A NOTE ON JÖRGENS-CALABI-POGORELOV THEOREM

Tkachev Vladimir G.

1. Let $S_k(A)$ denote the kth principal symmetric function of the eigenfunctions of an $n \times n$ matrix A, i.e.

$$
\det(A + tI) = \sum_{k=0}^{n} S_k(A)t^{n-k}.
$$

The following classical result is well known.

Theorem A (Jörgens-Calabi-Pogorelov, [4], [2], [6]). Let $f(x)$ be a convex entire solution of

$$
S_n(\text{Hess } f) \equiv \det(\text{Hess } f) = 1, \quad x \in \mathbb{R}^n,
$$

where $\text{Hess } f$ is the Hessian matrix of $f(x) = f(x_1, \ldots, x_n)$. Then $f(x)$ is a quadratic polynomial, i.e.

$$
f(x) = a + \langle b, x \rangle + \langle x, Ax \rangle,
$$

(1)

where A is an $n \times n$ matrix with constant real coefficients and $\langle \cdot, \cdot \rangle$ stands for the scalar product in \mathbb{R}^n.

Let us consider the operator

$$
L[f] \equiv \sum_{i=1}^{n} a_i(x)S_i(\text{Hess } f) = 0.
$$

(2)

In [1], A.A. Borisenko has established that affine functions $f(x) = a + \langle b, x \rangle$ are the only entire convex solutions of (2) with the linear growth (i.e. $f(x) = O(||x||)$ as $x \to \infty$) in the following special cases, namely, when

$$
L[f] = S_n(\text{Hess } f) - S_1(\text{Hess } f) = \det \text{Hess } f - \Delta f = 0
$$

(3)

and

$$
L[f] = \sum_{k=0}^{\lfloor \frac{n-1}{2} \rfloor} (-1)^kS_{2k+1}(\text{Hess } f) = 0.
$$

(4)

Notice that solutions to (3) and (4) describe special Lagrangian submanifolds given a non-parametric form.

Let us consider the following condition.

(Q) either $a_k(x) \equiv 0$ on \mathbb{R}^n, or there exist two positive constants $\mu_1 \leq \mu_2$ such that $\mu_1 \leq |a_k(x)| \leq \mu_2$.

Let us denote by $J = J(L)$ the set of indices i, $1 \leq i \leq n$ such that $a_i(x) \neq 0$. The main purpose of this note is to establish the following generalization of [1].

\[\text{Translated from Soviet. Math. Dokl. (Communicated by A.V. Pogorelov December 14, 1993), Vol.340, N. 3, p.317-318, see also MR1328274 (96e:53100)}\]
Theorem. Let \(f(x) \) be an entire convex \(C^2 \)-solution of (2) and that the structural condition (Q) is satisfied. If
\[
\lim_{\|x\| \to \infty} \sup \frac{|f(x)|}{\|x\|^2} = 0
\]
then \(S_i(A(x)) \equiv 0 \) for any \(i \in J \), in particular, \(\det \text{Hess} f(x) = 0 \). If additionally \(a_1(x) \neq 0 \) then \(f(x) \) is an affine function.

Remark 1. We construct an example in paragraph 4 below which shows that (5) is optimal in the sense that there exist operators \(L \) satisfying the condition (Q) and possessing solutions growing quadratically \(f(x) \sim \|x\|^2 \) as \(x \to \infty \) and such that \(\text{Hess} f(x) \neq 0 \).

2. We use the standard convention to write \(A \geq B \) if \(A - B \) is a positive semi-definite matrix.

Lemma 1. Let \(A(x) \geq 0 \) be a continuous \(n \times n \) matrix solution of
\[
L(A(x)) = \sum_{i=1}^{n} a_i(x) S_i(A(x)) = 0, \quad x \in \mathbb{R}^n,
\]
where \(L \) is subject to the condition (Q). Then either \(S_i(A(x)) \equiv 0 \) for any \(i \in J \), or there exists \(k \in J \) and a constant \(\sigma_0 \) depending on \(\mu_1 \) and \(\mu_2 \) such that for all \(x \in \mathbb{R}^n \) the inequality holds
\[
S_k(A(x)) \geq \sigma_0 > 0.
\]

