Role of the Fas/FasL pathway in HIV or SIV disease
Bhawna Poonia, C David Pauza and Maria S Salvato*

Address: Institute of Human Virology, University of Maryland, School of Medicine, 725 W Lombard Street, Baltimore, MD 21201, USA
Email: Bhawna Poonia - bpoonia@ihv.umaryland.edu; C David Pauza - cdpauza@ihv.umaryland.edu; Maria S Salvato* - msalvato@ihv.umaryland.edu

* Corresponding author

Abstract
Human immunodeficiency virus disease involves progressive destruction of host immunity leading to opportunistic infections and increased rates for malignancies. Both depletion in immune cell numbers as well as defects in their effector functions are responsible for this immunodeficiency. The broad impact of HIV reflects a similarly broad pattern of cell depletion including subsets that do not express viral receptors or support viral replication. Indirect cell killing, the destruction of uninfected cells, is due partly to activation of the Fas/FasL system for cell death. This death-signaling pathway is induced during HIV disease and contributes significantly to viral pathogenesis and disease.

Background
Changes in CD4 cell count and viral RNA burden are the most commonly used markers for HIV disease progression. However, evidence has existed for several years that many patients with HIV disease experience a broad loss of leukocyte subsets without an apparent preference for depleting CD4 T cells [1-3]. Effects on cell types other than CD4 T cells were documented in macaques after showing substantial B cell loss during acute SIV infection [4] and in humans by showing depletion of γδ T cells [5] that are CD4 negative. Many other examples confirmed that the profound impact of HIV on "non-CD4" leukocyte populations must depend on indirect mechanisms, as opposed to direct cell killing that occurs when HIV or SIV infects and destroys susceptible CD4+ cells. Uninfected CD4+ cells can also be destroyed by indirect mechanisms. Since both direct and indirect mechanisms are driven by viral burden, it has been difficult to distinguish their contributions to CD4+ T cell depletion and progressing disease. This technical obstacle has blocked efforts to explore new therapies that target indirect mechanisms.

Besides depletion of immune cells due to cell death, HIV infection is also characterized by defects in effector cell functions. T cell exhaustion or low HIV-specific T cell cytotoxicity has been attributed to loss of zeta chains [6] or to high levels of PD-1 or CTLA-4 on the surface of T cells [7,8]. During chronic HIV infection this immune dysfunction can result from interactions with regulatory T cells (Tregs) [9,10] that are exported to the periphery during high thymic turnover [11]. Ultimately, Tregs contribute not only to immune exhaustion but also to cell death via the Fas/FasL apoptotic pathways (Fig. 1).

Mechanisms of indirect cell depletion in HIV infection
Despite overwhelming evidence for indirect cell depletion, little is known about how it occurs in vivo. Cell loss is accelerated during elevated viremia and a broad recovery of leukocytes attends highly active antiretroviral therapy (HAART) [12]. Some of these changes may be related to release of sequestered lymphocytes from secondary lymphoid tissues [13] as viral antigen declines during therapy. HIV effects on bone marrow, thymus, and hemat-
Retrovirology 2009, 6:91

Direct Killing
(Killing of virus-infected cells)

- HIV-Killer T cell
- HIV+ CD4+
- Virus-potentiated cell death
- HIV-

Indirect Killing
(Killing of un-infected “bystander” cells)

- HIV- CD4+
- Treg HIV+/- CD4+
- Fas-mediated apoptosis
- HIV+/HIV gene products

Figure 1

Major mechanisms of leukocyte cell loss in AIDS. Two models for cell death in AIDS are the direct and indirect killing of leukocytes during disease progression. Direct killing, or killing of virus-infected cells, is presumed to be virus-mediated or to occur via immune surveillance of virus-infected cells, most often by killer T cells. The virus-infected cells are predominately memory T cells with the phenotype CD4+CD45RA- or CD4+CD45RA+Fas and are primarily killed by cytotoxic T cells in a Fas-independent manner [52]. Indirect cell death, or killing of uninfected “bystander” cells, has also been documented in vivo. All leukocytes, including uninfected bystander cells, can be activated, with up-regulation of Fas/FasL and other death mediators, after contact with HIV-infected cells or HIV antigens such as soluble tat, gp120, vpr, and nef [20,24,38,39,49]. Thus HIV gene expression contributes to both direct and indirect killing mechanisms. Contact with death ligands like FasL causes apoptosis of activated cells through Fas/FasL signaling. Tregs are major effectors of bystander killing. The finding that HIV+ cells are less susceptible to Fas/FasL killing means that HIV+ cells become enriched when Fas-mediated apoptosis is the major death pathway.

