Reversal of a single base pair step controls guanine photo-oxidation by an intercalating Ru(II) dipyridophenazine complex

Article

Open Access

Keane, P. M., Poynton, F. E., Hall, J. P., Sazanovich, I. V., Towrie, M., Gunnlaugsson, T., Quinn, S. J., Cardin, C. J. and Kelly, J. M. (2015) Reversal of a single base pair step controls guanine photo-oxidation by an intercalating Ru(II) dipyridophenazine complex. Angewandte Chemie-International Edition, 54 (29). pp. 8364-8368. ISSN 1433-7851 doi: https://doi.org/10.1002/anie.201502608 Available at http://centaur.reading.ac.uk/40309/

It is advisable to refer to the publisher’s version if you intend to cite from the work.

To link to this article DOI: http://dx.doi.org/10.1002/anie.201502608

Publisher: Wiley VCH

Publisher statement: This is the peer reviewed version of the following article: 'Reversal of a single base pair step controls guanine photo-oxidation by an intercalating Ru(II) dipyridophenazine complex' which has been published in final form at DOI:10.1002/anie.201502608R2. This article may be used for non-commercial purposes in accordance With Wiley-VCH Terms and Conditions for
self-archiving

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement.

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading’s research outputs online
Reversal of a Single Base-Pair Step Controls Guanine Photo-Oxidation by an Intercalating Ruthenium(II) Dipyridophenazine Complex**

Páraic M. Keane,* Fergus E. Poynton, James P. Hall, Igor V. Sazanovich, Michael Towrie, Thorfinnur Gunnlaugsson, Susan J. Quinn, Christine J. Cardin,* and John M. Kelly*
Abstract: Small changes in DNA sequence can often have major biological effects. Here the rates and yields of guanine photo-oxidation by λ-[Ru(TAP)$_2$(dppz)]$^{2+}$ have been compared in 5'-[CCGGATCCGG]$_2$ and 5'-[CCGGTACCGG]$_2$ using pico/nanosecond transient visible and time-resolved IR (TRIR) spectroscopy. The inefficiency of electron transfer in the TA sequence is consistent with the 5'-TA-3' versus 5'-AT-3' binding preference predicted by X-ray crystallography. The TRIR spectra also reveal the differences in binding sites in the two oligonucleotides.

There is continued interest in DNA photo-oxidation by intercalating compounds due to its possible role in phototherapeutic applications[1] and in the details to be learned about the fundamental processes of photo-induced electron transfer (ET) in biological systems.[2] However, accurate descriptions of the processes influencing ET require knowledge of the intercalator's location in a DNA sequence that may contain multiple binding sites. Attempts to address this issue have been made by covalently tethering the intercalator to an oligodeoxynucleotide (ODN) strand,[3] although even in this case the precise orientation of the intercalating ligand is uncertain.

One interesting class of DNA-interacting compounds is ruthenium polypyridyls, as their photophysical properties, photochemical reactivity and DNA binding can be readily controlled by variation of the chelating ligands,[4] and this area has also been the subject of recent insightful computational studies.[4] A significant development is the access to detailed information on the binding modes of non-covalently bound [Ru(dppz)$_2$] (dppz = dipyrido[3,2-a:2',3'-c]phenazine) intercalators provided by crystal structures of λ-[Ru(TAP)$_2$(dppz)]$^{2+}$ (A-I, Figure 1a),[5] λ and Δ-[Ru(phen)$_2$(dppz)]$^{2+}$[6] and λ-[Ru(bpy)$_2$(dppz)]$^{2+}$[6] in ODNs (TAP = 1,4,5,8-tetrazapaphenanthrene, phen = 1,10-phenanthroline, bpy = 2,2'-bipyridyl). Nevertheless, it can be unclear whether these crystal structures reflect what occurs under more dilute conditions in solution, where the majority of experiments on ligand-DNA interactions are performed.

