Vernalization and Growing Degree-day Requirements for Flowering of *Thalictrum delavayi* ‘Hewitt’s Double’

Ning Huang¹, Keith A. Funnell², and Bruce R. MacKay
Institute of Natural Resources, Massey University, Private Bag 11-222, Palmerston North, New Zealand

Additional index words. temperature, herbaceous perennial, Yunnan meadow rue

Abstract. Vernalization and growing degree-day (GDD) requirements of *Thalictrum delavayi* Franch. ‘Hewitt’s Double’ were investigated by exposing crowns to cold storage for 0, 3, 6, 9, 12, or 15 weeks at 8°C, and subsequently planting in a heated greenhouse under long-day conditions. Cumulative vernalization of crowns was complete after 6 weeks of cold storage at 8°C. The time to flower, including time at 8°C, was 3338 GDD (base temperature of 0°C) without vernalization and 2802 GDD after complete vernalization. Commercial recommendations for rapid and predictable flowering of *T. delavayi* ‘Hewitt’s Double’ should include cold storage of crowns for a minimum of 6 weeks at 8°C as part of the 2802 GDD during vernalization and forcing.

Thalictrum delavayi is a herbaceous perennial native to west China (Durand and Jackson, 1901; Huxley et al., 1992). The storage organ is a crown, which produces slender stems up to 1.2 m in height, with long petiolate leaves comprising two to three terinate or pinnately decumbent leaflets (Huxley et al., 1992). In summer the stems terminate in an inflorescence comprising a loose panicle of lilac to white flowers. ‘Hewitt’s Double’ is commonly grown as a garden display plant (Huxley et al., 1992) or as a medicinal plant (Gao et al., 1990).

In recent years ‘Hewitt’s Double’ has been viewed by members of the floriculture industry as a potential new commercial cut flower (I. Ivey, personal communication). As predictable production is required, producers are interested in understanding the flowering requirements of this species and developing production schedules. A common method of scheduling uses the accumulation of heat units or sum of growing degree-days (GDD) to estimate the expected time to flowering (McKay et al., 1981; Whitman et al., 1997). Productive scheduling of some herbaceous perennials must also account for their response to cold temperature. Some species require a period of cold temperature for flowering for either vernalization or breaking of bud dormancy (Iversen and Weiler, 1994; White et al., 1989; Whitman et al., 1996). Vernalization typically proceeds within the range of -5 to 15°C, with the most effective range typically 5 to 9°C (Vince-Prue, 1975; Wiebe, 1990). The cold requirement for flowering may be qualitative or quantitative. If plants remain vegetative without exposure to cold, the vernalization response is qualitative (Iversen and Weiler, 1994; Sherdon and Weiler, 1982; White et al., 1989). A quantitative response occurs where exposure to cold hastens flower induction and differentiation. When the response is quantitative, the date of flowering, total number of leaves, and/or flower stalk length may differ with the extent of vernalization (Wiebe, 1990).

The flowering response of *T. delavayi* to cold temperatures has not been previously reported in the literature. However, a qualitative vernalization requirement has been reported in the genus *Aquilegia* (Sherdon and Weiler, 1982; White et al., 1989), a close relative of *Thalictrum* (Hoot, 1991). Combinations of temperatures and durations ranging between 0 and 8°C for between 4 and 10 weeks satisfied the vernalization requirement for various cultivars of *Aquilegia*. Given that *T. delavayi* both originates from a temperate climate and has a high potential market value, the cold requirement of ‘Hewitt’s Double’ was considered worthy of investigation.

The photoperiodic requirement for flowering of *T. delavayi* has not been reported. We forced plants of ‘Hewitt’s Double’ in a long-day environment to approximate the 10.5- to 13.5-h photoperiods that occur during growth and flowering in the parent species’ region of origin (Huxley et al., 1992). Forcing in a long-day environment allowed us to focus on investigating the influence of cold treatment on flowering of ‘Hewitt’s Double’ and to determine the GDD requirement for flowering.

Materials and Methods

Two-year-oldcrowns of ‘Hewitt’s Double’, lifted in Auckland, N.Z., in late April (fall), were shipped to Palmerston North, N.Z., before treatments were applied. Crowns, covered with moistened bark, were exposed to 8±1°C in a dark cooler for 0, 3, 6, 9, 12, or 15 weeks at the Plant Growth Unit, Massey Univ., Palmerston North (40°21’S). After cold storage, the crowns were planted in a greenhouse heated to 15°C and vented at 20°C. The first planting commenced on 2 May 1994. The greenhouse received a natural photoperiod (11 h increasing to 13 h) plus 4 h of night lighting between 2200 and 0200 hr (incandescent lamps with a mean light intensity of 2.4 J mol m⁻² s⁻¹) at the height of the growing medium during the experiment). The crowns were planted individually in black polythene bags (27×27 cm, 1.2-L volume, Epic Ltd., Auckland, N.Z.) containing 100% pine bark plus 3.0 kg m⁻³ each of agricultural lime and dolomite, 0.5 kg m⁻³ iron sulfate, and 4.0 kg m⁻³ Osmocote 16N–3.5P–10K. Water was provided by a mixture of continuous capillary and once-weekly overhead applications.

