Up-Dosing Antihistamines in Chronic Spontaneous Urticaria: Efficacy and Safety.

A Systematic Review of the Literature

Short running title: Chronic Spontaneous Urticaria: Up-Dosing

Iriarte Sotés P1*, Armisén M2*, Usero-Bárcena T3*, Rodríguez Fernández A4, Otero Rivas M5, Gonzalez MT2, Meijide Calderón A6 and Veleiro B7*, from Urtigal, the Galician Group of Interest in Urticaria

1Allergology Department, Complexo Hospitalario Universitario de Ferrol
2Allergology Department, Complexo Hospitalario Universitario de Santiago
3Dermatology Department Complexo Hospitalario Universitario de Ferrol
4Allergology Department, Centro de Especialidades Mollabao, Pontevedra
5Dermatology Department, Hospital Universitario Lucus Augusti, Lugo
6Allergology Department, Complexo Hospitalario Universitario de Vigo
7Allergology Department, Complexo Hospitalario Universitario A Coruña

*These authors have participated equally in the preparation of this manuscript

Corresponding author
Beatriz Veleiro Pérez
Allergology Department. Complexo Hospitalario Universitario A Coruña, Xubias de Arriba, 84, 15006, A Coruña, Spain
E-mail: beatriz.veleiro.perez@sergas.es

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.18176/jiaci.0649
ABSTRACT

Background: According to current guidelines, oral antihistamines are the first line treatment for chronic spontaneous urticaria (CSU). Up-dosing antihistamines up to fourfold the licensed dose is recommended if control is not achieved. Such indications are based mainly on expert’s opinions.

Objectives: To critically review and analyze clinical evidence regarding to efficacy and safety of higher-than-licensed dosage of second-generation oral antihistamines in CSU treatment.

Material and Methods: A systematic literature review following a sensitive search strategy was performed. All articles published in MEDLINE, EMBASE, and Cochrane Library between 1961 and October 2018 were examined. Publications with CSU patients treated with prescribed second-generation antihistamines in monotherapy comparing with either placebo, licensed dosage and/or higher dosage were included. Articles were evaluated by peer revisors. Quality was evaluated using Jadad and Oxford scores.

Results: We identified 337 articles, 14 were included in the final evaluation; 6 focus on fexofenadine, 2 on cetirizine, levocetirizine, rupatadine and desloratadine, and 1 for ebastine and bilastine. Only 5 studies were placebo-controlled. The number of included patients ranged from 20 to 439. Observation lapse was ≤ 16 weeks. High fexofenadine doses produced dose-dependent significant response and controlled urticaria in a majority of patients. Cetirizine, levocetirizine, rupatadine and bilastine showed an increased effectiveness when up-dosing. Most frequent adverse events were headache and drowsiness.

Conclusion: The low quality and heterogeneity of the articles reviewed made impossible to reach any robust conclusions and unveil the need to develop large-scale randomized clinical trials.

Keywords: Chronic urticaria. Antihistamines. Treatment. Up-Dosing. Efficacy. Safety. Systematic review.
RESUMEN

Antecedentes: Según las guías actuales, los antihistamínicos orales de segunda generación constituyen el primer escalón terapéutico en la urticaria crónica espontánea (UCE). Si el control no se alcanza con la dosis licenciada en ficha técnica, se recomienda aumentarla hasta cuatro veces al día. Estas indicaciones están basadas principalmente en opiniones de expertos.

Material y Métodos: Se realizó una revisión sistemática de los artículos publicados en MEDLINE, EMBASE, y Cochrane Library entre 1961 y octubre de 2018. Se incluyeron publicaciones de pacientes con UCE tratados con antihistamínicos de segunda generación en monoterapia comparando dosis licenciadas con dosis superiores controladas o no con placebo. Los artículos fueron revisados por pares. Su calidad se evaluó siguiendo la puntuación de Jadad y Oxford.

Resultados: Identificamos un total de 337 artículos, en la evaluación final seleccionamos 14; 6 sobre fexofenadina, 2 de cetirizina, levocetirizina, rupatadina y desloratadina, y 1 de ebastina y bilastina. El número de pacientes incluidos en los estudios se encontraba en un rango entre 20 y 439. El tiempo de observación fue ≤ 16 semanas. Solo 5 estudios estaban controlados con placebo. Dosis altas de fexofenadina produjeron una respuesta significativa y controlaron la urticaria en la mayoría de los pacientes. Cetirizina, levocetirizina, rupatadina y bilastina mostraron mayor eficacia al subir la dosis. Los efectos secundarios más frecuentemente referidos fueron cefalea y somnolencia.

Conclusiones: La baja calidad y heterogeneidad de los artículos revisados hace imposible obtener conclusiones válidas y nos indica la necesidad de desarrollar ensayos clínicos aleatorizados a mayor escala.

Palabras clave: Urticaria crónica, Antihistamínicos, Tratamiento, “Up-Dosing”, Eficacia, Seguridad, Revisión sistemática.
Introduction

Chronic spontaneous urticaria (CSU) is a disease characterized by recurrent itchy wheals and/or angioedema, that persist for at least 6 weeks. CSU origin is still unknown, appearing for no identifiable reason. CSU is thought to affect 0.5-1% of the general population. The female - male ratio is 2:1 and it is more common in adults than in children [1].

The cellular and molecular mechanisms are not accurately known, but there is evidence of the basophil and mast cell participation. Histamine and other mast cell mediators (platelet activating factor (PAF), cytokines, proteases, kinins, etc…) are the main mediators of this process [2]. The chronic course of CSU and the lack of well-defined etiology produce an important impairment in patient’s quality of life that leads to a high physical, emotional and social impact.

According to recent guidelines, second-generation antihistamines are the first-line symptomatic treatment for CSU. These drugs act as an inverse-agonists on H1 receptor, stabilizing it in its inactive form. However, in patients with inadequate control of symptoms with licensed dosages, up-dosing up to fourfold is recommended as the second step in European Guidelines. This recommendation is based on expert opinion. In those patients where control is not achieved omalizumab is recommended [3][4].

