Every OGT Is Illuminated …
by Fluorescent and Synchrotron Lights
Review

Essential Oils from Neotropical Piper Species and Their Biological Activities

Joyce Kelly da Silva 1,∗, Rafaela da Trindade 1, Nayara Sabrina Alves 1, Pablo Luís Figueiredo 2, José Guilherme S. Maia 2 and William N. Setzer 3,4

1 Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém 66075-900, Brazil; rcabral@ufpa.br (R.d.T.); nayra.sab02@gmail.com (N.S.A.)
2 Programa de Pós-Graduaçã o em Química, Universidade Federal do Pará, Belém 66075-900, Brazil; pablolbf@ufpa.br (P.L.F.); gmaia@ufpa.br (J.G.S.M.)
3 Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA; wsetzer@chemistry.uah.edu
4 Aromatic Plant Research Center, 615 St. George Square Court, Suite 300, Winston-Salem, NC 27103, USA
∗ Correspondence: joycekellys@ufpa.br; Tel.: +55-91-3201-7297

Received: 31 October 2017; Accepted: 23 November 2017; Published: 14 December 2017

Abstract: The Piper genus is the most representative of the Piperaceae reaching around 2000 species distributed in the pantropical region. In the Neotropics, its species are represented by herbs, shrubs, and lianas, which are used in traditional medicine to prepare teas and infusions. Its essential oils (EOs) present high yield and are chemically constituted by complex mixtures or the predominance of main volatile constituents. The chemical composition of Piper EOs displays interspecific or intraspecific variations, according to the site of collection or seasonality. The main volatile compounds identified in Piper EOs are monoterpenes hydrocarbons, oxygenated monoterpenoids, sesquiterpene hydrocarbons, oxygenated sesquiterpenoids and large amounts of phenylpropanoids. In this review, we are reporting the biological potential of Piper EOs from the Neotropical region. There are many reports of Piper EOs as antimicrobial agents (fungi and bacteria), antiprotozoal (Leishmania spp., Plasmodium spp., and Trypanosoma spp.), acetylcholinesterase inhibitor, antinociceptive, anti-inflammatory and cytotoxic activity against different tumor cells lines (breast, leukemia, melanoma, gastric, among others). These studies can contribute to the rational and economic exploration of Piper species, once they have been identified as potent natural and alternative sources to treat human diseases.

Keywords: piperaceae; neotropics; antimicrobial; cytotoxic; anticholinesterase; anti-inflammatory; analgesic

1. Introduction

The genus Piper L. has approximately 2000 species distributed in the pantropical region, in the Neotropics occurring from northern Mexico to Chile and Argentina. The Andean slopes, Central American lowlands and Central Amazonia have been considered as centers of high species richness for the genus [1,2]. Piper belongs to Piperaceae, classified in the order Piperales, Magnoliids clade included in angiosperm basal group [3]. Phylogenetic studies have confirmed the monophyly of the group with eight subgenera recognized in the Neotropics: Enckea, Macrostachys, Ottonia, Peltobryon, Piper, Pothomorphe, Radula and Schilleria [4].

Plants of the genus Piper are easy recognized in the field by their nodose shoots, inflorescences spikes, and the typical “spicy” or aromatic smell [4]. They can be herbs, shrubs and less often lianas of annual or perennial habits; aromatics; glabrous or with varied indumentum, frequently gland-dotted, with nodose stems. Leaves are mostly alternate, sometimes opposite, simple, sessile or petiolate, with variable size, shape and venation. Inflorescences are terminal, leaf opposed or axillary, commonly
spike solitary, umbellate or paniculate, erect, pendent or recurved, variable in size. Flowers are very small and numerous, generally monoic, perianthless, variable in shape; stamens usually 2–6, arising near the base of the ovary with filaments free and generally short, anthers with 1, 2, or 4 thecae, laterally or apically dehiscent, deciduous after pollination; gynoecium with superior ovary, with 1, 3, or 5 fused carpels, 1-locular. Fruit is a small berry or drupe, variously shaped, with a thin pericarp and sometimes hardened endocarp; seed small, solitary [5].

Since prehistoric times Piper spp. have been used by man, manly as spices, in mystical and cultural activities and in folk medicine to treat many diseases. For example, a decoction of the leaves of P. cavalcantei is considered by native Amazon people as excellent antipyretic and analgesic [6]; P. marginatum, which is used by indigenous communities in Central America, the Antilles, and South America for gastrointestinal problems [7]; and P. umbellatum that is traditionally used as an anti-inflammatory in Brazil, to treat wounds in Cuba, and to treat fever in Peru [8]. In the literature, there have been many studies about Asian Piper species, but a large proportion of the information has been generated from Latin American species, pointing to an enormous diversity of chemical compounds associated with its diversity of biological activities [9,10]. In tropical countries, many species of Piper are used by traditional societies by their anti-inflammatory and analgesic properties, and have large potential for the pharmaceutical industry [11].

Piper species produce a number of metabolic classes with diverse biological activities [10]. The essential oils extracted from different organs of many specimens is constituted mainly of monoterpenic hydrocarbons (e.g., α-pinene, myrcene, limonene, α-terpinene, p-cymene), oxygenated monoterpenoids (e.g., 1,8-cineole, linalool, terpinen-4-ol, borneol, camphor), sesquiterpene hydrocarbons (e.g., β-caryophyllene, α-humulene, germacrene D, bicyclogermacrene, α-cubebene), oxygenated sesquiterpenoids (e.g., spathulenol, (E)-nerolidol, caryophyllene oxide, α-cadinol, epi-α-bisabolol) and phenylpropanoids (e.g., safrole, dillapiole, myristicin, elemicin, (Z)-asarone, eugenol) (see Appendixes A and B) [12,13]. The literature reports that some tropical species of Piper have presented high yields of essential oils [14]. The yield of essential oil and its major volatile components in Piper spp. may vary according to geographical region and environmental factors, being conditioned mainly to its different chemotypes [14–16]. P. xylosteoides leaves presented a yield of 1.8% with the main compound being myrcene (31%), which is largely used in the food and cosmetic industry [17]. P. divaricatum had yielded around 46.0%, eugenol, a compound that has been used as an anesthetic for the sedation of fish, in addition to being widely used as a local anesthetic during endodontic and restorative treatments by dentists [18,19]. Essential oils of high yield, along with the presence of volatile compounds of economic value, are valued by the international market due to their wide importance to the pharmacological, cosmetics, and cleaning products industries, among other applications [14]. Piper has been a model genus for ecological and evolutionary studies, and Piper species are considered important due their association with frugivorous bats [4]. A suite of insect herbivores feeds on the leaves of Piper; the ripening fruits are attacked by a variety of seed predators, and ripe fruits provide food for frugivorous bats and birds, and other animals surely use Piper fruits as food at least occasionally [11].

Taxonomic difficulties in the genus Piper are related to the great variability and minute nature of their flowers [20]. Due to the pronounced pharmacological value and worldwide demand of Piper species, it is imperative to make efforts to the secure botanical identification, to conserve the germplasm, and to allow genetic improvement [21]. The use of biochemical and genetic markers as well as chemical studies of specimens have been shown to be effective methods [22–24]. In this review, we report the biological activities and the chemical compositions of Piper species native to the Neotropics.

2. Volatile Profiles

The essential oil compositions (major components) of Neotropical Piper species are summarized in Appendix A. For Piper species where several different essential oils were collected, there seems to be wide variation in the compositions. Thus, for example, P. aduncum leaf oils can be rich in monoterpenoids such as 1,8-cineole [25], sesquiterpenoids such as (E)-nerolidol [26], or dominated
by phenylpropanoids like dillapiole [27–30] or asaricin [31]. At least nine different chemotypes of *P. aduncum* have been characterized [32]. Likewise, *P. amalago* has shown wide variation in essential oil composition with monoterpenoid-rich [31,33] and sesquiterpenoid-rich [34,35] chemotypes. Dihydroagarofurans have dominated several leaf oils of *P. ceruum* [31,36,37] while other samples have shown monoterpenes and sesquiterpene hydrocarbons as major components [35,38,39]. *Piper divaricatum* has shown a eugenol/methyleugenol chemotype [40–43] as well as a safrole chemotype [44]. Phenylpropanoids have characterized the leaf essential oils of many samples of *P. marginatum* from Brazil [41,45], but even these show wide variation in the phenylpropanoid concentrations. Chemical structures for the major *Piper* essential oil components are shown in Appendix B.

Geographical location and habitat likely affects the chemical compositions. For example, the leaf essential oil compositions of *P. hispidum* from Cuba [46] was rich in eudesmols, while a sample from Panama was dominated by dillapiole [47], and a sample from Colombia had (E)-nerolidol as the major component [48]. *Piper umbellatum* essential oils from Monteverde, Costa Rica [49], and from São Paulo, Brazil [31], were rich in sesquiterpene hydrocarbons, while the essential oil from the Escambray Mountains of Cuba was rich in camphor and safrole [50]. The wide variations in essential oil compositions certainly impact the biological activities of the *Piper* oils (see Appendix A) and likely affects the traditional medicinal uses of the plants in their native habitats.

3. **Biological Activities**

3.1. **Antibacterial and Antifungal Activity**

The need to combat microbial resistance to present day antibiotics has boosted efforts for bioprospecting to identify new antibacterial and antifungal agents [51]. The potential of *Piper* essential oils against pathogenic Gram-positive bacteria, such as *Staphylococcus aureus*, *Bacillus cereus*, *Bacillus subtilis* and *Streptococcus pyogenes*, as well as Gram-negative microorganisms, which include *Escherichia coli*, *Klebsiella pneumoniae*, *Pseudomonas aeruginosa* and *Acinetobacter baumannii*, has been reported in several published investigations. Essential oils (EOs) from leaves of *P. abutilodes*, *P. aduncum*, *P. marginatum*, and *P. molicomum* were tested against *Escherichia coli* (EPEC 0031-2) and had minimal inhibitory concentrations (MICs) ranging from 500 µg/mL to 1000 µg/mL [52]. *P. regnellii* oils from leaves had MIC of 300 µg/mL against the serotype EPEC 0031-2. Antimicrobial assays were performed by microdilution method, but EO compositions were not reported [52]. EOs from leaves of *P. aduncum* var. *ossanum* (Bauta, Artemisa Province, Cuba) were mainly composed of piperitone (20.1%), viridiflorol (13.0%) and camphor (13.9%) and had high activity against *Staphylococcus aureus* with an IC$_{50}$ value of 39.5 µg/mL [53].

The antimicrobial activity was evaluated against *Bacillus cereus* and *S. aureus* using broth dilution assay for different *Piper* species collected in Monteverde (Costa Rica) [34]. The oils from leaves of *Piper* sp. aff. *aereum*, *P. bredemeyeri*, *P. oblanceolatum* displayed a MIC value of 78 µg/mL against *Bacillus cereus*, while *P. fimbriulatum* was more active (MIC, 39 µg/mL). In addition, *Piper* sp. aff. *aereum* showed activity against *S. aureus* (MIC, 78 µg/mL). The main compounds in these oils were mostly sesquiterpenoids and monoterpenoids: *Piper* sp. aff. *aereum* oil was composed of guaiol (41.2%), α-cadinol (9.2%) and δ-cadinene (7.3%). *P. bredemeyeri* showed β-elemene (34.0%), β-caryophyllene (24.2%) and germacrene D (21.7%) as major compounds. *P. fimbriulatum* showed germacrene D (32.9%), α-pinene (10.2%) and δ-elemene (9.4%), while *P. oblanceolatum* was rich in linalool (11.3%), δ-amorphene (9.0%) and germacrene D (8.9%) [34].

Piper caldense oils from different tissues displayed as major components α-cadinol (19.0%), α-murolol (9.0%), and thujopsan-2β-ol (7.4%) (leaves); terpinen-4-ol (18.5%), α-terpineol (15.3%), and α-cadinol-2β-ol (9.8%) (stems); and pentadecane (35.7%), valencene (10.5%), and selina-3,7(11)-diene (5.4%) (roots). The samples were tested against *E. coli*, *Klebsiella pneumoniae*, *Pseudomonas aeruginosa*, *S. aureus* and *B. subtilis* using agar diffusion assay and showed moderate to weak bacterial activity with MIC value of 325 or 750 µg/mL in comparison to gentamicin (5.0 µg/mL) [54]. *P. ceruum*...
and P. regnellii EOs from leaves inhibited growth of S. aureus and Candida albicans when evaluated by agar diffusion assay. The main compounds in P. cernuum oil were bicyclogermacrene (21.9%), β-caryophyllene (20.7%) and α-pinene, while P. regnellii essential oil was dominated by myrcene (52.6%), linalool (15.9%) and β-caryophyllene (8.5%) [38].

The chemical composition by CG-MS and antimicrobial activity using agar dilution technique of P. cernuum oils were evaluated seasonally [37]. The main compounds identified were trans-dihydroagarofuran (30 to 36.7%), 4-epi-cis-dihydroagarofuran (11.2 to 13.4%), and γ-eudesmol (7.64 to 11.6%). The EOs showed significant activity against S. aureus (MIC 780 µg/mL, and for spring MIC, 1560 µg/mL), B. subtilis (MIC 780 µg/mL) and Streptococcus pyogenes (MIC 48–390 µg/mL) [37]. P. dossyryrifolium EO from leaves, composed of cis-eudesma-6,11-diene (21.1%), β-caryophyllene (16.8%), and γ-murolene (10.6%), was tested using agar diffusion assay and it showed significant potential against clinical fungal strains of C. albicans, C. parapsilosis, C. tropicalis in comparison to nystatin [55]. P. malacophyllum oil, composed mainly of camphor (32.8%), camphene (20.8%), and (E)-nerolidol (9.1%), displayed a weak activity against S. aureus, P. aeruginosa, Acinetobacter baumannii (MIC 3700 µg/mL), B. cereus, and E. coli (MIC 1850 µg/mL) using the broth microdilution method [56]. Furthermore, P. ilheusense oil from leaves was made up of β-caryophyllene (11.8%), patchouli alcohol (11.1%), and gleenol (7.5%), and was active against the fungi C. albicans, C. parapsilosis and C. krusei, and it partially combated B. subtilis and S. aureus [57]. P. tuberculatum EO from seeds was mostly composed of β-elemene, β-caryophyllene and β-farnesene, among others; microdilution assays indicated that this oil inhibited growth of S. aureus and B. subtilis. However, neither the EO composition nor MIC values were reported [58].

Several Piper oils have been reported to be effective to combat fungal species of Cryptococcus. P. aduncum oil from leaves was composed of linalool (31.8%), bicyclogermacrene (11.3%), and (E)-nerolidol (10.3%), and showed activity against Cryptococcus neoformans (MIC 62.5 µg/mL) [35]. Similarity, P. gaudichaudianum oil, rich in α-humulene (23.4%), β-caryophyllene (15.6%), and viridiflorene (8.1%), showed significant antifungal activity against C. krusei (MIC 31.25 µg/mL). EO from leaves of P. solmsianum was mostly composed of (E)-isoelemecin (53.5%), spathulenol (5.2%), and epi-α-muurolool (4.6%), and had significant activity against C. neoformans (MIC 62.5 µg/mL). These analyses were performed by means of broth dilution assays [35].

The activity of Piper EOs has been evaluated by direct bioautography on TLC plates against Cladosporium cladosporioides and C. sphaerospermum [59–62]. Cladosporium spp. are strong airborne contaminants that cause allergies and other serious diseases of the respiratory tract [63,64]. The oils from fruits of P. aduncum and P. tuberculatum had a higher activity in comparison to miconazole and nystatin against Cladosporium cladosporioides and C. sphaerospermum, respectively. Both oils displayed a detection limit (DL) of 10 µg [59]. Oils of P. aleurenum, P. anonfolium, P. hispidum and P. divaricatum, collected from the Brazilian Amazon, showed a higher activity with DL values between 0.1 and 5.0 µg [61]. These oils were mainly composed of terpenoids as β-elemene (16.3%), bicyclogermacrene (9.2%), and δ-elemene (8.2%) (P. aleurenum); selin-11-en-4α-ol (20.0%), β-selinene (12.7%), and α-selinene (11.9%) (P. anonfolium); and δ-3-carene (9.1%), β-caryophyllene (10.5%), and α-humulene (9.5%) (P. hispidum). P. divaricatum oil, on the other hand, was dominated by phenylpropanoids methyleugenol (63.8%) and eugenol (23.6%) [40,61]. Essential oils of P. cernuum (fruits), P. solmsianum (leaves), and P. crassinervium (leaves) displayed moderated and weak activity against these pathogens. Germacrene D (14.0%) and spathulenol (9.8%) were the main components of P. cernuum and crassinervium oils, while P. solmsianum was dominated by (E)-isoelemecin (53.9%) [60].

Piper aduncum oil, chemotype dillapiiole (85.9%), and isolated dillapiiole exhibited antifungal activity against pathogenic skin microorganisms [30]. The samples were assayed by the microdilution method and displayed MIC values of 500 µg/mL for the strains of Trichophyton mentagrophytes (ATCC 9533 and clinical isolate), T. rubrum, and Epidermophyt on floccosum. For clinical isolates of Microsporum canis, M. gypseum, and Aspergillus fumigatus (ATCC 40152 and clinical isolate), the MIC values were 250, 250 and 3.9 µg/mL, respectively. Minimum fungicidal concentration (MFC) values displayed a range of 15.6 to 1500 µg/mL for all samples. The EO and its dillapiiole-rich fraction
demonstrated significant antifungal activity against dermatophytes, filamentous fungi, and potent antifungal activity against non-dermatophyte filamentous fungi [30]. In addition, *P. aduncum* oils from the aerial parts of chemotype dillapiole (45.9%), (E)-β-ocimene (19.0%), and piperitone (8.4%), also inhibited *Trichophyton* species at 500 µg/mL [65]. *P. cernuum* oil, rich in trans-dihydroagarofuran (30.0–36.7%), 4-epi-cis-dihydroagarofuran (11.2–13.4%), and γ- eudesmol (8.3–13.3%), was active against *Microsporum gypseum* (MIC, 48–390 µg/mL), *T. mentagrophytes* (MIC, 48–195 µg/mL), *T. rubrum* (MIC, 48–195 µg/mL), *E. flocosum* (MIC 48–195 µg/mL) and opportunist yeast *Candida albicans* (MIC 48 µg/mL) [37]. *P. malacophyllum* oil was composed of camphor (32.8%), camphene (20.8%), and (E)-nerolidol (9.1%), and it showed moderate activity compared to ketoconazole against *T. mentagrophytes* and *C. neoformans*, the causal agent of meningocencephalitis in immunocompromized patients [56].

3.2. Antiprotozoal Activity

Parasitic protozoal diseases are the major economic and public health problems in the world causing high rates of human morbidity and mortality in developing countries [32]. The prevalence of these diseases is higher in the tropics, where a significant number of deaths are attributed to leishmaniasis, malaria, and trypanosomiasis [66]. *Piper* species have been reported as good sources of antiparasitic compounds [67].

Studies carried out with the essential oils of *Piper* species showed that *P. aduncum* leaf EO, containing (E)-nerolidol (25.2%) and linalool (13.42%), had an inhibitory effect after 24 h on the growth of *Leishmania braziliensis* promastigotes (IC50, 77.9 µg/mL) and (E)-nerolidol presented a similar inhibitory effect (IC50, 74.3 µg/mL) [67,68]. *P. aduncum* leaf EO from two localities in Cuba (Bauta and Ceiba) were active against *L. amazonensis* (IC50, 19.3 and >64 µg/mL, respectively), in both EOs, the major components were piperitone, viridiflorol, and camphor [53]. *P. angustifolium* leaf EO, dominated by spathulenol (23.8%) and carophyllene oxide (13.1%), was effective against intra-cellular amastigotes of *L. infantum*, the etiological agent of visceral leishmaniasis (IC50, 1.4 µg/mL) [69]. *P. aduncum* and *P. diospyrifolium* leaf EOs displayed high activity against of axenic amastigote forms of *L. amazonensis* (IC50, 76.1 µg/mL and 36.2 µg/mL, respectively) and were more selective for the parasite than for the mammalian macrophages [70]. The main constituents of *P. aduncum* EO were bicyclogermacrene (20.9%), (E)-β-ocimene (13.9%), and (Z)-β-ocimene (7.0%), while *P. diospyrifolium* oil was rich in selin-11-en-4α-ol (17.7%), β-caryophyllene (7.4%), and γ-gurjunene (6.9%).

The EO from fresh leaves and inflorescences of *P. clausenianum* showed high activity against a strain of *L. amazonensis*, the leaf EO, rich in (E)-nerolidol (81.4%), had greater inhibition on the growth of *L. amazonensis* than the inflorescences EO, which was rich in linalool (50.2%) (IC50 30.4 µg/mL and 1328 µg/mL, respectively) [71]. *P. demeraranum* and *P. duckei* oils inhibited the growth of promastigote forms of two species of *Leishmania* (IC50, 15.2 and 22.7 µg/mL, respectively) with greater activity against *L. guyanensis* than *L. amazonensis* [72]. The main constituents of *P. demeraranum* oil were β-elemene (33.1%), limonene (19.3%), and bicyclogermacrene (8.8%), and *P. duckei* β-caryophyllene (27.1%), γ-eudesmol (17.9%), and germacrene D (14.7%).

