Implementation of an Acute Care COPD Exacerbation Patient Mobilization Tool
A Mixed-Methods Study

Pat G. Camp1,2, Ori Benari3,4, Gail Dechman5, Ashley Kirkham6, Kristin Campbell1, Agnes Black6, Frank Chung7, Preeya Dajee6, Amy Ellis7, Alison M. Hoens8, Rosalyn Jones9, Beena Parappilly6, Chiara Singh7, Philip Sweeney9, and Ellen Woo6

1Department of Physical Therapy and 2Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada; 3The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel-Hashomer, Israel; 4Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; 5Dalhousie University, Halifax, Nova Scotia, Canada; 6Providence Health Care, Vancouver, British Columbia, Canada; 7Fraser Health Authority, Surrey, British Columbia, Canada; 8Department of Physical Therapy, Centre for Health Evaluation and Outcomes Science, Richmond, British Columbia, Canada; and 9Vancouver Coastal Health Authority, Vancouver, British Columbia, Canada

ABSTRACT

Background: Improving the mobility of hospitalized patients with an acute exacerbation of chronic obstructive pulmonary disease (AECOPD) is a priority of care. AECOPD-Mob is a clinical decision-making tool for physical therapists, especially those who are newly graduated or are new to caring for patients with AECOPDs in acute care settings. Although this tool has been available for several years, dissemination via publication is not sufficient to implement it in clinical practice.

Objective: The primary objective of this study was to develop, implement, and evaluate different formats of AECOPD-Mob in an acute care setting.

Methods: We used a mixed-methods, convergent parallel design. In addition to the paper format of AECOPD-Mob, we developed a smartphone app, a web-based learner module, and an in-service learning session. Newly graduated physical therapists (PTs) or PTs new to the practice area were recruited from urban acute care hospitals. Participants used the different formats for 3 weeks and then completed the Post-Study System Usability Questionnaire. User data were retrieved for the learning module. Participants participated in focus groups at 3 weeks and 3 months.

(Received in original form September 23, 2020; accepted in final form February 10, 2021)

Supported by Providence Health Care Research Institute Innovation and Translational Research Award 2015.

Author Contributions: Conception and design: all authors. Creation of app, learning module, and in-service: P.C., O.B., A.K., A.B., F.C., P.D., A.E., A.M.H., R.J., B.P., C.S., P.S., E.W. Data collection: P.C., O.B., A.K. analysis & interpretation: all authors. Drafting the work or revising it critically for important intellectual content: P.C., O.B., G.D. Editorial comments and final approval of the version to be published: all authors.

Correspondence and requests for reprints should be addressed to Pat G. Camp, Ph.D., P.T., Department of Centre for Heart Lung Innovation, St. Paul’s Hospital, 166-1081 Burrard Street, Vancouver, BC, V6Z 1Y6 Canada. E-mail: pat.camp@hli.ubc.ca.

This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (https://creativecommons.org/licenses/by-nc-nd/4.0/). For commercial usage and reprints, please contact Diane Gern (dgern@thoracic.org).

ATS Scholar Vol 2, Iss 2, pp 249–264, 2021
Copyright © 2021 by the American Thoracic Society
DOI: 10.34197/ats-scholar.2020-0129OC
Results: Eighteen (72% of eligible PTs, 100% female, 94% graduated within 3 yr) PTs participated. Post-Study System Usability Questionnaire scores for the learning module and smartphone indicated that participants were satisfied with these formats (median score 2.0 on 1–7 Likert Scale for both technology formats, lower scores indicating greater satisfaction). However, the participants reported in the focus group that the paper format was preferred over other formats. Concerns with the smartphone app included infection control and the perception of lack of professionalism when using a smartphone during clinical practice. The learning module and in-service were considered helpful as an introduction but not as an ongoing support. The paper format was seen as the most efficient way to access the necessary information and to facilitate communication between other members of the care team about the importance of mobility for hospitalized patients with AECOPDs.

Conclusion: Newly graduated PTs strongly preferred the paper format of the AECOPD-Mob tool in the acute care setting. Future research will focus on knowledge translation strategies for other health disciplines.

