Lowering blood pressure in primary care in Vienna (LOW-BP-VIENNA)

A cluster-randomized trial

Miklos Rohla · Maximilian Tscharre · Kurt Huber · Thomas W. Weiss

Received: 19 February 2018 / Accepted: 23 July 2018 / Published online: 15 August 2018
© The Author(s) 2018

Summary

Background In Austria only 41% of patients with treated hypertension (HTN) have their blood pressure (BP) controlled. This study investigated a strategy to improve BP control in primary care.

Methods General practitioners (GPs) were randomized to interventional care vs. standard care and included patients with uncontrolled office BP > 140/90 mm Hg. In interventional care, antihypertensive therapy was up-titrated using a single pill combination (olmesartan, amlodipine and/or hydrochlorothiazide) in 4-week intervals. In standard care, physicians were encouraged to treat according to the 2013 European Society of Cardiology guidelines for the management of arterial hypertension. The primary endpoint was the proportion of patients with controlled office BP < 140/90 mm Hg at 6 months. The main secondary endpoint was the improvement in 24 h ambulatory BP (ABPM, Clinicaltrials.gov NCT02377661).

Results Between 2015–2017, 20 GPs contributed to patient recruitment. The trial was discontinued due to slow recruitment after inclusion of 139 eligible patients, 54 of whom were included in the interventional group. A significantly larger proportion of patients in interventional vs. standard care achieved the office BP target (67% ± 26% vs. 39% ± 29%, respectively, mean difference –27.9%, 95% confidence interval CI –54.0%; –1.7%, p = 0.038). The proportion of patients with controlled 24 h ABPM (<130/80 mm Hg) was similar between groups (49% ± 33% vs. 40% ± 34%, respectively, mean difference –8.8%, 95% CI –40.7%; 23.1%, p = 0.57). At baseline, pretreated patients received an average of 1.5 ± 0.8 vs. 1.7 ± 0.9 antihypertensive prescriptions. At 6 months, the respective BP reductions were achieved with 1.2 ± 0.5 prescriptions in interventional vs. 2.0 ± 1.0 in standard care (p < 0.01).

Conclusion In both groups statistically and clinically significant BP reductions were observed after 6 months. In the interventional care group, a larger proportion of patients achieved the office BP target compared to standard care. The 24h ambulatory blood pressure levels were controlled in 44% of patients at 6 months, without significant differences between groups. The respective BP reductions were achieved with a significantly lower medication burden in interventional care.

Keywords Arterial hypertension · Hypertension control · Disease management programs · Single pill combination drugs · Ambulatory blood pressure measurement

Introduction

In Europe only 30–50% of diagnosed and treated patients with arterial hypertension (HTN) have their blood pressure (BP) controlled [1, 2]. The asymp-
omatic nature of the condition combined with frequent adverse effects of antihypertensive drugs lead to therapy discontinuation in up to 50% of patients within 1 year of treatment [3]. Another barrier to adequate BP control is physician’s inertia, i.e. the lack of therapy intensification in cases of insufficient BP. This group recently performed a cross-sectional study in Austria, showing that only 41% out of 4303 predominantly adherent, diagnosed and treated patients had their BP controlled. These patients received an average of 1.8 different antihypertensive drugs, suggesting sufficient room for therapy intensification, rather than treatment resistance [4]. Considering that a population-based BP reduction as little as 2 mm Hg would be associated with a 10% decrease in stroke-related deaths, disease management programs seem worthwhile for most European countries [5]. The study investigated a strategy to improve BP control in primary care, comparing standard treatment to a prespecified titration regimen with single pill combinations (SPCs).

Methods

Trial design

The lowering blood pressure in primary care in Vienna (LOW-BP-VIENNA) trial was a prospective cluster-randomized controlled multi-center trial designed to compare standard treatment for HTN vs. interventional care with a prespecified titration regimen using a SPC. General practitioners (GPs) or resident specialists for internal medicine were enrolled via a written invitation or telephone interview. All participating study sites were required to have an active contract with the public health insurance. Study sites were allocated to either standard or interventional care at the beginning of the trial in a 1:1 fashion using a random sequence generator. The study was approved by the national regulatory authority and ethics committee. All participants gave written informed consent. The trial was registered with clinicaltrials.gov (NCT02377661).

