Dry Leaf and Steviol Glycoside Productivity of Stevia rebaudiana in the Western United States

Cheryl A. Parris
S&W Seed Company Inc., Fresno, CA

Clinton C. Shock
Malheur Experiment Station, Oregon State University, 595 Onion Avenue, Ontario, OR, 97914

Michael Qian
Food Science and Technology Department, Oregon State University, 100 Wiegand Hall, Corvallis, OR, 97331-6602

Additional index words. subsurface drip irrigation, steviolose, rebaudioside A, rebaudioside C, steviol glycosides

Abstract. Stevia (Stevia rebaudiana Bertoni) is a perennial herbaceous plant native to Paraguay, where it was used by the native Guarani peoples for centuries. Although steviol glycosides from stevia are powerful natural noncaloric sweeteners, stevia has been cultivated and commercially available only for the past 50 years. Cultural practices are still in development, and productivity potential in the United States is largely unknown. Currently commercial growers and processors worldwide are seeking to maximize the productivity of rebaudioside A, a steviol glycoside. The trials reported here examined the effects of location, harvest strategy, and cultivar on stevia dry leaf yield, steviol glycoside content, and steviol glycoside yield. Six or seven stevia cultivars were grown for ~5 months at four western U.S. locations, with an irrigation criterion of 20 kPa. Stevia at every location was subjected to two harvest strategies: either one harvest at the end of the season or two harvests, one midseason and another at the end of the season. The main plots at each location were the stevia cultivars, and the split plots were the harvest strategies in a randomized complete block, split-plot design with four replicates. Dry leaf yield, leaf steviol glycoside content, and leaf steviol glycoside yield varied by cultivar, location, and cultivar by location, but not by harvest strategy or interactions of harvest strategy with location or cultivar. Dry leaf yield averaged 4.12 Mg·ha⁻¹ with significant differences by cultivar and location. One of the steviol glycosides, rebaudioside A yield averaged 300 kg·ha⁻¹ with significant differences by cultivar and by interactions of location with cultivar. Leaf productivity was greater at Ontario, OR, than at Hanford, CA, Indio, CA, or Yuma, AZ. Dry leaf yield greater than 7 Mg·ha⁻¹ and rebaudioside A yields greater than 500 kg·ha⁻¹ were observed at Ontario. Stevia perenniated at Hanford and Indio, providing the option of multiple harvests from a single planting.

Stevia (Stevia rebaudiana) is an herbaceous perennial, endemic to a semitropical region in the highlands of Paraguay, where it adapted to small niche environments between wetter marshlands and drier vegetated areas (Shock, 1982a, 1982b). The acidic, sandy soil is relatively infertile with an underlying shallow water table that provides a continuous source of water without surface soil saturation. Stevia is among many species of economic importance from the Asteraceae or Compositae family, including sunflower, lettuce, and herbal teas. Stevia usually grows as an herbaceous perennial but can be cultivated in northern latitudes or other areas, such as China, as an annual. Stevia is an obligate short-day plant that has a critical daylength of less than 13 h for flower initiation, although daylength sensitivities are subject to varietal differences (Metivier and Viana, 1979; Valio and Rocha, 1977; Zaidan et al., 1980).

Paraguay’s native Guarani peoples have used stevia leaves for centuries as a sweetening agent for normally bitter medicinal teas (Madan et al., 2010; Ramesh et al., 2006). The sweet flavor, reportedly up to 300 times sweeter than sugar, comes from noncaloric steviol glycoside compounds found in the leaf (Brandle et al., 1998). The two most prominent steviol glycosides are stevioside and rebaudioside A.

Sugar consumption in the United States is projected to decline 10%, from $2.18 billion in 2013 to $1.95 billion by 2018 (Sprinkle, 2014). In 2014, 48% of the sweetener market consisted of sugar and 17% consisted of all noncaloric sugar substitutes. Within the noncaloric sugar substitutes, steviosid glycoside comprised 29% of the market compared with 45% for sucralose. Over the previous 2 years, 33% of the U.S. adults increased their consumption of steviosid glycosides, 55% maintained their consumption, and 12% reduced their consumption. Manufacturers of diet soft drinks are using steviol glycosides (principally rebaudioside A) as sweeteners, which reduces sugar content and associated costs, while marketing a potentially healthier alternative to soda sweetened with sugar or high-fructose corn syrup.

Currently, the U.S. Federal Drug Administration (FDA) regulations limit stevia use in food products to processed combinations of steviosid, rebaudioside A, rebaudioside D, rebaudioside M, enzyme-modified steviosid glycosides, and other steviol glycosides, and they must be at least 95% pure (U.S. Food and Drug Administration, 2015). The FDA allows stevia leaf use as a dietary supplement but not as a dietary ingredient, a sweetener, or a flavoring agent. Industrial extraction of steviol glycosides from stevia leaves is currently only performed overseas. The U.S. market for domestically produced leaf may be limited by shipping costs until leaf processing facilities are built.

Commercial cultivation of stevia was reported in Paraguay and Japan during the early 1960s (Madan et al., 2010; Yadav et al., 2011). Today, stevia has been introduced for crop production in many countries including China, India, Brazil, Mexico, Canada, parts of Europe, and Africa, and to a lesser extent, the United States.

