Comparative analysis of the complete chloroplast genome sequences in psammophytic *Haloxylon* species (Amaranthaceae)

Wenpan Dong 1,2, Chao Xu 1,3, Delu Li 4, Xiaobai Jin 5, Ruili Li 5, Qi Lu Corresp., 6, Zhili Suo Corresp.

1 State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Haidian District, Beijing 100093, China
2 Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 5 Yiheyuan Road Haidian District, Beijing 100871, China
3 University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
4 Gansu Desert Control Research Institute, 390 Beibinhe West Road, Anning District, Lanzhou, Gansu 730070, China
5 Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Haidian District, Beijing 100093, China
6 Institute of Desertification Studies, Chinese Academy of Forestry, 10, Huai-shu-ju Road, Haidian District, Beijing 100091, China

Corresponding Authors: Qi Lu, Zhili Suo
Email address: Luqi@caf.ac.cn, zlsuo@ibcas.ac.cn

The *Haloxylon* genus belongs to the Amaranthaceae (formerly Chenopodiaceae) family. The small trees or shrubs in this genus are referred to as the King of psammophytic plants, and perform important functions in environmental protection, including wind control and sand fixation in deserts. To better understand these beneficial plants, we sequenced the chloroplast (cp) genomes of *Haloxylon ammodendron* (HA) and *Haloxylon persicum* (HP) and conducted comparative genomic analyses on these and two other representative Amaranthaceae species. Similar to other higher plants, we found that the *Haloxylon* cp genome is a quadripartite, double-stranded, circular DNA molecule of 151,570 bp in HA and 151,586 bp in HP. It contains a pair of inverted repeats (24,171 bp in HA and 24,177 bp in HP) that separate the genome into a large single copy region of 84,214 bp in HA and 84,217 bp in HP, and a small single copy region of 19,014 bp in HA and 19,015 bp in HP. Each *Haloxylon* cp genome contains 112 genes, including 78 coding, 30 tRNA, and four ribosomal RNA genes. We detected 59 different simple sequence repeat loci, including 44 mono-nucleotide, three di-nucleotide, one tri-nucleotide, and 11 tetra-nucleotide repeats. Comparative analysis revealed only 67 mutations between the two species, including 44 substitutions, 23 insertions/deletions, and two micro-inversions. The two inversions, with lengths of 14 and 3 bp, occur in the *petA-psbJ* intergenic region and *rpl16* intron, respectively, and are predicted to form hairpin structures with repeat sequences of 27 and 19 bp, respectively, at the two ends. The ratio of transitions to transversions was 0.76. These results are valuable for future studies on *Haloxylon* genetic diversity and will enhance our understanding of the phylogenetic evolution of Amaranthaceae.
Comparative analysis of the complete chloroplast genome sequences in psammophytic *Haloxylon* species (Amaranthaceae)

Wenpan Dong¹,², Chao Xu¹,³, Delu Li⁴, Xiaobai Jin⁵, Ruili Li⁵, Qi Lu⁶*, Zhili Suo¹*¹

¹State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Haidian District, Beijing 100093, China
E-mail: wpdong@ibcas.ac.cn (W.P.D.); xuchao@ibcas.ac.cn (X.C.)
²Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 5 Yiheyuan Road Haidian District, Beijing 100871, China
³University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
⁴Gansu Desert Control Research Institute, 390 Beibinhe West Road, Anning District, Lanzhou, Gansu 730070, China
E-mail: lidlu2008@163.com
⁵Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Haidian District, Beijing 100093, China
E-mail: jinxiaobai@ibcas.ac.cn
E-mail: lirl@ibcas.ac.cn, 20778033@qq.com
⁶Institute of Desertification Studies, Chinese Academy of Forestry, 10, Huai-shu-ju Road, Haidian District, Beijing 100091, China

*Correspondence: zlsuo@ibcas.ac.cn; Tel.: 86 10 13520435137
Luqi@caf.ac.cn; Tel.: 86 10 13910830860
ABSTRACT

The *Haloxylon* genus belongs to the Amaranthaceae (formerly Chenopodiaceae) family. The small trees or shrubs in this genus are referred to as the King of psammophytic plants, and perform important functions in environmental protection, including wind control and sand fixation in deserts. To better understand these beneficial plants, we sequenced the chloroplast (cp) genomes of *Haloxylon ammodendron* (HA) and *Haloxylon persicum* (HP) and conducted comparative genomic analyses on these and two other representative Amaranthaceae species. Similar to other higher plants, we found that the *Haloxylon* cp genome is a quadripartite, double-stranded, circular DNA molecule of 151,570 bp in HA and 151,586 bp in HP. It contains a pair of inverted repeats (24,171 bp in HA and 24,177 bp in HP) that separate the genome into a large single copy region of 84,214 bp in HA and 84,217 bp in HP, and a small single copy region of 19,014 bp in HA and 19,015 bp in HP. Each *Haloxylon* cp genome contains 112 genes, including 78 coding, 30 tRNA, and four ribosomal RNA genes. We detected 59 different simple sequence repeat loci, including 44 mono-nucleotide, three di-nucleotide, one tri-nucleotide, and 11 tetra-nucleotide repeats. Comparative analysis revealed only 67 mutations between the two species, including 44 substitutions, 23 insertions/deletions, and two micro-inversions. The two inversions, with lengths of 14 and 3 bp, occur in the petA-psbJ intergenic region and rpl16 intron, respectively, and are predicted to form hairpin structures with repeat sequences of 27 and 19 bp, respectively, at the two ends. The ratio of transitions to transversions was 0.76. These results are valuable for future studies on *Haloxylon* genetic diversity and will enhance our understanding of the phylogenetic evolution of Amaranthaceae.

Keywords: Chloroplast genome, Psammophytes, Structure, Evolution, Amaranthaceae, *Haloxylon*

INTRODUCTION

The eudicot clade comprises approximately 75% of all flowering land plant species, including major subclades:
rosids, asterids, Saxifragales, Santalales, and Caryophyllales (APG III, 2009). *Haloxylon* species, which include psammophytic small trees or shrubs, are positioned phylogenetically in the Amaranthaceae Juss of the Caryophyllales Perleb among core eudicots (APG III, 2009; Pyankov et al., 2001; Akhani et al., 2007). The *Haloxylon* genus has about 11 species, with a distribution from the Mediterranean through Central Asia and into China (Zhu et al., 2004). Two *Haloxylon* species, which are known as the King of psammophytic plants, are found in the deserts of northwest China and, play important roles in environmental protection, including wind control and sand fixation (Zhu et al., 2004; Jia & Lu, 2004). These precious psammophytic woody plants can adapt to harsh environmental conditions, such as drought, desert, high temperature, and sand storms. However, populations of *Haloxylon* plants have been threatened in China in past decades as a result of decreased underground water, overgrazing, and over exploitation of agriculture.

