Improved Estimators of Population Coefficient of Variation under Simple Random Sampling

Rajesh Singh a and Anamika Kumari a*

a Department of Statistics, Institute of Science, Banaras Hindu University, Varanasi, India.

Authors’ contributions

This work was carried out in collaboration between both authors. Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJPAS/2022/v19i43047

Original Research Article

Received 20 June 2022
Accepted 31 August 2022
Published 03 September 2022

Abstract

In this article, we suggest some novel estimators of population Coefficient of Variation (CV) of the study variable using the known information on an auxiliary variable like population mean and population variance. Up to the first order of approximation, formulas for the bias and Mean squared Errors (MSE) of the proposed estimators are obtained. The efficiencies of proposed and competing estimators are evaluated by comparing their MSEs. A real and two simulated data sets are used to verify the efficiency conditions. The results showed that the proposed estimators were more efficient than the other existing estimators considered in the study.

Keywords: Study variable; auxiliary variable; bias; mean square error; and coefficient of variation.

1 Introduction

In theory of Sampling Survey, use of auxiliary information improves the efficiency of the estimator. Use of auxiliary information can be done at various stages, it helps in improving the precision of the estimator. Cochran (1940) was the first to introduce a ratio estimator of Population Mean using auxiliary information. Shabbir and Gupta [1], Singh et al. (2007), Koyuncu and Kadilar [2] and Chaudhary et al. [3] have considered the problem of estimating population mean taking into consideration information on auxiliary variable.

*Corresponding author: Email: anamikatiwari1410@gmail.com;
The Coefficient of Variation (CV) is a well-known measure of dispersion, which is defined as the ratio of the standard deviation to the mean of the characteristic under study. It is used to compare variability in populations or samples with different units of measurement. For example in the investment, the CV allows us to determine how much risk one is assuming in comparison to the amount of return one can expect from the investment. The lower the ratio of standard deviation to mean return, the better risk-return trade-off. Whenever the population is very large, the complete enumeration is very time consuming and costly then the population CV is estimated through sample CV by using auxiliary information as it improves precision. McKay [4] was the first to estimate population CV. Archana & Rao [5] gave some new estimator of CV for the enhancement of the estimation of CV. Shabbir and Gupta [6] used two auxiliary variables to improve the estimation of population CV in simple and stratified random sampling under a two-phase sampling technique. Singh et al. [7] proposed various improved and more enhanced estimators based on the arithmetic mean, geometric mean, and harmonic mean of these estimators. Singh and Mishra [8] proposed estimating population CV using a single auxiliary variable. Audu et al. [9] proposed difference cum ratio type estimators for estimating population CV under SRS and demonstrated that their estimators are more efficient than the existing estimators. More on the estimation of the population coefficient of variation for, we refer to Abu-Shaweish et al. [10], Banik and Kibria [11], Ahmed et al. [12] and Gulhar et al. [13] among others.

To estimate any parameter under study we want to have efficient estimators. In search of efficient estimators, we proposed new estimators of population CV under SRS using known auxiliary parameters. These new estimators are expected to give a precise and efficient estimate of the population CV than the existing estimators considered in this paper.

Let us consider a finite population \( U = (U_1, U_2, \ldots, U_N) \) of size ‘N’ consisting of distinct and identifiable units. Let \( Y \) and \( X \) denotes the study and auxiliary variables and let \( Y_i \) and \( X_i \) be their values corresponding to the \( i^{th} \) unit in the population (\( i = 1, 2, \ldots, N \)). For the population observations, we define:

\[
\bar{Y} = \frac{1}{N} \sum_{i=1}^{N} Y_i \quad \text{and} \quad \bar{X} = \frac{1}{N} \sum_{i=1}^{N} X_i
\]

as the population means for the study and Auxiliary Variables.

\[
S_{Y}^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (Y_i - \bar{Y})^2 \quad \text{and} \quad S_{X}^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (X_i - \bar{X})^2
\]

as the population mean squares for the study and auxiliary variables.

\[
S_{xy} = \frac{1}{N-1} \sum_{i=1}^{N} (Y_i - \bar{Y})(X_i - \bar{X})
\]

as the population covariance.

Let us consider that a sample of size ‘n’ has been drawn from this population of size ‘N’ units using SRSWOR. For this sample let \( y_i \) and \( x_i \) denote the value of the \( i^{th} \) sample unit corresponding to study variable \( Y \) and auxiliary variable \( X \). For the sample observations we have:

\[
\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i \quad \text{and} \quad \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i
\]

as the sample means for the study and Auxiliary Variables.

\[
s_{y}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2 \quad \text{and} \quad s_{x}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2
\]

as the sample mean squares for the study and auxiliary variables.
Now let us define

\[ \varepsilon_0 = \frac{\bar{Y}}{\bar{Y}} - 1, \varepsilon_1 = \frac{\bar{X}}{\bar{Y}} - 1, \varepsilon_2 = \frac{s^2_Y}{\bar{Y}^2} - 1 \text{ and } \varepsilon_3 = \frac{s^2_X}{\bar{X}^2} - 1 \]

Such that

\[
E(\varepsilon_0) = E(\varepsilon_1) = E(\varepsilon_2) = E(\varepsilon_3) = 0 \\
E(\varepsilon_0^2) = \gamma C^2_Y, E(\varepsilon_1^2) = \gamma C^2_X, E(\varepsilon_2^2) = \gamma(\lambda_{04} - 1), E(\varepsilon_3^2) = \gamma(\lambda_{04} - 1) \\
E(\varepsilon_0\varepsilon_1) = \gamma C_{yx} = \gamma \rho_{yx} C_Y C_X, E(\varepsilon_0\varepsilon_2) = \gamma C_Y \lambda_{30}, E(\varepsilon_0\varepsilon_3) = \gamma C_Y \lambda_{12}, E(\varepsilon_1\varepsilon_2) = \gamma C_X \lambda_{21} \\
E(\varepsilon_1\varepsilon_3) = \gamma C_x \lambda_{03}, E(\varepsilon_2\varepsilon_3) = \gamma(\lambda_{22} - 1)
\]

Where

\[ \gamma = \left(1 - \frac{1}{n}\right), C_Y = \frac{s_Y}{\bar{Y}} \text{ and } C_X = \frac{s_X}{\bar{X}} \] are the population coefficient of variation for the study variable Y and auxiliary variable X. Also \( \rho_{yx} \) denotes the correlation coefficient between X and Y.

