Novel Role of Mitochondrial Manganese Superoxide Dismutase in STAT3 Dependent Pluripotency of Mouse Embryonic Stem Cells

Preethi Sheshadri, Ashwathnarayan Ashwini, Sowmya Jahnavi, Ramesh Bhonde, Jyothi Prasanna & Anujith Kumar*

School of Regenerative Medicine, Manipal University, Bangalore-560065.

Leukemia Inhibitory Factor (LIF)/Signal transducer and activator of transcription 3 (STAT3) signaling pathway maintains the stemness and pluripotency of mouse embryonic stem cells (mESCs). Detailed knowledge on key intermediates in this pathway as well as any parallel pathways is largely missing. We initiated our study by investigating the effect of small molecule Curcumin on various signalling pathways essential for self-renewal. Curcumin sustained the LIF independent self-renewal of mESCs and induced pluripotent stem cells (miPSCs) in a STAT3 activity dependent manner. Gene expression analysis showed LIF/STAT3 and redox signaling components to be majorly modulated. Amongst ROS genes, expression of Manganese Superoxide Dismutase (MnSOD) specifically relied on STAT3 signaling as evidenced by STAT3 inhibition and reporter assay. The silencing of MnSOD, but not Cu-ZnSOD expression, resulted in the loss of mESC pluripotency in presence of LIF, and the overexpression of MnSOD is sufficient for maintaining the expression of pluripotent genes in the absence of STAT3 signaling. Finally, we demonstrate MnSOD to stabilize the turnover of pluripotent proteins at the post-translational level by modulating proteasomal activity. In conclusion, our findings unravel a novel role of STAT3 mediated MnSOD in the self-renewal of mESCs.
EGF-induced phosphorylation of ERK1/2 \(^{19-21}\), nitric oxide synthase activity, NF-κB activity, protein kinase C activity and production of reactive oxygen species (ROS) \(^{20,22}\). Many of the signaling pathways mentioned above have been reported to play key role in maintaining self-renewal or differentiation of ESCs \(^{13}\). However, it is unclear about the role of Curcumin in self-renewal or differentiation of mESCs and the signalling pathways adopted by this small molecule in exerting its effect. To address this question we evaluated the efficacy of Curcumin to maintain mESC cultures in LIF and feeder free culture conditions. By this approach and in combination with gene expression profiling, we demonstrate Curcumin to impart its effect on self-renewal of mESCs by modulating STAT3 mediated MnSOD expression. Further we provide experimental evidence in support of the essential role of MnSOD, but not CuZnSOD, in the self-renewal of mESCs. Elucidation of these unexplored proteins in ESC self-renewal provides newer insights for genes and signaling pathways that would facilitate better practical applications of ESCs.

Results
Curcumin sustains the pluripotency and self-renewal of mouse pluripotent cells in absence of LIF and Feeder. To find the effect of Curcumin on self-renewal of ESCs, we cultured R1 mESCs on inactivated MEF in the absence of LIF and in the presence of various concentration of Curcumin along with DMSO as the solvent control. Although at passage 1 there was no significant difference between Curcumin treated and untreated cells, during later passages (15th passage), ESCs cultured in absence of LIF lost the expression of pluripotent genes and cells cultured without LIF but in presence of 5 μM Curcumin significantly maintained the expression of pluripotent genes similar to that of mESCs cultured in presence of LIF (Fig. 1a, Supplementary Fig. 1d). Quantitative measurement of Curcumin’s effect on pluripotency by alkaline phosphatase staining showed 76% ± 3.5 of Curcumin treated cells to be undifferentiated as compared to 40% ± 4.1 and 80% ± 2 of cells cultured in the absence and presence of LIF respectively (Fig. 1b, 1c). Previous reports had shown MEF to secrete LIF and support the self-renewal of mESCs \(^{23}\). To rule out the contribution of feeders in the expression of pluripotent genes, mESCs were cultured in the absence of Curcumin and in the absence of LIF and feeders. 5 μM Curcumin treated cells maintained the compact morphology of mESCs similar to the LIF treated cells (Fig. 1d). Curcumin treated cells in absence of LIF and feeder maintained the expression of Oct4, Sox2 and Nanog at the transcript (Fig. 1e) and protein levels (Fig. 1f) similar to that of mESCs cultured in the presence of LIF. Even at the clonal level, alkaline phosphatase staining showed 49.8% ± 2.33 of Curcumin treated mESCs to be undifferentiated compared to 60.3% ± 4.38 and 1.45% ± 0.86 in presence or absence of LIF respectively (Supplementary Fig. 1b, 1c). The pluripotency at clonal level was further validated by SSEA1 staining (Supplementary Fig. 1a). To affirm the pluripotent property of Curcumin treated mESCs, we subjected these cells for in vitro and in vivo differentiation ability by embryoid body and teratoma formation respectively. Curcumin or LIF treated EBs expressed representative genes of all the three germ lineages. However, cells cultured without LIF and subjected to EB formation were found to be restricted only to the expression of ectodermal genes Pax6 and Foxg1 (Fig. 1g). It was also intriguing to know whether Curcumin had the ability to restrain further differentiation once it has been initiated. Addition of curcumin post EB formation did not restrict the expression of representative genes of any germ layers and on the other hand enhanced the expression of mesendodermal genes compared to untreated EBs (Supplementary Fig. 2). This data conveys that curcumin encourages the formation of mesendoderm lineage once the differentiating event has been commenced and by itself fails to assist the reprogramming event of the differentiated cells by inhibiting any of the three lineages. The pluripotency of Curcumin treated ES cells without LIF and feeders were further confirmed by teratoma formation, which contained the derivatives of all the three germ layers (Supplementary Fig. 3). These data demonstrate the ability of Curcumin to sustain the pluripotency of mESCs in absence of LIF and feeder.

