Effect of Streptozotocin on Plasma Insulin Levels of Rats and Mice: A Meta-analysis Study

Burcu Koksal*

Inonu University, Department of Physiology, Inonu University, Faculty of Medicine, Malatya 44280, Turkey

Abstract

BACKGROUND: In the studies focusing on diabetic organisms, Streptozotocine (STZ) is a frequently used agent to induce diabetes in rats and mice. However the current studies do not represent practical importance of their statistical findings. For showing practical importance of the differences in plasma insulin levels of diabetic rats and mice induced by STZ, there should be a statistical synthesis regarding statistical findings of the studies.

AIM: The purpose of this study is to make a meta-analysis of the studies on the effect of STZ on plasma insulin levels in diabetic rats and mice.

MATERIALS AND METHODS: In this study, 39 effect sizes (37 studies) about levels of plasma insulin were analyzed by calculating individual effect sizes (d) and mean effect size.

RESULTS: The effect sizes were between -13.7 and +65.3 and the mean effect size value (+9.33) represented a large effect indicating that STZ was an effective agent to significantly decrease plasma insulin levels of diabetic rats and mice.

CONCLUSION: It can be said that the differences in plasma insulin levels between STZ-applied and no application groups has a practical importance in making animal model of diabetes.

Introduction

Nowadays, diabetes is frequently seen in society. Its prevalence is about 382 million people around the world [1]. Diabetes is characterized by insufficient secretion rate of insulin or lack of insulin activity [2, 3]. Diabetes is associated with different health problems including cardiovascular diseases, neuropathy, retinopathy, ulcers and amputations [4, 5]. Treatment of diabetes is a complex issue but some animal models were developed to understand the management as diabetes is a chronic condition [6, 7]. Over 30 years, alloxan, streptozotocin (STZ, 2-deoxy-2-(3-(methyl-3-nitrosoureido))-D-glucopyranose), high-fat diet-fed and nicotinamide are used for establishing experimental diabetes models of animal [8].

Streptozotocin is still commonly used agent to induce diabetes in rats and mice [9-12]. STZ is produced by Streptomyces sarchomogenes and STZ causes to abnormal B-cell functions by impairing glucose oxidation and decreasing insulin biosynthesis and secretion [13, 14]. Szkudelski stated that STZ dose range is larger than alloxan and other agents and only one dose is enough to induce diabetes [15]. Decrease in plasma insulin levels in animal models after STZ application is used as a sign for inducement of diabetes [16-18]. In spite of reporting significant differences in plasma insulin levels after STZ application, majority of the studies using STZ do not report practical importance or effect sizes of the differences. But there is a need to show practical importance for future decisions on dose and time of STZ application.

Based on this idea, the purpose of this study is to make a meta-analysis of the studies on the effect of STZ on plasma insulin levels in diabetic organisms.
Materials and Methods

In this study, meta-analysis approach was used to evaluate practical importance of the differences regarding plasma insulin levels of STZ-induced diabetic rats and mice. Meta-analysis is different from a review including summarizing existent literature, since meta-analysis involves statistically synthesizing results of different studies [19, 20]. For meta-analysis in this study, Cohen’s d effect size values were calculated for 37 studies and mean effect size value was found for deciding about average effect size value as an indicator of mean practical importance of the differences in plasma insulin levels induced by STZ.

