Review

Determinants of Disuse-Induced Skeletal Muscle Atrophy: Exercise and Nutrition Countermeasures to Prevent Protein Loss

Gustavo BAJOTTO and Yoshiharu SHIMOMURA*

Department of Materials Science and Engineering, Shikumi College, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466–8555, Japan

(Received April 20, 2006)

Summary Muscle atrophy results from a variety of conditions such as disease states, neuromuscular injuries, disuse, and aging. Absence of gravitational loading during spaceflight or long-term bed rest predisposes humans to undergo substantial loss of muscle mass and, consequently, become unfit and/or unhealthy. Disuse- or inactivity-induced skeletal muscle protein loss takes place by differential modulation of proteolytic and synthetic systems. Transcriptional, translational, and posttranslational events are involved in the regulation of protein synthesis and degradation in myofibers, and these regulatory events are known to be responsive to contractile activity. However, regardless of the numerous studies which have been performed, the intracellular signals that mediate skeletal muscle wasting due to muscular disuse are not completely comprehended. Understanding the triggers of atrophy and the mechanisms that regulate protein loss in unloaded muscles may lead to the development of effective countermeasures such as exercise and dietary intervention. The objective of the present review is to provide a window into the molecular processes that underlie skeletal muscle remodeling and to examine what we know about exercise and nutrition countermeasures designed to minimize muscle atrophy.

Key Words Skeletal muscle disuse atrophy, microgravity, hindlimb suspension, protein synthesis and degradation, exercise and nutrition countermeasures

Because skeletal muscle is the most abundant tissue of the human body, we may hypothesize that decreases in its mass possibly will profoundly impact the whole-body metabolism and ultimately lead to the development of lifestyle-related diseases. In addition, muscle deconditioning (reduced strength, abnormal reflex patterns, increased fatigability) could limit the ability of astronauts to work in space and/or to rapidly egress the spacecraft in an emergency landing (1). Even though various functional and morphological alterations are noticeable in inactive muscles, decreased protein content has been regarded as the hallmark of skeletal muscle atrophy. Muscle protein can be either gained or lost by relative changes in protein synthesis and degradation rates, which are known to be modulated by contractile activity. Thus, understanding about the molecular regulators of protein turnover during different mechanical loading conditions and their response to specific treatments leads to the likelihood of developing effective countermeasures for preventing disuse-induced muscle wasting.

This article provides a review of muscular adaptations to disuse, with emphasis on protein kinetics. We describe first the general aspects of muscle wasting with regard to exposure to actual or ground-based, simulated microgravity and some of the most significant findings that provide evidence for a close connection between skeletal muscle plasticity and protein metabolism. Next, we present a review of the literature in which results of measurements of protein synthesis/degradation rates during unloading are available and discuss molecular signaling pathways involved in the regulation of protein turnover in inactive muscles. Following that, we focus on the impact of muscle reloading on protein kinetics and then discuss potentially effective countermeasure procedures. Finally, a few lines are devoted to outline our view of future directions for investigations in this field.

1) Overview

1.1) Microgravity exposure and skeletal muscle atrophy

Skeletal muscle atrophy is known to occur as a result of diseases (e.g., diabetes mellitus, cancer, renal failure), neural injuries, aging (sarcopenia), starvation, and lack of use (e.g., gravitational unloading, limb casting, long-term bed rest). In particular, disuse-induced atrophy became the focus of attention after the Skylab missions of the mid-1970s (2, 3), because morphological and physiological adaptations of skeletal muscles to microgravity were evident during long-term spaceflights and were recognized to endanger the well-being of astronauts (cosmonauts) as well as the successful completion of longer space missions (4). Therefore, studies on the cellular and molecular mechanisms that regulate such adaptations and on potentially effective counter-
measures against skeletal muscle wasting/weakening were started. However, because most space-related life science programs are expensive and time-consuming, requiring international cooperation and resources with trans-disciplinary expertise (5), several ground-based models of skeletal muscle disuse have been developed for both humans and animals.

1.2) Ground-based models

Basically, the most used ground-based models to simulate microgravity conditions in humans are bed rest (with head-down tilt or not), joint immobilization, and unilateral lower limb suspension (6). For animals, especially rats and mice, hindlimb suspension (7, 8), joint immobilization (9, 10), tenotomy (11), denervation (12), and spinal cord transection (13, 14) are well-known methods to induce muscle atrophy. Although all of these models effectively bring about skeletal muscle wasting, chiefly in slow-twitch muscles such as the soleus (9, 15), their impact on muscle fibers occurs with different degrees of severity and/or rapidity (16). Rodent hindlimb suspension by tail-casting/harnessing, one model that removes the weight-bearing function of the hindlimbs, has relatively easy procedures and mimics actual spacecraft with regard to its effect on postural/antigravitational muscles without the need of immobilizing joints or transecting nerves or tendons. Therefore, this model has been used in a countless number of studies and, for that reason, a large amount of data is available.

1.3) Skeletal muscle adaptations to inactivity

Regardless of the inciting event, skeletal muscle atrophy is characterized by a decrease in protein content, fiber diameter, force production, and fatigue resistance (17). Reduced mass and cross-sectional area of atrophied muscles, loss of thin filaments (18, 19), and transitions in the myofibrillar type (20–22) are also responsible for alterations in other functional properties such as tetanic tension and shortening velocity (23–25). Issues related to structural and functional adaptations of skeletal muscles to inactivity or spaceflight are well documented (1, 26–30) and therefore are not within the scope of the present review.

Marked decreases in absolute and relative protein contents of skeletal muscles in early stages of disuse (15, 31, 32) is one of the most significant adaptations of this tissue to reduced tension, resulting in fiber shrinking and weakening. Disuse-induced skeletal muscle atrophy is accompanied by a whole-body negative nitrogen balance in humans during spaceflight (33–35) or bed rest (36–38). In addition, hindlimb suspension or immobilization for 7 d significantly decreased the total RNA content and the α-actin and cytochrome c mRNA expression in the muscles of rats (39). Moreover, other studies also revealed that the RNA-to-DNA ratio in atrophic muscles decreases considerably in rats (32, 40, 41) and humans (42), indicating reduced capacity for protein synthesis. Thus, it can be deduced that changes in protein turnover (i.e., concomitant upregulation of protein degradation and downregulation of protein synthesis) in myofibers is one of the key mechanisms that orchestrate adaptations of skeletal muscle to unweighting. However, the hormonal and molecular regulators that act in response to weightlessness or unloading, and ultimately bring about skeletal muscle wasting, are not fully understood.

2) Disuse-Induced Adjustments in Skeletal Muscle Protein Turnover

Various simulation models for microgravity investigations have been reported to promote protein breakdown and/or reduce the rate of protein synthesis in skeletal muscles (Table 1). It is noticeable the great number of rat studies which were performed using the hindlimb suspension model of disuse (thus, the results from this model will be focused on in our discussion). In addition, it is apparent that the predominantly slow-twitch oxidative soleus is one of the ankle plantarflexors muscles most affected by unloading (and therefore most studied), with protein synthesis rates reducing to levels less than 50% and protein degradation rates increasing to levels more than 150% of those of controls. Along with its unique fiber phenotype, this susceptibility of the soleus may be due to its function as an anti-gravitational muscle, which becomes tensed for the sole fact that the ankle is dorsiflexed, when the limb is weight-bearing (61). The importance of muscle shortening and stretching during unloading for modulation of protein turnover and muscle mass has been demonstrated elsewhere (45, 46). Furthermore, the data summarized in Table 1 illustrate many discrepancies concerning the levels at which unweighting influences protein turnover in muscles. Added to varied ages (i.e., growth rate influence), gender difference, and disparate disuse durations (from 2 to 28 d), these differences might be derived from diverse nutritional states of the animals or subjects and from variations in the unloading techniques and analyzing methodologies (e.g., assessment in vivo or in vitro, direct measurement or calculated estimation). Nevertheless, the cited studies point out the important role of protein turnover regulation in triggering lean body mass lessening under conditions of mechanical inactivity or unloaded muscle contractions.

Notwithstanding human studies which have found that inactivity brings about a negative nitrogen balance, as mentioned above, increases in protein degradation rates were not apparent in humans during unweighting challenges (Table 1). On the contrary, protein breakdown rates in humans have been shown to have a tendency to decrease in response to unweighting (37, 60), probably as a compensatory mechanism for decreased protein synthesis rates (protein deficit). Furthermore, neither spaceflight nor bed rest induces changes in the urinary 3-methylhistidine, a standard assessment of myofibrillar protein breakdown (38). Therefore, we may conclude that, in humans, disuse-induced skeletal muscle wasting is chiefly determined by downregulation of protein synthesis (36, 37, 62), whereas in animals proteolysis may be a greater contributor to protein loss (63). In relation to the time course response of the soleus muscle of rats, the estima-
Table 1. Disuse effects on skeletal muscle protein turnover (synthesis and degradation).

Study	Disuse model	Duration (d)	Muscle	Synthesis (% control)	Degradation (% control)	Reference
Rat	TN	3	Gas	92*; 78*	186*; 158*	Goldspink et al. 1983 (43)
	DN	2	EDL	12*; 5*	16*; 3*	Tischler et al. 1990 (49)
	HS	6	Sol	76; 6*	153; 8*	Jaspers et al. 1985 (44)
		3	Sol	79; 44*	208; 6*	Loughna et al. 1986 (45)
		6	Sol	83*	96*	Jaspers et al. 1988 (46)
		7	Pla	58; 53*		Thomason et al. 1989 (31)
			Gas	65*; 46*		
	DN	3	Sol	125*	183*	Furuno et al. 1990 (47)
		10	Gas	80*	131*	Tischler et al. 1990 (48)
		3	Sol	113*	141*	
		5	Gas	47*; 33*	ND	Linderman et al. 1994 (52)
		2, 3	Sol	~42*	~217*	Tischler 1994 (53)
		21	TA	75*; 68*	ND	Taillandier et al. 1996 (54)
		9	Sol	ND	166*	Taillandier et al. 1996 (55)
		10	Sol	~73*	~177*	Zdanowicz and Teichberg 2003 (57)
		4	Sol	~65*		Fluckey et al. 2004 (58)
Human	BR		Leg	53*	71*	Ferrando et al. 1996 (37)
	ULLU	10	LQuad	90*	ND	Garrain et al. 1998 (42)
	BR	14	WB	82*	81*	Stein et al. 2003 (60)

TN, tenotomy; DN, denervation; HS, hindlimb suspension; BR, bed rest; ULLU, unilateral lower limb unloading; Gas, gastrocnemius muscle; EDL, extensor digitorum longus muscle; Sol, soleus muscle; Pla, plantaris muscle; TA, tibialis anterior muscle; LQuad, lateral quadriceps femoris muscle; WB, whole body; ND, not determined; *difference not statistically significant; *fractional rate of protein synthesis (%/d); †absolute rate of protein synthesized or degraded (mg/d); ‡rate of protein breakdown calculated as the difference between synthesis and growth (%/d); §measurement in vitro (nmol of tyrosine incorporated or released/mg muscle/time); ¶protein synthesis or degradation rate in isolated myofibril; †measurement in vitro (nmol of phenylalanine incorporated/g muscle/h); # rate of whole body protein synthesis or breakdown (g protein/kg/d).

