This paper reports the improved and verified procedure for calculating reinforced concrete beams affected by damage to stretched reinforcement when loaded. The main results from testing the reinforced concrete beams with damage in the stretched zone in the form of one hole in the reinforcement in the middle of the beam are given. The variable parameter of the study was the level of load resulting in the damage. It acquired values of 0, 30 %, 50 %, 70 % of the bearing capacity of control undamaged samples. Overall, the results of testing 12 samples are given. A new procedure has been proposed for taking into consideration changes in the mechanical characteristics of stretched reinforcement arising from its damage. This makes it possible to more accurately establish the bearing capacity of reinforced concrete bended elements affected by damage to their reinforcement during operation. The analysis of the calculation, compared with experimental quantities, led to a conclusion that the strain model could determine when the bearing capacity of reinforced concrete beams without damage and with damage to working reinforcement is exhausted. Based on the improved algorithm, the principle of using a strain model was proposed to establish when the bearing capacity of damaged samples, taking into consideration the effect of the load level, is exhausted. The theoretical estimation, considering when the bearing capacity is exhausted, showed results that are 3...21 % less than the experimental values, which ensures reliability of calculation of such structures. The proposed calculation provides a new approach to determining the bearing capacity of reinforced concrete beams damaged during operation. That, in turn, makes it possible to more accurately determine the residual bearing capacity of structures and increases the safety of their operation.

Keywords: reinforced concrete beam, damaged reinforcement, strain model, calculation of bended elements, when loaded.

References
1. Bobalo, T., Blikharskyy, Y., Kopiika, N., Volynets, M. (2020). Influence of the Percentage of Reinforcement on the Compressive Forces Loss in Pre-stressed RC Beams Strengthened with a Package of Steel Bars. Proceedings of EcoComfort 2020, 53–62. doi: https://doi.org/10.1007/978-3-030-57340-9_7
2. Vatulia, G., Berestianskaya, S., Opanasenko, E., Berestianskaya, A. (2017). Substantiation of concrete core rational parameters for bending composite structures. MATEC Web of Conferences, 107, 00044. doi: https://doi.org/10.1051/matecconf/201710700044
3. Blikharskyy, Z., Vegera, P., Vashkevych, R., Sinal, T. (2018). Fracture toughness of RC beams on the shear, strengthening by FRCM system. MATEC Web of Conferences, 183, 02009. doi: https://doi.org/10.1051/matecconf/201818302009
4. Vatulia, G. L., Lobiat, O. V., Deryzemlia, S. V., Verevicheva, M. A., Orel, Y. F. (2019). Rationalization of cross-sections of the composite reinforced concrete span structure of bridges with a monolithic reinforced concrete roadway slab. IOP Conference Series: Materials Science and Engineering, 664, 012014. doi: https://doi.org/10.1088/1757-899x/664/1/012014
5. Blikharskyy, Z., Vegera, P., Vashkevych, R., Khmil, R. (2020). Improvement of the method of probability evaluation of the failure-free operation of reinforced concrete beams strengthened under load. IOP Conference Series: Materials Science and Engineering, 1021, 012014. doi: https://doi.org/10.1088/1757-899x/1021/1/012014
6. Blikharskyy, Z., Vegera, P., Vashkevych, R., Khmil, R. (2020). Improvement Method of Calculation Reinforced Concrete Beams on the Shear Strengthened FRCM System. System Safety: Human – Technical Facility – Environment, 2 (1), 215–222. doi: https://doi.org/10.2478/czoto-2020-0026
7. Khmil, Ye. R., Tytarenko, Yu. R., Blikharskyy, Y. Z., Vegera, P. I. (2021). Improvement of the method of probability evaluation of the failure-free operation of reinforced concrete beams strengthened under load. IOP Conference Series: Materials Science and Engineering, 1021, 012014. doi: https://doi.org/10.1088/1757-899x/1021/1/012014
8. Kovalchuk, B., Blikharskyy, Y., Selejdak, J., Blikharskyy, Z. (2020). Strength of Reinforced Concrete Beams Strengthened Under Loading with Additional Reinforcement with Different Levels of its Pre-tension. Proceedings of EcoComfort 2020, 227–236. doi: https://doi.org/10.1007/978-3-030-57340-9_28
9. Koteš, P., Varvruk, M., Joth, J., Prokop, J. (2020). Strengthening of Concrete Column by Using the Wrapper Layer of Fibre Reinforced Concrete. Materials, 13 (23), 5432. doi: https://doi.org/10.3390/ma13235432
10. Klymenko, Y., Kos, Z., Grynyova, I., Maksuta, O. (2020). Operation of Damaged H-Shaped Columns. Proceedings of EcoComfort 2020, 192–201. doi: https://doi.org/10.1007/978-3-030-57340-9_24
11. Koteš, P., Strielka, M., Brodhun, M. (2018). Long-time measurements of reinforcement due to air pollution corrosion on reinforced girder bridge. 18th International Multidisciplinary Scientific Geo-Conference SGEM2018, Energy and Clean Technologies, 18 (4.2), 515–522. doi: https://doi.org/10.5593/sgem2018/4.2/s19.067
12. Blikharskyy, Y., Kopicnik, N., Selejdak, J. (2020). Non-uniform corrosion of steel rebars and its influence on reinforced concrete elements’ reliability. Production Engineering Archives, 26 (2), 67–72. doi: https://doi.org/10.30657/pea.2020.26.14
13. Lipiński, T. (2017). Roughness of 1.0721 steel after corrosion tests in 20 % NaCl. Production Engineering Archives, 15 (15), 27–30. doi: https://doi.org/10.30657/pea.2017.15.07
14. Almusallam, A. A., Al-Gahtani, A. S., Aziz, A. R., Rasheddazzafar (1996). Effect of reinforcement corrosion on bond strength. Con-
Abstract and References. Applied mechanics

structure and Building Materials, 10 (2), 123–129. doi: https://doi.org/10.1016/S0950-0618(95)00077-1

17. Alonso, C., Andrade, C., Rodriguez, J., Diez, J. M. (1998). Factors controlling cracking of concrete affected by reinforcement corrosion. Materials and Structures, 31 (7), 435–441. doi: https://doi.org/10.1007/s11525-002-00466-2

18. Capozzetta, R. (1995). Damage to reinforced concrete due to reinforcement corrosion. Construction and Building Materials, 9 (5), 295–303. doi: https://doi.org/10.1016/0950-0618(95)00033-c

19. Zhang, W., Franprix, R., Yu, L. (2020). Influence of load-induced cracks coupled or not with top-casting-induced defects on the corrosion of the longitudinal tensile reinforcement of naturally corroded beams exposed to chloride environment under sustained loading. Cement and Concrete Research, 129, 105972. doi: https://doi.org/10.1016/j.cemconres.2020.105972

20. Chen, F., Jin, Z., Wang, E., Wang, L., Jiang, Y., Guo, P. et al. (2021). Relationship model between surface strain of concrete and expansion force of reinforcement rust. Scientific Reports, 11 (1). doi: https://doi.org/10.1038/s41598-021-83376-w

21. Cao, J., Liu, L., Zhao, S. (2020). Relationship between Corrosion of Reinforcement and Surface Cracking Width in Concrete. Advances in Civil Engineering, 2020, 1–14. doi: https://doi.org/10.1155/2020/7936862

22. Raupach, M. (2020). Results From Laboratory Tests and Evaluation of Literature on the Influence of Temperature on Reinforcement Corrosion. Corrosion of Reinforcement in Concrete – Monitoring, Prevention and Rehabilitation, 9–20. doi: https://doi.org/10.1201/9781003076957-2

23. Luo, G., Zhang, K., Zhu, W., Chen, T., Yang, X., Yang, S., Xu, Y. (2021). Effect of non-uniform corrosion on the cracking propagation of the RC specimens. Construction and Building Materials, 279, 121460. doi: https://doi.org/10.1016/j.conbuildmat.2020.121460

24. Ahmadi, M., Kheyrollad, A., Kiousarsi, M. (2021). Prediction models for bond strength of steel reinforcement with consideration of corrosion. Materials Today: Proceedings, 45, 5829–5834. doi: https://doi.org/10.1016/j.matpr.2021.03.263

25. Yuelin, S., Sakcal, G. B. (2021). Effects of reinforcement corrosion on reinforced concrete buildings. Proceedings of the Institution of Civil Engineers – Structures and Buildings, 1–15. doi: https://doi.org/10.1680/jstbu.19.00111

26. Naveen Kumar, V., Daniel Ronald Joseph, J., Ashok, M., Suresh Kumar, M. (2020). An experimental study on assessing the corrosion performance of steel reinforcement for the durability of concrete. IOP Conference Series: Materials Science and Engineering, 989, 012025. doi: https://doi.org/10.1088/1757-899x/989/1/012025