A striking revelation from crystallography has been from the comparative study of λ-[Ru(phen)$_2$(dppz)]$^{2+}$ bound to 5'-[CCGGATCCGG]$_2$ (A) and 5'-[CCGGTACCGG]$_2$ (B) (Figure 1b,c and Supporting Information (SI), Figures S1 and S2) where dppz intercalation occurs at the central 5'-TA-3' but not 5'-AT-3' sites.[6] This observation is significant because binding at the TA step would remove the intercalator from the readily oxidized guanine bases in these sequences.[6] It is therefore intriguing to study these ODNs with the structurally similar [Ru(TAP)$_2$(dppz)]$^{2+}$ (A-I), which, unlike the phen analog, is known to efficiently photo-oxidize guanine.[7] In particular, we aimed to demonstrate whether a TA versus AT selectivity could be identified in solution and how this may help our understanding of ET in these systems.

Figure 1. a) Structures of λ-[Ru(TAP)$_2$(dppz)]$^{2+}$ and ODNs used in this study. b,c) Crystal structures of λ-[Ru(phen)$_2$(dppz)]$^{2+}$ bound to ODN A and ODN B from Niyaiz et al.[5] showing binding at central T$_{A_5}$A$_6$A$_5$T$_{A_6}$ step in [CCGGATCCGG], but not [CCGGTACCGG]. Intercalated complexes only are shown. Color code: Guanine, red; cytosine, cyan; adenine, green; thymine, yellow; nitrogen, blue.

[1] Dr. P. M. Keane, F. E. Poynton, Prof. T. Gunnaugsson, Prof. J. M. Kelly
School of Chemistry, Trinity College, Dublin 2 (Ireland)
E-mail: keanepa@tcd.ie
jmkeely@tcd.ie
Dr. P. M. Keane, Dr. J. P. Hall, Prof. C. J. Cardin
Department of Chemistry, University of Reading
Whiteknights, Reading, RG6 6AD (UK)
E-mail: c.j.cardin@rdg.ac.uk
Dr. J. P. Hall
Diamond Light Source, Harwell Science and Innovation campus
Didcot, Oxfordshire, OX11 OQX (UK)
F. E. Poynton, Prof. T. Gunnaugsson
Trinity Biomedical Sciences Institute, Pearse St., Dublin 2 (Ireland)
Dr. I. V. Sazanovich, Prof. M. Towie
Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation campus, Didcot, Oxfordshire, OX11 OQX (UK)

Dr. S. J. Quinn
School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4 (Ireland)

[**] The work was supported by a Royal Irish Academy/Royal Society International Exchange Scheme award (to C.J., C.J.M.K. and T.G.) and by BBSRC grants BB/K019279/1 and BB/M004635/1 (to C.J., C.J.M.K., M.T. and J.P.H.), by Science Foundation Ireland grants 10/IN.1/B2999 and 13/IA/1865 (T.G.), the Irish Research Council (F.E.P.), the College of Science, UCD (S.J.Q.) and by the STFC (access to the CLF-App13230047).

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201502608.

© 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.angewandte.org
To determine whether exchanging the TA:TA step for AT:AT would affect the behavior in solution the ET was monitored using transient spectroscopy. Parallel experiments were performed using 1) transient visible absorption (TrA) to track the formation and removal of the reduced Ru species formed by ET and 2) time-resolved IR (TRIR) to probe the effect on the DNA by monitoring the nucleobase vibrations. Experiments were performed in D2O at 0.8:1 Ru:duplex ratios (400 μM Ru, 500 μM duplex), where on average only one metal complex is available per duplex.

Picoscnd-TrA measurements show that 400 nm laser excitation of I in the presence of A results in removal of the ground state (450 nm) and formation of a broad transient feature (λmax = 600 nm) (SI Figure S3a), assigned to the \([Ru^{III} (TAP)^{(TAP-)(dppz)}]^{2+}\) metal-to-TAP-ligand charge transfer (MLCT) excited state. Subsequently the absorption at 600 nm decreases while simultaneously that at 515 nm increases with a rate constant of \(1/(480 \pm 60)\) ps\(^{-1}\) (Figure 2a and SI Figure S3a). This is comparable to that observed for \(\Lambda-I\) bound to other G-rich ODNs and is ascribed to ET from guanine and formation of the reduced metal complex \([Ru^{II} (TAP)^{(TAP-)(dppz)}]^{+}\)\(^{2+}\). The subsequent reverse ET was monitored by TrA experiments on the ns timescale (Figure 2b) where the decay of the reduced species fitted to a rate constant of \(1/(17 \pm 3)\) ns\(^{-1}\) (Figure 2a).

