Introduction

During the elongation cycle of protein synthesis, mRNA and tRNA are moved through the ribosome by the dynamic process of translocation, which takes place via two steps [1,2]. First, peptidyl-tRNA and deacylated tRNA are transited between classical(A/A and P/P sites, respectively) and hybrid (A/P and P/E sites, respectively) states. Then, catalyzed by elongation factor EF-G and GTP, the two tRNAs that are coupled with mRNA via codon-anticodon interaction are transited from the hybrid to post-translocation (P/P and E/E sites) state. However, it was observed that the translocation can occur spontaneously, albeit quite slowly and inefficiently, in the absence of EF-G and GTP [3–7]. Addition of EF-G and GDPNP (a nonhydrolyzable analog of GTP) to the solution containing the pre-translocation ribosomal complex promotes significantly the translocation to the post-translocation state [8–13]. When GDPNP is replaced with GTP, the translocation rate is increased further [8–13]. Moreover, it was shown that EF-G hydrolyzes GTP before the translocation of mRNA and tRNA [8–12].

Besides the conventional forward translocation from pre- to post-translocation state, it was intriguingly found that, in some contexts, spontaneous and efficient conversion from the post- to pre-translocation state can also occur in the absence of translocation factors [14,15]. It was demonstrated that EF4 (or LepA) – another translational factor present in bacteria, mitochondria and chloroplasts – can catalyze this backward translocation [16–19].

However, the molecular mechanism of these translocations remains elusive. For example, how do the spontaneous forward and backward translocations take place? How does EF-G in combination with GTP or GDPNP catalyze forward translocation? Why does EF-G.GDP have a greater affinity in catalyzing forward translocation over EF-G.GDPNP? How does LepA catalyze backward translocation? Here, to address these questions, we theoretically study the dynamics of forward translocation under various nucleotide states of EF-G (in the absence of EF-G, with the binding of EF-G.GDPNP and with the binding of EF-G.GTP), as well as the dynamics of backward translocation in the absence and presence of LepA. We give a consistent and quantitative explanation of a lot of different, independent experimental data. The studies have important implications for understanding the mRNA translocation mechanism.

Methods

We study the dynamics of forward and backward translocation based mainly on the following pieces of experimental evidence and argument.

Evidence (i) – The peptidyl transfer, i.e., deacylated tRNA bound to the 30S P site and/or peptidyl-tRNA bound to the 30S A site, results in the ribosome being in a “labile” state, allowing the relative rotation between two ribosomal subunits, with the two conformations non-ratchet and ratchet (or hybrid) states [10,20–24].

Evidence (ii) – The binding of EF-G.GTP shifts the equilibrium toward the hybrid state of the labile ribosome [10,20–24].

Evidence (iii) – The 50S E site has a high affinity for deacylated tRNA and the 50S P site has a specific interaction with the peptidyl moiety [25,26].

Argument (iv) – In the presence of a tRNA anticodon stem-loop bound to the 30S A site, the binding of EF-G.GTP reduces the interaction of the 30S subunit with the mRNA-tRNA complex, and after GTP hydrolysis the unlocking of the ribosome further reduces the interaction of the 30S subunit with the mRNA-tRNA complex. In other words, with a tRNA anticodon stem-loop bound to the 30S A site, the affinity of the 30S subunit for the mRNA-tRNA complex is dependent on the nucleotide state of EF-G: high affinity without EF-G, low affinity after ribosomal unlocking (in...

Abstract

Translocation of the mRNA-tRNA complex in the ribosome, which is catalyzed by elongation factor EF-G, is one of critical steps in the elongation cycle of protein synthesis. Besides this conventional forward translocation, the backward translocation can also occur, which can be catalyzed by elongation factor LepA. However, the molecular mechanism of the translocation remains elusive. To understand the mechanism, here we study theoretically the dynamics of the forward translocation under various nucleotide states of EF-G and the backward translocation in the absence of and in the presence of LepA. We present a consistent explanation of spontaneous forward translocations in the absence of EF-G, the EF-G-catalyzed forward translocations in the presence of a non-hydrolysable GTP analogue and in the presence of GTP, and the spontaneous and LepA-catalyzed backward translocation. The theoretical results provide quantitative explanations of a lot of different, independent experimental data, and also provide testable predictions.
Equations for Transitions between Non-ratchet and Ratchet States

Consider the deacylated tRNA bound to the 30S P site and the peptidyl-tRNA bound to the 30S A site, as shown in Fig. 1a. Thus, according to evidence (i), the ribosome is now in the labile state and can transition from the classical non-ratchet (left, Fig. 1a) to hybrid (right, Fig. 1a) state and vice versa. Denoting by E_{NR} the energy barrier for transition from the classical non-ratchet to hybrid state and E_H the energy barrier for transition from the hybrid to classical non-ratchet state, potential $V(x)$ that characterizes the motion of the 30S subunit relative to the 50S subunit is approximately shown in Fig. 1b and the Langevin equation to describe the motion is described as follows

$$\Gamma \frac{dx}{dt} = -\frac{dV(x)}{dx} + \xi(t), \quad (1)$$

where Γ is the frictional drag coefficient on the motion of the 30S subunit relative to the 50S subunit and $\xi(t)$ represents the fluctuating Langevin force, with $\langle \xi(t) \rangle = 0$ and $\langle \xi(t)\xi(t') \rangle = 2k_BT \delta(t-t')$. The choice of the value of Γ in our calculation is discussed as follows. For simplicity, we consider the ribosomal 30S subunit as a sphere of radius $r = 5$ nm and take the viscosity of the aqueous cytoplasm $\eta = 0.01\, \text{g cm}^{-1}\, \text{s}^{-1}$ (see Discussion). From the Stokes-Einstein law, we have $\Gamma = 6\pi r^2 \eta = 9.4 \times 10^{-11} \, \text{kg s}^{-1}$. From Eq. (1), the mean first-passage time for transition from the classical non-ratchet (left, Fig. 1a) to hybrid (right, Fig. 1a) state can be calculated by [31]

$$T_0 = \frac{1}{D} \int_0^d \exp \left(-\frac{V(y)}{GD} \right) dy \int_y^\infty \exp \left(-\frac{V(z)}{GD} \right) dz, \quad (2)$$

where $D = k_BT/\Gamma$ and $d = 2$ nm is the moved distance of the 30S subunit relative to the 50S subunit [1]. With potential $V(x)$ given in Fig. 1b, we finally derive

$$T_0 = \frac{\Gamma d^2}{2E_{NR}} \left(k_BT/k_B \right) \left[1 - \exp \left(-\frac{E_{NR}}{k_BT} \right) \right] - \frac{1}{2}$$

$$+ \frac{\Gamma d^2}{2E_H} \left(k_BT/k_B \right) \left[1 - \frac{1}{2} \exp \left(-\frac{E_H}{k_BT} \right) \right] \left[1 - \exp \left(-\frac{E_H}{k_BT} \right) \right]$$

$$- \frac{\Gamma d^2}{4E_H} \left[k_BT/k_B \right] \left[1 - \exp \left(-\frac{E_H}{k_BT} \right) \right] - 1 \quad (3)$$

It is noted that when E_{NR} and $E_H$$\gg k_BT$, Eq. (3) becomes $T_0 \approx \Gamma d^2k_BT/(2E_{NR})(1/E_{NR}+1/E_H)$exp($E_{NR}/k_BT$), i.e., T_0 approximately has a linear relation with exp(E_{NR}/k_BT).

