BOUNDEDNESS FOR A CLASS OF FRACTIONAL CARLESON TYPE MAXIMAL OPERATOR

XIAO YU, HUIHUI ZHANG AND XIAOMEI WU*

(Communicated by T. Burić)

Abstract. In this paper, the authors study the fractional Carleson type maximal operators T^*_β which is defined by

$$T^*_\beta f(x) = \sup_{\lambda} \left| \int_{\mathbb{R}^n} e^{i\lambda \cdot y} \frac{\Omega(y)}{|y|^{n-\beta}} f(x-y) dy \right|,$$

where $0 < \beta < n$ and Ω satisfies the L^q-Dini conditions with $1 < q < \infty$. The authors prove the $L^p \to L^p$ boundedness of T^*_β under certain conditions.

1. Introduction

In 1966, Carleson [2] studied the following Carleson type maximal operator C^* as

$$C^* f(x) = \sup_{\lambda \in \mathbb{R}} \left| \int_{-\pi}^{\pi} e^{-i\lambda t} f(t) dt \right|,$$ \hfill (1.1)

where $f \in L^2([-\pi, \pi])$ and $x \in [-\pi, \pi]$. Carleson [2] proved the almost everywhere convergence of the Fourier series of the functions in $L^2([-\pi, \pi])$ by using the weak type $(2,2)$ of C^*. Later, Hunt [9] improved Carleson’s results to $L^p([-\pi, \pi])$ with $1 < p < \infty$.

In 1970, Sjölin [12] studied another type of following Carleson type operator \mathcal{J}^* on \mathbb{R}^n, that is

$$\mathcal{J}^* (f)(x) = \sup_{\lambda \in \mathbb{R}^n} \left| \int_{\mathbb{R}^n} e^{-i\lambda \cdot y} K(x-y)f(y) dy \right|,$$ \hfill (1.2)

where $\lambda = (\lambda_1, \cdots, \lambda_n) \in \mathbb{R}^n$ and K is an appropriate Calderón-Zygmund kernel. Sjölin [12] proved the following theorem.

Mathematics subject classification (2010): 42B20, 42B25.

Keywords and phrases: Fractional Carleson type maximal operator, Dini-condition, homogeneous kernel.

This work is partially supported by the National Natural Science Foundation of China under grant #No.11961056, #No.11671362, the NSF of Jiangxi Province under grant #No.20192BAB201004 and the Science Foundation of Jiangxi Education Department under grant #No.GJJ190890.

* Corresponding author.
THEOREM A. ([12]) If K satisfies the following conditions:

1. $K(tx) = t^{-n}K(x)$, for $t > 0$;
2. $\int_{S^{n-1}} K(x')d\sigma(x') = 0$;
3. $K \in \mathcal{C}^{n+1}(\mathbb{R}^n \setminus \{0\})$.

Then $\|\mathcal{J}^*(f)\|_{L^p} \leq C_p\|f\|_{L^p}$ for $1 < p < \infty$.

In 2001, Stein and Wainger [13] extended Theorem A to a broader context. That is, the authors in [13] replace the linear phase $\lambda \cdot y$ in the definition of \mathcal{J}^* by a more general phase with a fixed degree. Now, let us state the main results of [13].

Define

$$T_\lambda (f)(x) = \int_{\mathbb{R}^n} e^{iP_\lambda(y)} K(y) f(x-y) dy,$$

where $P_\lambda(x) = \sum_{2 \leq |\alpha| \leq d} \lambda_\alpha x^\alpha$ is the polynomial in \mathbb{R}^n with real coefficients $\lambda := (\lambda_\alpha)_{1 \leq |\alpha| \leq d}$.

Then, the definition of the Carleson type maximal operator \mathcal{T}^* is

$$\mathcal{T}^* f(x) = \sup_\lambda |T_\lambda (f)(x)|,$$

(1.1)

where the supremum is taken over all the real coefficients λ of P_λ. Stein and Wainger proved the following result.

THEOREM B. ([13]) Suppose that $P_\lambda(x) = \sum_{2 \leq |\alpha| \leq d} \lambda_\alpha x^\alpha$ and K satisfies the following conditions:

1. K is a tempered distribution and agrees with a C^1 function $K(x)$ for $x \neq 0$;
2. $\hat{K} \in L^\infty$;
3. $|\partial^\gamma K(x)| \leq A|x|^{-n-|\gamma|}$ for $0 \leq |\gamma| \leq 1$.

Then $\|\mathcal{T}^*(f)\|_{L^p} \leq C_p\|f\|_{L^p}$ for $1 < p < \infty$.

Obviously, Theorem B is a essential extension of Theorem A. Recently, Ding and Liu [5] gave a weighted variant version of Theorem B under weak conditions. Before giving the main results of [5], we introduce some definitions.

Let S^{n-1} be the unit sphere in \mathbb{R}^n ($n \geq 2$), equipped with the usual Lebesgue measure $d\sigma$. Suppose that Ω is a homogeneous of degree zero and measurable function on $\mathbb{R}^n \setminus \{0\}$. Furthermore, we assume that Ω satisfies the following conditions:

$$\Omega \in L^1(S^{n-1}), \quad \int_{S^{n-1}} \Omega(x')d\sigma(x') = 0.$$

(1.3)

DEFINITION 1.1. ([1]) Suppose that $\Omega \in L^q(S^{n-1})$ for some $1 \leq q \leq \infty$. Then a function Ω is said to satisfy the L^q-Dini condition if

$$\int_0^1 \frac{\omega_q(\delta)}{\delta} d\delta < \infty,$$
where $\omega_q(\delta) (0 < \delta \leq 1)$ is called the integral continuous modulus of Ω of degree q, which is defined by

$$\omega_q(\delta) = \sup_{\|\rho\| < \delta} \left(\int_{S^{n-1}} |\Omega(\rho x') - \Omega(x')|^q d\sigma(x') \right)^{1/q} \quad \text{for} \quad 1 \leq q < \infty$$

and

$$\omega_\infty(\delta) = \sup_{\|\rho\| < \delta} |\Omega(\rho x') - \Omega(x')|,$$

where ρ is a rotation in \mathbb{R}^n and $\|\rho\| = \sup \{|\rho x' - x'| : x' \in S^{n-1}\}$.

