Supplementary Information

Luminescence tuning with excellent colour homogeneity and steadiness using fluorescent molecular liquids

Fengniu Lu, Keita Hagiwara, Michito Yoshizawa, Kazuhiko Nagura, Shinsuke Ishihara and Nakanishi *

a. International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan. E-mail: nakanishi.takashi@nims.go.jp (T. Nakanishi)

b. Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.
Table of Contents

Experimental Section .. 3
 Materials ... 3
 Measurements .. 3
 Theoretical Calculation ... 4
 Synthesis and Characterization ... 4
 NMR spectra and MALDI-TOF MS ... 7

Supplementary Figures .. 11
 Figure S1 ... 11
 Figure S2 ... 11
 Figure S3 ... 12
 Figure S4 ... 12
 Figure S5 ... 12
 Figure S6 ... 13
 Figure S7 ... 13
 Figure S8 ... 14
 Figure S9 ... 14
 Figure S10 ... 15
 Figure S11 ... 15
 Figure S12 ... 16

Supplementary Tables .. 17
 Table S1 ... 17
 Table S2 ... 17
 Table S3 ... 18
 Table S4 ... 18
 Table S5 ... 18
 Table S6 ... 19
 Table S7 ... 19
 Table S8 ... 20
 Table S9 ... 21
 Table S10 ... 22

References ... 23
Experimental Section

Materials
All starting materials and reagents, unless otherwise specified, were purchased from commercial suppliers (where noted) and used without further purification. 2-Octyldodecyloxy bromide (BrC\textsubscript{8}C\textsubscript{12})\textsubscript{1} and 2,6-dibromo-9,10-bis(3,5-di-2-octyldodecyloxy)phenanthrene (1)2 was synthesized and purified according to reported procedures. All reactions were performed under an argon atmosphere. Column chromatography was performed using silica gel 60 N (spherical, neutral, Kanto Chemical Co., Inc.). Spectroscopic grade solvents, dichloromethane (CH\textsubscript{2}Cl\textsubscript{2}; DOJINDO) and n-hexane (DOJINDO), were used for all spectroscopic studies without further purification.

1–BPEA composites with BPEA of 0.1, 0.5, 1.0, and 5.0 mol% were prepared by mixing dilute solutions of the two components in CH\textsubscript{2}Cl\textsubscript{2}, followed by fast solvent evaporation. The process was repeated for three times and the resulting mixture was dried under vacuum at room temperature overnight. All measurements were carried out within 1 week after the sample preparation.

Measurements
Recycling high performance liquid chromatography (HPLC) was performed at room temperature using a GPC column (YMC-GPC T30000 φ 20 × 600 mm) on a LC-9225NEXT system, equipped with RI and UV-Vis detectors. 1H nuclear magnetic resonance (NMR) and 13C NMR spectra were recorded on a JEOL ECS-400 spectrometer at 400 MHz and 100 MHz, respectively, with tetramethylsilane used as the internal standard. Before 1H and 13C NMR measurements, all samples were dried up from their CH\textsubscript{2}Cl\textsubscript{2} solution to check whether residual solvent remained or not. Matrix-assisted laser desorption ionization–time-of-flight mass spectra (MALDI-TOF MS) were obtained by a Shimadzu AXIMA-CFR Plus station.

Differential scanning calorimetry (DSC) was measured using Hitachi High-Tech Science DSC7000X with liquid nitrogen cooling accessory under nitrogen flow at different scan rates (where noted). Optical micrographs were taken under polarized and normal light conditions using an Olympus BX51 optical microscopy. Fluorescence microscopy images were recorded by a Leica DM2500 DIC microscope (Leica Microsystems, Wetzlar, Germany) with excitation wavelengths of 340–380 nm. The samples were sandwiched between two glass plates for both measurements. Microscopic fluorescence spectroscopy was carried out using a Leica TCS SP5 confocal laser scanning microscope (Leica Microsystems, Wetzlar, Germany) with excitation wavelength at 405 nm. The samples were sandwiched between two quartz plates for the measurements.

For all optical absorption and fluorescence measurements, thin solvent-free liquid samples were sandwiched by two quartz plates and solid powder samples were prepared by grinding with barium sulphate (BaSO\textsubscript{4}). UV-Vis absorption and fluorescence spectra in both solution and solvent-free liquid state were recorded on a JASCO V-670 spectrophotometer and a JASCO FP-8300 spectrophotometer, respectively. Absolute quantum yields were determined on a Hamamatsu Photonics absolute PL quantum yield spectrometer C11347.

Nanosecond time-resolved fluorescence lifetime measurements were carried out by using time-correlated single photon counting (TCSPC) lifetime spectroscopy system HORIBA FluoroCube 3000U-UltraFast-SP spectrophotometer equipped with a nanosecond pulse laser (PB-375L, 375 nm) and a nanosecond photon detection module (TBX). Decay analysis and the fitting routine to determine the lifetime(s) were performed using the DAS6 software provided by IBM. The quality of the fit has been judged by the fitting parameters such as chi-squared value \(\chi^2 \) (< 1.20) as well as the
visual inspection of the residuals.