The interest of our group has been to analyze available data about the efficacy of second-generation antihistamines at higher doses than licensed to treat CSU, in order to evaluate if there exists enough information to accurately ascertain the efficacy and the safety risks of this step.
Material and methods

We performed a systematic literature review following the PRISMA checklist and the Cochrane Collaboration recommendations.

Search strategy

With the help of an expert documentalist, a comprehensive, computerized literature search was performed in Medline, Embase, and Cochrane Database to identify studies published from 1961 to October 2018. We used Mesh and free text terms including “Histamine H1 Antagonists”, “Non-Sedating” or “chronic spontaneous urticaria”

Eligibility criteria

We included studies in English or Spanish language that met all the following criteria: 1) Patients older than 12 years old with CSU with or without histaminergic angioedema, dermographism or delayed pressure urticaria; 2) treated on a regular regimen (not on demand) with second generation antihistamines (cetirizine, loratadine, ebastine, desloratadine, bilastine, levocetirizine, rupatadine, fexofenadine) in monotherapy (neither associated with different antihistamines nor with other drugs); 3) the studies must compare with either placebo, licensed dosage and/or higher dosage groups with comparable information about efficacy and safety; 4) Regarding to study design we selected: randomized controlled trials and prospective and retrospective observational studies.

Studies with patients with other pruritic dermatological conditions or inducible urticaria different from delayed pressure urticaria and dermographism were excluded.
Study Selection

The studies selection was performed in pairs independently (MA and BV; MO and PI; TU and GP; AR and TG). For this purpose, the articles retrieved from the search strategies were distributed among pairs of reviewers. Then, duplicates were removed and, in the first selection round, each pair of reviewers, following inclusion and exclusion criteria, selected the articles by title and abstract. The studies (at least preliminarily) fulfilling inclusion criteria and those without abstract were then evaluated in a second selection process. In case of multiple studies analyzing the same patients, the one with the most comprehensive population was selected. The detailed evaluation of each resulting paper was also performed individually. Discrepancies in the selection processes were resolved by discussion with an expert methodologist.

Data extraction and quality assessment

The reviewers also conducted the data extraction and summarized the information in specific Tables. The following characteristics were recorded from each study: 1) First author’s name and year of publication, type of the study and time of observation; 2) Patient information: sample size, age range and gender; 3) Intervention: type of antihistamine, dosages and time of exposition; 4) Patient outcomes: results of efficacy (including scales used for evaluation) and secondary effects.

The quality of the studies was evaluated using the levels of evidence of Oxford Center for Evidence-based Medicine [5] and Jadad scale [6]. The latter evaluates the quality of randomization, double-blinding and loses to follow up and establishes a range from 0 to 5. Studies with 5 points are considered high quality and less than 3 points as poor quality.
Statistical Analysis

A table of evidence (Table 1) was produced to describe the main characteristics of the studies. A qualitative analysis was performed with the information collected by type of study, population, study quality and specific results.

Due to the lack of homogeneity between the studies we rejected the possibility of performing a meta-analysis.

Results

We initially identified 337 articles; 73 were duplicates. After analyzing the remaining 264 according to inclusion and exclusion criteria, 254 were excluded: 225 eliminated by title and abstract and 29 eliminated after a close reading. A total of 4 articles were included by a manual secondary search. Finally, 14 articles were analyzed in detail. The PRISMA template for the study flow chart is shown in Figure 1.

The main characteristics and results of the 14 studies included in the present review are described in Tables 1 and 2. They differ in population size, type of antihistamines used, design and quality. We found that 6 of them focus on fexofenadine up-dosing (maximum dose was 720 mg), 2 studies on levocetirizine, rupatadine and desloratadine, and there is one article for each one of these antihistamines: ebastine and bilastine. The number of participants of the studies ranged from 20 to 439. Finn’s fexofenadine study has the largest number of patients[7]. All the studies had a short duration (from 2 to 8 weeks) except for Magen’s fexofenadine [8], that lasted for 16 weeks. Only 5 of them, 3 with fexofenadine and 2 with rupatadine, were placebo-controlled. In Table 3, licensed doses are referred.
Fexofenadine

Regarding fexofenadine up-dosing, studies showed different results. A multicenter, double-blind, randomized, parallel-group and placebo-controlled study by Paul et al., analyzed 222 patients treated with fexofenadine or placebo at doses of 60 mg, 120 mg, 180 mg or 240 mg once a day for 6 weeks [9]. The authors found that increasing the dose of fexofenadine to 180 mg daily achieves better control. The efficacy measures were the mean daily total symptom score (TSS) that included pruritus score (PS) and number of wheals score (NWS). The 180 mg and 240 mg fexofenadine doses resulted in significant reductions in TSS and PS compared to placebo, and the response was found to be dose-dependent. Only the 180 mg treatment group demonstrated significant reductions in the number of wheals. Since there was no significant difference between the 180 mg/day and 240 mg/day doses, the authors recommended fexofenadine 180 mg/day as the optimal dose. The most frequently reported treatment-related adverse event was headache and no patient experienced drowsiness.

An uncontrolled clinical trial by Tanizaki et al. supported that increasing doses of fexofenadine from 120 mg to 240 mg daily, reduced symptoms of CSU [10] in 20 patients, assessing pruritus severity by the visual analog scale score and the severity index. Histamine-induced skin responses by iontophoresis was also evaluated, and seems to be stronger suppressed with 240 mg. None of patients reported adverse effects.

