Low-Dose Agrochemicals and Lawn-Care Pesticides Induce Developmental Toxicity in Murine Preimplantation Embryos

Anne R. Greenlee, Tammy M. Ellis, and Richard L. Berg

Reproductive Toxicology Laboratory and Biostatistics Center, Marshfield Clinic Research Foundation, Marshfield, Wisconsin, USA

Occupational exposures to pesticides may increase parental risk of infertility and adverse pregnancy outcomes such as spontaneous abortion, preterm delivery, and congenital anomalies. Less is known about residential use of pesticides and the risks they pose to reproduction and development. In the present study we evaluate environmentally relevant, low-dose exposures to agrochemicals and lawn-care pesticides for their direct effects on mouse preimplantation embryo development, a period corresponding to the first 5–7 days after human conception. Agents tested were those commonly used in the upper midwestern United States, including six herbicides [atrazine, dicamba, metolachlor, 2,4-dichlorophenoxyacetic acid (2,4-D)], pendimethalin, and mecoprop], three insecticides (chlorpyrifos, terbufos, and permethrin), two fungicides (chlorothalonil and mancozeb), a desiccant (diquat), and a fertilizer (ammonium nitrate). Groups of 20–25 embryos were incubated 96 hr in vitro with either individual chemicals or mixtures of chemicals simulating exposures encountered by handling pesticides, inhaling drift, or ingesting contaminated groundwater. Incubating embryos with individual pesticides increased the percentage of apoptosis (cell death) for 11 of 13 chemicals ($p \leq 0.05$) and reduced development to blastocyst and mean cell number per embryo for 3 of 13 agents ($p \leq 0.05$). Mixtures simulating preemergent herbicides, postemergent herbicides, and fungicides increased the percentage of apoptosis in exposed embryos ($p \leq 0.05$). Mixtures simulating groundwater contaminants, insecticide formulation, and lawn-care herbicides reduced development to blastocyst and mean cell number per embryo ($p \leq 0.05$). Our data demonstrate that pesticide-induced injury can occur very early in development, with a variety of agents, and at concentrations assumed to be without adverse health consequences for humans. Key words: apoptosis, embryo, pesticide mixtures, pesticides, preimplantation development, reference dose. Environ Health Perspect 112:703–709 (2004). doi:10.1289/ehp.6774 available via http://dx.doi.org/ [Online 22 January 2004]

Recent epidemiologic studies suggest that parents working in areas of high pesticide application are at increased risk for adverse reproductive outcomes such as infertility (Fuertes et al. 1997; Greenlee et al. 2003; Smith et al. 1997), poor fertilization (Tielemans et al. 1999), fetal death (Arbuckle and Sever 1998; Saxena et al. 1983), and congenital anomalies (Bell et al. 2001a; Garry et al. 1996, 2002). Residential pesticide exposures and their effects on reproductive health are less well understood. A few studies suggest that maternal exposure to pesticides used around the home are associated with risk of stillbirth and fetal deaths (Bell et al. 2001b; Pastore et al. 1997; Savitz et al. 1989). Decreased birth weight and length of newborns have been associated with high levels of chlorpyrifos in plasma samples of urban minority women (Perera et al. 2003).

Timing, combinations of agrochemicals, duration of exposure, and dose may play critical roles in pregnancy outcomes. Bell et al. (2001a) reported that maternal pesticide exposures occurring during the third to eighth weeks of pregnancy have the greatest impact on fetal deaths. This temporal association strengthened when the pesticides were applied within 1 mi2 of the maternal residence. Timing of paternal pesticide exposures may also be important. Arbuckle et al. (1999a) reported that exposures to phenoxy herbicides occurring in fathers 3 months before conception doubled the risk of early spontaneous abortions in their partners.

Pesticide residues have been identified at concentrations of parts per trillion to parts per million in ovarian follicular fluid (Trapp et al. 1984), seminal plasma (Arbuckle et al. 1999b; Foster 1995), human amniotic fluid (Foster et al. 2000), fetal tissue specimens (Nishimura et al. 1977), and meconium from human neonates (Whyatt and Barr 2001). Korrick et al. (2001) and Longnecker et al. (2001) reported that the risk of preterm birth and spontaneous abortion increased with maternal serum concentrations of dichlorodiphenyl-dichloroethylene (DDE). Fertilization rates have been negatively correlated with levels of DDE in serum and follicular fluids of women undergoing in vitro fertilization (Younglai et al. 2002). Little is known, however, about the direct effects of pesticide contaminants on the conceptus and subsequent development near the time of implantation.

Currently, the two-generation Fertility (Reproductive) Assessment by Continuous Breeding protocol developed by the National Toxicology Program (Research Triangle Park, NC) is an accepted method for characterizing developmental and reproductive toxicants (U.S. Environmental Protection Agency [EPA] 1996). This protocol can be used to evaluate an extensive list of abnormalities in parental and filial generations. However, it is costly and time-consuming, and the does not evaluate exposure risks encompassed by the preimplantation stage of development. The need for more rapid, comprehensive, and cost-effective tools for screening developmental toxicants has stimulated the search for in vitro methods to reduce the backlog of chemical testing critical for adequate risk assessment (National Research Council 2000).

We previously demonstrated the potential of the mouse embryo assay for identifying preimplantation toxicity induced by the estrogentic pesticide $o,p’$-dichlorodiphenyltrichloroethane ($o,p’$-DDT) (Greenlee et al. 1999). Compared with control treatment, incubation of pronuclear embryos with 0.1 µg/mL $o,p’$-DDT significantly reduced embryo development to blastocyst and mean cell number and increased the percentage of cells undergoing apoptotic cell death. Developmental effects were dose responsive. Furthermore, the antiestrogen ICI 182,780 abolished the developmental alterations induced by this toxicant (Greenlee et al. 2000), suggesting that the assay may be useful for characterizing injury mechanisms initiated by environmental pollutants with estrogenic activity. Implementation of the mouse preimplantation embryo assay for risk assessment purposes will require further evaluation with a variety of chemicals at ecologically relevant concentrations.