Keywords: chronic obstructive pulmonary disease; questionnaires and surveys; hospitalizations; knowledge translation
decision-making (11, 14). The study was conducted in five hospitals in three cities (Vancouver, Burnaby, and Surrey) in Canada. Ethical approval for this study was obtained from the research ethics boards at the University of British Columbia and participating hospitals (#H15-01582). The original AECOPD-Mob clinical decision-making tool is a four-page, paper-based document (Figure 1A). We developed three additional formats: a web-based learning module; a smartphone application; and a didactic in-person in-service session (Figures 1B–1D). We recruited newly graduated PTs (within 3 yr) or PTs new to the AECOPD practice area. These PTs were

Figure 1. Formats of AECOPD-Mob. (a–c) Example images from the formats of AECOPD-Mob. (a) The first page of the paper format of AECOPD-Mob. The full paper document can be downloaded from https://prrl.rehab.med.ubc.ca/research/aecopd-mob-clinical-decision-making-tool/. (b) Screenshot from the video-based learner module. Each page of the module had text, and several pages had a video to view that highlighted a case-based scenario. (c) Screenshots of the smartphone application. The full app can be viewed on the QxMD Calculate App, under the category of "Physiotherapy." (d) In addition to these formats, each participant attended an in-service presentation delivered by a clinical specialist. AECOPD = acute exacerbation of chronic obstructive pulmonary disease; BP = blood pressure; COPD = chronic obstructive pulmonary disease; ECG = electrocardiogram; \(F_{I_{O}} \) = fraction of inspired oxygen; HR = heart rate; RR = respiratory rate; \(S_{P_{O_{2}}} \) = oxygen saturation as measured by pulse oximetry.
What to Assess Prior to Mobilization

Prior to mobilizing your AECOPD patient, a full respiratory and functional assessment should be carried out and the patient should understand and consent to the treatment plan. Important things to consider are: hemodynamic status including heart rate, blood pressure, reports of dizziness; cognitive status, including confusion; respiratory status including oxygen saturation, dyspnea level and respiratory rate; and influence of other comorbid conditions, including angina, arrhythmia, osteoarthritis, and diabetes.

When formulating the treatment plan, the patient’s goals should be identified and effectively communicated between the patient, staff and family.

Ensure the necessary equipment is in place, you have reviewed the chart, and you have confirmed the overall status of the patient. Important equipment includes: blood pressure sphygmomanometer; stethoscope; pulse oximeter; portable oxygen; walker; second person if necessary.

More Information

The purpose of this document is to provide recently graduated or returning clinicians working in acute care settings with guidance on safe and effective mobilization of the hospitalized patient with an acute exacerbation of COPD. This decision-making tool is evidence- and expert-informed. It is not intended to replace the clinician’s clinical reasoning skills and interprofessional collaboration. Prior to any patient mobilization, ensure there are enough qualified staff available, the patient has consented to the treatment plan, and the patient’s goals have been identified and effectively communicated between patient, staff and family.

Figure 1. (Continued).
required to have provided physical therapy treatment to a minimum of five inpatients with an AECOPD within the previous month, based on self-report, and were currently working at least 2 days per week on an acute care ward. Participants also were required to own a compatible smartphone and have access to the Internet. PT department leads and PT clinical specialists invited PTs who met the study criteria to participate, and interested PTs contacted the research team coordinator.

Development of Learning Module, Smartphone Application, and In-Service

The AECOPD-Mob interactive web-based learning module included five 2- to 3-minute video case-based scenarios, textual information in multiple pages, and two multiple-choice quizzes to deliver the content and test the participants’ knowledge (Figure 1B). The learning module was hosted on the Learning Management System (LMS) Blackboard Connect (Blackboard), a secure, web-based learning platform. The AECOPD-Mob smartphone application (“AECOPD-Mob app”) was developed by QxMD and included screening questions and photographs of exercises described in the AECOPD-Mob tool (Figure 1C). The 1-hour, face-to-face in-service lecture was delivered by a clinical specialist PT and included an overview of AECOPD and guidance on how to use the AECOPD-Mob tool using case scenarios.

After recruitment, each participant attended a 1-hour standardized session led by a graduate student (coauthor O.B.) to complete questionnaires, activate the app, access the learning module, and schedule their attendance at the in-service. They were asked to complete the learning module when
convenient and to use any of the formats while caring for their patients hospitalized with an AECOPD. Participants were invited to return to a focus group session 3 weeks and then 3 months after the orientation session.

Data Collection

At baseline, each participant completed an adapted version of the Evidence-Based Practice (EBP) Questionnaire (15), which has been used in clinical and knowledge translation studies (16–18). The questionnaire has several statements for which the participant indicates their level of agreement. We adapted the EBP questionnaire in the following ways. The statement “My reimbursement rate will increase if I incorporate evidence-based practice into my practice” was removed, as Canada has a universal healthcare system and questions regarding reimbursement for physical therapy care in the public practice setting are not relevant. We also altered three questions to focus on AECOPD. The statement “Practice guidelines are available for topics related to my practice” was revised to “Practice guidelines for mobilizing or exercising hospitalized patients with AECOPD are available to me.” The statement “I actively seek practice guidelines pertaining to areas of my practice” was revised to “I actively seek practice guidelines for treating hospitalized patients with AECOPD with mobility problems.” The statement “I use practice guidelines in my practice” was revised to “I used practice guidelines while treating hospitalized patients with AECOPD and mobility problems.” We are reporting on the questionnaire sections related to personal use and understanding of clinical practice guidelines, barriers to the use of evidence-based practice, and general demographic and practice information.

