A TREE SPECIES INVENTORY IN A ONE-HECTARE PLOT AT THE BATANG GADIS NATIONAL PARK, NORTH SUMATRA, INDONESIA

KUSWATA KARTAWINATA
Conservation International Indonesia, Jl. Pejaten Barat 16 A, Kemang, Jakarta 12550, Indonesia.
Email: kkjak@indo.net.id

ISMAYADI SAMSOEDIN
1) Conservation International Indonesia, Jl. Pejaten Barat 16 A, Kemang, Jakarta 12550, Indonesia.
2) Pusat Penelitian Hutan dan Konservasi, Badan Penelitian dan Pengembangan Kehutanan, Gunung Batu, Bogor 16610, Indonesia

M. HERIYANTO
Pusat Penelitian Hutan dan Konservasi, Badan Penelitian dan Pengembangan Kehutanan, Gunung Batu, Bogor 16610, Indonesia

& J.J. AFRIASTINI
Herbarium Bogoriense, Pusat Penelitian Biologi, LIPI, Jl. Juanda 22, Bogor 16122, Indonesia

ABSTRACT
KARTAWINATA, KUSWATA; SAMSOEDIN, ISMAYADI; HERIYANTO, M. AND AFRIASTINI, J. J. 2004. A tree species inventory in a one-hectare plot at the Batang Gadis National Park, North Sumatra, Indonesia. Reinwardtia 12 (2): 145 – 157. The results of the inventory of trees with DBH ≥ 10 cm shows that 184 species in 41 families, represented by 583 individuals with the total basal areas of 40.56 m² occurred in the one-hectare plot sampled. Together with the saplings and shrubs the number of species was 240 belonging to 47 families. The forest is richer in tree species than other lowland forests in North Sumatra, but poorer than those in Borneo and the Malay Peninsula. Dipterocarps constituted 18.42 % of total species with basal area of 18.99 m² or 46.82 % of the total basal area in the plot. The most prominent species was Shorea gibbosa. Hopea nigra, reported to be rare in Bangka and Belitung, occurred here as one of the ten leading species. The species-area curve shows that a considerable number of additional species was encountered more or less steadily up to one hectare and there was no indication of levelling off. A simulated profile diagram shows the forest may be stratified into five layers: (1) emergent layer, (2) upper canopy, (3) middle canopy, (4) lower canopy and (5) ground canopy. Dipterocarps were leading species in the emergent layer, upper canopy and middle canopy. Only 82 species were regenerating as represented by their presence in the sapling stage ranging from 5 to 50 plants/hectare. Macaranga lowii King ex Hook. f. dominated the section which seemed to be previously occupied by gaps.

Key words: Inventory, forest, species richness, dipterocarps, structure, regeneration, North Sumatra.

ABSTRAK
KARTAWINATA, KUSWATA; SAMSOEDIN, ISMAYADI; HERIYANTO, M. AND AFRIASTINI, J.J. 2004. Inventarisasi jenis-jenis pohon pada plot satu hektar di Taman Nasional Batang Gadis, Sumatra Utara, Indonesia. Reinwardtia 12 (2): 145 – 157. Hasil inventarisasi pohon dengan diameter setinggi dada ≥ 10 cm menunjukkan bahwa 184 jenis dalam 41 suku, yang diwakili oleh 583 pohon dengan luas bidang dasar total 40.56 m² terdapat dalam plot satu hektar yang dicukup. Bersama-sama dengan belda dan perdu tercatat 240 jenis yang termasuk 47 suku. Jenis-jenis pohon di hutan ini lebih kaya daripada di hutan pamah lain di Sumatera Utara, tetapi lebih miskin daripada di Borneo dan Semenanjung Malaya. Jenis-jenis Dipterocarpaceae mencakup 18.42 % dari semua jenis dengan luas bidang dasar 18.99 m² atau 46.82 % dari luas bidang dasar total dalam plot. Jenis yang menonjong adalah Shorea gibbosa. Hopea nigra yang dilaporkan jarang dan hanya tercatat di Bangka dan Belitung termasuk salah satu dari 10 jenis utama di sini. Kurva jenis-luas menunjukkan bahwa penambahan jenis yang cukup tinggi dapat dilihat sampai luas satu hektar dan tidak menunjukkan tanda-tanda mulai mendatar. Berdasarkan diagram profil simulasi dapat dibuat stratifikasi hutan sebagai berikut: (1) lapisan mencuat, (2) kanopi atas, (3) kanopi

1 Concurrently attached to: 1. Herbarium Bogoriense, Pusat Penelitian Biologi, LIPI, Jl. Juanda 22, Bogor 16122, Indonesia; 2. Botany Department, Field Museum, 1400 S. Lake Shore Drive, Chicago, Illinois 60605-2496, USA; 3. UNESCO, Jalan Galuh (II) No. 5, Kebayoran Baru, P.O. Box 1273/JKT, Jakarta 12110, Indonesia.
tengah, (4) kanopi bawah dan (5) kanopi dasar. Jenis-jenis Dipterocarpaceae menonjol pada lapisan mencuat, kanopi atas dan kanopi tengah. Regenerasi hanya terdapat pada 82 jenis seperti ditunjukkan oleh kehadirannya dalam fase bela yang berkisar dari 5 sampai 50 tumbuhan/hektar. Macaranga lowii King ex Hook. f. mendominasi bagian plot yang tampaknya sebelumnya berupa rumpang.

Kata kunci: Inventarisasi, hutan, kekayaan jenis, Dipterocarpaceae, struktur, regenerasi, Sumatera Utara.

INTRODUCTION

Only a relatively few studies on tree species composition of forests have been undertaken in North Sumatra, Indonesia. Some of them have been published including those of Abdulhadi (1991) and Abdulhadi et al. (1984, 1987, 1989a, 1989b, 1991). The present study was conducted in February and March of 2004 as part of biological inventories in the Batang Gadis National Park. The purpose of the present paper is to provide information about tree species richness, frequency, density dominance based on a one-hectare sample in a portion of the park not previously reported in this fashion.

STUDY SITE AND METHOD

The Batang Gadis National Park was established on 29 April 2004 by the decree of the Minister of Forestry No. SK.126/Menhut-II/2004, based on the wish of the local community and the local government. It covers a total area of 108,000 ha in the District of the Mandailing-Natal (Madina), the Province of North Sumatra. It is located between 99°12'45" and 99°47'45" East and between 0°27'15" and 1°01'57" North at the altitude between 300 and 2,145 m a.s.l. (above sea level) with the highest point at the top of the volcanic Mount Sorik Merapi (Sulistiowati & Perbatakusumah 2004). The area is partly mountainous with about 50% are slopes of more than 40% and covers also lowland, swamps, and alluvial fans. Figure 1 shows the map of the National Park and its surrounding area. Geologically the area consists of the pre-tertiary Kuantan formation, which comprised metamorphic rocks and alluvial deposits dominated by sand and gravels (M. N. S Rock cited by Perbatakusumah, unpublished). The nearest rainfall stations (Table 1) showed at Muara Soma the mean annual rainfall of 4004 mm with the highest in November (463 mm) and the lowest in June (178 mm), at Kotanopan 2374 mm with the highest in April (256 mm) and the lowest in July (96 mm) and at Panyabungan (222 m a.s.l.) 1553 mm with the highest in November (191 mm) and the lowest in June (65 mm) and July (65 mm), which were based on long-term observations ranging from 27 to 60 years (Berlage 1949).