Toward this objective, we screened agricultural and lawn-care chemicals commonly used in the upper midwestern United States. Address correspondence to A.R. Greenlee, Reproductive Toxicology Laboratory, Marshfield Clinic Research Foundation, 1000 North Oak Ave., Marshfield, WI 54449 USA. Telephone: (715) 389-4012. Fax: (715) 389-3808. E-mail: greenlee.anne@mcfr.mfldclin.edu

We thank D. Wiersma and J. Stier for formulating agrochemical and lawn-care mixtures; V.P. Eroshenko, Y. Jiang, M.F. Cavieres, J.K. Burmester, B.J. Mitchell, and T. Kronenwetter-Koepel for critically reviewing the manuscript; and A. Stargardt for preparing this manuscript. We also thank C. Schofield for her assistance with data management, and D. Johnson and R. Jacobson for their assistance with animal care.

This work was funded by the Wisconsin Department of Agriculture, Trade and Consumer Protection, and Marshfield Clinic Research Foundation.

The authors declare they have no competing financial interests.

Received 30 September 2003; accepted 21 January 2004.
as single agents and as mixtures for their effects on embryo development during the preimplantation period. We hypothesized that the mouse embryo assay would prove reliable, rapid, and cost-effective for evaluating pesticide effects at low-dose concentrations and in combinations potentially encountered before a pregnancy is recognized.

Materials and Methods

Animals. All experiments were reviewed and approved by the Marshfield Clinic Institutional Animal Care and Use Committee. Experiments were conducted in accordance with the Guide for the Care and Use of Laboratory Animals (National Research Council 1996).

Embryo collection and culture. CD-1 female mice 21–26 days of age (Charles River Laboratories, Portage, MI) were superovulated with intraperitoneal injections of 5 IU follicle-stimulating hormone (Gestyl; Professional Compounding Center of America, Inc., Houston, TX) followed by 10 IU human chorionic gonadotropin (hCG; Schein Pharmaceutical, Inc., Florham Park, NJ) 47 hr apart. Females were housed with proven CD-1 male mice. Embryos were collected from the oviducts of female mice with vaginal plugs 18 hr after hCG injection. Reproductive tracts were placed in 37°C modified Earle's balanced salt solution (EMG) (Scott and Wittingham 1996) containing 0.3% bovine serum albumin (BSA; A3311), 0.5 mM glucose (G6152), 1.0 mM glutamine (G1146), 0.05 mM EDTA (E4884), 21.4 mM lactate (L7900), and 0.33 mM pyruvate (P4562) (all from Sigma Chemical Co., St. Louis, MO) and transported to the laboratory in a portable CO₂ incubator (K Systems, Birkerød, Denmark). Pronuclear (one-cell zygote) embryos were teased out of the ampullae, and cumulus masses were removed by a 3- to 5-min incubation in 0.2 mg/mL hyaluronidase (H3506) in EMG plus BSA. Embryos were washed 704

Table 1. Working concentrations and purity of agrochemicals and lawn-care pesticides tested individually or as mixtures for their effects on preimplantation embryo development.

Chemical	Working concentration (µg/mL)	Percent purity (%)
Negative injury control		
Ethanol	0.1% vol/vol	99.5
Positive injury control		
o,p’-DDT	0.1	97.4
Preemergence herbicides		
Dicamba	0.030	99.1
Pendimethalin	0.040	100
Dicamba/pendimethalin	0.02/0.04	99.1/100
Postemergence herbicides		
Dicamba	0.020	99.1
2,4-D	0.010	99.1
Atrazine	0.035	100
Dicamba/2,4-D/ atrazine	0.03/0.01/0.035	99.1/100
Fungicides/desiccant		
Chlorothalonil	0.015	99.8
Mancozeb	0.003	100
Diquat	0.002	99
Chlorothalonil/mancozeb/diquat	0.015/0.003/0.002	99.8/100/99
Groundwater contaminants		
Atrazine	0.010	100
Metolachlor	0.100	97.5
2,4-D	0.010	99.1
Ammonium nitrate	1.000	99.5
Atrazine/metolachlor/2,4-D/ammonium nitrate	0.035/0.1/0.01/1.0	97.5/99.1
Insecticides		
Chlorpyrifos	0.003	100
Terbufos	0.0001	99.4
Permethrin	0.050	96.9
Chlorpyrifos/terbufos/permethrin	0.003/0.001/0.05	99.4/96.9
Lawn care herbicides		
Dicamba	0.030	99.1
2,4-D	0.010	99.1
MCPP	0.0005	98.7
Dicamba/2,4-D/MCPP	0.03/0.01/0.0005	99.1/98.7

*Working dilutions were based on 1× RfD (mg/kg/day) as provided by Kamrin (1997) and the U.S. EPA (2000a). *Purity was determined by the manufacturers using gas chromatography, mass spectroscopy, flame ionization, or titration.
medium because they were more soluble in water than in organic solvents.

Negative and positive injury control treatments. Two negative control treatments were prepared by supplementing EMG without BSA culture medium with or without 0.1% vol/vol ethanol. Results of the negative injury controls were compared to determine possible developmental effects of the solvent (ethanol) and to identify pesticide treatment effects. The positive injury control treatment was prepared by supplementing EMG without BSA with 0.1 µg/mL o,p′-DDT (AccuStandard, Inc.). We selected this pesticide and dose because the treatment reliably induces developmental injury in preimplantation embryos (Greenlee et al. 1999). Results from the negative and positive injury controls provided measures of intra- and interassay variation.