Throughout the study period, we collected data on how many times the learning module was accessed, the completion rate of each “page” of the module and the module as a whole, using the LMS system analytics. At 3 weeks after the orientation session, each participant completed the Post-Study System Usability Questionnaire (PSSUQ) (19). This is a validated Likert-scale tool (20) that was used to examine the learning module’s and the smartphone app’s usefulness, information quality, and interface quality. We used the following a priori categorization of the PSSUQ scores for the smartphone app and the learning module: less than 1.5 = excellent; 1.5–2.0 = very good; 2.01–2.5 = good; 2.51–3.5 = acceptable; and greater than 3.5 = poor. At 3 weeks and 3 months after the orientation session, each participant attended a focus group at their workplace, where information on the participants’ views regarding the different formats of AECOPD-Mob, as well as suggestions for improvement, was collected (see data supplement). The focus groups were led by one of the coauthors (P.G.C., O.B., or A.K.) with a second assistant present to take notes. We aimed to have between two and five people per group. More than one focus group per hospital was scheduled to accommodate participants’ schedules. At the 3 months focus group, we asked participants about their ongoing use of the different formats, using the topics and comments raised in the 3 weeks focus group as a guide. The focus groups were audiotaped and transcribed verbatim.

Data Analysis

Participant demographics are characterized using descriptive statistics. The EBP questionnaire scores are presented as counts and percentages. The PSSUQ scores are presented as means with standard deviations, with lower scores indicating better usability. We also calculated the task-completion rate of the activities in the
learning module as an indicator of usability (21). We examined the completion rate of the seven predefined learning module activities: watching five videos in the learning module and completing two mandatory quizzes. We categorized video watching as “complete” if the video page was open for the length of the video. Successful completion of the quiz required the participant to correctly answer 80% of

Table 1. Participant characteristics

	n (%)
Sex	
Female	17 (100)
Male	0 (0)
Age, yr	
20–29	15 (88)
30–39	2 (12)
Education	
Bachelor’s degree	3 (18)
Entry-level Master’s	14 (82)
Years practicing	
<5	16 (94)
5–14	1 (6)
Hospital	
1	2 (12)
2	9 (53)
3	3 (18)
4	3 (18)
AECOPD care, proportion of caseload	
<20%	10 (59)
21–40%	6 (35)
41–60%	1 (6)
Self-reported confidence in the mobilization of AECOPD inpatients	
Extremely confident	3 (18)
Somewhat confident	11 (65)
Neutral	3 (18)

Definition of abbreviation: AECOPD = acute exacerbation of chronic obstructive pulmonary disease.
the quiz questions. The overall proportion of activities completed was presented as a sum of all users that completed a given activity divided by the total users. Using the threshold proposed by Al-Kilidar and colleagues (21), we defined an activity to be successful if 78% of participants completed the activity.

To analyze the focus group data, we used the applied thematic analysis framework as described by Guest (22). Two coauthors (O.B. [Master of Science student] and A.K. [acute care rehabilitation assistant and research coordinator]) independently reviewed each transcript and used a codebook to generate and record codes. A research assistant double-checked their work. A third reviewer (P.G.C. [physical therapist, researcher]) reviewed all transcripts and coding to ensure analysis fidelity and resolved any discrepancies, then created themes by clustering similar codes and deriving meaning from the clusters. The other coauthors (all PTs and registered nurses) provided feedback.

RESULTS

Participant Characteristics

Of 25 eligible PTs at five participating teaching hospitals (each with a minimum of 300 beds), 18 (72%) in four hospitals consented to participate in the study. One

Table 2. Barriers for implementing EBP

	Primary Barrier for Implementing EBP [n (%)]	One of the Top Three Barriers for Implementing EBP [n (%)]
Insufficient time	10 (59)	16 (94)
Lack of information resources	1 (6)	2 (12)
Lack of generalizability of the literature findings to my patient population	2 (12)	11 (65)
Inability to apply research findings to individual patients with unique characteristics	2 (12)	8 (48)
Access to practice guidelines	0 (0)	4 (24)
Lack of research skills	0 (0)	1 (6)
Poor ability to critically appraise the literature	0 (0)	3 (18)
Lack of understanding of statistical analysis	1 (18)	1 (18)
Lack of collective support among my colleagues in my facility	1 (18)	4 (24)
Lack of interest	0 (0)	1 (18)
No clinical specialist or expert in my facility to demonstrate	0 (0)	0 (0)
Unsure how to apply research findings to a clinical situation	0 (0)	0 (0)

Definition of abbreviation: EBP = evidence-based practice.
person dropped out after providing consent and completing the barriers questionnaire, leaving data from 17 participants for analysis.