The one-hectare plot sampled was in the form of a 100 x 100 m quadrat and was selected because it was far from any particular settlement so that it is not disturbed by the cutting of trees or collecting of non-timber forest products such as rattans. The plot was established in a primary forest with a canopy cover of about 70-80% at Aek Nangali on a sloping convex ridge at 99°27’23” East and 0°36’94” N and altitude of 660 m a.s.l. The plot was divided into 25 subplots of 20 x 20 m each, where the data on frequency of species were derived, trees with a DBH of 10 cm and greater were marked and enumerated, measured for their diameters and heights and identified. Voucher specimens which were mostly sterile were collected for further identification at the Herbarium Bogoriense at Bogor. Nomenclature followed Whitmore & Tantra (1986) and Steenis et al. (1949 – 2004). Plants with diameters of 5 – 9.99 cm were considered saplings or shrubs (those with clumped stems) and were enumerated, measured and identified in five randomly selected subplots.
Table 1. The mean monthly rainfall (January to December) and mean annual rainfall at Muara Soma, Kotanopan and Panyabungan, Mandailing-Natal District.

Locality	Mean Monthly Rainfall (mm)	Mean Annual Rainfall (mm)
Muara Soma (500 m a.s.l.)	J 303 F 289 M 347 A 442 M 253 J 178 A 203 J 302	A 363 S 441 O 463 N 414 D 4004
Kotanopan (433 m a.s.l.)	J 220 F 184 M 218 A 256 M 167 J 114 A 96 J 161	A 190 S 272 O 246 N 250 D 2374
Panyabungan (222 m a.s.l.)	J 141 F 103 M 150 A 149 M 110 J 65 A 65 J 110	A 138 S 178 O 191 N 153 D 1553

Source: (Berlage 1949)

RESULTS AND DISCUSSION

Composition

The results of the inventory of trees with DBH of 10 cm and greater shows that 184 species in 41 families, represented by 583 individuals with the total basal areas of 40.56 m² occurred in the one-hectare plot sampled. Of these 184 species, 150 were identified down to specific level, 30 to generic level, three to family level and one was unidentified even to family level. Together with the saplings and shrubs the number of species was 240 belonging to 47 families. Appendix 1 lists all species of trees with DBH ≥ 10 cm by family and shows densities, relative densities, frequencies, relative frequencies, basal areas, relative basal areas and Importance Values (IV). They were calculated following the standard procedure as discussed by Mueller-Dombois and Ellenberg (1974). The Total Species Important Values for a Family (TSIVF) indicate the family importance value, based on the sum of IVs of all species for in a family, which is different from the Family Importance Value of Mori et al. (1983) those in Borneo and the Malay Peninsula; while tree densities were higher than those in Ketambe (North Sumatra), Bukit Lagong and Sungai Menyala (the Malay Peninsula), and Ladan and Belalong (Brunei), but lower than those in Malinau and Sebulu (East Kalimantan), Gunung Mulu (Sarawak) and Andulau (Brunei).

Table 2. Compositional and structural characteristics of a one-hectare plot of a lowland forest at the Batang Gadis National Park

Forest characteristics	Dipterocarp	Non Dipterocarp
Number of species	16 (8.70 %)	168 (91.30 %)
Density	122 (20.93 %)	461 (79.07 %)
Basal area (m²)	18.99 (46.82 %)	21.57 (53.18 %)
Importance Value	84.24 (28.08 %)	215.76 (71.92 %)

Table 3. Comparison of densities and number of species in the present studies with those conducted in Sumatra, Malay Peninsula and Borneo.

Locality	Alt (m)	Plot size (ha)	Mean Density (tree/ha)	No of species	Source
East Kalimantan					
Malinau					
Sebulu					
Ketambe 1	100	1.0	759	221	Kartawinata (unpublished)
Ketambe 2	100	1.0	640	211	Ismayadi (unpublished)
Ketambe 3	70	1.0	592	276	Sukardjo et al. (1990)
North Sumatra					
Ketambe 1	250	1.0	550	231	Poulsen et al. (1996)
Ketambe 2	70	0.96	480	194	Davies & Becker (1996)
Ketambe 3	60	0.96	396	256	Davies & Becker (1996)
Batang Gadis	460-550	2	494	232	Manokaran & Swaine (1994)
Sungai Menyala	30	2	476.5	232	Manokaran & Swaine (1994)

Table 4. Ten most common families according to the Total Species Importance Values for Families (TSIV) in a one-hectare plot of a lowland forest at the Batang Gadis National Park

No.	Family	TSIV
1	Dipterocarpaceae	84.24
2	Euphorbiaceae	31.97
3	Burseraceae	24.11
4	Myrtaceae	15.89
5	Fabaceae	13.72
6	Lauraceae	11.62
7	Sapotaceae	11.51
8	Myristicaceae	9.73
9	Moraceae	9.09
10	Clusiaceae	7.44

Total 219.32 (73.11 %)
Table 4 indicates ten most common families according to the Total Species Important Values for Families (TSIVF). It can be noted that the *Dipterocarpaceae* was dominant showing TSIVF of 84.24 or 28.08 % of the total and Basal Area of 21.57 m² or 53.18 % of the total (Table 2, Table 4 and Appendix 1). Table 4 reveals ten leading species indicating also the prominence of the dipterocarp species. Altogether 16 species of dipterocarps were recorded in the one hectare plot with the density of 122 and basal area of 18.99 m² (Table 2, Appendix 1). It is interesting to note that *Hopea nigra*, which was reported to occur only Bangka and Belitung (Ashton 1982) was relatively common here with density of 14 trees/ha and frequency of 44 % and was well represented in the sapling stage also (Table 7, 9).

Table 5. Ten leading tree species based on Importance Value (IV) in a one-hectare plot of a lowland forest at the Batang Gadis National Park.

No.	Species	IV
1	*Shorea gibbosa*	30.29
2	*Hopea beccariana*	12.84
3	*Santiria laevigata*	10.84
4	*Shorea acuminata*	8.44
5	*Shorea parvifolia*	8.12
6	*Artocarpus nitidus*	7.20
7	*Macaranga lowii*	6.70
8	*Hopea nigra*	5.89
9	*Dipterocarpus palembanicus*	5.55
10	*Santiria tomentosa*	5.45

Total 101.38 (33.79 %)

Table 6. Ten leading tree species according to the basal area (BA) in a one-hectare plot of a lowland forest at the Batang Gadis National Park.