The *P. aduncum* EOs, chemotype piperitone (19.0–23.7%), camphor (9.4–17.1%) and viridiflorol (13.0–14.5%), obtained from the aerial parts, showed an inhibitory effect on the growth of Plasmodium falciparum with IC50 value ranging from 1.3 to 2.8 µg/mL [32,53]. The essential oils from *P. clausenianum* inflorescences and *P. lucacatum* leaves, and the pure isolated (E)-nerolidol obtained from inflorescences of *P. clausenianum*, showed a 70% decrease in the growth of chloroquine-resistant (W2) *P. falciparum*, when tested at a concentration of 25 mg/mL [73]. The *P. clausenianum* EO was dominated by linalool (56.5%) followed by (E)-nerolidol (23.7%) and α-humulene (2.4%), and *P. lucacatum* was rich in α-pinene (30.0%), α-zingiberene (30.4%) and β-sesquiphellandrene (11.1%).

The anti-trypanosomal activities have been reported for different chemotypes of *P. aduncum* EOs. The effect of *P. aduncum* EO rich in (E)-nerolidol (25.2%), linalool (13.4%) and spathulenol (15.3%), was analyzed against different developmental forms of Trypanosoma cruzi. The oil was active after 24 h against cell-derived (IC50, 2.8 µg/mL), metacyclic trypomastigotes (IC50 12.1 µg/mL), and...
intracellular amastigotes (IC\(_{50}\), 9.0 µg/mL) [68]. The chemotype piperitone (23.7%), camphor (17.1%), and viridiflorol (14.5%) also exhibited activity against \(T. cruzi \) (IC\(_{50}\) 2.0 µg/mL) [32]. In addition, \(P. aduncum \) leaf EOs from two localities in Cuba were active against \(T. brucei \) and \(T. cruzi \) with IC\(_{50}\) value of approximately 8.0 µg/mL [53]. The major components were piperitone (20.1–19.0%), viridiflorol (13–18.8%) and camphor (13.9–9.4%) in the specimens.

In addition to inhibition of the parasites themselves, inhibition of key protozoal protein targets by essential oils has been investigated [74]. \(P. bredemeyeri \) leaf essential oil inhibited cruzain, the cysteine protease from Trypanosoma cruzi, with IC\(_{50}\) of 0.96 µg/mL [34]. \(P. bredemeyeri \) EO was composed largely of the sesquiterpene hydrocarbons \(\beta \)-elemene (34.0%), \(\beta \)-caryophyllene (24.2%), germacrene D (21.7%), and germacrene A (13.2%). \(\beta \)-Caryophyllene and germacrene D have both shown cruzain inhibitory activity with IC\(_{50}\) values of 32.5 and 22.1 µg/mL, respectively, and a 1:1 binary mixture of these two compounds showed synergistic inhibitory activity (IC\(_{50}\) = 9.91 µg/mL) [75].

3.3. Anticholinesterase Potential

Acetylcholinesterase (AChE) is an enzyme involved in the termination of impulse transmission by quick hydrolysis of the neurotransmitter acetylcholine (ACh). The AChE potential of drugs is inhibition of this enzyme from breaking down ACh, increasing the level and duration of the neurotransmitter activity [76]. For this reason, studies aiming to discover compounds with anticholinesterase potential are relevant. However, there have been few investigations with this focus in Neotropical regions. The EOs from aerial parts of \(Piper \) species from the Brazilian Amazon displayed a high activity when evaluated by bioautographic method. All samples had a detection limit (DL) value of 0.01 ng, about one hundred times more effective than the standard physostigmine (DL = 1.0 ng). \(P. hispidum \) and \(P. anonifolium \) oils were mainly composed of sesquiterpenoids, such as selin-11-en-4\(\alpha \)-ol, \(\beta \)-selinene, \(\alpha \)-selinene, \(\beta \)-caryophyllene, and \(\alpha \)-humulene [61]. In contrast, EOs from the aerial parts of \(P. callosum \) and \(P. marginatum \) were mainly composed of phenylpropanoids, such as safrole and 3,4-methylenedioxypropiophenone (propiopiperone) [62]. Although there are limited data on AChE activity of \(Piper \) essential oils from the Neotropics, a significant amount of research has been performed on Old World \(Piper \) essential oils [77–81].

3.4. Anti-Inflammatory and Antinociceptive Effects

Although a considerable number of analgesic and anti-inflammatory drugs are available for the treatment of pain and inflammation, there is a continuous search for new compounds, due to the fact that some current drugs lead to adverse reactions and have low efficacy [82]. Plants used in folk medicine, including essential oils, have been shown to be promising new sources of anti-inflammatory and antinociceptive drugs [83–87].

\(P. glabratum \) leaf EO indicated \(\beta \)-pinene (13.0%), longiborneol (12.0%), and \(\alpha \)-pinene (9.7%) as the main compounds. Anti-inflammatory activity was detected by inhibition of leukocyte migration (100, 300, 700 mg/kg) and the protein extravasation into the pleural exudates (700 mg/kg) with no clinical signs of toxicity [88]. \(P. vicosanum \) EO minimized edema formation and inhibited leukocyte migration using the carrageenan-induced edema and pleurisy models at doses of 100 and 300 mg/kg [89]. The oil displayed a pronounced anti-inflammatory potential, with no acute toxicity or genotoxicity; its main compounds were \(\gamma \)-elemene (14.2%), \(\alpha \)-alaskene (13.4%) and limonene (9.1%).

The \(P. aleyreanum \) EO was tested for antinociceptive activity on two phases of pain model, early neurogenic and the second inflammatory, by formalin-induced pain through the administration of 20 mL of 2.5% formalin solution by intraplantar injection in mice [90]. The effect was significantly more pronounced on the second phase. The ID\(_{50}\) values for each phase were 281.2 and 70.5 mg/kg and the inhibitions observed were 75% and 99% at a dose of 1000 mg/kg, for the first and second phases, respectively. The main compounds of \(P. aleyreanum \) oil were caryophyllene oxide (11.5%), \(\beta \)-pinene (9.0%), and spathulenol (6.7%) [90]. \(P. mollicomum \) and \(P. rivinoides \) EOs were evaluated for their antinociceptive activity using the acetic acid-induced writhing in mice [91]. At a dose of 1 mg/kg,
the samples inhibited 50.2% and 20.9% of the writhing in mice, respectively. The main constituents of *P. mollicomum* were (E)-β-ocimene (14.0%), germacrene B (13.3%), and (Z)-β-ocimene (12.1%), and for *P. rivinoides* were α-pinene (32.9%), β-pinene (24.7%), and β-caryophyllene (7.6%). Oral administration of both oils did not induce any apparent acute toxicity [91].

3.5. Cytotoxic Activity

EOs with anticancer potential can act by two ways: chemoprevention and cancer suppression. Hence, EOs causing apoptosis in tumor cells are valuable resources in cancer suppression [92–94]. Essential oils from *Piper* species have been reported to possess antineoplastic properties against different cancer cell lines such as human colorectal carcinoma, breast tumor, melanoma, gastric tumor, leukemia, among others. The EO of *P. aequale*, rich in δ-elemene (19.0%), β-pinene (15.6%) and α-pinene (12.6%), showed significant cytotoxic activity against human colorectal carcinoma (HCT-116, IC$_{50}$ 8.69 µg/mL) and human gastric tumor (ACP 03, IC$_{50}$ 1.54 µg/mL) cell lines [95]. After 72 h of treatment, the oil has induced apoptosis in the gastric tumor cells in all tested concentrations (0.75–3.0 µg/mL). The EOs of *P. biasperatum, P. glabrescens, P. imperiale, P. oblanceolatum* and *Piper* sp. aff. *aereum* showed greater than 90% mortality against human breast adenocarcinoma cells (MCF-7) at a concentration of 100 µg/mL [34]. The main compounds identified in these samples were β-elemene (46.6%), limonene (56.6%), β-caryophyllene (25.5%) and linalool (11.3%), respectively.

Piper aleyreanum oil, rich in β-elemene (16.3%), bicyclogermacrene (9.2%) and δ-elemene (8.2%), showed strong cytotoxic activity (IC$_{50}$ 7.4 µg/mL) against human melanoma (SKMEL 19) [61]. The oil from leaves and branches of *P. cernuum* displayed a broad cytotoxicity spectrum (IC$_{50}$ < 30 µg/mL) including murine melanoma (B16F10-Nex2), human melanoma (A2058), human glioblastoma (U87-MG), human cervical tumor (HeLa), and human myloid leukemia (HL-60) cells [39,96]. These oils showed large amounts of β-elemene (30.0%), bicyclogermacrene (19.9%) and β-caryophyllene (16.3%) in leaves and camphene (46.4%), α-terpinene (11.6%) and carvacrol (11.6%) in the branches.

Piper hispidum oil, rich in α-pinene (15.3%) and β-pinene (14.8%), induced the death of cancer cell lines such as human cervical (HeLa), human lung (A-549), human breast (MCF-7) with average IC$_{50}$ values of 36 µg/mL [97]. The EO from *P. regnellii* leaves displayed an expressive cytotoxic activity against human cervical cells carcinoma (HeLa) with IC$_{50}$ value of 13 µg/mL [98]. In addition, the activity was determined to be due to its main compounds germacrene D (51.4%), β-caryophyllene (9.5%) and α-chamigrene (11.3%), which demonstrated IC$_{50}$ values of 11.0, 7.0 and 32.0 µg/mL, respectively.

4. Composition-Bioactivity Correlation

A multivariate statistical analysis was carried out in order to discern any relationship between chemical profiles and biological activities for *Piper* essential oils (described in Appendix A). The total percentage of compound classes (monoterpene hydrocarbons (MH), oxygenated monoterpenoids (OM), sesquiterpene hydrocarbons (SH), oxygenated sesquiterpenoids (OS) and phenylpropanoids (PP) to each oil was extracted from original citation (Table A1). These data were used as variables (see Appendix C). The values were normalized and submitted to Principal Component Analysis (PCA) using the Minitab software (free 390 version, Minitab Inc., State College, PA, USA).

The antimicrobial activity (fungicidal and bactericidal) displayed a correlation to all compound classes identified in *Piper* species. However, the cytotoxic activity is related to higher amounts of sesquiterpene hydrocarbons (0–94.9%), monoterpene hydrocarbons (0–83.7%). The antiprotozoal activity is related to *Piper* oils with low concentrations of monoterpene hydrocarbons (<29.9%) and high concentrations of oxygenated monoterpenoids (0–50.3%), sesquiterpene hydrocarbons (3.3–76.0%) and oxygenated sesquiterpenoids (0–86.2%). For this activity, only the *P. auritum* oil, which was rich in phenylpropanoids (88.5%), showed activity against *Leishmania* spp. *Piper* oils described as rich in phenylpropanoids and sesquiterpenes hydrocarbons displayed high insecticidal and acaricidal activities. In addition, the amounts of phenylpropanoids and sesquiterpenoids (hydrocarbons and oxygenated) are related to acetylcholinesterase inhibition. The anti-inflammatory effects were mostly
observed in *Piper* oils rich in sesquiterpene hydrocarbons (16.2–62.6%) while antinociceptive effects cover oils that showed monoterpenic hydrocarbons (16.6–65.0%) as main compounds. The essential oil composition and biological activity correlations are summarized in Figure A5 and Table 1.

Table 1. Relationship between biological activity and compound classes presents in the *Piper* oils obtained by PCA analysis.

Activity	MH	OM	SH	OS	PP
Antimicrobial	0–70.2	0–51.4	0–99.8	0–86.2	0–98.0
Cytotoxic	0–83.7	0–23.2	0–94.9	0–29.5	0–6.7
Antiprotozoal	0–29.9	0–50.3	33.3–76.0	0–86.2	0–88.5
Insecticidal	0–44.3	0–12.6	0–66.0	0–45.4	0–98.8
Enzymatic	6.9–18.5	1–4.2	4.9–52.2	2.1–17.5	0–80.8
Anti-inflammatory	16.4–25.8	0–16.4	16.2–62.6	20.8–28.3	0–0.2
Antinociceptive	16.6–65.9	0.8–16.4	16.2–33.2	4.8–28.3	0–0.6

5. Conclusions

The *Piper* genus has shown great biodiversity in the Neotropics, and essential oils from *Piper* species have likewise demonstrated abundant chemical diversity. The chemical diversity of *Piper* essential oils has led to a myriad of traditional medicinal uses as well as numerous biological activities. The promise of *Piper* essential oils to treat human diseases, infections, and suffering has already been realized, and the future exploration of this genus shows much promise. The expectation that *Piper*’s essential oils can be used to treat diseases, infections and human suffering is already a reality, and the future economical exploration of some species of this genus seems to us as very promising.

Author Contributions: All authors contributed to surveying the literature, preparation and editing of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

- ACh: Acetylcholine
- AChE: Acetylcholine esterase
- DL: Detection limit
- DPPH: 2,2-Diphenyl-1-picrylhydrazyl (radical)
- EO: Essential oil
- FIOCRUZ: Fundação Oswaldo Cruz (Oswaldo Cruz Foundation)
- GC-MS: Gas chromatography-mass spectrometry
- HD: Hydrodistillation
- IC\textsubscript{50}: Median inhibitory concentration
- ID\textsubscript{50}: Median inhibitory dose
- LC\textsubscript{50}: Median lethal concentration
- MFC: Minimum fungicidal concentration
- MH: Monoterpenic hydrocarbons
- MIC: Minimum inhibitory concentration
- MWHD: Microwave-assisted hydrodistillation
- OM: Oxygenated monoterpenoids
- OS: Oxygenated sesquiterpenoids
- PCA: Principal component analysis
- PP: Phenylpropanoids
- RI: Retention index
- SD: Steam distillation
- SH: Sesquiterpene hydrocarbons
- spp.: Species (plural)
- TLC: Thin-layer chromatography
Table A1. Neotropical *Piper* essential oil compositions and biological activities.

Piper Species	Collection Site	Essential Oil	Major Components (>5%)	Bioactivity of EO	Ref.
P. abutiloides Kunth	Cultivated (State University of Campinas, São Paulo, Brazil)	Leaf (HD)	—	Antibacterial (Escherichia coli, MIC 700 µg/mL)	[52]
P. acutifolium Ruiz & Pav.	La Florida, Cajamarca, Peru	Leaf (HD)	(E)-β-Ocimene (8.1%), α-copaene (6.1%), β-caryophyllene (7.9%), allo-aromadendrene (6.0%), α-cadinene (6.7%), β-cadinene (6.8%), dillapiole (5.9%)	—	[99]
P. aduncum L.	Serra do Navio, Amapá state, Brazil	Aerial parts (HD)	Limonene (5.2%), γ-terpinene (7.1%), terpinen-4-ol (11.0%), pipertone (15.1%), dillapiole (31.5%)	—	[15]
P. aduncum L.	Melgaço, Pará state, Brazil	Aerial parts (HD)	γ-Terpine (6.5%), terpinen-4-ol (7.3%), pipertone (13.9%), dillapiole (50.8%)	—	[15]
P. aduncum L.	Belem, Pará state, Brazil	Aerial parts (HD)	Dillapiole (82.2%)	—	[15]
P. aduncum L.	Belem, Pará state, Brazil	Aerial parts (HD)	Dillapiole (86.9%)	—	[15]
P. aduncum L.	Manaus, Amazonas state, Brazil	Aerial parts (HD)	Dillapiole (91.1%)	—	[15]
P. aduncum L.	Manaus-Caracaraí, Amazonas, Brazil	Aerial parts (HD)	Dillapiole (97.3%)	—	[15]
P. aduncum L.	Cruzeiro do Sul, Acre state, Brazil	Aerial parts (HD)	Dillapiole (88.1%)	—	[15]
P. aduncum L.	Pinar del Río, Cuba	Leaf (HD)	Dillapiole (82.2%)	—	[27]
P. aduncum L.	Valle del Saja, Cochabamba, Bolivia	Leaf (HD)	α-Pinene (9.0%), β-pinene (7.1%), limonene (5.0%), 1,8-cineole (40.5%), asaricin (12.9%)	—	[100]
P. aduncum L.	Altos de Campana National Park, Panama	Leaf (HD)	α-Pinene (8.8%), linalool (8.6%), β-caryophyllene (17.4%), aromadendrene (13.4%)	—	[100]
P. aduncum L.	Reserva da Ripasa, Itatí, São Paulo state, Brazil	Leaf (HD)	(E)-β-Ocimene (5.0%), linalool (31.7%), β-caryophyllene (9.1%), α-humulene (5.5%), bicyclogermacrene (11.2%), (E)-nerolidol (10.4%)	Antifungal, TLC bioautography (Cladosporium sphaeareum)	[59]
P. aduncum L.	Reserva da Ripasa, Itatí, São Paulo state, Brazil	Floral (HD)	α-Terpine (6.8%), (Z)-β-ocimene (5.6%), (E)-β-ocimene (11.1%), γ-terpinene (12.0%), linalool (41.2%), (E)-nerolidol (6.1%)	—	[59]
P. aduncum L.	Reserva da Ripasa, Itatí, São Paulo state, Brazil	Stem (HD)	α-Pinene (7.2%), β-pinene (14.2%), limonene (8.7%), (Z)-β-ocimene (5.5%), (E)-β-Ocimene (13.3%), linalool (11.8%), β-caryophyllene (7.4%), α-humulene (6.3%), (E)-nerolidol (10.6%)	Antifungal, TLC bioautography (Cladosporium cladosporioides, Cladosporium sphaeareum)	[59]
P. aduncum L.	Brejo da Madre de Deus, Matas Serranas, Pernambuco state, Brazil	Leaf (HD)	(E)-Nerolidol (80.6–82.5%), longipinanol (2.4–5.6%)	—	[26]
P. aduncum L.	Serra Negra, Matas Serranas, Pernambuco state, Brazil	Leaf (HD)	(E)-Nerolidol (79.2–81.2%), longipinanol (11.1–13.6%)	—	[26]
Table A1. Cont.

