Abstract
We investigated the Autler–Townes (AT) splitting produced by microwave (mw) transitions between atomic Rydberg states explored by optical spectroscopy from the ground electronic state. The laser-atom Hamiltonian describing the double irradiation of such a multilevel system is analysed on the basis of the Morris–Shore transformation. The application of this transformation to the mw-dressed atomic system allows the identification of bright, dark, and spectator states associated with different configurations of atomic states and mw polarisations. We derived synthetic spectra that show the main features of Rydberg spectroscopy. Complex AT spectra are obtained in a regime of strong mw dressing, where a hybridisation of the Rydberg fine structure states is produced by the driving.

Keywords: Rydberg spectroscopy, quantum sensors, dressed atom, quantum control

1. Introduction
Coherent superposition of quantum states is an intrinsic aspect of quantum mechanics. For instance, the description of chemical molecular bonds representing an important step in the initial quantum mechanics development is based on these superpositions. However, in the initial experimental spectroscopic investigation of atoms and molecules, these superpositions were not controlled. The first step in their manipulation was associated with optical pumping, where for atoms with very long relaxation times, the broadband light sources were able to produce coherent superposition, denoted as coherences. The development of narrowband tunable lasers has represented a powerful tool for the generation of coherences in a large variety of quantum systems, often with very long survival times.

Within the construction of quantum mechanics, a coherent superposition leads to quantum interference, destructive or constructive. In 1976, quite unexpected and totally independently, interferences appeared in the hands of three different atomic physics researchers. Let us mention that the contribution of Shore at Lawrence Livermore [1] is nicely described in [2]. While studying the photoionisation of atoms driven by multistep excitation, it turned out that the excitation process was blocked. As demonstrated by Shore, this block is evidence of destructive interference associated with the coherent excitation of the multilevel system. The second observation was made in Pisa in an experiment on sodium atoms excited by a multimode laser [3]. For the magic resonant condition produced by an inhomogeneous magnetic field, the sodium atoms were pumped into a coherent superposition immune to light excitation. The experimental evidence was a dark spot at a magic point within the spatially distributed sodium fluorescence. The formation of a dark coherent atomic superposition of sodium ground-state eigenstates was macroscopically visible in the laboratory. In parallel with the experimental observation, the observed dark feature was theoretically linked to a coherent superposition of the ground state in a three-level lambda scheme [4]. Dark state features also appeared...
in a contemporary theoretical investigation of a three-level cascade system by Whitley and Stroud at Rochester University [5]. Two years later, in a sodium experiment, the same research group [6] monitored the laser frequency control of dark-state preparation. These authors named coherent population trapping the creation of a three-level interfering coherent superposition.

Lately, the preparation of dark and bright coherent superposition states has attracted wide interest in quantum control investigations. In parallel, the framework required for the preparation of the dark and bright states was precisely modelled. In 1983, Morris and Shore [7] formalised the laser-atom interactions required to prepare bright and dark states, as well as spectator ones in their definition, by introducing the so-called Morris–Shore (MS) transformation reviewed in [8]. It represents an interesting tool for disentangling complex spectra in multilevel systems.

Today the multifrequency excitation of a multilevel system is a quite common experimental feature for different targets, and the Rydberg atomic states in ultracold samples offer a very interesting research area owing to their large dipole transition moments leading to very strong atom-laser interactions. We mention here the refined spectroscopic investigations, as the electromagnetic induced transparency in references [9–12], and the four-wave mixings and multiphotonic processes for the generation of radiation at new wavelengths [13, 14].

The multiple excitation of atomic or molecular system produces the Autler–Townes (AT) effect, also known as ac Stark effect [15]. It describes the case when a laser field is tuned in resonance to the transition frequency of a three-level system, while the absorption of the second spectral line sharing a level with the first one is probed. This second transition spectrum contains a doublet with the separation between the two components determined by the amplitude of the laser electric field. It is considered as the ac equivalent of the static Stark effect generating a spectral line splitting in a constant electric field. However it requires a more elaborate description. The AT process, well characterised in atomic/molecular and solid state spectroscopy, has received recently a new interest within a different context: the precise determination of a microwave (mw) field amplitude for calibration purposes as in the Rydberg experiments by [10–12, 16–27]. Mw radiation is applied to cold atoms in Rydberg states where owing to the very large electric dipole moment even a weak mw field produces a measurable AT splitting. Most experiments have applied linear polarisation to simplify the atomic description. However, the Rydberg states of interest have a Zeeman structure; therefore, for generic polarisation, a multilevel system is involved in the global AT response.

The first original contribution of the present work was the connection between the Rydberg mw AT spectroscopy and the MS transformation. This connection appeared already in the standard three-level AT splitting: the two resonances produced by the splitting in the absorption spectrum were linked to the presence of two bright coherent superposition states. No dark state was associated to this three-level system. For the AT driving of a multilevel structure, as for Rydberg states, we demonstrated the presence of both bright and dark states. The MS transformation allowed us to determine the connection between the applied laser/mw geometry and the bright/dark AT atomic response. The standard approach for MS transformation is based on the numerical solution of time-dependent equations. In fact, this approach has been used in numerical simulations performed by several authors within the long list of Rydberg references quoted above. Instead, we developed an original alternative search tool based on the dressed-atom approach described in [15] and applied to the AT effect by Cohen-Tannoudji in [28]. While the dressed atom is routinely applied to the two-level system, the MS transformation decomposes a multilevel system into several bright two-level systems, and for each of them the dressed approach becomes a proper tool. Therefore MS transformation, AT effect and dressed atom approach are combined into an analysis of the Rydberg based measurement of mw electric fields.

The Rydberg system of our investigation was based on a strong mw field driving the Rydberg levels, and a weak optical probe on a transition from the ground state to a Rydberg one. By treating the mw Rydberg excitation using the dressed-atom approach, the dressed eigenstates were composed of bright states interrogated by optical radiation, and of dark or spectator states not accessible to optical interrogation. The dressed-atom analysis does not include the presence of relaxation processes that introduce a linewidth in the AT spectral features. We derived synthetic spectra showing the positions and relative intensities of the bright AT features.

