Abstract

Federated Learning (FL) as a distributed learning paradigm that aggregates information from diverse clients to train a shared global model, has demonstrated great success. However, malicious clients can perform poisoning attacks and model replacement to introduce backdoors into the trained global model. Although there have been intensive studies designing robust aggregation methods and empirical robust federated training protocols against backdoors, existing approaches lack robustness certification. This paper provides the first general framework, Certifiably Robust Federated Learning (CRFL), to train certifiably robust FL models against backdoors. Our method exploits clipping and smoothing on model parameters to control the global model smoothness, which yields a sample-wise robustness certification on backdoors with limited magnitude. Our certification also specifies the relation to federated learning parameters, such as poisoning ratio on instance level, number of attackers, and training iterations. Practically, we conduct comprehensive experiments across a range of federated datasets, and provide the first benchmark for certified robustness against backdoor attacks in federated learning. Our code is publically available at https://github.com/AI-secure/CRFL.

1. Introduction

Federated learning (FL) has been widely applied to different applications given its high efficiency and privacy-preserving properties (Smith et al., 2017; McMahan et al., 2017a; Zhao et al., 2018). However, recent studies show that it is easy for the local client to add adversarial perturbation such as “backdoors” during training to compromise the final aggregated model (Bhagoji et al., 2019; Bagdasaryan et al., 2020; Wang et al., 2020; Xie et al., 2019). Such attacks raise great security concerns and have become the roadblocks towards the real-world deployment of federated learning.

Although there have been intensive studies on robust FL by designing robust aggregation methods (Fung et al., 2020; Pillutla et al., 2019; Fu et al., 2019; Blanchard et al., 2017; El Mhamdi et al., 2018; Chen et al., 2017; Yin et al., 2018), developing empirically robust federated training protocols (e.g., gradient clipping (Sun et al., 2019), leveraging noisy perturbation (Sun et al., 2019) and additional evaluation during training (Andreina et al., 2020)), current defense approaches lack robustness guarantees against the backdoor attacks under certain conditions. To the best of our knowledge, certified robustness analysis and algorithms for FL against backdoor attacks remain elusive.

To bridge this gap, in this work we propose a certifiably robust federated learning (CRFL) framework as illustrated in Figure 1. In particular, during training, we allow the local agent to update their model parameters to the center server, and the server will: 1) aggregate the collected model updates, 2) clip the norm of the aggregated model parameters, 3) add a random noise to the clipped model, and finally 4) send the new model parameters back to each agent. Note that all of the operations are conducted on the server side to reduce the load for local clients and to prevent malicious clients. During testing, the server will smooth the final global model with randomized parameter smoothing and make the final prediction based on the parameter-smoothed model.

Figure 1. Overview of certifiably robust federated learning (CRFL)

Proceedings of the 38th International Conference on Machine Learning, PMLR 139, 2021. Copyright 2021 by the author(s).
Using CRFL, we theoretically prove that the trained global model would be certifiably robust against backdoors as long as the backdoor is within our certified bound. To obtain such robustness certification, we first quantify the closeness of models aggregated in each step by viewing this process as a Markov Kernel (Asboodeh & Calmon, 2020; Makur, 2019; Polyanskiy & Wu, 2015; 2017). We then leverage the model closeness together with the parameter smoothing procedure to certify the final prediction. Empirically, we conduct extensive experiments on MNIST, EMNIST, and financial datasets to evaluate the certified robustness of CRFL and study how FL parameters affect certified robustness.

Technical Contributions. In this paper, we take the first step towards providing certified robustness for FL against backdoor attacks. We make contributions on both theoretical and empirical fronts.
- We propose the first certifiably robust federated learning (CRFL) framework against backdoor attacks.
- Theoretically, we analyze the training dynamics of the aggregated model via Markov Kernel, and propose parameter smoothing for model inference. Altogether, we prove the certified robustness of CRFL.
- We conduct extensive experiments on MNIST, EMNIST, and financial datasets to show the effect of different FL parameters (e.g. poisoning ratio, number of attackers, and training iterations) on certified robustness.

3. Preliminaries

3.1. Federated Averaging

Learning Objective Suppose the model parameters are denoted by \(w \in \mathbb{R}^d \), we consider the following distributed optimization problem:
\[
\min_{w \in \mathbb{R}^d} \{ F(w) \triangleq \sum_{i=1}^N p_i F_i(w) \} \text{, where } N \text{ is the number of clients, and } p_i \text{ is the aggregation weight of the } i\text{-th client such that } p_i \geq 0 \text{ and } \sum_{i=1}^N p_i = 1 \text{. Suppose the } i\text{-th client holds } n_i \text{ training data in its local dataset } S_i = \{ z_{i,1}, z_{i,2}, \ldots, z_{i,n_i} \} \text{. The local objective } F_i(\cdot) \text{ is defined by } F_i(w) \triangleq \frac{1}{n_i} \sum_{j=1}^{n_i} \ell(w; z_j), \text{ where } \ell(\cdot; \cdot) \text{ is a defined learning loss function.}
\]

A concurrent work (Cao et al., 2021) proposes Ensemble FL for provable secure FL against malicious clients, which requires training hundreds of FL models and focuses on client-level certification. Our work allows standard FL protocol, and our certification is applicable to feature, sample, and client levels.
backdoored data samples. We consider the backdoor attack via model replacement approach (Bagdasaryan et al., 2020) where the attackers train the local models using the poisoned datasets, and scale the malicious updates before sending it to the sever. Suppose there are \(R \) adversarial clients out of \(N \) clients, we assume that each of them only attack once and they perform model replacement attack together at the same round \(t_{adv} \). Such distributed yet coordinated backdoor attack is shown to be effective in (Xie et al., 2019).

Let \(D := \{S_1, S_2, \ldots, S_N\} \) be the union of original benign local datasets in all clients. For a data sample \(z^i_j \in S_i \), we denote its backdoored version as \(z'^i_j := \{x'^i_j, \delta_i x, \delta_i y_j, \delta_i y\} \), and the backdoor as \(\delta_i := \{\delta_i x, \delta_i y\} \). We assume an adversarial client \(i \) has \(q_i \) backdoored samples in its local dataset \(S^i \) with size \(n_i \). Let \(D' := \{S'_1, \ldots, S'_{R-1}, S'_R, S_{R+1}, \ldots, S_N\} \) be the union of local datasets in the adversarial round \(t_{adv} \). Then we have \(D' = D + \{\{\delta_i\}_{j=1}^q\}_{i=1}^R \).

Before \(t_{adv} \), the adversarial clients train the local model using original benign datasets. When \(t = t_{adv} \), for adversarial client \(i \), each local iteration is trained on the backdoored local dataset \(S'_i \) such that \(w'^i_s \leftarrow w^{i-1}_s - \eta_i g_i(w'^{i-1}_s; \xi'^{i-1}_s) \), \(s = (t-1)\tau_i + 1, (t-1)\tau_i + 2, \ldots, t\tau_i \), where \(w' \) is the malicious model parameters, \(\xi'^{i-1}_s \) is the mini-batch sampled from \(S'_i \) and the local model is initialized as \(w'^{i-1}_s = w_{s-1} \). Following (Bagdasaryan et al., 2020), we assume the attacker add a fixed number of backdoored samples \(q_i \) in each training batch, then the mini-batch gradient is \(g_i(w'; \xi'^{i}_s) = \frac{1}{n_i B_i} \sum_{j=1}^{n_i B_i} \nabla \ell(w'; z'^{i}_j) + \sum_{j=n_i B_i+1}^{B_i} \nabla \ell(w'; z'^{i}_j) \). The poison ratio of dataset \(S'_i \) is \(q_i B_i / n_i B_i = q_i / n_i \). Since for each local iteration, the local model is updated with backdoored mini-batch samples, more local iterations will drive the local model \(w'^i_s \) farther from the corresponding one \(w_{s-1} \) in benign training process. Then the adversarial clients scale their malicious local updates before submitting to the server. Let the scale factor be \(\gamma_i \) for \(i \)-th adversarial client, then the scaled update is \(\gamma_i (w'^{i}_s - w_{s-1}) \). The server aggregates over the malicious and benign updates into an infected global model \(w'_t \) such that \(w'_t \leftarrow w_{t-1} + \sum_{i=1}^{R} p_i \gamma_i (w'^{i}_{\tau_i} - w_{t-1}) + \sum_{i=R+1}^{N} p_i (w'^{i}_{\tau_i} - w_{t-1}) \). In fact, even though the adversarial clients only attack at round \(t_{adv} \) and in the later rounds (\(t > t_{adv} \)) they use the original benign datasets, the global model is already infected starting from \(t_{adv} \), so we still denote the global model parameters as \(w'_t \) in later rounds.

4. Methodology

In this Section, we introduce our proposed framework CRFL, which is composed of a training-time subroutine (Algorithm 1) and a test-time subroutine (Algorithm 2) for achieving certified robustness.

4.1. CRFL Training: Clipping and Perturbing

During training, at round \(t = 1, \ldots, T - 1 \), local clients update their models, and the server performs aggregation. Then, in our training protocol, the server clip the model parameters \(\text{Clip}_{\rho_t}(w_t) \leftarrow w_t / \max(1, \|w_t\|_{\rho_t}) \) so that its norm is bounded by \(\rho_t \), and then add isotropic Gaussian noise \(\epsilon_t \sim N(0, \sigma^2_t I) \) directly on the aggregated global model parameters (coordinate-wise noise): \(\tilde{w}_t \leftarrow \text{Clip}_{\rho_t}(w_t) + \epsilon_t \). Throughout this paper, \(\| \cdot \| \) denotes the \(\ell_2 \) norm \(\| \cdot \|_2 \). In the next round \(t + 1 \), client \(i \) initializes its local model with noisy new global model \(w_{t+1}^i \leftarrow \tilde{w}_t \). In the final round \(T \), we only clip the global model parameters.

The procedure is summarized in Algorithm 1 and denoted by \(M \), which outputs the global model parameters \(\text{Clip}_{\rho_T}(w_T) \). Then we define \(M(D) := \text{Clip}_{\rho_T}(w_T) \).

Algorithm 1 Federated averaging with parameters clipping and perturbing

Server’s input: initial model parameters \(w_0, \tilde{w}_0 \leftarrow w_0 \)
Client i’s input: local dataset \(S_i \) and learning rate \(\eta_i \)
for each round \(t = 1, \ldots, T \) do

The server sends \(\tilde{w}_{t-1} \) to the \(i \)-th client

for client \(i = 1, 2, \ldots, N \) in parallel do

initialize local model \(w_{(t-1)r_i} \leftarrow \tilde{w}_{t-1} \)

for local iteration \(s = (t-1)\tau_i + 1, \ldots, t\tau_i \) do

compute mini-batch gradient \(g_i(w_s; \cdot) \)

\(w_s^i \leftarrow w_{s-1}^i - \eta_i g_i(w_{s-1}^i; \xi_{s-1}) \)

end for

The i-th client sends \(w^i_{t\tau_i} \leftarrow \tilde{w}_{t-1} \) to the server

The server updates the model parameters

\(w_s \leftarrow w_{s-1} + \sum_{i=1}^{N} p_i (w^i_{t\tau_i} - w_{s-1}) \)

The server clips the model parameters \(\text{Clip}_{\rho_T}(w_t) \leftarrow w_t / \max(1, \|w_t\|_{\rho_T}) \)

The server adds noise

if \(t \leq T - 1 \) then

\(\epsilon_t \leftarrow \text{a sample drawn from } N(0, \sigma^2_t I) \)

\(\tilde{w}_t \leftarrow \text{Clip}_{\rho_T}(w_t) + \epsilon_t \)

end if

end for

Output: Clipped global model parameters \(\text{Clip}_{\rho_T}(w_T) \)

4.2. CRFL Testing: Parameter Smoothing

Smoothed Classifiers We study multi-class classification models and define a classifier \(h : (\mathbb{W}, \mathcal{X}) \rightarrow \mathcal{Y} \) with finite set of label \(\mathcal{Y} = \{1, \ldots, C\} \), where \(C \) denotes the number of classes. We extend the randomized smoothing method (Cohen et al., 2019) to parameter smoothing for constructing a new, “smoothed” classifier \(h_s \) from an arbitrary base classifier \(h \). The robustness properties can be verified using the smoothed classifier \(h_s \). Given the model parameter \(w \) of \(h \), when queried at a test sample \(x_{test} \), we first take a majority vote over the predictions of the base classifier \(h \) on random model parameters drawn from a prob-
ability distribution μ, i.e., the smoothing measure, to obtain the “votes” $H^c_s(w; x_{test})$ for each class $c \in \mathcal{Y}$. Then the label returned by the smoothed classifier h_s is the mostly probable label among all classes (the majority vote winner). Formally,

$$h_s(w; x_{test}) = \arg \max_{c \in \mathcal{Y}} H^c_s(w; x_{test}),$$

where $H^c_s(w; x_{test}) = P_{W \sim \mu(w)}[h(W; x_{test}) = c]$. \hfill (1)

To be aligned with the training time Gaussian noise (perturbation), we also adopt Gaussian smoothing measures $\mu(w) = N(w, \sigma_T^2 I)$ during testing time. In practice, the exact value of the probability $p_c = P_{W \sim \mu(w)}[h(W; x_{test}) = c]$ for label c is difficult to obtain for neural networks, and hence we resort to Monte Carlo estimation (Cohen et al., 2019; Lecuyer et al., 2019) to get its approximation \hat{p}_c. At round $t = T$, given the clipped aggregated global model $\text{Clip}_{\rho_T}(w_T)$, we add Gaussian noise $\epsilon^k_T \sim N(0, \sigma_T^2 I)$ for M times to get M sets of noisy model parameters (M Monte Carlo samples for estimation), such that $\tilde{w}^k_T = \text{Clip}_{\rho_T}(w_T) + \epsilon^k_T$, $k = 1, 2, \ldots, M$.

