Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
CHAPTER 10

Daily confirmed cases and deaths prediction of novel coronavirus in Asian continent Polynomial Neural Network

Priyanka Majumder
Department of Basic Science and Humanities (Mathematics), Techno College of Engineering Agartala, Agartala, India

10.1 Introduction

In the realm of 2020, where WHO has announced COVID-19 to be Pandemic (Anderson, Heesterbeek, Klinkenberg, & Hollingsworth, 2020), where there is confusion all over the place, individuals are isolated, the occasions square is unfilled, as are the other swarmed places, where one can discover anyone wearing a cover, and with dread in their eyes—we are truly surviving the pages of history books of things to come days.

Coronavirus has spread around the world and affecting large numbers of individuals. The WHO has announced COVID-19 as a pandemic affecting all 223 nations (World Health Organization). In excess of 2,435,145 (19 February 2021) individuals over the world have lost their lives, and a huge number of individuals have been affected (World Health Organization). Nations across the world are articulating health crises and making sense of how to attempt to guarantee the inhabitants’ safety (Xu et al., 2020).

Daily confirmed case and death are frequently increased day by day in Asian continent.

The 2019—2020 coronavirus pandemic started in Asia in Wuhan, Hubei, China, and spread generally through the mainland.

At March 22, 2020, one instance of COVID-19 had been accounted for in each nation in Asia aside from Tajikistan, Turkmenistan, and North Korea. The most noteworthy quantities of detailed cases in Asia at that time were in China and Iran.

A few Southeast Asian nations encountered a huge increase in cases following a Tabligh Akbar occasion from February 27 to March 1 at a mosque in Kuala Lumpur, where numerous individuals were infected (World Health Organization). The occasion had around 16,000 participants, including around 1500 from outside Malaysia.
Attendees shared nourishment, sat near one another, and clasped hands at the occasion. The organizers of the occasion didn’t discuss COVID-19 precautionary measures, yet most participants washed their hands during the occasion. Malaysian specialists were censured for permitting the occasion to go ahead (World Health Organization).

Fig. 10.1 represents daily cases and daily confirmed deaths in the Asian continent. From the figure, it is clear that daily confirmed cases and daily confirmed deaths are increasing but the fluctuation is very small. So the objective of the present investigation is to predict the daily confirmed cases. The second objective of this study is to predict the daily confirmed deaths of the Asian continent. Another target of the current examination is to anticipate the daily confirmed deaths with regard to day by day affirmed cases.

10.2 Data collection

The WHO (World Health Organization) and Governments have collected the data of the Asian continent. Table 10.1 shows the day by day information of confirmed cases and deaths from December 31, 2019 to April 16, 2020. Matrix 10.1 represents the scatter matrix of the given data. Also Table 10.2 represents statistics of the given data.

10.3 Polynomial Neural Network

In 1997 the Artificial Neural Network (ANN) was developed by Bourquin and Agatonovic-Kustrin and Beresford (Lee & Mun, 2014; Michalena & Hills, 2013). It is generally applied for anticipating methane (Behera, Meher, & Park, 2015),
Table 10.1 Per day information of confirmed cases and confirmed deaths from December 31, 2019 to April 16, 2020.

Date	Daily confirmed cases	Daily confirmed deaths
31 December 19	27	0
01 January 20	0	0
02 January 20	0	0
03 January 20	17	0
04 January 20	0	0
05 January 20	15	0
06 January 20	0	0
07 January 20	0	0
08 January 20	0	0
09 January 20	0	0
10 January 20	0	0
11 January 20	0	1
12 January 20	0	0
13 January 20	1	0
14 January 20	0	0
15 January 20	1	1
16 January 20	0	0
17 January 20	5	0
18 January 20	17	0
19 January 20	136	1
20 January 20	20	0
21 January 20	152	3
22 January 20	142	11
23 January 20	97	0
24 January 20	266	9
25 January 20	448	15
26 January 20	669	15
27 January 20	794	25
28 January 20	1765	25
29 January 20	1475	26
30 January 20	1752	38
31 January 20	1994	43
01 February 20	2110	46
02 February 20	2604	46
03 February 20	2814	57
04 February 20	3240	65
05 February 20	3895	66
06 February 20	3739	72
07 February 20	3172	73
08 February 20	3433	86
09 February 20	2618	89
10 February 20	2981	97

(Continued)
Table 10.1 (Continued)

Date	Daily confirmed cases	Daily confirmed deaths
11 February 20	2495	108
12 February 20	2031	97
13 February 20	15149	255
14 February 20	4166	13
15 February 20	2558	143
16 February 20	2028	142
17 February 20	2066	106
18 February 20	1896	98
19 February 20	1776	139
20 February 20	453	114
21 February 20	979	119
22 February 20	1048	112
23 February 20	945	102
24 February 20	413	155
25 February 20	675	75
26 February 20	756	58
27 February 20	986	36
28 February 20	920	52
29 February 20	1525	58
01 March 20	1405	48
02 March 20	1328	59
03 March 20	1273	50
04 March 20	1514	52
05 March 20	1253	49
06 March 20	1357	54
07 March 20	1962	47
08 March 20	1625	54
09 March 20	1165	78
10 March 20	912	65
11 March 20	1345	86
12 March 20	1633	88
13 March 20	1373	88
14 March 20	1821	116
15 March 20	1807	111
16 March 20	1943	135
17 March 20	1823	150
18 March 20	1945	162
19 March 20	2108	167
20 March 20	2403	187
21 March 20	2540	177
22 March 20	2979	174
23 March 20	2736	187
24 March 20	3208	172