27. Huang, L., Ye, H., Jin, X., Jin, N., Xu, Z. (2020). Corrosion-induced shear performance degradation of reinforced concrete beams. Construction and Building Materials, 248, 118668. doi: https://doi.org/10.1016/j.conbuildmat.2020.118668

28. Chen, H.-P., Nepal, J. (2020). Load bearing capacity reduction of concrete structures due to reinforcement corrosion. Structural Engineering and Mechanics, 75 (4), 435–446. doi: https://doi.org/10.12998/sem.2020.75.4.435

29. Lobodanov, M., Vegera, P., Khmil, R., Blikharsky, Z. (2020). Influence of Damages in the Compressed Zone on Bearing Capacity of Reinforced Concrete Beams. Proceedings of EcoComfort 2020, 260–267. doi: https://doi.org/10.1007/978-3-030-57340-9_32

30. Slezdaq, J., Urbanski, M., Winiarski, M. (2018). Assessment of a steel bridge corrosion degree. ESI Web of Conferences, 49, 00098. doi: https://doi.org/10.1051/cesconf/20184900098

31. Sun, B., Xiao, R., Ruan, W., Wang, P. (2020). Corrosion-induced cracking fragility of RC bridge with improved concrete carbonation and steel reinforcement corrosion models. Engineering Structures, 208, 110313. doi: https://doi.org/10.1016/j.engstruct.2020.110313

32. Belletti, B., Vecchi, F., Bandini, C., Andrade, C., Monterio, J. S. (2020). Numerical evaluation of the corrosion effects in prestressed concrete beams without shear reinforcement. Structural Concrete, 21 (5), 1794–1809. doi: https://doi.org/10.1002/suco.201900283

33. Kos, Z., Klmenko, Y. (2019). The development of prediction model for failure of damaged reinforced-concrete slender columns. Tehnički vjesnik, 26 (6), 1635–1641. doi: https://doi.org/10.17559/tv-20181219093612

34. Kotes, P., Strieska, M., Brodnan, M. (2018). Sensitive analysis of calculation of corrosion rate according to standard approach. IOP Conference Series: Materials Science and Engineering, 385, 012031. doi: https://doi.org/10.1088/1757-899x/385/1/012031

35. Turchyn, B. R., Blikharsky, Z. Z., Vegera, P. I., Shnal, T. M. (2017). Research methodology of reinforced concrete beams with damage obtained under loading. Visnyk nationalnogo universytetu «Lvivska politekhnika». Seriya: Teoriya i praktyka budovyntstva, 877, 212–217.

36. SNIP 2.03.01-84*. Betonyne i zhelezobetonne konstruktii (1989). Moscow: TSITP Gostroy SSSR, 80. Available at: https://files.stroyinf.ru/Data/2/1/4294854/4294854677.pdf

37. DBN V 2.6-98:2009. Konstruktivni budyvni i sporud. Betonni i zalizobetoni konstruktii. Osnovni polozhennia (2011). Kyiv: Minrehionbud Ukrainy, 71. Available at: http://kbu.org.ua/assets/app/documents/dbn2/110.1.20%D0%94%D0%91%D0%9D%202.6.98–2009-2009.%D0%92%D0%BD%D1%81%D1%82%D1%80%D1%83%D0%BD%D1%86%D1%96%D1%97%20%B0%BD%04%BD%05%BD%06%BD%07%BD%08%BD%09%BD%20%D0%BF%D0%BE%D1%81%80%20%D1%83%D0%BD%04.pdf

38. EN 1990:2012. Eurocode – Basis of structural design (2002). Brussels: European Committee for Standardization (CEN), 87.

39. DSTU B V 2.6-156:2010. Structures of buildings and erections. Concrete and reinforced concrete structures with heavy weight structural concrete. Design rules (2011). Kyiv: Minrehionbud Ukrainy, 118. Available at: https://dwg.ru/dnl/9603

DOI: 10.15587/1729-4061.2021.237157

JUSTIFICATION OF THE USE OF SQUARE PIPES IN THE FRAME OF THE REMOVABLE ROOF OF THE OPEN WAGON (p. 18–25)

Oleksij Fomin
State University of Infrastructure and Technologies, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0003-2387-9946

Alyona Lovska
Ukrainian State University of Railway Transport, Kharkiv, Ukraine
ORCID: https://orcid.org/0000-0002-8604-1764

This paper reports determining the basic strength indicators for the removable roof of a railroad gondola. It has been established that the typical roof design has a significant margin of safety in the components of the supporting structure. In order to reduce the roof material intensity, the reserves of its strength have been determined and optimized based on the criterion for minimal material intensity. Pipes of square cross-section have been proposed for using as the components of the roof frame.

When taking into consideration the proposed measures, it becomes possible to reduce the mass of the frame of the removable roof for a railroad gondola by almost 15% compared to the typical design. At the same time, to apply the roof on different types of gondolas, its cantilevered parts can move in a longitudinal plane. It is possible to use deflectors on the removable roof. The roof can be attached to the body in a regular way. It is also possible to fix it using shog-connections.
To substantiate the proposed solution, the strength of the improved structure of the removable roof was determined. It was established that the maximum equivalent stresses in the load-bearing structure of the removable roof did not exceed permissible ones. To define the indicators of removable roof dynamics, its dynamic loading was investigated. The calculation was performed in a flat coordinate system. The oscillations in bouncing and galloping were taken into consideration as the most common types of a railroad car oscillations when running on a rail track. The mathematical model of dynamic loading was solved in the Mathcad software package (Boston, USA). The study has shown that the acceleration of the body in the center of masses is 0.4 g and is within the permissible limits. At the same time, the ride of a railroad car is excellent.

The study reported here would contribute to the improvement of the efficiency of railroad transportation.

Keywords: transport mechanics, railroad gondola, removable roof, roof strength, stressed state, dynamic load.

