ABSTRACT

Purpose In 1998, the AIDS Therapy Evaluation in the Netherlands (ATHENA) national observational HIV cohort was established to demonstrate the lifesaving effectiveness of triple combination antiretroviral therapy, including HIV-protease inhibitors, that had recently been made available for clinical use. Subsequently, the HIV Monitoring Foundation was established by the Dutch Ministry of Health, Welfare and Sport to continue ATHENA as an open cohort in order to continue the registration and monitoring of all HIV-positive people as an integral part of HIV care in all 26 HIV treatment centres in the Netherlands.

Participants To date, a total of 25 036 participants have been enrolled in the cohort, with 263 600 person-years of follow-up. As of 1 January 2017, 19 035 HIV-1-positive participants were known to be in care: 18 824 adults (81% men and 19% women) and 211 children (47% boys and 53% girls). The remaining 6001 participants had either died (46%), were lost to care (29%) or had moved abroad (25%).

Findings to date Today, with over 20 years of follow-up, the ATHENA cohort has provided extensive knowledge on HIV treatment, comorbidities and coinfections and created insight into the transmission dynamics of the HIV epidemic.

Future plans ATHENA continues to enrol and monitor HIV positive people entering HIV care in the Netherlands. Future research will continue to provide tangible input into HIV care and prevention policies in the Netherlands and internationally.

INTRODUCTION

The AIDS Therapy Evaluation in the Netherlands (ATHENA) cohort is a nationwide observational cohort that monitors HIV management of all HIV-positive people in HIV care in the Netherlands, since the introduction of highly active antiretroviral therapy (HAART nowadays known as combination antiretroviral therapy (cART)) when the first HIV-protease inhibitor (PI) became available. As a result of the decisive action taken by the late Dutch Minister of Health, Welfare and Sport, Professor Dr Els Borst, cART including this PI became available in the Netherlands in September 1996. However, its swift introduction was conditional on the following: only specialised HIV treatment centres were allowed to prescribe cART, and the effectiveness of cART in clinical practice had to be demonstrated. Accordingly, in November 1997, the Dutch National Health Insurance Council provided a grant to the Academic Medical Center of the University of Amsterdam for the ATHENA cohort to assess the effectiveness of cART in clinical practice. The ATHENA cohort was highly successfully in its mission to ‘assess the implications for the course of HIV disease, public health and health care of the introduction of new anti-HIV treatment, the monitoring of that new treatment, as well as the economic costs and benefits of the new treatment’.

Subsequently, in 2000, the Ministry of Health, Welfare and Sport institutionalised the national registration and monitoring of HIV-positive people in care by establishing Stichting HIV Monitoring (SHM; HIV Monitoring Foundation). Under the responsibility of SHM, the ATHENA cohort was continued and extended to all HIV-positive people in
HIV care in the designated HIV centres (irrespective of the use of cART). Today, the mission of SHM and the ATHENA cohort is to further the knowledge and understanding of all relevant aspects of HIV infection, including comorbidities and co-infections (notably viral hepatitis), in HIV-positive people in outpatient HIV care in the Netherlands.

COHORT DESCRIPTION
Setting and location
The ATHENA cohort is an observational, open cohort of all HIV-positive adults and children who enter HIV care in the Netherlands. On 1 November 2000, prior to expansion, the cohort comprised 3449 HIV-positive people, of whom 554 participated in a focus group for substudies on antiretroviral drug resistance and therapeutic drug monitoring, adherence, quality of life and costs of treatment.1 The original cohort enrolled people who had died or were otherwise no longer in care, but who had used any of the antiretroviral drugs newly licenced in 1996 or later. Subsequently, the cohort enrolled all HIV-positive people entering HIV care in one of the designated HIV treatment centres for adults and children in the Netherlands (figure 1), including those not yet on cART.

Since November 2005, on the initiative of the Curacao Red Cross Blood Bank, SHM has also assisted in the registration and monitoring of HIV-positive people in care at St. Elisabeth Hospital in Willemstad, Curacao.2 Because data collection on Curacao is not part of the ATHENA cohort, this will not be discussed further as it is beyond the scope of this profile.

Eligibility criteria and recruitment
Registration with SHM and enrolment in ATHENA is an ongoing process. First, all newly diagnosed HIV-positive adults and children entering HIV care are registered at SHM by their treating HIV physician. Subsequently, enrolment in the ATHENA cohort is based on an opt-out principle (see also: Ethical approval and Patient consent). By 1 January 2017, SHM had registered a cumulative number of 25 564 HIV-positive adults and children in the Netherlands, of whom 525 (2.1%) adults and 3 (1.2%) children opted-out of further data collection4 (table 1). Subsequently, a total of 25 036 (97.9%) adults and children were enrolled in the cohort with a total follow-up time of 263 600 person-years. The majority were HIV-1 positive (n=24 773; 98.9%); the remainder were HIV-2 positive (n=97; 0.4%) or had HIV-1 and HIV-2 dual infection (n=60; 0.2%) or no serological results (n=106; 0.4%).