Efficient production of stevia will require efficient cultivars and sound cultural practices. Planting densities, fertility requirements, and pest management practices have been reviewed by several authors (Brandle et al., 1998; Madan et al., 2010; Ramesh et al., 2006), yet there are many unsolved problems in stevia production. Shock (1982a, 1982b) studied stevia yield for possible cultivation in California. The field study at the University of California, Davis, CA, produced dry leaf yield up to 9.2 Mg·ha⁻¹ in small plots in a single growing season with a density of 191,400 plants/ha, but most yields were lower. The stevia was grown with frequent, shallow irrigations.

Over the past decade, several stevia trials have examined stevia dry leaf yields, and in some instances, steviol glycoside content on single cultivars from several regions of the world. In Paraguay, where stevia occurs naturally, the Cooperativa Colonias Unidas, Obligado, Itapí, Paraguay, compared microsprinkler and drip irrigation with or without patchouli mulch in areas of high annual rainfall (2019 mm), low soil fertility, and high erosion (Prieto et al., 2010). Stevia dry leaf yields were compared at various plant densities over multiple sequential harvests. After the initial planting, any dead plantlets were replaced with live stevia plants to maintain densities. Dry leaf yield over 3 years improved from 4.12 Mg·ha⁻¹ per year with no irrigation to 4.6 Mg·ha⁻¹ per...
year with microsprinkler irrigation, and 5.22 Mg ha\(^{-1}\) per year with drip irrigation at a planting density of 111,000 plants/ha. With mulch and replanting, using microsprinkler irrigation, harvest yields increased to 5.08 Mg ha\(^{-1}\) per year. Before these advancements by Prieto et al. (2010), Ramesh et al. (2006) reported typical stevia leaf yields in Paraguay obtained.

Stevia leaf yield was 4.37 Mg ha\(^{-1}\), stevioloside content was 6.49%, and rebaudioside A and steviol glycoside content in the Mediterranean climate of southern Italy with 50,000 plants/ha. Stevia dry leaf yield of 2.74 Mg ha\(^{-1}\) per year reached 4.6 Mg ha\(^{-1}\) in 2014, stevia yield trials were conducted for S&W Seed Company at four locations if there had been sufficient soil type and irrigation practices. Three sites were university agricultural research facilities and one was a private organic farm. Soils were analyzed for preplant nutrient levels and fertilized accordingly (Table 2).

Six improved S&W stevia lines and cultivars ‘1049’, ‘1090’, ‘1108’, ‘SW 107’, ‘SW 129’, and ‘SW 201’ were selected for their plant material.

In 2014, stevia yield trials were conducted for S&W Seed Company at four locations with various latitudes in the western United States, including Indio, CA, Yuma, AZ, Hanford, CA, and Ontario, OR (Table 1). The sites differed in soil type and irrigation practices. Three sites were university agricultural research facilities and one was a private organic farm. Soils were analyzed for preplant nutrient levels and fertilized accordingly (Table 2).

Six improved S&W stevia lines and cultivars ‘1049’, ‘1090’, ‘1108’, ‘SW 107’, ‘SW 129’, and ‘SW 201’ were selected for their plant vigor, leaf taste, and steviol glycoside content and were compared with a seeding control cultivar for their leaf yield, steviol glycoside composition, and steviol glycoside yields (Shock and Parris, 2015, 2016a, 2016b). Stevia cuttings were rooted and increased during the 2013 Fall and Winter. The control was the cultivar Candy (Genesis Seed Ltd., Ashdell, Israel) grown from seed. Candy cuttings were grown at the same time as cuttings were rooted.

The stevia cultivars were planted at each location in a randomized complete block, with split-plot designs. The in-row transplanting distances varied by bed width at each site and were adjusted to 40,000 plants/acre (99,000 plants/ha). The cultivars were the main plots, and two harvest strategies were the split plots. Each main plot of each cultivar contained 208 plants in 21 m\(^2\). One split plot was harvested twice, the first harvest at midseason and second at the end of the season. The other split plot was harvested only once at the end of the season (Table 1). At Yuma, Indio, and Hanford, 24 main plots were measured, staked, and numbered to accommodate six cultivars with four replicates. At Ontario, 28 main plots accommodated seven cultivars and four replicates. All seven cultivars would have been planted at the four locations if there had been sufficient plant material.

At Indio, Yuma, and Ontario, each main plot consisted of two beds with two rows of stevia plants on each bed and with one drip line buried at 10-cm depth at Indio and Ontario. To reduce border effects, the harvested areas used for yield estimates were from the adjoining interior plant rows of each bed. At Hanford the main plots consisted of four rows of plants on single bed with two surface drip lines. Two rows of stevia were planted on opposite sides of each drip line in an alternate manner creating four rows per plot, and the measured harvest areas were from the middle two rows of plants on the four-row bed.

Stevia was grown with drip irrigation at Indio, Hanford, and Ontario and furrow irrigation at Yuma. The soil water tension (SWT) was measured using five Watermark soil

Table 1. Stevia rebaudiana S&W Seed Company yield trials performed on seven cultivars at four western U.S. sites.