On the other hand, Finn et al. [7] suggested that there are no differences in urticaria control despite increasing the dose of fexofenadine. They reported similar efficacy in the 60 mg, 120 mg and 240 mg twice a day (bid) groups. They performed a multicenter, double-blind, randomized trial compared with placebo in 439 patients treated with fexofenadine at doses of 20 mg, 60 mg, 120 mg, or 240 mg bid, for 4 weeks. They found that all doses of fexofenadine were statistically superior to placebo for the disease
control (reduction in pruritus and number of wheals), and reported less interference with sleep and daily activities than placebo. The 240 mg bid doses had a better efficacy (64%) in reducing pruritus. All groups had similar incidence of adverse events, with headache being the most frequently communicated.

Nelson et al. [11], performed a similar study to Finn et al. during 4 weeks as well, with 418 patients taking fexofenadine 20 mg, 60 mg, 120 mg, and 240 mg bid. A total of 282 patients completed the study. All fexofenadine doses achieved patient significant relief of urticaria symptoms compared with placebo except for 20 mg bid that seems to be suboptimal. In all efficacy measures, 60 mg bid had similar effect than 240 mg bid dose. The results of this study suggest that fexofenadine 60 mg bid (120 mg day) is the optimal effective dose. All doses had similar safety profile.

Godse et al. [12], performed a non-randomized, uncontrolled clinical trial for 4 weeks in 37 patients. All of them started with fexofenadine 180 mg and were reviewed at weekly intervals for 4 weeks. For symptomatic patients the dose of fexofenadine was doubled to 360 mg at the end of week 1 and 540 mg at the end of week 2. They registered Urticaria Activity Score (UAS). Adverse effects were sedation in one patient and two patients reported headache with higher doses. They concluded that fexofenadine in higher doses controlled urticaria in the majority of patients.

Magen et al.[8], in an uncontrolled nonrandomized open-label clinical trial, studied prospectively 276 patients that started with fexofenadine 180 mg per day. At week 8, 172 improved their UAS in 50 % or greater from baseline, and treatment was continued. In 83 patients, whose UAS improvement at week 8 was 50% or less, fexofenadine was increased to 2, 3 or 4 tablets per day every 7 days during 16 weeks. Most of them showed a significant benefit while up-dosing to 2 or 3 tablets, but 21 (25%) of them continued to suffer from urticaria despite increasing to 720 mg.
Cetirizine

Cetirizine seems to be more effective with increasing doses. Kameyoshi et al. [13], proposed that increasing cetirizine doses may lead to better control of urticaria activity in patients who did not respond to initial doses. They performed a study including 21 patients with a poor response to 10 mg daily in a 1-2-week screening period. Patients were randomly assigned to group A or group B. Initially, all patients were given an increased dose of 20 mg daily for 1 or 2 weeks. After, patients in group A continued with cetirizine 20 mg and group B received 10 mg during 1 to 2 weeks. Both groups registered urticarial activity scores (number and duration of wheals and severity of itch). These were significantly lower in both groups while treated with 20 mg, and these lower levels were improved in group A while maintaining 20 mg in the second period. In group B, urticarial activity scores were higher while descending dose in the second period. Only 2 patients complained of drowsiness with increased dose.

A study published by Asero [14] involving 22 non-responder patients to cetirizine 10 mg concluded, after rising doses to 30 mg daily during one week, that the number of patients with severe CSU who respond to an off-label dosage is very low, as they only observed a clinical benefit in 1 of them. 13 patients (59%) referred tiredness and somnolence with 30 mg.

Levocetirizine

Levocetirizine could be more effective when dose is increased according to Godse et al. [15]. They performed a unicentric, non-randomized, uncontrolled clinical trial with levocetirizine 5 mg, 10 mg or 20 mg daily in 20 patients during 4 weeks, increasing doses in the first 2 weeks depending on urticaria control. They registered UAS at day 0 and week 2. The rate of patients who achieved control with 5 mg, 10 mg and 20 mg was...
60%, 30% and 10% respectively. Only 10% of patients needed fourfold dose of levocetirizine to be controlled. Adverse events registered were mild sedation in 2 patients with doses of 10 and 20 mg.

Staevska et al. [16], in a randomized, double-blind cross-over study, analyzed the efficacy of levocetirizine and desloratadine increasing doses if control was not achieved. In our revision we have decided to analyze the first part of their study and both antihistamines separately. The study recruited 80 patients, 40 for each antihistamine.

Levocetirizine doses started at 5 mg increasing weekly to 10 and 20 mg if symptoms were not controlled. 9 patients responded to 5 mg, 8 to 10 mg and 5 to 20 mg. The proportion of responders reporting more than 50% improvement in discomfort were 52%, 65% and 74% with 5, 10 and 20 mg respectively. Regarding side effects, 75% patients were not affected by somnolence, and patients taking 20 mg didn´t report more somnolence than with lower doses. 6 patients complained of adverse reactions, most of them not drug-related.

Desloratadine doses started at 5 mg increasing weekly to 10 and 20 mg if symptoms were not controlled. 4 patients responded to 5 mg, 7 to 10 mg and 1 to 20 mg. The proportion of responders reporting more than 50% improvement in discomfort were 41%, 56% and 63% with 5, 10 and 20 mg respectively. 55% patients didn´t referred somnolence. As with levocetirizine, fourfold doses didn´t affect somnolence. 11 patients complained of adverse reactions, most of them not drug-related.

One patient suffered from palpitations, but not EKG changes were observed in none.
Ebastine

Regarding efficacy of ebastine, Godse et al. [17] performed a unicentric, non-randomized, uncontrolled clinical trial with 30 patients for 4 weeks. All patients started with ebastine 10 mg and were reviewed on weekly intervals. For symptomatic patients, the dose of ebastine was doubled to 20 mg at the end of week 1 and 40 mg at the end of week 2. They registered UAS. Only one patient reported mild sedation with dose of 40 mg. They concluded that 20 mg of ebastine seemed superior to 10 mg. The 2 patients that remained symptomatic with 20 mg, were controlled with 40 mg.