At initiation, the cohort was approved by the institutional review board of all participating centres. HIV-positive people in care can opt-out after being informed by their treating physician of the purpose of collection of data. Data are pseudonymised before being provided to investigators and may be used for scientific purposes. A designated quality management coordinator safeguards compliance with the European General Data Protection Regulation.5

Methods of data collection and follow-up
Detailed clinical and laboratory data from all enrolled HIV-positive adults and children are extracted from medical records by trained data collectors in cooperation with the responsible HIV-treating physician using an extensive, standardised protocol. In addition, 13 laboratories electronically forward test results directly to SHM.
The ATHENA cohort does not dictate scheduled study visits, examinations or blood work; that is, the frequency and type of visits, examinations and laboratory measurements depend on both the participant and physician. Consequently, the cohort reflects routine HIV care, and follow-up time in the cohort is equal to follow-up time in HIV care in the Netherlands. If participants move from one HIV treatment centre to another, this transfer

Table 1 Registration at SHM and enrolment in the ATHENA cohort: cumulative number of HIV-positive adults and children by 1 January 2017

HIV-treatment centre	Location	Total	Alive	Deceased	Opt-out*				
		N	%	N	%	N	%		
Adults									
Noordwest Ziekenhuisgrop	Alkmaar	360	1.4	328	91.1	32	8.9	5	1.4
Flevoziekenhuis	Almere	200	0.8	191	95.5	9	4.5	3	1.5
AMC-UvA	Amsterdam	3 025	12.0	2 608	86.2	417	13.8	13	0.4
Hiv Focus Centrum	Amsterdam	597	2.4	593	99.3	4	0.7	0	0.0
MC Jan van Goyen	Amsterdam	312	1.2	270	86.5	42	13.5	4	1.3
OLVG	Amsterdam	3 458	13.7	3 042	88.0	416	12.0	158	4.6
Slotervaart-ziekenhuis	Amsterdam	860	3.4	701	81.5	159	18.5	12	1.4
St Lucas Andreas	Amsterdam	468	1.8	417	89.1	51	10.9	0	0.0
VUmc	Amsterdam	659	2.6	569	86.3	90	13.7	12	1.8
Rijnstate	Arnhem	850	3.4	767	90.2	83	9.8	3	0.4
HMC	Den Haag	1 108	4.4	1 018	91.9	90	8.1	45	4.1
Catharina Ziekenhuis	Den Haag	756	3.0	649	85.8	107	14.2	32	4.2
Catharina Ziekenhuis	Eindhoven	695	2.7	649	93.4	46	6.6	5	0.7
HMC – Leyweg	Leids Universitair Medisch Centrum	619	2.4	505	81.6	114	18.4	4	0.6
Admiral De Ruyter Ziekenhuis	Goes	211	0.8	195	92.4	16	7.6	2	0.9
UMC	Groningen	946	3.7	846	89.4	100	10.6	31	3.3
Kennemer Gasthuis	Haarlem	515	2.0	459	89.1	56	10.9	4	0.8
MCL	Leeuwarden	310	1.2	278	89.7	32	10.3	1	0.3
LUMC	Leiden	729	2.9	661	90.7	68	9.3	41	5.6
MC Zuidoerzsee	Lelystad	81	0.3	80	98.8	1	1.2	1	1.2
MUMC+	Maastricht	934	3.7	788	84.4	146	15.6	5	0.5
Radboudumc	Nijmegen	765	3.0	675	88.2	90	11.8	19	2.5
Erasmus MC	Rotterdam	2 636	10.4	2 331	88.4	305	11.6	13	0.5
Maastricht Ziekenhuis	Rotterdam	780	3.1	724	92.8	56	7.2	8	1.0
ETZ	Tilburg	1 174	4.6	1 093	93.1	81	6.9	19	1.6
UMC Utrecht	Utrecht	1 749	6.9	1 556	89.0	193	11.0	65	3.7
Isala – Sophia	Zwolle	509	2.0	472	92.7	37	7.3	20	3.9
Total	**25 306**	**100.0**	**22 465**	**88.8**	**2 841**	**11.2**	**525**	**2.1**	
Paediatric									
EKZ, AMC-UvA	Amsterdam	71	27.5	71	100.0	0	0.0	1	1.4
BKZ, UMC	Groningen	28	10.9	28	100.0	0	0.0	0	0.0
Erasmus MC – Sophia	Rotterdam	82	31.8	80	97.6	2	2.4	0	0.0
WKZ, UMC Utrecht	Utrecht	77	29.8	76	98.7	1	1.3	2	2.6
Total	**258**	**100.0**	**255**	**98.8**	**3**	**1.2**	**3**	**1.2**	

*Opt out: never gave permission to collect clinical information.

AMC-UvA, Academic Medical Center of the University of Amsterdam; ATHENA, AIDS Therapy Evaluation in the Netherlands; BKZ, Beatrix Kinderziekenhuis; EKZ, Emma Kinderziekenhuis; ETZ, Elisabeth-TweeSteden Ziekenhuis; HMC, Haaglanden Medisch Centrum; LUMC, Leids Universitair Medisch Centrum; MCL, Medisch Centrum Leeuwarden; MST, Medisch Spectrum Twente; MUMC+, Maastricht UMC+; SHM, Stichting HIV Monitoring; UMCG, Universitair Medisch Centrum Groningen; UMC Utrecht, Universitair Medisch Centrum Utrecht; WKZ, Wilhelmina Kinderziekenhuis.
is registered, and follow-up continues at the new centre. Likewise, children who transfer from paediatric to adult HIV care remain in follow-up. Participant registration and data collection are organised on a national level. When transferring to a new treatment centre within the Netherlands—in case of transfer from paediatric to adult care, or transfer to another treatment centre—the participants’ study identifier is retained, and data collection is continued without interruption.

