ABSTRACT

The X-ray sky in high time resolution holds the key to a number of observables related to fundamental physics, inaccessible to other types of investigations, such as imaging, spectroscopy and polarimetry. Strong gravity effects, the measurement of the mass of black holes and neutron stars, the equation of state of ultradense matter are among the objectives of such observations. The prospects for future, non-focused X-ray timing experiments after the exciting age of RXTE/PCA are very uncertain, mostly due to the technological limitations that need to be faced to realize experiments with effective areas in the range of several square meters, meeting the scientific requirements. We are developing large-area monolithic Silicon drift detectors offering high time and energy resolution at room temperature, with modest resources and operation complexity (e.g., read-out) per unit area. Based on the properties of the detector and read-out electronics we measured in laboratory, we built a concept for a realistic unprecedented large mission devoted to X-ray timing in the energy range 2-30 keV. We show that effective areas in the range of 10-15 square meters are within reach, by using a conventional spacecraft platform and launcher.

Keywords: X-rays, high energy astrophysics, timing, compact sources, silicon drift chambers

*marmo.feroci@iasf-roma.inaf.it; phone +39 06 4548 4099; fax +39 06 4548 8188
1. INTRODUCTION

Neutron stars and stellar mass black holes are the densest gravitationally bound objects and possess the most intense gravitational fields in the universe. They provide a unique opportunity to investigate the properties of gravity in the strong-field regime, to reveal a variety of general relativistic effects and measure some of the fundamental properties of collapsed objects such as their radius, mass, angular momentum (see e.g. Ref.1). Moreover important insights can be gained on the properties of plasmas under extreme conditions, such as supercritical magnetic fields and bulk matter densities exceeding those of atomic nuclei. These studies will be made possible by several diagnostics, which have been singled out only in the last decade. Especially promising appear to be those diagnostics that are capable of probing in situ matter motion in close vicinity of collapsed objects and/or the rotation of the collapsed object itself. For instance accretion disks around neutron stars and black holes can extend down to the radius of the marginally stable orbit \(r_{\text{ms}} = 6GM/c^2 \) for a non-rotating object, where velocities are comparable to the speed of light and characteristic timescales are of the order of milliseconds or less.

Besides techniques based on X-ray spectroscopy, notably very broad profiles of X-ray emission lines (Fe K-shell in particular) and the optically thick emission from accretion disks, diagnostics based on fast X-ray timing measurements hold a great potential in this respect. For example the fast quasi periodic oscillations, QPOs, that are present in the flux of a number of X-ray binary systems, most likely reflect the fundamental frequencies of the motion of matter in the innermost disk regions and thus hold the potential to gather unprecedented information on the strongly curved space-time near neutron stars and stellar mass black holes. QPOs have also been observed in the X-ray flux of the very massive black holes that are hosted in Active Galactic Nuclei, AGN.

Direct observation of relativistic effects, such as frame dragging and strong field precession, and crucial measurements such as black hole mass and spin appear to be well within reach of the QPO diagnostics (e.g. Ref.4). More generally, timing variability studies have played a central role in high-energy astrophysics for a long time. The detection and accurate measurement of coherent pulsations from the rotation of neutron stars and white dwarfs yielded a wealth of crucial information on these compact objects, the torques that act on them, and the radiative processes responsible for their emission. Other periodic phenomena such as eclipses or dips are tools of paramount importance for inferring the characteristics of X-ray binaries, measuring the mass of the stars and inferring the characteristics and geometry of mass transfer in these systems.

X-ray bursts and flares, together with other impulsive phenomena of vastly different duration and characteristics have provided, among other things, evidence for thermonuclear flashes in the material accreted onto the surface of stars or highly unstable field configurations inside neutron stars with exceptionally strong magnetic fields, the so-called Magnetars. The fast transient oscillations detected during the most powerful flares of magnetar candidates most likely originate from seismic modes: this has opened a new perspective in the study of neutron star structure and the properties of ultradense and ultramagnetic matter through neutron star seismology.

While a number of important results were obtained with a variety of X-ray astronomy satellites (Uhuru, Ariel V, SAS-3, ANS, Einstein, EXOSAT, Ginga, BeppoSAX, just to mention some of the main ones), it was with the Rossi X-ray Timing Explorer, RXTE, that X-ray timing entered a golden age. While the RXTE discoveries were made possible by the area and time resolution of its proportional counters array (PCA, \(\approx 0.67 \text{ m}^2 \)), its All Sky Monitor (ASM) and flexible operations contributed greatly to the success of the mission.

