Research Article

A new clionaid sponge infests live corals on the west coast of India (Porifera, Demospongiae, Clionaidae)

SAMBHAJI MOTE1, CHRISTINE H. L. SCHÖNBERG2,3, TOUFIEK SAMAAI4,5,6, VISHAL GUPTA1 & BABAN INGOLE1

1 CSIR–National Institute of Oceanography, Dona Paula, Goa, India
2 Oceans Graduate School and UWA Oceans Institute of The University of Western Australia, Indian Ocean Marine Research Centre, the University of Western Australia, Fairway Entrance 4, Crawley, WA 6009, Australia
3 Department of Aquatic Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, WA 6986, Australia
4 Department of Environmental Affairs, Oceans and Coasts Branch, Oceans and Coasts Research Chief Directorate, Marine Biodiversity and Ecosystem Research Directorate, Private Bag X2, Roggebaai, 8012, Cape Town, Western Cape, South Africa
5 Biology Department, University of Cape Town, Private Bag X3, Rondebosch, 7701, Cape Town, South Africa
6 The Department of Biodiversity and Conservation Biology, University of the Western Cape, Robert Sobukwe Road, Bellville, 7535, South Africa

(Received 19 February 2018; revised: 4 July 2018; accepted 24 July 2018; published online 31 January 2019)

Coral reef ecosystems depend on the balanced interplay of constructive and destructive processes and are increasingly threatened by environmental change. In this context bioeroding sponges play a significant role in carbonate cycling and sediment production. They occasionally aggravate erosional processes on disturbed reefs. Like other coral ecosystems, Indian reefs have suffered from local and global effects. However, the systematic affiliation and diversity of many Indian bioeroding sponges and their infestation rates are largely confused or unknown. The present study describes a new bioeroding sponge species, *Cliona thomasi* sp. nov. from the central west coast of India. It belongs to the *Cliona viridis* species complex, displaying the key characters of tylostyles and spirasters, as well as harbouring photosymbiotic dinoflagellates. Specific morphological characteristics and molecular data from nrITS1 DNA and 28S rDNA distinguished *C. thomasi* sp. nov. from other known *C. viridis* complex and a number of *Spheciospongia* species. The historic sample of ‘*Suberites coronarius*’ from Mergui Archipelago (*sensu* Carter, 1887), but not from the Caribbean (*sensu* Carter, 1882), is conspecific with *C. thomasi* sp. nov. *Cliona thomasi* sp. nov. is locally very abundant, appears to be a key bioeroder, and thus regular monitoring of its abundance, distribution and infestation patterns is recommended.

Key words: Coral reef sponges, description, Grande Island, Malvan Marine Sanctuary, molecular-morphological taxonomy, phylogeny

Publication LSID: urn:lsid:zoobank.org:pub:32133753-ACFE-4A01-B115-DA68F239C1AB
Species nomenclature LSID: urn:lsid:zoobank.org:act:7A313CD8-4CCF-45F0-B614-A9752E54901E

Introduction

Tropical coral reefs are marine habitats well recognized for their rich biodiversity and ecosystem services (e.g., Moberg & Folke, 1999). The health, resilience, and persistence of these ecosystems rely on an intricate interplay of physical, chemical, and biological components that govern constructional and erosional processes (e.g., Hoegh-Guldberg et al., 2007; Worm et al., 2006). Bioerosion is one of these processes and plays a large role in carbonate-dominated habitats such as coral and mollusc reefs (Perry & Harborne, 2016; Schönberg et al., 2017a). Bioerosion is the degradation of hard materials by living organisms (Neumann, 1966), contributing the negative part of the biogenic cycling of calcium carbonate (CaCO₃) on tropical coral reefs (Schönberg et al., 2017a). Globally, bioeroding sponges are the dominant macroborers (Schönberg et al., 2017b), i.e., macrobiotic endoliths that live in and erode CaCO₃ substrates.

The taxonomy of bioeroding sponges is challenging. This is due to a high degree of morphological and...
phenotypic variability (Calcinar et al., 1999; Hill, 1999; Hill & Hill, 2002; Schönberg, 2008), to the occasional lack of specific, unambiguous spiculation for some species groups, and in some cases to lost or inaccessible type material (Schönberg, 2013; Schönberg & Beuck, 2007). In consequence, some species groups of bioeroding sponges are taxonomically insufficiently resolved, and especially in the Indian Ocean. This includes the Cliona celata Grant, 1826 species complex, and the genera Clithoosa, Pione, and Spheciospongia (Schönberg et al., 2017b). Indian Cliona aff. viridis, Cliona aff. celata, Pione, and Clithoosa species were historically simply identified as species that were already described from the Atlantic, assuming a wide distribution or cosmopolitanism. However, more recent results suggest that cosmopolitanism is not a common trait in bioeroding sponges, and that ‘species’ with distributions across different oceans are often complexes of cryptic species with similar morphology (Boury-Esnault et al., 1999; de Paula et al., 2012; Xavier et al., 2010). A number of Spheciospongia species were described specifically from India (often as Spirastrella species; e.g., Dendy, 1905, 1916), but this genus is also badly resolved, because the genus is quite diverse in the Indian Ocean, and its morphological characters can be highly variable (Schönberg et al., 2017b). Tylostyle dimensions in Spheciospongia species have a wide range of lengths due to dermal tylostyles often being only about half as long as choanosomal tylostyles (e.g., Dendy, 1905). Relying predominantly on spicule traits may thus be insufficient to characterize the local community of bioeroding sponges, and histological or molecular analyses are necessary (Bickford et al., 2006).

One species complex stands out as a particularly important and difficult group: species closely related to Cliona viridis (Schmidt, 1862). These species have been discussed as (i) very competitive reef organisms that are long-lived and can infest, overwhelm and kill live corals (e.g., González-Rivero et al., 2011; López-Victoria & Zea, 2005; Schönberg, unpubl. data; Schönberg & Wilkinson, 2001), (ii) sponges with comparatively high rates of growth and bioerosion (Calcinar et al., 2007; Holmes et al., 2009; López-Victoria & Zea, 2005; Schönberg, 2002a, 2003; Schönberg, 2006; Schönberg et al., unpubl. data), (iii) sponges with a high resilience against environmental change (Schönberg et al., 2017b; Schönberg & Suwa, 2007), and (iv) but also sponges with a particularly difficult taxonomy (e.g., Schönberg, 2002b; Schönberg et al., 2017b). These four points give this species complex a special status and suggest a significant research need. Information on the taxonomy and ecology of Indian sponges of the C. viridis complex is presently insufficient and unreliable. Amandale (1915), Carter (1887), Dendy (1916), Kumar (1925) and Thomas (1972, 1979, 1986, 1989) reported and described different species of this complex from India. However, these authors often used names that are presently only accepted for Atlantic-Caribbean species, most descriptions remained short and insufficient, and their accounts need to be revisited (Schönberg et al., 2017b). The occurrence of bioeroding sponge species in the Indian region is hence not well understood and requires a systematic analysis. In such cases, molecular taxonomy in addition to morphology may assist in identifying difficult or separating cryptic species (Bickford et al., 2006; Escobar et al., 2012; Leal et al., 2016; Xavier et al., 2010).

This publication aims to distangle some erroneous accounts of C. viridis complex species from western Indian coral reefs near Goa. The present systematic study includes both morphological as well as molecular analyses, and describes the new species C. thomasi sp. nov. that is closely related to Cliona orientalis.

Materials and methods

Study sites

Specimens of bioeroding sponges were collected during 2015–2017 from the coral reefs of the Malvan Marine Sanctuary (site I; 15°58’N, 73°30’E) and the Grande Islands (site II; 15°21’N, 73°45’E, Fig. 1) in the central eastern Arabian Sea. The sites represent two nearshore coral reefs at the central west coast of India, at a distance of ~54 nautical miles from each other. The sites also represent little-studied coral reef ecosystems in India.

The Malvan Marine Sanctuary is one of the seven marine sanctuaries in India and comprises a nearshore discontinuous reef, surrounding the north-eastern side of the island and running parallel to the shore located 50–200 m away from the shore (De et al., 2015). Numerous submersed, exposed rocks and the Sindhudurg Island provide suitable substrate and protected habitat for coral settlement and growth (Untawale & Dhargalkar, 2002). The site Grande Islands consists of two elongated islands, Ilha de São Jorge and Grande Island, which are located 2 km away from the coast (Mote, pers. obs.). Generic diversity of corals at Grande Island is relatively low in comparison to the other reefs of India (Manikandan et al., 2016).