Theoretic Calculation

All quantum chemical calculations were carried out using the Gaussian 09, Revision E.01 suite of programs with default thresholds and algorithm. The geometry optimizations of simplified models of 1–4 (with 2-octyldodecyl chains replaced by methyl groups) and the reference compound 9,10-bis(3,5-dimethoxyphenyl)anthracene (DMPA) in the ground state were performed at the B3LYP/6-31G(d) level of theory. The stationary point in the lowest single state was optimized without any assumption and characterized by frequency analysis at the same level of theory (the number of imaginary frequencies was 0). The Cartesian coordinates are given in Tables S6–10. The time-dependent density functional theory (TD-DFT) calculations at the optimized geometries were conducted at the same level of theory.

Synthesis and Characterization

Synthesis of 1-bromo-3,5-bis(2-octyldodecyl)benzene (2a): A mixture of 5-bromo-1,3-benzenediol (2.84 g, 10.00 mmol, Tokyo Chemical Industry Co., Ltd. (TCI), BrC₈C₁₂ (16.26 g, 45.0 mmol) and potassium carbonate (K₂CO₃, 16.59 g, 120.0 mmol) was stirred in dry N,N-dimethylformamide (DMF) (120 mL) at 110 °C under argon. After 24 h, the reaction mixture was filtered to remove undissolved solid and the filtrate was concentrated under reduced pressure to remove DMF. Water (50 mL) was added to the resulting residue, which was then extracted with CH₂Cl₂ (3 × 30 mL). The combined organic layer was washed with brine, dried over magnesium sulphate (MgSO₄), filtered and evaporated. The crude product was purified by column chromatography (SiO₂; n-hexane). 2a: Colorless oil (yield, 93%); TLC (n-hexane): R₁ = 0.61; ¹H NMR (400 MHz, CDCl₃) δ (ppm): 6.63 (d, J = 2.4 Hz, 2H), 6.36 (t, J = 2.0 Hz, 1H), 3.77 (d, J = 6.0 Hz, 4H), 1.75-1.72 (m, 2H), 1.44-1.26 (m, 64H), 0.88 (t, J = 6.4 Hz, 12H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 161.00, 122.77, 110.13, 100.54, 71.09, 37.89, 31.93, 31.31, 30.01, 29.68, 29.66, 29.60, 29.37, 29.35, 26.82, 22.70, 14.13; MALDI-TOF MS (matrix: dithranol) calculated for C₄₆H₈₅BrO₂: 748.6, found: 748.3 [M⁺].

Synthesis of [(3,5-di-2-octyldodecylxoxyphenyl)ethynyl]trimethylsilane (2b): A mixture of 2a (4.50 g, 6.0 mmol), tetrakis(triphenylphosphine)palladium(0) (Pd(PPh₃)₄, 207 mg, 0.18 mmol; TCI), and copper(I) iodide (CuI, 57 mg, 0.30 mmol; Kanto Chemical Co., Inc.) was stirred in a mixture of THF (6 mL) and trimethylamine (39 mL) under argon. Ethynyl trimethylsilane (1.3 mL, 9.0 mmol) was injected and the reaction mixture was heated up to 70 °C. After 2 h, another portion of ethynyl trimethylsilane (1.3 mL, 9.0 mmol) was injected and the mixture was stirred overnight. The reaction mixture was cooled to room temperature and then filtered to remove undissolved solid. The filtrate was concentrated under reduced pressure to remove the solvents. The residue was dissolved in CH₂Cl₂ (50 mL), and then washed with saturated NH₄Cl (aq., 30 mL) and brine (30 mL). The organic layer was dried over magnesium sulphate (MgSO₄), filtered, and evaporated. The crude product was purified by column chromatography (SiO₂; n-hexane).
2b: Yellow-green oil (yield, 75%); TLC (n-hexane): Rf = 0.13; 1H NMR (400 MHz, CDCl3) δ (ppm): 6.59 (d, J = 2.4 Hz, 2H), 6.43 (t, J = 2.4 Hz, 1H), 3.78 (d, J = 5.2 Hz, 4H), 1.74-1.71 (m, 2H), 1.42-1.26 (m, 64H), 0.88 (t, J = 6.8 Hz, 12H), 0.24 (s, 9H); 13C NMR (100 MHz, CDCl3) δ (ppm): 160.20, 124.04, 110.03, 105.29, 103.02, 70.87, 37.95, 31.95, 31.34, 30.04, 29.71, 29.67, 29.62, 29.39, 26.85, 22.72, 14.17; MALDI-TOF MS (matrix: dithranol) calculated for C31H84O2Si: 766.7, found: 767.4 [M]+.