Site location	Indio, CA	Yuma, AZ	Hanford, CA	Ontario, OR
Soil type	Sandy loam	Clay loam	Silt loam	Silt loam
Field type	Agricultural research	Agricultural research	Perennial	Agricultural research
Herbaceous growth	Perennial	Perennial	Perennial	Annual
Irrigation	Drip	Drip	Drip	Drip
Cultivar	1090, 1108, SW 107, SW 129, SW 201, Candy	1090, 1108, SW 107, SW 129, SW 201, Candy	1049, 1090, 1108, SW 107, SW 129, SW 201, Candy	1049, 1090, 1108, SW 107, SW 129, SW 201, Candy
Planting date	8 Apr. 2014	9 Apr. 2014	12 Apr. 2014	5 May 2314
Split-plot A, first harvest date	10 July 2014	12 July 2014	17 July 2014	24 July 2014
Split-plot A, second harvest date	4 Sept. 2014	8 Sept. 2014	12 Sept. 2014	3 Oct. 2014
Split-plot B, single harvest date	4 Sept. 2014	8 Sept. 2014	12 Sept. 2014	3 Oct. 2014

Table 2. Soil analysis comparison during preplant preparations at four locations selected for S&W Seed Company Stevia rebaudiana yield trials.

Soil analysis	Indio, CA	Yuma, AZ	Hanford, CA	Ontario, OR
pH	7.9	7.6	7.3	7.1
Cation exchange capacity, meq/100g	17	20	13	10
Organic matter, %	NA	1.6	NA	2
Nitrate, µg g\(^{-1}\)	40	48	11	31
Ammonium, µg g\(^{-1}\)	NA	6	NA	4
Phosphorus, µg g\(^{-1}\)	11	25	12	34
Potassium, µg g\(^{-1}\)	123	380	242	524
Calcium, µg g\(^{-1}\)	2,760	6,475	2,190	2,785
Magnesium, µg g\(^{-1}\)	128	415	105	553
Sodium, µg g\(^{-1}\)	212	332	22	242
Sulfur, µg g\(^{-1}\)	146	48	22	23
Zinc, µg g\(^{-1}\)	2.2	0.9	1.7	4.4
Iron, µg g\(^{-1}\)	3.7	21	6	13
Copper, µg g\(^{-1}\)	1.1	3	1.9	1.4
Manganese, µg g\(^{-1}\)	0.9	5	12	6
Boron, µg g\(^{-1}\)	0.6	2	0.2	1.1
moisture sensors (Irrometer Company, Inc., Riverside, CA) and a temperature sensor installed at 20-cm depth and connected to a Watermark Monitor data-logger (Irrometer Company, Inc.). Watermark soil moisture sensors had been previously calibrated to SWT using tensiometers with pressure transducers (Shock et al., 1998). Supervised by local management teams, irrigations were initiated when the average SWT of the five Watermark soil moisture sensors was close to 20 kPa (Shock and Wang, 2011; Shock et al., 2013).

Nutrient supplements consisted of 56 kg·ha⁻¹ of nitrogen as solution 32 (urea ammonium nitrate) and 0.012 kg·ha⁻¹ of iron as Sprint 138 6% iron chelate (Becker Underwood, Inc., Ames, IA) applied 2 weeks after transplanting and after the first harvest (Table 3). The Hanford site was fertilized organically with a preplant blood, bone, and feather meal (8-4-4) (Phyta-Grow Salinas Veggie-Mix; California Organic Fertilizers, Inc., Fresno, CA). Fish emulsion (4-3-4) (Westbridge Agricultural Products, Vista, CA) was applied monthly at Hanford.

Entrust (Dow AgroSciences Canada Inc., Calgary, Alberta, Canada), an Organic Materials Review Institute–approved control of Bacillus thuringiensis, was used once to control beet armyworm (Spodoptera exigua) at Indio. No other controls of insects or leaf diseases were needed at these arid or semiarid sites. Weeds were controlled by cultivation and hand weeding at Hanford, Indio, and Yuma. No mechanical cultivation was performed at Ontario, only light hand weeding.

Before each harvest, plant observations (average plant height, percent flowering, and subjective observations) were recorded for all split plots. Harvested plant material was collected from the two innermost rows of each four-row plot. The outside rows of plants in each plot and the first and last plants on the inside rows were designated border plants and were not used to estimate leaf yield. At each harvest, for steviol glycoside analysis, stevia branches from inside each split-plot border row were cut at a 20-cm height, bagged, and dried. After drying, the

Location	Date	Nitrogen (kg·ha⁻¹)	Iron (kg·ha⁻¹)	Copper (kg·ha⁻¹)	Zinc (kg·ha⁻¹)
Indio, CA	13 May	56	0.012		
	16 July	56	0.012		
Yuma, AZ	2 June	56	0.012	0.005	0.005
	21 July	56	0.012	0.005	0.005
Hanford, CA (preplant)	7 Apr. 2014	5	0.005		
	5 May	5	0.005		
	2 June	5	0.005		
	7 July	5	0.005		
	4 Aug.	5	0.005		
Ontario, OR	30 May	56	0.012		
	28 July	56	0.012		

Table 3. Fertilizer application rates applied to selected field locations for S&W Seed Company Stevia rebaudiana cultivars for 2014 yield trial studies.