Participants

The study included patients aged 18–80 years with a systolic/diastolic office BP of ≥140/≥90 mm Hg. Patients with a malignant disease and a life expectancy <6 months, contraindications or allergies to olmesartan, amlodipine or hydrochlorothiazide (interventional arm only), previously diagnosed chronic kidney disease grade IV or V, recent myocardial infarction or stroke within the preceding 3 months, participation in another clinical trial and women of childbearing potential or currently breastfeeding were excluded from the trial.

Outcome measures

The primary endpoint was the proportion of patients achieving the target office BP of <140/90 mm Hg at 6 months of follow-up at the cluster level. Main secondary outcomes included the achievement of average systolic 24 h ABPM <130 mm Hg, average diastolic 24 h ABPM <80 mm Hg and achievement of average daytime (135/85 mm Hg) and nighttime (120/70 mm Hg) BP levels at 6 months of follow-up at the cluster level. Additionally, office BP and ambula-
Fig. 1 Prespecified titration regimen with the single pill combination drug in the interventional care group. BP blood pressure, HCT hydrochlorothiazide

Fig. 2 Flow diagram showing the study design, the number of sites and the number of participants in each trial arm. BP blood pressure, ABPM ambulatory blood pressure measurement
Table 1 Baseline demographic and clinical data for the standard and interventional treatment groups

	Standard	Intervention	p-value	
Age (years)	58.0 ± 12.0	59.0 ± 9.0	0.97	
BMI	31.9 ± 14.5	29.6 ± 6.1	0.17	
Heart rate	75.3 ± 14.5	75.6 ± 12.5	0.73	
Office SBP at baseline	158.8 ± 18.0	164.8 ± 17.1	0.01	
Office DBP at baseline	94.6 ± 9.1	95.0 ± 12.6	0.84	
24 h SBP at baseline	139.9 ± 13.9	141.9 ± 14.0	0.31	
24 h DBP at baseline	85.9 ± 9.8	86.0 ± 9.4	0.86	
Daytime SBP at baseline	142.8 ± 14.9	143.8 ± 13.7	0.51	
Daytime DBP at baseline	88.5 ± 11.0	88.0 ± 10.1	0.89	
Nighttime SBP at baseline	132.0 ± 15.2	136.1 ± 18.3	0.15	
Nighttime DBP at baseline	79.0 ± 10.3	80.4 ± 11.8	0.66	
Female gender	57.60%	44.40%	0.13	
		Marital status		
Single	11.80%	16.70%	0.48	
Married or partnership	60.00%	64.80%	–	
Divorced	15.30%	7.40%	–	
Widowed	12.90%	11.10%	–	
		Employment		
Employed	35.30%	36.50%	0.80	
Retired	50.60%	46.20%	–	
Unemployed	10.60%	15.40%	–	
Self-employed	3.50%	1.90%	–	
		Highest level of education		
Compulsory education	27.10%	26.10%	0.73	
Apprenticeship	43.50%	52.20%	–	
GCSE A-levels	15.30%	13.00%	–	
University degree	14.10%	8.76%	–	
		Current or former smoker		
52.40%	60.40%	0.36		
Diabetes	22.40%	26.90%	0.54	
Hyperlipidemia	50.60%	60.00%	0.29	
Prior stroke	1.20%	1.90%	0.74	
Prior MI	2.40%	0.00%	0.26	
Heart failure	2.40%	0.00%	0.26	
Coronary artery disease	3.50%	3.70%	0.96	
Peripheral artery disease	1.20%	11.10%	<0.01	
Cerebrovascular disease	2.40%	3.70%	0.22	
COPD	4.70%	13.90%	0.08	
CKD	1.20%	0.00%	0.42	
Lipid lowering treatment	29.90%	43.10%	0.12	
Antidiabetic treatment	Oral antidiabetics	16.50%	0.73	
	Insulin therapy	1.20%	1.90%	–
Antiplatelet drugs	18.20%	29.40%	0.14	

BMI: body mass index; SBP: systolic blood pressure; DBP: diastolic blood pressure; MI: myocardial infarction; COPD: chronic obstructive pulmonary disease; CKD: chronic kidney disease

