Supporting Information

Discovery of Druggability-Improved Analogues by Investigation of LL-D49194α1 Biosynthetic Pathway

Lei Dong,† ‡ Yi Shen,† Xian-Feng Hou,‡ Wen-Jun Li,*,† § and Gong-Li Tang*,‡

†State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
‡State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 2000032, China
§Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China

Table of Contents

Supplementary Materials and Methods S2-S8
Table S1 Strains and plasmids used in this study S9
Table S2 Primers used in this study S10-S11
Table S3 Comparative analysis of biosynthetic gene clusters of LL-D49194 and TXNs S12-S14
Table S4-S11 NMR data for compounds characterized in this study S15-S22
Table S12 Computation assay of logP and optional drug-likeness properties S23
Figure S1 Construction and verification of S. vinaceusdrappus mutants via homologous recombination S24
Figure S2-S3 1H and 13C NMR spectrum of compound LL-D49194α1 (1) S25
Figure S4-S5 1H and 13C NMR spectrum of compound LL-D49194β2 (2) S26
Figure S6-S11 1D- and 2D-NMR spectrum of compound 7 S27-S29
Figure S12-S13 1H and 13C NMR spectrum of compound 8 S30
Figure S14-S19 1D- and 2D-NMR spectrum of compound 9 S31-S33
Figure S20-S25 1D- and 2D-NMR spectrum of compound 5 S34-S36
Figure S26-S31 1D- and 2D-NMR spectrum of compound 11 S37-S39
Figure S32-S37 1D- and 2D-NMR spectrum of compound 12 S40-S42
Figure S38-S43 1D- and 2D-NMR spectrum of compound 10 S43-S45
Figure S44-S49 1D- and 2D-NMR spectrum of compound 4 S46-S48
Figure S50 Cell viability assays of compounds LL-D49194α1 (1) and analogues S49
Figure S51 Aqueous solubility assay of compounds LL-D49194α1 (1), 4 and 5 S50
Supplementary references S51
Supplementary Materials and Methods

General

Reagents and chemicals were purchased from TCI (shanghai) or Sigma-Aldrich, unless noted otherwise. Oligonucleotide primers synthesis was performed at Suzhou Genewiz Biotechnology Co., Ltd., and are listed in Table S2. PCR amplification was performed using either KOD Plus (TOYOBO) DNA polymerase or Taq DNA polymerase. DNA sequencing was performed at the Biosune (Shanghai) Biotechnology Co., Ltd. Analytical HPLC was performed on an Agilent 1200 series system. Preparative HPLC was performed on a Shimadzu LC-20-AT system. Silica gel column chromatography was carried out using SiliaFlash P60. NMR spectra were obtained on Agilent DD2 600Mhz system and chemical shifts were calibrated with reference solvent signals (\(^1\)H NMR: CDCl\(_3\) 7.26 ppm, \(^{13}\)C NMR: CDCl\(_3\) 77.16 ppm). Data for \(^1\)H NMR are listed as follows: chemical shift (\(\delta\), ppm), multiplicity (s = singlet, brs = broad singlet, d = doublet, brd = broad doublet, t = triplet, m = multiplet or unresolved). Coupling constants (\(J\)) are in terms of Hertz. LC-MS were obtained on a ThermoFisher UHPLC Ultimate3000 system with a compact mass spectrometer (LTQ XL). HR-ESI-MS were recorded on an Agilent 1260 Infinity system with a time-of-light (TOF) mass analyzer. All biological assays were conducted in three independent replicates.

Strains and media

A LLD producer, *Streptomyces vinaceusdrappus* NRRL 15735 was purchased from the American Agricultural Research Service (ARS). *S. vinaceusdrappus* NRRL 15735 was cultivated at 30 °C, in MS medium (2% soybean powder, 2% mannitol, 2% agar, pH = 7.3±0.2) for 5 days, and used as the source for routine inoculation. For genome extraction, *S. vinaceusdrappus* NRRL 15735 was cultivated in shaking flask in modified YEME medium (0.3% yeast extract, 0.5% peptone, 0.3% malt extract, 1% glucose, 10% sucrose, pH=7.3±0.2).

Standard DNA engineering experiments were carried out using *Escherichia coli* DH5α competent cells (Invitrogen). *E. coli* cells bearing manipulated plasmids were cultivated in Luria-Betani medium and were selected with apramycin.
Whole genome sequencing and analysis

Whole genome sequencing of \textit{S. vinaceusdrappus} NRRL 15735 was performed on an Illumina Hiseq2000 system, and the resulting reads were assembled using SOAP denovo2,\(^1\) yielding the genome size was 8, 094, 394 bp, comprised of 7543 genes, 39 scaffolds were annotated. The open reading frames (ORFs) were predicted using online tool 2ndFind (http://biosyn.nih.go.jp/2ndfind), and manually adjusted according to the homologous domains matched in the NCBI database.

Construction of Gene Deletion and Complementation Mutants

The gene deletion mutants of \textit{lldA1, lldM1, lldB3, lldB4, lldM2, lldB5, lldO2, lldM3, lldM4, lldO6, lldO7, lldO10} were constructed using a homologous sequence replacement strategy as previously published.\(^2\) The PCR template is the genome DNA, amplification was performed with the following primers respectively: lldA1-L/RH-F/R, lldM1-L/RH-F/R, lldB3-L/RH-F/R, lldB4-L/RH-F/R, lldM2-L/RH-F/R, lldB5-L/RH-F/R, lldO2-L/RH-F/R, lldM3-L/RH-F/R, lldM4-L/RH-F/R, lldO6-L/RH-F/R, lldO7-L/RH-F/R, lldO10-L/RH-F/R (Table S2), Mutant plasmids pTG2027, pTG5028, pTG5029, pTG5030, pTG5031, pTG5032, pTG5033, pTG5034, pTG5035, pTG5036, pTG5037, pTG5038 were constructed for gene replacement (Table S1), and then introduced into \textit{S. vinaceusdrappus} NRRL 15735 through intergeneric conjugation from \textit{E. coli} S17-1. The double crossover mutants (from TG5019 to TG5030, Table S1), were selected with apramycin-sensitive colonies and whose genotype were tested by PCR (from t-A1-F/R to t-O10-F/R, Table S2).

Production and Analysis of LL-D49194 (LLD)

\textit{S. vinaceusdrappus} NRRL 15735 WT and recombinant strains were cultivated in a seed culture of modified TSB (tryptic soy broth 3%; complemented with FeSO\(_4\).7H\(_2\)O 0.0001%, MnCl\(_2\).4H\(_2\)O 0.0001%, ZnSO\(_4\).7H\(_2\)O 0.0001%) at 30 °C for 36 h, then 6mL of seed solution was transferred into a 0.5 L flask containing 0.1 L fermentation broth (soluble starch 6%, yeast extract 1%, glucose 1%, NaCl 0.3%, K\(_2\)HPO\(_4\) 0.1%, MgSO\(_4\).7H\(_2\)O 0.1%, DIAION HP20, 3%, Trace sault 0.1 mL (stored in 1000× stock solution: CuSO\(_4\).5H\(_2\)O 7%, FeSO\(_4\).7H\(_2\)O 1%, MnCl\(_2\).4H\(_2\)O 0.8%, ZnSO\(_4\).7H\(_2\)O 0.2%, CoCl\(_2\).7H\(_2\)O 0.006%), pH =7.3±0.2) and incubated at
29 °C for 6 days. The incubation broth was collected and then centrifugalized (5000 rpm for 20 minutes), the supernatant was removed, and all the mycelia and macro resin HP20 were collected. Two volume of acetone was added and stirred for 2 h, and then ultrasonic extraction for 0.5 h. After evaporated the organic layer, the water layer was partitioned with triple volume ethyl acetate to afford EtOAc extract.