\[ \lambda_{rs} = \frac{\mu_{rs}}{\mu_{r20} \mu_{20}}, \mu_{rs} = \frac{1}{N - 1} \sum_{i=1}^{N} (Y_i - \bar{Y})^r (X_i - \bar{X})^s \]

2 Existing Estimators

- The usual unbiased estimator to estimate the population coefficient of variation is given by:

\[ t_0 = \hat{C}_Y = \frac{s_Y}{\bar{Y}} \] (2.1)

The mean square error (MSE) expression of the estimator \( t_0 \) is given by:

\[ \text{MSE}(t_0) = \gamma C^2_Y \left(C^2_Y + 0.25(\lambda_{04} - 1) - C_Y \lambda_{30}\right) \] (2.2)

- Archana & Rao [14] proposed ratio type estimator for the population coefficient of variation is given by:

\[ t_{AR} = \hat{C}_Y \left(\frac{\bar{X}}{\bar{Y}}\right) \] (2.3)

The mean square error (MSE) expression of the estimator \( t_{AR} \) is given by:

\[ \text{MSE}(t_{AR}) = \gamma C^2_Y \left(C^2_Y + 0.25(\lambda_{04} - 1) - C_Y \lambda_{30} - C_X \lambda_{21} + 0.25(\lambda_{40} - 1)\right) \] (2.4)

- Singh et al. [7] proposed ratio-type, exponential ratio-type and difference-type estimators for coefficient of variation of the study variable Y using mean of auxiliary variable and are given below with their MSEs as

\[ t_1 = \hat{C}_Y \left(\frac{\bar{X}}{\bar{Y}}\right)^a \] (2.5)

\[ t_2 = \hat{C}_Y \exp\left(\beta \left(\frac{\bar{X} - \bar{Y}}{\bar{X} + \bar{Y}}\right)\right) \] (2.6)
Singh et al. [7] proposed arithmetic, geometric and harmonic mean estimators (AM, GM, HM) based on $t_0$ and $t_1$ estimators for estimating coefficient of variation of the study variable $Y$ and are given below with their MSEs as

$$t_s^{AM} = \frac{\hat{C}_y}{2} \left[ 1 + \left( \frac{\bar{X}}{\bar{X}} \right)^a \right]$$  \hspace{1cm} (2.11)$$

$$t_s^{GM} = \frac{\hat{C}_y}{2} \left( \frac{\bar{X}}{\bar{X}} \right)^{a/2}$$  \hspace{1cm} (2.12)$$

$$t_s^{HM} = 2\hat{C}_y \left[ 1 + \left( \frac{\bar{X}}{\bar{X}} \right)^{-a} \right]^{-1}$$  \hspace{1cm} (2.13)$$

$$MSE(t_s^j) = \gamma C_y^2 \left[ C_y^2 + \frac{\lambda y_0 - 1}{4} + \frac{\alpha^2 C_x^2}{4} - C_y \lambda_{30} + 2\rho yx \psi y \xi X - \alpha C_x \lambda_{21} \right]$$  \hspace{1cm} (2.14)$$

where $\alpha = \frac{\lambda y_0 - 2\rho yx \psi y}{2C_x}$, $\beta = \frac{\lambda y_0 - 2\rho yx \psi y}{C_x}$, $d_1 = \frac{C_y \lambda_{21} - 2\rho yx \psi y^{2}}{2C_x}$

- Singh et al. [7] proposed arithmetic, geometric and harmonic mean estimators (AM, GM, HM) based on $t_0$ and $t_2$ estimators for estimating coefficient of variation of the study variable $Y$ and are given below with their MSEs as

$$t_s^{AM} = \frac{\hat{C}_y}{2} \left[ 1 + \exp \left( \beta \left( \frac{\bar{X} - \bar{X}}{X + \bar{X}} \right) \right) \right]$$  \hspace{1cm} (2.15)$$

$$t_s^{GM} = \frac{\hat{C}_y}{2} \left( \frac{\bar{X} - \bar{X}}{X + \bar{X}} \right)^{1/2}$$  \hspace{1cm} (2.16)$$

$$t_s^{HM} = 2\hat{C}_y \left[ 1 + \exp \left( \beta \left( \frac{\bar{X} - \bar{X}}{X + \bar{X}} \right) \right) \right]^{-1}$$  \hspace{1cm} (2.17)$$

$$MSE(t_s^j) = \gamma C_y^2 \left[ C_y^2 + \frac{\lambda y_0 - 1}{4} + \frac{\beta^2 C_x^2}{16} - C_y \lambda_{30} + \beta \rho yx \psi y \xi X - \beta C_x \lambda_{21} \right]$$  \hspace{1cm} (2.18)$$

where $\beta = \frac{2(\lambda y_0 - 2\rho yx \psi y)}{C_x}$
Singh and Kumari [7] proposed arithmetic, geometric and harmonic mean estimators (AM, GM, HM) based on $t_1$ and $t_2$ estimators for estimating coefficient of variation of the study variable $Y$ and are given below with their MSEs as

$$t_{1}^{AM} = \frac{\tilde{C}_y}{2} \left[ \left( \frac{\bar{X}}{\bar{y}} \right)^a + \exp \left( \frac{\beta}{\bar{X}} \frac{\bar{X} - \bar{y}}{\bar{X} + \bar{y}} \right) \right]$$

$$t_{2}^{GM} = \tilde{C}_y \left( \frac{\bar{X}}{\bar{y}} \right)^{\frac{a}{2}} \exp \left( \frac{\beta}{\bar{X}} \frac{\bar{X} - \bar{y}}{\bar{X} + \bar{y}} \right)$$

$$t_{3}^{HM} = 2\tilde{C}_y \left[ \left( \frac{\bar{X}}{\bar{y}} \right)^{\frac{a}{2}} + \exp \left( -\beta \frac{\bar{X} - \bar{y}}{\bar{X} + \bar{y}} \right) \right]^{-1}$$

$$MSE(t_{2}) = \gamma C_y^2 \left[ C_y^2 + \frac{\lambda_{40} - 1}{4} + \frac{1}{4} \left( \alpha + \beta \right) C_y^2 + C_y \lambda_{30} + \left( \alpha + \beta \right) C_y \lambda_{21} \right]$$

where $\beta = 2 \left( \frac{\lambda_{21} - 2\rho_{yx} C_y}{C_x} - \alpha \right)$

