1. Introduction

Regardless of numerous experimental and theoretical investigations of metal–oxide interfaces, very little is known about the effect of the interfacial geometry on electron transport. The issue is of paramount importance particularly for metal–insulator–metal (MIM) tunnel junctions where a thin oxide layer creates for electrons a potential barrier between two metals [1, 2]. In particular, despite the vast popularity of Al/Al2O3/Al junctions in modern nanoelectronics and continuous interest in their novel applications, for example, in qubits and superconducting quantum interference devices (SQUIDs) [3–5], single-electron transistors (SETs) [6, 7], energy storage [8], infrared sensors [9], to the best of our knowledge, not a single theoretical study about the influence of the interface geometry on electron tunnelling has been performed for these systems. The existing theoretical studies, which are based on fitting the calculated data to the measured current–voltage characteristics (I–V), usually employ the standard Simmons model for calculating current densities [10]. The model suggests an analytic expression for the current density applicable to any shape of the barrier given that the average barrier height and width are known or represent fit parameters. Following the general model, current–voltage relationships are also deduced for the rectangular barrier including image force effects and considering various voltage ranges.

Usually, the thickness of the realistic insulating layer varies throughout the junction. Therefore, the width of the tunnel barrier (which may differ from the physical thickness of the insulator) also varies. This is of substantial importance because the conductance of the tunnel junction is known to depend exponentially on the barrier width [11]. Non-uniformity of the...
order of even one atomic layer may cause significant changes in the electron transport properties of the device [1]. To address the non-uniformity in the thickness (and in the oxidation level) of the insulating layer, a double-layer barrier model has been introduced in [12]. In this model, the barrier heights and thicknesses are evaluated by fitting the numerically calculated tunnel probabilities to experimental data assuming a rectangular potential and employing Simmons model for the current density.

The second primary parameter defining the tunnelling properties, i.e. the height of the potential barrier in the junction, may be affected by the metal states penetrating into the oxide gap. Thereby, additional energy levels are introduced for the tunneling electrons, similarly to the metal-semiconductor junctions [13]. To study the effect of such evanescent states on tunnel transport, the transfer matrix method [14] was applied in [15] together with the Simmons model to calculate the I–V curves for rectangular and side-modified rectangular barriers. A similar method was employed in [16] with an image-force-modified tunnel barrier profile to study the impact of the substrate on electron transport in Al/Al$_2$O$_3$/metal junctions. Based on the Simmons model, extensive analyses of experimental data were presented in [17] and it was concluded that there is a strong correlation between the barrier height and the thickness. Additionally, a discrete distribution of barrier thicknesses with the peak-to-peak distances corresponding to a single oxygen layer was observed.

In all the above-listed studies, the main approach has been the assumption of a certain shape of the barrier, mainly rectangular with possible modifications, and the fitting of the calculated I–V data to the experimentally measured one in order to find the height and the width of the barrier. Although these studies provide valuable insight into the average barrier or transport properties, they lack the atomic-scale characterization. On the other hand, theoretical studies which are based on atomic modelling involve a single model geometry, leaving aside all the possible interface effects [16, 18]. The goal of this work is to establish a link between the structural properties of the interface and the corresponding barrier parameters (i.e. the height and the width). Since in theory, there is an uncountable number of options to interface the two materials, it is impossible to examine all the potential configurations. Therefore, we study by first-principles electronic structure calculations six representative geometries of the Al/Al$_2$O$_3$ interface to extract the barrier parameters for electron tunnelling. The chosen structures differ in stacking sequences and oxide terminations. On the basis of our first-principles results and the experimental data, we demonstrate in this paper that both the barrier parameters for electron tunnelling and shadow evaporation technique [19]. Several Al/Al$_2$O$_3$/Al junctions were formed between the fingers and the common electrode. The thickness of all the fingers and the common electrode is 25 nm. Metal depositions are performed by electron beam evaporator at vacuum pressure 1×10^{-7}–3×10^{-7} mbar and at room temperature. To achieve homogeneous films, the deposition rates are kept to be within the range of 3–5 Å s$^{-1}$. The tunnel barrier (Al$_2$O$_3$) of the junction was formed at room temperature in-situ by thermal oxidation before the deposition of the second layer of Al. The oxidation process was 5 min long and was performed by letting 12 mbar of oxygen into the evaporation chamber. A close-up of two tunnel junctions is shown in the scanning-electron micrograph (SEM) together with the experimental setup in figure 1.

