6-Cycle Double Covers of Cubic Graphs

Rodrigo S. C. Leão
Valmir C. Barbosa*

Universidade Federal do Rio de Janeiro
Programa de Engenharia de Sistemas e Computação, COPPE
Caixa Postal 68511
21941-972 Rio de Janeiro - RJ, Brazil

Abstract

A cycle double cover (CDC) of an undirected graph is a collection of the graph’s cycles such that every edge of the graph belongs to exactly two cycles. We describe a constructive method for generating all the cubic graphs that have a 6-CDC (a CDC in which every cycle has length 6). As an application of the method, we prove that all such graphs have a Hamiltonian cycle. A sense of direction is an edge labeling on graphs that follows a globally consistent scheme and is known to considerably reduce the complexity of several distributed problems. In [9], a particular instance of sense of direction, called a chordal sense of direction (CSD), is studied and the class of k-regular graphs that admit a CSD with exactly k labels (a minimal CSD) is analyzed. We now show that nearly all the cubic graphs in this class have a 6-CDC, the only exception being K_4.

Keywords: Cycle double covers, Cubic graphs, Chordal sense of direction, Circulant graphs, Hexagonal tilings, Fullerenes, Polyhexes.

1 Introduction

In this paper we consider connected undirected graphs having no multiple edges or self-loops. For terminology or notation not defined here we refer the reader to [3]. A cycle double cover (CDC) of a graph G is a collection of cycles in G such that every edge of G belongs to exactly two of the cycles. It can be easily seen that a necessary condition for a graph to have a CDC is that the graph be 2-edge-connected. It has been conjectured that this condition is also sufficient [13] [12], but the conjecture has remained unsettled and constitutes one of the classic unsolved problems in graph theory.

*Corresponding author (valmir@cos.ufrj.br).
A \(k \)-cycle double cover (\(k \)-CDC), for \(k \geq 3 \), is a CDC whose every cycle has length \(k \). Previous results on \(k \)-CDC’s are the ones in \([1, 14, 15]\), all motivated by the relationship between \(k \)-CDC’s and embeddings on surfaces. In \([1]\), the 6-regular graphs that have a 3-CDC are studied and some results are shown to carry over, by duality, to the class of girth-6 cubic graphs that have a 6-CDC. This latter class is characterized in \([14]\), and in \([15]\) deciding whether a graph has a 3-CDC is proven NP-complete.

In this paper we introduce a constructive method for generating all the cubic graphs that have a 6-CDC, and prove in addition that all such graphs are Hamiltonian. For the particular case of girth-6 cubic graphs, these contributions provide both an alternative to the method of \([14]\) and an answer to the question raised in \([1]\) regarding the graphs’ Hamiltonicity. Graphs in this case can also be viewed as hexagonal tilings of the torus (the orientable surface of genus 1) or of the Klein bottle (the non-orientable surface of cross-cap number 2; cf. \([14]\)) and have many applications in chemistry, where they are also called toroidal and Klein-bottle fullerenes \([4]\) or polyhexes \([8]\).

Our initial motivation, though, has been the relationship between 6-CDC’s and the chordal sense of direction (CSD) \([7]\) of a graph. A sense of direction is an edge labeling on graphs that follows a globally consistent scheme and is known to considerably reduce the complexity of several distributed problems \([5]\).

In the particular case of a CSD, to be defined precisely in Section 6, we have in another study characterized the \(k \)-regular graphs that admit a CSD with exactly \(k \) labels \([9]\), also called a minimal CSD (MCSD). A further contribution of the present study is to demonstrate that, except for \(K_4 \), every cubic graph that has an MCSD also has a 6-CDC. Since in \([9]\) we also prove that the class of regular graphs that have an MCSD is equivalent to that of circulant graphs, this contribution also holds for cubic circulant graphs. We note that circulant graphs have great practical relevance due to their connectivity properties (small diameter, high symmetry, etc.), which render them excellent topologies for network interconnection, VLSI, and distributed systems \([2]\).

The following is how we organize the remainder of the paper. We start in Section 2 with preliminary results on 6-CDC’s and their cycles. Then we move in Section 3 to the introduction of our method to generate all cubic graphs that have a 6-CDC. In Section 4 we describe the method’s details by explaining how it is applied for each possible girth value. Our method never generates duplicates or misses a graph, as we explain in Section 5 along with a demonstration that all cubic graphs that have a 6-CDC are Hamiltonian. The relationship to MCSD’s is discussed in Section 6 and then we close in Section 7 with concluding remarks.

2 Preliminaries

We henceforth assume that \(G \) is a cubic graph on \(n \) vertices and \(m \) edges and that it has a 6-CDC. Clearly, \(m = 3n/2 \) and \(n \) is necessarily even. We say that
a cycle C of such a 6-CDC *covers* a certain edge whenever that edge belongs to C. Let us initially establish some properties of the cycles of a 6-CDC of G.

Lemma 1. Every 6-CDC of G has $n/2$ cycles.

Proof. Let t be the number of cycles in a 6-CDC of G. As each edge belongs to two of the t cycles, we have $6t = 2m$. And because $m = 3n/2$, it follows that $6t = 3n$, whence $t = n/2$. \hfill \square

Lemma 2. No two cycles of a 6-CDC of G share a path containing more than one edge.

Proof. Suppose, contrary to our aim, that uvw is a path of length 2 in G belonging to two cycles, say C and C', of the 6-CDC. Let z be the other vertex adjacent to v. The two cycles of the 6-CDC that cover the edge vz must also cover either uv or vw. However, both uv and vw are already covered by C and C', a contradiction. \hfill \square

Lemma 3. Every vertex of G belongs to exactly three cycles of a 6-CDC of G.

