{\sum_{i=1}^{N} p_i^2} \right) \tag{1}
\]

\[
RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (a_i - p_i)^2} \tag{2}
\]

\[
MAE = \frac{\sum_{i=1}^{N} |a_i - p_i|}{N} \tag{3}
\]

\[
MSE = \frac{1}{N} \sum_{i=1}^{N} (a_i - p_i)^2 \tag{4}
\]

\[
MAPE = \frac{1}{N} \left| \frac{\sum_{i=1}^{N} |a_i - p_i|}{\sum_{i=1}^{N} |a_i|} \right| \times 100 \tag{5}
\]

where, N is the number of points in the data set, and a and p sets are the actual and projected output sets, respectively.

III. PREDICTION OF BOND STRENGTH USING EXISTING ANALYTICAL FORMULATION
Presently, numerous analytical models to determine the bond strength of FRP-concrete have been established, with varying degrees of success. Some of the most important
adopted codes in the world recognized association such as ACI, fib bulletin and HB305 were also used to predict the bond strength.

A. CODAL STANDARDS TO PREDICT THE BOND STRENGTH

(a) Codal Model 1 - The first model which is selected in fib Bulletin [32] was given by Neubauer and Rostasy [74] (1997) is expressed below:

\[
 P_u = \begin{cases}
 0.64 k_p b_f \sqrt{0.53 E_f t_f (f'_c)^{0.5}}, & L_b \geq L_e \\
 0.64 \frac{b_c}{L_e} \left(2 - \frac{L_c}{L_e}\right) k_p b_f \sqrt{0.53 E_f t_f (f'_c)^{0.5}}, & L_b < L_e
\end{cases}
\]

where, \(k_p\) is the geometric factor and calculated using below formula.

\[
 k_p = \sqrt{\frac{1.125 \left(2 - \frac{b_f}{b_c}\right)}{1 + \frac{b_f}{300}}} \geq 1
\]

\[
 L_e = \sqrt{\frac{E_f t_f}{1.06 (f'_c)^{0.5}}}
\]

(b) Codal Model 2 - To predict the bond strength Chen and Teng [75] (2001) model which was adopted by ACI 440.R-08 [34]. The formula for model prediction is shown below:

\[
 P_u = 0.427 \beta_p \beta_L \sqrt{f'_c L_e b_f}
\]

where, \(P_u\) = applied load (kN), \(\beta_p\) and \(\beta_L\) are the geometric parameters, \(f'_c\) is the concrete with specified compressive strength (MPa), \(L_e\) is the effective length (mm) and \(b_f\) is the width of the FRP laminate/fabric.

The geometric parameter \(\beta_p\), \(\beta_L\) and effective length is calculated using below expressions:

\[
 \beta_p = \left[\frac{2 - \frac{b_f}{b_c}}{1 + \frac{b_f}{b_c}}\right]^{0.5}
\]

\[
 \beta_L = \begin{cases}
 1, & L \geq L_e \\
 \sin \left(\frac{\pi L_b}{2 L_e}\right), & L < L_e
\end{cases}
\]

where, \(E_f\) is the modulus of elasticity of FRP material (MPa), \(t_f\) is the thickness of FRP material (mm), \(b_c\) is the width of concrete block (mm) and \(L_b\) is the length FRP bonded material.

(c) Codal Model 3 - The fourth FRP bond prediction model is given by Italian National Research Council CNR-DT 200/2004 [33] is expressed as:

\[
 P_u = \begin{cases}
 b_f \sqrt{2 E_f t_f k_f}, & L_b \geq L_e \\
 b_f \sqrt{2 E_f t_f k_f} \frac{L_c}{L_e} \left(2 - \frac{L_c}{L_e}\right), & L_b < L_e
\end{cases}
\]

where, \(k_f\) is the specific fracture energy and calculated using following formula:

\[
 k_f = 0.03 b_h \sqrt{f'_c f_c}
\]
FIGURE 2. Distribution of the inputs and output variables (a) Input 1 f'_c (b) Input 2 b_c (c) Input 3 E_f (d) Input 4 f_f (e) Input 5 t_f (f) Input 6 b_f (g) Input 7 L_b (h) Output P_u.

$$k_b = \sqrt{\frac{2 \cdot b_f}{b_c}} \geq 1 \quad (15)$$

where, f_c is the mean value of concrete tensile strength.

$$L_e = \sqrt{\frac{E_f t_f}{2 f_c}} \quad (16)$$
TABLE 1. Parameters for bond strength analysis from collected database