We measure the differential conductance G in a liquid helium dipstick at $T_{\text{bath}} = 4.2$ K with a standard lock-in technique. The measurement setup shown in figure 1 consists of dc and ac voltage sources, low noise current preamplifier (DL instruments 1211), and a lock-in amplifier (SR 830). We obtain the differential conductance as $G = I_{\text{ac}}/V_{\text{ac}}$, where I_{ac} is the measured ac current through the junction and $V_{\text{ac}} = V_{\text{ac source}}R_3/(R_1 + R_3)$ the applied ac bias voltage calculated according to the voltage division. The dc voltage is $V_{\text{dc}} = V_{\text{source}}R_3/(R_2 + R_3)$.

The measured differential conductance curves of three junctions are shown in figure 2 as solid blue (sample D), dashed red (sample H), and dash-dotted green (sample J). The differential conductance has a parabolic shape and a Coulomb blockade dip at zero bias voltage. Parabolic dependence is also the lowest-order result from Simmons model for tunnelling through a rectangular barrier [10]. The zero-bias conductance is determined through the parabolic fit with the I–V curve and is found to be $1802.17 \mu S \mu m^{-2}$, $1794.5 \mu S \mu m^{-2}$ and $1765.5 \mu S \mu m^{-2}$ for the three junctions. Coulomb blockade dip is ignored in the fitting.

3. Theoretical methods

3.1. Modelling Al/Al$_2$O$_3$ interfaces

In our first-principles calculations, the model junction consists of a five-layer substrate for the Al(111) surface and either
single Al layer- or O layer-terminated oxide (figure 3(a)). The oxide is represented as the crystalline Al$_2$O$_3$ having hexagonal unit cell and the (0001) surface parallel to the interface. For each termination we examine interface structures with three different stacking sequences: face-centred cubic (FCC), hexagonal closed packed (HCP) and octahedral (OT) (figure 3(b)). Thus, in total, we investigate six different structures. Throughout the paper we label the interfaces as ‘1Al FCC’, etc, which read as ‘single Al layer-terminated oxide with FCC stacking sequence’, etc. For example, the structures presented in figure 3(a) correspond to the O FCC and 1Al FCC interfaces. To extract barrier parameters, we first relax the chosen structures using DFT with the GPAW code [20, 21]. We carry out calculations with the $4 \times 4 \times 1$ Monkhorst–Pack k-point grid and the Perdew–Burke–Ernzerhof (PBE) exchange-correlation functional [22]. The simulation box includes 5 Å vacuum on each side of the slab along the z axis. To avoid the artificial electric field due to asymmetry, we apply the dipole correction to the electrostatic potential [23, 24] perpendicularly to the interface, as implemented in GPAW. Further details of the calculation setup and the procedure for selecting the interfaces, as well as a thorough discussion on their mechanical and electronic properties will be provided in a separate paper.

3.2. Extraction of barrier parameters

The simplest model for the profile of the tunnel barrier is a one-dimensional rectangular potential wall corresponding to an abrupt transition between the metal and the oxide. However, the importance of accounting for a transition region (along with an electron effective mass for the oxide) has been pointed out in [18]. We assume that adding the second Al electrode, not present in our calculations, results in the identical Al/Al$_2$O$_3$ interfaces on the left and right sides of the oxide, shown with the dashed line in figure 4. The assumption is allowed by the symmetric nature of the experimental G–V characteristics (figure 2). Hence, we start by considering a symmetrical trapezoidal shape for the potential barrier. It is known that in DFT, (semi)local exchange-correlation functionals, such as PBE, do not properly incorporate image force potential. To include the image force effects, often classical
image potential is applied to rectangular tunnel barriers as a correction. However, this does not introduce qualitative changes to the current–voltage characteristics of the tunnel junctions with thin oxide barriers [25]. Therefore, image force effects are not expected to affect our results and are not taken into account in our calculations.

To construct barrier profiles for our systems, we need to know the barrier heights ϕ, transition region widths Δd and the widths d of the barriers for each geometry (figure 4). In the following section, we describe the details for determining the three parameters.

