Conditioned Medium of IGF1-Induced Synovial Membrane Mesenchymal Stem Cells Increases Chondrogenic and Chondroprotective Markers in Chondrocyte Inflammation

Marlina Marlina¹, Armenia Armenia¹, Rizki Rahmadian¹, Jenifer Kiem Aviani², Ika Adhani Sholihah², Hanna Sari Widya Kusuma², Alya Mardhotillah Azizah², Nur Elida¹, Wahyu Widowati³*

¹Faculty of Pharmacy, Andalas University, Jl. Limau Manis, Padang 25166, West Sumatera
²Biomolecular and Biomedical Research Center, Aretha Medika Utama, Bandung, Jl. Babakan Jeruk no. 9, Bandung 40163, West Java, Indonesia
³Medical Research Center, Faculty of Medicine, Maranatha Christian University, Jl. Surya Sumantri no. 65, Bandung 40164, West Java, Indonesia

*Corresponding author: Wahyu Widowati, wahyu_w60@yahoo.com

ABSTRACT

Recently, Mesenchymal stem cells (MSCs) are the most explored cells for cell therapy for osteoarthritis (OA) that can be obtained from various sources. Synovial Membrane Mesenchymal Stem Cells (SMMSCs) provide best potential for OA therapy, however they are not widely explored. Conditioned Medium of SMMSCs (SMMSCs-CM) rich in growth factors and cytokines can inhibit apoptosis and increase chondrocytes cell proliferation. The aim of this study was to determine growth factors content in SMMSCs-CM as well as the chondrogenic and chondroprotective markers expression in OA model after IGF1-induced and non-induced SMMSCs-CM treatments. Chondrocyte cells line (CHON002) was induced by IL1β as OA model (IL1β-CHON002) and treated with SMMSCs-CM with or without IGF1 induction to determine its effectiveness in repairing OA cells model. ELISA was used to assay BMP2, FGF18, and TGFβ1 levels in SMMSCs-CM, MMP13, and ADAMTS4 levels in OA cells model treated with SMMSCs-CM. RT-qPCR analyses were used to investigate the gene expression of SOX9, COL2, and COL10. CM from SMMSCs cultured and induced by IGF1 150 ng/mL was the most effective concentration for increasing the content of growth factor markers of SMMSCs-CM, which had successfully increased negative cartilage hypertrophy markers (SOX9 and COL2) and reduced hypertrophy markers (COL10, MMP13, and ADAMTS4). Preconditioning with IGF1 has better and very significant results in lowering MMP13 and ADAMTS4.
levels. This study supports IGF1 pre-conditioned SMMSCs-CM to develop a new therapeutic approach in OA improvement through its chondrogenic and chondroprotective roles.

Keywords: Mesenchymal Stem Cells, Chondrogenesis, IGF1, MMP13, COL2

INTRODUCTION

Osteoarthritis (OA) is a joint degenerative disease affecting all joint tissues. Chondrocytes and extracellular matrix (ECM) compose the joint tissues. The survival of chondrocytes and homeostasis of cartilage extracellular matrix is maintained through cross talk of several transcriptional factors including SRY-box 9 (SOX9), runt-related transcription factor 2 (RUNX2), hypoxia-inducible factor (HIF1), and forkhead box O3 (FOXO3A) (1, 2, 3). The balance of ECM composition in the cartilage is controlled by chondrocytes through both production of matrix molecules and their degradation by synthesizing proinflammatory cytokines, including interleukin (IL)-1 and tissue-destructive enzymes, such as matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) (4). MMPs and ADAMTS work through degrading specific cartilage ECM components (5, 6). Extensive matrix degradation with higher rate than matrix synthesis causes irregularities in matrix composition with higher collagen type I (COL1) and COL10 to COL2 ratio, induction of cell apoptosis, and chondrocytes behavior alteration which marks the progression of OA (7).

Some studies stated that Synovial Membrane Mesenchymal Stem Cells (SMMSCs) are one of the best candidates for cartilage damage repair (8, 9, 10). SMMSCs ability to form cartilage can be predicted as they reside in the surrounding environment of cartilage, which makes them rich in COL2 and glucosaminoglycans (GAG), the two key chondrogenic markers (11). Moreover, these cells have no ability to develop into tumors, so that they are suitable for use in clinical practice (12).

Conditioned Medium (CM) is a medium that contains stem cell derivative secretomes containing cytokines and growth factors that can repair tissue in various conditions (9, 13, 14). CM may present an alternative to stem cell transplantation which has more advantages in lower risk of graft versus host disease, is easier in manufacturing, storage, and handling, and also has longer shelf-life as well as higher availability as a ready-to-use biological product (15). Bone morphogenetic protein2 (BMP2) is the cytokine which initiates induction of chondrogenesis (16). Fibroblast Growth Factor18 (FGF18) can promote the development of cartilage, delay the degeneration of articular cartilage, and stimulate the potency for the regeneration of hyaline articular cartilage (17). Transforming growth factors (TGF)
of β1 and β3, BMP2, BMP6, and BMP9, and insulin-like growth factors (IGF) have been reported to induce or maintain chondrogenesis (18, 19).

The use of growth factors, such as IGF1 provides enhancement in differentiation capacity of cells. IGF1 reduces the loss of chondrocytes and matrix integrity (20). However, IGF1 injection does not give promising results for cartilage repair process as stated by some studies in preclinical and clinical trials through intraarticular injection. They found out that IGF1 short half-life was the major cause for little to none therapeutic effects (21, 22). IGF1 preconditioning of MSCs may provide an alternative to enhance therapeutic potential in the MSC’s secretome and better strategy for cartilage repair process (23, 24, 25). Therefore, this study aimed to determine the growth factors content and effect of CM from IGF1-induced SMMSCs towards chondrogenic and chondroprotective markers expression in OA cells model (IL1β-CHON002).

