CASE REPORT

Proximal tibiofibular dislocation: a case report of this often overlooked injury

BENJAMIN MARTIN, MB BChir, MRCS, JAMES CORBETT, MBBS, MRCS, ALASTAIR LITTLEWOOD, MB BChir, FRCR and RUPERT CLIFTON, MB ChB, FRCS (Tr + Orth)

1Core Surgical Trainee, East of England Deanery, UK
2Specialist Registrar in Trauma and Orthopaedics, East of England Deanery, UK
3Department of Radiology, Peterborough City Hospital, Peterborough, UK
4Department of Trauma and Orthopaedics, Peterborough City Hospital, Peterborough, UK

Address correspondence to: Mr Benjamin Martin
E-mail: benjaminmartin@nhs.net

ABSTRACT

Tibiofibular dislocation is a condition that is a recognized cause of lateral knee pain in trauma patients and can occur in isolation or as a part of multiple injuries. There is usually prominence of the fibular head on clinical examination, with tenderness to palpation. Radiological investigation can confirm the diagnosis, and in the case of our patient, both plain radiographs and MRI were performed. MRI permitted pre-reduction assessment of the intrinsic knee ligaments, as well as the common peroneal nerve. The dislocated fibular head was successfully relocated under general anaesthesia as a closed reduction.

CLINICAL PRESENTATION

A 29-year-old male, who was normally fit and well, presented to the emergency department following a fall playing football. The patient had stood on the ball, with the ball rolling under his weight and twisting his knee.

On examination, there was a prominence over the lateral aspect of the proximal left leg. He was exquisitely tender over the fibular head, with no obvious knee effusion. He was unable to weight bear but was neurovascularly intact, with no features of common peroneal nerve injury. His ankle joint was stable and non-tender, with no suggestion of disruption of the distal tibiofibular joint.

Plain radiographs of the knee were suggestive of proximal tibiofibular dislocation, with no overlap of the fibula and tibia on the anteroposterior (AP) film (Figure 1), and anterior displacement of the fibular head on the lateral film (Figure 2). Radiographs of the ankle confirmed no distal tibiofibular injury.

MRI of the knee was undertaken to confirm the diagnosis and exclude ligamentous injury; this confirmed anterolateral tibiofibular dislocation (Figures 3 and 4).

It also permitted us to further assess the common peroneal nerve, which can be injured in posterior fibular dislocation. The report notes:

The proximal fibula is dislocated anterolaterally from its usual position, with extensive high signal around the tibiofibular ligament.
There is diffuse high signal around the lateral collateral ligament with no significant disruption of the ligament itself. Popliteus is intact. No injury to the common peroneal nerve is seen.
No fracture or tendon injury is demonstrated, and the remainder of the internal structures of the knee appear normal.1

The patient was taken to the operation theatre for closed reduction under general anaesthesia, with the reduction visualized under the image intensifier (Figure 5), confirming a satisfactory outcome. The patient was discharged in an above-knee backslab for 2 weeks, non-weight bearing. Weight-bearing ability would be expected to improve significantly after this point.

DISCUSSION

The proximal tibiofibular joint is a synovial joint that consists of the lateral tibial condyle and the fibular head. They articulate within a fibrous capsule and are supported by anteroserior and posteroserior tibiofibular ligaments.1

Proximal tibiofibular dislocation (PTFD) is a condition first recognized and reported by Nelation2 in 1874 and has continued to be an uncommon condition for which the clinician should have a high index of suspicion. It can
happen in isolation or in the context of a patient with multiple injuries.

A recent review\(^3\) notes that PTFD occurs in 1–2% of tibial shaft/plateau fractures, and is a marker of severe lower limb trauma. 31 cases of isolated PTFD have been published since 1974,\(^4,5\) which have occurred following a wide range of mechanisms,\(^6,7\) ranging from football\(^8\) to long jump,\(^9\) falling from a height\(^10\) to snowboarding.\(^11\) The injury occurs in flexion when anatomically the lateral collateral ligamentous support is removed. Rockwood and Green’s fractures in adults\(^12\) notes that isolated injuries, as in the case of our patient, usually arise from sporting injuries caused by exaggerated twisting.