3.2.1. Barrier height ϕ. The tunnel barrier height at the metal-insulator interface is often estimated analogously to the Schottky model for metal-semiconductor systems [26]:

$$\phi = W - X,$$

where W is the work function of the metal, i.e. the difference between the Fermi level (E_F) of the metal and the vacuum level, and X is the electron affinity of the oxide, i.e. the difference between the conduction band minimum (CBM) of the oxide and the vacuum level. Since the definition of ϕ is based solely on the properties of the two isolated bulk materials, it neglects the effects of the interface formed between them. In particular, due to the charge transfer across the interface, a dipole barrier is exerted in this region which may be different for different interface geometries and chemical compositions. On the other hand, because of the long-range character of the Coulomb interaction the band alignment between the adjacent metal and the oxide is determined, in addition to the bulk properties, by the electronic distribution at the interface. As a consequence, to apply (1) to the interface, one needs to know the position of the oxide CBM inside the junction. Since PBE is known to underestimate band gaps, instead of using the theoretical value for CBM, it is more convenient to first find the valence band minimum (VBM) of the oxide. Next, CBM can be obtained by adding the experimental value of the oxide band gap ($E_{g\text{exp}}$) to the VBM found from DFT. For the experimental band gap we use a value of 8.8 eV [27]. Thus (1) is equivalent to:

$$\phi = (VBM + E_{g\text{exp}}) - E_F,$$

or,

$$\phi = VBO + E_{g\text{exp}},$$

where VBO is the valence band offset relative to the Al Fermi level. Thus, the problem maps to finding the VBO for the interface. For this purpose we use the macroscopic average technique which was first developed for finding valence band offsets in lattice-matched metal-semiconductor heterojunctions and was further extended to the lattice-mismatched case [28-30]. According to the method the valence band offset reads as:

$$VBO = E_V + \Delta V,$$

where E_V is the band-structure term and ΔV is the potential line-up. E_V is defined as the difference between the VBM of the oxide and the Fermi level of the metal, both measured with respect to the macroscopic average electrostatic potentials in the corresponding bulk materials. Therefore, E_V is independent of the interface and is defined by the bulk band structure, only. In contrast, ΔV is an interface-dependent term and represents the difference between the macroscopic average electrostatic potentials in the bulk-like regions of the interfaced materials. Figure 5 illustrates the calculation procedure for the barrier heights on the example of 1Al FCC interface.

Since the junction is lattice-mismatched and, correspondingly, the periodicity of $V(z)$ is different in the metal and in the oxide bulk regions, the macroscopic averaging of the potential is done twice successively: first with the window size matched with the periodicity of the bulk Al, next—with the periodicity of the bulk Al$_2$O$_3$.

The barrier heights obtained for various interfaces are summarized in table 1. Our results show that the geometry of the interface highly influences the tunnelling properties as the difference in the barrier heights can be as large as 2 eV, against the average value of 1.87 eV. On the other hand, it is gratifying to note that the barrier heights derived based on experimental data are reported to be approximately 2 eV [16]. The barrier heights for the Al-terminated interfaces are, on average, higher than those of the O-terminated interfaces, with the mean heights being 2.32 eV and 1.42 eV, respectively. This

![Figure 5. Schematics of the band alignment. The red and blue circles represent Al and O layers, respectively. The thick continuous blue line is the plane-averaged effective potential along the direction perpendicular to the interface. The thin continuous black line shows the macroscopically averaged plane-averaged effective potential. ϕ is the tunnel barrier height. The fine-dashed arrow on the left-hand side shows the difference between the Fermi level of the bulk Al and its average effective potential. Similarly, the fine-dashed arrow on the right-hand side shows the difference between the VBM of the bulk Al$_2$O$_3$ with respect to its average effective potential. E_{VBO} is the CBM of the oxide. ΔV is the potential shift. VBO is equivalent to the sum of two quantities, the band-structure term (E_V) and the potential line-up (ΔV) (see (4)).](image-url)

Table 1. Valence band offsets (VBO) and barrier heights ϕ for the different interface geometries.

Geometry	1Al FCC	1Al HCP	1Al OT	O FCC	O HCP	O OT
VBO (eV)	-7.65	-5.65	-6.15	-7.55	-7.55	-7.05
ϕ (eV)	1.15	3.15	2.65	1.25	1.25	1.75
gives rise to an about 1 eV difference between the average heights of the two different terminations.

3.2.2. Transition region width Δd. Assuming that the local density of states follows the shape of the barrier along the coordinate perpendicular to the interface [16, 18], we extract the width of the transition region between the metal and the oxide from the projected density of states (PDOS) for atomic layers at the interface. For this reason, we perform linear fittings for the base and the leg of the trapezoid separately (figure 6). The layer-projected densities of states are plotted as a function of the z coordinate, and averaged over an energy window centred at the Fermi level (inset in the upper right corner).