3) Regulatory Pathways

Skeletal muscle protein synthesis and degradation processes are regulated by intricate signaling pathways that turn activated or inactivated in response to stimuli such as nutritional molecules, hormones, specific drugs, and mechanical tension. To date, many details about these pathways have been discovered and an appreciable number of excellent reviews are available (66–74). Thus, we will abstain from describing full signaling cascades and will focus the present review on triggers of muscle atrophy and countermeasures.
expression patterns in skeletal muscle during disuse atrophy (75–79).

3.1) Regulation of protein synthesis

Specific transcriptional, translational, and posttranslational events within muscle fibers are understood to control the rates at which the protein synthetic machinery works with the purpose of building components necessary for the execution of specialized functions such as contraction. In this context, the mammalian target of rapamycin (mTOR) signaling pathway has been recognized to play a central role in the regulation of intracellular protein synthesis. mTOR mediates activation of protein synthesis by catalyzing phosphorylation of key molecules that directly or indirectly regulate the process of mRNA translation such as eukaryotic initiation factor 4E (eIF4E), and increases in the phosphorylation of 4E-binding proteins (4E-BP) associated with eukaryotic initiation factor 4E-binding proteins (4E-BP) and 70-kDa ribosomal protein S6 kinases (S6K). Besides, it has been well established that mTOR senses extracellular stimuli such as growth factors and nutrients (74). Therefore, skeletal muscle growth is thought to be chiefly modulated through activation of the downstream effectors of mTOR.

Modulation of the Ser2448 site in mTOR by phosphorylation/dephosphorylation has an important role in the control of protein synthesis in skeletal muscle. Plantaris muscle overloading by synergist muscle ablation increases mTOR Ser2448 phosphorylation and promotes hypertrophy of the plantaris muscle in rats; in contrast, gastrocnemius muscle unloading by hindlimb suspension decreases the phosphorylation levels of mTOR Ser2448 and promotes atrophy of the muscle, effects fully reversible by reloading (80). Furthermore, similar experimental treatments have been reported to produce analogous outcomes for the serine/threonine kinase Akt, a well known component of the insulin signaling pathway and an upstream of mTOR responsible for Ser2448 phosphorylation (81).

Correspondingly, soleus muscle atrophy induced by hindlimb suspension is associated with a significant decrease in the phosphorylation of eukaryotic elongation factor 2 (eEF2) Thr56 and S6K (82), whereas hypertrophy of the rat ankle dorsiflexor muscles (extensor digitorum longus and tibialis anterior) following high-resistance eccentric (lengthening) contractions is associated with long-lasting elevations in the rates of translation initiation and marked increases in S6K phosphorylation (83). Effects of eccentric contractions may be partially triggered by stretch-activated channels (84). In addition, compensatory hypertrophy of the rat plantaris muscle significantly correlates with increases in S6K activity, decreases in the amount of the translational repressor protein 4E-BP1 associated with eukaryotic initiation factor 4E (eIF4E), and increases in the amount of eIF4G bound to eIF4E, effects completely abolishable by daily injections of rapamycin (81). On the other hand, unloading-induced atrophy of the rat gastrocnemius muscle is associated with decreases in phosphorylated S6K and increases in the amount of 4E-BP1 bound to eIF4E, effects reversible by several days of recovery (81).

Hence, the abovementioned findings indicate that 1) disuse-induced skeletal muscle reduced protein synthesis is closely related with posttranslational modification (i.e., inactivation) of initiation and elongation factors downstream of Akt/mTOR and 2) a degree of muscle activity or mechanical loading is crucial for maintenance of skeletal muscle mass, through sustained activation of the translational machinery. Evidently, the contribution of decreased availability of specific mRNAs (i.e., transcriptional regulation) to the atrophic response of muscles to unloading should not be overlooked (85). Recently, we have found that soleus muscles unloaded for a few days had significantly lower amounts of S6K1 protein than controls, indicating transcriptional regulation of this kinase during disuse (unpublished data). Further research is needed to analyze whether the aforementioned findings are reproducible in human skeletal muscle and whether actual spaceflight induces the same molecular adaptations in this tissue.

3.2) Regulation of protein degradation

At least half of total muscle protein is myofibrillar protein (17), and this fraction is broken down more rapidly than other proteins during disuse-induced atrophy (51). The majority of studies regarding skeletal muscle protein degradation during disuse atrophy have focused on three primary proteolytic pathways: the cytosolic Ca2+-dependent proteolysis (calpains), lysosomal proteolysis (cathepsins), and ATP-dependent proteolysis (ubiquitin-proteasome degradation). Nevertheless, other degradative processes including intracellular and extracellular protease cascades (serine proteases and matrix metalloproteinases) and apoptosis (caspases) are all likely involved in muscle atrophy, though with unclear extents of involvement (86, 87). Recent investigations have indicated that the three primary proteolytic systems may work as partners during muscle proteolysis (17, 55). The ubiquitin-proteasome pathway appears responsible for degradation of the bulk of proteins, mainly myofibrillar proteins, in conditions of decreased muscle use (55, 88, 89). However, there is an extensive consensus that intact myofibrillar proteins cannot be degraded by the proteasome (90); consequently, the initial cleavage of myofibrillar proteins requires other proteases (87). So far, a vast number of atrophy-protein degradation-related studies have been done and, given that our objective is to review the impact of conditions comparable to actual space travel on unweighted muscles, here we shall not discuss the literature that describes results of experiments in which the factor innervation is not present (39).

3.2.1) Calcium-dependent proteolysis. The rate-limiting step in the degradation of myofibrillar proteins is their dissociation from the contractile filaments, before ubiquitin-dependent proteolysis takes place (90). Therefore, activation of calpains, cathepsins, and several other proteases (87) appears to represent an early rate-limiting step in myofibrillar protein degradation during unloading-induced skeletal muscle wasting. Calcium loading rates (91) and mRNA and protein levels of the
fast Ca\(^{2+}\) pump (92) and the calcium-binding protein calsequestrin (93) in the sarcoplasmic reticulum increase significantly in soleus muscles during hindlimb suspension, probably in response to oxidative stress-induced excess of intracellular calcium. Atrophying muscles have been found to have markedly increased calcium-dependent thiol protease (calpain) activity both in vivo and in vitro (48, 55, 94) along with enhanced m-calpain mRNA levels (55), suggesting transcriptional regulation of this enzyme. In disagreement with these data, a more recent investigation has shown that neither actual spaceflight nor simulated microgravity induces changes in the message levels of calpains in atrophic gastrocnemius muscles (89). Thus, it remains uncertain whether a muscle-specific regulation of these enzymes in response to unloading exists or not. Nevertheless, because transgenic mice with muscle-specific overexpression of calpastatin (an endogenous inhibitor of calpains) had significantly less (30%) muscle atrophy than non-transgenic animals during a 10-d unloading period (95), we may conclude that calpains are important triggers of skeletal muscle proteolysis degradation during gravitational unloading.

3.2.2) Lysosomal proteolysis. Notwithstanding lysosomal proteolysis having been suggested to play a minor role in atrophy caused by unweighting (48), marked increases in the activity and message of various isoforms of cathepsins in atrophic muscles have been reported (55, 89). Among these isoforms, cathepsin L appears to be the most responsive to unloaded contractions or weightlessness. However, inhibition of cathepsin B+L activity does not prevent disuse-induced myosin heavy chain fragmentation or muscle wasting (89). Cathepsins do not degrade cytosolic proteins; the major role of cathepsins is to degrade membrane proteins, including receptors, ligands, channels, and transporters (17). Thus, added to the fact that unloaded muscles are likely to undergo oxidative stress or altered calcium homeostasis (93, 96), this notion points toward a potential involvement of lysosomal activity with oxidative stress-induced myocyte apoptotic feedback (97). Oxidative stress occurs when antioxidant protein and scavenger protection are overwhelmed by oxidant production: increases in total hydroperoxides concurrent with decreases in nonenzymatic antioxidant scavenging capacity and activities of antioxidant enzymes such as catalase and glutathione peroxidase in unloaded muscles (96) may lead to increased apoptotic signaling, perhaps connected with increased lysosomal activity. Experimental evidence is needed to confirm or refute this hypothesis, and additional studies are required to clarify the genetic and molecular features of lysosomal-mediated protein cleavage in response to modified functional demands in muscles. Another issue that calls for further experimentation is the influence of muscle unloading on the interaction between lysosomal and ubiquitin-proteasomal mechanisms through differential ubiquitination of target proteins (17, 98).

3.2.3) ATP-dependent ubiquitin-proteasome proteolysis. Together, the lysosomal and Ca\(^{2+}\)-dependent proteolytic pathways appear to account for not as much as 18% of total proteolysis in non-weight-bearing soleus muscles of rats (55). The ATP-dependent ubiquitin-proteasome system, therefore, accounts for the major part of myofibrillar protein degradation resulting from skeletal muscle disuse. According to several studies, the amount of ubiquitin-protein conjugates increases significantly in unloaded muscles during spaceflight (89), simulated microgravity (59, 89, 99), and immobilization (100). This increase in ubiquitinated proteins, which appears to be restricted to the myofibrillar fraction (101), is associated with marked increases in the mRNA expression of ubiquitin, 14-kDa ubiquitin-conjugating enzyme, and C2 and C9 subunits of the 20S proteasome (55, 89, 99). In addition, rat hindlimb joint immobilization (100, 102), hindlimb suspension (79, 102, 103), and spaceflight (79) have been shown to induce several fold increments in the mRNA content of the gastrocnemius muscle atrophy F-box (MAFbx/Atrogin-1 and muscle ring finger 1 (MuRF1), two recently discovered striated muscle-specific ubiquitin ligases (102, 104) that have been recognized very responsive to mechanical loading changes in skeletal muscle and rate-limiting of atrophy (i.e., knock-out mice for these genes are partially resistant to muscle atrophy). Message levels of MAFbx/Atrogin-1 and MuRF1 also increase significantly in soleus muscles after 2-wk hindlimb unloading (99). Recently, we have found that the message level of MAFbx/Atrogin-1 in soleus muscles increases about 3 fold following a short period of 36 h unloading (unpublished data). Furthermore, another ubiquitin-protein ligase, the neuronal precursor cell-expressed developmentally down-regulated-4 (Nedd4; which is implicated in targeting membrane proteins), has been reported to be upregulated similarly to MAFbx/Atrogin-1 in soleus muscles of rats after unweighting (77, 99). Overall, these results indicate that the components of the ubiquitin-proteasome pathway in skeletal muscle are very sensitive to disuse and are regulated transcriptionally. Thus, coordinated activation of the major proteolytic pathways, principally the ubiquitin-proteasome system, appears to be the most important determinant of muscle atrophy in animals.