Opioidic stem cells were also proposed as causes for general leukocyte loss [14]. While HIV does indeed infect and alter bone marrow and thymus, the kinetics for cell loss during acute infection, the rates for recovery during HAART and the durable repertoire defects in T and B cell subsets after HAART [15,16] argue that these dynamic changes occur within mature populations without an overwhelming impact of declining stem cell output. Therefore due to large expansions and contractions of mature cell numbers, declining stem cells do not have a measurable impact on leukocyte depletion in AIDS.

A process described as "chronic immune activation" or "hyperactivation" occurs during HIV disease and is...
accompanied by higher expression of TNF superfamily ligands and their receptors, e.g. Fas/Fasl and TRAIL-DR5 [17-20]. Chronic activation coincides with "activation induced cell death" (AICD) that was initially coined to describe cell loss that occurs when lymphocytes are activated by viral antigen in the absence of appropriate co-stimulation. AICD connects viral gene expression to a general lymphocyte destruction, ultimately resulting in reduced immune protection from HIV. It is now known that both virus and host products can activate lymphocytes and induce death receptor expression. Secreted HIV Tat protein has been shown to up-regulate Fasl and TRAIL in T cells or macrophages, which can in turn induce apoptosis in bystander cells, thereby providing a mechanism of cell death in uninfected cells [21-23]. In HIV disease, both antigen-specific and polyclonal activation have been observed [17,24,25]. This pan-activation sensitizes the lymphocytes to apoptotic cell death that occurs when the death ligand, usually cell-associated, contacts a cell that is expressing death receptors.

Early investigators [26] proposed apoptotic death as an important contributor to CD4 T cell depletion. They observed that triggering through the T cell receptor failed to induce proliferation of PBMC from HIV+ asymptomatic donors; instead, CD4 cells in these cultures had features consistent with Fas-mediated apoptosis [27]. We confirmed this result in SIV-infected macaques [28]. Alternatively, signaling through the T cell receptor [29] can activate the mitochondrial pathway for apoptosis, distinct from the Fas-triggered caspase-8 death pathway [30]. Both pathways are generally invoked in AICD (Figure 1). Since antigen-specific memory T cells are more likely to express Fas, cell killing can appear to be tied to antigen specificity. Both the caspase 8 and the mitochondrial apoptosis mechanisms tend to delete immune cells that respond to antigen. Preferential apoptotic cell death of antigen-activated T cells could account for the lack of immune control over opportunistic pathogens and an insufficient of viral immunity that fails to prevent viral persistence or progressing disease. Once the host environment is "set," and after viremia triggers higher expression of Fasl, every encounter with antigen has the potential to drive cell depletion among all lymphocyte compartments.

Role of Fas/Fasl mediated cell death in HIV/SIV infections

Apoptosis is observed consistently among uninfected cells in SIV+ macaques or HIV+ humans [31]. Chronic immune activation drives cells into apoptosis [32] possibly involving Fas/Fasl interactions [33], and reflects an exaggeration of the normal processes for homeostatic cell regulation during HIV disease [34]. The roles of assassin and victim are not always clear in these interactions. Activated CD4+ T cells can express Fasl and become the effectors of cell death including the destruction of resting B cells [35], even as they also become targets for cell killing and display high rates for apoptosis during disease.

Many studies have explored the mechanisms connecting HIV/SIV antigen expression and apoptotic cell death. Human macrophages express Fasl after exposure to HIV [36], creating a link between antigen presentation and Fas/Fasl-mediated apoptosis. HIV up-regulates Fasl in CD4 T cells [37,38] after they are exposed to soluble Tat, gp120 [22] or Nef proteins [39]. Higher levels of Fasl, both cell-associated and in plasma, and Fas were observed in specimens from HIV+ patients whose PBMC were especially susceptible to Fas-mediated cell death in vitro [40]. Cross-linking of CD4 by gp120 complexes or viral particles increased the susceptibility to apoptosis triggered by Fasl or TNF-α [41,42].

