Analyticity of the susceptibility function for unimodal Markovian maps of the interval

Yunping Jiang1,3 and David Ruelle2,4

1 Mathematics Department, Queens College of CUNY, Flushing, NY 11367, USA
2 Mathematics Department, Rutgers University, Piscataway, NJ, USA

E-mail: yunjc@forbin.qc.edu and ruelle@ihes.fr

Received 11 January 2005, in final form 3 July 2005
Published 8 August 2005
Online at stacks.iop.org/Non/18/2447

Recommended by K M Khanin

Abstract

We study the expression (susceptibility)

\[\Psi(\lambda) = \sum_{n=0}^{\infty} \lambda^n \int_I \rho(x) X(x) \frac{d}{dx}(A(f^n x)), \]

where \(f \) is a unimodal Markovian map of the interval \(I \), \(\rho = \rho_f \) is the corresponding absolutely continuous invariant measure and \(A \) is a \(C^1 \) function defined on \(I \). We show that \(\Psi(\lambda) \) is analytic near \(\lambda = 1 \), where \(\Psi(1) \) is formally the derivative of \(\int_I \rho(\text{d}x)A(x) \) with respect to \(f \) in the direction of the vector field \(X \).

Mathematics Subject Classification: 37C05, 37C40

In a previous note [Ru] the susceptibility function was analysed for some examples of maps of the interval. The purpose of the present note is to give a concise treatment of the general unimodal Markovian case (assuming \(f \) real analytic). We hope that it will similarly be possible to analyse maps satisfying the Collet–Eckmann condition. Eventually, as explained in [Ru], application of a theorem of Whitney [Wh] should prove differentiability of the map \(f \mapsto \rho_f \) restricted to a suitable set.

Set-up

Let \(I \) be a compact interval of \(\mathbb{R} \) and \(f : I \to I \) be real analytic. We assume that there is \(c \) in the interior of \(I \) such that \(f'(c) = 0 \), \(f'(x) > 0 \) for \(x < c \), \(f'(x) < 0 \) for \(x > c \) and

3 Also at: Mathematics Department, Graduate Center of CUNY, New York, USA and Mathematics Institute, AMSS, CAS, People’s Republic of China.

4 Also at: IHES, 91440 Bures sur Yvette, France.
Replacing I by a possibly smaller interval, we assume that $I = [a, b]$ where $a = f^2(c)$, $b = f(c)$. We assume that the postcritical orbit $P = \{ f^n c : n \geq 1 \}$ is finite: $P = \{ p_1, \ldots, p_m \}$; in particular, f is Markovian. We shall assume that f is \textit{analytically expanding} in the sense of assumption A below; in particular, the periodic orbits of f are assumed to be repelling, and therefore c cannot be periodic. We also assume that f is topologically mixing (this can always be achieved by replacing I by a smaller interval and f by some iterate f^N).

Theorem. Under the above conditions, and assumption A stated later, there is a unique f-invariant probability measure ρ absolutely continuous with respect to Lebesgue measure on I. If X is real analytic on I and $A \in C^1(I)$, then
\[
\Psi(\lambda) = \sum_{n=0}^{\infty} \lambda^n \int_I \rho(dx) X(x) \frac{d}{dx} A(f^n x)
\]
extends to a meromorphic function in C, without poles on $\{ \lambda : |\lambda| = 1 \}$.

Change of variable

The finite set $\{ c \} \cup P$ decomposes I into m subintervals I_j, with $2m$ endpoints (we ‘double’ the endpoints of consecutive subintervals, distinguishing between a – endpoint at the right of an interval and a + endpoint at the left). Note that $\eta = \{ I_j : j = 1, \ldots, m \}$ is a Markov partition for the map f. Consider the critical values of f^n. Then for large $n > 0$, the set of critical values will be stabilized and is always P. We define \textit{polar} endpoints as follows:

1. $p \in P$ is a polar $-$ endpoint of an interval in η if p is a local maximum value of f^n for n large.
2. $v \in P$ is a polar $+$ endpoint of an interval in η if p is a local minimum value of f^n for n large.

Every $p \in P$ is a polar $-$ or $+$ endpoint and may be both, c is a nonpolar endpoint on both sides.