Synthesis of 1-ethyl-3,5-bis(2-octyldodecyloxy)benzene (2c): A mixture of 2b (480 mg, 0.63 mmol) and potassium hydroxide (KOH, 105 mg, 1.88 mmol) was stirred in a mixture of methanol (5 mL) and THF (10 mL) at room temperature under argon. After 8 h, the reaction mixture was concentrated under reduced pressure to remove the solvents. Water (30 mL) was added to the resulting residue, which was then extracted with CH2Cl2 (3 × 30 mL). The combined organic layer was washed with brine, dried over magnesium sulphate (MgSO4), and filtered. The product was collected via evaporation without any further purification.

2c: Yellow oil (yield, quant.); TLC (n-hexane): Rf = 0.19; 1H NMR (400 MHz, CDCl3) δ (ppm): 6.62 (d, J = 2.4 Hz, 2H), 6.46 (t, J = 2.4 Hz, 1H), 3.78 (d, J = 5.6 Hz, 4H), 3.01 (s, 1H), 1.76-1.72 (m, 2H), 1.44-1.26 (m, 60H), 0.88 (t, J = 6.8 Hz, 12H); 13C NMR (100 MHz, CDCl3) δ (ppm): 160.24, 123.02, 110.26, 103.07, 83.81, 70.92, 37.88, 31.93, 31.30, 30.02, 29.69, 29.66, 29.61, 29.37, 26.81, 22.70, 14.15; MALDI-TOF MS (matrix: dithranol) calculated for C46H86O2: 694.7, found: 695.5 [M]+.

Synthesis of 2 and 3: To a mixture of 1 (610 mg, 0.36 mmol), bis(triphenylphosphine)palladium(II) dichloride (Pd(PPh3)2Cl2, 131 mg, 0.19 mmol; TCI), and copper(I) iodide (CuI, 126 mg, 0.66 mmol; Kanto Chemical Co., Inc.) in 50 mL anhydrous THF, a THF solution of 2c (1.01 g, 1.45 mmol) and triethyl amine (3 mL) were added at 70 °C. The mixture was stirred for 120 h at 70 °C under argon. After the completion of the reaction, the solution was washed with distilled water. The organic layer was washed with brine, dried over anhydrous sodium sulphate, and the solvent was evaporated under reduced pressure. The purification, carried out by column chromatography (SiO2, n-hexane/ CH2Cl2) and subsequent recycling HPLC with chloroform as the solvent, gave 2 (216 mg, 0.094 mmol) and 3 (111 mg, 0.038 mmol) as yellow liquids.
2: Yellow liquid (yield, 26%); TLC (n-hexane: CH₂Cl₂, 20:1 v/v): Rᵣ = 0.25; ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.94 (s, 1H), 7.92 (d, J = 1.6 Hz, 1H), 7.72 (d, J = 9.6 Hz, 1H), 7.62 (d, J = 9.2 Hz, 1H), 7.39 (t, J = 8.8, 1.2 Hz, 2H), 6.69–6.56 (m, 4H), 6.56 (t, J = 2.8 Hz, 4H), 6.45 (t, J = 2.0 Hz, 1H), 3.86 (d, J = 5.6 Hz, 8H), 3.81 (d, J = 1.6 Hz, 4H), 1.82–1.74 (m, 6H), 1.45–1.25 (m, 192H), 0.89–0.85 (m, 36H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 160.60, 160.56, 160.30, 139.82, 139.67, 137.69, 136.47, 130.87, 129.24, 129.17, 128.80, 128.72, 128.38, 128.01, 127.22, 124.08, 120.20, 109.71, 109.66, 102.83, 101.07, 90.87, 89.51, 71.37, 71.25, 70.87, 38.02, 37.97, 31.92, 31.37, 30.03, 29.65, 29.36, 26.88, 22.69, 14.14; MALDI-TOF MS (matrix: dithranol) calculated for C₁₅₀H₂₆₁BrO₆: 2285.9, found: 2286.0 [M⁺].

3: Yellow liquid (yield, 10%); TLC (n-hexane: CH₂Cl₂, 10:1 v/v): Rᵣ = 0.17; ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.95 (s, 2H), 7.70 (d, J = 9.2 Hz, 2H), 7.38 (dd, J = 8.8, 1.6 Hz, 2H), 6.69–6.67 (m, 6H), 6.59 (d, J = 2.0 Hz, 4H), 6.45 (t, J = 1.6 Hz, 2H), 3.88–3.81 (m, 16H), 1.82–1.72 (m, 8H), 1.49–1.23 (m, 256H), 0.88–0.84 (m, 48H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 160.55, 160.30, 140.06, 137.28, 130.59, 129.61, 129.10, 127.74, 127.33, 124.14, 120.04, 109.71, 102.83, 101.06, 90.88, 89.64, 71.38, 70.89, 38.03, 37.98, 31.92, 31.34, 30.03, 29.66, 29.37, 26.85, 22.70, 14.13; MALDI-TOF MS (matrix: dithranol) calculated for C₂₀₂H₃₄₆O₈: 2900.7, found: 2901.2 [M⁺].