The obtained results are summarized in table 2. Interestingly, the transition widths of both the Al- and O-terminated interfaces follow the same trend: FCC, HCP, and OT in the order of decreasing width. The significant magnitude of Δd indicates a pronounced deviation from the square barrier assumption, where an abrupt transition between the metal and the oxide is assumed. It must be noted that the presence of the transition region lowers the average height of the zero-bias barrier by a factor of $2/3$ compared to the rectangular barrier, since

$$
\phi_{\text{trapz}} = \frac{2}{3} \phi_{\text{rect}},
$$

where ϕ_{trapz} and ϕ_{rect} at $V = 0$. This suggests that the barrier heights determined by fitting the rectangular barrier models (such as the widely used Simmons model [10]) with the experimental I–V curves should be expected, in fact, to be higher by a factor of $3/2$ for symmetrical barriers.

3.2.3. Barrier width d. The last parameter of our tunnel barrier model is the width d. To analyse the experimental structures, we assume that the interface studied in the experiment is mainly composed of one of the modelled structures. For each case we fit the width with the measured zero-bias conductance. According to [18] the conductance through our model barrier is:

$$
G_{\text{theor.}} \approx -\frac{e^{-F(E_F)}}{2\pi^2 F(E_F)},
$$

where

$$
F(E_F) = 2\sqrt{2\lambda^2\phi} (d + \frac{2}{3}\Delta d)
$$

and

$$
F'(E_F) = -\frac{2}{2\pi^2 \phi} (d + 2\Delta d).
$$

The above expression has been derived following the Simmons model adopted for the trapezoidal barrier profile and taking into account the contribution of the electrons to tunnelling only from the states close to the Fermi energy. We calculate the effective electron mass m^* from the DFT band structure of the bulk oxide. Our obtained value, $0.38 m_e$, is in a perfect agreement with earlier experimental and theoretical works [31, 32]. The obtained widths are displayed in table 3.

Our results demonstrate that O-terminated interfaces exhibit wider barriers compared to the Al-terminated counterparts, with average values of 7.73 Å and 10.17 Å, respectively. Based on the data in tables 1–3, resulted barrier profiles are visualized in figure 7.

Figure 6. Layer-projected density of states as a function of the z coordinate. The fit of the trapezoid is shown with the thick dashed green lines. Δd is the estimated width of the transition region. The inset illustrates the averaging window for the PDOS.

Figure 7. Predicted barrier profiles.

Table 2. Transition region widths (Δd) for the different geometries extracted from the layer-PDOS.

Geometry	1Al FCC	1Al HCP	1Al OT	1O FCC	1O HCP	1O OT
Δd (Å)	5.83	2.78	2.62	3.34	3.15	2.05

Table 3. Barrier widths d found by fitting the theoretical zero bias conductance to the experimentally measured one.

Geometry	1Al FCC	1Al HCP	1Al OT	1O FCC	1O HCP	1O OT
d (Å)	8.89	6.77	7.54	10.34	10.48	9.70
Figure 8. Schematic representation of the trapezoidal barrier tilt under bias. The solid line represents the barrier profile at $V = 0$. The dashed line shows the distorted barrier due to the applied voltage V. E_z is the energy of the incident electron and z_1 and z_2 are the classical turning points at the energy E_z.

4. Analysis of the experimental data

Since the widths were extracted by fitting to a single point, the zero-bias conductance, this way, we obtain the picture only about the relative widths of the different barriers with respect to each other. In addition, the electron effective mass of the oxide, which was fixed at the bulk value, might differ for each interface. Furthermore, we assumed that the interface measured in the experiment was composed of only one of the discussed interfaces, which might not be the case in the real junction. Therefore, to explain the experimental data, we extend our analyses beyond the zero bias. We make an average evaluation of the barrier parameters, and of the effective mass, using the Wentzel–Kramers–Brillouin (WKB) approximation by fitting the conductance to the experimental $G–V$ curve. ϕ, Δd, d and m^* are left as free parameters. The tunnel probability along the z direction within the WKB approximation is calculated with the following expression:

$$P(E_z) = \exp\left\{ -\frac{4\pi}{h^2} \int_{z_1}^{z_2} \sqrt{2m^* (\phi(z, V) - E_z)} \, dz \right\}. \tag{8}$$

And the ensuing current density is:

$$j = \frac{4\pi m^* q}{h^2} kT \int_0^\infty P(E_z) \left\{ 1 + \exp \left(\frac{E_z - E_0 - E_T}{kT} \right) \right\} dE_z, \tag{9}$$

where m^* is the effective electron mass, E_z is the energy of the incident electron, and z_1 and z_2 are the classical turning points at the given energy E_z (figure 8).