Reference	f'_c (N/mm²)	b_c (mm)	E_f (GPa)	f_f (N/mm²)	t_f (mm)	b_f (mm)	L_b (mm)	P_u (kN)	
Chajes et al. [47]	24-471	115-229	108.38	234-5172	1.02	25.4	50.8-203.2	8.1-12.81	
Maeda et al. [48]	40.8-44.7	100	230-80	5000	0.5	65	70	5.8-16.25	
Taljsten et al. [49]	29.7-65.8	100-200	170-300	3792-6700	1.2	50	100-400	17.3-45.95	
Ueda et al. [50]	23.5-46.5	100-500	230-372	3792	0.11-0.55	10-100	65-700	2.4-38	
Zhao et al. [51]	16.2-29	150	240	3792	0.08	100	100-150	11-12.75	
Wu et al. [52]	46.5-58.3	100	237-390	3792	0.08-1	40-100	250-300	11.8-27.25	
Adhikary et al. [53]	24-36.5	150	230	3792	0.11-0.33	100	100-150	16.75-28.5	
Fu-quan et al. [54]	24.1-70	100	230	3792	0.17-0.84	30-70	50-300	7.83113	
Nakaba et al. [55]	23.8-57.6	100	124.5-425.1	3792	0.17-0.19	50	300	8.9-26.78	
Tian et al. [56]	29.7-45.1	100	97-235	3792	0.11-0.34	50-75	70-130	8.6-13.95	
Dai et al. [57]	33.1-35	100	74.83-60.23	1550-3550	0.11-0.38	100	330	15.6-64.8	
Ren [58]	22.7-43.8	150	83.03-207	3792	0.33-0.51	20-80	60-150	4.61-22.8	
Yao et al. [59]	18.9-27.1	100-150	256	3792	0.17	15-100	75-240	3.81-19.07	
Dai et al. [60]	35	200	74,843-1550	3550-3550	0.11-0.38	100	330	13.5-60.9	
Sharma et al. [61]	27.9-35.8	100	165-300	3792	1.2	50	100-300	18.25-46.35	
Toutanji et al. [62]	17-61.5	200	110	4100	0.5-0.99	50	100	7.56-19.03	
Yun and Wu [63]	36.9-48.6	150	230	3400	0.167	50	300	3.2-27.7	
Ceroni et al. [64]	15-20	230	80.70-230	2500-4830	0.166-0.48	100	200-300	12.52-22.81	
Hosseini et al. [29]	23.5-41.1	150	238	4300	0.131	48	20-250	7.54-10.12	
Li et al. [65]	27-61	100	270	3500	0.167	50	50-300	11.03-20.87	
Uno et al. [66]	23-74.5	80	42.66-43.54	1995-2000	1.03-1.8	40	200-230	9.52-18.29	
Chen et al. [67]	42-72	100	242	3513	0.167	50	300	8.22-21.2	
Yuan et al. [68]	39.68-50.98	150	73	1333	0.12	40	200	10.12-12.96	
Mesto et al. [69]	24.7-40.4	150	230	3900	0.166	50	50	10.2-14.98	
Mofrad et al. [70]	20-43	150	230,258	3900,4300	0.131-0.26	48	150	10.54-27.3	
Zhang et al. [71]	29.3	100	256	4100	0.12	20	200	150-180	7.53-9.27
Yuan et al. [72]	30.14	150	73-210	1400-2450	0.12-0.287	40	200	3.75-17.66	
Mogh et al. [73]	22.7-48.2	150	76-230	2300-3900	0.11-0.34	30-60	200	3.9-24.5	

(d) Codal Model 4 - Seracino et al.’s [76] FRP bond prediction model is presented in the HB 305 (2007) [35] standard. The formula given by the authors is expressed as:

\[
P_u = 0.853\beta_a f'_c 0.33 \left(\frac{df}{bf} \right) ^{0.25} \sqrt{(2df + bf)E_fbf} (21)
\]

where, df is thickness of the failure plane and β_a is the range of values as expressed in below equation:

\[
\beta_a = \begin{cases}
1, & L_b \geq L_e \\
\frac{L_b}{L_e}, & L_b < L_e
\end{cases} (18)
\]

\[
L_e = \frac{\pi}{2} \sqrt{\frac{x f (2df + bf)}{\delta_f^2 f^2 f}} (19)
\]

where, τ_f is the peak interface shear stress and df is slip at maximum interface shear stress calculated using below expression:

\[
\tau_f = \left(0.802 + 0.078 \frac{df}{bf} \right) (f'_c)^{0.6} (20)
\]

\[
\delta_f = 0.73 \left(\frac{df}{bf} \right)^{0.5} (f'_c)^{0.67} (21)
\]

(e) Codal Model 5 - The fifth model is given by the Concrete Society Committee CS-TR-55-UK [36] can be expressed as:

\[
P_u = \begin{cases}
0.5k_b f_b \sqrt{E_{f} f_c f_t} L_b \geq L_e \\
0.5k_b f_b \sqrt{E_{f} f_c f_t} \frac{2 - f_t}{f_c} L_b < L_e
\end{cases} (22)
\]

where, $f_c t$ is the characteristic axial tensile strength of concrete, k_b and L_e are calculates using equations:

\[
k_b = 1.06 \sqrt{\frac{2 - f_t}{f_c} \frac{L_b}{bf}} \geq 1 (23)
\]
\[L_e = 0.7 \sqrt{\frac{E_f t_f}{f_{ct}}} \]

(24)

B. MODELS OTHER THAN CODAL STANDARDS

(a) Model 1 = Sato et al. (1997) [77] and Japan Concrete Institute (2003) [78] suggested a model to predict the FRP bond strength using following equations:

\[P_u = k L_e (b_f + 7.4) \]

(25)

\[k = (2.68 \times 10^{-5}) (f_c)^{0.2} E_f t_f \]

(26)

\[L_e = 1.89 (E_f t_f)^{0.4} \text{ if } L_b \geq L_e \]

(27)

where, \(P_u \) = bond strength (kN), \(b_f \) = width of FRP laminate/fabric, \(E_f \) is the modulus of elasticity of FRP material (MPa), \(t_f \) = thickness of FRP material (mm), \(L_e \) is the effective length (mm).

(b) Model 2 - Khalifa et al. (1998) [79] suggested a model to predict the FRP bond strength using equation

\[P_u = k L_e b_f \]

(28)

\(k \) and \(L_e \) is calculated using Equation 29 and Equation 30 respectively.

\[k = (110.2 \times 10^{-6}) \left(\frac{f'_c}{42} \right) E_f t_f \]

(29)

\[L_e = e^{6.134-0.58 \ln(E_f \cdot t_f)} \]

(30)

(c) Model 3 - Maeda et al. (1999) [80] proposed a model to predict the FRP bond strength using equation

\[P_u = k L_e b_f \]

(31)

\(k \) and \(L_e \) is calculated using Equation 32 and Equation 33 respectively.

\[k = (110.2 \times 10^{-6}) E_f t_f \]

(32)

\[L_e = e^{6.134-0.58 \ln(E_f \cdot t_f)} \]

(33)

(d) Model 4 - Yang et al. (2007) [81] proposed a model to predict the FRP bond strength using equation 34.

\[P_u = \left(0.5 + 0.08 \sqrt{\frac{0.01 E_f t_f}{f_f}} \right) b_f L_e k \]

(34)

where, \(f_f \) is the tensile strength of FRP material in (MPa) and \(L_e = 100 \text{ mm} \).

\[k = 0.5 f_f \]

(35)

IV. ARTIFICIAL INTELLIGENCE TO PREDICT FRP-CONCRETE BOND STRENGTH

To predict the bond strength in this used algorithms are ANN, ANN-ABC and multiple linear regressions.

