Ruta graveolens L. Induces Death of Glioblastoma Cells and Neural Progenitors, but Not of Neurons, via ERK 1/2 and AKT Activation

Maria Teresa Gentile¹, Claudia Ciniglia¹*, Mafalda G. Reccia¹*, Floriana Volpicelli²,³, Monica Gatti⁴, Stefano Thellung⁴, Tullio Florio⁴, Mariarosa A. B. Melone⁵,⁶, Luca Colucci-D’Amato¹,⁶

¹ Laboratory of Molecular and Cellular Pathology, Department of Environmental, Biological and Pharmaceutical Science and Technologies, Second University of Naples, Caserta, Italy, ² Department of Pharmacy, University of Naples “Federico II”, Naples, Italy, ³ Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, CNR, Naples, Italy, ⁴ Section of Pharmacology, Department of Internal Medicine, University of Genova, Genova, Italy, and Centro di Eccellenza per la Ricerca Biomedica (CEBR) University of Genova, Genova, Italy, ⁵ Division of Neurology, Department of Clinical and Experimental Medicine and Surgery, Second University of Naples, Naples, Italy, ⁶ Centro Interuniversitario per la Ricerca in Neuroscienze (CIRN), Second University of Naples, Naples, Italy

* These authors contributed equally to this work.

Abstract

Glioblastoma multiforme is a highly aggressive brain tumor whose prognosis is very poor. Due to early invasion of brain parenchyma, its complete surgical removal is nearly impossible, and even after aggressive combined treatment (association of surgery and chemo- and radiotherapy) five-year survival is only about 10%. Natural products are sources of novel compounds endowed with therapeutic properties in many human diseases, including cancer. Here, we report that the water extract of Ruta graveolens L., commonly known as rue, induces death in different glioblastoma cell lines (U87MG, C6 and U138) widely used to test novel drugs in preclinical studies. Ruta graveolens’ effect was mediated by ERK1/2 and AKT activation, and the inhibition of these pathways, via PD98058 and wortmannin, reverted its antiproliferative activity. Rue extract also affects survival of neural precursor cells (A1) obtained from embryonic mouse CNS. As in the case of glioma cells, rue stimulates the activation of ERK1/2 and AKT in A1 cells, whereas their blockade by pharmacological inhibitors prevents cell death. Interestingly, upon induction of differentiation and cell cycle exit, A1 cells become resistant to rue’s noxious effects but not to those of temozolomide and cisplatin, two alkylating agents widely used in glioblastoma therapy. Finally, rutin, a major component of the Ruta graveolens water extract, failed to cause cell death, suggesting that rutin by itself is not responsible for the observed effects. In conclusion, we report that rue extracts induce glioma cell death, discriminating between proliferating/undifferentiated and non-proliferating/differentiated neurons. Thus, it can be a promising tool to isolate novel drugs and also to discover targets for therapeutic intervention.
Introduction

Gliomas comprise several types of primary brain tumors accounting for approximately 50% of all neoplasms of the central nervous system (CNS) [1–3]. In particular, glioblastoma, IV grade glioma, is characterized by marked cell proliferation and heterogeneity, invasiveness and neoangiogenesis, presenting rapid progression and high frequency of recurrence [4, 5]. Therefore, the prognosis for the patients is extremely poor, with mean survival of about 14 months, even after the introduction of temozolomide [6, 7], currently the gold standard cytotoxic drug for gliomas, and few patients survive beyond five years [8]. Other treatment options are limited, and in most cases ineffective and the survival rate for these patients remains extremely low [9–13]. The cell type that gives origin to glioblastoma is still an open issue. It has been reported that either dysregulated neural stem cells, or dedifferentiated glial and neuronal cells are involved in tumor development [14, 15]. Besides the derivation of the tumoral cells, recent evidence suggests that the malignant features of glioblastoma, including radio-chemo-resistance, relay on a subset of tumoral cells endowed with stem-like properties. Thus, this subpopulation has been named as cancer stem-like cells, tumor initiating cells, or cancer propagating cells [16–19].

A number of molecular abnormalities have been involved in the pathogenesis of glioblastoma, including growth factors (i.e. EGF, PDGF, HGF, VEGF) and growth factors receptors (EGFR and HGFR) that are often upregulated, overexpressed and/or constitutively activated. Among the intracellular signaling cascades, Ras-ERK1/2, PI3K/AKT, p53 and Rb play a key role in promoting cellular transformation. In particular, upon alterations of tyrosine kinase receptors, ERK1/2 and PI3K/AKT constitutive signaling seem to be constantly present in glioblastoma, and combined activation of RAS and AKT in neural progenitors is sufficient to induce glioblastoma in mice [20–30]. Targeting specific molecular alterations is a strategy for the development of cancer therapy. Thus, a number of selective inhibitors of molecules and/or pathways involved in the pathogenesis of glioblastoma have been developed and some of them entered clinical trials. Nevertheless, for reasons largely unclear, clinical response is poor. Therefore, there is still an urgent need for novel and effective therapies for treating these tumors.

On this issue, natural product-based molecules represent interesting therapeutic alternatives. Over the past decades, cell culture and animal studies allowed the identification of numerous dietary and botanical natural compounds with anti-cancer effects, including curcumin, epigallocatechin gallate, ellagic acid and resveratrol, extracted from the Curcuma longa, from the grape skin, from the green tea and from many fruits and vegetables, respectively [31–40]. Diet or botanical-derived compounds are also considered for cancer preventive properties, due to the fact that they are less toxic, easily available, cost-effective and better accepted by patients. Recently, several clinical trials have been started to investigate the preventive and therapeutic efficacy of natural compounds.

Ruta graveolens L. (R. graveolens) is a perennial plant, native of the Mediterranean region but cultivated throughout Europe and many Asian countries, including China, India and Japan. R. graveolens, commonly known as rue, is known as medicinal plant since ancient times and currently used, particularly in Asian countries, for treatment of various disorders such as aching pain, eye problems, rheumatism and dermatitis [41, 42]. The extract of the plant contains more than 120 compounds of different classes of natural products such as acridone alkaloids, coumarins, essential oils, flavonoids and furoquinolines [43]. The components of R. graveolens...
graveolens species are of great interest in medicinal chemistry, as these compounds show a broad range of biological activities, and a number of them are already used in medicine. Alcoholic extracts of R. graveolens have been tested for anti-proliferative effect on different types of cancer cells, pointing towards a potential therapeutic effect in oncology [44–49].

The present study was aimed to assess the effects of the aqueous extract of R. graveolens on the proliferation of human glioma cells and of neural progenitors from mouse CNS, in comparison to differentiated, non-proliferating neural cells. Moreover, we evaluated the effects of two drugs, temozolomide and cisplatin, widely used in the GBM chemotherapy on proliferating and non proliferating neural cells as comparators of the R. graveolens extract. Finally, we investigated the modulation of ERK1/2 and AKT activities as molecular correlate of the biological effects of R. graveolens extract.

