Fear Inoculation Among Snake Experts

Carlos M. Coelho
Chulalongkorn University

Jakub Polák
National Institute of Mental Health

Panrapee Suttiwan
Chulalongkorn University

Andras N. Zsido (zsido.andras@pte.hu)
University of Pécs

Research Article

Keywords: fear of snakes, fear immunization, hypophobia, preparedness theory, snakebite, Snake Questionnaire

DOI: https://doi.org/10.21203/rs.3.rs-289489/v1

License: ☑️ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Fear acquisition of certain stimuli, such as snakes, is thought to be rapid, resistant to extinction, and easily transferable onto other similar objects. It has been hypothesized that due to increased survival chances, preparedness to instantly acquire fear towards evolutionary threats has been hardwired into neural pathways of the primate brain. Here, we compare participants’ fear of snakes according to experience; from those who often deal with snakes and even suffer snakebites to those unfamiliar with snakes.

Methods: The Snake Questionnaire-12 (SNAQ-12) and Specific Phobia Questionnaire (SPQ) were administered to three groups of participants with a different level of experience with snakes and snakebites: 1) snake experts, 2) fireeters, and 3) college students.

Results: This study shows that individuals more experienced with snakes demonstrate lower fear. Moreover, participants who have suffered a snakebite (either venomous or not) score lower on fear of snakes (SNAQ-12), but not of all other potentially phobic stimuli (SPQ).

Conclusions: Our results suggest that a harmless benign exposure might immunize people to highly biologically prepared fears of evolutionary threats, such as snakes.

Background

It has been estimated that each year, venomous snakebites kill about 94,000 people worldwide [1, 2]. According to the World Health Organization, the annual number of fatalities could be as high as 138,000, with additional 400,000 amputations and other severe health consequences [3]. Therefore, the WHO categorized snakebite envenomation as a highly neglected tropical disease with the top priority for new antivenom research. Given the threat posed by snakes to humans, it is no wonder that these are one of the most feared animals and snake phobia ranks among anxiety disorders with the highest prevalence in the general population [4]. Several theoretical models have been proposed to explain this widespread, universal pattern of snake fear. Recent models are based on Seligman's preparedness theory of phobias [5], which claims that fear responses are more readily acquired to stimuli that were relevant to the species survival throughout evolution, such as those associated with predators (e.g., snakes). Individuals able to learn to fear and avoid threatening animals, object, or situations increased their survival chances. Consequently, these fears gradually became genetically fixed in the form of predisposition or preparedness to be 1) rapidly acquired and 2) more resistant to extinction once developed.

Seligman's theory triggered a large number of laboratory studies both on humans [6] and non-human species [7–9]. For example, naïve laboratory-reared macaques without any prior experience with snakes acquired an intense fear response just by observing another monkey behaving fearfully towards a snake. In contrast, observing a fearful display to a neutral object such as a flower was not effective in inducing fear of flowers [7]. More recent studies suggest that snakes are indeed a particular class of stimuli for humans [e.g., 10–16]. The coiled snake body shape[13] together with diamond-shaped scales of the
snakeskin [17] might be critical distinctive visual features able to preferentially attract heightened human attention, and this might be the mechanism that makes snake fear easy to acquire [18].

According to this concept, people with more opportunities to encounter and handle snakes should be more likely to learn to fear them. However, there is also a line of evidence showing that previous experience with real situations might give people a sense of control over it and thus lower their fear, possibly preventing a phobia from developing even after a future harmful experience [19]. This phenomenon could be referred to as fear immunization, latent inhibition, or fear inoculation. Fear immunization is more often related to the participant’s observation of other people’s non-fearful experiences (modeling), whereas latent inhibition is preferably associated with a simple frequent exposure or neutral familiarity with a certain stimulus [20].

In behavioral sciences, the latent inhibition refers to the retarded acquisition of a conditioned response that occurs if the tested participant was previously exposed to the to-be-conditioned stimulus without a consequence of a paired unconditioned stimulus (UCS) [21, 22]. On the neural level, the underlying mechanism of latent inhibition could be similar to extinction producing an inhibitory memory in the infralimbic cortex [23]. When subjects are exposed to a stimulus without a UCS, they might learn its ‘irrelevance’ in terms of danger, and the subsequent reduced acquisition of the CS-UCS association is thought to reflect the process of overcoming this learned irrelevance [24] or inattention [25] and stimulus familiarity [26]. For example, Mineka and Cook [27] showed that monkeys that had been immunized against fear did not acquire fear of snakes, contrary to the latent inhibition group that did. Indeed, a recent study [28] demonstrated that pre-exposure could limit social fear acquisition even in humans.

