Astro2020 Science White Paper

Big Bang Nucleosynthesis and Neutrino Cosmology

Thematic Areas
Cosmology and Fundamental Physics

Principal Author
Name: Evan B. Grohs
Institution: University of California, Berkeley
Email: egrohs@berkeley.edu
Phone: +01-505-667-7495

Co-authors
J. Richard Bond CITA, University of Toronto
Ryan J. Cooke Durham University
George M. Fuller University of California, San Diego
Joel Meyers Southern Methodist University
Mark W. Paris Los Alamos National Laboratory
Endorsers

Kevork N. Abazajian Department of Physics and Astronomy, University of California, Irvine
A. B. Balantekin University of Wisconsin, Madison
Darcy Barron University of New Mexico
Carl R. Brune Ohio University
Vincenzo Cirigliano Los Alamos National Laboratory
Alain Coc CSNSM (CNRS IN2P3) Orsay, France
Francis-Yan Cyr-Racine Harvard University
Eleonora Di Valentino Jodrell Bank Center for Astrophysics, University of Manchester
Alexander Dolgov INFN, University of Ferrara
Olivier Doré Jet Propulsion Laboratory
Marco Drewes Université catholique de Louvain
Cora Dvorkin Department of Physics, Harvard University
Alexander van Engelen Canadian Institute for Theoretical Astrophysics
Brian Fields University of Illinois, Urbana-Champaign
Raphael Flauger University of California, San Diego
Michele Fumagalli Centre for Extragalactic Astronomy, Durham University
Susan Gardner University of Kentucky, Lexington
Graciela Gelmini University of California, Los Angeles
Martina Gerbino HEP Division, Argonne National Laboratory
Steen Hannestad Department of Physics and Astronomy, Aarhus University
Wick Haxton University of California, Berkeley
Karsten Jedamzik Laboratoire d’Univers et Particules, Université de Montpellier II
Lucas Johns University of California, San Diego
Chad T. Kishimoto Department of Physics, University of California, Davis
Arthur B. McDonald Queen’s University
John O’Meara W. M. Keck Observatory
Max Pettini Institute of Astronomy, University of Cambridge
Cyril Pitrou Institut d’Astrophysique de Paris
Georg Raffelt Max Planck Institute for Physics, Munich
Martin Savage Institute for Nuclear Theory
Robert Scherrer Vanderbilt University
Shashank Shalgar Niels Bohr International Academy
Evan Skillman University of Minnesota
Friedrich-Karl Thielemann University of Basel
David Tytler University of California, San Diego
Maria Cristina Volpe AstroParticule et Cosmologie (APC), CNRS, Université Denis Diderot
Robert V. Wagoner Stanford University
Abstract
There exist a range of exciting scientific opportunities for Big Bang Nucleosynthesis (BBN) in the coming decade. BBN, a key particle astrophysics “tool” for decades, is poised to take on new capabilities to probe beyond standard model (BSM) physics. This development is being driven by experimental determination of neutrino properties, new nuclear reaction experiments, advancing supercomputing/simulation capabilities, the prospect of high-precision next-generation cosmic microwave background (CMB) observations, and the advent of 30m class telescopes.
1 Introduction

Big Bang Nucleosynthesis (BBN) studies in the coming decade can give us a unique “fossil” record of the thermal history and evolution of the early universe, and thereby provide new insights into beyond standard model (BSM), neutrino, particle, and dark sector physics. BBN, coupled with the primordial deuterium abundance determined via QSO absorption lines, gave the first determination of the baryon content of the universe. This was later verified by the Cosmic Microwave Background (CMB) anisotropy-determined baryon-to-photon ratio. This represents a crowning achievement of the marriage of nuclear and particle (neutrino) physics with astronomy. Though the BBN enterprise is 50+ years old [1], it is poised to undergo a revolution driven by high precision CMB observations [2, 3, 4], the advent of 30m class optical/near-infrared telescopes [5], laboratory determination of neutrino properties and nuclear cross sections, and by the capabilities of high performance computing. As we will discuss below, these developments are transforming BBN into a high precision tool for vetting BSM and dark sector physics operating in the early universe. This tool will leverage the results of accelerator-based experiments and CMB studies. Moreover, it will also give constraints on light element chemical evolution which, in turn, may give insights into the history of cosmic ray acceleration, and so into star and galaxy formation as well.

