A Method for Completing Economic Load Dispatch Using the Technique of Narrowing Down Area

HERMAGASANTOS ZEIN¹, JANGKUNG RAHARJO², (Member, IEEE), AND IGNATIUS RIYADI MARDIYANTO¹

¹Energy Conversion Engineering Department, State Polytechnic of Bandung (POLBAN), Bandung 40559, Indonesia
²School of Electrical Engineering, Telkom University, Bandung 40257, Indonesia

Corresponding author: Jangkung Raharjo (jangkungraharjo@telkomuniversity.ac.id)

This work was supported in part by the Politeknik Negeri Bandung, and in part by the Telkom University.

ABSTRACT Economic load dispatch solutions based on published methods, both conventional and artificial, have been very well-formulated through point-to-point movement methodologies to reach a convergence point. Iteration always starts from the starting point to obtain the following solution point, leading to the convergence point. This paper presents a new method to solve economic load dispatch problems by narrowing the minimum and maximum power limits between generator units. This idea approximates the solution point with a tiny space formed by the very narrow power limits of each generator. The methodology used is the distance between the minimum and maximum power limits of each generator divided into several segments. Then, the best segment is determined by the minimum total cost calculated based on the center point of the segment. Continue to the following iteration process until the best segment is the smallest. This iteration process is another artificial method that works without calculus calculations, so it does not depend on the objective function. This method has been validated using two generator units with differentiable objective functions, with calculation accuracy less than 0.00001 MW of the power distance of the generator limit, and the iteration stops at the 23rd step. Furthermore, this method has been successfully applied to the nondifferentiable objective function, piecewise and valve point effects.

INDEX TERMS Economic load dispatch, narrow power limits, segment, tiny space.

I. INTRODUCTION

Economic dispatch problem (EDP) practices are always an interesting study. The EDP can generally be differentiated into differentiable EDPs and nondifferentiable EDPs. The objective function in the form of differentiable EDP is continuous and differentiable, generally quadratic. In contrast, the objective function in nondifferentiable EDP can be either noncontinuous or non-differentiable. Examples of nondifferentiable EDP objective functions are non-smooth functions, having prohibited operation zones and steps. The development of this objective function has prompted experts to study it. Conceptually, EDP is a simple optimization problem in a power system. All committed generator units are assumed to collect in one bus with a single load. The consequence of this concept is that transmission loss has been neglected. Conventionally, the ELD (economic load dispatch) problem is a differentiable problem, and the methods for solving it have been widely published. The conventional ELD problem has been defined by [1], which involves equivalence and inequality constraints. However, the actual operation of the power plant can cause undifferentiated ELD problems, such as a non-smooth objective function and the presence of POZ in the fuel cost curve [2]–[4]. This makes the EDP problem even more complicated because it changes its objective function. This method consists of an artificial network and a Lagrange multiplier. The methodology uses the artificial network to control the Lagrange parameter. However, it can repair the computation time, but information regarding its accuracy has not been discussed [2]. A solution of the non-convex optimization for ELD problems using the Fuzzy Technique studied by [3]. This technique has been
successfully applied to the ELD problems, but the formulations are enough complex, and applying to POZ needs to advance study. Economic Dispatch (ED) problem solving by considering valve point effect (VPE), transmission loss, and restricted operating zone (POZ) has been studied by [3] using a full mixed-integer linear programming (FMILP) formulation. In this study, a reformulation trick is used, by converting the objective function into a set of traceable quadratic constraints [4].

Experts have published a few methods for solving EDP based on calculus methods (CMs) and artificial intelligent methods (AIMs). CMs are specially used for differentiable EDPs, as studied by [5]–[9]. The methodology developed by [5]–[8] is based on the LaGrange technique with its completion through iterative steps as in the lambda iteration, gradient, and Newton methods. In addition to CMs, there is also a direct method studied by [9]. This methodology is based on deriving mathematics to obtain formulas with straightforward solutions. The advantages are that the method can be applied to large systems and has the shortest computation time. However, the method is limited to objective functions in quadratic form only. The accuracy of the CMs is so high (the certainty of the solution falls on the global minimum point) that they are often used to validate the other methods (or AIMs). The optimal point is achieved by deriving the LaGrange function so that the CMs cannot resolve the nondifferentiable EDP.

Various AIMs have been published as in [10]–[31]. Based on artificial intelligence, two concepts have been developed, namely, point-to-point and area reduction. A point-to-point AIM is a method in the optimization process through a point-to-point approach to reach a solution point. These methods include the neural network method (NNM), particle swarm optimization (PSO), and genetic algorithm (GA). For AIM-based area reduction, the solution is obtained by reducing the viable area to a very small value.

NNM is based on the process of the human brain of working in parallel and exchanging information via the synaptic connectors on neurons. These neurons encapsulate all the information that comes to them, and if the result is higher than the given potential called an action potential, the neurons send pulses through the axons to the next stage. An artificial neural network consists of simple computing units (artificial neurons), and each unit is connected to other units via heavy connectors. Then, these units calculate the total input weight and know the output using the squashing function or activation function. The applications of this neural network have been studied by [10], while applications to EDP have been presented by [11] and [12]. Although NNM can be applied to complete EDP, a high-speed processor is needed because artificial nerves work in parallel. In addition, a large memory is required for data storage. In addition, there are no specific rules for determining an artificial neural network structure; a suitable network structure is achieved through experience and trial and error. Therefore, the speed and memory of computers will be a problem if NNM is implemented in large systems.

PSO is also overgrowing, as studied by [13]–[17]. The methodology starts from a randomly selected initial spot (initial point); continues to scatter many candidates around it at a certain distance (step-length); then, the best candidate is selected as the next spot until a solution point is obtained. This method will not be accurate if the local minimum is close to the initial point chosen because the method can ascertain that the solution point falls on that local minimum. Accuracy is also dependent on the number of candidates; the optimal number of candidates is still uncertain. Parameter control is required in each iteration step, and the processed dataset is vast, which will influence the computation time when applied to large systems.