Proof. By Lemma 2, each of the cycles going through a vertex v must cover a distinct pair of edges incident to v. The result follows from recognizing that there exist $(\binom{3}{2}) = 3$ such pairs. \hfill \square

Now, for C and C' any two cycles of a 6-CDC of G, let $\mu(C, C')$ be the number of edges covered by both C and C', and $\sigma(C)$ the number of cycles of the 6-CDC, excluding C, that have at least one edge in common with C. We can bound these numbers as follows.

Lemma 4. If C and C' are cycles in a 6-CDC of G, then $0 \leq \mu(C, C') \leq 3$.

Proof. The lower bound is trivial and corresponds to C and C' being edge-disjoint. As for the upper bound, it follows directly from Lemma 2 since $\mu(C, C') > 3$ requires C and C' to share a path containing more than one edge. \hfill \square

Lemma 5. If C is a cycle in a 6-CDC of G, then $2 \leq \sigma(C) \leq 6$.

Proof. The lower bound follows from Lemma 2 and corresponds to C having all three edges in each of its two possible sets of noncontiguous edges in common with a same cycle of the 6-CDC. The upper bound is trivial and corresponds to the case in which C shares each of its edges with a different cycle of the 6-CDC. \hfill \square

We can also characterize the graphs that effectively attain the upper bound of Lemma 4. As we see in Lemma 6 below, each such graph has a three-cycle 6-CDC whose cycles all attain the lower bound of Lemma 4 as well. We first review some definitions. A *chord* is an edge interconnecting two noncontiguous vertices of a cycle. Let C be a cycle of even length. A *Möbius ladder* on n vertices, denoted by M_n, is the graph obtained by adding chords between all
Figure 1: The only cubic graphs that attain both the upper bound of Lemma 4 and the lower bound of Lemma 5. Each is shown with a three-cycle 6-CDC highlighted (thin solid edges belong to one cycle, thick solid edges to another, dashed edges to both, and the external hexagon is the third cycle). The graph in part (a) is isomorphic to M_6 and the one in part (b) to $T_{6,2}$.

vertex pairs that are $n/2$ edges apart on C (M_6 is shown in Figure 1(a)). For l a divisor of n, an l-layer torus on n vertices, denoted by $T_{n,l}$, is an $l \times n/l$ mesh in which maximally distant vertices on the same row or column are connected to each other ($T_{6,2}$ is shown in Figure 1(b)).

Lemma 6. If C and C' are cycles in a 6-CDC of G such that $\mu(C, C') = 3$, then G is isomorphic to either M_6 or $T_{6,2}$.

Proof. By Lemma 2 it suffices to identify a perfect matching on one of C or C', say C, as the set of edges shared by the two cycles. The remaining edges of C' can only be arranged so that G is either isomorphic to M_6 or to $T_{6,2}$, as illustrated in Figure 1.

In the remainder of the paper, for any graph H we use $V(H)$ to denote its vertex set and $E(H)$ its edge set. Furthermore, we call a cycle fragment any subgraph of a 6-CDC’s cycle, and a cycle configuration any collection of cycles or cycle fragments of a 6-CDC.

3 A recursive method

Having established some restrictions on the cycles that form a 6-CDC, we are now in position to describe a constructive method for generating cubic graphs that have a 6-CDC. Let H be a proper subgraph of G whose vertices have degree 1 or 3. When we consider the intersection of the cycles of a 6-CDC of G with H, we obtain a cycle configuration in H such as the one illustrated in Figure 2, where an edge is labeled i, j to indicate that it belongs to the cycles C_i and C_j of the 6-CDC.

We say that a vertex is deficient in a certain graph if its degree is less than 3 in that graph. The deficiency of graph H is given by $3|V(H)| - \sum_{v \in V(H)} d_H(v)$, where $d_H(v)$ is the degree of v in H. Note that the deficient vertices in H are exactly the ones that are also deficient in $G - E(H)$, where for $E \subset E(G)$ we
use $G - E$ to denote the graph obtained from G by removing the edges in E and the vertices that become isolated after the edge removal. For G and H as in Figure 2, $G - E(H)$ is the external triangle in part (a) of the figure.

Now suppose that there exists another graph H' that can replace H in G in such a way that the resulting graph, call it G', is cubic and has a 6-CDC with the same cycle configuration on the edges of $G' - E(H')$ as on the edges of $G - E(H)$. In other words, suppose that H' leads to a cubic $G' = H' \cup [G - E(H)]$ such that the cycle configuration in $G - E(H)$ remains unchanged from the 6-CDC of G to that of G'. If such is the case, then H' must have the same deficiency as H (so the resulting G' is cubic) and also a cycle configuration that completes the one in $G - E(H)$ as needed to yield the 6-CDC of G'. For G and H as in Figure 2, H' and G' are as illustrated in Figures 3(a) and 3(b), respectively.

For the latter condition to be satisfied, the following two properties must hold. First, if v_1, \ldots, v_y are the deficient vertices of H (all of degree 1, by
definition), then there has to exist a partition \(\{U_1, \ldots, U_y\}\) of the deficient vertices of \(H'\) such that \(v_x\) and \(U_x\) have the same deficiency\(^1\) \(x = 1, \ldots, y\). Clearly, \(|U_x| \leq 2\) necessarily, so \(U_x\) has either one degree-1 vertex or two degree-2 vertices. By Lemma 3, each degree-1 vertex in \(H\) or \(H'\), or degree-2 vertex in \(H'\), has exactly two cycles of the 6-CDC of \(G\) going through it along edges of both \(H\) and \(G - E(H)\), or of \(H'\) and \(G' - E(H')\), as the case may be. For \(v_x\) and \(U_x\), \(x = 1, \ldots, y\), let \(C_i\) and \(C_j\) be the two cycles in \(H\), \(C_i'\) and \(C_j'\) the two cycles in \(H'\). The second property is that the fragment of \(C_i\) in \(H\) and the fragment of \(C_i'\) in \(H'\) both have the same length, and similarly for \(C_j\) and \(C_j'\).