HPLC analysis was performed on a ThermoFisher ODS-2 HYPERSIL column (5 μm, 250×4.6 mm) equilibrated with a 50% solvent A (water and 0.1% formic acid) and solvent B (acetonitrile and 0.1% formic acid) program, and then analyzed with the following gradient program: 0-5 min, 10% B; 5-24 min, a binary linear gradient from 10%-90% B; 24-26 min constant 90% B; 26-27 min, gradient from 90%-10% B; 27-31 min constant 10% B. The program was performed at a flow rate of 1.0 mL/min and a column temperature of 20 °C, UV detection at 400 nm using an Agilent 1200 series system. The MS data of related compounds were obtained by LC-MS analysis on a ThermoFisher LTQ XL under the same conditions.

Purification conditions for 7 and 8
The EtOAc extract from a 7 L liquid fermentation flask of mutant strain *S. vinaceusdrappus* TG5022 was dropwise added to silica-gel column chromatography, and then eluted stepwise with a dichloromethane:methanol gradient (100:0 to 90:10). Components that contained 7 and 8 were further purified by semi-HPLC using a Thermo ODS-2 HYPERSIL 5 μm column, gradient flow at a rate of 2 mL/min from 63%-67% acetonitrile in water over 15 minutes to yield a yellow solid 7 (0.84 mg) and of a yellow solid 8 (1.59 mg), respectively.

Purification conditions for 9
The EtOAc extract from a 7 L liquid fermentation flask of mutant strain *S. vinaceusdrappus* TG5024 was dropwise added to silica-gel column chromatography, and then eluted stepwise with a dichloromethane:methanol gradient (100:0 to 90:10). Components that contained 9 were further purified by semi-HPLC using a Thermo ODS-2 HYPERSIL 5 μm column, gradient flow at a rate of 2 mL/min from 60%-65% acetonitrile in water over 15 minutes to yield an orange solid 9 (8.41 mg).
Purification conditions for 5
The EtOAc extract from a 20 L liquid fermentation flask of mutant strain *S. vinaceusdrappus* TG5021 was dropwise added to silica-gel column chromatography, and then eluted stepwise with a dichloromethane:methanol gradient (100:0 to 85:15). Components that contained 5 were further purified by semi-HPLC using a Thermo ODS-2 HYPERSIL 5 μm column, gradient flow at a rate of 2 mL/min from 10%-58% acetonitrile in water over 15 minutes to yield a yellow solid 5 (12.63 mg).

Purification conditions for 11 and 12
The EtOAc extract from a 8 L liquid fermentation flask of mutant strain *S. vinaceusdrappus* TG5020 was dropwise added to silica-gel column chromatography, and then eluted stepwise with a dichloromethane:methanol gradient (100:0 to 85:15). Components that contained 11 and 12 were further purified by semi-HPLC using a Thermo ODS-2 HYPERSIL 5 μm column, gradient flow at a rate of 2 mL/min from 20%-50% acetonitrile in water over 15 minutes to yield an orange solid 11 (3.82 mg) and an orange solid 12 (5.49 mg), respectively.

Purification conditions for 10
The EtOAc extract from a 14 L liquid fermentation flask of mutant strain *S. vinaceusdrappus* TG5025 was dropwise added to silica-gel column chromatography, and then eluted stepwise with a dichloromethane:methanol gradient (100:0 to 90:10). Components that contained 10 were further purified by semi-HPLC using a Thermo ODS-2 HYPERSIL 5 μm column, gradient flow at a rate of 2 mL/min from 20%-65% acetonitrile in water over 15 minutes to yield a yellow solid 10 (6.65 mg).

Purification conditions for 4
The EtOAc extract from a 14 L liquid fermentation flask of mutant strain *S. vinaceusdrappus* TG5030 was dropwise added to silica-gel column chromatography, and then eluted stepwise with a dichloromethane:methanol gradient (100:0 to 90:10). Components that contained 4 were further purified by semi-HPLC using a Thermo ODS-2 HYPERSIL 5 μm column, gradient flow at a rate of 2 mL/min from 30%-60% acetonitrile in water over 15 minutes to yield an orange
solid 4 (5.74 mg).

Cancer cell viability assay of LL-D49194α1 and Analogues

All cell-culture work was carried out in a biological safety cabinet. HL60 and B16F10 cells were maintained in a 5% CO₂, 37 °C, humidified atmosphere in RPMI-1640 media supplemented with 10% fetal bovine serum (FBS) and 1% streptomycin/penicillin. LL-D49194α1 and analogues were dissolved in DMSO as 20 mM stock solution. Cells were collected and determined using a hemacytometer, with the final concentration of cell suspension was approximately 16,000 cells/50 μL. According to a preliminary experiment, compound stock solution was added and diluted with RPMI-1640 media (supplementary with FBS and antibiotics) to achieve final concentrations ranged from 1 nM to 4000 nM (0.1% v/v final concentration of DMSO). After incubated at 5% CO₂ and 37 °C for 48 h, cell viability was assessed using CCK-8 assay. 0.1% DMSO-treated cells were served as negative control. IC₅₀ value was calculated and fitted using GraphPad Prism7, curves are in Figure S50.

Reactions of LL-D49194α1, 5 and 4 with Duplex DNA

Alkylation buffer (10 mM potassium phosphate buffer, pH 7.0) was prepared as previously published.³ Duplex DNA oligomers d(AATTACGTAATT) (0.5 mM stock solution in alkylation buffer) were added in 10.0 μL (5 nmol) to four separate solutions designated as vials 1-4, respectively, LL-D49194α1 (10 mM stock solution in DMSO, 1.0 μL, 10 nmol, vial 2), 5 (10 mM stock solution in DMSO, 1.0μL, 10 nmol, vial 3) and 4 (10 mM stock solution in DMSO, 1.0 μL, 10 nmol, vial 4) were added, all 4 vials were then complemented to 100 μL with alkylation buffer. All samples were rotated in a speed of 350 rpm at room temperature. After 12 hours, 5 μL aliquot were removed from each of the 4 vials and diluted with MeCN in 10-fold. Then the samples were injected and analyzed on an Agilent 1260 Infinity system (gradient elution with 1 mM triethylammonium acetate buffer and acetonitrile) with a ESI-TOF spectrometry in negative ionization mode, capillary exit voltage was -80V.

Solubility assay of LL-D49194α1, 5 and 4

All related compounds were calibrated by diluting the 5 mM stock solution to 200, 150, 100,
75, 50, 25 μM, UV absorbance was measured by HPLC using a Thermo ODS-2 HYPERSIL 5μm column, gradient flow at a rate of 1mL/min from 5%-90% MeCN in water over 15 minutes. The aqueous solubility of LL-D49194α1 and analogues was measured with the shake-flask method as previously published.¹ 1.0 mg of compound was diluted to 50 mM, after stirred at room temperature for over 24 h. The solutions were filtered and diluted in 100-fold, then compared the UV absorbance of each compound to calibration curve to measure its aqueous solubility (Figure S51). Internal standard = Trioxacarcin A.²

Computation of Octanol-Water partition coefficient

The logP (logarithm of the n-octanol and water partition-coefficient) for all LL-D49194 analogues were calculated using a local software XLOGP3.³ Software were downloaded via website (http://www.sioc-ccbg.ac.cn/?p=42&software=xlogp3). Numbers of hydrogen bond donors, hydrogen bond acceptors and rotatable bonds were included and listed in Table S12.

Human liver microsome assay of LL-D49194α1, 5 and 4

Metabolic ratio assay *in vitro* was determined using a microsome method as previously published.⁴ A mixture of PBS (50mM, pH 7.4) and NADPH regenerating system (Sigma-Aldrich) were incubated in a water bath for 5 minutes at 37 °C, and then cooled down in ice box. Next, compound in 20 mM stock solution was added and vortexed (final concentration 0.2 mM, 1% DMSO), 10 μL mixture was withdrawn immediately as to sample, then acetonitrile within 50 μM internal standard was added (4:1, v/v) to quench the reaction. Ice-cold human live microsomes (Bioivt, 10-donor) were added (final concentration of 1 mg/mL) and then incubated in water bath for 2 h at 37 °C, another mixture was withdrawn as t1 sample and quenched as before. Metabolic ratio was analyzed on a HPLC system using a Thermo ODS-2 HYPERSIL 5 μm column, gradient flow at a rate of 1mL/min from 5%-82% MeCN in water over 13 minutes. Internal standard = Trioxacarcin A.

