Introduction

Acute ischemic stroke (AIS) has long been the focus of global stroke prevention and control, which is attributed to its high disability, high mortality and high recurrence rate. The recurrence of AIS will aggravate the deterioration of neurological function, and increase the risk of bad clinical outcome of stroke. It brings irreparable loss to the patients’ life and health. The overall situation of stroke recurrence has been reported in foreign countries[1]. Although a large number of epidemiological investigations have been carried out on the recurrence of AIS in China,
there is still a lack of overall description and systematic evaluation of the related situation. Based on this, a meta-analysis was used to comprehensively analyze the pooled cumulative risk of stroke recurrence at 3, 6 months and 1, 5, 10 years after initial ischemic stroke in China, in order to fully understand the epidemic situation of stroke recurrence in China in an all-round way. It provides a relatively comprehensive reference for medical workers and researchers.

Materials and Methods

Search strategy
The literatures on the risk of recurrence of acute ischemic stroke were systematically collected according to the principle of free subject words. The sources of the literatures included CNKI, Wanfang Database, VIP Database, PubMed, Web of Science, The Cochrane Library, CINAHL, EMbase. And the search period was from the establishment of databases to March 2019. Chinese retrieval terms included: “中风 / 缺血性中风 / 脑血管病 / 脑血管意外 / 脑栓塞 / 脑血栓 / 脑梗塞”, “复发”. English retrieval terms included: “stroke / ischemic stroke / ischemia cerebra / cerebral ischemia / cerebral infarction / cerebrovascular disease /cerebral vascular accident/ cerebrovascular accident / brain vascular accident / PostStroke”, “recurrent / recurrence”. In addition, there was in the way of snowball to trace back to the citation.

Correlation definition
Initial ischemic stroke: The patients with initial stroke were diagnosed according to the diagnostic criteria of ischemic stroke established by the 4th National Conference on Cerebrovascular Diseases in 1995 and supported by CT or MRI.

Recurrent ischemic stroke: The initial attack was relieved, and more than 28 days later, the new central nervous system damage appeared again, the localization signs or the original symptoms were aggravated, which was confirmed by the skull CT or MRI.

Selection Criteria
Inclusion criteria: (1) Chinese stroke patients were diagnosed in China; (2) There were clear diagnoses of ischemic stroke and its recurrence; (3) The study was designed as a cohort study; (4) The recurrence rate of ischemic stroke was provided directly or indirectly.

Exclusion criteria: (1) Lectures, reviews, case reports, etc; (2) Experimental studies of basic medicine; (3) Literatures with repeated publication of the same data, incomplete original data, no full text, unclear types of research, and erroneous data statistics.

Literature screening and data extraction
Endnote X8 was used for screening and data extraction, and 2 researchers independently browsed the papers and abstracts for the preliminary screening, read through the full text and completed the re-screening. In case of disagreement, the third party decided. Data extraction included: first author, published year, region, recurrence cases, total follow-up cases, etc.

Literature quality evaluation
The Newcastle-Ottawa quality assessment table (Newcastle-Ottawa Scale, NOS) was used to evaluate the quality of the included literature based on the following 3 aspects: the selection of the study population, the comparability between groups, and the exposure factors. Those with score ≥ 5 points could be included in meta analysis. If the score was more than 5 points, the meta analysis could be carried out. The 2 researchers independently and mutual-blindly completed the process, and then compared the evaluation results with each other. In case of disagreement, the results were decided by a third party.

Statistical analyses
The double-chord transform method was used to transform the data. And then Metaprop of the Stata software was used to calculate the progressive rate of the data. The heterogeneity between the included literature was tested by I^2 value and Q test. When P>0.1, I^2≤50%, the studies was considered to be homogeneous, and then the fixed effect model was used to combine the effect values, otherwise the random effect model was used. The sensitivity analysis was carried out to verify the stability
of the combined effect values by item-by-item exclusion of the single included study. The publication bias was quantitatively evaluated based on the Egger test. The difference was statistically significant when $P<0.05$.

Results

Literature inclusion and quality evaluation

Three-thousand five-hundred eighty-one studies were identified by the electronic database searches. After re-checking, browsing the abstracts, reading the full text and other layers of screening, there was finally ended up with 29 documents[3-31]. The cumulative total sample size was 22,484 cases, and the cumulative recurrent sample size was 3,142 cases. The recurrent time of the subjects ranged from 1991 to 2016, and the follow-up time ranged from 3 months to 5 years. The research sites covered 19 provinces in China. The quality evaluation score of the included literature was at least 5 points, with a maximum of 8 points. The estimates of risk of acute ischemic stroke recurrence across all the included studies was shown in Figure 1.