In Algorithm 2, the function GetCounts runs the classifier with each set of noisy model parameters w^k_T for one test sample x_{test}, and returns a vector of class counts. Then we take the most probable class \hat{c}_A and the runner-up class \hat{c}_B to calculate the corresponding \tilde{p}_A and \tilde{p}_B. The function CalculateBound calibrates the empirical estimation to bound the probability α of h_s returning an incorrect label. Given the error tolerance α, we use Hoeffding’s inequality (Hoeffding, 1994) to compute a lower bound p_A on the probability $H^c_s(w; x_{test})$ and an upper bound \overline{p}_B on the probability $H^c_s(w; x_{test})$ according to

$$p_A = \tilde{p}_A - \sqrt{\frac{\log(1/\alpha)}{2N}}, \overline{p}_B = \tilde{p}_B + \sqrt{\frac{\log(1/\alpha)}{2N}}.$$

We leave the function CalculateRadius to be defined with our main results in later sections and we will analyze the robustness properties of the model trained and tested under our framework CRFL.

Comparison with Certifiably Robust Models in Centralized Setting Our method is different from previous certifiably robust models in centralized learning against evasion attacks (Cohen et al., 2019) and backdoors (Weber et al., 2020). Once the M noisy models (at round T, with σ_T) are generated, they are fixed and used for every test sample during test time, just like RAB (Weber et al., 2020) in the centralized setting. However, RAB actually trains M models using M noise-corrupted datasets, while we just train one model through FL and finally generated M noise-corrupted copies of it. For every test sample, randomized smoothing (Cohen et al., 2019) generates M noisy samples. Suppose the test set size is m. Then during testing, there are $m \cdot M$ times noise addition on test samples for randomized smoothing, and M times noises addition on trained model for CRFL. To our best knowledge, this is the first work to study parameter smoothing rather than input smoothing, which is an open problem motivated by the FL scenario, since the sever directly aggregates over the model parameters.

5. Certified Robustness of CRFL

5.1. Pointwise Certified Robustness

Goal of Certification In the context of data poisoning in federated learning, the goal is to protect the global model against adversarial data modification made to the local training sets of distributed clients. Thus, the goal of certifiable robustness in federated learning is for each test point, to return a prediction as well as a certificate that the prediction would not change had some features in (part of) local training data of certain clients been modified.

Following our threat model in Section 3.2 and our training protocol in Algorithm 1, we define the trained global model $M(D') := \text{Clip}_{\rho_T}(w'_T)$, for the FL training process that is exposed to model replacement attack, when the distance between D' (backdoored dataset) and D (clean dataset) is under certain threshold (i.e., the magnitude of $\{\delta_i\}_{i=1}^R$ is bounded), we can certify that $M(D')$ is “close” to $M(D)$ and thus is robust to backdoors. The rationale lies in the fact that we perform clipping and noise perturbation on the model parameters to control the global model deviation during training. During testing, intuitively, under the Gaussian smoothing measures μ as described in Algorithm 2, for two close distribution $\mu(M(D'))$ and $\mu(M(D))$, we would expect that even though the probabilities for each class c, i.e., $H^c_s(M(D'); x_{test})$ and $H^c_s(M(D); x_{test})$, may not be equal, the returned most likely label $h_s(M(D'); x_{test})$ and $h_s(M(D); x_{test})$ should be consistent.
In summary, we aim to develop a robustness certificate by studying under what condition for \(\left\{ \{ \delta_i \}_{j=1}^J \right\}_{i=1}^R \) that the prediction for a test sample is consistent between the smoothed FL models trained from \(D \) and \(D' \) separately, i.e., \(h_s(\mathcal{M}(D'); x_{\text{test}}) = h_s(\mathcal{M}(D); x_{\text{test}}) \). To put forth our certified robustness analysis, we make the following assumptions on the loss function of all clients. Then we present our main theorem and explain its derivation through model closeness and parameter smoothing. Throughout this paper, we denote \(\nabla w \ell(w; z) \) as \(\nabla \ell(w; z) \) for simplicity.

Assumption 1 (Convexity and Smoothness). The loss function \(\ell(w; z) \) is \(\beta \)-smoothness, i.e., \(\forall w_1, w_2, \)

\[
\| \nabla \ell(w_1; z) - \nabla \ell(w_2; z) \| \leq \beta \| w_1 - w_2 \|.
\]

In addition, the loss function \(\ell(w; z) \) is convex. Then coercivity of the gradient states:

\[
\| \nabla \ell(w_1; z) - \nabla \ell(w_2; z) \|^2 \\
\leq \beta (w_1 - w_2, \nabla \ell(w_1; z) - \nabla \ell(w_2; z)).
\]

Assumption 2 (Lipschitz Gradient w.r.t. Data). The gradient \(\nabla w(z; w) \) is \(L_Z \) Lipschitz with respect to the argument \(z \) and norm distance \(\| \cdot \| \), i.e., \(\forall z_1, z_2, \)

\[
\| \nabla \ell(w; z_1) - \nabla \ell(w; z_2) \| \leq L_Z \| z_1 - z_2 \|.
\]

Assumption 3. The whole FL system follows Algorithm 1 to train and Algorithm 2 to test.

The assumptions on convexity and smoothness are common in the analysis of distributed SGD (Li et al., 2020; Wang & Joshi, 2019). We also make assumption on the Lipschitz gradient w.r.t. data, which is used in (Fallah et al., 2020; Reisizadeh et al., 2020) for analyzing the heterogeneous data distribution across clients.

Main Results

Theorem 1 (General Robustness Condition). Let \(h_s \) be defined as in Eq. 1. When \(\eta_t \leq \frac{1}{L_Z} \) and Assumptions 1, 2, and 3 hold, suppose \(c_A \in \mathcal{Y} \) and \(p_A, \overline{p}_B \in [0, 1] \) satisfy

\[
H^c_A(\mathcal{M}(D'); x_{\text{test}}) \geq \overline{p}_A \geq \overline{p}_B \geq \max_{c \notin c_A} H^c(\mathcal{M}(D'); x_{\text{test}}),
\]

then if

\[
R \sum_{i=1}^R \left(\rho_i \gamma_i \eta_i \frac{q_i t_i}{n_i B_i} \| \delta_i \| \right)^2 \leq \frac{\log \left(1 - (\sqrt{\overline{p}_A} - \sqrt{\overline{p}_B})^2 \right) \sigma_{\text{adv}}^2}{2L_Z^2 \prod_{t=t_{\text{adv}}+1}^T \left(2 \Phi \left(\frac{\overline{p}_B}{\sigma_t} \right) - 1 \right)}
\]

it is guaranteed that

\[
h_s(\mathcal{M}(D'); x_{\text{test}}) = h_s(\mathcal{M}(D); x_{\text{test}}) = c_A,
\]

where \(\Phi \) is standard Gaussian’s cumulative density function (CDF) and the other parameters are defined in Section 3.

In practice, since the server does not know the global model in the current FL system is poisoned or not, we assume the model is already backdoored and derive the condition when its prediction will be certifiably consistent with the prediction of the clean model. Our certification is on three levels: feature, sample, and client. If the magnitude of the backdoor is upper bounded for every attackers, then we can re-write the Theorem 1 as the following corollary.

Corollary 1 (Robustness Condition in Feature Level). Using the same setting as in Theorem 1 but further assume identical backdoor magnitude \(\| \delta \| = \| \delta_i \| \) for \(i = 1, \ldots, R \). Suppose \(c_A \in \mathcal{Y} \) and \(p_A, \overline{p}_B \in [0, 1] \) satisfy

\[
H^c_A(\mathcal{M}(D'); x_{\text{test}}) \geq \overline{p}_A \geq \overline{p}_B \geq \max_{c \notin c_A} H^c(\mathcal{M}(D'); x_{\text{test}}),
\]

then \(h_s(\mathcal{M}(D'); x_{\text{test}}) = h_s(\mathcal{M}(D); x_{\text{test}}) = c_A \) for all \(\| \delta \| < \text{RAD}, \) where

\[
\text{RAD} = \left[-\log \left(1 - (\sqrt{\overline{p}_A} - \sqrt{\overline{p}_B})^2 \right) \sigma_{\text{adv}}^2 \right]^{1/2} \cdot \frac{1}{\prod_{t=t_{\text{adv}}+1}^T \left(2 \Phi \left(\frac{\overline{p}_B}{\sigma_t} \right) - 1 \right)}.
\]

The function CalculateRadius in our Algorithm 2 can calculate the certified radius \(\text{RAD} \) according to Corollary 1.

We now make several remarks about Corollary 1 and will verify them in our experiments: 1) The noise level \(\sigma_t \) and the parameter norm clipping threshold \(\rho_t \) is hyper-parameters that can be adjusted to control the robustness-accuracy trade-off. For instance, the certified radius \(\text{RAD} \) would be large when: \(\sigma_t \) is high; \(\rho_t \) is small; the margin between \(p_A \) and \(\overline{p}_B \) is large; the number of attackers \(R \) is small; the poison ratio \(\frac{\rho_t}{n_i B_i} \) is small; the scale factor \(\gamma_i \) is small; the aggregation weights for attackers \(p_t \) is small; the local iteration \(\tau_t \) is small; and the local learning rate \(\eta_t \) is small. 2) Since \(0 \leq 2\Phi(\cdot) - 1 \leq 1 \), the certified radius \(\text{RAD} \) goes to \(\infty \) as \(T \to \infty \) when \(\Phi(\cdot) < 1 \). Intuitively, the benign fine-tuning after backdoor injection round \(t_{\text{adv}} \) would mitigate the poisoning effect. Thus, with infinite rounds of such fine-tuning, the model is able to tolerate backdoors with arbitrarily large magnitude. In practice, we note that the continued multiplication in the denominator may not approach 0 due to numerical issues, which we will verify in the experiments section. 4) Large number of clients \(N \) will decrease the aggregation weights \(p_t \) of attackers, thus it can tolerate backdoors with large magnitude, resulting in higher \(\text{RAD} \). 5) For general neural networks, efficient computation of Lipschitz gradient constant (w.r.t. data input) is an open question, especially when the data dimension is high. We will provide a closed-form expression for \(L_Z \) under some constraints next.

As mentioned in Section 3.2, the backdoor for data sample \(z^*_j \) includes both the backdoor pattern \(\delta_{t_{\text{adv}}} \) and adversarial
target label flipping δ_{y_i}. In Assumption 2 we define L_Z with $z = \{x, y\}$ (concatenation of x and y) to certify against both backdoor patterns and label-flipping effects. Without loss of generality, here we focus on backdoor patterns considering bounded model parameters in Lemma 1, which provides a closed-form expression for L_Z in the case of multi-class logistic regression. By applying L_Z from Lemma 1 to Theorem 1, it indicates that the prediction for a test sample is independent with the backdoor pattern so the backdoor pattern is disentangled from the adversarial target label.

Lemma 1. Given the upper bound on model parameters norm, i.e., $\|w\| \leq \rho$, and two data samples z_1 and z_2 with $x_1 \neq x_2$ ($y_1 = y_2$), for multi-class logistic regression (i.e., one linear layer followed by a softmax function and trained by cross-entropy loss), its Lipschitz gradient constant w.r.t data is $L_Z = \sqrt{2 + 2\rho + \rho^2}$. That is, $||\nabla f(w; z_1) - \nabla f(w; z_2)|| \leq \sqrt{2 + 2\rho + \rho^2} |z_1 - z_2|$.

