Equivalence between two-qubit entanglement and secure key distribution

Antonio Acín1,2, Lluís Masanes3 and Nicolas Gisin1
1 GAP-Optique, University of Geneva, 20, Rue de l’École de Médecine, CH-1211 Geneva 4, Switzerland
2 Institut de Ciències Fotòniques, Jordi Girona 29, Edifici Nexus II, 08034 Barcelona, Spain
3 Dept. ECM, University of Barcelona, Diagonal 647, 08028 Barcelona, Spain

(Dated: November 15, 2018)

PACS numbers: 03.67.Dd, 03.65.Ud, 03.67.-a

We study the problem of secret key distillation from bipartite states in the scenario where Alice and Bob can only perform measurements at the single-copy level and classically process the obtained outcomes. Even with these limitations, secret bits can be asymptotically distilled by the honest parties from any two-qubit entangled state, under any individual attack. Our results point out a complete equivalence between two-qubit entanglement and secure key distribution: a key can be established through a one-qubit channel if and only if it allows to distribute entanglement. These results can be generalized to higher dimension for all those states that are one-copy distillable.

Quantum correlations or entanglement is the basic ingredient for many applications of Quantum Information Theory [1]. By exploiting the correlations of entangled states, one can perform tasks that are impossible in Classical Information Theory. Quantum cryptography [2], or more precisely quantum key distribution, is the most successful Quantum Information application, due to its experimental feasibility with present-day technology. Although entanglement is not required for a secure key distribution [3], there exist proposals using entangled states [4]. Indeed, it is unclear which role entanglement plays in quantum cryptography protocols. In this work, we analyze the problem of secret key extraction in the following scenario: after a distribution stage, two honest parties, Alice and Bob, share a quantum state. This state is translated into a probability distribution by local measurements at the single-copy level, and the obtained outcomes are processed in order to distill a secret key. We denote by SIMCAP this Single-copy Measurements plus Classical Processing scenario. This is a common scenario in Quantum Information applications, where useful correlations are distributed between two or more parties by means of entangled states. For two-qubit systems and individual attacks, we prove that Alice and Bob can distill a key by a SIMCAP protocol if and only if they initially share an entangled state. Thus, two-qubit entanglement is indeed equivalent to secure key distribution.

Our result links the security of one-qubit channels with their entanglement capability. In the usual formulation of Quantum Cryptography, first a protocol for key distribution is proposed and later possible eavesdropping attacks on it are analyzed. However, one can reverse this standard presentation and, after specifying an eavesdropping attack, look for a secure key distribution protocol. This is indeed closer to what happens in a practical situation: the honest parties are connected by a given channel, denoted by \(\mathcal{Y} \), that is fixed and known. It depends on experimental parameters such as, for instance, dark counts or optical imperfections, and is the only non-local quantum resource Alice and Bob share. From the quantum cryptography point of view, it is conservatively assumed that Eve has total access to the channel. This means that the definition of the quantum channel is equivalent to specify Eve’s interaction with the sent states. When does a given channel allow the honest parties to securely establish a secret key, in the SIMCAP scenario? Our results imply that a one-qubit channel is secure as soon as it allows entanglement distribution. For any entangling channel we show how to construct the corresponding SIMCAP key distillation protocol. Moving to higher dimension, our results immediately hold for all those bipartite states, and corresponding channels, that are one-copy distillable. Thus, they suggest a complete equivalence between distillable entanglement and secure key distribution.

Let us start with the simplest case of two qubits. A two-qubit entangled state is locally prepared by Alice and one of the two qubits is sent to Bob through a quantum channel. Since the channel is not perfect, Alice and Bob end with a two-qubit mixed state, \(\rho_{AB} \). They attribute the channel imperfections to the eavesdropper, Eve, who interacts with the sent qubits. We assume, as it is often done in many works on Quantum Cryptography, that Eve applies an individual attack: she lets independent auxiliary systems interact with each qubit and measures each system before the key extraction process [3]. Since Eve has a perfect control on her interaction, the global state of the system is pure, \(|\Psi_{ABE}\rangle \). The state shared by Alice and Bob is the one resulting from tracing out Eve, \(\rho_{AB} = \text{tr}_E(|\Psi_{ABE}\rangle \langle \Psi_{ABE}|) \). The global pure state including Eve is, without loss of generality,

\[
|\Psi_{ABE}\rangle = \sum_{i=1}^{r} \sqrt{\pi_i} |i\rangle |e_i\rangle,
\]