Key epidemiological data are collected from all HIV-positive people on registration at SHM. For national HIV surveillance, SHM reports these statistics to the Centrum voor Infectieziektebestrijding (Cib; Centre for Infectious Disease Control) of the Rijksinstituut voor Volksgezondheid en Milieu (RIVM; National Institute for Public Health and the Environment). Through the RIVM-Cib, SHM also contributes to European HIV surveillance by the European Centre for Disease Prevention and Control (ECDC).6

After registration at SHM and enrolment in ATHENA, clinical and laboratory data from all adults and children are prospectively collected as long as the patients remain in care in a Dutch HIV treatment centre. The date of HIV diagnosis is usually retrieved from the letter of referral from the general practitioner or sexually transmitted infections clinic, or from health records in the HIV treatment centre, and can be self-reported on entry to care if there is no documentation available. All reported HIV tests, test dates and test outcomes (including the last negative HIV tests) are captured in the cohort. The data collection process is dynamic and has evolved over the years, with additions and removals of data items based on novel insights and clinical and epidemiological requirements. While the standard data collection protocol is already comprehensive, specific protocols exist for pregnant women, children and hepatitis B (HBV) and hepatitis C (HCV) virus co-infection. A complete overview of the items that are collected can be found online.7

On enrolment, the following information is collected: demographics, history of HIV infection (including the possibility of a primary infection), most likely route of HIV acquisition, smoking, alcohol and drug use. At each visit, the following information is collected: body weight and height, blood pressure, Centers for Disease Control and Prevention classification for HIV infection - Category B (CDC-B) and Centers for Disease Control and Prevention classification for HIV infection - Category C (CDC-C) events,8 antiretroviral therapy, adverse events (when resulting in a change of antiretroviral treatment or when specified in the protocol7), non-AIDS comorbidities (particularly diabetes mellitus, cardiovascular disease, chronic kidney disease and non-AIDS malignancies), comedication and participant’s participation in clinical trials or studies. All available laboratory results are collected at each visit: virology, immunology, chemistry, haematology and results on viral co-infections or sexually transmitted diseases. HIV genome sequences and HCV and HBV genotypes are collected when available. Furthermore, additional liver diagnostic information (fibroscan, liver pathology and radiology), and additional information concerning HBV and HCV coinfection (HBV vaccination, hepatocellular carcinoma screening, diagnosis and treatment, and virological response to antiviral treatment) are collected. During pregnancy, obstetric and pregnancy-related data are also collected. If applicable, the cause of death is classified by the physician, using the Coding of Death format.9

For children, additional information is collected at enrolment and subsequent visits: nationality, country of birth, HIV status of both parents, HIV status of their siblings, perinatal information, head circumference, puberty stage, Centers for Disease Control and Prevention classification for HIV infection - Category A (CDC-A) events,8 vaccinations, information regarding psychological, locomotor and puberty development, additional treatment, care and education. Additional laboratory results collected for children comprise HIV DNA and additional viral infections.

Patient and public involvement
The community of people living with HIV in the Netherlands, represented by the Dutch Association of People Living with HIV (HIV Vereniging), together with healthcare providers and policy makers was closely involved in the establishment and setting-up of the ATHENA cohort in 1997 to monitor the effectiveness of providing early access to life-saving PI containing combination therapy by the Minister of Health. The involvement of the Dutch Association of People Living with HIV continues to the present, with the association being represented on both SHM’s Governing Board and Scientific Advisory Board. Findings from the ATHENA cohort are published annually in the HIV Monitoring Report, which is publicly accessible through our website (https://www.hiv-monitoring.nl/english/research/monitoringreports/). Each year, the Dutch Association of People Living with HIV, together with other stakeholders, are asked for input on a press release by SHM in which key findings from the annual report are publicly disseminated.

FINDINGS TO DATE
Since 2001,1 the ATHENA cohort provides a comprehensive overview of the trends over time in the HIV epidemic in the Netherlands including the impact of antiretroviral treatment (https://www.hiv-monitoring.nl/english/research/monitoringreports/). Furthermore, it has advanced our knowledge of HIV-associated comorbidities and coinfections, as well as insight on the spread and prevention of HIV. In addition, a complete and up-to-date list of scientific publications is available online (https://www.hiv-monitoring.nl/english/research/publications/).

Participant characteristics
On 1 January 2017, 19 035 HIV-1-positive participants were known to be in HIV care: 18 824 were aged 18 years or older.
The HIV epidemic in the Netherlands

The ATHENA cohort has generated many insights into the evolution of the Dutch HIV epidemic over time, including information on diagnosed, and estimates of as yet undiagnosed HIV infections, HIV transmission and transmission risk groups. For example, from the 1990s onwards, the annual number of new HIV diagnoses among men who have sex with men (MSM) increased from approximately 400 to well over 800 by 2009. However, since then, the registered number of new diagnoses has steadily declined, and in 2016, the estimated number of new HIV diagnoses among MSM was 545. Moreover, in the heterosexual population, the number of new diagnoses has declined to between 200 and 250 per year. Although the overall rate of late presentation has also been declining, targeted programmes to reduce late HIV diagnoses remain needed for all risk groups and should be prioritised for heterosexual males and females, migrants from South and Southeast Asia and sub-Saharan Africa, people over 50 years of age and certain regions in the Netherlands.

