Potential mechanisms of quantitative resistance to *Leptosphaeria maculans* (blackleg) on cotyledons of canola (*Brassica napus*)

CURRENT STATUS: POSTED

Michelle Hubbard
Agriculture and Agri-Food Canada

Chun Zhai
Agriculture and Agri-Food Canada

Gary Peng
Saskatoon Research and Development Centre
gary.peng@canada.ca
Corresponding Author
ORCID: https://orcid.org/0000-0002-9072-7187

DOI:
10.21203/rs.2.21174/v1

SUBJECT AREAS
Epigenetics & Genomics

KEYWORDS
Brassica napus, stem canker, *Leptosphaeria maculans*, quantitative resistance, RNA-Seq, fluorescence microscopy, programmed cell death, reactive oxygen species
Abstract

Background: Blackleg disease, caused by *Leptosphaeria maculans* (*Lm*), can lead to significant losses of canola/rapeseed crops. Growing resistant canola cultivars can be an effective and environmentally friendly way to manage blackleg. Major resistance genes may stop infection, but can also be rapidly overcome by shifts in pathogen population towards virulence. Thus, using race-nonspecific or quantitative resistance (QR) is of interest because it is potentially more durable.

However, the mechanisms and genes underlying QR are mostly unknown. In this study, we explored QR in “74-44 BL”, a Canadian canola cultivar carrying a moderate level of race nonspecific resistance, based on cotyledon inoculation (Supple. Fig.1) . The susceptible cultivar “Westar” was used as a control. Lesions developed more slowly on 74-44BL than on Westar. We used RNA-Seq to identify genes and gene functions putatively involved in the QR.

Results: Relative to inoculated Westar, some of the *B. napus* genes that were differentially expressed strongly in inoculated 74-44 BL included those putatively involved in programmed cell death (PCD), reactive oxygen species (ROS) generation, signal transduction and/or intracellular endomembrane transport. Examples included genes annotated as a Bax inhibitor 1, a development/cell death (DCD) domain containing proteinases and peptidases, all of which could play a role in PCD and a zinc-finger Sec23/Sec24 and five small GTPases likely involved in endoplasmic reticulum (ER) to Golgi vesicle traffic and/or signal transduction. Further experiments, however, did not confirm changes in genomic DNA degradation, a potential marker for PCD, between the two cultivars. In addition, infection progression in cotyledons was not altered by applying protease inhibitors directly to cotyledons.

Additional testing was done using green fluorescent protein (GFP)-tagged *Lm* for cotyledon colonization as well as ROS production, in relation to the lesion development. The results showed that ROS production occurred beyond the area colonized by *Lm* hyphae in 74-44 BL.

Conclusions: ROS may also be involved in signal transduction and/or intracellular endomembrane transport. These results provide a starting point for a better understanding of the mechanisms behind QR against *Lm* in canola and developing new host-resistance strategies for management of blackleg.

Background
Canola or rapeseed (*Brassica napus* L.) is an economically important oilseed crop cultivated worldwide. Blackleg, caused by *Leptosphaeria maculans* (*Lm*) Ces. & de Not. is a serious disease of canola, especially in Australia, Europe and Canada [1]. Genetic resistance is a cornerstone for blackleg management and is usually classified as either qualitative or quantitative. The former is controlled by single resistance (R) genes, while the latter is thought to be polygenic [2]. While many of the R genes have been identified [3-8], quantitative resistance (QR) is much less well understood.

QR can be attributed to multiple genomic regions in *B. napus* [9], with many of the same loci found in multiple canola cultivars [10]. QR to blackleg in canola is believed to be expressed primarily in adult plants. However, “74-44 BL”, a Canadian canola cultivar used in this study, has been shown to have QR to stem canker [11], as well as to infection in cotyledons by *Lm* [12]. Poland et al. [13] postulates that plant QR may be due to weaker versions of R-genes, alterations in plant morphology and/or development, phytoalexin production, variants of innate immunity or signal transduction associated genes.

RNA sequencing (RNA-seq) has provided valuable insights into the interactions between canola and blackleg in the initial stages of cotyledon infection in the absence of QR [14], in canola with and without major resistance genes [15, 16], as well as the genes potentially involved in other plant-pathogen interactions. For example Hao et al. [17] used RNA-seq to explore QR to rust in wheat. In addition, Joshi et al. [18] used RNA-seq to identify genes involved in resistance to *Sclerotinia* in *B. napus*. Haddadi et al. [14] found that, in the absence of any known resistance, genes related to initial lignin biosynthesis, biosynthesis and breakdown of glucosinolates and cell surface receptors (PAMP and effector recognition) were upregulated. In contrast, transcription factors, proteases and protease inhibitors, peroxidases and chitinases were less highly expressed within blackleg lesions. However, it is not known if any of these host responses can be induced in seedlings carrying QR. Larkan et al. [19] found evidence that a cluster of receptor-like kinases could be involved in QR to blackleg in adult canola plants. Consistently, one of the cell surface receptors found to be differentially expressed in blackleg-infected seedlings by Haddadi et al. [14] was also a receptor-like kinase. Thus it makes sense to also use RNA-Seq to explore the modes of action for QR against *Lm*.
Fluorescent microscopy of proteins tagged with fluorophores, such as green fluorescent protein (GFP), provides valuable information about plant colonization by microbes, including the canola-blackleg pathosystem [12, 20]. Next generation sequencing approaches may help relate phenotypic observations, such as those obtained from microscopy, to molecular mechanisms. Here we present data on the colonization and lesion formation in Westar (susceptible) and 74-44 BL (expressing QR) cotyledons inoculated with a GFP-expressing isolate of _L. maculans_. This work also aimed to explore the genes differentially expressed at the seedling stage between canola cultivars in order to gain insights into the potential mechanisms of QR in 74-44 BL.

Methods

This manuscript includes the following experiments on cotyledons of canola cultivars without (Westar) and with QR (74-44 BL): 1) RNA-Seq and corresponding infection severity, 2) time series evaluation of lesion size and the corresponding area colonized by _Lm_ hyphae, 3) staining for the reactive oxygen species (ROS), hydrogen peroxide, via 3,3-diaminobenzidine (DAB), 4) a protease inhibitor study and 5) an assessment of the level of fragmentation of genomic DNA as a proxy for programmed cell death (PCD).

Fungal and plant material

Inoculum was prepared from _L. maculans_ isolates 12CC09 carrying _AvrLm6,7_ and 12CC09-GFP, grown on V8 agar until pycnidia were visible. Isolate 12CC09-GFP was generated by transforming the isolate 12CC09 with a binary vector containing the GFP gene via _Agrobacterium_ -mediated transformation. Pycnidiospores were harvested in sterile water, filtered through a Falcon™ Cell Strainer (70 μm pore size), diluted to 2 ×10⁷ spores / mL and stored at -20°C until use. One week after planting, cotyledons were wounded on each lobe with modified tweezers before being inoculated with 10μl droplets of water or pycnidiospore suspension.

74-44 BL is DEKALB® hybrid with multi-genic _Lm_ resistance and R genes _Rlm1, Rlm3_ and _RlmS_ (Saskatchewan Seed Guide, 2019). This cultivar also carries a level of QR against multiple _Lm_ races in cotyledons [11, 12] found that 74-44 BL carried both race nonspecific resistance and specific R genes _Rlm1, Rlm3_ and _Rlm9_. The QR was expressed in cotyledons in terms of both lower lesion scores (see
Table 1 of Hubbard and Peng [11]) and more restricted *Lm* colonization [12]. Plants were grown in Sunshine #3 soil-less mix (Sun Gro Horticulture Canada Ltd., Vancouver, BC) to which 12.5 g L⁻¹ Osmocote Plus 16-9-12 (N-P-K; Scotts Miracle-Gro Canada, Mississauga, ON) had been added. For all experiments, except those involving the time series that did not involve DAB staining to detect ROS, canola plants were grown in 72-well flats and placed in a growth chamber set to 22°C and 16°C during the 16 hours of light (approximately 280-575 μmol m⁻² s⁻¹) and 8 hours of darkness, respectively. Plants intended for the time series microscopic examination were grown either as described above or in the greenhouse in 10 cm square pots, exposed to a mix of natural and fluorescent (430W Philips high pressure sodium lamps) light, and inoculated with water, 12CC09 or 12CC09-GFP. Isolate 12CC09 was included as a control to determine if fluorescence observed could be attributed to GFP.

Plants were divided into *Lm*-inoculated and mock-inoculated. Within each inoculation treatment, plants were split between cultivars. The RNA-Seq and time-series microscopy experiments were repeated three times, as were the experiments that involved staining for hydrogen peroxide (ROS) with DAB. The protease inhibitor experiments were carried out five times.

For RNA-seq experiments, within each replicate, there were six seedlings per treatment (Westar or 74-44 BL, mock or 12CC09-GFP inoculated), divided at random into two blocks of three plants. At 7 days post inoculation (dpi), cotyledon samples were taken for RNA extraction and subsequent RNA-seq, from three of these seedlings. The other three seedlings were maintained until 14 dpi and rated for infection severity on the 0-9 scale [21, 22].

RNA extraction, library preparation and sequencing

Samples, measuring 5-10mm × 5-10mm, were collected from the area adjacent to and containing the lesion on each lobe of the cotyledons at 7 dpi (Fig. 1A). Samples were flash frozen in liquid nitrogen and stored at -80°C to await RNA extraction. Samples from one lobe (lobe 1, 2 or 3) were pooled from three replicates, each containing three seedlings, for a total of nine samples per RNA extraction. RNA was only extracted from one of the inoculated lobes.

Cotyledon tissue was ground in liquid nitrogen by vortexing in 50mL Nalgene Oak Ridge tubes
containing two metal balls. RNA was extracted from 40-50 mg of the ground and frozen tissue using
the QIAGEN RNeasy Plant mini kit on a QIAcube with a DNase I on-column digestion. The
concentration and integrity of the resulting RNA was assessed via Nanodrop and Experion (Bio-Rad
Canada, Mississauga, ON) automated electrophoresis, respectively.

Sequencing libraries were prepared using a Illumina® TruSeq™ RNA Sample Preparation Kit, pooled
and sequenced on the Illumina HiSeq 2500 at McGill University and Genome Quebec Innovation
Center (740 ave Dr Penfield, suite 7104, Montreal, QC), using one lane of V4 PE 125bp.

RNA-seq data analysis

Adapter sequences were removed with Trimmomatic (version 0.32) [23]. Subsequently, reads were
aligned to the B. napus and Lm reference genomes (downloaded from Genoscope
http://www.genoscope.cns.fr/brassicanapus/data/ and the Joint Genome Institute, Genome Portal
http://genome.jgi.doe.gov/, respectively) via STAR (version 2.4.2a) [24]. Next, gene models were
defined using the GenomicFeatures package in R, and the reads were counted using the R package
GenomicAlignments [25]. Differential expression analysis was conducted in R (version 3.3.1 or 3.3.2)
using the DESeq2 package [26]. Genes were considered differentially expressed if they had a log base
2 (log₂) fold change in expression above 2 or below -2 and an adjusted p-value under 0.05.

Differentially expressed genes (DEGs) were scored based on expression (basemean), adjusted p-value
(padj) and log₂ fold change in expression (basemean):

Venn diagrams (Fig. 3) were used to identify DEGs that were unique to each combination of
contrastting treatments: inoculated Westar versus inoculated 74-44 BL, mock inoculated Westar
versus mock inoculated 74-44 BL, mock versus Lm inoculated Westar and mock versus Lm inoculated
74-44 BL. DEGs were also subdivided into those with higher expression in the former of the two
treatments being contrasted (positive, Fig. 3A) and those upregulated in the latter of the two
contrastted treatments (negative, Fig. 3B).