3.3) Other potentially involved regulators

3.3.1) Insulin-signaling pathway. Decreased functional demand in skeletal muscles induces regulation of other intracellular signaling molecules and/or pathways that may be involved in the atrophic response. Substrate utilization for energy production in muscles of rats under conditions of actual (105) or simulated (106, 107) microgravity shifts away from lipid and towards glucose, with concomitant suppression of lipoprotein lipase activity (108). This change is supported by the findings that the abundance of insulin receptors (109) and the amount of the glucose transporter 4 (110, 111) in rat soleus muscles augment markedly in response to mechanical unloading. Conversely, atrophied muscles have a decreased total amount of the B-subunit of the insulin receptor, suppressed Akt and glycogen synthase kinase-3β (GSK-3β) activities, and
increased levels of phosphorylated insulin receptor substrate-1 (IRS-1) Ser107 and c-jun NH2-terminal kinase (JNK) Thr183/Tyr185, indicating impaired insulin signaling and suggesting JNK-dependent phosphorylation of IRS-1 during muscle disuse (111). Other studies have also suggested insulin resistance in humans during bed rest (112) and in rats during hindlimb unloading (113) or immobilization (114). Moreover, spaceflight and ground-based models are known to induce a subclinical diabetogenic state in humans (115). However, atrophied muscles uptake glucose independent of insulin; probably stimulated by elevated activities of Erk and p38 (111). Thus, impaired insulin (and perhaps IGF-1) signaling in inactive muscles does not impede glucose uptake but may decrease the sensitivity of myofibers to the effects of insulin on suppressing net protein degradation (113) and enhancing protein synthesis through Akt/mTOR activation.

3.3.2) Apoptosis. The reduced number of myonuclei in spaceflown rats was suggested to be a contributing factor to the reduction in fiber size associated with chronic unloading of the musculature (116). Compared with muscles of weight-bearing animals, muscles of hindlimb suspended rats have a significantly decreased number of myonuclei (117) and markedly increased number of fibers containing morphologically abnormal nuclei and myonuclei demonstrating double-stranded DNA fragmentation, indicating that the apoptosis process is ongoing in unloaded muscles (118). In fact, a very recent study has found that the number of apoptotic nuclei increases several fold in unloaded soleus muscles (99). Besides, spaceflight (119, 120), muscle unloading following hyprophytropy (121), and also acute resistance exercise (122) induce accumulation of p53 protein, a tumor suppressor gene product, in skeletal muscles. The p53-mediated signal transduction pathway functions as a cell-cycle checkpoint that is activated during muscle inactivity are not intended to be conclusive data is currently available for inactivity-induced atrophy, further information about the potential connection between NF-κB activation and proteasome-dependent proteolysis can be found in another very recent review (63). Incidentally, an intriguing question is arises that is about the apparently contradictory functions of activated p53 and NF-κB pathways during muscle disuse: one may turn on proapoptotic factors (Bax) and the other may turn on anti-apoptotic factors (Bcl-2), respectively. What is the functional role of these two paradoxical regulations?

Figure 1 summarizes our current knowledge about the main intracellular pathways that mediate signaling during muscle disuse.

4) Reloading Effects on Protein Kinetics

4.1) Myofiber damage and recovery of muscle mass

The period of recovery from spaceflight is critical for the readaptation of several metabolic and physiologic
functions of the body to 1 g, including recuperation of the contractile capacity of the muscles and normalization of in-flight altered musculoskeletal protein turnover. Once humans start adventuring forth to the moon, Mars and beyond, they have to be able to successfully and rapidly adapt to different levels of gravity (60). But this is not an easy undertaking, particularly because landing is associated with a metabolic stress response (34) and reloading of atrophied muscles upon re-exposure to terrestrial gravity results in mechanical stress-induced structural lesions of myofibers (129, 130), particularly sarcomere damage (131), which is responsible for the delayed-onset muscle soreness experienced by astronauts upon returning to Earth (19). Furthermore, reloaded muscles of animals have significantly increased hydroperoxide levels (132) and undergo inflammation and superoxide-mediated membrane damage (133–135). To our knowledge, however, few studies have focused on the effects of reload on muscular protein kinetics in either humans or animals. In humans, decreased whole body protein synthesis rates and nitrogen retention tend to be improved in the early-recovery phase from bed rest (60) and subsequent to microgravity exposure (38). In animals, reloading or recovery from unweighting produces selective changes in the proteome (136) and markedly boosts the disuse-induced decreased RNA-to-DNA ratio (40), protein synthesis rate (137), and myofibril protein content (15) in soleus muscles. In addition, most of the genes downregulated and several genes upregulated during unloading return to basal levels within a few hours of recovery (78). These effects result in relatively rapid recovery of the fiber cross-sectional area (135, 138) and muscle mass (15, 136–141).

4.2 Reactivation of the protein synthetic machinery

As mentioned previously, reloading the hindlimbs of rats after several days of suspension produces significant increases in the gastrocnemius muscle Akt (81), mTOR (80), and S6K (81) phosphorylation levels, as well as marked decreases in the amount of 4E-BP1 bound to eIF4E (81). In addition, others have demonstrated that the downstream pathway of Akt, including ribosomal protein S6, is activated early in recovery from disuse muscle (soleus) atrophy, suggesting that the recovery of atrophied muscles is facilitated by increased mRNA translation during the early stages of resumption of loading (140). Moreover, another study concluded that a 2-wk recovery period from nonweight bearing significantly increases the activation levels of S6K and ribosomal protein S6 in medial gastrocnemius muscles of sham-operated (ovariectomy) rats, but does not influence appreciably the levels of phosphorylated Akt or mTOR in the same animals (141). Concerning these contradictory outcomes, our opinion is that different regulation feedbacks detected for different muscles during unloading (82) and greatly variable time-course regulatory responses of protein translation factors during reloading (139) should be carefully considered when analyzing the effects of disuse and recovery, respectively.

4.3 Role of the proteolytic systems

Despite its importance, until few years ago nothing was known about regulation of protein degradation after reloading of unweighted muscles. Taillandier et al. (137) demonstrated for the first time that protein degradation rates in soleus muscles of rats reloaded for 18 h remain significantly higher than in muscles of weight-bearing animals. This elevated rate of protein breakdown during early recovery was attributable to the activation of non-lysosomal and Ca2+-independent proteolysis (137), mRNA levels of ubiquitin, m-calpain, and C8 and C9 subunits of the 20S proteasome were markedly elevated at 18 h of reload, whereas cathepsin D and 14-kDa ubiquitin-conjugating enzyme mRNA levels were decreased, indicating early transcriptional control of proteolysis. Practically all of these adaptations were finished following 7 d of reloading; however protein synthesis was still elevated at this time point (137), most probably engaged in myofibril rebuilding. Therefore, the authors concluded that enhanced protein synthesis and breakdown are both necessary during recovery from atrophy and that non-coordinate regulation of proteolytic systems is presumably required to target specific classes of substrates (atrophy-specific protein isoforms, damaged proteins) for replacement and/or elimination. Further research is needed to make clear what proteins are most susceptible to targeting for degradation during reloading.

5) Countermeasures

Prevention of protein loss and concurrent lean body mass wasting during space missions is fundamental for avoidance of weakening or deconditioning. Prevention of skeletal muscle atrophy during prolonged inactivity is also important for decreasing time needed for readaptation. The effects of a variety of potential countermeasures have been tested and, in many cases, proved ineffective or unsatisfactorily helpful for counteracting disuse-induced muscle wasting. One example is antioxidant supplementation, which successfully increases the antioxidant capacity of unloaded muscles but does not prevent atrophy (142). Another example is administration of allopurinol, a xanthine oxidase inhibitor with antioxidant properties, which mitigates muscle contractile dysfunction caused by hindlimb unloading but does not inhibit muscle atrophy in mice (143). Intraperitoneal injection of calcium-binding agents (EDTA, EGTA) with the aim of preventing increases in the intrafibrillar calcium content and so the activation of Ca2+-dependent proteases (144, 145) in rats is an interesting approach, one, however with not so expressive effects. Another interesting alternative is heating, which proved useful to some extent during immobilization (146) or before hindlimb unweighting (147). Nonetheless, injection of a β-adrenergic agonist with anabolic effects, clenbuterol, has been suggested to be of benefit in attenuating muscle atrophy and dysfunction in hindlimb-suspended animals (148–150), at least in part through a muscle-specific inhibition of the ubiquitin-proteasome pathway (59). A positive feature of the lat-
Several hormones are known to have an influence on anabolic and catabolic pathways; and the mechanisms by which either thyroid deficiency or spaceflight impacts skeletal muscle growth in neonatal rats appear to have a common pathway involving the control of plasma and muscle IGF-1 concentrations (151). However, neither inhibition of glucocorticoids (53) nor overexpression of IGF-1 (152) attenuates unloading-induced muscle atrophy. In a more recent study, daily subcutaneous injections of the complex IGF-1/binding protein-3 during hindlimb suspension showed beneficial effects such as proteolysis inhibition and preservation of muscle protein content and mass (57). So far, however, the most promising countermeasures to offset muscle protein loss during inactivity are exercise (or periodic loading) and dietary supplementation. Further information can be found in an excellent review written some years ago (153).

