Classification of Moduli Sets for Residue Number System With Special Diagonal Functions

PETER BOYVALENKOV\(^1\), NIKOLAY I. CHERVYAKOV\(^2\), PAVEL LYAKHOV\(^3\),\(^4\), NATALYA SEMYONOVA\(^2\), ANTON NAZAROV\(^2\), MARIA VALUEVA\(^2\), (Graduate Student Member, IEEE), GEORGI BOYVALENKOV\(^3\), DANIL BOGAEVSKIY\(^4\), AND DMITRII KAPLUN\(^3\), (Member, IEEE)

\(^1\)Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
\(^2\)Department of Applied Mathematics and Mathematical Modeling, North-Caucasus Federal University, 355000 Stavropol, Russia
\(^3\)Bosch.IO LTD, 1124 Sofia, Bulgaria
\(^4\)Department of Automation and Control Processes, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia

Corresponding author: Dmitrii Kaplun (dikaplun@etu.ru)

This work was supported by the Russian Science Foundation under Grant 19-19-00566. The work of Peter Boyvalenkov was supported by the National Scientific Program through the Information and Communication Technologies for a Single Digital Market in Science, Education and Security (ICTinSES) of the Bulgarian Ministry of Education and Science.

ABSTRACT

The paper presents algorithms for the generation of Residue Number System (RNS) triples with \(SQ = 2^k - 1\) and quadruples with \(SQ = 2^k\) for some \(k\). Triples and quadruples allow us to design efficient hardware implementations of non-modular operations in RNS such as division, sign detection, comparison of numbers, reverse conversion with using of a diagonal function from requiring division with the remainder by the diagonal module \(SQ\). Division with a remainder in the general case is the most complex arithmetic operation in computer technology. However, the consideration of special cases can significantly simplify this operation and increase the efficiency of hardware implementation. We show that there are 5573 good RNS triples (2301 even and 2372 odd) with elements less than 10 000, as the values of \(SQ\) vary from \(2^5 - 1\) to \(2^{27} - 1\). In contrast, RNS quadruples with \(SQ = 2^k\) seem to be quite rare. Restricting our search to sums of the elements in a quadruple less than 4000 we find that exactly 31 such quadruples exist. Their values of \(SQ\) vary between \(2^{20}\) and \(2^{30}\) with always even exponent. We suggest the measure of RNS balance and find perfectly balanced RNS among triples according to this measure. We demonstrate the advantages of more balanced quadruples by means of hardware implementation.

INDEX TERMS

Residue number system, non-modular operations, diagonal function, triples, quadruples, RNS balance, average bit-width, hardware implementation, FPGA.

I. INTRODUCTION

The current level of computer technology requires the development of parallel computing architectures and methods for organizing calculations on them. One of the ways of parallel organization of calculations at the arithmetic level is the transition from the traditional binary number system to the Residue Number System (RNS). The main idea of such a replacement is the ability to quickly and parallel processing the residues of a small bit-width when performing arithmetic operations of addition, subtraction and multiplication. This approach is very promising for practical applications that require intensive execution of mainly these operations: digital signal and image processing [1], [2], cryptography [3] and machine learning [4]. The disadvantage of RNS is the high computational complexity of performing non-modular operations, which include division, sign detection and comparison of numbers [5], [6]. These limitations exist because RNS is a non-positional number system, and magnitude comparison of numbers in RNS form is impossible, so the division operation consists of a magnitude comparison operation that is also a problematic operation. Finding faster algorithms would allow detecting more promising new areas to apply RNS.

One way to implement non-modular operations in RNS is to use a diagonal function from [7]–[10] requiring division with the remainder by the diagonal module \(SQ\). Division
with a remainder in the general case is the most complex arithmetic operation in computer technology. However, the consideration of special cases can significantly simplify this operation. Satisfying the condition $SQ = 2^k$ allows to calculate the remainder of dividing by SQ by simply choosing the k least significant bits of the dividend, while the quotient is determined by the remaining most significant bits of the dividend. Under the condition $SQ = 2^k - 1$ the remainder of the division by SQ is calculated as the sum of the k-bit parts of the dividend modulo SQ [11]. Algorithms for RNS constructing with special SQ forms based on number-theoretical properties are presented in [7] and [8]. The main drawbacks of those algorithms is the impossibility of RNS construction with predetermined dynamic ranges as well as obtaining unbalanced RNSs (with too much difference in modules bit-width) in most cases.

In this paper, we present algorithms for generation of RNS triples with $SQ = 2^k - 1$ and quadruples with $SQ = 2^k$ for some predetermined k. By “predetermined” we mean that designers of RNSs could use the results of our classification by choosing in advance k in certain range (for example, between 5 and 21 with a few exceptions for triples from Appendix A, and any even k between 20 and 30 for quadruples from Appendix B). Moreover, the lists from Appendixes A and B are complete for the ranges given in Theorems 4 and 6 below.

Our approach is based on careful dealing with the exponent of 2 in the expressions which naturally arise in targeting corresponding representations of SQ and related quantities. We show that there are 5573 good RNS triples (2301 with three even modules and 2372 with two odd and one even modules) with elements less than 10 000, as the values of SQ vary from 2^{51} to $2^{27,31}$. In contrast, RNS quadruples with $SQ = 2^k$ seem to be quite rare. We restrict our search to sums of the elements in a quadruple less than 4000 and find that exactly 31 such quadruples exist. Their values of SQ vary between 2^{20} and 2^{30} with always even exponent.

The rest of the paper is organized as follows. Section II presents the construction of RNS with a convenient form of diagonal function. Sections III and IV present effective algorithms for computing triples and quadruples, respectively, to build effective RNS blocks based diagonal function. Section V discusses approach to measuring RNS balance and the methods of RNS construction using proposed approach. Section VI presents hardware simulation results. Discussion is presented in Section VII. The conclusion of the paper is reported in Section VIII.

II. RNS MATH BACKGROUND. METHODOLOGY

Let $m_1, m_2, \ldots, m_n, n \geq 3$, be mutually co-prime positive integers and

$$X \equiv x_i \quad (mod \ m_i), \quad i = 1, 2, \ldots, n, \quad (1)$$

be a corresponding Chinese Remainder Theorem. In RNS, a solution X of (1) is associated to the n-tuple (x_1, x_2, \ldots, x_n) and that n-tuple is used in operations instead of X [12, Section 3.4].

Denote

$$M = \prod_{i=1}^{n} m_i, \quad M_i = \frac{M}{m_i}, \quad i = 1, 2, \ldots, n.$$

Then

$$SQ := \sum_{i=1}^{n} M_i$$

is called diagonal modulus. The diagonal modulus is important in computations as it is instrumental in the definition of the diagonal function

$$D(x) := \sum_{i=1}^{n} k_i x_i \quad (mod \ SQ),$$

where the integers k_i are defined by $k_i m_i \equiv -1 \quad (mod \ SQ)$.