No.	Species	BA (m²)
1	*Shorea gibbosa*	9.36
2	*Santiria laevigata*	2.89
3	*Hopea beccariana*	2.65
4	*Shorea parvifolia*	1.83
5	*Dipterocarpus palembanicus*	1.35
6	*Shorea acuminata*	1.13
7	*Artocarpus nitidus*	1.03
8	*Santiria tomentosa*	0.78
9	*Shorea* sp.	0.65
10	*Litsea* sp. 4	0.56

Total 22.22 (54.78 %)

In order to determine whether the 184 species recorded in the one-hectare plot represent the total number of species in the area studied, a species-area curve was constructed (Figure 2). The 25 subplots of 20x20 m each were examine to determine the number of additional species recorded each time a subplot was added. It shows that a considerable number of additional species was encountered more or less steadily up to one hectare and there was no indication of levelling off, which may be implied that a one-hectare plot does not represent a minimum area for this forest. This is comparable to situations in the tropical forest elsewhere in Borneo and the Malay Peninsula as reported by various authors (Kartawinata *et al.* 1981, Sist & Saridan 1999, Riswan 1982, Wyatt-Smith 1966, etc.).

Structure

The total basal area (BA) of 40.56 m² (Table 2, Appendix 1) represented that of 583 trees, thus giving a mean basal area/tree of 0.07 m². It should be noted that 18.99 m² or 46.82 % of this total was occupied by dipterocarps. Table 6 shows the basal areas of ten leading species that amounted to 22.22 m² or 54.78 % of the total. It is clear also that six of the species were dipterocarp and *Shorea gibbosa* was the most prominent species with the basal rea of 9.36 m². Table 7 shows ten leading species according to the tree density with total of 163 trees /ha or 27.96 % of the total density in the plot (583 trees/ha). Again here dipterocarps are the most prominent species.

Table 7. Ten leading species according to the density in one-hectare plot of a lowland forest at the Batang Gadis National Park

No.	Species	Density
1	*Shorea gibbosa*	122
2	*Hopea*	14
3	*Santiria tomentosa*	14
4	*Artocarpus*	14
5	*Macaranga*	14
6	*Santiria*	14
7	*Hopea*	14
8	*Shorea*	14
9	*Dipterocarpus*	14
10	*Shorea*	14

Total 163 (27.96 %)

The diameter class distribution of trees in one-hectare plot is presented in Figure 3, which shows more or less a typical size class graph of a tropical undisturbed primary forest. It reveals that...
78.6 % of the trees were less than 30 cm DBH (59.2 % in the 10-19.9 cm and 19.4 % in the 20-29.9 cm size class). Only 21.4 % occurred in the diameters greater than 30 cm. It is interesting to note that the trees with large DBH were mainly dipterocarps. Five species were recorded in the 70-80 size class with basal area of 2.53 m², comprising three non-dipterocarps [Cratoxylon arborescens, Mezettea parvifolia and Pouteria malaccensis] and two dipterocarps (Hopea beccariana and Shorea gibbosa), whose basal area was 1.25 m² or 50 % of the basal in the group. There were no trees with DBH of 80–89.9 cm. In the 90-99.9 cm DBH there were seven trees of five species comprising one non-dipterocarp (Santiria laevigata) with a basal area of 0.74 m² and three dipterocarps (Hopea beccariana, Shorea gibbosa and Shorea sp.) with the basal area of 4.8 m². The 100-160 cm DBH was entirely occupied by three trees of a single species of dipterocarp (Shorea gibbosa) with a basal area of 4.85 m².

Table 7. Ten leading species according to the density (D) of trees in a one-hectare plot of a lowland forest in the Batang Gadis National Park.

No.	Species	Density
1	Shorea gibbosa	24
2	Shorea acuminata	21
3	Hopea beccariana	20
4	Macaranga lowii	19
5	Shorea parvifolia	15
6	Hopea nigra	14
7	Artocarpus nitidus	14
8	Santiria laevigata	12
9	Lithocarpus lucidus	12
10	Aporusa antennifera	12
	Total	163 (27.96 %)

Figure 4 and Table 8 show the height class distribution and density of the trees with DBH of 10 cm and greater in the one-hectare plot. It is evident that the majority of the trees were mainly less than 30 m high, totalling 461 trees or 71.9 % of the total number of trees in the plot. Only 101 trees or 17.3 % were in the middle and upper canopy. Trees with height of 50-55 m were only three and all were a dipterocarp, Shorea gibbosa, which can be considered as the emergent. In the height class of 40-49.9 m, 28 trees were recorded, of which 17 trees or 60.7 % were dipterocarps. They were 16 species in this group and seven of them were dipterocarps (Dipterocarpus palembanicus, Hopea beccariana, Shorea acuminata, S. execlliptic, S. gibbosa, S. parvifolia and Fatica micranta), where again S. gibbosa was the most prominent. In the height group of 30-39.9, of 69 trees recorded only 25 trees or 36.2 % were dipterocarps. They consisted of 40 species, including eight species of dipterocarps (Anisoptera costat, D. palembanicus, H. beccariana, S. acuminata, S. gibbosa, S. parvifolia and two Shorea spp.). The 10-29.9 cm height class contained 461 trees including 72 trees dipterocarps. Species diversity was high in this height class, where 167 species were recorded,
trees and saplings which are described below. The stratum (E) or the ground canopy consisted mainly of shrubs, small trees and and shrubs and the most common species were Macaranga lowii, Santiria laevigata, S. tomentosa, Shorea acuminata, S. gibbosa and Swintonia glauca.

Figure 5 shows a simulated profile diagram constructed by plotting the data on tree heights and tree numbers reflecting the sequence of field recording positioned in a linear row. Based on this diagram, the forest canopy (sensu Whitmore 1984) may be stratified into five strata: (A) the emergent representing the uppermost layer (50-55 m), (B) upper canopy (30 – 50 m), (C) middle canopy (20-30 m), (D) lower canopy (10-20 m) and (E) ground canopy (0-10 m). The major species composition for strata (A) to (D) were described above. The stratum (E) or the ground canopy consisted mainly of shrubs, small trees and saplings which are described below.

Saplings

Only 82 species were regenerating as represented by their presence in the sapling stage ranging from 5 to 50 plants/hectare. Table 9 shows the species with good regeneration with densities of 25 – 120 saplings/hectare or more than 1 % of the total saplings in the plot, which was 2265. Macaranga lowii had the highest density of 120 saplings/hectare. It was regenerating well in the disturbed part occurring on one corner of the plot where a gap was at one time formed and now has developed into a building phase of the forest. In the tree stage it was represented by 19 trees/ha which occurred rather widespread as indicated by a frequency of 48 %. Other species of Macaranga were Macaranga gigantea, Macaranga hosei and Macaranga hypoleuca. Apparently they occurred in areas previously occupied by gaps. It should be noted that only five species of dipterocarps had a relatively good regeneration with densities of 25-65 saplings/hectare.

