Trends in antimicrobial resistance amongst pathogens isolated from blood and cerebrospinal fluid cultures in Pakistan (2011-2015): a retrospective cross-sectional study

CURRENT STATUS: POSTED

Nida Javaid
Lahore University of Management Sciences Syed Babar Ali School of Science and Engineering
ORCiD: https://orcid.org/0000-0002-8106-916X

Qamar Sultana
Department of Microbiology, Chughtai Laboratory

Karam Rasool
Department of Microbiology, Chughtai Laboratory

Sumanth Gandra
Washington University in Saint Louis School of Medicine

Fayyaz Ahmad
Department of Statistics, University of Gujrat

Safee Ullah Chaudhary
Lahore University of Management Sciences Syed Babar Ali School of Science and Engineering

Shaper Mirza
shaper.mirza@lums.edu.pk Corresponding Author
ORCiD: https://orcid.org/0000-0002-6651-6101

DOI: 10.21203/rs.2.21817/v1

SUBJECT AREAS
General Microbiology Applied & Industrial Microbiology

KEYWORDS
Antimicrobial Resistance, Pakistan, Blood cultures, Cerebrospinal fluid cultures, Trends, Co-resistance patterns
Abstract

Background: Only a few studies have presented long-term trends in antimicrobial resistance (AMR) at a nationwide level in Pakistan. This study presents a comprehensive situational analysis of AMR trends among pathogens isolated from blood and cerebrospinal fluid (CSF) cultures, between 2011 and 2015, in Pakistan.

Methods: A retrospective analysis of AMR data on pathogens isolated from Blood and CSF over a five year period was carried out. Susceptibility data on these pathogens was obtained from Chughtai Laboratory (CL). Then, proportion of the resistant pathogens were calculated and analyzed.

Results: Our results show that highest resistance rates against all tested antimicrobials were observed in *Acinetobacter* species. We observed a steep rise in carbapenem resistant *Acinetobacter* species from 50 to 95.5% between 2011 and 2015. Our results also highlight the emergence of third and fourth generation cephalosporins resistance in *Salmonella enterica* serovar Typhi in Pakistan. While we observed a rise in AMR in other major pathogens, we unexpectedly found decreasing resistance trends in *Staphylococcus aureus*.

Conclusions: Taken together, our results show an overall increase in AMR in pathogens isolated from blood and CSF cultures in Pakistan between 2011 and 2015.

Background

Invasive infections, defined as bloodstream and cerebrospinal fluid (CSF) infections, account for 5.3 million deaths around the world annually (1). The use of broad-spectrum antimicrobials for treatment of these infections has resulted in an increase in antimicrobial resistance (AMR). As a consequence, the treatment of such infections is becoming increasingly difficult leading to treatment failures and increased mortality. Availability of over the counter drugs in developing countries such as Pakistan has led to the epidemic of AMR in these countries. Indiscriminate usage of antimicrobials exerts an increased selection pressure on the bacterial population resulting in accelerated emergence of AMR (2). While developing countries are battling an accelerated spread of AMR, developed countries are also experiencing the same trend. In the United States between 1999 and 2012, 47.9% *Acinetobacter baumanii* were carbapenem resistant, 68.4% *Staphylococcus epidermidis* were
ciprofloxacin resistant, and 13.7% Escherichia coli (E. coli) were β-lactam resistant (3-5). Furthermore, a similar resistance landscape had emerged in Canada between 2007 and 2011, where 27% of E.coli were resistant to ciprofloxacin, 19.3% Staphylococcus aureus (S. aureus) were resistant to methicillin, and 16.8% Streptococcus pneumoniae (S. pneumoniae) were resistant to penicillin (6). Unavailability of reliable data in the developing countries like Pakistan, makes it difficult to monitor and develop insights into emergence of AMR (2). The limited number of studies undertaken to investigate resistance in Pakistan indicate that most of the pathogens are resistant to commonly used antibiotics. For instance, between 1997 and 2014, 91% of E. coli were reported to be resistant to amikacin, while 91.7% Salmonella enterica serovar Typhi (S. Typhi) were fluoroquinolone resistant, and 90.9% Acinetobacter species were imipenem resistant (7-9). These studies indicate that AMR poses a burgeoning public health problem in Pakistan and highlights the need of an in-depth assessment of AMR situation.

Towards this goal, the present study examined AMR data from a large diagnostic lab to identify (i) the most prevalent pathogens isolated from blood and CSF cultures in Pakistan, (ii) the patterns of resistance amongst these pathogens, and (iii) their co-resistance trends.

Methods

For this retrospective cross-sectional study, AMR data collected on pathogens isolated from blood and CSF cultures over five years (2011-2015) were analyzed. Data on pathogens isolated and their antimicrobial susceptibility testing were obtained from Chughtai Lab (CL), a diagnostic facility with over 180 collection centers in 60 cities of Pakistan. Standard biochemical tests and Analytical Profile Index (API) identification kits (BioMerieux) (10) were used to identify bacterial species at CL. Antimicrobial susceptibility testing was done using disc diffusion method following Clinical Laboratory & Standards Institute (CLSI) guidelines (CLSI 2013).

Data on positive cultures were obtained from an electronic database containing patients’ reports. Information obtained on each case included: (1) patient’s age, (2) patient’s sex, (3) year of sample collection, (4) specimen source, (5) city in which the sample was drawn, (6) isolated pathogen in the positive culture, and (7) susceptibility results (defined as susceptible, intermediate, or resistant). All
cultures were examined without taking into consideration their clinical relevance. Of 3092 cases, datasets with missing information on age (n = 17) and sex (n = 2) were excluded from the study. Cases with information on pathogens isolated from sites other than blood and CSF (n = 5) were also excluded from the dataset. Most common microorganisms isolated from blood and CSF cultures were identified for further analysis (Fig. 1). Microorganisms were stratified by year of sample collection and patients’ age(< 5 years, 6–18 years, 19–45 years, 46–65 years, and 65 < years), and patients’ sex. For each case, intermediate resistance was considered as resistant. Susceptibility for all tested antimicrobials was examined and reported in each species separately. The bacterial species analyzed included Coagulase-negative staphylococci (CoNS), E. coli, Acinetobacter species, S. aureus, and S. Typhi.

Statistical analysis
Statistical analyses were performed using IBM SPSS statistics 22 (SPSS Inc., Chicago, Ill., USA). SAS university edition software (Cary, NC: SAS Institute Inc) was employed to perform Cochran Armitage test for trends. Figures were plotted using Circa software (www.omgenomics.com). P-value of < 0.05 was considered significant for all statistical analyses. Distribution of cases as well as the pathogens over patients’ age, patients’ sex, site of infection, and year of isolation was calculated using univariate analysis. Unadjusted resistance rates in these pathogens was determined over age groups, sex, and year of isolation using univariate analysis. As the number of isolates varied annually throughout the study period, proportions of the resistant pathogens were evaluated to normalize the data. The proportion of resistant isolates were examined over age and sex respectively using Fisher’s exact test, with Bonferroni corrections. Cochran Armitage test for trends was used to investigate trends of AMR over time. Pairwise resistance (referred to as co-resistance) trends were examined using chi-square test of independence. For significantly associated pairwise resistance, odds ratios, outlining odd of resistance to one antimicrobial given resistance to another antimicrobial, was calculated using binary logistic regression. Antimicrobials with an overall resistance above 1.5% were plotted in a Circos-based AMR map for each pathogen.

Results
Geographical, temporal, and demographical distribution of cases:

Burden of invasive infections vary between different geographic regions as well as patients’ demographics (1,12).

Hence, we wanted to profile the distribution of bacterial pathogens isolated from blood and CSF cultures over patients’ demographics, geographic location, and morphology of the causative agent. To determine the demographic distribution of invasive infections and the phenotypic characteristics of pathogens, we performed univariate descriptive analyses on 3068 cases as tabulated in Table 1.

Table 1. Attributes of pathogens isolated from blood and cerebrospinal fluid.

Attribute	Number of bacterial pathogens (n = 3068)
Age (years)	
≤ 5	1061 (34.6%)
6–18	262 (8.5%)
19–45	711 (23.2%)
46–65	550 (17.9%)
> 65	484 (15.8%)
Sex	
Female	1245 (40.6%)
Male	1823 (59.4%)
Site of Infection	
Blood	2917 (95.1%)
CSF	151 (4.9%)
Year of Isolation	
2011	262 (8.5%)
2012	296 (9.6%)
2013	493 (16.1%)
2014	750 (24.4%)
2015	1267 (41.3%)
Location of sample collection	
Punjab	2701 (87.9%)
KPK	338 (11%)
Sindh	25 (1%)
Baluchistan	1 (0%)
No Information	3 (1.1%)
Gram stain	
Gram-positive bacteria	1433 (46.7%)
Gram-negative bacteria	1635 (53.3%)

Attributes of pathogens isolated from blood and cerebrospinal fluid (CSF) cultures between 2011 and 2015 in Pakistan. Data are n (%).

A total of 3068 microorganisms were isolated from blood and CSF cultures between 2011 and 2015.

These cases were reported from 44 cities in 4 provinces. Highest number of cases were reported from Punjab (87.9%), followed by Khyber Pakhtunkhwa (11%), Sindh (1%) and Baluchistan (0.033%). The median number of cases from a city was 4 with an interquartile range of 2–15. Out of 44 cities, less than 11 cases were reported from 31 cities during the five-year study period. Highest number of
cases were reported from Lahore (60.5%), Faisalabad (18.3%), and Abbottabad (8.3%). Detailed distribution of cases over geographic location is given in the Supplementary Material (S1 Table).

Temporal and demographical distribution of pathogens isolated from Blood and CSF cultures:
The incidence rates of pathogen-specific invasive infections fluctuate on the basis of their temporal, spatial, and demographical characteristics (13).

Hence, the next logical step was to determine the distribution patterns of pathogens isolated from blood and CSF specimens. To investigate the temporal and demographical distribution of the bacterial species, univariate analyses were performed. Over 75% of these pathogens were from one of the seven most common bacterial species. These included CoNS (41.7%), E. coli (10.6%), Stenotrophomonas. maltophilia (S. maltophilia) (6.2%), Acinetobacter species (6.2%), S. Typhi (6.1%), S. aureus (5.9%), and Klebsiella pneumoniae (K. pneumoniae) (5%). Coagulase-negative Staphylococci was isolated from the highest number of patients throughout the study period. Detailed distribution of common pathogens isolated from blood and CSF cultures is given in Table 2.

