LAUDAL’S LEMMA IN POSITIVE CHARACTERISTIC

PAOLA BONACINI

Abstract. Laudal’s Lemma states that if C is a curve of degree $d > s^2 + 1$ in \mathbb{P}^3 over an algebraically closed field of characteristic 0 such that its plane section is contained in an irreducible curve of degree s, then C lies on a surface of degree s. We show that the same result does not hold in positive characteristic and we find different bounds $d > f(s)$ which ensure that C is contained in a surface of degree s.

1. Introduction

Let C be a curve in \mathbb{P}^3_k, being k an algebraically closed field. Let Γ be the generic plane section of C. In this paper we study the problem of finding bounds on the degree of C in such a way that, if Γ is contained in a plane curve of degree s, then C is contained in a surface of the same degree. In the case that $\text{char } k = 0$ the following result has been proved:

Theorem 1.1 (Laudal’s Lemma, [11, Corollary, p.147], [6]). If Γ is contained in an integral plane curve of degree s and $\deg C > s^2 + 1$, then C is contained in a surface of degree s.

The bound on the degree of the curve found in this result is sharp. Indeed, there are examples of curve of degree $s^2 + 1$ whose the generic plane section is contained in an irreducible plane curve of degree s and that are not contained in any surface of degree s (see [7], [6] and [13, Proposition 1]).

In this paper, following the proof of Gruson and Peskine of Laudal’s Lemma in [6], we prove an analogous result in the case that the field k has positive characteristic:

Theorem 1.2. Let $C \subset \mathbb{P}^3$ be a non degenerate reduced curve of degree d in characteristic $p > 0$. Suppose that Γ is contained in an integral plane curve of degree s. Then C is contained in a surface of degree s, if one of the following conditions is satisfied:

(1) C is connected, $p \geq s$ and $d > s^2 + 1$;
(2) C is connected, $p < s$ and $d > s^2 + p^{2n}$, with $p^n < s \leq p^{n+1}$; in particular this holds if $d > 2s^2 - 2s + 1$;
(3) $p > s$ and $d > s^2 + 1$;
(4) $p \leq s$ and $d > s^2 + p^{2n}$, with $p^n \leq s < p^{n+1}$. In particular this holds if $d > 2s^2$.

Let us make a note about terminology. Given the incidence variety $T = \{(H, P) \in \mathbb{P}^3 \times \mathbb{P}^3 \mid P \in C \cap H\}$ associated to C, the fibre of the projection $T \rightarrow \mathbb{P}^3$ over the generic point $\eta \in \mathbb{P}^3$ is the generic plane section Γ. In particular we consider the open subset $U \subset \mathbb{P}^3$ such that any $[H] \in U$ corresponds to a plane $H \subset \mathbb{P}^3$ that C meets transversally and such planes are generic for the curve C.

1
Let us give now a sketch of the proof of Theorem 1.2, given in Section 4. We follow the idea of the proof of Theorem 1.1 given by Gruson and Peskin in [6]. So we take $S \subset \mathbb{P}^3 \times \mathbb{P}^3$ containing T such that the fibre over η is an integral plane curve of degree s containing J. Then we suppose that $h^0(\mathcal{I}_C(s)) = 0$ and, using Theorem 3.3 that is the main result of Section 3, we factor the projection $S \rightarrow \mathbb{P}^3$ through a generically smooth morphism $S_r \rightarrow \mathbb{P}^3$, with $S_r = S \times_{\mathbb{P}^3, F^s} \mathbb{P}^3$ and F^r some r-th power of the absolute Frobenius of \mathbb{P}^3. Then, proceeding as in [6], we arrive to the inequality $d \leq s^2 + p^{2r}$. Remarking that it must be $h^1(\mathcal{I}_C(s - p^r)) \neq 0$ we find the desired inequalities.

Looking at the proof we see that the assumption that C is reduced is required to find a suitable bound to the power p^r. Moreover, in the case that C is connected this bound is sharp, as we will see in Example 5.3. Indeed, generalizing the example given in [6] and [13, Proposition 1] to prove that the bound in Theorem 1.1 is sharp, we consider the sheaf E^\prime given in [6] and [13, Proposition 1] to prove that the bound in Theorem 1.1 is sharp, as we will see in Example 5.3. Indeed, generalizing the example given in [6] and [13, Proposition 1] to prove that the bound in Theorem 1.1 is sharp, we consider the sheaf $E^\prime = \mathcal{F}^\ast(\mathcal{E}_0)$, with \mathcal{E}_0 null-correlation bundle and F absolute Frobenius on \mathbb{P}^3. Then, the zero locus of a generic global section of $E^\prime(s)$, for $s > p^2$, is an integral curve of degree $s^2 + p^{2n}$ not lying on any surface of degree s such that its generic plane section is contained in an integral plane curve of degree s.

I wish to express my deepest gratitude and appreciation to my Ph.D. advisor, Professor Rosario Strano, for his support and encouragement. My profound thanks and gratitude are addressed also to Riccardo Re for the many stimulating conversations and discussions.

2. The Frobenius morphism

First let us recall the definition of the relative Frobenius morphism (we follow Ein’s notation in [3]):

Definition 2.1. The absolute Frobenius morphism of a scheme X of characteristic $p > 0$ is $F_X : X \rightarrow X$, where F_X is the identity as a map of topological spaces and on each U open set $F_X^\# : O_X(U) \rightarrow O_X(U)$ is given by $f \mapsto f^p$ for each $f \in O_X(U)$. Given $X \rightarrow S$ for some scheme S and $X^{p/S} = X \times_{S, F^p} S$, the absolute Frobenius morphisms on X and S induce a morphism $F_{X/S} : X \rightarrow X^{p/S}$, called the Frobenius morphism of X relative to S.

Let now $r \in \mathbb{N}$ and $n \in \mathbb{Z}$ be integers. Let $F : \mathbb{P}^3 \rightarrow \mathbb{P}^3$ be the absolute Frobenius and let us consider the sheaf $\mathcal{F} = (F^\ast)^\ast(\Omega_{p^3})$. The following result will be needed later:

Lemma 2.2.

(i) $h^0(\mathcal{F}(2p^r)) = 6$,
(ii) $h^0(\mathcal{F}(n)) \neq 0$ if and only if $n \geq 2p^r$,
(iii) $h^2(\mathcal{F}(n)) = 0$ for every $n \in \mathbb{Z}$.