Enrichment analysis based on gene ontology (GO) terms was performed by using the Blast2Go-pro
suite [27]. All B. napus genes were searched against the non-redundant protein database from
National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/) using BLASTX algorithm
with an E-value threshold of 10^{-5}. All BLAST hits were then mapped to the GO database to retrieve GO terms that associated with each hit. Subsequently, all *B. napus* genes were searched against the InterPro database (http://www.ebi.ac.uk/interpro/) and annotated by merging the Blast2GO and InterPro results. GO terms that were significantly enriched in DEGs were identified by comparing with the whole genome background with a false discovery rate (FDR) ≤ 0.05.

Time series infection in cotyledons examined with microscopy

Both fluorescent and bright-field images were collected with a Zeiss Stereo-Lumar epifluorescence microscope, equipped with a NeoLumar S 0.8× objective and an Axiocam 512 camera. Light was provided by a KL-2500 LCD bulb and a HBO100 mercury lamp for bright field and fluorescent microscopy, respectively.

Two separate sets of time series microscopy experiments were carried out. In the first set of experiments, cotyledons were detached from the plant for imaging at 3, 7, 10 and 14 dpi. In the second set of experiments, imaging was done at 3, 5, 7, 9 and 11 dpi. The second set of experiments also included colorimetric staining for hydrogen peroxide. For both sets of experiments, different plants were used at each time point. Because the lesion area and the area colonized by *Lm* hyphae at 3 dpi were frequently zero, or close to zero, data from this time point is not presented.

For each inoculation site, parameters were measured with the aid of ZEN 2 pro and/or ZEN 2.3 lite (blue edition, © Carl Zeiss Microscopy GmbH, 2011) software. The software automatically takes the image magnification into account. Bright field images of the top surface of each cotyledon were used to measure the area of the lesion (mm2), the distance from the inoculation point to the most distant edge of the lesion (mm) and the area stained hydrogen peroxide (mm2). The area colonized by hyphae (mm2) and the distance from the edge of inoculation wound to the furthest hyphal tip (mm) (first set of time series experiments only) were quantified using fluorescent images. The Zen Active Contour and/or Polygon Contour and Length tools were used to collect area and distance data, respectively.

Colorimetric detection of hydrogen peroxide

The area staining for the reactive oxygen species (ROS) hydrogen peroxide in *B. napus* cotyledons
infected by *Lm* isolate 12CC09-GFP, was measured at 7 dpi. Lesion area and area colonized by GFP-tagged *Lm* hyphae was measured as described above for the time series infection experiment.

Subsequently, detached cotyledons were placed in a solution of DAB at room temperature. After 40 (first two experiments) or 90 (third experiment) min, the cotyledons were vacuum infiltrated with DAB for approximately 2 to 3 hours and then boiled in 95% ethanol for approximately 10 to 20 min at 70°C to remove the chlorophyll, making the DAB staining more visible. The cotyledons were stored in 95% ethanol prior to measurement of the area stained brown for hydrogen peroxide under a dissecting microscope.

Assessment of genomic DNA degradation as a marker of programmed cell death

Samples of canola cotyledons were collected as described for RNA extraction. The samples were freeze dried, and ground to a fine powder in 2mL tubes with one 3 mm tungsten carbide bead per tube in a TissueLyser (Qiagen) for 5 min at 25 hertz at room temperature. Genomic DNA was extracted using the QIAGEN DNeasy Plant mini kit according to the manufacturer’s instructions.

Extracted DNA was diluted to 50 ng/μl. The integrity of the resulting DNA was assessed using Experion DNA 12K analysis kit (Bio-Rad Canada) on an Experion automated electrophoresis system according to the manufacturer’s instructions.

Statistical analysis

Statistical analyses were done using SAS (version 9.3). Data were assessed for homogeneity of variance and normality, respectively, using Bartlett’s Test and Shapiro-Wilk Test. Data from mock-inoculated plants, which consisted exclusively of zeros, were excluded from statistical analysis.

For ratings of infection severity in parallel with RNA-seq, when only the inoculated plants are considered, a randomized complete block design (RCBD) was used, with a total of 9 replicates (3 per experiment) and 3 subsamples (plants) per replicate (Fig. 1B). This data was pooled from all plants in a given experiment and \(y = \log_{10}(x+10) \) transformed. Means were compared via a t-test using proc GLM. For the time series experiments based on microscopic examinations that did not include colorimetric hydrogen peroxide detection (Fig. 1E), data was subjected to a \(y = \log_{10}(x+10) \) transformation prior to statistical analysis. Each parameter (lesion area, area colonized by GFP-tagged...
Results
Infection symptoms and *Lm* hyphal growth in cotyledons
Among the seedlings inoculated and grown in parallel with those used for RNA-Seq, Westar showed higher infection ratings than 74-44 BL at 14 dpi (Fig. 1B). In separate experiments, however, the appearance and size of lesions, as well as the distance from the inoculation wound to lesion edge, were similar between the two cultivars at 7 dpi, while the area colonized by *Lm* hyphae and the distance from the inoculation site to the most distal hyphal tips were greater in Westar (Fig. 1C and E). By 10 and 14 dpi, all of the measurements had become greater in Westar than 74-44 BL (Fig. 1D and E).

RNA-sequencing
For each treatment, 14.1-17.8 million paired-end reads were produced per library. When reads were considered singly, an average of 33.5 ± 2.0, 21.3 ± 0.06, 33.0 ± 2.0 and 28.2 ± 1.8 million reads were mapped to the *B. napus* genome from mock-inoculated Westar, *Lm*-inoculated Westar, mock-inoculated 74-44 BL and *Lm*-inoculated 74-44 BL, respectively. In comparison, an average of 10.1 ±
1.2, 5.8 ± 0.6, 0.07 ± 0.002 and 0.07 ± 0.010 reads were mapped to the *L. maculans* genome from *Lm*-inoculated Westar, inoculated 74-44 BL, mock-inoculated Westar and mock-inoculated 74-44 BL, respectively. A higher percentage of reads mapped to the *L. maculans* genome in inoculated Westar as compared to inoculated 74-44 BL (Fig. 2A). Principle component analysis (PCA) indicated that the treatments grouped tightly together in terms of their alignment to the *B. napus* genome (Fig. 2B).

Gene expression in *L. maculans*

When the criteria of adjusted p-value ≤ 0.05 and log$_2$ fold change ≥ 2 in expression were applied, there were only 16 differentially expressed *Lm* genes between inoculated Westar and 74-44 BL. Three DEGs were more highly expressed in inoculated 74-44 BL as compared to inoculated Westar (Table 1) while thirteen DEGs showed the reverse trend (Table 2).

The *Lm* DEGs were all expressed at low levels. When all *Lm* genes were considered, there were eight genes with basemean expression values over 10,000 (ranging from 14,346 to 40,534). Three genes had expression values between 1,000 and 9,999, 85 between 100 and 999 and 152 between 50 and 99. There were a total of 12,119 genes with non-zero expression values. The most highly expressed DEG had a basemean of 40.

The three DEGs upregulated in *Lm* inoculated 74-44 BL had sequence similarities to genes encoding a short chain dehydrogenase/reductase, a pyoverdine biosynthesis and a hypothetical protein, respectively. Pyoverdine is a siderophore biosynthesized by *Pseudomonads* [28]. Zwiers et al. [29] found a gene encoding an ABC-transporter with a pyoverdine biosynthesis motif in the fungus *Mycosphaerella graminicola*; ABC-transporters can play a role in virulence of fungal pathogens towards host plants [30, 31]. It is unclear what role, if any, these upregulated genes played during the infection of 74-44BL by *Lm*.

Gene expression in *B. napus*

Genes upregulated in inoculated 74-44 BL

There were 908 DEGs upregulated in inoculated 74-44 BL, relative to inoculated Westar, but not differentially expressed between any other pairs of treatments. Two DEGs showed basemean expression levels over 10,000, six had basemeans between 5000 and 9999, and 65 had basemeans
between 4,999 and 1,000.

Five DEGs with similarities to peptidases were among those with the highest scores. Indeed, the three DEGs with the highest scores were all putative peptidases. The DEG with the highest score is BnaA01g17570D, which has InterPro domains suggesting it is a cysteine peptidase belonging to family C1, sub-family C1A, papain family. Another DEG with a high score is BnaA09g52180D, a putative cysteine peptidase. The legumain peptidase C13 (BnaA01g04000D), also known as a vacuole processing enzyme (VPE), and BnaC02g00130D which has similarity to a protease involved in the degradation of Rubisco, were also upregulated. Additionally, numerous chlorophyll A-B binding proteins showed very high basemeans and were more highly expressed in inoculated 74-44 BL than inoculated Westar.

An ATPase of AAA-type, with protein BLAST similarity to RuBisCO activase, was also differentially expressed. The protein BLAST results also indicate that this DEG is potentially involved in endoplasmic reticulum (ER) to Golgi membrane budding.

Glycoside hydrolases, including a beta-galactosidase (BnaA04g04110D) and an alpha-1,6-glucosidases, pullulanase-type (BnaA10g25820D) are differentially expressed, with very small adjusted p-values. A putative lactate/malate dehydrogenase (BnaC02g00740D) is also differentially expressed, albeit with a less significant adjusted p-value and higher basemean expression than BnaA04g04110D or BnaA10g25820D. The DEG BnaA03g11710D, with a thiazole biosynthetic enzyme InterPro domain, also has protein sequence similarity to a ribulose-1,5-biphosphate synthetase. Table 3 and Fig. 3 summarize the putative functions of DEGs that are more highly expressed in inoculated 74-44 BL as compared to inoculated Westar.

GO term enrichment analysis of these 908 DEGs was consistent with the results presented in Table 3 and Fig. 3 in which many of GO terms with the lowest FDR were related to photosynthesis and light responses. Furthermore, three GO terms were linked to hydrogen peroxide. While none of the enriched GO terms suggested peptidase activities, the GO term with the second lowest FDR was associated with cysteine biosynthesis (Table 5). This is consistent with the putative cysteine peptidase activity of BnaA01g17570D (Table 3).
Genes upregulated in inoculated Westar

A total of 640 DEGs were more highly expressed in inoculated Westar as compared to inoculated 74-44 BL, but not differentially expressed when any other pair of treatments were compared. The expressions of these DEGs ranged from a basemean of 3,410 to 1.25, with only 11 DEGs showing basemeans over 1,000. Twenty eight DEGs had basemeans between 500 and 999, while 73 had basemeans between 100 and 499. The remaining 527 DEGs had basemeans under 100. The DEG with the highest score, BnaC09g20030D, showed similarity to a Bax inhibitor-1.

BnaCnnng58090D, a DEG with a basemean of 2,354, is similar to a development/cell death domain (DCD). BnaC08g42820D is a DEG similar to a heat shock protein 70. BnaA04g06220D and BnaA09g26960D have similarities to Sec23/Sec24 and Sec61/SecY, respectively. Sec23 and sec24 are part of the coat protein II (COPII) complex, involved in ER to Golgi vesicle transport [32]. Five DEGs, BnaA08g26550D, BnaA06g05280D, BnaC06g24690D, BnaA07g09950D and BnaCnnng06680D appeared similar to small GTPases. These DEGs have basemeans ranging from 972 to 3,100. Table 4 and Fig. 3 summarize these DEGs.

