Supplementary Table 4. The five clusters of keywords on tendon stem cells research from 1991 to 2020

Cluster 1: Animal study (54)	Cluster 2: Tissue engineering (39)	Cluster 3: Clinical study (30)	Cluster 4: Mechanism research (50)	Cluster 5: Stem cells research (40)	
acl reconstruction	adhesion	achilles tendinopathy	activation	adipose tissue	
allograft	alignment	achilles tendon	age-related-changes	adipose-tissue	
animal model	biocompatibility	achilles-tendon	apoptosis	articular-cartilage	
animal-models	biomaterials	achilles-tendon	connective-tissue	autologous chondrocyte implantation	
anterior cruciate ligament	bioreactor	basic science	cytokines	bone marrow	
arthroscopic repair	bone	biology	differentiation	bone regeneration	
augmentation	cells	delivery	endothelial-cells	bone-marrow	
autograft	collagen	double-blind	expression	cartilage	
biomechanical properties	collagen constructs	sponge	endothelial growth-factor	extracellular matrix	cell therapy
biomechanics	constructs	flexor tendon	extracellular-matrix	chondrocytes	
bone morphogenetic protein-2	cross-linking	gene therapy	fibroblasts	chondrogenesis	
cruciate reconstruction	degradation	gene-transfer	gene	chondrogenic differentiation	
defect	electrospinning	growth factor	gene expression	culture	
degeneration	engineered tendon	growth factors	gene-expression	defects	
enhancement	fabrication	growth-factor-i	growth	digital flexor tendon	
enthesis	fibers	growth-factors	identification	equine	
fatty infiltration	fibroblast-growth-factor	healing	inflammation	horse	
-------------------	--------------------------	---------	--------------	-------	
follow-up	flexor tendons	heterotopic ossification	injury	horses	
graft	hydrogel	injection	matrix	human adipose-tissue	
grafts	in-vitro	management	mechanisms	human bone-marrow	
growth-factor	ligament	pathogenesis	messenger-rna	implantation	
growth-factor-beta	mechanical stimulation	platelet-rich plasma	mice	injuries	
in-vivo	mechanical-properties	prp	migration	intraarticular injection	
insertion	mechanobiology	rabbit achilles-tendon	muscle	marrow stromal cells	
integrity	mechanotransduction	randomized controlled-trial	osteoblasts	mesenchymal stem cell	
knee	nanofiber scaffolds	repair	osteogenic differentiation	mesenchymal stem cells	
marrow	nanofibers	tendinopathy	phenotype	mesenchymal stromal cells	
medial ligament	collagen	nanofibrous scaffolds	tendinosis	progenitors	osteoarthritis
mesenchymal stem-cells	scaffold	tendon healing	proliferation	osteogenesis	
model	scaffolds	tendon injury	promotes	progenitor cells	
morphogenetic protein-2	silk scaffold	tendon injury	protein	regenerative medicine	
outcomes	tendon		rat	stem cell	
patellar tendon	tendon tissue engineering		responses	stem cells	
rabbit	tenogenic differentiation		scleraxis	stromal cells	
rabbit model	tissue		scleraxis expression	tendinitis	
rat model	tissue engineering		self-renewal	tendon injuries	
reconstruction	tissue regeneration		stem-cells	tendon repair	
regeneration	vitro	stem/progenitor cells	therapy		
-------------	-------	-----------------------	---------		
rotator cuff	vivo	stimulation	transplantation		
rotator cuff repair		tenascin-c	umbilical-cord blood		
rotator cuff tear		tendon differentiation			
rotator cuff tears		tendon regeneration			
rupture		tendon stem cells			
satellite cells		tendon stem/progenitor cells			
shoulder		tendon-derived stem cells			
skeletal-muscle		tendons			
small-intestinal submucosa		tenocyte			
supraspinatus		tenocytes			
supraspinatus tendon		tenomodulin			
surgical repair		tgf-beta			
tears					
tendon graft					
tendon-bone healing					
tunnel					