GA is a metaheuristic based on the process of natural selection. The applications for generating high-quality solutions in optimization and search problems rely on biological operators such as mutation, crossover, and selective operators. The method has been applied to solve EDP, as studied by [18]–[25]. Similar to PSO, GA is no guarantee of finding global maxima. A decent-sized population and many generations must be processed so that it is burdensome to work on computers to obtain solutions over a long time, especially for large systems. GA also needs fine-tuning all parameters in determining mutation, which is often just trial and error.

The other methods stress the complexity of the optimization problem presented by [27]–[31]. The model with the conditional value at risk recourse function [27] has solved the robust dynamic economic dispatch distribution problem. Inspiration by the moth flame moving toward the moon was developed by [28]. Optimizing an electric power system is very complex, so a heuristic method is needed to solve it. The basic heuristic optimization techniques for application to power systems have been presented by [29]. The complicated methods used to solve optimal power flow were studied by [30] and [31]. The Newton-Rapson method determines power flows based on PSO, which has been satisfactorily developed [26]. These methods are also artificial; they will face problems if applied to large systems. The other method is based on calculus, the interior point, presented by [31]. The interior algorithm has been developed through predictor-corrector and reduction techniques to work very fast and to be applicable for large systems. Nevertheless, the method cannot be applied to nondifferentiable optimizations.

All methods mentioned above use a point-to-point optimization process to reach a convergence solution. The following are published based on reducing feasible areas developed by [32]–[35]. This method is commonly used to detect two-dimensional image objects in telecommunication, as studied by [32]–[34], with a coarse-to-fine technique. The feasibility area is divided into grids, and each grid is tracked to determine the best grid. Furthermore, this best grid reduces until a tiny grid is obtained, representing a convergent solution. The development of this multidimensional method was presented by [35]. The purpose of this development is to complete the EDP. The multidimensional feasibility area is formed by the minimum and maximum power limits of
the generator units. The feasibility area is divided into several areas with the same dimensions. Each area represents a candidate with a coordinate point at the center. In addition to determining the best candidate, the candidate must also meet the power balance between total power generation and load.

Fig. 1 shows a difference illustration between the point-to-point and reducing area methods. Based on the point-to-point method in Fig. 1a, the iteration step starts from the initial point \(x_0 \), and through iteration steps, the solution points will lead to the convergence point \(x_{op} \). As the reducing area in Fig. 1b shows, the iteration step starts from the feasibility area and reduces to the best area-1 and best area-2. This method will successfully yield when the optimal points are in their respective best areas.

![Feasibility area](image)

FIGURE 1. Iteration processes in: (a) point-to-point; (b) reducing area methodologies.

This paper develops a new method, called the technique of narrowing down area (ToNDA), to work for all kinds of objective functions (differentiable or not). The methodology is to narrow the power distance of the generator limits (PDGL) of each generator, expressed in (1), until it approaches the solution point, \(P_{op} \), as illustrated in Fig. 2.

\[
X_i = \hat{P}_i - \tilde{P}_i \tag{1}
\]

where \(X_i \) is the PDGL of Generator \(i \), \(\hat{P}_i \) and \(\tilde{P}_i \) are the maximum and minimum power limits of Generator \(i \). Meanwhile, feasible areas are formed by PDGL from all generators.

![Iteration process in ToNDA methodology](image)

FIGURE 2. Iteration process in ToNDA methodology.

In each iteration, the PDGL is divided into segments, and each segment boundary is represented as a solution point. Once the best candidate is obtained, the PDGL is narrowed to reduce that candidate. The iteration process continues to update the PDGL (after being narrowed down from the previous one) until the smallest segments are reached. The smallest space is formed in a feasible area from a very narrow PDGL, where the smallest space can be stated as a solution point (convergence point).

While the narrowing process can be explained in Fig. 3, if the PDGL of each generator is divided into \(k \) segments, \(k \) potential solution points \((\hat{P}^1_i, \hat{P}^2_i, \ldots, \hat{P}^{k-1}_i, \hat{P}^k_i) \) of each generator are obtained, where the first point \((\hat{P}^1_i) \) is at \(\hat{P}_i \), and the endpoint \((\hat{P}^k_i) \) is at \(\tilde{P}_i \). For \(n \) generators, the candidate is a vector of dimension \(n \), where the elements are the potential solution points of each generator and are expressed in Equation (2).

\[
Cd_i = x(P^1_i, P^2_i, \ldots, P^{n-1}_i, P^n_i) \tag{2}
\]

where \(cd_i \) is as a candidate and \(P^i_i \) is,

\[
P^i_1 < P^i_2 + \cdots + P^{n-1}_i + P^n_i = P_D \tag{4}
\]

The candidates formed must meet the balance of power, namely:

\[
P^i_1 + P^i_2 + \cdots + P^{n-1}_i + P^n_i = P_D
\]

where \(P_D \) is total load. Then the best candidate \((Cd_i) \) is selected when the total cost is least compared to the others. Area reduction is carried out by establishing a new generator power limit involving the left and right segments. However, the new minimum or maximum power limit should not violate the initial minimum or maximum power limit.

After obtaining \(Cd_i \) or point \((P^{l+2}_i) \) on the generator, as shown in Fig. 3, which is marked with \(x \), the distance of the power limit is narrowed by involving the left and right segments. Narrowing the distance of the power limit aims to anticipate the possibility of the convergence point outside the new distance of generator limits, such as the convergent point \((P_{op}) \) seen in Fig. 3. In this case, the convergence point is improbable to be outside the new distance of the generator limits.

![Narrowing process](image)

FIGURE 3. Narrowing process.