Although the term fear inoculation is different from the latent inhibition, they have in common the idea that exposure to certain stimuli can reduce fear acquisition and might even lead to hypophobia (extremely reduced fear in dangerous situations; see also [29]). For example, people with many opportunities for a direct contact with certain stimuli, or just seeing others having a harmless contact with these, often develop less fear after an aversive encounter (e.g., snakebite) compared to people with no contact at all (or just very rare) with the same stimuli. This was demonstrated for fear of dogs [30] and dental fears [31, 32].

Even though fear of snakes is one of the most common anxieties in the general population [33, 34], there has been no study, to our knowledge, that would examine fear inoculation towards snakes in humans with varying levels of snake experience, including a harmful one (being bitten by a snake). It seems plausible that people with closer and more frequent contact with snakes and who even suffered a snakebite still show lower fear levels. In this study, we explored fear of snakes among people used to deal with snakes daily and who have been repeatedly bitten by a snake compared with participants unfamiliar with snakes. As snakes are thought to be evolutionary prepared stimuli, snake fear should be, according to Seligman's theory, rapidly acquired and show enhanced resistance to extinction or inoculation. Alternatively, experience with snakes might override such “preparedness” and people frequently
encountering snakes would become less fearful of them. If so, we would also expect that such reduced fear would only apply to snakes but not to other unrelated threatening stimuli.

Finally, due to the importance and adaptive nature of social learning [35, 36] we also explored other potential sources of fear acquisition (information and modeling). Social learning of fear has similar underlying neurobiological mechanisms to associative and prepared learning [35] and might have affected human evolution [37, 38]. Thus, it was also considered in this study.

Methods

Participants

The study was carried out in 2019. There were three groups of participants: 1) snake experts, including veterinarians, venom extractors, or scientists (n = 14, 1 female, mean age = 30.9, SD = 5.53) working at the Bangkok Red Cross (Queen Saovabha Memorial Institute) used to handle venomous snakes on a daily bases, either when showing them to visitors for educational purposes or extracting venom for research and production of antivenom; 2) firemen (n = 28, all males, mean age = 37.1, SD = 4.49) also used to deal with snakes (mainly nonvenomous python snakes) when they have to catch and remove them from houses, particularly during the hot wet seasons; and 3) students at Chulalongkorn University, (n = 71, 51 females, mean age = 20.9, SD = 0.75) not used to snakes, as a control group. The required sample size for this study was determined by computing estimated statistical power for the planned tests (pairwise comparison, correlational analyses, and ANOVA) with $f = .40$ and $β > .8$. The analysis for correlation indicated the largest required total sample size of 84. Post-hoc power analyses showed that the ANOVA had the lowest achieved power of 0.953.

Assessments

Snake Questionnaire (SNAQ-12)

We applied a specific questionnaire pertaining to fear of snakes. The SNAQ-12 [39] is a 12-item scale, where participants indicate whether they agree or not with a statement, e.g., ‘I dislike looking at pictures of snakes in a magazine’. The SNAQ-12 has been shown to have good internal consistency with a Cronbach’s alpha of 0.89 on this sample (item-total correlations were between 0.36 and 0.78). Confirmatory factor analysis also showed that the original one-factor structure of the questionnaire was retained on this sample ($\chi^2_{(54)} = 38.22$, $p = 0.95$, NFI = 0.97, RFI = 0.97, RMSEA = 0, 90%CI = 0–0.01, SRMR = 0.08). The optimal balance between sensitivity and specificity of the SNAQ-12 was achieved using a cut-off score of > 7.5, which yielded a sensitivity of 0.909 and specificity of 0.905. This suggests that someone scoring ≥ 8 on the SNAQ-12 should be considered as potentially a snake phobic. This test has excellent discriminatory power and thus is useful as a diagnostic tool for snake phobia [39].