Because of the environmental significance of these plants and their declining numbers, genetic research on *Haloxylon* germplasm resources has garnered significant interest (Song & Jia, 2000; Sheng et al., 2004, 2005; Zhang et al., 2006a, 2006b). However, *Haloxylon* plants possess only fine green assimilating shoots, without leaves, making the evaluation of their phenotypic diversity difficult. Further, the detection of genetic diversity within *Haloxylon* germplasm resources has been slowed by a lack of morphological markers (Sheng et al., 2004, 2005; Zhang et al., 2006a, 2006b; Wang et al., 2009; Suo et al., 2012a). A recent study by Long et al. (2014) used RNA-seq data to elucidate the *Haloxylon* transcriptome, providing a valuable sequence resource for further genetic and genomic studies; however, genetic information for members of the *Haloxylon* genus, and how they might differ from one another, is limited.

Each leaf cell of plants contains 1,000 to 10,000 chloroplasts (cp), which are key organelles for photosynthesis and other biochemical pathways such as the biosynthesis of starch, fatty acids, pigments, and amino acids (Dong et al., 2013b; Raman and Park, 2016). Since the first cp genome of *Nicotiana tabacum* was sequenced in 1986, around 800 complete cp genome sequences have been made available in the National Center for Biotechnology Information organelle genome database. These data are valuable sources of genetic markers for phylogenetic analyses, genetic diversity evaluation, and plant molecular identification (Dong et al., 2012, 2013a, 2013b, 2014; Ni et al., 2016; Suo et al., 2012b).

There are two published complete cp genome sequences (*Spinacia oleracea* and *Beta vulgaris* subsp. *vulgaris*) from members of the Amaranthaceae family (Li et al., 2014; Schmitz-Linneweber et al., 2001).
However, the determination of the cp genome from *Haloxylon* plants is of further significance for potentially enhancing our understanding of their adaptability to severe desert environmental conditions, and their genomic evolution within the Amaranthaceae. Here, we report the complete cp genomes from two *Haloxylon* species, *H. ammodendron* and *H. persicum*, including patterns of nucleotide substitutions, microstructural mutation, and simple sequence repeats (SSRs). We further performed genomic comparative analyses on these and two other representative Amaranthaceae species, to better understand the evolutionary relationships within this family.

MATERIALS & METHODS

Sampling and DNA extraction

Fresh young shoots of *H. ammodendron* (HA) and *H. persicum* (HP) were collected in May 2011 from Minqin Eremophytes Botanical Garden (N 38°34′, E 102°59′, Altitude 1378 m), Gansu Province, China (under the leadership of Gansu Desert Control Research Institute, 390 Beibinhe West Road, Anning District, Lanzhou, Gansu 730070, China). These HA and HP plants were originally introduced from the Turpan Desert Botanical Garden of Chinese Academy of Sciences, Xinjiang Uygur Autonomous Region. The shoots from each accession were immediately dried using silica gel for future DNA extraction. Total genomic DNA (gDNA) was extracted from each using the Plant Genomic DNA Kit (DP305) from Tiangen Biotech (Beijing) Co., Ltd., China. The approval numbers are 2012BAD16B0101 and 80117B1001 for field permit of the research.

Chloroplast genome sequencing

The HA and HP cp genomes were sequenced using the short-range PCR method reported by Dong *et al.* (2012, 2013). The PCR protocol was as follows: preheating at 94°C for 4 min, 34 cycles at 94°C for 45 s, annealing at 55°C for 40 s, and elongation at 72°C for 1.5 min, followed by a final extension at 72°C for 10 min. PCR amplification was performed in an Applied Biosystems VeritiTM 96-Well Thermal Cycler (Model#: 9902, made in Singapore). The amplicons were sent to Shanghai Majorbio Bio-Pharm Technology Co., Ltd (Beijing) for Sanger sequencing in both the forward and reverse directions using a 3730xl DNA analyzer (Applied Biosystems, Foster City, CA, USA). DNA regions containing poly structures or that were difficult to amplify were further sequenced using newly designed primer pairs for confirming reliable and high quality sequencing results.
Chloroplast genome assembling and annotation

The cp DNA sequences were manually confirmed and assembled using Sequencher (v4.6) software, and cp genome annotation was performed using the Dual Organellar Genome Annotator (DOGMA) (Wyman et al., 2004). BLASTX and BLASTN searches were utilized to accurately annotate the protein-encoding genes and to identify the locations of the transfer RNAs (tRNAs) and ribosomal RNAs (rRNAs). Gene annotation information from other closely related plant species was also used for confirmation when the boundaries of the introns or exons could not be precisely determined because of the limited power of BLAST in cp genome annotation (e.g., for some short exons of 6–9 nt in length, such as in the case of rps16, petB, and petD). Promoter, intron, and exon boundaries, as well as the location of stop codons for all protein-encoding genes, have been identified accurately. The cp genome map was drawn using Genome Vx software (Conant & Wolfe, 2008) (http://wolfe.ucd.ie/GenomeVx/), and the cp genome sequences have been deposited to GenBank with the following accession numbers: KF534478 for HA and KF534479 for HP (https://www.ncbi.nlm.nih.gov/nuccore/?term=Haloxylon+chloroplast+genome).

Repeat structure analysis

Gramene Simple Sequence Repeat Identification Tool software (http://www.gramene.org/db/markers/ssrtool)(Benson, 1999) was utilized to search for simple sequence repeat loci in the cp genome sequences, with the threshold value of repeat number as ≥10 for mono-nucleotide repeats, ≥5 for di-nucleotide repeats, ≥4 for tri-nucleotide repeats, and ≥3 for tetra-nucleotide, penta-nucleotide, or hexa-nucleotide repeats.

