Corrigendum: An inverse problem in corrosion detection: stability estimates, J. Inv. Ill-posed Problems 12 (4) (2004), 349-367.

Mourad Choulli

To cite this version:
Mourad Choulli. Corrigendum: An inverse problem in corrosion detection: stability estimates, J. Inv. Ill-posed Problems 12 (4) (2004), 349-367.. 2017. hal-01497617

HAL Id: hal-01497617
https://hal.archives-ouvertes.fr/hal-01497617

Submitted on 28 Mar 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
CORRIGENDUM

AN INVERSE PROBLEM IN CORROSION DETECTION:
STABILITY ESTIMATES, J. INV. ILL-POSED PROBLEMS
12 (4) (2004), 349-367.

MOURAD CHOULLI

Unless otherwise stated, Ω is a C^∞ bounded domain of \mathbb{R}^2 so that its boundary Γ is the union of two disjoint closed subsets with nonempty interior, $\Gamma = \Gamma_1 \cup \Gamma_2$.

We considered in [2] the stability issue for the problem of determining the boundary coefficient q, appearing in the BVP

$$\begin{cases}
\Delta u = 0 & \text{in } \Omega, \\
\partial_\nu u + qu = 0 & \text{on } \Gamma_1, \\
\partial_\nu u = f & \text{on } \Gamma_2,
\end{cases}$$

from the boundary measurement $u|_{\gamma_2}$, where γ_2 is an open subset of Γ_2.

Our proof of [2, Theorem 2.1] is partially incorrect. We rectify here this proof. We precisely establish a stability estimate of logarithmic type for the inverse problem described above. Contrary to the result announced in [2, Theorem 2.1], we do not know whether Lipschitz stability, even around a particular unknown coefficient, is true. Note that Lipschitz stability around an arbitrary unknown boundary coefficient is false in general as shows the following counter example in which $\Omega = \{1/2 < |x| < 1\}$, $\Gamma_1 = \{|x| = 1/2\}$ and $\Gamma_2 = \{|x| = 1\}$. Let, in polar coordinates system (r, θ),

$$u = 1 + \ln r, \quad u_k = u + 2^{-k}k^{-2}(r^2 + r^{-k})\cos(k\theta), \quad k \geq 1.$$

By straightforward computations we check that u and u_k are the solutions of the BVP (1) respectively when

$$q = \frac{2}{1 - \ln 2}, \quad q_k = \frac{2 + k^{-1}(2^{-2k+1} - 2)\sin(k\theta)}{1 - \ln 2 + k^{-2}(2^{-2n} + 1)\sin(k\theta)}, \quad k \geq 1,$$

and $f = 1$.

By simple calculations, we get $\|u - u_k\|_{L^2(\Gamma_2)} = O\left(2^{-k}k^{-2}\right)$, while $\|q - q_k\|_{L^2(\Gamma_1)} = O(k^{-1})$.

To our knowledge, the only case where Lipschitz stability holds is when q is assumed to be a priori piecewise constant. We refer to [6] for more details.

Date: March 28, 2017.

The author is very grateful to Daijun Jiang and Jun Zou for their valuable comments during his stay at the Chinese University of Hong Kong on February 2017. He warmly thank the Chinese University of Hong Kong for hospitality.
Throughout, the unit ball of a Banach space X is denoted by B_X and

$$L_p^e(D) = \{ h \in L^p(D); \text{supp}(h) \subset K \}, \quad 1 \leq p \leq \infty.$$

For sake of clarity, we start our analysis with stability around a particular boundary coefficient. To this end, fix $0 < \alpha < 1$ and, for $0 \leq f \in C^{1,\alpha}(\Gamma_2)$, denote by $w(f) \in C^{2,\alpha}(\Omega)$ the solution of the BVP

$$\begin{cases}
\Delta w = 0 & \text{in } \Omega, \\
w = 0 & \text{on } \Gamma_1, \\
\partial_n w = f & \text{on } \Gamma_2.
\end{cases}$$

According to the strong maximum principle and Hopf’s lemma (see for instance [4]), $\partial_n w < 0$ on Γ_1.