Then the Carleson type maximal operator with a rough kernel on \mathbb{R}^n studied by Ding and Liu in [5] can be written as

$$T^*_f(x) := \sup_{\lambda} |T_{\lambda} f(x)| = \sup_{\lambda} \left| \int_{\mathbb{R}^n} e^{iP_\lambda(y)} K(y) f(x - y) dy \right|,$$

where $K(y) = \frac{\Omega(y)}{|y|^n}$. In [5], Ding and Liu proved the following theorem.

Theorem C. ([5]) Suppose that $P_\lambda(x) = \sum_{2 \leq |\alpha| \leq d} \lambda_\alpha x^\alpha$ and $K(x) = \Omega(x)|x|^{-n}$, where Ω satisfies (1.3). If Ω satisfies the L^q-Dini condition for some $1 < q \leq \infty$, then for $1 \leq q' < p < \infty$ and $w \in A_{p/q'}$, the Carleson type maximal operator T^*_f is a bounded operator on the weighted space $L^p(w)$. That is, there exists a constant $C > 0$ such that for all $f \in L^p(w)$

$$\|T^*_f\|_{L^p(w)} \leq C \|f\|_{L^p(w)},$$

(1.4)

where $A_{p/q'}$ denotes the classical Muckenhoupt class (see [8] or [10]).

By the way, we would like to point out that Ding and Liu [4] also proved that if $\Omega \in H^1(S^{n-1})$, then T^* is bounded on L^p for $1 < p < \infty$. Here $H^1(S^{n-1})$ denotes the Hardy space on the unit sphere S^{n-1} and one may see [3] for more details. Noting the following fact

$$C^1(S^{n-1}) \subset \text{Lip}_1(S^{n-1}) \subset L^q(S^{n-1}) (1 < q \leq \infty) \subset H^1(S^{n-1}) \subset L^1(S^{n-1}),$$

we find that Ding and Liu’s results in [4, 5] are improvements of the main results of [13].

On the other hand, the fractional integral was also studied a lot by many authors. Especially in [6], Ding and Lu studied the fractional integral with a rough kernel defined by

$$T_{\Omega, \beta} f(x) = \int_{\mathbb{R}^n} \frac{\Omega(x - y)}{|x - y|^{n-\beta}} f(y) dy,$$

where $0 < \beta < n$ and $\Omega \in L^1(S^{n-1})$. Ding and Lu [6] proved the following results.
THEOREM D. ([6]) Let $0 < \beta < n, s < p < n/\alpha$ and $1/q = 1/p - \beta/n$. If $\Omega \in L^q(S^{n-1})$ and $\omega(x)^{s'} \in A(p/s', q/s')$, then there exists a constant C independent of f, such that
\[
\left(\int_{\mathbb{R}^n} [T_{\Omega, \beta} f(x) \omega(x)]^q dx \right)^{1/q} \leq C \left(\int_{\mathbb{R}^n} |f(x)\omega(x)|^p dx \right)^{1/p}
\]
where $A(p/s', q/s')$ denotes the fractional type Muckenhoupt-Wheeden class (see [11]).

In this paper, we will study the following fractional Carleson type maximal operators \mathcal{T}_{β}^* with the following definition,
\[
\mathcal{T}_{\beta}^* f(x) := \sup_{\lambda} |T_{\Lambda, \beta} f(x)| = \sup_{\lambda} \left| \int_{\mathbb{R}^n} e^{iP_{\Lambda}} K_{\beta}(y) f(x - y) dy \right|,
\]
where $K_{\beta}(y) = \frac{\Omega(y)}{|y|^{n-\beta}}$ with $0 < \beta < n$ and $\Omega \in L^q(S^{n-1})$ for some $q > 1$.

Furthermore, for any $c > 0$ and vector $(\lambda_{\alpha})_{2 \leq |\alpha| \leq d}$, the set Λ is defined by
\[
\Lambda = \left\{ \lambda = (\lambda_{\alpha})_{2 \leq |\alpha| \leq d} : |\lambda| = \sum_{2 \leq |\alpha| \leq d} |\lambda_{\alpha}| \geq c \right\}.
\]

Our results can be stated as follows.

Theorem 1.2. Suppose that $P_{\lambda}(x) = \sum_{2 \leq |\alpha| \leq d} \lambda_{\alpha} x^\alpha$ with $\lambda \in \Lambda$ and Ω satisfies the L^q-Dini condition for some $1 < q \leq \infty$. Then for $q' < p < \infty$ and $0 < \beta < \frac{\delta \gamma(p)}{n-1+\gamma(p)}$, with $\gamma(p) = \min\{1/p, 1/p'\}$ and $\delta = \frac{1}{c}$, we have
\[
\| \mathcal{T}_{\beta}^* f \|_{L^p} \leq C \| f \|_{L^p},
\]
where the constant C is dependent on $1/c$ and α but independent of f.

Remark 1.3. By a simple computation, we have $\mathcal{T}_{\beta}^* (f)(x) \leq T_{\Omega, \beta}(|f|)(x)$ with $0 < \beta < n$. Thus by Theorem D, we can easily get the $L^p_{\omega p} \to L^q_{\omega q}$ boundedness of \mathcal{T}_{β}^* under the conditions of Theorem D.

2. Proof of Theorem 1.2

In this section, we will give the proof of Theorem 1.2. Some basic ideas and techniques of this proof comes from [4, 5].

First, we will introduce a variant version of the Hardy-Littlewood maximal function which will be very useful in the proof of Theorem 1.2 (See [13]).

Let $B_3 = \{ x \in \mathbb{R}^n : |x| \leq 3 \}$. For a measurable set $E \subset B_3$, χ_E denotes the characteristic function of E. Then for any $\epsilon > 0$, the maximal operator M_{ϵ} is defined by
\[
M_{\epsilon}(f)(x) = \sup_{\epsilon > 0} \left| f \right| \ast (\chi_E)_{\epsilon}(x),
\]
where $(\chi_E)_{\epsilon}(x) = a^{-n} \chi_E(x/a)$.
Lemma 2.1. ([13]) For $1 < p < \infty$, there exists a constant $C > 0$, independent of ε, such that

$$\|M_{\varepsilon}(f)\|_{L^p} \leq C \varepsilon^{1-1/p} \|f\|_{L^p}.$$

Proof of Theorem 1.2. As $\lambda \in \Lambda$, we have $|\lambda| = \sum_{2 \leq |\alpha| \leq d} |\lambda_{\alpha}| \geq c$. Thus, it suffices to consider the case for $\mathcal{T}_\beta^{\varepsilon} f(x) := \sup_{\lambda > 0} |T_{\lambda, \beta} f(x)|$.

