Pionic deuterium

Th. Strauch1, F.D. Amaro2, D.F. Anagnostopoulos3, P. Bühler4, D.S. Covita2,7,a, H. Gorké5, D. Gotta1,b, A. Gruber4, A. Hirtl5,c, P. Indelicato6, E.-O. Le Bigot6, M. Nekipelov1, J.M.F. dos Santos2, Ph. Schmid4, S. Schlesserb, L.M. Simons7, M. Trassinelli6,d, J.F.C.A. Veloso8, and J. Zmeskal4

1 Institut für Kernphysik, Forschungszentrum Jülich, D-52425 Jülich, Germany
2 Department of Physics, Coimbra University, P-3000 Coimbra, Portugal
3 Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina, Greece
4 Stefan Meyer Institut for Subatomic Physics, Austrian Academy of Sciences, A-1090 Vienna, Austria
5 Zentralinstitut für Elektronik, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
6 Laboratoire Kastler Brossel, UPMC-Paris 6, ENS, CNRS; Case 74, 4 place Jussieu, F-75005 Paris, France
7 Laboratory for Particle Physics, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
8 I3N, Department of Physics, Aveiro University, P-3810 Aveiro, Portugal

Received: 10 November 2010 / Revised: 2 May 2011
Published online: 27 July 2011 – © Società Italiana di Fisica / Springer-Verlag 2011
Communicated by N. Alamanos

Abstract. The strong-interaction shift ϵ_D^s and broadening Γ_D^s in pionic deuterium have been determined in a high statistics study of the $\pi D(3p-1s)$ X-ray transition using a high-resolution crystal spectrometer. The pionic deuterium shift will provide constraints for the pion-nucleon isospin scattering lengths extracted from measurements of shift and broadening in pionic hydrogen. The hadronic broadening is related to pion absorption and production at threshold. The results are $\epsilon_D^s = (-2356 \pm 31)\text{ meV}$ (repulsive) and $\Gamma_D^s = (1171^{+235}_{-49})\text{ meV}$ yielding for the complex sD scattering length $a_{sD} = [(-24.99 \pm 0.33) + i(6.22^{+0.12}_{-0.26})] \times 10^{-3} m_\pi^{-1}$. From the imaginary part, the threshold parameter for pion production is obtained to be $\alpha = (251^{+60}_{-51}) \mu b$. This allows, in addition, and by using results from pion absorption in 4He at threshold, the determination of the effective couplings g_0 and g_1 for s-wave pion absorption on isoscalar and isovector NN pairs.

1 Introduction

Hadronic atoms reveal the influence of the strong force by a shift ϵ and broadening Γ of the low-lying atomic levels with respect to the pure electromagnetic interaction. As atomic binding energies are negligibly small compared to the hadronic scale, a measurement of shift and width is equivalent to a scattering experiment at zero energy (threshold). Hence, such atomic data contain information on hadron-nucleus scattering lengths [1,2].

In pionic hydrogen, the atomic ground-state level shift ϵ_H^s and broadening Γ_H^s are connected to the two isospin-separated pion-nucleon (πN) scattering lengths. In the case of nuclei $A(N,Z)$ with $A \geq 2$, ϵ_A^s and Γ_A^s are measures of the complex pion-nucleus scattering length $a_{\pi A}$. The real part of $a_{\pi A}$ is attributed in leading order to scattering, whereas the imaginary part is due to pion absorption inducing itself a contribution to the shift [3,4].

It has been shown, that strong-interaction effects in low Z pionic atoms can be related unambiguously to pion-nucleon (πN) scattering lengths as defined in modern field theoretical approaches of QCD [5]. Such threshold quantities are of great importance because they belong to the first scattering parameters accessible by lattice calculations [6,7]. For the πN case, however, results are not yet available [8,9].