The scientific goals outlined above require the development of a collimated experiment with an effective area above 10 m², with good energy resolution to allow for spectrally-resolved timing studies and a spectral response extending well beyond 10 keV. Considering the success of the strategy of RXTE/PCA, we propose to follow-up the upcoming demise of RossiXTE after 15 years of glorious operations with a new mission exposing an unprecedentedly large effective area. We believe that the new technologies enable a giant leap with respect to the effective area of PCA, thus allowing not only a better study of the same phenomena that RXTE discovered and studied, but most likely a further filling of the discovery space offered by the timing diagnostics. In the following sections we describe the concept and the possible implementation of what will possibly be a new generation timing experiment.
2. THE CONCEPT

The issue of building extreme large area experiments primarily resides in the exceedingly high resources required in terms of mass, power and volume (and possibly costs). Our concept is based on an innovative design of large area Silicon drift chambers originally developed by INFN Trieste for particle tracking in the Inner Tracking System (ITS) of the ALICE experiment for the Large Hadron Collider at CERN. The general concept of Silicon drift detectors (SDD) is to have the charge generated by the photoelectric absorption of an X-ray photon drifted through the Silicon bulk towards small collecting anodes. The small size of the read-out anodes offers a small capacitance (order of tens of fF) and therefore low noise, permitting to achieve good energy resolutions and low discrimination thresholds. The ability to drift the charge from its point of generation to the anodes makes the charge collection process independent from the photon detection: to first order, the detector performance is nearly independent on its active area (this is not exactly true because of the increasing leakage current). In several cases technological efforts in the field of drift detectors were oriented to achieve excellent performance in spectroscopy or timing on small detector areas. In the case of the ALICE detectors, the highest effort was devoted to maximize spatial resolution on large area monolithic devices. In fact, the ALICE-D4 detectors come with a monolithic active area of 53 cm2 each and achieve spatial resolution as good as \sim30 μm in particle tracking. In Figure 1 we show a picture of the ALICE-D4 detector, designed by INFN Trieste in collaboration with, and manufactured by, Canberra Inc.. It is worth noticing that in the ALICE experiment \sim280 SDDs are operating since nearly 2 years, for a total area of \sim1.5 m2.

![Figure 1. A picture of the ALICE-D4 silicon drift detector.](image)

In its present design, this detector is conceptually divided in two halves (top and bottom in Figure 1), each one read-out through a set of 256 anodes. A drift electric field is controlled by a voltage divider limited to a negative high voltage of \sim1300-2400 V. The highest voltage is applied the center of the Si tile, dropping smoothly to the grounded anodes. A side guard region is designed to gradually decrease the high voltage to the mechanical edge of the Si tile and makes approximately 17% of the total area useless to detection. The anodes have a pitch of 294 μm and a drift length of 35 mm. The read-out is then one-dimensional and each drift channel (that is, each preamplifier) subtends an area of 0.103 cm2. The Si thickness (300 μm) is fully depleted.

The working principle of the detector is the following. When pairs are generated after energy release by particle ionization or photoelectric absorption or Compton scattering of photons, the electrons are first driven by the electric field to the central region of the Si bulk and then drifted through the detector until they are pulled up to the detector surface towards the collecting anodes, where a charge preamplifier transforms them into an electric signal. During the drift process, the diffusion spreads the charge cloud so that at the end of the drift its size involves more than one anode. Depending on the point of impact along the drift channel, the charge can be collected by 1 or up to 5 anodes. The charge distribution over the anodes allows to reconstruct the photon position to a resolution up to 10 times better than the anode pitch. The maximum drift time of the charge, instead, sets the minimum time resolution. Its precise value depends on the instrument operating parameters, but it is of about 5 microseconds.
The properties of the ALICE detectors inspired their investigation as X-ray detectors for astronomy. The first lab tests with a preliminary set-up were highly encouraging10,11 A better, although not yet optimized, experimental set-up brought to measure very good performance both in terms of spectroscopy and imaging12,13,14,15: energy resolution between 300 eV and 600 eV (depending on the event selection) and one dimensional spatial resolution between 30 and 50 µm. The interaction point along the drift channel (that is, the second dimension) may be derived at the level of few mm (see Ref.14 for details), but this is ineffective in the timing application. The low energy threshold of each read-out channel can presently be set to less than ∼500 eV, but, due to the charge sharing between adjacent anodes caused by the diffusion in the drift, the effective detection threshold is ∼1-2 keV (depending on the accepted efficiency level). A more detailed description of the ALICE-D4 detectors and their performance may be found in Ref.13.

In the context of the present project, the key properties of these detectors are:

- good spectroscopic performance over monolithic large area devices
- low energy discrimination threshold
- efficient read-out (active area per unit read-out)
- low weight and volume per unit sensitive area
- proven reliable mass production
- fully scalable design
- modular approach
- full scientist control on design, production and test processes.