Table 2: Profile of common bacterial species isolated from blood and cerebrospinal fluid (CSF) cultures with corresponding demographical and temporal distribution
Organism	< 5	6-18	19-45	46-65	> 65	Female	Male	2011	2012	2013	2014	2015	Total
Coagulase-negative staphylococci	444	74	297	255	209	557	722	101	111	198	337	532	1279
(41.8%)	(28.2%)	(41.8%)	(19.9%)	(43.2%)	(34.1%)	(44.7%)	(39.6%)	(38.5%)	(37.5%)	(40.2%)	(44.9%)	(42%)	
Escherichia coli	57	11	58	90	109	144	181	44	53	73	66	89	325
(5.4%)	(4.2%)	(8.2%)	(27.7%)	(22.5%)	(22.9%)	(11.6%)	(9.9%)	(16.8%)	(17.9%)	(14.8%)	(8.8%)	(7%)	(10.6%)
Stenotrophomonas maltophilia	215	..	8	..	7	76	160	46	185	236
(20.3%)	(1.1%)	(1.1%)	(1.4%)	(1.4%)	(1.4%)	(6.1%)	(8.8%)	(1.4%)	(1.4%)	(1.4%)	(6.1%)	(14.6%)	(7.7%)
Acinetobacter species	85	9	41	35	21	81	110	15	16	26	44	90	191
(8%)	(3.4%)	(5.8%)	(18.3%)	(6.3%)	(18.3%)	(6.5%)	(6%)	(5.7%)	(5.4%)	(5.3%)	(5.9%)	(7.1%)	(6.2%)
Salmonella enterica serovar Typhi	16	82	86	81	107	13	20	33	58	64	188
(1.5%)	(31.3%)	(12.1%)	(1.4%)	(1.4%)	(1.4%)	(6.5%)	(5.9%)	(5%)	(6.7%)	(6.7%)	(7.7%)	(5.1%)	(6.1%)
Staphylococcus aureus	41	13	52	45	29	71	109	19	20	33	47	61	180
(3.9%)	(5%)	(7.3%)	(25%)	(6%)	(5.7%)	(6%)	(6%)	(7.3%)	(6.8%)	(6.7%)	(6.3%)	(4.8%)	(5.9%)
Klebsiella pneumoniae	66	8	26	29	..	53	99	29	51	71	152
(6.2%)	(3.1%)	(3.7%)	(19.1%)	(4.8%)	(4.3%)	(5.4%)	(5.4%)	(5.4%)	(5.4%)	(5.4%)	(6.8%)	(5.6%)	(5.6%)

Data are n (% isolates in a column). Empty cells indicate number of cases < 6. These cases are included in the total.

Temporal and demographical AMR trends in pathogens isolated from blood and CSF cultures

Due to the variations in the treatment approaches as well as the differential ability of pathogens to acquire and disseminate resistance, resistance trends differ in different pathogens. The ability of resistant pathogens to cause infections is also dependent on host-related factors including age, gender, and co-morbidities (14). Hence, after identification of common pathogens, we wanted to determine temporal and demographical AMR trends in them. Susceptibility data was not available for all years throughout the study period on S. maltophilia and K. pneumoniae. Hence, these two pathogens could not be analyzed. Each of the remaining five pathogens was analyzed separately. For each isolate, susceptibility data for all antimicrobials was not available. To account for missing values, available case approach was employed to analyze resistance trends for each antimicrobial. As a result, the number of data points (n) varied between analyses involving different antimicrobials in a pathogen.
In the case of gram-negative organisms, we found out that resistance against fluoroquinolones has increased in E. coli from 50–74.2% between 2011 and 2015 (Table 3 and Fig. 2). Further, an increasing resistance trend against cefipime, a fourth generation cephalosporin, was also observed in E. coli (Table 3 and Fig. 2). While increasing resistance rates were observed for most of the tested antimicrobials, we found decreasing resistance trends against amikacin and gentamicin in E. coli (Table 3 and Fig. 2). Next, increasing resistance trends were observed against most tested antimicrobials in Acinetobacter species (Table 4 and Fig. 3). Of these, the most alarming finding was the steep increase in carbapenem resistance in Acinetobacter species from 50% in 2011 to 95.5% in 2015 (Table 4 and Fig. 3). In the case of S. Typhi, our results have indicated an increasing resistance trend against fluoroquinolones with resistance rates reaching up to 60% in 2015. We have also reported emerging resistance against 3rd and emergence of 4th generation cephalosporins resistance in S. Typhi (Table 5 and Fig. 4). Sex-wise comparisons showed that the rate of isolation of resistant gram-negative pathogens were independent of patients’ sex. Evaluation of age-wise resistance trends highlighted that rate of isolation of resistant pathogens is age dependent. Detailed AMR trends in E. coli, Acinetobacter species, and S. Typhi have been tabulated in Table 3–5, and shown in Figs. 2–4.

Amongst gram-positive pathogens, we found significantly decreasing resistance trends against amikacin, doxycycline, and trimethoprim-sulfamethoxazole in CoNS as well as in S. aureus (Tables 6 and 7; Figs. 5 and 6). While we unexpected did not observe any increasing resistance trend in S. aureus, resistance had increased in CoNS for a range of antimicrobials including 3rd and 4th generation cephalosporins as shown in Table 6 and Fig. 5. Our results also indicated that rate of isolation of resistant gram-positive species varied with patients’ demographic for a wide range of antimicrobials (Tables 6 and 7). Detailed AMR trends in CoNS and S. aureus have been tabulated in Tables 6 and 7, and shown in Figs. 5 and 6, respectively.

Co-resistance trends in pathogens isolated from blood and CSF cultures

Multidrug resistance (MDR) has emerged as a major public health problem globally as well as in Pakistan. Co-resistance to multiple drugs emerges with the selection of strains which are resistant to multiple antimicrobials. Clonal expansion of MDR clones is faster as compared to strains resistant to a
single antimicrobial (15). Hence, it is important to identify those antimicrobials which do not exhibit resistance with any other type of antimicrobials.

To investigate this, antimicrobials belonging to the same class and exhibiting identical resistance profiles in isolates of a given species were merged and entries with missing data were excluded. Chi-square test was used to identify patterns of co-resistance in each pathogen and these patterns are tabulated in Table 8 and Supplementary materials (S2-S6 Tables). Evaluation of E. coli showed that resistance against all antimicrobials was significantly associated except β-lactams, aminoglycosides, fluoroquinolones, and tetracycline. Resistance against these four antimicrobials in E. coli was found to be independent of resistance against other antimicrobials (Table 8 and Fig. 2). We then evaluated Acinetobacter species and our results showed that cefoperazone-sulbactam resistance is not significantly associated with resistance against aminoglycosides, trimethoprim-sulfamethoxazole and tetracycline (Table 8 and Fig. 3). For S. Typhi, we only detected a significant co-resistance between nalidixic acid and fluoroquinolones (Table 8 and Fig. 4). In case of CoNS, we observed a significant co-resistance between all antimicrobials except doxycycline. Doxycycline resistance in CoNS was significantly associated only with pencillin resistance and macrolide resistance (Table 8 and Fig. 5).

Analysis of S. aureus showed that penicillin resistance was not associated with resistance against any other antimicrobials. Furthermore, doxycycline resistance in S. aureus was found to be independent of resistance to all antimicrobials except macrolides and tobramycin (Table 8and Fig. 6). The co-resistance proportions, p-values, and associated odds ratios for all tested antimicrobials are provided in Table 8 and Supplementary materials (S2-S6 Tables). The co-resistance trends are E. coli, Acinetobacter species, S. Typhi, CoNS, and S. aureus have been visualized in Figs. 2–6.

Discussion
Antimicrobial resistance (AMR) has emerged as a major public health concern in both developing and developed countries. Continuous surveillance of AMR has been recommended by World Health Organization (WHO) as a necessary step for controlling emergence of resistance as well as infections caused by resistant pathogens (16). Despite this urgent need to investigate AMR trends, only a handful of studies till date have reported resistance trends in pathogens isolated from blood and CSF
cultures in Pakistan. The current study stands to fill this gap in knowledge of AMR patterns and trends in these bacterial pathogens at a national scale. For that, we undertook a retrospective analysis of AMR of pathogens isolated from clinical specimens of blood and CSF. To the best of our knowledge, this study is the first of its kind in Pakistan providing both demographic and temporal AMR trends in major pathogens from blood and CSF cultures. Our results reflect emergence and rapid increase in rate of isolation of S. maltophilia between 2013 and 2014. Reports from developing as well as the developed countries have also reported a similar trend (17,18). As S. maltophilia is an opportunistic bacteria that infects immunocompromised individuals and hospitalized patients, this trends can be explained by higher survival rates of susceptible patients due to improvements in surgical and healthcare practices as well as extensive usage of broad-spectrum antibiotics. It may also be due to a nosocomial outbreak during the study period (17,19). However, it is difficult to make the statement in the absence of necessary data on comorbidities of our population. Detailed further investigations need to be carried out to assess the risk factors of associated with S. maltophilia infections in Pakistan. Further, as the total number of isolates reported annually fluctuated throughout the study period, the proportion of resistant isolates were determined and analyzed to normalize the data.

Another salient observation of our study is the rapid rise of carbapenems resistance among Acinetobacter species (from 50–95% between 2011 and 2015) in Pakistan. This is in line with earlier CRA trends in Southeast Asian countries (20,21). This increase is concomitant with the two-fold increase in carbapenem usage in Pakistan over the last decade (https://cddep.org/). It is critical to note that carbapenems are one of the few last resort broad-spectrum antibiotics recommended for treatment of sepsis in Pakistan (24) and emergence of CRA has further limited the therapeutic options. Only doxycycline and cefoperazone-sulbactam remain effective against many of the Acinetobacter strains (Table 4). The persistent susceptibility to doxycycline may be attributed to its limited usage in Acinetobacter infections treatment due to its bacteriostatic nature (25). Further, while resistance against cefoperazone-sulbactam was found to be on the rise (Table 4), a wider acquisition of resistance against it might require more time. Additionally, Acinetobacter is an environmental pathogen found in the soil, the acquisition of resistance therefore suggests
inappropriate disposal of antimicrobials. To further explain this, it is likely that unused or expired antimicrobials are being disposed of in a way that they are available to environmental organisms resulting in emergence of resistance in such organism (26,27). This situation provides policymakers with an opportunity to legislate regulated usage of carbapenem, cefoperazone-sulbactam, and doxycycline in the country, and ensure proper disposal of such antimicrobials from hospital systems.

Developed countries like the US and the UK have resorted to using colistin, polymixin B, and tigecycline for the treatment of CRA infections (28,29). Susceptibility data against these antibiotics were not accounted for in this study. Future studies should highlight the susceptibility patterns of Acinetobacter against colistin, polymixin B, and tigecycline.

