Evaluation of Mathematical Models in Sustainable Supply Chain Management: Gap Analysis

Zahra Ghorbani Ravand¹, & Qi Xu²

¹ Department of Logistics and Electronic Commerce, Glorious Sun School of Business and Management, Shanghai Donghua University, China
Correspondence: Zahra Ghorbani Ravand, Department of Logistics and Electronic Commerce, Glorious Sun School of Business and Management, Shanghai Donghua University, China.

Received: July 20, 2021 Accepted: August 23, 2021 Online Published: August 31, 2021
doi:10.5539/ibr.v14n10p25 URL: https://doi.org/10.5539/ibr.v14n10p25

Abstract
The main purpose of this paper is to present a comprehensive view of the application mathematical models in the designing and implementing SSCM beside to solving problems and making decision. The research questions are: what kind of mathematical models are used for designing and implementing sustainable supply chain management, how to use them, which industries implemented in, what modules of SSCM depth in and finally finding the gaps between the goals of Sustainable development and current researches and suggestions for further researches.

The methodology of the research is Systematic Literature review and evaluation peer review papers which are published in high ranking journals: First, we gather all papers through scientific data bases like Scopus, science direct, MDPI, Springer, Google Scholar. Then, screening papers based on the criteria such as object of paper, subject of paper, journals impact factor, peer review paper, and relative content of the papers. Finally, we selected 245 papers through three steps screening from 2806 papers that they have enough quality and relative to our research goals for context analysis.

For context analysis: First we categorize the information of the papers and draw the current situation of researches in the framework of our topic. Then, we evaluate and compare the goals of sustainability and current situation and find the gaps, then, offer suggestions required researches for pollutant industries such as Casting Industry, Heavy Industry, Coal Industry and so on. On the other hand, there are gaps in researches in some modules of SSCM such as packaging, designing products, etc.

Keywords: SSCM, mathematical model, systematic literature review, SSCM modules, sustainable development goals, gap analysis

List of acronyms
2E-LRP: 2(Two) Echelon Location Routing Problem
ACO: Ant Colony Optimization
AHP: Analytic Hierarchy Process
AI: Artificial Intelligence
AMOVNS: Adapted Multi Objective Variable Neighborhood Search
ANOVA: one-way statistical analysis
ANP Technique: Analytic Network Process Technique
ANP: Analytic Network Process
BMW: Best Worst Method
BOP: Base Of the Pyramid
CI: Composite Indicator
CLSC: Closed Loop Supply Chain
CSF: Critical Success Factor
CSR: Corporate Social Responsibility
CSS: Corporate Sustainability Standard
DC: Dynamic Capabilities
DEA: Data Envelope Analysis
DEMATEL: DEcision-MAking Trial and Evaluation Laboratory
DMUs: Decision Making Units
EFP: Environmental Friendly Products
ELECTRE: ELimination Et Choix Traduisant la REalité
EOQ: Economic Order Quantity
EPQ: Economic Production Quantity
ERM: Enhanced Russell Measure
EUFP: existing environmental unfriendly product
EWH: European Waste Hierarchy
FIS: Fuzzy Inference System
FMEA: Failure Mode and Effects Analysis
FSSD: Framework for Strategic Sustainable Development
GA: Genetic Algorithm
GLM: Green Logistic Management
GRI: Global Reporting Initiative
GSCM: Green Supply Chain Management
GVC: Global Value Chain
IE: Industrial Ecology
IFS: Intuitionistic Fuzzy System
IS: Industrial Symbiosis
ISM: Interpretive Structural Modeling
KPI: Key Performance Indicators (KPIs)
LCA: Life Cycle Assessment
LCIA: Life Cycle Inventory Assessment
LRPTW: Location Routing Problems with Time Windows
LSP: Leader Selection Procedure
MCDM: Multiple-Criteria Decision-Making
MHPV: Multi-objective Hybrid Metaheuristic Algorithm
MILP: Mixed Integer Linear Programming
MINLP: Mixed Integer Non Linear Program
MLH: maximum likelihood estimation
MOGA: Multi-Objective Genetic Algorithm
MOMIP: Multi Objective Mixed-Integer Programming
MOOP: Multi Objective Optimization Problem
MOPSO: Main Loop Particle Swarm Optimization
MOPSO: Multi Objective Particle Swarm Optimization
MP: Mathematical Programming
MRIO: Multi-Region Input-Output
NGO: Non-Government Organization
NIS: Negative Ideal Solution
NRGA: Non-dominated Ranked Genetic Algorithm
NSERC: Natural Science and Engineering Research Council
NSGAII: Non-dominated Sorting Genetic Algorithm II
OEM: Original Equipment Manufacturer
PIS: Positive Ideal Solution
QFD: Quality Function Developed
RDT: Resource Dependence Theory
RFID: Radio Frequency Identification Technology
SA: Simulated Annealing
SCM: Supply Chain Management
SCND: Supply Chain Network Design
SEM: Structural Equation Modeling
SMP: Sustainable Manufacturing Practice
SNSF: Swiss National Science Foundation
SPL: Sustainable Production Line
SS: Scatter Search
SSCM: Sustainable Supply Chain Management
SSHRC: Social Science and Humanities Research Council
SWOT: Strength, Weakness, Opportunity and Threat
TBL: Triple Bottom Line
TFN: Triangular Fuzzy Number
TOPSIS: Technique for Order of Preference by Similarity to Ideal Solution
TS: Tabu Search
TSP Model: Two Stage Programming Model
VIKOR: ViseKriterijuska Optimizacija I Komoromisno Resenje
VRP: Vehicle Routing Problems
WCED: World Commission on Environment and Development

1. Introduction

SSCM refers to implementing all sustainable goals via Triple Bottom Line which are economic, environmental and social dimensions. In parallel, SSCM define as management of information, capital, and materials through cooperation and collaboration of Supply chain partners, stakeholders, customers, and people (Seuring and Müller 2008). In two last decades the numbers of scholars and academic researchers made different conceptual and mathematical models for SSCM and used a several of tools for decision makings. Some papers evaluated sustainability in the wide range of supply chain referred by the area of research like development and developing countries and made some mathematical models, rules or new suggestions for developing countries (Sánchez-Flores, et al. 2020); (Ali, Yufeng and Glyn, Sustainable supply chain management in emerging economies: Trade-offs between environmental and cost performance 2016); (Köksal and Müller 2018); (Jia, et al. 2018). Because of rapid changing in environmental conditions and a number of alarming for warming world and environment protection, recently, the scholars and researchers take more attention on environment dimension of sustainability and green sustainable supply chain management (Kannan, Jabbour and Jabbour 2014); (Fang, Wang and Song 2020); (Rinib 2015); (Agi and Hazır 2020). Unfortunately, the social aspect in majority of papers underrepresented in comparison with economic and environmental factors (Martins and Pato 2019). In addition, Governments and new policies set some rules for carbon cap and emission carbon for factories, suppliers and
logistics companies (Zhang and Yixiang 2017). Although, there are some suggestions to governments to define subsidies for environmental friendly products in order to controlling pollution and carbon cap (Li, Chen and Hou 2018).

Through literature review, we found that papers present different kind of literature review and state of art for SSCM such as: offering various tools and methods for SSCM performance measurement (Tundys and TomaszWi´sniewski, The Selected Method and Tools for Performance Measurement in the Green Supply Chain—Survey Analysis in Poland 2018); (Ahi and Searcy 2015); analysis evolution SSCM trends across industries and economics (Rajeev, et al. 2017); evaluation different opportunities and challenges for designing and implementing SSCM (Barbosa-Póvoa, Silva and Carvalho 2018); (A, Pati and Padhi 2019); Mathematical and measurement tools for organization performance (Ansari and Kant 2017), evaluated the concept and thematic scope in theoretical point of view and in relation to its practical implementation (Tundys, Sustainable Supply Chain Management – Past, Present and future 2020), the role of governments for renewable energy usage (Cucchiella and D’Adamo 2013), Using cleaner Production method for large energy intensive industries (G. and Nagesha 2018), Applying and implementing triple bottom line in SSCM (Rashidi, et al. 2020); (Matos, et al. 2018) and the ways for quantitative social impacts (Messmann, et al. 2020).

In this paper, we evaluate different mathematical models which are used in SSCM in order to decision support system, design and modeling, implementing, development, Environmental protection and social responsibility. First we define the sources of recently researches from 2008 to now, then we find proper papers and analysis the current researches which are related to our subjects. After that, we define a target for achievement to an ideal SSCM structure with use of 2021 Sustainable Development Goals (United Nation 2015). Finally, we compare the current situation and Target, the results of comparison are shown the gaps.

2. Materials and Methods

In this paper, we use different researches, papers, protocoles and manifests which are related to Sustainability, SSCM and future plan of the world. As it shows in Figure (1), we use a systematically paper review and gap analysis in our research.

First: choosing valid data bases: Scopus, Science Direct, Emerald, Springer, Taylor & Francis, JSTORE, Wiley Online library, SAGE Publication.

Second: searching and gathering papers through the key words which are “SSCM” + “Mathematic”, “Sustainability Supply Chain Management” + “math”, “SSCM” + “Model”, “Sustainability” + “Supply chain” + “math”. In this step, the number of papers with mentioned key words are 2806. Also, Only papers written in English considered and, The range of data was the year from 2008 to May 2021.

Figure 1. The flow chart of the Research Methodology

First: choosing valid data bases: Scopus, Science Direct, Emerald, Springer, Taylor & Francis, JSTORE, Wiley Online library, SAGE Publication.