A. ARTIFICIAL NEURAL NETWORK (ANN)

ANNs are one of the most commonly utilized approaches in the field of artificial intelligence (AI). These techniques are simple, have excellent performance, and have a cheap computational cost [82]. In the literature, there are several varieties of ANNs, including Spiking Neural Networks (SNN), Feedforward Neural Networks (FFNN), Kohonen self-organizing feature map networks (SOM), Recurrent Neural Networks (RNN), and Radial basis function networks (RBF) [83]. The FFNN is the most commonly used and simplest of all ANNs. FFNNs use one-way connections between neurons in various layers to accept information as inputs on one side and produce outputs on another side [84]. FFNNs are classified into two types: Single-Layer Perceptrons (SLP) and Multi-Layer Perceptrons (MLP). There is only one perceptron in SLPs. SLPs, despite their simplicity, are incapable of dealing with non-linear issues. As a result, MLPs with more than one perceptron built in various layers are used [85,86].

In MLP’s primary components are the input layer, hidden layer(s), and output layer. The hidden layer contains the activation function, weights, and units (or neurons). Without performing any computational calculation, the input layer takes information from the outer context and transmits it to hidden layers neurons. The majority of a network’s internal processing is performed by hidden layers, which are sandwiched in the input and output layers. Finally, the output layer is in charge of delivering network computations to the outside world. The activation function describes how the neurons process the input value to create the output value for the succeeding layer, and the subsequent layers are fully linked by weight.

Data normalization was done before training the network in order to reduce undesired feature scaling effects and provide higher computational stability. All parameters were converted linearly in accordance with Equation 36 and the Log-sigmoid [87-92] activation function detect values in the interval [0, 1]. The normalization process is quantitatively expressed as follows.

\[x^* = \frac{(x - x_{min})}{x_{max} - x_{min}} \]

(36)

where \(x^* \) = normalizing value, \(x \) = original value, \(x_{max} \) = upper value in the selected data set, and \(x_{min} \) is the lower value in the selected data set.

\[\text{TanSig} = \frac{2}{1 + e^{-2x}} - 1 \]

(37)
Levenberg-Marquardt (LM) algorithm was used. The use of a single hidden layer to handle several nonlinear problems has been validated in the literature. Throughout this layer-by-layer training process, the input signals were sent forward, while the error signals were sent back. The weights were continually changed until the output layer gave the desired output. 744 dataset points were divided into three groups on the random basis. For training, validation, and testing, 520 data (70 percent), 112 data (15 percent), and 112 data (15 percent) were acquired, respectively. In the network training process the training and validation sets were employed, while the test and training sets were used to evaluate network performance.

Researchers have used trial and error techniques to identify the optimum number of neurons and the suitable ANN. In this study, 2 to 24 number of neurons were used to define the optimum ANN architecture. To determine the optimum network design, traditional statistical errors and performance metrics, such as MSE and R, were utilized. As a result, the evaluation index (R, MSE) of each pattern is calculated and the outcomes are determined in line with the competence of the responses. Finally, calculate the rank for each of the proposed patterns and the optimum architecture of the network is chosen. The outcomes in the assessment of bond strength in artificial neural network are shown in Table 3.

As indicated in Table 3, the 19 neurons was identified as the best network among all the neurons based on the ranking systems. Figure 3 provides a schematic overview of the selected neural network, estimating networks. The values of the correlation coefficients (R) and MSE in the selected network for training and testing analysis are 0.97094 and 0.9378 and notably small values 0.00105 and 0.00262 respectively. These data demonstrate the optimized artificial neural network’s strong capabilities for calculating the bond strength. Although validation of numerical findings is not always included in artificial intelligence-based studies, there have been numerous examples described in the literature where the model dataset is created using numerical modelling without validation [45,94].

B. ARTIFICIAL BEE COLONY - ARTIFICIAL NEURAL NETWORK (ABC-ANN)

For dealing with restricted optimization issues, many deterministic and stochastic methods have been developed. Deterministic methods, such as Feasible Direction [95] and Generalized Gradient Descent [96], involve significant assumptions on the objective function’s continuity and differentiability. As a result, their applicability is restricted because these qualities are rarely seen in real-world issues. Stochastic optimization methods, such as Particle Swarm Optimization (PSO), Genetic Algorithms (GA), and Evolutionary Programming do not make such assumptions and have been effectively utilized for solving restricted optimization issues in recent years [97]. For numerical optimization challenges, Karaboga developed an Artificial Bee Colony (ABC) method based on honey bee foraging behavior [98]. Karaboga and Basturk evaluated the performance of the ABC method on unconstrained problems to that of other well-known contemporary heuristic algorithms such as Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and Differential Evolution (DE). The ABC method is extended to solve constrained optimization (CO) problems.

One of the most prominent swarm-based heuristic optimization methods is the ABC algorithm. It comprises three sorts of bees: employed bees, onlooker bees, and scout bees. The ABC algorithm makes several assumptions. Among these are: half of the colony is made up of employed bees and other half consists of onlooker bees [93]. The number of employed bees is exactly equal to the number of onlooker bees. The following are the basic steps of the ABC algorithm:

The ABC creates a randomly dispersed starting population of SN solutions (food sources), where SN represents the size of the swarm. Let \(x_1 = x_{i_1}, x_{i_2}, ..., x_{i_n}, x_1 \) shows the \(i_{th} \) solution in the swarm. Each employed bee \(x_i \) creates a new applicant solution \(V_i \) in its near area, as mentioned in Equation 39.

\[
v_{i,j} = x_{i,j} + \phi_{i,j} \times (x_{i,j} - x_{k,j}) \quad (38)
\]

where \(x_i \) denotes the food supply generated by the employed bees, and \(n \) denotes the necessary solution size, random generated number \(\phi \) in the range of \(0 \) and \(1 \), \(k \) is a value chosen at random between 0 and the maximum amount of food resources (\(k \neq i \)), between 0 and the maximum number of solutions, \(j \) is a random number (weights).

