COMMUNICATION

Assessment of changes over a decade in the patterns of livestock depredation by the Himalayan Brown Bear in Ladakh, India

Aishwarya Maheshwari, A. Arun Kumar & Sambandam Sathyakumar

26 June 2021 | Vol. 13 | No. 7 | Pages: 18695–18702
DOI: 10.11609/jott.7177.13.7.18695-18702
Assessment of changes over a decade in the patterns of livestock depredation by the Himalayan Brown Bear in Ladakh, India

Aishwarya Maheshwari 1, A. Arun Kumar 2 & Sambandam Sathyakumar 3

1 Department of Wildlife Sciences, College of Forestry, Banda University of Agriculture and Technology, Banda, Uttar Pradesh 210001, India.
2, 3 Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand 248001, India.
1 aishwaryamaheshwari@gmail.com (corresponding author), 2 arunkumar.gis@gmail.com, 3 ssk@wii.gov.in

Abstract: Conflicts between large carnivores and shepherds constitute a major socio-ecological concern across the Himalaya and affects community attitudes and tolerance toward carnivores. We assessed the extent and intensity of Human-Brown Bear interactions in the same villages of Zanskar and Suru Valleys, Ladakh, in the Indian Trans-Himalaya during two time periods (2001–2003 and 2009–2012) through field and questionnaire surveys. During 2001–2003, 180 families of 32 villages in Zanskar, and 232 families of 49 villages in Suru were interviewed, and during 2009–2012, 145 families of 23 villages in Zanskar and 115 families of 33 villages in Suru were interviewed. Overall, 475 (119/year) and 454 (151/year) heads of livestock were reportedly killed by Brown Bears. The surveys of 2009–2012 revealed that livestock predation in ‘doksas’ (summer grazing camps) was higher (68 %) compared to the surveys carried out during 2001–2003 (42 %). The increased livestock depredation in doksas might be due to the extended stay and use of pastures by the local communities during spring and autumn. Damage to property in the form of breaking open of doors and windows by Brown Bear were reported during both the surveys. Economic losses and declining tolerance of people may trigger retaliatory killings of Brown Bear in Ladakh. We recommend compensation for livestock loss and improved husbandry practices in the conflict zones for bear-human coexistence.

Keywords: Conflict, Himalayan Brown Bear, Human-Brown Bear interactions, field and questionnaire surveys, Ladakh, livestock depredation, Suru, Trans-Himalaya, Zanskar.
INTRODUCTION

Worldwide, the Brown Bear *Ursus arctos* is the most widely distributed species among the eight species of bears (Servheen 1990; Schwartz et al. 2003; Nawaz 2007). They are distributed in most of the northern hemisphere, including the Palearctic and Nearctic regions of the world (Servheen 1990). They inhabit alpine and sub-alpine mountainous landscapes of Asia, Europe, and North America. Their numbers and distribution range have contracted by more than 50% in Asia during the past century (Servheen 1990). The Himalayan Brown Bear *U. a. isabellinus* (Image 1), a subspecies that represents an ancient lineage of the Brown Bear (Galbreath et al. 2007), has a restricted distribution in the Greater and Trans-Himalayan regions of Jammu & Kashmir, Ladakh, Himachal Pradesh, and Uttarakhand in India (Sathyakumar 2001, 2006). The Himalayan Brown Bear occurs in subalpine forests and alpine meadows in the Greater Himalaya of Jammu & Kashmir, Himachal Pradesh, and Ladakh, and in the cold-arid alpine scrub and meadows in the trans-Himalayan regions of Ladakh (Sathyakumar 2003, 2006). Sathyakumar (2001, 2006) reported, through questionnaire-based surveys, Brown Bears are present in 23 protected areas and 35 other localities throughout the northwestern and western Himalayan regions of India.

