Assessing performance of the Healthcare Access and Quality Index, overall and by select age groups, for 204 countries and territories, 1990–2019: a systematic analysis from the Global Burden of Disease Study 2019

GBD 2019 Healthcare Access and Quality Collaborators*

Summary

Background Health-care needs change throughout the life course. It is thus crucial to assess whether health systems provide access to quality health care for all ages. Drawing from the Global Burden of Diseases, Injuries, and Risk Factors Study 2019 (GBD 2019), we measured the Healthcare Access and Quality (HAQ) Index overall and for select age groups in 204 locations from 1990 to 2019.

Methods We distinguished the overall HAQ Index (ages 0–74 years) from scores for select age groups: the young (ages 0–14 years), working (ages 15–64 years), and post-working (ages 65–74 years) groups. For GBD 2019, HAQ Index construction methods were updated to use the arithmetic mean of scaled mortality-to-incidence ratios (MIRs) and risk-standardised death rates (RSDRs) for 32 causes of death that should not occur in the presence of timely, quality health care. Across locations and years, MIRs and RSDRs were scaled from 0 (worst) to 100 (best) separately, putting the HAQ Index on a different relative scale for each age group. We estimated absolute convergence for each group on the basis of whether the HAQ Index grew faster in absolute terms between 1990 and 2019 in countries with lower 1990 HAQ Index scores than countries with higher 1990 HAQ Index scores and by Socio-demographic Index (SDI) quintile. SDI is a summary metric of overall development.

Findings Between 1990 and 2019, the HAQ Index increased overall (by 19.6 points, 95% uncertainty interval 17.9–21.3), as well as among the young (22.5, 19.9–24.7), working (17.2, 15.2–19.1), and post-working (15.1, 13.2–17.0) age groups. Large differences in HAQ Index scores were present across SDI levels in 2019, with the overall index ranging from 30.7 (28.6–33.0) on average in low-SDI countries to 83.4 (82.4–84.3) on average in high-SDI countries. Similarly large ranges between low-SDI and high-SDI countries, respectively, were estimated in the HAQ Index for the young (40.4–89.0), working (33.8–82.8), and post-working (30.4–79.1) groups. Absolute convergence in HAQ Index was estimated in the young group only. In contrast, divergence was estimated among the working and post-working groups, driven by slow progress in low-SDI countries.

Interpretation Although major gaps remain across levels of social and economic development, convergence in the young group is an encouraging sign of reduced disparities in health-care access and quality. However, divergence in the working and post-working groups indicates that health-care access and quality is lagging at lower levels of social and economic development. To meet the needs of ageing populations, health systems need to improve health-care access and quality for working-age adults and older populations while continuing to realise gains among the young.

Funding Bill & Melinda Gates Foundation.

Introduction

The share of the global population aged 15 years and older increased from 67% in 1990 to 74% in 2019. These shifts in age structure are forecast to continue into 2100, when 86% of the global population is expected to be older than 15 years. The drugs, equipment, technology, and know-how required to effectively address the health needs of working-age populations and older adults differ from what is required to address the needs of children and adolescents because different diseases and conditions are prominent in the different age groups. To improve health outcomes and avert premature mortality, health systems must provide access to quality health care for the working-age population and older adults while simultaneously maintaining and improving health-care access and quality for younger generations.

Existing evidence suggests that health systems in low-income and middle-income countries (LMICs) have not been primarily funded and organised around providing access to quality health care for the working-age population and older adults. Non-communicable...
Research in context

Evidence before this study
The Healthcare Access and Quality (HAQ) Index, previously published in 2017 and 2018, uses 32 causes of amenable mortality to measure health-care access and quality over time in a comparable way across countries. We conducted a PubMed title and abstract search for the period of Jan 1, 1990, to Sept 15, 2020, for "amenable mortality". A total of 17 studies were found that compared amenable mortality across countries, but only previous iterations of the HAQ Index study provided estimates for all countries and territories and standardised risks that could contribute to variation not associated with health-care access and quality. Only seven studies considered amenable mortality by age group. Just two studies compared changes in amenable mortality over the life course and these studies focused only on countries in the EU and Latin America and the Caribbean, respectively. Another approach, employed by Kruk and colleagues (2018), used amenable mortality along with health-care utilisation data to assess the burden of poor-quality health care in 137 low-income and middle-income countries (LMICs).

Added value of this study
This study examines health-care access and quality in more depth than previous versions of the HAQ Index by assessing performance for the first time for three select age groups: the young (ages 0–14 years), working (ages 15–64 years), and post-working (ages 65–74 years) groups, based on the Organisation for Economic Co-operation and Development definition of the working age population (15–64 years) and the Nolte and McKee definition of maximum age for amenable mortality, 74 years. The updated 2019 HAQ Index uses a mean-weighting scheme, improving its interpretability compared with previous versions based on principal component analysis, but preserving the approach of past iterations by standardising the influence of behavioural and environmental risk factors. The HAQ Indices are computed with ranges of risk-standardised death rates and mortality-to-incidence ratios separately for each age group, such that the values indicate health-care access and quality relative to the best and worst observed over 1990–2019 in each age group. We measure absolute convergence—ie, whether countries with low 1990 HAQ Index scores had faster growth between 1990 and 2019 than countries with high 1990 HAQ Index scores. We also examined absolute convergence between high Socio-demographic Index (SDI) countries and countries in other SDI quintiles. This analysis adds to the evidence base surrounding how well countries across SDI levels have improved health-care access and quality for younger, working, and older populations over time.

Implications of all the available evidence
The HAQ Index rose in all three age groups on average but changes in the gap with high-SDI countries differed depending on the age group. Absolute convergence was most substantial among 0–14-year-olds; the absolute difference with the average HAQ Index score in high-SDI quintile countries declined (showing convergence) for the high-middle, middle, and low-middle SDI countries. Among the working and post-working age groups, the average gap with the high-SDI quintile countries declined only in middle-SDI quintile countries, remaining unchanged or growing in the other quintiles. Growing distance between low-SDI countries and the highest HAQ Index for the working and post-working groups in particular is concerning because the population aged 15 years and older is forecast to comprise 86% of the population worldwide by 2100 and 57% of the population in these countries by 2100. Health systems in LMICs might have more difficulty addressing the health-care needs of populations aged 15 years and older because of a lack of funding directed towards the non-communicable diseases that affect these populations most. To meet the health-care needs of all ages, health systems need to hasten progress in providing access to quality health care for individuals aged 15 years and older while maintaining progress among younger groups.

Research in context

Evidence before this study
The Healthcare Access and Quality (HAQ) Index, previously published in 2017 and 2018, uses 32 causes of amenable mortality to measure health-care access and quality over time in a comparable way across countries. We conducted a PubMed title and abstract search for the period of Jan 1, 1990, to Sept 15, 2020, for “amenable mortality”. A total of 17 studies were found that compared amenable mortality across countries, but only previous iterations of the HAQ Index study provided estimates for all countries and territories and standardised risks that could contribute to variation not associated with health-care access and quality. Only seven studies considered amenable mortality by age group. Just two studies compared changes in amenable mortality over the life course and these studies focused only on countries in the EU and Latin America and the Caribbean, respectively. Another approach, employed by Kruk and colleagues (2018), used amenable mortality along with health-care utilisation data to assess the burden of poor-quality health care in 137 low-income and middle-income countries (LMICs).

Added value of this study
This study examines health-care access and quality in more depth than previous versions of the HAQ Index by assessing performance for the first time for three select age groups: the young (ages 0–14 years), working (ages 15–64 years), and post-working (ages 65–74 years) groups, based on the Organisation for Economic Co-operation and Development definition of the working age population (15–64 years) and the Nolte and McKee definition of maximum age for amenable mortality, 74 years. The updated 2019 HAQ Index uses a mean-weighting scheme, improving its interpretability compared with previous versions based on principal component analysis, but preserving the approach of past iterations by standardising the influence of behavioural and environmental risk factors. The HAQ Indices are computed with ranges of risk-standardised death rates and mortality-to-incidence ratios separately for each age group, such that the values indicate health-care access and quality relative to the best and worst observed over 1990–2019 in each age group. We measure absolute convergence—ie, whether countries with low 1990 HAQ Index scores had faster growth between 1990 and 2019 than countries with high 1990 HAQ Index scores. We also examined absolute convergence between high Socio-demographic Index (SDI) countries and countries in other SDI quintiles. This analysis adds to the evidence base surrounding how well countries across SDI levels have improved health-care access and quality for younger, working, and older populations over time.

Implications of all the available evidence
The HAQ Index rose in all three age groups on average but changes in the gap with high-SDI countries differed depending on the age group. Absolute convergence was most substantial among 0–14-year-olds; the absolute difference with the average HAQ Index score in high-SDI quintile countries declined (showing convergence) for the high-middle, middle, and low-middle SDI countries. Among the working and post-working age groups, the average gap with the high-SDI quintile countries declined only in middle-SDI quintile countries, remaining unchanged or growing in the other quintiles. Growing distance between low-SDI countries and the highest HAQ Index for the working and post-working groups in particular is concerning because the population aged 15 years and older is forecast to comprise 86% of the population worldwide by 2100 and 57% of the population in these countries by 2100. Health systems in LMICs might have more difficulty addressing the health-care needs of populations aged 15 years and older because of a lack of funding directed towards the non-communicable diseases that affect these populations most. To meet the health-care needs of all ages, health systems need to hasten progress in providing access to quality health care for individuals aged 15 years and older while maintaining progress among younger groups.

diseases (NCDs) affect adults more than children and adolescents—98% of NCD deaths were among populations aged 15 years and older in 2019. A number of NCDs are also risk factors for severe COVID-19 cases, hospitalisation, and death. A growing body of evidence suggests that health systems in LMICs are lagging with respect to NCD care. Less than 2% of the US$40 billion in development assistance for health disbursed annually in LMICs focuses on NCDs. There is also increasing evidence that these countries have invested a substantial share of government funds for health in areas other than NCDs (eg, HIV/AIDS, malaria, and tuberculosis), suggesting NCD investments might not have kept pace with the growing burden of NCDs. Using inputs to the universal health coverage effective coverage index, effective coverage of a representative set of NCD interventions is lower on average than coverage of child, maternal, and infectious disease interventions until economic and social development is high. However, the extent to which less investment and low service coverage for NCDs translates into higher rates of amenable mortality for the population that is of working age or older is currently unclear.

Amenable mortality, or deaths from causes that should not occur in the presence of high-quality health care, has been used as a measure of the health-care dimension of health system performance for nearly 50 years. The most widely used list of causes of mortality amenable to health care was developed by Nolte and McKee, and has since been used to compare high-income countries' performances at length. A recent study by Kruk and colleagues used case-fatality rates for causes

"www.thelancet.com/lancetgh Vol 10 December 2022"
included in the McKee and Nolte list and additional diseases to estimate the separate effects of utilisation versus quality for 137 countries. The only studies that are global in scope, however, are the Healthcare Access and Quality (HAQ) Index studies, developed as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD). The HAQ Index is also the only approach that makes estimates of health-care access and quality comparable across locations using risk-standardised death rates (RSDRs) and mortality-to-incidence ratios (MIRs), as a way of excluding drivers not connected to the health system.

A small number of existing studies have compared countries using amenable mortality across the life course, although these only focus on a subset of countries and territories. Using amenable mortality, existing evidence suggests European countries improved health-care access and quality most for children and adolescents, with substantially bigger declines in amenable mortality estimated for these age groups as compared with older populations. Past studies on amenable mortality by age have engaged the debate about the possibility of convergence in mortality and life expectancy. Convergence in amenable mortality could be an indication of the diffusion of health-care technology (eg, pharmaceuticals and equipment) and know-how from health systems at the frontier of health-care access and quality to those operating less effectively. Alternatively, wider trends in social and economic development might be more important drivers of improved health-care access and quality through improved ability to pay, investment in health, better education, and other factors.

