Expression of Cucumber Green Mottle Mosaic Virus Movement Protein in Cucumber Leads to the Expression Changes of Endogenous Gene

Huawei Liu1,2,3, Laixin Luo1,2, Pengfei Liu1,2, Chaoqiong Liang1,2 and Jianqiang Li1,2* \\
1Department of Plant Pathology, China Agricultural University, Beijing, P.R. China \\
2Beijing Engineering Research Centre of Seed and Plant Health (BERC-SPH)/Beijing Key Laboratory of Seed Disease Testing and Control (BKL-SDTC), Beijing, P.R. China \\
3Molecular Plant Pathology Laboratory, USDA-ARS, Beltsville

Abstract

Cucumber green mottle mosaic virus (CGMMV) is one of the most important diseases of cucurbit crops. To date the only method available to control this devastating disease is the use of resistant varieties or disease-resistant rootstocks. However, the development of transgenic technology offers the potential to create resistant varieties through the expression of foreign genes. Such approaches are not without risk, and it has been noted that introduction of transgenes can have wide ranging effects, often affecting non-target processes. The current study was therefore initiated to investigate the effect of genetic modification on 12 related genes in transgenic cucumber seedlings expressing the CGMMV movement protein (CGMMV-MP) at the two-true-leaf stage. Compared with non-transgenic cucumbers (cv. Zhongnong 16), the results of quantitative PCR (qPCR) indicated that six of the genes had significant altered expression in the transgenic plants, four that were up-regulated including the cucumber peeling cupredoxin, Histone H4, Cytochrome oxidase and Thaumatin-like protein and two that were down-regulated, cytochrome b6-f complex and disulfide isomerase. The data collected therefore provide greater understanding of the impact of introduced exogenous genes in cucumber, as well as highlighting resistance genes that have the potential to prevent CGMMV infection.

Keywords

Cucumber green mottle mosaic virus, Yeast two-hybrid system, Transgenic cucumber, qPCR

Abbreviations

PCR: Polymerase china reaction; qPCR: Quantitative real-time polymerase china reaction; CGMMV: Cucumber green mottle mosaic virus; MP: Movement proteins; Bt: Bacillus thuringiensis; SEM: Scanning electron microscope; YTHS: Yeast two-hybrid system; iTRAQ: Isobaric tags for relative and absolute quantitation; BA: 6-Benzyladenine; MS: Murashige and Skoog; IAA: Indole-3-acetic acid; CB: Carbenicillin; NAA: Neomycin phosphotransferase; Kan+: Kanamycin

Introduction

Cucumber green mottle mosaic virus (CGMMV), which belongs to the Tobamovirus genus of the Virgaviridae family, was first reported in Cucumis sativus from Great Britain [1], but has quickly spread to most regions of the world [1-9]. As well as being soil borne, the disease can be spread by contaminated plant materials, including seeds, pollen and vegetative propagation stock, and is easily transmitted to healthy cucumber plants [7,10,11]. Although precautions can be taken to avoid the spread of CGMMV between crops and different geographic regions, once CGMMV has been introduced to fields or nurseries, all infected plants, as well as suspect plants from the surrounding area, must be removed and destroyed [12]. In the absence of effective methods of control, CGMMV, which has a wide host range, has become one of the most devastating pathogens of cucurbitaceous crops. However, recent developments using transgenic plants have shown that expressing components of CGMMV genome, including the coat protein (CP), movement protein (MP) and RNA replicate, can induce CGMMV resistance in cucumber plants via post-transcriptional gene silencing [13,14]. Such CGMMV-resistant varieties could be an invaluable tool for control CGMMV during seed production or the preparation of vegetative propagation stocks by grafting.