Table 3
Temporal, age-wise, and gender-wise prevalence of resistant Escherichia coli strains isolated from blood and cerebrospinal fluid (CSF) cultures in Pakistan (2011-2015)

Antimicrobial	Prevalence (%) of resistant organisms isolated from patients of different age-groups	Prevalence (%) of resistant organisms isolated from males and female patients	Year-wise prevalence (%) of resistant organisms	Total													
	< 5 Years	6-18 Years	19-45 Years	46-65 Years	> 65 Years	P for difference	Female	Male	P for difference	2011	2012	2013	2014	2015	P for trend		
Cefalexin	56/5 (100%)	10/1 (90.9%)	55/5 (94.8%)	88/9 (97.8%)	107/109 (98.2%)	NS	139/144 (96.5%)	177/180 (98.3%)	NS	37/4 (86%)	52/5 (98.1%)	72/7 (98.6%)	66/6 (100%)	89/8 (100%)	NS	<.0001	
Cephradine	56/5 (100%)	10/1 (90.9%)	55/5 (94.8%)	88/9 (97.8%)	107/109 (98.2%)	NS	139/144 (96.5%)	177/180 (98.3%)	NS	37/4 (86%)	52/5 (98.1%)	72/7 (98.6%)	66/6 (100%)	89/8 (100%)	NS	<.0001	
Cefadroxil	53/5 (93%)	10/1 (90.9%)	54/5 (93.1%)	82/9 (91.1%)	107/109 (98.2%)	NS	133/144 (92.4%)	168/181 (92.8%)	NS	40/4 (90.9%)	52/5 (98.1%)	68/7 (93.2%)	56/6 (84.8%)	85/8 (95.5%)	NS	316/3 (97.5%)	
Cefuroxime	52/5 (91.2%)	8/9 (88.9%)	51/5 (94.4%)	79/8 (90.8%)	96/1 (91.4%)	NS	124/136 (91.2%)	176/176 (92%)	NS	28/3 (90.3%)	49/5 (92.5%)	68/7 (93.2%)	56/6 (84.8%)	85/8 (95.5%)	NS	286/3 (91.7%)	
Ampicillin-Sulbactam	45/5 (90%)	7/7 (100%)	35/3 (92.1%)	61/6 (91%)	78/8 (88.6%)	NS	91/1 (90.1%)	135/144 (90.6%)	NS	17/2 (81%)	11/1 (91.7%)	57/6 (91.9%)	56/6 (84.8%)	85/8 (95.5%)	NS	226/2 (90.4%)	
Amoxicillin-Clavulanic acid	51/5 (89.5%)	10/1 (90.9%)	54/5 (93.1%)	82/9 (91.1%)	95/1 (87.2%)	NS	129/144 (89.6%)	163/181 (90.1%)	NS	33/4 (75%)	51/5 (96.2%)	67/7 (91.8%)	56/6 (84.8%)	85/8 (95.5%)	NS	292/3 (89.8%)	
Ceftriaxone	51/5 (89.5%)	8/11 (72.7%)	53/5 (91.4%)	76/9 (84.4%)	93/1 (95.3%)	NS	125/144 (86.8%)	156/181 (86.2%)	NS	37/4 (84.1%)	47/5 (88.7%)	63/6 (86.3%)	52/6 (78.8%)	82/8 (92.1%)	NS	281/3 (96.5%)	
Drug	Cefixime	Cefoperazone	Trime-Sulfamethoxazole	Cefotaxime	Aztreonam	Cefazidime	Doxycycline	Cefepime	Moxifloxacin	Ofloxacin	Tobramycin	Ciprofloxacin	Levofloxacin	Gentamicin	Amikacin	Piperacillin-Tazobactam	Cefpiperazone-Sulbactam
----------------------	------------	--------------	------------------------	------------	-----------	------------	------------	----------	-------------	-----------	------------	---------------	--------------	------------	----------	--------------------------------	------------------------
Percentage	38/4	41/4	45/5	51/5	45/5	49/5	36/5	44/5	27/5	29/5	45/5	28/5	29/5	40/5	19/5	30/5	13/5
	(86.4%)	(87.2%)	(84.9%)	(89.5%)	(86.5%)	(87.5%)	(70.6%)	(77.2%)	(49.1%)	(50.9%)	(80.4%)	(49.1%)	(50.9%)	(70.2%)	(33.9%)	(18.2%)	(22.8%)
	37/4	42/4	42/4	123/143	13/17	28/4	130/168	140/77	124/72	23/4	33/4	44/3	22/4	103/73	131/71	33/4	13/5
	(88.9%)	(95.5%)	(95.5%)	(86%	(83.8%)	(65.1%)	(84.1%)	(77.1%)	(50%)	(52.3%)	(67.6%)	(63.4%)	(50%)	(73%)	(72.4%)	(76.7%)	(22.8%)
	8/9	82/6	82/6	29/4	9/15	25/8	25/18	34/6	60/10	43/5	34/5	44/3	44/1	34/7	31/10	15/1	19/1
	(88.9%)	(88.6%)	(88.6%)	(85.4%)	(83.2%)	(62%	(86.5%)	(77.3%)	(62%)	(62.4%)	(64.2%)	(63.4%)	(60.4%)	(68.3%)	(72.4%)	(67.6%)	(10.9)
	52/7	21/5	21/5	123/180	7/18	44/5	180/181	180/93	172/71	46/7	57/9	32/5	32/5	80/6	57/9	57/9	19/1
	(88.9%)	(81.7%)	(81.7%)	(68.3%)	(62%)	(68.1%)	(67.7%)	(87.2%)	(71.2%)	(62.8%)	(60.8%)	(60.4%)	(60.4%)	(58.6%)	(57.9)	(57.9)	(10.9)
	9/14	12/5	12/5	29/4	9/15	25/8	25/18	34/6	60/10	43/5	34/5	44/3	44/1	34/7	31/10	15/1	19/1
	(85.7%)	(95.5%)	(95.5%)	(86%	(83.2%)	(62%	(86.5%)	(77.3%)	(62%)	(62.4%)	(64.2%)	(63.4%)	(60.4%)	(68.3%)	(72.4%)	(67.6%)	(10.9)
	3/8	5/5	5/5	25/8	9/15	25/8	25/18	34/6	60/10	43/5	34/5	44/3	44/1	34/7	31/10	15/1	19/1
	(37.3%)	(55.6%)	(55.6%)	(62%)	(62%)	(62%)	(68.1%)	(87.2%)	(62%)	(62.4%)	(64.2%)	(63.4%)	(60.4%)	(68.3%)	(72.4%)	(67.6%)	(10.9)
Table 4
Temporal, age-wise and gender-wise prevalence of resistant Acinetobacter species strains isolated from blood and cerebrospinal fluid (CSF) cultures in Pakistan (2011–2015)

Antimicrobial	Antibiogram (% of resistant group organisms isolated from patients of different age-groups)	Prevalence (% of resistant organisms isolated from males and female patients)	Year-wise prevalence (% of resistant organisms)	Total
Imipenem	Carbapenem 4/56 (7.1 %)			
	3/11 (27.3 %)			
	3/58 (5.2 %)			
	0/90 (0 %)			
	2/10 (9.1 %)*			
	3/14 (21 %)			
	9/18 (5 %)			
	12/32 (4 %)			
Meropenem	Carbapenem 4/56 (7.1 %)			
	3/11 (27.3 %)			
	3/58 (5.2 %)			
	0/90 (0 %)			
	2/10 (9.1 %)*			
	3/14 (21 %)			
	9/18 (5 %)			
	12/32 (4 %)			

Data are number of resistant isolates/total number of isolates (%). Denominator varies across cells because all isolates were not tested against the complete set of antimicrobials listed here. Empty cells indicate no cases were tested against the antimicrobial. P-value for difference was calculated by Fisher’s exact test. Bonferroni correction for pairwise comparisons was used to detect differences in percentage of resistant isolates between different age groups. * indicates age groups less susceptible to resistant infections as compared to the age groups labeled with #. P-value for trends was calculated by Cochran Armitage test for trends. Two-sided p-value has been reported. P for trend of < 0.05 indicate an increasing resistance trend unless P-value is followed by “(•)” which shows a decreasing resistance rates against the antimicrobial in Escherichia coli strains. NS: Non significant p-value (i.e. > 0.05).
Antimicrobials

P-value for trends was calculated by Cochran Armitage test for trends. Two-sided p-value has been reported. P for pairwise comparisons was used to detect differences in percentage of resistant isolates between different age groups.

Tazobactam	Imipenem	Meropenem	Moxifloxacin	Ofloxacin	Trimethoprim-Sulphamethoxazole	Amoxicillin	Ciprofloxacin	Levofloxacin	Tobramycin	Doxycycline	Cefoperazone-Sulbactam
Inhibitor	Carbapenem	Carbapenem	Fluoroquinolone	Fluoroquinolone	Sulphadimidine	Aminoglycoside	Fluoroquinolone	Fluoroquinolone	Aminoglycoside	Tetracycline	Cephalosporin Inhibitor
(93.6%)	(90.5%)	(90.5%)	(85.7%)	(84.7%)	(87.5%)	(91.4%)	(88.7%)	(77.5%)	(91.4%)	(65.6%)	(57.1%)
7%	7%	7%	7%	7%	7%	7%	7%	7%	7%	7%	7%
(86.8%)	(90.2%)	(90.2%)	(86.5%)	(87.5%)	(87.5%)	(85.7%)	(87.5%)	(87.5%)	(85.7%)	(87.5%)	(87.5%)
(84.4%)	(91.2%)	(91.2%)	(90.5%)	(90.5%)	(90.5%)	(87.5%)	(87.5%)	(87.5%)	(87.5%)	(87.5%)	(87.5%)
(85%)	(80.9%)	(80.9%)	(80.9%)	(80.9%)	(80.9%)	(80.9%)	(80.9%)	(80.9%)	(80.9%)	(80.9%)	(80.9%)
(90.4%)	(92.5%)	(92.5%)	(92.4%)	(92.4%)	(92.4%)	(92.4%)	(92.4%)	(92.4%)	(92.4%)	(92.4%)	(92.4%)
(%)	(88.2%)	(88.2%)	(88.2%)	(88.2%)	(88.2%)	(88.2%)	(88.2%)	(88.2%)	(88.2%)	(88.2%)	(88.2%)
(%)	(75%)	(75%)	(75%)	(75%)	(75%)	(75%)	(75%)	(75%)	(75%)	(75%)	(75%)
(91.9%)	(99.9%)	(99.9%)	(99.9%)	(99.9%)	(99.9%)	(99.9%)	(99.9%)	(99.9%)	(99.9%)	(99.9%)	(99.9%)
(%)	(97.6%)	(97.6%)	(97.6%)	(97.6%)	(97.6%)	(97.6%)	(97.6%)	(97.6%)	(97.6%)	(97.6%)	(97.6%)
(%)	(89.1%)	(89.1%)	(89.1%)	(89.1%)	(89.1%)	(89.1%)	(89.1%)	(89.1%)	(89.1%)	(89.1%)	(89.1%)
(%)											

Data are number of resistant isolates/total number of isolates (%). Denominator varies across cells because all isolates were not tested against the complete set of antimicrobials listed here. Empty cells indicate no cases were tested against the antimicrobial. P-value for difference was calculated by Fisher’s exact test. Bonferroni correction for pairwise comparisons was used to detect differences in percentage of resistant isolates between different age groups. * indicates age groups less susceptible to resistant strains as compared to the age-groups labeled with #. P-value for trends was calculated by Cochran Armitage test for trends. Two-sided p-value has been reported. P for trend of < .05 indicates an increasing resistance trend. NS: Non significant p-value (i.e. >.05).