To confirm the role of Curcumin in sustenance of pluripotency in an independent pluripotent stem cell line, we chose Oct4–GFP transgenic induced pluripotent stem cell (iPSC) line wherein expression of GFP is under the control of Oct4 promoter. Oct4-GFP cells lost GFP expression in 4–6 days in the absence of feeder cells and LIF, indicating a robust assay system for evaluating self-renewal. mESCs cultured in absence of LIF and feeder cells and in the presence or absence of different concentrations of Curcumin for 4 days were analyzed for the expression of GFP by FACS. mESCs exposed to Curcumin showed enhanced expression of GFP (55% ± 3.9) compared to cells cultured in the absence of Curcumin (17% ± 1.4) (with LIF as a positive control showing 56% ± 3.2 GFP expression) (Fig. 2a). Curcumin treated iPSCs maintained the expression of pluripotent genes at transcript and protein level similar to LIF treated mESCs (Fig. 2b, 2c). Expression of OCT4 was indirectly analyzed by the GFP expression as GFP ORF is in tandem with OCT4 promoter (Fig. 2c). These results confirmed the role of Curcumin in sustaining the self-renewal of iPSCs, an independent pluripotent line.

Curcumin maintains self-renewal of mESCs despite expression of Cyclin dependent kinase (CDK) inhibitor. To understand the mechanism by how curcumin executes its function and as cell cycle regulation is one of the intertwined mechanism underlying pluripotency, we decided to analyze the cell cycle aspect of Curcumin treated mESCs. Cumulative population doubling of curcumin treated cells passaged through 8 passages showed significant decrease in population doubling compared to that of LIF treated cells (Fig. 3a). Analysis of proliferation rate by BrDu incorporation showed decreased proliferation of Curcumin treated cells compared to LIF treated cells (Fig. 3b). Transcript analysis of genes involved in the cell cycle showed enhanced expression of Cyclin D and cell cycle inhibitory genes p21cip1, p27kip1 and p53 in without LIF and Curcumin treated cells as compared to that of cells treated with LIF (Fig. 3c). Cell cycle analysis demonstrated larger population of Curcumin treated cells to be in G0/G1 phase, similar to that of differentiated mESCs cultured in LIF deprived condition (Fig. 3d). Although, Curcumin maintains the expression of pluripotent genes in absence of LIF, the above data demonstrates that their expression of cell cycle genes is similar to differentiated cells.

Curcumin majorly modulates redox pathway genes. As cell cycle data was similar to LIF deprived ESCs and did not reveal the mechanism of Curcumin’s pluripotent effect, we investigated the differential expression of genes of several pathways that are involved in the maintenance of pluripotency in mESCs. We performed transcript array of various genes involved in LIF/STAT3, FGF, NOTCH, TGFβ, SHH, WNT and oxidative pathways by RT-PCR (Supplementary Fig. 4a–e). Array data suggested that although Curcumin regulated the expression of few genes in the set of each signaling pathways involved in pluripotency, the LIF/STAT3 and oxidative pathways were majorly modulated (Fig. 4a). Quantitative assessment of pluripotent and redox genes by qRT-PCR confirmed the results obtained from RT-PCR (Fig. 4b, 4c). Further, Western analysis showed similar enhanced expression of MnSOD and pSTAT3 in LIF treated and curcumin treated cells compared to LIF deprived cells (Fig. 4d). These results demonstrated the probable role of oxidative pathway proteins in Curcumin mediated self–renewal of mESCs.