Proof of Lemma 1. Note that \(S_k(A(x)) \geq 0 \) in virtue of the positive semi-definiteness of \(A(x) \). Then, if all (non-identically zero) coefficients \(a_i \) have the same sign then \(S_k(A(x)) \equiv 0 \) holds for any \(i \in J \). Now suppose that there exists \(x_0 \in \mathbb{R}^n \) and a number \(k \in J \) such that \(S_k(A(x_0)) > 0 \). In that case, there exist two coefficients \(a_i \) having different signs. Observe that by the condition (Q) this also holds true in the whole \(\mathbb{R}^n \). Let us rewrite (6) as
\[
|a_{i_1}(x_0)|S_{i_1}(A(x_0)) + \ldots + |a_{i_m}(x_0)|S_{i_m}(A(x_0)) = |a_{j_1}(x_0)|S_{j_1}(A(x_0)) + \ldots + |a_{j_p}(x_0)|S_{j_p}(A(x_0)),
\]
where \(i_1 < \ldots < i_m, j_1 < \ldots < j_p \), and also \(i_1 < j_1 \). We claim that \(k = i_1 \) satisfies the conclusion of the lemma. Indeed, we have
\[
S_{i_1}(A(x_0)) \leq b_1 S_{j_1}(A(x_0)) + \ldots + b_p S_{j_p}(A(x_0)),
\]
where \(b_k = |a_{j_k}(x_0)|/|a_{i_1}(x_0)| \leq \mu_2/\mu_1 \). Now, using Proposition 3.2.2 in [5, p. 106], we have
\[
\left(\frac{S_k(A(x_0))}{\binom{n}{k}} \right)^m \leq \left(\frac{S_m(A(x_0))}{\binom{n}{m}} \right)^k,
\]
for any \(1 \leq m \leq k \leq n \), therefore by (7)
\[
S_{i_1}(A(x_0)) \leq \frac{\mu_2}{\mu_1} \sum_{k=1}^{p} \alpha_k \cdot (S_{i_1}(A(x_0)))^{\nu_k},
\]
where \(\nu_k = j_k/i_1 > 1 \) and \(\alpha_k = \binom{n}{j_k} \cdot \binom{n}{i_1}^{-\nu_k} \). Observe that the left hand side of the equation
\[
\frac{\mu_2}{\mu_1} \sum_{k=1}^{p} \alpha_k \cdot \sigma_k^{\nu_k-1} = 1
\]
is an increasing function of \(\sigma \geq 0 \), and let \(\sigma = \sigma_0 \) denote its (unique) positive root. Then in virtue of the positiveness of \(S_1(A(x_0)) \) we conclude that \(S_1(A(x_0)) \geq \sigma_0 \). By the continuity assumption on \(A(x) \), the latter inequality also holds in the whole \(\mathbb{R}^n \) which proves the lemma.

\[
\]

Corollary 1. Let \(f(x) \in C^2(\mathbb{R}^n) \) be a convex solution of (2) under the condition (Q). Then either \(\det \text{ Hess } f \equiv 0 \) in \(\mathbb{R}^n \) or there exists \(k \in J \) such that the inequality
\[
S_k(\text{Hess } f(x)) \geq \sigma_0 > 0
\]
holds for all \(x \in \mathbb{R}^n \) with \(k, \sigma_0 \) chosen as in Lemma 4.

3. **Proof of the Theorem.** We claim that under the hypotheses of the theorem there holds \(S_i(\text{Hess } f(x)) \equiv 0 \) for any \(i \in J \). Indeed, arguing by contradiction we have by Lemma 4 that (3) holds in the whole \(\mathbb{R}^n \) for some \(k \in J \). One can assume without loss of generality, replacing if needed \(f(x) \) by \(f(x) + c + \langle a, x \rangle \), that \(f(x) \geq 0 \) in \(\mathbb{R}^n \). Given an arbitrary \(\epsilon > 0 \), the condition (3) yields the existence of a constant \(p \in \mathbb{R} \) such that \(f(x) \leq \frac{\epsilon}{2} \|x\|^2 + p \) for any \(x \in \mathbb{R}^n \). But \(g(x) = \frac{\epsilon}{2} \|x\|^2 - f(x) \to \infty \) uniformly as \(x \to \infty \), hence it attains its minimum value at some point, say \(x_0 \in \mathbb{R}^n \), and there holds
\[
\text{Hess } g(x_0) = \text{Hess}(\frac{\epsilon}{2} \|x\|^2 - f(x))|_{x_0} \geq 0,
\]
which yields \(\text{Hess } f(x_0) \leq \epsilon I \) with \(I \) being the unit matrix.