Pion-nucleus dynamics is understood to be built up from elementary $\pi N \rightarrow \pi N$ and $\pi NN \leftrightarrow NN$ processes taking into account nuclear structure, multiple scattering, and absorptive phenomena. Vice versa, precise pion-nucleus data could set constraints on elementary amplitudes. Generally, systematic uncertainties involved in the extraction of $a_{\pi A}$ from atom data, if available, are smaller than in the extrapolation of cross-section data to threshold. In this case, normalisation problems cease to exist and corrections owing to Coulomb bound states are better under control than for scattering states (see sect. 3).
Assuming isospin conservation and charge symmetry, \(\pi N \rightarrow \pi N \) scattering at threshold is described completely by two real numbers, e.g., the isoscalar and isovector \(\pi N \) scattering lengths \(a^+ \) and \(a^- \). They are defined in terms of two \(\pi N \rightarrow \pi N \) reactions or isospin \(I = 1/2 \) and \(I = 3/2 \) by
\[
a^+ = \frac{1}{2} \left(a_{\pi^- p \rightarrow \pi^- n} + a_{\pi^+ p \rightarrow \pi^+ n} \right) = \frac{1}{3} \left(a_{1/2} + 2a_{3/2} \right),
\]
\[
a^- = \frac{1}{2} \left(a_{\pi^- p \rightarrow \pi^- n} - a_{\pi^+ p \rightarrow \pi^+ n} \right) = \frac{1}{3} \left(a_{1/2} - a_{3/2} \right).
\]

Furthermore, among others the relations \(a_{\pi^- n \rightarrow \pi^- n} = a_{\pi^+ p \rightarrow \pi^+ p} \) and \(a_{\pi^- n \rightarrow \pi^+ n} = -\sqrt{2} a^- \) hold.

The scattering lengths \(a^+ \) and \(a^- \) play a key role in the modern low-energy approach of QCD based on effective field theories (EFT). A perturbative method — chiral perturbation theory (\(\chi PT \)) — has been developed, which is intimately related to the smallness of the pion’s mass \(m_\pi \) due to its underlying nature as a Goldstone boson [10–13]. The interaction is calculated order by order as an electromagnetic interaction, and the light-quark mass difference \(m_q \) of charged pions [27–29] and the induced pseudoscalar coupling \(g_\rho \) as determined from muon capture in hydrogen [30–32].

Access to \(a^+ \) and \(a^- \) is available from the 1s level shift and broadening in pionic hydrogen (\(\pi H \)):
\[
\epsilon_{1s}^{1H} \propto a_{\pi^- p \rightarrow \pi^- p} = a^+ + a^- + \ldots ,
\]
\[
\Gamma_{1s}^{1H} \propto \left(1 + \frac{1}{P} \right) (a_{\pi^- p \rightarrow \pi^- n})^2 \propto (a^-)^2 + \ldots .
\]

Ellipses stand for corrections owing to the fact that the pionic atom constitutes a Coulomb state as well as for electromagnetic and strong isospin and non-isospin broadening corrections, which are essential to extract \(a^+ \) and \(a^- \) in a well-defined way from the data. These corrections may be calculated, e.g., within the framework of \(\chi PT \) and are of the order of a few per cent [33–36].

In the \(\pi H \) case, the level width is as well due to scattering — the charge exchange reaction \(\pi^- p \rightarrow \pi^- n \) and, therefore, is proportional to the square of \(a^- \) [37]. The Panofsky ratio \(P = \Gamma(\pi^- p \rightarrow \pi^- n)/\Gamma(\pi^- p \rightarrow \gamma n) = 1.546 \pm 0.009 \) [38] accounts for the relative strength of radiative capture, the second channel contributing to the total broadening. For a recent analysis of \(\pi H \) atomic data see ref. [39].

It is known already from current algebra, that \(a^+ \) vanishes in the chiral limit [10,11] acquiring a finite value only because of chiral symmetry breaking [13,40]. Hence, the s-wave \(\pi N \) interaction is dominated by the isovector contribution with the consequence that it is difficult to extract \(a^+ \) from pion-nucleon and nucleus data with \(I \neq 0 \).

Pionic deuterium (\(\pi D \)) is of particular interest being the first natural choice to test the interaction of pions with isoscalar nuclear matter. Here, the leading-order (LO) one-body contribution to the real part of the pion-deuteron scattering length \(a_{\pi D} \) depends only on the isoscalar quantity \(a^+ \). Considering the deuteron as a free proton and neutron plus corrections, one may write
\[
\epsilon_{1s}^{\pi D} \propto \text{Re} a_{\pi D} = a_{\pi^- p \rightarrow \pi^- p} + a_{\pi^- n \rightarrow \pi^- n} + \ldots = 2a^+ + \ldots .
\]

Besides the corrections mentioned for the case of \(\pi H \), ellipses include here terms arising from multiple scattering, depending both on \(a^+ \) and \(a^- \), and absorptive contributions. Noteworthy, that the second-order correction, dominated by (\(a^- \))^2, exceeds even the magnitude of the leading order term because of \(a^+ \ll a^- \) [10,11]. Nuclear structure is taken into account by folding with the deuteron wave function [41–43]. The exact relation between \(\epsilon_{1s}^{\pi D} \) and Re \(a_{\pi D} \) is discussed in detail in sect. 3.1.