After storage, treated plants were arranged in the greenhouse in a nested unbalanced experimental design with two blocks. One block contained large crowns (>6.9 cm in diameter) with two replicates, while the second block had small crowns (4.2–6.9 cm in diameter) with five replicates. Each replicate consisted of three plants. The experiment comprised six treatments with 126 plants in all. The experiment was blocked for crown size to evaluate any possible influence of size on flower yield and timing (Corr and Widmer, 1991).

Greenhouse air temperatures, measured with a shaded sensor at a height of 1.3 m, were recorded at 30-min intervals during the study with a Squirrel 1200 Digital Meter/Logger (Grant Instruments Ltd., Barrington, Cambridge, U.K.). Daily mean air temperatures in the cooler during vernalization and in the greenhouse during growth were used for the calculation of GDD. Actual air temperatures within the greenhouse rarely exceeded 25°C over the course of the study, ranging between the set points of 15 and 20°C.

Flowering was defined by the stage when 5% of the buds were open in the upper 45 cm of the primary inflorescence of each plant. The mean time to flower was calculated using both calendar days (CD) and GDD for the first inflorescence harvested. A linear GDD model (Roberts and Summerfield, 1987; Wang, 1960) with a base temperature of 0°C (Roberts and Summerfield, 1987) was used. Saturation of the vernalization response was used to have occurred when the cold storage treatment did not further advance GDD to flower, based on total forcing time including duration in cold storage. Stem number per plant and stem length were recorded at flowering. Data were subjected to analysis of variance, and trend analysis using the GLM procedure of SAS (SAS Institute, Cary, N.C.). Mean separation was by Fisher’s least significant difference.

Received for publication 9 Feb. 1998. Accepted for publication 2 Sept. 1998. We thank Flower Enterprises (New Zealand) Ltd. for the supply of plant materials. Thanks also to the Ministry of Foreign Affairs and Trade (New Zealand) and the Chinese government: Guanxi State Farms Bureau, and the State Education Commission of the People’s Republic of China, for providing funding for Ning Huang. The cost of publishing this paper was defrayed in part by the payment of page charges. Under postal regulations, this paper therefore must be hereby marked advertisement solely to indicate this fact.

¹Graduate Student.
²To whom reprint requests should be addressed; e-mail: K.Funnell@massey.ac.nz
Results

All plants flowered in all treatments. Linear and quadratic trends were significant for all calculations of CD and GDD (i.e., with and without storage duration included) with increasing duration of storage ($P < 0.0001$). Both CD and GDD, including the duration of the cold storage, declined as a result of 3 and 6 weeks of cold storage in a linear trend ($P < 0.0001$) from 196 CD and 3338 GDD to 187 CD and 2848 GDD, respectively (Fig. 1a and c). After 6 weeks of cold storage, the number of CD necessary for flowering followed a positive linear trend with increasing storage duration up to 215 d ($P < 0.0001$) (Fig. 1a), while GDD remained relatively unchanged ($P > 0.05$). Between 6 and 15 weeks of storage, GDD needed for flowering ranged between 2760 and 2848 (Fig. 1c), with an average of 2802. Excluding cold storage duration, the time to flower decreased linearly with increasing duration of cold storage for both CD and GDD ($P < 0.001$) (Fig. 1a and c).

Flower stem yield averaged between three and five stems per plant, with stem lengths ranging from 140 to 200 cm (data not presented). Storage duration did not affect flower yield significantly ($P > 0.05$). All stems produced were longer than required to meet current commercial standards. While stem length was reduced to between 141 and 148 cm for plants receiving 6 and 9 weeks of storage, vs. 176–200 cm for all other storage durations ($P < 0.05$), these changes were not considered commercially important.

Discussion

Crows of ‘Hewitt’s Double’ exhibited a quantitative vernalization requirement. Vernalization reduced the time to flower (Fig. 1a and c), but exposure to cold temperatures was not an obligate requirement for flowering. After at least 6 weeks of vernalization, the time to flower (including duration of the cold storage) was similar with respect to GDD (Fig. 1c), but increased with respect to CD (Fig. 1a). Thus, the vernalization response became saturated at 6 weeks of cold storage, with longer periods in cold storage merely extending the time in CD to flower. The vernalization response is similar to that previously reported for Triticum aestivum L. and Hordeum vulgare L., in which the reduction in the time to flower following low-temperature treatment resulted from concurrent accumulation of GDD during that period (Brooking, 1996; Ellis et al., 1989).