Pesticide-induced developmental injury. At the end of the 96-hr culture period, embryos incubated in test and control treatments were scored for development to blastocyst (Gerrity 1988), percentage of apoptosis, and to identify pesticide treatment effects. Development to blastocyst was determined by identifying the percentage of embryos at the one- to eight-cell, morula, blastocyst, expanded, and hatched blastocyst stages using a Nikon Diaphot inverted microscope fitted with Hoffman differential contrast optics (Modulation Optics Inc., Greenvale, NY) and magnification of 100x. We used the following formula to calculate the percentage of embryos developing to the blastocyst stage:

\[
\text{Percentage of embryos } \geq \text{ Blastocyst} = \left(\frac{\text{No. of embryos } \geq \text{ Blastocyst}}{100} \right) \times \text{Total no. of embryos in culture drop.}
\]

Photomicrographs were taken at a magnification of 200x with a Nikon N2000 camera (Nikon) and Kodak Ektachrome ASA 400 film (Eastman Kodak, Rochester, NY). Digital images presented in Figures 1 and 2 were prepared from scanned photographs.

We determined the percentage of embryo blastomeres undergoing cell death by apoptosis using the terminal deoxynucleotidyl transferase-mediated 2′-deoxyuridine 5′-triphosphate (dUTP)-biotin nick end-labeling (TUNEL) assay. Blastocysts were fixed overnight in 25-µL droplets of 3.7% paraformaldehyde in phosphate-buffered saline (pH 7.3) (Sigma Chemical Co.) covered with mineral oil (M8410; Sigma Chemical Co.) at 4°C. Fragmented DNA was quantified by labeling the 3′-OH ends of DNA with fluorescein-conjugated dUTP (Apoptosis Detection System; Promega, Inc., Madison, WI). Cell nuclei were counterstained by incubating embryos 20 min in 0.1 mg/mL propidium iodide. Stained embryos were placed in 3-µL drops of Vectashield fluorescence mounting medium (Vector Laboratories, Inc., Burlingame, CA) on numbered glass slides. The test treatments were keyed and examined by a single technician. Cell nuclei were counted at 400x using a Nikon Optiphot-2 microscope fitted with a DAPI/FITC/Rhodamine triple-band pass filter (Nikon). The nuclei of apoptotic cells stained yellow-green, whereas propidium-iodide–stained nuclei of viable cells appeared orange-red. The cell number per blastocyst was determined by combining the counts of orange and green nuclei per embryo. The total number of stained nuclei per embryo was initially counted twice. A third determination was performed if the previous two counts differed by > 5%. The median of the resulting two or three counts was automatically calculated by the database used in the analysis. The percentage of apoptosis was calculated by dividing the number of green nuclei by the total number of nuclei per embryo and multiplying by 100.

Statistical analysis. Analyses of the primary outcome measures (percentage of embryos developing to blastocyst, the percentage of cells per embryo undergoing apoptosis, and the mean cell number per embryo) were based on analysis of variance (ANOVA) for mixed linear models (SAS Institute Inc. 1997). Experimental replicates, which included negative injury or solvent control, o,p′-DDT, and a subset of pesticide and dose combinations (because of limitations on the number of embryos available at a given time) were modeled as a random effect. Batches of embryos served as the unit of analysis, with a mean of 22 embryos per treatment (including control) for the percentage developing to blastocysts and a mean of 13.5 embryos for the percentage of apoptosis and the cell number. Analyses were weighted in proportion to the number of embryos used for a given treatment. This weighted-least-squares approach assumes that observations based on more embryos have lower variability and weights them optimally in the analysis. Each treatment appeared in at least four experiments, all of which included negative and positive controls for reference. Treatment means were computed from the statistical model to incorporate this weighting and to adjust for differences in experimental replicates. As planned by design, each treatment was compared with the control, and the results in this report are deemed statistically significant at the 5% level (p < 0.05) without adjustment for multiple comparisons.

Results

Negative injury and solvent control effects on embryo development. We used ethanol to prepare 10,000x stock solutions of 11 of 13 pesticides that were water insoluble. To test for solvent effects on preimplantation development, pronuclear embryos were incubated 96 hr in EMG without BSA supplemented

Figure 1. Photomicrograph showing development of embryos cultured 96 hr with (A) negative injury control 0.1% (vol/vol) ethanol, (B) positive injury control 0.1 µg/mL o,p′-DDT, (C) 1x RfD dicamba, (D) 2,4-D, (E) MCPP, or (F) a mixture of dicamba, 2,4-D, and MCPP. Magnification, 200x. Red arrows in (A) point to embryos at the blastocyst, expanded blastocyst, and hatching blastocyst stages of development. Lavender arrows in (B) and (F) point to embryos stalled at earlier cleavage stages (two-cell, four- to eight-cell, and morula).

Figure 2. Single embryos from each of the treated groups stained for apoptosis after embryos were cultured 96 hr with (A) negative injury control 0.1% (vol/vol) ethanol, (B) positive injury control 0.1 µg/mL o,p′-DDT, (C) 1x RfD dicamba, (D) 2,4-D, (E) MCPP, or (F) a mixture of dicamba, 2,4-D, and MCPP at 1x RfD concentrations. Magnification, 400x. Apoptotic nuclei stain yellow-green and viable cell nuclei stain orange-red. White arrows point to the ICM region of the embryo containing the area of highest apoptotic activity.
with \((n = 36)\) and without \((n = 6)\) 0.1% ethanol (negative injury and solvent controls, respectively). This concentration represents the highest possible dose of ethanol in working dilutions of agrochemicals. After the incubation period, significant differences were not detected for the percentage developing to blastocysts (76.4% vs. 76.1%; \(p = 0.91\)), percentage of apoptosis (10.3% vs. 9.9%; \(p = 0.63\), or mean cell number per embryo (111.2 vs. 109.7; \(p = 0.67\)) for ethanol controls and non-supplemented controls, respectively.