Lowering blood pressure in primary care in Vienna (LOW-BP-VIENNA)
Table 2 Antihypertensive treatment in the respective study groups

	Standard	Intervention	p-value
Prior antihypertensive treatment	80.00%	81.10%	0.87
Number of different antihypertensive prescriptions			
Prior to trial	1.7 ± 0.9	1.5 ± 0.8	0.17
At trial start	1.8 ± 0.9	1.0 ± 0.2	<0.01
At 6 months	2.0 ± 1.0	1.2 ± 0.5	<0.01
Baseline			
OLM/AML 20/5	1.2%	72.9%	–
OLM/AML 40/5	0.0%	2.1%	–
OLM/AML 40/10	0.0%	8.3%	–
OLM/AML/HCT 40/10/12.5	1.2%	4.2%	–
OLM/AML/HCT 40/10/25	2.5%	0.0%	–
Other OLM/AML/HCT combinationa	8.6%	12.5%	–
6 months			
OLM/AML 20/5	1.2%	44.0%	–
OLM/AML 40/5	1.2%	14.0%	–
OLM/AML 40/10	3.5%	2.0%	–
OLM/AML/HCT 40/10/12.5	2.4%	14.0%	–
OLM/AML/HCT 40/10/25	1.2%	18.0%	–
Other OLM/AML/HCT combinationa	7.2%	6.0%	–
SPC other than OLM/AML/HCT	38.8%	0.0%	<0.01
ACE inhibitors/ARB	45.9%	1.9%	<0.01
Beta-blockers	34.1%	5.7%	<0.01
CCB	27.1%	1.9%	<0.01
Diuretics	1.2%	0.0%	0.43
MRAs	2.4%	0.0%	0.26
Alpha-blockers	5.9%	1.9%	0.26
Other b	9.4%	1.9%	0.08

OLM olmesartan; AML amlodipine; HCT hydrochlorothiazide; SPC single pill combination; ACE angiotensin converting enzyme; ARB angiotensin receptor blocker; CCB calcium channel blocker; MRA mineralocorticoid receptor antagonist

aIncludes OLM/HCT single pill combinations and different dosing of the respective substances

bIncludes alpha-agonists, other centrally acting agents, renin inhibitors and minoxidil

Results

Study sites and patients

Initially, 29 GPs and 4 specialists for internal medicine were randomized, of whom 20 contributed to patient enrolment. The trial was discontinued due to slow recruitment after inclusion of 256 patients between March 2015 and Mai 2017. In total, 117 patients were excluded from the final analysis, of whom 19 did not fulfill the inclusion criteria, 64 were lost to follow-up, 17 had missing primary endpoint data and 17 for other reasons (Fig. 2).

The outcomes of 139 eligible participants with available data for the primary endpoint (n=85 standard, n=54 intervention) are reported. On average, 7 ± 6 patients were included per cluster (minimum 1, maximum 20).

Patients mean age was 59 ± 11 years, 53% were female and 80% were previously treated for HTN. Baseline demographics were well-matched between groups (Table 1). Patients in interventional care had significantly higher systolic office BP levels (165 ± 17 vs. 159 ± 18 mmHg, respectively, p=0.01); however, baseline ABPM values were similar between groups (Table 1).
Fig. 3 Graph showing the proportion of patients with controlled office blood pressure and ambulatory blood pressure levels at 6 months of follow-up. p-values are reported for differences between standard and interventional care. Additional data for control rates according to systolic and diastolic ambulatory blood pressure levels are presented in Supplementary Table 1. BP blood pressure, SBP systolic blood pressure, DBP diastolic blood pressure, ABPM ambulatory blood pressure measurement.