Four recognized patterns of injury to this joint have been noted.\(^13,14\) The least severe is subluxation, and there are three directions of dislocation (anterolateral, superior and posteromedial).

Figure 1. Anteroposterior radiograph of the patient’s left knee showing lateral tibiofibular dislocation. The arrow highlights the lack of tibiofibular overlap. “Red dot” indicates an abnormality identified by the radiographer.

Figure 2. Lateral radiograph of the patient’s left knee showing anterior tibiofibular dislocation. The arrow indicates the direction of dislocation in this view.

Figure 3. Coronal proton density fat saturation MRI [repetition time (TR) = 4500/echo time (TE) = 32.18] of the left knee showing high signal around the tibiofibular ligament complex (thin arrow) and lateral translation of the fibular head (thick arrow).

Figure 4. Axial proton density fat saturation MRI [repetition time (TR) = 3480/echo time (TE) = 31.87] of the left knee showing high signal around the tibiofibular ligament complex (thin arrow) and anterolateral translation of the fibular head (thick arrow).
Ogden13 also noted two different anatomical joint structures (oblique or horizontal, Figure 6), with the oblique variant having less articular surface area.

Imaging is usually diagnostic on plain radiographs, and this can be made easier by appropriate patient positioning and imaging both knees to facilitate comparison. Diagnostic yield is 72\% on plain radiographs and improves to 82\% with control images to compare with.15

Radiographic findings in PTFD are shown in Figures 7 and 8. In this case, PTFD is suggested by lateral translation of the fibular head in relation to the tibia on what remains an AP radiograph of the knee.

Adequate plain radiograph imaging for this condition is as follows:

- AP radiograph—adequate exposure, patella centralized over the femoral condyles, with the beam centred 2 cm below the apex of the patella and at 90° to the long axis of the tibia.16
- Lateral radiograph—adequate exposure, patella projected clear of the femur, femoral condyles congruous and the proximal tibiofibular joint should not be visible.16
- Contralateral knee radiographs to permit comparison.

Should that not be possible, axial imaging is usually diagnostic in the form of CT scan or MRI. This can be particularly useful in cases of subtle patellofemoral joint dislocation.13,17

Management is with closed reduction, which should be completed in flexion, with force applied in the direction opposite to that of the dislocation of the fibular head. Should this not be possible, open reduction is required, although this is uncommon.
Complications of the injury include nerve injury, recurrence and secondary arthritis. Arthritis is rare owing to the relative stability of the joint. Recurrence can occur and would be one of the indications for considering surgical management. Another clear indication is the inability to perform a closed reduction. Operative management could include Kirschner wire fixation, joint fusion or proximal fibular excision. Nerve injury is seen most commonly with posteromedial fibular dislocations and should encourage prompt reduction to minimize long-term peroneal nerve palsy. Should the neurological symptoms not settle following reduction, urgent peroneal nerve exploration should be performed.

LEARNING POINTS

1. Tibiofibular dislocation is a recognized injury that usually happens in conjunction with major limb injuries.

CONSENT

Written informed consent was obtained from the patient for publication of this case report, including accompanying images.