It was observed that diagonal modulus of special binary representations (very low or very high Hamming weight) are useful in the construction of RNS with good performance. This point was described in [7].

Our goal is to provide certain classification results for systems $(m_1, m_2, \ldots., m_n)$ for small n. Such classification could be useful for designers of RNS in their search for good performance. Thus, we also discuss performance issues, adding here that predetermined range of M (see above for predetermined k) implied from our Appendixes could be very useful.

We shall use many times the following simple lemma. We use the notation $v_2(m)$ for the maximum degree of 2 which divides a positive integer m (i.e., $m/2^{v_2(m)}$ is an odd integer).

Lemma 1: Let k be a positive integer and $2^k = a + b$, where a and b are positive integers. Then $v_2(a) = v_2(b)$.

Proof: Assume for a contradiction that $v_2(a) \neq v_2(b)$. Without loss of generality, let $v_2(a) > v_2(b)$. It is clear that $v_2(b) < k$ (otherwise $a + b > 2^{v_2(b)} \geq 2^k$). Then it follows that $0 \equiv 2^k = a + b \equiv 2^{v_2(b)} b_1 \quad (mod \ 2^{v_2(a)})$, which is impossible ($b_1 = b/2^{v_2(b)}$ is odd).

Remark: It is clear from the proof that the conclusion $v_2(a) = v_2(b)$ of Lemma 1 is true whenever $\max(v_2(a), v_2(b)) < k$ (i.e., the condition for a and b both being positive integers is dropped). We will use this fact once in our analysis of RNS quadruples.

Our approach is based on applications of Lemma 1 with appropriate representations of SQ and its relatives. This leads to significant simplifications which allow us to develop efficient algorithms achieving our goals.

III. RNS TRIPLES WITH $SQ = 2^k - 1$

A. THREE ODD m_i

We are interested in diagonal modulus $SQ = 2^k - 1$ with three odd m_1, m_2, m_3. We call such triples odd.

Starting with co-prime odd m_1 and m_2, we require

$$v_2(m_1 + m_2) = v_2(m_1 m_2 + 1) = \omega \geq 1 \quad (2)$$

Since

$$SQ + 1 = 2^k = m_3 (m_1 + m_2) + (m_1 m_2 + 1),$$
it follows from Lemma 1 that (2) is a necessary condition. Moreover, we have
\[
\frac{(m_1 + m_2 - 2\omega, m_1m_2 + 1)}{2\omega} = 1. \tag{3}
\]
Indeed, otherwise (2) implies that any nontrivial prime common divisor of \(\frac{(m_1 + m_2)}{2\omega}, \frac{m_1m_2 + 1}{2\omega}\) will be an odd prime which will divide \(2^k\), a contradiction.

It follows from the above that
\[
m_1 + m_2 = 2^\omega r, \quad m_1m_2 + 1 = 2^\omega s
\]
where \(r\) and \(s\) are co-prime odd integers. Then
\[
2^k - \omega = s + rm_3
\]
and we have to seek solutions of
\[
2^l \equiv s \pmod{r}
\]
with respect to \(l\). Each such solution defines a candidate for \(m_3\) by
\[
2^l = s + rm_3 \tag{5}
\]
This \(m_3\) is approved if it is co-prime to both \(m_1\) and \(m_2\).

Theorem 2: The so chosen \(m_1, m_2, m_3\) form a good RNS triple with \(SQ = 2^k - 1\), where \(k = \ell + \omega\). Each odd triple can be found this way.

Proof: For \(m_1, m_2, m_3\) as chosen above we have consecutively by (4) and (6)
\[
SQ = M_1 + M_2 + M_3 = m_1m_2 + m_3 (m_1 + m_2)
= 2^\omega s - 1 + \frac{2^l - s}{r} \cdot 2^\omega r = 2^l + \omega - 1,
\]
as required.

Theoretical investigations can be separated into two cases depending on whether (5) always or not always has solutions.

1. \(r = \rho^\omega\), where \(\rho\) is an odd prime, and 2 is primitive root modulo \(\rho^\omega\). In this case (5) has always solutions.
2. \(r\) is an odd integer such that (5) has solutions. This includes two sub-cases:
 1. \(r = \rho^\omega\), where \(\rho\) is an odd prime, but 2 is not primitive root modulo \(\rho^\omega\) and
 2. \(r\) is divisible to at least two distinct primes.

However, it is not necessarily important to distinguish between these cases. In particular, we may skip the check whether 2 is a primitive root and just care for (5) having a solution.

Therefore, the classification itself can be organized as follows.

Step 1. For fixed even positive integer \(A\), generate all pairs \((m_1, m_2)\) of odd positive integers such that \(m_1 + m_2 = A, m_1 < m_2\).

Step 2. Given a pair \((m_1, m_2)\), check whether (2) and (3) are satisfied; otherwise consider next pair.

Step 3. For \((m_1, m_2)\) satisfying (2) find \(\omega, r\) and \(s\) and check whether (5) has a solution.

Step 4. Check in increasing order solutions of (5) until suitable \(m_3 = (2^l - s)/r\) is found.

Output: \((m_1, m_2, m_3), k = \omega + l, SQ = 2^{\omega + l} - 1\).

This algorithm was implemented by a program in C++. The results are described in the end of the section.

B. TWO ODD AND ONE EVEN \(m_i\)

It is clear that at most one of \(m_1, m_2, m_3\) can be even. Thus, we complete consideration of triples with diagonal modulus \(SQ = 2^k - 1\) by analysis of triples \((m_1, m_2, m_3)\), where \(m_1\) and \(m_2\) are odd and \(m_3\) is even. We call such triples even. Following the above scheme, we write
\[
m_3 = \rho^\omega q, \quad m_1 + m_2 = 2^\omega r, \quad m_1m_2 + 1 = 2^\omega s, \tag{7}
\]
where \(q, r, s\) are odd and mutually coprime. Now
\[
SQ + 1 = 2^k = m_3 (m_1 + m_2) + (m_1m_2 + 1) = 2^{\omega + \rho} qr + 2^\omega s
\]
and Lemma 1 implies that
\[
v_2(m_1 + m_2) + v_2(m_3) = v_2(m_1m_2 + 1) \iff \omega_1 + \rho = \omega_2. \tag{8}
\]
Note that \(\omega_1 < \omega_2\). So far
\[
2^k = 2^{\omega_1 + \rho} qr + 2^\omega s = 2^\omega (qr + s).
\]
This means that we need to choose \(q\) as a solution of \(qr + s = 2^l\) for some \(\ell\), thus getting
\[
SQ = 2^{\omega_2 + \ell} - 1.
\]
Noting that \(q = m_3/2^\omega\) shows the similarity with the case of three odd \(m_i\) (it can be deduced from here by setting \(\rho = 0\)).