BBN has been understood in broad-brush, and used as means to explore and constrain particle physics possibilities, for over half a century. So what is new and how will these observational, experimental, and computational advances transform this enterprise? The answer lies in the anticipated precision of the observations and the calculations. For example, upcoming CMB observations will enable high precision (order 1% uncertainty) measurements of the relativistic energy density at photon decoupling, N_{eff}, and the primordial helium abundance with comparable uncertainty. Likewise, 30m class telescopes will achieve sub-percent precision in measurements of primordial deuterium. In turn, these high precision observations could be leveraged into high precision constraints via advanced simulations of the weak decoupling and nucleosynthesis processes. These calculations could also achieve order 1% uncertainty, setting up a situation where any BSM physics that alters the time/temperature/scale factor relationship at $O(1\%)$ during the extended weak decoupling regime may be constrained by the observations.

2 Weak Decoupling, BBN, and the Computational Challenge

The thermal and chemical decoupling of the neutrinos and the weak interaction, and the closely associated freeze out of the strong and electromagnetic nuclear reactions, together comprise a relatively lengthy process. This process plays out over some thousands of Hubble times, H^{-1}, occurring roughly between temperatures $30\,\text{MeV} > T > 1\,\text{keV}$. Putative wisdom parses this protracted process into three sequential events: (1) Weak decoupling, wherein the rates of neutrino scattering fall below the Hubble expansion rate H, implying that the exchange of energy between the neutrino and the photon/e^\pm-pair plasma becomes inefficient and thermal equilibrium can no longer be maintained; (2) Weak freeze out, where the charged current neutrino and lepton capture rates fall below H, and nucleon isospin, equivalently the neutron-to-proton ratio n/p, drops out of equilibrium with the neutrino component; and (3) Nuclear statistical equilibrium (NSE) freeze-out, where strong and electromagnetic nuclear reaction rates fall below H and light element abundances are frozen in. In fact, only recently with the advent of modern precision “kinetic” early universe
large-scale parallel simulation codes has it become apparent that these three processes are not distinct, overlap for significant periods of time, and they are coupled.

With Standard Model physics, the evolution of the early universe through the weak decoupling/BBN epoch is set largely by two salient features: (1) Symmetry, in particular homogeneity and isotropy of the distribution of mass-energy; and (2) High entropy-per-baryon. Symmetry implies a gravitation-driven expansion which in the radiation-dominated conditions – a consequence of high entropy – proceeds at rate $H \approx \left(\frac{8 \pi^3}{90} \right)^{1/2} g^{1/2} T^2 / m_{\text{pl}}$, where m_{pl} is the Planck mass, and g is the statistical weight in relativistic particles, i.e., the photons, neutrinos, and e^\pm-pairs (at high temperature) of the standard model. From the deuterium abundance and the CMB anisotropies, we know that the baryon-to-photon ratio is $n_b / n_\gamma = \eta \approx 6.1 \times 10^{-10}$, implying an entropy-per-baryon $s \approx 5.9 \times 10^9$ in units of Boltzmann’s constant k_B.

As a homogeneous and isotropic spacetime precludes spacelike heat flows, the co-moving entropy will be conserved when all components and processes in the primordial plasma remain in thermal and chemical equilibrium. An interesting feature of the weak decoupling/BBN epoch, however, is that they do not remain in equilibrium. The symmetry does allow for overall homogeneous timelike entropy sources. Out of equilibrium processes, like neutrino-electron scattering in the partially decoupled neutrino seas, provide just such an entropy source. The net result is that a small amount of entropy is transferred from the photon-electron-positron plasma into the decoupling neutrinos (Fig. 1 top panel). An even smaller amount of entropy is actually generated in this process. Note that the number of e^\pm-pairs remains significant even at temperatures well below the electron rest mass 0.511 MeV because of high entropy (Fig. 1 second panel).

Alongside this neutrino decoupling process there is a parallel competition between: the six (forward and reverse) isospin-changing charged current weak interaction lepton capture/decay reactions $\nu_e + n \rightleftharpoons p + e^-$, $\bar{\nu}_e + p \rightleftharpoons n + e^+$, $n \rightleftharpoons p + e^- + \bar{\nu}_e$; and the expansion rate H. This competition, an extended freeze out process in its own right, determines the neutron-to-proton ratio n/p. The history of the baryon isospin, as expressed by the electron fraction $Y_e = 1/(n/p + 1)$, is shown as a function of co-moving temperature in the third panel of Figure 1.

