Relationship between bodyweight and spinopelvic alignment in Chinese adult people: A pilot study

CURRENT STATUS: UNDER REVIEW

QingXi Zhang
Peking University People's Hospital

FuQiang Gao
China-Japan Friendship Hospital

YunTing Wang
China-Japan Friendship Hospital

ZiRong Li
China-Japan Friendship Hospital

Ozaki Koji
China-Japan Friendship Hospital

Wei Sun
sun887@163.com
China-Japan Friendship Hospital
Corresponding Author

DOI:
10.21203/rs.2.14664/v1

SUBJECT AREAS
Orthopedics

KEYWORDS
Obesity, Spinopelvic alignment, Adult people
Abstract

Background The purpose of this study is to evaluate the correlation between spinal alignment and the obesity parameters in healthy Chinese adult volunteers.

Methods This pilot study included 100 Chinese healthy adult volunteers, 36 males and 64 females. The obesity parameters measured were BMI, waist circumference (WC), sagittal abdominal diameter (SAD), transverse abdominal diameter (TAD) and RR (the ratio of SAD to TAD). The sagittal spinopelvic parameters included pelvic incidence (PI), pelvic tilt (PT), pelvic angulation (PA), sacral slope (SS), sacral inclination (SI), lumbar lordosis (LL) and the disc angle of L5/S1. The coronal spinopelvic parameters included the Cobb angle of the major curve of the spine, lumbar scoliosis (LS) and pelvic obliquity (PO).

Results The mean BMI of the males and females was 28.7 ± 3.7 kg/m2 and 26.8 ± 2.3 kg/m2 respectively; mean WC, 88.39 ± 9 cm and 82.6 ± 2.7 cm respectively. In the females, strong correlation was found between BMI and PI, WC and PT, and WC and PI. In the males, no strong correlation was found between the obesity and spinopelvic alignment parameters. RR showed a positive linear correlation with PA and PT in both groups. None of the coronal spinopelvic parameters showed a correlation with the obesity parameters in either group.

Conclusions BMI and WC had a strong influence on some spinopelvic parameters, but only in females. In individuals with abdominal obesity, the sagittal spinopelvic alignment is likely to change, however there is little effect on the coronal spinopelvic.

Background

The epidemic of overweight and obesity is becoming a serious problem in modern society, especially in developed countries as well as some developing countries. Obesity is characterized by an imbalance between energy intake and energy expenditure [1,2].
There are some indicators to measure the degree of obesity. For example, body mass index (BMI) is a commonly used indicator used to evaluate the personal health status [3]. BMI is determined from an individual’s height and weight only; therefore, although highly useful, the application of BMI is limited. Other indicators, such as the distribution of body fat (sagittal abdominal diameter (SAD), transverse abdominal diameter (TAD)) and waist circumference (WC) are used along with BMI to identify abdominal obesity [4–6]. Obesity is considered to be a strong risk factor for cardiovascular disease, cancer, stroke, and endocrine disorders. In addition, increase in body weight may increase the demand on the musculoskeletal system, particularly the lumbar spine [1,7]. This is supported by studies, which have shown that low back pain is correlated with obesity [8–11,27].

In the standing position, the human body is made up of a set of mutually articulating sections: The head is balanced on and connected to the trunk by the cervical spine; the trunk articulates with the pelvis, which in turn articulates with the lower limbs at the hip joints to maintain a stable posture and to expend the minimum amount of energy [13–15].

In the upright standing posture, the spinal load is primarily influenced by changes in body weight, especially the load on the lumbar vertebrae. Excessive mechanical load on the trunk, applied intermittently or repetitively over time, are however believed to play a causative role in injuries and degeneration [7]. Multiple studies have reported the normative values for parameters associated with spinopelvic alignment in populations of varying ages, races and pathologic conditions [16–19]. However, to our knowledge, the association of BMI, WC, SAD and TAD with spinopelvic parameters in the sagittal and coronal planes has never been studied before. Therefore, the purpose of this study is to evaluate the correlation between obesity parameters and spinopelvic alignment in healthy Chinese adult volunteers.

