Vesicle transport through interaction with t-SNAREs 1a (Vti1a)'s roles in neurons

Bor Luen Tang a, b, *

a Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, Singapore
b NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, Singapore

ARTICLE INFO

Keywords:
Neuron
Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)
VAMP4
VAMP7
Vti1a
Neuroscience
Cellular neuroscience
Molecular neuroscience
Membrane
Gene mutation

ABSTRACT

The Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) family mediates membrane fusion during membrane trafficking and autophagy in all eukaryotic cells, with a number of SNAREs having cell type-specific functions. The endosome-trans-Golgi network (TGN) localized SNARE, Vesicle transport through interaction with t-SNAREs 1a (Vti1a), is unique among SNAREs in that it has numerous neuron-specific functions. These include neurite outgrowth, nervous system development, spontaneous neurotransmission, synaptic vesicle and dense core vesicle secretion, as well as a process of unconventional surface transport of the Kv4 potassium channel. Furthermore, the human VTI1A gene is known to form fusion products with neighboring genes in cancer tissues, and VTI1A variants are associated with risk in cancers, including glioma. In this review, I highlight VTI1A's known physio-pathological roles in brain neurons, as well as unanswered questions in these regards.

1. Introduction

Vesicle fusion in eukaryotic membrane (or vesicular) traffic is mediated by N-ethylmaleimide-sensitive factor (NSF), Soluble NSF attachment proteins (SNAPs) and SNAP receptors (SNAREs) (Sollner et al., 1993; Weber et al., 1998). These form a distinct physical complex in vitro – the 20S complex (Hohl et al., 1998; Zhou et al., 2015). A SNARE protein is membrane associated via a C-terminal transmembrane domain or lipid anchor, and is thus largely cytoplasmically oriented. SNAREs harbor one or two α-helical coiled-coil signature motif known as the SNARE domain (Weimbs et al., 1998). SNARE domains are composed of repeated hydrophobic residues that is interrupted by a charged arginine (R) or glutamine (Q), and thus the basis of classification of SNAREs into R- or Q-SNAREs (Fasshauer et al., 1998; Kloeper et al., 2007). In membrane fusion, SNARE domains belonging to those that are either transport vesicle-associated (v-SNAREs) or target membrane-localized (t-SNAREs) interact spontaneously to form complexes in trans with the right composition and stoichiometry (Katz and Brennwald, 2000). In completion of the pairing of the SNARE domain α-helices, or the formation of multiple ‘SNAREpins’ (Weber et al., 1998), the energetically favorable SNAREpin formation and clustering at the fusion site provides the biophysical or entropic force required to overcome the electrostatic repulsion and bring about fusion of two negatively charged lipid bilayers (Mostafavi et al., 2017).

In this regard, the fusion between synaptic vesicles and the pre-synaptic plasma membrane during synaptic vesicle exocytosis in neurons offers a classic example (Südhof, 2014). This action potential-triggered process is highly regulated (Rizo and Xu, 2015), and canonical synaptic vesicle fusion is driven by a trans-SNARE complex formed between the plasma membrane associated Qa-SNARE Syntaxin 1 (STX1A/B) and the Qb-SNARE Synaptosome Associated Protein 25 (SNAP25) with the vesicle-bound R-SNARE Synaptobrevin 2 (Syb2)/Vesicle-associated membrane protein 2 (VAMP2) (Pevsner et al., 1994; Südhof, 2014). Structural analyses indicate that this synaptic exocytic SNARE complex takes the form of a 4-helix bundle, with leucine-zipper-like layers formed by the SNARE domains at the center (Sutton et al., 1998; Poirier et al., 1998; Katz et al., 1998). Embedded within these leucine-zipper layers is the ionic ‘zero’ layer, consisting of the 1 R (from VAMP2) and 3 Q (1 from STX1A/B and 2 from SNAP25) residues contributed by each of the four SNARE domain α-helices. On the other hand, other SNARE complexes, such as that responsible for endoplasmic reticulum (ER)-Golgi transport, has its 3 Qs contributed by 3

* Corresponding author.
E-mail address: bchtbl@nus.edu.sg.

https://doi.org/10.1016/j.heliyon.2020.e04600
Received 4 March 2020; Received in revised form 3 June 2020; Accepted 28 July 2020
2405-8440/© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
different t-SNAREs (Xu et al., 2000). This particular ‘1R + 3Q’ stoichiometric arrangement provides topological constraint (Parlati et al., 2000) and compositional specificity (Yang et al., 2008) for functional membrane fusion, and is likely conserved for all SNARE-mediated membrane fusion in the cell. The unique ionic ‘zero’ layer was shown to be required for eventual dissociation of formed SNARE complex by NSF/α-SNAP (Scales et al., 2001), although mutational analyses in yeast have suggested that the R could also be functionally replaced by a Q (Katz and Brennwald, 2000).