Second: searching and gathering papers through the key words which are “SSCM” + “Mathematic”, “Sustainability Supply Chain Management” + “math”, “SSCM” + “Model”, “Sustainability” + “Supply chain” + “math”. In this step, the number of papers with mentioned key words are 2806. Also, Only papers written in English considered and, The range of data was the year from 2008 to May 2021.
Third: Screening papers in three steps;

- Step one of screening is to evaluate the valid journals with criteria like peer review, ranking and index; After finishing first screening, the number of papers are 791. These papers are published in peer review, high index journals.
- Step two of screening is to evaluate the topic and abstract of journals; After finishing the second screening, the number of papers are 382. These papers are selected based on the relevant topic and abstract to the objectives of paper and research questions.
- Step Three of Screening is to use the systematically content analysis for selecting relevant papers. After final selection and content analysis, the number of papers are 245 which are published in international, peer review and high index journals, have relevant topic, abstract, keyword and content with the research objectives and questions.

Forth: defining the target for SSCM according to 2021 Sustainabile Development Goals (United Nation 2015). Based on Sustainable Development Goals, Goals numbers 9 and 12 is related to our topic. For every module of SSCM and partners we define the Target for research.

Fifth: with using gap analysis, find the gaps in several categories like Industries, module of SCM and responsibilities of different partners.

3. Review and Results

For review and analysis selected papers, we categorized selected papers in four categories. Every categories, first the existing situation of papers and researches are presented, then evaluate and analysis the gaps.

- Category one: overall information like as Year of published, Journals, Country of first author, Industrial, Dimension of SSCM;
- Category two: SSCM modules that the papers depth in;
- Category Three: Mathematical models and methods which are used for SSCM;
- Category Four: The roles of parties in SSCM modeling.

After reviewing and analysis the papers and categorizing in four main categories, the existing situation of recently researches is recognized. These categories present the current situation of researches of mathematical models which are used for SSCM. For gap analysis and propose new idea, the depth of information in this step is very important. Then, we analysis the papers in different point of view.

3.1. Category One: Overall Information

This Category analysis the overall information of the papers like year, journals, country, Industrial and dimension of SSCM. The figure 2 shows the distribution of papers between 2008-End of March 2021 and presents the numbers of papers which are published in every year.

![Figure 2. Distribution of published papers per year from 2018 to the end of March 2021](image)

The curve (Figure 2) presents that the quantity of papers increases every year from 2012 to 2017. As clearly seen in figure 2, the quantity of papers in 2017, 2018 and 2019 are near together and after that in 2020, the quantity is increased. Overall, it means that there are enough interests for researchers to do research on applications of
mathematical methods and using different tools and methods for modeling and solving problems in the field of sustainability and SCM.

The Figure 3 shows the distribution of journals which published more than two relative papers.

As clearly seen in the figure 3, the cleaner production Journal has the most quantity of papers in the territory of our research by 85 papers. After that the sustainability Journal is the second journal which published relative papers by 27. The 51 journals published only one paper related to the research scope.

The Figure 4 shows the numbers of published papers per country of author. The papers which have several authors from several countries, only the country of first authors are considered.

The most papers are published by authors from china by 38 papers. As it is clear, china pollution is very serious and because of that there is a big effort from Chinese government side for finding solutions. After china, India, Iran and Germany are 28, 23, and 18 papers respectively.
Figure 5 presents the mathematical models which are implemented in industries as case study. This statistics help us to find gaps in the industries that there is no research for them. Although, we can use the existing research for development.

![Figure 5. The number of papers for each Industry](image)

The researches had more attention on food industry and maximum papers and case studies are related to Food industry by 24 papers. Then the papers in the field of Textile, Services, Logistics, Electrical, Chemical and oil and Gas industries are 16, 15, 15, 11, 9, and 9 respectively. The different is refer to the other papers which are concentrated in several industry or case study or services.

Figure 6 presents the quantity of each papers which are distinguished in every dimensions of SSCM: Social, Economic and environmental.

![Figure 6. The quantity of papers per SSCM Dimensions](image)

Figure 6 illustrate the number of papers for dimensions of sustainability which are social, environmental and economic in SCM modeling. The most striking feature of the picture seems to the environmental dimension is more interesting in the researches. However, the social dimension is needed to be research more.

3.2 Category Two: Modules of SSC and Papers for Every Category

First of all, the modules of SSCM are defined. For defining SSCM Modules, we defined level one of process of SSCM in two kind of process: Main Process and Supporting process. The main process are the process to involve
for producing the products and delivery to customers and recycling the products for protecting environment. The supporting process are the process which are needed for the best services to customers and social responsibility or needed for better performance in main process. The main and supporting process devided to modules. The figure 7 shows the modules of SSCM modeling that it presents level two of process.

![Figure 7. The modules of SSCM](image)

As it can clearly seen in figure 7, The modules of main process are SD, SM, SS, SP, SPL, SPK, SL, and SR. And modules for supporting process are FS, SMA, and ST. For supporting process and modules, we define sub-modules as show in Figure 7.

For every modules, we have some papers which are depth in. Figure 8 shows the number of papers for every modules of SSCM. The big amount of papers are focused on model FS which are related to Structure, Frame work, Management, Standards, Rules and conditions, planning and organization for SSCM modeling.

![Figure 8. The number of papers for every modules](image)
The figure 8 indicates the number of papers which are depth in every modules of SSCM. The most notable feature of the graph concerns the less research on some important modules like SM, SPK and SP. These pile represents the gap of researches clearly.

3.3 Category Three: Mathematical Models and methods Which Are Used for SSCM

![Figure 9. The chart of mathematical models for SSCM](image)

The figure 9 represents the mathematical tools and models which are used for making SSCM modeling. As a general overview, it can be said that the Fuzzy theory is a useful mathematical method for making models and solving problems in SSCM models. Fuzzy theory is used as a single method for solving problem or combine with other mathematical models for making SSCM models. After that, the multi objective programming is the second mathematical model which is used for SSCM. One of the main reason of used multi objective programming is thriple bottom line in SSCM and need to offer the optimum solutions for supporting decision making.

Table 1 shows the authors who have more researchs and papers for using mathematical models and methods in SSCM modeling and problem solving. As it can clearly seen, they also used fuzzy theory with combination of other methods, Multi-Objective Programming as a mathematical methods and models in their papers more than other methods. Although, Supplier Selection module and Framework of Sustainable SCM are more interesting for authors and they focused on these two modules more than others.

Table 1 shows the authors who have more than one research in the fireld of application mathematical models for SSCM modeling, solving problems and decision suport system. Prof. Kannan Govindan, Prof. Devika Kannan, and Prof. Stefan Seuring have the more researches in this field.

Rank	Authors	As First Author	As Co-Author	Models which are used	Module	Ref.
1	Huiping Ding	4	-	Multi-Objective Programming	SS, SPL, FS	(Huiping, Wang and Zheng 2018); (Huiping, Liu and Zheng, Assessing the economic performance of an environmental sustainable supply chain in reducing environmental externalities 2016); (Ding, QilanZhao, et al. n.d.);
As it is clearly seen in Table 1, the modules that the authors interested in are SS and FS, which are supplier selection and Framework Structure for SSCM.

Table 2 presents the mathematical models, methods and tools which are used for SSCM, the number of papers and references of them.
Table 2. The papers for every mathematical models which are used in SSCM modeling

