MODELING THE OPTICAL AFTERGLOW OF GRB 030329

Y. F. HUANG
Department of Astronomy, Nanjing University, Nanjing 210093, China; and Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong, China; hyf@nju.edu.cn

K. S. CHENG
Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong, China

AND

T. T. GAO
Department of Astronomy, Nanjing University, Nanjing 210093, China

Received 2005 June 30; accepted 2005 September 29

ABSTRACT

The best-sampled afterglow light curves available are for GRB 030329. A distinguishing feature of this event is the obvious rebrightening at around 1.6 days after the burst. Proposed explanations for the rebrightening mainly include the two-component jet model and the refreshed-shock model, although a sudden density jump in the circumburst environment is also a potential choice. Here we reexamine the optical afterglow of GRB 030329 numerically in light of the three models. In the density-jump model, no obvious rebrightening can be produced at the jump moment. In addition, after the density jump, the predicted flux density decreases rapidly to a level that is significantly below observations. A simple density-jump model thus can be excluded. In the two-component jet model, although the observed late afterglow (after 1.6 days) can potentially be explained as emission from the wide component, the emergence of this emission actually is too slow, and it does not manifest as a rebrightening as previously expected. The energy-injection model seems to be the most preferred choice. By engaging a sequence of energy-injection events, it provides an acceptable fit to the rebrightening at ~1.6 days, as well as the whole observed light curve that extends to ~80 days. Further studies on these multiple energy-injection processes may provide a valuable insight into the nature of the central engines of gamma-ray bursts.

Subject headings: gamma rays: bursts — ISM: jets and outflows

1. INTRODUCTION

GRB 030329, with a fluence as large as ~1.18 × 10^{-4} ergs cm^{-2} (Ricker et al. 2003; Vanderspek et al. 2004) and being in the brightest 1% of all detected gamma-ray bursts (GRBs), is a watershed event in the field. Lying at a redshift of z = 0.1685 (Greiner et al. 2003a), it is the closest classical GRB to date. For the first time, an unambiguous underlying Type Ic supernova was revealed spectroscopically about one week after the trigger (Hjorth et al. 2003; Stanek et al. 2003; Matheson et al. 2003). This already suspected connection between GRBs and core-collapse supernovae, which was first hinted at by the amazing coincidence of GRB 980425 and SN 1998bw (Galama et al. 1998), is now firmly established, finally shedding light on the previously unclear nature of long GRBs. In addition, the radio afterglow of GRB 030329 was resolved with very long baseline interferometry observations, leading to a direct measurement of the size of a cosmological GRB remnant for the first time (Taylor et al. 2004, 2005). The observed expansion rate of the remnant, being generally consistent with theoretical expectations, provides valuable evidence for the standard fireball model (Oren et al. 2004; Granot et al. 2005). Furthermore, a polarization light curve of unprecedented detail was obtained (Greiner et al. 2003b). Observed polarization, with significant variability, is at the level of a few percent, casting light on the structure of the jet, the configuration of the internal magnetic field, and other microphysics of the blast wave.

So far, GRB 030329 is also the event with the most copious afterglow data, due to its extremely bright afterglow. A very detailed R-band afterglow light curve has been compiled by Lipkin et al. (2004). The available R-band data span from ~0.05 to ~80 days, with a total of 1644 points, which is unprecedented. The R-band light curve shows many interesting features. First, an obvious bending appears at t ~ 0.5 days, which can be satisfactorily interpreted as a jet break (Uemura et al. 2003). Second, the afterglow rebrightened significantly and rapidly at t ~ 1.6 days. Third, obvious variability has also been observed during t ~ 2.3–7 days. Finally, the afterglow rebrightened markedly again at t > 20 days, as compared with the simple power-law extrapolation, which in fact reflects the contribution from the underlying supernova, emerging as the GRB afterglow itself fades away. The copious observations and the interesting afterglow behavior have made GRB 030329 an amazing example, attracting the attention of many authors.

