Molecular underpinnings of neurodegenerative disorders: striatal-enriched protein tyrosine phosphatase signaling and synaptic plasticity [version 1; peer review: 3 approved]

Paul J. Lombroso¹⁻³, Marilee Ogren⁴, Pradeep Kurup¹, Angus C. Nairn²

¹Child Study Center, Yale University School of Medicine, New Haven, Connecticut, 06520, USA
²Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, 06520, USA
³Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, 06520, USA
⁴Department of Psychology, Boston College, Chestnut Hill, MA, 02467, USA

Abstract
This commentary focuses on potential molecular mechanisms related to the dysfunctional synaptic plasticity that is associated with neurodegenerative disorders such as Alzheimer’s disease and Parkinson’s disease. Specifically, we focus on the role of striatal-enriched protein tyrosine phosphatase (STEP) in modulating synaptic function in these illnesses. STEP affects neuronal communication by opposing synaptic strengthening and does so by dephosphorylating several key substrates known to control synaptic signaling and plasticity. STEP levels are elevated in brains from patients with Alzheimer’s and Parkinson’s disease. Studies in model systems have found that high levels of STEP result in internalization of glutamate receptors as well as inactivation of ERK1/2, Fyn, Pyk2, and other STEP substrates necessary for the development of synaptic strengthening. We discuss the search for inhibitors of STEP activity that may offer potential treatments for neurocognitive disorders that are characterized by increased STEP activity. Future studies are needed to examine the mechanisms of differential and region-specific changes in STEP expression pattern, as such knowledge could lead to targeted therapies for disorders involving disrupted STEP activity.

Keywords
alzheimer’s disease, parkinson’s disease, striatal-enriched protein tyrosine phosphatase, synaptic plasticity, neurodegenerative disorder
Introduction

Protein tyrosine phosphorylation is regulated by the fine balance of the activity of protein tyrosine kinases and protein tyrosine phosphatases (PTPs) and plays a critical role in many cellular activities, including gene regulation, cell growth, differentiation, migration, and synaptic plasticity\(^1\). Enormous progress in the understanding of PTP function followed the biochemical purification and characterization of the first PTP (PTP1B) over 30 years ago\(^2,3\). Moreover, dysregulation or mutations in genes that encode PTPs lead to metabolic, neurological, developmental, and psychiatric disorders\(^1,4-6\). These important advances have motivated efforts to find PTP inhibitors that are effective against diabetes, cancer, neurodegeneration, and other serious disorders\(^7,8\).

This commentary focuses on striatal-enriched PTP (STEP), which is found in the central nervous system (CNS), and how increased STEP activity contributes to several disorders, including Alzheimer’s disease (AD) and Parkinson’s disease (PD). In particular, we focus on the ways in which modulating STEP activity contributes to impaired neuronal communication.

STEP affects neuronal communication by opposing synaptic strengthening through the coordinated dephosphorylation of multiple substrates that regulate synaptic plasticity. As discussed in detail below, these substrates include subunits of both the N-methyl-D-aspartate receptors (NMDARs) and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). Tyrosine dephosphorylation of these receptor subunits leads to internalization of NMDAR or AMPAR complexes, which diminishes synaptic strength\(^9-13\). High levels of STEP in human brain tissue from AD or PD subjects, as well as animal models of AD and PD, are believed to disrupt synaptic function and to contribute to the learning deficits present in these disorders. These findings are consistent with the growing interest in synaptopathology, or the hypothesis that disorders of cognitive function involve disrupted synaptic function, at least in the earliest stages of neurodegenerative disorders\(^14,15\). This commentary focuses on AD and PD. The role of STEP in other CNS disorders is discussed in several recent reviews\(^4,6,16\).

The functional importance of STEP structure

STEP, encoded by the PTPN5 gene, is highly expressed throughout the CNS, with the exception of the cerebellum\(^17-21\). STEP is alternatively spliced to produce four related proteins (Figure 1), with the most abundant isoforms being STEP\(_{61}\) and STEP\(_{46}\)\(^22,23\). STEP\(_{61}\) and STEP\(_{46}\) are the major STEP proteins in the central nervous system (CNS). The kinase-interacting motif (KIM) domain is necessary for interaction with substrates, and the consensus protein tyrosine phosphatase (PTP) sequence, [I/V]HCxAGxxR[S/T]G, is required for phosphatase activity. STEP\(_{38}\) and STEP\(_{20}\) do not contain the PTP sequence and are inactive variants of STEP with unknown function. STEP\(_{33}\) is generated by calpain cleavage within the KIM domain between Ser\(_{224}\) and Leu\(_{225}\). Cleavage at this site disrupts the ability of STEP\(_{33}\) to bind to substrates. STEP\(_{61}\) contains an additional 172 amino acids at the N-terminus that possess two transmembrane (TM) domains and two polyproline-rich (PP) regions. The TM regions target STEP\(_{61}\) to the endoplasmic reticulum and to synaptic and extrasynaptic sites. While the KIM domain is required for binding to STEP substrates, the PP regions impart some degree of substrate specificity, with Fyn binding to PR1 and Pyk2 binding to PR2. PKA phosphorylates STEP within the KIM domain (Ser\(_{221}\) and Ser\(_{49}\) on STEP\(_{61}\) and STEP\(_{46}\), respectively), as well as in the region adjacent to the PP regions (Ser\(_{160}\) on STEP\(_{61}\)). The function of Ser\(_{160}\) phosphorylation of STEP\(_{61}\) remains unclear. Finally, two cysteine residues, Cys\(_{65}\) and Cys\(_{76}\), present within the TM region promote dimerization of STEP and reduce its phosphatase activity\(^93\).