Raw	Mathematical methods and models	Numbers of papers	Ref.
1	AHP	17	(Awasthi, Govindan and Gold 2018); (Azimifard, Moosavirad and Ariaifar 2018); (Gulyeyva and Lis 2020); (Mathivathanan, Govindan and Haq 2017); (Ernesto, et al. 2020); (Hamid, et al. 2018); (Rashidi, et al. 2020); (Govindan, Madan and Devika, Supplier selection based on corporate social responsibility practices 2018); (MahathirMohammad, et al. 2019); (Renato, et al. 2020); (Sunil, et al. 2017); (Tülin and Zeynep 2016); (Yan, et al. 2019); (YogeshKumar, et al. 2018); (Yun and Yang 2020); (Zhou, et al. 2019)
2	Analytic Model	1	(Eleonora, Maria and Marta 2017)
3	ANOVA	1	(Tamara, et al. 2018)
4	ANP	7	(Abhijeet, et al. 2020); (Erfan, et al. 2020); (K. Devika 2018); (Govindan, Madan and Devika, Supplier selection based on corporate social responsibility practices 2018); (Mohammad, Anjali and + 2016); (Patchara and Chunjiao 2019); (Xiaole, et al. 2021)
5	Artificial Intelligent	2	(Frank and Bramwel 2020); (Jose-Antonio, Rocio and Jorge 2016)
6	Big Data Assessment	3	(Akash, Arun and Simar Preet 2020); (Malin, et al. 2017); (Taliva, Reza and Tahmoures 2017)
7	Bi-level Programming	3	(Che-Fu 2015); (Mazyar and Jose e-Fernando 2019); (Patchara and Chunjiao 2019)
8	BMW	4	(Gunjan, et al. 2020); (Amiri, et al. 2020); (WanNurul, et al. 2017); (Saima, et al. 2020)
9	BOP	2	(JuliaC., Eugenia and Darima 2017); (Stefan, Carolin and Raja 2019)
10	Cluster Analysis	3	(Akash, Arun and Simar Preet 2020); (Roya and Markus 2017); (UalisonRebulade, et al. 2018)
11	CSF	3	(K. Devika 2018); (Jörg H., Joerg and Joseph 2018); (Rakesh, Balkrishna and Bhaskar 2017)
12	DEA	16	(Hatami-Marbini, Ali and Sebastián 2017); (Akash, Arun and Simar Preet 2020); (Elaehe and Reza 2018); (Wang, et al. 2020); (Hadi, Saeed and Reza 2017); (Izadikhah, Reza and Kourosh, How to assess sustainability of suppliers in volume discount context? A new data envelopment analysis approach 2017); (Izadikhah, et al. 2020); (Mohammad, Reza and Reza 2020); (S.Motevali, S.A. and Ghasemi 2016); (Saeed, et al. 2017); (Taliva, Reza and Tahmoures 2017); (Xiang, Jie and Qingyuan 2016); (Xiaoyang, et al. 2016); (Yadong, et al. 2020); (Yan, et al. 2019); (Yun and Wang 2020)
13	Delphi	7	(K. Devika 2018); (Hendrik and David 2017); (Govindan, Madan and Devika, Supplier selection based on corporate social responsibility practices 2018); (Ming-Lang, et al. 2020); (Nejah 2021); (Omid, Ali and Saber 2019); (Tat-Dat, et al. 2021)
14	DEMATEL	11	(Anil, et al. 2020); (Chong, Yi, et al. 2020); (Erfan, et al. 2020); (Fuli, et al. 2018); (Fang, Wang and Song 2020); (Jing, Marco and Miguel 2016); (Govindan, Madan and Devika, Supplier selection based on corporate social responsibility practices 2018); (Mahtab, Sara and Joseph 2021); (Morteza, et al. 2017); (Patchara and Chunqiao 2019); (Zhigang, et al. 2016);
15	ELECTRE	2	(Gunjan, et al. 2020); (Huiyun, et al. 2018)
16	EOQ	1	(Noraaida, et al. 2018)
17	EPQ	1	(Noraaida, et al. 2018)
18	ERM	1	(Majid, et al. 2015)
19	FMEA	1	(Fatemeh and Donya 2018)
20	Fuzzy Theory	41	(Hatami-Marbini, Ali and Sebastián 2017); (Adel, Per, et al. 2017); (Alireza, et al. 2017); (Anil, et al. 2020); (Awasthi, Govindan and Gold 2018); (Aydin, Ehsan and Rene 2018); (Adenso-Díaz, S.Lozano and PMoreno 2016); (Chong, Chuanlin, et al. 2020); (K. Devika 2018); (Kannan, Jabbour and Jabbour 2014); (Devika, Alireza and Nourbaksh 2014); (Eleonora, Maria and Marta 2017); (Erfan, et al. 2020); (Fuli, et al. 2018); (Harpreet, et al. 2020); (John and Sheila 2020); (Rashidi, et al. 2020); (Govindan, Madan and Devika, Supplier selection based on corporate social responsibility practices 2018); (Amiri, et al. 2020); (Majid, et al. 2015); (Md Maruf, et al. 2020); (Ming-Lang, et al. 2020); (Izadikhah, Reza and Kourosh, How to assess sustainability of suppliers in volume discount context? A new data envelopment analysis approach 2017); (Izadikhah, et al. 2020); (Nejah 2021); (Ozden, et al. 2017); (Patchara and Chunqiao 2019); (Pezhman, Ahmad and Cathal 2017); (Phommaly, et al. 2019); (Pratibha, et al. 2020); (Ravi, Divya and Sanjay 2018); (Sumit and Neeraj 2020); (Tat-Dat, et al. 2021); (Xiaoyang, et al. 2016); (Xin, et al. 2019); (Yan, et al. 2019); (Yun and Wang 2020)
No.	Methodology	References	
-----	--	---	
21	Game Theory	(Azadeh, et al. 2017); (Chong, Yi, et al. 2020); (Jose-Antonio, Rocio, et al. 2016); (Kannan, A. Jafarian, et al. 2014)	
22	Genetic Algorithm	(Asad, et al. 2019); (Bisheng, Qing, and Guiping 2017); (Shekarian 2020); (Wenge and Yuanjie 2017)	
23	Gioia Methodology	(B.Gardas, D.Raut, and Narkhede 2019); (Abbas, et al. 2020); (Kostera, Vos, and Schroeder 2017)	
24	Goal Programming	(Devika, Alireza, and Nourbakhsh 2019); (Goodarzian, Hosseini-Nasab, and M.B.Fakhrzad 2020); (Hatami-Marbini, Ali, and Saeed 2021); (Fang, Wang, and Song 2020); (Hashmi, et al. 2020); (Vergara-Valderrama, et al. 2020)	
25	Graph Theory	(Kostera, Vos, and Schroeder 2017); (Vafaeenezhada, Tavakkoli, and Shojaeian 2019)	
26	Hessain Matrix	(Azadeh, et al. 2017); (Chong, Yi, et al. 2020); (Jose-Antonio, Rocio, et al. 2016); (Kannan, A. Jafarian, et al. 2014)	
27	Hybrid Method	(Kostera, Vos, and Schroeder 2017); (Vafaeenezhada, Tavakkoli, and Shojaeian 2019)	
28	Hypotheses	(Asad, et al. 2019); (Bisheng, Qing, and Guiping 2017); (Shekarian 2020); (Wenge and Yuanjie 2017)	
29	HFS	(Abbas, et al. 2020); (Kostera, Vos, and Schroeder 2017); (Muchaendepia, et al. 2019); (Kostera, Vos, and Schroeder 2017)	
30	Integer Linear Programming	(Alok, Indranil, and Samir 2018); (Bisheng, Qing, and Guiping 2017); (Shekarian 2020); (Wenge and Yuanjie 2017)	
31	ISM	(Alok, Indranil, and Samir 2018); (Bisheng, Qing, and Guiping 2017); (Shekarian 2020); (Wenge and Yuanjie 2017)	
32	KPI	(Kostera, Vos, and Schroeder 2017); (Vafaeenezhada, Tavakkoli, and Shojaeian 2019)	
33	Likert Scale	(Kostera, Vos, and Schroeder 2017); (Vafaeenezhada, Tavakkoli, and Shojaeian 2019)	
34	MCDM	(Ali, Yufeng, and Glyn 2018); (MuhammadShahid, et al. 2020); (Hamia, RazaliMuhamad, and Ebrahimpour 2015); (Fang, Wang, and Song 2020); (Huiping, Liu, and Zheng 2017)	
35	MINLP	(Alok, Indranil, and Samir 2018); (Bisheng, Qing, and Guiping 2017); (Shekarian 2020); (Wenge and Yuanjie 2017)	
36	MLH	(Asad, et al. 2019); (Bisheng, Qing, and Guiping 2017); (Shekarian 2020); (Wenge and Yuanjie 2017)	
37	MRIO	(Ali, Yufeng, and Glyn 2018); (MuhammadShahid, et al. 2020); (Hamia, RazaliMuhamad, and Ebrahimpour 2015); (Fang, Wang, and Song 2020); (Huiping, Liu, and Zheng 2017)	
38	Multi Objective Program	(Ali, Yufeng, and Glyn 2018); (MuhammadShahid, et al. 2020); (Hamia, RazaliMuhamad, and Ebrahimpour 2015); (Fang, Wang, and Song 2020); (Huiping, Liu, and Zheng 2017)	
39	PLS-SEM	(Ali, Yufeng, and Glyn 2018); (MuhammadShahid, et al. 2020); (Hamia, RazaliMuhamad, and Ebrahimpour 2015); (Fang, Wang, and Song 2020); (Huiping, Liu, and Zheng 2017)	
40	RDT	(Ali, Yufeng, and Glyn 2018); (MuhammadShahid, et al. 2020); (Hamia, RazaliMuhamad, and Ebrahimpour 2015); (Fang, Wang, and Song 2020); (Huiping, Liu, and Zheng 2017)	
41	Rough Set Theory	(Ali, Yufeng, and Glyn 2018); (MuhammadShahid, et al. 2020); (Hamia, RazaliMuhamad, and Ebrahimpour 2015); (Fang, Wang, and Song 2020); (Huiping, Liu, and Zheng 2017)	
42	Sampling	(Ali, Yufeng, and Glyn 2018); (MuhammadShahid, et al. 2020); (Hamia, RazaliMuhamad, and Ebrahimpour 2015); (Fang, Wang, and Song 2020); (Huiping, Liu, and Zheng 2017)	
43	SEM	(Ali, Yufeng, and Glyn 2018); (MuhammadShahid, et al. 2020); (Hamia, RazaliMuhamad, and Ebrahimpour 2015); (Fang, Wang, and Song 2020); (Huiping, Liu, and Zheng 2017)	
The most notable feather of the table 2 concerns some papers and authors used several mathematical models and methods together for making a model or solving problems in SSCM. For example, majority of papers used the fuzzy logic method for normalizing variables, or balancing parameters and enablers in the mathematical models as primary method, then used another model such as Goal programming for finding the optimum solution (Zainab, Syed and Shakeel 2019); (Renato, et al. 2020); (Erfan, et al. 2020) or Multi Object Program (Hatami-Marbini, Ali and Sebastián 2017); (Azadeh, et al. 2017); (Xiaoyang, et al. 2016) for best solution. Also, AHP method is used for weighting variables, priorities as an auxiliary methods for defining variables and normalizing them for using in the mathematical models, beside to AHP, authors offer another mathematical model for completed SSCM model like AHP-VIKOR (Awasthi, Govindan and Gold 2018); AHP-MCDM and Gray Theory (Mathivathanan, Govindan and Haq 2017); AHP-Multi Objective program (Hamid, et al. 2018); and etc.

3.4 Category four: The Roles of Parties in SSCM Modeling

For SSCM modeling, there are different parties which are involving and have roles who are Stakeholders, Governments, People, Social, Environment, Factories, Logistics Companies and resources. Figure 10 represents the different parties and the relative effects.

![Figure 10. The parties which are involved for SSCM modeling](image)

One of the main involving partners is Government who is responsible for Control environmental and social impacts. In 2015, The representatives of 193 countries of the world held a meeting and set sustainable development goals by the year of 2030 (United Nation 2015). The limitation of carbon cap and carbon credit is a constraint for controlling carbon caps and protecting environment. Every country can define their own limitations for factories, companies, transportation and so on, and control the pollutions. The different researches are investigate how to control carbon cap through different partners and rules which are set by governments (Esfahbodi, et al. 2017); (Huiyun, et al. 2018); (Köksal and Müller 2018). On the other hand, customer’s demands are an important cause for producing the environmental unfriendly products (EFP) (Kannan, A.Jafarian, et al. 2014); (Huiyun, et al. 2018).
4. Conculation and Suggestions

Although gaining increased attention on SSCM, the using mathematical methods and models for solving problems and designning new models relative to SSCM frames and modules are increased. In this paper, we conducted a systematic litrature review to identify the current situation of using mathematical models and methods for SSCM and finding the gaps. The Gaps between the Current situation which are discussed in section three, and the ideal are divided in modules of SSCM, Partners who are involved in SSCM, Countries and area for SSCM and industries.