Strongly contrasting behavior was observed when the experiment was repeated with B where the central step is TA:TA. The TrA spectra recorded from B to ps to ns shows the \([Ru^{III} (TAP)^{(TAP-)(dppz)}]^{2+}\) excited state and there was no evidence for significant formation of the reduced species (Figure 2a and SI Figure S3b). The excited state decayed with a lifetime of \(120 \pm 15\) ns (Figure 2b), which was significantly longer than that observed with ODN A. However, it may be noted that this lifetime is shorter than that for the excited state of \([Ru (TAP)^{(dppz)}]^{2+}\) either unbound (1080 ns) or bound to a duplex that does not contain G (e.g., poly[dA-dT]2; \(\tau = 1580\) ns). This implies that excited-state quenching occurs, but with a much lower rate than in A.

Experiments were then performed using TRIR in order to observe directly the effect on DNA (Figure 3 and SI Figure S4). In the FTIR spectra, the region above 1600 cm\(^{-1}\) is dominated by C(1650 cm\(^{-1}\)) and G (1680 cm\(^{-1}\)) carbonyl vibrations, while \(\Lambda-I\) has no significant bands in this region. In the presence of ODN A, bleaching of the CG bands is observed at early times (< 20 ps), before ET has occurred (Figure 3a). This may be due to the intimate association of the photoexcited complex with the nucleobases in the intercalation site (note that the ODN is not directly excited at 400 nm).

Subsequently the bleaches increase in magnitude and a new transient feature emerges at 1700 cm\(^{-1}\), which has been assigned as the G radical cation, confirming the formation of photooxidized G. On the nanosecond timescale this feature decays and the bleaches recover (SI Figure S5), consistent with the reverse ET recorded by ns-TrA for the re-oxidation of reduced \(\Lambda-I\).

Again, strongly contrasting behavior was observed when \(\Lambda-I\) was bound to ODN B (Figure 3b). Notably the structure of the bleaches differs to those observed in ODN A, implying that the environment of the complex is different. Also there is no further bleaching of the GC bands over the 100 s of picoseconds timescale as seen with ODN A and no evidence for formation of the radical cation (G\(^{+}\)). Interestingly the spectrum in ODN B more closely resembles that found for the complex bound to poly[dAdT]2 (SI Figures S6 and S7), suggesting that the profile with ODN B is diagnostic of binding primarily to an adenine–thymine rich site. Based on these results, assignments may be proposed for the bleaches at 1621 cm\(^{-1}\) (A\(\nu_{C3N}\)), 1647 cm\(^{-1}\) (T\(\nu_{C3N}\)), 1672 cm\(^{-1}\) (T\(\nu_{C4=O}\)), and 1694 cm\(^{-1}\) (T\(\nu_{C2=O}\)).
The above results demonstrate the sensitivity of the ET to the reversal of a single base-pair step in the duplex. The behavior when 1 is bound to ODN A is similar to that found with G-rich ODNs such as \([\text{G}],[34]\) This suggests that the complex is bound close to G, allowing efficient formation of the reduced species and subsequent reverse ET. In support of this hypothesis the TRIR signal obtained at 20 ps (i.e. before ET occurs) shows strong bleach-bands associated with the C1C2:G9G10 step in the crystal structure. It is possible that the C,G,G site is also occupied in solution (Figure 4a,b).

By contrast to what is observed with ODN A, the TRIR spectrum of A-1 bound to B is fully consistent with the binding site being preferentially at the TA:TA step (Figure 4c). Steady-state UV/visible and luminescence experiments are also consistent with this model, with slightly stronger binding, and less emission quenching, when the binding site is preferentially at the TA:TA step (Figure 4b).

