Substitution for Cu in the electron-doped infinite-layer superconductor Sr$_{0.9}$La$_{0.1}$CuO$_2$

Ni reduces T_c much faster than Zn

C. U. Jung, J. Y. Kim, Min-Seok Park, Heon-Jung Kim, Mun-Seog Kim, and Sung-Ik Lee

National Creative Research Initiative Center for Superconductivity and
Department of Physics, Pohang University of Science and Technology, Pohang
790-784, Republic of Korea

(October 27, 2018)

We report the effect of substitution for Cu on the T_c of the electron-doped infinite-layer superconductors Sr$_{0.9}$La$_{0.1}$Cu$_{1-x}$R$_x$O$_2$ for R = Zn and Ni. We found that T_c was nearly constant until $x \sim 0.03$ for R = Zn while the superconductivity was nearly suppressed for $x \sim 0.02$ with $dT_c/dx \geq 20$ K/% for R = Ni. This behavior is very similar to that of conventional superconductors. These findings are discussed in terms of the superconducting gap symmetry in the cuprate superconductors, including another electron-doped superconductor, (Nd, Ce)$_2$CuO$_{4-y}$.

I. INTRODUCTION

Impurity substitution at the Cu site in high-T_c cuprates [1-3] has been considered to be a test probe for the mechanism of high-temperature superconductivity and the symmetry of the superconducting order parameter [3-33]. It has also shed light on the recent striking issue of a normal-state pseudo-gap. [4-5] The most important observation was that the non-magnetic Zn ion suppressed T_c somewhat more than magnetic ions such as Ni for all kinds of hole-doped cuprates such as (La,Sr)$_2$CuO$_4$, [6-9] YBa$_2$Cu$_3$O$_7$-[4], [10-13] YBa$_2$Cu$_4$O$_8$, [9,10] and Bi$_2$Sr$_2$CaCu$_2$O$_8$. [9,10] The T_c reduction rate for Zn substitution was $dT_c/dx \sim 10$ K/% and was higher for underdoped compounds than optimally or overdoped ones. This behavior of T_c is strongly contrasted with that of conventional superconductors, where the reduction of T_c is stronger for magnetic impurities, but nearly absent for non-magnetic ion impurities. This difference led to the theoretical formulation of an unconventional pairing mechanism and a symmetry of the order parameter for high-temperature superconductor [16-27].

Substitution at the Cu site in ordinary high-T_c cuprates with a charge reservoir block is generally not immune to structural distortion and/or charge carrier transfer between the charge reservoir block and the conducting CuO$_2$ planes, which could affect T_c dramatically. Especially, one must be very cautious about the oxygen content when comparing the amounts of T_c reduction directly. Another complexity is due to the existence of several substitutable sites inside a unit-cell.

Electron-doped infinite-layer superconductors (Sr$_{2+y}$Ln$_{2-y}$)CuO$_2$ (Ln = La, Sm, Nd, Gd, etc.) [34-35] have several incomparable merits for studying the effect of substitution for Cu on T_c. Without a charge reservoir block, it has only the back-bone structure common to all high-T_c cuprates, CuO$_2$ planes separated only by a metallic spacer layer. [36] The structure is robust, and oxygen is very stoichiometric and stable: buckling of the CuO$_2$ plane, O interstitials and O vacancies were reported to be nearly absent. [37] The T_c has been found to be very robust against modifications of the structure and changes in the magnetic moment due to doping various lanthanide ions at the Sr sites. [38] Thus, the substitution for Cu in the infinite-layer superconductors has the least possibility of changing T_c via secondary routes, and observations should reveal a more intrinsic change in the T_c of cuprate superconductors. However, difficulties in synthesizing high-quality sample has prohibited intense work on these infinite-layer superconductors. [39] Moreover, no work on the Cu-substitution effect has been reported.

Recently, we succeeded in synthesizing high-quality (Sr$_{0.9}$La$_{0.1}$)CuO$_2$. [40] Here, we report the effect of substitution for Cu on the T_c of the electron-doped infinite-layer superconductors Sr$_{0.9}$La$_{0.1}$Cu$_{1-x}$R$_x$O$_2$ where R = Zn and Ni. We found that T_c was nearly constant until $x \sim 0.03$ for R = Zn while the superconductivity was nearly suppressed for $x \sim 0.02$ with $dT_c/dx \geq 20$ K/% for Ni. This feature is similar to those observed in conventional superconductors.