The mean time for transition from the hybrid (right, Fig. 1a) to classical non-ratchet (left, Fig. 1a) state can also be calculated by Eq. (3) but with E_{NR} and E_H being replaced by E_{NR} and E_H, respectively.

Equations for Forward Translocation

In Fig. 1, due to the high affinity of the 30S subunit for the mRNA-tRNA complex, it is implicitly assumed that the mRNA-tRNA complex is fixed to the 30S subunit during transition from the hybrid to non-ratchet state. As we will show below, this is a good approximation for the case in the absence of EF-G. Considering that the mRNA-tRNA complex can also be moved relative to the 30S subunit, the ribosomal complex can transit from the hybrid state either to the classical non-ratchet state or to the post-translocation state, as shown in Fig. 2a. Now the potential $V(x)$ that characterizes the state transitions is approximately shown in Fig. 2b, where E_{POST} represents the energy barrier for transition from the hybrid (middle, Fig. 2a) to post-translocation (right, Fig. 2a) state and E_0 represents the energy barrier for the reverse transition. The Langevin equation to describe the state transitions can still be described by Eq. (1).

To be consistent with the procedure used in the experiments to measure the spontaneous mRNA translocation time in the absence of EF-G [7], the mean mRNA translocation time is defined as the mean time for the ribosomal complex to transit from the classical

Figure 1. The labile state of ribosome with deacylated tRNA bound to the 30S P site and peptidyl-tRNA bound to the 30S A site. (a) Schematic of transition from the classical non-ratchet state (State NR) to hybrid state (State hybrid) and vice versa. (b) Potential $V(x)$ that characterizes the transition between the classical non-ratchet and hybrid states.

doi:10.1371/journal.pone.0070789.g001
non-ratchet (left, Fig. 2a) to hybrid (middle, Fig. 2a) to post-translocation (right, Fig. 2a) state. Thus, the mean mRNA translocation time can be calculated by [31]

\[T_1 = \frac{1}{D} \int_0^{\frac{2d}{D}} \exp \left(\frac{V(y)}{TD} \right) dy \int_0^{\infty} \exp \left(- \frac{V(z)}{TD} \right) dz. \]

(4)

With potential \(V(y) \) given in Fig. 2b, from Eq. (4) we finally obtain

\[T_1 = \frac{\Gamma d^2}{2E_{\text{PNR}}} \frac{k_B T}{E_{\text{PNR}}} \left[\exp \left(\frac{E_{\text{PNR}}}{k_B T} \right) \left[1 - \exp \left(- \frac{E_{\text{PNR}}}{k_B T} \right) \right] - \frac{1}{2} \right] + \frac{\Gamma d^2}{2E_{\text{ENR}}} \frac{k_B T}{E_{\text{ENR}}} \left[1 - \frac{1}{2} \exp \left(- \frac{E_{\text{ENR}}}{k_B T} \right) \right] + \frac{\Gamma d^2}{2E_{\text{POST}}} \frac{k_B T}{E_{\text{POST}}} \left[\exp \left(\frac{E_{\text{POST}}}{k_B T} \right) \left[1 - \exp \left(- \frac{E_{\text{POST}}}{k_B T} \right) \right] - 1 \right] \]

\[\left[1 - \frac{1}{2} \exp \left(- \frac{E_{\text{ENR}}}{k_B T} \right) \left[1 - \exp \left(- \frac{E_{\text{ENR}}}{k_B T} \right) \right] + \frac{\Gamma d^2}{4E_{\text{POST}} E_{\text{ENR}}} \frac{k_B T}{E_{\text{POST}}} \left[1 - \exp \left(- \frac{E_{\text{POST}}}{k_B T} \right) \right] - 1 \right] \]

\[+ \frac{\Gamma d^2}{2E_{\text{ENR}}} \frac{k_B T}{E_{\text{ENR}}} \left[\exp \left(\frac{E_{\text{ENR}}}{k_B T} \right) \left[1 - \exp \left(- \frac{E_{\text{ENR}}}{k_B T} \right) \right] - 1 \right] \]

\[+ \frac{\Gamma d^2}{2E_{\text{ENR}}} \frac{k_B T}{E_{\text{ENR}}} \left[\exp \left(\frac{E_{\text{ENR}}}{k_B T} \right) \left[1 - \exp \left(- \frac{E_{\text{ENR}}}{k_B T} \right) \right] - 1 \right] \]

\[+ \frac{\Gamma d^2}{2E_{\text{ENR}}} \frac{k_B T}{E_{\text{ENR}}} \left[\exp \left(\frac{E_{\text{ENR}}}{k_B T} \right) \left[1 - \exp \left(- \frac{E_{\text{ENR}}}{k_B T} \right) \right] - 1 \right] \]

\[- \frac{\Gamma d^2}{4E_{\text{ENR}}} \frac{k_B T}{E_{\text{ENR}}} \left[1 - \exp \left(- \frac{E_{\text{ENR}}}{k_B T} \right) \right] - 1 \right]. \]

(5)

It is noted that when \(E_{\text{ENR}}, E_{\text{IH}}, E_{\text{POST}} \) and \(E_0 \gg k_B T \), the expansion of Eq. (5) does not give an obviously useful form.

After addition of EF-G and GDPNP or GTP to the solution containing pre-translocation complex, the complex is most of time in the hybrid state. Thus, the mean mRNA translocation time can be approximately calculated by [31]

\[T_2 = \frac{1}{D} \int_0^{\frac{2d}{D}} \exp \left(\frac{V(y)}{TD} \right) dy \int_0^{\infty} \exp \left(- \frac{V(z)}{TD} \right) dz. \]

(6)