Given the detector performance and the INFN experience in building the 1.5 m\(^2\) ALICE/ITS experiment, we started to investigate the possibility to use this type of detectors, possibly customized, to approach the long-sought ten-meter scale experiment for high resolution X-ray timing in astronomy. Another major issue to face along this way is an efficient system for collimating the experiment field of view down to a typical size of ∼1-2°. A classical collimator approach would make the weight, volume and costs to explode. We identify the micro-capillary technology a possible solution. Few manufacturers (e.g., Hamamatsu Photonics, Collimated Holes Inc.) produce lead-glass capillary plates. The off-the-shelf version of these devices comes with 1mm thickness and with a matrix of holes with 25 µm diameters and 32 µm pitch, providing an open area ratio of 55%. Custom design are feasible (Hamamatsu Photonics and Collimated Holes Inc., personal communication), reaching open area ratio of at least 70%. These devices were proven to efficiently collimate soft X-rays both by experimental groups in the literature16 and in our own experience in laboratory17. We also studied the efficiency of a collimator based on this technology as a function of the photon energy by means of Monte Carlo simulations. In Figure 2 we show the simulated angular and energy response. As expected the angular response depends on energy. The simulation shows that the capillary plates efficiently collimate X-rays up to 30 keV, and reasonably up to ∼50 keV, to a wider aperture. The average density of the plates is about 2.5 g cm\(^{-2}\), implying that for a 1 mm thickness their mass is 0.25 g cm\(^{-2}\), that is 2.5 kg/m\(^2\). Taking into account the current (but improvable) active/geometrical area ratio of the ALICE-D4 detectors (83%) and an open area ratio of 70%, the active/geometrical area ratio of a collimated SDC camera is 0.58.
Based on what reported above, the basic element of a large area, collimated experiment is sketched in Figure 3. A sandwich is composed, from top to bottom, by a 1 mm thick capillary plate, a ∼500 µm thick silicon drift detector, an ASIC-based read-out and power filtering electronics board, supported by a mechanical structure, also supporting the power and data distribution. The “surface density” of such package is in the range of 6 kg m⁻². This is then the basic element of a modular design for a large area experiment. The issue of building a ten-meter scale experiment now shifts to the ability to set-up a payload of such a large area, in terms of geometrical surface, mass, power and telemetry budget.

Figure 3. The conceptual basic “package” that composes the LOFT detection plane. From top to bottom: the 1 mm thick micro-capillary collimator, the 0.5 mm Si drift detector, the few mm thick front-end electronics and the supporting structure.
A POSSIBLE IMPLEMENTATION

The approach is to draw a first-order-feasible design based on conventional technology and standard bus and launchers, in a small-to-medium class satellite for a low-Earth equatorial orbit mission. We studied with Thales Alenia Space - Italia a configuration based on the PRIMA-S bus and the Vega-class launcher\(^{18}\). The first issue we studied is the maximum geometrical surface it is reasonably deployable in orbit. Despite the compactness of the collimator-detector package, we conservatively assumed 20 cm thick detector panels, including the detector package itself (collimator + SDD + electronics), power distribution, thermal shielding and radiators, as well as the mechanical support structure. To start with an existing and reliable deployment mechanism, we based our system on a technology used to deploy solar panels. In Figure 4 we show the satellite concept both in the deployed configuration, as well as stowed at launch, inside a Vega rocket fairing. The surface of the detector panels in this configuration is 32 m\(^2\). The solar panel array has a surface of 13.2 m\(^2\). The detector panels can be rotated by 360º around their longitudinal axis. The solar panel array is fixed. The requirement for the alignment of the detector panels is a few arc-minutes.

![Figure 4. A possible LOFT satellite configuration, based on a PRIMA-S bus and a Vega launcher.](image)

The mechanical configuration allows to host up to 32 m\(^2\) of detectors geometric area. We now evaluate the specific power, mass and telemetry budgets of the detector array to determine what is the active surface that can be reasonably supported by a realistic mission. The tightest budget is given by the power. The maximum power that can be generated by the 13.2 m\(^2\) solar panel array is evaluated as ~4000 W. Being a low-Earth orbit satellite, we consider half of the generated power to be reserved to the charge of the batteries, needed to power the payload when the satellite is in the Earth shadow. The power for the spacecraft services is estimated as ~300 W. Assuming a 85% conversion efficiency to provide power to the payload, we end up with 1450 W available to the scientific payload.

The scientific requirements of the mission imply that in addition to the primary Large Area Detector (LAD) experiment the scientific payload includes an all sky monitor (ASM). The latter is based on a general design\(^{15}\) using the same Silicon drift detectors foreseen here for the large area experiment. A plausible allocation of the ASM is shown in Figure 5, although alternative options are being studied. With this configuration, the ASM is composed of 4 coded mask detector units covering a total field of view of ~6-7 steradians (~2 sr fully coded, ~5 sr partially coded, at zero response) with an angular resolution of ~7 arcminutes and a point source location accuracy better than ~1 arcminute. The expected
sensitivity of such monitor (for each of the 4 single modules) is \(\sim 0.8 \) Crab/s or \(\sim 4 \) mCrab/50 ks. The total ASM mass and power budget is about 30 kg and 18 W, respectively. The power budget left over to the LAD is then approximately 1430 W.