Similarly, to above, the following statement follows.

Theorem 3: The so chosen \(m_1, m_2, m_3\) form a good RNS triple with \(SQ = 2^k - 1\), where \(k = \ell + \omega_2\). Each even triple can be obtained this way.

In this case the classification can be organized as follows.

Step 1. For fixed even positive integer \(A\), generate all pairs \((m_1, m_2)\) of odd positive integers such that \(m_1 + m_2 = A, m_1 < m_2\).

Step 2. Given a pair \((m_1, m_2)\), find \(\omega_1, \omega_2, r\) and \(s\) as (7) requires and check whether the conditions \(\omega_2 > \omega_1\) (see (8)) and \((r, s) = 1\) are satisfied; otherwise consider next pair.

Step 3. For \((m_1, m_2)\) from Step 2, solve \(2^l \equiv s \pmod{r}\) with respect to \(\ell\).

Step 4. Check in increasing order solutions \(q = (2^l - s)/r\) with \(\ell's from Step 3, finding \(m_3 = 2^{\omega_2 - \omega_1} q\), where \((q, r) = (q, s) = 1\).

Output: \((m_1, m_2, m_3), k = \omega_2 + l, SQ = 2^{\omega_2 + l} - 1\).

C. RESULTS FOR RNS TRIPLES WITH \(SQ = 2^k - 1\)

We implemented both algorithms for finding all suitable triples with \(m_i \leq 1000, i = 1, 2, 3\). With running time less than a second, the program produced 412 triples shown in Appendix A. These results were also confirmed by a brute force search. Further, there are 5573 good triples (2301 even and 2372 odd) with \(m_i \leq 10000\), generated by our algorithm in few hours, as \(SQ = 2^{27} - 1\) appears as largest.
Theorem 4: There are exactly 412 triples \((m_1, m_2, m_3)\) (as given in Appendix A) such that \(m_i \leq 1000, i = 1, 2, 3\), and \(SQ = 2^k - 1\) for some positive integer \(k\). Further, there are exactly 5573 good triples \((2301\text{ with two odd and one even } m_i \text{ and } 2372\text{ with three odd } m_i)\) with \(m_i \leq 10000, i = 1, 2, 3,\) and \(SQ = 2^k - 1\).

Proof: The necessary conditions from above mean that all possible triples are generated as described. The sufficiency follows from Theorems 2 and 3.

The list of all 5573 triples from Theorem 4 is available upon request.

IV. RNS QUADRUPLES WITH \(SQ = 2^k\)

For \(n = 4\) the targeted \(SQ\) (odd or even) determines the type of the quadruple \((m_1, m_2, m_3, m_4)\). Since we need \(SQ = 2^k\), all \(m_i\) must be odd.

Since

\[2^k = m_1m_2(m_3 + m_4) + m_3m_4(m_1 + m_2),\]

it follows from Lemma 1 that the first necessary condition is

\[v_2(m_1 + m_2) = v_2(m_3 + m_4) = \omega_1,\]

\[m_1 + m_2 = 2^{\omega_1}r, \quad m_3 + m_4 = 2^{\omega_2}s,\] (9)

where \(r\) and \(s\) are odd and coprime. Now

\[2^k = 2^{\omega_1}[m_3m_4 + sm_1m_2]
= 2^{\omega_1}[m_3(2^{\omega_1}s - m_3) + sm_1(2^{\omega_1}r - m_1)]
= 2^{\omega_1}\left[rs2^{\omega_1}(m_1 + m_3) - (rm_2^2 + sm_1^2)\right],\]

whence \(2^{k-\omega_1} = rs2^{\omega_1}(m_1 + m_3) - (rm_2^2 + sm_1^2)\). Using Lemma 1 again (see the remark), we require

\[\omega_1 + v_2(m_1 + m_3) = v_2\left(\frac{rm_2^2 + sm_1^2}{2}\right) = \omega_1 + \omega_2,\]

\[m_1 + m_3 = 2^{\omega_2}q, \quad rm_2^2 + sm_1^2 = 2^{\omega_1+\omega_2}t,\] (10)

where \(q\) and \(t\) are odd coprime positive integers (in fact, all four numbers \(r, s, q, t\) are odd and mutually coprime).

Plugging these, we obtain \(2^{k-\omega_1} = 2^{\omega_1+t+\omega_2}\) (rsq-t).

Finally, we have to search for \(rsq - t = 2^{\omega_3}\) for some positive integer \(\omega_3\).

Therefore, we have proved the following statement.

Theorem 5: The so chosen \(m_1, m_2, m_3, m_4\) form a good RNS quadruple with \(SQ = 2^k\) where \(k = 2^{\omega_1} + \omega_2 + \omega_3\).

Proof: For \(m_1, m_2, m_3, m_4\) as chosen above we obtain

\[SQ = 2^{2^{\omega_1+\omega_2}}(rsq - t) = 2^{\omega_1+\omega_2+\omega_3},\]

as required.

Remark: Note that the slight modification \(rsq - t = 2^{\omega_3} - 1\) in the last step leads to

\[SQ = 2^{2^{\omega_1+\omega_2+\omega_3}} - 2^{2^{\omega_1+\omega_2}},\]

which could be interesting in some applications.

Thus, we propose classification as follows.

Step 1. Find all quadruples \((m_1, m_2, m_3, m_4)\) of odd positive integers (less than 1000), such that (9) is satisfied.

Step 2. For any quadruple \((m_1, m_2, m_3, m_4)\) from Step 1, compute \(m + n\) and \(m^2 + sm^2\), where \(m \in \{m_1, m_2\}\) and \(n \in \{m_3, m_4\}\) and check if (10) is satisfied.

Step 3. Check if \(rsq - t\) is a power of 2.

Output. If \(rsq - t = 2^{\omega_3}\) in Step 3, the output is \((m_1, m_2, m_3, m_4), 2\omega_1 + \omega_2 + \omega_3, SQ = 2^{2^{\omega_1+\omega_2+\omega_3}}\).

We implemented the above algorithms for finding all suitable quadruples with \(m_1 + m_2 + m_3 + m_4 \leq 4000\). The running time was a few hours on a home PC. The program produced 31 quadruples shown in Appendix B. The results with \(m_i \leq 1000\) were confirmed by a brute force program working 9 hours on GPU.

Theorem 6: There are exactly 31 quadruples \((m_1, m_2, m_3, m_4)\) (as given in Appendix B) such that \(m_1 + m_2 + m_3 + m_4 \leq 4000\) and \(SQ = 2^k\) for some positive integer \(k\).

Proof: The necessary conditions from above mean that all possible quadruples are generated as described. The sufficiency follows from Theorem 5.