Table 1: Descriptions of the publications in this study

Publication Date	Name of Journal or Institution	Subject	STZ Amount in Application	Time between STZ Application and Plasma Insulin Measurement
2005	Biochemical and Biophysical Research Communications	Rats	65 mg/kg	9 days
2005	Pharmacological Research Journal of Ethnopharmacology	Rats	50 mg/kg	4 weeks
2005	Journal of Biochemistry and Molecular Biology	Rats	50 mg/kg	6 weeks
2006	Clinical and Experimental Pharmacology and Physiology	Rats	55 mg/kg	21 days
2006	Journal of Health Sciences Molecular Cellular Biochemistry	Rats	100 mg/kg	45 days
2006	Basic & Clinical Pharmacology & Toxicology	Rats	50 mg/kg	45 days
2006	Pharmacology and Physiology	Rats	55 mg/kg	30 days
2006	Diabetes	Mice	90-100 mg/kg	3 weeks
2006	Physiotherapy Research International Journal of Biological Macromolecules	Rats	50 mg/kg	30 days
2007	Epidemiology Research Experimental Diabetes Research	Rats	45 mg/kg	8 weeks
2008	BMC Molecular Biology	Rats	65 mg/kg	15 days
2009	Atherosclerosis	Rats	60 mg/kg	1 week
2009	Clinical and Experimental Ophthalmology	Rats	60 mg/kg	1 week
2010	Phytomedicine	Rats	60 mg/kg	6 weeks
2010	Pharmacosgygy Res. Archives of Medical Research	Rats	55 mg/kg	15 days
2010	Chemicals and Biological Interactions	Rats	60 mg/kg	32 weeks
2011	Endocrinology	Rats	50 mg/kg	7 days
2012	The Journal of Pharmacology and Experimental Therapeutics	Rats	65 mg/kg	5 days
2012	West Virginia University, School of Medicine	Mice	50 mg/kg	8 weeks
2012	Turkish Journal of Medical Sciences	Rats	45 mg/kg	3 days
2013	BMC Complementary and Alternative Medicine	Rats	55 mg/kg	60 days
2013	Diabetology & Metabolic Syndrome	Rats	50 mg/kg	1 week
2014	BMC Pharmacological and Toxicology	Rats	50 mg/kg	72 hours
2014	Acta Histochemica European Journal of Pharmacology	Rats	40 mg/kg	2 weeks
2014	Phytomedicine	Rats	40 mg/kg	2 weeks
2014	Pain Medicine	Rats	30 mg/kg	2 weeks
2014	Pan Medicine	Rats	40 mg/kg	2 weeks
2014	Food and Chemical Toxicology	Rats	40 mg/kg	28 days
2015	International Journal of Experimental Pathology	Rats	45 mg/kg	24 hours
2015	Pharmacosgygy Research	Rats	90 mg/kg	10 weeks
2015	Nutrition	Rats	35 mg/kg	72 hours
2015	Renal Failure	Rats	60 mg/kg	5 weeks

Selection of the Publications

In selection process of the publications PubMed, Google Scholar, Proquest and National Theses Database System were searched by using key words “Plasma insulin levels, STZ, Rats”. The time restriction for the publications was 2005-2015. In National Theses Database System no thesis was found about the keywords it might be related to system error while Proquest search showed 89 theses. However, one thesis was found appropriate. When Pubmed was searched 526 results were found. As the highest publication number, Google scholar search results gave 3960 publications.

After adding the publications to the pool, checking abstracts and content of the publications were conducted. Eventually it was determined that 37 studies reported change in plasma insulin levels of diabetic organisms and they reported 39 differences for effect size calculations across different doses of STZ. Descriptive knowledge about the publications is represented in Table 1. The titles of them can be seen in appendix (Table 3).

Calculation of Effect Sizes and Analysis

In this study plasma insulin levels measured in control and STZ groups were considered for calculating effect size values. The effect size of differences regarding plasma insulin levels were accepted as an indicator of practical importance of the differences, therefore one Cohen d formula was used to calculate effect sizes [21, 22].

\[d = \frac{M_1 - M_2}{\sqrt{\sigma_1^2 + \sigma_2^2 / 2}} \]

After individual effect sizes per difference in each publication were calculated, mean effect size value was obtained by adding all effect sizes and dividing total effect size score into number of individual effect sizes. Hence just only one value regarding effect of STZ on plasma insulin levels was gathered.

Results

Results of the study showed that only 4 of the all individual effect sizes indicated negative values while the rest of effect sizes (n=35) was positive. Moreover one small and 38 large effect sizes were seen in the calculations. Descriptive values regarding Plasma Insulin Levels in control and STZ-induced diabetes groups, Unit of Plasma Insulin Levels and Individual Effect Sizes were shown in Table 2.