The patterns of CD4 T cell depletion appear to be antigen-specific, as perturbation of the CD4 receptor repertoire is significantly associated with higher plasma viremia [43]. This can be explained by an AICD mechanism or by virus infection of antigen-activated cells as we proposed [44]. Less data are available to show whether CD8+ T cell or B cell loss during HIV infection is antigen-specific, although altered receptor repertoire have been reported in both cases [45-47]. The γδ T cell population shows a specific pattern of depletion in HIV disease [5], losing the critical Vγ2-Jγ1.2+ subset that is required for pathogen and tumor cell responses but few cells express CD4 and γδ T cells do not support HIV replication. To the extent that antigen stimulation is related to cell depletion, AICD may be invoked as a mechanism for γδ T cell killing. Thus, AICD is a mechanism that potentially links antigen stimulation with expression of death ligand receptors, leading to specific cell depletion.

Neuronal cells that are depleted during chronic HIV infection comprise an important example of bystander depletion since neuronal cells are not infected by HIV. Neuronal cell loss has been attributed to interaction with viral proteins such as gp120, vpr, nef, and tat, and to soluble neurotoxic factors released by infected macrophages [48]. The primary mechanism of neuronal depletion is apoptosis via extrinsic Fas-related death receptors or intrinsic mitochondrial pathways [48]. The fate of neuronal cells during AIDS is reminiscent of the cell culture studies previously mentioned documenting the apoptotic destruction of uninfected cells exposed to viral proteins [20,24,38,39,49].

Broadly acting immune stimulation during HIV or SIV infection especially implicates the Fas death pathway since activated T or B cells express Fas. Acute SIV infection triggers rapid increases in Fas and Fasl expression in peripheral blood [50] as well as in thymus and other lym-
phoid tissues [51]. During acute SIV infection, most T cells express Fas [52] and there is abundant local expression of FasL among intestinal lymphocytes [53]. Ablation of intestinal lamina propria CD4+ cells during SIV infection can be attributed in part, to the Fas/FasL mediated apoptotic pathway but it is controversial whether apoptotic death of uninfected cells exceeds virus-mediated killing of infected cells. Detailed studies of viral burden and the rising proportion of SIV+ intestinal T cells argued that direct depletion of infected cells accounts for the rapid cell loss [52] without the need to invoke apoptotic killing of uninfected cells. These investigators stated that up to 60% of all memory T cells were infected but that those cells were lost within 4 days. They defined memory CD4+ cells as those that were CD45RA- or CD45RA+CD95+, meaning that Fas+ (CD95+) cells that are highly susceptible to apoptosis are included. Circulating lymphocytes and lymphocytes from lymph nodes and mucosa were sampled, but lymphocytes were not sampled from the spleen or liver, for example, so it is impossible to rule out margination as an explanation for lymphocyte loss. There is no way to determine from the experimental design, whether infected cells are being depleted faster than uninfected cells.

Another recent publication from Mattapallil’s laboratory notes that early mucosal HIV/SIV infection (2-4 days after inoculation) there are high level of infected CD4+ TH-17 T cells that are depleted during the course of infection [54]. TH-17 cells are proinflammatory effectors of antiviral immunity and are commonly suppressed by Treg, most likely causing their depletion via the Fas pathway. Once again it is not clear whether this depletion is due to migration or cell death in the category of direct depletion of virus-infected cells or indirect depletion of uninfected bystander cells. It is highly improbable that any one mechanism will explain all events in AIDS pathogenesis.

Several important studies have implicated apoptosis in uninfected cells as a major mechanism for leukocyte depletion. Fas ligation was a probable cause of apoptosis in T cells from SIV infected macaques [55]. However, caspase-independent pathways for T cell apoptosis were thought to drive cell death in other SIV infection studies [56]. Cell loss, especially in gut-associated lymphoid tissues, likely occurs by multiple mechanisms and we would expect depletion of both CD4+ and CD4- cell subsets at these loci of intense viral replication.

A recent publication describes gene expression profiles of three stages of HIV infection: acute, chronic, and AIDS [57]. The acute stage has high levels of FasL mRNA expression that diminishes during the chronic stage. This observation coincides with earlier published studies showing a high level of PBMC-susceptibility to AICD during the acute stage of SIV infection, and this susceptibility subsides during the chronic stage [58].

Curiously, infected cells are more resistant to apoptosis than uninfected cells [23,59]. The apoptosis resistance in persistently infected lymphoid and monocyctic cells was shown to be independent of active viral production and involved a modulation of the mitochondrial pathway [60]. A consequence of this is that indirect cell killing through apoptotic mechanisms like Fas/FasL will destroy activated but uninfected cells while sparing the fraction of infected cells. Such a process will tend to increase the proportion of infected cells and diminish the proportion of uninfected cells in a tissue heavily burdened by SIV or HIV infection. Perhaps this mechanism contributes to the very high proportions of infected cells noted in macaque intestinal tissues after SIV infection [52] by removing uninfected cells and may help to reconcile apparent differences between direct and indirect cell depletion models.