Sponge collection and morphological studies

Bioeroding sponges were collected while scuba diving at 4–10 m water depth from three different stations from each of the two study sites (Figs 1–2; S1, see online supplemental material, which is available from the article’s Taylor & Francis Online page at http://dx.doi.org/10.151340). Sponge fragments were
removed using hammer and chisel, placed separately into pre-labelled and sealable plastic bags and then immediately preserved in 96% ethanol at the field site. During collection, careful observations were made about the phenotypic characters of the sponge samples, such as macromorphology, colour, and substrate. The preserved samples were brought to the laboratory on ice and studied at the CSIR-National Institute of Oceanography, Goa. In the laboratory, sponge-infested substrata were broken open and studied under a stereomicroscope (SZX10, Olympus, Gurgaon, India). The detailed morphological analyses inclusive of the skeleton arrangement, spicule types, and dimensions were made following Ritzler (1974) and Schönberg (1999). Briefly, spicule preparations for both light and scanning electron microscopy (SEM) were obtained after 12 h digestion of sponge tissue with 70% nitric acid heated to 80°C. Spicules were rinsed with distilled water and dehydrated in 96% ethanol, concentrating the spicules partly by sedimentation, partly by centrifugation before carefully removing the supernatant. The final spicule-ethanol suspension was carefully mixed, spread, dried and mounted on microscope slides (in DPX mountant, Loba Chemie, Mumbai, India; or Eukitt, Sigma Aldrich, Sydney, Australia). Spicules were similarly spread and dried on SEM stubs, but without adhesive, and gold-sputtered for 15–20 minutes in a compact vacuum coating system (12157EQ, SPI-Module Sputter Coater, Global Nanotech, Mumbai, India, or DSR1 Desk Sputter Coater PM View, NewSpec, Myrtle Bank, Australia). Stubs were viewed with a JMS-5800LV scanning electron microscope (Jeol, Peabody, USA), and SEM photographs were taken using a TM3030 Plus Tabletop Microscope (Hitachi, Singapore). Viewing with light microscopy and micrometer eyepiece generated spicule dimensions (Olympus bright field microscope, Gurgaon, India; DMLED microscope, Leica, Macquarie Park, Australia). In four specimens 100 tylostyles were measured for biometric analyses (for our specimens MGB 21, MGB 23, MGB 33, and MGB 35, the latter two being part of the type series; S2–S3, see supplemental material online). Depending on specimen and comparisons needed, dimensions for taxonomic comparisons were then obtained as tylostyle maximum length and shaft width, as well as tyle width and length, and spiraster total length including spines, width without spines, and a count of bends. These were measured for 20 spicules of each spicule type per sponge specimen, if enough spicules could be found on the slide. We
aimed to include only fully formed megascleres and to ignore slim and unfinished tylostyles (following methods in Schönberg & Beuck, 2007). For our target species from West India this meant to exclude most spicules of <12 μm shaft width. In comparatively short tylostyles the shaft width was proportionally slimmer than in long tylostyles, and overall we accepted tylostyles with a length: width ratio of <3 as fully formed spicules, even if they were occasionally slimmer than 12 μm. In this way we measured the first 20 tylostyles that were not obscured or broken. Relying on fully formed tylostyles generated quite stable and uniform means among different specimens of the same species and reduced the overlap of spicule dimensions between different species (S4, S5 provide raw data and descriptive statistics in summary, see supplemental material online).

We compared spicule characters of the Indian material with representative collection vouchers (S6, see supplemental material online). This comparative material included subsamples of dried or wet specimens and slide preparations of sections, tissue plucks, and spicules. Vouchers were from the second author’s reference collection (CS), the British Museum of Natural History (BMNH), the Liverpool World Museum (LIVCM), and the Paris Natural History Museum (MNHN). After our analyses were completed, representative vouchers were selected from the Indian sponges and kept as reference material. A type series was deposited and registered at the National Institute of Oceanography Taxonomic Reference Centre, Goa, India (NIO). Further material was housed in the reference specimen collection of the Biological Oceanography Division of the NIO, and is also accessible for loan requests.

DNA extraction, amplification, and sequencing

DNA was extracted from representative subsamples of the Indian sponge with a DNeasy kit according to the manufacturer’s protocol (Qiagen, Hilden, Germany). DNA was amplified using the following primers: nrITS1 DNA 5′AAAAGTCGTAACAAAGGTTTCCG3′ and 5′TTGCGTAACAAAGGT-3′ for a forward and reverse copy, respectively (after Escobar et al., 2012); the D2 region of 28S rDNA with 5′AAGGTGAAAAGTACTTTGAAAAGA3′ and 5′TTCCGTGTTTCAAGACGGGTC3′ for a forward and reverse copy, respectively (after Barucca et al., 2007). The amplifications were carried out in an Mastercycler (Applied Biosystems, Foster City, USA) under the following conditions (30 cycles): an initial denaturing cycle for 2 min at 94°C, 30 s at 52°C, and 60 s at 72°C. This was followed by (35 cycles): 50 s at 94°C, 45 s at 48°C, and 60 s at 72°C. The amplified DNA was purified with a PCR Clean-Up Kit according to the manufacturer’s protocol (Sigma Aldrich, Bangalore, India). The final DNA product was sequenced (ABI 3130xl sequencer, Applied Biosystems, Foster City, USA), and the obtained chromatogram was edited using the ABI sequence scanner software 1.0v. All the sequences were deposited in GenBank (NCBI; Benson et al., 2013) under the accession numbers MG367332–MG367341 (note that our specimen field references start with ‘MGB’ and have different numbers in comparison to the NCBI numbers that coincidentally start with ‘MG’; the numbers are matched in Table 1).

Alignment and phylogenetic analysis

All sequences were aligned with Clustal W with the default parameters (gap open = 15; gap extension = 6.66; gap distance = 4 (Thompson et al., 1994). The alignment of the sequences was checked for the potential occurrence of nuclear pseudogenes using the genetic code for invertebrate mitochondria and for no frame-shift mutations, which would indicate that these sequences originated from a non-functional gene region. Obtained sequences were compared to published data of clionaid sponges (Table 1), and we jointly analysed our sequences with the NCBI sequences from other Cliona species in MEGA v6.06 (Tamura et al., 2013). The most suitable models of the molecular evolution for each gene and the concatenated data were determined using the best fit substitution model Tamura–Nei model T as indicated by model test 2 based on the Akaike Information Criterion (AIC; Dariba et al., 2012). To assess whether some of the Indian samples formed a distinct monophyletic clade relative to congenic samples from other locations, we reconstructed a phylogenetic tree in MEGA v6.06 using Maximum Likelihood (ML) with complete deletion of character positions containing gaps and missing data (Tamura et al., 2013). Evolutionary distances were computed employing the Kimura 2-parameter method (K2P; Kimura, 1980), and support for individual nodes was based on 1000 non-parametric bootstrap estimates (Felsenstein, 1985). The K2P distances were also used to compare levels of genetic differentiation between the sequences generated in this study and the published Cliona sequences.

Results

General observations

Within the material sampled for the larger project, 10 specimens displayed morphology similar to *C. viridis* complex species. All of them appeared to belong to the same species and were studied in more detail (S4, see supplemental material online). Other species dissimilar to *C. viridis* were observed, and a few specimens
were presently included in the phylogenetic analyses (Figs 3–4), but these species will be treated and published elsewhere. Within this extra material, sample MGB 20 was also close to the *C. viridis* complex, but did not cluster together with our core material, MGB 12 associated with *Cliona rhodensis* and had tylostyles consistent with *Cliona celata* complex species, while MGB 24 separated out distantly from all other *Cliona* species and obviously did not belong to the Clionaida, despite some morphological similarity (Figs 3–4). All analysed species yielded sequences for both 28S rDNA and nrITS1 DNA with lengths of 450 and 350 nucleotides, respectively.

Phylogenetic analyses showed similar tree topologies for both nrITS DNA and 28S rDNA regions and clearly placed our material into the *C. viridis* complex. The phylogram from nrITS DNA generated three major clusters representing a clade with Indo-Pacific *C. aff. viridis* species, a group with Atlanto-Caribbean *C. aff. viridis* species and one for the *C. celata* species complex.
Similar clustering occurred in the phylogram from the 28S rDNA region, but with additional species groups distributed through it and recognizing four different species from our sample sites (Fig. 4). Among all samples four specimens clustered within the Indo-Pacific viridis group and are below described as C. thomasi sp. nov. (samples MGB 21, MGB 23, MGB 33, MGB 35). Further, the clustering of C. thomasi sp. nov. as a distinct clade within the viridis-like species in both the phylograms with strong bootstrap values of 97% and 89% supported our morphological findings that suggested we had a new species.

Abbreviations

α-morphology, habit with mostly endolithic tissue and surface papillae; AC, Atlantic-Caribbean; β-morphology, habit with mostly endolithic tissue and coherent superficial tissue crust; BMNH, British Museum of Natural History, London; δ-morphology, massive or larger endolithic habit with erect fistular extensions, living mostly buried within sediments; FLsk, Florida Keys sample series; γ-morphology, massive, free-living habit, different shapes; IP, Indo-Pacific; nrITS, Nuclear ribosomal internal transcribed spacer, a DNA region; MED, Mediterranean; MGB, Maharashtra Gene Bank; MNHN, Paris National Museum of Natural History; NCBI, National Center for Biotechnology Information; NIO, National Institute of Oceanography, Goa, India; NIO/BOD, Laboratory collection of the Biological Oceanography Division, NIO, Goa; PCR, polymerase chain reaction; VC, viridis complex.