where \(|\Psi_{ABE}\rangle \in \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^r \), \(\{r_i, |i\rangle\} \) define the spectrum of \(\rho_{AB} \), \(r \) is its rank and \(e_i \) is an orthonormal basis on Eve’s space. By computing the Schmidt decomposition with respect to the partition \(AB - E \), one can easily see that any other state \(|\Psi_{ABE}'\rangle \in \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^{d_E} \), where
If \(\rho_{AB} \) is entangled, one can consider the following fully quantum protocol for key distribution. The honest parties run a quantum distillation protocol [1] that transforms many copies of the initial mixed entangled state into fewer copies of a maximally entangled state \(|\Psi^{+}_{ABE}\rangle \). In this way, Eve becomes uncorrelated to Alice and Bob, who can safely measure in one basis, say \(z \), and obtain the secret key. Note that in these protocols the honest parties must be able to perform quantum operations on several copies of their local states. This is in strong contrast to the SIMCAP scenario where all the collective actions are performed at the classical level, while quantum physics is only used for the correlation distribution. Does this limit the possibility of distilling a key?

It is worth to mention here that the experimental requirements for the SIMCAP protocols are definitely less stringent than for quantum distillation protocols. In particular, no quantum memory is needed, avoiding decoherence problems. Moreover, our scenario reflects precisely this filtering operation to \(|\Psi^{+}_{ABE}\rangle \). After applying the advantage distillation protocol described in Ref. [12], the honest parties share unlimited many instances of a two-qubit state, \(\rho_{AB} \), with Bob, she randomly takes \(N \) items from her list of symbols, \(\{a_i\} \) and \(\{b_i\} \). The measurements in the \(z \) basis terminate the measurement step in the SIMCAP distillation protocol, after which the original quantum state has been translated into a probability distribution [12]. From Eq. (3), Eve’s non-normalized states, \(\{e_{AB}\} \), depending on Alice and Bob’s results are, where \(R = 0, 1, \)

\[
|e_{RR} \rangle = \frac{1}{\sqrt{2}}(\lambda_1|1\rangle + (-1)^R\lambda_4|4\rangle)
\]

\[
|e_{R(1-R)} \rangle = \frac{1}{\sqrt{2}}(\lambda_2|2\rangle + (-1)^R\lambda_3|3\rangle).
\]

Note that Eve knows in a deterministic way whether Alice and Bob differ in their measurement outcomes (which implies \(I_{AE} = I_{BE} \)). This happens with probability

\[
\epsilon_B = \|e_{01}\|^2 + \|e_{10}\|^2 = \lambda_2 + \lambda_3,
\]

which is Bob’s error probability.

In order to classically distill a key, Alice and Bob will now apply the advantage distillation protocol described in Ref. [12] to their measurement outcomes. If the state is close to \(|\Phi^{+}\rangle \), the mutual information between the honest parties, \(I_{AB} \), is larger than Eve’s information, \(I_E \), of rank-one operators where some of the outcomes are discarded and the process is repeated for a new vector of length \(N \). Bob’s error probability is now [13]

\[
e_B N = \frac{(\epsilon_B)^N}{(1 - \epsilon_B)^N + \epsilon_B^N} \leq \left(\frac{\epsilon_B}{1 - \epsilon_B}\right)^N,
\]

that tends to an equality for \(N \to \infty \).

Notice that for large \(N \), \(x = y \) with very high probability. We concentrate on the states \(|e_i\rangle \equiv |e_{ai}i\rangle/|e_{ai}| \), and denote \(E_i \) the corresponding projectors. Eve applies a generalized measurements (POVM) of \(M \) outcomes, \(\sum_i M_i = \mathbb{I}_2 \) with \(M_i > 0 \), trying to acquire information about these states. Indeed, since \(\vec{a} \) is chosen at random, we assume Eve’s measurement to be the same for all qubits without loosing generality. Moreover, any generic measurement can be seen as a measurement consisting of rank-one operators where some of the outcomes are later combined, so we can take \(M_i = |m_i\rangle\langle m_i|, \forall i \), with \(|m_i| \leq 1 \). After the measurements, Eve uses all the information collected from the \(N \) symbols for guessing
requirements. When material terms count the number of vectors satisfying our requirement, there are instances where she will make an error. For example, when the number of zeros in \vec{a} is the same as the number of ones (the same holds for \vec{a}'), and the number of times any measurement outcome has been obtained is the same for zeros and ones. These events do not give her any information about x, so she is forced to guess and makes a mistake with probability $1/2$. Therefore, her error probability is bounded by