Synthesis of 4: A mixture of 2 (216 mg, 0.094 mmol), tetrakis(triphenylphosphine)palladium(0) (Pd(PPh₃)₄, 59 mg, 0.051 mmol; TCI), and zinc cyanide (Zn(CN)₂, 43 mg, 0.37 mmol; Sigma-Aldrich) in anhydrous DMF (5 mL) was stirred at 110°C for 22 h. After the completion of the reaction, the reaction mixture was cooled to room temperature, excess chloroform was added and washed with distilled water. The organic layer was washed with brine, dried over anhydrous sodium sulphate and the solvent was evaporated under reduced pressure. The crude product was purified by silica-gel column chromatography (SiO₂, n-hexane/ethyl acetate). The subsequent recycling HPLC with chloroform as the solvent gave 4 (122 mg, 0.055 mmol) as a yellow liquid.

4: Yellow liquid (yield, 58%); TLC (n-hexane: CH₂Cl₂, 10:1 v/v): Rᵣ = 0.08; ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.21 (s, 1H), 7.98 (s, 1H), 7.80 (t, J = 9.6 Hz, 2H), 7.44 (dd, J = 9.2, 1.2 Hz, 1H), 7.39 (dd, J = 9.2, 1.2 Hz, 1H), 6.69 (d, J = 2.4 Hz, 4H), 6.55 (dd, J = 5.6, 2.4 Hz, 4H), 5.46 (t, J = 2.0 Hz, 1H), 3.87 (d, J = 6.0 Hz, 8H), 3.82 (d, J = 5.6 Hz, 4H), 1.81–1.74 (m, 6H), 1.46–1.24 (m, 192H), 0.88–0.85 (m, 36H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 160.72, 160.69, 160.33, 139.26, 138.96, 138.83, 137.73, 130.95, 130.48, 130.04, 129.38, 128.73, 128.53, 127.62, 124.32, 123.86, 121.52, 119.70, 109.78, 109.57, 108.59, 102.97, 101.52, 91.72, 89.22, 71.40, 71.32, 70.91, 38.04, 37.98, 31.92, 31.38, 30.03, 29.65, 29.61, 29.36, 26.90, 26.86, 22.69, 14.13; MALDI-TOF MS (matrix: dithranol) calculated for C₁₅₅H₃₆₁NO₆: 2233.0, found: 2233.7 [M⁺].
NMR spectra and MALDI-TOF MS

1H NMR (400 MHz, CDCl$_3$) spectrum of 2.

13C NMR (100 MHz, CDCl$_3$) spectrum of 2.
1H NMR (400 MHz, CDCl$_3$) spectrum of 3.

13C NMR (100 MHz, CDCl$_3$) spectrum of 3.
1H NMR (400 MHz, CDCl$_3$) spectrum of 4.

13C NMR (100 MHz, CDCl$_3$) spectrum of 4.
MALDI-TOF MS of 2. Matrix: dithranol.

MALDI-TOF MS of 3. Matrix: dithranol.

MALDI-TOF MS of 4. Matrix: dithranol.
Supplementary Figures

Figure S1. Normalized UV-vis absorption (dot line) and fluorescence (solid line) spectra of liquid 1 (blue) and BPEA in CH$_2$Cl$_2$ solution (10$^{-6}$ M) (green). Inset, photographs of liquid 1 (a drop on a glass plate) and BPEA solution (CH$_2$Cl$_2$, 10$^{-6}$ M) under irradiation of a UV lamp (365 nm).

Figure S2. Thermogravimetric analysis of BPEA. The decomposition (5% mass loss) occurred at 485 °C.
Figure S3. (a) Photographs of BPEA powders sandwiched between two glass plates under daylight conditions (upper) and under irradiation of a UV lamp (365 nm) (lower) at 20 °C; strong yellow-green emission was observed for BPEA powder. (b) Optical (upper) and polarized optical (lower) micrographs of BPEA sample from (a) recorded at different temperatures upon heating from 20 to 300 °C (as denoted below the micrographs) (scale bar, 50 μm). After melting at 255 °C, the sample turned into dark from 255 to 275 °C and lost fluidity from 275 to 300 °C, indicating intermolecular crosslinking. (c) Photographs of the sample from (b) under daylight conditions (upper) and under irradiation of a UV lamp (365 nm) (lower) at 20 °C. The resulting dark brown stuff exhibits negligible fluorescence, another indication for intermolecular crosslinking reaction.