MATERIALS AND METHODS

Synovial membrane mesenchymal stem cells collection and isolation

SMs were collected from fresh knee joint biopsies of a patient with severe OA (Kellgen-Lawrence grade IV) in Dr. M. Djamil Hospital, Padang, Indonesia. SMMSCs treatment for severe OA and the subject were provided informed consent. The following experiments were performed after an approval was given by Research Ethics Committee, Faculty of Medicine, Andalas University, Padang, Indonesia (No. 226/KEP/FK/2019) (26).

Synovial membrane mesenchymal stem cells characterization

The isolated SMMSCs showed fibroblast-like morphology and plastic adherence as morphological property of MSCs. The cells also showed high level of CD90, CD44, CD73, CD105, whilst they showed low expression of hematopoietic lineage markers of CD11b, CD19, CD34, CD45, and HLADR. The MSCs also showed differential capacity into osteogenic, chondrogenic, and adipogenic lineage, which marked their MSCs origins and multipotentiality (26).
Synovial membrane mesenchymal stem cells with IGF1 pre-conditioning

The fourth passage of SMMSCs was used for the experiment regarding their population doubling time (PDT) and cumulative population doubling (CPD) as presented in the previous experiment (26). A number of 5 x 10^5 cells in 25 cm^3 culture flask were cultured in Minimum Essential Medium (MEMα) (Biowest, L0475-500) supplemented with 10% Fetal Bovine Serum (FBS) (Biowest, S1810-500) with 1% (v/v) antibiotic-antimycotic (Biowest, L0010-100) and 1% (v/v) nanomycopulitine (Biowest, LX16-010) addition at 37 °C and 5% CO2 condition for 2 days until the cells reached 80% confluency based on previous protocols (24, 25, 26).

The medium was replaced and treated with recombinant IGF1 (Biolegend, 590904) with concentrations of 0 ng/mL (negative control), 75 ng/mL, 150 ng/mL, and 300 ng/mL for 7 days and replacement per 2 days (24, 27). The conditioned medium of SMMSCs (SMMSCs-CM) was collected and centrifuged at 500 g, 4 mins and room temperature, the supernatant was filtered by 0.22-mm filter (TPP,99722) stored at -80 °C (24, 25). The BMP2, FGF18, and TGFβ1 secretions in SMMSCs-CM were measured using ELISA kit BMP2 (Elabsci, E-EL-H0011), FGF18 (Elabsci, E-EL-H5434), and TGFβ1 (Elabsci, E-EL-H0110) at 450 nm absorbance (Multiskan GO Thermo Scientific 51119300) (24, 25). IGF1 concentration that gave the highest BMP2, FGF18, and TGFβ1 level was used for further experiment.

Induction of CHON002 with IL1β (IL1β-CHON002) as in-vitro OA model

Human long bone, cartilage (CHON002 ATCC ® CRL-2847™), was provided by Aretha Medika Utama, Biomolecular and Biomedical Research Center, Bandung, Indonesia as OA in vitro model. As many as 1 x 10^6 cells of CHON002 were subcultured into T25 flask (SPL, 70075) incubated at 5% CO2 and 37 °C condition in Dulbecco’s Modified Eagle Medium (DMEM) (Biowest, L0102-500) with 10% FBS, 1% (v/v) antibiotic-antimycotic, and 1% (v/v) nanomycopulitine. After the cells reached 80% confluency, the medium was replaced and treated with recombinant human IL1β (Biolegend, 579404) at 10 ng/mL concentration. The induction was carried out for 5 days as OA model according to previous protocol (24, 25, 27).

IL1β-CHON002 treated with CM of IGF1-SMMSCs

Based on the IGF1 treatment on SMMSCs showed that 150 ng/ml IGF1 resulted the highest level of BMP2, FGF18, and TGFβ1, furthermore for treating OA cells model using CM of 150 ng/mL
IGF1-induced SMMSCs. The experimental groups were designed as follow: 1) CHON002 in MEMα complete medium (negative control); 2) CHON002 with IL1β induction (OA model); treatment groups: 3) OA model with administration of SMMSCs-CM 15% (v/v); 4) OA model with administration of SMMSCs-CM 30% (v/v); 5) OA model with administration of IGF1-SMMSCs-CM 15% (v/v); 6) OA model with administration of IGF1-SMMSCs-CM 30% (v/v). All cultures were incubated in 5% CO2 and 37 °C environment for 7 days, the media were replaced every 2 days. SMMSCs-CM from the seventh day were taken for further analysis namely measuring the level of MMP13 and ADAMTS4 (24, 25, 27).

Gene expressions by Real-Time qPCR

CHON002 cells from all experimental groups were homogenized and their RNAs were extracted using Aurum Total RNA Mini kit (Bio-Rad, 7326820) in accordance to manufacturer’s protocols. cDNA synthesis was conducted using iScript cDNA synthesis kit (Bio-Rad, 1708890). The reaction was later incubated in thermal cycler with the following protocols: priming at 25°C for 5 minutes, reverse transcription at 46°C for 20 minutes, RT inactivation at 95°C for 1 minute, and holding at 4°C. The cDNA was stored at -80 °C until next assay was performed. SOX9, COL2, COL10 gene expressions were quantified through Real-Time qPCR for three replications per samples. The qPCR reaction was done using SsoFast Eva Green Supermix kit (Bio-Rad, 1725200). Primer sequence as well as its product size and annealing temperature are presented in **Table 1**. Quantitative gene expressions were measured using Thermo Scientific PikoReal Real-time PCR System (Thermo Fisher). The gene expressions were quantified using ΔΔCt method relative to CHON002 expression (27, 28). Statistical analyses were carried on the ΔCt values.