4.1 SSCM Modules

We divided the SSCM in eleven modules which are shown in Figure 7, then defined these modules with using different papers conclusions and contents and finally categorised them in eleven core of research in SSCM and named as modules of SSCM. The resulte of analysis papers and research contents showed that there is no balance for research in different modules. Some modules like SS (Supplier Selection) or FS (Frame work Structure) are evaluated in different papers and there are different mathematical models and methods for modeling these modules. However some modules like SR (Sustainable Recycling) and SPK (Sustainable Packaging) are needed more research. The new research is needed for evaluation the weight of every modules according to environmental impacts and social attention and how to optimum the current situation and gaining goals of sustainability in different modules.

4.2 Involved Partners in SSCM Mathematical Models

After analysis the paper contents, we offer a model of different partners who have an important role in SSCM (Figure 10). With content analysis of papers, we found that the changing approach for customer’s demand is needed. We suggest that the role of demand in designning products and EFP should be investigated. In the researches, the role of stakeholders and governments are more highlight. However other roles should be considered and need to add in the roles of SSCM models.

4.3 Countries or Area of Research

As it is clearly seen in the Figure 4, the research in some countries are a few. According to united nation definition for sustainability (United Nation 2015), different countries have different goals for sustainability. There is a gap between modeling SSCM in different countries and the defined goals. Some countries need more research which are clear in figure 4.

4.4 Industries as Case Study or Implementing Models

In the figure 5 ahows the industries which are investigated as case study or implementing SSCM models in them. As it is clearly seen, the heavy industries which have more weight on the sustainability (United Nation 2015) like casting, steel, and so on, need more research.

After analysis the gap between current situations and goals of sustainability, we found to need more research on different modules of SSCM, different industries, different countries no matter developed or undeveloped and differend involved partners in SSCM. The analysis presented in this paper enabled the authors to define SSCM models in different modules and categorised in different mathematical models. These categorizes and gap analysis can be helped future researches and designning new models.

Acknowledgment

This research is funded by National Natural Science Foundation of China under Grand Number: 71832001. Also, thanks Department of Logistics and Electronic Commerce, Glorious Sun School of Business and Management, Shanghai Donghua University for supporting us in this project.

References

A, R., Rupesh K. P., & Sidhartha, S. P. (2019). Sustainable supply chain management in the chemical industry: Evolution, opportunities, and challenges. Resources, Conservation & Recycling, 149, 275-291. https://doi.org/10.1016/j.resconrec.2019.05.020

Abbas, M., Kannan, D. E., Hooker, R., Ozkul, S., Alrasheedi, M., & Babaee, T. E. (2020). Evaluation of green and sustainable supply chain managemenhtusing structural equation modelling: A systematic review of the state of the art literature and recommendations for future research. Journal of Cleaner Production, 249(3). https://doi.org/10.1016/j.jclepro.2019.119383
Abhijeeet, D. D. R., Rakesh, S. Y. V., Narkhede, B. B., Gardas, B., & Gotmare, S. (2020). Evaluation of critical constructs for measurement of sustainable supply chain practices in lean-agile. *Business Strategy and the Environment*, 29(3). https://doi.org/10.1002/bse.2455

Adel, H. M., Ebrahimnejad, A., & Lozano, S. (2017). Fuzzy efficiency measures in data envelopment analysis using lexicographic multi-objective approach. *Computers & Industrial Engineering*, 105, 362-376. https://doi.org/10.1016/j.cie.2017.01.009

Adel, H. M., J. Agrell, P., Tavana, M., & Khoshnevis, P. (2017). A flexible cross-efficiency fuzzy data envelopment analysis model for sustainable sourcing. *Journal of Cleaner Production*, 142, 2761-2779. https://doi.org/10.1016/j.jclepro.2016.10.192

Adenso-Díaz, B., Lozano, S., & Moreno, P. (2016). How the environmental impact affects the design of logistics networks based on cost minimization. *Transportation Research, D*(48), 214-224. https://doi.org/10.1016/j.trd.2016.08.022

Agnan, Y., Cemil, K., Mehmet, F. A., & Atif, A. (2016). The relationships between corporate social responsibility, environmental supplier development, and firm performance. *Journal of Cleaner Production*, 112(Part 3), 1872-1881. https://doi.org/10.1016/j.jclepro.2014.08.090

Agi, Maher A. N., Sohrab, F. O., & Öncü, H. (2020). Game theory-based models in green supply chain management: a review of the literature. *International Journal of Production Research*. https://doi.org/10.1080/09513541.2020.1770893

Ahi, P., & Cory, S. (2015). An analysis of metrics used to measure performance in green and sustainable supply chains. *Journal of Cleaner Production*, 86, 360-377. https://doi.org/10.1016/j.jclepro.2014.08.005

Akash, T., Solanki, A., & Singh, S. P. (2020). Integrated framework work for identifying sustainable manufacturing layouts based on big data, machine learning, meta-heuristic and data envelopment analysis. *Sustainable Cities and Society, 62*(11). https://doi.org/10.1016/j.scs.2020.102383

Ali, A., Shafiee, F., Yazdanparast, R., Heydari, J., & Mohammadifathabadi, A. (2017). Evolutionary multi-objective optimization of environmental indicators of integrated crude oil supply chain under uncertainty. *Journal of Cleaner Production*, 152, 295-311. https://doi.org/10.1016/j.jclepro.2017.03.105

Ali, E., Zhang, Y. F., & Watson, G. (2016). Sustainable supply chain management in emerging economies: Trade-offs between environmental and cost performance. *Int. J. Production Economics, 181*(Part B), 350-366. https://doi.org/10.1016/j.ijpe.2016.02.013

Ali, E., Zhang, Y. F., Watson, G., & Zhang, T. (2017). Governance pressures and performance outcomes of sustainable supply chain management: An empirical analysis of UK manufacturing industry. *Journal of Cleaner Production*, 155, 66-78. https://doi.org/10.1016/j.jclepro.2016.07.098

Alireza, F., UdonyeOlugu, E., NurmayaMusa, S., YewWong, K., & Noori, S. (2017). A decision support model for sustainable supplier selection in sustainable supply chain management. *Computers & Industrial Engineering, 105*, 391-410. https://doi.org/10.1016/j.cie.2017.01.005

Alok, R., Biswas, I., & K.Srivastava, S. (2018). Designing supply contracts for the sustainable supply chain using game theory. *Journal of Cleaner Production*, 185, 275-284. https://doi.org/10.1016/j.jclepro.2018.03.046

Amiri, M., M. Hashemi-Tabatabaei, M. G., M. Keshavarz-Ghorabaee, E. K. Z., & Banaitis, A. (2020). A new fuzzy BWM approach for evaluating and selecting a sustainable supplier in supply chain management. *International Journal of Sustainable Development & World Ecology*. https://doi.org/10.1080/13504509.2020.1793424

Anil, K., Moktadir, M. A., RehmanKhan, S. A., Garza-Reyes, J. A., Tyagi, M., & Kazançoğlu, Y. (2020). Behavioral factors on the adoption of sustainable supply chain practices. *Resources, Conservation and Recycling, 158*. https://doi.org/10.1016/j.resconrec.2020.104818

Anvari, Z. N., & Ravi, K. (2017). A state-of-art literature review reflecting 15 years of focus on sustainable supply chain management. *Journal of Cleaner Production*, 142, 2542-2543. https://doi.org/10.1016/j.jclepro.2016.11.023

Arampantzi, C., & Ioannis, M. (2017). A new model for designing sustainable supply chain networks and its application to a global manufacturer. *Journal of Cleaner Production*, 156, 276-292. https://doi.org/10.1016/j.jclepro.2017.03.164
Asad, M., Rehman, N., Muhammad, A., Sarfraz, H., Azhar, A., Amar, R., … Mumtaz, A. (2019). Critical Issues at the Upstream Level in Sustainable Supply Chain Management of Agri-Food Industries: Evidence from Pakistan’s Citrus Industry. *Sustainability, 11*(1326). https://doi.org/10.3390/su11051326

Awasthi, A., Kannan, G., & Stefan, G. (2018). Multi-tier sustainable global supplier selection using a fuzzy AHP-VIKOR based approach. *International Journal of Production Economics, 195*, 106-117. https://doi.org/10.1016/j.ijpe.2017.10.013

Aydin, M. T., Pourjavad, E., & V. Mayorga, R. (2018). An integrated fuzzy MCDM approach to improve sustainable consumption and production trends in supply chain. *Sustainable Production and Consumption, 16*, 99-109. https://doi.org/10.1016/j.spcc.2018.05.008

Azimifar, A., Seyed, H. M., & Shahram, A. (2018). Selecting sustainable supplier countries for Iran's steel industry at three levels by using AHP and TOPSIS methods. *Resources Policy, 57*, 30-44. https://doi.org/10.1016/j.resourpol.2018.01.002

B. Gardas, B., Rakesh, D. R., & Balkrishna, N. (2019). Determinants of sustainable supply chain management: A case study from the oil and gas supply chain. *Sustainable Production and Consumption, 17*(2019), 241-253. https://doi.org/10.1016/j.spc.2018.11.005

Barbosa-Póvoa, A. P., Cátia, da S., & Ana, C. (2018). Opportunities and challenges in sustainable supply chain: An operations research perspective. *European Journal of Operational Research, 268*, 399-431. https://doi.org/10.1016/j.ejor.2017.10.036