References

1. Vagony s raskryvayuscheysya kryshey. Available at: http://scale-trainsclub.com/board/viewtopic.php?t=1916
2. Reidemeister, A., Muradian, L., Shaposhnyk, V., Shykunov, O., Kyrlychuk, O., Kalashnyk, V. (2020). Improvement of the open wagon for cargoes which imply loading with a "hat". IOP Conference Series: Materials Science and Engineering, 985, 012034. doi: https://doi.org/10.1088/1757-899x/985/1/012034
3. Antipin, D. Y., Racin, D. Y., Shorokhov, S. G. (2016). Justification of a Rational Design of the Pivot Center of the Open-top Wagon Frame by means of Computer Simulation. Procedia Engineering, 150, 150–154. doi: https://doi.org/10.1016/j.proeng.2016.06.738
4. Çetsimk, P., Moravčík, M., Smetanka, L. (2019). Investigation of strength conditions of the new wagon prototype type Zans. MATEC Web of Conferences, 254, 02037. doi: https://doi.org/10.1051/matecconf/201925402037
5. Slavchev, S., Stoilov, V., Purgić, S. (2015). Static strength analysis of the body of a wagon, series Zans. Journal of the Balkan Tri-ological Association, 21 (1), 49–57. Available at: https://www.semanticscholar.org/paper/STATIC-STRENGTH-ANALYSIS-OF-THE-BODY-OF-A-WAGON%C2-Stoilov-Purgic%4C87/633c5c868add73c979e9a2c45f055e6b6f00988e
6. Pļaczk, M., Węgbel, A., Buczach, A. (2016). A concept of technology for freight wagons modernization. IOP Conference Series: Materials Science and Engineering, 161, 012107. doi: https://doi.org/10.1088/1757-899x/161/1/012107
7. Harak, S. S., Sharma, C. S., Harsha, S. P. (2014). Structural Dynamic Analysis of Freight Railway Wagon Using Finite Element Method. Procedia Materials Science, 6, 1891–1898. doi: https://doi.org/10.1016/j.mspro.2014.07.221
8. Kiričuk, O. A., Skatunova, D. A. (2016). Issledovanie prochnosti konstruktsii semny kryshy dlya poluvagonov. Vagonnyj park, 5-6 (110-111), 50–53. Available at: http://cadmurt.dit.uea.ru/jspui/handle/123456789/9413
9. Fomin, O., Lovska, A. (2020). Improvements in passenger car body for higher stability of train ferry. Engineering Science and Technology, an International Journal, 23 (6), 1455–1465. doi: https://doi.org/10.1016/j.ijestch.2020.08.010
10. Fomin, O. V., Lovska, O. A., Plakhtii, O. A., Nerbatskyi, V. P. (2017). The influence of implementation of circular pipes in load-bearing structures of bodies of freight cars on their physico-mechanical properties. Scientific Bulletin of National Mining University, 6, 89–96. Available at: http://www.ibris.nbu.edu.ua/cgi-bin/ibris_nbuv/cgiirbis_64.exe?I21DBN-LINK&P21DBN=UJKRAzZ21ID-&S21REF=10&S21CRN=20&S21TWN=1&S21FMT=ASP_meta&C21COM=S&62_S21P03=FILA-&_2_S21STR-Navgu_2017_6_15
11. DSTU 7598:2014. Freight Wagons. General requirements to calculation and designing of the new and modernized 1520 mm gauge wagons (non-self-propelled) (2015). Kyiv.
12. GOST 33211-2014. Freight Wagons. Requirements to structural strength and dynamic qualities (2016). Moscow.
13. Fomin, O., Lovska, A., Mashiyev, V., Tsymbaliuk, A., Burlutski, O. (2019). Determining strength indicators for the bearing structure of a covered wagon’s body made from round pipes when transported by a railroad ferry. Eastern-European Journal of Enterprise Technologies, 1 (797), 33–40. doi: http://doi.org/10.15587/1729-4061.2019.154282
14. Lovska, A. A. (2015). Peculiarities of computer modeling of strength of body bearing construction of gondola car during transportation by ferry-bridge. Metallurgical and Mining Industry, 1, 49–54. Available at: https://www.semanticscholar.org/paper/Peculiarities-of-computer-modeling-of-strength-of-Lovska/886e05254031b1c0d26118d57850a5a29b09f5
15. Bychkov, A. S., Kondratiev, A. V. (2019). Criterion-Based Assessment of Performance Improvement for Aircraft Structural Parts with Thermal Spray Coatings. Journal of Superhard Materials, 41 (1), 53–59. doi: https://doi.org/10.1016/j.sobhm.2019.100088
16. Kondratiev, A., Gaidachuk, V., Nabokina, T., Tsaritsynskyi, A. (2020). New Possibilities of Creating the Efficient Dimensionally Stable Composite Honeycomb Structures for Space Applications. Advances in Intelligent Systems and Computing, 45–59. doi: https://doi.org/10.1007/978-3-030-37618-5_5
17. Vatulia, G. L., Lobak, O. V., Deryzemlia, S. V., Verevichева, M. A., Orel, Y. F. (2019). Rationalization of cross-sections of the composite reinforced concrete span structure of bridges with a monolithic reinforced concrete roadway slab. IOP Conference Series: Materials Science and Engineering, 664, 012014. doi: https://doi.org/10.1088/1757-899x/664/1/012014
18. Vatulia, G., Konagrov, S., Pavlichenkov, M. (2018). Optimization of the truss beam. Verification of the calculation results. MATEC Web of Conferences, 230, 02037. doi: https://doi.org/10.1051/matecconf/201823002037
19. Semenov, V. S., Karinova, R. H. (2008). Raschet i konstruirovani soedineniy stal’nyh stroitel’nyh konstruktsij. Bishkek: KRSU, 80.
20. Dumin, Yu. V., Cherniakh, H. Yu. (2003). Osnovy dynamiki vahoniv. Kyiv: KUETT, 269.
21. Goolak, S., Gerlič, J., Tkachenko, V., Saponova, S., Lack, T., Kravchenko, K. (2019). Determination of Parameters of Asynchronous Electric Machines with Asymmetrical Windings of Electric Locomotives. Communications - Scientific Letters of the University of Zilina, 21 (2), 24–31. doi: https://doi.org/10.26552/com.c.2019.2.24-31
22. Goolak, S., Guhavreych, O., Yermolenko, E., Slobodyanyuk, M., Gorobchenko, O. (2020). Mathematical modeling of an induction motor for vehicles. Eastern-European Journal of Enterprise Technologies, 2 (2 (104)), 25–34. doi: https://doi.org/10.15587/1729-4061.2020.199559
23. Klymenko, I., Kalivoda, J., Neduzha, L. (2020). Influence of Parameters of Electric Locomotive on its Critical Speed. Lecture Notes in Intelligent Systems and Computing, 45–59. doi: https://doi.org/10.1007/978-3-030-37618-5
24. Klimenk, O., Kalyvoda, J., Neduzha, L. (2020). Influence of Parameters of Electric Locomotive on its Critical Speed. Lecture Notes in Intelligent Systems and Computing, 45–59. doi: https://doi.org/10.1007/978-3-030-38666-5_5
25. Fomin, O., Lovska, A., Pëibëk, V., Kàžëra, P. (2019). Dynamic load effect on the transportation safety of tank containers as part of combined trains on railway ferries. Vibroengineering PROCEEDIA, 29, 124–129. doi: https://doi.org/10.21595/vp.2019.21138
26. Vatulia, G., Lobak, A., Chernogil, V., Novikova, M. (2019). Simulation of Performance of CFST Elements Containing Differentiated
Profile Tubes Filled with Reinforced Concrete. Materials Science Forum, 968, 281–287. doi: https://doi.org/10.4028/www.scientific.net/msf968.281

DOI: 10.15587/1729-4061.2021.238440

PROCEDURE FOR DETERMINING THE THERMOELASTIC STATE OF A REINFORCED CONCRETE BRIDGE BEAM STRENGTHENED WITH METHYL METHACRYLATE (p. 26–33)

Vitalii Kovalchuk
Lviv Branch of Dnipro National University of Railway Transport named after Academician V. Lazaryan, Lviv, Ukraine
ORCID: https://orcid.org/0000-0003-4350-1756

Yuliya Sobolevska
Lviv Branch of Dnipro National University of Railway Transport named after Academician V. Lazaryan, Lviv, Ukraine
ORCID: https://orcid.org/0000-0002-8087-2014

Artur Onyshchenko
National Transport University, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0002-1040-4530

Olexandr Fedorenko
Kyivavtodor Municipal Corporation, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0002-3464-397X

Oleksndr Tokin
National Transport University, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0002-7353-4228

Andrii Pavliv
Lviv Polytechnical National University, Lviv, Ukraine
ORCID: https://orcid.org/0000-0002-6149-2972

Ivan Kravets
Lviv Branch of Dnipro National University of Railway Transport named after Academician V. Lazaryan, Lviv, Ukraine
ORCID: https://orcid.org/0000-0002-2239-849X

Julia Lesiv
Lviv Branch of Dnipro National University of Railway Transport named after Academician V. Lazaryan, Lviv, Ukraine
ORCID: https://orcid.org/0000-0003-2732-100X

This paper reports the analysis of methods for determining temperature stresses and deformations in bridge structures under the influence of climatic temperature changes in the environment.

A one-dimensional model has been applied to determine the temperature field and thermoelastic state in order to practically estimate the temperature fields and stresses of strengthened beams taking into consideration temperature changes in the environment.

The temperature field distribution has been determined in the vertical direction of a reinforced concrete beam depending on the thickness of the structural reinforcement with methyl methacrylate. It was established that there is a change in the temperature gradient in a contact between the reinforced concrete beam and reinforcement.

The distribution of temperature stresses in the vertical direction of a strengthened reinforced concrete beam has been defined, taking into consideration the thickness of the reinforcement with methyl methacrylate and the value of its elasticity module. It was established that the thickness of the reinforcement does not have a significant impact on increasing stresses while increasing the elasticity module of the structural reinforcement leads to an increase in temperature stresses. The difference in the derived stress values for a beam with methyl methacrylate reinforcement with a thickness of 10 mm and 20 mm, at elasticity module E = 15,000 MPa, is up to 3% at positive and negative temperatures.

It has been found that there is a change in the nature of the distribution of temperature stresses across the height of the beam at the contact surface of the reinforced concrete beam and methyl methacrylate reinforcement. The value of temperature stresses in the beam with methyl methacrylate reinforcement and exposed to the positive and negative ambient temperatures increases by three times.

It was established that the value of temperature stresses is affected by a difference in the temperature of the reinforced concrete beam and reinforcement, as well as the physical and mechanical parameters of the investigated structural materials of the beam and the structural reinforcement with methyl methacrylate.

Keywords: bridge reinforcement, reinforced concrete beam, methyl methacrylate reinforcement, temperature field.