Figure 1. Regulatory domains present in striatal-enriched protein tyrosine phosphatase (STEP). Four isoforms of STEP (STEP\(_{61}\), STEP\(_{46}\), STEP\(_{38}\), and STEP\(_{20}\)) are produced by alternative splicing of a single STEP gene (PTPN5). Calpain cleavage produces an additional form of STEP (STEP\(_{33}\)). STEP\(_{61}\) and STEP\(_{46}\) are the major STEP proteins in the central nervous system (CNS). The kinase-interacting motif (KIM) domain is necessary for interaction with substrates, and the consensus protein tyrosine phosphatase (PTP) sequence, [I/V]HCxAGxxR[S/T]G, is required for phosphatase activity. STEP\(_{38}\) and STEP\(_{20}\) do not contain the PTP sequence and are inactive variants of STEP with unknown function. STEP\(_{33}\) is generated by calpain cleavage within the KIM domain between Ser\(_{224}\) and Leu\(_{225}\). Cleavage at this site disrupts the ability of STEP\(_{33}\) to bind to substrates. STEP\(_{61}\) contains an additional 172 amino acids at the N-terminus that possesses two transmembrane (TM) domains and two polyproline-rich (PP) regions. The TM regions target STEP\(_{61}\) to the endoplasmic reticulum and to synaptic and extrasynaptic sites. While the KIM domain is required for binding to STEP substrates, the PP regions impart some degree of substrate specificity, with Fyn binding to PR1 and Pyk2 binding to PR2. PKA phosphorylates STEP within the KIM domain (Ser\(_{221}\) and Ser\(_{49}\) on STEP\(_{61}\) and STEP\(_{46}\), respectively), as well as in the region adjacent to the PP regions (Ser\(_{160}\) on STEP\(_{61}\)). The function of Ser\(_{160}\) phosphorylation of STEP\(_{61}\) remains unclear. Finally, two cysteine residues, Cys\(_{65}\) and Cys\(_{76}\), present within the TM region promote dimerization of STEP and reduce its phosphatase activity\(^93\).
STEP_46. This domain contains two hydrophobic regions that target STEP_61 to the endoplasmic reticulum (ER) and synaptic as well as extrasynaptic membranes. In contrast, STEP_46 is a cytosolic protein_19,24,25. Both STEP_61 and STEP_46 contain, at their C-terminus, the consensus PTP sequence ([I/V]HCxAGxxR[S/T]G) that is required for catalytic function. Upstream of the catalytic domain is a kinase-interacting motif (KIM), the substrate-binding domain necessary for associating STEP with all known substrates_25–27.

STEP substrates: glutamate receptors
STEP regulates the trafficking of two glutamate receptor subtypes, NMDARs and AMPARs_9,10,13,26–30. NMDARs are internalized after GluN2B dephosphorylation (at Tyr_1472), which facilitates the binding of GluN2B to clathrin adaptor proteins and promotes the internalization of GluN1/GluN2B receptor complexes_25. Consistent with this finding, STEP knockout mice display increased hippocampal and amygdala learning_29,30,32,33. Similarly, GluA2 dephosphorylation promotes internalization of GluA1/GluA2 receptor complexes; whether internalized NMDAR and AMPAR complexes are recycled or degraded is not yet known.

Internalization of GluA1/GluA2 AMPARs results from tyrosine dephosphorylation of the GluA2 subunit_34,35. STEP is the PTP that mediates this process_36–39. Stimulating mGluRs with the agonist DHPG (S-3,5-dihydroxyphenylglycine) leads to internalization of GluA1/GluA2_40. DHPG stimulation of mGluRs increases the local translation of STEP, resulting in the subsequent dephosphorylation and endocytosis of GluA1/GluA2. Moreover, neuronal cultures from STEP knockout mice display increased surface expression of AMPARs and do not undergo DHPG-mediated AMPAR endocytosis; however, internalization of AMPARs can be restored with the re-introduction of STEP into the knockout mouse cultures_12.

STEP substrates: other synaptic substrates
Additional STEP substrates involved in synaptic strengthening include two members of the mitogen-activated protein kinase (MAPK) family, extracellular signal-regulated kinases 1 and 2 (ERK1/2), and p38_37–43. STEP dephosphorylates regulatory tyrosine residues within their activation loops and thereby inactivates them. ERK1/2 and p38 have opposing actions: ERK1/2 promotes synaptic strengthening and p38 promotes cell death pathways. STEP and both MAPKs reside in dendritic spines, raising the question of how STEP regulates the activity of two proteins with such different cellular actions_43. The balance between the activation of synaptic or extrasynaptic NMDARs appears to be critical to this regulation_44,45.

Synaptic stimulation leads to STEP ubiquitination and consequent degradation and to the activation of ERK1/2 but not p38 (Figure 2). At synaptic sites, STEP_61 binds to post-synaptic density protein 95 (PSD-95) but not to other PSD-95 family members, and the binding...
of PSD-95 to STEP promotes rapid STEP ubiquitination and then degradation by the proteasome. As PSD-95 stabilizes NMDARs at the postsynaptic density, removing the negative regulator STEP promotes synaptic strengthening. Extrasynaptic sites display a two- to three-fold increase in STEP levels compared to synaptic sites. As glutamate levels increase at the synapse, extrasynaptic NMDARs are engaged and calcium influx activates calpain and STEP cleavage (Figure 2). The cleavage occurs in the substrate-binding KIM domain, releasing a smaller STEP variant (STEP*) that no longer binds to or dephosphorylates STEP substrates. In contrast to the stimulation of synaptic NMDARs, the stimulation of extrasynaptic NMDARs activates p38 and downstream cell death signaling pathways, but not ERK1/2. In support of this model of STEP function, the addition of a STEP-derived peptide that spans the calpain cleavage site competitively blocks proteolysis and neurons are protected from glutamate-mediated excitotoxicity.

Two other STEP substrates are Pyk2 and Fyn, where dephosphorylation of the regulatory tyrosines in their activation loops inactivates these kinases. STEP has two polyproline-rich regions that, in addition to the KIM domain, are involved in substrate binding and contribute to substrate specificity; the first polyproline domain facilitates binding to Fyn, while the second polyproline domain is necessary for binding to Pyk2 (Figure 1). Of note, Fyn phosphorylates GluN2B at Tyr412, the same site that is dephosphorylated by STEP. Thus, STEP dephosphorylates GluN2B directly and at the same time dephosphorylates and inactivates the kinase that phosphorylates GluN2B.

The most recently identified STEP substrate is PTP alpha, an activator of Fyn. In contrast to STEP, which dephosphorylates the activation loop and thereby inactivates Fyn, PTP alpha dephosphorylates a distinct inhibitory pTyr residue in Fyn. Notably, STEP dephosphorylates a pTyr in PTP alpha that normally results in the translocation of PTP alpha to lipid rafts, where it activates Fyn. Thus, STEP has a two-pronged mode of inactivating Fyn: it directly inactivates Fyn and concomitantly prevents activation of Fyn by PTP alpha by blocking its translocation to the membrane.

