Data in Brief

Genome-wide copy number profiling of mouse neural stem cells during differentiation

U. Fischer a,⁎, N. Ludwig a, A. Keller b, C. Backes b, E. Meese a

a Department of Human Genetics, Saarland University, Building 60, 66421 Homburg/Saar, Germany
b Clinical Bioinformatics, Saarland University, Building E2.1, 66123 Saarbrücken, Germany

Abstract

There is growing evidence that gene amplifications were present in neural stem and progenitor cells during differentiation. We used array-CGH to discover copy number changes including gene amplifications and deletions during differentiation of mouse neural stem cells using TGF-β and FCS for differentiation induction. Array data were deposited in GEO (Gene Expression Omnibus, NCBI) under accession number GSE35523. Here, we describe in detail the cell culture features and our TaqMan qPCR-experiments to validate the array-CGH analysis. Interpretation of array-CGH experiments regarding gene amplifications in mouse and further detailed analysis of amplified chromosome regions associated with these experiments were published by Fischer and colleagues in Oncotarget (Fischer et al., 2015). We provide additional information on deleted chromosome regions during differentiation and give an impressive overview on copy number changes during differentiation induction at a time line.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Direct link to deposited data

Deposited data can be found here: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE35523.

2. Experimental design, materials and methods

2.1. Cell culture and differentiation

SFME cells cultured in the absence of fibronectin formed spheres and served as non-differentiated controls. SFME cells were seeded on fibronectin-coated cultureware and allowed to grow for 18 h prior to differentiation induction with TGF-β or FCS. SFME cells were differentiation induced using above supplemented ATCC DMEM:F12 Medium containing TGF-β (10 ng/ml) for 8 h, 12 h and 24 h or DMEM:F12 supplemented with FCS for 8 h, 12 h and 24 h.

Cells were harvested and cell pellet was frozen before proceeding to DNA extraction as described previously (Fischer et al., 2014 genomics data) [1].

2.2. Array-CGH data analysis

Array data were deposited in GEO under accession number GSE35523.

Signal intensity data were extracted from scanned images of each array using Roche NimbleGen NimbleScan v2.6 software. After spatial correction, the Cy3 and Cy5 signal intensities were normalized using qspline normalization. Following normalization a 10 × window-averaging step is applied. For amplification and deletion detection we used the dynamic segMNT algorithm that identifies segments by minimizing the squared error relative to the segment means. To detect representative alterations and to minimize the identification of random alterations, we extracted

⁎ Corresponding author.
E-mail address: ulrike.fischer@uks.eu (U. Fischer).
Table 1
Overview of deleted chromosome regions.
Start and end points of deleted chromosome regions are according to NCBI37/mm9. Size is displayed in kb.