References
1. De Backer, H., Outtier, A., Van Bogaert, P. (2009). Numerical and experimental investigations of thermal stresses in steel box girders. Nordic Steel Construction Conference, 11th, Proceedings, 65–72.
2. Burdet, O. L. (2010) Thermal Effects in the Long-Term Monitoring of Bridges. Large structures and Infrastructures for environmentally constrained and Urbanised areas. 34th International symposium on bridge and structural engineering, Venice. Available at: https://infoscience.epfl.ch/record/163104
3. Xia, Y., Chen, B., Zhou, X., Xu, Y. (2012). Field monitoring and numerical analysis of Tsing Ma Suspension Bridge temperature behavior. Structural Control and Health Monitoring, 20 (4), 560–575. doi: https://doi.org/10.1002/stc.515
4. Yan, Y., Wu, D., Li, Q. (2018). A three-dimensional method for the simulation of temperature fields induced by solar radiation. Advances in Structural Engineering, 22 (3), 567–580. doi: https://doi.org/10.1177/1369433218795254
5. Mussa, F. I., Abid, S. R., Tayy, N. (2021). Design Temperatures for Composite Concrete-Steel Girders: A-Verification of the Finite Element Model. IOP Conference Series: Materials Science and Engineering, 1090 (1), 012108. doi: https://doi.org/10.1088/1757-899x/1090/1/012108
6. Peng, G., Nakamura, S., Zhu, X., Wu, Q., Wang, H. (2017). An experimental and numerical study on temperature gradient and thermal stress of CFST truss girders under solar radiation. Computers and Concrete, 20 (5), 605–616. doi: https://doi.org/10.12989/cac.2017.20.5.605
7. Sanio, D., Mark, P., Ahrens, M. A. (2017) Temperaturefieldberechnung für Brücken. Beton- Und Stahlbetonbau, 112 (2), 85–95. doi: https://doi.org/10.1002/best.201600068
8. Wang, G., Zhou, X., Ding, Y., Liu, X. (2021). Long-Term Monitoring of Temperature Differences in a Steel Truss Bridge with Two-Layer Decks Compared with Bridge Codes: Case Study. Journal of Bridge Engineering, 26 (3), 05020013. doi: https://doi.org/10.1061/(asce)be.1943-5592.0001681
9. Berg, M., Trouillet, P. (1988). Ouvrages d’art-actions et sollicitations thermiques. Bulletin de Liaison des Laboratoires des Ponts et Chaussées, 155.
10. Solodkyi, S. Y., Vaskiv, N. O. (2009). Temperaturno-volohisni umovy eksploatatsiyi yak chynnyk vplyvu na trishchynostykist betonu.
Mekhanika i fizyka ruinyvannya budovylnykh materialiv ta konstruktsi, 8, 278–288.

14. Dilger, W. H., Ghali, A., Chan, M., Cheung, M. S., Maes, M. A. (1983). Temperature Stresses in Composite Box Girder Bridges. Journal of Structural Engineering, 109 (6), 1460–1478. doi: https://doi.org/10.1061/(asce)0733-9445(1983)109:6(1460)

15. Prakash Rao, D. S. (1986). Temperature Distributions and Stresses in Concrete Bridges. Journal Proceedings, 83 (4), 588–596.

16. Lange, D. A., Roessler, J. R., D’Ambrosia, M., Grasley, Z. C., Lee, C. J., Cowen, D. R. (2003). High Performance Concrete For Transportation Structures. Civil Engineering Studies. Available at: https://www.ideals.illinois.edu/handle/2142/46278

17. Balmes, E., Corus, M., Siegert, D. (2006). Modeling thermal effects on bridge dynamic responses. In Proceedings of the 24th international modal analysis conference (IMAC-XXIV).

18. Kovalchuk, V., Onyshchenko, A., Fedorenko, O., Habrel, M., Parneta, B., Voznyak, O. et. al. (2021). A comprehensive procedure for estimating the stressed-strained state of a reinforced concrete bridge under the action of variable environmental temperatures. Eastern-European Journal of Enterprise Technologies, 2 (7 (110)), 23–30. doi: https://doi.org/10.15587/1729-4061.2021.228960

19. Kovalchuk, V., Hnativ, Y., Luchko, J., Sysyn, M. (2020). Study of the temperature field and the thermo-elastic state of the multilayer soil-steel structure. Roads and Bridges – Drogi i Mosty, 19 (1), 65–78. doi: https://doi.org/10.7470/rabdm.v020i004

20. Luchko, J., Hnativ, Yu., Kovalchuk, V. (2013). Temperature field and stressed state of composite bridge sp an investigation. Visnyk ternopilskoho nationalnoho tekhnichnoho universytetu, 2, 29–38.

DO: 10.15587/1729-4061.2021.239066

REVEALING DEFORMATION OF SEGMENTS AND THEIR SUPPORTS IN A HYDROSTATIC SEGMENTAL BEARING (p. 33–40)

Vladimir Nazin
National Aerospace University «Kharkiv Aviation Institute», Kharkiv, Ukraine

ORCID: https://orcid.org/0000-0002-1078-1969

At present, there are theoretical and experimental studies of such bearings without taking into account the elastic deformation of the bearing segments. The rotor bearings of powerful turbines at nuclear power plants are subjected to loads as high as tens of tons. One of the important issues in designing segmental bearings operating under these conditions consists in taking into account elastic deformations of the segments. A schematic diagram of a segmental hydrostatic bearing was presented and the principle of its operation was described. When determining the deformation of spherical support, a formula of change in volume of a solid steel ball subjected to uniform pressure was applied.

To determine the segment deformation in the axial direction, differential equation of bending of the strip beam as the initial one. The basic equation of deformation of rods with a curved axis acting in the plane of curvature was taken as a starting point of determining the segment deformation in the circumferential direction.

It was found in the studies that the maximum deformation of the segment is 4.5 % of radial clearance at a feed pressure of 5 MPa and can affect the bearing characteristics. A substantially nonlinear character of deformations along the segment axis was revealed. It was found that the pressure of the working fluid significantly affects the segment thickness. With an increase in feeding pressure from 1 MPa to 10 MPa, the thickness of the steel segment increased more than 2 times and the thickness of the bronze segment increased more than 3 times. It was established that the pressure of the working fluid exceeding 10 MPa substantially affects the deformation of the spherical support and the bearing clearance.

The study results will make it possible to determine more accurately the main characteristics of the segmental bearing and design it more efficiently.

Keywords: segmental bearing, segment deformation, bearing characteristics, differential equation, calculation results.

References

1. Hu, Z., Wang, Z., Huang, W., Wang, X. (2019). Supporting and friction properties of magnetic fluids bearings. Tribology International, 130, 334–338. doi: https://doi.org/10.1016/j.triboint.2018.10.006

2. Xu, H., Yang, J., Gao, L., An, Q. (2020). The influences of bump foil structure parameters on the static and dynamic characteristics of bump-type gas foil bearings. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 234 (10), 1642–1657. doi: https://doi.org/10.1177/1350650120912609

3. Koosha, R., San Andrés, L. (2020). A Computational Model for the Analysis of the Static Forced Performance of Self-Equalizing Tilting Pad Thrust Bearings. Journal of Engineering for Gas Turbines and Power, 142 (10). doi: https://doi.org/10.1115/1.4048458

4. Xiang, G., Han, Y., He, T., Wang, J., Xiao, K., Li, J. (2020). Wear and fluid-solid-thermal transient coupled model for journal bearings. Applied Mathematical Modelling, 85, 19–45. doi: https://doi.org/10.1016/j.apm.2020.03.037

5. Santos, I. (2018). Controllable Sliding Bearings and Controllable Lubrication Principles – An Overview. Lubricants, 6 (1), 16. doi: https://doi.org/10.3390/lubricants6010016

6. EL-Said, A. K., EL-Souhily, B. M., Crosby, W. A., EL-Gamal, H. A. (2017). The performance and stability of three-lobe journal bearing textured with micro protrusions. Alexandria Engineering Journal, 56 (4), 423–432. doi: https://doi.org/10.1016/j.aej.2017.08.003

7. Summer, F., Bergmann, P., Grön, F. (2017). Damage Equivalent Test Methodologies as Design Elements for Journal Bearing Systems. Lubricants, 5 (4), 47. doi: https://doi.org/10.3390/lubricants5040047

8. Zernin, M. V., Mishin, A. V., Rybkin, N. N., Shilko, S. V., Ryabenko, T. V. (2017). Consideration of the multizone hydrodynamic friction, the misalignment of axes, and the contact compliance of a shaft and a bush of sliding bearings. Journal of Friction and Wear, 38 (3), 242–251. doi: https://doi.org/10.3103/s1068366617030163

9. Zhang, J., Tan, A., Spikes, H. (2016). Effect of Base Oil Structure on Elastohydrodynamic Friction. Tribology Letters, 65 (1). doi: https://doi.org/10.1007/s11249-016-0791-7

10. Villaverde, R. (2016). Base isolation with sliding hydromagnetic bearings: concept and feasibility study. Structure and Infrastructure Engineering, 13 (6), 709–721. doi: https://doi.org/10.1080/15732479.2016.1187634

11. Polyakov, R., Savin, L., Fetciov, A. (2018). Analysis of the conditions for the occurrence of the effect of a minimum of friction in hybrid bearings based on the load separation principle. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 232 (2), 271–280. doi: https://doi.org/10.1177/1350650117777143