Proof for Lemma 1 is provided in the Appendix B.6.

In order to formally derive the main theorem, there are two key results. We first quantify the closeness between the FL trained models $M(D')$ and $M(D)$ using Markov Kernel, and then connect the model closeness to the prediction consistency through parameter smoothing.

5.2. Model Closeness

As described in Algorithm 1, owing to the Gaussian noise perturbation mechanism, in each iteration the global model can be viewed as a random vector with the Gaussian smoothing measure μ. We use the f-divergence between $\mu(M(D'))$ and $\mu(M(D))$ as a statistical tool for measuring model closeness of the final FL model. Based on the data post-processing inequality, when we interpret each round of CRFL as a probability transition kernel, i.e., a Markov Kernel, the contraction coefficient of Markov Kernel can help bound the divergence over multiple training rounds of FL.

Let $f : (0, \infty) \rightarrow \mathbb{R}$ be a convex function with $f(1) = 0$, μ and ν be two probability distributions. Then the f-divergence is defined as $D_f(\mu || \nu) = E_{W \sim \nu}[f(W)] - f(E_{W \sim \mu}[W])]$. Common choices of f-divergence include total variation ($f(x) = \frac{1}{2}\|x - 1\|$) and Kullback-Leibler (KL) divergence ($f(x) = x \log x$). The data processing inequality (Raginsky, 2016; Polyanskiy & Wu, 2015; 2017) for the relative entropy states that, for any convex function f and any probability transition kernel (Markov Kernel), $D_f(\mu K || \nu K) \leq D_f(\mu || \nu)$, where μK denotes the pushforward of μ by K, i.e., $\mu K = \int \mu(dW)K(W)$. In other words, $D_f(\mu || \nu)$ decreases by post-processing via K. (Asoodeh & Calmon, 2020) extend it to analyze SGD.

In our setting, all the operations in one round of our CRFL, including SGD, clipping and noise perturbations, are incorporated as a Markov Kernel. We note that in the single-round attack setting, the adversarial clients use clean datasets to train the local models after t_{adv}, so the Markov operator is the same as the one in the benign training process. Therefore the f-divergence of the two global models (backdoored and benign) of interest decreases over rounds, which is characterized by a contraction coefficient defined in Appendix B. We quantify such contraction property of Markov Kernel for each round with the help of two hyperparameters in the server side: model parameter norm clipping threshold ρ_i and the noise level σ_i, and finally bound f-divergence of global models in round T. Although our analysis can be adopted to general f-divergence, we here use KL divergence as an instantiation to measure the model closeness.

Theorem 2. When $\eta_i \leq \frac{1}{2}$ and Assumptions 1, 2, and 3 hold, the KL divergence between $\mu(M(D))$ and $\mu(M(D'))$ with $\mu(w) = \mathcal{N}(w, \sigma^2)$ is bounded as:

$$D_{KL}(\mu(M(D)))||\mu(M(D'))) \leq \frac{2R \sum_{i=1}^{T} \left(p_i r_i \eta_i \mathbb{E}_{D_i}[L_Z \delta_i]\right)^2}{\sigma^2_{adv}} \prod_{t=t_{adv}+1}^{T} \left(2\Phi \left(\frac{p_i}{\sigma_i}\right) - 1\right)$$

The proof is provided in the Appendix B.

5.3. Parameter Smoothing

We connect the model closeness to the prediction consistency by the following theorem. The smoothed classifier h_s is robustly certified at $\mu(w')$ with respect to the bounded KL divergence, $D_{KL}(\mu(w), \mu(w')) \leq \epsilon$.

Theorem 3. Let h_s be defined as in Eq. 1. Suppose $c_A \in \mathcal{Y}$ and $p_A, p_B \in [0, 1]$ satisfy

$$H^c_{s \times A}(w'; x_{test}) \geq p_A \geq p_B \geq \max_{r \neq c_A} H^c_{s}(w'; x_{test}),$$

then $h_s(w'; x_{test}) = h_s(w; x_{test}) = c_A$ for all w such that $D_{KL}(\mu(w), \mu(w')) \leq \epsilon$, where

$$\epsilon = -\log \left(1 - (\sqrt{p_A} - \sqrt{p_B})^2\right)$$

The proof is provided in the Appendix C.

Finally, combining Theorem 2 and 3 leads to our main Theorem 1. In detail, Theorem 2 states that $D_{KL}(\mu(M(D)))||\mu(M(D'))) \leq \epsilon$ under our CRFL framework is bounded by certain value that depends on the difference between D and D'. Theorem 3 states that for a test sample x_{test}, as long as the KL divergence is smaller than $-\log(1 - (\sqrt{p_A} - \sqrt{p_B})^2)$, the prediction from the poisoned smoothed classifier h_s that is built upon the base classifier with model parameter $M(D')$ will be consistent with the prediction from h_s that is built upon $M(D)$. Therefore, we derive the condition for D and D' in Theorem 1,
under which $D_{KL}(\mu(M(D)) || \mu(M(D'))) \leq -\log(1 - (\sqrt{\frac{1}{pA}} - \sqrt{\frac{1}{pB}})^2)$. This condition also indicates that h_s built upon the model parameter $M(D')$ is certifiably robust.

Defend against Other Potential Attack Here we discuss the potentials to generalize our method against other training-time attacks. 1) Our method can naturally extend to fixed-frequency attack by applying our analysis for each attack period. In particular, we can repeatedly apply our Theorem 2 to analyze model closeness for each attack period, and the different initializations of each period can be bounded based on its last period. Then Theorem 3 can be applied to connect model closeness to certify the prediction consistency. 2) (Wang et al., 2020) introduce edge-case adversarial training samples to enforce the model to misclassify inputs on the tail of input distribution. The edge-case attack essentially conducts a special semantic attack (Bagdasaryan et al., 2020) by selecting rare images instead of directly adding backdoor patterns. It is possible to apply our framework against such attack by viewing it as the whole sample manipulation.

Comparison with Differentially Private Federated Learning In order to protect the privacy of each client, differentially private federated learning (DPFL) mechanisms are proposed (Geyer et al., 2017; McMahan et al., 2018; Agarwal et al., 2018) to ensure that the learned FL model is essentially unchanged when one individual client is modified. Compared with DPFL, our method has several fundamental differences and addresses additional challenges: 1) Mechanisms: DPFL approaches add training-time noise to provide privacy guarantee, while ours add smoothing noise during training and testing to provide certified robustness against data poisoning. In general, the added noise in CRFL does not need to be as large as that in DPFL to provide strong privacy guarantee, and therefore preserve higher model utility. 2) Certification goals: DPFL approaches provide client-level privacy guarantee for the learned model parameters, while in CRFL the robustness guarantee is derived for certified pointwise prediction which could be on the feature, samples and clients levels. 3) Technical contributions: DPFL approaches derive DP guarantee via DP composition theorems (Dwork et al., 2014; Abadi et al., 2016), while we quantify the global model deviation via Markov Kernel and verify the robustness properties of the smoothed model via parameter smoothing.

6. Experiments

In our experiments, the attackers perform the model replacement attack at round t_{adv} during our CRFL training, and the server performs parameter smoothing on a possibly backdoored FL model at round T to calculate the certified radius RAD for each test sample based on Corollary 1. Specifically, we evaluate the effect of the training time noise σ_t, the attacker’s ability which includes the number of attackers R, the poison ratio γ_i, and the scale factor γ_i, robust aggregation protocol, the number of total clients N and the number of training rounds T. Moreover, we evaluate the model closeness empirically to justify Theorem 2.

6.1. Experiment Setup

We focus on multi-class logistic regression (one linear layer with softmax function and cross-entropy loss), which is a convex classification problem. We train the FL system following our CRFL framework with three datasets: Lending Club Loan Data (LOAN) (Kan, 2019), MNIST (LeCun & Cortes, 2010), and EMNIST (Cohen et al., 2017). We refer the readers to Appendix A for more details about the datasets, parameter setups and attack setting. We train the FL global model until convergence and then use our certification in Algorithm 2 for robustness evaluation.

The metrics of interest are certified rate and certified accuracy. Given a test set of size m, for i-th test sample, the ground truth label is y_i, and the output prediction is either c_i with the certified radius RAD$_i$ or $c_i = \text{ABSTAIN}$ with RAD$_i = 0$. Then we calculate certified rate at r as $\frac{1}{m} \sum_{i=1}^{m} \mathbb{1}\{\text{RAD}_i \geq r\}$, and certified accuracy at r as $\frac{1}{m} \sum_{i=1}^{m} \mathbb{1}\{c_i = y_i \text{ and } \text{RAD}_i \geq r\}$. The certified rate is the fraction of the test set that can be certified at radius RAD $\geq r$, which reveals how consistent the possibly backdoored classifier’s prediction with the clean classifier’s prediction. The certified accuracy is the fraction of the test set for which the possibly backdoored classifier makes correct and consistent predictions with the clean model. In the displayed figures, there is a critical radius beyond which the certified accuracy and certified rate are dropped to zero. Since each test sample has its own calculated certified radius RAD$_i$, this critical value is a threshold that none of them have a larger radius than it, similar to the findings in (Cohen et al., 2019). We certified 10000/5000/10000 samples from the LOAN/MNIST/EMNIST test sets. In all experiments, unless otherwise stated, we use $\sigma_T = 0.01$ to generate $M = 1000$ noisy models in parameter smoothing procedure, and use the error tolerance $\alpha = 0.001$. In our experiments, we adopt the expression of L_z in Lemma 1. L_z can be generalized to other poisoning settings by specifying z_1, z_2 in Assumption 2 under the case of "$x_1 \neq x_2$ and $y_1 \neq y_2$" or "$x_1 = x_2$ and $y_1 \neq y_2$".

6.2. Experiment Results

We only change one factor in each experiment and keep others the same as the experiment setup. We plot the certified accuracy and certified rate on the clean test set, and report the results on the backdoored test set in Appendix A.
CRFL: Certifiably Robust Federated Learning against Backdoor Attacks

Figure 2. Certified accuracy and certified rate on MNIST, LOAN, and EMNIST with different training-time noise σ. Solid lines represent certified accuracy; dashed lines of the same color show the accuracy of base classifier trained with σ; black dashed line presents the accuracy of the classifier trained without noise.

Effect of Training Time Noise Since we aim to defend against backdoor attack, the training time noise σ ($\sigma = \sigma_i$, $t < T$) in our Algorithm 1 is more essential than σ_T in parameter smoothing (Algorithm 2). The reason is that σ can nullify the malicious model updates at early stage. Figure 2 plots the certified accuracy and certified rate attained by training FL system with different σ. In Figure 2(a), when σ is high, certified rate is high at every r and large radius can be certified. Figure 2(b)(c)(d) show that large radius is certified but at a low accuracy, so the parameter noise σ controls the trade-off between certifiability and accuracy, which echoes the property of evasion-attack certification (Cohen et al., 2019). Comparing the solid line with the dashed line for each color, we can see that the parameter smoothing with σ_T does not hurt the accuracy much.

Effect of Attacker Ability From the perspective of attackers, the larger number of attackers R, the larger poison ratio q_{Bi}/n_{Bi} and the larger scale factor γ_i result in the stronger attack. Figure 3, Figure 4, and Figure 5 show that in the three datasets, the stronger the attack, the smaller radius can be certified. After training sufficient number of rounds with clean datasets after t_{adv}, we show that the certified radius is not sensitive to the attack timing t_{adv} in Appendix A.2.

Effect of Robust Aggregation Our CRFL can be used to assess different robust aggregation rules. Figure 6 presents the certified accuracy on MNIST and EMNIST as R is varied, when our CRFL adopts the robust aggregation al-

algorithm RFA (Pillutla et al., 2019), which detects outliers and down-weights the malicious updates during aggregation. Comparing FedAvg in Figure 5 with RFA in Figure 6 (the magnitude of x-axis is different), we observe that very large radius can be certified under RFA. This is because that the attacker is assigned with very low aggregation weights p_i, which is part of our bound in Eq. 2. Our certified radius reveals that RFA is much robust than FedAvg, which shows the potential usage of our certified radius as an evaluation metric for the robustness of other robust aggregation rules.

Effect of Client Number Distributed learning across a large number of clients is an important property of FL. Figure 7 shows that large radius can be certified when N is large (i.e., more clients can tolerate larger backdoor magnitude), because it decreases the aggregation weights p_i of attackers. Moreover, the backdoor effect could be mitigated by more benign model updates during training.