Table 5
Temporal, age-wise and gender-wise prevalence of resistant Salmonella enterica serovar Typhi strains isolated from blood and cerebrospinal fluid (CSF) cultures in Pakistan (2011-2015)

Antimicrobial group	Prevalence (%) of resistant organisms isolated from patients of different age-groups	Prevalence (%) of resistant organisms isolated from males and female patients	Year-wise prevalence (%) of resistant organisms	Total											
<5	P for	Femal Male	2011 2012 2013 2014 2015 P for												
6-18	19-45	P for													
71/1	37.8%	<.0001													
90/1	51.4%	NS													
Antimicrobial	Years	Years	Years	Difference	Difference	Trend	P-value								
---------------	-------	-------	-------	------------	------------	-------	---------								
Nalidixic acid	Fluoroquinolone	12/16 (75%)	60/65 (92.3%)	61/64 (95.3%)	0.03	57/63 (90.5%)	78/85 (91.8%)	NS	25/26 (96.2%)	52/58 (89.7%)	58/64 (90.6%)	NS	135/148 (91.2%)		
Moxifloxacin	Fluoroquinolone	9/14 (64.3%)	48/77 (62.3%)	57/82 (69.5%)	NS	49/77 (63.6%)	67/100 (67%)	NS	3/9 (33.3%)	1/18 (5.6%)	22/33 (66.7%)	52/58 (89.7%)	38/59 (64.4%)	<.001	116/117 (65.5%)
Ciprofloxacin	Fluoroquinolone	9/16 (56.3%)	49/80 (61.3%)	56/84 (66.7%)	NS	50/81 (61.7%)	66/103 (64.1%)	NS	3/13 (23.1%)	2/20 (10%)	22/33 (66.7%)	52/58 (89.7%)	37/60 (61.7%)	<.001	116/117 (63%)
Levofloxacin	Fluoroquinolone	9/16 (56.3%)	49/82 (59.8%)	57/86 (66.3%)	NS	50/81 (61.7%)	67/100 (62.6%)	NS	3/13 (23.1%)	2/20 (10%)	22/33 (66.7%)	52/58 (89.7%)	38/64 (59.4%)	<.001	117/117 (62.2%)
Ofloxacin	Fluoroquinolone	9/16 (56.3%)	49/82 (59.8%)	57/86 (66.3%)	NS	50/81 (61.7%)	67/100 (62.6%)	NS	3/13 (23.1%)	2/20 (10%)	22/33 (66.7%)	52/58 (89.7%)	38/64 (59.4%)	<.001	117/117 (62.2%)
Trimethoprim-Sulphamides	Sulphamides	7/16 (43.8%)	38/77 (49.4%)	39/80 (48.8%)	NS	36/76 (47.4%)	50/104 (49.5%)	NS	10/13 (76.9%)	13/20 (65%)	20/26 (76.9%)	15/57 (26.3%)	28/61 (45.9%)	0.001	86/177 (48.6%)
Ampicillin	Penicillin	2/16 (12.5%)	9/74 (12.2%)	13/77 (16.9%)	NS	13/75 (17.3%)	11/95 (11.6%)	NS	6/13 (46.2%)	2/6 (33.3%)	10/30 (33.3%)	1/58 (1.7%)	5/63 (7.9%)	<.001	24/17 (14.1%)
Ampicillin	Penicillin	2/16 (12.5%)	9/74 (12.2%)	13/77 (16.9%)	NS	13/75 (17.3%)	11/95 (11.6%)	NS	6/13 (46.2%)	2/6 (33.3%)	10/30 (33.3%)	1/58 (1.7%)	5/63 (7.9%)	<.001	24/17 (14.1%)
Amoxicillin-Clavulanic acid	Penicillin-Inhibitor	1/12 (8.3%)	5/76 (6.6%)	11/79 (13.9%)	NS	10/72 (13.9%)	7/98 (7.1%)	NS	3/13 (23.1%)	5/20 (25%)	6/33 (18.2%)	0/50 (0%)	3/54 (5.6%)	0.000	17/17 (10%)
Ampicillin-Sulbac tam	Penicillin-Inhibitor	1/11 (9.1%)	4/60 (6.7%)	5/54 (9.3%)	NS	6/53 (11.3%)	4/74 (5.4%)	NS	2/3 (66.7%)	1/6 (16.7%)	4/14 (28.6%)	0/50 (0%)	3/54 (5.6%)	0.000	10/12 (7.9%)
Ceftriaxone	Cephalosporins	0/16 (0%)	1/81 (1.2%)	4/84 (4.8%)	NS	4/81 (4.9%)	1/104 (1%)	NS	1/13 (7.7%)	1/20 (5%)	1/33 (3%)	0/56 (0%)	2/63 (3.2%)	5/185 (2.7%)	
Cefotaxime	Cephalosporins	0/16 (0%)	1/81 (1.2%)	4/85 (4.7%)	NS	4/80 (5%)	1/106 (0.9%)	NS	1/13 (7.7%)	1/20 (5%)	1/32 (3.1%)	0/57 (0%)	2/64 (3.1%)	5/186 (2.7%)	
Cefixime	Cephalosporins	0/16 (0%)	0/69 (0%)	3/70 (4.3%)	NS	3/67 (4.5%)	0/91 (0%)	NS	0/6 (0%)	1/32 (3.1%)	0/56 (0%)	2/64 (3.1%)	3/158 (1.9%)		
Cefoperazone	Cephalosporins	0/16 (0%)	0/74 (0%)	3/74 (4.1%)	NS	3/69 (4.3%)	0/98 (0%)	NS	0/13 (0%)	1/32 (3.1%)	0/56 (0%)	2/64 (3.1%)	3/167 (1.8%)		
Ceftazidime	Cephalosporins	0/16 (0%)	0/79 (0%)	3/85 (3.5%)	NS	3/81 (3.7%)	0/103 (0%)	NS	0/13 (0%)	0/20 (0%)	1/33 (3%)	0/56 (0%)	2/62 (3.2%)	NS	3/184 (1.6%)
Cefepime	Cephalosporins	0/7 (0%)	0/53 (0%)	1/40 (2.5%)	NS	1/44 (2.3%)	0/58 (0%)	NS	0/11 (0%)	0/20 (0%)	0/4 (0%)	0/17 (0%)	1/50 (2%)	NS	1/102 (1%)

Data are number of resistant isolates/total number of isolates (%). Less than 5 isolates were isolated from patients above 45 year of age and are not shown in the table. Denominator varies across cells because all isolates were not tested against the complete set of antimicrobials listed here. Empty cells indicate no cases were tested against the antimicrobial. P-value for difference was calculated by Fisher’s exact test. Bonferroni correction for pairwise comparisons was used to detect differences in percentage of resistant isolates between different age groups. * indicates age groups less susceptible to resistant infections as compared to the age groups labeled with #. P-value for trends was calculated by Cochran Armitage test for trends. Two-sided p-value has been reported. P for trend of < 0.05 indicate an increasing resistance trend unless P-value is followed by “(-)” which shows a decreasing resistance rates against the antimicrobial in Salmonella enterica serovar Typhi strains. NS: Non-significant p-value.
resistance rates against the antimicrobial in Salmonella enterica Serovar Typhi strains. NS: Non-significant p-value (i.e., >0.05).

Table 6. Temporal, age-wise and gender-wise prevalence of resistant Coagulase-negative Staphylococci strains isolated from blood and cerebrospinal fluid (CSF) cultures in Pakistan (2011-2015)