Let $\lambda(x)$ be the nonzero vector $(\lambda_{\alpha}(x))_{2 \leq |\alpha| \leq d}$ satisfying

$$|T_{\lambda(x), \beta}(f)(x)| \geq \frac{1}{2} \sup_{\lambda} |T_{\lambda, \beta}(f)(x)|,$$

where $f \in L^p$ and $x \in \mathbb{R}^n$. Thus by the above estimates, to prove Theorem 1.2, it suffices to show that there exists a constant C, such that

$$\|T_{\lambda(\cdot), \beta}(f)\|_{L^p} \leq C \|f\|_{L^p},$$

where the constant C is independent of the choice of $\lambda(\cdot)$.

For any $x \in \mathbb{R}^n$, we define $N(\lambda(x)) = \sum_{2 \leq |\alpha| \leq d} |\lambda_{\alpha}(x)| \frac{1}{|\alpha|}$. By the definition of $\lambda(\cdot)$ and the condition $\lambda \in \Lambda$, we have $\sum_{2 \leq |\alpha| \leq d} |\lambda_{\alpha}(x)| \geq c$. As $\frac{1}{|\alpha|} < 1$, we obtain

$$N(\lambda(x)) = \sum_{2 \leq |\alpha| \leq d} |\lambda_{\alpha}(x)| \frac{1}{|\alpha|} \geq \left(\sum_{2 \leq |\alpha| \leq d} |\lambda_{\alpha}(x)| \right) \frac{1}{|\alpha|} \geq C_{\alpha}, \quad (2.1)$$

where the constant C_{α} is only dependent on c and α but independent of x.

Let $\psi \in C_0^\infty(\mathbb{R}^n)$ be a nonnegative function with supp$(\psi) \subseteq \{ \frac{1}{4} < |y| \leq 1 \}$. Furthermore, we assume that ψ satisfies

$$\sum_{j=-\infty}^{\infty} \psi_j(y) = 1 \quad \text{for} \quad y \neq 0,$$

where $\psi_j(y) = \psi(2^{-j}y)$. Then, it is easy to get that

$$\sum_{j=-\infty}^{\infty} \psi_j(N(\lambda(x))y) = 1 \quad \text{for} \quad y \neq 0.$$

Now we may decompose K_β as

$$K_\beta(y) = \sum_{j=0}^{\infty} K_{\beta; j}(y),$$
where $K_{\beta,0}(y) = \sum_{j=0}^{\infty} \psi_j(y) K_\beta(y)$, $K_{\beta,j}(y) = \psi_j(y) K_\beta(y)$ and $\psi_{j,\lambda}(y) = \psi_j(N(\lambda(x))y)$ for $j \geq 1$ and $x \in \mathbb{R}^n$. Thus, we have

$$\left| T_{\lambda(x),\beta}^0(f)(x) \right| \leq \left| \int_{\mathbb{R}^n} e^{i\lambda(x)(y)} K_{\beta,0}(y) f(x-y) \, dy \right| + \sum_{j=1}^{\infty} \left| \int_{\mathbb{R}^n} e^{i\lambda(x)(y)} K_{\beta,j}(y) f(x-y) \, dy \right|$$

$$:= T_{\lambda(x),\beta}^0(f)(x) + \sum_{j=1}^{\infty} T_{\lambda(x),\beta}^j(f)(x). \quad (2.2)$$

The estimates of $T_{\lambda(x),\beta}^0(f)(x)$

By the fact supp $(K_{\beta,0}) \subset \{ |y| \leq \frac{1}{N(\lambda(x))} \}$ and (2.1), we have

$$\left| T_{\lambda(x),\beta}^0(f)(x) \right| = \left| \int_{\mathbb{R}^n} e^{i\lambda(x)(y)} K_{\beta,0} f(x-y) \, dy \right|$$

$$\leq \sum_{j=-\infty}^{0} \int_{\mathbb{R}^n} e^{i\lambda(x)(y)} K_{\beta}(y) \psi_{j,\lambda}(y) f(x-y) \, dy$$

$$\leq C \sum_{j=-\infty}^{0} \left(\frac{2^{j-2}}{N(\lambda(x))} \right)^{\beta-n} \int_{|y| \leq \frac{2^j}{N(\lambda(x))}} |\Omega(y) f(x-y)| \, dy$$

$$\leq C M_\Omega f(x),$$

where M_Ω is the usual Hardy-Littlewood maximal function with a rough kernel (see [7]). Thus, by the L^p boundedness of M_Ω (see [7]), we have

$$\| T_{\lambda(x),\beta}^0 f \|_{L^p} \leq C \| M_\Omega f \|_{L^p} \leq C \| f \|_{L^p}. \quad (2.3)$$

The estimates of $T_{\lambda(x),\beta}^j(f)(x)$

We use some basic ideas from [5]. Choose a nonnegative function $\phi \in C_c^\infty(\mathbb{R}^n)$ satisfying supp $(\phi) \subset \{ |y| \leq 2^{-6} \}$ and $\| \phi \|_{L^1} = 1$. For any $a > 0$, we denote $\phi_a(x) = a^{-n} \phi(x/a)$.

For a positive real number σ which satisfies $\beta < \sigma$ and will be chosen later, we may denote

$$L_{j,\lambda(x),\beta}(y) = K_{\beta,j} * \phi_{j(1-\sigma)}(y) \quad \text{and} \quad R_{j,\lambda(x),\beta}(y) = K_{\beta,j}(y) - L_{j,\lambda(x),\beta}(y), j \in \mathbb{N}.$$

Thus, it is easy to see

$$\left| T_{\lambda(x),\beta}^j(f)(x) \right| \leq \left| \mathcal{L}_{\lambda(x),\beta}^j(f)(x) \right| + \left| \mathcal{R}_{\lambda(x),\beta}^j(f)(x) \right|,$$
where \(\mathcal{L}_{\lambda}^{j}(\cdot, \beta) \) and \(\mathcal{R}_{\lambda}^{j}(\cdot, \beta) \) are defined by

\[
\mathcal{L}_{\lambda}^{j}(\cdot, \beta)(f)(x) = \int_{\mathbb{R}^{n}} e^{i \lambda_{\beta}(y)} L_{j, \lambda}(x, \beta)(y) f(x - y) dy
\]

and

\[
\mathcal{R}_{\lambda}^{j}(\cdot, \beta)(f)(x) = \int_{\mathbb{R}^{n}} e^{i \lambda_{\beta}(y)} R_{j, \lambda}(x, \beta)(y) f(x - y) dy.
\]

Next, we will give the estimates of \(\mathcal{L}_{\lambda}^{j}(\cdot, \beta) \) and \(\mathcal{R}_{\lambda}^{j}(\cdot, \beta) \) respectively.