Audu et al. [9] suggested the following two difference-cum-ratio type estimators of $C_y$ utilizing the known $\bar{X}$ as,

$$t_{a1} = \left[ \frac{\tilde{C}_y}{2} \left( \frac{\bar{X}}{\bar{y}} + \bar{y} \right) + w_1 (\bar{X} - \bar{y}) + w_2 \tilde{C}_y \right] \left( \frac{\bar{X}}{\bar{y}} \right)$$

$$MSE \left( t_{a1} \right) = C_y^2 \left( a + w_1^2 b + w_2^2 c + 2w_1 d - 2w_2 e - 2w_1 w_2 f \right)$$

Where

$$a = \gamma \left( C_x^2 + C_y^2 + 2\rho_{yx} C_y C_x - C_x \lambda_{21} - C_y \lambda_{30} + \left( \frac{\lambda_{40} - 1}{4} \right) \right), \quad b = \gamma \delta^2 C_x^2, \quad \delta = \frac{\bar{X}}{C_y}$$

$$c = 1 + \gamma \left( 3C_x^2 + 3C_y^2 + 4\rho_{yx} C_y C_x - 2C_x \lambda_{21} - 2C_y \lambda_{30} \right), \quad d = \gamma \delta \left( C_x^2 + \rho_{yx} C_y C_x - \frac{C_x \lambda_{21}}{2} \right)$$

$$e = \gamma \left( \frac{3C_x \lambda_{21}}{2} - 3\rho_{yx} C_y C_x - \frac{5C_x^2}{2} - 2C_y^2 + \frac{3C_y \lambda_{30}}{2} + \frac{(\lambda_{40} - 1)}{8} \right)$$

$$f = \gamma \delta \left( \frac{C_x \lambda_{21}}{2} - \rho_{yx} C_y C_x - 2C_x^2 \right)$$

Adichwal et al. [15] suggested the following estimator for estimating $C_y$ using the known $S_x^2$ as,

$$t_{r} = \delta_1 \left[ \frac{(1 - \eta) S_x^2 + \eta S_y^2}{(1 - \eta) S_x^2 + \eta S_y^2} \right] \tilde{C}_y + (1 - \delta_1) \left[ \frac{(1 - \eta) S_x^2 + \eta S_y^2}{(1 - \eta) S_x^2 + \eta S_y^2} \right]$$

Where $\delta_1$ and $\eta$ are the characterizing constants to be determined such that the MSEs of the estimators $t_r$ is least.

The minimum MSEs of the estimator $t_r$ for the optimum values of these constants is,

$$MSE \left( t_r \right) = MSE(t_0) - \frac{1}{4} \gamma \left( \frac{(\lambda_{42} - 1) - 2C_y \lambda_{12}}{\lambda_{04} - 1} \right) C_y^4$$
Singh et al. [7] proposed ratio type, exponential ratio-type and difference-type estimators for estimating coefficient of variation of the study variable Y using variances of the auxiliary variables and are given below:

\[ t_8 = \hat{C}_y \left( \frac{s_x^2}{s_y^2} \right)^\alpha \]  
(2.27)

\[ t_9 = \hat{C}_y \exp \left\{ \beta \left( \frac{s_x^2 - s_y^2}{s_y^2} \right) \right\} \]  
(2.28)

\[ t_{10} = \hat{C}_y + d_2 (S_x^2 - S_y^2) \]  
(2.29)

\[ \text{MSE}(t_8) = \gamma C_y^2 \left[ C_y^2 + \frac{\lambda_{40} - 1}{4} + \alpha^2 (\lambda_{04} - 1) - C_y^2 \lambda_{30} - \alpha (\lambda_{22} - 1) + 2\alpha C_y \lambda_{12} \right] \]  
(2.30)

\[ \text{MSE}(t_9) = \gamma C_y^2 \left[ C_y^2 + \frac{\lambda_{40} - 1}{4} + \beta^2 (\lambda_{04} - 1) - C_y^2 \lambda_{30} + \beta C_y \lambda_{12} - \frac{\beta}{2} (\lambda_{22} - 1) \right] \]  
(2.31)

\[ \text{MSE}(t_{10}) = \gamma \left[ C_y^2 (C_y^2 - C_y \lambda_{30} + \frac{\lambda_{40} - 1}{4}) + d_2^2 S_x^2 (\lambda_{04} - 1) + 2C_y^2 d_2 S_x^2 \lambda_{12} - d_2 C_y S_x^2 (\lambda_{22} - 1) \right] \]  
(2.32)

where

\[ \alpha = \frac{\lambda_{22} - 1 - 2C_y \lambda_{21}}{2(\lambda_{04} - 1)}, \beta = \frac{\lambda_{22} - 1 - 2C_y \lambda_{21}}{(\lambda_{04} - 1)} \]

Singh et al. [7] proposed arithmetic, geometric and harmonic mean estimators (AM, GM, HM) based on \( t_9 \) and \( t_8 \) estimators for estimating coefficient of variation of the study variable Y and are given below with their MSEs as

\[ t_{11}^{AM} = \frac{\hat{C}_y}{2} \left[ 1 + \left( \frac{s_x^2}{s_y^2} \right)^{\alpha/2} \right] \]  
(2.33)

\[ t_{11}^{GM} = \frac{\hat{C}_y}{2} \left( \frac{s_x^2}{s_y^2} \right)^{\alpha/2} \]  
(2.34)

\[ t_{11}^{HM} = 2\hat{C}_y \left[ 1 + \left( \frac{s_x^2}{s_y^2} \right)^{-1} \right] \]  
(2.35)

\[ \text{MSE}(t_{11}^j) = \gamma C_y^2 \left[ C_y^2 + \frac{\lambda_{40} - 1}{4} + \frac{\alpha^2 (\lambda_{04} - 1)}{4} - C_y^2 \lambda_{30} + \alpha C_y \lambda_{12} - \frac{\alpha}{2} (\lambda_{22} - 1) \right] \]  
(2.36)

where \( \alpha = \frac{\lambda_{22} - 1 - 2C_y \lambda_{21}}{(\lambda_{04} - 1)} \), \( j = AM, GM, HM \)

