A FEM approximation of a two-phase obstacle problem and its a posteriori error estimate

FARID BOZORGNIA* and JAN VALDMAN**

* Department of Mathematics, Instituto Superior Técnico, Av. Rovisco Pais, P-1049-001 Lisboa, Portugal.

** Institute of Mathematics and Biomathematics, Faculty of Science, University of South Bohemia, Braníkovská 31, CZ–37005, Czech Republic and Institute of Information Theory and Automation, Academy of Sciences, Pod vodárenskou věží 4, CZ–18208 Praha 8, Czech Republic.

November 28, 2017

Abstract

This paper is concerned with the two–phase obstacle problem, a type of a variational free boundary problem. We recall the basic estimates of [22] and verify them numerically on two examples in two space dimensions. A solution algorithm is proposed for the construction of the finite element approximation to the two–phase obstacle problem. The algorithm is not based on the primal (convex and nondifferentiable) energy minimization problem but on a dual maximization problem formulated for Lagrange multipliers. The dual problem is equivalent to a quadratic programming problem with box constraints. The quality of approximations is measured by a functional a posteriori error estimate which provides a guaranteed upper bound of the difference of approximated and exact energies of the primal minimization problem. The majorant functional in the upper bound contains auxiliary variables and it is optimized with respect to them to provide a sharp upper bound. A space density of the nonlinear related part of the majorant functional serves as an indicator of the free boundary.

1 Introduction

A free boundary problem is a partial differential equation where the equation changes qualitatively across a level set of the equation solution \(u \) so the part of the domain where the equation changes is a priori unknown. A general form of elliptic free boundary problems can be written as

\[
\Delta u = f(x, u, \nabla u) \quad \text{in } \Omega, \tag{1}
\]

where the right hand side term is piecewise continuous, having jumps at some values of the arguments \(u \) and \(\nabla u \). Here \(\Omega \) is a bounded open subset of \(\mathbb{R}^n \) with smooth boundary and Dirichlet boundary conditions are considered. In this paper we are concerned about the particular elliptic free boundary problem

\[
\begin{align*}
\Delta u &= \alpha_+ \chi_{\{u>0\}} - \alpha_- \chi_{\{u<0\}} \quad \text{in } \Omega, \\
u &= g \quad \text{on } \partial \Omega.
\end{align*} \tag{2}
\]

Here, \(\chi_A \) denotes the characteristic function of the set \(A \), \(\alpha_{\pm} : \Omega \to \mathbb{R} \) are positive and Lipschitz continuous functions and \(g \in W^{1,2}(\Omega) \cap L^\infty(\Omega) \) and \(g \) changes sign on \(\partial \Omega \). The boundary

\[
(\partial \{x \in \Omega : u(x) > 0\} \cup \partial \{x \in \Omega : u(x) < 0\}) \cap \Omega,
\]

is called the free boundary. Properties of the solution of the two-phase obstacle problem, regularity of solution and free boundary have been studied in [26, 27]. Its is known that the differential equations from [2] represents the Euler-Lagrange equation corresponding to the minimizer of the functional

\[
J(v) = \int_\Omega \left(\frac{1}{2} |\nabla v|^2 + \alpha_+ \max(v, 0) + \alpha_- \max(-v, 0) \right) dx \tag{3}
\]
over the affine space

\[K = \{ v \in W^{1,2}(\Omega) : v - g \in W^{1,2}_0(\Omega) \} \] \hspace{1cm} (4)

The functional \(J : K \to \mathbb{R} \) is convex, coercive on \(K \) and weakly lower semi-continuous, hence the minimum of \(J \) is attained at some \(u \in K \). The following minimization problem is therefore uniquely solvable.

Problem 1 (Primal problem). Find \(u \in K \) such that

\[J(u) = \inf_{v \in K} J(v). \] \hspace{1cm} (5)

Note that if we let \(\alpha^- = 0 \), and assume that \(g \) is nonnegative on the boundary, then we obtain the well-known one-phase obstacle problem, see e.g. \([6, 15]\).

There are numerous papers on approximations and error analysis for the one-phase obstacle problem in terms on variational inequalities \([9, 10]\). In \([17]\) a sharp \(L^\infty \) error estimate for semilinear elliptic problems with free boundaries is given. For obstacle problem and combustion problems, the author uses regularization of penalty term combined with piecewise linear finite elements on a triangulation and then shows that the method is accurate in \(L^\infty \). Using non-degeneracy property of one-phase obstacle problem, a sharp interface error estimate is derived. In \([18]\) error estimates for the finite element approximation of the solution and free boundary of the obstacle problem are presented. Also an optimal error analysis for the thin obstacle problem is derived.

Recently, the numerical approximation of the two-phase membrane problem has attracted much interests. Most approximations are based on the finite difference methods. In \([4]\) different methods to approximate the solution are presented. The first method is based on properties of the given free boundary problem and exploit the disjointness of positive and negative parts of the solution. Regularization method and error estimates are given. The a priori error gives a computable estimate for gradient of the error for regularized solutions in the \(L^2 \). In \([3]\), the authors rewrite the two phase obstacle problem in an equivalent min-max formula then for this new form they introduce the notion of viscosity solution. Discritization of the min-max formula yields a certain linear approximation system. The existence and uniqueness of the solution of the discrete nonlinear system are shown. Also in \([2]\) the author presents a finite difference approximation for a parabolic version of the two-phase membrane problem.

A finite element scheme for solving obstacle problems in divergence form is given in \([25]\). The authors reformulate the obstacle in terms of an \(L^1 \) penalty on the variational problem. The reformulation is an exact regularizer in the sense that for large penalty parameter, it can recover the exact solution. They applied the scheme to approximate classical elliptic obstacle problems, the two-phase membrane problem and the Hele-Shaw model.

We propose a different finite element scheme for solving the two-phase obstacle problem based on the dual maximization problem for Lagrange multipliers. The main focus of the paper is the verification of a posteriori error estimates developed in \([22]\). For any obtained FEM approximation \(v \), we can explicitely compute the upper bound of the difference \(J(v) - J(u) \) of the approximate energy \(J(v) \) and of the exact unknown minimal energy \(J(u) \). Since this upper bound is guaranteed we automatically have a lower bound of the exact energy \(J(u) \). The studied a-posteriori error estimates also provide the approximate indication of the exact free boundary. This is demonstrated on two numerical tests in two space dimensions. A MATLAB code is freely available for own testing.

The structure of paper is as follows. In Section 2, we present an overview of basic concepts and mathematical background and recall energy and majorant estimates of \([22]\). Section 3 deals with discretization using finite elements: construction of the FEM approximation (Algorithm 1) and the optimization of the functional majorant (Algorithm 2). Section 4 reports on numerical examples and section 5 concludes the work.