Developmental assessment for embryos incubated with pesticides. Embryos were scored for development to blastocyst, mean cell number per embryo, and percentage of apoptosis after 96-hr incubation in controls, individual pesticides, and mixtures at low-dose concentrations based on 1× RfD values. Tables 2–7 provide the weighted means of embryo developmental scores. Compared with the negative injury control treatments, 96-hr incubation of pronucleus embryos with the positive injury control (0.1 µg/mL o,p′-DDT) consistently reduced the percentage of development to blastocysts (all \(p \leq 0.05\)) and increased the percentage of blastomeres undergoing apoptosis (all \(p \leq 0.05\)). These findings are similar to those reported in two earlier studies (Greeneel et al. 1999; 2000).

Compared with the negative injury control treatments, incubating embryos with individual agrochemicals significantly increased the percentage of apoptosis for 11 of 13 chemicals tested, including dicamba, pendimethalin, 2,4-D, atrazine, chlorothalonil, mancozeb, diquat, metolachlor, ammonium nitrate, chlorpyrifos, and terbufos (all \(p \leq 0.05\)). One herbicide (atrazine) and two insecticides (chlorpyrifos and turbufos) also reduced embryo development to blastocyst (all \(p \leq 0.05\)). The fertilizer ammonium nitrate reduced mean cell number per embryo (\(p = 0.0005\)). A reduction in embryo cell number was the only adverse effect noted (\(p = 0.05\)) for the herbicide MCPA.

Mixtures, when compared with negative control treatments, reduced development to blastocyst or increased apoptosis, or had combined effects on blastocyst development and apoptosis. Mixtures formulated to represent preemergent herbicides (dicamba and pendimethalin) and postemergent herbicides (dicamba, 2,4-D, and atrazine) showed a pattern of injury similar to pesticides tested individually; for example, mixtures increased percentage of apoptosis in exposed embryos (all \(p \leq 0.05\)) with no adverse effects on blastocyst development or embryo cell number. In contrast, mixtures formulated to represent groundwater contaminants (atrazine, metolachlor, 2,4-D, and ammonium nitrate), insecticides (chlorpyrifos, terbufos, and permethrin), and lawn-care herbicides (dicamba, 2,4-D, and MCPA) reduced blastocyst development (all \(p \leq 0.05\)). The fungicide mixture (chlorothalonil/mancozeb/diquat) reduced development to blastocyst (\(p \leq 0.05\)) and increased the percentage of apoptosis (\(p \leq 0.005\)).

In summary, 12 of 13 individual chemicals and 6 of 6 mixtures at environmentally relevant concentrations induced developmental injury in preimplantation embryos. Only one agent, permethrin, had no measurable effects on developmental controls.

Photomicrographs of embryos representative of findings at the end of the culture period are shown in Figures 1 and 2 and correspond to results for control and pesticide treatments presented in Table 7. Figure 1 shows development to blastocyst after incubating groups of 20–25 embryos with the negative (0.1% ethanol) and positive (0.1 µg/mL o,p′-DDT) injury controls, individual lawn-care herbicides (dicamba, 2,4-D, or MCPA), or the mixture of lawn-care herbicides (dicamba, 2,4-D, and MCPA). Approximately 70–80% of embryos incubated with the negative injury control (Figure 1A) or with the individual lawn-care herbicides (Figure 1C–E) developed to blastocyst, expanded blastocyst, or hatching blastocyst stages. Embryos at the blastocyst stage of development were characterized as having a thinned zona pellucida, a turgid blastocoele cavity, and a prominent inner cell mass (ICM). Expanded blastocysts showed further thinning of the zonae, with diameters larger than that of the blastocyst stage embryos. Hatching blastocysts exhibited partial protrusion of the embryo through the zona pellucida.

Table 2. Preemergence herbicides dicamba and pendimethalin tested individually and as a mixture at low-dose concentrations for effects on murine preimplantation embryo development.

Treatment	Percentage developing blastocysts	Percentage of apoptosis	Mean cell no./embryo
0.1% ethanol (negative injury control)	72.20 ± 3.51	9.99 ± 0.52	105.44 ± 2.76
0.1 µg/mL o,p′-DDT (positive injury control)	55.64 ± 3.50*	13.05 ± 0.51***	103.47 ± 2.72
Dicamba	60.24 ± 5.10	12.39 ± 0.63*	102.46 ± 3.27
Pendimethalin	76.70 ± 5.16	12.47 ± 0.64*	99.60 ± 3.36
Dicamba/pendimethalin	62.91 ± 5.04	12.01 ± 0.67*	101.97 ± 3.50

*Significantly different from the negative injury control (0.1% ethanol) at \(p < 0.05\). Table 3. Postemergence herbicides dicamba, 2,4-D, and atrazine tested individually and as a mixture at low-dose concentrations for effects on murine preimplantation embryo development.

Treatment	Percentage developing blastocysts	Percentage of apoptosis	Mean cell no./embryo
0.1% ethanol (negative injury control)	74.83 ± 2.19	10.27 ± 0.47	109.22 ± 2.59
0.1 µg/mL o,p′-DDT (positive injury control)	57.79 ± 2.30***	13.04 ± 0.48***	101.24 ± 2.63*
Dicamba	80.24 ± 4.04	12.70 ± 0.70**	102.55 ± 3.56
Pendimethalin	77.35 ± 3.97	12.92 ± 0.70**	102.23 ± 3.62
Atrazine	67.06 ± 3.97	13.58 ± 0.76*	105.29 ± 3.88
Dicamba/2,4-D/atrazine	71.94 ± 4.06	12.28 ± 0.76*	102.34 ± 3.98

*Significantly different from the negative injury control (0.1% ethanol) at \(p < 0.05\). Table 4. Fungicides and desiccant chlorothalonil, mancozeb, and diquat tested individually and as a mixture at low-dose concentrations for effects on murine preimplantation embryo development.

