Evolution of Mutational Landscape and Tumor Immune-Microenvironment in Liver Oligo-Metastatic Colorectal Cancer

Alessandro Ottaiano, Michele Caraglia, Annabella Di Mauro, Gerardo Botti, Angela Lombardi, Jerome Galon, Amalia Luce, Luigi D’Amore, Francesco Perri, Mariachiara Santorsola, Fabienne Hermitte, Giovanni Savarese, Fabiana Tatangelo, Vincenza Granata, Francesco Izzo, Andrea Belli, Stefania Scala, Paolo Delrio, Luisa Circelli and Guglielmo Nasti

Supplementary Materials:

Figure S1. Inclusion and exclusion criteria flow-chart for patients’ selection.
Figure S2. Clinical courses of group A and group B patients.

Figure S3. Representative model showing divergent mutational and immunologic dynamics between oligo- and poly-metastatic colorectal cancer.
Table S1. List of genes mutations gained by liver metastases (all coding variants).

Patient	Mutated genes	Role	AMP/ACMG prioritization	ClinVar ID	
Group A					
PAT1	*PRKDC*	p.Gln281His8:g.48855892C>A	DNA repair and recombination	Tier 4	NR
	ACVR1B	12:g.52374752C>T (SAV)	Proliferation, differentiation	Tier 4	NR
	ALK	p.Ala96Thr2:g.30143240C>T	Proliferation, differentiation	Tier 3	451139
	CREBBP	p.Pro1983Thr16:g.3779101G>T	Transcriptional coactivation	Tier 3	NR
	DNMT3B	p.Gly76Arg20:g.31372585G>A	Epigenetic modifications	Tier 3	NR
	FAS	p.Cys135ValfsTer5210:g.90768707CT>C	Programmed cell death	Tier 4	NR
	FGF2	p.Asp179ArgfsTer54:g.123748460A>AC	Proliferation, angiogenesis	Tier 4	NR
	IFNGR1	p.Pro431Ser6:g.137519347G>A	Immune response	Tier 4	NR
	IRF2	p.Gly270Cys4g.185310154C>A	Transcription factor	Tier 4	NR
	KEL	p.Arg180His7:g.142655047C>T	Zinc endopeptidase	Tier 4	NR
	MDC1	p.Arg1933Gln6:g.30670948C>T	DNA repair	Tier 4	NR
	INSR	p.Ala2Gly19:g.7293898G>C	Glucose homeostasis	Tier 4	190228
	NUP93	p.Gln813Ter16:g.56878498C>T	Programmed cell death	Tier 4	NR
	SOX17	p.Arg142Cys8:g.55371734C>T	Transcription factor	Tier 3	NR
PAT2	*IFNGR1*	p.Pro431Ser6:g.137519347G>A	Immune response	Tier 4	NR
	IRF2	p.Gly270Cys4g.185310154C>A	Transcription factor	Tier 4	NR
	KEL	p.Arg180His7:g.142655047C>T	Zinc endopeptidase	Tier 4	NR
	MDC1	p.Arg1933Gln6:g.30670948C>T	DNA repair	Tier 4	NR
	INSR	p.Ala2Gly19:g.7293898G>C	Glucose homeostasis	Tier 4	190228