Specific Phobia Questionnaire (SPQ)
The SPQ [40] is a 43-item measure of fear and interference for a broad range of objects and situations that could be clustered into five subscales (Animals, Natural Environment, Situational, Blood-Injection-Injury, and Other). Participants rate their fear and fear interference with their daily lives of a given object or situation on a 5-point Likert scale from 0-No Fear/Interference to 4-Extreme Fear/Interference, respectively. The SPQ has shown good psychometric properties and validity even in an anxiety disorders sample. Therefore, the SPQ is a valid measure for screening of specific phobias. We decided not to use the Other subscale as it consists only of two items and has relatively low Cronbach's alpha (0.72), Cronbach's alpha values for the remaining four subscales were in the range of 0.88–0.93.

Other questions

In addition to the SNAQ-12 and SPQ, we gathered general information about the participants' experience with snakes. First, we asked them to estimate the number of encounters with a live snake in the past year and if they have ever been bitten or injured by any snake – and whether it was venomous or not. Participants also reported whether they thought the information about animals from the media and stories of others had influenced their fear (with the following choice of responses: no influence, influence on fear, influence on not to fear, and having influence both on fear and on not to fear). Finally, we evaluated the participants' previous experience with snakes, inquiring about their familiarity with snakes (frequency of experience). Ratings were scored from 0 (no experience) to 4 (a lot of experience).

Statistical analysis

Since we could not match the groups regarding the age and male-female ratio, we entered these variables in the analyses where possible as independent variables to control for their effects. Because of this imbalance, we were not interested in results concerning these variables, and thus, we only report results concerning the SPQ, SNAQ, and the other questions listed in the previous section. Further, due to the non-normal distribution of our variables, robust alternatives were used. We employed the Mann-Whitney U test to examine differences between those who have been reportedly bitten by a venomous or nonvenomous snake and those who have not. We repeated the same analysis on two subgroups (reportedly encountered a snake or not) of the control group. Then, we used the Spearman correlation analysis to explore the relationship between previous experience (i.e. number of encounters and experience rating) and fear of snakes (SNAQ-12 and SPQ). We used the Mann-Whitney test to compare people bitten by other animals and those who have or have not seen others being bitten by a snake. One-way ANOVA was performed to examine the differences between people with various previous information on snakes (i.e. no influence, influence on fear, influence on not to fear, and influence on both fear and not to fear). Finally, we analyzed possible transfer effects of fear inoculation to other subtypes of specific phobia using the SPQ subscales. For these analyses, the snake item was removed from the Animal subscale. We used the Spearman correlation to assess the relationship between experience and frequency of encounters with snakes and SPQ subscales.

Furthermore, we carried out an independent mediation analysis separately for each SPQ subscale with the SPQ subscale as a dependent variable, the SNAQ-12 as a predictor, and previous experience with
snakes as a mediator to separate the direct effect of snake fear on the SPQ animal subscale and the indirect effect of it through experience with snakes. One-way Kruskal-Wallis ANOVAs were used to measure group differences on the SPQ subscales. For the statistical analyses, the JAMOVI program Version 1.0 for Windows [41] was used.

Results

Descriptive statistics showed that none of the experts (0%), two of the firemen (7.41%), and 15 students (22.39%) reached the cut-off criteria for snake phobia on the SNAQ-12. Table 1 shows the central tendencies of each group.

Group	SNAQ-12	SPQ	Experience
Expert group on a snake farm	0.36 (1.08)	0.21 (0.43)	4.00 (0.00)
Firemen	3.15 (3.17)	0.78 (0.85)	3.18 (0.82)
Students	4.37 (3.62)	1.73 (0.21)	0.93 (0.75)

The effect of snakebite on fear level

People bitten by a snake (n = 19) (either venomous or not) scored lower on the SNAQ-12 when compared to those never bitten; mean difference = 3.54 (U(106) = 279, p < 0.001, Cohen's d = 1.08). This was confirmed by their response on the SPQ survey. Again, people bitten by a snake scored lower; mean difference = 1.16 (U(109) = 363, p < 0.001, Cohen's d = 1.03). We also found that people bitten by a snake had more experience with snakes than those who have not been bitten; mean difference = 2.43 (U(110) = 115, p < 0.001, Cohen's d = 2.18); see Table 2 for the descriptive statistics. Results remained very similar when we compared participants bitten by a venomous snake and those never bitten; the SNAQ-12 mean difference = 3.26 (U(106) = 173.5, p = 0.002, Cohen's d = 0.95); the SPQ mean difference = 1.30 (U(109) = 158, p < 0.001, Cohen's d = 1.13); and the experience mean difference = 2.31 (U(110) = 81, p < 0.001, Cohen's d = 1.78); see Table 3 for the descriptive statistics. Interestingly, the same nonsignificant trends could be observed in the control group (never bitten): Students with some experience with snakes scored lower on both the SNAQ-12 (mean difference = 1.68 (U(65) = 385, p = 0.068, Cohen's d = 0.47) and SPQ (mean difference = 0.45 (U(68) = 435, p = 0.1, Cohen's d = 0.37)). This might compensate for the fact that people who have reportedly gotten bitten by a snake also encounter them more often.
Table 2
Central tendencies for those who have and have not been bitten by a snake on the Snake Questionnaire-12 total score (SNAQ-12), Specific Phobia Questionnaire relevant item (SPQ), and previous experience.