Piper Species	Collection Site	Essential Oil	Major Components (>5%)	Bioactivity of EO	Ref.	
P. aduncum L.	Cultivated (State University of Campinas, São Paulo, Brazil)	Leaf (HD)	α-Pinene (8.0-8.9%), β-pinene (6.6-7.0%), 1,8-cineole (42.0-42.5%), (E)-β-ocimene (8.4%), bicyclogermacrene (3.8-4.0%), asaricin (9.2-10.5%)	Antibacterial (Escherichia coli, MIC 500 µg/mL)	[52]	
P. aduncum L.	Bulo Bulo, Bolivia	Leaf (SD)	α-Pinene (8.0-8.9%), β-pinene (6.6-7.0%), 1,8-cineole (42.0-42.5%), (E)-β-ocimene (8.4%), bicyclogermacrene (3.8-4.0%), asaricin (9.2-10.5%)			
P. aduncum L.	Wasakentsa reserve, Ecuador	Aerial parts (HD)	(E)-β-Ocimene (10.4%), piperitone (8.5%), dillapiole (45.9%)	Antifungal activity against dermatophytes (Trichophyton mentagrophytes, MIC 500 µg/mL, IC₅₀ 92.7 µg/mL; Trichophyton tonsurans, MIC 500 µg/mL, IC₅₀ 108.7 µg/mL; Nantzzia cajetani, IC₅₀ 195 µg/mL)	[65]	
P. aduncum L.	Ducke Reserve, Manaus, Amazonas state, Brazil	Leaf (HD)	Dillapiole (94.8%)	Acaricidal (Rhipicephalus (Boophilus) microplus, LC₅₀ 9.3 mg/mL)	[28]	
P. aduncum L.	Santo Antonio do Taú, Pará state, Brazil	Aerial parts (HD)	Dillapiole (86.9%)	Larvicidal and insecticidal activity against mosquitoes (Anopheles marajoara, LC₅₀ 50.9 µg/mL, 417 µg/mL, respectively; Aedes aegypti, LC₅₀ 54.5 µg/mL, 401 µg/mL, respectively)	[16]	
P. aduncum L.	Azaraquara, São Paulo state, Brazil	Leaf (HD)	(E)-β-Ocimene (5.0%), linalool (31.8%), β-caryophyllene (9.3%), α-humulene (5.5%), bicyclogermacrene (11.3%), (E)-nerolidol (10.3%)	Antifungal, broth dilution assay (Cryptococcus neoformans, MIC 62.5 µg/mL)	[35]	
P. aduncum L.	Brazyândia, Distrito Federal, Brazil	Leaf (HD)	β-Phellandrene (6.8%), y-terpinene (8.3%), terpinen-4-ol (13.0%), piperitone (22.7%), asaricin (5.6%)			
P. aduncum L.	Parque do Guaíra, Distrito Federal, Brazil	Leaf (HD)	β-Phellandrene (6.6%), y-terpinene (8.2%), terpinen-4-ol (16.8%), piperitone (24.9%)			
P. aduncum L.	Corrego Bananal, Distrito Federal, Brazil	Leaf (HD)	(E)-β-Ocimene (11.6%), terpinen-4-ol (6.7%), piperitone (11.0%), asaricin (5.8%)			
P. aduncum L.	Fazenda Água Limpa, Distrito Federal, Brazil	Leaf (HD)	Piperitone (16.3%), dillapiole (49.5%)			
P. aduncum L.	Mata de Dois Irmãos, Recife, Pernambuco, Brazil	Leaf (HD)	Dillapiole (79.0%)			
P. aduncum L.	Belém, Pará state, Brazil	Aerial parts (HD)	Dillapiole (64.4%)	Insecticidal (Solenopsis saevissima, IC₅₀ 135 µg/mL)	[41]	
P. aduncum L.	Bocaiuva, Minas Gerais state, Brazil	Leaf (HD)	α-Pinene (14.2%), β-pinene (9.0%), 1,8-cineole (37.2%)			
P. aduncum L.	Montes Claros, Minas Gerais state, Brazil	Leaf (HD)	(E)-β-Ocimene (13.4%), valencene (6.9%), (E)-nerolidol (9.5%)			
P. aduncum L.	Topes de Collantes Nature Reserve, Escambray Mountains, Cuba	Leaf (HD)	Camphene (10.9%), 1,8-cineole (8.7%), camphor (17.1%), piperitone (34.0%), viridiflorol (7.4%)	Antioxidant (DPPH radical scavenging assay, IC₅₀ 30.1 µg/mL)	[50]	
P. aduncum L.	Gallery Forest, Angico River, Minas Gerais state, Brazil	Leaf (HD)	1,8-Cineole (55.8%), α-terpinene (5.9%)	Egg hatch inhibition (Haemonchus contortus, IC₅₀ 2.6 mg/mL)	[102]	
Piper Species	Collection Site	Essential Oil	Major Components (>5%)	Bioactivity of EO Ref.		
---------------	-----------------	---------------	-------------------------	----------------------		
P. aduncum						
L.	Santo Antonio de Tausá, Pará state, Brazil	Aerial parts (HD)	Dillapiole (85.9%)	Antifungal activity against dermatophytes (Trichophyton mentagrophytes, MIC 500 µg/mL; Epidermophyton floccosum, MIC 500 µg/mL; Microsporum canis, MIC 250 µg/mL; Microsporum gypseum, MIC 250 µg/mL; Aspergillus fumigatus, MIC 3.9 µg/mL) [30]		
L.	Cultivated, Federal University of Lavras, Brazil	Leaf (HD)	Linalool (9.3–13.4%), β-caryophyllene (5.1–6.7%), α-humulene (8.5–10.6%), β-pinene (14.3–16.7%), spathulenol (0.3–6.6%), α-cadin-4-en-7-ol (7.5–12.2%)	— [103]		
L.	Cultivated, Federal University of Lavras, Brazil	Root (HD)	α-Selinene (14.1–16.5%), geranyl 2-methylbutyrate (8.9–13.6%), bulnesol (4.6–6.1%), elemicin (4.6–5.9%), dillapiole (13.0–18.4%), apiole (16.3–28.5%)	— [103]		
L.	Monte Alegre do Sul, São Paulo state, Brazil	Leaf (HD)	α-Pinene (6.4%), safrole (13.3%), valencene (9.7%), spathulenol (10.6%), asaricin (14.9%)	— [31]		
L.	Votuporanga, São Paulo state, Brazil	Leaf (HD)	Saffrole (10.8%), asaricin (80.1%)	— [31]		
L.	Votuporanga, São Paulo state, Brazil	Leaf (HD)	Saffrole (10.5%), asaricin (73.4%)	— [31]		
L.	Belém, Pará state, Brazil	Aerial parts (HD)	Dillapiole (73.0%)	— [62]		
L.	Cerro Azul, Paraná state, Brazil	Leaf (HD)	(Z)-β-Ocimene (7.0%), (E)-β-ocimene (13.9%), safrole (6.2%), bicyclogermacrene (20.9%), γ-cadinene (5.5%), spathulenol (5.3%)	Antileishmanial (L. amazonensis promastigotes, IC₅₀ 25.9 µg/mL; L. amazonensis axenic amastigotes, IC₅₀ 36.2 µg/mL) [70]		
L.	Universidade Federal de Lavras, Matto Grosso state, Brazil	Leaf (HD)	Linalool (13.4%), (E)-nerolidol (25.2%), spathulenol (6.3%)	Antitrypanosomal (T. cruzi trypomastigotes, IC₅₀ 2.8 µg/mL; linalool is the active agent, IC₅₀ 0.31 µg/mL) Antileishmanial (L. braziliensis promastigotes, IC₅₀ 77.9 µg/mL; (E)-nerolidol is the active agent, IC₅₀ 74.3 µg/mL) [67,68]		
L.	Institute of Pharmacy and Food, Havana, Cuba	Aerial parts (HD)	Camphene (5.9%), camphor (17.1%) piperitonne (23.7%), viridiflorol (14.5%)	Antiprotozoal (Plasmodium falciparum, IC₅₀ 1.5 µg/mL; Trypanosoma brucei, IC₅₀ 2.0 µg/mL; Trypanosoma cruzi, IC₅₀ 2.1 µg/mL; Leishmania amazonensis, IC₅₀ 28.4 µg/mL; Leishmania donovani, IC₅₀ 0.7 µg/mL; Leishmania infantum, IC₅₀ 8.1 µg/mL) [32]		
P. aduncum subsp. ossanum	Pinar del Rio, Cuba	Leaf (HD)	Camphene (6.1%), camphor (8.3%), piperitone (12.9%), β-caryophyllene (6.7%), germacrene D (8.2%), 1-epi-cubenol (6.6%)	— [104]		
P. aduncum subsp. ossanum	Artemisa Province, Cuba	Leaf (HD)	Camphene (5.4–7.4%), camphor (9.4–13.9%), piperitone (19.0–20.1%), viridiflorol (13.0–18.8%)	Antiprotozoal (Plasmodium falciparum, IC₅₀ 1.5 µg/mL; Trypanosoma brucei, IC₅₀ 8.1 µg/mL; Trypanosoma cruzi, IC₅₀ 8.0 µg/mL; Leishmania amazonensis, IC₅₀ 19.3 µg/mL; Leishmania infantum, IC₅₀ 32.5 µg/mL; antibacterial (Staphylococcus aureus, IC₅₀ 39.5 µg/mL) [53]		
P. aequale	Monteverde, Costa Rica	Leaf (HD)	α-Pinene (39.3%), sabineone (18.4%), limonene (6.7%)	Antibacterial (Bacillus cereus, MIC 156 µg/mL) [34]		
P. aequale	Carajás National Forest, Paraíba, Brazil	Aerial parts (HD)	α-Pinene (12.6%), β-pinene (15.6%), δ-elemene (19.0%), bicyclogermacrene (5.5%), cubebol (7.2%), β-atlantol (5.9%)	Cytotoxic (HCT-116 human colorectal carcinoma, IC₅₀ 86.9 µg/mL; A549 human gastric adenocarcinoma, IC₅₀ 1.54 µg/mL; essential oil induced apoptosis in A549 cells) [95]		
Piper Species	Collection Site	Essential Oil	Major Components (>5%)	Bioactivity of EO	Ref.
P. aleyreanum C. DC.	Porto Velho, Rondônia state, Brazil	Leaf (HD)	α-Pinene (7.0%), β-pinene (14.4%), α-phellandrene (6.6%), β-caryophyllene (15.9-23.3%), germacrone D (28.9-29.4%), germacrone A (6.5-9.7%)	Antinociceptive, anti-inflammatory (mouse model)	[60]
P. aleyreanum C. DC.	Porto Velho, Rondônia state, Brazil	Aerial parts (HD)	δ-Elemene (8.2%), β-elemene (16.3%), β-caryophyllene (6.2%), germacrone D (6.9%), bicyclogermacrene (9.2%), spathulenol (5.2%)	Antifungal, TLC bioautography (*Cladosporium cladosporioides*, *Cladosporium sphaerospermum*), cytotoxic (SKMel19 human melanoma, IC50 7.4 µg/mL)	[61]
P. amalago L.	Fazenda Sucupira, Embra, Brasil, Brazil	Leaf (HD)	α-Pinene (30.5%), camphene (8.9%), limonene (6.8%), borneol (5.7%)	—	[33]
P. amalago L.	Monteverde, Costa Rica	Leaf (HD)	α-Phellandrene (1.7-8.1%), β-elemene (11.5-24.6%), β-caryophyllene (15.9-23.3%), germacrone D (28.9-29.4%), germacrone A (6.5-9.7%)	—	[34]
P. amalago L.	Morro Reuter, Rio Grande do Sul state, Brazil	Aerial parts (HD)	α-Pinene (5.2%), limonene (20.5%), δ-elemene (6.8%), zingiberene (11.2%)	—	[106]
P. amalago L.	Universidade de São Paulo, Brazil	Leaf (HD)	γ-Muurolene (7.3%), germacrone D (9.9%), bicyclogermacrene (27.9%), spathulenol (19.2%), α-cadinol (7.6%)	—	[35]
P. amalago L.	Dourados, Mato Grosso do Sul, Brazil	Leaf (HD)	p-Cymene (9.4%), methyl geranate (7.8%), α-amorphene (25.7%), cubenol (6.4%)	—	[107]
P. amalago L.	Dourados, Mato Grosso do Sul, Brazil	Stem (HD)	Longifolene (6.6%), α-amorphene (23.3%), α-muurolol (9.3%)	—	[107]
P. amalago L.	Dourados, Mato Grosso do Sul, Brazil	Root (HD)	α-Amorphene (14.4%)	—	[107]
P. amalago L.	Dourados, Mato Grosso do Sul, Brazil	Floral (HD)	p-Cymene (9.3%), limonene (10.5%), silbipiperol-6-ene (13.5%), allo-aromadendrene (18.5%), α-muurolol (5.5%)	—	[107]
P. amalago L.	Campinas, São Paulo state, Brazil	Leaf (HD)	α-Pinene (14.8%), β-phellandrene (39.3%), germacrone D (11.7%)	—	[31]
P. amalago L.	Campinas, São Paulo state, Brazil	Leaf (HD)	α-Pinene (6.7%), sabinen (6.7%), β-phellandrene (15.9%), bicyclogermacrene (20.8%), spathulenol (9.1%)	—	[31]
P. amalago L.	Campinas, São Paulo state, Brazil	Leaf (HD)	α-Pinene (11.7%), β-phellandrene (33.1%), bicyclogermacrene (15.0%)	—	[31]
P. amalago L.	Adamantina, São Paulo state, Brazil	Leaf (HD)	Sabinene (8.2%), myrcene (6.8%), β-phellandrene (12.3%), bicyclogermacrene (19.4%), γ-muurolene (3.9%), spathulenol (5.6%)	—	[31]
Piper Species	Collection Site	Essential Oil Major Components (>5%)	Bioactivity of EO	Ref.	
-----------------------	--	--------------------------------------	---	--------	
P. amalago var. medium (Jacq.) Yunck.	Fênix, Paraná state, Brazil	Floral (HD) * β-Phellandrene (7.3–8.2%), bicyclogermacrene (3.0–9.1%), δ-cadinene (2.3–6.6%), (E)-nerolidol (14.2–19.9%), germacrene D-4-ol (10.3–12.7%), α-cadinol (4.9–6.1%), α-cadinol (8.2–11.1%)	—	[108]	
P. amplum Kunth	Pariquera-Açu, São Paulo state, Brazil	Leaf (HD) α-Pinene (18.1%), (E)-β-caryophyllene (10.5%), limonene (9.6%), β-caryophyllene (8.8%), germacrene D (5.5%)	Antibacterial, broth dilution assay (*Pseudomonas aeruginosa*, MIC 30 μg/mL; *Escherichia coli*, MIC 100 μg/mL); antifungal, broth dilution assay (*Trichophyton mentagrophytes*, MIC 15 μg/mL)	[31]	
P. angustifolium Lam.	Cuzco, Peru	Aerial parts (HD) Camphene (22.4%), camphor (25.3%), isoborneol (12.8%)	Antibacterial, broth dilution assay (*Pseudomonas aeruginosa*, MIC 30 μg/mL; *Escherichia coli*, MIC 100 μg/mL); antifungal, broth dilution assay (*Trichophyton mentagrophytes*, MIC 15 μg/mL)	[109]	
P. angustifolium Lam.	Alobral Subregion of the Pantanal of Mato Grosso do Sul, Brazil	Leaf (HD) α-Pinene (5.9%), (E)-nerolidol (5.8%), spathulenol (23.8%), caryophyllene oxide (13.1%)	Antileishmanial (*L. infantum* amastigotes, IC₅₀ 1.43 μg/mL)	[69]	
P. anonifolium Kunth	Bujaru, Pará state, Brazil	Aerial parts (HD) α-Pinene (53.1%), β-pinene (22.9%)	—	[110]	
P. anonifolium Kunth	Ananindeua, Pará state, Brazil	Aerial parts (HD) α-Pinene (7.3%), limonene (5.9%), isohocatane (19.1%), germacrene D (9.6%), α-sesdasmol (33.5%)	—	[110]	
P. anonifolium Kunth	Carajás National Forest, Parauapebas, Pará state, Brazil	Aerial parts (HD) α-Pinene (8.8%), β-selinene (12.7%), α-selinene (11.9%), selin-11-en-4 α-ol (20.0%)	Antifungal, TLC bioautography (*Cladosporium cladosporioides*, *Cladosporium sphaerospermum*); enzyme inhibitory, TLC bioautography (acetylcholinesterase)	[61]	
P. arboreum Aubl.	Chepo, Panama	Leaf (HD) β-Pinene (6.6%), α-copaene (7.4%), germacrene D (5.5%), δ-cadinene (25.8%), (E)-nerolidol (5.2%)	—	[111]	
P. arboreum Aubl.	Fazenda Sucupira, Embrapa, Brasília, Brazil	Leaf (HD) Bicyclogermacrene (12.1%), spathulenol (8.4%), caryophyllene oxide (10.2%)	—	[33]	
P. arboreum Aubl.	Universidade Estadual Paulista, Araraquara, São Paulo state, Brazil	Leaf (HD) β-Caryophyllene (25.1%), germacrene D (9.6%), bicyclogermacrene (49.5%)	—	[59]	
P. arboreum Aubl.	Universidade Estadual Paulista, Araraquara, São Paulo state, Brazil	Floral (HD) * Limonene (6.3%), linalool (10.4%), β- elemene (5.3%), β-caryophyllene (6.6%), germacrene D (49.3%), germacrene A (8.5%)	—	[59]	
P. arboreum Aubl.	Universidade Estadual Paulista, Araraquara, São Paulo state, Brazil	Stem (HD) δ-3-Carene (18.7%), α-copaene (9.0%), β-caryophyllene (26.5%), bicyclogermacrene (21.1%)	—	[59]	
P. arboreum Aubl.	Antonina, Paraná state, Brazil	Leaf (HD) α-Copaene (5.6%), β-caryophyllene (12.6%), trans-cadin-16(14)-8-diene (9.6%), spathulenol (7.9%), caryophyllene oxide (9.5%), 1,4-p-cubenol (10.4%), α-cadinol (5.4%)	Antileishmanial (*L. amazonensis* promastigotes, IC₅₀ 15.2 μg/mL; *L. amazonensis* axenic amastigotes, IC₅₀ > 200 μg/mL)	[70]	
P. arboreum var. latifolium (C. DC.) Yunck.	Rondônia state, Brazil	Leaf (SD) Octanal (5.5%), germacrene D (72.9%), γ-elemene (6.8%)	—	[112]	
Table A1. Cont.

Piper Species	Collection Site	Essential Oil	Major Components (>5%)	Bioactivity of EO	Ref.
P. artanthe C. DC.	San Migues, Santander, Colombia	Aerial parts (HD)	δ-Elemene (11.7%), β-caryophyllene (10.2%), α-crip, cubebol (9.6%), cubebol (6.3%), myristicin (6.4%), apoiole (14.5%)	—	[113]
P. augustum Rudge	Reserva Biológica Alberto Manuel Brenes, Costa Rica	Leaf (HD)	α-Pine (10.5%), α-phellandrene (14.7%), limonene (13.0%), β-phellandrene (5.6%), linalool (10.3%), β-caryophyllene (13.5%)	—	[114]
P. augustum Rudge	Valle de Anton, Cerro Caracoral, Coce, Panama	Leaf (HD)	α-Pine (6.0%), α-elemene (12.3%), cembrene (11.7%), cembratrienol 1 (25.4%), cembratrienol 2 (8.6%)	—	[47]
P. auritum Kunth	Boca de Uruclío, Colon Province, Panama	Leaf (HD)	Safrole (70%)	—	[115]
P. auritum Kunth	Guía de Melena, Cuba	Leaf (HD)	Safrole (64.5%)	—	[116]
P. auritum Kunth	Monteverde, Costa Rica	Floral (HD)	Safrole (93.2%)	—	[49]
P. auritum Kunth	Universidad de La Habana, Cuba	Aerial parts (HD)	Safrole (68.6%)	—	[117]
P. auritum Kunth	Cali, Valle del Cauca, Colombia	Aerial parts (MWHD)	Safrole (91.3%)	—	[118]
P. auritum Kunth	Topes de Collantes Nature Reserve, Escambray Mountains, Cuba	Leaf (HD)	Camphene (5.5%), safrole (71.8%)	—	[50]
P. brachypodon (Benth.) C. DC.	Amazonas region, Peru	Aerial parts (HD)	Crocatone (10.9%), (E)-isocubebol (14.1%), apoiole (8.0%), 2′-methoxy-4′,5′-methylenedioxy-propiophenone (29.5%)	—	[119]
P. brachypodon var. hirsuticaule Yunck.	Samurindo, Chocó, Colombia	Aerial parts (MWHD)	β-Elemene (6.4%), β-caryophyllene (9.8%), α-quinine (5.9%), germacre D (16.7%), bicyclogermacrene (6.2%)	—	[120]
P. barbatum Kunth	Amazonas region, Peru	Aerial parts (HD)	β-Caryophyllene (20.2%), 9-epi-β-caryophyllene (5.5%), germacre D (5.9%), bicyclogermacrene (8.1%), spathulenol (5.7%), caryophyllene oxide (10.8%)	—	[118]
P. bogotense C. DC.	Ipiales, Narino, Colombia	Aerial parts (MWHD)	α-Pine (8.7%), α-phellandrene (13.7%), limonene (5.3%), trans-sabinene hydrate (14.2%)	—	[118,120,121]
P. brachypodon (Benth.) C. DC.	Quibdó, Chocó, Colombia	Aerial parts (MWHD)	β-Caryophyllene (20.2%), 9-epi-β-caryophyllene (5.5%), germacre D (5.9%), bicyclogermacrene (8.1%), spathulenol (5.7%), caryophyllene oxide (10.8%)	—	[120]
P. brachypodon (Benth.) C. DC.	Tutunendo, Chocó, Colombia	Aerial parts (MWHD)	β-Caryophyllene (20.2%), 9-epi-β-caryophyllene (5.5%), germacre D (5.9%), bicyclogermacrene (8.1%), spathulenol (5.7%), caryophyllene oxide (10.8%)	—	[118]
P. brachypodon var. hirsuticaule Yunck.	Samurindo, Chocó, Colombia	Aerial parts (MWHD)	β-Elemene (6.4%), β-caryophyllene (9.8%), α-quinine (5.9%), germacre D (16.7%), bicyclogermacrene (6.2%)	—	[118]
Table A1. Cont.

Piper Species	Collection Site	Essential Oil	Major Components (>5%)	Bioactivity of EO	Ref.
P. bredemeyeri Jacq.	Monteverde, Costa Rica	Leaf (HD)	β-Elemene (34.0%), β-caryophyllene (24.2%), germacrene D (11.4%), germacrene A (11.4%)	Antibacterial, broth dilution assay (Bacillus subtilis, MIC 78 µg/mL), enzyme inhibitory (cruzain, IC₅₀ 0.96 µg/mL)	[34]
	Pueblo Bello, Cesar, Colombia	Aerial parts	α-Pinene (20.3%), β-pinene (32.3%), β-caryophyllene (6.3%)	Anti-fungal, broth dilution assay (Trichophyton rubrum, MIC 157 µg/mL, Trichophyton mentagrophytes, MIC 125 µg/mL), cytotoxic (Vero cells, IC₅₀ 15.2 µg/mL)	[121]
P. caldense C. DC.	Recife, Pernambuco state, Brazil	Leaf (HD)	β-Cadinene (5.6%), thujopsan-2β-ol (7.4%), α-muurolol (9.0%), α-cadinol (19.0%)	Antibacterial, agar diffusion assay (Bacillus subtilis, Staphylococcus aureus, Klebsiella pneumoniae)	[54]
	Recife, Pernambuco state, Brazil	Root (HD)	Valencene (10.5%), pentadecane (35.7%), selina-3,7(11)-diene (3.4%)	Antibacterial, agar diffusion assay (Bacillus subtilis, Pseudomonas aeruginosa)	[54]
P. callosum Ruiz & Pav.	Marituba, Pará state, Brazil	Aerial parts	Safrole (68.2%), methyl eugenol (8.0%)	Insecticidal (Solenopsis saevissima, IC₅₀ > 500 µg/mL)	[41]
	Barcarena, Pará state, Brazil	Leaf (HD)	α-Pinene (6.3%), caryophyllene oxide (21.3%)	—	[122]
P. cernuum Vell.	Porto Velho, Rondônia state, Brazil	Leaf (HD)	α-Pinene (8.0%), β-pinene (19.0%), spathulenol (23.7%), caryophyllene oxide (7.8%)	—	[122]
	Cajamarca region, Peru	Leaf (HD)	α-Terpineol (12.1%), p-cymene (10.9%), 1,8-cineole (13.0%), safrole (14.9%), bicyclod germacrene (6.7%), spathulenol (9.5%)	—	[123]
P. carpunya Ruiz & Pav.	Cajamarca region, Peru	Floral (HD)	α-Pinene (6.2%), α-terpineol (9.8%), p-cymene (7.7%), 1,8-cineole (30.2%), safrole (32.0%)	—	[123]
	Universidade de São Paulo, Brazil	Leaf (HD)	α-Pinene (7.2%), β-pinene (6.2%), β-caryophyllene (20.7%), germacrene D (6.7%), bicyclod germacrene (21.9%)	Antimicrobial, agar diffusion assay (Staphylococcus aureus, Candida albicans)	[38]
	São Francisco de Assis Natural Reserve, Blumenau, Santa Catarina state, Brazil	Aerial parts	trans-Dihydroagarofuran (31.0%), elemol (12.0%), 10-epi-γ-eudesmol (13.0%)	—	[124]
P. carniconnectivum C. DC.	Porto Velho, Rondônia state, Brazil	Leaf (HD)	α-Pinene (8.0%), β-pinene (19.0%), spathulenol (23.7%), caryophyllene oxide (7.8%)	—	[122]
	Cajamarca region, Peru	Leaf (HD)	α-Terpineol (12.1%), p-cymene (10.9%), 1,8-cineole (13.0%), safrole (14.9%), bicyclod germacrene (6.7%), spathulenol (9.5%)	—	[123]
P. carpunya Ruiz & Pav.	Cajamarca region, Peru	Floral (HD)	α-Pinene (6.2%), α-terpineol (9.8%), p-cymene (7.7%), 1,8-cineole (30.2%), safrole (32.0%)	—	[123]
	Universidade de São Paulo, Brazil	Leaf (HD)	α-Pinene (7.2%), β-pinene (6.2%), β-caryophyllene (20.7%), germacrene D (6.7%), bicyclod germacrene (21.9%)	Antimicrobial, agar diffusion assay (Staphylococcus aureus, Candida albicans)	[38]
	Universidade de São Paulo, Brazil	Leaf (HD)	β-Elemene (7.2%), β-caryophyllene (22.2%), germacrene D (9.3%), bicyclod germacrene (21.1%), (2)-α-bisabolene (5.7%), spathulenol (27.2%)	—	[35,60]
P. carpunya Ruiz & Pav.	Universidade de São Paulo, Brazil	Floral (HD)	α-Copaene (6.5%), β-caryophyllene (9.8%), germacrene D (14.3%), bicyclod germacrene (6.5%), spathulenol (9.7%)	Antifungal, TLC bioautography (Cladosporium cladosporioides, C. sphaerospermum)	[60]
	Reserva da Matinha, Ilhéus, Bahia state, Brazil	Leaf (HD)	β-Elemene (11.6%), β-caryophyllene (8.3%), cis-β-guaiene (8.2%), γ-muurolene (7.6%), α-p-cubebol (13.1%), spathulenol (9.6%), caryophyllene oxide (7.7%), valeranone (9.1%)	—	[125]

