Research Article

Development of Online Political and Ideological Education System Based on Personalized Recommendation

Shoudao Wang

School of Marxism, Lanzhou City University, Lanzhou, Gansu 730070, China

Correspondence should be addressed to Shoudao Wang; shoudaoabc@lzcu.edu.cn

Received 11 May 2022; Revised 22 June 2022; Accepted 4 July 2022; Published 20 July 2022

Academic Editor: Rahim Khan

Copyright © 2022 Shoudao Wang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper aims to design and implement the online political and ideological teaching system based on personalized recommendation in order to more accurately recommend teaching resources appropriate for students' learning, thus improving the learning efficiency and teaching quality of the online political and ideological teaching system. First, the design of the online political and ideological education system is detailed, along with its basic framework, functional modules, hierarchical structure, and database. A personalized recommendation approach based on knowledge map is proposed. The algorithm is applied to the online political and ideological teaching system to understand the differences of students' interests in different teaching resources, establish a student interest transfer model, and effectively improve the transfer of students' interests. On the basis of knowledge map, the matrix decomposition method is introduced, matched with the knowledge map to obtain the recommendation prediction score, and the feedback model is established and extended. Measure the dynamic transformation of the recommended ideological and political teaching content, and comprehensively consider the long-term and short-term preferences of students, so as to realize the personalized recommendation of ideological and political teaching resources. Experiments show that the personalized recommendation online political and ideological teaching system designed in this paper has good overall performance, the accuracy of the proposed recommendation approach is high, and the recommendation time is fast, so as to improve the teaching quality of the teaching system.

1. Introduction

Due to wide range of development in the field of wireless communications, these modules have been extensively utilized in different application domains for resolving the communication issue among the interested devices or parties in the networks. In this network, a common and interesting scenario is when multiple devices are trying to communicate concurrently with an intended device preferably which reside in the coverage area of the concerned wireless module or antenna. These communication networks are utilized in different forms such as wireless networks, sensor networks, and Internet of Things. These networks have enabled researchers to resolve various problems which have a direct correlation with the life standard of the every individual such as healthcare and teaching. With the gradual growth of online education resources, data information has gradually changed from the form of text to a variety of media forms such as pictures, video, and online live broadcast. The quality of data information and how to identify data information have become an urgent problem to be solved. In particular, the current work pressure is large and the pace of life is accelerated. The accuracy and efficiency of data information acquisition become very important. In such an environment, providing accurate and efficient data information for users has become the primary task of all industries. In view of this situation, relevant websites have also made specific responses, but in most cases, users do not know their own needs. It is precisely because of these problems that promote the rapid development of emerging technologies and generate personalized recommendation technology to solve the problems of accuracy and efficiency of data acquisition. The main idea is to recommend the data information that users really need, so as to meet the different needs and characteristics of users.
In the conventional ideological and political educational process, teachers impart pertinent knowledge to pupils, and they choose the course material based on textbooks. Students are ineffectively simple in a passive receptive condition. Network technology is likewise advancing gradually under the optimization trend in computer technology. Applying personalized recommendations to online political and ideological teaching systems can significantly raise the level of teaching information technology, enable the sharing of educational resources, make recommendations for specific students based on their learning preferences, increase student motivation for learning, and enhance the quality and effectiveness of instruction.

The innovations of this paper are as follows: (1) design the online political and ideological teaching system, and describe the overall framework design, overall structure and functional modules, hierarchical structure, and database in detail. A personalized recommendation approach based on knowledge map is proposed to recommend teaching resources suitable for ideological and political course learning to students. (2) Compared with other recommendation approach teaching systems, the personalized recommendation online political and ideological teaching system designed in this paper has better overall performance, and the proposed recommendation approach has higher accuracy and faster recommendation time, so as to improve the teaching quality of the teaching system.

The rest of the article is going to be arranged according to the following basis.

In the following section, brief description of the approaches, which are presently available online and have direct correlation with the problem at hand, is presented. Moreover, it has been mentioned that how these approaches could solve a problem and why these schemes are not applicable to address the issue that is required to be solved by the proposed approach. In Section 3, online political and ideological education system based on personalized recommendation is reported along with detailed discussion on how it is formed and why it more reasonable than other techniques which are available online. Simulation results and observations have been presented in Section 4 of the paper where conclusion is represented as the last section.