As it is shown in figure 2, the experimental curve exhibits a kink at about 0.17V. The behaviour above this point has not been explained consistently in the existing studies, although, it has been suggested earlier to be the result of electron-phonon scattering [33]. Therefore, we consider only the bias range below 0.17V as the WKB approximation does not account for inelastic effects. We apply a tilt in a form of a linear potential to the trapezoid as a modification caused by the bias voltage (figure 8). Unlike for a rectangle, the width of the trapezoid is now reduced due to the tilt and it is dependent on E_z. The fitting, which reproduces essentially the parabolic $G–V$ dependence, results in a barrier height of 2.56 eV, a transition region width of 1.70 Å, and a barrier width of 8.43 Å. The obtained barrier height is significantly higher than the barrier height corresponding to any O-terminated interface found from the DFT calculations. In contrast, it is closest to that of the 1Al OT configuration with the error of only 3%. The second best agreement between the $ab initio$ and fitted values is found for the 1Al HCP configuration with the error of 18%. This indicates that the measured junction (mainly) consists of the Al-terminated interfaces. However, this reasoning cannot totally exclude the presence of O-terminated interfaces. The transition region width is underestimated compared to those obtained using DFT, with the biggest errors for the 1Al FCC, O FCC and O HCP geometries. Concentrating on the Al-terminated cases, the best agreement is found, again, for the 1Al OT and 1Al HCP interfaces, what further supports our previous prediction. The fitted and the DFT values of Δd agree by 35% and 39% for 1Al OT and 1Al HCP, respectively. Taking into account that in our first-principles calculations our model crystalline geometries are idealistic approximations to the real junction geometry, which in fact, is amorphous, we consider the agreement between the two methods rewarding. The electron effective mass derived from fitting, 0.29 m_e, is smaller than the calculated bulk value.

5. Summary

In conclusion, by combining first-principles density-functional and classical methods, we have extracted the tunnel barrier profiles for six possible interface geometries of the Al/Al$_2$O$_3$ interface. Variations in the obtained barrier heights, the barrier widths and the widths of the transition regions demonstrate that the electron transport properties of the junctions are highly sensitive specifically to the geometry of the interface. We obtained that the O-terminated interfaces exhibit on average 0.9 eV lower and 2.44 Å wider barriers compared to the Al-terminated ones. The resulting transition region widths suggest that the real barriers are better represented by the trapezoid. In addition, by fitting the semiclassical model to the experimental $G–V$ curve, we have obtained information about the average barrier properties in a real junction. When compared with our DFT-based results the fitting predicts that the interfaces are Al-terminated and are best described by the octahedral stacking. The gained information is important for understanding electron transport through tunnel barriers on the atomistic level.

Acknowledgments

We acknowledge the availability of the facilities and technical support by Otaniemi research infrastructure for Micro and Nanotechnologies (Otanano). We acknowledge financial support from the European Community FP7 Marie Curie Initial Training Networks Action (ITN) Q-NET 264034 and the Academy of Finland through its CoE programme (projects no.
References

[1] Maisi V F, Saira O-P, Pashkin Yu A, Tsai J S, Averin D V and Pekola J P 2011 Real-time observation of discrete andreev tunneling events Phys. Rev. Lett. 106 217003

[2] Martinis J M and Megrant A 2014 UCSB final report for the CSQ program: review of decoherence and materials physics for superconducting qubits arXiv:1410.5793

[3] Shen D D, Zhu R, Xu W W, Chang J J, Ji Z M, Sun G Z, Cao C H and Chen J 2012 Character and fabrication of AlAl2O3Al tunnel junctions for qubit application Chin. Sci. Bull. 57 409–12

[4] Palomaki T A et al 2006 Initializing the flux state of multilayer inductively isolated Josephson junction qubits Phys. Rev. B 73 014520

[5] Watanabe M 2004 Single-electron transistors in electromagnetic environments Phys. Rev. B 69 094509

[6] Nakamura Y, Klein D L and Tsai J S 1996 Al2O3Al single electron transistors operable up to 30 K utilizing anodization controlled miniaturization enhancement Appl. Phys. Lett. 68 275