With potential \(V(y) \) given in Fig. 2b, from Eq. (6) we finally obtain

\[T_2 = \frac{\Gamma d^2}{2E_{\text{POST}} E_{\text{ENR}}} \frac{k_B T}{E_{\text{ENR}}} \exp \left(\frac{E_{\text{ENR}} - E_{\text{ENR}} + E_{\text{POST}}}{k_B T} \right) \left[1 - \frac{1}{2} \exp \left(- \frac{E_{\text{ENR}}}{k_B T} \right) \right] + \frac{\Gamma d^2}{4E_{\text{POST}} E_{\text{ENR}}} \frac{k_B T}{E_{\text{ENR}}} \exp \left(\frac{E_{\text{POST}}}{k_B T} \right) \left[1 - \exp \left(- \frac{E_{\text{ENR}}}{k_B T} \right) \right] \]

\[+ \frac{\Gamma d^2}{2E_{\text{ENR}}} \frac{k_B T}{E_{\text{ENR}}} \exp \left(\frac{E_{\text{ENR}} - E_{\text{ENR}} + E_{\text{POST}}}{k_B T} \right) \left[1 - \frac{1}{2} \exp \left(- \frac{E_{\text{ENR}}}{k_B T} \right) \right] + \frac{\Gamma d^2}{4E_{\text{POST}} E_{\text{ENR}}} \frac{k_B T}{E_{\text{POST}}} \exp \left(\frac{E_{\text{POST}}}{k_B T} \right) \left[1 - \exp \left(- \frac{E_{\text{ENR}}}{k_B T} \right) \right] \]

\[+ \frac{\Gamma d^2}{2E_{\text{ENR}}} \frac{k_B T}{E_{\text{ENR}}} \exp \left(\frac{E_{\text{ENR}} - E_{\text{ENR}} + E_{\text{POST}}}{k_B T} \right) \left[1 - \frac{1}{2} \exp \left(- \frac{E_{\text{ENR}}}{k_B T} \right) \right] + \frac{\Gamma d^2}{4E_{\text{POST}} E_{\text{ENR}}} \frac{k_B T}{E_{\text{POST}}} \exp \left(\frac{E_{\text{POST}}}{k_B T} \right) \left[1 - \exp \left(- \frac{E_{\text{ENR}}}{k_B T} \right) \right] \]

\[- \frac{\Gamma d^2}{4E_{\text{ENR}}} \frac{k_B T}{E_{\text{ENR}}} \left[1 - \exp \left(- \frac{E_{\text{ENR}}}{k_B T} \right) \right] - 1 \right]. \]

(7)

It is noted that when \(E_{\text{ENR}}, E_{\text{IH}}, E_{\text{POST}} \) and \(E_0 \gg k_B T \), Eq. (7) becomes

\[T_2 \approx \frac{\Gamma d^2}{4} \left[\left(\frac{E_{\text{ENR}}}{k_B T} \right) + \frac{1}{2} \exp \left(\frac{E_{\text{ENR}} - E_{\text{ENR}} + E_{\text{POST}}}{k_B T} \right) \right] + \frac{1}{2} \exp \left(\frac{E_{\text{POST}}}{k_B T} \right) \]

(8)

From Eq. (8), it is seen that \(T_2 \) approximately has a linear relation with \(\exp \left(\frac{E_{\text{POST}}}{k_B T} \right) \).

Results

** Determination of Energy Barriers for Transitions between Non-ratchet and Ratchet States of the Labile Ribosome

In this section, we determine energy barriers \(E_{\text{ENR}} \) and \(E_{\text{IH}} \) in the labile state of the ribosome with the decacylated tRNA bound to the 30S P site and the peptidyl-tRNA bound to the 30S A site (Fig. 1). We use smFRET data of Cornish et al. [24] to determine values of \(E_{\text{ENR}} \) and \(E_{\text{IH}} \). The smFRET data showed that for the pre-translocation ribosome with peptidyl-tRNA analog N-Ac-Phe-tRNA\(^{\text{tme}}\) bound to the 30S A site and decacylated tRNA\(^{\text{tm}}\) bound to the 30S P site, the rate of transition from the classical non-ratchet to hybrid state is \(k^{\text{PB}} = 0.27 \) s\(^{-1}\) and the rate of reverse transition is \(k^{\text{PB}} = 0.19 \) s\(^{-1}\) [24]. Using Eq. (3) we obtain that when \(E_{\text{ENR}} = 23.87k_B T \) and \(E_{\text{IH}} = 24.24k_B T \), the transition times \(T_0^{\text{PB}} = 1/k^{\text{PB}} \) and \(T_0^{\text{PB}} = 1/k^{\text{PB}} \) are in agreement with the experimental data [24]. This implies that in the absence of EF-G, the labile state of the ribosome with the peptidyl-tRNA bound to the 30S A site and the decacylated tRNA bound to the 30S P site approximately has \(E_{\text{ENR}} = 23.87k_B T \) and \(E_{\text{IH}} = 24.24k_B T \). It is noted here that in order to ensure that the two tRNAs, driven by the thermal noise, cannot move from A/A and P/P sites to P/P and E/E sites in the classical non-ratchet state (left, Fig. 2a), it is
required that the affinity of the 30S subunit in pre-translocation non-ratchet state for the mRNA-tRNA complex should be larger than $E_{NR} = 23.87 k_B T$.

Available experimental data indicated that the binding of EF-G.GDPNP shifts the equilibrium toward the hybrid state [evidence (ii)]. Here we also use smFRET data of Cornish et al. [24] to determine the energy change resulting from this equilibrium biasing. The smFRET data showed that when EF-G.GDPNP is bound to the pre-translocation complex with deacylated tRNA$^\text{fMet}$ bound to the 30S P site, the rate of transition from classical non-ratchet to hybrid state is increased by about 2.33-fold, implying that the binding of EF-G.GDPNP shifts the equilibrium toward the hybrid state [evidence (iii)]. Here we also use smFRET data of Cornish et al. [24] to determine the energy change resulting from this equilibrium transition is decreased by about 10-fold, implying that E_R is reduced by about 0.85k_BT. In other words, the binding of EF-G.GDPNP induces the decrease of energy barrier E_R by about $0.85 k_B T$ and the increase of energy barrier E_H by about $2.30 k_B T$, implying that the binding of EF-G.GDPNP shifts the equilibrium toward the ratchet conformation by an energy decrease of about $3.15 k_B T$. Thus, after the binding of EF-G.GDPNP the energy barriers for the ribosomal complex as shown in Fig. 1a, E_{NR} and E_H are changed to $E_{NR} = 23.02 k_B T$ and $E_H = 26.54 k_B T$.

In the following studies of mRNA translocation time we will take $E_{NR} = 23.87 k_B T$ and $E_H = 24.24 k_B T$ in the absence of EF-G and the effect of the binding of EF-G.GDPNP on energy barriers E_{NR} and E_H as shown above. Since different buffer conditions or contexts would have different values of E_{NR} and E_H, it is interesting to study the effect of variations of E_{NR} and E_H on the mRNA translocation time, as presented in Text S1 and Figures S1– S5, where it is shown that the variations of E_{NR} and E_H only have small effects on the mRNA translocation time.