Next, the generator limits are updated through Equations (5) and (6).

\[
\tilde{p}^{new} = pl^{+2} -Ra, \quad \tilde{p}^{new} \geq \tilde{p}^{old} \tag{5}
\]

\[
\hat{p}^{new} = pl^{+2} + Ra, \quad \hat{p}^{new} \leq \hat{p}^{old} \tag{6}
\]

where \(\hat{p}^{new} \) and \(\tilde{p}^{new} \) are the new generator limits, \(\hat{p}^{old} \) and \(\tilde{p}^{old} \) are the old generator limits. \(Ra \) is a quantity to determine
the size of the area reduction. The smaller the Ra value is, the larger the reduced area. For a very large Ra it will allow the solution point to be outside the minimized area, so it is not accurate. This inaccuracy is shown in Table 2 with a Vra value of more than 80%. It is certain that a small Ra value (≤50%) in the table can guarantee accuracy.

II. ToNDA METHODOLOGY

Generally, the EDP consists of an objective function, some inequality constraints, and an equality constraint, written in (7), (8), and (9), respectively.

\[
TC = \sum_{i=1}^{n} F_i \quad (7)
\]

\[
\hat{P}_i - P_l \leq P_i \leq \hat{P}_i, \quad i = 1, 2, \ldots, n \quad (8)
\]

\[
\sum_{i=1}^{n} P_i - P_D = 0 \quad (9)
\]

where \(TC \) is the total cost, \(P_i \) is the active power generator, and \(F_i \) is the function of fuel cost to generator output power and is expressed by (10).

\[
F_i = f_i(P_i) \quad (10)
\]

Then, \(S_0 \) is defined as the initial space (initial feasible area) formed by generator limits from \(n \) generator units so that this space will have \(n \) dimensions, as written in (11).

\[
S_0 = \left\{ (P_{i1}^0, P_{i2}^0), (P_{i2}^0, P_{i2}^0), \ldots, (P_{in}^0, P_{in}^0) \right\} \quad (11)
\]

The initial PDGL of the generator is defined in (1) for generator \(i \) expressed by (12).

\[
\chi^0_i = \hat{P}_i^0 - \hat{P}_i^0 \quad (12)
\]

If \(\chi^0_i \) is divided into \(k-1 \) segments, the number of \(k \) points will be obtained as the potential solutions that are spread evenly between the minimum and maximum limits. Where \(\hat{P}_i^0 \) and \(\hat{P}_i^0 \) are the maximum and minimum initial power limits. Based on the description, an initial segment length of generator \(i \) (\(L \chi^0_i \)) is written in (13) is obtained.

\[
L \chi^0_i = \frac{\hat{P}_i^0 - \hat{P}_i^0}{k-1} \quad (13)
\]

For \(n \) generators, a candidate is formed; for example, \(x^{0}_{i} (P_{i1}^{0,1}, P_{i2}^{0,2}, \ldots, P_{in}^{0,n}) \) is selected in \(S_0 \) that meets (9) so that \(P_{i}^{0,m} \) can be calculated through (14).

\[
P_{i}^{0,m} = P_D - P_{i}^{0,1} - P_{i}^{0,2} - \ldots - P_{i}^{0,n} \quad (14)
\]

For the \(k \)th iteration step, equation (14) becomes

\[
P_{i}^{k,m} = P_D - P_{i}^{k,1} - P_{i}^{k,2} - \ldots - P_{i}^{k,n} \quad (15)
\]

where \(P_{i}^{k,j} \) is the power generator \(i \), it is in segment \(i \) at the \(k \) iteration step which satisfies the power balance in equation (4) or (14).

This last equation ensures that the equality constraint in (9) is consistently met. In this case, the segments of an \(n \)th generator are not the same length because the value of \(P_{i}^{k,m} \) must meet (14). From the explanation above, some candidates will be obtained, namely, \(\beta_i \) and expressed in (15).

\[
\beta_i = k^{n-1} \quad (16)
\]

Suppose \(Cd_i^0 \) is a potential candidate. If Generator 1 to Generator \(n-1 \) is set with their solution potential points at the minimum power limit, the solution potential point for Generator \(n \) is:

\[
P_n = P_D - \hat{P}_1 - \hat{P}_2 - \ldots - \hat{P}_{n-1} \quad (17)
\]

So, \(Cd_i^0 \) is:

\[
Cd_i^0 = x \left(\hat{P}_1, \hat{P}_2, \ldots, \hat{P}_{n-1}, P_n \right) \quad (18)
\]

where \(Cd_i^0 \in S_0 \). Of all the candidates distributed to \(S_0 \), then the best candidate is chosen with a minimum value of total cost \(TC_i^k \) and it falls on \(Ch_i^k \), expressed in (19). All the candidates are distributed to the appropriate areas.

\[
Ch_i^k = x \left(P_{i}^{k,1}, \ldots, P_{i}^{k,n-1} \right) \quad (19)
\]

while \(Ch_i^k \) can be determined by (19).

\[
Ch_i^k = \text{Min} \left\{ TC_1^k, TC_2^k, \ldots, TC_n^k \right\} \quad (20)
\]

Next, \(S_0 \) can be reduced to \(S_1 \) (a new space), where \(S_1 \in S_0 \).