2 Mathematical Background and Estimates

Elements of convex analysis are used throughout this paper, in particularly the duality method by conjugate functions \([8]\). For reader’s convenience, let us summarize the basic notation used in what follows:
Consider the minimization problem

\[J = \int \ldots \ \text{to be minimized,} \]

Assume that there exists a continuous linear operator \(J \) such that problem (6) has a solution \(J \).

When the functional is defined by an integral, we use the following theorems which can be found in [11].

The relation between (6) and (7) is stated in the following theorem.

Theorem 1 (Theorem 2.38 of [11]). Assume that \(V \) is a reflexive Banach space and \(Q \) is a normed vector space, and let \(l \in L(V, Q) \). Let \(J : V \times Q \rightarrow \mathbb{R} \) be proper lower semi continuous, strictly convex such that

1. There exists \(v_0 \in V \), such that \(J(v_0, lv_0) < \infty \) and \(q \rightarrow J(v_0, q) \) is continuous at \(lv_0 \).
2. \(J(v, lv) \rightarrow +\infty \), as \(\|v\| \rightarrow \infty \), \(v \in V \).

Then problem (6) has a solution \(u \in V \) also problem (7) has a solution \(p^* \in Q^* \), and

\[J(u, lv) = -J^*(l^*p^*), \]

In the case that the function \(J \) is of a separated form, i.e.,

\[J(v, q) = F(v) + G(q) \quad v \in V, q \in Q, \]

then the conjugate of \(J \) is

\[J^*(v^*, q^*) = F^*(v^*) + G^*(q^*), \]

where \(F^* \) and \(G^* \) are the conjugate functions of \(F \) and \(G \), respectively. To calculate the conjugate function when the functional is defined by an integral, we use the following theorems which can be found in [11].
Theorem 2 (Theorem 2.35 of [11]). Assume \(h : \Omega \times \mathbb{R}^n \rightarrow \mathbb{R} \) is a Carathéodory function with \(h \in L^1(\Omega) \) and suppose

\[
G(q) = \int_{\Omega} h(x, q(x)) \, dx.
\]

Then the conjugate function of \(G \) is

\[
G^*(q^*) = \int_{\Omega} h^*(x, q^*(x)) \, dx \quad \forall q^* \in Q^*,
\]

where

\[
h^*(x, y) = \sup_{\xi \in \mathbb{R}^n} [y \cdot \xi - h(x, \xi)].
\]

The compound functional \(D_J(v, q; v^*, q^*) : (V \times Q) \times (V^* \times Q^*) \rightarrow \mathbb{R} \) is defined by

\[
D_J(v, q; v^*, q^*) := J(v, q) + J^*(v^*, q^*) - \langle v, v^* \rangle - \langle q, q^* \rangle.
\]

It holds \(D_J(v, q; v^*, q^*) \geq 0 \) for all \((v, q) \in V \times Q, (v^*, q^*) \in V^* \times Q^* \) and \(D_J(v, q; v^*, q^*) = 0 \) only if the function \((v, q)\) belongs to set of subdifferential \(\partial J^*(v^*, q^*) \) and \((v^*, q^*)\) belongs to set of subdifferential \(\partial J(v, q) \), see Proposition 1.2 of [23].

2.1 Energy identity

For simplicity of notation, we introduce the positive and negative parts of a function \(v \)

\[
v^+ := \max(v, 0), \quad v^- := \max(-v, 0),
\]

so it holds \(v = v^+ - v^- \) and \(|v| = v^+ + v^-\). The Euclidean norm in \(\mathbb{R}^n \) is denoted by \(|\cdot|\). We write \([3] \) in the form \(J(v) = F(v) + G lv \), where

\[
F(v) := \int_{\Omega} (\alpha_+ v^+ + \alpha_- v^-) \, dx, \quad G lv := \frac{1}{2} \int_{\Omega} \nabla v \cdot \nabla v \, dx
\]

(10) and \(l : K \rightarrow Q = L^2(\Omega, \mathbb{R}^d) \) is the gradient operator \(l = \nabla v \).

Remark 1. Theorem 1 assumes \(J : V \times Q \rightarrow \mathbb{R} \), where \(V \) is a normed space. It can be shown that all results are also valid for \(J : K \times Q \rightarrow \mathbb{R} \) from above.

The corresponding dual conjugate functionals are

\[
F^*(v^*) = \int_{\Omega} h^* v^* \, dx, \quad G^*(q^*) = \frac{1}{2} \int_{\Omega} q^* \cdot q^* \, dx,
\]

(11) where \(h^*(z^*) = 0 \) for \(z^* \in [-\alpha_-, \alpha_+] \) otherwise \(h^*(z^*) = +\infty \). Since \(lv = \nabla v \), the dual operator is represented by the divergence operator \(-l^*q^* = \text{div} q^*\). Combining (10) and (11) we derive compound functionals

\[
D_F(v, v^*) = \int_{\Omega} (\alpha_+ v^+ + \alpha_- v^- - v^* v) \, dx, \quad D_G(lv, q^*) = \frac{1}{2} \int_{\Omega} (lv - q^*) \cdot (lv - q^*) \, dx,
\]

(12) where the form for \(D_F(\cdot) \) is valid if the condition

\[
v^* \in [-\alpha_-, \alpha_+]
\]

(13) is satisfied almost everywhere in \(\Omega \), otherwise \(D_F(v, v^*) = +\infty \). For the gradient type problem, it holds

\[
p^* = \nabla u,
\]

(14) i.e., \(p^* \) represents the exact flux (gradient of the exact solution). Compound functionals appear in the energy identity (Proposition 7.2.13) of [16]

\[
D_F(v, -l^*p^*) + D_G(lv, p^*) = J(v) - J(u) \quad \text{for all } v \in K.
\]

(15)
The perturbed functional
\[
\mathcal{J}(\mu) = \mathcal{J}(v, -\mu p^*) = \int_\Omega \left(\alpha_+ v^+ + \alpha_- v^- - \text{div} p^* \right) dx,
\]
and \(\mathcal{D}(v, v^*) \) is always finite since the condition \(\text{div} p^* \in [-\alpha_-, \alpha_+] \) is always satisfied.

