A case study of medicinal plants and their usage by the local community of Dilasaini Gaunpalika, Baitadi district, Nepal

Sandesh Thapa*, Sara Rawal, Anuska Prasai, Janak Adhikari, Sarika Bist and Anup Ghimire

Gokuleshwor Agriculture and Animal Science College, Baitadi, NEPAL
*Corresponding author’s E-mail: sand.thapa.2056@gmail.com

INTRODUCTION

Nepal is naturally and biologically enriched with diversification. Nepal is ranked 25th and 11th position in biodiversity richness in the world and Asia respectively. Nepal occupies about 0.1% of the global area, but harbor 3.2% and 1.1% of the world’s known flora and fauna. A total of 118 different ecosystems have been identified in Nepal (MoAD, 2017). From Nepal over 300 taxa of MAPs are traded with a total amount of 10,770 tonnes value worth of USD 60.09 million (Ghimire et al., 2016). The geographically important areas of Nepal include Nawalparasi, Chitwan, Bardiya, Kaski, Syangja, Illam, Lamjung, Humla, Jumla, Manang, Mustang, Solukhumbu, Nuwakot (MoAD, 2017).

The use of medicinal plants for the purpose of curing human diseases and disorders has had a long history. Popular observation on the use and efficiency of medicinal plants significantly contribute to the disclosure of their therapeutic properties, so that they are frequently prescribed, even if their chemical constituents are not always completely known (Maciel et al., 2002). Various national, as well as international research organizations, are involved in order to evaluate and authenticate the medicinal and scientific value of plants (Manandhar, 2002). Over the centuries, the knowledge of their medicinal value and healing properties has been transmitted within and among human communities (Silva et al., 2010). The tribal communities, significantly the women are involved in the continuation, preservation as well as the promotion of the local crop species, collecting and using the forest-based plants in daily dietary and...
Medicinal plants available in different niches are reported by several researchers. Pandey (1961) reported 73 medicinal plants for the first time in Nepal. 143 species of commercial MAPS were assessed from the gradient of Himalayas (Bhattarai and Ghimire, 2006), 51 species were reported from Palpa district which was climbing plants (Singh and Kumar, 2017). Medicinal plant reported from different districts of Nepal; 161 species were reported to use by Tamang community in Makwanpur district (Luitel et al., 2014), Tharu community of Rupandehi district used 45 species of 32 families and 41 genera (Acharya and Acharya, 2009), Magar community of Gulmi district used 161 species of plant for medicinal purpose (Acharya, 2012), 64 plant species were reported from Jhapa district used by Meche people (Rai, 2004), 105 vascular plants of medicinal importance was reported from Terhathum district (Rai, 2003). Nepal is considered to be reservoirs of medicinal plants and trade history from 2005 to 2014 showed an increase of, 27.49 million in 2005 to USD 60.09 million in 2014 (mean for the last 10 years being USD 39.34 million (Ghimire et al., 2016). IUCN has banned 11 species of medicinal plants on their export, collection, and transportation as they are threatened species (IUCN, 2000). Baitadi district is one of the under-developed districts in province 7 as well in the country. Peoples are found to be highly dependent on traditional medicines. Thus, the plant species used by them and their usage in the daily life of people living there have been focused on the study. The main objective of the study is to study the attitude of people’s perception towards the medicinal plants and the diversity of species used by the peoples found locally in the home gardens and fields.

MATERIALS AND METHODS

Study area

Dilasaini gaunpalika, Baitadi is a hilly district, falls in the province no. 7 of Nepal touching Jhulaghat, India to its border of Nepal. Gokuleshwar village is at an altitude of 800-950 masl (Figure 1). Two wards were selected for study viz. Ward no. 5 and ward no. 6. Dilasaini gaunpalika consists of a diversity of plants and among them, the plants used for the medicinal purpose by the peoples are found to be very limited. Thus, the plants used by the peoples were surveyed along with primary information and other information associated with the use of medicinal plants.