In the Himalayan landscapes, local communities generate their livelihoods largely through nomadic pastoralism, horticulture, subsistence farming, and eco-tourism activities (Jaypal 2000; Maheshwari et al. 2010; Maheshwari 2018; Maheshwari & Sathyakumar 2019, 2020); however, due to increase in livestock densities and consequent expansion of pastoralism into new areas that were historically natural and undisturbed habitats, domestic species (e.g., cattle such as cow, yak *Bos grunniens*, dzo-dzomo (yak-cow hybrids), sheep *Ovis aries*, goat *Capra aegagrus* and equids) are more vulnerable to predation by Himalayan Brown Bear, which may lead to retaliatory killing by local communities (Karimov et al. 2018; Maheshwari 2018; Dai et al. 2020). In India, Brown Bears are threatened due to poaching for bear parts and retaliatory killings to reduce livestock depredation (Sathyakumar 2001, 2006) and has significantly contributed to the local declines of the populations of Brown Bear and other large carnivores such as Snow Leopard *Panthera uncia* and Wolf *Canis lupus* in the Himalayan region (Jackson et al. 2001; Spearing 2002; Maheshwari et al. 2010; Can et al. 2014; Maheshwari 2016; Maheshwari 2018; Maheshwari & Sathyakumar 2019, 2020; Dai et al. 2020). Sound scientific research is necessary for making management decisions related to Brown Bears and for sustainable management of their populations (Servheen 1990; Sharief et al. 2020); however, there has not yet been detailed field research on the Himalayan Brown Bears in Ladakh.

We conducted field and questionnaire surveys in Zanskar and Suru valleys of Ladakh, India, during two time periods, viz., 2001–2003 and 2009–2012 to understand the patterns of Human-Brown Bear interactions in order to plan effective conservation and management actions for Brown Bears and their co-existence with local communities.

MATERIALS AND METHODS

STUDY AREA

The Zanskar and Suru valleys of Kargil District in the Union Territory of Ladakh (Figure 1) falls within the Trans-Himalayan biotic province (1B) of India (Rodgers et al. 2000). Topographically, the region is mountainous with vast valleys characterised by open and dry steppe vegetation indicating arid conditions. Major vegetation formations include open or desert steppe dominated by grasses, sedges, and dwarf shrubs such as *Ephedra gerardiana*, *Capparis spinosa*, *Salsola collina*, *Stipa klimesii*, *Leymus nutans*, *Eurotia ceratoides*, *Artemisia..."
Livestock depredation by the Himalayan Brown Bear in Ladakh, India

Maheshwari et al.

Journal of Threatened Taxa | www.threatenedtaxa.org | 26 June 2021 | 13(7): 18695–18702

18697

Macrocephala, Hippophae rhamnoides, Myricaria elegans, and Caragana species (Kala 2011; Maheshwari 2016). Large mammals that co-exist with Brown Bears in the Kargil Himalaya include the Snow Leopard, Wolf, and Ibex Capra ibex. The elevation in the study area ranges 3,400–7,510 m with significant land surface under permafrost coverage (Maheshwari 2016). The climate in the study area is largely dry with extreme cold conditions throughout the region (Maheshwari 2016).

The Suru Valley forms a major portion (4,500 km²) of Kargil District (Figure 1) and it is characterised by steep and rocky mountains, wide valleys with human habitations and agriculture/horticulture lands. Rivers Suru and Drass drain the valley which join the Indus flowing in the north (Maheshwari 2016). The Zanskar Valley (3,000 km²) is the region located south of Pensi La (4,400 m) and it is characterised by large valleys with human habitations and agriculture/horticulture lands and surrounded by mountains. Zanskar River drains the valley and joins the Indus at Nimmo (Maheshwari 2016). The Zanskar Valley is bordered by the Great Himalayan high mountains to the south and west. Traditionally, the local communities are involved in subsistence agriculture and agro-pastoral based lifestyle, they cultivate the land along the course of the drainage system, wherever artificial irrigation from mountain streams is possible. Kargil is one of the sparsely populated regions in India and settlement pattern is just along the river valleys and a few broad valleys (Maheshwari 2016). The human population in the study area is dominated by Buddhists (in Zanskar Valley) and Muslims (in Suru Valley) with human density of 8 persons/km² for Kargil District (Census of India 2011).

METHODS

Characterization of human-bear interaction: (a) semi-structured interviews.

We carried out field and questionnaire surveys for 75 days during the summer months of 2001 (40 days), 2002 (20 days) and 2003 (15 days) in Zanskar and Suru valleys to assess the extent and intensity of Brown Bear-Human interactions. The surveyed localities include most of the villages along the main Kargil-Padum motor road and in the side valleys of Sanku, Umba, Rangdum, and Padum that are representative of the Zanskar and Suru valleys. We repeated these surveys in the same

Figure 1. Map of the study area showing major villages interviewed to gather information on livestock depredation by Brown Bear in Kargil.
villages (as it was conducted during 2001–2003) during the summer months of 2009–2012 (90 field days). Informal semi-structured interviews (Sathyakumar 2001; Maheshwari et al. 2014; Dai et al. 2020) were used to collect information on livestock holdings and livestock depredations from the villagers.