As seen in the Table 2, the individual effect sizes were between -13.7 to +65.3. The mean effect size value was found as +9.33.
The results of this study made it clearer that STZ-application is an effective way of decreasing significantly plasma insulin levels of rats and mice.

Mean effect size value calculated from the publications showed that practical importance of STZ-induced decrease in plasma insulin levels had a large effect. In other words effect size value of +9.33 refers to a large effect size [23]. Therefore the mean value of the STZ applied group is over 90 percentile of the no treatment group or control group.

The results of the study are in line with the findings of the current research studies using STZ for inducing diabetes in rats and mice [9, 10]. Sai Varsha, Thiagarajan, Manikandan and Dhanasekaran applied STZ (35mg/kg) to Male albino Wistar rats, the authors observed plasma insulin decrease in rats after 72 hours [24].

The findings of this study contribute to our understandings about practical importance of differences in plasma insulin levels induced by STZ. When looked at the number of the publications in this study, it can be seen that decisions are based on differences in the publications over 35. Hence the findings of this study make our inferences about plasma insulin level differences induced by STZ more valid rather than relying on only one study’s finding. At the same time findings of the study has a potential for informing researchers about dose and duration of STZ application to change plasma insulin levels of diabetic rats and mice. As another implication of this study, the publications analyzed in this study show characteristics of current practice about using STZ, therefore the effect sizes reported in this study also inform practice using STZ in diabetes studies.

In spite of strong sides of this study, it can be suggested that number of the publications using STZ might be increased in future studies to improving quality of inferences and to make the analysis more comprehensive. At the same time, other publications involving reports and unpublished documents should also be investigated for determining effect sizes regarding the differences about plasma insulin levels induced by STZ. Finally future studies might look at the studies published before 2005.

Table 2: Descriptive Values regarding Plasma Insulin Levels, Unit of Plasma Insulin Levels and Individual Effect Sizes of the Differences in the Publications