This study extends previous research on the HAQ Index and investigates health-care access and quality over the life course. Our research questions focused on: (1) how much does health-care access and quality differ across age, and (2) to what extent is there convergence or divergence in health-care access and quality over time by age? We address these questions by computing the HAQ Index separately for three select age groups: young (ages 0–14 years), working (ages 15–64 years), and post-working (65–74 years). We grouped populations on the basis of the Organisation for Economic Co-operation and Development (OECD) definition of working age population (15–64 years) and the age limit (75 years) beyond which deaths were not amenable to health care used by Nolte and McKee. With its expanded data inputs and methodological advances, the GBD 2019 study enabled the improved estimation of the HAQ Index, allowing us to produce the HAQ Index for 204 countries and territories between 1990 and 2019 based on scaled MIRs and RSDRs for 32 causes of death that should not occur in the presence of timely, quality health care. We use the updated index to examine convergence stratified for each age group. For each age group, we considered: whether the HAQ Index grew faster in countries with lower 1990 scores; whether variation in the HAQ Index declined; and whether, between 1990 and 2019, average HAQ Index scores grew closer to scores in top-performing countries, as grouped by social and economic development. This manuscript was produced as part of the GBD Collaborator Network and in accordance with the GBD Protocol.

Methods
Overview
The 2019 HAQ Index supersedes and improves upon previous versions of the HAQ Index. First, the 2019 HAQ Index draws mortality, incidence, and risk factor estimates from GBD 2019 to generate MIRs and RSDRs, which represent mortality amenable to health-care access and quality. GBD 2019 improved upon previous GBD iterations by adding a substantial amount of new data, using more standardised cross-walking methods, improving redistribution algorithms, processing clinical informatics data to reflect differential access to health-care facilities across locations, and adding new systematic reviews for risk–outcome pairs, among other improvements. Further information on data additions and cause-specific modelling updates (eg, cancers, tuberculosis) can be found in the appendix (pp 59–169) and the GBD 2019 capstone series. Second, in addition to an overall HAQ Index, we estimated the index for three select age groups: young, working age, and post-working age. Third, we expanded the list of causes for which we used MIRs rather than RSDRs, thereby better representing causes for which health-care quality and access do not affect incidence or for which detection and diagnosis is poor in some settings. Finally, we used the arithmetic mean of scaled causes of amenable mortality rather than using principal component analysis weights, improving interpretability but preserving nearly all the cross-country variation of previous versions of the HAQ Index (appendix pp 15–30). The HAQ Index is also one of the most commonly used covariates in the GBD study.

This analysis complies with the Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER) statement, with further information provided in the appendix (pp 11–13).

Mapping the Nolte and McKee amenable cause list to GBD causes
The first step in our analysis was to identify amenable mortality, or mortality that should not be present in locations where health care is accessed and of good quality. From the list of 34 causes of amenable mortality created by Nolte and McKee, we used International Classification of Diseases codes to identify 32 corresponding to causes in the GBD cause list (appendix p 20). Only deaths caused by benign prostatic hyperplasia and thyroid diseases were omitted because GBD includes these causes in a broader residual cause...
group. Nolte and McKee’s residual category “all respiratory diseases” was disaggregated and mapped onto “upper respiratory infections” and “lower respiratory infections”. The Nolte and McKee category “other infections” was disaggregated into diphtheria and tetanus.

Age groupings
In addition to the overall HAQ Index (ages 0–74 years), we grouped populations into three select age groups: young (ages 0–14 years), working (ages 15–64 years), and post-working (ages 65–74 years) according to the OECD definition of the working age population (15–64 years). Groupings aim to distinguish health-care access and quality tied to employment (if any), versus access to quality health care enabled by social health insurance coverage related to ageing (among those aged 65 years and older), and from access to child health care and quality (for those younger than 15 years). We cap the amenable age range at 75 years to be consistent with the maximum identified by Nolte and McKee. Additionally, some causes of amenable mortality identified by Nolte and McKee do not pertain to all age groups (appendix p 20).

Risk-standardised death rates and mortality-to-incidence ratios
As in previous HAQ Index studies, we standardised death rates to account for environmental and behavioural risk factors to isolate differences in health-care access and quality from differences due to background risk exposure. We risk-standardised death rates by removing the joint effects of location-specific behavioural and environmental risk factors and replacing them with the global background risk for all locations. Groupings aim to distinguish health-care access and quality tied to employment (if any), versus access to quality health care enabled by social health insurance coverage related to ageing (among those aged 65 years and older), and from access to child health care and quality (for those younger than 15 years). We cap the amenable age range at 75 years to be consistent with the maximum identified by Nolte and McKee. Additionally, some causes of amenable mortality identified by Nolte and McKee do not pertain to all age groups (appendix p 20).

To construct the HAQ Index, an offset of one death per million was added to age-group-specific MIRs and RSDRs to address the existence of zeroes for age–cause combinations in some countries. All RSDRs and MIRs were subsequently log-transformed. Next, the 1st percentile and 99th percentile of estimates were used to set 0 and 100, respectively, for each of the 32 causes, where 0 is the highest (worst) MIR or RSDR and 100 is the lowest (best) values. Calculations were done separately for each cause (32) and HAQ Index group (four) across all estimates, countries, and years. Because health-care access and quality has generally improved over time, the worst (lowest) MIRs and RSDRs for each cause and age category combination are generally from earlier years and the best (highest) are generally in later years of the time series.

Finally, the updated version of the HAQ Index takes the arithmetic mean of all the scaled causes. The advantage of using the mean rather than weighting inputs based on their variation across time and countries using principal component analysis is that the mean of all scaled causes is easier to interpret. The mean-weighted HAQ Index is highly correlated with previous principal component analysis-weighted versions of the HAQ Index (Pearson correlation coefficient of 0.99, appendix pp 23–26).

Because each MIR and RSDR was calculated separately for each age group and cause, the final HAQ Indices represent the value between the best and worst performers within each group. The HAQ Index values for each grouping are not on the same scale. The rationale for separate scaling is that outcome measures for different age groups do not represent the same health-care access and quality performance. Therefore, the respective indices should be conceptualised as health systems’ health-care access and quality relative to worst performers and best performers within each age group across the entire 1990–2019 period.

Examining changes over time and convergence
We examined evidence of convergence in the HAQ Index for each age group with three approaches. We used countries’ Socio-demographic Index (SDI), a summary measure of income per person, fertility rates, and average educational attainment, to represent the role of social and economic development in these changes. First, we
2019 HAQ Index (95% UI)

Region	Overall (0–74 years)	Young (0–14 years)	Working (15–64 years)	Post-working (65+ years)
Global	54.4 (53.1 to 55.7)	64.5 (62.9 to 66.0)	55.9 (54.3 to 57.5)	54.2 (49.9 to 52.8)
High SDI	82.4 (80.7 to 84.3)	89.0 (87.4 to 90.8)	82.8 (81.5 to 84.3)	79.1 (77.7 to 80.7)
High-middle SDI	70.0 (68.5 to 71.2)	79.3 (78.2 to 80.4)	69.6 (68.0 to 71.0)	64.7 (63.0 to 66.2)
Middle SDI	60.9 (58.7 to 63.0)	68.2 (66.6 to 69.9)	62.7 (60.5 to 65.4)	59.9 (56.4 to 63.5)
Low-middle SDI	39.0 (36.4 to 41.7)	50.1 (47.2 to 53.1)	41.0 (37.7 to 44.5)	37.8 (34.2 to 41.6)
Low SDI	30.7 (28.6 to 32.0)	40.4 (37.1 to 44.0)	33.8 (31.0 to 36.6)	30.4 (27.9 to 33.0)

Central Europe, eastern Europe, and central Asia	Overall (0–74 years)	Young (0–14 years)	Working (15–64 years)	Post-working (65+ years)
Central Asia	49.2 (47.6 to 50.8)	62.3 (59.5 to 64.7)	50.6 (49.5 to 51.8)	49.6 (48.0 to 51.1)
Armenia	63.2 (61.1 to 65.5)	76.8 (74.1 to 78.8)	61.7 (58.8 to 64.6)	55.0 (51.2 to 58.9)
Azerbaijan	53.3 (49.7 to 56.9)	62.6 (57.7 to 67.6)	57.4 (55.0 to 59.8)	54.9 (51.2 to 58.2)
Georgia	57.7 (55.7 to 60.0)	71.1 (68.6 to 73.7)	56.0 (53.3 to 58.8)	52.7 (49.6 to 55.9)
Kazakhstan	59.5 (57.4 to 61.5)	72.0 (69.2 to 74.9)	58.3 (55.3 to 58.8)	54.7 (51.9 to 57.7)
Kyrgyzstan	54.2 (52.2 to 56.1)	65.8 (63.6 to 67.6)	53.4 (51.0 to 55.9)	54.8 (51.9 to 57.7)
Mongolia	47.4 (45.7 to 49.2)	61.8 (57.4 to 66.3)	45.3 (41.5 to 49.3)	45.6 (41.3 to 49.8)
Tajikistan	42.5 (39.6 to 45.7)	56.9 (53.4 to 60.6)	45.8 (43.0 to 48.9)	42.8 (39.0 to 46.8)
Turkmenistan	48.7 (47.5 to 51.2)	68.5 (63.6 to 73.6)	54.3 (50.1 to 58.5)	54.8 (51.9 to 57.7)
Uzbekistan	49.0 (46.8 to 51.4)	71.6 (66.2 to 77.1)	56.4 (52.5 to 60.1)	54.5 (50.7 to 58.2)
Central Europe	51.2 (48.6 to 53.9)	72.0 (68.3 to 75.3)	60.2 (57.0 to 63.4)	61.4 (56.4 to 66.8)
Albania	67.5 (64.5 to 70.6)	72.9 (69.0 to 76.8)	67.9 (64.1 to 71.6)	67.9 (64.1 to 71.6)
Bosnia and Herzegovina	68.6 (65.0 to 72.1)	72.8 (69.8 to 75.9)	70.2 (66.4 to 74.1)	70.2 (66.4 to 74.1)
Herzegovina	65.0 (61.7 to 68.3)	76.3 (72.1 to 80.6)	64.1 (59.2 to 69.6)	64.1 (59.2 to 69.6)
Bulgaria	64.9 (61.1 to 68.1)	78.9 (75.9 to 81.3)	66.4 (62.0 to 71.0)	66.4 (62.0 to 71.0)
Croatia	81.4 (78.7 to 84.5)	89.8 (87.9 to 92.0)	81.6 (78.8 to 85.1)	73.0 (68.5 to 76.8)
Czechia	81.5 (78.5 to 84.1)	92.3 (90.0 to 94.4)	80.2 (76.8 to 83.3)	70.5 (66.6 to 74.1)
Hungary	74.4 (71.4 to 77.7)	87.7 (82.5 to 92.9)	71.3 (67.2 to 75.4)	64.8 (60.7 to 68.4)
Montenegro	76.1 (73.6 to 78.2)	85.5 (83.6 to 87.5)	75.7 (73.0 to 78.0)	70.6 (67.6 to 73.3)
North	67.7 (64.3 to 70.7)	77.1 (74.7 to 79.3)	71.0 (67.1 to 74.6)	64.6 (60.5 to 68.3)
Macedonia	73.2 (69.7 to 77.7)	87.2 (83.5 to 90.4)	70.6 (66.7 to 74.0)	63.3 (57.6 to 69.0)
Poland	69.7 (67.2 to 72.1)	81.2 (78.9 to 84.2)	67.3 (63.4 to 71.0)	63.2 (59.0 to 66.7)

Absolute change 1990–2019 (95% UI)

Region	Overall (0–74 years)	Young (0–14 years)	Working (15–64 years)	Post-working (65+ years)
Global	19.6 (17.9 to 21.3)	22.5 (19.9 to 24.7)	17.2 (15.2 to 19.1)	15.1 (13.2 to 17.0)
High SDI	15.1 (14.3 to 15.9)	11.4 (10.8 to 12.1)	15.0 (14.0 to 16.0)	16.7 (15.6 to 17.8)
High-middle SDI	17.8 (16.5 to 19.1)	17.7 (16.3 to 19.3)	16.4 (14.9 to 17.8)	15.1 (13.6 to 16.6)
Middle SDI	25.9 (23.2 to 28.8)	28.4 (26.2 to 30.3)	22.9 (20.9 to 26.7)	22.0 (17.2 to 26.4)
Low-middle SDI	17.5 (14.0 to 20.7)	20.8 (15.2 to 24.9)	15.0 (11.1 to 19.2)	13.2 (9.4 to 17.5)
Low SDI	25.7 (20.3 to 30.2)	28.7 (23.5 to 33.9)	19.7 (15.7 to 23.7)	6.8 (4.3 to 9.3)