(Continued)
metropolitan air quality (Nagendra & Khare, 2005), Nox emission in a tangentially fired boiler (Ilamathi, Selladurai, Balamurugan, & Sathyanathan, 2013), and dependability examination in hydropower plant (Majumder, Majumder, Saha, Sarkar, & Nath, 2019). The principal favorable position of the ANN is that it has the capacity to adapt rapidly which is especially suitable for nondirect displays. Large dimensionality and the choice of training methodology are disadvantages of ANN. As in this current examination target capacities are nonlinear, a model of ANN is appropriate for use in the investigation. Polynomial Neural Network (PNN) is a form of ANN which is unique in relation to the system followed in the later methods. The main difference between the PNN and ANN lies in the way the topology of the network is identified and the manner in which the weightage of connections between the input and hidden and hidden and output layers was estimated. Both of these boundaries are significant in expanding the precision of the neural organization models.

The use of basic ANN tools will make the model heavier as it utilizes the different emphases to locate the ideal weighting of the associations and follows an experimentation technique or complex quest calculations for distinguishing proof of the ideal

Date	Daily confirmed cases	Daily confirmed deaths
25 March 20	4133	159
26 March 20	4615	193
27 March 20	5381	241
28 March 20	7049	203
29 March 20	7412	226
30 March 20	7098	200
31 March 20	7600	219
01 April 20	7647	229
02 April 20	8554	284
03 April 20	8876	295
04 April 20	6301	150
05 April 20	12331	444
06 April 20	10206	328
07 April 20	9366	279
08 April 20	9623	316
09 April 20	9522	288
10 April 20	10178	351
11 April 20	11051	329
12 April 20	13081	386
13 April 20	11523	388
14 April 20	11760	342
15 April 20	11242	389
16 April 20	11418	340
Table 10.2 Statistics of the given data.

Variable	Daily confirmed cases	Daily confirmed deaths
Numeric values	108	108
Text values	0	0
Missing values	0	0
Unique values	95	76
Zero values	12	19
Most frequent	0	0
Min. score	0	0
Max. score	15149	444
Median	1814	82
Mean value	3080.453704	111.3611111
Std. deviation	3653.602353	111.1997251
2σ outliers	8	7
3σ outliers	1	0
4σ outliers	0	0

Matrix 10.1 Scatter matrix.
number of shrouded layers. In any case, on account of PNN, the choice of concealed layers is affirmed naturally in the underlying cycles, diminishing the necessity of rehashed execution of the calculation to recognize the estimation of weighting which will yield a base mistake in the anticipated yield. Some of the time in ANN, it is important to utilize expert information for the fitting factors input determination or to perform endless tests with various blends of past factors until a magnificent outcome is reached. In PNN the information factors decision is made consequently, and the genuine information factors utilized in the diagnosis and monitoring system do not appear in the conclusive outcome.

10.4 Result and discussion

The PNN model was intentionally used to limit the mistakes and to boost the presentation. Also the neurogenetic models assume a more prominent part in the field of exploration and study in light of their straightforwardness. Here we have utilized the fundamental condition (1) and (2) obtained from the ANN. Using Eq. (10.1) we predict the daily confirmed cases, Eq. (10.2) predicts the daily confirmed deaths, and Eq. (10.3) predicts the daily confirmed deaths with respect to daily confirmed cases. Figs. 10.2−10.4 show the correlation between predicted and observed output of daily confirmed cases, daily confirmed deaths, as well as daily confirmed deaths with respect to daily confirmed cases, respectively. Table 10.3 shows the forecast report from April 17, 2020 to April 22, 2020 for confirmed cases and confirmed deaths. From the figure, it is clear that Table 10.4 shows the absolute Error Measurement of the developed model.

\[
Y_1 = 11472.5 + "|id, dayofweek_3"*(-1002.5) \tag{10.1}
\]

![Figure 10.2](image-url)
Figure 10.2 Relationship among predicted as well as observed output for model (daily confirmed cases).
\[Y_1 = -522.837 + \text{cycle} \times 1.22284 \] \hspace{1cm} (10.2)

\[Y_1 = 7.84935 + \text{"Daily confirmed cases", cubert}^2 \times 0.817949 \]
\[+ \text{"Daily confirmed cases", cubert}^2 \times (-3.52075) \] \hspace{1cm} (10.3)

Figure 10.3 Relationship among predicted as well as observed output for model (daily confirmed deaths).

Figure 10.4 Relationship among predicted as well as observed output for model (daily confirmed deaths with respect to daily confirmed cases).
In this study, we get three optimal networks by which real-time monitoring of the daily confirmed case, daily confirmed deaths, and finally daily confirmed death with respect to a corresponding confirmed case of COVID-19 on the Asian continent. We can use this type of prediction for the remaining continent if data are available. Also, this can be applied to each country of each continent.