Analytical data

LL-D49194α1 (1): yellow solid; for NMR data see Figures S1 and S2; HR-ESI-MS (positive ion) found m/z 1015.3767 (calcd [M + Na]^+ for formula C₄₈H₆₄O₂₂Na m/z = 1015.3781).
LL-D49194β2 (2): yellow solid; for NMR data see Figures S3 and S4; HR-ESI-MS (positive ion) found \(m/z \) 973.3651 (calcd \([M + Na]^+\) for formula \(\text{C}_{46}\text{H}_{62}\text{O}_{21}\text{Na}\) \(m/z = 973.3676\)).

4: orange solid; for NMR data see Table S7 and Figures S10 to S15; HR-ESI-MS (positive ion) found \(m/z \) 457.1129 (calcd \([M + H]^+\) for formula \(\text{C}_{23}\text{H}_{21}\text{O}_{10}\) \(m/z = 457.1129\)).

5: yellow solid; for NMR data see Table S7 and Figures S16 to S21; HR-ESI-MS (positive ion) found \(m/z \) 487.1235 (calcd \([M + H]^+\) for formula \(\text{C}_{24}\text{H}_{33}\text{O}_{11}\) \(m/z = 487.1235\)).

7: yellow solid; for NMR data see Table S11 and Figures S34 to S39; HR-ESI-MS (positive ion) found \(m/z \) 685.2103 (calcd \([M + Na]^+\) for formula \(\text{C}_{32}\text{H}_{38}\text{O}_{15}\text{Na}\) \(m/z = 685.2105\)).

8: yellow solid; for NMR data see Table S6 and Figures S8 and S9; HR-ESI-MS (positive ion) found \(m/z \) 829.2887 (calcd \([M + Na]^+\) for formula \(\text{C}_{39}\text{H}_{50}\text{O}_{18}\text{Na}\) \(m/z = 829.2889\)).

9: orange solid; for NMR data see Table S12 and Figures S40 to S45; HR-ESI-MS (positive ion) found \(m/z \) 829.2892 (calcd \([M + Na]^+\) for formula \(\text{C}_{39}\text{H}_{50}\text{O}_{18}\text{Na}\) \(m/z = 829.2889\)).

10: yellow solid; for NMR data see Table S13 and Figures S46 to S51; HR-ESI-MS (positive ion) found \(m/z \) 811.2786 (calcd \([M + Na]^+\) for formula \(\text{C}_{39}\text{H}_{48}\text{O}_{17}\text{Na}\) \(m/z = 811.2784\)).

11: orange solid; for NMR data see Table S9 and Figures S22 to S27; HR-ESI-MS (positive ion) found \(m/z \) 666.2387 (calcd \([M + \text{NH}_4]^+\) for formula \(\text{C}_{31}\text{H}_{46}\text{O}_{15}\text{N}\) \(m/z = 666.2392\)).

12: orange solid; for NMR data see Table S10 and Figures S28 to S33; HR-ESI-MS (positive ion) found \(m/z \) 796.3023 (calcd \([M + \text{NH}_4]^+\) for formula \(\text{C}_{37}\text{H}_{50}\text{O}_{18}\text{N}\) \(m/z = 796.3022\)).
Table S1. Strains and plasmids used in this study

Strain/Plasmid	Characteristics	Reference
Strains		
E. coli DH5α	Host for general cloning	Invitrogen
E. coli S17-1	Donor strain for intergeneric conjugation between *E. coli* and *S. vinaceusdrappus* NRRL 15735	2
S. vinaceusdrappus NRRL15735	Wild type strain, LLD producing	NRRL
S. vinaceusdrappus TG5019	*lldA1* gene replacement mutant	This work
S. vinaceusdrappus TG5020	*lldM1* gene replacement mutant	This work
S. vinaceusdrappus TG5021	*lldB3* gene replacement mutant	This work
S. vinaceusdrappus TG5022	*lldB4* gene replacement mutant	This work
S. vinaceusdrappus TG5023	*lldM2* gene replacement mutant	This work
S. vinaceusdrappus TG5024	*lldB5* gene replacement mutant	This work
S. vinaceusdrappus TG5025	*lldO2* gene replacement mutant	This work
S. vinaceusdrappus TG5026	*lldM3* gene replacement mutant	This work
S. vinaceusdrappus TG5027	*lldM4* gene replacement mutant	This work
S. vinaceusdrappus TG5028	*lldO6* gene replacement mutant	This work
S. vinaceusdrappus TG5029	*lldO7* gene replacement mutant	This work
S. vinaceusdrappus TG5030	*lld10* gene replacement mutant	This work
Plasmids		
pKC1139	Apramycin resistance and thermo-sensitive plasmid	2
pTG5027	pKC1139 vector derivative for gene replacement of *lldA1*	This work
pTG5028	pKC1139 vector derivative for gene replacement of *lldM1*	This work
pTG5029	pKC1139 vector derivative for gene replacement of *lldB3*	This work
pTG5030	pKC1139 vector derivative for gene replacement of *lldB4*	This work
pTG5031	pKC1139 vector derivative for gene replacement of *lldM2*	This work
pTG5032	pKC1139 vector derivative for gene replacement of *lldB5*	This work
pTG5033	pKC1139 vector derivative for gene replacement of *lldO2*	This work
pTG5034	pKC1139 vector derivative for gene replacement of *lldM3*	This work
pTG5035	pKC1139 vector derivative for gene replacement of *lldM4*	This work
pTG5036	pKC1139 vector derivative for gene replacement of *lldO6*	This work
pTG5037	pKC1139 vector derivative for gene replacement of *lldO7*	This work
pTG5038	pKC1139 vector derivative for gene replacement of *lldO10*	This work
Table S2. Primers used in this study