After all employed bees have completed their search, they waggle dance to communicate the food source information with onlooker bees. An onlooker bee evaluates the nectar data of all used bees and picks a food source which is likely to be proportionate to the quantity of its nectar. This probabilistic selection method is a “roulette wheel” selection system, as follows:

\[
p_i = \frac{fit_i}{\sum_{j=1}^{SN} fit_j} \quad (39)
\]

where, \(fit_i \) is the fitness value of the \(i^{th} \) swarm solution. It is observed that, the better solution \(i \), the higher probability of the \(i^{th} \) food source will be chosen.

The scout bee phase is in charge of determining the maximum number of epochs, which indicates the number of times the solution is permitted to degrade. If a position cannot be enhanced after a certain number of cycles (called a limit), the food supply is thereafter discarded. Assume xi is the discarded source, and the scout bee identifies a new food source to replace it as follows:

\[
x_{i,j} = lb_j + \text{rand}(0, 1) \times (ub_j - lb_j) \quad (40)
\]

where, \(\text{rand}(0, 1) \) is a random number within the range [0,1] based on a normal distribution and \(lb_j, ub_j \) are upper and lower boundaries of the \(j^{th} \) dimension, respectively.
The ABC algorithm’s goal is to discover appropriate weights and optimize them in the search environment. To accomplish this goal, several ABC-ANN patterns with varying numbers of bees were created using the suggested 19 neurons in the ANN structure. As a result, the number of bees will be increased until the minimal error is achieved and the test and error research has been completed to identify additional interconnected factors.

As shown in Table 4, the ABC with 60 bees was recognized as the optimal network established on basis of ranking systems i.e. rank one means optimum number of bees. The test results which obtained from the optimum number of bees in training and testing 0.971409 and 0.956165 are the R values and significantly tiny values 0.00113140 and 0.00187475 are the normalized MSE values.

TABLE 3. Performance of ANN model

Neurons	R	MSE	R	MSE	Rank	MSE	Total
	Training	Testing	Training	Testing	Training	Testing	
2	0.716473	0.744026	0.010471	0.007833	23	23	22
3	0.916306	0.900247	0.003199	0.004739	19	17	20
4	0.914513	0.921919	0.003063	0.003576	20	18	19
5	0.88878	0.87611	0.009094	0.004254	21	20	21
6	0.947026	0.909171	0.003996	0.003669	15	15	14
7	0.939139	0.927144	0.002497	0.002601	18	21	18
8	0.925985	0.871837	0.002778	0.005607	17	17	17
9	0.852539	0.86522	0.008783	0.006237	22	19	22
10	0.954855	0.915995	0.001489	0.004741	10	10	9
11	0.941755	0.941755	0.002073	0.003436	16	16	15
12	0.940475	0.91682	0.001673	0.003849	11	12	11
13	0.950201	0.913521	0.001912	0.003515	12	13	13
14	0.967068	0.915524	0.001173	0.004157	7	11	6
15	0.967332	0.928415	0.00127	0.004057	6	4	7
16	0.947438	0.867898	0.002263	0.004533	14	22	16
17	0.969614	0.917513	0.001166	0.003946	4	9	4
18	0.968181	0.928698	0.00117	0.003807	5	5	9
19	0.97094	0.9378	0.00105	0.00262	3	2	3
20	0.94822	0.925673	0.00188	0.003975	13	6	12
21	0.974317	0.87924	0.000885	0.005673	2	18	1
22	0.974821	0.911626	0.000935	0.004049	1	14	2
23	0.964004	0.921448	0.001286	0.002384	8	8	8
24	0.961453	0.904136	0.001551	0.003571	9	16	10

FIGURE 3. Structure of ANN.

C. GAUSSIAN PROCESSED REGRESSION (GPR)

GPR is a Bayesian inference method that works with real-valued variables [51]. It is a non-parametric prediction model for a specific dataset function, \(D = (x_i, t_i), i = 1, 2, ..., N \)
TABLE 4. Performance of optimized ANN-ABC model

Bee	R	MSE	Rank	R	MSE	Total	
30	0.973567	0.942305	0.00124767	0.898635	2	0.701384	0.00113140
60	0.971409	0.956165	0.00113140	0.00187475	5	0.00645214	0.00102863
120	0.965563	0.898635	0.00124767	0.00233896	7	0.00102863	0.00187475
300	0.967889	0.944091	0.00113140	0.00233896	6	0.967889	0.00102863
600	0.961630	0.916047	0.00113140	0.00233896	18	0.961630	0.00102863
800	0.999770	0.949751	0.00113140	0.00233896	0.923045	0.00102863	0.00187475
1000	0.973595	0.910158	0.00113140	0.00233896	7	0.910158	0.00102863

where x_i is an input and t_i is a target variable [52]. A distribution function, termed “Gaussian process regression”, which may be expressed as, can be used for the Bayesian regression.

$$P(f \mid D) = \frac{p(f)p(d \mid f)}{p(D)} \tag{41}$$

In GPR a covariance function called $k(x, x')$ is the primary function. Covariance function can be best performed as:

$$k(x, x') = \sigma_f^2 \exp \left\{ -\frac{1}{2} \left(\frac{x_i - x_j}{l^2} \right) \right\} \tag{42}$$

where, σ_f^2 = maximum permissible variance and l = length of scale. The output of latent function is given as:

$$y = f(x) + \varepsilon \tag{43}$$

Where, $f(x)$ = latent function and ε = Gaussian noise. The latent function is treated as a random variable in GPR. If the difference between x and x' approaches zero for the aforementioned covariance function, this indicates that the $f(x)$ function is near to the real function $f(x')$. By adding the noise values, the preceding equation may be rewritten as follows.

