小児頭部外傷の現状と課題

荒木 尚1), 熊井戸 邦佳1), 大宅 宗一2), 庄島 正明2), 松居 徹2)
1) 埼玉医科大学総合医療センター高度救命救急センター，2) 埼玉医科大学脳神経外科

Pediatric Traumatic Brain Injury：Current Status and Issues

Takashi Araki, M.D., Ph.D.1), Kuniyoshi Kumaido, M.D., Ph.D.1), Soichi Oya, M.D., Ph.D.2), Masaaki Shojima, M.D., Ph.D.2), and Toru Matsui, M.D., Ph.D.2)
1) Department of Emergency and Critical Care Medicine, Saitama Medical Center, Saitama Medical University, 2) Department of Neurosurgery, Saitama Medical Center, Saitama Medical University

Traumatic brain injury is one of the most frequent causes of morbidity and mortality in children. Even after appropriate treatment, the impact of traumatic brain injury on a child's life can be long-lasting and devastating. Higher brain dysfunction is likely to interfere with academic performance, impair health-related quality of life, and lead to mental health problems. However, the pathophysiological features specific to pediatric traumatic brain injury remain largely unexplored, and there are few clinical studies with a high level of evidence or basic studies that take into account the growth and development of the central nervous system. International efforts are required to clarify pediatric-specific findings without linearly transferring adult data. To elucidate the current status and issues of pediatric head injury, we will introduce the latest findings on acute care and the most important points of the “Guidelines for the Management of Pediatric Severe Traumatic Brain Injury, Third Edition.” In addition, we will discuss the latest issues related to the diagnosis of abusive head trauma, which has become a serious social problem on a global scale, and treatment options for abusive head trauma.

(Received March 3, 2021; accepted April 6, 2021)

Key words: traumatic brain injury, children, guidelines, abusive head trauma, intracranial pressure monitoring

Jpn J Neurosurg (Tokyo) 30：450–461, 2021
ルⅢであった。

今回ガイドライン改訂に加え、治療抵抗性の頭蓋内圧亢進に対する治療（first-tier therapy/second-tier therapy）のバスとして「アルゴリズム」が新たに示された。このアルゴリズムは、治療抵抗性の頭蓋内圧亢進に対する治療（first-tier therapy）が示された32）。このアルゴリズムは、治療抵抗性の頭蓋内圧亢進に対する治療（second-tier therapy）を示すものである。従来のガイドラインに示されていなかったテーマも複数登場し、今後の研究が必要である。頭蓋内圧（intracranial pressure：ICP）亢進に対するstepwise approach、患者状態による治療介入タイミングの違い、迅速な治療介入が必要となるシナリオ、multi-modal monitoringにおける各モニタリング目標の違い、迅速な治療介入が必要となるシナリオ、multi-modal samplingにおける各モニタリング目標の統合、治療の最小目標と最適目標、治療漸減の考え方などが網羅されている。当ガイドラインはThe Approaches and Decisions in Acute Pediatric TBI Trial（ADAPT）7836）の終了と同時に作成されたが、ADAPTは小児重症頭部外傷1,000例の登録を完了した重要な研究である。小児頭部外傷については、脳損傷の重症度スペクトル、脳振盪の高い有病率、外傷性脳損傷の新たな分類作成、新たな研究デザインの必要性などに関する議論を背景に注目が高まってきた。この章では、ガイドライン改訂第3版の要点を示し解説する。

査読対象の文献検索基準として、重症頭部外傷〔Glasgow Coma Scale（GCS）スコア3〜8と定義〕の小児患者（年齢18歳以下）が研究対象となり、アウトカム（死亡率、神経学的機能、またはテーマに即した中間アウトカム）が評価された研究を主に収集した。査読者2名が独立して内容を評価し、判断が相違する場合は統合あるいは第3査読者の判断に準拠した。

改訂の要点

1. モニタリングに関する推奨

モニタリング自体は治療結果に直接影響を与えないが、モニタリングから得られる情報は治療方針決定にきわめて有効である。モニタリングにより得られたデータに基づき実施された治療は、モニタリングのない治療よりも良好な転帰をもたらす可能性が高い。

ICPモニタリング、advanced cerebral monitoring（ACM）、神経画像検査（neuroimaging）の3種類のうちICPとACMに関する記載は第2版と変更はない。今回の改訂では、ICPモニタリングの使用（レベルⅢ）、ACMとして脳組織酸素分圧（partial pressure of brain tissue oxygen：PbrO2）モニタリングを使用する場合＞10 mmHgを維持する（レベルⅢ）ことが新たに推奨された。なお、①予後改善のためPbrO2モニタリングを推奨する十分なエビデンスは存在しない。②ACM（脳内酸素化）は、凝固異常など侵襲的モニタリングの禁忌が少なく、脳死診断を受けていない患者ののみ行うよう追記された。神経画像検査については、従来の推奨に加え、「ICP亢進疑いを除外する目的のCT検査は推奨されない」と記載された（レベルⅢ）。

2. 治療関値に関する推奨

小児重症頭部外傷のモニタリング変数の関値に関連した推奨であり、特にICPと脳灌流圧（cerebral perfusion pressure：CPP）について記載された。ICP治療の目標関値は20 mmHg（レベルⅢ）、CPP治療の目標関値は40 mmHg（レベルⅢ）が推奨され、CPP 40 mmHg維持をより確かにするためにCPP 40〜50 mmHgの維持が推奨される。また乳幼児ではより低く、思春期ではより高い年齢特異的な治療関値を定めてもよい、と記載された。