Table 1. Primers and RT-qPCR protocol

Gene Symbols	Primer Sequence (5’ to 3’)	Product Size (bp)	Annealing (°C)	References
Upper strand: sense	GAGCCACATCGCTCAGACAC CATGTAGTTGAGGTCATGAACG	150	51	NM_001289745.3
Lower strand: antisense	CACACAGCTCACTCGACCTTG TTCGTTATTTTFAGGATCATCTCG	76	51	Widowati et al. (24)
Quantification of MMP13 and ADAMTS4 levels

Secretions of MMP13 and ADAMTS4 in OA model treated with SMMSCs-CM were assessed using ELISA Kit for MMP13 (Elabsci, E-EL-H0134) and ADAMTS4 (Elabsci, E-EL-H0266). The procedure was in accordance with manufacturer’s protocols. The sample absorbance at 450 nm was measured with three replications using microplate reader (24, 25).

Statistical analysis

The significance differences between various IGF1 concentration inductions were determined from ANOVA with post-hoc Tukey’s HSD analysis. The significances between OA treatment groups were determined from Independent T-Test or Mann Whitney U Test based on data normality. All statistical analyses were carried on 95% confidence interval.

RESULT

BMP2, FGF18, and TGFβ1 levels in SMMSCs-CM

IGF1 treatment in various concentrations showed that 150 ng/mL IGF1 induced the highest level secretion of BMP2, FGF18, and TGFβ1 in SMMSCs, which was significant compared to other treatments (p < 0.05) (Figure 1A, 1B, 1C). Thus, CM of IGF1-SMMSCs with this concentration was the one that would be used for further treatment in OA model.

SOX9, COL2, and COL10 gene expression levels in OA model

IL1β induction resulted in significant reduction of SOX9 compared to negative control (p = 0.001). All treatments have successfully significantly increased SOX9 gene expression compared to OA model (p < 0.012) (Figure 2A). The IGF1 pretreated on SMMSCs shows no differences compared to those of non-induced groups (p = 0.589). Low concentration of SMMSCs-CM (15% v/v) significantly causes higher SOX9 expression (p = 0.014).
IL1β induction resulted in significant reduction of COL2 expression compared to negative control (p = 0.000). All treatments have successfully significantly increased COL2 gene expression in OA model (p = 0.010) (Figure 2B). IGF1 preconditioning causes significant effect compared to those of non-induced groups (p = 0.041). High concentration of SMMSCs-CM (30% v/v) causes no difference in COL2 expression (p = 0.094).

CHON002 induced with IL1β shows significant COL10 overexpression compared to negative control (p = 0.000). SMMSCs-CM without IGF1 preconditioning at low concentration (15% v/v) cannot reduce COL10 overexpression (p = 0.740), however high concentration of SMMSCs-CM significantly reduces COL10 expression (p = 0.003, p = 0.004) (Figure 2C). The higher concentrations of SMMSCs-CM has significantly given better results in both IGF1 induction and non-induced groups (p = 0.002). IGF1 induction on SMMSCs causes no difference compared to that of non-induced group (p = 0.180).

MMP13 and ADAMTS4 levels in OA model

IL1β induction has resulted MMP13 level significant increase compared to negative control (p = 0.000). All treatments have very significantly decreased MMP13 level on OA model (p < 0.010) (Figure 3A). IGF1 preconditioning has successfully lowered MMP13 significantly compared to those of non-induced groups (p = 0.005).

ADAMTS4 level significantly increased in IL1β OA model compared to negative control (p = 0.000). All treatments have resulted in very significant reduction of ADAMTS4 level in OA model (p < 0.005) (Figure 3B). IGF1 induction on SMMSCs gave a very strong effect in lowering ADAMTS4 compared to those of non-induced groups (p = 0.002). There was no effect of the concentration difference between IGF1-SMMSCs-CM (p = 0.084). The result shows that SMMSCs-CM can suppress the levels of MMP13 and ADAMTS4 which work as matrix degradation. IGF1 preconditioning gives better results to down regulate MMP13 and ADAMTS4 levels.

Discussions

Preconditioning of MSCs culture has been reviewed to upscale the production of specific factors in the MSCs secretome (23). IGF1 stimulation has been reported to upregulate several growth factors including TGFβ (29) and BMP (30). Our study also shows that IGF1 preconditioning in SMMSCs has successfully increased secretion of TGFβ1, BMP2, and FGF18. CM contains various
growth factors and tissue regenerative agents, which were secreted by the stem cells. The fact that stem cells secrete various growth factors was also shown by various proteomic studies, which revealed the presence of various growth factors and other cytokines in the CM (31). While BMP2 was infused at high concentrations (1.5 mg/mL), low concentrations of supplemented growth factors were sufficient to synergize with the components within MSCs-CM and further promoted bone regeneration (32). Data from trans-well coculture systems indicated that MSCs promoted the expressions of chondrogenic genes in chondrocytes in the presence of FGF18. Ectopic formation confirmed that FGF18 treatment restored the responsiveness of OA chondrocyte to MSCs in vivo (33). According to a research by Zhang et al., (2014), FGF18 can increase the responsiveness of OA chondrocytes to the trophic effects of MSCs (33).

SOX9 is an important transcription factor in chondrocytes because of its role in the differentiation of chondrocytes and the regulation of extracellular matrix deposition, especially COL2. SOX9 inhibition causes a decrease in the differentiation of new chondrocytes to replace chondrocytes that undergo apoptosis as a result of mechanical and inflammatory stress. The decrease in the rate of extracellular matrix deposition also exacerbates the imbalance of the anabolic and catabolic processes in the cartilage which further inhibits the regenerative power of the joint cartilage (34). In some recent studies, it has been shown that OA cartilage has a low expression of SOX9 (35, 36, 37, 38). IL1β has been known to reduce SOX9 and COL2 gene expressions as stated by some studies (24, 39, 40, 41, 42). The down-regulation mechanism is caused by nuclear factor-kappaB (NFκB) inflammatory pathway (39, 40, 41). The cAMP response element-binding protein (CREB) and SP1 transcription factor, two proteins that bind to SOX9 transcription binding site that have positive action on SOX9 transcription, are blocked during inflammation induced by IL1. Another protein proposed to participate in SOX9 transcriptional activity is SMAD3, a mediator from TGFβ pathway (43).