V. BALANCE METRIC FOR BUILDING EFFECTIVE COMPUTATIONAL SYSTEMS

The practical implementation of the arithmetic operations of addition, subtraction and multiplication in RNS with modules \((m_1, m_2, \ldots, m_n)\) is based on the parallel execution of operations for each of the modules \(m_i, i = 1, 2, \ldots, n\). In the general case, the addition of two numbers modulo \(m_i\) has computational complexity \(\sim O(b_i)\), where \(b_i = \lfloor \log_2 m_i \rfloor\) is modulo \(m_i\) bit-width. Multiplication of two numbers modulo \(m_i\) generally has computational complexity \(\sim O(b_i^2)\). If all RNS modules have a very different bit-width, then this will lead to a long idle time of the computational elements for low-bit-width modulo while computing for modules of higher bit-width [13]. This phenomenon is called unbalanced RNS [14].

The triplets and quadruples found in the Sections III and IV, listed in Appendices A and B, are not equally balanced. We introduce the concept of a measure of the RNS balance. Let the RNS be defined by modules \((m_1, m_2, \ldots, m_n)\) with bit-widths \((b_1, b_2, \ldots, b_n)\). Denote average bit-width of RNS modules a

\[
\bar{b} = \frac{\sum_{i=1}^{n} b_i}{n}. \tag{11}
\]

Obviously, the larger \(\bar{b}\) implies the greater range \(M\) of RNS.

Let us define a measure of RNS balance, due to absolutely absence of metrics for RNS balance measuring in the literature, as a quantity \(\beta\), determined by the formula

\[
\beta = \frac{\sum_{i=1}^{n} (b_i - \bar{b})^2}{n}, \tag{12}
\]

and calculated as the dispersion of bit-widths of the RNS modules. We assume the more balanced of the two different RNSs that one, in which \(\beta\) is smaller.

Definition 1: An RNS is called perfectly balanced if \(\beta = 0\).
TABLE 1. Modeling results.

Moduli set	LUTs	Delay, ns	Power, W
Magnitude comparison			
{43,51,79,91}	596	12.607	35.342
(5,29,93,313)	423	13.118	21.926

Example: Consider quadruples (43, 51, 79, 91), (23, 43, 87, 143), (5, 29, 93, 313) and (3, 7, 43, 2323) from App. 2. They all have $SQ = 2^{20}$.

For quadruple (43, 51, 79, 91) we have $M = 15765477$, $\log_2 M \approx 23.9$, $(b_1, b_2, b_3, b_4) = (6, 6, 7, 7)$, $\bar{b} = 6.5$, $\beta = 0.25$.

For quadruple (23, 43, 87, 143) we have $M = 12304149$, $\log_2 M \approx 23.6$, $(b_1, b_2, b_3, b_4) = (5, 6, 7, 8)$, $\bar{b} = 6.5$, $\beta = 1.25$.

For quadruple (5, 29, 93, 313) we have $M = 4220805$, $\log_2 M \approx 22.0$, $(b_1, b_2, b_3, b_4) = (3, 5, 7, 9)$, $\bar{b} = 6$, $\beta = 5$.

For quadruple (3, 7, 43, 2323) we have $M = 2097669$, $\log_2 M \approx 21.0$, $(b_1, b_2, b_3, b_4) = (2, 3, 6, 12)$, $\bar{b} = 5.75$, $\beta = 15.1875$.

The cases examined show that quadruples (5, 29, 93, 313) and (3, 7, 43, 2323) are least suitable for practical use, since they, firstly, have the smallest ranges ($\log_2 M < 23$), and secondly, are very unbalanced, as they have the largest values β. Quadruples (43, 51, 79, 91) and (23, 43, 87, 143) have large and approximately equal ranges ($\log_2 M > 23$), however, in practice preference should be given to the quadruple (43, 51, 79, 91), since it is very well balanced, which is confirmed by the smallest value β.

It is shown in Fig.1 the distribution of all 412 triples according to value of β. It can be noticed that we have 22 perfectly balanced triples.

In Fig.2 the distribution of 31 quadruples according to value of β is presented. We can’t see any perfectly balanced quadruples but have one quadruple with $\beta = 0.25$.

In the previous work [7], only triples (3, 5, 14) and (7, 9, 12) and quadruple (5, 29, 93, 31) were analyzed in the experimental part. These moduli sets have $\beta = 0.67$, $\beta = 2.89$ and $\beta = 5.00$, respectively. In this paper we found a large number of better balanced RNSs with lower β, which will be more effective in practice than these from [7].

When developing a computing system in RNS, it is necessary to take into account the range and requirements for the number of modules. After determining these parameters from Appendices A and B, the most promising RNS moduli sets are these with the lowest possible β. These results can be used for building effective parallel computational systems [15] based on computers with parallel structure like FPGA and GPU [16], [17]. The basic idea of a hardware implementation is that an algorithm (division, sign detection, comparison of numbers, reverse conversion) based on a diagonal function requires division by SQ. Since we were able to find such quadruples for which $SQ = 2^n$, for such RNS the algorithm based on the diagonal function will be extremely better than an algorithm based on Chinese remainder theorem (CRT) [18], CRT with fractional values (CRTf) [19] and mixed radix conversion (MRC) [20]. For example, division with the remainder by 2^n, in fact, costs nothing, unlike division by M in CRT or multiplication by M, as in CRTf or different operations on the modules m_1, m_2, \ldots, m_n, as in MRC. This is confirmed by our previous studies, so in [7] there is an example of the implementation of non-modular operations of comparison and reverse conversion for triples and quadruples, which demonstrates the advantage of our proposals for the hardware implementation of systems based on RNS in FPGA.

VI. HARDWARE MODELING

The hardware modeling goal is comparison of circuits on the example of a problematic comparator device with the known {5, 29, 93, 313} moduli set from [7] and the proposed {43, 51, 79, 91} moduli set which has the same $SQ = 2^{20}$ and the lowest β. In this regard, the operation of magnitude comparison two numbers in RNS was implemented in FPGA. All simulated circuits were described in very high-speed integrated circuit (VHDL) hardware description language (VHDL). Hardware modeling was performed on Xilinx Artix
TABLE 2. Triples with $\text{SQ} = 2^k - 1$.