Location	Cultivar	Yield M·ha⁻¹	Stev %	Reb A	Reb C	TSG kg·ha⁻¹
Indio, CA	1090	2.06	4.46	13.35	1.40	20.23
	1108	2.95	7.11	6.39	1.60	15.37
	SW 107	2.36	6.46	10.94	1.52	19.43
	SW 129	1.11	2.42	13.97	1.51	18.43
	SW 201	2.47	6.06	13.12	1.87	21.21
	Candy	1.98	6.42	6.85	1.22	14.71
Average	2.15	5.49	10.77	1.52	18.23	
Yuma, AZ	1090	1.79	5.81	7.69	1.30	14.89
	1108	1.79	6.03	9.90	1.65	14.57
	SW 107	2.04	3.97	11.42	1.49	17.39
	SW 129	0.95	2.77	12.08	1.16	16.49
	SW 201	2.16	4.20	14.26	1.70	20.16
	Candy	1.58	6.95	6.79	1.49	15.56
Average	1.72	4.96	9.86	1.46	16.51	
Hanford, CA	1049	1.98	7.40	7.32	1.39	16.10
	1090	1.72	3.85	12.85	1.28	18.39
	1108	1.67	6.02	7.83	1.63	15.59
	SW 107	1.79	4.07	10.60	1.27	16.25
	SW 129	1.07	1.03	16.27	1.39	19.60
	Candy	1.46	7.43	7.80	1.27	16.69
Average	1.62	5.02	10.44	1.37	17.10	
Ontario, OR	1049	2.35	6.35	5.36	1.06	12.77
	1090	1.97	3.61	10.28	0.95	15.26
	1108	1.70	5.33	4.74	1.01	11.08
	SW 107	2.98	5.44	10.72	1.35	17.84
	SW 129	2.77	1.97	11.98	1.02	15.49
	SW 201	2.09	4.71	10.50	1.29	16.49
	Candy	1.98	4.89	5.96	0.91	11.87
Average	2.26	4.61	8.51	1.09	14.40	
Average	1049	2.17	6.87	6.34	1.22	14.43
	1090	1.88	4.43	11.04	1.23	17.19
	1108	2.03	6.12	6.46	1.47	14.15
	SW 107	2.29	4.99	10.92	1.41	17.73
	SW 129	1.47	2.12	13.58	1.27	17.50
	SW 201	2.24	4.99	12.63	1.62	19.29
	Candy	1.75	6.42	6.85	1.22	14.71
Average	1.88	4.81	9.46	1.30	15.84	
Overall average	0.23	0.49	0.94	1.29	0.16	1.85
LSD (0.05), location	0.07	0.24	0.94	1.29	0.16	1.85
LSD (0.05), cultivar	0.34	1.05	0.94	1.29	0.16	1.85
LSD (0.05), location x cultivar	0.26	0.24	0.94	1.29	0.16	1.85

Stev = stevioside; Reb A = rebaudioside A; Reb C = rebaudioside C; TSG = total steviol glycosides; LSD = least significant differences; NS = nonsignificant.
leaves were separated from the stems and ground in a Wiley No. 4 Mill (Thomas Scientific, Swedesboro, NJ) using a 2-mm screen. The ground samples were placed in labeled manila coin envelopes for leaf steviol glycoside analysis.

Steviol glycoside analyses using high-performance liquid chromatography. Steviol glycoside standard kits (JECFA Standards Kit) were purchased from ChromaDex (Irvine, CA). Water was obtained from a Milli-Q (EMD Millipore, Billerica, MA). The eluents were 86% acetonitrile in milli-Q water (v/v) (solvent B). Total flow rate was 2 mL min⁻¹. The following binary gradient system was employed: 0–10 min (0% to 5% B); 10–25 min (5% to 40% B); 25–35 min (40% to 50% B); 35–40 min (50% to 0% B); and 40–45 min (0% to 0% B). Absorbance at wavelength of 210 nm was recorded.

The purified stevia glycosides sample (20 μL) was injected to an HPLC instrument with a SUPELCOSIL LC-NH₂ column (25 cm × 4.6 mm, 5 μm; Supelco Inc., Bellefonte, PA). The eluents were 86% acetonitrile in milli-Q water (v/v) (solvent A) and 60% acetonitrile in milli-Q water (v/v) (solvent B). Total flow rate was 2 mL min⁻¹.

Table 5. Stevia rebaudiana leaf yield, steviol glycoside content, and steviol glycoside yield from the second harvest at four locations in 2014.

Location	Cultivar	Yield mg ha⁻¹	Stev %	Reb A	Reb C	TSG kg ha⁻¹
Indio, CA	1090	1.63	2.80	8.53	0.93	12.46
	1108	1.87	4.80	4.33	0.87	10.02
	SW 107	1.74	3.84	7.37	0.88	12.23
	SW 129	1.13	0.15	9.27	0.86	12.00
	SW 201	1.69	4.37	8.84	0.92	14.20
	Candy	1.67	6.03	3.87	0.87	10.95
Average		1.62	3.86	6.97	0.90	11.98
Yuma, AZ	1090	0.83	1.84	8.59	0.71	11.28
	1108	1.04	3.84	4.39	0.90	9.21
	SW 107	1.98	2.60	7.31	0.87	11.45
	SW 129	1.00	0.78	7.06	0.57	8.48
	SW 201	1.93	2.90	6.89	0.88	10.74
	Candy	0.65	4.02	4.28	0.68	9.27
Average		1.24	2.66	6.50	0.77	10.07
Hanford, CA	1049	2.42	4.64	5.26	0.83	10.83
	1090	2.16	1.86	8.02	0.86	10.89
	1108	2.95	3.99	4.56	0.85	9.40
	SW 107	3.12	3.74	8.93	1.08	14.38
	SW 129	1.71	1.33	9.86	0.92	12.57
	Candy	2.05	5.56	3.24	0.72	10.12
Average		2.40	3.52	6.65	0.88	11.36
Ontario, Ore.	1049	4.73	5.50	3.33	0.63	9.67
	1090	3.39	4.64	5.86	0.74	11.64
	1108	3.63	4.26	2.76	0.54	7.62
	SW 107	4.42	4.58	5.89	0.68	11.57
	SW 129	3.64	1.72	7.90	0.76	10.96
	SW 201	2.70	4.34	9.63	0.72	12.63
	Candy	3.35	5.94	1.60	0.31	8.14
Average		3.70	4.40	4.91	0.62	10.32
Average across locations	1049	3.57	5.07	4.30	0.73	10.25
	1090	2.00	2.79	7.75	0.81	11.57
	1108	2.37	4.22	4.01	0.79	9.06
	SW 107	2.81	3.69	7.49	0.88	12.41
	SW 129	1.87	1.29	8.52	0.78	11.00
	SW 201	2.11	3.90	7.43	0.87	12.52
	Candy	1.93	5.39	3.25	0.64	9.62
Overall average	2.21	3.51	5.96	0.76	10.49	89.1