Substantial data have been accumulated on HIV induction of Fas or FasL, the susceptibility of PBMC from HIV patients to apoptotic cell death and the reversal of these conditions by HAART. When viremia was suppressed by effective HAART, CD4 cells in PBMC had significantly reduced apoptosis that correlated with increasing CD4 counts in blood even though lymphoid tissue FasL levels were unchanged [61,62]. Similar findings have been reported for HIV and SIV infections. However, the problem remains that susceptibility to apoptosis that is measured in vitro rises and falls with changes in viremia, making it difficult to separate direct from indirect killing mechanisms in terms of their contribution to disease progression. In murine systems, these problems are addressed readily by the use of knock-out mutations eliminating Fas, FasL or both molecules. For AIDS-related questions, the initial studies are done most appropriately in nonhuman primates using SIV or SHIV to establish persistent infection and then applying interventions to modulate the Fas/FasL pathway.

Using a recombinant humanized anti-FasL monoclonal antibody [63] we developed a protocol for treating rhesus macaques to interrupt the Fas/FasL system. Animals received a total of 5 injections given once per week of anti-FasL beginning 2 weeks before SIV-inoculation and finishing 2 weeks after virus inoculation. The pilot study showed no effect of anti-FasL on plasma viremia, but found increased virus-specific immunity and delayed disease among treated animals [64]. A larger study using immunized macaques indicated that anti-FasL treatment preserved memory T cells and antigen responses after SIV infection, but was associated with decreased levels of Treg cells [65]. In the two interventional studies, anti-FasL delivered before and during the acute infection had a
durable effect on immune status and disease many months after treatment stopped. These changes were not reflected in vRNA levels that were similar among treatment and control groups, but were detected in the composition and activity of other T cell populations. This means that uninfected effector cells must have been preserved by the treatment.

Another indication of the importance for indirect cell killing comes from studies of "naturally-infected" macaques i.e., sooty mangabeys infected with SIVsmm that maintain plasma viremia, do not show high susceptibility to in vitro apoptosis among PBMC and remain disease-free [66]. Here, apoptosis and immune activation were low and animals did not develop disease despite chronic viremia. The observation of preserved CD4 T lymphocytes with regenerative capacity in spite of high levels of viremia, suggests that virus alone cannot explain the massive loss of CD4 lymphocytes that occurs in pathogenic SIV and HIV infections [67] and indirect cell killing mechanisms may be important.

We reported [68] that half of the 56 macaques tested showed high levels of MHC-unrestricted cytolysis prior to SIV inoculation and that animals from this group were all rapid progressors. Subsequently, we found that MHC-unrestricted cytolysis involves the Fas/FasL pathway [64] and rapid progressors had higher baseline levels of cell killing through this pathway. In corroboration of these findings, high levels of lymph node cell apoptosis during acute SIV infection also predict that animals will become rapid progressors [69].

Reports showing lower levels of indirect cell killing/apoptosis among naturally-infected macaques despite similar viremia [64,67,70], the correlation between apoptosis and rapid progression [69] and intervention studies showing disease-sparing after brief treatment with monoclonal antibody against FasL [64,65]. These reports attest to strong relationships between apoptotic killing of uninfected cells and pathogenesis. The in vitro and tissue studies on HIV agree with these findings. Disagreements remain about the mechanisms for cell death, the roles for viral proteins and the relative importance of Fas versus non-Fas death pathways. In addition to direct infection and cell destruction by viral cytopathic effects or antigen-specific cytotoxicity, indirect cell killing mechanisms have broad impact on host immune capacity and are important in the pathogenesis of HIV/AIDS.