GO terms related to the ER, ER stress, vesicle transport and the cellular endomembrane system were enriched. None of the enriched GO terms, however, were associated with PCD. One enriched GO term was related to response to hydrogen peroxide (Table 6). BnaCnnng58090D is not associated with any GO terms.

Hydrogen peroxide in cotyledons

RNA-seq results suggested that ROS, such as hydrogen peroxide, may play a role in the QR to *Lm* carried by 74-44 BL. To validate this finding, DAB staining was used to quantify the area of ROS production surrounding the infection site.

Hydrogen peroxide at seven days post inoculation

The size of visible lesion, area of hyphal colonization and area with ROS detection in cotyledons varied, depending on the cultivar and parameter measured. In inoculated Westar, the area colonized by hyphae (as visualized by GFP fluorescence) and area staining positive for hydrogen peroxide were both larger than the area of necrotic lesions, while the former two parameters were not different from
each other (Fig. 4A). In contrast, the lesion size and area colonized by GFP-tagged *Lm* hyphae did not differ in 74-44 BL, whereas the area with ROS staining was bigger than that of former two. As with the results in Fig. 1, the lesion size did not differ between Westar and 74-44 BL at 7 dpi, while the area colonized by *Lm* hyphae was substantially greater in Westar. The area with ROS staining did not differ between the cultivars at 7 dpi either (Fig. 4).

Hydrogen peroxide time series experiment

When examined over time post inoculation, most of the parameters measured tended to increase over time. Westar and 74-44 BL responded differently to the *Lm* infection. In Westar, the lesions were consistently smaller than either the area colonized by *Lm* hyphae or the area with ROS staining (Tukey adjusted p ≤ 0.05) (Fig. 5). In 74-44 BL, however, the area stained for hydrogen peroxide was larger than that occupied by fungal hyphae or visible lesions (Tukey adjusted p ≤ 0.05), and the area of pathogen colonization was either smaller than (11 dpi) or not different (5, 7 and 9 dpi) from the size of lesion (Tukey adjusted p ≤ 0.05; Fig. 5).

Genomic DNA degradation as an indicator of programmed cell death

Because the RNA-seq results suggested that PCD could play a role in QR to *Lm* in 74-44 BL, we examined degradation of genomic DNA as a proxy for PCD. No difference in genomic DNA degradation was apparent between any of the treatments by either agarose gel electrophoresis or Experion 12K (Fig. 6).

Impact of protease inhibitors on *Lm* infection of cotyledons

Results from the RNA-seq experiments led us to hypothesize that proteases could contribute to 74-44 BL QR to *Lm*. We attempted to test this hypothesis by treating cotyledons with several protease inhibitors. The direct application of protease inhibitors to surface of Westar or 74-44 BL cotyledons did not have a significant impact on either the lesion size or the area colonized by *Lm* hyphae within a given cultivar. However, the latter was consistently greater in Westar than in 74-44 BL cotyledons, regardless of the protease inhibitor used (Fig. 7).

Discussion

It is generally thought that QR to *Lm* is not expressed in canola cotyledons [2]. In this study, however, we found that the infection severity on *Lm*-inoculated cotyledons differed quantitatively between
Westar (susceptible) and 74-44 BL (with QR). In addition to larger lesions, the area of *Lm* hyphal colonization was greater in Westar than in 74-44 BL; often the hyphal growth extended beyond the borders of visible lesions in Westar, while this was not the case for 74-44 BL. Huang et al. [20, 33] also measured QR to *Lm* in young *B. napus* plants and found, in some cases, restricted *Lm* growth correlated with reduced blackleg in more mature plants [33]. Huang et al. [33] also found partial overlap in quantitative trait loci (QTL) contributing to *Lm* resistance at both plant developmental stages. We used RNA-seq to explore DEGs between inoculated Westar and 74-44 BL as a first step to understanding the molecular mechanisms of this cotyledon-stage QR.

Many of the highest scoring DEGs, upregulated in inoculated Westar, against inoculated 74-44 BL, relate to the control of PCD, endomembrane vesicle trafficking between the ER and Golgi, as well as molecular chaperones, cation transporters, protein glycosylases and degradation enzymes (Table 4). The GO terms enriched in these DEGs also suggest a role in endomembrane vesicle transport (Table 6). The gene BnaCnng58090D, with sequence similarity to a DCD domain, was upregulated in inoculated Westar (Table 4). DCD domains can stimulate a hypersensitive response, considered a form of PCD in plants [34]. Other upregulated genes with putative roles in endomembrane transport to/from the ER are potentially related to ER stress, which can trigger DCD-mediated PCD [35]. BnaC09g20030D, which is similar to a Bax inhibitor-1, was also upregulated. Bax inhibitor-1 inhibits PCD [36]. Hence, it seems reasonable to hypothesize that the cotyledon infection triggers the expression of BnaCnng58090D in susceptible plants, but that the hypersensitive response that a DCD would otherwise promote may be prevented by the activation of BnaC09g20030D, the Bax inhibitor-1. However, the lack of differences observed in genomic DNA degradation argues against the above hypothesis. Consistently, the GO enrichment analysis did not uncover any GO terms related to PCD (Tables 5 and 6). Fragmentation of genomic DNA can be associated with plant PCD, including PCD that mimics apoptosis in animal cells, and is involved in normal plant developmental processes. For example Hoeberichts et al. [37] found PCD-linked DNA breakdown during petal senescence. In another example, Abdelmigid and Morsi [38] found DNA fragmentation in plant cells dying as a results of exposure to toxins. However, the results of Ruberti et al. [39] showed the complex and
incompletely understood role of Bax inhibitor-1 in plant PCD. Therefore our results showing no differences in the degradation of genomic DNA as a proxy for PCD cannot be clearly interpreted at this point.

PCD in general and Bax inhibitor-1 in particular, play a role in plant resistance to other pathogens. For example, Babaeizad et al. [40] found that overexpression of Bax inhibitor-1 in barley led to increased susceptibility to the biotrophic fungal pathogen *Blumeria graminis* f.sp. *hordei*, the causal agent of powdery mildew in barley. This finding is consistent with the upregulation of Bax inhibitor-1 in Westar in the current study, which corresponded to greater biotrophic growth of *Lm* hyphae asymptptomatically beyond the borders of necrotic lesions. Consistent with the idea that increased PCD can lead to resistance to biotrophic infection and susceptibility to necrotrophic colonization, Scotton et al. [41] observed that constitutive overexpression of Bax inhibitor-1 resulted in elevated resistance to the necrotrophic pathogens *Sclerotinia sclerotiorum*, *Sclerotium rolfsii* and *Botrytis cinerea*.

When 74-44 BL was inoculated, numerous peptidases were more highly expressed than in inoculated Westar. Specifically, putative papain cysteine peptidases (BnaA01g17570D and BnaA09g52180D) likely found in the plant vacuole [42, 43], as well as putative legumain peptidase C13 (BnaA01g04000D), also known as a vacuole processing enzyme (VPE), were upregulated. VPEs are, as suggested by the name, located in plant vacuoles [44, 45], as shown in Fig. 8. In addition, BnaC02g00130D, which has similarity to a protease involved in the degradation of RuBisCO, is also upregulated in inoculated 74-44 BL. These genes may also be involved in PCD [reviewed by Zamyatnin [46]]. During PCD, the plant cell vacuole ruptures, releasing proteases, which then degrade cellular components [47]. Protease-mediated PCD is essential for plant hypersensitive responses [reviewed by Sueldo and van der Hoorn [48]] which limit the spread of pathogens during the biotrophic phase of infection.

The protease inhibitor experiments were intended to test the hypothesis that at least some of the differentially expressed peptidases are involved in limiting the latent growth of *Lm* hyphae - hyphal growth beyond the edge of the visible lesion - in 74-44 BL. Possibly, this could occur through a role of peptidases in PCD. The lack of differences between the treatments were not understood. However,
because the protease inhibitors were applied to the surface of inoculated cotyledons, it is possible that they inhibited fungal proteases, which may be, to some extent, required by *Lm* for infection. Another possibility is that the applied protease inhibitors were unable to penetrate the cotyledon cuticles and thus failed to interact with plant proteases. It is also possible that proteases do not make a significant contribution to QR to *Lm* in 74-44 BL; this is supported by the lack of protease- or peptidase-related GO terms in the enriched GO terms (Table 5).

Chlorophyll A-B binding proteins, which are a source of ROS [49], were also upregulated in inoculated 74-44 BL, relative to Westar. ROS, including hydrogen peroxide, can act as pro-PCD signals [reviewed by Galvez-Valdivieso and Mullineaux [50]]. The conjecture that the upregulated chlorophyll A-B binding proteins are involved in triggering PCD is supported by our findings that, in inoculated 74-44 BL, the area that stained for hydrogen peroxide was similar to that in Westar, at 5 and 7 dpi, despite the area colonized by *Lm* hyphae being smaller in 74-44 BL than in Westar (Fig. 4 and 5). This may indicate that hydrogen peroxide is produced in 74-44 BL beyond the hyphal front, contributing to the restriction to the hyphal growth. In contrast, *Lm* hyphae grew beyond the zone of hydrogen peroxide production in Westar at 5 and 7 dpi; it appears that ROS production was not able to catch up with the *Lm* hyphal growth. At 9 and 11 dpi, however, the area occupied by hyphae and ROS were not different. Potentially the more rapid production of hydrogen peroxide in 74-44 BL, relative to *Lm* hyphal spreading, is able to prevent the biotrophic growth seen in Westar. Other DEGs that are related to the photosynthetic process include BnaA03g11710D, the putative thiazole biosynthetic enzyme and/or ribulose-1,5-bisphosphate synthetase. Thiazole is a precursor of vitamin B1, or thiamine, which can activate plant defenses [51]. Thus, it is reasonable to speculate that increased vitamin B1 biosynthesis may also contribute to the *Lm* resistance displayed by 74-44 BL. The fact that Ahn et al. [52] and Boubakri et al. [53] found a relationship between vitamin B1-induced disease resistance and hydrogen peroxide suggests a potential link between overregulation of BnaA03g11710D and increased hydrogen peroxide production, relative to the area colonized by *Lm* hyphae in 74-44 BL (Fig. 4 and 5). Additionally, three GO terms linked to hydrogen peroxide were identified by the GO enrichment analysis of the DEGs upregulated in *Lm* inoculated 74-44 BL, as
compared to Westar (Table 5); these are consistent with the suggested roles of hydrogen peroxide in the QR response of 74-44 BL to \(Lm \).

One of the DEGs upregulated in \(Lm \)-inoculated Westar relative to inoculated 74-44 BL (but not differentially expressed between any other pair of treatments) is a heat shock protein 70 which could be linked to the upregulation of Bax inhibitor-1. Qi et al. [54] noted that overexpression of a heat shock protein 70 inhibited PCD induced by hydrogen peroxide; this finding is consistent with our observation that hydrogen peroxide was produced in a larger area, relative to \(Lm \) hyphal colonization, in 74-44 BL cotyledons (Fig. 4 and 5).

The DEGs involved in endomembrane trafficking, such as small GTPases, sec23/sec24, sec61 and WD40 repeats, could be involved in ER stress and the unfolded protein response (UPR). Both of these processes can, if not resolved, lead to PCD [reviewed by Williams et al. [55]]. As shown in Fig. 8, vesicle trafficking between the Golgi and ER, and vice versa, is linked to traffic to the vacuole, where VPE-mediated PCD takes place. A VPE is one of the proteases upregulated in \(Lm \)-inoculated 74-44 BL.