Rydberg states with different Zeeman multiplicities were explored in the experiments quoted above. We focused our attention on the simplest atomic excitation configuration, from the Rydberg \(nS_{1/2} \) state to the \(nP_{1/2} \) and \(nP_{3/2} \) states, with an \(n \) Rydberg quantum number in the 60–80 range. The fine structure splitting within the \(P \) multiplet is smaller than the mw energy separation between the \(nS \) and \(nP \) states. Two different driving regimes are considered: weak and strong. The weak regime is characterised by a mw driving Rabi frequency smaller than the fine splitting of the \(nP_{1/2,3/2} \) states. Thus, the mw field drives separately the \(nS_{1/2} \rightarrow nP_{1/2} \) or \(nS_{1/2} \rightarrow nP_{3/2} \) transitions of the upper level Rydberg fine structure. Increasing the mw Rabi frequency the strong driving regime is reached, where both transitions are driven simultaneously. Mw Rabi frequencies comparable to the fine structure splitting are easily applied in Rydberg experiments. In this regime a hybridisation of the \((nP_{1/2}, nP_{3/2}) \) states may be introduced by mw electric field, as mentioned in [17]. The eigenstates of the atomic structure do not coincide with those of the additional mw-atom interaction Hamiltonian, which cannot be treated as perturbations. We show that this process leads to a non-linear dependence of the AT splitting on mw field, a result very bad for AT-based Rydberg calibration. From the atomic physics point of view, this strong regime is analogous to the break of the LS coupling by a magnetic field, the so-called Paschen–Back regime [29], or by an electric field, as investigated for Rydberg atoms in [30]. Such competition between different bases also appears in the creation of a dark state in a three-level \(\Lambda \) scheme and its destruction by an applied magnetic field producing an energy separation of the two lower levels [31]. In
If the uncoupled components are in the ground state, they are dark states. If the unpaired components are in the excited state, they are bright states. In these cases, the atomic basis is broken by a Hamiltonian acting on the same subspace; in our case, the break originates from the mw Hamiltonian connecting a set of degenerate states to a second one.

This work is organised as follows. Section 2 discusses the basics of the MS transformation. Section 3 introduces three essential elements of our analysis: the Rydberg atomic structure, dressed-atom description, and Rydberg detection, monitored either on the optical absorption or on the selective electric field ionisation. Section 4 examines the response of several Rydberg multiple-level systems to resonant mw excitation and reports spectra obtained under different excitation regimes.

2. Morris–Shore transformation

The new features of the three-level and multilevel systems, whose description is more complex than that of a spin 1/2 system, stimulated the search for a natural basis, that is, a basis whose description is more complex than that of a spin 1/2 system. This has been achieved in [32–34]. In this direction, the existence of dark and bright coherent superposition states for a system with multilevel coupling has been formalised by the MS decomposition, an example of singular-value decomposition, as stated in [8]. This transformation is applied to a system composed of two sets of degenerate states, g ground and e excited, where by suitable partitioning and ordering of the quantum states, the Hamiltonian has the following structure:

\[
H = \begin{pmatrix} \omega_g I_g & V \\ V^\dagger & \omega_e I_e \end{pmatrix}
\]

Here \(I_g\) and \(I_e\) are the square unitary matrices of dimensions \(N_g\) and \(N_e\), respectively, with \(N = N_g + N_e\). \(V\) is a rectangular matrix, of dimensions \(N_g \times N_e\), and \(V^\dagger\) is its Hermitian conjugate of dimensions \(N_e \times N_g\). These matrices describe the coupling with an electromagnetic field inducing transitions between the ground and excited subspaces. The g states are degenerate with energies \(\omega_g\), and also the e states with \(\omega_e\) energies, at \(\hbar = 1\). The transitions are not allowed within these sets of states.

The MS transformation replaces the \(N\)-linked states with a set of \(N_L\) independent two-state bright (coupled) systems. The remaining uncoupled states, \(N_U\), in number, are unpaired and unaffected by the \(V\) and \(V^\dagger\) interactions. Their number is given by

\[
N_U = |N_g - N_e|.
\]

If the uncoupled components are in the g set, that is, they are not linked to excited states, they are dark states. If the unpaired components are in the e set, they are denoted as spectator states by Morris and Shore. A generalisation of this transformation to the case where the blocks of the ground or excited levels are not degenerate was presented in a recent publication [35].

![Figure 1](image)

Figure 1. In (a) Schematic diagram of the \(^{87}\text{Rb}\) 5S\(_{1/2}\) ground level and the Rydberg nS and nP excited ones, with all their Zeeman structures. The Zeeman states are aligned vertically for a given \(m_J\), quantum number. The thin blue vertical line denotes the two-photon excitation of both \(nP_{1/2}\) Rydberg levels by a weak π polarised radiation with \(\Omega_{\text{opt}}\), Rabi frequency. The thick red lines connecting the Rydberg states represent the strong π polarised mw excitation. Mw excitation of both \(nP_{1/2}\) or \(nP_{3/2}\) states should be considered for mw Rabi frequencies comparable to the \(P\) state fine structure splitting. In (b) a three level scheme is obtained by a selective optical excitation and z-polarised mw radiation with \(\Omega_z\), Rabi frequency. In (c) a four level scheme is driven by the selective optical excitation and mw radiations with orthogonal polarisations and \(\Omega_+\), \(\Omega_-\), Rabi frequencies. Rabi frequencies defined in section 3.