Materials and Methods

Extract Preparation

R. graveolens is not a protected species, leaves were collected from plants conserved at the Experimental Section of Medicinal Plants at the Botanical Garden of Naples, Italy with the permission of the “Orto Botanico” director Prof. Paolo De Luca. Whole leaves were harvested before the flowering stages, during spring 2013. 250 g of leaves were chopped, boiled in 1 L of distilled water at 110°C for 5 minutes. The extract was subsequently filtered through 0.22 μm filters (MILLEXGP, MILLIPORE, Bedford, MA), frozen under liquid nitrogen and lyophilized (VirTis-SP Scientific). When necessary for the experiments, the aqueous extract (a.e.) was diluted with MEM/F12 medium to standard concentration of 50 mg/ml.

Cell cultures

A1 mes c-myc cells (A1) are an established cell line, generated in our laboratory as previously reported [50, 51]. A1 cells were cultured in MEM/F12 medium (Invitrogen, Milan, Italy) supplemented with 10% FBS (Invitrogen) and differentiated by serum withdrawal and stimulation with 1 mM cAMP (Sigma-Aldrich, Milan, Italy) and N2 supplement (Invitrogen). U87MG and U138 human glioblastoma cells (American Type Culture Collection, Rockville, MS, USA) [52–53] were cultured in DMEM (Invitrogen) supplemented with 10% FBS. C6 rat glioma cells [54] were cultured in Ham’s-F12 (Invitrogen) supplemented with 10% FBS. We investigated R. graveolens a.e. effects at the concentration of 0.01, 0.1, 1 and 10 mg/ml for 24, 48 and 72 hours. The results showed that the viability of U87MG, U138, C6 and A1 cells significantly decreased as the dose and the time increase with similar values at 1 and 10 mg/ml (data not shown). Rutin was purchased from Sigma-Aldrich and added at the indicated concentrations. For the inhibition tests, cells were pre-treated with 10 μM PD98058 (Sigma-Aldrich) or 1 μM wortmannin (Sigma-Aldrich) 1h before addition of R. graveolens a.e.

Cell proliferation assay

For in vitro cell proliferation assay, MTT and Trypan blue exclusion tests were performed. MTT assay: cells were seeded at 3x10^5 cells/well in a 24 well plate in the presence or absence of 1mg/ml of R graveolens a.e., and cell proliferation assessed after 24, 48 and 72 hours. According to manufacturer’s recommendations, 50 μl of 3-(4,5 dymethylthiazol-2-il)-2,5 diphenyl-2H-tetrazolium bromide (MTT) reagent (5mg/ml in PBS) was added to each well and, then, the cells were incubated at 37°C for three hours. One volume (500μl) of Stop mix solution (20% SDS in 50% dimethyl formamide) was added to each well and incubated at room temperature
for a minimum of 1h. The plate was read at 550nm and at 630 nm as the reference wavelength. Results are expressed as OD.

Trypan blue exclusion test: cells were seeded at 3x10^5 cells/well in a 24 well plate in presence or not of 1mg/ml of R. graveolens a.e. Cell proliferation was assessed 24, 48 and 72 h after R. graveolens a.e. addition. Cells were harvested and resuspended in 1ml of PBS. 0.2 ml of cell suspension were added to 0.5 ml of PBS and 0.3 ml of 0.4% of Trypan blue solution (Lonza, Walkersville, MD, USA). After 5 min at room temperature, cells were counted in a Burker’s chamber.

Necrosis/apoptosis analysis

The occurrence of necrosis and/or apoptosis was analyzed by Tali image-based cytometer (Invitrogen). Briefly, cells were seeded at 10^6 cells/plate in 60mm plates, treated or not with 1mg/ml of R. graveolens a.e. for 24, 48 and 72 h. Cells were harvested and resuspended in ABB (annexin binding buffer). 5 μl of Annexin V 488 Alexa Fluor was added to each sample and incubated at room temperature, in the dark, for 20 min. Cells were centrifuged and resuspended in 100 μl of ABB, 1 μl of Tali. Propidium iodide was added to each sample and incubated 5 min at room temperature, in the dark. Emitted fluorescence was analyzed by Tali image-based cytometry and expressed as number of cells/100. To confirm the data obtained by Tali image-based cytometry, a morphological apoptosis assay was performed. In particular, 48 hr after R. graveolens a.e. addition, cells were washed three times in PBS, and then fixed with 4% paraformaldehyde for 10min at room temperature (RT). Cells were rinsed with PBS, and 0.1μg/ml DAPI (4’6 diamido-2-phenylindole, for nuclei staining) was added for 10 min at RT. After washing with PBS, the cells were detected with fluorescence microscopy (AxioImager M2, Zeiss, Germany), and cells with condensed and/or fragmented chromatin indicative of apoptosis were not counted as living cells. 250 fields/well were counted using a Scion Image version 4.5 software.

Caspase 3 activation was assessed by means of CPP32 Colorimetric Kit (BioVision Inc., CA, USA). Briefly, cells were treated with 1mg/ml R. graveolens a.e. for 24 and 48 hours and harvested. 1x10^6 cells were incubated with chilled Cell Lysis Buffer for 10 minutes. Protein concentration was determined by Bradford method. 100 μg of total protein were additioned with 5μl of 4 mM DEVD-pNA caspase 3 substrate, and incubated at 37°C for 2 hours. Samples were read at 400 nm. Fold-increase in CPP32 activity was determined by comparing samples absorbance at 400 nm to the absorbance of the control extracts.

Protein analysis

Isolation of cytosolic protein was performed by scraping the cells in lysis buffer (25 mM Tris-HCl, pH 7.4, 1 mM EDTA, 1 mM EGTA, 0.1 mM NaF, 0.1 mM Na3VO4). Protein concentration was determined by the Bradford method. 20 μg of protein extract were subjected to a 10% SDS-PAGE and electroblotted on nitrocellulose membranes, which were blocked at room temperature for 1 h in blocking solution (5% milk in TBS-T), incubated overnight at 4°C with anti-phosphoERK1/2 or anti-phosphoAKT antibodies (1 μg/ml; Millipore, Milan, Italy). Membrane was incubated with peroxidase-conjugated anti-rabbit antibodies (1:10,000; GE Healthcare Life Sciences, Milan, Italy). Proteins were revealed by ECL (Millipore). Normalization was performed with anti-ERK1/2 or anti-AKT antibodies (1 μg/ml in TBS-T; Millipore) for 1 h at room temperature and incubated with peroxidase-conjugated anti-mouse IgG (1:10,000 in TBS-T). Proteins were revealed as above. The intensity of the bands was quantified by scanning densitometry using Scion Image version 4.5 software.
Statistical analysis
In all the experiments statistical significance was determined using the two-tailed \(t \)-test. All the experiments were repeated at least three times. \(P < 0.05 \) was considered a statistically significant difference.

Results
\(R. \) graveolens aqueous extract induces cell death of glioma cell lines and of proliferating mesencephalic cells.