LSD (0.05), location NS NS NS NS NS 35.8 NS NS NS
LSD (0.05), cultivar 0.58 0.70 1.09 0.12 1.08 29.2 54 4.40 72.3
LSD (0.05), location × cultivar NS NS NS NS NS NS NS NS NS

Stev = stevioside; Reb A = rebaudioside A; Reb C = rebaudioside C; TSG = total steviol glycosides; LSD = least significant differences; NS = nonsignificant.

Statistical procedures. Differences in stevia dry leaf yields, steviol glycoside concentrations, and steviol glycoside yields were evaluated over locations, cultivars, and harvest.
strategies using general linear model analysis of variance (Hintze, 2007). Locations were the main treatment effects, and cultivars were evaluated as split plots within locations. When considering differences within harvest strategies, we assigned harvest strategies as split-split plots. Least significant differences (0.05), were calculated only where treatment or interaction effects had significant F values.

Results and Discussion

Leaf yield. Leaf production for the first harvest (midseason) had significant differences between locations; Indio (2.15 Mg·ha⁻¹) and Ontario (2.26 Mg·ha⁻¹) had greater leaf yield than Yuma (1.72 Mg·ha⁻¹) and Hanford (1.62 Mg·ha⁻¹) (Table 4). For the second harvest and the single harvest strategy, yield production was not significantly affected by location (Tables 5 and 6). Averaged over harvest strategies and cultivars, season-long leaf yields were higher at Ontario (5.88 Mg·ha⁻¹) than at the other three locations (Table 7).

Averaged over locations, there were significant differences among cultivars in dry leaf yield at all harvests. For the first harvest, ‘SW 107’ (2.92 Mg·ha⁻¹) and ‘SW 201’ (2.24 Mg·ha⁻¹) had significantly higher dry leaf yields than the Candy (1.75 Mg·ha⁻¹) and ‘SW 129’ (1.47 Mg·ha⁻¹). For the second harvest, ‘SW 107’ (2.81 Mg·ha⁻¹) and ‘1049’ (3.57 Mg·ha⁻¹) had significantly higher dry leaf yields than all other cultivars. The single-harvest dry leaf yield for cultivars ‘1049’ (6.46 Mg·ha⁻¹), ‘SW 107’ (5.01 Mg·ha⁻¹), ‘SW 201’ (4.91 Mg·ha⁻¹), and ‘1108’ (4.65 Mg·ha⁻¹) were significantly higher than the dry leaf yields of ‘1049’ (3.64 Mg·ha⁻¹), the Candy (3.53 Mg·ha⁻¹), and ‘SW 129’ (3.28 Mg·ha⁻¹). Significant interactions of location by cultivar on leaf yield occurred at the first harvest and for the overall average yields. Averaged over harvest strategies, the cultivars 1049 (7.95 Mg·ha⁻¹) and SW 107 (7.41 Mg·ha⁻¹) grown at Ontario had the highest leaf yields. Although the stevia leaf yields reported here resulted from relatively brief production seasons, they are similar to those found in many studies (Fronza and Folgategli, 2003; Lavini et al., 2008; Moraes et al., 2013; Prieto et al., 2010; Shock 1982a, 1982b), greater than those observed by Behera et al., 2013; Serfaty et al., 2013; Vasilakoglou et al., 2016; Xu et al., 2013), but less than those observed by Aladakati et al. (2012) in India over a long growing season with five harvests per year.

Leaf steviol glycoside content. The predominant stevios glycosides in the leaves were rebaudioside A, steviol, and rebaudioside C, with small amounts of other stevios glycosides. Leaf steviol glycoside content had few significant differences among locations except for stevioside (Tables 4–6). For the first harvest, leaf steviol content was significantly higher at Indio (5.49%) than at Ontario (4.61%) and Yuma (4.96%), but not at Hanford (5.02%). For the second harvest, there were no significant differences in leaf steviol glycoside content between locations. For the single harvest, leaf stevioside content was significantly higher at Ontario (4.11%) and Indio (4.09%) than at Hanford (3.33%) or Yuma (2.8%). There were no significant interactions between locations and cultivars in leaf steviol glycoside content.

Table 6. Stevia rebaudiana leaf yield, steviol glycoside content, and steviol glycoside yield from the single harvest at four locations in 2014.