We interviewed a minimum of five families in a village and if livestock depredations due to Brown Bear were reported by even one of these five families, then we sampled at least 30% of the total families living in that village (Sathyakumar 2003). Villagers living in doksa (seasonal nomadic settlement used by agro-pastoral communities to shelter their livestock during summer in the Greater and Trans-Himalaya of India; Maheshwari 2013) were also interviewed. To reduce and avoid overestimation of livestock depredation, we employed participatory rural appraisal (PRA), a standardised approach for collecting data on large carnivore-human interaction using the semi-structured interview technique of PRA (Maheshwari et al. 2014). We conducted informal meetings in public places (e.g., community centres) and personal visits to the villages, to explain study objectives to local communities. Meetings were open to all. We recorded people’s complaints about wildlife damage, especially damage by Brown Bears. Following these meetings, a semi-structured questionnaire format was developed in line with preliminary interviews. Interviews were then carried out in all the villages, doksa and seasonal settlements that were known to experience frequent conflict incidents. Our sampling involved face-to-face interviews with villagers and reflected first-hand experience and knowledge. Moreover, through personal interaction, we believe it was generally possible to judge the authenticity of the claims or cross check them, thus improving overall reliability (Maheshwari et al. 2014).

Characterization of human-bear interactions: (b) field survey.

To understand the spatial distribution of livestock predation by Brown Bear, the GPS locations of the predation cases were recorded during the surveys and a kernel-density transformation were adopted to understand predation density across the study area. It provides a median to visualize point pattern to detect hotspots (O’Sullivan & Unwin 2003). Kernel-density estimation provides a map of estimates of local intensity of any spatial process from a set of observed occurrences (Bailey & Gatrell 1995). A development gradient representing the conflict intensities through varying densities of conflict was created (Worton 1989) using kernel-density tool in ArcGIS 10.5 (ESRI 2016). The method begins by centring a bivariate probability density function with unit volume (i.e., the ‘kernel’) over livestock predation locations. A regular grid is then superimposed on the data and a probability density estimate was calculated at each grid intersection by summing the overlapping volumes of the kernels. A bivariate kernel probability density estimator (i.e., a ‘utilization distribution’) was then calculated over the entire grid using the probability density estimates at each grid intersection (Kernohan et al. 2001). The resulting kernel probability density estimator would have relatively large values in areas with many observations and low values in areas with few. We calculated the distribution using the fixed kernel estimator with least squares cross validation (LSCV) as the smoothing parameter, with a sample size ≥30. This search radius (bandwidth) is computed specifically to the input dataset using a spatial variant of Silverman’s rule of thumb that is robust to spatial outliers (Silverman 1986).

RESULTS

Interviews distribution

In total, 412 respondents from 81 villages were interviewed during the 2001–2003 survey. It comprised 180 respondents from 32 villages of Zanskar, and 232 respondents from 49 villages of Suru. Additionally, in Zanskar, 16 villagers living in eight doksas were also interviewed. Whereas, during second time survey (2009–2012), 145 respondents representing 23 villages of Zanskar and 115 respondents from 33 villages of Suru Valley were interviewed and a total of 20 villagers in doksas were also interviewed in Zanskar Valley.

Livestock holding

The overall livestock population had increased by about 9% (from 2001 to 2010; Table 1) which was mostly due to increase in the numbers of cattle (18%), sheep and goats (10%), and the decline in the numbers of equids (7%). Further, shepherds reported a marginal shift in the increased use of high-altitude pastures (at doksa) during spring and autumn as compared to the 2001–2003 surveys.

Livestock predation by Brown Bear

Data from 2001 to 2003: The average livestock predation by brown bear was of 3.15 (29.05±1.65) animals per household (i.e., on average 151 livestock/annum were reportedly killed by brown bear for those sampled families). Majority of the incidences took place...
Livestock depredation by the Himalayan Brown Bear in Ladakh, India

Maheshwari et al.