Materials And Methods
Participants

This is a pilot study of 100 healthy Chinese adult volunteers (36 males and 64 females) who were recruited based on the following inclusion and exclusion criteria. We included individuals of the Han race who were aged between 18 and 45 years. Another requirement was for the participants to have an occupation that involved standing most of the time, such as sales jobs. The final criterion was the availability of a standing lateral radiograph of the spine and pelvis in which the spine from T1 to S1 and both femoral heads were visible.

We excluded individuals with sitting-type jobs, such as bus drivers. Those with a history of spine or pelvic surgery were also excluded. Further, individuals with a history of back pain, degenerative spine disease, or idiopathic scoliosis and those with hip or knee joint deformities were also excluded.

All subjects provided their written informed consent for the study after the experimental protocol was explained to them. Further, this study was approved by the Institutional Review Board of China-Japan Friendship Hospital.

Measurement of obesity parameters

BMI was computed by dividing the weight in kilograms by the square of the height in meters (kg/m²) [3]. Weight was measured using a platform scale to the nearest 0.1kg. Height was measured using a tape to the nearest 0.1cm. According to the classification of BMI by the World Health Organization, BMI in the range of 18.5-25.0 kg/m² is normal, 25.0-29.9 kg/m² is overweight grade 1; 30.0-39.9 kg/m², overweight grade 2; and 40.0 kg/m² overweight grade 3.

WC was measured with a tape to the nearest 0.1 cm, with the patient wearing light garments. It was measured at the midpoint between the last rib and at the highest point
of the iliac crest at the end of normal inspiration. Central obesity (indicated by increased waist circumference) was defined as WC ≥85cm for men and ≥80cm for women.

The anterior-posterior diameter, which is a measure of the abdominal extension along the sagittal plane in the standing position, is also called SAD. The transverse diameter, which is a measure of the abdominal extension along the coronal diameter in the standing position, is also called the TAD. SAD is determined using a radiograph, with the diameter extending from skin to skin through the center of the abdomen in the anterior-posterior direction. TAD is defined as the largest diameter from skin to skin through the center of the abdomen in both lateral directions in other image. These measurements were determined to the nearest 0.1 cm (Figure 1). Relative ratio (RR), which is defined as the ratio of SAD to TAD, was also used to study the relationship between the spinopelvic parameters and abdominal obesity.

Measurement of spinopelvic alignment parameters

Participants keep an upright relaxed position, looking forward, with their knees straight, arms gently clasped in front of their trunk and a distance of 25cm between their feet. All the subjects underwent frontal and lateral radiography of the entire spine and hip joints. Lateral radiographs of the lumbar spine were obtained on a vertical film (30×90 cm) while maintaining a constant distance between the subject and the radiographic source. The sagittal and coronal spinopelvic parameters were measured on the radiographs. The sagittal spinopelvic parameters included pelvic incidence (PI), pelvic tilt (PT), pelvic angulation (PA), sacral slope (SS), sacral inclination (SI), lumbar lordosis (LL) and the disc angle of L5/S1. The coronal spino-pelvic parameters included the Cobb angle of the major curve of the spine, lumbar scoliosis (LS) and pelvic obliquity (PO). These parameters are defined and described clearly in the legend to the figures, as it is easier to understand them from the depictions in the figures (Figures. 2 and 3).
All the measurements were made by two experienced individuals who using software program that was designed to assess the sagittal and coronal alignment of the spine and pelvis. In order to determine the inter-observer and intra-test reliability, two observers measured the same radiograph two times. The angular parameters were expressed in degrees.

Statistical analysis

All data analyses were performed using SPSS version 15.0 (SPSS Inc. Chicago, IL). The mean values, and standard deviation (SD) were obtained for all the measurements. Pearson’s correlation analysis was used to determine correlations between the obesity and spinopelvic alignment parameters. A correlation coefficient (CC) of <0.5 was considered to indicate relatively weak correlation, while a CC of >0.5 was considered to indicate relatively strong correlation. Levene’s test for equality of variances was used to verify the gender-based differences between the measurements. All the results are expressed as mean ± standard deviation (SD).