Location	Cultivar	Yield	Stev (%)	Reb A (%)	Reb C (%)	TSG kg·ha⁻¹	Stev (%)	Reb A (%)	Reb C (%)	TSG kg·ha⁻¹
Indio, CA										
1090	Candy	3.72	4.16	4.59	3.23	0.41	8.27	189.7	135.0	343.0
1108	SW 201	4.80	4.65	3.71	8.99	1.20	14.00	352.1	420.8	772.9
1108	SW 129	4.32	4.09	7.96	1.16	13.53	177.6	328.5	51.0	750.0
Yuma, AZ										
1090	Candy	2.34	2.94	5.05	6.15	0.98	11.44	282.2	26.6	359.2
1108	SW 201	4.32	4.09	7.96	1.16	13.53	177.6	328.5	51.0	750.0
1108	SW 129	3.85	3.78	6.10	1.02	11.13	141.4	231.9	38.5	411.9
Hanford, CA										
1049	Candy	4.09	4.32	5.05	7.51	0.74	9.81	189.7	135.0	343.0
1049	SW 129	4.32	3.78	6.10	1.02	11.13	141.4	231.9	38.5	411.9
1049	SW 201	4.32	3.78	6.10	1.02	11.13	141.4	231.9	38.5	411.9
Ontario, OR										
1049	Candy	8.82	8.17	4.69	6.69	0.90	11.71	96.3	32.3	453.0
1049	SW 129	4.32	4.32	5.05	7.51	0.74	9.81	189.7	135.0	343.0
1049	SW 201	4.32	4.32	5.05	7.51	0.74	9.81	189.7	135.0	343.0
Averages across locations										
1049	Candy	8.12	8.12	4.69	6.69	0.90	11.71	96.3	32.3	453.0
1049	SW 129	4.32	4.32	5.05	7.51	0.74	9.81	189.7	135.0	343.0
1049	SW 201	4.32	4.32	5.05	7.51	0.74	9.81	189.7	135.0	343.0
Overall average										
4.32	4.32	5.05	7.51	0.74	9.81	189.7	135.0	343.0	343.0	

Stev = stevioside; Reb A = rebaudioside A; Reb C = rebaudioside C; TSG = total steviol glycosides; LSD = least significant differences; NS = nonsignificant.
Cultivars had significant differences in leaf steviol glycoside content at all harvests (Tables 4–6). ‘SW 129’ had significantly lower steviol glycoside content compared with the other cultivars at each harvest. ‘SW 129’ had significantly higher rebaudioside A content than the other cultivars with the single harvest strategy, and had the highest rebaudioside A content at the first and second harvest. At the first harvest, rebaudioside A content of ‘SW 129’ (13.58%) was similar to ‘SW 201’ (12.63%), and significantly greater than that of ‘1090’, ‘SW 107’, the ‘Candy’, ‘1108’, and ‘1049’, at 11.04%, 10.92%, 6.85%, 6.46%, and 6.34%, respectively. At the second harvest, ‘SW 129’ rebaudioside A content (8.52%) was similar to that of ‘1090’, ‘1049’, ‘1108’, and the ‘Candy’, at 7.43%, 4.30%, 4.01%, and 3.25%, respectively. When comparing harvest strategies of two vs. one harvest, there were no significant differences in steviol glycoside content between the harvest strategies, in the interaction of location-by-harvest strategy, in the interaction of cultivar-by-harvest strategy, or even the interaction of location-by-cultivar-by-harvest strategy (Table 7).

The cultivars ‘SW 107’, ‘SW 129’, and ‘SW 201’, and the line ‘1090’ consistently contained more rebaudioside A than stevioside, while the other plant materials had roughly similar amounts of rebaudioside A and stevioside. These plant compositions are similar to those reported by Xu et al. (2013) in China, but differ from the plant composition in many other trials where there was substantially more stevioside than rebaudioside (Bherha et al., 2013; Moraes et al., 2013; Pal et al., 2015; Serfaty et al., 2013; Vasilakoglou et al., 2016). Stevioside glycoside yields. Stevioside glycoside yields were most often influenced by cultivar and interactions of locations by cultivar (data not shown except for rebaudioside A, Table 8).

Harvest strategy as used in these trials was never a significant factor in any of the individual or total stevioside glycoside yields (data not shown except for rebaudioside A, Table 8). Over all locations, cultivars, and harvest strategies, rebaudioside A yield averaged 300 kg·ha⁻¹ with significant differences by cultivar and differences by interactions of location with cultivar. Average rebaudioside A yields greater than 500 kg·ha⁻¹ were observed at Ontario. The 554.2 kg·ha⁻¹ of rebaudioside A produced by ‘SW 129’ at Ontario was statistically greater than any other combination of location and cultivar except for ‘SW 107’ that yielded 525.3 kg·ha⁻¹ at Ontario, and ‘SW 201’ that produced 456 kg·ha⁻¹ of rebaudioside A at Indio. Averaged over all locations and harvest strategies, ‘SW 201’ and ‘SW 107’ had the highest rebaudioside A yields, 444.8 kg·ha⁻¹ and 413.8 kg·ha⁻¹, respectively. The Candy cultivar had by far the lowest rebaudioside A yield, averaging only 161.5 kg·ha⁻¹.

Few trials achieved the high amounts of stevioside glycosides as did these trials. Xu et al. (2013) recorded up to 287 kg·ha⁻¹ of rebaudioside A. The best results of Moraes et al. (2013) were 398.8 kg·ha⁻¹ of rebaudioside A and 512.2 kg·ha⁻¹ of stevioside. Their results, although similar to the current trial, had plant composition with a less favorable ratio of rebaudioside A to stevioside. Among the highest rebaudioside A yield in the current trial were ‘SW 107’ (525.3 kg·ha⁻¹) and ‘SW 129’ (554.2 kg·ha⁻¹) at Ontario, given the significant interaction of cultivar with location.