Figure S4. Optical micrographs of 1–BPEA (5.0 mol%) composite IV recorded (a) from 20 to 52 °C (left to right, the temperature value was denoted above each micrograph) and (b) at 55 °C. (c) Photographs of 1–BPEA (5.0 mol%) composite IV sandwiched between two square glass plates before (left) and after (right) heating up to 300 °C (taken under irradiation of a UV lamp (365 nm) at 20 °C). The side of the square glass is of 1.8 cm.

Figure S5. Photographs of a drop of 1-BPEA (5.0 mol%) composite IV sandwiched between two square glass plates taken as fresh and after different time periods (denoted below each graph) under irradiation of a UV lamp (365 nm) at 20 °C. The side of the square glass is of 1.8 cm.
Figure S6. (a) Chemical structure (upper) and photographs (lower) (taken under daylight conditions (left) and under irradiation of a UV lamp (365 nm)) of rubrene. (b) Fluorescence micrographs for 1–rubrene composites with 0.1 (i), 0.5 (ii), 1.0 (iii), and 5.0 (iv) mol% of rubrene at 20 °C. Scale bar, 50 μm. λ_{ex}: 340–380 nm. Photographs of (c) 1-rubrene (5.0 mol%) composite and (d) pure liquid 1 sandwiched between two square glass plates before and after heating up to 200 °C (taken under irradiation of a UV lamp (365 nm) at 20 °C). The side of the square glass is of 1.8 cm.

Figure S7. Kohn-Sham molecular orbitals and electronic transitions for 9,10-bis(3,5-dimethoxyphenyl)-anthracene (DMPA) and simplified models of 1–4 (with 2-octyldecyl chains replaced by methyl groups) in the ground state calculated at the B3LYP/6-31G(d)/B3LYP/6-31G(d) level of theory.
Figure S8. DSC thermograms of 2, 3, and 4 (a) during the first heating scan from −105 to 45 °C at 10 °C min⁻¹ under nitrogen flow (T_g offset: the offset temperature of the glass-to-isotropic liquid transition), and (b) during the heating scan from −45 to 40 °C at 10 °C min⁻¹ after annealing at −45 °C for 12 hours. DSC thermograms of (c) 2, (d) 3, and (e) 4 during the heating/cooling cycles between −45 and 40 °C at 10 °C min⁻¹ (blue line; scale bar, 1 W/g), 5 °C min⁻¹ (green line; scale bar, 1 W/g), 1 °C min⁻¹ (orange line; scale bar, 0.25 W/g), and 0.2 °C min⁻¹ (red line; scale bar, 0.25 W/g) under nitrogen flow.

Figure S9. Optical (upper) and polarized optical (lower) micrographs of 1 (a and e), 2 (b and f), 3 (c and g), and 4 (d and h) at 20 °C. The sample area was denoted with asterisk (*). Scale bar, 50 μm.
Figure S10. Normalized UV-vis absorption (a, d) and fluorescence (b, e) spectra and section of CIE 1931 chromaticity diagrams (c, f) of 2 (a, b, and c) and 4 (d, e, and f) recorded in various solvents (UV-vis, 5×10^{-6} M; fluorescence, 10^{-6} M) at 20 °C. The solvents (dielectric constant) used were: n-hexane (1.89), ethyl acetate (EtOAc, 6.02), dichloromethane (CH$_2$Cl$_2$, 8.93) and benzonitrile (PhCN, 26.0).

Figure S11. Normalized of UV-vis absorption (a) and fluorescence (b) spectra of 1–4 (as denoted inside) in CH$_2$Cl$_2$ (UV-vis, 10^{-6} M; fluorescence, 10^{-6} M) (black line) and solvent-free liquid state (red line).
Figure S12. Nanosecond time-resolved fluorescence decay profiles of (a) 1, (b) 2, (c) 3, and (d) 4 in solution (10^{-6} M) (blue) and solvent-free liquid state (red). **IRF:** Instrument response function (black). Solvent: CH$_2$Cl$_2$. λ_{ex}: 375 nm.
Supplementary Tables

Table S1. Physical characteristics (\(T_g\), offset: the offset temperature of glass transition in the second heating trace) and photophysical parameters (\(\Delta E\): HOMO–LUMO energy gap; \(\lambda\): wavelength; \(\varepsilon\): absorption coefficient; and \(\Phi_{FL}\): absolute fluorescence quantum yield) of 1–4 in CH\(_2\)Cl\(_2\) solution (10\(^{-5}\) M) and solvent-free liquid state.

