Distinct binding mode of BAFF antagonist antibodies belimumab and tabalumab, analyzed by computer simulation

Yaxin Jiang · Jian Sun · Jing Wei

Received: 14 October 2021 / Accepted: 24 April 2022 / Published online: 5 September 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
B cell-activating factor (BAFF) can bind with specific receptors to activate signalling pathways associated with the B cell activation. Belimumab and tabalumab are anti-BAFF (B cell depleting) monoclonal antibodies, with therapeutic efficacy demonstrated for the treatment of autoimmune disorders, while belimumab was approved by FDA in 2011 as a targeted therapy for systemic lupus erythematosus (SLE) and exhibited better clinical outcome than tabalumab. In this investigation, the combination modes of BAFF-belimumab and BAFF-tabalumab complexes were simulated in silico to better understand the reason for the comparative inhibitory difference between belimumab and tabalumab. The structures of belimumab and tabalumab were constructed through homology modelling. The combination mode of BAFF-belimumab complex was analyzed by molecular dynamics simulation, while that of BAFF-tabalumab complex was analyzed by protein-protein docking following the molecular dynamics simulation. Both belimumab and tabalumab were bound with BAFF at the same hydrophobic center to which the natural receptors of BAFF bind as well. Belimumab heavy chain components I51, F54, K58, D100, D101, L102, L103, and P105 and R27, Y30, K49, and S65 of belimumab light chain contribute to the BAFF-belimumab interaction mainly via hydrogen bonds, salt bridges, and hydrophobic interactions. More importantly, belimumab could bind to L83 of BAFF and produce steric hindrance with the adjacent BAFF trimers, while tabalumab could not. Therefore, our results indicated that belimumab has a better clinical outcome compared with tabalumab mainly because belimumab could bind to L83 of BAFF and interfere the formation of a BAFF 60-mer, besides mediating inhibition of the interaction of BAFF with its receptors.

Keywords BAFF · Belimumab · Tabalumab · Computation analysis · Systemic lupus erythematosus

Introduction
B cell-activating factor (BAFF, also known as BLyS, zTNF4, TNFSF13B, THANK, and TALL-1) is a member of the tumor necrosis factor (TNF) superfamily, whose members regulate immune responses. The potential of BAFF to activate several signalling pathways by binding with their specific receptors is a matter of interest [1–9]. BAFF is a type II transmembrane protein encoded by the human chromosome 13q34, which is mainly expressed in the mononuclear cells of peripheral blood, lymph nodes, spleen, and thymus but also has limited expression in the small intestine, pancreas, placenta, and the lungs [10, 11]. Abundant evidence suggests that BAFF is involved in the pathogenesis of systemic lupus erythematosus (SLE), which is an autoimmune disease affecting multiple organ systems [12–18]. In SLE patients, a large number of autoantibodies are produced leading to the deposition of immune complexes in multiple organs, especially the kidneys [19–26].

BAFF is a type of membrane-bound protein, but released in a soluble form by the action of a metalloprotease [27–29]. The soluble BAFF (sBAFF) is formed from the hydrolysis of membrane-type BAFF and can improve the activity of B cells, CD4+ T cells, and NK cells to ramp up the immune responses [30]. Three kinds of BAFF receptor have been reported; they are B cell maturation antigen (BCMA), BAFF receptor 3 (BR3) along with the trans-membrane activator
and calcium modulator, and cyclophilin ligand interactor (TACI) [2, 31–41]. Although BAFF often functions in the homo-trimeric form, a more active BAFF 60-mer has also been reported [42]. Twenty soluble BAFF trimers oligomerize into a 60-mer through the trimer-trimer interaction via a long DE loop (KVHVFGDELS), and this 60-mer is considered to be more active than the trimer due to the clustered accumulation of these receptors on the B cell surface [43, 44]. Since BAFF can bind to the B lymphocytes, it can subsequently induce their proliferation, differentiation, and secretion of immunoglobulins [45, 46]. Some researchers have demonstrated that the elevated levels of BAFF are closely related to SLE pathogenicity [26]. Therefore, BAFF and its downstream signal transduction factors have become therapeutic targets for the treatment of many autoimmune disorders.

Antibodies targeting BAFF can inhibit the proliferation and activation of B cells by blocking the binding of BAFF and its receptors [47]. Anti-BAFF monoclonal antibodies can reduce the elevated levels of immunoglobulin and lupus-related damage factors in the peripheral blood of SLE patients [48]. Belimumab (tradename Benlysta) is a fully human monoclonal IgG1λ antibody, which can neutralize the soluble BAFF [12, 49–55]. It was approved by FDA in 2011 as a targeted therapy for SLE [56–58]. Clinical trials of SLE patients with belimumab exhibit reduced number of circulating naïve B cells, activated B cells, and enhanced clinical efficacy [48, 59, 60]. Tabalumab (formerly LY2127399) is a fully human IgG4 monoclonal antibody. Similar to the natural BAFF receptors, tabalumab binds both membrane-bound and soluble BAFF, while belimumab binds only the soluble fraction of BAFF [61, 62]. Tabalumab improved the signs and symptoms in patients of rheumatoid arthritis (RA) who had previously become naïve to biological disease-modifying antirheumatic drugs (bDMARDs) such as TNF inhibitors in an initial dose range study [63]. Telitacicept is a fusion protein constructed from the extracellular part of TACI and Fc part of human IgG1. TACI has a strong affinity for BAFF and a proliferation-inducing ligand (APRIL), which is a type II membrane protein that can stimulate B cell proliferation and tumor cell growth [64, 65]. Therefore, telitacicept can block the interaction of BAFF and APRIL with their respective receptors to block their biological activity. This bi-specific blocking effect may be more effective than blocking BAFF alone, consequently inhibiting the proliferation of B lymphocytes and treat autoimmune diseases more effectively. On March 12, 2021, telitacicept was approved by China’s National Medical Products Administration (NMPA).

In this study, we employed homology modelling, molecular docking, and molecular dynamics (MD) simulation to develop a three-dimensional (3D) structural model of BAFF-belimumab complex, to understand the mechanism of interaction of belimumab in atomic detail. After that, we calculated the binding free energy and energy of decomposition of each residue to figure out the binding mechanism and alanine mutational analyses to validate our findings. Then, we built a 3D structure model of tabalumab and performed MD simulation for BAFF-tabalumab complex, to find out a possible reason why tabalumab failed in the clinical trials [66]. These results provide an insight into the mechanism of interaction between BAFF and its antibody antagonists and further provide a foundation for designing novel BAFF-targeted inhibitors in future.