[7] Kenyon M, Amar A, Song D, Lobb C J and Wellstood F C 1998 Behavior of Al-Al2O3Al single-electron transistors from 85 mK to 5 K Appl. Phys. Lett. 72 2268

[8] Behzadi F, Moradi M, Karimi H R and Gharavi A 2014 The effect of anodization voltage and surface morphology on the capacitance properties of Al-Al2O3Al nanocapacitors Vacuum 99 204–10

[9] Dao T D, Chen K, Ishi S, Ohi A, Nabatame T, Kitajima M and Nagao T 2015 Infrared perfect absorbers fabricated by colloidal mask etching of Al-Al2O3Al trilayers ACS Photonics 2 964–70

[10] Simmons J G 1963 Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film J. Appl. Phys. 34 1793–803

[11] Fisher J C and Giaever I 1961 Tunneling through thin insulating layers J. Appl. Phys. 32 172

[12] Arakawa N, Otaka Y and Shiki K 2006 Evaluation of barrier height and thickness in tunneling junctions by numerical calculation on tunnel probability Thin Solid Films 505 67–70

[13] Tersoff J 1984 Schottky barrier heights and the continuum of gap states Phys. Rev. Lett. 52 465–8

[14] Tsu R and Esaki L 1973 Tunneling in a finite superlattice Appl. Phys. Lett. 22 562

[15] Jung J, Kim Y and Im H 2009 Tunneling transport simulation in asymmetric junction devices with evanescent states at a junction interface J. Korean Phys. Soc. 55 2512–6

[16] Jung H, Kim Y, Jung K, Im H, Pashkin Yu A, Astafiev O, Nakamura Y, Lee H, Miyamoto Y and Tsai J S 2009 Potential barrier modification and interface states formation in metal-oxide-metal tunnel junctions Phys. Rev. B 80 125413

[17] Gloos K, Koppinen P J and Pekola J P 2003 Properties of native ultrathin aluminium oxide tunnel barriers J. Phys.: Condens. Matter 15 1733

[18] Zemanová M, Ferretti A and Bokes P 2013 Tunneling through AlAl2O3Al junction: analytical models and first-principles simulations Phys. Rev. B 87 195107

[19] Fulton T A and Dolan G J 1987 Observation of single-electron charging effects in small tunnel junctions Phys. Rev. Lett. 59 109–12

[20] Enkvatara J et al 2010 Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method J. Phys.: Condens. Matter 22 253202

[21] Mortensen J J, Hansen L B and Jacobsen K W 2005 Real-space grid implementation of the projector augmented wave method Phys. Rev. B 71 035109

[22] Perdew J P, Burke K and Ernzerhof M 1996 Generalized gradient approximation made simple Phys. Rev. Lett. 77 3865–8

[23] Neugebauer J and Scheffler M 1992 Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(1 1 1) Phys. Rev. B 46 16067–80

[24] Bengtsson L 1999 Dipole correction for surface supercell calculations Phys. Rev. B 59 12301–4

[25] Hartman T E and Chivian J S 1964 Electron tunneling through thin aluminium oxide films Phys. Rev. 134 A1094–101

[26] Schottky W 1942 Vereinfachte und erweiterte theorie der randschicht-gleichrichter Z. Phys. 118 539–92

[27] French R H 1990 Electronic band structure of Al2O3, with comparison to Alon and AIN J. Am. Ceram. Soc. 73 477–89

[28] Baldreschi A, Baroni S and Resta R 1988 Band offsets in lattice-matched heterojunctions: a model and first-principles calculations for GaAsAlAs Phys. Rev. Lett. 61 734–7

[29] Colombo L, Resta R and Baroni S 1991 Valence-band offsets at strained SiGe interfaces Phys. Rev. B 44 5572–9

[30] Peressi M, Binggeli N and Baldresch A 1998 Band engineering at interfaces: theory and numerical experiments J. Phys. D: Appl. Phys. 31 1273

[31] Perevalov T V, Shaposhnikov A V, Gritsenko V A, Wong H, Han J H and Kim C W 2007 Electronic structure of Al2O3: ab initio simulations and comparison with experiment JETP Lett. 85 155–6

[32] Medvedeva J E, Teasley E N and Hoffman M D 2007 Electronic band structure and carrier effective mass in calcium aluminates Phys. Rev. B 76 155107

[33] Lau J C and Coleman R V 1981 Ag versus Pb electrodes in inelastic-electron-tunneling spectroscopy Phys. Rev. B 24 2985–95