(Table continues on next page)
Region	2019 HAQ Index (95% UI)	Absolute change 1990-2019 (95% UI)		
Overall	(0-24 years)	(25-64 years)	(65+ years)	
Overall	(Overall)	(Young)	(Working)	(Post-working)
Young	(0-14 years)	(15-64 years)	(65-74 years)	
Post-working	(65-74 years)	(25-64 years)	(65+ years)	(Post-working)
Post-working	(Overall)	(Young)	(Working)	(Overall)
Post-working	(0-24 years)	(25-64 years)	(65+ years)	(Young)
Post-working	(65-74 years)	(Overall)	(Young)	(Working)

(Continued from previous page)

Region	2019 HAQ Index (95% UI)	Absolute change 1990-2019 (95% UI)

(Continued on next page)
Country	2019 HAQ Index (95% UI)	Absolute change 1990-2019 (95% UI)						
	(0-74 years)	(0-14 years)	(15-64 years)	Post-working (65-74 years)	Overall	Young	Working	Post-working
Western Europe	87.2	92.9	88.0	76.3	18.3	14.0	18.6	19.3
Andorra	82.9	92.9	88.0	76.3	18.3	14.0	18.6	19.3
Austria	83.3	91.0	87.2	73.9	17.1	12.8	18.2	18.2
Belgium	86.6	87.8	85.0	86.6	14.4	10.9	15.2	15.2
Croatia	86.2	87.8	86.6	87.8	17.1	12.8	18.2	18.2
Cyprus	88.0	88.0	87.8	86.6	14.4	10.9	15.2	15.2
Denmark	85.5	84.1	83.2	84.1	15.2	10.1	15.1	19.8
Finland	87.7	85.9	87.0	85.9	17.4	12.3	20.4	23.0
France	88.0	87.7	86.8	87.7	19.3	13.2	18.6	21.1
Germany	87.0	87.3	84.2	78.4	15.2	10.1	15.1	19.8
Greece	83.9	84.4	81.4	71.4	8.3	6.8	8.3	12.5
Iceland	91.1	91.0	89.0	74.9	15.2	10.1	15.1	19.8
Ireland	90.1	89.7	82.4	75.0	15.2	10.1	15.1	19.8
Israel	83.1	83.7	80.6	70.3	17.4	12.1	16.5	18.7
Italy	86.5	91.0	87.3	71.5	15.3	12.1	16.5	18.7
Luxembourg	87.5	92.6	86.6	77.5	19.6	13.9	20.5	21.3
Malta	85.1	85.0	82.6	76.5	17.3	10.0	16.5	24.1
Monaco	87.4	87.7	81.4	73.0	15.3	10.1	15.1	19.8
Netherlands	91.1	92.7	90.5	82.7	16.0	12.0	16.3	17.0
Norway	90.4	90.7	89.7	82.0	17.8	13.1	19.1	20.5
Portugal	82.9	84.0	80.8	77.0	23.0	22.6	22.3	22.1
San Marino	88.6	91.8	89.2	79.3	13.3	10.8	13.0	15.6
Spain	89.7	91.2	89.7	87.9	18.6	14.0	20.6	19.9
Sweden	90.4	90.7	89.0	82.5	18.6	14.0	20.6	19.9
Switzerland	92.6	92.9	92.7	81.6	14.0	10.9	14.0	10.9
UK	83.3	90.1	88.3	80.6	23.0	20.6	23.0	20.6
Latin America and Caribbean	57.0	58.7	54.1	48.7	18.3	13.8	23.8	13.7
Andean Latin America	52.1	56.5	50.9	43.1	18.3	13.8	23.8	13.7
Bolivia	40.5	50.1	43.1	36.1	20.3	15.6	24.0	14.8

(Continued from previous page)
2019 HAQ Index (95% UI)

	Overall (0-24 years)	Young (0-14 years)	Working (15-64 years)	Post-working (65-74 years)
Ecuador	52.9 (49.5 to 56.2)	61.4 (57.6 to 65.1)	52.3 (48.1 to 56.5)	51.4 (46.2 to 56.3)
Peru	60.0	66.4	60.7	61.1
Caribbean	42.2	42.6	42.2	47.0 (41.5 to 47.5)
Antigua and Barbuda	58.2	71.2	67.0 (52.0 to 57.9)	59.8
The Bahamas	52.6	70.3	47.1	48.5
Barbados	59.0	73.8	55.7	52.7
Belize	49.5	62.2	46.1	49.1
Bermuda	71.4	82.3	76.3	72.2
Cuba	66.2	82.1	62.8	58.1 (59.6 to 66.3)
Dominica	45.2	55.5	46.1	42.3 (41.8 to 50.1)
Dominican Republic	45.4	53.5	45.8	47.0
Grenada	50.4	67.7	44.5 (44.5 to 49.3)	37.5 (37.5 to 43.5)
Guyana	37.2	54.1	27.6 (27.6 to 37.2)	28.3 (23.7 to 37.8)
Haiti	42.5	29.5	21.9 (21.0 to 31.2)	19.6 (19.6 to 31.1)
Jamaica	55.5	68.1	52.6	52.3 (48.2 to 56.8)
Puerto Rico	70.6	80.2	68.9	68.0 (64.1 to 72.1)
Saint Kitts and Nevis	51.3	67.3	50.1	42.4
Saint Lucia	52.8	65.8	50.2	50.1
Saint Vincent and the Grenadines	47.9	63.0	44.0	44.9 (40.9 to 48.1)
Suriname	43.0	59.9	42.1 (38.5 to 45.3)	42.1 (38.4 to 45.8)
Trinidad and Tobago	52.9	65.5	48.8	48.5
Virgin Islands	56.7	77.8	50.2	50.8
Central America	52.5	62.8	48.7 (48.7 to 55.8)	46.5 (46.5 to 53.4)
Colombia	61.1	67.6	62.3	59.4
Costa Rica	64.7	76.5	63.9	62.2 (59.4 to 68.1)
El Salvador	54.7	67.8	53.7	53.9 (48.8 to 58.3)
Guatemala	43.6	53.8	41.3	42.2 (36.4 to 45.9)

Absolute change 1990-2019 (95% UI)

	Overall (0-24 years)	Young (0-14 years)	Working (15-64 years)	Post-working (65-74 years)
Ecuador	19.9 (15.6 to 23.9)	24.6 (20.1 to 28.9)	14.7 (9.9 to 19.4)	14.9 (9.1 to 20.3)
Peru	26.0	33.7	22.6	22.1
Caribbean	11.4	13.8	9.1	10.7
Antigua and Barbuda	11.1	4.4	12.9	13.1
The Bahamas	10.3	12.1	8.7	11.4
Barbados	10.9	11.9	11.5	11.7
Belize	10.6	20.0	4.1	9.0
Bermuda	21.3	16.4	23.5	23.5
Cuba	12.4	14.1	12.4	8.8
Dominica	7.5	18.9	9.3	9.3
Dominican Republic	12.0	21.5	7.1	4.3
Grenada	13.8	15.1	14.2	12.5
Guyana	9.4	12.4	7.8	9.3
Haiti	12.4	14.4	11.4	8.7
Jamaica	7.8	14.9	4.4	7.2
Puerto Rico	16.1	12.0	17.8	19.4
Saint Kitts and Nevis	19.2	18.5	21.1	16.0
Saint Lucia	15.0	13.2	14.7	15.4
Saint Vincent and the Grenadines	9.2	13.8	5.8	8.5
Suriname	14.7	17.8	7.8	8.3
Trinidad and Tobago	13.0	13.2	13.1	16.1
Virgin Islands	9.9	15.9	8.5	7.6
Central America	18.7	23.9	14.7	14.6
Colombia	22.2	20.8	20.4	20.9
Costa Rica	11.7	12.9	9.5	10.0
El Salvador	21.3	31.1	16.7	16.4
Guatemala	19.3	27.0	15.9	16.1

(Table continues on next page)
2019 HAQ Index (95% UI)

Country	Overall (9-74 years)	Young (0-14 years)	Working (15-64 years)	Post-working (65-74 years)
Honduras	52.7 (47.1 to 55.5)	42.4 (39.3 to 45.8)	54.4 (51.5 to 57.4)	64.5 (61.6 to 67.4)
Mexico	51.5 (47.3 to 55.6)	42.6 (39.5 to 45.7)	51.6 (48.7 to 54.5)	62.5 (59.6 to 65.4)
Nicaragua	51.3 (46.4 to 56.2)	42.3 (39.5 to 45.1)	51.8 (48.8 to 54.7)	62.7 (59.8 to 65.6)
Panama	54.1 (49.6 to 58.6)	50.1 (46.3 to 53.9)	64.3 (61.5 to 67.2)	74.1 (71.2 to 77.0)
Venezuela	53.0 (48.7 to 56.3)	49.0 (45.1 to 52.9)	63.1 (60.3 to 66.1)	73.3 (70.4 to 76.2)
Haiti	51.3 (46.4 to 56.2)	42.3 (39.5 to 45.1)	51.8 (48.8 to 54.7)	62.7 (59.8 to 65.6)
Dominica	51.5 (47.3 to 55.6)	42.6 (39.5 to 45.7)	51.6 (48.7 to 54.5)	62.5 (59.6 to 65.4)
Cuba	52.7 (47.1 to 55.5)	42.4 (39.3 to 45.8)	54.4 (51.5 to 57.4)	64.5 (61.6 to 67.4)
Mexico	51.5 (47.3 to 55.6)	42.6 (39.5 to 45.7)	51.6 (48.7 to 54.5)	62.5 (59.6 to 65.4)
Nicaragua	51.3 (46.4 to 56.2)	42.3 (39.5 to 45.1)	51.8 (48.8 to 54.7)	62.7 (59.8 to 65.6)
Panama	54.1 (49.6 to 58.6)	50.1 (46.3 to 53.9)	64.3 (61.5 to 67.2)	74.1 (71.2 to 77.0)
Venezuela	53.0 (48.7 to 56.3)	49.0 (45.1 to 52.9)	63.1 (60.3 to 66.1)	73.3 (70.4 to 76.2)
Haiti	51.3 (46.4 to 56.2)	42.3 (39.5 to 45.1)	51.8 (48.8 to 54.7)	62.7 (59.8 to 65.6)
Dominica	51.5 (47.3 to 55.6)	42.6 (39.5 to 45.7)	51.6 (48.7 to 54.5)	62.5 (59.6 to 65.4)
Cuba	52.7 (47.1 to 55.5)	42.4 (39.3 to 45.8)	54.4 (51.5 to 57.4)	64.5 (61.6 to 67.4)

Absolute change 1990–2019 (95% UI)