COL2 is a chondrogenic gene marker associated with ECM in joint cartilage. In OA, the early changes in articular cartilage are characterized by the loss of proteoglycan and a reduction in the expression of COL2 gene without any changes to the regularity of the structure of the articular tissue (44). COL2 is one of SOX9 target protein and in the initial chondrogenesis process, SOX9 expresses extracellular matrix proteins, such as collagen type 2 alpha 1 (COL2a1) (45). IL1β has markedly reduced COL2 expression to almost none in our experiment. SOX9 protein negatively regulates Runx-related transcription factor 2 (RUNX2) gene by binding to BAPX1 in proliferating chondrocytes. During inflammation, RUNX2 binding to SOX9 represses the COL2a1 expression (46). COL2
expression is not only influenced by SOX9, but also mediated by NKX3-2 transcription factor (47). BMP7 can upregulate reduced-BAPX-1/NKX3-2 level in IL1β OA model (48). Our result shows that SMMSCs-CM treatment can markedly increase COL2 expression. We hypothesize that this may be because of BMP as well as TGFβ action in the SMMSCs-CM which can be shown by dose-dependent trend and better result in IGF1-induced treatment. However, compared to healthy cell control, the COL2 level is still remarkably lower. It is epithelium-specific ETS (ESE)-1 transcription factor that keeps the persistent NFκB-dependent COL2a1 promoter inhibition by IL1β. This characteristic is found in patients with OA (49).

Type X collagen (COL10) is a hypertrophic chondrocyte marker that is not usually found in adult articular cartilages but will be detected at some stages in OA. COL10 expression will increase significantly in the final stage of OA compared to the initial stage of OA. MSCs-CM which is rich in growth factors will suppress hypertrophic cartilage markers which are characterized by the fall of COL10 expression (50). We found that the expression of the COL10 gene increased after the addition of IL1β. IL1β act through P38 MAPK in RUNX2 protein phosphorylation (51). IL1β-induced inflammation also reduces BAPX1 gene expression which is the inhibitor of RUNX transcription (48). Our treatment using SMMSCs has successfully reduced COL10 expression in OA model. In proliferating chondrocytes, SOX9 together with other transcription factors bind to the COL10a1 promoter region that causes gene repression. However during inflammation, RUNX2 binding to SOX9 releases SOX9 inhibitory binding that will cause COL10a expression (46). Our result shows negative correlation between COL10 and SOX9 expression ($r = -0.362$, $p = 0.039$) which marks that SOX9 expression negatively regulates COL10. TGFβ through SMAD3 signaling can counteract RUNX2 by direct binding deactivating this transcription factor and by recruiting silencing histone class II deacetylase to the responsive genes, such as COL10 and MMP13. BMP2 signaling stabilizes SMAD3-TGFβ pathway (52). Moreover, BMP7 signaling pathway through NKX3-2 has a negative effect toward RUNX2 level (48). FGF, mainly FGF9 and FGF18, acts mainly through FGF receptor 3 (FGFR3) by inhibiting the initiation of hypertrophy through MAPK signaling (53).

Cleavage of COL2 is considered as a critical early event of osteoarthritis. Initial cleavage of COL2 is performed by MMP13 (54). Figure 3A shows that IL1β-CHON002 has high MMP13 levels. It has been known that IL1β mediates MMP13 and ADAMTS4 through NFκB pathway (55). Moreover RUNX2 is needed for the transcription mediated by P38-MAPK pathway (51, 56).
Based on our results and literature research, we proposed the possible mechanism of OA as well as SMMSCs-CM and IGF1 chondroprotective role. The mechanism is shown in Figure 4. Overall, the growth factors contained in the SMMSCs-CM provides chondroprotective role by inhibiting matrix degradation enzymes and alleviates hypertrophic marker and chondrogenic role by increasing COL2 level.

CONCLUSION

The concentration of 150 ng/mL of IGF1 for 7-day incubation is the optimal growth factor markers including BMP2, FGF18, and TGFβ1 on SMMSCs-CM.

Conditioned Medium of Synovial membrane mesenchymal stem cells (SMMSCs-CM) has increased negative cartilage hypertrophy markers (SOX9 and COL2) and reduced hypertrophy markers (COL10, MMP13, and ADAMTS4) in OA model. SMMSCs preconditioning with IGF1 has better results in lowering the levels of MMP13, ADAMTS4, and gene expression of COL10, as well as increasing gene expressions of SOX9 and COL2. Overall, SMMSCs-CM has the potential as an alternative therapy for OA through its chondroprotective and chondrogenic role. Further research is needed to prove the potential of IGF1-induced SMMSCs on OA animal model.

Data availability statement

The data sets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Competing interest statement

The authors declare no conflict of interest.

Funding information

The authors acknowledge the financial support from the the Ministry of Research, Technology, and Higher Education of the Republic of Indonesia (Research Grant of Hibah Kompetensi 2019).