To assess the antiproliferative effects of \(R. \) graveolens water extract, MTT reduction assay and Trypan blue exclusion test were performed on the human glioblastoma cell line U87MG. In particular, incubation for 24 h with 1 mg/ml \(R. \) graveolens a.e determined cell proliferation arrest, as compared to vehicle treated cells, and induced cell death for treatments of 48, 72 and 96 h (Fig. 1A). These results were confirmed by Trypan blue exclusion test (Fig. 1B). Similar results were also obtained in U138 and C6 human and rat glioma cells, respectively (S1 Fig). Moreover, as expected, MTT reduction assay, performed on the same cell lines in the presence of temozolomide (TMZ) or cisplatin (CIS), two alkylating agents currently used to treat human GBM, showed that the two drugs induced a significant cell death already after 24 h of treatment, (data not shown).

Similar experiments were performed on A1 cells. A1 cells derived from E11 mouse mesencephalon were immortalized by means of infection with a c-myc-carrying retroviral vector. These cells proliferate and remain undifferentiated when grown in the presence of serum whereas they cease to proliferate and differentiate, ensuing neurite outgrowth, neuronal electrophysiological properties, and expression of neuronal markers, when serum is withdrawn and cAMP is added.
Fig 2. *R. graveolens* a.e. induces cell death in proliferating but not in differentiated A1 cells. (A) Microphotographs of the mouse mesencephalic embryonic cell line A1 mes c-myc (A1). They are proliferating/undifferentiated in the presence of serum (left panel) but acquire a neuronal phenotype upon serum withdrawal and stimulation with cAMP (right panel). (B) MTT assay on proliferating A1 cells in control conditions (●) or treated with 1mg/ml *R. graveolens* a.e. (▲) for 24, 48, 72 and 96 hours. *p < 0.01 vs controls. (C) MTT assay on differentiated A1 cells in control conditions (●) or treated with 1mg/ml *R. graveolens* a.e. (▲) for 48 and 72 hours *p < 0.01 vs controls. (D) Trypan blue exclusion test on proliferating A1 cells treated (light grey) or not (dark grey) with 1mg/ml *R. graveolens* a.e. for 24, 48 and 72h; *p < 0.01 vs controls. (E) Trypan blue exclusion test on differentiated A1 cells treated (light grey) or not (dark grey) with 1mg/ml *R. graveolens* a.e. for 48 and 72h; *p < 0.01 vs controls.

doi:10.1371/journal.pone.0118864.g002

[50] (Fig. 2A). MTT reduction assay and Trypan blue exclusion test were performed on proliferating-undifferentiated and differentiated-non proliferating A1 cells to evaluate the effects of *R. graveolens* a.e on cell viability. As shown in Fig. 2B, the treatment of A1 cells with 1 mg/ml *R. graveolens* a.e. was able to inhibit cell proliferation in proliferating A1 cells after 24h, and to
induce cell death after 48 (viability decreases of about 120% as compared to vehicle treated conditions) and 72 h (viability decreases of about 200% as compared to vehicle treated conditions). Trypan blue exclusion test confirmed these results showing that 1 mg/ml *R. graveolens* a.e. significantly decreased the number of viable proliferating A1 cells, after 48 and 72 h of treatment (Fig. 2D). Conversely, both MTT assay and Trypan blue viability test performed on differentiated, non-proliferating A1 cells, revealed no statistically significant difference between control and treated cells after 48 hours from the addition of 1 mg/ml *R. graveolens* a.e. (Fig. 2C, E). Moreover, MTT reduction assay was performed on A1 cells, in both undifferentiated and differentiated conditions, treated with TMZ and CIS. CIS and TMZ caused a significant cytotoxicity in both proliferating (Fig. 3A and B) and differentiated-non proliferating A1 cells (Fig. 3C and D).

R. graveolens aqueous extract induces activation of ERK1/2 and AKT pathways.

To investigate the molecular mechanisms by which *R. graveolens* a.e. promotes cell death in glioma and A1 cells, we analyzed the modulation of ERK1/2 and AKT cascades by means of Western blotting. As showed in Fig. 4, *R. graveolens* a.e. increased ERK1/2 phosphorylation in all the glioma cell lines analysed as well as in non-differentiated A1 cells. In particular, as compared to control conditions, ERK1/2 phosphorylation was increased by 4-folds in C6 cells, as early as 5 min after the addition of the *R. graveolens* extract. The activation of ERK1/2 lasted up to 30 minutes with a further 1.5 fold increase 60 min after the treatment (Fig. 4A). In U138 cells, *R. graveolens* induced a significant increase in ERK1/2 phosphorylation 5 and 10 minutes after treatment with a return to control levels 60 minutes after treatment (Fig. 4B). Similar results were obtained in A1 cells (Fig. 4C) and in U87MG cells (Fig. 4D) in which after a rapid activation of ERK1/2, longer treatments resulted in a partial reduction of the effect. These results suggest that the antiproliferative effects of *R. graveolens* could be related to activation of the ERK1/2 pathway. Being this result rather unexpected, we verified this relationship.
analyzing cell proliferation in the presence of the selective MEK inhibitor PD98059. MTT assay performed on U87MG, U138, C6 and A1 cells treated or not with 1mg/ml \textit{R. graveolens} a.e. for 5, 10, 30 and 60 minutes. Two specific bands are observed respectively at 44 and 42 kDa. Each blot is representative of three separate experiments. The graphs show the relative quantitation of p-ERK1/2 and ERK1/2 in the different cell lines. Data are expressed as ratios of p-ERK/ERK. Asterisks represent \(p < 0.05 \) vs controls. (G-H) MTT assay in U87MG cells (E), A1 cells (F), C6 glioma cells (G) and U138 cells (H) treated for 48 hours with 1mg/ml \textit{R. graveolens} a.e. (R48), 10\(\mu \)M PD98059 (PD) or in combination (PD+R48); \(*p < 0.01 \) vs control conditions, \(p < 0.05 \) vs R48.

doi:10.1371/journal.pone.0118864.g004

\textit{R. graveolens} a.e. is able to induce ERK1/2 phosphorylation in glioma and in A1 proliferating neural cells. Western blotting detection of p-ERK1/2 and ERK1/2 proteins in C6 glioma cells (A), in U138 glioma cells (B), in A1 cells (C) and in U87MG (D) treated with 1mg/ml \textit{R. graveolens} a.e. for 5, 10, 30 and 60 minutes. Two specific bands are observed respectively at 44 and 42 kDa. Each blot is representative of three separate experiments. The graphs show the relative quantitation of p-ERK1/2 and ERK1/2 in the different cell lines. Data are expressed as ratios of p-ERK/ERK. Asterisks represent \(p < 0.05 \) vs controls. (G-H) MTT assay in U87MG cells (E), A1 cells (F), C6 glioma cells (G) and U138 cells (H) treated for 48 hours with 1mg/ml \textit{R. graveolens} a.e. (R48), 10\(\mu \)M PD98059 (PD) or in combination (PD+R48); \(*p < 0.01 \) vs control conditions, \(p < 0.05 \) vs R48.

\textit{R. graveolens} aqueous extract induces apoptosis in proliferating/undifferentiated A1 mes-c-myc cells.