Table 3 Office and ambulatory blood pressure levels at 6 months of follow-up with mean between-group differences

	Standard	Intervention	Mean difference	95% CI	p-value
Office SBP	142.38 ± 18.26	135.89 ± 13.53	−12.5	−18.8; −6.2	<0.01
Office DBP	87.68 ± 11.46	83.59 ± 9.28	−4.4	−8.6; −0.3	0.04
24h SBP	130.65 ± 14.01	129.12 ± 13.21	−2.7	−7.9; 2.6	0.32
24h DBP	79.34 ± 9.29	77.75 ± 9.28	−1.6	−4.1; 1.9	0.47
Daytime SBP	133.57 ± 14.8	131 ± 13.36	−2.7	−9.3; 3	0.35
Daytime DBP	81.65 ± 9.71	79.88 ± 9.47	−0.8	−4.1; 2.5	0.63
Nighttime SBP	122.85 ± 14.7	123.43 ± 15.51	−0.4	−8.4; 2.9	0.34
Nighttime DBP	72.76 ± 9.78	72.25 ± 10.47	−0.5	−5; 2.1	0.43

Treatment

Antihypertensive treatment in the respective trial arms is shown in Table 2. Prior to the trial enrolment, pretreated patients received an average of 1.6 ± 0.9 different antihypertensive prescriptions, which was similar between the standard of care and interventional arm (p = 0.17). Angiotensin-converting enzyme (ACE) inhibitors/angiotensin receptor blockers (52%), SPCs (41%) and beta-blockers (36%) were the most frequently used substance classes prior to enrolment. Since the use of the olmesartan/amiodipine/HCT study drug was not prohibited for practitioners in the standard care, 17% of patients enrolled in this trial arm received an SPC containing one of these substances. Other SPCs were used in 39% of patients, thus in total 56% of patients enrolled into the standard of care arm received an SPC at 6 months of follow-up. At 6 months, the number of different antihypertensive prescriptions was significantly lower in interventional care vs. standard care (1.2 ± 0.5 vs. 2.0 ± 1.0, p < 0.01).

Office blood pressure reductions

Cluster level data

Office BP was controlled in 52% ± 31% of patients after 6 months at a threshold of 140/90 mmHg. At the cluster-level, 67% ± 26% of patients in interventional care and 39% ± 29% in standard care had their office BP controlled after 6 months of follow-up (Fig. 3). Accordingly, a significantly larger proportion of patients treated at sites which were randomized to interventional care vs. standard care achieved the office BP target (primary endpoint, mean between-group difference −27.9%, 95% CI −54.0%; −1.7%, p = 0.038, Fig. 3, Supplementary Table 1). An analysis that weighted the number of patients included at each site also showed significant improvements in favor of interventional care (Supplementary Table 1).
At 6 months, mean systolic/diastolic office BP was 135.9 ± 13.5/83.6 ± 9.3 mm Hg in interventional care and 142.4 ± 18.3/87.7 ± 11.5 mm Hg in standard care (Table 3).

Office BP reductions at the patient level were therefore greater in interventional vs. standard care (mean between-group difference –12.5 mm Hg, 95% CI –18.8; –6.2, \(p < 0.01 \) for office SBP and –4.4 mm Hg, 95% CI –8.6; –0.3, \(p = 0.04 \) for office DBP, Fig. 4).

Ambulatory blood pressure reductions

Cluster level data

The 24h ABPM was controlled in 44% ± 33% of patients after 6 months at a threshold of 130/80 mm Hg. At the cluster level, 49% ± 33% of patients in interventional care and 40% ± 34% in standard care achieved the 24h ABPM treatment target of 130/80 mm Hg (Fig. 3). The between-group difference was not statistically significant (mean between-group difference –8.8%, 95% CI –40.7%; 23.1%, \(p = 0.57 \), Supplementary Table 1). Daytime and nighttime ABPM reductions were also similar between groups in the unweighted analysis (Fig. 3). When weighting for cluster size, there was a significantly greater proportion of patients who achieved the daytime ABPM treatment target of 135/85 mm Hg in interventional vs. standard care (63% ± 14% vs. 49% ± 17%, mean between-group difference –13.6%, 95% CI –19.1%; –8.0%, \(p < 0.01 \), Supplementary Table 1).

Patient level data

At 6 months, mean systolic/diastolic 24h ABPM was 129.1 ± 13.2/77.8 ± 9.28 mm Hg in interventional care and 130.7 ± 14.0/79.3 ± 9.3 mm Hg in standard care. Accordingly, 24h ABPM reductions after 6 months of follow-up were similar in interventional vs. standard care (mean between-group difference –2.7 mm Hg, 95% CI –7.9; 2.6, \(p = 0.32 \) for 24h SBP and –1.1 mm Hg, 95% CI –4.1; 1.9, \(p = 0.47 \) for 24h DBP). Daytime and nighttime ambulatory BP at 6 months is presented in Table 3.