3. 治療に関する推奨

治療に関する推奨は10項あり、小児頭部外傷に特化した内容とリスクについて言及している。現在主流とされる治療法でありながら新しい手法が登場し改変が望ましいものについては、既存の記載に変更または追記がなされた。推奨は全15項、うち7項が新規または改訂された。抗浸透圧利尿薬に関する推奨2項、鎮痛・鎮静薬、神経筋遮断薬に関する推奨1項、療撃予防に関する推奨1項、体温調節に関する推奨2項、および栄養学に関する推奨1項である。今回の改訂では新規または既存の推奨を支持するために使用されたエビデンスベース35件の新規研究が追加された。各治療法における推奨について要点を述べる。

1）高浸透圧治療

ICP亢進の治療には高浸透圧食塩水（3%）の急速投与が望ましい、緊急の際効有量を容量として2〜5 ml/kgを10〜20分かけて投与する（レベルⅡ）。

高浸透圧食塩水の持続投与に3%食塩水を用いる際、0.1〜1.0 ml/kgの用量でスライディングスケールを用い
調節する。ICP 20 mmHg 以下を維持できる最少量がよい（レベルⅢ）、治療抵抗性の ICP 先進の場合には 23.4 % 高張食塩水の急速投与を行う。0.5 ml/kg を 30 ml 上限として投与する（レベルⅢ）。

高張透圧治療すべてに共通することとして、血漿 Na 濃度 170 mEq/l 以上が虚血性状態の発生率が高まる。マニトールは頻用される薬剤であるが、有効性に関する明らかな医学的根拠はなく慣習的な投与として位置付けられた。

2. 鎮痛薬、鎮静薬、神経筋遮断薬

ICP 治療目的に鎮痛・鎮静薬を使用する際、ICP が危機的状態では脳灌流低下を誘発する危険がある。このためミダゾラムやフェンタニルの急速注射は避ける（レベルⅢ）。鎮痛・鎮静の適応において、選択や投与量については明確なデータがないため主治医の判断に委ねられている。

3. 腦室ドレナージ

ICP 亢進の機械的治療に脳室ドレナージによる髄液排出は有効である（レベルⅢ）。

4. 痙攣予防（症候性あるいは非症候性）

外傷後性早期痙攣（7 日以内）の発生を防止する（レベルⅢ）。早期痙攣の予防効果および合併症の観点においてフェニトインに対するレベチラセタムの優位性は実証されていない。

5. 人工呼吸管理

受傷後 48 時間以内は PaCO2 30 mmHg とする予防的治療が行われる（レベルⅢ）。治療抵抗性 ICP 先進に対する治療として高度虚血を実施する際は、脳虚血評価のため ACM を行うとよい（レベルⅢ）。

6. 体温管理・低体温

中等度低体温（32℃ ～ 33℃）は予後改善目的に実施すべきでない（レベルⅡ）。一方、ICP 先進に対する中等度低体温は効果が期待できる（レベルⅢ）。ただし、復温は 12 ～ 24 時間に 0.5 ～ 1.0℃ の割合で行い、合併症防止が重要である。また、低体温中にフェニトインを使用する場合は、中毒域に入らないよう復温期脳内温度モニタリングを行う。

7. パルビツレート療法

高用量パルビツレート療法は、内科的・外科的治療が奏効しない ICP 先進に適用される。循環過剰が安定している場合に使用する（レベルⅡ）。ICP 先進に対し高用量パルビツレート療法を行う際は、適切な CPP を維持するため、呼吸循環管理が必須である。持続動脈圧モニタリングを行う。

8. 減圧開頭術

減圧開頭術は、神経学的所見の増悪、脳ヘルニア症状、内科的治療が無効な ICP 先進を呈する場合実施してもよい（レベルⅢ）。

9. 柒養管理

免疫調整食は使用されない（レベルⅡ）。一方、早期の経腸栄養サポート開始（72 時間以内）は、死亡率減少、脳機能改善の効果が示唆されている（レベルⅢ）。

10. ステロイド療法

副腎皮質ステロイドは、転帰改善や ICP 減少には有効でない（レベルⅢ）。ただし慢性的ステロイド補充療法を必要とする患者、副腎抑制を示した患者、および視床下部顕系の障害に対する副腎皮質ステロイド補充を否定するものではない。

11. 免疫抑制療法

減圧開頭術は、神経学的所見の増悪、脳ヘルニア症状、内科的治療が無効な ICP 先進を呈する場合実施してもよい（レベルⅢ）。

12. 柒養管理

免疫調整食は使用されない（レベルⅡ）。一方、早期の経腸栄養サポート開始（72 時間以内）は、死亡率減少、脳機能改善の効果が示唆されている（レベルⅢ）。

13. ステロイド療法

副腎皮質ステロイドは、転帰改善や ICP 減少には有効でない（レベルⅢ）。ただし慢性的ステロイド補充療法を必要とする患者、副腎抑制を示した患者、および視床下部顕系の障害に対する副腎皮質ステロイド補充を否定するものではない。

[小児重症頭部外傷の治療アルゴリズム]

今回の改訂では新たにアルゴリズムが設けられ視覚的に理解しやすい指針となった (Fig. 1, 2)。来院時 GCS 8 あるいはそれ未満の意識レベルにある患者を重症と定義する。外傷初期診療において頭部 CT を行い、緊急開頭術の適応ではない場合、神経集中治療の pathlay に進む。ICU 管理は GIC 値を基準に行われ脳実質内センサー留置を原則とする。

