Spatio-temporal mobility patterns of on-demand ride-hailing service users

Jiechao Zhanga, Samiul Hasanb, Xuedong Yanb and Xiaobing Liub

aDepartment of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, MIA, USA; bSchool of Traffic and Transportation, Beijing Jiaotong University, Beijing, China

\textbf{ABSTRACT}

Understanding individual mobility behavior is critical for modeling urban transportation. Different types of emerging data sources such as mobile phone records, social media posts, GPS observations, and smart card transactions have been used to reveal individual mobility behavior. In this paper, spatio-temporal mobility behaviors are reported using large-scale data collected from a ride-hailing service platform. Using passenger-level travel information, to characterize temporal movement patterns, trip generation characteristics, and distribution of gap time between consecutive trips are revealed. To understand spatial mobility patterns, we observe the spatial distribution of residences and workplaces, and the distributions of travel distance and travel time. Our analysis highlights the differences in mobility patterns of ride-hailing services users, compared to the findings of existing studies based on other data sources. The results show the potential of developing high-resolution individual-level mobility models that can predict the demand for emerging mobility services with high fidelity and accuracy.

\textbf{KEYWORDS}

Individual mobility; urban transportation; ride-hailing service; spatio-temporal patterns

\textbf{Introduction}

Spatio-temporal patterns of human mobility give information on how a city functions. Understanding individual mobility behavior, from different perspectives, is important to solve many city problems, such as urban planning (Sun et al. 2016; Tian, Wu, and Yang 2010), traffic management (Chen et al. 2016), public safety (Horanont et al. 2013; Lu, Bengtsson, and Holme 2012), intelligent transportation system (Zhang et al. 2011), smart cities (Pan et al. 2013), public transportation (Zhao, Koutsopoulos, and Zhao 2018), disease spread and control (Bajardi et al. 2011; Wesolowski et al. 2012) and emerging issues such as autonomous vehicle operations (Bansal and Kockelman 2017) and mobility as a service design (Jittapapirom et al. 2017). In recent years, a wide range of emerging human movement data sources – such as banknotes (Brockmann, Hufnagel, and Geisel 2006), social media data (Hasan, Zhan, and Ukkusuri 2013b; Jurdak et al. 2015), mobile phone call detail records (Huang et al. 2018), smart card transactions (Zhao, Koutsopoulos, and Zhao 2018), and floating car observations (Chen et al. 2019; Peng et al. 2012; Veloso et al. 2011; Zheng et al. 2018) – have been used to uncover individual mobility behavior (Gonzalez, Hidalgo, and Barabasi 2008) and commuting patterns (Ma et al. 2017). In this paper, we report findings on the mobility behavior of a new population group – users of the emerging on-demand ride-hailing services – after analyzing large-scale trip data from a ride-hailing platform.

With the emergence of ride-hailing services, such as Uber, Lyft, Didi, Ola Cabs, and many others, massive passenger movement data from these platforms have a tremendous potential to reveal individual travel behavior patterns. In this study, we analyze the spatio-temporal patterns of individual mobility using movement data extracted from Didi, a Chinese ride-hailing service. First, we present a distance-based algorithm to identify the visited places of different passengers. Second, given the visited places of passengers, we investigate the spatio-temporal patterns of individual movements. Then, for each individual user, we detect their home and workplace based on the probability of visiting different places at different time periods (morning and evening peak hours). Finally, we reveal individual mobility patterns when using ride-hailing services from different perspectives, such as trip generation, gap time, number of visited places and their rank, spatial distribution of home and workplace, travel distance, and travel time for both commuting and non-commuting trips. The resulting distributions show the potential of modeling the generative mechanism of ride-hailing service demand. Such models will enable high-fidelity (e.g. individual level) simulation of demand prediction, dispatching, ride-sharing, and pricing applications of ride-hailing services.

To the best of our knowledge, this is the first study that reveals individual-level mobility patterns of ride-hailing service users based on large-scale data available from a ride-hailing platform. The main contributions of this paper are as follows:

- The spatio-temporal mobility patterns of ride-hailing service users have been revealed. Although ride-hailing platforms have been serving demand for several years, previous studies did not investigate the mobility patterns of the users of these services.
- Critical aspects of on-demand ride-hailing services have been investigated, such as the gap time between two consecutive rides and the rank of visited places of the users.
- The distributions of travel distance and travel time of on-demand ride-hailing service trips have been fitted with commonly used distributions. The parameters of these distributions can be used to establish trip generation mechanisms for agent-based simulations, which will significantly benefit the operations and management of on-demand ride-hailing services as well as urban planning and traffic management.
This paper is organized as follows: Section 2 summarizes previous work related to human mobility analysis. Section 3 describes the study area and the dataset extracted from Didi’s platform. Then, a heuristic algorithm based on distance is presented to detect the most visited places of ride-hailing service users. Section 4 reports the empirical results observed from individual mobility patterns, including the distribution of generated trips over different time periods for both commuting and non-commuting purposes, the rank of the visited places, the gap time between two consecutive trips, the spatial distribution of home and workplace, and the general distribution of travel distance and travel time. Section 5 discusses the results of individual mobility patterns and compares the results with previous studies. Section 6 provides the insights and implications of the results for transportation planning and operations. Section 7 concludes with the limitations of this research that can be improved in the future work.