Gene content analysis and comparative genomics

The mVISTA program was employed in Shuffle-LAGAN mode (Frazer et al., 2004) to compare the complete HA and HP cp genomes. These were aligned using MUSCLE software (Thompson et al., 1997) and were manually adjusted using Se-Al 2.0 (Rambaut, 1996). Variable sites in the cp genome were calculated using DnaSP (DNA Sequences Polymorphism version 5.10.01) software (Librado & Rozas, 2009), and the genetic distance (p-distance) was computed using MEGA 6.0 software (Tamura et al., 2011). Based on the aligned...
sequence matrix, the micro-structure events were checked manually and were further divided into three categories: (i) microsatellite-related insertions/deletions (indels), (ii) non-microsatellite-related indels, (iii) and inverted sequences. Using the HA cp genome sequence as the standard reference, the size, location, and evolutionary direction of the microstructure events were counted. The proposed secondary structures of the inverted regions in the cp genomes of HA and HP were analyzed using mfold software (Zuker, 2003). The complete cp genome sequences of *S. oleracea* (GenBank accession number AJ400848.1, *Spinacia* L.) (Schmitz-Linneweber et al., 2001) and *B. vulgaris* subsp. *vulgaris* (GenBank accession number KJ081864.1, *Beta vulgaris* subsp. *vulgaris*) (Li et al., 2014), two closely related species in the Amaranthaceae family, were downloaded from GenBank databases (www.ncbi.nlm.nih.gov). These were used for comparison with the complete cp genomes of HA and HP.

RESULTS & DISCUSSION

Genome features

Similar to the typical cp genome structure in other higher plants, the *Haloxylon* cp genome is a double-stranded, circular DNA molecule of 151,570 bp in length in HA and 151,586 bp in length in HP. It also includes a large single copy region (LSC) of 84,214 bp in HA and 84,217 bp in HP and a small single copy region (SSC) of 19,014 bp in HA and 19,015 bp in HP; these are separated by a pair of inverted repeats (IR) (24,171 bp in HA and 24,177 bp in HP) (Fig. 1). The GC content in this IR region is 43.0% in HA and 42.7% in HP, and the GC content in the LSC and SSC regions is 34.4% (LSC) and 29.7% (SSC) in HA and 34.5% (LSC) and 29.7% (SSC) in HP (Table 1).

Among the four Amaranthaceae species included in our analyses, which represent three genera, the longest cp genomes (151,570 bp for HA and 151,586 bp for HP) are 1935 bp to 1951 bp larger than the shortest one (149,635 bp for *B. vulgaris* subsp. *vulgaris*) (Li et al., 2014). The size of the *S. oleracea* cp genome (150,725 bp) (Schmitz-Linneweber et al., 2001) is intermediate (Table 1). Notably, the cp genomes of HP and HA are quite similar in size; the HP cp is only 16 bp longer than that of HA, with minor differences between them.

There are a total of 112 genes in the *Haloxylon* cp genome, including 78 coding genes, 18 of which are duplicated genes in the IR region, 30 tRNA genes, and four ribosomal RNA genes (16S, 23S, 5S, 4.5S) (Fig. 1, Table S1). Based on their predicted functions, these genes can be divided into three categories, 1) genes related
to transcription and translation; 2) genes related to photosynthesis; 3) genes related to the biosynthesis of amino acids, fatty acids, etc., and some functionally unknown genes (Table S1). The *S. oleracea* cp also contains the same 78 protein-coding genes, whereas the cp in *B. vulgaris* has 79. This species contains an additional gene (*rpl23*), which is a pseudogene in the other species (Fig. 1, Table S1). There are 17 genes harboring introns in the cp genomes of the four Amaranthaceae species analyzed (one class I intron, *trnL*UA, and 16 class II introns), and two of these genes, *ycf3* and *clpP*, contain two introns each (Table 2).

Several angiosperm lineages have lost introns from the *rpl2* gene independently (*Downie et al.*, 1991), which could also be regarded as a characteristic feature of the core members of the Caryophyllales (*Logacheva et al.*, 2008). In each of the four Amaranthaceae cp genomes in our analysis, the *rpl2* gene has lost its intron. Some authors have proposed that intron loss is not always a dependable marker of phylogenetic relationships (*Millen et al.*, 2001; *Dong et al.*, 2013b; *Raman & Park*, 2016), and further study, including the sampling of more taxa, is needed to clarify this issue.

Expansion and contraction of the border regions in *Haloxylon* cp genomes

To analyze these Amaranthaceae species at the genome-level, the sequences of all the four cp genomes were plotted using the VISTA program (*Frazer et al.*, 2004), using the annotation of HA as a reference (Fig. 2). Similar to other angiosperms, we observed that the IR region is more conserved in these species than the LSC and SSC regions.

The expansion and contraction of the border regions between the two IR regions and the single copy region have contributed to genome size variations among plant lineages (*Dong et al.*, 2013b; *Goremykin et al.*, 2003; *Ni et al.*, 2016). Therefore, we next compared the exact IR border positions and their adjacent genes among the four Amaranthaceae cp genomes (Fig. 3). From these data, we see that the IRa/LSC border is generally located upstream of the *trnH*GUG gene. The distance between the IRa/LSC border and the *trnH*GUG gene is 1 bp in the *Haloxylon* cp genomes and 2 bp in *Beta* genus, with no separation in *Spinacia* (Fig. 3). The IR region is expanded by 763 bp and enters the 5’ end of the *ycf1* gene in *Haloxylon* species, whereas it is expanded by 1427 bp and 1492 bp, respectively, in *Spinacia* and *Beta*. Except for the expansion of the *ycf1* gene, the IR region extends to the *rps19* gene in all of four Amaranthaceae cp genomes. The *rps19* pseudogene was not observed in this study. Although there are expansions or contractions of IR regions observed among the
investigated species of the Amaranthaceae, they contribute little to the overall size differences in the cp
genomes. The exon at the 5’ end of the rps12 gene is located in the LSC region, and the intron and 3’-end exon
of the gene are situated in the IR region in all four Amaranthaceae species.

Indels and SNPs

Indel and single nucleotide polymorphism (SNP) sites are important molecular features valuable for
development of DNA markers that are useful for plant identification and genetic analysis of population
structure. (Dong et al., 2012, 2013a, 2013b, 2014; Suo et al. 2012b, 2015, 2016). We detected 23 indels in the
cp genome sequence alignment of HA and HP, including 16 indels caused by microsatellite repeat variations
and seven non-microsatellite-related indels (Table 3). Most of the indel events occurred in non-coding regions
(21/23). A large portion of the indels related to microsatellite repeat variations are characterized by a single
base mutation; six insertions of this type were observed in the HA cp genome. The non-microsatellite-related
indels were found to contain mostly five to six variable base sites, and two insertions of this type were detected
in the HA cp genome.