Table A1: Table A1. Cont.
Piper Species	Collection Site	Essential Oil	Major Components (>5%)	Bioactivity of EO	Ref.
P. cernuum Vell.	Parque Ecológico do Perequê, Cubatão, São Paulo state, Brazil	Leaf (HD)	β-Elemene (30.0%), β-caryophyllene (16.3%), germacrene D (12.7%), bicyclogermacrene (19.9%)	Cytotoxic (B16F10-Neu2 murine melanoma, IC₅₀ 30 µg/mL), A2058 human melanoma, IC₅₀ 24 µg/mL; U87-MG human glioblastoma, IC₅₀ 19.1 µg/mL; HeLa human cervical tumor, IC₅₀ 23 µg/mL; HL-60 human myeloid leukemia, IC₅₀ 16 µg/mL	[20]
P. cernuum Vell.	Parque Ecológico do Perequê, Cubatão, São Paulo state, Brazil	Branches (HD)	Camphene (46.4%), p-cymene (5.8%), linalool (8.7%), α-terpineol (11.6%), carvacrol (11.6%)^a	Cytotoxic (B16F10-Neu2 murine melanoma, IC₅₀ 39.0 µg/mL; A2058 human melanoma, IC₅₀ 24.6 µg/mL; U87-MG human glioblastoma, IC₅₀ 19.0 µg/mL; HeLa human cervical tumor, IC₅₀ 23.6 µg/mL), HL-60 human myeloid leukemia, IC₅₀ 15.5 µg/mL	[86]
P. cernuum Vell.	Ubatuba, São Paulo state, Brazil	Leaf (HD)	α-Pinene (10.0%), camphene (6.3%), trans-dihydroagarofuran (28.7%), 10-epi-α-eudesmol (13.5%), 4-epi-α-cis-dihydroagarofuran (10.8%)	—	[31]
P. cernuum Vell.	Paripueira-Açu, São Paulo state, Brazil	Leaf (HD)	α-Pinene (11.8%), camphene (8.7%), trans-dihydroagarofuran (33.8%), 10-epi-α-eudesmol (12.2%)	—	[31]
P. cernuum Vell.	Antonina, Paraná state, Brazil	Leaf (HD)	α-Pinene (11.4%), β-pinene (7.9%), β-elemene (10.1%), β-caryophyllene (6.9%), spathulenol (11.5%), caryophyllene oxide (5.1%), α-muurocol (6.2%), α-muurocol (5.8%)	Antileishmanial (L. amazonensis promastigotes, IC₅₀ 27.1 µg/mL; L. amazonensis axenic amastigotes, IC₅₀ > 200 µg/mL), anti-Mycobacterium tuberculosis (MIC 125 µg/mL)	[70]
P. cernuum Vell.	Blumenau, Santa Catarina state, Brazil	Leaf (HD)	α-Pinene (2.6–5.4%), β-caryophyllene (5.9–8.7%), 4-epi-α-cis-dihydroagarofuran (11.2–13.4%), trans-dihydroagarofuran (30.0–36.7%), elemol (5.9–9.2%), γ-eudesmol (8.3–13.3%)	Antibacterial, agar dilution assay (Bacillus subtilis, MIC 48 µg/mL; Staphylococcus aureus, MIC 780 µg/mL; Streptococcus pyogenes, MIC 780 µg/mL); antifungal, agar dilution assay (Microsporum canis, Microsporum gypseum, Trichophyton mentagrophytes, Trichophyton rubrum, Epidermophyton floccosum, Cryptococcus neoformans, MIC 48 µg/mL)	[37]
P. cernuum Vell. var. *cernuum*	Tijucu Forest, Rio de Janeiro state, Brazil	Leaf (HD)	α-Pinene (10.2%), camphene (5.3%), β-pinene (7.4%), cis-dihydroagarofuran (32.3%), elemol (6.7%)	—	[36]
P. clausenianum (Miq.) C. DC.	São Manoel, Castelo, Espírito Santo, Brazil	Leaf (HD)	Linalool (2.1–5.2%), (E)-nerolidol (81.4–83.3%)	Antileishmanial (promastigotes of L. amazonensis, IC₅₀ 30.24 µg/mL), Anticandidal (C. albicans, MIC 0.2–1.26%)	[71,126]
P. clausenianum (Miq.) C. DC.	São Manoel, Castelo, Espírito Santo, Brazil	Floral (HD)	Linalool (50.2–54.5%), (E)-nerolidol (22.7–24.3%)	Antileishmanial (promastigotes of L. amazonensis, IC₅₀ 1328 µg/mL), Anticandidal (C. albicans, MIC 0.04–0.1%), Antiparasitic (Plasmodium falciaparum W2, IC₅₀ 7.9 µg/mL)	[71,126]
P. corcoronum (Miq.) C. DC.	Jardim Botânico do Recife, Pernambuco, Brazil	Leaf (HD)	α-Pinene (5.9%), terpinolene (17.4%), 4-buty-1,2-methylenedioxybenzene (30.6%), β-caryophyllene (6.3%)	Mosquito larvicidal activity (Aedes aegypti; LC₅₀ 30.5 µg/mL)	[127]
P. corrugatum (Kuntze)	Valle de Anton, Cerro Caracoral, Coche, Panama	Leaf (HD)	α-Pinene (12.2%), β-pinene (26.6%), limonene (8.2%), p-cymene (8.6%), 1,8-cineole (5.9%), (E)-nerolidol (12.8%), caryophyllene oxide (8.5%)	—	[47]
Table A1. Cont.

Piper Species	Collection Site	Essential Oil	Major Components (>5%)	Bioactivity of EO	Ref.
P. crassinervium Kunth	Universidade de São Paulo, Brazil	Leaf (HD)	β-Caryophyllene (8.1%), germacrene D (14.0%), bicyclogermacrene (9.2%), α-pinene (5.0%), (E)-nerolidol (8.2%), spathulenol (9.8%), guaiol (5.8%), β-eudesmol (10.1%)	Antifungal, TLC bioautography (Cladosporium cladosporioides, Cladosporium sphaerospermum)	[35,60]
P. crassinervium Kunth	Mococa, São Paulo state, Brazil	Leaf (HD)	α-Pinene (11.5%), β-pinene (11.6%), β-caryophyllene (7.3%), germacrene D (9.2%), bicyclogermacrene (5.1%), guaiol (5.5%)	—	[31]
P. curtispicum C. DC.	Altos de Campana, Panama	Leaf (HD)	α-Pinene (19.4%), limonene (8.1%), β-caryophyllene (13.9%)	—	[47]
P. cyrtopodon C. DC.	Marituba, Pará state, Brazil	Aerial parts (HD)	α-Cubebene (8.1%), β-caryophyllene (19.2%), germacrene D (10.0%), bicyclogermacrene (6.6%), spathulenol (8.4%)	—	[128]
P. cyrtopodon C. DC.	Santarém, Pará state, Brazil	Aerial parts (HD)	β-Cymene (6.3%), germacrene D (17.9%), bicyclogermacrene (23.3%), (E)-nerolidol (6.6%), spathulenol (9.4%)	—	[128]
P. cyrtopodon C. DC.	Ananindeua, Pará state, Brazil	Aerial parts (HD)	α-Pinene (7.5%), β-pinene (6.0%), β-caryophyllene (34.6%), germacrene D (13.6%), bicyclogermacrene (21.4%), spathulenol (8.4%)	—	[128]
P. cyrtopodon C. DC.	Manaus, Amazonas state, Brazil	Aerial parts (HD)	Germacrene D (7.5%), bicyclogermacrene (8.3%), α-cadinol (9.5%), α,β-bisabolol (26.3%)	—	[128]
P. dactylostigmum Yunck.	Itacoatiara, Amazonas State, Brazil	Aerial parts (HD)	β-Caryophyllene (8.9%), γ-muurolene (5.9%), α-pinene (9.3%), α-selinene (8.0%), caryophyllene oxide (6.0%), γ-muurolol (7.5%), α-cadinol (21.7%)	—	[129]
P. darwinense C. DC.	Parque Nacional Chaves, Panama	Leaf (HD)	Limonene (6.3%), (E)-β-farnesene (63.7%)	—	[47]
P. demeraranum (Miq.) C. DC.	Belém, Pará state, Brazil	Aerial parts (HD)	α-Pinene (7.3%), α-sabinene (12.9%), β-pinene (7.7%), limonene (20.2%)	—	[130]
P. demeraranum (Miq.) C. DC.	Ananindeua, Pará state, Brazil	Aerial parts (HD)	α-Pinene (6.1–12.3%), α-sabinene (17.0–22.7%), β-pinene (8.2–14.4%), limonene (30.6–40.3%)	—	[130]
P. demeraranum (Miq.) C. DC.	Adolpho Ducke Reserve, Manaus, Amazonas state, Brazil	Leaf (HD)	β-Pinene (6.7%), limonene (19.3%), β-elemene (33.1%), β-caryophyllene (6.0%), germacrene D (5.2%), α-selinene (5.0%), bicyclogermacrene (8.8%)	Antileishmanial (L. amazonensis promastigotes, IC₅₀ 86.0 µg/mL; L. amazonensis amastigotes, IC₅₀ 22.7 µg/mL)	[72]
P. dilatatum Rich.	Fazenda Sucupira, Embrapa, Brasilia, Brazil	Leaf (HD)	(E)-β-Ocimene (19.7%), β-caryophyllene (11.4%), germacrene D (8.9%), bicyclogermacrene (8.8%), spathulenol (6.5%), caryophyllene oxide (5.3%)	—	[33]
P. dilatatum Rich.	Alto Alegre, Roraima state, Brazil	Aerial parts (HD)	β-Caryophyllene (11.7%), germacrene D (6.7%), α-selinene (6.1%), β-cadinene (5.4%), caryophyllene oxide (6.1%), α-cadinol (12.2%)	—	[131]
Table A1. Cont.

Piper Species	Collection Site	Essential Oil	Major Components (>5%)	Bioactivity of EO	Ref.
P. dilatatum Rich.	Alto Alegre, Roraima state, Brazil Aerial parts (HD)	β-Caryophyllene (15.5%), germacrene D (10.2%), α-selinene (6.9%), δ-cadinene (8.5%), α-cadinol (7.0%)	— [131]		
P. dilatatum Rich.	Benfica, Pará state, Brazil Aerial parts (HD)	Germacrene D (12.6%), bicyclogermacrene (7.4%), (E)-nerolidol (10.2%), spathulenol (11.8%), hinesol (6.4%), α-cadinol (5.8%)	— [131]		
P. dilatatum Rich.	Belterra, Pará state, Brazil Aerial parts (HD)	α-Pinene (9.7%), β-pinene (14.8%), (Z)-β-ocimene (10.0%), β-caryophyllene (7.4%), bicyclogermacrene (22.6%), spathulenol (15.0%)	— [131]		
P. dilatatum Rich.	Marituba, Pará state, Brazil Aerial parts (HD)	p-Cymene (11.7%), β-selinene (6.4%), curzerene (13.8%), (E)-nerolidol (5.7%), α-eudesmol (8.0%), atractylene (5.1%)	— [131]		
P. dilatatum Rich.	Marituba, Pará state, Brazil Aerial parts (HD)	Germacrene D (30.2%), bicyclogermacrene (9.4%), spathulenol (40.6%), hinesol (6.4%), α-cadinol (5.8%)	— [131]		
P. dilatatum Rich.	Serra dos Carajás, Pará state, Brazil Aerial parts (HD)	(Z)-β-Farnesene (7.0%), germacrene D (24.5%), bicyclogermacrene (6.7%), β-bisabolene (39.3%)	— [131]		
P. dilatatum Rich.	Angico, Tocantins state, Brazil Aerial parts (HD)	Germacrene D (8.5%), bicyclogermacrene (34.7%), spathulenol (35.2%)	— [131]		
P. dilatatum Rich.	Xambioá, Tocantins state, Brazil Aerial parts (HD)	Germacrene D (15.2%), curzerene (28.7%), β-bisabolene (5.5%), (Z)-α-bisabolene (23.2%)	— [131]		
P. dilatatum Rich.	Carolina, Maranhão state, Brazil Aerial parts (HD)	Limonene (19.4%), germacrene D (43.0%), bicyclogermacrene (13.2%)	— [131]		
P. diospyrifolium Kunth	Universidade de São Paulo, Brazil Leaf (HD)	(E)-Nerolidol (18.2%), spathulenol (25.4%), β-caryophyllene oxide (7.7%), globulol (6.6%), humulene epoxide II (6.9%)	— [35,60]		
P. diospyrifolium Kunth	Universidade de São Paulo, Brazil Floral (HD)	α-Copaene (47.7%), β-caryophyllene (12.3%), α-humulene (5.7%)	— [60]		
P. diospyrifolium Kunth	Maringá, Paraná state, Brazil Leaf (HD)	Limonene (8.5%), (E)-β-ocimene (5.8%), β-caryophyllene (16.8%), γ-muurolene (10.6%), cis-eudesma-6,11-diene (21.1%), germacrene B (6.2%)	Antifungal, agar diffusion assay (Candida albicans, Candida parapsilosis, Candida tropicalis) [55]		
P. diospyrifolium Kunth	Antonina, Paraná state, Brazil Leaf (HD)	α-Pinene (6.7%), limonene (6.7%), α-copaene (5.4%), β-caryophyllene (7.4%), γ-gurjene (6.9%), germacrene B (6.7%), selin-11-ene-4-α-ol (17.7%)	Antileishmanial (L. amazonensis promastigotes, IC₅₀ 13.5 µg/mL; L. amazonensis axenic amastigotes, IC₅₀ 76.1 µg/mL; anti-Mycobacterium tuberculosis, MIC 125 µg/mL) [70]		
P. divorciatum G. Mey.	Guaramiranga Mountain, Ceará state, Brazil Leaf (HD)	α-Pinene (9.0–18.8%), β-pinene (19.9–23.3%), 1,8-cineole (8.9–9.6%), linalool (23.4–23.7%), germacrene D (6.3–6.5%)	— [132]		
Piper Species	Collection Site	Essential Oil	Major Components (>5%)	Bioactivity of EO	Ref.
-----------------------	--	---------------------	--	--	----------
P. friedrichthali C. DC.	Pacayas, Cartago, Costa Rica	Floral (HD) a	α-Pinene (13.4%), β-phellandrene (5.2%), trans-p-menth-2-en-1-ol (7.3%), cis-p-menth-2-en-1-ol (5.1%)	—	[133]
P. friedrichthali C. DC.	Fortuna, Quebrada Honda, Chiriquí, Panama	Leaf (HD)	Germacrene D (9.6%), α-selinene (12.0%), β-selinene (7.9%), selin-11-en-4α-ol (12.8%)	—	[133]
P. gaudichaudianum Kunth	Sapiranga, Rio Grande do Sul state, Brazil	Leaf (HD)	β-Pinene (5.8%), β-caryophyllene (17.4%), α-humulene (37.5%), allo-aromadendrene (7.7%)	—	[134]
P. gaudichaudianum Kunth	Universidade de São Paulo, Brazil Aerial parts (HD)	β-Caryophyllene (12.1%), α-humulene (13.3%), β-selinene (15.7%), α-selinene (16.6%)	—	[135]	
P. gaudichaudianum Kunth	Universidade de São Paulo, Brazil Aerial parts (HD)	β-Caryophyllene (19.3%), α-humulene (29.2%), α-selinene (8.9%)	—	[135]	
P. gaudichaudianum Kunth	State of Rondônia, Brazil Leaf (HD)	Terpinolene (5.4%), safrole (85.1%)	—	Amebicidal (Acanthamoeba polyphaga trophozoites, LC_{50} 66 µg/mL)	[139]
P. glabratum Kunth	Reserva da Matinha, Ilhéus, Bahia state, Brazil	Leaf (HD)	α-Pinene (12.2%), β-pinene (7.0%), β-caryophyllene (8.5%), trans-β-guaiene (6.9%), (E)-nerolidol (17.5%), carvophyllene oxide (8.5%)	—	[31]
P. glabratum Kunth	Antonina, Paraná state, Brazil Leaf (HD)	δ-3-Carene (5.9%), γ-elemene (5.4%), β-cadinene (45.3%)	—	Antileishmanial (L. amazonensis promastigotes, IC_{50} 93.5 µg/mL)	[70]
P. glabrum (Michx.) C. DC.	Monteverde, Costa Rica Leaf (HD)	α-Pinene (26.0%), limonene (56.6%)	—	Cytotoxic (MCF-7 human breast adenocarcinoma)	[34]
P. grande Valh	Parque Nacional Camino de Cruces, Panama	Leaf (HD)	α-Pinene (3.6%), β-pinene (14.5%), γ-terpinene (8.0%), p-cymene (43.9%)	—	[47]
P. heterophyllum Ruiz & Pav.	Estancia, Bolivia	Leaf (SD)	α-Pinene (9.3%), β-pinene (6.2%), 1,8-cineole (39.0%), (E)-β-ocimene (6.3%), asaricin (8.8%)	—	[101]
P. hispidinervum C. DC.	Porto Alegre, Rio Grande do Sul state, Brazil Leaf (HD)	Terpinolene (5.4%), safrole (85.1%)	—	Amebicidal (Acanthamoeba polyphaga trophozoites, LC_{50} 66 µg/mL)	[139]
P. hispidum Sw.	Rondônia state, Brazil Leaf (SD)	α-Pinene (5.2%), camphene (15.6%), β-phellandrene (9.7%), β-caryophyllene (5.4%), α-guaiene (11.5%), γ-cadinene (23.1%), γ-elemene (10.9%)	—	—	[112]
Piper Species	Collection Site	Essential Oil	Major Components (>5%)	Bioactivity of EO	Ref.
-------------------------------	--	---------------	--	--	------
P. hispidum Sw.	Pinar del Río, Cuba	Leaf (HD)	Curzerene (12.9%), elemol (7.6%), γ-eudesmol (9.3%), β-eudesmol (17.5%), α-eudesmol (8.1%), 14-Hydroxy-α-muurolene (8.0%)	—	[46]
P. hispidum Sw.	Fazenda Sucupira, Embrapa, Brasilia, Brazil	Leaf (HD)	α-Pinene (9.0%), β-pinene (19.7%), δ-3-carene (7.4%), spathulenol (6.2%), α-cadinol (6.9%)	—	[35]
P. hispidum Sw.	Pacurita, Chocó, Colombia	Leaf (HD)	β-Elemene (5.1%), β-caryophyllene (5.1%), (E)-nerolidol (23.6%), carvophyllene oxide (9.4%)	—	[48]
P. hispidum Sw.	Fênix, Paraná state, Brazil	Floral (HD) *	α-Pinene (7.1–13.9%), β-pinene (7.5–13.3%), α-copaene (28.7–36.2%)	Antibacterial (*Bacillus subtilis*, MIC 12.5 µg/mL; *Bacillus cereus*, MIC 12.5 µg/mL; *Staphylococcus aureus*, MIC 12.5 µg/mL; *Staphylococcus epidermidis*, MIC 12.5 µg/mL; *Enterococcus faecalis*, MIC 15.0 µg/mL), antifungal (*Candida albicans*, MIC 200 µg/mL), cytotoxic (*HeLa* human cervical carcinoma, IC₅₀ 36.6 µg/mL; *A.549* human lung carcinoma, IC₅₀ 37.5 µg/mL; *MCF-7* human breast adenocarcinoma, IC₅₀ 34.2 µg/mL)	[108]
P. hispidum Sw.	Reserva da Matinha, Ilhéus, Bahia state, Brazil	Leaf (HD)	α-Pinene (6.6%), β-pinene (12.0%), khusimene (12.1%), γ-cadinene (15.2%), δ-cadinene (6.3%), ledol (8.8%)	—	[125]
P. hispidum Sw.	Carajás National Forest, Parauapebas, Pará state, Brazil	Aerial parts (HD)	δ-3-Carene (9.1%), limonene (6.9%), α-copaene (7.3%), β-caryophyllene (10.3%), α-humulene (9.9%), β-selinene (5.1%), carvophyllene oxide (5.9%)	Antifungal, TLC bioautography (*Cladosporium cladosporioides*, *Cladosporium sphaerospermum*); enzyme inhibitory, TLC bioautography (acyetylcholinesterase)	[61]
P. hispidum Sw.	Atrato, Chocó, Colombia	Aerial parts (MWHD)	β-Elemene (5.1%), β-caryophyllene (5.1%), (E)-nerolidol (23.6%), carvophyllene oxide (5.9%)	Antifungal, broth dilution assay (*Fusarium oxysporum*, MIC 500 µg/mL; *Trichophyton rubrum*, MIC 99 µg/mL; *Trichophyton mentagrophytes*, MIC 125 µg/mL), cytotoxic (Vero cells, IC₅₀ 51.7 µg/mL)	[121]
P. hispidum Sw.	Altos de Campana, Panama	Leaf (HD)	Piperitone (10.0%), dillapiole (57.4%)	Mosquito larvicidal (*Aedes aegypti*, LC₅₀ 250 µg/mL)	[47]
P. hostmannianum (Miq.) C. DC.	State of Rondônia, Brazil	Leaf (HD)	Piperitone (5.6%), germacrene D (6.8%), asaricin (27.4%), myristin (20.3%), dillapiole (7.7%)	Mosquito larvicidal (*Aedes aegypti*, LC₅₀ 54 µg/mL)	[136]
P. humaytanum Yunck	State of Rondônia, Brazil	Leaf (HD)	β-Selinene (15.8%), sesquicinole (5.0%), spathulenol (6.3%), carvophyllene oxide (16.6%), β-oplapophene (6.0%)	Mosquito larvicidal (*Aedes aegypti*, LC₅₀ 156 µg/mL)	[136]
P. ilheusense Yunck	Ilhéus, Bahia, Brazil	Leaf (HD)	β-Caryophyllene (11.8%), γ-cadinene (6.9%), germacrene B (7.2%), gleenol (7.9%), patchouli alcohol (11.1%)	Antimicrobial, agar diffusion assay (*Bacillus subtilis*, *Staphylococcus aureus*, *Candida albicans*, *Candida crusei*, *Candida parapsilosis*)	[57]
Table A1. Cont.