5.1 Exercise intervention

Inactivity is a risk factor for metabolic diseases, and even non-vigorous exercise provides marked protection against disorders involving poor lipid metabolism (108). Thus, performing regular exercise during spaceflight or hospitalization is not just a way to preserve muscle mass, but a way to keep healthy. Motion is an important element for preventing muscle loss: however tensionless or unloaded contractions have no substantial effect on protein turnover and therefore do not differ significantly from absolute inactivity. Muscle tension is fundamental. Tension of unloaded muscles by stretching has been proven beneficial for preventing atrophy (24) and increasing rates of protein synthesis and decreasing rates of protein degradation in animals (45, 46, 154). Rat hindlimb plantar support, which maintains plantarflexor muscles tensed, is also effective to prevent some of the muscular alterations brought about by unloading (155). In addition, short-duration, periodic weight support (156–158) or centrifugation (158) and intermittent high-load exercise (159) performed during hindlimb unloading have shown positive effects on the mass of the antigravitational soleus muscle, with lesser effects on the gastrocnemius (159, 160). However, a combination of resistance exercise and growth hormone treatment increases myofibrillar protein synthesis and attenuates atrophy of unweighted fast-twitch skeletal muscles (52). Furthermore, exercise and growth hormone treatments have shown a strong interactive effect in maintaining the mass of unloaded muscles (161) and ameliorating the apoptosis associated with inactivity (118). Exercise is also required to potentiate the anabolic effect of insulin in unloaded muscles, which appears to be mediated independently of a rapamycin-sensitive pathway (58) and to involve a mitogen activated protein (MAP)-kinase signaling pathway (162).

A novel form of resistance exercise training using flywheel technology has been tested for its efficacy as a countermeasure to offset the loss of musculoskeletal mass during hindlimb suspension (56). A 3-d per week exercise training regimen using the flywheel apparatus significantly increased protein synthesis rates and attenuated disuse-induced loss of soleus muscle mass in adult rats (56). Therefore, maintenance of protein synthesis rates could be one mechanism whereby resistance training attenuates skeletal muscle atrophy following unweighting. However, the anabolic response to a single bout of contraction in aged animals is less than that seen in adult animals (163). In addition, an electric stimulation-based isometric resistance exercise performed during the initial stages of unloading failed to counteract skeletal muscle (gastrocnemius) atrophy; in that study, isometric resistance training was not sufficient to activate essential components of the synthetic machinery, but could fully blunt increases in mRNAs of genes such as MAFbx/Atrogin-1 and MuRF1 (103).

Furthermore, a flywheel-based resistance exercise regimen performed during hindlimb suspension has been reported to induce significant decreases in MAFbx/Atrogin-1 and MuRF1 mRNAs in atrophied muscles of rats, with no effect on Nedd4 or components of the 20S proteasome (99). Because unloading-induced activation of NF-κB can be reversed by 10 min of fatiguing exercise (124), we may infer that NF-κB is one of the underlying mechanisms of the effects of exercise.

Several models of resistance training devices using the flywheel ergometry principle have been developed for human use on the International Space Station or on space shuttles traveling on long-duration missions to other planets (164–167). Resistance exercise composed of maximal concentric and eccentric actions and performed every third day during middle- (166) and long-term (168) bed rest could prevent atrophy of knee extensors (quadriceps muscle) and attenuate atrophy of plantar flexors (triceps surae muscle group). Furthermore, unilateral knee extension resistance exercise performed during unilateral lower limb unloading was capable not only of offsetting atrophy but promoting marked hypertrophy of chronically unloaded muscles (169). In another study, a 2-mo bed rest with 10 h per day wearing an antigravity, elastic device that provided a modest but continuous resistance at the leg muscles was shown to prevent decreases in muscle fiber size and myonuclear domain (170). In addition, leg resistance exercise carried out every other day throughout a 2-wk bed rest challenge could counteract the decrease in muscle protein synthesis observed during strict inactivity (171), probably through blunting total RNA and mRNA deficits and improving IGF-1 signaling (172). Additional research is needed to ascertain the specific molecular determinants of human skeletal muscle plasticity during loading changes.

5.2 Dietary supplementation

Beyond its motile function, skeletal muscle in mammals serves as a protein reservoir that is mobilized in stressful states as a source of amino acids for energy metabolism (173). Therefore, muscle remodeling associated with disuse atrophy may imply decreased synthetic activity and increased recruitment of the pro-
Effects were in part accredited to enhanced positive increased non-oxidative leucine disappearance (i.e., vented increases in whole-body leucine oxidation, and kg body weight/d) improved nitrogen balance, pre-

these conflicting results.

could prevent loss of lean leg mass and stimulate net tion, essential amino acid and carbohydrate supple-

the overall musculature during weightlessness in rats protein diet is unlikely to have any beneficial effect on

thesis nor prevented the reduction in the fast-twitch tib-

despite of inducing increased protein synthesis rates, a high-protein (30%) diet had no beneficial effect in preventing soleus muscle atrophy in unloaded rats (177). In addition, the same diet neither sustained protein synthesis nor prevented the reduction in the fast-twitch tibialis anterior muscle growth, indicating that a high-protein diet is unlikely to have any beneficial effect on the overall musculature during weightlessness in rats (54). More research is required to clarify the reasons for these conflicting results.

In humans, increased dietary amount of protein (1 g/kg body weight/d) improved nitrogen balance, prevented increases in whole-body leucine oxidation, and increased non-oxidative leucine disappearance (i.e., increased protein synthesis) during bed rest, and these effects were in part accredited to enhanced positive action of insulin on protein metabolism (62). In addition, essential amino acid and carbohydrate supple-

during prolonged inactivity (28 d of bed rest) could prevent loss of lean leg mass and stimulate net muscle protein synthesis (178, 179). Moreover, dietary intake supplementation with 30 mmol/d each of the three branched-chain amino acids (BCAAs) during bed rest has been reported to improve nitrogen retention by increasing the accretion of amino acids in the tissue free amino acid pool, however with no significant influence on protein kinetics (60). Increased concentrations of skeletal muscle free BCAAs observed during unloading (42) and plasma BCAAs seen during exposure to micro-

gravity (180) suggest a protein catabolic state where protein degradation exceeds protein synthesis. Therefore, activation of the muscle synthetic machinery through intake of appropriate amounts of protein and carbohydrate, supplemented with essential amino acids such as leucine, one of the BCAAs with the strongest protein anabolic effect (181, 182), may be helpful for preventing disuse-induced skeletal muscle atrophy. Because the concentration of plasma BCAAs decreases significantly in the early-recovery phase from spaceflight (180), indicating deactivation of proteolytic pro-

cesses and reactivation of the protein synthetic machin-
ery, BCAA supplementation may be of particular help just before and immediately after landing.

BCAAs, especially leucine, function as nutritional signaling molecules in skeletal muscle. Translational control of protein synthesis (i.e., phosphorylation of 4E-BP1 and S6K1) in rat skeletal muscle by high doses of leucine administered by oral gavage ceases within 2 h (183, 184) and this transient effect may be sustained for longer periods when other essential amino acids are abundantly available (185). In addition, because the first two steps in BCAA catabolism are common to the three BCAAs (186) and are upregulated by increased plasma leucine concentrations (187), resulting in abnormally low levels of circulating iso-leucine and valine (183, 187), supplementation with leucine alone with the aim of preventing muscle protein loss during inactivity is not recommended. Continuous infusion of 10% Travasol, which contains the 9 essential plus 6 nonessential amino acids, has been reported to result in increased rates of mixed muscle protein synthesis in humans (188). Furthermore, infusion of essential amino acids suppresses muscle protein breakdown in hindlimb-immobilized rats (185). BCAA may be partic-

ularly beneficial for activating the protein synthetic machinery in skeletal muscle when supplemented before and after exercise (189, 190).

6) Perspectives

Perhaps, during space missions, there is nothing more discomforting for astronauts (cosmonauts) than seeing their physical capacity dwindling. Even short-duration spaceflight can result in significant muscle atrophy (191) and changes in myosin heavy chain iso-

form expression (192) in humans. Prevention of myo-

fibrillar protein wasting, which occurs as a consequence of muscle disuse, is crucial for the successful accomplishment of space-related missions and for a faster recovery after returning from space. This involves countermeasure actions such as periodic loading (e.g., flywheel-based resistance exercise) and dietary supple-

mentation intended to keep protein metabolic processes near basal levels. Supplementation with BCAAs, which may elicit several positive effects other than those men-
tioned above (193–196), and addition of anabolic agents (e.g., clenbuterol, growth hormone) and pro-
tease inhibitors such as Bowman-Birk (87) in the diet may be helpful. However, loaded contractions performed on a regular basis and improved heat and/or CO2 dissipation after exercise (35) should not be neglected.

Future investigations related to disuse-induced mus-

cle atrophy are supposed to focus on the molecular mechanisms that regulate protein kinetics in humans. In addition, further research is needed to make clear the precise pathways and transcription factors that regulate intracellular adaptations to loading changes. Finally, more experimentation is needed on the effects of different exercise protocols and diet regimens, as well as specific supplements, during unloading.

Acknowledgments

The present review was supported in part by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (17–05171).

REFERENCES

1) di Prampero PE, Narici MV. 2003. Muscles in micro-

gravity: from fibres to human motion. J Biomech 36:
skeletal muscle fibers after spaceflight. J Appl Physiol 88: 567–572.

20) Caiozzo VJ, Haddad F, Baker MJ, Herrick RE, Prietto N, Baldwin KM. 1996. Microgravity-induced transformations of myosin isoforms and contractile properties of skeletal muscle. J Appl Physiol 81: 123–132.

21) Caiozzo VJ, Baker MJ, McCue SA, Baldwin KM. 1997. Single-fiber and whole muscle analyses of MHC isoform plasticity: interaction between T3 and unloading. Am J Physiol 273: C944–C952.

22) Huckstorf BL, Scolum GR, Bain JL, Reiser PM, Sedlak FR, Wong-Riley MT, Riley DA. 2000. Effects of hindlimb unloading on neuromuscular development of neonatal rats. Brain Res Dev Brain Res 119: 169–178.

23) Fitts RH, Metzger JM, Riley DA, Unsworth BR. 1986. Models of disuse: a comparison of hindlimb suspension and immobilization. J Appl Physiol 60: 1946–1953.

24) Fulempin M, Mounier Y. 1998. Muscle atrophy associated with microgravity in rat: basic data for countermeasures. Acta Astronaut 42: 489–502.

25) Riley DA, Bain JL, Romatowski JG, Fitts RH. 2005. Skeletal muscle fiber atrophy: altered thin filament density changes slow fiber force and shortening velocity. Am J Physiol Cell Physiol 288: C360–C365.

26) Widrick JJ, Knuth ST, Norenberg KM, Romatowski JG, Bain JL, Riley DA, Karhanek M, Trappe SW, Trappe TA, Costill DL, Fitts RH. 1999. Effect of a 17 day spaceflight on contractile properties of human soleus muscle fibres. J Physiol 516: 915–930.