Research design and data collection

The total number of households in Dilasaini VDC is 497 (Source: Dilasaini gaunpalika). Sample size of 50 Households were selected from Dilasaini VDC on simple random basis as sampling frame size was determined (497). The sample size was adjusted to 10% as suggested by Ajayi et al. (2005) in social sciences research. A questionnaire survey was conducted and a random sampling survey was conducted to collect the information on the use of medicinal plants in Dilasaini gaunpalika. A random sampling survey was conducted and household respondents were interviewed. Also, a group discussion was conducted to gather information about the plant species used by them for the medicinal purpose along with their other uses. For identification of species and medicinal uses literature was cited (Kunwar et al., 2009; Kunwar et al., 2010; Rajbandari et al., 1995). Also, secondary information was obtained from the conference papers, bulletins and, websites.

Data analysis

MS Excel 2013 and IBM Statistical Package for the Social Sciences (SPSS) for descriptive analysis. Graphs are prepared through MS Excel 2013.

RESULTS AND DISCUSSION

Socio-economic characteristics

A total of 50 households were selected randomly for the study out of which 50% were males and 50% were females, aged between 14 to 78. The literacy rate of the area was 80% and 20% were found to be illiterate. Agriculture as the primary occupation is found to be of 86% respondents and 14% were found to be involved in agriculture as a part time job. None of the respondents were found to get training on the use and protection of medicinal plants (Field survey, 2019).

Usage of medicinal plants

All of the respondents were found to be involved in the usage of medicinal plants. The easy availability of medicinal plants got an advantage for the use. 94% of the respondents were found to use medicinal plants occasionally whereas 6% were found to use it regularly. Not all of the respondents were found to have a positive response regarding satisfaction gained from it. About 92% of the respondents are satisfied by the use of it whereas 8% of them are not satisfied with the use of it, Figure 2 (Field survey, 2019).

Marketing and preference of medicinal plants

Only 2% of the respondent was found to be involved in the marketing of medicinal plants whereas 98% do not involve in it.

Figure 1. Map of Baitadi district.
The response regarding the preference to medicinal plants over processed medicine was found to be 94% and 6% of them are attracted to processed medicine. A cross tab result regarding the preference to medicinal plants towards age showed a result which is presented in the Figure 3.

The respondents were found to use for major diseases only (Figure 4).

Diversity of medicinal plants investigated with their related information
Medicinal plants documented in the study were found to be used for curing of 40 ailments. The majority of the plant species were found to have ma multipurpose use for both medicinal and other various culinary uses. The majority of plant species were found to be used for skin infection, diarrhea, fever, common cold, cough, cuts and burns, asthma. However, diseases like heart pain, spleen enlargement, tumor, cancer, ulcer, astringent, fungal infection, weakness, eye inflammation, dandruff, jaundice, piles, gastritis were found to be cured by a few species. The details of the medicinal plant with their medicinal uses documented from the study are as shown in Table 1.

The respondents were found to use for major diseases only (Figure 4).

Diversity of medicinal plants investigated with their related information
Medicinal plants documented in the study were found to be used for curing of 40 ailments. The majority of the plant species were found to have ma multipurpose use for both medicinal and other various culinary uses. The majority of plant species were found to be used for skin infection, diarrhea, fever, common cold, cough, cuts and burns, asthma. However, diseases like heart pain, spleen enlargement, tumor, cancer, ulcer, astringent, fungal infection, weakness, eye inflammation, dandruff, jaundice, piles, gastritis were found to be cured by a few species. The details of the medicinal plant with their medicinal uses documented from the study are as shown in Table 1.

Medicinal plants assessed in the study were found to have multipurpose use including ornamental and food value. About 34 species were reported which was continuously used from generation to generation for the curing of 41 ailments. A similar use of plants for the medicinal purpose was reported by Kunwar et al. (2010) in far-west Nepal. The author reported 48 species of medicinal plants used for curing various ailments like asthma, tumor, diabetes, cold and cough, joint pain, gastritis and many more. The multipurpose use of medicinal plants was reported by Rokaya et al. (2010) with their culinary and ornamental uses. The author also reported that the medicinal plants were used chiefly for ophthalmic and gastrointestinal ailment. Similarly, Joshi et al. (2019) reported 44 medicinal plants for treating 62 ailments from Gyaneshwor community forest of Chitwan, moreover, Uprety et al. (2010) documented 56 species used for 60 medicinal formulations.