II. EXPERIMENTAL

Starting materials of La$_2$O$_3$, SrCO$_3$, CuO, and ZnO (NiO) with a nominal composition were calcined at 920 – 945 °C for 36 hours with several intermittent grindings. A pelletized precursor sandwiched between two Ti oxygen-getter slabs was put in a Au or Pt capsule. The capsule, together with an insulating wall and a graphite-sleeve heater, was closely packed inside a high-pressure cell made of pyrophillite. Details of the sintering under high pressure is found elsewhere. [41] The masses of the homogenous samples obtained in one batch were larger...
than 200 mg. The low-field magnetization was measured in the zero-field-cooled state by using a SQUID magnetometer (MPMS.XL, Quantum Design) at 10 \textdegree\sim 20 \textOE. The powder X-ray diffraction (XRD) was measured using a RIGAKU X-ray diffractometer. Energy dispersive spectroscopy (EDS) using an electron probe microanalyzer and a field emission scanning electron microscope (JSM-6330F, JEOL) were also used.

III. DATA ANALYSIS AND DISCUSSION

Figure 1(a) shows the X-ray powder diffraction patterns of Sr$_{0.9}$La$_{0.1}$Cu$_{1-x}$Zn$_x$O$_2$, $x = 0, 0.01, 0.03,$ and Sr$_{0.9}$La$_{0.1}$Cu$_{1-x}$Ni$_x$O$_2$, $x = 0.01$ and 0.02. The intensity of each pattern was normalized to the intensity of the (101) peak and offset vertically for clear comparison. These XRD patterns show that a nearly single phase with an infinite-layer structure was formed. Peaks corresponding to Zn oxide, Ni oxide, and La oxide could not be identified within the resolution. The smaller peaks at 2θ \sim 33.5$^\circ$ and 37.5$^\circ$ were also found to exist for unsubstituted pristine Sr$_{0.9}$La$_{0.1}$Cu$_2$O$_2$ sample with nearly the same diamagnetic signal; thus they do not correspond to Zn oxide or Ni oxide.

The lattice constants are $a = b = 3.928$ (3.950) Å and $c = 3.433$ (3.410)Å for insulating SrCuO$_2$ (superconducting Sr$_{0.9}$La$_{0.1}$Cu$_2$O$_2$). The expansion of the a-axis lattice constant is known to be due to the transfer of electron carriers to the CuO$_2$ planes, and the shrinking of the c-axis lattice constant is simply due to the ionic size effect. The lattice constants from the XRD patterns in Fig. 1(a) for Sr$_{0.9}$La$_{0.1}$Cu$_{0.98}$Ni$_{0.02}$O$_2$ and Sr$_{0.9}$La$_{0.1}$Cu$_{0.97}$Zn$_{0.03}$O$_2$ are $a = b = 3.943$ Å and $c = 3.417$ Å and $a = b = 3.950$ Å and $c = 3.408$ Å, respectively. The error bars are about 0.003 Å.

We also examined whether Zn was uniformly distributed within the samples of Sr$_{0.9}$La$_{0.1}$Cu$_{1-x}$Zn$_x$O$_2$ with $x = 0.03$. The microscopic composition of the sample was measured over tens of grains, each with a smaller detecting area of 3×3 μm2. The average diameter of a grain was about 10 μm, and the Zn concentration in the grains was 3±1%. The average Zn concentration was also closer to the nominal value. Since the entire heating process was done inside a Au capsule, a net loss of metallic ions is not likely to occur for the high-pressure synthesis technique. For other samples, the resolution of the EDS was rather insufficient to determine the stoichiometry.