Table 9. Saplings of tree species with density of more than 1 % of the total saplings in the plot

No.	Species	Density (Plants/Ha)	Frequency (%)
1	Macaranga lowii	120	80
2	Syzygium cymosa	80	80
3	Gonystylus forbesii	80	80
4	Shorea sp. 1	65	80
5	Syzygium racemosum	55	80
6	Hopea beccariana	45	80
7	Syzygium confertum	45	80
8	Chionanthus nitens	45	80
9	Santiria laevigata	45	40
10	Shorea acuminata	45	60
11	Hopea nigra	45	80
12	Beilschmiedia madang	40	40
13	Drypetes longifolia	35	60
14	Vatica micrantha	35	60
15	Prunus grisea	30	80
16	Mallotus penangensis	30	60
17	Litsea resinosa	30	60
18	Santiria tomentosa	25	60
19	Syzygium sp. 2	25	60
20	Knema laurina	25	60

Ninety nine species of trees had no representation in the sapling stages, 11 dipterocarp species, i.e., Anisoptera costata, Dipterocarpus palembanicus, Shorea exceltippica, Shorea gibbosa, Shorea parvifolia, Shorea platyclados, three Shorea spp. Vatica mangachapoi and Vatica perakensis. There were 55 species were present entirely in the sapling stage (Appendix 2). These were mainly small trees and and shrubs and the most common with densities of 25-50 plants/ha were Ardisia sanguinolenta, Cinannomomum cuspidatum, Ixora pseudo-javanica, Saprosma arboresum, Saururu pendula and Urophyllum glabrum. Some main canopy trees were represented with low densities and frequencies, such as Dacryodes incurvata, Dialium indum, Podocarpus nerifolius and Lithocarpus spp.

ACKNOWLEDGEMENTS

We thank the Critical Ecosystems Partnership Fund for providing the financial support to undertake the study. Our gratitude goes also to the Government of the Mandailing-Natal District for various supports that made the study possible. Members of the biodiversity study team of Conservation International Indonesia have provided various information on the Batang Gadis National Park, for which we gratefully acknowledge their cooperation.
REFERENCES

ABDULHADI, R., 1991. A Meliaceae forest in Ketambe, G. Leuser National Park, Sumatera, Indonesia, with special reference to the status of Dipterocarp species. In SOERIANEGARA, I., TJIHROSOMO, S., UMALY, R.C. & I. UMBOH (eds.), Proceedings of the Fourth Round-Table Conference on Dipterocarps, Bogor, Indonesia, 12-15 December 1989. BIOTROP Special Publication No. 41: 307-315.

ABDULHADI, R., KARTAWINATA, K. & YUSUF, R. 1984. Pola hutan di Ketambe, Taman Nasional G. Leuser, Aceh. Hal. 207-214. Dalam: WIRJOATMODJO, S. (ed.) Laporan Teknik 1982-1983, LBN-LIPI, Bogor.

ABDULHADI, R., MIRMANTO, E. & KARTAWINATA, K. ABDULHADI, R. & PARTO-MIHARDJO, T. 1981. Struktur dan komposisi petak hutan Dipterocarpaceae di Ketambe, Taman Nasional G. Leuser, Aceh. Ekologi Indonesia 1: 29-36.

ABDULHADI, R., MIRMANTO, E. & YUSUF, R. 1989a. Struktur dan komposisi petak hutan Dipterocarpaceae di Ketambe, Taman Nasional G. Leuser, Aceh. Ekologi Indonesia 1: 29-36.

MANOKARAN, N. & SWAINE, M.D. 1994. Population dynamics of trees in dipterocarp forests of Peninsular Malaysia. Malaysian Forest Records No. 41, Forest Research Institute Malaysia, Kepong.

MORI, S.A.; BOOM, B.M.; de CAVALINO, A.M. & dos SANTOS, T.S. 1983. Ecological importance of Myrtaceae in Eastern Brazilian wet forest. Biotropica 15(1): 68-70.

MUELLER-DOMBOIS, D. & ELLENBERG, H. 1974. Aims and Methods of Vegetation Ecology. John Wiley & Sons, New York.

PERBATAKUSUMAH, E.A. 2004. Rona Bentang Alam Fisik Taman Nasional Batang Gadis Kabupaten Mandailing Natal. Unpublished.

POULSEN, A.D., NIELSEN, I.C., TAN, S. & BALSLEV, H. 1996. A quantitative inventory of trees in one hectare of mixed dipterocarp forest in Temburong, Brunei Darussalam. In EDWARDS, D.S., BOOTH, W.E. & CHoy, S.C. (eds.) Tropical Rain Forest Research – Current Issues. Dodrecht, The Netherlands, Kluwer Academic Press.

PROCTOR, J., ANDERSON, J.M., CHAI, P. & WALLACK, H.W. 1983. Ecological studies in four contrasting tropical lowland rain forests in Gunung Mulu National Park. I. Forest Environment, structure and floristics. Journal of Ecology 71: 237-260.

RISWAN, S., 1982. Ecological studies on primary, secondary and experimentally cleared mixed dipterocarp forest and kerangas forest in East Kalimantan, Indonesia. Ph.D. thesis, University of Aberdeen.

SIST, P. & SARIDAN, A. 1999. Stand structure and floristic composition of a primary lowland dipterocarp forest in East Kalimantan. Journal of Tropical Forest Science 11(4): 704-722.

STEENIS, C.G.GJ. VAN et al. (Eds.). 1948-2002. Flora Malesiana, I, 1-16. Noordhoff-Kolff, Noordhoff, Nijhoff, National Herbarium Nederland, etc., Netherlands.

SUKARDJO, S., HAGIHARA, A., YAMAKURA T. & OGAWA, H. 1990. Floristic composition of a riverine tropical rain forest in Indonesian Borneo. Bull. Nagoya Univ. For. No. 10:1-43.

SULISTIYOWATI, D. R. & PERBATAKUSU-MAH, E.A. 2004. Taman Nasional Batang Gadis: Upaya Melestarikan Hutan Bagi Anak Cucu. Peme-rintah Daerah Mandailing Natal, Panyabungan; Departemen Kehutanan, Jakarta & Conservation International Indonesia, Jakarta.

WHITMORE, T.C. 1984. Tropical Rain Forests of the Far East, 2nd Edition. Oxford University Press, Oxford.

WHITMORE, T.C. & TANTRA, I.G.M. (ed.) 1986. Tree flora of Indonesia: Check List for Sumatra. Forest Research and Development Center, Bogor.