$$k(x, x') = \sigma_f^2 \exp \left\{ -\frac{1}{2} \left(\frac{x_i - x_j}{l^2} \right) \right\} + \sigma_n^2 \delta(x, x') \tag{44}$$

where, σ_n^2 = variance of n observations and $\delta(x, x')$ = Kronecker delta function. The prediction function can be written as:

$$y = f(x) + N(0, \sigma_n^2) \tag{45}$$

The kernel or covariance function $k(x, x')$ given as:

$$K = \begin{bmatrix} k(x_1, x_2) & k(x_1, x_3) & \ldots & k(x_1, x_n) \\
 k(x_2, x_1) & k(x_2, x_3) & \ldots & k(x_2, x_n) \\
 \vdots & \vdots & \ddots & \vdots \\
 k(x_n, x_1) & k(x_n, x_2) & \ldots & k(x_n, x_n) \end{bmatrix} \tag{46}$$

V. COMPARISON OF PERFORMANCE OF AI MODELS AND EXISTING MODEL

The ANN, mutated ABC-ANN and GPR model, testing and training outcomes are assessed using Equations 1 to 5, used to find out the performance and errors in the predicted values. It should be highlighted that these criteria are evaluated using actual targets created by standardized data in order to offer a clear comparison of model error values. The detailed of each analyzed model is tabulated in Table 5.

The ANN, mutated ABC-ANN, and GPR results are compared to the earlier work, methodologies, and international codes which are mentioned in Equation 6 to Equation 35. Table 6 illustrates the findings of test results obtained from statistical criteria, coefficient of determination R-squared (R^2), correlation coefficient (R), as well as error markers of RMSE, MSE, MAE, and MAPE. The standard deviation of the original data is 8.7965 which is quite closer to the ABC-ANN model data.

Figure 4 and Figure 5 depicts the comparison study of experimental measured with respect to the predicted data using various AI algorithms and existing models.

Figure 6 depicts the scattering of absolute error values (AEV) (kN), so that the error value of the recommended approaches may be compared directly with those of the existing literature models and codal standards. The spreading of values in mutated ANN and GPR models are more focused within the 5 kN range of bond strength. As a consequence, the ABC-ANN and GPR model may be concluded that they are superior than other approaches and have the best precision and robustness. As a result, the AEV of ABC-ANN and GPR are almost (approximately 94.37% of the time) less than 5.98 kN and (approximately 94.33% of the time) less than 5.98 kN respectively.

VI. PROPOSED FORMULATION FROM ABC-ANN

The operation of ANN is only feasible, when the network’s input and output weights, as well as bias values, are known at multiple levels. The predicted FRP-concrete bond strength may be calculated using excel spreadsheet application utilizing the findings presented in this Table 7 as a direct form of prediction formulation. Table 7 shows the weight and bias used for predicting the output values. These values are used to find out the X_1 to X_{19} constants which were used in the Equation 47.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
TABLE 5. Comparison of ANN, ABC-ANN, and GPR

Method/Model	Model-1	Model-2	Model-3	Model-4	Model-5
Training R	0.9309	0.9218	0.9286	0.9265	0.9218
R²	0.9309	0.9218	0.9286	0.9265	0.9218
RMSE	1.7641	1.7637	1.7638	1.7641	1.7637
MSE	1.7641	1.7637	1.7638	1.7641	1.7637
MAE	1.7631	1.7636	1.7633	1.7631	1.7636

TABLE 6. Comparison of existing models with developed database

Method/Model	R	R²	MSE	RMSE	MAE (kN)	MAPE (%)	Standard Deviation
ANN	0.9309	0.8666	12.0826	3.4760	1.7641	11.1545	8.467
ABC-ANN	0.8619	0.7429	20.1205	4.4867	1.7985	9.3413	9.3144
GPR	0.8619	0.7429	20.1205	4.4867	1.7985	9.3413	9.3144
Codal Model-1	0.8837	0.7089	26.9678	4.1192	2.2863	18.1705	7.7161
Codal Model-2	0.8837	0.7089	26.9678	4.1192	2.2863	18.1705	7.7161
Codal Model-3	0.8322	0.6926	23.7481	4.8732	3.3103	20.5316	7.3492
Codal Model-4	0.8063	0.6501	27.0379	5.1998	3.5593	22.3387	7.0747
Codal Model-5	0.8355	0.6977	23.3879	4.8361	3.1909	20.0675	7.3087
Model-1	0.6151	0.3785	87.3664	9.3478	4.5158	40.0351	4.4942
Model-2	0.7221	0.5214	37.0840	7.3501	3.0996	27.6375	5.2476
Model-3	0.7213	0.5203	39.1116	7.7014	4.9742	31.1937	8.9441
Model-4	0.7038	0.4953	64.3846	8.024	6.0876	36.3521	9.2735

\[X_i = \tanh(W_i X_{i,norm} + B) \]

\[P_{\text{upredicted}} = \text{purlin}(W_o X_i + B_o) = W_o X_i + B_o \]

Equation 42 shows the matrix which contains different parameters to evaluate the bond strength with other constant values and having activation function ‘tansig’. Equation 43 might predict bond strength with up to 94 percent accuracy. Put all the measured values form above mentioned equation in equation 48.

VII. CONCLUSION AND FUTURE SCOPE

In this article, the FRP-concrete bond strength is evaluated using an ANN, ABC-ANN, and GPR techniques. A hybrid method ABC-ANN is used to optimize the ANN model for better bond strength predictions. In this case, 744 experimental data were gathered from the literature, including concrete compressive strength, FRP laminate/fabric width, FRP material modulus of elasticity, FRP material thickness, concrete block width, FRP composite tensile strength, and FRP material modulus of elasticity. All of the data utilized was scaled and standardized between 0 and 1 in order to get the appropriate responses. The ANN, ABC-ANN, and GPR prediction findings were compared with current techniques for evaluating the bond strength of FRP-concrete given by international codal standards and the other four models from the prior literature study. In ANN and ABC-ANN, 70% of the data is utilized for training, 15% for testing, and the remaining 15% for validation. The accuracy of bond strength estimate might be improved by using these two methods, ABC-ANN and GPR. The empirically suggested formulation, which was built utilizing the mutated ABC with ANN’s weights and bias, may be easily implemented for bond strength evaluation. The ABC-ANN and GPR prediction results are accurate for more than 90% of experimental data. The main limitations of this work is that a user can only use the proposed model of this article for an input vector that be within the interval of each input variable. Researchers and FRP applicators may benefit from using this model, because it provides good accuracy and consume less time. In future research, the accuracy of this model might be improved by employing a larger number of experimental databases and comparing it to all natural-inspired algorithms in order to improve the prediction of FRP concrete bond strength.