3. Level scheme, dressed atom and Rydberg detection

The atomic-level scheme, presented in figure 1(a), starts with atoms at the 5S\(_{1/2}\) ground level, as in the \(^{87}\text{Rb}\) experiments of reference [10]. The atoms were excited by an optical two-photon transition to the 5S\(_{1/2}\) Rydberg level, with \(n = 68\) in that experiment, the excitation characterised by the \(\delta_{\text{opt}}\) two-photon detuning and the \(\Omega_{\text{opt}}\) effective Rabi frequency. The Rydberg excited atoms were transferred by mw radiation to a level close in energy; for instance, \(nP_{1/2}\) or \(nP_{3/2}\), again \(n = 68\). The mw transition is characterised by the \(\delta_{\text{mw}}\) detuning...
and the electric fields applied along different spatial axes. Atomic schemes with alternative initial and final states are equivalent to this one. In all cases the optical excitation may be treated theoretically as a weak perturbation compared to the strong mw field interaction. In the AT experiments conducted in references [10–12, 16–27] the detection of Rydberg atoms by electromagnetically induced transparency (EIT) optical spectroscopy or selective electric field ionisation allows the experimentalists to probe the frequency and amplitude of the mw driving radiation. The mw field amplitude is derived from the AT modification of the Rydberg excitation. Those experimental investigations operate on a low atomic density regime, that is, in the absence of the dipole blockade mechanism modifying the Rydberg energies.

Starting from a three-level AT analysis, we consider an initial atomic occupation of the ground |5S₁/₂, m_J = −1/2⟩ as in figure 1(b). After optical two-photon excitation to the |nS₁/₂, m_J = −1/2⟩ state, the atoms are transferred by mw z-polarised radiation to the |nP₁/₂, m_J = −1/2⟩ state, as denoted by blue and red arrows. Following the ‘atom + driving photons’, that is, dressed-atom AT treatment of reference [28], the quantised mw field can be described by its N photon number. The atomic basis is composed by the |nS₁/₂, m_J = −1/2; N + 1⟩ and |nP₁/₂, m_J = −1/2; N⟩ dressed states. These states are nearly resonant and coupled by the mw Rabi frequency, proportional to the atomic dipole moment and to the amplitude of the driving oscillating electric field. At the δ_mw = 0 resonance, they are degenerate. Their mw coupling determines the dressed eigenstate |1(N)⟩ and |2(N)⟩ linear combinations of the resonant states [28]. Because both the |1(N)⟩ and |2(N)⟩ dressed states contain an admixture of the nS₁/₂ state, the optical absorption from the ground 5S₁/₂ level is composed by the AT doublet. The two AT absorption lines are separated in frequency by the Rabi frequency splitting of the dressed states. From the viewpoint of the dark/bright states, for this π polarised mw radiation, all dressed states interact with the optical radiation and therefore are bright states. For such z-axis polarisation the ground m_J = 1/2 state has an identical AT response. The linear dependence of the AT splitting on the electric field amplitude represents the basis of the mw calibration in Rydberg atom experiments.

Figure 1(c) presents a different mw driving configuration based on two orthogonal mw polarisations exciting the Rydberg |nS₁/₂, m_J = −1/2⟩ initial state to both |nP₁/₂, m_J = ±1/2⟩ Zeeman states. Including the optical ground state this new system contains four levels. We may apply to this system the MS transformation to a basis composed by a mw coupled linear superposition of the |nP₁/₂, m_J = −1/2⟩ and |nP₁/₂, m_J = 1/2⟩ eigenstates and its orthogonal mw uncoupled superposition. The problem is reduced to a three-level system composed by |S⟩ ground state, |nS⟩ excited state and mw coupled linear combination leading to two bright states, as in the previous case. In addition the mw uncoupled superposition acts as a spectator state (dark-excited state). Even in this case the AT spectrum is composed by a doublet.

In most experimental investigations, the mw absorption is detected by the mw driving modification of the optical EIT. The EIT signal may be derived from the atomic optical susceptibility [11]. We do not investigate this detection, which requires a numerical solution of the density matrix equations. Instead, we use the dressed-atom approach to derive the detection by direct two-photon optical absorption from ground state or by ionisation of the Rydberg final states. As for the three- and four-level previous systems, all the mw-dressed state admixtures contain both |nS⟩ and |nP⟩ states. The nS admixture determines the strength of the optical excitation from the ground state and reproduces the spectral features of an absorption spectrum. The Rydberg selective ionisation monitors the np admixture of each dressed state. The relative strength of each resonance in the ionisation spectrum is derived from the product of the nS admixture, determining the optical absorption strength, and the np admixture, determining the ionisation probability.

Our numerical analysis is not applied to a specific atomic configuration, and we consider the case of fine structure splitting with round number 300 MHz for the np levels corresponding to n ≈ 70 Rb state, as derived from references [36, 37]. For these states, the hyperfine splittings are negligible with no role played by the atomic nucleus. Mw Rabi frequencies are determined by transition electric dipole moments and electric field amplitudes, as presented in the following section. Dipole moment values are reported in [10]. The numerical analysis presented in the following relies on the ratio between Rabi frequency and fine structure splitting. In the experimental investigation by Chopinaud and Pritchard [24] mw Rabi frequencies with values up to 300 MHz were applied to caesium Rydberg states, and this range is explored in our analysis.

4. Multilevel system driving

To deal with several MW couplings within the structure shown in figure 1(a), the entire level system should be considered. Our Rydberg atomic basis is given by the L, J, m_J quantum numbers, with L orbital angular momentum, J the angular momentum originated by a coupling with the s atomic spin, and m_J the projection along the quantisation axis. The |L, m_J, N⟩ dressed atomic states with the N mw photon number are

$$|S_{1/2}, 1/2; N + 1⟩, |S_{1/2}, −1/2; N + 1⟩,$$

$$|P_{1/2}, 1/2; N⟩, |P_{1/2}, −1/2; N⟩,$$ \((3) \)

for the nS₁/₂ → np₁/₂ transition, and

$$|S_{1/2}, 1/2; N + 1⟩, |S_{1/2}, −1/2; N + 1⟩,$$

$$|P_{3/2}, 3/2; N⟩, |P_{3/2}, 1/2; N⟩,$$

$$|P_{3/2}, −1/2; N⟩, |P_{3/2}, −3/2; N⟩.$$ \((4) \)

for the nS₁/₂ → np₃/₂ transition.