Figure 5. A possible allocation of an All Sky Monitor experiment for the LOFT mission.

The LAD overall power budget defines the maximum detector surface that can be simultaneously powered. In the application for X-ray timing there is no requirement for imaging capability. The segmentation of the SDC in drift channels is then of extreme importance but only to avoid dead-time and pile-up problems. In fact, in principle each group of 4-5 drift channels (the maximum number of anodes involved by a single event) can be taken as an independent detector. If we consider the ALICE-D4 configuration (294 µm anode pitch, 35 mm drift length), a single group of anodes covers a geometric area of the order of 0.5 cm². The drift time for each event is \(\leq 10 \) µs, thus allowing a nominal maximum rate of \(\sim 2 \times 10^5 \) counts cm\(^{-2}\) s\(^{-1}\). Since the charge diffusion is independent of the anode pitch, this number stays roughly the same also if the pitch is made larger, doubled or more. Indeed, a larger drift channel makes the charge per channel higher (the total charge spreads over a smaller number of anodes), improving the low energy response (although a larger channel implies a larger dark current and higher noise). However, assuming a detector design with 600 µm anode pitch and 35 mm drift length, the overall power per channel (including the share of the common data processing) is about 1.3 mW/channel (the ASIC alone, for which we have developed a custom design and production, requires about 0.4 mW/channel), corresponding to 6.3 mW/cm². The total 1430 W are then able to power about 22.7 m² of geometrical Silicon detector area, in turn corresponding to 13.1 m² active area. In the following we will then assume for LOFT a geometric area of 23 m² and an exposed area (accounting for the dead regions on the detector and the open area ratio of the collimator) of 13 m². We note that studies are underway to improve the effective area, both in terms of increasing the open area ratio in the capillary plates, as well as studying alternative orbits that ensure a longer exposure to the Sun, such as Sun-synchronous orbits.

We built a preliminary response matrix for the Silicon detector. We estimate an expected background rate (diffuse X-ray background plus particle-induced background) of about 2400 counts/s and about 230000 cts/s from the Crab Nebula. If we assume the conservative case of smart pointing (that is pointing the satellite towards an unocculted source when a primary target goes behind the Earth) with always a Crab-equivalent source in the field of view, the count rate brings to a telemetry budget of the order of 15 Mbits/s, average over the ~6000 s orbit, including ~2 Mbits/s deriving from the ASM. For a low-Earth equatorial orbit and a single equatorial ground station, every orbit the satellite is visible from the ground station for about 600 s, then requiring a downlink data-rate of ~150-200 Mbit/s, well beyond the capability of S-band transponders and receivers, but within the reach of X-band transponders.

We estimated the preliminary overall mass budget by making reasonable assumptions on the satellite subsystems and the payload structure. We assumed a 10% mass margin on the engineering items that already exist and have been used in previous missions. On items for which the components exist but have not been integrated yet, such as the detector and electronics, the margin was elevated by 20%. A further 20% margin was then added at system level. The overall mass budget after these assumptions is 1280 kg, well within the maximum weight allocation for a Vega launcher in LEO. Table 1 summarizes the preliminary main characteristics of the LOFT mission, as currently understood. Improvements and refinements in the numbers are expected as the design progresses.
Large Area Detector - LAD	
Energy Range	2-30 keV
Field of View	~1º FWHM
Detector Type	Silicon Drift Detectors, 450 µm thick
Geometric Detector Area	23 m²
Effective Area	13 m²
Effective Area per Channel	0.2 cm²
Energy Resolution	~300-500 eV FWHM
Time Resolution	<10 µs
Dead-time (% of average rate)	<0.02% @ 1 Crab
Temporary Rate capability	>1000 Crab
Sensitivity	50 µCrab in 50 ks - 10 mCrab in 1s
Mass Budget	580 kg
Scientific Data Rate	15 Mbit/s, Crab-flux obs, orbit average, smart pointing
Power Budget	1400 W

All Sky Monitor - ASM	
Instrument type	Coded aperture Si drift detector
Energy Range	2-50 keV
Energy Resolution	~300-500 eV
Geometric Area	4 x 500 cm²
Field of View	>2 sr fully coded, >5 sr partially coded
Angular resolution	7 arcmin
Point source location accuracy	<1 arcmin (S/NR>10)
Sensitivity (one unit, on-axis, 5σ)	4 mCrab in 50 ks, 800 mCrab in 1s
Mass Budget	30 kg
Scientific Data Rate	~2 Mbit/s, Crab-flux obs, orbit average, smart pointing
Power Budget	20 W

Overall Satellite	
Payload Mass	~630 kg (20% margin included)
Total Mass	~1300 kg (20% system level margin added)
Platform	PRIMA-S
Launcher	Vega-class
Orbit	Low Earth, Equatorial
4. SCIENCE WITH LOFT