Journal of Threatened Taxa | www.threatenedtaxa.org | 26 June 2021 | 13(7): 18695–18702

Livestock depredation by the Himalayan Brown Bear in Ladakh, India Maheshwari et al.
Journal of Threatened Taxa | www.threatenedtaxa.org | 26 June 2021 | 13(7): 18695–18702

18699

in the villages (n= 257; 54 %) followed by doksa (n= 200; 42 %) and livestock night shelters (n= 19; 4 %) (Table 2). Brown Bears preyed mainly on young ones of cow, yak and dzo-dzomo (age= <1 year; n= 248; 52 %) and goat and sheep (n= 195; 41 %). Most of the depredations were reported during summer (n= 195; 63 %) and to some extent in spring (n= 87; 28 %). Locals reported visual encounters of Brown Bears on livestock kills (n= 153; 37 %) or have confirmed it based on tracks and signs (n= 259; 63 %) found near kills and their predation behaviour.

Figure 2. Map showing Brown Bear-Human interactions in Kargil through kernel distributions of the events of livestock depredation during 2001 to 2003 (a), 2009 to 2012 (b), and 2001 to 2012 (c).

Table 1. Livestock holdings in the Brown Bear habitats surveyed in Zanskar and Suru valleys during 2001 and 2010.

Number of families and their livestock details	2001	2010		
Zanskar	Suru	Zanskar	Suru	
No. of families surveyed	180	232	145	115
Cattle (cow, yak, dzo-dzomo)	1379	989	1651	1154
Sheep and goats	1489	1249	1628	1389
Equids (horses /mules/ donkeys)	834	747	849	619

Table 2. Comparison of livestock predation by brown bear at various sites in Ladakh during two time periods, 2001 to 2003 and 2009 to 2012. Key: BIR- Bartoo-Ichoo-Rangdum, STR- Shagar-Tangar-Ranthakshah, CHA- Chibra-Hamling-Achoo-Abran.

Livestock predation across sites	2001 to 2003	2009 to 2012
Doksa	200	309
Villages	257	145
Night shelter	19	-

Livestock predation conflict hotspots

BIR	-	173
STR	208	281
CHA	267	-
Livestock depredation by the Himalayan Brown Bear in Ladakh, India

Mahesh Wari et al.

Spatial patterns in Brown Bear-Human conflicts:

Data from 2001 to 2003: In Zanskar, two conflict zones were identified (i.e., Shagar-Tangar-Ranthankshah areas (STR) and Chibra-Hamling-Achoo-Abran areas (CHA); Figure 1a). The Brown Bear was reported to have preyed upon 6.3 % (total livestock population 3,301 in sampled families) and 7.9 % (total livestock population 3,386 in sampled families) of the livestock population of CHA and STR, respectively (Table 2).

Data from 2009 to 2012: We recorded two-conflict zones viz., one in Suru (Bartoo-Ichoo-Rangdum; BIR) and another one in Zanskar (Shagar-Tangar-Ranthakshah; STR) (Figure 2b). The Brown Bears were reported to have preyed upon 5 % (total livestock population 3,450 in sampled villages) and 7.3 % (total livestock population 3,840 in sampled villages) of the livestock population of BIR and STR, respectively (Table 2).

Trend in Brown Bear-Human interactions

A kernel distribution of the events determined three interaction zones, viz., BIR, in Suru and CHA and STR in Zanskar Valleys in both the time periods (Figure 2c). During the period 2009 to 2012, the total livestock loss due to Brown Bears (including both valleys) was 6.5 % (n= 7,290), of which Zanskar and Suru reported 6.9 % (n= 3,840) and 6.1 % (n= 3,450) livestock loss, respectively. Similarly, in 2001 to 2003, the total livestock loss due to Brown Bears (including both valleys), was of 6.8 % (n= 6,687), of this, Zanskar and Suru reported 6 % (n= 3,310) and 7.5 % (n= 3,386) of their livestock loss respectively.