The mw-atom coupling is determined by the electric dipole moment between the initial and final states and by the applied electric field amplitude. According to [29], also reported in the Rydberg physics reference work of reference [37], the dipole moment proportional to ⟨n; L, J∥eR∥n′; L′⟩...
Figure 2. Synthetic spectra with positions and intensities of the $nS_{1/2} \rightarrow nP_{3/2}$ AT mw resonance peaks vs δ_{opt} optical detuning, in MHz. As detected in the optical probe absorption (on the left column) and in the ion signal (on the right column). Both absorption and ion signals are in relative values. In (a) four AT peaks appear for $(\Omega_z = 2\sqrt{3}, \Omega_\pm = \sqrt{3}/2, \Omega_- = \Omega_+/2)$. The four peaks collapse in two ones, in (b) for $(\Omega_z = 2\sqrt{3}, \Omega_\pm = \sqrt{6})$, and in (c) for $(\Omega_z = 2\sqrt{3}, \Omega_\pm = 0)$, all in MHz. Resonance positions derived by the dressed eigenvalues, and strengths from the eigenstate admixtures as in the text.

Reduced dipole moment is given by:

$$\langle n; S, \ell, m | e_R | n', S', \ell', m' \rangle = (-1)^{J'-m'+S+S+L_j+F} \begin{pmatrix} 1 & 1 \\ q & m' \\ J' \end{pmatrix} \times \begin{pmatrix} J \\ 1 \\ L_j \end{pmatrix} \sqrt{(2J+1)(2J'+1)}$$

$$\times \langle n; L_j || e_R || n'; L'_j \rangle,$$

where e_R is the qth spherical component of the electron dipole vector and the brackets and curly brackets are the Wigner 3- and 6-j symbols, respectively. An important feature is associated with the levels shown in figure 1(a). $|n; S_{1/2}, m_{J} = \pm 1, 2 \rangle \rightarrow |n; P_{3/2}, m_{J} = \pm 3/2 \rangle$ transitions are closed, with unitary oscillatory strength. Therefore, within a spectroscopic approach, the dipole moments are scaled to their extreme values, that is, a renormalisation is applied to the above reduced dipole moment, as presented in the equations in appendix A.

Our AT analysis deals with the case of a mw electric field having components $(E_x \cos(\omega_{\text{mw}} t), 0, E_z \cos(\omega_{\text{mw}} t))$, the z axis defined by the co-linear polarisation of the $5S \rightarrow nS$ optical field as in the experimental configuration of reference [10]. We treat also the case of two E_\pm electric fields, σ^+ and σ^- polarised, rotating and counter-rotating in the (x, y) plane. This configuration, not investigated in experiments so far, produces interesting MS transformation features. For an σ^\pm polarised mw field, the σ^\pm rotating/counter-rotating electric field components are given by $E_\pm = E_z / \sqrt{2}$. Elliptical field in the (x, y) plane produces different values for these components.

While the standard Rabi frequency definition includes the transition dipole, in order to deal with the multiple transitions driven by polarised mw electric fields, we introduce the following non-standard definition of the Rabi frequencies:

$$\Omega_i = \langle n, 0 || e_R || n', l \rangle_{\text{eff}} E_i,$$

where $i = (x, z, +, -)$, and the effective dipole moment introduced in equation (A.1). The numerical coefficient associated with each dipole transition reported in these equations is not included in the Rabi frequencies. Instead, it will appear within the Hamiltonian definition. This approach is more convenient for comparison with the experiments, where the control is on the amplitude of the electric field components. A similar approach was applied in reference [38].
Two separate AT treatments are required when the mw Rabi frequencies are smaller than the upper state fine structure splitting (weak driving regime) and when these frequencies are comparable to that splitting (strong driving regime).

4.1. \(nS_{1/2}-nP_{1/2} \) driving

For this case and the different mw polarisations, the \(4 \times 4 \) dressed-atom Hamiltonian is cast in the following form of equation (1):

\[
\begin{align*}
\omega_S &= 0, \quad \omega_{P_{1/2}} = -\delta_{\text{mw}}^{1/2}, \\
V_{xz}^{P_{1/2}} &= \frac{1}{2} \begin{pmatrix}
\frac{1}{\sqrt{3}} \Omega_z & \frac{2}{\sqrt{3}} \Omega_+ & \frac{1}{\sqrt{3}} \Omega_-
\end{pmatrix}, \\
V_{+,-,-}^{P_{1/2}} &= \frac{1}{2} \begin{pmatrix}
1 & \frac{2}{\sqrt{3}} \Omega_z & \frac{1}{\sqrt{3}} \Omega_-
\end{pmatrix},
\end{align*}
\]

with \(\delta_{\text{mw}}^{1/2} \) the mw detuning for \(S \rightarrow P_{1/2} \) driven Rydberg transitions.

For the majority of Rabi frequency values, four separate eigenstates exist. From the dressed eigenstates, we derive that all four are bright for the probe optical transition. For the \((+,-,-)\) basis at \(\delta_{\text{mw}} = 0 \) the four dressed eigenvalues are given by

\[
\lambda = \pm \frac{1}{\sqrt{3}} \left[\Omega_z^2/4 + 2\Omega_+^2 + 2\Omega_-^2 \pm \sqrt{2 \left(\Omega_+ - \Omega_- \right) \sqrt{3} R} \right]^{1/2},
\]

with

\[
SR = 2(\Omega_+ + \Omega_-)^2 + \Omega_+^2.
\]

However, the four eigenvalues may collapse into two degenerate ones, and the AT spectrum reduces to the standard spectrum for two degenerate three-level systems. This applies to the \(\Omega_+, \Omega_- \) configuration with double-degenerate eigenvalues given by

\[
\lambda = -\delta_{\text{mw}}^{1/2} \pm \frac{\sqrt{2} (\Omega_z^2/3 + \Omega_+^2 + \Omega_-^2)}{2}.
\]

An equivalent AT eigenvalue equation is reported in [24], except for the Clebsch–Gordan coefficients. From equation (9), we derive that degeneracy also occurs on the \(\Omega_- = \Omega_+ \) bisector for all \(\lambda \) values. For the \(\Omega_+ \) and \(\Omega_- \) axes in the \(\Omega_z = 0 \) plane, only two bright states appear combined with a dark state and a spectator one. For \(\delta_{\text{mw}} = 0 \) equation (11) shows a dependence of the AT shifts on the \((x,z)\) components described by a proportionality to the mw field modulus. For \((+,-,-)\) basis equation (9) shows a more complex dependence of the AT shifts on mw driving strength.