	NUP93	p.Gln813Ter16:g.56878498C>T	Programmed cell death	Tier 4	NR
	SOX17	p.Arg142Cys8:g.55371734C>T	Transcription factor	Tier 3	NR
Group B					
PAT3	*APC*	p.Glu1309AsfsTer45:g.11217521TAAAG>T	Tumor suppressor gene	Tier 3	15855
	HGF	p.Pro325Thr7:g.81358988G>T	Proliferation, differentiation, cell motility	Tier 3	NR
	MLLT3	p.Ser390_Ser391del9:g.20365693AAAGCTGG>A	Transcription factor	Tier 3	NR
	ESR1	p.Lys180Arg6:g.152163818A>G	Transcription factor	Tier 3	NR
Group C					
PAT4	*H3F3C*	p.Arg18Gly12:g.31945049G>C	Proliferation	Tier 4	NR
	INSR	p.Arg399Gln19:g.7172373C>T	Glucose homeostasis	Tier 3	NR
	KRAS	p.Gly12Cys12:g.25398285C>A	Proliferation	Tier 2	27617
	PIK3CA	p.Glu545Lys3:g.178936091G>A	Proliferation, differentiation	Tier 2	28694
	ROS1	p.Lys1766Tyr6:g.11765059TTT>TATA	Proliferation	Tier 3	NR
PAT5	*PIK3CA*	p.Met1043Ile3:g.178952074C>T	Proliferation	Tier 2	173901
Gene	Mutation Description	Function	Tier	NR	
----------	--	-----------------------------------	------	------	
SMAD4	p.Gln256Ter18:g.48584593C>T	Tumor suppressor gene	Tier 3	NR	
ARID1A	p.Pro1619GlnfsTer71:g.27101569TC>T	Transcription regulation	Tier 3	NR	
B2M	p.Ser16AlafsTer2715:g.45003785CTCTT>C	Immune response	Tier 4	NR	
BRAF	p.Pro403LeufsTer87:g.140482926AG>A	Proliferation, differentiation	Tier 3	NR	
CDK12	p.Gly1461AlafsTer3817:g.37687471TG>T	Proliferation	Tier 3	NR	
DNMT3B	p.Leu454SerfsTer13620:g.31384650AG>A	Epigenetic modifications	Tier 3	138801	
EPHA3	p.Met726CysfsTer53:g.89480334TG>T	Proliferation, differentiation	Tier 3	NR	
ERBB3	p.Arg1080ValfsTer2212:g.56494876GC>G	Proliferation, differentiation	Tier 3	NR	
FGF2	p.Ala212Val4:g.123797533C>T	Proliferation, angiogenesis	Tier 4	NR	
GRM3	p.Arg59Ter7:g.86394636C>T	Proliferation	Tier 4	NR	
JAK2	p.Leu309Arg9:g.5054874T>G	Immune response	Tier 3	NR	
LAMP1	p.Leu276ArgfsTer2113:g.113974735CTG>C	Migration and angiogenesis	Tier 4	NR	
NAB2	p.Pro211LeufsTer5812:g.574854499TC>T	Transcription regulation	Tier 4	NR	
NRG1	p.Asp202Asn8:g.31498104G>A	Proliferation, differentiation	Tier 4	NR	
NOTCH3	p.Gly2035ValfsTer5019:g.15272336CG>C	Proliferation, differentiation	Tier 3	NR	
PIK3CA	p.Arg88Gln 3:g.178916876G>A	Proliferation	Tier 3	362928	