DISCUSSION

Local communities were primarily concerned for the livestock depredation and damage to their properties by the Brown Bear in Zanskar and Suru valleys. Both led to economic losses in the local communities, and possibly therefore, retaliatory killing cannot be ruled out. Spearing (2002) reported that three Brown Bears were killed in Zanskar in retaliation during 1998–2001; however, we did not register any such case during the study duration. Retributory killing of Brown Bear have been reported from the neighbouring state of Himachal Pradesh, India in which the migratory shepherds (gaddis) often kill Brown Bears to reduce livestock predation (Sathyakumar 2001; Rathore & Chauhan 2007; Sharief et al. 2020). Rathore (2008) reported that livestock depredation by Brown Bear ranged from 2.2 % to 12.9 % livestock/annum in Kugti Wildlife Sanctuary, Himachal Pradesh, India. There had not been any cases of attacks on humans by Brown Bear in Himachal Pradesh (Rathore 2008); however, during the 2001–03 survey, first-hand accounts of Brown Bear attack on humans (in 2001) was recorded from a villager in Abran Village (Zanskar Valley; Sathyakumar 2003). In Sanjiangyuan of the Tibetan Plateau, the Tibetan Brown Bears Ursus arctos pruinosus were estimated to damage properties more significantly than livestock depredation (Dai et al. 2020). Whereas, in our findings there is a comparatively more loss (almost 132 heads of livestock annually) of livestock in Kargil. This disparity is explained by the poor guarding practices and unsupervised livestock grazing in the Indian Himalaya region (Rawat 2007; Maheshwari 2016). We observed that most people around Zanskar kept dogs to guard the livestock but efficiency of such measures was limited, which are widely used probably lead to habituation to brown bear (Sathyakumar 2001; Ambarlı & Bilgin 2008; Rathore 2008; Can et al. 2014; Maheshwari 2018).
Livestock depredation by the Himalayan Brown Bear in Ladakh, India

Husbandry Department guarded the animals efficiently. Moreover, damage frequency seems to have increased in the summer pastures due to unsupervised grazing of the livestock, which in turn was caused by many residents either moving to big cities for better jobs or opportunities in the eco-tourism sector in Zanskar range.

CONCLUSION AND PERSPECTIVES

Livestock is one of the major sources of livelihood for the agro-pastoral communities in Kargil and Zanskar (Maheshwari 2016; Maheshwari & Sathyakumar 2020). Due to a lack of proper infrastructure and poor guarding practices, livestock is more exposed to Brown Bear depredation in Kargil and Zanskar. In addition, unsupervised grazing of cattle and horses in hill slopes or nullas (streams in narrow valleys) and sheep and goat grazing by children are two of the key contributing factors for Brown Bear depredation in Kargil and Zanskar Himalaya. We propose adoption of adult supervised livestock grazing at the village level and improved predator proof livestock corrals and night shelters for reducing Brown Bear depredations (Maheshwari & Sathyakumar 2020). Since the Brown Bear population is declining throughout most of its range in southern Asia, and their population is still small, the species have poor growth potential, and a relatively low genetic diversity (Nawaz 2007). It requires a continuous field and genetic monitoring. Maintaining and improving the connectivity with adjacent populations in Pakistan and India will be of utmost importance for its long-term survival. We also recommend payment of compassionate grants for livestock loss and improved husbandry practices in the interaction zones for bear-human coexistence.

REFERENCES

Ambarli, H. & C.C. Bilgin (2008). Human–Brown Bear Conflicts in Artvin, Northeastern Turkey: Encounters, Damage, and Attitudes. Ursus 19: 146–153.

Bailey, T.C., & A.C. Gatrell (1995). Interactive Spatial Data Analysis. Longman Scientific and Technical, Harlow, Essex, UK, 413pp.

Can, O.E., N. D’Cruze, D.L. Garshelis, J. Beecham & D.W. Macdonald (2014). Resolving human-bear conflict: A global survey of countries, experts, and key factors. Conservation Letters 7: 501–513.

Census of India (2011). Provisional population totals. Paper 2, volume 1 of 2011. Rural-urban distribution India series 1. Office of the Registrar General and Census Commissioner, New Delhi, India. Data product 00-004-2011-Cen-Book (E).

Dai, Y., C.E. Hacker, Y. Zhang, Y. Li, J. Li, Y. Xue & D. Li (2020). Conflicts of human with the Tibetan brown bear (Ursus arctos pruinosus) in the Sanjiangyuan region, China. Global Ecology and Conservation 22: e01039. https://doi.org/10.1016/j.gecco.2020.e01039

ESRI (2016). ArcGIS Desktop. Release 10.5. Redlands, CA. Environmental Systems Research Institute.

Galbreath, G.J., C.P. Groves & L.P. Waits (2007). Genetic resolution of composition and phylogenetic placement of the Isabelline Bear. Ursus 18: 129–131.