Rupatadine

Dubertret et al. [18], in a multicenter, randomized, placebo controlled trial in 277 patients treated with rupatadine at doses of 5 mg, 10 mg or 20 mg once daily for 4 weeks, found that rupatadine 10 and 20 mg provided fast and long-lasting relief from itching and symptoms, though a clear dose-response effect was observed in favor of the 20 mg dose. Therefore, the minimum daily dose capable of effectively relieving itching and symptoms at four weeks was the 10 mg dose. According to investigator´s and patient´s opinion rupatadine 10 mg and 20 mg contributed to significantly improve urticaria symptom´s interference with daily activities and sleep.

In a second study of similar design, 334 patients were randomized to rupatadine 10 mg, 20 mg or placebo once daily for 4-6 weeks, Giménez-Arnau et al. [2] found no difference in efficacy among doses. Rupatadine at doses of 10 and 20 mg significantly reduced the severity of urticaria, showing rapid therapeutic action with objective clinical improvement as early as seven days after treatment that persisted during the six weeks of the clinical trial. The 10 mg dose does not show significant differences in
efficacy compared to the 20 mg dose and a better adverse effect profile is observed. There’s evidence that rupatadine 10 mg is useful and safe in urticaria management.

Lastly, Giménez-Arnauet al. [19] published another study analyzing pooled data from the two previous trials. A total of 538 patients were included. Responder rates were defined as the percentage of patients who exhibited a reduction of symptoms by at least 50% or 75% as compared to baseline after 4 weeks of treatment. They evaluated pruritus, mean number of wheals and mean UAS. The study concluded that both doses of rupatadine, 10 and 20 mg, elicit a significantly superior response versus placebo, though with the 20 mg dose a higher number of patients obtained a response of 75% improvement. In summary, according to this study, there is evidence of a somewhat greater effect with rupatadine 20 mg daily.

Bilastine

Weller et al. [20], in an open label study, depicted the effects of bilastine at 20 mg, 40 mg and 80 mg daily in 3 consecutive 2 week-periods. A total of 29 CSU patients were treated with an initial dose of 20 mg that was increased to 40 mg after 2 weeks in patients with UAS7 > 3, the same criteria were adopted 2 weeks after with 80 mg. They concluded that bilastine at standard dose is effective and up-dosing to double the licensed dose appeared to be sufficient for most of patients. Tiredness was reported by 6 patients on 20 mg bilastine but only by 1 at 40 mg or 80 mg each.

Quality Assessment of the included studies

The quality of the included studies was variable. Only 5 were placebo-controlled (Paul, Finn, Nelson, Dubertret, and Giménez-Arnau) and 5 had a Jadad score ≥ 3. The studies...
performed by Godse, Kameyoshi and Weller et al. respectively analyzed up-dosing responses in patients who did not respond to standard doses.

Discussion

In this review, as clinicians, we tried to answer these two questions: is there enough scientific evidence for up-dosing? Is it really safe when we prescribe these off-label doses?

International guidelines on the management of CSU support up-dosing second generation antihistamines up to four-fold times the licensed dose when control is not achieved but this recommendation is based mainly on expert opinions and lack large well-design double blind clinical trials.

Regarding to efficacy, we analyzed 14 articles and only 6 had a high-quality level score and 5 were placebo controlled. These corresponded to fexofenadine and rupatadine. No placebo effect was analyzed with the other antihistamines (levocetirizine, cetirizine, ebastine and bilastine).

Unfortunately, the heterogeneity of the included studies (control definition, design, quality, lack of active comparator, small sample size, outcomes) and their short duration made the comparisons difficult.

As in Ferrer revision [21], and similar to Guillén-Aguinaga´s systematic review and meta-analysis [4], that found that licensed doses control 31% of patients and up-dosing only reaches 63.2% in symptom´s control, we found that there are a predominance of studies that don´t find significant differences in up-dosing. Taking all into account, we can conclude that up-dosing fexofenadine could be a good clinical practice, but due to the studies´ limitations, more research is needed to confirm this observation. 3 of them were published almost 20 years ago and the doses they recommended, 180 mg or 120
mg depending on the study, are the licensed doses nowadays. Magen’s finds better control when up-dosing to 360 and 720 mg [8] and no additional benefit was considered except for pruritus score with 480 mg in Finn’s [7]. This goes in the same direction as Guillén-Aguinaga’s meta-analysis, as they found no differences in wheal number or response rates but significant differences in pruritus control [4].

In the case of rupatadine, 20 mg is the optimal dose recommended by Giménez-Arnau et al. [19], when they analyzed pool data from two studies [2,18], but examining both studies separately those differences were not significant. There is no additional information about four-fold in CSU, but up-dosing rupatadine up to four-fold is supported in Chronic Inducible Urticaria such as Cold Urticaria (ColdU), with studies proving its efficacy. Abajian et al.[22], showed that 30% and 50% of patients with ColdU had no wheal formation while testing with TempTest 3.0 after treatment with two-fold (20 mg) and four-fold (40 mg) standard rupatadine dosages for 7 days, respectively. However, there was no significant difference in Cold Temperature Threshold reduction and Cold Stimulation Time Threshold prolongation between 20 and 40 mg of rupatadine. Metz et al found that 52% of patients were complete responders when receiving 20 mg (two-fold) of rupatadine for 7 days compared with only 5% of the placebo group [23].

The previous comparative analysis by Sanchez-Borges [24] confirms our results as they found that doubling doses of fexofenadine and rupatadine show an objective improvement in most of patients that respond to antihistamine.

With cetirizine, from the two studies we selected, we don’t have sufficient evidence to recommend up-dosing as Kameyoshi[13] only doubled the licensed dose and Asero [14] does not find any benefit in three or four-fold doses.
Further evidence is also needed to recommend up-dosing in CSU with levocetirizine, desloratadine, bilastine, and ebastine. The quality of these studies, and the short time of treatment, cannot assure the benefit, although our clinical practice confirms that up-dosing benefits patients that remain symptomatic.