Forty-four SNPs were detected in the HA and HP cp genomes (Table 4), which is considerably less than
what was found between the cp genomes of other closely related plant species, including Oryza sativa and
Oryza nivara (159 SNPs, Masood et al., 2004), Machilus yunnanensis and Machilus balansae (231 SNPs,
Song et al., 2015), Citrus sinensis and Citrus aurantiifolia (330 SNPs, Su et al., 2014), Panax ginseng and
Palax notoginseng (464 SNPs, Dong et al., 2014), and Solanum tuberosum and Solanum bulbocastanum (591
SNPs, Chung et al., 2006). Of note, the indel and SNP mutation events in the Haloxylo cp genomes were not
randomly distributed, but rather, clustered as “hotspots” (Shaw et al., 2007; Worberg et al., 2007). It is likely
that such mutational dynamics created the highly variable regions in the genome (Suo et al., 2012b; Song et al.,
2015).

Patterns of nucleotide substitutions

Overall, the differences between the HA and HP cp genomes are minor, with a genetic distance of 0.00029
between them (Table 4). In total, 44 variable nucleotide sites were detected, 23 of which were found in
intergenic regions, six in introns, and 15 in protein-encoding regions.
We also found that the probability of occurrence for the various nucleotide substitutions is different, depending on the mutation, as shown in Fig. 4. The most frequently occurring mutations are from A to C and from T to G (12 times each); mutations from A to T and from T to A exhibited the lowest frequency (only one occurrence of each). The ratio of transitions (Ts) and transversions (Tv) was 0.76 in the cp genome of *Haloxylon* species.

In the gene-encoding regions of the HA and HP cp genomes, a total of 15 variable base sites were detected in 11 protein-encoding genes. Specifically, we found one mutation in each of the following genes: *atpA, atpI, matK, ndhF, ndhI, psbC, rpoB, rps15,* and *rps3*. Two genes, *rpoC2* and *ycf1*, each contained three mutation sites (Table 5). These mutations included six Ts and nine Tv. Ten nonsynonymous substitutions occurred simultaneously in seven genes (Table 5).

Repeat structure feature

Simple sequence repeats (SSRs) are also called microsatellites. Within the cp genomes of HA and HP, 59 different SSR loci were detected. Of these, 44 loci are mono-nucleotide repeats, three are di-nucleotide repeats, one is a tri-nucleotide repeat, and 11 are tetra-nucleotide repeats; penta-nucleotide repeats or those containing a higher number of nucleotide repeats were not detected. Among the SSR loci detected, the most frequently observed repeats were A/T and AT/TA, accounting for 77.97% of the total number of SSR loci (Table 6). By comparison, in the cp genomes of *M. yunnanensis* and *M. balansae*, 36 SSR loci were identified (Song et al., 2015).

Inversions

Inversions are important events in the evolution of plant cp genomes. Smaller inversions are less frequent in these genomes, and they are generally associated with hairpins (Fig. 5). Most inversions are found in spacers and introns, and in most cases, the presence/absence of inversions is highly homoplastic during cp genome evolution (Kim & Lee, 2005; Catalano et al., 2009), even at the population level (Quandt & Stech, 2004). A sequence alignment of the *Haloxylon* cp genomes revealed that an inversion event of 14 bp and one of 3 bp occur in the petA-psbJ intergenic region and in the rpl16 intron, respectively. The two inverted sequences are predicted to form secondary hairpin structures, with repeat sequences of 27 bp and 19 bp at the two ends,
respectively (Fig. 5).

Pseudogenes

Pseudogenes have been defined as nonfunctional regions of genomic DNA that originally derived from functional genes (Balakirev & Ayala, 2003). These are evolutionary relics of functional components in the genome that provide important information regarding the history of the gene and genome evolution (Balakirev & Ayala, 2003; Zou et al., 2009; Choi & Park, 2015). The rpl22 and rps18 genes are putative pseudogenes in the Paeoniaceae (Dong et al., 2013b), whereas the atpB gene is a pseudogene in Aster spathulifolius. Conversely, the rpl22, rps18, and atpB genes are predicted to be normal and functional in the Haloxylon species, whereas rpl23 is a present as a pseudogene in the Haloxylon cp genomes (Fig. 1 and Table S1).

CONCLUSIONS

Two Haloxylon cp genomes were sequenced and characterized for the first time, and we found that they share the same overall organization and gene content found in most angiosperm cp genomes, including that of the closely related Spinacia and Beta species. The location and distribution of repeat sequences and differing nucleotide mutation sites between the two cp genomes were identified. The LSC/IRB/SSC/IRA boundary regions of the Amaranthaceae cp genomes were compared, and lightly intense variations were identified within the genus Haloxylon. The complete Haloxylon cp genome sequences reported here enhance the genomic information available for the Amaranthaceae family and further contribute to the study of germplasm diversity. These data represent a valuable source of markers for future research on Haloxylon population genetics.

ACKNOWLEDGEMENTS

The authors thank Prof. Borong Pan for advice and helpful discussion.

REFERENCES

Akhani H., Edwards G., Roalson E.H. 2007. Diversification of the old world Salsoleae s.l. (Chenopodiaceae): molecular phylogenetic analysis of nuclear and chloroplast data sets and a revised
classification. *International J Plant Sci* 168: 931–956

APG III. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. *Botanical J Linnean Society* 161: 105–121

Balakirev E.S., Ayala F.J. 2003. Psuedogenes: are they “junk” or functional DNA? *Annual Rev Genet* 37: 123–151

Benson G. 1999. Tandem repeats finder: a program to analyze DNA sequences. *Nucleic Acid Research* 27(2): 573–580

Catalano S.A., Saidman B.O., Vilardi J.C. 2009. Evolution of small inversions in chloroplast genome: a case study from a recurrent inversion in angiosperms. *Cladistics* 25, 93–104

Choi K.S., Park S.J. 2015. The complete chloroplast genome sequence of *Aster spathulifolius* (Asteraceae): genomic features and relationship with Asteraceae. *Gene* 572: 214–221

Chung H.J., Jung J.D., Park H.W., Kim J.H., Cha H.W., Min S.R., Jeong W.J., Liu J.R. 2006. The complete chloroplast genome sequences of *Solanum tuberosum* and comparative analysis with *Solanaceae* species identified the presence of a 241-bp deletion in cultivated potato chloroplast DNA sequence. *Plant Cell Rep* 25: 1369–1379 DOI:10.1007/s00299-006-0196-4.

Conant G.C., Wolfe K.H. 2008. GenomeVx: simple web-based creation of editable circular chromosome maps. *Bioinformatics* 24(6): 861–862.