Material and methods

Construction of molecular systems for BAFF and belimumab

The 3D crystal structure of BAFF in complex with belimumab was downloaded from the website of Protein Data Bank (http://www.rcsb.org/) with an access code of 5Y9J. Since the continuous peptide structure was needed in the subsequent MD simulation, and there was a breakpoint in the downloaded 3D structure (S136 to G142 in heavy chain), the complete and continuous structure of belimumab heavy chain was obtained through homologous construction by importing its primary sequence into the SWISS-MODEL (https://swissmodel.expasy.org/) and using the downloaded structure as a template. To build BAFF-belimumab complex, the constructed heavy chain of belimumab was matched to the downloaded complex by MatchMaker of Chimera Ver1.14.

Energy minimization and MD simulation of BAFF-belimumab complex

During the molecular dynamics simulation and after building the starting structure, a simulation was carried out in parallel to obtain an equilibrated system. The SANDER module of the AMBER 16 package along with the AMBER parm99SB force field was used [67]. A chloride ion was added to neutralize the charge for the system. The system was soaked in the TIP3P water box with the truncated octahedron periodic box having a size of 1 nm [68]. Generally, the Particle Mesh Ewald (PME) method was used to deal with the long-range electrostatic interactions [69, 70]. The SHAKE algorithm which supports atomic vibration in calculation simulation system was applied to constrain hydrogens. In the simulation, 0.8 nm was set as the cut-off distance, if/when nonbonded interactions were encountered [71].

The solvated system which performed energy minimization was conducted with the help of MD simulation. The water-solvent molecules and ions were optimized first, while the atoms of the residues of the complex were restrained.
Then, for all residues, the main chain residues were kept frozen while relaxing the side chains. Finally, all atoms were allowed to move freely while 2 fs was set up for each integration step and the ensemble type was set to NPT (a kind of isothermal isobaric system). The steepest descent method was executed to go on the energy minimization for the first 5000 steps. Then, the conjugated gradient method was used for the next and subsequent 2500 steps. The temperature range was set from 0 to 300 K within the period of 100 ps after the structure was minimized to continue with the MD simulation. The systems were equilibrated in the NPT ensemble (1 atm and 300 K) for 100 ps when the proteins were kept frozen. Next, the complexes were equilibrated for 500 ps without restraint. At last, the whole system was subjected to 200 ns of molecular dynamics under the abovementioned NPT ensemble. To analyze the structure in detail, the PTRAJ module was used to collect the atomic coordinates of the system.

Binding free energy calculation on BAFF-belimumab system, per-residue free energy decomposition analysis and hydrogen bond analysis

After MD simulation, the interactions of the protein complex system were investigated. They were validated by calculating the binding free energy and decomposing the binding free energy into per-residue contributions. The molecular mechanics MM-GBSA algorithms in AMBER 16 were implemented to calculate the binding free energies between BAFF and belimumab. The total binding free energies in condensed phase can be calculated by the following formula:

\[
\Delta G_{\text{bind}} = \Delta G_{\text{MM}} + \Delta G_{\text{sol}} - T\Delta S
\]

\[
\Delta G_{\text{MM}} = \Delta E_{\text{ele}} + \Delta E_{\text{vdw}} + \Delta E_{\text{int}}
\]

\[
\Delta G_{\text{sol}} = \Delta G_{\text{polar}} + \Delta G_{\text{NP}}
\]

where \(\Delta G_{\text{bind}}\) is the binding free energy in solution state, \(\Delta G_{\text{MM}}\) is the molecular mechanics energy which is comprises an electrostatic interaction (\(\Delta E_{\text{ele}}\)), a van der Waals interaction (\(\Delta E_{\text{vdw}}\)) and an internal energy (\(\Delta E_{\text{int}}\)) for a ligand or a protein, whereas \(\Delta G_{\text{sol}}\) is the solvation free energy, comprising a polar component (\(\Delta G_{\text{polar}}\)) and a nonpolar one (\(\Delta G_{\text{NP}}\)). The calculation for \(\Delta G_{\text{polar}}\) can be done through GB method [72]. The nonpolar component \(\Delta G_{\text{NP}}\) is calculated by the solvent-accessibility surface area (SASA) equation \(\Delta G_{\text{NP}} = \gamma \times \text{SASA} + \beta\), where SASA can be obtained from the MSMS program, and the values of \(\gamma\) and \(\beta\) were set as 0.72 kcal/(mol·nm²) and 0.00 kcal/mol, respectively [73]. Previous literature reports that entropy does not contribute much to the binding affinities of similar ligands [74].

The free binding energy decomposition of residue inhibitor interaction for each of BAFF and belimumab residues can also be calculated by alanine mutation. The free energy changes (\(\Delta \Delta G_{\text{bind}}\)) were estimated by comparing the delta free energy of the wild type (\(\Delta G_{\text{WT}}\)) with the delta free energy of the mutant into alanine (\(\Delta G_{\text{mut}}\)). \(\Delta \Delta G_{\text{bind}} = \Delta G_{\text{WT}} - \Delta G_{\text{mut}}\), while the negative \(\Delta \Delta G_{\text{bind}}\) indicates that the wild-type protein is more favorable as the \(\Delta G_{\text{WT}}\) is more negative.

The hydrogen bond analysis was carried out by “hbond,” which is a command of cpPTRAJ and allows hydrogen bond calculation using geometric criteria. Automatic determination of hydrogen bond donors/acceptors used the simplistic criterion that “hydrogen bonds are FON,” which is, hydrogens bonded to F, O, and H atoms are considered donors, while F, O, and N atoms are considered acceptors.

Construction of BAFF-tabalumab complex

Due to the absence of a 3D structure of tabalumab, we constructed the 3D structure of tabalumab through SWISS-MODEL using 4NPY for heavy chain (86.04% homology) and 5WT9 for the light chain (97.98% homology) as a template which was recommended by the search template results. The constructed 3D structure of tabalumab was used for running the MD simulation using the same parameters as BAFF-belimumab complex to attain stable structure with low energy. Finally, the interaction between BAFF and tabalumab was analyzed and information used for making schematic diagrams via Chimera (Ver 1.14).