Rajyaguru et al. [16] proposed arithmetic, geometric and harmonic mean estimators (AM, GM, HM) based on \( t_9 \) and \( t_8 \) estimators for estimating coefficient of variation of the study variable Y and are given below with their MSEs as

\[ t_{12}^{AM} = \frac{\hat{C}_y}{2} \left[ 1 + \exp \left\{ \beta \left( \frac{s_x^2 - s_y^2}{s_y^2} \right) \right\} \right] \]  
(2.37)
Singh et al. [7] proposed arithmetic, geometric and harmonic mean estimators (AM, GM, HM) based on $t_{12}$ estimators for estimating coefficient of variation of the study variable $Y$ and are given below with their MSEs as

$$t_{12}^{AM} = \hat{C}_Y \exp \left( \frac{\beta}{2} \left( \frac{S_x^2 - s_x^2}{S_x^2 + s_x^2} \right) \right)$$  \hspace{1cm} (2.38)

$$t_{12}^{GM} = 2 \hat{C}_Y \left[ 1 + \exp \left( -\beta \left( \frac{S_x^2 - s_x^2}{S_x^2 + s_x^2} \right) \right)^{-1} \right]$$  \hspace{1cm} (2.39)

$$MSE(t_{12}^{j}) = \gamma C_Y^2 \left[ C_{y} + \frac{\lambda_{40} - 1}{4} + \frac{\beta^2 (\lambda_{40} - 1)}{16} - C_{y} \lambda_{30} + \frac{\beta}{2} C_{y} \lambda_{12} - \frac{\beta}{4} (\lambda_{22} - 1) \right]$$  \hspace{1cm} (2.40)

where $\beta = \frac{2(\lambda_{22} - 1) - 4C_{y} \lambda_{12}}{(\lambda_{40} - 1)}$, $j = AM, GM, HM$

- Singh et al. [7] proposed arithmetic, geometric and harmonic mean estimators (AM, GM, HM) based on $t_{12}$ and $t_{9}$ estimators for estimating coefficient of variation of the study variable $Y$ and are given below with their MSEs as

$$t_{13}^{AM} = \frac{\hat{C}_Y}{2} \left[ \frac{S_x^2}{S_x^2} + \exp \left( \frac{\beta}{2} \left( \frac{S_x^2 - s_x^2}{S_x^2 + s_x^2} \right) \right) \right]$$

$$t_{13}^{GM} = \hat{C}_Y \left( \frac{S_x^2}{S_x^2} \right)^{\alpha/2} \exp \left( \beta \left( \frac{S_x^2 - s_x^2}{S_x^2 + s_x^2} \right) \right)$$

$$t_{13}^{HM} = 2 \hat{C}_Y \left[ \frac{S_x^2}{S_x^2} + \exp \left( -\beta \left( \frac{S_x^2 - s_x^2}{S_x^2 + s_x^2} \right) \right)^{-1} \right]$$

$$MSE(t_{13}^{j}) = \gamma C_Y^2 \left[ C_{y} + \frac{\lambda_{40} - 1}{4} + \frac{1}{4} \left( \frac{\alpha + \beta}{2} \right) (\lambda_{40} - 1) - C_{y} \lambda_{30} + \frac{1}{2} (\alpha + \beta) (\lambda_{22} - 1) + (\alpha + \beta) C_{y} \lambda_{12} \right]$$

where $\beta = 2 \left( \frac{\lambda_{22} - 1 - 2C_{y} \lambda_{12}}{(\lambda_{40} - 1)} - \alpha \right)$

- Audu et al. [9] suggested the following two difference-cum-ratio type estimators of $C_y$ utilizing the known $S_x^2$ as,

$$t_{a2} = \left[ \frac{\hat{C}_Y}{2} \left( \frac{S_x^2}{S_x^2} + \frac{s_x^2}{S_x^2} \right) + w_3 (S_x^2 - s_x^2) + w_4 \hat{C}_Y \left( \frac{S_x^2}{s_x^2} \right) \right]$$

$$MSE \left( t_{a2} \right) = C_Y^2 (a_1 + w_3^2 b_1 + w_4 c_1 + 2 w_3 d_1 - 2 w_4 e_1 - 2 w_3 w_4 f_1)$$

Where

$$a_1 = \gamma \left( \frac{\lambda_{40} - 1}{4} + C_{y} \lambda_{12} - C_{y} \lambda_{30} - (\lambda_{22} - 1) + \frac{\lambda_{40} - 1}{4} \right), b_1 = \gamma \delta_1^2 C_Y^2, \quad \delta_1 = \frac{S_x^2}{C_Y}$$

$$c_1 = 1 + \gamma (3 \lambda_{40} - 1 + 3 C_{y} \lambda_{12} + 4 C_{y} \lambda_{12} - 2 (\lambda_{22} - 1) - 2 C_{y} \lambda_{30})$$

$$d_1 = \gamma \delta_1 \left( \frac{\lambda_{40} - 1}{4} + C_{y} \lambda_{12} - \frac{\lambda_{22} - 1}{2} \right)$$

$$e_1 = \gamma \left( \frac{3 \lambda_{22} - 1}{2} - 3 C_{y} \lambda_{12} - \frac{5 \lambda_{40} - 1}{2} - 2 C_{y} + \frac{3 C_{y} \lambda_{30} - (\lambda_{40} - 1)}{8} \right)$$

$$f_1 = \gamma \delta_1 \left( \frac{\lambda_{22} - 1}{2} - C_{y} \lambda_{12} - (\lambda_{40} - 1) \right)$$

- Yunusa et al. [17] suggested the following log type ratio estimator of $C_y$ using the known $S_x^2$ as,
The MSE of the estimator $t_{14}$, up to the first order of approximation is,

$$MSE(t_{14}) = \gamma C_Y^2 \left[ \frac{C_Y}{C_Y^2} + \frac{\lambda_{40} - 1}{4} \left( \ln(S_x^2) \right)^2 - \frac{(\lambda_{22} - 1) - 2C_YA_{12}}{\ln(S_x^2)} - C_YA_{40} \right]$$

(2.48)

### 3 Proposed Estimators

Having studied the estimators in section 2, we proposed four estimators for coefficient of variation based on information on a single auxiliary variable.

$$t_{p1} = \left[ \frac{C_Y}{2} \left( \frac{\bar{x}}{\bar{x} + \bar{x}} + k_1(\bar{x} - \bar{x}) + k_2C_Y \right) \right] \left\{ 2 - \left( \frac{\bar{x}}{\bar{x} + \bar{x}} \right) \exp \left( \frac{\bar{x} - \bar{x}}{\bar{x} + \bar{x}} \right) \right\}$$