2. Related Work

The focus of intelligence education is to achieve personalized teaching. Personalized online teaching system is effectively applied in ideological and political education, and some research results have been obtained. In order to effectively handle computer language and improve the quality of ideological and political education, Jin proposed an online political and ideological computer teaching system based on language processing recommendation. The overall structure of the system is designed. According to the overall structure, the system is divided into login module, intelligent answer module, teaching assistant management module, and personalized recommendation module. The teaching assistant management module and answer module are the main core of the online political and ideological system. Language processing technology is used to realize online political and ideological education. Through the experimental verification, the system can effectively stimulate students’ interest in learning, reduce the learning difficulty of ideological and political courses, and improve the efficiency of teachers’ work, but the teaching quality has not been effectively improved [1]. Li and Liu, in order to provide a fully functional online political and ideological education system, developed the online political and ideological education system by combining offline classes with online learning. The system uses Memcached to build a multi-server cluster, complete high concurrent load balancing, improve the usability of online education system, use the model of data information network as the underlying storage database, and make use of the characteristics of associated storage. Cascade query and dynamic modeling are used to improve the efficiency and scalability of online teaching system queries. The application of INM in database modeling and database access is proposed, which simplifies the overall process of database modeling, but this method does not improve the quality of teaching [2]. Liu and Wang proposed an online political and ideological education system based on Web recommendation to address the issue of poor implementation in the traditional recommended online political and ideological education system. It uses particle swarm algorithm to optimize the calling process of data course, ensures the scientific exchange of teaching resources, optimizes the query algorithm in the system database, and supplements the functions of the subsystem in the online educational system. Enhance subsystem performance, use high-speed operation to guarantee the stability of instructional resources, and avoid resource connection failure. The experimental findings demonstrate that, even when a large number of students are using the system, the online political and ideological education system based on Web recommendations can maintain smooth operation of teaching resources without interruption [3]. However, this approach does not increase the effectiveness of students’ learning. The fast advancement of educational information technology, according to Ming, will lead to the creation of a system for sharing educational materials. Although the sharing of information about educational resources can make users’ lives easier, there are still too many data information issues brought on by the expansion of educational resources, which forces users to expend a lot of time and effort filtering the data information they require from the massive data. To address this issue, this paper applies personalized recommendation technology to the online political and ideological education system, providing students with specific and interesting teaching resource recommendations. It also conducts a thorough examination of the characteristics of ideological and political education, as well as personalized learning theory and recommendation technology, and focuses on the application of collaborative filtering recommendation. It is evaluated how the online teaching system is organized overall, how the data are stored, and how recommendations are made. The findings of the experiments demonstrate that the system can tailor recommendations to the requirements of the individual students and increase
learning effectiveness, although this approach has the drawback of having low teaching quality [4].

3. Online Political and Ideological Education System Based on Personalized Recommendation

With the recent developments, new ideas have been proposed in different research domains in order to improve life standard of the human beings and assist them in getting the basic facility through easily accessible means using various and newly developed resources. Among those activities or facilities, education system is one of them which has been drastically affected by the current pandemic and researchers are eager to develop new and impressive way to continue the education activity alive as it is one of the basic needs of the human beings and the very future of the world relies on it as well. Therefore, solid measures were required to be adopted which could possibly resolve these issues more importantly with the available infrastructures. For this purpose, online education systems were introduction where every faculty member is bounded to deliver his/her lecture on a schedule time where it is high likely that students will interact with the teacher during the class and can make conversation similar to that of class.

3.1. Framework Design of Online Political and Ideological Education System. The structure of an online political and ideological education system is depicted in Figure 1. The online educational system is basically separated into teaching course management, user management, comment management, etc., in Figure 1. The online political and ideological education system is split into client and server in Figure 1.

3.2. Overall Structure of Online Political and Ideological System. Online political and ideological education system based on personalized recommendation utilizes the three-tier mode of B/S [5, 6]. Customer layer, application layer, and data layer, respectively, are shown in Figure 2.

In Figure 2, the client basic function of the layer is interactive input, the application basic function of the layer is business processing, and the data basic function of the layer is the transmission and archiving of instructional materials. Based on the client and server’s browsers, HTML is transformed into Web pages. The teaching resources are sent to the data server once the user submits a business request to the server and receives a response. The teaching data are then fed back to the server, which subsequently feeds the teaching data to the client [7, 8]. The ideological and political education system on the Internet and the three-tiered structure has no relationship at all. As a result, the system is more transferable and maintainable, which benefits the cross-platform of the real time education system.