RNS modules	RNS parameters	k	β	
m_1 m_2 m_3	M	$\log_2 M$		
3 5 2	30	4	5	0.67
3 5 14	210	7	7	0.67
7 9 4	252	7	7	0.67
3 101 2	606	9	9	6.89
3 5 62	930	9	9	2.89
3 37 10	1110	10	9	2.67
3 17 23	1173	10	9	2.00
13 27 4	1404	10	9	1.56
15 17 8	2040	10	9	0.67
5 291 2	2910	11	11	11.56
3 5 254	3810	11	11	6.89
5 9 143	6435	12	11	4.67
7 9 124	7812	12	11	2.89
5 51 32	8160	12	11	1.56
9 103 10	9270	13	11	2.00
9 19 67	11457	13	11	1.56
9 29 47	12267	13	11	0.67
9 743 2	13374	13	13	14.00
15 17 56	14280	13	11	0.67
53 147 2	15582	13	13	8.67
31 33 16	16368	13	11	0.67
19 37 24	16872	14	11	0.22
3 7 817	17157	14	13	12.67
3 17 407	20757	14	13	8.22
3 325 22	21450	14	13	8.22
3 37 202	22422	14	13	6.22
3 197 38	22458	14	13	6.22
3 47 161	22701	14	13	6.22
3 79 97	22989	14	13	5.56
5 627 8	25080	14	13	10.89
25 279 4	27900	14	13	8.22
11 23 113	28589	14	12	1.56
7 9 508	32004	14	13	6.89
5 21 311	32655	14	13	6.22
13 427 6	33306	15	13	6.89
5 47 153	35955	15	13	4.22
5 99 74	36630	15	13	3.56
7 13 405	36855	15	13	6.89
9 13 367	42939	15	13	5.56
7 33 199	45969	15	13	4.22

7 73 96	49056	15	13	3.56
19 709 4	53884	15	14	10.89
57 719 8	54264	15	13	2.89
9 35 179	56385	15	13	2.67
9 167 38	57114	15	13	2.67
9 79 85	60435	15	13	2.00
15 17 248	63240	15	13	2.89
5 23 581	66815	16	14	8.67
13 25 207	67275	16	13	2.89
13 27 196	68796	16	13	2.89
13 31 177	71331	16	13	2.89
13 139 42	75894	16	13	2.67
17 23 195	76245	16	13	2.00
13 63 97	79443	16	13	1.56
13 75 82	79950	16	13	2.00
7 19 625	83125	16	14	8.67
17 143 36	87516	16	13	1.56
3 65 479	93405	16	15	8.67
21 31 145	94395	16	13	2.00
17 63 89	95319	16	13	0.67
47 113 18	95598	16	13	0.67
51 101 20	102529	16	14	4.67
25 33 127	104775	16	13	0.67
3 53 72	133560	17	13	0.22
47 53 57	141987	17	13	0.00
19 37 280	196840	17	14	2.89
19 73 163	226081	17	14	1.56
19 85 142	229330	17	14	1.56
79 145 22	252010	17	14	1.56
173 747 2	258462	17	17	14.89
243 533 2	259038	17	17	14.89
23 89 128	262016	17	14	0.89
13 33 703	301878	18	15	6.22
71 137 32	312646	18	14	1.56
19 789 22	329802	18	15	5.56
35 89 107	333305	18	14	0.22
Triples with $SQ = 2^k - 1$.					
13 79 345	354 315	18 15	4.22	23 729 152	2 548 584
47 65 119	363 545	18 14	0.22	295 393 22	2 550 570
13 171 166	369 018	18 15	3.56	23 165 677	2 569 215
3 901 142	383 826	18 17	11.56	23 177 635	2 585 085
3 223 577	386 013	18 17	11.56	23 537 212	2 618 412
3 229 562	386 094	18 17	11.56	73 133 271	2 631 139
3 287 449	386 589	18 17	10.89	23 257 447	2 642 217
27 605 26	424 710	18 15	5.56	23 377 306	2 653 326
19 309 82	481 422	18 15	2.67	23 327 353	2 654 913
19 145 183	504 165	18 15	2.00	177 623 26	2 867 046
183 697 4	510 204	18 17	11.56	293 387 26	2 948 166
27 397 52	557 388	19 15	2.89	27 173 632	2 952 072
27 79 289	616 437	19 15	2.67	113 879 32	3 178 464
33 59 335	652 245	19 15	2.00	33 107 911	3 216 741
27 131 185	654 345	19 15	2.00	33 127 793	3 323 463
101 227 30	687 810	19 15	1.56	37 103 909	3 464 209
13 73 751	712 699	19 16	6.00	33 191 557	3 510 771
13 331 178	765 934	19 16	4.67	33 203 527	3 530 373
37 99 214	783 882	19 15	0.67	37 117 823	3 562 767
7 873 142	867 762	19 17	8.67	35 149 684	3 567 060
7 169 738	873 054	19 17	8.67	33 247 439	3 578 289
7 211 589	878 199	19 17	8.67	33 415 262	3 588 090
7 291 433	882 021	19 17	8.00	33 287 380	3 598 980
65 71 207	955 305	19 15	0.22	37 135 733	3 661 335
71 201 68	970 428	19 15	0.22	45 971 86	3 757 770
59 125 138	1 017 750	19 15	0.67	37 579 178	3 813 294
313 823 4	1 030 396	19 18	12.67	37 183 565	3 825 615
127 129 64	1 048 512	19 15	0.67	113 815 42	3 867 990
47 881 26	1 076 582	20 16	4.67	47 89 933	3 902 739
11 173 702	1 335 906	20 17	6.22	37 243 436	3 920 076
11 237 518	1 350 426	20 17	6.22	37 403 264	3 936 504
149 803 12	1 435 764	20 17	6.22	37 271 393	3 940 611
151 793 12	1 436 916	20 17	6.22	37 307 348	3 952 932
13 123 952	1 522 248	20 17	6.00	47 93 905	3 955 755
13 157 759	1 549 119	20 17	6.22	63 65 992	4 062 249
13 667 180	1 560 780	20 17	6.22	55 81 931	4 147 605
13 327 373	1 585 623	20 17	5.56	47 113 786	4 174 446
15 161 731	1 765 365	20 17	6.22	47 123 737	4 260 597
15 337 358	1 809 690	20 17	5.56	77 923 60	4 264 260
241 495 16	1 908 720	20 17	4.67	59 909 80	4 290 480
17 143 804	1 954 524	20 17	4.22	51 103 817	4 291 701
49 127 337	2 097 151	20 16	1.56	57 89 863	4 377 999
21 115 946	2 284 590	21 17	4.22	49 123 727	4 381 629
23 117 917	2 467 647	21 17	4.22	47 149 633	4 432 899
Triple	Triples with $SQ = 2^k - 1$.				
--------	--------------------------------				
45	209 479 4504995 22 17 1.56 77 123 608 5758368 22 17 2.00				
45	217 463 4521195 22 17 1.56 63 257 359 5812569 22 17 2.00				
49	145 639 4540905 22 17 2.67 73 147 547 5869857 22 17 1.56				
47	177 548 4558812 22 17 2.67 65 237 383 5900115 22 17 0.67				
47	191 513 4605201 22 17 2.67 157 523 72 5911992 22 17 1.56				
47	497 198 4625082 22 17 1.56 95 609 104 6016920 22 17 2.00				
103	777 58 4641798 22 17 2.89 193 447 70 6038970 22 17 0.67				
65	831 86 4645290 22 17 2.00 73 175 477 6093675 22 17 0.67				
51	145 631 4666245 22 17 2.67 79 145 534 6116970 22 17 1.56				
47	225 443 4684725 22 17 1.56 135 553 82 6121710 22 17 1.56				
47	233 429 4697979 22 17 1.56 73 423 202 6237558 22 17 0.67				
109	747 58 4722534 22 17 2.89 77 173 471 6274191 22 17 0.67				
47	293 345 4750995 22 17 2.00 71 291 305 6301605 22 17 0.89				
227	437 48 4761552 22 17 1.56 123 557 92 6303012 22 17 2.00				
63	97 781 4772691 22 17 2.89 73 237 367 6349467 22 17 0.67				
51	565 166 4783290 22 17 2.67 73 327 268 6397428 22 17 0.89				
61	105 751 4810155 22 17 2.89 105 109 559 6397755 22 17 2.00				
73	807 82 4830702 22 17 2.00 205 411 76 6403380 22 17 0.67				
57	127 673 4871847 22 17 2.89 77 197 423 6416487 22 17 0.67				
49	295 339 4900245 22 17 2.00 85 151 501 6430335 22 17 0.67				
51	197 488 4902936 22 17 1.56 81 463 172 6450516 22 17 0.67				
51	257 383 5019981 22 17 2.00 103 117 541 6519591 22 17 2.00				
51	341 290 5043390 22 17 2.00 89 149 495 6564195 22 17 0.67				
55	177 523 5091405 22 17 2.67 81 191 425 6575175 22 17 0.67				
57	173 527 5196747 22 17 2.67 103 127 513 6710553 22 17 2.00				
61	603 142 5223186 22 17 2.67 81 271 310 6804810 22 17 0.89				
55	217 438 5227530 22 17 1.56 81 287 293 6811371 22 17 0.89				
55	409 254 5263830 22 17 1.56 113 119 507 6817629 22 17 0.89				
73	103 702 5278338 22 17 2.00 85 387 208 6842160 22 17 0.67				
71	681 110 5318610 22 17 2.00 89 183 422 6873114 22 17 0.67				
59	183 497 5366109 22 17 1.56 117 499 118 6889194 22 17 0.89				
63	577 148 5379948 22 17 2.67 235 349 84 6889260 22 17 0.67				
81	95 701 5394195 22 17 2.00 89 203 387 6991299 22 17 0.67				
57	235 403 5398185 22 17 1.56 103 457 150 7060650 22 17 0.67				
161	543 62 5420226 22 17 2.67 93 187 406 7060746 22 17 0.67				
61	171 520 5424120 22 17 2.67 203 381 92 7115556 22 17 0.67				
71	117 653 5424471 22 17 2.00 113 135 467 7124085 22 17 0.67				
57	311 308 5459916 22 17 2.00 127 129 448 7339584 22 17 0.67				
59	219 425 5491425 22 17 1.56 103 177 403 7347093 22 17 0.67				
81	103 667 5564781 22 17 2.00 95 257 303 7397745 22 17 0.89				
65	159 539 5570565 22 17 1.56 97 223 342 7397802 22 17 0.67				
81	655 106 5623830 22 17 2.00 247 313 96 7421856 22 17 0.67				
73	127 609 5646039 22 17 2.00 107 173 402 7441422 22 17 0.67				
61	271 345 5703195 22 17 2.00 233 327 98 7466718 22 17 0.67				
TABLE 2. (Continued.) Triples with $SQ = 2^k - 1.$