The current design of the LOFT large area detector results in an effective area of \(\sim 13 \, \text{m}^2 \), nearly flat between 3 and 10 keV. Below 2-3 keV in the present detector some metal and oxide implants cause some loss of efficiency. We are studying a design that optimizes the low energy response. Above \(\sim 10 \, \text{keV} \) the decrease of the Si photoelectric cross section brings to a gradual decrease of the effective area, that however remains above 1 m\(^2\) up to 30 keV. The high energy efficiency may be improved with thicker detectors, that we are studying as well. In Figure 6 we show the LOFT effective area, as compared to past and future missions. The area between 2 and 10 keV exceeds by a factor of \(\sim 20 \) that of the largest timing experiment ever flown, the Proportional Counter Array onboard RossiXTE\(^{19} \). We now discuss how such large improvement in area impacts on the investigations of Galactic objects.

LOFT is mainly devoted to X-ray timing and is specifically designed to investigate collapsed objects by probing their extreme physical conditions and the space-time around them. To these aims LOFT will exploit powerful diagnostics, such as e.g. fast coherent pulsations and quasi-periodic oscillations (QPOs) in the X-ray flux of accreting neutron stars and black holes, as well as isolated magnetars. Its factor of \(\sim 20 \) higher effective area than RXTE, will prove crucial in this respect.

The whole range of variability behaviour from, e.g., QPO or transient sources often requires observing times as long as weeks, i.e. the timescales over which these sources manifest different states and phenomena. A mission dedicated to timing such as LOFT will offer crucial advantages in terms of the amount of time that can be devoted to timing.
contrast, missions with a range of instruments, designed to study many classes of sources and a variety of astrophysical problems, such as the International X-ray Observatory (IXO20), will carry out timing studies for a small fraction of the time. LOFT and IXO are complementary also in other respects: a collimated instrument is ideal to maximise the effective area at moderate costs, and thus optimise the throughput of bright sources (for which spatial resolution and low background is not required). Moreover very bright events, such as gamma ray bursts and flares from magnetars, that do not occur in the satellite pointing direction and nevertheless shine through the body of the satellite and/or the collimator, will be recorded by LOFT with unprecedented S/N, by virtue of the very large physical area of the detector. On the other hand IXO, with its sophisticated telescope and effective area will permit to carry out unprecedented variability studies of weak sources, for which a low background is essential.

The wide-field instrument on board LOFT will monitor the X-ray sky, detect and locate bright X-ray transients, and identify source states to be followed up with pointed LOFT observations. The simultaneous availability of an all sky monitor, will be essential in this type of studies in order, e.g., to catch QPO sources in the right emission state.

Among the main subjects that LOFT will address are:

A. The physics of collapsed objects and strong gravitational fields

The various modes of fast quasi periodic oscillations (frequencies in the Hz to ~1 kHz range), that are often present simultaneously in the X-ray flux of accreting neutron stars and black holes, are interpreted in terms of the fundamental frequencies of particle motion in the close vicinity of the collapsed object. Even though different models make different predictions with respect to the frequencies involved, methods have been devised to test the models through detailed high signal to noise observations. For instance, in the parametric epicyclic resonance model two of the QPO modes are associated with the relativistic radial and vertical epicyclic frequencies; in the relativistic precession model instead, two of the QPO modes arise from relativistic nodal and periastron precession, while the highest frequency QPO is identified with the azimuthal frequency of motion. High precision measurements of the QPO phenomenon, such as those afforded by LOFT, will remove the degeneracy in the interpretation of the QPO modes and make it possible to exploit the corresponding relativistic frequencies in probing the space-time at a few Schwarzschild radii from the collapsed object, where strong-field effects are largest. This will permit to single out yet untested general relativistic effects, e.g. frame dragging, Lense-Thirring and strong-field periastron precession, verify the existence of the innermost stable circular orbit, and study gravitational light deflection in the strong field regime. It is worth emphasising that the magnitude of these effects is large and easily accessible to precise measurements once the interpretation of the QPOs is clarified. To this aim we show in Figure 7 the comparison between the 50 ks RossiXTE observation of the black hole candidate XTE J1550-564 and a 1 ks simulation in the same conditions for the source flux (∼1 Crab). The “real” power spectrum displays a double peak at the frequency of 188 and 268 Hz, with fractional rms of 2.8% and 6.2% and a detection significance of 3.5σ and 7.8σ, respectively. The improvement provided by a LOFT observation is striking. The quality of the results achieved with just 1 ks observation demonstrates that the same phenomenon can be detected at much lower fractional rms as well as on much dimmer sources. Indeed, the whole RXTE mission has provided only a handful of detections of weak, sometimes broad, high frequency QPO signals in black hole candidates. The current indication is that the frequencies are rather stable for each system, possibly anti-correlated to the black hole mass. In a few cases where two peaks are observed, they appear to be at special ratios of 2:3 (and 3:5). These features have so far been detected rarely and only in a specific state when sources are bright, although this could be a selection effect. It is not clear whether these signals and the kHz QPO in NS LMXB are the same phenomenon, as it is clearly much weaker for black holes.

