The Liverpool Telescope: Rapid follow-up observation of Targets of Opportunity with a 2 m robotic telescope

Andreja Gomboc, Michael F. Bode, David Carter, Carole G. Mundell, Andrew M. Newsam, Robert J. Smith and Iain A. Steele

Astrophysics Research Institute, Liverpool John Moores University, 12 Quays House, Egerton Wharf, Birkenhead, CH41 1LD, United Kingdom

Department of Physics, University in Ljubljana, Jadranova 19, 1000 Ljubljana, Slovenia

The Liverpool Telescope, situated at Roque de los Muchachos Observatory, La Palma, Canaries, is the first 2-m, fully instrumented robotic telescope. It recently began observations. Among Liverpool Telescope’s primary scientific goals is to monitor variable objects on all timescales from seconds to years. An additional benefit of its robotic operation is rapid reaction to unpredictable phenomena and their systematic follow up, simultaneous or coordinated with other facilities. The Target of Opportunity Programme of the Liverpool Telescope includes the prompt search for and observation of GRB and XRF counterparts. A special over-ride mode implemented for GRB/XRF follow-up enables observations commencing less than a minute after the alert, including optical and near infrared imaging and spectroscopy. In particular, the moderate aperture and rapid automated response make the Liverpool Telescope excellently suited to help solving the mystery of optically dark GRBs and for the investigation of currently unstudied short bursts and XRFs.

1. Introduction - robotic telescopes

Robotic telescopes are, due to their efficiency and flexibility, opening up numerous possibilities in many important branches of astrophysics [1]. Distinct advantages of robotic telescopes are:

• the rapid response to Targets of Opportunity (ToO) alerts,
• the efficiency in the systematic monitoring of variable objects on all timescales from seconds to years,
• simultaneous and coordinated observations with other facilities, either ground or space based,
• conditions (seeing, photometricity, etc.) dependent observations, and
• effective small scale surveys and routine tasks.

They are invaluable in the study of variable astronomical objects of various types, including short and unpredictable phenomena, such as GRBs, XRFs, supernovae, dwarf novae and gravitational lensing; all types of binary systems and variable stars; and reaching from distant sources such as active galactic nuclei to the study of comets and near-Earth asteroids in our Solar system.

With first light achieved at the end of July 2003, the Liverpool Telescope became the world’s largest operational robotic telescope and joins the international efforts in the study of exciting new fields of research in time domain astrophysics.

2. The Liverpool Telescope

2.1. Characteristics and instrumentation

The Liverpool Telescope (LT) is the Altitude-Azimuth design telescope with a primary mirror diameter of 2 m and final focal ratio f/10 at the Cassegrain focus. Situated on La Palma it takes advantage of the excellent seeing on the site. Its enclosure is fully openable (Fig. 1), which minimises local thermal effects and the
Figure 1. The Liverpool Telescope at Roque de los Muchachos, La Palma, Canaries is a 2-
m fully robotic altitude-azimuth design telescope with fully openable enclosure, which minimises
the slewing time to the position of a ToO and enable observations starting less than a minute after
the alert.

time to slew to new targets (with slewing rate
of >2°/s). It can have five permanently mounted
instruments (on 4 folded ports and one straight-
through), which are selected by a deployable,
rotating mirror. As listed in Table 1 the LT
instrumentation includes at present the RAT-
Cam optical CCD camera, with additions of the
SupIRCam infra-red camera, low resolution Proto-
type spectrograph and FRODOSpec Integral
field double beam spectrograph in the near fu-
ture. At present, the LT is still in the commis-
sioning phase and for updated information please see http://telescope.livjm.ac.uk/

2.2. Robotic control and operating system

As a fully robotic telescope with no night time
supervision, the Liverpool Telescope requires a
Robotic Control System (RCS), which is
designed to act as a replacement for the duty as-
tronomer. It is also required to be robust, reli-
able and adaptable to future instrument config-
urations and varying operational objectives [2].
The RCS must include procedures such as tele-
scope run-up, close down, focusing, scheduling
and observing. In addition it must ensure that
the telescope and any equipment is not damaged,
therefore it must constantly monitor weather con-
ditions and have the ability to respond to any
fault and error in appropriate ways. It also needs
to monitor the quality of the observations, i.e. the
sky and seeing changes and conditions, since they
influence the schedule of observing programme [3]. The LT possesses such a RCS.