Compound	\(T_g\), offset (°C)\(^[a]\)	\(\Delta E\), eV (nm)\(^[b]\)	Absorption Feature	Fluorescence	CIE \((x, y)\)		
			\(\lambda_{abs}\), nm \(\varepsilon\), 10\(^{-4}\) dm\(^3\)mol\(^{-1}\) cm\(^{-1}\)	\(\lambda_{max}\), nm \(\Phi_{FL}\)			
		CH\(_2\)Cl\(_2\)	Liquid\(^[c]\)	CH\(_2\)Cl\(_2\)	Liquid\(^[c]\)	CH\(_2\)Cl\(_2\)	Liquid\(^[c]\)
1	-50.8	3.41 (401)	364 (1.32)	364	420 (0.47) (0.37)	0.16, 0.05	0.15, 0.08
			383 (1.74)	383	429 (0.44) (0.37)	0.16, 0.13	0.17, 0.19
2	-53.1	3.20 (427)	392 (1.79)	392	441 (0.52) (0.05)	0.15, 0.11	0.18, 0.26
			415 (1.55)	414	446 (0.68) (0.22)	0.15, 0.13	0.16, 0.32
3	-57.8	3.01 (454)	405 (1.78)	405	441 (0.55) (0.05)	0.15, 0.11	0.18, 0.26
			430 (1.71)	429	470 (0.68) (0.22)	0.15, 0.13	0.16, 0.32
4	-54.4	3.10 (441)	403 (1.83)	401	446 (0.68) (0.22)	0.15, 0.13	0.16, 0.32
			428 (1.85)	426			

\([a]\) Determined in the first DSC heating scan at 10 °C min\(^{-1}\) under \(\text{N}_2\).
\([b]\) Calculated for the simplified models of 1–4, with the alkyl chains replaced by methyl groups.
\([c]\) Prepared by sandwiching the liquid between two quartz plates.

Table S2. Photophysical parameters (\(\lambda\): wavelength; \(\varepsilon\): absorption coefficient; and \(\Phi_{FL}\): absolute fluorescence quantum yield) of 2 in various solvents of different polarities.

Solvent (dielectric constant)	Absorption Feature\(^[d]\)	Fluorescence\(^[d]\)	CIE \((x, y)\)
	\(\lambda_{abs}\), nm \(\varepsilon\), 10\(^{-4}\) dm\(^3\)mol\(^{-1}\) cm\(^{-1}\)	\(\lambda_{max}\), nm \(\Phi_{FL}\)	
\(-\text{hexane}\) (1.89)	370 (1.17)	425	0.16, 0.08
	389 (1.70)	(0.08)	
	412 (1.48)		
\(-\text{ethyl acetate}\) (6.02)	371 (1.24)	436	0.16, 0.08
	390 (1.78)	(0.08)	
	413 (1.55)		
\(-\text{CH}_2\text{Cl}_2\) (8.93)	372 (1.34)	429	0.16, 0.08
	392 (1.79)	(0.10)	
	415 (1.41)		
\(-\text{benzonitrile}\) (26.0)	374 (1.07)	433	0.16, 0.10
	394 (1.53)	(0.15)	
	417 (1.34)		

\([a]\) Concentration: 5 \times 10^{-6}\) M.
\([b]\) Concentration: 10^{-6}\) M.
Table S3. Photophysical parameters (λ: wavelength; ε: absorption coefficient; and ΦFL: absolute fluorescence quantum yield) of 4 in various solvents of different polarities

Solvent (dielectric constant)	Absorption Feature	Fluorescence	CIE (x, y)
	λabs. nm (ε × 10^4 dm^3 mol^{-1} cm^{-1})	λmax. nm (ΦFL)	
n-hexane (1.89)	377 (1.20)	436	0.15, 0.09
ethyl acetate (6.02)	398 (1.79)	440 (0.79)	0.15, 0.10
CHCl₂ (8.93)	402 (1.51)	440	0.15, 0.13
benzonitrile (26.0)	405 (1.51)	450	0.15, 0.15

[a] Concentration: 5 × 10^-6 M.
[b] Concentration: 10^-6 M.

data missing

Table S4. Fitting parameters (λmoni: monitored wavelength; τ: decay time; and χ²: chi-squared value) of fluorescence decays of 1–4 in CH₂Cl₂ solution (10^-6 M)

Compound	λmoni. nm	τ, ns	χ²
1	420	4.6	1.19
2	430	0.7	1.06
3	441	3.2	1.06
4	447	5.1	1.08

[a] Recorded at their respective maximum emission wavelengths.
[b] λex = 375 nm.

data missing

Table S5. Fitting parameters (λmoni: monitored wavelength; τ: decay time; and χ²: chi-squared value) of fluorescence decays of 1–4 in solvent-free liquid state

Compound	λmoni. nm	τ, ns	χ²	
1	443	4.3	1.03	
2	447	0.3 (0.23)	0.8 (0.77)	1.07
3	468	1.7 (0.70)	4.1 (0.30)	1.04
4	475	3.2 (0.23)	8.0 (0.77)	1.04

[a] Prepared by sandwiching the liquid between two quartz plates
[b] Recorded at their respective maximum emission wavelengths.
[c] λex = 375 nm.
Table S6. Cartesian coordinates [Å] of the optimized structure for simplified 1, with 2-octyldecyl chains replaced by methyl groups.