Hence, the isospin scattering lengths are accessible from the shift measurements in \(\pi H \) and in \(\pi D \) already without ultimately precise data for the hadronic broadening in hydrogen being available [25]. An effective constraint on \(a^+ \) and \(a^- \), however, is obtained when combining the triple \(\epsilon_{1s}^{\pi H}, \Gamma_{1s}^{\pi H}, \) and \(\epsilon_{1s}^{\pi D} \). A complete set of data has been achieved for the first time during the last decade [44–48].

Such a constraint is highly desirable, because different methods exist to obtain the corrections needed for the extraction of the pure hadronic quantities \(a^+ \) and \(a^- \) from \(\pi H \) and \(\pi D \) measurements. Recognising, among others, that corrections obtained using potential models were incomplete, significant effort went into calculations to establish an unambiguous relation between atomic data and \(a^+ \) and \(a^- \), in particular within the framework of \(\chi PT \). It has been proven to be extendable in a defined way to three-body interactions [49] and allows to treat electromagnetic and strong isospin-breaking terms on the same footing [5,25,50–63]. For a discussion and comparison of potential and EFT approaches see ref. [5].

As mentioned above, corrections for the \(\pi N \) scattering lengths as obtained from \(\pi H \) amount to a few per cent of the leading contribution in complete contrast to the real part of the \(\pi D \) scattering length. Here, because of the smallness of \(a^+ \), the isospin-breaking contribution was found to be as large as 40% in NLO \(\chi PT \) [61].

Finally, it turned out that for the extraction of the scattering lengths \(a^+ \) from the atomic data within the framework of \(\chi PT \), the accuracy achievable is determined by one particular combination of LECs. It appears both in the correction term for \(\epsilon_{1s}^{\pi H} \) and \(\epsilon_{1s}^{\pi D} \), and thus constitutes a limit from the theoretical side [64]. In the case of \(\Gamma_{1s}^{\pi H} \) the LECs involved are known better [5,65]. Therefore, here
the uncertainty of a^- is dominated by the experimental accuracy.

Being different from the πH case, the hadronic broadening in πD and, consequently, the imaginary part of the $a_{\pi D}$ is not related to πN scattering lengths a^+ and $a^−$ but to the strength of s-wave pion absorption. Open channels in negative pion absorption in deuterium at threshold are

$$\pi^−d \rightarrow nn,$$ (5)
$$\rightarrow nn\gamma,$$ (6)
$$\rightarrow nne^+e^−,$$ (7)
$$\rightarrow nn\pi^−.$$ (8)

True absorption (5) represents the inverse reaction of pion production in nucleon-nucleon collisions, i.e. $Im\ a_{\pi D}$ is also a measure of the strength of s-wave pion production at threshold. For that reason, pion-production cross-sections were used to estimate the πD level width before it was experimentally accessible [66]. First attempts have been made to calculate the production strength rigorously also within the framework of QPT [67, 68] to be compared with the precise atomic data.

The relative strength of the dominant channels true absorption and radiative capture (6) was measured to be $S = Γ(\pi^−d → nn)/Γ(\pi^−d → nn\gamma) = 2.83 ± 0.04$ [69]. The branching ratio of internal pair conversion (7) was determined to be 0.7% [70]. Charge exchange (8) is parity forbidden from s states and, therefore, only odd partial waves contribute which results in a fraction as small as $(1.45 ± 0.19) \times 10^{−4}$ [71]. The corresponding partial $3p$ level width can be neglected here. Hence, the relative strength of true absorption to all other final states contributing to the 1s level width is found from the measured branching ratios to be

$$S' = \frac{Γ(nn)}{Γ(nn\gamma) + Γ(nne^+e^−)} = 2.76 ± 0.04,$$ (9)

i.e. about 2/3 of the hadronic width is related to the pion production/absorption process $NN → πN$. The exact relation between pion-production strength and $Im\ a_{\pi D}$ is derived in sect. 3.2.