Primer	Sequence (5' to 3')						
lldA1-LH-F	ATAGGATCCAGGGGAGCACAGATGGAA						
lldA1-LH-R	ATATCTAGAGGTGATGGCGACTCTGCG						
lldA1-RH-F	ATATCTAGACGCCGGAGGACCCGGCTCA						
lldA1-RH-R	ATAAAGCTTCTCGAGGCGCTCTCAGAGA						
lldM1-LH-F	ATAGGATCCGACACGACGCCGACACGTAC						
lldM1-LH-R	ATATCTAGAGGTGATGGCGACTCTGCG						
lldM1-RH-F	ATATCTAGAGGTGACAGTTCGAGTTGGTTCG						
lldM1-RH-R	ATAAAGCTTCTCGAGGCGACCCGAAGCAGC						
lldB3-LH-F	ATAGAATTCCCTGTCCAGCTCACCAGCTGCC						
lldB3-LH-R	ATATCTAGACATCGTGGGTCCTCCGAGTCCTG						
lldB3-RH-F	ATATCTAGAGGTGACCTCCTGAGTGAGG						
lldB3-RH-R	ATAAAGCTTCTCGAGGCGACCCGAAGCAGC						
lldB4-LH-F	ATAGAATTCCGAGGGGATGTGAGCACTCC						
lldB4-LH-R	ATATCTAGACATCGTGGGTCCTCCGAGTCCTG						
lldB5-LH-F	ATAGAATTCCACTGACCGACCGACGACG						
lldB5-LH-R	ATATCTAGACATCGTGGGTCCTCCGAGTCCTG						
lldB5-RH-F	ATATCTAGACATCGTGGGTCCTCCGAGTCCTG						
lldB5-RH-R	ATAAAGCTTCTCGAGGCGACCCGAAGCAGC						
lldO2-LH-F	ATAGAATTCCGAGGGGATGTGAGCACTCC						
lldO2-LH-R	ATATCTAGAGGTGAGCTGACACGC						
lldO2-RH-F	ATATCTAGACATCGTGGGTCCTCCGAGTCCTG						
lldO2-RH-R	ATAAAGCTTCTCGAGGCGACCCGAAGCAGC						
lldM3-LH-F	ATAGAATTCCGAGGGGATGTGAGCACTCC						
lldM3-LH-R	ATATCTAGAGGTGAGCTGACACGC						
lldM3-RH-F	ATATCTAGACATCGTGGGTCCTCCGAGTCCTG						
lldM3-RH-R	ATAAAGCTTCTCGAGGCGACCCGAAGCAGC						
lldM4-LH-F	ATAGAATTCCGAGGGGATGTGAGCACTCC						
lldM4-LH-R	ATATCTAGAGGTGAGCTGACACGC						
lldM4-RH-F	ATATCTAGACATCGTGGGTCCTCCGAGTCCTG						
lldM4-RH-R	ATAAAGCTTCTCGAGGCGACCCGAAGCAGC						
lldO6-LH-F	ATAGAATTCCGAGGGGATGTGAGCACTCC						
lldO6-LH-R	ATATCTAGAGGTGAGCTGACACGC						
lldO6-RH-F	ATATCTAGACATCGTGGGTCCTCCGAGTCCTG						
lldO6-RH-R	ATAAAGCTTCTCGAGGCGACCCGAAGCAGC						
lldO7-LH-F	ATAGAATTCAGCGCCTGCTGCTG	lldO7-LH-R	ATATCTAGAGGGTTCCGAGTTCCGAGG	lldO7-RH-F	ATATCTAGACTGCGCTGCTTCTTCTC	lldO7-RH-R	ATAAAGCTTGGTGCTGCTCAACGCCCAGA
------------	-------------------------	------------	-----------------------------	------------	-----------------------------	------------	-------------------------------
lldO10-LH-F	ATAGAATTCAGAGGGTTCCGAGG	lldO10-LH-R	ATATCTAGAATCGGCGACCAGGGCTC	lldO10-RH-F	ATATCTAGACAACGCTGGCTCCGGTTC	lldO10-RH-R	ATAAAGCTTAACTGCTGCTGCTGCCAGA
t-A1-F	GGGCCCAGAAGAAGCTGATCG	t-A1-R	ACCAGGCGAGAAGCTGGTAG	t-M1-F	GAAAATACGCGCAGCGAATG	t-M1-R	GCTGTCGAGAAGACCCCTTCT
t-B3-F	ACCAGGCGAGAAGCTGGTAG	t-B3-R	GGGCGAGACCAGCTGGTAG	t-B4-F	CCGGTCAGCGACTCCGCGAT	t-B4-R	CCAAGATAATGCTGCCCAGTCT
t-B5-F	CGTGTCAACGCTGGCTGGTC	t-B5-R	TTCACGCGAGCAAGCTGGTAG	t-O2-F	CTCATCGAGGAGACGTCTTC	t-O2-R	CGTCAGGCAGCCAGCATG
t-M3-F	GATGTTGTCGCGCGGTGTG	t-M3-R	TCCTCAAGCTGGCTCCTC	t-M4-F	TACGGACCGAGTGCGGATGG	t-M4-R	CTCGTCCTGCGTCGCAGATC
t-M6-F	AGGTGCTGCTACTACGGACGGA	t-M6-R	CTCGTCCTGCGTCGACGCA	t-O7-F	TGGCCTGATGCGCTGAGAAGA	t-O7-R	TGGCCTGACGCTCGTGAGCAGCA
t-O10-F	ACAACGCGGTGTGGCGTGAAG	t-O10-R	TGGCCTGACGCTCGTGAGAAGA				
Table S3. Comparative analysis of biosynthetic gene clusters of LL-D49194 in *S. vinaceusdrappus* NRRL 15735 and TXNs in *S. bottropensis* DO-45 (NRRL 12051)