Meta analysis results

The recurrence rate at 3 months after first-ever AIS:
6 studies[6, 14, 20, 21, 25, 31] (a total of 4,450 patients) reported the recurrence rate at 3 months after AIS, with a cumulative recurrence rate of 2.28% to 8.52%. Statistical heterogeneity was found among the studies ($P=0.001$, $I^2=76.1\%$), so random effect model was used to analyze the combined effects. The results showed that the cumulative recurrence rate was 4.5% (95% CI: 3.1-5.8) at 3 months after initial AIS, as shown in Figure 2.

The recurrence rate at 6 months after first-ever AIS:
7 studies[6, 14, 18, 20, 21, 25, 31] (a total of 4,626 patients) reported the recurrence rate at 6 months after initial AIS, with a cumulative recurrence rate of 4.39% to 14.07%. Statistical heterogeneity was found among the studies ($P<0.001$, $I^2=97.8\%$), so random effect model was used to analyze the combined effects. The results showed that the cumulative recurrence rate was 7.8% (95% CI: 5.6-10.0) at 6 months after first-ever AIS, as shown in Figure 3.

The recurrence rate at 1 year after first-ever AIS:
23 studies[3, 6, 8, 10-17, 19-27, 29-31] (a total of 20,618 patients) reported the recurrence rate of AIS at 1 year after acute ischemic stroke, with a cumulative recurrence rate of 4.8% to 28.19%. Statistical heterogeneity was found among the studies ($P=0.000$, $I^2=97.9\%$), so random effect model was used to analyze the combined effects. The results showed that the cumulative recurrence rate was 13.6% (95% CI: 11.0-16.2) at 1 year after first-ever AIS, as shown in Figure 4.

The recurrence rate at 2 years after first-ever AIS:
11 studies[4-5, 7, 10-11, 13, 15, 20, 22, 24, 28] (a total of 11,427 patients) reported the recurrence rate at 2 years after initial AIS, with a cumulative recurrence rate of 5.34% to 30.26%. Statistical heterogeneity was found among the studies ($P<0.001$, $I^2=97.8\%$), so random effect model was used to analyze the combined effects. The results showed that the cumulative recurrence rate was 17.5% (95% CI: 12.4-22.6) at 2 years after initial AIS, as shown in Figure 5.

The recurrence rate at 5 years after first-ever AIS:
4 studies[9, 13, 19-20] (a total of 2,508 patients) reported the recurrence rate 5 years after initial AIS, with a cumulative recurrence rate of 19.55% to 45.78%. Statistical heterogeneity was found among the studies ($P<0.001$, $I^2=97.3\%$), so random effect model was used to analyze the combined effects. The results showed that the cumulative recurrence rate was 30.9% (95% CI: 20.2-41.7) at 5 years after AIS, as shown in Figure 6.

*Notes: “m” refers to month(s); “y” refers to year(s)
Table 1 The basic situation and quality evaluation of AIS recurrence risk in literature