Participant characteristics are reported in Table 1. All participants were female, and 94% had graduated from their entry-level professional training within the last 3 years. Fifty-nine percent of participants reported that 20% of their caseload were patients with AECOPD, and an additional 35% of participants reported that patients with AECOPD were between 20% and 40% of their caseload. Only 18% of participants were “extremely confident” in the mobilization of hospitalized patients with AECOPD, whereas 65% were “somewhat confident” and 18% were neutral. Either formal practice guidelines for mobilization of hospitalized patients with AECOPD were not available (29% of respondents) or participants were not aware of them (24% of respondents). The top barrier for implementing EBP was “insufficient time,” followed by “lack of generalizability of the literature findings to my patient population,” and “inability to apply research findings to individual patients with unique characteristics” (Table 2).

Learning Module Use
All participants viewed at least one page of the learning module and 95% of the participants viewed all pages. The first and second quiz was completed by 100% and 95% of respondents, respectively. The videos were not often viewed—only 5% of participants watched the five videos to completion, and only 15–20% of participants watched any individual video.

The PSSUQ scores (Table 3) indicated that the participants were satisfied with the web-based learning module, with a median score of 2.0 (range 1–3, lower scores indicating greater satisfaction) for the question “Overall, I am satisfied with this system.” The highest median score for any one item was 3.0 (range 1–4) for the question “I believe I could become more productive using the learning module.” Sixty-five percent of participants reported they would refer back to the learning module in the future.

Smart Phone App Usability and Satisfaction
Sixteen participants (94%) reported they opened the app at least once, although 65% reported not using the app in its entirety (from first “page” to last “page”). Similar to the learning module, the median score was 2.0 for the question “Overall, I am satisfied with the system,” but the range of scores for all questions was greater than for the learning module. The items that received the lowest levels of satisfaction (median score 3, range 1–7) were “I believe I could become more productive using the smartphone application,” “Whenever I made a mistake navigating in the smartphone application, I could recover easily and quickly,” and “I was able to fully utilize the smartphone application’s potential.” Fifty-three percent of participants reported they would use this app in the future.

Focus Groups
We conducted six focus groups at 3 weeks and again at 3 months. The number of participants in each group ranged from three to seven. Analysis of the qualitative data at 3 weeks enhanced the understanding of the quantitative results. Three themes emerged: 1) AECOPD-Mob is a useful tool in PT clinical practice; 2) Acute care PTs are open to different formats of AECOPD-Mob information; and 3) Paper version is the most useful format of AECOPD-Mob.

Main theme 1. AECOPD-MOB is a useful tool in PT clinical practice
Subtheme 1A. AECOPD-MOB is a reminder of best practice. The participants confirmed
Item	Learning Module	Smartphone Application
1. Overall, I am satisfied with how easy it is to use the learning module or smartphone application.	2.0 1–3 1.8 (0.6)	2.0 1–7 2.3 (1.7)
2. The interface of this learning module or smartphone application was pleasant.	1.0 1–3 1.6 (0.7)	2.0 1–7 2.1 (1.6)
3. I liked using the interface of this learning module or smartphone application.	1.0 1–3 1.6 (0.7)	2.0 1–7 2.5 (1.8)
4. It was simple to use the learning module or smartphone application.	1.0 1–2 1.3 (0.5)	1.0 1–7 2.0 (1.6)
5. I could effectively answer the questions and navigate through pages or move from screen to screen in the learning module or smartphone application.	1.0 1–4 1.5 (0.9)	2.0 1–7 2.1 (1.6)
6. I felt comfortable using the learning module or smartphone application.	1.0 1–3 1.4 (0.6)	2.0 1–7 2.5 (1.7)
7. It was easy to learn how to use the learning module or smartphone application.	1.0 1–3 1.4 (0.6)	1.0 1–7 2.0 (1.6)
8. I believe I could become more productive using the learning module or smartphone application.	3.0 1–4 2.6 (1.1)	3.0 1–7 3.0 (1.5)
9. Whenever I made a mistake navigating in the learning module or smartphone application, I could recover easily and quickly.	1.0 1–3 1.5 (0.6)	3.0 1–7 3.1 (1.8)
10. The learning module or smartphone applications’ media (videos, narration or photos) functioned properly.	2.0 1–7 3.1 (2.6)	1.0 1–7 2.1 (1.8)
11. It was easy to find the information I needed.	1.0 1–3 1.6 (0.7)	2.0 1–7 2.8 (1.5)
12. The instructions provided with the learning modules or smartphone application were clear.	1.0 1–3 1.4 (0.7)	1.0 1–7 2.1 (1.8)
13. The information in the learning module or smartphone application was effective in helping me care for my patients with COPD	2.0 1–4 2.3 (0.9)	3.0 1–7 3.1 (2.2)
14. The organization of information in the learning module or smartphone application was clear.	1.0 1–4 (1.5) 0.9	1.0 1–7 2.2 (0.8)
15. This learning module or smartphone application has all the functions and capabilities I expect it to have.	1.0 1–4 1.7 (0.9)	2.0 1–7 2.7 (2.0)
16. I was able to complete all of the tasks in the learning module or fully utilize the smartphone application’s potential.	1.0 1–6 1.8 (1.4)	3.0 1–7 3.2 (1.8)
17. Overall, I am satisfied with this system.	2.0 1–3 1.7 (0.6)	2.0 1–7 2.7 (1.7)