Gene	Amino acid	Protein homolog (No.), [origin]; S/I (%)	TXN homolog, S/I (%)	Proposed function
orf(-1)	288	Transposase (KES02929), [S. toyocaensis]; (87/85)	/	Transposase
lldRg1	267	SLA_3077 (BAU8399), [S. laurentii ATCC 31255]; (83/70)	TnxRg2 (81/68)	SARP-family regulator
lldB1	310	ADK74_10340 (KOG47576), [S. decoyicus]; (74/66)	TnxB5 (70/60)	dNDP-hexose-4-ketoreductase
lldB2	194	PokS7 (ACN64855), [S. diastatochromogenes]; (86/74)	TnxB6 (80/72)	dTDP-4-dehydrorhamnose 3,5-epimerase
lldM1	410	GonCM (CUW01197), [S. caniferus]; (82/72)	TnxM1 (81/71)	dNDP-hexose-3-C-methyltrasferase
lldB3	420	TnxB10 (AKT74299), [S. bottropensis DO-45]; (68/56)	TnxB10 (68/56)	GTB-type glycosyltransferase
lldB4	430	TnxB10 (AKT74299), [S. bottropensis DO-45]; (68/58)	?	GTB-type glycosyltransferase
lldRr1	505	CK936_34450 (PAU44521), [S. albireticulat]; (75/60)	?	MFS transporter
lldM2	339	TnxM4 (AKT74307), [S. bottropensis DO-45]; (81/69)	TnxM4 (81/69)	O-Methyltrasferase
lldB5	423	TnxB12 (AKT74304), [S. bottropensis DO-45]; (75/65)	TnxB12 (75/65)	GTB-type glycosyltransferase
lldB6	391	TnxB11 (AKT74303), [S. bottropensis DO-45]; (74/63)	TnxB11 (74/63)	O-Acyltrasferase
lldO1	168	ACZ90_22755 (KUJ68064), [S. albicat]; (76/69)	?	VOC-family, extradiol dioxygenase
lldU1	390	PA111_01900 (EHN12885), *Patulibacter medicamentivorans*; (89/81)	TnxU4 (82/71)	HTH-42 superfamily, unknown
lldU2	126	Hypothetical protein (WP_030583115), [S. sclerotialus]; (74/57)	TnxU3 (67/51)	Unknown
lldO2	400	TnxO12 (AKT74306), [S. bottropensis DO-45]; (81/72)	TnxO12 (81/72)	Cytochrome P450
lldO3	240	TnxC4 (AKT74300), [S. bottropensis DO-45]; (77/69)	TnxC4 (77/69)	Ketoreductase
lldM3	357	MetLA2 (AAT45283), [S. tuberkidicus]; (81/71)	TnxM2 (79/70)	O-Methyltrasferase
lldM4	348	MetLA1 (AAT45282), [S. tuberkidicus]; (85/79)	?	O-Methyltrasferase
lldU3	143	TnxO11 (AKT74297), [S. bottropensis DO-45]; (86/78)	TnxO11 (86/78)	NTF2-like superfamily, unknown
lldC1	306	TnxC3 (AKT74295), [S. bottropensis DO-45]; (87/84)	TnxC3 (87/84)	2,3-Cyclase
lldO4	187	TnxO10 (AKT74294), [S. bottropensis DO-45]; (83/77)	TnxO10 (83/77)	Flavin reductase
lldC2	261	TnxC2 (AKT74293), [S. bottropensis DO-45]; (93/89)	TnxC2 (93/89)	Ketoreductase
lldC3	154	TnxO9 (AKT74292), [S. bottropensis DO-45]; (91/88)	TnxO9 (91/88)	Pyrone synthase
lldO5	373	TnxO8 (AKT74291), [S. bottropensis DO-45]; (86/81)	TnxO8 (86/81)	Hydroxylase
lldU4	175	TnxO7 (AKT74290), [S. bottropensis DO-45]; (95/90)	TnxO7 (95/90)	NTF2-like superfamily, unknown
lldO6	421	TnxO6 (AKT74289), [S. bottropensis DO-45]; (95/92)	TnxO6 (95/92)	Cytochrome P450
lldRg2	341	TnxRg5 (AKT74288), [S. bottropensis DO-45]; (88/84)	TnxRg5 (88/84)	YaY-family regulator
lldRr2	471	TnxRr2 (AKT74287), [S. bottropensis DO-45]; (95/89)	TnxRr2 (95/89)	MFS transporter
lldB7	322	TnxB8 (AKT74286), [S. bottropensis DO-45]; (88/83)	TnxB8 (88/83)	dTDP-hexose 3-ketoreductase
lldB8	485	TnxB7 (AKT74285), [S. bottropensis DO-45]; (88/83)	TnxB7 (88/83)	dTDP-hexose 2,3-dehydratase
lldH1	373	TnxH2 (AKT74281), [S. bottropensis DO-45]; (91/86)	TnxH2 (91/86)	Epoxide hydrolase
lldO7	409	TnxO5 (AKT74280), [S. bottropensis DO-45]; (97/90)	TnxO5 (97/90)	Cytochrome P450
lldH2	494	TnxH1 (AKT74279), [S. bottropensis DO-45]; (90/86)	TnxH1 (90/86)	α/β-Hydrolase
lldO8	107	TnxO4 (AKT74278), [S. bottropensis DO-45]; (98/95)	TnxO4 (98/95)	Ferredoxin
lldO9	101	TnxO3 (AKT74277), [S. bottropensis DO-45]; (98/95)	TnxO4-C_terminal	Ferredoxin reductase (only 1/4)
lldU5	370	TnxU2 (AKT74276), [S. bottropensis DO-45]; (90/83)	TnxU2 (90/83)	HTH-42 superfamily, unknown
lldO10	408	TnxO2 (AKT74275), [S. bottropensis DO-45]; (94/91)	TnxO2 (94/91)	Cytochrome P450
lldU6	122	TnxU1 (AKT74274), [S. bottropensis DO-45]; (85/82)	TnxU1 (85/82)	Unknown
lldO11	345	TnxO1 (AKT74273), [S. bottropensis DO-45]; (91/87)	TnxO1 (91/87)	NADP+-dependent oxidoreductase (ER)
lldRr3	457	TnxRr1 (AKT74272), [S. bottropensis DO-45]; (76/68)	TnxRr1 (76/68)	MFS transporter
lldO12	260	TnxP4 (AKT74271), [S. bottropensis DO-45]; (92/86)	TnxP4 (92/86)	NAD(P)+-dependent oxidoreductase(SDR)
lldA4	411	TxnP3 (AKT74270), [S. bottropensis DO-45]; (85/80)	TtxnP3 (85/80)	CoA transferase/carnitine dehydratase
lldA5	543	TxnP2 (AKT74269), [S. bottropensis DO-45]; (88/84)	TtxnP2 (88/84)	2-Isopropylmalate/Citramalate synthase
lldA6	346	TxnA5 (AKT74268), [S. bottropensis DO-45]; (93/90)	TtxnA5 (93/90)	KS-III (S-H-H)
lldC4	318	TxnC1 (AKT74267), [S. bottropensis DO-45]; (90/83)	TtxnC1 (90/83)	1-Cyclase/aromatase
lldA7	590	TxnP1 (AKT74266), [S. bottropensis DO-45]; (84/75)	TtxnP1 (84/75)	ATP-dependent CoA synthase
lldRg3	203	TxnRg4 (AKT74265), [S. bottropensis DO-45]; (97/91)	TtxnRg4 (97/91)	2-Component regulator (MerR-family)
lldRg4	393	TxnRg3 (AKT74264), [S. bottropensis DO-45]; (80/71)	TtxnRg3 (80/71)	2-Component kinase
lldRg5	292	TxnRg2 (AKT74263), [S. bottropensis DO-45]; (94/91)	TtxnRg2 (94/91)	SARP-family regulator
lldA1	420	TxnA1 (AKT74262), [S. bottropensis DO-45]; (96/92)	TtxnA1 (96/92)	KSα
lldA2	406	TxnA2 (AKT74261), [S. bottropensis DO-45]; (92/87)	TtxnA2 (92/87)	KSβ
lldA3	89	TxnA3 (AKT74260), [S. bottropensis DO-45]; (94/90)	TtxnA3 (94/90)	ACP
lldA8	564	TxnA4 (AKT74259), [S. bottropensis DO-45]; (82/77)	TtxnA4 (82/77)	MAT
lldB9	115	TxnB4-C(231-345) (AKT74258), [S. bottropensis DO-45]; (97/96)	TtxnB4-C-terminal	Pyruvate dehydrogenase-β (only 1/3)
lldB10	110	TxnB3-N(1-104) (AKT74257), [S. bottropensis DO-45]; (87/80)	TtxnB3-N-terminal	Pyruvate dehydrogenase-α (only 1/3)
lldB11	292	TxnB2 (AKT74256), [S. bottropensis DO-45]; (94/90)	TtxnB2 (94/90)	Glucose-1-P thymidylyltransferase
lldB12	331	TxnB1 (AKT74255), [S. bottropensis DO-45]; (94/90)	TtxnB1 (94/90)	dTDP-glucose 4,6-dehydratase
orf(+1)	334	IQ63_37240 (KND26343), [S. acidiscabies]; (90/81)	/	Hydroxymethylbilane synthase

The sequence of LL-D49194 biosynthetic gene cluster has been deposited into GenBank under accession no. MK501817.
Table S4. NMR data of 7

Position	1C δ(ppm)	1H δ(ppm)	Intensity	Multiplicity	HMBC Correlation	COSY Correlation	NOESY Correlation
1	203.4	4.94	1H	d (12.8, 5.5 Hz)	1, 3	H-3α	H-3α
2	67.8	2.74(m)	1H	m	1, 2, 4, 4a	H-2, H-4	H-2
3	37.1	2.18(β)	1H	m	1, 2	H-4	
4	62.0	5.47	1H	brs	2, 9a	H-3α, H-3β	H-3β, H-10-OMe
4a	129.6	7.47	1H	s	6-Me, 8a, 10	H-6-Me, H-10-OMe	
5	116.5	7.47	1H	s			
6	114.8	7.47	1H	s			
7	142.9	7.47	1H	s			
8	151.7	7.47	1H	s			
8a	114.8	7.47	1H	s			
9	162.6	7.47	1H	s			
9a	107.3	7.47	1H	s			
10	144.5	7.47	1H	s			
10a	135.9	7.47	1H	s			
11	69.3	5.17	1H	d (4.1 Hz)	7, 8, 12, 13	H-12	H-6-Me, H-12
12	71.4	4.84	1H	d (4.1 Hz)	14, 15	H-11	H-11
13	102.5	4.84	1H	d (4.1 Hz)	14, 15	H-11	
14	69.2	4.84	1H	d (4.1 Hz)	14, 15	H-11	
15	104.4	4.84	1H	d (4.1 Hz)	14, 15	H-11	
16	94.5	5.14	1H	s	16-OMe, 1'		
17	48.0	2.86	2H	d (13.9, 5.5 Hz)	13, 14		
1'	95.1	5.38	1H	d (3.5 Hz)	16, 2', 5'	H-2''	H-16-OMe, H-2'', H-2β
2'	34.7	2.02(α)	1H	d (14.8, 3.8 Hz)	1', 4'	H-1'	
3'	70.0	2.02(α)	1H	d (14.8 Hz)	1', 4'	H-1'	
4'	74.6	3.22	1H	d (6.8 Hz)	2', 3', 5', 6', 7'	H-2β	H-7
5'	63.7	4.58	1H	d (12.6, 6.1 Hz)	1', 4', 6'	H-6'	
6'	16.6	1.32	3H	d (6.6 Hz)	4', 5'	H-5'	
7	26.2	1.30	3H	s	2', 4'	H-4'	
6-Me	20.5	2.61	3H	s	5, 6, 7	H-5, H-11	
10-OMe	63.0	3.93	3H	s	10	H-4, H-5	
13-OMe	53.0	3.74	3H	s	13		
16-OMe	59.0	3.52	3H	s	16	H-1'	
9-OH	13.94	1H	s	8a, 9, 9a			