The estimates of \(\mathcal{L}_{\lambda}^{j}(\cdot, \beta) \)

First, we give the estimate of \(L_{j, \lambda}(x, \beta) \). By the definition of \(L_{j, \lambda}(x, \beta) \), we have

\[
\text{supp } (L_{j, \lambda}(\cdot, \beta)) \subseteq \left\{ \frac{2^{j-3}}{N(\lambda(x))} \leq |y| \leq \frac{2^{j+1}}{N(\lambda(x))} \right\}.
\] (2.4)

Define

\[
L_{j, \beta}(y) = \int_{\mathbb{R}^{n}} \psi(y - z) K_{\beta}(y - z) 2^{jnq} \phi(2^{j} z) dz.
\]

Then, it is easy to see that

\[
L_{j, \lambda}(x, \beta)\left(\frac{2^{j} y}{N(\lambda(x))}\right) = \left(\frac{2^{j}}{N(\lambda(x))}\right)^{\beta - n} L_{j, \beta}(y).
\] (2.5)

By the definition of \(L_{j, \lambda}(\cdot, \beta) \) and the Hölder inequality, we have the following estimates for \(L_{j, \lambda}(\cdot, \beta) \).

\[
|L_{j, \lambda}(x, \beta)(y)| = (2^{-jN(\lambda(x))})^{n} 2^{jnq} \left| \int_{\mathbb{R}^{n}} K_{\beta, j}(y) \phi \left(\frac{|x - y|}{2^{j(1 - \sigma)}} \right) dy \right|
\]

\[
\leq (2^{-jN(\lambda(x))})^{n} 2^{jnq} \int_{\frac{1}{4} \leq |y| \leq 1} |\psi_{j, \lambda}(y)| |\Omega(y)| dy
\]

\[
\leq (2^{-jN(\lambda(x))})^{n} 2^{jnq} \left(\int_{\frac{1}{4} \leq |y| \leq 1} |\Omega(y)|^{q} dy \right)^{1/q} \left(\int_{\frac{1}{4} \leq |y| \leq 1} |y|^{(\beta - n)q} dy \right)^{1/q'}
\]

\[
\leq C(2^{-jN(\lambda(x))})^{n} 2^{jnq} \left(\frac{2^{j}}{N(\lambda(x))} \right)^{n/q} \left(\frac{2^{j}}{N(\lambda(x))} \right)^{\beta - n} \left(\frac{2^{j}}{N(\lambda(x))} \right)^{n/q'}
\]

\[
= C(2^{-jN(\lambda(x))})^{n} 2^{jnq} \frac{2^{j\beta}}{(N(\lambda(x)))^{\beta}}.
\]

From (2.1), we get

\[
|L_{j, \lambda}(x, \beta)(y)| \leq C(2^{-jN(\lambda(x))})^{n} 2^{jnq} \frac{2^{j\beta}}{(N(\lambda(x)))^{\beta}} \leq C(2^{-jN(\lambda(x))})^{n} 2^{jnq} 2^{j\beta},
\] (2.6)
which implies
\[|\mathcal{L}_\lambda^j(\lambda(x), \beta \cdot f(x))| \leq C \int_{\frac{2^n-1}{N(\lambda(x))} \leq |y| \leq \frac{2^n+1}{N(\lambda(x))}} (2^{-jnN(\lambda(x))})^n 2^{jn} 2^{j\beta} |f(x-y)|dy \leq C 2^{jn+\beta}|f(x)|. \]

(2.7)

Next, we adopt some notations from [5]. Recall that \(\lambda(x) = (\lambda_\alpha(x))_{2 \leq |\alpha| \leq d}. \) For any \(j \in \mathbb{Z}^+ \), we denote
\[A_{j,\lambda} \circ \lambda = \left(\left(\frac{2^j}{N(\lambda(x))} \right)^{|\alpha|} \lambda_\alpha(x) \right)_{2 \leq |\alpha| \leq d} \]
for convenience. From [5, p.2744], there is
\[P_{\lambda(x)}(y) = \sum_{2 \leq |\alpha| \leq d} \lambda_\alpha(x)y^\alpha = \sum_{2 \leq |\alpha| \leq d} \lambda_\alpha(x) \left(\frac{2^j}{N(\lambda(x))} \right)^{|\alpha|} (2^{-jnN(\lambda(x))})^n \alpha \]
(2.8)

Thus, by (2.5), we obtain
\[\mathcal{L}_\lambda^j(\lambda(x), \beta \cdot f(x)) = \int_{\mathbb{R}^n} e^{iP_{A_{j,\lambda} \circ \lambda} (\lambda(x), y)} (2^{-jnN(\lambda(x))} f(x-y)) dy. \]

From now on, we denote \(\mathcal{L}_\lambda^j(\lambda(x), \beta \cdot f(x)) \) by \(\mathcal{L}_{j,\beta} \cdot f(x) \) for simplicity.

From [5, p.2745], we know that there exists a constant \(c_0 > 0 \) such that \(N(v) \leq c_0 |v| \) for any vector \(v \) satisfying \(N(v) \geq 1 \). Moreover, there is
\[|A_{j,\lambda} \circ \lambda| \geq 2^j/c_0 \quad \text{for all} \quad \lambda(x), x \in \mathbb{R}^n. \]

(2.9)

For \(r \geq 2^j/c_0 \), we define
\[U_{j,r} = \{ x : r \leq |A_{j,\lambda} \circ \lambda| < 2r \} \]
and
\[\mathcal{L}_{j,r,\beta}(f)(x) = \mathcal{L}_{j,\beta}(f)(x) \chi_{U_{j,r}}(x). \]

Let \(\mathcal{L}_{j,r,\beta}^* \) be the adjoint operator of \(\mathcal{L}_{j,r,\beta} \). Then, it is easy to check that
\[\mathcal{L}_{j,r,\beta}^*(g)(y) = \int_{\mathbb{R}^n} e^{-iP_{A_{j,\lambda} \circ \lambda}(x-y)} L_{j,x,y} \beta(x-y) g(x) \chi_{U_{j,r}}(x) dx \]
and
\[(\mathcal{L}_{j,r,\beta} \mathcal{L}_{j,r,\beta}^*) (f)(x) = \int_{\mathbb{R}^n} \mathcal{K}_\beta(x,z) f(z) dz, \]
where
\[\mathcal{K}_\beta(x,z) = \int_{\mathbb{R}^n} e^{iP_{A_{j,\lambda} \circ \lambda}(z-x+y)} L_{j,x,y} \beta(y) L_{j,y,z} \beta(z-x+y) dy \chi_{U_{j,r}}(x) \chi_{U_{j,r}}(z) \]
First, we have the following estimates.

\[
\nu \text{ where over, we can divide it into two cases:}
\]

Let \(h \)

\[
\text{De}
\]

Now, we give the proof of (2.10) according to [5, p.2747-p.2748].