Group	N	Mean	Median	SD
SNAQ-12				
Bitten	19	0.63	0.00	1.61
Not bitten	89	4.17	4.00	3.52
SPQ				
Bitten	18	0.33	0.00	0.49
Not bitten	93	1.49	2.00	1.21
Experience				
Bitten	19	3.90	4.00	0.32
Not bitten	93	1.46	1.00	1.21

Table 3
Central tendencies for those who have and have not been bitten by a venomous snake on the Snake Questionnaire total score (SNAQ-12), Specific Phobia Questionnaire relevant item (SPQ), and previous experience.

Group	N	Mean	Median	SD
SNAQ-12				
Bitten	9	0.56	0.00	1.33
Not bitten	99	3.82	3.00	3.54
SPQ				
Bitten	9	0.11	0.00	0.33
Not bitten	102	1.41	1.00	1.20
Experience				
Bitten	9	4.00	4.00	0.00
Not bitten	103	1.69	1.00	1.35

The relationship between previous experience and fear level

Experience as well as the number of encounters with snakes correlate negatively with the SPQ snake item (rho = -0.427, p < 0.001 and rho = -0.499, p < 0.001, respectively) and the SNAQ-12 (rho = -0.388, p < 0.001 and rho = -0.44, p < 0.001, respectively). People who have or have not been attacked by other animals than snakes did not differ in terms of fear of snakes (ts < 1, ps > 0.1). Furthermore, people who have seen others been bitten by other animals showed less fear of snakes; the SNAQ-12 mean difference = 1.33 (U_{106} = 1146, p = 0.057, Cohen’s d = 0.38); the SPQ mean difference = 0.50 (U_{109} = 1164, p = 0.027,
Cohen’s $d = 0.42$) than those who have not had such an experience. This difference, however, disappeared when we excluded participants who have themselves been bitten.

The effect of previous information on snakes on fear level

Previous information on animals had a significant effect on the SNAQ-12 ($F_{(3,104)} = 5.63, p < 0.001, \eta^2 = 0.14$) and SPQ score ($F_{(3,107)} = 4.85, p = 0.003, \eta^2 = 0.12$). For the SNAQ-12, Tukey-corrected follow-up pairwise comparisons showed that people in the no influence group and influence on not to fear group scored lower than those in the influence on fear group ($t_{(104)} = 3.12, p = 0.013; t_{(104)} = 3.37, p = 0.006$; respectively). For the SPQ, Tukey-corrected follow-up pairwise comparisons revealed that people without influence scored significantly lower than people influenced on fear ($t_{(107)} = 3.38, p = 0.006$) and people influenced both on fear and not to fear ($t_{(107)} = 2.55, p = 0.058$), but this difference was only marginally significant. The other groups did not differ significantly.

Possible transfer effects of fear inoculation to other subtypes

Regarding the possible transfer effects of fear inoculation to other subtypes of specific phobia using the SPQ subscales, we found that frequency of encounter and experience with snakes correlated negatively with the Animal subscale ($\rho = -0.48, p < 0.001$ and $\rho = -0.43, p < 0.001$, respectively), the Natural Environment ($\rho = -0.21, p = 0.031$ and $\rho = -0.200, p = 0.038$, respectively) and Blood-Injection-Injury ($\rho = -0.23, p < 0.001$ and $\rho = -0.15, p = 0.133$). The SPQ Situational subscale did not correlate with these variables (ρs < 0.1).