STEP and altered synaptic activity in Alzheimer’s disease

The first suggestion that STEP might contribute to the cognitive deficits in AD came from a study by Snyder and colleagues, which examined the mechanism by which beta amyloid (Aβ) increases the removal of NMDARs from synaptosomal membranes in rodent neuronal models (Figure 3). Previous studies suggested that Aβ binds to and stimulates α7 nicotinic acetylcholine receptors (α7nAChRs) and α7 binding to these receptors results in calcium influx and activation of a cascade of serine/threonine phosphatases involving protein phosphatase 2B (PP2B; calcineurin) and protein phosphatase 1 (PP1). PP1 dephosphorylates and activates STEP, leading indirectly to the dephosphorylation of GluN2B and GluA2. It was subsequently shown that Aβ inhibits proteasomal activity, leading to a rapid increase in STEP levels. Thus, these studies show that both dephosphorylation by PP1 and decreased degradation result in an increase in STEP activity and STEP levels, respectively, and subsequent internalization of GluN1/GluN2B and GluA1/GluA2 receptors.

Complementing these molecular studies, STEP levels are elevated above normal in the prefrontal cortex and hippocampus of AD patients and in the four AD mouse models tested to date. It is noteworthy that when STEP knockout mice were crossed with either of two mouse AD models, STEP deficiency restored the expression of NMDARs and AMPARs at the synapse, which was associated with a significant improvement in cognitive function. In summary, high levels of STEP activity in AD disrupt synaptic activity and the synaptic plasticity required for learning and thereby appear to contribute to the cognitive deficits that characterize early symptoms of this devastating illness.

STEP and altered synaptic activity in Parkinson’s disease

Parkinson’s disease (PD) is the second most common neurodegenerative disorder after AD and affects millions of people worldwide. This disorder is characterized by selective loss of dopamine neurons in the substantia nigra and dopamine depletion in the striatum, which eventually lead to characteristic motor abnormalities. As with AD, there is no cure for PD, only temporary symptomatic relief, highlighting the importance of further research on the molecular basis of these diseases in an effort to develop more effective treatment strategies.

Kurup and colleagues recently showed that STEP is upregulated in PD. As discussed earlier under substrates, STEP is normally ubiquitinated and degraded by the proteasome – this process is disrupted in AD. The more recent study identified parkin as the E3 ligase that ubiquitinates STEP. Deficits in parkin expression, the PARK2 gene product, are implicated in genetic forms of PD, suggesting the possibility that STEP overexpression might contribute to the etiology of PD. Notably, STEP expression was significantly increased in human sporadic PD post mortem samples. STEP levels are also increased in animal models of the illness, including Park2 knockout rats, and a toxin-based mouse model. Moreover, increased STEP activity is associated with down-regulation of synaptic proteins in the striatum. Together, these results suggest a convergence of a shared pathway in the regulation of STEP and the etiology of some forms of PD.

STEP inhibition as a potential treatment for neurocognitive disorders

Cognitive function in AD mice is significantly improved by genetically decreasing STEP activity, as previously discussed. Such results provide a strong rationale to identify small molecule inhibitors of STEP. Recent studies have led to the isolation of a potent STEP inhibitor, 8-(trifluoromethyl)-1,2,3,4,5-benzopentathiepin-6-amine (known as TC-2153). TC-2153 increases the tyrosine phosphorylation of three STEP substrates (ERK2, Pyk2, and GluN2B) in neuronal cultures. Moreover, both 6- and 12-month-old 3xTg-AD mice show significant improvement in cognitive function after TC-2153 systemic injections, where the performance of TC-2153-treated 3xTg-AD mice is indistinguishable from that of wild-type AD mice.
Figure 3. Potential role of striatal-enriched protein tyrosine phosphatase (STEP) in neurodegenerative diseases. **A. Alzheimer’s disease (AD):** Two mechanisms are known to result in an increase in STEP activity in AD. Beta amyloid (Aβ) binding to the α7 nicotinic acetylcholine receptor (α7nAChR) results in calcium influx and activation of protein phosphatase 2B (PP2B)/protein phosphatase 1 (PP1), which results in dephosphorylation of the regulatory serine (S221) within the substrate-binding domain of STEP. Dephosphorylation of this site allows STEP to now associate with and dephosphorylate its substrates. In addition, STEP is normally ubiquitinated and degraded to remove it from synaptic compartments, as synaptic strengthening requires degradation of STEP. Aβ-mediated inhibition of the proteasome results in a build-up of STEP levels. The net effect is an increase in STEP activity and the subsequent internalization of synaptic GluN1/GluN2B receptor complexes. For clarity, only one substrate is shown (GluN2B subunit of the N-methyl-D-aspartate receptor [NMDAR] complex), although all will be dephosphorylated by increased STEP activity. Ub, ubiquitin.

B. Parkinson’s disease (PD): The E3 ligase that leads to the ubiquitination of STEP is parkin, encoded by the PARK2 gene. Loss-of-function mutations in PARK2 are one cause of PD in humans, and STEP levels are elevated in post mortem samples as well as in animal models of PD. Related to STEP turnover, the growth factor brain-derived neurotrophic factor (BDNF) leads to the activation of protein kinase C (PKC) and the rapid ubiquitination and degradation of STEP. Decreased levels of BDNF may contribute to the pathophysiology of PD, although it remains to be determined whether the decreased BDNF signaling is involved in the increased STEP observed in PD. DAG, diacylglycerol; PIP2, phosphatidylinositol 4,5-bisphosphate; PLC-γ, phospholipase Cγ; Ub, ubiquitin.
mice in the Morris water maze, Y-maze, and object recognition task. It is important to note that pTau and Aβ levels were unchanged in the 12-month-old AD mice treated with TC-2153 compared to vehicle-treated AD mice, demonstrating that inhibiting STEP activity is sufficient to reverse cognitive deficits without affecting pTau and Aβ levels.66