The genomes of most plant viruses contain genes that encode movement proteins (MP), which facilitate the movement of virus...
The PCR protocols was as following: 50°C for 30 min, 95 °C for 2
Finally, added DEPC treated water to make 25 µL reaction volumes.
sequence contained in the NCBI data base (Accession No. D12505).
5 µM primers PMU, 5'-actgagctcctaggtgtgatcggattgta-3' and PMD,
Platium® taq high fidelity enzyme mix (Invitrogen, U.S.), 0.5 µL of
12.5 µL of 2 × reaction mix and 0.5 µL of SuperScript® III RT/
on MyCycler thermo cycler (Bio-Rad). For the PCR reaction, 1 µL of
EASYspin Kit (Biomed, Beijing, China). The RT-PCR was performed
procedures for SEM were followed as for the previous studies [24].
cucumber leaves were ground in 0.1 M phosphate buffer with pestle
and mortar [25]. Then, adopted the scanning electron microscope
(SEM) to observe the CGMMV particles in 5 µL plant extracts, the
procedures for SEM were followed as for the previous studies [24].

The total RNA was extracted from 100 mg leaf using the
EASYspin Kit (BioMed, Beijing, China). The RT-PCR was performed
on MyCycler thermo cycler (Bio-Rad). For the PCR reaction, 1 µL of
RNA was added into 13 µL of the PCR reaction mixture containing
12.5 µL of 2 × reaction mix and 0.5 µL of SuperScript® III RT/
Platium* taq high fidelity enzyme mix (Invitrogen, U.S.), 0.5 µL of
5 µM primers PMU, 5'-actgagctcctaggtgtgatcggattgta-3' and PMD,
5'-gactagc
The results indicated that six of the genes evaluated had significantly
expression levels of the six interaction proteins identified by the
transgenic and wild-type (cv. Zhongnong 16) seedlings at the two-
the total RNA from the leaf of different seedlings and then evaluated
the leaf samples were confirmed to be infected with CGMMV by SEM
identified using iTRAQ analysis [28]. The YTHS analysis identified
two proteins, cytochrome b6-f complex and a thaumatin-like protein,
which had been among the eight pathogenesis-related proteins (Table
Expression of Cucumber Green Mottle Mosaic Virus Movement Protein
in Cucumber Leads to the Expression Changes of Endogenous Gene. J Hortic Sci Res 1(1):1-6

Table 1: Twelve related proteins identified by YTHS and iTRAQ analysis of cucumber plants infected with CGMMV.

No.	Protein name	Accession / Homology (Length)	Protein / expressing change	Associated Function
1	Cytochrome b6-f complex	AF527536 / 86% (841 bp)	-	Electron carrier activity and metal ion binding
2	Cysteine synthase	-	-	Transport proteins, located in the chloroplast
3	Dsulfide isomerase	-	-	Respiratory electron-transport chain
4	Catalase	QJ420912 / -0.7	-	Pathogenesis-related proteins
5	Cucumber peeling cupredoxin	AF627536 / -0.8	-	Pathogenesis-related proteins
6	NADH-quinone oxidoreductase subunit K	-	-	Pathogenesis-related proteins
7	Histone H4	-	-	Pathogenesis-related proteins
8	Pathogen regulatory proteins	U93586 / 74% (568 bp)	-	Pathogenesis-related proteins
9	NADH-quinone oxidoreductase subunit J	-	-	Pathogenesis-related proteins
10	Phloem protein (PP2)	AF527536 / 86% (841 bp)	-	Pathogenesis-related proteins
11	CuOxidase	Q4VZK4 / -1.4	-	Pathogenesis-related proteins
12	Thaumatin-like protein	JF694925 / 96% (750 bp)	-	Pathogenesis-related proteins

1Interaction proteins identified by YTHS.
2Proteins with significantly altered abundance in CGMMV-infected cucumber plants identified by iTRAQ analysis, the change value were assessed to estimate between the CGMMV-infected and CGMMV-free cucumber [28].
altered expression compared to healthy cucumber (Figure 2), four that were up-regulated including cucumber peeling cupredoxin, histone H4, cytochrome oxidase and the thaumatin-like protein and two that were down-regulated including cytochrome b6-f complex and disulfide isomerase.

Discussion

Twelve related proteins were identified in the current YTHS analysis and previous iTRAQ study, were selected to investigate how the transgenic expression of the CGMMV-MP in cucumber seedlings affected the expression levels of endogenous genes. Only six of the genes assessed were found to have significant altered expression in the genetically modified cucumber seedlings. The thaumatin-like protein (TLP, Q5DJS5), which was identified in both the iTRAQ and YTHS analyses was the most affected being 2.3-fold up-regulation [28]. This protein is known to be an important pathogenesis-related (PR) protein belonging to the PR-1 to PR-17 family that is involved in host defense and developmental processes in plants [29,30].