Piper Species	Collection Site	Essential Oil	Major Components (>5%)	Bioactivity of EO	Ref.
P. imperiale (Miq.) C. DC.	Monteverde, Costa Rica	Leaf (HD)	β-Elemene (5.2%), β-caryophyllene (25.5%), α-guaiene (7.6%), germacrene D (5.5%),	Antibacterial (*Bacillus cereus*, MIC 156 µg/mL), cytoxic (*MCF-7 human breast adenocarcinoma*)	[34]
			bicyclogermacrene (19.7%), germacrene A (8.5%), α-bulnesene (10.8%), dillapiole (6.7%)		
P. jacquemontianum Kunth	Lachúa, Alta Verapaz, Guatemala	Leaf (HD)	Linalool (89.4%), (E)-nerolidol (8.0%)		
P. jacquemontianum Kunth	Parque Nacional Soberania, Panama	Leaf (HD)	α-Pinene (9.6%), β-pinene (10.1%), α-phellandrene (13.8%), limonene (12.2%), p-cymene		[116]
			(7.4%), linalool (14.5%)		
P. klotzschianum (Kunth) C. DC.	Vila do Rio, Gimuna Forest, Aracruz, Espírito Santo, Brazil	Leaf (HD)	4-Butyl-1,2-methylenedioxybenzene (81.0%), γ-asarone (9.1%)	Mosquito larvicidal activity (*Aedes aegypti*, LC$_{50}$ 10.0 µg/mL)	[141]
P. klotzschianum (Kunth) C. DC.	Vila do Rio, Gimuna Forest, Aracruz, Espírito Santo, Brazil	Root (HD)	4-Butyl-1,2-methylenedioxybenzene (96.2%)		
P. klotzschianum (Kunth) C. DC.	Vila do Rio, Gimuna Forest, Aracruz, Espírito Santo, Brazil	Seed (HD)	α-Phellandrene (17.0%), α-cymene (47.4%), limonene (17.8%), 4-Butyl-1,2-methylenedioxybenzene (36.9%), α-tansygermacrene (8.8%)	Mosquito larvicidal activity (*Aedes aegypti*, LC$_{50}$ 13.3 µg/mL)	[141]
P. klotzschianum (Kunth) C. DC.	Vila do Rio, Gimuna Forest, Aracruz, Espírito Santo, Brazil	Stem (HD)	4-Butyl-1,2-methylenedioxybenzene (84.8%), γ-asarone (5.4%)		
P. kraughii Yunck.	Carajás National Forest, Parauapebas, Pará state, Brazil	Aerial parts (HD)	β-Elemene (1.7-8.2%), myristicen (26.7-40.6%), 4-terpinenol (2.0-5.7%), apiole (25.3-34.1%)		
P. lanceifolium Kunth	San Isidro del Tejar, Costa Rica	Leaf (HD)	β-Caryophyllene (20.6%), germacrene D (12.5%), elemicin (24.4%), apiole (11.7%)		
P. lanceifolium Kunth	San Isidro del Tejar, Costa Rica	Floral (HD) 4	α-Pinene (13.7%), β-pinene (15.8%), γ-terpinene (6.9%), β-caryophyllene (5.1%), elemicin (16.4%), apiole (9.8%)		
P. lanceifolium Kunth	Monteverde, Costa Rica	Leaf (HD)	Dillapiole (74.6%)		[34]
P. lanceifolium Kunth	Bagadó, Chocó, Colombia	Aerial parts (MWHD)	β-Pinene (5.4%), β-caryophyllene (11.6%), germacrene D (10.7%), β-selinene (7.8%), δ-cadinene (6.1%), carophyllene oxide (5.9%)		[118]
			Antiprotozoal (*Trypanosoma cruzi* epimastigotes, IC$_{50}$ 7.48 µg/mL), *Leishmania infantum* promastigotes, IC$_{50}$ 37.8 µg/mL; cytoxic (*Vero cells*, IC$_{50}$ 46.0 µg/mL, *THP-1 human monocytic leukemia*, IC$_{50}$ 53.7 µg/mL)		
P. leptorum Kunth	Monte Alegre do Sul, São Paulo state, Brazil	Leaf (HD)	Seychellene (34.7%), carophyllene oxide (12.5%)		[31]
P. longispicum C. DC.	Altos de Campana, Panama	Leaf (HD)	β-Caryophyllene (45.2%), carophyllene oxide (5.5%)	Mosquito larvicidal (*Aedes aegypti*, LC$_{100}$ 250 µg/mL)	[47]
P. lucidum var. granulosum Yunck.	Rio de Janeiro state, Brazil	Leaf (HD)	α-Pinene (30.0%), β-caryophyllene (8.0%), α-zingiberene (30.4%), β-sesquiphellandrene (11.1%)		[73]
P. madeirensis Yunck.	Reserva da Matinha, Ilhéus, Bahia state, Brazil	Leaf (HD)	β-Caryophyllene (11.2%), germacrene D-4-ol (11.1%), 1,10-di-epi-cubenol (7.0%), α-vulvalol (7.1%), epio-α-vulvalol (5.4%)		[125]
Piper Species	Collection Site	Essential Oil	Major Components (>5%)	Bioactivity of EO	Ref.
-----------------------------------	----------------------------------	----------------------	--	--	------
P. malacophyllum (C. Presl) C. DC.	Florianópolis, Santa Catarina, Brazil	Leaf (HD)	α-Pinene (5.0%), camphene (30.8%), camphor (32.8%)	Antibacterial (Staphylococcus aureus, MIC 3700 µg/mL, Bacillus cereus, MIC 1800 µg/mL, Acinetobacter baumannii, MIC 3700 µg/mL, Escherichia coli, MIC 1800 µg/mL; Pseudomonas aeruginosa, MIC 3700 µg/mL; antifungal (Epidermophyton floccosum, MIC 1000 µg/mL; Microsporum gypseum, MIC 1000 µg/mL; Trichophyton mentagrophytes, MIC 500 µg/mL; Trichophyton rubrum, MIC 1000 µg/mL; Candida albicans, MIC 1000 µg/mL; Cryptococcus neoformans, MIC 500 µg/mL; antiparasitic (Trypanosoma cruzi epimastigotes, K_{50} 312 µg/mL)	[56]
P. manausense Yunck.	Ananindeua, Pará state, Brazil	Aerial parts (HD)	α-Pinene (5.2–6.6%), β-pinene (4.7–6.5%), β-caryophyllene (7.7–8.5%), germacrene D (3.5–6.1%), bicyclogermacrene (32.0–34.0%), δ-cadinene (5.8–7.0%), globulol (6.8–9.4%)	—	[144]
P. manausense Yunck.	Acareí, Pará state, Brazil	Aerial parts (HD)	α-Pinene (9.1%), β-pinene (9.2%), β-caryophyllene (5.9%), bicyclogermacrene (41.0%), δ-cadinene (5.8%)	—	[144]
P. manausense Yunck.	Marituba, Pará state, Brazil	Aerial parts (HD)	β-Caryophyllene (6.0%), aromadendrene (5.0%), bicyclogermacrene (7.8%), spathulenol (15.0%), globulol (9.4%), α-muurolol (7.8%)	—	[144]
P. marginatum Jacq.	Itacoatiara, Amazonas State, Brazil	Leaf (HD)	(E)-β-Ocimene (5.2%), α-copaene (5.9%), β-caryophyllene (9.1%), γ-elemene (8.5%), propiopiperone (18.2%)	—	[143]
P. marginatum Jacq.	Itacoatiara, Amazonas State, Brazil	Stem (HD)	δ-3-Carene (6.9%), β-caryophyllene (11.6%), myristicin (19.3%), propiopiperone (18.6%)	—	[143]
P. marginatum Jacq.	Monteverde, Costa Rica	Aerial parts (HD)	p-Cymene (7.1%), estragole (6.6%), p-anisaldehyde (22.0%), (E)-anethole (45.9%), anisyl methyl ketone (14.2%)	—	[49]
P. marginatum Jacq.	Cultivated (State University of Campinas, São Paulo, Brazil)	Leaf (HD)	—	Antibacterial (Escherichia coli, MIC 700 µg/mL)	[52]
P. marginatum Jacq.	Monte Alegre, Pará state, Brazil	Leaf (HD)	(E)-β-Ocimene (5.6%), safrole (63.9%), methylcugenol (5.9%), propiopiperone (7.3%)	—	[45]
P. marginatum Jacq.	Xambioá, Tocantins state, Brazil	Leaf (HD)	Safrole (52.3–52.5%), myristicin (6.3–9.3%), propiopiperone (11.8–14.1%)	—	[45]
P. marginatum Jacq.	Nazaré, Tocantins state, Brazil	Leaf (HD)	Safrole (41.1%), myristicin (8.2%), propiopiperone (30.4%)	—	[45]
P. marginatum Jacq.	Monte Alegre, Pará state, Brazil	Leaf (HD)	(Z)-β-Ocimene (5.3%), (E)-β-ocimene (13.5%), safrole (23.9%), β-caryophyllene (6.0%), propiopiperone (33.2%)	—	[45]
P. marginatum Jacq.	Belém, Pará state, Brazil	Leaf (HD)	p-Mentha-1(7),8-diene (39.0%), (E)-β-ocimene (9.8%), propiopiperone (19.0%)	—	[45]
P. marginatum Jacq.	Alter do Chão, Pará state, Brazil	Leaf (HD)	α-Pinene (5.0%), p-mentha-1(7),8-diene (34.8%), (E)-β-ocimene (8.7%), propiopiperone (23.1%), elemicin (6.5%)	—	[45]
Piper Species	Collection Site	Essential Oil	Major Components (>5%)	Bioactivity of EO	Ref.
--------------------	-----------------------	---------------	-------------------------	------------------	------
P. marginatum Jacq.	Belterra, Pará state, Brazil	Leaf (HD)	p-Mentha-1(7),8-diene (22.9%), (E)-β-ocimene (8.2%), propiopiperone (40.7%)	—	[45]
P. marginatum Jacq.	Melgaço, Pará state, Brazil	Leaf (HD)	(E)-β-Ocimene (8.0%), safrole (10.4%), germacrene D (8.1%), bicyclogermacrene (6.4%), myristicin (16.0%), propiopiperone (17.4%)	—	[45]
P. marginatum Jacq.	Xinguara, Pará state, Brazil	Leaf (HD)	(Z)-β-Ocimene (8.8%), (E)-β-ocimene (15.2%), germacrene D (10.4%), myristicin (5.4%), propiopiperone (14.5%), τ-muurolol (5.0%)	—	[45]
P. marginatum Jacq.	Manaus, Amazonas state, Brazil	Leaf (HD)	Safrole (6.4%), α-copaene (7.4%), β-caryophyllene (9.5%), germacrene D (5.5%), propiopiperone (25.0%)	—	[45]
P. marginatum Jacq.	Macapá, Amapá state, Brazil	Leaf (HD)	(E)-β-Ocimene (5.5%), β-caryophyllene (10.6%), myristicin (9.6%), propiopiperone (22.9%)	—	[45]
P. marginatum Jacq.	Monte Alegre, Pará state, Brazil	Leaf (HD)	(Z)-β-Ocimene (5.7%), (E)-β-ocimene (13.5%), β-caryophyllene (9.3%), propiopiperone (40.2%)	—	[45]
P. marginatum Jacq.	Viseu, Pará state, Brazil	Leaf (HD)	γ-Terpinene (14.4%), myristicin (5.0%), propiopiperone (29.6%), spathulenol (6.6%)	—	[45]
P. marginatum Jacq.	Alta Floresta, Mato Grosso state, Brazil	Leaf (HD)	γ-Terpinene (6.5%), safrole (5.7%), β-caryophyllene (13.3%), germacrene D (8.7%), propiopiperone (7.9%)	—	[45]
P. marginatum Jacq.	Manaus, Amazonas state, Brazil	Leaf (HD)	γ-Terpinene (5.2%), (E)-β-ocimene (8.7%), α-copaene (13.4%), β-caryophyllene (10.2%), germacrene D (7.6%), bicyclogermacrene (8.2%), propiopiperone (10.4%)	—	[45]
P. marginatum Jacq.	Salvaterra, Pará state, Brazil	Leaf (HD)	p-Mentha-1(7),8-diene (5.2%), (Z)-anethole (8.4%), (E)-anethole (16.5%), isoosmorhizole (37.4%), (E)-isoosmorhizole (29.1%)	—	[45]
P. marginatum Jacq.	Manaus, Amazonas state, Brazil	Leaf (HD)	(Z)-Anethole (6.0%), (E)-anethole (26.4%), isoosmorhizole (11.2%), (E)-isoosmorhizole (32.2%)	—	[45]
P. marginatum Jacq.	Obidos, Pará state, Brazil	Leaf (HD)	(E)-Anethole (13.6%), isoosmorhizole (24.5%), (E)-isoosmorhizole (46.8%)	—	[45]
P. marginatum Jacq.	Medicilândia, Pará state, Brazil	Leaf (HD)	β-Caryophyllene (6.7%), (E)-isoosmorhizole (15.8%), crocatone (21.9%), 2′-methoxy-4′,5′-methylenedioxypropiophenone (26.3%)	—	[45]
P. marginatum Jacq.	Paredão, Roraima state, Brazil	Leaf (HD)	β-Caryophyllene (13.6%), bicyclogermacrene (11.7%), (Z)-asarone (8.8%), exalatacin (7.9%), (E)-asarone (30.8%)	—	[45]
P. marginatum Jacq.	Venadillo, Tolima, Colombia	Aerial parts (HD)	α-Phellandrene (11.1%), limonene (7.5%), β-caryophyllene (11.0%), elemicin (18.0%), isoelemicin (9.2%)	—	[120]
Piper Species	Collection Site	Essential Oil	Major Components (>5%)	Bioactivity of EO	Ref.
---------------	----------------	---------------	------------------------	------------------	------
P. marginatum Jacq.	Universidade Federal Rural de Pernambuco, Recife, Brazil	Leaf (HD)	β-Caryophyllene (7.5%), α-acoradene (5.1%), bicyclogermacrene (9.4%), elemol (9.7%), (Z)-asarone (30.4%), patchouli alcohol (16.0%), (E)-asarone (6.4%)	Mosquito larvicidal (Aedes aegypti, LC₅₀ 23.8 µg/mL)	[146]
P. marginatum Jacq.	Universidade Federal Rural de Pernambuco, Recife, Brazil	Floral (HD)	α-Copaene (9.4%), β-caryophyllene (13.1%), α-acoradene (9.7%), patchouli alcohol (23.4%), (E)-asarone (21.1%)	Mosquito larvicidal (Aedes aegypti, LC₅₀ 19.9 µg/mL)	[146]
P. marginatum Jacq.	Universidade Federal Rural de Pernambuco, Recife, Brazil	Stem (HD)	β-Caryophyllene (6.8%), seychellene (5.8%), elemicin (6.9%), (E)-asarone (8.5%), patchouli alcohol (25.7%), (E)-asarone (32.6%)	Mosquito larvicidal (Aedes aegypti, LC₅₀ 19.9 µg/mL)	[146]
P. marginatum Jacq.	Belém, Pará state, Brazil	Aerial parts (HD)	p-Mentha-1(7),8-diene (59.0%), (E)-β-cineole (9.8%), propiopiperone (59.0%)	Insecticidal (Solenopsis saevissima, IC₅₀ 240 µg/mL)	[41]
P. marginatum Jacq.	Manaus, Amazonas state, Brazil	Aerial parts (HD)	(E)-Anethole (26.4%), isosororhizol (11.2%), (E)-isosororhizol (32.2%)	Insecticidal (Solenopsis saevissima, IC₅₀ 439 µg/mL)	[41]
P. marginatum Jacq.	Venadillo, Tolima, Colombia	Aerial parts (MWHD)	α-Phellandrene (11.2%), limonene (7.6%), β-caryophyllene (11.1%), elemicin (18.4%), isoelemicin (9.3%)	Antiprotozoal (Trypanosoma cruzi epimastigotes, IC₅₀ 6.2 µg/mL, Leishmania infantum promastigotes, IC₅₀ 88.7 µg/mL), cytotoxic (Vero cells, IC₅₀ 40.2 µg/mL)	[118,122]
P. marginatum Jacq.	Belém, Pará state, Brazil	Aerial parts (HD)	β-Caryophyllene (5.0%), propiopiperone (21.8%), elemol (5.9%)	Antifungal, TLC bioautography (Cladosporium cladosporioides, Cladosporium sphaerospermum), enzyme inhibition (acetylcholinesterase)	[62]
P. mikanianum (Kunth) Steud.	Sapiranga, Rio Grande do Sul state, Brazil	Leaf (HD)	α-Piene (6.5%), myrcene (5.6%), limonene (14.8%), β-caryophyllene (10.5%), bicyclogermacrene (14.3%)	—	[134]
P. mikanianum (Kunth) Steud.	Atalanta, Santa Catarina state, Brazil	Leaf (HD)	Safrole (82.0%)	—	[147]
P. mikanianum (Kunth) Steud.	Curitiba, Paraná state, Brazil	Leaf (HD)	Bicyclogermacrene (5.3%), (Z)-isoelemicin (21.5%), (E)-asarone (11.6%), β-vetivone (33.5%)	—	[148]
P. mikanianum (Kunth) Steud.	Picada Café, Rio Grande do Sul state, Brazil	Aerial parts (HD)	Bicyclogermacrene (6.6%), germacrene B (7.8%), α-selinol (5.1%), apothe (64.9%)	Aacaricidal (Rhipicephalus (Boophilus) microplus, LC₅₀ 2.33 µL/mL)	[106]
P. mikanianum (Kunth) Steud.	Atalanta, Santa Catarina state, Brazil	Leaf (HD)	α-Thujene (8.0%), safrole (72.4%)	—	[70]
P. malicorum Kunth	Cultivated (State University of Campinas, São Paulo, Brazil)	Leaf (HD)	—	Antibacterial (Escherichia coli, MIC 1000 µg/mL)	[52]
P. malicorum Kunth	Cultivated, FIOCRUZ, Rio de Janeiro, Brazil	Leaf (HD)	(Z)-β-Ocimene (14.1%), (E)-β-ocimene (12.1%), germacrene D (10.8%), germacrene B (13.4%), myrtenic acid (7.3%), α-selinol (9.9%), (E)-nerolidol (9.6%)	Antinociceptive (mouse model, 1 mg/kg)	[91]
P. mikanianum (Kunth) Steud.	Antonina, Paraná state, Brazil	Leaf (HD)	β-Caryophyllene (8.6%), α-humulene (11.3%), bicyclogermacrene (7.4%), bicyclogermacrene oxide (12.1%), viridiflorol (5.8%), humulene-epoxide II (6.5%)	Antileishmanial (L. amazonensis promastigotes, IC₅₀ 17.4 µg/mL, L. amazonensis axenic amastigotes, IC₅₀ > 200 µg/mL), Anti-Mycobacterium tuberculosis (MIC 250 µg/mL)	[70]
Piper Species	**Collection Site**	**Essential Oil**	**Major Components (>5%)**	**Bioactivity of EO**	**Ref.**
------------------	-------------------	------------------	--------------------------	----------------------	---------
P. multiplinervium C. DC.	Parque Nacional Soberania, Panama	Leaf (HD)	α-Pinene (7.1%), β-pinene (7.9%), α-phellandrene (11.8%), limonene (11.4%), p-cymene (9.0%), linalool (16.5%), (E)-nerolidol (5.9%)	—	[47]
P. nemorense C. DC.	Monteverde, Costa Rica	Leaf (HD)	α-Phellandrene (8.8%), limonene (6.3%), α-copaene (5.7%), β-bourbonene (14.0%), β-caryophyllene (5.6%), β-copaene (15.0%), γ-elemene (6.8%), germacrene D (8.4%), bicyclogermacrene (7.5%)	—	[34]
P. oblanceolatum Trel.	Monteverde, Costa Rica	Leaf (HD)	β-Caryophyllene (27.6%), spathulenol (10.6%), caryophyllene oxide (8.3%)		[111]
P. oblum Ruiz & Pav.	Altos de Campana National Park, Panama	Leaf (HD)	β-Caryophyllene (27.6%), spathulenol (10.6%), caryophyllene oxide (8.3%)	—	[111]
P. peltatum L. [syn. *Pothomorphe peltata* (L.) Miq.]	Pinar del Río, Cuba	Leaf (HD)	α-Copaene (5.2%), trans-calamencene (5.4%), spathulenol (9.0%), caryophyllene oxide (22.9%)		[27]
P. permutatum Yunck.	Tijuca Forest, Rio de Janeiro state, Brazil	Leaf (HD)	β-Caryophyllene (6.8%), δ-cadinene (12.7%), α-cadinol (6.9%)		[149]
P. ovatum Vahl	Fazenda Sucupira, Embrapa, Brasilia, Brazil	Leaf (HD)	α-Pinene (23.1%), β-pinene (14.2%), β-caryophyllene (5.3%), germacrene D (10.3%), (E)-cubebol (10.7%)	—	[33]
P. regulii (Miq.) C. DC.	Universidade de São Paulo, Brazil	Aerial parts (HD)	Myrcene (52.6%), linalool (15.9%), β-caryophyllene (8.5%)		[38]
P. pseudolindenii C. DC.	Turrialba, Cartago, Costa Rica	Leaf (HD)	β-Pinene (6.7%), β-elemene (15.0%), β-caryophyllene (11.8%), α-humulene (7.0%), germacrene D (9.0%), germacrene B (5.4%)	—	[133]
P. regnellii (Miq.) C. DC.	Cultivated (State University of Campinas, São Paulo, Brazil)	Leaf (HD)	β-Caryophyllene (23.4%), (E)-nerolidol (13.7%), spathulenol (11.1%), globulol (6.1%)	—	[133]
P. regnellii (Miq.) C. DC.	Cultivated (State University of Campinas, São Paulo, Brazil)	Leaf (HD)	Myrcene (52.6%), linalool (15.9%), β-caryophyllene (8.5%)		[38]
P. regnellii (Miq.) C. DC.	Universidade de São Paulo, Brazil	Leaf (HD)	β-Pinene (13.3%), myrcene (13.5%), β-caryophyllene (7.2%), aromadendrene (8.3%), bicyclogermacrene (9.7%), (E)-nerolidol (8.4%), spathulenol (7.8%)	—	[35]
Piper Species	Collection Site	Essential Oil	Major Components (>5%)	Bioactivity of EO	Ref.
---------------	-----------------	---------------	-------------------------	------------------	-----
P. regnellii (Miq) C. DC. var. regnellii (C. DC.) Yunck	Universidade de São Paulo, Brazil	Leaf (HD)	β-caryophyllene (8.2–9.5%), germacrene D (45.6–51.4%) and α-chamigrene (8.9–11.3%)	Cytotoxic (B16F10-Nex2 murine melanoma, IC₅₀ 66 µg/mL, A2058 human melanoma, IC₅₀ 57 µg/mL, HeLa human cervical carcinoma, IC₅₀ 13 µg/mL, SHLa human cervical, IC₅₀ 71 µg/mL, HCT human colon carcinoma, IC₅₀ 61 µg/mL, SKBR3 breast cancer, IC₅₀ 79 µg/mL, U87 human glioblastoma, IC₅₀ 71 µg/mL, β-caryophyllene, germacrene D, α-chamigrene cytotoxic to HeLa cells: IC₅₀ 11, 7, 32 µg/mL, respectively)	[98]
P. renitens (Miq.) Yunck.	Mirante da Serra, Rondonia, Brazil	Aerial parts (HD)	α-pinene (12.5%), camphene (5.6%), β-pinene (12.4%), (Z)-caryophyllene (6.9%), germacrene D (13.8%), bicyclogermacrene (6.6%), guaiol (13.9%), eudesm-7(11)-en-4-ol (9.3%)	—	[150]
P. reticulatum L.	Costa Arriba, Rio Cascajal, Colón, Panama	Leaf (HD)	β-Elemene (16.1%), β-selinene (19.0%), α-selinene (15.5%), spathulenol (6.1%)	—	[47]
P. rivinoides Kunth	Cultivated, FIOCRUZ, Rio de Janeiro, Brazil	Leaf (HD)	α-Pinene (32.5%), β-pinene (20.7%), β-caryophyllene (7.6%), germacrene B (6.7%)	Antinociceptive (mouse model, 1 mg/kg)	[91]
P. rivinoides Kunth	Ubatuba, São Paulo state, Brazil	Leaf (HD)	α-Pinene (73.2%), β-pinene (5.2%)	—	[31]
P. rivinoides Kunth	Antonina, Paraná state, Brazil	Leaf (HD)	β-Caryophyllene (66.6%), α-humulene (10.0%), dehydromadadrenane (7.8%), bicyclogermacrene (11.8%), (Z)-α-bisabolene (10.9%), spathulenol (5.1%)	Antileishmanial (L. amazonensis promastigotes, IC₅₀ 10.9 µg/mL, L. amazonensis axenic amastigotes, IC₅₀ >200 µg/mL), anti-Mycobacterium tuberculosis (MIC 125 µg/mL)	[70]
P. septulinerivum (Miq.) C. DC.	Pandó, Chocó, Colombia	Aerial parts (MWHD)	β-Caryophyllene (5.0%), epi-cubebol (9.0%), δ-cadinene (10.9%), germacrene D-4-ol (5.6%), viridiflorol (7.9%)	Antiprotozoal (Trypanosoma cruzi epimastigotes, IC₅₀ 14.0 µg/mL, Leishmania infantum promastigotes, IC₅₀ 30.1 µg/mL, L. infantum amastigotes, IC₅₀ 64.8 µg/mL), cytotoxic (Vero cells, IC₅₀ 42.7 µg/mL, THP-1 human monocytic leukemia, IC₅₀ 48.8 µg/mL)	[118]
P. solmsianum C. DC.	Teresópolis, Rio de Janeiro state, Brazil	Leaf (HD)	δ-3-Carene (23.3%), asaricin (39.2%)	The essential oil and the major component asaricin cause depressant and ataxia effects in mice	[151]
P. solmsianum C. DC.	Universidade de São Paulo, Brazil	Leaf (HD)	Spathulenol (5.2%), isoaselenec (53.5%)	Antifungal, broth dilution assay (Cryptococcus neoformans, MIC 62.5 µg/mL) Antifungal, TLC bioautography (Candida tropicalis, C. glabrata, C. krusei, C. tropicalis, C. parapsilosis)	[35,60]
P. solmsianum C. DC.	Ubatuba, São Paulo state, Brazil	Leaf (HD)	α-Pinene (22.7%), myrcene (26.1%), δ-3-carene (66.9%), α-selinene (5.5%)	—	[31]
P. tectoniaefolium (Kunth) Kunth ex C. DC.	Fazenda Sucupira, Embrapa, Brasilia, Brazil	Leaf (HD)	α-Pinene (12.9%), β-pinene (8.8%), caryophyllene oxide (10.9%)	—	[33]
P. trigonum C. DC.	Altos de Campana, Panama	Leaf (HD)	α-Copaene (6.0%), β-elemene (8.4%), β-caryophyllene (71.7%), germacrene D (19.7%), δ-cadinene (7.2%), α-cadinol (5.8%)	—	[47]
Table A1. Cont.