Treatment	Percentage developing blastocysts	Percentage of apoptosis	Mean cell no./embryo
0.1% ethanol (combined negative controls)*	77.19 ± 1.36	10.26 ± 0.32	110.20 ± 1.58
0.1 µg/mL o,p′-DDT (positive injury control)	57.62 ± 1.39***	12.84 ± 0.32***	106.32 ± 1.61***
Chlorothalonil	71.87 ± 3.09	12.54 ± 0.67**	108.17 ± 3.14
Mancozeb*	73.48 ± 3.73	13.62 ± 0.79***	103.23 ± 3.67
Diquat	76.04 ± 3.72	14.12 ± 0.82***	106.68 ± 3.79
Chlorothalonil/mancozeb/diquat	88.36 ± 3.76*	13.05 ± 0.84**	109.88 ± 3.87

*Significantly different from the negative injury control (0.1% ethanol) at \(p < 0.05\). Mancozeb and diquat were not soluble in ethanol; pesticide stock and working dilutions were prepared in 0.1% ethanol. Values are weighted means calculated from the results of at least four experiments ± SEs. \(p \leq 0.05\) and *** \(p < 0.0005\) calculated by ANOVA against comparisons with the negative injury control (0.1% ethanol).
mixture were often stalled at early cleavage stages (e.g., two-, four-, and eight-cell, and morula). Residual embryos in the negative injury control and individual pesticide treatment drops were frequently stalled at later cleavage stages (e.g., morula and preblast). Photomicrographs shown in Figure 2 illustrate apoptosis results for embryos incubated in negative (Figure 2A) and positive (Figure 1B) injury controls and pesticide treatments (Figure 2C–F) detailed in Figure 1. The highest percentages of apoptosis were observed for embryos incubated with the positive injury treatment 0.1 µg/mL o,p′-DDT (Figure 2B) and for embryos incubated with the individual herbicides dicamba, 2,4-D, and MCPP (Figure 2C–E) (all p ≤ 0.05). The percentage of apoptosis for the herbicide mixture (Figure 2F) was not significantly different from the negative injury control (Figure 2A). Apoptotic nuclei were observed most commonly in the region of the ICM of blastocysts and stained yellow-green with TUNEL reagents.

Discussion

Our data demonstrate that pesticide-induced injury can occur at a very early period of embryo development and at pesticide concentrations assumed to be without adverse health consequences for humans. Embryo injury was noted for single agents and for mixtures at concentrations based on 1x RfD values. The RfD is an estimate of a daily exposure to the human population assumed to be of negligible risk for deleterious effects during a lifetime. The RfD is derived by dividing the no observed adverse effect level (NOAEL) or lowest observed adverse effect level (LOAEL) dose by uncertainty factors to accommodate limitations in data, variability within humans, and differences in responses of test and target species. The use of the NOAEL/LOAEL has been criticized because of its sensitivity to sample size, high sampling variability from experiment to experiment, and the inability to use all dose–response data (Barnes et al. 1995; U.S. EPA 2000b). Future studies to evaluate risks of adverse exposures may be better served by using benchmark dose modeling because it is more inclusive of dose–response data and better reflects sample size (Castronia and Woodruff 2003).

Our findings may have implications for human reproductive health. Embryos cleaving to blastocyst yet undergoing cellular death at a higher rate could result in embryos composed of fewer cells. Unless repair mechanisms overcome cellular loss, exposures during this period could result in embryonic demise, implantation failures, or alterations in the physiologic processes underlying maternal recognition of pregnancy (Wilson 1973). Findings from animal dosing studies are consistent with these possibilities. Pregnant mice exposed to very low and low doses of an herbicide mixture (2,4-D, MCPP, and dicamba) during the period of preimplantation–organogenesis (gestation days 0–15) resulted in significant reductions in implantation sites and live births (Cavieres et al. 2002). Female mice receiving oral administration of the insecticide lindane either before or immediately after mating increased blastomere lysis and suppressed cell proliferation of two-cell embryos and morulae (Scascitelli and Pacchierotti 2003). Mice receiving subcutaneous injections of the insecticide methoxychlor on days 2–4 of pregnancy yielded embryos exhibiting suppressed blastocyst proliferation, increased percentages of nuclear fragmentation (apoptosis), and micronuclei formation (Amstislavksy et al. 2003). Embryos collected from female mice receiving a single intraperitoneal injection of the insecticide chlorpyrifos on day 0 of pregnancy showed significant increases in micronucleus formation and a dose-dependent reduction in embryo cell numbers (Tian and Yamachi 2003).

Therefore, our findings for in vitro exposed embryos closely parallel those observed for embryos collected from the reproductive tracts of mice dosed during the preimplantation period. The relevance of preimplantation embryo injury to pregnancy outcomes needs further clarification. This might be accomplished by transferring in vitro exposed embryos to foster mice and monitoring implantation rate, litter size, and pup normalcy at birth. Agrochemicals and lawn-care pesticides were tested at concentrations ranging between parts per trillion for the insecticide terbufos to parts per billion for the herbicide metolachlor. These concentrations are environmentally relevant and physiologically achievable based on pesticide levels reported for human follicular

Table 5. Groundwater contaminants atrazine, amonitrate, 2,4-D, and metolachlor tested individually and as a mixture at low-dose concentrations for effects on murine preimplantation embryo development.