$$\epsilon_{EN} \geq \frac{1}{2} \frac{1}{2^N} \sum_{n_1, \ldots, n_M} \frac{N!}{(2n_1)! \ldots (2n_M)!} \left(\frac{2n_1}{n_1} \right) \tr(E_0 M_1)^{n_1} \tr(E_1 M_1)^{n_1} \cdots \left(\frac{2n_M}{n_M} \right) \tr(E_0 M_M)^{n_M} \tr(E_1 M_M)^{n_M},$$

with $2 \sum_i n_i = N$. The factor $1/2^N$ takes into account the number of possible vectors \vec{a}, while the combinatorial terms count the number of vectors satisfying our requirements. When N is large, one can approximate the combinatorial term $(2n_i)!/(n_i)!^2 \approx 2^{2n_i}$ and then

$$\epsilon_{EN} \geq \frac{1}{2} \sum_{n_i} \frac{N!}{(2n_1)! \ldots (2n_M)!} \prod_{i=1}^M (\tr(E_0 M_i) \tr(E_1 M_i))^{n_i}.$$ (9)

In the same limit, this sum is equal to

$$\epsilon_{EN} \geq \frac{1}{2} \frac{1}{2^{M-1}} \left(\sum_{i=1}^M \sqrt{\tr(E_0 M_i) \tr(E_1 M_i)} \right)^N.$$ (10)

Since M_i are rank-one operators,

$$\sum_{i=1}^M \sqrt{\tr(E_0 M_i) \tr(E_1 M_i)} = \sum_{i=1}^M \|e_0|M_i|e_1\| \geq \|e_0|e_1\|,$$ (11)

where in the last step we used that $\{M_i\}$ is a resolution of the identity. These equations imply that, for large N, Eve’s error probability is bounded by an exponential term $\|e_0|e_1\|^N$. This bound is tight: a simple measurement in the x (i.e. $(|1\rangle \pm |4\rangle)/\sqrt{2})$ basis attains it (see Fig. 1 and the appendix).

Now, Alice and Bob can establish a key whenever

$$\frac{\epsilon_B}{1-\epsilon_B} < \|e_1|e_0\|$$ (12)

since then (see Eq. 7) Bob’s error probability decreases exponentially faster than Eve’s, and this condition is known to be sufficient for key distillation [17]. More precisely: if Eq. 12 is satisfied, there exists a finite N such that Alice and Bob, starting from the raw data and using this protocol, end with a smaller list of symbols where $I_{AB} > I_E$. Then, they can apply privacy amplification techniques [14] and distill a key. Using Eqs. 5 and 6, condition 12 can be shown to be equivalent to Eq. 4. Since Alice and Bob cannot establish a key when the state ρ_{AB} is separable [18], we conclude that a secret key can be distilled in the SIMCAP scenario if and only if the initially shared state is entangled. □

Our results imply the equivalence between entanglement and security for qubit channels: if a one-qubit channel, T, allows to distribute entanglement, key distribution is possible. Indeed, this means that there exists a bipartite state, $|\Phi\rangle \in \mathcal{F}^2 \otimes \mathcal{F}^2$, such that

$$\rho_{|\Phi\rangle}^{AB} = (|\mathbb{I}_2 \otimes T||\Phi\rangle)$$ (13)

is entangled. Alice can then prepare the state $|\Phi\rangle$ locally and send half of it to Bob through the noisy channel γ. After this distribution stage, the honest parties run the presented SIMCAP protocol and distill a secret key from $\rho_{|\Phi\rangle}^{AB}$. Two points deserve to be mentioned here. First, note that if one places the state preparation on Alice’s

![Diagram](https://via.placeholder.com/150)
side, she can start with the state “as if it had passed her filter”, i.e., \(F_A = \mathbb{I}_2 \). And second, there is actually no need of entanglement in the protocol. Indeed, it can be translated into an equivalent protocol without entanglement using the same ideas as in Ref. [8]. Alice’s measurement can be incorporated into the state preparation, before the state distribution [13]. Then, she sends through the channel, with probability 1/2, one of the two states \(|\psi_B^+\rangle \in \mathbb{C}^2 \), defined as

\[
|\psi_B^+\rangle = \sqrt{2} (|\pm z\rangle \otimes \mathbb{I}_2) |\Phi\rangle.
\]

Bob receives the states \(\rho_B^\pm = \Upsilon(|\psi_B^\pm\rangle) \). He applies the filter \(F_B \) and measures in the \(z \) basis. Of course, the obtained probabilities are exactly the same as in the SIMCAP protocol using \(|\Phi\rangle \), so Alice and Bob can securely distill a key without using any entanglement.