We define now an increasing continuous map $\sigma : I \to R$ so that $J = \sigma I$ is a compact interval. We write $\sigma I_j = J_j$ for $1 \leq j \leq m$; denote by ω the inverse of σ. We assume that $\omega|J_j$ extends to a holomorphic function in a complex neighbourhood of J_j for $1 \leq j \leq m$ and that for $q \in \{ c \} \cup P$, ω has the property
\[
\omega(\sigma q \pm \xi) = \omega(\sigma q) \pm \frac{\xi^2}{2} + O(\xi^4)
\]
if q is a \pm polar endpoint, and
\[
\omega(\sigma q \pm \xi) = \omega(\sigma q) \pm \xi + O(\xi^2)
\]
if q is a nonpolar endpoint. (We should really consider disjoint copies of the I_j and J_j, and disjoint neighbourhoods of these in C or in a Riemann surface two-sheeted near polar endpoints. This would lead to notational complications that we prefer to omit.) Applications of this singular change of coordinate have been used in [Ji1, BJR, Ru]; the reference [Ji2] contains some more relevant study regarding the method of singular change of coordinates in one-dimensional dynamical systems. The reader is encouraged to compare this method with orbifold metrics in [Th, chapter 13]. Another relevant application of this method in complex dynamical systems can be found in [DH]. From now on we shall say that σq is a \pm polar (nonpolar) endpoint if q is \pm polar (nonpolar).
The dynamical system viewed after the change of variable

For any two intervals $I_j, I_k \in \eta$ with $f I_j \supset I_k$, we define
\[\psi_{jk} = \sigma \circ (f|I_j)^{-1} \circ (\omega|I_k). \]

Note that the ψ_{jk} are restrictions of inverse branches of $g = \sigma \circ f \circ \omega : J \to J$ to intervals in $\omega \eta$. The function $\psi_{jk} : J_k \to J_j$ extends holomorphically to a complex neighbourhood of J_k. Indeed, note that $(f|I_j)^{-1}$ is holomorphic except if I_j is one of the two intervals around c, in which case the singularity is corrected by $\omega|J_n$, where J_n is the rightmost interval in $\omega \eta$. In other cases $\omega|J_k$ cancels the singularity of $\sigma|I_j$ by our definition of ω. (Note that $\psi_{jk}'(x) \geq 0$ or ≤ 0 on J_k and may vanish only at an interval endpoint.)

Assumption A. Each J_k, for $k = 1, \ldots, m$, has a bounded open connected neighbourhood U_k in C such that $\psi_{jk} : J_k \to J_j$ extends to a continuous function $\psi_{jk} : \bar{U}_k \to C$ holomorphic in U_k and with $\psi_{jk} \bar{U}_k \subset U_j$.

One checks that the sets U_k can be assumed to be in ϵ-neighbourhoods of the J_k. Also, assumption A implies that periodic points for g are strictly repelling. The smoothness of ω, σ in the interior of subintervals shows that the same property holds for f, apart from interval endpoints where we however also assume the property to hold:

the periodic orbits of f are strictly repelling.

Markovian graph

Consider the Markov partition $\eta = \{ I_j \}$. Let us write $j > k$ (j covers k) if $f I_j \supset I_k$ (we allow $j > j$). This defines a directed graph with vertex set $\{ 1, \ldots, m \}$ and oriented edges (j, k) for $j > k$. Since we have assumed our dynamical system f to be topological mixing, our graph is also mixing in the sense that there is $N \geq 1$ such that for all $j, k \in \{ 1, \ldots, m \}$ we have $j > \cdots > k$ (N edges) corresponding to $f^N I_j \supset I_k$.

Transfer operators

For a function $\Phi = (\Phi_j)$ defined on $\sqcup J_j$, we write
\[
(\mathcal{L} \Phi)_k(z) = \sum_{j \succ k} \sgn(j) \psi_{jk}'(z) \Phi_j(\psi_{jk} z),
\]
\[
(\mathcal{L}_0 \Phi)_k(z) = \sum_{j \succ k} \sgn(j) \Phi_j(\psi_{jk} z),
\]
where $\sgn(j)$ is $+1$ if ψ_{jk} is increasing on J_k and -1 if ψ_{jk} is decreasing on J_k. If H is the Hilbert space of functions on $\sqcup_{j \in \mathbb{L}} \bar{U}_j$ which are square integrable with respect to Lebesgue measure, and have holomorphic restrictions to the U_j, then \mathcal{L} and \mathcal{L}_0 acting on H are holomorphy improving, hence compact and of trace class.