Proof. First let us make some remarks. The sheaf Ω_{p^3} is determined by the Euler sequence $0 \rightarrow \Omega_{p^3} \rightarrow O_{\mathbb{P}^3}^\oplus(-1) \rightarrow O_{p^3} \rightarrow 0$, which is part of the Koszul complex $0 \rightarrow O_{p^3}(-4) \rightarrow O_{\mathbb{P}^3}^\oplus(-3) \rightarrow O_{p^3}^\oplus(-2) \rightarrow O_{p^3}^\oplus(-1) \rightarrow O_{p^3} \rightarrow 0$. So \mathcal{F}, by the flatness of the absolute Frobenius, is determined by the exact sequence:

\[
0 \rightarrow \mathcal{F} \rightarrow O_{\mathbb{P}^3}^\oplus(-p^r) \rightarrow O_{p^3} \rightarrow 0,
\]
which is part of the following long exact sequence:

\[(2) \quad 0 \to \mathcal{O}_{\mathbb{P}^3}(-4p^r) \to \mathcal{O}_{\mathbb{P}^3}^{\oplus 4}(-3p^r) \to \mathcal{O}_{\mathbb{P}^3}^{\oplus 6}(-2p^r) \to \mathcal{O}_{\mathbb{P}^3}^{\oplus 4}(-p^r) \to \mathcal{O}_{\mathbb{P}^3} \to 0.\]

(iii) follows immediately from (ii). Now we prove (i) and (ii). Considered the cokernel \mathcal{G} of the first nonzero map in (2):

\[(3) \quad 0 \to \mathcal{O}_{\mathbb{P}^3}(-4p^r) \to \mathcal{O}_{\mathbb{P}^3}^{\oplus 4}(-3p^r) \to \mathcal{G} \to 0\]

\mathcal{F} and \mathcal{G} are related by the exact sequence:

\[(4) \quad 0 \to \mathcal{G} \to \mathcal{O}_{\mathbb{P}^3}^{\oplus 6}(-2p^r) \to \mathcal{F} \to 0.\]

Since \mathcal{F} and \mathcal{G} are vector bundles and $\mathcal{F}^\vee \cong \mathcal{G}(4p^r)$, then they are reflexive and $\mathcal{G}^\vee \cong \mathcal{F}(4p^r)$. So by (3) and (4):

\[h^0(\mathcal{F}(n)) = 6h^0(\mathcal{O}_{\mathbb{P}^3}(n-2p^r)) - 4h^0(\mathcal{O}_{\mathbb{P}^3}(n-3p^r)) + h^0(\mathcal{O}_{\mathbb{P}^3}(n-4p^r)).\]

From this we get (i) and (ii). \[\blacksquare\]

In the notation of Lemma 2.2 let us consider the sheaf $\mathcal{X} = \mathcal{F}(p^r)|_H$, restriction of $\mathcal{F}(p^r)$ to a plane H in \mathbb{P}^3.

Lemma 2.3. For every $m \in \mathbb{Z}$:

\[h^0(\mathcal{X}(m)) = h^0(\mathcal{O}_H(m)) + 3h^0(\mathcal{O}_H(m-p^r)) - h^0(\mathcal{O}_H(m-2p^r)).\]

Proof. Let us make the position $\mathcal{F}_H = (\mathcal{F}^r)^\ast(\Omega_H)$. We can construct a surjective morphism of sheaves $\varphi : \mathcal{O}_H^{\oplus 4} \to \mathcal{O}_H^{\oplus 3}$ in such a way that we get the following commutative diagram:

\[
\begin{array}{ccccccccc}
0 & \to & \mathcal{X} & \to & \mathcal{O}_H^{\oplus 4} & \to & \mathcal{O}_H(p^r) & \to & 0 \\
0 & \to & \mathcal{F}_H(p^r) & \to & \mathcal{O}_H^{\oplus 3} & \to & \mathcal{O}_H(p^r) & \to & 0.
\end{array}
\]

Indeed, if $k[x_0, x_1, x_2, x_3]$ is the coordinate ring associated to \mathbb{P}^3 and H has equation $x_3 = \sum_{i=0}^2 a_i x_i$, then we can define φ as given by $\mathcal{O}_H^{\oplus 4} \ni (\sigma_0, \sigma_1, \sigma_2, \sigma_3) \mapsto (\sigma_0 + a_0 \sigma_3, \sigma_1 + a_1 \sigma_3, \sigma_2 + a_2 \sigma_3) \in \mathcal{O}_H^{\oplus 3}$. So by the snake lemma and by the fact that $\text{Ker} \varphi \cong \mathcal{O}_H$ we find the exact sequence:

\[(5) \quad 0 \to \mathcal{O}_H \to \mathcal{X} \to \mathcal{F}_H(p^r) \to 0.\]

Proceeding as in Lemma 2.2, we see that $\mathcal{F}_H(p^r)$ comes from the Koszul complex $0 \to \mathcal{O}_H(-2p^r) \to \mathcal{O}_H^{\oplus 3}(-p^r) \to \mathcal{O}_H^{\oplus 3} \to \mathcal{O}_H(p^r) \to 0$, which implies that $\mathcal{F}_H = (\mathcal{F}_H^{\vee})^\ast(-3p^r)$. Now:

\[(6) \quad h^0(\mathcal{F}_H(p^r + m)) = h^0((\mathcal{F}_H^{\vee}(m-2p^r)) = h^0(\mathcal{F}_H(2p^r - m)) = h^2(\mathcal{F}_H(2p^r - m) \otimes \mathcal{O}_H(-3)).\]

From $0 \to \mathcal{F}_H(2p^r - m - 3) \to \mathcal{O}_H^{\oplus 3}(p^r - m - 3) \to \mathcal{O}_H(2p^r - m - 3) \to 0$ we see that $h^2(\mathcal{F}_H(2p^r - m - 3)) = -h^0(\mathcal{O}_H(m-2p^r)) + 3h^0(\mathcal{O}_H(m-p^r))$, that, together with (5) and (6), leads us to the conclusion. \[\blacksquare\]
3. Incidence varieties in characteristic p

Let us consider the bi-projective space $\tilde{\mathbb{P}}^3 \times \mathbb{P}^3$ and let $r \in \mathbb{N}$ be a non negative integer. Let $k[t]$ and $k[x]$ be the coordinate rings for $\tilde{\mathbb{P}}^3$ and \mathbb{P}^3, respectively. Let M_r be the hypersurface of equation:

$$h_r := \sum_{i=0}^{3} t_i x_i^p = 0.$$

First we need the following result:

Lemma 3.1. Let $q \in k[t, x]$ be a homogeneous polynomial of bi-degree (α, s) such that:

$$x_i^p \frac{\partial q}{\partial t_j} - x_j^p \frac{\partial q}{\partial t_i} \in (h_r) \quad \forall \ i, j$$

and $q \notin (h_r)$. Then there exists $q' = q + h_r m$ bi-homogeneous of bi-degree (α, s) such that:

$$\frac{\partial q'}{\partial t_i} = 0 \quad \forall \ i.$$

Since the proof of this lemma requires some computations, we leave it to the end of this section. Let us now remark that in the case $r = 0$ M_r is usual incidence variety M of equation $\sum t_i x_i = 0$. If $r \geq 1$, M_r is determined by the following fibred product:

$$M_r \leftarrow \tilde{\mathbb{P}}^3 \times \mathbb{P}^3 \quad \pi \rightarrow M$$

where $F : \mathbb{P}^3 \rightarrow \mathbb{P}^3$ is the absolute Frobenius. Moreover $M = \mathbb{P}(\Theta_{\mathbb{P}^3}(-1))$ and so by [3 Lemma 1.5] we get $M_r = \mathbb{P}(F^* (\Theta_{\mathbb{P}^3}(-1)))$. By [3] Ch.II, ex. 7.8] this implies:

$$\text{Pic}(M_r) = \mathbb{Z} \times \mathbb{Z}$$

for any $r \geq 0$.