Remark 2 (Gap in the energy estimate). If we drop the nonnegative term \(\mathcal{D}(v, v^*) \) we get
\[
\frac{1}{2} \| \nabla (u - v) \|^2_{L^2(\Omega)} \leq J(v) - J(u) \quad \text{for all } v \in K
\]
which is well known in connection to class of nonlinear problems related to variational inequalities. For the two-phase obstacle problem, is was derived in \([4]\). The gap in the sharpness of the estimate \([18]\) is exactly measured by the term \(\mathcal{D}(v, -\mu p^*) \). By respecting \(\mathcal{D}(v, -\mu p^*) \) we can get the equality formulated by the main estimate \([15]\). The contribution of \(\mathcal{D}(v, -\mu p^*) \) is expected not to be very high for good quality approximation \(v \in K \) to the exact solution \(u \). An example, when the gap becomes significantly large (for a bad approximation \(v \)) is given in Section 4 of \([22]\). The form of \(\mathcal{D}(v, -\mu p^*) \) represents a certain measure of the error associated with free boundary and it is further discussed in Section 2 of \([22]\).

2.2 Majorant estimate

The exact energy \(J(u) \) in the energy identity \([15]\) and the energy inequality \([18]\) is not computable without the knowledge of the exact solution \(u \). However, we can get its computable lower bound using a perturbed functional
\[
J_\mu(v) := G(lv) + F_\mu(v), \quad F_\mu(v) := \int_\Omega \mu v \ dx,
\]
where a multiplier \(\mu \in \Lambda \) belongs to the space
\[
\Lambda := \{ \mu \in L^\infty(\Omega) : \mu(x) \in [-\alpha_-, \alpha_+] \text{ a.e. in } \Omega \}.
\]
The perturbed functional \(J_\mu(v) \) replaces the non-differentiable functional \(J(v) \) at the cost of a new variable \(\mu \in \Lambda \) in \(F_\mu(\cdot) \). It holds
\[
J(u) = \inf_{v \in K} \sup_{\mu \in \Lambda} J_\mu(v) = \sup_{\mu \in \Lambda} \inf_{v \in K} J_\mu(v) \geq \inf_{\mu \in \Lambda} J_\mu(v) =: J_\mu(u_\mu) \quad \text{for all } \mu \in \Lambda,
\]
where \(u_\mu \in K \) is unique. In view of \([20]\), the minimal perturbed energy \(J_\mu(u_\mu) \) serves as the lower bound of \(J(u) \). We find a computable lower bound of \(J_\mu(u_\mu) \) by means of the dual counterpart of the perturbed problem. The dual problem is generated by the Lagrangian
\[
L_\mu(v, q^*) := \langle q^*, lv \rangle - G^*(q^*) + F_\mu(v).
\]
We note \(v = g + w \), where \(w \in H^1_0(\Omega) \) and estimate
\[
\inf_{v \in K} J_\mu(v) = \inf_{q^* \in Q^*} \sup_{v \in K} L^*_\mu(v, q^*) = \sup_{q^* \in Q^*} \inf_{v \in K} L^*_\mu(v, q^*) = \sup_{q^* \in Q^*} \inf_{w \in H^1_0} \left\{ -G^*(q^*) + \int_\Omega (q^* \cdot \nabla g - \mu g) \ dx + \int_\Omega (q^* \cdot \nabla w - \mu w) \ dx \right\} \]
\[
\geq \sup_{q^* \in Q^*_\mu} \left\{ -G^*(q^*) + \int_\Omega (q^* \cdot \nabla g - \mu g) \ dx \right\} = \sup_{q^* \in Q^*_\mu} J^*_\mu(q^*) \quad \text{for all } q^* \in Q^*_\mu,
\]
where
\[
J^*_\mu(q^*) := -G^*(q^*) + \int_\Omega (q^* \cdot \nabla g - \mu g) \ dx
\]
and
\[Q^*_\mu = \{ q^* \in Q^* : \int_\Omega (q^* \cdot \nabla w - \mu w) \, dx = 0 \text{ for all } w \in H^1_0(\Omega) \}. \] (23)

Due to (20) and (21), we obtain the estimate
\[J(v) - J(u) \leq J(v) - J_\mu(v^*) = \frac{1}{2} \| \nabla v - q^* \|_{L^2(\Omega)}^2 + \int_\Omega \left(\alpha_+ v^+ + \alpha_- v^- - \mu v \right) \, dx \] (24)
valid for all \(v \in K, \mu \in \Lambda, q^* \in Q^*_\mu \). The right-hand size of (24) is fully computable, but it requires the constraint \(q^* \in Q^*_\mu \). To bypass this constraint we introduce a new variable
\[\eta^* \in Y^* := H(\Omega, \text{div}) \]
and project it to \(Q^*_\mu \). The space \(H(\Omega, \text{div}) \) is a subspace of \(L^2(\Omega, \mathbb{R}^n) \) that contains vector-valued functions with square-summable divergence. There holds a projection-type inequality (see, e.g., Chapter 3 of [23])
\[\inf_{\eta^* \in Q^*_\mu} \| \eta^* - q^* \|_{L^2(\Omega)} \leq C_\Omega \| \text{div} \eta^* + \mu \|_{L^2(\Omega)} \quad \text{for all } \eta^* \in Y^*, \]
where the constant \(C_\Omega > 0 \) originates from the generalized Friedrichs inequality
\[\| w \|_{L^2(\Omega)} \leq C_\Omega \| \nabla w \|_{L^2(\Omega)} \quad \text{for all } w \in H^1_0(\Omega). \]

Then, the \(q^* \)-dependent term in (24) satisfies
\[\inf_{q^* \in Q^*_\mu} \| \nabla v - q^* \|_{L^2(\Omega)}^2 \leq (\| \nabla v - \eta^* \|_{L^2(\Omega)} + \inf_{q^* \in Q^*_\mu} \| \eta^* - q^* \|_{L^2(\Omega)})^2 \]
\[\leq (\| \nabla v - \eta^* \|_{L^2(\Omega)} + C_\Omega \| \text{div} \eta^* + \mu \|_{L^2(\Omega)})^2 \]
\[\leq (1 + \beta) \| \nabla v - \eta^* \|_{L^2(\Omega)}^2 + (1 + \frac{1}{\beta}) C^2_\Omega \| \text{div} \eta^* + \mu \|_{L^2(\Omega)}^2, \] (25)
where we used Young’s estimate with a parameter \(\beta > 0 \) in the last inequality. Hence the combination of (24) and (25) yields the majorant estimate
\[J(v) - J(u) \leq M+(v; \beta, \eta^*, \mu) \quad \text{for all } v \in K, \mu \in \Lambda, \eta^* \in Y^*, \beta > 0, \] (26)
where a nonnegative functional
\[M+(v; \beta, \eta^*, \mu) := \frac{1}{2} (1 + \beta) \| \nabla v - \eta^* \|_{L^2(\Omega)}^2 \]
\[+ \frac{1}{2} (1 + \frac{1}{\beta}) C^2_\Omega \| \text{div} \eta^* - \mu \|_{L^2(\Omega)}^2 \]
\[+ \int_\Omega \left(\alpha_+ v^+ + \alpha_- v^- - \mu v \right) \, dx, \] (27)
represents a functional error majorant.