MnSOD is a direct downstream target of the LIF/STAT3 pathway. The LIF/STAT3 pathway is the prominent and well elucidated
Figure 1 | Curcumin sustains pluripotency of mESCs in the absence of LIF and feeder. (a) Cropped gel shows the pluripotent gene expression analysis of mESCs cultured in the absence of LIF and in presence of different concentrations of curcumin at passage 1 and passage 15. Alkaline phosphatase staining of mESCs treated with curcumin in the absence of LIF (b) and graph represents (c) the manual counting of the number of differentiated and undifferentiated colonies. (d) Bright field images of mESCs cultured in the absence of LIF and feeders and in the presence of 5 μM Curcumin. Magnification – 10X; Nikon Eclipse TE-2000-S (e) Cropped gel shows the transcript analysis of pluripotent genes of mESCs treated with different concentration of Curcumin and cultured in the absence of LIF and feeders. (f) Immunofluorescent images of pluripotent proteins of mESCs treated with Curcumin and cultured in the presence or absence of LIF. Scale – 10 μm. (g) Expression analysis of the representative germ layer genes from the EBs obtained from the cells cultured in presence or absence of LIF and curcumin till passage 11.
pathway in the maintenance of pluripotency of mESCs. As LIF/STAT3 pathway is also majorly modulated by Curcumin, we were curious to know whether STAT3 pathway is involved in the Curcumin mediated self-renewal of mESCs. We pretreated mESCs with Curcumin and subsequently treated with 2 μM JAK inhibitor I for 24 hrs. The cells treated with JAK inhibitor I appeared differentiated and showed a decreased expression of pluripotent genes. However, inhibition of STAT3 pathway also resulted in decreased expression of pluripotent genes in the Curcumin treated cells and abrogated the self-renewal property of Curcumin (Fig. 5a). This information suggested that the Curcumin mediated self-renewal of mESCs is via STAT3 pathway. To understand by what means curcumin maintains the pSTAT3 level in mESCs, we analyzed the expression of genes Socs (Suppressors of cytokine signaling) 3 and Shp (Protein phosphatase) 2, the proteins known to negatively regulate the JAK/STAT pathway. With increasing concentration of curcumin we found significant decrease in the expression of Socs3 denoting the probable mechanism underlying curcumin mediated maintenance of pSTAT3 level (Figure 5b).

As the genes of LIF/STAT3 and oxidative pathway were majorly modulated in Curcumin treated cells, we were interested in knowing whether there exists a “linear correlation” between these two pathways. Among the oxidative genes analyzed in the JAK inhibitor I treated cells, expression of MnSod was specifically down modulated in the absence of STAT3 signaling (Fig. 5c). Modulation of MnSod gene expression by Curcumin was further confirmed by demonstrating the increased expression of MnSod with increasing concentration of Curcumin (Supplementary Fig. 4f). Western analysis confirmed the above observation at the protein level (Fig. 5d). In addition, MnSOD promoter activity was induced when constitutive STAT3 and MnSOD promoter-Luciferase construct was transfected in 293T cells (Fig. 5f). Similarly, downregulation of MnSOD promoter activity upon addition of JAK inhibitor in mESCs provided direct evidence that the MnSod induction by STAT3 happened at its transcriptional level (Fig. 5e). A literature survey showed MnSOD to harbor putative STAT3 binding site on the promoter region and thus acting as a direct downstream target of STAT3 in neuronal cells. Together these results suggested Curcumin’s effect of maintaining
mESC pluripotency is via STAT3 signaling and that the transcription of MnSOD stimulated by LIF and curcumin is directly regulated by STAT3. MnSOD is essential and sufficient to maintain the pluripotency of mESCs in the absence of LIF. Among the oxidative genes analyzed, as MnSOD is specifically modulated by STAT3 signaling pathway, we were interested in knowing the role of MnSOD in pluripotency and self-renewal of mESCs. Treating mESCs with increasing concentration of MnSOD specific inhibitor, 2-Methoxyoestradiol (2-MeOE2) showed decreased SOD activity (Supplementary Fig. 5a). Simultaneously, there was significant decrease in the expression of pluripotent genes in the cells exposed to 2-MeOE2 and treated with LIF or Curcumin (Supplementary Fig. 5b). Specific inhibition of MnSod by 2-MeOE2 is demonstrated by unaltered expression of Cu-ZnSod in presence or absence of 2-MeOE2. Surprisingly, despite the presence of CuZnSod in the cells exposed to 2-MeOE2 and LIF, CuZnSod failed to sustain the expression of pluripotent genes and thereby reiterated the specific role of MnSOD in pluripotency of mESCs (Supplementary Fig. 5b). To specifically signify the essential role of MnSOD, shRNA mediated downregulation of MnSod and Cu-ZnSod were generated in mESCs cultured in presence of LIF (Fig. 6a). Down regulation of MnSOD, resulted in the loss of typical mESC morphology at passage 4 (Fig. 6c) and lost pluripotency as depicted by lack in alkaline phosphatase staining (Fig. 6e). Colocalization study further showed a dramatic decrease of pluripotent gene SSEA1 in the cells lacking MnSOD (Fig. 6d). In addition, MnSOD lacking mESCs, but not CuZnSOD, showed decreased expression of pluripotent proteins without affecting the STAT3 phosphorylation levels (Fig. 6b). This suggested MnSOD to be the downstream player of STAT3 and abrogation of MnSOD depletes the pluripotency of mESCs despite presence of active STAT3 signaling. On the other hand, down regulation of Cu-ZnSod expression did not alter the expression of pluripotent proteins, suggesting the essential and specific role of MnSOD in maintenance of pluripotency of mESCs.

