OPTIMAL CONTROL PROBLEMS FOR 1D PARABOLIC STATE-SYSTEMS OF KWC TYPES WITH DYNAMIC BOUNDARY CONDITIONS

SHODAI KUBOTA
Department of Mathematics and Informatics, Graduate School of Science and Engineering, Chiba University, 1–33, Yayoi-cho, Inage-ku, 263–8522, Chiba, Japan
(E-mail: skbota@chiba-u.jp)

RYOTA NAKAYASHIKI
Department of General Education, Salesian Polytechnic, 4–6–8, Oyamagaoka, Machida-city, Tokyo, 194–0215, Japan
(E-mail: nakayashiki.ryota@salesio-sp.ac.jp)

and

KEN SHIRAKAWA
Department of Mathematics, Faculty of Education, Chiba University, 1–33, Yayoi-cho, Inage-ku, 263–8522, Chiba, Japan
(E-mail: sirakawa@faculty.chiba-u.jp)

Abstract. In this paper, we consider a class of optimal control problems governed by 1D parabolic state-systems of KWC types with dynamic boundary conditions. The state-systems are based on a phase-field model of grain boundary motion, proposed in [Kobayashi–Warren–Carter, Physica D, 140, 141–150, 2000], and in the context, the dynamic boundary conditions are supposed to reproduce the transmitted heat exchanges between interior and boundary of a polycrystal body. Under suitable assumptions, the mathematical results concerned with: the well-posedness of state-systems; the solvability and parameter-dependence in the class of our optimal control problems; and the first order necessary optimality conditions in regular cases of problems and the limiting approach to the singular case; will be obtained in forms of three Main Theorems of this paper.

Communicated by Toyohiko Aiki; Received October 1, 2020.
* The third author is supported by Grant-in-Aid for Scientific Research (C) No. 16K05224 and No. 20K03672, JSPS.

AMS Subject Classification: 35K59, 35K61, 49J20, 49K20, 74N05, 74N20.

Keywords: optimal control problem, 1D parabolic state-system of KWC type, dynamic boundary condition, grain boundary motion.