Effect of Training Rounds According to Figure 8, the certified accuracy is higher when T is larger. However, the largest radius that can be certified for the test set does not increase. We note that this is due to numerical issues of the standard Gaussian CDF $\Phi(\cdot)$. As we mentioned in Section 5.1, the continued multiplication in the denominator of Eq. 2 will not achieve 0 in practice. Otherwise the certified radius RAD goes to ∞ as $T \rightarrow \infty$ since $0 \leq 2\Phi(\rho/\sigma) - 1 \leq 1$.

To verify our argument, we fix p_A and p_B to be 0.7 and 0.1, use default values for other parameters, and study the relationship between ρ/σ, T and RAD in Figure 9(b). When ρ/σ is larger than certain threshold, the certified radius RAD

Figure 3. MNIST (left) and LOAN (right) test set certified accuracy as the poison ratio q_{Bi}/n_{Bi} is varied.

Figure 4. Certified accuracy with different scaling factor γ on LOAN (left) and EMNIST (right).
Certifiably Robust Federated Learning against Backdoor Attacks

Figure 5. MNIST (left) and EMNIST (right) test set certified accuracy as the number of adversarial clients R is varied.

Figure 6. Certified accuracy on MNIST (left) and EMNIST (right) with different R when FL is trained under the robust aggregation RFA (Pillutla et al., 2019).

Figure 7. Certified accuracy on MNIST (left) and LOAN (right) as the number of total clients N is varied.

Figure 8. LOAN (left) and EMNIST (right) test set certified accuracy as T is varied.

Figure 9. (a) The ℓ_2 distance of the global models between the backdoored training process and the benign training process. (b) Numerical analysis of the standard Gaussian CDF $\Phi(\cdot)$.

7. Conclusion

This paper establishes the first framework (CRFL) on certifiably robust federated learning against backdoor attacks. CRFL employs model parameter clipping and perturbing during training, and uses model parameter smoothing during testing, to certify conditions under which a backdoored model will give consistent predictions with an oracle clean model. Our theoretical analysis characterizes the relation between certified robustness and federated learning parameters, which are empirically verified on three different datasets.

Acknowledgements

This work is partially supported by NSF grant No.1910100, NSF CNS 20-46726 CAR, Amazon Research Award, IBM-ILLINOIS Center for Cognitive Computing Systems Research (C3SR) – a research collaboration as part of the IBM AI Horizons Network.
References

Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K., and Zhang, L. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC conference on computer and communications security, pp. 308–318, 2016.

Agarwal, N., Suresh, A. T., Yu, F., Kumar, S., and McMahan, H. B. cpsgd: communication-efficient and differentially-private distributed sgd. In Proceedings of the 32nd International Conference on Neural Information Processing Systems, pp. 7575–7586, 2018.

Andreina, S., Marson, G. A., Möllering, H., and Karame, G. Baffle: Backdoor detection via feedback-based federated learning. arXiv preprint arXiv:2011.02167, 2020.

Asoodeh, S. and Calmon, F. Differentially private federated learning: An information-theoretic perspective. In ICML Workshop on Federated Learning for User Privacy and Data Confidentiality, 2020.

Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D., and Shmatikov, V. How to backdoor federated learning. In International Conference on Artificial Intelligence and Statistics, pp. 2938–2948. PMLR, 2020.

Bhagoji, A. N., Chakraborty, S., Mittal, P., and Calo, S. Analyzing federated learning through an adversarial lens. In International Conference on Machine Learning, pp. 634–643, 2019.

Blanchard, P., El Mhamdi, E. M., Guerraoui, R., and Stainer, J. Machine learning with adversaries: Byzantine tolerant gradient descent. In Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 118–128, 2017.

Cao, X., Jia, J., and Gong, N. Z. Provably secure federated learning against malicious clients. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 6885–6893, 2021.

Chen, Y., Su, L., and Xu, J. Distributed statistical machine learning in adversarial settings: Byzantine gradient descent. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 1(2):1–25, 2017.

Cohen, G., Afshar, S., Tapson, J., and Van Schaik, A. Emnist: Extending mnist to handwritten letters. In 2017 International Joint Conference on Neural Networks (IJCNN), pp. 2921–2926. IEEE, 2017.

Cohen, J., Rosenfeld, E., and Kolter, Z. Certified adversarial robustness via randomized smoothing. In International Conference on Machine Learning, pp. 1310–1320. PMLR, 2019.

Dobrushin, R. L. Central limit theorem for nonstationary markov chains. i. Theory of Probability & Its Applications, 1(1):65–80, 1956.

Dvijotham, K. D., Hayes, J., Balle, B., Kolter, Z., Qin, C., György, A., Xiao, K., Gowal, S., and Kohli, P. A framework for robustness certification of smoothed classifiers using f-divergences. In ICLR, 2020.

Dwork, C., Roth, A., et al. The algorithmic foundations of differential privacy. Foundations and Trends in Theoretical Computer Science, 9(3-4):211–407, 2014.

El Mhamdi, E. M., Guerraoui, R., and Rouault, S. L. A. The hidden vulnerability of distributed learning in byzantium. In International Conference on Machine Learning, number CONF, 2018.

Fallah, A., Mokhtari, A., and Ozdaglar, A. Personalized federated learning: A meta-learning approach. NeurIPS, 2020.

Fu, S., Xie, C., Li, B., and Chen, Q. Attack-resistant federated learning with residual-based reweighting. arXiv preprint arXiv:1912.11464, 2019.

Fung, C., Yoon, C. J., and Beschastnikh, I. The limitations of federated learning in sybil settings. In 23rd International Symposium on Research in Attacks, Intrusions and Defenses (RAID 2020), pp. 301–316, 2020.

Geyer, R. C., Klein, T., and Nabi, M. Differentially private federated learning: A client level perspective. arXiv preprint arXiv:1712.07557, 2017.

Gu, T., Liu, K., Dolan-Gavitt, B., and Garg, S. Badnets: Evaluating backdooring attacks on deep neural networks. IEEE Access, 7:47230–47244, 2019.

Hoeffding, W. Probability inequalities for sums of bounded random variables. In The Collected Works of Wassily Hoeffding, pp. 409–426. Springer, 1994.

Kan, W. Lending club loan data, Mar 2019. URL https://www.kaggle.com/wendykan/lending-club-loan-data.

LeCun, Y. and Cortes, C. MNIST handwritten digit database. 2010. URL http://yann.lecun.com/exdb/mnist/.

Lecuyer, M., Atlidakis, V., Geambasu, R., Hsu, D., and Jana, S. Certified robustness to adversarial examples with differential privacy. In 2019 IEEE Symposium on Security and Privacy (SP), pp. 656–672. IEEE, 2019.

Li, X., Huang, K., Yang, W., Wang, S., and Zhang, Z. On the convergence of fedavg on non-iid data. In International Conference on Learning Representations, 2020.
Makur, A. *Information contraction and decomposition*. PhD thesis, Massachusetts Institute of Technology, 2019.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and y Arcas, B. A. Communication-Efficient Learning of Deep Networks from Decentralized Data. In *Proceedings of the 20th International Conference on Artificial Intelligence and Statistics*, volume 54 of *Proceedings of Machine Learning Research*, pp. 1273–1282. PMLR, 20–22 Apr 2017a.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and y Arcas, B. A. Communication-efficient learning of deep networks from decentralized data. In *Artificial Intelligence and Statistics*, pp. 1273–1282. PMLR, 2017b.

McMahan, H. B., Ramage, D., Talwar, K., and Zhang, L. Learning differentially private recurrent language models. In *International Conference on Learning Representations*, 2018.

Pillutla, K., Kakade, S. M., and Harchaoui, Z. Robust aggregation for federated learning. *arXiv preprint arXiv:1912.13445*, 2019.

Polyanskiy, Y. and Wu, Y. Dissipation of information in channels with input constraints. *IEEE Transactions on Information Theory*, 62(1):35–55, 2015.

Polyanskiy, Y. and Wu, Y. Strong data-processing inequalities for channels and bayesian networks. In *Convexity and Concentration*, pp. 211–249. Springer, 2017.

Raginsky, M. Strong data processing inequalities and phi-sobolev inequalities for discrete channels. *IEEE Transactions on Information Theory*, 62(6):3355–3389, 2016.

Reisizadeh, A., Farnia, F., Pedarsani, R., and Jadbabaie, A. Robust federated learning: The case of affine distribution shifts. *NeurIPS*, 2020.

Rudin, W. *Principles of Mathematical Analysis*. International series in pure and applied mathematics. McGraw-Hill, 1976. ISBN 9780070856134. URL https://books.google.com.hk/books?id=kwq2PAACAAJ.

Smith, V., Chiang, C.-K., Sanjabi, M., and Talwalkar, A. S. Federated multi-task learning. In *Advances in Neural Information Processing Systems*, pp. 4424–4434, 2017.

Sun, Z., Kairouz, P., Suresh, A. T., and McMahan, H. B. Can you really backdoor federated learning? *arXiv preprint arXiv:1911.07963*, 2019.

Wang, J. and Joshi, G. Cooperative sgd: A unified framework for the design and analysis of communication-efficient sgd algorithms. In *ICML Workshop on Coding Theory for Machine Learning*, 2019.

Weber, M., Xu, X., Karlas, B., Zhang, C., and Li, B. Rab: Provable robustness against backdoor attacks. *arXiv preprint arXiv:2003.08904*, 2020.

Xie, C., Huang, K., Chen, P.-Y., and Li, B. Dba: Distributed backdoor attacks against federated learning. In *International Conference on Learning Representations*, 2019.

Yin, D., Chen, Y., Kannan, R., and Bartlett, P. Byzantine-robust distributed learning: Towards optimal statistical rates. In *International Conference on Machine Learning*, pp. 5650–5659. PMLR, 2018.

Zhang, J., Zheng, K., Mou, W., and Wang, L. Efficient private erm for smooth objectives. In *Proceedings of the 26th International Joint Conference on Artificial Intelligence*, pp. 3922–3928, 2017.

Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., and Chandra, V. Federated learning with non-iid data. *arXiv preprint arXiv:1806.00582*, 2018.
Appendix

The Appendix is organized as follows:

- Appendix A provides more details on experimental setups for training, presents the effect of Monte Carlo estimation and runtime of attacks, and reports the results on backdoored test set.
- Appendix B provides proofs for our Theorem 2 and Lemma 1 related to model closeness.
- Appendix C gives proofs for our Theorem 3 related to the parameter smoothing.

A. Experimental Details

A.1. More Details on Experiment Setup for Training

We focus on multi-class logistic regression (one linear layer with softmax function and cross-entropy loss), which is a convex classification problem. We train the FL system following our CRFL framework with three datasets: Lending Club Loan Data (LOAN) (Kan, 2019), MNIST (LeCun & Cortes, 2010), and EMNIST (Cohen et al., 2017). The financial dataset LOAN is a tabular dataset that contains the current loan status (Current, Late, Fully Paid, etc.) and latest payment information, which can be used for loan status prediction. It consists of 1,808,534 data samples and we divide them by 51 US states, each of whom represents a client in FL, hence the data distribution is non-i.i.d. 80% of data samples are used for training and the rest is for testing. EMNIST is an extended MNIST dataset that contains 10 digits and 37 letters. In the two image datasets, we split the training data for FL clients in an i.i.d. manner. The data description and other parameter setups are summarized in Table 1. For these datasets, the local learning rate η_i is 0.001 for all clients. The server performs an adaptive norm clipping threshold ρ_t that increases by time so that the normal learning ability of the model can be preserved (described in Table 1), and sets the fixed training noise level $\sigma_t = 0.01 (t < T)$. When the clipping threshold is not a fixed value, L_Z is calculated based on ρ_{adv} following Lemma 1 for our experiment.

Regarding the attack setting, by default, we set $R = 1$, and if there are more adversarial clients, we use same parameters setups for all of them. For the pixel-pattern backdoor in MNIST and EMNIST, the attackers add the backdoor pattern (see Figure 10 for an example) in images and swap the label of any sample with such patterns into the target label, which is “digit 0”. Similarly, for the preprocessed\(^1\) LOAN dataset, the attackers increase the value of the two features (i.e., num_tl_120dpd_2m, num_tl_90g_dpd_24m) as a backdoor pattern, and swap label to “Does not meet the credit policy. Status:Fully Paid”. Since we adopt Lemma 1 for our experiments, we focus on the backdoor pattern $\|\delta_i\| = \|\delta_{x_i}\|$. The magnitude of backdoored pattern in every example is $\|\delta_i\| = 0.1$ on three datasets. Every attacker’s batch is mixed with correctly labeled data and such backdoored data with poison ratio $q_B = n_B / n_{B_i}$.