27) Fitts RH, Riley DR, Widrick JJ. 2000. Physiology of a microgravity environment invited review: microgravity and skeletal muscle. J Appl Physiol 89: 823–839.

28) Fitts RH, Riley DR, Widrick JJ. 2001. Functional and structural adaptations of skeletal muscle to microgravity. J Exp Biol 204: 3201–3208.

29) Edgerton VR, Roy RR, Allen DL, Monti RJ. 2002. Adaptations in skeletal muscle disuse or decreased-use atrophy. Am J Phys Med Rehabil 81: S127–S147.

30) Flück M, Hoppeler H. 2003. Molecular basis of skeletal muscle plasticity—from gene to form and function. Rev Physiol Biochem Pharmacol 146: 159–216.

31) Thomason DB, Biggs RB, Booth FW. 1989. Protein metabolism and beta-myosin heavy-chain mRNA in unweighted soleus muscle. Am J Physiol 257: R300–R305.

32) Haddad F, Roy RR, Zhong H, Edgerton VR, Baldwin KM. 2003. Atrophy responses to muscle inactivity. I. Cellular markers of protein deficits. J Appl Physiol 95: 781–790.

33) Leonard JJ, Leach CS, Rambaut PC. 1983. Quantitation of tissue loss during prolonged space flight. Am J Clin Nutr 38: 667–679.

34) Stein TP, Leskiew MJ, Schluter MD. 1996. Diet and nitrogen metabolism during spaceflight on the shuttle. J Appl Physiol 81: 82–97.

35) Stein TP. 2000. The relationship between dietary intake, exercise, energy balance and the space craft environment. Pflugers Arch 441: R21–R31.

36) Shangraw RE, Stauff CA, Prince MJ, Peters EJ, Wolfe RR. 1988. Insulin responsiveness of protein metabolism in vivo following bedrest in humans. Am J Physiol 255: E548–E558.

37) Ferrando AA, Lane HW, Stauff CA, Davis-Street J, Wolfe RR. 1996. Prolonged bed rest decreases skeletal muscle and whole body protein synthesis. Am J Physiol Cell Physiol 278: C871–C884.

403–412.

2) Wedon GD, Lutwak L, Reid J, Rambaut P, Whittle M, Smith M, Leach C. 1975. Mineral and nitrogen balance study: results of metabolic observations on Skylab II 28-day orbital mission. Acta Astronaut 2: 297–309.

3) Wedon GD, Lutwak L, Rambaut PC, Whittle MW, Reid J, Smith MC, Leach C, Stadler CR, Sanford DD. 1976. Mineral and nitrogen balance study observations: the second manned Skylab mission. Aviat Space Environ Med 47: 391–396.

4) Booth FW, Criswell DS. 1997. Molecular events underlying skeletal muscle atrophy and the development of effective countermeasures. Int J Sports Med 18: S265–S269.

5) Yokota H, Sun HB, Malacinski GM. 2000. Future opportunities for life science programs in space. Korean J Biol Sci 4: 239–243.

6) Adams GR, Caiozzo VJ, Baldwin KM. 2003. Skeletal muscle unweighting: spaceflight and ground-based models. J Appl Physiol 95: 2185–2201.

7) Jaspers SR, Tischler ME. 1984. Atrophy and growth failure of rat hindlimb muscles in tail-cast suspension. J Appl Physiol 57: 1472–1479.

8) Morey-Holton ER, Globus RK. 2002. Hindlimb unloading rodent model: technical aspects. J Appl Physiol 92: 1367–1377.

9) Witzmann FA, Kim DH, Fitts RH. 1982. Hindlimb immobilization: length-tension and contractile properties of skeletal muscle. J Appl Physiol 53: 335–345.

10) Booth FW. 1982. Effect of limb immobilization on skeletal muscle. J Appl Physiol 52: 1113–1118.

11) Heribison GJ, Jaweed MM, Ditunno JF. 1979. Muscle atrophy in rats following denervation, casting, inflammation, and tenotomy. Arch Phys Med Rehabil 60: 401–404.

12) Musacchio XJ, Steffen JM, Fell RD. 1988. Disuse atrophy of skeletal muscle: animal models. Exerc Sport Sci Rev 16: 61–87.

13) Roy RR, Baldwin KM, Edgerton VR. 1991. The plasticity of skeletal muscle: effects of neuromuscular activity. Exerc Sport Sci Rev 19: 269–312.

14) Dupont-Versteegden EE, Houle JD, Garley CM, Peterson CA. 1998. Early changes in muscle fiber size and gene expression in response to spinal cord transaction and exercise. Am J Physiol 275: C1124–C1133.

15) Thomason DB, Herrick RE, Surdyka D, Baldwin KM. 1987. Time course of soleus muscle myosin expression during hindlimb suspension and recovery. J Appl Physiol 63: 130–137.

16) Ohira Y, Yoshinaga T, Nomura T, Kawano F, Ishihara A, Nonaka I, Roy RR, Edgerton VR. 2002. Gravitational unloading effects on muscle fiber size, phenotype and myonuclear number. Adv Space Res 30: 777–781.

17) Jackman RW, Kandarian SC. 2004. The molecular basis of skeletal muscle atrophy. Am J Physiol Cell Physiol 287: C834–C843.

18) Riley DA, Bain JL, Thompson JL, Fitts RH, Widrick JJ, Trappe SW, Trappe TA, Costill DL. 1998. Disproportionate loss of thin filaments in human soleus muscle after 17-day bed rest. Muscle Nerve 21: 1280–1289.

19) Riley DA, Bain JL, Thompson JL, Fitts RH, Widrick JJ, Trappe SW, Trappe TA, Costill DL. 2000. Decreased thin filament density and length in human atrophic soleus muscle fibers after spaceflight. J Appl Physiol 88: 567–572.
Triggers of Muscle Atrophy and Countermeasures 243

270: E627–E633.

38) Stein TP, Schluter MD. 1997. Human skeletal muscle protein breakdown during spaceflight. Am J Physiol 272: E688–E695.

39) Babij P, Booth FW. 1988. α-Actin and cytochrome c mRNAs in atrophied adult rat skeletal muscle. Am J Physiol 254: C651–C656.

40) Steffen JM, Musacchia XJ. 1984. Effect of hypokinesia and hypodynamism on protein, RNA, and DNA in rat hindlimb muscles. Am J Physiol 247: R725–R732.

41) Steffen JM, Fell RD, Geoghegan TE, Ringel LC, Musacchia XJ. 1990. Age effects on rat hindlimb muscle atrophy during suspension unloading. J Appl Physiol 68: 927–931.

42) Gamrin L, Berg HE, Eisen P, Tesch PA, Hultman E, Garlick PJ, McNurlan MA, Wernerman J. 1998. The effect of unloading on protein synthesis in human skeletal muscle. Acta Physiol Scand 163: 369–377.

43) Goldspink DF, Garlick PJ, McNurlan MA. 1983. Protein turnover measured in vivo and in vitro in muscles undergoing compensatory growth and subsequent denervation atrophy. Biochem J 210: 89–98.

44) Jaspers SR, Fagan JM, Tischler ME. 1985. Biochemical response to chronic shortening in unloaded soleus muscles. J Appl Physiol 59: 1159–1163.

45) Loughna P, Goldspink G, Goldspink DF. 1986. Effect of inactivity and passive stretch on protein turnover in phasic and postural rat muscles. J Appl Physiol 61: 173–179.

46) Jaspers SR, Fagan JM, Satarug S, Cook PH, Tischler ME. 1988. Effects of immobilization on rat hind limb muscles under non-weight-bearing conditions. Muscle Nerve 11: 458–466.

47) Furuno K, Goodman MN, Goldberg AL. 1990. Role of different proteolytic systems in the degradation of muscle proteins during denervation atrophy. J Biol Chem 265: 8550–8557.

48) Tischler ME, Rosenberg S, Satarug S, Henriksen EJ, Kirby CR, Tome M, Chase P. 1990. Different mechanisms of increased proteolysis in atrophy induced by denervation or unweighting of rat soleus muscle. Metabolism 39: 756–763.

49) Tischler ME, Satarug S, Eisenfeld SH, Henriksen EJ, Rosenberg SB. 1990. Insulin effects in denervated and non-weight-bearing rat soleus muscle. Muscle Nerve 13: 593–600.

50) Hayase K, Yokogoshi H. 1991. Effect of suspension hypokinesia/hypodynamia on tissue protein turnover in rats. Jpn J Physiol 41: 473–482.

51) Munoz KA, Satarug S, Tischler ME. 1993. Time course of the response of myofibrillar and sarcoplasmic protein metabolism to unweighting of the soleus muscle. Metabolism 42: 1006–1012.

52) Linderman JK, Gosselink KL, Booth FW, Mukku VR, Grindeland RE. 1994. Resistance exercise and growth hormone as countermeasures for skeletal muscle atrophy in hindlimb-suspended rats. Am J Physiol 267: R365–R371.

53) Tischler ME. 1994. Effect of the antiguillucomitocorticid RU38466 on protein metabolism in unweighted soleus muscle. Metabolism 43: 1451–1455.

54) Taillandier D, Guezennec CY, Fatureau-Mirand P, Bigard X, Arnal M, Attiaux D. 1996. A high protein diet does not improve protein synthesis in the nonweight-bearing rat tibialis anterior muscle. J Nutr 126: 266–272.

55) Taillandier D, Aurousseau E, Meyniel-Denis D, Bechet D, Ferrara M, Cotton P, Ducuastaing A, Bigard X, Guezennec CY, Schmid HP, Attiaux D. 1996. Coordinate activation of lysosomal, Ca2+-activated and ATP-ubiquitin-dependent proteases in the unweighted rat soleus muscle. Biochem J 316: 65–72.

56) Fluckey JD, Dupont-Versteegden EE, Montague DC, Knox M, Tesch P, Peterson CA, Gaddy-Karten B. 2002. A rat resistance exercise regimen attenuates losses of musculoskeletal mass during hindlimb suspension. Acta Physiol Scand 176: 293–300.

57) Zdanowicz MM, Teichberg S. 2003. Effects of insulin-like growth factor-1-binding protein-3 complex on muscle atrophy in rats. Exp Biol Med (Maywood) 228: 891–897.

58) Fluckey JD, Dupont-Versteegden EE, Knox M, Gaddy D, Tesch PA, Peterson CA. 2004. Insulin facilitation of muscle protein synthesis following resistance exercise in hindlimb-suspended rats is independent of a rapamycin-sensitive pathway. Am J Physiol Endocrinol Metab 287: E1070–E1075.