Author contribution statement

Participating in research design: Marlina Marlina, Armenia Armenia, Rizki Rahmadian, Wahyu Widowati.
Conducting experiments: Hanna Sari Widya Kusuma, Nur Elida
Performing data analysis: Jenifer Kiem Aviani
Contributing to the writing of the manuscript: Ika Adhani Sholihah, Alya Mardhotillah Azizah

Acknowledgement

This research was also supported by Aretha Medika Utama Biomolecular and Biomedical Research Center (AMU-BBRC), Bandung, Indonesia. The authors would also like to thank Seila Arumwardana, Ervi Afifah, Reinaldi Aditya, from AMU-BBRC for their valuable assistance.

REFERENCES

1. Yuan XL, Meng HY, Wang YC, Peng J, Guo QY, Wang AY, Lu SB. Bone–cartilage interface crosstalk in osteoarthritis: potential pathways and future therapeutic strategies. Osteoarthritis and Cartilage. 2014;22(8):1077-89. doi: 10.1016/j.joca.2014.05.023.
2. Djouad F, Bony C, Canovas F, Fromigue O, Reme T, Jorgensen C, Noel D. Transcriptomic analysis identifies Foxo3A as a novel transcription factor regulating mesenchymal stem cell chondrogenic differentiation. Cloning and Stem Cells. 2009;11(3):407-16. doi: 10.1089/clo.2009.0013.
3. Duval E, Leclercq S, Elissalde JM, Demoor M, Galéra P, Boumédiene K. Hypoxia-inducible factor 1α inhibits the fibroblast-like markers type I and type III collagen during hypoxia-induced chondrocyte redifferentiation: Hypoxia not only induces type II collagen and aggregan, but it also inhibits type I and type III collagen in the hypoxia-inducible factor 1α-dependent redifferentiation of chondrocytes. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology. 2009;60(10):3038-48. doi: 10.1002/art.24851.
4. Goldring MB, Goldring SR. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Annals of the New York Academy of Sciences. 2010;1192(1):230-7. doi: 10.1111/j.1749-6632.2009.05240.x
5. Majumdar MK, Askew R, Schelling S, Stedman N, Blanchet T, Hopkins B, Morris EA, Glasson SS. Double-knockout of ADAMTS-4 and ADAMTS-5 in mice results in physiologically normal animals and prevents the progression of osteoarthritis. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology. 2007;56(11):3670-4. doi: 10.1002/art.23027.
6. Neuhold LA, Killar L, Zhao W, Sung ML, Warner L, Kulik J, Turner J, Wu W, Billinghamurst C, Meijers T, Poole AR. Postnatal expression in hyaline cartilage of constitutively active human collagenase-3 (MMP-13) induces osteoarthritis in mice. The Journal of clinical investigation. 2001;107(1):35-44. doi: 10.1172/JCI10564.
7. Maldonado M, Nam J. The role of changes in extracellular matrix of cartilage in the presence of inflammation on the pathology of osteoarthritis. BioMed Research International. 2013;2013. doi: 10.1155/2013/284873
8. Danišovič Ľ, Varga I, Polák Š. Growth factors and chondrogenic differentiation of mesenchymal stem cells. Tissue and Cell. 2012;44(2):69-73.
9. Kim HO, Choi SM, Kim HS. Mesenchymal stem cell-derived secretome and microvesicles as a cell-free therapeutics for neurodegenerative disorders. Tissue Engineering and Regenerative Medicine. 2013;10(3):93-101.
10. Chen YC, Chang YW, Tan KP, Shen YS, Wang YH, Chang CH. Can mesenchymal stem cells and their conditioned medium assist inflammatory chondrocytes recovery?. PloS one. 2018;13(11). doi: 10.1371/journal.pone.0205563
11. Pei M, He F, Vunjak-Novakovic G. Synovium-derived stem cell-based chondrogenesis. Differentiation. 2008;76(10):1044-56. doi: 10.1111/j.1432-0436.2008.00299.x.
12. Ogata Y, Mabuchi Y, Yoshida M, Suto EG, Suzuki N, Muneta T, Sekiya I, Akazawa C. Purified human synovium mesenchymal stem cells as a good resource for cartilage regeneration. PloS one. 2015;10(6). doi: 10.1371/journal.pone.0129096
13. Widowati W, Wijaya L, Murti H, Widyaustuti H, Agustina D, Lakmitawati DR, Fauziah N, Sumitro SB, Widodo MA, Bachtiar I. Conditioned medium from normoxia (WJMSCs-norCM) and hypoxia-treated WJMSCs (WJMSCs-hypoCM) in inhibiting cancer cell proliferation. Biomarkers and Genomic Medicine. 2015;7(1):8-17. https://doi.org/10.1016/j.bgm.2014.08.008
14. Widowati W, Widyaustuti H, Murti H, Lakmitawati DR, Maesaroh M, Sumitro SB, Widodo MA, Bachtiar A. Interleukins and VEGF secretome of humanwharton's Jelly mesenchymal stem cells-conditioned medium (hWJMSCs-CM) in different passages and oxygen tensions. Bioscience Research. 2017;14(4):776-87.
15. Schröder A, Nazet U, Muschter D, Grässel S, Proff P, Kirschneck C. Impact of mechanical load on the expression profile of synovial fibroblasts from patients with and without osteoarthritis. International Journal of Molecular Sciences. 2019;20(3):585. doi: 10.3390/ijms20030585.
16. Jha AK, Yang W, Kirn-Safran CB, Farach-Carson MC, Jia X. Perlecan domain I-conjugated, hyaluronic acid-based hydrogel particles for enhanced chondrogenic differentiation via BMP-2 release. Biomaterials. 2009;30(36):6964-75. doi: 10.1016/j.biomaterials.2009.09.009.
17. Huang L, Yi L, Zhang C, He Y, Zhou L, Liu Y, Qian L, Hou S, Weng T. Synergistic Effects of FGF-18 and TGF-β3 on the chondrogenesis of human adipose-derived mesenchymal stem cells in the pellet culture. Stem Cells International. 2018;2018. https://doi.org/10.1155/2018/7139485
18. Bosnakovski D, Mizuno M, Kim G, Takagi S, Okumura M, Fujinaga T. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis. Biotechnology and Bioengineering. 2006;93(6):1152-63. doi: 10.1002/bit.20828.
19. Zhou Q, Li B, Zhao J, Pan W, Xu J, Chen S. IGF-I induces adipose derived mesenchymal cell chondrogenic differentiation in vitro and enhances chondrogenesis in vivo. In Vitro Cellular & Developmental Biology-Animal. 2016;52(3):356-64. doi: 10.1007/s11626-015-9969-9.
20. Wei FY, Lee JK, Wei L, Qu F, Zhang JZ. Correlation of insulin-like growth factor 1 and osteoarthritic cartilage degradation: a spontaneous osteoarthritis in guinea-pig. European Review for Medical and Pharmacological Sciences. 2017;21(20):4493.
21. Schmidt MB, Chen EH, Lynch SE. A review of the effects of insulin-like growth factor and platelet derived growth factor on in vivo cartilage healing and repair. Osteoarthritis and Cartilage. 2006;14(5):403-12. doi: 10.1016/j.joca.2005.10.011.
22. Loffredo FS, Pancoast JR, Cai L, Vannelli T, Dong JZ, Lee RT, Patwari P. Targeted delivery to cartilage is critical for in vivo efficacy of insulin-like growth factor 1 in a rat model of osteoarthritis. Arthritis & Rheumatology. 2014;66(5):1247-55. doi: 10.1002/art.38357.