We train the FL global model until convergence and then use our certification in Algorithm 2 for robustness evaluation.

Dataset	Classes	#Training samples	Features	N	q_B/n_B	τ_i	γ_i	τ_{adv}	ρ_t
LOAN	9	1446827	91	20	40/800	143	10	6	0.025t+2
MNIST	10	60000	784	20	5/100	30	10	10	0.1t+2
EMNIST	47	697932	784	50	5/200	70	20	10	0.25t+4

Table 1. Dataset description and parameters

A.2. More Experimental Results on Clean Test Set

Effect of Monte Carlo estimation Recall that we use M and α when calculating the lower bound p_A and the upper bound p_B. Figure 11 (left) shows that larger number M of noisy models used for certification can result in larger certified radius. Figure 11 (middle) presents that the certified radius is smaller when the error tolerance α is smaller but overall the certified accuracy is not very sensitive to α.

\(^1\)We preprocess LOAN by dropping the features which are not digital and cannot be one-hot encoded, and then normalizing the rest 90 features and so that the value of each feature is between 0 and 1.
Throughout this paper, “benign training process” is the process that trains with clean dataset D for T rounds and outputs $\mathcal{M}(D)$; “backdoored training process” is the process that trains with poisoned dataset D' at round t_{adv}, trains with original clean dataset when $t \neq t_{adv}$, and outputs $\mathcal{M}(D')$.

B. Proofs of Model Closeness

In this section, we will present preliminaries on f-divergence, define the problem of model closeness and then provide the detailed proofs for our Theorem 2 and Lemma 1 that are related to model closeness. Let us list the notations used in the paper and the Appendix in Table 2.

Throughout this paper, “benign training process” is the process that trains with clean dataset D for T rounds and outputs $\mathcal{M}(D)$; “backdoored training process” is the process that trains with poisoned dataset D' at round t_{adv}, trains with original clean dataset when $t \neq t_{adv}$, and outputs $\mathcal{M}(D')$.

B.1. Preliminaries on f-divergence

Let $f : (0, \infty) \to \mathbb{R}$ be a convex function with $f(1) = 0$, ν and ρ be two probability distributions. Then f-divergence is defined as

$$ D_f(\nu \| \rho) = E_{W \sim \rho} \left[f \left(\frac{\nu(W)}{\rho(W)} \right) \right]. $$

A.3. Experimental Results on Backdoored Test Set

In this section, we report the certified accuracy on the backdoored test set. For every test sample, the backdoor pattern is added to the input while the label is still correct. As shown in Figure 12 and 13, the results are similar to the results on the clean test set.
Different number of total clients

\(0.5\)

8

2

2.0

\(\nu_K\)

where

\(\eta_f(K) := \sup_{\nu, \rho : D_f(\nu|\rho) \neq 0} \frac{D_f(\nu K||\rho K)}{D_f(\nu||\rho)}. \)

(c) Different training rounds \(T\)

Figure 13. Certified accuracy with different \(\sigma\) (a), \(N\) (b) and \(T\) (c) on MNIST backdoored test set.

Table 2. Table of notations

Notation	Description
\(M()\)	the training protocol in Algorithm 2
\(z^i_j\)	\(j\)-th data sample at client \(i\) with input \(x_j^i\) and label \(y_j^i\)
\(\delta_{iz}\)	backdoored version of \(z^i_j\) where \(\delta_{iz}\) is input backdoor pattern and \(\delta_{iy}\) is label flipping effect
\(D := \{S_1, S_2, \ldots, S_\nu\}\)	Clean training dataset, the union of clean local dataset of \(N\) clients
\(D' := D + \{(z^i_j)_{i=1}^{t_{safe}}\};\)	poisoned training dataset in round \(t_{safe}\) with \(R\) attackers and \(Q\) poisoned samples in \(i\)-th attacker’s local dataset
\(M(D)\)	the clipped global model obtained from \(M\) using \(D\)
\(M(D')\)	the clipped global model obtained from \(M\) that uses \(D'\) at round \(t_{safe}\), and uses \(D\) at round \(t \neq t_{safe}\)
\(g_i(w) = g_i(w; \xi_i)\)	local gradients at client \(i\) w.r.t \(w\) with clean batch \(\xi_i\)
\(B^i \triangleq g'_i(w) - g_i(w)\)	local gradients at client \(i\) w.r.t \(w\) with poisoned batch \(\xi^i\)
\(w_t \leftarrow \tilde{w}_{t-1} + \sum_{i=1}^{N} p_i (w_i - \tilde{w}_{t-1})\)	the difference between poisoned local gradient and benign local gradient w.r.t same model parameters \(w\)
\(\tilde{w}_t = \text{Clip}_{\rho_t}\left(w_t / \max(1, \frac{\|w_t\|}{\rho_t})\right)\)	client \(i\)’s local model parameters at local iteration \(s\)
\(h_i(w) = H_i^\nu(W; x_{test}) = \mathbb{P}_{W \sim \mu(W)}[h(W; x_{test}) = c]\)	aggregated global model at round \(t\)
\(\rho_t = H_i^\nu(W; x_{test}) = \mathbb{P}_{W \sim \mu(W)}[h(W; x_{test}) = c]\)	clipped global model with model parameters norm threshold \(\rho_t\) at round \(t\)
\(h_{\text{adv}}(w; x_{test}) = \arg \max_{c \forall y} H_i^\nu(W; x_{test})\)	global model at round \(t\) that is perturbed by noise \(\epsilon_{ts}\)
\(\text{the smoothed classifier transferred from the base classifier} \ b\)	the probability (the majority votes) of class \(c\) for the given \(w\) and \(x_{test}\)
\(\text{the mostly probable label among all classes (the majority vote winner) for the given} \ w\)	the mostly probable label among all classes (the majority vote winner) for the given \(w\) and \(x_{test}\)

Common \(f\)-divergence includes Total variation \(f(x) = \frac{1}{2} \|x - 1\|\) and Kullback-Leibler (KL) divergence \(f(x) = x \log x\).

Lemma 2. For \(m_1, m_2 \in \mathbb{R}^d\) and \(\sigma > 0\), let \(N_1\) and \(N_2\) denote Gaussian distribution \(N_1(m_1, \sigma^2 I)\) and \(N_2(m_2, \sigma^2 I)\), respectively. Then,

\[
D_{KL}(N_1 || N_2) = \frac{\|m_2 - m_1\|^2}{2\sigma^2},
\]

\[
D_{TV}(N_1 || N_2) = 2\Phi\left(\frac{\|m_2 - m_1\|}{\sigma}\right) - 1,
\]

where \(\Phi\) is the CDF of the Gaussian distribution.

The well-known data processing inequality (Polyanskiy & Wu, 2015) for the relative entropy states that, for any convex function \(f\) and any stochastic transformation (probability transition kernel), i.e., Markov Kernel \(K\), we have

\(D_f(\nu K||\rho K) \leq D_f(\nu||\rho),\)

where \(\nu K\) denotes the push-forward of \(\nu\) by \(K\), i.e., \(\nu K = \int \nu(dW)K(W)\). In other words, \(D_f(\nu||\rho)\) decreases by post-processing. (Asoodeh & Calmon, 2020) extends it into machine learning and the operations in a Markov Kernel contain one step of Stochastic Gradient Descent (SGD).

To capture this effect, the quantity of the noisiness of a Markov operator (Raginsky, 2016) for \(f\)-divergence, i.e., contraction coefficient (Asoodeh & Calmon, 2020), is defined as

\[\eta_f(K) := \sup_{\nu, \rho : D_f(\nu||\rho) \neq 0} \frac{D_f(\nu K||\rho K)}{D_f(\nu||\rho)}.\]
Lemma 3 (Two-point characterization of Total variation (Dobrushin, 1956)). The supremum in the definition of $\eta_{TV}(K)$ can be restricted to point mass:

$$\eta_{TV}(K) := \sup_{y_1, y_2 \in Y} D_{TV}(K(y_1)||K(y_2)) \quad (7)$$

Lemma 4 ($\eta_{TV}(K)$ Upper Bound (Makur, 2019)). For any f-divergence, we have

$$\eta_f(K) \leq \eta_{TV}(K) \quad (8)$$

B.2. Problem Definition

As described in Algorithm 1, due to the Gaussian noise perturbation mechanism, in each iteration the global model can be viewed as a random vector with the Gaussian smoothing measure μ. We use the f-divergence between $\mu(\mathcal{M}(D'))$ and $\mu(\mathcal{M}(D))$ as a statistical distance for measuring model closeness. According to the data post-processing inequality, when we interpret each round of CRFL as a probability transition kernel, i.e., a Markov Kernel, the contraction coefficient of Markov Kernel can help bound the divergence over multiple training rounds of FL.

Iteration as Markov Kernel We identify each iteration as a Markov Kernel. At iteration t, the central server produces the new model by $\tilde{w}_t \leftarrow \text{Clip}_{p_i}(w_{t}) + \epsilon_t$ where w_t is the aggregated model. We denote $w_t = \Psi_t(\tilde{w}_{t-1})$, and

$$\tilde{w}_t \leftarrow \text{Clip}_{p_i}(\Psi_t(\tilde{w}_{t-1})) + \epsilon_t, \quad (9)$$

where

$$\Psi_t(\tilde{w}_{t-1}) \triangleq \tilde{w}_{t-1} - \sum_{i=1}^{N} p_i \eta_i \sum_{s=(t-1)\tau_i+1}^{\tau_i} g_i(w_{s-1}; \xi^i_{s-1}) \quad (10)$$

is the federated learning SGD process and the local model is initialized as $w^i_{t(t-1)\tau_i} \leftarrow \tilde{w}_{t-1}$. Therefore, iteration t can be realized by K_t, a Markov Kernel associated with the mapping $\tilde{w}_{t-1} \rightarrow \text{Clip}_{p_i}(\Psi_t(\tilde{w}_{t-1})) + \epsilon_t$. K_t receives \tilde{w}_{t-1} and then generates \tilde{w}_t. Let μ_t denote the distribution of global model \tilde{w}_t, and we have $\mu_{t-1} \sim \mu_t$, then $\mu_t = \int \mu_{t-1}(dy)K_t(y)$.

Model Replacement Attack at t_{adv} We define the backdoored federated learning SGD process Ψ'_t at round $t = t_{adv}$ as

$$\Psi'_t(\tilde{w}_{t-1}) \triangleq \tilde{w}_{t-1} - \sum_{i=1}^{R} p_i \gamma_i \eta_i \sum_{s=(t-1)\tau_i+1}^{\tau_i} g_i(w^i_{s-1}; \xi^i_{s-1}) - \sum_{i=R+1}^{N} p_j \eta_j \sum_{s=(t-1)\tau_i+1}^{\tau_i} g_j(w^i_{s-1}; \xi^i_{s-1}) \quad (11)$$

where the local model is initialized as $w^i_{t(t-1)\tau_i} \leftarrow \tilde{w}_{t-1}$. Then we define the corresponding Markov Kernel K'_t associated with the mapping $\tilde{w}_{t-1} \rightarrow \text{Clip}_{p_i}(\Psi'_t(\tilde{w}_{t-1})) + \epsilon_t$. Through aggregation, the global model is influenced by adversarial clients. Let μ'_t denote the distribution of backdoored global model \tilde{w}'_t, and we have $\mu_{t-1} \sim \mu'_t$, then $\mu'_t = \int \mu_{t-1}(dy)K'_t(y)$.