Let us consider an integral hypersurface $V \subset M_r$ and let us suppose that the projection $\pi : V \rightarrow \mathbb{P}^3$ is dominant. Using the previous lemma we prove the following result:

Proposition 3.2. If π is not generically smooth, then there exists $s \geq 1$, such that $V \subset \tilde{\mathbb{P}}^3 \times \mathbb{P}^3$ is the complete intersection determined by $g = h_r$, for some $g \in k[t^p, x].$

Proof. Since $M_r \subset \tilde{\mathbb{P}}^3 \times \mathbb{P}^3$ is a hypersurface of bi-degree $(1, p^r)$, the structure sheaf \mathcal{O}_{M_r} is given by $0 \rightarrow \mathcal{O}_{\tilde{\mathbb{P}}^3 \times \mathbb{P}^3}(-1, -p^r) \rightarrow \mathcal{O}_{\tilde{\mathbb{P}}^3 \times \mathbb{P}^3} \rightarrow \mathcal{O}_{M_r} \rightarrow 0$. By the Künneth formula ([12] Ch. VI, Corollary 8.13) $H^1(\mathcal{O}_{\tilde{\mathbb{P}}^3 \times \mathbb{P}^3}(m, n)) = 0$ for every $m, n \in \mathbb{Z}$, so that the morphism $H^0(\mathcal{O}_{\tilde{\mathbb{P}}^3 \times \mathbb{P}^3}(m, n)) \rightarrow H^0(\mathcal{O}_{M_r}(m, n))$ is surjective for every m,
Together with (11), this implies that \(V \subset \mathbb{P}^3 \times \mathbb{P}^3 \) is a complete intersection given by \(g = h_r = 0 \) for some \(g \in k[t, x] \) bi-homogeneous of bi-degree \((m, n)\) for some \(m, n \in \mathbb{N} \).

Let \(P_0 = (a, b) \in V \) be a regular point. By hypothesis the map on the projective tangent spaces \(T_{V,P_0} \) and \(T_{P,\pi(P_0)} \) is not surjective. The projective tangent space \(T_{V,P_0} \) at \(P_0 \in V \) is given by the equations:

\[
3 \sum_{i=0}^{3} \frac{\partial g}{\partial x_i}(P_0)x_i + 3 \sum_{i=0}^{3} \frac{\partial g}{\partial t_i}(P_0)t_i = 3 \sum_{i=0}^{3} (a_i x_i + b_i t_i) = 0
\]

if \(r = 0 \) and by the equations:

\[
3 \sum_{i=0}^{3} \frac{\partial g}{\partial x_i}(P_0)x_i + 3 \sum_{i=0}^{3} \frac{\partial g}{\partial t_i}(P_0)t_i = 3 \sum_{i=0}^{3} b_i t_i = 0
\]

if \(r \geq 1 \). In both cases the projection on \(T_{P,\pi(P_0)} \) is not surjective if and only if there exists \(\lambda \in k \) such that:

\[
\frac{\partial g}{\partial t_i}(P_0) = \lambda b_i t_i \quad \forall i = 0, \ldots, 3.
\]

So in such a situation:

\[
b_i t_i \frac{\partial g}{\partial t_j}(P_0) - b_j t_i \frac{\partial g}{\partial t_j}(P_0) = 0 \quad \forall i, j.
\]

This means that for every \(i, j \) the hypersurface \(V_{ij} \subset \mathbb{P}^3 \times \mathbb{P}^3 \) given by \(x_i t_j \frac{\partial g}{\partial t_j} - x_j t_i \frac{\partial g}{\partial t_i} = 0 \) contains \(\text{Reg}(V) \), the open subset of the regular points of \(V \). So \(V_{ij} \supset V \) for all \(i, j \), which means that:

\[
x_i t_j \frac{\partial g}{\partial t_j} - x_j t_i \frac{\partial g}{\partial t_i} \in (g, h_r) \quad \forall i, j.
\]

If \(x_i t_j \frac{\partial g}{\partial t_j} - x_j t_i \frac{\partial g}{\partial t_i} \) is a nonzero polynomial, then it is a bi-homogeneous polynomial of bi-degree \((m - 1, n + p)\). Since \(g \) is bi-homogeneous of bi-degree \((m, n)\), then

\[
x_i t_j \frac{\partial g}{\partial t_j} - x_j t_i \frac{\partial g}{\partial t_i} \in (h_r) \quad \forall i, j.
\]

Applying Lemma 3.1, we see that there exists \(m \in k[t, x] \) such that, given \(g' = g + mh_r \), we have \(\frac{\partial g'}{\partial t_i} = 0 \) for every \(i \). So by replacing \(g \) by \(g' \) we can suppose that \(g \in k[t^{p'}, x] \), for some \(s \geq 1 \).

Now we can prove the main result of this section:

Theorem 3.3. Let \(V \subset \mathbb{P}^3 \times \mathbb{P}^3 \) be an integral hypersurface in \(M \) such that the projection \(\pi: V \to \mathbb{P}^3 \) is dominant and not generically smooth. Then there exist \(r \geq 1 \), and \(V_r \subset M_r \) integral hypersurface such that \(\pi \) can be factored in the following way:

\[
\begin{array}{ccc}
V & \xrightarrow{\pi} & \mathbb{P}^3 \\
V_r & \xleftarrow{\pi_r} & M_r
\end{array}
\]
where the projection \(\pi_r \) is dominant and generically smooth and \(F_r \) is induced by the commutative diagram:

\[
\begin{array}{ccc}
V & \xrightarrow{F_r} & V_r \\
\downarrow j & & \downarrow i \\
M & \xrightarrow{F_{M_r}} & M_r.
\end{array}
\]

Proof. First note that by hypothesis and by Proposition 3.2 it follows that \(V \subset \mathbb{P}^3 \times \mathbb{P}^3 \) is the complete intersection determined by \(h = 0 \) and \(q = 0 \), for some \(q \in k[t^p, x] \) and \(r \geq 1 \). We can suppose that \(q \in k[t^p, x] \) and \(q' \notin k[t^p+1, x] \) for any \(q' \equiv q \mod (h) \). So we can say that \(q(t, x) = f(t^p, x) \) for some bi-homogeneous \(f \in k[t, x] \).

Let us now return to Lemma 3.1.

Proof of Lemma 3.1. From (7) we have:

\[
\left(\sum_{i=0}^{3} t_i x_i t^p \right) \frac{\partial q}{\partial t_j} - x_j t^p \left(\sum_{i=0}^{3} t_i \frac{\partial q}{\partial t_i} \right) \in (h_r, \forall j).
\]

Using that \(\sum t_i x_i t^p = h_r \) and that \(h_r \) is irreducible, we deduce \(\sum t_i \partial q / \partial t_i \in (h_r) \). However \(\sum_{i=0}^{3} t_i \partial q / \partial t_i = aq \), where \(a \) is the remainder of the division of \(\alpha \) by \(p \), because \(q \) is homogeneous of degree \(\alpha \) in the \(\{t_i\} \). So \(aq \in (h_r) \) and by hypothesis the only possibility is that \(a = 0 \), which means that \(p \mid \alpha \).