In the case of Figures 2 and 3, no degree-2 vertices exist in \(H'\) and the above holds with \(C_i = C_i' = C_1\) and \(C_j = C_j' = C_2\), for example. The fragments of \(C_1\) and \(C_2\) in \(H\) are dabcf and dace, respectively, while in \(H'\) they are dglkf and dghie.

We say that cycle configurations such as the ones of \(H\) and \(H'\) are equivalent to each other. When it is the case, in addition, that \(H'\) has at least one subgraph that is isomorphic to \(H\) and all such subgraphs have cycle configurations that are equivalent to that of \(H\) (hence to that of \(H'\) also), then we say that \(H'\) is self-similar with respect to \(H\). This is certainly the case of the \(H\) and \(H'\) of Figures 2(b) and 3(a), since the triangle of Figure 3(a), when augmented by vertices \(h, j, l\) and the edges that lead to them from the triangle, is isomorphic to the graph in Figure 2(b) with equivalent cycle configuration.

Self-similarity is a property of positive-deficiency graphs and constitutes the core of our method. Before proceeding to a description of the method, we let \(g(G)\) denote the girth of \(G\). In our present case of graphs that have a 6-CDC, \(3 \leq g(G) \leq 6\) necessarily, and we use the value of \(g(G)\) to divide our approach into cases, as presented in Section 4.

For a fixed value of \(g\) in \(\{3, \ldots, 6\}\), let \(S_g\) be the deficiency-2\(g\) graph on \(2g\) vertices that comprises a length-\(g\) cycle and \(g\) additional vertices, each of them connected to a distinct vertex of the cycle. For \(g = 3\), \(S_3\) is the \(H\) of Figure 2(b). In general, it is easy to see that every girth-\(g\) cubic graph having a 6-CDC has a subgraph isomorphic to \(S_g\) with a cycle configuration that is consistent with the 6-CDC, even though the \(g\) off-cycle vertices of this subgraph are not always all distinct\(^2\). For a fixed cycle configuration of \(S_g\), let also \(I_g\) be a minimal girth-\(g\) proper supergraph of \(S_g\) which, along with a cycle configuration of its own, is self-similar with respect to \(S_g\)\(^3\). In the \(g = 3\) example, \(I_g\) is the \(H'\) of Figure 3(a).

Now, a very important observation is that, for \(g = 6\), it may be impossible for \(I_g\) to exist as defined. The reason is that the cycle configuration of \(S_g\) does not necessarily include a complete cycle of the 6-CDC, while it may

\(^1\)We extend the definition of a graph’s deficiency to that of a vertex or vertex set in the obvious way.

\(^2\)In fact, vertex distinctness holds for all but one single case, specifically one of the cycle configurations of \(S_4\), as we discuss in Section 4.2.

\(^3\)Notwithstanding the formal generality of this definition, what happens is that, as we show in Sections 4.1 through 4.4 for every valid cycle configuration of \(S_g\) there exists only one \(I_g\) instance.
happen that every girth-6 proper supergraph of S_6 whose cycle configuration is equivalent to that of S_6, is also a supergraph of an isomorph of S_6 whose cycle configuration does include a complete 6-CDC cycle. We then see that the definition of self-similarity must be modified in the girth-6 case when the cycle configuration of S_6 does not contain a complete 6-CDC cycle. The modification is that not all subgraphs of I_6 that are isomorphic to S_6 are required to have cycle configurations equivalent to that of S_6, but rather only those whose cycle configurations do not contain a complete 6-CDC cycle. That the girth-6 case should require such an exceptional treatment is not really a surprise, since we are throughout dealing with graphs that have a 6-CDC, and thence it is only natural that 6-cycles that are in the 6-CDC be distinguished from those that are not.

Given the notion of self-similarity, the definitions of S_g and I_g imply that I_g can substitute indefinitely for any isomorph of S_g that has a cycle configuration equivalent to that of I_g, thus generating an infinite sequence of deficiency-2g, girth-g graphs whose first graph is S_g itself. For $g < 6$, such an isomorph is any of the S_g-isomorphs that the current graph has as subgraphs; for $g = 6$, isomorphs whose cycle configuration includes a complete 6-CDC cycle are excluded if the cycle configuration of S_g does not itself contain a complete 6-CDC cycle. Turning the resulting graphs into girth-g cubic graphs that have a 6-CDC requires that we define yet another graph based on S_g. This graph is denoted by B_g and its definition, too, depends on what happens in the $g = 6$ case.

B_g is in all cases defined to be a girth-g supergraph of S_g that has a 6-CDC. If either $g < 6$ or else $g = 6$ but the cycle configuration of S_g does not include a complete 6-CDC cycle, then B_g is furthermore of one of two types:

(i) B_g is not a supergraph of I_g.

(ii) B_g is a supergraph of I_g such that substituting S_g for I_g causes the girth of B_g to be reduced.

The remaining case is that of $g = 6$ when the cycle configuration of S_g does include a complete cycle of the 6-CDC. In this case, B_g has the following property, in addition to being a girth-g supergraph of S_g that has a 6-CDC:

(iii) B_g is a supergraph of I_g and all its 6-cycles are cycles of the 6-CDC. In addition, it is such that substituting S_g for I_g causes the appearance of 6-cycles that are not in the 6-CDC.

In any of cases (i)–(iii), the 6-CDC of B_g is assumed to coincide with the cycle configuration of S_g or I_g, depending respectively on whether B_g is a supergraph of S_g only or of I_g as well. It is also curious to note that, if B_g is of type (iii), then in I_g it automatically holds that every 6-cycle is a cycle of the 6-CDC; but this already follows from the very definition of I_g, since in this case S_g itself contains a complete 6-CDC cycle in its cycle configuration.

The reason for making a distinction between these three types is immaterial at this point and will only become clear in Section 4.4 in which we handle
the girth-6 case, and in Section 5 when we argue for the completeness of our method. For the girth-3 example we have been using as illustration, notice that the G of Figure 2(a) is a type-(i) instance of B_3.