After Model Replacement Attack After t_{adv}, all clients use the original clean datasets to update their local model. However, the global model in the backdoored training process already begins to differ from the one in the benign training process from round t_{adv} so it is difficult to analysis it through distributed SGD. Therefore, we use Markov Kernel to quantify the poisoning effect. When $t > t_{adv}$, we have $\tilde{w}'_{t-1} \sim \mu'_t$, then $\mu'_t = \int \mu'_{t-1}(dy)K'_t(y)$. Because the clean datasets are used for both clean and backdoored training process when $t > t_{adv}$, the Markov Kernel K_t is the same. We define the contraction coefficient (Asoodeh & Calmon, 2020) as:

$$\eta_f(K_t) := \sup_{\mu_{t-1}, \mu'_{t-1} : D_f(\mu_{t-1}||\mu'_{t-1})} \frac{D_f(\mu_{t-1}K_t||\mu'_{t-1}K'_t)}{D_f(\mu_{t-1}||\mu'_{t-1})} \quad (12)$$

Therefore, $\eta_f(K_t)$ can serve as the upper bound for the real $\frac{D_f(\mu_{t}||\mu'_{t})}{D_f(\mu_{t-1}||\mu'_{t-1})}$. Then we write the model closeness $D_f(\mu_{t}||\mu'_{t})$.
as:

\[D_f(\mu_T \| \mu_T') = D_f(\mu_{\text{adv}} \| \mu_{\text{adv}}') \frac{D_f(\mu_{\text{adv}} \| \mu_{\text{adv}}')}{D_f(\mu_{\text{adv}} \| \mu_{\text{adv}}')} \]

\[\leq D_f(\mu_{\text{adv}} \| \mu_{\text{adv}}') \prod_{t=t_{\text{adv}}+1}^{T} \eta_f(K_t). \]

(13)

We will compute \(D_f(\mu_{\text{adv}} \| \mu_{\text{adv}}') \) and \(\eta_f(K_t) \) respectively in the following sections.

B.3. Analysis for \(t = t_{\text{adv}} \)

We would like to bound the divergence of the global model at round \(t_{\text{adv}} \) between the benign training process and the backdoor training process, i.e., \(D_f(\mu_{\text{adv}} \| \mu_{\text{adv}}') \). We consider KL divergence. Based on the KL divergence for two Gaussian distributions in Lemma 2 and Assumption 3, we have

\[D_{KL}(\mu_{\text{adv}} \| \mu_{\text{adv}}') = D_{KL}(N(\text{Clip}_{\rho_{\text{adv}}}(w_{\text{adv}}), \sigma_{\text{adv}}^2 1)) || N(\text{Clip}_{\rho_{\text{adv}}}(w_{\text{adv}}'), \sigma_{\text{adv}}^2 1)) \]

\[= \frac{\| \text{Clip}_{\rho_{\text{adv}}}(w_{\text{adv}}) - \text{Clip}_{\rho_{\text{adv}}}(w_{\text{adv}}') \|^2}{2 \sigma_{\text{adv}}^2} \]

\[\leq \frac{\| w_{\text{adv}} - w_{\text{adv}}' \|^2}{2 \sigma_{\text{adv}}^2}. \]

(14)

Accumulated Effect in Local Iterations In order to bound \(\| w_{\text{adv}} - w_{\text{adv}}' \|^2 \), we look at the local iterations \(s = (t - 1) \tau_i + 1, (t - 1) \tau_i + 2, \ldots, t \tau_i \) of adversarial client \(i \) for the benign training process and the backdoored training process. We use \(\bar{s} = s - (t_{\text{adv}} - 1) \tau_i, \bar{s} = 1, 2, \ldots, \tau_i \) for simplicity. We denote \(\Delta^i_{\bar{s}} \triangleq w^i_{\bar{s}} - w^i_{\bar{s}'} \). Note that \(\Delta^i_0 = 0 \) because in the start of round \(t_{\text{adv}} \), the initial local model is the same benign global model \(w_{(t_{\text{adv}}-1)\tau_i} = w_{(t_{\text{adv}}-1)\tau_i} = \tilde{w}_{t_{\text{adv}}-1} \) for all clients \(i \in [N] \) in both benign and backdoored training process. For simplicity, we will use \(g_i(w), \tilde{g}_i(w) \) instead of \(g_i(w; \xi), \tilde{g}_i(w; \xi') \) in the rest of this section. We denote \(B^i \triangleq \tilde{g}_i(w) - g_i(w) \).

Lemma 5. Under Assumption 1 and the condition \(\eta_i \leq \frac{1}{\beta} \), for \(\bar{s} \in [1, \tau_i] \), we have

\[\Delta^i_{\bar{s}+1} \leq \Delta^i_{\bar{s}} + 2 \eta_i \| B^i \| \Delta^i_{\bar{s}} + 2 \eta_i^2 \| B^i \|^2. \]

(15)

We defer the proof to Section B.5. Lemma 5 states that the deviation at the current local iteration \(\Delta^i_{\bar{s}} \) is added upon the deviation at the last iteration.

Lemma 6. Based on Lemma 5, under Assumption 1 and the condition \(\eta_i \leq \frac{1}{\beta} \), for \(\bar{s} \in [1, \tau_i] \), we have

\[\Delta^i_{\bar{s}} \leq 2 \eta_i \| B^i \| \bar{s}. \]

(16)

Proof. We prove it using induction argument (Zhang et al., 2017). Due to the fact \(\Delta^i_0 = 0 \), so \(\Delta^i_1 \leq \sqrt{2 \eta_i^2 \| B^i \|^2} \leq 2 \eta_i \| B^i \| \bar{s} \) holds for some \(\bar{s} \). Suppose the argument \(\Delta^i_{\bar{s}} \leq 2 \eta_i \| B^i \| \bar{s} \) holds for some \(\bar{s} \), then we verify \(\bar{s} + 1 \),

\[\Delta^i_{\bar{s}+1} \leq 4 \eta_i^2 \| B^i \|^2 \bar{s} + 4 \eta_i^2 \| B^i \|^2 \bar{s} + 2 \eta_i^2 \| B^i \|^2 \]

\[= \eta_i^2 \| B^i \|^2 (4 \bar{s} + 8 \bar{s} + 4) \]

\[\leq 4 \eta_i^2 \| B^i \|^2 (\bar{s} + 1)^2. \]

It turns out that \(\Delta^i_{\bar{s}} \leq 2 \eta_i \| B^i \| \bar{s} \) also holds for \(\bar{s} + 1 \). Thus, the argument is correct. \(\square \)

Lemma 6 states that the deviation is accumulated over the local iterations. The larger number of local iterations \(\tau_i \), the larger deviation \(\Delta^i_{\bar{s}} \). Next, we provide the upper bound for \(\| B^i \| \).
where we use the fact from linear algebra that \(\|B\| \leq \frac{q_{B_i}}{n_{B_i}} L_Z \|\delta_i\| \).

Proof.

\[
\|B\| = \|g'(w) - g_i(w)\| = \left\| \frac{1}{n_{B_i}} \left(\sum_{j=1}^{q_{B_i}} \nabla \ell(w; z_j^i) + \sum_{j=q_{B_i}+1}^{n_{B_i}} \nabla \ell(w; z_j^i) \right) - \frac{1}{n_{B_i}} \sum_{j=1}^{n_{B_i}} \nabla \ell(w; z_j^i) \right\| \\
\leq \left\| \frac{1}{n_{B_i}} L_Z \sum_{j=1}^{n_{B_i}} (z_j^i - z_j^i) \right\| \\
= \frac{q_{B_i}}{n_{B_i}} L_Z \|\delta_i\|.
\]

Scaling and Aggregation Let the scale factor be \(\gamma_i \) for \(i \)-th adversarial client, then the scaled malicious local update is \(\gamma_i (w_{tab, \tau_i}^{i} - \tilde{w}_{tab, -1}^{i}) \). We assume in the benign setting (which is a virtual training process for analyzing, and we do not really train such model), this client also scales its clean local updates as \(\gamma_i (w_{tab, \tau_i}^{i} - \tilde{w}_{tab, -1}^{i}) \), which can be expanded as \(-\eta_i \gamma_i \sum_{a=(\tau_a, -1)_{a=1}}^{(t_a, -1)} g_i (w_{tab, \tau_a}^{i} - \tilde{w}_{tab, -1}^{i}) \). This assumption does not hurt the global model performance in the virtual benign setting since the local learning objectives are benign so scaling the updates is equivalent to scale its local learning rate \(\eta_i \leftarrow \eta_i \gamma_i \).

After aggregation, the deviation between global model parameters in benign and backdoored training process can be bounded. Note that the benign local model updates are cancelled out since they are the same in the two training process.

Lemma 8. The deviation between the aggregated global model in the benign training process and the global model in the backdoored training process at round \(t_{adv} \) is

\[
\|w_{tab} - w_{tab}^{'}\|^2 = R \sum_{i=1}^{R} (\gamma_i p_i \Delta_{\tau_i}^{i})^2.
\]

Proof.

\[
\|w_{tab} - w_{tab}^{'}\|^2 \\
= \left\| \sum_{i=1}^{R} p_i \gamma_i (w_{tab, \tau_i}^{i} - w_{\tau_i}^{i}) \right\|^{2} - \left\| \sum_{i=1}^{R} p_i \gamma_i (w_{tab, \tau_i}^{i} - w_{\tau_i}^{i}) \right\|^2 \\
= \left\| \sum_{i=1}^{R} p_i \gamma_i (w_{tab, \tau_i}^{i} - w_{tab, \tau_i}^{i}) \right\|^2 \\
\leq R \sum_{i=1}^{R} (p_i \gamma_i \Delta_{\tau_i}^{i})^2 \leq R \sum_{i=1}^{R} \|a_i\|^2.
\]

where we use the fact from linear algebra that \(\|\sum_{i=1}^{R} a_i\|^2 \leq R \sum_{i=1}^{R} \|a_i\|^2 \).
Lemma 9. Under Assumption 1, 2, 3 and the condition \(\eta_i \leq \frac{1}{\beta} \), we have

\[
D_{KL}(\mu \| \mu') \leq \frac{2R \sum_{i=1}^{R} \left(p_i \gamma_i \tau_i \eta_i \frac{q_{B_s} L Z }{n B_i} \| \delta_i \| \right)^2}{\sigma_{t_{adv}}^2}.
\]

Proof. Plugging Lemma 6 and Lemma 7 into Lemma 8, we have:

\[
\| w_{t_{adv}} - w'_{t_{adv}} \| \leq R \sum_{i=1}^{R} \left(2 p_i \gamma_i \tau_i \eta_i q_{B_s} L Z \| \delta_i \| \right)^2.
\]

Plugging Eq. 20 to Eq. 14, it is clear that the divergence of noisy global model parameters between the benign and backdoor training process at round \(t_{adv} \) is bounded.

B.4. Analysis for \(t > t_{adv} \)

Now we focus on the contraction coefficient \(\eta_f(K_t) \) when \(t > t_{adv} \).

Lemma 10. Based on Lemma 2 and 3, under Assumption 3, we have

\[
\eta_{TV}(K_t) \leq 2 \Phi \left(\frac{\rho_t}{\sigma_t} \right) - 1.
\]

Proof.

\[
\eta_{TV}(K_t) := \sup_{w_1, w_2 \in W} D_{TV}(K_t(w_1) \| K_t(w_2))
\]

\[
\leq \sup_{w_1, w_2 \in W} D_{TV} \left(N \left(\text{Clip}_{\rho_t} (\Psi(w_1)), \sigma_t^2 I \right) \| N \left(\text{Clip}_{\rho_t} (\Psi(w_2)), \sigma_t^2 I \right) \right)
\]

\[
= \sup_{w_3, w_4 \in \text{ball}(\rho_t)} D_{TV} \left(N \left(w_3, \sigma_t^2 I \right) \| N \left(w_4, \sigma_t^2 I \right) \right)
\]

\[
= \sup_{w_3, w_4 \in \text{ball}(\rho_t)} 2 \Phi \left(\frac{\| w_3 - w_4 \|}{2 \sigma_t} \right) - 1
\]

\[
= 2 \Phi \left(\frac{\rho_t}{\sigma_t} \right) - 1. \quad \text{the norm of model parameters is bounded by } \rho_t
\]

Finally, we obtain the divergence of global model in round \(T \). We restate our Theorem 2 here.

