The effect of using Rice bran with enzymes on the production performance of turkey

A D AL-Door and A A Allaw*
College of Agriculture, University of Tikrit, Tikrit, Iraq.

* Corresponding author’s e-mail: drallaw@tu.edu.iq

Abstract. This study was conducted in the poultry field of the Department of Animal Production at the University of Tikrit, Faculty of Agriculture, and the aim of this study was to know the effect of using rice bran at a rate of (0, 15, 20%) with and without adding a mixture of enzymes containing amylase, protease and cellulose by 0.5 g/kg in turkey rations for a period of 10 weeks, 120 unsexed Bronze turkeys were used. The birds were distributed into six treatments, each treatment included four replicates (cage) five birds. The results showed a significant superiority (P ≤ 0.05). For the second treatment (0 % rice bran + 0.5 g/kg mixture of enzymes) in live body weight, weight gain, feed conversion efficiency, while it was significantly (P ≤ 0.05) superior to the sixth treatment (20% rice bran + 0.5 g/kg mixture of enzymes) in feed consumption compared to the third treatment, and there were no deaths in any of the study treatments throughout the experiment period.

1. Introduction

Poultry farmers are increasingly interested in employing low-cost agro-industrial wastes as an element in poultry feed to save feed costs. Most agroindustrial byproducts have drawbacks, such as excessive indigestible fiber, which prevents them from being used. [1]. Rice bran is a readily available and inexpensive feed item that contains anti-nutritional compounds. [2]. Complex fibrous materials should be avoided in monogastric animals such as broilers, and their incorporation should be limited. [3], because anti-nutritional substances have an impact on feed digestibility [4] the birds' nutritional availability [3] Cereal protein sources are commonly employed in chicken diets to cut down on feeding expenditures. However, their effectiveness in chicken diets is restricted by the amount of fiber in the diet, which contains compounds that are resistant to digestion in the small intestine; sugars are not digested by endogenous poultry enzymes as a result. [5]. Phytic acid is present. [6] This binds minerals, phosphorus, and proteins in the digestive tract, leading to reduced mineral and protein availability and inadequate feed nutrient absorption Because phytic acids have a high binding capacity, they reduce the viability of minerals and proteins, as well as nutrient absorption. Low nutrient absorption can also pollute the environment, particularly when phosphorus in the excrement is present. [7] Poultry is an important domesticated livestock species that supply high-quality protein and micronutrients in the form of meat and eggs. Feed is the single largest input in poultry production, accounting for 70-75 percent of
This study aims to know the effect of using rice bran with and without adding enzymes such as amylase, cellulose, and protease on the productive performance of turkey.

2. Materials and Methods

2.1 Bird management

This study was conducted in the poultry field of the Department of Animal Production _ College of Agriculture, Tikrit University, the objective of the experiment was to study the effect of adding three levels of rice bran (0, 15, 20%) with and without enzymes 0.5 g /kg of feed for a period of 10 weeks. The productive traits (live body weight, feed consumption, weight gain, feed conversion ratio) were studied. 120 unsexed Bronze turkeys were used. The birds were distributed into six treatments, each treatment included four replicates (cage) five birds, the average weight of the birds at the beginning of the experiment was 1180 g, starting from 28 days of age of the birds,

2.2. Nutritional treatments

The treatments were the following

T1: control transaction with out any addition
T2: Add enzymes 0.5 g/kg feed
T3: contains 15% rice bran.
T4: Rice bran contains 15% with enzymes, 0.5 g/kg of feed.
T5: contains 20% of rice bran.
T6: Rice bran contains 20% with enzymes 0.5 g/kg of feed.

2.3. Bird housing

The birds were housed in a field of dimensions (60 m long * 8 m wide * 2.5 m high). The birds were placed in ground cages made of iron, with dimensions (2 * 2 * 2) m. The floor of the cages was laid with sawdust with a thickness of 10 cm. Water and fodder (Ad-Libtum) were introduced and the lighting was continuous.

2.4. Enzyme source

Use the commercial product LABAZYME supplied by New Pharm, which contains enzymes and is supported by the following beneficial bacteria: Protease (2.750 Colony starch unit CSU), Amylase (5.500 Starch laysis unit SLU) and Cellulase (27.5 Filter Paper Unit FPU).