Besides safety measures are different between studies are not referred or unclear, we agree with Sanchez-Borges revision [24] that, although insufficiently evaluated in the studies we analyzed, we don’t demonstrate predictable or newer adverse effects. In the highest quality studies, it seems that adverse events are similar in all the groups with different doses and placebo. Relevant clinical information, as hepatic enzymes evaluation, or electrocardiographic values are not collected. The lack of patients in special situations (elderly, polypharmacy, renal or hepatic impairment, heart disease…) in these studies, might limit the supposed safety to healthy volunteers or patients without comorbidities. Headache was the most frequent adverse event reported with fexofenadine and rupatadine across studies, although these results are similar to the observed with placebo. Tiredness was reported by Godse et al. in some patients with ebastine, but as shown previously, it does not seem to be dose-related. Drowsiness was also referred with cetirizine at double the licensed dose. Somnolence or sedation was uncommon except with those treated with rupatadine 20 mg. Staevska et al. [16] reported that higher doses of desloratadine and levocetirizine showed a paradoxical decrease in somnolence, attributed to symptom’s relief. The short treatment duration in all the studies (except Magen’s for fexofenadine that was 16 weeks) may be insufficient to conclude any of these observations, although up-dosing is accepted in real life practice and no severe adverse effects are reported.
Conclusion

Although in daily clinical practice up-dosing is effective and safe when we prescribe antihistamines according to current guidelines in CSU, our review shows that currently, efficacy and safety of high-dose H1 antihistamines in CSU, has a low level of evidence, based mainly on consensus opinion: few randomized controlled trials (RCTs) and low-quality clinical studies. In the studies analyzed we found evidence in up-dosing up to two-fold (rupatadine, fexofenadine) or three-fold. Regarding to licensed doses of second-generation antihistamines in CSU in Spain, there is not enough evidence to support up-dosing to fourfold. Safety data is not evaluated in most of the studies and we do not have long-term data.

Hence high-quality and well-designed studies are needed to validate guidelines´ recommendations and to clarify which non-sedating antihistamines should be used, the optimal dose, and treatment duration in patients not responding to the standard treatment so as to prescribe them according to the leaflet.

Previous presentations

The authors state that this material has not been previously presented or published elsewhere.

Financial sources

The authors assure that no financial sources were obtained to prepare this manuscript.
Conflicts of interest

Dr. Usero Bárcena reports non-financial support from NOVARTIS, during the conduct of the study; personal fees and non-financial support from NOVARTIS, non-financial support from ALMIRALL, non-financial support from SANOFI, non-financial support from ABBIE, non-financial support from JANSEN, outside the submitted work.

Dr. Otero Rivas reports personal fees and non-financial support from Novartis, during the conduct of the study.

The remaining authors have no conflicts of interest to declare.

Acknowledgements

The authors would like to thank Dr. Estibaliz Loza for her contribution to the project and Novartis, for providing the space for our meetings.

References

[1] Sharma M, Bennett C, Carter B, Cohen SN. H1-antihistamines for chronic spontaneous urticaria: an abridged Cochrane Systematic Review. J Am AcadDermatol. 2015;73(4):710-16.

[2] Giménez-Arnau A, Pujol RM, Ianosi S, Kaszuba A, Malbran A, Poop G, et al. Rupatadine in the treatment of chronic idiopathic urticaria: a double-blind, randomized, placebo-controlled multicentre study. Allergy. 2007;62(5):539-46.

[3] Zuberbier T, Aberer W, Asero R, Abdul Latiff AH, Baker D, Ballmer-Weber B, et al. The EAACI/GA²LEN/EDF/WAO guideline for the definition, classification, diagnosis and management of urticaria. Allergy. 2018;73(7):1393-414.
[4] Guillén-Aguinaga S, JáureguiPresas I, Aguinaga-Ontoso E, Guillén-Grima F, Ferrer M. Updosing nonsedating antihistamines in patients with chronic spontaneous urticaria: a systematic review and meta-analysis. Br J Dermatol. 2016;175(6):1153-65.

[5] Howick J, Chalmers I, Glasziou P, Greenhalgh T, Heneghan C, Liberati A, et al. "The 2011 Oxford CEBM Evidence Levels of Evidence (Introductory Document)". Oxford Centre for Evidence-Based Medicine.

[6] Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan DJ, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials. 1996;17(1):1-12.

[7] Finn AF, Kaplan AP, Fretwell R, Qu R, LongJ. A double-blind, placebo-controlled trial of fexofenadine HCl in the treatment of chronic idiopathic urticaria. J. Allergy Clin. Immunol. 1999;104 (5):1071–78.

[8] Magen E, Mishal J, Zeldin Y, Schlesinger M. Antihistamines do not inhibit the wheal induced by the intradermal injection of autologous serum in resistant chronic idiopathic urticaria. Allergy Asthma Proc. 2012;33 (6):531–37.

[9] Paul E, Berth-Jones J, Ortonne J-P. Fexofenadine hydrocholride in the treatment of chronic idiopathic urticaria: a placebo-controlled, parallel-group, dose-ranging study. J Dermatol Treat. 1998;101:410–20.

[10] Tanizaki H, Nakahigashi K, Miyachi Y, Kabashima K. Comparison of the efficacy of fexofenadine 120 mg and 240 mg per day on chronic idiopathic urticaria and histamine-induced skin responses in Japanese populations. J Dermatolg Treat. 2013;24:477-80.
[11] Nelson HS, Reynolds R, Mason J. Fexofenadine HCl is safe and effective for treatment of chronic idiopathic urticaria. Ann Allergy Asthma Immunol. 2000;84(5):517-22.

[12] Godse KV, Nadkarni NJ, Jani G, Ghate S. Fexofenadine in higher doses in chronic spontaneous urticaria. Indian Dermatol Online J. 2010;1(1):45-6.