1. Baseline care

小児重症頭部外傷患者に対して適用される 9 つの治療原則が baseline care である。

① 鎮痛薬・鎮静薬の適量を維持する：ミダゾラム・フェンタニルを併用する。

② 酸素治療：PaO2 90 ～ 100 mmHg, PaCO2 35 ～ 40 mmHg の維持

③ 正常深部体温の維持と発熱予防および治療：38℃ 以下で調節する。

④ 適正な血管内チューブの確保：中心静脈圧（central venous pressure : CVP）や尿量、BUN などを指標とする。

⑤ 導入 140 mEq/l 以上の維持、乳幼児は 5% dextrose を用いて低血糖への対策が必要。年長児には生理食塩水が望ましい。栄養投与開始は受傷後 72 時間に達する必要がある。

⑥ 血液中（hemoglobin 値）の維持：最低 7 g/dl を維持する。

⑦ 脳血管損傷：ICP センサー・PbrO2 プローブの挿入が理想的であるが、過剰な治療は凝固異常を増悪させめるため、出血状態を考慮に検討する。

⑧ 頭位挙上：頭部正中固定：頭部は正中固定のう
Fig. 1  Evidence- and consensus-based algorithms of first-tier therapies for the management of severe traumatic brain injury (TBI) in infants, children, and adolescents  

The algorithm includes several components, including baseline care (black), the intracranial pressure (ICP) pathway (yellow), herniation pathway (green), cerebral perfusion pressure (CPP) pathway (orange), and brain tissue partial pressure of oxygen (PbrO₂) pathway (pink). Solid lines indicate the ICP and CPP pathways, reflecting their primary role. The dashed line indicates the PbrO₂ pathway, given the fact that it represents a monitoring and management option that is less commonly used and has less literature support. The dotted and dashed lines indicate weaning or withdrawal of the various interventions. As indicated in the text, the treating practitioner should integrate all available information and implement the guidelines within the context of each patient’s unique response to various therapies to design the optimal treatment regimen. In addition, although a linear approach in each pathway is provided, variations in “tempo” and timing during which therapies are implemented or weaned/will depend on the given clinical context. For example, in some situations, a single intervention for raised ICP may suffice, whereas in others, multiple simultaneous interventions may be required. The approach often needs to be adapted to the patient’s needs. If baseline care is insufficient to control ICP, progression down the ICP and CPP pathways is indicated (solid black line). The blue box indicates the need for second-tier therapy and represents the link in Fig. 2.

BUN: blood urea nitrogen, CVP: central venous pressure, EEG: electroencephalogram, EVD: external ventricular drain, GCS: Glasgow Coma Scale, FiO₂: fraction of inspired oxygen, Hgb: hemoglobin, HOB: head of bed
え、30度挙上する。
⑧抗痙攣薬の使用と持続脳波モニタリング：抗痙攣薬の種類や用量について具体的推奨はないが、レベチラセタムは他剤に比較して使用しやすい。筋弛緩薬を使用する際には持続モニタリングが有用である。
⑨栄養投与開始：低血糖に注意し可能なかぎり早期から開始する。
2. First-tier therapy
First-tier therapy として、①ICP亢進に対する治療、②CPP異常に対する治療、③PbrO2異常に対する治療、以上3種のpathwayを含む（Fig.1）。
1）ICP pathway
全年齢においてICP 20 mmHg以上を治療閾値とし、20mmHg以上が5分以上持続した場合治療介入を行う。ICP値が20～25 mmHg程度であれば、段階的にfirst-tier therapyを試みる。最初に脳室ドレナージにて髄液排出を行い、無効またはドレナージがない場合、高張食塩水のbolus投与を行う。高張食塩水の代わりにマニトールを使用してもよい。繰り返し投与可能だが、高張食塩水は360 mOsm/l、マニトールは320 mOsm/lを血液浸透圧の上限として投与量を調節する。さらに無効の場合、鎮静鎮痛薬の用量を追加し、筋弛緩薬投与を考慮する。血液ガス、電解質、クレアチニン、ヘモグロビンを測定し、平均動脈圧、体温、呼気終末炭酸ガス濃度を経時的に記録する。First-tier therapyが無効とされた場合、second-tier therapyに進む。
2）CPP pathway
ICP値が上昇しても、CPP値は正常に維持されていることが多い。CPP値は低40 mmHgの維持が重要で、年齢により40～50 mmHgの治療幅に設定するとよい。脳低灌流や虚血を予防目的で、より高い値に維持することもある。CPP値の維持には適正な血管内容量の補
充が大切であり，CVP 4～10 mmHg を適正とする。平均動脈圧 (mean arterial pressure: MAP) 値は補液を十分に行い正常容量に保つ。ICP 値と CPP 値は連動するが，高張食塩水を使用すると，ICP 値低下と CPP 値正常化が同時に得られる。一方，鎮静鎮痛薬を用いる場合，ICP 値が降下しても心抑制などにより CPP 値が正常化しないこともある。

3）PbrO2 パスウェイド

PbrO2 モニターの使用経験が集積され，新たなパスウェイドとして追加された。最低値を 10 mmHg と設定し，FiO2 上昇や昇圧薬を用いた MAP 値の上昇，PaCO2 上昇による脳血流増加，輸血によるヘモグロビン値上昇等を通して最適化を図る（日本では PbrO2 の測定は未承認である）。