Properties of \mathcal{L} (refer to [B])

For $x \in J_k$ we have
\[
(\mathcal{L} \Phi)_k(x) = \sum_{j \succ k} |\psi_{jk}'(x)| \Phi_j(\psi_{jk} x),
\]
hence $\Phi \geq 0$ implies $\mathcal{L}\Phi \geq 0$ (\mathcal{L} preserves positivity) and
\[
\int_j dx (\mathcal{L}\Phi)(x) = \sum_k \int_{J_k} dx (\mathcal{L}\Phi)_k(x) = \sum_j \int_{J_j} dx \Phi_j(x) = \int_j dx \Phi(x)
\]
(\mathcal{L} preserves mass). Using mixing one finds that \mathcal{L} has a simple eigenvalue $\mu_0 = 1$ corresponding to an eigenfunction $\sigma_0 > 0$. The other eigenvalues μ_ℓ satisfy $|\mu_\ell| < 1$ and their (generalized) eigenfunctions σ_ℓ satisfy $\int_{J_\ell} dx \sigma_\ell(x) = 0$. If we normalize σ_0 by $\int_{J_0} dx \sigma_0(x) = 1$, then $\sigma_0(x)dx$ is the unique g-invariant probability measure absolutely continuous with respect to Lebesgue measure on J. In particular, $\sigma_0(x)dx$ is ergodic.

Let now, $H_1 \subset H$ consist of those $\Phi = (\Phi_k)$ such that the derivative Φ'_1 vanishes at the (polar) endpoints $\sigma a, \sigma b$ of J and such that at the common endpoint $\sigma q (q \in \{c\} \cup \{\sigma a, \sigma b\})$ of two subintervals we have equality on both sides of a quantity which is either
- the value of Φ for a nonpolar endpoint or
- the value of $\pm \Phi'$ for a polar \pm endpoint.

We note that $\mathcal{L}H_1 \subset H_1$ (this requires a case by case discussion). Furthermore $\sigma_0 \in H_1$ (take $\phi \in H$ such that $\phi \geq 0$, $\int_{J_0} dy \phi(y) = 1$ and ϕ, ϕ' vanishes at subinterval endpoints; then $\phi \in H_1$ and $\sigma_0 = \lim_{n \to \infty} \mathcal{L}^n \phi \in H_1$).

Evaluating $\Psi(\lambda)$

The image $\rho(dx) = \rho(x)dx$ of $\sigma_0(y)dy$ by ω is the unique f-invariant probability measure absolutely continuous with respect to Lebesgue measure on I. We have
\[
\rho(x) = \sigma_0(\sigma x)\sigma'(x).
\]
Consider now the expression
\[
\Psi(\lambda) = \sum_{n=0}^\infty \lambda^n \int_J \rho(dx) X(x) \frac{d}{dx} A(f^n x),
\]
where we assume that X extends to a holomorphic function in a neighbourhood of each J_k and takes the same value on both sides of common endpoints of intervals in η (continuity). Also assume that $A \in C^1(I)$. For sufficiently small $|\lambda|$, the series defining $\Psi(\lambda)$ converges. Writing $B = A \circ \omega$ (B has piecewise continuous derivative) and $x = \omega y$ we have
\[
X(x) \frac{d}{dx} A(f^n x) = X(\omega y) \frac{1}{\omega'(y)} \frac{d}{dy} B(g^n y),
\]
hence
\[
\Psi(\lambda) = \sum_{n=0}^\infty \lambda^n \int_J dy \sigma_0(y) \frac{X(\omega y)}{\omega'(y)} \frac{d}{dy} B(g^n y).
\]
Defining $Y(y) = \sigma_0(y)X(\omega y)/\omega'(y)$, we see that Y extends to a holomorphic function in a neighbourhood of each J_k, which we may take to be U_k, except for a simple pole at each polar endpoint of J_k. Since $\sigma_0 \in H_1$, the properties assumed for ω imply that also $(X \circ \omega) \times \sigma_0 \in H_1$.