The specificity of TC-2153 has been examined in several ways, including a comparison of STEP with its closely related PTPs, PTP-STEP-like (PTP-SL) and hematopoietic (He)-PTP. Little difference was evident in the inhibition of truncated versions of the PTPs that contained only the catalytic domain. However, comparative analysis of full-length PTPs suggests a significant degree of specificity for STEP compared to the other PTPs. As mentioned, STEP is present throughout the brain with the exception of the cerebellum, which contains the closely related PTP-SL67. ERK1/2 and Pyk2 are expressed ubiquitously, and multiple PTPs dephosphorylate these proteins in non-brain tissues. However, administration of TC-2153 increases ERK2 and Pyk2 phosphorylation only in the cortex and hippocampus and not in the cerebellum or any of the peripheral organs tested. Moreover, there is no significant increase in ERK2 and Pyk2 phosphorylation over baseline conditions in STEP knockout mice treated with TC-2153.68

The mechanism by which TC-2153 inhibits STEP activity likely involves the formation of a covalent bond with a cysteine residue within the catalytic domain of STEP.68 The oxidative attack and addition of a sulfur to the cysteine promotes a loss of STEP catalytic activity. Mass spectrometry confirmed modifications to the active site cysteine, suggesting that a sulfur from the benzopen-tathiepin ring is retained. These findings support recent research showing that oxidative regulation of PTPs is an important regulatory mechanism occurring in cells to link tyrosine phosphorylation signaling and redox status.66,69

Speculation and future directions for studies of STEP in neurocognitive disorders

STEP levels are clearly elevated in AD and PD. An increase in STEP activity is also observed in mouse models of schizophrenia (SZ) (but see 71) and fragile X syndrome (FXS).72 Potential mechanisms for increased STEP activity in these diseases include decreased degradation, evident in AD, PD, and SZ, or an increase in its translation, evident in FXS. Additional, as-yet-unknown mechanisms likely contribute to the regulation of STEP expression and/or activity and thereby contribute to the modulation of synaptic function. In contrast, low STEP activity may contribute to the pathophysiology of other nervous system disorders including alcohol abuse,73–75 stress disorders,76–78 cerebral ischemia,79 and Huntington’s chorea.80,81

Given that both high and low STEP activity contributes to various neuropsychiatric disorders, the original general model whereby STEP suppresses synaptic plasticity requires modification, and it appears to be clear that optimal levels of STEP are required for normal synaptic function. Related to this, a recent study showed that decreased STEP activity in the mouse striatum (through protein kinase A [PKA] phosphorylation of STEP) is important for improving motor learning.82 These findings are consistent with earlier studies showing that STEP knockout mice have facilitated hippocampal and amygdala learning but extend the possible involvement of STEP to other types of learning. In addition, it was noted in the Morris water maze paradigm that despite the enhanced learning by STEP knockout mice after the initial training phases, learning to find the location of the platform after it was moved to a new location was impaired.83 Thus, when STEP levels are low, extinction may be disrupted because the mice appeared to perseverate on the initial learned task. It will be important for future studies to examine STEP activity in tic disorders, obsessive compulsive disorder, and autism, all disorders characterized by repetitive behaviors as well as difficulties in modulating behaviors in a changing environment.

Recent studies have investigated some of the regulatory mechanisms that promote STEP ubiquitination and degradation. Brain-derived neurotrophic factor (BDNF) and other neurotrophic factors promote the development of synaptic strengthening while STEP opposes it, raising the possibility that they might regulate each other’s activity. It was recently shown that BDNF signaling leads to the rapid ubiquitination and degradation of STEP through TrkB binding and activation of the phospholipase Cγ and protein kinase C (PKC) pathways.84–86 Moreover, decreased neurotrophic factor signaling has been proposed in the pathophysiology of PD.87,88 and, as discussed above, STEP levels are elevated in sporadic PD.89 Together, these findings lead to the hypothesis that decreased neurotrophic factor signaling may contribute to the pathophysiology of PD, at least in part, by increasing STEP expression levels. However, further research is necessary to establish a causal relationship between neurotrophic signaling and the increase in STEP levels detected in PD.

Several additional questions raised in this commentary need further study. As mentioned, STEP levels are elevated in a number of CNS disorders that include AD, PD, FXS, and SZ. Reducing STEP activity with genetic or pharmacologic inhibition of STEP reverses the cognitive and behavioral deficits observed in animal models of these disorders. However, it raises the question of how elevated STEP might result in very different types of neurocognitive illness. Presumably, the difference results from brain region- or brain cell type-specific regulation of STEP expression or activity. In support of this hypothesis, STEP is elevated in the striatum in PD, but not in the cortex or hippocampus, and, STEP activity is decreased in alcohol abuse in the dorsomedial striatum but not in the adjacent dorsolateral striatum or nucleus accumbens.91 Future studies are needed to address these questions and whether other regulatory mechanisms (e.g. microRNAs) provide differential and region-specific increases, or decreases, in STEP expression patterns.

TC-2153 has been shown to be a useful tool for testing new hypotheses about STEP function in neurocognitive disorders. TC-2153 corrects biochemical abnormalities at the synapse and reverses cognitive and behavioral deficits in mouse models of AD and has been used successfully in a number of other cell-based and animal models. TC-2153 is not likely to be useful as a template for further drug development, owing to its chemical properties. However, STEP appears to be an excellent drug target. STEP is brain specific, enriched in frontal brain regions important in cognition, is localized to post-synaptic sites, has limited substrate specificity, and, as an
enzyme, has an active site that is amenable to drug development. The rationale for the use of any STEP inhibitor would be to target deficits associated with synaptopathologies found at early stages of neurodegenerative diseases such as AD or PD. STEP inhibition may also be able to complement other therapies that, for example in AD, target the generation or deposition of the Aβ peptide.

A significant focus in studies of STEP has been its ability to dephosphorylate key proteins involved in the regulation of synaptic activity, such as glutamate receptors. It is likely that additional substrates for STEP remain to be identified, some of which may provide a link between the various diseases with which STEP has been associated. Disruption in synaptic connectivity and loss or altered development of dendritic spines have been observed in AD, FXS, and SZ. In this respect, a recent study showed that STEP dephosphorylates SPIN90, a negative regulator of cofilin-mediated actin depolymerization. When tyrosine-phosphorylated, SPIN90 binds to cofilin, inhibits its activity, and blocks actin depolymerization; this sequence of events prevents the activity-dependent redistribution of key proteins that are required for the morphological changes in synaptic structure that occur during synaptic strengthening. STEP dephosphorylation of SPIN90 reverses this process to effectively promote synaptic reorganization.