Following [5], we are going to prove that for \(r > 2j/c_0 \) and fixed \(x, z \in U_{j,r} \), the following inequality holds.

\[
\left| \mathcal{X}_{\beta}(x,z) \right| \leq C \left(2^{-j} N (\lambda(z)) \right)^n + 2^{j+n+4} \left[r^{-2\delta} \mathcal{X}_{B_3} \left(2^{-j} N (\lambda(z)) (x-z) \right) + C \left(2^{-j} N (\lambda(x)) \right)^n + 2^{j+n+4} \left[r^{-2\delta} \mathcal{X}_{B_3} \left(2^{-j} N (\lambda(x)) (x-z) \right) + C \left(2^{-j} N (\lambda(x)) \right)^n \right] \right]
\]

(2.10)

where the sets \(E_j^{\lambda(x)} \), \(E_j^{\lambda(z)} \subset B_3 = \{ |y| \leq 3 \} \) satisfying \(|E_j^{\lambda(x)}|, |E_j^{\lambda(z)}| \leq r^{-4\delta} \) with \(\delta = (6d)^{-1} \).

Now, we give the proof of (2.10) according to [5, p.2747-p.2748].

Define \(\mathcal{F}_{\mu,\nu} \) by

\[
\mathcal{F}_{j,\beta} (\mu,\nu) (u) = \left(e^{iP_{\nu}(\cdot)} L_{j,\nu,\beta} (\cdot) \right) * \left(e^{-iP_{\nu}(\cdot)} L_{j,\mu,\beta} (\cdot) \right) (u),
\]

where \(\nu = (\nu_{\alpha})_{2 \leq |\alpha| \leq d} \) and \(\mu = (\mu_{\alpha})_{2 \leq |\alpha| \leq d} \) to satisfy

\[
\nu \leq |A_{j,\nu} \circ \nu|, |A_{j,\mu} \circ \mu| < 2r.
\]

Let \(h = \frac{N(\mu)}{N(\nu)} \) and we may assume that \(h \leq 1 \). Hence, by (2.5) and (2.8), we have

\[
\mathcal{F}_{j,\beta} \left(\frac{2i}{N(\mu)} \right) = \int_{\mathbb{R}^n} e^{i \left[P_{\nu,\circ \nu}(y) - P_{\nu,\mu}(y) - u + hy \right]} L_{j,\beta} (y) \left(\frac{2i}{N(\mu)} \right)^{-n+\beta} L_{j,\beta} (hy - u) dy.
\]

(2.11)

To estimate \(\mathcal{F}_{j,\beta} \left(\frac{2i}{N(\mu)} \right) \), we adopt some basic ideas and estimates from [5, 13]. Moreover, we can divide it into two cases: \(h \) is near the origin and away from the origin.

Case 1. \(0 < h \ll 1 \), where \(\eta \) will be chosen later. Note that

\[
\supp(L_{j,\beta}) \subseteq \{ 1/8 < |y| \leq 3/2 \} \quad \text{and} \quad |u| \leq |hy - u| + h|y| \leq 3.
\]

First, we have the following estimates.

\[
|L_{j,\beta} (y)| \leq C \int_{2j^{-2} \leq |y-z| \leq 2j} \left| \Omega (y-z) \right| \left(\frac{2j^{-2} \leq |y| \leq 2j} |y-z|^{-n+\beta} \right) d\sigma d\nu
\]

\[
\leq C 2^{j/n+\sigma} \left(\int_{2j^{-2} \leq |y| \leq 2j} \left| \Omega (y) \right|^q dy \right)^{1/q} \left(\int_{2j^{-2} \leq |y| \leq 2j} |y|^{(\beta-n)q'} dy \right)^{1/q'}
\]

\[
\leq C 2^{j/n+2\beta}.
\]

(2.13)

Similarly, there is

\[
|\nabla \mathcal{L}_{j,\beta} (y)| \leq C 2^{j/n+2\beta}.
\]

(2.14)
From [5, p.2747], we know that if we choose η small enough, then

$$\sum_{2 \leq |\alpha| \leq d} \left| \left((A_{j,v} \circ v)_{\alpha} + O(h|A_{j,\mu} \circ \mu|) \right) \right| \geq \sum_{2 \leq |\alpha| \leq d} \left| (A_{j,v} \circ v)_{\alpha} \right| - C\eta |A_{j,\mu} \circ \mu| \geq Cr.$$

Thus, using (2.13), (2.14) and the van der Corput lemma in n-dimensional (see Proposition 2.1 in [13, p. 791]), we obtain

$$\left| \mathcal{F}_{j,\beta}^{\mu,v} \left(\frac{2ju}{N(\mu)} \right) \right| \leq C(2^{-j}N(\mu))^n 2^{2jns_\sigma+4j\beta} r^{-1/d} \chi_{B_3}(u). \quad (2.15)$$

Case 2. $\eta < h \leq 1$. From the assumption on polynomial, we know that there is no first order term in y of $P_{A_j,v}(y)$. Let $e_k = (0, \ldots, 1, 0, \ldots)$ with 1 in the k^{th} component. From [5, p.2748], we know that the first order term in y in $P_{A_j,v}(y) - P_{A_j,\mu}(y + h)$ can be written as

$$-h \sum_{k=1}^n P^{(k)}_{A_j,\mu}(u) y_k = -h \sum_{k=1}^n \sum_{2 \leq |\alpha| \leq d} \alpha_k \left(\frac{2j}{N(\mu)} \right)^{|\alpha|} \mu_\alpha u^{\alpha - e_k} y_k.$$