Forward Translocation in the Absence of EF-G

As determined above, $E_{NR} = 23.87 k_B T$ and $E_H = 24.24 k_B T$ in the absence of EF-G (Table 1). Considering the specific affinity, $E_{PE}^{(30S)}$, of the 50S E site for deacylated tRNA and the 50S P site for the peptidyl moiety [evidence (iii)], the energy barrier E_H can be written as $E_H = E_R^{(b)} + E_{PE}^{(30S)}$, where $E_R^{(b)}$ represents the intrinsic energy barrier for the ribosome to rotate from the ratchet to non-ratchet conformation if the affinity $E_{PE}^{(30S)}$ is not included. By fitting to the single molecule experimental data [32], it has been determined that the specific affinity of the 50S E site for deacylated tRNA and the 50S P site for peptidyl-tRNA is about 9$k_B T$ [33]. Taking $E_{PE}^{(30S)} = 9 k_B T$, we have $E_R^{(b)} = 15.24 k_B T$. Based on argument (iv), the energy barrier E_{POST} is calculated by

$$E_{POST} = E_R^{(b)} + E_{PE}^{(30S)},$$

where $E_{PE}^{(30S)}$ now represents the affinity of the 30S subunit in hybrid state for the mRNA-tRNA complex in the absence of EF-G. It is noted here that since both the transition from State Hybrid to State NR and the transition from State Hybrid to State POST (Fig. 2) are induced by the reverse ribosomal rotation from the

Table 1. Summary of energy barriers during forward translocation.

Parameters	no EF-G	EF-G.GDPNP	EF-G.GTP
Case I	Case II	Case III	
E_{NR}	$23.87 k_B T$	$24.24 k_B T$	$24.24 k_B T$
E_R	$24.24 k_B T$	$26.54 k_B T$	$26.54 k_B T$
E_{POST}	$22.19 k_B T$	$22.19 k_B T$	$22.19 k_B T$
E_{EPOST}	$29.09 k_B T$	$29.09 k_B T$	$29.09 k_B T$
$E_{PE}^{(30S)}$	$18.67 k_B T$	$18.67 k_B T$	0

Figure 2. Forward translocation. (a) Schematic of transition from pre-translocation state, including the classical non-ratchet state (State NR) and hybrid state (State hybrid), to post-translocation state (State POST). (b) Potential $V(x)$ that characterizes the transition from the pre- to post-translocation state. See doi:10.1371/journal.pone.0070789.g002
rotated to non-rotated conformation, the intrinsic energy barrier of reverse ribosomal rotation \(E_{R}^{B} \) is the same in both transitions.

As we will show below, when the energy barrier \(E_{0} \) is about 29.09 kJ/mol, the spontaneous backward translocation rate is consistent with the available experimental data [14]. Thus, in the following calculations of forward mRNA translocation time, we take \(E_{0} = 29.09 \text{kJ/mol} \) (Table 1). In fact, as it is noted from Eqs. (5) and (7), the forward mRNA translocation time is insensitive to the value of \(E_{0} \) (see also Text S2 and Figure S6). Thus, taking other values of \(E_{0} \) has only a small effect on the mean mRNA translocation time. With \(E_{NR} = 23.87 \text{kJ/mol} \) and \(E_{H} = 24.24 \text{kJ/mol} \) (Table 1), using Eq. (5) we calculate mRNA translocation time \(T_{1} \) as a function of energy barrier \(E_{POST} \), with the results shown in Fig. 3. The available experimental data showed that the spontaneous mRNA translocation rate \(k_{1} = 4.6 \times 10^{-4} \text{min}^{-1} \) [7,14], giving \(T_{1} = 1/k_{1} \approx 1 \times 10^{3} \text{s} \). From Fig. 3, it is seen that this value of \(T_{1} = 1 \times 10^{3} \text{s} \) corresponds to \(E_{POST} = 33.91 \text{k_BT} \) (Table 1). It is noted here that although \(E_{POST} \) is smaller than \(E_{0} \), the conversion of the hybrid state to post-translocation state can still occur, but with the maximal fraction of the post-translocation state converted being much small than unity, as indicated by the experimental data [7]. As just obtained above, we have \(E_{R}^{B} = 15.24 \text{kJ/mol} \). Thus, from Eq. (9) we obtain \(E^{30S} = 18.67 \text{kJ/mol} \) (Table 1), which is smaller than that \(>23.87 \text{kJ/mol} \) in the non-ratchet state (see above section), consistent with the proposal by McGarry et al. [34] that movement of deacylated tRNA from the classical P/P state to hybrid P/E state destabilizes codon–anticodon interaction.

Since before transition to post-translocation state (State POST), the ribosomal complex would take many cycles of transition from hybrid state (State Hybrid) to classical non-ratchet state (State NR) and vice versa, it is interesting to calculate the cycling number here. Using Eq. (3) it is calculated that the transition time from State Hybrid to State NR is about 5.26 s while the backward transition from State NR to State Hybrid is about 3.70 s, giving one cycling time of about 8.96 s. If the transition from State Hybrid to State NR is not allowed, using Eq. (3) it is calculated that the transition from State Hybrid to State POST is about 43593 s. Thus, it is easily obtained that for the case without EF-G, it takes about 6034 cycles of transition from State Hybrid to State NR and vice versa before transition to State POST.

Forward Translocation with the Binding of EF-G.GDPNP

As shown above, after the binding of EF-G.GDPNP the energy barriers \(E_{NR} \) and \(E_{H} \) are changed to \(E_{NR} = 23.02 \text{kJ/mol} \) and \(E_{H} = 26.54 \text{kJ/mol} \) (Table 1). With these values of \(E_{NR} \) and \(E_{H} \), using Eq. (7) we calculate mRNA translocation time \(T_{2} \) as a function of energy barrier \(E_{POST} \), with the results shown in Fig. 4. The available experimental data showed that the mRNA translocation rate \(k_{2} = 0.5 \text{s}^{-1} \) [8], giving \(T_{2} = 1/k_{2} = 2 \text{s} \). From Fig. 4, it is seen that this value of \(T_{2} = 2 \text{s} \) corresponds to \(E_{POST} = 23.33 \text{k_BT} \) (Table 1).

Based on evidence (ii) and argument (iii), after the binding of EF-G.GDPNP the energy barrier \(E_{POST} \) is calculated by

\[
E_{POST} = E_{R}^{B} + E^{30S} + \Delta E_{H}^{GTP},
\]

where \(E^{30S} \) now represents the affinity of the 30S subunit in hybrid state for the mRNA-RNA complex with the binding of EF-G.GDPNP and \(\Delta E_{H}^{GTP} \) represents the increase of energy barrier \(E_{H} \) induced by the binding of EF-G.GDPNP. As determined above, \(E_{R}^{B} = 15.24 \text{kJ/mol} \) and \(\Delta E_{H}^{GTP} = 2.30 \text{kJ/mol} \). Thus, from Eq. (10) we obtain \(E^{30S} = 5.79 \text{kJ/mol} \) (Table 1), implying that the binding of EF-G.GDPNP or EF-G.GTP induces the affinity of the 30S subunit for the mRNA-RNA complex to decrease from about 18.67 kJ/mol to about 5.79 kJ/mol (Table 1) or decrease by about \(\Delta E^{30S} = 12.88 \text{kJ/mol} \).

Forward Translocation with the Binding of EF-G.GTP

Hydrolysis of EF-G.GTP to EF-G.GDP.Pi induces ribosomal unlocking, detaching mRNA-RNA complex from the decoding center [argument (iv)]. Thus, the affinity of the 30S subunit for the mRNA-RNA complex becomes \(E^{30S} \approx 0 \) (Table 1). To study the translocation with \(E^{30S} \approx 0 \), we consider three cases for the effect of the ribosomal unlocking on shifting the equilibrium between non-ratchet and ratchet conformations.