10.5 Conclusion

In this study, we get three optimal networks by which real-time monitoring of the daily confirmed case, daily confirmed deaths, and finally daily confirmed death with respect to a corresponding confirmed case of COVID-19 on the Asian continent. We can use this type of prediction for the remaining continent if data are available. Also, this can be applied to each country of each continent.

#	Target name	Confidence band	2020-04-17	2020-04-18	2020-04-19	2020-04-20	2020-04-21	2020-04-22
1	Daily confirmed cases	776.6932041	11870	11669	14586	13319	13057	12528
2	Daily confirmed deaths	57.78474646	385	340	438	408	382	444

Post processed result	Model fit (daily confirmed cases)	Model fit (daily confirmed deaths)	Model fit (day by day confirmed deaths regarding day by day confirmed cases)	Predictions (day by day confirmed deaths regarding day by day confirmed cases)			
Number of observations	12	13	86	22	22	70.649	166.516
Max. negative error	- 561	- 58	- 128,008	-	166.516	33.1871	
Max. positive error	622	60	149,972	33.1871	149,972	33.1871	
Mean absolute error (MAE)	336.083	22.9231	31.2448	31.2448	31.2448	31.2448	
Root mean square error (RMSE)	388.347	28.8924	42.8467	42.8467	42.8467	42.8467	
Residual sum	-209	26	-4.0923E-12	-4.0923E-12	-4.0923E-12	-4.0923E-12	
Standard deviation residuals	387.956	28.8231	42.8467	42.8467	42.8467	42.8467	
Coefficient of determination (R²)	0.880977	0.820643	0.845347	0.845347	0.845347	0.845347	
Correlation	0.951098	0.950426	0.919971	0.919971	0.919971	0.919971	

Table 10.3	Forecast report of 6 days of confirmed cases and confirmed deaths.							
#	Target name	Confidence band	2020-04-17	2020-04-18	2020-04-19	2020-04-20	2020-04-21	2020-04-22
---	--------------------------------------	-----------------	------------	------------	------------	------------	------------	------------
1	Daily confirmed cases	776.6932041	11870	11669	14586	13319	13057	12528
2	Daily confirmed deaths	57.78474646	385	340	438	408	382	444

Table 10.4	Absolutely error measure.						
Post processed result	Model fit (daily confirmed cases)	Model fit (daily confirmed deaths)	Model fit (day by day confirmed deaths regarding day by day confirmed cases)	Predictions (day by day confirmed deaths regarding day by day confirmed cases)			
Number of observations	12	13	86	22	22	70.649	166.516
Max. negative error	- 561	- 58	- 128,008	-	166.516	33.1871	
Max. positive error	622	60	149,972	33.1871	149,972	33.1871	
Mean absolute error (MAE)	336.083	22.9231	31.2448	31.2448	31.2448	31.2448	
Root mean square error (RMSE)	388.347	28.8924	42.8467	42.8467	42.8467	42.8467	
Residual sum	-209	26	-4.0923E-12	-4.0923E-12	-4.0923E-12	-4.0923E-12	
Standard deviation residuals	387.956	28.8231	42.8467	42.8467	42.8467	42.8467	
Coefficient of determination (R²)	0.880977	0.820643	0.845347	0.845347	0.845347	0.845347	
Correlation	0.951098	0.950426	0.919971	0.919971	0.919971	0.919971	
References

Anderson, R. M., Heesterbeek, H., Klinkenberg, D., & Hollingsworth, T. D. (2020). How will country-based mitigation measures influence the course of the COVID-19 epidemic? *The Lancet*.

Behera, S. K., Meher, S. K., & Park, H. S. (2015). Artificial neural network model for predicting methane percentage in biogas recovered from a landfill upon injection of liquid organic waste. *Clean Technologies and Environmental Policy, 17*(2), 443–453.

Ilamathi, P., Selladurai, V., Balamurugan, K., & Sathyanathan, V. T. (2013). ANN–GA approach for predictive modeling and optimization of NOx emission in a tangentially fired boiler. *Clean Technologies and Environmental Policy, 15*(1), 125–131.

Lee, S., & Mun, S. (2014). Improving a model for the dynamic modulus of asphalt using the modified harmony search algorithm. *Expert Systems with Applications, 41*(8), 3856–3860.

Majumder, P., Majumder, M., Saha, A. K., Sarkar, K., & Nath, S. (2019). Real time reliability monitoring of hydro-power plant by combined cognitive decision-making technique. *International Journal of Energy Research*.

Michalena, E., & Hills, J. M. (2013). Renewable energy governance. *Renewable Energy, 23*.

Nagendra, S. S., & Khare, M. (2005). Modelling urban air quality using artificial neural network. *Clean Technologies and Environmental Policy, 7*(2), 116–126.

World Health Organization. <https://www.who.int/>.

Xu, X., Chen, P., Wang, J., Feng, J., Zhou, H., Li, X., . . . Hao, P. (2020). Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. *Science China Life Sciences, 63*(3), 457–460.