INTRODUCTION

The opportunistic human pathogen Acinetobacter baumannii is a steadily rising threat in healthcare facilities worldwide, emphasized once more in 2017 by the WHO, which set carbapenem-resistant A. baumannii on top of their priority list for pathogens for which research and development of new antibiotics is urgently needed (World Health Organization, 2017). The emergence of A. baumannii as an important nosocomial pathogen is multifactorial. Its metabolic versatility and resistances to various environmental stresses not only allow this pathogen to survive for extended periods in hospital settings, but in concert with a number of true virulence factors, afford the bacterium the ability to adapt to and successfully infect the host (Antunes, Imperi, Carattoli, & Visca, 2011; Dijkshoorn, Nemec, & Seifert, 2007; Roca, Espinal, Vila-Farrés, & Vila, 2012; Weber, Harding, & Feldman, 2016). In particular, remarkable is the high desiccation resistance which is unusual for a Gram-negative bacterium as survival on dry, inanimate surfaces for months or even years has been reported (Antunes et al., 2011; Jawad, Heritage, Snelling, Gascoyne-Binzi, & Hawkey, 1996; Jawad, Seifert, Snelling, Heritage, & Hawkey, 1998; Wendt, Dietze, Dietz, & Ruden, 1997). This promotes persistence and spread in healthcare facilities. It has been reported that A. baumannii can not only persist for weeks on various parts of the human body (Dijkshoorn, van Vianen, Degener,
TABLE 1 Bacterial strains used

Strain	Reference
Escherichia coli DH5x	Invitrogen™, USA
Bacillus subtilis JH642	BGSC, USA
Micrococcus luteus	DSMZ, Germany
Acinetobacter baumannii ATCC 19606Δ	ATCC, USA
Acinetobacter baumannii ATCC 19606ΔotsB	Zeidler et al. (2017)
E. coli DH5x with pBISSKSacB/kanR_mtlD-updown	Zeidler et al. (2018)
Acinetobacter baumannii ATCC 19606ΔΔmtlD-otsB	This study

Note. BGSC: Bacillus Genetic Stock Center; DSMZ: Deutsche Sammlung von Mikroorganismen und Zellkulturen; ATCC: American Type Culture Collection.

& Michel, 1987), but it has also also been isolated from various places in hospitals during outbreaks, for example from furniture, door knobs, or equipment (van den Broek et al., 2006) and can survive in desiccated infant formula for 2 years (Juma, Manning, & Forsythe, 2016).

To date, few factors contributing to this extraordinary desiccation resistance are known. Besides the fact that biofilm forming strains survive longer on dry surfaces (Chiang et al., 2017; Espinal, Marti, & Vila, 2012; Orsingher-Jacobsons et al., 2013), RecA (a protein involved in DNA repair) (Aranda et al., 2011) as well as the acylation of lipid A (Boll et al., 2015) have been reported to be involved in desiccation resistance. A proteomics study performed by Gayoso et al. (2014) revealed mainly general features associated with desiccation resistance, such as the downregulation of genes involved in transcription, translation, and cell division, and the upregulation of genes for efflux pumps and antimicrobial resistance. Combined with observed changes in membrane composition, the authors propose a so-called “bust-and-boom” strategy.

In the present study, we aimed to investigate a possible role of compatible solutes in desiccation resistance of A. baumannii. Compatible solutes are small, organic molecules which can be accumulated in the cell in up to molar concentrations without interfering with the central metabolism (Kempf & Bremer, 1998; Roeßler & Müller, 2001). They not only provide protection from osmotic stress by counterbalancing the osmolarity, but also by stabilizing membranes and proteins. Due to these stabilizing properties, compatible solutes can protect from many other environmental stresses, including desiccation. Besides that, the beginning of drought stress is usually accompanied by an additional osmotic stress, as the concentration of soluble substances increases when the liquid evaporates (Potts, 1994). Indeed, transcriptomic analyses under desiccation conditions in several bacteria, for example Anabaena, Rhodococcus, or Salmonella, revealed the upregulation of genes involved in biosynthesis or transport of compatible solutes (Katoh, Asthana, & Ohmori, 2004; Leblanc, Gonçalves, & Mohn, 2008; Li, Bhaskara, Megalis, & Tortorello, 2012). In other organisms such as the cyanobacterium Nostoc or E. coli, the compatible solute trehalose is accumulated in response to drought stress (Sakamoto et al., 2009; Zhang & Yan, 2012).

