Serotonin, Dopamine and Noradrenaline Adjust Actions of Myelinated Afferents via Modulation of Presynaptic Inhibition in the Mouse Spinal Cord

David L. Garcia-Ramirez, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional
Jorge R. Calvo, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional
Shawn Hochman, Emory University
Jorge N. Quevedo, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional

Journal Title: PLoS ONE
Volume: Volume 9, Number 2
Publisher: Public Library of Science | 2014-02-28, Pages e89999-e89999
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.1371/journal.pone.0089999
Permanent URL: https://pid.emory.edu/ark:/25593/s66t4

Final published version: http://dx.doi.org/10.1371/journal.pone.0089999

Copyright information:
© 2014 García-Ramírez et al. This is an Open Access work distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).

Accessed January 21, 2022 5:56 AM EST
Serotonin, Dopamine and Noradrenaline Adjust Actions of Myelinated Afferents via Modulation of Presynaptic Inhibition in the Mouse Spinal Cord

David L. García-Ramírez1, Jorge R. Calvo1, Shawn Hochman2, Jorge N. Quevedo1*

1 Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México, D.F., México,
2 Department of Physiology, Emory University, Atlanta, Georgia, United States of America

Abstract

Gain control of primary afferent neurotransmission at their intraspinal terminals occurs by several mechanisms including primary afferent depolarization (PAD). PAD produces presynaptic inhibition via a reduction in transmitter release. While it is known that descending monoaminergic pathways complexly regulate sensory processing, the extent these actions include modulation of afferent-evoked PAD remains uncertain. We investigated the effects of serotonin (5HT), dopamine (DA) and noradrenaline (NA) on afferent transmission and PAD. Responses were evoked by stimulation of myelinated hindlimb cutaneous and muscle afferents in the isolated neonatal mouse spinal cord. Monoaminergic responses were examined in the deep dorsal horn either as population excitatory synaptic responses (recorded as extracellular field potentials; EFPs) or intracellular excitatory postsynaptic currents (EPSCs). The magnitude of PAD generated intraspinally was estimated from electrotonically back-propagating dorsal root potentials (DRPs) recorded on lumbar dorsal roots. 5HT depressed the DRP by 76%. Monoaminergic actions were similarly depressed by 5HT (EFPs 54%; EPSCs 75%) but with a slower time course. This suggests that depression of monoaminergic EFPs and DRPs occurs by independent mechanisms. DA and NA had similar depressive actions on DRPs but weaker effects on EFPs. IC50 values for DRP depression were 0.6, 0.8 and 1.0 μM for 5HT, DA and NA, respectively. Depression of DRPs by monoamines was nearly-identical in both muscle and cutaneous afferent-evoked responses, supporting a global modulation of the multimodal afferents stimulated. 5HT, DA and NA produced no change in the compound antidromic potentials evoked by intraspinal microstimulation indicating that depression of the DRP is unrelated to direct changes in the excitability of intraspinal afferent fibers, but due to metabotropic receptor activation. In summary, both myelinated afferent-evoked DRPs and monoaminergic transmission in the dorsal horn are broadly reduced by descending monoamine transmitters. These actions likely integrate with modulatory actions elsewhere to reconfigure spinal circuits during motor behaviors.

Introduction

Descending monoaminergic transmitter systems (5HT, NA and DA) play an integral role in modulating spinal sensory processing, capable of both depression and facilitation of sensory evoked actions [see [1], [2], [3], [4], [5]]. A powerful mechanism used to depress afferent input strength is via PAD produced predominantly following activation of GABA_A receptors on primary afferent terminals [6]. PAD production is widespread and generated by a highly differentiated spinal circuitry, highlighting its important contribution to the regulation of sensory neurotransmission. An important question is the extent to which monoaminergic pathways regulate afferent activity by controlling PAD. While the monoamines are involved in PAD of predominantly pain/temperature encoding afferents (e.g. [7], [8], [9]), little is known about their modulation on PAD of proprioception-

encoding muscle afferents [10], [11], [12], [13] with no reported effects on myelinated cutaneous pathways [14], [15], [16].

Stimulation of brainstem raphespinal pathways regulates PAD of group Ia muscle spindle and Ib Golgi tendon organ afferents [13], [17] but whether these actions are due to direct effects of 5HT is not known. Facilitation of group I muscle afferent actions, presumably on interneurons contacted monosynaptically by these afferents, were observed by local injection of 5HT and NA near different spinal neurons [1], [18], [19]. Conversely, actions on afferent fibers are implicated in the monoaminergic depression of Ia muscle afferent-evoked monosynaptic reflexes [20], [21], [22], [23].

Stimulation of coeruleospinal and raphespinal brainstem nuclei produces PAD on low-threshold group II muscle spindle afferent terminals [12]. Actions via the spinal release of monoamines are suggested, as their local application can depress group II muscle afferent-evoked population EPSPs seen as extracellular field
potentials (EFPs) [24], [25], [26]. However, EFP depression can be independent of PAD, instead produced by direct metabotropic receptor actions on afferent terminals [27], so the relation between PAD and release of monoamines from descending terminals remains uncertain.

Overall, while suggestive, there is currently no direct evidence of the monoamines modulating myelinated ‘low-threshold’ sensory-evoked PAD. Accordingly, we applied 5HT, DA, and NA to study their actions on sensory evoked-DRPs in the isolated mouse spinal cord with intact hindlimb muscle and cutaneous nerves. This approach allows study of intact afferent pathways in vitro in neonates while providing enhanced recording stability and more precise pharmacological control [28]. In addition, we evaluated whether modulatory actions occur directly on the first-order synapse initiating activation of PAD pathways by recording monosynaptic EFPs. We also measured changes in excitability of the afferent fibers that evoke PAD with intraspinal microstimulation to disclose direct effects by possible ionotropic mechanisms. We found that 5HT, DA and NA most profoundly depressed DRPs via actions on spinal interneurons. Additionally 5HT and NA also depressed monosynaptic afferent transmission. Preliminary data were published in abstract form [29], [30].

