Risk factors for antimicrobial resistance in patients with *Escherichia coli* bacteraemia related to urinary tract infection

James Balfour*, Mabel Barclay, Janathan Danial, Carol Philip, Meghan Perry, Michelle Etherson†, Naomi Henderson†

Clinical Infection Research Group, NHS Lothian Infection Service, Western General Hospital, United Kingdom

SUMMARY

Introduction: NHS Lothian policy has recently changed to avoid first-line use of trimethoprim for uncomplicated urinary tract infections (UTI) in patients with risk factors for trimethoprim resistance, in line with national guidance. This study aimed to identify risk factors for antimicrobial resistance in *Escherichia coli* bacteraemia related to UTI.

Methods: A retrospective cohort study of 687 patients with *E. coli* bacteraemia related to UTI in NHS Lothian from 01/02/18 to 29/02/20 was undertaken. Demographics and comorbidities were collected from electronic patient records. Community prescribing and microbiology data were collected from the prescribing information system and Apex. Univariate and multivariate analysis was undertaken using RStudio to analyse trimethoprim, gentamicin and multi-drug resistance (MDR).

Results: Trimethoprim resistance was present in 282/687 (41%) of blood culture isolates. MDR was present in 278/687 (40.5%) isolates. Previous urinary trimethoprim resistant *E. coli* was a significant risk factor for both trimethoprim resistance (OR 9.44, 95%CI 5.83–15.9) and MDR (OR 4.81, 95%CI 3.17–7.43) on multivariate modelling. Trimethoprim prescription (OR 2.10, 95% CI 1.33–3.34) and the number of community antibiotic courses (OR 1.19, 95%CI 1.06–1.35) were additional risk factors for trimethoprim resistance. Multiple independent risk factors were also identified for trimethoprim resistance, MDR and gentamicin resistance.

Discussion: This study showed a high prevalence of trimethoprim resistance and MDR in patients with *E. coli* bacteraemia related to UTI. This supports the withdrawal of trimethoprim from first-line treatment of UTIs in patients with risk factors for trimethoprim resistance. It has also identified risk factors for MDR in *E. coli* bacteraemia.

© 2022 The Authors. Published by Elsevier Ltd on behalf of The Healthcare Infection Society. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Introduction

Antimicrobial resistance (AMR) is a significant and increasing problem worldwide. Urinary tract infections (UTIs) are a common cause of morbidity and mortality with severe complications including bacteraemia and sepsis. *Escherichia coli* is the
most common organism isolated from urinary samples in Scotland, England and Europe [1–3]. *E. coli* bacteraemia is strongly associated with UTI and accounts for the majority of Gram-negative bacteraemias in Scotland [4]. AMR is highly prevalent in urinary *E. coli* and *E. coli* bacteraemia in Scotland [4,5]. *E. coli* bacteraemia is associated with 30-day all-cause mortality from 8-18.2% in hospital inpatients [6–8] and associated AMR leads to less effective management [7,9–11].

E. coli was isolated from 115,844 urine samples and 4,206 blood cultures across Scotland in 2020 [1]. The incidence of *E. coli* bacteraemia was 77 per 100,000 population [1]. This has been broadly stable over the last five years [1,4]. The high incidence of trimethoprim resistance in urinary *E. coli* led to NICE recommending avoidance in patients at risk of resistance. Risk factors identified included hospital inpatients, nursing or care home residents, over 65-year-olds, trimethoprim prescription in the previous three months, or trimethoprim resistant organisms in the previous three urine cultures, over the previous 12 months [12]. NHS Lothian guidelines for community antibiotic prescribing changed to reflect this after the data for this study was collected. In 2019, the (UK) Government set the target of a 50% reduction in Gram-negative bacteraemias by 2023/2024. [4] This study aimed to examine the risk factors for AMR and MDR in *E. coli* bacteraemia related to UTI to allow the review and optimisation of local empirical antimicrobial prescribing guidelines and subsequently reduce the number of *E. coli* bacteraemias related to UTI.