In response to salt stress, A. baumannii accumulates glutamate, mannitol, and trehalose or, if present, takes up glycine betaine from the environment (Zeidler et al., 2017), but so far nothing is known about a possible involvement of these solutes in desiccation tolerance. In particular, trehalose is a very potent protector against desiccation used, amongst others, by anhydrobiotes (Crowe, Oliver, & Tablin, 2002), and the unusual solute mannitol, which is a radical scavenger, could be involved in protection against oxidative stress that occurs upon rehydration (Efuuwewere, Gorris, Smid, & Kets, 1999). Herein, we have addressed the role of compatible solutes in desiccation resistance of A. baumannii.

2 MATERIALS AND METHODS

2.1 Bacterial strains and culture conditions

All bacterial strains used in this study are given in Table 1. Acinetobacter baumannii strain ATCC 19606Δ, Escherichia coli DH5α, and Bacillus subtilis JH642 were grown at 37°C and 130 rpm, while growth conditions for Micrococcus luteus were 30°C and 130 rpm. Growth media were Luria Bertani broth (LB) (Bertani, 1951) or a mineral medium consisting of different mineral salts (1 g/L NH₄Cl, 580 mg/L MgSO₄ × 7 H₂O, 100 mg/L KNO₃, 67 mg/L CaCl₂ × 2 H₂O, 2 mg/L (NH₄)₂MoO₄ × 2 H₂O, 1 ml of the trace element solution SL9 (12.8 g/L nitrilotriacetic acid (titriplex), 2 g/L FeSO₄ × 7 H₂O, 190 mg/L CoCl₂ × 6 H₂O, 122 mg/L MnCl₂ × 4 H₂O, 70 mg/L ZnCl₂, 36 mg/L Na₂MoO₄ × 2 H₂O, 24 mg/L NiCl₂ × 6 H₂O, 6 mg/L H₂BO₃, 2 mg/L CuCl₂ × 2 H₂O, modified after Tschech and Pfennig (1984)), 20 mM sodium succinate as a carbon source, and 50 mM phosphate buffer. Stock solutions of all components were autoclaved separately. For growth under osmotic stress conditions, NaCl was added to the medium in the concentrations indicated (200–500 mM). Growth rates were determined using the "exponential growth equation" analysis of GraphPad Prism for the exponential growth phase.

2.2 Desiccation assays

Bacteria were grown in 5 ml cultures overnight and harvested in stationary phase, unless stated otherwise. 1 ml was harvested and washed twice in the same volume of H₂O, with the addition of salt or compatible solutes where indicated. The same liquid was used to adjust the sample to an OD₆₀₀ of 2.0 ± 0.1, which corresponds to 1.2 × 10⁷–3.2 × 10⁹ colony forming units (CFU) per ml. Aliquots of 20 μl of sample were applied to small polycarbonate filters (Nuclepore Track-Etch Membrane, 13 mm, 0.4 μm), which had been sterilized by autoclaving. Where indicated, saline (0.9% NaCl), 200 mM NaCl, or 10 mM of different compatible solutes were used for washing and resuspending instead of H₂O. The membrane filters were put in petri dishes and incubated with slightly opened lids in a climate chamber,
to ensure controlled drying conditions. After defined periods at 22°C and 31% relative humidity (RH), two membrane filters were analyzed for each time point (technical duplicates). Each filter was put in a 15-ml falcon tube containing 1 ml of sterile saline and vortexed vigorously for 30 s. Vortexing was repeated after a 30 min incubation at 37°C and 300 rpm to remove all bacteria from the filter. Appropriate dilutions were prepared in saline and 100 μl thereof plated on LB agar plates, which were then incubated at 37°C. When the remaining number of viable cells was very low, the suspension was centrifuged and the whole sample was plated in a smaller volume. Colonies were enumerated after ca. 1 day to determine the CFU per filter. Longer incubation times did not increase the number of colonies. Percent survival was determined in relation to the initial CFU value (time point 0 before incubation of the membrane filters).

To test for statistical significance, unpaired t tests were performed at defined time points. P-values were calculated using the software GraphPad Prism. Statistical significance was assigned when p < 0.05.