WYATT-SMITH, J., 1966. Ecological studies on Malayan forests. I. Malayan Forestry Department Research Pamphlet 52. (cited by Whitmore 1984).
Appendix 1. Density (D = trees/ha), Relative Density (RD), Frequency (F=%), Relative Frequency (RF), Basal Area (BA = m²), Relative Basal Area (RBA) and Importance Value (IV) of species and families in a one-hectare plot of lowland forest at the Batang Gadis National Park, North Sumatra.

No.	Family and Species	D	RD	F	RF	BA	RBA	IV
1	1. Alangiaceae							
1	*Alangium javanicum*	1	0.17	4.00	0.21	0.008	0.02	0.40
	Family total		0.008					
2	2. Anacardiace							
2	*Buchanania sessilifolia*	2	0.34	4.00	0.41	0.066	0.16	0.92
3	*Mangifera cf. swintonioides*	1	0.17	4.00	0.21	0.029	0.07	0.45
4	*Mangifera laurina*	4	0.69	16.00	0.82	0.282	0.69	2.21
5	*Melanochyla caesia*	2	0.34	8.00	0.41	0.036	0.09	0.84
6	*Melanochyla bracteata*	1	0.17	4.00	0.21	0.034	0.08	0.46
7	*Swintonia glauca*	8	1.37	28.00	1.44	0.372	0.92	3.73
	Family total		18					
3	3. Annonaceae							
8	*Annonaceae*							
9	*Annonaceae (t. daun)*							
10	*Cyathocalyx biovulatus*	13	2.23	48.00	2.47	0.325	0.80	5.50
11	*Cyathocalyx sp.1*	1	0.17	4.00	0.21	0.040	0.10	0.48
12	*Melodorum kentii*	1	0.17	4.00	0.21	0.012	0.03	0.41
13	*Mezzetia parvifloraee.*	1	0.17	4.00	0.21	0.424	1.05	1.42
14	*Polyalthia cauliflora*	1	0.17	4.00	0.21	0.015	0.04	0.42
15	*Polyalthia lateriflora*	2	0.34	8.00	0.41	0.050	0.12	0.88
16	*Polyalthia sumatrana*	1	0.17	4.00	0.21	0.019	0.05	0.42
17	*Sageraea lanceolata*	1	0.17	4.00	0.21	0.033	0.08	0.46
18	*Xylopia malayana*	6	1.03	24.00	1.24	0.321	0.79	3.06
	Family total		28					
4	4. Arecaceae							
19	*Oncosperma horridum*	1	0.17	4.00	0.21	0.027	0.07	0.44
	Family total		1					
5	5. Asteraceae							
20	*Vernonia arborea*	1	0.17	4.00	0.21	0.010	0.03	0.40
	Family total		1					
6	6. Bombacaceae							
21	*Durio malaccensis*	2	0.34	8.00	0.41	0.062	0.15	0.91
22	*Durio oxleyanus*	1	0.17	4.00	0.21	0.017	0.04	0.42
23	*Durio zibethinus*	1	0.17	4.00	0.21	0.023	0.06	0.43
24	*Neesia alissima*	1	0.17	4.00	0.21	0.166	0.41	0.79
	Family total		5					
7	7. Burseraceae							
25	*Canarium littorale*	1	0.17	4.00	0.21	0.020	0.05	0.43
26	*Canarium patentinervium*	7	1.20	24.00	1.24	0.130	0.32	2.76
27	*Dacryodes laxa*	2	0.34	8.00	0.41	0.330	0.81	1.57
28	*Dacryodes rostrata*	5	0.86	20.00	1.03	0.142	0.35	2.24
29	*Dacryodes sp.1*	1	0.17	4.00	0.21	0.011	0.03	0.41
30	*Santiria apiculata*	1	0.17	4.00	0.21	0.020	0.05	0.43
31	*Santiria laevigata*	12	2.06	32.00	1.65	2.894	7.13	10.84
32	*Santiria tomentosa*	11	1.89	32.00	1.65	0.775	1.91	5.45
	Family total		40					