BatistaSchramm, V., Luciana, P., Barros, C., & Fernando, S. (2020). Approaches for supporting sustainable supplier selection - A literature review. *Journal of Cleaner Production, 273*(10). https://doi.org/10.1016/j.jclepro.2020.123089

Bhanot, N. P., Venkateswarla, R., & Deshmukh, S. G. (2017). An integrated approach for analysing the enablers and barriers of sustainable manufacturing. *Journal of Cleaner Production, 142*, 4412-4439. https://doi.org/10.1016/j.jclepro.2016.11.123

Bisheng, D., Liu Q., & Li, G. P. (2017). Coordinating Leader-Follower Supply Chain with Sustainable Green Technology Innovation on Their Fairness Concerns. *Int. J. Environ. Res. Public Health, 14*(1357). https://doi.org/10.3390/ijerph14111357

Chaabane, A., Amar, R., & Marc, P. (2009). Designing and Evaluating Sustainable Supply Chains: A Carbon Market Oriented Approach. *Proceedings of the 13th IFAC Symposium on Information Control Problems in Manufacturing*. Moscow. https://doi.org/10.3182/20090603-3-RU-2001.0363

Che-Fu, H. (2015). A bilevel programming model for corporate social responsibility collaboration in sustainable supply chain management. *Transportation Research, Part E73*, 84-95. https://doi.org/10.1016/j.tre.2014.11.006

Chong, W., Lin, C. L., Barnes, D., & Zhang, Y. (2020). Partner selection in sustainable supply chains: A fuzzy ensemble learning model. *Journal of Cleaner Production, 275*(12), 123-165. https://doi.org/10.1016/j.jclepro.2020.123165

Chong, W., Zhang, Y., Pun, H., & Lin, C. L. (2020). Construction of partner selection criteria in sustainable supplychains: A systematic optimization model. *Expert Systems with Applications, 158*(11). https://doi.org/10.1016/j.eswa.2020.113643

Cucchiella, F., & Idiano, D. A. (2013). Issue on supply chain of renewable energy. *Energy Conversion and Management, 76*, 774-780. https://doi.org/10.1016/j.enconman.2013.07.081

Dabrowska, P. H., & Katarzyna, G. (2020). Simulation Modeling of the Sustainable Supply Chain. *Sustainability, 12*(6007). https://doi.org/10.3390/su12156007

Daiane, M., Neutzling, L. A., Seuring, S., & Felipe, M. D. N. L. (2017). Linking sustainability-oriented innovation to supply chain relationship integration. *Journal of Cleaner Production, 1-11.*

Devika, K. (2018). Role of multiple stakeholders and the critical success factor theory for the sustainable supplier selection process. *International Journal of Production Economics, 195*, 391-418. https://doi.org/10.1016/j.ijpe.2017.02.020

Devika, K., Jafarian, A., & Nourbakhsh, V. (2014). Designing a sustainable closed-loop supply chain network based on triple bottom line approach: A comparison of metaheuristics hybridization techniques. *European Journal of Operational Research, 235*, 594-615. https://doi.org/10.1016/j.ejor.2013.12.032
Ding, H. P., Li, W., & Lucy, Z. (2018). Collaborative mechanism on profit allotment and public health for a sustainable supply chain. *European Journal of Operational Research, 267*(2), 478-495. https://doi.org/10.1016/j.ejor.2017.11.057

Ding, H. P., He, M. F., & Chao, D. (2014). Lifecycle approach to assessing environmental friendly product project with internalizing environmental externality. *Journal of Cleaner Production, 66*, 128-138. https://doi.org/10.1016/j.jclepro.2013.10.018

Ding, H. P., Zhao, Q. L., An, Z. R., & Ou Tang. (n.d.) Collaborative mechanism of a sustainable supply chain with environmental constraints and carbon caps. *Int. J. Production Economics*.

Dos Santos, P. H., Sandra, M. N., Daniele, O. S. A., Carlos, H. O., & Henrique, D. C. (2019). The analytic hierarchy process decision making for sustainable development: An overview of applications. *Journal of Cleaner Production, 212*, 119-138. https://doi.org/10.1016/j.jclepro.2018.11.270

Elahe, B., & Farzipoor, S. R. (2018). Developing a novel model of data envelopment analysis–discriminant analysis for predicting group membership of suppliers in sustainable supply chain. *Computers and Industrial Engineering, 89*(2018), 348-359. https://doi.org/10.1016/j.cie.2017.01.006

Eleonora, B., Carmen, G. M., & Rinaldi, M. (2017). A Fuzzy Logic-Based Tool for the Assessment of Corporate Sustainability: A Case Study in the Food Machinery Industry. *Sustainability*.

Eleonora, L., Tebaldi, B., Lazzari, I., & Casella, G. (2020). Economic and environmental sustainability dimensions of a fashion supply chain: A quantitative model. *Production Journal*.

Erfan, B. T., Mardani, A., Dashtian, Z., Soltani, M., & Weber, G. W. (2020). A novel hybrid method using fuzzy decision making and multi-objective programming for sustainable-reliable supplier selection in two-echelon supply chain design. *Journal of Cleaner Production, 250*(3). https://doi.org/10.1016/j.jclepro.2019.119517

Ernesto, M., Ramírez, F. J., Honrubia-Escribano, A., & T.Pham, D. (2020). An AHP-based multi-criteria model for sustainable supply chain development in the renewable energy sector. *Expert Systems with Applications, 150*. https://doi.org/10.1016/j.eswa.2020.113321

Fang, H., Wang, B. X., & Song, W. Y. (2020). Analyzing the interrelationships among barriers to green procurement in photovoltaic industry: An integrated method. *Journal of Cleaner Production, 249*, 119408. https://doi.org/10.1016/j.jclepro.2019.119408

Fatemeh, V., & Rahmani, D. (2018). Sustainability risk management in the supply chain of telecommunication companies: A case study. *Journal of Cleaner Production, 203*, 53-67. https://doi.org/10.1016/j.jclepro.2018.08.174

Flygansvær, B., Robert, D., & Arne, N. (2018). Exploring the pursuit of sustainability in reverse supply chains for electronics. *Journal of Cleaner Production, 189*, 472-484. https://doi.org/10.1016/j.jclepro.2018.04.014

Frank, E., & Omondi, B. (2020). Leveraging Digital Approaches for Transparency in Sustainable Supply Chains: A Conceptual Paper. *Sustainability, 12*(6129). https://doi.org/10.3390/su12156129

Fuli, Z., Wang, X., K.Lim, M., He, L. X., Li, Y. D. (2018). Sustainable recycling partner selection using fuzzy DEMATEL-AEWFVIKOR: A case study in small-and-medium enterprises (SMEs). *Journal of Cleaner Production, 196*, 489-504. https://doi.org/10.1016/j.jclepro.2018.05.247

G., Jangali, S., & Nagesha, N. (2018). Cleaner Production: A brief literature review. *Materials Today: Proceedings, 5*, 17944-17951. https://doi.org/10.1016/j.matpr.2018.06.124

Goodarzian, F., Hosseini-Nasab, H., & Fakhrzad, M. B. (2020). A Multi-objective Sustainable Medicine Supply Chain Network Design Using a Novel Hybrid Multi-objective Metaheuristic Algorithm. *International Journal of Engineering, Basics, 33*(10), 1986-1995. https://doi.org/10.5829/ije.2020.33.10a.17

Gopalakrishnan, N., Sengupta, T., KumarPati, R., Gupta, V., Gurumurthy, A., & Venkatesh, M. (2020). Assessment of systemic greenness: a case study of tyre manufacturing unit. *The Management of Operations, 31*, 11-12. https://doi.org/10.1080/09537287.2019.1695920

Guliyeva, A. E., & Marcin, L. (2020). Sustainability Management of Organic Food Organizations: A Case Study of Azerbaijan. *Sustainability, 12*. https://doi.org/10.3390/su12125057

41
Gunjan, Y., Luthra, S., Kumar, S., Sachin, J., Kumar, M., & P. Rai, D. (2020). A framework to overcome sustainable supply chain challenges through solution measures of industry 4.0 and circular economy: An automotive case. *Journal of Cleaner Production, 254*(5). https://doi.org/10.1016/j.jclepro.2020.120112

Hadi, S., Yousefi, S., & Farzipoor Saen, R. (2017). Future planning for benchmarking and ranking sustainable suppliers using goal programming and robust double frontiers DEA. *Transportation Research, Part D*, 50, 129-143. https://doi.org/10.1016/j.trd.2016.10.022

Hamia, N., Mohd, R. M., & Zuhriah, E. (2015). The Impact of Sustainable Manufacturing Practices and Innovation Performance on Economic Sustainability. *Procedia CIRP, 26*, 190-195. https://doi.org/10.1016/j.procir.2014.07.167

Hamid, A., Guo, Y. H., Choudhary, A., & Bloemhof, J. (2018). Sustainable agro-food supply chain design using two-stage hybrid multi-objective decision-making approach. *Computers and Operations Research, 89*, 369-384. https://doi.org/10.1016/j.cor.2016.10.012

Harpreet, K., Prakash Singh, S., Arturo Garza-Reyes, J., & Mishrad, N. (2020). Sustainable stochastic production and procurement problem for resilient supply chain. *Computers & Industrial Engineering, 139*. https://doi.org/10.1016/j.cie.2018.12.007

Hendrik, R., & Sundaram, D. (2017). Key themes and research opportunities in sustainable supply chain management – identification and evaluation. *Omega, 66*, 195-211. https://doi.org/10.1016/j.omega.2016.02.003

Hong, J. T., Zhang, Y. B., & Ding, M. Q. (2018). Sustainable supply chain management practices, supply chain dynamic capabilities, and enterprise performance. *Journal of Cleaner Production, 172*(1), 3508-3519. https://doi.org/10.1016/j.jclepro.2017.06.093

Huiyun, L., Jiang, S. J., Song, W. Y., & Ming, X. G. (2018). A framework to overcome sustainable supply chain challenges through solution measures of industry 4.0 and circular economy: An automotive case. *Sustainability, 10*.