The aim of this experiment is to provide data on the πD hadronic shift and width at least at about the level of accuracy achieved in recent or envisaged in ongoing theoretical calculations. A precise value for the shift will provide, together with the forthcoming new precision data for πH [72, 73], improved constraints for the $πN$ scattering lengths a^+ and $a^−$. As a first result of this experiment, the s-wave pion production strength derived from the width has been outlined recently [74].

2 Atomic cascade

After pion capture in hydrogen isotopes, a quantum cascade starts from main quantum numbers $n \approx 16$ [75, 76] (fig. 1). The upper and medium part of the atomic cascade is dominated by the collisional processes inducing

![Fig. 1. De-excitation cascade in pionic deuterium. The energy of the X-ray emitted in the $\pi D(3p-1s)$ transitions is 3.075 keV. Hadronic shift $ε_{1σ}$ and width $Γ_{1σ}$ are of the order of 2.5 and 1 eV, respectively. The hadronic shift is defined as $ε_{1σ} ≡ E_{\text{exp}} − E_{\text{QED}}$, i.e. a negative sign as is the case for πD corresponds to a repulsive interaction.](image-url)

Stark mixing, Coulomb de-excitation, and ionization of neighbouring atoms (external Auger effect). In the lower part, X-ray emission becomes more and more important. In light atoms, only electric-dipole transitions contribute preferring steps with maximal $Δn$. The cascade time, estimated to be of the order of 0.1 ns for densities around 10 bar [77], is much shorter than the pion’s lifetime. In addition, molecular formation $\pi D + D_2 → [(ddn)d]^{+}$ must be considered. The influence of the above-mentioned processes is discussed in the following.

Radiative de-excitation is the only process where collisional effects on the line energy and width can be neglected. Doppler broadening from thermal motion is of the order of 10 meV. Pressure broadening amounts at maximum to 0.2 meV for the densities and temperatures used in this experiment.

Stark mixing essentially determines the X-ray yields in exotic hydrogen. Because these systems are electrically neutral and small on the atomic scale, they penetrate surrounding atoms and, thus, experience a strong Coulomb field. Non-vanishing matrix elements $⟨nlm|E|n'l'm'⟩$ in the presence of the electric field mix atomic states of the same principle quantum number n according to the selection rules $Δl = ±1$ and $Δm = 0$ [78]. An induced s state, from where pions disappear by nuclear reactions, leads to a depletion of the X-ray cascade. As the Stark mixing rate is proportional to the number of collisions during the exotic atom’s lifetime, it explains the strong decrease of the X-ray yields with target density [77]. The yield of the $\pi D(3p-1s)$ X-ray transition has been measured at target densities equivalent to 15 bar and 40 bar STP to be $(3.28 ± 0.43)%$ and $(1.72 ± 0.16)%$, respectively [79].
The natural line width of the atomic ground-state transition (3p-1s) of about 1 eV is dominated by the lifetime of the 1s state. Nuclear reactions from the 3p level contribute with less than 1 μeV and the 3p-level radiative width amounts to 28 μeV only. An estimate for the induced width from Stark mixing (3p ↔ 3s) and external Auger effect at the 3p state, based on transition rates for \(3p \) given in ref. [80], yields also negligibly small contributions of \(\leq 1 \) μeV at the target densities considered here. With a hadronic shift in \(\pi D \) being a factor of about 3 smaller than in \(\pi H \), Stark mixing might be enhanced, but strong effects are excluded because similar \(K \) yields have been observed for hydrogen and deuterium [79).

However, significant broadenings of the X-ray line induced by other cascade processes must be considered, in particular in the case of Coulomb de-excitation [83]. Here, the energy release during the transition \((n \rightarrow n')\) is converted into kinetic energy of the collision partners being the excited \(\pi D \) system and, predominantly, one atom of a \(D_2 \) molecule [80–82]. Such transitions dominate de-excitation from the start of the quantum cascade down to \(n \approx 10 \) and have been found to contribute even at lowest densities [84].

In lower-lying transitions, a significant energy gain occurs leading to a substantial Doppler broadening of subsequent X-ray transitions. The Doppler effect was directly observed in \(\pi H \) in time-of-flight spectra of monoenergetic neutrons from the charge exchange reaction at rest \(\pi^{-} p \rightarrow \pi^{0} n \) [85,86] and in an additional broadening of the line width of the muonic hydrogen (3p-1s) X-ray transition [87]. The broadening turned out to be a superposition of several Doppler contributions attributed to different de-excitation steps \(n \rightarrow n' \) of the initial \(\mu^{-} p \) system. Only \(\Delta n = 1 \) transitions could be identified. A similar behaviour was found for pionic hydrogen. Here, a significant increase of the total line width is observed with decreasing \(n \) of the initial state, which is attributed to the increasing energy gain of preceding Coulomb de-excitation steps [73,88].