In summary, transient visible and IR spectroscopy shows significant differences in guanine photo-oxidation dynamics for A-[Ru(TAP)2(dppz)]2+ bound to either [CCGGATCCGG]2 or [CCGGACCGCG]. These results confirm the prediction of a 5'-TA-3' vs 5'-AT-3' binding preference for RuII dppz complexes, and show the sensitivity of the electron transfer to a separation of one step between donor and acceptor. This is further evidence of the importance of neighboring bases in the photo-oxidation of guanine in DNA. Importantly we also report that the bleach bands for the DNA obtained by TRIR allow the identification of the binding site in solution. This observation should have more general applicability to the study of DNA intercalators and could offer an alternative to NMR studies, which are often rather difficult to interpret. It is hoped that the present study and investigations on different ODN sequences will shed further light on the structural factors governing binding and photo-oxidation by intercalators, in both solution and crystal states.

Keywords: DNA · electron transfer · photo-oxidation · ruthenium · time-resolved spectroscopy

How to cite: Angew. Chem. Int. Ed. 2015, 54, 8364–8368
Angew. Chem. 2015, 127, 8484–8488

[1] a) C. A. Puckett, J. K. Barton, *J. Am. Chem. Soc.* 2007, 129, 46–47; b) R. B. P. Elmès, K. N. Orange, S. M. Cloonan, D. C. Williams, T. Gunnlaugsson, *J. Am. Chem. Soc.* 2011, 133, 15862–15865; c) M. R. Gill, J. A. Thomas, *Chem. Soc. Rev.* 2012, 41, 3179–3192; d) N. A. Smith, P. J. Sadlier, *Phil. Trans. R. Soc. A* 2013, 371, 20120519; e) E. Waechter, D. K. Heidary, B. S. Howerton, S. Parkin, E. C. Glazer, *Chem. Commun.* 2012, 48, 9649–9651; f) L. Mercelis, C. Moucheour, A. Kirsch-De Mesmaeker, *Phytochem. Rev.* 2013, 137, 20120313; g) A. M. Palmer, S. J. Burya, J. C. Gallucci, C. Turro, *ChemMedChem* 2014, 9, 1260–1265.

[2] a) J. A. Smith, M. W. George, J. M. Kelly, *Coord. Chem. Rev.* 2011, 255, 2666–2675; b) J. K. Barton, E. C. Olmon, P. A. Sontz, *Coord. Chem. Rev.* 2011, 255, 619–634; c) J. G. Vos, J. M. Kelly, *Dalton Trans.* 2006, 4869–4883.

[3] a) S. Le Gac, M. Foucart, P. Gerbaux, E. Defrancq, C. Moucheron, A. Kirsch-De Mesmaeker, *Dalton Trans.* 2010, 39, 9672–9683; b) C. Wan, T. Fiebig, S. O. Kelley, C. R. Treadway, J. K. Barton, A. H. Zewail, *Proc. Natl. Acad. Sci. USA* 1999, 96, 6014–6019.

[4] a) T. Véry, D. Ambrosek, M. Otsuka, C. Gourlaouen, X. Assfeld, A. Monari, C. Daniel, *Chem. Eur. J.* 2014, 20, 12901–12909; b) C. Daniel, *Coord. Chem. Rev.* 2015, 282, 19–32.

[5] a) J. P. Hall, K. O’Sullivan, A. Naseer, J. A. Smith, J. M. Kelly, J. C. Cardin, *J. Phys. Chem. B* 2011, 115, 2769–2778; b) G. Jacquet, J. P. Hall, K. O’Sullivan, G. Winter, T. Sorensen, J. M. Kelly, J. C. Cardin, *Nature Chem.* 2012, 4, 621–628; c) J. P. Hall, D. Cook, S. R. Morte, P. McIntyre, K. Buchner, H. Beer, D. J. Cardin, J. A. Brazier, G. Winter, J. M. Kelly, et al., *J. Am. Chem. Soc.* 2013, 135, 12652–12659; d) H. Song, J. T. Kaiser, J. K. Barton, *Nat. Chem.* 2012, 4, 615–620.