Antimicrobials	Antimicrobial group	Prevalence (%) of resistant organisms isolated from patients of different age-groups	Prevalence (%) of resistant organisms isolated from males and female patients	Year-wise prevalence (%) of resistant organisms	Total											
	<5 Years	6-18 Years	19-45 Years	>65 Years	P for difference	Female	Male	P for difference	2011	2012	2013	2014	2015	P for trend		
Amoxicillin	Penicillin	370/441 (83.9%) #	527/649 (83.1%) #	271/309 (90.1%) #	191/254 (75.2%) #	154/207 (74.4%) #	<.001	409/556 (73.6%)	568/717 (79.2%)	84/101 (83.2%)	88/109 (80.7%)	179/217 (90.9%)	244/336 (72.6%)	382/530 (72.1%)	<.001	977/1273 (76.7%)
Ampicillin	Penicillin	367/438 (83.8%) #	527/649 (83.1%) #	271/309 (90.1%) #	191/254 (75.2%) #	153/206 (73.4%) #	<.001	407/554 (73.5%)	564/713 (79.1%)	83/100 (83%)	87/108 (80.6%)	176/214 (90.7%)	244/336 (72.6%)	381/529 (72%)	<.001	971/1267 (76.6%)
Azithromycin	Macrolide	359/437 (82.2%) #	447/547 (82.1%) #	271/309 (90.1%) #	191/254 (75.2%) #	160/204 (78.4%) #	<.001	422/552 (76.4%)	542/707 (76.7%)	74/94 (78.7%)	78/110 (70.9%)	154/198 (77.8%)	257/334 (76.9%)	401/523 (76.7%)	NS	964/1259 (76.6%)
Erythromycin	Macrolide	356/434 (82.0%) #	447/547 (82.1%) #	271/309 (90.1%) #	191/254 (75.2%) #	159/203 (78.3%) #	<.001	420/559 (76.5%)	539/704 (76.6%)	74/94 (78.7%)	78/110 (70.9%)	153/197 (77.7%)	256/333 (76.9%)	398/519 (76.7%)	NS	959/1253 (76.5%)
Trimethoprim	Sulphonamides	286/343 (66.0%) #	407/547 (54.3%) #	202/245 (66.1%) #	157/245 (63.1%) #	136/201 (67.7%) #	NS	362/547 (66.2%)	459/695 (66%)	92/100 (92%)	82/107 (74.5%)	137/185 (74.1%)	206/337 (61.1%)	304/510 (59.6%)	<.001	821/1242 (66.1%)
Sulphamethoxazole	Sulphonamides	286/343 (66.0%) #	407/547 (54.3%) #	202/245 (66.1%) #	157/245 (63.1%) #	136/201 (67.7%) #	NS	362/547 (66.2%)	459/695 (66%)	92/100 (92%)	82/107 (74.5%)	137/185 (74.1%)	206/337 (61.1%)	304/510 (59.6%)	<.001	821/1242 (66.1%)
Cephradine	Cephalosporin	306/443 (69.1%) #	297/397 (75.7%) #	157/297 (52.9%)	148/255 (58%)	114/209 (54.5%)	<.001	318/557 (57.1%)	436/720 (60.6%)	83/101 (82.2%)	67/110 (60.9%)	107/197 (51.3%)	192/337 (57%)	311/532 (58.5%)	0.001	754/1277 (59%)
Cephalalexin	Cephalosporin	307/444 (69.1%) #	297/397 (75.7%) #	157/297 (52.9%)	148/255 (58%)	114/209 (54.5%)	<.001	318/557 (57.1%)	437/722 (60.5%)	83/101 (82.2%)	67/110 (60.4%)	108/197 (51.5%)	192/337 (57%)	311/532 (58.5%)	0.001	755/1279 (59%)
Cefaclor	Cephalosporin	306/443 (69.1%) #	297/397 (75.7%) #	157/297 (52.9%)	148/255 (58%)	113/208 (54.3%)	<.001	315/556 (56.7%)	437/719 (60.1%)	83/101 (82.2%)	63/107 (57.3%)	99/197 (50.3%)	191/335 (57%)	311/532 (58.5%)	0.001	747/1275 (59.6%)
Cefazidime	Cephalosporin	305/444 (68.7%) #	297/397 (75.7%) #	157/297 (52.9%)	148/255 (58%)	112/208 (53.8%)	<.001	310/556 (55.8%)	430/722 (59.6%)	83/101 (82.2%)	56/111 (50.5%)	98/198 (49.5%)	192/336 (57.1%)	311/532 (58.5%)	NS	740/1278 (57.9%)
Ceftriaxone	Cephalosporin	304/443 (68.6%) #	297/397 (75.7%) #	157/297 (52.9%)	148/255 (58%)	112/209 (53.6%)	<.001	309/556 (55.6%)	429/721 (59.5%)	83/101 (82.2%)	56/111 (50.5%)	97/197 (49.2%)	192/336 (56.8%)	311/532 (58.5%)	NS	738/1277 (57.8%)
Amoxicillin	Penicillin	301/297 (104) #	153/143 (104) #	153/143 (104) #	112/209 (104) #	309/297 (104) #	NS	83/155 (54.3%)	97/157 (59.8%)	97/160 (59.4%)	97/207 (47.5%)	192/311 (60.1%)	NS	738/1278 (57.9%)		
Inhibitor	Inhibitor	Inhibitor	Inhibitor	Inhibitor	Inhibitor											
-------------------	-------------------	-------------------	-------------------	-------------------	-------------------											
Tobramycin	Gentamicin	Meropenem	Imipenem	Fusid acid	Aminoglycoside											
Aminoglycoside	Aminoglycoside	Aminoglycoside	Aminoglycoside	Fusid acid	Aminoglycoside											
233/438	233/438	225/444	225/444	198/419	233/438											
13/7	13/7	13/7	13/7	13/7	13/7											
962/96	962/96	962/96	962/96	962/96	962/96											
90/2	90/2	90/2	90/2	90/2	90/2											
54	54	54	54	54	54											
0.001	0.001	0.001	0.001	0.001	0.001											
0.001	0.001	0.001	0.001	0.001	0.001											
In-Clavulanic acid	In-Clavulanic acid	In-Clavulanic acid	In-Clavulanic acid	In-Clavulanic acid	In-Clavulanic acid											
Ampicilli	Ampicilli	Ampicilli	Ampicilli	Ampicilli	Ampicilli											
Meropenem	Meropenem	Meropenem	Meropenem	Meropenem	Meropenem											
25/6	25/6	25/6	25/6	25/6	25/6											
34/1	34/1	34/1	34/1	34/1	34/1											
136/96	136/96	136/96	136/96	136/96	136/96											
0.005	0.005	0.005	0.005	0.005	0.005											
0.005	0.005	0.005	0.005	0.005	0.005											
Ciproflaxacin	Ciproflaxacin	Ciproflaxacin	Ciproflaxacin	Ciproflaxacin	Ciproflaxacin											
Fluoroquinolone	Fluoroquinolone	Fluoroquinolone	Fluoroquinolone	Fluoroquinolone	Fluoroquinolone											
282/444	282/444	282/444	282/444	282/444	282/444											
3/3	3/3	3/3	3/3	3/3	3/3											
14/27	14/27	14/27	14/27	14/27	14/27											
257/555	257/555	257/555	257/555	257/555	257/555											
0.001	0.001	0.001	0.001	0.001	0.001											
0.001	0.001	0.001	0.001	0.001	0.001											
Levofloxacin	Levofloxacin	Levofloxacin	Levofloxacin	Levofloxacin	Levofloxacin											
Fluoroquinolone	Fluoroquinolone	Fluoroquinolone	Fluoroquinolone	Fluoroquinolone	Fluoroquinolone											
271/426	271/426	271/426	271/426	271/426	271/426											
9/9	9/9	9/9	9/9	9/9	9/9											
147/280	147/280	147/280	147/280	147/280	147/280											
0.001	0.001	0.001	0.001	0.001	0.001											
0.001	0.001	0.001	0.001	0.001	0.001											
Cefixime	Cefixime	Cefixime	Cefixime	Cefixime	Cefixime											
Cephalosporin	Cephalosporin	Cephalosporin	Cephalosporin	Cephalosporin	Cephalosporin											
270/396	270/396	270/396	270/396	270/396	270/396											
6%	6%	6%	6%	6%	6%											
197/415	197/415	197/415	197/415	197/415	197/415											
0.001	0.001	0.001	0.001	0.001	0.001											
0.001	0.001	0.001	0.001	0.001	0.001											
Cefuroxime	Cefuroxime	Cefuroxime	Cefuroxime	Cefuroxime	Cefuroxime											
Cephalosporin	Cephalosporin	Cephalosporin	Cephalosporin	Cephalosporin	Cephalosporin											
287/422	287/422	287/422	287/422	287/422	287/422											
6%	6%	6%	6%	6%	6%											
187/411	187/411	187/411	187/411	187/411	187/411											
0.001	0.001	0.001	0.001	0.001	0.001											
0.001	0.001	0.001	0.001	0.001	0.001											
Data are number of resistant isolates/total number of isolates (percentage of resistant isolates).

Denominator varies across cells because all isolates were not tested against the complete set of antimicrobials listed here. Empty cells indicate no cases were tested against the antimicrobial. P-value for difference was calculated by Fisher’s exact test. Bonferroni correction for pairwise comparisons was used to detect differences in percentage of resistant isolates between different age groups. * indicates age-groups less susceptible to resistant strains as compared to the age-groups labeled with #. P-value for trends was calculated by Cochran Armitage test for trends. Two-sided p-value has been reported. P for trend of <0.05 indicate an increasing resistance trend unless P-value is followed by “(-)” which shows a decreasing resistance rates against the antimicrobial. NS: Non significant p-value (i.e. >0.05)

Table 7
Temporal, age-wise and gender-wise prevalence of resistant Staphylococcus aureus strains isolated from blood and cerebrospinal fluid (CSF) cultures in Pakistan (2011–2015).

Antibiotic	Prevalence (%) of resistant organisms isolated from patients of different age-groups	Prevalence (%) of resistant organisms isolated from males and female patients	Year-wise prevalence (%) of resistant organisms	Total												
	<5	6-18Y	19-45Y	46-65Y	>65Y	P for difference	Male	P for difference	2011	2012	2013	2014	2015	P for Trend		
Ampicillin	40/4	12/1	12/1	20/2	NS	64/7	105/9	NS	16/1	17/2	33/3	46/4	57/6	NS	169/1	80 (93.9 %)
Penicillin	40/4	12/1	12/1	20/2	NS	64/7	105/9	NS	16/1	17/2	33/3	46/4	57/6	NS	169/1	80 (93.9 %)
Tobra	19/3	18/2	22/3	35/5	NS	10/1	5/7	11/1	29/4	30/5	NS	85/14	18			

Table 7 (continued):

Antimicrobial	Denominator	P for Trend
Amikacin	Denominator	P for Trend
Tobra	Denominator	P for Trend

Clindamycin	Lincosamide	Doxycycline	Amikacin
Denominator	P for Trend		
Amikacin	Tobra	Amikacin	Tobra

P for trend of <0.05 indicate an increasing resistance trend unless P-value is followed by “(-)” which shows a decreasing resistance rates against the antimicrobial. NS: Non significant p-value (i.e. >0.05)
Drug	Ne + erazo	Sulph mylene	Cefop	Ampi	Ceftri	zidim	Cefacl	m	Mero
Trime thoprim + Sulpha mest	29/3	6/12	31/5	20/4	15/2	NS	31/6	5	6/1
Erythromycin Macrolides	22/3	6/13	22/5	21/4	17/2	NS	29/6	9	1/1
Azithromycin Macrolides	23/3	6/13	22/5	20/4	14/2	NS	28/6	9	0/1
Levof loxacin Fluorquinolone	12/3	3/12	25/4	23/4	16/2	NS	26/6	8	1/1
Moxifloxacin Fluorquinolone	12/3	4/12	21/4	21/3	15/2	NS	24/6	4	1/1
Amoxicillin-Clavulanic acid	20/4	4/13	24/5	19/4	16/2	NS	29/7	1	4/1
Ofloxacin Fluorquinolone	13/4	3/13	25/5	24/4	17/2	NS	27/7	1	5/1
Imip em Carbenem	20/4	4/13	24/5	19/4	15/2	NS	29/7	1	4/1
Mero penem Carbenem	20/4	4/13	24/5	19/4	15/2	NS	29/7	1	4/1
Cefot or Cephalorins	20/4	4/13	24/5	19/4	15/2	NS	29/7	1	4/1
Cefta zidine Cephalorins	20/4	4/13	24/5	19/4	15/2	NS	29/7	1	4/1
Ceftri axone Cephalorins	20/4	4/13	24/5	19/4	15/2	NS	29/7	1	4/1
Ceph alexin Cephalorins	20/4	4/13	24/5	19/4	15/2	NS	29/7	1	4/1
Cip rofloxacin Fluorquinolone	4/14	3/13	25/5	23/4	17/2	NS	26/7	1	5/1
Ampicillin-Sulbactam	20/3	4/13	16/4	14/2	9/20	NS	24/6	2	4/1
Cefep im Cephalorins	18/3	4/12	17/4	15/3	7/20	NS	20/6	0	4/1
Cefop erazone Cephalorins	18/3	4/12	17/4	15/3	7/20	NS	20/6	0	4/1
Table 8

Selected co-resistance trends in pathogens isolated from blood and cerebrospinal fluid (CSF) cultures in Pakistan (2011-2015).