(3.1)

$$t_{p2} = \left[ \frac{C_Y}{2} \left( \exp \left( \frac{\bar{x} - \bar{x}}{\bar{x} + \bar{x}} \right) + \exp \left( \frac{\bar{x} - \bar{x}}{\bar{x} + \bar{x}} \right) + k_3(\bar{x} - \bar{x}) + k_4C_Y \right) \right] \left\{ 2 - \left( \frac{\bar{x}}{\bar{x} + \bar{x}} \right) \exp \left( \frac{\bar{x} - \bar{x}}{\bar{x} + \bar{x}} \right) \right\}$$

(3.2)

$$t_{p3} = \left[ \frac{C_Y}{2} \left( \frac{S_x^2}{S_x^2 + S_x^2} + \frac{s_x^2}{S_x^2} \right) \right] \left\{ 2 - \frac{s_x^2}{S_x^2} \right\}$$

(3.3)

$$t_{p4} = \left[ \frac{C_Y}{2} \left( \exp \left( \frac{S_x^2 - S_x^2}{S_x^2 + S_x^2} \right) + \exp \left( \frac{S_x^2 - S_x^2}{S_x^2 + S_x^2} \right) + k_3(S_x^2 - S_x^2) + k_4C_Y \right) \right] \left\{ 2 - \frac{s_x^2}{S_x^2} \right\}$$

(3.4)

Expressing the estimators $t_j$, $j=p_1, p_2, p_3, p_4$ in terms of $e_i$, $i=0, 1, 2, 3$ and simplifying respectively, we have

$$t_{p1} = \left[ \frac{S_y(1 + e_2)^2}{2Y(1 + e_0)} \left[ \frac{\bar{x}}{\bar{x}(1 + e_1) + \bar{x}} \right] \right] \left\{ 2 - \frac{\bar{x}(1 + e_1)}{\bar{x}(1 + e_1) + \bar{x}} \exp \left( \frac{\bar{x}(1 + e_1) - \bar{x}}{\bar{x}(1 + e_1) + \bar{x}} \right) \right\}$$

(3.5)

$$t_{p2} = \left[ \frac{S_y(1 + e_2)^2}{2Y(1 + e_0)} \left[ \exp \left( \frac{\bar{x}(1 + e_1) - \bar{x}}{\bar{x}(1 + e_1) + \bar{x}} \right) \right] \right] \left\{ 2 - \frac{\bar{x}(1 + e_1)}{\bar{x}(1 + e_1) + \bar{x}} \exp \left( \frac{\bar{x}(1 + e_1) - \bar{x}}{\bar{x}(1 + e_1) + \bar{x}} \right) \right\}$$

(3.6)

$$t_{p3} = \left[ \frac{S_y(1 + e_2)^2}{2Y(1 + e_0)} \left[ \frac{S_x^2}{S_x^2(1 + e_3) + S_x^2} \right] \right] \left\{ 2 - \frac{S_x^2(1 + e_3)}{S_x^2} \right\}$$

(3.7)
Subtracting from all above four equations and taking expectations on both sides and putting values of different expectations, we get the biases of $t_{p1}, t_{p2}, t_{p3}$ and $t_{p4}$ up to the approximation of order one respectively as,

$$
Bias(t_{p1}) = \left[ \gamma \left( C_y^2 - \frac{C_y \lambda_{30}}{2} - \frac{(\lambda_{40} - 1)}{8} + \frac{C_y^2}{8} + \frac{3C_{xy}}{2} - \frac{3C_y \lambda_{21}}{4} \right) - k_1 \frac{\bar{X}}{C_y} \gamma \left( -\frac{3C_y^2}{2} \right) \right] + k_2 \left( 1 + \gamma \left( C_y^2 - \frac{C_y \lambda_{30}}{2} - \frac{(\lambda_{40} - 1)}{8} + \frac{C_y^2}{8} + \frac{3C_{xy}}{2} - \frac{3C_y \lambda_{21}}{4} \right) \right)
$$

$$
Bias(t_{p2}) = \left[ \gamma \left( C_y^2 - \frac{C_y \lambda_{30}}{2} - \frac{(\lambda_{40} - 1)}{8} + \frac{C_y^2}{8} + \frac{3C_{xy}}{2} - \frac{3C_y \lambda_{21}}{4} \right) - k_3 \frac{\bar{X}}{C_y} \gamma \left( -\frac{3C_y^2}{2} \right) \right] + k_4 \left( 1 + \gamma \left( C_y^2 - \frac{C_y \lambda_{30}}{2} - \frac{(\lambda_{40} - 1)}{8} + \frac{C_y^2}{8} + \frac{3C_{xy}}{2} - \frac{3C_y \lambda_{21}}{4} \right) \right)
$$

$$
Bias(t_{p3}) = \left[ \gamma \left( C_y^2 - \frac{C_y \lambda_{30}}{2} - \frac{(\lambda_{40} - 1)}{8} + \frac{C_y \lambda_{12}}{2} - \frac{(\lambda_{22} - 1)}{2} \right) - k_5 \frac{\bar{X}^2}{C_y} \gamma \left( -\frac{3C_y^2}{2} \right) \right] + k_6 \left( 1 + \gamma \left( C_y^2 - \frac{C_y \lambda_{30}}{2} - \frac{(\lambda_{40} - 1)}{8} + \frac{C_y \lambda_{12}}{2} - \frac{(\lambda_{22} - 1)}{2} \right) \right)
$$
\[
\text{Bias}(t_{ps}) = \left[ y \left( \frac{C_y^2}{2} - \frac{(\lambda_{40} - 1)}{8} + \frac{(\lambda_{34} - 1)}{8} + \frac{C_y^2 A_{12} - (\lambda_{22} - 1)}{2} \right) - k_y \frac{S_y^2}{C_y} y (\lambda_{40} - 1) \right] + k_y \left( 1 + y \left( \frac{C_y^2}{2} - \frac{(\lambda_{40} - 1)}{8} + \frac{C_y^2 A_{12} - (\lambda_{22} - 1)}{2} \right) \right)
\]

(3.16)

Subtracting \( C_y \) from (3.9), (3.10), (3.11), & (3.12), squaring and taking expectation, we get the MSEs of the suggested estimators as

\[
\text{MSE } (t_{p1}) = C_y^2 (A_1 + k_y^2 B_1 + k_y^2 C_1 + 2 k_y D_1 - 2 k_y E_1 - 2 k_y F_1)
\]