Treatment	Percentage developing blastocysts	Percentage of apoptosis	Mean cell no./embryo
0.1% ethanol (negative injury control)	78.10 ± 2.81	10.53 ± 0.51	110.73 ± 2.75
0.1 µg/mL o,p′-DDT (positive injury control)	59.33 ± 2.09***	13.05 ± 0.53***	103.94 ± 2.79***
Atrazine	67.61 ± 4.47*	13.52 ± 0.99**	107.23 ± 3.94
Metolachlor	73.51 ± 4.46	12.53 ± 0.89*	100.81 ± 3.78*
2,4-D	77.03 ± 4.47	13.00 ± 0.87*	104.32 ± 3.72
Ammonium nitrate	68.92 ± 4.44	13.29 ± 0.96*	96.98 ± 3.92**
Atrazine/metolachlor/2,4-D/ammonium nitrate	62.98 ± 4.53*	11.72 ± 0.97	106.36 ± 3.98

*Values are weighted means calculated from the results of at least four experiments † ≤ 0.05, ‡ ≤ 0.005, and *** ≤ 0.0005 calculated by ANOVA against comparisons with the negative injury control (0.1% ethanol).

Table 6. Insecticides chlorpyrifos, terbufos, and permethrin tested individually and as a mixture for effects at low-dose concentrations on murine preimplantation embryo development.

Treatment	Percentage developing blastocysts	Percentage of apoptosis	Mean cell no./embryo
0.1% ethanol (negative injury control)	81.47 ± 2.51	10.63 ± 0.61	111.69 ± 2.89
0.1 µg/mL o,p′-DDT (positive injury control)	62.35 ± 2.58***	12.30 ± 0.63***	106.09 ± 2.99
Chlorpyrifos	71.76 ± 4.09*	13.11 ± 0.92*	103.08 ± 4.51
Terbufos	71.43 ± 4.05*	12.87 ± 0.92*	111.41 ± 4.50
Permethrin	74.72 ± 4.09	11.71 ± 0.95	107.47 ± 4.66
Chlorpyrifos/terbufos/permethrin	66.86 ± 3.72**	11.96 ± 0.85	104.39 ± 4.13

*Values are weighted means calculated from the results of at least four experiments † ≤ 0.05, ‡ ≤ 0.005, and *** ≤ 0.0005 calculated by ANOVA against comparisons with the negative injury control (0.1% ethanol).

Table 7. Lawn care herbicides dicamba, 2,4-D, and MCPP tested individually and as a mixture at low-dose concentrations for effects on murine preimplantation embryo development.

Treatment	Percentage developing blastocysts	Percentage of apoptosis	Mean cell no./embryo
0.1% ethanol (negative injury control)	74.12 ± 2.00	10.10 ± 0.39	109.77 ± 2.27
0.1 µg/mL o,p′-DDT (positive injury control)	58.02 ± 2.08***	12.63 ± 0.40***	102.27 ± 2.32***
Dicamba	80.33 ± 3.77	12.51 ± 0.84***	103.00 ± 3.95
2,4-D	76.52 ± 3.71	12.87 ± 0.86***	103.31 ± 3.95
MCPP	69.63 ± 3.77	11.40 ± 0.68	100.26 ± 3.80*
Dicamba/2,4-D/MCPP	64.68 ± 3.71*	11.13 ± 0.69	99.50 ± 3.92*

*Values are weighted means calculated from the results of at least four experiments † ≤ 0.05, ‡ ≤ 0.005, and ### ≤ 0.0005 calculated by ANOVA against comparisons with the negative injury control (0.1% ethanol).
aspirates (Baulkoh et al. 1985; Jarrell et al. 1993) and for maternal and cord blood samples collected at delivery (Waliszewski et al. 2000). Comparisons between contaminant concentrations in maternal and cord plasma samples suggest a balanced state between mother and fetus with respect to circulating pesticides and metabolites (Whyatt et al. 2003). Similar correlations between maternal serum and follicular fluid contaminant levels have been reported for in vitro fertilization patients (Youngla et al. 2002). Just before ovulation, follicles become highly vascularized (Edwards et al. 1980). This increased blood flow may enhance transfer and accumulation of pollutants from serum to follicular fluids (Baulkoh et al. 1985).

Adjuvants (paraffinic oils and/or surfactant mixtures) were not included in the test formulations. Adjuvants are typically combined with the active ingredients in commercial formulations to improve the characteristics of penetration, spreading, or longevity in the field (Tominack 2000). Adjuvants alone may have disruptive effects, as demonstrated by growth promotion of human tumor cell lines (Lin and Garry 2000), abnormal endocrine profiles of pesticide/adjuvant applicators (Garry et al. 1999), and cell cycle delays in embryo cleavage (Marc et al. 2002). In the latter study, pesticide toxicity was detected only in combination with a subthreshold concentration of a commercial pesticide formulation containing inert ingredients. In our study, individual agents and mixtures of agrochemicals caused measurable injury without the addition of adjuvants. It will be important to determine if embryo development is further compromised by combining pesticides with other ingredients found in commercial formulations.

Ethanol is a known teratogen. Maternal ingestion of at least 0.5 oz (14 mL) per day during pregnancy has resulted in measurable neurodevelopmental abnormalities in young children (Soöd et al. 2001). This dose approximates a daily body burden of 0.01–0.03% ethanol and may vary based on the weight and genetic factors of the woman. Ethanol was used as a solvent for 11 of 0.01–0.03% ethanol and may vary based on the weight and genetic factors of the woman.

Ethanol (all parameters were measured for embryos incubated for 96 h in medium with and without ethanol (all p > 0.63). However, it is possible that ethanol supplementation at this concentration may have latent deleterious effects. Additional studies are needed to fully address this question.