In the current experiment, sprouting of buds on crowns was detected after 15 weeks of cold storage (data not presented), indicating that growth occurred during cold storage. Therefore, 8 °C is effective for both vernalization and GDD accumulation (i.e., plant development) in this species.

Satisfying the vernalization requirement after 6 weeks in the current experiment is within the 1- to 20-week range reported as optimal for various crops (Iverson and Weiler, 1994; Whitman et al., 1997). For gladiolus, the GDD requirement in ‘Hewitt’s Double’. Satisfying the vernalization requirement and forcing phases could not be separated with accuracy. However, if the 336 GDD required to satisfy vernalization (i.e., 6 weeks at 8 °C) were considered to be separate from that for forcing, ~2466 GDD would be required for forcing of ‘Hewitt’s Double’. A total of 2466 GDD for forcing indicates that this species requires a greater number of GDD for flowering than do the better-known herbaceous perennials noted above.

These results can be used to develop schedules for flowering of commercial plantings of ‘Hewitt’s Double’, with expected improvements in reducing both time toflower and variability in timing between plantings. As an example, if vernalized for 6 weeks at 8 °C and forced at a daily average temperature of 17.5 °C, flowering would occur 141 d after planting (i.e., 2466 ÷ 17.5 = 141). This would reduce the time to flower by ~30 d compared with nonvernalized plants.

Recommendations for rapid and predictable timing of flowering of ‘Hewitt’s Double’ for commercial production include using cold storage of crowns for a minimum of 6 weeks at 8 °C as part of the 2802 GDD during vernalization and forcing.

Literature Cited

Brooking, I.R. 1996. Temperature response of vernalization in wheat: A developmental analysis. Ann. Bot. 78:507–512.

![Fig. 1. Time to flower as calendar days (a and b) and growing degree-days (GDD, base temperature of 0 °C, c and d) of T. delavayi ‘Hewitt’s Double’ following different periods of cold storage at 8 °C. Data in (a and c) include and (b and d) exclude the duration of cold storage. Means are an average of data from seven replicates. Vertical bars represent standard errors of means.](image-url)
Corr, B.E. and R.E. Widmer. 1991. Paclobutrazol, gibberellic acid, and rhizome size affect growth and flowering of Zantedeschia. HortScience 26:133–135.

Durand, T. and B.D. Jackson. 1901. Index Kewensis. Supp. Oxford Univ. Press, London.

Ellis, R.H., R.J. Summerfield, E.H. Roberts, and J.P. Cooper. 1989. Environmental control of flowering in barley (Hordeum vulgare). III. Analysis of potential vernalization responses, and methods of screening germplasm for sensitivity to photoperiod and temperature. Ann. Bot. 63:687–704.

Gao, C.Y., Y.E. Ali, M. Sharaf, L.K. Wong, E.W. Fu, F.T. Lin, F.K. Duah, and P.L. Schiff. 1990. Alkaloids of Thalictrum delavayi. Phytochemistry 29:1895–1897.

Hoot, S.B. 1991. Phylogeny of the Ranunculaceae based on epidermal microcharacters and macromorphology. System, Bot. 16:741–755.

Huxley, A., M. Griffiths, and M. Levy. 1992. The new Royal Horticultural Society dictionary of gardening. Macmillan, London.

Iversen, R. and T. Weiler. 1994. Strategies to force flowering of six herbaceous garden perennials. HortTechnology 4:62–65.

McKay, M.E., D.E. Byth, and J.A. Tommerup. 1981. Environmental responses of gladioli in south-east Queensland. Scientia Hort. 14:77–92.

Roberts, E.H. and R.J. Summerfield. 1987. Measurement and prediction of flowering in annual crops, p. 17–15. In: J.G. Atherton (ed.). Manipulation of flowering. Butterworths, London.

Shedron, K.G. and T.C. Weiler. 1982. Regulation of growth and flowering in Aquilegia hybrida Sims. J. Amer. Soc. Hort. Sci. 107:878–882.

Vince-Prue, D. 1975. Photoperiodism in plants.

Whitman, C.M., R.D. Heins, A.C. Cameron, and W.H. Carlson. 1996. Cold treatments, photoperiod, and forcing temperature influence flowering of Lavandula angustifolia. HortScience 31:1150–1153.

Wiebe, H.J. 1990. Vernalization of vegetable crops—a review. Acta Hort. 267:323–328.