1H NMR: 600 MHz, 1C NMR: 150 MHz (in CDCl$_3$)
Table S5. NMR data of 8

position	13C	1H	multiplicity
	δ(ppm)	δ(ppm)	intensity
1	203.0		
2	68.1	4.78	1H dd (12.7, 5.6 Hz)
3	36.8	2.82(α)	1H m
		2.21(β)	1H m
4	67.6	5.39	1H t
4a	126.7		
5	116.8	7.50	1H s
6	115.1		
7	143.1		
8	151.8		
8a	115.0		
9	163.4		
9a	107.5		
10	145.0		
10a	135.7		
11	69.3	5.17	1H d (4.1 Hz)
12	71.3	4.85	1H d (4.0 Hz)
13	102.5		
14	69.1		
15	104.5		
16	94.5	5.14	1H s
17	48.0	2.87	2H dd (13.1, 5.5 Hz)
1'	95.1	5.37	1H d (3.4 Hz)
2'	34.7	2.02(α)	1H dd (14.7, 3.8 Hz)
		1.85(β)	1H d (14.7 Hz)
3'	70.0		
4'	74.6	3.21	1H m
5'	63.7	4.54	1H dd (12.7, 6.0 Hz)
6'	16.9	1.31	3H d (6.5 Hz)
7'	26.2	1.30	3H s
1''	98.2	5.32	1H d (3.9 Hz)
2''	36.0	1.95(α)	1H dd (14.9, 4.3 Hz)
		1.56(β)	1H s
3''	70.2		
4''	74.6	3.21	1H m
5''	63.7	4.57	1H dd (13.2, 6.6 Hz)
6''	17.0	1.38	3H d (6.6 Hz)
7''	26.2	1.21	3H s
6-Me	20.5	2.60	3H s
10-OMe	62.9	3.85	3H s
13-OMe	53.0	3.74	3H s
16-OMe	58.9	3.52	3H s
9-OH	14.16	1H s	

1H NMR: 600 MHz, 13C NMR: 150 MHz (in CDCl$_3$)
Table S6. NMR data of 9

position	13C δ(ppm)	1H δ(ppm)	intensity	multiplicity	HMBC correlation	COSY correlation	NOESY correlation
1	203.5	5.06	1 H	dd (12.2 Hz)	1, 3	H-3a, H-3β	
2	67.8	5.74	1 H	dd (11.3 Hz)	1, 2, 3, 4a	H-2, H-4	
3	33.7	4.83	1 H	dd (3.9 Hz)	14, 15	H-11	H-13-OMe
4	129.6	7.45	1 H	s	6-Me, 8a, 10	H-13-OMe	
5	116.4	5.15	1 H	d (4.0 Hz)	7, 8, 12, 13	H-12	
6	144.8	114.8					
7	142.8	114.8					
8	151.7	114.8					
8a	162.6	107.3					
9	144.5	144.5					
10	104.4	69.1					
10a	135.9	94.3	1 H	s	16-OMe, 1	H-16-OMe	
11	94.3	5.11	1 H	s	16-OMe, 1	H-16-OMe	
12	69.3	4.83	1 H	d (3.9 Hz)	14, 15	H-11	
13	102.4	69.1					
14	104.4	69.1					
15							
16	94.3	5.11	1 H	s	16-OMe, 1	H-16-OMe	
17	48.0	2.85	2 H	dd (14.4 Hz)	13, 14		
1'	150.7	5.36	1 H	dd (11.3 Hz)	1, 2, 3, 4a	H-2, H-4	
2'	35.7	2.01	1 H	d (4.0 Hz)	1, 4		
3'	69.3						
4'	84.1	3.30	1 H	s	2', 3', 5', 6', 7', 1'	H-6'	
5'	64.0	4.50	1 H	dd (12.8 Hz)	1', 4', 6'	H-6'	H-9-OH, H-6'
6'	17.8	1.28	3 H	d (6.9 Hz)	4', 5'		H-4', H-5'
7'	26.8	1.32	3 H	s	2', 4'		
1''	101.2	4.99	1 H	d (3.7 Hz)	4', 2', 5'	H-2''	
2''	35.7	1.99	1 H	d (3.9 Hz)	1', 3'	H-1''	
3''	10.2	70.2					
4''	74.4	3.17	1 H	s	2', 3', 5', 6', 7', 1'	H-6'	
5''	64.0	4.54	1 H	dd (12.8 Hz)	1', 4', 6'	H-6'	
6''	16.6	1.22	3 H	d (6.5 Hz)	4', 5'		
7''	26.3	1.27	3 H	s	2', 4'		
6-Me	20.5	2.59	3 H	s	5, 6, 7		
10-OMe	63.0	3.92	3 H	s	10		H-4
13-OMe	53.0	3.73	3 H	s	13	H-13-OMe	H-12, H-9-OH
16-OMe	59.1	3.50	3 H	s	16		H-16

1H NMR: 600 MHz, 13C NMR: 150 MHz (in CDCl₃)
Table S7. NMR data of 5

position	1H δ(ppm)	13C δ(ppm)	intensity	multiplicity	HMBC correlation	COSY correlation	NOESY correlation
1	202.0						
2	36.8	2H t (7.1 Hz)	1, 4, 9a	H-3n, H-3β			
3	39.5	2H t (7.0 Hz)	1, 4, 4a	H-2n, H-2β			
4	195.0						
5	118.5	7.76 H	s	6-Me, 8a, 10	H-6-Me, H-10-Ome		
6	116.7						
7	142.9						
8	151.5						
8a	117.0						
9	162.7						
9a	110.3						
10	147.5						
10a	136.5						
11	69.3	5.24 H	d (4.0 Hz)	7, 8, 12, 13	H-12	H-6-Me	
12	71.7	4.90 H	d (4.0 Hz)	14, 15	H-11	H-13-Ome	
13	102.4						
14	69.2						
15	103.8						
16	88.7	5.38 H	brs	14	H-16-OH(1), H-16-OH(2)		
17	49.0	3.18(α) H	d (5.3 Hz)	13, 14		H-5, H-11	
	2.96(β)	1H d (5.3 Hz)		13, 14			
6-Me	20.4	2.64 H	s	5, 6, 7	H-5, H-11		
10-Ome	63.5	3.95 H	s	10		H-5	
13-Ome	53.1	3.75 H	s	13		H-12	
9-OH	15.02	1H s		8a, 9, 9a			
16-OH(1)	3.83	1H brd		15, 16	H-16	H-16-OH(2)	
16-OH(2)	3.50	1H brs		16	H-16	H-16-OH(1)	

1H NMR: 600 MHz, 13C NMR: 150 MHz (in CDCl$_3$)
Table S8. NMR data of 11

Position	13C (δ(ppm))	1H (δ(ppm))	Intensity	Multiplicity	HMBC Correlation	COSY Correlation	NOESY Correlation
1	203.4	dd (12.8, 5.5 Hz)		1, 3	H-3α, H-3β	H-3α	
2	67.8	dd (2.8 Hz)	4.94	1H	H-2, H-4	H-2, H-4	
3	2.76(α)	m	1, 2, 4, 4a	1H	H-2, H-4	H-2, H-4	
4	62.0	dd (12.8, 5.5 Hz)		1, 3	H-3α, H-3β	H-3α	
4a	129.7	dd (2.8 Hz)	2.18	1H	H-2, H-4	H-2, H-4	
5	116.5	dd (12.8, 5.5 Hz)		1, 3	H-3α, H-3β	H-3α	
6	114.8	dd (2.8 Hz)	2.18	1H	H-2, H-4	H-2, H-4	
7	151.7	dd (2.8 Hz)	2.18	1H	H-2, H-4	H-2, H-4	
8	142.8	dd (2.8 Hz)	2.18	1H	H-2, H-4	H-2, H-4	
9	145.5	dd (2.8 Hz)	2.18	1H	H-2, H-4	H-2, H-4	
9a	135.9	dd (2.8 Hz)	2.18	1H	H-2, H-4	H-2, H-4	
10	139.3	dd (2.8 Hz)	2.18	1H	H-2, H-4	H-2, H-4	
10a	139.3	dd (2.8 Hz)	2.18	1H	H-2, H-4	H-2, H-4	
11	69.3	dd (2.8 Hz)	2.18	1H	H-2, H-4	H-2, H-4	
12	71.4	dd (2.8 Hz)	2.18	1H	H-2, H-4	H-2, H-4	
13	102.4	dd (2.8 Hz)	2.18	1H	H-2, H-4	H-2, H-4	
14	69.2	dd (2.8 Hz)	2.18	1H	H-2, H-4	H-2, H-4	
15	104.4	dd (2.8 Hz)	2.18	1H	H-2, H-4	H-2, H-4	
16	94.6	dd (2.8 Hz)	2.18	1H	H-2, H-4	H-2, H-4	
17	48.0	dd (2.8 Hz)	2.18	1H	H-2, H-4	H-2, H-4	
1'	95.1	dd (2.8 Hz)	2.18	1H	H-2, H-4	H-2, H-4	
2'	29.3	dd (2.8 Hz)	2.18	1H	H-2, H-4	H-2, H-4	
3'	67.7	dd (2.8 Hz)	2.18	1H	H-2, H-4	H-2, H-4	
4'	70.8	dd (2.8 Hz)	2.18	1H	H-2, H-4	H-2, H-4	
5'	62.4	dd (2.8 Hz)	2.18	1H	H-2, H-4	H-2, H-4	
6'	16.6	dd (2.8 Hz)	2.18	1H	H-2, H-4	H-2, H-4	
6-Me	20.5	dd (2.8 Hz)	2.18	1H	H-2, H-4	H-2, H-4	
10-Me	63.0	dd (2.8 Hz)	2.18	1H	H-2, H-4	H-2, H-4	
13-Me	53.0	dd (2.8 Hz)	2.18	1H	H-2, H-4	H-2, H-4	
16-Me	58.9	dd (2.8 Hz)	2.18	1H	H-2, H-4	H-2, H-4	

