Abstract. Lightweight steel concrete structures (LSCS) - an innovative building structure type that can be used both as load-bearing and as enclosing one. They consist of profiled steel - usually galvanized and cold-bent - filled with a monolithic foam concrete with a 200kg/m³ density, and with fiber cement sheets sheathing. These structures can be used in industrial and civil buildings as internal and external bearing and enclosing wall structures, and as slabs. According to the LSCS production method, prefabricated panels (walls and slabs) and building site performed constructions are distinguished. The article presents the LSCS subspecies, representing slabs panels made of galvanized profiled steel, density medium grade D400 monolithic foam concrete and sheets "Steklotsem" sheathing, bearing capacity experimental studies results. The paper confirms that such panels can be used in civil buildings and withstand the appropriate load, regulated by the current codes and rules. Moreover, it has been experimentally proved that the foam concrete, despite its own extremely low strength class, actually includes in the operation, preventing such effects as stability local loss, crushing and profile steel elements cross-section warping and increases the slabs overall load capacity by 20-25%.

1 Introduction

In the 21st century, much attention is paid to the construction industry development, including building materials and structures.

One of these areas are metal constructions. With the innovative technologies advent and the metallurgy development, they are becoming increasingly popular in the construction process.

The use of lightweight steel thin-walled structures is becoming increasingly popular due to a number of advantages of this structure, namely low metal consumption, availability of manufacturing and transportation, high manufacturability, speed of construction, and consequently, lower costs for the facility construction.

LSTS is widely used abroad, and now they are on the Russian market [1].

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).
Nowadays, much attention is paid to the energy efficiency issue, as well as to ensuring the fire resistance and fire preservation of structures.

The article [2] shows that the most efficient, from the point of view of energy saving, are buildings built via LSTS frame technology. In [3-5], the behavior of the reinforced concrete slab during fire exposure was considered, and fire resistance calculations were described.

What are the classic structures can be replaced by steel and steel-concrete? The roof system montage via LSTS is an alternative variant of wooden truss structures [6]. In low-story and modular construction may be applied walls made of steel, sheathed with drywall [7].

But the combination of LSTS with foam concrete is the most popular [8], which may be applied both as enclosing walls [9] and as a floor construction [10]. The work of this technology, the physic-mechanical characteristics, and the behavior of steel elements are described more detailed in [11-14].

The articles [15-19] describe the experience of using foam concrete in the floors and walls construction, and indicate possible methods for strengthening the structure to achieve sufficient strength.

In order for the building structure to be durable, it is necessary to comply with the temperature and moisture conditions [20-22], especially as concerns cellular concrete, which is foam concrete. In the articles [23-24], the consequences of the violation of the specified regime are described on the example of another cellular concrete - aerated concrete.

The effect of temperature loss in the enclosing structures linear elements is presented in article [25]. In [26], the joint work of LSTS and polystyrene concrete as a heater is considered; it is shown that this materials combination is able to minimize heat loss of the building envelope.

The lightweight steel thin-walled structures (LSTS) use in Russia is hampered by the absence of an appropriate regulatory framework. The existing regulatory documents cannot be applied, because they do not take into account the local stability in the early stages of loading loss possibility factor of LSTS [27].

As in any building materials and structures, for example, in concrete with synthetic fiber reinforcement [28], when designing buildings and structures using light steel gauge structures, it is quite important to not forget about its strength characteristics.

In [29], a scheme of tests for “pure” bending, created by applying two concentrated forces equidistant from the supports, was used. This scheme is convenient from the point of view of the stress-strain state; however, it does not reflect the operation of the structures under the actual application of loads on the floor. Numerical studies of the stress-strain state beam structures with external sheet reinforcement are presented in [30].

The steel pipes filled with concrete local stability analysis, as one of the reinforced concrete structures types, is considered in article [31]. For the steel thin-walled structures calculation, the CFSteel program, which operates both in Russian and European standards, can be applied [32].

The opportunities of cold-bent notched c-shaped profile members application are considered in [33]. Initial in-plane rotational stiffness of welded RHS T-joints with axial force in main member are presented in [34].

The work's aim is to identify the nature of the work and insulating non-autoclaved monolithic foam fiber concrete with a 400 kg/m³ bulk density, profile steel with fibrous cement cladding, slabs structures samples bearing capacity assessment.