Literature review

Individual mobility behavior reflects the spatio-temporal dynamics of urban mobility at high resolution (Brockmann, Hufnagel, and Geisel 2006). Traditionally, survey-based travel data (Cheng et al. 2019) have been used to analyze and model individual mobility behavior. Although travel survey methods have evolved from traditional pen-and-paper-based data collection to nowadays web and smartphone-based data collection (Wolf, Guensler, and Bachman 2001) approach. High cost and low sample size are major challenges toward implementing these tools at scale (Wu et al., 2011). To overcome the limitations of travel surveys, researchers have analyzed emerging data sources such as banknotes (Brockmann, Hufnagel, and Geisel 2006), mobile phones (Gonzalez, Hidalgo, and Barabasi 2008), and social media (Rashidi et al. 2017) data for understanding and modeling individual mobility behavior.

With the widespread adoption of mobile phones and location-based services, various large-scale high-resolution datasets with varying capabilities have been used to understand individual mobility behavior (Alessandretti et al. 2017; Zhang et al. 2018). For instance, call detail records (CDR) from mobile phones can provide useful insights on individual mobility at a scale that was unimaginable before (Gonzalez, Hidalgo, and Barabasi 2008; Chen et al. 2016; Huang et al. 2018). However, CDR data are generated when a person makes a phone call or sends a message. It is a challenging task to predict when and where an individual will use his/her phone, which may result in incomplete travel information. Thus, inferring the origin and destination of individual activity is difficult based on such data (Huang et al. 2018). Social media posts can also provide rich information on individual travel and activity behavior (Rashidi et al. 2017; Abbasi and Hossein Rashidi 2019). By mining geo-location data recorded when user’s check-in or post in social media platforms, individual activities can be identified over a long period, offering useful insights on individual travel patterns. However, these data do not include the precise start and end time of a trip, limiting applications in transportation (Hasan and Ukusuri 2018). Data from social media and mobile phones are defined as extrinsic mobility data that do not directly observe individual travel behavior (Zhao, Kotsoopoulos, and Zhao 2018).

Different from extrinsic mobility data (Zhao, Kotsoopoulos, and Zhao 2018), smart card data (Hasan, Zhan, and Ukusuri 2013b) and floating car data (FCD) (Ehmke, Meisel, and Mattfeld 2012; Sun, Leurent, and Xie 2020) can be defined as intrinsic mobility data that are directly collected from transportation system operations. For instance, smart card data are extracted from public transit operations, while FCD are collected from taxicab. Both types of dataset record when and where a user takes public transit (e.g. subway or bus) or taxi for a trip – giving precise information on the origin, destination, distance, price, and time of a trip. Unlike extrinsic data, intrinsic mobility data can offer mode-specific complete trajectory information, giving a different perspective to understand individual travel behavior.

Compared to smart card data, taxicab data have limitations to uncover individual mobility patterns because passengers always pay in cash or with credit cards when they take a taxi, without requiring the system to record individual details for historical tracking. Thus, previous studies on human mobility using taxicab data focused on urban resident’s aggregate travel patterns (Zheng et al. 2018) or taxi drivers’ travel behavior (Leng et al. 2016), instead of analyzing individual passenger’s mobility patterns. Due to the lack of available data, studies on individual mobility patterns using taxicab services hardly exist. However, a deeper understanding of individual mobility patterns under taxicab services from a passenger’s perspective is significantly beneficial to many problems involving emerging ride-hailing services such as real-time demand prediction (Ke et al. 2017) designing ride-sharing operations (Alonso-Mora et al. 2017a), and designing mobility services for autonomous vehicles (Alonso-Mora, Wallar, and Rus 2017b).

The emergence of on-demand ride-hailing platforms provides an innovative transportation service that can be easily requested via a smartphone app – providing longitudinal mobility data at an individual level (Contreras and Paz 2018). These ride-hailing service platforms have a great potential in revealing individual mobility behaviors since the locations and timings of individual trips can be recorded through GPS devices in the smartphone and stored on the platform. However, previous studies mainly used ride-hailing data for analyzing aggregate mobility behavior (Dong et al. 2018) investigating the mobility patterns from the perspective of drivers’ earning (Xu et al. 2020) and solving traffic modeling and prediction problems (Ke et al. 2017). As such, the human mobility literature lacks an understanding of individual-level mobility patterns based on ride-hailing service data. To fill this research gap, in this study, the mobility patterns of on-demand ride-hailing users have been analyzed using large-scale data extracted from a major ride-hailing platform. The results of this research will provide valuable insights for many future studies, such as demand prediction, policy making, and design of ride-hailing services.

Data and methods

Study area and data description

In this study, a large-scale dataset from Didi (the largest ride-hailing service company operating in Beijing, China) has been analyzed. The study region covers the area inside Beijing’s 6th ring road, seen as Figure 1. The dataset used in this paper was extracted from Didi from March 1, 2017 to June 31, 2017. The dataset records more than 3 million Didi users with around 200 million trips. Table 1 presents the fields available in the data with their description. In this study, among the users who have made more than 10 trips per month in the data collection period, 50,000 users have been randomly selected.