Cosner M.E., Jansen R.K., Palmer J.D., Downie S.R. 1997. The highly rearranged chloroplast genome of *Trachelium caeruleum* (Campanulaceae): multiple inversions, inverted repeat expansion and contraction, transposition, insertions/deletions, and several repeat families. *Curr Genet* 31: 419–429 DOI: 10.1007/s002940050225

Dong W.P., Liu H., Xu C., Zuo Y.J., Chen Z.J., Zhou S.L. 2014. A chloroplast genomic strategy for designing taxon specific DNA mini-barcodes: a case study on ginsengs. *BMC Genetics* 15:138

Dong W.P., Xu C., Cheng T., Lin K., Zhou S.L. 2013a. Sequencing angiosperm plastid genomes made easy: a complete set of universal primers and a case study on the phylogeny of Saxifragales. *Genome Biol Evol* 5(5): 989–997

Dong W.P., Xu C., Cheng T., Zhou S.L. 2013b. Complete chloroplast genome of *Sedum sarmentosum* and chloroplast genome evolution in Saxifragales. *PLoS ONE* 8(10): e77965 DOI:10.1371/journal.
Dong W.P., Liu J., Yu J., Wang L., Zhou S.L. 2012. Highly variable chloroplast markers for evaluating plant phylogeny at low taxonomic levels and for DNA barcoding. *PLoS ONE* 7(4): e35071 DOI:10.1371/journal.pone.0035071.

Doyle J.J., Doyle J.L., Palmer J.D. 1995. Multiple independent losses of two genes and one intron from legume chloroplast genomes. *Syst Bot* 20: 272–294 DOI:10.2307/2419496.

Downie S.R., Olmstead R.G., Zurawski G., Soltis D.E., Soltis P.S., Watson J.C., Palme J.D. 1991. Six independent losses of the chloroplast DNA rpl2 intron in dicotyledons: molecular and phylogenetic implications. *Evolution* 45: 1245–1259 DOI:10.2307/2409731.

Downie S.R., Palmer J.D. 1992. Use of chloroplast DNA rearrangements in reconstructing plant phylogeny. In Soltis P.S., D.E. Soltis, J.J. Doyle (eds) Molecular Systematics of Plants. Chapman and Hall, New York, London, pp14–35

Goremykin V.V., Hirsch-Ernst K.I., Wolff S., Hellwig F.H. 2003. Analysis of the *Amborella trichopoda* chloroplast genome sequence suggests that *Amborella* is not a basal angiosperm. *Mol Biol Evol* 20: 1499–1505 DOI: 10.1093/molbev/msg159.

Frazer K.A., Pachter L., Poliakov A., Rubin E.M., Dubchak I. 2004. VISTA: computational tools for comparative genomics. *Nucleic Acids Res* 32: W273-W279 DOI:10.1093/nar/gkh053. PubMed: 15215394.

Jansen R.K., Kaittanis C., Saski C., Lee S.B., Tomkins J., Alverson A.J., Daniell H. 2006. Phylogenetic analyses of *Vitis* (Vitaceae) based on complete chloroplast genome sequences: effects of taxon sampling and phylogenetic methods on resolving relationships among rosids. *BMC Evol Biol* 6: 32 DOI:10.1186/1471-2148-6-32.

Jia Z.Q., Lu Q. 2004. *Haloxylon* Bunge. China Environmental Science Press, Beijing, China (in Chinese).

Kim K.J., Lee H.L. 2005. Wide spread occurrence of small inversions in the chloroplast genomes of land plants. *Molecules and Cells* 19:104–113

Li H., Cao H., Cai Y.F., Wang J.H., Qu S.P., Huang X.Q. 2014. The complete chloroplast genome sequence of sugar beet (*Beta vulgaris* ssp. *vulgaris*). *Mitochondrial DNA* 25: 209–211

Librado P., Rozas J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. *Bioinformatics* 25: 1451–1452
Logacheva M.D., Samigullin T.H., Dhingra A., Penin A.A. 2008. Comparative chloroplast genomics and phylogenetics of *Fagopyrum esculentum* ssp. *ancestrale* – a wild ancestor of cultivated buckwheat. *BMC Plant Biology* 8: 59 DOI:10.1186/1471-2229-8-59 PMID: 18492277.

Long Y., Zhang J., Tian X., Wu S.S., Zhang Q., Zhang J.P., Dang Z.H., Pei X.W. 2014. De novo assembly of the desert tree *Haloxylon ammodendron* (C. A. Mey.) based on RNA-Seq data provides insight into drought response, gene discovery and marker identification. *BMC Genomics* 15: 1111. DOI:10.1186/1471-2164-15-1111.

Masood M.S., Nishikawa T., Fukuoka S., Njenga P.K., Tsudzuki T., Kadowaki K. 2004. The complete nucleotide sequence of wild rice (*Oryza nivara*) chloroplast genome: first genome wide comparative sequence analysis of wild and cultivated rice. *Gene* 340: 133–139 DOI:10.1016/j.gene. 2004.06.008.

Millen R.S., Olmstead R.G., Adams K.L., Palmer J.D., Lao N.T., Heggie L., Kavanagh T.A., Hibberde J.M., Graye J.C., Mordenf C.W., Calieg P.J., Jermiinh L.S., Wolfe K.H. 2001. Many parallel losses of *infA* from chloroplast DNA during angiosperm evolution with multiple independent transfers to the nucleus. *Plant Cell* 13: 645–658 DOI:10.1105/tpc.13.3.645.

Ni L.H., Zhao Z.L., Xua H.X., Chen S.L., Dorje G. 2016. The complete chloroplast genome of *Gentiana straminea* (Gentianaceae), an endemic species to the Sino-Himalayan subregion. *Gene* 577: 281–288

Pyankov V.I., Artyusheva E.G., Edwards G.E., Black C.C. JR, Soltis P.S. 2001. Phylogenetic analysis of tribe Salsoleae (Chenopodiaceae) based on ribosomal ITS sequences: implications for the evolution of photosynthesis types. *Am J Bot* 88(7): 1189–1198

Quandt D., Stech M. 2004. Molecular evolution and phylogenetic utility of the chloroplast *trnT-trnF* region in bryophytes. *Plant Biol* 6: 545–554

Raman G., Park S. 2016. The complete chloroplast genome sequence of Ampelopsis: gene organization, comparative analysis, and phylogenetic relationships to other angiosperms. *Front Plant Sci* 7: 341 DOI: 10.3389/fpls.2016.00341.

Rambaut A. 1996. Se-Al: sequence alignment editor. version 2.0. Oxford: University of Oxford, Department of Zoology

Schmitz-Linneweber C., Maier R.M., Alcaraz J.P., Cottet A., Herrmann R.G., Mache R. 2001. The plastid chromosome of spinach (*Spinacia oleracea*): complete nucleotide sequence and gene organization.
Shaw J., Lickey E.B., Schilling E.E., Small R.L. 2007. Comparison of whole chloroplast genome sequences to choose non-coding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. *Am J Bot* 94: 275–288 DOI:10.3732/ajb.94.3.275.