Methods

Ethics Statement

All the procedures described here comply with the guidelines contained in the National Institutes of Health Guide for the Care and Use of Laboratory Animals (USA) and were approved by the Institutional Animal and Use Committee in the Center for Research and Advanced Studies (Mexico).

Dissection

Experiments were carried out in 6-7-day-old BALB/c mice of both sexes. Animals were anesthetized with 10% urethane (2 mg/kg i.p.) before decapitation at cervical level. The thoracic to lumbar cord was exposed by dorsal and ventral approach in cooled high-sucrose solution containing (in mM): sucrose 250; NaCl 125; KCl 2.5; D-glucose 25; MgSO4 1.0; NaH2PO4·H2O 1.25; and NaHCO3 26. The dorsal laminectomy and the ventral verteobectomy were performed with special care to maintain paraverterbral muscles and both dorsal and ventral spinal roots in continuity with peripheral nerves. In some experiments pelvis and hindlimbs were maintained in situ and nerves dissected free. In other experiments the sciatic nerve and branches were dissected free and the rest of the limb was removed. The preparation was pinned ventral side down in a Sylgard-coated Petri dish. A sagittal hemisection of the cord was performed by means of insect pins and each hemisectioned cord was transferred to a separate dish. Peripheral nerves tibial (Tib), between the central canal and the border of the dorsal column (Figure 1A) at depths between 100–180 μm taking into account the largest amplitude EFPs (approximately between III–VI Rexed laminae). The short-latency EFPs reflect the population monosynaptic excitatory postsynaptic potentials (Figure 1B and C) and were preceded by terminal potentials, that is, the action potentials arriving to all terminals of the stimulated nerve. Figure 1C also shows that the short-latency EFPs are maximal at 2 xT and that the longer slow-decaying EFPs and DRPs are maximal at 5 xT. The longer slow-decaying EFPs reflect the field potential of PAD recorded intraspinally. Based on these observations, we chose 4 xT in most of the experiments to examine near-maximal myelinated fiber-evoked DRP and EFP responses.

‘Blind’ whole-cell voltage-clamp recordings were made to study synaptic actions in individual dorsal horn neurones activated monosynaptically by myelinated afferents. Recording micropipettes contained (in mM):120 CsF, 10 EGTA, 10 HEPES, 10 CsCl2, 35 CsOH, and 5 QX314 (to block spiking) at pH 7.3. Micropipette resistance ranged from 2–5 MΩ. Synaptic responses were recorded at several membrane potentials to verify evoked responses as EPSCs. EPSC amplitudes were then measured at potentials where IPSCs reversed (~−40 mV) before, during and after drug application. We targeted interneurons in locations exhibiting the largest EFPs evoked by nerve stimulation at <2 xT. Mephenesin (1 mM) was applied to isolate the monosynaptic component of EPSCs. Mephenesin has been used to isolate monosynaptic from polysynaptic components in the central nervous system by decreasing the firing threshold of interneurons, leaving the monosynaptic components unaffected [33], [34].
Figure 1. Methods. A, schematic representation of the experimental setup showing the hemisected spinal cord and the sciatic nerve with dissected nerve branches. Extracellular field potentials (EFPs) were recorded in the deep dorsal horn at L4. Microstimulation (μStim) was applied through the same micropipette where the evoked-EFPs were larger. Dorsal root potentials (DRPs) were recorded in dorsal roots L4 and L5. Peripheral nerves were stimulated at strengths based on the recruitment of the most excitable fibers. B, DRP (upper trace) and EFP (lower trace) produced by stimulation of the tibial nerve with strength 4 xT. By convention DRPs are presented with negativity upwards and EFPs with negativity downwards. C, Comparison
PAD was inferred from dorsal root potentials (DRPs) recorded at L4 and L5 dorsal roots by means of bipolar glass suction electrodes (~120 μm of tip internal diameter) placed en passant on dorsal roots near the entry zone. The short-latency components recorded from these roots correspond to the orthodromically-arriving afferent volleys. These afferent volleys were not affected by the application of monoamines (Figure 2; see expanded traces in insets of L5 DRPs).

Changes in intraspinal afferent fiber excitability was determined using microstimulation (400 μs, ~10 μA) through the same electrodes used for recording EFPs. This approach, termed Wall's technique, measures changes in afferent terminal excitability [35]. Intraspinal stimulation directly recruits afferent axons whose antidromically-propagated compound action potentials (CAPs) are recorded in dorsal roots or peripheral nerves. We measured the amplitude of the biphasic fastest component of CAPs (peak to peak), which exhibited a mean latency of 1.6 ms (±0.37 S.D.) and were insensitive to block of glutamatergic transmission. During PAD, the same stimulus recruits more fibers to generate a larger CAP because their depolarized terminals are closer to threshold; hence a larger antidromic response indicates an increase in PAD. A lack of change of CAP amplitude, for instance in the presence of monoamines means that the excitability of fast-conducting afferent fibers was not affected. Intraspinal activation of afferent terminals also produces a DRP via orthodromic activation of the circuitry mediating PAD. Both responses were recorded in the L4 and/or L5 dorsal roots.

EFPs and EPSCs were recorded with an Axoclamp 2B amplifier (Molecular Devices, U.S.A.) filtered at 2 kHz, and DRPs with custom made AG-coupled amplifiers (band pass 0.1 Hz–3 kHz), or with DC-coupled amplifiers (A-M Systems, U.S.A.; band pass DC – 3 kHz). Raw data were collected with pClamp software (v. 10.0, Molecular Devices, U.S.A.) and stored for off-line analysis.