Raw movement data from ride-hailing platforms have several issues. For example, GPS errors may be caused by either blockage of the GPS signal or hardware/software bugs during the data collection process. To clean the raw data, the following steps have been applied to preprocess the data.

Step 1: Convert the current coordinate system of Didi’s data to the Worldwide Geodetic System 1984 (WGS84) coordinate system.

Step 2: Remove the data, which have the coordinates (origin or destination) outside Beijing’s 6th ring road.
Step 3: Based on the speed limitation, remove the trips with average travel speed \(\frac{Distance}{(D_Time - O_Time)}\) above 120 km/h.

Table 1. Data attributes.

Fields	Field Name	Field Type	Field Description
R_id	Record ID	String	The record id of one trip
P_id	Passenger ID	String	The passenger encrypted id of one trip
D_id	Driver ID	String	The driver encrypted id of one trip
O_LNG	Longitude of Origin	Floating	The longitude of the origin
O_LAT	Latitude of Origin	Floating	The latitude of the origin
D_LNG	Longitude of Destination	Floating	The longitude of the destination
D_LAT	Latitude of Destination	Floating	The latitude of the destination
O_Time	Start Time	Timestamp	The timestamp of the origin
D_Time	Arrive Time	Timestamp	The timestamp of the destination
L	Travel Distance	Floating	The travel distance of the trip in meters

Figure 1. The study region: area inside Beijing 6th ring road (source: https://www.google.com/maps).

Visited place generation

Passenger movement data provide GPS coordinates of origins and destinations. However, two origins or destinations can belong to the same place (e.g., home or workplace) with different coordinates possibly due to different boarding points from the same location. Thus, by referring to the previous algorithm (Goulet-Langlois, Koutsopoulos, and Zhao 2016), the separate visited points are grouped into visited places for each individual based on the distance between visited points. The visited places are defined by iteratively combining the two nearest visited points until the smallest distance between the two visited points is greater than a predefined threshold distance.

Based on individual’s origins and destinations, his/her home and workplace can be inferred since the individual mobility patterns show strong regularity (Song et al. 2010). Passengers typically leave home and arrive at workplace in the morning peak hour and have
a reverse travel direction during the evening peak hours. Previous algorithms have been used to identify the home/workplace with massive individual mobility data. Using mobile phone data, Lauren Alexander et al. (Alexander et al. 2015) defined the home place as the most frequently visited locations on weekends and weekdays between 7 pm and 8 am for each individual. In addition, the workplace is defined as the locations which the user travels the maximum total distance from home. Ma et al. (Ma et al. 2017) also identified the commuting behavior of smart card users, they defined the first trip and last trip of everyday as home-to-work and work-to-home trips, respectively. Depending on the frequency of visited stops and time periods, each individual is assigned an index – commuting score to show their probability of being a regular commuter. However, previous algorithms are not suitable for detecting the home/workplace of ride-hailing service users. First, since the position of users can be identified only when they use ride-hailing service, the locations of the users at other times cannot be detected which makes it difficult to find the most visited location on weekends and/or midnights. Second, users can take ride-hailing service at any time of the day, which is different from the smart card users. Thus, the first trip and last trip of the day are not always home-to-work or work-to-home trips.

In this study, the ride-hailing user’s home/workplace is identified based on the frequency of their visited places during peak hours. However, based on the characteristics (high cost and efficiency) of an on-demand ride-hailing service, some users may only use ride-hailing service to travel to either residence or workplace and take another travel mode for other trips. There are also some users who do not utilize the ride-hailing service for commuting purposes. Thus, to correctly identify the function (home or workplace) of visited places, the ratio of the number of trips in peak hours to the total number of trips for each individual should also be considered. For an individual, if the ratio of the number of trips in peak hours to the total trip number is too low, then his/her home/workplace cannot be identified. Several heuristic rules have been applied to identify the visited places and their functions for each individual as follows:

Rule 1: For each individual user, if the distance between two locations (origins or destinations) is less than 500 m, then these two locations are defined as the same place.

Rule 2: For each individual user, for each location, the number of trips originated from the same location in the extended morning peak hour (6 am – 11 am) or the number of trips ended at the same location in the extended evening peak hours (3 pm – 8 pm) are counted, among all the trips made by the user in the analysis period. If the ratio of the largest count to the total trip number is more than 40%, then, the location with the largest count is defined as the home place. Otherwise, the individual’s home place cannot be identified.

Rule 3: For each individual user, the sum of the number of destinations in the extended morning peak hours (6 am – 11 am) and the number of origins in the extended evening peak hours (3 pm – 8 pm) for each location are counted. If the ratio of the largest count to the total trip number is more than 40%, then, the location with the largest count is defined as the workplace. Otherwise, the individual’s workplace cannot be identified.