[6] The crystal structure of A-[Ru(phen)2(dppz)]2+ bound to ODNs A and B show that the centrally intercalated complex is likely to be approx. 2.8 Angström further away from guanine than a complex bound at the terminal GG step; see also SI Figures S1 and S2.

[7] a) C. G. Coates, P. Callaghan, J. J. McGarvey, J. M. Kelly, L. Jacquet, A. Kirsch-De Mesmaeker, *J. Mol. Struct.* 2001, 598, 15–25; b) I. Ortmans, B. Elias, J. M. Kelly, C. Moucheour, A. Kirsch-De Mesmaeker, *Dalton Trans.* 2004, 668–676; c) B. Elias, C. Creely, G. W. Doorley, M. M. Feeney, C. Moucheour, A. Kirsch-De Mesmaeker, J. Dyer, D. C. Grills, M. W. George, P. Matousek, et al., *Chem. Eur. J.* 2008, 14, 369–375; d) P. M. Keane, F. E. Poynton, J. P. Hall, I. P. Clark, I. V. Sazanovich, M. Towie, T. Gunnlaugsson, S. I. Quinn, C. J. Cardin, J. M. Kelly, *J. Phys. Chem. Lett.* 2015, 6, 734–738; e) L. Mercelis, C. Rebzar, V. Lemaux, E. Fron, J. De Winter, C. Moucheour, P. Gerbaux, D. Angew. Chem. Int. Ed. 2015, 54, 8364–8368 © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.angewandte.org
Beljonne, M. Sliwa, A. Kirsch-De Mesmaeker, *J. Phys. Chem. B* 2015, 119, 4488–4500.

[8] a) G. M. Greetham, P. Burgos, Q. Cao, I. P. Clark, P. S. Codd, R. C. Farrow, M. W. George, M. Kogimtzis, P. Matousek, A. W. Parker, et al., *Appl. Spectrosc.* 2010, 64, 1311–1319; b) G. M. Greetham, D. Sole, I. P. Clark, A. W. Parker, M. R. Pollard, M. Towrie, *Rev. Sci. Instrum.* 2012, 83, 103107.

[9] M. Towrie, G. W. Doorley, M. W. George, A. W. Parker, S. J. Quinn, J. M. Kelly, *Analyst* 2009, 134, 1265–1273.

[10] Q. Cao, C. M. Creely, J. Dyer, T. L. Easun, D. C. Grills, D. A. McGovern, J. McMaster, J. Pitchford, J. A. Smith, X.-Z. Sun, et al., *Photochem. Photobiol. Sci.* 2011, 10, 1355–1364.

[11] A. W. Parker, C. Y. Lin, M. W. George, M. Towrie, M. K. Kuimova, *J. Phys. Chem. B* 2010, 114, 3660–3667.

[12] M. Banyay, M. Sarkar, A. Gräslund, *Biophys. Chem.* 2003, 104, 477–488.

[13] In a GG doublet, the 5′ base is expected to be the most reactive, that is, G5 and G6 in this case (see Ref. [14]).

[14] I. Saito, T. Nakamura, K. Nakatani, Y. Yoshioka, K. Yamaguchi, H. Sugiyama, *J. Am. Chem. Soc.* 1998, 120, 12686–12687.

[15] a) Y. Sun, Y. Liu, C. Turro, *J. Am. Chem. Soc.* 2010, 132, 5594–5595; b) Y. Sun, L. E. Joyce, N. M. Dickson, C. Turro, *Chem. Commun.* 2010, 46, 2426–2428.

[16] T. Z. Markus, S. S. Daube, R. Naaman, *J. Phys. Chem. B* 2010, 114, 13897–13903.

[17] a) A. Greguric, I. D. Greguric, T. W. Hambley, J. R. Aldrich-Wright, J. Grant Collins, *J. Chem. Soc. Dalton Trans.* 2002, 849–855; b) L. Wu, A. Reymer, C. Persson, K. Kazimierczuk, T. Brown, P. Lincoln, B. Nordén, M. Billeter, *Chem. Eur. J.* 2013, 19, 5401–5410.

Received: March 20, 2015
Revised: April 20, 2015
Published online: June 11, 2015