Furthermore, Bax inhibitor-1 is ER localized [56], suggesting that it could also be linked to the ER to/from Golgi vesicle traffic. The UPR occurs in the ER and is, as the name implies, linked to improperly folded proteins. If stress to the ER is severe enough, the UPR can induce PCD [reviewed by Cui et al. [57]]. Hence DEGs with potential roles in protein folding that are more highly expressed in Westar than 74-44 BL (both inoculated), such as the putative peptidyl-prolyl cis-trans isomerase BnaC03g44640D, could also be linked to PCD. The fact that differences were not observed in genomic DNA degradation could suggest that the UPR might be only a signaling mechanism related to QR, and not necessarily PCD. A role for the UPR in canola resistance to \(Lm \) is consistent with the findings of Arrano-Salinas et al. [58] documenting a link between the UPR and plant immunity. Indeed, the UPR could also be related to ROS production [59]. Further research into the potential roles of the UPR, endomembrane dynamics and ROS production in plant defenses are merited for a better understanding of QR to blackleg of canola.

Conclusion

QR observed in 74-44 BL cotyledons involves restricting tissue colonization by \(Lm \). This is likely due,
at least in part, to the production of ROS beyond the pathogen hyphal growth. ROS may be linked to signal transduction and endomembrane vesicle trafficking. The ability of QR to reduce the growth of \textit{Lm} hyphae in cotyledons can be significant because it may limit the pathogen movement from infected leaves into the stem, where the most damaging form of the disease takes place. Further research is needed to clarify the molecular and cellular mechanisms involved. Such work, in conjunction with exploration of putative modes of action of QR in other canola cultivars and life stages, could help facilitate judicious use of QR-carrier canola for improved management of blackleg in Canada and around the world.

Declarations

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Author Contributions

The work was conducted at the Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada. MH and GP conceived the study and designed the experiments. MH carried out the majority of the lab, growth chamber, greenhouse and microscopy work. She also conducted the bioinformatics and statistical analysis and wrote the paper. CZ transformed \textit{Lm} with GFP and carried out the analysis of genomic DNA fragmentation and GO enrichment analysis. GP and CZ provided input into the data interpretation, composition of the manuscript and editing the manuscript.

Funding

This study was supported by Canola Agronomic Research Program Project No. CARP 2015-12 entitled “Understanding the mechanisms for race-specific and non-specific resistance for effective use of cultivar resistance against blackleg of canola in Western Canada” administered by Canola Council of Canada.

Acknowledgments

The authors wish to gratefully acknowledge Linda McGregor, Erin Lemke, Kylie Hornaday, Wali Soomro, Cathy Coutu and Merek Wigness, AAFC Saskatoon Research and Development Centre, for technical assistance.

References
1. Fitt BDL, Brun H, Barbetti MJ, Rimmer SR: **World-wide importance of Phoma Stem Canker (Leptosphaeria maculans and L. biglobosa) on Oilseed Rape (Brassica napus)**. *European Journal of Plant Pathology* 2006, **114**(1):3-15.

2. Delourme R, Chèvre AM, Brun H, Rouxel T, Balesdent MH, Dias JS, Salisbury P, Renard M, Rimmer SR: **Major gene and polygenic resistance to Leptosphaeria maculans in Oilseed Rape (Brassica napus)**. *European Journal of Plant Pathology* 2006, **114**(1):41-52.

3. Larkan NJ, Lydiate DJ, Parkin IA, Nelson MN, Epp DJ, Cowling WA, Rimmer SR, Borhan MH: **The Brassica napus blackleg resistance gene LepR3 encodes a receptor-like protein triggered by the Leptosphaeria maculans effector AVRLM1**. *New Phytol* 2013, **197**(2):595-605.

4. Yu F, Lydiate DJ, Rimmer SR: **Identification of two novel genes for blackleg resistance in Brassica napus**. *Theor Appl Genet* 2005, **110**(5):969-979.

5. Yu F, Gugel RK, Kutcher HR, Peng G, Rimmer SR: **Identification and mapping of a novel blackleg resistance locus LepR4 in the progenies from Brassica napus x B. rapa subsp. sylvestris**. *Theor Appl Genet* 2013, **126**(2):307-315.

6. Raman R, Taylor B, Lindbeck K, Coombes N, Barbulescu D, Salisbury P, Raman H: **Molecular mapping and validation of Rlm1 gene for resistance to Leptosphaeria maculans in canola (Brassica napus L.).** *Crop and Pasture Science* 2012, **63**(10):1007.

7. Larkan NJ, Lydiate DJ, Yu F, Rimmer SR, Borhan MH: **Co-localisation of the blackleg resistance genes Rlm2 and LepR3 on Brassica napus chromosome A10**. *BMC Plant Biol* 2014, **14**:387.

8. Parlange F, Daverdin G, Fudal I, Kuhn ML, Balesdent MH, Blaise F, Grezes-Besset B, Rouxel T: **Leptosphaeria maculans avirulence gene AvrLm4-7 confers a dual
recognition specificity by the Rlm4 and Rlm7 resistance genes of oilseed rape, and circumvents Rlm4-mediated recognition through a single amino acid change. *Mol Microbiol* 2009, **71**(4):851-863.

9. Kumar V, Paillard S, Fopa-Fomeju B, Falentin C, Deniot G, Baron C, Vallee P, Manzanares-Dauleux MJ, Delourme R: *Multi-year linkage and association mapping confirm the high number of genomic regions involved in oilseed rape quantitative resistance to blackleg*. *Theor Appl Genet* 2018, **131**(8):1627-1643.

10. Raman H, Raman R, Diffey S, Qiu Y, McVittie B, Barbulescu DM, Salisbury PA, Marcroft S, Delourme R: *Stable quantitative resistance loci to Blackleg disease in canola (Brassica napus L.) over continents*. *Frontiers in plant science* 2018, **9**:1622.

11. Hubbard M, Peng G: *Quantitative resistance against an isolate of Leptosphaeria maculans* (blackleg) in selected Canadian canola cultivars remains effective under increased temperatures. *Plant Pathology* 2018, **67**:1329–1338.

12. Soomro WM: *Characterizing Avr genes of Leptosphaeria maculans and resistance responses among commercial canola cultivars in western Canada* Saskatoon, Saskatchewan, Canada: University of Saskatchewan; 2016.

13. Poland JA, Balint-Kurti PJ, Wisser RJ, Pratt RC, Nelson RJ: *Shades of gray: the world of quantitative disease resistance*. *Trends Plant Sci* 2009, **14**(1):21-29.

14. Haddadi P, Ma L, Wang H, Borhan MH: *Genome-wide transcriptome analyses provides insights into the lifestyle transition and effector repertoire of Leptosphaeria maculans during colonization of Brassica napus seedlings*. *Mol Plant Pathol* 2015.
15. Sonah H, Zhang X, Deshmukh RK, Borhan MH, Fernando WG, Belanger RR:

Comparative transcriptomic analysis of virulence factors in Leptosphaeria maculans during compatible and incompatible interactions with canola.
Frontiers in plant science 2016, 7:1784.

16. Becker MG, Zhang X, Walker PL, Wan JC, Millar JL, Khan D, Granger MJ, Cavers JD, Chan AC, Fernando DWG et al: **Transcriptome analysis of the Brassica napus-Leptosphaeria maculans pathosystem identifies receptor, signaling and structural genes underlying plant resistance.** *Plant J* 2017, 90(3):573-586.

17. Hao Y, Wang T, Wang K, Wang X, Fu Y, Huang L, Kang Z: **Transcriptome analysis provides insights into the mechanisms underlying wheat plant resistance to Stripe Rust at the adult plant stage.** *PLoS One* 2016, 11(3):e0150717.

18. Joshi RK, Megha S, Rahman MH, Basu U, Kav NN: **A global study of transcriptome dynamics in canola (Brassica napus L.) responsive to Sclerotinia sclerotiorum infection using RNA-Seq.** *Gene* 2016, 590(1):57-67.

19. Larkan NJ, Raman H, Lydiate DJ, Robinson SJ, Yu F, Barbulescu DM, Raman R, Luckett DJ, Burton W, Wratten N et al: **Multi-environment QTL studies suggest a role for cysteine-rich protein kinase genes in quantitative resistance to blackleg disease in Brassica napus.** *BMC Plant Biol* 2016, 16(1):183.

20. Huang YJ, Qi A, King GJ, Fitt BD: **Assessing quantitative resistance against Leptosphaeria maculans (phoma stem canker) in Brassica napus (oilseed rape) in young plants.** *PLoS One* 2014, 9(1):e84924.

21. Kutcher HR, Balesdent MH, Rimmer SR, Rouxel T, Chèvre AM, Delourme R, Brun H: **Frequency of avirulence genes in Leptosphaeria maculans in western Canada.** *Canadian Journal of Plant Pathology* 2010, 32(1):77-85.

22. Koch E, Badawy HMA, Hoppe HH: **Differences between aggressive and non-**
aggressive single spore lines of *Leptosphaeria maculans* in cultural characteristics and phytotoxin production. *Journal of Phytopathology* 1989, **124**:52-62.

23. Bolger AM, Lohse M, Usadel B: *Trimmomatic: a flexible trimer for Illumina sequence data*. *Bioinformatics* 2014, **30**(15):2114-2120.

24. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR: *STAR: ultrafast universal RNA-seq aligner*. *Bioinformatics* 2013, **29**(1):15-21.

25. Lawrence M, Huber W, Pages H, Aboyoun P, Carlson M, Gentleman R, Morgan MT, Carey VJ: *Software for computing and annotating genomic ranges*. *PLoS Comput Biol* 2013, **9**(8):e1003118.

26. Love MI, Huber W, Anders S: *Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2*. *Genome biology* 2014, **15**(12):550.

27. Conesa A, Gotz S: *Blast2GO: A comprehensive suite for functional analysis in plant genomics*. *Int J Plant Genomics* 2008, **2008**:619832.

28. Wendenbaum S, Demange P, Dell A, Meyer JM, Abdallah MA: *The structure of pyoverdine Pa, the siderophore of Pseudomonas aeruginosa*. *Tetrahedron Letters* 1983, **24**(44):4877-4880.

29. Zwiers LH, Roohparvar R, de Waard MA: *MgAtr7, a new type of ABC transporter from Mycosphaerella graminicola involved in iron homeostasis*. *Fungal genetics and biology : FG & B* 2007, **44**(9):853-863.

30. Kim Y, Park SY, Kim D, Choi J, Lee YH, Lee JH, Choi W: *Genome-scale analysis of ABC transporter genes and characterization of the ABCC type transporter genes in Magnaporthe oryzae*. *Genomics* 2013, **101**(6):354-361.

31. Yin Y, Wang Z, Cheng D, Chen X, Chen Y, Ma Z: *The ATP-binding protein FgArb1 is*
essential for penetration, infectious and normal growth of *Fusarium graminearum*. *New Phytol* 2018, **219**(4):1447-1466.

32. Yorimitsu T, Sato K, Takeuchi M: **Molecular mechanisms of Sar/Arf GTPases in vesicular trafficking in yeast and plants**. *Frontiers in plant science* 2014, **5**:411.

