Risk Factors of **Leptospirosis** in Khuzestan, South West of Iran, 2012

Leila Alavi ¹, Seyed Mohammad Alavi ²*, Mohammad Mehdi Khoshkho ³

¹Department of Food and Drug, Jundishapur University of Medical Sciences, Ahvaz, IR Iran
²Health Research Institute, Jundishapur Infectious and Tropical Diseases Research Center, Jundishapur University of Medical Sciences, Ahvaz, IR Iran
³Infectious Diseases Department, Razi Hospital, Medical College, Jundishapur University of Medical Sciences, Ahvaz, IR Iran

*Corresponding author: Seyed Mohammad Alavi, Health Research Institute, Jundishapur Infectious and Tropical Diseases Research Center, Jundishapur University of Medical Sciences, Ahvaz, IR Iran. Tel: +98-681-387724, E-mail: alavi.seyedmohammad@yahoo.com; alavi-sm@jums.ac.ir

Background: Leptospirosis as a common zoonotic disease is the widest spread infection worldwide. Human is infected via direct contact with infected animals or through exposure to drinking contaminated water infected by animal urine.

Objectives: The aim of this study was to identify risk factors for *leptospira* infection in Khuzestan which is expected to be an endemic area for this infection.

Patients and Methods: As part of an investigation on rural area in Khuzestan, this comparative study was conducted in the region. Sixty five cases, which were positive for IgM anti-*leptospira* antibodies, and 215 controls that were negative for IgM antibodies included in the study. A questionnaire including variables related to *leptospira* exposure was administered. SPSS-16 using Chi square and Fisher exact test were used to compare data. Differences with P-values less than 0.05 were considered as significant. The 95% confidence interval (CI) for the odds ratios (OR) were calculated.

Results: Occupation in rice farm was the most important risk factors (OR: 5.32, 95% CI = 2.71-10.43, P < 0.0001). Other risk factors were as: exposure to rat/rodent in house (OR: 3.53, 95% CI = 1.98-6.29, P < 0.0001), swimming in river or brooks (OR: 4.02, 95% CI = 2.21-7.47, P < 0.0001) and keeping cattle in house (OR: 11.53, 95% CI = 3.50-37.97, P < 0.0001).

Conclusions: The main risk factors for this infection in Khuzestan are rice farming and keeping animals (such as cattle) as well as contact to rodents in houses. Another frequent risk factor was swimming in river or brooks.

Keywords: Leptospirosis; Risk Factor; Case-Control Study

1. **Background**

Leptospirosis as a common zoonotic disease is the most wide spread infection worldwide. Humans most commonly become infected through occupational, recreational, or animal contact with the urine of carrier animals, either directly or indirectly by contaminated water or wet soil (1). Human *leptospirosis* has been reported in Northern area of Iran; Guilan and Mazandaran (2, 3). Wide spread of animal *leptospirosis* is observed in most area of Iran (3, 4). Clinical spectrum of *leptospirosis* is broad ranging from subclinical to severe fatal illness, but the most frequent initial clinical presentation is fever, head ache and myalgia (5-8). Leptospirosis outbreaks have been reported following swimming in and drinking contaminated water. Although, skin barrier is the classically acknowledged route of transmission; however, previous studies have described that ingestion of contaminated water should be considered as an important risk factor for illness. Previous studies have also found that ingestion of *leptospira* contaminated water and food was associated with disease (5, 6).

Certain occupational groups, including veterinarians, butchers, shepherds, rice-farmers, fishermen, sugarcane workers, sewer workers, and military personnel, are considered to be at increased risk of *leptospirosis* (1, 9). Leptospirosis as an emerged infectious disease is considered as an important public health problem worldwide (10). Some people of Iranian urbanities are accustomed to on weekends to travel to villages where there is a risk of exposure to infection. Although, in reported studies some risk factors for *leptospirosis* is described, but these factors varies in different geographic area and socioeconomic status (11-13).

Most *leptospirosis* cases are diagnosed by serology. The reference standard assay is the microscopic agglutination test (MAT), but in limited resource area due to diagnostic capacity of laboratories, other serological test measuring anti *leptospira* – IgM antibodies are used to detect recent or current *leptospirosis* (2, 14-16). Cross reaction IgM-antibody may be associated with other spirochetes organisms and autoimmune diseases (5).

2. **Objectives**

There are few and limited studies on leptospirosis, but no reports on risk factors for this infection in Iran (2, 4).
To identify potentially risks factors for leptospirosis in rural area in Iran, We conducted this study. The study was conducted in Khuzestan Province, a province in the southwestern region, which is suspected to have latent epidemic of leptospirosis. The finding of this study enables local health authorities to plan disease prevention and control.