Now applying (2.13), (2.14) and Proposition 2.1 in [13] again, we have

$$\left| \mathcal{F}_{j,\beta}^{\mu,v} \left(\frac{2ju}{N(\mu)} \right) \right| \leq C(2^{-j}N(\mu))^n 2^{2jns_\sigma+4j\beta} \left(\sum_{k=1}^n |P^{(k)}_{A_j,\mu}(u)| \right)^{-1/d} \chi_{B_3}(u).$$

For $\rho > 0$, we define $E^j_{\mu} = \left\{ u \in B_3 : \sum_{k=1}^n |P^{(k)}_{A_j,\mu}(u)| \leq \rho \right\}$. Thus, we get

$$\left| \mathcal{F}_{j,\beta}^{\mu,v} \left(\frac{2ju}{N(\mu)} \right) \right| \leq C(2^{-j}N(\mu))^n 2^{2jns_\sigma+4j\beta} \rho^{-1/d} \chi_{B_3}(u), \quad (2.16)$$

for $u \in (E^j_{\mu})^c$. From Proposition 2.2 in [13, p. 791], we have

$$|E^j_{\mu}| \leq C_{n,d} \left(\sum_{k=1}^n \sum_{2 \leq |\alpha| \leq d} \alpha_k \left(\frac{2j}{N(\mu)} \right)^{|\alpha|} |\mu_\alpha| \right)^{-1/d} \rho^{1/d}.$$

According to [5, p.2748], there is

$$\sum_{k=1}^n \sum_{2 \leq |\alpha| \leq d} \alpha_k \left(\frac{2j}{N(\mu)} \right)^{|\alpha|} |\mu_\alpha| \geq \sum_{2 \leq |\alpha| \leq d} \left(\frac{2j}{N(\mu)} \right)^{|\alpha|} |\mu_\alpha| = |A_{j,\mu} \circ \mu| \geq r.$$

Let $\rho = (C_{n,d})^{-d} r^{1/3}$ and $\delta = \frac{1}{6d}$. Then, for $u \in E^j_{\mu}$, we have

$$\left| \mathcal{F}_{j,\beta}^{\mu,v} \left(\frac{2ju}{N(\mu)} \right) \right| \leq C(2^{-j}N(\mu))^n 2^{2jns_\sigma+4j\beta} \chi_{E^j_{\mu}}(u) \quad (2.17)$$
with $|E_{j}^{\mu}| \leq C_{n,d}(\rho/r)^{1/d} \leq r^{-4\delta}$. As $r \geq 2^{j}/c_{0}$, then using (2.15)-(2.17), we get

$$
\left| \mathcal{B}_{j,\beta}^{\mu,v} \left(\frac{2^{j}u}{N(\mu)} \right) \right| \leq C \left(2^{-j}N(\mu) \right)^{n} 2^{jn+4j} \left[r^{-2\delta} \chi_{B_{3}}(u) + \chi_{E_{j}^{\mu}}(u) \right].
$$

Now, we conclude that for μ, ν with $r \leq |A_{j,\nu} \circ \nu| \leq 2r, r \leq |A_{j}\circ \mu| \leq 2r$ and $h \leq 1$, there is

$$
\left| \mathcal{B}_{j,\beta}^{\mu,v} (u) \right| \leq C \left(2^{-j}N(\mu) \right)^{n} 2^{jn+4j} \left[r^{-2\delta} \chi_{B_{3}}(u) + \chi_{E_{j}^{\mu}}(u) \right].
$$

(2.18)

For fixed $x,z \in U_{j,r}$, let $\nu = \lambda(x)$, $\mu = \lambda(z)$. $u = x - z$. By the symmetry of μ, ν, and (2.18), we finish the proof of (2.10).

Now, we return to the estimates of $\mathcal{L}_{\lambda(\cdot),\beta}^{j}$. Recall the definition of $\mathcal{M}_{\varepsilon}(f)(x)$ and Lemma 2.1. Denoting $\varepsilon = r^{-4\delta}$ and using (2.10), we obtain

$$
\left| (\mathcal{L}_{j}\mathcal{L}_{j}^{\epsilon} f, g) \right| \leq \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} |\mathcal{K}_{\beta}(x,z)||f(z)||g(x)|dzdx
$$

$$
\leq C r^{-2\delta} 2^{jn+4j} \int_{\mathbb{R}^{n}} |f(z)|(2^{-j}N(\lambda(z)))^{n} \int_{|x-z| \leq \frac{32j}{N(\lambda(z))}} |g(x)|dzdx
$$

$$
+ C 2^{jn+4j} \int_{\mathbb{R}^{n}} |f(z)|(2^{-j}N(\lambda(z)))^{n} \int_{\mathbb{R}^{n}} \chi_{E_{j}^{\lambda(x)}}(2^{-j}N(\lambda(z))(x-z)) |g(x)|dzdx
$$

$$
+ C r^{-2\delta} 2^{jn+4j} \int_{\mathbb{R}^{n}} |g(x)|(2^{-j}N(\lambda(x)))^{n} \int_{|x-z| \leq \frac{32j}{N(\lambda(x))}} |f(z)|dzdx
$$

$$
+ C 2^{jn+4j} \int_{\mathbb{R}^{n}} |g(x)|(2^{-j}N(\lambda(x)))^{n} \int_{\mathbb{R}^{n}} \chi_{E_{j}^{\lambda(x)}}(2^{-j}N(\lambda(x))(x-z)) |f(z)|dzdx
$$

$$
\leq C r^{-2\delta} 2^{jn+4j} \int_{\mathbb{R}^{n}} |f(z)||M(g)(z)|dz + C 2^{jn+4j} \int_{\mathbb{R}^{n}} |f(z)||\mathcal{M}_{\varepsilon}(g)(z)|dz
$$

$$
+ C r^{-2\delta} 2^{jn+4j} \int_{\mathbb{R}^{n}} |g(x)||M(f)(x)|dx + C 2^{jn+4j} \int_{\mathbb{R}^{n}} |g(x)||\mathcal{M}_{\varepsilon}(f)(x)|dx.
$$

Using the Hölder inequality, the L^{2} boundedness of M (see [8]) and Lemma 2.1, we obtain that

$$
\left| (\mathcal{L}_{j}\mathcal{L}_{j}^{\epsilon} f, g) \right| \leq C r^{-2\delta} 2^{jn+4j} \|f\|_{L^{2}}\|g\|_{L^{2}}.
$$

(2.19)