\(S_0 \) is obtained by narrowing the limits of generators and is formulated in (21) and (22).

\[
\hat{P}_i = P_i^{k-b} - \mu \xi \xi^k \quad (21)
\]

\[
\hat{P}_i = P_i^{k-b} + \mu \xi \xi^k \quad (22)
\]

where \(P_i^{k} \) and \(P_i^{0} \) are the minimum and maximum power limits of the iteration \(k \) for Generator \(i \). The greater the value of \(\mu \) is, the slower the narrowing of the generator power limit, where:

\[
0 \leq \mu \leq 0.5(k-1) \quad (23)
\]

From (12), (22), and (23), the value of \(\chi_0 \) can be determined, namely:

\[
\chi_0^{new} = 2\mu \xi \xi, \quad \chi_0^{new} < \chi_0^{old} \quad (24)
\]

So, the area reduction speed (Vra) is:

\[
Vra = \frac{\chi_0^{old} - \chi_0^{new}}{\chi_0^{old}} \times 100\% \quad (25)
\]

The process of narrowing the generator limit continues until it becomes tiny, namely, \(X_{small} \). For example, in the \(k \)th step, the space of the feasible area, \(S_k \), can already be considered to represent the solution point, where the value of \(X_{small} \) is calculated by (26).

\[
X_{small} = \max \left\{ \chi_1^k, \chi_2^k, \ldots, \chi_n^k \right\} \leq \epsilon \quad (26)
\]

where \(\epsilon \) is a very small number as the convergence. Algorithm steps can explain detailed procedures of ToNDA through a simple example of EDP consisting of two generator units.
The first step is to determine the desired number of segments (for example, four segments or \(k = 5 \) and \(\mu = 1 \)), obtaining 16 rectangles and 25 points as much as possible, as shown in Fig. 4. Two horizontal axes present the generator power of \(P_1 \) (first generator) and \(P_2 \) (second generator). In contrast, the vertical axis presents the total cost. The ABCD rectangle (area 2500 MW\(^2\)) is \(S_0 \) from the initial minimum and maximum power limits of the generators. The PB-line is to be formed by equality constraint stating as power balance, and all candidates must lie on this line.

From Fig. 4, there are five potential candidates of 25 points in space \(S_0 \) (PB line), i.e., \(C_{d1}, C_{d2}, C_{d3}, C_{d4}, \) and \(C_{d5} \). From the potential candidates are chosen the best candidate that has a minimum total cost, where the minimum cost falls on the candidate \(C_{d4} \) (said to be the first best candidate, \(B_{C1} \)). Then, the PDGLs are narrowed based on (21) and (22) to be \(A_1B_1C_1D_1 \), as shown in Fig. 4 and Fig. 5. With the same procedures, five new candidates are obtained, and the best candidate is \(B_{C2} \) and the new area \((A_2B_2C_2D_2) \), where the new area is less than the old area \((A_1B_1C_1D_1) \).

The results of all steps are loaded in Table 1. The total cost going down along with narrowing feasible area from \(A_0B_0C_0D_0 \) is \(50 \times 40 \) MW\(^2\) = 2000 MW\(^2\) to \(A_23B_23C_23D_23 \) is \(2.88 \times 10^{-11} \) MW\(^2\) in the 23rd step. Where the PDGL of Generator 1 of 50 MW decreases to 0.0000060 MW, and the PDGL of Generator 2 decreases from 40 MW to 0.0000048 MW.

The iteration will stop after reaching the convergence point with the largest PDGL value of less than 0.00001 MW, namely, 50 MW from Generator-1. In this simulation, convergence is reached in the 23rd step with an accuracy of 5 digits of decimal number accuracy and a total cost of $5445.8333. Accurate solution points fall in \(P_1 = 7166762 \pm 0.0000060 \) MW and \(P_2 = 38.33238 \pm 0.0000048 \) MW.

FIGURE 4. Plot the candidates in the initial space.

TABLE 1. Results of simulation analysis.

Iteration Step	\(P_1 \) (MW)	\(\bar{P}_1 \) (MW)	\(P_2 \) (MW)	\(\bar{P}_2 \) (MW)	\(\bar{X}_2 \) (MW)	Total Cost (TC)	Reduce Area (%)
0	50.000000	-	10.000000	-	-	-	-
1	62.500000	75.000000	25.000000	25.000000	35.000000	40.000000	50.00
2	62.500000	68.750000	12.500000	36.250000	41.250000	46.250000	50.00
3	68.750000	71.875000	6.2500000	35.625000	38.125000	40.625000	50.00
4	70.31250	71.875000	3.1250000	36.875000	38.125000	39.375000	50.00
5	70.09375	71.875000	1.5625000	37.500000	38.125000	38.750000	50.00
6	70.09375	71.48338	0.7812500	38.20313	38.5163	38.82813	50.00
7	71.48338	71.67969	0.3906250	38.16406	38.32031	38.47656	50.00
8	71.58203	71.67969	0.1953125	38.24219	38.32031	38.39844	50.00
9	71.63086	71.72852	0.0976563	38.28125	38.32031	38.35938	50.00
10	71.63086	71.65527	0.0482812	38.32520	38.34473	38.36426	50.00
11	71.65527	71.67969	0.0244141	38.32275	38.32522	38.34229	50.00
12	71.66128	71.67969	0.0120700	38.32764	38.32522	38.33740	50.00
13	71.66443	71.67653	0.0061055	38.33008	38.33522	38.33496	50.00
14	71.66443	71.66595	0.0030518	38.33282	38.33405	38.33527	50.00
15	71.66595	71.66672	0.0015259	38.33267	38.33328	38.33389	50.00
16	71.66634	71.66672	0.0007629	38.33298	38.33328	38.33359	50.00
17	71.66653	71.66672	0.0003815	38.33313	38.33328	38.33344	50.00
18	71.66653	71.66662	0.0019079	38.33330	38.33338	38.33345	50.00
19	71.66663	71.66667	0.0009554	38.33329	38.33333	38.33337	50.00
20	71.66665	71.66667	0.0004777	38.33331	38.33333	38.33335	50.00
21	71.66665	71.66667	0.0023580	38.33332	38.33333	38.33334	50.00
22	71.66666	71.66666	0.0001199	38.33333	38.33333	38.33334	50.00
23	71.66666	71.66666	0.0000060	38.33333	38.33333	38.33334	50.00
When comparing the ToNDA method and the calculus method for 5 digits of decimal number accuracy, the same results were obtained, namely, \(P_1 = 71.66667 \text{ MW} \), \(P_2 = 38.33333 \text{ MW} \), and TC = \$5445.83333.