According to **Rule 1**, a distance-based visited place generation algorithm is developed to identify the visited places of each individual user. According to the distance between different coordinates, the algorithm detects whether the origin or destination is a new place and then assigns an ID, as a visited place (start from 0), to the origin and/or destination. The key definitions of the algorithm are shown as follows:

- \(d_{th} \): the threshold distance used to identify places (\(d_{th} = 500 \) m).
- \(d_{ij} \): the distance between point \(i \) and point \(j \).
- \(O^n \): the \(n^{th} \) origin point of a user.
- \(D^n \): the \(n^{th} \) destination points of a user.
- \(MTN \): the number of trips per month made by a user.
- \(PID \): the ID of visited places of a user (0, 1, \ldots, n).
- \(maxPID \): the maximum PID of a user.
- \(VPF \): the types of visited places of a user (0-home, 1-work, 2-other).

An algorithm has been developed to convert the coordinates of the origins and destinations into relative IDs of visited places (\(PID \)) for an individual. Briefly speaking, for each individual user, a list of coordinates of origins and destinations are considered of all the trips made by the user. Each origin and destination are defined as different points, and the algorithm starts from the origin of the first trip by setting it as the first visited place (i.e. \(PID = 0 \)). Then, choose the destination of that trip as the second point and compare the distance between this point and the previous point (\(d_{ij} \)) with the threshold distance (\(d_{th} \)). If \(d_{ij} \) is less than \(d_{th} \), then set the second point as a new visited place, the \(PID \) of the second place is 1 and the \(maxPID \) is added by 1. In this way, two different visited places are generated. If \(d_{ij} \) is less than \(d_{th} \), then the second point is the same visited place as the first point, and the \(PID \) of the second place is also 0. Likewise, for the other points, the distance between them and existing visited places with \(d_{ij} \) are compared, if all the distances \(d_{ij} \) are more than \(d_{th} \), then generate a new visited place, and the \(maxPID \) is added by 1. Otherwise, if the distance between the point and any existing place is less than \(d_{th} \), then the \(PID \) of this point will be the same as the specific existing place. The algorithm iterates over all points until every point has its own \(PID \). The algorithm is described as follows:

After running the algorithm, the visited places of each user are generated, and the function (home place or workplace) of the visited places can be identified according to **Rule 2** and **Rule 3**.

Fitness metrics

In this paper, to reveal the statistical distributions of individual travel distance and travel time, several commonly used distributions are applied to the corresponding trip attributes for the selected users, including log-normal, Weibull, gamma, student’s t, exponentiated Weibull, and power log-normal (see Appendix for more information on these distributions).

The parameters of the distributions are estimated by maximum likelihood methods, and detailed information can be found in the literature (Myung 2003). Besides, Kolmogorov–Smirnov test (K-S test) (Massey 1951) is used to evaluate the performance of the fitness. The null hypothesis of the K-S test is that the two distributions are identical.

The empirical distribution function \(F_n \) for \(n \) independent and identically distributed (iid) ordered observation \(X_i \) is defined as:

\[
F_n(x) = \frac{1}{n} \sum_{i=1}^{n} I_{[-\infty,x]}(X_i)
\]

(1)

Where \(I_{[-\infty,x]}(X_i) \) is the indicator function, equal to 1 if \(X_i \leq x \) and equal to 0 otherwise.

The Kolmogorov–Smirnov statistic for a given cumulative distribution function \(F(x) \) is:

\[
D_n = \sup_x |F_n(x) - F(x)|
\]

(2)

where \(\sup_x \) is the supremum of the set of distances.
Empirical results

Temporal pattern – Trip generation

Based on the origin and destination information, a trip can be characterized by its travel purpose. In this study, individual trip generation patterns are analyzed by decomposing the on-demand ride-hailing service trips into two groups – commuting and non-commuting trips according to their travel locations. This paper defines a trip, which is made between the residence and the workplace of a user as a commuting trip. When a trip contains at least one location, which is neither the residence nor the workplace, we define it as a non-commuting trip.

Figure 2a shows the daily trip distribution of commuting and non-commuting trips of all selected users from the on-demand ride-hailing service. It reveals the weekly periodicity of passengers’ travel behavior. On-demand service users tend to travel more frequently on weekdays compared to weekends and festivals (May 1st, Labor Day, is a holiday in China). However, the periodicity characteristics for the commuting and non-commuting trips show significant differences. In terms of commuting trips, since people always work on weekdays, the number of commuting trips decreases sharply during weekends. The demand for non-commuting trips is more than that of commuting trips for ride-hailing services. The weekly periodicity indicates that the demand on weekends of non-commuting trips will increase smoothly. The total demand for commuting and non-commuting trips is higher on weekdays compared to weekends.

Figure 2b presents the hourly distribution of trips, indicating that the on-demand ride-hailing service trips for commuting have a typically bimodal distribution, while the distribution for non-commuting trips is unimodal. For commuting trips, peak demand is seen from 7 am to 9 am (morning peak hour) and from 5 pm to 9 pm (afternoon peak hour). For non-commuting trips, peak demand is seen from 5 pm to 9 pm. The highest demand for the ride-hailing service is seen around 8 am for commuting purposes. From 10 am to midnight, the demand for non-commuting trips exceeds the demand of commuting trips.

Gap time

One of the most important characteristics of a ride-hailing service is how long does it take for a user to make the next trip. To uncover the distribution of the time spent to make a new trip, this paper creates a variable called the gap time. It is defined as the difference in start time between two consecutive trips for a given user. To determine this distribution, all the users who have made at least two trips in a month are selected.