To conclusively demonstrate the role of MnSod in the pluripotency of mESCs, we overexpressed MnSOD in mESCs cultured in...
presence or absence of LIF and further analyzed the pluripotent gene expression. As consistent with previous results, cells cultured in the absence of LIF and feeders showed decreased expression of pluripotent genes as compared to cells exposed to LIF. Surprisingly, cells overexpressing MnSOD and cultured in absence of LIF maintained higher expression of pluripotent genes at the transcript and protein level in contrast to cells transfected with vector control (Fig. 6f, 6g). We also found that the morphology and SSEA1 expression of MnSOD transfected mESCs in the absence of LIF and feeder layers is indistinguishable from that of mESCs cultured on LIF (Fig. 6h, Supplementary Fig. 6c). Quantitative analysis further showed 75% ± 6.03 of mESCs deprived of LIF and overexpressing MnSOD to be SSEA1 positive compared to 52 ± 6.2.11 of mESCs transfected with vector control (Supplementary Fig. 6c). To test the efficiency of passagability, we obtained stable expression of MnSOD by transducing a retroviral construct carrying MnSOD. Compared to vector control, MnSOD overexpressing mESCs maintained the expression of pluripotent genes beyond passage 10 in LIF deprived condition (Supplementary Fig. 6d). Even at the clonal level, alkaline phosphatase staining of mESCs transduced with MnSOD and cultured in absence of LIF was comparable with that of mESCs cultured in presence of LIF (Supplementary Fig. 6a, 6b). Further, embryoid body differentiation to all the three germ layers by MnSOD overexpressing mESCs, in contrast to LIF deprived vector control cells, proved the pluripotency of MnSOD overexpressing mESCs in absence of LIF (Fig. 6i). To ascertain the effect solely to MnSOD and not due to contaminating STAT3 signaling, mESCs overexpressing MnSOD and cultured in presence or absence of LIF were treated with JAK inhibitor I. Despite inhibition of STAT3 pathway, mESCs overexpressing MnSOD maintained the expression of pluripotent genes at transcript and protein level in contrast to LIF deprived vector control cells (Fig. 6j). Furthermore, mESCs harboring stable MnSOD expression

Figure 4 | Modulation of different ES regulatory pathways by curcumin. (a) mESCs were cultured till confluency in the presence or absence of LIF and in presence of 5 µM Curcumin and analyzed for the expression levels of various genes belonging to different pathways involved in maintenance of pluripotency in mESCs. The expression levels were densitometrically analyzed and normalized with Gapdh expression and the values are plotted as relative expression levels in comparison with cells cultured in the absence of LIF. (b) qPCR analysis of pluripotent genes and genes involved in LIF/STAT3 pathway of mESCs treated with Curcumin. Data represented as mean ± S.E.M of 3 sets of experiments, * = p<0.05. (c) qPCR analysis of genes involved in oxidative pathway of cells treated with Curcumin. Data represented as mean ± S.E.M of 3 sets of experiments, * = p<0.05; ** = p<0.001. (d) Western analysis of MnSOD, STAT3 and pSTAT3 in Curcumin treated and cells cultured in presence or absence of LIF conditions.
maintained the expression of pluripotent protein SSEA1 up to passage 4 even after abolishing STAT3 signaling by JAK inhibitor I (Fig. 6k). These data conclusively demonstrated the ability of MnSOD to maintain the expression of pluripotent genes in the absence of LIF.