Vra affects the number of iterations, as shown in Table 2, where the larger Vra is, the fewer iteration steps. However, an area reduction of more than 80% causes the calculation to be inaccurate. From Table 2, the smaller area reduction will guarantee the accuracy, but the iteration step required is getting larger. For example, a Vra value of 5% requires 301 iteration steps. This paper suggests the Vra value of 50% as a reconciliation so that the accuracy of the calculation results is guaranteed.

Table 2. The effect of area reduction on the number of iterations.

Number of Iterations	\(P_1 \) (MW)	\(P_2 \) (MW)	Total Cost ($)	Reduction Area (%)
301	71.66667	38.33333	5445.83333	5
147	71.66667	38.33333	5445.83333	10
95	71.66667	38.33333	5445.83333	15
70	71.66667	38.33333	5445.83333	20
54	71.66667	38.33333	5445.83333	25
44	71.66667	38.33333	5445.83333	30
36	71.66667	38.33333	5445.83333	35
31	71.66667	38.33333	5445.83333	40
26	71.66667	38.33333	5445.83333	45
23	71.66667	38.33333	5445.83333	50
20	71.66667	38.33333	5445.83333	55
17	71.66667	38.33333	5445.83333	60
16	71.66667	38.33333	5445.83333	65
13	71.66667	38.33333	5445.83333	70
12	71.66667	38.33333	5445.83333	75
10	71.66667	38.33333	5445.83333	80
9	71.63051	38.36949	5445.83529	85
7	72.22222	37.77778	5446.29630	90
6	73.68421	36.31579	5451.93906	95

III. ALGORITHM AND FLOWCHART OF ToNDA

The ToNDA described above can be applied to the various objective functions, differentiable and nondifferentiable. The procedure steps of solving EDP can be explained in detail by the flowchart in Fig. 6. The calculation process starts with determining the segment distance of the limits of each power generator. The generator range (between the max limit and the min limit) is divided into several segments/areas. Each segment is represented by a point located in the middle of the area to determine the best area indicated with the lowest cost. The, a reduced area is formed involving the best area and the neighboring area. Then, the process is continued by choosing potential candidates who had to meet equality and inequality constraints and then determining the best candidate with the minimum total cost. Finally, the power limits of generators are narrowed based on the point of the best candidate, where the position of the point is the center. Convergence will be reached if the maximum distance of the power limits of the generator is smallest and satisfies (24). In this paper, the best very small area that is considered to represent the point of convergence is the area with a size of 0.012 accuracy of 0.001.

The algorithm of the ToNDA method is written step by step as:

1. Start
2. Input data (number of generators, cost characteristics, generator power limit)
3. Set the maximum and minimum power limits of each generator.
4. Calculate the PDGL for each generator using (12).
5. Set the value of k
6. The PDGL is divided into k – 1 to obtain segment; for example, k = 5 to obtain 4 segment
7. Calculate length segment through (13)
8. Determine k potential solution points that fall on the segment boundaries in the PDGL for each generator.
9. Determine candidates that meet balance of power in equation (4) or (14). Candidates for each generator are determined from the smallest k sequence starting from the first generator to the (n – 1) generator. Candidates for the nth generator are determined later through equation (15).
10. Determine the best candidate with the lowest total cost of generation from all candidates.
11. Set the Vra (recommended 50%).
12. Create a new PDGL with the best candidate as the center involving neighboring segments.
13. If the minimum limit obtained is less than the initial minimum limit, then the minimum limit is set equal to the initial minimum.
14. If the maximum limit obtained is greater than the initial maximum limit, then the maximum limit is set equal to the initial maximum limit.
15. If the largest PDGL has been reduced to be the smallest value (for example, 0.00001 MW), then the convergence point is reached, and go to Step 16. Otherwise, go back to Step 6.
16. Finish

IV. SIMULATION AND ANALYSIS

The ToNDA work performance and this method were tested with the EDP with a fuel cost model in the form of a piecewise quadratic cost function and valve point effect. Simulation for
EDP with a piecewise quadratic cost function uses a 10-unit system. In comparison, simulation for VPE uses two size systems, a 13-unit system, and a 40-unit system.

A. EDP WITH PIECEWISE QUADRATIC FUEL COST FUNCTION

The mathematical model of the fuel cost function is in piecewise quadratic forms depicted in Fig. 7 and formulated in (31). The case study uses a 10-unit system with three fuel types obtained from [36]. The ToNDA successfully simulated the case for three load demands of 2500 MW, 2600 MW, and 2700 MW, and the detailed results are presented in Table 3.

$$f(P) = \begin{cases}
 a_{i,1} + b_{i,1}P_i + c_{i,1}P_i^2, & \hat{P}_i \leq P_i < P_{i,1} \\
 a_{i,2} + b_{i,2}P_i + c_{i,2}P_i^2, & P_{i,1} \leq P_i < P_{i,2} \\
 \vdots \\
 a_{i,k-1} + b_{i,k-1}P_i + c_{i,k-1}P_i^2, & P_{i,k-1} \leq P_i < \hat{P}_i
\end{cases}$$

(31)

The simulation uses the Laptop Asus core i3 using the Fortran Programming Language. For an error rate of 0.0001 MW, the iteration stops at the 19th step with a CPU time of 3.74 seconds.

Calculation results of the EDP for the other methods are obtained from [36], namely, Sequential Approach with Matrix Framework (SAMF), Hierarchical Method (HM), Hopfield Neural Network (HNN), Adaptive Hopfield Neural Network (AHNN), and Hybrid Genetic Algorithm (HGA). A detailed comparison of the results is presented in Table 4.

Table 4 shows that the reference methods give almost no different results for load demands of 2500 MW, 2600 MW, or 2700 MW. The ToNDA method provides better results than the results of the reference methods. When referring to the SAMF results, the ToNDA method provides a lower total cost with an average fuel savings of 9.06 $/h or 1.55% (detailed in Table 5).