Authors	Year of publication	Initial study period	Area	Sample size	Cumulative risk of stroke recurrence (%)	NOS score						
				Recurrent cases	Total cases	3 m	6 m	1 y	2 y	5 y		
Chen Peng [3]	2014	2011-2012	Ningxia	79	401	79	7	
Zheng Jianghuan [4]	2015	2010-2013	Guizhou	30	162	30	...	8	
Li Qi [5]	2014	2011-2014	Hainan	27	143	27	...	8	
Luan Mei [6]	2016	2013-2015	Chongqing	41	270	23	38	41	8	
Su Changqing [7]	2014	2011-2014	Fujian	31	123	31	...	7	
Song Li [8]	2008	2005-2007	Liaoning	58	421	58	8	
Cheng Yuefeng [9]	2017	2011-2016	Heilongjiang	206	450	206	...	7	
An Yachen [10]	2017	2013-2016	Hebei	184	1058	98	158	...	8	
Chen Yunxia [11]	2011	2008-2010	Hebei	79	408	55	79	...	8	
Zhang Shenning [12]	2008	2004-2006	Jiangsu	160	834	160	7	
Zheng Shengbang [13]	2017	2010-2015	Shanghai	233	651	140	197	233	7	
Wang Jing [14]	2016	2013-2015	Zhejiang	35	282	14	24	35	8	
Tang Meilian [15]	2016	2014-2015	China	647	6450	148	345	...	8	
Zhang Changqing [16]	2018	2007-2009	China	95	1978	95	7	
Zhao Yan [17]	2014	2010-2012	Henan	105	812	105	6	
Ma Juanjuan [18]	2015	2013-2015	Jiangsu	14	176	14	5	
Yan Zhongrui [19]	1998	1991-1996	Shandong	112	573	46	112	...	7	
Wang Liping [20]	2005	1994-1999	Henan	192	834	19	37	94	135	192	6	
Duan Kangli [21]	2018	2014-2015	Shanxi	115	2230	78	98	115	6	
Yang Junping [22]	2014	2009-2013	Henan	97	786	78	97	...	5	
Zhang Ming [23]	2016	2010-2015	Shandong	49	269	49	6	
Xue Min [24]	2013	2008-2011	Anhui	90	612	90	6	
Wang Xiaojing [25]	2018	2014-2016	Hebei	76	450	22	38	76	6	
Chen Jingfei [26]	2015	2012-2014	Ningxia	43	233	43	5	
Xu Lina [27]	2018	2014-2016	Shanxi	45	311	45	5	
Zhang Youlin [28]	2012	2007-2009	Beijing	37	200	37	6	
Sun Shuju [29]	2013	2008-2011	Hubei	42	149	42	5	
Gelin Xu [30]	2007	2003-2006	Jiangsu	172	834	172	7	
Wang Weiying [31]	2016	2014-2015	Beijing	42	384	22	38	42	5	

Notes: “m” refers to month(s); “y” refers to year(s)
Sensitivity analysis

The cumulative recurrence rate at 3 months, 6 months, 1 year, 2 years, and 5 years after AIS were calculated respectively by the fixed effect model and the random effects model, as shown in Table 3. The results showed that the combined results of different effect models at 6 months, 5 years after AIS were consistent, suggesting that the results of meta analysis of cumulative recurrence rates were more stable and reliable. In the sensitivity analysis of cumulative recurrence rate at 3 months, 1 year and 2 years after AIS, it was found that the results of the meta-analysis of the 2 cumulative relapse rates were
inconsistent, suggesting that the stability coefficient of the results of meta analysis of the 2 cumulative recurrence rates were lower.

Publication bias analysis
The results of Egger’s test showed that there might be publication bias in the literature which reported the cumulative recurrence rate at 6 months, 1 year and 2 years after the initial ischemic stroke ($P<0.05$). However, there was no significant publication bias in the literature which reported the cumulative recurrence rate at 3 months and 5 years after the initial AIS ($P>0.05$).

Discussion
Acute ischemic stroke has a higher recurrence rate. Compared with initial AIS patients, the mortality and disability rate of recurrent ischemic stroke patients are significantly increased, causing great troubles and burdens for patients and families. There are different reports on the recurrence rate of ischemic stroke in China, and the results of different literature reports are quite different. Therefore, it is necessary to summarize and analyze the recurrence rate of AIS in China. The study included 29 studies covering 19 provinces (cities and autonomous regions) in China, with a total of 22 484 cases. The prevalence of recurrent ischemic stroke in China in recent years was well described in this study. Through meta analysis, the pooled cumulative recurrence risk at 3 months, 6 months, 1 year, 2 years, and 5 years after initial AIS in China was 4.5%, 7.8%, 13.6%, 17.5%, and 30.9%, respectively. According to the 2017 Chinese Stroke Prevention Report, the 1-year recurrence rate of patients with AIS in China was 13.2%[32]. The result is basically consistent with the result of this study, which also verified the accuracy and reliability of this study. However, a foreign meta analysis involving 13 studies[1] indicates that the pooled cumulative risk was 11.1% (95% CI: 9.0-13.3) at 1 year, 26.4% (95% CI: 20.1-32.8) at 5 years after initial stroke, which was lower than the pooled cumulative recurrence risk obtained in this study. It is speculated that the reasons for this difference may be related to the regional and ethnic differences in the recurrence of ischemic stroke and the different inclusion criteria of the 2 studies. Differences in sample sizes are also taken into account.