33. Huang YJ, Paillard S, Kumar V, King GJ, Fitt BDL, Delourme R: **Oilseed rape (Brassica napus) resistance to growth of Leptosphaeria maculans in leaves of young plants contributes to quantitative resistance in stems of adult plants**. *PLoS One* 2019, **14**(9):e0222540.

34. Tenhaken R, Doerks T, Bork P: **DCD - a novel plant specific domain in proteins involved in development and programmed cell death**. *BMC bioinformatics* 2005, **6**:169.

35. Reis PA, Carpinetti PA, Freitas PP, Santos EG, Camargos LF, Oliveira IH, Silva JC, Carvalho HH, Dal-Bianco M, Soares-Ramos JR et al: **Functional and regulatory conservation of the soybean ER stress-induced DCD/NRP-mediated cell death signaling in plants**. *BMC Plant Biol* 2016, **16**(1):156.

36. Kawai-Yamada M, Ohori Y, Uchimiya H: **Dissection of Arabidopsis Bax inhibitor-1 suppressing Bax-, hydrogen peroxide-, and salicylic acid-induced cell death**. *Plant Cell* 2004, **16**(1):21-32.

37. Hoeberichts FA, de Jong AJ, Woltering EJ: **Apoptotic-like cell death marks the early stages of gypsophila (Gypsophila paniculata) petal senescence**. *Postharvest Biology and Technology* 2005, **35**(3):229-236.

38. Abdelmigid HM, Morsi MM: **Cytotoxic and molecular impacts of allelopathic effects of leaf residues of Eucalyptus globulus on soybean (Glycine max)**. *J Genet Eng Biotechnol* 2017, **15**(2):297-302.

39. Ruberti C, Lai Y, Brandizzi F: **Recovery from temporary endoplasmic reticulum**
stress in plants relies on the tissue-specific and largely independent roles of
bZIP28 and bZIP60, as well as an antagonizing function of BAX-Inhibitor 1
upon the pro-adaptive signaling mediated by bZIP28. *Plant J* 2018, 93(1):155-
165.

40. Babaeizad V, Imani J, Kogel KH, Eichmann R, Huckelhoven R: **Over-expression of
the cell death regulator BAX inhibitor-1 in barley confers reduced or
enhanced susceptibility to distinct fungal pathogens.** *Theor Appl Genet* 2009,
118(3):455-463.

41. Scotton DC, Azevedo MD, Sestari I, Da Silva JS, Souza LA, Peres LE, Leal GA, Jr.,
Figueira A: **Expression of the *Theobroma cacao* Bax-inhibitor-1 gene in tomato
reduces infection by the hemibiotrophic pathogen *Moniliophthora perniciosa*.**
Mol Plant Pathol 2016.

42. Diaz-Mendoza M, Velasco-Arroyo B, Gonzalez-Melendi P, Martinez M, Diaz I: **C1A
cysteine protease-cystatin interactions in leaf senescence.** *J Exp Bot* 2014,
65(14):3825-3833.

43. Okamoto T, Shimada T, Hara-Nishimura I, Nishimura M, Minamikawa T: **C-terminal
KDEL sequence of a KDEL-tailed cysteine proteinase (sulfhydryl-
endopeptidase) is involved in formation of KDEL vesicle and in efficient
vacuolar transport of sulfhydryl-endopeptidase.** *Plant Physiology* 2003,
132(4):1892-1900.

44. Hara-Nishimura I, Inoue K, Nishimura M: **A unique vacuolar processing enzyme
responsible for conversion of several proprotein precursors into the mature
forms.** *FEBS J* 1991, 294:89-93.

45. Hara-Nishimura I, Nishimura M: **Proglobulin processing enzyme in vacuoles
isolated from developing pumpkin cotyledons.** *Plant Physiol* 1987, 85:440-445.
46. Zamyatnin AA, Jr.: **Plant proteases involved in regulated cell death.** *Biochemistry (Mosc)* 2015, **80**(13):1701-1715.

47. Zheng Y, Zhang H, Deng X, Liu J, Chen H: **The relationship between vacuolation and initiation of PCD in rice (Oryza sativa) aleurone cells.** *Sci Rep* 2017, **7**:41245.

48. Sueldo DJ, van der Hoorn RAL: **Plant life needs cell death, but does plant cell death need Cys proteases?** *FEBS J* 2017, **284**(10):1577-1585.

49. Xu YH, Liu R, Yan L, Liu ZQ, Jiang SC, Shen YY, Wang XF, Zhang DP: **Light-harvesting chlorophyll a/b-binding proteins are required for stomatal response to abscisic acid in Arabidopsis.** *J Exp Bot* 2012, **63**(3):1095-1106.

50. Galvez-Valdivieso G, Mullineaux PM: **The role of reactive oxygen species in signalling from chloroplasts to the nucleus.** *Physiol Plant* 2010, **138**(4):430-439.

51. Ahn IP, Kim S, Lee YH: **Vitamin B1 functions as an activator of plant disease resistance.** *Plant Physiol* 2005, **138**(3):1505-1515.

52. Ahn IP, Kim S, Lee YH, Suh SC: **Vitamin B1-induced priming is dependent on hydrogen peroxide and the NPR1 gene in Arabidopsis.** *Plant Physiol* 2007, **143**(2):838-848.

53. Boubakri H, Wahab MA, Chong J, Bertsch C, Mliki A, Soustre-Gacounolle I: **Thiamine induced resistance to Plasmopara viticola in grapevine and elicited host-defense responses, including HR like-cell death.** *Plant Physiol Biochem* 2012, **57**:120-133.

54. Qi Y, Wang H, Zou Y, Liu C, Liu Y, Wang Y, Zhang W: **Over-expression of mitochondrial heat shock protein 70 suppresses programmed cell death in rice.** *FEBS Lett* 2011, **585**(1):231-239.

55. Williams B, Verchot J, Dickman MB: **When supply does not meet demand-ER**
stress and plant programmed cell death. *Frontiers in plant science* 2014, 5:211.

56. Ishikawa T, Watanabe N, Nagano M, Kawai-Yamada M, Lam E: **Bax inhibitor-1: a highly conserved endoplasmic reticulum-resident cell death suppressor.** *Cell Death Differ* 2011, 18(8):1271-1278.

57. Cui J, Chen B, Wang H, Han Y, Chen X, Zhang W: **Glucosidase II beta-subunit, a novel substrate for caspase-3-like activity in rice, plays as a molecular switch between autophagy and programmed cell death.** *Sci Rep* 2016, 6:31764.

58. Arrano-Salinas P, Dominguez-Figueroa J, Herrera-Vasquez A, Zavala D, Medina J, Vicente-Carbajosa J, Meneses C, Canessa P, Moreno AA, Blanco-Herrera F: **WRKY7, -11 and -17 transcription factors are modulators of the bZIP28 branch of the unfolded protein response during PAMP-triggered immunity in Arabidopsis thaliana.** *Plant Sci* 2018, 277:242-250.

59. Ozgur R, Uzilday B, Iwata Y, Koizumi N, Turkan I: **Interplay between the unfolded protein response and reactive oxygen species: a dynamic duo.** *J Exp Bot* 2018, 69(14):3333-3345.

Tables
Table 1 Differentially expressed genes (DEGs) in *Leptosphaeria maculans* that are more highly expressed in *L. maculans* inoculated 74-44 BL than in inoculated Westar.

Locus tag	Expression	log2 Fold Change	Adjusted p-value	Score	InterPro IDs
LEMA_P093320.1	40.32	-2.10	8.28E-04	-2.61E+02	similar to short chain dehydrogenase/reductase family oxidoreductase
					IPR0021
LEMA_P012380.1	12.05	-2.04	6.76E-04	-7.81E+01	hypothetical protein
					IPR0007
LEMA_P055320.1	3.96	-2.13	1.54E-04	-3.22E+01	hypothetical protein
					non

Table 2 Differentially expressed genes (DEGs) in *Leptosphaeria maculans* that are more highly expressed in *L. maculans* inoculated Westar than in inoculated 74-44 BL.
Locus tag	Expression	log2 Fold Change	Adjusted p-value	Score	Product	InterPro IDs
LEMA_P111660.1	30.84	2.11	3.36E-03	1.61E+02	predicted protein	不代表
LEMA_P098600.1	7.34	2.24	1.16E-09	1.47E+02	similar to 1,3,8-naphthalenetol reductase	IPR0, IPR0, IPR0
LEMA_P123340.1	16.62	2.63	2.79E-03	1.12E+02	similar to amine oxidase	IPR0
LEMA_P081810.1	12.41	2.68	1.21E-02	6.36E+01	similar to nonribosomal peptide synthase GliP	IPR0
LEMA_P072910.1	6.66	2.02	1.96E-03	3.65E+01	hypothetical protein	IPR0, IPR0
LEMA_P100110.1	2.64	3.30	6.76E-04	2.97E+01	hypothetical protein	IPR0
LEMA_P103080.1	7.17	2.63	3.49E-02	2.75E+01	hypothetical protein	IPR0
LEMA_P032040.1	3.21	2.39	3.32E-04	2.67E+01	hypothetical protein	IPR0
LEMA_P081730.1	4.72	2.31	4.36E-02	1.49E+01	similar to Methyltransferase type 11	IPR0
LEMA_P081800.1	3.09	3.13	4.36E-02	1.32E+01	similar to cytochrome P450	IPR0
LEMA_P081720.1	1.93	2.90	3.55E-02	8.11E+00	similar to aflatoxin B1 aldehyde reductase member 2	IPR0
LEMA_P013060.1	0.81	2.13	5.36E-03	3.93E+00	hypothetical protein	不代表
LEMA_P026690.1	0.71	2.73	4.47E-02	2.60E+00	similar to FAD binding domain protein	不代表