(3.17)

\[
\text{MSE } (t_{p2}) = C_y^2 (A_2 + k_y^2 B_2 + k_y^2 C_2 + 2 k_y D_2 - 2 k_y E_2 - 2 k_y F_2)
\]

(3.18)

\[
\text{MSE } (t_{p3}) = C_y^2 (A_3 + k_y^2 B_3 + k_y^2 C_3 + 2 k_y D_3 - 2 k_y E_3 - 2 k_y F_3)
\]

(3.19)

\[
\text{MSE } (t_{p4}) = C_y^2 (A_4 + k_y^2 B_4 + k_y^2 C_4 + 2 k_y D_4 - 2 k_y E_4 - 2 k_y F_4)
\]

(3.20)

Where

\[
A_1 = y \left( \frac{C_y^2}{4} + \frac{g^2 C_y^2}{4} + \frac{(\lambda_{40} - 1)}{4} - C_y A_{30} + 3 C_y A_{21} - \frac{3 C_y A_{21}}{2} \right), \quad B_1 = y g^2 C_y^2, \quad g = \frac{\bar{X}}{C_y}
\]

\[
c_1 = 1 + y \left( \frac{3 C_y^2}{2} + \frac{3 C_y A_{21}}{2} + 6 C_y A_{30} - 2 C_y A_{21} - 3 C_y A_{21} \right), \quad D_1 = y g \left( \frac{3}{2} C_y^2 + C_y - \frac{C_y A_{21}}{2} \right)
\]

\[
E_1 = y \left( \frac{9 C_y A_{21}}{4} + \frac{9 C_y A_{21}}{2} + \frac{19}{8} C_y - 2 C_y^2 + \frac{3 C_y A_{30} - (\lambda_{40} - 1)}{8} \right), F_1 = y g \left( \frac{C_y A_{21}}{2} - C_y - 3 C_y^2 \right)
\]

\[
A_2 = y \left( \frac{C_y^2}{4} + \frac{g^2 C_y^2}{4} + \frac{(\lambda_{40} - 1)}{4} - C_y A_{30} + 3 C_y A_{21} - \frac{3 C_y A_{21}}{2} \right), B_2 = y g^2 C_y^2, \quad g = \frac{\bar{X}}{C_y}
\]

\[
c_2 = 1 + y \left( \frac{3 C_y^2}{2} + \frac{3 C_y A_{21}}{2} + 6 C_y A_{30} - 2 C_y A_{21} - 3 C_y A_{21} \right), \quad D_2 = y g \left( \frac{3}{2} C_y^2 + C_y - \frac{C_y A_{21}}{2} \right)
\]

\[
E_2 = y \left( \frac{9 C_y A_{21}}{4} + \frac{9 C_y A_{21}}{2} + \frac{19}{8} C_y - 2 C_y^2 + \frac{3 C_y A_{30} - (\lambda_{40} - 1)}{8} \right), F_2 = y g \left( \frac{C_y A_{21}}{2} - C_y - 3 C_y^2 \right)
\]

\[
A_3 = y \left( \frac{C_y^2}{4} + (\lambda_{40} - 1) + \frac{(\lambda_{40} - 1)}{4} - C_y A_{30} + 2 C_y A_{12} - (\lambda_{22} - 1) \right), B_3 = y g^2 (\lambda_{40} - 1),
\]

\[
c_3 = 1 + y \left( \frac{3 C_y^2}{4} + (\lambda_{40} - 1) + 4 C_y A_{12} - 2 C_y A_{30} - \frac{3(\lambda_{22} - 1)}{2} \right), D_3 = y g_1 \left( \lambda_{40} - 1 + C_y A_{12} - \frac{C_y A_{12} - (\lambda_{22} - 1)}{2} \right), \quad g_1 = \frac{S_y^2}{C_y}
\]

\[
E_3 = y \left( \frac{3(\lambda_{22} - 1)}{2} - \frac{3(\lambda_{40} - 1)}{2} - 3 C_y A_{12} - 2 C_y^2 + \frac{3 C_y A_{30} - (\lambda_{40} - 1)}{8} \right),
\]

\[
F_3 = y g_1 \left( \frac{(\lambda_{22} - 1)}{2} - C_y A_{12} - 2(\lambda_{40} - 1) \right)
\]

\[
A_4 = y \left( \frac{C_y^2}{4} + (\lambda_{40} - 1) + \frac{(\lambda_{40} - 1)}{4} - C_y A_{30} + 2 C_y A_{12} - (\lambda_{22} - 1) \right), B_4 = y g^2 (\lambda_{40} - 1),
\]

\[
c_4 = 1 + y \left( \frac{3 C_y^2}{4} + (\lambda_{40} - 1) + 4 C_y A_{12} - 2 C_y A_{30} - \frac{3(\lambda_{22} - 1)}{2} \right), D_4 = y g_1 \left( \lambda_{40} - 1 + C_y A_{12} - \frac{(\lambda_{22} - 1)}{2} \right), \quad g_1 = \frac{S_y^2}{C_y}
\]
Differentiating (3.17), partially with respect to $k_1$ and $k_2$, equate to zero and solve for $k_1$ and $k_2$ simultaneously, we obtained $k_1 = \frac{C_1D_1 - E_1F_1}{E_2 - B_1C_1}$ and $k_2 = D_1F_1 - B_1E_1F_2^2 - B_1C_1$.

Substituting the results in (3.17), we obtained the minimum mean square error of $t_{p1}$ denoted by $\text{MSE}(t_{p1})_{\text{min}}$

$$\text{MSE}(t_{p1})_{\text{min}} = C_e^2 \left[ A_1 + \frac{(C_1D_1^2 + B_1E_1^2 - 2D_1E_1F_1)}{F_2^2 - B_1C_1} \right]$$

Differentiating (3.18), partially with respect to $k_3$ and $k_4$, equate to zero and solve for $k_3$ and $k_4$ simultaneously, we obtained $k_3 = \frac{C_2D_2 - E_2F_2}{E_2 - B_2C_2}$ and $k_4 = \frac{D_2F_2 - B_2E_2}{E_2 - B_2C_2}$.

Substituting the results in (3.18), we obtained the minimum mean square error of $t_{p2}$ denoted by $\text{MSE}(t_{p2})_{\text{min}}$

$$\text{MSE}(t_{p2})_{\text{min}} = C_e^2 \left[ A_2 + \frac{(C_2D_2^2 + B_2E_2^2 - 2D_2E_2F_2)}{F_2^2 - B_2C_2} \right]$$

Differentiating (3.19), partially with respect to $k_5$ and $k_6$, equate to zero and solve for $k_5$ and $k_6$ simultaneously, we obtained $k_5 = \frac{C_3D_3 - E_3F_3}{E_3 - B_3C_3}$ and $k_6 = \frac{D_3F_3 - B_3E_3}{E_3 - B_3C_3}$.