Note that near a nonpolar subinterval endpoint σq
\[
\omega'(\sigma q \pm \xi) = 1 + O(\xi)
\]
and near a polar endpoint
\[
\omega'(\sigma q \pm \xi) = \xi + O(\xi^3).
\]
Therefore
\[Y(\sigma q \pm \xi) = A^\pm \frac{1}{\xi} + B^\pm + O(\xi), \]
where \(B^+ = B^- \) for the two sides of \(\sigma q \) and \(B^+ = 0 \) at the left endpoint \(\sigma a \) of \(J \), \(B^- = 0 \) at the right endpoint \(\sigma b \) of \(J \). We may write
\[\int_J dy \sigma_0(y) X(\omega y) \frac{d}{dy} B(g^n y) = \int_J dy Y(y) g'(y) \cdots g'(g^{n-1} y) B'(g^n y) \]
where \(L_0 \) has been defined above, and we have thus
\[\Psi(\lambda) = \sum_{n=0}^{\infty} \lambda^n \int_J ds(L_0^n Y)(s)B'(s). \]

Properties of \(L_0 \)

We let now \(H_0 \subset H \) be the space of functions \(\Phi = (\Phi_k) \) vanishing at the endpoints \(\sigma a, \sigma b \) of \(J \) and such that the values of \(\Phi \) on both sides of common endpoints of intervals \(J_k \) coincide (continuity). Therefore \(L_0 H_0 \subset H_0 \).

There is a periodic orbit \(\gamma_1, \ldots, \gamma_p \) (with \(g' \gamma_i = \gamma_{i+1(\mod p)} \)) of polar endpoints where \(\gamma_{ja} \) is the \(\pm \) endpoint of some subinterval \(J_{k(\alpha)} \). Choose \(P_a \) to be 0 on subintervals different from \(J_{k(\alpha)} \) and to be holomorphic on a complex neighbourhood of \(J_{k(\alpha)} \) except at \(\gamma_a \). Also assume that
\[P_a(\gamma_a \pm \xi) = \frac{1}{\xi} + O(\xi) \]
and that \(P_a \) vanishes at the endpoint of \(J_{k(\alpha)} \) different from \(\gamma_a \). Then
\[L_0 P_a - |f'(\gamma(\alpha))|^{1/2} P_{a+1(\mod p)} \in H_0. \]

Therefore \(L_0^p P_1 - \Lambda P_1 = u \in H_0 \) where \(\Lambda = \prod_{a=1}^{p} |f'(\gamma(\alpha))|^{1/2} > 1 \). Since the spectrum of \(L \) acting on \(H \) is contained in the closed unit disk and since the derivative \(u' \) is in \(H \), we may define \(v = (L_0^p - \Lambda)^{-1} u' \in H \). Since \(\int_J dy u'(y) = 0 \) we also have \(\int_J dy v(y) = 0 \) and we can take \(w \in H_0 \) such that \(u' = v \). We have thus
\[((L_0^p - \Lambda)w)' = (L_0^p - \Lambda)w' = (L_0^p - \Lambda)w = u' \]
so that \((L_0^p - \Lambda)w = u \) (there is no additive constant of integration since \((L_0^p - \Lambda)w \) and \(u \) are in \(H_0) \). Finally
\[(L_0^p - \Lambda)(P_1 - w) = 0. \]

There is thus a \(L_0 \)-invariant \(p \)-dimensional vector space spanned by vectors \(P_a - w_a \) with \(w_a \in H_0 \), such that the spectrum of \(L_0 \) restricted to this space consists of eigenvalues \(\omega_\ell \) with
\[\omega_\ell = \Lambda^{1/p} e^{2\pi i \ell/p} = \left| \prod_{a=1}^{p} f'(\gamma_a) \right|^{1/2} e^{2\pi i \ell/p} \]
for \(\ell = 0, \ldots, p - 1 \).

For the postcritical but nonperiodic polar points \(\tilde{\gamma}_1, \ldots, \tilde{\gamma}_a \) define \(\tilde{P}_a \) like \(P_a \) above, with \(\gamma \) replaced by \(\tilde{\gamma} \). For each \(\beta \) there is \(\alpha = \alpha(\beta) \) with
\[L_0^p (\tilde{P}_\beta - \Lambda_{\beta} P_a) \in H_0 \]
with some \(\Lambda_{\beta} \neq 0 \), hence
\[L_0^p (\tilde{P}_\beta - \Lambda_{\beta}(P_a - w_a)) = \tilde{Y}_\beta \in H_0. \]
Poles of $\Psi(\lambda)$