atom	x	y	z
C	-3.282514	0.143693	-1.735923
H	-1.656441	0.064486	-3.108014
C	-1.959315	0.084712	-2.068939
C	-2.779929	0.12527	0.616769
C	-0.956574	0.045643	-1.046662
C	-3.71358	0.164961	-0.382561
C	-1.376121	0.068047	0.336447
C	0.416353	-0.019836	-1.369197
H	-4.773166	0.210349	-0.156476
C	-3.102746	0.140471	1.65157
C	1.376121	-0.066047	-0.336447
C	2.779929	-0.12527	-0.616769
C	0.956574	-0.045643	1.046662
H	1.656441	-0.064486	3.108014
C	-0.416353	0.019836	1.369197
C	3.71358	-0.164961	0.382561
H	3.102746	-0.140471	-1.65157
C	4.773166	-0.210349	0.156476
C	3.282514	-0.143693	1.735923
C	1.959315	-0.084712	2.068939
C	0.851782	-0.032722	-2.803186
C	1.663273	-0.044151	-5.48712
C	1.107656	-1.23965	-3.447373
C	0.98859	1.185474	-3.493616
C	1.402937	1.169736	-4.830029
C	1.514257	-1.243022	-4.793628
H	0.997082	-1.243022	-2.931717
H	0.795533	2.114559	-2.97557
H	1.973306	-0.004474	-6.523769
C	-0.851782	0.032722	2.803186

Table S7. Cartesian coordinates [Å] of the optimized structure for simplified 2, with 2-octyldecyl chains replaced by methyl groups.

atom	x	y	z
O	5.123827	-4.349802	2.24941
O	4.619038	-4.483426	-2.491443
C	-2.059944	6.330514	-2.495645
H	-1.618426	7.136898	-1.859451
H	-3.084549	6.14342	-2.112046
C	-1.673806	4.216889	3.551484
H	-2.071595	3.195569	3.547573
C	-0.606875	4.189236	3.808301
C	4.876233	-3.738441	3.506229
Table S8. Cartesian coordinates [Å] of the optimized structure for simplified 3, with 2-octyldodecyl chains replaced by methyl groups

atom	x	y	z	atom	x	y	z
H	-3.607443	1.022746	-0.015292	C	2.66801	4.397086	-3.602672
C	-3.340356	-1.092861	-0.021068	H	3.195357	3.434802	-3.631053
C	-2.843361	-0.130299	-0.012397	C	3.100816	5.06857	-4.346576
C	-1.582629	2.373767	-0.005837	H	1.607474	4.233555	-3.834554
C	-1.417882	-0.090225	-0.001497	C	2.990249	6.398779	2.448512
C	-2.945152	2.297034	-0.011771	C	3.015019	6.67512	3.504138
C	-0.760567	1.198421	0.001514	H	2.439668	7.163944	1.885344
C	-0.646009	-1.27594	-0.002425	C	4.017024	6.33902	2.064288
C	-3.549148	3.19907	-0.016416	C	-5.02888	0.96188	-0.024075
H	-1.097544	3.343379	-0.004895	C	-6.245229	0.924582	-0.02992
C	0.760593	-1.198406	-0.001506	C	5.02891	-0.96188	0.024
C	1.582665	-2.373746	0.005888	Br	6.950873	1.953181	-0.103963
Table S9. Cartesian coordinates [Å] of the optimized structure for simplified 4, with 2-octylidodecyl chains replaced by methyl groups

atom	x	y	z
C	-1.275542	-1.161838	-0.047436
H	-1.44156	0.963964	-0.080429
C	-0.760761	0.121576	-0.06681
C	-7.669796	0.878349	-0.036535
C	-10.470814	0.795026	-0.04884
C	-8.332195	-0.353743	-0.051622
C	-8.407138	2.085412	-0.02741
C	-9.798233	2.029337	-0.033682
C	-9.734012	-0.388412	-0.057801
C	-10.22712	0.015261	-
C	-2.843384	0.130027	0.01235
C	-1.32563	-2.611913	0.00414
C	-2.600762	-5.109945	0.030609
C	-1.537287	-3.298189	-1.188121
C	-1.749619	-3.167581	1.226345
C	-2.383755	-4.411226	1.229621
C	-2.17696	-4.550172	-1.172475
C	-1.21996	-2.884173	-2.139132
C	-1.576304	-2.618984	2.143827
C	-3.097618	-6.070337	0.084595
C	1.32565	2.611931	-0.004129
C	2.60073	5.109966	-0.030588
C	1.537784	3.297954	1.188191
C	1.749148	3.167851	-1.226388
C	2.383281	4.411497	-1.229658
C	2.177449	4.549944	1.17255
C	1.220831	2.853742	2.139241
H	1.575477	2.619438	-2.143913
H	3.097796	6.070373	-0.084573
O	-2.337732	-5.140306	-2.391996
O	-2.835408	-5.045495	2.351081
O	2.834491	5.045998	2.351166
O	2.338703	5.139826	2.392127
C	-2.989229	-6.399285	-2.484376
C	-3.01356	-6.676246	-3.503953
C	-4.016163	-6.339465	-2.064587
H	-2.438863	-7.164317	-1.884817
C	-2.669494	-4.396289	3.602511
H	-1.609062	-4.232704	3.834834
H	-3.102635	-5.067599	4.346375
H	-3.196853	-3.433998	3.630426
Table S10. Cartesian coordinates [Å] of the optimized structure for 9,10-bis(3,5-dimethoxyphenyl)-anthracene (DPA)