A role for STEP in synaptic excitation was observed in several studies showing that a decrease in STEP may increase seizure thresholds. It is noteworthy in this context that STEP deficiency protects hilar interneurons from excitotoxic damage during pilocarpine-induced seizures. Finally, a recent study showed that STEP plays a role during homeostatic synaptic plasticity through the regulation of AMPAR and NMDAR trafficking. Further work is needed to confirm and extend these findings.

In summary, the current model of STEP function is that STEP normally opposes the development of synaptic strengthening. Both high and low levels of STEP activity contribute to synaptic dysfunction and to disruptions in behavior and cognitive function. Given the large number of neurocognitive diseases in which STEP has now been implicated, it appears to be a critical nodal point for synaptic regulation. Future efforts should focus on discovering additional disorders in which STEP and synaptic function are disrupted to refine our understanding of how STEP influences neurocognitive function and dysfunction.

Competing interests
The authors declare that they have no competing interests.

Grant information
This work was supported by NIH grants MH091037 and MH52711 (PJL), and MH106934, NS091336, AG047270, and DA018343 (ACN).

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Acknowledgements
We thank laboratory members for helpful discussions and critical reading of the manuscript. We also thank Katie Henderson for graphic assistance with the figures.

References

1. Lee H, Yi JS, Lawan A, et al.: Mining the function of protein tyrosine phosphatases in health and disease. Semin Cell Dev Biol. 2015; 37: 66–72. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

2. Charbonneau H, Tonks NK, Kumar S, et al.: Human placenta protein-tyrosine-phosphatase: amino acid sequence and relationship to a family of receptor-like proteins. Proc Natl Acad Sci U S A. 1989; 86(14): 5052–6. PubMed Abstract | Publisher Full Text | Free Full Text

3. Tonks NK: Protein tyrosine phosphatases—from housekeeping enzymes to master regulators of signal transduction. FEBS J. 2013; 280(2): 346–78. PubMed Abstract | Publisher Full Text | Free Full Text

4. Goebl-Goody SM, Baum M, Paspalas CD, et al.: Therapeutic implications for striatal-enriched protein tyrosine phosphatase (STEP) in neuropsychiatric disorders. Pharmacol Rev 2012; 64(1): 65–87. PubMed Abstract | Publisher Full Text | Free Full Text

5. Hendriks WA, Elson A, Harroch S, et al.: Protein tyrosine phosphatases in health and disease. FEBS J. 2013; 280(2): 708–30. PubMed Abstract | Publisher Full Text | Free Full Text

6. Karasawa T, Lombroso PJ: Disruption of striatal-enriched protein tyrosine phosphatase (STEP) function in neuropsychiatric disorders. Neurosci Res. 2014; 89: 1–9. PubMed Abstract | Publisher Full Text | Free Full Text

7. Barr AJ, Knapp S: MAPK-specific tyrosine phosphatases: new targets for drug discovery? Trends Pharmacol Sci. 2006; 27(10): 525–30. PubMed Abstract | Publisher Full Text

8. Barr AJ: Protein tyrosine phosphatases as drug targets: strategies and challenges of inhibitor development. Future Med Chem. 2010; 2(10): 1563–76. PubMed Abstract | Publisher Full Text

9. Kunp P, Zhang Y, Xu J, et al.: Abeta-mediated NMDA receptor endocytosis in Alzheimer’s disease involves ubiquitination of the tyrosine phosphatase STEP. J Neurosci. 2010; 30(17): 5948–57. PubMed Abstract | Publisher Full Text | Free Full Text

10. Snyder EM, Nong Y, Almeida CG, et al.: Regulation of NMDA receptor trafficking by amyloid-beta. Nat Neurosci. 2005; 8(8): 1051–8. PubMed Abstract | Publisher Full Text | F1000 Recommendation

11. Braithwaite SP, Askerson M, Leung J, et al.: Regulation of NMDA receptor trafficking and function by striatal-enriched tyrosine phosphatase (STEP). Eur J Neurosci. 2006; 23(11): 2847–56. PubMed Abstract | Publisher Full Text | Free Full Text

12. Zhang Y, Venkitaramani DV, Gladding CM, et al.: The tyrosine phosphatase STEP mediates AMPA receptor endocytosis after metabotropic glutamate receptor stimulation. J Neurosci. 2008; 28(42): 10561–6. PubMed Abstract | Publisher Full Text | Free Full Text

13. Poddar R, Deb I, Mukherjee S, et al.: NR2B-NMDA receptor mediated modulation of the tyrosine phosphatase STEP regulates glutamate induced neuronal cell death. J Neurochem. 2010; 115(6): 1350–62. PubMed Abstract | Publisher Full Text | Free Full Text

14. Bhakar AL, Dolen G, Bear MF: The pathophysiology of fragile X (and what it teaches us about synapses). Annu Rev Neurosci. 2012; 35: 417–43. PubMed Abstract | Publisher Full Text | Free Full Text

15. Boehm J: A ‘danse macabre’: tau and Pyn in STEP with amyloid beta to
facilitate induction of synaptic depression and excitotoxicity. Eur J Neurosci. 2013; 37(12): 1925–30.
PubMed Abstract | Publisher Full Text

16. Kameva M, Benedict J, Nairn AC, et al.: Role of Striatal-Enriched Tyrosine Phosphatases in Neuronal Function. Neuron Plast. 2016; 2016: 8136825.
PubMed Abstract | Publisher Full Text | Free Full Text

17. Lombroso PJ, Murdoch G, Lerner M: Molecular characterization of a protein-tyrosine-phosphatase enriched in striatum. Proc Natl Acad Sci U S A. 1991; 88(16): 7242–47.
PubMed Abstract | Publisher Full Text | Free Full Text

18. Lombroso PJ, Naegeli JR, Sharma E, et al.: A protein tyrosine phosphatase expressed within dopaminergic neurons of the basal ganglia and related structures. J Neurosci. 1993; 13(7): 3062–74.
PubMed Abstract