Tasks of the research:
1) The research of slab three identical samples to the bearing capacity loss.
2) One of the samples, when bringing it to complete destruction, work nature research.

2 Test methods and main results

During the research, 5 series of 4 foam concrete cubes samples with various additives were considered.

The identical samples’ amount is 3pcs.

The samples’ geometrical dimensions are presented in Appendix 1 and correspond to Fig. 1. Overall dimensions are 800x4000 (mm).

The support and the loading are shown in Fig. 2.

![Fig. 1. The samples’ general view](image1)

![Fig. 2. The samples’ support and load.](image2)

The support is free, on special hinge supports, as a result of which the tested panels’ free span turned out to be \(L = 3.85 \) m

Loading - via 3 jacks, each of which is attached from above to a rigid metal own transverse traverse fixed to the force floor via two racks. From below, jacks rest against an additional metal element or directly into the steel conditionally non-deformable channel shape longitudinal traverse. The longitudinal traverse transmits forces through distribution metal elements to concrete prisms with a section of 150x150 mm and a length of 800 mm, which coincides with the panel’s width. These concrete prisms (6 pieces) imitate a concentrated load on the test panel. Between the panel and the concrete prisms, wooden gaskets are laid over the entire contact surface of the prisms and the panel.

Every jack is connected to the same source, in which the external load is specified and its constant value is maintained in all three jacks.

Thus, the accepted loading scheme 6 with concentrated forces can, as is known from the structural mechanics laws, be considered conditionally loaded with a uniformly distributed load, the constancy of which does not depend on the tested samples deformed axis.

To determine the each sample individual points’ deflection two deflectometers were installed.

Three samples were investigated.
1) **Sample 1**

The test results are presented in Table 1 and Fig. 3-4.

Table 1. *Slab panel’s test results (sample 1)*

Load, kgf	Deflectometers testimony, mm*10^{-2}	Deflections, mm	Slab deflection, mm		
	1	2	1	2	
0	7254	10393	0	0	0
100	7388	10507	1.34	1.14	1.24
200	7504	10620	2.5	2.27	2.385
300	7677	10755	4.23	3.62	3.925
400	7855	10931	6.01	5.38	5.695
500	8049	11111	7.95	7.18	7.565
600	8220	11302	9.66	9.09	9.375
700	8445	11500	11.91	11.07	11.49
800	8670	11768	14.16	13.75	13.955
900	8972	12053	17.18	16.6	16.89
1000	9220	12340	19.66	19.47	19.565
1100	9597	12670	23.43	22.77	23.1
1200	10020	13070	27.66	26.77	27.215
1300	10500	13700	32.46	33.07	32.765

Fig. 3. Samples 1 loading diagram (sensor 1 and sensor 2)
The deflections curve in the panel's middle (sample 1)

The maximum load was 1.3 tf per 1 jack with a 33mm deflection, which corresponds to 422kgf/m2. The weight of the transfer equipment and the initial deflection of the panel's own weight were not taken into account.

Further loading was not made, since when trying to maintain a constant effort in the jacks, an increase in displacements occurred, which indicated the exhaustion of the bearing capacity.

2) Sample 2

The test results are presented in Table 2 and Fig. 5-6:

Load, kgf	Deflectometers testimony, mm*10^-2	Deflections, mm	Slab deflection, mm			
	1	2	1	2		
0	9218	12422	0	0	0	0
100	9366	12303	1.48	1.19	1.335	
200	9482	12194	2.64	2.28	2.46	
300	9635	12051	4.17	3.71	3.94	
400	9899	11886	6.81	5.36	6.085	
500	10075	11722	8.57	7	7.785	
600	10139	11715	9.21	7.07	8.14	
700	10295	11715	10.77	7.07	8.92	
800	10454	11666	12.36	7.56	9.96	
900	10625	11480	14.07	9.42	11.745	
1000	10800	11300	15.82	11.22	13.52	
1100	11005	11110	17.87	13.12	15.495	
1200	11200	10910	19.82	15.12	17.47	
1300	11415	10680	21.97	17.42	19.695	
1400	11680	10430	24.62	19.92	22.27	
1500	11969	10145	27.51	22.77	25.14	
1600	12278	9848	30.6	25.74	28.17	
1700	12633	9442	34.15	29.8	31.975	
1800	13183	9030	39.65	33.92	36.785	
The maximum load was 1.8 tf per 1 jack with a 37mm deflection, which corresponds to 584 kgf/m². The weight of the transfer equipment and the initial deflection of the panel's own weight were not taken into account.