Methods

This was a retrospective cohort study of all patients with *E. coli* bacteraemia associated with UTI in blood cultures across NHS Lothian from 01/02/2018 to 29/02/2020. In total, 710 *E. coli* bacteraemia isolates related to UTI were identified. Repeat isolates and paediatric cases were removed leaving 687 cases. Clinical data, demographics and comorbidities were drawn from Trak (online patient records) and microbiology data from Apex (laboratory systems). Demographic data included age, gender and nursing home residence. Comorbidities included diabetes mellitus, previous urological surgery and long-term catheterisation. Urinary *E. coli* isolates in the previous 12 months were analysed. Community prescribing data was collected over 6 months before the bacteraemia from the prescribing information system (PIS).

Data manipulation, univariate and multivariate analyses were carried out in RStudio version 4.1.0. Multivariate models were evaluated using the Akaike information criterion (AIC) with a backwards stepwise method using the ‘MASS’ package [13]. Collinearity between risk factors was allowed for.

All isolates received standard sensitivity testing using VITEK® 2 automated broth microdilution cards N381 (blood cultures) and N382 (urines) and categorised using EUCAST breakpoints v8.0, v8.1 and v9.0 [14]. Whilst there is no standard bacteraemia breakpoint for trimethoprim resistance, this was extrapolated from urinary breakpoints as a minimum inhibitory concentration of >4mg/L. Gentamicin is the first-line treatment of upper UTI and sepsis secondary to urinary source within NHS Lothian guidelines, so was also analysed [15]. There is no globally accepted definition for MDR and extensively drug resistant (XDR) Enterobacteriaceae. The ECDC definition [16] is not suited for routine clinical use as it utilises 17 different antimicrobial categories and contains agents, including entire classes, which are not routinely tested for in Scotland. For this reason, the Canadian system for describing MDR and XDR Enterobacteriaceae, described by German et al. (2018), currently under proposal for use in NHS Lothian, was used to categorize MDR and XDR isolates [17]. Isolates were described as MDR if they were resistant to three or four of the six groups of antimicrobials listed below. XDR was defined as greater than four of the.
Results

Demographics

687 patients with UTI related E. coli bacteraemia were examined with a mean age of 71.3 years. There were 407 (59.2%) female patients. Nursing home residents made up 47/687 (6.84%). Insulin-dependent diabetes was present in 50/687 (7.28%) patients. Long term catheters were present in 162/687 (23.58%) patients. Previous urological surgery had occurred in 94/687 (13.68%) patients. Prophylactic antibiotic prescription had occurred in 238/687 (34.48%) patients. The proportion of isolates with AMR to commonly used antibiotics was measured across the cohort (Figure 1).

Trimethoprim resistance

Trimethoprim resistance was present in 282/687 (41.05%) E. coli bacteraemia isolates (Figure 1). Univariate analysis revealed significant risk factors to be community trimethoprim prescription (OR 2.71, 95%CI 1.87–3.96), the number of trimethoprim courses (OR 1.50, 95% CI 1.22–1.88), community antibiotic prescription (OR 1.87, 95% CI 1.37–2.55), the number of antibiotic courses (OR 1.26, 95% CI 1.15–1.39), previous trimethoprim resistant urinary E. coli, (OR 5.39, CI 3.58–8.27), community nitrofurantoin prescription (OR 2.17, 95%CI 1.33–3.57) and community prophylactic antibiotic therapy (OR 3.60, 95%CI 1.73–8.03) (Table I).

Multivariate analysis showed that previous trimethoprim resistant urinary E. coli (OR 9.44, 95%CI 5.83–15.9), community trimethoprim prescription (OR 2.10, 95% CI 1.33–3.34) and the number of antibiotic courses (OR 1.19, 95%CI 1.06–1.35) were significant risk factors for trimethoprim resistance in E. coli bacteraemia. Nitrofurantoin prescription was negatively associated with trimethoprim resistance (OR 0.28, 95%CI 0.14–0.56) (Table I, Figure 2).