3. Second-tier therapy

First-tier therapy が無効な ICP 充進や，CPP 値・PbrO2 値の異常に対しさらなる治療介入が必要と考えられた場合，second-tier therapy を考慮する（Fig. 2）。まず手術的除去が可能な病変の有無を確認するため CT を行う。Second-tier therapy には，より侵襲性の高いモニタリングが必要である。内科的治療として減圧開頭術が最もよく行われるが，頭部外傷の特徴や死亡率，治療に関与した報告の高齢化は既に承認されている。一方，鎮静薬の使用も必要である。

1）バルビタール療法

ペントバルビタールが最も多く用いられる。他の治療が無効で ICP 25 mmHg 以下で維持できない場合に適応され，治療効果が認められない場合，減圧開頭術やその他の第二-tier therapy を追加する。ICP 20 mmHg 以下が 24 時間以上維持できた場合，24～96 時間かけて漸減する，適正 CPP 値の維持に昇圧薬を用いることもある。

2）中等度低体血圧療法

受傷早期の中等度低体温（32～33℃あるいは 34～35℃）療法の有効性は否定されたが，ICP 充進の治療として，高血圧療法が有効と推定される報告が多い。

3）治療的過換気療法

PaCO2 値 15～30 mmHg とする高血圧気は，脳圧昇高に対して治療されてきた。低血圧ガス血症の程度に合わせて血中 Na 濃度，血漿浸透圧，鎮静薬静脈用量を調節する治療もある。

4）侵襲的モニタリング

モニタリングは治療の調整具合を可視化するため重要である。PbrO2 モニタリング，持続脳波，経頭蓋ドップラー超音波，pressure reactivity index (PRx) などがある。例として PbrO2 モニタリングにより過換気が過酸素素分圧を低下させた場合が判断できる。PRx は急性期 ICP と平均血圧の相関係数であり，理想的 CPP 値を判断する指標として有用である。

5）治療の漸減

パラメータが正常化し 12～24 時間安定した場合，治療の漸減を検討する。画像所見や時間経過や重症度など個別に判断されなくてはならない。

II ガイドラインに準拠した治療の応用

The Approaches and Decisions in Acute Pediatric Traumatic Brain Injury (ADAPT) Trial は米国 National Institute of Neurological Disorders and Stroke (U01 NS081041) 研究費を基に米国，英国，スペイン，オランダ，インド，南アフリカ共和国，オーストラリア，ニュージーランドの 51 施設より 1,000 名の小児頭部外傷患者を登録，有効な治療戦略を検討した研究である。厳密な観察研究であり 18 歳以下，意識レベル GCS 8 あるいはそれ以下の重症例，ICP センサー挿入例を対象とし，顕微鏡を用いた治療を除外した。Miller-Ferguson らは当初 200 例を対象とし，虐待による頭部外傷の特徴や死亡率，治療に関連して検討した。その結果，若年，女児に多い傾向にあり，腫瘍や無呼吸を伴うことが示された。虐待例は著しい ICP 充進を認め，ICP モニタリングとガイドライン準拠の治療により効果が期待できることを示した。

ICP モニタリングに関する Chesnutt らのランダム化比較試験に小児例は含まれておらず，また ICP モニタリングと転帰の関係について検討したエビデンスレベルの高い臨床研究は少ない。ICP モニタリングの有効性が示された研究には，複数の治療により ICP 降下し転帰が改善した，100 例の前向き観察により，ICP 降下と治療 1 年後の転帰改善に関係を認めたものもある。また，難治性 ICP 充進例は ICP 三重値においても著しく予後絶対不良と結論した後方視的研究所ある4)。

モニタリングを駆使した治療方針決定には，正しいデータの理解が不可欠である。現在 ICP 充進を示す画像診断法やバイオマーカーは存在しないため，ICP モニタリングは ICP 充進を明確に提示できる方法である。頭部外傷治療の基本理念が ICP 充進の予測と抑制にある以上，モニタリングにより ICP 充進の早期検出と適切な治療介入は必須である。長期予後の相関についての研究は，モニタリングによる ICP 充進抑制が生存率や神経学的転帰を改善している9)。

ガイドライン第 3 版公表時点では ADAPT の研究内容
虐待による頭部外傷に関する諸問題

① はじめに
児童相談所での虐待に関する年間相談件数は15万件（2018年度）に及んでおり、虐待による頭部外傷（abusive head trauma：AHT）は2歳以下の重症頭部外傷の原因として最多である。AHTの多様な病態には不明な点も多く、再現性のある実験モデルが求められてきた。また集学的治療においてもかえって転帰不良であり、神経学的後遺症を遺す例も少なくない。それに対する治療法は、頭蓋・頚椎頚髄領域のCT/MRIがきわめて有用である。特に3D再構成による頭蓋冠CT画像や、冠状断による頭頂領域の精査が望まれる。PECARN（The Pediatric Emergency Care Applied Research Network）などの小児軽症頭部外傷に対するCT適応基準をAHT診断に適用すべきではない。MRIによるsusceptibility-weighted imaging（SWI）はT2＊強調像（T2＊WI）と同様に局所磁場を乱す構造を強調するため、微小出血性病変に特異度の高い撮像法である。頭蓋外出血や脳挫傷、脳深部（基底核や脳梁）の損傷、網膜出血を評価することができる。硬膜下液体貯留の成分や発生時期、架橋静脈の走行など解剖学的考察も可能である。