Results

The participants were grouped according to gender (male, n = 36; female, n = 64). The mean age of the male participants was 30.9±7 years (19 to 45 years), and the female was 29.7±7.3 years (18 to 44 years). The mean BMI of the male participants was 28.7±3.7 kg/m², and the female was 26.8±2.3 kg/m². Further, the mean WC of the male participants was 88.39±9cm, and the female was 82.6±2.7cm. Levene’s test for equality of variances showed the presence of gender-based difference in the variables. Therefore, Pearson’s correlation analysis was conducted separately in the male and female groups. According to the results of Pearson’s correlation analysis, in the male group, BMI, WC and TAD were not correlated with the obesity parameters, while SAD
was weakly correlated with LL (CC = 0.459) and PA (CC = 0.331) (Table 1). In female
group, PI was strongly correlated with BMI (CC = 0.521). Furthermore, WC was correlated
with SI (CC = 0.435), PT (CC = 0.551), PA (CC = 0.436), and PI (CC = 0.539) respectively.
No spinopelvic parameter was correlated with TAD. However, SAD was correlated with
both PT (CC = 0.450) and PA (CC = 0.393) weakly (Table 2).
As shown in Table 1, RR was correlated with LL (CC = 0.562), SS (CC = 0.552), SI (CC =
0.558), PT (CC = 0.534), and PA (CC = 0.550). In Table 2, RR was correlated with PT (CC =
0.391) and PA (CC = 0.349). Contrary to the sagittal spinopelvic parameters, the coronal
spinopelvic parameters did not show a strong correlation with the spinopelvic alignment
parameters.

Discussion

Obesity is a serious medical problem that is associated with various musculoskeletal
disorders, especially the spine [12, 2]. Although the interaction between spinopelvic
disease and obesity is not clear, the relationship between low back pain and BMI has been
demonstrated by many studies [8–11,27]. Little is known about the importance of
spinopelvic parameters in the diagnosis and treatment of human musculoskeletal
disorders, even though these parameters are known to have clinical implications. For
example, the risk of early distal discopathy increases in patients with low PI and a flat
back [20]. In addition, patients with chronic low back pain typically have a low SS, LL, and
small PI [11]. Biomechanics play an important role in the initiation and progression of
several spine pathologies, and it is imperative to understand spinopelvic alignment in
obese patients. Therefore, the present study made an objective analysis of the correlation
between spinopelvic parameters and the obesity parameters.

Our analyses showed that coronal spinopelvic parameters have no correlation with both
BMI and WC, which means that obesity may not affect the coronal spinopelvic
arrangement. In male group, BMI and WC were not correlated with sagittal spinopelvic parameters. But in female group, sagittal spinopelvic parameter (PI) was correlated with both BMI and WC strongly. It seems that obese female tend to have higher PI values. PI, an anatomical parameter, is unique to each individual and independent of the spatial orientation of the pelvis [21]. It has a geometrical relationship with two positional parameters, PT and SS: PI = PT + SS [22]. A study concluded that PI is significantly correlated with SS, and that there is a positive linear relationship between SS and LL. This implied that in females, when PT increased, the balance of the sagittal spinopelvic arrangement was maintained by an increase in LL. This may explain why obese females tend to have hyperlordosis and why their pelvis is usually forward-inclined.

Whitcome et al. [23] pointed out that in bipeds, the upper body is stabilized by positioning of the center of mass (COM) on the trunk above the hips. However, in women who are pregnant, the body shape changes as a result of the extra mass, which results in a shift of the body’s COM towards ahead [23]. In a typical pregnant human female with a naturally extended back, the COM is recovered by means of increased lumbar lordosis, a stable positional alignment with reduced hip torque but exacerbated spinal shearing load. This indicates that increased abdominal circumference might affect the sagittal spinopelvic alignment. Abdominal circumference can reflect the form of the abdomen, and it is an appropriate index for evaluating the influence of obesity on the spinopelvic alignment under certain conditions. However, as the abdominal circumference can only be measured in a single plane at a time, it may not suitable for evaluating changes in the COM in the sagittal and coronal planes.