2.3 | Markerless mutagenesis

A double deletion mutant of the genes mtlD (HMPREF0010_00722, encoding a mannitol dehydrogenase) and otsB (HMPREF0010_01306, encoding a trehalose-phosphate-phosphatase) in A. baumannii ATCC 19606^T was created. A markerless ΔotsB mutant described before (Zeidler et al., 2017) was used to additionally delete mtlD. This was done by double homologous recombination as described by Zeidler et al. (2018) using the plasmid pBIISK_sacB/kanR_mtlD-updown and the primers listed there, leading to the mutant strain A. baumannii ATCC 19606ΔmtlD-otsB. Deletion of mtlD was confirmed by sequencing of the PCR product obtained with the primers mtlD_ctr_up and mtlD_ctr_down.

2.4 | Extraction and quantification of solutes

Mannitol, trehalose, and glutamate were extracted from cells and quantified as described earlier (Zeidler et al., 2017). Briefly, bacteria were harvested in late exponential growth phase and lyophilized, followed by extraction of intracellular solutes with methanol and chloroform by a modified Bligh-and-Dyer method (Bligh & Dyer, 1959; Galinski & Herzog, 1990). Mannitol was determined via HPLC using a ligand exchange column (HyperREZ XP Carbohydrate Ca2+, Thermo Scientific) and a refractive index detector. The enzymatic test kits K-TREH and K-GLUT (Megazyme, Bray, Ireland) were used for quantification of trehalose and glutamate, respectively. For the protein content of freeze-dried cells, the mean value obtained by Zeidler et al. (2017) was applied.

3 | RESULTS

3.1 | Establishment of a desiccation assay

In order to establish a desiccation assay suitable to investigate A. baumannii desiccation tolerance, we initially compared the survival of A. baumannii ATCC 19606^T with other bacteria. Bacteria were grown in LB medium overnight and washed before drying to remove all nutrients. In most desiccation assays described in literature, either water or saline is used to resuspend bacteria prior to drying. We decided to use water as was done for example in the study by Jawad et al. (1996) in order not to impose an additional salt stress on the cells. As temperature and humidity significantly influence survival, all desiccation experiments were performed in a climate chamber at 22°C and 31% relative humidity (RH), mimicking potential physiological conditions A. baumannii could encounter when drying on a surface in a hospital. The assays for all bacteria in this study used starting cell suspensions standardized to an OD₆₀₀ of 2.0, which resulted in initial viable cell densities in the range of 1.2 × 10⁷–3.2 × 10⁹ CFU/ml. This corresponded to levels of 2.4 × 10⁵–6.4 × 10⁷ CFU per membrane filter. The different bacteria tested showed a wide range of survival times, proving functionality of the assay. As expected, the spore forming Bacillus subtilis survived longest, followed by the other Gram-positive organism, Micrococcus luteus (Figure 1a). Colonies of M. luteus could be detected after up to 4 months of drying, whereas A. baumannii ATCC 19606^T survived for 1 month (Figure 2), which is considerably longer than the times

FIGURE 1 Desiccation survival of different bacterial species. Overnight cultures of bacteria grown in LB medium were washed and adjusted to OD₆₀₀ 2.0 in H₂O. A 20 μl aliquot of each standardized cell suspension was applied to polycarbonate membrane filters to achieve initial viable cell densities ranging from 2 × 10⁶ to 1.6 × 10⁷ CFU per filter (100%) which were then stored under desiccation (31% RH) at 22°C. Surviving cells were enumerated at designated time points. Gram-positive bacteria: *Bacillus subtilis* JH642 (●), *Micrococcus luteus* (●) (a). Gram-negative bacterium: *E. coli* DH5_x (b). For each experiment, mean values of at least two biological replicates are shown. Error bars represent the standard error of the mean (SEM).
reported for many other Gram-negative organisms. The common
E. coli laboratory strain DH5α displayed high sensitivity to desicca-
tion as viable cells could no longer be detected after only a few hours
(Figure 1b).