Figure 3a shows the distribution of the average gap time of users with the number of trips made in a month. It indicates that with the increase in monthly trips, the gap time between consecutive trips decreases sharply at the beginning; the decreasing trend turns slower when the number of monthly trips is greater than 40. The maximum gap time is found to be around 8,000 min (5.6 days) when users have only 2 monthly trips. When the number of monthly trips is more than 80, the gap time is close to 300 min (or 5 hours).

Figure 3(b,c) presents the distribution of gap time of all the users in the observation period (1 month) for the most frequently visited place, the second most frequent-visited place, and the other visited places, respectively. Figure 3(b,c), show that the gap time distribution of the most and second most visited places has a multi-day peak, which might be closely related to the passengers’ regularity patterns in requesting rides. Figure 3c shows that for the other visited places, besides multi-day peak, the distribution of gap time also has a two-hour peak, which represents the short-duration activities (such as shopping or restaurant). This finding is different from the current mobility research (Hasan et al., 2013a) which shows a 9-hour peak for the most frequently visited place, a 14-hour peak for the second most visited place, and both 9-hour and 14-hour peak for the other visited places when it comes to public transport users. The results also show the difference in travel behavior between ride-hailing service users and public transport users.

Number of visited places and their rank

Each ride-hailing service user visits a specific number of different locations within the observation period. We rank the visited places based on the frequency of visits to those places and determine the probability of visiting each place. For instance, for a user, a place with rank 1 means the most visited location, a place with rank 2 represents the second-most visited location, and so on.

The number of visited places and the rank of those locations play an essential role for mobility pattern analysis. To uncover the distribution of the number of visited places, and the rank of visited places, the passengers who have at least 10 monthly trips are selected so that enough trips are generated to reveal the ranking patterns.

Figure 2. The probability of the demand of ride-hailing service (March 1-June 30, 2017): (a) the distribution of the number of daily trips using the ride-hailing service (‘M’ means Monday of every week) (b) the distribution of average hourly trips number of ride-hailing service.
Figure 3. The distribution of gap time. (a) the average gap time (min) vs. their corresponding users’ groups with different number of trips per month; (b) gap time distribution of the most frequent visited place; (c) gap time distribution of the second most frequent visited place; (d) gap time distribution of the other visited places.

Figure 4a presents the distribution of the number of visited places — indicating that the majority of the frequent users of the ride-hailing service visit on average 8 to 12 different places in a month. Given that a frequent user makes at least 10 monthly trips, and every trip contains two places (origin and destination), he/she has a high probability to visit the same places when using the service. To uncover the regularity patterns, the probability distribution of visiting a place over the rank of the visited place is presented in log-log scale in Figure 4b. From the distribution, it indicates that most of the users’ trips are concentrated in a few locations, especially the first rank visited place. For instance, users who visited five different places, the most visited place, accounts for nearly 50% of the total number of trips. When a user visits more places, the probability of the most visited place slightly declines. Additionally, the probability of the second most visited place (i.e. rank = 2) is close to the most visited place when the number of visited places is low. For users who have visited more places, the difference between the probability of the first two rank visited places becomes larger. The distribution of the visited place rank follows a Zipf’s law when the number of visited places is high.

Spatial distribution of home and workplace

According to the distance-based visited place generation algorithm, the home and workplace of on-demand ride-hailing service users are detected. Then, the heatmap of the work and home place are visualized in a map as shown in Figure 5, where red color means high-density regions and blue color means low-density regions. From the heatmap of both home and workplace, it can be found that the spatial distribution of home place is more dispersed, while the workplace distribution is more centralized. The majority of the dense work zones are located inside the fifth ring road, while many dense home zones are located outside the fifth ring road, which may lead to an imbalance in job-housing distribution. The workplaces are more concentrated on the eastern part of Beijing, such as the districts of Guomao, Wangjing, Sanlitun, which are the most famous business districts. On the west side of Beijing, Zhongguancun district is the most concentrated workplace region for on-demand ride-hailing users. For the home place, it indicates that most of the on-demand ride-hailing users live in districts, such as Panjiayuan, Huilongguan, Pingguoyuan, and Xihongmen, which are some of the largest residential districts in Beijing. The distribution of home and workplace will be beneficial for future transportation planning, such as parking distribution, congestion pricing, and public transport route planning.

Spatial distribution of travel distance

For on-demand ride-hailing services, the average travel distance per trip is heterogeneous from the perspective of travel purpose (commuting or non-commuting) and spatial scale. To reveal the heterogeneity in travel distance of ride-hailing service users, study
area is divided into 30×30 grids with a grid size of about 2×2 km2. The grids are identified by indices from left-to-right (horizontally from 0 to 29) and from top-to-bottom (vertically from 0 to 29), as shown in Figure 6. Then, each trip is assigned to a grid based on its origin coordinate and aggregate all the trips originating from each grid. Finally, the average travel distance of the trips, which are aggregated over each grid is calculated and the spatial distribution of travel distance is visualized in a map.