虐待群と単純事故群のCT画像所見の比較により、①複雑な骨折パターンは虐待群に多い。②硬膜外血腫は事故群に多い。③硬膜下血腫は虐待群に多い。④くも膜下出血、脳実質内出血に有意差はないと結論された。特に大脳鎌近傍に認められる急性硬膜下血腫はAHTに最もよくみられる所見であり、混合吸収域である場合はより特異度が高いという。Bradfordらは虐待による受傷が確定した105例を対象とし、92％に急性硬膜下血腫を認めたが、初回CTによる血腫の放射線吸収性には一定の傾向はなく多様であるため、受傷時期の判断は避けるよう勧告した。

脳実質損傷の描出にはMRIが有用であり、脳挫傷や微小出血性病変といった一次性脳損傷、虚血・低酸素の影響を受けた二次性脳損傷についても評価できる。Diffusion weighted imaging（DWI）による白質信号変化は、脳動脈灌流域に限らず一義的に脳虚血といえなかった。また静脈損傷はAHTと強く相関があるが、架橋静脈及び矢状静脈洞の結合部に最も異常が認められ硬膜下血腫の起源と考えられている。皮質静脈損傷や脳静脈内血栓も認められ、病理学的に硬膜内の出血所見が指摘されている。

AHTを疑う場合、頭頸・頭髪の評価も重要である。乳児は上位頭頸・頭髪損傷を起こしやすく、椎体や椎弓に骨損傷を伴わず軟部組織・靭帯損傷を生じやすい。
童虐待疑いの乳幼児を対象とした研究では骨性の頚椎損傷の頻度は0.3～2.7%とされる30）。骨損傷以外の損傷は60～70%であり、靭帯損傷や軟部組織内出血、斜台後部硬膜外血腫の報告などがある15）。頭蓋内損傷を認めた場合、全脳体・脳幹のMRI検査が強く推奨される。

頸固拡大を伴う乳児の良性も膜腔拡大（benign enlargement of sub-arachnoid spaces in infancy：BESS）は、発生原因が明らかではない。712例の検討では、5.3%に硬膜下液体貯留を認め、うち12例が血液貯留であった。血液成分を認めた例の41.7%に外傷の関与があったという25）。現在、血液成分を伴う非血液性の液体貯留を硬膜下に認める場合直ちにAHTと診断することは避けるべきである。

分娩外傷は重要な鑑別疾患であり、異常分娩後の帝王切開や吸引・鉗子による機械分娩後、外傷性脳損傷の罹患率は比較的高い51）。特に硬膜下血腫は小脳テント近傍や後頭蓋窩に多くみられ、無症状の新生児の8～46%に認められた報告もある38）。予後はきわめて良好であり、Rooksら48）は無症状の新生児に対し、出生後72時間以内にMRIを実施し急性硬膜下血腫を確認したが、全例3カ月後に消失かつ神経学的後遺症は認めていなかった。分娩外傷とAHTとの鑑別において重要な知見である。

分娩外傷は重要なものであるが、発症の機序は不明確であり、発症の機序は多様である。分娩外傷は、特に硬膜下血腫は小脳テント近傍や後頭蓋窩に多くみられ、無症状の新生児の8～46%に認められた報告もある38）。予後はきわめて良好であり、Rooksら48）は無症状の新生児に対し、出生後72時間以内にMRIを実施し急性硬膜下血腫を確認したが、全例3カ月後に消失かつ神経学的後遺症は認めていなかった。分娩外傷とAHTとの鑑別において重要な知見である。

分娩外傷は重要なものであるが、発症の機序は不明確であり、発症の機序は多様である。分娩外傷は、特に硬膜下血腫は小脳テント近傍や後頭蓋窩に多くみられ、無症状の新生児の8～46%に認められた報告もある38）。予後はきわめて良好であり、Rooksら48）は無症状の新生児に対し、出生後72時間以内にMRIを実施し急性硬膜下血腫を確認したが、全例3カ月後に消失かつ神経学的後遺症は認めていなかった。分娩外傷とAHTとの鑑別において重要な知見である。

分娩外傷は重要なものであるが、発症の機序は不明確であり、発症の機序は多様である。分娩外傷は、特に硬膜下血腫は小脳テント近傍や後頭蓋窩に多くみられ、無症状の新生児の8～46%に認められた報告もある38）。予後はきわめて良好であり、Rooksら48）は無症状の新生児に対し、出生後72時間以内にMRIを実施し急性硬膜下血腫を確認したが、全例3カ月後に消失かつ神経学的後遺症は認めていなかった。分娩外傷とAHTとの鑑別において重要な知見である。

分娩外傷は重要なものであるが、発症の機序は不明確であり、発症の機序は多様である。分娩外傷は、特に硬膜下血腫は小脳テント近傍や後頭蓋窩に多くみられ、無症状の新生児の8～46%に認められた報告もある38）。予後はきわめて良好であり、Rooksら48）は無症状の新生児に対し、出生後72時間以内にMRIを実施し急性硬膜下血腫を確認したが、全例3カ月後に消失かつ神経学的後遺症は認めていなかった。分娩外傷とAHTとの鑑別において重要な知見である。