Results and discussion

Homology construction of BAFF-belimumab system

Homologous construction was done by using the SWISS-MODEL to smoothen the remedy of the break point. To rank the constructed structure, Ramachandran plots were calculated to assess the geometric properties of the backbone conformations. This step indicated that all (100%) of the residues fell within the most favored region for both the heavy and light chains of belimumab. The constructed system was further refined by performing an optimized geometric calculation of the mechanics using the SANDER module.

MD simulation and free binding energy calculation

To ensure the proper conformational space sampling, we performed a 200 ns MD simulation for the BAFF-belimumab complex. The atomic root mean square deviation (RMSD) fluctuations of the backbone atoms (CA, C, and N atoms)
of BAFFs and belimumabs were separately calculated and outlined into a function of time (Fig. 1).

It can be concluded that the BAFF and two chains of belimumab have relatively smooth curves in the last 20 ns period with the average RMSD values of 0.200 nm for heavy chain, 0.127 nm for light chain of belimumab, and 0.135 nm for BAFF. The system becomes equilibrated as judged by RMSDs.

The individual energy terms of the binding free energies of the BAFF-belimumab complex were calculated by the MM-GBSA method for the last 20 ns data which was relatively stable according to the RMSD value. Different terms of energy values are listed in Table 1. The enthalpy of the BAFF-belimumab complex was estimated at − 48.68 kcal/mol by the MM-GBSA approach.

In order to identify which of the interactions have a significant impact on the system, the binding free energy was divided into polar and nonpolar interactions. It was clear that the nonpolar interaction function was the dominant force, and the polar energy provided an unfavorable contribution to the formation of BAFF-belimumab complex by comparing values of the two types of energy. The absolute value of the nonpolar energy is about twice as much as the polar one. In addition, the polar interaction in the gas phase provided a favorable energy component, but it is mainly unfavorable in the solution phase for belimumab-BAFF complex.

In order to confirm the binding ability of belimumab and BAFF, the ΔG_{bind} of belimumab-BAFF complex and the complex of BAFF and a natural receptor B cell maturation antigen (BCMA) were compared (Table 2). The MD simulation of BCMA-belimumab complex was also carried out by the same method, and the individual energy terms of the binding free energies of BCMA-belimumab complex were obtained by the last 10-ns simulation structures, which were relatively stable according to the RMSD value to compare with belimumab-BAFF complex. It showed that nonpolar forces contribute much more to the complex binding for both the systems; this is consistent with the interaction between BAFF and its other natural receptors we reported earlier [71].

![RMSD values along the MD trajectories for the complex of BAFF and belimumab. The heavy chain of belimumab is shown in red, while the light chain of belimumab is shown in blue, and BAFF is shown in black.](image)

Table 1 The binding free energies of the BAFF-belimumab complex (kcal/mol)

Component*	Complex	BAFF	Belimumab	Delta
E_{vdw}	− 4317.95	26.25	− 3153.03	20.69
E_{ele}	− 40584.57	101.12	− 29863.14	92.27
E_{int}	0	0	0	0
G_{polar}	− 5867.00	74.46	− 4236.61	76.49
G_{NP}	180.05	2.36	138.72	1.74
E_{MM}	− 44902.52	99.74	− 33016.17	89.87
G_{sol}	− 5686.95	73.44	− 4097.89	76.00
Total	− 50589.47	63.97	− 37114.06	52.17

*Abbreviations of the components in expanded form: E_{vdw} the van der Waals contribution from molecular mechanics; E_{ele} the electrostatic energy as calculated by the molecular mechanics force field; G_{polar} the electrostatic energy to the solvation free energy; G_{NP} the energy of nonpolar components contributing to the solvation free energy; E_{MM} the free energy of the complex in vacuum which equals to E_{vdw}, E_{ele} and E_{int}; G_{sol} the free energy of the complex in solvation states which is equal to G_{polar} and G_{NP}, total, the whole binding free energy including E_{MM} and G_{sol}; delta, the sum of BAFF and belimumab minus complex.

Table 2 The comparison of binding energies between belimumab-BAFF complex and BCMA-BAFF complex (kcal/mol)

Energy	Belimumab-BAFF	BCMA-BAFF
ΔE_{vdw}	− 91.07	− 48.62
ΔE_{ele}	− 375.89	− 178.13
ΔE_{int}	0	0
ΔG_{polar}	431.57	189.93
ΔG_{NP}	− 13.29	− 7.91
ΔE_{MM}	− 466.96	− 226.76
ΔG_{sol}	418.28	182.01
ΔG_{bind}	− 48.68	− 44.74
Compared with the natural receptor BCMA, the binding energy of belimumab with BAFF is higher in absolute value, which means that belimumab-BAFF complex interacts more strongly and binds more closely with each other than the BCMA-BAFF complex. This is the reason why belimumab can inhibit the binding of BAFF and their natural receptors. Thus, the function of the belimumab binding with BAFF to inhibit the function of BAFF can be realized.

The binding mode between BAFF and belimumab

To locate the binding site and investigate the interaction mechanism, we analyzed the binding mode between BAFF and belimumab (Fig. 2). BAFF can interact with both the heavy and light chains of belimumab primarily through hydrophobic interactions, hydrogen bonds, and salt bridges. The major binding site was found to consist of eight residues (I51, F54, K58, D100, L101, L102, L103, and P105) in the heavy chain of belimumab. The hydrophobic part of belimumab heavy chain was in close contact with Y65, L70, I92, and L103 of BAFF while K58/BAFF E125, and heavy D100/BAFF R124 formed the salt bridge (Fig. 2a).

BAFF formed three hydrogen bonds with the light chain of belimumab; they were formed by the backbone of light R27 with backbone of BAFF S84, hydroxyl of light S65 with backbone of BAFF G80, and backbone of light G93 with backbone of BAFF S21, whereas K49 of belimumab light chain and D81 of BAFF formed the salt bridge, and the hydrophobic effect of the light chain and BAFF is mainly due to the Y30 of light chain and L83 and L85 of BAFF (Fig. 2b).