The three groups differed on the Animal subscale ($\chi^2_{(2)} = 24.7, p < 0.001$) with students scoring higher levels of fear compared to experts ($W = 4.13, p = 0.003$) and firemen ($W = 6.36, p < 0.001$) according to the DSCF pairwise comparisons, as well as on the Natural Environment subscale ($\chi^2_{(2)} = 7.39, p = 0.025$) where students scored higher than firemen ($W = 3.55, p = 0.012$). Similarly, the groups differed on the Blood-Injection-Injury subscale ($\chi^2_{(2)} = 6.21, p = 0.045$) with students scoring higher than snake experts ($W = 3.29, p = 0.02$). Importantly, groups did not differ on the situational subscale scores the SPQ ($\chi^2_{(2)} = 1.09, p = 0.581$). In addition, the mediation analysis revealed that the direct effect of the SNAQ-12 score on the SPQ animal subscale score was negative (-1.290 to -0.346, with a point estimate of -0.801, $Z = 4.95, p < 0.001$, 82% of total effect). The indirect effect through previous experience with snakes was also negative (-0.204 to -0.067, with a point estimate of -0.139, $Z = 2.42, p = 0.015$, 18% of total effect). The indirect effect was nonsignificant for the Natural Environment, the Blood-Injection-Injury, and the Situational subscales.

Discussion And Conclusions

This study compared participants’ fear of snakes according to experience, from people used to deal with snakes daily to those who are unfamiliar with them. The main findings show that more experienced
individuals are at the same time less fearful of snakes than people with no experience. Even those who have been a victim of snakebite several times scored lower on fear of snakes. Regarding fear acquisition pathways, social transmission seems to play a role in learning snake fear.

Results suggest that certain people can become immunized to biologically prepared fearful stimuli, such as snakes, despite aversive experiences, if given a certain amount of exposure and familiarity. Snakes seem unable to cause fear learning in such subjects. It could be argued that these participants might be fearless and have overall low general ability to learn fear. However, high and low fear groups did not differ on the situational subscale scores, suggesting that lower scores presented on the animal subscale were not due to a general lack of fear, but more likely due to the significant amount of experience and direct contact with snakes.

We also noticed that participants with lower levels of snake fear showed less fear of the Natural Environmental and Blood-Injury-Injection subtypes as well as other animals. This might be due to transfer effects between different subtypes of specific phobias. The acquired sense of control over snakes might cross over to the whole category (i.e. animals). Generalization between different subtype categories might also result from the experience with the snakes’ natural environments (e.g., deep water, enclosed spaces, swimming, open spaces) and injuries associated with daily handling of snakes. It is also possible that safety or vicarious-extinction learning was acquired through the observation of learning models (other more experienced snake experts) [42, 43]. This might have important practical significance in a clinical setting, e.g., using multiple approaches in therapy.

These results are partially in line with the study by Poulton and colleagues [44] showing that participants with lower fear were those who had sustained more previous injuries. The major role of experience in fear reduction [45–47] has been also demonstrated for fear of dogs [30] (Doogan and Thomas, 1992) or dental fears [31, 32]. Thus, exposure seems to be able to suppress even the most prepared fears. It is also possible that humans are not prepared to learn fear, but to preferentially attend to certain stimuli [10, 13, 18] and snake's idiosyncratic features tend to attract discriminating human attention preferentially. This might facilitate learning of fear (or other emotions) depending on vicarious, information learning and direct experience. If this is correct, people should be able to learn faster other human-snake related emotions too (e.g., beauty).

Instead of merely addressing how much learning experience is necessary to acquire fear, it would be equally important to inquire how much experience is needed to learn not to fear particular stimuli (extinction) and the potential consequences of lack of fear (hypophobia). Fear inoculation, similarly to preparedness, has its evolutionary significance. Inoculation can prove adaptive after gathering enough experience with the wildlife in a known territory and knowing which animals and individuals of a particular species are dangerous (see also [48]). The opposite approach, which is constant worrying, might lead to serious health issues [49] and impairments of cognitive functions [50, 51].

This work also brings about occupational, safety, and health implications that are worth mentioning. For example, Bawaskar and Bawaskar (2002) noted that rural people in India inhabit sheds and mud houses
without sanitation and with waste, tools, and firewood often close to their houses. This attracts rats and mice, which in turn encourage snakes to approach. As kraits move freely in and out of houses to hunt at night, people sleeping on the floor come into close contact with these snakes. Bawaskar and Bawaskar [52] observed that Muslims, however, irrespective of their poverty, always sleep on beds and that although numbers of Muslims and Hindus in the studied district (Mahad) were about the same, krait bites occurred only among Hindus. This is an excellent example of how awareness of the problem could, on its own, save many lives.