Neurons are polarized cells with rather specific membrane trafficking needs and processes that are exemplified by, but not limited to, synaptic vesicle exocytosis. SNAREs are required in other membrane fusion processes in neurons (Wang and Tang, 2006), including those that are neuron-specific such as neurite outgrowth and neuroendocrine secretion. In this regard, a subset of R-SNAREs known as the longins (as opposed to the brevins) (Filippini et al., 2001; Rossi et al., 2004), have been quite extensively implicated in neuron-specific functions (Rossi et al., 2004; Durie et al., 2015). The longin domain with a prolin-like fold (Gonzalez et al., 2001; Rossi et al., 2004) can be found in the R-SNAREs Sec22b (Gonzalez et al., 2001), Ykt6 (Tochio et al., 2001) and VAMP7 (Proux-Gillardaux et al., 2007). The multi-functional Ykt6 complexes with several other SNAREs and is shown to be involved in ER-Golgi transport (McNew et al., 1997), Golgi transport (Xu et al., 2002), vacuole targeting (Kweon et al., 2003) and more recently in autophagosome-lysosome fusion (Yong and Tang, 2019; Kriegenburg et al., 2019). However, Ykt6 appears to be specialized for the trafficking of a poorly characterized unique neuronal membrane compartment (Hasegawa et al., 2003). The mammalian Sec22b is involved in ER-Golgi exocytic transport (Hay et al., 1997; Zhang et al., 1999), secretory autophagy (Kimura et al., 2017), ER-plasma membrane (PM) apposition and PM expansion (Petkov et al., 2014), and has also been implicated in ER-phagosomal antigen cross presentation in dendritic cells (Cebrian et al., 2011; Alloatti et al., 2017; Cruz et al., 2020). VAMP7 mediates late endosome-lysosome transport (Advani et al., 1999), TGN-late endosome transport (Pols et al., 2013) and the unconventional process of lysosomal secretion (Sato et al., 2011; Wang et al., 2018). In neurons, VAMP7 is also known to mediate neurite outgrowth (Arantes and Andrews, 2006; Burgo et al., 2009) and spontaneous neurotransmission (Bal et al., 2013).

Orthologue of the SNARE, Vesicle transport through interaction with t-SNAREs 1A (Vti1a), is first identified in yeast (as Vti1p), with functions as an endo-lysosomal SNARE in Golgi retrograde (Lupashin et al., 1997) and Golgi to vacuole transport (Vesicle transport through interaction with t-SNAREs 1A (Vti1a), is first identified in yeast (as Vti1p), with functions as an endo-lysosomal SNARE in Golgi retrograde (Lupashin et al., 1997) and Golgi to vacuole transport (Vesicle transport through interaction with t-SNAREs 1A (Vti1a), is first identified in yeast (as Vti1p), with functions as an endo-lysosomal SNARE in Golgi retrograde (Lupashin et al., 1997) and Golgi to vacuole transport (Fischer von Mollard and Stevens, 1998). In yeast, Vti1p is the only SNARE of the Qb.IIb subtype (Klopper et al., 2007), and two Qb SNAREs with the closest homology to Vti1p in mammals are Vti1a and Vti1b (Vesicle transport through interaction with t-SNAREs 1A (Vti1a), is first identified in yeast (as Vti1p), with functions as an endo-lysosomal SNARE in Golgi retrograde (Lupashin et al., 1997) and Golgi to vacuole transport (Fischer von Mollard and Stevens, 1998). In yeast, Vti1p is the only SNARE of the Qb.IIb subtype (Klopper et al., 2007), and two Qb SNAREs with the closest homology to Vti1p in mammals are Vti1a and Vti1b (Fischer von Mollard and Stevens, 1998). The mammalian Vti1a and Vti1b appear to have distinct subcellular localizations, cognate SNARE partners (Kreykenbohm et al., 2002) and trafficking functions. For example, Vti1a functions in insulin-stimulated glucose transport (Bose et al., 2005) and regulated exocytosis in adrenergic chromaffin cells, but Vti1b null cells show no secretion defects (Walter et al., 2014). Deletion of Vti1b is non-lethal, but rather specifically resulted in reduced amounts of Syntaxin 8 due to enhanced degradation of the latter (Atlaskin et al., 2003). However, they are also likely to have key overlapping functions, as knockout of either of them did not affect viability in mice (Atlaskin et al., 2003; Runwar et al., 2011), but a double-knockout of both Vti1a and Vti1b resulted in perinatal lethality (Runwar et al., 2011).

Early work have implicated Vti1a in both antero- and retrograde (Mallard et al., 2002) traffic, as well as its enrichment in small synaptic vesicles (Antonion et al., 2000), Vti1a and VAMP4 partners with a number of SNAREs associated with the trans-Golgi network (TGN) and the endosome to mediate connecting traffic between the exocytic and endocytic pathways. A SNARE complex formed between Vti1a, Syntaxin 6 (STX6) (Wendler and Tooze, 2001), Syntaxin 16 (STX16) (Simonsen et al., 1998; Tang et al., 1998) and either VAMP3/cellubrevin (McMahon et al., 1993) or VAMP4 (Steegmaier et al., 1999) mediates early/recycling endosome transport of Shiga toxin and TGN46 (Mallard et al., 2002; Kreykenbohm et al., 2002; Lauerman et al., 2011). Another related complex, consisting of Vti1a, Syntaxin 10 (STX10) (Wang et al., 2005; Ganley et al., 2008), STX16, and VAMP3, works in mediating Mannose 6-phosphate receptors (MRPs) transport from the endosomes to the Golgi (Ganley et al., 2008). Vti1a, VAMP4 and STX6, in conjunction with Syntaxin 13 (STX13) (Prekeris et al., 1998), forms another complex that mediate homotypic fusion of early endosomes (Brandhorst et al., 2006).