Country	Overall (9-74 years)	Young (0-14 years)	Working (15-64 years)	Post-working (65-74 years)				
Honduras	52.7 (47.1 to 55.5)	42.4 (39.3 to 45.8)	54.4 (51.5 to 57.4)	64.5 (61.6 to 67.4)				
Mexico	51.5 (47.3 to 55.6)	42.6 (39.5 to 45.7)	51.6 (48.7 to 54.5)	62.5 (59.6 to 65.4)				
Nicaragua	51.3 (46.4 to 56.2)	42.3 (39.5 to 45.1)	51.8 (48.8 to 54.7)	62.7 (59.8 to 65.6)				
Panama	54.1 (49.6 to 58.6)	50.1 (46.3 to 53.9)	64.3 (61.5 to 67.2)	74.1 (71.2 to 77.0)				
Venezuela	53.0 (48.7 to 56.3)	49.0 (45.1 to 52.9)	63.1 (60.3 to 66.1)	73.3 (70.4 to 76.2)				
Haiti	51.3 (46.4 to 56.2)	42.3 (39.5 to 45.1)	51.8 (48.8 to 54.7)	62.7 (59.8 to 65.6)				
Dominica	51.5 (47.3 to 55.6)	42.6 (39.5 to 45.7)	51.6 (48.7 to 54.5)	62.5 (59.6 to 65.4)				
Cuba	52.7 (47.1 to 55.5)	42.4 (39.3 to 45.8)	54.4 (51.5 to 57.4)	64.5 (61.6 to 67.4)				
Country	2019 HAQ Index (95% UI)	Absolute change 1990-2019 (95% UI)						
-------------	--------------------------	-------------------------------------						
	Overall (0-24 years)	Young (0-14 years)	Working (15-64 years)	Working (65-74 years)				
Turkey	64.8 (62.1 to 67.7)	68.9 (66.2 to 71.4)	71.3 (67.8 to 74.6)	61.5 (57.4 to 65.8)	27.9 (24.2 to 31.5)	29.1 (25.1 to 33.4)	25.9 (21.6 to 30.0)	20.2 (14.6 to 25.9)
United Arab Emirates	58.8 (55.5 to 62.2)	75.6 (72.4 to 78.6)	57.7 (53.5 to 61.8)	49.3 (44.5 to 53.8)	18.8 (15.1 to 22.9)	20.0 (16.9 to 23.0)	14.3 (10.1 to 19.7)	15.7 (10.3 to 21.4)
Yemen	39.3 (35.6 to 43.3)	48.3 (43.4 to 54.0)	43.3 (38.3 to 48.1)	38.4 (34.0 to 43.0)	13.4 (8.4 to 18.3)	18.5 (13.0 to 25.7)	9.2 (2.2 to 15.8)	7.5 (1.6 to 12.7)
South Asia	37.9 (34.5 to 41.3)	51.4 (48.3 to 54.3)	39.2 (34.9 to 43.1)	36.0 (31.6 to 40.4)	18.2 (14.4 to 22.0)	21.9 (15.8 to 26.3)	15.3 (10.6 to 20.0)	13.5 (9.0 to 18.7)
Bangladesh	44.1 (40.7 to 48.0)	49.4 (45.4 to 53.6)	45.9 (41.8 to 50.8)	46.4 (41.4 to 52.9)	23.6 (18.8 to 28.3)	25.2 (18.0 to 31.0)	20.6 (15.0 to 25.7)	16.5 (10.3 to 22.6)
Bhutan	42.1 (37.2 to 46.9)	54.7 (49.8 to 60.0)	44.8 (40.0 to 49.6)	37.5 (32.4 to 42.8)	20.1 (11.1 to 26.6)	19.6 (1.4 to 30.4)	18.5 (10.4 to 25.3)	11.9 (6.0 to 17.6)
India	39.2 (35.2 to 43.1)	53.2 (48.9 to 58.0)	42.0 (35.1 to 45.2)	36.4 (31.1 to 41.8)	19.2 (14.5 to 23.8)	24.3 (17.1 to 32.8)	16.1 (10.1 to 21.9)	14.2 (0.9 to 20.1)
Nepal	38.8 (36.2 to 41.9)	51.0 (45.3 to 57.3)	42.2 (37.4 to 46.8)	35.4 (31.3 to 39.9)	19.1 (15.2 to 23.3)	25.5 (10.4 to 28.5)	17.7 (12.0 to 24.0)	10.5 (5.3 to 16.5)
Pakistan	32.4 (27.2 to 37.7)	45.5 (41.4 to 50.2)	39.2 (35.6 to 43.9)	31.2 (24.9 to 37.1)	10.1 (5.0 to 15.5)	9.3 (3.2 to 15.4)	7.3 (0.6 to 14.5)	5.7 (-0.2 to 11.4)
Southeast, East Asia, and Oceania	57.7 (54.3 to 60.4)	64.5 (62.2 to 66.8)	61.0 (57.6 to 64.3)	56.5 (52.7 to 60.2)	26.4 (22.6 to 30.0)	30.0 (27.0 to 32.8)	24.5 (19.6 to 29.3)	22.2 (16.7 to 26.9)
East Asia	69.8 (66.0 to 73.6)	77.9 (76.0 to 79.9)	71.6 (66.7 to 76.1)	64.9 (57.9 to 70.0)	34.5 (29.2 to 39.8)	39.2 (35.7 to 42.4)	30.7 (23.7 to 38.7)	27.2 (20.3 to 33.7)
China	70.2 (66.7 to 74.1)	78.0 (76.1 to 80.0)	72.2 (67.2 to 77.2)	65.3 (59.0 to 70.7)	35.2 (29.7 to 40.6)	39.6 (36.6 to 42.8)	31.5 (24.2 to 39.0)	27.6 (20.5 to 34.3)
North Korea	50.1 (47.1 to 53.4)	67.4 (63.7 to 71.2)	48.4 (44.3 to 52.3)	45.4 (41.6 to 49.1)	13.2 (10.0 to 17.7)	25.9 (20.4 to 31.7)	7.1 (0.7 to 13.6)	5.9 (1.4 to 10.7)
Taiwan	78.0 (74.8 to 81.0)	89.3 (85.7 to 91.2)	76.3 (72.8 to 79.6)	66.9 (64.9 to 73.7)	19.2 (15.1 to 22.5)	24.5 (19.5 to 29.5)	20.3 (16.1 to 24.0)	26.3 (20.8 to 31.2)
Oceania	32.0 (28.2 to 35.8)	40.3 (35.7 to 44.7)	33.4 (29.3 to 37.6)	37.4 (33.3 to 41.4)	4.7 (1.0 to 8.5)	5.2 (0.1 to 10.0)	3.3 (0.0 to 7.1)	3.4 (0.5 to 7.0)
American	45.5 (41.7 to 49.8)	63.0 (58.7 to 66.6)	43.9 (39.9 to 47.5)	44.6 (41.7 to 47.4)	5.3 (1.3 to 9.4)	7.3 (2.5 to 11.9)	3.2 (0.9 to 7.5)	5.4 (2.0 to 9.0)
Samoa	55.9 (51.0 to 60.8)	58.7 (54.6 to 62.7)	58.7 (54.8 to 62.7)	51.7 (47.9 to 55.5)	16.8 (12.4 to 20.9)	21.5 (17.0 to 26.5)	12.8 (7.6 to 17.9)	15.1 (10.9 to 19.2)
Cook Islands	63.0 (59.4 to 66.4)	80.1 (76.9 to 84.4)	58.5 (54.2 to 62.5)	59.1 (55.7 to 62.0)	18.5 (14.2 to 20.9)	25.5 (20.7 to 30.5)	17.5 (12.6 to 22.5)	15.3 (11.2 to 19.4)
Federated States of Micronesia	36.5 (31.8 to 41.6)	57.4 (53.5 to 61.9)	31.3 (27.0 to 38.2)	33.2 (28.1 to 38.7)	10.5 (5.7 to 15.5)	15.0 (9.5 to 24.4)	7.3 (1.5 to 12.7)	7.5 (1.2 to 14.2)

Table continues on next page
Continued from previous page

Country	2019 HAQ Index (95% UI)	Absolute change 1990–2019 (95% UI)								
	Overall (0–74 years)	Young (0–14 years)	Working (15–64 years)	Post-working (65–74 years)						
	Overall (0–74 years)	Young (0–14 years)	Working (15–64 years)	Post-working (65–74 years)						
Central sub-Saharan Africa	29·0	33·7	33·3	32·8	30·4	4·6	36·4	3·0	3·9	15·4
	(26·7 to 31·7)	(29·4 to 34·8)	(30·5 to 35·8)	(31·8 to 42·7)	(1·0 to 9·0)	(9·5 to 11·5)	(4·0 to 9·2)	(9·9 to 11·5)	(1·9 to 8·1)	(-3·5 to 6·2)
Angola	43·7	45·5	45·0	44·1	7·7	9·0	8·8	6·8	7·5	
	(39·2 to 48·1)	(41·9 to 46·6)	(37·4 to 44·5)	(26·6 to 46·6)	(2·7 to 11·6)	(4·1 to 11·8)	(9·8 to 22·9)	(9·8 to 22·9)	(2·6 to 12·2)	
Democratic Republic of the Congo	34·0	35·5	35·0	34·6	31·4	31·4	27·3	20·7	3·9	
	(30·2 to 38·1)	(31·2 to 40·7)	(26·3 to 34·7)	(27·3 to 35·0)	(6·4 to 16·0)	(6·4 to 16·0)	(11·0 to 28·4)	(11·0 to 28·4)	(0·8 to 11·1)	
Democratic Republic of the Congo	29·0	30·5	30·1	29·7	11·4	11·4	27·3	20·7	7·5	
	(25·8 to 32·4)	(27·0 to 35·6)	(22·7 to 32·1)	(22·7 to 32·1)	(6·4 to 16·0)	(6·4 to 16·0)	(11·0 to 28·4)	(11·0 to 28·4)	(0·8 to 11·1)	

(Table continues on next page)
Country	2019 HAQ Index (95% UI)	Absolute change 1990-2019 (95% UI)
	Overall (0-74 years)	Young (0-14 years)
	Working (15-64 years)	Post-working (65-74 years)
	Overall (0-74 years)	Young (0-14 years)
	Working (15-64 years)	Post-working (65-74 years)
Equatorial Guinea	42.4 (35.4 to 48.8)	59.1 (50.2 to 67.7)
	(31.9 to 44.4)	(21.7 to 37.6)
Gabon	39.6 (35.7 to 44.1)	57.2 (49.5 to 64.4)
	(35.3 to 46.8)	(9.9 to 20.3)
Eastern sub-Saharan Africa	28.6 (26.4 to 30.9)	38.7 (34.4 to 43.6)
	(29.4 to 35.7)	(24.8 to 38.4)
Burundi	25.8 (22.1 to 30.0)	38.1 (31.7 to 45.5)
	(27.3 to 32.4)	(20.1 to 28.8)
Comoros	31.8 (28.8 to 36.2)	45.0 (39.2 to 50.9)
	(30.9 to 41.8)	(24.9 to 32.4)
Djibouti	32.6 (27.5 to 37.8)	40.9 (34.7 to 47.2)
	(29.7 to 43.3)	(25.6 to 35.5)
Eritrea	25.6 (21.1 to 30.3)	40.1 (32.7 to 46.9)
	(25.9 to 37.5)	(23.1 to 37.7)
Ethiopia	31.2 (27.4 to 35.6)	42.1 (39.9 to 47.1)
	(39.8 to 42.7)	(36.9 to 43.1)
Kenya	33.4 (29.2 to 38.1)	51.4 (46.8 to 55.8)
	(29.1 to 40.9)	(23.2 to 31.0)
Madagascar	29.0 (25.1 to 33.3)	42.8 (38.3 to 47.8)
	(26.6 to 37.4)	(23.3 to 34.1)
Malawi	29.9 (26.9 to 33.1)	41.9 (36.0 to 47.7)
	(28.2 to 37.0)	(24.7 to 31.9)
Mozambique	25.1 (21.6 to 29.0)	40.7 (34.3 to 47.0)
	(21.9 to 31.8)	(18.9 to 26.7)
Rwanda	31.8 (28.9 to 34.9)	41.9 (35.4 to 48.5)
	(31.5 to 40.3)	(27.1 to 34.2)
Somalia	16.7 (13.8 to 21.6)	26.2 (23.1 to 31.9)
	(13.0 to 25.1)	(13.7 to 25.4)
South Sudan	29.1 (24.2 to 34.2)	33.6 (27.4 to 39.2)
	(28.4 to 42.6)	(24.5 to 36.6)
Tanzania	32.5 (29.5 to 35.4)	37.3 (31.0 to 43.1)
	(33.2 to 42.0)	(29.6 to 36.3)
Uganda	32.4 (29.1 to 35.8)	43.5 (37.0 to 50.3)
	(32.7 to 40.8)	(27.5 to 37.4)
Zambia	31.6 (28.2 to 35.5)	45.1 (38.8 to 51.4)
	(28.3 to 38.3)	(25.1 to 34.1)
Southern sub-Saharan Africa	39.8 (37.9 to 41.9)	54.3 (50.5 to 57.8)
	(43.0 to 43.8)	(38.4 to 38.2)
Botswana	37.5 (33.4 to 41.0)	51.6 (46.7 to 56.5)
	(31.6 to 43.2)	(26.2 to 34.8)
Eswatini	32.5 (28.3 to 36.8)	32.0 (43.8 to 51.5)
	(26.2 to 38.2)	(24.2 to 32.6)
Lesotho	26.3 (22.2 to 30.5)	44.7 (40.5 to 48.4)
	(20.1 to 30.8)	(17.4 to 27.0)
Namibia	39.9 (35.5 to 44.9)	57.5 (52.2 to 63.8)
	(33.8 to 44.8)	(27.9 to 36.6)
South Africa	44.6 (42.0 to 46.9)	60.9 (57.4 to 64.2)
	(42.0 to 48.6)	(39.1 to 43.6)
Zimbabwe	28.6 (25.7 to 31.7)	44.7 (39.9 to 51.1)
	(23.4 to 31.5)	(23.1 to 30.2)
Western sub-Saharan Africa	29.7 (26.3 to 33.5)	30.5 (26.3 to 34.9)
	(32.6 to 41.7)	(29.4 to 36.4)
Benin	31.4 (26.4 to 36.0)	34.5 (28.2 to 41.4)
	(31.2 to 41.9)	(27.4 to 36.8)

(Continued from previous page)
assessed whether the HAQ Index increased more in countries starting with lower HAQ Index scores. We ran ordinary least squares regressions of the absolute change and the average annual percent change in the HAQ Index between 1990 and 2019 on the 1990 HAQ Index score. In a sensitivity analysis, we included the 1990–2019 ordinary least squares regressions of the absolute change in the gap between the average HAQ Index for each location and year. We ordered the posterior distribution for each cause of mortality amenable to health care with standard errors clustered by location, was also assessed whether the coefficient of variation (the standard deviation divided by the mean) calculated for each year and age group declined over time, which would indicate that HAQ Index scores have become more similar since 1990. Third, we quantified the 1990–2019 change in the gap between the average HAQ Index in high-SDI quintile countries versus the average HAQ Index in the four other SDI quintiles. Wherever results are aggregated, we weight values by each country’s 2019 population.