MnSOD augments the stability of pluripotent proteins by modulating proteasome activity. To identify the downstream mechanism of how MnSOD maintains the expression of pluripotent genes, we sought to analyze the stability of pluripotent proteins. We followed the degradation of pluripotent proteins OCT4 and NANOG during the blocking of nascent protein synthesis by cycloheximide. Post Cycloheximide treatment for 9 hrs, pluripotent proteins appeared stable in mESCs exposed to LIF compared to without LIF condition. Overexpression of MnSOD in LIF deprived condition rescued the stability of OCT4 protein similar to mESCs exposed to LIF (Fig. 7a). Majority of intracellular protein degradation is mediated by ubiquitin mediated proteasomal degradation pathway. To have a closer look whether MnSOD modulates the proteasomal activity and thereby enhances the stability of pluripotent proteins, we checked the proteasomal activity in mESCs in presence and absence of MnSOD by using proteasome specific substrate Suc-LLVY-AMC. Silencing of MnSOD promoter to LIF signaling was measured by treating mESCs with different concentration of JAK inhibitor I using Luciferase reporter assay. Data represented as mean ± S.E.M of 3 sets of experiments, * denotes p ≤ 0.05. (f) The interaction between STAT3 and MnSOD promoter determined by transfecting different concentrations of pMXs-STAT3 in 293T cells harboring MnSOD Luciferase reporter construct and measuring luciferase expression levels. Data represented as mean ± S.E.M of 3 sets of experiments, * denotes p ≤ 0.05.
MnSOD in mESCs enhanced the proteasomal activity compared to vector control and on the other hand there was nearly twofold reduction in proteasomal activity upon overexpression of MnSOD (Fig. 7B). These data demonstrates that the post translational stabilization of the pluripotent proteins by modulating proteasome mediated degradation is probably one of the underlying mechanisms by which MnSOD maintains pluripotency of mESCs.

Discussion
Elucidation of different signaling events involved in the self-renewal of ESCs is important for understanding their physiology and optimizing culture conditions. A significant amount of research has been conducted on identifying the ‘switches’ that dictate stem cells either to differentiate or to maintain pluripotency and self-renewal. Although, several studies have highlighted the dynamic changes in the ROS and antioxidant enzymes during the self-renewal and differentiation of ESCs, seclusion of prime antioxidant enzyme that plays the crucial role in the self-renewal of mESCs had not been achieved. In the present study we identified MnSOD as a critical LIF/STAT3 downstream target that mediates LIF/STAT3 self-renewal of mESCs (Fig. 7C). We also demonstrate MnSOD to execute its role by influencing the stability of pluripotent genes and modulating proteasomal activity.

Apart from LIF/STAT3 pathway, enormous effort has been put forth to unravel the various other conduits that could be involved in pluripotency of mESCs resulting in a LIF independent growth of mESCs. Small molecules like GSK-3 inhibitor CHIR99021 and MEK (MAPK/ERK kinases) inhibitors SU5402 and PD184352 have provided great opportunity to gain new insights into alternative pathways that facilitates ES cell self-renewal28–30. Curcumin, one such
small molecule, had not been tested previously for its role in main-
tenance of pluripotency. Curcumin is a well-known antioxidant,
anti-inflammatory, antiviral, antimicrobial, antidiabetic and antic-
cancer agent. Although, there exists a previous report stating
Curcumin to enhance the differentiation of human ESCs, the study
was performed during the course of differentiation by EB method.
Similar experiment of adding Curcumin to mESCs during the course
of EB formation did not restrain the cells from differentiation and
rules out the possibility of Curcumin maintaining the pluripotency
by suppressing any of the derm layers. To understand by what means
Curcumin maintains self-renewal of ESCs, we looked into two
important facets of ESCs: a) Cell cycle parameters and b) different
signalling pathways existing in ESCs. ESCs have unique cell cycle
kinetics with very short G1 phase marked by decreased expression
of CDK inhibitors and Retinoblatoma activity. The present study evi-
denced Curcumin to maintain the self-renewal of mESCs despite
decreased proliferation and simultaneous up regulation of cyclin-
dependent kinase (CDK) inhibitor genes, a phenotype observed in
mESCs deprived of LIF or in differentiated cells. In our study, when
differentiation of mESCs was initiated by depriving LIF, there was
increase in the expression of CDK inhibitors – p21, and p27 and a
similar expression was maintained when cells were exposed to
Curcumin without LIF. This denotes that Curcumin maintains the
pluripotency of mESCs in absence of LIF and feeder without modu-
larating the expression of CDK inhibitors. Recently, a similar report by
Vazquez-Martin et al., showed small molecule Metformin to limit the
proliferative capacity of iPSCs without compromising on their self-
renewal property. We thus reveal a novel characteristic property of
Curcumin to maintain the stem cell properties independent of the
proliferative capacity of the cells.