Importantly, Vti1a appears to have specific roles in neuronal processes (Ramirez and Kavalali, 2012; Emperador-Melero et al., 2019), including neuronal development (Runwar et al., 2011), non-canonical neurotransmission processes (Ramirez et al., 2012; Emperador-Melero et al., 2018), dense core granule secretion (Walter et al., 2014; Emperador-Melero et al., 2018), unconventional transport in neuron (Flower-dew and Burgoyne, 2009), and perhaps also brain malignancy (Kinnersey et al., 2015; Wang et al., 2017; Davidsen et al., 2018). In the paragraphs below, Vti1a’s involvement in neuronal development, physiology and pathological processes (summarized in Figure 1) shall be highlighted and discussed.

2. Vti1a/b in neural development

In 2011, von Mollard's group has generated Vti1a−/−Vti1b−/− double-knockout (DKO) mouse embryos and found somewhat surprisingly that fibroblasts immortalized from embryos exhibit neither obvious aberrance in plasma or endo-lysosomal membrane morphology, nor overt defects in cargo trafficking (Runwar et al., 2011). However, major neuronal projection tracts and commissures were either absent or reduced in size in E18.5 DKO mice, indicating severely impaired axonal growth. In the DKO embryos, the peripheral ganglia also exhibited varying degrees of neurodegeneration, likely due to neurotrophic deprivation resulting from a lack of axonal targeting and innervation. The DKO animals thus have neuronal trafficking processes that are crucial for axonal growth that was severely defective with the loss of both Vti1a and Vti1b. That defects do not occur in single knockout or double heterozygous mice indicate that Vti1a and Vti1b could compensate for the loss of each other. Notably, the axonal growth phenotype of Vti1a/b DKO in mice is much more severe than those of VAMP7 (Sato et al., 2011; Danglot et al., 2012), although the latter has been implicated in a major neurite outgrowth mechanism involving specific structures known as enlargeosomes (Racchetti et al., 2010; Meldolesi, 2011; Colombo et al., 2014). A more recent study by Verhage's group also showed that Vti1a/Vti1b DKO neurons have diminished viability in culture, are smaller and form fewer synapses (Emperador-Melero et al., 2018). Superficially, the findings would suggest that Vti1a and Vti1b function in a redundant manner in axonal or neurite growth, with the presence of either being sufficient for postnatal survival.

3. Vti1a in spontaneous neurotransmission

Other than action potential-evoked plasma membrane fusion of synaptic vesicles, all synapses exhibit a low background of spontaneous vesicle fusion and action potential-independent miniature neurotransmission (Sutton et al., 2006). Although it has been argued that spontaneous and evoked transmission arise from the same synaptic vesicle pools (Groener and Klingauf, 2007; Hua et al., 2010; Wilhelm et al., 2010), the notion is controversial and evidence exists for spontaneous fusion being the result of a separate pool of vesicles recycling spontaneously (Sara et al., 2005; Fredj and Burrone, 2009; Andreae et al., 2012; Ramirez et al., 2012). Kavalali's group showed that some synaptic vesicles do recycle when neurons are at rest, and identified by differential tagging of synaptic vesicles a 'reluctantly releasable' or 'reserved pool' (Sara et al., 2005). Spontaneous, but not evoked transmission, is affected by neurotransmitter depletion at rest rather selectively from the spontaneously fusing vesicles. Also, the pools of activity-dependent and spontaneously
Figure 1. Schematic diagram illustrating the roles of Vti1a in neurons. As in non-neuronal cells, Vti1a is part of a SNARE complexes that mediate endosome-trans-Golgi network (TGN) transport. Vti1a also mediates regulated secretion of dense core vesicles (DCV) and marks a pool of spontaneously fusing synaptic vesicles (green) that recycles at rest and fuse with the axonal presynaptic plasma membrane (PM). Vti1a and VAMP7 (VAMP7) are also involved in Potassium channel interacting protein 1 (KChIP1)/voltage-gated K⁺ channels (Kv4) to the somatodendritic plasma membrane. Mutations/variants and gene fusion of VTI1A (red star) in neuronal or glia progenitor cells could be oncogenic. See text for more details.