Sheng Y., Zheng W.H., Quan P.K., Ma K.P. 2004. Population genetic structure of a dominant desert tree, *Haloxylon ammodendron* (Chenopodiaceae), in the southeast Gurbantunggut desert detected by RAPD and ISSR markers. *Acta Botanica Sinica* 46: 675–681 (in Chinese with English Abstract).

Sheng Y., Zheng W.H., Quan P.K., Ma K.P. 2005. Genetic variation within and among populations of a dominant desert tree *Haloxylon ammodendron* (Amaranthaceae) in China. *Ann Bot London* 96: 245–252.

Song C.S., Jia K.F. 2000. Scientific survey of Wulate *Haloxylon ammodendron* forest nature reserve (The series of nature reserve). China Forestry Publishing House, Beijing, China (in Chinese with English Overview).

Song Y., Dong W., Liu B., Xu C., Yao X., Gao J., Corlett R.T. 2015. Comparative analysis of complete chloroplast genome sequences of two tropical trees *Machilus yunnanensis* and *Machilus balansae* in the family Lauraceae. *Front. Plant Sci.* 6: 662 DOI:10.3389/fpls.2015.00662.

Su H.J., Hogenhout S.A., Al-Sadi A.M., Kuo C.H. 2014. Complete chloroplast genome sequence of omani lime (*Citrus aurantiifolia*) and comparative analysis within the Rosids. *PLoS ONE* 9: e113049 DOI: 10.1371/journal.pone.0113049.

Suo Z.L., Jia Z.Q., Lu Q., Pan B.R., Jin X.B., Xu G., Peng X.Q., Sun H.B., Tao Y.H. 2012a. Distinguishing *Haloxylon persicum* and *H. ammodendron* (*Haloxylon* Bunge, Amaranthaceae) using DNA Marker. *AASRI Procedia* 1: 305–310.

Suo Z.L., Zhang C.H., Zheng Y.Q., He L.X., Jin X.B., Hou B.X., Li J.J. 2012b. Revealing genetic diversity of tree peonies at micro-evolution level with hyper-variable chloroplast markers and floral traits. *Plant Cell Reports* 31: 2199–2213.

Suo Z.L., Chen L.N., Pei D., Jin X.B., Zhang H.J. 2015. A new nuclear DNA marker from ubiquitin ligase gene region for genetic diversity detection of walnut germplasm resources. *Biotechnology Reports* 5: 40–45.
variations and single nucleotide polymorphic loci: a case study on classification of cultivars in *Lagerstroemia indica*. J Microb Biochem Technol 8: 266–271 DOI:10.4172/1948–5948.1000296.

Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. *Mol Biol Evol* 30: 2725–2729. DOI:http://dx.doi.org/10.1093/molbev/mst197.

Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. *Nucleic Acids Res* 25: 4876–4882 DOI:10.1093/nar/25.24.4876. PubMed: 9396791.

Wang X.M., Yang D.Y., Tian Y.Z., Zhang B.W., Tu P.F., Sun Q.S., Li X.B. 2009. Inter-simple sequence repeats analysis of *Haloxylon ammodendron* from seeds carried back by “Shenzhou No.4” spaceship. J Northwest University 39: 259–263 (in Chinese with English Abstract)

Worberg A., Quandt D., Barniske A.M., Lohne C., Hilu K.W., Borsch T. 2007. Phylogeny of basal eudicots: insights from non-coding and rapidly evolving DNA. *Organ Diver Evol* 7: 55–77 DOI:10.1016/j.ode.2006.08.001.

Wyman S.K., Jansen R.K., Boore J.L. 2004. Automatic annotation of organellar genomes with DOGMA. *Bioinformatics* 20: 3252–3255 DOI: 10.1093/bioinformatics/bth352. PubMed: 15180927.

Zhang P., Dong Y.Z., Wei Y., Hu C.Z. 2006a. ISSR analysis of genetic diversity of *Haloxylon ammodendron* (C. A. Mey.) Bunge in Xinjiang. *Acta Botanica Boreali-Occidentalia Sinica* 26: 1337–1341 (in Chinese with English Abstract)

Zhang P., Dong Y.Z., Wei Y., Hu C.Z. 2006b. Analysis of genetic diversity of *Haloxylon persicum* (Chenopodiaceae) in Xinjiang by ISSR. *Acta Bot Yunnanaica* 28: 359–362 (in Chinese with English Abstract)

Zhu G.L., Mosyakin S.L., Clemants S.E. 2004. *Haloxylon* Bunge (Chenopodiaceae). In Flora of China Editorial Committee (eds) Flora of China. Sci. Press, Beijing/Missouri Botanic Garden Press, St. Louis. 5: 395–396

Zou S.H., Lehti-Shiu M.D., Thibaud-Nissen F., Prakash T., Buell C.R., Shiu S.H. 2009. Evolutionary and expression signatures of pseudogenes in Arabidopsis and rice. *Plant Physiol* 151: 3–15

Zuker M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. *Nucleic Acids Research* 31: 3406–3415
Table and Figure Legends

Figure 1 Representative map of the two *Haloxylon* chloroplast genomes. Genome annotation was performed using DOGMA. Genes drawn outside of the circle are transcribed clockwise, whereas those represented inside the circle are transcribed counterclockwise. Small single copy (SSC), large single copy (LSC), and inverted repeat (IRa, IRb) regions are indicated.

Figure 2 Identity plot comparing the chloroplast genomes of four Amaranthaceae species using *Haloxylon ammodendron* as a reference sequence. The vertical scale indicates the percent identity, ranging from 50%-100%. The horizontal axis indicates the coordinates within the chloroplast genome. Genomic regions are color coded as protein-coding, rRNA, tRNA, intron, and conserved non-coding sequences (CNS). Abbreviations HP: *H. persicum*; SO: *Spinacia oleracea*; BV: *Beta vulgaris* subsp. *vulgaris*.

Figure 3 Comparison of the junction positions between the single copy and IR regions among four Amaranthaceae genomes.

Figure 4 The nucleotide substitution patterns in the two *Haloxylon* chloroplast genomes. The patterns were divided into six types, as indicated by the six non-strand-specific base-substitution types (i.e., numbers of G to A and C to T sites for each respective set of associated mutation types). The *H. ammodendron* chloroplast genome was used as a standard.