k	103	205	357	15	577	871	103	219	337	117	163	400	113	177	383	103	265	282	105	227	323	113	197	351	109	225	319																																																																																																																																																												
	103	205	357	15	577	871	103	219	337	117	163	400	113	177	383	103	265	282	105	227	323	113	197	351	109	225	319																																																																																																																																																												
15	105	227	323	113	197	351	109	225	319	117	191	353	117	323	519	135	361	166	117	323	519	135	361	166	117	323	519																																																																																																																																																												
156112	7538055	22	17	0.67	35	617	771	16649745	23	19	3.56	17967001	24	18	0.89	18040676	24	18	1.56	18282810	24	19	3.56	19122195	24	19	3.56	20185169	24	18	0.89	21632215	24	18	0.89	21799660	24	18	0.22	22381485	24	19	3.56	22834350	24	19	3.56	23053020	24	19	2.89	23597860	24	18	0.22	24226870	24	18	0.22	29129925	24	19	2.00	31217355	24	19	2.00	32638683	24	19	2.00	33005805	24	19	1.56	33859215	25	19	2.00	34139892	25	19	1.56	35150220	25	19	2.00	35643432	25	19	1.56	36261270	25	19	1.56	37890237	25	19	1.56	38228190	25	19	2.00	38285415	25	19	1.56	39308700	25	19	1.56	39447342	25	19	2.00	39620280	25	19	1.56	40591785	25	19	2.00	41718765	25	19	2.00	42769965	25	19	2.00	44434005	25	19	1.56	44595810	25	19	1.56	47999643	25	19	0.67	48563610	25	19	0.89	48671820	25	19	0.89	48794883	25	19	0.67	49594440	25	19	0.67	49841220	25	19	0.67	50673000	25	19	0.67	50850267	25	19	0.67	51485133	25	19	0.89	52316565	25	19	0.67	52714892	25	19	0.67
TABLE 2. (Continued.) Triples with $\text{SQ} = 2^k - 1$.

197	275	996
183	887	336
173	411	776
169	465	703
185	351	857
183	385	799
253	955	234
177	539	599
179	527	609
181	535	597
265	903	244
217	855	316
255	257	896
217	319	849
191	483	641
193	463	663
207	385	751
219	395	713
243	325	784
211	565	522
217	439	654
215	509	573
231	401	683
227	441	635
225	607	466
265	319	753
253	351	721
243	389	680
247	381	685
281	311	738
235	621	442
511	513	256
267	605	416
337	655	306
291	361	643
399	593	290
321	355	607
301	507	460
305	459	503
395	551	326
321	433	511
433	495	334
343	505	414

731	405	482
387	485	386
399	407	449
163	859	889
211	901	772
233	683	971
317	677	839
593	911	338
373	643	796
427	577	799
487	499	817
629	707	452
607	993	934
641	911	975
647	887	993
697	859	963
757	823	933
747	893	872
775	873	862
797	849	863

TABLE 2. (Continued.) Triples with $\text{SQ} = 2^k - 1$.

731	405	482
387	485	386
399	407	449
163	859	889
211	901	772
233	683	971
317	677	839
593	911	338
373	643	796
427	577	799
487	499	817
629	707	452
607	993	934
641	911	975
647	887	993
697	859	963
757	823	933
747	893	872
775	873	862
797	849	863

7 xc7a200tfbg484-2 in Vivado 2018.3 and the strategy of synthesis was highly area optimized. The modeling results were taken from an implementation run report.