In order to elucidate the type of cell death induced by \textit{R. graveolens} a.e., the analysis of annexin V binding and propidium iodide (PI) nuclear staining was used to discriminate between...
apoptotic and necrotic cell death, using Tali image-based cytometry. As shown in Fig. 6A, *R. graveolens* a.e. (1mg/ml), administered for 48 h, significantly increased the number of apoptotic A1 cells as compared to vehicle-treated cells. Noteworthy, no changes in the number of necrotic cells was observed in treated and control cells (Fig. 6A). These data were confirmed evaluating nuclear morphology after DAPI staining, in A1 cells before and after treatment with *R. graveolens* a.e. (1mg/ml) for 48 hours. As shown in Fig. 6B, the number of apoptotic nuclei (i.e. showing condensed and/or fragmented morphology) was significantly higher (+400%) in treated cells as compared to control conditions. Altogether, these data indicated that *R. graveolens* a.e. was able to induce cell death in proliferating A1 cells activating the apoptotic program. To corroborate this finding we measured caspase 3 activity in A1, U87MG and C6 cells. As shown in Fig. 6(C-E), *R. graveolens* a.e. treatment increased caspase 3 activity of about 100% over control cells in A1 mes c-myc cells and caused a 4-fold induction in U87MG and C6 cells. Moreover, preincubation with PD98059, wortmannin, or both inhibitors completely abolished this effect in both A1 and glioma cells (Fig. 6 C-E). The treatment with either inhibitor alone did not modulate caspase 3 activity as compared to untreated cells (data not shown).

Rutin, a major component of *R. graveolens* extract, does not affect proliferating A1 cells viability.

Rutin is a major component of *R. graveolens* extract [55]. Thus, we tested the effect of rutin on A1 undifferentiated/proliferating cells. MTT (data not shown) and Trypan blue (Fig. 7) assays demonstrate that rutin treatment (3μg/ml, 30μg/ml and 300μg/ml for 24, 48 and 72h) does not affect proliferating A1 cell viability, and suggest that rutin by itself is not responsible of the cell death induced by *R. graveolens* a.e.
Fig 6. *R. graveolens* a.e. induces apoptosis in A1 cells. (A) Cell cycle was analyzed by means of Tali image-based cytometry on proliferating A1 cells in control conditions (dark grey) and 48h after 1mg/ml *R. graveolens* a.e. treatment (light grey) *p<0.01 vs controls* (B) Number of apoptotic nuclei/100 cells treated (R48) or not (CTRL) with 1 mg/ml *R. graveolens* a.e. for 48 hours. *p<0.01 vs controls. (C-E) Caspase 3 activity expressed as absorbance at 400 nm in A1 cells (C), U87MG cells (D) and C6 cells (E) treated with vehicle (CTRL), 1mg/ml *R. graveolens* a.e. for 24 (R24) or 48 (R48) hours, 10μM PD98059 in combination with ml *R. graveolens* a.e. for 48 hours (PD+R48), 1μM wortmannin in combination with ml *R. graveolens* a.e. for 48 hours (W+R48) or the combination of the two inhibitors (PD+W+R48) for 48 hours. *p<0.01 vs control conditions.

doi:10.1371/journal.pone.0118864.g006

Fig 7. Rutin does not influence proliferating A1 cells viability. Trypan blue exclusion test on proliferating A1 cells treated with or without (control) increasing concentrations of rutin (3μg/ml, 30μg/ml and 300μg/ml) for 24, 48 and 72h.

doi:10.1371/journal.pone.0118864.g007
Discussion and Conclusions

A water extract from *R. graveolens* induces caspase 3-dependent apoptotic cell death of human and rat glioblastoma cells and of a neural progenitor cell line (A1 cells) derived from embryonic mouse CNS. Interestingly, upon differentiation and cell cycle exit, A1 cells become insensitive to the noxious effects of *R. graveolens* extract. GBM aggressive behaviour and poor prognosis is partly due to its peculiar ability to massively invade surrounding brain tissues preventing a complete surgical excision. The property of *R. graveolens* extract to discriminate between proliferating (i.e. tumor cells) and non-proliferating neural cells, as shown in this study, has a potential to be exploited as therapeutic tool in GBM. Further experiments, especially exploring at a molecular level these effects, are, however, required to definitely ascertain the absence of noxious effects on fully differentiated, non-proliferating neurons. It is worth noting that it was previously shown that *R. graveolens* extract or some of its components were able to exert anti tumor activity *in vivo* and *in vitro* [56, 57]. In particular, *R. graveolens* extract in combination with calcium phosphate was shown to induce cell death of glioma cells but proliferation of peripheral blood limphocytes [56]. Although this study provided data showing that rue extract exerts both *in vitro* and *in vivo* therapeutic effects on brain tumors, it has been basically ignored in the literature. The reasons for that may depend upon different matters. Indeed, this study does not provide clues on the molecular mechanism(s) underlying the observed therapeutic effects. Moreover, rue extract was administered as a omeopathic solution in combination with CaPO4 and no explanation was given for that protocol. In addition, in literature there are contrasting results on the genotoxic and clastogenic effects of *R. graveolens* extract on healthy and tumor cells [58]. Thus, our study may provide a new spin on the use of *R. graveolens* extracts as a therapeutic tool. To this regard, it is worth noting that the concentrations of rue extract used in our experiments are significantly lesser than those tested by Preethi [58], and, in addition, we indicate a signal transduction pathway involved in the effects. Finally, it is of note that differently from the studies of Pathak [56] and Preethi [58] who tested the pharmacological effect of the alcoholic extract of *R. graveolens*, our study reported the antiproliferative effect of the water extract of the plant.

Drugs used to treat GBM, including temozolomide [59] and cisplatin [60], two alkylating agents that target the DNA of both cancer and normal cells and are currently used in first- and second-line treatment, respectively, cause cognitive impairment such as loss of memory and learning, which are even more severe in the case of childhood brain. Although the underlying cellular and molecular mechanisms are largely unknown, these side-effects, often referred to as “chemo-brain”, are likely due to normal brain cells damages [61]. Importantly, in our model these drugs, differently form *R. graveolens* extract, were not able to discriminate among glioma or proliferating A1 cells and differentiated A1 cells causing a significant cell death in all the cell populations analysed. Moreover, tumours treated with temozolomide or cisplatin develop chemo-resistance largely due to high methyl-guanine methyl transferase (MGMT) levels and to inactivation of mismatch repair enzymes MLH1 and MSH2 and over-expression of multi-drug resistance proteins, respectively [61]. Thus, it is important to explore new, more efficacious and less toxic therapeutic approaches. Terrestrial and marine life can generate a number of compounds, termed secondary metabolites, in response to intense ecological competition in order to survive in their environment. Most of these compounds are endowed with biological properties, including anti-cancer and/or chemo-preventive effects [36, 37]. Preclinical and clinical studies have shown that water or alcoholic natural extracts, as a whole and/or molecules isolated from such extracts, can exert a number of different effects useful to fight tumors. In particular, natural compounds can exert anti-cancer activity by means of different mechanisms: i) directly killing transformed cells; ii) acting synergistically with classical chemotherapy
by improving its efficacy and, thus, allowing a lower dose of drug to be effective; iii) reverting
the drug-dependent resistance; iv) providing antioxidant molecules; and iv) activating and/or
enhancing endogenous anti-cancer defences, including immune system. A specific goal of anti-
cancer research is to find natural products endowed with toxicity against cancer cells but harm-
less to healthy cells. Although many natural products are promising therapeutic tools since in
preclinical studies they were shown to kill transformed cells, nevertheless few data are present
about their effects on normal tissues, in particular as far as CNS is concerned [62].