Further loading was not made, since try to maintain a constant effort in the jacks, an increase in displacements occurred, which indicated the exhaustion of the bearing capacity.

3) Sample 3

The test results are presented in Table 3 and Fig. 7-8:
Table 3. Slab panel’s test results (sample 3)

Load, kgf	Deflectometers testimony, mm*10^{-2}	Deflections, mm	Slab deflection, mm		
	1	2	1	2	
0	1706	11065	0	0	0
100	1862	10906	1.56	1.59	1.575
200	2054	10721	3.48	3.44	3.46
300	2251	10517	5.45	5.48	5.465
400	2448	10320	7.42	7.45	7.435
500	2684	10094	9.78	9.71	9.745
600	2918	9854	12.12	12.11	12.115
700	3161	9632	14.55	14.33	14.44
800	3410	9330	17.04	17.35	17.195
900	3742	9042	20.36	20.23	20.295
1000	4065	8687	23.59	23.78	23.685
1100	4581	8240	28.75	28.25	28.5
1200	5369	7424	36.63	36.41	36.52
1300	5733	7063	40.27	40.02	40.145

Fig. 7. Sample 3 loading diagram (sensor 1 and sensor 2)

The maximum load was 1.1 tf per 1 jack with a 40mm deflection, which corresponds to 357 kgf/m2. The weight of the transfer equipment and the initial deflection of the panel's own weight were not taken into account.
3 The results' reliability

Sample 3 was subjected to a complete destruction by efforts maintaining in the jacks, accompanied by an increase in displacements and, at the same time, a decrease in the magnitude of the efforts in the jacks. In the destruction course, the various sizes cracks presence in foam concrete, facing panels “Steklotsem” local cracking is noted. The final loss of bearing capacity is caused by the profile steel destruction (Fig. 9) - the achievement of the tensile strength in the stretched fibers and the local loss of stability in the upper edges of the compressed zone.

The dangerous section location is the left bar under the central jack (the third (out of five) in a row from left to right "concentrated" force) – Fig.10:

This circumstance is due to the fact that the maximum bending moment (“pure” bending) occurs within the space between the bars of the central jack with a transverse force equal to zero. In addition, the two most "dangerous" sections are the sections under the central jack bars, in which a transverse force already occurs, equal to a half the force in the jack. In one of these sections the destruction appeared.

Conclusion

1. The research has shown that the maximum load on the slab varies from 1.1 tf to 1.8 tf per jack, which corresponds to the slabs’ bearing capacity 357 ... 484 kgf / m²
2. The ultimate load value corresponds to a certain range of deflection values - 33 ... 40 mm, which indicates a possible difference in the stiffness samples’ values (most likely due to different characteristics of foam concrete - humidity, density, etc.), which indirectly indicates the capture of foam concrete on the part of the stress.
3. The panels’ final destruction occurs on the profile steel.
4. In general, the experiment showed that foam concrete, despite its low strength properties, has a positive effect on the operation of the panels (participation in the redistribution of stresses, partial or complete prevention of local stress effects in the profile steel, such as stability local loss, warping, crushing etc.). In this connection, it is recommended to develop a method for slab panels calculating, in which it is necessary to quantitatively take into account the effect of foam concrete on panels’ stress-strain state, for which additional research is advisable.