Substituting the results in (3.19), we obtained the minimum mean square error of $t_{p3}$ denoted by $\text{MSE}(t_{p3})_{\text{min}}$

$$\text{MSE}(t_{p3})_{\text{min}} = C_e^2 \left[ A_3 + \frac{(C_3D_3^2 + B_3E_3^2 - 2D_3E_3F_3)}{F_3^2 - B_3C_3} \right]$$

Differentiating (3.20), partially with respect to $k_7$ and $k_8$, equate to zero and solve for $k_7$ and $k_8$ simultaneously, we obtained $k_7 = \frac{C_4D_4 - E_4F_4}{E_4 - B_4C_4}$ and $k_8 = \frac{D_4F_4 - B_4E_4}{E_4 - B_4C_4}$.

Substituting the results in (3.20), we obtained the minimum mean square error of $t_{p4}$ denoted by $\text{MSE}(t_{p4})_{\text{min}}$

$$\text{MSE}(t_{p4})_{\text{min}} = C_e^2 \left[ A_4 + \frac{(C_4D_4^2 + B_4E_4^2 - 2D_4E_4F_4)}{F_4^2 - B_4C_4} \right]$$

4 Empirical Study

In this section, we carry out an empirical study to elucidate the performance of our proposed estimators with respect to some existing related estimators using data set below.

Population: [Murthy [18] p.399]

X: Area under wheat in 1963, Y: Area under wheat in 1964

N=34, n=15, $\bar{X} = 208.88$, $\bar{Y} = 199.44$, $C_x=0.72$, $C_y=0.75$, $p=0.98$, $\lambda_{21} = 1.0045$, $\lambda_{12} = 0.9406$, $\lambda_{40} = 3.6161$, $\lambda_{04} = 2.8266$, $\lambda_{30} = 0.9206$, $\lambda_{03} = 2.52$, $\lambda_{22} = 3.0133$
Table 1. MSEs and PREs of proposed and other estimators in the study

| Estimators | MSE         | PRE     |
|-------------|-------------|---------|
| $t_0$       | 0.008003575 | 100.00  |
| $t_{ar}$    | 0.02715658  | 29.47   |
| $t_1$       | 0.006868341 | 116.53  |
| $t_2$       | 0.006868341 | 116.53  |
| $t_3$       | 0.006868341 | 116.53  |
| $t_4$       | 0.006868341 | 116.53  |
| $t_5$       | 0.006868341 | 116.53  |
| $t_6$       | 0.006868341 | 116.53  |
| $t_{a1}$    | 0.006737495 | 118.79  |
| $t_{p1}$    | 0.006033    | 132.66  |
| $t_{p2}$    | 0.005659    | 141.43  |
| Auxiliary Information: $X$, $\bar{x}$, $S_{X}^2$, $s_{\bar{x}}^2$ | | |
| $t_7$       | 0.00696301  | 114.94  |
| $t_8$       | 0.006962763 | 114.95  |
| $t_9$       | 0.006962763 | 114.95  |
| $t_{10}$    | 0.006962763 | 114.95  |
| $t_{11}$    | 0.006962763 | 114.95  |
| $t_{12}$    | 0.006962763 | 114.95  |
| $t_{13}$    | 0.006962763 | 114.95  |
| $t_{14}$    | 0.00712551  | 112.32  |
| $t_{a2}$    | 0.006013652 | 133.09  |
| $t_{p3}$    | 0.006417    | 124.72  |
| $t_{p4}$    | 0.004996    | 160.19  |

The formula for Percent Relative Efficiency (PRE) is

$$PRE \text{ (estimators)} = \frac{MSE \text{ (targ)}}{MSE \text{ (estimator)}} \times 100$$

Table 1 shows the MSEs and PREs of the proposed and other estimators considered in the study. Results in Table 1 revealed that proposed estimators has minimum MSEs and higher PREs compared to other competing existing estimators.

5 Simulation Study

We perform some simulation experiments to find the relative efficiency (RE) of the proposed estimator compared with the existing estimators.

The following steps have been used for the simulation:

1. We generated bivariate random observations of size $N=1000$ units from a bivariate normal distribution with parameters $\mu_x=100$, $\sigma_x=11$, and $\mu_y=120$, $\sigma_y=14$ and $p=0.9$.
2. Similarly, generate the population-II with the parameters $\mu_x=3$, $\sigma_x=2$, $\mu_y=5$ and $\sigma_y=3$
3. A sample of size $n=20$ has been selected from this simulated population.
4. Sample statistics that is the sample mean, sample variance, and the values of the suggested and competing estimators $t_i$ of population CV are calculated for this sample.
5. Steps (3) and (4) are repeated $m=10,000$ times.
6. The MSE of every estimator $t_i$ is calculated through the formula, $MSE(t_i = \frac{1}{m} \sum_{j=1}^{m} (t_{ij} - \bar{t}_i)^2)$
7. The Percentage Relative Efficiency (PRE) of the estimator \( t_i \) over the mean per unit estimator \( t_0 \) given by,

\[
\text{PRE} (t_i) = \frac{\text{MSE}(t_0)}{\text{MSE}(t_i)} \times 100 \quad \text{for} \quad i = \text{ar, 1, 2… p4}
\]

Table 2. MSE values of competing and suggested estimators and PRE with respect to \( \hat{c}_y \) for symmetric simulated population

| Estimators     | PRE for population 1 | PRE for population 2 |
|----------------|----------------------|----------------------|
| Auxiliary Information : \( \bar{x}, \bar{x} \) |
| \( t_0 \)      | 100                  | 100.00               |
| \( t_{1r} \)   | 101.02               | 99.44                |
| \( t_1 \)      | 115.63               | 118.98               |
| \( t_2 \)      | 115.56               | 118.76               |
| \( t_3 \)      | 115.54               | 118.77               |
| \( t_4 \)      | 115.63               | 118.36               |
| \( t_5 \)      | 115.34               | 118.76               |
| \( t_6 \)      | 115.83               | 118.35               |
| \( t_{a1} \)   | 133.43               | 136.67               |
| \( t_{p1} \)   | 141.67               | 161.29               |
| \( t_{p2} \)   | 172.43               | 174.76               |
| Auxiliary Information : \( s_x^2, s_x^2 \) |
| \( t_7 \)      | 114.16               | 116.62               |
| \( t_8 \)      | 114.56               | 116.95               |
| \( t_9 \)      | 114.64               | 116.95               |
| \( t_{10} \)   | 114.54               | 116.95               |
| \( t_{11} \)   | 114.45               | 116.95               |
| \( t_{12} \)   | 114.67               | 116.95               |
| \( t_{13} \)   | 114.33               | 116.95               |
| \( t_{14} \)   | 113.22               | 115.32               |
| \( t_{a2} \)   | 135.29               | 133.09               |
| \( t_{p3} \)   | 133.09               | 145.72               |
| \( t_{p4} \)   | 175.99               | 180.19               |

Table 2 shows that our proposed estimators perform better than the existing estimators as our proposed estimators have greater PRE.