3.3. Module Design. Figure 3 shows the design of the system functional module. In Figure 3, the personalized recommendation online political and ideological education system contains many modules, such as network communication and personalized recommendation, teaching data collection module, bus program, and transmission loading. Among them, the unique function of the teaching data collection module is to recognize the original ideological and political teaching materials and to transmit them using the varied teaching data collecting technology. In the process of transferring ideological and political education materials, the resource nodes are separated into three tiers, namely, the backbone, general, and interface, according to the distribution of units and the relevance of nodes. The completion of real-time, efficient online political and ideological education as well as the distribution of such resources is made possible by wireless radio frequency technology [9, 10].

The specific function of network communication module is to transfer network data information and to communicate online. Web technology is used to design the network of the online teaching system, so as to store the object of ideological and political teaching resources, data mining of teaching resources, information service of teaching resources, and effective feedback of teaching efficiency and teaching quality.

Service framework based on interface access, which includes modules such as resource data collection, organization framework, and storage database of teaching resource information, evaluates the stability and reliability of network transmission through hierarchical system framework and interface access. The Internet of Things is used as network middleware technology to develop an online political and ideological education system of teaching resources retrieval, and it can help improve the processing of these resources.

3.4. System Hierarchical Structure Design. The hierarchical structural architecture of the online political and ideological education system is depicted in Figure 4. The data storage layer, user analysis layer, and log mining layer of the online political and ideological education system are constructed in Figure 4 and are managed based on the connection module of the overall framework [11, 12]. User and background management are two subsystems included in the hierarchical architecture of the online political and ideological education system. Students can retrieve teaching resources, set and modify user names and passwords, and provide feedback on teaching resource data. Teachers and students can register and log on to the online teaching system using their own rights. Teachers can use software to assess the quality and effectiveness of ideological and political education in addition to transferring teaching materials and managing multimedia learning environments. According to the behavior of users on the external server, the background management system may scientifically analyze the development of ideological and political education, teaching material, and teaching objects, and excavate the available teaching resources. Smart terminal devices are connected to background management systems. For data information, user-based services must communicate with functional modules.
3.5. Database Design. The database is designed according to the actual situation of online teaching. The online teaching system also includes online course schedule and registration form. This paper provides effective reference for these two data tables [13, 14].

(1) Most of the registry stores the information registered by users, including user name and login password, which is shown in Table 1.

(2) Online course schedule is mainly used to record the information of online courses, including course name, course content, lecturer, and teaching time, which is represented in Table 2.

4. Personalized Recommendation Method of Online Political and Ideological Teaching Based on Knowledge Map

4.1. Student Interest Transfer Model. We may determine the variations in students’ interests in various fields of knowledge by allocating various proportional weights to the instructional resource nodes in the knowledge map [15, 16]. The interest
transfer model appropriately modifies the weight of teaching resource nodes in the knowledge map in accordance with the students’ retrieval behavior and retrieval periods, which accurately depicts the changing features of students’ interest transfer. Students are more interested in the teaching resource if their conduct is more comparable to that of the present moment, there have been more instances of similar behavior, and the weight of teaching resource nodes is higher.

The expression of weight between student U_i and online political and ideological teaching resource I_j is

$$w_{ij} = \frac{w}{1 + e^{(t-t_0)-t_s}} + w.$$ \hspace{1cm} (1)

In formula (1), t represents the current time point, n represents the number of times the same behavior occurs, t_s represents the time when students give feedback to teaching resources, t_0 represents the factor of students’ interest transfer time, and w represents the threshold of weight.

4.2. Personalized Recommendation Approach Based on Matrix Decomposition. On the basis of knowledge map, an online personalized recommendation approach for ideological and political education resources based on matrix decomposition algorithm is introduced. The specific idea of matrix decomposition is to think that students and any ideological and political education resources have their own characteristics, and students’ interests are determined by a few factors. Matrix decomposition is used to obtain the matrix of students’ and teaching resources’ characteristics in the interactive matrix of teaching resources [17, 18]. The model of matrix decomposition goes through abstraction and becomes

$$R = UV^T.$$ \hspace{1cm} (2)

In formula (2), $U \in R^{m \times d}$ and $V \in R^{n \times d}$ represent the d-dimensional student and teaching resource characteristic matrix after matrix decomposition. After decomposition, the real matrix of known online political and ideological education resources is fitted by product of UV^T between low-dimension students and teaching resources characteristic matrix. The model training objective function is
In formula (3), \(I_{ij} \) indicates whether student \(i \) scores teaching resource \(j \). If scoring is performed, the value of \(I_{ij} \) is 1. On the contrary, the value of \(I_{ij} \) is 0. \(r_{ij} \) represents the true score of student \(i \) on teaching resource \(j \), \(U_i \) and \(V_j \) represent the \(d \)-dimensional feature vector of students and teaching resources after decomposition, \(U_i V_j^T \) represents the predicted score, \((U_i V_j^T - r_{ij})^2 \) represents the square error between the predicted value and the actual value, \(\lambda_1 \) and \(\lambda_2 \) represent the percentage of regularization of constrained students and teaching resources matrix in the model.