Kvist et al. [24] proposed the use of forward TAD and SAD to estimate visceral obesity. We therefore thought it necessary to determine the correlation of SAD and TAD with the spinopelvic parameters. The results indicated that TAD was not correlated with any of the
spinopelvic parameters in the two groups. With regard to SAD, it was weakly correlated with PA and LL in the male group, and with PA and PT in the female group. Further, the results of the correlation analysis showed that SAD was linearly correlated with PA and PT in both groups, but the correlation was not strong [Figure. 4]. In the female group, a positive correlation was found between SAD and PA. As increase in PA and PT is often associated with pelvic incline and greater LL, this finding may have important implications [27]. Further, RR (the ratio of SAD to TAD) had a positive linear correlation with PA and PT (Figure. 5). These findings indicate that people with abdominal obesity, SAD may have greater impact on the spinopelvic parameters than TAD.

From the findings of our research, we can deduce that changes in the shape of the lumbar spine caused by obesity impacts females more than males; this may be attributed to the differences in the shape of the spine between males and females. The spine and pelvis of females are more dorsally inclined, either as a whole (T1–L5–SSI) or specifically with regard to the thoracic and thoracolumbar vertebrae. This is because in bipedal hominids, selective pressure is exerted on the development of lumbar lordosis early on, which is traceable to the biomechanical demands of pregnancy [23,25]. This explanation can be extended to the case of obese individuals, in whom there is increased pressure on the spine and pelvis, which results in shifting of the COM backwards in order to maintain standing balance. This may change the position of the lumbar spine in the long term. Hyperlordosis results in degenerative spondylolisthesis, and its main symptoms are lumbago, degenerative discopathy and Baastrup disease, it consequently results in disturbance of the global sagittal balance of the spine [20,26]. All together, these findings highlight the importance of maintaining an appropriate amount of weight by incorporating an appropriate amount of exercise to keep the spine and pelvis in a healthy condition.

Conclusion
This is the first analysis to investigate the association between sagittal and coronal spinopelvic parameters and abdominal obesity. The values of the spinopelvic parameters were found to be high in obese individuals, which means that BMI and WC may influence on the spinopelvic parameters. Further, in individuals with abdominal obesity, the sagittal spinopelvic alignment is likely to change as a result of hyperlordosis and forward inclination of the pelvis, but there is little affect on the coronal spinopelvic alignment.

List Of Abbreviations

Body mass index (BMI), waist circumference (WC), sagittal abdominal diameter (SAD), transverse abdominal diameter (TAD) and the ratio of SAD to TAD (RR), pelvic incidence (PI), pelvic tilt (PT), pelvic angulation (PA), sacral slope (SS), sacral inclination (SI), lumbar lordosis (LL), the disc angle of L5/S1, lumbar scoliosis (LS), pelvic obliquity (PO), standard deviation (SD), correlation coefficient (CC), center of mass (COM).

Declarations

Ethics approval and consent to participate

This study was approved by our Institutional Review Board.

Consent for publication

Not applicable.

Availability of data and materials

All data were provided in the table 1 and 2.

Acknowledgement

We thank the members of the Department of Epidemiology and Bio-statistics, School of Public Health, Peking University for help with the statistical analysis, and Fan Meng (experienced nurse) for help with data collection.

Conflict of Interest

The authors declare that they have no competing of interest.
Author contributions:
Qingxi Zhang: Data Collection, Manuscript writing, Data analysis
Fuqiang Gao: Project development, Data analysis
Yuting Wang, Zirong Li, Ozaki Koji: Project development, Data Collection
Wei Sun: Project development, Manuscript editing

References
1. Pereira BJ, de Holanda CV, Ribeiro CA, de Moura SM, Galvao PE, Quidute BS, et al. Impact of body mass index in spinal surgery for degenerative lumbar spine disease. Clinical Neurology and Neurosurgery. 2014;127:112–115.
2. Donna MU, Ivan K, Kevin T, Wang Y, Wluka AE, OSullivan R, et al. Obesity Is Associated With Reduced Disc Height in the Lumbar Spine but Not at the Lumbosacral Junction. Spine. 2014;39:962–966.
3. Chittaranjan S Y, John S Y. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet. 2004;363:157–63.
4. Cui LH, Shin MH, Kweon SS, Choi JS, Rhee JA, Lee YH, et al. Sex-related differences in the association between waist circumference and bone mineral density in a Korean population. BMC Musculoskeletal Disorders. 2014;2:15:326.
5. Manuel GS, Jin L, Raymond L, Cuesta-Vargas AI. Spine Curvature Analysis between Participants with Obesity and Normal Weight Participants: A Biplanar Electromagnetic Device Measurement. BioMed Research International. 2014. DOI: 10.1155/2014/935151.
6. Jeong YY, Donghee K, Seon HL, Park MJ, Choi SH, Lee CH, et al. Sagittal Abdominal Diameter Is a Strong Anthropometric Measure of Visceral Adipose Tissue in the Asian General Population. Obesity Surgery. 2013;23:874–881.
7. M. Hajihosseinali, N. Arjmand, A. Shirazi-Adl. Effect of body weight on spinal loads in various activities: A personalized biomechanical modeling approach. Journal of
Biomechanics. 2015;48:276–282.