[13] Kameyoshi Y, Tanaka T, Mihara S, Takahagi S, Niimi N, Hide M. Increasing the dose of cetirizine may lead to better control of chronic idiopathic urticaria: an open study of 21 patients. Br J Dermatol. 2007;157(4):803-04.

[14] Asero R. Chronic unremitting urticaria: is the use of antihistamines above the licensed dose effective? A preliminary study of cetirizine at licensed and above-licensed doses. Clin Exp Dermatol. 2007;32:34-8.

[15] Godse KV. Updosing of antihistamines to improve control of chronic urticaria. Indian J DermatolVenereolLeprol. 2010;76(1):61-2.

[16] Staevska M, Popov TA, Kramalimarkova T, Lazarova C, Kraeva S, Popova D et al. The effectiveness of levocetirizine and desloratadine in up to 4 times conventional doses in difficult-to-treat urticaria. J Allergy Clin Immunol. 2010;125:676-82.

[17] Godse KV. Ebastine in chronic spontaneous urticaria in higher doses. Indian J. Dermatol. 2011;56(5):597–8.

[18] Dubertret L, Zalupca L, Cristodoulo T, Benea V, Medicna I, Fantin S et al. Once-daily rupatadine improves the symptoms of chronic idiopathic urticaria: a randomised, double-blind, placebo-controlled study. Eur J Dermatol 2007;17: 223–8.
[19] Giménez-Arna A, Izquierdo I, Maurer M. The use of a responder analysis to identify clinically meaningful differences in chronic urticaria patients following placebo-controlled treatment with rupatadine 10 and 20 mg. J EurAcadDermatolVenereol 2009;23:1088–91.

[20] Weller K, Church MK, Hawro T, Altrichter S, Labeaga L, Magerl M, et al. Updosing of bilastine is effective in moderate to severe chronic spontaneous urticaria: A real-life study. Allergy. 2018;73(10):2073-75.

[21] Ferrer M, Sastre J, Jáuregui I, Dávila I, Montoro J, del Cubillo A et al. Effect of Antihistamine Up-Dosing in Chronic Urticaria. J Investig Allergol Clin Immunol. 2011;21(3):34-9.

[22] Abajian M, Curto-Barredo L, Krause K, Santamaria E, Izquierdo I, Church MK, et al. Rupatadine 20 mg and 40 mg are Effective in Reducing the Symptoms of Chronic Cold Urticaria. ActaDermVenereol. 2016;96(1):56-9.

[23] Metz M, Scholz E, Ferrán M, Izquierdo I, Giménez-Arna A, Maurer M. Rupatadine and its effects on symptom control, stimulation time, and temperature thresholds in patients with acquired cold urticaria. Ann Allergy Asthma Immunol. 2010;104(1):86-92.

[24] Sánchez-Borges M, Ansotegui I, Montero Jimenez J, Rojo MI, Serrano C, Yañez A. Comparative efficacy of non-sedating antihistamine updosing in patients with chronic urticaria. Worl Allergy Organization Journal.2014;7:33
Tables and Figures

Table 1. Global evidence

Study	Design	No. of patients (withdraws)	Patients	Intervention	Efficacymeasures	Safety	Quality											
			Sex(% female)	Agerange (years)	Duration (weeks)	Antihistamine	Dailydosage (mg)		Oxford	Jadad								
Paul	Multicenter	222 (76)	58%	≥18	6	Fexofenadine	60	PS* (0-3)	Yes	2a	3							
1998 (9)	Randomized						120	NWS** (0-4)										
	Double-blind						180	TSS*** (0-7)										
	Placebo-controlled						240	Interference with sleep and daily activities (0-3)										
	Parallel						240	PS* (0-4)										
							480	NWS**(0-4)										
								TSS***										
Finn	Multicenter	439 (19)	74%	12-65	4	Fexofenadine	40	PS* (0-4)	Yes	2a	3							
1999 (7)	Randomized						120	NWS**(0-4)										
	Double-blind						240	TSS***										
	Placebo-controlled						480	Interference with sleep and daily activities (0-3)										
Study	Design	Note	Participants	Treatment	Dose	Outcomes	Improvement	Score	Notes									
----------	-------------------	-----------------------	--------------	-----------	----------	---	-------------	-------	-------									
Nelson	Multicenter	2000 (11)	418 (136)	Fexofenadine	40	PS* (0-4)	Yes	2a	3									
	Randomized					NWS** (0-4)												
	Double-blind					Interference with sleep and daily activities (0-3)												
	Placebo-controlled																	
	Clinical Trial																	
Godse	Unicenter	2010 (12)	37 (unknown)	Fexofenadine	180	UAS§	Yes	4	NA†									
	Non-randomized																	
	Non-controlled																	
	Clinical Trial																	
Tanizaki	Unicenter	2013 (10)	20 (unknown)	Fexofenadine	120	VAS++ (pruritus)	Yes	3b	0									
	Non-randomized					Severity Index												
	Non-controlled																	
Clinical Trial	Unicenter	Multicenter	Non-randomized	Non-controlled	Clinical Trial	276 (unknown)	NA	>18	16	Fexofenadine	180	360	540	720	NA	3b	0	
----------------	-----------	-------------	----------------	----------------	----------------	----------------	----	-----	----	--------------	------	-----	-----	-----	----	----	---	
Magen 2012 (8)			Non-randomized	Non-controlled	Clinical Trial		NA											
			Mean (Group A)	Mean (Group B)		42,5	36,9	2-4	2	2								
	Kameyoshi 2007 (13)		Randomized	Non-controlled	Clinical Trial	21 (unknown)	NA			Cetirizine	20 (Group A)	20-10 (Group B)	NWS** (0-3)	DWS** (0-3)	Severity of itch (0-3)	Yes	3a	2
	Asero 2007 (14)		Non-randomized	Non-controlled	Clinical Trial	22 (0)	13%	28-67		Cetirizine	10	30	VAS** on Urticaria severity	Yes	3a	0		
Study	Design	Participants	Efficacy	Comparator	Treatment	Comparator	Outcomes	Quality										
-------	--------	--------------	----------	------------	-----------	------------	----------	---------										
Staevska	Unicenter Randomized Double arm	40 (0)	60%	19-61	3	Levocetirizine	5	CU-QoL+++	VAS++	Yes	1b-2a	3						
Staevska	Unicenter Randomized Double arm	40 (3)	72%	19-67	3	Desloratadine	5	CU-QoL+++	VAS++	Yes	1b-2a	3						
Godse	Unicentric Non-randomized Non-controlled Clinical trial	20 (unknown)	60%	20-60	4	Levocetirizine	5	UAS§	Yes	4	NA							