Uncertainty analysis

We estimated uncertainty by taking 1000 draws from the posterior distribution for each cause of mortality amenable to health care and then used those draws to estimate the HAQ Index for each location and year. We ordered the draws and defined the 95% uncertainty interval (UI) by selecting the 25th draw for the lower bound of uncertainty and the 975th draw for the upper bound of uncertainty. The mean was taken across the draws to calculate the point estimate. Analyses were done with R version 3.1.2.

	Overall (0–74 years)	Young (0–14 years)	Working (15–64 years)	Post-working (65–74 years)	Overall (0–74 years)	Young (0–14 years)	Working (15–64 years)	Post-working (65–74 years)
Burkina Faso	28·5 (24·9 to 32·4)	30·5 (25·0 to 36·1)	29·3 (25·0 to 33·9)	7·6 (3·4 to 11·8)	8·5 (3·0 to 15·0)	-0·6 (0 to 10·9)	-7·1 (0·6 to 17·7)	
Cabo Verde	50·2 (47·7 to 52·9)	65·7 (61·7 to 70·2)	51·9 (49·0 to 54·6)	14·1 (10·6 to 17·4)	22·3 (16·3 to 27·9)	11·6 (8·0 to 15·3)	6·0 (1·8 to 9·9)	
Cameroon	33·7 (29·2 to 38·2)	39·9 (34·1 to 46·5)	31·7 (28·6 to 36·8)	9·8 (4·5 to 15·3)	10·8 (3·6 to 18·9)	7·8 (4·0 to 11·7)	8·0 (2·3 to 13·8)	
Chad	23·8 (20·3 to 27·2)	25·5 (20·5 to 32·2)	28·8 (23·9 to 34·1)	6·3 (2·1 to 10·3)	7·8 (1·9 to 13·4)	6·5 (0·6 to 12·8)	3·4 (1·1 to 6·0)	
Côte d’Ivoire	34·3 (30·4 to 39·4)	40·8 (34·9 to 48·2)	37·7 (32·4 to 42·8)	11·3 (6·2 to 16·7)	14·1 (6·6 to 21·9)	8·7 (2·7 to 15·3)	7·2 (2·2 to 12·8)	
The Gambia	34·7 (31·4 to 39·0)	47·6 (41·5 to 53·7)	38·6 (32·3 to 41·9)	7·4 (1·8 to 13·2)	7·3 (8·9 to 26·1)	-3·8 (1·3 to 12·3)	2·9 (4·2 to 10·0)	
Ghana	36·1 (32·8 to 40·0)	47·4 (41·3 to 53·9)	35·2 (30·5 to 42·9)	10·0 (5·5 to 14·9)	13·1 (5·8 to 20·7)	7·8 (2·4 to 13·6)	-7·6 (2·3 to 13·3)	
Guinea	25·7 (23·4 to 30·5)	28·3 (21·3 to 34·2)	29·1 (26·5 to 36·2)	8·5 (3·6 to 13·8)	13·5 (6·2 to 20·8)	6·9 (1·0 to 13·0)	3·9 (1·3 to 9·2)	
Guinea-Bissau	24·3 (20·6 to 27·8)	36·6 (31·4 to 41·7)	25·7 (21·7 to 29·9)	10·6 (5·3 to 16·1)	19·2 (11·7 to 25·7)	8·3 (2·1 to 14·4)	6·6 (0·4 to 12·5)	
Liberia	35·7 (31·6 to 40·3)	42·1 (35·0 to 49·3)	39·7 (34·5 to 45·1)	17·3 (12·3 to 22·3)	29·1 (18·8 to 37·7)	11·9 (5·3 to 18·5)	9·2 (2·9 to 15·1)	
Mali	29·6 (24·8 to 35·3)	32·7 (21·9 to 36·6)	35·2 (30·3 to 41·0)	11·0 (12·2 to 22·3)	12·0 (9·1 to 19·2)	11·9 (5·5 to 17·7)	6·6 (1·0 to 12·0)	
Mauritania	41·2 (37·2 to 45·2)	53·1 (45·9 to 60·5)	43·1 (39·2 to 51·7)	20·0 (14·4 to 26·6)	24·1 (15·6 to 32·6)	20·1 (13·4 to 26·9)	16·4 (10·7 to 22·9)	
Niger	26·5 (21·3 to 32·0)	28·1 (20·9 to 37·4)	31·8 (26·6 to 37·9)	10·4 (8·4 to 15·6)	14·2 (6·7 to 21·4)	9·4 (3·2 to 15·1)	6·4 (1·0 to 11·5)	
Nigeria	31·6 (26·1 to 38·0)	32·8 (25·8 to 36·4)	40·9 (32·1 to 49·9)	11·2 (4·3 to 18·2)	19·9 (3·9 to 27·8)	11·8 (1·7 to 21·5)	8·3 (0·4 to 16·3)	
São Tomé and Príncipe	37·5 (31·3 to 43·2)	43·1 (37·9 to 48·6)	35·6 (31·5 to 39·4)	13·4 (8·1 to 18·0)	28·0 (21·1 to 34·4)	8·4 (1·6 to 13·9)	5·1 (0·1 to 10·1)	
Senegal	34·0 (30·4 to 38·4)	43·3 (38·0 to 49·5)	37·1 (32·7 to 42·3)	10·9 (5·2 to 16·7)	19·6 (11·8 to 27·7)	7·6 (1·4 to 14·3)	6·2 (0·6 to 12·4)	
Sierra Leone	30·9 (26·1 to 35·9)	30·5 (23·5 to 38·3)	34·8 (29·8 to 39·9)	9·9 (3·6 to 15·9)	15·0 (7·2 to 22·8)	3·9 (0·2 to 11·5)	4·8 (0·1 to 9·7)	
Togo	33·5 (29·9 to 37·3)	45·5 (39·7 to 51·0)	35·3 (30·8 to 40·1)	8·8 (4·0 to 13·4)	17·2 (10·6 to 23·4)	5·6 (0·4 to 11·9)	4·5 (0·0 to 9·8)	

Table: HAQ Index estimates, by location, in 2019 and absolute change from 1990 to 2019, overall and by select age group

HAQ=Healthcare Access and Quality. SDI=Socio-demographic Index. UI=uncertainty interval.
A Overall (ages 0–74 years)

Caribbean and central America
Persian Gulf
Balkan Peninsula
Southeast Asia
Western Europe
Eastern Mediterranean

B Young (ages 0–14 years)

Caribbean and central America
Persian Gulf
Balkan Peninsula
Southeast Asia
Western Europe
Eastern Mediterranean

(Figure 1 continues on next page)
Figure 1: HAQ Index, overall and by select age group, 2019, by country and territory

HAQ—Healthcare Access and Quality.
Role of the funding source
The funder of the study had no role in the study design, data collection, data analysis, data interpretation, or writing of the report.

Results
In 2019, the global mean HAQ Index was 54·4 (95% UI 52·1–55·7), ranging from 15·2 to 93·1 across all countries and territories (table, figure 1A). The HAQ Index scores differed depending on levels of development and super-region. In high-SDI countries, the average HAQ Index score was 83·4 (82·4–84·3) in 2019, whereas low-SDI countries had an average HAQ Index score of 30·7 (28·6–33·0). Across GBD super-regions, the high-income region had the highest HAQ Index score (83·9, 82·6–85·0) and the sub-Saharan African region had the lowest average score (29·0, 26·7–31·7).

Globally, the overall HAQ Index increased by 19·6 points between 1990 and 2019, with improvements in HAQ Index scores in 185 of 204 countries and territories. Zimbabwe was the only country that did not improve (for others, the UIs overlapped). In 1990, Zimbabwe ranked 133rd globally, but in 2019 it dropped to 194th, a decline driven primarily by lack of progress across four diseases: inguinal, femoral, and abdominal hernia; idiopathic epilepsy; lower respiratory infections; and tuberculosis—but nearly all conditions failed to improve. Lesotho also had a substantial drop in rank order over the same period, falling from 151st to 185th globally. Although HAQ Index scores improved minimally for Central African Republic and Somalia, the two countries saw no change in global rank order over the time period. The gap between the lowest and highest HAQ Index scores in 2019 (77·9, 95% UI 15·2–93·1) was larger than the gap in 1990 (69·9, 9·7–79·6). High-SDI-quintile countries increased by 15·1 points, as compared with 25·9 points in middle-SDI and 11·8 points in low-SDI countries (figure 2). Across regions, increases were highest in east Asia (32·4 point increase), Andean Latin America (22·7 point increase), and high-income Asia Pacific (19·6 point increase). The smallest regional improvements over the time period occurred in Oceania (3·9 point increase), southern sub-Saharan Africa (6·3 point increase), and central Asia (8·2 point increase).

In 2019, the young age group had a global HAQ Index score of 64·5 (95% UI 62·9–66·0; figure 1B). This is an increase of 22·5 points (19·9–24·7) or 66·0% (52·8–77·0) relative to 1990 (table, figure 3). High-SDI countries had an average young HAQ Index of 89·0 (88·2–89·8) versus 40·4 (37·1–44·0) in low-SDI countries in 2019 (table, figure 2).

The global HAQ Index was 55·9 (95% UI 54·3–57·5) for the working age group in 2019 (figure 1C). The average improved by 17·2 points (15·2–19·1) or 50·8% (41·6–60·1) over 1990–2019. In 2019, the working HAQ Index was 82·8 (81·6–83·7) in high-SDI countries, 49·0 (46·0–52·0) points higher than the scores in low-SDI countries on average (33·8, 31·0–36·6; figure 2).

The post-working group had a global HAQ Index of 51·2 (95% UI 49·6–52·8; figure 1D). The post-working group improved by 15·1 points (13·2–17·0) or 45·6% (36·2–55·9) from its 1990 score. High-SDI countries’ average HAQ Index (79·1, 77·7–80·2) was 48·7 (45·8–51·5) points higher than low-SDI countries.

Figure 2: Change over time in HAQ Index, 1990–2019, overall and by select age group
HAQ=Healthcare Access and Quality. SDI=Socio-demographic Index.
countries’ average HAQ Index in 2019 (30·4–27·8–33·0; figure 2).