8. Bostman OM. Body mass index and height in patients requiring surgery for lumbar intervertebral disc herniation. Spine. 1993;18:851–4.

9. Han TS, Schouten JSAG, Lean MEJ, Seidell JC. The prevalence of low back pain and associations with body fatness, fat distribution, and height. Int J Obes Relat Metab Disord. 1997;21:600–7.

10. Leboeuf-Yde C. Body weight and low back pain. Spine. 2000; 25:226–37.

11. Emmanuelle CV, Jean-Marc MT, Jerome P, Berthonnau E, Siani F, Roussouly P. Sagittal spino-pelvic alignment in chronic low back pain. Eur Spine J. 2011;20 (Suppl 5):S634–S640.

12. Jason CF, William AA, Brett H, Weinstein JN. Association Between Obesity and Functional Status in Patients With Spine Disease. Spine. 2002;27:206–312.

13. Boulay C, Tardieu C, Hecquet J, Benaim C, Mouilleseaux B, Marty C, et al. Sagittal alignment of spine and pelvis regulated by pelvic incidence: standard values and prediction of lordosis. Eur Spine. 2006;15: 415–422.

14. Eric B, Joannès D, Pierre R, Labelle H. Analysis of the Sagittal Balance of the Spine and Pelvis Using Shape and Orientation Parameters. J Spinal Disord Tech. 2005;18:40–47.

15. Gelb DE, Lenke LG, Bridwell KH, Blanke K, McEnery KW. An analysis of sagittal spinal alignment in 100 asymptomatic middle and older aged volunteers. Spine. 1995;20:135–8.

16. Zohreh H, Farid M, Ali TM, Mahdavi A, Saberi H. Lumbosacral Sagittal Alignment in Association to Intervertebral Disc Diseases. Asian Spine J. 2014;8(6):813–819.

17. Kenji E, Hidekazu S, Hirosuke N, Tanaka H, Shishido T, Yamamoto K. Characteristics of Sagittal Spino-Pelvic Alignment in Japanese Young Adults. Asian Spine J. 2014;8(5):599–604.

18. Mac-Thiong JM, Labelle H, Berthonnau E, Betz RR, Roussouly P. Sagittal spinopelvic balance in normal children and adolescents. Eur Spine J. 2007;16: 227–234.
19. Cwdric B, Jerome J, Gilles P, Roussoule P. SPINOPELVIC ALIGNMENT OF PATIENTS WITH DEGENERATIVE SPONDYLOLISTHESIS. Neurosurgery. 2007;61(5)981-986.

20. Pierre R, Joao LP. Biomechanical analysis of the spino-pelvic organization and adaptation in pathology. Eur Spine J. 2011;20(Suppl 5):S609-S618.

21. J. Legaye, G. Duval-Beaupère, J. Hecquet, C. Marty. Pelvic incidence: a fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves. Eur Spine J. 1998;7:99-103.

22. Pierre R, Joao LP. Sagittal plane deformity: an overview of interpretation and management. Eur Spine J. 2010;19:1824-1836.

23. Whitcome KK, Shapiro JL, Lieberman DL. Fetal load and the evolution of lumbar lordosis in bipedal hominins. Nature. 2010;450(7172):1075-1078.

24. Kvist H, Chowdhury B, Grangård U, Tylen U, Sjostrom L. Total and visceral adipose-tissue volumes derived from measurements with computed tomography in adult men and women: predicted equations. Am J Clin Nutr. 1988;48:1351-1361.