For all the protocols, with and without entanglement, it is assumed that the channel is fixed. Note that for some channels, the states \(|\psi_B^\pm\rangle \) may be orthogonal and form a basis. Eve could then replace her interaction by an intercept-resend attack: she measures in that basis and prepares a new state for Bob. But this would dramatically change the channel. Thus, Alice and Bob should randomly interrupt the key distribution and switch to a check stage where they monitor the channel. Entanglement is not required for this stage either. Those channels that do not allow to distribute entanglement are called entanglement breaking. They can be written as

\[
\Upsilon(|\psi\rangle) = \sum_k \text{tr}(L_k |\psi\rangle \langle \psi|) \rho_k,
\]

where \(\rho_k \) are density matrices and \(\{L_k\} \) define a generalized measurement, i.e., \(L_k \geq 0 \) and \(\sum_k L_k = \mathbb{I}_2 \).

From a cryptography point of view, this just represents an intercept-resend attack, as the one described above.

To conclude, we have seen that, under arbitrary individual attacks, a secret key can be established in the SIMCAP scenario if and only if the two-qubit state shared by Alice and Bob is entangled. This gives a one-to-one correspondence between two-qubit entanglement and secure key distribution: any one-qubit channel that is not entanglement breaking is secure. It would be interesting to extend our results to higher dimensional systems (some preliminary results can be found in Ref. [21]), where there are entangled states, known as bound entangled [22], that are not quantum distillable. Our analysis can be trivially extended to the so-called one-copy distillable states, those states for which there exist local projections onto two-dimensional subspaces such that the resulting two-qubit state is entangled. The honest parties should simply include these projections as a first step in the measurement part of the distillation protocol. This fact suggests a complete equivalence between distillable entanglement and key distribution. According to it, the so-called entanglement binding channels, those channels through which only bound entanglement can be established [23], would be useless for key distribution, although this remains unproven. A related open question is the conjectured existence of a classical analog of bound entanglement, known as bound information [18], that seems to appear in some probability distributions \(P(a, b, c) \) derived from bound entangled states.

We thank Dan Collins, Valerio Scarani and Stefan Wolf for discussion. This work has been supported by the ESF, the Swiss NCCR, “Quantum Photonics” and OFES within the European project RESQ (IST-2001-37559), the Spanish grant 2002FI-00373 UB and the Generalitat de Catalunya.

Appendix: In this appendix we present several measurements strategies for Eve that attain the exponential bound of Eq. (11). For all these strategies, Eqs. (8), (9) and (10) become an equality in the limit of large \(N \). In other words, the r.h.s. of these equations represent the relevant term of \(\epsilon_{EN} \) when \(N \to \infty \). Thus, we only need to check Eq. (11) for the given measurements.

First, consider a projective measurement in the \(x \) basis (see Fig. 1), i.e., \(M_1 = |+x\rangle \langle +x| \) and \(M_2 = |-x\rangle \langle -x| \). This is the optimal measurement in terms of Eve’s information and error probability. Eve acquires information about \(x \) from all the \(N \) measurement outcomes. Although we are not interested in her decision strategy, she can associate \(|+x\rangle \langle -x|\) to \(|e_0\rangle \langle e_1|\) and then apply a majority rule for guessing \(x \). It is now easy to see that \(\langle e_0|M_1|e_1\rangle = \langle e_0|M_2|e_1\rangle > 0 \), and therefore the inequality (11) is saturated by this measurement.

A second possibility corresponds to the measurement optimizing Eve’s probability of inconclusive result. It consists of three operators, \(M_1 = c|e_1\rangle \langle e_1| \), \(M_2 = c|e_0\rangle \langle e_0| \) and \(M_3 = c|x\rangle \langle x| + \sqrt{1 - c^2} |+x\rangle \langle +x| \). Note that if the first (second) outcome is obtained, Eve knows that the state was \(|e_0\rangle \) (\(|e_1\rangle \)) with certainty, while she obtains no information from \(M_3 \). The weights \(c_1 \) and \(c_2 \) are chosen such that the probability of inconclusive result is minimized, giving \(p_t = \langle e_0|M_3|e_0\rangle = \langle e_1|M_3|e_1\rangle = \langle e_1|e_0\rangle \). In this case it is simple to compute \(\epsilon_{EN} \) for all \(N \). Knowing one of the symbols used in \(\tilde{a} \) plus the information in \(\tilde{x} \) allows Eve to deduce \(x \). Only when she has obtained \(N \) inconclusive results she is forced to guess, making a mistake in half of the cases. Then, her error probability reads

\[
\epsilon_{EN} = \frac{1}{2} (\langle e_1|e_0\rangle)^N,
\]

which attains the bound.