59) Yilmalnai T, Dodd SL, Borst SE, Park S. 2005. Clenbuterol induces muscle-specific attenuation of atrophy through effects on the ubiquitin-proteasome pathway. J Appl Physiol 99: 71–80.

60) Stein TP, Donaldson MR, Leskiw MJ, Schluter MD, Baggett DW, Boden G. 2003. Branched-chain amino acid supplementation during bed rest: effect on recovery. J Appl Physiol 94: 1345–1352.

61) Riley DA, Slocum GR, Bain JL, Sedlak FR, Sowa TE, Mellender JW. 1990. Rat hindlimb unloading: soleus histochemistry, ultrastructure, and electromyography. J Appl Physiol 69: 58–66.

62) Stuart CA, Shangraw RE, Peters EJ, Wolfe RR. 1990. Effect of dietary protein on bed-rest-related changes in whole-body-protein synthesis. Am J Clin Nutr 52: 509–514.

63) Kandarian SC, Jackman RW. 2006. Intracellular signaling during skeletal muscle atrophy. Muscle Nerve 33: 155–165.

64) Thomason DB, Booth FW. 1990. Atrophy of the soleus muscle by hindlimb unweighting. J Appl Physiol 68: 1–12.

65) Haddad E, Roy RR, Zhong H, Edgerton VR, Baldwin KM. 2003. Atrophy responses to muscle inactivity. II. Molecular markers of protein deficits. J Appl Physiol 95: 791–802.

66) Shah Of, Anthony JC, Kimball SR, Jefferson LS. 2000. 4E-BP1 and Stk:1 translational integration sites for nutritional and hormonal information in muscle. Am J Physiol Endocrinol Metab 279: E715–E729.

67) Kimball SR, Farrell PA, Jefferson LS. 2002. Invited review: Role of insulin in translational control of protein synthesis in skeletal muscle by amino acids or exercise. J Appl Physiol 93: 1168–1180.

68) Proud CG. 2002. Regulation of mammalian translation factors by nutrients. Eur J Biochem 269: 5338–5349.

69) Baldwin KM, Haddad F. 2002. Skeletal muscle plasticity: cellular and molecular responses to altered physical activity paradigms. Am J Phys Med Rehabil 81: S40–S51.

70) Glickman MH, Ciechanover A. 2002. The ubiquitin-proteasome proteolytic pathway: destruction for the
sake of construction. *Physiol Rev* **82**: 373–428.

71) Glass DJ. 2003. Signalling pathways that mediate skeletal muscle hypertrophy and atrophy. *Nat Cell Biol* **5**: 87–90.

72) Muratani M, Tansey WP. 2003. How the ubiquitin-proteasome system controls transcription. *Nat Rev Mol Cell Biol* **4**: 192–201.

73) Sartorelli V, Fulco M. 2004. Molecular and cellular determinants of skeletal muscle atrophy and hypertrophy. *Sci STKE* **244**: re11.

74) Hay N, Sonenberg N. 2004. Upstream and downstream of mTOR. *Genes Dev* **18**: 1926–1945.

75) Cros N, Tkatchenko AV, Pisani DF, Leclerc L, Leger JJ, Marini JE, Dechesne CA. 2001. Analysis of altered gene expression in rat soleus muscle atrophied by disuse. *J Cell Biochem* **83**: 508–519.

76) St-Amand J, Okamura K, Matsumoto K, Shimizu S, Sogawa Y. 2001. Characterization of control and immobilized skeletal muscle: an overview from genetic engineering. *FASEB J* **15**: 684–692.

77) Stevenson EJ, Giresi PG, Koncarevic A, Kandarian SC. 2003. Global analysis of gene expression patterns during disuse atrophy in rat skeletal muscle. *J Physiol* **551**: 33–48.

78) Bey L, Akunuri N, Zhao P, Hoffman EP, Hamilton DG, Hamilton MT. 2003. Patterns of global gene expression in rat skeletal muscle during unloading and low-intensity ambulatory activity. *Physiol Genomics* **13**: 157–167.

79) Nikawa T, Ishidoh K, Hirasaka K, Ishihara I, Ikemoto M, Kano M, Kominnami E, Nonaka I, Ogawa T, Adams GR, Baldwin KM, Yasui N, Kishi K, Takeda S. 2004. Skeletal muscle gene expression in space-flown rats. *FASEB J* **18**: 522–524.

80) Reynolds TH 4th, Bodine SC, Lawrence JC Jr. 2002. Control of Ser2448 phosphorylation in the mammalian target of rapamycin by insulin and skeletal muscle load. *J Biol Chem* **277**: 17657–17662.

81) Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Baeuerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ, Yancopoulos GD. 2001. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. *Nat Cell Biol* **3**: 1014–1019.

82) Hornberger TA, Hunter RB, Kandarian SC, Esser KA. 2001. Regulation of translation factors during hindlimb unloading and denervation of skeletal muscle in rats. *Am J Physiol Cell Physiol* **281**: C179–C187.

83) Baar K, Esser K. 1999. Phosphorylation of p70s6k correlates with increased skeletal muscle mass following resistance exercise. *Am J Physiol* **276**: C120–C127.

84) Spangenberg EE, McBride TA. 2006. Inhibition of stretch-activated channels during eccentric muscle contraction attenuates p70S6K activation. *J Appl Physiol* **100**: 129–135.

85) Howard G, Steffen JM, Geoghegan TE. 1989. Transcriptional regulation of decreased protein synthesis during skeletal muscle unloading. *J Appl Physiol* **66**: 1093–1098.

86) Reznick AZ, Menashe O, Bar-Shai M, Coleman R, Carmeli E. 2003. Expression of matrix metalloproteinase, inhibitor, and acid phosphatase in muscles of immobilized hindlimbs of rats. *Muscle Nerve* **27**: 51–59.

87) Morris CA, Morris LD, Kennedy AR, Sweeney HL. 2005. Attenuation of skeletal muscle atrophy via proteasome. *J Appl Physiol* **99**: 1719–1727.

88) Wing SS, Haas AL, Goldberg AL. 1995. Increase in ubiquitin-protein conjugates concomitant with the increase in proteolysis in rat skeletal muscle during starvation and atrophy denervation. *Biochem J* **307**: 639–645.

89) Ikemoto M, Nikawa T, Satake S, Watanabe C, Kitano T, Baldwin KM, Izumi R, Nonaka I, Tantawi T, Teshima S, Rokutan K, Kishi K. 2001. Space shuttle flight (STS-90) enhances degradation of rat myosin heavy chain in association with activation of ubiquitin-proteasome pathway. *FASEB J* **15**: 1279–1281.

90) Solomon V, Goldberg AL. 1996. Importance of the ATP-ubiquitin-proteasome pathway in the degradation of soluble and myofilbrillar proteins in rabbit muscle extracts. *J Biol Chem* **271**: 26690–26697.

91) Patterson GT, Dettbarn WD. 1985. Changes in skeletal muscle properties following hindlimb suspension. *Physiologist* **28**: S133–S134.

92) Schulte LM, Navarro J, Kandarian SC. 1993. Regulation of sarcoplasmic reticulum calcium pump gene expression by hindlimb unweighting. *Am J Physiol* **264**: C1308–C1315.

93) Hunter RB, Mitchell-Felton H, Essig DA, Kandarian SC. 2001. Expression of endoplasmic reticulum stress proteins during skeletal muscle disuse atrophy. *Am J Physiol Cell Physiol* **281**: C1285–C1290.

94) Baker JH, Margolis RN. 1987. Calcium-activated protease activity in tenomized muscle. *Muscle Nerve* **10**: 34–40.

95) Tidball JG, Spencer MJ. 2002. Expression of a calpastatin transgene slows muscle wasting and obviates changes in myosin isoform expression during murine muscle disuse. *J Physiol* **545**: 819–828.

96) Lawler JM, Song W, Demaree RR. 2003. Hindlimb unloading increases oxidative stress and disrupts antioxidant capacity in skeletal muscle. *Free Radic Biol Med* **35**: 9–16.

97) Brunk UT, Svennsson I. 1999. Oxidative stress, growth factor starvation and Fas activation may all cause apoptosis through lysosomal leak. *Redox Rep* **4**: 3–11.

98) Hicke L, Dunn R. 2003. Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. *Annu Rev Cell Dev Biol* **19**: 141–172.

99) Dupont-Versteegden EE, Fluckey JD, Knox M, Gaddy D, Peterson CA. 2006. Effect of flywheel-based resistance exercise on processes contributing to muscle atrophy during unloading in adult rats. *J Appl Physiol* **101**: 202–212.

100) Krawiec BJ, Frost RA, Vary TC, Jefferson LS, Lang CH. 2005. Hindlimb casting decreases muscle mass in part by proteasome-dependent proteolysis but independent of protein synthesis. *Am J Physiol Endocrinol Metab* **289**: E969–E980.

101) Vermaelen M, Marini JE, Chopard A, Benyamin Y, Mercier J, Astier C. 2005. Ubiquitin targeting of rat muscle proteins during short periods of unloading. *Acta Physiol Scand* **185**: 33–40.

102) Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharma-rajan K, Pan ZQ, Valenzuela DM, DeChiara TM, Stitt TN, Yancopoulos GD, Glass DJ. 2001. Identification of ubiquitin ligases required for skeletal muscle atrophy. *Science* **294**: 1704–1708.

103) Haddad F, Adams GR, Bodell PW, Baldwin KM. 2006.
Isometric resistance exercise fails to counteract skeletal muscle atrophy processes during the initial stages of unloading. *J Appl Physiol* **100**: 433–441.

104) Gomes MD, Lecker SH, Japoe RT, Navon A, Goldberg AL. 2001. Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. *Proc Natl Acad Sci USA* **98**: 14440–14445.

105) Baldwin KM, Herrick RE, McCue SA. 1993. Substrate oxidation capacity in rodent skeletal muscle: effects of exposure to zero gravity. *J Appl Physiol* **75**: 2466–2470.

106) Grichko VP, Heywood-Cooksey A, Kidd KR, Fitts RH. 2000. Substrate profile in rat soleus muscle fibers after hindlimb unloading and fatigue. *J Appl Physiol* **88**: 473–478.

107) Stein TP, Schluter MD, Galante AT, Soterpoulos P, Toliais PP, Grindeland RE, Moran MM, Wang TJ, Polansky M, Wade CE. 2002. Energy metabolism pathways in rat muscle under conditions of simulated microgravity. *J Nutr Biochem* **13**: 471–478.