Jörg H., Grimm, S. H. J., & Sarkis, J. (2018). Interrelationships amongst factors for sub-supplier corporate sustainability standards compliance: An exploratory field study. *Journal of Cleaner Production, 203*, 240-259. https://doi.org/10.1016/j.jclepro.2018.08.074

Jia, F., Zuluaga-Cardona, L., Bailey, A., & Rueda, X. (2018). Sustainable supply chain management in developing countries: An analysis of the literature. *Journal of Cleaner Production, 189*, 263-278. https://doi.org/10.1016/j.jclepro.2018.03.248

Jia, P., Ali, D., & K. Mathiya, Z. G. (2015). Analyzing the SSCM practices in mining and mineral industry by ISM approach. *Resources Policy, 46*, 76-85. https://doi.org/10.1016/j.resourpol.2014.04.004

Jing, S., Taisch, M., & Ortega-Mier, M. (2016). A grey-DEcision-MAKing Trial and Evaluation Laboratory (DEMATEL) analysis on the barriers between environmentally friendly products and consumers: practitioners' viewpoints on the European automobile industry. *Journal of Cleaner Production, 112*, 3185-3194. https://doi.org/10.1016/j.jclepro.2015.10.113

John, F. D. T., & Samsatli, S. (2020). Integrating fuzzy analytic hierarchy process into a multi-objective optimisation model for planning sustainable oil palm value chains. *Food and Bioproducts Processing, 19*, 48-74. https://doi.org/10.1016/j.fbp.2019.10.002

Jose-Antonio, D. M., Poveda-Bautista, R., & Alcaide-Marjal, J. (2016). Designing the appearance of environmentally sustainable products. *Journal of Cleaner Production, 135*, 784-793. https://doi.org/10.1016/j.jclepro.2016.06.173

Julia, C., Bendul, R. E., & Pivovarova, D. (2017). Sustainable supply chain models for base of the pyramid. *Journal of Cleaner Production, 162*, S107-S120. https://doi.org/10.1016/j.jclepro.2016.11.001

Shibin, K. T., Gunasekaran, A., & Dubey, R. (2017). Explaining sustainable supply chain performance using a total interpretive structural modeling approach. *Sustainable production and consumption, 12*, 104-118. https://doi.org/10.1016/j.spc.2017.06.003

Kannan, D., Ana, B. L. de S. J., & Charbel, J. C. J. (2014). Selecting green suppliers based on GSCM practices: Using fuzzy TOPSIS applied to a Brazilian electronics company. *European Journal of Operational Research, 233*(2), 432-447. https://doi.org/10.1016/j.ejor.2013.07.023
Kannan, G., A. Jafarian, R. K., & Kannan, D. (2014). Two-echelon multiple-vehicle location-routing problem with time windows for optimization of sustainable supply chain network of perishable food. *Int. J. Production Economics*, 152, 9-28. https://doi.org/10.1016/j.ijpe.2013.12.028

Kannan, G., Jafarian, A., & Nourbakhsh, V. (2019). Designing a sustainable supply chain network integrated with vehicle routing: A comparison of hybrid swarm intelligence metaheuristics. *Computers and Operations Research*, 110, 220-235. https://doi.org/10.1016/j.cor.2018.11.013

Kannan, G., Shankar, M., & Kannan, D. (2018). Supplier selection based on corporate social responsibility practices. *International Journal of Production Economics*, 200, 353-379. https://doi.org/10.1016/j.ijpe.2016.09.003

Kim, H., & Chang, W. L. (2018). The Effects of Customer Perception and Participation in Sustainable Supply Chain Management: A Smartphone Industry Study. *Sustainability*, 10(2271). https://doi.org/10.3390/su10072271

Köksal, D., Jochen, S., & Martin, M. (2018). Social Sustainability in Apparel Supply Chains—The Role of the Sourcing Intermediary in a Developing Country. *Sustainability*, 10. https://doi.org/10.3390/su10041039

Kostera, M., Bart, V., & Roger, S. (2017). Management innovation driving sustainable supply management Process studies in exemplar MNEs. *BRQ Business Research Quarterly*, 20, 240-257. https://doi.org/10.1016/j.brq.2017.06.002

Lee, T., & Hyunjeong, N. (2016). An Empirical Study on the Impact of Individual and Organizational Supply Chain Orientation on Supply Chain Management. *The Asian Journal of Shipping and Logistics*, 32(4), 249-255. https://doi.org/10.1016/j.ajsl.2016.12.009

Li, B., Chen, W. C., Xu, C. C., & Hou, P. W. (2018). Impacts of government subsidies for environmental-friendly products in a dual-channel supply chain. *Journal of Cleaner Production*, 171, 1558-1576. https://doi.org/10.1016/j.jclepro.2017.10.056

Li, J., Hong, F., & Song, W. Y. (2018). Sustainability evaluation via variable precision rough set approach: A photovoltaic module supplier case study. *Journal of Cleaner Production*, 192, 751-765. https://doi.org/10.1016/j.jclepro.2018.04.248

Lim, M. K., Ming-Lang, T., Kim, H. T., & Tat, D. B. (2017). Knowledge management in sustainable supply chain management: Improving performance through an interpretive structural modelling approach. *Journal of Cleaner Production*, 162, 806-816. https://doi.org/10.1016/j.jclepro.2017.06.056

Lu, Y. L., Zhao, C. Y., Xu, L. M., & Lei, S. (2018). Dual Institutional Pressures, Sustainable Supply Chain Practice and Performance Outcome. *Sustainability*, 10(3247). https://doi.org/10.3390/su10093247

Mahathir Mohammad, B., Ali, S. M., Kabir, G., & Paul, S. K. (2019). Supply chain sustainability assessment with Dempster-Shafer evidence theory: Implications in cleaner production. *Journal of Cleaner Production*, 237, https://doi.org/10.1016/j.jclepro.2019.117771

Mahtab, K., Saberi, S., & Sarkis, J. (2021). Blockchain technology and the sustainable supply chain: Theoretically exploring adoption barriers. *Int. J. Production Economics*, 231. https://doi.org/10.1016/j.ijpe.2020.107831

Majid, A., Jafarian, M., Farzipoor Saen, R., & Mirhedyatian, S. M. (2015). A new fuzzy DEA model for evaluation of efficiency and effectiveness of suppliers in sustainable supply chain management context. *Computers & Operations Research*, 54, 274-285. https://doi.org/10.1016/j.cor.2014.03.002

Malin, S., Cen, L., Zheng, Z. X., Fisher, R., Liang, X., Wang, Y. T., & Huisings, D. (2017). How would big data support societal development and environmental sustainability? Insights and practices. *Journal of Cleaner Production*, 142, 489-500. https://doi.org/10.1016/j.jclepro.2016.10.091

Mani, V., Angappa, G., & Catarina, D. (2018). Enhancing supply chain performance through supplier social sustainability: An emerging economy perspective. *International Journal of Production Economics*, 195, 259-272. https://doi.org/10.1016/j.ijpe.2017.10.025

Marcus, B., Govindan, K., Sarkis, J., & Seuring, S. (2014). Quantitative models for sustainable supply chain management: Developments and directions. *European Journal of Operational Research*, 233, 299-312. https://doi.org/10.1016/j.ejor.2013.09.032

Martins, C. L., & Pato, M. V. (2019). Supply chain sustainability: A tertiary literature review. *Journal of Cleaner Production*, 225, 995-1016. https://doi.org/10.1016/j.jclepro.2019.03.250
Mathivathanan, D., Kannan, G., & A. Noorul, H. (2017). Exploring the impact of dynamic capabilities on sustainable supply chain firm's performance using Grey-Analytical Hierarchy Process. *Journal of Cleaner Production, 147*, 637-653. https://doi.org/10.1016/j.jclepro.2017.01.018

Matos, L. M., Rosley, A., Dirceu, da S., Robert, E. C. O., Osvaldo, L. G. Q., Walter, L. F., & Luis, A. S. E. (2018). Implementation of cleaner production: A ten-year retrospective on benefits and difficulties found. *Journal of Cleaner Production, 187*, 409-420. https://doi.org/10.1016/j.jclepro.2018.03.181

Mazyar, K. C., & Camacho-Vallejo, J. F. (2019). A bi-level programming model for sustainable supply chain network design that considers incentives for using cleaner technologies. *Journal of Cleaner Production, 213*, 1035-1050. https://doi.org/10.1016/j.jclepro.2018.12.197

Md Maruf, H. C., Kumar Paul, S., Ameri Sianaki, O., & A. Quaddus, M. (2020). Dynamic sustainability requirements of stakeholders and the supply portfolio. *Journal of Cleaner Production, 255*. https://doi.org/10.1016/j.jclepro.2020.120148

Messmann, L., Victoria, Z., Andrea, T., & Axel, T. (2020). How to quantify social impacts in strategic supply chain optimization: State of the art. *Journal of Cleaner Production, 257*. https://doi.org/10.1016/j.jclepro.2020.120459

Ming-Lang, T., Thuy Tran, T. P., Kuo, J. W., R. Tan, R., & Dat Bui, T. (2020). Exploring sustainable seafood supply chain management based on linguistic preferences: collaboration in the supply chain and lean management drive economic benefits. *International Journal of Logistics Research and Applications*. https://doi.org/10.1080/13675567.2020.1800608

Mohammad, H., Awashtib, A., & Manoj, K. T. (2016). Interpretive structural modeling-analytic network process integrated framework for evaluating sustainable supply chain management alternatives. *Applied Mathematical Modelling, 40*, 3671-3687. https://doi.org/10.1016/j.apm.2015.09.018