REFERENCES

1. Forster BB, Lee JS, Kelly S, O’Dowd M, Munk PL, Andrews G, et al. Proximal tibiofibular joint: an often-forgotten cause of lateral knee pain. AJR Am J Roentgenol 2007; 188: W359–66. doi: http://dx.doi.org/10.2214/AJR.06.0627
2. Nelation A. Elements of Surgical Pathology. [In French]; 2nd edn. Paris, France: Librairie Germer Balliere; 1874. 282.
3. Herzog GA, Serrano-Riera R, Sagi HC. Traumatic proximal tibiofibular dislocation: a marker of severely traumatized extremities. J Orthop Trauma 2015; 29: 456–9. doi: http://dx.doi.org/10.1097/BOT.0000000000000348
4. Nieuwe Weme RA, Somford MP, Schepers T. Proximal tibiofibular dislocation: a case report and review of literature. Strategies Trauma Limb Reconst 2014; 9: 185–9. doi: http://dx.doi.org/10.1007/s11751-014-0209-8
5. Ashraf MO, Jones HM, Kanvinde R. Acute traumatic fracture dislocation of proximal tibiofibular joint: case report and literature review. Injury 2015; 46: 1400–2. doi: http://dx.doi.org/10.1016/j.injury.2015.01.026
6. Burke NG, Robinson E, Thompson NW. An isolated proximal tibiofibular joint dislocation in a young male playing soccer: a case report. Cases J 2009; 2: 7261. doi: http://dx.doi.org/10.4076/1757-1626-2-7261
7. MacGiboin S, Quinlan JF, O’Malley N, Brophy D, Quinlan WR. Isolated proximal tibiofibular joint dislocation in an elite rugby union player. Br J Sports Med 2008; 42: 306–7. doi: http://dx.doi.org/10.1136/bjsm.2007.043638
8. O’Rourke S, McManus F. Dislocation of the proximal tibiofibular joint—a soccer injury? Ir J Med Sci 1982; 151: 53–4. doi: http://dx.doi.org/10.1007/BF02940145
9. Laing AJ, Lenenhan B, Ali A, Prasad CV. Isolated dislocation of the proximal tibiofibular joint in a long jumper. Br J Sports Med 2003; 37: 366–7. doi: http://dx.doi.org/10.1136/bjsm.37.4.366
10. Aladin A, Lam KS, Szypryt EP. The importance of early diagnosis in the management of proximal tibiofibular dislocation: a 9- and 5-year follow-up of a bilateral case. Knee 2002; 9: 233–6. doi: http://dx.doi.org/10.1016/S0968-0160(02)00012-1
11. Ellis C. A case of isolated proximal tibiofibular joint dislocation while snowboarding. Emerg Med J 2003; 20: 563–4. doi: http://dx.doi.org/10.1136/emj.20.6.563
12. Heckman JD, Kasser JK. Rockwood and Green’s fractures in adults. 5th edn.
13. Ogden JA. Subluxation and dislocation of the proximal tibiofibular joint. J Bone Joint Surg Am 1974; 56: 145–54.
14. Sekiya JK, Kuhn JE. Instability of the proximal tibiofibular joint. J Am Acad Orthop Surg 2003; 11: 120–8.
15. Keogh P, Masterson E, Murphy B, McCoy CT, Gibney RG, Kelly E. The role of radiography and computed tomography in the diagnosis of acute dislocation of the proximal tibiofibular joint. Br J Radiol 1993; 66: 108–11. doi: http://dx.doi.org/10.1259/0007-1285-66-782-108
16. Whitley AS, Sloane C, Hoadley G, Moore AD, Alsop CW. Clark’s positioning radiography. 12th edn. Boca Raton, FL: CRC Press; 2005.
17. Voglino J, Denton J. Acute traumatic proximal tibiofibular dislocation confirmed by computer tomography. Orthopaedics 1999; 22: 255–8.
18. Robinson Y, Reinke M, Heyde CE, Ertel W, Oberholzer A. Traumatic proximal tibiofibular joint dislocation treated by open reduction and temporary fixation: a case report. Knee Surg Sports Traumatol Arthrosc 2007; 15: 199–201. doi: http://dx.doi.org/10.1007/s00167-006-0147-1

Bucholz RW, Beatty JH, eds. Philadelphia, PA: Lippincott Williams and Wilkins; 2001.

BJR Case Rep:2:20150372