The white coat effect in primary care

At baseline, systolic and diastolic office BP levels were significantly higher than the respective daytime ABPM values (mean difference 18.0 mm Hg, 95% CI 15.3; 20.7, \(p < 0.01 \) for systolic values and 6.6 mm Hg, 95% CI 4.7; 8.4, \(p < 0.01 \) for diastolic values). A similar, but less pronounced difference could be observed at 6 months (mean difference 7.6 mm Hg, 95% CI 5.2; 10.0, \(p < 0.01 \) for systolic values and 5.3 mm Hg, 95% CI 3.6; 7.1, \(p < 0.01 \) for diastolic values).

Adverse events

Serious adverse events were infrequent and occurred at a similar rate between groups (interventional care 0 events, standard of care 4 events, \(p = 0.11 \)). Of these 4 events, 2 were classified as potentially treatment related (one allergic reaction, one hypertensive urgency). Other adverse events such as fatigue, dizziness or leg edema occurred at a similar rate in the respective trial arms (Supplementary Table 2).
Discussion

The main findings of our study are:

1. In both trial arms, many patients with previously elevated office BP could be easily controlled with a relatively low medication burden when included into a trial dedicated to improve BP control.
2. A significantly higher proportion of patients in interventional vs. standard care had their office BP controlled after 6 months of follow-up.
3. Interventional and standard care were similar regarding the improvement in the ABPM profile.
4. BP reductions were achieved with a significantly lower medication burden in interventional vs. standard care.

Accordingly, an overall clinical benefit with the pre-specified titration regimen was observed using a SPC, a strategy that could be easily adopted in a primary care setting. The use of SPCs and simplification of treatment regimens have been found to improve adherence, which might translate into a sustained BP lowering effect [11, 12]. In Austria it could recently be shown that only 41% of diagnosed, treated and predominantly adherent patients, who actively approached a pharmacy to obtain the antihypertensive medication have controlled BP levels [4]. This previous study, and also the present trial suggest that poor BP control is more due to low adherence and the lack of adequate therapy intensification (i.e. physician’s inertia) than treatment resistance. On average, patients were pretreated with 1–2 different antihypertensive drugs, leaving sufficient room for therapy intensification. To overcome these barriers, disease management programs addressing both patient and physician-related factors, such as the Canadian Hypertension Education Program (CHEP) or the Austrian herz.leben program seem worthwhile to improve BP control and reduce stroke-related morbidity and mortality [13–16].

The STITCH trial randomized 45 family practices in Canada to standard care vs. a simplified treatment algorithm with step-wise up titration of antihypertensive therapy. Corresponding to the results of the present study, 65% in interventional care and 53% in standard care had their BP controlled after 6 months [8]. These observations were based on office BP readings. As this and other studies show, contemporary trials should incorporate home BP readings, unattended automated office BP or ABPM to provide accurate results [17–20]. Although the majority of patients in this study were pretreated with antihypertensive drugs (most likely by the same GP who was responsible for enrolment into the trial), there was still a decline in the white-coat effect over time.

Based on these data contemporary disease management programs might primarily address 1) the improvement of adherence by simplification of treatment regimens, 2) physician’s inertia, and 3) a wide-spread adoption of automated office BP or ABPM with the support of healthcare providers [13, 21].

Strengths and limitations

Compared to previous trials, 96% of eligible patients underwent ABPM at baseline and after 6 months follow-up. This strengthens our results, since office BP values have been shown to be insufficient to judge treatment effects in HTN trials [20, 22, 23]. Due to slow recruitment, which led to the premature termination of the trial, the analysis lacks sufficient statistical power and can only be regarded as hypothesis generating.

Conclusion

In both groups statistically and clinically significant BP reductions were observed after 6 months. In the interventional care group, a larger proportion of patients achieved the office BP target compared to standard care. The 24h ambulatory blood pressure levels were controlled in 44% of patients at 6 months, without significant differences between groups. The respective BP reductions were achieved with a significantly lower medication burden in interventional care.

Acknowledgements

We would like to thank all participating physicians for their efforts and dedicated work.