Based on the ATHENA cohort and the ECDC HIV Modelling Tool, there were an estimated 1000 new HIV infections each year between 2000 and 2010, which subsequently decreased to 500 in 2016. In MSM, the number of new HIV infections reached a peak of approximately 900 around 2007, and then decreased to approximately 400 in 2016. The estimated number of people living with undiagnosed HIV has also decreased since 2000, although this decrease was less pronounced among MSM. Studies combining modelling and phylogenetic analysis have shown that HIV transmission among MSM can be averted if men undergo annual HIV testing and, if found to be HIV-positive, immediately initiate cART, or, if found to be HIV-negative, half of these men who are perceived to be at high-risk for HIV acquisition initiate pre-exposure antiretroviral prophylaxis.

Response to cART

In the early 2000s, ATHENA generated additional evidence that cART was efficacious for the treatment of HIV and provided insight into CD4 cell count and viral load dynamics in both treated and untreated HIV infection. In recent years, initiation of cART following an HIV diagnosis has been taking place increasingly earlier and irrespective of CD4 cell count. By 2016, the median CD4 cell count at start of cART had increased to 410 cells/mm³, and the majority of people starting cART did so within 1 month of diagnosis (figure 2). At the same time, the time spent on a first-line regimen is increasing, and both short-term and long-term virological suppression rates are high and continue to improve. Since 2000, the annual proportion of individuals on cART with a viral load ≥200 copies/mL has decreased to approximately 3%. Consequently, earlier diagnosis in combination with immediate treatment and very low rates of virological failure on treatment have contributed to a substantial decrease in the annual number of new HIV diagnoses among MSM in the Netherlands, despite an increase in risk behaviour.

Among adults who do experience virological failure, the rate of acquired drug resistance remains low and continues to decline over time. The overall prevalence of transmitted resistance remains low over time, in line with European surveillance data.

Trends in morbidity and mortality over time

Since cART became available, AIDS-related deaths have decreased dramatically and life-expectancy has improved substantially. Moreover, data from the cohort led to the Netherlands becoming one of the first countries where HIV-positive people could get life insurance. The limited and decreasing number of individuals who still die of AIDS each year mainly consist of those presenting late for care.

As a result of both increased life expectancy in people living with HIV, as well as an increase in age at HIV diagnosis, the HIV-positive population in the Netherlands is ageing (figure 3). Modelling studies have provided insight into the expected disease burden resulting from this age shift. By 2030, an estimated 73% of the HIV-positive population in the Netherlands will be aged 50 years or older, and 84% of HIV-positive people are expected to have at least one non-communicable disease (up from 29% in 2010). Consequently, the annual cardiovascular disease incidence and costs are predicted to increase between 2015 and 2030. However, traditional cardiovascular disease prevention interventions can optimise cardiovascular health and avert future costs, particularly if targeting high-risk individuals.

Continuum of care

The Netherlands is well on its way to reaching the UNAIDS 90-90-90 targets for 2020, and Amsterdam is among the first cities to have reached and exceeded these targets. In 2016, an estimated 89% of all people living with HIV in the Netherlands were diagnosed and linked to care, 92% of these people were on cART and 95% of those on cART had a suppressed viral load (figure 4). Although time from acquiring HIV to reaching viral suppression has declined over time, further decline continues to be challenged mainly by the duration of undiagnosed HIV infection.

Pregnant women, children and adolescents

The combination of opt-out HIV screening and use of cART in HIV-positive pregnant women has reduced the risk of mother-to-child transmission to <1% in the Netherlands. At the same time, an increasing number of children who acquired HIV through vertical transmission are being adopted from sub-Saharan Africa by Dutch parents. In general, paediatric HIV care has resulted in favourable treatment outcomes, and viral suppression among children has improved substantially over time. Of note, however, is that adolescents and young adults are particularly vulnerable to virological failure, especially around and shortly...
Table 2	The ATHENA cohort: participant characteristics of the 19,035 HIV-1-positive people in HIV care by 1 January 2017											
Men	**Women**	**Total**	**Men only**	**Women only**	**Other/unknown**	**Total**						
Men who have sex with men	**Heterosexual**	**Injecting drug use**	**Blood or blood products**	**Other/unknown**	**Total**	**Men only**	**Women only**	**Other/unknown**	**Total**			
Men	11,928	2,377	3,104	224	84	151	89	795	283	15,475	3,560	
Women	1,928	2,377	3,104	224	84	151	89	795	283	15,475	3,560	
Total	13,438	4,754	5,948	548	168	302	178	1,690	566	17,540	3,860	
Current age in years												
0–12	0	0	0	0	0	0	3	0	0	3	0	
13–17	0	0	0	0	0	0	0	0	0	0	0	
18–24	7,648	1,609	2,272	123	35	175	240	1,061	323	9,611	2,282	
25–34	1,609	497	221	40	0	1	0	0	0	2,259	500	
35–44	221	497	955	16	0	0	0	0	0	1,183	237	
45–54	497	955	520	214	37	151	29	89	795	283	15,475	3,560
55–64	1,183	2,259	2,140	1,129	15	426	197	51	1,659	226	3,385	662
65–74	226	426	1,659	1,259	18	91	197	32	1,297	181	2,678	371
≥75	1,259	1,659	1,297	1,297	18	91	197	32	1,297	181	2,678	371
Current age 50 years or older	No	6,132	2,515	1,797	97	63	34	14	67	3,560		
Yes	5,796	2,233	2,229	1,262	99	67	25	18	69	3,285		
Current age 60 years or older	No	9,899	3,828	3,251	200	117	74	31	138	3,560		
Yes	7,118	2,765	2,745	1,565	92	63	24	20	75	3,285		
Region of origin	Netherlands	6,132	2,515	1,797	97	63	34	14	67	3,560		
Sub-Saharan Africa	5,796	2,233	2,229	1,262	99	67	25	18	69	3,285		
Western Europe	9,899	3,828	3,251	200	117	74	31	138	3,560			
Other	7,118	2,765	2,745	1,565	92	63	24	20	75	3,285		