Drug solutions and applications

Stock solutions of drugs (10–100 mM) were made and stored at −20°C until needed. All drugs were dissolved in normal ACSF and superfused from separate gravity-fed reservoirs at known concentrations for fixed periods of time over the hemisected cord preparation. Serotonin (5HT), dopamine (DA), noradrenaline (NA) (all from Sigma-Aldrich) were superfused for 10–30 minutes each, depending on the protocol, at a concentration of 10 μM. Mephensin (Sigma) was superfused for 10 minutes at a concentration of 1 mM. Cumulative dose-response curves for monoamines were made at concentrations of 0.001, 0.01, 0.1, 1, 10 and 100 μM.

Sample populations

The effects of 5HT, DA and NA were tested in 28 experiments (in 9 experiments only DRPs were recorded; in 19 experiments both DRPs and EFPs) (Table 1). In 20 experiments DRPs were obtained by stimulation of the Tib nerve, while the other 8 experiments involved stimulation of various additional nerves: SP (7), Su (6), DP (4), PB (4) and St (2). **EFPs were obtained following stimulation of Tib (13), SP (6), PB (4), St (2), Su (3) and DP (3) nerves. All the nerves were stimulated at strengths 2–4X T.** The effects of the monoamines 5HT, DA and NA, both on DRPs evoked by intraspinal microstimulation and on the excitability of myelinated afferent fibers inferred by Wall’s technique, were tested in 7, 7 and 6 experiments, respectively. EPSCs were recorded in 7 experiments and they were evoked by the stimulation of the Tib (7) and the Su (1) nerves at strengths 1.5–2 xT. 14 unidentified dorsal horn interneurons exhibiting EPSCs from the Tib (13) and Su (1) were recorded. The effects of 5-HT 10 μM were tested in all 14 interneurons, and the effects of mephensin in 5 interneurons.

Data Analysis

Since the onset of evoked-DRPs overlapped with afferent volleys and antidromically propagating dorsal root reflexes, it was not possible to reliably measure time to DRP onset for estimates of synaptic latency. DRP and short-latency EFP amplitude were measured from approximate onset to peak and expressed as percentage of control. Long-latency EFP amplitude was measured as the area between 100–300 ms. EPSC amplitude was measured as the area between the onset and 400 ms. The actions of bath-applied monoamines were measured after effects reached a steady-state (8–12 min after application). All data are expressed as percentage of the control value (mean ± SD), unless otherwise stated. For statistical comparison, we used Wilcoxon non-parametric test. All differences were considered significant if P<0.05.

Results

Effects of the monoamines on afferent-evoked responses following tibial nerve stimulation

DRPs. Stimulation of the mixed cutaneous/muscle nerve Tib at 4X evoked DRPs, that reached peak amplitude at 56±16 ms from the earliest afferent volley and lasted 441±199 ms. All monoamines applied at 10 μM produced a pronounced reversible depression of Tib-evoked DRPs (Figure 2A–C). Comparable depressant actions were observed at L4 and L5 dorsal roots (Figure 3). For L4, 5HT depressed Tib-evoked DRPs to 23±11% of control values with DA and NA producing depressions to 50±18% and 50±19% of control values, respectively (Figure 3A). DRPs recovered to control values for 5HT and DA. There was only a partial recovery with NA even twenty-six minutes after wash out (Figure 2C).

Synaptic transmission. Only 5HT clearly depressed the short latency Tib-evoked EPSCs (38±19% of control values; Figures 2 and 3A). As this short-latency response represents monosynaptic actions, 5HT reduced monosynaptic transmission. Longer latency EPSCs were reversibly depressed by all monoamines (Figure 2Ai–C). When measured by area depression was to 20±11% (n = 21), 75±39% (n = 16) and 52±17% (n = 16) of control values, for 5HT, DA and NA, respectively.

To further explore depression of monosynaptic transmission by 5HT, we recorded evoked EPSCs in deep dorsal horn interneurons. Like EPSCs, EPSCs were also depressed by 5HT (to 25.6±18.8% of control, n = 9; Figure 4) including when the evoked synaptic responses were restricted to predominantly monosynaptic events with mephensin (to 21.1±9.2% of control, n = 5; Figure 4). In comparison 5HT did not significantly alter membrane resistance (90.9±8.1%; n = 10). Together these obser-
vations support depression via presynaptic events on primary afferents. These presynaptic actions are likely mediated via activation of metabotropic receptors since action potential invasion into afferent terminals, measured as terminal potentials, was unaffected (101.5±26% of control, n = 12; Figure 5) [36].

The depression of the monosynaptic transmission (EPSCs and EFPs) by 5HT may be responsible for the statistically comparable percent reduction in DRP amplitude. If true, DRP reductions may have no bearing as a measure of changes in spinal circuits of monoamine-induced depression of evoked responses. Gray shadows indicate the period of bath application of monoamines.

Figure 5, DRP amplitude depression began earlier and peaked prior to changes in monosynaptic transmission. As shown in Figure 6, DRP amplitude depression began earlier and peaked earlier than EFP amplitude depression (see also Figure 2Aii). This was observed in 5/7 experiments. The plot in Figure 5B shows the DRP depressed to ~40% of control amplitude prior to the start of EFP depression. Similar effects were also observed when simultaneously recording DRPs and EPSCs (n = 5).

Depression of DRPs by 5HT, DA and NA was dose-dependent with similar efficacies

The dose dependence of monoamine-induced DRP depression was examined. Cumulative concentration-response curves are shown in Figure 6. 5HT, DA and NA depressed evoked DRPs with similar potencies having IC50 values of 0.61 (n = 7), 0.75 (n = 3) and 1.03 (n = 6) μM, respectively. Interestingly, 5HT actions on EFPs were instead biphasic with a dose-dependent facilitation below 1 μM and depression at doses of 10 and 100 μM (Figure 6Aii). This is consistent with actions on different 5HT receptors with different affinities, and further differentiates modulatory actions seen at stimulated afferent synapses versus downstream spinal pathways that generate the DRP.