The binding free energy decomposition of per residue and computational alanine scanning

To further analyze the binding mechanism, binding free energy decomposition was performed on a per-residue contribution spectrum. The criterion of $|\Delta G_{\text{bind}}| > 1$ kcal/mol was employed to identify the important residues that contribute to the free energy. According to this standard, seven residues in heavy chain of belimumab (I51, F54, D100, D101, L102, L103, and P105), four residues in light chain of belimumab (R27, Y30, K49, and S65), and eight residues in BAFF (Y65, L70, G80, L83, L85, I92, P123, and R124) were selected. Total free energy of each key residue was resolved and shown in Fig. 3. For belimumab, D100 in heavy chain and K49 in light chain mainly provided electrostatic interaction, while the side chains of L101, L102, and L103 in heavy chain formed a hydrophobic site and mainly contributed for the van der Waals interactions. These results of these interactions are consistent with our previous docking model; however, K58 of belimumab heavy chain and E125 was found on the surface of the protein. As for the desolvation step; it led to a decrease in the absolute value of binding energy although they (K58 and E125) formed a salt bridge. The ΔG_{bind} value of heavy K58 and BAFF E125 was -0.90 kcal/mol and 1.59 kcal/mol, respectively. And the same situation existed in D81 of BAFF with the ΔG_{bind} value...
of 0.19 kcal/mol. The hydrogen bond interaction between G94 of belimumab light chain and G20 of BAFF was weak and unstable in MD simulation, which can be concluded by their ΔG_{bind} value of -0.80 kcal/mol and -0.82 kcal/mol, respectively. There was a hydrogen bond between R27 of belimumab light chain and S84 of BAFF, but the binding energy of BAFF S84 was only -0.16 kcal/mol, which is far from meeting the set criterion of $|\Delta G_{\text{bind}}| > 1$ kcal/mol.

According to the results of energy decomposition, the skeleton energy decomposition was -1.07 kcal/mol, but the side chain energy decomposition was 0.91 kcal/mol. It indicated that the adverse effects caused by the side chain led to the failure of BAFF S84 to meet the criterion and cannot be considered as a key residue for belimumab-BAFF complex, although there was the existence of a hydrogen bond.

According to the results of hydrogen bond analysis (Table 3), the salt bridge formed by D100 of belimumab heavy chain and R124 of BAFF was very stable, while the salt bridges formed by belimumab heavy chain K58-BAFF E125 and belimumab light chain K49-BAFF D81 were not stable, with the occupancy only at 12.39% and 3.97%, respectively. The hydrogen bonds that were formed separately by R27 and S65 of belimumab light chain with S84 and G80 of BAFF were relatively stable, with high hydrogen bond occupancy, but it was not stable for the hydrogen bond between G94 of belimumab light chain and G20 of BAFF. These were consistent with the results of energy decomposition.

In order to confirm whether the side chain of specific residues play an important role in the binding of BAFF-belimumab complex or not, seventeen residues were selected to perform the computational alanine scanning (Table 4). P105 of belimumab heavy chain, G80 and P123 of BAFF were not mutated into alanine because the skeletal structure changed significantly when these side chains were replaced. In addition to R27 of belimumab light chain and L85 of BAFF, the binding energies of other residues became less negative after computational alanine scanning. It indicated that if any one of these amino acids mutated to alanine, they would weaken the binding affinity of BAFF-belimumab complex.

Table 3
The occupancy (%) of salt bridges and hydrogen bonds for belimumab-BAFF complex

Donor	Acceptor	Acceptor	Occupancy (%)	Distance (nm)	Angle (degree)
heavy D100@OD1	BAFF R124@HH22		96.65	0.28	164.36
heavy D100@OD2	BAFF R124@HH12		93.65	0.28	162.88
light R27@O	BAFF S84@H	BAFF S84@N	67	0.29	160.80
light S65@OG	BAFF G80@H	BAFF G80@N	35.6	0.29	158.28

Table 4
The computational alanine scanning results of the key residues for the BAFF-belimumab complex (kcal/mol)

Residue (chain)	ΔG_{ele}	ΔG_{ele}	ΔG_{polar}	ΔG_{MM}	ΔG_{sol}	ΔG_{bind}	
I51 (heavy chain)	1.75	-0.14	8.53	0.23	1.61	8.75	1.29
F54 (heavy chain)	4.9	2.7	4.23	0.75	7.6	4.97	3.49
D100 (heavy chain)	-2.2	37.1	-4.61	0.28	34.9	-4.33	21.48
L101 (heavy chain)	2.56	0.68	6.71	0.40	3.25	7.11	10.36
L102 (heavy chain)	8.18	0.04	5.26	1.05	8.21	6.3	5.43
L103 (heavy chain)	1.94	0.28	7.14	0.27	2.22	7.41	9.64
R27 (light chain)	2.89	34.02	-27.88	0.35	36.91	-27.54	0.29
Y30 (light chain)	2.77	-2.72	11.82	0.41	0.05	12.23	3.19
K49 (light chain)	0.74	129.16	-119.1	0.67	129.9	-118.44	2.37
S65 (light chain)	0.12	3.25	9.07	0.15	3.36	9.22	3.50
Y65 (BAFF)	7.04	2.55	5.01	1.04	9.58	6.05	6.55
L70 (BAFF)	2.76	0.1	7.71	0.37	2.85	8.08	1.85
L83 (BAFF)	7.15	-0.46	6.42	0.84	6.68	7.26	4.86
L85 (BAFF)	1.51	0.27	7.79	0.21	1.78	7.99	0.69
I92 (BAFF)	2.12	-0.07	7.95	0.35	2.05	8.3	1.26
R124 (BAFF)	1.22	35.35	-14.13	3.31	36.57	-10.83	16.66
E125 (BAFF)	0.85	120.52	-110.97	0.55	121.37	-110.43	1.86

$\Delta G_{\text{bind}} = \Delta G_{\text{bind}}(\text{alanine mutant}) - \Delta G_{\text{bind}}(\text{wild type})$

$\Delta G_{\text{MM}} = \Delta G_{\text{ele}} + \Delta G_{\text{polar}} + \Delta G_{\text{sol}}$
these residues which had effect on the binding affinity, D100 of belimumab heavy chain and R214 of BAFF showed the largest $\Delta\Delta G_{\text{bind}}$ value, more than 21.48 kcal/mol and 16.66 kcal/mol, respectively, which means that they played the most important role in maintaining binding affinity. For both, the changes in electrostatic interaction contributed the most to their $\Delta\Delta G_{\text{bind}}$.

