Experimenting to optimize topology parameters of a reinforced metal matrix composite using Taguchi technique of design of experiments

Praveen maruthur
Projects manager, Acharya Analytics, Kerala

Abstract. This experimental study is carried out to optimize topological parameters like wear rate and frictional force of an aluminium alloy AA2618 which is a metal matrix of composition Al-93.7%, Si-0.18%, Cu-2.30%, Mg-1.60%, Fe-1.1%, Ni-1.0%, Ti-0.07%. The aluminium alloy is reinforced with titanium di-oxide of 5% by weight. Taguchi design of experiment is used to carry out optimization study, taguchi method is he most reliable common and successful experiment technique for process performance improvement and raise quality of product. As per taguchi technique parameters chosen are sliding distance, speed and load with each property for 3 levels, so the test consists of 27 numbers according to L27 orthogonal array. Optimal parametric condition of minimum wear and frictional force are obtained through signal to noise analysis. For verification of results confirmation experiments is also conducted.

1. Introduction
Aluminium metal composite known as AMCs have emerged into primary material in heavy engineering applications such as brake drums, engine cylinder liners, piston head, as they have good wear resistance and load bearing capacity thanks for the reinforcement of ceramic particles into AMC’s because of which they have good properties [1]. Along with AMCs, PR-MMCs – particulate reinforced metal matrix composites have low density, high strength and stiffness and goof isotropic properties [2-3]. Now alloy materials like these have taken material science studies into new perspectives and because of their industrial application many engineering sectors have shown promising growth and ventured with high efficiency and minimum wear and service sections. Mechanical and material characteristics along with tribo contact condition and surface interaction are the most common tribological characters or parameters that adversely affect the discontinuously reinforced aluminium composites causing high friction and wear performance. Sannino et al, in his paper they have studied about the most common factors that are associated with above mentioned tribological parameters. Lower frictional force and coefficient of friction along with high resistance and seizure pressure were reported when studies were carried out on effect of particulate reinforcement on aluminium alloy [5-7]. In another study by Ramachandra et al [8] they concluded in the study that with addition of SiC particles erosive wear resistance and sliding wear resistance have enhanced even though corrosive resistance dropped. In another comparative study carried out in elevated temperature aluminium alloy Al 7075 reinforced with glass fibre along with base metal aluminium, the alloy showed better wear resistance than base metal [9]. Uyyuru et al [10] studied the effect of reinforcement volume fraction and size distribution of aluminium composites, Gomez de salazan et al [11] investigated the effect and influence of heat
treatment over wear behaviour of aluminium composites, whereas Guo et al [12] did experimentation to study the effect of aging on wear of metal matrix composite. Huge number of researches are carried out to study and understand behaviour, performance of composite materials. This study is carried to study and valuate optimized results of tribological parameters of titanium dioxide reinforced aluminium metal matrix using taguchi’s design of experiment methodology.

![Tribological properties diagram](image)

Figure 1: Tribological properties, cause and effect

2. **Experimentation**

2.1. **Materials**

AA2618 is a wrought aluminium alloy which is used as matrix material in the preparation of composite material. The AA2618 Aluminium alloy was developed for high temperature applications such as aircraft and automobile engine components which has the composition of Al-93.7%, Si-0.18%, Cu-2.30%, Mg-1.60%, Fe-1.1%, Ni-1.0%, Ti-0.07% and this alloy can withstand even a temperature of 204°C. Fe and Ni gives structural stability at high temperature along with the help of precipitation and dispersion hardening operations performed on it. TiO₂ is used as reinforcement material, which has very common utilization in many engineering applications. Liquid vortex method was implemented to add 5% by weight of TiO₂ Aluminium alloy matrix.

2.2. **Orthogonal array**

Sliding speed in m/s, load in N, sliding distance in ‘m’ are the three parameters chosen for experiment and each parameter was analyzed three times each as shown in table 1 in order to find the nonlinear behavior

- I. Sliding speed and load’
- II. Sliding speed and distance
- III. Load and distance
These are the selected two factor interactions. An L27 orthogonal array with 26 degree of freedom was selected with first column given to sliding speed, second column to load and the fifth column assigned to sliding distance. The remaining column were assigned to their interactions.

Table 1 Factors and details

Factors	Code	Units	Level 1	Level 2	Level 3
Sliding speed	S	m/s	1.2	2	3.1
Load	L	N	18	30.4	39
Sliding distance	D	M	700	1400	2100

2.3. Experimental procedure

Pin on disc type friction and wear monitoring test rig as shown in fig 2 was used in dry sliding condition of composite to study its tribological performance. The lever mechanism applies normal force on the stationary specimen while the disc rotates, and the counter body is made of hardened steel.