12. Schlegl, E., Berner, O. (2021). Improvement of Tilting-Pad Journal Bearing Operating Characteristics by Application of Eddy Grooves. Lubricants, 9 (2), 18. doi: https://doi.org/10.3390/lubricants9020018

13. Kukla, S., Buchhorn, N., Bender, B. (2016). Design of an axially concave pad profile for a large turbine tilting-pad bearing. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 231 (4), 479–488. doi: https://doi.org/10.1177/1350650115929219

14. Artemenko, N. P., Nazin, V. I. (1982). Raschet karakteristik mnozgeosegmentnyih gidrostaticeskikh podshipnikov s tochechnymi
The crushing equipment is characterized by a significant energy-consuming system during the crushing workflow. The current trend in the development of such processes puts forward requirements for the development of new or improvement of existing energy-saving equipment. The essence of the solution to the problem in this work is determined by using resonant modes, which are inherently the most effective. The practical implementation of the resonance mode has been achieved taking into account the conditions for the interaction of the resonant vibration crusher with the material at the stages of its destruction. The degree of the stress-strain state of the material is taken into account, which was a prerequisite for identifying the potential for the development of a vibration load. Composed equations of motion based on a substantiated discrete-continuous model of a vibration crusher and processing material. An approach is applied to determine the stepwise destruction of the material with the determination of the required degree of energy. This methodological approach made it possible to reveal the nature of the process of material destruction, where energy costs at the stages of crack formation, their development and final destruction are taken into account. It was revealed that the greatest energy consumption during the operation of crushers goes into the kinetic energy of the crushing plates and the potential energy of deformation of the springs. The proposed model is common for any design of a vibration machine and its operating modes. The stable resonance mode has made it possible to significantly reduce the energy consumption for the course of the technological process of material grinding. The results obtained are used to improve the calculation methods for vibratory jaw and cone crushers that implement the grinding. The results obtained are used to improve the calculation methods for vibratory jaw and cone crushers that implement the grinding.

Keywords: vibration crusher, crushing chamber, resonant mode, process of destruction, energy, stress, deformation.

References

1. Nguyen, T. N., Kolenko, G. S. (2020). Analysis of the fracture mechanics and workability of a gas turbine blade in the presence of a crack. Materials Science. Power Engineering, 26 (3), 56–69. doi: https://doi.org/10.18721/JEST.26304

2. Terentiev, O., Streltsova, I. (2015). Energy intensity and specific surface energy of rock breaking by magnetic hydrocavitation stressing. Visnyk NTUU «KPI». Seriya «Hirnytstvov», 28, 29–35.

3. Vasyliev, L. M., Vasyliev, D. L., Malech, M. G. (2021). Modeling the process of disintegration of solid materials by asymmetric loading in crushing machines in order to find ways to reduce energy costs. Energy- and resource-saving technologies of developing the raw-material base of mining regions, 457–473. doi: https://doi.org/10.31713/m1028

4. Hong, S. J., Yang, H. J. (2019). A Study on the Impact Load Quantification of the Jaw Crusher. Journal of Drive and Control, 16 (2), 1–7. doi: https://doi.org/10.17839/KSFC.2019.16.2.001

5. Pothisa, R., Kecojevic, V., Klima, M. S., Komljenovic, D. (2007). Gyroratory crusher model and impact parameters related to energy consumption. Mining, Metallurgy & Exploration, 24 (3), 170–180. doi: https://doi.org/10.1007/s11090-007-0032-2

6. Sokur, M., Biletskyi, V., Sokur, L., Bozhky, D., Sokur, I. (2016). Investigation of the process of crushing solid materials in the centrifugal disintegrators. Eastern-European Journal of Enterprise Technologies, 3 (7 (81)), 34. doi: https://doi.org/10.15387/1729-4061.2016.71983

7. Fladvad, M., Omrel, T. (2020). Influence of jaw crusher parameters on the quality of primary crushed aggregates. Minerals Engineering, 151, 106338. doi: https://doi.org/10.1016/j.mineng.2020.106338

8. Lapin, R., Kuzkin, V. (2019). Calculation of the normal and shear compliances of a three-dimensional crack taking into account the contact between the crack surfaces. Letters on Materials, 9 (2), 234–238. doi: https://doi.org/10.22226/2410-3355-2019-2-234-238

9. Zou, J., Han, J., Yang, W. (2020). Investigating the Influences of Indentation Hardness and Brittleness of Rock-Like Material on Its Mechanical Crushing Behaviors. Mathematical Problems in Engineering, 2020, 1–16. doi: https://doi.org/10.1155/2020/4713532

10. Beloglazov, I. I., Yusupov, G. A., Stepanyan, A. S., Feoktistov, A. Y. (2018). Disintegration process modeling for a jaw crusher with complex jaws swing. Obogashchenie Rud, 2, 3–8. doi: https://doi.org/10.17580/or.2018.02.01

11. Gorobets, L. J., Fedoskina, E. V., Verhorobina, I. V. (2017). Effects of dynamic quality of ladening of geterogen material at crushing.

DOI: 10.15587/1729-4061.2021.239292

DETERMINATION OF ENERGY CHARACTERISTICS OF MATERIAL DESTRUCTION IN THE CRUSHING CHAMBER OF THE VIBRATION CRUSHER (p. 41–49)

Ivan Nazarenko
Kyiv National University of Construction and Architecture, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0002-1888-3687

Yevhen Mishchuk
Kyiv National University of Construction and Architecture, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0002-7850-0975

Dmitry Mishchuk
Kyiv National University of Construction and Architecture, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0002-8263-9400

Mykola Ruchynskyi
Kyiv National University of Construction and Architecture, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0002-9362-292X

Ivan Rogovskii
National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0002-6957-1616

Liudmyla Mikhailova
State Agrarian and Engineering University in Podilia, Kamianets-Podilskyi, Ukraine
ORCID: https://orcid.org/0000-0002-3419-5446

Liudmyla Titova
National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0001-7313-1253

Mykola Berezovyi
National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0001-9221-9787

Ruslan Shatrov
National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0002-3596-0146

Abstract and References. Applied mechanics
The structure of the hull of the project 1288 trawler in a region of fore hold was improved to ensure fatigue strength of joints of the intersection of main frames with the double bottom. To this end, a study of the fatigue strength of these joints was carried out for the original side structure and two versions of its modernization.

Values of internal forces at the points of initiation of fatigue cracks in the compartment have been determined for three design versions of the side. It was found that the greatest forces act in the middle of the fore half of the compartment.

Calculations of parameters of the long-term distribution of magnitudes of ranges of total equivalent operating stresses according to the Weibull law in the points of occurrence of fatigue cracks for different design versions of the side grillage have been performed. These parameters were determined for the middle of the fore hold of the vessel and for the areas with maximum values of bending moment ranges. The calculations were performed with and without accounting of effect of corrosion.

Values of total fatigue damage and durability of the studied joints were determined. Calculations were carried out by nominal stress method, hot spot stress method, and experimental and theoretical method.

It was shown that in order to ensure fatigue strength of the joint under consideration, it is necessary to extend the intermediate frames of the original version of the side structure to the level of the tank top fixing them to the last one. It is also necessary to attach a cargo platform to the side thus reducing the frame span. As a result, the level of fatigue damage over 25 years of operation will decrease by about 3.5 times.

As it was found, approximate consideration of the slaming effect does not significantly increase the amount of fatigue damage of the joint.

The results of the development of recommendations for modernization of the side structure can be implemented both on ships of the 1288 project and on other ships with a transverse side framing system.

Keywords: trawler, side structure, structural joint, stress-strain state, stress concentration, fatigue strength.

References

1. Yang, G. S., Xie, Y. H. (2012). The Fatigue Strength Assessment for Hull Structure of Steel Fishing Vessel. Applied Mechanics and Materials, 189, 334–339. doi: https://doi.org/10.4028/www.scientific.net/AMM.189.334

2. Blagoević, B., Domazet, Ž. (2002). Simplified procedures for fatigue assessment of ship structures. 10th International Congress of the International Maritime Association of the Mediterranean IMAM 2002 Rethymnon, Crete.

3. Fatigue assessment of ship structures (1999). IACS Recommendation No. 56.

4. Glen, I. F., Dinovitzer, A., Paterson, R. B., Luznik, L., Bayley, C. (1999). Fatigue-Resistant Detail Design Guide for Ship Structures: report SSC-405. Washington: Ship Structure Committee.