Since \(\text{Hess } f(x_0) \geq 0 \) we obtain applying the majorization principle (see, for instance Corollary 4.3.3 in [4]) that
\[
S_k(\text{Hess } f(x_0)) \leq S_k(\epsilon I) = \epsilon^k \binom{n}{k}.
\]
But the assumption \(S_k(\text{Hess } f(x)) \geq \sigma_0 \) yields easily a contradiction with the arbitrariness of the \(\epsilon \). This proves our claim. In particular, in virtue of the convexity of \(f \) we also have \(\text{Hess } f(x) \geq 0 \), hence \(\text{Hess } f(x) \) has zero eigenvalues for any \(x \in \mathbb{R}^n \) implying \(\det \text{ Hess } f(x) \equiv 0 \) in \(\mathbb{R}^n \) (see also Corollary 4). If, additionally, \(a_1(x) \neq 0 \) then \(1 \in J \) and the claim implies \(S_1(\text{Hess } f(x)) = \Delta f(x) \equiv 0 \). Applying again the convexity of \(f(x) \) easily yields that \(\text{Hess } f(x) \equiv 0 \) in \(\mathbb{R}^n \), hence \(f(x) \) is an affine function and finishes the proof of the theorem.

4. **Example.** Let \(\alpha(t) \) be a positive function, non-identically constant and such that \(0 < q \leq \alpha(t) \leq q^{-1} \) for some fixed \(0 < q < 1 \). Let us consider the function
\[
f(x_1, \ldots, x_n) = \sum_{i=1}^{n} \int_{0}^{x_i} (x_i - t) \alpha(t) dt.
\]
Then \(\text{Hess } f(x) = (\alpha(x_i) \delta_{ij})_{1 \leq i, j \leq n} \), hence \(f(x) \) is convex and satisfies
\[
S_n(\text{Hess } f(x)) - \omega(x)S_1(\text{Hess } f) = 0
\]
with \(\omega(x) = \alpha(x_1) \ldots \alpha(x_n) / \sum_{i=1}^{n} \alpha(x_i) \). We have \(\frac{1}{2}q^{n+1} \leq a_1(x) \leq \frac{1}{n}q^{-n-1} \), which establishes that \(L \) satisfies the condition (Q). On the other hand,
\[
\frac{q}{2} \|x\|^2 \leq f(x) \leq \frac{1}{2q} \|x\|^2,
\]
thus \(f(x) \) has the quadratic growth at infinity.
References

[1] A. A. Borisenko. On a Liouville-type theorem for the equation of special Lagrangian submanifolds. *Mat. Zametki*, 52(5):22–25, 140, 1992.
[2] E. Calabi. Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens. *Michigan Math. J.*, 5:105–126, 1958.
[3] R.A. Horn and Ch. R. Johnson. *Matrix analysis*. Cambridge University Press, Cambridge, 1990. Corrected reprint of the 1985 original.
[4] Konrad Jörgens. Über die Lösungen der Differentialgleichung $rt - s^2 = 1$. *Math. Ann.*, 127:130–134, 1954.
[5] Marvin Marcus and Henryk Minc. *A survey of matrix theory and matrix inequalities*. Allyn and Bacon Inc., Boston, Mass., 1964.
[6] A. V. Pogorelov. *Monge-Ampère equations of elliptic type*. Translated from the first Russian edition by Leo F. Boron with the assistance of Albert L. Rabenstein and Richard C. Bollinger. P. Noordhoff Ltd., Groningen, 1964.