Figure 5 The hairpin loops predicted to be formed by inversions in the *Haloxylon* chloroplast genomes.

Table 1 Summary of complete chloroplast genome features in *Haloxylon*.

Table 2 Genes with introns in *Haloxylon ammodendron* and *H. persicum* and length of exons and introns.

Table 3 Indel mutation events in the chloroplast genomes of *Haloxylon ammodendron* and *H. persicum*.

Table 4 The nucleotide substitution patterns present in the two *Haloxylon* chloroplast genomes.

Table 5 Comparison of the mutational changes, number of transitions (Ts) and transversions (Tv), and synonymous (S) and nonsynonymous (N) substitutions per protein-coding chloroplast gene in *Haloxylon ammodendron* and *H. persicum*.

Table 6 Location of repeats in the *Haloxylon ammodendron* chloroplast genome.
Table S1 Genes found in the *Haloxylon* chloroplast genomes.
Figure 1 (on next page)

Representative map of the two *Haloxylon* chloroplast genomes.

Genome annotation was performed using DOGMA. Genes drawn outside of the circle are transcribed clockwise, whereas those represented inside the circle are transcribed counterclockwise. Small single copy (SSC), large single copy (LSC), and inverted repeat (IRa, IRb) regions are indicated.
Identity plot comparing the chloroplast genomes of four Amaranthaceae species using *Haloxylon ammodendron* as a reference sequence.

The vertical scale indicates the percent identity, ranging from 50%-100%. The horizontal axis indicates the coordinates within the chloroplast genome. Genomic regions are color coded as protein-coding, rRNA, tRNA, intron, and conserved non-coding sequences (CNS).

Abbreviations HP: *H. persicum*; SO: *Spinacia oleracea*; BV: *Beta vulgaris* subsp. *vulgaris*.

Figure 2 (on next page)
Figure 3 (on next page)

Comparison of the junction positions between the single copy and IR regions among four Amaranthaceae genomes.
Figure 4 (on next page)

The nucleotide substitution patterns in the two *Haloxylon* chloroplast genomes.

The patterns were divided into six types, as indicated by the six non-strand-specific base-substitution types (i.e., numbers of G to A and C to T sites for each respective set of associated mutation types). The *H. ammodendron* chloroplast genome was used as a standard.
Figure 5 (on next page)

The hairpin loops predicted to be formed by inversions in the *Haloxylon* chloroplast genomes.
Table 1 (on next page)

Summary of complete chloroplast genome features in *Haloxylon*.
Table 1 Summary of complete chloroplast genome features in *Haloxylon*.

	H. ammodendron	*H. persicum*	*Spinacia oleracea*	*Beta vulgaris*
Total cpDNA size	151,570	151,586	150,725	149,635
Length of LSC region	84,214	84,217	82,719	83,057
Length of IR region	24,171	24,177	25,073	24,439
Length of SSC region	19,014	19,015	17,860	17,701
Total GC content (%)	36.6	36.6	36.9	36.4
LSC	34.4	34.5	34.8	34.1
IR	43.0	43.0	42.7	42.2
SSC	29.7	29.7	29.8	29.2
Total number of genes	112	112	112	113
protein encoding	78	78	78	79
tRNA	30	30	30	30
rRNA	4	4	4	4
Pseudogenes	2	2	2	1
Table 2 (on next page)

Genes with introns in *Haloxylon ammodendron* and *H. persicum* and length of exons and introns.
Table 2 Genes with introns in *Haloxylon ammodendron* and *H. persicum* and length of exons and introns.

Gene	Exon I (bp)	Intron I	Exon II	Intron II	Exon III
atpF	145(145)	785(784)	410(410)		
clpP	71(71)	951(951)	292(292)	601(601)	228(228)
ndhA	553(553)	1090(1090)	533(533)		
ndhB	777(777)	675(675)	756(756)		
petB	6(6)	801(801)	642(642)		
petD	8(8)	722(722)	475(475)		
rpl16	399(399)	913(913)	9(9)		
rpl2	393(393)	668(668)	435(435)		
rpoC1	432(432)	780(780)	1602(1602)		
rps12	114(114)	–	231(231)	–	27(27)
rps16	40(40)	881(881)	197(197)		
trnA-UGC	38(38)	831(831)	42(42)		
trnG-GCC	23(23)	722(722)	58(58)		
trnI-GAU	42(42)	942(941)	35(35)		
trnK-UUU	35(35)	2909(2909)	37(37)		
trnL-UAA	35(35)	557(557)	50(50)		
trnV-UAC	39(39)	602(602)	35(35)		
ycf3	126(126)	772(772)	229(229)	812(812)	152(152)

rps12 is trans-spliced with the 5′ end located in the LSC region and the duplicated 3′ end in the IR regions.
Table 3 (on next page)

Indel mutation events in the chloroplast genomes of *Haloxylon ammodendron* and *H. persicum*.
Table 3 Indel mutation events in the chloroplast genomes of *Haloxylon ammodendron* and *H. persicum*.

Region	Location	Types	HA	HP	Length (bp)	Direction
accD-psa1	Intergenic	homopolymeric indel	AA	-	2	insertion
atpA-atpF	Intergenic	homopolymeric indel	T	-	1	insertion
atpF	intron	homopolymeric indel	-	T	1	deletion
ndhA-ndhA	Intergenic	homopolymeric indel	-	A	1	deletion
ndhA-ndhK	Intergenic	homopolymeric indel	-	T	1	deletion
psb1-trnS	Intergenic	homopolymeric indel	-	A	1	deletion
psb1-trnS	Intergenic	homopolymeric indel	-	T	1	deletion
rbcL-accD	Intergenic	homopolymeric indel	-	A	1	deletion
rps18-rpl20	Intergenic	homopolymeric indel	T	-	1	insertion
trnE-trnT	Intergenic	homopolymeric indel	-	A	1	deletion
trnK-rps16	Intergenic	homopolymeric indel	A	-	1	insertion
trnK-rps16	Intergenic	homopolymeric indel	A	-	1	insertion
trnL	intron	homopolymeric indel	-	A	1	deletion
trnL	intron	homopolymeric indel	A	-	1	insertion
trnL	intron	homopolymeric indel	-	T	1	deletion
trnR-aptA	Intergenic	homopolymeric indel	-	T	1	deletion
atpH-atpI	Intergenic	Indel	TTATT	-	5	insertion
clpP-psbB	Intergenic	Indel	-	GTCTT	5	deletion
petL-petG	Intergenic	Indel	-	G	1	deletion
rpoB-trnC	Intergenic	Indel	-	TGTAT	5	deletion
rpoB-trnC	Intergenic	Indel	TACAA	-	5	insertion
rrr23	coding	Indel	-	AATTAA	6	deletion
rrr23	coding	Indel	-	TTAATT	6	deletion

*The chloroplast genome of *H. ammodendron* was used as a standard. HA= *H. ammodendron*, HP= *H. persicum*.