Medicinal plants are widely used to cure minor diseases like common cold, cough, fever, cuts and burns, swelling. Peoples attitude towards medicinal plants is high because of the low availability to hospital services and their faith towards medicinal plants. In our study, we found that people used medicinal plants for diseases like common cold, cough, diarrhea, dysentery, cuts& burns, skin infections, fungal infections, gastritis, pneumonia, asthma, bleeding gums, kidney stone, sinusitis, ulcer, earache, bowel pain and uterine contraction, purgatives, tumor, piles, ophthalmic disorder, bronchitis heart pain, and jaundice. Their ancestral preaching towards the use of medicinal plants was limited among family members. The use of medicinal plants towards major diseases is found to be low because of slow healing but also few people are attracted to it because of low or no side effects as compared to allelopathic medicine (Jawla et al., 2009). The proportion of the collection of the medicinal plant was high in forests followed by gardens and few are locally available in the market. The low land use in far west Nepal makes more reliable to collect medicinal plant from the field whose use is known (Kunwar et al., 2015). People’s high response for the use of the medicinal plant is also due to its easy availability and most of them are found around home gardens making them cost-effective (Joshi et al., 2019).
S.N.	Local name	English name	Family	Plant species	Plant parts used	Medicinal uses
1.	Chiuri	Butter nut tree	Butyraceae	Diplodrema butyreceae (Roxb.)	bark	diarrhea, ulcer
2.	Bael	Bengal quince	Rutaceae	Aegle marmelos (L.) Corrêa	bark, fruit	dyspepsia, fever, constipation
3.	Bhringraj	False daisy	Compositae	Edista prostrata (L.)	bark, leaves	fever, liver and urinary problem, wounds, skin diseases
4.	Bojho	Sweet flag	Acoraceae	Acorus calamus L.	root	sore throat, voice disorder, cough, carcinogenic
5.	Barro	Belleric myrobolan	Combretaceae	Terminalia bellirica-(Gaertn.) Roxb.	fruit	pils, astringent, laxative
6.	Ban lasun	Liliaceae	Liliaceae	Lilium nepalense D.Don	Bulb	relieving pain in cardiac region
7.	Pahade amla	Indian gooseberry	Phyllanthaceae	Phyllanthus emblica L.	root, seeds	jaundice, asthma, bronchitis, laxative
8.	Alainchi	Hill cardamom	Zingiberaceae	Amomum subulatum Roxb.	oil, rhizomes	lung diseases, reduce eye inflammation.
9.	Dhatura	Devil's snare	Solanaceae	Datura stramonium L.	leaves, flowers, fruits	leaves; used in inflammation of smoke to cure asthma, flower juice; used to treat ear ache, fruit juice; curing dandruff, falling hairs.
10.	Ghiukumari	Aloe vera	Asphodelaceae	Aloe vera (L.) Burm.f.	leaves	treat enlargement of spleen, wounds, tumor, ear diseases
11.	Harchur	Devil's fuge	Loranthaceae	Viscum album L.	stem	asthma, earache, seeds; emetic, purgative also cures hemicranias, weakness of limbs.
12.	Indrayani	Cucurbitaceae	Trichosanthus tricuspidata Lour.	roots, seeds	Fruits: astringent, laxative fine powered form; used in carious teeth, bleeding gums, ulcer	
13.	Harro	Myrobolan	Combretaceae	Terminalia chebula Retz.	fruits	Astringent, antiseptic, fever, cough, sinusitis
14.	Kaphal	Bayberry	Myricaceae	Myrica esculenta Buch.-Ham. ex D. Don	bark	dysentery, diarrhea, chronic fever
15.	Panchaule	Orchid	Orchidaceae	Dasyka rhiza hatagirea (D.Don) Soö	used as sedatives in bowel pain, uterine contractions	
16.	Sarpagandha	Serpentine	Apocynaceae	Rauwolfia serpentina (L.) Benth. ex Kurz	root	rhizome; used as anthelmintic, vermifuse, used as tonics
17.	Satuwa	Melanthaceae	Paris polyphylla var. alba H.Li & R.J.Mitchell	rhizome	Anti-pyretic; Cough Cold.	
18.	Tulsi	Holy basil	Lamiaceae	Ocimum tenuiflorum L.	Leaves, seeds	Bank used in diarrhea, dysentery, sore throat, bronchitis, blood impurities, ulcer Seeds: diabetes, Fruit: carminative, diuretic.
19.	Jamun	Black plum	Myrtaceae	Syzygium cumini (L.) Skeels	Bark, seeds, fruits	Kidney stone
20.	Pattharchatta	Bryophyllum	Crassulaceae	Kalanchoe pinnata (Lam.) Pers.	leaves	Cuts, wounds
21.	Gandhe jhar	Bluemink	Compositae	Ageratum houstonianum Mill.	Leaves, flowers	Fever, common cold, skin infections, wounds, fungal infections, gums disorder
22.	Neem	Neem	Meliaceae	Azadirachta indica A.Juss.	Leaves, bark	Diarrhea, teeth pain
23.	Kola/ kera	Banana	Musaceae	Musa paradisica L.	Leaves, fruits	Diarrhea
24.	Amba	Guava	Myrtaceae	Piliium guajava L.	Leaves, Fruits	Reduces fat
25.	Katgi	Iemon	Rutaceae	Ctris aurantifolia (Christm.) Swingle	fruits	Gastritis, jaundice, blood purifying, indigestion, asthma, skin diseases, leprosy
26.	Ghodtapre	Asiatic pennywort	Apiaceae	Centella asiatica (L) Urb.	leaves	Skin infections
27.	Ambala	Myrobalan	Phyllanthaceae	Zanthoxylum L.	fruits	Cuts, burns
28.	Kurjo	Silverfern	Cyatheaceae	Alpinia deolbata C.Presl	fronds	Cuts, wounds, pneumonia, fever
29.	Sayapatri	Marigold	Compositae	Tagetes erecta L.	leaves	Painkiller, gastritis, improve appetite
30.	Bhang	Mari juana	Cannabaceae	Cannabis sativa L.	Seeds, leaves	Skin infections, fungal infections
31.	Peepal	Moraceae	Ficus religiosa L.	Burns, skin infections		
32.	Aalu	Potato	Solanaceae	Solanum tuberosum L.	tuber	Common cold, Cough
33.	Adhuwa	Ginger	Zingiberaceae	Zingiber officinale Roscoe	Rhizome	Cough, common cold, chest pain
Conclusion