With regard to selectivity, in a previous collaborative study, together with marine eco-
physiologists and chemists, we reported that a compound extracted from microalgae exerts very
different effects according to the differentiation status of the cells [63]. In particular, 2–4, trans-
trans decadienal, an aldehyde presents in the microalgae diatomee, produces its noxious effects
on copepods, tiny crustaceans their natural predators, in a manner that is dependent upon cell
differentiation. Thus, diatomee-derived aldehydes are harmless towards adult copepods where-
as when used to feed mothers, they are teratogen to larvae, causing anatomic malformations
and death of eggs. We showed that this differentiation-dependent mechanism is maintained
along the phylogenies. In fact decadienal causes apoptotic cell death in the undifferentiated,
proliferating mammalian neural cell line A1, generated from embryonic mouse mesenceph-
lon, whereas, upon differentiation and cell cycle exit, the same cells become unresponsive to
the noxious effects of the same compound. It seems that 2,4, trans-trans decadienal and
R. graveolens share the same selective effects on proliferating/undifferentiated and non-proliferat-
ing differentiated neural cells, at least in the A1 cellular model.

Rutin, the major component of R. graveolens water extract that we administered on cells,
was not able, even at high concentrations, to affect the viability of A1 cells grown under prolif-
erating, undifferentiated cells, thus indicating that either rutin is necessary but not sufficient to
elicit cell death or even that other compounds present in minor amounts in R. graveolens a.e.
are responsible for most of the observed biological effects. Further experiments will assess the
involvement of rutin and/or of other compounds within R. graveolens water extract in deter-
mining the biological effects observed.

Interestingly, as far as R. graveolens antiproliferative intracellular signalling, we show the R.
graveolens extract stimulates the phosphorylation/activation of both ERK1/2 and AKT. A num-
ber of natural compounds are able to interfere with ERK1/2 and AKT activation. In turn, in
many instances, perturbation of ERK1/2 and AKT signalling is responsible for anti-cancer ef-
fects. ERK1/2 and AKT signalling have been classically related to cell proliferation and survival.
Indeed many mutated oncogenes cause the constitutive activation of these pathways and con-
tribute to cell transformation [64–67]. In fact, selective ERK1/2 and AKT inhibitors or recep-
tor-mediated reduction of the activity of these kinases have been shown to halt uncontrolled
cell proliferation or to kill transformed cells [68–74]. Nevertheless, the biological effects of
ERK1/2 and AKT are cell context- and/or stimulation mode-dependent. For instance, as far as
ERK1/2 is concerned, its activation can elicit, on the one hand, either proliferation or differen-
tiation and cell cycle exit, and on the other, either cell survival or cell death, according to the in-
tensity and/or timing of stimulation [75, 76]. We found that R. graveolens-induced cell death
decreases, in both glioma and A1 cells, upon blocking, by means of selective inhibitors, ERK1/2
or AKT, thus showing that, in our experimental conditions, ERK1/2 and AKT, at least partly,
mediate the toxic effects. Similar results were obtained analyzing caspase 3 activity induced by
R. graveolens. Indeed, caspase 3 was abolished upon inhibition of ERK1/2 and/or AKT activity
by PD98059 or wortmannin. As a possible mechanism by which increased ERK activity may
result in antiproliferative effects, it was reported, in a different cell context (i.e. CHO cells), that
the antiproliferative activity of somatostatin was related to ERK1/2-dependent induction of the
cell cycle inhibitor p21cip1 [77]. Further experiments are required to identify the molecules
involved also in the signalling cascade originated by *R. graveolens*. However, a similar paradoxical activation of both ERK1/2 and AKT was reported in glioma cell lines to mediate the antiproliferative activity of adiponectin [78], confirming that in glioma cells over-activation of these kinase cascades is responsible of antiproliferative effects. Moreover, in A549 lung carcinoma cells, quercetin, a metabolite in the degradation pathway of rutin, was shown to induce activation of ERK and, as a consequence, of caspase-3 and apoptosis. In turn, activation of MEK-ERK was required for quercetin-induced apoptosis [79].

Finally, although the precise mechanisms of the anti-proliferative action of rue extract are unknown, there are evidence suggesting that the action of flavonoids might be mediated by their interaction with aryl hydrocarbon receptor or estrogen binding sites, which have been shown to be occupied by flavonoid-like molecule with growth inhibitory properties [80–82].

In conclusion, our data show that *R. graveolens* a.e. is endowed with potent antitumoral activity in human glioma cells and in undifferentiated cells originated from mouse embryonic brain, whereas it results harmless towards the same differentiated, non-proliferating cell line. Thus, it represents a potential new therapeutic tool for brain cancer therapy and also for investigating the molecular events underlying the toxicity of neural cells to exogenous compounds.

Supporting Information

S1 Fig. *R. graveolens* extract induces cell death of C6 and of human U138 glioma cells. MTT assay on proliferating C6 glioma cells (A) and U138 human glioma cells (B) treated with vehicle (♦) or with 1mg/ml *R. graveolens* a.e. (■), *p*<0.01 vs control conditions. (TIF)

Acknowledgments

We are deeply grateful to Prof. Giovanni Aliotta (Naples) for sharing with us his previous work on *Ruta graveolens* and for illuminating discussions.

Author Contributions

Conceived and designed the experiments: LCDA TF. Performed the experiments: MTG MGR CC MG ST. Analyzed the data: LCDA TF MTG FV. Contributed reagents/materials/analysis tools: LCDA TF FV MABM. Wrote the paper: LCDA.

References

1. Preusser M, de Ribaupierre S, Wöhrer A, Erridge SC, Hegi M, Weller M, et al. Current concepts and management of glioblastoma. Ann Neurol. 2011; 70: 9–21. doi:10.1002/ana.22425 PMID: 21786296
2. Johnson BE, Mazor T, Hong C, Barnes M, Aihara K, McLean CY, et al. Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science. 2014; 343: 189–193. doi:10.1126/science.1239947 PMID: 24336570
3. Mielcke TR, Mascarello A, Filippi-Chiela E, Zanin RF, Lenz G, Leal PC, et al. Activity of novel quinoline-derived chalcones on in vitro glioma cell proliferation. Eur J Med Chem. 2012; 48: 255–264. doi:10.1016/j.ejmech.2011.12.023 PMID: 22209415
4. Youland RS, Schornas DA, Brown PD, Nwachukwu C, Buckner JC, Giannini C, et al. Changes in presentation, treatment, and outcomes of adult low-grade gliomas over the past fifty years. Neuro Oncol. 2013; 15: 1102–1110. doi:10.1093/neuonc/not080 PMID: 23814262
5. Shibahara I, Sonoda Y, Shoji T, Kanamori M, Saito R, Inoue T, et al. Malignant clinical features of anaplastic gliomas without IDH mutation. Neuro Oncol. 2014; 17: 136–144. doi: 10.1093/neuonc/nou112 PMID: 24958096
6. Cheng YP, Lin C, Lin PY, Cheng CY, Ma HI, Chen CM, et al. Midkine expression in high grade gliomas: Correlation of this novel marker with proliferation and survival in human gliomas. Surg Neurol Int. 2014; 5: 78. doi: 10.4103/2152-7806.133205 PMID: 24949221
7. Kamson DO, Mittal S, Robinette NL, Muzik O, Kupsky WJ, Barger GR, et al. Increased tryptophan uptake on PET has strong independent prognostic value in patients with a previously treated high-grade glioma. Neuro Oncol. 2014; 16: 1373–1383. doi: 10.1093/neuonc/nou042 PMID: 24670609