19. Boulanger LM, Lombroso PJ, Raghunathan A, et al.: Cellular and molecular characterization of a brain-enriched protein tyrosine phosphatase. J Neurosci. 1995; 15(2): 1532–44.
PubMed Abstract

20. Okamura A, Goto S, Nishi T, et al.: Postnatal ontogeny of striatal-enriched protein tyrosine phosphatase (STEP) in rat striatum. Exp Neurol. 1997; 146(1): 228–34.
PubMed Abstract | Publisher Full Text

21. Lorber B, Berry M, Hendriks W, et al.: Stimulated regeneration of the crushed adult rat optic nerve correlates with attenuated expression of the protein tyrosine phosphatases RPTPalpha, STEP, and LAR. Mol Cell Neurosci. 2004; 27(2): 406–17.
PubMed Abstract | Publisher Full Text

22. Sharma E, Zhao F, Bult A, et al.: STEP constrains amygdala-dependent memory formation and neuroplasticity. Neuroscience. 2010; 178(4): 1336–46.
PubMed Abstract | Publisher Full Text | Free Full Text

23. Bult A, Zhao F, Dirix R.J, et al.: STEP: a family of brain-enriched PTPs. Alternative splicing produces transmembrane, cytosolic and truncated isoforms. Eur J Cell Biol. 1997; 72(4): 337–44.
PubMed Abstract

24. Oyama T, Goto S, Nishi T, et al.: Immunocytochemical localization of the striatal enriched protein tyrosine phosphatase in the rat striatum: a light and electron microscopic study with a complementary DNA-generated polyclonal antibody. Neuroscience. 1995; 69(3): 869–80.
PubMed Abstract | Publisher Full Text

25. Polito R, Zúñiga A, Ullrich A: Stimulation of AMPA receptor trafficking during metabotropic glutamate receptor-mediated long-term depression. J Neurosci. 2006; 26(9): 2544–54.
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

26. Gladding CM, Collett VJ, Jia Z, et al.: Tyrosine dephosphorylation regulates AMPAR internalisation in mGLUR-LTD. Mol Cell Neurosci. 2009; 40(2): 267–79.
PubMed Abstract | Publisher Full Text

27. Chen X, Lin R, Chang L, et al.: Enhancement of long-term depression by soluble amyloid β protein in the hippocampus is mediated by metabolic glutamate receptor and involves activation of p38MAPK; STEP and caspase-3. Neuroscience. 2013; 253: 435–43.
PubMed Abstract | Publisher Full Text

28. Blanco-Aparicio C, Torres J, Pulido R: A novel regulatory mechanism of MAP kinases activation and nuclear translocation mediated by PKA and the PTP-LS tyrosine phosphatase. J Cell Biol. 1999; 147(6): 1129–36.
PubMed Abstract | Publisher Full Text

29. Tárrega C, Blanco-Aparicio C, Muñoz JJ, et al.: Two clusters of residues at the docking groove of mitogen-activated protein kinases differentially mediate their functional interaction with the tyrosine phosphatases PTP-LS and STEP. J Biol Chem. 2002; 277(4): 2620–36.
PubMed Abstract | Publisher Full Text

30. Muñoz JJ, Tárrega C, Blanco-Aparicio C, et al.: Differential interaction of the tyrosine phosphatases PTP-LS, STEP and HePTP with the mitogen-activated protein kinases ERK1/2 and p38alpha is determined by a kinase specificity sequence and influenced by reducing agents. Biochern J. 2003; 372(1 Pt 1): 193–201.
PubMed Abstract | Publisher Full Text | Free Full Text

31. Paul S, Nairn AC, Wang P, et al.: NMDA-mediated activation of the tyrosine phosphatase STEP regulates the duration of ERK signaling. Nat Neuroscience. 2003; 6(1): 34–42.
PubMed Abstract | Publisher Full Text

32. Paul S, Connor JA: NR2B-NMDA receptor-mediated increases in intracellular Ca2+ concentration regulate the tyrosine phosphatase, STEP, and ERK MAP kinase signaling. J Neurochem. 2010; 114(1): 1107–18.
PubMed Abstract | Publisher Full Text | Free Full Text

33. Xu J, Kurup P, Zhang Y, et al.: Extrasynaptic NMDA receptors couple preferentially to excitotoxicity via calpain-mediated cleavage of STEP. J Neurosci. 2009; 29(29): 9330–43.
PubMed Abstract | Publisher Full Text

34. Mukherjee S, Podder R, Deb I, et al.: Dephosphorylation of specific sites in the kinase-specificity sequence domain leads to ubiquitin-mediated degradation of the tyrosine phosphatase STEP. Biochem J. 2011; 440(1): 115–25.
PubMed Abstract | Publisher Full Text | Free Full Text

35. Won S, Incontr o S, Nicoll RA, et al.: PSO-95 stabilizes NMDA receptors by inducing the degradation of STEP, Proc Natl Acad Sci U S A. 2016; 113(23): E7364–44.
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

36. Goebel-Goody SM, Davies KD, Alvested Linger RM, et al.: Phospho-regulation of synaptic and extrasynaptic N-methyl-D-aspartate receptor subunits in adult hippocampal slices. Neuroscience. 2009; 158(4): 1446–59.
PubMed Abstract | Publisher Full Text

37. Nguyen TH, Liu J, Lombroso PJ: Striatal enriched phosphatase 61 dephosphorylates Fyn at phosphotyrosine 42. J Biol Chem. 2002; 277(27): 24274–79.
PubMed Abstract | Publisher Full Text | Free Full Text

38. Xu J, Kurup P, Bartos JA, et al.: Striatal-enriched protein-tyrosine phosphatase (STEP) regulates Pyk2 kinase activity. J Biol Chem. 2012; 287(25): 20942–56.
PubMed Abstract | Publisher Full Text | Free Full Text

39. Nakazawa T, Komai S, Tseuka, et al.: Characterization of Fyn-mediated tyrosine phosphorylation sites on GluR epsilon 2 (NR2B) subunit of the N-methyl-D-aspartate receptor. J Biol Chem. 2001; 276(1): 693–9.
PubMed Abstract | Publisher Full Text | Free Full Text