atom	x	y	z
C	0.979816	-2.07737	-0.044587
C	0.643785	0.370297	-0.070218
C	-0.369874	-2.27676	-0.031921
C	1.546787	-0.760235	-0.070032
C	1.158589	1.687869	-0.077725
H	-0.780118	-3.281466	0.012807
H	1.650936	-2.928669	-0.038108
C	2.552669	1.895538	-0.089965
C	3.119157	3.213105	-0.085524
C	3.45322	0.76373	-0.099545
H	5.540006	0.169032	-0.145569
C	2.940126	-0.554034	-0.08733
C	4.469382	3.416163	-0.10897
H	2.447973	4.064045	-0.072202
H	4.861393	4.419884	-0.097277
C	5.35952	2.295046	-0.124907
C	4.850811	1.010539	-0.125368
C	0.224278	2.859634	-0.064745
C	-1.520365	5.054704	-0.027992
C	-1.053626	3.5062	1.25233
C	-0.315393	3.302806	1.157967
C	-1.183648	4.396118	1.166175
C	-0.980212	4.607082	1.213532
H	0.299016	3.177021	-2.203468
H	-0.04718	2.787459	2.071903
H	-2.196437	5.898491	0.029997
C	3.877368	-1.723494	-0.086944
C	5.636943	-3.905718	-0.077501
C	4.188037	-2.370927	-1.279022
C	4.442881	-2.158794	1.126799
C	5.318216	-3.246869	1.121314
C	5.071509	-3.465285	-1.271979
H	3.763748	-2.046942	-2.223232
H	4.188258	-1.643359	2.044594
H	6.322207	-4.742662	-0.030439
O	-1.239191	5.170559	-2.445622
O	-1.76556	4.912203	2.28766
O	5.923554	-3.75659	2.232386
H	-3.113949	6.036218	-2.130031
C	-1.477425	4.301623	3.536639
H	-1.798052	3.252131	3.555995
H	-0.407033	4.35544	3.77418
C	5.670256	-3.139998	3.482956
H	5.991688	-2.084468	3.482646
H	4.606983	-3.18611	3.751245
C	6.208699	-5.127879	-2.556668
H	5.845123	-5.980876	-1.968806
C	-2.679325	-1.39122	-0.041859
C	-3.875952	-1.61191	-0.035261
C	6.775472	2.514591	-0.145154
C	5.281073	-1.85135	-0.028685
H	6.174146	-0.755639	-0.074761
C	5.753768	-3.385694	0.02891
C	5.79463	-3.160999	0.023004
H	5.771674	0.247874	-0.115313
H	-9.117771	-2.447756	0.013631
C	-7.533553	-4.694087	0.080616
O	-8.50295	-0.028155	-0.109982
C	-8.920835	-4.992914	0.084525
C	-9.423679	-4.562128	0.960374
C	-9.413602	-4.631356	-0.827569
C	-8.082118	1.325993	0.168633
H	-7.493834	1.604026	0.715631
H	-7.496073	1.525435	-1.071744
N	7.923361	2.707112	-0.157348
H	8.996414	1.921658	-0.1963
H	-8.992063	-6.018276	0.126334
H	-2.170961	6.573277	-3.548672
H	-2.041308	4.866089	4.281499
H	6.256592	5.409127	-3.610114
H	6.25549	-3.690878	4.216886

atom	x	y	z
C	0.521607	3.629348	-0.712189
H	0.318653	2.467073	-2.486974
C	0.338576	2.461314	-1.402785
C	0.046398	-0.006281	5.733242
C	1.23138	-0.175404	3.619814
C	-1.170702	0.167585	3.631892
References

1. H. Li, S. S. Babu, S. T. Turner, D. Neher, M. J. Hollamby, T. Seki, S. Yagai, Y. Deguchi, H. Möhwald, T. Nakanishi, *J. Mater. Chem. C*, 2013, 1, 1943–1951.

2. F. Lu, K. Jang, I. Osica, K. Hagiwara, M. Yoshizawa, M. Ishii, Y. Chino, K. Ohta, K. Ludwichowska, K. J. Kurzydlowski, S. Ishihara, T. Nakanishi, *Chem. Sci.*, 2018, 9, 6774–6778.

3. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision E.01, Gaussian, Inc., Wallingford CT, 2013.