Table 2: Primers used to evaluate the expression levels of 12 related genes in transgenic cucumber seedlings expressing the CGMMV-MP.

Primer name	Sequence (5’ to 3’)	Product length
Tubulin (reference gene)	Forward, GCGTTTGTCGTTGACTATG	232 bp
	Reverse, GGATACAAGGCGGTTGAGG	
Cytochrome b6-f complex	Forward, GCCACCACTTCATCATCG	238 bp
	Reverse, GGAAGAGAACACCAAAATG	
Cysteine synthase	Forward, GCCATCTTTTGAGAAGACTAG	222 bp
	Reverse, GAAACATGAGGTTTGAGCCG	
Disulfide isomerase	Forward, GAGCAAGCCTTTTGTAAG	213 bp
	Reverse, GATTCCTGTGTTGCG	
Catalase (CAT)	Forward, GATAGATGCGAGGAGGATTG	231 bp
	Reverse, GGAGTAACAGGCAACTG	
Cucumber peeling cupredoxin	Forward, GACTTGGATTCTGCGAAAG	215 bp
	Reverse, GCAAGAGAAGATCACCGTG	
NADH-quinone oxidoreductase subunit K	Forward, GTTCGACTCTTGCCTATG	226 bp
	Reverse, GTCGTATTTTCGTTGCGTG	
NADH-quinone oxidoreductase subunit J	Forward, GAAATGTCGTTGTAAGGG	229 bp
	Reverse, GGTGTAGATAGTATGCG	
Histone H4	Forward, GAAAGCAGCGGACACCA	220 bp
	Reverse, GAGGTAACACACGAAACG	
Pathogen regulatory proteins CuPi1	Forward, GCTCAAGCTACCTCAAG	201 bp
	Reverse, GCGTGATAAGCTGCGTGGT	
Phloem protein (PP2)	Forward, GAAATGAGCGTGGCCAC	235 bp
	Reverse, GATCCGAAAACACATCCTCG	
Cytochrome oxidase	Forward, GTCATTTGTGTTGTAAGTCG	222 bp
	Reverse, GACGAATGGGTAACGGAGA	
Thaumatin-like protein	Forward, GCCTATTGTGTTGATGTTCG	172 bp
	Reverse, GATCTGGAGCTGACGAGCATG	

Figure 2: Expression level of 12 related genes in non-transgenic (ZN) and transgenic (GM) cucumber seedlings expressing the CGMMV-MP gene.

Vertical axis, take an average value of expression level from twenty-five independent transgenic seedlings; Horizontal axis, the detection of 12 genes as follow list. 1: Tubulin control, 2: Cytochrome b6-f complex, 3: Cucumber peeling cupredoxin, 4: Cysteine synthase, 5: Catalase (CAT), 6: NADH-quinone oxidoreductase subunit K 7: Histone H4 8: Pathogen regulatory proteins CuPi1 9: Cytochrome oxidase 10: NADH-quinone oxidoreductase subunit J, 11: Phloem protein (PP2) 12: Thaumatin-like protein 13: Disulfide isomerase, GM: Genetically modified cucumber seedlings; ZN: ‘Zhongnong 16’ cucumber seedlings; **, t test significant at $P < 0.01$.