References [8, 9, 10] gave the first calculations of BBN with out-of-equilibrium neutrino
spectra, whereas Ref. [11] details the most recent calculation with flavor oscillations. Figure 2 shows the interplay between weak decoupling and BBN. A new generation of early-universe simulation calculations [6, 11, 12, 13, 14] take into account both the non-equilibrium energy-transport effects, charged current weak interactions, and neutrino flavor oscillation effects by solving the neutrino quantum kinetic equations (QKEs) [15, 16, 17, 18]. Only then is the objective of achieving the requisite sub-percent accuracy needed for BSM signal determination possible. This effort in precision theoretical modeling of the early universe during BBN is then clearly essential. But it is of little use if the nuclear reaction cross sections can not be determined with sufficient accuracy.

Sub-percent level precision in theoretically- and experimentally-determined nuclear reaction cross sections at low energies (a few keV) are required to obtain sub-percent level determination of the light-element abundances generated in BBN [19, 20]. Examples of nuclear reaction rate precision determinations are given in Refs. [21, 22, 23, 24, 25, 26, 27, 28, 29, 30]. \textit{Ab initio} [31] and chiral EFT [32] theoretical approaches are typically in the 5-10% range of precision for light-element capture reactions. Phenomenological R-matrix approaches [33, 34, 35], which incorporate unitarity constraints at the reaction amplitude level, can achieve descriptions of the cross section precise to within a few percent of the world data with χ^2 per degree of freedom in the range from about 1.3 to 2.0. Currently, the applied theoretical and experimental nuclear physics communities verify and validate evaluated nuclear cross sections via a suite of \textit{integral benchmarks} [36] that incorporate cross section from large ranges of nuclides, from light-elements (H, He, Li, Be, etc.) to the transition metals, and through the actinides. The nuclear cross section evaluations, which are extracted from various accelerator and activation-type experiments, are sometimes inconsistent with each other in light of the integral benchmark constraints. For the light elements, however, the early universe provides an excellent opportunity to constrain their interaction cross sections given the highly pure, low-A environment that obtains during BBN.

Sub-percent level precision in theoretically- and experimentally-determined nuclear reaction cross sections at low energies (a few keV) are required to obtain sub-percent level determination of the light-element abundances generated in BBN [19, 20]. Examples of nuclear reaction rate precision determinations are given in Refs. [21, 22, 23, 24, 25, 26, 27, 28, 29, 30]. \textit{Ab initio} [31] and chiral EFT [32] theoretical approaches are typically in the 5-10% range of precision for light-element capture reactions. Phenomenological R-matrix approaches [33, 34, 35], which incorporate unitarity constraints at the reaction amplitude level, can achieve descriptions of the cross section precise to within a few percent of the world data with χ^2 per degree of freedom in the range from about 1.3 to 2.0. Currently, the applied theoretical and experimental nuclear physics communities verify and validate evaluated nuclear cross sections via a suite of \textit{integral benchmarks} [36] that incorporate cross section from large ranges of nuclides, from light-elements (H, He, Li, Be, etc.) to the transition metals, and through the actinides. The nuclear cross section evaluations, which are extracted from various accelerator and activation-type experiments, are sometimes inconsistent with each other in light of the integral benchmark constraints. For the light elements, however, the early universe provides an excellent opportunity to constrain their interaction cross sections given the highly pure, low-A environment that obtains during BBN.

This state of affairs – that high-energy BSM physics studies and the applied theoretical nuclear physics evaluations of cross sections are inextricably connected – suggests a way forward that
allows the solution of both fundamental and applied questions. The evaluation of the light-element cross section data must be optimized not just to the two-body accelerator scattering and reaction data, but also to the early universe BBN abundances as calculated by kinetic transport codes [6].