Table I

Univariate and multivariate analysis of risk factors for trimethoprim resistance in E. coli bacteraemia related to UTI in 687 patients in NHS Lothian

Characteristic	N	n	Univariate analysis	Multivariate analysis			
	OR1	95% CI	P-value	OR1	95% CI	P-value	
Community trimethoprim prescriptiona	687	146	2.71 1.87, 3.96	<0.001	2.10	1.33, 3.34	0.002
Community antibiotic prescriptiona	687	357	2.05 1.51, 2.81	<0.001	1.96	1.33, 3.34	0.002
Age	687		1.01 1.00, 1.02	0.20	0.96	1.00, 1.02	0.78
Gender	687	280	1.19 0.88, 1.62	0.30	0.95	1.00, 1.05	0.97
Nursing home resident	687	47	1.41 0.78, 2.56	0.30	0.40	1.00, 2.00	0.97
Insulin dependent diabetes mellitus	687	50	1.36 0.76, 2.42	0.30	0.55	0.95, 1.00	0.97
Upper UTI/Pyelonephritis	687	173	0.80 0.56, 1.13	0.20	0.32	0.95, 1.15	0.20
Long term catheter	687	162	1.32 0.93, 1.89	0.12	0.74	0.95, 1.05	0.57
Previous urological surgery	687	94	1.13 0.73, 1.75	0.60	0.74	0.95, 1.05	0.20
Previous trimethoprim resistant urinary E. coli	687	134	8.56 5.49, 13.8	<0.001	5.39	3.58, 8.27	0.001
Community nitrofurantoin prescriptiona	687	73	1.37 0.84, 2.23	0.20	0.67	0.95, 1.15	0.53
Community prophylactic antibiotic prescriptiona	687	33	3.03 1.48, 6.59	0.003	1.14	0.95, 1.35	0.20
Community antibiotic prescription except trimethoprima	687	211	1.04 0.75, 1.44	0.80	0.64	0.95, 1.15	0.53
Number of trimethoprim coursesa	687		1.66 1.33, 2.12	<0.001	1.00	1.00, 2.00	0.97
Number of antibiotic coursesa	687		1.24 1.13, 1.37	<0.001	1.02	1.00, 1.04	0.80

OR = Odds ratio, CI = Confidence interval, aGender n= male.
a Prescribing data from 6 months prior to bacteraemia.

MDR

MDR was present in 278/687 (40.4%) isolates. Trimethoprim resistance was present in 226/278 (81.3%) of MDR isolates. Univariate analysis revealed significant risk factors for MDR were community trimethoprim prescription (OR 1.96, 95%CI 1.35–2.83), the number of trimethoprim courses (OR 1.50, 95% CI 1.22–1.88), community antibiotic prescription (OR 1.87, 95% CI 1.37–2.55), the number of antibiotic courses (OR 1.26, 95% CI 1.15–1.39), previous trimethoprim resistant urinary E. coli, (OR 5.39, CI 3.58–8.27), community nitrofurantoin prescription (OR 2.17, 95%CI 1.33–3.57) and community prophylactic antibiotic therapy (OR 3.60, 95%CI 1.73–8.03) (Table II).

Multivariate analysis showed that previous trimethoprim resistant urinary E. coli (OR 4.81, 95%CI 3.17–7.43) and the number of community antibiotic courses were significant risk factors for MDR (Table II).

Only 8/687 cultures were extremely drug-resistant (XDR) therefore no additional analyses were undertaken.