Berger et al. (2003) suggested that the rebrightening at t ~ 1.6 days can be explained by adopting a two-component jet model. In their framework, the central, narrower, faster jet can account for the light-curve break at t ~ 0.5 days, while the outer, wider, slower jet, which intrinsically carries more kinetic energy, will finally outshine the former and naturally give birth to the observed rebrightening at ~1.6 days. On the other hand, Granot et al. (2003) suggested another model for the rebrightening. They proposed that a refreshed shock, i.e., energy injected into the blast wave by an additional shell from the central engine, can boost the brightness. Only simplified analytical approaches have been devoted to this important question until now. It is thus worthwhile to revisit the issue by carrying out realistic and more accurate numerical calculations.

In this study, we model the R-band afterglow light curve of GRB 030329 numerically, paying special attention to the rebrightening
at \(t \approx 1.6 \) days. We base our calculations on three candidate models, i.e., the density-jump model, the two-component jet model, and the energy-injection model. Our paper is organized as follows. We first describe the details of our calculations, including the dynamics and the radiation process, in § 2. We then examine the observed R-band light curve in the framework of the three models in turn in § 3. We discuss our results and present our conclusions in § 4.

2. DYNAMICS AND RADIATION PROCESS

In the standard fireball model, afterglows are produced when the fireball, either isotropic or collimated, plows through the circumburst medium, producing a strong blast wave that accelerates swept-up electrons (for recent reviews, see van Paradijs et al. 2000; Mészáros 2002; Piran 2005; Zhang & Mészáros 2004). Afterglows are observed when synchrotron photons are emitted by these accelerated electrons (Sari et al. 1998), although inverse Compton scattering may also play a role in some cases (Wei & Lu 2000a; Sari & Esin 2001). The conditions involved in GRB afterglows are complicated. For example, the blast wave may be either highly radiative or highly adiabatic and may experience the ultrarelativistic phase and the Newtonian phase sequentially. In the case of jets, the remnant may expand laterally or not. The circumburst medium may be either homogeneous or windlike. The shock-accelerated electrons may be adiabatic or cool in real time. The final afterglow light curve also strongly depends on the frequency at which we observe. Simple analytical results are available for the whole process of the afterglow, but detailed expressions can be given only when the conditions involved are highly simplified (Zhang & Mészáros 2004).

On the other hand, there are also some factors that cannot be easily incorporated into analytical considerations; among them is the equal arrival time surface effect (Waxman 1997; Sari 1998; Panaitescu & Mészáros 1998). This ingredient will definitely affect the smoothness and variability of GRB afterglow light curves significantly. Although analytic expressions for equal arrival time surfaces can be derived under some simplified assumptions (Bianco & Ruffini 2005), their exact effects on the light curve still cannot be included in usual analytical expressions. Numerical evaluation will be the only efficient solution in some circumstances, especially when rapid variability is involved.

A simple model that can be applied under various conditions addressed above, and which is also very convenient to solve numerically, has been developed by Huang et al. (1999, 2000a, 2000b) and Huang & Cheng (2003). We use this model for the current study. In this model, the evolution of the bulk Lorentz factor (\(\gamma \)) of the shock-accelerated circumburst medium is given by

\[
\frac{d \gamma}{dm} = -\frac{\gamma^2 - 1}{M_{\text{ej}} + \epsilon m + 2(1 - \epsilon) \gamma m}
\]

(Huang et al. 1999), where \(m \) is the mass of swept-up medium and \(M_{\text{ej}} \) is the initial mass of the fireball. The quantity \(\epsilon \) is the radiative efficiency, which equals 1 for a highly radiative blast wave and equals 0 in the adiabatic case. Equation (1) has the virtue of being applicable in both the ultrarelativistic and the nonrelativistic phases (Huang et al. 1999). For collimated outflows, the lateral expansion is realistically described by

\[
\frac{d \theta}{dt} = \frac{c_s (\gamma + \sqrt{\gamma^2 - 1})}{R}
\]

(Huang et al. 2000a, 2000b), with the comoving sound speed \(c_s \) given by

\[
c_s^2 = \frac{\gamma (\gamma - 1)(\gamma - 1)}{1 + \gamma (\gamma - 1)} c^2,
\]

where \(\theta \) is the half-opening angle, \(R \) is the radius, and \(\gamma \approx (4\gamma + 1)/(3\gamma) \) is the adiabatic index.