Funding

The study was supported by an unrestricted educational grant from Daiichi Sankyo and Medtronic, by the Werner-Klein Award of the Austrian Society of Hypertension and by the Association for the Promotion of Research in Atherosclerosis, Thrombosis and Vascular Biology.

Conflict of interest

M. Rohla received advisory fees from Daiichi Sankyo and Novartis, and lecturing fees from Biotronik and Takeda Pharma, all outside the submitted work. K. Huber received lecturing fees and advisory honoraria from Boehringer Ingelheim, Pfizer/BMS, Bayer, Daiichi Sankyo, Sanofi-Aventis, AstraZeneca, and Eli Lilly. T.W. Weiss received lecturing fees and advisory fees from Daiichi Sankyo, Boehringer Ingelheim and Pfizer/BMS. M. Tscharre declares that he has no competing interests.

Open Access

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Banegas JR, Lopez-Garcia E, Dallongeville J, Guallar E, Halcox JP, Borghi C, et al. Achievement of treatment goals for primary prevention of cardiovascular disease in clinical practice across Europe: The EURIKA study. Eur Heart J. 2011;32(17):2143–52.
2. Wolf-Maier K, Cooper RS, Kramer H, Banegas JR, Giampaoli S, Joffres MR, et al. Hypertension treatment and control in five European countries, Canada, and the United States. Hypertension. 2004;43(1):10–7.

3. Vrijens B, Vincze G, Kristanto P, Urquhart J, Burnier M. Adherence to prescribed antihypertensive drug treatments: Longitudinal study of electronically compiled dosing histories. BMJ. 2008;336(7653):1114–7.

4. Rohla M, Haberfeld H, Tscharre M, Huber K, Weiss TW. Awareness, treatment, and control of hypertension in Austria: A multicentre cross-sectional study. J Hypertens. 2016;34(7):1432–40.

5. Weir MR, Hsueh WA, Nesbitt SD, Littlejohn TJ 3rd, Graff A, Shojaee A, et al. A titrate-to-goal study of switching patients uncontrolled on antihypertensive monotherapy to fixed-dose combinations of amlodipine and olmesartan medoxomil +/– hydrochlorothiazide. J Clin Hypertens (greenwich). 2011;13(6):404–12.

6. Feldman RD, Zou GY, Vandervoort MK, Wong CJ, Nelson SA, Feagan BG. A simplified approach to the treatment of uncomplicated hypertension: A cluster randomized, controlled trial. Hypertension. 2009;53(4):646–53.

7. Bhatt DL, Kandzari DE, O’Neill WW, D’Agostino R, Flack JM, Katzen BT, et al. A controlled trial of renal denervation for resistant hypertension. N Engl J Med. 2014;370(15):1393–401.

8. McAlister FA, Wilkins K, Joffres M, Leenen FH, Fodor G, Gee M, et al. Changes in the rates of awareness, treatment and control of hypertension in Canada over the past two decades. CMAJ. 2011;183(9):1007–13.

9. Perl S, Niederl E, Kos C, Mrak P, Ederer H, Rakovac I, et al. Randomized evaluation of the effectiveness of a structured educational program for patients with essential hypertension. Am J Hypertens. 2016;29(7):866–72.

10. Perl S, Riegelnek V, Mrak P, Ederer H, Rakovac I, Beck P, et al. Effects of a multifaceted educational program on blood pressure and cardiovascular risk in hypertensive patients: The Austrian herz.leben project. J Hypertens. 2011;29(10):2024–30.

11. Myers MG, Valdivieso M, Kiss A. Use of automated office blood pressure measurement to reduce the white coat response. J Hypertens. 2009;27(2):280–6.

12. Krum H, Schlaich M, Whitbourn R, Sobotka PA, Sadowski J, Bartus K, et al. Catheter-based renal sympathetic denervation for resistant hypertension: A multicentre safety and proof-of-principle cohort study. Lancet. 2009;373(9671):1275–81.

13. Townsend RR, Mahmoud F, Kandzari DE, Kario K, Pocock S, Weber MA, et al. Catheter-based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTN-OFF MED): A randomized, sham-controlled, proof-of-concept trial. Lancet. 2017;390(10108):2160–70.