108) Bey L, Hamilton MT. 2003. Suppression of skeletal muscle lipoprotein lipase activity during physical inactivity: a molecular reason to maintain daily low-intensity activity. *J Physiol* **551**: 673–682.

109) Henriksen EJ, Tischler ME, Johnson DG. 1986. Increased response to insulin of glucose metabolism in the 6-day unloaded rat soleus muscle. *J Biol Chem* **261**: 10707–10712.

110) Henriksen EJ, Rodnich KJ, Monden CE, James DE, Holloszy JO. 1991. Effect of denervation or unweighting on GLUT-4 protein in rat soleus muscle. *J Appl Physiol* **70**: 2322–2327.

111) Hilder TL, Tou JC, Grindeland RE, Wade CE, Graves LM. 2003. Phosphorylation of insulin receptor substrate-1 serine 307 correlates with JNK activity in atrophic skeletal muscle. *FEBS Lett* **535**: 63–67.

112) Stuart CA, Shangraw RE, Prince MJ, Peters EJ, Wolfe RR. 1988. Bed-rest-induced insulin resistance occurs primarily in muscle. *Metabolism* **37**: 802–806.

113) Monden CE, Rodnich KJ, Dolkas CB, Azhar S, Reaven GM. 1992. Alterations in glucose and protein metabolism in animals subjected to simulated microgravity. *Ado Res Space* **12**: 169–177.

114) Hirose M, Kaneki M, Sugita H, Yasuhara S, Martyn JAJ. 2000. Immunodepression impairs insulin signaling in skeletal muscle. *Am J Physiol Endocrinol Metabol* **279**: E1235–E1241.

115) Tobin BW, Uchaklin PN, Leeper-Woodford SK. 2002. Insulin secretion and sensitivity in space flight: diabetogenic effects. *Nutrition* **18**: 842–848.

116) Allen DL, Yasui W, Tanaka T, Ohira Y, Nagaoka S, Sekiguchi C, Hinds WE, Roy RR, Edgerton VR. 1996. Myonuclear number and myosin heavy chain expression in rat soleus single muscle fibers after spaceflight. *J Appl Physiol* **81**: 145–151.

117) Leeuwenburgh C, Gurley CM, Strotman BA, Dupont-Versteegen EE. 2005. Age-related differences in apoptosis with disuse atrophy in soleus muscle. *Am J Physiol Regul Integr Comp Physiol* **288**: R1288–R1296.

118) Allen DL, Linderman JK, Roy RR, Bigbee AJ, Grindeland RE, Mukku V, Edgerton VR. 1997. Apoptosis: a mechanism contributing to remodeling of skeletal muscle in response to hindlimb unweighting. *Am J Physiol* **273**: C579–C587.

119) Ohnishi T, Takahashi A, Wang X, Ohnishi K, Ohira Y, Nagaoka S. 1999. Accumulation of a tumor suppressor p53 protein in rat muscle during a space flight. *Mutat Res* **430**: 271–274.

120) Ohnishi T, Wang X, Fukuda S, Takahashi A, Ohnishi K, Nagaoka S. 2000. Accumulation of tumor suppressor p53 in rat muscle after a space flight. *Adv Space Res* **25**: 2119–2122.

121) Shi PM, Alwey SE. 2005. Id2 and p53 participate in adipogenesis during unloading-induced muscle atrophy. *Am J Physiol Cell Physiol* **288**: C1058–C1073.

122) Chen YW, Nader GA, Baar KR, Fedele MJ, Hoffman EP, Esser KA. 2002. Response of rat muscle to acute resistance exercise defined by transcriptional and translational profiling. *J Physiol* **545**: 27–41.

123) Lee SW, Dai G, Hu Z, Wang X, Du J, Mitch WE. 2004. Regulation of muscle protein degradation: coordinated control of apoptotic and ubiquitin-proteasome systems by phosphatidylinositol 3 kinase. *J Am Soc Nephrol* **15**: 1537–1545.

124) Durham WJ, Li YP, Gerken E, Farid M, Arbogast S, Wolfe RR, Reid MB. 2004. Fatiguing exercise reduces RNA binding activity of NF-xB in skeletal muscle nuclei. *J Appl Physiol* **97**: 1740–1745.

125) Hunter RB, Stevenson E, Koncarevic A, Mitchell-Felton H, Essig DA, Kandarian SC. 2002. Activation of an alternative NF-xB pathway in skeletal muscle during disuse atrophy. *FASEB J* **16**: 529–538.

126) Hunter RB, Kandarian SC. 2004. Disruption of either the Nfkb1 or the Bcl3 gene inhibits skeletal muscle atrophy. *J Clin Invest* **114**: 1504–1511.

127) Cai D, Frantz JD, Tawa JR, Melendez PA, Oh BC, Lidov HG, Hasselgren PO, Frontera WR, Lee J, Glass DJ, Shoelson SE. 2004. IKKb/NF-xB activation causes severe muscle wasting in mice. *Cell* **119**: 285–298.

128) McKinnell IW, Rudnicka MA. 2004. Molecular mechanisms of muscle atrophy. *Cell* **119**: 907–910.

129) Krippendorf BB, Riley DA. 1993. Distinguishing unloading-versus reloading-induced changes in rat soleus muscle. *Muscle Nerve* **16**: 99–108.

130) Krippendorf BB, Riley DA. 1994. Temporal changes in sarcomere lengths of rat adductor longus muscles during hindlimb reloading. *Am J Physiol* **238**: 304–310.

131) Vijayan K, Thompson JL, Noreen GM, Fitts RH, Riley DA. 2001. Fiber-type susceptibility to eccentric contraction-induced damage of hindlimb-unloaded rat AL muscles. *J Appl Physiol* **90**: 770–776.

132) Lawler JM, Song W, Kwak HB. 2006. Differential response of heat shock proteins to hindlimb unloading and reloading in the soleus. *Muscle Nerve* **33**: 200–207.

133) St Pierre BA, Tidball JG. 1994. Differential response of macrophage subpopulations to soleus muscle reloading after rat hindlimb suspension. *J Appl Physiol* **77**: 290–297.

134) Nguyen HX, Tidball JG. 2003. Expression of a muscle-specific, nitric oxide synthase transgene prevents muscle membrane injury and reduces muscle inflammation during modified muscle use in mice. *J Physiol* **550**: 347–356.

135) Nguyen HX, Tidball JG. 2003. Null mutation of gp91phox reduces muscle membrane lysis during muscle inflammation in mice. *J Physiol* **553**: 833–841.

136) Isfort RJ, Wang F, Greis KD, Sun Y, Keough TW, Farrar RP, Bodine SC, Anderson NL. 2002. Proteomic analysis of rat soleus muscle undergoing hindlimb suspen-
sion-induced atrophy and reweighting hypertrophy. *Proteomics* **2**: 543–550.

137) Taillandier D, Aurousseau E, Combaret L, Guezennec CY, Attia D. 2003. Regulation of proteolysis during reloading of the unloaded soleus muscle. *Int J Biochem Cell Biol* **35**: 665–675.

138) Kasper CE, White TP, Maxwell LC. 1990. Running during recovery from hindlimb suspension induces transient muscle injury. *J Appl Physiol* **68**: 533–539.

139) Childs TE, Spangenburg EE, Vyas DR, Booth FW. 2003. Temporal alterations in protein signaling cascades during recovery from muscle atrophy. *Am J Physiol Cell Physiol* **285**: C391–C398.

140) Sugiuira T, Abe N, Nagano M, Goto K, Sakuma K, Naito H, Yoshioka T, Powers SK. 2005. Changes in PKB/Akt and calcineurin signaling during recovery in atrophied soleus muscle induced by unloading. *Am J Physiol Regul Integr Comp Physiol* **288**: R1273–R1278.

141) Sitnick M, Foley AM, Brown M, Spangenburg EE. 2006. Ovariectomy prevents the recovery of atrophied gastrocnemius skeletal muscle mass. *J Appl Physiol* **100**: 286–293.

142) Koesterer TJ, Dodd SL, Powers S. 2002. Increased antioxidant capacity does not attenuate muscle atrophy caused by unweighting. *J Appl Physiol* **93**: 1959–1965.

143) Matuszczak Y, Arborgast S, Reid MB. 2004. Allopurinol mitigates muscle contractile dysfunction caused by hindlimb unloading in mice. *Aviat Space Environ Med* **75**: 581–588.

144) Grigor’ev AI, Shenkman BS, Belozerova IN, Nemirovskaya TL, Sayenko D, Tesch P A. 2002. Effects of a calcium-binding agent in the musculus soleus of rats against the background of simulated gravitational unloading. *Dokl Biol Sci* **384**: 209–212.

145) Litvinova KS, Kozlovskaya IB, Nemirovskaya TL, Shenkman BS. 2003. Contractile characteristics of single skinned rat soleus muscle fibers under gravitational load: effects of a calcium-binding agent. *Biofizika* **48**: 905–910.

146) Selsby JT, Dodd SL. 2005. Heat treatment reduces oxidative stress and protects muscle mass during immobilization. *Am J Physiol Regul Integr Comp Physiol* **289**: R134–R139.

147) Naito H, Powers SK, Demirel HA, Sugiuira T, Dodd SL, Aoki J. 2000. Heat stress attenuates skeletal muscle atrophy in hindlimb-unweighted rats. *J Appl Physiol* **88**: 359–363.

148) Herrera NM Jr, Zimmerman AN, Dykstra DD, Thompson LV. 2001. Clenbuterol in the prevention of muscle atrophy: a study of hindlimb-unweighted rats. *Arch Phys Med Rehabil* **82**: 930–934.

149) Wineski LE, von Deutsch DA, Ahbukhalaf I, Pits SA, Potter DE, Paulsen DF. 2002. Muscle-specific effects of hindlimb suspension and clenbuterol in mature male rats. *Cells Tissues Organs* **171**: 188–198.

150) Dodd SL, Koesterer TJ. 2002. Clenbuterol attenuates muscle atrophy and dysfunction in hindlimb-suspended rats. *Aviat Space Environ Med* **73**: 635–639.

151) Adams GR, McCue SA, Bodell PW, Zeng M, Baldwin KM. 2000. Effects of spaceflight and thyroid deficiency on hindlimb development. I. Muscle mass and IGF-I expression. *J Appl Physiol* **88**: 894–903.

152) Criswell DS, Booth FW, DeMayo F, Schwartz RJ, Gordon SE, Fiorotto ML. 1998. Overexpression of IGF-I in skeletal muscle of transgenic mice does not prevent unloading-induced atrophy. *Am J Physiol* **275**: E373–E379.