Gentamicin resistance

Gentamicin resistance was present in 55/687 (8.0%) isolates (Figure 1). Univariate analysis revealed risk factors for gentamicin resistance to include community antibiotic prescription (OR 1.83, 95%CI 1.04–3.26), age (OR 1.02, 95%CI 1.00–1.05), long term catheterisation (OR 1.97, 95%CI 1.08–3.48) and community nitrofurantoin prescription (OR 8.56, 95%CI 5.49–13.8) (Table I).

Multivariate analysis showed that community nitrofurantoin prescription (OR 16.54, 95%CI 7.89–34.7) and community nitrofurantoin prescription except trimethoprim (OR 6.59, 95% CI 2.92–14.8) were significant risk factors for gentamicin resistance (Table II).
previous urinary trimethoprim resistant *E. coli* (OR 7.22, 95%CI 4.08—13.00) (Table III). No multivariate model demonstrated a good fit for the gentamicin data (Table IV).

Discussion

The demographics and resistance profile of the cohort were concordant with Scottish, English and European surveillance data [1—3]. This study showed that previous urinary trimethoprim resistant *E. coli* was the most significant risk factor for trimethoprim resistance and MDR in *E. coli* bacteraemia. Trimethoprim resistance was also associated with trimethoprim prescription and the number of antibiotic courses prescribed. MDR was associated with the number of community antibiotic courses prescribed. This agrees with the multiple studies demonstrating community antibiotic prescribing is linked to AMR in *E. coli* urinary and blood isolates [5,18,19].

Table II

Univariate and multivariate analysis of risk factors for MDR in *E. coli* bacteraemia related to UTI in 687 patients in NHS Lothian

Risk factors for MDR	N	n	Univariate analysis	Multivariate analysis				
			OR	95% CI	P-value	OR	95% CI	P-value
Community trimethoprim prescription	687	146	1.96	1.35, 2.83	<0.001	4.81	3.17, 7.43	<0.001
Community antibiotic prescription	687	357	1.87	1.37, 2.55	<0.001	4.79	3.17, 7.43	<0.001
Age	687		1.01	1.00, 1.02	0.050	1.14	1.03, 1.26	<0.001
Gender	687	280	1.12	0.82, 1.53	0.5	1.00	0.82, 1.23	0.3
Nursing home resident	687	47	1.59	0.87, 2.88	0.13	1.02	0.82, 1.27	0.13
Insulin dependent diabetes mellitus	687	50	1.07	0.59, 1.91	0.8	1.01	0.82, 1.27	0.2
Upper UTI/Pyelonephritis	687	173	0.77	0.54, 1.10	0.2	1.00	0.82, 1.23	0.2
Long term catheter	687	162	1.28	0.90, 1.83	0.2	1.00	0.82, 1.23	0.2
Previous urological surgery	687	94	1.49	0.96, 2.31	0.073	1.00	0.82, 1.23	0.2
Previous trimethoprim resistant urinary *E. coli*	687	134	5.39	3.58, 8.27	<0.001	4.81	3.17, 7.43	<0.001
Community nitrofurantoin prescription	687	73	2.17	1.33, 3.57	0.002	1.30	0.97, 1.73	0.098
Community prophylactic antibiotic prescription	687	33	3.60	1.73, 8.03	<0.001	1.30	0.97, 1.73	0.098
Community antibiotic prescription except trimethoprim	687	211	1.21	0.87, 1.67	0.3	1.00	0.82, 1.23	0.2
Number of trimethoprim courses	687	134	1.50	1.22, 1.88	<0.001	1.30	1.00, 1.66	0.003
Number of antibiotic courses	687	134	1.26	1.15, 1.39	<0.001	1.19	1.09, 1.31	<0.001

1OR = Odds ratio, 2Ci = Confidence interval, 3n = male.
 a Prescribing data from 6 months prior to bacteraemia.
mainly concurs with previous research into risk factors for resistance in urinary E. coli isolates completed by Malcolm et al. (2017) which identified risk factors for AMR and MDR in urinary E. coli across 40,984 isolates in Scotland [5]. Malcolm et al. demonstrated trimethoprim, nitrofurantoin and cumulative antibiotic use to be risk factors for AMR and MDR [5]. However, the present study showed that nitrofurantoin prescription was negatively associated with trimethoprim resistance. This relationship requires further exploration, particularly as nitrofurantoin use may increase with the change in local guidelines.