5. Ozguç, O. (2017). Simplified fatigue analysis of structural details of an ageing LPG carrier. Journal of Marine Engineering & Technology, 17 (1), 33–42. doi: https://doi.org/10.1080/20464177.2017.1282075

6. Wang, Y. (2010). Spectral fatigue analysis of a ship structural detail – A practical case study. International Journal of Fatigue, 32 (2), 310–317. doi: https://doi.org/10.1016/j.ijfatigue.2009.06.020

7. Li, Z., Ringsberg, J. W., Storhaug, G. (2013). Time-domain fatigue assessment of ship side-shell structures. International Jour-
nal of Fatigue, 55, 276–290. doi: https://doi.org/10.1016/j.jfatig.2013.07.007
8. Juršič, P., Parunov, J., Senjanović, I. (2007). Assessment of Aframax Tanker Hull-Girder Fatigue Strength According to New Common Structural Rules. Brodogradnja, 58 (3), 262–267.
9. Hull girder fatigue strength of corroding oil tanker (2010). Advanced Ship Design for Pollution Prevention, 161–166. doi: https://doi.org/10.1201/b10563-20
10. Garbatov, Y. (2016). Fatigue strength assessment of ship structures accounting for a coating life and corrosion degradation. International Journal of Structural Integrity, 7 (2). doi: https://doi.org/10.1108/ijsi-04-2014-0017
11. Petinov, S. V., Alanaevaya, I. M. (2010). Fatigue Assessment of Structures in High-cycle Segment: Technique and Problems. Advanced Problems in Mechanics-2010. Proceedings of the International Summer School-Conference APM 2010. Saint-Petersburg, 519–525.
12. Guchinsky, R. V., Petinov, S. V. (2013). Fatigue design of expansion joint in ship superstructure. Proceedings of XLI International Summer School-Conference APM 2013. Saint-Petersburg, 420–431.
13. Lytvynenko, D. Yu. (2017). Metodyky rozviazku zadach vtomnoi mitnosti sudnokorpusnykh vuziv pri nerehuliramu human navantazhenni na bazi eksperimentalno-teoretychnoho metodu. Visnyk Odесskoho natsionalnoho morskooho universytetu, 4 (53), 110–125.
14. Bsmornik normativno-methodicheskih materialov. Kniga odiinatsytaya: ND No 2-139902-016 (2002). Sankt-Peterburg: Rossyskiy morskoj registr sudohodstva, 151.
15. Pravila klassifikatsii i postrojki morskih sudov: Ch. 2. Korpus: ND No 2-020101-124 (2020). Sankt-Peterburg: Rossyskiy morskoj registr sudohodstva, 297.
16. Fatigue assessment of ship structures (2015). Class Guideline DNVGL-CG-0129. DNV GL.
17. Hoblacher, A. F. (2016). Recommendations for Fatigue Design of Welded Joints and Components. IW Collection. doi: https://doi.org/10.1007/978-3-319-23757-2
18. Niemi, E., Fricke, W., Maddox, S. J. (2018). Structural Hot-Spot Stress Approach to Fatigue Analysis of Welded Components. IW Collection. doi: https://doi.org/10.1007/978-981-10-5568-3
19. Korostylev, I. I., Klimenko, S. Yu. (2010). Otsenka ustalostnoy prochnosti svarnyh uzlov tonkostennyh konstrukty v menotsgolovoy oblasti. Metody rozvivazuvannia prikladnykh zadach mekhaniky deformivnogo tverdoho tila: zb. nauk. prats Dniprovskoho natsionalnoho universytetu imeni O. Honchara, 11 (352), 152–159.
20. Korostylev, I. I., Litvinenko, D. Yu. (2017). Otsenka ustalostnoy prochnosti sudnokorpusnykh uzlov eksperimental'no-teoreticheskim metodom s uchetom neregulyarnosti nagruzheniya. Visnyk Odescko ho natsionalnoho morskooho universytetu, 1 (30), 71–91.
21. Korostylev, I. I. (2001). Prochnost' uzlov tonkostennyh konstrukty sudovogo korpusa. Zbirnyk naukovykh prats Ukrainskoho derzhavnoho morskooho tekhnichnogo universytetu, 4 (376), 57–64.
22. Fricke, W., Paetzold, H. (2014). Effect of whipping stresses on the fatigue damage of ship structures. Welding in the World, 58 (2), 261–268. doi: https://doi.org/10.1007/s00194-014-0111-5
23. Vagushchenko, L. L., Vagushchenko, A. L., Zaichko, S. I. (2005). Bortovye avtomatizirovannye sistemy kontrolya morekhodnosti. Odessa: FENIKS, 272.

This paper reports the theoretically investigated aerodynamic imbalance of the propeller blade, as well as correcting masses for balancing it.

It has been established that the aerodynamic forces acting on the propeller blade can be balanced by the adjustment of mass. This is also true for the case of compressed air (gas) provided that the blades are streamlined by laminar flow. That makes it possible to use rotor balancing methods to study the aerodynamic forces acting on the propeller blade.

The rotating blade mainly generates torque aerodynamic imbalance due to a lift force. A much smaller static component of the aerodynamic imbalance is formed by the drag force acting on the blade. The correcting mass located in the propeller plane balances both static and torque components of the aerodynamic imbalance in its correction plane. A second correcting mass (for example, on the electric motor shank) balances the torque component of aerodynamic imbalance in its correction plane.

The calculations are simplified under the assumption that the equilibrium of aerodynamic forces is perpendicular to the chord of the blade. For approximate calculations, one can use information about the approximate location of the pressure center.

The aerodynamic forces acting on the blade can be determined on the basis of the correcting masses that balance them. The accuracy in determining the aerodynamic forces could be improved by measuring a lift force.

The computational experiment has confirmed the theoretical results formulated above. The experiment further proves the possibility of applying the devised theory for propellers whose rotation speed changes with a change in the angles of blade installation.

The findings reported here could be used both for devising methods of propeller balancing and for constructing methods to study the aerodynamic forces acting on the blade.

Keywords: propeller, blade, aerodynamic imbalance, mass imbalance, aerodynamic balancing, mass adjustment balancing.

References
1. Best, S. (1945). Propeller Balancing Problems. SAE Transactions, 53, 648–659. Available at: http://www.jstor.org/stable/4446782
2. Kuantama, E., Moldovan, O. G., Ťară, I., Vesselyńsi, T., Ťară, R. (2019). Analysis of quadcopter propeller vibration based on laser vibrometer. Journal of Low Frequency Noise, Vibration and Active Control, 40 (1), 239–251. doi: https://doi.org/10.1177/1461714819866292
3. Korneev, N. V. (2008). Aerodinamicheskii disbalans turboagregatov i algoritmy ego prognozirovaniya. Mashinostroitel', 10, 24–27.
4. Korneev, N. V., Polyakova, E. V. (2014). Raschet aerodinamicheskogo disbalansa rotora turbokompressor DVS. Avtomobil'naya promyslenost', 8, 13–16.

Irina Filimonikha
Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine
ORCID: https://orcid.org/0000-0002-1384-6027

Yuliia Bilyk
Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine
ORCID: https://orcid.org/0000-0002-7826-364X

Larisa Krivohlotsky
Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine
ORCID: https://orcid.org/0000-0002-3255-2884

Yuriy Machok
Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine
ORCID: https://orcid.org/0000-0001-5328-7859

DOI: 10.15587/1729-4061.2021.238289
THEORETICAL STUDY INTO THE AERODYNAMIC IMBALANCE OF A PROPELLER BLADE AND THE CORRECTING MASSES TO BALANCE IT (p. 60–66)
Gennady Filimonikhin
Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine
ORCID: https://orcid.org/0000-0002-2819-0569

Abstract and References. Applied mechanics
Cable-driven parallel robot (CDPR) has the great potential for various applications in industry and in everyday life. They consist of an end effector and a base, which connected by several cables. CDPRs have a large workspace compared to the workspace of classic parallel robots. CDPR have a simpler structure have good dynamic properties, high carrying capacity, mobility and low cost. The only drawback is that the CDPR cables can only work for retraction and cannot push. This article presents the design of a prototype of a planar CDPR with four cables for practical use in the educational process. This prototype of a planar CDPR is necessary for a better understanding of the design features, structure, kinematics, statics and dynamics of the CDPR by students. The planar CDPR performs two translational motions, due to the controlled 4 cables, and one rotational motion of the end effector. The research of the kinematics and statics of the planar cable-driven parallel robot is carried out. Simulation of the motion of a planar cable-driven parallel robot in the Python programming language has been carried out. A design was developed and a prototype of the planar cable-driven parallel robot was manufactured. Experimental researches of a prototype of the planar cable-driven parallel robot have been carried out. The results of experimental researches have shown that the CDPR works well enough. During the tests of the prototype of the planar cable-driven parallel robot, it was found that the distortions of the trajectory of the end effector depend on the tension of the cables. It is necessary to monitor the tension level using strain gauges. Based on the analysis of the results obtained, the effectiveness of the use of the prototype of a planar CDPR in the educational process of the robotics course has been confirmed.