To calculate synchrotron radiation from shock-accelerated electrons, a realistic electron distribution function (Dai et al. 1999; Huang & Cheng 2003) that takes into account the cooling effect (Sari et al. 1998) is adopted. In particular, since we assume in our calculations a value smaller than 2 for the electron power-law distribution index, \(p \), the minimum Lorentz factor of electrons should be given by

\[
\gamma_{\text{e,min}} = \left[\left(\frac{2 - p}{p - 1} \right) \frac{m_p}{m_e} c^2 (\gamma - 1)(\gamma_{\text{e,max}} - 1)^{-p-2} \right]^{1/(p-1)} + 1,
\]

\[
(1 < p < 2),
\]

where \(m_p \) and \(m_e \) are masses of proton and electron, respectively, and \(\gamma_{\text{e,max}} = 10^3 (B/1 \text{ G})^{-1/2} \) is the maximum Lorentz factor of electrons, with \(B \) the comoving magnetic field strength. Equation (4), which differs slightly from the expression given by Dai & Cheng (2001) for electrons with a flat spectra, is more general, since it is applicable even in the deep Newtonian phase, when \(\gamma_{\text{e,min}} \) is less than a few and most electrons are no longer ultrarelativistic (Huang & Cheng 2003).

3. NUMERICAL RESULTS

In this section we study the optical afterglow of GRB 030329 numerically, paying special attention to its rebrightening at \(t \approx 1.6 \) days. We take the R-band light curve provided by Lipkin et al. (2004) as the observed template, which has the advantage of having the widest time span, the most prolific data points, and also the least systematic discrepancy. However, the original data of Lipkin et al. include contributions from the host galaxy and the underlying supernova. The host galaxy magnitude is \(R = 22.66 \) (Gorosabel et al. 2005). Using the observed light curve of SN 1998bw as a template (Galama et al. 1998; Zeh et al. 2004), the brightness of the supernova has also been determined by Zeh et al. (2005). A pure R-band afterglow light curve is thus available for GRB 030329 after subtracting these extra components and correcting for Galactic extinction (according to Schlegel et al. 1998). Here we use the pure afterglow light curve as the final template. We try to fit it in light of three detailed models that all have the potential of producing the rebrightening: the density-jump model, the two-component jet model, and the energy-injection model.

3.1. Density-Jump Model

A possible model that can potentially produce a rebrightening in GRB afterglows is the so-called density-jump model. Analytically it has been shown that when the blast wave encounters a sudden density increase in the medium, the afterglow emission will be enhanced temporarily (Lazzati et al. 2002; Nakar & Piran 2003; Dai & Wu 2003; Tam et al. 2005). We have examined GRB 030329 in this framework. The jet involved is assumed to have an initial half-opening angle of \(\theta_0 = 0.05 \), with an isotropic kinetic energy \(E_{\text{iso}} = 3.5 \times 10^{53} \text{ ergs} \) and an initial Lorentz factor \(\gamma_0 = 300 \). Other parameters are taken as electron energy...
Note that in both (a) and (b), no obvious rebrightening can be seen in the modeled light curves at $t \sim 1.6$ days; thus, the model is not preferred by observations.
differ from those recommended by Berger et al. (2003; also see Friedman & Bloom 2005). For example, we need an $E_{\text{v,iso}}$ that is larger by about a factor of 10, since in our numerical calculations we take into account the deceleration of the blast wave before the usual deceleration radius. Also our $\theta_{0,N}$ is smaller, since the lateral expansion plays a subtle role in the process.

Figure 2a shows clearly that the narrow component can give an acceptable fit to the observed light curve when $t < 10^{5}$ s, and the wide component emission can give a marginally acceptable explanation for observations of $t > 2 \times 10^{5}$ s. However, when the emission from the two components is added together, the final light curve is disappointingly too smooth at 10^{5} s < $t < 2 \times 10^{5}$ s. In other words, the model cannot reproduce the observed rapid rebrightening at $t \sim 1.6$ days. The key problem is that the wide-component emission peaks at $\sim 4 \times 10^{5}$ s, too early compared with observations. In addition, the dotted line in Figure 2a is very smooth at around the peak, so that it obviously has no hope of accounting for the rapid variability even if the peak were properly postponed.