By (7) for every \(i, j = 0, 1, 2, 3 \) there exists \(l_{ij} \) bi-homogeneous in \(k[t, x] \) such that:

\[
x_j t^p \frac{\partial q}{\partial t_j} - x_j t^p \frac{\partial q}{\partial t_i} = l_{ij} h_r.
\]
The identity:
\[x^{k^p_r} \left(x^i \frac{\partial q}{\partial t_j} - x^j \frac{\partial q}{\partial t_i} \right) - x^i \frac{\partial q}{\partial t_i} \left(x^k \frac{\partial q}{\partial t_j} - x^j \frac{\partial q}{\partial t_k} \right) + x^j \frac{\partial q}{\partial t_i} \left(x^k \frac{\partial q}{\partial t_j} - x^j \frac{\partial q}{\partial t_k} \right) = 0 \]
for every \(i, j, k \) determines the equality \(x^{k^p_r} l_{ij} - x^{i^p_r} l_{kj} + x^{j^p_r} l_{ki} = 0 \). So on \(D_+(x, x, x, x) \) we have the equality:
\[\frac{l_{ij}}{(x, x, x)^{p^p_r}} - \frac{l_{ki}}{(x, x, x)^{p^p_r}} + \frac{l_{ki}}{(x, x, x)^{p^p_r}} = 0. \]
Considered now the open covering \(\mathcal{U} = \{ D_+(x, i) \mid i = 0, \ldots, 3 \} \) and \(n = \deg l_{ij} \), we get a Čech cocycle in \(H^1(\mathcal{U}, \mathcal{O}_X((n - 2p^r))) \cong H^1(\mathcal{O}_X((n - 2p^r))) = 0 \). So the cocycle is a coboundary and for every \(i, j \) there exist \(m_i, m_j \in k[\mathcal{L}, x] \) such that \(l_{ij} = m_i x^{i^p_r} - m_j x^{j^p_r} \). By replacing \(q \) by \(q - mh_r \), we may assume that \(\partial q / \partial t_i = m_i h_r \) for every \(i \). We want to prove that \(\partial q / \partial t_i = U_i h_r^p \) for some \(U_i \) and so let us suppose that:
\[\frac{\partial q}{\partial t_i} = v_i h_r^n \forall i \]
for some \(n < p - 1 \). Then:
\[\frac{\partial^2 q}{\partial t_i \partial t_j} = \frac{\partial v_i}{\partial t_j} h_r^n + n v_i x^i p^r h_r^{n-1} \forall i, j. \]
But we have also:
\[\frac{\partial^2 q}{\partial t_i \partial t_j} = \frac{\partial v_i}{\partial t_i} h_r^n + n v_j x^j p^r h_r^{n-1} \forall i, j. \]
So:
\[\frac{\partial^n}{\partial t_j} h_r^n + n v_i x^i p^r h_r^{n-1} = \frac{\partial v_i}{\partial t_i} h_r^n + n v_j x^j p^r h_r^{n-1} \]
\[\Rightarrow v_i x^i p^r - v_j x^j p^r = \frac{h_r}{n} \left(\frac{\partial v_i}{\partial t_i} - \frac{\partial v_j}{\partial t_j} \right) \forall i, j. \]
This implies that \(v_i = u x^i p^r + h_r u_i \) for every \(i \). By replacing \(q \) by \(q - \frac{1}{n+1} v h_r^{n+1} \), we may assume that:
\[\frac{\partial q}{\partial t_i} = V_i h_r^{p-1} \forall i. \]
We know that:
\[\frac{\partial p q}{\partial t_i^p} = 0. \]
This means that:
\[\frac{\partial^{p-1}(V_i h_r^{p-1})}{\partial t_i^{p-1}} = 0 \]
\[\Rightarrow \sum_{n=0}^{p-1} \binom{p-1}{n} \frac{\partial^n V_i}{\partial t_i^n} \frac{\partial^{p-1-n}(h_r^{p-1})}{\partial t_i^{p-1-n}} = 0 \]
⇒ \(h_r \mid (p - 1)!x_i^{p+1-p}V_i \Rightarrow h_r \mid V_i \forall i \).

So we can suppose that:
\[
\frac{\partial q}{\partial t_i} = U_i h_r^p \forall i.
\]

Now (12) leads us to the conclusion that:
\[
\frac{\partial^{p-1} U_i}{\partial t_i^{p-1}} = 0
\]

which means that in \(U_i \), for each \(i \), there are no terms of type \(t_i^{kp-1} \) for any \(k \geq 1 \).

So in particular we can say that:
\[
U_0 = \frac{\partial M_0}{\partial t_0}
\]

for some \(M_0 \) bi-homogeneous. Now \(q' = q - M_0 h_r^p \) is such that:
\[
\frac{\partial q'}{\partial t_0} = 0 \quad \text{and} \quad \frac{\partial q'}{\partial t_i} = U_i' h_r^p, \quad i = 1, 2, 3
\]

⇒ \[
\frac{\partial U''_i}{\partial t_0} = 0, \quad i = 1, 2, 3.
\]

So we can find \(U''_1 \) such that:
\[
\frac{\partial U''_1}{\partial t_0} = 0 \quad \text{and} \quad \frac{\partial U''_1}{\partial t_1} = U_1'.
\]

If we consider \(q'' = q' - U''_1 h_r^p \) we see that:
\[
\frac{\partial q''}{\partial t_i} = 0, \quad i = 0, 1 \quad \text{and} \quad \frac{\partial q''}{\partial t_i} = U''_i h_r^p, \quad i = 2, 3.
\]

Proceeding in this way we get \(\partial q / \partial t_i = 0 \) for every \(i \).

\[\blacksquare\]

4. Proof of the main theorem

Let us consider now a curve \(C \subset \mathbb{P}^3 \) and, following the notation of Theorem 3.3 the projections \(p_M : M_r \to \mathbb{P}^3 \) and \(g_M : M_r \to \mathbb{P}^3 \). Let \(T_r = p_{M_r}^{-1}(C) \) and:
\[
\mathcal{I}_r(m, n) = g_{M_r}^* (\mathcal{O}_{\mathbb{P}^3}(m)) \otimes g_{M_r}^* (\mathcal{O}_{\mathcal{C}}(n))
\]

for every \(m, n \in \mathbb{Z} \).

Proposition 4.1. If \(\mathcal{I}_r = \mathcal{I}_r(0, 0) \) and \(\mathcal{I}_{T_r} \) is the ideal sheaf of \(T_r \) in \(M_r \), then \(\mathcal{I}_r = \mathcal{I}_{T_r} \).

Proof. First note that \(\mathcal{I}_r(m, n) = \mathcal{O}_{M_r}(m, n) \otimes \mathcal{O}_{M_r} p_{M_r}^* (\mathcal{I}_{\mathcal{C}}) \) for any \(m, n \in \mathbb{Z} \). Moreover \(p_M \) is smooth, in particular flat. So, by base change (see \[\mathbb{S}\]), \(p_M \) is flat too and we can apply \[\mathbb{S}\] Ch. III, Proposition 9.3] to the following commutative diagram:

\[
\begin{array}{ccc}
T_r & \xrightarrow{\pi} & C \\
\downarrow j & & \downarrow i \\
M_r & \xrightarrow{p_{M_r}} & \mathbb{P}^3
\end{array}
\]

to get that \(p_{M_r}^* \mathcal{I}_{\mathcal{C}} \cong j_* \pi^* \mathcal{I}_{\mathcal{C}} \cong j_* \mathcal{I}_{T_r} \). This fact together with the exact sequence \(0 \to p_{M_r}^* \mathcal{I}_{\mathcal{C}} \to p_{M_r}^* \mathcal{O}_{\mathbb{P}^3} \to p_{M_r}^* i_* \mathcal{O}_{\mathcal{C}} \to 0 \), consequence of the flatness of \(p_{M_r} \), leads us to the desired conclusion. \[\blacksquare\]
Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. We divide the proof in different steps.