Screening for different signaling pathways known to play signifi-
cant role in ESC pluripotency showed LIF/STAT3 and oxidative
pathways to be majorly modulated by Curcumin. Further analysis
demonstrated Curcumin to mediate its effect in a STAT3 signaling
dependent manner. Previous reports had mentioned Curcumin, in a
dose dependent manner to suppress STAT3 phosphorylation and
concomitant decrease in proliferative capacity in cancer derived
cells. Although we observed a reduced proliferation of mESC
exposed to curcumin, the suppression of STAT3 phosphorylation
was not observed at the lower concentration used in our experiments.
The JAK/STAT pathway is subject to negative regulation by protein
family of phosphatases including SHPs, and PTP1B (protein tyrosine
phosphatase 1b), PIAS (protein inhibitor of activated STAT) and
SOCS proteins. The present study in mESCs demonstrated curcu-
activity and undergo lesser oxidative stress. During the course of ESCs, previous studies on stress defense in mESCs identified the sufficient amount of ROS which is essential for the differentiation of pluripotent proteins including OCT4, NANOG and c-MYC to be regulated by Socs3. During the course of differentiation, the oxidative pathway genes are modulated to maintain sufficient amount of ROS which is essential for the differentiation of ESCs. Previous studies on stress defense in mESCs identified MnSOD to be one among group of genes down regulated during EB formation. Similarly, gene profiling studies by Trouillas et al., with mRNAs from ES cells in presence and absence of LIF demonstrated down regulation of MnSOD with LIF withdrawal. However, further studies dissecting the functional validation and relevance of MnSOD in pluripotency has not been observed. From the present and previous reports, it is convincing that despite decreased mitochondrial activity and mass in undifferentiated ESCs, these cells express increased amount of mitochondrial protein MnSOD compared to differentiated ESCs. Also, in our present report, not all the redox regulated genes like Catalase, CuZnSOD, FOXOs, etc are regulated in a STAT3 dependent manner. Interestingly, mice with deletion of Cu-ZnSOD are viable whereas MnSOD-deficient (Sod2−/−) mice develop several pathologies and neonatal lethality (~100% mortality by day 10). All of this information argues for the specific modulation of MnSOD by STAT3 and emphasizes its specific role in ESC physiology.

To understand the intriguing puzzle of how MnSOD maintains the expression of pluripotent genes in the absence of LIF, we looked at the post translational stability of these proteins. Cycloheximide experiments demonstrated MnSOD to enhance the stability of the pluripotent proteins. Also, overexpression and repression studies clearly demonstrated MnSOD to supress proasomal activity. These results signify a strong correlation between the stability of pluripotent proteins, proasomal activity and MnSOD protein level. Previous reports have suggested that the homeostasis of pluripotent proteins including OCT4, NANOG and c-MYC to be regulated by ubiquitination. Buckley et al., by using mass-spectrometry-based mapping demonstrated the distinct state of pluripotency to be mediated by ubiquitin proteasome system. However, to the best of our knowledge, an indepth study of a STAT3 target which plays a pivotal role at the post translational level to sustain the self-renewal and pluripotency had not been performed. In this study, we report MnSOD, apart from maintaining the homeostasis of the cells by regulating ROS levels also plays a major role of maintaining pluripotency in mESCs. Our results herald a conceptual advance in the knowledge of stem cell signalling biology and identify MnSOD as a crucial intermediate downstream of STAT3 in facilitating the proper control of ESCs fate.

Methods

Cell Culture. mESCs(R1) and Oct4- GFP tagged miPSCs (Kind gift from Prof. Catherine Verfaillie, Leuven) were cultured on mitotically inactivated MEF feeders, in a suitable medium - DMEM-High Glucose (Gibco) containing 15% FBS (HyClone), 2 mM Glutamine, 1X NEAA, 1X penicillin and 1X Streptomycin (All from Gibco) along with 8 μL LIF (Chemicon). For inhibition of STAT3 or MnSOD, 10 cells were plated onto gelatin coated 35 mm dishes and were induced with LIF (Millipore), No LIF and 5 μM Curcumin (Acros Organics) and 24 hrs post induction, the cells were treated with 2 μM Insoluble JAK inhibitor I (Calbiochem) or 20 μM 2-Methoxyestradiol (Sigma Aldrich) respectively. 24 hrs post JAK inhibitor treatment, the cells were analyzed for gene and protein expressions while the 2-Methoxyestradiol treated cells were harvested 48 hrs post treatment. For details on clonal analysis, embryoid body differentiation, alkaline phosphatase assay, Teratoma formation, cumulative population doubling and BrDU based cell proliferation, see supplementary material.

Cloning, Transfection, shRNA lentiviral production and Gene Expression Analysis. The Open Reading Frame (ORF) of MnSOD was PCR amplified from mESC cDNA using gene specific primers and cloned in BamHI and Xhol sites of pCDNAs.1 (+) (for transient transfection) and pMIG vector (for retroviral transfection) and positive clones were confirmed by sequencing (Amnion Biosciences). To clone MnSOD promoter region, 1779 bp upstream of MnSOD start site was PCR amplified and cloned into KpnI and Xhol regions of pGL3 basic vector (Addgene).