Systematics

Order Clionaida Morrow & Cardenas, 2015
Family Clionaidae d’Orbigny, 1851
Genus Cliona Grant, 1826

Cliona thomasi sp. nov. (Figs 2 and 5-7)

Synonymy. BMNH 1887.6.1.4 = *Suberites coronarius* sensu Carter (1887) = *Anthosigmella varians* sensu Schönberg (2001; referring to Carter’s 1887 specimen). *Cliona coronaria* from the Gulf of Kachchh (Dendy, 1916). However, NOT *Suberites coronarius* sensu Carter (1882), being a junior synonym of *Cliona varians*. Name ‘coronarius’ thus not available for present material. *Cliona orientalis* sensu Thomas (1972, 1979, 1986). *Cliona varians* sensu Devi et al. (2011). Likely also *Cliona varians* sensu Kiruba-Sankar et al. (2016) and Raghunathan (2015a, 2015b) from the Andaman and Nicobar Islands.

Type locality. Grande Island near Goa, and Malvan Marine Sanctuary, West India.

Species diagnosis. Brown endolithic *Cliona* species in α (papillate) and β morphology with γ tendencies (thinly to very thickly encrusting). Mature tylostyles robust, quite straight with round, well demarcated, terminal tyles. Tylostyles superficially arranged in palisade, at right angle to surface and piercing it, in choanosome as weakly defined fibres. No dermal spiraster crust. Choanosomal, delicate spirasters, mostly C- or bow-shaped, with short, densely arranged compound spines on convex side of shaft. In photosymbiosis with *Symbiodinium* sp., and member of the *Cliona viridis* species complex. Erosion evenly distributed (in *Porites*, *Favites*, oyster shell), with small, rounded erosion chambers. Inhabiting live and dead corals and bivalves.

Etymology. The species was named in honour of Dr. P. A. Thomas who contributed extensively to our understanding of sponges from India and the Western Indian Ocean, including many accounts on bioeroding sponges.

Material examined. West Indian material of *C. thomasi* sp. nov., nrITS1 and 28SrRNA sequences available for the Grande Island type series and two specimens from the Malvan Marine Sanctuary (GenBank accession numbers listed in Table 1):

Holotype. *Cliona thomasi* sp. nov. NIO 1002, field reference MGB 35; β-morphology sponge in dead coral.

Fig. 3. Phylogenetic tree reconstructed from nrITS1 sequences from *Cliona thomasi* sp. nov. and comparative material. The tree topology is based on Maximum likelihood. The number above the branches are support values, only values over 50% are shown. Samples from western India are printed in bold. All other sequences were obtained from GenBank. Sample names retrieved from GenBank were presently retained, although Chaves-Fonnegra et al. (2017) found that *Cliona laticavicola* is conspecific with *Cliona delitrix* (Fig. 3).
rubble (Porites sp.), Grande Island, West India, 15°21'14.2"N, 73°45'57.8"E, 8 m, collected by S. Mote, 20 Nov 2016.

Paratypes 1–3: 1 – Cliona thomasi sp. nov. NIO 1005, field reference MGB 33; β-morphology sponge in live massive Porites sp., Grande Island, West India, 15°21'14.2"N, 73°45'57.8"E, 5 m, collected by S. Mote, 18 Apr 2016. 2 – Cliona thomasi sp. nov. NIO 1003, field reference MGB 6; β-morphology sponge in Portites sp., Malvan Marine Sanctuary, West India, 16°03'52.80"N, 73°27'17.1"E 8 m, collected by S. Mote, 20 Nov 2015. 3 – Cliona thomasi sp. nov. NIO 1004, field reference MGB 8; β-morphology sponge on live oyster shell, Malvan Marine Sanctuary, West India, 16°02'31.6"N, 73°27'43.0"E, 8 m, collected by S. Mote, 20 Nov 2015. Other material viewed and here accepted as conspecific with Cliona caribbaea, BMNH 1934.11.24.402; bud-like sponge fragment. Cliona orientalis, BMNH 1954.3.9.396; γ-morphology sponge. Honduras, Caribbean, Western Atlantic. Bowerbank collection reference 35, Carter (1882) identification as Suberites coronarius. Cliona varians, BMNH 1954.3.9.398; γ-morphology sponge. Bahamas, Western Atlantic. Bowerbank collection reference 35, Carter (1882) identification as Suberites coronarius. Cliona varians, BMNH 1954.3.9.399; γ-morphology sponge. Jamaica, Caribbean, Western Atlantic. Bowerbank collection, notes on slide ‘Ord. VI., F. 2, G. 10’, Carter (1882) identification as S. coronarius. Cliona orientalis, Schönberg field reference CS-MAG-B-14; β-morphology sponge in massive dead cf. Porites sp. Magnetic Island, Great Barrier Reef, Australia, 19°11'52S, 146°48'49E, 5 m, collected by C. Schönberg, 1997. Cliona varians, BMNH 1954.3.9.396; γ-morphology sponge. Bahamas, Western Atlantic. Bowerbank collection reference 35, Carter (1882) identification as Suberites coronarius. Cliona orientalis, BMNH 1954.3.9.398; γ-morphology sponge. Honduras, Caribbean, Western Atlantic. Bowerbank collection reference 35, Carter (1882) identification as Suberites coronarius. Cliona orientalis, Schönberg field reference CS-FIesk-08; γ-morphology sponge. Looe Key, Florida Keys, USA, 24°32'N, 81°24'W, 13 m, collected by C. Schönberg, 6 Jul 2008.

Comparative, disparate material

Cliona caribbaea, LIVCM.ZI.77 (designated holotype), Carter’s reference 346 from the ‘Argo’ Expedition 1876; α-morphology sponge. St. Vincent Island, SW Caribbean, collected by H. H. Higgins during the ‘Argo’ Expedition 1876–1877. Cliona orientalis, Schönberg field reference CS-MAG-B-14; β-morphology sponge in massive dead cf. Porites sp. Magnetic Island, Great Barrier Reef, Australia, 19°11'52S, 146°48'49E, 5 m, collected by C. Schönberg, 1997. Cliona varians, BMNH 1954.3.9.396; γ-morphology sponge. Bahamas, Western Atlantic. Bowerbank collection reference 35, Carter (1882) identification as Suberites coronarius. Cliona varians, BMNH 1954.3.9.398; γ-morphology sponge. Jamaica, Caribbean, Western Atlantic. Bowerbank collection, notes on slide ‘Ord. VI., F. 2, G. 10’, Carter (1882) identification as S. coronarius. Cliona varians, Schönberg field reference CS-FIesk-08; γ-morphology sponge. Looe Key, Florida Keys, USA, 24°32'N, 81°24'W, 13 m, collected by C. Schönberg, 6 Jul 2008.

Fig. 4. Phylogenetic tree reconstructed from 28S rDNA sequences from Cliona thomasi sp. nov. and comparative material. The tree topology is based on Maximum likelihood. The number above the branches are support values, only values over 50% are shown. Samples from western India are printed in bold. All other sequences were obtained from GenBank.
Identified by Dendy (1922) as *Spirastrella globularis*. Andaman Islands, collected 23 Nov 1923. *Spheciospongia poterionides*, MNHN DJV 23 (designated holotype); *c*-morphology sponge in vase shape. Originally described as *Spirastrella poterionides* by Vacelet and Vasseur (1971). Madagascar, ~23°22'S, 43°39'E, collected 25 May 1964. *Spheciospongia solida*, BMNH 26.87.5.2.103.a (designated holotype); *d*-morphology sponge. Described by Ridley and Dendy (1886) as *Spirastrella solida*. Challenger collection, 33 m, Philippines, *Spheciospongia tentorioides*, BMNH 1907.2.1.24.a (designated holotype), Herdman collection reference 239, field reference 239; *δ*-morphology sponge on calcareous debris. Described by Dendy (1905) as *Spirastrella tentorioides*. Sri Lanka. *Spheciospongia vagabunda* previously published as *Suberites trincomaliensis sensus* Carter (1887), BMNH 1954.3.9.446, Bowerbank reference 11/31; *δ*-morphology sponge. Eastern Sri Lanka, ~8°27'60"N, 81°12'59"E, collected by D. Johnston, Nov 1881. *Spheciospongia* indet., recorded as *Spirastrella cuspidifera*, BMNH 1936.3.4.166; *γ*- or *δ*-morphology sponge. Oman, 18°03'30"N, 57°02'30"E, 40 m, Murray Expedition, 29 Oct 1933.

Cliona thomasi sp. nov.

External morphology. Both, in *α*- and *β*-morphology in the field, with tendency to *γ*-morphology in thick specimens, but without fistular processes typical for *δ*
specimens. Papillate α sponges in Turbinaria and Favites spp., individuals up to 20–40 cm in total diameter. Papillae circular or oval, very small, 0.3–0.8 mm in diameter (Fig. 2; S1, see supplemental material online). Encrusting β to γ sponges forming patches of 60–100 cm in diameter, with epilithic tissue 0.5–3 cm thick (Figs 2.1–2.2). Surface smooth. Texture hard and incompressible due to underlying coral skeleton. Live colour beige–brown to dark brown, in alcohol initially pale brown with green surface, later fading. Oscules in live β sponges lighter in colour than remaining surface, being pale yellow, occasionally with blue hues (S1, see supplemental material online). Choanosome pale yellow in all observed specimens.