Fuel savings will increase when the load demand is greater; the percentage of fuel savings increases from 1.12% (load demand of 2500 MW) to 1.80% (load demand of 2700 MW). This fuel savings shows that the ToNDA method is always accurate even though the load demand is increasing.

Based on Table 4, the proposed method has a performance improvement of 10.97 $/h or 1.7586% against the best comparison method (PSO or HGA), which costs 623.81.
TABLE 5. Fuel saving refer to SAMF method.

Load Demand (MW)	Fuel Cost Saving ($/h)	Percentage Cost Saving (%)
2500	6.34	1.20
2600	9.79	1.70
2700	11.05	1.77
Average	**52.67**	**1.55**

TABLE 6. Results for the 13-system unit with VPE.

Unit	\(P_o \) (MW)	\(P_e \) (MW)	a	b	c	e	f	\(P_{opt} \) (MW)	Fuel Cost ($/h)	VPE ($/h)
1	0	680	550	8.1	0.00028	300	0.035	628.3185	5749.919	0.0003
2	0	360	309	8.1	0.00056	200	0.042	297.7250	2770.211	12.3762
3	0	360	307	8.1	0.00056	200	0.042	224.3447	2152.377	0.4601
4	60	180	240	7.74	0.00324	150	0.063	109.7453	1128.451	1.1458
5	60	180	240	7.74	0.00324	150	0.063	60.0000	716.064	0.0000
6	60	180	240	7.74	0.00324	150	0.063	60.0000	716.064	0.0000
7	60	180	240	7.74	0.00324	150	0.063	60.0000	716.064	0.0000
8	60	180	240	7.74	0.00324	150	0.063	109.8665	1129.476	0.0005
9	60	180	240	7.74	0.00324	150	0.063	60.0000	716.064	0.0000
10	40	120	126	8.6	0.00284	100	0.084	40.0000	474.544	0.0000
11	40	120	126	8.6	0.00284	100	0.084	40.0000	474.544	0.0000
12	55	120	126	8.6	0.00284	100	0.084	55.0000	607.590	0.0000
13	55	120	126	8.6	0.00284	100	0.084	55.0000	607.590	0.0000
Total	**550**	**2960**						**1800.000**	**17958.960**	**13.9829**

TABLE 7. Comparison results for 13-unit test system with VPE.

Unit	QPSO (MW)	SSA (MW)	IPSO-TVAC (MW)	HCRO-DE (MW)	DSD (MW)	SHDE (MW)	HGA (MW)	FAPSO-VDE (MW)	ToNDA (MW)
1	538.560	628.3185	628.3185	628.3185	628.3185	628.3185	628.3185	628.3185	628.3185
2	224.700	149.5996	149.5930	149.5997	149.5986	149.5997	149.5997	222.7491	297.7250
3	150.090	224.3883	222.7491	222.7559	222.7987	149.5996	149.5990	224.3447	297.7250
4	109.870	109.8665	109.8665	109.8665	109.8673	109.8665	109.8665	109.8665	109.7453
5	109.870	109.8665	109.8665	109.8665	109.8665	109.8665	109.8665	109.8665	109.8665
6	109.870	109.8659	109.8665	109.8665	109.8665	109.8665	109.8665	109.8665	109.8665
7	109.870	109.8645	109.8665	109.8665	109.8665	109.8665	109.8665	109.8665	109.8665
8	159.750	109.8664	109.8665	109.8665	109.8665	109.8665	109.8665	109.8665	109.8665
9	109.870	60.0000	60.0000	60.0000	60.0000	60.0000	60.0000	60.0000	60.0000
10	77.410	40.0000	40.0000	40.0000	40.0000	40.0000	40.0000	40.0000	40.0000
11	40.0000	40.0000	40.0000	40.0000	40.0000	40.0000	40.0000	40.0000	40.0000
12	55.0100	55.0000	55.0000	55.0000	55.0000	55.0000	55.0000	55.0000	55.0000
13	55.0100	55.0000	55.0000	55.0000	55.0000	55.0000	55.0000	55.0000	55.0000
H. Zein et al.: Method for Completing ELD Using Technique of Narrowing Down Area

TABLE 8. Test results for 40-unit system with VPE.

Unit	\(P_{opt} \) (MW)	Cost ($/hr.)	Unit	\(P_{opt} \) (MW)	Cost ($/hr.)
1	110.7998	925.1	21	533.2790	5071.29
2	110.7998	925.1	22	533.2790	5071.29
3	97.3999	1190.33	23	533.2790	5071.29
4	179.7000	2143.48	24	533.2790	5071.29
5	87.8000	706.5	25	533.2790	5071.29
6	139.9980	1596.46	26	533.2790	5071.29
7	259.6000	2612.88	27	10.0000	1140.52
8	284.6000	2779.84	28	10.0000	1140.52
9	284.6000	2798.23	29	10.0000	1140.52
10	130.0000	2502.07	30	87.8000	706.50
11	94.0000	1893.31	31	190.0000	1643.96
12	94.0000	1908.17	32	190.0000	1643.96
13	214.7600	3792.08	33	190.0000	1643.96
14	394.2800	6414.88	34	164.8000	1585.55
15	394.2800	6436.63	35	200.0000	2043.73
16	394.2800	6436.63	36	194.4270	1985.75
17	489.2800	5296.72	37	109.9980	1220.15
18	489.2800	5288.78	38	110.0000	1220.17
19	511.2790	5540.93	39	110.0000	1220.17
20	511.2790	5540.91	40	511.2840	5541.03

Load Demand = 10500 MW and Total Cost = $12141.287

TABLE 9. Comparison results of 9 methods for IEEE 40 units with VPE.