Step 1. There exists \(S \subset \mathbb{P}^3 \times \mathbb{P}^3 \) integral such that the generic fibre of the projection \(S \to \mathbb{P}^3 \) is an integral plane curve of degree \(s \) containing \(\Gamma \).

Proof of Step 1. Let \(I_C \) be the ideal sheaf of \(C \) in \(\mathbb{P}^3 \) and let \(M \subset \mathbb{P}^3 \times \mathbb{P}^3 \) be the incidence variety. Let us consider the two projections:

\[
\begin{array}{c}
P^3 \downarrow \quad \downarrow g \\
p \quad S \\
\end{array}
\]

and the \(\mathcal{O}_M \)-module \(\mathcal{I}(m, n) = \omega_{\mathbb{P}^3}(m) \otimes \mathcal{O}_M p^*(\mathcal{I}_C(n)) \). As we have seen in Proposition 4.1 in the case \(r = 0 \), \(\mathcal{I} \) is the ideal sheaf of \(T = p^{-1}(C) \) in \(\mathcal{O}_M \). Moreover there exists \(\alpha \) such that \(h^0(\mathcal{I}(\alpha, s)) \neq 0 \). Indeed, if \(\eta \in \mathbb{P}^3 \) denotes the generic point and \(\Gamma \) is the generic plane section of \(C \), then \(h^0(p^*(\mathcal{I}(s)|_{g^{-1}(\eta)}) = H^0(\mathcal{I}_C(s)) \neq 0 \) and so this global section determines an effective divisor in \(M_{k(\eta)} = M \times_{\mathbb{P}^3} \text{Spec } k(\eta) \cong \mathbb{P}^2_{k(\eta)} \). Then there exists \(U \subset \mathbb{P}^3 \) such that this divisor extends to an effective divisor \(D \subset M_U = M \times_{\mathbb{P}^3} U \) containing \(T \times_{\mathbb{P}^3} U \). The closure \(D \subset M \) is an effective divisor containing \(T \) and, since \(\text{Pic}(M) = \mathbb{Z} \times \mathbb{Z} \), it is a divisor determined by a global section of \(\mathcal{I}(\alpha, s) \), for some \(\alpha \geq 0 \).

Taken the least \(\alpha \) such that \(h^0(\mathcal{I}(\alpha, s)) \neq 0 \), there exists \(q \in H^0(\mathcal{I}(\alpha, s)) \) that determines a hypersurface \(S \) in \(M \) such that \(S \cap g^{-1}(\eta) \) is an integral curve of degree \(s \) containing \(\Gamma \). Moreover, as we saw in Proposition 5.2, \(S \) is a complete intersection of codimension 2 in \(\mathbb{P}^3 \times \mathbb{P}^3 \). This implies that \(S \) is irreducible. \(\square \)

To prove Theorem 1.2, we now assume that the curve \(C \) is not contained in any surface of degree \(s \), in other words, \(h^0(\mathcal{I}_C(s)) = 0 \). Then \(p_S : S \to \mathbb{P}^3 \) is dominant and, since \(\alpha \geq 0 \), in such a situation it must be \(\alpha > 0 \).

Step 2. We can factor \(p_S \) through a generically smooth morphism \(S_r \to \mathbb{P}^3 \), with \(S_r \) scheme of zeroes of a global section of \(\mathcal{I}_r(\beta, s) \), being \(\mathcal{I}_r = \pi_{M_r*}\mathcal{I}_C \), and \(\alpha = \beta p^r \), for some \(r \geq 0 \).

Proof of Step 2. If \(p_S \) is not generically smooth, then by Theorem 3.3 it follows that there exist \(r \geq 1 \), and \(S_r \subset M_r \) integral hypersurface such that \(p_S \) can be factored in the following way:
where the projection \(p_S \) is dominant and generically smooth and \(F^r \) is induced by the commutative diagram:

\[
\begin{array}{c}
S \\
\downarrow j \\
M \\
\end{array}
\quad \begin{array}{c}
\quad \begin{array}{c}
F^r \\
\downarrow i \\
S_r \\
\end{array}
\quad \begin{array}{c}
\quad \begin{array}{c}
M_r \\
\end{array}
\end{array}
\end{array}
\]

Moreover, we also get that \(\alpha = p^r \beta \), for some \(\beta \in \mathbb{N} \), \(\beta > 0 \).

Considered the sheaf \(\mathcal{F}_r = \pi_{M_r}^* \mathcal{F} \) and the scheme \(T_r = \pi_{M_r}^{-1}(C) \), by Proposition \[\[\] \] we see that \(\mathcal{F}_r \) is the ideal sheaf of \(T_r \) in \(M_r \). Given \(T = \pi^{-1}(C) \), since \(S \supset T \) and \(F_M(T) = T_r \), then \(S_r \supset T_r \). So \(S_r \subset M_r \) is the scheme of zeros of a global section in \(H^0(\mathcal{F}_r(\beta, s)) \).

Hence in both cases we find \(S_r \) integral hypersurface in \(M_r \), with \(r \geq 0 \), such that the projection \(p_{S_r} : S_r \to \mathbb{P}^3 \) is generically smooth and \(S_r \subset M_r \) is the scheme of zeros of a global section in \(H^0(\mathcal{F}_r(\beta, s)) \), for some \(\beta > 0 \).

\[\square\]

Let us now follow the proof of Gruson and Peskine given in \[\[\] \].

Step 3. There exists a 3-dimensional scheme \(Y \), with \(T_r \subseteq Y \subset S_r \), such that we have:

\[
0 \to \Omega^1_{S_r/\mathbb{P}^3} \to \Omega^1_{M_r/\mathbb{P}^3} \otimes \mathcal{O}_{M_r/\mathbb{P}^3} \mathcal{O}_{S_r} \to \mathcal{F}_Y(\beta, s) \to 0
\]

with \(\mathcal{F}_Y \subset \mathcal{O}_{S_r} \) ideal sheaf of \(Y \).