In percentage terms, the young HAQ Index increased more than the working and post-working HAQ Indices from 1990 to 2019 (figure 3). Countries with lower scores in 1990 had higher percentage increases in all three age groups but relative convergence was similarly fastest among the young and slowest among the post-working followed by the working age groups (figure 4). HAQ Index scores in countries with the lowest scores for the young group in 1990 increased more than countries with higher scores in absolute terms as well (figure 4): we found that for each additional 10 points in the 1990 young HAQ Index, scores increased 1·3 points more slowly (p<0·0001). In contrast, countries with higher scores increased faster for the working and post-working age groups: for each additional 10 points in the 1990 score, the 2019 HAQ Index was 1·1 points higher for the working group (p<0·0001) and 2·1 points higher for the post-working group (p<0·0001). Over 1990–2019, the coefficient of variation declined most in the young group (0·128, 95% UI 0·082 to 0·167) as compared with the working (0·039, 0·008 to 0·066) and post-working (0·004, –0·024 to 0·029) groups.

HAQ Index scores and trends over time varied substantially by SDI quintile. The 1990–2019 percentage increases in the young HAQ Index score were highest in the three lowest SDI quintiles (figure 3). Increases were lowest among the young age group in high-SDI countries (15·6%, 95% UI 14·7–16·6). Regressing HAQ Index on SDI over 1990–2019, 89% of variation in the young HAQ Index, as represented by the R², was explained by just SDI, as compared with 75% of variation in the working group HAQ Index and 77% in the post-working group HAQ Index (see appendix p 40 for full regression results). The gap between the high-SDI-quintile HAQ Index scores versus other locations decreased substantially in the young age group (figure 5), with the biggest absolute declines in the middle-SDI group (17·0, 14.8–19·0), followed by the low-middle (9·5, 3.9–13·5) and high-middle (6·3, 4.9–7·8) SDI groups. For the working and post-working age groups, only middle-SDI countries reduced this gap. In contrast, low-SDI countries increased the gap with high-SDI countries by 5·3 (2·4–8·2) points in the working group and 9·9 (7.3–12·4) in the post-working group.

Discussion

Our analysis showed improvements in the overall and select age group HAQ Indices in almost every country and territory between 1990 and 2019. However, disparities in HAQ Index scores across locations persisted into 2019. Between 1990 and 2019, the gap with the high-SDI quintile in the young group declined or was steady for all SDI levels. In the two other age groups, only the middle-SDI-quintile countries closed the average gap with high-SDI-quintile countries, and the gap for the low-SDI-quintile countries grew. While we find evidence of convergence in the young HAQ Index, social and economic development remains a crucial predictor of levels and trends in health-care access and quality.

Countries with higher social and economic development had better performance in the HAQ Index—nearly 50 points separates the lowest and highest SDI quintiles for the overall and age-group scores. Social and economic development supports countries in raising more funds for health, pooling resources for health insurance, improving the health-care workforce, and other factors that enhance the ability of health systems to improve health-care access and quality. Greater resources also enable purchasing of more expensive technology, equipment, and pharmaceuticals to prevent and treat disease.

This study emphasised major improvements in the HAQ Index for the young age group between 1990 and 2019. Countries with lower scores in the past have made strides in closing disparities with highest performers on the HAQ Index. This observation aligns with the convergence theory advanced by the Lancet Commission on Investing in Health—that the burden of infectious diseases and maternal, neonatal, and child health in high-mortality LMICs could converge to the rates seen in best-performing middle-income countries. More substantial improvements in the young HAQ Index relative to the other age groups might be related to the billions of dollars in development assistance disbursed for these health areas over the past 30 years, and the creation and diffusion of relatively effective and cheap technologies, such as vaccines and oral rehydration salts that reduced mortality due to vaccine-preventable diseases and diarrhoea.

In contrast, our analysis shows less convergence in the post-working and working groups. This observation can be explained in part by comparatively lower funding for
NCD care; in addition, conditional on the same set of diseases and conditions, averting mortality for older people requires more complex responses, a higher level of organisational capacity, higher costs, and different technology, treatment, and diagnostics.65–69 Differences could also be explained by how health systems evolve to meet their populations’ needs. High-SDI countries had a higher median age than the low-SDI countries with the lowest average HAQ Index scores in 2019.1 More broadly, some of these shortcomings might be due to the lack of robust primary health care. Health systems should address health needs across the life course, along the continuum of care, and focus on health more holistically rather than homing in on a single disease.70

Figure 4: Testing for convergence: absolute and relative change in HAQ Index, 1990–2019, versus 1990 HAQ Index, overall and by select age group
Bars represent the coefficients estimated from a linear regression of the absolute or relative (annual average percent) change in the HAQ Index between 1990 and 2019 on the 1990 HAQ Index value, conducted for each group separately. Black error bars represent the coefficients’ 95% uncertainty intervals. HAQ=Healthcare Access and Quality.

Figure 5: Change in gap in HAQ Index score between high-SDI quintile and other quintiles, overall and by select age group, 1990–2019
Black error bars represent 95% uncertainty intervals. HAQ=Healthcare Access and Quality. SDI=Socio-demographic Index.
implications for gender equity and educational attainment. If lack of access to high-quality health care depresses labour force participation or productivity among the working age group, countries going through the demographic transition might be unable to benefit from the demographic dividend, with implications for tax revenue, intra-family income transfers, and the broader ability of countries to confront increasing dependency ratios (ratio of the working age adult population to populations typically not working: aged 0–14 years and ≥65 years) forecasted for decades to come.

Future analyses of the HAQ Index should focus on the direct and indirect effects the COVID-19 pandemic. The COVID-19 pandemic threatens to reverse the gains in health-care access and quality observed over the past 30 years. Although most COVID-19 deaths occur among older people, the pandemic might well threaten health-care access and quality gains achieved at all ages, through lack of health system capacity, drains on infrastructure, staff, and other health system resources, or alternatively through the channel of reduced social and economic development. Particularly as COVID-19 vaccination rates rise in high-income countries while lower-income countries continue to face supply and access shortages, the ongoing pandemic could further increase gaps in health-care access and quality between low-SDI and high-SDI countries. Even so, the COVID-19 pandemic has also brought about innovation in the provision of health care, catalysing an expansion in the use of telemedicine that could have lasting benefits, including for the equity of health-care access and quality.

This study has a number of important strengths. This analysis provides a comparable measure of health-care access and quality for 204 countries and territories over 1990–2019. It examines differences in health-care access and quality by age, shedding light on one area of health system performance across the life course. Some of the limitations of the HAQ Index have been highlighted in the previous analyses. First, we were not able to further disaggregate characteristics of health-care access or quality, including separating quality from other features of health care, determining the ability of any particular client or group to seek and obtain care, or estimating the role of acceptability or cultural barriers. Second, the Nolte and McKee list has not been updated, resulting in the omission of some causes of death that could be amenable to timely and appropriate health care. Future analyses should consider expanding this list of causes. Third, our analysis is subject to limitations in the GBD cause of death estimation, such as death misclassifications and lack of complete vital registration records differing by country. Fourth, using MIRs for cancers and other causes instead of RSDRs provided an improved indicator of country-level differences in access to effective care, but broader MIR use is limited by the sparsity of data and methodological demands. Fifth, we only consider amenable mortality up to the age of 74 years because we chose to be consistent with past versions of the HAQ Index and with Nolte and McKee’s views that mortality might not be amenable with quality health-care access after age 75 years. Future analyses should interrogate this view and consider whether extending the age range beyond age 74 years would be more consistent with life expectancy. Sixth, grouping populations by the OECD definition of working-age connects our analysis with a more high-income country perspective; alternative age groupings could be useful and pertinent depending on the country context. Seventh, we recognise that the direct and indirect determinants of health are broad and varied. Multiple factors outside of the immediate health sector, including policies, social determinants, and other drivers, could affect access to quality health care—eg, access contingent upon employment or age. Eighth, we acknowledge that uncertainty can differ depending on the age group, since different data quality, population size, and cause variation exist across age. This could affect both the bounds set when scaling MIRs and RSDRs to 0–100 as well as in the analysis of coefficient of variation over time; however, we believe the effect to be minimal.

Understanding the causal pathways and drivers is a vital research endeavour; however, to provide a more focused analysis, we limited this index to evaluation of health services only. Finally, in future research, we propose that two areas of work should be prioritised: the incorporation of how access and quality of care expressly impact non-fatal outcomes, and further segmentation of the HAQ Index by age—including for the important group of adolescents.