Let $q_0 = -\partial_n w(f)_{|\Gamma_1} (> 0)$ and set $u_0 = 1 + w$. Then it is straightforward to check that u_0 is the unique solution of the BVP

$$\begin{cases}
\Delta u = 0 & \text{in } \Omega, \\
\partial_n u + q_0 u = 0 & \text{on } \Gamma_1, \\
\partial_n u = f & \text{on } \Gamma_2.
\end{cases}$$

For $(\varphi_1, \varphi_2) \in L^2(\Gamma_1) \oplus L^2(\Gamma_2)$, define $L(\varphi_1, \varphi_2) := y$, where $y \in H^{1/2}(\Omega)$ is the unique weak solution of the BVP

$$\begin{cases}
\Delta y = 0 & \text{in } \Omega, \\
\partial_n y + q_0 y = \varphi_1 & \text{on } \Gamma_1, \\
\partial_n y = \varphi_2 & \text{on } \Gamma_2.
\end{cases}$$

An application of Green’s formula leads

\begin{align}
\int_\Omega |\nabla y|^2 \, dx + \int_{\Gamma_1} q_0 y^2 \, d\sigma &= \int_{\Gamma_1} \varphi_1 y d\sigma + \int_{\Gamma_2} \varphi_2 y d\sigma \\
&\leq \| (\varphi_1, \varphi_2) \|_{L^2(\Gamma_1) \oplus L^2(\Gamma_2)} \| y \|_{H^1(\Omega)}.
\end{align}

Using that $h \to \left(\int_\Omega |\nabla h|^2 \, dx + \int_{\Gamma_1} q_0 h^2 \, d\sigma \right)^{1/2}$ defines an equivalent norm on $H^1(\Omega)$, we derive from (2)

$$\| y \|_{H^1(\Omega)} \leq \kappa_0 \| (\varphi_1, \varphi_2) \|_{L^2(\Gamma_1) \oplus L^2(\Gamma_2)},$$

for some constant κ_0 depending only on Ω and f.

As y is also the solution of the BVP

$$\begin{cases}
\Delta y = 0 & \text{in } \Omega, \\
\partial_n y + y + (1 - q_0) y + \varphi_1 & \text{on } \Gamma_1, \\
\partial_n y = \varphi_2 & \text{on } \Gamma_2,
\end{cases}$$

we get from the usual a priori estimates for non homogenous BVP’s (see [5]) that there exits a constant κ_1, depending only on Ω and f, so that

$$\| y \|_{H^{3/2}(\Omega)} \leq \kappa_1 \| (\varphi_1, \varphi_2) \|_{L^2(\Gamma_1) \oplus L^2(\Gamma_2)}.$$

In other words, we proved that $L \in \mathcal{B}(L^2(\Gamma_2), H^{1/2}(\Omega))$ and

$$\| L \| := \| L \|_{\mathcal{B}(L^2(\Gamma_1) \oplus L^2(\Gamma_2), H^{1/2}(\Omega))} \leq \kappa_1.$$
For \(q \in L^2(\Gamma_1) \), define the operator \(H_q \) as follows

\[
H_q : H^{3/2}(\Omega) \rightarrow H^{3/2}(\Omega) : H_q(u) = L (-qu|_{\Gamma_1}, 0).
\]

If \(\kappa \) is the norm of the trace operator

\[
h \in H^{3/2}(\Omega) \rightarrow u|_{\Gamma_1} \in C(\Gamma_1),
\]

then

\[
\|H_q\|_{H^{3/2}(\Omega)} \leq \kappa \|L\|_{L^2(\Gamma_1)}.
\]

Whence, for any \(q \in U = (2\kappa\|L\|)^{-1}B_{L^2(\Gamma_1)}, I - H_q \) is invertible and

\[
\| (I - H_q)^{-1} \|_{H^{3/2}(\Omega)} \leq 2, \quad q \in U.
\]

Define, for \(q \in U \) and \((\varphi_1, \varphi_2) \in L^2(\Gamma_1) \oplus L^2(\Gamma_2), \nabla\)

\[
u_q(\varphi_1, \varphi_2) = (I - H_q)^{-1}L(\varphi_1, \varphi_2).
\]

In light of the identity

\[
u_q(\varphi_1, \varphi_2) = L (-qu|_{\Gamma_1} + \varphi_1, \varphi_2),
\]

we derive that \(\nu_q(\varphi_1, \varphi_2) \in H^{3/2}(\Omega) \) is the solution of the BVP

\[
\begin{align*}
\Delta u &= 0 & \text{in } \Omega, \\
\partial_n u + (q_0 + q)u &= \varphi_1 & \text{on } \Gamma_1, \\
\partial_n u &= \varphi_2 & \text{on } \Gamma_2.
\end{align*}
\]

Note that according to (6)

\[
\|\nu_q(\varphi_1, \varphi_2)\|_{H^{3/2}(\Omega)} \leq 2\kappa_1\|L(\varphi_1, \varphi_2)\|_{L^2(\Gamma_1) \oplus L^2(\Gamma_2)}.
\]

Set \(\nu_q = \nu_q(0, f) \). That is \(\nu_q \) is the solution of the BVP

\[
\begin{align*}
\Delta u &= 0 & \text{in } \Omega, \\
\partial_n u + (q_0 + q)u &= 0 & \text{on } \Gamma_1, \\
\partial_n u &= f & \text{on } \Gamma_2.
\end{align*}
\]