Liu et al. J Hortic Sci Res 2016, 1(1):1-6

ISSN: 2578-6598 | Page 4
Many TLP genes have been validated via empirical experiments as being associated with increased resistance to pathogen infections in transgenic plants [29]. For example it has been found that TLPs can be induced during the hypersensitive response to cucumber mosaic virus (CMV) and they specifically interact with the CMV-MP and -CP in transgenic yeast models [31]. It is therefore interesting to note that the current study found that TLPs could also be up-regulated in cucumber plants expressing the CGMMV-MP, and those previous studies have shown that TLPs are candidate genes with the potential to create cucumber varieties resistant to CGMMV infection. The most significantly down-regulated protein (1.4-fold) in the current study was cytochrome b6-f (cyt-b6-f), which is in agreement with the iTRAQ study that found this protein was also down-regulated in response to CGMMV infection. The cyt-b6-f complex is an important protein in chloroplasts having a critical function in PS I and II and ATP synthase during photosynthesis. In addition, it has also been found to be an important component of the plant pathogen interaction, with one study finding that cyt-b6-f was inhibited in rice (Oryza sativa) plants infected by rice stripe virus (RSV) [32] causing reduced energy production and reduced synthesis of structural components of the chloroplast, which were linked to the various symptoms of infection. Furthermore, it was also found that the accumulation of RSV altered the expression of 9788 genes affecting many aspects of the host’s cellular system including protein synthesis systems, organelle function, cell structure and defense systems. These studies might therefore suggest that the down-regulation of cyt-b6f could negatively affect the chloroplasts of the transgenic cucumbers and lead to reduced resistance to CGMMV.

The four other genes that had significantly altered expression in the transgenic cucumber seedlings included disulfide isomerase (PDI), cucumber peeling cupredoxin, histone H4 and cytochrome oxidase. The PDI, which was down-regulated 0.6-fold, is known to be involved in the oxidative folding of cystine knot defense proteins [33]. These results are in contrast to a previous study that found that PDI was up-regulated in Nicotiana benthamiana plants infected with Potato virus X (PVX) [34]. Furthermore, positional cloning has confirmed that variants of PDI like 5-1 (HvPDI5-1) are linked to the Bymovirus resistance that occurs naturally in barley (Hordeum vulgare L.) [35]. Although the role of PDI is complicated, it is likely that its down-regulation in the transgenic cucumbers would have a negative effect overall, and reduce their resistance to infection. The three remaining genes that had altered expression in the transgenic cucumber seedlings were found to be up-regulated. The cucumber peeling cupredoxin, which is a common copper-binding protein, was found to be 0.8-fold up-regulated. Previous studies have shown that cupredoxin are an important factor contributing to symptoms of mottle and mosaic variegation during virus infections, which inevitably affects the photosynthesis of the host causing reduced yields [36]. It is therefore possible that the increased expression of the cucumber peeling cupredoxin in the transgenic cucumber seedlings could mitigate the symptom of CGMMV infection. Histone H4 was also found to be up-regulated in the transgenic cucumber plants. It is known that this protein can affect many developmental processes including root growth [37], flowering time [38] and seed development [39], cell wall development and plant defense response [40]. In addition, research has shown that infections of plant pathogens can lead to histone acetylation and methylation [41], and that mutations in histones can facilitate disease resistance in plants [42], which suggests that the up-regulation of histone H4 in the transgenic cucumber plants could enhance their resistance to infection. Cytochrome oxidase, which is located in the plant mitochondria and found to interact with the CGMMV-mp in the YTHS analysis, was also up-regulated in the transgenic cucumber plants. This protein has previously been shown to have a role in RNA editing and can negatively affect the viral gene silencing process [43], which indicates that cytochrome oxidase might contribute to CGMMV resistance in the GM-cucumbers.

In summary, the current study found strong evidence the introduction of transgenes into the cucumber genome has the potential to affect the expression of endogenous genes. Perhaps the most interesting effect was the down-regulation of cyt-b6-f, which indicates that the CGMMV-MP transgene has the potential to interact with the PSII of cucumber and not only increase disease resistance to CGMMV, but also suppress the expression of some resistance genes. It is well known that the introduction of foreign genes into the genome of crop plants can affect their nutritive value or alter their resistance to virus infection [44,45]. Furthermore, previous research has also demonstrated that the interaction of multiple genes in complex biological networks [46], which indicate that a wide range of factors should be assessed when considering the development of transgenic cucumbers resistant to CGMMV infection. It is also interesting to note that six of the related genes assessed in the current study were unaffected by the expression of the CGMMV-MP in the transgenic cucumber seedlings, including cysteine synthase, NADH-quinone oxidoreductase subunit K, pathogen regulatory protein CuPil, NADH-quinone oxidoreductase subunit J, catalase and phloem protein (PP2), even though the iTRAQ and YTHS studies had suggested that they had altered expression in the response of cucumber plants to CGMMV infection. Although the current study provides important information regarding the effect of the CGMMV-MP on 12 related genes in cucumber seedlings, further research is required to characterize the effect in adult plants exposed to CGMMV and at different developmental stages to characterize the relationships between PR-genes and phenotypic changes that occur due to CGMMV infection, and also assess their genetic stability to the next generation. However, the data collected so far has provided a greater understanding of the role of pathogenesis-related proteins in transgenic cucumber seedlings, and highlighted resistance genes that have the potential to prevent CGMMV infection.