3.2 | Desiccation resistance of A. baumannii depending on growth conditions

Many factors can contribute to bacterial desiccation tolerance. To analyze the influence of the growth medium, A. baumannii was
grown in mineral medium instead of LB. This resulted in a slight
decrease in survival rate (Figure 2), which could be due to pro-
tective substances present in LB which can be taken up during
growth. Desiccation resistance was therefore tested after growth
in mineral medium supplemented with 1 mM of the compatible
solute glycine betaine, which is contained in LB, but this did not
increase survival compared to growth in non-supplemented min-
eral medium (data not shown). Another factor influencing bacte-
rial physiology is growth temperature. However, bacteria grown
in mineral medium at room temperature (22°C) did not exhibit
a different desiccation tolerance (data not shown). Although
growth temperature and growth media did not induce appreci-
able changes in the desiccation resistance of A. baumannii, the
growth phase from which bacteria were harvested was found to
significantly (p = 0.036 after 1 day) impact survivability of cells
exposed to desiccation. In comparison with stationary phase cells,
exponential cells of the pathogen proved to be extremely sensi-
tive to the stress. For example, viable stationary phase cells were
still detectable after ca. 3 weeks of drying while nearly no viable
exponential phase cells could be detected after just 1 day of desic-
cation (Figure 2).

3.3 | Desiccation of A. baumannii in the presence of compatible solutes

Trehalose is known as a very potent desiccation protector (Billi
& Potts, 2002; Crowe, Crowe, & Chapman, 1984; Elbein, Pan,
Pastuszak, & Carroll, 2003). To check whether it can increase A. baum-
nannii desiccation resistance, cells grown to stationary phase in
mineral medium were dried in the presence of 10 mM trehalose
(Figure 3). After as little as 6 days of desiccation, cells suspended in
the presence of 10 mM trehalose displayed a clear advantage over
those suspended only in water, as only 0.2% survivors could be de-
tected in the case of the latter while exposure to the solute resulted
in greater than 5% survivors (p = 0.0003). The positive effect of ex-
ogenous trehalose was even more pronounced after longer desicca-
tion times. The rate of decrease for CFUs was significantly slower
compared to that of cells suspended just in water prior to drying
(p = 0.003 after 20 days), as 1% of these cells remained viable after
4 weeks of desiccation.

To analyze whether this effect is specific for trehalose or if all
compatible solutes have a positive effect on desiccation survival, the
experiment was repeated with 10 mM mannitol, glutamate, or glycine
betaine (Figure 4). After 6 days, the survival rates in the presence of
theses solutes were in the range of drying in water, thus lower than
with trehalose. After 13 days, a minimal protective effect could be
observed for glutamate (p = 0.014) but not for mannitol (p > 0.05),
and results for glycine betaine were inconclusive due to inconsis-
tencies in data amongst trials. However, none of these solutes led
to survival rates as high as trehalose. This experiment demonstrated
that not all compatible solutes have a positive effect on desiccation
and that trehalose was the most effective of the tested solutes for
protection of A. baumannii on dry surfaces.

FIGURE 2 Desiccation resistance of Acinetobacter baumannii
ATCC 19606T as affected by growth medium and growth phase.
 Cultures were grown overnight in LB (Δ) or mineral medium (○) or
to mid-log phase (OD 0.45–0.65) in mineral medium (□), and
then washed and adjusted to OD_{600} 2.0 in H_{2}O. A 20 μl aliquot
of each standardized cell suspension was applied to polycarbonate
membrane filters to achieve initial viable cell densities ranging from
4 × 10^{6} to 4.6 × 10^{7} CFU per filter which were then stored under
desiccation (31% RH) at 22°C. For each experiment, mean values
out of at least four biological replicates are shown. Error bars
represent the standard error of the mean (SEM).

FIGURE 3 Effect of trehalose on desiccation of Acinetobacter
baumannii. Overnight cultures of A. baumannii grown in mineral
medium were washed and adjusted to OD_{600} 2.0 in H_{2}O (○) or
in 10 mM trehalose (Δ). A 20 μl aliquot of each standardized cell
suspension was applied to polycarbonate membrane filters to
achieve initial viable cell densities ranging from 4 × 10^{6} to 4.6 × 10^{7}
CFU per filter which were then stored under desiccation (31% RH)
at 22°C. For each experiment, mean values of at least four
biological replicates are shown. Error bars represent the standard
error of the mean (SEM).
3.4 | Salt stress and desiccation resistance of ΔmtlD-otsB