Observe that (7) yields

\[
\|\nu_q\|_{H^{3/2}(\Omega)} \leq 2\kappa_1\|f\|_{L^2(\Gamma_2)}.
\]

Let \(\gamma_1 \) be a nonempty open subset of \(\Gamma_1 \) so that \(\Gamma_1 \setminus \overline{\gamma_1} \) is nonempty. Define \(L^2_{\gamma_1}(\Gamma_1) \) as the set of those functions \(p \in L^2(\Gamma) \) so that \(\text{supp}(p) \subset \overline{\gamma_1} \). We can mimic the proof of [2, Proposition 2.1] to show that the mapping

\[
\Phi : q \in U \cap L^2_{\gamma_1}(\Gamma_1) \rightarrow \chi_{\gamma_1} \left[\partial_n u_q|_{\gamma_1} \right] \in L^2_{\gamma_1}(\Gamma_1)
\]

is continuously Fréchet differentiable and \(\Phi'(0) = N \). Here, for \(p \in L^2\big|_{\gamma_1}(\Gamma_1) \), \(Np = \chi_{\gamma_1} \left[\partial_n v_{\gamma_1} \right] \), where \(v_p \) is the solution of the BVP

\[
\begin{align*}
\Delta v &= 0 & \text{in } \Omega, \\
\partial_n v + q_0 v &= -p & \text{on } \Gamma_1, \\
\partial_n v &= 0 & \text{on } \Gamma_2.
\end{align*}
\]

Similarly to the proof of [2, Lemma 2.1], we prove that \(N \) is an isomorphism. Therefore, by the implicit function theorem, there exists \(\overline{U} \subset U \) so that \(\Phi^{-1} \) is Lipschitz continuous, on \(\overline{U} = \Phi(\overline{U} \cap L^2\big|_{\gamma_1}(\Gamma_1)) \), with Lipschitz constant less or equal to \(2\|N^{-1}\| \). That is

\[
\|q_1 - q_2\|_{L^2(\Gamma_1)} \leq 2\|N^{-1}\| \|\partial_n u_{q_1} - \partial_n u_{q_2}\|_{L^2(\gamma_1)}, \quad q_1, q_2 \in \overline{U} \cap L^2\big|_{\gamma_1}(\Gamma_1).
\]
Let k be a positive integer, $s \in \mathbb{R}$, $1 \leq r \leq \infty$ and consider the vector space

$$B_{s,r}(\mathbb{R}^k) := \{ w \in \mathcal{S}'(\mathbb{R}^k) ; (1 + |\xi|^2)^{s/2} \hat{w} \in L^r(\mathbb{R}^k) \},$$

where $\mathcal{S}'(\mathbb{R}^k)$ is the space of tempered distributions on \mathbb{R}^k and \hat{w} is the Fourier transform of w. Equipped with the norm

$$\| w \|_{B_{s,r}(\mathbb{R}^k)} := \left\| (1 + |\xi|^2)^{s/2} \hat{w} \right\|_{L^r(\mathbb{R}^k)},$$

$B_{s,r}(\mathbb{R}^k)$ is a Banach space. Note that $B_{s,2}(\mathbb{R}^k)$ is merely the Sobolev space $H^s(\mathbb{R}^k)$. Using local charts and a partition of unity, we construct $B_{s,r}(\Gamma_1)$ from $B_{s,r}(\mathbb{R})$ similarly as $H^s(\Gamma_1)$ is built from $H^s(\mathbb{R})$.

Fix $m > 0$. If $f \in H^{3/2}(\Gamma_2)$ and $q \in mB_{3/2,1}(\Gamma_1)$, then by [1, Theorem 2.3], $u_q \in H^3(\Omega)$ and

$$\| u_q \|_{H^3(\Omega)} \leq C_0.$$ \hfill (10)

Here and henceforth, C_0 is a constant depending only on Ω, f and m.

But in dimension $H^3(\Omega)$ is continuously embedded in $C^2(\overline{\Omega})$. Whence, (10) entails

$$\| u_q \|_{C^2(\overline{\Omega})} \leq C_0.$$ \hfill (11)

Let

$$\Psi(\rho) = |\ln \rho|^{-1/2} + \rho, \quad \rho > 0,$$

extended by continuity at 0 by setting $\Psi(0) = 0$.

Let γ_2 be a nonempty open subset of Γ_2. According to [3, Proposition 2.7], there exists a constant $C > 0$, depending only on Ω, f, m and γ_2, so that

$$\| \partial_v u_{q_1} - \partial_v u_{q_2} \|_{L^2(\gamma_1)} \leq C \Psi (\| u_{q_1} - u_{q_2} \|_{H^1(\gamma_2)}).$$ \hfill (12)

Set

$$\mathcal{Q}_m = mB_{3/2,1}(\Gamma_1) \cap \overline{U} \cap L^2(\gamma_1).$$

Note that $\mathcal{Q}_m \neq \emptyset$ if m is chosen sufficiently large.