Remark 3. The final form of the functional error majorant (27) is slightly different to formula (3.13) in [22]. In (27), only one multiplier variable \(\mu \) is introduced replacing two multipliers \(\mu_- , \mu_+ \) of [22]. Another simplification in this paper is that the variable diffusions coefficient matrix \(A \) is not considered here and we treat the quadratic part of the energy \(\frac{1}{2} \int_\Omega \nabla v \cdot \nabla v \, dx \) instead of \(\frac{1}{2} \int_\Omega A \nabla v \cdot \nabla v \, dx \).

3 Discretization

We assume a domain \(\Omega \subset \mathbb{R}^2 \) with a polygonal boundary discretized by an uniform regular triangular mesh \(T_h \) in the sense of Ciarlet [7], where \(h \) denotes the mesh size. Let \(E \) denote the set of all edges and \(N \) the set of all nodes in \(T_h \). By
\[|E|, |N|, |T| \]
we mean the number of edges, of nodes and of triangles of \(T_h \). The following lowest order finite elements (FE) approximations are considered:
The exact solution u of the two phase obstacle problem is approximated by

$$u_h \in K_h := K \cap P_1(T_h),$$

where $P_1(T_h)$ denotes the space of elementwise nodal and continuous functions defined on T_h.

The exact multiplier $\lambda \in \Lambda$ is approximated by

$$\lambda_h \in \Lambda_h := \Lambda \cap P_0(T_h),$$

where $P_0(T_h)$ denotes the space of elementwise constant functions defined on T_h.

The flux variable $\eta^* \in Q$ in the functional majorant is approximated by

$$\eta_h^* \in Y_h^* := RT_0(T_h),$$

where $RT_0(T_h)$ is the space of the lowest order Raviart-Thomas functions.

Note that dimensions of these approximation spaces are

$$\dim(K_h) = |N|, \quad \dim(\Lambda_h) = |T|, \quad \dim(Y_h^*) = |E|.$$

We are interested in two computation tasks: First obtaining a discrete solution u_h or its approximation v_h and then measuring its quality by the optimized functional error majorant.

3.1 Dual based algorithm for Lagrange multipliers

As we mentioned in [2,2] due to the non-differentiability term in $J(\cdot)$, we do not solve the approximative solution $u_h \in K_h$ from the relation $J(u_h) = \inf_{v \in K_h} J(v)$ directly. We estimate

$$J(u_h) = \inf_{v_h \in K_h} \sup_{\mu \in \Lambda} J_\mu(v) \geq \inf_{v_h \in K_h} \sup_{\mu_h \in \Lambda_h} J_{\mu_h}(v_h) \geq \sup_{\mu_h \in \Lambda_h} \inf_{v_h \in K_h} J_{\mu_h}(v_h) =: J_{\lambda_h}(u_{\lambda_h})$$

and look for an approximation pair $(\lambda_h, u_{\lambda_h}) \in \Lambda_h \times K_h$ instead. Note, in general $u_{\lambda_h} \neq u_h$ and it holds $J(u_{\lambda_h}) \geq J(u_h)$ only. The saddle point problem on the right-hand side of (28) can be further reformulated as a dual problem for a Lagrange multiplier

$$I^*(\lambda_h) = \sup_{\mu_h \in \Lambda_h} I^*(\mu_h), \quad \text{where } I^*(\mu_h) := \inf_{v_h \in K_h} J_{\mu_h}(v_h). \quad (29)$$

Approximations $v_h \in K_h$ and $\mu_h \in \Lambda_h$ from (19) are equivalently represented by discrete column vectors $v \in \mathbb{R}^{|N|}, \mu \in \mathbb{R}^{|T|}$ and we can rewrite $J_{\mu_h}(\cdot)$ from (19) as

$$J_{\mu_h}(v) = \frac{1}{2} v^T \mathbb{K} v + v^T M \mu,$$

where $\mathbb{K} \in \mathbb{R}^{|N| \times |N|}$ and $M \in \mathbb{R}^{|N| \times |T|}$. The square matrix \mathbb{K} represents a stiffness matrix from a discretization of the Laplace operator in K_h. The rectangular matrix M represents the L^2- scalar product of functions from spaces K_h and Λ_h. It holds

$$\int_{\Omega} \nabla v_h \cdot \nabla v_h \, dx = v^T \mathbb{K} v, \quad \int_{\Omega} v_h \cdot \mu \, dx = v^T M \mu$$

for all $v_h \in K_h, \mu \in \Lambda_h$ and corresponding column vectors $v \in \mathbb{R}^{|N|}, \mu \in \mathbb{R}^{|T|}$. If we order nodes N in a way that internal nodes N_I precede Dirichlet nodes N_D (no Neumann nodes are assumed for simplicity), we have the decomposition

$$v = (v_I, v_D) \in \mathbb{R}^{|N_I|} \times \mathbb{R}^{|N_D|}$$

in Dirichlet and internals components and $|N| = |N_I| + |N_D|$. Then (30) can be rewritten as

$$J_{\mu_h}(v) = \frac{1}{2} \begin{pmatrix} v_I \\ v_D \end{pmatrix}^T \begin{pmatrix} \mathbb{K}_{I,I} & \mathbb{K}_{I,D} \\ \mathbb{K}_{D,I} & \mathbb{K}_{D,D} \end{pmatrix} \begin{pmatrix} v_I \\ v_D \end{pmatrix} + \begin{pmatrix} v_I \\ v_D \end{pmatrix}^T \begin{pmatrix} M_I \\ M_D \end{pmatrix} \mu. \quad (31)$$
Note that the rectangular matrix K_{ID} is the restriction of K to its subblock with rows N_I and columns N_D. Therefore $K_{I,I}$ and $K_{D,D}$ are not diagonal matrices. The rectangular matrices M_I and M_D are then restrictions of M to subblocks with rows N_I and N_D with all columns left. The value of v_D is known and given by Dirichlet boundary conditions. The direct computation reveals

$$I^*(\mu) = \frac{1}{2} v_D^T K_{D,D} v_D + v_D^T M_D \mu - \frac{1}{2} (K_{I,D} v_D + M_I \mu) K_{I,I}^{-1} (K_{I,D} v_D + M_I \mu).$$ (32)

In addition to it, for a given μ, the component v_I minimizing the functional (31) satisfies

$$v_I = -K_{I,I}^{-1} (K_{I,D} v_D + M_I \mu) \quad \text{or equivalently} \quad -K_{I,I} v_I = (K_{I,D} v_D + M_I \mu).$$ (33)

This formula is applied for the reconstruction of v_I from μ. Since $K_{I,I}$ is a sparse matrix, its inverse $K_{I,I}^{-1}$ is a dense matrix. Then, the right part of (33) is exploited in practical evolutions including (32).