Publication Date	Name of Journal or Institution	Plasma Insulin Level	Plasma Insulin Level in STZ- induced Diabetic Group	Unit of Plasma Insulin Level	Effect Size
2005	Biochemical and Biophysical Research Communications Pharmacological Research	3.11 ± 0.07	0.34 ± 0.11	ng/ml	5.8
2005	Journal of Pharmacology	57 ± 4	58 ± 4	μU/mL	0.2
2005	Journal of Ethnopharmacology	35.40 ± 2.17	67.5 ± 0.15	μg/ml	18.7
2005	Journal of Biochemistry and Molecular Biology	3.2 ± 0.4	0.32 ± 0.1	ng/ml	10.2
2006	Clinical and Experimental Pharmacology and Physiology	15.86 ± 1.38	5.12 ± 0.68	μU/mL	9.9
2006	Journal of Health Sciences	16.54 ± 1.07	5.27 ± 0.76	μU/mL	12.2
2006	Molecular and Cellular Biochemistry	13.67 ± 1.04	6.99 ± 0.22	μU/mL	9.1
2006	Basic & Clinical Pharmacology & Toxicology	13.67 ± 1.04	6.99 ± 0.22	μU/mL	9.1
2006	Clinical and Experimental Pharmacology and Physiology	16.6 ± 2.1	4.3 ± 1.3	μU/mL	7.1
2006	Diabetes	0.90 ± 0.09	0.58 ± 0.09	ng/ml	3.5
2006	Phytotherapy Research	2.49 ± 0.26	0.44 ± 0.0	ng/ml	14.6
2006	International Journal of Biological Macromolecules	13.88 ± 14.52	4.87 ± 0.53	μU/mL	0.8
2007	Journal of Ethnopharmacology	296.21 ± 50.40	68.89 ± 10.12	μg/L	6.2
2008	Experimental Diabetes Research	11.8 ± 2.93	3.97 ± 0.86	μg/L	3.64
2008	BMC Molecular Biology	1.6 ± 0.3	0.7 ± 0.3	ng/ml	3
2008	Atherosclerosis	1.82 ± 0.36	0.05 ± 0.03	μg/L	7.3
2009	Clinical and Experimental Ophthalmology	2.23±0.18	0.90±0.31	ng/ml	4.96
2010	Phytomedicines	38.63±8	8.21±4	μU/mL	10.6
2010	Pharmacognosy Res.	390.87 ± 1.18	420.25 ± 2.8	mg/dl	13.7
2010	Archives of Medical Research	0.67±0.10	0.18±0.01	ng/ml	7
2011	Chemico-Biological Interactions	16.55 ± 1.17	6.07 ± 0.99	μU/mL	9.7
2012	International Journal of Endocrinology	38 ± 6	16 ± 2	μU/mL	4.9
2012	The Journal of Pharmacology And Experimental Therapeutics	1.69 ± 0.09	0.29 ± 0.03	ng/dl	23
2012	West Virginia University, School of Medicine	1.92±0.17	0.47±0.06	ng/ml	6.1
2012	Turkish Journal of Medical Sciences	4.28±0.83	0.12±0.02	ng/ml	7.1
2013	BMC Complementary and Alternative Medicine	14.2 ± 0.583	3.6 ± 0.509	μU/mL	19.6
2013	Diabetology & Metabolic Syndrome	4.68±0.84	0.65±0.14	μU/mL	6.7
2014	BMC Pharmacology and Toxicology	0.31±0.05	0.17±0.04	ng/ml	2.8
2014	Acta Histochem	15.41±1.21	8.37±1.01	μU/mL	6.3
2014	European Journal of Pharamacology	16.25±1.85	5.02±0.43	μU/mL	8.3
2014	Phytomedicines	15.6 ± 0.5	6.3 ± 0.26	μU/mL	23.8
2014	Pain Medicine	4.26 ± 0.59	2.28 ± 0.32	μU/mL	4.3
2014	Pain Medicine	4.26 ± 0.59	2.20 ± 0.30	μU/mL	4.5
2014	Pain Medicine	4.26 ± 0.59	2.04 ± 0.42	μU/mL	4.4
2014	Food and Chemical Toxicology	15.9 ± 1.3	26.1 ± 1.4	μU/mL	7.5
2015	International Journal of Experimental Pathology	6.18±0.01	0.95±0.12	ng/ml	65.3
2015	Pharmacognosy Research	17.66±2.91	83.33±6.33	μU/mL	13.3
2015	Nutrition	53.42±3.73	41.64±2.91	μU/mL	3.5
2015	Renal Failure	8.40±0.34	2.50±0.38	ng/ml	16.8

Discussion

The results of this study made it clearer that STZ-application is an effective way of decreasing significantly plasma insulin levels of rats and mice.
the diabetic brain: Contributors to diabetes-induced brain aging. Biochimica et Biophysica Acta. 2009; 1792: 444–453.

6. Lenzen S. The mechanisms of alooaxan- and streptozotocin-induced diabetes. Diabetologia. 2008; 51: 216–226.

7. King AJF. The use of animal models in diabetes research, British Journal of Pharmacology, 2012; 166(3): 877–894.

8. Islam MS, Loots du T. Experimental rodent models of type 2 diabetes: a review. Methods and Findings in Experimental and Clinical Pharmacology. 2009; 31(4): 249-261.

9. Ibrahim DS. Abd-El-Maksoud MA. Effect of strawberry (Fragaria × ananassa) leaves extract on diabetic nephropathy in rats. International Journal of Experimental Pathology. 2015; 96(2):87–93.

10. Ngubane PS, Hadebe SI, Serumula MR, Musabayane CT. The effects of transdermal insulin treatment of streptozotocin-induced diabetic rats on kidney function and renal expression of glucose transporters. Renal Failure. 2015; 37(1): 151-159.

11. Willecke F. et al. Lipolysis, and not hepatic lipogenesis, is the primary modulator of triglyceride levels in streptozotocin-induced diabetic mice. Arteriosclerosis, Thrombosis, and Vascular Biology. 2015; 35: 102–110.