In Case I, the ribosomal unlocking has no effect on the equilibrium between non-ratchet and ratchet conformations, as in the absence of EF-G. Thus, we have \(E_{POST} = E_{R}^{B} + E^{30S} \approx E_{R}^{B} = 15.24 \text{kJ/mol} \) (Table 1). With \(E_{NR} = 23.07 \text{kJ/mol} \) and \(E_{H} = 24.24 \text{kJ/mol} \) (Table 1), using Eq. (7) we calculate mRNA translocation time \(T_{2} \) as a function of energy barrier \(E_{POST} \), with the results shown in Fig. 5 (Case I). From Fig. 5 (Case I), it is seen that \(T_{2} = 1.57 \text{s} \) at \(E_{POST} = 15.24 \text{kJ/mol} \). This value of \(T_{2} = 1.57 \text{s} \) is much shorter than the time of GTP hydrolysis followed by ribosomal unlocking, \(\tau = 1/k_{3} + 1/k_{4} = 32.57 \text{ms} \) (see Figure S7), where \(k_{3} = 250 \text{s}^{-1} \) and \(k_{4} = 35 \text{s}^{-1} \) are taken from available biochemical data [35,36].
Thus, the mRNA translocation time is mainly determined by time t. It is noted here that the mRNA translocation rate $k_T = (\tau + T_f)^{-1}$ is consistent with the available experimental value (of about 25 s$^{-1}$) by Rodnina et al. [8].

In Case II, the ribosomal unlocking shifts the equilibrium toward the ratchet conformation, as EF-G.GTP state does. Thus, we have $E_{POST} = E_R^{(0)} + E_R^{(368)} + \Delta E^{(GTP)} \approx 17.54 k_B T$ (Table 1). With $E_{NR} = 23.02 k_B T$ and $E_{HY} = 26.54 k_B T$ (red line, Case I), and with $E_{NR} = 24.72 k_B T$ and $E_{HY} = 21.94 k_B T$ (blue line, Case III).

Thus, the free energy to fix the conformation in the non-labile state approximately has $\Delta F_3 = 3.12 k_B T$, which is larger than that in the labile state. A backward translocation occurs only if $\Delta F_3 > 0$. Thus, the ribosome is now in the non-labile state. However, it is noted that the ribosome in the non-labile state does not mean the ribosome is in the fixed conformation. Rather, the ribosome can still transit between the non-ratchet and ratchet conformations but with much lower transition rates than in the labile state.

Before the study of the spontaneous backward translocation, we first focus on the transition between the non-ratchet and ratchet conformations of the non-labile vacant ribosome (i.e., one lacking tRNA). The smFRET data of Cornish et al. [24] showed that for the vacant ribosome, the rate of transition from non-ratchet to ratchet conformation is $k^R = 0.015$ s$^{-1}$ and the rate of reverse transition is $k^F = 0.02$ s$^{-1}$. Using Eq. (3) we obtain that when $E_{NR} = 26.99 k_B T$ and $E_{HY} = 26.69 k_B T$, the transition times $T_0^{(P)} = 1/k^F$ and $T_0^{(R)} = 1/k^R$ are in agreement with the experimental data [24]. This implies that the non-labile vacant ribosome approximately has $E_{NR} = 26.99 k_B T$ and $E_{HY} = 26.69 k_B T$. As determined above, the labile ribosome has $E_{NR} = 23.87 k_B T$. Thus, the free energy to fix the conformation in the non-labile state is about 3.12$k_B T$ larger than that in the labile state.
about for the mRNA-tRNA complex in the post-translocation state is vacant ribosome. This indicates that the affinity of the 30S subunit

\[k_{\text{B}} \approx 29.09 \text{kT} \]

energy barrier for transition from the post- to pre-translocation (middle, Fig. 6a) becomes that as shown in the middle of Fig. 2a, respectively. After the backward translocation, the hybrid state (middle, Fig. 6a) becomes that as shown in the middle of Fig. 2a, respectively. The spontaneous backward translocation time \(T_0 \) versus \(E_0 \) are shown in Fig. 7. The available experimental data showed that the spontaneous backward translocation rate is \(k = 0.14 \text{ min}^{-1} \) \(^{[14]}\), giving \(T_0 = k^{-1} = 22.75 \text{s} \). From Fig. 7 it is seen that this value of \(T_0 = 22.75 \text{s} \) corresponds to \(E_0 = 29.09 \text{kT} \) (Table 2). This implies that at least in some contexts of Shoji et al. \(^{[14]}\), the energy barrier for transition from the post- to pre-translocation state is about 29.09kT.

After transition to the hybrid state (middle, Fig. 6a), since the decacylated tRNA is now bound to the 30S P site the ribosome becomes labile. Then the ribosomal complex transits easily between the hybrid (middle, Fig. 6a) and classical non-ratchet (right, Fig. 6a) states, as studied above. Since \(E_{\text{POST}} = 33.91 \text{kT} \) is larger than \(E_0 = 29.09 \text{kT} \), the pre-translocation state is thermodynamically favored over the post-translocation state, consistent with the experimental data \(^{[14]}\).

It is noted that the energy barrier \(E_0 = 29.09 \text{kT} \) of the post-translocation state is 2.10kT larger than \(E_{\text{NR}} = 26.99 \text{kT} \) of the vacant ribosome. This indicates that the affinity of the 30S subunit for the mRNA-tRNA complex in the post-translocation state is about \(E^{(30S)} = 2.10 \text{kT} \) (Table 2), which is smaller than the affinity of about 3.79kT in the pre-translocation state bound by EF-G-GTP (see above).

Experimental data showed that when only peptidyl-tRNA is bound to the 30S P site, the spontaneous backward translational cannot occur or cannot be detected experimentally \(^{[14,15]}\). Here, based on our calculations we give explanations of this phenomenon (see Text S3 and Figure S8). Moreover, the experimental data of spontaneous backward translocation rate versus concentration of E-site tRNA can be quantitatively explained, which is shown as follows. Since for the post-translocation ribosome with only peptidyl-tRNA bound to the 30S P site, only after decacylated tRNA binds to the E site can the backward translocation occur or be detected, the observed backward translocation time can be calculated by \(T_{\text{obs}} = (k^{(b)}[\text{E-site tRNA}])^{-1} + T_0 \), where \(k^{(b)} \) is the binding rate of decacylated tRNA to the E site, [E-site tRNA] the concentration of E-site tRNA and \(T_0 \) the backward translocation time of the ribosome with the decacylated tRNA bound to the E site and the peptidyl-tRNA bound to the P site, as studied above. Then, the observed backward translocation rate \(k_{\text{obs}} = 1/T_{\text{obs}} \) has the form

\[k_{\text{obs}} = \frac{k_s}{k_s/k^{(b)} + [\text{E-site tRNA}]} \]

where \(k_s = 1/T_0 \). Note that the dependence of \(k_{\text{obs}} \) on concentration of E-site tRNA has the Michaelis-Menten form. Using Eq. (11) the experimental data of \(k_{\text{obs}} \) versus [E-site tRNA] \(^{[14]}\) can be fitted well, as shown in Fig. 8, with fitted parameters \(k^{(b)} = 0.125 \text{ µM}^{-1} \text{ min}^{-1} \) and \(k_s = 0.145 \text{ min}^{-1} \). This value of \(k_s \) is consistent with the backward translocation rate when two tRNAs are present \(^{[14]}\).