As

$$
\left\{ x \in \mathbb{R}^{n} : |A_{j,\lambda} \circ \lambda| \geq \frac{2^{j}}{c_{0}} \right\} = \bigcup_{k=0}^{\infty} \left\{ x : \frac{2^{j+k}}{c_{0}} \leq |A_{j,\lambda} \circ \lambda| < \frac{2^{j+k+1}}{c_{0}} \right\},
$$

we may choose $r = 2^{j+k}/c_{0}$ for $k = 0,1,\cdots$, and denote $\mathcal{L}_{j,\beta}^{(k)} := \mathcal{L}_{j,\beta}^{(k)}$. Thus, we obtain $\mathcal{L}_{j,\beta}(f)(x) = \sum_{k=0}^{\infty} \mathcal{L}_{j,\beta}^{(k)}(f)(x)$. Using (2.19), we get

$$
\|\mathcal{L}_{j,\beta}\|_{L^{2} \rightarrow L^{2}} \leq \sum_{k=0}^{\infty} \left\| \mathcal{L}_{j,\beta}^{(k)} \right\|_{L^{2} \rightarrow L^{2}} \leq C 2^{jn+4j} \sum_{k=0}^{\infty} \left(\frac{2^{j+k}}{c_{0}} \right)^{-\delta} \leq C 2^{jn+4j} 2^{-j\delta}.
$$

(2.20)
By the fact $|\mathcal{L}_{j,\beta}f(x)| \leq C2^{jn\sigma+j\beta}Mf(x)$ (see (2.7)), we have

$$\|\mathcal{L}_{j,\beta}f\|_{L^s} \leq C2^{jn\sigma+j\beta}\|f\|_{L^s},$$

for $1 < s < \infty$.

Thus, by the Riesz-Thörin interpolation theorem, we obtain

$$\|\mathcal{L}_{j,\beta}f\|_{L^p} \leq C2^{jn\sigma+j\beta}2^{-j(\delta-\beta)\gamma(p)}\|f\|_{L^p},$$

where $\gamma(p) = \min\{1/p, 1/p'\}$ and $q' < p < \infty$. As $0 < \beta < \frac{\delta\gamma(p)}{n-1+\gamma(p)}$, we may choose σ satisfying $\beta < \sigma < \frac{\beta+(\delta-\beta)\gamma(p)}{n}$. Moreover, we denote $\theta = (\delta-\beta)\gamma(p) - n\sigma - \beta > 0$, which implies

$$\|\mathcal{L}^j_{\lambda(\cdot),\beta}f\|_{L^p} = \|\mathcal{L}_{j,\beta}f\|_{L^p} \leq C2^{-j\theta}\|f\|_{L^p}. \quad (2.21)$$

The estimates of $\mathcal{R}^j_{\lambda(\cdot),\beta}$

Before giving the estimates of $\mathcal{R}^j_{\lambda(\cdot),\beta}$, we recall the definition of $\mathcal{R}^j_{\lambda(\cdot),\beta}$ as

$$\mathcal{R}^j_{\lambda(x),\beta}(f)(x) = \int_{\mathbb{R}^n} e^{iP_\lambda(x)}(y)R_{j,\lambda,\beta}(y)f(x-y)dy,$$

where $R_{j,\lambda,\beta}(y)$ is defined by

$$R_{j,\lambda,\beta}(y) = \int_{\mathbb{R}^n} \left[K_{\beta}(y)\psi_{j,\lambda}(y) - K_{\beta}(y-z)\psi_{j,\lambda}(y-z)\right]\phi_{2j(1-\sigma)}(z)dz.$$

As

$$\text{supp} \ (R_{j,\lambda,\beta}) \subseteq \left\{ \frac{2^{j-3}}{N(\lambda(x))} \leq |y| \leq \frac{2^{j+1}}{N(\lambda(x))} \right\} \quad (2.22)$$

and $|z| \leq \frac{2j(1-\sigma)-5}{N(\lambda(x))}$, we get $|y-z| \sim |y|$. Thus, we have

$$|R_{j,\lambda,\beta}(y)| \leq \int_{\mathbb{R}^n} |\psi_{j,\lambda}(y-z)||K_{\beta}(y) - K_{\beta}(y-z)||\phi_{2j(1-\sigma)}(z)|dz$$

$$+ \int_{\mathbb{R}^n} |K_{\beta}(y)||\psi_{j,\lambda}(y) - \psi_{j,\lambda}(y-z)||\phi_{2j(1-\sigma)}(z)|dz$$

$$\leq C \frac{\Omega(y)}{|y|^{n+1-\beta}} \int_{\mathbb{R}^n} |z||\phi_{2j(1-\sigma)}(z)|dz$$

$$+ \frac{C}{|y|^{n-\beta}} \int_{\mathbb{R}^n} \Omega(y-z) - \Omega(y)||\phi_{2j(1-\sigma)}(z)|dz$$

$$+ C \frac{\Omega(y)}{|y|^{n-\beta}} \int_{\mathbb{R}^n} 2^{-j}N(\lambda(x))z||\phi_{2j(1-\sigma)}(z)|dz$$

$$\leq C2^{-j\sigma+j\beta}\frac{\Omega(y)}{|y|^n} + \frac{C}{|y|^{n-\beta}} \int_{\mathbb{R}^n} \Omega(y-z) - \Omega(y)||\phi_{2j(1-\sigma)}(z)|dz.$$
Now, we denote $R^j_{\lambda}(\cdot, \beta)(f)$ by $R_{j, \beta}(f)$ for simplicity. Then, from (2.22) and the Hölder inequality, we have

$$|R_{j, \beta}(f)(x)| \leq 2^{-j\sigma + j\beta} M_\Omega(f)(x) + \int_{\mathbb{R}^n} \phi_j(z) \times \int_{\mathbb{R}^n} \frac{1}{|y|^{n-\beta}} |f(x-y)| dydz \leq 2^{-j\sigma + j\beta} M_\Omega(f)(x) + \int_{\mathbb{R}^n} \phi_j(z) \times \int_{\mathbb{R}^n} \frac{1}{|y|^{n-\beta}} |f(x-y)|^q dydz \leq 2^{-j\sigma + j\beta} M_\Omega(f)(x) + \int_{\mathbb{R}^n} \phi_j(z) \times \int_{\mathbb{R}^n} \frac{1}{|y|^{n-\beta}} |f(x-y)|^{q'} dydz.$$

