Commensurate Spin Density Wave in LaFeAsO: A Local Probe Study

H.-H. Klauss,1 H. Luetkens,2 R. Klingeler,3 C. Hess,3 F.J. Litterst,4 M. Kraken,4 M.M. Korshunov,5,6 I. Eremin,5,7 S.-L. Drechsler,3 R. Khasanov,2 A. Amato,2 J. Hamann-Borrero,3 N. Leps,3 A. Kondrat,3 G. Behr,3 J. Werner,3 and B. Büchner3

1Institut für Festkörperphysik, TU Dresden, D-01069 Dresden, Germany
2Laboratory for Muon-Spin Spectroscopy, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
3Leibniz-Institut für Festkörper- und Werkstoffsforschung (IFW) Dresden, D-01171 Dresden, Germany
4Institut für Physik der Kondensierten Materie, TU Braunschweig, D-38106 Braunschweig, Germany
5Max-Planck-Institut für Physik Komplexer Systeme, D-01187 Dresden, Germany
6L.V. Kirensky Institute of Physics, Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk, Russia
7Institut für Mathematische Physik, TU Braunschweig, D-38106 Braunschweig, Germany

(Dated: August 28, 2008)

We present a detailed study on the magnetic order in the undoped mother compound LaFeAsO of the recently discovered Fe-based superconductor LaFeAsO$_{1-x}$F$_x$. In particular, we present local probe measurements of the magnetic properties of LaFeAsO by means of 57Fe Mössbauer spectroscopy and muon spin relaxation in zero external field along with magnetization and resistivity studies. These experiments prove a commensurate static magnetic order with a strongly reduced ordered moment of 0.25(5)μ_B at the iron site below $T_N = 138$ K, well separated from a structural phase transition at $T_S = 156$ K. The temperature dependence of the sublattice magnetization is determined and compared to theory. Using a four-band spin density wave model both, the size of the order parameter and the quick saturation below T_N are reproduced.

PACS numbers: 76.75.+i, 76.80.+y, 75.30.Fv, 74.70.-b

The recently discovered Fe-based superconductors LaFeAsO$_{1-x}$F$_x$ and the related materials in which La is substituted by Sm, Ce, Nd, Pr, and Gd, respectively, has triggered an intense research in the oxypnictides. Besides the high critical temperature above 50 K there are further striking similarities in the oxypnictides. Besides the high critical temperature above 50 K there are further striking similarities in the oxypnictides. Besides the high critical temperature above 50 K there are further striking similarities in the oxypnictides. Besides the high critical temperature above 50 K there are further striking similarities in the oxypnictides. Besides the high critical temperature above 50 K there are further striking similarities in the oxypnictides. Besides the high critical temperature above 50 K there are further striking similarities in the oxypnictides. Besides the high critical temperature above 50 K there are further striking similarities in the oxypnictides. Besides the high critical temperature above 50 K there are further striking similarities in the oxypnictides. Besides the high critical temperature above 50 K there are further striking similarities in the oxypnictides. Besides

LaFeAsO has been prepared by using a two-step solid state reaction method, similar to that described by Zhu et al. [10], and annealed in vacuum. The...
crystal structure and the composition were investigated by powder X-ray diffraction and wavelength-dispersive X-ray spectroscopy (WDX). From the X-ray diffraction data impurity concentrations smaller than 1 % are inferred. In order to investigate the magnetic order we have performed zero field \(\mu\)SR between 1.6 and 300 K. \(^{57}\)Fe Mössbauer spectroscopy experiments have been done in the temperature range 13 K to 180 K [source: \(^{57}\)Co-in-Rh matrix at room temperature; emission line half width at half maximum: 0.130(2) mm/s]. The results of these local probe experiments are compared with magnetization and resistivity data.

Typical Mössbauer spectra are shown in figure 1. Above 140 K, the spectra can be fitted with a single Lorentzian line with an isomer shift of \(S=0.52(1)\) mm/s representing LaFeAsO. This is in the typical range of low or intermediate spin Fe(II). Below 140 K, a splitting of the absorption line reveals the formation of a magnetic hyperfine field. In this temperature range the spectra have been analyzed by diagonalizing the hyperfine Hamiltonian including electric quadrupole and magnetic hyperfine interaction. The main result is the observation of a magnetic hyperfine field with a mean saturation value at low temperatures of \(B_{hf}(0)= 4.86(5)\) T. The data are consistent with a commensurate antiferromagnetic order of the iron spins. An incommensurate spin density wave can be ruled out since this would lead to a very broad hyperfine field distribution ranging from zero to a maximum field value. In our experiment the hyperfine field distribution is broadened only slightly indicating a slightly inhomogeneous magnetic state in our sample, which could be caused by small variations of the oxygen content. In order to properly describe the spectra we have used two sextets of equal strength which technically account for the broadening. Both sextets show an electric quadrupole splitting of \(QS \approx 0.3\) mm/s due to a small deformation of the FeAs tetrahedron below the structural phase transition \[15\].