Figure 6 presents the results of the spatial distribution of travel distances in different regions of the study area for both commuting and non-commuting trips. In general, it can be observed that the travel distance of non-commuting trips is more than that of commuting trips. Users outside the 5th ring have longer commuting trips, and users inside the 5th ring road make commuting trips shorter than 8 km. The spatial distribution of non-commuting trips from Figure 6b also shows interesting characteristics. Users from most of the regions make non-commuting trips longer than 8 km. In particular, users from regions outside the core area make trips longer than 12 km. The travel distances of the trips originated from the airport region appear different in the two distributions shown in Figure 6. Since a lower number of users depart from the airport region for commuting purpose, the average travel distance of the commuting trips from the airport region (lower than 8 km) is significantly lower than the average travel distance of non-commuting trips (greater than 20 km).

Distribution of travel distance

To reveal the spatial patterns of individual mobility using ride-hailing service, the distributions of travel distance for both commuting and non-commuting trips are analyzed. In existing studies, public transport smart card data and mobile phone data are commonly used for understanding individual mobility patterns. These data provide approximate distances...
of individual movements. However, movement data extracted from a ride-hailing service platform offer us a more accurate travel distance data instead of approximate displacements (Wang et al. 2015), since the locations of each trip’s origin and destination can be accurately determined. Additionally, features of commuting and non-commuting trips hold significant information about urban travel behavior, which are seldom investigated due to data source limitation. To uncover individual commuting and non-commuting travel behavior, this paper chooses the frequent users (making more than 10 trips per month). In addition, the travel distance distribution is fitted by six commonly used distributions mentioned before, which will be beneficial for establishing a generative mechanism to simulate the demand of ride-hailing services.

Figure 7 shows the distributions of travel distance of commuting and non-commuting trips. Similar to Figure 6, it also indicates that the average travel distance of non-commuting trips is more than that of commuting trips. The peaks of the two distributions occur at around 5 km. The average travel distance of commuting trips and non-commuting trips are 6.298 km and 8.467 km, respectively. Trips longer than 15 km account for 5.58% and 14.62% of the commuting and non-commuting trips, respectively. This is expected as people do not prefer to make long commuting trips through taxi cab or on-demand ride-hailing services and previous studies (Wang et al. 2015) also found similar results.

To capture the travel distance distribution of the on-demand ride-hailing service, we use six statistical distributions – log-normal, Weibull, gamma, student’s t, exponentialized Weibull, and power log-normal – to fit the travel distance distribution with a K-S test to evaluate the performance. Table 2 presents the results of K-S test for travel distance. From the results, we can find that the power log-normal distribution fits best for both the commuting travel distance and the non-commuting travel distance. The power log-normal distribution has a lower D value (0.235 for commuting trips and 0.092 for non-commuting trips) and a higher p-value (0.104 for commuting trips and 0.977 for non-commuting trips), which indicates a higher probability to accept the null hypothesis that the two distributions come from one identical distribution.

Discussion

In this study, we have analyzed large-scale trip data extracted from a ride-hailing service platform (Didi) in China to understand individual mobility patterns. Human mobility can be characterized as movement patterns on a spatio-temporal scale. To uncover the spatio-temporal patterns of individual movements, we have analyzed the distribution of the trip generation, gap time, number, and rank of visited places, travel distance, and travel time. In addition, to capture the patterns of commuting behavior, we divide the trips into two groups: commuting and non-commuting trips according to the travel purpose of individuals.

For temporal patterns, first, the distributions of daily and hourly trips reveal the regularities of trips made by ride-hailing services. It reveals that people tend to use on-demand service more on weekdays with 20% less trips during weekends. Additionally, the patterns of hourly trip generation distributions show differences between commuting and non-commuting trips. The distribution of trip generation for commuting trips reveals a bimodal distribution and an unimodal distribution for non-commuting trips. The morning peak hours of non-commuting trips vanish because most of non-commuting trips are for leisure or entertainment activities. Previous study (Ma et al. 2017) analyzing public transit data, however, found that trip generation distributions of commuters and non-commuters have both morning and afternoon peak hours. The
The results of fitting curves of selected distributions are shown in Figure 7. The distribution of travel distance per trip for commuting trips is significantly greater than that of non-commuting trips. This result differs from our previous work in which on-demand ride-services were less preferred by commuters. Another important aspect reported in this paper is the distribution of gap time between consecutive ride-hailing trips. In recent years, most studies have analyzed the waiting time or stay time patterns based on mobile phone data (Gonzalez, Hidalgo, and Barabasi 2008) and interval distribution of taxi trajectory from drivers’ perspective (Veloso et al. 2011; Zheng et al. 2018). No study has investigated the distribution of the time interval between two consecutive trips of ride-hailing service users. To fill this gap, we have analyzed the average gap time (time interval between two consecutive trips) distributions of on-demand service users from two aspects. First, the amount of gap time between consecutive trips is inversely proportional to the number of monthly trips. Second, the distribution of gap time follows a log-normal distribution with local spikes, similar to the patterns observed for stay time distributions from smart card data (Hasan et al. 2013a) and the return time based on mobile phone data (Gonzalez, Hidalgo, and Barabasi 2008). In addition, previous research (Gonzalez, Hidalgo, and Barabasi 2008) also found that the distribution of gap time is characterized by several local peaks at 24 h, 48 h, 72 h, and so on—showing a strong temporal

Table 2. The results of K-S tests of selected distributions of travel distance.