1H NMR: 600 MHz, 13C NMR: 150 MHz (in CDCl$_3$)
Table S9. NMR data of 12

position	\(^{13}C\) δ (ppm)	\(^{1}H\) δ (ppm)	intensity	multiplicity	HMBC correlation	COSY correlation	NOESY correlation
1	203.4						
2	67.8	4.94	1H	dd (12.8, 5.5 Hz)	1, 3	H-3a, H-3β	H-3a
3	37.1	2.76(a)	1H	m	1, 2, 4, 4a	H-2, H-4	H-2, H-4
4	2.18(b)	5.46	1H	t	2, 9a	H-3a, H-3β	H-3a, H-2a, H-2'a, H-3'
4a							
5	116.5	7.47	1H	s	6-Me, 8a, 10	H-6-Me, H-10-OMe	
6	114.8						
7	142.8						
8	151.7						
8a	114.8						
9	162.6						
9a	107.3						
10	144.5						
10a	135.9						
11	69.3	5.17	1H	d (4.1 Hz)	7, 8, 12, 13	H-12	H-6-Me, H-12
12	71.5	4.85	1H	d (4.1 Hz)	14, 15	H-11	H-11, H-13-OMe
13	102.4						
14	69.2						
15	104.4						
16	94.6	5.11	1H	s	16-OMe, 1'	H-16-OMe, H-5'	
17	48.0	2.86	2H	dd (13.4, 5.5 Hz)	13, 14		
1'	94.8	5.38	1H	brd (2.2 Hz)	16, 5', 2', 3'	H-2'a, H-2'β	H-2'a, H-16-OMe, H-2'a
2'	30.1	2.09(a)	1H	m	1', 4'	H-1', H-3'	H-4, H-1'
3'	66.4	4.04	1H	brs	1'	H-2'a, H-2'β, H-4'	
4'	79.8	3.47	1H	brs	2', 5', 6', 1'	H-3', H-5'	H-1''
5'	62.1	4.48	1H	dd (12.7, 6.1 Hz)	1', 3', 4', 6'	H-4', H-6'	H-16, H-6'
6'	16.8	1.27	3H	d (6.5 Hz)	4', 5'	H-5''	H-1''
1''	101.0	4.99	1H	brd (3.5 Hz)	4', 2', 3'	H-2'a, H-2'β	H-6', H-2''β, H-4'
2''	30.4	2.20(a)	1H	m	1', 4'	H-1', H-3'	H-4', H-1'
3''	67.7	3.94	1H	brd (3.5 Hz)	1', 5'	H-2'a, H-2'β	
4''	70.7	3.50	1H	brd (3.3 Hz)	2', 5', 6''	H-3', H-5'	
5''	62.5	4.30	1H	dd (13.2, 6.5 Hz)	1', 3', 4', 6''	H-4', H-6'	
6''	16.4	1.25	3H	d (6.7 Hz)	4', 5''	H-5'''	H-5'''
6-Me	20.5	2.61	3H	s	5, 6, 7	H-5, H-11	
10-OMe	63.0	3.93	3H	s	10	H-5	
13-OMe	53.0	3.75	3H	s	13	H-12	
16-OMe	59.1	3.51	3H	s	16	H-1', H-16	
9-OH	13.94	1.14	1H	s	8a, 9, 9a		

\(^1H\) NMR: 600 MHz, \(^{13}C\) NMR: 150 MHz (in CDCl\(_3\))
Table S10. NMR data of 10

position	13C δ(ppm)	1H δ(ppm)	intensity	multiplicity	HMBC correlation	COSY correlation	NOESY correlation
1	202.0			m	1, 4, 9a		H-3
2	36.8	3.11	2H	m	1, 4, 9a		H-2
3	39.5	3.01	2H	m	1, 4, 9a		H-3
4	195.0						
4a	121.7						
5	118.4	7.74	1H	s	6-Me, 8a, 10	H-10-OMe	
6	116.9						
7	143.1						
8	151.5						
8a	116.9						
9	162.7						
9a	110.2						
10	147.5						
10a	136.5						
11	69.2	5.17	1H	d (4.1 Hz)	7, 8, 12, 13	H-12	H-6-Me, H-12
12	71.4	4.84	1H	d (4.1 Hz)	14, 15	H-11	H-11, H-13-OMe
13	102.5						
14	69.1						
15	104.4						
16	94.4	5.11	1H	s	16-OMe, 1'	H-16-OMe	
17	48.0	2.88(a)	1H	d (5.9 Hz)	14		
17’	95.0	5.36	1H	m	16, 3', 5'	H-2'α, H-2'β	H-16-OMe, H-2'β
2’	35.7	2.02(a)	1H	dd (14.6, 4.2 Hz)	1', 3'	H-1'	
3’	69.3						
4’	84.1	3.31	1H	s	3', 5', 6', 7', 1’	H-5', H-1”	
5’	64.0	4.52	1H	dd (13.4, 6.7Hz)	1', 4', 6'	H-6’	H-4’, H-6’
6’	17.8	1.29	3H	d (6.1 Hz)	4', 5'	H-5’	H-5’
7’	26.8	1.33	3H	s	2', 3', 4'	H-1”	
1’*	101.2	5.00	1H	d (3.8 Hz)	4', 3', 5'	H-2”α, H-2”β	H-4’, H-7’, H-2”α
2’*	35.7	1.91(a)	1H	brs	1’, 3’, 4’	H-1”	H-1”
3’*	70.2						
4’*	74.5	3.18	1H	s			
5’*	64.0	4.55	1H	dd (13.1, 6.5 Hz)	1’, 4’, 6’	H-6”	H-6”
6’*	16.6	1.23	3H	d (6.6 Hz)	4’, 5’	H-5”	H-5”
7’*	26.3	1.28	3H	s	2’, 3’, 4’	H-1”	
6-Me	20.5	2.62	3H	s	5, 6, 7	H-11	
10-OMe	63.5	3.95	3H	s	10	H-5	
13-OMe	53.0	3.73	3H	s	13	H-12	
16-OMe	59.1	3.50	3H	s	16	H-16, H-1’	
9-OH	15.03	1H	s	8a, 9, 9a			