The matrix $K_{I,I}^{-1}$ is positive definite as well as $K_{I,I}$ and the functional $I^*(\cdot)$ is concave and contains quadratic and linear terms only. Thus the functional $-I^*(\cdot)$ is convex and its minimum λ_h from (29) is represented by a column vector $\lambda \in \mathbb{R}^{|T|}$ and solves a quadratic programming (QP) problem with box constraints

$$-I^*(\lambda) = \min -I^*(\mu), \quad \text{where } \{\mu\}_j \in [-\alpha_-, \alpha_+] \text{ for all } j \in \{1, \ldots, |T|\}.$$

The corresponding solution $u_{\lambda_h} \in K_h$ is then represented by a column vector $u_\lambda = (u_{\lambda_1}, u_{\lambda_D}) \in \mathbb{R}^{|N|}$ and u_{λ_1} solves (33) for $v = \lambda$. The solutions steps above are summarized in Algorithm 1.

Algorithm 1 Quadratic programing for Langrange multipliers.

Let discretization matrices $K \in \mathbb{R}^{|N|\times|N|}$ and $M \in \mathbb{R}^{|N|\times|T|}$ be given with their subblocks $K_{I,I} \in \mathbb{R}^{|N_I|\times|N_I|}$, $K_{D,D} \in \mathbb{R}^{|N_D|\times|N_D|}$, $K_{I,D} \in \mathbb{R}^{|N_I|\times|N_D|}$, $M_I \in \mathbb{R}^{|N|\times|T|}$, $M_D \in \mathbb{R}^{|N_D|\times|T|}$. Let $v_D \in \mathbb{R}^{|N_D|}$ be vector of prescribed Dirichlet values in nodes N_D. Then:

(i) find the vector of Lagrange multipliers from the quadratic minimization problem

$$\lambda = \arg \min_{\mu \in \mathbb{R}^{|T|}} \left(-\frac{1}{2} v_D^T K_{D,D} v_D - v_D^T M_D \mu + \frac{1}{2} (K_{I,D} v_D + M_I \mu) K_{I,I}^{-1} (K_{I,D} v_D + M_I \mu) \right)$$

under box constraints $\{\mu\}_j \in [-\alpha_-, \alpha_+]$ for all $j \in \{1, \ldots, |T|\}$,

(ii) reconstruct the solution vector $v_I \in \mathbb{R}^{|N_I|}$ from $-K_{I,I} v_I = (K_{I,D} v_D + M_I \mu)$.

(iii) output λ_h and u_{λ_h} represented by vectors λ and $v = (v_I, v_D)$.

3.2 Minimization of the functional error majorant

For a given approximation $u_{\lambda_h} \in K_h$, the majorant value $M_+(u_{\lambda_h}; \beta, \eta^*, \mu)$ majorizes the value $J(u_{\lambda_h}) - J(u)$. The majorant $M_+(u_{\lambda_h}; \beta, \eta^*, \mu)$ can be minimized with respect to its free arguments $\beta > 0, \eta^* \in \mathbb{Y}^*, \mu \in \Lambda$ in order to obtain the sharp upper bound. The fields $\eta^* \in \mathbb{Y}^*, \mu \in \Lambda$ can be sought on a mesh T_h with a different mesh size h. Choosing very small mesh size $h \ll h$ leads to sharper bounds but higher computational costs. Here we consider the same mesh size $h = h$ for simplicity,

$$\eta^* \in \mathbb{Y}^h, \quad \mu \in \Lambda_h.$$

We use the successive minimization algorithm described in Algorithm 2.

The step (i) corresponds to the solution of a linear system of equations

$$\begin{bmatrix} (1 + \beta_k)M^{RT0} + C^2_{RT0} \left(1 + \frac{1}{\beta_k} \right) K^{RT0} \end{bmatrix} (1 + \beta_k) c + C^2_{RT0} \left(1 + \frac{1}{\beta_k} \right) d = (1 + \beta_k) x + C^2_{RT0} \left(1 + \frac{1}{\beta_k} \right) y$$ (34)
Algorithm 2 Majorant minimization algorithm.
Let $k = 0$ and let initial $\beta_0 > 0$ and $\mu_0 \in \Lambda_h$ be given. Then:

(i) find an iteration $\eta_{k+1}^* \in Y_h^*$ such that
$$\eta_{k+1}^* = \arg\min_{\eta^* \in Y_h^*} \mathcal{M}_+(u_{\lambda_h}; \beta_k, \mu, \eta^*),$$

(ii) find $\mu_{k+1} \in \Lambda_h$ such that
$$\mu_{k+1} = \arg\min_{\mu \in \Lambda_h} \mathcal{M}_+(u_{\lambda_h}; \beta_k, \mu, \eta_{k+1}^*),$$

(iii) find $\beta_{k+1} > 0$ such that
$$\beta_{k+1} = \arg\min_{\beta \in \mathbb{R}^+} \mathcal{M}_+(u_{\lambda_h}; \beta, \mu_{k+1}, \eta_{k+1}^*),$$

(iv) set $k := k + 1$ are repeat (i) – (iii) until convergence. Then, output $\eta_h^* := \eta_{k+1}^*$ and $\mu_h := \mu_{k+1}$.

for a column vector $\eta_{k+1}^* \in \mathbb{R}^{|E|}$. Here, $K^{RT_0}, M^{RT_0} \in \mathbb{R}^{|E| \times |E|}$ are stiffness and mass matrices corresponding to $RT_0(T_h)$ elements, described together with vectors c, d in Section 4 of [12]. The minimal argument $\mu_{k+1} \in \Lambda_h$ in step (ii) is locally computed on every triangle $T \in T_h$ from the formula

$$\mu_{k+1}|_T = P_{[-\alpha_-, \alpha_+]} \left(\text{div} \eta_{k+1}^*|_T + \frac{\overline{u}_{\lambda_h}|_T}{C_\Omega^2 \left(1 + \frac{1}{\pi} \right)} \right),$$

where $P_{[-\alpha_-, \alpha_+]}$ is the projection on the convex set $[-\alpha_-, \alpha_+]$ and $\overline{u}_{\lambda_h}|_T$ means an averaged value of u_{λ_h} over a triangular element T. The minimization in step (iii) leads to the explicit relation

$$\beta_{k+1} = \frac{\|\text{div} \eta_{k+1}^* - \mu_{k+1}\|_\Omega}{\|\nabla v - \eta_{k+1}^*\|_\Omega}.$$

Remark 4 (Choice of initial μ_0). We recall the approximation λ_h is taken as an initial approximation μ_0, which can speed up the convergence significantly [12].