Many bacteria are known to produce compatible solutes in response to drought stress. To elucidate whether intracellularly accumulated solutes are needed for survival of A. baumannii on dry surfaces, we established a deletion mutant defective in the biosynthesis pathways for both mannitol and trehalose. As expected, this mutant did produce glutamate as sole compatible solute during growth at high salinities (200–400 mM NaCl). Up to 0.3 μmol glutamate/mg of protein were accumulated, which is slightly less as determined earlier for the wild type (Zeidler et al., 2017). Growth of the ΔmtlD-otsB double mutant was significantly impaired at high NaCl concentrations, comparable to the ΔmtlD single mutant described in Zeidler et al. (2018) (Figure 6). Without additional NaCl, the growth rate of the mutant was 0.60 ± 0.04 hr⁻¹, which is nearly identical to the wild type (92%) (Zeidler et al., 2017). In the mineral medium supplemented with 200, 300, or 400 mM NaCl, growth rates were 0.50 ± 0.04 hr⁻¹ (86% of the wild type), 0.34 ± 0.08 (67%), and 0.06 ± 0.01 (19%), respectively, and at 500 mM NaCl no growth was observed. The addition of glycine betaine restored growth in the presence of 500 mM NaCl to a level comparable to non-osmotic stress conditions (data not shown).

However, when the mutant was grown in mineral medium and dried in water, survival rates were similar to the wild type (Figure 7), indicating that production of the compatible solutes mannitol and trehalose is not beneficial under these conditions. We hypothesized that the solutes could be required when bacteria were dried in a moderate salt concentration, as evaporation of the water increases the concentration, which might lead to the need for protective solutes as in other bacteria (Beblo-Vranesevic, Galinski, Rachel, Huber, & Rettberg, 2017; Bonaterra, Camps, & Montesinos, 2005; Reina-Bueno et al., 2012; Welsh & Herbert, 1999). Yet, drying in saline instead of water did not affect drying of the wild type nor of the mutant (data not shown). We assumed that the drying time might be too short to effectively induce production and accumulation of solutes. Therefore, in a further experiment both strains were grown in mineral medium containing 200 mM NaCl, a condition inducing accumulation of mannitol and trehalose in A. baumannii, and subsequently dried in the presence of the same salt concentration (Figure 7). Neither wild type nor the double mutant showed altered survival in the presence of salt.

4 | DISCUSSION

Desiccation is one of the most important and severe stress factors that terrestrial bacteria must overcome in order to survive (Ramos ...
Desiccation resistance of Acinetobacter baumannii ΔmtID–otsB. Wild type (○, ●) and the markerless deletion mutant ΔmtID–otsB (△, ◆) were grown overnight in mineral medium and washed and dried in H2O (empty symbols, starting value 6.4 × 10⁶–1.9 × 10⁷ CFU per filter) or grown in mineral medium supplied with 200 mM NaCl (filled symbols, starting value 6.4 × 10⁵–1.9 × 10⁷ CFU per filter). For each experiment, mean values of at least four biological replicates are shown. Error bars represent the standard error of the mean (SEM). To date, only a few studies have investigated the desiccation resistance of Acinetobacter baumannii, and to our knowledge, we are the first to report on the sensitivity of the exponential phase cells of this pathogen to drying. Although this is a newly reported feature for A. baumannii, similar traits have been reported in other bacteria such as Salmonella enterica (Gruzdev, Pinto, & Seladinger, 2012) or Sinorhizobium molloti (Vriezen, de Bruijn, & Nüsslein, 2006). This can be attributed to the fact that stationary phase cells in general are more stress resistant (Kolter, Siegle, & Tormo, 1993). Stationary phase cells of A. baumannii have increased resistance against oxidative stress and it has been shown that various proteins involved in stress protection are upregulated (Soares et al., 2010). In a study by Jacobs et al. (2012), the transcriptomic analysis of stationary cells of A. baumannii revealed the upregulation of certain genes involved in trehalose biosynthesis, and this was more pronounced in clinical strains. The authors speculated a role for trehalose in desiccation resistance.