40. Xu J, Kurup P, Foscar A, et al.: Striatal-enriched protein tyrosine phosphatase regulates the PTP/Pufyn signaling pathway. J Neurochem. 2015; 134(4): 629–41.
PubMed Abstract | Publisher Full Text | Free Full Text

41. Engen JR, Wales TE, Hochrein JM, et al.: Structure and dynamic regulation of Src-family kinases, Cell Mol Life Sci. 2008; 65(19): 3058–73.
PubMed Abstract | Publisher Full Text

42. Ingleby E: Src family kinases: regulation of their activities, levels and identification of new pathways. Biochem Biophys Acta. 2008; 1784(1): 56–65.
PubMed Abstract | Publisher Full Text | Free Full Text

43. Dineley KT, Westerner M, Bui D, et al.: Beta-amyloid activates the mitogen-activated protein kinase cascade via hippocampal alpha2 nicotinic acetylcholine receptors: in vitro and in vivo mechanisms related to Alzheimer’s disease. J Neurosci. 2001; 21(12): 4125–33.
PubMed Abstract

44. Hardy J, Selkoe DJ: The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002; 297(5580): 363–6.
PubMed Abstract | Publisher Full Text | Free Full Text
56. Lacor PN, Buniel MC, Chang L, et al.: Synaptic targeting by Alzheimer’s-related amyloid beta oligomers. J Neurosci. 2004; 24(42): 10191-200. PubMed Abstract | Publisher Full Text

57. Almeida CG, Takahashi RH, Gouas GK: Beta-amyloid accumulation impairs drinking. Neurobiol Aging. 2006; 27(11): 1607-18. PubMed Abstract | Publisher Full Text | Free Full Text

58. Tseng BP, Green KN, Chan JL, et al.: Abeta inhibits the proteasome and enhances amyloid and tau accumulation. Neurobiol Aging. 2006; 27(11): 1607-18. PubMed Abstract | Publisher Full Text | Free Full Text

59. Venkitaramani DV, Chin J, Netzer WJ, et al.: Beta-amyloid modulation of synaptic transmission and plasticity. J Neurosci. 2007; 27(14): 11382-7. PubMed Abstract | Publisher Full Text | Free Full Text

60. Zhang Y, Kurup P, Xu J, et al.: Reduced levels of the tyrosine phosphatase STEP block β amyloid-mediated GluA1/GluA2 receptor internalization. J Neurochem. 2011; 119(3): 664-72. PubMed Abstract | Publisher Full Text | Free Full Text

61. Chin J, Palop JJ, Poulilvial J, et al.: Fyn kinase induces synaptic and cognitive impairments in a transgenic mouse model of Alzheimer’s disease. J Neurosci. 2000; 20(42): 9964-703. PubMed Abstract | Publisher Full Text | Free Full Text

62. Zhang L, Xie J, Yang J, et al.: Tyrosine phosphatase STEP negatively regulates amyloid β-mediated ENK/CREB signaling pathways via α7 nicotinic acetylcholine receptors. J Neurosci Res. 2013; 91(12): 1581-90. PubMed Abstract | Publisher Full Text | Free Full Text

63. Beitz JM: Parkinson’s disease: a review. Front Biosci (Schol Ed). 2014; 6: 65-74. PubMed Abstract | Publisher Full Text | Free Full Text

64. Saiki S, Sato S, Hattori N: Protein tyrosine phosphatases: regulatory mechanisms. FEBS J. 2008; 275(5): 831-47. PubMed Abstract | Publisher Full Text

65. Xu J, Chatterjee M, Baguley TD, et al.: Inhibitor of the tyrosine phosphatase STEP reverses cognitive deficits in a mouse model of Alzheimer’s disease. PLoS Biol. 2014; 12(2): e1001923. PubMed Abstract | Publisher Full Text | Free Full Text

66. Watanabe Y, Shinzuka K, Itoh T, et al.: Cloning of PTPP1-C: encoding protein tyrosine phosphatase from the rat cerebellum and its restricted expression in Purkinje cells. Brain Res Mol Brain Res. 1998; 58(1-2): 83-94. PubMed Abstract | Publisher Full Text

67. den Hertog J, Osman A, Böhmer FD: Protein tyrosine phosphatases: regulatory mechanisms. FEBS J. 2008; 275(5): 831-47. PubMed Abstract | Publisher Full Text

68. Boivin B, Yang M, Tonks NK: Targeting the reversibly oxidized protein tyrosine phosphatase superfamily. Sci Signal. 2010; 3(137): pi2. PubMed Abstract | Publisher Full Text | Free Full Text

69. Carty NC, Xu J, Kurup P, et al.: The tyrosine phosphatase STEP: implications in schizophrenia and the molecular mechanism underlying antipsychotic medications. Transl Psychiatry. 2012; 2: e137. PubMed Abstract | Publisher Full Text | Free Full Text

70. Reinhart VL, Nguyen T, Gierwin R, et al.: Downstream effects of striatal-enriched protein tyrosine phosphatase reduction on RNA expression in vivo and in vitro. Neuroscience. 2014; 278: 62-9. PubMed Abstract | Publisher Full Text

71. Hackett SM, Wilson-Wallis ED, Royston S, et al.: Genetic manipulation of STEP reverses behavioral abnormalities in a fragile X syndrome mouse model. Genes Brain Behav. 2012; 11(5): 586-600. PubMed Abstract | Publisher Full Text | Free Full Text

72. Hicketkin TR, Wu PH, Radcliffe RA, et al.: Alcohol inhibition of the NMDA receptor function, long-term potentiation, and fear learning requires striatal-enriched protein tyrosine phosphatase. Proc Natl Acad Sci U S A. 2011; 108(6): 6650-5. PubMed Abstract | Publisher Full Text | Free Full Text

73. Daróczi E, Hamida SB, Wu S, et al.: Inhibition of striatal-enriched tyrosine phosphatase 61 in the dorsomedial striatum is sufficient to increased ethanol consumption. J Neurochem. 2014; 129(6): 1024-34. PubMed Abstract | Publisher Full Text | Free Full Text