Backward Translocation in the Presence of LepA and GTP

It has been shown that translational factor LepA has the ability to catalyze the backward translocation by binding to the post-translocation ribosomal complex \(^{[16–19]}\). However, how LepA catalyzes the backward transition from the post- to pre-translocation state is unclear. Here, we only consider that the binding of LepA to the post-translocation state has the effect of inducing the non-labile ribosome to be labile. Under this effect, we study the dynamics of backward translocation.

As determined above, in the labile state, the energy barrier for transition from the non-ratchet to hybrid state is \(E_{\text{NR}} = 23.87 \text{kT} \). Then, in the labile state, the energy barrier for transition from the post-translocation to hybrid state is \(E_0 = E_{\text{NR}} + E^{(30S)} = 25.97 \text{kT} \) (Table 2), where \(E^{(30S)} = 2.10 \text{kT} \) as determined in above section. From Fig. 7 it is seen that at \(E_0 = 25.97 \text{kT} \), the backward translocation time \(T_0 = 22.75 \text{s} \), giving the translocation rate \(k = 1/T_0 = 2.64 \text{ min}^{-1} \), which is about 20-fold of the spontaneous

![Graph showing the relationship between the spontaneous backward mRNA translocation rate and the concentration of E-site tRNA](https://example.com/graph.png)
backward translocation rate (about 0.14 min⁻¹). This rate of 2.64 min⁻¹ is consistent with that deduced from the experimental data [16], implying that only the effect of LepA.GTP on altering the non-labile state of the ribosome is sufficient to give an efficient conversion of the ribosomal complex from the post- to pre-translocation state.

After transition to the hybrid state, the ribosomal complex can transit between the hybrid and classical non-ratchet state. After the release of the hydrolysis products Pi and LepA.GDP, EF-G.GTP binds to the pre-translocation complex, thus the translation elongation proceeding.

Predicted Results for Forward Translocation with the Binding of EF-G.GDPNP

When the deacylated tRNA and peptidyl-tRNA are bound to the 30S P site and A site, respectively, of the ribosome complexed with the single-stranded mRNA, the forward mRNA translocation time with the binding of EF-G.GDPNP has been studied before (Fig. 4), giving a quantitative explanation of the available experimental data [8]. In order to further test our theoretical studies by future experiments, we present some predicted results that are related to ribosome translation through the duplex region of mRNA [32]. We consider that the two tRNAs are bound to the 30S P and A sites of the ribosome complexed with mRNA containing a region of duplex, as shown in Fig. 9 where, in the codon, which is immediately adjacent to the mRNA entry channel in the 30S subunit and is downstream away from the A-site codon by three codons [32], there is one (Fig. 9a), two (Fig. 9b) and three mRNA bases (Fig. 9c) forming base pairs with bases of another mRNA strand. We study the forward translocation time of the mRNA with the binding of EF-G.GDPNP.

In Fig. 9, the transition from the hybrid to post-translocation state requires unwinding of one (Fig. 9a), two (Fig. 9b) and three (Fig. 9c) mRNA base pairs [32,37]. Using the nearest-neighbor thermodynamic model for RNA duplex stability [38], it is estimated that the base-pairing free energy of an RNA base pair is \(-3 k_BT \). Thus, we have \(E_{ rise } = -3 k_BT \) (Fig. 9a), \(-29.33k_BT \) (Fig. 9b) and \(-32.33k_BT \) (Fig. 9c) in potential \(V_s \) shown in Eq. (7) for the other energy barriers in potential \(V_s \) are the same as those for the case of single-stranded mRNA. With \(E_{ rise } = -23.02k_BT \) and \(E_{ drop } = -26.54k_BT \) (Table 1), we obtain that at \(E_{ POST } = 26.33k_BT \) (Fig. 9a), \(29.33k_BT \) (Fig. 9b) and \(32.33k_BT \) (Fig. 9c) in potential \(V_s \) shown in Eq. (7).

Interestingly, we show that whether the ribosomal unlocking has no effect or has the effect of shifting the equilibrium between non-ratchet and ratchet conformations, the mRNA translocation time is mainly determined by the time of GTP hydrolysis followed by ribosomal unlocking. More interestingly, we show that the shifting of the equilibrium toward the non-ratchet conformation has nearly no effect on the mRNA translocation after the ribosomal unlocking. Thus, we prefer the following dynamic character. After peptidyl transfer, the labile ribosome can transit thermodynamically between the classical non-ratchet and hybrid states. The binding of EF-G.GTP shifts the thermodynamic equilibrium toward the hybrid state. Then, after hydrolysis of EF-G.GTP to EF-G.GDP.Pi the ribosomal unlocking either induces the ribosome to return to the thermodynamic equilibrium between the two ribosomal conformations, as before EF-G.GTP binding, or still shifts the thermodynamic equilibrium toward the ratchet conformation, as after EF-G.GTP binding.

After peptidyl transfer and before EF-G.GTP binding, the affinity of the 30S subunit in classical non-ratchet state for the mRNA-tRNA complex is larger than 23.87k_BT. In the hybrid state, the affinity of the 30S subunit in for the mRNA-tRNA complex is reduced to about 18.67k_BT (Table 1). The binding of EF-G.GTP induces the affinity to decrease from about 18.67k_BT to about 5.79k_BT (i.e., the affinity is decreased by about 12.88k_BT) (Table 1), and after GTP hydrolysis the ribosomal unlocking induces the affinity to decrease further by about 5.79k_BT, i.e., with nearly no affinity (Table 1). After translocation to the post-translocation state, the affinity of the 30S subunit for the mRNA-tRNA complex is changed to be about 2.10k_BT (Table 2), which is smaller than the affinity of about 5.79k_BT in the pre-translocation hybrid state bound by EF-G.GTP. Since the affinity of the ribosome for deacylated tRNA is composed of the affinity of the 30S E site and that of the 30S site, the larger value of \(E^{(30)} \) in the hybrid state than in the post-translocation state would result in the dissociation rate of deacylated tRNA in the hybrid state to be much smaller than in the post-translocation state, which is consistent with previous theoretical [40] and experimental [41] data.

We show that the free energy to fix non-ratchet conformation of the non-labile ribosome is about 3.12k_BT larger than that of the labile ribosome. The occurrence of the spontaneous backward
translocation in the absence of translational factor LepA is via overcoming the free energy to fix non-ratchet conformation of the non-labile ribosome plus the affinity of the 30S subunit for the mRNA:tRNA complex. We further show that if the binding of LepA to the post-translocation state has the effect of inducing the non-labile ribosome to be labile, the obtained LepA-catalyzed backward translocation rate is consistent with the experimental data [16], implying that only this effect of LepA is sufficient to give an efficient conversion of the ribosomal complex from the post- to pre-translocation state.