Health-care access and quality has improved in almost all countries and territories since 1990, progress which is essential for achieving effective universal health coverage and health for all. However, major gaps in the HAQ Index persist across countries. Convergence in performance for the young population, although far from fully realised, suggests that the major investments, technology innovations, and policy priority focused on these groups are yielding successes. The slower convergence between best-performing health systems and other health systems in the HAQ Index for working and post-working populations is concerning as the demographic transition looms large. Further prioritisation of investments and cost-effective health care is essential for addressing health-care needs, maintaining a healthy workforce, and ensuring fiscal sustainability as populations age worldwide.
Health Economics (D A Erku PhD), School of Medicine (Prof J Sun PhD), Griffith University, Gold Coast, QLD, Australia; Department of Neurological Surgery (J Fares MD), Northwestern University, Chicago, IL, USA; Institute of Public Health (F Fischer PhD), Charité Medical University Berlin, Berlin, Germany; Institute of Gerontology (N A Foigt PhD), National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine; Department of Medical Parasitology (M Foretov PhD), Faculty of Medicine, Abadan University of Medical Sciences, Abadan, Iran; Department of Dermatology (T Fuku moto PhD), Kobe University, Kobe, Japan; Health Services Management Training Centre (P A Gai PhD, T Jou MSc), Faculty of Health and Public Administration (M Sziczka PhD), Semmelweis University, Budapest, Hungary; Department of Applied Social Sciences (P A Gai PhD), Sapientia Hungarian University of Transylvania, Târgu-Mureș, Romania; Institute of Applied Health Sciences (IAHS) (S Gahire PhD), University of Aberdeen, Coleraine, UK; Department of Radiology (T Garg MBBS), King Edward Memorial Hospital, Mumbai, India; School of Psychology (A Getachew Obua MA), Addis Ababa University, Addis Ababa, Ethiopia; School of Public Health (A Ghashghaei BSc), Institute for Prevention of Non-communicable Diseases (R Kalhor PhD), Health Services Management Department (R Kalhor PhD), Qazvin University of Medical Sciences, Qazvin, Iran; Research Group for Social Epidemiology (N Ghith PhD), Lund University, Lund, Sweden; Faculty of Asian Institute, Lahore, Pakistan (Prof S Gilani PhD); Warwick Medical School (Prof P S Gill DM), University of Warwick, Coventry, UK; Health Systems and Policy Research (M Golechha PhD), Indian Institute of Public Health, Gandhinagar, India; Department of Pharmacy Systems, Outcomes, and Policy (J S Guo PhD), University of Illinois at Chicago, Chicago, IL, USA; Department of Epidemiology (Prof Y Guo PhD), Binhzhou Medical University, Yantai City, China; Department of Preventive Cardiology (Prof R Gupta MD), Eternal Heart Care Centre & Research Institute, Jaipur, India; Department of Medicine (Prof R Gupta MD), Mahatma Gandhi University Medical Sciences, Jaipur, India; School of Medicine (Y Gupta PhD), Deakin University, Geelong, VIC, Australia; Department of Clinical Medicine (Prof Y K Gupta PhD), School of Engineering (N Rabie PhD), Macquarie University, Sydney, NSW, Australia; Faculty of Health (M Hameduzzaman PhD), Southern Cross University, Bilinga, QLD, Australia; Research Unit (J M Haro MD), University of Barcelona, Barcelona, Spain; Biomedical Research Networking Center for Mental Health Network (CibenSAM), Barcelona, Spain (J M Haro MD); Department of Zoology and Entomology (A I Hasaballah PhD), Al Azhar University, Cairo, Egypt; Institute for Social Science Research (M Hasan MPH), ARC Centre of Excellence for Children and Families over the Life Course (M Hasan MPH); The University of Queensland, Indooroopilly, QLD, Australia; Department of Public Health (A Hashi PhD), Jigjiga University, Jigjiga, Ethiopia; Institute of Pharmaceutical Sciences (K Hayat MS), University of Veterinary and Animal Sciences, Lahore, Pakistan; Department of Pharmacy Administration and Clinical Pharmacy (K Hayat MS), Xian Jiaotong University, Xian, China; Independent Consultant, Santa Clara, CA, USA (G Heidari MD), Nuffield Department of Clinical Medicine (N J Henry BS), Nuffield Department of Medicine (Prof R J Maude PhD), University of Oxford, Oxford, UK; School of Business (Prof C Hertet PhD), London South Bank University, London, UK; Department of Population Sciences (Prof M B H Hossain PhD), University of Dhaka, Dhaka, Bangladesh; Health University College London, London, UK (S Hossain MS); Maternal and Child Health Division (S J Hossain MPH, S Zaman MPH), Health System and Population Studies Divisions (K N Koly MSc), International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh; Institute of Research and Development (M Hosseinizadeh PhD), Duy Tan University, Da Nang, Vietnam; Department of Computer Science (M Hosseinzadeh PhD), Diplomacy and Public Relations Department (A Omar Bali PhD), University of Human Development, Sulaymaniyah, Iraq; Clinical Legal Medicine (M Hosseinizadeh PhD), National Institute of Legal Medicine Mina Minovici, Bucharest, Romania; Burn Research Center (S Hovedanemadsen MD), Shahid Motahari Hospital, Tehran, Iran; Department of Health Services Administration (V Hsieh PhD, C B Lee PhD), China Medical University, Taichung, Taiwan; Department of Epidemiology and Health Statistics (Prof G Hu PhD), Central South University, Changsha, China; Jockey Club School of Public Health and Primary Care (J Huang MD, C Zhong MD), The Chinese University of Hong Kong, Hong Kong, China; Institute for Social Science Research (M Huda MSc), Faculty of Health and Behavioural Sciences (M Moni PhD), The University of Queensland, Brisbane, QLD, Australia; Department of Public Health and Primary Care (S C Hasegawa MPH), University of Cambridge, Cambridge, UK; Department of Community Medicine (O S Ilesanmi PhD), University College Hospital, Ibadan, Ibadan, Nigeria; Independent Consultant, Tabriz, Iran (S N Irani MD); Institute for Physical Activity and Nutrition (S Islam PhD), Deakin University, Burwood, VIC, Australia; Sydney Medical School (S Islam PhD), Save Sight Institute (H Keland PhD), University of Sydney, Sydney, NSW, Australia; Department of Clinical Pharmacy (Prof N Ismail PhD), MAHSA University, Bandar Saujana Putra, Petaling Jaya, Malaysia; Public Health Department of Social Medicine (Prof H Iso MD), Graduate School of Medicine (Prof K Yamagishi MD), Osaka University, Suita, Japan; Department of Health Management (R Ittmalla PhD), University of Hail, Hail, Saudi Arabia; Department of Health Services Research (M Iwagami PhD), Research and Development Center for Health Services (Prof K Yamagishi MD), University of Tsukuba, Tsukuba, Japan; Department of Non-communicable Disease Epidemiology (M Iwagami PhD), European Observatory on Health Systems and Policies (M Karakolos PhD), Department of Health Services Research and Policy (M Karakolos PhD, Prof M McKee DSc), Center for Global Mental Health (K N Koly MSc), London School of Hygiene & Tropical Medicine, London, UK; Non-communicable Disease Department (R Jain MD), National Health Mission, Lucknow, India; Department of Medicine (R Jain MD), Mahaveer Sikhsan Sansthan, Kanpur, India; Institute of Advanced Manufacturing Technologies (Prof M Jakobliev PhD), Peter the Great St. Petersburg Polytechnical University, St. Petersburg, Russia; Institute of Comparative Economic Studies (Prof M Jakobliev PhD), HSE University, Tokyo, Japan; Centre of Studies and Research (S Jayalap PhD), Ministry of Health, Muscat, Oman; Department of Biochemistry (Prof S Jayaram MD), Government Medical College, Mysuru, India; Department of Community Medicine (R P Jha MSc), Dr. Baba Saheb Ambedkar Medical College & Hospital, Delhi, India; Department of Community Medicine (R P Jha MSc), Banaras Hindu University, Varanasi, India; Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland (Prof J B Jonas MD); Department of Ophthalmology (Prof J B Jonas MD), Heidelberg University, Mannheim, Germany; Institute of Family Medicine and Public Health (M Jirjis PhD), University of Tartu, Tartu, Estonia; Department of Noncommunicable Diseases (K Kamenov PhD), World Health Organization (WHO), Geneva, Switzerland; Sydney Eye Hospital (H Kandel PhD), South Eastern Sydney Local Health District, Sydney, NSW, Australia; The Hansjörg Wyss Department of Plastic and Reconstructive Surgery (R S Kantar MD), Naf'a Al-Hayat Foundation for Medical Sciences and Health Care, New York City, NY, USA; Clef Lip and Palate Surgery (R S Kantar MD), Global Smile Foundation, Norwood, MA, USA; MRC/CSO Social and Public Health Sciences Unit (S V Katikireddy PhD), University of Glasgow, Glasgow, UK; Department of Surface Engineering (Prof T Kavetsky PhD), The John Paul II Catholic University of Lublin, Lublin, Poland; Drobobych Ivan Franko State Pedagogical University, Drobobych, Ukraine (Prof T Kavetsky PhD), Department of Mental Health (Prof N Kawakami MD), University of Tokyo, Tokyo, Japan; International Research Center of Excellence (G A Kayode PhD), Institute of Human Virology Nigeria, Abuja, Nigeria; Julius Centre for Health Sciences and Primary Care (G A Kayode PhD), Utrecht University, Utrecht, Netherlands; Department of Healthcare Services Management, School of Health (L Keikavosi-Arani PhD), Alborz University of Medical Sciences, Karaj, Iran; Department of Public Health (Prof Y S Khader PhD), Jordan University of Science and Technology, Irbid, Jordan; Amity Institute of Forensic Sciences (H Khairia PhD, B P Nayak PhD), Amity University, Noida, India; Department of Biophysics and Biochemistry (Prof R Khalilov PhD), Baku State University, Baku, Azerbaijan; Russian Institute for Advanced Study (Prof R Khalilov PhD), Moscow State Pedagogical University, Moscow, Russia; Health Promotion Research Center (M Khammarnia PhD), Zahedan University of Medical Sciences, Zahedan, Iran; Epidemiology
Articles

Phnom Penh, Cambodia; Department of Health Management (Yigit PhD), Suleyman Demirel University (Suleyman Demirel University), Isparta, Turkey; Department of Neuropsychopharmacology (N Yonemoto PhD), National Center of Neurology and Psychiatry, Kodaira, Japan; Department of Public Health (N Yonemoto PhD), Juntendo University, Tokyo, Japan; Department of Health Policy and Management (Prof M Z Younis PhD), Jackson State University, Jackson, MS, USA; School of Business & Economics (Prof M Z Younis PhD), University Putra Malaysia, Selangor, Malaysia; Department of Epidemiology and Biostatistics (Prof C Yu PhD), School of Medicine (Z Zhang PhD), Wuhan University, Wuhan, China; Department of Bioengineering and Therapeutic Sciences (Prof M S Zastrozhin PhD), University of California San Francisco, San Francisco, CA, USA; Addictology Department (Prof M S Zastrozhin PhD), Russian Medical Academy of Continuous Professional Education, Moscow, Russia; MMentalHealthPH, Quezon City, Philippines (Y H Zuniga BS)

Contributors
Please see the appendix (pp 3–7) for more detailed information about individual author contributions to the research, divided into the following categories: managing the overall research enterprise; writing the first draft of the manuscript; primary responsibility for applying analytical methods to produce estimates; primary responsibility for seeking, cataloguing, extracting, or cleaning data; designing or coding figures and tables; providing data or critical feedback on data sources; developing methods or computational machinery; providing critical feedback on methods or results; drafting the manuscript or revising it critically for important intellectual content; and managing the estimation or publications process.

Declaration of interests
S Afzal reports participation on a Data Safety Monitoring Board or Advisory Board with the Corona Expert Advisory Group and Infectious Diseases Expert Advisory Group and is a Fellow of Faculty of Public Health, UK and the Dean of Public Health and Preventive Medicine and a chairperson for Community Medicine at King Edward Medical University, Pakistan. R Anceaeu reports payment or honoraria for lectures, presentations, speaker’s bureaus, manuscript writing or educational events from Abbvie, B. Braun, Sandzox, and Laroapharm. S Bhaskar is the Board Director of the Rotary Club of Sydney, chair of Rotary District 9675, Diversity, Equity, and Inclusion, and is the chair/co-manager, Global Health and Migration Community Hub at the Global Health Hub Germany. B Bikbov reports support for the present manuscript from the European Union’s Horizon 2020 Marie Sklodowska-Curie research and innovation programme grant number 703226, and reports grants or contracts from the Lombardy Region, paid to their institution, outside of the submitted work. J Chandan reports grants or contracts from the National Institute for Health and Care Research as well as the Year Endowment Fund, outside of the submitted work. N Fullman reports funding from WHO and Gates ventures, outside of the submitted work. C Hertelui reports grants or contracts from the Romanian Ministry of Research Innovation and Digitalization (ID-585-CTR-42-PFE-2021), outside the submitted work. C Hertelui and A Pana report grants or contracts from Romanian National Authority for Scientific Research and Innovation (PN-II-P4-ID-PCCF-2016-0084, PN-II-P2-1.1SFO-2020-0351), outside the submitted work. S V Katikireddi reports support for the current manuscript from the Medical Research Council (MC_UU_00022/2) and Scottish Government Chief Scientist Office (MC_UU_00022/2), payments made to their institution. S Mohammed reports support for the present manuscript from the Bill & Melinda Gates Foundation and reports a fellowship grant from Alexander von Humboldt Foundation, outside of the submitted work. I Monasta reports support for the present manuscript from the Italian Ministry of Health (Ricerca Corrente 34/2017), payments made to their institution. J Mosser reports support for the present manuscript from the Bill & Melinda Gates Foundation and report grants from Gavi, outside of the submitted work. S Sacco reports grants for contracts from Novartis, and Uriach as payments to their institution; personal consulting fees from Pfizer, AstraZeneca, Lilly, Novartis, Teva, Lundbeck, Abbott, and Novo Nordisk; payment or honoraria for lectures, presentations, speakers bureaus, manuscript writing or educational events from Allerga-Abbivie, Abbott, Novartis, Lilly, Lundbeck, and Teva as personal payments; support for attending meetings or travel from Lilly; and is president elect of the European Stroke Organisation and second vice president of the European Headache Federation. S Sacco also reports receipt of equipment, materials, drugs, medical writing, gifts, or other services from Allergan-Abbivie, Novartis, and Novo Nordisk, all outside the submitted work. J A Singh reports consulting fees from Creala/ Horizon, Medisys, Fidia, PK Med, Two Labs, Adept Field Solutions, Clinical Care options, Clearview healthcare partners, Putnam associates, Focus forward, Navigant consulting, Sphero, MedIQ, Jupiter Life, UBM, TriO Health, Medoscope, WebMD, and Practice Point communications, and the National Institutes of Health and the American College of Rheumatology; payment or honoraria for participating in the speakers bureau for Simply Speaking; support for attending meetings or travel from the steering committee of OMERACT, to attend their meeting every 2 years; participation on a data safety monitoring board or advisory board as an unpaid member of the FDA Arthritis Advisory Committee; leadership or fiduciary role in other board, society, committee or advocacy group, paid or unpaid, as a member of the steering committee of OMERACT, an international organisation that develops measures for clinical trials and receives arms length funding from 12 pharmaceutical companies, with the Veterans Affairs Rheumatology Field Advisory Committee as Chair, and with the UAB Cochrane Musculoskeletal Group Satellite Center on Network Meta-analysis as a director and editor; stock or stock options in TPT Global Tech, Vaxart pharmaceuticals, Atu Biopharma, Adapimmune Therapeutics, GeoVax Labs, Pieris Pharmaceuticals, Enzolytics, Series Therapeutics, Tonix Pharmaceuticals, and Charlotte’s Web Holdings and previously owned stock options in Amarin, Viking, and Moderna pharmaceuticals; all outside the submitted work. D R Uezono is an employee of Roche Philippines, and their involvement in this article is done outside of their scope as an employee of Roche.

Data sharing
For detailed information regarding input data sources and to download the data used in these analyses, please visit the Global Health Data Exchange GBD 2019 website at https://ghdx.healthdata.org/gbd-2019.