Note: D = Density (trees/ha), RD = Relative Density (%), F = Frequency (%), RF = Relative Frequency (%), BA = Basal Area (m²), RBA = Relative Basal Area (%), IV = Importance Value.
No.	Family and Species	D	RD	F	RF	BA	RBA	IV
8. Celastraceae								
33	Kokoona littoralis	4	0.69	16.00	0.82	0.157	0.39	1.90
	Family total	4	0.157	0.39	1.90			
9. Clusiaceae								
34	Calophyllum rigidum	1	0.17	4.00	0.21	0.024	0.06	0.44
35	Cratoxylon arborescens	4	0.69	16.00	0.82	0.556	1.37	2.88
36	Garcinia gauchichaudi	1	0.17	4.00	0.21	0.011	0.03	0.41
37	Garcinia havilandii	1	0.17	4.00	0.21	0.030	0.07	0.45
38	Garcinia parvifolia	1	0.17	4.00	0.21	0.018	0.04	0.42
39	Garcinia sp. 1	1	0.17	4.00	0.21	0.010	0.02	0.40
40	Mesua coriacea	5	0.86	20.00	1.03	0.152	0.37	2.26
41	Mesua fereea	1	0.17	4.00	0.21	0.102	0.25	0.63
	Family total	15	0.903	7.89				
10. Cornaceae								
42	Mastixia trichotoma	5	0.86	20.00	1.03	0.178	0.44	2.33
	Family total	5	0.178	2.33				
11. Dipterocarpaceae								
43	Anisoptera costata	1	0.17	4.00	0.21	0.274	0.67	1.05
44	Dipterocarpus palembanicus	7	1.20	20.00	1.03	1.347	3.32	5.55
45	Hopea beccariana	20	3.43	56.00	2.89	2.647	6.53	12.84
46	Hopea nigra	14	2.40	44.00	2.27	0.496	1.22	5.89
47	Shorea acuminata	21	3.60	40.00	2.06	1.126	2.78	8.44
48	Shorea exelliptica	1	0.17	4.00	0.21	0.072	0.18	0.55
49	Shorea gibbosa	24	4.12	60.00	3.09	9.361	23.08	30.29
50	Shorea parvifolia	15	2.57	20.00	1.03	1.832	4.52	8.12
51	Shorea platyclados	1	0.17	4.00	0.21	0.035	0.09	0.46
52	Shorea sp.	1	0.17	4.00	0.21	0.651	1.60	1.98
53	Shorea sp. 1	2	0.34	8.00	0.41	0.243	0.60	1.35
54	Shorea sp. 2	4	0.69	16.00	0.82	0.081	0.20	1.71
55	Shorea sp.3	1	0.17	4.00	0.21	0.246	0.61	0.99
56	Vatica mangachapoi	2	0.34	8.00	0.41	0.028	0.07	0.83
57	Vatica micrantha	6	1.03	20.00	1.03	0.482	1.19	3.25
58	Vatica perakensis	2	0.34	8.00	0.41	0.070	0.17	0.93
	Family total	122	18.991	84.24				
12. Ebenaceae								
59	Diospyros pseudo-malabarica	1	0.17	4.00	0.21	0.009	0.02	0.40
60	Diospyros sp. 1	1	0.17	4.00	0.21	0.010	0.03	0.40
61	Diospyros sp. 2	2	0.34	8.00	0.41	0.017	0.04	0.80
62	Diospyros sumatranae.	1	0.17	4.00	0.21	0.010	0.03	0.40
	Family total	5	0.046	2.00				
13. Elaeocarpaceae								
63	Elaeocarpus mastersii	1	0.17	4.00	0.21	0.086	0.21	0.59
64	Elaeocarpus parvifolius	1	0.17	4.00	0.21	0.043	0.11	0.48
	Family total	2	0.129	1.07				
14. Euphorbiaceae								
65	Aporusa antennifera	12	2.06	40.00	2.06	0.220	0.54	4.66
66	Aporusa falcifera	3	0.51	8.00	0.41	0.111	0.27	1.20
67	Aporusa grandistipula	2	0.34	8.00	0.41	0.023	0.06	0.81
No.	Family and Species	D	RD	F	RF	BA	RBA	IV
-----	--------------------	----	------	------	------	------	------	------
68	Aporusa maingayi	1	0.17	4.00	0.21	0.013	0.03	0.41
69	Aporusa symplocoides	1	0.17	4.00	0.21	0.010	0.02	0.40
70	Baccaurea brevipes	1	0.17	4.00	0.21	0.024	0.03	0.44
71	Baccaurea dulcis	1	0.17	4.00	0.21	0.075	0.18	0.56
72	Baccaurea multiflora	3	0.51	8.00	0.41	0.065	0.16	1.09
73	Blumeodendron tokbrai	4	0.69	12.00	0.62	0.184	0.45	1.76
74	Drypetes longifolia	3	0.51	12.00	0.62	0.035	0.09	1.22
75	Macaranga gigantea	3	0.51	8.00	0.41	0.125	0.31	1.24
76	Macaranga hosei	1	0.17	4.00	0.21	0.126	0.31	0.69
77	Macaranga hypoleuca	4	0.69	12.00	0.62	0.232	0.57	1.88
78	Macaranga lowii	19	3.26	48.00	2.47	0.393	0.97	6.70
79	Mallotus penangensis	9	1.54	36.00	1.86	0.222	0.55	3.95
80	Neoscortechinia kingii	2	0.34	8.00	0.41	0.038	0.09	0.85
81	Pimeleodendron griffithianum	5	0.86	20.00	1.03	0.132	0.33	2.21
82	Ptychophyxis kingii	1	0.17	4.00	0.21	0.057	0.14	0.52
83	Sapium baccatum	2	0.34	8.00	0.41	0.260	0.64	1.40
	Family total	77						
			2.343					31.97
15.	Fabaceae							
84	Archidendon sp. 1	1	0.17	4.00	0.21	0.012	0.03	0.41
85	Archidendron bubalinum	2	0.34	8.00	0.41	0.066	0.16	0.92
86	Fabaceae	2	0.34	4.00	0.21	0.028	0.07	0.62
87	Koompassia malaccensis	9	1.54	28.00	1.44	0.517	1.27	4.26
88	Ormosia sumatrana	1	0.17	4.00	0.21	0.008	0.02	0.40
89	Parkia speciosa	1	0.17	4.00	0.21	0.049	0.12	0.50
	Family total	16				0.680		7.10
16.	Fagaceae							
90	Castanopsis sp. 1	3	0.51	8.00	0.41	0.094	0.23	1.16
91	Castanopsis sp. 2	1	0.17	4.00	0.21	0.045	0.11	0.49
92	Lithocarpus bennetii	1	0.17	4.00	0.21	0.018	0.04	0.42
93	Lithocarpus cyclophorus	1	0.17	4.00	0.21	0.163	0.40	0.78
94	Lithocarpus elegans	1	0.17	4.00	0.21	0.017	0.04	0.42
95	Lithocarpus hystrix	2	0.34	8.00	0.41	0.045	0.11	0.87
96	Lithocarpus lucidus	12	2.06	36.00	1.86	0.268	0.66	4.57
97	Lithocarpus sp. 1	1	0.17	4.00	0.21	0.035	0.09	0.46
98	Quercus argentina	4	0.69	12.00	0.62	0.239	0.59	1.89
99	Quercus gemelliflora	1	0.17	4.00	0.21	0.284	0.70	1.08
100	Quercus subericea	2	0.34	8.00	0.41	0.333	0.82	1.58
	Family total	29			1.540		13.72	
17.	Flacourtiaceae							
101	Ryparosa caesia	4	0.69	16.00	0.82	0.185	0.46	1.97
	Family total	4			0.185		1.97	
18.	Icacinaceae							
102	Platea excelsa	1	0.17	4.00	0.21	0.042	0.10	0.48
	Family total	1			0.042		0.48	
19.	Lauraceae							
103	Alseodaphne peduncularis	1	0.17	4.00	0.21	0.011	0.03	0.41
104	Beilschmiedia dictyoneura	1	0.17	4.00	0.21	0.027	0.07	0.44
No.	Family and Species	D	RD	F	RF	BA	RBA	IV
-----	---------------------------	----	----	----	----	-----	-----	-----
105	Beilschmiedia madang	2	0.34	4.00	0.21	0.104	0.26	0.81
106	Cryptocarya ferrea	1	0.17	4.00	0.21	0.010	0.02	0.40
107	Cryptocarya sp. 1	2	0.34	4.00	0.21	0.036	0.09	0.64
108	Litsea firma	1	0.17	4.00	0.21	0.088	0.22	0.60
109	Litsea odorifera	5	0.86	16.00	0.82	0.334	0.82	2.51
110	Litsea resinosa	2	0.34	4.00	0.21	0.021	0.05	0.60
111	Litsea sp.	1	0.17	4.00	0.21	0.008	0.02	0.40
112	Litsea sp. 1	1	0.17	4.00	0.21	0.088	0.22	0.60