Keywords: cable-driven parallel robot, planar, design, kinematics, statics, tension, end effector, prototype, control, encoder.

References
1. Bostelman, R., Albus, J., Dagalkis, N., Jacoff, A., Gross, J. (1994). Applications of the NIST robocrane. Proceedings of International Symposium on Robotics and Manufacturing Maui Hi, 14–18. Available at: https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=802484
2. Albus, J., Bostelman, R., Dagalkis, N. (1993). The NIST robocrane. Journal of Robotic Systems, 10 (5), 709–724. doi: http://doi.org/10.1002/rob.4620100509
3. Jomartov, A. A., Kamal, A. N., Abduraimov, A. (2021). Overview of cable parallel robots. Vestnik KazNTU, 143 (3), 202–210. doi: http://doi.org/10.51301/vestu.2021.13.27
4. Varela, M. J., Cecarelli, M., Flores, P. (2015). A kinematic characterization of human walking by using CaTraSys. Mechanism and Machine Theory, 86, 125–139. doi: http://doi.org/10.1016/j.mechmachtheory.2014.12.006
5. Verhoeven, R. (2004). Analysis of the workspace of tendon-based Stewart platforms. Duisburg: Department of Mechanical Engineering, University of Duisburg-Essen, 160. Available at: https://d-nb.info/972304770/34
6. Zanotto, D., Rosati, G., Minto, S., Rossi, A. (2014). Sophia-3: A Semiadaptive Cable-Driven Rehabilitation Device With a Tilting Working Plane. IEEE Transactions on Robotics, 30 (4), 974–979. doi: http://doi.org/10.1109/tro.2014.2301332
7. Liu, H. W. (2012). Conceptual design and dynamic analysis of novel cable-loop-driven parallel mechanisms. Québec, 195. Available at: https://robot.gmc.ulaval.ca/fileadmin/documents/Theses/hanwei_liu.pdf
8. Gouttefarde, M., Gosselin, C. M. (2006). Analysis of the wrench-closure workspace of planar parallel cable-driven mechanisms. IEEE Transactions on Robotics, 22 (3), 434–445. doi: http://doi.org/10.1109/tro.2006.870638
9. Azizian, K., Cardou, P (2012). The Dimensional Synthesis of Planar Parallel Cable-Driven Mechanisms Through Convex Relaxations. Journal of Mechanisms and Robotics, 4 (3). doi: http://doi.org/10.1115/1.4006952
10. Berti, A., Merlet, J.-P., Carricato, M. (2015). Solving the direct geometrico-static problem of underconstrained cable-driven parallel robots by interval analysis. The International Journal of Robotics Research, 35 (6), 723–739. doi: http://doi.org/10.1177/0278364915595277
11. Jin, X., Jun, D., Pott, A., Park S., Park, J., Seong Young Ko, S. (2013). Four-cable-driven parallel robot. 13th International Conference on Control, Automation and Systems (ICCAS 2013). Gwangju, 879–883. Available at: https://www.researchgate.net/publication/260393125_Four-cable-driven_parallel_robot
12. Williams, R. L., Gallina, P., Vadia, J. (2003). Planar Translational Cable-Direct-Driven Robots. Journal of Robotic Systems, 20 (3), 107–120. doi: http://doi.org/10.1002/rob.10073
13. Ottaviano, E., Ceccarelli, M., Paone, A., Carbone, G. (2005). A Low-Cost Easy Operation 4-Cable Driven Parallel Manipulator. Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 4019–4024. doi: http://doi.org/10.1109/robot.2005.1570734
14. Ottaviano, E., Chablat, D., Moroz, G. (2011). A comparative study of 4-cable planar manipulators based on cylindrical algebraic decomposition. Proceedings of the ASME 2011 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE, 1253–1262. doi: http://doi.org/10.1115/detc2011-47726
15. He, Y., Liang, L. (2019). Application of Robotics in Higher Education in Industry 4.0 Era. Universal Journal of Educational Research, 7 (7), 1612–1622. doi: http://doi.org/10.13189/ujer.2019.070715
16. Zainal, N., Din, R., Nasrudin, M., Abdullah, S., Rahman, A. H. A., Abdullah, S. N. H. S. et. al. (2018). Robotic prototype and module specification for increasing the interest of Malaysian students in STEM education. International Journal on Integrating Technology in Education, 6 (3), 15–28. doi: http://doi.org/10.5121/ijite.2017.6302
18. Python. Available at: https://www.python.org/downloads/
ДОИ: 10.15587/1729-4061.2021.237954
РОЗРОБКА МЕТОДИКИ ВИЗНАЧЕННЯ ЗАЛИШКОВОЇ НЕСУЧОЇ ЗДАТНОСТІ ЗАЛИЗОБЕТОННИХ БАЛОК З ПОШКОДЖЕННЯМИ РОЗТЯГНУТОЇ АРМАТУРИ, ЩО БУЛИ ОТРИМАНІ ЗА ДІЙ НАВАНТАЖЕННЯ (с. 6–17)
П. І. Вегера, Р. В. Вакшевич, Я. З. Білхаєрский, Р. Є. Хміль

Водночас та априорно методику розрахунку залізобетонних балок, в яких виникли пошкодження розтягнутої арматури за дії навантаження. Наведено основні результати випробування залізобетонних балок з пошкодженням у розтягнутій зоні у вигляді одного отвору в арматурі посередині балки. Змінним параметром дослідження був рівень навантаження при якому виконувалось пошкодження. Визначено значення 0, 30 %, 50 %, 70 % від несучої здатності контрольних непошкоджених зразків. Був наведено результати випробування 12 зразків. Представлена пропозиція нової методики щодо врахування зміни механічних характеристик розтягнутої арматури, які виникає при її пошкодженні. Це дає можливість точніше встановити несучу здатність залізобетонних згинахих елементів, що отримали пошкодження арматури в процесі експлуатації. За вдосконаленням алгоритмом запропоновано принцип застосування деформаційної моделі, для вичерпання несучої здатності пошкоджених зразків з врахуванням дії навантаження. Теоретичний розрахунок, за вичерпанням несучої здатності, показав результати на 3…21 % менші від експериментальних величин, що забезпечує надійність розрахунку таких конструкцій. Запропонована методика розрахунку дає новий підхід до визначення несучої здатності залізобетонних балок, що отримали пошкодження в процесі експлуатації. Це, в свою чергу, надає можливість точніше визначити залишкову несучу здатність конструкції та підвищує безпеку їх експлуатації.

Ключові слова: залізобетонна балка, пошкодження арматури, деформаційна модель, розрахунок згинахих елементів, за дії навантаження.

ДОИ: 10.15587/1729-4061.2021.237157
ОБГРУНТУВАННЯ ВИКОРИСТАННЯ ТРУБ КВАДРАТНОГО ПЕРЕРІЗУ В КАРКАСІ ЗЙОМНОГО ДАХУ НАПІВВАГОНА (с. 18–25)
О. В. Фомін, А. О. Ловська

Проведено визначення основних показників міцності зйомного даху напіввагона. Встановлено, що типова конструкція даху має значний запас міцності складових несучої конструкції. За метою зменшення матеріалоємності даху проведено визначення резервів його міцності та оптимізацію за критерієм мінімум матеріалоємності. Запропоновано використання у якості складових каркасу даху труб квадратного перерізу.

Основними трубами до уваги прийнято коливання підскакування та галопування, як найбільш поширені види коливань вагона при русі рейкою. Впровадження труб-колонок може виконуватись типовим способом. Є можливість застосувати труби з великою товщиною стін. Передбачено можливість використання дефлекторів на зйомному даху.

Вдосконалено та апробовано методику розрахунку залізобетонних балок, в яких виникли пошкодження розтягнутої арматури за дії навантаження. Наведено основні результати випробування залізобетонних балок з пошкодженням у розтягнутій зоні у вигляді одного отвору в арматурі посередині балки. Змінним параметром дослідження був рівень навантаження при якому виконувалось пошкодження. Визначено значення 0, 30 %, 50 %, 70 % від несучої здатності контрольних непошкоджених зразків. Був наведено результати випробування 12 зразків. Представлена пропозиція нової методики щодо врахування зміни механічних характеристик розтягнутої арматури, які виникає при її пошкодженні. Це дає можливість точніше встановити несучу здатність залізобетонних згинахих елементів, що отримали пошкодження арматури в процесі експлуатації. За вдосконаленням алгоритмом запропоновано принцип застосування деформаційної моделі, для вичерпання несучої здатності пошкоджених зразків з врахуванням дії рівня навантаження. Теоретичний розрахунок, за вичерпанням несучої здатності, показав результати на 3…21 % менші від експериментальних величин, що забезпечує надійність розрахунку таких конструкцій. Запропонована методика розрахунку дає новий підхід до визначення несучої здатності залізобетонних балок, що отримали пошкодження в процесі експлуатації. Це, в свою чергу, надає можливість точніше визначити залишкову несучу здатність конструкції та підвищує безпеку їх експлуатації.