Acknowledgments
O Adokeanubah acknowledges support from Department of Science and Innovation and National Research Foundation. S Afzal acknowledges the institutional support of King Edward Medical University. S Aljunid acknowledges Department of Health Policy and Management, College of Public Health, Health Science Centre, Kuwait University for the approval and support to participate in this research project. M Auslos, C Hertelui, and A Pana acknowledge partial support by a grant of the Romanian National Authority for Scientific Research and Innovation, CNDS-UEFISCEDI, project number PN-III-P4-ID-PCCF-2016-0084. C Hertelui also acknowledges partial support by a grant of the Romanian Ministry of Research Innovation and Digitalization, MCID, project number ID-585-CTR-42-PFE-2021. T Bärmighausen was supported by the Alexander von Humboldt Foundation through the Alexander von Humboldt Professor award, funded by the Federal Ministry of Education and Research. B Bikbov acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement No. 703226, Institute of Applied Health Sciences; School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Scotland. The salary for N Githi is covered by a grant from Novo Nordisk Foundation (NNF16OC0021856). V B Gupta acknowledges funding support from National Health and Medical Research Council (NHMRC) Australia. V K Gupta acknowledges funding support from National Health and Medical Research Council (NHMRC) Australia. T Joack acknowledges support from the National Research, Development and Innovation Office of Hungary under grant RFF-2.3.1-21-2022-00006 (Data-driven Health Division of Health Security National Laboratory). L. Katikireddi acknowledges funding from a NRS Senior Clinical Fellowship (SCAF/15/02), the Medical Research Council (MC_UU_00022/2), and the Scottish Government Chief Scientist Office (SPHSU17). M N Khan acknowledges the support of Jatiya Kabi Kazi Nazrul Islam University, Mympensingh, Bangladesh. Y J Kim acknowledges support from the Research Management Centre,
References

1 Vollset SE, Goreen E, Yuan CW, et al. Fertility, mortality, migration, and population scenarios for 195 countries and territories from 2017 to 2050: a forecasting analysis for the Global Burden of Disease Study. Lancet 2020; 396: 1285–306.

2 Wang H, Abbas KM, Abbassafard M, et al. Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950–2019: a comprehensive demographic analysis for the Global Burden of Disease Study 2019. Lancet 2020; 396: 1160–203.

3 Meara JG, Leather AJM, Hagander L, et al. Global Surgery 2010: evidence and solutions for achieving health, welfare, and economic development. Lancet 2015; 386: 569–623.

4 Stephenson T. How children’s responses to drugs differ from adults. Br J Clin Pharmacol 2005; 59: 670–73.

5 Vos T, Lim SS, Abafaci C, et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020; 396: 1204–22.

6 Blumfield E, Levin TL. COVID-19 in pediatric patients: a case series from the Bronx, NY. Pediatr Radiol 2020; 50: 1369–74.

7 Daneshgaran G, Dubin DP, Gould DJ. Cutaneous manifestations of COVID-19: an evidence-based review. Am J Clin Dermatol 2020; 21: 627–19.

8 Varatharaj A, Thomas N, Ellul MA, et al. Neurological and neuropsychiatric complications of COVID-19 in 153 patients: a UK-wide surveillance study. Lancet Psychiatry 2020; 7: 875–82.

9 Nienhaus A, Hod R. COVID-19 among health workers in Germany and in Malaysia. Int J Environ Res Public Health 2020; 17: E4881.

10 Levin AT, Hanage WP, Owruta-Beautey N, Cochran KB, Walsh SP, Meyerowitz-Katz G. Assessing the age specificity of infection fatality rates for COVID-19: systematic review, meta-analysis, and public policy implications. Eur J Epidemiol 2020; 35: 1123–38.

11 US Centers for Disease Control and Prevention. Science brief: evidence used to update the list of underlying medical conditions that increase a person’s risk of severe illness from COVID-19. 2021. https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/underlying-evidence-table.html (accessed June 15, 2021).

12 Micah AE, Su Y, Bachmeier SD, et al. Health sector spending and spending on HIV/AIDS, tuberculosis, and malaria, and demographics assistance for health: progress towards Sustainable Development Goal 3. Lancet 2020; 396: 693–724.

13 Lozano R, Fullman N, Mumford JE, et al. Measuring universal health coverage based on an index of effective coverage of health services in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020; 396: 1250–84.

14 Murray CJL, Abafaci C, Abbas KM, et al. Five insights from the Global Burden of Disease Study 2019. Lancet 2020; 396: 1135–59.

15 Nolte E, McKee M. Does health care save lives? Avoidable mortality revisited. London: The Nuffield Trust, 2004.

16 Beltrán-Sánchez H. Avoidable mortality. In: Rogers RG, Crimmins EM, eds. International handbook of adult mortality. Dordrecht: Springer Netherlands, 2011: 491–508.

17 Rutstein DD, Berenberg W, Chaltmors TC, et al. Measuring the quality of medical care. A clinical method. N Engl J Med 1976; 294: 882–88.

18 The Commonwealth Fund. Mortality amenable to health care. https://datacenter.commonwealthfund.org/topics/mortality-amenable-health-care (accessed Feb 10, 2021).

19 Gianino MM, Lenseti MP, Ricciardi W, Damiani G. Declining amenable mortality: a reflection of health care systems? BMC Health Serv Res 2017; 17: 735.

20 Schoenbaum SC, Schoen C, Nicholson JL, Cantor JC. Mortality amenable to health care in the United States: the roles of demographics and health systems performance. J Public Health Policy 2011; 32: 407–29.

21 Allin S. Grignon M. Examining the role of amenable mortality as an indicator of health system effectiveness. Healthc Policy 2014; 9: 12–19.

22 Ahurto JM, Riffle T. Canudas-Romo V. Trends in avoidable mortality over the life course in Mexico, 1990-2015: a cross-sectional demographic analysis. BMJ Open 2018; 8: e022350.

23 Barber RM, Fullman N, Sorensen RJD, et al. Healthcare Access and Quality Index based on mortality from causes amenable to personal health care in 195 countries and territories, 1990–2015: a novel analysis from the Global Burden of Disease Study 2015. Lancet 2017; 390: 231–66.

24 Fullman N, Yearwood J, Abay SM, et al. Measuring performance on the Healthcare Access and Quality Index for 195 countries and territories and selected subnational locations: a systematic analysis from the Global Burden of Disease Study 2016. Lancet 2018; 391: 2236–71.

25 Nolte E, McKee M. Measuring the health of nations: analysis of mortality amenable to health care. BMJ 2003; 327: 1129.

26 Nolte E, McKee CM. Measuring the health of nations: updating an earlier analysis. Health Aff (Millwood) 2008; 27: 58–71.

27 Kumaraduen S. Amenable mortality as an indicator of healthcare quality - a literature review. Health Syst Q 2010; 47: 66–80.

28 Mackenbach JP, Hoffmann R, Khoshaba B, et al. Using ‘amenable mortality’ as indicator of healthcare effectiveness in international comparisons: results of a validation study. J Epidemiol Community Health 2013; 67: 139–46.

29 Nolte E, McKee M. Variations in amenable mortality—trends in 16 high-income nations. Health Policy 2011; 103: 47–52.

30 Nolte E, McKee CM. In amenable mortality—deaths avoidable through health care—progress in the US lags that of three European countries. Health Aff (Millwood) 2012; 31: 2114–22.

31 Hoffmann R, Plug I, Khoshaba B, McKee M, Mackenbach JP. Amenable mortality revisited: the AMIEHS study. Gac Sanit 2013; 27: 199–206.
Forouzanfar MH, Afshin A, Alexander LT, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388: 1659–724.

Sunkara V, Hébert JR. The colorctal cancer mortality-to-incidence ratio as an indicator of global cancer screening and care. Cancer 2015; 121: 1563–69.

Salomon JA, Wang H, Freeman MK, et al. Healthy life expectancy for 187 countries, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380: 2144–62.

Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2019 (GBD 2019) Socio-demographic Index (SDI) 1950–2019. Seattle, WA: Institute for Health Metrics and Evaluation (IHME), 2020. https://ghdx.healthdata.org/record/ihme-data/gbd-2019 socio-demographic-index-sdi-1950-2019 (accessed Sept 12, 2022).

GBD 2019 Human Resources for Health Collaborators. Measuring the availability of human resources for health and its relationship to universal health coverage: estimates for 204 countries and territories, 1990 to 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 2022; 399: 2129–54.

Cutler D, Deaton A, Lleras-Muney A. The determinants of mortality. J Econ Perspect 2006; 20: 97–120.

Jamison DT, Summers LH, Alleyne G, et al. Global health 2035: a world converging within a generation. Lancet 2013; 382: 1898–955.

Skirbekk V, Ottersen T, Hamavid H, Sadat N, Dieleman JL. Vast majoritiy of development assistance for health funds target those below age sixty. Health Aff (Millwood) 2017; 36: 926–30.

Reiner RC Jr, Graetz N, Casey DC, et al. Variation in childhood diarrheal morbidity and mortality in Africa, 2000–2015. N Engl J Med 2018; 379: 1128–38.

Burstein R, Henry NJ, Collison ML, et al. Mapping 123 million neonatal, infant and child deaths between 2000 and 2017. Nature 2019; 574: 351–58.

Wiens KE, Lindstedt PA, Blacker BF, et al. Mapping geographical inequalities in oral rehydration therapy coverage in low-income and middle-income countries, 2000–17. Lancet Glob Health 2020; 8: e1038–60.

Sharra AN, Rolfe S, Nguyen QJ, et al. Mapping routine measles vaccination in low- and middle-income countries. Nature 2021; 589: 415–19.

Mossner JF, Gagne-Maynard W, Rao PC, et al. Mapping diphtheria-pertussis-tetanus vaccine coverage in Africa, 2000-2016: a spatial and temporal modelling study. Lancet 2019; 393: 1843–55.

Marino M, de Belvis AG, Tanzariello M, et al. Effectiveness and cost-effectiveness of integrated care models for elderly, complex patients: a narrative review. Don’t we need a value-based approach? Int J Care Coord 2018; 21: 120–39.

Chin-Yee N, D’Egidio G, Thavorn K, Heyland D, Kyrreman T. Cost analysis of the very elderly admitted to intensive care units. Crit Care 2017; 21: 107.

Hazra NC, Rudisici C, Guilford MC. Determinants of health care costs in the senior elderly: age, comorbidity, impairment, or proximity to death? J Eur Health Econ 2018; 19: 831–42.

Duazul LA, Brown L, Fried L. The elderly: an invisible population in humanitarian aid. Lancet Public Health 2018; 3: e14.

Li L, Du T, Hu Y. The effect of population aging on healthcare expenditure from a healthcare demand perspective among different age groups: evidence from Beijing City in the People’s Republic of China. Risk Manag Healthc Policy 2020; 13: 1403–12.

WHO. Primary health care. https://www.who.int/news-room/fact-sheets/detail/primary-health-care (accessed May 12, 2022).

Sharma N, Chakrabarti S, Grover S. Gender differences in caregiving among family caregivers of people with mental illnesses. World J Psychiatry 2016; 6: 7–17.

Mathiowitz N, Oliker S. The gender gap in caregiving to adults. University of Wisconsin-Milwaukee. November, 2005. www.atusers.umd.edu/wip2/papers/Oliker.pdf (accessed Dec 1, 2018).

Bloom D, Canning D, Sevilla J. The demographic dividend: a new perspective on the economic consequences of population change. RAND, 2003. https://www.rand.org/pubs/monograph_reports/MR1274.html (accessed Dec 10, 2013).

Migliore GB, Thong P, Akkerman O, et al. Worldwide effects of coronavirus disease pandemic on tuberculosis services, January–April 2020. Emerg Infect Dis 2020; 26: 2709–12.
75 Leite H, Hodgkinson IR, Gruber T. New development: ‘Healing at a distance’—telemedicine and COVID-19. Public Money Manag 2020; 40: 483–85.

76 Donabedian A. The quality of care. How can it be assessed? JAMA 1988; 260: 1743–48.

77 Donabedian A. Evaluating the quality of medical care. 1966. Milbank Q 2005; 83: 691–729.

78 Frenk J. Concept and measurement of accessibility. Salud Publica Mex 1985; 27: 438–53 (in Spanish).