Pathogen	Antimicrobial 1	Antimicrobial 2	Number of isolates resistant to antimicrobial 1 (%)	Number of isolates resistant to antimicrobial 1 & 2 (%)	Number of isolates resistant to antimicrobial 2 (%)	P for difference	Odds ratio (95% CI)	Antimicrobial -lactams
Coagulase-	Doxycycline							Amikacin
negative								β-lactams
Staphylococci								Clindamycin
	13/198 (6.6%)	13/64 (1.4%)	0.5091	0.81 (0.43-1.52)				Fusidic acid
	12/198 (62.1%)	12/474 (25.9)	0.0779	1.34 (0.97-1.86)				Gentamicin
	17/20 (85.0%)	17/20 (85.0%)						Tobramycin
Acinetobacter	Cephalosporins							Piperacillin-tazobactam
	54/54 (100%)	54/104 (1.9%)	0.118	NA				Amikacin
Antibiotic/Resistance Class	Organism	% Susceptibility	MIC (μg/mL)	Frequency of Resistance	MIC Range (μg/mL)			
-----------------------------	----------	-----------------	------------	------------------------	------------------			
Tobramycin	79/106 (74.5)	2/5 (40)	0.0703	Tobramycin	9 (0.9–90.33)			
Gentamicin	99/106 (99)	1/1 (100)	0.1433	Amikacin	14.14 (0.8–250.9)			
Tramethoprim-sulphamethoxazole	79/106 (93.4)	0/1 (0)	0.073	Tobramycin	34.33 (1.71–689.68)			
Cephalosporin	79/106 (75)	0/1 (0)	0.0583	Cephalosporin	3.33 (0.9–12.28)			
Carbapenem	79/106 (74.5)	2/5 (40)	0.0703	Tobramycin	9 (0.9–90.33)			
Piperacillin-tazobactam	79/106 (75)	0/1 (0)	0.0583	Tobramycin	3.33 (0.9–12.28)			
Doxycycline	51/55 (92.7)	0/1 (0)	0.196	Cefoperazone-sulbactam	2.27 (0.64–8.03)			
Tobramycin	72/79(91.1)	0/1 (0)	0.2984	Trimethoprim-sulphamethoxazole	2.14 (0.62–7.38)			
Escherichia coli Carbapenem	3/6 (50)	0/1 (0)	0.1118	Doxycycline	0.25 (0.05–1.32)			
6/6 (100)	0.181	Tobramycin	0.25 (0.05–1.32)					
5/6 (83.3)	0.2367	Gentamicin	3.96 (0.45–34.62)					
6/6 (100)	0.3604	4th generation cephalosporin	0.45–34.62					
6/6 (100)	0.3732	NA	0.45–34.62					
6/6 (100)	0.5935	NA	Trimethoprim-sulphamethoxazole	0.45–34.62				
6/6 (100)	0.5958	NA	0.45–34.62					
6/6 (100)	0.5958	NA	0.45–34.62					
6/6 (100)	0.6462	NA	0.45–34.62					
6/6 (100)	0.6462	NA	0.45–34.62					
6/6 (100)	0.6572	NA	0.45–34.62					
6/6 (100)	1.63	NA	0.45–34.62					
5/6 (83.3)	0.181	Tobramycin	0.25 (0.05–1.32)					
12/15 (80)	0.0575	Gentamicin	3.33 (0.9–12.28)					
15/15 (100)	0.0772	4th generation cephalosporin	0.18–14.33					
15/15 (100)	0.1308	NA	0.18–14.33					
Cefoperazone-sulbactam	12/15 (80)	0.0575	Gentamicin	3.33 (0.9–12.28)				
15/15 (100)	0.0772	4th generation cephalosporin	0.18–14.33					
15/15 (100)	0.1308	NA	0.18–14.33					
Antibiotic Combination	Frequency	Minimal Inhibitory Concentration (MIC)	Description					
--	-----------	--	-------------					
Piperacillin-tazobactam	17/17(100)	0.0795 NA	3rd generation cephalosporin					
Amikacin	15/22(68.2)	0.2613 0.53 (0.2-1.41)	Doxycycline					
Gentamicin	78/96(81.3)	0.3528 1.42 (0.68-2.97)	Doxycycline					
Salmonella enterica serovar Typhi	4/5(80)	0.172 5.24 (0.567-48.55)	Trimethoprim-sulphamethoxazole					
Penicillin	4/5(80)	0.356 0.33 (0.053-3.348)	Nalidixic acid					
Trimethoprim-sulphamethoxazole	46/49(93.8)	0.51 1.704 (0.403-7.195)	Nalidixic acid					
Staphylococcus aureus	7/24(29.2)	0.0502 2.97 (0.97-9.14)	Amikacin					
Doxycycline	15/24(62.5)	0.1273 2.07 (0.8-5.33)	Macrolides					
Antimicrobial	Resistant to Both Antimicrobials	Resistant to Antimicrobial 1	Resistant to Antimicrobial 2	P-value	Odds-Ratio	95% CI		
---------------	---------------------------------	-----------------------------	-----------------------------	---------	------------	--------		
8-lactam (except penicillin)	13/24 (54.2)	13/44 (29.5)	0.2935	1.64	(0.65–4.14)			
Gentamicin	11/24 (45.8)	11/37 (29.7)	0.3475	1.56	(0.61–3.98)			
Fluoroquinolone	12/24 (50)	12/47 (25.5)	0.8179	1.11	(0.44–2.8)			
Trimethoprim-sulphamethoxazole	25/44 (56.8)	25/48 (52.1)	0.1612	1.77	(0.79–3.96)			
Macrolides	8/44 (18.2)	8/16 (50)	0.6538	1.28	(0.44–3.74)			
Amikacin	58/94 (61.1)	58/50 (98.3)	0.5613	3.14	(0.27–35.81)			

Data are number of isolates resistant to both antimicrobials / number of isolates resistant to either antimicrobial 1 (in the case of R1) or antimicrobial 2 (in the case of R1) (%). P-value for difference was calculated using Chi-square test. Odds-ratio was calculated using binary logistic regression and is listed with 95% confidence interval (95% CI). Two-sided p-value has been reported.

Another important finding of this study is the emergence of third and fourth generation cephalosporins resistance in S. Typhi. Recent studies have reported an incidence of third generation resistant S. Typhi infections in Pakistan and neighboring countries (30,31). These antimicrobials are the drugs of choice for the empirical treatment of these infections (32). This suggests that treatment of these infections with cephalosporins will become ineffective. Case studies from Canada and the US have shown that these infections can successfully be treated with carbapenems and ceftriaxone-azithromycin combination (33). However, it is highly likely that S. Typhi will acquire resistance against these antimicrobials in the short term. In the light of this, WHO has recommended large scale implementation of Typbar-TCV, a typhoid vaccine, for the containment of S. Typhi infections in high risk regions (32,34). Improved personal hygiene, handwashing, availability of clean drinking water, and well cooked food lowers the risk of S. Typhi infections by 20% (32,35). The government should actively work towards implementing these suggestions to limit the spread of drug resistant S. Typhi infections.

While AMR was rising in other major pathogens, we unexpectedly found decreasing resistance rates against few major antimicrobials in S. aureus. This is in line with the reports on incidence of antimicrobial resistant S. aureus infections worldwide (36,37). While the exact reason for this decrease is yet to be identified, studies have suggested that it may be due to improved infection control practices and improved antibiotic prescription guidelines (36). The ability of S. aureus to excise resistance markers, out of its genome, in the absence of antimicrobials may have played a role in the decreasing resistance as well. Excision of resistance markers is associated with reduced
metabolic cost and overall increase in the bacterial fitness (36,38,39). While the current resistance reported levels in S. aureus are low, continuous surveillance is required to keep track of emerging resistance trends in this pathogen.

This study is limited in that two provinces, namely Baluchistan and Gilgit-Baltistan, were not represented. However, as the combined population of these two provinces constitutes less than 10% of the population of Pakistan, our study is representative of over 90% of the population (40). Next, while our results have shown CoNS to be the most prevalent bacterial pathogen isolated from the blood and CSF cultures, this can be explained by CoNS being a common skin contaminant. However, further studies needs to be carried to determine the role of CoNS as a potential bacteremia pathogen. In addition, studies should also focus on limiting the contamination of clinical samples with CoNS to prevent false diagnosis. Lastly, susceptibility data on last resort antibiotics, including colistin, polymixin B, and linezolid, was not available. Susceptibility patterns of invasive pathogens to these antibiotics still need to be carried out.

Conclusions
In this study we set out to determine resistance patterns in pathogens isolated from blood and CSF cultures. We found that resistance has been at rise for several of these pathogens. Highest resistance rates were observed in Acinetobacter species against all tested antimicrobials including carbapenems. Resistance against 3rd and 4th generation cephalosporins has been reported in S. Typhi during the study period. Policy makers should prioritize and expedite implementation of infection control practices and antimicrobial stewardship in the country to control the emerging threat of AMR to public health.

Abbreviations
AMR
Antimicrobial resistance
CSF
Cerebrospinal fluid
CL
Chughtai Laboratory
API
Analytical Profile Index
CoNS
Coagulase-negative staphylococci

Declarations

Ethics approval

As this study involved secondary data analysis of de-identified patient isolates, it was exempted from the Institutional Review Board (IRB). However, a Memorandum of Understanding (MoU) was signed between Chughtai Lab and Lahore University of Management Sciences.

Consent for publication

Not applicable

Availability of data and materials

Complete dataset analyzed in the current study is included in this published article and its supplementary information files.

Competing interests

The authors declare that they have no competing interests.

Funding

This work was supported by the Government of Pakistan through National Research Program for Universities – Higher Education Commission [Grant: 5193 awarded to Dr. Shaper Mirza; Grant: 3629 awarded to Dr. Safee Ullah Chaudhary]. Partial support for this project was provided by Lahore University of Management Sciences through Startup Funds [Grant: STG071 awarded to Dr. Shaper Mirza] and Ignite Funds [Grant: ICTRDF/TR&D/2014/33 awarded to Dr. Safee Ullah Chaudhary]. The funders had no role in study design, data collection, data analysis, decision to publish or preparation of the manuscript.

Authors’ contributions

SM conceptualized, designed, and supervised the study. QS and KR performed the microbiological experiments for species identification and determining their resistance patterns. NJ, SUC, and FA performed the formal analysis while NJ and SUC worked on data visualization. SG provided guidance
on study design, data analyses, and results interpretation. NJ, SUC, and SM wrote the manuscript. All authors contributed to the interpretation of results, editing of the manuscript and approved the final version.