We may now write

$$Y = Y_0 + Y_1 + Y_2,$$

where

$$Y_0 \in H_0,$$

$$Y_1 = \sum_{u=1}^{p} c_u (P_u - w_u),$$

$$Y_2 = \sum_{\beta=1}^{q} \tilde{c}_{\beta} (\tilde{P}_{\beta} - \tilde{\Lambda}_\beta (P_{u(\beta)} - w_{u(\beta)}))$$

and there is a corresponding decomposition $\Psi_1(\lambda) = \Psi_0(\lambda) + \Psi_1(\lambda) + \Psi_2(\lambda)$. Here $\Psi_1(\lambda)$ is a sum of terms $C_\ell(\lambda - \omega_\ell)$ where $\omega_\ell = \Lambda^{1/p} \times \text{th root of unity}$; $\Psi_2(\lambda)$ is polynomial of degree $q - 1$ in λ plus $\Lambda^{1/q} \sum_{\beta=1}^{p} \tilde{c}_{\beta} \tilde{\Lambda}_\beta (\Psi_0(\lambda))$ where $\tilde{\Psi}_\beta$ is obtained if we replace Y by \tilde{Y}_β in the definition of Ψ. The poles of $\Psi(\lambda)$ are thus those of $\Psi_1(\lambda)$ at the ω_ℓ and those of $\Psi_0(\lambda)$ and $\tilde{\Psi}_\beta(\lambda)$. The discussion is the same for Ψ_0 and the $\tilde{\Psi}_\beta$, we shall thus only consider Ψ_0. Since $Y_0 \in H_0$ and $L_0 H_0 \subset H_0$ we have

$$\Psi_0(\lambda) = \sum_{n=0}^{\infty} \lambda^n \int_{J} \text{ds} (L_0^n Y_0)(s) B(s) = - \sum_{n=0}^{\infty} \lambda^n \int_{J} \text{ds} (L_0^n Y_0')(s) B(s)$$

$$= - \sum_{n=0}^{\infty} \lambda^n \int_{J} \text{ds} (L_0^n Y_0')(s) B(s).$$

It follows that $\Psi_0(\lambda)$ extends meromorphically to \mathbb{C} with poles at the μ_{k}^{-1}. We want to show that the residue of the pole at $\mu_{0}^{-1} = 1$ vanishes. Since $\int_{J} \text{d} y_0(y) = 0$ for $k \geq 1$, the coefficient of σ_0 in the expansion of Y_0' is proportional to

$$\int_{J} \text{d} y_0'(y) = Y(\sigma b) - Y(\sigma a) = 0$$

because $Y_0 \in H_0$. Therefore $\Psi_0(\lambda)$ is holomorphic for $|\lambda| = 1$ and the same holds for the $\tilde{\Psi}_\beta(\lambda)$, concluding the proof of the theorem. In fact we know that the poles of $\Psi(\lambda)$ are located at μ_{k}^{-1} for $k \geq 1$ and at ω_{ℓ}^{-1} for $\ell = 0, \ldots, p - 1$, so that $|\mu_{k}^{-1}| > 1, |\omega_{\ell}^{-1}| < 1$.

Acknowledgments

One of us (YJ) is partially supported by grants from the NSF and the PSC-CUNY Award Program and the Hundred Talents Program of the CAS.

References

[B] Baladi V 2000 Positive Transfer Operators and Decay of Correlations (Advanced Series in Nonlinear Dynamics vol 16) (Singapore: World Scientific)
[BJR] Baladi V, Jiang Y and Rugh H H 2002 Dynamical determinants via dynamical conjugacies for postcritically finite polynomials J. Stat. Phys. 108 973–93
[DH] Douady D and Hubbard J H 1993 A proof of Thurston’s topological characterization of rational functions Acta Math. 171 263–97
[Ji1] Jiang Y 1995 On Ulam–von Neumann transformations Commun. Math. Phys. 172 449–59
[Ji2] Jiang Y 1996 Renormalization and Geometry in One-Dimensional and Complex Dynamics (Advanced Series in Nonlinear Dynamics vol 10) (River Edge, NJ: World Scientific)

[Ru] Ruelle D 2005 Differentiating the absolutely continuous invariant measure of an interval map f with respect to f Commun. Math. Phys. 258 445–53

[Th] Thurston W 2002 The Geometry and Topology of Three-Manifolds Electronic version 1.1 http://www.msri.org/publications/books/gt3m/

[Wh] Whitney H 1934 Analytic expansions of differentiable functions defined in closed sets Trans. Am. Math. Soc. 36 63–89