Excavation pattern. Boring 2–3 cm into substrate, initially exploiting existing porosity of coral, but also forming small, rounded chambers pitted with erosion scars (Figs 5.1–5.2). Macromorphscopic appearance of bioerosion traces in β specimens dense and eroded to similar porosity apart from marginal extensions. In α specimens in more patchy distribution. Chambers of 1–1.5 mm in diameter, with minute connecting tubes and filled with tissue (Figs 5.3–5.4).

Spicules. Megascleres unusually robust tylostyles (mean length: width ratio of shaft 24.3), widest mid-shaft or slightly above, commonly strongly tapering. Predominantly straight, occasionally with very slight bend in upper 5th of shaft, with sharp point, last sixth of shaft near tip occasionally slightly angling away from main axis. Tyles as a rule perfectly round and well-formed, well demarcated, always terminal, but occasionally with second tylar ring at about 50 μm below main tyle or incomplete tyle anywhere on shaft. Tyles usually marginally shorter than wide, in fully formed tylostyles of similar width as shaft, with weakly to strongly pronounced neck crease, only rarely with single or few vesicles (Fig. 6; S4, S5, see supplemental material online).

No discernible overall size difference between tylostyles from palisade and choanosomal fibres, but preparations irrespective of spicule origin with 2–22% noticeably shorter and wider tylostyles, on average 77% of length of main, longer tylostyles (S4, S5, see supplemental material online). Shorter type of tylostyle apparently choanosomal, but no specific role or location identified.

Overall average tylostyle dimensions as shaft length × shaft width × tyle width × tyle height: main longer type 353 × 14.7 × 16.5 × 16.3 μm; perceived shorter type 271 × 12.6 × 14.9 × 14.6 μm (details in S2–S5, see supplemental material online). Microscleres spirasters, most predominantly C-shaped, also frequently bow- or S-shaped (can be unequal), very few short-helical or with straight shaft (Fig. 6). Two specimens from the Malvan Marine Sanctuary (MGB 21, MGB 23) with presumably aberrant spirasters, mostly of shallow omega shape, with thicker axes, reduced spination and often with wider parts or nodes, partly as tylar swellings, partly as merged spines (Figs 6.2–6.3); same specimens also with above average frequency of malformed tylostyles (strongly truncated or reduced to globule or oxea, secondary tylar swellings, small side-branches). However, low frequency of mildly ‘aberrant’ spirasters and tylostyles also occasionally present in other specimens. Spines in typical spirasters along convex side of shaft, as tiny bouquets on short stalks, distributed in very regular distance to each other. Spination terminally
stronger and more pronounced, occasionally forming dense, cauliflower-like caps. Spirasters of comparatively uniform size, very slim and usually near 1 μm wide, commonly 15–19 μm in total length (details in S4, S5; see supplemental material online). Single, rare occurrences of unusual microscleres here viewed as contamination: spirasters with conical spines (e.g., Fig. 6.4), spherasters, oxyasters.

Skeleton. Ectosomal skeleton tylostyles in palisade not covered by spiraster crust (Figs 5.5, 7.1–7.2). Choanosome with low spicule content, skeleton consisting of ill-defined fibres of tylostyles within erosion chambers and in parallel with chamber walls, often aligned pointing in same direction (Fig. 5.4). Choanosomal spirasters mostly associated with membranous parts (Figs 5.6, 7.3).

Distribution. Western Indo-Pacific realm (Spalding et al., 2007): eastern rims of the Northern Indian Ocean (Fig. 1). Okha, Gulf of Katchchh, North-west India (Dendy, 1916; as *Cliona coronaria*), Malvan and Grande Island, central West India (our material), South India, Palk Straits (Devi et al., 2011; as *Cliona varians*; Thomas, 1972, 1979, 1986; as *Cliona orientalis*), Mergui Archipelago, Myanmar (Carter, 1887; as *Suberites coronarius*). Assumed also Andaman and Nicobar Islands (Kiruna-Sankar et al., 2016; Raghunathan, 2015a, 2015b; as *Cliona varians*).

Ecology. The sponges were sampled from 4–10 m water depth. Distribution to deeper water was not confirmed or rejected, but we assume a prevalence in shallow waters due to the photosymbiosis with *Symbiodinium* sp. In the Malvan Marine Sanctuary *Cliona thomasi* sp. nov. occurs predominantly in live coral (*Turbinaria mesenterina* (de Lamarck, 1816), *Porites compressa* (Dana, 1846), *Favites melicenum* (Ehrenberg, 1834), and *Pseudodidestrea tayamai* (Yabe & Sugiyama, 1935); the latter two being more commonly infested; one of our specimens inhabited a live oyster), but also in dead coral, e.g., as rubble. Where in β-morphology, the sponges usually completely cover the surfaces of entire corals.

Remarks
The tylostyle shape of *Cliona thomasi* sp. nov. and the lack of a clear size difference between dermal and choanosomal tylostyles suggested that our West Indian sponges in encrusting to massive growth form belonged to the genus *Cliona*, rather than to *Spheciospongia* (Fig. 6; S4, S5, see supplemental material online). We were thus able to immediately reject all *Spheciospongia* species reported from the Indian Ocean or West Pacific that we had included for comparison (S5, S6, see supplemental material online). Consistently, these had longer choanosomal tylostyles than commonly occurring in *Cliona* species and a second, dermal tylostyle type that was about 60% of the length of the former. *Cliona thomasi* sp. nov. also appeared to have a shorter tylostyle type, but this differed not as strongly from the main tylostyle as in *Spheciospongia* spp. (~80% of the length of the main tylostyles; S2, S3, see supplemental material online) and was apparently restricted to the choanosome and not associated with the dermal palisade. *Spheciospongia* megascleres were mostly variable subtylostyles with subtle, elongated tyles very unlike the pronounced, round tyles observed in *C. thomasi* sp. nov.

Further, our samples clearly belong to the *C. viridis* (Schmidt, 1862) species complex. This is indicated by our molecular results, but also by a series of morphological and ecological characters such as bioeroding activity, the brown colour, the presence of tylostyles and slender spirasters with multi-split spines, and the occurrence of dinoflagellate photosymbionts (Rosell & Uriz, 2002; Schönberg, 2002b; Schönberg et al., 2005; Schönberg & Loh, 2005). After coming to this decision, our specimens were then difficult to further identify to species level. On one hand similarities to other Indo-Pacific *C. viridis* species prevented conclusive decisions, on the other hand decisions presented in earlier publications added to the confusion or provided misleading information that required careful consideration. We quickly excluded the Indo-Pacific *C. viridis*-like species *Cliona caesia* Schönberg, 2000 and *Cliona minuscula* Schönberg et al., 2006, because they are known only in α-morphology and have no spirasters (Schönberg, 2000; Schönberg et al., 2006; S6, see supplemental material online). Moreover, *C. caesia* has light blue oscular collars, and *C. minuscula* has much smaller tylostyles than *C. thomasi* sp. nov. *Cliona subulata* Sollas, 1878 is another α-morphology sponge. The original sample site of *C. subulata* is unknown, but the species is assumed to be from the Indo-Pacific (Schönberg et al., 2017b). However, spirasters in *C. subulata* are helical and have characteristic, long and discrete spines unlike those on the spirasters of *C. thomasi* sp. nov. (Sollas, 1878; S6, see supplemental material online). *Cliona albimarginata* Calcinaí et al., 2005 has a very similar habit compared with *C. thomasi* sp. nov., but its fully grown tylostyles are significantly slimmer, and the tyles are oval and elongated in *C. albimarginata*, but predominantly spherical in *C. thomasi* sp. nov. (Calcinaí et al., 2005; S6, see supplemental material online). *Cliona albimarginata* spirasters display more irregular shapes and are less frequently C-shaped than in *C. thomasi* sp. nov. *Cliona orientalis* Thiele, 1900 also has a very similar habit in β-morphology, as well as very similar spicule dimensions and spicule shapes compared with *C. thomasi* sp.
nov. (Thiele, 1900; S6, see supplemental material online). Cliona orientalis microscleres are predominantly helical spirasters, however, and only occasionally C-shaped. Considering that spicle dimensions can vary to some degree with environmental conditions (Bavestrello et al., 1993a, 1993b; Cárdenas & Rapp 2013; Mercurio et al., 2000; Valisano et al., 2012), initially we could not safely exclude C. orientalis. We had similar problems with the comparison to Cliona varians (Duchassaing & Michelotti, 1864). Even though C. varians occurs in the Caribbean, it shares morphological characters with C. thomasi sp. nov., especially when considering the microscleres. Cliona varians is known for its C-shaped spirasters or ‘anthosigmas’, which as in C. thomasi sp. nov. is by far the most predominant form of the microscleres (Figs 6, 7.4–7.6; S6; see supplemental material online). However, the tylostyles in C. varians are longer and slimmer than in C. thomasi sp. nov., with oval, elongated tyles that are often subterminal (Figs 7.4, 7.7; S5, S6, see supplemental material online).