Acknowledgements

We would like to thank the staff at Department of Microbiology at Chughtai Lab Lahore and Lahore University of Management Sciences for the core support and assistance. We would like to thank Nestor Mojica from The Center for Disease Dynamics, Economics & Policy (CDDEP) for assistance in data organization and processing. We also acknowledge Iqra Manzoor for technical support and assistance throughout the study.

References

1. Fleischmann C, Scherag A, Adhikari NKJ, Hartog CS, Tsaganos T, Schlattmann P, et al. Assessment of global incidence and mortality of hospital-treated sepsis current estimates and limitations. Am J Respir Crit Care Med. 2016;
2. Okeke IN, Laxminarayan R, Bhutta ZA, Duse AG, Jenkins P, O’Brien TF, et al. Antimicrobial resistance in developing countries. Part I: Recent trends and current status. Lancet Infectious Diseases. 2005.
3. Zilberberg MD, Kollef MH, Shorr AF. Secular trends in Acinetobacter baumannii resistance in respiratory and blood stream specimens in the United States, 2003 to 2012: A survey study. J Hosp Med. 2016;
4. May L, Klein EY, Rothman RE, Laxminarayan R. Trends in antibiotic resistance in coagulase-negative staphylococci in the United States, 1999 to 2012. Antimicrob Agents Chemother. 2014;
5. Sader HS, Farrell DJ, Flamm RK, Jones RN. Antimicrobial susceptibility of Gram-negative organisms isolated from patients hospitalized in intensive care units in United States and European hospitals (2009-2011). Diagn Microbiol Infect Dis. 2014;
6. Lagacé-Wiens PRS, Adam HJ, Low DE, Blondeau JM, Baxter MR, Denisuik AJ, et al.
Trends in antibiotic resistance over time among pathogens from Canadian hospitals: results of the CANWARD study 2007-11. J Antimicrob Chemother. 2013;

7. Sohail M, Khurshid M, Murtaza Saleem HG, Javed H, Khan AA. Characteristics and antibiotic resistance of urinary tract pathogens isolated from Punjab, Pakistan. Jundishapur J Microbiol. 2015;

8. Qamar FN, Azmatullah A, Kazi AM, Khan E, Zaidi AKM. A three-year review of antimicrobial resistance of Salmonella enterica serovars Typhi and Paratyphi A in Pakistan. J Infect Dev Ctries. 2014;

9. Sohail M, Rashid A, Aslam B, Waseem M, Shahid M, Akram M, et al. Antimicrobial susceptibility of acinetobacter clinical isolates and emerging antibiogram trends for nosocomial infection management. Rev Soc Bras Med Trop. 2016;

10. Smith PB, Tomfohrde KM, Rhoden DL, Balows A. API system: a multitube micromethod for identification of Enterobacteriaceae. Appl Microbiol. 1972;

11. Clsi. Performance Standards for Antimicrobial Susceptibility Testing; Clinical and Laboratory Standards Institute. 2013.

12. Jawad I, Lukšić I, Rafnsson SB. Assessing available information on the burden of sepsis: global estimates of incidence, prevalence and mortality. J Glob Health. 2012;

13. Van Den Hoogen A, Gerards LJ, Verboon-Maciolek MA, Fleer A, Krediet TG. Long-term trends in the epidemiology of neonatal sepsis and antibiotic susceptibility of causative agents. Neonatology. 2009;

14. Holmes AH, Moore LSP, Sundsfjord A, Steinbakk M, Regmi S, Karkey A, et al. Understanding the mechanisms and drivers of antimicrobial resistance. The Lancet. 2016.

15. Cantón R, Ruiz-Garbajosa P. Co-resistance: An opportunity for the bacteria and resistance genes. Current Opinion in Pharmacology. 2011.
16. World Health Organisation. Global action plan on antimicrobial resistance. World Health Organisation. 2015.

17. Chang YT, Lin CY, Chen YH, Hsueh PR. Update on infections caused by Stenotrophomonas maltophilia with particular attention to resistance mechanisms and therapeutic options. Frontiers in Microbiology. 2015.

18. Tariq TM, Rasool E. Emerging Trends of Bloodstream Infections: A Six-Year Study at a Paediatric Tertiary Care Hospital in Kabul. J Coll Physicians Surg Pak. 2016;

19. Gajdács M, Urbán E. Epidemiological Trends and Resistance Associated with Stenotrophomonas maltophilia Bacteremia: A 10-Year Retrospective Cohort Study in a Tertiary-Care Hospital in Hungary. Diseases. 2019;7(2):41.

20. Zhang X, Gu B, Mei Y, Wen Y, Xia W. Increasing resistance rate to carbapenem among blood culture isolates of Klebsiella pneumoniae, Acinetobacter baumannii and Pseudomonas aeruginosa in a university-affiliated Hospital in China, 2004-2011. J Antibiot (Tokyo). 2015;

21. Kamolvit W, Sidjabat HE, Paterson DL. Molecular Epidemiology and Mechanisms of Carbapenem Resistance of Acinetobacter spp. in Asia and Oceania . Microb Drug Resist. 2015;

22. Retail sales of carbapenem antibiotics to treat Gram-negative bacteria are increasing rapidly in India and Pakistan - Center for Disease Dynamics, Economics & Policy (CDDEP) [Internet]. [cited 2019 Jun 18]. Available from: https://cddep.org/tool/retail_sales_carbapenem_antibiotics_treat_gram_negative_bacteria_a

23. Khan EA. Situation Analysis Report on Antimicrobial Resistance in Pakistan-Findings and Recommendations for Antibiotic Use and Resistance. Internet] Glob Antibiot Resist Partnersh (GARP), Pakistan[cited 2018 Mar 19] Available from https://www.cddep.org/publications/garp-pakistan-situation-analysis. 2018;
24. Hussain E, Jamil B, Salahuddin N. Guidelines for the initial management of adults with sepsis/severe sepsis/septic shock: 2015. 2015;

25. Rodríguez-Hernández MJ, Pachón J, Pichardo C, Cuberos L, Ibáñez-Martínez J, García-Curiel A, et al. Imipenem, doxycycline and amikacin in monotherapy and in combination in Acinetobacter baumannii experimental pneumonia. J Antimicrob Chemother. 2000;

26. Harris SJ, Cormican M, Cummins E. Antimicrobial Residues and Antimicrobial-Resistant Bacteria: Impact on the Microbial Environment and Risk to Human Health-A Review. Hum Ecol Risk Assess. 2012;

27. Clark NM, Zhanel GG, Lynch JP. Emergence of antimicrobial resistance among Acinetobacter species: A global threat. Current Opinion in Critical Care. 2016.

28. Pogue JM, Mann T, Barber KE, Kaye KS. Carbapenem-resistant Acinetobacter baumannii: Epidemiology, surveillance and management. Expert Review of Anti-Infective Therapy. 2013.

29. Qureshi ZA, Hittle LE, O’Hara JA, Rivera JJ, Syed A, Shields RK, et al. Colistin-resistant acinetobacter baumannii: Beyond carbapenem resistance. Clin Infect Dis. 2015;

30. Tanmoy AM, Westeel E, De Bruyne K, Goris J, Rajoharison A, Sajib MSI, et al. Salmonella enterica Serovar Typhi in Bangladesh: Exploration of Genomic Diversity and Antimicrobial Resistance. MBio. 2018;

31. Qamar FN, Yousafzai MT, Khalid M, Kazi AM, Lohana H, Karim S, et al. Outbreak investigation of ceftriaxone-resistant Salmonella enterica serotype Typhi and its risk factors among the general population in Hyderabad, Pakistan: a matched case-control study. Lancet Infect Dis. 2018;

32. Stoesser N, Eyre D, Basnyat B, Parry C. Treatment of enteric fever (typhoid and paratyphoid fever) with third and fourth generation cephalosporins. Cochrane
33. Kariuki S, Gordon MA, Feasey N, Parry CM. Antimicrobial resistance and management of invasive Salmonella disease. Vaccine. 2015;

34. World Health Organization. Typhoid vaccines: WHO position paper, March 2018 – Recommendations. Vaccine. 2019.

35. Levine MM, Simon R. The Gathering Storm: Is Untreatable Typhoid Fever on the Way? MBio. 2018;

36. Perovic O, Iyaloo S, Kularatne R, Lowman W, Bosman N, Wadula J, et al. Prevalence and trends of staphylococcus aureus bacteraemia in hospitalized patients in South Africa, 2010 to 2012: Laboratory-based surveillance mapping of antimicrobial resistance and molecular epidemiology. PLoS One. 2015;

37. Lafaurie M, Porcher R, Donay JL, Touratier S, Molina JM. Reduction of fluoroquinolone use is associated with a decrease in methicillin-resistant Staphylococcus aureus and fluoroquinolone-resistant Pseudomonas aeruginosa isolation rates: A 10 year study. J Antimicrob Chemother. 2012;

38. Boundy S, Zhao Q, Fairbanks C, Folgosa L, Climo M, Archer GL. Spontaneous staphylococcal cassette chromosome mec element excision in Staphylococcus aureus nasal carriers. J Clin Microbiol. 2012;

39. Massey RC, Buckling A, Peacock SJ. Phenotypic switching of antibiotic resistance circumvents permanent costs in Staphylococcus aureus. Curr Biol. 2001;

40. Pakistan Bureau of Statistics. Pakistan Bureau of Statistics | 6th Population and Housing Census. Pakistan Bureau of Statistics. 2017.

Additional Files

Additional file 1 .doc. Distribution of bacterial isolates from blood and cerebrospinal fluid (CSF) cultures from different cities.
Additional file 2.doc. Co-resistance patterns in *Escherichia coli*.

Additional file 3.doc. Co-resistance patterns in *Acinetobacter*.

Additional file 4.doc. Co-resistance patterns in *Salmonella enterica* serovar Typhi.

Additional file 5.doc. Co-resistance patterns in Coagulase-negative Staphylococci.

Additional file 6.doc. Co-resistance patterns in *Staphylococcus aureus*.

Additional file 7.xlsx. Complete dataset

Figures
Susceptibility records obtained from CLL
N = 3092

Exclusion of 5 records on pathogens from sites other than blood and cerebrospinal fluid (CSF)
N = 3087

Exclusion of 19 records with missing demographics
N = 3068

Descriptive univariate analysis of the cases
N = 3068

Proportion of the bacterial species identified
N = 3068

Exclusion of records on pathogens with relative frequency ≤3%
N=2551

Agewise, genderwise and yearwise distribution of pathogens
N=2551

Exclusion of records on pathogens not isolated every year
N = 2163

Pathogen-wise analysis on:
1. CoNS (n=1279)
2. E. coli (n=325)
3. Acinetobacter spp (n=191)
4. S. Typhi (n=188)
5. S. aureus (n = 180)
Figure 1
Flow of cases. Flow of the cases through the study has been shown.