We measured the low-field magnetization and calculated the magnetic susceptibility, $4\pi\chi(T)$, to determine the effect of substitution at the Cu site on T_c. Figure 1(b) shows magnetic susceptibility, $4\pi\chi(T)$, curves for the above samples. The data for $x = 0$ were from a previous result. For Ni substitution, both T_c and the superconducting volume fraction drastically decrease, and superconductivity nearly vanishes for a 2% substitution with an average T_c reduction rate of $dT_c/dx \geq 20$ K/%. This behavior was confirmed for several samples with $x = 0.02$. However, for Zn substitution, the change in T_c was less than about 2 K until $x \sim 0.03$ where the superconducting volume fraction became less than about half that of the pristine sample. For samples with $x \geq 0.03$, growth of singl-phase samples was very difficult. Though we did not confirm the uniformness of Ni inside the sample due to the resolution limit of EDS, the result for dT_c/dx should be a lower bound on the real value. The nearly total suppression of superconductivity in Sr$_{0.9}$La$_{0.1}$Cu$_{0.98}$Ni$_{0.02}$O$_2$ seems not to result from the lattice effect because the lattice constants remain much closer to those for superconducting Sr$_{0.9}$La$_{0.1}$Cu$_2$O$_2$ than those for insulating SrCuO$_2$. This means that the reduction of the electron carrier density in the CuO$_2$ plane does not play a dominant role in killing the superconductivity.

Figure 2 shows the reduction rate, dT_c/dx, for Cu-site substitution in high-T_c cuprates: Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$, [4,5] (La,Sr)$_2$CuO$_4$, [37–39] YBa$_2$Cu$_3$O$_7$–δ, [4,5] (Nd,Ce)$_2$CuO$_4$, [4,5] and (Sr$_{0.9}$La$_{0.1}$)Cu$_2$O$_2$. We also examined whether Zn was uniformly distributed within the samples of Sr$_{0.9}$La$_{0.1}$Cu$_{1-x}$Zn$_x$O$_2$ with $x = 0.03$. The microscopic composition of the sample was measured over tens of grains, each with a smaller detecting area of 3×3 μm2. The average diameter of a grain was about 10 μm, and the Zn concentration in the grains was 3±1%. The average Zn concentration was also closer to the nominal value. Since the entire heating process was done inside a Au capsule, a net loss of metallic ions is not likely to occur for the high-pressure synthesis technique. For other samples, the resolution of the EDS was rather insufficient to determine the stoichiometry.

We measured the low-field magnetization and calculated the magnetic susceptibility, $4\pi\chi(T)$, to determine the effect of substitution at the Cu site on T_c. Figure 1(b) shows magnetic susceptibility, $4\pi\chi(T)$, curves for the above samples. The data for $x = 0$ were from a previous result. For Ni substitution, both T_c and the superconducting volume fraction drastically decrease, and superconductivity nearly vanishes for a 2% substitution with an average T_c reduction rate of $dT_c/dx \geq 20$ K/%. This behavior was confirmed for several samples with $x = 0.02$. However, for Zn substitution, the change in T_c was less than about 2 K until $x \sim 0.03$ where the superconducting volume fraction became less than about half that of the pristine sample. For samples with $x \geq 0.03$, growth of singl-phase samples was very difficult. Though we did not confirm the uniformness of Ni inside the sample due to the resolution limit of EDS, the result for dT_c/dx should be a lower bound on the real value. The nearly total suppression of superconductivity in Sr$_{0.9}$La$_{0.1}$Cu$_{0.98}$Ni$_{0.02}$O$_2$ seems not to result from the lattice effect because the lattice constants remain much closer to those for superconducting Sr$_{0.9}$La$_{0.1}$Cu$_2$O$_2$ than those for insulating SrCuO$_2$. This means that the reduction of the electron carrier density in the CuO$_2$ plane does not play a dominant role in killing the superconductivity.

Figure 2 shows the reduction rate, dT_c/dx, for Cu-site substitution in high-T_c cuprates: Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$, [4,5] (La,Sr)$_2$CuO$_4$, [37–39] YBa$_2$Cu$_3$O$_7$–δ, [4,5] (Nd,Ce)$_2$CuO$_4$, [4,5] and (Sr$_{0.9}$La$_{0.1}$)Cu$_2$O$_2$. The open and the filled symbols represent the cases of Ni and Zn substitution, respectively.