References

1. D.O. Sovetnikov, N.V. Videnkov, D.A. Trubina, Constr. Un. Build. Struct., 3(30), 152-165 (2015)
2. A.V. Orlova, E.N. Zhmarin, K.O. Paramonov, Constr. Un. Build. Struct., 6(11), 1-13 (2013)
3. V.A. Rybakov, I.A. Ananeva, A.O. Rodicheva, O.T. Ogidan, Mag. Civ. Eng., 6(74), 161-174 (2017)
4. A.V. Bushmanova, D.K. Kharchenko, K.S. Semenov, Yu.G. Barabanshchikov, V.K. Korovina, A.V. Dernakova, Mag. Civ. Eng., 3(79), 45-53 (2018)
5. E. Nedviga, N. Beresneva, M. Gravit, A. Blagodatskaya, Adv. Int. Syst. Comp., 692, 739–749 (2018)
6. V.A. Rybakov, M. Al Ali, A.P. Panteleev, K.A. Fedotova, A.V. Smirnov, Mag. Civ. Eng., 8(76), 28–39 (2017)
7. A.D. Ariyanayagam, M. Mahendran, Thin-Wall. Struct., 130, 487–504 (2018)
8. M.K. Bronzova, N.I. Vatin, M.R. Garifullin, Constr. Un. Build. Struct., 1(28), 74-90 (2015)
9. Y. Geng, Y. Wang, J. Ding, W. Xu, J. Build. Struct., 37, 141-150 (2016)
10. R.H.M. Rum, Z.M. Jaini, N.H. Abd Ghaffar, N. Abd Rahma, Materials Science and Engineering, 271(1), 012102(2017)
11. J.H. Ye, W. Chen, Int. J. Struct. Stab. Dyn., 13(1), 1–29 (2013)
12. P. Prabha, G.S. Palani, N. Lakshmanan, R. Senthil, KSCE J. Civ. Eng., 22(9), 3534–3545 (2018)
13. M. Jerman, M. Keppert, J. Výborný, R. Černý, Const. Build. Mat., 41, 352–359 (2013)
14. A. Ahmadi, C. Mathieson, G. Clifton, R. Das, J. Lim, J. Const. Steel Res., 122, 70–79 (2016)
15. J. Hulimka, R. Krzywoń, A. Jędrzejewska, Proc. Eng., 193, 337–344 (2017)
16. M. Kozłowski, M. Kadela, Proc. Eng., 161, 468–476 (2016)
17. J. Vlcek, M. Drusa, W. Scherfel, B. Sedlar, Earth and Environmental Science, 95, 022049 (2017)
18. R.B. Orlovich, V.V. Bespalov, V.N. Derkach, Mag. Civ. Eng., 3(79), 112–119 (2018)
19. V.V. Bespalov, D. Ucer, . I. D. Salmanov, I.N. Kurbanov, S.V. Kupavykh, Mag. Civ. Eng., 2(78), 136–150 (2018)
20. D.S. Tarasova, M.R. Petritchenko, Mag. Civ. Eng., 4(72), 28–35 (2017)
21. E.A. Statcenko, A.F. Ostrovaia, T.A. Musorina, M.I. Kukolev, M.R. Petritchenko, Mag. Civ. Eng., 8(68), 86–91 (2016)
22. A.B. Krutilin, Y.A. Rykhlionak, V.V. Liashkevich, Mag. Civ. Eng., 2(54), 46–55 (2015)
23. N.I. Vatin, A.S. Gorshkov, S.V. Kornienko, I.I. Pestryakov, Constr. Un. Build. Struct., 1(40), 78-101 (2016)
24. D.A. Alyabyeva, Constr. Un. Build. Struct., 8(35), 24-35 (2015)
25. O.D. Samarin, Mag. Civ. Eng., 2(70), 3–10 (2017)
26. M.V. Leshchenko, V. Semko, Mag. Civ. Eng., 8(60), 44–55 (2015)
27. D.A. Trubina, L.A. Kononova, A.A. Kaurov, E.D. Pichugin, D.A. Abdulaev, Constr. Un. Build. Struct., 4(19), 109-127 (2014)
28. A.I. Kirsanov, O.N. Stolyarov, Mag. Civ. Eng., 4(80), 15–23 (2018)
29. V.I. Travush, D.V. Konin, A.S. Krylov, Mag. Civ. Eng., 1(77), 90–100 (2018)
30. V.N. Medvedev, S.D. Semenyuk, Mag. Civ. Eng., 3(63), 3–15 (2016)
31. R.A. Kanishchev, Mag. Civ. Eng., 4(64), 59–68 (2016)
32. A.A. Kikot, Mag. Civ. Eng., 1(61), 42–59 (2016)
33. N. Vatin, T. Nazmeeva, R. Guslinscky, Adv. Mate. Res., 941-944, 1871-1875 (2014)
34. M. Garifullin, S. Pajunen, K. Mela, M. Heinisuo, J. Havula, J. Constr. Steel Res., 139, 353–362 (2017)