These characters appeared to provide reasonable grounds to distinguish the two species despite the similarities of the microscleres, but as previous publications from India had reported C. varians, we carefully searched the historical literature for further information.

We became aware of a possible conspecificity with Carter’s (1882, 1887) Suberites coronarius (Carter, 1882), which Dendy (1916) transferred to Cliona after he correctly recognized that the species was actively bioeroding (S6, see supplemental material online). The problem was that Carter’s material did not refer to one, but to two species (see Annandale, 1915; Dendy, 1916; Thiele, 1900). His 1882 Caribbean material was synonymized with C. varians, a species name which had seniority (van Soest, 2010). This rendered the name ‘coronarius’ unavailable, even though Carter’s (1887) specimen from Mergui Archipelago was clearly different from C. varians and still needed a name. Earlier workers had recognized the similarities with C. orientalis and declared Carter’s Mergui specimen to be a very similar Dendy (1916) specimen from north-western India as conspecific with this species (Annandale, 1915; Dendy, 1916; Thiele, 1900). This decision was followed by Thomas (1972, 1979, 1986), who worked again on similar sponges from the Palk Strait (S6, see supplemental material online). To further complicate things, Topsent (1918) created the new genus Anthosigmella based on a Caribbean specimen of S. coronarius = C. varians and its peculiar C-shaped spirasters that were not helical and tended to have spicule accumulations at the ends of the shaft. Topsent (1918) observed a massive specimen and declared that this was not a bioeroding sponge. To make matters even worse, Schönberg (2002b) received Carter’s (1887) Mergui specimen labelled ‘type’ when requesting material for C. varians and did not notice the differences in spicule characters, then accepting this specimen as Anthosigmella varians. The confusion between the Caribbean and the Indian Ocean material was so entangled that we felt the need to look into some common Caribbean C. viridis species in addition to Indo-Pacific species to understand the ramifications of identifications and distributions of C. viridis species.

Spicular comparisons helped us to confirm that the Caribbean C. varians was different from our Indian material and that respective earlier reports for C. varians from the Indian Ocean should be considered as wrong (e.g., Calcinai et al., 2000; Immanuel et al., 2015; Namboothri & Fernando, 2012; S6, see supplemental material online). The tylostyles in C. varians are overall slimmer than in C. thomasi sp. nov. (Figs 7.4, 7.7), and the characteristic anthosigmas in the former species are more regular and uniform in overall shape, unlike in our samples, where the spirasters can commonly be J- or hook-shaped (Figs 6, 7.5–7.6). However, Carter’s (1887) ‘Suberites coronarius’ from Mergui was a very good match. An additional sample was located in the National Institute of Oceanography, Goa (Devi et al., 2011), and we also regard a report by Dendy (1916) from the Gulf of Katchch as conspecific with C. thomasi sp. nov. Other reports for C. viridis complex species could not as easily be aligned with our material (S5, S6, see supplemental material online), and molecular analyses became unavoidable in order to confirm or reject conspecificity with existing C. viridis complex species (Table 1).

We successfully extracted DNA from the specimens listed in Table 1. Regrettably, the historical museum material did not presently yield useful molecular data that would have allowed direct comparison with our material. Moreover, the nrITS1 phylogram led to ambiguous results. Pione clustered together with C. viridis species, and C. delitrix Pang, 1973 and ‘C. laticavicola’ (Pang, 1973) did not form a tight clade (Fig. 3), even though recent results showed that the latter two are conspecific (Chaves-Fonsegra et al., 2017). Results such as these can possibly be explained with sample contamination by the DNA of other species that were sampled during the same programme. Bioeroding sponge tissue is difficult to extract, and some species can mingle or occur in close vicinity of each other (Schönberg, pers. obs.). When plucking tissue out of the substrate it is difficult to know whether a disparate species neighbours the target material or whether the plucked material contains exclusively tissue from a single species. In addition, specific sequences in the ITS region often evolve faster than those of other biomarkers, so that resulting intragenomic variability can result in alignment problems (Vollmer &
Palumbi, 2004; Yang et al., 2017), and this marker may not be the best to elucidate taxonomic and systematic relationships within the Clionaida. The more conservative 28S region previously generated good results for clionaid sponges in this context (Barucca et al., 2007; Leal et al., 2016; Xavier et al., 2010), and we will more strongly rely on the respective phylogram (Fig. 4).

The molecular analyses based on 28S rDNA again confirmed that our West Indian sponges belonged to the C. viridis species complex, but in the same time their sequences differed from all comparative material available on GenBank and clustered separately (Figs 3–4). This excluded not only the morphologically very similar, Indo-Pacific species C. orientalis, but also common Caribbean sponges such as C. caribbaea Carter, 1882, C. tenuis Zea and Weil, 2003 and C. varians, as well as the Atlantic-Mediterranean species C. viridis.

Taking molecular and morphological results into account together, we concluded that mainly due to the spicule dimensions and shapes, our material was most likely a new species that we here described. The most distinctive characters of C. thomasi sp. nov. includes its very robust and straight tylostyles with round tyles and the predominantly C-shaped, very slim spirasters. Based on spicule observations we also regard Thomas’ (1972, 1979, 1986) ‘orientalis’ specimens from Palk Strait as conspecific. Dendy’s (1916) ‘Cliona coronaria’ from Okha in Gujarat, NW India appears to be conspecific as well, which was not further assessed, however. Reports of ‘Cliona varians’ in India were also tentatively included as synonyms for C. thomasi sp. nov., assuming that respective identifications were likely based on the high frequency of C-shaped spirasters (Kiruna-Sankar et al., 2016; Raghunathan, 2015a, 2015b; but these were mere reports and did not provide descriptions). According to these findings, we can presently report a distribution of C. thomasi sp. nov. for North-west to South India and the Mergui Archipelago, with possible additional occurrence around the Andaman and Nicobar Islands. Because of the convoluted circumstances of this taxonomic-systematic investigation, we summarized respective information in S6 (see supplemental material online).

Discussion

It is now widely accepted that the guild of bioeroding sponges contains a number of insufficiently resolved species complexes with similar morphological characters (Schönberg et al., 2017b). As a consequence, a number of species have traditionally, but erroneously been grouped under one name and were regarded as cosmopolitan or as having a wide distribution across different oceans (e.g., Xavier et al., 2010). With molecular taxonomy being increasingly used in addition to morphological studies, new species have been recognized and described, as well as morphological features identified that characterize and distinguish them within these difficult groups (e.g., Boury-Ésnault et al., 1999).

The Cliona viridis species complex is one of the most difficult species complexes within the Clionaida, causing confusion through history as well as in recent studies (see examples in S6, see supplemental material online). As has been done for other groups, brown endolithic sponges have commonly been lumped under the same name per bioregion, but this group is particularly speciose. The Caribbean/Floridian C. caribbaea and C. varians were eventually resolved into the partially sympatric C. acephala, C. caribbaea, C. aprica, C. paucispina, C. tenuis, C. tumula, and C. varians; the Mediterranean C. viridis/migricans were accepted as C. labiata, C. viridis, and C. parenzani, but some workers still recognize older synonyms as possibly valid (Longo et al., 2017); and respective Indo-Pacific species are presently recognized as C. albimarginata, C. caesia, C. minuscula, C. orientalis, and likely C. subulata and C. vallartense. All these species harbour symbiotic dinoflagellates that are thought to provide essential nutrients to their hosts (Fang et al., 2014; Weisz et al., 2010). This may in part explain the diversity of this group, the large average specimen size and fast growth rates, their competitive strength and their success in general (Schönberg et al., 2017b). Cliona viridis complex species are as a rule among the most dominant and destructive macroborers on coral reefs (Schönberg, 2001; Schönberg et al., 2017b), and C. thomasi sp. nov. is abundant and aggressive as well.

We therefore think that like some other C. viridis complex species, C. thomasi sp. nov. can aggravate coral bioerosion where it is common. Should abundances of C. thomasi sp. nov. increase, this could cause a gradual phase shift from constructional to erosional conditions on local reefs. Increasing abundances of C. viridis species have repeatedly been linked to disturbance in reef environments (e.g., Rützler, 2002; Schönberg & Ortiz, 2009). Bioeroding sponges of the C. viridis complex are believed to be relatively tolerant to environmental deterioration and able to benefit from increased substrate availability after coral mortality (reviewed in Schönberg et al., 2017a, 2017b). At our West Indian sample sites reports on reduced reef health largely related to sedimentation (De et al., 2015, 2017; Hussain et al., 2016; Manikandan et al., 2016). At Carter’s (1887) and Dendy’s (1916) historical sample sites of C. thomasi sp. nov. pollution and thermal bleaching may be more relevant (De et al., 2017). Thomas’s
(1972, 1979, 1986) sample sites in Palk Strait have undergone degradation due to coral mining, pollution, and bleaching events (Manikandan et al., 2014). The Andaman and Nicobar Islands have been regarded as comparatively unperturbed reef environments, but river sediment discharge into the Bay of Bengal, tsunami damage, and global climate change have taken their toll (e.g., Brown, 2007). We therefore think that monitoring the abundance, distribution, and bioerosion capacity of dominant *C. viridis* complex species such as *C. thomasi* sp. nov. is essential in order to recognize changes in the benthic community over time and to develop suitable strategies for protecting and managing the coral reef ecosystem in the region (Schönberg, 2015).