Significance of indirect cell killing for HIV vaccine/therapeutics design
Knowing the role for uninfected bystander cell killing in disease, it remains a challenge to apply this information to treating HIV in man. An anti-Fas treatment during acute infection would be difficult to deliver. Since it may not modulate vRNA, the main marker for HIV therapy, lengthy studies would be needed to document treatment effects. The use of anti-retroviral therapy during this time would obscure the impact of blocking FasL. A combination of anti-FasL plus active immunization during interrupted HAART is conceivable, but unlikely to be pursued given the treatment choices and durable virus suppression achievable with available drugs. The most likely application of this knowledge may come in the evaluation of prophylactic or therapeutic vaccines. If we define viral proteins that are responsible for inducing bystander cell killing or identify particular motifs within these proteins that trigger killing mechanisms, vaccine-elicited antibodies may block these effects and preserve immunity even if vRNA levels appear unchanged. For example, gp41 peptide was shown to induce NKp44L on CD4+ T cells during HIV infection, making them highly susceptible to NK lysis. Immunizing against this peptide reduced ligand expression on CD4 lymphocytes and decreased apoptosis rates in SHIV-infected macaques [71] thereby indicating its role in promoting bystander cell killing. Careful evaluation of cellular apoptosis and tissue levels of Fas or FasL will be important to evaluate vaccine trials. FasL bearing CD4 lymphocytes were shown recently to kill antigen expressing cells following plasmid immunization, resulting in both lower antigen expression and subsequent decreases in antigen-specific cellular immunity [72]. Such mechanisms may impact other biological therapies in HIV/AIDS and appropriate inhibitors of Fas/FasL may be required to properly implement new interventions.

Conclusion
HIV infection depletes a broad profile of leukocyte subsets including many that do not express CD4 and are not susceptible to direct virus infection. Models for the loss of non-CD4+ subsets including activation-induced cell death, explain the antigen-specific pattern of cell loss and frequently invoke Fas/FasL interactions as a principal mediator of cell death. The role for FasL was tested in the SIV/macaque model for AIDS using recombinant humanized monoclonal antibodies to neutralize this cell death ligand. Treated macaques modulated SIV disease and increased virus-specific immunity without consistent reduction in vRNA burden. The status of animals treated with anti-FasL was similar to natural SIVsmm infection of sooty mangabeys that have no overt disease despite high chronic viremia and show minimal apoptosis and immune hyperactivation.

The Fas/FasL death pathway is an important component of SIV or HIV disease. Whether this pathway for cell death is driven by viral proteins, virus particles or induced host factors remains unknown, although compelling examples of each exist in literature. The capacity to control activa-
tion of this cell death pathway may be important for the ultimate success of preventive vaccine strategies. The magnitude and duration of protective immunity, once viral exposure has occurred, are key to controlling infection and disease. Cell death pathways like Fas/FasL may be exploited by HIV to reduce the level of protective immunity and to establish a persistent infection with progressing disease. There is a continuing need to understand these mechanisms and develop effective interventions to improve the impact of antiretroviral therapy.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
PB wrote the manuscript and approved its content. CDP wrote the manuscript and approved its content. MSS wrote the manuscript and approved its content.