Finally, all the measurements interpolating in a coherent (or incoherent) way between these two strategies also attain the bound (see Fig. 1). Indeed it is simple to see that the inequality (11) is saturated by all of them. Let us stress again here that this does not mean that \(\epsilon_{EN} \) is the same for all these measurements, but only that its exponential behavior goes like \((\langle e_1|e_0\rangle)^N \) for large \(N \), i.e.

\[
\lim_{N\to\infty} \log \epsilon_{EN} = N \log |\langle e_1|e_0\rangle|.
\]
[1] See for instance M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press (2000).
[2] N. Gisin et al., Rev. Mod. Phys. 74, 145 (2002).
[3] C. H. Bennett, G. Brassard and N. D. Mermin, Phys. Rev. Lett. 68, 557 (1992).
[4] A. Ekert, Phys. Rev. Lett. 67, 661 (1991).
[5] Usually, Alice sends half of a maximally entangled state to Bob. Here, we aim to discuss the most general situation, with no constrains on ρ_{AB}. This is equivalent to the case where the state is prepared by an insecure source.
[6] This assumption excludes unconditional security.
[7] C. H. Bennett et al., Phys. Rev. Lett. 76, 722 (1996); D. Deutsch et al., Phys. Rev. Lett. 77, 2818 (1996).
[8] It was proven in M. Horodecki, P. Horodecki and R. Horodecki, Phys. Rev. Lett. 78, 574 (1997), that all two-qubit entangled states are distillable.
[9] A. Kent, N. Linden and S. Massar, Phys. Rev. Lett. 83, 2656 (1999); F. Verstraete, J. Dehaene and B. DeMoor, Phys. Rev. A 64, 010101(R) (2001).
[10] The Bell basis is defined by the four orthonormal two-qubit maximally entangled states |Φ^±⟩ = (|00⟩±|11⟩)/√2 and |Ψ^±⟩ = (|01⟩±|10⟩)/√2.
[11] A. Peres, Phys. Rev. Lett. 77, 1413 (1996); M. Horodecki, P. Horodecki and R. Horodecki, Phys. Lett. A 223, 1 (1996). Given an operator on ℂ^{d_1} ⊗ ℂ^{d_2}, the partial transposition of O with respect to the first subsystem in the basis \{ |i⟩, \ldots, |d_1⟩ \} is O^{T_1} ≡ ∑_{i,j=1}^{d_1} (iO|j⟩|j⟩i).
[12] The filter plus the z measurement can be seen as a single local measurement of three outcomes: 0, 1 and reject.
[13] N. Gisin and S. Wolf, Phys. Rev. Lett. 83, 4200 (1999).
[14] I. Csiszár and J. Körner, IEEE Trans. Inf. Theory IT-24, 339 (1978).
[15] U.M. Maurer, IEEE Trans. Inf. Theory 39, 733 (1993).
[16] For large N, the first requirement is naturally satisfied by all the typical sequences.
[17] U. Maurer and S. Wolf, IEEE Trans. Inf. Theory 45, 499 (1999).
[18] N. Gisin and S. Wolf, , Proceedings of CRYPTO 2000, Lecture Notes in Computer Science 1880, 482, Springer-Verlag, 2000, quant-ph/0005042.
[19] It seems harder to do the same in the scheme using quantum distillation, i.e. collective quantum operations.
[20] See M. Horodecki, P. W. Shor and M. B. Ruskai, quant-ph/0302031 and references therein.
[21] A. Acín, N. Gisin and V. Scarani, quant-ph/0303009; D. Bruß et al., quant-ph/0303184.
[22] M. Horodecki, P. Horodecki and R. Horodecki, Phys. Rev. Lett. 80, 5239 (1998).
[23] P. Horodecki, M. Horodecki and R. Horodecki, J. Mod. Opt. 47, 347 (2000).