One crucial property emerging from the definitions of S_g, I_g, and B_g is that, except for type-(i) instances of B_g, every girth-g cubic graph that has a 6-CDC also has a subgraph isomorphic to I_g with a cycle configuration that renders it self-similar with respect to S_g. So not only is the indefinite substitutability of I_g for S_g true, but it can be used to generate all girth-g cubic graphs that have a 6-CDC, as follows. For each possible cycle configuration of S_g, we identify I_g and all pertinent B_g instances. By starting at each such instance and substituting I_g for S_g indefinitely, ever larger girth-g cubic graphs are generated having a 6-CDC.

4 Applying the method

For each pertinent girth value g, in this section we start with S_g and identify all its possible cycle configurations. For each of these cycle configurations, we then expand S_g (along with its cycle configuration, by adding vertices and edges) without disrupting the 6-CDC nature of its cycle configuration or altering the girth. We do this until I_g and all instances of B_g are obtained.

While expanding S_g we first attempt to generate type-(i) instances of B_g, that is, those that are not supergraphs of I_g. Then we proceed to generating I_g itself and from there we move to expanding I_g towards obtaining the instances of B_g that are supergraphs of I_g, that is, type-(ii) or (iii) instances. It is important to realize that, since S_g and I_g have cycle configurations that are equivalent, carrying the expansion beyond I_g need not attempt the same expansion steps that generated type-(i) B_g instances: doing this would only lead to graphs that already belong to the sequence of graphs generated by substituting I_g for S_g recursively from a type-(i) B_g instance onward. What must be attempted, rather, are expansion steps that failed previously but may now succeed (like those that somehow disrupt the girth or the 6-CDC when attempted on S_g).

4.1 The girth-3 case

We start with the graph of Figure 2(b) as S_3 (that is, the core cycle of S_3 is $abca$). It is easy to see that the cycle configuration given in Figure 2(b) is the only one that does not violate the restrictions discussed in Section 2. Furthermore, note that the vertices d, e, and f must all remain distinct as we expand S_3, otherwise either the resulting graph would be isomorphic to K_4 (which is too small to have a 6-CDC) or the resulting cycle configuration would be inconsistent with the requirements of a 6-CDC.

Given the unique cycle configuration for S_3 in Figure 2(b), we proceed with the expansion. This is done by completing the cycles C_1, C_2, and C_3. We have two ways of completing C_1: either using an existing vertex (e) or including a new one. While the former option leads unavoidably to B_3 and its cycle
configuration shown in Figure 2(a) when applied to all three cycles, the latter results, after a suitable renaming of vertices and cycles, and also unavoidably, in the I_3 of Figure 3(a) and its cycle configuration. As noted in Section 3, B_3 is of type (i); also, for the reasons given above in the introduction to Section 4, seeking type-(ii) instances of B_3 any further is in this case meaningless.

Notice that we can now replace S_3 by I_3 in B_3, thus obtaining a larger cubic graph of girth 3 (the one in Figure 3(b)) that has a 6-CDC. This substitution process can proceed recursively, always generating cubic graphs of girth 3 with a 6-CDC. The graphs resulting from the second and third iterations are shown in Figure 4.

4.2 The girth-4 case

We start by analyzing all the possible cycle configurations of S_4. In Figures 5(a)–(c), the cycle configurations of S_4 that infringe neither Lemma 2 nor Lemma 3, and also do not lead to the existence of a cycle with length smaller than 6 in the 6-CDC, are presented. Note that vertices e, f, g, and h are all distinct in these graphs. The cases in which these vertices may coincide will be treated later.

For each cycle configuration shown in Figure 5, we must identify I_4 and B_4. We denote by S_{4a} the graph with the cycle configuration of Figure 5(a), and likewise I_{4a} and B_{4a} refer to the expansions of S_{4a}. We proceed similarly in the cases of Figures 5(b) and 5(c).

The only possibilities for I_4 are the I_{4a}, I_{4b}, and I_{4c} of Figure 6. As for B_4, the only possibilities that Lemmas 2 and 3 allow are the B_{4a}, B_{4b}, $B_{4b'}$, and B_{4c} of Figure 7. Notice that each of B_{4a}, B_{4b}, and B_{4c} is isomorphic to $T_{8,2}$, and that $B_{4b'}$ is isomorphic to M_{8}. Also, they are all type-(i) instances of B_4.

It is illustrative to notice also that the cycle configurations of S_{4a} and I_{4a} are in fact equivalent to each other, and also that every subgraph of I_{4a} that

Figure 4: The graphs that result from the second (a) and third (b) substitutions of I_3 for S_3.

4The expansion of S_{4b} into a B_4 instance has two possible outcomes, which we denote by B_{4b} and $B_{4b'}$.

9
is isomorphic to S_{4a} has a cycle configuration that is equivalent to that of S_{4a}. That is, I_{4a} is indeed self-similar with respect to S_{4a} and does as such allow for recursive substitutions of I_{4a} for S_{4a} starting at B_{4a}. Except for the initial B_{4a}, since it is of type (i), all S_{4a}-isomorphic subgraphs of the resulting graphs have cycle configurations equivalent to that of S_{4a}.⁵ The cases of S_{4b} and I_{4b} with B_{4b} (or $B_{4b'}$) and of S_{4c} and I_{4c} with B_{4c} are entirely analogous.

Now let us consider the cases in which vertices e, f, g, and h are not necessarily distinct. It is easy to see that the only way for this to happen without altering the girth is to let $e = g$ or $f = h$. If either $e = g$ or $f = h$, then clearly the cycle configurations of Figures 5(a) and 5(c) acquire a cycle of length 4, which is inconsistent with the nature of a 6-CDC, while in the cycle configuration of Figure 5(b) either vertex e or vertex f becomes part of four distinct cycles, which infringes Lemma 3.