3 Terrestrial Experiments and Astronomical Observations

What is presently known about neutrino properties is adequate, in principle, for the high-fidelity weak decoupling and neutrino oscillation calculations described above. Experiments and observations have given us the neutrino mass-squared differences and three of the parameters in the unitary transformation between the neutrino energy (mass) states and the weak interaction (flavor) states. The measured parameters are the vacuum mixing angles, $\theta_{12}, \theta_{23}, \theta_{13}$, while the one (three) CP-violating phase for Dirac (Majorana) neutrinos are unknown. Moreover, current experiments favor a normal neutrino mass hierarchy [37] and future long baseline neutrino oscillations experiments will resolve any lingering doubt. The absolute neutrino masses remain unknown, but those quantities do not affect the BBN enterprise described here.

The primordial helium and deuterium abundances are key inputs to the BBN tool for studying BSM physics. The deuterium abundance relative to hydrogen, $(D/H)_P$, is derived from gas clouds that are seen in silhouette against an unrelated, background quasar. The Lyman series lines (rest frame [911–1215Å]) of neutral deuterium and hydrogen atoms in the gas cloud absorb the quasar’s light, thereby allowing us to count the number of D I and H I atoms along the line-of-sight. This measurement is both accurate and precise, however it is difficult to identify the rare, quiescent, near-pristine gas clouds that permit the best measures (i.e. metal-poor damped Lyman-α systems; DLAs). The latest sample of near-pristine DLAs has allowed $(D/H)_P$ to be measured to 1% precision (see Fig. 3 and Ref. [38]). However, despite two decades of research, this determination is based on only seven systems! This meagre sample is due to: (1) The brightness of the quasars; and (2) the accessible DLAs are limited in redshift to $2.6 \lesssim z \lesssim 3.5$ (by Earth’s atmosphere, and the density of high redshift absorption lines).

The forthcoming generation of 30 m telescope facilities are expected to increase the number of D/H measurements by over an order of magnitude [39]. The larger collecting area of these telescopes will allow data to be collected for much fainter quasars, which are considerably more numerous than the quasars that are accessible to current telescope facilities. Furthermore, the high resolution POLLUX spectrograph onboard LUVOIR will permit new D/H measurements of DLAs at redshifts $0.0 < z < 2.6$ towards known $m \sim 18$ quasars, in just a few hours observing time. There are two advantages of measuring D/H at low redshift: (1) There is an increased redshift range over which DLAs can be discovered; and (2) The Lyman-α forest is less dense at low redshift, which greatly facilitates clean, reliable measurements.

The measurements of primordial helium with the lowest uncertainty ($O(1\%)$) come from H II regions in metal-poor dwarf galaxies [40, 41]. CMB measurements of Y_P will reach a similar precision with small-scale temperature and E-mode polarization power spectra. Although both power spectra contain degeneracies between Y_P and N_{eff}, other characteristics of cosmological spectra (in particular acoustic phase shifts in CMB [42, 43, 44] and BAO [45, 46]) can break the degeneracy to provide meaningful measurements on Y_P and N_{eff}. These two parameters are independent and provide unique signatures for BSM scenarios. Any tension between CMB and galactic-inferred Y_P could motivate and inform further study of dwarf galaxy astrophysics.
4 Future Challenges and Conclusions

Deuterium and helium measurements agree with predictions but lithium (more specifically ^7Li) does not at the > 3σ level [1]. If observations come into agreement with predictions, then the utility of BBN for constraining BSM physics is enhanced. If they do not, then the discrepancy could signal new physics or involve issues in stellar-evolution physics.

Solutions to the lithium problem include a class of models with a yet-to-be-determined particle. If the sea of unknown particles decays into out-of-equilibrium standard-model particles during BBN, they can modify the nuclear photo-dissociation rates and alter the primordial abundances [47]. Such models can solve the lithium problem but create a new tension in deuterium [48]. Other solutions may not require the decay of an unknown particle, but still rely on the electromagnetic plasma having distortions from thermal equilibrium [49].

Other issues in cosmology and BBN exist besides lithium. Firstly, light sterile neutrinos as suggested by short-baseline oscillation experiments [50] present a tension with current values of N_{eff} if produced solely through oscillations with active neutrinos. To resolve the problem, other physics would need to suppress the production, e.g., an asymmetry between neutrinos and antineutrinos or hidden interactions within the neutrino seas [51]. Either solution could alter the abundances away from their standard BBN values and require precise codes to characterize the deviations. Secondly, the identity of dark matter remains elusive and its production mechanism even more nebulous. The Hubble expansion rate during BBN is not sensitive to the energy density of dark matter, but the abundances (especially deuterium) are sensitive to the entropy in the electromagnetic sector. If dark matter production in any way modifies the entropy history of the early universe, the abundances could provide a signature which would be absent in neutrino observables like N_{eff}. Lastly, dark matter and light dark fermions could be representatives of a much richer dark sector. Dark electromagnetism [52, 53] and dark nuclear physics [54, 55, 56] would have couplings to their standard model cousins which BBN would put tight constraints on.