Acceleration due to Coulomb de-excitation is counteracted by elastic and inelastic scattering. This leads to a continuum of velocities below the ones well defined by a specific transition. Cascade calculations have been extended to include the development of the velocity dependence during de-excitation and, therefore, are able to predict kinetic-energy distributions at the time of X-ray emission from a specific level (extended standar cascade model ESCM [80–82]). At present, calculations have been performed only for \(\pi H \) [80–82,89–91]. Figure 2 shows such an ESCM prediction for the 3p state.

In the case of \(\pi D \), the energies for the \(\Delta n = 1 \) Coulomb de-excitation transitions (7-6), (6-5), (5-4), and (4-3), are at 12, 20, 38, and 81 eV, respectively. Though kinetic energies differ only little from the \(\pi H \) case, velocities are significantly smaller (fig. 2) possibly changing the balance between acceleration and slowing down.

In the analysis of a measurement of the \(\mu H (3p-1s) \) line shape it turned out [87] that first ESCM predictions are hardly able to describe the measured line width. Therefore, a model-independent approach will be used to extract the relative strength of Doppler contributions directly from the X-ray data, which was applied successfully first in the neutron time of flight [86] and also in the \(\mu H (3p-1s) \) analysis. Here, the continuous kinetic-energy distribution is replaced by a few narrow intervals representing a low-energy component (0–2eV) and a second one for the high-energy component stemming from the (4-3) Coulomb de-excitation transition (for details see sect. 5.2). The low-energy component dominates the distribution (note the broken vertical scale).

Fig. 2. Prediction for the kinetic-energy distribution of the \(\pi H \) atom at the instant of (3p-1s) transition for a density equivalent to 10 bar gas pressure together with the velocity scale. The velocities for the heavier \(\pi D \) system owing to the corresponding energy gains are given on the bottom. For the analysis of this \(\pi D \) experiment, the energy distribution, after scaling the energies from the \(\pi H \) to the \(\pi D \) case, was tentatively approximated by two narrow intervals representing a low-energy component (0–2 eV) and a second one for the high-energy component stemming from the (4-3) Coulomb de-excitation transition (for details see sect. 5.2). The low-energy component dominates the distribution (note the broken vertical scale).

Accelerations prefer de-excitation steps as small as possible, given that the energy gain exceeds the binding of the electron. Auger emission contributes mainly in the range \(\Delta n \approx 6-10 \) with \(\Delta n = 1 \) transitions, but rapidly decreases for smaller \(n \) [77,81,82]. Because of the small recoil energies, Auger emission cannot contribute to the high energetic part of the kinetic-energy distribution.

From muon-catalysed fusion experiments it is known that during \(\mu H + H_2 \) collisions metastable hybrid molecules are formed like \((\mu p p)H e e \) [92,93]. An analogous process is expected in \(\pi D + D_2 \) collisions [93]. Evidence that resonant molecular formation takes also place from excited states has been found in muonic hydrogen [94].
Such complexes are assumed to stabilise non-radiatively by Auger emission. Possible X-ray transitions from weakly bound molecular states before stabilisation would falsify the value for the hadronic shift determined from the measured X-ray energy due to satellite lines shifted to lower energies, whereas Auger stabilised molecules emit X-rays of at least 30 eV energy less than the undisturbed transition [96] and are easily resolved in this experiment. Radiative decay out of molecular states has been discussed and its probability is predicted to increase with atomic mass [95,96]. A weak evidence for an Auger stabilised transition is discussed in sect. 5.1.

As molecular formation is collision induced, the fraction of formed complex molecules and the X-ray rate should depend on the target density. Hence, a measurement of formed complex molecules and the X-ray rate determined from the measured X-ray energy due to satellite lines would falsify the value for the hadronic shift determined from Coulomb correction factors and normalisation (measurable) cross-sections. In order to derive in a model-independent way the relation between hadronic quantities calculable, in the framework of diverging Coulomb interaction are an important source of uncertainty in the determination. For example, the leading-order correction C_1 has been calculated to be as large as 30% with the additional difficulty to obtain an accurate error estimate [103,104].