Sphere	24 h TGF-ß	12 h FCS							
	Start	End	log₂	Size	Start	End	log₂	Size	
chr1	110459999	112459999	0.15437	2000	chr1	157699999	164399999	−0.11251	6640
	125099999	125779999	0.1133	680	chr1	179699999	180099999	−0.17032	400
chr1	157499999	166019999	−0.11672	8520	chr1	154599999	157799999	−0.2969	320
chr2	85619999	88979999	−0.1151	4360	chr2	80059999	81099999	−0.14237	1040
chr2	94819999	101179999	−0.10144	6360	chr2	93099999	94059999	−0.18368	360
chr2	140259999	140739999	0.00916	480	chr2	110219999	115099999	−0.16231	4880
chr2	174619999	176799999	−0.08189	2360	chr2	116859999	120779999	−0.1109	3920
chr3	107799999	152199999	−0.10217	4440	chr3	123399999	127819999	−0.16916	4760
chr3	152599999	158199999	−0.25966	562	chr3	123059999	127819999	−0.16916	4760
chr3	232199999	236299999	−0.26682	2280	chr3	125819999	127739999	−0.16144	1920
chr3	47419999	48019999	−0.20803	600	chr3	125819999	128999999	−0.24645	5100
chr3	71339999	73539999	−0.1502	2200	chr3	123339999	125779999	−0.35956	2440
chr3	122399999	125779999	−0.26682	2280	chr3	123399999	125779999	−0.35956	2440
chr3	125819999	128999999	−0.16294	3120	chr3	125819999	128999999	−0.16294	3120
chr4	75659999	80779999	−0.2069	5120	chr4	80059999	81099999	−0.14237	1040
chr4	80779999	80779999	−0.2069	5120	chr4	80059999	81099999	−0.14237	1040
chr4	89259999	94339999	−0.13013	5080	chr5	93099999	94059999	−0.18368	360
chr4	94339999	94339999	−0.13013	5080	chr5	93699999	94059999	−0.18368	360
chr4	138299999	140059999	−0.14334	1760	chr5	118599999	195399999	−0.12821	7680
chr4	140059999	140059999	−0.14334	1760	chr6	54859999	61859999	−0.20136	7000
chr4	138299999	140059999	−0.14334	1760	chr6	41539999	47339999	−0.10686	5840
chr7	106999999	121199999	−0.24888	1440	chr7	78299999	91059999	−0.10839	12,760
chr7	78299999	91059999	−0.10839	12,760	chr7	81459999	81739999	−0.14919	280
chr8	99539999	106019999	−0.10809	6480	chr8	71699999	72019999	−0.1087	320
chr9	35659999	35939999	−0.21324	280	chr9	35659999	36059999	−0.16676	400
chr9	37899999	38899999	−0.10023	1200	chr9	37419999	39759999	−0.10149	2560
assays were run in two independent experiments, each in four technical replicates and results were analyzed using StepOne™ Software v2.0 and copy numbers were analyzed using CopyCaller™ software. Mean results of four technical replicates were summarized in Fig. 1a (GFAP) and b (FZR1). The copy number calculated by Software Copy Caller™ revealed an increased copy number 3-fold of GFAP for SMFE cell differentiation induced by TGFβ for 8 h, 12 h and 24 h. In SMFE cell differentiation induced by FCS for 8 h, 12 h and 24 h, the copy number was 2.5, 3 and 2.5-fold respectively. The software also identified an increased copy number of 2.5-fold for FZR1 for SMFE cell differentiation induced by TGFβ for 8 h, 12 h and 24 h. Likewise we found an increased copy number of 2.5-fold for SMFE cell differentiation induced by FCS for 24 h. These results confirmed our previous array-CGH analysis and FISH experiments. Interestingly the higher log2 ratio values for GFAP in array-CGH experiments corresponded to an elevated copy number value in TaqMan qPCR experiments.

3. Discussion

Here we report detailed information on threshold choice for detection of gene amplification using NimbleGen 730K mouse whole genome array and correlation between log2 ratio values and copy number values

Sphere	Start	End	log2	Size
ch10	35579999	35939999	−0.17695	360
ch10	45899999	51019999	−0.12617	5120
ch10	100819999	105099999	−0.16547	428
ch10	128539999	129975647	−0.10464	1436
ch11	36019999	42459999	−0.11313	6440
ch14	76859999	78259999	−0.10653	1400
ch14	88619999	95699999	−0.17732	7080
ch15	13459999	23819999	−0.13777	10360
ch15	46139999	47259999	−0.15127	1120
ch15	47419999	51059999	−0.12808	3640
ch17	17499999	22579999	−0.11022	5080
ch17	76139999	78259999	−0.13494	2120
ch17	89499999	95259594	−0.10669	5756
ch18	16939999	19889999	−0.11972	2960
ch18	26139999	31459999	−0.11968	5320
ch18	51059999	52299999	−0.14649	1240
ch18	75979999	76259999	−0.16726	280
ch18	85659999	90459999	−0.11787	4800
ch19	47779999	52739999	−0.12561	4960

Table 1 (continued)
from TaqMan qPCR experiments. Here and in our previous report we detected a complex pattern of amplifications and deletions. Both amplifications and deletions were only detectable after a low threshold setting. Threshold settings of 0.8 used in many studies were very likely to miss alterations that were present in a subpopulation of the investigated cells. Our confirmation using qPCR strongly argues for a low threshold setting. This dataset is an additional step towards uncovering copy number changes upon differentiation in mammalian stem cells.

Acknowledgements

The “Deutsche Forschungsgemeinschaft” funded this study (Fi644/2-1; Fi644/2-2).

References

[1] U. Fischer, A. Keller, C. Backes, E. Meese, Genome-wide copy number profiling to detect gene amplifications in neural progenitor cells. Genomics Data 2 (2014) 162–165. http://dx.doi.org/10.1016/j.gdata.2014.06.020.

[2] U. Fischer, et al., Gene amplification during differentiation of mammalian neural stem cells in vitro and in vivo. Oncotarget 6 (9) (2015) 7023–7035.