Table 1. Samples sizes of evoked responses, nerves stimulated, monoamines tested and stimulation strength.

Experiments	Nerves stimulated	Monoamines tested (10 μM)	Stimulation strength (xT)
	DRPs	5HT, DA, NA	1.5–2
28	20	24	23
19	13	19	16
7	-	7	6
7	-	-	7

Table 1. Samples sizes of evoked responses, nerves stimulated, monoamines tested and stimulation strength.

Experiments	Nerves stimulated	Monoamines tested (10 μM)	Stimulation strength (xT)
	DRPs	5HT, DA, NA	1.5–2
28	20	24	23
19	13	19	16
7	-	7	6
7	-	-	7

Modulatory actions were comparable for responses evoked by stimulation of muscle and cutaneous nerves

We independently stimulated muscle and cutaneous nerves to compare modulation of their evoked DRPs and EFPs and observed comparable actions. Figure 7 shows examples following stimulation of the muscle nerve semitendinosus (St) and the cutaneous nerve superficial peroneal (SP). Overall, 5HT depressed both DRP and EFP amplitudes in all nerves tested (Figure 3). While DA and NA depressed DRPs evoked by all nerves, DA had no effect on EFPs, whereas NA had small but significant depressant actions on cutaneous- and muscle-evoked EFPs (Figure 3).

SHT, DA and NA have no effect on the excitability of low threshold afferent fibers

We used intraspinal microstimulation to test whether the monoamines directly modulated the excitability of afferent fibers. In the example shown in Figure 8A, intraspinal microstimulation evoked a short-latency antidromic compound action potential (CAP) in the L4 dorsal root that was followed by a DRP. Short-latency CAPs (expanded traces in insets) are produced by direct intraspinal activation of myelinated afferent fibers while DRPs reflect PAD via interneuronally-mediated synaptic actions on afferent terminals. Figure 8B shows that the monoamines did not have actions on the short-latency CAPs yet 5HT, DA, and NA reversibly depressed evoked DRPs to 21±17% (n = 7), 40±15% (n = 7) and 42±26% (n = 6) of control values, respectively (p<0.05). This magnitude of DRP depression was comparable to that seen on DRPs evoked by peripheral nerve stimulation (cp. Figure 3).

These experiments demonstrate that monoamine modulatory actions on the DRP are independent of electrical excitability changes in the primary afferents terminals which could occur; for example, via activation of ionotropic 5-HT3 receptors. When combined with earlier evidence that DRP depression precedes...
depression in monosynaptic transmission, spinal interneurons are implicated as the predominant site for monoaminergic regulation of DRP amplitude.

Discussion

The present results demonstrated that 5HT, DA and NA have common depressant actions on DRPs evoked by stimulation of myelinated cutaneous and muscle afferents. The magnitude of these observed actions was dose-dependent. Evidence supporting depression of afferent transmission was also seen for 5HT and NA. Recently, 5HT, DA and NA were reported to depress DRPs and afferent transmission and DRPs produced by visceral afferent stimulation [5]. Together, it is clear that monoaminergic descending systems have broad modulatory control over somatosensory input.

Afferent activity provides a continuous stream of movement-dependent feedback to reinforce and refine ongoing behaviours, and can also reconfigure, initiate, and terminate motor tasks [37]. The monoamine transmitters are clearly involved in modulating the performance of spinal motor systems, yet little is known of their actions on the cutaneous and muscle proprioceptive afferents recruited during these behaviours. Here we found that 5HT, DA and NA potently (IC$_{50}$ values 0.6 to 1.0 mM) and efficaciously reduced DRP amplitudes evoked by stimulation of low-threshold myelinated afferent fibers (76, 44 and 50% reductions at 10 mM, respectively). The DRP depression produced by 5HT and NA supports and extends previously observed actions following dorsal root stimulation of unknown primary afferents [11] and further broadens the analysis to include the actions of DA. Inasmuch as the DRP is a reflection of PAD-mediated presynaptic inhibition, the monoamine transmitters greatly reduce cutaneous and proprioceptive afferent-evoked presynaptic inhibition. Since a dominant form of presynaptic inhibition is via autogenic negative feedback [6], that is, back onto the same stimulated myelinated afferents, the monoamines may limit depression of sensory transmission in recruited afferents that fire repetitively during ongoing movements. Using the experimental procedure employed, we could not determine whether the DRP produced by 5HT and NA supports and extends previously observed actions following dorsal root stimulation of unknown primary afferents [11] and further broadens the analysis to include the actions of DA. Inasmuch as the DRP is a reflection of PAD-mediated presynaptic inhibition, the monoamine transmitters greatly reduce cutaneous and proprioceptive afferent-evoked presynaptic inhibition. Since a dominant form of presynaptic inhibition is via autogenic negative feedback [6], that is, back onto the same stimulated myelinated afferents, the monoamines may limit depression of sensory transmission in recruited afferents that fire repetitively during ongoing movements. Using the experimental procedure employed, we could not determine whether the DRP produced by stimulation of myelinated afferents included actions on non-myelinated afferents, although it is known that stimulation of cutaneous A$_B$ afferents can produce PAD on C afferent fibers [6].