8. Vredenburgh JJ, Desjardins A, Reardon DA, Friedman HS. Experience with irinotecan for the treatment of malignant glioma. Neuro Oncol. 2009; 11: 80–91. doi: 10.1215/15228517-2008-075 PMID: 18784279

9. Van den Bent MJ, Hegi ME, Stupp R. Recent developments in the use of chemotherapy in brain tumours. Eur J Cancer. 2006; 42: 582–588. PMID: 16427778

10. Hilario A, Sepulveda JM, Perez-Nuñez A, Salvador E, Millan JM, Lagares A, et al. A prognostic model based on preoperative MRI predicts overall survival in patients with diffuse gliomas. AJNR Am J Neuroradiol. 2014; 35: 1096–1102. doi: 10.3174/ajnr.A3837 PMID: 24457819

11. Yi L, Hou X, Zhou J, Xu L, Ouyang Q, Liang H, et al. HIF-1α Genetic Variants and Protein Expression Confer the Susceptibility and Prognosis of Gliomas. Neuromolecular Med. 2014; 16: 578–586. doi: 10.1007/s12017-014-8310-1 PMID: 24929654

12. Réme T, Hugnot JP, Bièche I, Rigau V, Burel-Vandenbos F, Prévot V, et al. A Molecular Predictor Reassesses Classification of Human Grade II/III Gliomas. PLoS One. 2013; 8: e66574. PMID: 23805239

13. Oszvald Á, Quick J, Franz K, Güresir E, Szelényi A, Vatter H, et al. Resection of gliomas in the cingulate gyrus: functional outcome and survival. J Neurooncol. 2012; 109: 341–348. doi: 10.1007/s11060-012-0898-0 PMID: 22660921

14. Friedmann-Morvinski D, Bushong EA, Ke E, Soda Y, Marumoto T, Singer O, et al. Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science. 2012; 338: 1080–1084. doi: 10.1126/science.1226929 PMID: 23087000

15. Friedmann-Morvinski D, Verma IM. Dedifferentiation and reprogramming: origins of cancer stem cells. EMBO Rep. 2014; 15: 244–253. doi: 10.1002/embr.201338254 PMID: 24531722

16. Ilkanizadeh S, Lau J, Huang M, Foster DJ, Wong R, Frantz A, et al. Glial progenitors as targets for transformation in glioma. Adv Cancer Res. 2014; 121: 1–65. doi: 10.1016/B978-0-12-800249-0.00001-9 PMID: 24889528

17. Tamura K, Aoyagi M. Stem cells and the origin of different glioma subtypes. Response. J Neurosurg. 2014; 120: 1010–1011. PMID: 24809083

18. Gronych J, Pfister SM, Jones DT. Connect four with glioblastoma stem cell factors. Cell. 2014; 157: 525–527. doi: 10.1016/j.cell.2014.04.001 PMID: 24766799

19. Florio T, Barbieri F. The status of the art of human malignant glioma management: the promising role of targeting tumor-initiating cells. Drug Discov Today. 2012; 17: 1103–1110. doi: 10.1016/j.drudis.2012.06.001 PMID: 22704957

20. Li L, Puliyappadamba VT, Chakraborty S, Rehman A, Vemireddy V, Saha D, et al. EGFR wild type antagonizes EGFRvIII-mediated activation of Met in glioblastoma. Oncogene. 2015; 34: 129–34. doi: 10.1038/onc.2013.534 PMID: 24362532

21. Xie J, Ma YH, Wan M, Zhan RY, Zhou YQ. Expression of dedifferentiation markers and multilineage markers in U251 glioblastoma cells with silenced EGFR and FGFR genes. Oncol Lett. 2014; 7: 131–136. PMID: 24348834

22. Auf G, Jabouille A, Delugin M, Guérit S, Pineau R, North S, et al. High epiregulin expression in human U87 glioma cells relies on IRE1α and promotes autocrine growth through EGF receptor. BMC Cancer. 2013; 13: 597. doi: 10.1186/1471-2407-13-597 PMID: 24330607

23. Burrell K, Singh S, Jalali S, Hill RP, Zadeh G. VEGF regulates region-specific localization of perivascular bone marrow-derived cells in Glioblastoma. Cancer Res. 2014; 74: 3727–3739. doi: 10.1158/0008-5472.CAN-13-3119 PMID: 24820020

24. Clara CA, Marie SK, de Almeida JR, Wakamatsu A, Oba-Shinjo SM, Uno M, et al. Angiogenesis and expression of PDGF-C, VEGF, CD105 and HIF-1α in human glioblastoma. Neuropathology. 2014; 34: 343–352. doi: 10.1111/neup.12111 PMID: 24612214

25. McNamara MG, Sahebjam S, Mason WP. Emerging biomarkers in glioblastoma. Cancers (Basel). 2013; 5: 1103–1119. doi: 10.3390/cancers5031103 PMID: 24202336

26. Höland K, Boller D, Hagel C, Dolski S, Tresal A, Pardo OE, et al. Targeting class IA PI3K isoforms selectively impairs cell growth, survival, and migration in glioblastoma. PLoS One. 2014; 9: e94132. doi: 10.1371/journal.pone.0094132 PMID: 24718026

27. Lee JS, Xiao J, Patel P, Schade J, Wang J, Deneen B, et al. A novel tumor-promoting role for nuclear factor IA in glioblastomas is mediated through negative regulation of p53, p21, and p53A. Neuro Oncol. 2014; 16: 191–203. doi: 10.1093/neuonc/not167 PMID: 24305710
28. Zheng H, Ying H, Yan H, Kimmelman AC, Hiller DJ, Chen AJ, et al. p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature. 2008; 455: 1129–1133. doi: 10.1038/nature07443 PMID: 18948956

29. Holland EC, Celestino J, Dai C, Schaefer L, Sawaya RE, Fuller GN. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet. 2000; 25: 55–57. PMID: 10802656

30. Sun Y, Zhang W, Chen D, Lv Y, Zheng J, Li L, Leung PS. Use of herbal medicines and natural products: An alternative approach to overcoming the apoptotic resistance of pancreatic cancer. Int J Biochem Cell Biol. 2014; 53C: 224–236.