REFERENCES

[1] R. Kumar and P. Gardoni, “16 - Stochastic modeling of deterioration in buildings and civil infrastructure,” in Handbook of Seismic Risk Analysis and Management of Civil Infrastructure Systems, S. Tesfamariam and K. Goda, Eds.: Woodhead Publishing, 2013, pp. 410–434.
[2] A. James et al., “Rebar corrosion detection, protection, and rehabilitation of reinforced concrete structures in coastal environments: A Review,” Construction and Building Materials, vol. 224, pp. 1026–1039, 2019, https://doi.org/10.1016/j.conbuildmat.2019.07.250.
[3] R. D. Borcherdt, R. O. Hamburger, and C. A. Kircher, “68 - Seismic Design Provisions and Guidelines in the United States: A Prologue,” in Handbook of Seismic Risk Analysis and Management of Civil Infrastructure Systems, S. Tesfamariam and K. Goda, Eds.: Woodhead Publishing, 2013, pp. 410–434.
[4] M. U. Khan, S. Ahmad, and H. J. Al-Gahtani, “Chloride-Induced Corrosion of Steel in Concrete: An Overview on Chloride Diffusion and Prediction of Corrosion Initiation Time,” International Journal of Corrosion, vol. 2017, p. 5819202, 2017, https://doi.org/10.1016/j.conbuildmat.2019.07.250.
FIGURE 4. Predicted and measured values of ANN Training, ANN Testing, ANN, Codal Model-1, Codal Model-2, Codal Model-3, Codal Model-4 and Codal Model-5

[5] A. Mullard John and G. Stewart Mark, “Life-Cycle Cost Assessment of Maintenance Strategies for RC Structures in Chloride Environments,” Journal of Bridge Engineering, vol. 17, no. 2, pp. 353–362, 2012. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000248

[6] I. J. Navarro, V. Yepes, and J. V. Martí, “Life Cycle Cost Assessment of Preventive Strategies Applied to Prestressed Concrete Bridges Exposed to Chlorides,” Sustainability, vol. 10, no. 3, p. 845, 2018. https://doi.org/10.3390/su10030845

[7] E. Chen, C. G. Berrocal, I. Löfgren, and K. Lundgren, “Correlation between concrete cracks and corrosion characteristics of steel reinforcement in pre-cracked plain and fibre-reinforced concrete beams,” Materials and Structures, vol. 53, no. 2, p. 33, 2020. https://doi.org/10.1617/s11527-020-01466-z

[8] S. Robuschi, A. Tengattini, J. Dijkstra, I. Fernandez, and K. Lundgren, “A closer look at corrosion of steel reinforcement bars in concrete using 3D neutron and X-ray computed tomography,” Cement and Concrete Research, vol. 144, p. 106439, 2021. https://doi.org/10.1016/j.cemconres.2021.106439

[9] J.-S. Jung, B. Y. Lee, and K.-S. Lee, “Experimental Study on the Structural Performance Degradation of Corrosion-Damaged Reinforced Concrete Beams,” Advances in Civil Engineering, vol. 2019, p. 9562574, 2019. https://doi.org/10.1155/2019/9562574

[10] I. Fernandez, M. F. Herrador, A. R. Mari, and J. M. Bairán, “Ultimate Capacity of Corroded Statically Indeterminate Reinforced Concrete Members,” International Journal of Concrete Structures and Materials, vol. 12, no. 1, p. 75, 2018. https://doi.org/10.1186/s40069-018-0297-9

[11] K. M. u. Darain et al., “Strengthening of RC Beams Using Externally Bonded Reinforcement Combined with Near-Surface Mounted Technique,” Polymers, vol. 8, no. 7, p. 261, 2016. https://doi.org/10.3390/polym8070261

[12] M. Akiyama, D. M. Frangopol, and K. Takenaka, “Reliability-based durability design and service life assessment of reinforced concrete deck slab of jetty structures,” Structure and Infrastructure Engineering, vol. 13, no. 4, pp. 465–477, 2017. https://doi.org/10.1080/15732479.2016.1164725

[13] F. Jiang, X. Wan, F. H. Wittmann, and T. Zhao, “Influence of Combined Actions on Durability of Reinforced Concrete Structures,” Journal Restoration of Buildings and Monuments, vol. 17, no. 5, pp. 289–298, 2011. https://doi.org/10.1515/hrbm-2011-6466
[14] A. Bossio et al., “Corrosion effects on seismic capacity of reinforced concrete structures,” Journal of Corrosion Reviews, vol. 37, no. 1, pp. 45–56, 2019. https://doi.org/10.1515/jcorrev-2018-0044

[15] Y. Zhou, B. Genceturk, K. Willam, and A. Attar, “Carbonation-Induced and Chloride-Induced Corrosion in Reinforced Concrete Structures,” Journal of Materials in Civil Engineering, vol. 27, no. 9, p. 04014245, 2015. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001209

[16] R. E. Melchers, “Modelling durability of reinforced concrete structures,” Corrosion Engineering, Science and Technology, vol. 55, no. 2, pp. 171–181, 2020. https://doi.org/10.1080/14784229.2019.1710660

[17] U. Meier, M. Deuring, H. Meier, and G. Schwegler, “CFRP BONDED SHEETS,” in Fiber-Reinforced-Plastic (FRP) Reinforcement for Concrete Structures, A. Nanni, Ed., Oxford: Elsevier, 1993, pp. 423–434. https://doi.org/10.1016/B978-0-444-89689-6.00023-9

[18] Y. Kanaori and S.-i. Kawakami, “The 1995 7.2 magnitude Kobe earthquake and the Arima-Takatsuki tectonic line: implications of the seismic risk for central Japan,” Engineering Geology, vol. 43, no. 2, pp. 135–150, 1996. https://doi.org/10.1016/0013-7952(96)00056-7

[19] H. Fukuyama, G. Tumialan, and A. Nanni, “Japanese design and construction guidelines for seismic retrofit of building structures with FRP composites, in: FRP Composites in Civil Engineering,” presented at the 2nd Int. Conf. FRP composites in Civil Engineering, Hong Kong Institution of Engineers., Hong Kong Institution of Steel Construction, vol. 1, 2001.