Ключові слова: залізобетонна балка, пошкодження арматури, деформаційна модель, розрахунок згинахих елементів, за дії навантаження.
Висновки. На основі проведених досліджень встановлено, що при збільшенні ступенів руйнування матеріалу збільшуються необхідній ступінь енергії. Такий методологічний підхід дозволив розкрити сутність єдності взаємодії резонансних режимів, які за своєю сутністю є найбільш ефективними. Практична реалізація резонансного режиму досягнуто врахуванням умов взаємодії резонансної опори і на зазор в підшипнику. Отримані результати дозволять точніше визначати основні характеристики сегментного підшипника і раціональніше проектувати його конструкцію.

Ключові слова: сегментний підшипник, деформація сегмента, характеристики підшипника, диференціальне рівняння, результати розрахунку.

Висновки. На основі проведених досліджень встановлено, що при збільшенні ступенів руйнування матеріалу збільшуються необхідній ступінь енергії. Такий методологічний підхід дозволив розкрити сутність єдності взаємодії резонансних режимів, які за своєю сутністю є найбільш ефективними. Практична реалізація резонансного режиму досягнуто врахуванням умов взаємодії резонансної опори і на зазор в підшипнику. Отримані результати дозволять точніше визначати основні характеристики сегментного підшипника і раціональніше проектувати його конструкцію.

Ключові слова: сегментний підшипник, деформація сегмента, характеристики підшипника, диференціальне рівняння, результати розрахунку.

DOИ: 10.15587/1729-4061.2021.239292

ВИЗНАЧЕННЯ ЕНЕРГЕТИЧНИХ ХАРАКТЕРИСТИК РУЙНУВАННЯ МАТЕРІАЛУ В КАМЕРІ ДРОБЛЕННЯ ВІБРАЦІЙНИХ ДРОБАРОК (с. 41–49)

I. I. Nазаренко, Є. О. Міщук, Д. О. Міщук, М. М. Ручинський, І. Л. Роговський, Л. М. Михайлова, Л. Л. Тітова, М. Г. Березовий, Р. В. Шатров

Дробильне обладнання характеризується значною енергозатратною системою при виконанні робочого процесу подрібнення. Сучасна тенденція розвитку подібних процесів висуває вимоги до розробки нового або вдосконалення існуючої енергооснащеної обладнання. Сутність вирішення проблеми в даній роботі визначено шляхом використання резонансних режимів, які за своєю сутністю є найбільш ефективними. Практична реалізація резонансного режиму досягнуто врахуванням умов взаємодії резонансної опори і на зазор в підшипнику. Отримані результати дозволять точніше визначати основні характеристики сегментного підшипника і раціональніше проектувати його конструкцію.

Ключові слова: сегментний підшипник, деформація сегмента, характеристики підшипника, диференціальне рівняння, результати розрахунку.

DOИ: 10.15587/1729-4061.2021.239159

УДОСКОНАЛЕННЯ КОНСТРУКЦІЇ КОРПУСУ ТРАУЛЕРА З УМОВИ ЗАБЕЗПЕЧЕННЯ ВТОМНОЇ МІЦНОСТІ (с. 50–59)

Л. І. Коростильов, Д. Ю. Литвиненко, Г. В. Шарун, І. П. Давидов

Удосконалено конструкцію корпусу траулеру проекту 1288 в районі носового трюму з метою забезпечення втомної міцності вузлів перетину основних шпангоутів із другим дном. Для цього виконано дослідження втомної міцності названих вузлів для вихідного варианту конструкції борту та для двох варіантів її модернізації.

Визначено величини внутрішніх зусиль у точках появи втомних тріщин у відсіку для трьох конструктивних варіантів борту. Встановлено, що найбільші зусилля мають місце на основі носової половини відсіку.
Разработано параметры доугнетермического розподілу величин розмахів сумарних еквівалентних експлуатаційних напружень за законом Вейбулла в точках появи вітряних тріщин для різних конструктивних варіантів бортового перекриття. Ці параметри були визначені для середнього носового трьом судна та для районів, в яких діють максимальні величини розмахів різних півночі, з врахуванням короткого зносу та без нього.

Визначено величини сумарних вітрових пошкоджень та довговічність вузлів, що досліджувались. Розрахунки проводились методами номінального напружень, напружень у гарячі точки та експериментально-теоретичним.

Показано, що для забезпечення вітрової міцності вузла, що розглядається, необхідно продовжити проміжні шпангоуты вихідного варіанта конструкції борту до рівня другого дна, закріпивши їх до настилу. Також потрібно приєднати вантажну платформу до борту, зменшивши таким чином провін шпангоуту. Рівень вітрового пошкодження за 25 років експлуатації в результат зменшиться приблизно у 3,5 раз.

Наближене врахування ефекту зелеягу, як було виявлено, не збільшує суттєво величину вітрового пошкодження вуала.

Результати розробки рекомендацій з модернізації конструкції борту можуть бути впроваджені як на суднах проекту 1288, так і на інших суднах з похереною системою набору борту.

Ключові слова: траулер, конструкція борту, конструктивний вузол, напружено-деформований стан, концентрація напружень, вітрова міцність.

DOI: 10.15587/1729-4061.2021.238289

ТЕОРЕТИЧЕСКОЕ ДОСЛЯДЕНИЕ АЭРОДИНАМИЧЕСКОЙ НЕСВАРЕННОСТИ ЛОПАТЕЙ ПОВОТРЯНОГО ГВИНТА ТА КОРИГУВАЛЬНОГО МАСС ДЛЯ ЇЇ БАЛАНСУЮЩЕСТВА (с. 60–66)

Г. Б. Філімонов, І. О. Білік, Л. М. Кривоблоцька, Ю. В. Мачок

Теоретически досліджено аеродинамичність лопатей повітряного гвинта та коригувальних мас для її балансування.

Встановлено, що аеродинамичність ефективно залежить від різних конструктивних варіантів бортового перекриття. Ці параметри були визначені для середнього носового трьом судна та для районів, в яких діють максимальні величини розмахів згинальних моментів, з врахуванням короткого зносу та без нього.

Показано, що для забезпечення вітрової міцності вузла, що розглядається, необхідно продовжити проміжні шпангоуты вихідного варіанта конструкції борту до рівня другого дна, закріпивши їх до настилу. Таким чином провін шпангоуту. Рівень вітрового пошкодження за 25 років експлуатації в результат зменшиться приблизно у 3,5 раз.

Наближене врахування ефекту зелеягу, як було виявлено, не збільшує суттєво величину вітрового пошкодження вуала.

Результати розробки рекомендацій з модернізації конструкції борту можуть бути впроваджені як на суднах проекту 1288, так і на інших суднах з похереною системою набору борту.

Ключові слова: повітряний гвинт, лопати, аеродинаміка, неврівноваженість мас, аеродинамічне балансування, балансування коригуванням мас.

DOI: 10.15587/1729-4061.2021.238289

РОЗРОБКА ПЛОСКОГО ТРОСОВОГО ПАРАЛЕЛЬНОГО РОБОТА ДЛЯ ПРАКТИЧНОГО ЗАСТОСУВАНЯ В НАВЧАЛЬНОМУ ПРОЦЕССЕ (с. 67–75)

Assylbek Jomartov, Aziz Kamal, Azizbek Abdurainov

Паралельный робот с кабельным приводом (ПРКП) має величезний потенціал для різних застосувань в промисловості і в повсякденному житті. Вони складаються з кінцевого ефектора і підстави, з єднаних кабелями. ПРКП мають велику робочу область в порівнянні з робочою областю класичних паралельних роботів. ПРКП мають більш просту конструкцію, мають гарні динамічні характеристики, характеризуються високою вантажопідйомністю, мобільністю і невисокою вартістю. Єдиний недолік у тому, що кабелі в порівнянні з робочою областю класичних паралельних роботів. ПРКП мають більш простої конструкції, мають гарні динамічні характеристики, характеризуються високою вантажопідйомністю, мобільністю і невисокою вартістю. Єдиний недолік в тому, що кабелі в порівнянні з робочою областю класичних паралельних роботів. ПРКП мають більш просту конструкцію, мають гарні динамічні характеристики, характеризуються високою вантажопідйомністю, мобільністю і невисокою вартістю. Єдиний недолік в тому, що кабелі в порівнянні з робочою областю класичних паралельних роботів. ПРКП мають більш просту конструкцію, мають гарні динамічні характеристики, характеризуються високою вантажопідйомністю, мобільністю і невисокою вартістю.