To test the hypothesis of an involvement of trehalose or compatible solutes in general in desiccation resistance of A. baumannii, we first analyzed the effect of extracellular solutes. Indeed, trehalose was the only solute which significantly increased survival times. The same has been reported for other bacteria such as E. coli (Louis, Trüper, & Galinski, 1994), Staphylococcus aureus (Chaibenjawong & Foster, 2011), and S. enterica (Gruzdev, Pinto, et al., 2012). In all cases, glycine betaine did not have a positive effect, which is in accordance with our results. The outstanding effect of trehalose on desiccation resistance is attributed to its special chemical properties (Crowe et al., 1984; Elbein et al., 2003; Potts, 2001).

Despite the positive effect of exogenous trehalose on A. baumannii survival, a double mutant lacking biosynthesis genes for trehalose (otsB) and mannitol (mtlD) did not exhibit decreased survival. We assumed that trehalose accumulation could be important for persistence under dry conditions not only because the otsB promoter in A. baumannii is activated under osmotic and temperature stress (Zeidler et al., 2017) and otsB is important for persistence in Galleria mellonella larvae (Gebhardt et al., 2015), but also because endogenous solutes are involved in desiccation tolerance of many organisms, with trehalose playing an outstanding role (Argüelles, 2000; Elbein et al., 2003; Potts, 1994). In S. enterica, the genes for trehalose biosynthesis (otsBA) are upregulated 11-fold during desiccation (Finn et al., 2013). Transcriptomics in Bradyrhizobium japonicum, Anabaena, and Rhodococcus jostii revealed upregulation of biosynthesis pathways of compatible solutes as a common feature (Cytryn et al., 2007; Katoh et al., 2004; Leblanc et al., 2008). Also E. coli produces more trehalose, proline, and glutamine when dried (Zhang & Yan, 2012), and the high desiccation tolerance of C. sakazakii could be attributed to trehalose accumulation (Breeuwer, Lardeau, Peterz, & Joosten, 2003). A mutant strain of Rhizobium etli unable to synthesize trehalose exhibited a lower desiccation survival (Reina-Bueno et al., 2012). However, this was not observed in our studies with A. baumannii.

Taken together, our data clearly show enhanced desiccation survival for cells in stationary phase and a protective role of exogenous trehalose, but do not point toward a connection between
accumulation of trehalose or mannitol and desiccation resistance. Still it should be kept in mind that the exact experimental conditions can influence the results to a great extent (Finn et al., 2013), reflected for example by the fact that Gruzdev, McClelland, et al. (2012) could not detect upregulation of solute transporters in Salmonella, in contrast to others studying the same organism (Finn et al., 2013; Li et al., 2012). Therefore, the fact that a proteomics analysis in A. baumannii did not reveal upregulation of proteins involved in synthesis of compatible solutes (Gayoso et al., 2014) does not definitely exclude a possible connection. Whether the effect of exogenous trehalose is physiologically relevant remains unclear. Just recently the intensified use of trehalose as a food additive has received negative publicity as it is associated with the increasing threat of Clostridium difficile as a nosocomial pathogen (Collins et al., 2018). It is important to know that trehalose in food could help A. baumannii to persist, especially as this pathogen has already been detected in several foods (Dijkshoorn et al., 2007).

ACKNOWLEDGMENTS

This work was funded by the Deutsche Forschungsgemeinschaft through DFG Research Unit FOR 2251.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTION

SZ and VM designed the research, analyzed the data, and wrote the manuscript. SZ performed the experiments. All authors read and approved the final manuscript.

ETHICS STATEMENT

This research did not involve studies with human or animal subjects, materials or data; therefore, no ethics approval is required.

DATA ACCESSIBILITY

All data are included in the main manuscript. Raw data and materials are available on request.