23. Ferreira JR, Teixeira GQ, Santos SG, Barbosa MA, Almeida-Porada G, Gonçalves RM. Mesenchymal stromal cell secretome: influencing therapeutic potential by cellular preconditioning. Frontiers in Immunology. 2018;9:2837.doi: 10.3389/fimmu.2018.02837

24. Widowati W, Afifah E, Mozef T, Sandra F, Rizal R, Amalia A, Arinta Y, Bachtiar I, Murti H. Effects of insulin-like growth factor-induced Wharton jelly mesenchymal stem cells toward chondrogenesis in an osteoarthritis model. Iranian Journal of Basic Medical Sciences. 2018;21(7):745. doi: 10.22038/IJBMS.2018.28205.6840

25. Kusuma HSW, Widowati W, Gunanegara RF, Juliandi B, Lister INE, Arumwardana S, Yusepany DT, Artie DS, Nataya ED, Gunawan KY, Sholihah IA, Girsang E, Ginting CN, Bachtiar I, Murti Harry. Effect of conditioned medium from IGF1-induced human wharton’s jelly mesenchymal stem cells (IGF1-hWJMSCs-CM) on osteoarthritis. Avicenna Journal of Medical Biotechnology. 2020; 12(3):172-178

26. Marlina M, Rahmadian R, Armenia, Widowati W, Rizal R, Kusuma HSW, et al., Isolation, characterization, proliferation, and differentiation of synovial membrane-derived mesenchymal stem cells (SM-MSCs) from osteoarthritis patients. Molecular and Cellular Biomedical Science 2020; 4(2):76-82. https://doi.org/10.21705/mcbs.v4i2.100

27. Afifah E, Mozef T, Sandra F, Arumwardana S, Rihibih DD, Nufus H, Rizal R, Amalia A, Bachtiar I, Murti H, Widowati W. Induction of matrix metalloproteinases in chondrocytes by interleukin IL-1β as an osteoarthritis model. Journal of Mathematical and Fundamental Sciences. 2019;51(2):103-11. DOI: 10.5614/j.math.fund.sci.2019.51.2.1

28. Widowati W, Jasaputra DK, Onggowidjaja P, Sumitro SB, Widodo MA, Afifah E, Rihibih DD, Rizal R, Amalia A, Kusuma HS, Murti H. Effects of conditioned medium of co-culture IL-2 induced NK cells and human wharton’s jelly mesenchymal stem cells (hWJMSCs) on apoptotic gene expression in a breast cancer cell line (MCF-7). Journal of Mathematical and Fundamental Sciences. 2019;51(3):205-24. DOI: 10.5614/j.math.fund.sci.2019.51.3.1

29. Ghahtary A, Shen Q, Shen YJ, Scott PG, Tredget EE. Induction of transforming growth factor β1 by insulin-like growth factor-1 in dermal fibroblasts. Journal of Cellular Physiology. 1998;174(3):301-9. doi: 10.1002/(SICI)1097-4652(199803)174:3<301::AID-JCP4>3.0.CO;2-S.

30. Li H, Bartold PM, Zhang CZ, Clarkson RW, Young WG, Waters MJ. Growth hormone and insulin-like growth factor I induce bone morphogenetic proteins 2 and 4: a mediator role in bone and tooth formation?. Endocrinology. 1998;139(9):3855-62. doi: 10.1210/endo.139.9.6211.

31. Pawitan JA. Prospect of Stem Cell Conditioned Medium in Regenerative Medicine. BioMed Research International 2014; 2014 (965849):1-14. http://dx.doi.org/10.1155/2014/965849

32. L PK, Kandoi S, Misra R, Vijayalakshmi S, Rajagopal K. The mesenchymal stem cell secretome: A new paradigm towards cell-free therapeutic mode in regenerative medicine. Cytokine Growth Factor Rev 2019; 46:1–9. https://doi.org/10.1016/j.cytogfr.2019.04.002

33. Zhang Z, Wang Y, Li M, Li J, Wu J. Fibroblast growth factor 18 increases the trophic effects of bone marrow mesenchymal stem cells on chondrocytes isolated from late stage osteoarthritic patients. Stem Cells International 2014;2014. 125683.doi: 10.1155/2014/125683
34. Needham CJ, Shah SR, Dahlin RL, Kinard LA, Lam J, Watson BM, Lu S, Kasper FK, Mikos AG. Osteochondral tissue regeneration through polymeric delivery of DNA encoding for the SOX trio and RUNX2. Acta Biomaterialia. 2014;10(10):4103-12. doi: 10.1016/j.actbio.2014.05.011