Comparison of binding modes between BAFF-tabalumab, BAFF-belimumab, and BAFF-BR3 complexes

Tabalumab could interact with BAFF mainly by heavy chain through hydrophobic interactions, hydrogen bonds, and salt bridges. BAFF formed two hydrogen bonds with the heavy chain of tabalumab; they were formed by $\text{heavyN58}_{\text{BAFF}}$ with BAFFE125 and $\text{heavyY100}_{\text{BAFF}}$ with backbone of BAFFR124. In addition, DXL motif (D101, I102, L103) of tabalumab heavy chain is involved in binding with $\text{BAFF}_{\text{heavyD101}}$ and BAFF_{R90} formed salt bridge. The hydrophobic effect of tabalumab and BAFF was primarily due to I102, L103 of tabalumab heavy chain and L70, V86 of BAFF (Fig. 4).

As shown in Fig. 5, the hydrophobic center of BAFF was the active site which could bind with its natural receptors such as BCMA and BR3 at the DxL motif [76], and a structure similar to the DxL motif could also be found in CDR3 of heavy chains in both belimumab and tabalumab (Fig. 6). As a result, the mechanisms of inhibition of BAFF by belimumab and tabalumab were considered to be “competitive” with the natural receptors.

![Fig. 4](image)

Fig. 4 Protein-protein docking schematic and interaction analysis of BAFF-tabalumab complex; tan, BAFF; sky blue, heavy chain of belimumab; plum, light chain of belimumab; amino acid contacts in 0.5 nm were indicated, hydrogen bond was shown in blue straight line, the name and number of the interactive amino acids on BAFF and both chains of belimumab are also indicated.

![Fig. 5](image)

Fig. 5 The comparison of protein-protein docking schematic between BAFF-tabalumab complex and BAFF-belimumab complex for a the section included in the red square was the steric hindrance between the light chain of belimumab and the adjacent BAFF trimer after the combination of belimumab and BAFF, b the section included in the red square was the DxL motif where belimumab, tabalumab, and BR3 bound and acted with BAFF, c the interaction between Y30 of belimumab light chain and L83 of BAFF; tan, local structure of BAFF60-mer; sky blue, heavy chain of belimumab; plum, light chain of belimumab; light green, tabalumab; red, the nature receptor of BAFF (BR3); the section included in the red square was the steric hindrance between the light chain of belimumab and the adjacent BAFF trimer after the combination of belimumab and BAFF.
It was reported that the dissolved BAFF trimer could aggregate to form a 60-mer, and this 60-mer was thought to be more active than the BAFF trimer. In addition, L83 of BAFF specifically contributed to the formation of the BAFF 60-mer [77]. As a result, whether the antibody could interact with L83 of BAFF became the key point of consideration for the inhibition of BAFF. For the BAFF-belimumab complex, the heavy chain of belimumab could bind with the L83 of BAFF via hydrophobic interactions. This hydrophobic effect brought the light chain close to BAFF and caused hindrance that prevented the DE loop of BAFF to interact with the adjacent BAFF homo-trimer. This hindrance consequently blocked the formation of BAFF 60-mer, and inhibited soluble BAFF more specifically and effectively, compared with its natural receptors. But for the BAFF-tabalumab complex, the light chain of tabalumab could not combine with L83 of BAFF, so that no steric hindrance existed between the light chain of tabalumab and the adjacent BAFF trimer. As a result, tabalumab could not prevent the formation of BAFF 60-mer, and this seemed to be the very reason why tabalumab failed in clinical trials.

By alignment of the sequences of belimumab and tabalumab (Fig. 6), it was noted that R30 was in lightCDR1 of tabalumab, instead of Y30 in belimumab. It was interesting to note that the difference in single amino acid of CDR1 caused the two antibodies to function differently. The amino acids corresponding to R27 in lightCDR1 and G94 in lightCDR3 could not be found in tabalumab, which made the light chain of tabalumab unable to form hydrogen bond with BAFF. Both the heavy CDR3 of belimumab and tabalumab had DxL motif. They could bind to the active site of BAFF and competitively inhibit the effect of BAFF, which showed that the heavy chain of belimumab and tabalumab shared a similar mechanism in the process of inhibiting BAFF activity, except prevention of BAFF 60-mer formation.

Conclusions

This investigation successfully constructed, in silico, the theoretical complexes of BAFF with belimumab and tabalumab respectively, through homologous construction. The binding model between BAFF and belimumab was analyzed through MD simulation. The amino acids that played a key role in the interaction were determined, and the corresponding binding energy values were calculated through the energy decomposition. Contribution of I51, F54, K58 D100, D101, L102, L103, and P105 of belimumab heavy chain and R27, Y30, K49, S65 of belimumab light chain, to the BAFF-belimumab interaction, was primarily by hydrogen bonds, salt bridges, and hydrophobic effects. Both belimumab and tabalumab had a DxL motif, which was the main binding site of the natural receptors with BAFF, could cause competitive inhibition with the natural receptors. The light chain of belimumab could contact with L83 of BAFF which was the key residue for the formation of BAFF 60-mer, and then this steric hindrance between belimumab light chain and adjacent BAFF trimers potentiated its inability to form BAFF 60-mer. Tabalumab contact with BAFF at the similar site as belimumab and the natural receptors while its light
chain could not contact with L83 of BAFF could not affect the formation of BAFF 60-mer and had a less inhibitory effect. Therefore, it is reasonable that belimumab showed better clinical therapeutic efficacies than tabalumab and was approved by FDA for SLE in 2011. In summary, our computation studies may provide the foundation for designing novel therapeutic antibodies in future.

Author contribution Sun J and Wei J conceived and designed the experiments. Jiang Y performed the experiment. Wei J and Jiang Y analyzed the binding modes. Jiang Y and Sun J prepared the manuscript. All authors have read and approved the final manuscript to be submitted for publication.

Funding This study was supported by the National Natural Science Foundation of China (Grant No.81273308).