Previous cultivar performance. Cultivar SW 107 was selected for vigor and its total stevioside glycoside content, ‘SW 129’ was selected principally for its rebaudioside A content and high ratio of rebaudioside A to stevioside, and ‘SW 201’ was selected for its leaf flavor (Shock and Parris, 2015, 2016a, 2016b). All of the six new lines tested in this trial were judged to have less bitterness and aftertaste than the plant population from which they were selected. The cultivar Candy was convenient to include since it could be started from seed, whereas the other cultivars had the inconvenience of requiring vegetative propagation by cuttings.

Harvest strategies. In both Mississippi and Israel, a single harvest produced more leaf yield and stevioside glycosides than two or three annual cuttings, results were similar to this trial (Moraes et al., 2013; Serfaty et al., 2013). In India, however, three harvests per year produced the greatest leaf yield, and two harvests per year resulted in higher stevioside glycoside content (Pal et al., 2015). In the current trial, one or two harvests per season were not significant factors in leaf yield or rebaudioside A yield.

Commercial considerations. Practical considerations for commercial plantings of stevia go considerably beyond leaf and stevioside glycoside productivity reported here; costs and product value were not studied in this trial. Results from single-year trials favored Ontario, but the stevia plantings at Hanford and Indio overwintered and could be productive for...
Table 8. *Stevia rebaudiana* leaf rebaudioside A yield (kg·ha⁻¹) in response to harvest strategy at four locations in 2014.

Location	Cultivar	First + second harvest	Single harvest	Avg of harvest strategies
Indio, CA	1090	1090	1090	
	1108	1108	1108	
	SW 107	SW 107	SW 107	
	SW 129	SW 129	SW 129	
	SW 201	SW 201	SW 201	
	Candy	Candy	Candy	
	Average	Average	Average	
Yuma, AZ	1090	1090	1090	
	1108	1108	1108	
	SW 107	SW 107	SW 107	
	SW 129	SW 129	SW 129	
	SW 201	SW 201	SW 201	
	Candy	Candy	Candy	
	Average	Average	Average	
Hanford, CA	1049	1049	1049	
	1090	1090	1090	
	1108	1108	1108	
	SW 107	SW 107	SW 107	
	SW 129	SW 129	SW 129	
	SW 201	SW 201	SW 201	
	Candy	Candy	Candy	
	Average	Average	Average	
Ontario, OR.	1049	1049	1049	
	1090	1090	1090	
	1108	1108	1108	
	SW 107	SW 107	SW 107	
	SW 129	SW 129	SW 129	
	SW 201	SW 201	SW 201	
	Candy	Candy	Candy	
	Average	Average	Average	
Yield, overall locations	1049	1049	1049	
	1090	1090	1090	
	1108	1108	1108	
	SW 107	SW 107	SW 107	
	SW 129	SW 129	SW 129	
	SW 201	SW 201	SW 201	
	Candy	Candy	Candy	
	Average	Average	Average	
Yield average, overall	1049	1049	1049	
	1090	1090	1090	
	1108	1108	1108	
	SW 107	SW 107	SW 107	
	SW 129	SW 129	SW 129	
	SW 201	SW 201	SW 201	
	Candy	Candy	Candy	
	Average	Average	Average	

LSD (0.05), location | NS | NS | NS |
LSD (0.05), cultivar | 62.9 | 69.3 | 53.2 |
LSD (0.05), harvest strategy | 126 | 126 | 106 |
LSD (0.05), location × harvest strategy | NS | NS | NS |
LSD (0.05), cultivar × harvest strategy | NS | NS | NS |
LSD (0.05), location × cultivar × harvest strategy | NS | NS | NS |

LSD = least significant differences; NS = nonsignificant.

Conclusions

Averaged over the four western U.S. locations, seven cultivars, and two harvest strategies, stevia yielded 4.12 Mg·ha⁻¹ of dry leaf over about a 5-month season from planting to harvest. Dry leaf yields at Ontario, 5.88 Mg·ha⁻¹, were greater than the other three locations. Two cultivars at Ontario exceeded 7 Mg·ha⁻¹. Rebaudioside A was the predominant steviol glycoside in four of the seven cultivars tested. Rebaudioside A in excess of 500 kg·ha⁻¹ and total steviol glycosides in excess of 1000 kg·ha⁻¹ were achieved with specific combinations of cultivars and locations. Harvesting stevia either once or twice during the growing season at 20-cm height had little effect on the total annual leaf yield or stevioside yield in these trials.

Literature Cited

Aladakati, Y.R., Y.B. Palled, M.B. Chetti, S.I. Halikatti, S.C. Alagundagi, and P.L. Patil. 2012. Effect of irrigation schedule and planting geometry on yield and stevia (*Stevia rebaudiana* Bertoni). Karnataka J. Agric. Sci. 25(1):30–35.

Alvarez, E. 2012. Stevia plant named AKH L4. U.S. Patent no. 2012/0090062. 12 Apr. 2012. PureCircle assignee.

Behera, M.S., O.P. Verma, P.K. Mahapatra, and R.B. Sigandhupe. 2013. Effect of fertigation on stevia (*Stevia rebaudiana*) under drip irrigation. Indian J. Agron. 58(2):243–250.