4. Vti1a/b and secretory granule exocytosis

The first hint that Vti1a could be involved in regulated transport or secretion came from the report which showed that Vti1a regulates insulin-stimulated glucose transport and the secretion of the hormone Adipocyte complement related protein of 30 kD (Acrp30), or adiponectin, in 3T3-L1 adipocytes (Bose et al., 2005). Two studies have since confirmed a role for Vti1a in dense-core vesicle biogenesis and secretion in the endocrine and neuronal systems, respectively (Walter et al., 2014; Emperador-Melero et al., 2018). The secretory defects noted in Vti1a/b DKO neurons were rescued almost completely by exogenous expression of Vti1a alone, but some of which (such as total DCV pool and retrograde transport) could only be partially rescued by the expression of Vti1b alone. These findings of Vti1a associated upstream defects make deciphering of any distinct synaptic role of Vti1a difficult. Surprisingly, spontaneous transmission is also not completely abolished in the Vti1a/b DKO neurons, which would suggest that at least some spontaneously fusing vesicles at rest could fuse independently of Vti1a.
large dense-core vesicles (LDCVs) in adrenal chromaffin cells are devoid of Vti1a. However, the Ca\(^{2+}\) channel abundance and stimuli-evoked LDCV exocytosis are reduced in Vti1a-null cells. With manipulation of exocytic stimulus, it is shown that despite the secretion defect and the decrease in the number of secretory granules, LDCV secretion in the Vti1a-null cells are unchanged in terms of kinetics and Ca\(^{2+}\) sensitivity. The LDCV secretory phenotype is not exhibited by Vti1b-null cells and not exacerbated by a Vti1a/Vti1b DKO, indicating that Vti1b is not involved in, and could not complement Vti1a’s role in regulated exocytosis of adrenal chromaffin cells.

As mentioned in the section above, Emperador-Melero and colleagues discovered that, as with synaptic vesicles, DCV number and secretion were also greatly reduced in Vti1a/Vti1b DKO mouse neurons (Emperador-Melero et al., 2018). In the case of neuronal DCV, Vti1b expression could rescue the DCV secretion, but only partially rescue the reduction in total DCV pool. Therefore there appears to be a difference between DCV secretion in neurons and LDCV secretion in adrenal chromaffin cells in terms of Vti1b’s ability to compensate for the loss of Vti1a. These results should be interpreted with some caution as compensatory mechanisms should be considered. These results were also greatly reduced in Vti1a/Vti1b DKO mouse neurons (Emperador-Melero et al., 2018). In this case, Emperador-Melero and colleagues discovered that, as with synaptic vesicles, DCV number and secretion were also greatly reduced in Vti1a/Vti1b DKO mouse neurons (Emperador-Melero et al., 2018). These results should be interpreted with some caution as compensatory mechanisms should be considered. These results were also greatly reduced in Vti1a/Vti1b DKO mouse neurons (Emperador-Melero et al., 2018). In this case, Emperador-Melero and colleagues discovered that, as with synaptic vesicles, DCV number and secretion were also greatly reduced in Vti1a/Vti1b DKO mouse neurons (Emperador-Melero et al., 2018).

More recent Genome-wide association study (GWAS)-based analysis have also identified colorectal cancer (Wang et al., 2014) and lung cancer (Su et al., 2015) susceptibility locus in VTI1A. Moreover, GWAS-based analysis have shown that the VTI1A gene harbors risk locus for glioma in a European population (Kuipers et al., 2015), and the VTI1A-associated single nucleotide polymorphism (SNP) variant rs11196067 is significantly associated with glioma risk in a Chinese population (Wang et al., 2017). A summary of VTI1A’s association with cancer is provided in Table 1. A recent meta-analysis of variants reported in the VTI1A-TCF7L2 region and potential function of these variants using data from the Encyclopedia of DNA Elements (ENCODE) has indicated that the VTI1A-TCF7L2 region does have a significant role in cancer pathogenesis (Zhang et al., 2018). The generation of oncogenic fusion gene product via chromosomal translocation is well-known, but fusion gene products involving SNAREs are uncommon. In this regard, the fusion of VAMP2 and Neuregulin 1 (NRG1) genes has been found in non-small-cell lung carcinoma and is predicted to be oncogenic (Jung et al., 2015). Likewise, SIX16’s fusion with Aminopeptidase Like 1 (NPEPL1) has been identified in gastrointestinal stromal tumors (Kang et al., 2016).

Our understanding of involvement of membrane trafficking components in human cancer is largely based on the oncogenic roles of Rabs (Chia and Tang, 2009; Tang and Ng, 2009; Wang et al., 2017; Shaughnessy and Echard, 2018). At the moment it is difficult to determine with any certainty how dysregulated or mutated Vti1a could be oncogenic. Given the role of Wnt signaling in brain tumors (McCord et al., 2017; Rajakulendran et al., 2019), it is conceivable that the Vti1a-TCF7L2/TCF4 fusion product may perturb oncogenic signaling in the brain. Furthermore, it is speculative plausible that the membrane trafficking role of Vti1a may impact on growth receptor signaling, or in some yet undefined manner facilitates migration or metastasis in cancer cells.