Note:

- **CU-QoL+++**: Clinical Utilities-Quantified Quality of Life (+++ indicates high)
- **VAS++**: Visual Analog Scale (+++ indicates high)
- **UAS§**: Urticaria Activity Score (§ indicates total)
- **PS* (0-4)**: Pruritus Score (0-4 indicates mild to severe)

References:

- Dubertret 2007 (18)
- Godse 2010 (15)
- Godse 2011 (17)
- Staevska 2010 (16)
| Study | Design | N | Percent 77% | Duration | Treatment | Follow-up | Results | |
|---|---|---|---|---|---|---|---|---|
| Giménez-Arna | Multicenter Randomized Double-blind Placebo-controlled Parallel | 334 | 77% | 12-65 | 4 y 6 | Rupatadine | 10 | NWS** (0-4) TSS*** Perception global of efficacy (0-4) Interference with sleep and daily activities (0-3) |
| Weller | Open-label study | 29 | 79,3% | 20-85 | 6 | Bilastine | 20 | UAS7/UAS7§ Severity of CSU† |

* Copyright © 2020 Esmon Publicidad
Table 2. Results

Study	Antihistamine	Results	Difference with high doses in urticaria control	Adverse events					
Paul 1998 (9)	Fexofenadine	ANCOVA‡‡: Mean PS*: Any dose better than placebo. Dose dependent effect	No difference between 180 and 240 mg	Similar or lower than placebo					
		NWS**: 180 mg and 240 mg daily doses superior than placebo		Most frequently reported event: headache (12% in active group, 14% in placebo group)					
		TSS***: 180 mg and 240 mg daily doses are associated with statistically significant values		No relationship between doses					
		60 mg/d and 180 mg/d are associated with better patient’s assessment of effectiveness							
		Only 180 mg/d is associated with better physician assessment							
Finn 1999 (7)	Fexofenadine	ANCOVA ‡‡: Mean PS*: All doses superior to placebo	No, except for 480 mg better efficacy in PS*	Similar in all treatment groups and to placebo					
		Mean NWS**: All doses superior to placebo		Most frequently reported event: headache					
		Mean TSS***: All doses superior to placebo							
		Interference with sleep and daily activities: All doses superior to placebo							
Study	Dose	Fexofenadine	ANCOVA‡‡:	Mean PS*: All doses superior to placebo, linear trend	Mean NWS**: All doses fexofenadine doses superior to placebo, dose-trend	Interference with sleep and daily activities: All dose group better to placebo, linear trend	No statistical differences between doses	Similar in all treatment groups	Most frequently reported event: headache
-----------	------------	--------------	---	---	--	---	--------------------------------	---------------------------------------	--------------------------------------
Nelson	2000 (11)	Fexofenadine	ANCOVA‡‡:	Mean PS*: All doses superior to placebo, linear trend	Mean NWS**: All doses fexofenadine doses superior to placebo, dose-trend	Interference with sleep and daily activities: All dose group better to placebo, linear trend	No statistical differences between doses	Similar in all treatment groups	Most frequently reported event: headache
Godse	2010 (12)	Fexofenadine	Symptom free patients:				Yes	Headache (2/37) with 540 mg/d	Drowsiness (1/37) with 540 mg/d
			180 mg/d: 11/37						
			360 mg/d: 12/26						
			540 mg/d: 13/14						
Tanizaki	2013(10)	Fexofenadine	240mg: 100% VAS** score and severity index decreased				Yes	None of the patients complained of fatigue and/or sleepiness	
Magen	2012(8)	Fexofenadine	1800mg:				Yes	NA	
			62,3%: >50% improvement UAS§						
			360-720mg:						
			75% control urticaria						
Study	Drug	Effectiveness	Side Effects	Somnolence					
-------	------	---------------	--------------	------------					
Kameyoshi 2007 (13)	Cetirizine	Better control of urticarial activity with 20 mg/d than 10 mg/d	Yes	Drowsiness: 20 mg/d: 2 patients, 10 mg/d: none					
Asero 2007(14)	Cetirizine	Only 1 of 22 patients (5%) reached clinical benefit	No	Tiredness and somnolence were reported by 13 patients (59%)					
Staevska 2010(16)	Levocetirizine	Levocetirizine responders: 5 mg/d: 9/40, 10 mg/d: 8/40, 20 mg/d: 5/40	Yes	Somnolence: 75% no change or reduction in somnolence, No difference with higher doses, Other side effects (low probability of association with the drug): Hip pain, anxiety, nausea, fatigue, headache, oral discomfort, kidney pain, stomach ache, viral infection, palpitations (no changes in EKG)					
	Desloratadine	Desloratadineresponders: 5 mg/d: 4/40, 10 mg/d: 7/40, 20 mg/d: 1/20	Yes	Somnolence: 55% no change or reduction in somnolence, No difference with higher doses					
Author (Year)	Drug	Symptom free patients:	Yes/No	Drowsiness:					
--------------	------	------------------------	--------	------------					
Godse (2010)	Levocetirizine	5 mg/d (12/20)	Yes	10 mg/d group: 1 patient					
		10 mg/d (6/8)		20 mg/d group: 1 patient					
		20 mg/d (2/2)							
Godse (2011)	Ebastine	10 mg/d (17/27)	Yes	Mild sedation in 1 patient in 40 mg/d group					
		20 mg/d (8/10)							
		40 mg/d (2/2)							
Dubertret (2007)	Rupatadine	ANOVA‡‡‡ Mean PS*: Doses of 10 and 20 mg are superior to placebo with a linear trend	Yes, between 5 and 10/20, not between 10 and 20	Drowsiness (2.90% for placebo, 4.29% for 5 mg, 5.41% for 10 mg and 21.43% for 20 mg)					
		Mean NWS**: No differences between the 10 and 20 mg doses, though dose-response effect was observed with 20 mg dose		Headache (4.35% for placebo, 2.86% for 5 mg, 4.05% for 10 mg and 4.29% for 20 mg)					
		Mean TSS***: 10 mg and 20 mg are superior to placebo							
		Dose of 5 mg no significant differences compared to placebo in these parameters							
		Perception global efficacy: 10 mg and 20 mg are associated with better efficacy by							
Study	Drug	ANOVA	Mean PS*	Mean NWS**	Mean TSS***	DLQI†	VAS‡‡	Headache	Drowsiness
-------	------	-------	----------	------------	-------------	--------	-------	-----------	------------
Giménez-Arnaú 2007(2)	Rupatadine	ANOVA	Doses of 10 and 20 mg are superior to placebo, but not significantly different between 10 and 20 mg	Doses of 10 and 20 mg are superior to placebo from the first week, were not significantly different between 10 and 20 mg	Dose of 10 and 20 mg were not significantly different at any time	20 mg improve all the subdomain scores to a greater extent than placebo over the time	20 mg significantly decrease the baseline compared to placebo, 10 mg also reduce it although these was not significant compared with placebo	No	Headache (8% for placebo, 4.5% for 10 mg and 8.3% for 20 mg)
								Drowsiness (5.3% for placebo, 2.7% for 10 mg and 8.3% for 20 mg)	
Weller 2018(20)	Bilastine	UAS7§§ reduction:	20 mg: 37% reduction from baseline	40 mg: 23% further reduction after up-dosing	Yes between 20 and 40, not with 80 mg	Tiredness:	20 mg/d group: 6 patients	Tiredness:	20 mg/d group: 1 patient