2.3. Automated scheduling

Proposed observations are stored in a database
and are selected from it with the scheduler, which
(i) must be sensible, so that observations which
are impossible in current conditions should not
be attempted, (ii) efficient, so that observations
are well matched to observing conditions and the
number of observations done is as high as possible,
and (iii) is fair to all partners according to the
agreed percentage of telescope time.

For the LT, a relatively simple dispatch sched-
uler is chosen [3], which does not attempt to make
an optimum schedule for the whole night in ad-
vance but merely looks for the best observation
to do at a given time. The scheduler’s decision
is based on the current telescope state, Moon
phase, observing conditions, object height, avail-
able time, scientific priority, urgency and fairness.

3. ToO with the LT

In general, a ToO proposal may be included in
the database of the observations on a timescale
of 1 day, but for extremely time-critical objects
such as for example GRBs, there is the possibil-
ity to use an Over-Ride mode built-in to the LT’s
RCS. Upon receiving the ToO alert, the RCS au-
tomatically decides whether it is sensible to in-
terrupt current observations and start the ToO
follow-up. In the case of a positive outcome, it
selects the appropriate instrument, begins auto-
matic slew and starts observing the ToO region.
Time elapsed between the alert and start of ob-
servation depends on the distance between the
current telescope and ToO position, but should be
on average within 30s since the receipt of the ToO
alert. The instrumentation used and automated
procedures can be suited to different characteris-
Table 1
The Liverpool Telescope instrumentation

Instrument	Description
RATCam Optical CCD Camera	2048×2048 pixels, 0.135″/pixel, FOV 4.6′×4.6′, 8 filter selections (u’, g’, r’, i’, z’, B, V, ND2.0) - from LT first light, July 2003
SupIRCam 1 - 2.5 micron Camera	256×256 pixels, 0.4″/pixel, FOV 1.7′×1.7′, Z, J, H, K′ filters - from Autumn 2003
Prototype Spectrograph	49, 1.7″ fibres, 512×512 pixels, R=1000; 3500 < λ < 7000 Å - from Autumn 2003
FRODOSpec Integral field double beam spectrograph	R=4000, 8000; 4000 < λ < 9500 Å - from Summer 2004

4. GRBs, XRFs and the LT

High-priority ToO for the LT are GRBs and XRFs. Following the GRB/XRF alert from the GCN network and HETE-2, INTEGRAL and Swift (after its launch) we employ the Over-Ride mode and commence a search for and observation of GRB or XRF counterparts:

(a) In the case of an alert with object error box larger than the FoV, we mosaic the entire error box (provided it is <30″) with the Optical RATCam, while in parallel, the automatic data processing and comparison with the catalogue (USNO-B1.0) is running to detect new objects in the field and to identify possible candidates for the GRB or XRF afterglow.

(b) In alerts with error box smaller than the FoV we begin observations with optical multi-band imaging of the field and search for the afterglow.

After the successful commissioning of the SupIRCam and the spectrographs, we will include near-infrared imaging in the first phases of observing, and, following the positive identification of the counterpart, continue observations with spectroscopy (provided that the afterglow magnitude is above the limiting magnitude, which is V~ 16 in 10 min for prototype and V~ 19 for FRODOSpec spectrographs respectively). With this routine as the starting point, automated procedures can be optimised with experience and adapted regarding scientific imperatives.

4.1. GRB and XRF science with the LT

The discoveries of X-ray [4] and optical transient [5] sources associated with GRBs have revolutionised our understanding of the GRB phenomenon. While X-ray counterparts are now observed for essentially all GRBs, optical afterglows are detected in about half of them. Whether these missing OAs are inherently dark, dust absorbed, highly redshifted or just observationally overlooked is an open question [6]. So far, there are only 3 GRBs (GRB990123, GRB021004 and GRB021211) with optical afterglows detected within the first ten minutes after the GRB initial event. Their peak magnitudes lie between R~9 and ~14 and they show rapid decay rates of 3-5 magnitudes in 10 min. Given this rapid decline, it is easy to imagine that roughly 50% of the bursts currently considered optically ‘dark’, may be detected in these early moments by a larger rapid response telescope such as the LT.