Jackson, R., D. Hillard & R. Wangchuk (2001). Encouraging local participation in efforts to reduce livestock depredation by Snow Leopard and wolf in Ladakh, India. Carnivore Damage Prevention News 4: 2–6.

Jayapal, R. (2000). Livestock depredation by wild animals in Zanskar, Ladakh. Report submitted to Wildlife Institute of India, Dehradun.

Kala, C.P. (2011). Floral Diversity and Distribution in the high-altitude cold desert of Ladakh, India. Journal of Sustainable Forestry 30: 360–369.

Karimov, K., S.M. Kachel, & H. Hackländer (2018). Responses of snow leopards, wolves and wild ungulates to livestock grazing in the Zorkul Strictly Protected Area, Tajikistan. PLOS ONE 13: e0208329. https://doi.org/10.1371/journal.pone.0208329

Kernohan, B.J., R.A. Gitzen, & J.J. Millspaugh (2001). Analysis of animal space use and movements. Radio tracking and animal populations. Academic Press, San Diego, USA, 125–166pp.

Maheshwari, A., J. Takpa, S. Kujur, & T. Shawi (2010). An investigation of carnivore-human conflicts in Kargil and Drass areas of Jammu and Kashmir. Report submitted to Rufford Small Grant. 30 pp. Available: https://www.rufford.org/projects/aishwarya-maheshwari/an-investigation-of-carnivore-human-conflites-in-kargil-and-drass-areas-of-jammu-and-kashmir/. Accessed 15 September 2019.

Maheshwari, A. (2013). Doksa: Summer home of domestic livestock. Hornbill October–December, 20pp.

Maheshwari, A., N. Midha & A. Cherukupalli (2014). Participatory rural appraisal and compensation intervention: challenges and protocols while managing large carnivore-human conflict. Human Dimensions of Wildlife 19: 62–71.

Maheshwari, A. (2016). Conservation and management of Snow leopard and co-predators with special reference of large carnivore-human conflicts in the select areas of western Himalayas. PhD Thesis. Saurashtra University, Rajkot, Gujarat, India, 170pp.

Maheshwari, A. (2018). Foraging habits of the red fox Vulpes vulpes (Mammalia: Carnivora: Canidae) in the Himalaya, India. Journal of Threatened Tox 10(10): 12418–12421. https://doi.org/10.11609/jott.3968.10.12418-12421

Maheshwari, A. & S. Sathyakumar (2019). Snow leopard stewardship in mitigating human-wildlife conflict in Hemis National Park, Ladakh, India. Human Dimensions of Wildlife 24: 395–399.

Maheshwari, A. & S. Sathyakumar (2020). Patterns of livestock depredation and large carnivore conservation implications in the Indian Trans-Himalaya. Journal of Arid Environments 182: 104241.

Nawaz, M.A. (2007). Status of the brown bear in Pakistan. Ursus 18: 89–100.

O’Sullivan, D. & D.J. Unwin (2003). Geographic Information Analysis. John Wiley & Sons, New Jersey, USA. 395pp.

Rawat, G.S. (2007). Pastoral practices, wild mammals and conservation status of alpine meadows in western Himalaya. Journal of the Bombay Natural History Society 104: 5–11.

Rathore, B.C. & N.P.S. Chauhan (2007). Predatory behavior and interaction of Himalayan brown bear with nomadic shepherds in Pir-Panjal Himalayan range, India. Proceedings of the 18th International Conference on Bear Research and Management, Monterrey City, Mexico.

Rathore, B.C. (2008). Ecology of brown bear (Ursus arctos) with special reference to assessment of human-brown bear conflicts in Kugti Wildlife Sanctuary, Himachal Pradesh and mitigation strategies. PhD Thesis. Saurashtra University, Rajkot, Gujarat, India, 239pp.

Rodgers, W.A., H.S. Panwar & V.B. Mathur (2000). Wildlife Protected Area Network in India: A Review (Executive Summary). Wildlife Institute of India, Dehradun, India, 125–166pp.

Sathyakumar, S. (2001). Status and management of Asiatic black bear and Himalayan brown bear in India. Ursus 12: 21–30.

Sathyakumar, S. (2003). Brown Bear-Human conflicts in Zanskar and...
Livestock depredation by the Himalayan Brown Bear in Ladakh, India

Maheshwari et al.