Distribution	K-S Test	Commuting Distance	Non-commuting Distance			
	D	p-value	Parameters	D	p-value	Parameters
Power log-normal	0.235	0.014	p = 5.64; σ = 1.00	0.092	0.977	p = 0.95; σ = 0.74
Log-normal	0.255	0.062	μ = 1.52; σ = 0.61	0.012	0.875	μ = 1.85; σ = 0.75
Exponential	0.255	0.062	k = 6.01; α = 0.89	0.112	0.875	k = 13.27; α = 0.50
Weibull	0.608	0.000	λ = 2.54	0.275	0.036	λ = 0.72
Gamma	0.314	0.010	β = 1.85	0.176	0.377	β = 1.88
Student’s t	0.355	0.002	v = 2.13	0.235	0.104	v = 2.32

Figure 8. The distribution of travel time per trip with fitting curves of selected distributions: (a) distribution of travel time per trip for commuting trips; (b) distribution of travel time per trip for non-commuting trips.
regularity inherent to human mobility. However, from the ride-hailing service users’ perspective, the gap time probability has a two-hour peak compared to the 9-hour peak found in previous studies (Hasan et al. 2013a). It probably indicates that people tend to use public transportation for commuting trips, which have a 9-hour peak, while people prefer to use on-demand services for leisure or flexible activities, which have a two-hour peak.

To find the spatial regularities of individual mobility, we identify each user’s visited places and rank those places according to the number of times a user has visited a place. From the results, we find that frequent users tend to visit 8–10 different locations and visit the top two locations more. This shows a great regularity pattern of the on-demand service users when they make a trip. Previous research found similar results with the data extracted from smart card transactions (Hasan et al. 2013a), mobile phone call records (Gonzalez, Hidalgo, and Barabasi 2008), and taxi trajectories (Peng et al. 2012). Studies (Peng et al. 2012) reveal that the probability of visited locations follows a Zipf’s law. Using smart card data, Hasan et al. (Hasan et al. 2013a) found that the two most visited places have similar probabilities and the probability distribution of the places with rank greater than 2 follows a Zipf’s law. When it comes to ride-hailing service users, we find the similarity of the probabilities of the two most visited places, similar to the results found by Hasan et al. (Hasan et al. 2013a). Additionally, the distribution of the visited place rank probabilities follows a Zipf’s law when the number of visited places is higher.

Additionally, we visualize the spatial distribution of homes and workplaces of on-demand ride-hailing service users. Compared with public transit users (Ma et al. 2017), jobs-housings of on-demand ride-hailing users does not show a severe imbalance, possibly because people are less likely to use ride-hailing services for long-distance commuting purposes. We also present the travel distance distribution on a spatial scale for commuting and non-commuting trips to validate that on-demand users prefer to commute for short distances.

Finally, we report the distributions of travel distance and travel time for both commuting and non-commuting trips of ride-hailing service users, capturing the patterns of another significant aspect of spatial regularity. The travel distance and travel time for both commuting and non-commuting trips show similar patterns observed in other studies (Zheng et al. 2018; Zhao et al. 2015). It is worth mentioning that the average travel distance and travel time distribution of commuting trips presents more left-skewed compared to that of non-commuting trips. It implies that people tend to travel less distances when they commute by a ride-hailing service, probably due to economic considerations. Distances between commuting and non-commuting trips follow a power log-normal distribution, while previous studies (Zhao et al. 2015) found that the distances of taxi trips follow a log-normal distribution. In addition, we also fit the distributions of travel times of commuting and non-commuting trips. The travel time of commuting trips follows an exponential Weibull distribution, and the travel time of non-commuting trips follows a log-normal distribution.

Implications

The results of our analysis provide several implications for traffic management and urban planning, which are summarized as follows:

1. Urban land use characteristics have significant influences on individual commuting patterns (Suzuki and Lee 2012). Thus, understanding the spatial distributions of individual residences and workplaces are the key points for urban planning and policy decisions (Aguilera and Voisin 2014). In this paper, we provide a cost-effective way to identify individual homes and workplaces based on the emerging ride-hailing trip data. Moreover, the proposed methods can provide insights on the spatial-temporal patterns of both commuting and non-commuting trips.

2. The distribution of trip generation, gap time, travel distance, and travel time can be used in agent-based traffic simulations as ground truths to validate the corresponding parameters. Agent based simulations are essential tools for evaluating the expected performance of a new policy and designing innovative services using emerging technologies such as connected and autonomous vehicles and mobility as a service (Wen, Nassir, and Zhao 2019).

Conclusions

In this paper, we reveal the spatio-temporal patterns of individual mobility from the perspective of the ride-hailing service passengers. The empirical analysis of massive movement data provides us deeper insights on individual mobility patterns at the city level. Regarding temporal movement patterns, we capture the difference in trip generation characteristics between weekdays and weekends and the distribution of gap time between consecutive trips. In terms of spatial mobility patterns, we visualize the distribution of home and work places as well as the travel distance on a spatial scale, observe the distribution of the number of visited places and their rank, and report the distribution of travel distance and travel time.