12. Dominguez JM, Yorek MA, Grant MB. Combination therapies prevent the neuropathic, proinflammatory characteristics of bone marrow in streptozotocin-induced diabetic rats. Diabetes. 2015; 64 (2): 643-653.

13. Nukatsuka M, Yoshimura Y, Nishim AD, Kawada J. Importance of the concentration of ATP in rat pancreatic beta cells in the mechanism of streptozotocin-induced cytotoxicity. Journal of Endocrinology. 1990; 127: 161-165.

14. Bedoya FJ, Solano F, Lucas M. N-monomethyl-arginine and nicotinamide prevent streptozotocin-induced double strand DNA break formation in pancreatic rat islets. Experientia. 1996; 52: 344-347.

15. Szkudelski T. The mechanism of alloxan and streptozotocin action in b cells of the rat pancreas, Physiological Research. 2001; 50: 536-546.

16. Daisy P, Balasubramanian K, Rajalakshmi M, Eliza J, Selvaraj J. Insulin mimetic impact of Catechin isolated from Cassia fistula on the glucose oxidation and molecular mechanisms of glucose uptake on Streptozotocin-induced diabetic Wistar rats. Phytomedecine. 2010; 17(1): 28-36.

17. Dang JK, Wu Y, Cao H, Meng B, Huang CC, Chen G, Li J, Song XJ, Lian QQ. Establishment of a rat model of type II diabetic neuropathic pain. Pain Medicine. 2014; 15(4): 637-646.

18. Patel SB, Santati D, Patel V, Shah M. Anti-diabetic effects of ethanol extract of Blyonia laciniosa seeds and its saponins rich fraction in neonatal streptozotocin-induced diabetic rats. Pharmacognosy Research. 2015; 7(1): 92-99.

19. Fleis JL. The statistical basis of meta-analysis. Statistical Methods in Medical Research. 1993; 2: 121–145.

20. Maksimovic J. The application of meta-analysis in educational research. Facta Universitatis. 2011; 10 (1): 45-55.

21. Rosnow RL, Rosenthal R Computing contrasts, effect sizes, and counternulls on other people’s published data: General procedures for research consumers. Psycological Methods. 1996; 1: 331-340.

22. Cumming, G. Understanding the new statistics: Effect sizes, confidence intervals, and meta-analysis. New York, NY: Routledge, 2012.

23. Cohen, J. Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates,1988.

24. Sai Varsha MKN, Thiagarajan R, Manikandran R, Dhanasekaran G. Vitamin K1 alleviates streptozotocin-induced type 1 diabetes by mitigating free radical stress, as well as inhibiting NF-κB activation and iNOS expression in rat pancreas. Nutrition. 2015; 31: 214–222.