Acknowledgment

This work was supported by the National Science Foundation of China (NSFC) project (Grant No. 31371910), the Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT1042) and the Special Fund for Agro-scientific Research in the Public Interest of China (Grant No. 201303028).

References

1. Ainsworth GC (1935) Mosaic diseases of the cucumber. Ann Appl Biol 22: 55-67.
2. Inoue T, Inoue N, Asatani M, et al. (1967) Studies on cucumber green mottle mosaic virus in Japan. Nogaku Kenkyu 51: 175-186.
3. Antignus Y, Pearlsman M, Ben-Yoseph R, et al. (1990) Occurrence of variant of cucumber green mottle mosaic virus in Israel. Phytoparasitica 18: 50-56.
4. Vani S, Varma A (1993) Properties of cucumber green mottle mosaic virus isolated from water of river Jamuna. Indian Phytopathol 46: 118-122.
5. Budzanivska IG, Rudneva TO, Shevchenko TP, et al. (2007) Investigation of Ukrainian isolates of cucumber green mottle mosaic virus. Arch Phytopathol Plant Protection 40: 376-380.
6. Kim OK, Mizutani T, Natsuaki KT, et al. (2010) First report and the genetic variability of Cucumber green mottle mosaic virus occurring on bottle gourd in Myanmar. J Phytopathol 158: 572-575.
7. Ling KS, Li R, Zhang W (2014) First report of cucumber green mottle mosaic virus infecting greenhouse cucumber in Canada. Plant Dis 98: 701.
8. Tian T, Posis K, CJ Marong-Lango, et al. (2014) First report of cucumber green mottle mosaic virus on melon in the United States. Plant Dis 98: 1163.
9. Tesoriero LA, Chambers G, Srivastava M, et al. (2015) First report of cucumber green mottle mosaic virus in Australia. Australasian plant dis. Notes 11:1.
10. Hollings M, Komuro Y, Tochihara H (1975) Cucumber green mottle mosaic virus. Descriptions of plant Viruses 154.
11. Choi GS (2001) Occurrence of two tobamovirus diseases in cucurbits and control measures in Korea. Plant Pathol J 17: 243-248.

12. Baker C (2013) Cucumber green mottle mosaic virus (CGMMV) found in the United States (California) in melon. Pest alert, Florida department of agriculture and consumer services, division of plant industry DACS-P-01863.

13. De-Both MTJ, Fierens OEV (2004) Methods for generating resistance against CGMMV in plants. United States Patent Application Publ No. US 2004/0237136 A1.

14. Park SM, Lee JS, Jegal S, et al. (2005) Transgenic watermelon rootstock resistant to CGMMV (cucumber green mottle mosaic virus) infection. Plant Cell Rep 24: 350-356.

15. Taliansky M, Torrance L, Kalinina NO (2008) Role of plant virus movement proteins. Methods Mol Biol 451: 33-54.

16. Vogler H, Kwon MO, Dang V, et al. (2008) Tobacco mosaic virus movement protein enhances the spread of RNA silencing. PLoS Pathog 4: e1000336.

17. Huppert E, Szlássy D, Saláni K, et al. (2001) Heterologous movement protein strongly modifies the infection phenotype of cucumber mosaic virus. J Virol 76: 3554-3557.

18. Zeller SL, Kalinina O, Brunner S, et al. (2010) Transgene × Environment interactions in genetically modified wheat. PLoS ONE 5: e11405.

19. Herbiers K, Tacke E, Hazirezaei M, et al. (1997) Expression of a luteoviral movement protein in transgenic plants leads to carbohydrate accumulation and reduced photosynthetic capacity in source leaves. Plant J 12: 1045-1056.

20. Heuberger S, Crowder DW, Bravault T, et al. (2011) Modeling the effects of plant-to-plant gene flow, larval behavior, and refuge size on pest resistance to Bt cotton. Environ Entomol 40: 484-495.