31. Haghi, Matin MM, Bahrami AR, Iranshahi M, Saeinasab M, Haghi F. In vitro investigation of anticancer, cell-cycle-inhibitory, and apoptosis-inducing effects of diversin, a natural prenylated coumarin, in bladder carcinoma cells. Z Naturforsch C. 2014; 69: 99–109. PMID: 24783030

32. Wang CY, Bai XY, Wang CH. Traditional chinese medicine: a treasured natural resource of anticancer drug research and development. Am J Chin Med. 2014; 42: 543–559. doi: 10.1142/S0192415X14500359 PMID: 24871650

33. Mace TA, King SA, Ameen Z, El Naggar O, Young G, Riedl KM, et al. Bioactive compounds or metabolites from black raspberries modulate T lymphocyte proliferation, myeloid cell differentiation and Jak/STAT signaling. Cancer Immunol Immunother. 2014; 63: 889–900. doi: 10.1007/s00262-014-1564-5 PMID: 24893859

34. Li L, Leung PS. Use of herbal medicines and natural products: An alternative approach to overcoming the apoptotic resistance of pancreatic cancer. Int J Biochem Cell Biol. 2014; 53C: 224–236.

35. Velázquez KT, Enos RT, Narsale AA, Puppa MJ, Davis JM, Murphy EA, et al. Quercetin supplementation attenuates the progression of cancer cachexia in ApcMin/+ mice. J Nutr. 2014; 144: 868–875. doi: 10.3945/jn.113.136837 PMID: 24759931

36. Skropeta D, Wei L. Recent advances in deep-sea natural products. Nat Prod Rep. 2014; 31: 999–1025. doi: 10.1039/c3np70118b PMID: 24871201

37. Luo F, Gu J, Chen L, Xu X. Systems pharmacology strategies for anticancer drug discovery based on natural products. Mol Biosyst. 2014; 10: 1912–1917. doi: 10.1039/c4mb00105b PMID: 24802653

38. Kubozkina I, Al’terman I, Schneider B. Specific accumulation and revised structures of acridone alkaloid inspired phenylmethylene hydantoins with potent in vitro and in vivo antitumor activities via suppression of Brk and FAK signaling. Org Biomol Chem. 2014; 12: 5295–5303. doi: 10.1039/c4ob00553h PMID: 24927150

39. Skropeta D, Wei L. Recent advances in deep-sea natural products. Nat Prod Rep. 2014; 31: 999–1025. doi: 10.1039/c3np70118b PMID: 24871201

40. Zhuang W, Long L, Zheng B, Ji W, Yang N, Zhang Q, et al. Curcumin promotes differentiation of glioma stem/progenitor cells by inducing autophagy. Cancer Sci. 2012; 103: 684–690. doi: 10.1111/j.1349-7006.2011.02198.x PMID: 22192169

41. Conway GA, Slocumb JC. Plants used as abortifacients and emmenagogues by Spanish New Mexicans. J Ethnopharmacol. 1979; 1: 241–261. PMID: 232204

42. Kuzovkina I, Al’terman I, Schneider B. Specific accumulation and revised structures of acridone alkaloid inspired phenylmethylene hydantoins with potent in vitro and in vivo antitumor activities via suppression of Brk and FAK signaling. Org Biomol Chem. 2014; 12: 5295–5303. doi: 10.1039/c4ob00553h PMID: 24927150

43. Gutiérrez-Pajares JL, Zúñiga L, Pino J. Ruta graveolens aqueous extract retards mouse preimplantation embryo development. Reprod Toxicol. 2003; 17: 667–72. PMID: 14613818

44. Rathee M, Shyhi GL, Sindhu G, Helen A. Inhibitory effect of Ruta graveolens L. on oxidative damage, inflammation and aortic pathology in hypercholesteromic rats. Exp Toxicol Pathol. 2011; 63: 285–90. doi: 10.1016/j.etp.2010.01.007 PMID: 20163942

45. Rathee M, Sindhu G, Helen A. Anti-inflammatory effect of quinoline alkaloid skimmianine isolated from Ruta graveolens L. Inflamm Res. 2013; 62: 367–376. doi: 10.1007/s00011-013-0588-1 PMID: 23344232

46. Fadlalla K, Watson A, Yehualaeshet T, Turner T, Samuel T. Ruta graveolens extract induces DNA damage pathways and blocks Akt activation to inhibit cancer cell proliferation and survival. Anticancer Res. 2011; 31: 233–241. PMID: 21273604

47. Brower Va. Back to nature: extinction of medicinal plants threatens drug discovery. J Natl Cancer Inst. 2008; 100: 838–839. doi: 10.1093/jnci/djn199 PMID: 18544733

48. Li JW and Vederas JC. Drug discovery and natural products: end of an era or an endless frontier? Science. 2009; 325: 161–165. doi: 10.1126/science.1168243 PMID: 19589993
49. Pollio A, De Nauale A, Appetiti E, Aliotta G, Touwaide A. Continuity and change in the Mediterranean medical tradition: *Ruta* spp. (*Rutaceae*) in Hippocratic medicine and present practices. J Ethnopharmacol. 2008; 116: 469–482. doi: 10.1016/j.jep.2007.12.013 PMID: 18276094

50. Colucci-D’Amato GL, Tino A, Pernas-Alonso R, ffrench-Mullen JM, di Porzio U. Neuronal and glial properties coexist in a novel mouse CNS immortalized cell line. Exp Cell Res. 1999; 252: 383–91. PMID: 10527628

51. Gentile MT, Nawa Y, Lunardi G, Florio T, Matsui H, Colucci-D’Amato L. Tryptophan hydroxylase 2 (*TPH2*) in a neuronal cell line: modulation by cell differentiation and NRSF/rest activity. J Neurochem. 2012; 113: 963–970. doi: 10.1111/jnc.12004 PMID: 22958208

52. Bastida E, Ordinas A, Escolar G, Jamieson GA. Tissue factor in microvesicles shed from U87MG human glioblastoma cells induces coagulation, platelet aggregation, and thrombogenesis. Blood. 1984; 64: 177–184. PMID: 6733271

53. Rehemtulla A, Murphy P, Dobson M, Hart DA. Purification and partial characterization of a plasminogen activator inhibitor from the human glioblastoma, U138. Biochem Cell Biol. 1988; 66: 1270–1277. PMID: 3149898

54. Benda P, Lightbody J, Sato G, Levine L, Sweet W. Differentiated rat glial cell strain in tissue culture. Science. 1968; 161: 370–371. PMID: 4873531

55. Chen CC, Huang YL, Huang FI, Wang CW, Ou JC. Water-soluble glycosides from *Ruta graveolens*. J Nat Prod. 2001; 64: 990–992. PMID: 11473445

56. Pathak S, Multani AS, Banerji P, Banerji P. *Ruta* selectively induces cell death in brain cancer cells but proliferation in normal peripheral blood lymphocytes: A novel treatment for human brain cancer. Int J Oncol. 2003; 23: 975–982. PMID: 12963976

57. Réthy B, Zupkó I, Minorics R, Hohmann J, Ocsosvzki I, Falkay G. Investigation of cytotoxic activity on human cancer cell lines of arborinine and furanoacridones isolated from *Ruta graveolens*. Planta Med. 2007; 73: 41–48. PMID: 17109253

58. Preethi KC, Nair CK, Kuttan R. Clastogenic potential of *Ruta graveolens* extract and a homeopathic preparation in mouse bone marrow cells. Asian Pac J Cancer Prev. 2008; 9: 763–769. PMID: 19256773