DRPs evoked by stimulation of selective muscle and cutaneous nerves were similarly depressed by monoamines (applied at 10 mM). As DRP depression reflects reduced afferent presynaptic inhibition, this suggests that monoamines can broadly facilitate the actions of proprioceptive feedback during movement, consistent with the view that monoamines facilitate circuits engaged in motor behaviors [3]. 5HT in particular also depressed monosynaptic EFPs and EPSCs. This supports earlier observations of reduced afferent monosynaptic transmission in deep dorsal horn neurons [2], but does not exclude additional postsynaptic actions. Thus, while interneurons involved in the circuitry responsible for PAD are generally inhibited by the monoamines, proprioceptive input strength can also be concomitantly reduced. The net effect of modulation at both sites could be to permit ongoing recruited afferents to exert weaker actions that are nonetheless less susceptible to a history-dependent depression via PAD-mediated presynaptic inhibition.

It is unlikely that the observed reduction of DRPs is simply a consequence of reduced monosynaptic transmission of stimulated afferent fibers as EFP amplitude reductions developed more slowly. Thus, the DRP depression also includes modulatory actions further downstream, either on interneurons mediating...
PAD, and/or on the last-order synapse producing PAD. 5HT may also facilitate monosynaptic transmission at lower doses (≤1.0 μM) suggesting that 5HT bi-directionally modulates transmission in a concentration dependent manner. This is presumably mediated by 5HT receptor subtypes with different agonist affinity. As lower 5HT doses facilitate monosynaptic strength while still depressing DRPs, the net consequence would be an amplification of central synaptic actions with less history-dependent depression via presynaptic inhibition. Overall, the monoamines, and in particular 5HT, can modify afferent processing by at least three independent mechanisms, two increasing (∫ DRP; ↑ EFP) and one decreasing (∫ EFP) afferent transmission.

Figure 4. 5HT depresses monosynaptic transmission of low threshold afferent fibers. A, EPSCs (upper panel) recorded on an unidentified L4 dorsal horn neuron and DRPs (lower panel) recorded at L4 dorsal root, before (black) during (red) and after (blue) bath application of 10 μM 5HT. Note the remarkable depression of EPSCs and DRPs, and the recovery after wash. B, EPSCs (upper panel) recorded on an unidentified L4 dorsal horn neuron and DRPs (lower panel) recorded at L5 dorsal root, before (black), during bath application of 1 mM mephenesin (green) and then 10 μM 5HT (red). Note that the monosynaptic component of the EPSC was virtually abolished after bath application of 5HT. C, summary graph of the depression (P<0.05) observed with 5HT and mephenesin + 5-HT on DRPs (filled bars) and EPSCs (open bars). The number of experiments is indicated inside graphed bars.

doi:10.1371/journal.pone.0089999.g004
As EFP and DRP reductions are temporally and spatially dissociable, physiological mechanisms could exist for their independent control by descending systems. For example, the strong 5HT depression of the short-latency muscle afferent-evoked EFP likely reflects reduced population Ia synaptic transmission in the dorsal horn, consistent with 5HT depressant actions on Ia input to motoneurons [22]. Yet, local iontophoretic application of 5HT can instead facilitate group I muscle afferent input to dorsal horn interneurons [1]. As we also observed EFP facilitation at lower doses of 5HT, the control of activity of interneurons producing PAD may depend on the strength of descending drive and the presence of 5HT receptors with varying affinity [3].

On the depression of the second short-latency and the long-latency components of EFPs

Although in this study we cannot discriminate whether the second short-latency component of the EFP is produced by group...
Figure 6. Monoamines depress DRPs in a dose-dependent manner while 5HT produces a biphasic effect on EFPs. Concentration-response curves of 5HT, DA and NA at cumulative concentrations of 0.001, 0.01, 0.1, 1, 10 and 100 μM, on DRPs (Ai, B and C) and EFPs (Aii) evoked by the stimulation of the Tib nerve at 4xT. DRPs are depressed in a dose-dependent manner by the three monoamines. The monosynaptic component of the EFPs is facilitated by 5HT at doses below 1 μM and inhibited with doses of 10 and 100 μM. Each point represents mean ± SE of amplitude respect to control. The curves are constructed from 7, 5, 3 and 6 experiments, as indicated. For the effects of 5HT, DA and NA on DRPs the pIC$_{50}$s are 6.2 ± 0.1, 6.1 ± 0.7 and 6.0 ± 0.1 (mean ± SE), and the corresponding IC$_{50}$s are 0.6, 0.8 and 1.0 μM, as indicated. For the effect of 5HT on EFPs the curve was biphasic and IC$_{50}$ values were not calculated.

doi:10.1371/journal.pone.0089999.g006

Figure 7. Comparing effects of the monoamines on muscle and cutaneous afferent-evoked DRPs and EFPs. A–C, DRPs (upper traces) and EFPs (lower traces) evoked by the stimulation of the muscle nerve St (left panels) and the cutaneous nerve SP (right panels), both with strengths 4xT. In A–C black traces show control recordings before, and red traces after 5 min of bath application of 5HT, DA and NA 10 μM, respectively. Note that 5HT, DA and NA depressed DRPs, but only 5HT and NA depressed the fastest components of low threshold-evoked EFPs.

doi:10.1371/journal.pone.0089999.g007
II or other slower conducting myelinated fibers or to polysynaptic pathways, the depression of this component by all monoamines when stimulating muscle nerves is consistent with observations on group II field potentials in the cat by NA [1], [24], [25], and DA agonists [26]. As the onset of this EFP begins after DRPs are already recruited, it cannot be associated with activation or modulation of the early part of the DRP.

The long-latency slow decaying EFP is also suppressed by all monoamines. Since stimulus intensity for afferent recruitment was predominantly below recruitment threshold for C/group IV afferents, these events are initiated by lower threshold afferents. The slow decaying EFP may be due to recruitment of polysynaptic pathways, activation of the kinetically slower NMDA receptor [38] and likely also reflects the PAD field recorded intraspinally since it matches the time course of DRPs [39].