35. Tew SR, Clegg PD, Brew CJ, Redmond CM, Hardingham TE. SOX9 transduction of a human chondrocytic cell line identifies novel genes regulated in primary human chondrocytes and in osteoarthritis. Arthritis Research & Therapy. 2007;9(5):R107. doi: 10.1186/ar2311

36. Zhong L, Huang X, Karperien M, Post JN. Correlation between gene expression and osteoarthritis progression in human. International Journal of Molecular Sciences. 2016;17(7):1126. doi: 10.3390/ijms17071126

37. Zhang Q, Ji Q, Wang X, Kang L, Fu Y, Yin Y, Li Z, Liu Y, Xu X, Wang Y. SOX9 is a regulator of ADAMTSs-induced cartilage degeneration at the early stage of human osteoarthritis. Osteoarthritis and Cartilage. 2015;23(12):2259-68. doi: 10.1016/j.joca.2015.06.014

38. Hussain S, Sun M, Guo Y, Mushtaq N, Zhao Y, Yuan Y, Hussain N, Osoro E, Suleiman A, Sadiq M, Zhang F. SFMBT2 positively regulates SOX9 and chondrocyte proliferation. International Journal of Molecular Medicine. 2018;42(6):3503-12.doi: 10.3892/ijmm.2018.3894

39. Yu ZG, Ning XU, Wang WB, Pan SH, Li KS, Liu JK. Interleukin-1 inhibits SOX9 and collagen type II expression via nuclear factor-κB in the cultured human intervertebral disc cells. Chinese Medical Journal. 2009;122(20):2483-8.

40. He Y, Moqbel SA, Xu L, Ran J, Ma C, Xu K, Bao J, Jiang L, Chen W, Xiong Y, Wu L. Costunolide inhibits matrix metalloproteinases expression and osteoarthritis via the NF-κB and Wnt/β-catenin signaling pathways. Molecular Medicine Reports. 2019;20(1):312-22.doi: 10.3892/mmr.2019.10239

41. Murakami S, Lefebvre V, de Crombrugghe B. Potent inhibition of the master chondrogenic factor SOX9 gene by interleukin-1 and tumor necrosis factor-α. Journal of Biological Chemistry. 2000;275(5):3687-92.doi: 10.1074/jbc.275.5.3687

42. Igarashi M, Sakamoto K, Nagaoka I. Effect of glucosamine on expression of type II collagen, matrix metalloproteinase and sirtuin genes in a human chondrocyte cell line. International Journal of Molecular Medicine. 2017;39(2):472-8.doi: 10.3892/ijmm.2016.2842

43. Lefebvre V, Dvir-Ginzberg M. SOX9 and the many facets of its regulation in the chondrocyte lineage. Connective Tissue Research. 2017;58(1):2-14.doi: 10.1080/03008207.2016.1183667.

44. Xu L, Flahiff CM, Waldman BA, Wu D, Olsen BR, Setton LA, Li Y. Osteoarthritis-like changes and decreased mechanical function of articular cartilage in the joints of mice with the chondrodysplasia gene (cho). Arthritis & Rheumatism : Official Journal of the American College of Rheumatology. 2003;48(9):2509-18.doi: 10.1002/art.11233.

45. Hausburg MA, Frederick ED, McNair P, Schwappach J, Banton KL, Roshon M, Lieser MJ, Acuna DL, Banerjee R, Bar-Or D. Clinically relevant redifferentiation of fibroblast-like chondrocytes into functional chondrocytes by the low molecular weight fraction of human serum albumin. Clinical and Experimental Rheumatology. 2018;36(5):891-5.

46. Leung VY, Gao B, Leung KK, Melhado IG, Wynn SL, Au TY, Dung NW, Lau JY, Mak AC, Chan D, Cheah KS. SOX9 governs differentiation stage-specific gene expression in growth plate chondrocytes via direct concomitant transactivation and repression. PLoS genetics. 2011;7(11).doi.org/10.1371/journal.pgen.1002356

47. Kawato Y, Hirao M, Ebina K, Shi K, Hashimoto J, Honjo Y, Yoshikawa H, Myou A. Nkx3. 2 promotes primary chondrogenic differentiation by upregulating COL2a1 transcription. PLoS One. 2012;7(4):e34703. doi: 10.1371/journal.pone.0034703
48. Caron MM, Emans PJ, Surtel DA, van der Kraan PM, van Rijn LW, Welting TJ. BAPX-1/NKX-3.2 Acts as a chondrocyte hypertrophy molecular switch in osteoarthritis. Arthritis & Rheumatology. 2015;67(11):2944-56.https://doi.org/10.1002/art.39293

49. Peng H, Tan L, Osaki M, Zhan Y, Ijiri K, Tsuchimochi K, Otero M, Wang H, Choy BK, Grall FT, Gu X. ESE-1 is a potent repressor of type II collagen gene (COL2A1) transcription in human chondrocytes. Journal of Cellular Physiology. 2008;215(2):562-73. doi: 10.1002/jcp.21338.