分娩外傷は重要なものであるが、発症の機序は不明確であり、発症の機序は多様である。分娩外傷は、特に硬膜下血腫は小脳テント近傍や後頭蓋窩に多くみられ、無症状の新生児の8～46%に認められた報告もある38）。予後はきわめて良好であり、Rooksら48）は無症状の新生児に対し、出生後72時間以内にMRIを実施し急性硬膜下血腫を確認したが、全例3カ月後に消失かつ神経学的後遺症は認めていなかった。分娩外傷とAHTとの鑑別において重要な知見である。
AHTの構成要素として硬膜下血腫、網膜出血、脳浮腫等臨床所見の科学的に妥当性については議論が続いているが、in vitroモデルはエビデンスレベルが低いものとなざるを得ず、医学的因果関係を証明するには十分でない。脳・脊椎のみを対象とした生体力学的モデルも数学的に不正確とならざるを得ない。

AHTの受傷機転の解明は今後も注目されるが、研究の限界が正しく認識されてはならない。
24例（83%）に網膜出血を認め、暴力的挙振り（100%）、復数回の挙振り（55%）の関与を報告した。2 研究は、暴力的挙振りは急性硬膜下血腫や網膜出血の原因となると結論を導いたものの、systematic review 上エビデンスレベルの高い研究でないことから「三度肩傾により暴力的挙振りの原因が正確に断定できるか」判断できないと結論した。これに対し共同声明により SBU 報告書の問題点が指摘され、AHT 診断の必要性と多職種による総合的な判断の重要性が改めて認識された。SBU 報告書は虐待にかかわる司法判断に資する科学的根拠の在り方を社会に問う役割を果たすべきであると記載されている。

本邦では軽微な受傷機転による乳幼児急性硬膜下血腫の存在が知られるが、後頭蓋後、急激な意識障害と顔面蒼白、四肢痙攣麻痺、網膜出血などを伴う乳幼児急性硬膜下血腫の疾患群であり。步行可能となる6〜10カ月以降の発症が多く、血腫は多少で予後が比較的よいことなど諸家の報告が認められるが、Aoki らが infantile acute subdural hematoma 26 例を報告し国際的にも臨床的価値が認められている。

日本脳神経外傷学会・日本脳神経外科学会監修による頭部外傷治療・管理のガイドライン第 1 版では、小児頭部外傷の章「虐待による頭部外傷」の項において、「乳幼児の急性および慢性の硬膜下血腫の解剖学的成因については様々な説が存在するが、血液漏出障害、代謝異常、感染症など既往歴による画像所見の解釈や、病歴の整合性、眼科所見、過去の虐待の有無などを総合的に判断する必要があり、脳神経外科単科による判断は容易でなく、行うべきではない。院内虐待防止委員会などシステムとして虐待の有無について判断を行うこと、学会が主催する研修会への参加を通じ、虐待診断の精度を上げるための努力が望まれる」と記載されている。現在、軽微な受傷機転による乳幼児急性硬膜下血腫の全国調査がなされており、本邦の皆様調査として貴重な科学的根拠となることが期待される。

図 まとめ

AHT の病態解明と、神経集中治療を駆使した救命、残存機能に対するリハビリテーションが同期して行われることにより、予後改善は十分に期待できるであろう。同時に、AHT がもたらす重大な喪失に関する社会啓発、児童虐待防止のための実効的施策の構築、司法判断に資する医学的意見陳述など、多くの役割が脳神経外科に期待されている。

日本の将来推計人口によれば、2060年の総人口は8,674万人に減少し、65歳以上が全人口の約40%、18歳未満は13%となると試算されている。未来の日本を担う大切な子どもたちは「ひとりひとりも」失われてはならない。小児頭部外傷診療を担う脳神経外科は専門診療科として適切かつ迅速な対策を講じるための重要な役割を果たさなくてはならない。

著者全員は日本脳神経外科学会への COI 自己申告の登録を完了しています。本論文に関して開示すべき COI はありません。
13 Chevignard MP, Lind K: Long-term outcome of abusive head trauma. Pediatr Radiol 44 Suppl 4: S548–558, 2014.

14 Choudhary AK, Bradford R, Dias MS, Thamburaj K, Boal DKB: Venous injury in abusive head trauma. Pediatr Radiol 45: 1803–1813, 2015.

15 Choudhary AK, Bradford RK, Dias MS, Moore GJ, Boal DKB: Spinal subdural hemorrhage in abusive head trauma: a retrospective study. Radiology 262: 216–223, 2012.

16 Choudhary AK, Ishak R, Zacharia TT, Dias MS: Imaging of spinal injury in abusive head trauma: a retrospective study. Pediatr Radiol 44: 1130–1140, 2014.

17 Choudhary AK, Jha B, Boal DK, Dias M: Occipital sutures and its variations: the value of 3D-CT and how to differentiate it from fractures using 3D-CT? Surg Radiol Anat 32: 807–816, 2010.

18 Choudhary AK, Servaea S, Slovis TL, Palusci VJ, Hedlund GL, Naran SK, Moreno JA, Dias MS, Christian CW, Nelson MD Jr, Silvera VM, Palasis S, Raissaki M, Rossi A, Offiah AC: Consensus statement on abusive head trauma in infants and young children. Pediatr Radiol 48: 1048–1065, 2018.

19 Costine-Bartell BA, McGuone D, Price G, Crawford E, Keeley KL, Munoz–Pareja J, Dodge CP, Staley K, Duhaime AC: Development of a model of hemispheric hypodensity ("Big Black Brain"). J Neurotrauma 36: 815–833, 2019.