References
1. Ho J, Moir S, Malapina A, Howell ML, Wang W, DiPota AC, O’Shea MA, Roby GA, Kwan R, Mican JM, et al. Two overrepresented B cell populations in HIV-infected individuals undergo apoptosis by different mechanisms. Proc Natl Acad Sci USA 2006, 103:19436-19441.
2. Mela CM, Steel A, Lindsay J, Gazzard BG, Gotch FM, Goodier MR: Depletion of natural killer cells in the colonic lamina propria of viraemic HIV-1-infected individuals. AIDS 2007, 21:2177-2182.
3. Moir S, Fauci AS: B cells in HIV infection and disease. Nat Rev Immunol 2009, 9:235-245.
4. Dykhuisen M, Mitchell JC, Montefiori DC, Thomson J, Acker L, Lardy H, Pauza CD: Determinants of disease in the simian immunodeficiency virus-infected rhesus macaque: characterizing animals with low antibody responses and rapid progression. J Gen Virol 1998, 79(Pt 10):2461-2467.
5. Enders FJ, Yin C, Martini F, Evans FS, Propp N, Peccia F, Pauza CD: HIV-mediated gammadelta T cell depletion is specific for Vgamma2+ cells expressing the Jgamma1.2 segment. AIDS Res Hum Retroviruses 2003, 19:21-29.
6. Trimble LA, Lieberman J: Circulating CD8 T lymphocytes in human immunodeficiency virus-infected individuals have impaired function and downmodulate CD3 zeta, the signaling chain of the T-cell receptor complex. Blood 1998, 91:585-594.
7. Day CL, Kaufmann DE, Kiepiela P, Brown JA, Moodley ES, Reddy S, Mackey EW, Miller JD, Leslie AJ, DePierres C, et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 2006, 443:350-354.
8. Kaufmann DE, Kavanagh DG, Pereyra F, Zaunders JJ, Mackey EW, Miura T, Palmer S, Brockman M, Rathod A, Piechocka-Trocha A, et al. Upregulation of CTLA-4 by HIV-specific CD4+ T cells correlates with disease progression and defines a reversible immune dysfunction. Nat Immunol 2007, 8:1246-1254.
9. Amarnath S, Dong L, Li J, Wu Y, Chen W: Endogenous TGF-beta activation by reactive oxygen species is key to Foxp3 induction in TCR-stimulated and HIV-1-infected human CD4+CD25+ T cells. Retrovirology 2007, 4:57.
10. Cao W, Jamieson BD, Hultin LE, Hultin PM, Detels R: Regulatory T cell expansion and immune activation during untreated HIV type 1 infection are associated with disease progression. AIDS Res Hum Retroviruses 2009, 25:183-191.
11. Kolte L, Gaardbo JC, Skougstrand K, Ryder LP, Ersboll AK, Nielsen SD: Increased levels of regulatory T cells (Tregs) in human immunodeficiency virus-infected patients after 5 years of highly active anti-retroviral therapy may be due to increased thymic production of naive Tregs. Clin Exp Immunol 2009, 155:44-52.
12. Robbins GK, Spritzler JG, Chan ES, Asmuth DM, Gandhi RT, Rodriguez BA, Skowron wong, Skolnik PR, Shaffer RVW, Pollard RB: Incomplete reconstitution of T cell subsets on combination antiretroviral therapy in the AIDS Clinical Trials Group protocol 384. Clin Infect Dis 2009, 48:350-361.
13. Bucy RP, Hocke tt RD, Derdeyn CA, Saag MS, Squires K, Sillers M, Mitsuyasu RT, Kilby JM: Initial increase in blood CD4(+) lymphocytes after HIV-antiretroviral therapy reflects redistribution from lymphoid tissues. J Clin Invest 1999, 103:1391-1398.
14. Brown KN, Wijewardana V, Liu X, Barratt-Boyes SM: Rapid influx and death of plasmacytoid dendritic cells in lymph nodes mediate depletion in acute simian immunodeficiency virus infection. PLoS Pathog 2009, 5:e1000413.
15. Aiuti F, Mezzaroma I: Failure to reconstitute CD4+ T cells despite suppression of HIV replication under HAART. AIDS Rev 2006, 8:58-97.
16. Gasper-Smith N, Crossman DM, Whitesides JF, Mensal N, Orttinger JS, Plank SG, Moody B, Ferrari G, Weinhold KJ, Miller SE, et al.: Induction of plasma (TRAIL), TNFR-2, Fas ligand, and plasma microparticles after human immunodeficiency virus type 1 (HIV-1) transmission: implications for HIV-1 vaccine design. J Virol 2008, 82:7700-7710.
17. Heberleau JP, Nilsson J, Barratt-Boyes SM, Hardy AW, Vaccari M, Cecchinato V, Valeri F, Franchini G, Andersson J, Shearer GM: HAART reduces death ligand but not death receptors in lymphoid tissue of HIV-infected patients and simian immunodeficiency virus-infected macaques. AIDS 2009, 23:35-40.
18. Miura Y, Koyanagi Y: Death ligands and ligand-mediated apoptosis in HIV infection. Rev Med Virol 2005, 15:169-178.
19. Yang Y, Tikhonov I, Ruckwardt TJ, Djavani M, Zapata JC, Pauza CD, Salvato MS: Monocytes treated with human immunodeficiency virus Tat kill uninfected CD4(+) cells by a tumor necrosis factor-related apoptosis-inducing ligand-mediated mechanism. J Virol 2003, 77:6700-6708.
20. Campbell GR, Pasquier E, Watkins J, Bourgarel-Rey V, Peyrot V, Esquiet D, Barbier P, de Mareuil J, Brauguer D, Kalebou P, et al.: The glucocorticoid receptor of the region of the HIV-1 Tat protein is involved in T-cell apoptosis. J Biol Chem 2004, 279:48197-48204.
21. Westendorp MO, Frank R, Ochsembauer C, Stricker K, Dhein J, Walczak H, Debatin KM, Krammer PH: Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gp120. Nature 1995, 375:497-500.
22. Zhang M, Li X, Pang X, Ding L, Wood O, Clouse KA, Hewlett I, Dayton AI: Identification of a potent HIV-induced source of bystander-mediated apoptosis in T-cells: Upregulation of TRAIL in primary Human Macrophages by HIV-1 Tat. J Immunol 2004, 172:199-206.
23. Lumm JN, Schnepple DJ, Badley AD: Acquired T-cell sensitivity to TRAIL mediated killing during HIV infection is regulated by CXCR4-gp120 interactions. AIDS 2005, 19:125-133.
24. Muthumani K, Choo AY, Hwang DS, Premkumar A, Dayes NS, Harris C, Green DR, Wadhsworth SA, Siekierka JJ, Weiner DB: HIV-1 Nef-induced FasL induction and bystander killing requires p38 MAPK activation. Blood 2005, 106:2059-2068.
25. Terai C, Kornbluth RS, Pauza CD, Richman DD, Carson DA: Activation-induced death by apoptosis in CD4+ T cells from human immunodeficiency virus-infected asymptomatic individuals. J Virol 1991, 65:1701-1715.
26. Groux H, Torpier G, Monte D, Mouton Y, Capron A, Ameisen JC: Activation-induced death by apoptosis in CD4+ T cells from human immunodeficiency virus-infected asymptomatic individuals. J Exp Med 1997, 181:1711-1715.
27. Wallace M, Pauza CD, Salvato MS: Macaque models for early immunosuppression and T cell loss during acute immunodeficiency virus infections. J Biol Regul Homeost Agents 2001, 15:304-307.
28. Gougeon ML, Coluzzi V, Dagleish A, Montagnier L: New concepts in AIDS pathogenesis. AIDS Res Hum Retroviruses 1993, 9:287-289.
29. Alderson MR, Tough TW, Davis-Smith T, Bradly S, Falk B, Schooley KA, Goodwin RG, Smith CA, Ramsdell F, Lynch DH: Fas ligand mediates activation-induced cell death in human T lymphocytes. J Exp Med 1995, 181:71-77.
31. Finkel TH, Tudor-Williams G, Banda NK, Cotton MF, Curiel T, Monks C, Baba TW, Ruprecht RM, Kuper A: Apoptosis occurs predominantly in bystander cells and not in productively infected cells of HIV- and SIV-infected lymph nodes. Nat Med 1995, 1:129-134.