Appendix

Table 3: Titles of the publications

Publication Date	Titles of the publications
2005	Streptozotocin-induced diabetes in the rat is associated with enhanced tissue hydrogen sulfide biosynthesis
2005	Glucocortic, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and cell damage in rat pancreas
2005	Study of the hypoglycaemic activity of Lepidium sativum L. aqueous extract in normal and diabetic rats
2005	Red wine prevents brain oxidative stress and nephropathy in streptozotocin-induced diabetic rats
2005	Beneficial effects of Aloe vera leaf gel extract on lipid profile status in rats with streptozotocin diabetes
2005	Anti-diabetic activity of fruits of terminalia chebula on streptozotocin induced diabetic rats
2006	improves the antioxidant status in streptozotocin-induced diabetic rat tissues
2006	Antihyperglycemic and antioxidant effect of rutin, a polyphenolic flavonoid, in streptozotocin-induced diabetic wistar rats
2006	Biochemical evaluation of antidiabetic properties of some commonly used Indian plants on streptozotocin-induced diabetes in experimental rats
2006	Glucose inhibition of dipeptidyl peptidase-4 with a sitagliptin analog preserves pancreatic-cell mass and function in a rodent model of type 2 diabetes
2006	Effect of Japanese radish (Raphanus sativus) sprout (Kawara-daikon) on carbohydrate and lipid metabolites in normal and streptozotocin-induced diabetic rats
2007	Protective effect of Lysium barbarum polysaccharides on streptozotocin-induced oxidative stress in rats
2007	Effect of Scirpecarya birea (Anacardiacae) stem bark methanolic chloroform/methanol extract on streptozotocin-diabetic rats
2008	The Characterization of High-Fat Diet and Multiple Low-Dose Streptozotocin Induced Type 2 Diabetes Rat Model
2008	Genomic actions of 1,25-dihydroxyvitamin D3 on insulin receptor gene expression, insulin receptor number and insulin activity in the kidney, liver and adipose tissue of streptozotocin-induced diabetic rats
2008	Mechanisms underlying recouping of eNOS by HMG-CoA reductase inhibition in a rat model of streptozotocin-induced diabetes mellitus
2009	Effect of N-acetylprocollagen on the early expression of inflammatory markers in the retina and plasma of diabetic rats
2009	Insulin mimetic impact of Catechin isolated from Cassia fistula on the glucose oxidation and molecular mechanisms of glucose uptake on Streptozotocin-induced diabetic Wistar rats
2009	Anti hyperglycemic activity of Catharanthus roseus leaf powder in streptozotocin-induced diabetic rats
2009	Effect of Dipeptidyl Peptidase-IV (DPP-IV) Inhibitor (Vildagliptin) on Peripheral Nerves in Streptozotocin-induced Diabetic Rats
2010	Insulin-secretagogue, antihyperglycemic and other protective effects of gallic acid isolated from Terminalia bellirica Roxb. in streptozotocin-induced diabetic rats
2010	Intermittent Fastening Modulation of the Diabetic Syndrome in Streptozotocin-Injected Rats
2010	Dipeptidyl Peptidase IV Inhibitor Attenuates Kidney Injury in Streptozotocin-Induced Diabetic Rats
2010	Examination of novel cardiac mechanisms influencing mitochondrial proteomes during diabetes mellitus
2010	Effects of lycopen on plasma glucose, insulin levels, oxidative stress, and body weights of streptozotocin-induced diabetic rats
2010	Anti-diabetic, anti-oxidant and anti-hyperglycemic activities of Melastoma malabathricum Linn. leaves in streptozotocin-induced diabetic rats
2010	The effect of a novel curcumin derivative on pancreatic islet regeneration in experimental type-1 diabetes in rats (long term study)
2010	CNX-011-67, a novel GPR40 agonist, enhances glucose responsiveness, insulin secretion and insulin content in n-STZ rats and in islets from type 2 diabetic patients
2010	B-Caryophyllene, a natural sesquiterpene, modulates carbohydrate metabolism in streptozotocin-induced diabetic rats
2010	Fisetin improves glucose homeostasis through the inhibition of gluconeogenic enzymes in hepatic tissues of streptozotocin induced diabetic rats
2010	Efficacy of natural diacigenin on cardiovascular risk, insulin secretion, and beta cells in streptozotocin (STZ)-induced diabetic rats
2010	Establishment of a Rat Model of Type II Diabetic Neuropathic Pain
2010	Polyphenols-rich Gympsis tetragonalob (L.) Taub. bears show hypoglyeemic and β-cells protective effects in type 2 diabetic rats
2010	Effect of strawberry (Fragaria × ananassa) leaves extract on diabetic nephropathy in rats
2010	Anti-diabetic effects of ethanol extract of Blyonia laciniosa seeds and its saponins rich fraction in neonatal streptozotocin-induced diabetic rats
2010	Vitamin K1 alleviates streptozotocin-induced type 1 diabetes by mitigating free radical stress, as well as inhibiting NF-κB activation and iNOS expression in rat pancreas
2010	The effects of transdermal insulin treatment of streptozotocin-induced diabetic rats on kidney function and renal expression of glucose transporters

OA Maked J Med Sci. 2015 Sep 15; 3(3):380-383.