Gene expression of follicle-stimulating hormone receptors in granulosa cells in poor ovarian responders

P A Iffanolda1,2, B Wiweko 1,3,4*, N Muna1, N Hanifah2, K Mutia1, O Riayati1, R R Febri1 and A Hestiantoro1,3,4

1Human Reproduction, Infertility and Family Planning, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia
2Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia
3Yasmin IVF Clinic, Dr. Cipto Mangunkusumo General Hospital, Jakarta, 10430, Indonesia
4Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia
5Department of Biology, Faculty of Mathematics and Natural Science, Universitas Indonesia, Depok, 16424, Indonesia

*E-mail: buwiweko@gmail.com

Abstract. Women with poor ovarian response do not produce adequate follicles and express low estradiol levels after standard ovarian stimulation protocols; therefore, their chances of becoming pregnant are reduced. The follicle-stimulating hormone (FSH) binds to specific follicle-stimulating hormone receptors (FSHRs) in the ovary, thereby activating adenylyl cyclase/cyclic adenosine monophosphate, a gene expression regulator. The present study aimed to evaluate whether the FSHR levels in poor ovarian responders differed from those in normal ovarian responders. This cross-sectional study was conducted in the Cipto Mangunkusumo’s Hospital. The study cohort included women with poor ovarian responses (n = 17) and control women with normal ovarian responses (n = 17) who underwent IVF procedures. The FSHR levels in ovarian tissues were measured using qPCR and then compared between the two groups. No statistically significant differences were found in the FSHR levels between the groups. A polymorphism mutation may be present in the FSHR gene of poor ovarian responders.

1. Introduction

The rate of poor ovarian responders during assisted reproductive technology varies between 9% and 24\%. In Indonesia, the number of IVF cycles for patients aged above 40 years increased from 12.6\% to 13.15\% during 2013–2016 according to the data in the Perftri. Poor ovarian responders are defined based on three criteria laid out by the ESHRE working group: advanced maternal age or any other risk factor for poor ovarian response (POR), a previous POR event, and an abnormal ovarian reserve test.

In poor responders, the FSH level increases due to the lack of negative feedback from inhibin-B. FSH acts on the follicle-stimulating hormone receptor (FSHR) in ovarian cells, activating the adenylyl cyclase/cyclic adenosine monophosphate (cAMP), a gene expression regulator. Herein, we assessed...
whether the expression of FSHR in ovarian tissues is different between normal ovarian responders and poor ovarian responders.

2. Materials and Methods

2.1 Patient eligibility
Patients undergoing IVF cycles who met the inclusion criteria provided signed informed consents to participate in the study. Patients were divided into two groups: poor responders and normal responders. Poor ovarian responders were defined as women presenting at least two of the Bologna criteria: (i) advanced maternal age (≥ 40 years) or any other risk factor for POR, (ii) a previous POR, and (iii) an abnormal ovarian reserve test (ORT) (AFC < 5–7 follicles or AMH < 0.5–1.1 ng/mL).

2.2 Place and time of study
This study was conducted at the Yasmin Clinic, Cipto Mangunkusmo’s Hospital, in Jakarta, Indonesia.

2.3 Standard patient assessments
Patients underwent routine anamnesis, physical examination (general status and obstetrics status), ultrasonography, and laboratory examination. Serum and granulosa cells were collected during ovum pick-up. Granulosa cell samples from aspirated follicles were obtained from all participants. Granulosa cells automatically separate from oocytes, whereas the cumulus cells remain adhered to the oocyte. Granulosa cell samples were placed in a tube containing 500 µL RNA and frozen at −80°C until used in mRNA measurements.

2.4 ELISA examination
Anti-Müllerian hormone (AMH) levels were measured from serum samples using the ELISA method. ELISA was performed using the AMH Gen II ELISA kit (Beckman Coulter, USA) following the manufacturer’s instructions. Briefly, the calibrator, control, and test samples were incubated in microtiteration wells coated with anti-AMH antibody. After washing, the anti-AMH antibody labeled with biotin was added to each well. Incubation and washing were conducted for a second time. Then, streptavidin–horseradish peroxidase (HRP) was added to each well. After the third incubation and washing steps, the tetramethylbenzidine (TMB) substrate was added to each well. Then, an acid solution was added, and the absorption of the colored product formed after conversion of the enzymatic substrate was measured at a wavelength of 450 nm to determine the AMH concentration based on the calibrator’s absorption curve.

2.5 RNA isolation from granulosa cells and real time PCR
The RNA isolation kit from Qiagen RNeasy Mini Kit based on the protocol of the RNeasy Mini Handbook was used with minor modifications. First, our samples were thawed at room temperature. The samples were then vortexed for 3 s and centrifuged for 3 min at 8000 ×g at room temperature. The supernatants were discarded. Then, after addition of 600 µL of RLT buffer with β-Mercaptoethanol, the cell membranes were disrupted in a sonicator. The next steps are the same as those described in the manufacturer’s protocol. Table 1 shows the composition of the buffer used for obtaining pure RNA.

Ingredients	Volume
gDNA Wipeout Bufer, 7×	2 µL
Template RNA	Variable
RNase free water	Variable
Total Volume	14 µL

Table 1. Genomic composition of the DNA elimination buffer
2.6 Real time PCR
The Quantitect SYBR PCR Master Mix, template cDNA, forward and reverse primers, and RNase free water were used for RT PCR as described in Table 2. The results of the RT PCR expression data for FSHR expression in granulosa cells was used for data analysis.