The difficulty of a simple two-component jet model to explain the rapidity of such a rebrightening was realized by Huang et al. (2004) in an earlier study. They went further to conjecture that some subtle details, such as the overlap effect of the two components, may help to relax the difficulty (note that in the calculations of Huang et al. [2004], it was assumed that $t = 0$ at the deceleration radius). In Figure 2b, we have recalculated the theoretical light curve by assuming that the wide component is a hollow cone since its central portion is occupied by the narrow component. In this case, the peak of the wide component emission is significantly postponed as expected. However, the light curve becomes even smoother near the peak. This modification is thus essentially of no help in accounting for the rapidity of the rebrightening.

In fact, the failure of the two-component jet model to reproduce the rapid rebrightening at $t \sim 1.6$ days is not a surprise. In Berger et al. (2003), we note that the rebrightening is still not rapid enough, even in their idealized analysis. A similar trend can also be seen in a superseding detailed study on the two-component jet model by Peng et al. (2005). In our current study, the equal arrival time surface effect and the realistic dynamical transition at the deceleration radius add together to further suppress the variability. In addition, if a more complex dynamical model as suggested by Granot et al. (2002) is adopted, things will surely get even worse. In short, although the two-component jet model can give a feasible explanation for the overall R-band light curve, it is not satisfactory in reproducing the rapid rebrightening at $t \sim 1.6$ days. However, given that the existence of two jets has been clearly indicated by two breaks (at ~ 0.5 and ~ 5.5 days, respectively) in the observed light curve, the two-component jet model is still an attractive idea for GRB 030329. We further discuss some schemes that may ameliorate this idea in § 4.

3.3. Energy-Injection Model

Although typical long GRBs last for only tens of seconds, the central engine can actually be active for much longer, supplying energy into the blast wave during the afterglow phase. This can naturally lead to the rebrightening of GRB afterglows. Evidence for such activities has been found in a few events (Piro 1998; Dai & Lu 1998, 2001; Zhang & Mészáros 2001, 2002; Björnsson et al. 2002, 2004; Burrows et al. 2005; King et al. 2005; Watson et al. 2006; Cusumano et al. 2005).

Energy injection can be accomplished in various forms, on very different timescales. If the central engine is a rapidly rotating millisecond pulsar, a huge amount of rotation energy can be naturally injected into the GRB remnant either in the form of a Poynting flux or a relativistic particle flux, when the rotating pulsar gradually brakes down (Dai & Lu 1998; Zhang & Mészáros 2001). In this case, the energy injection is a continuous process whose timescale is determined by the braking mechanism. Another possibility is that, since the standard fireball model of GRBs resorts to internal shocks to produce the observed highly variable γ-ray light curve in the main burst phase, it is very likely that the central engine may also give birth to some late slow shells, which catch up with the main remnant only in the afterglow phase (Rees & Mészáros 1998; Kumar & Piran 2000; Sari & Mészáros 2000; Piran et al. 2004; King et al. 2005). In this case, the energy supply will be completed relatively quickly, producing an essentially instantaneous energy injection.

For the rebrightening of the afterglow of GRB 030329, energy injection is surely a potential explanation (Granot et al. 2003). Actually, Granot et al. (2003) suggested that in addition to the major energy injection occurring at $t \sim 1.6$ days, there were furthermore three minor energy injection processes occurring at $t \sim 2.4, 3.1,$ and 4.9 days, respectively, giving birth to the observed subtle light curve variations at $(2 - 6) \times 10^{5}$ s.