Figure 2
Antimicrobial resistance in Escherichia coli (E. coli) A: Each section of the diagram represents the resistance observed in E. coli against the antibiotic. Size of each section is proportional to the proportion of E. coli resistant to the antibiotic over the study period. Antibiotics of the same class are shown in similar colors. B: Line graphs show temporal
trends of proportion of resistant E. coli in a clockwise direction from 2011 to 2015. C: Bar charts show the comparison of susceptibility to resistant strains in patients of different age groups. Moving from out to inward, bars represent proportion of resistant E. coli reported in children <5 years of age, young adults between 6 to 18 years, middle aged 19 to 45 years old, 45 to 65 years old patients, and elderly over 65 years of age, respectively. D: Gender-wise comparison to susceptibility to resistant E. coli is shown in form bars. Outer circle and inner circle shows proportion of resistant E. coli isolated from women vs. men, respectively.

E: For co-resistance analysis, antibiotics belonging to the same class with same susceptibility profile for all isolates of E. coli were merged into a single variable. F: Proportion of E. coli isolates resistant to one antimicrobial resistant to another antimicrobial are shown in the connections. The area covered by the connection on E is proportional to the level of co-resistance observed. Co-resistance proportions were scaled down to 1/15th of the actual overlap for visualization. Abbreviations: AMI: Amikacin, GEN: Gentamicin, TOB: Tobramycin, IMI: Imipenem, MER: Meropenem, CPL: Cephalexin, CPD: Cephradine, CFC: Cefaclor, CFU: Cefuroxime, CFT: Cefotaxime, CFD: Ceftazidime, CFN: Ceftriaxone, CFX: Cefixime, CPZ: Cefoperazone, CFP: Cefepime, CPZ-S: Cefoperazone-Sulbactam, PIP-T: Piperacillin-Tazobactam, AMX-C: Amoxicillin-Clavulanic acid, AMP-S: Ampicillin-Sulbactam, CIP: Ciprofloxacin, LEV: Levofloxacin, OFL: Ofloxacin, MOX: Moxifloxacin, AZT: Aztreonam, TRI-S: Trime-Sulphamethoxazole, and DOX: Doxycycline
Antimicrobial resistance in Acinetobacter A: Each section of the diagram represents the resistance observed in Acinetobacter species against the antibiotic. Size of each section is proportional to the proportion of Acinetobacter species resistant to the antibiotic over the study period. Antibiotics of the same class are shown in similar colors. B: Line graphs show temporal trends of proportion of resistant Acinetobacter species in a clockwise direction from 2011 to 2015. C: Bar charts show the comparison of susceptibility to resistant isolates in patients of different age groups. Moving from out to inward, bars represent proportion of resistant Acinetobacter species reported in children <5 years of age, young adults between
6 to 18 years, middle aged 19 to 45 years old, 45 to 65 years old patients, and elderly over 65 years of age, respectively. D: Gender-wise comparison to susceptibility to resistant Acinetobacter species is shown in form bars. Outer circle and inner circle shows proportion of resistant Acinetobacter species isolated from women vs. men, respectively. E: For co-resistance analysis, antibiotics belonging to the same class with same susceptibility profile for all isolates of E. coli were merged into a single variable. F: Proportion Acinetobacter species isolates resistant to one antimicrobial resistant to another antimicrobial are shown in the connections. The area covered by the connection on E is proportional to the level of co-resistance observed. Co-resistance proportions were scaled down to 1/10th of the actual overlap for visualization. Abbreviations: DOX: Doxycycline, TRI-S: Trime-Sulphamethoxazole, PIP-T: Piperacillin-Tazobactam, AMP-S: Ampicillin-Sulbactam, AMX-C: Amoxicillin-Clavulanic acid, CIP: Ciprofloxacin, LEV: Levofloxacin, OFL: Ofloxacin, MOX: Moxifloxacin, CFN: Ceftriaxone, CFD: Ceftazidime, CFT: Cefotaxime, CPZ: Cefoperazone, CFX: Cefixime, CFP: Cefepime, CPZ-S: Cefoperazone-Sulbactam, IMI: Imipenem, MER: Meropenem, TOB: Tobramycin, GEN: Gentamicin, and AMI: Amikacin.
Figure 4

Antimicrobial resistance in Salmonella enterica serovar Typhi (S. Typhi) A: Each section of the diagram represents the resistance observed in S. Typhi against the antibiotic. Size of each section is proportional to the proportion of S. Typhi resistant to the antibiotic over the study period. Antibiotics of the same class are shown in similar colors. B: Line graphs show
temporal trends of proportion of resistant S. Typhi in a clockwise direction from 2011 to 2015. C: Bar charts show the comparison of susceptibility to resistant isolates in patients of different age groups. Moving from out to inward, bars represent proportion of resistant S. Typhi reported in children <5 years of age, young adults between 6 to 18 years, and middle aged 19 to 45 years old, respectively. D: Gender-wise comparison to susceptibility to resistant S. Typhi is shown in form bars. Outer circle and inner circle shows proportion of resistant S. Typhi isolated from women vs. men, respectively. E: For co-resistance analysis, antibiotics belonging to the same class with same susceptibility profile for all isolates of E. coli were merged into a single variable. F: Proportion S. Typhi isolates resistant to one antimicrobial resistant to another antimicrobial are shown in the connections. The area covered by the connection on E is proportional to the level of co-resistance observed. Co-resistance proportions were scaled down to 1/10th of the actual overlap for visualization.

Abbreviations: CFN: Ceftriaxone, CFD: Ceftazidime, CFT: Cefotaxime, CPZ: Cefoperazone, CFX: Cefixime, CFP: Cefepime, CIP: Ciprofloxacin, LEV: Levofoxacin, OFL: Ofloxacin, MOX: Moxifloxacin, NAL-A: Nalidixic acid, AMP-S: Ampicillin-Sulbactam, AMX-C: Amoxicillin-Clavulanic acid, AMP: Ampicillin, AMX: Amoxicillin, and TRI-S: Trime-Sulphamethoxazole.
Antimicrobial resistance in Coagulase-negative Staphylococci (CoNS) A: Each section of the diagram represents the resistance observed in CoNS against the antibiotic. Size of each section is proportional to the proportion of CoNS resistant to the antibiotic over the study period. Antibiotics of the same class are shown in similar colors. B: Line graphs show temporal trends of proportion of resistant CoNS in a clockwise direction from 2011 to 2015. C: Bar charts show the comparison of susceptibility to resistant strains in patients of different age groups. Moving from out to inward, bars represent proportion of resistant CoNS reported in children <5 years of age, young adults between 6 to 18 years, middle
aged 19 to 45 years old, 45 to 65 years old patients, and elderly over 65 years of age, respectively. D: Gender-wise comparison to susceptibility to resistant CoNS is shown in form bars. Outer circle and inner circle shows proportion of resistant CoNS isolated from women vs. men, respectively. E: For co-resistance analysis, antibiotics belonging to the same class with same susceptibility profile for all isolates of CoNS were merged into a single variable. F: Proportion of CoNS isolates resistant to one antimicrobial resistant to another antimicrobial are shown in the connections. The area covered by the connection on E is proportional to the level of co-resistance observed. Co-resistance proportions were scaled down to 1/10th of the actual overlap for visualization. Abbreviations: AMI: Amikacin, GEN: Gentamicin, TOB: Tobramycin, AMP: Ampicillin, AMX: Amoxicillin, IMI: Imipenem, MER: Meropenem, CPL: Cephalexin, CPD: Cephradine, CFC: Cefaclor, CFU: Cefuroxime, CFT: Cefotaxime, CFD: Ceftazidime, CFN: Ceftriaxone, CFX: Cefixime, CPZ: Cefoperazone, CFP: Cefepime, AMX-C: Amoxicillin-Clavulanic acid, AMP-S: Ampicillin-Sulbactam, CIP: Ciprofloxacin, LEV: Levofloxacin, OFL: Ofloxacin, MOX: Moxifloxacin, FUS-A: Fusidic acid, CLI: Clindamycin, AZI: Azithromycin, ERY: Erythromycin, TRI-S: Trime-Sulphamethoxazole, and DOX: Doxycycline.
Figure 6

Antimicrobial resistance in Staphylococcus aureus (S. aureus) A: Each section of the diagram represents the resistance observed in S. aureus against the antibiotic. Size of each section is proportional to the proportion of S. aureus resistant to the antibiotic over the study period. Antibiotics of the same class are shown in similar colors. B: Line graphs show temporal trends of proportion of resistant S. aureus in a clockwise direction from 2011 to 2015. C: Bar charts show the comparison of susceptibility to resistant strains in patients of different age groups. Moving from out to inward, bars represent proportion of resistant S. aureus reported children in <5 years of age, young adults between 6 to 18 years, middle
aged 19 to 45 years old, 45 to 65 years old patients, and elderly over 65 years of age, respectively. D: Gender-wise comparison to susceptibility to resistant S. aureus is shown in form bars. Outer circle and inner circle shows proportion of resistant S. aureus isolated from women vs. men, respectively. E: For co-resistance analysis, antibiotics belonging to the same class with same susceptibility profile for all isolates of S. aureus were merged into a single variable. F: Proportion of S. aureus isolates resistant to one antimicrobial resistant to another antimicrobial are shown in the connections. The area covered by the connection on E is proportional to the level of co-resistance observed. Co-resistance proportions were scaled down to 1/10th of the actual overlap for visualization. Abbreviations: AMI: Amikacin, GEN: Gentamicin, TOB: Tobramycin, AMP: Ampicillin, AMX: Amoxicillin, IMI: Imipenem, MER: Meropenem, CPL: Cephalexin, CPD: Cephradine, CFC: Cefaclor, CFU: Cefuroxime, CFT: Cefotaxime, CFD: Ceftazidime, CFN: Ceftriaxone, CFX: Cefixime, CPZ: Cefoperazone, CFP: Cefepime, AMX-C: Amoxicillin-Clavulanic acid, AMP-S: Ampicillin-Sulbactam, CIP: Ciprofloxacin, LEV: Levofloxacin, OFL: Ofloxacin, MOX: Moxifloxacin, CLI: Clindamycin, AZI: Azithromycin, ERY: Erythromycin, TRI-S: Trime-Sulphamethoxazole, and DOX: Doxycycline.

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.

Additional file 3.docx
Additional file 4.docx
Additional file 5.docx
Additional file 6.docx
Additional file 7.xlsx
Additional file 1.docx
Additional file 2.docx