4 Numerical examples

In this section we elaborate two numerical examples, i.e. Example I, and Example II, with known and unknown exact solutions.

4.1 Example I with known exact solution

This example is introduced in [4]; it is also tested for one dimensional case in [22]. Here, we consider it in two dimensional and assume a rectangular domain

$$\Omega = X \times Y := (-1, 1) \times (0, 1),$$

and constant coefficients

$$\alpha_- = \alpha_+ = 8.$$

The two phase obstacle problem (2) is supplied with the Dirichlet boundary conditions

$$u(-1, y) = -1, \quad u(1, y) = 1 \quad \forall y \in Y$$

and homogeneous Neumann boundary conditions

$$\frac{\partial u}{\partial x}(x, 0) = \frac{\partial u}{\partial x}(x, 1) = 0 \quad \forall x \in X.$$

The exact solution $u \in K$ is given by the relation independent of $y \in Y$,

$$u(x, y) = \begin{cases}
-4x^2 - 4x - 1, & x \in X_- := [-1, -0.5], \\
0, & x \in X_0 := [-0.5, 0.5], \\
4x^2 - 4x + 1, & x \in X_+ := [0.5, 1]
\end{cases}$$

(41)
Table 1: Computations of Example I on various uniform triangular meshes.

| level | | $|J(u_{\lambda_h}) - J(u)|$ | $|\mathcal{M}_+(u_{\lambda_h}, \cdot)|$ | $\mathcal{M}_+^{+}(\cdot)$ | $\mathcal{M}_+^{-}(\cdot)$ | $\mathcal{M}_+^{+3}(\cdot)$ |
|-------|-------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 1 | 15 | 6.0383 (5.9975) | 7.05e-01 | 1.74e+00 | 1.33e+00 | 3.00e-02 | 3.80e-01 |
| 2 | 45 | 5.5030 (5.5000) | 1.70e-01 | 3.79e-01 | 3.47e-01 | 9.44e-04 | 3.15e-02 |
| 3 | 153 | 5.3765 (5.3750) | 4.32e-02 | 9.14e-02 | 8.41e-02 | 2.47e-05 | 7.28e-03 |
| 4 | 561 | 5.3481 (5.3435) | 1.47e-02 | 2.76e-02 | 2.10e-02 | 6.08e-07 | 6.50e-03 |
| 5 | 2145 | 5.3390 (5.3355) | 5.65e-03 | 8.62e-03 | 5.21e-03 | 7.13e-08 | 3.41e-03 |

and its (exact) energy is $J(u) = 5\frac{1}{3}$. The (exact) free boundary is characterized by two lines

$$(\pm 0.5, y), \quad \text{where } y \in Y.$$

The (exact) Lagrange multiplier $\lambda \in \Lambda$ is then given by

$$\lambda(x, y) = \begin{cases} -\alpha_-, & x \in X_-, \\ 0, & x \in X_0, \\ \alpha_+, & x \in X_+ \end{cases} \quad (42)$$

and it is a discontinuous function with a jump on the free boundary. We compute approximation pairs $(\lambda_h, u_{\lambda_h}) \in \Lambda_h \times \mathcal{K}_h$ for a sequence of nested uniformly refined meshes. Levels 1 and 2 meshes are depicted in Figure 1. Since some dicretization nodes are lying exactly on the free boundary, there might be a chance to reconstruct the free boundary exactly from approximative solutions. A finer (level 5) approximation pair $(\lambda_h, u_{\lambda_h}) \in \Lambda_h \times \mathcal{K}_h$ computed from the dual-based solver is shown in Figure 2. The approximative Lagrange multiplier field λ_h however only approximates the exact free boundary. To the given approximation pair $(\lambda_h, u_{\lambda_h})$, a functional majorant is optimized using 10000 iterations of Algorithm 1 (we set $\mu_0 = \lambda_h$). To get more insight on the majorant behaviour, we display space densities of all three additive majorant subparts

$$\mathcal{M}_{+1}(u_{\lambda_h}; \beta, \eta^*) \quad \text{and} \quad \mathcal{M}_{+2}(\beta, \eta^*, \mu) \quad \text{and} \quad \mathcal{M}_{+3}(u_{\lambda_h}; \mu)$$

separately in Figure 3. The amplitudes of \mathcal{M}_{+2} are significantly lower than amplitudes of \mathcal{M}_{+1} and \mathcal{M}_{+3}, but the value of \mathcal{M}_{+3} is still relatively high. The high value of \mathcal{M}_{+3} indicates that the exact free boundary is not sufficiently resolved yet and the density of \mathcal{M}_{+3} seem to be a reasonable indicator of the exact free boundary.

Computations on all nested uniformly refined triangular meshes are summarized in Table 1. The dual energy $I^*(\lambda_h)$ and primal primal energy $J(u_{\lambda_h})$ converge to the exact energy $J(u)$ as $h \to 0$. Since we work with nested meshes, we additionally have

$$J(u_{\lambda_h}) - J(u) \searrow 0 \quad \text{or equivalently} \quad J(u_{\lambda_h}) - J(u) \searrow 0.$$

The difference of energies $J(u_{\lambda_h}) - J(u) \searrow 0$ is bounded from above by the majorant value $\mathcal{M}_+(u_{\lambda_h}, \ldots)$ as stated in the majorant estimate (26).

Remark 5 (Extension to mixed Dirichlet - Neumann boundary conditions). This example assumes both Dirichlet and Neumann boundary conditions, but only Dirichlet boundary conditions are considered in \mathcal{K}. The dual based solver for a double-phase problem can still be applied, with Neumann nodes \mathcal{N}_N being added to internal nodes \mathcal{N}_I. The majorant estimate (26) is valid with the same majorant form (27), but the flux $\eta^* \in Q_h$ must satisfy an extra condition $\eta^* \cdot n = 0$ on a Neumann boundary, where n is a normal vector to the boundary. This condition means that components of η_{k+1}^* from (34) corresponding to Neumann edges \mathcal{E}_N must be equal to zero.

4.2 Example II

The second example is also taken from [4] and considers a square domain

$$\Omega = X \times Y := (-1, 1) \times (-1, 1), \quad (43)$$

Remark 5 (Extension to mixed Dirichlet - Neumann boundary conditions). This example assumes both Dirichlet and Neumann boundary conditions, but only Dirichlet boundary conditions are considered in \mathcal{K}. The dual based solver for a double-phase problem can still be applied, with Neumann nodes \mathcal{N}_N being added to internal nodes \mathcal{N}_I. The majorant estimate (26) is valid with the same majorant form (27), but the flux $\eta^* \in Q_h$ must satisfy an extra condition $\eta^* \cdot n = 0$ on a Neumann boundary, where n is a normal vector to the boundary. This condition means that components of η_{k+1}^* from (34) corresponding to Neumann edges \mathcal{E}_N must be equal to zero.
Figure 1: Example I - level 1 and level 2 nested triangular meshes. Note that there are triangular node lying on the exact free boundary is given by lines $x = \pm 0.5$.