We now fit the afterglow of GRB 030329 numerically by adopting the energy-injection model. Since the observed rebrightening at $t \sim 1.6$ days is so rapid, we believe that a quick energy injection is necessary. In our calculation, we assume that an amount of kinetic energy that equals the initial energy (E_{0}) of the primary GRB ejecta is supplied into the blast wave at the observer’s time $t \sim 1.1 \times 10^{5}$ s. For simplicity, we assume that the energy supply is completed instantly. At $t = 4 \times 10^{5}$ s, we note that another energy injection at the amplitude of $0.4E_{0}$ is needed to account for the observed emission between 4×10^{5} and 1×10^{6} s. This roughly corresponds to the fourth energy injection process suggested by Granot et al. (2003). In Granot et al.’s study, the time span of the observed light curve is $t < 9$ days. Here, when we expand the light curve to $t \sim 80$ days, we find that an additional energy injection (with $0.6E_{0}$) is necessary, which occurs at about 1.2×10^{6} s. Our final numerical results are shown in Figure 3.
Interestingly enough, we find that the energy injection at \(t \sim 1.1 \times 10^3 \) s really can produce an obvious rebrightening as expected. The energy-injection model is thus better than the two previous models, at least in this respect. The relative residual of the solid line in Figure 3 is generally less than 20%, so that the overall fit can also be evaluated as acceptable.

However, we also note that there are still some obvious problems in the fit. First, the observed light curve shows a sharp jet break at \(t \sim 0.5 \) days (\(\sim 4.3 \times 10^4 \) s), but the theoretical light curve is simply too smooth, which leads to a systematic residual of \(\sim 15\% \) during (2–5) \(\times 10^4 \) s. It has been noted that a small half-opening angle of the jet can help to make the break sharper (Wei & Lu 2000b; Huang et al. 2000a). In fact, in our current study, in order to get a break that is as sharp as possible, we have assumed a very small initial half-opening angle for the jet, i.e., \(\theta_0 = 0.05 \). Since the decay of the afterglow of a narrower jet is generally slightly faster, we then have to assume a relatively flat spectrum for the shock-accelerated electrons \((p = 1.9) \) so as to match the observed decay rate of \(F_R \propto t^{-0.85} \) before the jet break. However, the theoretical break is still too shallow. In fact, the same problem also exists in Figures 1 and 2. The sharpness of the observed light-curve breaks actually is a general challenge to theorists, since numerical results by a few authors have shown that the predicted light-curve break is usually not so sharp (Panaitescu & Mészáros 1998; Moderski et al. 2000; Wei & Lu 2000b). With plenty of observational data points before and after the jet break, GRB 030329 will be a valuable example that can be used to study the sharpness problem carefully. These studies may help to address many important issues of GRB afterglows, such as the initial opening angle of the jet, the effect of the lateral expansion, the influence of the equal arrival time surfaces, and so on. We thus suggest that the early afterglow of GRB 030329 \((t < 10^7 \) s) deserves special attention, and further detailed numerical study should be carried out.

Second, although an obvious brightness enhancement is produced by the energy injection at \(t \sim 1.6 \) days, the theoretical rebrightening is still not rapid enough compared with observations. As a result, we see that the relative residual reaches roughly \(-20\%\) before the rebrightening and reaches roughly \(+15\%\) thereafter. Here we have already assumed an instantaneous energy injection. It is expected that things might get even worse in reality, since the energy injection will surely take some time. However, at least two factors may help to ease this unsatisfactory situation: (1) The energy injection itself may be a complicated process. For example, additional forward shocks or even reverse shocks may form when the slow shell collides with the original jet, and extra emission from these shocks may make the rebrightening more significant. But discussion of these extra emission will involve some largely uncertain conditions (such as the thickness, the composition, and the speed of the energy-injection shell), and is not conducted here. (2) The half-opening angle of the injected shell may be another important factor. At the time of the energy injection, the opening angle of the original jet already increases to \(\theta \approx 0.15 \) due to lateral expansion. In our calculation, we have assumed that the energy is supplied to the whole jet homogeneously for simplicity. But it is probable that the injected shell itself may have an opening angle much smaller than 0.15, and then the energy supply will be restricted only to a small portion of the original jet, as already illustrated by Granot et al. (2003). In that case, the timescale of the rebrightening can be greatly reduced. Again, detailed consideration will involve some uncertain conditions, such as the initial opening angle and the sideways expansion of the energy-injection shell.