No.	Method	Total Cost ($/hr.)
1	SSA	121412.55
2	QPSO	121448.21
3	HGA	121418.27
4	IPSO-TVAC	121412.54
5	FAPSO-VDE	121412.56
6	ACRO-DE	121412.55
7	DSD	121412.53
8	CCPPO	121412.54
9	FMIPL	121412.54
10	ToNDA	121412.87

is almost equal to the others, except for the QPSO method (18398.848 $/h). For quadratic and the results of various fuel types in Table 4, the proposed method is competitive, which gives 1.7586% better results than the best comparison method (PSO or HGA), which offers a cost of 623.81 $/h. However, for the case of VPE (in Table 7), the proposed method differs only in the results of 0.05072% worse than the best method (IPSO-TVAC).

2) THE LARGE UNIT SYSTEM

The test results for a 40-unit system with VPE are presented in Table 8. The lowest fuel units fall in the minimum power limit (units 10, 11, 12, 27, 28, and 29). The optimal power \(P_{opt} \) does not violate the power limits. The total cost of the ToNDA method (121412.87 $/h) is slightly larger than the others, as shown in Table 9.

In Tables 8 and 9, the proposed method is superior to QPSO and HGA, when compared to DSD, there is a difference of 0.00028%. When the proposed method is compared with the method from the latest reference [4] which uses full mixed-integer linear programming (FMIPL) formula, the results are also not significantly different.

Figure 8 shows the execution times for various numbers of generators. From the time, it looks quite feasible to apply to the generator schedule for the next 1 hour, where generally the generator schedule is 1 hour ahead.

V. CONCLUSION

A new paradigm based on narrowing the area in solving any EDP problem has been described in this paper through the ToNDA method. The methodology developed narrows the feasible area at each iteration step to obtain a tiny feasible area (as the solution point). The feasible area is evenly traced to ensure very high accuracy. The advantage is that it does not depend on the forms of the objective function. All economic load dispatch problems can be solved satisfactorily, regardless of whether the economic load dispatch problems are differentiable.

The simulation of two generators (differentiable EDP) shows that the results are close to the results of the calculus method in step 14, with a limit range of 0.09766 MW or a feasible area size of 0.000596 MW

FIGURE 8. Execution time for various number of generators.

\[\text{feasible area} = 0.000596 	ext{ MW}^2 \] (it is a tiny area that can be considered a convergence point).

The ToNDA method successfully applies to the nondifferentiable EDP, piecewise fuel cost, and fuel cost with the valve point effect. From the simulation results of EDP with a piecewise quadratic fuel cost function for ten units, the ToNDA can save 9.06 $/h of fuel or 1.55% compared to the SAMF, HM, HNN, AHNN, and HGA methods.

While the EDP simulation results with VPE are 13 units, the proposed method shows almost the same results as other methods, although the solution points are different. This method always balances the power generated and the load demand. This power balance must be maintained because a slightly unbalanced power can reduce fuel costs due to VPE.

The ToNDA method has also been successfully applied to large systems (40 generator units) in the case of the valve point effect. Moreover, this method still consistently shows optimal results compared to the other eight methods.

REFERENCES

[1] H. Sadat, Power System Analysis. New York, NY, USA: McGraw-Hill, 1999.
[2] S. Phommixay, M. L. Doumbia, and D. L. St-Pierre, “Review on the cost optimization of microgrids via particle swarm optimization,” Int. J. Energy Environ. Eng., vol. 11, no. 1, pp. 73–89, Mar. 2020.
[3] V. P. Sakhitivel, M. Suman, and P. D. Sathy, “Nonconvex economic environmental load dispatch using fuzzy based squirrel search algorithm,” Int. J. Energy Convers., vol. 8, no. 2, pp. 61–70, 2020.
[4] S. Pan, J. Jian, H. Chen, and L. Yang, “A full-mixed-integer linear programming formulation for economic dispatch with valve-point effects, transmission loss and prohibited operating zones,” Electr. Power Syst. Res., vol. 180, pp. 1–12, Mar. 2020.

[5] A. J. Wood, B. F. Wollenberg, and G. B. Sheble, Power Generation, Operation, and Control. New York, NY, USA: Wiley, 1984.

[6] M. Salama, “Economic control for generation in thermal power system,” Energy Convers. Manage., vol. 40, pp. 669–681, Apr. 1999.

[7] Present Practices in the Economic Operation of Power Systems, IEEE Committee Report, IEEE Trans. Power Apparatus Syst., vol. 90, 1971, pp. 1768–1775.

[8] E. Yousif, Z. Suli, M. Zhongjing, and Z. Baihai, “Decentralized gradient projection method for economic dispatch problem with valve point effect,” IEEE Trans. Power Syst., Transmiss. Distrib., vol. 12, no. 16, pp. 844–851, Sep. 2018.

[9] H. Zein, Y. Sabri, and A. Mashar, “Implementation of electricity business competition framework with economic dispatch direct method,” TELKOMNIKA Telecommun., Comput. Electron. Control, vol. 10, no. 4, pp. 667–674, Dec. 2012.

[10] A. Zayegh and N. Al Bassam, “Neural network principles and applications,” IntechOpen, Provisional Chapter, Tech. Rep., 2018.

[11] K. Y. Lee, A. Sode-Yome, and J. H. Park, “Adaptive Hopfield neural network for economic load dispatch,” IEEE Trans. Power Syst., vol. 13, no. 2, pp. 26–519, May 1998.

[12] T. Deng, X. He, and Z. Zeng, “Recurrent neural network for combined economic and emission dispatch,” Appl. Intell., vol. 48, no. 8, pp. 1–19, 2017.

[13] Z.-L. Gaing, “Constrained dynamic economic dispatch solution using particle swarm optimization,” in Proc. IEEE Power Eng. Soc. Gen. Meeting, Jun. 2004, pp. 153–158.