Figure 2: Example I - approximations: multiplier $\lambda_h \in \Lambda_h$ (left) and the corresponding solution $u_{\lambda_h} \in K_h$ (right) computed on level 5 triangular mesh (referred to as level 5 in Table 1). The multiplier approximation λ_h indicates an approximative free boundary, the exact free boundary is given by lines $x = \pm 0.5$. Full contour lines of u_{λ_h} at values ± 0.0001 are additionally displayed (right).

Figure 3: Example I - distribution of the majorant parts M_{+1} (left), M_{+2} (middle), M_{+3} (right) computed on level 5 triangular mesh (referred to as level 5 in Table 1).
constant coefficients \[\alpha_+ = \alpha_- = 4. \] (44)

The Dirichlet boundary conditions as assumed in the form

\[u(x, y) = \begin{cases}
 x + 1 & x \in [-1, 1] \text{ and } y = 1, \\
 x - 1 & x \in [-1, 1] \text{ and } y = -1, \\
 y + 1 & y \in [-1, 1] \text{ and } x = 1, \\
 y - 1 & y \in [-1, 1] \text{ and } x = -1.
\] (45)

The exact solution \(u \in K \) is not known for this example. Consequently, no apriori information about the shape of the free boundary or the value of the exact energy \(J(u) \) is provided. We compute approximation pairs \((\lambda_h, u_{\lambda_h}) \in \Lambda_h \times K_h\) again for a sequence of nested uniformly refined meshes. Levels 1 and 2 meshes are depicted in Figure 5. An approximative solutions pair \((\lambda_h, u_{\lambda_h}) \in \Lambda_h \times K_h\) obtained by the dual-based solver is depicted in Figure 6. The approximative Lagrange multiplier field \(\lambda_h \) presumably indicates the exact free boundary. Space distributions of majorant subparts are visualized in Figure 7.

Table 2 summarizes computations on all nested uniformly refined triangular meshes. The exact solution \(J(u) \) is not known but it is replaced by the energy \(J(u_{\text{ref}}) \) of a reference solution \(u_{\text{ref}} \) in Table 2. The reference solution \(u_{\text{ref}} \) is computed as \(u_{\lambda_h} \) on the mesh one level higher (level 6 uniformly refined triangular mesh here).

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
\text{level} & J[\cdot] & J(u_{\lambda_h}) & J(u_{\lambda_h} - J(u_{\text{ref}})) & J(u_{\lambda_h} - J(u)) & J(u_{\lambda_h} - J(u)) \leq M_+(u_{\lambda_h}, \ldots, \cdot) & J(u_{\lambda_h} - J(u)) \leq M_+(u_{\lambda_h}, \ldots, \cdot) \\
\hline
1 & 13 & 13.6967 (13.6667) & 6.65e-01 & 2.41e+00 & 2.03e+00 & 3.30e-01 & 5.38e-02 \\
2 & 41 & 13.1924 (13.1924) & 1.90e-01 & 8.24e-01 & 7.90e-01 & 2.88e-02 & 5.26e-03 \\
3 & 145 & 13.0491 (13.0489) & 4.71e-02 & 2.18e-01 & 2.15e-01 & 2.20e-03 & 5.24e-04 \\
4 & 545 & 13.0137 (13.0133) & 1.17e-02 & 5.58e-02 & 5.46e-02 & 1.49e-04 & 1.63e-03 \\
5 & 2113 & 13.0045 (13.0041) & 2.50e-03 & 1.40e-02 & 1.36e-02 & 1.09e-05 & 4.36e-04 \\
6 & 8321 & 13.0020 (13.0019) & \text{not evaluated} & & & & \\
\hline
\end{array}
\]

Table 2: Computations of Example II on various uniform triangular meshes. Note that \(J(u_{\text{ref}}) = J(u_{\lambda_h}) \) for \(u_{\lambda_h} \) computed on level 6 mesh.

Remark 6 (Lower bound of difference of energies based on a reference solution). If a reference solution \(u_{\text{ref}} \) is available, its energy \(J(u_{\text{ref}}) \) satisfies \(J(u_{\lambda_h}) \geq J(u_{\text{ref}}) \geq J(u) \) and

\[
J(u_{\lambda_h}) - J(u_{\text{ref}}) \leq J(u_{\lambda_h}) - J(u) \leq M_+(u_{\lambda_h}, \ldots, \cdot). \tag{46}
\]

The inequality (46) provides actually guaranteed lower and upper bounds of the difference of energies \(J(u_{\lambda_h}) - J(u) \). Figure 4 displays convergence of both bounds of \(J(u_{\lambda_h}) - J(u) \) for considered 5 levels approximations \(u_{\lambda_h} \). By reformulating (46) we get guaranteed bounds of the exact energy

\[
J(u_{\lambda_h}) - J(u_{\text{ref}}) \leq J(u_{\lambda_h}, \ldots, \cdot) \leq J(u) \leq J(u_{\text{ref}}). \tag{47}
\]

valid for every approximation \(u_{\lambda_h} \in K_h \). For this example, lower bound of create an increasing sequence reported in Table 3

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\text{level} & J(u) & 1 & 2 & 3 & 4 & 5 \\
\hline
\text{lower bound of energy} J(u) & 11.2582 & 12.3686 & 12.8315 & 12.9580 & 12.9905 \\
\hline
\end{array}
\]

Table 3: Example II: lower bound of energy \(J(u) \) computed for various triangular meshes.

The sharpest available estimate of \(J(u) \) based on the largest lower bound from Table 3 and the smallest upper bound from Table 2 and read

\[12.9905 \leq J(u) \leq 13.0020 \]

and it suggests \(J(u) = 13 \) although there is no analytical proof of it.
Figure 4: Example II - convergence of the difference of energies $J(u_{h \lambda}) - J(u)$ is controlled by its computable upper bound $M_{\lambda}(u_{h \lambda}, \ldots)$ and its computable lower bound $J(u_{h \lambda}) - J(u_{ref})$.

