Supplement of Clim. Past, 17, 1903–1918, 2021
https://doi.org/10.5194/cp-17-1903-2021-supplement
© Author(s) 2021. CC BY 4.0 License.

Supplement of

Stalagmite carbon isotopes suggest deglacial increase in soil respiration in western Europe driven by temperature change

Franziska A. Lechleitner et al.

Correspondence to: Franziska A. Lechleitner (franziska.lechleitner@unibe.ch)

The copyright of individual parts of the supplement might differ from the article licence.
Suppl. Fig. 1: Modelling results compared to measured proxies in stalagmite Candela. Stalagmite measurements (δ13C$_{spel}$, DCF, δ$^{44}/^{40}$Ca; black dots) are compared to best fitting model solutions (colour-coded by simulation type). The results from the three mixing lines are shown separately. Simulation results are shown as box plots, with the median and upper and lower quartiles displayed. Outliers are shown as dots. Grey shading indicates intervals of
the measured proxy values used to filter the simulations. The soil pCO\textsubscript{2} derived from the different model solutions is shown. The time periods (LG, DEG, EH) at the top of the figure indicate the intervals used for the modelling to define temperature and atmospheric pCO\textsubscript{2}.

Suppl. Fig. 2: Modelling results for cave pCO\textsubscript{2} and gas volume, compared to measured and modelled δ13C\textsubscript{spel} in stalagmite Candela. Stalagmite measurements (δ13C\textsubscript{spel}, DCF, δ44Ca; black dots) are compared to best fitting model solutions (colour-coded by simulation type). Simulation results are shown as box plots, with the median and upper and lower quartiles displayed. Outliers are shown as coloured dots. Grey shading indicates intervals of the measured proxy values used to filter the simulations. The time periods (LG, DEG, EH) at the top of the figure indicate the intervals used for the modelling to define temperature and atmospheric pCO\textsubscript{2}.
Mg/Ca measurements and modelling:

Mg/Ca ratios are also often used as qualitative proxy for prior calcite precipitation (PCP; Fairchild and McMillan, 2007). At the Pindal Cave site, where the cave currently extends to the sea cliff, Mg/Ca of dripwaters is additionally increased in the Holocene by increasing surf zone marine aerosol generation as rising sea level brings the coastline from >1 km away to within 50 m of the cave entrance. Mg/Ca was still measured on stalagmites Candela, Galia, and Laura using splits of the isotope samples, either at the University of Oviedo following previously described methods (Thermo ICAP DUO 6300, Moreno et al., 2010), or with similar standardization approaches at ETH Zürich (Agilent QQQ 8800); all ratios are reported in mmol/mol standardised to calcium.

Mg/Ca ratios are similarly low during the LG in Candela and Galia, followed by a 2-3-fold increase at the transition to the EH (Fig. 3). In Candela, the Mg/Ca dips to its absolute minimum values at the beginning of GS-1, coinciding with an increase in δ¹³C. Absolute Mg/Ca values are much higher in Laura (around 5mmol/mol, Fig. 3) and display a slight increase from the beginning of GS-2.1a towards GI-1.
Suppl. Fig. 3: A – Mg/Ca record from the three stalagmites, compared to $\delta^{13}C_{\text{spel}}$, as well as regional temperature (Darfeuil et al., 2016), the Greenland $\delta^{18}O$ record (Wolff et al., 2010), and global atmospheric CO$_2$ (Bereiter et al., 2015) reconstructions. Increasing Mg/Ca with the onset of the Holocene are likely related to increasing contribution from marine aerosols at the site, a consequence of rising sea levels. The time periods (LG, DEG, EH) at the top of the figure indicate the intervals used for the modelling to define temperature and atmospheric pCO$_2$. B – Stalagmite Mg/Ca vs. temperature, colour-coded by stalagmite. The corresponding palaeo-temperatures are linearly interpolated from the Iberian Margin SST record by Darfeuil et al. (2016).

Suppl. Fig. 4: Modelling results for Mg/Ca, compared to measured and modelled $\delta^{13}C_{\text{spel}}$ in stalagmite Candela. Stalagmite measurements (black dots) are compared to best fitting model solutions (colour-coded by simulation type). Simulation results are shown as box plots, with the median and upper and lower quartiles displayed. Outliers are shown as coloured dots. Grey shading indicates intervals of the measured proxy values used to filter the
Simulations. The time periods (LG, DEG, EH) at the top of the figure indicate the intervals used for the modelling to define temperature and atmospheric pCO₂.

Suppl. Fig. 5: Influence of soil pCO₂ and cave temperature and pCO₂ on f_ca (as a measure for PCP) vs drip interval, using ISTAL (Stoll et al., 2012). We compare how drip interval influences PCP under glacial (temperature: 4°C, soil pCO₂: 2500 ppmv, cave pCO₂: 180 ppmv in winter, 1250ppmv in summer) and Holocene (temperature: 14°C, soil pCO₂: 7500 ppmv, cave pCO₂: 280 ppmv in winter, 3750ppmv in summer) conditions. The model assumes fully open dissolution conditions, a reasonable estimate at our study sites.

References:
Bereiter, B., Eggleston, S., Schmitt, J., Nehrbass-Ahles, C., Stocker, T.F., Fischer, H., Kipfstuhl, S., Chappellaz, J., 2015. Revision of the EPICA Dome C CO₂ record from 800 to 600 kyr before present. Geophys. Res. Lett 42, 542–549. doi:10.1002/2014GL061957
Darfeuil, S., Ménot, G., Giraud, X., Rostek, F., Tachikawa, K., Garcia, M., Bard, É., 2016. Sea surface temperature reconstructions over the last 70 kyr off Portugal: Biomarker data and regional modeling. Paleoceanography 31, 40–65. doi:10.1002/2015PA002831
Fairchild, I.J., McMillan, E.A., 2007. Speleothems as indicators of wet and dry periods, in: International Journal of Speleology. doi:10.5038/1827-806X.36.2.2
Moreno, A., Stoll, H., Jiménez-Sánchez, M., Cacho, I., Valero-Garcés, B., Ito, E., Edwards, R.L., 2010. A speleothem record of glacial (25-11.6 kyr BP) rapid climatic changes from northern Iberian Peninsula. Glob. Planet. Change 71, 218–231. doi:10.1016/j.gloplacha.2009.10.002

Stoll, H.M., Müller, W., Prieto, M., 2012. I-STAL, a model for interpretation of Mg/Ca, Sr/Ca and Ba/Ca variations in speleothems and its forward and inverse application on seasonal to millennial scales. Geochemistry, Geophys. Geosystems 13, 1–27. doi:10.1029/2012GC004183