Figure 2 shows a schematic view of the frequency positions and intensities of the AT resonances by assuming equal initial populations in the 5S ground Zeeman levels. The left column plots show the optical absorption for different values of the Rabi frequencies as derived from the \(nS \) admixture of the dressed states. The right column plots the ionisation signal determined by both the \(nS \) admixture and the occupation of the \(nP \) ionised Rydberg state. The AT spectra for absorption and ion detection are similar. The relative peak heights depend on the \(nS \) and \(nP \) components of the dressed eigenvectors. The spectral features depend only on the ratio of the Rabi frequencies. For a given ratio, the AT resonance positions scale with Rabi amplitudes. Plots (a) of the figure show a four-bright-state configuration. For the driving parameters of (b) and similar Rabi frequency ratios, the four eigenvalues collapse into two degenerate bright ones. The AT spectrum is equivalent to that of a two-degenerate three-level system with two bright states. Such a spectrum also appears for the \((\Omega_+, \Omega_-)\) configuration corresponding to equal \(\Omega_+ \) and \(\Omega_- \) components. Two coincident bright states appear also in (c) plots for \(\Omega_z \) only different from zero.

The spectra derived by the dressed atom do not contain the relaxation processes and therefore have a zero linewidth. For optical frequency scanning, as in the experimental spectra similar to those in figure 2 left plots, linewidths in the 5 MHz range are typically reported. Rabi frequencies in the 10 MHz range produce well resolved AT spectra.

4.2. \(nS_{1/2}-nP_{3/2} \) driving

In this case the \(6 \times 6 \) Hamiltonian is cast in the following form of equation (1):

\[
\begin{align*}
\omega_S &= 0, \\
\omega_{P_{3/2}} &= -\delta_{\text{mw}}^{3/2}, \\
V_{xz}^{P_{3/2}} &= \frac{1}{\sqrt{2}} \begin{pmatrix}
\Omega_+ & -1 & \Omega_+ & -1 & \Omega_+ & 0 \\
0 & \frac{1}{\sqrt{3}} & \Omega_+ & -1 & \Omega_+ & 0 \\
0 & 0 & \frac{1}{\sqrt{6}} & \Omega_+ & -1 & \Omega_+ \\
\end{pmatrix}, \\
V_{+,-}^{P_{3/2}} &= \begin{pmatrix}
\Omega_+ & -1 & \Omega_+ & -1 & \Omega_+ & 0 \\
0 & \frac{1}{\sqrt{3}} & \Omega_+ & -1 & \Omega_+ & 0 \\
0 & 0 & \frac{1}{\sqrt{6}} & \Omega_+ & -1 & \Omega_+ \\
\end{pmatrix}.
\end{align*}
\]

The AT response for this case is similar to the previous case, except for the presence of two spectator states associated with all Rabi frequency values. Therefore, the spectrum contains a maximum of four separate bright AT peaks, as in (b) and (c) plots on the left column of figure 3. The four eigenstates may collapse in the two degenerate ones as shown in the remaining plots of that figure. The left column spectra appear in the \((+,+,-)\) mw field configurations with increasing \(\Omega_- \) values. The ones on the right are associated to the \((x,z)\) mw configuration. As for the previous case positions and intensities of AT peaks are derived from the dressed-atom approach. The ion signal spectra, not reported in the figure, were similar except for the intensity of the peaks.

4.3. Strong driving

At large intensities of mw radiation, simultaneous excitation of both \(nP_{1/2,3/2} \) fine structure levels occurs. Therefore, the mw transformation should be applied to the following Hamiltonian
more generally than the previous one:

\[H = \begin{pmatrix} \omega_{f_g} & V_{e_1} & V_{e_2} \\ V_{e_1}^* & \omega_{I_e_1} & 0 \\ V_{e_2}^* & 0 & \omega_{I_e_2} \end{pmatrix}. \]

(14)

Here, \(|e_1 \rangle \) and \(|e_2 \rangle \) represent the \(P_{1/2} \) and \(P_{3/2} \) excited states. Notice the presence of two nondegenerate excited states linked by a single electromagnetic field to the ground state. For degenerate excited states, we recovered the Hamiltonian scheme in equation (1).

In the LS basis, the atomic variables are the electron spin and orbital momentum in both the \(S \) and \(P \) states, that is, \(\vec{s}\) and \(\vec{S} \), for the spin, and \(\vec{P} \) for the orbital momentum. For the \(P \) levels, the fine splitting is produced by the following Hamiltonian:

\[H_{f_s} = A_{f_s} \vec{s} \cdot \vec{P}, \]

(15)

with \(A_{f_s} \) the fine structure constant. The fine structure coupling is diagonalised on the \(|J, m_J \rangle \) basis. On this basis, the diagonal components of the \(8 \times 8 \) fine structure Hamiltonian is cast in the following form of equation (14):

\[\omega_{S1/2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \]

\[\omega_{P1/2} = \begin{pmatrix} -2A_{f_s} - \delta_{mw} & 0 \\ 0 & -2A_{f_s} - \delta_{mw} \end{pmatrix}, \]

\[\omega_{P3/2} = \begin{pmatrix} A_{f_s} - \delta_{mw} & 0 & 0 & 0 \\ 0 & A_{f_s} - \delta_{mw} & 0 & 0 \\ 0 & 0 & A_{f_s} - \delta_{mw} & 0 \\ 0 & 0 & 0 & A_{f_s} - \delta_{mw} \end{pmatrix}. \]

(16)

Here \(\delta_{mw} \) represents a generic detuning for the mw-driven Rydberg transitions defined with reference to the centre of gravity of the \(P \) multiplet, that is, imposing \(A_{f_s} = 0 \). The Hamiltonian out diagonal blocks are derived from the previous cases with

\[V_{e_1} = V^{P12}, \quad V_{e_2} = V^{P32}, \]

(17)

including their mw polarisation dependences of equations (8) and (13).