Piper Species	Collection Site	Essential Oil	Major Components (>5%)	Bioactivity of EO	Ref.
P. tuberculatum Jacq. var. *tuberculatum*	Rondônia state, Brazil	Leaf (HD)	α-Pinene (8.4%), β-pinene (7.0%), limonene (6.7%), (E)-β-ocimene (9.0%), β-caryophyllene (26.3%), (E)-β-farnesene (6.1%), α-cadinol (13.7%)	—	[152]
P. tuberculatum Jacq.	Universidade Estadual Paulista, Araraquara, São Paulo state, Brazil	Leaf (HD)	α-Pinene (10.4%), β-pinene (12.5%), (E)-β-ocimene (6.6%), β-caryophyllene (40.2%), (E)-β-farnesene (8.3%), germacrene D (5.3%)	—	[59]
P. tuberculatum Jacq.	Universidade Estadual Paulista, Araraquara, São Paulo state, Brazil	Floral (HD)	α-Pinene (28.7%), β-pinene (38.2%), (E)-β-ocimene (9.8%), β-caryophyllene (14.0%)	—	[59]
P. tuberculatum Jacq.	Universidade de São Paulo, Brazil	Leaf (HD)	(E)-Nerolidol (12.7%), spathulenol (15.8%), viridiflorol (13.5%), γ-cadinol (6.3%)	—	[35]
P. umbellatum L.	Monteverde, Costa Rica	Aerial parts (HD)	β-Elemene (6.9%), β-caryophyllene (28.3%), germacrene D (16.7%), bicyclogermacrene (6.6%), (E,E)-α-farnesene (14.5%)	—	[49]
P. umbellatum L.	Araraquara, São Paulo state, Brazil	Leaf (HD)	γ-Muurolene (8.9%), germacrene D (34.2%), bicyclogermacrene (9.0%), γ-cadinene (5.9%), α-cadinine (15.0%)	—	[35,60]
P. umbellatum L.	Topos de Collantes Nature Reserve, Escambray Mountains, Cuba	Leaf (HD)	Camphor (9.6%), safrole (26.4%), β-caryophyllene (6.6%)	Antioxidant (DPPH radical scavenging assay, IC₅₀ 32.3 µg/mL)	[50]
P. variabile C. DC.	Lachua, Alta Verapaz, Guatemala	Leaf (HD)	α-Pinene (6.1%), 1,8-cineole (10.4%), limonene (45.5%)	—	[140]
P. vicosanum Yunck.	Parque Estadual do Rio Doce, Minas Gerais state, Brazil	Aerial parts (HD)	α-Pinene (7.2%), 1,8-cineole (15.0%), limonene (40.0%), terpinolene (10.1%)	—	[153]
P. vicosanum Yunck.	Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais state, Brazil	Aerial parts (HD)	Limonene (9.1%), γ-elemene (14.2%), α-alaskene (13.4%)	Anti-inflammatory (rat paw edema, 100–300 mg/kg)	[89]
P. vicosanum Yunck.	Dourados, Mato Grosso do Sul, Brazil	Leaf (HD)	Limonene (33.2%), (E)-nerolidol (20.6%), carvone (13.4%)	—	[129]
P. xylosteoides (Kunth) Steud.	Fazenda Sucupira, Embrapa, Brasilia, Brazil	Leaf (HD)	Myrcene (31.0%), α-terpinene (11.3%), β-caryophyllene (12.4%), γ-terpinene (26.1%)	—	[17,33]
P. xylosteoides (Kunth) Steud.	São Francisco de Paula, Rio Grande do Sul state, Brazil	Aerial parts (HD)	α-Pinene (6.0%), limonene (1.5%), zingiberene (9.3%), safrole (47.8%)	Acaricidal (Rhipicephalus (Boophilus) microplus, LC₅₀ 6.15 µL/mL)	[108]
Table A1. Cont.

Piper Species	Collection Site	Essential Oil	Major Components (>5%)	Bioactivity of EO	Ref.
P. xylosteoides (Kunth) Steud.	Orleans, Santa Catarina state, Brazil	Leaf (HD)	α-Pinene (7.7%), safrole (84.1%)	Antibacterial, broth dilution assay (*Bacillus cereus*, MIC 2091 µg/mL, *Staphylococcus aureus*, MIC 2091 µg/mL)	[154]
P. xylosteoides (Kunth) Steud.	São Bonifácio, Santa Catarina state, Brazil	Leaf (HD)	α-Pinene (15.3%), safrole (75.8%)	Antibacterial, broth dilution assay (*Bacillus cereus*, MIC 2091 µg/mL, *Staphylococcus aureus*, MIC 2091 µg/mL)	[154]
P. xylosteoides (Kunth) Steud.	Ubatuba, São Paulo state, Brazil	Leaf (HD)	Germacrene B (10.6%), trans-β- guaiene (7.8%), (E)-nerolidol (8.2%), spathulenol (12.3%), β-copaen-4α-ol (9.4%)	—	[31]
P. xylosteoides (Kunth) Steud.	Cerro Azul, Paraná state, Brazil	Leaf (HD)	α-Thujene (7.9%), β-phellandrene (22.6%), δ-elemene (6.6%), β-caryophyllene (7.0%), bicyclogermacrene (7.2%), (E)-nerolidol (8.5%)	—	[70]

a Floral = Inflorescences or infructescence “spikes”. b The essential oil had two unidentified major components (11.6% and 13.5%). c Based on retention indices (RI), this analysis is doubtful. γ-Elemene should elute before germacrene D. The compound identified as γ-elemene is probably bicyclogermacrene. γ-Cadinene should elute after germacrene D. The compound identified as γ-cadinene may be γ-muurolene. d Percentages are based on isolated yields and not by GC integration. e Only 56.6% of the essential oil composition identified.
Appendix B

Figure A1. Major monoterpenoids found in Neotropical Piper species.
Figure A2. Cont.
Figure A2. Major sesquiterpene hydrocarbons found in Neotropical Piper species.
Figure A3. Major oxygenated sesquiterpenoids found in Neotropical Piper species.

Figure A4. Major phenylpropanoids and miscellaneous compounds found in Neotropical Piper species.
Appendix C

Table A2. Chemical classes and concentrations of *Piper* essential oils used for the principal component analysis.

Piper Species	Classes (%)	Biological Activity	Ref.					
	PP	MH	OM	SH	OS	Total		
P. aduncum	0.0	13.7	40.8	16.8	24.3	95.6	Antiprotozoal	[53]
P. aduncum	0.0	20.9	7.5	42.2	18.3	88.9	Antiprotozoal	[70]
P. aduncum	87.8	0.9	0.0	6.5	2.4	97.6	Antimicrobial	[30]
P. aduncum	0.0	14.1	31.8	26.0	11.6	83.5	Antimicrobial	[35]
P. aduncum	0.9	9.7	13.4	19.3	43.9	87.2	Antiprotozoal	[68]
P. aduncum	0.0	9.7	50.3	8.3	29.3	97.6	Antiprotozoal	[32]
P. aduncum	0.0	13.7	31.7	39.8	11.8	97.0	Antimicrobial	[59]
P. aduncum	0.0	55.1	11.8	3.7	11.3	97.6	Antiprotozoal	[32]
P. aduncum	0.0	13.7	31.7	39.8	11.8	97.0	Antimicrobial	[59]
P. aduncum	46.8	25.1	15.7	6.3	1.0	94.8	Antimicrobial	[59]
P. aequale	0.0	29.2	0.0	42.9	20.9	93.0	Antimicrobial	[34]
P. aequale	3.7	70.2	0.2	12.4	13.5	100.0	Antimicrobial	[34]
P. angustifolium	0.0	13.4	4.7	21.9	53.0	93.0	Antiprotozoal	[69]
P. anonifolium	0.0	11.7	0.0	38.6	38.9	89.2	Antimicrobial	[61]
P. aleyreanum	0.0	10.1	0.0	56.7	23.1	89.9	Antimicrobial	[61]
P. arboreum	0.0	0.0	1.7	46.7	41.0	89.4	Antiprotozoal	[70]
P. aurotum	88.5	3.4	0.7	3.2	0.6	96.4	Antiprotozoal	[117]
P. brendemegeri	0.0	4.5	0.0	94.9	0.0	99.4	Cytotoxic	[34]
P. caldense	0.0	0.0	47.1	7.2	24.3	78.6	Antimicrobial	[54]
P. caldense	0.0	0.0	6.5	17.2	59.7	83.4	Antimicrobial	[54]
P. caldense	0.0	0.4	0.0	63.5	20.1	84.0	Antimicrobial	[54]
P. callous	80.1	6.9	4.2	4.9	2.1	98.2	Enzyme inhibitory	[62]
P. carinum	0.0	18.9	0.0	62.4	16.7	97.9	Antimicrobial	[38]
P. carinum	0.0	3.1	0.0	81.5	15.0	99.4	Antimicrobial	[38]
P. corcovadensis	0.0	0.0	0.0	78.9	0.0	78.9	Cytotoxic	[39]
P. corcovadensis	0.0	52.2	23.2	0.0	0.0	75.4	Cytotoxic	[96]
P. crassinervium	0.0	20.5	0.0	31.0	35.0	86.5	Antiprotozoal/Antimicrobial	[70]
P. crassinervium	0.0	12.3	1.2	10.4	75.5	99.4	Antimicrobial	[37]
P. clausenianum	0.0	0.3	0.0	9.1	86.2	95.6	Antiprotozoal/Antimicrobial	[71,126]
P. clausenianum	0.0	1.5	51.4	7.5	28.3	88.7	Antiprotozoal/Antimicrobial	[71,126]
P. concaudatum	30.6	35.1	0.2	20.4	6.4	82.7	Insecticidal	[127]
P. crociolus	0.0	7.8	0.0	54.8	37.1	99.7	Antimicrobial	[60]
P. demestianum	0.0	29.9	0.0	63.0	0.0	92.9	Antiprotozoal	[72]
P. diospyrifolium	0.0	19.5	1.3	68.2	11.2	100.0	Antimicrobial	[34]
P. divisum	0.0	16.1	0.0	46.5	28.5	91.1	Antiprotozoal	[70]
P. dinicinum	89.6	3.3	0.0	5.6	0.6	99.1	Anticardiovascular	[40]
P. dinicinum	98.0	0.0	0.0	0.0	0.0	98.0	Antimicrobial	[44]
P. dinicinum	89.1	7.2	0.1	1.9	0.2	98.5	Antimicrobial	[42]
P. duckei	0.0	1.1	5.8	60.2	23.0	90.1	Antiprotozoal	[72]
P. fimbriatum	0.0	19.5	0.0	76.4	4.1	100.0	Antimicrobial	[34]
P. gaudichaudianum	0.0	2.4	0.0	44.5	44.0	90.8	Insecticidal	[136]
P. gaudichaudianum	0.0	0.1	0.1	65.4	28.3	93.8	Cytotoxic	[139]
P. gaudichaudianum	0.1	4.2	0.4	56.0	29.5	90.2	Cytotoxic	[137]
P. gaudichaudianum	0.0	0.9	0.0	72.6	14.4	87.9	Antimicrobial	[35]
P. gaudichaudianum	0.0	7.1	0.0	76.0	9.9	93.0	Antiprotozoal	[70]
P. globatum	0.2	25.8	1.0	50.4	21.2	98.6	Anti-inflammatory	[88]
P. glabrescens	0.0	83.7	0.0	15.3	1.0	100.0	Cytotoxic	[34]
Table A2. Cont.

Piper Species	Classes (%)	Biological Activity	Ref.				
	PP	MH	OM	SH	OS	Total	
P. hostmannianum	85.5	9.3	0.0	2.5	0.8	98.0	Antimicrobial
P. hostmannianum	0.0	18.5	1.0	52.2	16.6	88.3	Antimicrobial/Enzyme inhibitory
P. hostmannianum	0.0	43.9	1.7	27.8	15.4	88.8	Antimicrobial/Cytotoxic
P. hostmannianum	58.3	5.0	12.6	14.2	5.0	95.1	Insecticidal
P. hostmannianum	57.0	1.0	5.6	20.1	10.6	94.3	Insecticidal
P. hostmannianum	0.0	1.5	0.0	34.0	45.4	80.9	Insecticidal
P. hostmannianum	0.0	0.0	0.0	46.5	34.1	80.6	Antimicrobial
P. imperiale	6.7	2.7	0.0	89.4	1.2	100.0	Antimicrobial/Cytotoxic
P. klotzschianum	98.5	0.0	0.0	0.6	0.5	99.6	Insecticidal
P. klotzschianum	39.4	44.3	0.0	14.5	0.0	98.2	Insecticidal
P. longispicum	1.1	1.4	0.2	66.0	11.9	80.6	Insecticidal
P. marginatum	0.0	1.4	0.7	2.2	26.2	30.5	Insecticidal
P. marginatum	28.4	0.0	0.0	44.6	26.2	99.2	Insecticidal
P. marginatum	51.6	0.0	0.0	21.7	26.4	99.7	Insecticidal
P. marginatum	42.0	10.3	1.6	17.6	17.5	89.0	Antimicrobial/Enzyme inhibitory
P. mikanianum	67.9	0.5	0.0	23.4	8.6	100.4	Acaricidal
P. mikanianum	0.6	24.2	9.8	33.2	25.1	92.9	Antinociceptive
P. mikanianum	0.0	7.2	0.0	41.5	37.7	86.4	Antiprotozoal/Antimicrobial
P. oblongocladatum	0.0	17.6	14.9	61.4	9.8	100.0	Antimicrobial/Cytotoxic
P. obtusinerveum	98.5	0.0	0.0	0.0	0.0	99.6	Insecticidal
P. regnellii	0.0	60.8	17.8	13.8	6.1	98.5	Antimicrobial
P. regnellii	0.3	0.0	0.4	82.0	10.8	93.5	Cytotoxic
P. rimosides	0.0	65.9	0.8	21.8	4.8	93.2	Antinociceptive
P. rimosides	0.0	10.4	0.0	54.7	20.1	85.2	Antiprotozoal
P. solmsianum	40.3	30.3	0.0	5.8	4.2	80.7	Depressant/Ataxia
P. solmsianum	53.5	0.0	0.0	12.4	12.3	78.2	Antimicrobial
P. tuberculatum	0.0	35.7	0.3	60.2	2.9	99.1	Antimicrobial
P. tetracarpum	0.0	16.4	0.0	62.6	20.8	99.8	Anti-inflammatory
P. tetracarpum	48.5	17.0	0.4	23.7	10.4	100.0	Acaricidal

Figure A5. □: Antimicrobial (fungal and bactericidal), ◆: Cytotoxic activity, ▲: Antiprotozoal (Trypanosoma spp. and Leishmania spp.), ●: Insecticidal (Aedes aegypti), ▶: Acaricidal, ♦: Anti-inflammatory; ○: Anticholinesterase, ●: Antinociceptive, ◄: Central nervous system depressant, ▲: Antimicrobial and cytotoxic, ▼: Fungicidal and Anticholinesterase.
References

1. Quijano-Abril, M.A.; Callejas-Posada, R.; Miranda-Esquível, D.R. Areas of endemism and distribution patterns for Neotropical Piper species (Piperaceae). *J. Biogeogr.* 2006, 33, 1266–1278. [CrossRef]

2. Ramirez Amezcua, J.M. *Piper commutatum* (Piperaceae), the correct name for a widespread species in Mexico and Mesoamerica. *Acta Botanica Mexicana* 2016, 116, 9–19. [CrossRef]

3. Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. *Bot. J. Linn. Soc.* 2016, 181, 1–20.