Mohammad, I., Farzipoor, S. R., Ahmadi, K., & Shamsi, M. (2020). How to use fuzzy screening system and data envelopment analysis for clustering sustainable suppliers? A case study in Iran. *Journal of Enterprise Information Management*. https://doi.org/10.1108/JEIM-09-2019-0262

Mohammad, I., Farzipoor, S. R., & Ahmadi, K. (2017). How to assess sustainability of suppliers in volume discount context? A new data envelopment analysis approach. *Transportation Research, 51*(Part D), 102-121. https://doi.org/10.1016/j.trd.2016.11.030

Mohammad, N., FarzipoorSaen, R., & Kazemi, M. R. (2020). A data envelopment analysis approach by partial impacts between inputs and desirable-undesirable outputs for sustainable supplier selection problem. *Industrial Management & Data Systems*. https://doi.org/10.1108/IMDS-12-2019-0653

Morteza, Y., Chatterjee, P., Kazimieras, Z. E., & HashemkhaniZolfani, S. (2017). Integrated QFD-MCDM framework for green supplier selection. *Journal of Cleaner Production, 142*(Part 4), 3728-3740. https://doi.org/10.1016/j.jclepro.2016.10.095

Mota, B., Maria, I. G., Ana, C., & AnaPaula, B. P. (2015). Towards supply chain sustainability: economic, environmental and social design and planning. *Journal of Cleaner Production, 105*(15), 14-27. https://doi.org/10.1016/j.jclepro.2014.07.052

Muchaendepia, C. M., Kanyepe, J., & Mutingid, M. (2019). Challenges faced by the mining sector in implementing sustainable supply chain management in Zimbabwe. *Procedia Manufacturing, 33*(2019), 493-500. https://doi.org/10.1016/j.promfg.2019.04.061

MuhammadShahid, H., Rafay, W., Humayoon, K., Faria, W., Muhammad, J. H., & Shi, Y. Y. (2020). Process Innovation as a Moderator Linking Sustainable Supply Chain Management with Sustainable Performance in the Manufacturing Sector of Pakistan. *Sustainability, 12*(2303). https://doi.org/10.3390/su12062303

Nejah, B. (2021). Green supplier selection using fuzzy Delphi method for developing sustainable supply chain. *Decision Science Letters, 10*.

Noraida, A. D., Hishamuddin, H., Ramli, R., & MatNopiah, Z. (2018). An inventory model of supply chain disruption recovery with safety stock and carbon emission consideration. *Journal of Cleaner Production, 197*, 1011-1021. https://doi.org/10.1016/j.jclepro.2018.06.246

Oliveiraa, J. B., M Jinc, R. S., Limaa, J. E. K., & Montevechia, J. A. B. (2019). The role of simulation and optimization methods in supply chain risk management: Performance and review standpoints. *Simulation Modelling Practice and Theory, 92*, 17-44. https://doi.org/10.1016/j.simpat.2018.11.007
Omid, N., Kangarani-Farahani, A., & Molla-Alizadeh-Zavardehi, S. (2019). Evaluation of sustainable supply chain management performance: Dimensions and aspects. *Sustainable Development*, 28(1), 1-12. https://doi.org/10.1002/sd.1959

Ozden, T., MuratDuman, G., Kongar, E., & Surendra, M. G. (2017). Environmentally Concerned Logistics Operations in Fuzzy Environment: A Literature Survey. *Logistics, I*(4). https://doi.org/10.3390/logistics1010004

Patchara, P., & Tan, C. Q. (2019). A New Extension to a Multi-Criteria Decision-Making Model for Sustainable Supplier Selection under an Intuitionistic Fuzzy Environment. *Sustainability, 11*(4513). https://doi.org/10.3390/su111195413

Payman, A., Y. Jaber, M., & Searcy, C. (2016). A comprehensive multidimensional framework for assessing the performance of sustainable supply chains. *Applied Mathematical Modelling, 40*, 10153-10166. https://doi.org/10.1016/j.apm.2016.07.001

Pezhman, G., Dargi, A., & Heavey, C. (2017). Sustainable supplier performance scoring using audition check-list based fuzzy inference system: A case application in automotive spare part industry. *Computers & Industrial Engineering, 105*, 12-27. https://doi.org/10.1016/j.cie.2017.01.002

Phommaly, M., Shi, H., Lin, S. M., & Liu, H. C. (2019). An Extended Picture Fuzzy VIKOR Approach for Sustainable Supplier Management and Its Application in the Beef Industry. *Symmetry, 11*(468). https://doi.org/10.3390/sym11040468

Pishvaei, M. S., Razmi, J., & Torabi, S. A. (2014). An accelerated Benders decomposition algorithm for sustainable supply chain network design under uncertainty: A case study of medical needle and syringe supply chain. *Transportation Research, Logistics and Transportation Review, Part E*(67(7)), 14-38. https://doi.org/10.1016/j.trl.2014.04.001

Pratibha, R., RajMishra, A., Krishankumar, R., Mardani, A., Cavallaro, F. S., Ravichandran, K., & Balasubramanian, K. (2020). Hesitant Fuzzy SWARA-Complex Proportional Assessment Approach for Sustainable Supplier Selection (HF-SWARA-COPRAS). *Symmetry, 11*(52), 12. https://doi.org/10.3390/sym12051152

Rajeev, A., Rupesh, K. P., Sidhartha, S. P., & Kannan, G. (2017). Evolution of sustainability in supply chain management: A literature review. *Journal of Cleaner Production, 162*, 299-314. https://doi.org/10.1016/j.jclepro.2017.05.026

Rakesh, D. R., Narkhede, B., & B.Gardas, B. (2017). To identify the critical success factors of sustainable supply chain management practices in the context of oil and gas industries: ISM approach. *Renewable and Sustainable Energy Reviews, 68*, 33-47. https://doi.org/10.1016/j.rser.2016.09.067

Rashidi, K., Abdollah, N., Devika, K., & Kevin, C. (2020). Applying the triple bottom line in sustainable supplier selection: A meta-review of the state-of-the-art. *Journal of Cleaner Production, 269*. https://doi.org/10.1016/j.jclepro.2020.122001

Ravi, S., Choudharya, D., & Jharkhariab, S. (2018). An integrated risk assessment model: A case of sustainable freight transportation systems. *Transportation Research, Part D*(63), 662-676. https://doi.org/10.1016/j.trd.2018.07.003

Renato, C. V., O.Sant’Anna, A. M. P. S., Oliveira, E. K., & M.Freire, F. G. (2020). Integrated method combining analytical and mathematical models for the evaluation and optimization of sustainable supply chains: A Brazilian case study. *Computers & Industrial Engineering, 139*(1). https://doi.org/10.1016/j.cie.2019.01.044

Rinib, J. S., & Tri, A. (2015). A structural literature review on models and methods analysis of green supply chain management. *Procedia Manufacturing, 4*, 291-299. https://doi.org/10.1016/j.promfg.2015.11.043

Rohmer, S. U. K., J. C. Gerdessen, & G. D. H. Claassen. (2019). Sustainable supply chain design in the food system with dietary considerations: A multi-objective analysis. *European Journal of Operational Research, 273*(3), 1149-1164. https://doi.org/10.1016/j.ejor.2018.09.006

Rohmer, S. U. K., Gerdessen, J. C., & Claassen, G. D. H. (2018). Sustainable Supply Chain Design in the Food System with Dietary Considerations: A multi-objective Analysis. *Journal of Operational Research, 273*(3), 1149-1164. https://doi.org/10.1016/j.ejor.2018.09.006
Rosanna, C., & Aitken, J. (2020). The role of intermediaries in establishing a sustainable supply chain. *Journal of Purchasing and Supply Management, 26*(2). https://doi.org/10.1016/j.pursup.2019.04.001

Roya, M. A., & Beckmann, M. (2017). A configuration of sustainable sourcing and supply management strategies. *Journal of Purchasing & Supply Management, 23*, 137-151. https://doi.org/10.1016/j.pursup.2016.07.006

S.Motevali, H., Torabi, S. A., & Ghasemi, R. (2016). An integrated approach for performance evaluation in sustainable supply chain networks (with a case study). *Journal of Cleaner Production, 137*, 579-597. https://doi.org/10.1016/j.jclepro.2016.07.119

Saeed, Y., Soltani, R., Farzipoor, S. R., & Pishvaee, M. S. (2017). A robust fuzzy possibilistic programming for a new network GP-DEA model to evaluate sustainable supply chains. *Journal of Cleaner Production, 166*, 537-549. https://doi.org/10.1016/j.jclepro.2017.08.054

Saima, A. S., Enayeta, R., Haquea, T., Alia, S. M., Moktadibrb, M. A., & Kumar, P. S. (2020). Environmental dimension in sustainable supply chain management: Framework and literature review. *International Journal of Advanced and Applied Sciences, 7*(8), 74-90. https://doi.org/10.21833/ijaa.2020.08.009

Sánchez-Flores, R. B., Samantha, E. C., Sara, O. B., & Ma. E. R. (2020). Sustainable Supply Chain Management—A literature Review on Emerging Economies. *Sustainability, 12*(17), 1-27. https://doi.org/10.3390/su12176972

Seuring, S., & Martin, M. (2008). From a literature review to a conceptual framework for sustainable supply chain management. *Journal of Cleaner Production, 16*(15), 1699-1710. https://doi.org/10.1016/j.jclepro.2008.04.020

Shekarian, E. (2020). A review of factors affecting closed-loop supply chain models. *Journal of Cleaner Production, 253*(119823). https://doi.org/10.1016/j.jclepro.2019.119823

Sonia, I. M., HaeLee, Y., & SaadMemon, M. (2014). Sustainable and Resilient Supply Chain Network Design under Disruption Risks. *Sustainability, 6*, 6666-6686. https://doi.org/10.3390/su6106666

Stefan, S., Brix-Asala, C., & Usman, K. R. (2019). Analyzing base-of-the-pyramid projects through sustainable supply chain management. *Journal of Cleaner Production, 212*, 1086-1097. https://doi.org/10.1016/j.jclepro.2018.12.102

Sumit, C., & Kumar, N. (2020). Development of a framework to improve supply chain performance through e-business and sustainability enablers: An emerging economy perspective. *Management of Environmental Quality, 31*(5). https://doi.org/10.1108/MEQ-07-2019-0150

Sunil, L., Govindan, K., Kannan, D., Mangla, S. K., & Garg, C. P. (2017). An integrated framework for sustainable supplier selection and evaluation in supply chains. *Journal of Cleaner Production, 140*, 1686-1698. https://doi.org/10.1016/j.jclepro.2016.09.078

Taliva, B., FarzipoorSaena, R., & Samavati, T. (2017). Assessing sustainability of supply chains by double frontier network DEA: A big data approach. *Computers and Operations Research, 1*-7.