For transient transfection, 5 μg of plasmid was transfected into confluent mESCs using XtremeGENE HP transfection reagent (Roche Diagnostics) and 24 hrs post transfection, the transfected cells were subjected to different conditions (With LIF, No LIF) and were analysed for their gene and protein expression pattern. MnSOD overexpression was also performed by retroviral transduction using pMIG MnSOD and pMIG-GFP vector control. For knockdown of MnSOD and Cu-Zn SOD, the lentiviral vectors pLKO-MnSOD shRNA and pLKO-Cu-ZnSOD shRNA (Sigma Aldrich) along with the scrambled control were transduced in mESCs. For retroviral and lentiviral production and details on transduction see supplementary material. RNA isolation was performed using RNasea micro kit (Qiagen) as per manufacturer’s instruction. For additional details on PCR, see supporting information Experimental Procedures. Primer sequences are described in supplementary table 1.

Analysis of Protein. For immunofluorescence, cells were fixed in 4% paraformaldehyde, permeabilized and incubated with primary antibody at 4°C overnight, followed by incubation for 2 hrs at RT with Secondary antibody and incubated for 2 hrs at RT and observed under fluorescent microscope (Nikon Instruments Inc.). The primary and secondary antibodies and their dilutions used are described in Supplementary table 2. For western blot, proteins were fractionated on 8–12% SDS-PAGE gels and transferred onto charged PVDF membrane (Millipore). Post transfection, the membrane was blocked using 3% Skimmed milk/BSA in 0.1% TBST solution and probed with primary antibody overnight at 4°C and subsequently horseradish-peroxidase (HRP)-conjugated secondary antibody for 1 hr at RT. The primary antibodies, secondary antibodies and their dilutions are described in supplementary table 2. The protein specific bands were detected by chemiluminescence analyser (GE ImageQuant LAS 4000) or using a TMB substrate (Sigma Aldrich). For additional details, see supplementary material.

Flow cytometric analysis. Enumeration of number of GFP positive cells or measuring SSEA1 positive cells stained with primary Anti-SSEA1 antibody (BD Biosciences, Catalogue number 557895) and PE conjugated secondary antibody (BD Biosciences, Catalogue number 349073) was performed using flow cytometer (BD FACSCalibur, BD Biosciences). For Propidium iodide staining, cells were stained with Propidium Iodide (Sigma Aldrich) and cell cycle was analysed by flow cytometry. For additional details, see supplementary material.

Luciferase Assay. Cells were transfected with 950 ng of pGL3-MnSOD-luciferase and 50 ng of TK Renilla, along with vector control, using XtremeGENE HP transfection reagent. 24 hrs post transfection, the medium was replaced with fresh media and induced with different concentrations of JAK inhibitor I. 24 hrs post JAK inhibitor treatment, the cells were harvested and luciferase activity was performed using dual luciferase reporter assay system (Promega Corporation) as per manufacturer’s instructions.
To look at the direct interaction, 293T cells cultured in 24 well plates were transfected with 500 ng of pcDNA3.1 vector and 500 ng of TRPV1 and different concentrations of pCMV-STAT3 (Addgene) along with vector control. 24 hrs post transfection, the cells were harvested and luciferase activity was performed using the dual luciferase activity kit (Promega) as per manufacturer’s instructions.

SOD activity. Cells were harvested 48 hr post treatment of different concentration of 2-methoxyestradiol and equal concentrations of protein were used for SOD activity analysis, using SOD activity kit as per manufacturer’s instructions (Biovision).

Proteasomal Activity. The cytotoxic extract of MsmSOD plasmid transfected and MsmSOD ShRNA transfused mESCs were collected using lysis buffer and protein was estimated using BCA Protein Assay (Novagen) 5 ug of the cytotoxic extracts was incubated with 100 μM Suc-LLVY-AMC substrate in Tris-HCl (pH 8.0) at 37°C for 2 hrs. Post incubation, the reaction was arrested using 100% ethanol and the absorbance was measured at 360–460 nm (Perkin elmer 1420 multitable plate reader).

Statistical Analysis. Student’s t-test was applied at appropriate places. The values with p ≤ 0.05 were considered statistically significant.