4.3 Implementation details

Both numerical examples are implemented in MATLAB and the code available for download at

http://www.mathworks.com/matlabcentral/fileexchange/57232

The code is based on vectorization techniques of [1, 19]. The main file ’start.m’ is located in the directory ’solver_two_phase_obstacle’. The following parameters can be adjusted:

- ’levels_energy_error’ - the number of the finest uniform triangular level (default is ’5’)
- ’iterations_majorant’ - the number of iterations of Algorithm [2] (default is ’1000’)

The dual based solver of Subsection 3.1 is implemented in ’optimize_energy_dual_mu_constant_compact.m’ and the underlying quadratic programming function ’quadprog’ requires the optimization toolbox of MATLAB to be available. Evaluation of the primal energy $J(u_{h \lambda})$ for a given function $u_{h \lambda} \in K$ is done in the function ’energy’. This function is able to provide an exact quadrature [14] of the energy $J(v)$ for any function $v \in K_h$, including nondifferentiable terms $\int_{\Omega} v^+ dx, \int_{\Omega} v^- dx$.

5 Conclusions and future outlook

A dual based solution algorithm to provide a finite element approximation of the Lagrange multiplier of the perturbed problem was described and tested on two benchmarks in 2D. The finite elements approximation of the primal minimization problem can be easily reconstructed from Lagrange multipliers by solving one linear system of equations. The quality of such approximation is measured in terms in terms of a fully computable functional majorant. A nonlinear part of the optimized functional majorant seems to work as an indicator of the free boundary. The functional majorant minimization is based on a subsequent minimization and therefore requires many iterations. We would like to speed up majorant optimization in the future.
Figure 5: Example II - level 1 and level 2 nested triangular meshes.

Figure 6: Example II - approximations: multiplier $\lambda_h \in \Lambda_h$ (left) and the corresponding solution $u_{\lambda_h} \in K_h$ (right) computed on level 5 triangular mesh (referred to as level 5 in Table 2). The multiplier approximation λ_h (left) indicates an approximative free boundary, the exact free boundary is unknown. Full contour lines of u_{λ_h} at values ±0.0001 are additionally displayed (right).

Figure 7: Example II - distribution of the majorant parts M_{+1} (left), M_{+2} (middle), M_{+3} (right) computed on level 5 triangular mesh (referred to as level 5 in Table 2).
References

[1] I. Anjam and J. Valdman: *Fast MATLAB assembly of FEM matrices in 2D and 3D: edge elements*. Applied Mathematics and Computation 219, 7151–7158, 2013.

[2] A. Arakelyan: *A Finite Difference Method for Two-Phase Parabolic Obstacle-like Problem*. Armenian Journal of Mathematics, 7, 32–49, 2015.

[3] A. Arakelyan, R. Barkhudaryan, and M. Poghosyan: Numerical solution of the two-phase obstacle problem by finite difference method. Armen. J. Math. 7 (2015), no. 2, 164182.

[4] F. Bozorgnia: Numerical solutions of a two-phase membrane problem. Applied Numerical Mathematics, 61, 92–107, 2011.

[5] H. Buss and S. Repin: A posteriori error estimates for boundary value problems with obstacles. Proceedings of 3nd European Conference on Numerical Mathematics and Advanced Applications, Jyväskylä, 1999, World Scientific, 162–170, 2000.

[6] L. Caffarelli: The obstacle problem revisited. The Journal of Fourier Analysis and Applications, 4, 383402, 1998.

[7] Ciarlet P.G., *The Finite Element Method for Elliptic Problems*. North–Holland, New York, 1978; reprinted as SIAM Classics in Applied Mathematics, Philadelphia, 2002

[8] I. Ekeland and R. Temam: *Convex analysis and variational problems* North-Holland, Amsterdam, 1976.

[9] R. S. Falk: Error estimates for the approximation of a class of variational inequalities. Math. Comput. 28 (1974), 963–971.

[10] R. Glowinski, J. L. Lions, R. Trémolieres: Numerical analysis of variational inequalities. North-Holland 1981.

[11] W. Han: *A posteriori error analysis via duality theory*. Springer 2005.

[12] P. Harasim, J. Valdman: Verification of functional a posteriori error estimates for obstacle problem in 1D. Kybernetika, 49 (5), 738 – 754, 2013.

[13] P. Harasim, J. Valdman: Verification of functional a posteriori error estimates for obstacle problem in 2D. Kybernetika, 50 (6), 978 – 1002, 2014.

[14] J. Kadlec, J. Valdman: Quadrature of the absolute value of a function. MATLAB package. Available at http://www.mathworks.com/matlabcentral/fileexchange/authors/37756.

[15] D. Kinderlehrer, G. Stampacchia: An Introduction to Variational Inequalities and Their Applications, Academic Press, New York (1980)

[16] P. Neittaanmäki, S. Repin: *Reliable methods for computer simulation (error control and a posteriori estimates)*. Elsevier, 2004.

[17] R.H. Nochetto: Sharp L^∞-error estimates for semilinear elliptic problems with free boundaries. Numerische Mathematik, 54(3), 243–255, 1989.

[18] R.H. Nochetto, E. Otrola and A.J. Salgado: Convergence rates for the classical, thin and fractional elliptic obstacle problems. Philos. Trans. A 373 no. 2050, 20140449, 2015.

[19] T. Rahman and J. Valdman: *Fast MATLAB assembly of FEM matrices in 2D and 3D: nodal elements*. Applied Mathematics and Computation 219, 7151–7158, 2013.

[20] S. Repin: A posteriori error estimation for variational problems with uniformly convex functionals. Mathematics of Computation, 69 (230), 481–500, 2000.
[21] S. Repin: On measures of errors for nonlinear variational problems. Russian Journal of Numerical Analysis and Mathematical Modelling, 6 (27), 577 - 584, 2012.

[22] S. Repin and J. Valdman: A posteriori error estimates for two-phase obstacle problem. Journal of Mathematical Sciences 20 (2), 324–336, 2015.

[23] S. Repin: *A posteriori estimates for partial differential equations*, Walter de Gruyter, Berlin, 2008.

[24] H. Shahgholian, N. N. Uraltseva, G. S. Weiss: The Two-Phase Membrane Problem – Regularity of the Free Boundaries in Higher Dimensions, International Mathematics Research Notices, Vol. 2007.

[25] G. Tran, H. Schaeffer, W. Feldman, and S. Osher: An L^1 penalty method for general obstacle problems. SIAM Journal on Applied Mathematics, 75 (4), 1424–1444, 2015.

[26] N. N. Uraltseva: Two-phase obstacle problem, Journal of Mathematical Sciences, 106 (3), 3073–3077, 2001.

[27] G. S. Weiss: The Two-Phase Obstacle Problem: Pointwise Regularity of the Solution and an Estimate of the Hausdorff Dimension of the Free Boundary, Interfaces and Free Boundaries, 3 (2), 121–128, 2001.