[14] J.-B. Park, K.-S. Lee, J.-R. Shin, and K. Y. Lee, “A particle swarm optimization for economic dispatch with nonsmooth cost functions,” IEEE Trans. Power Syst., vol. 20, no. 1, pp. 34–42, Feb. 2005.

[15] D. N. Jeyakumar, T. Jayabarathi, and T. Raghunathan, “Particle swarm optimization for various types of economic dispatch problems,” Int. J. Electr. Power Energy Syst., vol. 28, no. 1, pp. 36–42, Jan. 2006.

[16] R. Al-Rubayi, M. K. Abd, and F. M. F. Flaih, “A new enhancement on PSO algorithm for combined economic-emission load dispatch issues,” Int. J. Intell. Eng. Syst., vol. 13, no. 1, pp. 77–85, Feb. 2020.

[17] H. Shahinzadeh, S. M. Nasr-Azadani, and N. Jannesari, “Applications of particle swarm optimization algorithm to solving the economic load dispatch of units in power systems with valve-point effects,” Int. J. Electr. Comput. Eng., vol. 4, no. 6, pp. 858–867, Dec. 2014.

[18] G. B. Sheble and K. Brittig, “Refined genetic algorithm-economic dispatch example,” IEEE Trans. Power Syst., vol. 10, no. 1, pp. 117–124, Feb. 1995.

[19] L. Dai, D. You, X. Yin, G. Wang, and Q. Zou, “Distributional robust dynamic economic dispatch model with conditional value at risk recourse function,” Int. Trans. Elect. Energy Syst., vol. 29, no. 4, pp. 1–17, 2018.

[20] S. Hazy and P. K. Roy, “Optimal dispatch using moth-flame optimization for hydrothermal-wind scheduling problem,” Int. Trans. Electr. Energy Syst., vol. 30, no. 8, pp. 1–24, 2020.

[21] K. Y. Lee and M. A. El-Sharkawi, “Tutorial on modern heuristic optimization techniques with applications to power systems IEEE power engineering society,” in Proc. IEEE Catalog, 2013.

[22] S. Bhupender, S. Shivani, and N. Ajay, “Particle swarm optimization and genetic algorithm-based optimal power flow solutions,” Int. J. Appl. Innov. Eng. Manage., vol. 2, no. 7, pp. 307–315, 2013.

[23] H. Zein, A. S. Kurniasetyawati, and C. K. Wachjoe, “Fuel cost optimization of the power system by involving all operating limits based on the developed interior point algorithm,” Int. Trans. Electr. Energy Syst., vol. 30, no. 5, pp. 1–14, May 2020.

[24] S. Duman, S. Rivera, J. Li, and L. Wu, “Optimal power flow of power systems with controllable wind-photovoltaic energy systems via differential evolutionary particle swarm optimization,” Int. Trans. Electr. Energy Syst., vol. 30, no. 4, pp. 1–28, Apr. 2019.

[25] R. Girshick, “Object detection with heuristic coarse-to-fine search,” M.s. thesis, Univ. Chicago, Chicago, IL, USA, 2009.

[26] K. Anderson, N. Sturtevant, R. Holte, and J. Schaeffer, “Coarse-to-fine search techniques,” Dept. Comput. Sci., Univ. Alberta, Edmonton, AB, Canada, Tech. Rep. TR 08-05, 2008.

[27] R. Korah and J. Perinbam, “A novel coarse-to-fine search motion estimator,” Inf. Technol. J., vol. 5, no. 6, pp. 1073–1077, Oct. 2006.

[28] R. Jangkung, S. Adi, and Z. Hermagasantos, “Multi dimension of coarse to fine search method development for solving economic dispatch,” Indonesia J. Electr. Eng. Comput. Sci., vol. 3, no. 1, pp. 1–9, Jul. 2016.

[29] S. Subramanian and S. Ganesan, “A simplified approach for economic dispatch with piecewise quadratic cost functions,” Int. J. Comput. Electr. Eng., vol. 2, no. 5, pp. 793–798, Oct. 2010.

[30] C. E. Lin and G. L. Viviani, “Hierarchical economic dispatch for piecewise quadratic cost functions,” IEEE Trans. Power App. Syst., vol. PAS-103, no. 6, pp. 1170–1175, Jun. 1984.

HERMAGASANTOS ZEIN was born in Simpang Empat, West Pasaman, West Sumatra, Indonesia, in 1959. He received the bachelor’s, magister’s, and Ph.D. degrees from the Electrical Engineering Department, Institut Teknologi Bandung (ITB), in 1986, 1991, and 2005, respectively. He had teaching experience in various private universities in Bandung and Jakarta, from 1998 to 2000. He has authored four books and published more than 60 articles. He is actively researching and providing guidance for doctoral students. Since 1989, he is a Lecturer with the Energy Conversion Engineering Department, State Polytechnic of Bandung (POLBAN). His research interests include electrical energy costs/prices, power system study, power optimization, and power planning.

JANGKUNGH RAHARJO (Member, IEEE) received the B.S. and magister degrees in electrical engineering from the Bandung Institute of Technology (ITB), Indonesia, and the Ph.D. degree in power systems from the Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia, in 2018. He is a Lecturer with the School of Electrical Engineering, Telkom University, Indonesia. His research interests include power systems and signal processing.

IGNATIUS RIADE MARDIYANTO was born in Klaten, Central Java, Indonesia, in January 1967. He received the S1’s degree in physics and the S2’s (master’s) degree in instrumentation and control engineering with a focus on asynchronous generator control from the Institute of Technology Bandung (ITB), Indonesia, in 1993 and 1999, respectively, and the Ph.D. degree in electrical systems with the research subject effects of emissions in electric centers on optimal power flow from Sepuluh Nopember Institute of Technology, Indonesia, in 2018. He is a Lecturer with the Energy Conversion Department, Politeknik Negeri Bandung, Indonesia, specializing in power systems and renewable energy.