People who live closer to snakes are likely to be less afraid of them and are also more prone to become victims of snakebites due to enhanced exposure and lack of fear. For example, many snakebites occur not only among farmers that sleep on the floor [53, 54, but when farmers go to the toilet outside and do not wear shoes nor a lantern [55, 56]. Similarly, there are more victims of snakebites among people who keep snakes as pets [57–59]. In sum, snakebites seem to happen mainly to people with not enough awareness and fear to take the proper measures to avoid a bite.

Limitations

Several limitations of our data need to be noted. Although we did our best to recruit as many snake experts as possible, this is a particular field of work and we could only have access to this sample. Moreover, questions related to fear origins and etiology are based on retrospective self-reports, which may impair validity of the findings due to recall bias. A better grasp of this problem would require further studies collecting additional developmental data. Finally, albeit the SNAQ-12 is a widely used and validated measure for fear of snakes with excellent discrimination power, it would be interesting to include a behavioral measure of fear, such as the Behavioral Avoidance Test (BAT) as it might lead to more reliable results.

To conclude, results provide new evidence that people who have more experience with snakes are less fearful of them, even after severe aversive experiences, i.e. snakebites. Furthermore, experience acquired through social transmission might also lessen fear of snakes. To fully understand the underlying mechanisms, future research should address how aversive and neutral personal experiences, as well as other social and cultural factors, could contribute to feeling in control and safe in the presence of a fearful object.

Declarations

Ethics approval and consent to participate

All participants provided their informed consent. The study was approved by the Chulalongkorn University ethics committee, complying with the Declaration of Helsinki, the Convention of Human Rights and Biomedicine, the Council for International Organizations of Medical Sciences, and the Guide of Good Clinical Practices.
Consent for publication

Not applicable.

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

The project was supported by the Rachadapisek Sompote Fund for Postdoctoral Fellowship at Chulalongkorn University.

Authors' contributions

Conceptualization and methodology: C.M.C. and P.S.; formal analysis: C.M.C, J.P., and A.N.Z.; investigation: C.M.C; resources: C.M.C. and P.S.; data curation: C.M.C and A.N.Z.; writing - original draft preparation: C.M.C., J.P. and A.N.Z.; writing - review and editing: C.M.C., J.P., and A.N.Z.; supervision: P.S.; funding acquisition: C.M.C. and P.S. All authors read and approved the final manuscript.

Acknowledgements

Not applicable.

References

1. Gutiérrez JM, Calvete JJ, Habib AG, Harrison RA, Williams DJ, Warrell DA. Snakebite envenoming. Nat Rev Dis Primers. 2017;3(1):1-21.
2. Kasturiratne,A, Wickremasinghe AR, de Silva N, Gunawardena NK, Pathmeswaran A, Premaratna R, et al. The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med. 2008;5(11): e218.
3. World Health Organization: Snakebite envenoming. http://www.who.int/news-room/fact-sheets/detail/snakebite-envenoming (2019). Accessed 14 Dec 2019.
4. Arrindell WA. Phobic dimensions: IV. The structure of animal fears. Behav Res Ther. 2000;38:509–530.
5. Seligman ME. Phobias and preparedness. Behav Ther. 1971;2(3):307-320.
6. Öhman A, Dimberg U, Öst Animal and social phobias: Biological constraints on learned fear responses. In: Reiss S, Bootzin RR, editors. Theoretical Issues in Behavior Therapy. New York:
7. Cook M, Mineka Observational conditioning of fear to fear-relevant versus fear-irrelevant stimuli in rhesus monkeys. J Abnor Psychol. 1989;98(4):448-459.

8. McNally RJ. The legacy of Seligman's "phobias and preparedness" (1971). Behav Ther. 2016;47(5):585-594.

9. Öhman A, Mineka Fears, phobias, and preparedness: toward an evolved module of fear and fear learning. Psychol Rev. 2001;108(3):483-522.

10. DeLoache JS, LoBue V. The narrow fellow in the grass: Human infants associate snakes and fear. Developmental Sci. 2009;12(1):201-207.