Medicinal plants are the basics for the household treatment of minor and some of the major diseases. The study showed the direct relationship of households with the use of medicinal plants. By the use of medicinal plants, 92% of the respondents were satisfied. 76% of the collected medicinal plants from gardens and 22% from forests and 2% from others like ayurveda. A total of 33 medicinal plants were documented to cure 40 ailments. The majority of the medicinal plants collected were found to be used for diseases like fever, diarrhea, cuts and burns, gastritis, heart pain, chest pain, a painkiller. Also, the uses of medicinal plants were reported against diseases like ulcer, diabetes, laxative, dyspepsia, anxiety, gum bleeding, jaundice, pneumonia, asthma, cancer and so on. The use of a single medicinal plant for multiple diseases increases the value of medicinal plants and an effective strategy should be adopted for exploring the use of it. Also, the lack of training related to medicinal plants in the study area showed less knowledge on the conservation of plants and their effective use and propagation. Thus, the concerned government/ non-government body should take effective action for exploring the use of medicinal plants.

Open Access: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) if the sources are credited.

REFERENCES

Acharya, R. (2012). Ethnobotanical study of medicinal plants of Resunga Hill used by Magar community of Badagaun VDC, Gulmi district, Nepal. Scientific World, 10(10): 54-65, https://doi.org/10.3126/sw.v10i10.6863

Acharya, R. and Acharya, K.P. (2009). Ethnobotanical study of medicinal plants used by Tharu community of Parroha VDC, Rupandehi district, Nepal. Scientific World, 7(7): 80-84, https://doi.org/10.3126/sw.v7i7.3832

Ajayi, O.O., Catherine, E.S., Carlson, B. and Farid, S. (2005). Designing Household Survey Samples: Practical Guidelines. United Nations. Series F No.98.