In order to accurately control the model and fit the problem in the process of parameter learning, the weighted regularization method of parameters is introduced to prevent the transfer of the objective function through the number of students \(n_u \) and the number of online political and ideological teaching resources \(n_v \). The improved loss function is expressed as

\[
L = \sum_{i=1}^{n} I_{ij}(U_i V_j^T - r_{ij})^2 + \lambda_1 \sum_{i} n_u \|U_i\|_F^2 + \lambda_2 \sum_{j} n_v \|V_j\|_F^2.
\]

(4)

On the basis of knowledge map, an online personalized recommendation approach for ideological and political education resources based on matrix decomposition algorithm is introduced. The expression of the objective function after the matrix decomposition is

\[
L = \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij}(U_i V_j^T - r_{ij})^2 + \lambda_1 \sum_{i} n_u \|U_i\|_F^2 + \lambda_2 \sum_{j} n_v \|V_j\|_F^2,
\]

(5)

\[
+ \lambda_3 \sum_{j} \left(V_j - \sum_{v_i \in N_{V_j}} \text{sim}(V_j, V_{k}) V_k \right)^2.
\]

In formula (5), \(\sum_{j=1}^{n} I_{ij}(U_i V_j^T - r_{ij})^2 \) is constructed on the matrix decomposition model. The second and third items are to prevent fitting regular items, and the third item is to represent the potential information of the similarity of online political and ideological teaching resources through the knowledge map. Among them, \(n_v \) represents the set of \(n \) nearest neighbors of teaching resource \(V_j \), \(\text{sim}(V_j, V_k) \) represents the function of similarity. In this paper, the function of cosine similarity is adopted, and the value range is \([-1, 1]\), which is expressed as

\[
v_j \text{sim}(V_j, V_k) = \frac{\sum_{d=1}^{d} (V_{j, d} V_{k, d})}{\sqrt{\sum_{i=1}^{d} (V_{j, d})^2} \sqrt{\sum_{i=1}^{d} (V_{k, d})^2}}.
\]

(6)

In formula (6), \(d \) represents the dimension obtained by model training, and the value is a positive number. It is standardized through formula

\[
f(x) = \frac{(1 + x)}{2}.
\]

(7)

By minimizing the objective function of the gradient descent method, the student characteristic matrix \(U \) and the online political and ideological teaching resource characteristic matrix \(V \) are solved, and the feedback model is constructed:

\[
\frac{\partial L}{\partial U_i} = \sum_{j=1}^{n} I_{ij}(U_i V_j^T - r_{ij}) V_j + \lambda_1 \sum_{i} n_u U_i.
\]

(8)

After solving the feature matrix of students and online political and ideological education resources, the features should be projected into \(K \)-dimensional space, and the more similar the geometric features, the stronger the correlation. The information \(\text{sim}(e_i, e_j) \) of the correlation between characteristic \(e_i \) and \(e_j \) is obtained by using the cosine similarity of vectors, which is expressed as

\[
\text{sim}(e_i, e_j) = \cos(c_i, c_j) = \frac{c_i \cdot c_j}{\|c_i\| \times \|c_j\|}
\]

(9)

This paper expands the personalized recommendation list, uses knowledge pictures to judge students’ long-term preferences, and constructs a mixed knowledge map through feedback model and students’ interest offset model to judge some time-sensitive factors such as the content change of online political and ideological education resources and the fluctuation of students’ preferences [19, 20].

An update model of inter-entity weights for hybrid knowledge maps is

\[
kRW_{ij} = \begin{cases}
\lambda \times \text{rating} \times w_{ij} \times \eta_k, & \text{if } r_{ij} = k, \\
\eta_{\text{others}}, & \text{if } r_{ij} = \text{others}.
\end{cases}
\]

(10)

In Formula (10), \(RW_{ij} \) denotes the weight value between feature \(i \) and \(j \) of the updated teaching resources, \(w_{ij} \) denotes the degree of interest value obtained after the calculation of the student interest migration model, relation \(k \) denotes the scoring relationship between student \(i \) and teaching resource \(j \), and rating denotes the student’s scoring of the online political and ideological teaching resources. \(\lambda \) is the normalization factor so that \(\lambda \times \text{rating} \) normalized initial weight is 1 to prevent too high a score from negatively affecting random walk.