In the present study, clinical factors including age, diabetes mellitus, long-term catheterisation, and previous urological surgery were assessed. Age and long-term catheterisation were independent risk factors for gentamicin resistance. Prophylactic antibiotic therapy in the community was independently linked to both trimethoprim resistance and MDR. In a recent study, Aliabadi et al. (2021) analysed risk factors for AMR in E. coli bacteremia in 175,147 patients from English national surveillance data. Increasing age and regional deprivation were associated with AMR in community-acquired E. coli bacteremia [20].

In the present study, univariate analysis revealed a correlation between trimethoprim resistance in urinary E. coli and gentamicin resistance in E. coli bacteremia. This effect, alongside the failure of multivariate modelling for gentamicin resistance, may be due to the small sample size. However, this link should be explored further to allow the optimisation of community prescribing.

The strengths of this study include the analysis of blood culture isolates, guaranteeing the significance of the infection. Some urinary isolates may reflect asymptomatic bacteriuria. However, it has been suggested that AMR bacteria may be more likely to progress to bacteremia [10]. This study analysed resistance to trimethoprim, gentamicin and MDR, rather than a single antimicrobial.

The limitations of this study include a lack of inpatient prescribing data. Patients may have received antibiotics as an inpatient prior to the development of the bacteremia. Temporal data from the community prescribing was not collected therefore the length of time from prescription to bacteremia could not be analysed.

Table III

Univariate analysis of risk factors for gentamicin resistance in E. coli bacteremia related to UTI in 687 patients in NHS Lothian

Characteristic	N	n	OR\(^1\)	95% CI\(^2\)	P-value
Community trimethoprim prescription\(^a\)	687	146	1.29	0.66, 2.39	0.4
Community antibiotic prescription\(^a\)	687	357	1.84	1.04, 3.33	0.039
Age	687		1.02	1.00, 1.05	0.024
Gender	687	280\(^3\)	1.23	0.70, 2.14	0.5
Nursing home resident	687	47	0.49	0.08, 1.66	0.3
Insulin dependent diabetes mellitus	687	50	1.64	0.60, 3.77	0.3
Upper UTI/Pyelonephritis	687	173	0.56	0.25, 1.11	0.12
Long term catheter	687	162	1.97	1.09, 3.49	0.022
Previous urological surgery	687	94	1.87	0.91, 3.59	0.071
Previous trimethoprim resistant E. coli	687	134	7.23	4.08, 13.0	<0.001
Community nitrofurantoin prescription\(^a\)	687	73	1.74	0.77, 3.56	0.2
Community prophylactic antibiotic prescrib\(^a\)	687	33	0.35	0.02, 1.66	0.3
Community antibiotic prescription except trimethoprim\(^a\)	687	211	1.56	0.88, 2.74	0.12
Number of trimethoprim courses\(^a\)	687		0.91	0.58, 1.27	0.6
Number of antibiotic courses\(^a\)	687		1.06	0.93, 1.19	0.3

\(^1\)\(OR\) = Odds ratio, \(^2\)\(CI\) = Confidence interval, \(^3\)\(n\) = male.
\(^a\) Prescribing data from 6 months prior to bacteremia.

Table IV

Summary of risk factors for antibiotic resistance in E. coli bacteremia related to UTI

Summary table	OR\(^1\)
Risk factors for trimethoprim resistance identified through multivariate analysis	
Previous trimethoprim resistance in urinary E. coli isolate within 12 months	9.44
Community trimethoprim prescription	2.10
Cumulative community antibiotic prescribing	1.19
Risk factors for MDR identified through multivariate analysis	
Previous trimethoprim resistance in urinary E. coli isolate within 12 months	4.81
Cumulative community antibiotic prescribing	1.19

\(OR\) = Odds ratio.