50. B Marcu K, Otero M, Olivetto E, Maria Borzi R, B Goldring M. NF-κB signaling: multiple angles to target OA. Current Drug Targets. 2010;11(5):599-613. DOI: 10.2174/138945010791011938

51. Mengshol JA, Vincenti MP, Brinckerhoff CE. IL-1 induces collagenase-3 (MMP-13) promoter activity in stably transfected chondrocytic cells: requirement for Runx-2 and activation by p38 MAPK and JNK pathways. Nucleic Acids Research. 2001;29(21):4361-72. doi: 10.1093/nar/29.21.4361

52. Thie len NG, van der Kraan PM, van Caam AP. TGFβ/BMP signaling pathway in cartilage homeostasis. Cells. 2019;8(9):969 doi: 10.3390/cells8090969

53. Kozhemyakina E, Lassar AB, Zelzer E. A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation. Development. 2015;142(5):817-31. doi: 10.1242/dev.105536

54. Xiao D, Bi R, Liu X, Mei J, Jiang N, Zhu S. Notch signaling regulates MMP-13 expression via Runx2 in chondrocytes. Scientific Reports. 2019;9(1):1-2. https://doi.org/10.1038/s41598-019-52125-5

55. Sun Z, Yin Z, Liu C, Tian J. The changes in the expression of NF-kB in a degenerative human intervertebral disc model. Cell Biochemistry and Biophysics. 2015;72(1):115-22. doi: 10.1007/s12013-014-0417-3.

56. Tetsunaga T, Nishida K, Furumatsu T, Naruse K, Hirohata S, Yoshida A, Saito T, Ozaki T. Regulation of mechanical stress-induced MMP-13 and ADAMTS-5 expression by RUNX-2 transcriptional factor in SW1353 chondrocyte-like cells. Osteoarthritis Cartilage. 2011;19(2):222-32. doi: 10.1016/j.joca.2010.11.004
TABLE AND FIGURES LEGEND

Table 1. Primers and RT-qPCR protocol

Figure 1. Effects of various concentrations of IGF1 toward BMP2, FGF18, and TGFβ1 levels of SMMSCs-CM.
A. Concentration of BMP2 (pg/mL) in IGF1-induced SMMSCs-CM; B. Concentration of FGF18 (pg/mL) in IGF1-induced SMMSCs-CM; C. Concentration of TGFβ1 (pg/mL) in IGF1-induced SMMSCs-CM.
*The data were presented as a histogram of mean ± standard deviation. Different letters (a, ab, b) marked significant difference among treatments toward BMP2 level (Figure 1A). Different letters (a, ab, b) marked significant difference among treatments toward FGF18 level (Figure 1B). Different letters (a, b) marked significant difference among treatments toward TGFβ1 level (Figure 1C). The data were analyzed using ANOVA followed by Tukey HSD post hoc test (p < 0.05).

Figure 2. Effects of IGF1-induced SMMSCs-CM toward SOX9, COL2, and COL10 gene expressions on OA model.
A. Relative SOX9 gene expression in IGF1-induced SMMSCs-CM; B. Relative COL2 gene expression in IGF1-induced SMMSCs-CM; C. Relative COL10 gene expression in IGF1-induced SMMSCs-CM.
(I) CHON002 (healthy cells as negative control), (II) IL1β-CHON002 (OA model), (III) OA model+SMMSCs-CM 15% (IV), OA model+SMMSCs-CM 30% (V) OA model+IGF1-SMMSCs-CM 15% (VI) OA model+IGF1-SMMSCs-CM 30%
The figure above shows gene expressions relative to CHON002 (negative control). Data are presented as mean ± standard deviation. Single star sign () marks statistical difference compared to negative control group at 0.05 significance level, double star sign (**) marks statistical difference compared to negative control group at 0.01 significance level, single hashtag (#) marks statistical difference compared to OA model at 0.05 significance level, double hashtag (##) marks statistical difference compared to OA model at 0.01 significance level.

Figure 3. Effects of IGF1-induced SMMSCs-CM toward MMP13 and ADAMTS4 levels on OA cells model.
A. MMP13 level (pg/mL) on OA cells model; B. ADAMTS4 level (pg/mL) on OA cells model.
(I) CHON002 (healthy cells as negative control), (II) IL1β-CHON002 (OA model), (III) OA model+SMMSCs-CM 15% (IV), OA model+SMMSCs-CM 30% (V) OA model+IGF1-SMMSCs-CM 15% (VI) OA model+IGF1-SMMSCs-CM 30%
Data are presented as mean ± standard deviation. Single star sign () marks statistical difference compared to negative control group at 0.05 significance level, double star sign (**) marks statistical difference compared to negative control group at 0.01 significance level, single hashtag (#) marks statistical difference compared to OA model at 0.05 significance level, double hashtag (##) marks statistical difference compared to OA model at 0.01 significance level.

Figure 4. Proposed mechanism on cartilage repair and chondroprotective effects of IGF1-induced SMMSC-CM therapy

* SMMSCs secrete many growth factors, such as TGFβ1, FGF18, and BMP2 whose concentrations increase with the IGF1 induction. These factors are contained in the CM of SMMSCs (SMMSCs-CM). IL1β induce chondrocytes inflammation and trigger OA which involving 2 different pathways: the NfκB pathway and P38-MAPK pathway. During inflammation, the NfκB protein plays a role in decreasing in SOX9 gene expression. SMMSCs treatment upregulate SOX9 expression mainly through TGFβ1 action via SMAD2/SMAD3 pathway. SOX9 acts as activator of COL2 gene, and inhibitor of COL10. During IL1β induced inflammation of chondrocytes in which MMP13 and ADAMTS4 are upregulated through P38/MAPK pathway. SMMSCs treatments act in alleviating the OA symptoms through: 1) BMP2 downregulates COL10; 2) FGFs, mainly through FGF18 that acts by inhibiting MMP13 and
ADAMTS4 synthesis through P38/MAPK pathway. COL2 deposition results in healthy and elastic joint. Meanwhile, COL10 causes stiffness in the joint, which is one characteristic of OA.
A

MMP13 level (pg/mL)

Treatments

B

ADAMTS4 level (pg/mL)

Treatments