Continued...
Table 2 Continued

	Men who have sex with men	Heterosexual	Injecting drug use	Blood or blood products	Other/unknown	Total		
	Men (n=11 928)	Men (n=2377)	Men (n=224)	Men (n=151)	Men (n=795)	Men (n=15 475)		
	Women (n=3104)	Women (n=84)	Women (n=89)	Women (n=283)	Women (n=3560)			
Caribbean								
	Men	453	121	5	4	35	618	
	Women	162	5.1%	2.2%	4.5%	4.4%	168	
	Total	615	3.8%	3.7%	3.6%	3.7%	4.0%	
South and Southeast Asia								
	Men	355	39	9	6	27	436	
	Women	207	6.7%	4.0%	12.4%	3.4%	227	
	Total	562	3.0%	3.5%	3.9%	3.7%	6.4%	
Other								
	Men	748	149	39	9	75	1020	
	Women	131	6.3%	17.4%	7.9%	9.4%	177	
	Total	889	6.3%	15.8%	9.2%	6.6%	5.0%	
Unknown								
	Men	46	7	0	0	0	58	
	Women	9	0.3%	0.0%	0.0%	0	12	
	Total	55	1.9%	0.3%	0.0%	0	4.4%	
Years aware of HIV infection								
<1								
	Men	473	92	1	7	7	605	
	Women	87	3.9%	0.4%	0.0%	0.0%	94	
	Total	560	3.9%	0.4%	0.0%	0.0%	2.6%	
1–2								
	Men	1107	211	2	8	75	1403	
	Women	226	9.3%	0.9%	4.5%	9.4%	248	
	Total	1333	9.9%	0.9%	4.5%	9.4%	7.0%	
3–4								
	Men	1336	224	2	14	65	1641	
	Women	227	11.2%	0.9%	9.3%	8.2%	260	
	Total	1563	12.1%	0.9%	9.3%	8.2%	7.3%	
5–10								
	Men	3505	624	18	21	191	4359	
	Women	720	29.4%	8.0%	13.9%	24.0%	818	
	Total	4225	26.3%	8.0%	13.9%	24.0%	23.0%	
10–20								
	Men	3818	1025	85	48	321	5297	
	Women	1502	32.0%	37.9%	31.8%	40.4%	1671	
	Total	5320	43.1%	37.9%	31.8%	40.4%	46.9%	
>20								
	Men	1683	197	116	51	99	2146	
	Women	330	14.1%	51.8%	33.8%	12.5%	452	
	Total	1940	16.2%	51.8%	33.8%	12.5%	12.7%	
Unknown								
	Men	6	4	0	0	12	24	
	Women	12	0.1%	0.0%	0.0%	0	1	
	Total	18	0.6%	0.0%	0.0%	0	0.2%	
Current CD4 count in cells/mm³, median/IQR range								
		670	571	510	558	550	650	
		510–870	410–790	335–827	370–832	370–750	400–790	
		860–1180	640–1177	573–1050	671–1125	590–1170	630–1180	
		1400	1000	1200	1100	1050	573	
Current CD8 count in cells/mm³, median/IQR range								
		860	840	857	800	840	860	
		640–1180	600–1177	573–1050	671–1125	635–1290	480–1000	
		1400	1000	1200	1100	1050	573	
Current HIV RNA <200 copies/mL								
		No	503	144	14	7	52	720
		Yes	10 904	2137	193	140	239	14063
			91.4%	89.9%	88.8%	86.2%	86.7%	90.9%
Current HIV RNA <100 copies/mL								
		No	605	170	14	7	61	857
		Yes	10 904	2137	193	140	239	14063
			91.4%	89.9%	88.8%	86.2%	86.7%	90.9%
Table 2 Continued

	Men who have sex with men	Heterosexual	Injecting drug use	Blood or blood products	Other/unknown	Total					
	Men	Men	Women	Men	Women	Men					
	n=11928	n=2377	n=3104	n=224	n=84	n=151					
Yes	10802	2111	2721	163	69	1780					
	90.6%	88.8%	87.7%	86.2%	82.1%	85.6%					
Ever AIDS											
	2125	714	676	81	35	271					
	17.8%	30.0%	21.8%	36.2%	41.7%	33.3%					
AIDS at diagnosis											
	1129	509	395	18	6	174					
	9.5%	21.4%	12.7%	8.0%	7.1%	11.1%					
Current HIV treatment											
Combination antiretroviral therapy	11642	2307	3013	229	84	146	89	773	278	15088	3464
	97.6%	97.1%	97.1%	98.2%	100.0%	96.7%					
Currently not on combination antiretroviral therapy	18	2	2	0	0	0	0	1	2	21	4
Not started	268	68	89	4	0	21					
	2.2%	2.9%	2.9%	1.8%	0.0%	2.6%					

ATHENA, AIDS Therapy Evaluation in the Netherlands.
after the moment of transition from paediatric to adult care.31

Viral hepatitis coinfection

HBV and HCV coinfections are relatively common among HIV-positive people and are closely monitored in the cohort.2 However, phylogenetic analysis has shown limited overlap between HCV and HIV transmission networks, which indicates a dynamic sexual network structure of Dutch HIV-positive MSM.32

Up to 2016, an increase in the prevalence of active HCV (presence of detectable HCV RNA) was reported, especially among MSM. Since the introduction and reimbursement of direct-acting antiviral agents for HCV treatment in 2014, increasing numbers of HIV-positive people with both acute and chronic HCV coinfection have been treated for, and successfully cured of, HCV (ie, sustained virological response) (figure 5).2,33 This has resulted in a rapidly declining number of coinfected individuals in HIV care who still need to be cured of HCV.