4. Jaramillo, M.A.; Manos, P.S. Phylogeny and patterns of floral diversity in the genus *Piper* (Piperaceae). *Am. J. Bot.* 2001, 88, 706–716. [CrossRef] [PubMed]

5. Guimarães, E.F.; Monteiro, D. Neotropical Piperaceae. Available online: https://www.kew.org/science/tropamerica/neotropikey/families/Piperaceae.htm (accessed on 12 October 2017).

6. Di Stasi, L.C.; Hiruma-Lima, C.A. *Plantas Medicinais na Amazônia e na Mata Atlântica*; Editora UNESP: São Paulo, Brazil, 2002.

7. Brú, J.; Guzman, J.D. Folk medicine, phytochemistry and pharmacological application of *Piper marginatum*. *Rev. Bras. Farmacogn.* 2016, 26, 767–779. [CrossRef]

8. Duke, J.A.; Bogenschutz-Godwin, M.J.; Ottesen, A.R. *Duke’s Handbook of Medicinal Plants of Latin America*; CRC Press: Boca Raton, FL, USA, 2009.

9. Cáceres, A.; Kato, M.J. Importance of a multidisciplinary evaluation of *Piper* genus for development of new natural products in Latin America. *Int. J. Phytochemistry Nat. Ingrd.* 2014, 1, 4.

10. Takeara, R.; Gonçalves, R.; Ayres, V.F.S.; Guimarães, A.C. Biological properties of essential oils from the *Piper* species of Brazil: A review. In *Aromatic and Medicinal Plants—Back to Nature*; El-Shemy, H., Ed.; InTech: Rijeka, Croatia, 2017; pp. 81–93.

11. Dyer, L.A.; Palmer, A.D.N. *Piper: A Model Genus for Studies of Phytochemistry, Ecology, and Evolution*; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2004.

12. Nascimento, J.C.; de Paula, V.F.; David, J.M.; David, J.P. Occurrence, biological activities and 13C NMR data of amides from *Piper* (Piperaceae). *Quim. Nova* 2012, 35, 2288–2311. [CrossRef]

13. Paz, R.F.; Guimarães, E.F.; Ramos, C.S. The occurrence of phenylpropanoids in the saps of six *Piper* species (Piperaceae) from Brazil. *Gayana Bot.* 2017, 74, 236–239. [CrossRef]

14. Maia, J.G.S.; Andrade, E.H.A. Database of the Amazon aromatic plants and their essential oils. *Quim. Nova* 2009, 32, 595–622. [CrossRef]

15. Maia, J.G.S.; Zoghbi, M.G.B.; Andrade, E.H.A.; Santos, A.S.; da Silva, M.H.; Luz, A.I.R.; Bastos, C.N. Constituents of the essential oil of *Piper aduncum* L. growing wild in the Amazon region. *Flavour Fragr. J.* 1998, 13, 269–272. [CrossRef]

16. De Almeida, R.R.P.; Souto, R.N.P.; Bastos, C.M.; da Silva, M.H.L.; Maia, J.G.S. Chemical variation in *Piper aduncum* and biological properties of its dillapiole-rich essential oil. *Chem. Biodivers.* 2009, 6, 1427–1434. [CrossRef] [PubMed]

17. Ribeiro, A.S.; Batista, E.D.; Dairiki, J.K.; Chaves, F.C.; Inoue, L.A. Anesthetic properties of *Piper xylosteoides* (Kunth) Steud. from Federal District, Brazil. *J. Essent. Oil Res.* 2006, 18, 523–524. [CrossRef]

18. Silva, J.P.L.; Queiroz, D.M.; Azevedo, L.H.; Leal, L.C.; Rodrigues, J.L.; Lima, A.F.; Marchi, G.M.; Brito-Júnior, M.; Faria-e-Silva, A.L. Effect of eugenol exposure time and post-removal delay on the bond strength of a self-etching adhesive to dentin. *Oper. Dent.* 2011, 36, 66–71. [CrossRef] [PubMed]

19. Ribeiro, A.S.; Batista, E.D.; Dairiki, J.K.; Chaves, F.C.; Inoue, L.A. Anesthetic properties of *Ocimum gratissimum* essential oil for juvenile matrixín. *Acta Sci. Anim. Sci.* 2016, 38, 1–7. [CrossRef]

20. Ravindran, P.N. *Black Pepper: Piper nigrum*; CRC Press: Boca Raton, FL, USA, 2000.

21. Shivashankar, M. Genetic diversity and relationships of *Piper* species using molecular marker. *Int. J. Curr. Microbiol. Appl. Sci.* 2014, 3, 1101–1109.

22. Sen, S.; Skaria, R.; Muneer, P.M.A. Genetic diversity analysis in *Piper* species (Piperaceae) Using RAPD markers. *Mol. Biotechnol.* 2010, 46, 72–79. [CrossRef] [PubMed]

23. Chaveerach, A.; Tanee, T.; Sanubol, A.; Monkheang, P.; Sudmoon, R. Efficient DNA barcode regions for classifying *Piper* species (Piperaceae). *PhytoKeys* 2016, 70, 1–10.

24. Singh, K.; Das, G.; Jadhao, K.R.; Rout, G.R. Molecular diversity and phytochemical characterization of *Piper* species. *J. Appl. Hortic.* 2016, 18, 187–194.
25. Oliveira, G.L.; Moreira, D.D.; Mendes, A.D.; Guimarães, E.F.; Figueiredo, L.S.; Kaplan, M.A.; Martins, E.R. Growth study and essential oil analysis of *Piper aduncum* from two sites of Cerrado biome of Minas Gerais State, Brazil. *Rev. Bras. Farmacogn.* 2013, 23, 743–753. [CrossRef]

26. De Oliveira, J.C.S.; Dias, I.J.M.; da Camara, C.A.G.; Schwartz, M.O.E. Volatile constituents of the leaf oils of *Piper aduncum* L. from different regions of Pernambuco (northeast of Brazil). *J. Essent. Oil Res.* 2006, 18, 557–559. [CrossRef]

27. Pino, J.A.; Marbot, R.; Bello, A.; Urquiola, A. Essential oils of *Piper peltata* (L.) Miq. and *Piper aduncum* L. from Cuba. *J. Essent. Oil Res.* 2004, 16, 124–126. [CrossRef]

28. Silva, W.C.; de Souza Martins, J.R.; de Souza, H.E.M.; Heinzen, H.; Cesio, M.V.; Mato, M.; Albrecht, F.; de Azevedo, J.L.; de Barros, N.M. Toxicity of *Piper aduncum* L. (Piperales: Piperaceae) from the Amazon forest for the cattle tick *Rhipicephalus (Boophilus) microplus* (Acari: Ixodidae). *Vet. Parasitol.* 2009, 164, 267–274. [CrossRef] [PubMed]

29. Araújo, M.J.C.; Câmara, C.A.G.; Born, F.S.; Moraes, M.M.; Badji, C.A. Acaricidal activity and repellency of essential oil from *Piper aduncum* and its components against *Tetranychus urticae*. *Exp. Appl. Acarol.* 2012, 57, 139–155. [CrossRef] [PubMed]

30. Ferreira, R.G.; Monteiro, M.C.; da Silva, J.K.R.; Maia, J.G.S. Antifungal action of the dillapiole-rich oil of *Piper aduncum* against dermatomyces caused by filamentous fungi. *Br. J. Med. Med. Res.* 2016, 15, 1–10. [CrossRef] [PubMed]

31. Perigo, C.V.; Torres, R.B.; Bernacci, L.C.; Guimarães, E.F.; Haber, L.L.; Facanali, R.; Vieira, M.A.R.; Quecini, V.; Marques, M.O.M. The chemical composition and antibacterial activity of eleven *Piper* species from distinct rainforest areas in Southeastern Brazil. *Ind. Crops Prod.* 2016, 94, 528–539. [CrossRef]

32. Monzote, L.; Scull, R.; Cos, P.; Setzer, W.N. Essential oil from *Piper aduncum*: Chemical analysis, antimicrobial assessment, and literature review. *Medicines* 2017, 4, 49. [CrossRef] [PubMed]

33. Potzernheim, M.; Bizzo, H.R.; Agostini-Costa, T.S.; Vieira, R.F.; Carvalho-Cilva, M.; Gracindo, L.A.M.B. Chemical characterization of seven *Piper* species (Piperaceae) from Federal District, Brazil, based on volatile oil constituents. *Rev. Bras. Plantas Med.* 2006, 8, 10–12.

34. Setzer, W.N.; Park, G.; Agius, B.R.; Stokes, S.L.; Walker, T.M.; Haber, W.A. Chemical compositions and biological activities of leaf essential oils of twelve species of *Piper* from Monteverde, Costa Rica. *Nat. Prod. Commun.* 2008, 3, 1367–1374.

35. Morandim-Giannetti, A.A.; Pin, A.R.; Pietro, N.A.S.; de Oliveira, H.C.; Mendes-Giannini, M.J.S.; Alecio, A.C.; Kato, M.J.; de Oliveira, J.E.; Furlan, M. Composition and antifungal activity against *Candida albicans, Candida parapsilosis, Candida krusei* and *Cryptococcus neoformans* of essential oils from leaves of *Piper* and *Peperomia* species. *J. Med. Plants Res.* 2010, 4, 1810–1814.

36. Torquillo, H.S.; Pinto, A.C.; de Godoy, R.L.O.; Guimarães, E.F. Essential oil of *Piper cernum* Vell. var. *cernum* Yuncker from Rio de Janeiro, Brazil. *J. Essent. Oil Res.* 2000, 12, 443–444. [CrossRef]

37. Gasparetto, A.; Cruz, A.B.; Wagner, T.M.; Bonomini, T.J.; Correa, R.; Malheiros, A. Seasonal variation in the chemical composition, antimicrobial and mutagenic potential of essential oils from *Piper cernuum*. *Ind. Crops Prod.* 2017, 95, 256–263. [CrossRef]

38. Costantin, M.B.; Sartorelli, P.; Limberger, R.; Henriques, A.T.; Steppe, M.; Ferreira, M.J.P.; Ohara, M.T.; Emerenciano, V.P.; Kato, M.J. Essential oils from *Piper cernuum* and *Piper regnellii*: Antimicrobial activities and analysis by GC/MS and 13C-NMR. *Planta Med.* 2001, 67, 771–773. [CrossRef] [PubMed]

39. Capello, T.M.; Martins, E.G.A.; de Farias, C.F.; Figueiredo, C.R.; Matsuo, A.L.; Passero, L.F.D.; Oliveira-Silva, D.; Sartorelli, P.; Lago, J.H.G. Chemical composition and in vitro cytotoxic and antileishmanial activities of extract and essential oil from leaves of *Piper cernuum*. *Nat. Prod. Commun.* 2015, 10, 285–288. [PubMed]

40. Da Silva, J.K.R.; Andrade, E.H.A.; Guimarães, E.F.; Maia, J.G.S. Essential oil composition, antioxidant capacity and antifungal activity of *Piper divaricatum*. *Nat. Prod. Commun.* 2010, 5, 477–480. [PubMed]

41. Souto, R.N.P.; Harada, A.Y.; Andrade, E.H.A.; Maia, J.G.S. Insecticidal activity of *Piper* essential oils from the Amazon against the fire ant *Solenopsis saevissima* (Smith) (Hymenoptera: Formicidae). *Neotrop. Entomol.* 2012, 41, 510–517. [CrossRef] [PubMed]

42. Da Silva, J.K.R.; Silva, J.R.A.; Nascimento, S.B.; Luz, S.F.M.; Meireles, E.N.; Alves, C.N.; Ramos, A.R.; Maia, J.G.S. Antifungal activity and computational study of constituents from *Piper divaricatum* essential oil against *Fusarium* infection in black pepper. *Molecules* 2014, 19, 17926–17942. [CrossRef] [PubMed]
58. Osorio, J.R.; Mora, L.E.; Dulcey, A.J.C.; Andica, R.S. Extraction, chemical composition and antimicrobial activity of Phenylpropanoids produced by *Piper divaricatum*, a resistant species to infection by *Fusarium solani* f. sp. *piperis*, the pathogenic agent of fusariosis in black pepper. *J. Plant Pathol. Microbiol*. 2016, 7, 333.

59. Navickiene, H.M.; Morandim, A.D.; Alencar, A.C.; Ribeiro, Y.; Rebecchi, R.; Montes, R.; Scull, R.; Santos, E.M.M.; Young, E.M.M.; Stashenko, E.E. Essential oil composition from two species of *Piper* from Panama. *Planta Med.* 2016, 82, 986–991. [CrossRef] [PubMed]

60. Morandim, A.D.; Pin, A.R.; Pietro, N.A.; Alecio, A.C.; Kato, M.J.; Young, C.M.; de Oliveira, J.E.; Furlan, M. Composition and screening of antifungal activity against *Cladosporium cladosporioides* produced by *Piper divaricatum* a resistant species to infection by *Fusarium solani* f. sp. *piperis*. *Chem. Biodivers.* 2016, 43, 197–208. [CrossRef] [PubMed]

61. Furlan, M. Composition and screening of antifungal activity against *Fusarium solani* f. sp. *piperis* from *Piper aduncum* essential oils from *P. arboreum*. *Quim. Nova* 2006, 29, 467–470. [CrossRef] [PubMed]
61. Da Silva, J.K.; Pinto, L.C.; Burbano, R.M.; Montenegro, R.C.; Guimarães, E.F.; Andrade, E.H.; Maia, J.G. Essential oils of Amazon Piper species and their cytotoxic, antifungal, antioxidant and anti-cholinesterase activities. Ind. Crops Prod. 2014, 58, 55–60. [CrossRef]

62. Da Silva, J.K.; Silva, N.N.; Santana, J.F.; Andrade, E.H.; Maia, J.G.; Setzer, W.N. Phenylpropanoid-rich essential oils of Piper species from the Amazon and their antifungal and anti-cholinesterase activities. Nat. Prod. Commun. 2016, 11, 1907–1911.

63. Tasić, S.; Miladinović-Tasić, N. Cladosporium spp.: Cause of opportunistic mycoses. Acta Fac. Medicinae Naissensis 2007, 24, 15–19.

64. Ng, K.P.; Yew, S.M.; Chan, C.L.; Soo-Hoo, T.S.; Na, S.L.; Hassan, H.; Ngeow, Y.F.; Hoh, C.-C.; Lee, K.-W.; Yee, W.-Y. Sequencing of Cladosporium sphaerospermum, a dematiaceous fungus isolated from blood culture. Euras. J. Cell. 2012, 11, 705–706. [CrossRef] [PubMed]

65. Guerrini, A.; Sacchetti, G.; Rossi, D.; Paganello, G.; Muzzoli, M.; Andreotti, E.; Tognolini, M.; Pink, R.; Hudson, A.; Mouri, D.; Guaras, E.F.; Kaplan, M.A.C. Phytochemical investigation of anti-plasmodial metabolites from Brazilian Piper essential oils. Phytochem. Anal. 2015, 25, 124–128. [CrossRef] [PubMed]

66. Bosquiroli, L.S.S.; Demarque, D.P.; Rizk, Y.S.; Cunha, M.C.; Marques, M.C.S.; de Matos, M.F.C.; Kadri, M.C.T.; Carollo, C.A.; Arruda, C.C.P.; In vitro anti-Leishmania infantum activity of essential oil from Piper angustifolium. Rev. Bras. Farmacogn. 2015, 25, 124–128. [CrossRef] [PubMed]

67. Bernuci, K.Z.; Iwanaga, C.C.; Fernande-Andrade, C.M.; Lorenzetti, F.B.; Torres-Santos, E.C.; Faiões, V.D.; Gonçalves, J.E.; do Amaral, W.; Deschamps, C.; Scodro, R.B.; Cardoso, R.F. Evaluation of chemical composition and antileishmanial and antituberculosis activities of essential oils of Piper species. Molecules 2016, 21, 1698. [CrossRef] [PubMed]

68. Marques, A.M.; Barreto, A.L.S.; Batista, E.M.; da Curvelo, J.A.R.; Velozo, L.S.M.; de Moreira, D.L.; Guimarães, E.F.; Soares, R.M.A.; Kaplan, M.A.C. Chemistry and biological activity of essential oils from Piper clauseniunam (Piperaceae). Nat. Prod. Commun. 2010, 5, 1837–1840. [PubMed]

69. Do Carmo, D.F.M.; Amaral, A.C.F.; Machado, G.M.C.; Leon, L.L.; da Silva, J.R.A. Chemical and biological analyses of the essential oils and main constituents of Piper species. Molecules 2012, 17, 1819–1829. [CrossRef] [PubMed]

70. Marques, A.M.; Peixoto, A.C.C.; de Paula, R.C.; Nascimento, M.F.A.; Soares, L.F.; Velozo, L.S.M.; Guimarães, E.F.; Kaplan, M.A.C. Phytochemical investigation of anti-plasmodial metabolites from Brazilian native Piper species. J. Essent. Oil Bear. Plants 2015, 18, 74–81. [CrossRef]

71. Monzote, L.; Alarcón, O.; Setzer, W.N. Antiprotzoal activity of essential oils. Agric. Conspec. Sci. 2012, 77, 167–175.

72. Setzer, W.N.; Stokes, S.L.; Penton, A.F.; Takaku, S.; Haber, W.A.; Hansell, E.; Caffrey, C.R.; McKerrow, J.H. Cuzzain inhibitory activity of leaf essential oils of neotropical lauraceae and essential oil components. Nat. Prod. Commun. 2007, 2, 1203–1210.