It should be mentioned that in our calculations, we have simply assumed the ribosomal 30S subunit as a sphere of radius \(r = 5 \) nm and taken the viscosity of the aqueous cytoplasm \(\eta = 0.01 \text{g cm}^{-1} \text{s}^{-1} \), giving a frictional drag coefficient \(\Gamma = 6 \eta r = 9.4 \times 10^{-11} \text{kg s}^{-1} \). Considering that the real shape of the 30S subunit deviates from a sphere, the correct value of \(\Gamma \) could be different from the above value [42]. Since the transition times \((T_0, T_1, T_2) \) are all proportional to \(\Gamma \) [see Eqs. (3), (5) and (7)], anything that affects our estimate of \(\Gamma \) (the shape and dimension of the ribosomal subunit and the viscosity \(\eta \)) therefore corresponds to a uniform time dilation. As some experiments showed that the viscosity of the aqueous cytoplasm does not differ from that of water [43,44], in the calculation we have taken the viscosity of the aqueous cytoplasm to be the same as that of water, i.e., \(\eta = 0.01 \text{g cm}^{-1} \text{s}^{-1} \). If we take value of \(\eta \) to be four-fold of that in pure water, as measured in other experiments [43], we would obtain a four-fold increase of the transition time, giving the energy barriers \((E_{\text{ENR}}, E_{\text{EH}}, E_{\text{POST}}) \) and \(E_0 \) to be about \(\ln(4)k_BT = 1.38k_BT \) smaller than those given in the present work.

In our calculations of forward translocation catalyzed by EF-G,GDPNP, we used a translocation rate of \(k_2 = 0.5 \text{ s}^{-1} \) from Rodnina et al. [8] to obtain the energy barrier \(E_{\text{POST}} = 23.33k_BT \). Some other experiments determined the EF-G,GDPNP-catalyzed translocation rate to be \(k_2 = 1 \) to 6 \text{ s}^{-1} [11–13], giving \(T_2 = 1/k_2 = 0.17 \) to 1 s. From Fig. 4, it is seen that the values of \(T_2 \) in this range correspond to \(E_{\text{POST}} = 20.75k_BT \) to 22.61kBT, which is 0.28kBT to 2.58kBT smaller than 23.33kBT determined with \(k_2 = 0.5 \text{ s}^{-1} \). With \(E_{\text{POST}} = 20.75k_BT \) to 22.61kBT, from Eq. (9) we obtain \(E_{\text{ENR}} = 3.21k_BT \) to 5.07kBT, implying that the binding of EF-G,GTP induces the affinity of the 30S subunit for the mRNA:tRNA complex to decrease from about 18.67kBT to about 3.21kBT to 5.07kBT.

In order to further test our analyses by future experiments, we provide predicted results on the forward mRNA translocation time with the binding of EF-G,GDPNP in the ribosome bound by the mRNA containing one, two and three base pairs in the codon which is downstream away from the A-site codon by three codons. We show that the translocation rates of the mRNA containing one, two and three base pairs are respectively about 0.056-fold, 3.14 \times 10^{-2}\text{-fold} and 1.71 \times 10^{-4}\text{-fold} of the rate (about 0.5 s^{-1}) for the case of single-stranded mRNA. These results can be easily tested by future experiments.

Supporting Information

Figure S1 Spontaneous mRNA translocation time \(T_1 \) as a function of \(\Delta E \) in the absence of EF-G.

Figure S2 mRNA translocation time \(T_2 \) as a function of \(\Delta E \) after the binding of EF-G,GDPNP.

Figure S3 mRNA translocation time \(T_2 \) as a function of \(\Delta E \) after the binding of EF-G,GTP for Case I that the ribosomal unlocking has no effect on the equilibrium between non-ratchet and ratchet conformations.

Figure S4 mRNA translocation time \(T_2 \) as a function of \(\Delta E \) after the binding of EF-G,GTP for Case II that the ribosomal unlocking shifts the equilibrium toward the ratcheted conformation, as EF-G,GTP state does.

Figure S5 mRNA translocation time \(T_2 \) as a function of \(\Delta E \) after the binding of EF-G,GTP for Case III that the ribosomal unlocking shifts the equilibrium toward the non-ratcheted conformation, which is contrary to Case II.

Figure S6 mRNA translocation time \(T_1 \) as a function of \(\Delta E \) after the binding of EF-G,GTP for Case II that the non-ratchet and ratchet conformations.

Figure S7 Kinetic scheme of EF-G,GTP-catalyzed mRNA translocation.

Figure S8 Schematic illustrations of two possible cases for backward translocation when only peptidyl-tRNA is bound to the P site.

Text S1 Effect of variations of \(E_{\text{ENR}} \) and \(E_H \) on forward mRNA translocation time.

Text S2 Effect of variation of \(E_0 \) on forward mRNA translocation time.

Text S3 Backward translocation cannot occur or cannot be detected when only peptidyl-tRNA is bound to the P site.

Author Contributions

Conceived and designed the experiments: PX. Performed the experiments: PX. Analyzed the data: PX. Contributed reagents/materials/analysis tools: PX. Wrote the paper: PX.

References

1. Noller HF, Yusupov MM, Yusupova GZ, Baucom A, Cate JHD (2002) Translocation of tRNA during protein synthesis. FEBS Lett 514: 11–16.
2. Frank J, Gao H, Sengupta J, Gao N, Taylor DJ (2007) The process of mRNA–tRNA translocation. Proc Natl Acad Sci USA 104: 19671–19678.
3. Pestka S (1969) Studies on the formation of transfer ribonucleic acid-ribosome complexes. VI. Oligopeptide synthesis and translocation on ribosomes in the presence and absence of soluble transfer factors. J Biol Chem 244: 1533–1539.
4. Gavrilova LP, Spirin AS (1971) Stimulation of “non-enzymic” translocation in ribosomes by p-chloromercuribenzoate. FEBS Lett 17: 324–326.
5. Gavrilova LP, Kostiashkina OE, Koteliansky VE, Rutkevitch NM, Spirin AS (1976) Factor-free (“non-enzymic”) and factor-dependent systems of translation of polyuridylic acid by Escherichia coli ribosomes. J Mol Biol 101: 537–552.
6. Southworth DR, Brunelle JL, Green R (2002) EF-G-independent translocation of the mRNA:tRNA complex is promoted by modification of the ribosome with Thiol-specific reagents. J Mol Biol 324: 611–623.
7. Fredrick K, Noller HF (2003) Catalysis of ribosomal translocation by sparsomycin. Science 300: 1159–1162.
8. Rodnina MV, Savel’sevich A, Katushkin VI, Wintemeyer W (1997) Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome. Nature 385: 37–41.
9. Katunin VI, Savelbergh A, Rodshina MV, Wintermeyer W (2002) Coupling of GTP hydrolysis by elongation factor G to translocation and factor recycling on the ribosome. Biochemistry 41: 12806–12812.