Letting both $e = g$ and $f = h$, similarly, violates the 6-CDC in the cases of Figures 5(a) and 5(c). However, the cycle configuration of Figure 5(b) remains valid, and by simply adding edge ef and letting $C_2 = C_4$ we obtain M_6 with a consistent 6-CDC, as in Figure 5. It is interesting to note that the first replacement of S_{4b} by I_{4b} in M_6 generates M_8, which is isomorphic to $B_{4b'}$, so we may actually let $B_{4b'}$ be M_6 instead (and thus avoid creating another type-(i) instance of B_4).

4.3 The girth-5 case

In Figures 9(a)–(c), the cycle configurations of S_5 that are consistent with Lemmas 2 and 3 and do not disrupt the nature of the 6-CDC are depicted. Notice that vertices f, g, h, i, and j must necessarily be distinct in order for the girth not to fall below 5. As in the girth-4 case, these graphs along with their cycle configurations are denoted by S_{5a}, S_{5b}, and S_{5c}, respectively.

Now, as we try to expand S_{5a}, we invariably generate the I_{5a} of Figure 10 before we get to a B_5 instance, and do so without ever turning down an edge

⁵In Section 5 we use this property to argue for the uniqueness of each graph generated in the process.
Figure 6: I_{4a} (a), I_{4b} (b), and I_{4c} (c).
Figure 7: B_{4a} (a), B_{4b} (b), $B_{4b'}$ (c), and B_{4c} (d).
addition exclusively on account that the graph’s girth would be thus reduced. One consequence of this is that any B_5 instance we may come to generate as we proceed with the expansion will have I_{5a} as a subgraph and therefore not be of type (i). Furthermore, as we consider that the cycle configurations of S_{5a} and I_{5a} are equivalent to each other, we realize that expanding beyond I_{5a} is almost completely constrained to repeating the same steps that initially led from S_{5a} to I_{5a}. The only exception is that now we may be precluded from adding a certain edge solely because such an addition would reduce the graph’s girth.\footnote{The fact that adding an edge uv to I_g creates a cycle with length smaller than g does not necessarily imply that an edge $u'v'$ in S_g will form a cycle with length smaller than g as well, where u' and v' in I_g correspond to u and v in S_g, respectively.}

But since nothing of this sort happens in the expansion from S_{5a} to I_{5a}, we see in any event that substituting S_{5a} for I_{5a} in any deficiency-0 graph resulting from expanding beyond I_{5a} preserves the girth, and then that graph is not a type-(ii) B_5 instance. So it turns out that no B_5 instance can be generated, and then the cycle configuration of S_{5a} is invalid. As for S_{5b}, it is relatively easy to see that its expansion cannot proceed without infringing Lemma 2 or reducing the graph’s girth. This cycle configuration is therefore also invalid.

The expansion of S_{5c}, on the other hand, leads to the I_{5c} of Figure 11. And even though we arrive at I_{5c} before obtaining B_{5c}, this expansion does refrain from adding edges that would reduce the graph’s girth. So we may proceed with the expansion of I_{5c} until we generate the B_{5c} of Figure 12 which is a type-(ii) instance of B_5. As before, it is important to note that the two subgraphs of B_{5c} isomorphic to S_{5c} have the same cycle configuration as S_{5c}.

4.4 The girth-6 case

Following our development so far, we present in Figures 13(a)–(e) the consistent cycle configurations of S_6, namely S_{6a} through S_{6e}. Of these, S_{6c} is the only one to include a complete 6-CDC cycle (cycle C_1) in its cycle configuration. The I_6 and B_6 instances for S_{6a}, …, S_{6d} are given in Figures 14 and 15. Notice that, consistently with our comments in Section 3, every one of I_{6a} through

![Figure 8: Graph, with a 6-CDC, obtained from S_{4b} by letting $e = g$, $f = h$, and $C_2 = C_4$ while e is connected to f.](image)
Figure 9: \(S_{5a} \) (a), \(S_{5b} \) (b), and \(S_{5c} \) (c).
I_{6d} has subgraphs that are isomorphic to S_6 but do not have the same cycle configuration as, respectively, S_{6a} through S_{6d} (having, as those subgraphs do, a complete 6-CDC cycle in their cycle configurations). Notice also that B_{6b} (the Heawood graph [3]) is the only type-(i) instance of B_6 in the group; the others are all of type (ii). The case of S_{6e}, however, embodies peculiarities we have not yet encountered, and does as such require further elaboration.

As we noted above, S_{6e} contains a complete cycle from the 6-CDC (C_1 in Figure 13(e)). Also, it represents the only possible cycle configuration for a 6-CDC cycle in a girth-6 graph. It then follows that S_{6e} is contained in every girth-6 graph that has a 6-CDC. However, there exist graphs that have a 6-CDC and S_{6e} as a subgraph (including its cycle configuration) but do not have S_{6a}, S_{6b}, S_{6c}, or S_{6d} as subgraphs: they are the graphs in which every 6-cycle belongs to the 6-CDC. So, analogously to our strategy thus far, let us look for corresponding I_6 and B_6 instances. From Section 3, we know that the desired B_6 instances are of type (iii).

In order to facilitate the task of searching for I_{6e} and also for B_{6e}, we first look into some properties related to the graph’s girth.

Lemma 7. If C is a cycle in a 6-CDC of G such that $\sigma(C) < 6$, then $g(G) < 5$.

Proof. If C has a chord, then the lemma holds trivially. Let us then assume that C is chordless. In this case, there has to exist another 6-CDC cycle, say C', such that $\mu(C, C') > 1$, since $\sigma(C) < 6$. By Lemma 4, $\mu(C, C') \leq 3$; by Lemma 6 if $\mu(C, C') = 3$ then G is isomorphic to either M_6 or $T_{6,2}$ and, consequently, every 6-CDC cycle has a chord, which cannot be by assumption. Thus, $\mu(C, C') = 2$.

Let e and f be edges of G belonging to both C and C'. Because C' is chordless, C' contains two distinct paths, call them P_1 and P_2, of length 2, both
Figure 11: I_{5e}.