STRENGTHS AND LIMITATIONS

The unique strength of the cohort is its completeness, both in terms of coverage (ie, 98\% of all HIV-positive people in care in the Netherlands), as well as the quality and extensiveness of the data collection.34 Furthermore, follow-up and data collection continues uninterrupted for children who transfer from paediatric to adult HIV care and for people who transfer to another HIV treatment centre within the Netherlands.

To improve data quality, SHM has developed a quality management system based on the principals of a plan–do–check–adjust cycle. New data collectors receive intensive training and follow a personal coaching programme. SHM also has an internal helpdesk that resolves questions from the data collectors. After collection, the data are automatically checked for inconsistencies and source-verified by the data management and quality control departments.
SHM has become an integral part of HIV care and works closely with all the HIV-treating physicians and the Nederlandse Vereniging van HIV Behandelaren (Dutch Association of HIV-Treating Physicians). Additionally, SHM has contributed to the development of care indicators and provides these statistics for the Zichtbare Zorg (Visible Care) programme, which is run by the Public Health Inspection Agency and was commissioned by the Ministry of Health, Welfare and Sport to allow comparison of quality of healthcare.

Another main strength is the participation of SHM and the ATHENA cohort in regional, national and international scientific research collaborations. There is close collaboration with the Academic Medical Center of the University of Amsterdam, the Public Health Service Amsterdam through the Amsterdam Cohort Studies...
Boender TS, et al. BMJ Open 2018;8:e022516. doi:10.1136/bmjopen-2018-022516
physicians: K. Brinkman*, G.E.L. van den Berk, W.L. Blok, P.H.J. Frissen, K.D. Lettinga W.E.M. Schouten, J. Veenstra. HIV nurse consultants: C.J. Brouwer, G.F. Geerds, K. Hoekema, M.J. Kleene, I.B. van der Meulen, M. Schiffink, A.J.M. Toonen, S. Wijnands. HIV clinical virologists: D. Kwa. Data collection: R. Regez (coordinator). Radboudumc, Nijmegen: HIV treating physicians: R. van Crevel*, M. Keuter, A.J.M. van der Ven, H.J.M. ter Hofste, A.S.M. Dofferhoff, S.S.V. Henriet, M. van de Flier, K. van der Mei, J. Hoogerwerf. HIV nurse consultants: M. Alberts, K.J.T. Grünjes-Huisman, M. de Haan, M. Marneef, R. Strik-Albers. HIV clinical virologists/chemists: J. Rahamati-Langendoen, F.F. Stelma*. HIV clinical pharmacologist consultant: D. Burger. Rijnstate, Arnhem: HIV treating physicians: E.H. Gislof*, R.J. Hassing, M. Claessen. HIV nurse consultants: B. ter Beest, P.H.M. van Bentum, N. Langebeek. HIV clinical virologists/chemists: R. Tiemessen, C.M.A. Swanink. Saraan Gasthuis, Haarlem: HIV treating physicians: S.F.L. van Leyvel’d*, R. Soetekouw. HIV nurse consultants: L.M.M. van der Pijl, J. van der Swaluw. Data collection: N. Bermon. HIV clinical virologists/chemists: W.A. van der Reijden, R. Jansen, B.L. Herpers, D. Veennendaal. Medisch Centrum Jan van Goyen, Amsterdam: HIV treating physicians: D.W.M. Verhagen. HIV nurse consultants: M. van Wijk. Universitair Medisch Centrum Groningen, Groningen: HIV treating physicians: W.F.W. Bierman*, M. Bakker, J. Kleininniphuis, E. Koeze, E.H. Scholvinck, JetStienstra, C.L. Vermont, K.R. Wilting, W. Wout Huyzen-Bakker. HIV nurse consultants: A. Boonstra, H. de Groot-de Jonge, P.A. van de Meulen, D.A. de Weerd. HIV clinical virologists/chemists: H.G.M. Nieters, C.C. van Leeuwen-Buler, M. Kroes. Universitair Medisch Centrum Maastricht: HIV treating physicians: A.L.M. Hoepelman*, J.E. Arends, E.R. Barthe, A.H.W. Bruns, P.M. Ellerbroek, T. Mudrikova, J.J. Oosterheert, E.M. Schadd, M.W.M. Wassenberg, M.A.D. van Zoelen. HIV nurse consultants: A. Aarsman, D.H.M. van Elst-Laurijssen, I. de Kroon, C.S.A.M. van Rooijen. Data collection: M. van Berkel, C.S.A.M. van Rooijen. HIV virologists/chemists: R. Schuurman, F. Verdruyn-Lunel, A.M.J. Wensing. Wilhelmina Kinderziekenhuis, UMC Utrecht; Utrecht: HIV treating physicians: L.J. Bont, S.P.M. Geelen, T.W.F. Wolters. HIV nurse consultants: N. Nauta. COORDINATING CENTRE Director: P. Reiss. Deputy director: S. Zaheri. Data analysis: D.O Bezemer, A. AvS v van Sighem AI, K. van der Ven, H.J.M. ter Hofste, S.S.V. Henriet. Data management and control: M. Hillebrigt, A. Jong and T. Woudstra. Data monitoring: D. Bergsma, S. Grevel, R. Meijering, M. Raethke and T. Rutkens. Data collection: L. de Groot, M. van den Akker, Y. Bakker, M. Bezemor, C. Claessen. AI. El Berkauw, J. Geerds, K. Koops, E. Kruijne, C. Lodewijk, E. Lucas, R. van der Meer, L. Munjewiil, P. Faling, B. Piek, C. Ree, R. Rettog, Y. Ruijs, M. Schoorl, E. Tuin, L. Veennenberg, S. van der Vliet, A. Wisse and E. Witte. Patient registration: B. Tuk.