113	Litsea sp. 2	1	0.17	4.00	0.21	0.020	0.05	0.43
114	Litsea sp. 3	2	0.34	8.00	0.41	0.216	0.53	1.29
115	Litsea sp. 4	3	0.51	12.00	0.62	0.559	1.38	2.51
	Family total	23	1.523	11.62				
20	Melastomataceae							
116	Memecylon oligoneurum	2	0.34	8.00	0.41	0.093	0.23	0.99
117	Pterandra cordata	1	0.17	4.00	0.21	0.008	0.02	0.40
118	Pterandra rostrata	3	0.51	12.00	0.62	0.034	0.08	1.22
119	Pterandra sp. 1	1	0.17	4.00	0.21	0.009	0.02	0.40
	Family total	7	0.144	3.00				
21	Meliaceae							
120	Aglaia ganggo	1	0.17	4.00	0.21	0.038	0.09	0.47
121	Aglaia odoratissima	1	0.17	4.00	0.21	0.038	0.09	0.47
122	Aglaia sp. 1	1	0.17	4.00	0.21	0.008	0.02	0.40
123	Chisocheton patens	1	0.17	4.00	0.21	0.017	0.04	0.42
124	Dysoxylum cauliflorum	9	1.54	28.00	1.44	0.178	0.44	3.43
125	Dysoxylum sp.	1	0.17	4.00	0.21	0.011	0.03	0.41
126	Sandoricum koetjape	1	0.17	4.00	0.21	0.035	0.09	0.46
	Family total	15	0.325	6.05				
22	Moraceae							
127	Artocarpus kemando	2	0.34	4.00	0.21	0.067	0.17	0.71
128	Artocarpus nitida	14	2.40	44.00	2.27	1.025	2.53	7.20
129	Ficus drupacea	2	0.34	8.00	0.41	0.172	0.43	1.18
	Family total	18	1.265	9.09				
23	Myristicaceae							
130	Horsfieldia polyspherula	9	1.54	36.00	1.86	0.354	0.87	4.27
131	Knema cinerea	9	1.54	28.00	1.44	0.135	0.33	3.32
132	Knema latericia	2	0.34	8.00	0.41	0.041	0.10	0.86
133	Knema laurina	1	0.17	4.00	0.21	0.010	0.03	0.40
134	Myristica iners	2	0.34	8.00	0.41	0.048	0.12	0.87
	Family total	23	0.588	9.73				
24	Myrsinaceae							
135	Embelia sp. 1	1	0.17	4.00	0.21	0.017	0.04	0.42
	Family total	1	0.017	0.42				
25	Myrtaceae							
136	Syzygium acuminatum	3	0.51	12.00	0.62	0.133	0.33	1.46
137	Syzygium antiseppticum	5	0.86	16.00	0.82	0.227	0.56	2.24
138	Syzygium chloranthum	3	0.51	8.00	0.41	0.197	0.49	1.41
139	Syzygium confertum	5	0.86	12.00	0.62	0.062	0.15	1.63
140	Syzygium cymosum	2	0.34	8.00	0.41	0.067	0.17	0.92
No.	Family and Species	D	RD	F	RF	BA	RBA	IV
-----	------------------------------	----	-----	----	-----	-----	-----	----
141	*Syzygium fastigiatum*	2	0.34	8.00	0.41	0.041	0.10	0.86
142	*Syzygium flosculifera*	3	0.51	12.00	0.62	0.037	0.09	1.22
143	*Syzygium griffithii*	1	0.17	4.00	0.21	0.036	0.09	0.47
144	*Syzygium racemosum*	4	0.69	16.00	0.82	0.090	0.22	1.73
145	*Syzygium sp. 1*	1	0.17	4.00	0.21	0.048	0.12	0.50
146	*Syzygium sp. 2*	1	0.17	4.00	0.21	0.026	0.06	0.44
147	*Syzygium sp. 3*	1	0.17	4.00	0.21	0.283	0.70	1.08
148	*Syzygium sp. 4*	1	0.17	4.00	0.21	0.059	0.15	0.52
149	*Syzygium sp. 5*	1	0.17	4.00	0.21	0.011	0.03	0.41
150	*Tristaniopsis whiteana*	1	0.17	4.00	0.21	0.071	0.17	0.55
	Family total	754				58.593	397.09	
26	Olacaceae							
151	*Strombosis ceylanica*	3	0.51	12.00	0.62	0.031	0.08	1.21
	Family total	3				0.031	1.21	
27	Oleaceae							
152	*Chionanthus nitens*	5	0.86	20.00	1.03	0.058	0.14	2.03
	Family total	5				0.058	2.03	
28	Polygalaceae							
153	*Xanthophyllum rufum*	7	1.20	24.00	1.24	0.291	0.72	3.15
	Family total	7				0.291	3.15	
29	Proteaceae							
154	*Helicia serrata*	1	0.17	4.00	0.21	0.012	0.03	0.41
	Family total	1				0.012	0.41	
30	Rosaceae							
155	*Atuna racemosa*	2	0.34	8.00	0.41	0.077	0.19	0.95
156	*Prunus arboarea*	1	0.17	4.00	0.21	0.064	0.16	0.54
157	*Prunus grisea*	1	0.17	4.00	0.21	0.013	0.03	0.41
	Family total	4				0.154	1.89	
31	Rubiaceae							
158	*Aidia racemosa*	1	0.17	4.00	0.21	0.009	0.02	0.40
159	*Canthium glabrum*	1	0.17	4.00	0.21	0.009	0.02	0.40
160	*Tricalysia singularis*	2	0.34	8.00	0.41	0.022	0.06	0.81
	Family total	4				0.040	1.61	
32	Santalaceae							
161	*Scleropyrum wallichianum*	1	0.17	4.00	0.21	0.010	0.02	0.40
	Family total	1				0.010	0.40	
33	Sapindaceae							
162	*Nephelium chrysemum*	6	1.03	24.00	1.24	0.135	0.33	2.60
163	*Nephelium cuspidatum*	2	0.34	8.00	0.41	0.043	0.11	0.86
164	*Nephelium lappaceum*	1	0.17	4.00	0.21	0.022	0.05	0.43
165	*Xerospermum laevigatum*	1	0.17	4.00	0.21	0.011	0.03	0.41
	Family total	10				0.211	4.30	
34	Sapotaceae							
166	*Palaquium gutta*	2	0.34	8.00	0.41	0.044	0.11	0.86
167	*Palaquium hexandrum*	7	1.20	24.00	1.24	0.237	0.58	3.02
168	*Palaquium quercifolium*	1	0.17	4.00	0.21	0.091	0.22	0.60
169	*Palaquium rostratum*	1	0.17	4.00	0.21	0.302	0.74	1.12
No.	Family and Species	D	RD	F	RF	BA	RBA	IV
-----	----------------------------	----	-----	-----	-----	-----	-----	-----
170	Payena leerii	8	1.37	24.00	1.24	0.427	1.05	3.66
171	Planchonella nitida	1	0.17	4.00	0.21	0.012	0.03	0.41
172	Pouteria malaccensis	2	0.34	8.00	0.41	0.438	1.08	1.83
	Family total	22				1.550		11.51
	35. Sterculiaceae							
173	Heritiera sumatrana	3	0.51	12.00	0.62	0.081	0.20	1.33
174	Sterculia arceolata	1	0.17	4.00	0.21	0.012	0.03	0.41
	Family total	4				0.093		1.74
	36. Stryraceae							
175	Stryx paralleneurus	6	1.03	16.00	0.82	0.393	0.97	2.82
	Family total	6				0.393		2.82
	37. Symplolocaceae							
176	Symlocos sp. 1	1	0.17	4.00	0.21	0.020	0.05	0.43
	Family total	1				0.020		0.43
	38. Theaceae							
177	Gordonia singaporoiana	3	0.51	12.00	0.62	0.028	0.07	1.20
178	Pyrrenaria serrata	3	0.51	8.00	0.41	0.200	0.49	1.42
179	Thea sp. 1	2	0.34	8.00	0.41	0.032	0.08	0.83
	Family total	8				0.260		3.46
	39. Thymelaeaceae							
180	Aquilaria malaccensis	1	0.17	4.00	0.21	0.013	0.03	0.41
182	Gonystylus forbesii	7	1.20	24.00	1.24	0.102	0.25	2.69
	Family total	8				0.114		3.10
	40. Verbenaceae							
183	Vitex quinata	1	0.17	4.00	0.21	0.013	0.03	0.41
	Family total	1				0.013		0.41
	41. Unidentified family							
184	Unidentified	2	0.34	2.00	0.41	0.093	0.23	0.98
	Family total	2				0.093		0.98
	TOTAL	583	100.0	1,930.00	100.0	40.56	100.0	300.0