A vital clue to solve the dark burst problem probably lies in the infrared waveband, whether the bursts are dark due to high absorption by the dust in the close vicinity of a progenitor or further out in the host galaxy, or whether they are dark due to high redshift (z>10), which shifts the Lyα break to the infrared wavelengths. Currently redshifts of about 40 GRBs are known [7], with the maximum of z=4.5 detected for GRB 000131 [8], but the selection is probably biased towards
bright and/or slowly decaying objects. In addition to GRBs redshift, spectra of GRB afterglows, especially in the early phases, hold a potential treasure of valuable information about the environment and origin of the burst and will help distinguish among competing afterglow models for rebrightenings and color changes in the afterglows [6], [9].

Of all the GRB afterglows so far observed, only one single epoch observation [10] of a possible optical counterpart to a short GRB was reported. It has been predicted that the afterglows of short GRBs may be much fainter than the afterglows of long GRBs [11]. With an expected magnitude of less than 21 in the optical about 1 hour after the burst a 2-m or even larger telescope is required for their rapid follow-up. Detection of the afterglows would be a break through in the study of short GRBs about which, currently, very little is known. In the case of a non-detection, these observation will place more stringent limits on the afterglow magnitude immediately following the short GRB.

XRFs are recently identified class of phenomena with many characteristics of their prompt emission similar to long GRBs. They seem to be a natural extension to properties of GRBs and physical circumstances in which the explosion occurs [12]. In the optical, several afterglows (XRF020903, XRF030723 [13], [14]) and host galaxies [13], [15] were detected. Detection of more optical afterglows and their early spectra will help unravel the origin of these events and their connection to GRBs.

5. Conclusions

The unique rôle that the robotic telescopes can play in the study of variable and transient sources has long been recognized. With the start of observations, the LT has great potential for contributing to many interesting areas of time variable astrophysics. The short response time, moderate aperture, excellent site and LT's instrumentation including optical camera, infrared imager and spectrograph, promise an interesting and valuable scientific harvest from the ToO follow-up observations, especially afterglows of GRBs and XRFs.

In collaboration with satellites (Swift, HETE-2, INTEGRAL) and other ground-based facilities, including the Faulkes Telescopes (clones of the LT), we expect to be able to follow-up around 1 in 6 GRB/XRF immediately after the alert and we plan to monitor scientifically interesting afterglows also into their later stages.

Acknowledgments

The Liverpool Telescope is funded via EU, PPARC, JMU grants and the benefaction of Mr. A. E. Robarts. A.G. acknowledges the receipt of the Marie Curie Fellowship from the EU.

REFERENCES

1. M. F. Bode (ed.), Robotic Observatories, Wiley-Praxis series in astronomy and astrophysics, Chichester, New York, 1995.
2. S. N. Fraser and I. A. Steele, Advanced Telescope and Instrumentation Control Software II, H. Lewis (ed.), Proc. SPIE Vol. 4848 (2002) 443.
3. I. A. Steele and D. Carter, Telescope Control Systems II, H. Lewis (ed.) Proc. SPIE Vol. 3112 (1997) 222.
4. E. Costa et al., Nature 387 (1997) 783.
5. J. van Paradijs et al., Nature 386 (1997) 686.
6. D. Lazzati et al., A&A 396 (2002) L5.
7. J. Greiner, http://www.mpe.mpg.de/~jcg/grbgen.html
8. M. I. Andersen et al., A&A 364 (2000) L54.
9. D. Bersier et al., ApJ 584 (2003) L43.
10. A. J. Castro-Tirado et al., A&A 393 (2002) L55.
11. A. Panaitescu et al., ApJ 561 (2001) L171.
12. J. Heise et al., Gamma-Ray Bursts in the Afterglow Era, E. Costa, F. Frontera, J. Hjorth (eds.), Spinger, Berlin Heidelberg, (2001) 16.
13. Soderberg et al., GCN Notice 1554 (2002).
14. D. B. Fox et al., GCN Notice 2323 (2003).
15. A. J. Castro-Tirado et al., GCN Notice 1439 (2002).
16. A. Fruchter et al., GCN Notice 1268 (2002).