1
Table 4 (on next page)

The nucleotide substitution patterns present in the two *Haloxylon* chloroplast genomes.
Table 4 The nucleotide substitution patterns present in the two *Haloxylon* chloroplast genomes.

Region	Location	*H. ammodendron*	*H. persicum*
atpA	coding	G	A
atpI	coding	T	C
matK	coding	C	A
ndhF	coding	C	T
ndhI	coding	G	T
psbC	coding	A	C
rpoB	coding	C	T
rpoC2	coding	C	A
rpoC2	coding	G	T
rps15	coding	A	G
rps3	coding	T	G
ycf1	coding	A	G
ycf1	coding	G	C
ycf1	coding	G	T
atpB-rbcL	Intergenic	A	C
atpF-atpH	Intergenic	G	C
atpH-atpI	Intergenic	G	A
ndhF-rpl32	Intergenic	G	T
psa1-rpl33	Intergenic	C	T
psa1-rpl33	Intergenic	T	A
psbE-petL	Intergenic	C	A
pshM-trnD	Intergenic	A	G
rpl14-rpl16	Intergenic	T	G
rpl20-rps12	Intergenic	G	T
rpl33-rps18	Intergenic	T	C
rpoA-rps11	Intergenic	A	G
rpoA-rps11	Intergenic	T	C
rpoB-trnC	Intergenic	G	T
rpoB-trnC	Intergenic	T	G
rps18-rpl20	Intergenic	T	G
rps8-rpl14	Intergenic	G	A
trnG-trnR	Intergenic	A	C
trnH-psbA	Intergenic	T	G
trnK-matK	Intergenic	A	C
trnK-rps16	Intergenic	A	C
trnP-psaJ	Intergenic	C	T
trnP-psaJ	Intergenic	C	T
clpP	intron	T	G
ndhA	intron	T	C
rpl16	intron	T	C
Gene	Intron	T	G
-------	--------	---	---
rps16		T	G
trnV		T	C
ycf3		T	C
Table 5 (on next page)

Comparison of the mutational changes, number of transitions (Ts) and transversions (Tv), and synonymous (S) and nonsynonymous (N) substitutions per protein-coding chloroplast gene in *Haloxylon ammodendron* and *H. persicum*.
Table 5 Comparison of the mutational changes, number of transitions (Ts) and transversions (Tv), and synonymous (S) and nonsynonymous (N) substitutions per protein-coding chloroplast gene in *Haloxylon ammodendron* and *H. persicum*.

Gene	Ts	Tv	S	N
atpA	1	0	1	0
atpB	1	0	1	0
matK	0	1	0	1
ndhF	1	0	0	1
ndh1	0	1	0	1
psbC	0	1	0	0
rpoB	1	0	1	0
rpoC2	0	3	0	3
rps15	1	0	0	1
rps3	0	1	0	1
ycf1	1	2	1	2
Total	6	9	5	10
Table 6 (on next page)

Location of repeats in the *Haloxylon ammodendron* chloroplast genome.
Table 6 Location of repeats in the *Haloxylon ammodendron* chloroplast genome.

No.	Location	Motif	No. of Repeats	SSR start	SSR end
1	trnK-matK	A	11	1658	1668
2	trnK-rps16	A	12	4210	4221
3	rps16-trnQ	A	10	6461	6470
4	trnQ-psbK	A	10	6957	6966
5	psbK-psbI	A	10	7578	7587
6	psbI-trnS	A	12	7854	7865
7	atpF intron	A	10	12476	12485
8	rpoC1 intron	A	10	22386	22395
9	trnE-trnT	A	10	31169	31178
10	trnL-intron	A	12	47464	47475
11	trnF-ndhJ	A	10	48982	48991
12	rbcL-accD	A	12	57323	57334
13	accD-psaI	A	10	59584	59593
14	psbF	A	10	64309	64318
15	clpP intron	A	10	71717	71726
16	petB intron	A	18	75505	75522
17	ndh1-ndhA	A	10	118705	118714
18	psaA	C	10	40165	40174
19	trnK-rps16	T	10	4464	4473
20	psbI-trnS	T	10	7745	7754
21	trnR-atpA	T	11	9948	9958
22	atpA-atpF	T	10	11532	11541
23	atpF intron	T	11	12457	12467
24	rps2-rpoC2	T	11	15957	15967
25	rpoC2-rpoC2	T	11	18156	18166
26	rpoB	T	10	25865	25874
27	trnD-trnY	T	10	30323	30332
28	trnL-trnF	T	10	48029	48038
29	ndh1-ndhK	T	10	49646	49655
30	trnV intron	T	15	52214	52228
31	trnM-atpE	T	10	52658	52667
32	rbcL-accD	T	14	57377	57390
33	petL-petG	T	10	66414	66510
34	psa1-rpl33	T	12	67499	67510
35	rps18-rpl20	T	10	68447	68456
36	rpoA	T	10	78219	78228
37	rps11-rpl36	T	12	79577	79588
38	rpl32-trnL	T	11	112371	112381
39	ndhA intron	T	12	119581	119592
40	ndhA intron	T	10	119793	119802
No.	Location	Motif	No. of Repeats	SSR start	SSR end
-----	----------	-------	----------------	-----------	----------
41	ycf1	T	12	125285	125296
42	ycf1	T	10	125890	125899
43	ycf1	T	14	126895	126908
44	ycf1	T	10	127195	127204
45	rps16-trnQ	AT	5	6277	6286
46	trnS-trnG	AT	5	8177	8186
47	trnS-trnG	AT	5	8300	8309
48	trnN-ndhF	TAA	4	109380	109391
49	psbA-trnK	TTGT	3	1522	1533
50	matK-trnK	TTCT	3	3873	3884
51	atp1-trn2	ATTA	3	15121	15132
52	trnE-trnY	ATTA	3	31084	31095
53	accD-psaI	TAAT	4	59721	59736
54	rps18-rpl20	TT TA	3	68474	68485
55	clpP intron	TTTC	3	71598	71609
56	rrrn23	AGGT	3	104481	104492
57	trnL-ccsA	AACC	3	113312	113323
58	ycf1	TAAT	3	124297	124308
59	rrrn23	CTAC	3	131310	131321