Figure 12: B_{5e}.
Figure 13: S_{6a} (a), S_{6b} (b), S_{6c} (c), S_{6d} (d), and S_{6e} (e).
Figure 14: I_{6a} (a), B_{6a} (b), I_{6b} (c), B_{6b} (d), $B_{6b'}$ (e).
Figure 15: I_{6c} (a), B_{6c} (b), I_{6d} (c), B_{6d} (d), and $B_{6d'}$ (e).
interconnecting an end vertex of e with an end vertex of f, as in Figure 16. Let u and v be end vertices of e and f, respectively, such that P_1 interconnects u and v. It is easy to see that there exists another path in C, call it P_3, that interconnects u and v in such a way that P_3 has length less than 4. Hence, there exists a cycle in G containing u and v whose length is less than 6 and whose edges are those of P_1 and P_3.

However, there is only one way, shown in Figure 16, of interconnecting the end vertices of e and f such that the subgraph of G induced by the edges of C and C' has girth 5. And there exists only one possible cycle configuration for this subgraph, considering the already given cycles C and C'. This cycle configuration contains S_{6a}, which from Section 4.3 we know is not valid. So the interconnection pattern of Figure 16 is invalid as well, hence $g(G) < 5$.

Theorem 8. $g(G) \geq 5$ if and only if every cycle C in a 6-CDC of G is such that $\sigma(C) = 6$.

Proof. If $\sigma(C) < 6$ for some 6-CDC cycle C, then $g(G) < 5$ by Lemma 7. In order to prove the converse statement, we assume $g(G) = 3$ or $g(G) = 4$ and simply verify, respectively from Figure 2(b) or Figures 5(a)–(c), that 6-CDC cycles C and C' always exist such that $\mu(C, C') > 1$. It then follows that a 6-CDC cycle C always exists for which $\sigma(C) < 6$.

Let us first see how Theorem 8 simplifies the search for B_{6e}. We begin by defining a graph D_{6e} such that $V(D_{6e}) = \{C_1, \ldots, C_t\}$, where C_1, \ldots, C_t are the 6-CDC cycles of B_{6e}, and $C_iC_j \in E(D_{6e})$ if and only if C_i and C_j share an edge in B_{6e}. Since S_{6e} is a subgraph of B_{6e}, it induces the subgraph of D_{6e} shown in Figure 17(a) with dashed edges. It is easy to see that D_{6e} is 6-regular and that, by Lemma 8, every vertex in B_{6e} corresponds to a triangle in D_{6e} (and conversely).

Since B_{6e} is cubic, each triangle in D_{6e} shares an edge with exactly three other triangles and each edge in D_{6e} is shared by two triangles. These properties restrict the way in which the degree-3 vertices of D_{6e} in Figure 17(a) may be connected to other vertices. In particular, they must not be connected among themselves, meaning that the six incomplete cycles of the subgraph of B_{6e} in

Although this definition of D_{6e} is very similar to that of a dual graph, we refrain from using this denomination because we do not assume that B_{6e} is planar.
Figure 17: Subgraphs of B_{6e} with subgraph of D_{6e} in the background (with dashed edges).

Figure 18: Smallest girth-6 graphs, B_{6e} (a) and $B_{6e'}$ (b), that have a 6-CDC which contains every 6-cycle.

It is relatively easy to see that the only expansions of the graph of Figure 17(b) that qualify as type-(iii) instances of B_{6} and moreover comply with Theorem 8 are the ones in Figure 18. We denote them by B_{6e} (Figure 18(a)) and $B_{6e'}$ (Figure 18(b)).

The I_{6e} shown in Figure 19(a) can be obtained straightforwardly from S_{6e} using the same restrictions as the ones used for obtaining B_{6e}. Notice that the deficiency of I_{6e} is equal to that of S_{6e} (12 in both cases). Larger graphs in this class can be obtained in the same way as for the previous cases; the outcome of the first replacement of S_{6e} by I_{6e} in B_{6e} is shown in Figure 19(b).

Unlike most of our previous illustrations, Figures 18 and 19 contain no annotation for vertex or cycle identification. They are omitted for clarity and are furthermore needless, since in these figures all 6-cycles are in the 6-CDC.
Completeness of the method and Hamiltonian cycles

It is possible to prove that the generation method discussed in Sections 3 and 4 never outputs the same graph twice, and also that all cubic graphs having a 6-CDC are generated. In what follows, we separate the $g < 6$ case from that of $g = 6$.

We first explain the absence of duplicates during generation. Notice first that the method always keeps the girth constant as I_g substitutes for S_g, so there is no interference between distinct-girth instances. In order to see that outputs are unique also for fixed g, consider first the $g < 6$ case. It then suffices to recall that all subgraphs isomorphic to S_g in I_g or in $B_g - E(S_g)$ have the same cycle configuration, which forbids any hybrid cycle configuration to be generated (i.e., a cycle configuration with remnants from more than one S_g instance).

For $g = 6$, what might prevent the same simple argument from holding is that there is, of course, the issue related to girth-6 graphs that we discussed in Sections 3 and 4.4. In this case, the occurrence of more than one cycle configuration for S_g-isomorphs is verified in all type-(i) and (ii) instances of B_g. However, the extra cycle configurations always contain a complete 6-CDC cycle and our method never replaces them in the process of generating new graphs from a type-(i) or (ii) B_g instance. They only get replaced when the method starts at a type-(iii) instance, so the no-duplicity argument remains essentially unaltered.