Definition of abbreviations: COPD = chronic obstructive pulmonary disease; SD = standard deviation.
that the content in AECOPD-Mob supported best practice:

*I personally find it’s very useful for those borderline patients where they’re not ready to mobilize… I find those are the toughest. They’re not super short (of breath), they’re not just (with oxygen saturations) to 82%, they’re 87, 86 and you’re like mmmm… should I mobilize? … I do find because the nature of our job, you want to get everyone up,… so I think it gives you a good check to see under what circumstances you really shouldn’t, or where you should give them an extra [push] and get them moving. I found that’s really useful for those situations.

Subtheme 1b. AECOPD-Mob has the important information all in one place. The participants noted that although the paper format was four pages, it was structured so they could easily find the information they needed:

…sometimes you’re in a bit of a rush and you’re thinking, “oh I don’t have time to throw together an exercise (plan)” but then you have ideas of exercises all laid out for you (in AECOPD-Mob), it’s really quick and easy to put together a program.

Subtheme 1c. AECOPD-Mob gives clinicians a common language when caring for patients. AECOPD-Mob also gave the PTs a common language when speaking with patients and other healthcare professionals, in terms of vocabulary, assessment, and treatment approaches:

I think it’s great having a tool that everyone can use… because everyone kind of had their education in different places in different areas so I like how it can be easily transferrable and more universal.

Main theme 2. Acute care PTs are open to different formats of information

The participants reported they were keen to learn information in novel ways:

You get a million sheets of paper and they get kind of lost… so it would be good to have an alternate route to get the information and get more knowledge.

When you’re on the medical units we need something that’s pretty fast where you can look at it and have a couple of ideas. So it’s nice having different formats.

…great to see that there’s a smartphone app because it will bridge the gap, use technology to our advantage on the floor.

Main theme 3. Paper is the best format for AECOPD-Mob

Despite the interest in accessing information from different sources, a strong theme from all the focus groups was that the original, paper-based version of AECOPD-Mob was the most useful format for use in clinical practice:

…the paper is easier to navigate, and I always referred to the paper copy when I needed it.

Subtheme 3a. Paper format facilitates communication with other healthcare professionals. The participants talked about how the paper format enabled conversations related to mobility:

I was just talking to some nurses the other day about the study… and I can quickly go to the computer and print off the (tool) and show it to them, we’re still pretty paper-driven in healthcare and I found that was easy because I could have it in my hand right away and show people.

I find on the ward the nurse says, “he’s a little bit short of breath, maybe just keep him in bed,” but (with the AECOPD-Mob paper) you have something solid to show them, “actually according to this he should be out of bed.” I think (the nurses) are more receptive to that.

Subtheme 3b. Smartphone app not feasible because of perceptions of others and ease of use.

The majority of participants did not feel the app would be useful in their day-to-day care of patients with AECOPD. In addition to concerns about infection control, a main issue was the perceptions of patients and other healthcare professionals about using a smartphone in clinical practice:
I would say the professional appearance of bringing your phone out at work is not a great look in front of your colleagues or in front of your patients. (Using the app) makes the patient feels like you’re not connected to what you’re doing with them, that you’re playing on your phone, you’re doing something else.