Contributors TSB wrote the first draft of the manuscript. AvS, CJS, FWNMW and TSB performed the analyses for the key statistics, tables and figures of the cohort. Not required.

Disclosures The ATHENA cohort is managed by Stichting HIV Monitoring and may be used for scientific purposes. A designated quality management or elect to opt-out. Data are pseudonymised before being provided to investigators for use in research. Data sharing statement is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

REFERENCES

1. Stichting HIV Monitoring. ATHENA report 2001. Stichting HIV Monitoring, 2001. www.hiv-monitoring.nl.

2. van Sighem AI, Boender TS, Wil F, et al. Monitoring report 2017. Human immunodeficiency virus (hiv) infection in the Netherlands. Amsterdam, 2017 www.hiv-monitoring.nl.

3. Hermanides HS, Gras L, Winkel CN, et al. The efficacy of combination antiretroviral therapy in HIV type 1-infected patients treated in Curaçao compared with Antillean, Surinam, and Dutch HIV type 1-infected patients treated in The Netherlands. AIDS Res Hum Retroviruses 2011;27:605–12.

4. Stichting HIV Monitoring. Jaarverslag 2016. Stichting HIV Monitoring, 2017.

5. Europese Unie. Regulation (EU) 2016/679 of the European parliament and of the council. Off J Eur Union 20162016;4–.

6. European Centre for Disease Prevention and Control. WHO regional office for europe. HIV/AIDS surveillance in Europe 2015. Stockholm. 2016.

7. Stichting HIV Monitoring. Complete overview of data collected by SHM. https://www.hiv-monitoring.nl/english/medical-professionals/data-sharing-statement.

8. Centers for Disease Control and Prevention. Revised classification system for HIV infection and expanded surveillance case definition for AIDS among adolescents and adults. MMWR 1993;1992:1–19.

9. Kowaltska JD, Friis-Møller N, Kirk O, et al. The Coding Causes of Death in HIV (Cod Project): initial results and evaluation of methodology. Epidemiology 2011;22:516–23.

10. Antinori A, Coenen T, Costagiola D, et al. Late presentation of HIV infection: a consensus definition. HIV Med 2011;12:61–4.

11. Op de Coul EL, van Sighem A, Brinkman K, et al. Factors associated with presenting later or with advanced HIV disease in the Netherlands, 1996-2014: results from a national observational cohort. BMJ Open 2016;6:e009688.

12. European Centre for Disease Prevention and Control. ECDC HIV Modelling Tool [software application]. Version 1.2. European Centre for Disease Prevention and Control: Stockholm, 2016.

13. Sasse A, Florence E, Pharris A, et al. Late presentation to HIV testing is overestimated when based on the consensus definition. HIV Med 2016;17:231–4.

14. Rattmann O, van Sighem A, Bezemer D, et al. Sources of HIV infection among men having sex with men and implications for prevention. Sci Trans Med 2016;8:320ra2.

15. Gras L, Jurriaans S, Bakker M, et al. Viral load levels measured at sex-window have risen over the last decade of the HIV epidemic in the Netherlands. J Acquir Immune Defic Syndr 2015;68:336–42.

16. Gras L, Kessemling AM, Griffin JT, et al. CD4 cell counts of 800 cells/mm3 or greater after 7 years of highly active antiretroviral therapy are feasible in most patients starting with 350 cells/mm3 or greater. J Acquir Immune Defic Syndr 2007;45:183–92.

17. Bezemer D, de Wolf F, Boerlijst MC, et al. 27 years of the HIV epidemic amongst men having sex with men in the Netherlands: an in depth mathematical model-based analysis. Epidemics 2010;2:66–79.

18. van Sighem A, Bezemer D, Op de Couel E, et al. 2017. Earlier diagnosis and treatment reduces HIV transmission in MSM in the Netherlands. Conference on Retroviruses and Opportunistic Infections (CROI) 1041. http://www.croiconference.org/sessions/earlier-diagnosis-and-treatment-reduces-hiv-transmission-msm-netherlands.

19. van Sighem A, Bezemer D, Op de Couel E, et al. 2017. Earlier diagnosis and treatment reduces HIV transmission in MSM in the Netherlands. Future challenges for clinical practice of an ageing population infected with HIV: a modelling study. Lancet Infect Dis 2015;15:810–8.
26. Smits M, van Zoest RA, Nichols BE, et al. Cardiovascular Disease Prevention Policy in Human Immunodeficiency Virus: Recommendations From a Modeling Study. Clin Infect Dis 2018;66:743–50.