2.5. Source and chemical structure of rice bran

The rice bran was brought from one of the specialized laboratories for rice production in Najaf Governorate. The rice cultivar was chemically analyzed in a laboratory at the College of Agriculture - Tikrit University as in the table below.
Table (1) of chemical analysis for raw rice bran

Material %	Protein	Fat	Ether extract	Fiber	Ash	Energy
	13	6.9	15	6.2	7.3	3100 kcal/kg

Table (2) components of turkey rations with chemical composition

Material %	Chemical ratio (%)
	13
	6.9
	15
	6.2
	7.3
	3100 kcal/kg

* Wafi protein concentrate (Dutch origin), which contains 40% crude protein, 2118.13 kcal/kg, 5% crude fat, 3.85% lysine, 3.70% methionine, 4.11 methionine + cysteine, 3.00% calcium, and 5.83% 5.38 phosphorous available.

** Mixtures of vitamins and minerals produced by Bromix of Dutch origin, containing 10% crude protein, 753.82 kcal/kg, 2.14% crude fat, 20.08% calcium, 10.83% available phosphorous, 1.60% lysine, 6% methionine, and 6.06% Methionine + cysteine.

*** Chemical composition of the rice cultivar Table (1)

**** The values of the chemical composition of the feed materials included in the diet were calculated according to NRC [9].

3. Results and discussion

3.1. Results

Table (3) shows the effect of using rice bran at levels (0, 15, 20%) with and without adding enzymes by 0.5 g/kg to turkey diets on live body weight for the six experimental treatments. The results in the
fourth and fifth periods showed a significant increase ($P \leq 0.05$). for the second treatment (only the enzyme mixture was added to it) on all treatments of the experiment.

Also in the table (4) which shows the data of the weight gain, we note the results for the total period (28-98) days, a significant increase ($P \leq 0.05$) for the second treatment over all the experiment treatments.

We found feed consumption (g/bird/14 days) in Table (5) a significant increase ($P \leq 0.05$) for the sixth treatment (20% bran + 0.5 g/kg enzymes) compared to the third treatment (15% bran), and there were no significant differences between the sixth and the first, second, fourth and fifth transactions.

Feed conversion ratio We notice a significant improvement ($P \leq 0.05$) for the second treatment 2.70 on all the treatments of the control, third, fourth, fifth and sixth experiment Table (6).

3.2 Discussion

The digestive system of poultry produces enzymes that help digest nutrients. However, birds do not have enough enzymes to fully digest fiber and need some commercial exogenous enzymes in the diet to improve digestion. The enzyme is a biocatalyst consisting of proteins, amino acids, minerals and vitamins. The advantages of using commercial enzymes in poultry feed include improved production performance and feed utilization and reduced environmental pollution due to lower nutrients from manure [10]. The superiority of the second treatment (adding a mixture of protease, Amylase, and Cullulase enzymes at a rate of (0.5 g/kg) in live weight may be due to the higher nutritional value of maize and the low content of fiber, and this reflected positively on the average live body weight, while it may be due to the decrease in the body weight rate. Live in transaction birds to which rice bran was added as an alternative to corn by 15 and 25 percent due to the high percentage of fiber in it, especially when 25 percent of yellow corn was replaced with rice bran, which led to an increase in the size of the physical diet without an increase in the nutritional value necessary for growth and production [11].

It is necessary to add enzymes in poultry rations in order to obtain the optimal use of nutrients from complex feeds. The addition of Amylase enzyme improved body weight and food conversion efficiency when added to rations containing newly harvested yellow corn. This may be due to increased digestion of starch in the channel. Upper alimentary tract and increased energy use of forage [12]. The use of the enzymes Amylase and xylanase caused a high level of reduced sugar concentration in the feed to which the two enzymes were added and decreased the sugar concentration at the end of digestion [13]. Animal use of nutrients is affected by enzyme type and physical and chemical properties of feed ingredients such as protease and phytase that target fiber and carbohydrates in the poultry digestive system [14]. Addition of a mixture (α-amylase, β-glucanase, xylanase) significantly improved the digestibility of all amino acids of maize and soybean meal [15]. According to these reasons, the significant increase may be due to the second treatment (adding enzymes by 0.5 g/kg) compared to the rest of the experimental treatments.