Let us now demonstrate that no cubic graph G having a 6-CDC is missed during generation. The overall strategy here is to start from G itself and to repeatedly substitute S_g for a subgraph of the current graph that is isomorphic to I_g until a B_g instance is reached. If for every cubic G that has a 6-CDC we can argue that this “reversal” of the generation process is possible, then we have proven that the method is complete.
Let us consider the $g < 6$ case first. Let G have girth g and a 6-CDC, and recall that both I_g and all instances of B_g are girth-g supergraphs of S_g. The difference between them is that each B_g is a cubic graph having a 6-CDC, while I_g has nonzero deficiency and a cycle configuration with the important property of being self-similar with respect to S_g. Because our method relies on the explicit knowledge of every possible cycle configuration of S_g, there are only two possibilities for G: either it is isomorphic to a type-(i) instance of B_g or it has a subgraph that is isomorphic to I_g. While in the former case G is obviously generated by the method, in the latter it is possible to recursively substitute S_g for I_g through a sequence of ever smaller graphs until either a type-(i) instance of B_g is finally obtained or else a substitution yields a graph that has less-than-g girth. If it is not the case that the process ends at a type-(i) instance of B_g, then by definition the last substitution must have been applied on a type-(ii) instance of B_g. We then conclude that, in any case, G is output by the method.

The case of $g = 6$ is analogous, but the possibilities for ending the sequence of substitutions are more varied. The sequence may end when a type-(i) instance of B_g is reached, or when a graph is obtained whose girth is less than g (if G has 6-cycles that are not in the 6-CDC), or yet when a graph is obtained that has acquired 6-cycles that are not in the 6-CDC (if all of G's 6-cycles are in the 6-CDC). Similarly to the case of $g < 6$, if the process does not end at a type-(i) instance of B_g, then by definition the last substitution must have been applied respectively on a type-(ii) or (iii) instance of B_g. Once again, G is in any case seen to be output by the method.

It is important to note that this argument for the method’s completeness relies crucially on the fact that every possible instance of B_g is known. For $g = 3, \ldots, 6$, this is part of what we established in Sections 4.1 through 4.4. A key observation related to our exhaustive enumeration of B_g instances in those sections is that in none of those instances is more than one cycle configuration of S_g present, with the important exception in the girth-6 case we noted in Section 3. For this reason, in the above completeness argument we need not concern ourselves with the presence of multiple cycle configurations for S_g: in girth-g cubic graphs that have a 6-CDC, such multiplicity never occurs, unless $g = 6$ and the cycle configuration of S_g does not include a complete 6-CDC cycle—in this case, the argument is already split into finishing at a type-(ii) or a type-(iii) instance of B_g.

It is also possible to identify a Hamiltonian cycle in every cubic graph that has a 6-CDC. We first find a Hamiltonian cycle C in B_g. Then we take paths in I_g that are equivalent to the path used by C in the S_g-isomorphic subgraph of B_g. For example, in B_3 we have the Hamiltonian cycle $dachefd$, whose intersection with S_3 is the path $dache$ (cf. Figure 2), and an equivalent path in I_3 (cf. Figure 3(a)) is $dylkjabchie$. Successive substitutions of I_3 for S_3 will then always ensure the presence of a Hamiltonian cycle. In Figures 20 through 26 we show (as thick edges) Hamiltonian cycles in B_g and equivalent paths in I_g for all the remaining pertinent values of g.
6 6-CDC’s and the minimal chordal sense of direction

In this section, G is no longer assumed to have a 6-CDC, but rather to be such that every one of its edges has two labels, each corresponding to one of its end vertices. In [11], a property of this edge labeling has been introduced which can considerably reduce the complexity of many problems in distributed computing [5]. This property refers to the ability of a vertex to distinguish among its incident edges according to a globally consistent scheme and is formally described in [6]. An edge labeling for which the property holds is called a sense of direction. It is symmetric if for every edge one label can be inferred from the other. While the full-fledged definition of sense of direction is irrelevant to our present discussion, the special sense of direction that we describe next is closely related to a cubic graph’s having a 6-CDC.

We say that a sense of direction is minimal if it requires exactly $\Delta(G)$ distinct labels, where $\Delta(G)$ is the maximum degree in G. A particular instance of symmetric sense of direction, called a chordal sense of direction, can be constructed on any graph by fixing an arbitrary cyclic ordering of the vertices and, for each edge uv, selecting the difference (modulo n) from the rank of u in the ordering to that of v as the label of uv that corresponds to u (likewise, the label that corresponds to v is the rank difference from v to u). In Figure 27, an example is given of a minimal chordal sense of direction (MCSD). For a survey on sense of direction, we refer the reader to [7].

Before proceeding to our result in this section, we pause briefly to review some relevant definitions. Given a finite group A and a set of generators $S \subseteq A$, a Cayley graph is a graph H whose vertices are the elements of the group $(V(H) = A)$ and whose edges correspond to the action of the generators ($uv \in E(H) \iff \exists s \in S : v = s \ast u$, where \ast is the operation defined for A). We assume that the set of generators is closed under inversion, so H is an undirected
Figure 21: Hamiltonian cycle in B_{5c} (a) and equivalent path in I_{5c} (b).

Figure 22: Hamiltonian cycle in B_{6a} (a) and equivalent paths in I_{6a} (b).

Figure 23: Hamiltonian cycle in B_{6b} (a) and in $B_{6b'}$ (b), and equivalent paths in I_{6b} (c).
Figure 24: Hamiltonian cycle in B_{6c} (a) and equivalent paths in I_{6c} (b).

Figure 25: Hamiltonian cycle in B_{6d} (a) and in $B_{6d'}$ (b), and equivalent path in I_{6d} (c).
Figure 26: Hamiltonian cycle in B_{6e} (a) and in $B_{6e'}$ (b), and equivalent paths in I_{ae} (c).
Figure 27: A graph with an edge labeling that is an MCSD. Vertices are ordered clockwise.

graph. A circulant graph (also known as a chordal ring) is a Cayley graph over \mathbb{Z}_n, the cyclic group of order n under the addition operation.

In [9], we have analyzed the class of regular graphs that admit an MCSD, and proved that this class is equivalent to that of circulant graphs. In this section, we prove that nearly all the cubic graphs in this class have a 6-CDC, the only exception being K_4. We start by noting that a characterization of such cubic graphs follows directly from the results of [9] (specifically, Theorem 5, Lemma 6, and Lemma 7) and can be stated as follows.