Figure 8. The monoamines have no effect on the excitability of myelinated afferent fibers. A, DRPs recorded at L4 dorsal root and evoked by intraspinal microstimulation (μStim) in control (upper traces) or after application of 10 μM 5HT, DA, or NA each (lower traces). Insets show expanded segments of upper traces. Note that DRPs are preceded by a short-latency compound action potential (CAP). The CAP evoked at the stimulus intensities used was always submaximal. Note that monoamines depressed intraspinal microstimulation evoked-DRPs but not the short-latency CAPs. Traces are averages of 16 consecutive events and the effects of 5HT, DA and NA. These effects were largely reversible during washout of each drug. B, summary graph of the effects seen. 5HT, DA and NA strongly depressed microstimulation-evoked DRPs (P<0.05) but not CAPs. The number of experiments is indicated inside the bars.

doi:10.1371/journal.pone.0089999.g008

Putative mechanisms

Bulbospinal monoamines activate numerous metabotropic receptor subtypes that couple to signal transduction pathways. Since ligand- and voltage-gated channels are modulated through signal transduction pathways, it is likely that the monoamines modify the function of many membrane channels that control excitability of neurons. Most or all spinal neurons and primary afferents contain at least some monoamine receptor subtypes, and most receptors are expressed in subpopulations of primary afferents and dorsal horn neurons [4]. Hence, monoaminergic modulatory actions may occur on all neuronal elements in the pathway involved in generating PAD; directly on afferent fibers giving PAD, interneurons mediating PAD, and on fibers receiving PAD. A summary figure of possible sites of action is shown in Figure 9, and discussed with examples provided below. The contribution of identified monoamine receptors on specific sensory fiber terminals or characterized interneurons mediating PAD remains to be determined.

A. Presynaptic mechanisms

As the terminal potential amplitude evoked by stimulation of lower-threshold afferents was unchanged, it is unlikely that the invasion of action potentials in presynaptic axonal terminals was altered [36]. The lack of effect supports changes independent of terminal excitability, both in the stimulated afferents, and in those
targeted to generate the DRP. Thus, the reduction by the monoamines of the short-latency monosynaptic EFPs occurs as a result of reduced synaptic efficacy of the afferents, and/or a reduced response of postsynaptic receptors (e.g. glutamate receptors).

The monoamines also did not alter the amplitude of intraspinal stimulation-evoked antidromic CAPs (Wall’s technique). The lack of a change in CAPs excludes modulation of synaptic efficacy via mechanisms related to changes in polarization of the afferent terminals, as for example would be expected with direct activation of ionotropic 5HT 3 receptors found on axon terminals of higher-threshold afferents [8], [40]. Thus, observed actions are most likely via 5HT metabotropic receptor-mediated actions on the afferent fibers, or interposed interneurons. This is supported by the fact that iontophoretic application of NA and 5HT produces no changes in the intraspinal threshold of identified group Ia afferents [18]. As locally applied NA and its agonists have no effect on low-threshold cutaneous afferents evoked responses on spinal neurons [14], [15], [16], the DRP depression produced by NA is likely to be via metabotropic presynaptic actions.

B. Postsynaptic mechanisms

Since primary afferents are glutamatergic, depression of postsynaptic glutamate receptor activity would reduce EFP amplitude. As D 2-like, 5HT 1 and 5HT 2-adrenergic receptors are G i-coupled receptors that reduce phosphorylation of non-NMDA receptors, activation of these postsynaptic monoamine receptors could depress EFP amplitude via glutamate receptor depression [41].

The monoamines may also reduce the membrane excitability of interposed interneurons. For example, NA depresses postsynaptic lamina II neurons via 5HT 2-adrenoceptors acting on an outward K + current [42], [43]. Similarly, DA activates K + channels via D 2-like receptors on substantia gelatiosa neurons [44]. Regarding 5HT, stimulation of the raphe magnus inhibits activity in dorsal horn neurons presumably via spinal 5HT 1 receptors [45] and depression of group II afferent activity includes 5HT 3 receptor actions likely in excitatory interneurons [27].

C. Actions on primary afferents producing PAD

As PAD is thought to be predominantly generated by activation of GABA A receptors, the monoamines could depress PAD via modulation of GABA A receptor activity on afferent fibers. The GABA A receptor has multiple phosphorylation sites to support monoaminergic modulatory actions [46]. For example, 5HT 1B receptors can depress GABA A receptor-mediated currents [47] and may reduce GABA release [48]. Both actions would support a reduction in DRP amplitude. D 1-like receptors have also been reported to depress activation of GABA A receptor currents [49]. Regarding NA, some 2-adrenergic receptor immunoreactivity is found in the axon terminals of GABAergic neurons [50]. As GABAergic interneurons mediating PAD may express these receptors, NA may reduce the synaptic efficacy of inhibitory interneurons mediating PAD. Rather than modulate GABA A receptors, actions on signal transduction pathways controlling the NKCC1 Cl cotransporter could reduce PAD by reducing the Cl driving force. Indeed, 5HT 2A receptor activation was recently shown to increase synaptic inhibition in motoneurons via a KCC2 Cl cotransporter dependent hyperpolarization of the Cl reversal potential [51].

Conclusions

In conclusion, we used the isolated in vitro mouse spinal cord preparation to demonstrate that the monoamines have widespread and common depressant actions on PAD evoked following stimulation of myelinated afferents from either cutaneous of muscle nerves. 5HT and NA also depress monosynaptic afferent transmission in the fastest conducting myelinated afferents. The depressant actions of 5HT on PAD and synaptic transmission are temporally discernible, and possibly mediated via activation of different receptor subtypes. An in vitro approach with selective afferent recruitment, intact circuitry, enhanced pharmacological precision, and stable whole-cell recordings from synaptically- and/or molecularly identified interneurons promises to yield comprehensive insight into modulatory mechanisms controlling somatosensory information processing.