At low values of Rabi frequencies, which are smaller than the \(A_{f_s} \) splitting, the present case reduces to those examined
Previously. Instead, a large difference appears at large Rabi frequency values in the strong regime with hybridisation of the fine structure states introduced by the mw electric field, as mentioned in [17]. The eigenstates of the atomic structure do not coincide with those of the additional laser-atom interaction Hamiltonian, which cannot be treated as a perturbation. Rabi frequencies applied in a few Rydberg experiments are large enough to produce such an mw hybridisation. The hybridisation between hyperfine coupling and AT splitting examined in reference [39] is equivalent to the present one.

The bright/dark states of the full Hamiltonian remain those of the previous cases with a maximum of six independent bright eigenvalues, reached for \((\Omega_+\Omega_+\Omega_+\Omega_+\Omega_+\Omega_+)\) driving with \(\Omega_+ \neq \Omega_+\). A minimum of two spectator states are present in all mw configurations. A new feature of a non-linear dependence of the AT splitting on the mw electric field amplitude appears for all mw polarisations. Plot (a) in figure 4 shows the AT main features for a \(\pi\)-polarised mw field at \(\delta_{\text{mw}}\) resonant with the \(nS \rightarrow nP_{3/2}\) transition. That AT synthetic spectrum presents the position and intensities of three doubly-degenerate AT peaks produced by strong mw driving. The two upper frequency peaks are upshifted and downshifted with respect to the \(\delta_{\text{opt}} = 0\) MHz optical absorption resonance associated with the mw not-driven case. These peaks correspond to those presented in the previous subsection for mw driving only the \(nS \rightarrow nP_{3/2}\) transition. The main difference is that, in the present case, the two peaks are asymmetric in both positions, eighteen percent, and intensity, nine percent. An important peculiar feature in the (a) synthetic spectrum is the presence of a third peak produced by the off-resonance mw excitation of the \(nP_{1/2}\) state. This low-frequency AT peak corresponded to the two-photon \(5S \rightarrow nP_{1/2}\) transition occurring at \(\delta_{\text{opt}} = -300\) MHz for the mw not-driven case. The difference from this value is produced by the ac Stark shift of the applied mw radiation. The intensity of this extra peak increases rapidly with the \(\Omega_+\) value. Similar multipeak atomic responses were obtained for all the mw polarisations. In reference [35], where a generalised MS transformation is applied to Hamiltonians equivalent to equation (14), the triplets of states represent the extension of the bright/dark pair states of the standard MS transformation. Those triplets are equivalent to the triple AT peaks shown in figure 4.

The plots (b) and (c) of the figure show the dependence on \(\Omega_+\) mw field magnitude for the frequencies of the three bright AT absorption peaks, in (b) for an \(nS_{1/2} \rightarrow nP_{3/2}\) resonant mw field, and in (c) for an \(nS_{1/2} \rightarrow nP_{1/2}\) resonant mw field. At \(\Omega_+ = 0\), the main AT peaks occur at the \(\delta_{\text{opt}} = 0\). The AT extra peak is downshifted by the 300 MHz fine structure splitting for the first case, and upshifted by the same quantity the second case. The most important feature of these plots is the nonlinear dependence of the AT shifts on the mw Rabi frequency, i.e., the electric field amplitude. For the Rydberg experiments aiming to an absolute calibration of the mw electric field amplitude it is important to notice that even at Rabi frequencies less than 5 MHz, those two peaks preserving a quasi linear dependence on the Rabi frequency are not symmetric. They had a slope difference around ten percent for \(nS_{1/2} \rightarrow nP_{3/2}\) driving. Similar results for nonlinearity and asymmetry appear in the (c) plot of \(nS_{1/2} \rightarrow nP_{1/2}\) driving, with resonance asymmetry reduced by a factor of two.

Figure 4. In (a) positions and intensities of the AT resonance peaks detected on the optical probe absorption for a \(\pi\) polarised mw driving resonant with the \(nS \rightarrow nP_{3/2}\) transition for a fine-structure splitting of 300 MHz and \(\Omega_+ = 200\sqrt{3} \) MHz. The AT peaks, denoted as \(3/2^+, 3/2^-\) and \(1/2\), shifted from \(\delta_{\text{opt}} \approx 0\) MHz and \(\delta_{\text{opt}} \approx -300\) MHz positions of resonances occurring at very small \(\Omega_+\) values. In the remaining plots, the \(\delta_{\text{opt}}\) position frequencies of the three AT peaks are plotted against the applied \(\pi\) value. (b) Mw field resonant with the \(nS \rightarrow nP_{3/2}\) transition, and (c) resonant with \(nS \rightarrow nP_{1/2}\) transition.
While the previous analysis is concentrated on \(nS \rightarrow nP \) mw driving, we consider here the reverse-level scheme with optical excitation to the \(nP_{3/2} \) state and mw driving in an \(nS_{1/2} \) state. Such a scheme is difficult to implement in Rydberg experiments because in two-photon excitation from the \(S \) ground state, the \(nP \) states cannot be reached directly owing to the dipole selection rules, and single photon excitation is technically difficult to implement. Instead, several investigations concentrated on the \(nD_{3/2,5/2} \rightarrow nP_{1/2,3/2} \) configuration [11, 17, 20, 22, 25]. All of these multilevel schemes deal with the mw driving applied between an initial state whose Zeeman multiplicity is larger than the final one. However, from the perspective of MS transformation, the bright and dark/spectator states do not depend on the choice of the initial and final states. Therefore, the analyses of the previous subsections for \(nS \rightarrow nP_{3/2,1/2} \) driving also applies to the reverse-driving scheme. The only difference is that in this last scheme the spectator states become dark states.