Data availability Not applicable.

Code availability Not applicable.

Declarations

Conflict of interest The authors declare no competing interests.

References

1. Afzali S, Salehi S, Shahi A, Esmaeili M, Farashi Bonab S, Peykari A, Bagherpour F, AnsariPour B, Soleimanian T, Pour-Reza-Gholi F, Amizargar A (2021) Investigating the Role of BAFF and Its Receptors in Renal Transplant Recipients with Chronic Antibody-Mediated Rejection. J Immunol Res 2021:6654992

2. Bakhruyasah MM, Theotokis P, Lee JY, Alrehiali AA, Aui PM, Figgatt WA, Azari MF, Abou-Afech JP, Mackay F, Siatskas C, Aldeuruccio F, Strittmatter SM, Grigoriadis N, Petrats S (2021) B-cells expressing NgR1 and NgR3 are localized to EAE-induced inflammatory infiltrates and are stimulated by BAFF. Sci Rep 11:2890

3. Dechkhajorn W, Benjathummarak S, Glaharn S, Chaisri U, Viriyavejakul P, Maneerat Y (2020) The activation of BAFF/APRIL system in spleen and lymph nodes of Plasmodium falciparum infected patients. Sci Rep 10:3865

4. Esami M, Meinl E, Eibel H, Willen L, Donze O, Distl O, Schneider H, Speiser DE, Tsiantoulas D, Yalkinoglu O, Samy E, Schneider P (2020) BAFF 60-mer, and Differential BAFF 60-mer Dissociating Activities in Human Serum, Cord Blood and Cerebrospinal Fluid. Front Cell Dev Biol 8:577662

5. Schieman B, Gommerman JL, Vora K, Cachero TG, Scott ML, Eslami M, Meinl E, Eibel H, Willen L, Donze O, Distl O, Schieman B, Gommerman JL, Vora K, Cachero TG, Scott ML (2020) BAFF 60-mer, and Differential BAFF 60-mer Dissociating Activities in Human Serum, Cord Blood and Cerebrospinal Fluid. Front Cell Dev Biol 8:577662

6. Simon R, Diaz-Rosas P, Tafalla C (2021) The Ancient Cytokine BAFF- and APRIL-like Molecule Regulates the Functionality of Teleost IgM(+) B Cells Similarly to BAFF and APRIL. J Immunol 206:1765–1775

7. Singhal A, Sashindran VK, Aggarwal A, Yadav AK, Kayastha S (2020) Utility of B Cell Activating Factor (BAFF) and a Proliferation induced Ligand (APRIL) Cytokines as Markers of Response to Anti-Tubercular Therapy. J Clin Diagn Res

8. Thompson JS, Schneider P, Kalled SL, Wang L, Lefevre EA, Cachero TG, Mackay F, Bixler SA, Zafari M, Liu ZY, Woodcock SA, Qian F, Batten M, Madry C, Richard Y, Benham DJ, Dorner T, Furie R (2019) Novel paradigms in systemic lupus erythematosus (SLE) in patients treated with belimumab: a single-center real-life experience (2016-2019). Clin Rheumatol 40:923–927

9. Stohl W (2017) Inhibition of B cell activating factor (BAFF) in the management of systemic lupus erythematosus (SLE). Expert Rev Clin Immunol 13:623–633

10. Vilas-Boas A, Morais SA, Isenberg DA (2015) Belimumab in the management of systemic lupus erythematosus (SLE). Expert Opin Biol Ther 22:239–249

11. Vilas-Bosch SA, O’Halloran T, Petri M (2019) Management strategies and c-Jun NH2-Terminal Kinase. J Biol Chem 274:15978–15981

12. Birt JA, Wu J, Griffithing K, Bello N, Prinic N, Winer I, Lew CR, Costenbader KH (2020) Corticosteroid dosing and opioid use are high in patients with SLE and remain elevated after belimumab initiation: a retrospective claims database analysis. Lupus Sci Med 7

13. Edrich CM (2017) Epigenetics in SLE. Curr Rheumatol Rep 19:58

14. Park E, Giles JT, Perez-Recio T, Pina P, Depender C, Gartshteyn Y, Askane SA, Bauthon J, Geraldino-Pardilla L (2021) Hydroxychloroquine Use Is Not Associated With QTc Length in a Large Cohort of SLE and RA Patients. Res Sq

15. Theisen A, Bose P, Knight C, Oliver M (2020) Leukoencephalopathy and cerebral edema as the presenting manifestations of SLE in an ANA-negative adolescent female: A case report and review of literature

16. Zhang D, Wang M, Shi G, Pan P, Ji J, Li P (2020) Regulating T Cell Population Alleviates SLE by Inhibiting mTORC1/C2 in MRL/lpr Mice. Front Pharmacol 11:579298

17. Zhang M, Jie H, Wu Y, Han X, Sun E (2020) Increased MLKL mRNA level in the PBMCs is correlated with autoantibody production, renal involvement and SLE disease activity. Arthritis Res Ther 22:239

18. Zhang YM, Zhou XJ, Wang YN, Liu XZ, Wang YF, Lau YL, Yang WL, Zhang H (2021) Shared genetic study gives insights into the shared and distinct pathogenic immunity components of IgA nephropathy and SLE. Mol Gen Genomics 296:1017–1026

19. Aquisar R, Araujo C, Martins-Coelho G, Isenberg D (2017) Use of Rituximab in Systemic Lupus Erythematosus: A Single Center Experience Over 14 Years. Arthritis Care Res 69:257–262

20. Dörner T, Furie R (2019) Novel paradigms in systemic lupus erythematosus. Lancet 393:2344–2358

21. Durcan L, O’dwyer T, Petri M (2019) Management strategies and future directions for systemic lupus erythematosus in adults. Lancet 393:2332–2343

22. Li Y, Higgs RE, Hoffman RW, Dow ER, Liu X, Petri M, Wallace DJ, Dorner T, Eastwood BJ, Miller BB, Liu Y (2019) A Bayesian gene network reveals insight into the JAK-STAT pathway in systemic lupus erythematosus. PLoS One 14:e0225651