Orthogonal array of taguchi design of experiment was followed to conduct wear test and it is studied. Wear rate as a function of the sliding velocity, load and sliding distance. Wear rate and frictional force are noted while conducting the experiments. To make experimental test rig clean from debris and left over after finishing experimental run discs are cleaned using acetone. Mean response values of two experimental run are tabulated into Table 2.

Figure 2: Test rig
Table 2: Orthogonal array

Test	Sliding speed m/s	Load N	Sliding distance m	Wear rate mm³/N·m	Force N	S/N ratio (db) wear rate	S/N ratio (db) friction force
1	1.2	18	700	23	7.50	-26.60	-17.58
2	1.2	18	1400	56.5	7.15	-34.19	-17.22
3	1.2	18	2100	62.0	7.90	-34.98	-17.98
4	1.2	30.4	700	26.0	11.60	-27.62	-20.28
5	1.2	30.4	1400	56.0	11.45	-34.11	-20.90
6	1.2	30.4	2100	81.0	11.40	-37.37	-20.86
7	1.2	39	700	78.0	11.40	-36.84	-20.85
8	1.2	39	1400	81.0	13.58	-37.27	-22.22
9	1.2	39	2100	90.0	16.43	-38.18	-23.81
10	2	18	700	18.0	7.30	-24.57	-17.38
11	2	18	1400	55.5	6.59	-34.04	-14.26
12	2	18	2100	74.0	4.87	-36.50	-19.50
13	2	30.4	700	26.0	9.60	-27.62	-18.82
14	2	30.4	1400	61.0	8.87	-34.84	-19.66
15	2	30.4	2100	82.0	9.86	-37.38	-21.21
16	2	39	700	41.0	11.65	-31.46	-22.10
17	2	39	1400	64.0	13.30	-35.25	-22.04
18	2	39	2100	83.0	13.20	-37.48	-13.48
19	3.1	18	700	22.0	4.30	-26.23	-16.40
20	3.1	18	1400	46.0	6.50	-22.44	-16.02
21	3.1	18	2100	52.0	6.10	-34.48	-19.74
22	3.1	30.4	700	35.0	9.90	-30.12	-19.42
23	3.1	30.4	1400	44.0	9.50	-32.06	-19.54
24	3.1	30.4	2100	52.0	9.65	-33.48	-22.40
25	3.1	39	700	33.5	13.80	-29.75	-22.95
26	3.1	39	1400	65.0	13.00	-35.39	-22.86
27	3.1	39	2100	71.5	12.90	-36.20	-22.13

3. Results and discussion

3.1. Signal to noise ratio
For the comparative study under the experimentation, observations are transformed into signal to noise ratio depending on the type of parameters analysed during the study S/N ratio are very broadly classified. Here as the optimization parameters chosen are wear rate and frictional force, they come under “smaller is better” type quality characteristic and for them S/N ratio is formulated as

\[D = -10 \log_{10} \frac{1}{n} \sum_{i=1}^{n} Y_i^2 \] \hspace{1cm} (1)

\(n \) = number of tests in trial, here \(n = 2 \)

A high value of S/N ratio gives the idea that signal is higher than random effects of noise factors and always during the experimentation highest S/N ratio of parameter are chosen, the S/N ratio calculated using equation (1) is tabulated in Table 2.
3.2. Anova

Analysis of variance are used to analyse influence of parameters chosen sliding speed, sliding distance and applied load on performance characteristics. Table 3 and table 4 shows the results of ANOVA.

The percentage contribution factor is calculated using the largest total sum of squares values. From table 4 it is available that distance travelled (P=56.02%) is the most significant factor, while other two parameters contributes 17.69 % and 6.629 %. The table 4 and 5, both has got values of interactions between sliding speed*load, speed*distance, load*distance too.

Table 3 gives idea about variance of frictional force of composite. The test result gives information that load applied on the test material is the most significant factor which causes frictional force, whereas sliding speed and distance has negligible contribution.

| Table 3: ANOVA values of sliding wear |
Factors	DOF	Seq ss	Adj ss	Adj MS	F	P	% contribution
Sliding speed, S (m/s)	2	983.011	983.011	491.05	5.58	0.020	6.629
Load, L(N)	2	2300.425	2300.425	1152.2	14.40	0.002	17.69
Distance, D (m)	2	6868.935	6868.935	3433.4	44.94	0.000	56.02
S*L	4	544.571	544.571	135.40	1.82	0.118	2.95
S*D	4	420.224	420.224	104.11	1.72	0.215	1.90
L*D	4	193.357	193.357	47.59	1.31	0.543	1.00
Error	8	597.386	597.386	73.89	0.55	7.78	
total	26	11915.194	11915.194				