A second experimental approach to α is to exploit the πD ground-state broadening, where uncertainties stemming from Coulomb correction factors and normalisation of cross-sections are avoided. In order to derive in a model-independent way the relation between α and $\Im a_{\pi D}$ as obtained from pionic deuterium, purely hadronic (non-measurable) cross-sections are introduced to circumvent the problem of diverging Coulomb cross-sections at threshold. In this case $C_1 \equiv 1$, and α and β are pure hadronic quantities calculable, e.g., in the framework of χPT. The hadronic production cross-section then reads

$$\sigma_{pp \rightarrow \pi^+ d} = \alpha C_0^2 \eta + \beta C_1^2 \eta^3 + \ldots,$$

where $\eta = p^+ / m_\pi$ is the reduced momentum of the pion in the πd rest frame. Here, α denotes the threshold parameter representing pure s-wave pion production. Approaching threshold, $\eta \to 0$, higher partial waves (β, \ldots) vanish. A value for α is obtained by fits to the quantity $\sigma_{pp \rightarrow \pi^+ d} / \eta$ and then extrapolated to zero energy. In particular at low energy, the correction factors C_i take into account the Coulomb interaction are an important source of uncertainty in the determination. For example, the leading-order correction C_1^2 has been calculated to be as large as 30% with the additional difficulty to obtain an accurate error estimate [103,104].

In the case of πD, the total correction to $a_{\pi D}$ is only about 1% (see eqs. (24) and (25)). Hence, eq. (11) is solved with sufficient accuracy by inserting the leading-order result for $a_{\pi D}^{LO}$ as obtained from eq. (10) and the influence of the experimental uncertainty must not be considered here.

Real and imaginary part of the pure hadronic πD scattering length are then given by

$$\Re a_{\pi D} = -\frac{\hbar c}{2 \alpha^3 \mu^2 c^4} \cdot \epsilon_{f 1s} \frac{1}{1 - \frac{2 \alpha^2 \mu^2 c^2}{\hbar^2} (\ln \alpha - 1) \cdot \left(\frac{\Re a_{\pi D}^{LO}}{\Im a_{\pi D}^{LO}} \right)^2 + \delta_D^{\text{vac}}}$$

$$\Im a_{\pi D} = -\frac{\hbar c}{2 \alpha^3 \mu^2 c^4} \cdot \frac{1}{1 - \frac{2 \alpha^2 \mu^2 c^2}{\hbar^2} (\ln \alpha - 1) \cdot 2 \Re a_{\pi D}^{LO} + \delta_D^{\text{vac}}}$$

3 Strong interaction

In this section, the relations are introduced which will be used to extract the complex pion-deuteron scattering length $a_{\pi D}$ (sect. 6.5) and the threshold parameter for s-wave pion production (sect. 6.6) from the measured hadronic level shift and broadening.

3.1 Scattering length

The hadronic pion-nucleus scattering length $a_{\pi A}$ is related in leading order (LO) to the ns level shifts ϵ_{ns} and widths Γ_{ns} by the Deser-Goldberger-Baumann-Thirring (DGBT) formula [1]

$$\epsilon_{ns} - i \frac{\Gamma_{ns}}{2} = \frac{2 \alpha^3 \mu^2 c^4}{\hbar^2} \cdot Z^3 \cdot \frac{a_{\pi A}^{LO}}{\mu^3},$$

with μ being the reduced mass of the bound system of pion and nucleus $A(Z, N)$. In eqs. (10)–(13) α denotes the fine structure constant.

Shift and width are measured using a Coulomb bound state. Therefore, the complex quantity $a_{\pi A}^{LO}$ as extracted from eq. (10) is not identical with the pure hadronic scattering length $a_{\pi A}$. Usually, the Coulomb interaction is taken into account by Trueman’s formula [97–100] which expresses the correction by an expansion in the ratio scattering length-to-Bohr radius. In the case of hydrogen ($Z = 1$), the complete expansion can be written up to order $O(\alpha^4)$ in a compact form [5,34] yielding for the $1s$ state of pionic deuterium [64]

$$\epsilon_{f 1s} - i \frac{\Gamma_{f 1s}}{2} = \frac{2 \alpha^3 \mu^2 c^4}{\hbar^2} \cdot a_{\pi D} \left[1 - \frac{2 \alpha^2 \mu^2 c^2}{\hbar^2} (\ln \alpha - 1) \cdot a_{\pi D} + \delta_D^{\text{vac}} \right].$$

The term $\delta_D^{\text{vac}} = \delta_D^{\text{vac}}$ accounts for the interference of vacuum polarisation and strong interaction [101]. Its uncertainty is assumed to be negligibly small compared to the experimental accuracy [5].