The study strictly follows the reporting specification of observational meta-analysis, but there are still some limitations that need to be explained. (1) Restricted to the characteristics of single-rate meta analysis, there may be a high degree of heterogeneity[33]. It is consistent with the meta analysis of single rate published at home and
Table 3 Sensitivity analysis results

Cumulative risk of stroke recurrence	Fixed effect model	Random effect model		
	Combined effect value	95% CI	Combined effect value	95% CI
3 months after first-ever AIS	1.036	1.031 – 1.042	0.045	0.031 – 0.058
6 months after first-ever AIS	0.054	0.048 – 0.061	0.078	0.056 – 0.100
1 year after first-ever AIS	0.049	0.046 – 0.052	0.136	0.110 – 0.162
2 years after first-ever AIS	0.079	0.074 – 0.083	0.175	0.124 – 0.226
5 years after first-ever AIS	0.280	0.263 – 0.297	0.309	0.202 – 0.417

[abroad][34-35]. (2) The results of the study were scattered. Considering that the cumulative recurrence rate of AIS was influenced by time factors, the total recurrence rate was not calculated in this study. And the subgroup analysis of sex, age, region and so on could not be carried out without calculating the total recurrence rate. (3) The severity of the patient’s condition is different, resulting in a large heterogeneity among the studies. (4) Due to the fact that the literature included in this study were limited to publicly published and accepted research in the database, and some of the literature had shorter follow-up time, non-reported response rate, non-reported data integrity and methods of handling missing values, and so on, the publication bias of the literature relatively large. It may affect the accuracy of the results. Therefore, the results of this study still need to be further verified by random sampling and large-scale national epidemiological surveys.

To sum up, the recurrence risk after acute ischemic stroke in China is relatively high. It is suggested that medical and health departments at all levels must pay more attention to the prevention and treatment of recurrent ischemic stroke, and attach importance to the recurrence factors of ischemic stroke. We should take appropriate interventions to reduce the recurrence of ischemic stroke, improve the prognosis, lower the fatality rate and disability rate.

Declaration

The authors of this article declare no conflict of interest.

References

1 Mohan KM, Wolfe CDA, Rudd AG, et al. Risk and Cumulative Risk of Stroke Recurrence A Systematic Review and Meta-Analysis. Stroke, 2011, 42(5): 1489-1494.
2 Wells G, Shea B, Connell D, et al. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Non-randomised Studies in Meta-analyses. (Feb. 262018) [Online] Available from: http://www.ohri.ca/programs/clinical_epidemiology/oxford.htm [Accessed on March 182018].
3 Chen P. Analysis of risk factors for recurrence in 401 patients with ischemic stroke. Yinchuan: Ningxia Medical University, 2014.
4 Zheng JH. Risk factors for the recurrence of acute ischemic stroke and the predictive value of LDL/HDL. Chin J Gerontol, 2015, (21): 6123-6124.
5 Li Q, Zhong CZ. Analysis of risk factors for the recurrence of acute ischemic stroke and the predictive value of the ratio of low-density lipoprotein and high-density lipoprotein for the stroke recurrence. Chin J Circ, 2014, (9): 694 - 697.
6 Luan M, Wen ZC. Analysis of risk factors for the recurrence of patients with acute ischemic stroke and the construction of prognostic index model. J Clin Emerg, 2016, 17(8): 610-613.
7 Su CQ. Predictive factors for the recurrence of cerebral infarction. Fuzhou: Fujian Medical University, 2014.
8 Song L. Risk factors for recurrence of cerebral infarction. Dalian: Dalian Medical University, 2008.
9 Cheng YF, Lin L, Dong H, et al. Analysis of factors influencing recurrence in patients with cerebral infarction. Med Rev, 2017, 23(21): 4352-4355.
10 An YC, Cheng Y, Wang YX, et al. The Cox regression analysis of the risk factors for the 3-year recurrence of
ischemic stroke and the construction of the prediction model. Chin J Behav Med Brain Sci, 2017, 26(6): 544-548.

11 Chen YX. Analysis of risk factors for the recurrence of ischemic stroke. Tangshan: Hebei Union University, 2011.

12 Zhang SN, Xu GL, Fan XY, et al. Analysis of risk factors for ischemic stroke. J Med Postgrad, 2008, 21(9): 962-965.

13 Zheng SB, Yan YJ, Li J, et al. Risk factors for the recurrence of cerebral infarction in Minhang District of Shanghai. Chin J Chronic Dis Prev Control, 2017, 25(8): 595-598.