Proof of Step 3. Since \(S_r \) is generically smooth over \(\mathbb{P}^3 \), we have the exact sequence

\[
0 \to \mathcal{O}_{S_r}(-\beta, -s) \to \Omega^1_{M_r/\mathbb{P}^3} \otimes \mathcal{O}_{M_r/\mathbb{P}^3} \mathcal{O}_{S_r} \to \Omega^1_{S_r/\mathbb{P}^3} \to 0.
\]

Dualizing with respect to \(\mathcal{O}_{S_r/\mathbb{P}^3} \), we get:

\[
0 \to \Omega^1_{S_r/\mathbb{P}^3}^* \to \Omega^1_{M_r/\mathbb{P}^3}^* \otimes \mathcal{O}_{M_r/\mathbb{P}^3} \mathcal{O}_{S_r} \to \mathcal{O}_{S_r} \mathcal{O}_{S_r}(\beta, s).
\]

Since all the fibres of the projection \(T_r \to C \) have dimension 2 and \(\dim S_r = 4 \), \(p_{S_r} \) is not regular in any of the points of \(T_r \). It means that the last map in \([14]\) has image inside \(\mathcal{F}_T_r(\beta, s) \), the ideal sheaf of \(T_r \) in \(S_r \). So this image is an ideal sheaf of type \(\mathcal{F}_Y(\beta, s) \), where \(Y \subset S_r \) is a scheme containing \(T_r \), and \(3 = \dim T_r \leq \dim Y \leq \dim S_r = 4 \). Since \(S_r \) is reduced and irreducible, if \(\dim Y = 4 \), then \(p_{S_r} \) would be non regular almost everywhere in \(S_r \). This contradicts the fact that \(p_{S_r} \) is generically smooth. So \(\dim Y = \dim T_r = 3 \) and \(T_r \subseteq Y \).

\[\square\]

Let us consider the projection \(g_M : M_r \to \mathbb{P}^3 \) and take any \((\mathbf{b}) = (d^p) \in \mathbb{P}^3 \). Then \(g_M^{-1}(\mathbf{b}) = \{ (x_i, d^p) \mid (\sum d_i x_i)^p^r = 0 \} \). If \(H = g_M^{-1}(\mathbf{b})_{\text{red}} \) and \(D = p(g^{-1}(\mathbf{b})_{\text{red}}) \), then there exists \(U \subset \mathbb{P}^3 \) open such that, taken \((\mathbf{b}) \in U \), \(D \) is an irreducible curve of degree \(s \) containing the plane section of \(C \) with \(H \). Let \(\Gamma \) denote such a section and let \(\mathcal{F}_T \subset \mathcal{O}_D \) be the its ideal sheaf.

Step 4. If \(\mathcal{M} = (\Omega_{M_r/\mathbb{P}^3})_{|H} \), there exist a rank two vector bundle \(\mathcal{N} \) and a zero-dimensional scheme \(\Delta \), with \(\Gamma \subseteq \Delta \subset D \), such that we have:

\[
0 \to \mathcal{N} \to \mathcal{M} \to \mathcal{I}_\Delta(\beta, s) \to 0
\]

being \(\mathcal{I}_\Delta \subset \mathcal{O}_D \) the ideal sheaf of \(\Delta \).
Proof of Step 4. Since \(M = \mathbb{P}(\Theta_{\mathfrak{p}_3}(-1)) \), by [8] and by [3] Lemma 1.5 we see that \(M_r = \mathbb{P}(F^*(\Theta_{\mathfrak{p}_3}(-1))) \), where we denoted by \(F \), as in [3], the absolute Frobenius on \(\mathbb{P}^3 \). The sheaf \(\mathcal{E} = F^*(\Theta_{\mathfrak{p}_3}(-1)) \) is determined by the exact sequence
\[0 \to \mathcal{O}_{\mathbb{P}^3}(-p^r) \to \mathcal{O}_{\mathbb{P}^3}(\mathfrak{p}^4) \to \mathcal{E} \to 0 \]
and by [8] Ch. III, Ex. 8.4(b) we have also
\[0 \to \Omega_{\mathbb{P}^3(\mathfrak{p}^4)} (p_{M_r}^* \mathcal{E}(-1)) \to \Omega_{M_r} \to 0. \]
When we restrict to \(H \), by the fact that the sequences locally split it follows that the following sequences are exact:
\[0 \to \mathcal{O}_H(-p^s) \to \mathcal{O}_H(\mathfrak{p}^4) \to \mathcal{E} \to 0 \]
and
\[0 \to \mathcal{M} \to (p_{M_r}^* \mathcal{E})|_H(-1) \to \mathcal{O}_H \to 0 \]
where \(\mathcal{M} = (\Omega_{\mathbb{P}^3} \mathfrak{p}^4)|_H. \) Since \((p_{M_r}^* \mathcal{E})|_H(-1) = (p_{M_r}^* \mathcal{E}(-1,0))|_H = \mathcal{E}_H \), we have:
\[0 \to \mathcal{M} \to \mathcal{E}_H \to \mathcal{O}_H \to 0. \]
Restricting \(\mathcal{E}_H \) to \(H \), we get a surjective map \(\mathcal{M} \cap \mathcal{E}_H \mathcal{O}_D \to \mathcal{I}_\Delta(s) \), with \(\mathcal{I}_\Delta \subset \mathcal{O}_D \) ideal sheaf of a zero-dimensional scheme \(\Delta \) containing \(\Gamma \). The kernel of this map is a locally free sheaf of rank 2 that determines the exact sequence \((15) \).

Step 5. \(d \leq s^2 + 2p^r. \)

Proof of Step 5. Note that \(c_1(\mathcal{I}_\Delta(s)) = s \) and \(c_2(\mathcal{I}_\Delta(s)) = \deg \Delta = \delta \geq d \). Now we compute the Chern classes of the other sheaves. From \((13) \) we have \(c_1(\mathcal{E}_H) = p^r \)
and \(c_2(\mathcal{E}_H) = p^{2r}. \) So by \((17) \) \(c_1(\mathcal{M}) = p^r \) and \(c_2(\mathcal{M}) = p^{2r} \), from which it follows that \(c_1(\mathcal{M}^\vee) = -p^r \) and \(c_2(\mathcal{M}^\vee) = p^{2r}. \) By \((15) \) we see that:
\[c_1(\mathcal{M}) = -p^r - s \quad \text{and} \quad c_2(\mathcal{M}) = p^{2r} - \delta + s^2 + p^r s. \]

Let \(m \in \mathbb{Z} \) be the smallest number such that \(H^0(\mathcal{M}^\vee(m-1)) = 0 \) and \(H^0(\mathcal{M}^\vee(m)) > 0. \) Dualizing \((17) \), since \(\mathcal{E}_H \) is a locally free sheaf, we get \(0 \to \mathcal{E}_H \to \mathcal{E}_H^\vee \to \mathcal{M}^\vee \to 0 \), from which it follows that:
\[h^0(\mathcal{M}^\vee(m)) = h^0(\mathcal{E}_H^\vee(m)) - h^0(\mathcal{E}_H(m)) \quad \forall m \in \mathbb{Z}. \]
From the exact sequence \((16) \) we see that, in the notation of Lemma 2.3 \(\mathcal{E}_H^\vee = \mathcal{M} \), so that, by Lemma 2.3 we see that:
\[h^0(\mathcal{E}_H^\vee(m)) = h^0(\mathcal{E}_H(m)) + 3h^0(\mathcal{E}_H(m-p^s)) - h^0(\mathcal{E}_H(m-2p^r)) \]
for every \(m \in \mathbb{Z}. \) So:
\[h^0(\mathcal{M}^\vee(m)) = 3h^0(\mathcal{E}_H(m-p^r)) - h^0(\mathcal{E}_H(m-2p^r)) \quad \forall m \in \mathbb{Z}. \]
This implies that \(h^0(\mathcal{M}^\vee(p^r-1)) = 0 \) and \(h^0(\mathcal{M}^\vee(p^r)) > 0. \) So \(h^0(\mathcal{M}(p^r-1)) = 0 \)
and \(p^{2r} + p^r(-s - p^r) + c_2(\mathcal{M}) = c_2(\mathcal{M}(p^r)) \geq 0. \) So we get that \(p^{2r} + s^2 \geq \delta \)
and, since \(\delta \geq d \):
\[p^{2r} + s^2 \geq d. \]