Theorem 2. When \(\eta_i \leq \frac{1}{\beta} \) and Assumptions 1, 2, and 3 hold, the KL divergence between \(\mu(D) \) and \(\mu(D') \) with \(\mu(w) = \mathcal{N}(w, \sigma_T^2 I) \) is bounded as:

\[
D_{KL}(\mu(D) \| \mu(D')) \leq \frac{2R \sum_{i=1}^{R} \left(p_i \gamma_i \tau_i \eta_i \frac{q_{B_s} L Z }{n B_i} \| \delta_i \| \right)^2}{\sigma_{t_{adv}}^2} \prod_{t=t_{adv}+1}^{T} \left(2 \Phi \left(\frac{\rho_t}{\sigma_t} \right) - 1 \right)
\]
Proof.

\[D_{KL}(\mu(\mathcal{M}(D))||\mu(\mathcal{M}(D')))) = D_{KL}(\mu_T||\mu'_T) \]
\[\leq D_{KL}(\mu_{tab,}||\mu'_{tab,}) \prod_{t=tab+1}^T \eta_{KL}(K_t) \quad \text{\because because of Eq. 13} \]
\[\leq D_{KL}(\mu_{tab,}||\mu'_{tab,}) \prod_{t=tab+1}^T \eta_{TV}(K_t) \quad \text{\because because of Lemma 4} \]
\[\leq \frac{2R \sum_{i=1}^R \left(p_{i\gamma_i}\tau_i \eta_i \|B^i\|^2\right)}{\sigma^2_{\text{tab,}}} \prod_{t=tab+1}^T \left(2\Phi\left(\frac{\rho_t}{\sigma_t}\right) - 1\right) \quad \text{\because because of Lemma 9 and 10} \]
\[\leq \frac{2R \sum_{i=1}^R \left(p_{i\gamma_i}\tau_i \eta_i \frac{\rho_t}{\sigma_t} L_z \|\delta_{it}\|^2\right)}{\sigma^2_{\text{tab,}}} \prod_{t=tab+1}^T \left(2\Phi\left(\frac{\rho_t}{\sigma_t}\right) - 1\right). \quad \text{\because because of Lemma 7} \]

B.5. Proof of Lemma 5

We first introduce a new lemma, which will be used to prove Lemma 5.

Lemma 11. Under Assumption 1 on convexity and smoothness, we have

\[\|g_i(w^i_2) - g'_i(w^i_2)\|^2 \leq 2\beta \left(\Delta^i_{t+1} - g_i(w^i_2) - g_i(w^i_2)\right) + 2\|g'_i(w^i_2) - g_i(w^i_2)\|^2. \quad (22) \]

Proof.

\[\|g_i(w^i_2) - g'_i(w^i_2)\|^2 \]
\[= \|g_i(w^i_2) - g_i(w^i_2)\| - \|g'_i(w^i_2) - g_i(w^i_2)\| \]
\[\leq 2\|g_i(w^i_2) - g_i(w^i_2)\|^2 + 2\|g'_i(w^i_2) - g_i(w^i_2)\|^2. \quad \text{\because because of Assumption 1} \]

Next we provide the proof of Lemma 5.

Proof of Lemma 5. When \(\eta_i \leq \frac{1}{\beta} \),

\[\Delta^i_{t+1} \triangleq \|w^i_{t+1} - w^i_t\|^2 \]
\[= \left(\|w^i - w^i_t\| - \eta_i \left[g_i\left(w^i_t\right) - g'_i\left(w^i_t\right)\right]\right)^2 \]
\[= \Delta^i_t + 2\eta_i \left[g_i\left(w^i_t\right) - g'_i\left(w^i_t\right)\right]^2 \]
\[= \Delta^i_t + 2\eta_i \left[g_i\left(w^i_t\right) - g'_i\left(w^i_t\right)\right]^2 + 2\eta_i \left[w^i_t - w^i, g'_i\left(w^i_t\right) - g_i\left(w^i_t\right)\right] + 2\eta_i \left[w^i_t - w^i, g'_i\left(w^i_t\right) - g_i\left(w^i_t\right)\right] \]
\[\leq \Delta^i_t + 2\eta_i \left[g_i\left(w^i_t\right) - g'_i\left(w^i_t\right)\right]^2 + 2\eta_i \left[w^i_t - w^i, g'_i\left(w^i_t\right) - g_i\left(w^i_t\right)\right] + 2\eta_i \left[w^i_t - w^i, g'_i\left(w^i_t\right) - g_i\left(w^i_t\right)\right] \]
\[\leq \Delta^i_t + 2\eta_i \left[g_i\left(w^i_t\right) - g'_i\left(w^i_t\right)\right]^2 + 2\eta_i \Delta^i_t \left[g'_i\left(w^i_t\right) - g_i\left(w^i_t\right)\right] \quad \text{\because because of of Lemma 11} \]
\[\leq \Delta^i_t + 2\eta_i \left[g_i\left(w^i_t\right) - g'_i\left(w^i_t\right)\right]^2 + 2\eta_i \Delta^i_t \left[g'_i\left(w^i_t\right) - g_i\left(w^i_t\right)\right] \quad \text{\because because of } (a, b) \leq \|a\| \|b\| \]
\[= \Delta^i_t + 2\eta_i \|B^i\| \Delta^i_t + 2\eta_i^2 \|B^i\|^2. \quad \text{\because because of the definition } B^i \triangleq g'_i(w) - g_i(w) \]
B.6. Proof of Lemma 1

We first restate our Lemma 1 here and then provide the detailed proof.

Lemma 1. Given the upper bound on model parameters norm, i.e., \(||w|| \leq \rho \), and two data samples \(z_1 \) and \(z_2 \) with \(x_1 \neq x_2 \) (\(y_1 = y_2 \)), for multi-class logistic regression (i.e., one linear layer followed by a softmax function and trained by cross-entropy loss), its Lipschitz gradient constant w.r.t data is \(L_x = \sqrt{2 + 2\rho + \rho^2} \). That is,

\[
\| \nabla \ell (w; z_1) - \nabla \ell (w; z_2) \| \leq \sqrt{2 + 2\rho + \rho^2} |z_1 - z_2|.
\]

Proof. Given model parameters \(W \) of one linear layer, data samples \(z = \{x, y\} \) and \(z' = \{x', y\} \), we denote their loss as \(\ell (W; z) \) and \(\ell (W; z') \), where \(x \in \mathbb{R}^{1 \times d_x}, \ W \in \mathbb{R}^{d_x \times C}, \ Y \in \mathbb{R}^{1 \times C} \) is a one-hot vector for \(C \) classes where \(Y_i = 1 \{i = y\} \). For \(x \), we denote \(xW \) as the output of the linear layer, \(P_i(x) = \text{softmax}(xW)_i \) as the normalized probability for class \(i \) (the output of the softmax function). The cross-entropy loss is calculated as

\[
\ell (x) = - \sum_i Y_i \log P_i (x) = - \sum_i Y_i \log \text{softmax}(xW)_i.
\]

We define \(G \in \mathbb{R}^{d_x \times C} \) as the gradient for one sample:

\[
G(x) = \nabla \ell (W; \{x, y\}) = \frac{d\ell}{dW}(x) = x^\top(P(x) - Y),
\]

and we define \(G' \) as

\[
G(x') = \nabla \ell (W; \{x', y\}) = \frac{d\ell}{dW}(x') = x'^\top(P(x') - Y).
\]

According to the mean value theorem (Rudin, 1976), for a continuous vector-valued function \(f : [a, b] \to \mathbb{R}^k \) differentiable on \((a, b)\), there exist \(c \in (a, b) \) such that

\[
\frac{\|f(b) - f(a)\|}{b - a} \leq \|f'(c)\|.
\]

Because \(x \) is normalized to \([0, 1]\) (a common dataset pre-processing method), when we define \(G_t(t) = G(x' + t(x - x')) \), \(t \in [0, 1] \), based on the mean value theorem we have

\[
\|G(x) - G(x')\| = \|G_t(1) - G_t(0)\|
\leq \left\| \frac{dG_t}{dt}(t_0) \right\| (1 - 0)
\leq \left\| \frac{dG}{dx}(\xi) \odot (x - x') \right\|
\leq \left\| \frac{dG}{dx}(\xi) \right\| |x - x'|
\]

where \(\xi = x' + t_0(x - x') \), \(t_0 \in [0, 1] \). \(\frac{dG}{dx}(\xi) \) is a 3 dimension tensor and \(\odot \) is tensor product. We reduce the computation to 2 dimension matrix for simplification. Let \(G_i \) denote the \(i \)-th column of matrix \(G \) (the gradient w.r.t \(W_i \)). Let \(1 \) denote a row vector where \(i \)-th element is 1 and the others is 0. We have
We want to verify the robustness of smoothed multi-class classifier. Recall that we smooth the classifier \(h \) (i.e., model weights) of this classifier. In the testing phase, the model weight \(w \) is fixed, just like \(x_{test} \), so it can be seen as an argument for the classifier \(h \). For example, in a one-linear-layer model, \(h(w; x_{test}) = \text{softmax}(w \times x_{test}) \), where \(\times \) is the multiplication operation; in a one-conv-layer model, \(h(w; x_{test}) = \text{softmax}(w \ast x_{test}) \) where \(\ast \) is the convolution operation. In a model with multiple layers, the expression of model prediction \(h(w; x_{test}) \) also holds, where \(w \) consists of the weights from all layers. To our best knowledge, this is the first work to study parameter smoothing on \(w \) rather than input smoothing on \(x_{test} \).

We want to verify the robustness of smoothed multi-class classifier. Recall that we smooth the classifier \(h : (\mathcal{W}, \mathcal{X}) \to \mathcal{Y} \)
We need to provide guarantees that hold simultaneously over a whole class of specifications (\(W \subseteq Y \)). We assume \(\mathbb{W} \subseteq \mathbb{Y} \), where we denote \(\phi_2 \).

Then we define the certification problem \(\mathbb{E} \). Our goal is to certify that the prediction \(h_s(w; x_{test}) \) is robust to model parameters perturbations of size at most \(\epsilon \) measured by some distance function \(d \), i.e.,

\[
 h_s(w'; x_{test}) = h_s(w; x_{test}) \quad \forall w' \text{ such that } d(w, w') \leq \epsilon
\]

We assume \(\mathbb{W} \subseteq \mathbb{R}^d \) (a \(d \) dimensional model parameters space). Our framework involves a reference measure \(\rho = \mu(w) \), the set of perturbed distributions \(\mathbb{D}_{w, \epsilon} = \{ \mu(w'): d(w, w') \leq \epsilon \} \), and a set of specifications \(\phi : (\mathbb{W}, \mathbb{X}) \rightarrow \mathbb{Z} \subseteq \mathbb{R} \). Specifically, let \(c = h_s(w; x_{test}) \). Since we are working on the multi-class classification problem, for every pair of classes \(\{c, c'\} \) where \(c' \in \mathbb{Y} \setminus \{c\} \), we need a \(\phi \), which is a generic function over the model parameters space that we want to verify has robust properties. Following (Dvijotham et al., 2020), for every \(c' \in \mathbb{Y} \setminus \{c\} \), we define a specification \(\phi_{c,c'} : (\mathbb{W}, \mathbb{X}) \rightarrow \{-1,0,+1\} \) as follows:

\[
 \phi_{c,c'}(w) = \begin{cases}
+1 & \text{if } h(w; x_{test}) = c \\
-1 & \text{if } h(w; x_{test}) = c' \\
0 & \text{otherwise}
\end{cases}
\]

where we denote \(\phi_{c,c'}(w; x_{test}) \) as \(\phi_{c,c'}(w) \) for simplicity.

Proposition 1. The smoothed classifier \(h_s \) is robustly certified, i.e., Eq. 28 holds, if and only if for every \(c' \in \mathbb{Y} \setminus \{c\} \), \(\phi_{c,c'} \) is robustly certified at \(\mu(w) \) w.r.t \(\mathbb{D}_{w, \epsilon} \). Verifying that a given specification \(\phi \) is robustly certified is equivalent to checking if the optimal value of the following optimization problem is non-negative:

\[
 OPT(\phi, \rho, \mathbb{D}_{w, \epsilon}) := \min_{\nu \in \mathbb{D}_{w, \epsilon}} \mathbb{E}_{\mathbb{W} \sim \nu} [\phi(W')]
\]

Proof. Note that for any perturbed distribution \(\nu \in \mathbb{D}_{w, \epsilon} \), according to the definition of expectation and Eq. 29, we have

\[
 \mathbb{E}_{\mathbb{W} \sim \nu}[\phi_{c,c'}(W')] = \mathbb{P}_{\mathbb{W} \sim \nu}[h(W'; x_{test}) = c] - \mathbb{P}_{\mathbb{W} \sim \nu}[h(W'; x_{test}) = c']
\]

Therefore, \(\mathbb{E}_{\mathbb{W} \sim \nu}[\phi_{c,c'}(W')] \geq 0 \) for all \(c' \in \mathbb{Y} \setminus \{c\} \) is equivalent to \(c = \arg\max_{y \in \mathcal{Y}} \mathbb{P}_{\mathbb{W} \sim \nu}[h(W'; x_{test}) = y] \). For \(\nu = \mu(w') \), this means that \(h_s(w'; x_{test}) = c \). In other words, \(\mathbb{E}_{\mathbb{W} \sim \nu}[\phi_{c,c'}(W')] \geq 0 \) for all \(c' \in \mathbb{Y} \setminus \{c\} \) and all \(\nu = \mu(w') \in \mathbb{D}_{w, \epsilon} \) if and only if \(h_s(w'; x_{test}) = c \) for all \(w' \) such that \(d(w, w') \leq \epsilon \), proving the required robustness certificate.