[20] U. M. Angst, “Challenges and opportunities in corrosion of steel in concrete,” Materials and Structures, vol. 51, no. 1, pp. 1–20, 2018. https://doi.org/10.1617/s11527-017-1131-6

[21] D. K. Rajak, D. D. Pagar, P. L. Menezes, and E. Limal, “Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications,” Polymers, vol. 11, no. 10, p. 1667, 2019. https://doi.org/10.3390/polym11101667

[22] N. L. Feng, S. D. Malingam, and S. Iralappasamy, “4 - Bolted joint behavior of hybrid composites,” in Failure Analysis in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, M. Jawaid, M. Tharig, and N. Saba, Eds.: Woodhead Publishing, 2019, pp. 79-95. https://doi.org/10.1016/B978-0-08-102293-1.00004-8

[23] N. Chand and M. Fahim, “2 - Introduction to tribology of polymer composites,” in Tribology of Natural Fiber Polymer Composites, N. Chand and M. Fahim, Eds.: Woodhead Publishing, 2008, pp. 59-83. https://doi.org/10.1533/978184569057.59

[24] M. A. Masueuli, “Introduction of fibre-reinforced polymers- polymers and composites: concepts, properties and processes,” in Fiber reinforced polymers-the technology applied for concrete repair, N. Chand and M. Fahim, Eds., Woodhead Publishing, 2013. https://doi.org/10.5772/54629

[25] F. Campbell, “Structural Composite Materials,” ASM International, 2010. 10.31399/asm.tb.scm.9781627083140

[26] P. W. R. Beaumont, “The Structural Integrity of Composite Materials and Long-Life Implementation of Composite Structures,” Applied Composite Materials, vol. 27, no. 5, pp. 449–478, 2020. https://doi.org/10.1007/s10443-020-09822-6

[27] A. Godat, F. Hammad, and O. Chaallal, “State-of-the-art review of anchored FRP shear-strengthened RC beams: A study of influencing factors,” Composite Structures, vol. 254, p. 112767, 2020. https://doi.org/10.1016/j.compstruct.2020.112767

[28] L. S. Lee and R. Jain, “The role of FRP composites in a sustainable world,” Clean Technologies and Environmental Policy, vol. 11, no. 3, pp. 247–249, 2009. https://doi.org/10.1007/s10098-009-0253-0

[29] A. Hosseini and D. Mostofinejad, “Effective bond length of FRP-to-concrete adhesively-bonded joints: Experimental evaluation of existing models,” International Journal of Adhesion and Adhesives, vol. 48, pp. 150–158, 2014. https://doi.org/10.1016/j.ijadhadh.2013.09.022

[30] H. Jahangir and M. R. Esfahani, “Numerical Study of Bond – Slip Mechanism in Advanced Externally Bonded Strengthening Composites,” KSCE Journal of Civil Engineering, vol. 22, no. 11, pp. 4509–4518, 2018. https://doi.org/10.1007/s12205-018-1662-6

[31] C. Mensah, Z. Wang, A. O. Bonsu, and W. Liang, “Effect of Different Bond Parameters on the Mechanical Properties of FRP and Concrete Interface,” Polymers, vol. 12, no. 11, p. 2466, 2020. https://doi.org/10.3390/polym12112466

[32] F. B. “Externally bonded frp reinforcement for rc structures, in: FRP Composites in Civil Engineering.” presented at the 7 Int. Federation for Structural Concrete, 2001.

![FIGURE 5. Predicted and measured values of Model-1, Model-2, Model-3, Model-4, GPR and ABC-ANN.](image-url)
TABLE 7. Weight and bias of optimized model

Symbol	Description
f'_c	Compressive strength of concrete (MPa)
b_f	Width of the FRP laminate/fabric (mm)
E_f	Modulus of elasticity of FRP material (GPa)
t_f	Thickness of FRP material (mm)
b_w	Width of concrete block (mm)
f_f	Tensile strength of FRP composite (MPa)
L_p	Length FRP bonded material (mm)
k_p	Geometric factor
L_e	Effective length (mm)
P_a	Applied load (kN)
β_p and β_L	Geometric parameters
k_f	Specific fracture energy
d_f	Thickness of the failure plane
τ_p	Peak interface shear stress
β_s	Slip at maximum interface shear stress
f_x	Characteristic axial tensile strength of concrete (MPa)
f_c	Mean value of concrete tensile strength (MPa)

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
study on interfacial fracture energy and fracture propagation along FRP concrete interface.” Special Publication 201 pp. 133–152, 2001.

[53] B. B. Adhikary and H. Mutsuyoshi, “Study on the bond between concrete and externally bonded CFRP sheet”, in: Proc., FRPRCS-5: Fibre-reinforced plastics for reinforced concrete structures Volume 1: Proceedings of the fifth international conference on fibre-reinforced plastics for reinforced concrete structures, Cambridge, UK, 16–18 July 2001, Thomas Telford Publishing, 2001, pp. 371–378.

[54] F.-q. Xu, J. Guan and Y. Chen, “Bond strength between CFRP sheets and concrete”, in: Proc., 1st Conf. on FRP Composites in Civil Engineering, Hong Kong, China, Vol. 1, 2001, pp. 357—64.

[55] K. Nakaba, T. Kanakubo, T. Furuta and H. Yoshizawa, “Bond behavior between fiber-reinforced polymer laminates and concrete,” Structural Journal, vol. 98, no. 3, pp. 359–367, 2001.

[56] Z. Tan, “Experimental research for RC beam strengthened with GFRP,” Graduation thesis, Tsinghua Univ., Beijing, China, 2002.