5. Conclusions

We considered the AT splitting produced by a mw field driving a transition between the Rydberg atomic states, an important issue for the metrology of mw fields. Our analysis was based on the dressed atom description for the Rydberg states interacting with mw radiation and probed by a weak optical radiation connecting the ground atomic state to the excited states. The MS transformation was applied to such atomic system. The eigenvalues and eigenstates of the dressed Hamiltonian represented the bright and dark spectator states of the MS transformation. These eigenvalues/eigenvectors allowed us to derive synthetic spectra for AT Rydberg spectroscopy. This approach was also applied to a strong driving regime where a hybridisation of the structure levels is produced by mw radiation, in which the linear dependence of the AT splitting on the amplitude of mw driving is modified. This hybridisation role is an important issue for metrology precision. Our investigation of the AT atomic response as a function of the mw field polarisation highlights the importance of its precise control. In addition, the AT spectra may be used to probe the different mw polarisation geometries.

Our approach did not include relaxation processes introducing a linewidth to our synthetic spectra. For such a complete analysis, MS transformation should be applied to the density matrix equations of the driven atomic system. Our synthetic spectra were obtained for a sweep of the optical field exciting the ground atoms to a Rydberg state. For this configuration, the linewidth of each bright resonance is approximately 5 MHz in the absence of saturation broadening. Owing to the long relaxation times of the Rydberg states, narrower linewidths are obtained by scanning mw field at a fixed optical excitation frequency. This approach is not practical in the metrology of an unknown mw radiation, such as blackbody radiation. Instead, it represents a powerful approach to explore the complexity of AT spectra as a function of MW polarisation.

Reference [26] recently introduced an advanced spectroscopic tool based on double-dressing of the Rydberg state with a secondary mw field and an additional Rydberg state. The application of MS transformation to such a more complex atomic configuration could identify the mw schemes that are most interesting for such investigations.

Acknowledgments

This work was dedicated by one of us (EA) to the memory of Bruce Shore, whose passion for breaking a complex quantum mechanics problem into small information bits has been a constant inspiration. EA thanks Oliver Morsch for pointing out the interesting issue of AT splitting in the Rydberg states. The authors thank Teodora Kirova for verifying the dipole–moment matrix elements.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

Appendix A. Dipole moment matrix elements

The dipole moment matrix elements of the tensorial components \(r_0, r_\pm \) are expressed as a function of the effectived reduced Rabi frequencies:

\[
\begin{align*}
\langle n, 0, \frac{1}{2} \pm \frac{1}{2} | e_R | n', 1, \frac{1}{2} \pm \frac{1}{2} \rangle &= \pm \frac{1}{3} \langle 0 | e_R | 1 \rangle_{\text{eff}} \\
\langle n, 0, \frac{1}{2} \mp \frac{1}{2} | e_{\pm 1} | n', 1, \frac{1}{2} \pm \frac{1}{2} \rangle &= \frac{\sqrt{2}}{3} \langle 0 | e_R | 1 \rangle_{\text{eff}} \\
\langle n, 0, \frac{1}{2} \pm \frac{1}{2} | e_{\pm 1} | n', 1, \frac{3}{2} \pm \frac{1}{2} \rangle &= \frac{\sqrt{5}}{3} \langle 0 | e_R | 1 \rangle_{\text{eff}} \\
\langle n, 0, \frac{1}{2} \pm \frac{1}{2} | e_{\pm 1} | n', 1, \frac{3}{2} \pm \frac{3}{2} \rangle &= \frac{1}{\sqrt{3}} \langle 0 | e_R | 1 \rangle_{\text{eff}}.
\end{align*}
\]

\text{(A.1)}

The above result coincides with the branching ratio value reported in page 4 of [10] for the same optical transition.

ORCID iDs

Giuseppe Bevilacqua \(\odot \) https://orcid.org/0000-0002-7298-6185

Ennio Arimondo \(\odot \) https://orcid.org/0000-0003-2659-7565
References

[1] Shore B W 1976 Inaccessible populations in multistep ionization: TAMP memo 1976 (Livermore, CA: Lawrence Livermore National Laboratory)

[2] Shore, B, Johnson M, Kulander K C and Davis J 2001 The Livermore experience: contributions of J H Eberly to laser excitation theory Opt. Express 8 28–43

[3] Alzetta G, Gozzi A, Moi L and Orriols G 1976 An experimental method for the observation of r.f. transitions and laser beam resonances in oriented Na vapour Nuovo Cimento B 36 5

[4] Arimondo E and Orriols G 1976 Nonabsorbing atomic coherence by coherent two-photon transitions in a three-level optical pumping Lett. Nuovo Cimento 17 333

[5] Whitley R M and Stroud C R Jr 1976 Double optical resonance Phys. Rev. A 14 1498

[6] Gray H R, Whitley R M and Stroud C R Jr 1978 Coherent trapping of atomic populations Opt. Lett. 3 218–20

[7] Morris J R and Shore B W 1983 Reduction of degenerate two-level excitation to independent two-state systems Phys. Rev. A 27 906–12

[8] Shore B W 2014 Two-state behavior in N-state quantum systems: the Morris–Shore transformation reviewed J. Mod. Opt. 61 787–815

[9] Li C, Zheng H, Zhang Z, Yao X, Zhang Y, Zhang Y and Zhang Y 2013 Electromagnetically induced transparency and fluorescence in blockaded Rydberg atomic system J. Chem. Phys. 139 164316

[10] Simons M T, Gordon J A and Holloway C L 2016 Simultaneous use of Cs and Rb Rydberg atoms for dipole moment assessment and RF electric field measurements via electromagnetically induced transparency J. Appl. Phys. 120 123103