The second important information from the Mössbauer experiments concerns the size of the ordered moment. The hyperfine field of 4.86 T is about one order of magnitude smaller than the observed hyperfine field for iron oxide compounds which exhibit a high ordered moment of \(2\mu_B\) [20]. This strongly contradicts all models for the magnetism in LaFeAsO based on local high spin Fe moments. The ordered moment at the Fe site in LaFeAsO can be estimated to 0.25(5) \(\mu_B\). The error bar in this determination mainly reflects the not well known influence of covalency, i.e. a possible delocalization of spin density from the Fe 3d to adjacent As atoms. It is well established that a strong covalency could, in principle, reduce the measured hyperfine field at the iron nucleus as determined by Mössbauer spectroscopy. However, electronic structure calculations reveal only a very small contribution from As orbitals to the electronic bands close to the Fermi level [20] suggesting that the influence of covalency on \(B_{hf}(0)\) is weak for LaFeAsO.

Further insight into the magnetic order is obtained from our \(\mu\)SR data. Representative spectra of LaFeAsO for temperatures above and below \(T_N\) are shown in fig. 2. For temperatures above \(T_N = 138\) K a weak Gaussian-Kubo-Toyabe [21] like decay of the muon spin polarization is observed with a relaxation rate of only 0.095(1) MHz which is typical for static and randomly oriented magnetic fields originating from nuclear moments. This relaxation is also found in superconducting LaFeAsO\(_{1-x}\)F\(_x\) with \(x=0.10\) and 0.075 [9]. Below \(T_N\) a spontaneous muon spin precession with a well defined frequency is observed which implies a well defined magnetic field at the muon site. This observation strongly supports our conclusion from the Mössbauer spectroscopy, i.e., an incommensurate spin density wave as well as a spin glass-like order can be excluded.

Analyzing the \(\mu\)SR data in detail proves that 100% of the sample volume magnetically orders at \(T_N\). A proper description of the spectra requires at least a two-component relaxation function indicating magnetically
different muon sites. For temperatures above \(\sim 70 \) K a well defined frequency is observed for about 70 % of the muons while about 30 % show a strong relaxation due to a broad static field distribution. This situation changes below 70 K where a third component with a low frequency precession (\(\approx 3 \) MHz) appears which is clearly visible in the raw data at 1.6 K (see Fig. 2). As can be seen from the temperature dependence of the signal fractions shown in Fig. 3 this signal develops on the cost of the strongly damped fraction.

The high precession frequency of the first signal implies that these muons reside very close to the Fe magnetic moments in the FeAs layers. We associate the weaker signals with more remote muon sites, most likely near the LaO layers. All muon sites show the development of magnetic order below \(T_N = 138 \) K. At present we have no explanation for the change of the weaker signal below 70 K but emphasize that it is intrinsic to LaFeAsO.

In the literature, evidence for spin density order has been extracted from magnetization and transport data. Corresponding measurements for our sample are displayed in figure 4. Both, the electrical resistivity and the magnetization show a clear anomaly at \(T_s \approx 156 \) K, i.e. well above the magnetic ordering temperature \(T_N \). Subsequent temperature dependent XRD studies [22] prove that at this temperature the tetragonal to orthorhombic structural phase transition occurs which has been observed in recent diffraction measurements [14, 15]. Anomalies of \(\rho \) and \(\chi \) are also found at \(T_N \) when the temperature derivatives are considered, as shown in figure 4. Both derivatives exhibit a peak-like anomaly at exactly the same temperature where the magnetic transition occurs according to our local probe studies.

Recently, the phase transition at \(T_S \) has been discussed in connection with the formation of an "electron nematic phase" and broken Ising symmetry [23, 24]. The pronounced anomalies of \(\rho \) and \(\chi \) clearly demonstrate an intimate coupling between the structural phase transition
on the one hand and the electronic and magnetic properties on the other hand. At T_S the conductivity starts to increase and, surprisingly, this increase becomes weaker at T_N, i.e., magnetic ordering does not cause a decrease of electron scattering. The decrease of χ at T_S shows an enhancement of antiferromagnetic correlations at the structural phase transition. The anomaly of χ at T_N is qualitatively very similar, but much weaker. Indeed, analyzing the magnetic specific heat, which is proportional to $\partial(\chi \cdot T)/\partial T$, yields a much smaller jump at T_N than at T_S. This strong impact of the structural transition on the magnetism is, however, not visible in our local probe experiments. At 140 K the μSR data show only a small volume fraction of $\approx 20\%$ with static local fields, above 145 K we can rule out any static local magnetic fields. This is typical for a small distribution of ordering temperatures within the powder sample. Moreover, there are no signatures of slow spin fluctuations on the timescale of the Mössbauer and the μSR experiment above this temperature.

In order to compare our results with theoretical models we analyse the temperature dependence of the magnetic order parameter obtained from the main muon spin precession frequency and the static magnetic hyperfine field B_{hf} measured by Mössbauer spectroscopy. As displayed in fig. 5 both quantities exhibit the same behavior.