7. Future questions and research directions

In this brief review, the unusually wide and unique roles for the Vti1a functions in the nervous system development and neurotransmission, dense core vesicle exocytosis, and may speculatively have a role in brain malignancy. Our understanding of these Vti1a functions in neurons are in most cases still lacking in mechanistic details, and many important research questions remained. A prominent question would be whether Vti1a could participate directly in a synaptic vesicle SNARE fusion complex, perhaps replacing SNAP25 as a Qb-SNARE. The SNARE complexes formed by VTI1A with other SNAREs in neurons, as well as biochemical and biophysical aspects of their functions in the neuronal processes discussed above, have remained underexplored. Another important question is how does Vti1a’s role in endosome-TGN retrograde traffic align with, or explains its apparent role in regulated exocytosis. Little is known about the COPII-independent role of KChIP1 that involves Vti1a. In this regard, does Vti1a have more roles in an unconventional exocytosis involving other cargoes in neurons? Given VTI1A’s deciphered role in nervous system development and neurotransmission, it is likely that VTI1A mutations and variants could result in nervous
Table 1. A summary of VTI1A and other SNARE family members with known genetic association with various cancers. VTI1A - Vesicle transport through interaction with T-SNAREs 1A (Vti1a); TCFP7L2 - Transcription factor 7-like 2; CFAP46 - Cilia and flagella associated protein 46; VAMP2 - Vesicle-associated membrane protein 2; STX16 – Syntaxin 16; NRG1 – Neuregulin 1; NPEPL1 – Aminopeptidase-like 1.

Cancer and data type	Vti1a mutation/variant	Reference
Colorectal cancer (CRC) (primary tumor sample and matched adjacent tissues)	VTI1A-TCFP7L2 gene fusion	Bass et al., 2011
CRC cell lines and tissues	Splice variants of VTI1A-TCFP7L2 fusion transcripts	Nome et al., 2014
CRC genome wide association studies (GWAS)	Risk locus at 1q25 (rs12243108, intronic to VTI1A)	Wang et al., 2014
Non-small cell lung cancer association	Allele A of VTI1A SNP rs7068603	Su et al., 2015
Glioma GWAS	Risk locus at 1q25.2 (rs11196067), near the VTI1A gene locus	Kinnersley et al., 2015
CRC GWAS	Risk locus at 1q25.2 (rs10506686)	Zeng et al., 2016
Glioma association	Risk locus rs11196067	Wang et al., 2017
Associations between variants in the VTI1A-TCFP7L2 region and cancer susceptibility	8 common variants of VTI1A and TCFP7L2 associated with various cancers	Zhang et al., 2018
Hepatocellular carcinoma (HCC) RNA sequencing	VTI1A-CFAP46 fusion transcript (from a genomic DNA VTI1A-CFAP46 translocation event)	Tsuge et al., 2019
Non-small-cell lung adenocarcinoma, whole-transcriptome sequencing	VAMP2-NRG1 gene fusion	Jung et al., 2015
Gastrointestinal stromal tumors, exome and transcriptome sequencing	STX16-NPEPL1 gene fusion	Kang et al., 2016

system dysfunctions and neurological disorders. This possibility should also be further explored.

With regards to the oncogenic potential of the VTI1A locus, an important question would be how do VTI1A variants or mutants, in conjunction with gene fusion products or on their own, drive oncogenesis, particularly those associated with the brain? Forthcoming answers to these questions would undoubtedly enrich our overall fundamental understanding of neuronal physiology and pathology.

Declarations

Author contribution statement

All authors listed have significantly contributed to the development and the writing of this article.

Funding statement

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Competing interest statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