Brandle, J.E., A.N. Starratt, and M. Gijzen. 1998. *Stevia rebaudiana*: Its agricultural, biological, and chemical properties. Can. J. Plant Sci. 78(4):527–536.

Fronza, D. and M.V. Folegatti. 2003. Water consumption of the stevia (*Stevia rebaudiana* Bertoni) crop estimated through microlysimeter. Sci. Agr. 60:595–599.

Hinze, J. 2007. NCSS 7.0. Number Cruncher Statistical System, Kaysville, UT.

Lavini, A., M. Riccardi, and C. Pulvento. 2008. Yield, quality and water consumption of *Stevia rebaudiana* Bertoni grown under different irrigation regimes in southern Italy. Ital. J. Agron. 2:135–143.

Madan, S., S. Ahmad, G.N. Singh, K. Kohli, Y. Kumar, R. Singh, and G. Madhukar. 2010. *Stevia rebaudiana* Bertoni: A review. Indian J. Nat. Prod. Res. 1(3):267–287.

Metivier, J. and A.M. Viana. 1979. The effect of long and short day length upon the growth of whole plants and the level of soluble proteins, sugars, and steviol glycosides in *Stevia rebaudiana* Bertoni. J. Exp. Bot. 30(6):1211–1222.

Moraes, R.M., M.A. Donegac, L.C. Cantrelld, S.C. Melloc, and J.D. McChesneya. 2013. Effect of harvest timing on leaf production and yield of diterpene glycosides in *Stevia rebaudiana* Bert: A specialty perennial crop for Mississippi. Ind. Crops Prod. 51:385–389.

Pal, P.K., M. Mahajan, R. Prasad, V. Pathania, B. Singh, and P.S. Ahuja. 2015. Harvesting regimes to optimize yield and quality in annual and perennial *Stevia rebaudiana* under sub-temperate conditions. Ind. Crops Prod. 65:556–554.

Prieto, P., D. Bonuss, and F. Caniza. 2010. Productividad de la a hee (Stevia rebaudiana Bertoni) con manejo de regio, experiencias en Cooperativa Colonias Unidas, Obligado, Itapua, Paraguay.

Ramesh, K., S. Virendra, and N. Merjegeni. 2006. Cultivation of stevia (*Stevia rebaudiana* Bertoni): A comprehensive review. Adv. Agron. 89:137–177.

Serfaty, M., M. Inbakh, R. Fischer, D. Chaimovitch, Y. Saranga, and N. Dudaen. 2013. Dynamics of yield components and stevioside production in *Stevia rebaudiana* grown under different planting times, plant stands and harvest regime. Ind. Crops Prod. 50:731–736.

Shock, C.C. 1982a. Rebaud’s stevia: Natural noncaloric sweeteners. Calif. Agr. 36:4–5.

Shock, C.C. 1982b. Experimental cultivation of Rebaud’s stevia in California. Agron. Prog. Rpt. No. 122. University of California, Davis, CA.

Shock, C.C., J.M. Barnum, and M.C. Edigh. 1998. Calibration of watermark soil moisture sensors for irrigation management. Proc. Irr. Assoc. 139–146.

Shock, C.C., R. Flock, E.B.G. Fell, C.A. Shock, A. Pereira, and L. Jensen. 2013. Irrigation monitoring using soil water tension. Oregon State University Extension Service. EM 8900.

Shock, C.C. and C.A. Parris. 2015. Stevia plant named ‘SW 129’. U.S. plant patent application No. 14757095, filed 17 Nov. 2015. S&W Seed Co., Fresno, CA, assignee.

Shock, C.C. and C.A. Parris. 2016a. Stevia plant named ‘SW 107’. U.S. plant patent application US 2016/0157403 Pl, published 2 June 2016. S&W Seed Co., Five Points, CA, assignee.
Shock, C.C. and F.X. Wang. 2011. Soil water tension, a powerful measurement for productivity and stewardship. HortScience 46:178–185.

Sprinkle, D. 2014. Trends and innovations in sweeteners. Ingredient Marketplace, 2–3 June 2014, New York City, NY. 25 June 2016. <http://www.naturalproductsinsider.com/galleries/2014/07/slide-show-trends-and-innovations-in-sweeteners.aspx?pg=2>.

Valio, I. and R. Rocha. 1977. Effect of photoperiod and growth regulator on growth and flowering of Stevia rebaudiana Bertoni. Jpn. J. Crop. Sci. 46(2):243–248.

Vasilakoglou, I., D. Kalfountzos, N. Gougoulias, and C. Reppas. 2016. Productivity of two stevia varieties under reduced irrigation and fertilization inputs. Arch. Agron. Soil Sci. 62:457–472.

Xu, J., Y. Feng, Y. Wang, J. Wang, X. He, and X. Lin. 2013. Soil microbial mechanisms of Stevia rebaudiana (Bertoni) residue returning increasing crop yield and quality. Biol. Fertil. Soils 49:839–846.

Yadav, A.K., S. Singh, D. Dhyani, and P.S. Ahuja. 2011. A review on the improvement of stevia [Stevia rebaudiana (Bertoni)]. Can. J. Plant Sci. 91(1):1–27.

Zaidan, L., S. Dietrich, and G. Felippe. 1980. Effect of photoperiod on flowering and steviol side content in plants of Stevia rebaudiana Bertoni. Jpn. J. Crop. Sci. 49(4):569–574.