Acknowledgments

We thank A Carapia for his helpful technical assistance.

Author Contributions

Conceived and designed the experiments: JNQ SH. Performed the experiments: DLG JRC. Analyzed the data: JNQ SH DLG JRC. Contributed reagents/materials/analysis tools: JNQ SH. Wrote the paper: JNQ SH DLG JRC. Approved the final version: JNQ SH DLG JRC.

References

1. Junkowska E, Hammar I, Chojnicka B, Heden CH (2000) Effects of monoamines on interneurons in four spinal reflex pathways from group I and/or group II muscle afferents. European Journal of Neuroscience 12:701–714.
2. Garraway SM, Hochman S (2001) Modulatory actions of serotonin, noradrenaline, dopamine, and acetylcholine in spinal cord deep dorsal horn neurons. JNeurophy 86:2183–2194.
3. Hochman S, Garraway SM, Machacek DW, Shay BL (2003) 5-HT receptors and the neuromodulatory control of spinal cord function. In: Motor Neurobiology of the Spinal Cord. CRC Press, Boca Raton F.C. Cope. (ed.), p47–87.
4. Millan MJ (2002) Descending control of pain. Progress in Neurobiology 66:355–474.
5. Zimmermann AL, Sawchuk M, Hochman S (2012) Monoaminergic modulation of spinal viscerosensitive-sympathetic function in the neonatal mouse thoracic spinal cord. PLoS One. 2012;7(11):e47213. doi: 10.1371/journal.pone.0047213.
6. Rudomin P, Schmidt RF (1999) Presynaptic inhibition in the vertebrate spinal cord revised. Experimental Brain Research 129:1–37.
7. Okanumi NY, Tamaura VA (1987) [Depolarizing action of dopamine on the endings of the primary afferent fibers of an isolated segment of the spinal cord in rat papu]. Neurofisiologia 19:741–748.
8. Khasabov SG, Lopez-Garcia JA, Asghar AU, King AE (1999) Modulation of afferent-evoked neurotransmission by 5-HT3 receptors in young rat dorsal horn neurons in vitro: a putative mechanism of 5-HT3 induced anti-nociception. British Journal of Pharmacology 127:843–852.
9. Willis WD Jr (1999) Dorsal root potentials and dorsal root reflexes: a double-edged sword. Experimental Brain Research 124:395–421.
10. Proudfit HK, Anderson EG (1974) New long latency bulbospinal evoked potentials blocked by serotonin antagonists. Brain Res 65:542–546.
11. Preston PR, Walls DI (1980) The pharmacology of dorsal root potentials recorded from the isolated spinal cord of the neonate rat. GenPharmacol 11:327–334.
12. Riddell JS, Jankowska E, Eide E (1993) Depolarization of group II muscle afferents by stimuli applied in the locus coeruleus and raphe nuclei of the cat. Journal of Physiology 461:723–741.
13. Quevedo J, Egubar JR, Jimenez I, Rudomin P (1993) Raphe magnus and reticulospinal actions on primary afferent depolarization of group I muscle afferents in the cat. Journal of Physiology 482:625–640.
14. Engberg I, Ryall RW (1966) The inhibitory action of noradrenaline and other monoamines on spinal neurons. JPhysiol 183:296–322.
15. Headley PM, Duggan AW, Greensmith BT (1975) Selective reduction by noradrenaline and 5-hydroxytryptamine of nociceptive responses of cat dorsal horn neurons. Brain Research 145:183–189.
16. Fleetwood-Walker SM, Mitchell R, Hope PJ, Molony V, Iggo A (1983) An alpha 2 receptor mediates the selective inhibition by noradrenaline of nociceptive responses of identified dorsal horn neurons. Brain Research 334:243–254.
Presynaptic Monoaminergic Modulation

