An approach to universality using Weyl m-functions

Benjamin Eichinger
(TU Wien)

joint work with
Milivoje Lukić (Rice University), Brian Simanek (Baylor University)

Baylor Analysis Fest, ”From Operator Theory to Orthogonal Polynomials, Combinatorics, and Number Theory”
Christoffel–Darboux kernel

- Let μ be a probability measure on \mathbb{R} with all finite moments,

$$\int |\xi|^n \, d\mu(\xi) < \infty, \quad \forall n \in \mathbb{N}.$$

Assume that μ has infinite support (in sense of cardinality).

- We obtain **orthonormal polynomials** $\{p_j(z)\}_{j=0}^{\infty}$ by the Gram–Schmidt process from the sequence of monomials $\{z^j\}_{j=0}^{\infty}$ in $L^2(\mathbb{R}, d\mu)$.

- The **Christoffel–Darboux (CD) kernel** is

$$K_n(z, w) = \sum_{j=0}^{n-1} p_j(z)p_j(w).$$

Reproducing kernel for subspace $\text{span}\{1, z, \ldots, z^{n-1}\} \subset L^2(\mathbb{R}, d\mu)$.
Universality limits of CD kernels are double scaling limits

\[
\lim_{n \to \infty} \frac{1}{\tau_n} K_n \left(\xi + \frac{z}{\tau_n}, \xi + \frac{w}{\tau_n} \right)
\]

for an appropriate sequence \(\tau_n \to \infty \) and \(z, w \in \mathbb{C}, \xi \in \mathbb{R} \).

They are called universality limits because the limit is often found to be a standard kernel and does not depend on the exact measure we started with: the most common phenomenon is bulk universality, with limiting kernel

\[
\sin \pi(w - z) \\
\pi(w - z)
\]

Interpretation: Kernel for Gaussian unitary ensemble, Paley Wiener Spaces, and ...
Local zero spacing

- Denote by $\xi_j^{(n)}$ for $j \in \mathbb{Z}$ the zeros of p_n counted from ξ, i.e.,
 \[\ldots < \xi_{-2}^{(n)} < \xi_{-1}^{(n)} < \xi < \xi_0^{(n)} < \xi_1^{(n)} < \ldots \]

- **Freud–Levin theorem**: The bulk universality limit implies
 \[\lim_{n \to \infty} \tau_n(\xi_{j+1}^{(n)} - \xi_j^{(n)}) = 1 \quad \forall j \in \mathbb{Z}. \]

 Statements of this type are commonly described as “clock behavior”.

- Universality limits were first studied in the setting of random matrices, where this universal eigenvalue spacing was observed.
Previous results on bulk universality

\[
\lim_{n \to \infty} K_n \left(\xi + \frac{z}{\tau_n}, \xi + \frac{w}{\tau_n} \right) = \frac{\sin(\pi(\overline{w} - z))}{\pi(\overline{w} - z)},
\]

with appropriate \(\tau_n \).

- 1971 Freud: on \([-1, 1]\) with \(d\mu(\xi) = w(\xi)d\xi \) and strong conditions on \(w \)
- For Gaussian measure \(d\mu(\xi) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}\xi^2} d\xi \) follows from properties of Hermite polynomials
- 1990s Deift–Kriecherbauer–McLaughlin–Venakides–Zhou: Riemann–Hilbert techniques for measures
 \[d\mu = e^{-Q(\xi)} d\xi \]
- 2009 Lubinsky (Annals): Stahl–Totik regular measures \(d\mu \) with local Lebesgue point/local Szegő conditions at \(\xi \); with extensions by Findley, Simon and Totik.
A local criterion for bulk universality

Theorem (E.–Lukić–Simanek)

Let μ be a probability measure on \mathbb{R} with infinite support and finite moments, corresponding to a determinate moment problem. Let

$$m(z) = \int \frac{1}{x - z} \, d\mu(x), \quad z \in \mathbb{C}_+.$$

Let $\xi \in \mathbb{R}$ and assume that for some $0 < \alpha < \pi/2$,

$$f_\mu(\xi) := \frac{1}{\pi} \lim_{z \to \xi} \frac{\text{Im} \, m(z)}{\alpha \leq \arg(z - \xi) \leq \pi - \alpha} \in (0, \infty).$$

Then uniformly on compact regions of $(z, w) \in \mathbb{C} \times \mathbb{C}$,

$$\lim_{n \to \infty} \frac{K_n \left(\xi + \frac{z}{f_\mu(\xi) K_n(\xi, \xi)}, \xi + \frac{w}{f_\mu(\xi) K_n(\xi, \xi)} \right)}{K_n(\xi, \xi)} = \frac{\sin(\pi(w - z))}{\pi(w - z)}.$$
Nontangential limits of \(m(z) \)