1. Evans, M. J. & Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature. 292, 154–156 (1981).
2. Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science. 282, 1145–1147 (1998).
3. Mitsui, K. et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell. 113, 651–642 (2003).
4. Nichols, J. et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell. 95, 799–819 (1998).
5. Chen, X. et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell. 133, 1106–1117 (2008).
6. Kim, J., Chu, J., Shen, X., Wang, J. & Orkin, S. H. An extended transcriptional network for pluripotency of embryonic stem cells. Cell. 132, 1049–1061(2008).
7. Stewart, C. L. et al. Blastocyst implantation depends on maternal expression of the zinc finger transcription factor Klf4. Nature. 421, 379–391 (2003).
8. Okita, K. & Yamanaka, S. Intracellular signaling pathways regulating pluripotency of mouse embryonic stem cells and lineage commitment. Annu. Rev. Cell Dev. Biol. 24, 577–582 (2008).
9. Mujoo, K. et al. Curcumin induces differentiation of embryonic stem cells through modulation of nitric oxide-cyclic GMP pathway. Protein Cell. 3, 535–544 (2012).
10. Li, S. et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell Stem Cell. 2, 49–61 (2008).
11. Narasimhan, P., Song, Y. S. & Chan, P. H. Regulation of Mn-superoxide dismutase activity and nuclear translocation by STAT3 in mice after cerebral ischemia. J. Neurosci. 29, 7003–7014 (2009).
12. Schmolke, A. C., Hubner, R., Beller, M., Rolfs, A. & Frech, M. J. Small molecules in iPS cell research. Curr. Pharm. Biotechnol. 14, 36–45 (2013).
13. Chambers, I. & Smith, A. BMP induction of Id proteins. Curr. Biol. 13, 137–143 (2003).
14. Tai, C. I. & Ying, Q. L. Gbx2, a LIF/Stat3 target, promotes reprogramming to and commitment of mesodermal cell lineages. Dev. Biol. 379, 125–135 (2013).
15. Niwa, H., Ogawa, K., Shimosato, D. & Adachi, K. A parallel circuit of LIF and FGF pathways controls self-renewal and differentiation in ES cells. EMBO J. 19, 4778–4788 (2000).
16. Chen, S. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell Stem Cell. 2, 49–61 (2008).
17. Okita, K. & Yamanaka, S. Intracellular signaling pathways regulating pluripotency of mouse embryonic stem cells and lineage commitment. Annu. Rev. Cell Dev. Biol. 24, 577–582 (2008).
18. Okita, K. & Yamanaka, S. Intracellular signaling pathways regulating pluripotency of mouse embryonic stem cells and lineage commitment. Annu. Rev. Cell Dev. Biol. 24, 577–582 (2008).
19. Chu, J. et al. Curcumin inhibits hepatic protein tyrosine phosphatase 1B and prevents hypertiglycerideemia and hepatic steatosis in fructose-fed rats. Hepatology. 51, 1555–1566 (2010).
20. Kuo, J. J., Chang, H. H., Tsai, T. H. & Lee, T. Y. Positive effect of curcumin on inflammation and mitochondrial dysfunction in obese mice with liver steatosis. Int. J. Mol. Med. 30, 673–679 (2012).
21. Saredzki, A., Armstrong, L., Leake, A., Lako, M. & von Zglinicki, T. Stress defense in murine embryonic stem cells is superior to that of various differentiated murine cells. Stem Cells. 22, 962–971 (2004).
22. Trouillas, M. et al. Three LIF-dependent signatures and gene clusters with atypical expression profiles, identified by transcriptome studies in mouse ES cells and early derivatives. BMC Genomics. 10, 73–92 (2009).
23. Li, Y. et al. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat. Genet. 11, 376–381 (1995).
24. Liao, B. & Jin, Y. Wwp2 mediates Oct4 ubiquitination and its own autoubiquitination in a dosage-dependent manner. Cell Res. 20, 332–344 (2010).
25. Ramakrishna, S. et al. PEST Motif Sequence Regulating Human NANOG for Antitumor Effects in Breast Cells. PLoS One. 7, e39230 (2012).
26. Ramakrishna, S. et al. PEST Motif Sequence Regulating Human NANOG for Antitumor Effects in Breast Cells. PLoS One. 7, e39230 (2012).
27. Ramakrishna, S. et al. PEST Motif Sequence Regulating Human NANOG for Antitumor Effects in Breast Cells. PLoS One. 7, e39230 (2012).
28. Ramakrishna, S. et al. PEST Motif Sequence Regulating Human NANOG for Antitumor Effects in Breast Cells. PLoS One. 7, e39230 (2012).
29. Ramakrishna, S. et al. PEST Motif Sequence Regulating Human NANOG for Antitumor Effects in Breast Cells. PLoS One. 7, e39230 (2012).
30. Ramakrishna, S. et al. PEST Motif Sequence Regulating Human NANOG for Antitumor Effects in Breast Cells. PLoS One. 7, e39230 (2012).
31. Ramakrishna, S. et al. PEST Motif Sequence Regulating Human NANOG for Antitumor Effects in Breast Cells. PLoS One. 7, e39230 (2012).
Author contributions
P.S., A.A. and S.J. conducted the experiments; R.B. assisted in manuscript preparation; P.S. and J.P., conceptualized the study and assisted in manuscript preparation; A.K. Obtained the funding, led the study and wrote the manuscript.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/scientificreports
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Sheshadri, P. et al. Novel Role of Mitochondrial Manganese Superoxide Dismutase in STAT3 Dependent Pluripotency of Mouse Embryonic Stem Cells. Sci. Rep. 5, 9516; DOI:10.1038/srep09516 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/