17. Proudfit HK, Larson AA, Anderson EG (1980) The role of GABA and serotonin in the mediation of raphe-evoked spinal cord dorsal root potentials. Brain Res 195: 149–165.
18. Curtis DR, Leah JD, Port MJ (1983) Effects of noradrenaline and 5-hydroxytryptamine on spinal Ia afferent terminations. Brain Res 250: 328–332.
19. Jankowska E, Hammar I, Djouhri L, Heden C, Szabo LZ, et al. (1997) Modulation of responses of four types of feline ascending tract neurons by serotonin and noradrenaline. European Journal of Neuroscience 9: 1375–1387.
20. McLennan H (1961) The effect of some catecholamines upon a monosynaptic reflex pathway in the spinal cord. J Physiol 158: 411–425.
21. Carp JS, Anderson RJ (1982) Dopamine receptor-mediated depression of spinal monosynaptic transmission. Brain Res 242: 247–234.
22. Crichton H, Wallis DI (1991) Inhibition of reflex responses of neonate rat lumbar spinal cord by 5-hydroxytryptamine. British Journal of Pharmacology 103: 1769–1773.
23. Clemens S, Hochman S (2004) Conversion of the modulatory actions of dopamine on spinal reflexes from depression to facilitation in D3 receptor knockout mice. Journal of Neuroscience 24: 11337–11345.
24. Bras H, Cavalli P, Jankowska E, McCrea D (1989) Comparison of effects of monoamines on transmission in spinal pathways from group I and II muscle afferents in the cat. Experimental Brain Research 76: 27–37.
25. Bras H, Jankowska E, Noga BR, Skoog B (1990) Comparison of effects of various types of NA and 3-HT agonists on transmission from group II muscle afferents in the cat. European Journal of Neuroscience: 12: 1029–1039.
26. Skoog B, Noga BR (1995) Dopaminergic control of transmission from group II muscle afferents to spinal neurones in the cat and guinea-pig. Experimental Brain Research 105: 39–47.
27. Dougherty KJ, Banazryn BA, Jankowska E, Krutki P, Maxwell DJ (2005) Membrane receptors involved in modulation of responses of spinal dorsal horn interneurons evoked by feline group II muscle afferents. J Neurosci 25: 584–593.
28. Hochman S, Gozal EA, Hayes HR, Anderson JT, DeWeerd SP, et al. (2012) Enabling techniques for in vitro studies on mammalian spinal locomotor mechanisms. Front Biosci 17:2158–80.
29. Calvo JR, Hernandez-Rodriguez M, Hochman S, Quevedo JN (2006) Monoaminergic modulation of pathways mediating sensory-evoked pad in the hemisected spinal cord of the mouse. Soc Neurosci Abst 146.
30. Calvo JR, Hochman S, Quevedo J (2008) Modulation of sensory-evoked field potentials by monoamines in the hemispinal spinal cord of the mouse. Soc Neurosci Abst 375.
31. Vejsada R, Palecek J, Husk P, Soukup T (1985) Postnatal development of conduction velocity and fibre size in the rat tibial nerve. International Journal of Neurosci Abst 575.
32. Nussbaum JC, Yanagisawa M, Otsuka M (1989) Pharmacological properties of a C-fibre response evoked by saphenous nerve stimulation in an isolated spinal cord-nerve preparation of the newborn rat. Journal of Physiology 417: 149–169.
33. Shreckengost J, Calvo J, Quevedo J, Hochman S (2010) Bicuculline-sensitive primary afferent depolarization remains after greatly restricting synaptic transmission in the mammalian spinal cord. J Neurosci 30: 5283–8.
34. Wall PD (1958) Excitability changes in afferent fibre terminations and their relation to slow potentials. J Physiol 142: 1–21.
35. Syvert GW, Manson JB, Fleschner JW (1980) Effect of presynaptic inhibition on afferent terminals, terminal potentials, focal synaptic potentials, and EPSPs in cat spinal cord. J Neurophysiol 44: 792–803.
36. Rossignol S, Dubuc R, Gossard JP (2006) Dynamic sensorimotor interactions in locomotion. Physiol Rev 86: 89–154.
37. Miller BA, Woolf CJ (1996) Glutamate-mediated slow synaptic currents in neonatal rat deep dorsal horn neurons in vitro. Journal of Neurophysiology 76: 1463–1476.
38. Eccles JC, Magui F, Willis WD (1962) Depolarization of central terminals of Group I afferent fibres from muscle. J Physiol 160: 62–93.
39. Conte D, Legg KD, McCourt AC, Skljajdic E, Nagy GG, et al. (2005) Transmitter content, origins and connections of axons in the spinal cord that possess the serotonin (5-hydroxytryptamine) 3 receptor. Neuroscience 134: 165–173.
40. Murase K, Randic M, Shirasaki T, Nakagawa T, Akaie N (1998) Serotonin suppresses N-methyl-D-aspartate responses in acutely isolated spinal dorsal horn neurons of the rat. Brain Research 525: 84–91.
41. Sonohata M, Furse H, Katsuchi T, Yaseka T, Doi A, et al. (2004) Actions of noradrenaline on substantia gelatinosa neurones in the rat spinal cord revealed by in vivo patch recording. J Physiol 555: 513–526.
42. Conte D, Legg KD, McCourt AC, Skljajdic E, Nagy GG, et al. (2005) Direct inhibition of substantia gelatinosa neurones in the rat spinal cord by activation of dopamine D2-like receptors. J Physiol 568: 245–253.
43. el Yasar N, Fleetwood-Walker SM (1999) A 5-HT1A-type receptor mediates the antinociceptive effect of nucleus raphe magnus stimulation in the rat. Brain Research 523: 92–99.
44. Kittler JT, Moss SJ (2003) Modulation of GABA(9)A receptor activity by phosphorylation and receptor trafficking: implications for the efficacy of synaptic transmission. J Neurophysiol 83: 2996–3004.
45. Tamae A, Nakatsu T, Koga K, Kato G, Furse H, et al. (2005) Direct inhibition of substantia gelatinosa neurones in the rat spinal cord by activation of dopamine D2-like receptors. J Physiol 568: 245–253.
46. Conte D, Legg KD, McCourt AC, Skljajdic E, Nagy GG, et al. (2005) Transmitter content, origins and connections of axons in the spinal cord that possess the serotonin (5-hydroxytryptamine) 3 receptor. Neuroscience 134: 165–173.
47. Stanford IM, Lacey MG (1996) Differential actions of serotonin, mediated by 5-HT(1)B and 5-HT(2)C receptors, on GABA(A) receptor currents in neurones of the rat substantia nigra pars reticulata neurons in vitro. J Physiol 568: 1756–17573.
48. Bramley JR, Sollars PJ, Pickard GE, Dudek FE (2005) 5-HT(1B) receptor-mediated presynaptic inhibition of GABA release in the suprachiasmatic nucleus. J Neurophysiol 93: 3157–3164.
49. Floros-Hernandez J, Hernandez S, Snyder GL, Yan Z, Feinberg AA, et al. (2000) D1 dopamine receptor activation reduces GABA(A) receptor currents in neostriatal neurons through a PKA/DARPP-32/PP1 signaling cascade. J Neurophysiol 83: 3296–3304.
50. Olave MJ, Maxwell DJ (2002) An investigation of neurones that possess the alpha(2)c-adrenoceptor in the rat dorsal horn. Neuroscience 113: 51–40.
51. Bos R, Sadlaoud K, Boulenguez P, Buttigieg D, Lieubeuf S, et al. (2013) Activation of 5-HT(2A) receptors upregulates the function of the neuronal K-Cl cotransporter KCC2. Proc Natl Acad Sci 110(1): 54–53.