Note: The followings are the list of species of shrubs, small trees and saplings which are not listed above.

- **Actinidiaceae**: Saurania pendula; **Anacardiaceae**: Buchanania sessilifolia; **Annonaceae**: Unidentified; Polyalthia sp.1, Polyalthia sp. 2; Polyalthia subcordata, Popowia pisocarpa, Sageraeea elliptica; **Apocynaceae**: Alstonia angustiloba; **Arecaceae**: Pinanga sp.; **Burseraceae**: Dacryodes incurvata; **Clusiaceae**: Calophyllum sp., Mesua sp.; **Convolvulaceae**: Erycibe sp.; **Crypteroniaceae**: Crypteronia sp.; **Ebenaceae**: Diospyros frutescens; **Euphorbiaceae**: Aporusa cf. prauniana, Baccaurea javanica, Baccaurea miniatiflora, Glocidion sp., Mallotus macrostachys, Saururus rhamnoides, Trigonostemon serratus; **Fabaceae**: Dialium indum; **Fagaceae**: Lithocarpus sp. 1, Lithocarpus sp. 2; **Lauraceae**: Actinodaphne sp., Cinnamomum caudatum, Linderia caesia, Litsea lanceolata., Litsea oppositifolia, Litsea pedunculata; **Melastomataceae**: Piernandra azurea; **Meliaceae**: Aglaia palembanica, Aglaia sp., Lansium domesticum, Reinwardtiodendron humile; **Moraceae**: Ficus sp., Ficus uncinulata; **Myrsinaceae**: Ardisia nagelii, Ardisia sanguinolenta; **Myrtaceae**: Rhodamnia cinerea, Syzygium spicatum; **Podocarpaceae**: Podocarpus nerifolius; **Polygalaceae**: Xanthophyllum affine; **Rubiaceae**: Canthium glabrum, Ixora pseudovirginalis, Lasianthus stipularis, Saprosma arboreum, Unidentified, Urophylum glabrum; **Rutaceae**: Euodia glabra; **Theaceae**: Ternstroemia sp., Adinandra dasyantha; **Tiliaceae**: Microcos crassifolia.
INSTRUCTION TO AUTHORS

Manuscripts intended for publication in *Reinwardtia* should be written either in English, French or German, and represent articles which have not been published in any other journal or proceedings. Each manuscript received will be considered and processed further if it is accompanied by signed statements given independently by two reviewers chosen by the author(s) attesting to its merits as well as its scientific suitability for publication in *Reinwardtia*.

Two printed copies (on A4 paper) of the manuscript of not more than 200 pages should be sent to Editors, together with an electronic copy prepared on Word Processor computer programme using Times New Romance letter type and saved as Rich Text File must be submitted.

For the style of presentation authors should follow the latest issue of *Reinwardtia* very closely. Title of the article should be followed by author's name and mailing address and a one-paragraphed abstract in English (with French or German abstract for papers in French or German) of not more than 250 words. Keywords should be given below each abstract. On a separate paper author(s) should prepare the preferred running title of the article submitted.

Taxonomic keys should be prepared using the aligned-couplet type.

Strict adherence to the *International Code of Botanical Nomenclature* is observed, so that taxonomic and nomenclatural novelties should be clearly shown, Latin description for new taxon proposed should be provided, and the herbaria where type specimens are deposited should be indicated. Synonyms should be presented in the long form [name of taxon, author's name, year of publication, abbreviated journal or book title, volume (number): [page].

Maps, line drawing illustrations or photographs preferably should be prepared in landscape presentation to occupy two columns. Illustrations must be submitted as original art accompanying, but separate from, the manuscripts. On electronic copy, the illustrations should be saved in jpg or .gif format. Legends for illustrations must be submitted separately at the end of the manuscript.

Bibliography, list of literature cited or references follow the Harvard System.

For each paper published author(s) will receive 25 copies of reprints free of charge. Any additional copies should be ordered in advance and the author(s) will be charged accordingly.
CONTENTS

Page

W.J.J.O. DE WILDE & BRIGITTA E.E. DUYFJES. Kedrostis Medik. (Cucurbitaceae) in Asia...129

J.F. VELDKAMP. Miscellaneous notes on mainly Southeast Asian Gramineae.............135

PITRA AKHRIADI, HERNAWATI AND RUSJDITAMIN. A new species of Nepenthes (Nepenthaceae) from Sumatra...141

KUSWATA KARTAWINATA, ISMAYADI SAMSOEDIN, M. HERIYANTO AND J.J. AFRIASTINI. A tree species inventory in a one-hectare plot at the Batang Gadis National Park, North Sumatra, Indonesia ..145

E.A.P. ISKANDAR & J.F. VELDKAMP. A revision of Malesian Isachne sect. Isachne (Gramineae, Panicoideae, Is.ach.neae)...159

JOHANIS P. MOGEA. Four new species of Arenga (Palmae) from Indonesia.............181

J.F. VELDKAMP. The correct name for Pyrrosia hastata Ching (Polypodiaceae, Pteridophyta)...191

TRI MULYANINGSIH & COLIN ERNEST RIDSDALE. An additional species of Villaria Rolfe (Rubiaeae') from The Philippines...195

ELIZABETH A. WIDJAJA, INGGIT PUDJI ASTUTI & IDA BAGUS KETUT ARINASA. New species of bamboos (Poaceae-Bambusoideae) from Bali..................199

HERBARIUM BOGORIENSE
BIDANG BOTANI
PUSAT PENELITIAN BIOLOGI - LIPI
BOGOR, INDONESIA