Tamara, P., Barbosa-Povoa, A., Kraslawski, A., & Carvalho, A. (2018). Quantitative indicators for social sustainability assessment of supply chains. *Journal of Cleaner Production, 180*, 748-768. https://doi.org/10.1016/j.jclepro.2018.01.142

Tat-Dat, B., Tsai, F. M., Tseng, M. L., Tan, R., Danielle, S. Y. K., & K. Lim, M. (2021). Sustainable supply chain management towards disruption and organizational ambidexterity: A data driven analysis. *Sustainable Production and Consumption, 26*, 373-410. https://doi.org/10.1016/j.spc.2020.09.017

Tobias, R., Brandenburg, M., & Seuring, S. (2019). System dynamics modeling for sustainable supply chain management: A literature review and systems thinking approach. *Journal of Cleaner Production, 208*, 1265-1280. https://doi.org/10.1016/j.jclepro.2018.10.100

Tseng, S. C., & Hung, S. W. (2014). A strategic decision-making model considering the social costs of carbon dioxide emissions for sustainable supply chain management. *Journal of Environmental Management, 133*, 315-322. https://doi.org/10.1016/j.jenvman.2013.11.023

Tülin, A., & Gergin, Z. (2016). Mathematical modelling of sustainable procurement strategies: three case studies. *Journal of Cleaner Production, 113*, 767-780. https://doi.org/10.1016/j.jclepro.2015.11.057
Tundys, B. (2020). Sustainable Supply Chain Management – Past, Present and future. *RESEARCH PAPERS OF WROCŁAW UNIVERSITY OF ECONOMICS AND BUSINESS*, 64(3), 187-207. https://doi.org/10.15611/pn.2020.3.15

Tundys, B., & TomaszWiśniewski, S. (2018). The Selected Method and Tools for Performance Measurement in the Green Supply Chain—Survey Analysis in Poland. *Sustainability*, 10(2), 1-26. https://doi.org/10.3390/su10020549

UalisonRebulade, O., Espindola, L. S., Silva, I. R., Silva, I. N., & Martins, R. H. (2018). A systematic literature review on green supply chain management: Research implications and future perspectives. *Journal of Cleaner Production*, 187, 537-561. https://doi.org/10.1016/j.jclepro.2018.03.083

United Nation, Department of Economic and Social Affairs. (2015). Retrieved from https://www.un.org/development/desa/disabilities/envision2030.html

VafaeeNezhada, T., Reza, T. M., & Naoufel, C. (2019). Multi-objective mathematical modeling for sustainable supply chain management in the paper industry. *Computers & Industrial Engineering*, 135, 1092-1102. https://doi.org/10.1016/j.cie.2019.05.027

VanTran, T., Hans, S., Gerhart, B., & Hai, T. L. (2017). Development of an optimization mathematical model by applying an integrated environmental indicator for selecting alternatives in cleaner production programs. *Journal of Cleaner Production*, 154, 295-308. https://doi.org/10.1016/j.jclepro.2017.04.009

Varshney, D., Prasad, M., & Yogendra, S. (2019). Multi-objective optimization of sugarcane bagasse utilization in an Indian sugar mill. *Sustainable Production and Consumption*, 18, 96-114. https://doi.org/10.1016/j.spc.2018.11.009

Vergara, V. C., Ernesto, S. G., Bruno, P. A. C. V., & Linda, C. B. (2020). Designing an environmental supply chain network in the mining industry to reduce carbon emissions. *Journal of Cleaner Production*, 254. https://doi.org/10.1016/j.jclepro.2019.119688

Wang, H., Pan, C., Wang, Q. W., & Zhou, P. (2020). Innovative applications of O.R. Assessing sustainability performance of global supply chains: An input-output modeling approach. *European Journal of Operational Research*, 285(1), 393-404. https://doi.org/10.1016/j.ejor.2020.01.057

WanNurul, K., WanAhmad, R. J., Sadaghiani, S., & Lorant, A. T. (2017). Evaluation of the external forces affecting the sustainability of oil and gas supply chain using Best Worst Method. *Journal of Cleaner Production*, 153, 242-252. https://doi.org/10.1016/j.jclepro.2017.03.166

Wenge, Z., & He, Y. J. (2017). Green product design in supply chains under competition. *European Journal of Operational Research*, 258, 165-180. https://doi.org/10.1016/j.ejor.2016.08.053

Xiang, J., Wu, J., & Zhu, Q. Y. (2016). Eco-design of transportation in sustainable supply chain management: A DEA-like method. *Transportation Research, Part D 48*, 451-459. https://doi.org/10.1016/j.trd.2015.08.007

Xiaole, W., Liu, X. T., Du, Z. Q., & Du, Y. W. (2021). A novel model used for assessing supply chain sustainability integrating the ANP and ER approaches and its application in marine ranching. *Journal of Cleaner Production*, 279(1). https://doi.org/10.1016/j.jclepro.2020.123500

Xiaoyang, Z., Pedrycz, W., Kuange, Y. X., & Zhang, Z. (2016). Type-2 fuzzy multi-objective DEA model: An application to sustainable supplier evaluation. *Applied Soft Computing*, 46, 424-440. https://doi.org/10.1016/j.asoc.2016.04.038

Xin, Z., Zhao, G., Qi, Y. X., & Li, B. (2019). A Robust Fuzzy Optimization Model for Closed-Loop Supply Chain Networks Considering Sustainability. *Sustainability*, 11(5726). https://doi.org/10.3390/su11205726

Yadong, W., Shi, Q., Hu, Q. W., You, Z. F., Bai, Y. S., & Guo, C. M. (2020). An efficiency sorting multi-objective optimization framework for sustainable supply network optimization and decision making. *Journal of Cleaner Production*, 272(11). https://doi.org/10.1016/j.jclepro.2020.122842

Yan, L., Eckertb, C., Yannou-Lebrisc, G., & Petite, G. (2019). A fuzzy decision tool to evaluate the sustainable performance of suppliers in an agrifood value chain. *Computers & Industrial Engineering*, 127, 196-212. https://doi.org/10.1016/j.cie.2018.12.022

YogeshKumar, S., Yadav, A., Kumar, M. S., & Patil, P. P. (2018). Ranking the Success Factors to Improve Safety and Security in Sustainable Food Supply Chain Management Using Fuzzy AHP. *Materials Today: Proceedings*, 5, 12187-12196. https://doi.org/10.1016/j.matpr.2018.02.196
Yuan-Hsu, L., & Tseng, M. L. (2016). Assessing the competitive priorities within sustainable supply chain management under uncertainty. *Journal of Cleaner Production, 112*, 2133-2144. https://doi.org/10.1016/j.jclepro.2014.07.012

Yun, Y., & Ying, W. (2020). Supplier Selection for the Adoption of Green Innovation in Sustainable Supply Chain Management Practices: A Case of the Chinese Textile Manufacturing Industry. *Processes, 8*. https://doi.org/10.3390/pr8060717

Zahra, B., & Heydari, J. (2017). A mathematical model for green supply chain coordination with substitutable products. *Journal of Cleaner Production, 145*, 232-249. https://doi.org/10.1016/j.jclepro.2017.01.060

Zahra, G. R., & Qi, X. (2018). A mathematical SSCM model for minimizing the CO2 emission with considering economic goals and social benefits. *Archives of Business Research, 6*(3), 167-180. https://doi.org/10.14738/abr.63.4309

Zahra, G. R., & Qi, X. (2021). Mathematical Model for Sustainable Production Line. *International Business Research, 14*(1), 1-18. https://doi.org/10.5539/ibr.v14n1p18

Zainab, A., AqibJalil, S., & Javaid, S. (2019). An uncertain model for integrated production-transportation closed-loop supply chain network with cost reliability. *Sustainable Production and Consumption, 17*, 298-310. https://doi.org/10.1016/j.spc.2018.11.010

Zeinab, S., Rahmani, M., & Govindan, K. (2018). A sustainable supply chain for organic, conventional agro-food products: The role of demand substitution, climate change and public health. *Journal of Cleaner Production, 194*, 564-583. https://doi.org/10.1016/j.jclepro.2018.04.118

Zhang, Y. X., & Zhou, G. H. (2017). Integration and consolidation in air freight shipment planning: An economic and environmental perspective. *Journal of Cleaner Production, 166*, 1381-1394. https://doi.org/10.1016/j.jclepro.2017.07.145

Wang, Z. G., Mathiyazhagan, K., Xu, L., & Diabat, A. (2016). A decision making trial and evaluation laboratory approach to analyze the barriers to Green Supply Chain Management adoption in a food packaging company. *Journal of Cleaner Production, 117*, 19-28. https://doi.org/10.1016/j.jclepro.2015.09.142

Zhou, X., Qin, J. D., Liu, J., & Martínez, L. (2019). Sustainable supplier selection based on AHPSort II in interval type-2 fuzzy environment. *Information Sciences, 483*, 273-293. https://doi.org/10.1016/j.ins.2019.01.013

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).