14 Wang J. Analysis of recurrence and high risk factors in 1 year of first-episode ischemic stroke. Suzhou: Suzhou University, 2016.

15 Tang ML. Distribution characteristics of risk factors in inpatients with stroke in China, cumulative recurrence rate in the first four years and its influencing factors. Beijing: Capital Medical University, 2016.

16 Zhang CQ, Wang YL, Wang CX, et al. Analysis of risk factors for recurrence of non-cardiogenic ischemic stroke. Chin J Stroke, 2018, 13(1): 23-28.

17 Zhao Y, Su J, Fu ZX, et al. Analysis of risk factors in patients with recurrent cerebral infarction. Chinese Journal of practical Neuropathy, 2014, 17(17): 73-74.

18 Ma JJ, Tan YC, Geng DQ. Analysis of risk factors for short-term recurrence of ischemic stroke. Med Inform, 2015, (41): 17-18.

19 Yan ZR, Liu CY, Zhao L, et al. Study on the recurrence and risk factors of ischemic cerebrovascular disease. Stroke Neurop, 1998, (4): 192-195.

20 Wang LP, Zhu HM. Analysis of related factors of recurrent cerebral infarction. J Pract Diag Ther, 2005, (1): 58-59.

21 Duan KL, Liu ZZ, Lin XM, et al. Analysis of risk factors associated with 1-year stroke recurrence in patients with acute ischemic stroke in Xi’an area. J Shanxi Med Univ, 2018, 49(05): 539-543.

22 Yang JP, He GS. Discussion on the factors related to the recurrence of ischemic stroke. Public Medical Forum, 2014, 18(19): 2582-2583.

23 Zhang M. Factors of secondary prevention and recurrence in 196 patients with ischemic stroke. Jinan: Shandong University, 2016.

24 Xue M, Zhang M, Zhu L, et al. Related risk factors for the recurrence of ischemic stroke. Chin Basic Med, 2013, 20(14): 2081-2083.

25 Wang XQ. Analysis of the risk factors of recurrent stroke in 450 patients with ischemic stroke. Shijiazhuang: Hebei Medical University, 2016.

26 Chen JF, Chen GS. Recurrence and risk factors in patients with first-episode ischemic stroke. J Ningxia Med Univ, 2015, 37(5): 546-548.

27 Xu LN, Jia LB, Pang SX, et al. Study on related factors of the recurrence in patients with first-episode ischemic stroke. Chin J Pract Med, 2018, 45(15): 11-13.

28 Zhang YL, Zheng H, Zeng YJ, et al. Risk factors for the recurrence in middle-aged patients with acute cerebral infarction. Shandong Med, 2012, 52(29): 62-63.

29 Sun SJ, Zhou JL. Relationship between the characteristics of carotid artery disease and the recurrence in one year. Chin J Gerontol, 2013, 33(19): 4857-4858.

30 Xu G, Liu X, Wu W, et al. Recurrence after Ischemic Stroke in Chinese Patients: Impact of Uncontrolled Modifiable Risk Factors. Cerebrovasc Dis, 2007, 23(23): 117-120.

31 Wang WY, San WW, Yan SM, et al. Cox regression analysis of 1-year recurrence risk factors in patients with acute ischemic stroke. Chin J Cardiovas Cerebrovasc Dis, 2016, 18(1): 46-50.

32 Wang LD, Liu JM, Yang Q, et al. Summary of 2017 report on prevention and treatment of stroke in China. Chin J Cerebrovasc Dis, 2018, 15(11): 611-617.

33 Shi XQ, Wang ZZ. Application of Meta-regression and subgroup analysis in heterogeneity processing. Chin J Epidemiol, 2008, 29(5): 497-501.

34 Ahmed B, Alkhaffaf H. Prevalence of significant asymptomatic carotid artery disease in patients with peripheral vascular disease: a metaanalysis. Eur J Vasc Endovasc Surg, 2009, 37(3): 262-71.

35 Han JM, Wang ZY, Yang L, et al. Meta analysis of depression rate in elderly population from Chinese hospital. Chin J Gerontol, 2019, 39(05): 1117-1121.