*Mean PS: Doses of 10 and 20 mg are superior to placebo, linear trend
**Mean NWS: Doses of 10 and 20 mg are superior to placebo, linear trend
***Mean TSS: Doses of 10 and 20 mg are superior to placebo, linear trend
†DLQI: Dose of 10 and 20 mg are superior to placebo, linear trend
‡‡VAS: Doses of 10 and 20 mg are superior to placebo, linear trend
§§UAS7: Doses of 10 and 20 mg are superior to placebo, linear trend

Giménez-Arnaú 2007(2)
Weller 2018(20)

Investigators and patients

Interference with sleep and daily activities: 10 mg and 20 mg better to placebo, linear trend

Publicidad
	80 mg: 7% further reduction after up-dosing, not statistically significant	80 mg/d group: 1 patient

(*) PS: Pruritus Score

(**) NWS: Number of Wheals Score

(***) TSS: Total Symptom Score

($) UAS: Urticaria Activity Score

(§) UAS7: 7days Urticaria Activity Score

(§§) DWS: Duration of Wheals Score

(‡) CSU: Chronic Spontaneous Urticaria.

(‡‡) ANCOVA: Analysis of Covariance

(‡‡‡) ANOVA: Analysis of Variance

(+) DLQI: Dermatology Life Quality Index

(++) VAS: Visual Analog Scale

(+++) CU-Q2oL: Chronic Urticaria Quality of Life questionnaire

(¥) NA: Not applicable
Table 3. Antihistamines evaluated and licensed daily doses.

Antihistamines	Maximum licensed doses (mg/day)
Desloratadine	5 mg/day
Loratadine	10 mg/day
Levocetirizine	5 mg/day
Cetirizine	10 mg/day
Ebastine	20 mg/day
Fexofenadine	180 mg/day
Rupatadine	10 mg/day
Bilastine	20 mg/day

Source: Agencia Española de Medicamentos y Productos Sanitarios (AEMPS):
Data sheet Desloratadine. (Revised may 27, 2020). In: https://cima.aemps.es/cima/pdfs/es/ft/76344/FT_76344.html.pdf
Data sheet Loratadine. (Revised may 27, 2020). In: https://cima.aemps.es/cima/pdfs/es/ft/58518/FT_58518.pdf
Data sheet Levocetirizine. (Revised may 27, 2020). In: http://cima.aemps.es/cima/pdfs/es/ft/64287/64287_ft.pdf
Data sheet Cetirizine. (Revised may 27, 2020). In: https://cima.aemps.es/cima/pdfs/es/ft/58481/FT_58481.pdf
Data sheet Ebastine. (Revised may 27, 2020). In: https://cima.aemps.es/cima/pdfs/es/ft/63366/FichaTecnica_63366.html.pdf
Data sheet Fexofenadine. (Revised may 27, 2020). In: https://cima.aemps.es/cima/pdfs/es/ft/79718/79718_ft.pdf
Data sheet Rupatadine. (Revised may 27, 2020). In: https://cima.aemps.es/cima/pdfs/es/p/64053/P_64053.pdf
Data sheet Bilastine. (Revised may 27, 2020). In: https://cima.aemps.es/cima/pdfs/es/ft/73027/FT_73027.html.pdf
Figure 1. Studies flow-chart

- **PubMed** n=94
- **Embase** n=118
- **Cochrane** n=125

Number of publications included:

- n=33
- Duplicates removed: n=73
- Secondary research n=4
- Excluded by title and abstract n=225
- Excluded after fulltext examination n=29

N= number of publications included