Bhattarai, K.R. and Ghimire, M. (2006). Commercially important medicinal and aromatic plants of Nepal and their distribution pattern and conservation measure along the elevation gradient of the Himalayas. Banko Janakari, 16 (1): 3-13, https://doi.org/10.3126/banko.v16i1.357

Ghimire, S.K., Awasthi, B., Rana, S., Rana, H.K., Bhattarai, R. and Pyakurel, D. (2016).

Export of medicinal and aromatic plant materials from Nepal. Botanica Orientalis: Journal of Plant Science, 10: 24-32, https://doi.org/10.3126/botorn.v10i0.21020

IUCN (2000). National Register of Medicinal Plants. Kathmandu: IUCN Nepal.

Jawal, S., Gupta, A.K., Singla, R. and Gupta, V. (2009). General awareness and relative popularity of allopathic, ayurvedic and homeopathic systems. Journal of Chemical and Pharmaceutical Research, 1: 105–112.

Joshi, A., Kalauri, D. and Bhattarai, S. (2018). Survey on usage of medicinal plants: a case from Chitwan district of Nepal. SAARC Journal of Agriculture, 16 (2): 129-141, https://doi.org/10.3239/sja.v16i2.40265

Kunwar, R.M., Acharya, R.P., Chowdhary, C.L. and Bussmann, R.W. (2015). Medicinal plant dynamics in indigenous medicines in far west Nepal. Journal of Ethnopharmacology, 163: 210–219, https://doi.org/10.1016/j.jep.2015.01.035

Kunwar, R.M., Shrestha, K.P. and Bussmann, R.W. (2010). Traditional herbal medicine in Far-west Nepal: A pharmacological appraisal. Journal of Ethnobiology and Ethnomedicine, 6, https://doi.org/10.1186/1746-4269-6-35

Kunwar, R.M. and Bussmann, R.W. (2009). Medicinal, aromatic and dye plants of Balkh and Darchula districts, Nepal Himalaya: status, uses and management in biodiversity at and Natura uistattung in Himalaya III. Edited by: Hartmann M, Weipert Journal of Naturekunde Museum, Erfurt, Germany 2009: 43-49

Luitel, D.R., Rokaya, M.B., Timsina, B. and Münzbergová, Z. (2014). Medicinal plants used by the Tamang community in the Makawanpur district of central Nepal. Journal of Ethnobiology and Ethnomedicine, 10 (5): 1-11, https://doi.org/10.1186/1746-4269-10-5

Maciel, M., Pinto, A.C., Veiga Jr., Valdir F., Gryenberg, N.F. and Echevarria, A. (2002). Plantas medicinais: a necessidade de estudos multidisciplinares. Química Nova, 25 (3): 429-438, https://dx.doi.org/10.1590/S0100-40422002000300016

Manandhar, N.P. (2002). Plants and people of Nepal. Timber Press Portland, Oregon USA; pp. 599.

MoAD. (2017). The State of Nepal's Biodiversity for Food and Agriculture. Kathmandu, Nepal: Ministry of Agriculture Development.

Joshi, A., Kalauni, D. and Bhattarai, S. (2018). Survey on usage of medicinal plants: a case from Chitwan district of Nepal. SAARC Journal of Agriculture, 16 (2): 129-141, https://doi.org/10.3239/sja.v16i2.40265

Nalapat, P. (1986). Medicinal plants of Nepal for Ayurvedic Drugs Government of Nepal, Department of Plant Resources, Thapathali, Kathmandu: Ministry of Agriculture Development.

Pandey, P. (1961). Distribution of medicinal plants in the Humla district of western Nepal. Journal of Ethnopharmacology, 130 (3), 485–504, https://doi.org/10.1016/j.jep.2010.05.036

Silva, N.C.C. and Fernandes, A. (2010). Biological properties of medicinal plants: a review of their antimicrobial activity. Journal of venomous animals and toxins including tropical diseases, 16 (3): 402-413.

Singh, A.G. and Kumar, A. (2017). Ethnomedicinal aspects of climbing plants of Palpa district, Nepal.

Thapa, S. (2019). Chiuri: A review on its multipurpose use in Nepal. International Journal of Agriculture and Environmental Research, 5 (4): 527-538.