ORCID

Volker Müller http://orcid.org/0000-0001-7955-5508

REFERENCES

Antunes, L. C. S., Imperi, F., Carattoli, A., & Visca, P. (2011). Deciphering the multifactorial nature of Acinetobacter baumannii pathogenicity. PLoS ONE, 6, e22674. https://doi.org/10.1371/journal.pone.0022674
Aranda, J., Bardina, C., Becerro, A., Rumbo, S., Cabral, M. P., Barbé, J., & Bou, G. (2011). Acinetobacter baumannii RecA protein in repair of DNA damage, antimicrobial resistance, general stress response, and virulence. Journal of Bacteriology, 193, 3740–3747. https://doi.org/10.1128/JB.00389-11
Arguelles, J. C. (2000). Physiological roles of trehalose in bacteria and yeasts: A comparative analysis. Archives of Microbiology, 174, 217–224.
Beblo-Vranesivic, K., Galinski, E. A., Rachel, R., Huber, H., & Retterberg, P. (2017). Influence of osmotic stress on desiccation and irradiation tolerance of (hyper)-thermophilic microorganisms. Archives of Microbiology, 199, 17–28. https://doi.org/10.1007/s00203-016-1269-6
Bertani, G. (1951). Studies on lysogeny. 1. The mode of phage liberation by lysogenic Escherichia coli. Journal of Bacteriology, 62, 293–300.
Beuchat, L. R., Komitopoulou, E., Beckers, H., Betts, R. P., Bourdichon, F., Fanning, S., ... ter Kuile, B. H. (2013). Low-water activity foods: increased concern as vehicles of foodborne pathogens. Journal of Food Protection, 76, 150–172. https://doi.org/10.4315/0362-028X.JFP-12-211
Billing, D., & Potts, M. (2002). Life and death of dried prokaryotes. Research in Microbiology, 153, 7–12. https://doi.org/10.1016/S0923-2508(01)01279-7
Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911–917. https://doi.org/10.1139/y59-099
Boll, J. M., Tucker, A. T., Klein, D. R., Beltran, A. M., Brodbelt, J. S., Davies, B. W., & Trent, M. S. (2015). Reinforcing lipid A acylation on the cell surface of Acinetobacter baumannii promotes cationic antimicrobial peptide resistance and desiccation survival. MBio, 6, e00478-15.
Bonaterra, A., Camps, J., & Montesinos, E. (2005). Osmotically induced trehalose and glycine betaine accumulation improves tolerance to desiccation, survival and efficacy of the postharvest biocontrol agent Pantoea agglomerans EPS125. Fems Microbiology Letters, 250, 1–8. https://doi.org/10.1016/j.femsle.2005.06.028
Breeuwer, P., Lardeau, A., Peterz, M., & Joostens, H. M. (2003). Desiccation-heat tolerance of Enterobacter sakazukii. Journal of Applied Microbiology, 95, 967–973. https://doi.org/10.1046/j.1365-2672.2003.02067.x
Chalbenjawong, P., & Foster, S. J. (2011). Desiccation tolerance in Staphylococcus aureus. Archives of Microbiology, 193, 125–135. https://doi.org/10.1007/s00203-010-0653-x
Chiang, S. R., Jung, F., Tang, H. J., Chen, C. H., Chen, C. C., Chou, H. Y., & Chuang, Y. C. (2017). Desiccation and ethanol resistances of multidrug resistant Acinetobacter baumannii embedded in biofilm: The favorable antiseptic efficacy of combination chlorhexidine gluconate and ethanol. Journal of Microbiology, Immunology and Infection, https://doi.org/10.1016/j.jmii.2017.02.003
Collins, J., Robinson, C., Danhof, H., Knetisch, C. W., van Leeuwen, H. C., Davies, B. W., ... Britton, R. A. (2018). Dietary trehalose enhances virulence of epidemic Clostridium difficile. Nature, 553, 291–294. https://doi.org/10.1038/nature25178
Crowe, J. H., Crowe, L. M., & Chapman, D. (1984). Preservation of membranes in anhydrobiotic organisms - the role of trehalose. Science, 223, 701–703. https://doi.org/10.1126/science.223.4637.701
Crowe, J. H., Oliver, A. E., & Tablin, F. (2002). Is there a single biochemical adaptation to anhydrobiosis? Integrative and Comparative Biology, 42, 497–503. https://doi.org/10.1093/icb/42.3.497
Cytryn, E. J., Sangurdekar, D. P., Streeter, J. G., Franck, W. L., Chang, W.-S., Stacey, G., ... Sadowsky, M. J. (2007). Transcriptional and physiological responses of Bradyrhizobium japonicum to desiccation-induced stress. Journal of Bacteriology, 189, 6751–6762. https://doi.org/10.1128/JB.00533-07
Dijkshoorn, L., Nemec, A., & Seifert, H. (2007). An increasing threat in hospitals: Multidrug-resistant Acinetobacter baumannii. Nature Reviews: Microbiology, 5, 939–951.
Dijkshoorn, L., van Vianen, W., Degener, J. E., & Michel, M. F. (1987). Typing of Acinetobacter calcoaceticus strains isolated from hospital
desiccation and salt stress in the terrestrial cyanobacterium Nostoc commune. *Phycological Research*, 57, 66–73. https://doi.org/10.1111/j.1440-1835.2008.00522.x