21. Sarkan B, Patra AK, Purakayasatha TJ (2008) Transgenic Bt-cotton affects enzyme activity and nutrient availability in a sub-tropical inceptisol. J Agron Crop Sci 194: 289-296.

22. De-Francesco L (2013) How safe does transgenic food need to be? Nature 502: 507-516.

23. Beachy RN (1995) Transgenic virus-resistant plants and new plant virus, disease-responsive genes mediated by epigenetic factors: interaction of Arabidopsis-Pseudomonas. Mol Plant Pathol 13: 388-398.

24. Liu HW, Luo LX, Li JQ, et al. (2014) Pollen and seed transmission of cucumber green mottle mosaic virus infection. Virol J 12: 216.

25. Liu JJ, Sturrock R, Ekramoddoulah AKM (2010) The superfamily of thaumatin-like proteins: its origin, evolution, and expression towards biological function. Plant Cell Rep 29: 419-436.

26. Park SM, Lee JS, Jegal S, et al. (2005) In vitro and in planta interaction evidence between Nicotiana tabacum thaumatin-like protein 1 (TLP1) and cucumber mosaic virus proteins. Plant Mol Biol 59: 981-994.

27. Satoh K, Kondo H, Sasaya T, et al. (2010) Selective modification of rice (Oryza sativa) gene expression by rice stripe virus infection. J Gen Virol 91: 294-305.

28. Gruber CW, Cemazar M, Clark RJ, et al. (2007) A novel plant protein-disulfide isomerase involved in the oxidative folding of cysteine knot defense proteins. J Biol Chem 282: 20435-20446.

29. Ye C, Dickman MB, Whitham SA, et al. (2011) The unfolded protein response is triggered by a plant viral movement protein. Plant Physiol 156: 741-755.

30. Yang P, Lüppken T, Habeckus A, et al. (2014) Protein disulfide isomerase like 5-1 is a susceptibility factor to plant viruses. Proc Natl Acad Sci 111: 2104-2109.

31. Choi M, Davidson VL (2011) Cupredoxins—a study of how proteins may evolve to use metals for bioenergetic processes. Metallomics 3: 140-151.

32. Yao X, Feng H, Yu Y, et al. (2013) SDG2-mediated H3K4 methylation is required for proper Arabidopsis root growth and development. PLoS ONE 8: e56537.

33. Cao Y, Dai Y, Cui S, et al. (2008) Histone H2B monoubiquitination in the chromatin of FLOWERING LOCUS C regulates flowering time in Arabidopsis. Plant Cell 20: 2586-2602.

34. Wang Z, Cao H, Chen FY, et al. (2014) The roles of histone acetylation in seed performance and plant development. Plant Physiol. Biochem 84: 125-133.

35. Rosa S, Ntoukakis V, Ohmido N, et al. (2014) Cell differentiation and development in Arabidopsis are associated with changes in histone dynamics at the single-cell level. Plant Cell 26: 4821-4833.

36. De-La-Peña C, Rangel-Canó A, Álvarez-Venegas R (2012) Regulation of disease-responsive genes mediated by epigenetic factors: interaction of Arabidopsis-Pseudomonas. Mol Plant Pathol 13: 388-398.

37. Choi SM, Song HR, Han SK, et al. (2012) HDAl9 is required for the repression of salicylic acid biosynthesis and salicylic acid-mediated defense responses in Arabidopsis. Plant J 71: 135-146.

38. Chapple C (1998) Molecular-genetic analysis of plant cytochrome P450-dependent monoxygenases. Annu Rev Plant Physiol Plant Mol Biol 49: 311-343.

39. Kanobe MN, Rodermel SR, Bailey T, et al. (2013) Changes in endogenous gene transcript and protein levels in maize plants expressing the soybean ferritin transgene. Front Plant Sci 4: 196.

40. Fitchen JH, Beachy RN (1993) Genetically engineered protection against viruses in transgenic plants. Annu Rev Microbiol 47: 739-763.

41. Hu JK, Wang X, Wang P (2014) Testing gene-gene interactions in genome wide association studies. Genet Epidemiol 38: 123-134.