Acknowledgements

We thank the Director of the CSIR-National Institute of Oceanography, Goa for providing access to all the facilities. K. De, V. Patil, A. Pujari, R. Nagesh, and A. Hussain assisted during sample collection, A. Sardar with the SEM analysis, M. Nanajkar and R. Singh provided support for laboratory analysis. C. E. Sherlock and J. Perera from the London Natural History Museum assembled and sent extensive specimen loans and provided information about historical collection material. We sincerely thank S. Mills from the Canberra Department of Agriculture, Water and Resources for assisting us with the import of the London collection material into Australia. CS thanks J. Fromont, O. Gomez, and S. Arklie for providing access to microscopy equipment through the Western Australian Museum and the Australian Institute of Marine Science. This study forms part of the PhD thesis of SM. We acknowledge financial support through RGSTC, Government of Maharashtra for GenBank project GAP2871. This is CSIR-NIO contribution number 9197.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed by the authors.

Sampling and field studies

All necessary permits for sampling and field observation have been obtained by the authors from the competent authorities.

Disclosure statement

The authors declare that they have no conflict of interest.

Funding

We acknowledge financial support through RGSTC, Government of Maharashtra for GenBank project GAP2871.

Supplemental data

Supplemental data for this article can be accessed here: https://doi.org/10.1080/14772000.2018.1513430.

References

Annamalai, N. (1915). Indian boring sponges of the family Clionidae. *Records of the Indian Museum, 11*, 1–24.
Baruca, M., Azzini, F., Bavestrello, G., Biscotti, M. A., Calcinar, B., Canapa, A., … Olmo, E. (2007). The systematic position of some boring sponges (Demospongiae, Hadromerida) studied by molecular analysis. *Marine Biology, 151*, 529–535. http://doi:10.1007/s00227-006-0486-y
Bavestrello, G., Bonito, M., & Sarà, M. (1993a). Influence of depth on the size of sponge spicules. *Scientia Marina, 57*, 415–420.
Bavestrello, G., Bonito, M., & Sarà, M. (1993b). Silica content and spicular size variation during an annual cycle in *Chondrilla nucula* Schmidt (Porifera, Demospongiae) in the Ligurian Sea. *Scientia Marina, 57*, 421–425.
Benson, D. A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Sayers, E. W. (2013). GenBank. *Nucleic Acids Research, 41*, D36–D42. http://doi:10.1093/nar/gks1195
Bickford, D., Lohman, D. J., Kodhi, N. S., Nag, P. K., Meier, R., Winker, K., … Das, I. (2006). Cryptic species as a window on diversity and conservation. *Trends in Ecology & Evolution, 22*, 148–155. https://doi.org/10.1016/j.tree.2006.11.004
Boury-Esnault, N., Klautau, M., Bézac, C., Wulf, J., Solé-Cava, A. M. (1999). Comparative study of putative conspecific sponge populations from both sides of the Isthmus of Panama. *Journal of the Marine Biological Association of the United Kingdom, 79*, 39–50.
Brown, B. (2007). Coral reefs of the Andaman Sea: An integrated perspective. In R. N. Gibson, R. J. Atkinson & J. D. Gordon, (Eds.), *Oceanography and marine biology: An annual review* (vol. 45, pp. 173–194). Boca Raton, FL: CRC Press. http://doi:10.1201/9781420050943.ch5
Calcinar, B., Bavestrello, G., & Cerrano, C. (2005). Excavating sponge species from the Indo-Pacific Ocean. *Zoological Studies, 44*, 5–18.
Calcinar, B., Cerrano, C., & Bavestrello, G. (2007). Three new species and one re-description of *Aka*. *Journal of the Marine Biological Association of the United Kingdom, 87*, 1355–1365. https://doi.org/10.1017/S0025315407058377
A new clionaid sponge infests live corals

Calcinai, B., Cerrano, C., Bavestrello, G., & Sarà, M. (1999). Biology of the massive symbiotic sponge Cliona nigricans (Porifera: Demospongiae) in the Ligurian Sea. Memoirs of the Queensland Museum, 44, 77–83.

Calcinai, B., Cerrano, C., Sarà, M., & Bavestrello, G. (2000). Boring sponges (Porifera, Demospongiae) from the Indian Ocean. Italian Journal of Zoology, 67, 203–219. https://doi.org/10.1080/11250000009356314

Cárdenas, P., & Rapp, H. T. (2013). Disrupted spiculogenesis in deep-water Geodiidae (Porifera, Demospongiae) growing in shallow waters. Invertebrate Biology, 132, 173–194. http://doi:10.1111/ivb.12027

Carter, H. J. (1887). Report on the marine sponges, chiefly from King Island, in the Mergui Archipelago, collected for the trustees of the Indian Museum, Calcutta, by Dr. John Anderson, F. R. S., superintendent of the museum. Zoological Journal of the Linnean Society, 21, 61–84. https://doi:10.1111/j.1096-3642.1887.tb00381.x

Carter, H. J. (1882). Some sponges from the West Indies and Acapulco, in the Liverpool Free Museum, described with general and classificatory remarks. Annals and Magazine of Natural History, 9, 266–301, 346–368, pls. XI–XII. https://doi.org/10.1080/00222938209459039

Chaves-Fonsegra, A., Marulanda-Gómez, A., Mueller, B., Lopez, J. V., & Zea, S. (2017). Cliona lativacuola is an ecophenotype and an ontogenic life stage of the coral excavating sponge Cliona delitrix. In B. Picton & C. Morrow (Eds.), Abstract book of the 10th World Sponge Conference (p. 58). Galway: National University of Ireland. Retrieved from: http://www.marine.species.org/porifera/porifera.php?psourcedetails&id=283952 (accessed 20 December 2018).

Chombard, C., Boury-Esnault, N., Tillier, A., & Vacelet, J. (1997). Polyphyley of ‘sclerosponges’ (Porifera, Demospongiae) supported by 28S ribosomal sequences. The Biological Bulletin, 193, 359–367. doi.org/10.1016/j.ympev.2011.03.020

Chompo, A. P. (1846). Zoophytes. United States Exploring Expedition during the Years 1838–1842 (pp. 1–120, 709–720). Philadelphia, PA: Lea and Blanchard.

Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9, 772.

De Lamarck, J.-B. M. (1816). Histoire naturelle des animaux sans verbes. Vol 2. Paris: Verdière, 568 pp.

De Paula, T. S., Zilberberg, C., Hajdu, E., & Lóbo-Hajdu, G. (2012). Morphology and molecules on opposite sides of the diversity gradient: four cryptic species of the Cliona celata (Porifera, Demospongiae) complex in South America revealed by mitochondrial and nuclear markers. Molecular Phylogenetics and Evolution, 62, 529–541. https://doi.org/10.1016/j.ympev.2011.11.001

Dendy, A. (1905). Report on the sponges collected by Professor Herdman, at Ceylon, in 1902. Ceylon Pearl Oyster Fisheries Supplementary Reports, 18, 57–246, pls. I–XVI.

Dendy, A. (1916). Report on the non-calcareous sponges collected by Mr. James Hornell at Okhamandal in Kattiavar in 1905-6. Report to the Government of Baroda on the Marine Zoology of Okhamandal in Kattiavar, 2, 93–146, pls. I–IV.

De, K., Sautya, S., Mote, S., Tsering, L., Patil, V., Nagesh, R., & Ingole B. (2015). Is climate change triggering coral bleaching in the tropical reef? Current Science, 109, 1379–1380.

De, K., Venkataraman, K., & Ingole, B. (2017). Current status and scope of coral reef research in India: a bio-ecological perspective. Indian Journal of Geo-Marine Sciences, 46, 647–662.

Devi, P., Wahidullah, S., Tonima, K., & D’Souza, L. (2011). Screening marine organisms for antimicrobial activity against clinical pathogens. Indian Journal of Geo-Marine Sciences, 40, 338–346.

Duchassaing de Fontbressin, P., & Michelotti G. (1864). Histoire naturelle des animaux sans verbes. Vol 2. Paris: Verdiere.

Fang, J. K. H., Schönberg, C. H. L., Mello-Athayde, M. A., Hoegh-Guldberg, O., & Dove, S. (2014). Effects of ocean warming and acidification on the energy budget of an excavating sponge. Global Change Biology, 20, 1043–1054. http://doi:10.1111/gcb.12369

Felsenstein, J. (1985). Phylogenies and the comparative method. The American Naturalist, 125, 1–15.

González-Rivero, M., Yakob, L., & Mumby, P. J. (2011). The role of sponge competition on coral reef alternative steady states. Ecological Modelling, 222, 1847–1853. https://doi.org/10.1016/j.ecolmodel.2011.03.020

Grant, R. E. (1826). Notice of a new zoophyte (Cliona celata) from the Firth of Forth. Edinburgh New Philosophical Journal, 1, 78–81.