The observation potential of LOFT will then enable us to explore this intriguing field, for which RossiXTE could discover only the tip of the iceberg. To show this, we performed a simulation again on XTE J1550-564, where the source was artificially “evolved” to lower fluxes, while the QPOs were made weaker. The evolution was simulated according to the predictions of the Epicyclic Resonance Model21 and the Relativistic Precession Model22. In Figure 8 we report the results of such simulations, with the source flux decreased down to 300 mCrab and the fractional rms down to 0.28%.

We note that the fundamental frequencies of motion (and thus the QPO frequencies) depend on the mass and spin of the compact object and the radius at which the signals are produced. Therefore they carry also information about crucial parameters of the compact object. This can be complemented with (or checked against) estimates of the black hole mass and spin obtained by other means (e.g. the mass determination from optical spectro-photometry or the black hole spin inferred from thermal X-ray continuum emission).

Another important diagnostics will be provided by the observation of kHz QPO oscillations in the time domain, over their coherence time scale. In order to reach the necessary sensitivity level, a large collecting area is simply essential.
LOFT will afford to sample the oscillations in the time domain for a number of bright X-ray binaries and determine the shape and recurrence times of the QPO “trains”. The energy resolution of LOFT, about 300-500 eV over the entire energy range, will add a new dimension to these studies. For instance by studying the energy dependence and delays in the signals it will be possible to confirm the predictions of models for the generation of QPOs by blobs orbiting in an accretion disk, measure the disk inclination and investigate strong-field lensing effects. Moreover, the resolution of 300 eV, which can be obtained by event selection, will permit to exploit also the very broad Fe-line profile and its variability as an additional diagnostic of the innermost disk regions of accreting neutron star and black holes in X-ray binaries and bright AGNs.

B. Neutron stars structure and EOS of ultradense matter

Understanding the properties of matter at nuclear densities and determining its equation of state (EOS) has been one of the most challenging problems in contemporary physics. Neutron stars present the best opportunity to address it. Very soft EOSs give a maximum neutron star mass in the 1.4-1.5 solar mass range, whereas stiff EOSs can reach up to 2.4 - 2.5 solar masses. Except for the case of very low masses, the neutron star radius is a powerful proxy of the EOS. Out of the different tools that have been devised to measure neutron star radii (or radius to mass ratios), there are some that rely upon X-ray spectral information, such as the gravitational redshift of lines from the neutron star atmosphere, the continuum spectrum and flux at the end of the contraction phase of type I X-ray bursts displaying photospheric expansion. Other tools are based primarily on accurate high-time resolution measurements. Among these are: a. The modelling of the shape, energy dependence and delays of the pulsation from accreting millisecond spinning X-ray pulsars; owing to the fast rotational velocities and strong gravitational fields of these systems, their coherent pulsations are affected by relativistic beaming, time dilation, red/blue-shifts, light bending and, to a lesser extent, also frame dragging (they provide, besides the neutron star radius and mass, an alternative means of measuring strong field gravity effects). b. The frequency and waveform of the fastest kHz QPOs provide also constraints on the neutron star EOS. LOFT will give great contributions to these studies through its unique combination of very large effective area and energy resolution.

A new and totally different approach to the study of the neutron star interiors and EOS has recently emerged from the discovery of global seismic oscillations (GSOs) in magnetars during two extremely luminous “Giant Flares” (GFs) emitted by these sources. GSOs with frequencies ranging from tens of Hz to kHz were detected during the minutes-long decaying tail of these giant flares, when the source luminosity is about 10^{42} erg/s. The lower frequency GSOs likely arise from torsional shear oscillations of the crust. By using them in combination with the magnetic field inferred for these magnetars it has been possible to rule out both very hard and very soft equations of state (as well as the EOS for strange stars). The possible identification of a n = 1 radial overtone might enable the estimate of the crust thickness. This is but an example of the diagnostic potential of GSOs. The problem with studying neutron star GSOs during giant flares is that these events are exceedingly rare (only 3 events were detected in 30 years!). While one should not miss these rare events, if GSOs could be detected during the so-called intermediate flares, shorter (1 s - 1 min long) and less energetic events from magnetars but more frequent than giant flares, a new perspective will open in the study of neutron star structure and EOS through seismology. With its very large geometrical area LOFT is very well suited for these studies. In fact for the typical fluxes expected from IFs, by observing one of such events ∼30° off-axis (thus, out of the collimated field of view) LOFT will collect more than 2x10^7 photons/s which can be used to look for (quasi-) periodic signals down to a pulsed fraction of better than 0.5% within 5-10s (typical pulsed fractions observed for GSOs during GFs are in the 5% - 20% range).