In the following we analyze the experimental data within a conventional SDW picture. As has been shown previously23, the effective low-energy band structure of the undoped LaFeAsO can be modeled by a single-electron model Hamiltonian. For the four-band model considered here the effective interaction will consist of an on-site Hubbard intraband repulsion U and the Hund’s coupling J. There is also an interband Hubbard repulsion U', which however does not contribute to the RPA susceptibility. As shown by two of us earlier23 the main magnetic instability in the folded Brillouin Zone occurs at the antiferromagnetic wave vector $Q_{\text{AFM}} = (\pi, \pi)$ due to the interband nesting between the hole α- and the electron β-bands.16,25,22,27,28 Setting the Hund coupling to $J = 70$ meV and choosing $U = 320$ meV we obtain the ordering temperature $T_N = 138$ K using multiband RPA susceptibility.

Below T_N the condition for the SDW instability can be regarded as a mean-field equation for the SDW order parameter, Δ_{SDW}. Solving this equation self-consistently we obtain the temperature dependence of $\Delta_{SDW}(T)$ as shown in figure 5. Due to the multi-orbital character of the equation we find that the SDW gap reaches its saturation rather quickly below T_N and the resulting temperature dependence deviates from the usual $\sqrt{1 - (T/T_N)^2}$ temperature dependence. In the experiment a slightly stronger initial increase below T_N and further small differences between experiment and theory at lower temperatures are observed. This may be due to the importance of the thermal fluctuations neglected here and/or fine details of the band structure.

From the value $\Delta_{SDW}(T = 0\text{K}) = 31$ meV we can also estimate the magnetic moment per Fe site to be $\mu \approx 0.33 \mu_B$. Considering that this mean field model does not fully include quantum fluctuations a value larger than the experimentally observed one is expected.

In conclusion we present a detailed study of the magnetic order in LaFeAsO by means of the local probe techniques Mössbauer spectroscopy and μSR along with magnetization and resistivity studies. These experiments prove a commensurate static magnetic order with a strongly reduced ordered moment of $0.25(5) \mu_B$ at the iron site below $T_N = 138$ K, well separated from a structural phase transition at $T_S = 156$ K. A calculation using a four-band SDW model reproduces the size of the order parameter and the quick saturation below T_N.

We would like to thank M. Zhitomirsky, R. Moessner, and N.M. Plakida for useful discussions. We thank M. Deutschmann, S. Müller-Litvanyi, R. Müller and A. Köhler for experimental support in preparation and characterization of the samples. The work at the IFW Dresden has been supported by the DFG through FOR 538.

* Electronic address: h.klauss@physik.tu-dresden.de

\begin{thebibliography}{9}
\bibitem{1} Y. Kamihara et al., J. Am. Chem. Soc. 130, 3296 (2008).
\bibitem{2} X. H. Chen et al., Europhys. Lett. \textbf{82}, 57002 (2008).
\bibitem{3} Z.-A. Ren et al., Phys. Rev. Lett. \textbf{100}, 247002 (2008).
\bibitem{4} Z.-A. Ren et al., Europhys. Lett. \textbf{82}, 57002 (2008).
\bibitem{5} Z.-A. Ren et al., arXiv:0803.3603 (unpublished).
\bibitem{6} P. Cheng et al., Science in China G \textbf{51}, 719 (2008).
\bibitem{7} Z.-A. Ren et al., Chin. Phys. Lett. \textbf{25}, 2215 (2008).
\bibitem{8} D. J. Singh and M. H. Du, Phys. Rev. Lett. \textbf{100}, 237003 (2008).
\end{thebibliography}
[9] H. Luetkens et al., arXiv:0804.3115 (Phys. Rev. Lett. (to be published)).
[10] G. Giovannetti et al., arXiv:0804.0866 (unpublished).
[11] K. Haule et al., Phys. Rev. Lett. 100, 226402 (2008).
[12] S. Lebègue, Phys. Rev. B 75, 035110 (2007).
[13] C.Y. Liang et al., Supercond. Sci. Technol. 20, 687 (2007).
[14] T. Nomura et al., arXiv:0804.3569 (unpublished).
[15] C. Cruz et al., Nature 453, 899 (2008).
[16] J. Dong et al., Europhys. Lett. 83, 27006 (2008).
[17] F. Ma et al., arXiv:0803.3286 (unpublished).
[18] C. Cao et al., Phys. Rev. B 77, 220506 (2008).
[19] X. Zhu et al., Supercond. Sci. Tech. 21 (2008) 105001.
[20] N.N. Greenwood and T.C. Gibb, Mössbauer spectroscopy, London 1971.
[21] R.S. Hayano et al., Phys. Rev. B 20, 850 (1979).
[22] H. Luetkens et al., in preparation.
[23] C. Xu, M. Müller, and S. Sachdev, Phys. Rev. B 78, 020501 (2008).
[24] C. Fang et al., Phys. Rev. B 77, 224509 (2008).
[25] M. Korshunov, and I. Eremin, arXiv:0804.1793 (unpublished).
[26] I. Mazin et al., arXiv:0803.2740 (unpublished).
[27] H.-J. Zhang et al., arXiv:0803.1487 (unpublished).
[28] S. Raghu et al., Phys. Rev. B 77, 220503 (2008).