Lemma 9. G admits an MCSD (or, equivalently, G is a circulant graph) if and only if G is isomorphic to either M_n, with $n \geq 4$, or to $T_{n,2}$, with $n \geq 6$.

We now present the main result of this section.

Theorem 10. Except for K_4, every cubic graph that admits an MCSD has a 6-CDC.

Proof. By Lemma 9 it suffices to consider instances of M_n, with $n \geq 4$, and of $T_{n,2}$, with $n \geq 6$.

First, notice that all instances of M_n or $T_{n,2}$ have girth less than 5. Also, the only instances of girth 3 are M_4 and $T_{6,2}$. The former of these is isomorphic to K_4 and obviously does not have a 6-CDC. As for the latter, a 6-CDC is shown in Figure 2(a).

Let us then consider the girth-4 instances; we do this by resorting to the material of Section 4.2. First notice that $B_{4b'}$ is isomorphic to M_6 and that all instances of M_n, for $n \geq 6$, can be generated by successive replacements of $S_{4b'}$ by $I_{4b'}$ in $B_{4b'}$. Similarly, B_{4b} is isomorphic to $T_{8,2}$ and all instances of $T_{n,2}$, for $n > 8$, can be generated by successive replacements of S_{4b} by I_{4b} in B_{4b}. It then follows that every instance of M_n or $T_{n,2}$ having $n \geq 6$ also has a 6-CDC. □
7 Conclusions

We have in this paper demonstrated how to generate all the cubic graphs that have a 6-CDC in a constructive manner. For an arbitrary cubic graph G with n vertices and girth g, our method provides, at least in principle, a mechanism for checking whether G has a 6-CDC: one simply generates all girth-g cubic graphs on n vertices that have a 6-CDC and checks each one against G for isomorphism. This check, we recall, can be performed polynomially for cubic graphs [10].

Our method also provides a mechanism for pinpointing a Hamiltonian cycle in any cubic graph that has a 6-CDC. That all such graphs are Hamiltonian is a result consistent with the one in [9], given our further demonstration, in this paper, that all non-K_4 cubic graphs that have an MCSD also have a 6-CDC. The alluded result in [9] is that all regular graphs that have an MCSD are Hamiltonian.

Our results relating 6-CDC’s to MCSD’s in cubic graphs create a bridge connecting these two concepts and also, by consequence, the notion of a circulant graph in the cubic case. The obvious implication of this is that results obtained within one context can now be extended directly to any other.

There are several open problems that may be addressed to expand on the results we have presented. Some of them come from generalizing the vertices’ fixed degree or the constant length of a CDC’s cycles, or yet from relaxing at least one of the two constraints by letting vertices have different degrees or CDC cycles different lengths. Relaxing both is really tantamount to addressing the Szekeres-Seymour conjecture [13][12], according to which every 2-edge-connected graph has a CDC. This conjecture has stood for over thirty years, so perhaps an easier (though by no means trivial) starting problem for further research is to characterize the k-regular graphs that have a $2k$-CDC, $k \geq 3$.

Acknowledgments

The authors acknowledge partial support from CNPq, CAPES, and a FAPERJ BBP grant. They also thank C. Thomassen for pointing references [1][14][15] to them.

References

[1] A. Altshuler. Construction and enumeration of regular maps on the torus. *Discrete Mathematics*, 4:201–217, 1973.

[2] J. C. Bermond, F. Cornellas, and D. F. Hsu. Distributed loop computer networks: a survey. *Journal of Parallel and Distributed Computing*, 24:2–10, 1995.

[3] J. A. Bondy and U. S. R. Murty. *Graph Theory with Applications*. North-Holland, New York, NY, 1976.
[4] M. Deza, P. W. Fowler, A. Rassat, and K. M. Rogers. Fullerenes as tilings of surfaces. *Journal of Chemical Information and Computer Sciences*, 40:550–558, 2000.

[5] P. Flocchini, B. Mans, and N. Santoro. On the impact of sense of direction on message complexity. *Information Processing Letters*, 63:23–31, 1997.

[6] P. Flocchini, B. Mans, and N. Santoro. Sense of direction: definitions, properties and classes. *Networks*, 32:165–180, 1998.

[7] P. Flocchini, B. Mans, and N. Santoro. Sense of direction in distributed computing. *Theoretical Computer Science*, 291:29–53, 2003.

[8] E. C. Kirby, R. B. Mallion, and P. Pollack. Toroidal polyhexes. *Journal of the Chemical Society Faraday Transactions*, 89:1945–1953, 1993.

[9] R. S. C. Leão and V. C. Barbosa. Minimal chordal sense of direction and circulant graphs. In R. Královič and P. Urzyczyn, editors, *Mathematical Foundations of Computer Science 2006*, volume 4162 of *Lecture Notes in Computer Science*, pages 670–680, Berlin, Germany, 2006. Springer-Verlag.

[10] E. M. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial time. *Journal of Computer and System Sciences*, 25:42–65, 1982.

[11] N. Santoro. Sense of direction, topological awareness and communication complexity. *SIGACT News*, 2:50–56, 1984.

[12] P. D. Seymour. Sums of circuits. In J. A. Bondy and U. S. R. Murty, editors, *Graph Theory and Related Topics*, pages 341–355. Academic Press, New York, NY, 1979.

[13] G. Szekeres. Polyhedral decompositions of cubic graphs. *Bulletin of the Australian Mathematical Society*, 8:367–387, 1973.

[14] C. Thomassen. Tilings of the torus and the Klein bottle and vertex-transitive graphs on a fixed surface. *Transactions of the American Mathematical Society*, 323:605–635, 1991.

[15] C. Thomassen. Triangulating a surface with a prescribed graph. *Journal of Combinatorial Theory, Series B*, 57:196–206, 1993.