Hill, M. S. (1999). Morphological and genetic examination of phenotypic variability in the tropical sponge Anthosigmmna varians. Memoirs of the Queensland Museum, 44, 239–247.

Hill, M. S., & Hill, A. L. (2002). Morphological plasticity in the tropical sponge Anthosigmmna varians, responses to predators and wave energy. The Biological Bulletin, 202, 86–95. http://doi:10.2307/1543225

Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez, E., … Hatzios, M. E. (2007). Coral reefs under rapid climate change and ocean acidification. Science, 318, 1737–1742. http://doi:10.1126/science.1152509

Holmes, G., Ortiz, J. C., & Schönberg, C. H. L. (2009). Bioerrosion rates of the sponge Cliona orientalis Thiele, 1900: Spatial variation over short distances. Facies, 55, 203–211. http://doi:10.1007/s10347-008-0165-1

Hussain, A., De, K., Thomas, L., Nagesh, R., Mote, S., & Ingole, B. (2016). Prevalence of skeletal tissue growth anomalies in scleractinian coral: Turbinaria mesenterina of Malvan marine sanctuary, Eastern Arabian Sea. Diseases of Aquatic Organisms, 121, 79–83. http://doi:10.3354/dao03038

Immanuel, T., Krishnan, P., & Raghunathan, C. (2015). An updated report on the diversity of marine sponges of the
Andaman and Nicobar Islands. In K. Venkataraman & C. Sivaperuman (Eds.), Marine faunal diversity in India. Taxonomy, ecology and conservation (pp. 3–13). Amsterdam: Academic Press. http://doi.org/10.1016/B978-0-12-801948-1.00001-X

Kiruba-Sankar, R., Chadha, N. K., Dam-Roy, S., Sawant, P. B., Saharan, N., & Krishnan, P. (2016). Marine sponges as biological indicator of oligotrophic Andaman waters. Indian Journal ofGeo-Marine Sciences, 45, 338–341.

Kumar, A. (1925). Report on some tetraxonid sponges in the Indian Museum. Records of the Indian Museum, 27, 211–229.

Leal, C. V., de Paula, T. S., Lobo-Hajdu, G., Schönberg, C. H. L., & Esteves, E. L. (2016). Morphological and molecular systematics of the “Cliona viridis” complex from south-eastern Brazil. Journal of the Marine Biological Association of the United Kingdom, 96, 313–322. https://doi.org/10.1017/S0025315415001642

Longo, C., Cardone, F., Pierri, C., Mercurio, M., Mucciolo, S., Marzano, C. N., & Corriero G. (2017). Sponges associated with coralligenous formations along the Apulian coasts. Marine Biodiversity, 1–13. https://doi.org/10.1007/s12526-017-0744-x

López-Victoria, M., & Zea, S. (2005). Current trends of space occupation by encrusting excavating sponges on Colombian coral reefs. Marine Ecology, 26, 33–41. https://doi.org/10.1111/j.1439-0485.2005.00336.x

Manikandan, S., Ganesapandian, S., Singh, M., Anand, M., & Kumaraguru, A. K. (2014). Impact of climate change induced coral bleaching in the northern part of Gulf of Mannar and Palk Bay, Southeast Coast of India. The Journal of Biological Sciences, 14, 276–283. https://doi.org/10.3923/jbs.2014.276.283

Manikandan, B., Ravindran, J., Mohan, H., Periasamy, R., Mani Murali, R., & Ingle, B. (2016). Community structure and coral health status across the depth gradients of Grande Island, Central west coast of India. Regional Studies of Marine Science, 7, 150–158. https://doi.org/10.1016/j.rsma.2016.05.013

Mercurio, M., Corriero, G., Liaci, L. S., & Gaino, E. (2000). Silica content and spicule size variations in Pellina seminibulosa, (Porifera: Demospongiae). Marine Biology, 137, 87–92. http://doi.org/10.1007/s002270000356

Moberg, F., & Folke, C. (1999). Ecological goods and services of coral reef ecosystems. Ecological Economics, 29, 215–233. https://doi.org/10.1016/S0921-8009(99)00009-9

Namboothri, N., & Fernando, S. A. (2012). Coral-boring fauna of the Great Nicobar Island. In K. Venkataraman, C. Raghunathan & C. Sivaperuman (Eds.), Ecology of Faunal Communities on the Andaman and Nicobar Islands (pp. 59–70). Berlin: Springer. http://doi:10.1007/978-3-642-28335-2_4

Neumann, A. C. (1966). Observations on coastal erosion in Bermuda and measurements of the boring rate of the sponge Cliona lampa. Limnology and Oceanography, 11, 92–108. https://doi.org/10.4319/lo.1966.11.0092

Pang, R. K. (1973). The systematics of some Jamaican excavating sponges (Porifera). Postilla of the Peabody Museum of Natural History, Yale University, 161, 1–75. https://doi.org/10.5962/bhl.part.24559

Perry, C. T., & Harborne, A. R. (2016). Bioerosion on modern reefs: impacts and responses under changing ecological and environmental conditions. In D. K. Hubbard, C. S. Rogers, J. H. Lipps & G. D. Stanley Jr. (Eds.), Coral reefs at the crossroads (pp. 69–101). Netherlands: Springer. http://doi:10.1007/978-94-017-7567-0_4

Raghunathan, C. (2015a). Littoral fauna diversity of Great Nicobar Island. Records of the Zoological Survey of India Occasional Papers, 369, 1–172.

Raghunathan, C. (2015b). Diversity of reef associated macrofauna of Rutland Island, Andaman and Nicobar Islands. Records of the Zoological Survey of India Occasional Papers, 370, 1–152.

Ridley, S. O., & Dendy, A. (1886). Preliminary report on the Monaxoniida collected by H.M.S. Challenger. Part I. Annals and Magazine of Natural History, 18, 325–351, 470–493. https://doi.org/10.1080/00222938609459982

Rosell, D., & Uriz, M. J. (2002). Excavating and endolithic sponge species (Porifera) from the Mediterranean, species descriptions and identification key. Organisms Diversity & Evolution, 2, 55–86. https://doi.org/10.1078/1439-6092-00033

Rützler, K. (1974). The burrowing sponges of Bermuda. Smithsonian Contributions to Zoology, 165, 1–32. https://doi.org/10.5479/si.00810282.165

Rützler, K. (2002). Impact of crustose clionid sponges on Caribbean reef corals. Acta Geologica Hispanica, 37, 61–72.

Schmidt, O. (1862). Die Spongien des Adriatischen Meeres. Leipzig: Wilhelm Engelmann.

Schönberg, C. H. L., Fang, J. K. H., & Carballo, J. L. (2017b). Bioeroding sponges and the future of coral reefs. In J. L. Carballo & J. J. Bell (Eds.), Climate change, ocean acidification and sponges (pp. 179–372). Cham: Springer International. http://doi:10.1007/978-3-319-59008-0_7

Schönberg, C. H. L. (1999). An improved method of tissue digestion for spicule mounts in sponge taxonomy. Memoirs of the Queensland Museum, 44, 524–533.

Schönberg, C. H. L. (2000). Bioeroding sponges common to the central Australian Great Barrier Reef: descriptions of three new species, two new records, and additions to two previously described species. Senckenbergiana Maritima, 30, 161–221. http://doi.org/10.1007/BF03042965

Schönberg, C. H. L. (2001). Small-scale distribution of Great Barrier Reef bioeroding sponges in shallow water. Ophelia, 55, 39–54. https://doi.org/10.1080/00352236.2001.10409472

Schönberg, C. H. L. (2002a). Substrate effects on the bioeroding demosome Cliona orientalis. 1. Bioerosion rates. PSZN1: Marine Ecology, 23, 313–326. https://doi.org/10.1046/j.1439-0485.2002.02811.x

Schönberg, C. H. L. (2002b). Sponges of the “Cliona viridis” complex”: A key for species identification. In Proceedings of the 9th International Coral Reef Symposium, Bali, 23–27 October 2000, vol. 1, pp. 295–300.

Schönberg, C. H. L. (2003). Substrate effects on the bioeroding demosome Cliona orientalis. 2. Substrate colonisation and tissue growth. Marine Ecology, 24, 59–74. https://doi.org/10.1046/j.1439-0485.2003.03812.x

Schönberg, C. H. L. (2006). Growth and erosion of the zooxanthellate Australian bioeroding sponge Cliona orientalis are enhanced in light. In Proceedings of the 10th International Coral Reef Symposium, Okinawa, 28 June–2 July, pp. 168–174.

Schönberg, C. H. L. (2008). A history of sponge erosion: from past myths and hypotheses to recent approaches. In M. Wisshak & L. Tapanila (Eds.), Current developments in bioerosion (pp. 165–202). New York: Springer. http://doi:10.1007/978-3-540-77598-0_9
Schönberg, C. H. L. (2013). Siphonodictyon type material: lost in history. In Poster at the 9th World Sponge Conference, Fremantle 2013. https://f1000research.com/posters/1094687 (accessed 20 December 2018).