3. Patients and Methods

In a cross-sectional study from December 2012 to February 2012, two hundred and eighty person in rural area of Khuzestan in South west Iran were studied. Rural inhabitants in rice farming areas in south, north and mid zone of the province; Shadegan, Baghmalek and Ahvaz, respectively were randomly selected for this study using detailed maps of the cities in Khuzestan Health Center. A standardized questionnaire that included variables related to leptospira exposure were administered at each participant. Required data collected by this questionnaire included socioeconomic status, sanitation system, water source, food source, animals, rats or rodents contact. In addition, demographic information, occupational and environmental exposure was included. Sample size was calculated according to statistics formula based on prevalence in previous studies.

Blood samples were collected by trained lab personnel during the interview. Collected blood specimens were frozen at -2°C until testing. The samples were tested for anti-leptospira IgM antibodies using an IgM anti-leptospira enzyme-linked immunosorbent assay. The kit used was Serion ELISA classic ESR 125M (D-97076 Wurzburg, Germany, 2012). To standardize the tests, first all associated IgM antibodies against other spirochetes as well as rheumatoid factors (RF) were removed by washing and adding buffering protein in the test field, and then anti Leptospira – IgM antibody was measured. According to the kit’s instructions a test with value of more than 20 IU/mg was considered as positive and interpreted as an evidence of recent or current infection. Values 15-20 IU/mg defined as borderline and lower than 15 were negative. Of total 288 samples, 8 samples with borderline results were excluded. Individuals with positive results were considered as cases and those with negative results were considered as controls. Data of cases and controls were statistically compared.

SPSS software system, version 16 was used to derive descriptive statistics and in subsequent multivariable analyses. Chi square and Fisher exact test were used to compare data in both groups. Differences with P values less than 0.05 were considered as significant. The 95% confidence interval (CI) for the odds ratios (OR) were calculated.

4. Results

Two hundred and eighty persons including 160 male with mean age of 43.7 ± 21.2 years and 120 female with mean age of 41.9 ± 22.7 years were enrolled.

Demographic characteristics including sex and age groups among cases and controls are shown in Table 1. Gender was not significantly associated with infection (P = 0.06), although infected men were more than women. The infection rate among male was higher than males (66.2% vs.54.3%). Age was significantly associated with infection (P = 0.006). Persons aged above 35 years were more infected than those below 35 years.

Household facility such as having radio, television, refrigerator that reflects socioeconomic status, sanitary facility such as water source, household animal ownership (e.g. horse, cow, sheep) and rodent exposure (rodents/rats in house) that are leptospira exposure related data are shown in Table 2. There were significant differences between case and control (P < 0.05).

Occupation in rice farm was the main risk factors (OR: 5.32, 95% CI = 2.71-10.43, P < 0.0001). Other risk factors were as: exposure to rat/rodent in house (OR: 3.53, 95% CI 1.98-6.29, P < 0.0001), swimming in river or brooks (OR: 4.02, 95% CI 2.21-7.47, P < 0.0001), keeping domestic cow or horse/donkey (OR: 11.53, 95% CI 3.50-37.97, P < 0.0001).

Individual activities such as taking bath, gathering water of river or brook, washing clothes and travel out of community in both groups were similar. Outdoor activities of studied persons such as occupation, swimming and walking are shown in Table 3.

5. Discussion

In this study, 22.5% of rural community in this region was community in the region was seropositive for leptospirosis. Rural inhabitants due to their life style and jobs are in direct and indirect contact by animals and rats or rodents. In the present study by comparative analysis of data of seropositive and sero-negative individuals, we found that rice-farm occupation was an important risk factor in rural area. Rice farmers due to light touch bare feet with contaminated water are at higher risk of exposure to the infectious agent. Contact with rodents, domestic animals and rat in rural houses were also shown to be an important risk factor for the farmers as well as other village inhabitants. House of Iranian villagers because of keeping animals such as cattle, sheep, and dog in addition to stocked farm crops such as rice or wheat is a good place for rodent/rat entrance, therefore peoples in rural community at home are also exposed with a leptospirosis source. Another risk factor was swimming in water sources such as rivers, lakes or brooks in the villages or in neighboring area. Our findings is in consistent with other studies, contact with rodents and rats, exposure to the water of rivers and streams with high probability of contamination with urine of rodents/rat or other animals and working with bare feet in farms are considered as the main risk factors for leptospirosis (10-12, 17-19).
Table 1. Demographic Characteristics Among Seropositive (Case) and Seronegative (Control) Persons