Sim(\(U_i, I_j \))\text{max} is extracted from the resources (\(U_i I_j \)) that are centrally trained, combined with the characteristics of all teaching resources and the deep wandering on the knowledge map of student interest migration, and a mixed feature model is built according to formula (11), that is,

\[
\overrightarrow{X_{U_i I_j}} = \text{Sim}(U_i, I_j), \ldots, \text{Sim}(U_i, I_j)\text{max}.
\]

(11)

Input set \(\{y_{ij}, U_i, \overrightarrow{X_{U_i I_j}} \} \) as sorting model to form a personalized recommendation list, which combines multi-dimensional features, considers the long-term and short-
term preferences of students, strengthens the effect of personalized recommendation, and completes the development of an online political and ideological education system based on knowledge map personalized recommendation from the above content.

5. Experimental Result

To verify the performance of the online political and ideological education system proposed in this paper based on the personalized recommendation of knowledge map, an experimental comparison is made on the platform of MATLAB. Table 3 represents the experimental data.

Figure 5 shows the accuracy of the personalized recommendation approach based on knowledge map compared with the methods in literature [3, 4] for teaching resource information recommendation. By examining Figure 5, we can see that, in the initial experiment, the accuracy of resource recommendation was 83 percent when recommending teaching resources using the same number of online political and ideological teaching resources. However, as the number of ideological and political teaching resources increased gradually, the accuracy of resource recommendation gradually decreased when using the method proposed in [4]. The first resource recommendation’s accuracy is 73 percent, but it also steadily declines as the number of instructional materials rises. The accuracy of teaching resource recommendation in this paper has been stable over 90% throughout the whole experiment because this algorithm introduces a matrix decomposition algorithm based on the knowledge map, obtains the vector representation of the recommended target, establishes the feedback model, and expands it. This improves the accuracy of personalized recommendation of online political and ideological education resources. Table 4 shows the time needed to recommend teaching resources between the methods proposed in this paper and those in literature [3, 4].

As can be seen from Table 4, under the same online political and ideological education resources, the methods proposed in this paper are shorter than those in literature [3] and literature [4], because this method builds a model of student interest migration and effectively improves the problem of student interest migration, thereby reducing the time of personalized recommendation of online political and ideological education resources, and improving the efficiency of personalized recommendation.

Figure 6 shows the coverage of the proposed personalized recommendation approach based on knowledge map compared with the methods in literature [3, 4] for teaching resources.

The recommended coverage of the three methods is increasing with the number of recommended teaching resources, as can be seen from the analysis of Figure 6, but the initial recommended coverage of the recommended method experiment in the literature is only 13 percent, the final recommended coverage is 39 percent until the end of the experiment, and the initial recommended coverage of the recommended method experiment in the literature [4] is 35 percent. However, until the trial’s conclusion, the ultimate suggested coverage rate for the personal recommendation approach experiment discussed in this article is 80 percent, up from the experiment’s initial recommended coverage rate of 52 percent. This shows that the methods presented in this paper have better recommended coverage in different recommendation lists. Figure 7 shows the overall performance of the online political and ideological education system based on the knowledge map and the personalized recommendation approach proposed in this paper compared with the online political and ideological education system based on the traditional recommendation approach.

Although the teaching resources of the online political and ideological education system are the same, different personalized recommendation approaches have different effects on the overall performance of the online political and ideological education system. As can be seen from Figure 7, traditional recommendation approaches applied to the
online political and ideological education system have not improved the overall performance of the system, resulting in poor learning efficiency and teaching quality for students. The personalized recommendation approach based on knowledge map proposed in this paper is applied in the online political and ideological education system. It can recommend suitable teaching resources for students according to their preferences, stimulate students’ interest in learning ideological and political courses, and thus improve the learning efficiency and teaching quality.