20 Denny-Brown D, Russel WR: Experimental cerebral concussion. Brain 64: 93–164, 1941.

21 Dingman AL, Stence NV, O’Neill BR, Sillau SH, Chapman KE: Seizure severity is correlated with severity of hypoxic–ischemic injury in abusive head trauma. Pediatr Neurol 82: 29–35, 2018.

22 Duhaime AC, Durham S: Traumatic brain injury in infants: the phenomenon of subdural hemorrhage with hemispheric hypodensity ("Big Black Brain"). Prog Brain Res 161: 293–302, 2007.

23 Elinder G, Eriksson A, Hallberg B, Lynne N, Sundgren PM, Rosén M, Engström I, Erlendsson BE: Traumatic shaking: The role of the triad in medical investigations of suspected traumatic shaking. Acta Paediatr 107 Suppl 472: 3–23, 2018.

24 Foster KA, Recker MJ, Lee PS, Bell MJ, Tyler–Kabara EC: Factors associated with hemispheric hypodensity after subdural hematoma following abusive head trauma in children. J Neurotrauma 31: 1625–1631, 2014.

25 Hansen JB, Frazier T1, Moffatt M, Zinkus T, Anderst JD: Evaluations for abuse in young children with subdural hematomas: findings based on symptom severity and benign enlargement of the subarachnoid spaces. J Neurosurg Pediatr 21: 31–37, 2018.

26 Hashiani DM, Topjian AA, Friess SH, Kilbaugh TJ, Berg RA, Christian CW, Dlugos DJ, Huh J, Abend NS: Nonconvulsive electrographic seizures are common in children with abusive head trauma. Pediatr Crit Care Med 14: 709–715, 2013.

27 Holbourn AHS: Mechanics of head injuries. Lancet 242: 438–441, 1943.

28 Jagannathan J, Okonkwo DO, Yeo H, Dumont AS, Saull D, Haizlip J, Barth JT, Jane JA Jr, Jane JA Jr: Long-term outcomes and prognostic factors in pediatric patients with severe traumatic brain injury and elevated intracranial pressur. J Neurosurg Pediatr 2: 240–249, 2008.

29 Kelly P, John S, Vincent AL, Reed P: Abusive head trauma and accidental head injury: a 20-year comparative study of referrals to a hospital child protection team. Arch Dis Child 100: 1123–1130, 2015.

30 Kemp A, Cowley L, Maguire S: Spinal injuries in abusive head trauma: patterns and recommendations. Pediatr Radiol 44 Suppl 4: S604–612, 2014.

31 K Kochanek PM, Carney N, Adelson PD, Ashwal S, Bell MJ, Bratton S, Carson S, Chesnut RM, Gajjar J, Goldstein B, Grant GA, Kisson N, Peterson K, Selden NR, Tasker RC, Tong KA, Vavilala MS, Wainwright MS, Warden CR: American Academy of Pediatrics-Section on Neurological Surgery: American Association of Neurological Surgeons/Congress of Neurological Surgeons: Child Neurology Society: European Society of Pediatric and Neonatal Intensive Care: Neurocritical Care Society: Pediatric Neurocritical Care Research Group: Society of Critical Care Medicine: Paediatric Intensive Care Society UK: Society for Neuroscience in Anesthesiology and Critical Care: World Federation of Pediatric Intensive and Critical Care Societies: Guidelines for the acute medical management of severe traumatic brain injury in infants, children, and adolescents—second edition. Pediatr Crit Care Med 13 (Suppl 1): S1–S82, 2012.

32 Kochanek PM, Tasker RC, Bell MJ, Adelson PD, Carney N, Vavilala MS, Selden NR, Bratton SL, Grant GA, Kisson N, Reuter–Rice KE, Wainwright MS: Management of pediatric severe traumatic brain injury: 2019 consensus and guidelines-based algorithm for first and second tier therapies. Pediatr Crit Care Med 20: 269–279, 2019.

33 Kochanek PM, Tasker RC, Carney N, Totten AM, Adelson PD, Selden NR, Davis-O’Reilly C, Hart EL, Bell MJ, Bratton SL, Grant GA, Kisson N, Reuter–Rice KE, Vavilala MS, Wainwright MS: Guidelines for the management of pediatric severe traumatic brain injury, third edition: update of the Brain Trauma Foundation Guidelines. Pediatr Crit Care Med 20 (3S Suppl 1): S1–S82, 2019.

34 Kochanek PM, Tasker RC, Carney N, Totten AM, Adelson PD, Selden NR, Davis-O’Reilly C, Hart EL, Bell MJ, Bratton SL, Grant GA, Kisson N, Reuter–Rice KE, Vavilala MS, Wainwright MS: Guidelines for the management of pediatric severe traumatic brain injury, third edition: update of the Brain Trauma Foundation Guidelines, executive summary. Pediatr Crit Care Med 20: 280–289, 2019.

35 国立社会保障・人口問題研究所：人口問題研究資料第336号 日本の将来推計人口—平成28 (2016) ～77 (2065)年—. 2017. http://www.ipss.go.jp/publication/j/shiryou/jinkoken/shiryou.html

36 Kurz JE, Poloyac SM, Abend NS, Fabio A, Bell MJ, Wainwright MS: Investigators for the Approaches and Decisions in Acute Pediatric TBI Trial: Variation in anticonvulsant selection and electroencephalographic monitoring following severe traumatic brain injury in children: understanding resource availability in sites participating in a comparative effectiveness study. Pediatr Crit Care Med 17: 649–657, 2016.