References

Advanzi, R.J., Yang, B., Prekeris, R., Lee, K.C., Klumperman, J., Scheller, R.H., et al., 1999. VAMP-7 mediates vesicular transport from endosomes to lysosomes. J. Cell Biol. 146, 765–776.
Alloatti, A., Roohluizen, D.C., Joannas, L., Carpier, J.M., Borra, S., Magalhaes, J.G., et al., 2017. Critical role for Sec22b-dependent antigen cross-presentation in antitumor immunity. J. Exp. Med. 214, 2231–2241.
Andreea, L.C., Fredj, N.B., Burrow, J., 2012. Independent vesicle pools underlie different modes of release during neuronal development. J. Neurosci. 32, 1867–1874.
Antonin, W., Riedel, D., von Mollard, G.F., 2000. The SNARE Vti1a-beta is localized to synaptic vesicles of mature retinal ganglion cells. J. Exp. Med. 214, 2231–2241.
Azarbayeefar, R.P., Andrees, N.W., 2006. A role for Sec22b in synaptotagmin VII-regulated exocytosis of lysosomes in neurite outgrowth from primary sympathetic neurons. J. Neurosci. 26, 4630–4637.
Ates-Salih, V., Kreykenbohm, V., Eskelinen, E.L., Wenzel, D., Fayezy, A., Fischer von Mollard, G., et al., 2003. Deletion of the SNARE vti1b in mice results in the loss of a single copy of the vti1b partner, syntaxin 8. Mol. Cell. Biol. 23, 5198–5207.
Bal, M., Leitz, J., Reese, A.L., Ramirez, D.M.O., Durakoglugil, M., Herz, J., et al., 2013. Reelin mobilizes a VAMP7-dependent synaptic vesicle pool and selectively augments spontaneous neurotransmission. Neuron 80, 934–946.
Bass, A.J., Lawrence, M.S., Brace, L.E., Ramos, A.H., Drier, Y., Ghibuks, K., et al., 2011. Genomic sequencing of colorectal adenocarcinomas identifies a recurrent VTI1A-TCFP7L2 fusion. Nat. Genet. 43, 964–968.
Bose, A., Gillemote, A., Huang, S., Hubard, A.C., Lane, C.R., Soriano, N.A., et al., 2005. The vSNARE Vti1a regulates insulin-stimulated glucose transport and Acrp30 secretion in 3T3-L1 adipocytes. J. Biol. Chem. 280, 36946–36951.
Brandhorst, D., Zwilling, D., Rizzoli, F., Lippert, U., Lang, T., Jahn, R., et al., 2006. Homotypic fusion of early endosomes: SNAREs do not determine fusion specificity. Proc. Natl. Acad. Sci. U.S.A. 103, 2701–2706.
Burgo, A., Sotirakis, E., Simmler, M.C., Verraes, A., Chomat, C., Simpson, J.C., et al., 2009. Role of Varp, a Rab21 exchange factor and Ti-VAMP/VAMP7 partner, in neurite growth. EMBO Rep. 10, 1117–1124.
Cebrian, I., Visentin, G., Blanchard, N., Jouve, M., Bobard, A., Moita, C., et al., 2011. Sec22b regulates phagosomal maturation and antigen crosspresentation by dendritic cells. Cell 147, 1355–1368.
Chia, W.J., Tang, B.L., 2009. Emerging roles for Rab family GTPases in human cancer. Int. J. Cancer 124, 4630–4637.
Chua, C.E.L., Lim, Y.S., Lee, M.G., Tang, B.L., 2012. Non-classical membrane trafficking processes galore. J. Cell. Physiol. 227, 3722–3730.
Colombo, F., Racchetti, G., Meldolesi, J., 2014. Neurite outgrowth induced by NGF or VEGF is associated with an increase in neuronal processes galore. J. Cell. Physiol. 227, 3722–3730.
Daste, F., Galli, T., Tareste, D., 2015. Structure and function of longin SNAREs. J. Cell Sci. 128, 4263–4272.
Davidsen, J., Larsen, S., Coskun, M., Gogenur, I., Dahlgaard, K., Bennett, E.P., et al., 2018. The VTI1A-TCP4 colon cancer fusion protein is a dominant negative regulator of endocytosis and is transcriptionally regulated by intestinal homeodomain factor GDX2. PLoS One 13, e0200215.
Emperador-Melero, J., Toonen, R.F., Verhage, M., 2019. Vti proteins: beyond exocytosis. J. Neurosci. 39, 128, 4272.
Emperador-Melero, J., Huson, I., Dahlgaard, K., Bennett, E.P., et al., 2018. Absence of TI-VAMP/VAMP7 leads to increased anxiety in mice. J. Neurosci. 39, e102020.
B.L. Tang Heliyon 6 (2020) e04600

Hay, J.C., Chao, D.S., Kuo, C.S., Scheller, R.H., 1997. Protein interactions regulating Hasdemir, B., Fitzgerald, D.J., Prior, I.A., Tepikin, A.V., Burgoyne, R.D., 2005. Traf McCord, M., Mukouyama, Y.S., Gilbert, M.R., Jackson, S., 2017. Targeting WNT signaling Gonzalez, L.C., Weis, W.I., Scheller, R.H., 2001. A novel snare N-terminal domain

Fredj, N.B., Burrone, J., 2009. A resting pool of vesicles is responsible for spontaneous Flowerdew, S.E., Burgoyne, R.D., 2009. A VAMP7/Vti1a SNARE complex distinguishes a Fischer von Mollard, G., Stevens, T.H., 1998. A human homolog can functionally replace Filippini, F., Rossi, V., Galli, T., Budillon, A., D’Uriso, M., D’Esposito, M., et al., 2001. Kreykenbohm, V., Wenzel, D., Antonin, W., Atlachkine, V., von Mollard, G.F., 2002. The Kloepper, T.H., Kienle, C.N., Fasshauer, D., 2007. An elaborate classi

Kimura, T., Jia, J., Kumar, S., Choi, S.W., Gu, Y., Mudd, M., Dupont, N., Jiang, S., Peters, R., Farzam, F., Jain, A., Lidke, K.A., Adams, C.M., Johansen, T., Deretic, V., Rajakulendran, N., Rowland, K.J., Selvadurai, H.J., Ahmadi, M., Park, N.I., Naumenko, S., Ramirez, D.M.O., Khvotchev, M., Trauterman, B., Kavalali, E.T., 2012. Vti1a identifies a novel yeast SNARE protein implicated in Golgi retrograde traf

Proux-Gillardeaux, V., Raposo, G., Irinopoulou, T., Galli, T., 2007. Expression of the Prekeris, R., Klumperman, J., Chen, Y.A., Scheller, R.H., 1998. Syntaxin 13 mediates Rong, J., Khvotchev, M., Liu, P., Darios, F., Li, Y.C., Ramirez, D.M.O., et al., 2012. Vti1a identifies a novel yeast SNARE protein implicated in Golgi retrograde traf