There exist publicly-available codes for BBN calculations, including but not limited to PRIMAT [29], PArhENoPE [57], and AlterBBN [58]. These codes contain procedures to model some of the BSM physics described here. Other codes, such as BURST [6], remain in development and will provide the community with additional tools to model neutrino physics in BBN. We conclude that the BBN tool, already well used in particle astrophysics, is on the threshold of becoming a precision BSM probe.
References

[1] R. H. Cyburt, B. D. Fields, K. A. Olive, and T.-H. Yeh. Big bang nucleosynthesis: Present status. *Reviews of Modern Physics*, 88(1):015004, January 2016.

[2] CMB-S4 Collaboration, J. E. Carlstrom et al. CMB-S4 Science Book, First Edition. *ArXiv e-prints*, October 2016.

[3] James Aguirre et al. The Simons Observatory: Science goals and forecasts. *JCAP*, 1902:056, 2019.

[4] Shaul Hanany et al. PICO: Probe of Inflation and Cosmic Origins. 2019.

[5] R. Maiolino et al. A Community Science Case for E-ELT HIRES. *arXiv e-prints*, October 2013.

[6] E. Grohs, G. M. Fuller, C. T. Kishimoto, M. W. Paris, and A. Vlasenko. Neutrino energy transport in weak decoupling and big bang nucleosynthesis. *Phys. Rev. D*, 93(8):083522, April 2016.

[7] Planck Collaboration, N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini, A. J. Banday, R. B. Barreiro, N. Bartolo, and et al. Planck 2018 results. VI. Cosmological parameters. *ArXiv e-prints*, July 2018.

[8] A. D. Dolgov and M. Fukugita. Nonequilibrium neutrinos and primordial nucleosynthesis. *Soviet Journal of Experimental and Theoretical Physics Letters*, 56:123–126, August 1992.

[9] A. D. Dolgov and M. Fukugita. Nonequilibrium effect of the neutrino distribution on primordial helium synthesis. *Phys. Rev. D*, 46:5378–5382, December 1992.

[10] A. D. Dolgov, S. H. Hansen, and D. V. Semikoz. Non-equilibrium corrections to the spectra of massless neutrinos in the early universe. *Nuclear Physics B*, 503:426–444, February 1997.

[11] P. F. de Salas and S. Pastor. Relic neutrino decoupling with flavour oscillations revisited. *J. Cosmology Astropart. Phys.*, 7:051, July 2016.

[12] A. D. Dolgov, S. H. Hansen, S. Pastor, S. T. Petcov, G. G. Raffelt, and D. V. Semikoz. Cosmological bounds on neutrino degeneracy improved by flavor oscillations. *Nucl. Phys. B*, 632:363–382, June 2002.

[13] G. Mangano, G. Miele, S. Pastor, T. Pinto, O. Pisanti, and P. D. Serpico. Relic neutrino decoupling including flavour oscillations. *Nuclear Physics B*, 729:221–234, November 2005.

[14] J. Birrell, C. T. Yang, and J. Rafelski. Relic neutrino freeze-out: Dependence on natural constants. *Nuclear Physics B*, 890:481–517, January 2015.

[15] G. Sigl and G. Raffelt. General kinetic description of relativistic mixed neutrinos. *Nucl. Phys.*, B406:423–451, 1993.
[16] A. Vlasenko, G. M. Fuller, and V. Cirigliano. Neutrino quantum kinetics. Phys. Rev. D, 89(10):105004, May 2014.

[17] C. Volpe. Neutrino quantum kinetic equations. International Journal of Modern Physics E, 24:1541009, September 2015.

[18] D. N. Blaschke and V. Cirigliano. Neutrino quantum kinetic equations: The collision term. Phys. Rev. D, 94(3):033009, August 2016.