Exposure to single agents and certain mixtures elevated percent cell death without affecting development to blastocyst. Other treatments stalled development to blastocyst without increasing apoptotic cellular death. For example, dicamba alone or combined with pendimethalin or 2,4-D and atrazine induced significant levels of apoptosis. However, dicamba combined with 2,4-D and MCPA significantly reduced development to blastocyst without increasing rates of cell death (Tables 2, 3, and 7). One explanation may be that early cleavage-stage embryos were not competent to initiate apoptosis. However, this is unlikely, as the requisite molecular components for the apoptotic cascade are available in the blastomeres of embryos at all stages of development (Weil et al. 1996). Another possibility to explain differing injury profiles may be the combined effects of three compounds rather than a single agent. It is believed that embryos must first differentiate into distinct embryonic regions, the ICM and the trophoderm (TE), before apoptosis is engaged. The temporal significance of apoptosis may be to rid TE cells from the rapidly growing ICM (Pierce et al. 1989). In support of this possibility, Hardy (1999) and Brison and Schultz (1997) noted that most apoptotic activity was confined to the ICM region of blastocyst embryos. We also localized apoptosis primarily in the region of the blastocyst ICM (Figure 2). Therefore, embryos may need to cleave normally to blastocyst to demonstrate an increased vulnerability to low-dose contaminants. More substantial injuries, causing embryos to stall differentiation to ICM and TE, would result in rates of apoptosis similar to the negative control treatment.

Agrochemicals and lawn-care pesticides chosen for testing are those still commonly used in the upper midwestern United States. Mixture formulations were based on possible exposures routes (e.g., ingesting contaminated groundwater; mixing and handling pesticides; inhaling pesticide drift). Compounds could also be screened based on common mechanisms of pesticide action. The embryo model is well suited for accommodating both approaches.

Conclusions

The mouse preimplantation embryo assay appeared sensitive and reliable for assessing early developmental injury due to agrochemical exposures at concentrations below which health effects are thought to occur. In vitro exposure of murine preimplantation embryos to the negative and positive injury control treatments provided reproducible comparisons for pesticide treatment effects on developmental outcomes (blastocyst development, embryo cell number, and percentage of apoptosis). Results of this study may assist with modeling risk of agrochemical exposures coinciding with events of early pregnancy. However, additional efforts are needed to validate the assay for purposes of human risk assessment and to determine the relevance of in vitro exposures to pregnancy outcomes.

References

Amstalsviksy SV, Kizlova EA, Eroschenko VP. 2003. Preimplantation mouse embryo development as a target of the pesticide methoxychlor. Reprod Toxicol 17:79–86.

Arbuckle TE, Savitz DA, Mery LS, Curtis KM. 1999a. Exposure to phenoxy herbicides and the risk of spontaneous abortion. Epidemiology 10:752–762.

Arbuckle TE, Schrader SM, Cole D, Hall JC, Bancie CM, Turner LA, et al. 1999b. 2,4-Dichlorophenoxyacetic acid residues in semen of Ontario farmers. Reprod Toxicol 13:431–429.

Arbuckle TE, Seaver LE. 1998. Pesticide exposures and fetal death: a review of the epidemiologic literature. Crit Rev Toxicol 28:229–270.

Barnes DG, Daston GP, Evans JS, Jarahem AB, Kavlock RJ, Kimmel CA, et al. 1995. Benchmark dose workshop: criteria for use of a benchmark dose to estimate a reference dose. Regul Toxicol Pharmacol 21:296–308.

Baulkoh V, Bohnet NG, Traup M, Heeschman W, Feichtinger W, Kemeter P. 1985. Biocides in human follicular fluid. Ann NY Acad Sci 442:240–250.

Bell EM, Hertz-Picciotto I, Beaumont JJ. 2001a. A case-control study of pesticides and fetal death due to congenital anomalies. Epidemiology 12:148–156.

Bell EM, Hertz-Picciotto I, Beaumont JJ. 2001b. Case-cohort analysis of agricultural pesticide applications near maternal residence and selected causes of fetal death. Am J Epidemiol 154:702–710.

Brison DR, Schultz RM. 1997. Apoptosis during mouse blastocyst formation: evidence for a role for survival factors including transforming growth factor-ß. Biol Reprod 56:1088–1096.

Castoria R, Woodruff TJ. 2003. Assessment of potential risk levels associated with U.S. Environmental Protection Agency reference values. Environ Health Perspect 111:1318–1325.

Covaci A, Jaeger J, Porter W. 2000. Developmental toxicity of a commercial herbicide mixture in mice: I. Effects on embryo implantation and litter size. Environ Health Perspect 110:1081–1085.

Edwards RG, Stopeck PC, Fowler RE, Balil J. 1980. Observations on preovulatory human ovarian follicles and their aspirates. Br J Obstet Gynaecol 87:769–779.

Foster WG. 1995. The reproductive toxicology of Great Lakes contaminants. Environ Health Perspect 103(suppl 9):63–69.

Foster W, Chan S, Platt L, Hsiao C. 2003. Detection of endocrine disrupting chemicals in samples of second trimester human amniotic fluid. J Clin Endocrinol Metab 88:294–297.

Furuites L, Clark MK, Kirchner HL, Smith EM. 1997. Association between female infertility and agricultural work history. Am J Ind Med 31:445–451.

Garry VF, Schreinemachers D, Hanks ME, Griffith J. 1996. Pesticide applicators, biocides, and birth defects in rural Minnesota. Environ Health Perspect 104:394–399.

Garry VF, Burroughs B, Tannev R, Kesner JS. 1997. Herbicides and assisted fertilizations: an evolving view. J Reprod Fertil Suppl 51:91–100.

Garry VF, Hanks ME, Erickson LL, Long-Simpson LK, Holland SE, Burroughs BL. 2002. Birth defects, season of conception, and sex of children born to pesticide applicators living in the Red River Valley of Minnesota, USA. Environ Health Perspect 110(suppl 3):441–449.

Gerrity M. 1998. Mouse embryo culture bioassay. In: In Vitro Fertilization and Embryo Transfer: A Manual of Basic Techniques (Wolf DP, Bawister BD, Gernly M, Kopf GS, eds). New York/London:Plenum Press, 57–76.