Variables	Cases (n = 65) IgM+; No. (%)	Controls (n = 215) IgM-; No. (%)	OR (95%CI)	P-value
Sex				
Male	43 (66.2)	117 (54.3)	1.64 (0.92-2.92)	0.06
Female	22 (33.8)	98 (45.7)		
Age, (y)				
<15	0 (0.0)	2 (0.9)	2.24 (1.21-4.14)	0.006
15-35	17 (26.2)	93 (43.3)		
>35	48 (73.8)	120 (55.8)		

*a Abbreviations: OR: Odds ratio (95% confidence interval), --: Not applicable

*b Statistically significant (P< 0.05), OR: Odds ratio (95% confidence interval)

Table 2. Household Factors of Health Facilities, Socioeconomics, Animal Contacts and rat or Rodents in Houses Among Seropositive (case) and Seronegative (control) Persons

Variables	Cases (n = 65) IgM+; No. (%)	Controls (n = 215) IgM-; No. (%)	OR (95%CI)	P-value
Health center access	61 (96.9)	213 (99.1)	--	0.23
Safe drinking water	49 (75.4)	182 (84.7)	0.56 (0.28-1.09)	0.06
Sanitary latrine	41 (63.1)	196 (91.2)	0.17 (0.08-0.31)	< 0.0001
Fair socio economic	45 (69.2)	193 (89.8)	0.26 (0.13-0.51)	0.0001
Animal contact	62 (95.4)	138 (64.2)	11.53 (3.50-37.97)	< 0.0001
Rat/rodent in house	40 (61.5)	67 (31.2)	3.53 (1.98-6.29)	< 0.0001

*a Statistically significant (P< 0.05)

Table 3. Outdoor Activities Among Seropositive (case) and Seronegative (control) Persons

Variables	Cases (n = 65) IgM+; No. (%)	Controls (n = 215) IgM-; No. (%)	OR (95%CI)	P-value
Occupation				
Farmers	52 (80)	92 (42.8)	5.32 (2.71-10.43)	< 0.0001
Shepherds	3 (4.6)	11 (5.1)	0.89 (0.19-3.52)	0.58
Sugar cane	14 (21.5)	39 (18.1)	1.21 (0.56-2.44)	0.32
Habitual				
Swimming in river	28 (43.1)	34 (15.8)	4.02 (2.21-7.47)	< 0.0001
Bare foot walking	17 (26.1)	54 (25.1)	1.09 (0.62-1.99)	0.49
Cloth washing	20 (30.7)	73 (33.9)	0.92 (0.41-1.51)	0.37

In the present study although, low socioeconomic and low level of sanitary latrine were more observed in infected case than in non-infected person, however, unfavorable economic situation and lack of sanitary latrine cannot be considered as independent risk factor for infection. These factors seem to be indicators of low income and life habits in farm workers. In this study gender and age were not considered as independent risk factors. Although males are infected more than females, but, this effect is not statistically significant. The mean age of both groups was not significantly different, but those older than 35 years were the most affected. It is a fact in most of villages in the region usually young people is not interested to work in villages and towns, so they prefer to stay in the big city to work. Our results are in agreement with the results of some reports from Guilan and Shahrekord in Iran (2, 3, 20) and Bangladesh (21), but are different with some other reports in the world (5, 10, 12, 13). The reason for these differences is attributed to difference in socioeconomic, life style, religious behavior, female involvement in occupational activities and geographical variations.

The study was limited by serological diagnosis which may mimic recent infection from previous infection. As mentioned in methodology section isolation of *Leptospira* by urine or blood culture because of long time duration and technical limitation on diagnostic capacity in the region was not done in this study, in addition results of serological diagnosis are acceptable for study purposes.

In conclusion, the most important risk factors for this
infection are rice farming, keeping animals (such as cattle, sheep, and dog as well as contact to rodent) in houses. Other risk factors were swimming in river or brooks.

Acknowledgements
This article is derived out of Infectious Disease resident’s thesis (no: OG-91115). We thank Research Deputy and Ethics Committee of Medical College for review and approval the project.

Authors’ Contribution
All authors have participated equally in this study.

Funding/Support
This study is funded by Infectious and Tropical Research Center of Jundishapur University of Medical Sciences.

Financial Disclosure
There is no conflict of interest.