As noted previously, the T_c reduction rate is higher for Zn substitution in 2-dimensional hole-doped cuprate superconductors, which occupies the majority of high-T_c cuprates. However, this trend was first reversed for an electron-doped superconductor such as (Nd,Ce)$_2$CuO$_4$–δ, which is just one step toward a conventional superconductor in terms of charge carrier type. Our finding for (Sr$_{0.9}$La$_{0.1}$)Cu$_2$O$_2$ seems to be the next step. Two kinds of representative n-type cuprates show similar behaviors for the substitution effect on T_c. Ni killing the superconductivity faster than Zn. However the difference is that the substitution effect in (Sr$_{0.9}$La$_{0.1}$)Cu$_2$O$_2$ is much closer to those in conventional superconductors with respect to the exact value of the T_c reduction rate dT_c/dx.

Impurity substitution effects in hole-doped cuprates and electron-doped cuprates have been discussed in terms of the superconducting gap symmetry, d-wave and s-wave, respectively [16–27]. Phase-sensitive Josephson tunneling or the presence of a half flux quantum at the center of the tricrystal ring [28] could be a direct test of d-wave superconductivity, but would require high-quality thin films, which have not been feasible for infinite-layer superconductors due to difficulties in film growth. In addition, the pairing symmetry of the (Nd,Ce)$_2$CuO$_4$ compound remains to be controversial. [24,30]

Many experimental observations indicate that (Sr$_{0.9}$La$_{0.1}$)Cu$_2$O$_2$ has properties which are the most similar to those of conventional superconductors. This compound was reported to have more 3-dimensional superconductivity with the c-axis coherence length, even near zero temperature, being larger than the c-axis lat-
The undoped antiferromagnetic insulator Ca$_{0.85}$Sr$_{0.15}$CuO$_2$ has been reported to have more 3-dimensional magnetic coupling and that material has been reported to have a stronger 3-dimensional character than other parent insulators of cuprate superconductors, such as YBa$_2$Cu$_3$O$_6$, La$_2$CuO$_4$, and Sr$_2$CuO$_2$Cl$_2$. For example, an estimate of the ratio of the out-of-plane to the in-plane coupling constants for Ca$_{0.85}$Sr$_{0.15}$CuO$_2$ was two to three orders of magnitude larger than the corresponding values for YBa$_2$Cu$_3$O$_6$ and La$_2$CuO$_4$. A very recent observation of scanning tunneling spectra in (Sr$_{0.9}$La$_{0.1}$)CuO$_2$ support the existence of an s-wave gap with a superconducting gap $\Delta \sim 13$ meV, as well as the absence of pseudogap.

IV. SUMMARY

We found that in electron-doped infinite-layer superconductors Sr$_{9-x}$La$_{x}$Cu$_{1-y}$R$_{y}$O$_2$, substitution of the nonmagnetic Zn ion in the CuO$_2$ plane hardly suppresses T_c ($dT_c/dx \leq 0.5$ K/% for $x \leq 0.03$) while substitution of the magnetic Ni ion kills the superconductivity at only $x \sim 0.02$ ($dT_c/dx \geq 20$ K/%). This behavior is similar to that observed for conventional superconductors. This behavior is also consistent with many recent observations, such as the existence of s-wave gap, the stronger 3-dimensionality in superconducting and antiferromagnetic properties.

ACKNOWLEDGMENTS

We greatly appreciate valuable discussions with D. Pavuna, K. Maki, Yunkyu Bang, N.-C. Yeh, A. V. Balatsky, and M. Sigrist. For the EPMA and SEM measurements, we are thankful to Mr. Dong Sik Kim at the Department of Materials Science & Engineering at Pohang University of Science and Technology. This work is supported by the Ministry of Science and Technology of Korea through the Creative Research Initiative Program.