153) Convertino VA. 2002. Planning strategies for development of effective exercise and nutrition countermeasures for long-duration space flight. *Nutrition* **18**: 880–888.

154) Loughna PT, Goldspink DF, Goldspink G. 1987. Effects of hypokinesia and hypodynamia upon protein turnover in hindlimb muscles of the rat. *Aviat Space Environ Med* **58**: A133–A138.

155) Nemirovskaya TL, Shenkman BS. 2002. Effect of support stimulation on unloaded soleus in rats. *Eur J Appl Physiol* **87**: 120–126.

156) Haushcka EO, Roy RR, Edgerton VR. 1988. Periodic weight support effects on rat soleus fibers after hindlimb suspension. *J Appl Physiol* **65**: 1231–1237.

157) D’Aunno DS, Robinson RR, Smith GS, Thomason DB, Booth FW. 1992. Intermittent acceleration as a countermeasure to soleus muscle atrophy. *J Appl Physiol* **72**: 428–433.

158) Zhang LF, Sun B, Cao XS, Liu C, Yu ZB, Zhang LN, Cheng JH, Wu YH, Wu XY. 2003. Effectiveness of intermittent −G, gravitation in preventing deconditioning due to simulated microgravity. *J Appl Physiol* **95**: 207–218.

159) Herbert ME, Roy RR, Edgerton VR. 1988. Influence of one-week hindlimb suspension and intermittent high load exercise on rat muscles. *Exp Neurol* **102**: 190–198.

160) Graham SC, Roy RR, Haushcka EO, Edgerton VR. 1989. Effects of periodic weight support on medial gastrocnemius fibers of suspended rat. *J Appl Physiol* **67**: 945–953.

161) Grindeleland RE, Roy RR, Edgerton VR, Grossman EJ, Mikkur VR, Jiang B, Pierotti DJ, Rudolph I. 1994. Interactive effects of growth hormone and exercise on muscle mass in suspended rats. *Am J Physiol* **267**: R316–R322.

162) Flock J D, Knox M, Smith LM, Dupont-Versteegden EE, Gaddy D, Tesch PA, Peterson CA. 2006. Insulin-facilitated increase of muscle protein synthesis after resistance exercise involves a MAP-kinase pathway. *Am J Physiol Endocrinol Metab* **290**: E1205–E1211.

163) Parkinson JD, LeBrasseeur NK, Siebert AP, Fielding RA. 2004. Contraction-mediated mTOR, p70s6k, and ERK1/2 phosphorylation in aged skeletal muscle. *J Appl Physiol* **97**: 243–248.

164) Berg HE, Tesch PA. 1998. Force and power characteristics of a resistive exercise device for use in space. *Acta Astronaut* **42**: 219–230.

165) Alknon BA, Berg HE, Kozlovskaya I, Sayenko D, Tesch PA. 2003. Effects of strength training, using a gravity-independent exercise system, performed during 110 days of simulated space station confinement. *Eur J Appl Physiol* **90**: 44–49.

166) Alknon BA, Tesch PA. 2004. Efficacy of a gravity-independent resistance exercise device as a countermeasure to muscle atrophy during 29-day bed rest. *Acta Physiol Scand* **181**: 345–357.

167) Tesch PA, Ekberg A, Lindquist DM, Trieschmann JT. 2004. Muscle hypertrophy following 5-week resistance training using a non-gravity-dependent exercise system. *Acta Physiol Scand* **180**: 89–98.
168) Alkner BA, Tesch PA. 2004. Knee extensor and plantar flexor muscle size and function following 90 days of bed rest with or without resistance exercise. *Eur J Appl Physiol* **93**: 294–305.

169) Tesch PA, Trieschmann JT, Ekberg A. 2004. Hypertrophy of chronically unloaded muscle subjected to resistance exercise. *J Appl Physiol* **96**: 1451–1458.

170) Ohira Y, Yoshinaga T, Nonaka I, Yoshioke T, Yamashita-Goto K, Shenkman BS, Kozlovskaya IB, Roy RR, Edgerton VR. 1999. Myonuclear domain and myosin phenotype in human soleus after bed rest with or without loading. *J Appl Physiol* **87**: 1776–1785.

171) Ferrando AA, Tipton KD, Bamman MM, Wolfe RR. 1997. Resistance exercise maintains skeletal muscle protein synthesis during bed rest. *J Appl Physiol* **82**: 807–810.

172) Haddad F, Baldwin KM, Tesch PA. 2005. Pretranslational markers of contractile protein expression in human skeletal muscle: effect of limb unloading plus resistance exercise. *J Appl Physiol* **98**: 46–52.

173) Lecker SH, Goldberg AL. 2002. Slowing muscle atrophy: putting the brakes on protein breakdown. *J Physiol* **545**: 729.

174) Yokogoshi H, Takase S, Goda T, Hoshi T. 1990. Effects of suspension hypokinesia/hypodynamic on the body weight and nitrogen balance in rats fed with various protein concentrations. *Agric Biol Chem* **54**: 779–789.

175) Tada O, Yokogoshi H. 2002. Effect of different dietary protein composition on skeletal muscle atrophy by suspension hypokinesia/hypodynamic in rats. *J Nutr Sci Vitaminol* **48**: 115–119.

176) Ikemoto M, Nakawa T, Kano M, Hirasaka K, Kitano T, Watanabe C, Tanaka R, Yamamoto T, Kamada M, Kishi K. 2002. Cysteine supplementation prevents unloading-induced ubiquitination in association with redox regulation in rat skeletal muscle. *Biol Chem* **383**: 715–721.

177) Taillandier D, Bigard X, Desplanches D, Attax D, Guezennec CY, Arnal M. 1993. Role of protein intake on protein synthesis and fiber distribution in the unweighted soleus muscle. *J Appl Physiol* **75**: 1226–1232.

178) Paddon-Jones D, Sheffield-Moore M, Urban RJ, Sanford AP, Aarsland A, Wolfe RR, Ferrando AA. 2004. Essential amino acid and carbohydrate supplementation ameliorates muscle protein loss in humans during 28 days bedrest. *J Clin Endocrinol Metab* **89**: 4351–4358.

179) Paddon-Jones D, Sheffield-Moore M, Urban RJ, Aarsland A, Wolfe RR, Ferrando AA. 2005. The catabolic effects of prolonged inactivity and acute hypercortisolemia are offset by dietary supplementation. *J Clin Endocrinol Metab* **90**: 1453–1459.

180) Stein TP, Schluter MD. 1999. Plasma amino acids during human sleeplessness. *Aviat Space Environ Med* **70**: 250–255.

181) Kimball SR, Jefferson LS. 2004. Molecular mechanisms through which amino acids mediate signalizing through the mammalian target of rapamycin. *Curr Opin Clin Nutr Metab Care* **7**: 39–44.

182) Kimball SR, Jefferson LS. 2005. Role of amino acids in the translational control of protein synthesis in mammals. *Semin Cell Dev Biol* **16**: 21–27.

183) Yoshizawa F, Sekizawa H, Hirayama S, Hatakeyama A, Nagasawa T, Sugahara K. 2001. Time course of leucine-induced 4E-BP1 and S6K1 phosphorylation in the liver and skeletal muscle of rats. *J Nutr Sci Vitaminol* **47**: 311–315.

184) Anthony JC, Lang CH, Crozier SJ, Anthony TG, MacLean DA, Kimball SR, Jefferson LS. 2002. Contribution of insulin to the translational control of protein synthesis in skeletal muscle by leucine. *Am J Physiol Endocrinol Metab* **282**: E1092–E1101.

185) Kobayashi H, Kato H, Hirabayashi Y, Murakami H, Suzuki H. 2006. Modulations of muscle protein metabolism by branched-chain amino acids in normal and muscle-atrophying rats. *J Nutr* **136**: 234S–236S.

186) Shimomura Y, Honda T, Shiraki M, Murakami T, Sato J, Kobayashi H, Mawatari K, Obayashi M, Harris RA. 2006. Branched-chain amino acid catabolism in exercise and liver disease. *J Nutr* **136**: 2508–2538.

187) Ishiguro H, Katano Y, Nakano I, Ishigami M, Hayashi K, Honda T, Goto H, Bajotte G, Mueca K, Shimomura Y. 2006. Clofibrate treatment promotes branched-chain amino acid catabolism and decreases the phosphorylation state of mTOR, eIF4E-BP1, and S6K1 in rat liver. *Life Sci* **79**: 737–743.

188) Carroll CC, Fluckey JD, Williams RH, Sullivan DH, Trappe TA. 2005. Human soleus and vastus lateralis muscle protein metabolism with an amino acid infusion. *Am J Physiol Endocrinol Metab* **288**: E479–E485.

189) Karlsson HK, Nilsson PA, Nilsson J, Chibalin AV, Zerath JR, Blomstrand E. 2004. Branched-chain amino acids increase p70S6k phosphorylation in human skeletal muscle after resistance exercise. *Am J Physiol Endocrinol Metab* **287**: E1–E7.

190) Blomstrand E, Eliasson J, Karlsson HK, Köhnke R. 2006. Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise. *J Nutr* **136**: 2698–2738.

191) LeBlanc A, Rowe R, Schneider V, Evans H, Hedrick T. 1995. Regional muscle loss after short duration spaceflight. *Aviat Space Environ Med* **66**: 1151–1154.

192) Zhou MY, Klitgaard H, Saltin B, Roy RR, Edgerton VR, Gollnick PD. 1995. Myosin heavy chain isoforms of human muscle after short-term spacelab. *J Appl Physiol* **78**: 1740–1744.

193) Laviano A, Muscaritoli M, Cascino A, Preziosa I, Inui A, Mantovani G, Rossi-Fanelli F. 2005. Branched-chain amino acids: the best compromise to achieve anabolism? *Curr Opin Clin Nutr Metab Care* **8**: 408–414.

194) Bianchi G, Marzocchi R, Agostini F, Marchesini G. 2005. Update on nutritional supplementation with branched-chain amino acids. *Curr Opin Clin Nutr Metab Care* **8**: 83–87.

195) Shimomura Y, Yamamoto Y, Bajotte G, Sato J, Murakami T, Shimomura N, Kobayashi H, Mawatari K. 2006. Nutraceutical effects of branched-chain amino acids on skeletal muscle. *J Nutr* **136**: 529S–532S.

196) Kimball SR, Jefferson LS. 2006. New functions for amino acids: effects on gene transcription and translation. *Am J Clin Nutr* **83**: 5008–5078.