References
1. Adler B, de la Pena Mocetzuma A. Leptospirosis and leptospirosis. Vet Microbiol. 2010;140(3-4):287-96.
2. Mansour-Ghanaei F, Sarshad A, Fallah MS, Pourhabibi A, Pourhabibi K, Yousefi-Mashhoor M. Leptospirosis in Guilan, a northern province of Iran: assessment of the clinical presentation of 74 cases. Med Sci Monit. 2005;11(5):CR229-232.
3. Huseini Taghavi SA, Nabavi M, Rezvani SM, Amini R. Serological study for measuring rate of leptospirosis in patients who encountered “Shaltook Fever”. Acta Medica Iranica. 2006;44(2):131-134.
4. Ebrahim A, Nasr Z, Kojouri Gha. Seroinvestigation of bovine leptospirosis in Shahrekord district, central Iran. Iranian J Vet Res. 2004;5(2):210-13.
5. Levet PN, Haake DA. Leptospirosis species (Leptospirosis). 7 ed. Mandell GL, Bennett JE, Dolin R editors. Philadelphia: Churchill Livingstone; 2010.
6. Centers for Disease Control. Outbreak of leptospirosis among white-water rafters-Costa Rica, 1996. MMWR Morb Mortal Wkly Rep. 1997;46(25):577-9.
7. Esen S, Sunbul M, Leblebioglu H, Ergülü C, Turan D. Impact of clinical and laboratory findings on prognosis in leptospirosis. Swiss Med Wkly. 2004;134(21-24):347-52.
8. Levett PN. Leptospirosis. 9 ed. Murray PR, Barson EJ, Jorgensen JH editors. Washington, DC: American Society for Microbiology Press; 2007.
9. World Health Organization. Leptospirosis worldwide. Wkly Epidemiol Rec. 1999;74(29):237-42.
10. Tangkanakul W, Smitis HL, Jatanasen S, Ashford DA. Leptospirosis: an emerging health problem in Thailand. Southeast Asian J Trop Med Public Health. 2005;36(2):241-8.
11. Ashford DA, Keiser RM, Spiegel RA, Perkins BA, Weyant RS. Asymptomatic infection and risk factors for Leptospirosis in Nicaragua. Am J Trop Med Hyg. 2000;63(5):249-254.
12. Sarkar U, Nascimento SF, Barbosa R, Martins H, Nalofnos L, et al. Population-based case-control investigation of risk factors for leptospirosis during an urban epidemic. Am J Trop Med Hyg. 2002;66(5):605-10.
13. Bovet P, Yersin C, Merien F, Davis C E, Perolat P. Factors associated with clinical leptospirosis: a population-based case-control study in the Seychelles (Indian Ocean). Int J Epidemiol. 1999;28(3):583-590.
14. Bajani MD, Ashford DA, Bragg SL, Woods CW, Aye T, Spiegel RA, et al. Evaluation of four commercially available rapid serologic tests for diagnosis of leptospirosis. J Clin Microbiol. 2003;41(2):303-9.
15. Levet PN, Branch SL. Evaluation of two enzyme-linked immunosorbent assay methods for detection of immunoglobulin M antibodies in acute leptospirosis. Am J Trop Med Hyg. 2002;66(6):745-8.
16. Blacksell SD, Smythe L, Phetsouvanh R, Dohnt M, Hartskeerl R, Symonds M, et al. Limited diagnostic capacities of two commercial assays for the detection of Leptospira immunoglobulin M antibodies in Laos. Clin Vaccine Immunol. 2006;13(10):1166-9.
17. Tangkanakul W, Thermaphornpil P, Plilkaytis BD, Bragg S, Poonsukombat D, Choomkasien P, et al. Risk factors associated with leptospirosis in northeastern Thailand, 1998. Am J Trop Med Hyg. 2000;63(3-4):204-8.
18. Levet PN. Usefulness of serologic analysis as a predictor of the infecting serovar in patients with severe leptospirosis. Clin Infect Dis. 2003;36(4):447-52.
19. Sejvar J, Bancroft E, Wrinthrop K, Bettinger J, Bajani M, Bragg S, et al. Leptospirosis in “Eco-Challenge” athletes, Malaysian Borneo, 2000. Emerg Infect Dis. 2001;7(9):702-7.
20. Rahimi F, Yousefi Vand J, Moradi Bidhendi S, Bouzar M. Leptospirosis in the rural areas of Guilan province (2004-2005). J Kerman University Med Sci. 2007;11(2):175-179.
21. Morshed MG, Komish H, Terada Y, Arimitsu Y, Nakazawa T. Seroreivalence of leptospirosis in a rural flood prone district of Bangladesh. Epidemiol Infect. 1994;112:527-531.