[19] C. Broggini, D. Bemmerer, A. Caciolli, and D. Trezzi. LUNA: Status and prospects. Progress in Particle and Nuclear Physics, 98:55–84, January 2018.

[20] n TOF Collaboration, L. Damone et al. 7Be (n ,p) 7Li Reaction and the Cosmological Lithium Problem: Measurement of the Cross Section in a Wide Energy Range at n_TOF at CERN. Physical Review Letters, 121(4):042701, July 2018.

[21] L. M. Krauss and P. Romanelli. Big bang nucleosynthesis - Predictions and uncertainties. ApJ, 358:47–59, July 1990.

[22] M. S. Smith, L. H. Kawano, and R. A. Malaney. Experimental, computational, and observational analysis of primordial nucleosynthesis. ApJS, 85:219–247, April 1993.

[23] G. Fiorentini, E. Lisi, S. Sarkar, and F. L. Villante. Quantifying uncertainties in primordial nucleosynthesis without Monte Carlo simulations. Phys. Rev. D, 58(6):063506, September 1998.

[24] K. M. Nollett and S. Burles. Estimating reaction rates and uncertainties for primordial nucleosynthesis. Phys. Rev. D, 61(12):123505, June 2000.

[25] S. R. Beane, E. Chang, W. Detmold, K. Orginos, A. Parreño, M. J. Savage, B. C. Tiburzi, and Nplqcd Collaboration. Ab initio Calculation of the n p → d γ Radiative Capture Process. Physical Review Letters, 115(13):132001, September 2015.

[26] C. Iliadis, K. S. Anderson, A. Coc, F. X. Timmes, and S. Starrfield. Bayesian Estimation of Thermonuclear Reaction Rates. ApJ, 831:107, November 2016.

[27] M. J. Savage, P. E. Shanahan, B. C. Tiburzi, M. L. Wagman, F. Winter, S. R. Beane, E. Chang, Z. Davoudi, W. Detmold, K. Orginos, and Nplqcd Collaboration. Proton-Proton Fusion and Tritium β Decay from Lattice Quantum Chromodynamics. Physical Review Letters, 119(6):062002, August 2017.

[28] Á. Gómez Iñesta, C. Iliadis, and A. Coc. Bayesian Estimation of Thermonuclear Reaction Rates for Deuterium+Deuterium Reactions. ApJ, 849:134, November 2017.

[29] C. Pitrou, A. Coc, J.-P. Uzan, and E. Vangioni. Precision big bang nucleosynthesis with improved Helium-4 predictions. Phys. Rep., 754:1–66, September 2018.

[30] R. S. de Souza, S. R. Boston, A. Coc, and C. Iliadis. Thermonuclear fusion rates for tritium + deuterium using Bayesian methods. Phys. Rev. C, 99(1):014619, January 2019.
[31] L. E. Marcucci, G. Mangano, A. Kievsky, and M. Viviani. Implication of the Proton-Deuteron Radiative Capture for Big Bang Nucleosynthesis. Physical Review Letters, 116(10):102501, March 2016.

[32] E. Epelbaum, H.-W. Hammer, and Ulf-G. Meißner. Modern theory of nuclear forces. Rev. Mod. Phys., 81:1773–1825, Dec 2009.

[33] P Descouvemont and D Baye. The R-matrix theory. Reports on Progress in Physics, 73(3):036301, feb 2010.

[34] M. Paris, G. Hale, A. Hayes-Sterbenz, and G. Jungman. R-matrix analysis of reactions in the 9b compound system. Nuclear Data Sheets, 120(0):184 – 187, 2014.

[35] G.M. Hale. Covariances from light-element r-matrix analyses. Nuclear Data Sheets, 109(12):2812 – 2816, 2008. ¡ce:title¡Special Issue on Workshop on Neutron Cross Section Covariances June 24-28, 2008, Port Jefferson, New York, USA¡/ce:title¡.

[36] D. A. Brown et al. ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data. Nucl. Data Sheets, 148:1–142, 2018.

[37] Fergus Simpson, Raul Jimenez, Carlos Pena-Garay, and Licia Verde. Strong Bayesian evidence for the normal neutrino hierarchy. Journal of Cosmology and Astro-Particle Physics, 2017:029, Jun 2017.