Suru Valleys, Ladakh. Report submitted to Wildlife Institute of India, Dehradun, India, 22pp.

Sathyakumar, S. (2006). Status and distribution of Himalayan Brown Bear (Ursus arctos isabellinus) in India: An assessment of changes over ten years. The Indian Forester 132: 89–96.

Schwartz, C.C., M.A. Haroldson, K.A. Gunther & D. Moody (2003). Distribution of grizzly bears in the Greater Yellowstone Ecosystem, 1990–2000. Ursus 13: 203–212.

Servheen, C. (1990). The status and management of the bears of the world. International Conference on Bear Research and Management. Monograph Series 2: 32.

Sharief, A., B.D. Joshi, V. Kumar, M. Kumar, R. Dutta, C.M. Sharma, A. Thapa, H.S. Rana, T. Mukherjee, A. Singh, M. Thakur, L.K. Sharma & K. Chandra (2020). Identifying Himalayan Brown Bear (Ursus arctos isabellinus) conservation areas in Lahaul Valley, Himachal Pradesh. Global Ecology and Conservation 21: e0090. https://doi.org/10.1016/j.gecco.2019.e0090

Silverman, B.W. (1986). Density Estimation for Statistics and Data Analysis. Chapman & Hall, London, UK, 176pp.

Worton, B.J. (1989). Kernel methods for estimating the utilization distribution in home range studies. Ecology 70: 164–168.
Communications

Persistence of Trachypithecus geei (Mammalia: Primates: Cercopithecidae) in a rubber plantation in Assam, India

- Joydeep Shil, Jihousu Biswas, Sudipta Nag & Honnavaali N. Kumara, Pp. 18679–18866

Population assessment of the endangered Western Hoolock Gibbon Hoolock hoolock Harlan, 1834 at Sheelam Jamai Inani National Park, Bangladesh, and conservation significance of this threat for threatened wildlife species

- M. Tarik Kabir, M. Farid Ahsan, Susan M. Cheyne, Shahruil Anuar Mohd Sah, Susan Lappan, Thad Q. Bartlett & Nandie Ruppert, Pp. 18667–18694

Assessment of changes over a decade in the patterns of livestock depredation by the Himalayan Brown Bear in Ladakh, India

- Ashwaniyaa Maheshwani, A. Arun Kumar & Sambandam Sathyakumar, Pp. 18695–18702

Habitat selection of Himalayan Musk Deer Moschus moschiferus (Mammalia: Artiodactyla: Moschidae) with respect to biophysical attributes in Annapurna Conservation Area of Nepal

- Bijaya Neupane, Nar Bahadur Chhetri & Bijaya Dhami, Pp. 18703–18712

Sero-diagnosis of tuberculosis in elephants in Maharashtra, India

- Utkarsh Rajhans, Gayatri Wankhede, Balaji Ambore, Sandeep Chaudhari, Navnath Nigot, Viththal Dhyage & Chhaya Sonekar, Pp. 18713–18718

Avian species richness in traditional rice ecosystems: a case study from upper Myanmar

- Steven G. Platt, Myo Min Win, Naing Lin, Swann Htet Naing Aung, Ashish John & Thomas R. Rainwater, Pp. 18719–18737

Conservation status, feeding guilds, and diversity of birds in Daroji Sloth Bear Sanctuary, Karnataka, India

- M.N. Harisha, K.S. Abdul Samad & B.B. Hosetti, Pp. 18738–18751

Birds of Surat-Dangs: a consolidated checklist of 50 years (1944–2020) with special emphasis on noteworthy bird records and bird hotspots from northern Western Ghats of Gujarat, India

- Nikunj Jambu & Kshasha G. Patel, Pp. 18752–18760

Identification of a unique barb from the dorsal body contour feathers of the Indian Pitta Pitta brochyrus (Aves: Passeriformes: Pittidae)

- Prateek Dey, Swapna Devi Ray, Sanjeev Kumar Sharma, Padmanabhan Pramod & Ram Pratap Singh, Pp. 18761–18767

Underestimated diversity of Cnemaspis Strach, 1887 (Sauria: Gekkonidae) on karst landscapes in Sarawak, East Malaysia, Borneo

- Imezi Nasirin & Indrinanl Das, Pp. 18768–18779

Aborichthyidae, a new species of river loach (Cypriniformes: Nemacheilidae) from Arunachal Pradesh, the eastern Himalaya, India