[57] J.-G. Dai, Y. Sato and T. Ueda, “Improving the load transfer and effective bond length for frp composites bonded to concrete,” in: Proc., Japan Concrete Institute, Vol. 24, no. 2, 2002, pp. 1423–8.

[58] H. T. Ren, “Study on basic theories and long time behavior of concrete structures strengthened by fiber reinforced polymers,” Ph.D. thesis, Dalian Univ. of Technology, Liaoning, China, 2003.

[59] J. Yao, J. G. Teng, and J. F. Chen, “Experimental study on FRP-to-concrete bonded joints,” Composites Part B: Engineering, vol. 36, no. 2, pp. 99–113, 2005. https://doi.org/10.1016/j.compositesb.2004.06.001

[60] J. Dai, T. Ueda, and Y. Sato,”Development of the Nonlinear Bond Stress–Slip Model of Fiber Reinforced Plastics Sheet–Concrete Interfaces with a Simple Method,” Journal of Composites for Construction, vol. 9, no. 1, pp. 52–62, 2005. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:1(52)

[61] S. K. Sharma, M. S. Mohamed Ali, D. Goldar, and P. K. Sikdar, “Plate–concrete interfacial bond strength of FRP and metallic plated concrete specimens,” Composites Part B: Engineering, vol. 37, no. 1, pp. 54-63, 2006. https://doi.org/10.1016/j.compositesb.2005.05.011

[62] H. Toutanji, P. Saxena, L. Zhao, and T. Ooi,”Prediction of Interfacial Bond Failure of FRP–Concrete Surface,” Journal of Composites for Construction, vol. 11, no. 4, pp. 427-436, 2007. https://doi.org/10.1061/(ASCE)1090-0268(2007)11:4(427)

[63] Y. Yun and Y.-F. Wu,”Durability of CFRP–concrete joints under freeze–thaw cycling,” Cold Regions Science and Technology, vol. 65, no. 3, pp. 401-412, 2011. https://doi.org/10.1016/j.coldregions.2010.11.008

[64] F. Ceroni, A. Garofano, and M. Pecce,”Modelling of the bond

FIGURE 6. Absolute error values.
AMAN KUMAR was born in Bilaspur, Himachal Pradesh, India. He is pursuing his Doctoral degree in Engineering Sciences (Structural Engineering) from CSIR-Central Building Research Institute, Roorkee, India. He completed M.E. (Construction Technology and Management) from National Institute of Technical Teacher’s Training and Research Institute, Chandigarh, India. His research expertise is sustainability development, non-destructive testing, concrete technology, strengthening techniques (FRP and FRCM), corrosion protection techniques for structural design, Artificial Intelligence and Internet of Things (IoT). He has carried out a great deal of research and technical survey work and has performed several studies in the above-mentioned areas. He has written book chapters and research papers which have been published in scientific international books and journals.

HARISH CHANDRA ARORA obtained his B. Tech. (Civil Engineering) degree from G.B. Pant University Pant Nagar, Uttarakhand, India. He had pursued M.E. (Structural Engineering) from University of Roorkee, Uttarakhand, India. He was awarded Ph.D. (Structural Engineering) from the Indian Institute of Technology, Roorkee, India. He is currently working as Principal Scientist in Structural Engineering Group at CSIR-Central Building Research Institute, Roorkee, Uttarakhand, India. He has an experience of more than 25 years in the field of research and development. His major areas of research are Concrete Technology, Distress Diagnosis and Repair and Rehabilitation of Structures. His research work has been credited in national as well as international journals. He has guided more than 50 B. Tech. and M. Tech. research students and a research scholar is enrolled under his guidance for Ph.D. studies.

MAZIN ABED MOHAMMED received the B.Sc. degree in computer science from the University of Anbar, Iraq, in 2008, the M.Sc. degree in information technology from UNITEN, Malaysia, in 2011, and the Ph.D. degree in information technology from UTeM, Malaysia, in 2019. He is currently a Lecturer with the College of Computer Science and Information Technology, University of Anbar, Iraq. His research interests include artificial intelligence, biomedical computing, and optimization.

KRISHNA KUMAR is presently working as a Research and Development Engineer at UJVN Ltd. Before joining UJVNL, He has worked as Assistant Professor at BTKIT, Dwarahat. He received his B.E. (Electronics and Communication Engineering) from Govind Ballabh Pant Engineering College, Pauri Garhwal, M.Tech (Digital Systems) from Motilal Nehru NIT Allahabad, presently pursuing his Ph.D. from Indian Institute of Technology, Roorkee. He has more than 11 years of experience and has published numerous research papers in international journals like IEEE, Elsevier, Taylor and Francis, Springer, and Wiley. His research area includes Renewable Energy and Artificial Intelligence.

JAN NEDOMA was born in the Czech Republic, in 1988. He received a master’s degree in information and communication technology from the Technical University of Ostrava, in 2014. Since 2014, he has been working with the Technical University of Ostrava as a Research Fellow. In 2018, he successfully defended his dissertation thesis and he started working as an Assistant Professor at the Technical University of Ostrava. He has become an Associate Professor in communication technologies, in 2021, after defending the habilitation thesis titled “Fiber-optic sensors in biomedicine: Monitoring of vital functions of the human body in Magnetic Resonance (MR) environment” and become Head of Optoelectronics Laboratory. He has more than 150 journal articles and conference papers in his research areas and 9 valid patents such as IEEE Reviews in Biomedical Engineering, IEEE Transactions on Instrumentation and Measurement, IEEE Access, Human-Centric Computing and Information Sciences, Frontiers in Physiology, etc. His research interests include optical communications, optical atmospheric communications, optoelectronics, optical measurements, measurements in telecommunication technology, fiber-optic sensory systems, biomedical engineering, data processing from fiber-optic sensors, the use of fiber-optic sensors within the SMART technological concepts (smart home, smart home care, intelligent building, smart grids, smart metering, smart cities, and etc.), and for the needs of Industry 4.0. He is a Senior Member of IEEE.