23. Narain S, Furie R (2016) Update on clinical trials in systemic lupus erythematosus. Curr Opin Rheumatol 28:477–487

24. Scheinberg MA, Golmia AP, Golmia RP, De Souza Molotievski RN, Dos Santos Cortada AP (2021) Lupus low disease activity (SLE) in patients treated with belimumab: a single-center real-life experience (2016-2019). Clin Rheumatol 40:923–927

25. Stohl W (2017) Inhibition of B cell activating factor (BAFF) in the management of systemic lupus erythematosus (SLE). Expert Rev Clin Immunol 13:623–633

26. Vilas-Boas A, Morais SA, Isenberg DA (2015) Belimumab in systemic lupus erythematosus. RMD Open 1:e000111
27. Basta F, Mockel T, Petersohn J, Meineck M, Triantafyllias K, Engel S, Weinmann A, Luessi F, Weinmann-Menke J, Schwartzing A (2021) The relationship between BAFF serum levels, anti-NMDAR autoantibodies and fatigue in patients with systemic lupus erythematosus and multiple sclerosis. Autoimmun Rev 20:102802
28. Craxton A, Magaletti D, Ryan EJ, Clark EA (2003) Macrophage- and dendritic cell--dependent regulation of human B-cell proliferation requires the TNF family ligand BAFF. Blood. 101:4464–4471
29. Karpujas M, Cachero TG, Qian F, Boriack-Sjoden A, Mullen C, Strauch K, Hsu YM, Kalled SL (2002) Crystal structure of extracellular human BAFF, a TNF family member that stimulates B lymphocytes. J Mol Biol 315:1145–1154
30. Shan X, Chen L, Cao M, Xu L, Zhang S (2006) Effects of human soluble BAFF synthesized in Escherichia coli on CD4+ and CD8+ T lymphocytes as well as NK cells in mice. Physiol Res 55:301–307
31. Alexaki VI, Notas G, Pelekanou V, Kampa M, Valkanou M, Theodoropoulos P, Stathopoulos EN, Tsapis A, Castanas E (2009) Adipocytokines as immune cells: differential expression of TWEAK, BAFF, and APRIL and their receptors (Fn14, BAFF-R, TACI, and BCMA) at different stages of normal and pathological adipose tissue development. J Immunol 183:5948–5956
32. Alexaki VI, Pelekanou V, Notas G, Venihaki M, Kampa M, Deszirier V, Sabour-Alaoui S, Stathopoulos EN, Tsapis A, Castanas E (2012) B-cell maturation antigen (BCMA) activation exerts specific proinflammatory effects in normal human keratinocytes and is preferentially expressed in inflammatory skin pathologies. Endocrinology. 153:739–749
33. Chiu A, Xu W, He B, Dillon SR, Gross JA, Sievers E, Qiao X, Santini P, Hyje E, Lee JW, Cesarman E, Chadburn A, Knowles DM, Cerutti A (2005) Selectivity of BAFF/BLyS and APRIL for binding to the TNF family receptors BAFFR/BR3 and BCMA. Biochemistry. 44:1919–1931
34. Gross JA, Johnston J, Moduri S, Enselman R, Clegg CH (2000) TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease. Nature. 404:995–999
35. Hatzoglou A, Roussel J, Bourgeade MF, Robier E, Madry C, Inoue J, Devrenghe O, Tsapis A (2000) TNF receptor family member BCMA (B cell maturation antigen) associates with TNF receptor-associated factor (TRAF) 1, TRAF2, and TRAF3 and activates a signal transduction pathway. J Immunol 165:1322–1330
36. Lyu MA, Cheung LH, Hittelman WN, Marks JW, Aguiar RC, Rosenblum MG (2007) The gntL/BLyS fusion toxin specifically targets malignant B cells expressing the BLyS receptors BAFF-R, TACI, and BCMA. Mol Cancer Ther 6:460–470
37. Madry, Laabi, Callebaut, Roussel, Hatzoglou (1998) The characterization of murine BCMA gene defines it as a new member of the tumor necrosis factor receptor superfamily. Int Immunol
38. Marsters SA, Yan M, Petti RM, Haas PE, Ashkenazi A (2000) Interaction of the TNF homologues BLyS and APRIL with the TNF receptor homologues BCMA and TACI. Current Biology 10:785–788
39. Novak AJ, Darce JR, Arendt BK, Harder B, Henderson K, Kindsvogel W, Gross JA, Greipp PR, Jelinek DF (2004) Expression of BCMA, TACI, and BAFF-R in multiple myeloma: a mechanism for growth and survival. Blood. 103:689–694
40. Thompson JS, Bixler SA, Qian F, Vora K (2001) BAFF-R a Newly Identified TNF Receptor That Specifically Interacts with BAFF. Science. 293:2108–2108
41. Liu Y, Xu L, Opalka N, Kappler J, Shu HB, Zhang G (2002) Crystal Structure of sTALL-1 Reveals a Virus-like Assembly of TNF Family Ligands. Cell. 108:383–394
42. Bossen C, Cachero TG, Tardivel A, Ingold K, Willen L, Dobles M, Scott ML, Maquelin A, Belnoue E, Siegrist CA (2008) TACI, unlike BAFF-R, is solely activated by oligomeric BAFF and APRIL to support survival of activated B cells and plasmablasts. Blood. 111:1004–1012
43. Cachero TG, Schwartz IM, Qian F, Day ES, Bossen C, Ingold K, Tardivel A, Krushinskie D, Eldredge J, Silvian L (2006) Formation of virus-like clusters is an intrinsic property of the tumor necrosis factor family member BAFF (B cell activating factor). Biochemistry. 45:2006–2013
44. Furie R, Stohl W, Ginzler EM, Becker M, Mishra N, Chatham W, Merrill JT, Weinstein A, Mccone WJ, Zhong J, Cai W, Freimuth W, Belimumab Study G (2008) Biologic activity and safety of belimumab, a neutralizing anti-B-lymphocyte stimulator (BLyS) monoclonal antibody: a phase I trial in patients with systemic lupus erythematosus. Arthritis Res Ther 10:R109
45. Sifuentes Giraldo WA, Garcia Villanueva MJ, Boteanu AL, Lois Iglesias A, Zea Mendoza AC (2012) New Targets in Systemic Lupus (Part 2/2). Reumatología Clínica (English Edition) 8:263–269
46. Baker KP, Edwards BM, Main SH, Choi GH, Wager RE, Halpern WG, Lappin PB, Riccobene T, Abramian D, Sekut L (2010) Generation and characterization of LympHoStat-B, a human monoclonal antibody that antagonizes the bioactivities of B lymphocyte stimulator. Arthritis Rheum 48:3253–3265
47. Halpern WG, Lappin P, Zanardi T, Cai W, Corcoran M, Zhong J, Baker PK (2006) Chronic administration of belimumab, a BLyS antagonist, decreases tissue and peripheral blood B-lymphocyte populations in cynomolgus monkeys: pharmacokinetic, pharmacodynamic, and toxicologic effects. Toxicol Sci:586–599
48. Babini A, Cappuccio AM, Capraruolo C, Casado G, Eimon A, Figureiedo H, Garcia MA, Magri S, Mannucci P, Perez Rodriguez S, Pons-Estel BA, Velozo EJ, Iglesias-Rodriguez M, Streger G (2020) Evaluation of belimumab treatment in patients with systemic lupus erythematosus in a clinical practice setting: Results from a 24-month OBServe study in Argentina. Lupus. 29:1385–1396
49. Guzman M, Hui-Yuen JS (2020) Management of Pediatric Systemic Lupus Erythematosus: Focus on Belimumab. Drug Des Devel Ther 14:2503–2513
50. Kraaij T, Arends EJ, Van Dam LS, Kamerling SWA, Van Daele PLA, Bredewold OW, Ray A, Bakker JA, Scherer HU, Huizinga TJW, Rabellink TJ, Van Kooten C, Teng YKO (2021) Long-term effects of combined B-cell immunomodulation with rituximab and belimumab in severe, refractory systemic lupus erythematosus: 2-year results. Nephrol Dial Transplant 36:1474–1483
51. Levy RA, Gonzalez-Rivera T, Khamashta M, Fox NL, Jones-Leone A, Rubin B, Burriss SW, Gairk Y, Maurik AV, Roth DA (2021) 10 Years of belimumab experience: What have we learnt? Lupus. 9612033211028653
52. Lokhandwala T, Yue B, Coutinho AD, Bell CF (2021) Within-trial economic analysis of flare data from the BLISS-SC trial of subcutaneous belimumab in systemic lupus erythematosus. Lupus Sci Med 8
53. Muller P, Crowdhury K, Gordon C, Ehrenstein MR, Dore CJ (2020) Safety and efficacy of belimumab after B cell depletion therapy in systemic LUPUS erythematosus (BEAT-LUPUS) trial: statistical analysis plan. Trials. 21:652
54. Petricca L, Gigante MR, Paglionico A, Costanzi S, Vischini G, Di Mario C, Varriano V, Tanti G, Toluso B, Alivernini S, Gandalino G, Ferraccioli G, Gremsel E (2020) Rituximab Followed by Belimumab Controls Severe Lupus Nephritis and Bullous
67. Cheng H, Zhao CS, Yan CL, Gao C, Wen HY (2021) Efficacy of Belimumab for refractory systemic lupus erythematosus (SLE) involving the central nervous system. Eur J Intern Med