59. Ruggiero A, Rizzo D, Attinà G, Lazzareschi I, Maurizi P, Ridola V. Phase I study of temozolomide combined with oral etoposide in children with malignant glial tumors. J Neurooncol. 2013; 113: 513–518. doi: 10.1007/s11060-013-1145-z PMID: 23666235

60. Züstovich F, Lombardi G, Della Puppa A, Rottilo A, Scienscza R, Pastorelli D. A phase II study of cisplatin and temozolomide in heavily pre-treated patients with temozolomide-refractory high-grade malignant glioma. Anticancer Res. 2009; 29: 4275–4279. PMID: 19846986

61. Gong X, Schwartz PH, Linskey ME, Bota DA. Neural stem/progenitors and glioma stem-like cells have differential sensitivity to chemotherapy. Neurology. 2011; 76: e69–e70. doi: 10.1212/WNL.0b013e318215b914 PMID: 21444897

62. Ianora A, Miraldo A, Poulet SA, Carotenuto Y, Buttino I, Romano G. et al. Aldehyde suppression of copepod recruitment in blooms of a ubiquitous planktonic diatom. Nature. 2004; 429: 403–407. PMID: 15164060

63. Califano D, D’Alessio A, Colucci-D’Amato GL, De Vita G, Monaco C, Santelli G. et al. A potential pathogenetic mechanism for multiple endocrine neoplasia type 2 syndromes involves ret-induced impairment of terminal differentiation of neuroepithelial cells. Proc Natl Acad Sci U S A. 1996; 93: 7933–7937. PMID: 8755580

64. Colucci-D’Amato GL, D’Alessio A, Califano D, Cali G, Rizzo C, Nitsch L. et al. Abrogation of nerve growth factor-induced terminal differentiation of ret oncogene involves perturbation of nuclear translocation of ERK. J Biol Chem. 2000; 275: 19306–19314. PMID: 10858459

65. Califano D, Rizzo C, D’Alessio A, Colucci-D’Amato GL, Cali G, Bartoli PC et al. Signaling through Ras is essential for ret oncogene-induced cell differentiation in PC12 cells. J Biol Chem. 2000; 275: 19297–19305. PMID: 10748077

66. Rizzo C, Califano D, Colucci-D’Amato GL, De Vita G, D’Alessio A, Dathan NA, et al. Ligand stimulation of a Ret chimeric receptor carrying the activating mutation responsible for the multiple endocrine neoplasmia type 2B. J Biol Chem. 1996; 271: 29497–29501. PMID: 8910618

67. Ye Q, Cai W, Zheng Y, Evers BM, She QB. ERK and AKT signaling cooperate to translationally regulate survivin expression for metastatic progression of colorectal cancer. Oncogene. 2014; 33: 1828–1839. doi: 10.1038/onc.2013.122 PMID: 23624914
69. Jing Y, Liu LZ, Jiang Y, Zhu Y, Guo NL, Barnett J, et al. Cadmium increases HIF-1 and VEGF expression through ROS, ERK, and AKT signaling pathways and induces malignant transformation of human bronchial epithelial cells. Toxicol Sci. 2012; 125: 10–19. doi:10.1093/toxsci/kfr256 PMID: 21984483

70. Chappell WH, Steelman LS, Long JM, Kempf RC, Abrams SL, Franklin RA, et al. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: rationale and importance to inhibiting these pathways in human health. Oncotarget. 2011; 2: 135–164. PMID: 21411864

71. Brzezianska E, Pastuszak-Lewandoska D. A minireview: the role of MAPK/ERK and PI3K/Akt pathways in thyroid follicular cell-derived neoplasm. Front Biosci (Landmark Ed). 2011; 16: 422–439. PMID: 21196179

72. Shi Z, Hodges VM, Dunlop EA, Percy MJ, Maxwell AP, El-Tanani M, et al. Erythropoietin-induced activation of the JAK2/STAT5, PI3K/Akt, and Ras/ERK pathways promotes malignant cell behavior in a modified breast cancer cell line. Mol Cancer Res. 2010; 8: 615–626. doi: 10.1158/1541-7786.MCR-09-0264 PMID: 20353997

73. Barbieri F, Pattarozzi A, Gatti M, Porcile C, Bajetto A, Ferrari A, et al. Somatostatin receptors 1, 2, and 5 cooperate in the somatostatin inhibition of C6 glioma cell proliferation in vitro via a phosphotyrosine phosphatase-eta-dependent inhibition of extracellularly regulated kinase-1/2. Endocrinology. 2008; 149: 4736–4746. doi: 10.1210/en.2007-1762 PMID: 18566118

74. Massa A, Barbieri F, Aiello C, Arena S, Pattarozzi A, Pirani P, et al. The expression of the phosphotyrosine phosphatase DEP-1/PTP dictates the responsivity of glioma cells to somatostatin inhibition of cell proliferation. J Biol Chem. 2004; 279: 29004–29012. PMID: 15123617

75. Deschênes-Simard X, Kottakis F, Meloche S, Ferbeyre G. ERKs in Cancer: Friends or Foes? Cancer Res. 2014; 74: 412–419. doi: 10.1158/0008-5472.CAN-13-2381 PMID: 24408923

76. Colucci-D’Amato L, Perrone-Capano C, di Porzio U. Chronic activation of ERK and neurodegenerative diseases. Bioessays. 2003; 25: 1085–1095. PMID: 14579249

77. Florio T, Yao H, Carey KD, Dillon TJ, Stork PJS. Somatostatin activation of mitogen-activated protein kinase via somatostatin receptor 1 (SSTR1). Mol Endocrinol. 1999; 13: 24–37. PMID: 9892010

78. Porcile C, Di Zazzo E, Monaco ML, D’Angelo G, Passarella D, Russo C, et al. Adiponectin as novel regulator of cell proliferation in human glioblastoma. J Cell Physiol. 2014; 229: 1444–1454. doi: 10.1002/jcp.24582 PMID: 24648185

79. Nguyen TT, Tran E, Nguyen TH, Do PT, Huynh TH, Huynh H. The role of activated MEK-ERK pathway in quercetin-induced growth inhibition and apoptosis in A549 lung cancer cells. Carcinogenesis. 2004; 25: 647–659. PMID: 14688022

80. Ranelletti FO, Ricci R, Larocca LM, Maggiano N, Capelli A, Scambia G, et al. Growth-inhibitory effect of quercetin and presence of type-II estrogen-binding sites in human colon-cancer cell lines and primary colorectal tumors. Int J Cancer. 1992; 50: 486–492. PMID: 1735617

81. Ashida H, Fukuda I, Yamashita T, Kanazawa K. Flavones and flavonols at dietary levels inhibit a transformation of aryl hydrocarbon receptor induced by dioxin. FEBS Lett. 2000; 476: 213–217. PMID: 10913616

82. Markaverich BM, Roberts RR, Alejandro MA, Clark JH. An endogenous inhibitor of (3H) estradiol binding to nuclear type II estrogen binding sites in normal and malignant tissues. Cancer Res. 1984; 44: 1515–1519. PMID: 6704964