25. Michiel MAJ, Xavier D, Ludovic H, Skalli W, Castelein RM. Differences in Male and Female Spino-Pelvic Alignment in Asymptomatic Young Adults. Spine. 2009;34(23):826-832.

26. Hubert L, Jean-Marc MT, Pierre R. Spino-pelvic sagittal balance of spondylolisthesis: a review and classification. Eur Spine J. 2011;20(Suppl 5):S641-S646.

27. Leboeuf-Yde C, Kyvic KO, Bruun NH. Low back pain and lifestyle. Part II-obesity. Information from a population-based sample of 29,242 twin subjects. Spine. 1999;15:779-83.

Tables

Table 1. The results of the Pearson correlation test in the male group.
Obesity Parameters	Sagittal Spinopelvic Parameters						
	BMI	WC	TAD	SAD	LL	Disc angle of L5/S1	SS
BMI	.676**	.519**	.604**	0.1	0.175	0.246	
WC	.473*	.845**	0.294	0.026	0.097	-0.051	
TAD	.579**	0.12	-0.002	-0.167	.515**	.453**	
SAD							
Lumbar spine(LL)							
Disc angle OF L5/S1							
SS							
SI							
PT							
PA							
PI							
Cobb angle of L1/S1							
LS							
PO							
RR							

The values of r with superscripts * or ** are valid.
BMI: body mass index; WC: waist circumference; TAD: sagittal abdominal diameter; SAD: transverse abdominal diameter; LL: Pelvic incidence; LS: lumbar scoliosis; PO: pelvic obliquity; RR: the ratio of SAD and TAD.
**Significant correlation at the level p=0.01(99%) *Significant correlation at the level p=0.05(95%)
Figure 1

Measurement of anterior-posterior diameter and transverse diameter. (a) The sagittal abdominal diameter (SAD) is represented by the line drawn from skin to skin through the center of the abdomen in the anterior-posterior direction. (b) The transverse abdominal diameter (TAD) is represented by the line drawn from skin to skin through the largest spanning width of the abdomen in both lateral directions.
Measurement of sagittal spino-pelvic alignment parameters. (1) Pelvic incidence (PI) is defined as the angle between the line perpendicular to the sacral plate at its midpoint and the line connecting this point to the middle axis of the femoral heads. (2) Pelvic tilt (PT) is defined as the angle between the line connecting the midpoint of the sacral plate to the femoral head axis and the vertical line. (3) Pelvic angulation (PA) is defined as the angle between the vertical line and the pelvic radius line. The pelvic radius was drawn from the pelvic hip axis (point A) to the posterior-superior corner of S1. (4) Sacral slope (SS) is defined as the angle between the superior endplate of S1 and the horizontal axis. (5) Sacral inclination (SI) is defined as the angle subtended by a tangent to the posterior border of S1 and the vertical line. (6) The Cobb angle of L1-S1 in the sagittal plane is also known as lumbar lordosis (LL), and is measured using the Cobb method, between
the upper endplate of L1 and the upper endplate of S1 in the sagittal plane.(7)

The disc angle of L5/S1 is defined as the angle between the subordinate endplate of L5 and the superior endplate of S1.
Measurement of coronal spino-pelvic alignment parameters. (1) Lumbar scoliosis (LS) is measured using the Cobb method, between the upper endplate of L1 and the subordinate endplate of L5. (2) Pelvic obliquity (PO) is defined as the angle between the line passing through both iliac crests and the horizontal line. (3) Cobb angle of the major curve of the spines defined as the angle between the first centrum of the upper endplate of the major curve and last centrum of the subordinate endplate of the major curve.
The relationship between sagittal abdominal diameter (SAD), pelvic tilt (PT) and pelvic angulation (PA) in the male and female group. The graph shows that SAD is linearly correlated with PA and PT in both male and female groups.
The relationship between RR (the ratio of sagittal abdominal diameter to transverse abdominal diameter) and pelvic tilt (PT) and pelvic angulation (PA) in male and female group. The graph shows that RR is linearly correlated with PA and PT in both male and female groups.