Table 3 Differentially expressed genes (DEGs) in *Brassica napus* that are more highly expressed in *Leptosphaeria maculans* inoculated cotyledons of 74-44 BL (74-44 Lm) relative to inoculated Westar (Westar Lm) (score ≤ -2 x 10⁴).
Accession	Description	E-value	Identity	Coordinates			
BnaA01g04000D	5722.37 -3.01 3.54E-11 -1.80E+05						
BnaA09g52180D	7220.10 -2.14 2.34E-08 -1.18E+05						
BnaA07g20510D	2050.02 -4.29 9.36E-12 -9.70E+04						
BnaC04g10780D	13062.01 -2.30 6.65E-03 -6.53E+04						
BnaC02g00130D	2502.42 -2.67 3.01E-09 -5.69E+04						
BnaA04g04110D	521.69 -2.56 3.25E-32 -4.21E+04						
BnaA09g13710D	5954.02 -2.48 1.41E-03 -4.21E+04						
BnaA05g29390D	8516.26 -2.06 4.03E-03 -4.21E+04						
BnaA10g25820D	518.97 -2.95 1.64E-27 -4.09E+04						
Accession	Description	Value	Significance	Fold/Domain			
---------------	--------------------------------------	---------	--------------	---			
BnaA02g00670D	Immunoglobulin-like fold	2921.18	-2.37	1.89E-06 -3.96E+04			
BnaA03g44930D	Immunoglobulin E-set	603.62	-2.32	1.79E-28 -3.89E+04			
BnaA10g26060D	Glycoside hydrolase, family 13	4072.11	-2.42	2.31E-04 -3.58E+04			
BnaA03g11710D	Glutamyl synthase, alpha subunit	2828.36	-2.03	8.30E-07 -3.49E+04			
BnaAnng14750D	Glutamylation-type TIM barrel	2232.72	-2.28	2.74E-07 -3.34E+04			
BnaA09g01080D	Kelch repeat type 1	5335.01	-2.04	1.26E-03 -3.16E+04			
BnaAnng00160D	Kelch-type beta propeller	3182.66	-2.73	3.39E-04 -3.02E+04			
BnaC04g30870D	Ribulose bisphosphate carboxylase	4634.79	-2.49	2.70E-03 -2.97E+04			
BnaC08g49610D	Ribulose bisphosphate carboxylylase	1395.47	-2.92	5.17E-08 -2.97E+04			
BnaA09g19870D	Ribulose bisphosphate carboxylase	4432.54	-2.24	1.04E-03 -2.96E+04			
BnaAnng10080D	Photosystem II PsbO, manganese-stabilising	2261.06	-2.06	9.55E-07 -2.80E+04			
BnaA09g19870D	Photosystem II PsbP, oxygen evolving complex	2261.06	-2.06	9.55E-07 -2.80E+04			
Gene Symbol	Log2 Fold Change	Fold Change	Adjusted p-value	Gene Symbol	Log2 Fold Change	Fold Change	Adjusted p-value
-----------------	------------------	-------------	------------------	-----------------	------------------	-------------	------------------
BnaC03g59520D	-2.66	3.90E-03	-2.17E+04	IPR016123	Mog1/P		
				IPR001344	Chloro		
				IPR022796	Chloro		
				IPR023329	Chloro		
BnaCnnng24140D	-2.20	7.27E-03	-2.17E+04	IPR001344	Chloro		
				IPR022796	Chloro		
				IPR023329	Chloro		
BnaA05g30550D	-2.66	1.03E-31	-2.14E+04	IPR001344	Chloro		
				IPR011545	DNA/RN		
				IPR014014	Helicas		
				IPR014001	Helicas		
BnaA08g17660D	-3.79	3.06E-05	-2.05E+04	IPR001344	Chloro		
				IPR022796	Chloro		
				IPR023329	Chloro		
BnaC05g04590D	-2.21	4.83E-04	-2.02E+04	IPR002683	Photosystem		
				IPR016123	Mog1/P		
				IPR019050	Lke-Sn		
				IPR025609	FDF doi		
				IPR025761	Lsm14		
				IPR025762	FF		
				IPR025768	DFDF doi		
BnaC07g11970D	-2.29	1.82E-25	-2.01E+04	IPR010920	Like-Sn		
				IPR00719	Protein		
				IPR01245	Serine-		
				IPR002290	Serine/		
				IPR008271	Serine/		
				IPR009856	Light re		
				IPR011009	Protein		
				IPR013320	Concans		
				IPR017441	Protein		
BnaA09g52250D	-2.65	4.40E-07	-2.01E+04	IPR020635	Tyrosin		
				IPR001478	PDZ do		
				IPR004447	C-termi		
BnaC08g28700D	-2.83	2.03E-08	-2.00E+04	IPR005151	Interph		

Table 4 Differentially expressed genes (DEGs) that are more highly expressed in *Leptosphaeria maculans* inoculated Westar than in inoculated 74-44 BL (scores < 2 x 10^4).
Gene name	Expression	Score	InterPro ID	Description		
BnaC09g20030	3410.28	1.15E-28	IPR006213	Bax inhibitor 1, conserved site		
	D	2.20	IPR006214			
BnaA04g06220	1236.46	6.75E-33	IPR006895	Bax inhibitor 1-related		
	D	2.82	IPR006896			
		1.12E+0	IPR007123			
BnaCnng58090	2353.53	2.71E-16	IPR013989	Zinc finger, Sec23/Sec24-type		
	D	2.39	IPR013990			
BnaC08g42820	767.75	7.76E-26	IPR018181	Gelsolin domain		
	D	4.53	IPR018181			
BnaAnng22050	1884.66	5.24E-17	IPR025753	Development/cell death domain.		
	D	2.62	IPR025753			
BnaA08g26550	971.89	1.70E-31	IPR024156	Small GTP-binding protein domain		
	D	2.67	IPR024156			
BnaA06g05280	1986.35	2.64E-15	IPR003593	AAA+ ATPase domain		
	D	2.35	IPR003593			
BnaA06g31440	866.61	1.64E-21	IPR001179	Peptidyl-prolyl cis-trans isomerase domain		
	D	3.55	IPR001179			
BnaC08g18340	954.57	1.15E-20	IPR002208	SecY/SEC61-alpha family		
	D	3.24	IPR002208			
BnaC06g24690	3099.53	1.99E-09	IPR003579	Small GTPase superfamily, Rab type		
	D	2.28	IPR003579			
BnaA09g26960	2590.93	6.08E-11	IPR001179	SecY/SEC61-alpha family		
	D	2.07	IPR001179			
BnaC03g44640	850.32	3.08E-30	IPR001179			
	D	2.14	IPR001179			
Accession	Score	q-value	E-value	Protein Name	Domain Information	IPR Numbers
------------	-------	---------	---------	----------------------------------	---	----------------------
BnaA05g20940	604.35	6.18	6.22E-15	5.31E+04	Peptidyl-prolyl cis-trans isomerase, FKBP-type	IPR004314, IPR025521
BnaA07g09950	983.34	2.13	4.51E-26	5.30E+04	Domain of unknown function DUF239	IPR004314, IPR025521
BnaA05g16820	220.73	5.24	3.74E-45	5.14E+04	Domain of unknown function DUF4409	IPR004314, IPR025521
BnaC03g41930	847.71	2.16	6.09E-25	4.42E+04	Small GTPase superfamily, Rab type	IPR004314, IPR025521
BnaCnng06680	1100.64	2.28	1.06E-15	3.75E+04	Small GTPase superfamily, SAR1-type	IPR004314, IPR025521
BnaC03g39420	417.07	2.37	2.23E-37	3.63E+04	Small GTPase superfamily, ARF/SAR type	IPR004314, IPR025521
BnaA07g34510	449.54	3.01	5.05E-27	3.56E+04	Small GTPase superfamily, ARF type	IPR004314, IPR025521
BnaA09g05230	746.34	2.25	3.04E-19	3.10E+04	Small GTP-binding protein domain	IPR004314, IPR025521
BnaA03g00370	346.01	3.02	3.74E-30	3.07E+04	Small GTPase superfamily, SAR1-type	IPR004314, IPR025521
BnaC03g07130	999.98	2.79	1.08E-11	3.06E+04	Small GTPase superfamily, ARF/SAR type	IPR004314, IPR025521
BnaA01g07540	610.05	2.38	1.84E-18	2.58E+04	Small GTP-binding protein domain	IPR004314, IPR025521
BnaC08g25990	545.89	2.91	8.40E-16	2.40E+04	Small GTPase superfamily, ARF type	IPR004314, IPR025521
BnaA09g32460	744.70	2.54	3.00E-13	2.37E+04	Small GTP-binding protein domain	IPR004314, IPR025521
Table 5 Gene Ontology (GO) term enrichment of differentially expressed genes (DEGs) in *Brassica napus* that are more highly expressed in *Leptosphaeria maculans* inoculated 74-44 (74-44 Lm) than in inoculated Westar (Westar Lm).