[38] R. J. Cooke, M. Pettini, and C. C. Steidel. One Percent Determination of the Primordial Deuterium Abundance. ApJ, 855:102, March 2018.

[39] R. J. Cooke, M. Pettini, K. M. Nollett, and R. Jorgenson. The Primordial Deuterium Abundance of the Most Metal-poor Damped Lyman-α System. ApJ, 830:148, October 2016.

[40] E. Aver, K. A. Olive, R. L. Porter, and E. D. Skillman. The primordial helium abundance from updated emissivities. J. Cosmology Astropart. Phys., 11:17, November 2013.

[41] Y. I. Izotov, T. X. Thuan, and N. G. Guseva. A new determination of the primordial He abundance using the He I λ10830 Å emission line: cosmological implications. MNRAS, 445:778–793, November 2014.

[42] Sergei Bashinsky and Uros Seljak. Neutrino perturbations in CMB anisotropy and matter clustering. Phys. Rev., D69:083002, 2004.

[43] Daniel Baumann, Daniel Green, Joel Meyers, and Benjamin Wallisch. Phases of New Physics in the CMB. JCAP, 1601:007, 2016.

[44] B. Follin, L. Knox, M. Millea, and Z. Pan. First Detection of the Acoustic Oscillation Phase Shift Expected from the Cosmic Neutrino Background. Physical Review Letters, 115(9):091301, August 2015.

[45] Daniel Baumann, Daniel Green, and Matias Zaldarriaga. Phases of New Physics in the BAO Spectrum. JCAP, 1711(11):007, 2017.
[46] D. Baumann, F. Beutler, R. Flauger, D. Green, A. Slosar, Vargas-Magaña M., B. Wallisch, and C. Yèche. First constraint on the neutrino-induced phase shift in the spectrum of baryon acoustic oscillations. *Nature Physics*, 15(2), February 2019.

[47] K. Jedamzik. Did something decay, evaporate, or annihilate during big bang nucleosynthesis? Phys. Rev. D, 70(6):063524, September 2004.

[48] A. Coc and E. Vangioni. Primordial nucleosynthesis. *International Journal of Modern Physics E*, 26:1741002, 2017.

[49] M. Kusakabe, T. Kajino, G. J. Mathews, and Y. Luo. On the relative velocity distribution for general statistics and an application to big-bang nucleosynthesis under Tsallis statistics. Phys. Rev. D, 99(4):043505, February 2019.

[50] *MiniBooNE* Collaboration, W. C. Louis et al. Significant Excess of Electronlike Events in the *MiniBooNE* Short-Baseline Neutrino Experiment. *Physical Review Letters*, 121(22):221801, November 2018.

[51] X. Chu, B. Dasgupta, M. Dentler, J. Kopp, and N. Saviano. Sterile neutrinos with secret interactions – cosmological discord? J. Cosmology Astropart. Phys., 11:049, November 2018.

[52] A. Fradette, M. Pospelov, J. Pradler, and A. Ritz. Cosmological constraints on very dark photons. Phys. Rev. D, 90(3):035022, August 2014.

[53] J. Berger, K. Jedamzik, and D. G. E. Walker. Cosmological constraints on decoupled dark photons and dark Higgs. J. Cosmology Astropart. Phys., 11:032, November 2016.

[54] W. Detmold, M. McCullough, and A. Pochinsky. Dark nuclei. I. Cosmology and indirect detection. Phys. Rev. D, 90(11):115013, December 2014.

[55] W. Detmold, M. McCullough, and A. Pochinsky. Dark nuclei. II. Nuclear spectroscopy in two-color QCD. Phys. Rev. D, 90(11):114506, December 2014.

[56] S. D. McDermott. Is Self-Interacting Dark Matter Undergoing Dark Fusion? *Physical Review Letters*, 120(22):221806, June 2018.

[57] R. Consiglio, P. F. de Salas, G. Mangano, G. Miele, S. Pastor, and O. Pisanti. PArthENoPE reloaded. *Computer Physics Communications*, 233:237–242, December 2018.

[58] A. Arbey, J. Auffinger, K. P. Hickerson, and E. S. Jessen. AlterBBN v2: A public code for calculating Big-Bang nucleosynthesis constraints in alternative cosmologies. *arXiv e-prints*, page arXiv:1806.11095, Jun 2018.