Conclusion

Trimethoprim resistance and MDR are prevalent in E. coli bacteremia associated with UTI. The most significant risk factor for trimethoprim resistance and MDR was previous urinary trimethoprim resistant E. coli. Community trimethoprim prescription and cumulative community antibiotic courses were also associated with trimethoprim resistance. Many factors, particularly community antibiotic prescribing, were independently linked to AMR and MDR. This study supports the
move away from first-line trimethoprim use for UTIs in patients with risk factors for resistance. Since the data collection period, NHS Lothian has moved away from first-line trimethoprim use in patients at risk of resistance. This data should be considered to further optimise empirical prescribing guidelines in the hope it may lead to a reduction in *E. coli* bacteremias.

Conflict of interest statement

No conflict of interest was identified.

Funding statement

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors

Credit author statement

James Balfour: Conceptualisation, methodology, investigation, writing-original draft, visualisation, project administration.

Mabel Barclay: Software, formal analysis, data curation.

Jonathan Danial: Data curation.

Carol Philip: Data curation.

Meghan Perry: Conceptualisation, Writing-review and editing, supervision.

Michelle Etherson: Conceptualisation, writing-review and editing, supervision.

Naomi Henderson: Conceptualisation, writing-review and editing, supervision.

References

[1] ARHAI Scotland. Healthcare associated infections 2020 annual report. [Internet]. 2021. [https://www.nss.nhs.scot/media/2256/hai-annual-report-2020.pdf. [Accessed 15 January 2022].

[2] Public Health England. Laboratory surveillance of *Escherichia coli* bacteremia in England, Wales and Northern Ireland. 2018. 2019 [Internet]. [https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/844788/hpr3719_ecolit18.pdf]. [Accessed 18 November 2021].

[3] WHO Regional Office for Europe and European Centre for Disease Prevention and Control. Surveillance of antimicrobial resistance in Europe, 2020 data. Executive Summary. [Internet]. [https://www.ecdc.europa.eu/sites/default/files/documents/Surveillance-antimicrobial-resistance-in-Europe-2020.pdf]. [Accessed 11 November 2021].

[4] ARHAI Scotland. Scottish one-health antimicrobial use and antimicrobial resistance report 2019. 2020 [Internet]. [https://www.hps.nhs.uk/web-resources-container/scottish-one-health-antimicrobial-use-and-antimicrobial-resistance-in-2019/]. [Accessed 17 November 2021].

[5] Malcolm W, Fletcher E, Kavanagh K, Deshpande A, Wilins C, Warner C, et al. Risk factors for resistance and MDR in community urine isolates: population-level analysis using the NHS Scotland Infection Intelligence Platform. J Antimicrob Chemother 2017;73:223–30. [https://doi.org/10.1093/jac/dkx363].

[6] Skogberg K, Lyyttikäinen O, Olgren J, Nuorti JP, Ruutu P. Population-based burden of bloodstream infections in Finland. Clin Microbiol Infect 2012;18:170–6. [https://doi.org/10.1111/j.1469-0691.2012.03845.x].

[7] Laupland KB, Gregson DB, Church DL, Ross T, Pitout JDD. Incidence, risk factors and outcomes of *Escherichia coli* bloodstream infections in a large Canadian region. Clin Microbiol Infect 2008;14:1041–7. [https://doi.org/10.1111/j.1469-0691.2008.02089.x].

[8] Abernethy JK, Johnson AP, Guy R, Hinton N, Sheridan EA, Hope RJ. Thirty day all-cause mortality in patients with *Escherichia coli* bacteraemia in England. Clin Microbiol Infect 2015;21:251. [https://doi.org/10.1016/j.cmi.2015.01.001].