Step 6. If \(C \) is connected, \(p^r < s; \) if \(C \) is merely reduced, \(p^r \leq s. \)
Proof of Step 6. Let us now consider a generic plane $H = V(l)$, with l linear form in the $\{x_i\}$, and the non reduced surface H_r in \mathbb{P}^3 given by $l^{r'} = 0$. Let $\Gamma_r \subset H_r$ be the section of C with H_r. Then there is the following exact sequence:

$$0 \rightarrow I_C(-p^r) \xrightarrow{\varphi_H} I_C \rightarrow i_*I_{\Gamma_r} \rightarrow 0$$

where $i:\Gamma_r \hookrightarrow \mathbb{P}^3$ and φ_H is the multiplication by $l^{r'}$. The long cohomology exact sequence associated to the previous exact sequence shifted by s determines the following one:

$$(19) \quad H^0(I_C(s)) \rightarrow H^0(I_{\Gamma_r}(s)) \rightarrow H^1(I_C(s - p^r)) \xrightarrow{\varphi_H} H^1(I_C(s)).$$

Let $[H] \in \mathbb{P}^3$ be a point such that the fibre of the projection $M_r \rightarrow \mathbb{P}^3$ at $[H]$ is isomorphic to H_r. Then, taking $[H]$ in a suitable open $U \subset \mathbb{P}^3$, $g_{s,-1}([H])$ is the complete intersection of H_r and of a surface of degree s containing $C \cap H_r$, because $T_r \subset S_r$. It means that $H^0(I_{\Gamma_r}(s)) \neq 0$ and so by (19) and by hypothesis it must be $h^1(I_C(s - p^r)) \neq 0$.

Let us suppose that C is connected. Then $h^1(I_C(n)) = 0$ for $n \leq 0$. So $s - p^r \geq 1$, because otherwise $h^0(I_C(s)) \neq 0$, which contradicts the hypothesis made at the beginning.

If C is merely reduced, we still have $h^1(I_C(n)) = 0$ for $n < 0$. So, as before, it must be $s - p^r \geq 0$. □

Let us suppose that C is connected. By Step 6, if $p \geq s$, then the only possibility is that $r = 0$, which implies $d \leq s^2 + 1$. If $p < s$, then $p^r \leq s - 1$ and, in particular, $p^r \leq p^n$, being $p^n < s \leq p^{n+1}$. So by (18) $d \leq s^2 + p^{2n}$ and in particular we see that $d \leq 2s^2 - 2s + 1$.

Let us suppose now that C is merely reduced. If $p > s$, then it must be $r = 0$, so that by (18) we have $d \leq s^2 + 1$. If $p \leq s$, then $p^r \leq s$ and, in particular, $p^r \leq p^n$, being $p^n \leq s < p^{n+1}$. Now by (18) we see that $d \leq s^2 + p^{2n}$. In particular, $d \leq 2s^2$.

5. Example

In this section we show that for any p there exist smooth integral curves of degree $d = s^2 + p^{2n}$, being $s > p$ and n such that $p^n < s \leq p^{n+1}$, that are not contained in any surface of degree s and that have the generic plane section contained in an integral plane curve of degree s.

First, let us recall the following definition.

Definition 5.1. A rank 2 vector bundle E_0 on \mathbb{P}^3 is said to be a null-correlation bundle if there exists an exact sequence:

$$(20) \quad 0 \rightarrow O_{\mathbb{P}^3} \xrightarrow{\tau} \Omega_{\mathbb{P}^3}(2) \rightarrow E_0(1) \rightarrow 0$$

where τ is a nowhere vanishing section of $\Omega_{\mathbb{P}^3}(2)$.

Remark 5.2. It is possible to prove (see [1], [13] and [9] Example 8.4.1)) that E is a stable rank 2 vector bundle on \mathbb{P}^3 with $c_1(E) = 0$ and $c_2(E) = 1$ if and only if E is isomorphic to a null-correlation bundle.

Example 5.3. Let E_0 be a null-correlation bundle. Let $n, s \in \mathbb{N}$ be positive integers and let $F: \mathbb{P}^3 \rightarrow \mathbb{P}^3$ be the absolute Frobenius on \mathbb{P}^3. Let us consider the sheaf $E(s) = F^{n*}(E_0) \otimes O_{\mathbb{P}^3}(s)$. Since $c_1(F^{n*}(E_0)) = 0$ and $c_2(F^{n*}(E_0)) = p^{2n}$, we see that $c_1(E(s)) = 2s$ and $c_2(E(s)) = p^{2n} + s^2$.

12
Let $\sigma \in H^0(\mathcal{E}(s))$ be a global section such that the zero locus of σ is a curve C. Then we get the exact sequence:

$$(21) \quad 0 \to \mathcal{O}_{\mathbb{P}^3} \to \mathcal{E}(s) \to \mathcal{I}_C(2s) \to 0$$

so that $h^0(\mathcal{I}_C(2s)) = h^0(\mathcal{E}(s))$ and $\deg C = c_2(\mathcal{E}(s)) = p^2 + s^2$. Let H be a plane transversal to C and $\Gamma = C \cap H$. Restricting to H the exact sequence (21) we have:

$$(22) \quad 0 \to \mathcal{O}_H \to \mathcal{E}(s)|_H \to \mathcal{I}_T(2s) \to 0$$

so that:

$$(23) \quad h^0(\mathcal{I}_T(s)) = h^0(\mathcal{E}|_H).$$

By [10, Theorem 3.2] \mathcal{E} is stable and we can choose H sufficiently general in such a way that $\mathcal{E}|_H$ is semi-stable, but not stable. Since \mathcal{E} is stable and $c_1(\mathcal{E}) = 0$, then by Lemma 3.1 $h^0(\mathcal{E}) = 0$, which implies that $h^0(\mathcal{I}_C(s)) = 0$. So C is not contained in any surface of degree s. Since $\mathcal{E}|_H$ is semi-stable, but not stable and $c_1(\mathcal{E}|_H) = 0$, it must be $h^0(\mathcal{E}|_H) \neq 0$, so that $h^0(\mathcal{I}_T(s)) \neq 0$. Moreover by (22) $h^0(\mathcal{I}_T(s - 1)) = h^0(\mathcal{E}|_H((s - 1)))$. Now note that by (20) the sheaf \mathcal{E} is determined by the exact sequence:

$$(24) \quad 0 \to \mathcal{O}_{\mathbb{P}^3}(-p^n) \to (F^n)\ast (\Omega_{\mathbb{P}^3}(p^n)) \to \mathcal{E} \to 0.$$

so that, considered the sheaf $\mathcal{F} = (F^n)\ast (\Omega_{\mathbb{P}^3})$, we have the exact sequence $0 \to \mathcal{O}_H(-p^n - 1) \to \mathcal{F}|_H(p^n - 1) \to \mathcal{E}|_H(-1) \to 0$, which implies that $h^0(\mathcal{E}|_H(-1)) = h^0(\mathcal{F}|_H(p^n - 1)) = 0$ by Lemma 2.3. So the plane curves of degree s containing the generic plane section of C are the minimal ones. Moreover by the previous exact sequence and by Lemma 2.3 we have the equality $h^0(\mathcal{E}|_H) = h^0(\mathcal{F}|_H(p^n)) = 1$, which implies by (23) that $h^0(\mathcal{I}_T(s)) = 1$. So there is a unique plane curve of degree s containing Γ, which means that this plane curve of degree s is the minimal plane curve containing Γ.