GO ID	GO Name	GO Category	FDR	P-Value	% T						
GO:0006364	rRNA processing	BIOL. PROC.	2.02E-68	4.68E-71	11.4						
GO:0019344	cysteine biosynthetic process	BIOL. PROC.	8.58E-57	3.68E-59	9.5						
GO:0009773	photosynthetic electron transport in photosystem I	BIOL. PROC.	1.78E-54	9.06E-57	5.5						
GO:0009637	response to blue light	BIOL. PROC.	5.32E-42	3.63E-44	6.3						
GO:0010218	response to far red light	BIOL. PROC.	4.06E-41	2.91E-43	5.7						
GO:0009773	photosynthetic electron transport in photosystem I	BIOL. PROC.	1.78E-54	9.06E-57	5.5						
GO:0019344	cysteine biosynthetic process	BIOL. PROC.	8.58E-57	3.68E-59	9.5						
GO:0009773	photosynthetic electron transport in photosystem I	BIOL. PROC.	1.78E-54	9.06E-57	5.5						
GO:0009637	response to blue light	BIOL. PROC.	5.32E-42	3.63E-44	6.3						
GO:0010218	response to far red light	BIOL. PROC.	4.06E-41	2.91E-43	5.7						
GO:0006364	rRNA processing	BIOL. PROC.	2.02E-68	4.68E-71	11.4						
GO:0019344	cysteine biosynthetic process	BIOL. PROC.	8.58E-57	3.68E-59	9.5						
GO:0009773	photosynthetic electron transport in photosystem I	BIOL. PROC.	1.78E-54	9.06E-57	5.5						
GO:0009637	response to blue light	BIOL. PROC.	5.32E-42	3.63E-44	6.3						
GO:0010218	response to far red light	BIOL. PROC.	4.06E-41	2.91E-43	5.7						
GO:0009773	photosynthetic electron transport in photosystem I	BIOL. PROC.	1.78E-54	9.06E-57	5.5						
GO:0009637	response to blue light	BIOL. PROC.	5.32E-42	3.63E-44	6.3						
GO:0010218	response to far red light	BIOL. PROC.	4.06E-41	2.91E-43	5.7						
GO:0006364	rRNA processing	BIOL. PROC.	2.02E-68	4.68E-71	11.4						
GO:0019344	cysteine biosynthetic process	BIOL. PROC.	8.58E-57	3.68E-59	9.5						
GO:0009773	photosynthetic electron transport in photosystem I	BIOL. PROC.	1.78E-54	9.06E-57	5.5						
GO:0009637	response to blue light	BIOL. PROC.	5.32E-42	3.63E-44	6.3						
GO:0010218	response to far red light	BIOL. PROC.	4.06E-41	2.91E-43	5.7						
GO:0006364	rRNA processing	BIOL. PROC.	2.02E-68	4.68E-71	11.4						
GO:0019344	cysteine biosynthetic process	BIOL. PROC.	8.58E-57	3.68E-59	9.5						
GO:0009773	photosynthetic electron transport in photosystem I	BIOL. PROC.	1.78E-54	9.06E-57	5.5						
GO:0009637	response to blue light	BIOL. PROC.	5.32E-42	3.63E-44	6.3						
GO:0010218	response to far red light	BIOL. PROC.	4.06E-41	2.91E-43	5.7						
GO:0006364	rRNA processing	BIOL. PROC.	2.02E-68	4.68E-71	11.4						
GO:0019344	cysteine biosynthetic process	BIOL. PROC.	8.58E-57	3.68E-59	9.5						
GO:0009773	photosynthetic electron transport in photosystem I	BIOL. PROC.	1.78E-54	9.06E-57	5.5						
GO:0009637	response to blue light	BIOL. PROC.	5.32E-42	3.63E-44	6.3						
GO:0010218	response to far red light	BIOL. PROC.	4.06E-41	2.91E-43	5.7						
GO:0019761	glucosinolate biosynthetic process	BIOL. PROC.	11	5.61E-11	13	1.6E-12	3.4%				
GO:0009768	photosynthesis, light harvesting in photosystem I	BIOL. PROC.	11	5.82E-11	12	1.67E-12	0.8%				
GO:0009965	leaf morphogenesis	BIOL. PROC.	11	8.63E-12	12	2.5E-12	3.7%				
GO:0010310	regulation of hydrogen peroxide metabolic process	BIOL. PROC.	11	8.38E-12	12	2.1E-12	3.4%				
GO:0009595	detection of biotic stimulus	BIOL. PROC.	10	1.07E-10	11	3.13E-11	2.7%				
GO:0009409	response to cold	BIOL. PROC.	10	1.20E-10	12	3.54E-11	6.7%				
GO:0042742	defense response to bacterium	BIOL. PROC.	10	4.60E-10	11	1.38E-11	5.6%				
GO:0045893	positive regulation of transcription, DNA-templated	BIOL. PROC.	10	7.56E-10	11	2.31E-11	5.2%				
GO:0030093	chloroplast photosystem I	CELL. COMP.	09	1.35E-09	11	4.25E-10	0.6%				
GO:0010598	NAD(P)H dehydrogenase complex (plastoquinone)	CELL. COMP.	09	1.92E-09	11	6.12E-10	0.9%				
GO:0000165	MAPK cascade	BIOL. PROC.	09	3.02E-09	11	9.72E-10	3.8%				
GO:0016117	carotenoid biosynthetic process	BIOL. PROC.	09	4.30E-09	10	1.40E-09	2.5%				
GO:0009862	systemic acquired resistance, salicylic acid mediated signaling pathway	BIOL. PROC.	09	4.89E-09	10	1.60E-10	3.7%				
GO:0006636	unsaturated fatty acid biosynthetic process	BIOL. PROC.	09	7.19E-09	10	2.38E-10	2.0%				
GO:0042793	plastid transcription	BIOL. PROC.	08	1.36E-08	10	4.59E-09	1.7%				
GO:0019843	rRNA binding	MOL. FUNCT.	08	2.36E-08	10	8.12E-09	2.0%				
GO:0031348	negative regulation of defense response	BIOL. PROC.	08	3.18E-08	09	1.10E-09	3.9%				
GO:0004565	beta-galactosidase activity	MOL. FUNCT.	08	3.28E-08	09	1.14E-09	1.2%				
GO:0006697	salicylic acid biosynthetic process	BIOL. PROC.	08	6.73E-08	09	2.41E-09	3.1%				
GO:0010319	stromule	CELL. COMP.	08	7.34E-08	09	2.65E-09	1.5%				
GO:0003959	NADPH dehydrogenase activity	MOL. FUNCT.	07	1.63E-08	09	6.08E-10	0.7%				
GO:0009867	jasmonic acid mediated signaling pathway	BIOL. PROC.	07	3.78E-08	08	1.45E-09	3.7%				
GO:0019898	extrinsic component of membrane	CELL. COMP.	07	6.14E-08	08	2.41E-09	2.0%				
GO:0009780	photosynthetic NADP+ reduction	BIOL. PROC.	06	2.39E-08	08	9.58E-10	0.4%				
GO:0006655	phosphatidyglycerol biosynthetic process	BIOL. PROC.	06	3.26E-08	07	1.31E-09	1.5%				
GO:0010196	nonphotochemical quenching	BIOL. PROC.	06	4.07E-08	07	1.65E-09	0.6%				
GO:0031969	chloroplast membrane	CELL. COMP.	06	4.09E-08	07	1.66E-09	2.6%				
GO:0016226	iron-sulfur cluster assembly	BIOL. PROC.	06	9.42E-08	07	3.95E-09	1.7%				
GO:0010363	regulation of plant-type hypersensitive response	BIOL. PROC.	05	1.77E-08	07	7.54E-10	3.9%				
GO:0006612	protein targeting to membrane	BIOL. PROC.	05	2.48E-08	06	1.07E-09	4.1%				
GO:0042550	photosystem I stabilization	BIOL. PROC.	05	3.00E-08	06	1.30E-09	0.4%				
GO:0047100	glyceraldehyde-3-phosphate dehydrogenase (NADP+) (phosphorylating) activity	MOL. FUNCT.	05	3.00E-08	06	1.30E-09	0.4%				
GO:0042549	photosystem II stabilization	BIOL. PROC.	05	3.09E-08	06	1.34E-09	0.5%				
GO:0005762	mitochondrial large ribosomal subunit	CELL. COMP.	05	3.21E-08	06	1.41E-09	0.8%				
GO:0042335	cuticle development	BIOL. PROC.	05	5.20E-08	06	2.31E-09	1.2%				
GO:0032544	plastid translation	BIOL. PROC.	05	5.35E-08	06	2.38E-09	0.6%				
GO:0018316	peptide cross-linking via L-cystine	BIOL. PROC.	05	6.38E-08	06	2.87E-09	0.3%				
GO:0009783	photosystem II antenna complex	CELL. COMP.	05	6.67E-08	06	3.03E-09	0.4%				
Annotation	MOL. FUNCT.	BIOL. PROC.	CELL. COMP.	MOL. FUNCT.	BIOL. PROC.	CELL. COMP.	MOL. FUNCT.	BIOL. PROC.	CELL. COMP.	MOL. FUNCT.	BIOL. PROC.
--	------------	-------------	-------------	------------	-------------	-------------	------------	-------------	-------------	------------	-------------
GO:0030246 carbohydrate binding	7.67E-05	3.51E-06									
GO:0003735 structural constituent of ribosome	8.24E-05	3.80E-06									
GO:0009106 lipoate metabolic process	1.11E-04	5.19E-06									
GO:0016984 ribulose-bisphosphate carboxylase activity	1.22E-04	5.76E-06									
GO:0000038 very long-chain fatty acid metabolic process	1.37E-04	6.58E-06									
GO:0006546 glycine catabolic process	1.42E-04	6.86E-06									
GO:009782 photosystem I antenna complex	1.48E-04	7.14E-06									
GO:009108 coenzyme biosynthetic process	1.59E-04	7.69E-06									
GO:0071454 cellular response to anoxia	2.85E-04	1.42E-06									
GO:0050661 NADP binding	3.70E-04	1.85E-06									
GO:009505 plant-type cell wall	5.17E-04	2.62E-06									
GO:0006005 L-fucose biosynthetic process	7.55E-04	3.92E-06									
GO:0050832 defense response to fungus	7.64E-04	3.97E-06									
GO:0042744 hydrogen peroxide catabolic process	8.28E-04	4.34E-06									
GO:005528 FK506 binding	9.23E-04	4.89E-06									
GO:005247 voltage-gated chloride channel activity	9.41E-04	5.01E-06									
GO:009533 chloroplast stromal thylakoid	1.11E-03	5.97E-06									
GO:0090042 tubulin deacetylation	1.45E-03	8.07E-06									
GO:0051721 protein phosphatase 2A binding	1.45E-03	8.07E-06									
GO:0042903 tubulin deacetylase activity	1.45E-03	8.07E-06									
GO:0043014 alpha-tubulin binding	1.45E-03	8.07E-06									
GO:0034707 chloride channel complex	1.49E-03	8.27E-06									
GO:0010242 oxygen evolving activity	1.49E-03	8.28E-06									
GO:0043086 negative regulation of catalytic activity	1.58E-03	8.82E-06									
GO:0031012 extracellular matrix	1.73E-03	9.75E-06									
GO:0006833 water transport	1.80E-03	1.03E-05									
GO:0000413 protein peptidyl-prolyl isomerization	1.91E-03	1.09E-05									
GO:0003755 peptidyl-prolyl cis-trans isomerase activity	1.91E-03	1.09E-05									
GO:0009508 plastid chromosome	2.02E-03	1.16E-05									
GO:1902476 chloride transmembrane transport	2.22E-03	1.29E-05									
GO:0080153 negative regulation of reductive pentose-phosphate cycle	2.55E-03	1.50E-05									
GO:0050577 GDP-L-fucose synthase activity	2.55E-03	1.50E-05									
GO:0015996 chlorophyll catabolic process	2.57E-03	1.51E-05									
GO:0009737 response to abscisic acid	2.75E-03	1.62E-05									
GO:0050821 protein stabilization	2.84E-03	1.68E-05									
GO:0045036 protein targeting to chloroplast	3.14E-03	1.88E-05									
GO:0004040 amidase activity	3.22E-03	1.93E-05									
GO:0045454 cell redox homeostasis	3.37E-03	2.03E-05									
GO:0042631	cellular response to water deprivation	BIOL. PROC.	3.49E-03	2.12E-04	1.2						
GO:0005509	calcium ion binding	MOL. FUNCT.	3.49E-03	2.11E-04	2.5						
GO:0043481	anthocyanin accumulation in tissues in response to UV light	BIOL. PROC.	3.83E-03	2.35E-04	1.5						
GO:0010189	vitamin E biosynthetic process	BIOL. PROC.	3.89E-03	2.11E-04	0.4						
GO:0043864	indoleacetamide hydrolase activity	MOL. FUNCT.	3.89E-03	2.11E-04	0.2						
GO:0031679	NADH dehydrogenase (plastoquinone) activity	MOL. FUNCT.	3.89E-03	2.11E-04	0.2						
GO:0004857	enzyme inhibitor activity	MOL. FUNCT.	4.22E-03	2.66E-04	1.9						
GO:0015250	water channel activity	MOL. FUNCT.	4.65E-03	2.96E-04	0.7						
GO:0010019	chloroplast-nucleus signaling pathway	BIOL. PROC.	4.74E-03	3.04E-04	0.3						
GO:0016151	nickel cation binding	MOL. FUNCT.	4.74E-03	3.04E-04	0.3						
GO:0016709	oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen, NAD(P)H as one donor, and incorporation of one atom of oxygen	MOL. FUNCT.	5.04E-03	3.23E-04	1.1						
GO:0045735	nutrient reservoir activity	MOL. FUNCT.	5.72E-03	3.69E-04	0.8						
GO:0000311	plastid large ribosomal subunit	CELL. COMP.	5.79E-03	3.75E-04	0.4						
GO:0030091	protein repair	BIOL. PROC.	5.83E-03	3.79E-04	0.5						
GO:0009269	response to desiccation	BIOL. PROC.	6.09E-03	3.97E-04	0.7						
GO:0097339	glycolate transmembrane transport	BIOL. PROC.	7.20E-03	4.78E-04	0.2						
GO:1901975	glycerate transmembrane transport	BIOL. PROC.	7.20E-03	4.78E-04	0.2						
GO:0043879	glycolate transmembrane transporter activity	MOL. FUNCT.	7.20E-03	4.78E-04	0.2						
GO:0008531	riboflavin kinase activity	MOL. FUNCT.	7.20E-03	4.78E-04	0.2						
GO:0009671	nitrate:proton symporter activity	MOL. FUNCT.	7.20E-03	4.78E-04	0.2						
GO:0010301	xanthoxin dehydrogenase activity	MOL. FUNCT.	7.20E-03	4.78E-04	0.2						
GO:0045550	geranylgeranyl reductase activity	MOL. FUNCT.	7.20E-03	4.78E-04	0.2						
GO:1901974	glycerate transmembrane transporter activity	MOL. FUNCT.	7.20E-03	4.78E-04	0.2						
GO:0009772	photosynthetic electron transport in photosystem II	BIOL. PROC.	7.55E-03	5.04E-04	0.4						
GO:0009695	jasmonic acid biosynthetic process	BIOL. PROC.	7.55E-03	5.04E-04	0.4						
GO:0010118	stomatal movement	BIOL. PROC.	1.12E-02	7.61E-04	0.6						
GO:0008465	glycerate dehydrogenase activity	MOL. FUNCT.	1.15E-02	7.92E-04	0.2						
GO:0071277	cellular response to calcium ion	BIOL. PROC.	1.15E-02	7.92E-04	0.2						
GO:0050278	sedoheptulose-bisphosphatase activity	MOL. FUNCT.	1.15E-02	7.92E-04	0.2						
GO:0008974	phosphoribulokinase activity	MOL. FUNCT.	1.15E-02	7.92E-04	0.2						
GO:0008465	glycerate dehydrogenase activity	MOL. FUNCT.	1.15E-02	7.92E-04	0.2						
GO:0046406 magnesium protoporphyrin IX methyltransferase activity											
GO:0052689 carboxylic ester hydrolase activity											
GO:0055070 copper ion homeostasis											
GO:0042351 'de novo' GDP-L-fucose biosynthetic process											
GO:0009051 pentose-phosphate shunt, oxidative branch											
GO:0051537 2 iron, 2 sulfur cluster binding											
GO:0031408 oxylipin biosynthetic process											
GO:0016628 oxidoreductase activity, acting on the CH-CH group of donors, NAD or NADP as acceptor											
GO:0004345 glucose-6-phosphate dehydrogenase activity											
GO:0050162 oxalate oxidase activity											
GO:0009740 gibberellic acid mediated signaling pathway											
GO:0006048 UDP-N-acetylglucosamine biosynthetic process											
GO:0008106 alcohol dehydrogenase (NAD+) activity											
GO:0045490 pectin catabolic process											
GO:0019747 regulation of isoprenoid metabolic process											
GO:0017148 negative regulation of translation											
GO:0009344 nitrite reductase complex [NAD(P)H]											
GO:0031409 pigment binding											
GO:0009496 plastoquinol--plastocyanin reductase activity											
GO:0045156 electron transporter, transferring electrons within the cyclic electron transport pathway of photosynthesis activity											
GO:0010304 PSII associated light-harvesting complex II catabolic process											
GO:0042132 fructose 1,6-bisphosphate 1-phosphatase activity											
GO:1902066 regulation of cell wall pectin metabolic process											
GO:0009769 photosynthesis, light harvesting in photosystem II											
GO:0048487 beta-tubulin binding											
GO:0008124 4-alpha-hydroxytetrahydrobiopterin dehydratase activity											
GO:0009073 aromatic amino acid family biosynthetic process											
GO:0046688 response to copper ion											
GO:0051287 NAD binding											
GO:0016122 xanthophyll metabolic process											
GO:0004332 fructose-bisphosphate aldolase activity											
GO:0009279 cell outer membrane											
GO:0045252 oxoglutarate dehydrogenase complex											
GO:0004149 dihydrolipoyllysine-residue succinyltransferase activity											
GO:0051920	peroxiredoxin activity	MOL. FUNCT.	2.89E-02	2.22E-03	0.3%						
GO:0030145	manganese ion binding	MOL. FUNCT.	2.92E-02	2.24E-03	0.6%						
GO:0016575	histone deacetylation	BIOL. PROC.	2.93E-02	2.25E-03	0.4%						
GO:0009750	response to fructose	BIOL. PROC.	3.14E-02	2.44E-03	1.5%						
GO:0048359	mucilage metabolic process involved in seed coat development	BIOL. PROC.	3.26E-02	2.54E-03	0.4%						
GO:0006066	alcohol metabolic process	BIOL. PROC.	3.45E-02	2.70E-03	1.8%						
GO:0010270	photosystem II oxygen evolving complex assembly	BIOL. PROC.	3.54E-02	2.79E-03	0.2%						
GO:0004560	alpha-L-fucosidase activity	MOL. FUNCT.	3.54E-02	2.79E-03	0.2%						
GO:0080093	regulation of photorespiration	BIOL. PROC.	4.32E-02	3.46E-03	0.2%						
GO:0031998	regulation of fatty acid beta-oxidation	BIOL. PROC.	4.32E-02	3.46E-03	0.2%						
GO:0010617	circadian regulation of calcium ion oscillation	BIOL. PROC.	4.32E-02	3.46E-03	0.2%						
GO:0010258	NADH dehydrogenase complex (plastoquinone) assembly	BIOL. PROC.	4.32E-02	3.46E-03	0.2%						
GO:0009517	PSII associated light-harvesting complex II	CELL. COMP.	4.32E-02	3.46E-03	0.2%						
GO:0004615	phosphomannomutase activity	MOL. FUNCT.	4.32E-02	3.46E-03	0.2%						
GO:0006662	glycerol ether metabolic process	BIOL. PROC.	4.39E-02	3.53E-03	0.5%						