- P. Nanda & L. Tamang, Pp. 18800–18808

A study on the community structure of dascyllids (Insecta: Odonata: Zygoptera) in Paschim Medinipur, West Bengal, India

- Pathik Kumar Jana, Priyanka Halder Mallick & Tammy Bhattacharya, Pp. 18809–18816

New distribution and range extension records of geometrid moths (Lepidoptera: Geometridae) from two western Himalayan protected areas

- V. D. Hegde & D. Vasanthakumar, Pp. 18947–18948

Notes

Photographic record of the Rusty-spotted Cat Prionailurus rubiginosus (L. Geoffroy Saint-Hilaire, 1831) (Mammalia: Carnivora: Felidae) in southern Western Ghats, India

- Devika Sanghamithra & P.O. Nameer, Pp. 18933–18935

Natural history notes on the highly threatened Pinto's Chachalaca Ortalis remotus (Aves: Cracidae)

- Carlos Ovatio Araujo Gussoni & Marco Aurélio Galício da Silva, Pp. 18936–18938

Black-bellied Coral Snake Sinomicrurus nigriventer (Aves: Elapidae): an extended distribution in the western Himalaya, India

- Sipu Kumar, Jignasu Dolia, Vartika Chaudhary, Amit Kumar & Abhijit Das, Pp. 18940–18946

First record of the Afghan Poplar Hawkmoth Laothoe witti (Insecta: Lepidoptera: Sphingidae) from the Arunachal Himalaya in India

- Subhashis Panda, Pp. 18925–18932

The tribe Cnodalonini (Coleoptera: Tenebrionidae: Stenochiinae) from Maharashtra with two new distribution records in the western Himalaya, India

- Sipu Kumar, Jignasu Dolia, Vartika Chaudhary, Amit Kumar & Abhijit Das, Pp. 18940–18946

First photographic evidence and distribution of the Indian Pangolin Manis crassicaudata (Mammalia: Pholidota: Manidae) in Sariska Tiger Reserve, Rajasthan, India

- Hemant Singh, Gobind Sagar Bhandwij, N. Gokulakannan, Salet Agasti & K. Aditya, Pp. 18888–18893

Population and conservation threats to the Greater Flamingos Phoenicopterus roseus (Aves: Phoenicopteriformes: Phoenicopteridae) at Basal Wetland and Najafgarh Jheel Bird Sanctuary, Haryana, India

- Amit Kumar & Sarita Rana, Pp. 18894–18898

First report on the occurrence of Sargassum Weed Fish Histiuro histrio (Hollichthysformes: Antennariidae) in Nigeria deep water, Gulf of Guinea

- Abdul-Rahman Dirisu, Hanson S. Uyi & Meshack Uyi, Pp. 18899–18902

A new distribution record of stomatopods Odontodactylus japonicus (De Haan, 1844) and Lysiosquilla tredemundiana (Holthuis, 1941) from the Puducherry coastal waters, east coast of India

- S. Nithya Mary, V. Ravichandran & B. Gunalan, Pp. 18903–18907

New records of Agriocnemis avelinae Peters, 1881 and Gynacantha khasiaca MacLachlan, 1896 (Insecta: Odontoptera) from Maurashtra, India

- Yogesh Koli, Akshay Dalvi & Datpadraswad Savant, Pp. 18908–18919

First record of the Horn Coral Caryophyllia granulis Gardiner & Waugh, 1938 (Anthozoa: Scleractinia) from the Karnataka Coast, India

- J.J. Singh Kumar & C. Raghunath, Pp. 18920–18924

Copyright

© The Author(s) 2021. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, reproduction, and distribution of the work under the condition that the original work is properly cited.

The Journal of Threatened Taxa (JoTT) is an open access journal and so the authors retain the copyright of their articles. The journal is published twice in a year.

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

Notes

- V.O. Hegde & D. Vasanthakumar, Pp. 18947–18948

Do predatory adult odonates estimate their adult prey odonates’ body size and dispersal ability to proceed with a successful attack?

- Tharaka Sudesh Priyadarshana, Pp. 18949–18952

Rediscovery of Ophiura hiratae incornata C.E.C. Fisch. (Rubicaceae) from the Western Ghats of India after a lapse of 83 years

- Perumal Murugan, Vellingiri Ravichandran & Chidambaram Murugan, Pp. 18953–18955