Third, there are some subtle variations in the observed light curve for \(2 \times 10^5 \leq t \leq 8 \times 10^5 \) s. As suggested by Granot et al. (2003), these variations may be due to further minor energy injections. In our calculations, we do not include the second and the third energy injection events proposed by Granot et al. In fact, since our modeling is still very coarse and highly simplified, we believe that the observed fine structures will not be satisfactorily reproduced even if all the minor energy injections are incorporated. To completely solve the problem, we may need to carefully consider the factors related to the second problem as addressed above.

In short, GRB 030329 is a special but important event. Its afterglow behavior is very complicated, and a satisfactory fit to the overall R-band light curve is not an easy task (Zeh et al. 2006). However, after comparing all three models examined in our current study, we propose that the energy-injection model is the most appropriate one for GRB 030329, especially when the rebrightening at \(t \sim 1.6 \) days is taken into account.

4. DISCUSSION AND CONCLUSION

The optical afterglow of GRB 030329, with a notable rebrightening at \(t \sim 1.6 \) days, is reexamined numerically in light of three candidate models. In the density-jump model, no obvious rebrightening can be reproduced at the moment when the density increases abruptly. In addition, the predicted flux density decreases significantly well after the density jump, evidently in contrast with the observations. In the two-component jet model, emission from the wide component can significantly boost the afterglow and thus can roughly fit the late afterglow of GRB 030329. However, the predicted rebrightening is still far too slow when compared with observations. In fact, no obvious bump can be seen in the final theoretical light curve at \(t \sim 1.6 \) days at all. The energy-injection model seems to be the most preferred choice. When an amount of energy that equals the initial kinetic energy of the GRB ejecta is added instantly into the blast wave at \(t \sim 1.6 \) days, a marked rebrightening emerges, which, although it is still not rapid enough, gives an acceptable explanation to observations.

Since the rebrightening of GRB 030329 is so rapid, we have to employ an instant energy-injection process in our calculation. In reality, this most likely corresponds to the energy supplying process by a relatively slow shell that carries a significant amount of kinetic energy but is ejected at a comparatively late stage by the central engine. Usually, the shell is very thin, with a width of \(\sim 10^6 – 10^8 \) cm, just as other more rapid shells that produce internal shocks and give birth to the main GRB. The shell moves outward at approximately a constant speed in a dilute environment that has been swept by previous shells. At the observer’s time \(t \sim 1.6 \) days, when the shell finally catches up with the main blast wave, its thickness may increase slightly but will still reasonably be much smaller than the radius of the blast wave. Interaction of this shell with the preceding blast wave can then be completed in a short time, producing an instant energy injection.

For GRB 030329, Granot et al. (2003) suggested that there are a total of four energy-injection events within \(\sim 9 \) days after the burst trigger, which help to explain the observed variations between \(10^{-2} \)–\(10^6 \) s. Here, when we extend the time span to \(t \sim 80 \) days, we identify a further energy injection event occurring at \(1.2 \times 10^6 \) s. In fact, similar multiple energy injections have also been suggested in another famous event, GRB 021004, by de Ugarte Postigo et al. (2005). In that case, a total of up to seven energy injections have been employed to explain the complex multiband afterglow light curves. In the standard fireball model
of GRBs, afterglows are deemed to largely lose their memory of the central engine. But the energy-injection shells are valuable fossils left by the central engine. Careful study of these shells may provide important clues for the central engine and the GRB trigger mechanism.

However, GRB 030329 is a very complex event (Zeh et al. 2006). Even in our best fit to the optical afterglow by engaging the energy-injection model (i.e., Fig. 3, solid line), there are still some obvious problems. (1) The observed jet break at $t \sim 0.5$ days is not satisfactorily fitted. (2) The theoretical rebrightening at $t \sim 1.6$ days is not rapid enough. (3) The observed subtle light-curve variations during $2 \times 10^5 - 10^6$ s are not well accounted for. Solving these problems may need the consideration of many further details, or even substantial revision of the model. Since the observational data are unprecedentedly prolific, GRB 030329 is undoubtedly a valuable sample. We suggest that a further complete, satisfactory fit to the R-band light curve (or even multiband observations, ranging from radio to X-rays) should be attempted, which will definitely provide useful information on the physics of GRBs and afterglows.