The design of the app, where safety questions needed to be answered first, also contributed to challenges with its use:

...if I want to use the app to get exercise, then I have to go through the whole process, he’s got all the requirements, he can mobilize, just spit out my exercises. It would be easier to go to a separate page and put in their exercise ability and get (what you need).

SUBTHEME 3c. Web-based learning module and in-service work together. Although the participants did not like the LMS that housed the learning module (...it’s not intuitive to navigate), the participants felt that the learning module and the in-service worked well together as an orientation to AECOPD-Mob but would not be needed on an ongoing basis.

I loved the online thing to get you started and get your head in the mind space of using the tool more. I thought it was useful for that but I don’t think I’d refer to it in the future again.

I did the learner module actually before we did the in-service and I feel like they’re pretty equal for a learning tool. Like I felt like a lot of the information was similar so I don’t know that you would actually need both.

3 MONTHS FOLLOW-UP

The focus groups were reconvened after 3 months. We conducted six focus group sessions, with the number of participants ranging from three to six. Although PSSUQ data from the 3 weeks time period showed that the majority of participants intended to use the app and the learner module again, the findings from the 3 months focus group suggested otherwise. The paper tool continued to be the preferred format. In addition, most participants did not use the app again. Those who did use it to view the exercise pictures but did not use any of the other features. Participants suggested creating a patient handout with pictures of exercises similar to the ones in the app would facilitate the discharge discussion.

I want to say that more technology is great, but—I haven’t really used the technology so I think for me it really is about easy accessible formats like papers or forms, something I can bring, that I can just grab and go kind of thing.

Being able to give them the pictures would be good because I have a lot of language barriers with patients and being able to show them a picture to teach exercises would be helpful.

DISCUSSION

Implementation science is the study of methods that support the application of evidence-based practice into the clinical setting (23, 24). The transfer of knowledge into practice is not achieved by the basic dissemination of information to the clinician—a carefully planned implementation strategy is required.

Morris and colleagues (14) developed a comprehensive “road map” for implementation strategies and research in rehabilitation settings. They describe seven steps in this road map: 1) understanding the evidence; 2) understanding the context; 3) selecting and using relevant implementation theories; 4) applying relevant implementation strategies; 5) selecting appropriate implementation outcomes; 6) selecting appropriate implementation research designs; and 7) sustaining implementation over time.

AECOPD-Mob is created for and by
clinicians and is based on interdisciplinary expert consensus (9), thereby completing the first step of the road map. This study supports the second step, “understanding the context,” which is exploring the “…factors that influence the intervention adoption, effectiveness or sustainability in real world settings” (14). This includes appreciating the individual characteristics and perspectives of the healthcare professionals in the setting in which they practice. In this mixed-methods study, we created multiple formats of AECOPD-Mob and recruited newly graduated PTs working in acute care hospitals to use them over a 3-month period. The design of this study enabled the exploration of context in the use of the different AECOPD-Mob formats.

Physical therapists in our study confirmed the clinical utility and value of AECOPD-Mob to support their care of hospitalized patients with AECOPD. Although the PTs were interested in technology to support their practice, they overwhelmingly preferred using a paper format. There were many reasons why clinicians preferred the paper-based tool over the other formats. Although using mobile devices has been suggested to improved access to point-of-care information for many health professionals (25), the participants in this study raised concerns about infection risks of smartphone use in a clinical setting. Improving infection control issues may not change use, as another common perception was that smartphone use in the acute care setting was unprofessional. Most physicians use mobile devices to support clinical decision-making (26), but it appears this practice has not transferred to physical therapy to the same extent (27). The participants in this study felt that others would assume their smartphone was for personal use. This finding is in line with a recent survey of physicians, nurses, pharmacists, and social workers (28) that found that “the perception of professionalism” was an important theme and that if the healthcare professional wanted to use their smartphone to access information, it would need to be out of view of colleagues and patients.

The participants in this study also believed the paper format enabled better communication between PTs and their colleagues with respect to the safety and efficacy of mobilizing the patient with AECOPD. Different health professions likely have different care priorities, and the paper tool enabled the PTs to initiate discussions with other members of the care team regarding the safety of patient mobilization, a priority of PT care. This has been well documented in studies of intensive care unit (ICU) mobility, in which the introduction of early physical therapy interventions required education for all team members on the benefits of early mobility, and these interventions ultimately decreased hospital and/or ICU lengths of stay (29). The physical therapists in the current study commented on the need to demonstrate the evidence base of safe and effective mobility, and the presence of a written document, with specific parameters for safety and effectiveness, reinforced the importance of mobility for these patients. The lack of ongoing use of the learning module and the smartphone app may be due to the challenges of using those systems as an acute care PT, or that those applications, once used, were not required on an ongoing basis.