Schönberg, C. H. L. (2015). Monitoring bioeroding sponges: using rubble, quadrat, or intercept surveys? *The Biological Bulletin*, 228, 137–155. Retrieved from: http://www.jstor.org/stable/24364005 (accessed 20 December 2018).

Schönberg, C. H. L., & Beuck L. (2007). Where Topsent went wrong: *Aka infesta* a.k.a. *Aka labynithica* (Demospongiae: Phloeodictyidae) and implications for other *Aka* spp. *Journal of the Marine Biological Association of the United Kingdom*, 87, 1459–1476. https://doi.org/10.1017/S0025315407058249

Schönberg, C. H. L., de Beer, D., & Lawton, A. (2005). Oxygen microsensor studies on zoanthellate clionaid sponges from the Costa Brava, Mediterranean Sea. *Journal of Phycolology*, 41, 774–779. http://doi:10.1111/j.1529-8817.2005.00108.x

Schönberg, C. H. L., Fang, J. K. H., Carreiro-Silva, M., Tribollet, A., & Wissak, M. (2017a). Bioerosion: the other ocean acidification problem. *International Council for the Exploration of the Sea, Journal of Marine Science*, 74, 895–925. http://doi:10.1093/icesjms/fsx254

Schönberg, C. H. L., Grass, S., & Heiermann, A. T. (2006). *Cliona minuscula*, sp. nov. (Hadromerida: Clionaidae) and other bioeroding sponges that only contain tylostyles. *Zootaxa*, 1312, 1–24. http://doi:10.5281/zenodo.173882

Schönberg, C. H. L., & Koh, W. K. W. (2005). Molecular identity of the unique symbiotic diatomflagellates found in the bioeroding demosponge *Cliona orientalis*. *Marine Ecology Progress Series*, 299, 157–166. http://doi:10.3354/meps299157

Schönberg, C. H. L., & Ortiz, J. C. (2009). Is sponge bioerosion increasing? In Proceedings of the 11th International Coral Reef Symposium, Fort Lauderdale, Vol. 1, pp. 7–11.

Schönberg, C. H. L., & Suwa, R. (2007). Why bioeroding sponges may be better hosts for symbiotic diatomflagellates than many corals. In M. R. Custódio, G. Lobo-Hajdu, E. Hajdu & G. Muricy (Eds.), *Porifera Research: Biodiversity, Innovation and Sustainability* (pp. 569–580). Rio de Janeiro: Museu Nacional.

Schönberg, C. H. L., & Wilkinson, C. R. (2001). Induced colonization of corals by a clionid bioeroding sponge. *Coral Reefs*, 20, 69–76. http://doi:10.1007/s003380100143

Schönberg, C. H. L., Wilkinson, C. R., & Hoppe, K. N. (1997). Coral skeletal destruction – boring sponges on the Great Barrier Reef. *Proc Great Barrier Reef Conf*, Townsville, Australia, 1996, Vol. 2, pp. 67–71.

Sollas, W. J. (1878). On two new and remarkable species of *Cliona*. *Annals and Magazine of Natural History*, 8, 395–401.

Spalding, M. D., Fox, H. E., Allen, G. R., Davidson, N., Ferdana, Z. A., Finlayson, M. A., … Martin, K. D. (2007). Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. *BioScience*, 57, 573–83. https://doi.org/10.1641/B570707

Tamura, K., Stecher, G., Peterson, D., Filipski, A. P., & Kumar S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. *Molecular Biology & Evolution*, 30, 2725–2729. http://doi:10.1093/molbev/mskt197

Thiele, J. (1900). Die Kieselschwämme von Terrane. I. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft Frankfurt, 25, 19–80.

Thomass, P. A. (1972). Boring sponges of the reefs of Gulf of Mannar and Palk Bay. In C. Mukundam & C. S. G. Pillai (Eds.), Proceedings of the Symposium on Corals and Coral Reefs, Cochin, Mandapam Camp, India: Marine Biological Association of India, pp. 333–363.

Thomass, P. A. (1979). Boring sponges destructive to economically important molluscan beds and coral reefs in India. *Indian Journal of Fisheries*, 26, 163–200.

Thomass, P. A. (1989). Sponge fauna of Lakshadweep. *Bulletin of the Central Marine Fisheries Research Institute*, 43, 150–161.

Thomass, P. A. (1986). Demospongiae of Gulf of Mannar and Palk Bay. In James, P. S. B. R. (Ed.), *Recent advances in marine biology* (pp. 205–365). New Delhi: Today Tomorrow’s Printers and Publishers.

Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. *Nucleic Acids Research*, 22, 4673–4680.

Topsent, E. (1918). Eponges de San Thomé. *Essai sur les genres Spirastrella, Donatia et Chondrilla*. *Archives de Zoologie Expérimentale et Générale*, 57, 535–618.

Untawale, A. G., & Dhargalkar, V. K. (2002). Marine conservation strategies for Maharashtra coast. In D. Shahoo & P. C. Pandey (Eds.), *Advances in Marine and Antarctic Science* (pp. 107–120). New Delhi: APH Publication Corporation.

Vacelet, J., & Vasseur, P. (1971). Époges des récifs coralliens de Tulcar (Madagascar). *Tethys (supplement) 1*, 51–162.

Valisano, L., Pozzolini, M., Giovine, M., & Cerrano, C. (2012). Biosilica deposition in the marine sponge *Petrosia ficiformis* (Poirier, 1789): the model of primmorphs reveals time dependence of spiculogenesis. *Hydrobiologia*, 687, 259–273. http://doi:10.1007/s10750-011-0987-7

Van Soest, R. W. M. (2010). Suberites coronarius Carter, 1882. In Van Soest, R. W. M., Bours-Ensalat, N., Hooper, J. N. A., Rützler, K., de Voogd, N. J., Alvarez, B., … Downey, R. World Porifera Database. Retrieved from: http://www.marinespecies.org/porifera/porifera.php?p=taxdetails&id =194163 (accessed 20 December 2018).

Vollmer, S. V. & Palumbi, S. R. (2004). Testing the utility of internally transcribed spacer sequences in coral phylogenetics. *Molecular Ecology*, 13, 2763–2772. http://doi:10.1111/j.1365-294X.2004.02265.x

Weisza, J. B., Massaro, A. J., Ramsby, B. D., & Hill, M. S. (2010). Zooxanthellae symbionts shape host sponge trophic status through translocation of carbon. *The Biological Bulletin*, 219, 189–197. http://doi:10.1086/BBLv219n3p189

Wikipedia, (2002). *Indian Ocean*. Map. Retrieved from: https://commons.wikimedia.org/wiki/File%3AIndian_Ocean-CIA_WFB_Map.png (accessed 20 December 2018).

Wörheide, G., Nichols, S. A., & Goldberg J. (2004). Intragenomic variation of the rDNA internal transcribed spacers in sponges (phylum Porifera): implications for phylogenetic studies. *Molecular Phylogenetics and Evolution*, 33, 816–830. https://doi.org/10.1016/j.ympev.2004.07.005

Worm, B., Barbier, E. B., Beaumont, N., Duffy, J. E., Folke, C., Halpern, B. S., … Sala, E. (2006). Impacts of biodiversity loss on ocean ecosystem services. *Science*, 314, 797–790. http://doi:10.1126/science.1132294
Xavier, J. R., Rachello-Dolmen, P. G., Parra-Velandia, F., Schönberg, C. H. L., Breeuwer, J. A. J., & van Soest, R. W. M. (2010). Molecular evidence of cryptic speciation in the “cosmopolitan” excavating sponge Cliona celata (Porifera, Clionaidae). Molecular Phylogenetics and Evolution, 56, 13–20. http://doi:10.1016/j.ympev.2010.03.030

Yabe, H. & Sugiyama, T. (1935). A new living coral, Pseudosiderastrea tayamai, from Dobo in Wamar, Aru Islands. Proceedings of the Imperial Academy, Tokyo, 11, 373–375.

Yang, Q., Franco, C. M. M., Sorokin, S. J., & Zhang, W. (2017). Development of a multilocus-based approach for sponge (phylum Porifera) identification: refinement and limitations. Scientific Reports, 7, 414–422. http://doi:10.1038/srep41422

Yang, Q., Lv, N., Sorokin, S., Zhu, B., Franco, C., & Zhang, W. (2013). Molecular taxonomy of seventeen South Australian sponges by analyses of 28S rDNA, COI mtDNA and ITS2 rDNA sequences. In Poster at the 9th World Sponge Conference 2013, Fremantle, Australia, 4–8 November. Retrieved from: https://www.researchgate.net/publication/266157376_Molecular_taxonomy_of_South_Australian_sponges_by_analyses_of_28S_rDNA_COI_mtDNA_and_ITLS2_rDNA_sequences (accessed 20 December 2018).

Zea, S.V., & Weil, E. (2003). Taxonomy of the Caribbean excavating sponge species complex Cliona caribaea–C. aprica–C. langae (Porifera, Hadromerida, Clionaidae). Caribbean Journal of Science, 39, 348–370.