The emergence of ride-hailing services can help serve the growing transportation demand of our expanding cities, significantly improving the quality of city life and access to different places. From a spatio-temporal perspective, the study findings help us better understand human movement patterns. This study provides new insights on modeling travel behavior of ride-hailing service users. The results show the potential to predict individual movements using this emerging mode. Our results also provide insights to develop high-fidelity simulations of on-demand service operations, which can further benefit developing services that depend on ride-hailing. In the future research, we will focus on developing high-resolution generative models to forecast individual movements in cities.

Disclosure statement

No potential conflict of interest was reported by the author(s).

References

Abbasi, A., and T. Hossein Rashidi. 2019. “Human Urban Mobility, Personal or Global?” Transportation Letters 1–6.

Aguilera, A., and M. Voisin. 2014. “Urban Form, Commuting Patterns and CO2 Emissions: What Differences between the Municipality’s Residents and Its Jobs?” Transportation Research Part A-Policy and Practice 69: 243–251. doi:10.1016/j.tra.2014.07.012.

Alessandretti, L., P. Sapiezynski, S. Lehmann, and A. Baronchelli. 2017. “Multi-scale Spatio-temporal Analysis of Human Mobility.” Plos One 12.
Appendix

Visited Place Generation
The detail of distance-based visited place generation algorithm can be seen as follows:

Commonly Used Distributions

Algorithm 1 Distance-Based Visited Place Generation Algorithm

Input: Passenger ID, the list of coordinates of origins and destinations, number of trips per month (MTN)
Output: PID
1. For each individual user:
 2. PID(i,j) = 0, maxPID = 0.
 3. For i from 2 to MTN:
 4. ON = i – 1
 5. For j from 1 to ON:
 6. If l(i,j) < l(i,0):
 7. PID(i,j) = PID(i,j)
 8. End if
 9. End for
 10. If PID(i,j) = N/A:
 11. maxPID = maxPID + 1
 12. PID(i,j) = maxPID
 13. End if
 14. End for
 15. For i from 1 to MTN:
 16. If l(i,0) < l(0,0):
 17. PID(i,0) = PID(i,0)
 18. End if
 19. DN = i – 1
 20. For j from 1 to DN:
 21. If l(0,j) < l(0,0):
 22. PID(0,j) = PID(0,j)
 23. End for
 24. If PID(0,j) = N/A:
 25. maxPID = maxPID + 1
 26. PID(0,j) = maxPID
 27. End if
 28. End for
 29. End for

In this paper, to fit the empirical data of travel distance and travel time of on-demand ride-hailing users, we apply six commonly used distributions: lognormal, Weibull, Gamma, student’s t, exponentiated Weibull, and power log-normal. The detailed information of the distributions can be seen as follows:

(1) Log-normal:
\[
f(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{(\ln x - \mu)^2}{2\sigma^2} \right)
\]

Where \(\mu \) and \(\sigma \) represent the mean and the standard deviation of the natural logarithm of the variable.

(2) Weibull:
\[
f(x) = \frac{k}{\lambda} \left(\frac{x}{\lambda} \right)^{k-1} e^{-(x/\lambda)^{k}} (x \geq 0)
\]

Where \(k > 0 \) is the shape parameter and \(\lambda > 0 \) is the scale parameter of the distribution.

(3) Gamma:
\[
f(x) = \frac{\beta^\alpha x^{\alpha-1} e^{-\beta x}}{1/\Gamma(\alpha)} (x > 0)
\]

Where \(\alpha > 0 \) is the shape parameter and \(\beta > 0 \) is the rate parameter. And \(\Gamma(\alpha) \) is the gamma function \(\Gamma(\alpha) = (\alpha – 1)! \).

(4) Student’s t
\[
f(x) = \frac{1}{\sqrt{\pi} \nu} \left(1 + \frac{x^2}{\nu} \right)^{-1/2}
\]

Where \(\nu > 0 \) is the number of degrees of freedom and \(\Gamma(\alpha) \) is the gamma function, which can be seen in (3).

(5) Exponentiated Weibull
\[
f(x) = \alpha k \left(\frac{x}{\lambda} \right)^{k-1} (1 - e^{-(x/\lambda)^k})^{\alpha-1} e^{-(x/\lambda)^k}
\]

Where \(k > 0 \) is the first shape parameter, \(\alpha > 0 \) is the second shape parameter and \(\lambda > 0 \) is the scale parameter of the distribution. In particular, there are two special cases: when \(\alpha = 1 \), this function will be a Weibull distribution; when \(k = 1 \), this function will be an exponentiated exponential distribution.

(6) Power log-normal
\[
f(x) = \frac{p}{\sigma x^a} \phi \left(\frac{\log x}{\sigma} \right) \left(\Phi \left(-\frac{\log x}{\sigma} \right) \right)^{p-1}
\]

Where \(p \) (also referred to as the power parameter) and \(\sigma \) are the shape parameters, \(\phi \) is the PDF of the standard normal distribution and \(\Phi \) is the CDF of the standard normal distribution.