* Electronic address: silee@postech.ac.kr

[1] Y. Maeno, T. Tomita, M. Kyogoku, S. Awaji, Y. Aoki, K. Hoshino, A. Minami, and T. Fujita, Nature 328, 512 (1987).
[2] G. Xiao, M. Z. Cieplak, D. Musser, A. Gavar, F. H. Streitz, C. L. Chien, J. J. Rhyne, and J. A. Gotaas, Nature 332, 238 (1988).
[3] J. L. Tallon, C. Bernhard, G. V. M. Williams, and J. W. Loram, Phys. Rev. Lett. 79, 5294 (1997).
[4] J. L. Tallon, Phys. Rev. B 58, 5956 (1998).
[5] B. Chattopadhyay, B. Bandyopadhyay, A. Poddar, P. Mandal, A. N. Das, and B. Ghosh, Physica C 331, 38 (2000).
[6] B. Nachumi, A. Keren, K. Kojima, M. Larkin, G. M. Luke, J. Merrin, O. Tchernyshyov, Y. J. Uemura, N. Ichikawa, M. Goto, and S. Uchida, Phys. Rev. Lett. 77, 5421 (1996).
[7] J. M. Tarascon, E. Wang, S. Kivelson, B. G. Bagley, G. W. Hull, and R. Nesper, Phys. Rev. B 42, 218 (1990).
[8] T. Nakano, N. Momono, T. Matsuzaki, T. Nagata, M. Yokoyama, M. Oda, and M. Idow, Physica C 317-318, 575 (1999).
[9] Y. Fukuzumi, K. Mizuhashi, K. Takenaka, and S. Uchida, Phys. Rev. Lett. 76, 684 (1996).
[10] P. Mendels, J. Bobroff, G. Collin, H. Alloul, M. Gabay, J. F. Marucco, N. Blanchard, and B. Grenier, Europhys. Lett. 46, 678 (1999).
[11] T. R. Chien, Z. Z. Wang, and N. P. Ong, Phys. Rev. Lett. 67, 2088 (1991).
[12] D. A. Bonn, S. Kamal, Kuan Zhang, Ruixing Liang, D. J. Baar, E. Klein, and W. N. Hardy, Phys. Rev. B 50, 4051 (1994).
[13] M.-H. Julien, T. Feher, M. Horvati, C. Berthier, O. N. Bakharev, P. Segransan, G. Collin, and J.-F. Marucco, Phys. Rev. Lett. 84, 3422 (2000).
[14] G. V. M. Williams, J. L. Tallon, and R. Dupree, Phys. Rev. B 61, 4319 (2000).
[15] Takayuki Miyatake, Koji Yamaguchi, Tsutomu Takata, Naoki Koshizuka, and Shoji Tanaka, Phys. Rev. B 44, 10139 (1991).
[16] A. A. Abrikosov, Physica C 214, 107 (1993).
[17] R. J. Radtke, K. Levin, H.-B. Schottler, and M. R. Norman, Phys. Rev. B 48, 653 (1993).
[18] D. Pines, Physica C 235-240, 113 (1994).
[19] L. S. Borkowski and P. J. Hirschfeld, Phys. Rev. B 49, 15 404 (1994).
[20] J. Giapintzakis, D. M. Ginsberg, M. A. Kirk, and S. Ockers, Phys. Rev. B 50, 15 967 (1994).
[21] Y. Sun and K. Maki, Phys. Rev. B 51, 6059 (1995).
[22] R. L. Fehrenbacher, Phys. Rev. Lett. 77, 1849 (1996).
[23] S. Haas, A. V. Balatsky, M. Sigrist, and T. M. Rice, Phys. Rev. B 56, 5108 (1997).
[24] G. Han and A. D. S. Nagi, Phys. Rev. B 54, 15463 (1996).
[25] M. D’Astuto and M. Acquarone, in High Temperature Superconductivity; Models and Measurements, edited by M. Acquarone (World Scientific, Singapore, 1996), p. 343.
[26] Y. Sun and K. Maki, Europhys. Lett. 32, 353 (1995).
[27] K. Maki and E. Puchkaryov, Europhys. Lett. 42, 209 (1998).
[28] J. R. Kirtley, C. C. Tsuei, J. Z. Sun, C. C. Chi, Lock See Yu-Jahnes, A. Gupta, M. Rupp, and M. B. Ketchen, Nature 373, 225 (1995).