[9] de Lastours V, Laouènan C, Royer G, Carbonnelle E, Lepeule R, Esposito-Farèse M, et al. Mortality in *Escherichia coli* bloodstream infections: antibiotic resistance still does not make it. J Antimicrob Chemother 2020;75:2334–43. [https://doi.org/10.1093/jac/dkaa161].

[10] Hawkey PM, Warren RE, Livermore DM, McNulty CAM, Enoch DA, Otter JA, et al. Treatment of infections caused by multidrug-resistant Gram-negative bacteria: report of the British Society for Antimicrobial Chemotherapy/Healthcare Infection Society/ British Infection Association Joint Working Party. J Antimicrob Chemother 2018;73. [https://doi.org/10.1093/jac/dky027]. iii2–iii78.

[11] Peralta G, Sánchez MB, Garrido JC, De Benito I, Cano ME, Martínez-Martínez L, et al. Impact of antibiotic resistance and of adequate empirical antibiotic treatment in the prognosis of patients with *Escherichia coli* bacteremia. J Antimicrob Chemother 2007;60:535–63. [https://doi.org/10.1093/jac/dkm279].

[12] National Institute for Health and Care Evidence. Urinary tract infection: Lower. Antimicrobial prescribing. 2018 [Internet]. [https://www.nice.org.uk/guidance/ng109/resources/urinary-tract-infection-lower-antimicrobial-prescribing-pdf-66141546350533]. [Accessed 16 December 2021].

[13] Venables WN, Ripley BD. Modern applied statistics with S. 2002 [Internet]. [https://www.stats.ox.ac.uk/pub/MASS4/]. [Accessed 20 January 2022].

[14] European Committee on Antimicrobial Susceptibility Testing. EUCAST clinical breakpoint tables v. 9.0. 2022 [Internet]. [https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_9_0_Breakpoint_Tables.pdf]. [Accessed 16 December 2021].

[15] Scottish Antimicrobial Prescribing Group. SAPG Antimicrobial Companion. 2022 [Internet]. [https://www.antimicrobial.companion.scot/national-template/].

[16] Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012;18:268–81. [https://doi.org/10.1111/j.1469-0691.2011.03570.x].

[17] German GJ, Gilmour M, Tipples G, Adam HJ, Almohri H, Bullard J, et al. Canadian recommendations for laboratory interpretation of multiple or extensive drug resistance in clinical isolates of *Enterobacteriaceae*, *Acinetobacter species* and *Pseudomonas aeruginosa*. Can Comm Dis Rep 2018;44:29–34. [https://doi.org/10.14745/ccdr.v44i01a07].

[18] Cusini A, Herren D, Bütikofer L, Plüss-Suard C, Kronenberg A, Marschall J. Intra-hospital differences in antibiotic use correlate with antimicrobial resistance rate in *Escherichia coli* and *Klebsiella pneumoniae*: a retrospective observational study. Antimicrob Resist Infect Control 2018;7:89. [https://doi.org/10.1186/s13756-018-0387-0].

[19] Lishman H, Costelloe C, Hopkins S, Johnson AP, Hope R, Hinton N, Sheridan EA, et al. Exploring the relationship between primary care antibiotic prescribing for urinary tract infections, *Escherichia coli* bacteremia incidence and antimicrobial resistance: an ecological study. Int J Antimicrob Agents 2018;52:790–8. [https://doi.org/10.1016/j.ijantimicag.2018.08.013].

[20] Aliabadi S, Jaunekaitè E, Müller-Pebody B, Hope R, Vihta K-D, Horner C, et al. Exploring temporal trends and risk factors for resistance in *Escherichia coli* causing bacteriemia in England between 2013 and 2018: an ecological study. J Antimicrob Chemotherapy 2021. [https://doi.org/10.1093/jac/dkab440]. dkab440.