Brennwald, F., Brennwald, P., 2000. Testing the SQ1R ‘rule’: mutational analysis of the iconic Knecht, H., 1976. The synaptic SNARE complex is a parallel four-stranded helical bundle. Nat. Struct. LaRusso, N., Minick, C.R., Khan, S., Hussain, S., Kuri, K., Mathew, M.A., Surendranath, V., Ramirez, D.M.O., Khvotchev, M., Trauterman, B., Kavalali, E.T., 2012. Vti1a identifies a novel yeast SNARE protein implicated in Golgi retrograde traf

Knecht, H., 1976. The synaptic SNARE complex is a parallel four-stranded helical bundle. Nat. Struct. Rajakulendran, N., Rowland, K.J., Selvadurai, H.J., Ahmadi, M., Park, N.I., Naumenko, S., et al., 2019. Wnt and Notch signaling govern self-renewal and differentiation in a subset of human glioblastoma stem cells. Genes Dev. 33, 498–510. Ramirez, D.M.O., Kavalali, E.T., 2012. The role of non-canonical SNAREs in synaptic vesicle recycling. Cell. Logist. 2, 20–27. Ramirez, D.M.O., Khvotchev, M., Trauterman, B., Kavalali, E.T., 2012. Vti1a identifies a vesicle pool that preferentially recycles at rest and maintains spontaneous neurotransmission. Neurosci. 73, 121–134. Rizo, J., Xu, J., 2015. The synaptic vesicle recycling machinery. Annu. Rev. Biophys. 44, 339–367. Ross, V., Vanfield, D.K., Vacca, M., Dietrich, L.E.P., Ungermann, C., D’Esposito, M., et al., 2004. Longins and their longin domains: regulated SNAREs and multifunctional SNARE regulators. Trends Biochem. Sci. 29, 682–688. Sara, Y., Virmani, T., Deak, F., Liu, X., Kavalali, E.T., 2005. An isolated pool of vesicles recycle at rest and drives spontaneous neurotransmission. Neuron 45, 563–573. Sato, M., Yoshimura, S., Hirai, R., Goto, A., Kunii, M., Atik, N., et al., 2011. The role of VAMP7/VIF in cell polarity and lysosomal exocytosis in vivo. Traffic 12, 1383–1393. Scales, J.B., Yoo, B.Y., Scheller, R.H., 2001. The iconic layer is required for efficient dissociation of the SNARE complex by alpha-SNAP and NSF. Proc. Natl. Acad. Sci. USA 98, 14262–14267. Shahghasemi, R., Echard, A., 2018. Rab35 GTPase and cancer: linking membrane trafficking to tumorigenesis. Biochim. Biophys. Acta 1858, 247–262. Simonsen, A., Brennems, B., Ronning, E., Aasland, R., Stemmer, H., 1998. Syntaxin-16, a putative golgi SNARE. Eur. J. Cell Biol. 77, 225–231. Sollier, T., Whiteheart, S.W., Brunner, M., Ensdfrom-Bromage, H., Geromanos, S., Tempst, P., 1993. SNAP receptors implicated in vesicle targeting and fusion. Nature 362, 318–324. Steegmaier, M., Klumperman, J., Foletti, D.L., Yoo, J.S., Scheller, R.H., 1999. Vesicle-associated membrane protein 4 is located in trans-Golgi network vesicle trafficking. Mol. Biol. Cell 10, 1957–1972. Su, W.M., Chen, Z.H., Zhang, X.C., Su, J., Xie, Z., Yan, H.H., et al., 2015. Single nucleotide polymorphisms in VTIA gene contribute to the susceptibility of Chinese population to non-small cell lung cancer. Int. J. Biol. Markers 30, e286–e292. Südolf, T.C., 2014. The molecular machinery of neurotransmitter release (Nobel lecture). Angew Chem. Int. Ed. Engl. 53, 12696–12717.
Sutton, M.A., Ito, H.T., Cressy, P., Kempf, C., Woo, J.C., Schuman, E.M., et al., 2006. Miniature neurotransmission stabilizes synaptic function via tonic suppression of local dendritic protein synthesis. Cell 125, 785–799.

Sutton, R.B., Fasshauer, D., Jahn, R., Brunger, A.T., 1998. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature 395, 347–353.

Tang, B.L., Low, D.Y., Lee, S.S., Tan, A.E., Hong, W., 1998. Molecular cloning and localization of human syntaxin 16, a member of the syntaxin family of SNARE proteins. Biochem. Biophys. Res. Commun. 242, 673–679.

Tang, B.L., Ng, E.L., 2009. Rabs and cancer cell motility. Cell Motil Cytoskeleton 66, 365–370.

Tang, B.L., Wang, Y., Ong, Y.S., Hong, W., 2005. COPII and exit from the endoplasmic reticulum. Biochim. Biophys. Acta 1744, 293–303.

Tsugete, S., Saberi, B., Cheng, Y., Wang, Z., Kim, A., Lui, H., Abraham, J.M., Ybanez, M.D., Hamilton, J.P., Solaru, F.M., Villacorta-Martin, C., Schlesinger, F., Philosophe, B., Cameron, A.M., Zhu, Q., Anders, R., Gurakar, A., Melzer, S.J., 2019. Detection of novel fusion transcript VTI1A-CEAP46 in hepatocellular carcinoma. Gastrointest. Tumors 6, 11–27.