3.2 Threshold parameter α and pion production

The cross-section for the reaction $pp \rightarrow \pi^+ d$ is parametrised at low energies by [102]

$$\sigma_{pp \rightarrow \pi^+ d} = \alpha C_0^2 \eta + \beta C_1^2 \eta^3 + \ldots,$$

where $\eta = p^+ / m_\pi$ is the reduced momentum of the pion in the πd rest frame. Here, α denotes the threshold parameter representing pure s-wave pion production. Approaching threshold, $\eta \to 0$, higher partial waves (β, \ldots) vanish. A value for α is obtained by fits to the quantity $\sigma_{pp \rightarrow \pi^+ d} / \eta$ and then extrapolated to zero energy. In particular at low energy, the correction factors C_i take into account the Coulomb interaction are an important source of uncertainty in the determination. For example, the leading-order correction C_1^2 has been calculated to be as large as 30% with the additional difficulty to obtain an accurate error estimate [103,104].

In addition, the reaction $np \rightarrow \pi^0 d$ can be used because in the limit of charge independence $2 \cdot \sigma_{np \rightarrow \pi^0 d} = \sigma_{pp \rightarrow \pi^+ d}$. Restricting to pion-deuteron s-waves, in both processes the same transition of a nucleon pair $^3P_1(I = 1) \rightarrow ^3S_1(I = 0)$ occurs, where true pion absorption $\pi d \to nn$ induces the inverse reaction $^3S_1[I = 0] \to ^3P_1(I = 1)$ on the deuteron’s isospin 0 nucleon-nucleon pair.
Detailed balance relates pion production and absorption by

$$\bar{\sigma}_{\pi^+ d \rightarrow pp} = \frac{2}{3} \left(\frac{p_p^*}{p_\pi^*} \right)^2 \cdot \bar{\sigma}_{pp \rightarrow \pi^+ d}. \quad (16)$$

with p_p^* and p_π^* being final state centre-of-mass (CMS) momenta [105]. Neglecting Coulomb and isospin-breaking corrections, charge symmetry requires for the transitions $\pi^- d \rightarrow nn$ and $\pi^+ d \rightarrow pp$

$$|M_{\pi^- d \rightarrow nn}| = |M_{\pi^+ d \rightarrow pp}|. \quad (17)$$

Isospin-breaking effects are expected to be at most 1–2% [106,107].

A small difference in the transition rate results from the slightly larger phase-space of the $\pi^+ d \rightarrow pp$ reaction.

$$\frac{\bar{\sigma}_{\pi^- d \rightarrow nn}}{\bar{\sigma}_{\pi^+ d \rightarrow pp}} = \frac{p_{n}^*}{p_p^*} = \sqrt{\frac{\lambda(s,m_{n}^2,m_{n}^2)}{\lambda(s,m_{p}^2,m_{p}^2)}} = 0.982. \quad (18)$$

The CMS momenta of proton and neutron, expressed in invariant variables using the triangle function λ, are given by $p_{p,n}^* = \lambda^{1/2}(s,m_{p,n}^2,m_{p,n}^2)/2\sqrt{s}$ [108]. The value corresponds to $\pi \pm d$ at threshold, where the total CMS energy squared is $s = (m_d + m_{\pi \pm})^2$. The atomic binding energy of the $\pi^- D$ system is neglected.