Table 2. Component of master mix RT PCR reaction
Component
Quantitect SYBR Green PCR Master Mix
Primer F
Primer R
RNase Free Water
Template cDNA
Total Volume

3 Results
A total of 34 samples were analyzed in this study: 17 from the poor responders group and 17 samples from the responders group. The average age was significantly higher in the poor responder group than in the normal responders group (p = 0.035). The AMH level was statistically lower in the poor responder group than in the normal responder group (p = 0.004). Patient characteristics are presented in Table 3. The FSHR expression in granulosa cells of poor responders was higher than that in normal responders (1.259 × 10−8 vs. 0.887 × 10−8), but the difference was not statistically significant (p = 0.658) (Table 4).

Table 3. Patient characteristics.
Characteristic
Age, mean (DS)
AMH level follicular fluid (ng/mL), median
FSH Recombinant dose (IU), median
Oocyte count, median

Table 4. FSHR Expression in granulosa cells of poor responders and normal responders
FSHR Expression
FSHR Expression in granulosa cells (ng/µL), mean (standard deviation)
Table 5. Correlation between FSHR Expression in Granulosa Cells with Age, AMH Levels, and FSHR Dose

Characteristics	Correlation	FSHR Expression in Granulosa Cells n=17	Poor Responders	Normal Responders
Age	Correlation coefficient (r)	P*	−0.156	−0.246
AMH in Follicular Fluid (ng/mL)	Correlation coefficient (r)	P*	−0.009	0.108
FSHR Dose (IU)	Correlation coefficient (r)	P*	0.31	0.056

4. Discussion
Badawy et al. found that the granulosa cells of poor responders express lower FSHR levels, although they express normal androgen levels [1]. However, in our study, FSHR expression was slightly higher in poor responders than in normal responders, but the difference was not significant.

The administration of testosterone improves granulosa cell proliferation and increases the number of growing follicles. Nielsen showed a strong correlation between androgen levels in the follicular fluid and androgen receptors in granulosa cells with FSH expression in granulosa cells. Moreover, FSHR expression in granulosa cells will also improve after supplementation with testosterone; thus, it is possible that androgens sensitize granulosa cells to the FSH trigger. This study tried to find a positive correlation between DHEA levels and FSHR expression in poor responders, but the correlation was not statistically significant. Based on these facts, follicle sensitivity to FSH stimulation may be enhanced by supplementation with androgens. Therefore, poor responders may benefit from such an approach to enhance FSHR expression in granulosa cells; however, more studies are needed. Genetic polymorphisms in the FSH receptor gene may lead to poor quality of mRNA production, reduced expression of FSH and LH receptors in granulosa cells; this possibility should be addressed in future studies.

As a limitation, this study did not obtain androgen levels under basal conditions in the follicle because our samples were derived from women who were given recombinant FSH stimulation. Future studies need to investigate interactions between androgen levels and androgen and FSH receptors. In addition, this study did not examine FSH polymorphisms in any of our patients, and this may have influenced our findings.

5. Conclusion
There were no significant differences found in the FSHR levels in granulosa cells between poor ovarian responders and normal groups.

Acknowledgement
The authors would like to express appreciation to patients and families who participated in this study. We appreciate the support from our colleagues.

References
[1] WHO 2004 Infecundity, Infertility, and Childlessness in Developing Countries 2004; DHS Comparative reports No.9
[2] Oudendijk J F, Yarde F, Eijkmans M J, Broekmans F J and Broer S L 2012 The poor responder in IVF: is the prognosis always poor? A systematic review *Hum. Reprod. Update* **18** 1-11.

[3] Allahbadia A P, La Marca A, Fauser B C, Tarlatzis B, Nargund G and Gianaroli L 2011 ESHRE consensus on the definition of ‘poor response’ to ovarian stimulation for in vitro fertilization: the Bologna criteria *Hum. Reprod.* **26** 1616-24.

[4] PERFITRII, Laporan IVF di Indonesia 2013, (Jakarta: Perhimpunan Fertilisasi In Vitro Indonesia).

[5] PERFITRII, Laporan IVF di Indonesia 2015, (Jakarta: Perhimpunan Fertilisasi In Vitro Indonesia)

[6] Tummon I, Gavrilova-Jordan L, Allemand M C and Session D 2005 Polycystic ovaries and ovarian hyperstimulation syndrome: a systematic review. *Acta Obstet. Gynecol. Scand.* **84** 611-6.

[7] Seifer D B and Merhi Z 2014 Is AMH a regulator of follicular atresia? *J. Assist. Reprod. Genet.* **31** 1403-7.

[8] Weenen C, Laven J S E, von Bergh A R M, Cranfield M, Groome N P, Visser J A, Kramer P, Fauser B C and Themmen A P 2004 Anti-Müllerian hormone expression pattern in the human ovary: Potential implications for initial and cyclic follicle recruitment. *Mol. Hum. Reprod.* **10** 77-83.

[9] Pellatt L, Rice S and Mason H D 2010 Anti-Müllerian hormone and polycystic ovary syndrome: A mountain too high? *Reproduction* **139** 825-33.

[10] Childs A C, Phaneuf S L, Dirks A J, Phillips T and Leeuwenburgh C 2002 Doxorubicin treatment in vivo causes cytochrome c release and cardiomyocyte apoptosis, as well as increased mitochondrial efficiency, superoxide dismutase activity, and Bcl-2:Bax ratio. *Cancer Res* **62** 4592-8.