37 Lind K, Toure H, Brugel D, Meyer P, Laurent-Vannier A, Chevignard M: Extended follow-up of neurological, cognitive, behavioral and academic outcomes after severe abusive head trauma. Child Abuse Negl 51: 358–367, 2016.
38) Looney CB, Smith JK, Merck LH, Wolfe HM, Chesccheir NC, Hamer RM, Gilmore JH: Intracranial hemorrhage in asymptomatic neonates: prevalence on MR images and relationship to obstetric and neonatal risk factors. *Radiology* **242**: 535–541, 2007.

39) Magana JN, Kuppermann N: The PECARN TBI rules do not apply to abusive head trauma. *Acad Emerg Med* **24**: 382–384, 2017.

40) Maguire SA, Kemp AM, Lumb RC, Farewell DM: Estimating the probability of abusive head trauma: a pooled analysis. *Pediatrics* **128**: e550–e564, 2011.

41) Matlung SE, Bilo RA, Kubat B, van Rijn RR: Shearing of nerve fibres as a cause of brain damage due to head injury: A pathological study of twenty cases. *Lancet* **278**: 443–448, 1961.

42) Miller–Ferguson N, Saraika A, Miles D, Shaﬁ N, Peters MJ, Truemper E, Vavilala MS, Bell MJ, Wisniewski SR, Luther JF, Hartman AL, Kochanek PM: Investigators of the Approaches and Decisions in Acute Pediatric Traumatic Brain Injury (ADAPT) Trial: Abusive head trauma and mortality—an analysis from an international comparative effectiveness study of children with severe traumatic brain injury. *Crit Care Med* **45**: 1398–1407, 2017.

43) 中村紀夫, 小林 茂, 平川公義, 山田 久, 神保 実：小児の頭部外傷と頭蓋内血腫の特徴, 第 2 報 急性・亜急性頭蓋内血腫, *Brain Nerve* **17**: 785–794, 1965.

44) Nuño M, Ugiliweneza B, Bardini RL, Oztruk A, Stephenson JT, Magaña JN: Age–related mortality in abusive head trauma, *J Trauma Acute Care Surg* **87**: 827–835, 2019.

45) Ommaya AK, Carrao P, Letcher FS: Head injury in the chimpanzee. 1. Biodynamics of traumatic unconsciousness. 1. Biodynamics of traumatic unconsciousness. *J Neurosurg* **39**: 152–166, 1973.

46) Orru’ E, Huisman TAGM, Izbudak I: Prevalence, patterns, and clinical relevance of hypoxic–ischemic injuries in children exposed to abusive head trauma. *J Neuroimaging* **28**: 608–614, 2018.

47) Risen SR, Suskauer SJ, Dematt EJ, Slomine BS, Salorio CF: Functional outcomes in children with abusive head trauma receiving inpatient rehabilitation compared with children with nonabusive head trauma. *J Pediatr* **164**: 613–619.e1–2, 2014.

48) Rooks VJ, Eaton JP, Russel L, Peterman GW, Keck–Wherley J, Pedersen RC: Prevalence and evolution of intracranial hemorrhage in asymptomatic term infants. *AJNR Am J Neuroradiol* **29**: 1082–1089, 2008.

49) Strich SJ: Shearing of nerve ﬁbres as a cause of brain damage due to head injury: A Pathological study of twenty cases. *Lancet* **278**: 443–448, 1961.

50) Thamburaj K, Soni A, Frasier LD, Tun KN, Weber SR, Dias M: Susceptibility–weighted imaging of retinal hemorrhages in abusive head trauma. *Pediatr Radiol* **49**: 210–216, 2019.

51) Towner D, Castro MA, Eby–Wilkins E, Gilbert WM: Effect of mode of delivery in nulliparous women on neonatal intracranial injury. *N Engl J Med* **341**: 1709–1714, 1999.

52) Vianchon M, de Foort–Dhellemmes S, Desurmont M, Delestret I: Confessed abuse versus witnessed accidents in infants: comparison of clinical, radiological, and ophthalmological data in corroborated cases. *Childs Nerv Syst* **26**: 637–645, 2010.

53) Zuccoli G, Khan AS, Panigrahy A, Tamber MS: In vivo demonstration of traumatic rupture of the bridging veins in abusive head trauma. *Pediatr Neurol* **72**: 31–35, 2017.

要 旨

小児頭部外傷の現状と課題

荒木 尚 熊井戸邦佳 大宅 宗一 庄島 正明 松居 徹

外傷性脳損傷は、小児年齢における罹患や死亡の重要な原因の一つである。適切な治療が施された後も、高次脳機能障害による学業成績の支障、健康関連 QOL の障害、精神衛生上の問題を抱えやすく、子どもの人生において外傷性脳損傷がもたらす影響は長く、甚大である。一方、小児の外傷性脳損傷に特有の病態生理学的特徴については未解明の部分も多く、エビデンスレベルの高い臨床研究や中枢神経の成長や発達を考慮した基礎研究も少ない。成人データを直線的に流用することなく小児特有の知見を明らかにするには、今後国際的な取り組みが必要となるであろう。小児頭部外傷における現状と課題のうち、急性期治療の最新知見として、米国小児重症頭部外傷治療・管理のガイドライン改訂第 3 版の重要ポイントを紹介する。また最新の課題として、世界的な規模で深刻な社会問題となっている「虐待による頭部外傷 (abusive head trauma: AHT)」の診断に関する問題点と、AHT に対する治療の可能性について解説する。