Moreover LOFT will be a powerful tool for studying the X-ray variability of a very wide range of objects, from accreting and isolated pulsars, to magnetar candidates (Anomalous X-ray Pulsars and Soft Gamma Repeaters), cataclysmic variables, bright AGNs and flares stars, X-ray transients and the prompt emission of Gamma Ray Bursts. Through these studies it will be possible to address a variety of problems in the physics of high energy cosmic sources. In combination with multiwavelength campaigns LOFT can also address the interplay of accretion and jet ejection, a still poorly understood phenomenon occurring over vastly different conditions, ranging from pre-main sequence stars to the massive black holes of AGNs.
Figure 7. Left: The high frequency QPOs detected by RXTE/PCA in the black hole candidate XTE J1550-564. The 50 ks PCA observation led to a 7.8 and 3.5σ detection of the 188 and 268 Hz peaks, respectively. Right: the same source in the same conditions in a simulated observation with LOFT, with an exposure of only 1 ks.

Figure 8. Simulated 30 ks LOFT observations of XTE J1550-564, with the source artificially varied in intensity and fractional rms of the QPOs. The source evolution was simulated according to the predictions of the Epicyclic Resonance Model (left) and the Relativistic Precession Model (right), to demonstrate the potential of LOFT in understanding the origin of these phenomena. Power spectra are vertically shifted for the sake of clarity. The topmost curve is a RXTE simulation. The other curves correspond to (top to bottom): flux 1 Crab, fract rms 2.8% and 6.2% (as in Figure 7); 800 mCrab, 1.4% and 3.1%; 600 mCrab 0.7% and 1.5%; 300 mCrab, 0.28% and 0.62%.
5. CONCLUSIONS AND PERSPECTIVES

The Silicon Drift Detectors developed at INFN Trieste and the use of micro-capillary plates as collimators appear as the enabling technologies for the development of an extremely large area experiment. In the current design we reached an effective area of 13 m², in the context of a small-medium satellite, based on a PRIMA-Science platform for a low Earth orbit. Such configuration is currently technically limited by the power budget. This is expected to improve in terms of optimization of the power consumption of the proposed device. Similarly, the geometric/exposed area ratio is currently 58%, as determined by the inactive detector areas and the covering factor of the micro-capillary plates. We will work on both issues to increase the exposed area. Finally, an orbit with a higher exposure to the Sun, with respect to the 50% offered by a LEO would directly bring to a higher effective area.

The future perspective for X-ray timing is very unclear. RossiXTE is certainly near its demise and the only planned mission that can offer observational timing data is the expected Indian satellite ASTROSAT, carrying instrumentation similar to RossiXTE. The need for a step forward is clear to the entire community. The International X-ray Observatory (IXO) is expected to carry the High Time Resolution Spectrometer (HTRS). However, the HTRS instrument will only be able to operate for a small fraction of time, being alternative to the main experiments onboard the same observatory, and with extremely small flexibility on targets. In addition, the very good energy response decrease significantly with energy, reaching ~0.5 m² at 6 keV (see Figure 6), although the low background due to the focusing will be a significant advantage for weak sources. Finally, if eventually approved, IXO is expected to fly well beyond 2020. In this respect, LOFT is a very good complement to IXO/HTRS for bright sources (e.g., brighter than 10-100 mCrab), for which the most important goal is collecting source photons with a very large effective area. In addition, by its concept, LOFT will be able to respond rapidly to interesting states of its target sources, through its own monitoring of the sky, and will be able to study the timing properties in a wide energy range, from 2 to 30 keV. Its large geometric area will provide a response to hard and very bright events occurring outside its field of view, such as flares from magnetars or gamma ray bursts. Based on the technology readiness, LOFT may be built for a flight in the second half of this decade.