| Table 4: ANOVA values of frictional forces |
Factors	DOF	Seq ss	Adj ss	V	F	P	% contribution
Sliding speed, S (m/s)	2	10.416	10.416	10.416	2.67	0.073	2.694
Load, L(N)	2	208.640	208.640	208.640	72.87	0.000	84.472
Distance, D (m)	2	1.826	1.826	1.826	0.58	0.435	0.105
S*L	4	1.784	1.784	1.784	0.23	0.749	0.180
S*D	4	3.914	3.914	3.914	0.71	0.424	1.334
L*D	4	2.487	2.487	2.487	0.51	0.565	0.746
Error	8	10.356	10.356	10.356	7.155		
total	26	242.701	242.701				

3.3. Concurrent optimization of properties

This experiment is carried out to simultaneously optimize the parameters, wear rate and frictional force. The lowest wear rate is recorded at tenth run, when parameters were at second level of sliding speed and first level of load and distance.

Frictional force was least at nineteenth run, when parameters are at third level of sliding speed and first level of load and distance.

Harrington’s desirability function method has been used for multipurpose optimization and represented as.
\[h_i = \exp \left\{ -\exp (-y_i) \right\} \]

(2)

single value desirability as

\[H = \left\{ \prod_{i=1}^{n} h_i \right\}^{1/n} \]

(3)

Results are tabulated into Table 5 for comparison.

Table 5: concurrent optimization

Optimal levels	Sliding wear rate	Individual desirability H1	Frictional force	Individual desirability H2	Combined desirability H
S L D					
2 18 700	18	0.999	7.3	0.999	0.999
3.1 18 700	22	1	4.3	0.995	0.997

3.4. Confirmation experimentation

Experiments of confirmation is carried to verify that optimal solutions obtained would yield to quality improvement under study.

Table 6 shows comparative values of predicted wear rate and functional force with the actual error is difference between actual and predicted values of S/N ratio.

Table 6: verification

Sliding wear rate	Predicted optimum	Actual optimum	Frictional force	Predicted optimum	Actual optimum
Parameters level	S:3.1, L: 18, D: 700	22	S/N ratio -26.2364	Predicted error 0.286103	0.446
		21	-25.8584	Confident limit, 2\sigma 0.327	

4. Conclusion

1. Taguchi technique can be successfully used to analyse and predict sliding wear and frictional force as parameters of metal matrix composite
2. The study of variance of sliding wear rate gave evidence to conclude that distance travelled by the specimen is the important factor to be analysed above load and speed.
3. In case of study of variance of frictional force gave conclusive evidence that load is the important factor to be analysed above speed and distance.

References

1. Debdas Roy, Bikramjit basu, Amitava basu mallick. Tribological properties of Ti-aluminide reinforced Al-based In-situ- metal matrix composite. *Intermetallics* 13(2005) 733-740.
2. Mingzhao tan, Qibin Xin, Zhenghua Li, B Zong. Influence of SiC Al₂O₃ particulate reinforcements and heat treatments on mechanical properties and damage evolution of Al-2618 metal matrix composites. *Journal of material science* 36 (2001) 2045-2053
3. Nitsham A E. New application for aluminium based metal matrix composites. 1997. Vol. 54. *Light metal usage*. USA
4. A P Sannino, H J Rack. Dry sliding wear of discontinuously reinforced aluminium composite: review and discussion. *Wear* 189 (1995) 1-19
5. R N Rao, S Das, P V Krishna. Experimental investigation on the influence of SiC particulate reinforcement in Al alloy composites
6. Prasanna kumar M, Sadashivappa K, Prabhukumar G P, Basavarajappa S. Dry sliding wear behaviour of Garnet reinforced metal matrix composite. *Material science*, Vol 12, No.3.2006. PP. 209-213
7. G Ranganath, S C Sharma, M Krishna. Dry sliding wear of Garnet reinforced Zink/ Al MMCs. *Wear*. 251 (2001) 1408-1413
8. Ramachandran M, Radhakrishna. Sliding wear, slurry erosive wear and corrosive wear of Al/SiC composites. *Material science*. Vol 24. No.2.1.2006.
9. R K Uyyuru, M K Surappa, S Bruesthaug. Effect of reinforcement volume fraction and size distribution on the tribological behaviour of Al composite. *Wear*. 260(2006) 1248-1255
10. J Guo, X Yuan. The aging behaviour of SiC /Gr/6013 Al composites in T-4-T-6 treatments.
11. J H Hatch (ed), Aluminium: properties and physical metallurgy, ASM, Metals park, OH, (1988),371.
12. James C, Williams. Progress in structural materials for aerospace systems. *Acta materials*. 51 (2003) 5775-5799.