Then we define the certification problem \(^2\):

Definition 1. Given a reference distribution \(\rho \in \mathbb{P}(\mathbb{W}) \), probabilities \(p_A, p_B \) that satisfy \(p_A, p_B \geq 0, p_A + p_B \leq 1 \), we define the class of specifications \(S \):

\[
 S = \{ \phi : (\mathbb{W}, \mathbb{X}) \rightarrow \{-1,0,+1\} \text{ s.t. } \mathbb{P}_{\mathbb{W} \sim \rho}[\phi(W) = +1] \geq p_A, \mathbb{P}_{\mathbb{W} \sim \rho}[\phi(W) = -1] \leq p_B \}
\]

Given the above definition of \(S \), we can rewrite Proposition 1 as:

Proposition 2. The smoothed classifier \(h_s \) is robustly certified, i.e., Eq. 28 holds, if and only if \(S \) is robustly certified at \(\mu(w) \) w.r.t \(\mathbb{D}_{w, \epsilon} \). Verifying that \(S \) is robustly certified is equivalent to checking if the condition \(\mathbb{E}_{\mathbb{W} \sim \nu}[\phi(W')] \geq 0 \) holds for all \(\nu \in \mathbb{D}_{w, \epsilon} \) and \(\phi \in S \).

We need to provide guarantees that hold simultaneously over a whole class of specifications \(\{\phi_{c,c'}\} \) for all \(c' \in \mathbb{Y} \setminus \{c\} \). In fact, \(p_A \) can be the seen as the “votes” for the top-one class \(c \), and \(p_B \) can be seen as the “votes” for the runner-up class. We note that the function \(f(\cdot) \) used in \(f\)-divergence is convex. As shown in (Dvijotham et al., 2020) (but for input smoothing), for perturbation sets \(\mathbb{D}_{w, \epsilon} = \{ \mu(w'): d(w, w') \leq \epsilon \} \), \(\{ \nu : D_f(\nu \| \mu(w)) \leq \epsilon \} \) specified by a \(f\)-divergence \(D_f \) bound \(\epsilon \), this certification task can be solved efficiently using convex optimization.

\(^2\)It is called information-limited robust certification in (Dvijotham et al., 2020) for input smoothing.
Theorem 4. Let D_f be f-divergence, ϵ be the divergence constraint, S, p_A, p_B be as in Definition 1. The smoothed classifier h_s is robustly certified at reference distribution ρ with respect to $D_{w,\epsilon} = \{\nu : D_f(\nu\|\rho) \leq \epsilon\}$ if and only if the optimal value of the following convex optimization problem is non-negative:

$$
\max_{\lambda \geq 0, \kappa} \kappa - \lambda \epsilon - p_A f_A^*(\kappa - 1) - p_B f_B^*(\kappa + 1) - (1 - p_A - p_B) f_A^*(\kappa) \geq 0
$$

(33)

Proof. We prove the theorem according to Proposition 2. Let $p(W)$ be the clean model parameters distribution, $\nu(W)$ be the perturbed model parameters distribution, $r(W) = \frac{\nu(W)}{p(W)}$ be likelihood ratio. We have

$$
\mathbb{E}_{W \sim r}[\phi(W)] = \mathbb{E}_{W \sim p}[r(W)\phi(W)],

D_f(\nu\|\rho) = \mathbb{E}_{W \sim \rho}[f(r(W))],

\mathbb{E}_{W \sim \rho}[r(W)] = 1.
$$

(34)

The third condition is obtained using the fact that ν is a probability measure. The optimization over ν, which is equivalent to optimizing over r, can be written as

$$
\min_{r \geq 0} \mathbb{E}_{W \sim \rho}[r(W)\phi(W)]
$$

s.t. $\mathbb{E}_{W \sim \rho}[f(r(W))] \leq \epsilon, \mathbb{E}_{W \sim \rho}[r(W)] = 1$

(35)

We solve the optimization using Lagrangian duality as follows. We first dualize the constraints on r (Dvijotham et al., 2020) to obtain

$$
\min_{r \geq 0} \mathbb{E}_{W \sim \rho}[r(W)\phi(W)] + \lambda(\mathbb{E}_{W \sim \rho}[f(r(W))] - \epsilon) + \kappa(1 - \mathbb{E}_{W \sim \rho}[r(W)])
$$

$$
= \min_{r \geq 0} \mathbb{E}_{W \sim \rho}[r(W)\phi(W)] + \lambda f(r(W)) - \kappa r(W)] + \kappa - \lambda \epsilon
$$

$$
= \kappa - \lambda \epsilon - \mathbb{E}_{W \sim \rho}[\max_{r \geq 0} \lambda f(r(W))] - \lambda f(r(W))]
$$

$$
= \kappa - \lambda \epsilon - \mathbb{E}_{W \sim \rho}[\max_{r \geq 0} r(W)(\kappa - \phi(W)) - \lambda f(r(W))]
$$

$$
= \kappa - \lambda \epsilon - \mathbb{E}_{W \sim \rho}[\max_{r \geq 0} r(W)(\kappa - \phi(W)) - f_A^*(r(W))]
$$

$$
\leq \kappa - \lambda \epsilon - \mathbb{E}_{W \sim \rho}[f_A^*(\kappa - \phi(W))]
$$

(36)

where $f_A^*(u) = \max_{v \geq 0}(uv - f_A(v))$, $f_A(v) = \lambda f(v)$. By strong duality, maximizing the final expression in Eq. 36 with respect to $\lambda \geq 0$, κ achieves the optimal value in Eq. 35. If the optimal value is non-negative, the specification S is robustly certified.

$$
\max_{\lambda \geq 0, \kappa} \kappa - \lambda \epsilon - \mathbb{E}_{W \sim \rho}[f_A^*(\kappa - \phi(W))]
$$

(37)

We can plug in p_A, p_B defined in Definition 1:

$$
\max_{\lambda \geq 0, \kappa} \kappa - \lambda \epsilon - p_A f_A^*(\kappa - 1) - p_B f_B^*(\kappa + 1) - (1 - p_A - p_B) f_A^*(\kappa)
$$

(38)

where $p_A = \mathbb{P}_{W \sim \rho}[\phi(W) = +1], p_B = \mathbb{P}_{W \sim \rho}[\phi(W) = -1], 1 - p_A - p_B = \mathbb{P}_{W \sim \rho}[\phi(W) = 0]$.

Remark. Note that our differences from (Dvijotham et al., 2020) are in two aspects: (1) Our certification is with respect to the smoothing scheme on model parameters W; (2) We concretize the corresponding Theorem 2 in (Dvijotham et al., 2020) by the explicit constraints on p_A, p_B.

C.2. Closed-form Certificate for KL Divergence

We instantiate Theorem 4 with KL divergence.

Lemma 12. Let D_{KL} be the KL divergence, ϵ be the divergence constraint, S, p_A, p_B be as in Definition 1. The smoothed classifier h_s is robustly certified at reference distribution ρ with respect to $D_{w,\epsilon} = \{\nu : D_{KL}(\nu\|\rho) \leq \epsilon\}$ if and only if:

$$
\epsilon \leq -\log \left(1 - (\sqrt{p_A} - \sqrt{p_B})^2\right)
$$

(39)
Proof for Lemma 12. The function \(f(u) = u \log(u) \) for KL divergence is a convex function with \(f(1) = 0 \), then we have
\[
f_*(u) = \max_{v \geq 0} (uv - \lambda f(v)) = \max_{v \geq 0} (uv - \lambda v \log(v)).
\]
Setting the derivative with respect to \(v \) to 0 and solving for \(v \), we obtain \(v = \exp \left(\frac{u - \lambda}{\lambda} \right) \), \(\lambda > 0 \). So we have
\[
f_*(u) = \lambda \exp \left(\frac{u - 1}{\lambda} \right).
\]
(40)

Suppose we have a bound on the KL divergence \(D_f(\nu\|\rho) \leq \epsilon \), then we want that the optimal certificate is non-negative:
\[
\max_{\lambda > 0, \kappa} \left(\kappa - \lambda - p_A \lambda \exp \left(\frac{\kappa - 1}{\lambda} - 1 \right) - p_B \lambda \exp \left(\frac{\kappa + 1}{\lambda} - 1 \right) - (1 - p_A - p_B) \lambda \exp \left(\frac{\kappa}{\lambda} - 1 \right) \right) \geq 0.
\]
(41)
Setting \(y = \kappa / \lambda, z = \frac{1}{\lambda}(z > 0) \), we can rewrite Eq. 41 as:
\[
\max_{z > 0, y} \left(\frac{1}{z} \left(y - \epsilon - p_A \exp(y - z - 1) - p_B \exp(y + z - 1) - (1 - p_A - p_B) \exp(y - 1) \right) \right) \geq 0.
\]
(42)
Because \(\frac{1}{z} \) is positive, we divide both the LHS and RHS by \(\frac{1}{z} \) and our goal can be rewritten as:
\[
\max_{z > 0, y} \left(y - \epsilon - p_A \exp(y - z - 1) - p_B \exp(y + z - 1) - (1 - p_A - p_B) \exp(y - 1) \right) \geq 0.
\]
(43)
Setting the derivative of the LHS with respect to \(z \) to 0 and solving for \(z \), we obtain
\[
p_A \exp(y - z - 1) - p_B \exp(y + z - 1) = 0
\]
\[
z = \log \left(\frac{p_A}{p_B} \right).
\]
(44)
Thus the LHS of Eq. 43 reduces to
\[
\max_y \left(y - \epsilon - \left(1 - \left(\sqrt{p_A} - \sqrt{p_B} \right)^2 \right) \exp(y - 1) \right).
\]
(45)
Setting the derivative with respect to \(y \) to 0 and solving for \(y \), we obtain
\[
1 - \left(1 - \left(\sqrt{p_A} - \sqrt{p_B} \right)^2 \right) \exp(y - 1) = 0
\]
\[
y = 1 - \log \left(1 - \left(\sqrt{p_A} - \sqrt{p_B} \right)^2 \right).
\]
(46)
Now the LHS of Eq. 43 reduces to
\[
- \log \left(1 - \left(\sqrt{p_A} - \sqrt{p_B} \right)^2 \right) - \epsilon.
\]
(47)
For this number to be positive, we need
\[
\epsilon \leq - \log \left(1 - \left(\sqrt{p_A} - \sqrt{p_B} \right)^2 \right).
\]
(48)
Hence, proved.

Remark. The challenges are: 1) we divide both the LHS and RHS of Eq. 42 by \(\frac{1}{z} \) to obtain Eq. 43, otherwise the derivative of the LHS of Eq. 42 cannot be calculated directly. Moreover, setting \(y = \kappa / \lambda, z = \frac{1}{\lambda} \) makes it much easier to solve the optimization problem. 2) (Dvijotham et al., 2020) does not directly provide proof for KL Divergence. They prove the certification for Renyi Divergence and then regard KL as a special case of Renyi Divergence.
Finally, we restate our Theorem 3 here.

Theorem 3. Let h_ϵ be defined as in Eq. 1. Suppose $c_A \in \mathcal{Y}$ and $p_A, p_B \in [0, 1]$ satisfy

$$H^{c_A}_\epsilon(w'; x_{test}) \geq p_A \geq p_B \geq \max_{c \neq c_A} H^{c}_\epsilon(w'; x_{test}),$$

then $h_\epsilon(w'; x_{test}) = h_\epsilon(w; x_{test}) = c_A$ for all w such that $D_{KL}(\mu(w), \mu(w')) \leq \epsilon$, where

$$\epsilon = -\log\left(1 - \left(\sqrt{p_A} - \sqrt{p_B}\right)^2\right)$$

Proof. We use Lemma 12 to prove Theorem 3. In practice, since the server does not know the global model in the current FL system is poisoned or not, we assume the model is already backdoored and derive the condition when its prediction will be certifiably consistent with the prediction of the clean model. Therefore, the reference distribution $\rho = \mu(w')$ and $\nu = \mu(w)$. Moreover, $H^{c_A}_\epsilon(w'; x_{test}) \geq p_A$ is equivalent to $P_{W \sim \rho}[\phi(W) = +1] \geq p_A$, and $\max_{c \neq c_A} H^{c}_\epsilon(w'; x_{test}) \leq p_B$ is equivalent to $P_{W \sim \rho}[\phi(W) = -1] \leq p_B$. Rewriting Lemma 12 leads to Theorem 3. \qed