Greenlee AR, Arbuckle TE, Chuyu PH. 2003. Risk factors for female infertility in an agricultural region. Epidemiology 14:429–438.

Greenlee AR, Quail CA, Berg RL. 1999. Developmental alterations in murine embryos exposed in vitro to an estrogenic pesticide, o,p′-DDT. Reprod Toxicol 13:555–565; doi: 10.1016/S0890-6238(99)00039-0.

Greenlee AR, Quail CA, Berg RL. 2000. The antiestrogen ICI 182,780 abolishes developmental injury for murine embryos exposed in vitro to o,p′-DDT. Reprod Toxicol 14:225–234.

Hek K. 1999. Apoptosis in the human embryo. Reprod Toxicol 13:125–134.

Jarrell JF, Villeneuve D, Franklin C, Bartlett S, Wrixon W, Kohut J, Marquedant SK, Marrs CE, Bell EM, Hertz-Picciotto I, Beaumont JJ. 2001b. Case-cohort analysis of agricultural pesticide applications near maternal residence and selected causes of fetal death. Am J Epidemiol 154:702–710.

Kamrin MA. 1997. Introduction to pesticide profiles and basic concepts. In: Pesticide Profiles: Toxicity, Environmental Impact, and Fate. Boca Raton, FL:CRIC Press, 9–10.
Korrick SA, Chen C, Damarakul AI, Ni J, Liu X, Cho S, et al. 2001. Association of DDT with spontaneous abortion: a case-control study. Ann Epidemiol 11:491–496.

Lin N, Garry VF. 2000. In vitro studies of cellular and molecular developmental toxicity of adjuvants, herbicides, and fungicides commonly used in Red River Valley, Minnesota. J Toxicol Environ Health A 60:423–439.

Longnecker MP, Kelaiaia MA, Zhou H, Brock JW. 2001. Association between maternal serum concentration of the DDT metabolite DDE and perterm and small-for-gestational-age babies at birth. Lancet 358:110–114.

Marc J, Mulner-Lorillon O, Boulben S, Hureau D, Durand G, Belle R. 2002. Pesticide Roundup provokes cell division dysfunction at the level of CDK1/cyclin B activation. Chem Res Toxicol 15:326–331.

National Research Council. 1996. Guide for the Care and Use of Laboratory Animals. Washington, DC: National Academy Press.

National Research Council. 2000. Scientific Frontiers in Developmental Toxicology and Risk Assessment. Washington, DC: National Academy Press.

Nishimura H, Shiota K, Tanimura T, Mizutani T, Matsumoto M, Ueda M. 1977. Levels of polychlorinated biphenyls and organochlorine insecticides in human embryos and fetuses. Paediatrician 6:45–57.

Pastore LM, Hertz-Picciotto I, Beaumont JJ. 1997. Risk of stillbirth from occupational and residential exposures. Occup Environ Med 54:511–516.

Perera FP, Rauch V, Tsai W-Y, Kinney P, Camann D, Barr D, et al. 2003. Effects of transplacental exposure to environmental pollutants on birth outcomes in a multietnic population. Environ Health Perspect 111:201–205.

Pierce GB, Lewellyn AL, Parchment RE. 1989. Mechanism of programed cell death in the blastocyst. Proc Natl Acad Sci USA 86:3654–3658.

SAS Institute Inc. 1997. SAS/STAT Software: Changes and Enhancements through Release 6.12. Cary NC: SAS Institute Inc.

Savitz DA, Whelan EA, Kleckner RC. 1989. Self-reported exposure to pesticides and radiation related to pregnancy outcome—results from National Natality and Fetal Mortality Surveys. Public Health Rep 104:473–477.

Saxena MC, Siddiqui MK, Agarwal V, Kuyt D. 1983. A comparison of organochlorine insecticide contents in specimens of maternal blood, placenta and umbilical-card blood from still-born and live-born cases. J Toxicol Environ Health 11:71–79.

Scascitelli M, Pacchierotti F. 2003. Effects of lindane on oocyte maturation and preimplantation embryonic development in the mouse. Reprod Toxicol 17:299–303.

Scott I, Whittingham DG. 1996. Influence of genetic background and media components on the development of mouse embryos in vitro. Mol Reprod Dev 43:338–346.

Smith EM, Hammond-Ehlers C, Clark MK, Kirchner HL, Fuortes L. 1997. Occupational exposures and risk of female infertility. J Occup Environ Med 39:138–147.

Sood B, Delaney-Black V, Covington C, Nordstrom-Klee B, Ager J, Templin T, et al. 2001. Prenatal alcohol exposure and childhood behavior at age 6 to 7 years: I. Dose-response effect. Pediatrics 108:E34.

Tian Y, Yamauchi T. 2003. Micronucleus formation in 3-day in vitro fertilization. Arch Environ Contam Toxicol 43:121–126.

Weil M, Jacobson MD, Coles HS, Davies TJ, Gardner RL, Raff KD, et al. 1996. Constitutive expression of the machinery for programmed cell death. J Cell Biol 133:1053–1059.

Whyatt RM, Barr DB. 2001. Measurement of organophosphate metabolites in postpartum meconium as a potential biomarker of prenatal exposure: a validation study. Environ Health Perspect 109:417–420.

Whyatt RM, Barr DB, Coles MD, Kinney PL, Barr JR, Andrews HF, et al. 2003. Contemporary-use pesticides in personal air samples during pregnancy and blood samples at delivery among urban minority mothers and newborns. Environ Health Perspect 111:749–756.

Wilson JJ, ed. 1973. Manifestations of abnormal development. In: Environment and Birth Defects. New York: Academic Press, 97–110.

Younglai EV, Foster WG, Hughes EG, Trim K, Jarrell JF. 2002. Levels of environmental contaminants in human follicular fluid, semen, and seminal plasma of couples undergoing in vitro fertilization. Arch Environ Contam Toxicol 42:121–126.