32. Gougeon ML: Chronic activation of the immune system in HIV infection: contribution to T cell apoptosis and V beta selective T cell anergy. Curr Top Microb Immunol 1995, 208:177-193.

33. Ju ST, Pandi DJ, Cui H, Ettinger r, e, et al.: Sherr DH, Stanger BZ, Marshak-Rothstein A: Fas(CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature 1995, 373:444-448.

34. Lynch DH, Ramsdell F, Alderson MR: Fas and FasL in the homoeostatic regulation of immune responses. Immunol Today 1995, 16:569-574.

35. Rothstein TL, Wang JK, Leibson PJ, Lynch DH, Alderson MR, Paya CV: Regulation of Fas ligand expression by human immunodeficiency virus in macrophages mediates apoptosis of uninfected T lymphocytes. J Virol 1995, 70:199-206.

36. Ji J, Cloyd MW: HIV-1 binding to CD4 on CD4+CD25+ regulatory T cells represses their suppressive function and induces them to home to, and accumulate in, peripheral and mucosal lymphoid tissues: an additional mechanism of immunosuppression. Int Immunol 2009, 21:283-294.

37. Mitra D, Steiner M, Lynch DH, Staiano-Coico L, Laurence J: HIV-1 upregulates Fas ligand expression in CD4+ T cells in vitro and in vivo: association with Fas-mediated apoptosis and modulation by aurantricarboxylic acid. Immunology 1996, 87:381-385.

38. Xu XN, Screnerton GR, Gofft CM, Dong T, Tan R, Almond N, Walker B, Stebbing B, Kent K, Nagata S, et al.: Evasion of cytotoxic T lymphocyte (CTL) responses by nef-dependent induction of Fas ligand (CD95L) expression on simian immunodeficiency virus-infected cells. J Exp Med 1997, 187:61-71.

39. Slaord EM, Young NS, Kumar P, Weichold FF, Sato T, Maciejewski JP: Induction of CD95 ligand expression on B lymphocyte subsets. Immunol Today 1998, 19:63-67.

40. Algeciras A, Dockrell DH, Lynch DH, Paya CV: CD4 regulates susceptibility to Fas ligand- and tumor necrosis factor-mediated apoptosis. J Exp Med 1998, 187:711-720.

41. Boironv A, Mauvais M, Venturi M, Giordani L, Luzatti F, Pronio AM, Montesinos C, Pugliese O: HIV-1 gp120 accelerates Fas-mediated activation-induced human lamina propria T cell apoptosis. J Clin Immunol 1998, 18:39-47.