73. Colovic, M.B.; Krstic, D.Z.; Lazarevic-Pastil, T.D.; Bondzic, A.M.; Vasic, V.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol. 2013, 11, 315–335. [CrossRef] [PubMed]

74. Inkganinan, K.; Temkitthawon, P.; Chuenchom, K.; Yuyaem, T.; Thongnoi, W. Screening for acetylcholinesterase inhibitory activity in plants used in Thai traditional rejuvenating and neurotonic remedies. J. Ethnopharmacol. 2003, 89, 261–264. [CrossRef] [PubMed]

75. Adewusi, E.A.; Moodley, N.; Steenkamp, V. Antioxidant and acetylcholinesterase inhibitory activity of selected southern African medicinal plants. S. Afr. J. Bot. 2011, 77, 638–644. [CrossRef]

76. Ferreres, F.; Oliveira, A.P.; Gil-Izquierdo, A.; Valentão, P.; Andrade, P.B. Piper betle leaves: Profiling phenolic compounds by HPLC/DAD–ESI/MS³ and anti-cholinesterase activity. Phytochem. Anal. 2014, 25, 453–460. [CrossRef] [PubMed]
80. Salleh, W.M.; Hashim, N.A.; Ahmad, F.; Yen, K.H. Anticholinesterase and antityrosinase activities of ten Piper species from Malaysia. Adv. Pharm. Bull. 2014, 4, 527–531. [PubMed]
81. Xiang, C.-P.; Han, J.-X.; Li, X.-C.; Li, Y.-H.; Zhang, Y.; Chen, L.; Qu, Y.; Hao, C.-Y.; Li, H.-Z.; Yang, C.-R.; et al. Chemical composition and acetylcholinesterase inhibitory activity of essential oils from Piper species. J. Agric. Food Chem. 2017, 65, 3702–3710. [CrossRef] [PubMed]
82. Wani, T.A.; Chandrashekara, H.H.; Kumar, D.; Prasad, R.; Sardar, K.K.; Kumar, D.; Tandan, S.K. Anti-inflammatory and antipyretic activities of the ethanolic extract of Shorea robusta Gaertn. f. resin. Indian J. Biochem. Biophys. 2012, 49, 463–467. [PubMed]
83. Adorjan, B.; Buchbauer, G. Biological properties of essential oils: An updated review. Flavour Fragr. J. 2010, 25, 407–426. [CrossRef]
84. Miguel, M.G. Antioxidant and anti-inflammatory activities of essential oils: A short review. Molecules 2010, 15, 9252–9287. [CrossRef] [PubMed]
85. De Sousa, D.P. Analgesic-like activity of essential oils constituents. Molecules 2011, 16, 2233–2252. [CrossRef] [PubMed]
86. De Cássia da Silveira e Sá, R.; Andrade, L.N.; de Sousa, D.P. A review on anti-inflammatory activity of monoterpene. Molecules 2013, 18, 1227–1254. [CrossRef] [PubMed]
87. De Cássia da Silveira e Sá, R.; Andrade, L.N.; dos Reis Barreto de Oliveira, R.; de Sousa, D.P. A review on anti-inflammatory activity of phenylpropanoids found in essential oils. Molecules 2014, 19, 1459–1480. [CrossRef] [PubMed]
88. Branquinho, L.S.; Santos, J.A.; Cardoso, C.A.; da Silva Mota, J.; Junior, U.L.; Kassuya, C.A.; Arena, A.C. Anti-inflammatory and toxicological evaluation of essential oil from Piper glabratum leaves. J. Ethnopharmacol. 2017, 198, 372–378. [CrossRef] [PubMed]
89. Brait, D.R.; Vaz, M.S.; da Silva Arrigo, J.; de Carvalho, L.N.; de Araujo, F.H.; Vani, J.M.; da Silva Mota, J.; Cardoso, C.A.; Oliveira, R.J.; Negrao, F.J.; et al. Toxicological analysis and anti-inflammatory effects of essential oil from Piper viscosum leaves. Regul. Toxicol. Pharmacol. 2015, 73, 699–705. [CrossRef] [PubMed]
90. Lima, D.K.; Ballico, L.J.; Lapa, F.R.; Gonçalves, H.P.; de Souza, L.M.; Iacomini, M.; de Paula Werner, M.F.; Baggio, C.H.; Pereira, I.T.; da Silva, L.M.; et al. Evaluation of the antinociceptive, anti-inflammatory and gastric antiulcer activities of the essential oil from Piper aleyreanum C. DC in rodents. J. Ethnopharmacol. 2012, 142, 274–282. [CrossRef] [PubMed]
91. De Souza, S.P.; Valverde, S.S.; Costa, N.F.; Calheiros, A.S.; Lima, K.S.C.; Frutuoso, V.S.; Lima, A.L.S. Chemical composition and antinociceptive activity of the essential oil of Piper mollicomum and Piper rivinoides. J. Med. Plants Res. 2014, 8, 788–793.
92. Yu, J-Q.; Lei, J-C.; Zhang, X-Q.; Yu, H-D.; Tian, D-Z.; Liao, Z-X.; Zhou, G. Anticancer, antioxidant and antimicrobial activities of the essential oil of Lycopus lucidus Turecz. var. hirtus Regel. Food Chem. 2011, 126, 1593–1598. [CrossRef] [PubMed]
93. Mitoshi, M.; Kuritaya, I.; Nakayama, H.; Miyazato, H.; Sugimoto, K.; Kobayashi, Y.; Jippo, T.; Kanazawa, K.; Yoshida, H.; Mizushima, Y. Effects of essential oils from herbal plants and citrus fruits on DNA. J. Agric. Food Chem. 2012, 60, 11343–11350. [CrossRef] [PubMed]
94. Gautam, N.; Mantha, A.K.; Mittal, S. Essential oils and their constituents as anticancer agents: A mechanistic view. BioMed Res. Int. 2014, 2014, 154106. [CrossRef] [PubMed]
95. Da Silva, J.K.R.; Pinto, L.C.; Burbano, R.M.R.; Montenegro, R.C.; Andrade, E.H.A.; Maia, J.G.S. Composition and cytotoxic and antioxidant activities of the oil of Piper aequale Vahl. Lipids Health Dis. 2016, 15, 174. [CrossRef] [PubMed]
96. Girola, N.; Figueiredo, C.R.; Farias, C.F.; Azevedo, R.A.; Ferreira, A.K.; Teixeira, S.F.; Capello, T.M.; Martins, E.G.A.; Matsuoi, A.L.; Travassos, L.R.; et al. Camphene isolated from essential oil of Piper cernuum (Piperaceae) induces intrinsic apoptosis in melanoma cells and displays antitumor activity in vivo. Biochem. Biophys. Res. Commun. 2015, 467, 928–934. [CrossRef] [PubMed]
97. Morales, A.; Rojas, J.; Mouriir, L.M.; Araujo, L.; Rondón, M. Chemical composition, antimicrobial and cytotoxic activities of Piper hispidum Sw. essential oil collected in Venezuela. J. Appl. Pharm. Sci. 2013, 3, 16–20.
98. Anderson, R.R.; Girola, N.; Figueiredo, C.R.; Londero, V.S.; Lago, J.H.G. Circadian variation and in vitro cytotoxic activity evaluation of volatile compounds from leaves of Piper regnellii (Miq) C. DC. var. regnellii (C. DC.) Yunck (Piperaceae). Nat. Prod. Res. 2017. [CrossRef] [PubMed]
99. Lognay, G.C.; Bouxin, P.; Marlher, M.; Haubruege, E.; Gaspar, C.; Rodriguez, A. Composition of the essential oil of \textit{Piper acutifolium} Ruiz. and Pav. from Peru. \textit{J. Essent. Oil Res.} \textbf{1996}, 8, 689–691. [CrossRef]

100. Vila, R.; Tomi, F.; Mundina, M.; Santana, A.I.; Solis, P.N.; López Arce, J.B.; Balderrama Iclina, J.L.; Iglesias, J.; Gupta, M.P.; Casanova, J.; et al. Unusual composition of the essential oils from the leaves of \textit{Piper aduncum}. \textit{Flavour Fragr. J.} \textbf{2005}, 20, 67–69. [CrossRef]

101. Lopez Arze, J.B.; Collin, G.; Garneau, F.-X.; Jean, F.-I.; Gagnon, H. Essential oils from Bolivia. VIII. \textit{Piperaceae}: \textit{Piper heterophyllum} Ruiz et Pav. \textit{P. aduncum} L. \textit{J. Essent. Oil Bear. Plants} \textbf{2008}, 11, 53–57. [CrossRef]

102. Oliveira, G.L.; Vieira, T.M.; Nunes, V.F.; Duarte, E.R.; Moreira, D.D.; Kaplan, M.A.; Martins, E.R. Chemical composition and efficacy in the egg-hatching inhibition of essential oil of \textit{Piper aduncum} against \textit{Haemonchus contortus} from sheep. \textit{Rev. Bras. Farmacogn.} \textbf{2014}, 24, 288–292. [CrossRef]

103. Pacheco, F.V.; de Paula Avelar, R.; Alvarenga, I.C.; Bertolucci, S.K.; de Alvarenga, A.A.; Pinto, J.E. Essential oil of monkey-pepper (\textit{Piper aduncum} L.) cultivated under different light environments. \textit{Ind. Crops Prod.} \textbf{2016}, 85, 251–257. [CrossRef]

104. Pino, J.A.; Bello, A.; Urquiola, A. The leaf oil of \textit{Piper ossonum} Trel. from Cuba. \textit{J. Essent. Oil Res.} \textbf{2002}, 14, 375. [CrossRef]

105. Facundo, V.A.; Ferreira, S.A.; de Morais, S.M. Essential oils of \textit{Piper dumosum} Rudge and \textit{Piper aleyreanum} (Kunth) C. DC. (\textit{Piperaceae}) from Brazilian Amazonian forest. \textit{J. Essent. Oil Res.} \textbf{2007}, 19, 165–166. [CrossRef]

106. De BF Ferraz, A.; Balbino, J.M.; Zini, C.A.; Ribeiro, V.L.; Bordignon, S.A.; von Poser, G. Acaricidal activity and chemical composition of the essential oil from three \textit{Piper} species. \textit{Parasitol. Res.} \textbf{2010}, 107, 243–248. [CrossRef] [PubMed]

107. Da Silva Mota, J.; de Souza, D.S.; Boone, C.V.; Lima Cardoso, C.A.; Bastos Caramão, E. Identification of the volatile compounds of leaf, flower, root and stem oils of \textit{Piper amalago} (\textit{Piperaceae}). \textit{J. Essent. Oil Bear. Plants} \textbf{2013}, 16, 11–16. [CrossRef]

108. Simeone, M.L.F.; Mikich, S.B.; Cóccco, L.C.; Hansel, F.A.; Bianconi, G.V. Chemical composition of essential oils from ripe and unripe fruits of \textit{Piper amalago} L. var. \textit{medium} (Jacq.) Yuncker and \textit{Piper hispidum} Sw. \textit{J. Essent. Oil Res.} \textbf{2011}, 6, 23, 54–58. [CrossRef]

109. Trillini, B.; Velasquez, E.R.; Pellegro, R. Chemical composition and antimicrobial activity of essential oil of \textit{Piper angustifolium}. \textit{Plantae Med.} \textbf{1996}, 62, 372–373. [CrossRef] [PubMed]

110. Andrade, E.H.A.; Ribeiro, A.F.; Guimarães, E.F.; Maia, J.G.S. Essential oil composition of \textit{Piper ananifolium} (Kunth) C. DC. \textit{J. Essent. Oil Bear. Plants} \textbf{2005}, 8, 289–294. [CrossRef]

111. Mundina, M.; Vila, R.; Tomi, F.; Gupta, M.P.; Adzet, T.; Casanova, J.; Igueral, S. Leaf essential oils of three Panamanian \textit{Piper} species. \textit{Phytochemistry} \textbf{1998}, 47, 1277–1282. [CrossRef]

112. Machado, S.M.F.; Militão, J.S.L.T.; Facundo, V.A.; Ribeiro, A.; Morais, S.M.; Machado, M.I.L. Leaf oils of two Brazilian \textit{Piper} species: \textit{Piper arboreum} Aublet var. \textit{latifolium} (C.DC) Yuncker and \textit{Piper hispidum} Sw. \textit{J. Essent. Oil Res.} \textbf{1994}, 6, 643–644. [CrossRef]

113. Avella, E.; Rios-Motta, J. Main constituents and cytotoxic activity of the essential oil of \textit{Piper artanthe}. \textit{Chem. Nat. Compd.} \textbf{2010}, 46, 547–549. [CrossRef]

114. Ciccio, J.F. Essential oil from the leaves of \textit{Piper augustum} from “Alberto M. Brenes” Biological Preserve, Costa Rica. \textit{J. Essent. Oil Res.} \textbf{2005}, 17, 251–253. [CrossRef]

115. Gupta, M.P.; Arias, T.D.; Williams, N.H.; Bos, R.; Tattje, D.H.E. Safrole, the main component of the essential oil from \textit{Piper auritum} of Panama. \textit{J. Nat. Prod.} \textbf{1985}, 48, 330. [CrossRef]

116. Pino, J.A.; Rosado, A.; Rodriguez, M.; Garcia, D. Composition of leaf oil of \textit{Piper auritum} H.B.K. grown in Cuba. \textit{J. Essent. Oil Res.} \textbf{1998}, 10, 333–334. [CrossRef]

117. Monzote, L.; Garcia, M.; Montalvo, A.M.; Scull, R.; Miranda, M. Chemistry, cytotoxicity and antileishmanial activity of the essential oil from \textit{Piper auritum}. \textit{Memorias do Instituto Oswaldo Cruz} \textbf{2010}, 105, 168–173. [CrossRef] [PubMed]

118. Leal, S.M.; Pino, N.; Stashenko, E.E.; Martinez, J.R.; Escobar, P. Antiprotozoal activity of essential oils derived from \textit{Piper spp.} grown in Colombia. \textit{J. Essent. Oil Res.} \textbf{2013}, 25, 512–519. [CrossRef]

119. Vargas, L.; Pérez-Alonso, M.J.; Velasco-Negueruela, A.; Palá-Paul, J.; García Vallejo, M.C. Leaf essential oil of \textit{Piper barbatum} H.B.K. (\textit{Piperaceae}) from Peru. \textit{J. Essent. Oil Res.} \textbf{2003}, 15, 163–164. [CrossRef]

120. Olivero-Verbel, J.; Güette-Fernandez, J.; Stashenko, E. Acute toxicity against \textit{Artemia franciscana} of essential oils isolated from plants of the genus \textit{Lippia} and \textit{Piper} collected in Colombia. \textit{Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas} \textbf{2009}, 8, 419–427.
121. Tangarife-Castaño, V.; Correa-Royero, J.B.; Roa-Linares, V.C.; Pino-Benitez, N.; Betancur-Gavis, L.A.; Durán, D.C.; Stashenko, E.E.; Mesa-Arango, A.C. Anti-dermatophytes, anti-Fusarium and cytotoxic activity of essential oils and plant extracts of Piper genus. J. Essent. Oil Res. 2014, 26, 221–227. [CrossRef]

122. Facundo, V.A.; Rezende, C.M.; Pinto, A.C. Essential oil of Piper carnicipunctatum C. D. leaves and stems. J. Essent. Oil Res. 2006, 18, 296–297. [CrossRef]

123. Vargas, L.; Velasco-Negueruela, A.; Pérez-Alonso, M.J.; Palá-Paül, J.; García Vallejo, M.C. Essential oil composition of the leaves and spikes of Piper carpumza Ruiz et Pavón (Piperaceae) from Peru. J. Essent. Oil Res. 2004, 16, 122–123. [CrossRef]

124. De Abreu, A.M.; Brighente, I.M.C.; Aguilar, E.M.; Rebelo, R.A. Volatile constituents of Piperaceae from Santa Catarina, Brazil—Essential oil composition of Piper cernuum Vell. and Peperomia emarginella (Sw.) C. D. J. Essent. Oil Res. 2005, 17, 286–288. [CrossRef]

125. Assis, A.; Brito, V.; Bittencourt, M.; Silva, L.; Oliveira, F.; Oliveira, R. Essential oils composition of four Piper species from Brazil. J. Essent. Oil Res. 2013, 25, 203–209. [CrossRef]

126. Andrade, E.H.A.; Guimarães, E.F.; da Silva, M.H.L.; Pereira, R.A.; Basost, C.N.; Maia, J.G.S. Essential oil composition of Piper cypripodum (Miq.) C. D. J. Essent. Oil Bear. Plants 2006, 9, 53–59. [CrossRef]

127. Luz, A.I.R.; da Silva, J.D.; Zoghbi, M.G.B.; Andrade, E.H.A.; da Silva, M.H.L.; Maia, J.G.S. Volatile constituents of Brazilian Piperaceae. Part 4. Essential oil composition of Piper dactylotigum, P. plurinervosum and P. vitaceum. J. Essent. Oil Res. 2016, 165, 64–70. [CrossRef] [PubMed]

128. Andrade, E.H.A.; Guimaraes, E.F.; Maia, J.G.S. Essential oil composition of Piper demeraranum (Miq.) C. D. J. Essent. Oil Bear. Plants 2006, 9, 47–52. [CrossRef]

129. De Almeida, J.G.L.; Silveira, E.R.; Pessoa, O.D.L.; Nunes, E.P. Essential oil composition from leaves and fruits of Piper damnacicum G. Mey. J. Essent. Oil Res. 2009, 21, 228–230. [CrossRef]

130. Vila, R.; Mundina, M.; Tomi, F.; Ciccio, J.F.; Gupta, M.P.; Iglesias, J.; Casanova, J.; Cañigueral, S. Constituents of the essential oils from Piper friedrichsthalii C.DC. and P. pseudolindenii C.DC. from Central America. Flavour Fragr. J. 2003, 18, 198–201. [CrossRef]

131. Von Poser, G.L.; Röger, L.R.; Henriques, A.T.; Lamaty, G.; Menut, C.; Bessière, J.M. Aromatic plants from Brazil. III. The chemical composition of Piper gaudichaudianum Kunth and P. variabile (Kunth) Steudel essential oils. J. Essent. Oil Res. 1994, 6, 337–340. [CrossRef]

132. De Morais, S.M.; Facundo, V.A.; Bertini, L.M.; Cavalcanti, E.S.; dos Anjos Júnior, J.F.; Ferreira, S.A.; de Brito, E.S.; de Souza Neto, M.A. Chemical composition and larvicidal activity of essential oils from P. gaudichaudianum. Biochem. Syst. Ecol. 2007, 35, 670–675. [CrossRef]

133. Andrade, E.H.; Zoghbi, M.D.; Santos, A.S.; Maia, J.G. Essential oils of Piper gaudichaudianum Kunth and P. regnellii (Miq.) C.DC. J. Essent. Oil Res. 1998, 10, 465–467. [CrossRef]

134. De Almeida, J.G.L.; Silveira, E.R.; Pessoa, O.D.L.; Nunes, E.P. Essential oil composition from leaves and fruits of Piper diversatum Lindley. Flavour Fragr. J. 1994, 670–675. [CrossRef]

135. De Morais, S.M.; Facundo, V.A.; Bertini, L.M.; Cavalcanti, E.S.; dos Anjos Júnior, J.F.; Ferreira, S.A.; de Brito, E.S.; de Souza Neto, M.A. Chemical composition and larvicidal activity of essential oils from P. gaudichaudianum. Biochem. Syst. Ecol. 2007, 35, 670–675. [CrossRef]

136. Pêres, V.F.; Moura, D.J.; Sperotto, A.R.M.; Damasceno, F.C.; Caramão, E.B.; Zini, C.A.; Saffi, J. Chemical composition and cytotoxic, mutagenic and genotoxic activities of the essential oil from Piper gaudichaudianum Kunth leaves. Food Chem. Toxicol. 2009, 47, 2389–2395. [CrossRef] [PubMed]

137. Sauter, I.P.; Rossa, G.E.; Lucas, A.M.; Cibulski, S.P.; Roche, P.M.; da Silva, L.A.A.; Rott, M.B.; Mário, R.; Vargas, R.M.F.; Cassel, E.; et al. Chemical composition and amoebicidal activity of Piper hispidinervum (Piperaceae) essential oil. Ind. Crop. Prod. 2012, 40, 292–295. [CrossRef]

138. Cruz, S.M.; Cáceres, A.; Álvarez, L.; Morales, J.; Apel, M.A.; Henriques, A.T.; Salamanca, E.; Giménez, A.; Vásquez, Y.; Gupta, M.P. Piper jacquemontianum and Piper variabile from Guatemala and bioactivity of the dichloromethane and methanol extracts. Rev. Bras. Farmacogn. 2011, 21, 587–593. [CrossRef]
141. Do Nascimento, J.C.; David, J.M.; Barbosa, L.C.A.; de Paula, V.F.; Demuner, A.J.; David, J.P.; Conserva, L.M.; Ferreira, J.C.; Guimarães, E.F. Larvicidal activities and chemical composition of essential oils from *Piper klotzschianum* (Kunth) C. DC. (Piperaceae). *Pest Manag. Sci.* 2013, 69, 1267–1271. [PubMed]

142. Da Silva, J.K.R.; Andrade, E.H.A.; Kato, M.J.; Carreira, L.M.M.; Guimarães, E.F.; Maia, J.G.S. Antioxidant capacity and larvicidal and antifungal activities of essential oils and extracts from *Piper krukoffii*. *Nat. Prod. Commun.* 2011, 6, 1361–1366. [PubMed]

143. Mundina, M.; Vila, R.; Tomi, E.; Tomás, X.; Cicció, J.F.; Adzet, T.; Casanova, J.; Cañigueral, S. Composition and chemical polymorphism of the essential oils from *Piper lanceaefolium*. *Biochem. Syst. Ecol.* 2001, 29, 739–748. [CrossRef]

144. Andrade, E.H.A.; Ribeiro, A.F.; Guimarães, E.F.; Maia, J.G.S. Essential oil composition of *Piper manausense* Yuncker. *J. Essent. Oil Bear. Plants* 2005, 8, 295–299. [CrossRef]

145. Ramos, L.S.; da Silva, M.L.; Luz, A.I.R.; Zoghbi, M.G.B.; Maia, J.G.S. Essential oil of *Piper marginatum*. *J. Nat. Prod.* 1986, 49, 712–713. [CrossRef]

146. Autran, E.S.; Neves, I.A.; Silva, C.S.B.; Santos, G.K.N.; Cámara, C.A.G.; Navarro, D.M.A.F. Chemical composition, oviposition deterrent and larvicidal activities against *Aedes aegypti* of essential oils from *Piper marginatum* Jacq. (Piperaceae). *Bioresour. Technol.* 2009, 100, 2284–2288. [CrossRef] [PubMed]

147. Torquilho, H.S.; Pinto, A.C.; Godoy, R.L.O.; Guimarães, E.F. Essential oil of *Piper renitens* (Miq.) Yunck leaves and stems (Piperaceae) from Brazilian Amazonian forest. *J. Essent. Oil Res.* 2007, 19, 557–558. [CrossRef]

151. Moreira, D.L.; Souza, P.O.; Kaplan, M.A.C.; Pereira, N.A.; Cardoso, G.L.; Guimarães, E.F. Effect of leaf essential oil from *Piper salmsianiun* C. DC. in mice behaviour. *Anais da Academia Brasileira de Ciências* 2001, 73, 33–57. [CrossRef] [PubMed]

152. Facundo, V.A.; de Morais, S.M. Essential oil of *Piper tuberculatum* var. *tuberculatum* (Micq.) CDC leaves. *J. Essent. Oil Res.* 2005, 17, 304–305. [CrossRef]

153. Mesquita, J.M.O.; Oliveira, A.B.; Braga, F.C.; Lombardi, J.A.; da Cunha, A.P.; Salgueiro, L.; Cavaleiro, C. Essential oil constituents of *Piper vicosanum* Yuncker from the Brazilian Atlantic forest. *J. Essent. Oil Res.* 2006, 18, 392–395. [CrossRef]

154. Dognini, J.; Meneghetti, E.K.; Teske, M.N.; Begrini, I.M.; Rebelo, R.A.; Dalmarco, E.M.; Verdi, M.; de Gasper, A.L. Antibacterial activity of high safrole contain essential oils from *Piper xylosteoides* (Kunth) Steudel. *J. Essent. Oil Res.* 2012, 24, 241–244. [CrossRef]