Finally, we should bear in mind that the two-component jet model actually also has its own advantage when applied to GRB 030329: the emission from the wide component can potentially give a natural explanation to the very late afterglow, but in the energy-injection model, a further energy injection process will have to be assumed for the afterglow beyond 10^5 s, which is somewhat artificial and makes us uncomfortable. The two-component jet still is a possibility, although it cannot be used to explain the rebrightening episodes. In fact, it is probable that a compound model may be taking effect in the case of GRB 030329. The event may basically be due to a two-component jet, with the narrow component accounting for the early afterglow ($t \leq 1.0 \times 10^5$ s) and the wide component accounting for the late afterglow ($t \geq 3.0 \times 10^5$ s). At the same time, an additional energy injection may happen to the narrow component and the energy-injection process has also been proposed by Resmi et al. (2005) recently. They suggested that there might be only one narrow jet initially in GRB 030329. But at a time around or before ~ 1.5 days, a possible reenergization event may take place, refreshing the initial narrow jet into a second, “wide” jet. They noted that the half-opening angle of the initial narrow jet, due to side expansion, has already increased to a value that equals that required for the wide jet. While the scenario itself is also plausible, the detailed physical process still needs to be clarified extensively.

We thank the anonymous referee for many valuable comments that lead to an overall improvement of this study and especially for helping us to access the observational data of GRB 030329. This research was supported by an RGC grant of the Hong Kong Government and also partly supported by the Special Funds for Major State Basic Research Projects, the National Natural Science Foundation of China (grants 10233010 and 10221001), and the Foundation for the Author of National Excellent Doctoral Dissertation of P. R. China (project 200125).

REFERENCES

Bloom, J. S., Frail, D. A., & Kulkarni, S. R. 2003, ApJ, 594, 1075
Bjornsson, G., Hjorth, J., Pedersen, K., & Fynbo, J. U. 2002, ApJ, 579, L59
Bjornsson, G., Hjorth, J., & Pedersen, K. 2003, Nature, 426, 157
Bjornsson, G., Hjorth, J., & Pedersen, K. 2003b, Nature, 426, 157

Greiner, J., et al. 2003a, GCN Circ. 2020, http://gcn.gsfc.nasa.gov/gcn3/
Greiner, J., et al. 2003b, Nature, submitted (astro-ph/0509737)
Greiner, J., et al. 2003c, in AIP Conf. Proc. 727, Gamma-Ray Bursts: 30 Years of Discovery, ed. E. E. Fenimore & M. Galassi (Melville: AIP), 181

Nakar, E., & Piran, T. 2003, ApJ, 598, 400
Oren, Y., Nakar, E., & Piran, T. 2004, MNRAS, 353, L35
Panaitescu, A., & Kumar, P. 2001, ApJ, 560, L49
Panaitescu, A., & Mészáros, P. 1998, ApJ, 493, L31
Peng, F., Königl, A., & Granot, J. 2005, ApJ, 626, 966
Piran, T. 2005, Rev. Mod. Phys., 76, 1143

Friedman, A. S., & Bloom, J. S. 2005, ApJ, 627, 1
Galama, T. I., et al. 1998, Nature, 395, 670
Gorosabel, J., et al. 2005, A&A, in press (astro-ph/0507488)
Granot, J., Nakar, E., & Piran, T. 2003, Nature, 426, 138
Granot, J., Panaitescu, A., Kumar, P., &Woosley, S. E. 2002, ApJ, 570, L61
Granot, J., Ramirez-Ruiz, E., & Loeb, A. 2005, ApJ, 618, 413
Greiner, J., et al. 2003a, GCN Circ. 2020, http://gcn.gsfc.nasa.gov/gcn3/2003/gc3-2003b, Nature, 426, 157