The PTs in our study did value aspects of the other formats as a component of the implementation process. For example, having the hospital clinical experts deliver
the in-services supported learning via the case scenarios and opportunities to have their questions answered. This is in line with implementation strategies that aim to identify local champions and provide learners with the opportunities to observe expert clinicians model the expected clinical care (30).

Some limitations should be noted. We recruited participants from several urban hospitals. These settings were already using or were aware of AECOPD-Mob in the paper format and had support from PT leadership to use the document clinically. Although this allowed us to gain feedback about the different formats of the tool, instead of discussing at length if the tool should be a part of their clinical care, it is possible that PTs who have no previous exposure or no clinical support to use the tool might have different responses to our questions. It is well known that implementing any new evidence in a clinical setting is facilitated by having support from clinical leadership in the setting (31). Many of the criticisms of the smartphone app were related to the design and how the therapist navigated through the different parts of the app. Although we did work with a healthcare app designer, it was apparent that certain features of the app will need to be redesigned to improve its use at the bedside, and enabling analytics related to smartphone app use would provide further insight. However, the issue of professionalism and smartphone use will not be solved with a better app design. Changes in how phone use is perceived may require a change in the institutional culture, or enough “early adopters” (32) to use phones in clinical settings to make them commonplace. Similarly, we used the LMS of our institution for the web-based learning module, which also had specific features that may not be present in other systems. Thus, the generalizability of the comments related to the learning module may be limited. Nevertheless, the lessons learned from the design and use of these technology-based formats will inform future studies that aim to translate knowledge via technology. The PTs recruited in this study identified as female. It is possible that male PTs may have different responses and perspectives. Finally, although we recruited a large proportion of the available cohort of newly graduated PTs, the number of participants was relatively small, and the perspectives of our participants may not be shared with other PTs in other settings.

In conclusion, we found that the AECOPD-Mob clinical decision-making tool was used by newly graduated PTs in clinical practice. Although these PTs were receptive to the introduction of technology to facilitate knowledge translation, the paper format of AECOPD-Mob was strongly preferred as it aided communication, was the most feasible to use in clinical practice, and was seen as more professional and accessible than other formats. These findings are important to researchers and educators who are making decisions regarding the format of knowledge translation tools in their clinical area and can enable future research to explore how AECOPD-Mob could be implemented in other health disciplines.

Acknowledgment

The authors thank their patient partners and the Providence Health Care Research Institute.

Author disclosures are available with the text of this article at www.atsjournals.org.
REFERENCES

1. Hines AL, Barrett ML, Jiang J, Steiner CA. Conditions with the largest number of adult hospital readmissions by payer, 2011. Rockville, MD: Agency for Healthcare Research and Quality; 2014. Available from: https://www.hcup-us.ahrq.gov/reports/statbriefs/sb172-Conditions-Readmissions-Payer.jsp.

2. Benady S. The human and economic burden of COPD: a leading cause of hospital admission in Canada. Ottawa, ON: Canadian Lung Association; 2010.

3. Pitta F, Troosters T, Probst VS, Spruit MA, Decramer M, Gosselink R. Physical activity and hospitalization for exacerbation of COPD. *Chest* 2006;129:536–544.

4. García-Aymerich J, Farrero E, Félez MA, Izquierdo J, Marrades RM, Antó JM; Estudi del Factors de Risc d’Agudització de la MPOC investigators. Risk factors of readmission to hospital for a COPD exacerbation: a prospective study. *Thorax* 2003;58:100–105.

5. Waschki B, Kirsten A, Holz O, Müller KC, Meyer T, Watz H, et al. Physical activity is the strongest predictor of all-cause mortality in patients with COPD: a prospective cohort study. *Chest* 2011;140:331–342.

6. Puhan MA, Gimeno-Santos E, Cates CJ, Troosters T. Pulmonary rehabilitation following exacerbations of chronic obstructive pulmonary disease. *Cochrane Database Syst Rev* 2016;12:CD005305.

7. Masley PM, Havrilko GL, Mahnensmith MR, Aubert M, Jette DU. Physical therapist practice in the acute care setting: a qualitative study. *Phys Ther* 2011;91:906–919.

8. Reeves J, Skinner M, Lee A, Wilson L, Alison JA. Investigating factors influencing 4th-year physiotherapy students’ opinions of cardiorespiratory physiotherapy as a career path. *Physiother Theory Pract* 2012;28:391–401.

9. Camp PG, Reid WD, Chung F, Kirkham A, Brooks D, Goodridge D, et al. Clinical decision-making tool for safe and effective prescription of exercise in acute exacerbations of chronic obstructive pulmonary disease: results from an interdisciplinary Delphi survey and focus groups. *Phys Ther* 2015;95:1387–1396.