27. UNAIDS. Joint United Nations Programme on HIV/AIDS. 90-90-90 - An ambitious treatment target to help end the AIDS epidemic, 2014 http://www.unaids.org/en/resources/documents/2014/90-90-90.

28. Joint United Programme on HIV/AIDS (UNAIDS). Ending AIDS: Progress towards the 90-90-90 targets. 2017 http://www.unaids.org/sites/default/files/media_asset/Global_AIDS_update_2017_en.pdf.

29. van Sighem A, Op de Coul E, Boender TS, et al. From HIV infection to HIV suppression: improvements in the time to reach successive stages in the HIV care continuum in the Netherlands. Paris: IAS Science Paris, 2017.

30. Cohen S, Smit C, van Rossum AM, et al. Long-term response to combination antiretroviral therapy in HIV-infected children in the Netherlands registered from 1996 to 2012. AIDS 2013;27:2567–75.

31. Weijsenfeld AM, Smit C, Cohen S, et al. Virological and social outcomes of hiv-infected adolescents and young adults in the Netherlands before and after transition to adult care. Clin Infect Dis 2016;63:1105–12.

32. Vanhommerig JW, Bezemer D, Molenkamp R, et al. Limited overlap between phylogenetic HIV and hepatitis C virus clusters illustrates the dynamic sexual network structure of Dutch HIV-infected MSM. AIDS 2017;31:2147–58.

33. Boerekamps A, Newsum AM, Smit C, et al. High Treatment Uptake in Human Immunodeficiency Virus/Hepatitis C Virus-Infected Patients After Unrestricted Access to Direct-Acting Antivirals in the Netherlands. Clin Infect Dis 2018;66:1352–9.

34. Hillebrecht M, de Lange-de Kool E, Knol D, et al. Measuring the Quality of Data Collection in a Large Observational Cohort of HIV and AIDS. Open AIDS J 2010;4:96–102.

35. Nederlandse Federatie van Universitair Medische Centra. Indicatorlijst HIV-AIDS 2014. Thema Zichtbare zorg. 2014 http://www.nfu.nl/thema/zichtbare-zorg/ (accessed 20 Nov 2017).

36. Jansen IA, Geskus RB, Davidovich U, et al. Ongoing HIV-1 transmission among men who have sex with men in Amsterdam: a 25-year prospective cohort study. AIDS 2011;25:493–501.

37. van Zoest RA, Wit FW, Kooij KW, et al. Higher prevalence of hypertension in hiv-1-infected patients on combination antiretroviral therapy is associated with changes in body composition and prior stavudine exposure. Clin Infect Dis 2016;63:205–13.

38. Underwood J, Cole JH, Caan M, et al. Gray and white matter abnormalities in treated human immunodeficiency virus disease and their relationship to cognitive function. Clin Infect Dis 2017;65:422–32.

39. Hoornenborg E, Prins M, Achterbergh RCA, et al. Acquisition of wild-type HIV-1 infection in a patient on pre-exposure prophylaxis with high intracellular concentrations of tenofovir diphosphate : a case report. Lancet HIV 2017;3:2018:1–7.

40. Chêne G, Phillips A, Costagliola D, et al. Cohort profile: Collaboration of Observational HIV Epidemiological Research Europe (COHERE) in EuroCoord. Int J Epidemiol 2017;46:797.

41. Schulze A, Phillips AN, Paredes R, et al. HIV resistance testing and detected drug resistance in Europe. AIDS 2015;29:1379–89.

42. Ngo-Giang-Huong N, Wittkop L, Judd A, et al. Prevalence and effect of pre-treatment drug resistance on the virological response to antiretroviral treatment initiated in HIV-infected children - a EuroCoord-CHAIN-EPPICCo joint project. BMC Infect Dis 2016;16:654.

43. Benard A, van Sighem A, Taieb A, et al. Immunovirological response to triple nucleotide reverse-transcriptase inhibitors and ritonavir-boosted protease inhibitors in treatment-naive HIV-2-infected patients: The ACHIEVE2 Collaboration Study Group. Clin Infect Dis 2011;52:1257–66.

44. May MT, Ingle SM, Costagliola D, et al. Cohort profile: Antiretroviral Therapy Cohort Collaboration (ART-CC). Int J Epidemiol 2014;43:691–702.

45. Smith CJ, Ryom L, Weber R, et al. Trends in underlying causes of death in people with HIV from 1999 to 2011 (D:A:D): a multicohort collaboration. Lancet 2014;384:241–8.

46. Lodi S, Günthard HF, Dunn D, et al. Effect of immediate initiation of antiretroviral treatment on the risk of acquired HIV drug resistance. AIDS 2018;32:1.

47. Cornelissen M, Gali A, Vink M, et al. From clinical sample to complete genome: Comparing methods for the extraction of HIV-1 RNA for high-throughput deep sequencing. Virus Res 2017;239:10–16.

48. Reveli AD, Wang D, Wood R, et al. An update to the HIV-TRePS system: the development of new computational models that do not require a genotype to predict HIV treatment outcomes. J Antimicrob Chemother 2014;69:1104–10.

49. Reveli A, Khabo P, Ledsaba L, et al. Computational models as predictors of HIV treatment outcomes for the Phidisa cohort in South Africa. South Afr J HIV Med 2016;17:1–7.

50. Avila D, Althoff KN, Mugglin C, et al. Immunodeficiency at the start of combination antiretroviral therapy in low-, middle-, and high-income countries. J Acquir Immune Defic Syndr 2013;63:e8-16.