42. Malhotra U, Hunaberry C, Holte S, Lee J, Corey L, McElrath MJ: CD4+ T cell receptor repertoire perturbations in HIV-1 infection: association with plasma viremia and disease progression. Clin Immunol 2006, 119:95-102.

43. Pauza CD: HIV Persistence in Monocytes Leads to Pathogenesis and AIDS. Cellular Immunology 1988, 112:414-424.

44. Khobamba M, McCloskey TW, Palwa R, Sun M, Pahwa S: Alterations in T-cell receptor Vb repertoire of CD4 and CD8 T lymphocytes in human immunodeficiency virus-infected children. Clin Diag Lab Immunol 2000, 10:53-58.

45. Ren GL, Chen JP, Jia MM, Kou ZC, Liu S, Ma PF, Shao YM, Hong KX: CD4+ T cell receptor diversity of CD8(+) T lymphocytes in human immunodeficiency virus infection: contribution to T cell anergy. J Exp Med 1995, 187:24-33.

46. Chen W, Tang Z, Fortina P, Patel P, Addya S, Surrey S, Aachempang EA, Mukhtar M, Pomerantz RJ: Death of CD4+ T cells with high levels of gp120-induced apoptosis in human neurons via both the death receptor and NMDA receptor pathways. Cell Death Differ 2005, 12:187-198.

47. Arokiam H, Kamata M, Chen I: Virion-associated Vpr of HIV-1 triggers the activation of apoptotic events and enhances Fas-induced apoptosis in human T cells. J Virol 2009, 83:11283-97.

48. Sasaki T, Aimi Y, Nakasone T, Shinozuka K, Takashiki E, Ando S, Someya K, Suzuki Y, Honda M: Induction of CD95 ligand expression on T lymphocytes and B lymphocytes and its contribution to apoptosis of CD95-up-regulated CD4+ T lymphocytes in macaques by infection with a pathogenic simian/human immunodeficiency virus. Clin Exp Immunol 2000, 122:381-389.

49. Kader M, Wang X, Patakar M, Lifson J, Roederer M, Vazey R, Matapallol J: Alpha(4)(beta(7)) expression in CD4+CD25+ regulatory T cells and modulation by anti-G1p20 antisemum. J Immunol 2005, 174:1093-1097.

50. Li Q, Duan L, Estes JD, Ma ZM, Rourke T, Wang Y, Reilly C, Carlis J, Miller CJ, Haase AT: Peak SIV replication in resting memory CD4+ T cells depletes gut lamina propria CD4+ T cells. J Virol 2005, 84:7325-7331.
67. Silvestri G, Sodora DL, Koup RA, Paiardini M, O'Neil SP, McClure HM, Staprans SI, Feinberg MB. Nonpathogenic SIV infection of sooty mangabeys is characterized by limited bystander immunopathology despite chronic high-level viremia. Immunity 2003, 18:441-452.

68. Yin C, Wu MS, Pauza CD, Salvato MS. High major histocompatibility complex-unrestricted lysis of SIV envelope-expressing cells predisposes macaques to rapid AIDS progression. J Virol 1999, 73:3692-3701.

69. Monceaux V, Estaquier J, Fevrier M, Cuminum MC, Riviere Y, Aubertin AM, Ameisen JC, Hurtrel B. Extensive apoptosis in lymphoid organs during primary SIV infection predicts rapid progression towards AIDS. Aids 2003, 17:1585-1596.

70. Meythaler M, Martinot A, Wang Z, Pryputniewicz S, Kasheta M, Ling B, Marx PA, O'Neil S, Kaur A. Differential CD4+ T-lymphocyte apoptosis and bystander T-cell activation in rhesus macaques and sooty mangabeys during acute simian imunodeficiency virus infection. J Virol 2009, 83:572-583.

71. Vieillard V, Le Grand R, Dausset J, Debre P. A vaccine strategy against AIDS: an HIV gp41 peptide immunization prevents NKp44L expression and CD4+ T cell depletion in SHIV-infected macaques. Proc Natl Acad Sci USA 2008, 105:2100-2104.

72. Geiben-Lynn R, Greenland JR, Frimpomg-Boateng K, van Rooijen N, Hovav AH, Letvin NL. CD4+ T lymphocytes mediate in vivo clearance of plasmid DNA vaccine antigen expression and potentiate CD8+ T-cell immune responses. Blood 2008, 112:4585-4590.