Tochio, H., Trau, M.M., Banfield, D.K., Zhang, M., 2001. An autoinhibitory mechanism for nososyntaxin SNARE proteins revealed by the structure of Ykt6p. Science 293, 698–702.

Villarreal, A.M., Adamson, S.W., Browning, R.E., Budachetri, K., Sajid, M.S., Karim, S., et al., 2013. Molecular characterization and functional significance of the Vti6 family of SNARE proteins in tick salivary glands. Insect Biochem. Mol. Biol. 43, 483–493.

Walter, A.M., Kurps, J., de Wit, H., Schuler, J.P., Solaru, F.M., Villacorta-Martin, C., Schlesinger, F., Philosophe, B., Cameron, A.M., Zhu, Q., Anders, R., Gurakar, A., Melzer, S.J., 2019. Detection of novel fusion transcript VTI1A-CEAP46 in hepatocellular carcinoma. Gastrointest. Tumors 6, 11–27.

Wang, G., Nola, S., Bovio, S., Bun, P., Coppey-Moisan, M., Lafont, F., et al., 2018. The auxiliary subunit KChIP2 is an essential regulator of homeostatic excitability. J. Biol. Chem. 288, 13258–13268.

Wang, Y., Tai, G., Lu, L., Johannes, L., Hong, W., Tang, B.L., et al., 2005. Trans-Golgi network syntaxin 10 functions distinctly from syntaxins 6 and 16. Mol. Membr. Biol. 22, 313–325.

Weber, T., Zemelman, B.V., McNew, J.A., Westermann, B., Gmachl, M., Parlati, F., et al., 1998. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772.

Weimbs, T., Mostov, K., Low, S.H., Hofmann, K., 1998. A model for structural similarity between different SNARE complexes based on sequence relationships. Trends Cell Biol. 8, 260–262.

Wendler, F., Tooeze, S., 2001. Syntaxin 6: the promiscuous behaviour of a SNARE protein. Traffic 2, 606–611.

Wilhelm, B.G., Groemer, T.W., Rizzoli, S.O., 2010. The same synaptic vesicles drive active and spontaneous release. Nat. Neurosci. 13, 1454–1456.

Wu, X., Joglekar, A.P., Williams, A.L., Hay, J.C., 1998. Subunit structure of a mammalian ER/Golgi SNAP complex. J. Biol. Chem. 273, 39631–39639.

Xu, Y., Xie, J., Tang, M., Subramanian, V.N., Zhang, T., Hong, W., et al., 1998. A 29-kilodalton Golgi soluble N-ethylmaleimide-sensitive factor attachment protein receptor (Vti1-rp2) implicated in protein trafficking in the secretory pathway. J. Biol. Chem. 273, 21783–21789.

Xu, Y., Martin, S., James, D.E., Hong, W., 2002. GS15 forms a SNARE complex with syntaxin 5, GS28, and Ykt6 and is implicated in traffic in the early cisternae of the Golgi apparatus. Mol. Biol. Cell 13, 3493–3507.

Yang, H.J., Nakashishi, H., Liu, S., McNew, J.A., Neiman, A.M., 2008. Binding interactions control SNARE specificity in vivo. J. Cell Biol. 183, 1089–1100.

Yong, C.Y.W., Tang, B.L., 2019. Another longin SNARE for autophagosome-lysosome fusion-how does Ykt6 work? Autophagy 15, 352–357.

Zeng, C., Matsuda, K., Jia, W.H., Chang, J., Kwon, S., Xiang, Y.B., Shin, A., Jee, S.H., Kim, D.H., Zhang, B., Cai, Q., Guo, X., Long, J., Wang, N., Courtney, R., Poo, Z.Z., Wu, C., Takahashi, A., Shin, M.H., Matsuda, K., Matsuda, F., Gao, Y.T., Oh, J.H., Kim, S., Jung, K.J., Ahn, Y.O., Ren, Z., Li, H.L., Wu, J., Shi, J., Wen, W., Yang, G., Li, B., Ji, B.T., Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO), Brenner, H., Schoen, R.E., Kuri, S., Colorectal Transdisciplinary (CORRECT) Study, Gruber, S.B., Schumacher, F.R., Stenzel, S.L., Colon Cancer Family Registry (CCFR), Casey, G., Hopper, J.L., Jenkins, M.A., Kim, H.R., Jeong, J.Y., Park, J.W., Tajima, K., Cho, S.H., Kubo, M., Shu, X.D., Lin, D., Zeng, Y.X., Zheng, W., 2016. Identification of susceptibility loci and genes for colorectal cancer risk. Gastroenterology 150, 1633–1645.

Zhang, M., Wang, T., Zemelman, B.V., McNew, J.A., Westermann, B., Gmachl, M., Parlati, F., et al., 1998. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772.

Zhang, X., Teng, B., Zhang, M., Wang, T., Hong, W., 2005. COPII and exit from the endoplasmic reticulum. Biochim. Biophys. Acta 1744, 293–303.