The reason for the low efficiency of treatments to which rice bran was added by (15, 20%) may be due to the rice bran containing phytate, which is an anti-nutritional in poultry diets [16]. That the presence of phytate in poultry diet negatively affects protein and energy utilization in poultry [17]. Also, the high fat content in rice bran may be a reason for lowering the feed conversion ratio compared to defatted rice bran, although there was no significant difference in growth performance during the starting period [18].
Table (3): Effect of using rice bran and adding enzymes on the live body weight of turkeys (gm/ bird/14 days) (mean ± standard error)

age / day	Treatments	28-42	42-56	56-70	70-84	84-98
	T1	1794.00±21.26	2468.00±72.92	3069.00±11.23	3701.00±41.03	4544.00±82.17
	T2	46.85±1823.00	67.25±2471.00	3291.00±6.40	3949.00±17.15	4891.00±46.34
	T3	1786.95±30.31	2411.00±63.77	3150.00±60.27	3615.00±102.42	4316.00±127.96
	T4	1755.00±54.19	2409.00±91.74	2989.00±75.56	3590.00±90.07	4360.00±129.60
	T5	1794.00±57.70	2471.00±88.60	3112.00±64.27	3591.00±67.65	4390.00±88.12
	T6	1836.00±23.72	2532.00±40.13	3118.00±37.29	3728.00±42.48	4575.00±85.39

*Different letters within the same column indicate the presence of significant differences at the level of probability (P≤ 0.05).

Table (4) Effect of using rice bran and adding enzymes on turkey weight gain (gm/ bird/14 days) (mean ± standard error)

age / day	Treatments	28-42	42-56	56-70	70-84	84-98	28-98
	T1	614.00±21.26	674.00±52.90	601.00±74.48	632.00±49.23	843.00±59.40	3364.00±82.17
	T2	643.00±46.85	648.00±30.76	820.00±71.01	658.00±20.68	942.00±61.24	3711.00±46.34
	T3	606.95±30.31	624.05±58.55	739.00±46.05	465.00±44.25	701.00±78.49	3136.00±127.96
	T4	575.00±54.15	654.00±44.49	580.00±55.44	610.00±40.28	761.00±62.51	3180.00±129.60
	T5	614.00±57.70	677.00±32.14	641.00±63.40	479.00±13.40	799.00±60.69	3210.00±88.12
	T6	656.00±23.72	696.00±18.83	586.00±17.39	610.00±29.05	847.00±83.04	3395.00±85.39

*Different letters within the same column indicate the presence of significant differences at the level of probability (P≤ 0.05).
Table (5) Effect of using rice bran and adding enzymes on feed consumption for turkeys (gm/ bird/14 days) (mean ± standard error)

*Different letters within the same column indicate the presence of significant differences at the level of probability (P≤ 0.05).

Table (6) Effect of using rice bran and adding enzymes on the feed conversion efficiency of turkeys (gm/ bird/14 days) (mean ± standard error)

*Different letters within the same column indicate the presence of significant differences at the level of probability (P≤ 0.05).

4. Conclusion

The results showed a significant superiority. For the second treatment (0 % rice bran + 0.5 g/kg mixture of enzymes) in live body weight, weight gain, feed conversion efficiency, while it was significantly superior to the sixth treatment (20% rice bran + 0.5 g/kg mixture of enzymes) in feed consumption compared to the third treatment, and there were no deaths in any of the study treatments throughout the experiment period.
References

[1] Adebiyi, O. A., Ologhobo, A. D., Adu, O. A., & Olasehinde, T. O. (2010). Evaluation of the nutritional potentials of physically treated cowpea seed hulls in poultry feed. Emirates Journal of Food and Agriculture, 232-239.

[2] Juliano, B.O., (1985). Rice bran. In B.O. Juliano . Rice chemistry and technology . Minnesota, USA: The American Association of Cereal Chemist, Inc. St. Paul.