The Fig. 3 shows a block diagram of the magnitude comparison operation using the diagonal function of the form 2^k. The moduli set $\{m_1, m_2, \ldots, m_n\}$ has bit widths a_1, a_2, \ldots, a_n. Multiplication by constants is performed using the compression technique from [19]. First, partial product generator (PPG) forms partial products. Then, they are summed by carry save adder (CSA) tree and Kogge-Stone adder (KSA). The results of modeling are shown in Table 1.

The simulation of magnitude comparison shows that the using $\{43, 51, 79, 91\}$ moduli set allows to reduce delay of device by 4%, but requires 29% more number of LUTs and 37.96% more power consumption compare to the using $\{5, 29, 93, 313\}$ moduli set. We do not consider an area parameter since better balance is not necessarily the best bit-width solution. The known $\{5, 29, 93, 313\}$ moduli set has bit-widths $\{3, 5, 7, 9\}$ of computing channels, and the proposed $\{43, 51, 79, 91\}$ moduli set has bit widths $\{6, 6, 7, 7\}$. This fact explains the delay advantage of the comparator with $\{43, 51, 79, 91\}$ moduli set.

These results confirm our conclusions based on values of $\log_2 M$ and β. As for hardware resources, in [20] the authors
shown that selection of the appropriate moduli set should be based on the final usage of the RNS system. At first, we need to cover required dynamical range but for usage of hardware resources dynamical range is the most critical. For the {43, 51, 79, 91} moduli set we have $M = 15765477$, $\log_2 M \approx 23.9$, and for the {5, 29, 93, 313} we have it much fewer $M = 4220805$, $\log_2 M \approx 22.0$. Values of modeling results were normalized using division by bit width. The normalized results show that the use of {43, 51, 79, 91} moduli set allows to reduce delay of device by 11.58%, but requires 23% more number of LUTs and 32.59% more power consumption compare to the using {5, 29, 93, 313} moduli set. This point defines the difference in hardware usage for these moduli sets. In other words, a suitable trade-off is needed according to dynamical range and balance, that is why it is not possible to introduce single moduli set which is best for all applications.

VIII. DISCUSSION

The methodology developed in Sections 2-4 can be applied for investigations in other cases. It could be quite easily replicated for classification results for triples with $SQ = 2^k + 1$. The application for quadruples with $SQ = 2^k \pm 1$ could be very similar to our treatment of the case of triples with two odd and one even modules. Indeed, in this case we can start (signifying m_4 to be even) with the representation

$$2^k = m_4 (m_1 m_2 + m_2 m_3 + m_1 m_3) + (m_1 m_2 m_3 \pm 1),$$

in order to apply Lemma 1 with the even integers $a = m_4 (m_1 m_2 + m_2 m_3 + m_1 m_3)$ and $b = (m_1 m_2 m_3 \pm 1)$.

Other, more complicated, forms of SQ will require suitable generalizations (in fact, consideration of different cases) of Lemma 1.

The work [21] raises the question of finding the best parameters of the RNS in terms of the number of modules and their performance. The approaches proposed in this paper allow us to answer the question about the best RNS moduli sets in terms of the performance of algorithms based on the diagonal function. In our opinion, the best practical solution for performance is the choice of a RNS with four modules covering the given range M and having the smallest β. Suitable cases for ranges from 21 to 36 bits can be found in Appendix B. Such ranges are usually sufficient to solve most practical problems in digital processing of signals and images. Another important issue in the RNS theory is the problem of the effective implementation of the reverse conversion. As shown in [7], even unbalanced triples and quadruples can show good results for reverse converters based on a diagonal function.
Therefore, the triples and quadruples found in this paper can further improve the result for reverse converters, due to the greater balance of the RNS modules.

Further research will be related with testing algorithms using SQ on FPGA and GPU. These algorithms will be used to develop faster methods of digital signal processing, cryptography, machine learning using the proposed quadruples for RNS with SQ. It would also be interesting to study the relationship between β and loss due to downtime in an unbalanced RNS. We can determine the connection between β and losses due to equipment downtime in an unbalanced RNS, but this requires a very large number of hardware implementations and this is a topic for a separate study. But even in this case, for each system, in order to classify by β, it will be necessary to first determine acceptable levels of losses. In other words, it would be interesting to theoretically or experimentally determine the threshold for β below which the RNS could be considered well balanced, and above which the RNS could be considered poorly balanced. Another interesting area of further research is the question of finding an RNS with a large number of modules (6, 8 etc.) and with $SQ = 2^k$. For example, it can be shown that there exist a unique such 6-tuple with elements less than 500. The main problem in this way is the increasing computational complexity of the search algorithm.

VIII. CONCLUSION

We presented heuristic algorithms for generation of RNS triples with $SO = 2^k - 1$ and quadruples with $SO = 2^k$ for some k. Such classification results could be useful for designers of RNS in their search for good performance. Thus, we also discussed performance issues. Our approach is based on careful dealing with the exponent of 2 in the expressions which naturally arise in targeting the corresponding form of SO. The measure of RNS balance was proposed. Also, perfectly balanced RNS were defined and found among triples.

APPENDIX A

See Table 2.

APPENDIX B

See Table 3.

Remark: k is even, between 20 and 30.

REFERENCES

[1] C.-H. Chang, A. S. Molahasoeini, A. A. E. Zarandi, and T. F. Tay, “Residue number systems: A new paradigm to data path optimization for low-power and high-performance digital signal processing applications,” IEEE Circuits Syst. Mag., vol. 15, no. 4, pp. 26–44, 4th Quart., 2015.

[2] N. Chervyakov and P. Lyakhov, “RNS-Based Image Processing,” in Embedded Systems Design with Special Arithmetic and Number Systems, Cham, Switzerland: Springer, 2017, pp. 217–245.

[3] S. Asif, O. Andersson, J. Rodrigues, and Y. Kong, “65-nm CMOS low-energy RNS modular multiplier for elliptic-curve cryptography,” IET Comput. Digit. Techn., vol. 12, no. 2, pp. 62–67, Mar. 2018.

[4] N. I. Chervyakov, P. A. Lyakhov, N. N. Nagornov, M. V. Valueva, and G. V. Valuev, “Hardware implementation of a convolutional neural network using calculations in the residue number system,” Comput. Opt., vol. 43, no. 5, pp. 857–868, Oct. 2019.

[5] C. Chang, W. Lee, Y. Liu, B. Goi, R. W. Phan, “Signature gateway: Offloading signature generation to IoT gateway accelerated by GPU,” IEEE Internet Things J., vol. 5, no. 4, pp. 4448–4461, Nov. 2019.

[6] N. Chervyakov, M. Babenko, P. Lyakhov, and I. Lavrenenko, “An approximate method for comparing modular numbers and its application to the division of numbers in residue number systems,” Cybern. Syst. Anal., vol. 50, pp. 977–984, Apr. 2014.