We can now combine (9) and (12) in order to obtain

$$\| q_1 - q_2 \|_{L^2(\Gamma_1)} \leq C \Psi (\| u_{q_1} - u_{q_2} \|_{H^1(\gamma_2)}), \quad q_1, q_2 \in \mathcal{Q}_m.$$ \hfill (13)

We sum up our analysis in the following theorem, where we used the fact that $H^{3/2}(\Gamma_2)$ is continuously embedded in $C^2(\Gamma_2)$.

Theorem 1. Let $0 \leq f \in H^{3/2}(\Gamma_2)$, $q_0 = -\partial_v w(f)|_{\Gamma_1}(> 0)$ and γ_i be a nonempty open subset of Γ_i, $i = 1, 2$, with $\Gamma \setminus \overline{\gamma_i} \neq \emptyset$. There exists a neighborhood \overline{U} of q_0 in $L^2(\Gamma_1)$, depending on f, Ω and γ_1 with the property that, if $m > 0$ is chosen in such a way that

$$\mathcal{Q}_m = mB_{3/2,1}(\Gamma_1) \cap \overline{U} \cap L^2(\gamma_1) \neq \emptyset,$$

we find a constant $C > 0$, depending on f, m, Ω and γ_i, $i = 1, 2$, so that

$$\| q_1 - q_2 \|_{L^2(\Gamma_1)} \leq C \Psi (\| u_{q_1} - u_{q_2} \|_{H^1(\gamma_2)}), \quad q_1, q_2 \in \mathcal{Q}_m.$$
We now discuss briefly the stability around an arbitrary q_0. Let then $q_0 \in L^\infty(\Gamma_1)$ be non negative and non identically equal to zero and let $f \in L^2(\Gamma_2)$ be non identically equal to zero. Denote by $u_0 \in H^{3/2}(\Omega)$ the solution of the BVP

$$
\begin{align*}
\Delta u &= 0 \quad \text{in } \Omega, \\
\partial_\nu u + q_0 u &= 0 \quad \text{on } \Gamma_1, \\
\partial_\nu u &= f \quad \text{on } \Gamma_2.
\end{align*}
$$

As it is observed in [2],

$$\Gamma_0 = \{ x \in \Gamma_1; u_0(x) \neq 0 \}$$

is an open dense subset of Γ_1.

Slight modifications of the preceding analysis allow us to prove the following result

Theorem 2. Let $f \in H^{3/2}(\Gamma_2)$, $f \neq 0$, $0 \leq q_0 \in L^\infty(\Gamma_1)$, $q_0 \neq 0$, K a compact subset of Γ_0 so that $\Gamma_2 \setminus K \neq \emptyset$ and γ_2 be a nonempty open subset of Γ_2. There exists a neighborhood \mathcal{U} of q_0 in $L^2(\Gamma_1)$, depending on f, Ω and K with the property that, if $m > 0$ is chosen in such a way that

$$Q_m = mB_{B^{3/2}}(\Gamma_1) \cap \mathcal{U} \cap L^2_2(\Gamma_1) \neq \emptyset,$$

we find a constant $C > 0$, depending on f, m, Ω, K and γ_2, so that

$$\|q_1 - q_2\|_{L^2(\Gamma_1)} \leq C\Psi(\|u_{q_1} - u_{q_2}\|_{H^1(\gamma_2)}), \quad q_1, q_2 \in Q_m.$$

Observe that, as in [2], the last theorem can be extended to the case where $\partial \Gamma_1 \cap \partial \Gamma_2 \neq \emptyset$.

In the most general case, in dimensions two and three, we can prove a stability estimate of triple logarithmic type (see [3, Theorem 4.9]).

References

[1] M. Choulli, *Stability estimates for an inverse elliptic problem*, J. Inverse Ill-Posed Problems 10 (6) (2002), 601-610.

[2] M. Choulli, *An inverse problem in corrosion detection: stability estimates*, J. Inv. Ill-Posed Problems 12 (4) (2004), 349-367.

[3] M. Choulli, *Applications of elliptic Carleman inequalities to Cauchy and inverses problems*, BCAM-Springer Briefs in Mathematics, Berlin 2016.

[4] D. Gilbarg and N. S. Trudinger, *Elliptic partial differential equations of second order*, 2nd ed., Springer-Verlag, Berlin, 1983.

[5] J.-L. Lions and E. Magenes, *Problèmes aux limites non homogènes et applications*, Vol. I, Dunod, Paris, 1968.

[6] E. Sincich, *Lipschitz stability for the inverse Robin problem*, Inverse Problems 23 (3) (2007), 1311-1326.