N. Pagani, O. Tommasi

The orbifold cohomology of moduli of genus 3 curves

Received: 30 March 2011 / Revised: 14 November 2012
Published online: 2 February 2013

Abstract. In this work we study the additive orbifold cohomology of the moduli stack of smooth genus g curves. We show that this problem reduces to investigating the rational cohomology of moduli spaces of cyclic covers of curves where the genus of the covering curve is g. Then we work out the case of genus $g = 3$. Furthermore, we determine the part of the orbifold cohomology of the Deligne–Mumford compactification of the moduli space of genus 3 curves that comes from the Zariski closure of the inertia stack of \mathcal{M}_3.

1. Introduction

It was a remarkable discovery of the beginning of this century, anticipated in physics in the nineties, that the degree zero small quantum cohomology of a smooth Deligne–Mumford stack X does not in general coincide with the ordinary cup product, and that it is, in fact, a proper ring extension of the ordinary cohomology ring of X. More generally, the definition of quantum cohomology and Gromov–Witten invariants for orbifolds were given in symplectic geometry by Chen and Ruan in [9]. The algebraic counterparts of these theories were developed by Abramovich–Graber–Vistoli in [2,3].

The Chen–Ruan cohomology of a smooth Deligne–Mumford stack X is, by definition, the degree zero part of the small quantum cohomology ring of X, and the orbifold cohomology of X is the rationally graded vector space that underlies the Chen–Ruan cohomology algebra. The general idea, coming from stringy geometry, is that an important role in the study of X is played by the so-called inertia stack of X. When X is a moduli space for certain geometric objects, the inertia stack of X parametrizes the same geometric objects, together with the choice of an automorphism on them. The stack X itself appears as the connected component of its inertia stack associated with the trivial automorphism, but in general there are other connected components, usually called the twisted sectors of X, a terminology that originates from physics. Orbifold cohomology is simply the ordinary

N. Pagani, O. Tommasi (✉): Institut für Algebraische Geometrie, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany.
e-mail: tommasi@math.uni-hannover.de
N. Pagani: e-mail: npagani@math.uni-hannover.de

Mathematics Subject Classifications (2010): Primary: 14H10, 55N32. Secondary: 14N35, 14D23, 14H37, 32G15, 55P50.

DOI: 10.1007/s00229-013-0608-z
cohomology of the inertia stack, endowed with a different grading. Each twisted sector is assigned a rational number, called (depending on the author) degree shifting number, age or fermionic shift: this number depends on the action of the given automorphism on the normal bundle to the twisted sector in X. Then the degree of each cohomology class of the twisted sector is shifted by twice this rational number.

In this paper, we study the inertia stack of moduli spaces \mathcal{M}_g of smooth genus g curves. The starting point of our construction is that one can associate with each object (C, α) of the inertia stack the cover given by quotienting C by the cyclic group generated by α. Following an idea of Fantechi [13], we exploit this correspondence to tackle the problem of the identification of the twisted sectors of \mathcal{M}_g by using the classical theory of cyclic (possibly ramified) covers of algebraic varieties, as developed in [24]. We identify some discrete data in order to separate the inertia stack of \mathcal{M}_g in its connected components. The first data are the genus of the quotient curve and the order N of the automorphism; the latter is a general invariant of twisted sectors as it appears already in the definition of the inertia stack. Finally, the branch locus of the cover can be split in $N - 1$ parts according to the local monodromy around each of its points. The last invariants are simply the degrees of each of these $N - 1$ divisors. It is a recent result of Catanese [8] that these numerical data single out a connected component of the moduli space of connected cyclic covers.

The twisted sectors of moduli of curves were studied with *ad hoc* methods in the case of genus 2 in [26], and in the case of pointed curves of genus 1 in [21]. The same approach explained in the above paragraph was used in [22] to identify the twisted sectors of $\mathcal{M}_{g,n}$ with $g = 2$ or $n \geq 1$, in this paper we complete the picture by analyzing the more delicate case when $n = 0$. A complete cohomological description of the twisted sectors of moduli of hyperelliptic curves for all genera is given in [23] following a similar approach.

After having determined the connected components of the inertia stack of \mathcal{M}_g for general g, we study the topology of the twisted sectors in the case when g equals 3. In most cases, the cohomology of the twisted sector is computed in a rather straightforward way. The main exceptions are the twisted sectors corresponding to bielliptic and to quadrielliptic genus 3 curves, which require a more detailed analysis. In particular, our computation of the cohomology of the moduli space of bielliptic genus 3 curves is achieved by using a combination of Vassiliev–Gorinov’s method for the computation of the cohomology of complements of discriminants with the study of certain Leray spectral sequences, following the approach of [27,28]. We expect that these techniques could be applied also in other cases of moduli spaces of cyclic covers, at least for small values of g.

Finally, we partially extend our investigation to the orbifold cohomology of the Deligne–Mumford compactification $\overline{\mathcal{M}}_3$ of \mathcal{M}_3. Specifically, we study the Zariski closure of $I(\mathcal{M}_3)$ inside the inertia stack $I(\overline{\mathcal{M}}_3)$. The connected components of this compactification are precisely the connected components of $I(\overline{\mathcal{M}}_3)$ whose general