Table 6 GO term enrichment of DEGs in *Brassica napus* that are more highly expressed in *Leptosphaeria maculans* inoculated Westar (*Westar Lm*) than in inoculated 74-44 (*74-44 BL Lm*).
GO ID	GO Name	GO Category	FDR	P-Value	% Test
GO:0042542	response to hydrogen peroxide	BIOL. PROC.	2.31E-08	1.11E-11	4.06%
GO:0006457	protein folding	BIOL. PROC.	2.31E-08	1.27E-11	5.31%
GO:0034976	response to endoplasmic reticulum stress	BIOL. PROC.	3.77E-08	2.91E-11	5.78%
GO:0009644	response to high light intensity	BIOL. PROC.	4.19E-07	6.00E-10	5.91%
GO:006984	ER-nucleus signaling pathway	BIOL. PROC.	5.21E-04	3.16E-06	0.94%
GO:006888	endoplasmic reticulum to Golgi vesicle-mediated transport	BIOL. PROC.	9.53E-04	6.98E-06	2.19%
GO:006499	N-terminal protein myristoylation	BIOL. PROC.	9.53E-04	7.14E-06	2.19%
GO:0034605	cellular response to heat	BIOL. PROC.	4.59E-03	4.29E-05	0.94%
GO:006094	gluconeogenesis	BIOL. PROC.	5.10E-03	4.94E-05	2.66%
GO:1901617	organic hydroxy compound biosynthetic process	BIOL. PROC.	5.50E-03	5.51E-05	5.00%
GO:0010498	proteasomal protein catabolic process	BIOL. PROC.	1.84E-02	2.34E-04	2.97%
GO:009862	systemic acquired resistance, salicylic acid mediated signaling pathway	BIOL. PROC.	2.81E-02	3.83E-04	2.66%
GO:001561	fatty acid alpha-oxidation	BIOL. PROC.	3.83E-02	5.91E-04	0.31%
GO:007105	nitrogen compound transport	BIOL. PROC.	4.23E-02	6.58E-04	11.72%
GO:005788	endoplasmic reticulum lumen	CELL. COMP.	4.92E-10	1.08E-13	2.34%
GO:009505	plant-type cell wall	CELL. COMP.	2.13E-05	5.40E-08	3.91%
GO:005886	plasma membrane	CELL. COMP.	4.49E-05	1.24E-07	20.00%
GO:003126	COPI vesicle coat	CELL. COMP.	6.20E-05	1.80E-07	1.09%
GO:000327	lytic vacuole within protein storage vacuole	CELL. COMP.	8.68E-05	3.25E-07	0.63%
GO:002266	cytosolic ribosome	CELL. COMP.	9.32E-03	9.96E-05	3.13%
GO:005774	vacuolar membrane	CELL. COMP.	2.16E-02	2.79E-04	5.00%
GO:009506	plasmodesma	CELL. COMP.	2.83E-02	3.95E-04	7.03%
GO:003756	protein disulfide isomerase activity	MOL. FUNCT.	1.82E-04	8.43E-07	1.09%
GO:005198	structural molecule activity	MOL. FUNCT.	1.20E-03	9.40E-07	5.00%
GO:005524	ATP binding	MOL. FUNCT.	2.30E-03	2.05E-05	14.53%
GO:004674	protein serine/threonine kinase activity	MOL. FUNCT.	1.28E-02	1.48E-04	6.09%
GO:004842	ubiquitin-protein transferase activity	MOL. FUNCT.	1.58E-02	1.91E-04	3.28%
GO:005509	calcium ion binding	MOL. FUNCT.	1.80E-02	2.26E-04	2.81%
GO:0051670	inulinase activity	MOL. FUNCT.	2.83E-02	3.96E-04	0.31%
GO:005261	glucan endo-1,3-beta-glucanase activity, C-3 substituted reducing group	MOL. FUNCT.	4.85E-02	8.24E-04	0.31%
GO:005262	glucan endo-1,4-beta-glucanase activity, C-3 substituted reducing group	MOL. FUNCT.	4.85E-02	8.24E-04	0.31%
GO:0051699	fructan beta-fructosidase activity	MOL. FUNCT.	4.85E-02	8.24E-04	0.31%
Figures

Approximate size and location of cotyledon samples taken for RNA-Seq analysis (A).
Infection severity (0-9 scale), at 14 days after inoculation, in cotyledons of Westar and 74-
44 (B), grown in the same flats as those used for RNA-Seq analysis. Lesions and GFP expressing fungal hyphal growth in Westar and 74-44 cotyledons at 7 (C) and 14 (D) days post inoculation with the L. maculans isolate 12CC09-GFP. The lesion size (area), area colonization by the fluorescent hyphae, distance from the inoculation wound to the furthest edge of the lesion or distance from the wound to the furthest hyphal tip (E). Bars or data points with the same letter at a given time point in the same panel are not different (t-test, \(p \leq 0.05 \)).
Figure 2

Percent of reads mapped to the L. maculans genome (A) and principle component analysis (PCA) plot, produced by DESeq2 (B).
Venn diagrams (http://bioinformatics.psb.ugent.be/webtools/Venn/) of upregulated (A) and downregulated (B) DEGs between L. maculans inoculated Westar (WLm) and 74-44 (7Lm), mock inoculated Westar (WM) and 74-44 (7M), and between mock and inoculated Westar or mock and inoculated 74-44. DEGs are upregulated in the underlined treatment.
Area of visible lesions, hyphal colonization and positive 3,3-diaminobenzidine (DAB) staining for hydrogen peroxide, a reactive oxygen species (ROS), in Westar and 74-44 cotyledons at 7 days post inoculation with the L. maculans isolate 12CC09-GFP. Bars with the same letter of the same case are not significantly different (A). Capital letters indicate comparisons between cultivars for a given parameter (Wilcoxon two-sample test, p ≤ 0.05). Lower case letters denote comparisons between parameters, within a cultivar (Tukey adjusted p ≤0.05).

Panel B shows the appearance of representative DAB-stained cotyledons.
Figure 5

Time series of the area of visible lesions, hyphal colonization and positive 3,3-diaminobenzidine (DAB) staining for hydrogen peroxide, a reactive oxygen species (ROS), in Westar and 74-44 cotyledons. Values with the same letter, at the same time point, are not significantly different (Tukey adjusted $p \leq 0.05$).
Genomic DNA from mock-inoculated Westar (Westar-mock), Westar inoculated with L. maculans (Westar-Lm), mock-inoculated 74-44 BL (74-44-mock) or 74-44 BL inoculated with L. maculans (74-44-Lm), separated on an Experion 12K chip in order to assay genomic DNA degradation as a marker of programmed cell death.
Impact of protease inhibitors on lesion size (A) and area colonized by GFP-tagged L. maculans hyphae (B) in Westar and 74-44 cotyledons at 7 days post inoculation. Bars with the same letter, within a given panel, are not significantly different (Tukey adjusted $p \leq 0.05$).
Figure 8

A proposed model on how some of the most highly-expressed DEGs (differentially expressed genes) may interact, potentially resulting in programmed cell death. ER: Endoplasmic reticulum.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.
Supple Fig 1.pdf