10. Westfall JM, Mold J, Fagnan L. Practice-based research—“Blue Highways” on the NIH roadmap. *JAMA* 2007;297:403–406.

11. Jacobson N, Butterill D, Goering P. Development of a framework for knowledge translation: understanding user context. *J Health Serv Res Policy* 2003;8:94–99.

12. Rycroft-Malone J. Models and frameworks for implementing evidence-based practice: linking evidence to action. Oxford: Wiley-Blackwell; 2010.

13. Cresswell J, Plano-Clark V. Designing and conducting mixed methods research. Thousand Oaks, CA: Sage Publications; 2017.

14. Morris JH, Bernhardsson S, Bird ML, Connell L, Lynch E, Jarvis K, et al. Implementation in rehabilitation: a roadmap for practitioners and researchers. *Disabil Rehabil* 2020;42:3265–3274.

15. Jette DU, Bacon K, Batty C, Carlson M, Ferland A, Hemingway RD, et al. Evidence-based practice: beliefs, attitudes, knowledge, and behaviors of physical therapists. *Phys Ther* 2003;83:786–805.

16. Worum H, Lillemoen C, Ahlsen B, Roaldsen KS, Bergland A. Bridging the gap between research-based knowledge and clinical practice: a qualitative examination of patients and physiotherapists’ views on the Otago exercise Programme. *BMC Geriatr* 2019;19:278.

17. Klaic M, McDermott F, Haines T. How soon do allied health professionals lose confidence to perform EBP activities? A cross-sectional study. *J Eval Clin Pract* 2019;25:603–612.
18. Moore JL, Friis S, Graham ID, Gundersen ET, Nordvik JE. Reported use of evidence in clinical practice: a survey of rehabilitation practices in Norway. *BMC Health Serv Res* 2018;18:379.

19. Lewis JR. IBM computer usability satisfaction questionnaires: psychometric evaluation and instructions for use. *Int J Hum Comput Interact* 1995;7:57–78.

20. Fruhling A, Lee S. Assessing the reliability, validity and adaptability of PSSUQ [accessed 2021 Mar 22]. *AMCIS 2005 Proceedings*;378. Available from: http://aisel.aisnet.org/amcis2005/378.

21. Al-Kiligard H, Cox K, Kitchenham B. The use and usefulness of the ISO/IEC 9126 quality standard. 2005 International Symposium on Empirical Software Engineering, Nov. 17-18, 2005, Noosa Heads, Queensland, Australia. p. 7.

22. Guest G, MacQueen KM, Namey EE. Applied thematic analysis. Thousand Oaks, CA: SAGE Publications; 2011.

23. Bauer MS, Damschroder L, Hagedorn H, Smith J, Kilbourne AM. An introduction to implementation science for the non-specialist. *BMC Psychol* 2015;3:32.

24. Eccles MP, Mittman BS. Welcome to implementation science. *Implement Sci* 2006;1:1.

25. Boruff JT, Storie D. Mobile devices in medicine: a survey of how medical students, residents, and faculty use smartphones and other mobile devices to find information. *J Med Libr Assoc* 2014;102:22–30.

26. Franko OI, Tirrell TE. Smartphone app use among medical providers in ACGME training programs. *J Med Syst* 2012;36:3135–3139.

27. Robertson E. Smartphone use by physical therapists; 2011 [accessed 2021 Mar 22]. Available from: https://ptthinktank.com/2011/02/07/smart-phone-use-by-physical-therapists/.

28. Curran V, Fleet L, Simmons K, Lannon H, Gustafson DL, Wang C, *et al*. Adoption and use of mobile learning in continuing professional development by Health and Human Services Professionals. *J Contin Educ Health Prof* 2019;39:76–85.

29. Adler J, Malone D. Early mobilization in the intensive care unit: a systematic review. *Cardiopulm Phys Ther J* 2012;23:5–13.

30. Canadian Institutes of Health Research. Guide to knowledge translation planning at CIHR: integrated and end-of-grant approaches. Ottawa, ON: Government of Canada; 2012.

31. Heinemann AW, Nitsch KP, Ehrlich-Jones L, Malamut L, Semik P, Srdanovic N, *et al*. Effects of an implementation intervention to promote use of patient-reported outcome measures on clinicians’ perceptions of evidence-based practice, implementation leadership, and team functioning. *J Contin Educ Health Prof* 2019;39:103–111.

32. Rogers EM. Diffusion of innovations. New York, NY: Free Press; 2003.