[29] L. Alfè, S. Meyer, S. Kleefisch, U. Schoop, A. Marx, H. Sato, M. Naito, and R. Gross, Phys. Rev. Lett. 83, 2644 (1999).
[30] C. C. Tsuei and J. R. Kirtley, Phys. Rev. Lett. 85, 182 (2000).
[31] Jun Sugiyama, Shinya Tokunou, Shinichi Koriyama, H. Yamauchi, and Shoji Tanaka, Phys. Rev. B 43, 10489 (1991).
[32] E. W. Hudson, K. M. Lang, V. Madhavan, S. H. Pan, H. Eisaki, S. Uchida, J. C. Davis, Nature 411, 920 (2001).
[33] S. H. Pan, E. W. Hudson, K. M. Lang, H. Eisaki, S. Uchida, J. C. Davis, Nature 403, 746 (2001).
[34] M. G. Smith, A. Manthiran, J. Zhou, J. B. Goodenough, and J. T. Markert, Nature 351, 549 (1991).
[35] J. T. Markert, K. Mochizuki, and A. V. Eliott, J. Low. Temp. Phys. 105, 1367 (1996).
[36] T. Siegrist, S. M. Zahurak, D. W. Murphy, and R. S. Roth, Nature 334, 231 (1988).
[37] J. D. Jorgensen, P. G. Radaelli, D. G. Hinks, J. L. Wagner, S. Kikkawa, G. Er, and F. Kanamaru, Phys. Rev. B 47, 14 654 (1993).
[38] N. Ikeda, Z. Hiroi, M. Azuma, M. Takano, and Y. Bando, Physica C 210, 367 (1993).
[39] C. U. Jung, et al, submitted to Physica C.
[40] Mun-Seog Kim, C. U. Jung, J. Y. Kim, Jae-Hyuk Choi, Sung-Ik Lee, cond-mat/0102420 (2001).
[41] A. Lombardi, M. Mali, J. Roos, and D. Brinkmann, Phys. Rev. B 54, 93 (1996).
[42] D. Vaknin, E. Caignon, P. K. Davies, J. E. Fischer, D. C. Johnston, and D. P. Goshorn, Phys. Rev. B 39, 9122 (1989).
[43] A. Keren, L. P. Le, G. M. Luke, B. J. Sternlieb, W. D. Wu, Y. J. Uemura, S. Tajima, and S. Uchida, Phys. Rev. B 48, 12 926 (1993).
[44] R. Pizzi, M. Mali, M. Matsumura, F. Raffa, J. Roos, and D. Brinkmann, Phys. Rev. B 56, 759 (1997).
[45] C.-T. Chen, P. Seneor, N.-C. Yeh, R. P. Vasquez, C. U. Jung, J. Y. Kim, Min-Seok Park, Heon-Jung Kim, and Sung-Ik Lee, submitted to Nature.

FIG. 1. (a) X-ray powder diffraction patterns for Sr$_{0.9}$La$_{0.1}$Cu$_{1-x}$Zn$_x$O$_2$ ($x = 0, 0.01, 0.03$) and Sr$_{0.9}$La$_{0.1}$Cu$_{1-x}$Ni$_x$O$_2$ ($x = 0.01$ and 0.02). The intensity of each pattern was normalized to the intensity of the (101) peak and offset vertically for clear comparison. (b) Magnetic susceptibility, $4\pi\chi(T)$, curves for the samples.

FIG. 2. T_c reduction rate, dT_c/dx, for Cu-site substitution in high-T_c cuprates; open symbols are for Ni substitution and closed symbols are for Zn substitution. The squares are for Bi$_2$Sr$_2$CaCu$_2$O$_8$, the circles for (La,Sr)$_2$CuO$_4$, the up-triangles for YBa$_2$Cu$_3$O$_7$-δ, the down-triangles for (Nd,Ce)$_2$CuO$_4$, and the diamonds for Sr$_{0.9}$La$_{0.1}$CuO$_2$. Note that non-magnetic Zn hardly suppresses the T_c of an infinite-layer superconductor.
Figure 1, C. U. Jung et al.
Figure 2, C. U. Jung et al.