Now we want to know when $h^0(\mathcal{E}(s)) \neq 0$. By (24) we get for each $s \in \mathbb{N}$:

$$(25) \quad 0 \to \mathcal{O}_{\mathbb{P}^3}(-p^n + s) \to \mathcal{F}(p^n + s) \to \mathcal{E}(s) \to 0.$$

By Lemma 2.2 $h^0(\mathcal{F}(2p^n)) = 6$ and $h^0(\mathcal{F}(p^n + s)) \neq 0$ if and only if $s \geq p^n$. So from (25):

$$(26) \quad h^0(\mathcal{E}(p^n)) = 5$$

and $h^0(\mathcal{E}(s)) \neq 0$ if and only if $s \geq p^n$.

So we have global sections only for $s \geq p^n$. We want to prove there exist global sections of $\mathcal{E}(s)$, for every $s \geq p^n$, whose zero locus is a curve. First we must prove that \mathcal{E} is not split. If this was the case, then, being \mathcal{E} a locally free sheaf of rank 2, we would have $\mathcal{E} \cong \mathcal{O}_{\mathbb{P}^3}(a) \oplus \mathcal{O}_{\mathbb{P}^3}(b)$, for some $a, b \in \mathbb{Z}$. Since $h^0(\mathcal{E}(p^n - 1)) = 0$, it must be $a + p^n - 1 < 0$ and $b + p^n - 1 < 0$, so that $h^0(\mathcal{E}(p^n)) \leq 2$, but this contradicts (20). So \mathcal{E} is not split. Moreover, since $h^0(\mathcal{E}(p^n)) = 5 > h^0(\mathcal{E}_{\mathbb{P}^3}) = 1$, by [5, Theorem 0.1] we get that every general nonzero global section of $\mathcal{E}(s)$, for $s \geq p^n$, has as zero locus a curve in \mathbb{P}^3.

Now we want to know when there are connected curves. By [3, Proposition 1.4] if $h^1(\mathcal{E}(\mathcal{V})(s)) = 0$, then a generic global section of $\mathcal{E}(s)$, for $s \geq p^r$, determines a connected curve. Note that $h^1(\mathcal{E}(\mathcal{V})(s)) = h^2(\mathcal{E}(s - 4))$. By (25) and by Lemma 2.2 $h^2(\mathcal{E}(s - 4)) \leq h^3(\mathcal{O}_{\mathbb{P}^3}(s - p^n - 4)) = 0$ for $s > p^n$. So for $s > p^n$ the generic global section of $\mathcal{E}(s)$ is connected.
Now we want to know when we have nonsingular curves. By [9, Proposition 1.4], if $\mathcal{E}(s-1)$ is generated by its global sections, then a sufficiently generic global section in $H^0(\mathcal{E}(s))$ will determine a nonsingular zero locus (not necessarily connected).

Note now that in the proof of Lemma 2.2 we have seen that there is a surjective morphism of sheaves $\mathcal{O}^{\oplus 6}_{\mathbb{P}^3} \twoheadrightarrow \mathcal{F}(2p^n)$ (see (4)). From (25) we see that we have also the surjective morphism $\mathcal{F}(2p^n) \twoheadrightarrow \mathcal{E}(p^n)$, which means that $\mathcal{E}(p^n)$ is generated by its global sections and so $\mathcal{E}(s)$ is generated by its global sections for $s \geq p^n$.

In this way we construct, for any p, n, s, with $s \geq p^n$, examples of curves $C \subset \mathbb{P}^3$ of degree $p^{2n} + s^2$ not contained in any surface of degree s such that the minimal curve containing its generic plane section has degree s and such that:

1. C is nonsingular, in particular reduced;
2. C is nonsingular and connected, which means nonsingular and irreducible, in the case $s > p^n$. In this situation the minimal curve of degree s containing the generic plane section of C is integral by [2, Theorem 4.1].

In particular, we see that the bound in Theorem 1.2 for connected curves is sharp. Moreover, taking $s = p^n + 1$, we see that there exist connected and reduced curves (in particular nonsingular) of degree $d = 2s^2 - 2s + 1$, not lying on any surface of degree s, whose generic plane section is contained in an integral plane curve of degree s.

References

[1] W. P. Barth, Some properties of stable rank-2 vector bundles on \mathbb{P}^n, Math. Ann. 226 no. 2 (1977), 125–150.
[2] P. Bonacini, On the plane section of an integral curve in positive characteristic, to appear in Proc. A.M.S.
[3] L. Ein, Stable vector bundles on projective spaces in char $p > 0$, Math. Ann. 254 (1980), 53–72.
[4] D. Eisenbud, Commutative Algebra with a view toward Algebraic Geometry, Graduate Texts in Mathematics, no. 150, Springer-Verlag, New York, 1995.
[5] A. Geramita, M. Roggero, P. Valabrega, Subcanonical curves with the same postulation as Q skew complete intersections in projective 3-space, Istit. Lombardo Accad. Sci. Lett. Rend. A 123 (1989), 111–121 (1990).
[6] L. Gruson, C. Peskine, Section plane d’une courbe gauche: postulation, Enumerative Geometry and Classical Algebraic Geometry (Nice, 1981), Progress in Math., no. 24, Birkhäuser, Boston, Mass., 1982, pp. 33–35.
[7] J. Harris, The Genus of space curves, Math. Ann. 249 (1980), 191–204.
[8] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, no. 52, Springer Verlag, New York, 1977.
[9] Stable vector bundles of rank 2 on \mathbb{P}^3, Math. Ann., 238 3 (1978), 229–280.
[10] Stable reflexive sheaves, Math. Ann., 254 2 (1980), 121–176.
[11] O. A. Laudal, A generalized trisecant lemma, Algebraic Geometry (Proc. Sympos. Univ. Tromsø, Tromsø, 1977), Lecture Notes in Math., no. 687, Springer-Verlag, Berlin, 1978, pp. 112–149.
[12] J. S. Milne, Étale cohomology, Princeton Mathematical Series, no. 33, Princeton University Press, Princeton, N.J., 1980.
[13] R. Strano, On generalized Laudal’s Lemma, Complex projective geometry (Trieste 1989/Bergen 1989), London Math. Soc. Lecture Note Ser., no. 179, Cambridge Univ. Press, Cambridge, 1992, pp. 284–293.
[14] G. P. Wever, The moduli of a class of rank 2 vector bundles on \mathbb{P}^n, Nagoya Math. J., 84 (1981), 9–30.
University of Catania, Viale A. Doria 6, 95124, Catania, Italy
E-mail address: bonacini@dmi.unict.it