11. Isbell LA. Snakes as agents of evolutionary change in primate brains. J Hum Evol. 2006;51(1):1-35.

12. Isbell LA. The fruit, the tree, and the serpent: Why we see so well. Cambridge: Harvard University Press; 2009.

13. Lobue V, DeLoache JS. What’s so special about slithering serpents? Children and adults rapidly detect snakes based on their simple features. Vis Cogn. 2011;19(1):129-143.

14. Soares SC, Lindström B, Esteves F, Öhman A. The hidden snake in the grass: superior detection of snakes in challenging attentional conditions. PLoS One. 2014;9:e114724.

15. Thrasher C, LoBue V. Do infants find snakes aversive? Infants’ physiological responses to “fear-relevant” stimuli. J Exp Child Psychol. 2016;142:382-390.

16. Van Le Q, Isbell LA, Matsumoto J, Nguyen M, Hori E, Maior RS, et al. Pulvinar neurons reveal neurobiological evidence of past selection for rapid detection of snakes. P Natl Acad Sci USA. 2013;110(47):19000-19005.

17. Van Strien JW, Isbell LA. Snake scales, partial exposure, and the Snake Detection Theory: A human event-related potentials study. Sci Rep-UK. 2017;7(1):1-9.

18. LoBue V, Rakison DH. What we fear most: A developmental advantage for threat-relevant stimuli. Dev Rev. 2013;33(4):285-303.

19. Coelho CM, Purkis H. The origins of specific phobias: Influential theories and current perspectives. Rev Gen Psychol. 2009;13(4):335-348.

20. Fyer AJ. Current approaches to etiology and pathophysiology of specific phobia. Biol Psychiat. 1998;44(12):1295-1304.

21. Lubow RE, Gewirtz JC. Latent inhibition in humans: Data, theory, and implications for schizophrenia. Psychol Bull. 1995;117(1):87-103.

22. Swerdlow NR, Braff DL, Hartston H, Perry W, Geyer Latent inhibition in schizophrenia. Schizophr Res. 1996;20(1-2):91-103.

23. Lingawi NW, Westbrook RF, Laurent V. Extinction and latent inhibition involve a similar form of inhibitory learning that is stored in and retrieved from the infralimbic cortex. Cereb Cortex. 2016;27(12):5547-5556.
24. Mackintosh NJ. A theory of attention: Variations in the associability of stimuli with reinforcement. Psychol Rev. 1975;82(4):276-298.

25. Lubow RE. Latent inhibition as a measure of learned inattention: some problems and solutions. Behav Brain Res. 1997;88(1):75-83.

26. McLaren IPL, Mackintosh NJ. An elemental model of associative learning: I. Latent inhibition and perceptual learning. Anim Learn Behav. 2000;28(3):211-246.

27. Mineka S, Cook M. Immunization against the observational conditioning of snake fear in rhesus monkeys. J Abnorm Psychol. 1986;95(4):307-318.

28. Golkar A, Olsson A. Immunization against social fear learning. J Exp Psychol Gen. 2016;145(6):665-671.

29. Coelho CM, Balaban CD. Visuo-vestibular contributions to anxiety and fear. Neurosci Biobehav R. 2015;48:148-159.

30. Doogan S, Thomas Origins of fear of dogs in adults and children: The role of conditioning processes and prior familiarity with dogs. Behav Res Ther. 1992;30:387–394.

31. Berge Ten M, Veerkamp JSJ, Hoogstraten J. The etiology of childhood dental fear: The role of dental and conditioning experiences. J Anxiety Disord. 2002;16(3):321–329.

32. Kent G. Dental phobias. In: Davey GC, editor. Phobias: A handbook of Theory, Research, and Treatment. Chichester: Wiley, 1997. p. 107–127.

33. Davey Self-reported fears to common indigenous animals in an adult UK population: the role of disgust sensitivity. Brit J Psychol. 1994;85(4):541-554.

34. Polák J, Rádlová S, Janovcová M, Flegr J, Landová E, Frynta D. Scary and nasty beasts: Self-reported fear and disgust of common phobic Brit J Psychol. 2020;111(2):297-321.

35. Olsson A, Phelps EA. Social learning of fear. Nat Neurosci. 2007;10:1095–1102.

36. Rachman S. The conditioning theory of fear acquisition: A critical examination. Behav Res Ther. 1977;15(5):375-387.

37. Laland KN, Uller T, Feldman MW, Sterelny K, Müller GB, Moczek A, et The extended evolutionary synthesis: its structure, assumptions and predictions. P Roy Soc B-Biol Sci. 2015;282(1813):20151019.