REFERENCES

[1] Psaltis, D., “Probes and Tests of Strong-Field Gravity with Observations in the Electromagnetic Spectrum”, *Living Reviews in Relativity*, 11, 9 (2008).
[2] Van der Klis, M., “Rapid X-ray variability”, in *Compact Stellar X-ray Sources*, Cambridge Univ. Press, (2006).
[3] Gierlinski, M. et al., 2008, “A periodicity of 1 hour in X-ray emission from the active galaxy RE J1034+396”, *Nature*, 455, 369 (2008).
[4] Stella, L., “Strong Gravitational Field Diagnostics in Binary Systems Containing a Compact Object”, in *Physics of Relativistic Objects in Compact Binaries*, Springer, (2009).
[5] Strohmayer, T. E., Bildsten L., “New views of thermonuclear bursts”, in *Compact Stellar X-ray Sources*, Cambridge Univ. Press, (2006).
[6] Woods, P. M. & Thompson, C., “Soft gamma repeaters and anomalous X-ray pulsars: magnetars candidates”, in *Compact Stellar X-ray Sources*, Cambridge Univ. Press, (2006).
[7] Vacchi, A., et al., “Performance of the UA6 large-area silicon drift chamber prototype”, *Nuclear Instruments and Methods in Physics Research A*, 306, 187 (1991).
[8] Crescio, E., et al., “Results from beam tests of large area silicon drift detectors”, *Nuclear Instruments and Methods in Physics Research A*, 539, 250 (2005).
[9] Crescio, E., Nouais, D., “Electron cloud size measurement in silicon drift detectors and spatial resolution improvement”, *Nuclear Instruments and Methods in Physics Research A*, 564, 475 (2006).
[10] Zampa, G., et al., “Very Large Area Silicon Drift Detector Spectroscopic Performances”, *Nuclear Science Symposium Conference Record*, 6, 3790 (2006).
[11] Zampa, G., et al., “The X-Ray Spectroscopic Performance of a Very Large Area Silicon Drift Detector”, *IEEE Transactions on Nuclear Science*, 56, 832 (2009).
[12] Zampa, G., et al., *Nuclear Instruments and Methods in Physics Research A*, submitted (2010).
[13] Zampa, G., et al., “X-Ray Imaging and Spectroscopy Performance of a Large Area Silicon Drift Chamber for Wide-Field X-Ray Astronomy Applications”, Proceedings of the SPIE, these proceedings (2010).

[14] Campana, R., et al., Nuclear Instruments and Methods in Physics Research A, submitted (2010).

[15] Campana, R., et al., “Concept for an innovative Wide Field Camera for X-ray Astronomy”, Proceedings of the SPIE, these proceedings (2010).

[16] Sato, E., et al., “Quasimonochromatic parallel flash radiography achieved with a plane-focus x-ray tube”, Proceedings of the SPIE, 4948, 646 (2003).

[17] Muleri, F. et al., “A versatile facility for the calibration of x-ray polarimeters with polarized and unpolarized controlled beams”, Proceedings of the SPIE, 7011, 84 (2008).

[18] Bianchi, S., et al., “VEGA, the European small launcher: Development status, future perspectives, and applications”, Acta Astronautica, 63, 416 (2008).

[19] Jahoda, K., et al., “Calibration of the Rossi X-Ray Timing Explorer Proportional Counter Array”, The Astrophysical Journal Supplement Series, 163, 401 (2006).

[20] White, N. E., et al., “The International X-ray Observatory (IXO) Mission Configuration”, AAS Bulletin, 41, 388 (2009).

[21] Abramowicz, M. A., Kluzniak, W., “A precise determination of black hole spin in GRO J1655-40”, Astronomy & Astrophysics, 374, L19, (2001).

[22] Stella, L., et al., “Correlations in the Quasi-periodic Oscillation Frequencies of Low-Mass X-Ray Binaries and the Relativistic Precession Model”, The Astrophysical Journal, 524, L63 (1999).

[23] Cottam, J., et al., “Gravitationally redshifted absorption lines in the X-ray burst spectra of a neutron star”, Nature, 420, 51 (2002).

[24] Özel, F., “Soft equations of state for neutron-star matter ruled out by EXO 0748-676”, Nature, 411, 1115 (2006).

[25] Leahy, D. A., et al., “Constraints on the Properties of the Neutron Star XTE J1814-338 from Pulse-Shape Models”, The Astrophysical Journal, 691, 1235 (2009).

[26] Israel, G. L., et al., “The Discovery of Rapid X-Ray Oscillations in the Tail of the SGR 1806-20 Hyperflare”, The Astrophysical Journal, 628, L53 (2005).

[27] Strohmayer, T. E., Watts, A. L., “Discovery of Fast X-Ray Oscillations during the 1998 Giant Flare from SGR 1900+14”, The Astrophysical Journal, 632, L111 (2005).

[28] Schumaker, B. L., Thorne, K. S., “Torsional oscillations of neutron stars”, Monthly Notices of the Royal Astronomical Society, 203, 457 (1983).

[29] McDermott, P. N., et al., “Nonradial oscillations of neutron stars”, The Astrophysical Journal, 325, 725 (1988).

[30] Strohmayer, T. E., “Oscillations of rotating neutron stars”, The Astrophysical Journal, 372, 573 (1991).

[31] Duncan, R. C., “Global Seismic Oscillations in Soft Gamma Repeaters”, The Astrophysical Journal, 498, L45 (1998).

[32] Miller, J. M., et al., “High-Frequency Quasi-Periodic Oscillations in the 2000 Outburst of the Galactic Microquasar XTE J1550-564”, The Astrophysical Journal, 563, 928 (2001).

[33] Agrawal, P. C., et al., “ASTROSAT: A Broad Spectral Band Indian Astronomy Satellite”, ASP Conference Proceedings, 251, 512 (2001).

[34] Barret, D., et al., “Science with the IXO High Time Resolution Spectrometer”, AAS Bulletin, 41, 351 (2009).