74. Daróczi E, Hamida SB, Wu S, et al.: Inhibition of striatal-enriched tyrosine phosphatase 61 in the dorsomedial striatum is sufficient to increased ethanol consumption. J Neurochem. 2014; 129(6): 1024-34. PubMed Abstract | Publisher Full Text | Free Full Text

75. Legateslins K, Daróczi E, Wegner SA, et al.: Striatal-enriched protein tyrosine phosphatase controls responses to averse stimuli: implication for ethanol drinking. PLoS One. 2015; 10(6): e0132438. PubMed Abstract | Publisher Full Text | Free Full Text

76. Dabrowska J, Hrazd R, Guo JD, et al.: Striatal-enriched protein tyrosine phosphatase-STEPS toward understanding chronic stress-induced activation of corticotrophin releasing factor neurons in the rat bed nucleus of the stria terminalis. Biochim Biophys Acta. 2013; 1834(11): 817-26. PubMed Abstract | Publisher Full Text | Free Full Text

77. Yang CH, Huang CC, Hu S: Novelty exploration elicits a reversal of acute stress-induced modulation of hippocampal synaptic plasticity in the rat. J Physiol. 2006; 577(2): 601-12. PubMed Abstract | Publisher Full Text | Free Full Text

78. Yang CH, Huang CC, Hu S: A critical role for protein tyrosine phosphatase nonreceptor type 5 in determining individual susceptibility to develop stress-related cognitive and morphological changes. J Neurosci. 2012; 32(22): 7550-62. PubMed Abstract | Publisher Full Text | Free Full Text

79. Deb I, Manhas N, Poddar R, et al.: Neuroprotective role of a brain-enriched tyrosine phosphatase, STEP, in focal cerebral ischemia. J Neurosci. 2013; 33(15): 17914-26. PubMed Abstract | Publisher Full Text | Free Full Text

80. Saavedra A, Girault A, Ruil E, et al.: Striatal-enriched protein tyrosine phosphatase expression and activity in Huntington’s disease: a STEP in the resistance to excitotoxicity. J Neurosci. 2011; 31(22): 8150-62. PubMed Abstract | Publisher Full Text | Free Full Text

81. Gladding CM, Soper M, Xu J, et al.: Calpain and Striatal-Enriched Protein tyrosine phosphatase (STEP) activation contribute to extrapyramidal NMDA receptor localization in a Huntington’s disease mouse model. Hum Mol Genet. 2012; 21(17): 3739-52. PubMed Abstract | Publisher Full Text | Free Full Text

82. Chagniel L, Bergeron Y, Bureau G, et al.: Regulation of tyrosine phosphatase STEP61 by protein kinase A during motor skill learning in mice. PLoS One. 2014; 9(1): e89688. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

83. Saavedra A, Pugdelival M, Tsyb B, et al.: BDNF Induces Striatal-Enriched Protein Tyrosine Phosphatase 61 Degradation Through the Proteasome. Mol Neurobiol. 2016; 53(6): 4621-73. PubMed Abstract | Publisher Full Text | Free Full Text

84. Xu J, Kurup P, Azkona G, et al.: Down-regulation of BDNF in cell and animal models increases striatal-enriched protein tyrosine phosphatase 61 (STEP) levels. J Neurochem. 2016; 136(2): 285-94. PubMed Abstract | Publisher Full Text | Free Full Text

85. Baquet ZC, Bickford PC, Jones KR: Brain-derived neurotrophic factor is required for the establishment of the proper number of dopaminergic neurons in the substantia nigra pars compacta. J Neurosci. 2005; 25(26): 6251-9. PubMed Abstract | Publisher Full Text

86. Rangasamy SB, Soderstrom K, Bakay RA, et al.: Neurotrophic factor therapy for Parkinson’s disease. Prog Brain Res. 2010; 184: 237-64. PubMed Abstract | Publisher Full Text

87. Allen SJ, Watson JJ, Shoeamark DK, et al.: GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther. 2013; 138(2): 155-75. PubMed Abstract | Publisher Full Text | F1000 Recommendation

88. He YY, Zhang XY, Yong WH, et al.: Role of BDNF in central motor structures and motor diseases. Mol Neurobiol. 2013; 48(3): 783-93. PubMed Abstract | Publisher Full Text | F1000 Recommendation

89. Choy IH, Lee MJ, Kim DH, et al.: SPIN90 dephosphorylation is required for collin-mediated actin depolymerization in NMDA-stimulated hippocampal neurons. Cell Mol Life Sci. 2013; 70(22): 4369-83. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

90. Choy YS, Lin SL, Lee B, et al.: Status epilepticus-induced somatosensitizing hilar interneuron degeneration is regulated by striatal enriched protein tyrosine phosphatase. J Neurosci. 2007; 27(11): 3099-3109. PubMed Abstract | Publisher Full Text | Free Full Text

91. Briggs SW, Walker J, Asik K, et al.: STEP regulation of seizure thresholds in the hippocampus. Epilepsia. 2011; 52(3): 497-506. PubMed Abstract | Publisher Full Text | Free Full Text

92. Jang SS, Royston SE, Xu J, et al.: Regulation of STEP and tyrosine-phosphorylation of NMDA and AMPA receptors during homeostatic synaptic plasticity. Mol Brain. 2015; 8(1): 55. PubMed Abstract | Publisher Full Text | Free Full Text

93. Deb I, Poddar R, Paul S: Oxidative stress-induced oligomerization inhibits the activity of the non-receptor tyrosine phosphatase STEP. J Neurochem. 2011; 118(6): 1097-111. PubMed Abstract | Publisher Full Text | Free Full Text
Open Peer Review

Current Peer Review Status: ✔ ✔ ✔

Editorial Note on the Review Process

Faculty Reviews are review articles written by the prestigious Members of Faculty Opinions. The articles are commissioned and peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

The reviewers who approved this article are:

1. **Mark L. Dell’Acqua**
 - Department of Pharmacology, Program in Neuroscience, University of Colorado School of Medicine, Aurora, CO, USA
 - **Competing Interests:** No competing interests were disclosed.

2. **Yukiko Goda**
 - RIKEN Brain Institute, Saitama, Japan
 - **Competing Interests:** No competing interests were disclosed.

3. **Ted M Dawson**
 - Institute for Cell Engineering, Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
 - **Competing Interests:** No competing interests were disclosed.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com