Soares, N. C., Cabral, M. P., Gayoso, C., Mallo, S., Rodriguez-Velo, P., Fernández-Moreira, E., & Bou, G. (2010). Associating growth-phase-related changes in the proteome of *Acinetobacter baumannii* with increased resistance to oxidative stress. *Journal of Proteome Research*, 9, 1951–1964. https://doi.org/10.1021/pr901116r

Tschech, A., & Pfennig, N. (1984). Growth-yield increase linked to caffeine reduction in *Acetobacterium woodii*. *Archives of Microbiology*, 137, 163–167. https://doi.org/10.1007/BF00414460

van den Broek, P. J., Arends, J., Bernards, A. T., de Brauwer, E., Mascini, E. M., van der Reijden, T. J. K., ... Dijkshoorn, L. (2006). Epidemiology of multiple *Acinetobacter* outbreaks in The Netherlands during the period 1999-2001. *Clinical Microbiology and Infection*, 12, 837–843. https://doi.org/10.1111/j.1469-0691.2006.01510.x

Vriezen, J. A., de Bruijn, F. J., & Nüsslein, K. (2006). Desiccation responses and survival of *Sinorhizobium meliloti* USDA 1021 in relation to growth phase, temperature, chloride and sulfate availability. *Letters in Applied Microbiology*, 42, 172-178. https://doi.org/10.1111/j.1472-765X.2005.01808.x

Weber, B. S., Harding, C. M., & Feldman, M. F. (2016). Pathogenic *Acinetobacter*: From the cell surface to infinity and beyond. *Journal of Bacteriology*, 198, 880–887. https://doi.org/10.1128/JB.00906-15

Welsh, D. T. (2000). Ecological significance of compatible solute accumulation by micro-organisms: From single cells to global climate. *Fems Microbiology Reviews*, 24, 263–290. https://doi.org/10.1111/j.1574-6976.2000.tb00542.x

Welsh, D. T., & Herbert, R. A. (1999). Osmotically induced intracellular trehalose, but not glycine betaine accumulation promotes desiccation tolerance in *Escherichia coli*. *Fems Microbiology Letters*, 174, 57–63. https://doi.org/10.1111/j.1574-6968.1999.tb13549.x

Wendt, C., Dietze, B., Dietz, E., & Ruden, H. (1997). Survival of *Acinetobacter baumannii* on dry surfaces. *Journal of Clinical Microbiology*, 35, 1394-1397.

World Health Organization. (2017). Priority pathogens list for R&D of new antibiotics. Retrieved from http://www.who.int/mediacentre/news/releases/2017/bacteria-antibiotics-needed/en/

Zeidler, S., Hubloher, J., König, P., Ngu, N. D., Scholz, A., Averhoff, B., & Müller, V. (2018). Salt induction and activation of MtlD, the key enzyme in the synthesis of the compatible solute mannitol in *Acinetobacter baumannii*. *MicrobiologyOpen*, e00614. https://doi.org/10.1002/mbo3.614

Zeidler, S., Hubloher, J., Schabacker, K., Lamosa, P., Santos, H., & Müller, V. (2017). Trehalose, a temperature- and salt-induced solute with implications in pathobiology of *Acinetobacter baumannii*. *Environmental Microbiology*, 19, 5088–5099. https://doi.org/10.1111/1462-2920.13987

Zhang, Q., & Yan, T. (2012). Correlation of intracellular trehalose concentration with desiccation resistance of soil *Escherichia coli* populations. *Applied and Environmental Microbiology*, 78, 7407–7413. https://doi.org/10.1128/AEM.01904-12

How to cite this article: Zeidler, S. Müller, V. The role of compatible solutes in desiccation resistance of *Acinetobacter baumannii*. *MicrobiologyOpen*. 2019;8:e740. https://doi.org/10.1002/mbo3.740