[7] M. Valueva, G. Valuev, N. Semyonova, P. Lyakhov, N. Chervyakov, D. Kaplan, and D. Bogaevskiy, “Construction of residue number system using hardware efficient diagonal function,” Electronics, vol. 8, no. 6, p. 694, Jun. 2019.

[8] N. I. Chervyakov, P. A. Lyakhov, N. F. Semyonova, and M. V. Valueva, “On RNS with VLSI-friendly diagonal function,” in Proc. Int. Multi-Conference Eng., Comput. Inf. Sci. (SIBIRCON), 2017, pp. 131–134.

[9] G. Dimaro, S. Impedovo, and G. Pirlo, “A new technique for fast number comparison in the residue number system,” IEEE Trans. Comput., vol. 42, no. 5, pp. 608–612, May 1993.

[10] S. J. Piestrak, “A note on RNS architectures for the implementation of the diagonal function,” Inf. Process. Lett., vol. 115, no. 4, pp. 453–457, Apr. 2015.

[11] A. Onomdi and B. Premkumar, Residue Number Systems: Theory and Implementation, London, U.K.: Imperial College Press, 2007, p. 296.

[12] K. Ireland, M. Rosen. A Classical Introduction to Modern Number Theory, 2nd ed. New York, NY, USA: Springer-Verlag, 1990.

[13] P. Patronik and S. J. Piestrak, “Design of reverse converters for a new flexible RNS five-Moduli set 2.2+-1.2+1.2+1.2+-1.1+1 Even),” Circuits, Syst., Signal Process., vol. 36, no. 11, pp. 4593–4614, 2017.

[14] R. Chaves and L. Sousa, “Improving residue number system multiplication with more balanced moduli sets and enhanced modular arithmetic structures,” IET Comput. Digit. Techn., vol. 1, no. 5, pp. 472–480, Sep. 2007.

[15] I. A. Kalmykov, A. V. Veligosa, D. I. Kaplan, D. M. Klionsky, and V. V. Gulsansky, “Parallel-pipeline implementation of digital signal processing techniques based on modular codes,” in Proc. XIX IEEE Int. Conf. Soft Comput. Meas. (SCMi), May 2016, pp. 213–214.

[16] D. I. Kaplan, A. V. Voznesenskiy, V. V. Gulsansky, and D. V. Bogaevskiy, “Application of non-positional codes for FIR-filter implementation using computers with CUDA technology,” in Proc. IEEE Conf. Russian Young Researchers Electr. Electron. Eng. (EIConRus), Jan. 2018, pp. 1086–1089.

[17] K. Isupov, “Using floating-point intervals for non-modular computations in residue number system,” IEEE Access, vol. 8, pp. 58603–58619, 2020.

[18] P. Mohan, Residue Number Systems: Theory and Applications, Basel, Switzerland: Birkhauser, 2016.

[19] R. Matos, R. Paludo, N. Chervyakov, P. Lyakhov, and H. Pettenghi, “Efficient implementation of modular multiplication by constants applied to RNS reverse converters,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), Baltimore, MD, USA, May 2017, pp. 1–4.

[20] M. Akkal and P. Siy, “A new mixed radix conversion algorithm MRC-II,” J. Syst. Archit., vol. 53, pp. 577–586, Dec. 2007.

[21] A. S. Molahasoeini, S. Sorouri, and A. A. E. Zarandi, “Research challenges in next-generation residue number system architectures,” in Proc. 7th Int. Conf. Comput. Sci. Educ. (ICCSE), Jul. 2012, pp. 1658–1661.
NIKOLAY I. CHERVYAKOV received the Doctor of Engineering Sciences degree from the Department of Applied Mathematics and Mathematical Modeling, North-Caucasus Federal University. He is currently a Professor and the Head of the Department of Applied Mathematics and Mathematical Modeling, North-Caucasus Federal University. He was an Honored Worker of Science and Technology of the Russian Federation, an Academician of the International Academy of Informatization, and an Expert of the Russian Academy of Sciences. His research interests include modular arithmetic, artificial neural networks, digital image processing, and cryptography.

PAVEL LYAKHOV received the degree and Ph.D. degrees in mathematics from Stavropol State University, in 2009 and 2012, respectively. Since 2012, he has been working with North-Caucasus Federal University. He is the author of over 30 scientific papers. His research interests include high-performance computing, residue number systems, digital signal processing, and image processing.

NATALIYA SEMYONOVA is currently an Associate Professor with the Department of Higher Algebra and Geometry, North-Caucasus Federal University. Her research interests include modular arithmetic, high-performance computing, and signal processing.

ANTON NAZAROV received the bachelor's degree in mathematics from Stavropol State University, in 2011, and the master's degree in applied mathematics and informatics and the Ph.D. degree from NCFU, in 2015 and 2019, respectively. He is currently an Assistant with the Department of Applied Mathematics and Mathematical Modeling, North-Caucasus Federal University. He is the author of over 34 articles. His research interests include modular arithmetic, residue number systems, FPGA, computer arithmetic, high-performance computing, and fault-tolerant computing.

MARIA VALUEVA (Graduate Student Member, IEEE) received the bachelor’s and master’s degrees in applied mathematics and computer science from North-Caucasus Federal University, in 2016 and 2018, respectively, where she is currently pursuing the master’s degree with the Department of Applied Mathematics and Mathematical Modeling. Her research interests include high-performance computing, modular arithmetic, artificial neural networks, and digital image processing.

GEORGI BOYVALENKOV received the B.Sc. degree from Sofia University, in 2012. He is currently a Senior Software Developer/Engineer with IObosch. His research interests include the Internet of Things, device management, and OSGi.

DANIL BOGAEVSKIY received the M.S. degree in software engineering and computer applications (applied mathematics and informatics) from the Faculty of Computer Science and Technology, Saint Petersburg Electrotechnical University “LETI”, in 2017. He is currently pursuing the Ph.D. with the Department of Automation and Control Processes, Saint Petersburg Electrotechnical University “LETI”. He is the author of more than ten articles.

DMITRI KAPLUN (Member, IEEE) received the Ph.D. degree from Saint Petersburg Electrotechnical University “LETI”, Saint Petersburg, Russia, in 2009. He was an Associate Professor from Saint Petersburg Electrotechnical University “LETI”, in 2015. He is currently a Senior Researcher with Saint Petersburg Electrotechnical University “LETI”. He defended his Ph.D. thesis in digital signal processing with Saint Petersburg Electrotechnical University “LETI”, in 2009. He regularly takes part in different collaborative projects related with signal processing, artificial neural networks, and software-hardware implementation of digital signal processing algorithms. His most substantial results are in the fields of digital signal and image processing, embedded systems, artificial neural networks, and machine learning. He is the author of more than 50 papers in journals and conference proceedings. His current research and academic work are concerned with digital signal and image processing, radio monitoring and hydroacoustic monitoring applications, embedded and reconfigurable systems, computer vision, and machine learning.