[11] Holloway C L, Simons M T, Gordon J A, Dienstfrey A, Anderson D A and Raithel G 2017 Electric field metrology for SI traceability: systematic measurement uncertainties in electromagnetically induced transparency in atomic vapor J. Appl. Phys. 123 233106

[12] Cai M H, Xu Z S, You S H and Liu H P 2022 Sensitivity improvement of Rydberg atom-based microwave sensing via electromagnetically induced transparency Photonics 9 250

[13] Zheng H, Zhao Y, Yuan C, Zhang Z, Che J, Zhang Y, Zhang Y and Zhang Y 2013 Dressed multi-wave mixing process with Rydberg blockade Opt. Express 21 1728

[14] Li K, Zhang D, Raza F, Zhang Z, Puttapirat P, Liu Y and Zhang Y 2018 Multi-contact switch using double-dressing regularity of probe, fluorescence, and six-wave mixing in a Rydberg atom J. Chem. Phys. 149 074310

[15] Shore B W 1990 The Theory of Coherent Atomic Excitation (Simple Atoms and Fields vol 1, Multilevel Atoms and Incoherence) vol 2 (New York: Wiley)

[16] Piotrowicz M J, MacCormick C, Kowalczyk A, Bergamini S, Beterov I I and Yakshina E 2011 Measurement of the electric dipole moments for transitions to rubidium Rydberg states via Autler–Townes splitting New J. Phys. 13 093012

[17] Sedlacek J A, Schwettmann A, Kibbler H, L"ow R, Pfau T and Shaffer J P 2012 Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances Opt. Phys. 8 819–24

[18] Sedlacek J A, Schwettmann A, Kibbler H and Shaffer J P 2013 Atom-based vector microwave electrometry using rubidium Rydberg atoms in a vapor cell Phys. Rev. Lett. 111 063001

[19] Song Z, Zhang W, Wu Q, Mu H, Liu X, Zhang L and Qu J 2018 Field distortion and optimization of a vapor cell in Rydberg atom-based radio-frequency electric field measurement Sensors 18 3205

[20] Jing M, Hu Y, Ma J, Zhang H, Zhang L, Xiao L and Jia S 2020 Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy Nat. Phys. 16 911–5

[21] Meyer D H, Castillo Z A, Cox K C and Kunz P D 2020 Assessment of Rydberg atoms for wideband electric field sensing J. Phys. B: At. Mol. Opt. Phys. 53 034001

[22] Peng Y D, Wang J L, Li C, Lu X, Qi Y H, Yang A H and Wang J Y 2020 Enhanced microwave electrometry with intracavity anomalous dispersion in Rydberg atoms Opt. Quantum Electron. 52 120

[23] Stelmashenko E F, Klezovich O A, Baryshev V N, Tishchenko V A, Blinov I Y, Palchikov V G and Osvyannikov V D 2020 Measuring the electric field strength of microwave radiation at the frequency of the radiation transition between Rydberg states of atoms 40Rb Opt. Spectrosc. 128 1067–73

[24] Chopinaud A and Pritchard J D 2021 Optimal state choice for Rydberg-atom microwave sensors Phys. Rev. Appl. 16 024008

[25] Jia F-D et al 2021 Span shift and extension of quantum microwave electrometry with Rydberg atoms dressed by an auxiliary microwave field Phys. Rev. A 103 063113

[26] Simons M T, Artusio-Glampse A B, Holloway C L, Imhof E, Jefferts S R, Wylie R, Sawyer B C and Walker T G 2021 Continuous radio-frequency electric-field detection through adjacent Rydberg resonance tuning Phys. Rev. A 104 032824

[27] Archimi et al 2022 Measurements of blackbody radiation-induced transition rates between high-lying S, P and D Rydberg levels Phys. Rev. A 105 063104

[28] Cohen-Tannoudji C 1996 The Autler–Townes effect revisited Amazing Light ed R Y Chiao (New York: Springer)

[29] Sobelman I I 1996 Atomic Spectra and Radiative Transitions (Berlin: Springer)

[30] Ryabtsev I I and Tretyakov D B 2002 The break of L–S coupling and the double Stark resonance in the spectrum of 36p→37p two-photon transition in Rydberg atoms of sodium J. Exp. Theor. Phys. 94 677–84

[31] Berkeland D J and Boshier M G 2002 Destabilization of dark states and optical spectroscopy in Zeeman-degenerate atomic systems Phys. Rev. A 65 033413

[32] Nienhuis G 1996 Natural basis of magnetic substates for a radiative transition with arbitrary polarization Opt. Commun. 59 353

[33] Milner V and Prior Y 1998 Multilevel dark states: coherent population trapping with elliptically polarized incoherent light Phys. Rev. Lett. 80 940

[34] Prudnikov O N, Taichenachev A V, Tumaatin A M, Yudin V I and Nienhuis G 2004 Basis of polarization-dressed states of an atom in an elliptically polarized resonant field J. Exp. Theor. Phys. 99 1137–49

[35] Zlatanov K N, Vasilev G S and Vitanov N V 2020 Morris–Shore transformation for nondegenerate systems Phys. Rev. A 102 063113

[36] Li W, Mourachko I, Noel M W and Gallagher T F 2003 Millimeter-wave spectroscopy of cold Rb Rydberg atoms in a magneto-optical trap: quantum defects of the ns, np, and nd series Phys. Rev. A 67 052502

[37] Siwalic N, Pritchard J D, Adams C S and Weatherill K J 2017 ARC: an open-source library for calculating properties of alkali Rydberg atoms Comput. Phys. Commun. 220 319–31

[38] Kis Z, Karpati A, Shore B W and Vitanov N V 2004 Stabilized Raman adiabatic passage among degenerate-level manifolds Phys. Rev. A 70 053405

[39] Kirova T, Cinins A, Efimov D K, Brulei M, Miculis K, Bezuglov N N, Auzinsh M, Ryabtsev I I and Ekers A 2017 Hyperfine interaction in the Autler–Townes effect: the formation of bright, dark, and chameleon states Phys. Rev. A 96 043421

G Bevilacqua and E Arimondo