[3] Ranjan, A., Sahu, N. P., Deo, A. D., & Kumar, S. (2019). Solid state fermentation of de-oiled rice bran: Effect on in vitro protein digestibility, fatty acid profile and anti-nutritional factors. Food Research International, 119, 1-5.

[4] Akiyama, D. M. (1991). Penaeid shrimp nutrition for the commercial feed industry: revised. In Proceeding of the aquaculture feed processing and nutrition workshop (pp. 80-98). American Soybean Association.

[5] Gallardo, C., Dadalt, J. C., & Neto, M. T. (2020). Carbohydrates and phytase with rice bran, effects on amino acid digestibility and energy use in broiler chickens. animal, 14(3), 482-490.

[6] Ali, M., Amin, M., & Ichsan, M. (2018). Reduksi serat dedak padi sebagai media pembuatan protein sel tunggal pakan ayam petelur. Abdi Insani, 5(1), 57-62.

[7] Hafid, H., Wati, Y., Ananda, S. H., & Ba’a, L. (2018). Production of Broiler Chicken Carcass Fed on Rice Bran Biomass in Different Marketed Ages. In IOP Conference Series: Earth and Environmental Science (Vol. 209, No. 1, p. 012008). IOP Publishing.

[8] Raza, A., Bashir, S., & Tabassum, R. (2019). An update on carbohydrates: growth performance and intestinal health of poultry. Heliyon, 5(4), e01437.

[9] NRC. (1994). Nutrient requirements of poultry, National Academy Press, Washington, DC. Ninth Revised Edition, 19-34.

[10] Alagawany, M., Elnesr, S. S., & Farag, M. R. (2018). The role of exogenous enzymes in promoting growth and improving nutrient digestibility in poultry. Iranian journal of veterinary research, 19(3), 157.

[11] AlShukri, A. Y., AREAAER, A. H., Almrsoni, T. S., & Alfartosi, K. A.(2013). Effect of Partial Substitution of Rice Bran for the Yellow Corn (Maize) on Broiler Performance. International Journal of Science and Research (IJSR): 2319-7064 Index Copernicus Value): 6.14

[12] Kaczmarek, S. A., Rogiewicz, A., Mogielnicka, M., Rutkowski, A., Jones, R. O., & Slominski, B. A. (2014). The effect of protease, amylase, and nonstarch polysaccharide-degrading enzyme supplementation on nutrient utilization and growth performance of broiler chickens fed corn-soybean meal-based diets. Poultry science, 93(7), 1745-1753.

[13] Suresh, G., Santos, D. U., Rouissi, T., Brar, S. K., Mehti, Y., Godbout, S., ... & Ramirez, A. A. (2019). Production and in-vitro evaluation of an enzyme formulation as a potential alternative to feed antibiotics in poultry. Process Biochemistry, 80, 9-16.

[14] Bakare, A. G., Zindove, T. J., Iji, P. A., Stamatopoulos, K., & Cowieson, A. J. (2021). A review of limitations to using cassava meal in poultry diets and the potential role of exogenous microbial enzymes. Tropical Animal Health and Production, 53(4), 1-13.

[15] Rutherfurd, S. M., Chung, T. K., & Moughan, P. J. (2007). The effect of a commercial enzyme preparation on apparent metabolize energy, the true ileal amino acid digestibility, and endogenous ileal lysine losses in broiler chickens. Poultry Science, 86(4), 665-672.

[16] Munir, K., & Maqsood, S. (2013). A review on role of exogenous enzyme supplementation in poultry production. Emirates Journal of Food and Agriculture, 66-80.

[17] Kanti, A., & Sudiana, I. M. (2018). Production of phytase, amylase and cellulase by Aspergillus, Rhizopus and Neurospora on mixed rice straw powder and soybean curd residue. In IOP Conference Series: Earth and Environmental Science (Vol. 166, No. 1, p. 012010). IOP Publishing.

[18] Kuhad, R. C., Singh, A., Tripathi, K. K., Saxena, R. K., & Eriksson, K. E. L. (1997). Microorganisms as an alternative source of protein. Nutrition reviews, 55(3), 65-75.