10. Zavialov AV, Ehrenberg M (2003) Peptidyl-tRNA regulates the GTPase activity of translation factors. Cell 114: 113–122.

11. Pan D, Külkös NV, Cooperman BS (2007) Kinetically competent intermediates in the translocation step of protein synthesis. Mol Cell 25: 519–529.

12. Ticiu C, Nechifu R, Nguyen R, Desroizers M, Wilson KS (2009) Conformational changes in switch I of EF-G drive its directional cycling on and off the ribosome. EMBO J 28: 2033–2063.

13. Ermoelnko DN, Noller HF (2011) mRNA translocation occurs during the second step of ribosomal intersubunit rotation. Nat Struct Mol Biol 18: 457–463.

14. Shoji S, Walker SE, Fredrick K (2006) Reverse translocation of tRNA in the ribosome. Mol Cell 24: 931–942.

15. Konevega AL, Fischer N, Semenkov YP, Stark H, Wintermeyer W, et al. (2007). Locking and unlocking of ribosomal motions. Cell 114: 123–134.

16. Qin Y, Polacek N, Vesper O, Staub E, Einfeldt E, et al. (2006). The highly conserved LepA is a ribosomal elongation factor that back-translocates the ribosome. Cell 127: 721–732.

17. Liu H, Pan D, Pech M, Cooperman BS (2010) Interrupted catalysis: The EF4 (LepA) effect on back-translocation. J Mol Biol 396: 1043–1052.

18. Shoji S, Janssen BD, Hayes CS, Fredrick K (2010) Translation factor LepA contributes to tellurite resistance in Escherichia coli but plays no apparent role in the fidelity of protein synthesis. Biochimie 92: 157–163.

19. Pech M, Karim Z, Yamamoto H, Kitakawa M, Qin Y, et al. (2011) Elongation factor 4 (EF4/LepA) accelerates protein synthesis at increased Mg2+ concentrations. Proc Natl Acad Sci USA 108: 3199–3203.

20. Moazed D, Noller HF (1989) Intermediate states in the movement of transfer RNA in the ribosome. Nature 342: 142–148.

21. Blanchard SC, Kim HD, Gonzalez Jr RL, Puiglo JD, Chu S (2004) tRNA dynamics on the ribosome during translation. Proc Natl Acad Sci USA 101: 12983–12988.

22. Valle M, Zavialov A, Sengupta J, Ravat U, Ehrenberg M, et al. (2003) Locking and unlocking of ribosomal motions. Cell 114: 123–134.

23. Fei J, Kosuri P, MacDougall DI, Gonzalez Jr RL (2008) Coupling of ribosomal L1 stalk and tRNA dynamics during translation elongation. Mol Cell 30: 348–359.

24. Cornish PV, Ermoelnko DN, Noller HF, Ha T (2008) Spontaneous intersubunit rotation in single ribosomes. Mol Cell 30: 378–388.

25. Lill R, Robertson JM, Wintermeyer W (1989) Binding of the 3′-terminus of tRNA to 23S rRNA in the ribosomal exit site actively promotes translocation. EMBO J 8: 3933–3938.

26. Feinberg JS, Joseph S (2001) Identification of molecular interactions between P-site tRNA and the ribosome essential for translocation. Proc Natl Acad Sci USA 98: 11120–11125.

27. Joseph S, Noller HF (1998) EF-G–catalyzed translocation of anticodon stem-loop analogs of transfer RNA in the ribosome. EMBO J 17: 3478–3483.

28. Spiegel PC, Ermoelnko DN, Noller HF (2007) Elongation factor G stabilizes the hybrid-state conformation of the 70S ribosome. RNA 13: 1473–1482.

29. Schuwirth BS, Borovinskaya MA, Hau CW, Zhang W, Vila-Sanjurjo A, et al. (2005) Structures of the bacterial ribosome at 3.5 Å resolution. Science 310: 834–838.

30. Taylor DJ, Nilsson J, Merrill AR, Andersen GM, Nissen P, et al. (2007) Structures of modified eEF2.80S ribosome complexes reveal the role of GTP hydrolysis in translocation. EMBO J 26: 2421–2431.

31. Gardiner CW (1983) Handbook of stochastic methods for physics, chemistry and the natural sciences. Berlin:Springer-Verlag.

32. Qin X, Wen JD, Lancaster L, Noller HF, Bustamante C, et al. (2011) The ribosomedynamics two active mechanisms to unwind messenger RNA during translation. Nature 475: 110–121.

33. Xie P (2013) Model of ribosome translation and mRNA unwinding. Eur Biophys J 42: 347–354.

34. McGarry KG, Walker SE, Wang H, Fredrick K (2005) Destabilization of the P site codon-anticodon helix results from movement of tRNA into the P/E hybrid state within the ribosome. Mol Cell 20: 613–622.

35. Savelbergh A, Katunin VI, Mohr D, Peske F, Rodnina MV, et al. (2003) An elongation factor G-induced ribosome rearrangement precedes tRNA-mRNA translocation. Mol Cell 11: 1517–1523.

36. Wintermeyer W, Peske F, Beringer M, Gromadski KB, Savelbergh A, et al. (2004) Mechanisms of elongation on the ribosome: dynamics of a macromolecular machine. Biochem Soc Trans 32: 733–737.

37. Takyar S, Hickerson RP, Noller HF (2005) mRNA helicase activity of the ribosome. Cell 120: 49–58.

38. Freier SM, Kieczek R, Jaeger JA, Sugimoto N, Caruthers MH, et al. (1986) Improved fre energy parameters for predictions of RNA duplex stability. Proc Natl Acad Sci USA 83: 9373–9377.

39. Colozza AR, Southworth DR, Brunelle JL, Culver GM, Green R (2003) Ribosomal proteins S12 and S13 function as control elements for translational coupling of the mRNA: rRNA complex. Mol Cell 12: 321–328.

40. Xie P (2013) Dynamics of mRNA occupancy and dissociation during translation by the ribosome. J Theor Biol 316: 49–60.

41. Uemura S, Aitken CE, Korlach J, Flusberg BA, Turner SW, et al. (2010) Real-time tRNA transit on single translating ribosomes at codon resolution. Nature 464: 1012–1017.

42. Lebowitz J, Lewis MS, Schuck P (2002) Modern analytical ultracentrifugation in protein science: A tutorial review. Protein Science 11: 2067–2079.

43. Fushimi K, Verkman AS (1991) Low viscosity in the aqueous domain of cell cytoplasm measured by picosecond polarization microfluorimetry. J Cell Biol 112: 719–725.

44. Luby-Phelps K, Mujumdar S, Mujumdar RB, Ernst LA, Galbraith W, et al. (2005) Structures of modified eEF2.80S ribosome complexes reveal the role of GTP hydrolysis in translocation. EMBO J 26: 2421–2431.