1H NMR: 600 MHz, 13C NMR: 150 MHz (in CDCl$_3$)
Table S11. NMR data of 4

position	13C δ(ppm)	1H δ(ppm)	intensity	multiplicity	HMBC correlation	COSY correlation
1	201.5					
2	35.9	3.06	2H	s	3, 4, 9a	H-3α, H-3β
3	36.2	3.06	2H	s	1, 2, 4a	H-2α, H-2β
4	200.5					
4a	108.8					
5	119.0	7.98	1H	s	8a, 10, 6-Me	
6	119.0					
7	142.5					
8	151.2					
8a	117.7					
9	158.7					
9a	107.6					
10	153.5					
10a	132.4					
11	69.1	5.22	1H	d (4.2 Hz)	8, 13	H-12
12	71.9	4.89	1H	d (4.2 Hz)	14, 15	H-11
13	102.4					
14	69.1					
15	105.4					
16	68.2	3.96(α)	1H	d (12.6 Hz)	15	
		3.83(β)	1H	d (12.6 Hz)		
17	48.0	2.93(α)	1H	d (4.2 Hz)	14	
		2.77(β)	1H	d (4.2 Hz)	14	
6-Me	20.1	2.63	3H	s	5, 7	
13-O Me	53.1	3.76	3H	s	13	
9-OH	14.46	1H	s		9, 8a, 9a	
10-OH	13.47	1H	s	10, 4a, 10a		

1H NMR: 600MHz, 13C NMR: 150 MHz (in CDCl$_3$)
Compound	1	2	4	5	7	8	9	10	11	12
Molecular Weight:	993	951	456.4	486.4	662.6	806.8	806.8	788.8	648.6	778.8
No. of Hydrogen Bond Donors:	6	7	3	3	5	6	6	4	5	6
No. of Hydrogen Bond Acceptors:	8	8	5	5	6	7	7	6	6	7
No. of Rotatable Bonds:	18	17	5	6	11	14	14	12	11	14
No. of Nitrogen and Oxygen Atoms:	22	21	10	11	15	18	18	17	15	18
No. of Rings:	10	10	7	7	8	9	9	8	8	9
ClogP	0.46	-0.11	0.66	-0.09	-0.24	-0.17	-0.17	0.58	-0.42	-0.54
Figure S1. Construction and verification of S. vinaceusdrappus mutants.

(a) Schematic diagram of gene replacement

(b) All of S. vinaceusdrappus mutants

(c) PCR verification of S. vinaceusdrappus mutants

Genomic DNA from both the S. vinaceusdrappus wild type and mutant strains S. vinaceusdrappus TG5019 (ΔlldA1), TG5020 (ΔlldM1), TG5021 (ΔlldB3), TG5022 (ΔlldB4), TG5023 (ΔlldM2), TG5024 (ΔlldB5), TG5025 (ΔlldO2), TG5026 (ΔlldM3), TG5027 (ΔlldM4), TG5028 (ΔlldO6), TG5029 (ΔlldO7) and TG5030 (ΔlldO10) were extracted and tested by PCR analysis, respectively. A larger gene fragment (larger than 1.5 kb) can be amplified from wild type strain with all PCR testing primers, respectively. Meanwhile a smaller gene fragment (approximately 0.6 -1.0 kb) can be amplified from mutant strains with PCR testing primers, respectively. Lane 1, DNA marker; Lane 2, Mutant strain; Lane 3, WT strain.
Figure S2. 1H NMR spectrum of LL-D49194α1 (1)

Figure S3. 13C NMR spectrum of LL-D49194α1 (1)
Figure S4. 1H NMR spectrum of LL-D4919β2 (2)

Figure S5. 13C NMR spectrum of LL-D4919β2 (2)
Figure S6. 1H NMR spectrum of 7

Figure S7. 13C NMR spectrum of 7
Figure S8. 1H-1H COSY spectrum of 7

Figure S9. HMQC spectrum of 7
Figure S10. HMBC spectrum of 7

Figure S11. NOESY spectrum of 7
Figure S12. 1H NMR spectrum of 8

Figure S13. 13C NMR spectrum of 8
Figure S14. 1H NMR spectrum of 9

Figure S15. 13C NMR spectrum of 9
Figure S16. \(^1\)H-\(^1\)H COSY spectrum of 9

Figure S17. HMQC spectrum of 9
Figure S18. HMBC spectrum of 9

Figure S19. NOESY spectrum of 9
Figure S20. 1H NMR spectrum of 5

Figure S21. 13C NMR spectrum of 5
Figure S22. 1H-1H COSY spectrum of 5

Figure S23. HMQC spectrum of 5
Figure S24. HMBC spectrum of 5

Figure S25. NOESY spectrum of 5
Figure S26. 1H NMR spectrum of 11

Figure S27. 13C NMR spectrum of 11
Figure S28. 1H–1H COSY spectrum of 11

Figure S29. HMQC spectrum of 11
Figure S30. HMBC spectrum of 11

Figure S31. NOESY spectrum of 11
Figure S32. 1H NMR spectrum of 12

Figure S33. 13C NMR spectrum of 12
Figure S34. 1H-1H COSY spectrum of 12

Figure S35. HMQC spectrum of 12
Figure S36. HMBC spectrum of 12

Figure S37. NOESY spectrum of 12
Figure S38. 1H NMR spectrum of 10

Figure S39. 13C NMR spectrum of 10
Figure S40. 1H-1H COSY spectrum of 10

Figure S41. HMQC spectrum of 10
Figure S42. HMBC spectrum of 10

Figure S43. NOESY spectrum of 10
Figure S44. 1H NMR spectrum of 4

Figure S45. 13C NMR spectrum of 4
Figure S46. 1H-1H COSY spectrum of 4

Figure S47. HMQC spectrum of 4
Figure S48. HMBC spectrum of 4

Figure S49. NOESY spectrum of 4
Figure S50. Cell viability assays of LL-D4919α1 (1) and analogues

4-1 = compound 11; 4-2 = compound 12; 6-2 = compound 8; 9-1 = compound 7;
5-1 = compound 5; 14-1 = compound 10; 38-1 = compound 4; 9-2 = compound 9;
α1 = compound 1, LLD; β2 = compound 2.
Figure S51. Aqueous solubility assay of LL-D49194α1 (1), 4 and 5

Calibration curve for 1 (271 nm)
y = 1.0139x -0.0018, R²=0.9996
aq. Solubility = 0.45 ± 0.02 μmol/mL

Calibration curve for 5 (271 nm)
y = 1.5692x -0.0049, R²=0.9986
aq. Solubility = 2.86 ± 0.02 μmol/mL

Calibration curve for 4 (271 nm)
y = 1.3955x – 0.0002, R²=1
aq. Solubility = 0.38 ± 0.004 μmol/mL
Supplementary References

1. Luo, R.; Liu, B.; Xie, Y.; Li, Z.; Huang, W.; Yuan, J.; He, G.; Chen, Y.; Pan, Q.; Liu, Y.; Tang, J.; Wu, G.; Zhang, H.; Shi, Y.; Liu, Y.; Yu, C.; Wang, B.; Lu, Y.; Han, C.; Cheung, D. W.; Yiu, S.-M.; Peng, S.; Xiaoqian, Z.; Liu, G.; Liao, X.; Li, Y.; Yang, H.; Wang, J.; Lam, T.-W.; Wang, J. GigaScience 2012, 1, 18.

2. Kieser, T.; Bibb, M. J.; Buttner, M. J., Chater, K. F.; Hopwood, D. A. The John Innes Foundation 2000.

3. Švenda, J.; Hill, N.; Myers, A. G. Proc. Natl. Acad. of Sci. U. S. A. 2011, 108, 6709-6714.

4. Bingham, T. W.; Hernandez, L. W.; Olson, D. G.; Svec, R. L.; Hergenrother, P. J.; Sarlah, D. J. Am. Chem. Soc. 2018, 141, 657-670.

5. Zhang, M.; Hou, X. F.; Qi, L. H.; Yin, Y.; Li, Q.; Pan, H. X.; Chen, X. Y.; Tang, G. L. Chem. Sci. 2015, 6, 3440-3447.

6. Cheng, T. J.; Zhao, Y.; Li, X.; Lin, F.; Xu, Y.; Zhang, X. L.; Li, Y.; Wang, R. X. J. Chem. Inf. Model. 2007, 47, 2140-2148.