Hjorth, J. J., et al. 2003, Nature, 423, 847
Huang, Y. F., & Cheng, K. S. 2003, MNRAS, 341, 263
Huang, Y. F., Dai, Z. G., & Lu, T. 1999, MNRAS, 309, 513

Huang, Y. F., Dai, Z. G., & Lu, T. 2000b, ApJ, 543, 90
Huang, Y. F., Wu, X. F., Dai, Z. G., Ma, H. T., & Lu, T. 2004, ApJ, 605, 300
King, A., et al. 2005, ApJ, 630, L113
Kumar, P., & Granot, J. 2003, ApJ, 591, 1075
Kumar, P., & Piran, T. 2000, ApJ, 532, 286

Lazzati, D., Rossi, E., Covino, S., Ghisellini, G., & Malesani, D. 2002, A&A, 396, L5
Lipkin, Y. M., et al. 2004, ApJ, 606, 381
Matheson, T., et al. 2003, ApJ, 599, 394

Mészáros P. 2002, ARA&A, 40, 137
Mészáros, P., Rees, M. J., & Wijers, R. 1998, ApJ, 499, 301

Moderski, R., Sikora, M., & Bulik, T. 2000, ApJ, 529, 151
Nakar, E., & Piran, T. 2003, ApJ, 598, 400
Oren, Y., Nakar, E., & Piran, T. 2004, MNRAS, 353, L35
Panaitescu, A., & Kumar, P. 2001, ApJ, 560, L49
Panaitescu, A., & Mészáros, P. 1998, ApJ, 493, L31

Piro, L. et al. 1998, A&A, 331, L41
Ramirez-Ruiz, E., Celotti, A., & Rees, M. J. 2002, MNRAS, 337, 1349
Rees, M. J., & Mészáros, P. 1998, ApJ, 496, L1
Resmi, L., et al. 2005, A&A, 440, 477
Ricker, G. R., et al. 2003, IAU Circ. 8101

Rossi, E., Lazzati, D., & Rees, M. J. 2002, MNRAS, 323, 945
Salmonson, J. D. 2003, ApJ, 592, 1002
Sari, R. 1998, ApJ, 494, L49
Sari, R., & Esin, A. A. 2001, ApJ, 548, 878
Sari, R., & Mészáros, P. 2000, ApJ, 535, L33

Stanek, K. Z., et al. 2003, ApJ, 591, L17
Tam, P. H., Pun, C. S. J., Huang, Y. F., & Cheng, K. S. 2005, NewA, 10, 535
Taylor, G. B., Momjian, E., Pihlstrom, Y., Ghosh, T., & Salter, C. 2005, ApJ, 626, 986

Uemura, M., et al. 2003, Nature, 423, 843
Vandensperk, R., et al. 2004, ApJ, 617, 1251
van Paradijs, J., Kouveliotou, C., & Wijers, R. 2000, ARA&A, 38, 379
Watson, D., et al. 2006, ApJL, in press (astro-ph/0509640)
Waxman, E. 1997, ApJ, 491, L19
Wei, D. M., & Lu, T. 2000a, A&A, 360, L13

Wu, X. F., Dai, Z. G., Huang, Y. F., & Lu, T. 2005, MNRAS, 357, 1197
Zeh, A., Klose, S., & Hartmann, D. H. 2004, ApJ, 609, 952
———. 2005, in Conf. Proc. of the 22nd Texas Symposium on Relativistic Astrophysics, ed. P. Chen, E. Bloom, G. Madejski, & V. Patrosian, eConf C041213, 2225
Zeh, A., Klose, S., & Kann, D. A. 2006, ApJ, 637, 889

Zhang, B., Dai, X., Lloyd-Ronning, N. M., & Mészáros, P. 2004a, ApJ, 601, L119
Zhang, B., & Mészáros, P. 2001, ApJ, 552, L35
———. 2002, ApJ, 566, 712
———. 2004, Int. J. Mod. Phys. A, 19, 2385
Zhang, W., Woosley, S. E., & Heger, A. 2004b, ApJ, 608, 365