38. Plotkin HC, Odling-Smee FJ. A multiple-level model of evolution and its implications for sociobiology. Behav Brain Sci. 1981;4(2):225-235.

39. Zsido AN, Arato N, Inhof O, Janszky J, Darnai G. Short versions of two specific phobia measures: The snake and the spider questionnaires. J Anxiety Disord. 2018;54:11-16.

40. Ovanessian MM, Fairbrother N, Vorstenbosch V, McCabe RE, Rowa K, Antony Psychometric properties and clinical utility of the Specific Phobia Questionnaire in an anxiety disorders sample. J Psychopathol Behav. 2019;41(1):36-52.

41. The JAMOVI project. Jamovi (Version 1.0) [Computer Software]. 2019. https://www.jamovi.org
42. Bandura A, Menlove FL. Factors determining vicarious extinction of avoidance behavior through symbolic modeling. J Pers Soc Psychol. 1968;8(2, Pt. 1): 99-108.

43. Golkar A, Selbing I, Flygare O, Öhman A, Olsson Other people as means to a safe end: vicarious extinction blocks the return of learned fear. Psychol Sci. 2013;24(11):2182-2190.

44. Poulton R, Davies S, Menzies RG, Langley JD, Silva PA. Evidence for a non-associative model of the acquisition of a fear of heights. Behav Res Ther. 1998;36(5):537–544.

45. Barry TJ, Vervliet B, Hermans D. An integrative review of attention biases and their contribution to treatment for anxiety disorders. Front Psychol. 2015;6:

46. Scheveneels S, Boddez Y, Vervliet B, Hermans D. The validity of laboratory-based treatment research: Bridging the gap between fear extinction and exposure treatment. Behav Res Ther. 2016;86:87-94.

47. Murray EJ, Foote F. The origins of fear of snakes. Behav Res Ther. 1976;17(5):489-493.

48. Johansson M, Flykt A, Frank J, Støen OG. Controlled exposure reduces fear of brown bears. Hum Dimens Wildl. 2019;24(4):363-379.

49. Alves GA, Quintana DS, Hickie IB, Guastella AJ. Autonomic nervous system dysfunction in psychiatric disorders and the impact of psychotropic medications: a systematic review and meta-analysis. J Psychiatr Neurosci. 2016;41(2): 89-104.

50. Macleod C, Mathews Cognitive bias modification approaches to anxiety. Annu Rev Clin Psychol. 2012;8:189-217.

51. McNally RJ. Attentional bias for threat: Crisis or opportunity? Clin Psychol Rev. 2018;69:4-13.

52. Bawaskar HS, Bawaskar PH. Profile of snakebite envenoming in western Maharashtra, India. T Roy Soc Trop Med H. 2002;96(1):79-84.

53. Ariaratnam CA, Sheriff MR, Theakston RDG, Warrell D. Distinctive epidemiologic and clinical features of common krait (Bungarus caeruleus) bites in Sri Lanka. Am J Trop Med H. 2008;79(3):458-462.

54. Mitra S, Agarwal A, Shubhankar B, Masih S, Krothapalli V, Lee BM, et al. Clinico-epidemiological profile of snake bites over 6-year period from a rural secondary care centre of Northern India: A descriptive study. Toxicol Int. 2015;22(1):77-82.

55. Kularatne S, Silva A, Weerakoon K, Maduwage K, Walathara C, Paranagama R, et al. Revisiting Russell's viper (Daboia russelii) bite in Sri Lanka: Is abdominal pain an early feature of systemic envenoming? PLoS One. 2014;9(2):e90198.

56. Rahman R, Faiz MA, Selim S, Rahman B, Basher A, Jones A, et al. Annual incidence of snake bite in rural Bangladesh. PLoS Neglect Trop D. 2010;4(10):e860.

57. Chippaux JP. Snakebites: appraisal of the global situation. B World Health Organ. 1998;76(5):515-524.

58. Hossain MZ, Atiquullah S, Saha AC, Chowdhury AJ, Jahangir KM, Faiz, MA. A fatal cobra-bite in a snake expert. Mymensingh Med J. 2010;19(2):303-307.

59. Minton Bites by non-native venomous snakes in the United States. Wild Environ Med. 1996;7(4):297-303.