SAV: splice acceptor variant
Table S2. Results of studies reporting mutational evolution of matched primary/secondary lesions in poly-metastatic CRC. *when the data were not clearly reported they were derived from Venn Diagrams or descriptive tables.

Author	Year	No. of Paired Samples (PT/MT)	Patients’ Characteristics at Diagnosis	Site of Metastases	NGS Platform	Genetic Sharing PT/MT (Global Concordance)	Four Most Frequent and Shared Mutations	Unshared Altered Genes in PT (Found in Primary only)	Unshared Altered Genes in MT (Found in Metastasis only)	TMB
Brannon AR et al.	2014	69	Four pts stage II, 3 stage III, 62 stage IV. Seventy-five percent of metastases were synchronous. Allowed multiple chemotherapeutic lines. Thirty pts were chemonaive.	Liver (only two ovary).	Illumina, HiSeq 2000.	79%	APC, ASXL1, BAP1, CARD11, CBL, CEBPA, EPHA3, EPHA6, EPHA7, EPHB1, ERBB2, ERBB4, FLT1, FOXL2, GRIN2A, KDM6A, KDR, LGR6, MDM4, MIF, NFkB2, NOTCH3, PBRM1, PDGFRB, PIK3CA, PIK3CD, PIK3CG, SMAD4, STK11, TET1, TP53, TSHR.	ALK, APC, ASXL1, BAP1, CARD11, CBL, CEBPA, EPHA3, EPHA6, EPHA7, EPHB1, ERBB2, ERBB4, FLT1, FOXL2, GRIN2A, KDM6A, KDR, LGR6, MDM4, MIF, NFkB2, NOTCH3, PBRM1, PDGFRB, PIK3CA, PIK3CD, PIK3CG, SMAD4, STK11, TET1, TP53, TSHR.	Not reported	
Lee SY et al.	2014	15	Stage IV. 6 pts had single liver metastasis. Allowed multiple chemotherapeutic lines.	Liver.	Illumina, HiSeq 2000.	*Mutational concordance showed only for each genes: APC: 100% TP53: 70% KRAS: 100% SMAD4: 75%.	APC, TP53, KRAS, SMAD4, APC and KRAS mutations were ever concordant between PT and MT.	BRAF, CTNNB1, FBXW7, PIK3R1, TP53, SOX9.	ATR, BRAF, CDC42BPG, FBXW7, FLT4, KDR, PIK3CG, RBI, SMAD4, SOX9.	Not reported
Author	Year	Stage	Metastases	Genes Mutated	Concordance	Genes Not Reported				
-----------------	------	-------	---------------	---	-------------	--------------------				
Kim R et al.	2015	IV	Liver, lungs, lymphnodes, ovary	APC and TP53 found concordant in 10/19 pairs. Kras ever concordant (9/19 pts). PI3K ever concordant (3/19 pts).	93.5%	ABCA3, ADAMTS20, APC, BRCA2, CX3CR1, DGBK, ERBB4, FGFR3, GNA11, HSP90AB1, ITGA10, ITGAL, JAK1, LRP1B, MACF1, MAP5K, MAGI2, MARK1, NTRK2, PARP14, PIK3CG, RASA1, ROBO1, SMAD2, SMAD3, SMAD4, TEX14, TNKS, TP53, TTN, WNT2, ZNF217, ZNF831.				
Vignot S et al.	2015	IV	Multiple sites. Only local (1 pt), only peritoneum (1 pt).	APC, TP53, Kras, and SMAD4 were the most frequent mutated genes. Mutated APC had a concordance of 100%. ALK, BRCA2, GNAS, NF1, PIK3CG, RICTOR, STK11, TNKS.	78%	BRCA2, CDH2, CDKN2A, EP HB1, GLUCY1A2, PIK3CG, RB1, RET, SMO.				
Kovaleva V et al.	2016	IV	Liver and lungs.	TP53, APC, Kras, SMAD4. ABL1, ATM, BRAF, EGFR, ERBB4, FBXW7, FGFR3, GNA11, ABL2, AKT1, ALK, ATM, BRAF, CDH1, CDK2A2, CSF1R, CTNNB1.	*From 0 to 100% (median 8.5%).	Not reported				
metastases. Allowed multiple chemotherapeutic lines.

| MiSeq (Illumina) | GNAQ, HRAS, JAK3, KDR, KIT, MET, NOTCH1, NRAS, PDGFRA, PIK3CA, PTEN, RB1, RET, SMAD4, STK11, TP53, VHL. | EGFR, ERBB2, ERBB4, FBXW7, FGFR2, FGFR3, FLT3, GNA11, GNAQ, GNAS, HNF1A, HRAS, IDH1, JAK3, KDR, KIT, KRAS, MET, MLH1, MPL, NOTCH1, NPM1, NRAS, PDGFRA, PIK3CA, PTEN, PTPN11, RB1, RET, SMAD4, SMARCB1, SMO, SRC, STK11, TP53, VHL. |