6. Conclusion

Due to the current pandemic, it has become vital to use other available techniques for the lecture delivery, especially in the education sector in general and universities in particular. However, these systems must have the expected level of the smartness and intelligence for the carrying out of activities especially without human intervention. Online teaching system is a teaching carrier based on digitized technology and computer multimedia technology. In order to adapt to the online teaching of ideological and political course, this paper designs an online political and ideological teaching system based on personalized recommendation of knowledge map. By comparing with other recommended algorithms, the knowledge map-based recommendation approach proposed in this paper has a higher recommendation accuracy and a faster recommendation time, which can effectively stimulate students “interest in learning ideological and political courses, thus improving the teaching quality and students” learning efficiency of the online political and ideological teaching system, which is worth promoting and widely applied to the teaching of various disciplines.

Data Availability

The datasets used during the present study are available from the corresponding author upon reasonable request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] Y. Jin, “Design of Japanese computer aided instruction system based on natural language processing,” *Techniques of Automation and Applications*, vol. 40, no. 10, pp. 52–55, 2021.

[2] J. Li and M. C. Liu, “Development of online teaching system based on INM,” *Computer Applications and Software*, vol. 34, no. 4, pp. 28–34, 2017.

[3] D. Liu and J. S. Wang, “Design of internet online auxiliary teaching system based on web,” *Modern Electronics Technique*, vol. 40, no. 20, pp. 28–30, 2017.

[4] Q. Y. Ming, “Analysis and design of recommendation system of the visual micro-course based on personalization,” *Microcomputer Applications*, vol. 25, no. 9, pp. 33–36, 2019.

[5] H. Q. Hong, “The design of online assistant teaching system based on spring MVC frame,” *Journal of Qingjiao Normal University*, vol. 37, no. 6, pp. 49–52, 2018.

[6] M. Wei, “Research on evaluation of distance education online teaching system,” *Microcomputer Applications*, vol. 35, no. 11, pp. 127–130, 2019, https://oss.wanfangdata.com.cn/file/download/perio_zgyszyjyqh201812019.aspx.

[7] M. Liu and L. He, “Development of online teaching system based on B/S,” *Computer Knowledge and Technology*, vol. 15, no. 30, pp. 97–98, 2019.

[8] Y. F. Zheng, “Development of online teaching system based on SSN framework,” *Journal of Changsha University*, vol. 33, no. 2, pp. 41–44, 2019.

[9] G. X. Wang, S. L. Song, and Y. M. Yu, “Design of mathematics online teaching system based on data mining,” *China Computer & Communication*, vol. 33, no. 14, pp. 125–127, 2021.

[10] H. X. Zhao and J. Wang, “Development of online teaching management system based on MVC framework,” *Information Recording Materials*, vol. 19, no. 9, pp. 175-176, 2018.

[11] J. Rhode, S. Richter, and T. Miller, “Designing personalized online teaching professional development through self-assessment,” *TechTrends*, vol. 61, no. 5, pp. 444–451, 2017.

[12] T. Dolighan and M. Owen, “Teacher efficacy for online teaching during the COVID-19 pandemic,” *Brock Education Journal*, vol. 30, no. 1, pp. 95–116, 2021.
[13] A. Joshi, M. Vinay, and P. Bhaskar, “Online teaching amidst COVID-19 in India: an outlook,” American Journal of Distance Education, vol. 15, no. 2, pp. 105–111, 2021.

[14] R. Vijay, “Comparative evaluation of COVID-19 pandemic enforced online teaching versus traditional teaching from point of view of medical students,” International Journal of Basic & Clinical Pharmacology, vol. 10, no. 1, pp. 36–43, 2020.

[15] M. Hassan, “Online teaching challenges during COVID-19 pandemic,” International Journal of Information and Education Technology, vol. 11, no. 1, pp. 41–46, 2021.

[16] C. H. I. Anbazhagan, “Using flipped classroom technique on online teaching platform during COVID-19,” Psychology and Education Journal, vol. 58, no. 1, pp. 5422–5430, 2021.

[17] M. H. Bhuyan, “Practices of online teaching, learning and assessment of the students of the BSc in EEE programme during the COVID-2019 pandemic,” Contemporary Educational Researches Journal, vol. 11, no. 2, pp. 14–28, 2021.

[18] Y. Heryandi, I. Said, and R. Herlina, “Online teaching in writing by means of slack application,” Journal of English Education and Teaching, vol. 4, no. 1, pp. 49–68, 2020.

[19] S. Malik, “A study of parent’s opinion on online teaching in Delhi-NCR schools,” Indian Journal of Science and Technology, vol. 13, no. 42, pp. 4351–4363, 2020.

[20] B. Riyono and W. Rifkianti, “Android-based information system of online teaching services with geo-location determination,” Bit-Tech, vol. 1, no. 1, pp. 9–18, 2018.