From [5, p.2750], we know that for $\alpha = \frac{q'}{n}$, there is

$$\int_{\mathbb{S}^{n-1}} \Omega \left(\frac{y' - \alpha}{|y'|} \right) - \Omega(y') \left| \frac{q}{q'} \right| d\sigma(y') \leq C \omega_n^q(|\alpha|).$$

As $|z| \leq \frac{2^{(j-\sigma-5)}}{N(\lambda(\cdot))}$, we get

$$\left(\int_{\frac{2^{j-3}}{N(\lambda(\cdot))} \leq |y| \leq \frac{2^{j+1}}{N(\lambda(\cdot))}} \frac{|\Omega(y - z) - \Omega(y)|^q}{|y|^{n-\beta}} dy \right)^{1/q} \leq C 2^{jB/q} \omega_q(2^{-j\sigma-2}).$$

Thus, we have

$$|R_{j, \beta}(f)(x)| \leq C \left[2^{-j\sigma + j\beta} M_\Omega(f)(x) + 2^{j\beta} \omega_q(2^{-j\sigma-2}) M_{q'}(f)(x) \right],$$

where C is independent of the choice of $\lambda(\cdot)$. Since $p > q'$, using the L^p boundedness of M_Ω and $M_{q'}$ again, we obtain

$$\left\| R^j_{\lambda}(\cdot, \beta)(f) \right\|_{L^p} = \left\| R_{j, \beta}(f) \right\|_{L^p} \leq C \left(2^{-j\sigma + j\beta} + 2^{j\beta} \omega_q(2^{-j\sigma-2}) \right) \|f\|_{L^p}. \quad (2.23)$$

Proof of Theorem 1.2

From (2.21) and (2.23), we have the following estimates.

$$\left\| T^i_{\lambda}(\cdot, \beta)(f) \right\|_{L^p} \leq \left\| T^j_{\lambda}(\cdot, \beta)(f) \right\|_{L^p} + \left\| R^j_{\lambda}(\cdot, \beta)(f) \right\|_{L^p} \leq C \left(2^{-j\theta} \|f\|_{L^p} + 2^{-j\sigma + j\beta} \|f\|_{L^p} + 2^{j\beta} \omega_q(2^{-j\sigma-2}) \|f\|_{L^p} \right).$$

By the fact that $\theta < 0$ and $\beta < \sigma$, we can easily get

$$\sum_{j \geq 1} 2^{-j\theta} \|f\|_{L^p} \leq C \|f\|_{L^p}, \quad (2.24)$$
and
\[\sum_{j \geq 1} 2^{-j\sigma + j\beta} \| f \|_{L^p} \leq C \| f \|_{L^p}. \]
\hfill (2.25)

Moreover, we have
\[\sum_{j \geq 1} 2^{j\beta} \omega_q(2^{-j\sigma - 2}) \| f \|_{L^p} \]
\[= (\ln 2)^{-1} \sum_{j \geq 1} \omega_q(2^{-j\sigma - 2}) 2^{j\beta} \int_{2^{-j\sigma - 2}}^{2^{-j\sigma - 1}} \frac{d\delta}{\delta} \| f \|_{L^p} \]
\[\leq C \sum_{j \geq 1} 2^{j\beta} \int_{2^{-j\sigma - 2}}^{2^{-j\sigma - 1}} \frac{\omega_q(\delta)}{\delta} d\delta \| f \|_{L^p} \]
\leq C \sum_{j \geq 1} 2^{j\beta} 2^{-j\sigma} \int_0^1 \frac{\omega_q(\delta)}{\delta} d\delta \| f \|_{L^p} \leq C \| f \|_{L^p}. \]
\hfill (2.26)

Combining (2.2)-(2.3), (2.24)-(2.26), we finish the proof of Theorem 1.2.

Acknowledgements. This paper was finished while the first author was visiting Beijing Normal University. The first author would express his gratitudes to Prof. Yong Ding for his kind remarks which improve the quality of this paper a lot. Finally, all the authors would like to express their gratitudes to the anonymous referees for his/her valuable suggestions.

REFERENCES

[1] Calderón A. P., Weiss M. and Zygmund A., On the existence of singular integrals, Proc. Symp. Pure Math., AMS, 10 (1967), 56–73.
[2] Carleson L., On convergence and growth of partial sums of Fourier series, Acta Math., 111(1960), 361–370.
[3] Colzano L., Hardy space on spheres, Ph. D. Thesis, Washington University, St. Louis, 1982.
[4] Ding Y. and Liu H.H., L^p boundedness of Carleson type maximal operators with nonsmooth kernels, Tohoku Math. J.(2), 63 (2012), 255–267.
[5] Ding Y. and Liu H.H., Weighted L^p boundedness of Carleson type maximal operators, Proc. Amer. Math. Soc., 140(8), (2012), 2739–2751.
[6] Ding Y. and Lu S.Z., Weighted norm inequalities for fractional integral operators with rough kernel, Canad. J. Math. 50 (1998), 29–39.
[7] Duoandikoetxea J., Weighted norm inequalities for homogeneous singular integrals, Trans. Amer. Math. Soc., 336(1993), 869–880.
[8] García-Cuerva, J. and Rubio de Francia, J.L., Weighted Norm Inequalities and Related Topics, Amsterdam: North-Holland, (1985).
[9] Hunt R.A., On the convergence of Fourier series, Orthogonal Expansions and Their Continuous Analogues, (Proc. Cont. Edwardsville, Ill., 1967), 235–255, Southern Illinois Univ. Press, Carbondale Ill., 1968.
[10] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165(1972), 207–226.
[11] Muckenhoupt B. and Wheeden R.L., Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc. 192(1974), 261–274.
[12] P. Sjölin, *Convergence almost everywhere of certain singular integral and multiple Fourier series*, Ark. Mat. **9** (1971), 65–90.

[13] Stein E.M. and Wainger S., *Oscillatory integrals related to Carleson’s theorem*, Math. Res. Lett. **8** (2001), 789–800.

(Received January 8, 2017)

Xiao Yu
Department of Mathematics
Shangrao Normal University
Shangrao, Jiangxi, P.R.China, 334001
e-mail: yx2000s@163.com

Huihui Zhang
Department of Mathematics
Shangrao Normal University
Shangrao, Jiangxi, P.R.China, 334001
e-mail: zhanghuihuinb@163.com

Xiaomei Wu
College of Mathematics, Physics and Information Engineering
Jiaxing University
Jiaxing, Zhejiang, P.R.China, 314001
e-mail: wuxm@zjnu.cn