68. Petar L, Aleksander L (2015) Current and emerging treatment options for ANCA-associated vasculitis: potential role of belimumab and other BAFF/APRIL targeting agents. Drug Des Devel Ther 9:333

69. Furie R, Petri M, Zamani O, Cervera R, Wallace DJ, Tegrová D, Sanchezguerrero J, Schwarting A, Merrill JT, Chatham WW (2011) A phase III, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus. Arthritis Rheum 63:3918–3930

70. Stohl W, Hiepe F, Latinis K, Thomas M, Scheinberg M, Clarke A, Aranow C, Wellborne F, Mendoza C, Hough D, Pineda L, Migone T, Zhong Z, Freimuth W, Chatham W (2014) Belimumab reduces autoantibodies, normalizes low complement levels, and reduces select B cell populations in patients with systemic lupus erythematosus. Arthritis Rheum 64:2328–2337

71. Isenberg DA, Petri M, Kalunian K, Tanaka Y, Urowitz MB, Hoffman RW, Morgan-Cox M, Iikuni N, Silk M, Wallace DJ (2016) Efficacy and safety of subcutaneous tabalumab in patients with systemic lupus erythematosus: results from ILLUMINATE-1, a 52-week, phase III, multicentre, randomised, double-blind, placebo-controlled study. Ann Rheum Dis 75:323–331

72. Komocsar WJ, Blackbourne CA, Halstead CA, Winstead CJ, Wierda D (2016) Fully human anti-BAFF inhibitory monoclonal antibody tabalumab does not adversely affect T-dependent antibody responses in cynomolgus monkey (Macaca fascicularis): A summary of three pre-clinical immunotoxicology evaluations. J Immunotoxicol 13:7–19

73. Genovese M, Fleischmann R, Greenwald M, Satterwhite J, Benichou O (2013) Tabalumab, an anti-BAFF monoclonal antibody, in patients with active rheumatoid arthritis with an inadequate response to TNF inhibitors. Ann Rheum Dis 72:1461–1468

74. Ng LG, Mackay CR, Mackay F (2005) The BAFF/APRIL system: life beyond B lymphocytes. Mol Immunol 42:763–772

75. Yu G, Boone T, Delaney J, Hawkins N, Kelley M, Ramakrishnan M, Mccabe S, Qiu WR, Kornuc M, Xia XZ (2000) APRIL and TALL-1 and receptors BCMA and TACI: system for regulating humoral immunity. Nat Immunol 1:252–256

76. Baker D, Pryce G, James LK, Schmierer K, Giovannoni G (2020) Failed B cell survival factor trials support the importance of memory B cells in multiple sclerosis. Eur J Neurol 27:221–228

77. Cerutti DS, Duke R, Fredolino PL, Fan H, Lybrand TP (2008) Vulnerability in Popular Molecular Dynamics Packages Concerning Langevin and Andersen Dynamics. J Chem Theory Comput 4:1669

78. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

79. Cave RJ, Newton M (1997) Calculation of electronic coupling matrix elements for ground and excited state electron transfer reactions: Comparison of the generalized Mulliken–Hush and block diagonalization methods. J Chem Phys 106:9213–9226

80. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.