6 Conclusion

In this article, we have proposed estimators for the coefficient of Variation (CV) using the information of auxiliary variables. The expressions for Bias and MSE of the suggested estimators have been derived up to the first order of approximation. An empirical approach and simulation study for comparing the efficiency of the proposed estimators with other estimators have been used. The results have been shown in Tables 1 & 2. The Tables show that the proposed estimators turn out to be more efficient as compared to the other estimators for both populations. The proposed estimators are found to be rather improved in terms of lesser MSE and greater PRE as compared to the existing estimators in both real and simulated data sets [19-22]. Based on our empirical study and simulation study, we can conclude that our proposed estimators can be preferred over the other estimators taken in this paper in several real situations. Hence we recommend that the our proposed estimator should be used in both theoretical and real life applications like agriculture sciences, mathematical sciences, biological sciences, poultry, business, economics, commerce, social sciences etc.
Competing Interests

Authors have declared that no competing interests exist.

References

[1] Shabbir J, Gupta S. On Estimating the finite population mean with known population proportion of an auxiliary variable. Pakistan Journal of Statistics. 2007;23(1).

[2] Koyuncu N, Kadilar C. Family of estimators of population mean using two auxiliary variables in stratified random sampling. Communication in Statistics- Theory and Methods. 2009;38(14):2398-2417.

[3] Chaudhary MK, Singh R, Shukla RK, Kumar M, Smarandache F. A family of estimators for estimating population mean in stratified sampling under non-response. Pak. J. Stat. Oper. Res. 2009;(1):47-54.

[4] McKay AT. The distribution of the estimated coefficient of variation. Journal of the Royal Statistical Society. 1931;94(4):564–7.

[5] Archana V, Rao KA. Improved estimators of coefficient of variation in a finite population. Statistics in Transition-New Series. 2011;12(2):357–80.

[6] Shabbir J, Gupta S. Estimation of population coefficient of variation in simple and stratified random sampling under two-phase sampling scheme when using two auxiliary variables. Communications in Statistics - Theory and Methods. 2017;46(16):8113–33.

[7] Singh R, Mishra M, Singh BP, Singh P, Adichwal NK. Improved estimators for population coefficient of variation using auxiliary variables. Journal of Statistics and Management Systems. 2018;21(7):1335.

[8] Singh R, Mishra M. Estimating population coefficient of variation using a single auxiliary variable in simple random sampling. Statistics in Transition New Series. 2019;20(4):89–111.

[9] Audu A, Yunusa MA, Ishaq OO, Lawal MK, Rashida A, Muhammad AH, Bello AB, Hairullahi MU, Muili JO. Difference-cum-ratio estimators for estimating finite population coefficient of variation in simple random sampling. Asian Journal of Probability and Statistics. 2021;13(3):13–29.

[10] Abu-Shaweish MOA, Akyz HE, Kibria BMG. Performance of Some Confidence Intervals for Estimating the Population Coefficient of Variation Under both Symmetric and Skewed Distributions. Statistics, Optimization and Information Computing. 2019;7:277-290.

[11] Banik S, Kibria BMG. Estimating the population coefficient of variation by confidence intervals. Communications in Statistics- Computation and Simulation. 2011;40:1236–1261.

[12] Ahmed N, Albatineh, Meredith L, Wilcoxy, Bashar Zogheiby, Golam Kibria BM. Confidence interval estimation for the population coefficient of variation using ranked set sampling: a simulation study. Journal of Applied Statistics. 2014;41(4):733-751.

[13] Gulhar M, Kibria BMG, Albatineh AN, Ahmed NU. A comparison of some confidence intervals for estimating the population coefficient of variation: A simulation study. Statistics and Operations Research Transactions (SORT). 2012;36 (1):45-68.

[14] Archana V, Rao KA. Some improved estimators of co-efficient of variation from bivariate normal distribution: a Monte Carlo comparison. Pakistan Journal of Statistics and Operation Research. 2014; 10(1):87–105.
[15] Adichwal NK, Singh R, Mishra P, Singh P, Yan Z. A two parameter ratio-product-ratio type estimator for population coefficient of variation based on simple random sampling without replacement. 2016;1(3-4):1–5.

[16] Rajyaguru A, Gupta P. On the estimation of the co-efficient of variation from finite population-I. Model Assisted Statistics and Application. 2002;36(2):145–56.

[17] Yunusa MA, Audu A, Musa N, Beki DO, Rashida A, Bello AB, Hairullahi MU. Logarithmic ratio-type estimator of population coefficient of variation. Asian Journal of Probability and Statistics. 2021;14(2):13–22.

[18] Murthy MN. Sampling theory and methods. Sampling Theory and Methods; 1967.

[19] Cochran WG. Sampling techniques. Wiley Eastern Limited; 1977.

[20] Khoshnevisan M, Singh R, Chauhan P, Sawan N, Smarandache F. A general family of estimators for estimating population mean using known value of some population parameter(s). Far East Journal of Theoretical Statistics. 2007;22:181-191.

[21] Rajyaguru A, Gupta P. On the estimation of the co-efficient of variation from finite population-II. Model Assisted Statistics and Application. 2005;1(1):57–66.

[22] Yadav SK, Misra S, Gupta S. Improved family of estimators of population coefficient of variation under simple random sampling, Communications in Statistics - Theory and Methods; 2022. DOI: 10.1080/03610926.2022.2091784

© 2022 Singh and Kumari; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

**Peer-review history:**
The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)
https://www.sdiarticle5.com/review-history/91098