- The nontangential limit

\[
 f_\mu(\xi) := \frac{1}{\pi} \lim_{z \to \xi} \text{Im} \, m(z)
\]

exists for Lebesgue-a.e. \(\xi \in \mathbb{R} \)
- Pointwise, it exists at every Lebesgue point of the measure \(\mu \)
- This limit recovers the a.c. part of the measure:

\[
 d\mu(\xi) = f_\mu(\xi)d\xi + d\mu_s(\xi)
\]

- The essential support for a.c. spectrum is the set

\[
 \Sigma_{ac}(\mu) = \{ \xi \in \mathbb{R} \mid f_\mu(\xi) \in (0, \infty) \}
\]

In particular, this solves a conjecture of Avila–Last–Simon:

Corollary

Bulk universality holds almost everywhere on \(\Sigma_{ac}(\mu) \).
Rescaling and decoupling

- If \(\lim_{n \to \infty} \frac{1}{\tau_n} K_n \left(\xi + \frac{z}{\tau_n}, \xi + \frac{w}{\tau_n} \right) = K(z, w), K(0, 0) \neq 0 \), then
 \[
 \lim_{n \to \infty} \frac{K_n(\xi, \xi)}{\tau_n} \in (0, \infty)
 \]

- Conversely, if
 \[
 \lim_{n \to \infty} \frac{K_n(\xi, \xi)}{\tau_n} \in (0, \infty)
 \]
 one scale can be replaced by the due to local uniform convergence.

- **Christoffel functions** for compactly supported measures:
 \[
 \lim_{n \to \infty} \frac{K_n(\xi, \xi)}{n} = c > 0,
 \]

 - \(\mu \) is Stahl–Totik regular (global)
 - local Szegő class condition (local)
 - Lebesgue point conditions (local)
 (Máté–Nevai–Totik 1991 Annals for \(E = [-2, 2] \), generalized by Totik)
Transfer matrices

- Define **transfer matrices** by

\[B(n, z) = A(a_n, b_n; z) \cdots A(a_1, b_1; z), \quad A(a_j, b_j; z) = \begin{pmatrix} \frac{z - b_j}{a_j} & -\frac{1}{a_j} \\ a_j & 0 \end{pmatrix} \]

- The **Jacobi recursion**

\[zp_n(z) = a_n p_{n-1}(z) + b_{n+1} p_n(z) + a_{n+1} p_{n+1}(z) \]

is equivalent to

\[\begin{pmatrix} p_n(z) \\ a_n p_{n-1}(z) \end{pmatrix} = B(n, z) \begin{pmatrix} 1 \\ 0 \end{pmatrix} \]

- **Second kind polynomials** are obtained by

\[\begin{pmatrix} q_n(z) \\ a_n q_{n-1}(z) \end{pmatrix} = B(n, z) \begin{pmatrix} 0 \\ -1 \end{pmatrix} \]
Matrix CD kernel

- Matrix version of Christoffel–Darboux kernel defined by

\[K_n(z, w) = \begin{pmatrix} \sum_{j=0}^{n-1} p_j(z) \overline{p_j(w)} & \sum_{j=0}^{n-1} q_j(z) \overline{p_j(w)} \\ \sum_{j=0}^{n-1} p_j(z) q_j(w) & \sum_{j=0}^{n-1} q_j(z) \overline{q_j(w)} \end{pmatrix} \]

Note that \(K_n(z, w)_{11} = K_n(z, w) \)
Limits of m-function

We say $m : \mathbb{C}_+ \to \mathbb{C}_+$ has a normal limit at ξ, if

$$\eta = \lim_{y \downarrow 0} m(\xi + iy)$$

Clearly $\eta \in \overline{\mathbb{C}_+} := \mathbb{C}_+ \cup \mathbb{R} \cup \{\infty\}$

For $\eta \in \overline{\mathbb{C}_+}$, define

$$\hat{H}_\eta := \frac{1}{1 + |\eta|^2} \begin{pmatrix} 1 & -\text{Re}\eta \\ -\text{Re}\eta & |\eta|^2 \end{pmatrix} \quad \eta \in \mathbb{C}_+ \cup \mathbb{R}$$

$$\hat{H}_\infty := \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

Denote also $j = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, $h_\eta = \frac{\text{Im}\eta}{1 + |\eta|^2}$ and define

$$\hat{K}_\eta(z, w) = \frac{j(\cos(h_\eta(\overline{w} - z) - 1)) + \hat{H}_\eta}{h_\eta} \sin(h_\eta(\overline{w} - z)) \overline{w - z}$$
Theorem (E.–Lukić–Simanek)

Denote $\tau(n) = \text{tr} \, K_n(\xi, \xi)$. The following are equivalent:

1. m has a normal limit at ξ,
 \[
 \lim_{y \downarrow 0} m(\xi + iy) = \eta \in \mathbb{C}_+
 \]

2. The (matrix) universality limit exists on the diagonal:
 \[
 \lim_{n \to \infty} \frac{1}{\tau(n)} K_n(\xi, \xi) = H_\infty
 \]

3. The (matrix) universality limit exists:
 \[
 \lim_{L \to \infty} \frac{1}{\tau(n)} K_n \left(\xi + \frac{z}{\tau(n)}, \xi + \frac{w}{\tau(n)} \right) = K_\infty(z, w).
 \]

Moreover, in this case, $H_\infty = ˚H_\eta$ and $K_\infty(z, w) = ˚K_\eta(z, w)$.
A connection to subordinacy theory

A special case of the previous theorem is a result from subordinacy theory: Using that

$$\tau(n) = \sum_{j=0}^{n-1} p_j(\xi)^2 + \sum_{j=0}^{n-1} q_j(\xi)^2$$

we get

$$\lim_{y \downarrow 0} m(\xi + iy) = \infty \iff \lim_{n \to \infty} \frac{\sum_{j=0}^{n-1} p_j(\xi)^2}{\sum_{j=0}^{n-1} q_j(\xi)^2} = 0$$
Let $H : [0, \infty) \to \text{Mat}(2, \mathbb{R})$ be locally integrable and
\[H(x) \geq 0, \]
for Lebesgue-a.e. x.

Let $T : [0, \infty) \times \mathbb{C} \to \text{Mat}(2, \mathbb{C})$ be the solution of the initial value problem
\[j \partial_x T(x, z) = -zH(x)T(x, z), \quad T(0, z) = I_2. \]

H is called the Hamiltonian of the canonical system.

Assume the limit point case
\[\text{tr} \int_0^\infty H(x) \, dx = \infty \quad (1) \]

Due to (1) the Weyl m-function can be introduced. Let $\tau \in \overline{\mathbb{C}_+}$ and define
\[m(z) = \lim_{x \to \infty} T(x, z)^{-1} * \tau \]
in the projective sense. This definition is independent of τ.
Define

\[\mathcal{K}_L(z, w) = \int_0^L T(x, w)^* H(x) T(x, z) \, dx, \]

and note that \(\tau_L = \text{tr} \mathcal{K}_L(0, 0) = \text{tr} \int_0^L H(x) \, dx \)

The map

\[H \mapsto m \]

is onto the set \(\{\text{Herglotz functions}\} \cup \{f(z) \equiv c : c \in \mathbb{R} \cup \{\infty\}\} \) but not one-to-one. It is one-to-one up to ”reparametrization” of \(\mathbb{R} \). Thus:

- Canonical systems

\[j\partial_x T(x, z) = -zH(x) T(x, z), \quad T(0, z) = I_2 \]

- Reparametrize \(x \) to impose \(\text{tr} \, H = 1 \) a.e.

- de Branges (uniqueness): map \(H \mapsto m \) is a bijection

- The correspondences between \(H, m, M, K \) are homeomorphisms
Scaling operation

- Consider a trace-parametrized canonical system

\[j \partial_t T(t, z) = -z H(t) T(t, z), \quad T(0, z) = I_2 \]

with Weyl function \(m(z) \) and kernel \(K_t(z, w) \)

- For \(r > 0 \), a scaling operation

\[
\begin{align*}
 m_r(z) &= m(z/r) \\
 H_r(t) &= H(rt) \\
 M_r(t, z) &= M(rt, z/r) \\
 (K_r)_t(z, w) &= \frac{1}{r} K_{rt}(z/r, w/r)
\end{align*}
\]

found by Kasahara for Krein strings and used by Eckhardt–Kostenko–Teschl and Langer–Pruckner–Woracek for canonical systems to investigate large energy asymptotics of the \(m \)-function

- We use the scaling operation to “zoom in” towards \(\xi \in \mathbb{R} \)
Proofs of Theorems

Proof of Theorem 2: WLOG $\xi = 0$

- Start from transfer matrices $T(L, z)$ with Weyl function $m(z)$
- Consider family of canonical systems corresponding to Weyl functions

 \[m_r(z) = \begin{cases}
 m(z/r) & r \in [1, \infty) \\
 \eta & r = \infty
 \end{cases} \]

- Characterize continuity of this family in terms of H, m, M, K

Proof of Theorem 1:

- In addition, use a translation trick and consider the family

 \[\tilde{m}_r(z) = \begin{cases}
 m(z/r) - \text{Re} \, m(i/r) & r \in [1, \infty) \\
 i f_{\mu}(0) & r = \infty
 \end{cases} \]
Thank you for your attention!