Combining optical theorem, charge invariance, detailed balance and inserting the parametrisation of the $pp \rightarrow \pi^+ d$ cross-section (15), the imaginary part of the $\pi^- d \rightarrow nn$ scattering length reads, in terms of the $\pi^+ d$ production threshold parameter α,

$$\text{Im } a_{\pi^- d \rightarrow nn} = \frac{p_{n}^*}{4\pi} \cdot \bar{\sigma}_{\pi^- d \rightarrow nn}$$

$$= \frac{p_{n}^*}{4\pi} \cdot \bar{\sigma}_{\pi^+ d \rightarrow pp} \cdot \left(\frac{p_{n}^*}{p_{p}^*} \right)$$

$$= \frac{p_{n}^*}{4\pi} \cdot \frac{2}{3} \left(\frac{p_{p}^*}{p_{\pi}^*} \right)^2 \cdot \bar{\sigma}_{pp \rightarrow \pi^+ d} \cdot \left(\frac{p_{n}^*}{p_{p}^*} \right)$$

$$= \frac{1}{6\pi} \cdot \left(\frac{p_{n}^*}{p_{p}^*} \right)^2 \cdot \alpha. \quad (19)$$

To relate $\text{Im } a_{\pi^- dd \rightarrow nn}$ given by pion production to the imaginary part of the pion-deuteron scattering length $\text{Im } a_{\pi D}$ as obtained from the atomic system πD, a correction must be applied for the non-true absorption channels. Taking into account the relative strength S' of true absorption to other s-state processes (9) and exploiting $\lambda(x,y) = x(x-4y)$ [108], one obtains

$$\text{Im } a_{\pi D} = (1 + \frac{1}{S'}) \cdot \text{Im } a_{\pi^- dd \rightarrow nn}$$

$$= (1 + \frac{1}{S'}) \cdot \frac{\sqrt{\lambda(s-4m_d^2)(s-4m_d^2)}}{24\pi m_x} \cdot \alpha$$

$$= 2.48 \cdot 10^{-5} m_x^{-1} \mu b^{-1} \cdot \alpha. \quad (20)$$
Table 1. Data to adjust the spectrometer in Johann setup. The Bragg angle θ_B is calculated using a lattice distance d of $2d_{111} = (0.62712016 \pm 0.00000001)$ nm [115]. n denotes the order of reflection. For the $\pi D(3p-1s)$ energy, here the experimental result of ref. [45,46] is given. $y_{\text{CD}} = R \sin \theta_B + \Delta \theta_{\text{RS}}$ are calculated focal lengths taking into account the index of refraction shift $\Delta \theta_{\text{RS}}$. The Ga $K\alpha$ energies are taken from the compilation of ref. [116].

Energy	n	θ_B	$\Delta \theta_{\text{RS}}$	y_{CD}
Ga $K\alpha_1$	9251.674 ± 0.006	3 39°52′22.3″	2.4″	1912.42
$\pi D(3p-1s)$	3075.52 ± 0.70	1 40°0′11.7″	21.8″	1917.84
Ga $K\alpha_2$	9224.484 ± 0.027	3 40°0′44.1″	2.4″	1917.98

Such a spectrometer is able to measure simultaneously an energy interval according to the width of the X-ray source when using a correspondingly extended X-ray detector. Being pixel detectors, charge-coupled devices (CCDs) are ideal detectors for X-rays in the few keV range because they combine an intrinsic position resolution with the good energy resolution of semiconductor detectors. In this setup an array of 3×2 CCDs was used covering in total 72 mm in height and 48 mm in width [114].

Monte Carlo studies show that about 2/3 of the intensity of the reflection is covered by the height of the CCD array. The solid angle of the crystal with respect to the target is $\approx 6 \cdot 10^{-5}$ and the target fraction accepted by the crystal’s angular width is $\approx 5 \cdot 10^{-3}$. Including window absorption and assuming a peak reflectivity of 40% for the Bragg crystal, the overall efficiency of the spectrometer results in about 10^{-7}.

The CCDs are realised in open electrode architecture to minimise X-ray absorption in the surface structures and a depletion depth of about 30 μm yields a quantum efficiency of about 80% in the 3-4 keV range. The pixel size of 40 μm provides a sufficient two-dimensional position resolution to measure precisely the shape of the diffraction image. The relative orientation of the individual CCDs as well as the pixel size at the operating temperature of $\sim 100^\circ \mathrm{C}$ was obtained by means of an optical measurement using a nanometric grid [117]. The detector surface was oriented perpendicular to the direction crystal-detector.

In the Johann setup, the energy calibration must be provided by a reference line of known energy. The best angular matching for the $\pi D(3p-1s)$ measurement was found with the gallium $K\alpha$ fluorescence lines. Here, the Ga $K\alpha_2$ transition was chosen because of its smaller experimental error (table 1). The energy of the measurement line is obtained by the angular distance to the reference line, which is calculated from the position offset of the two reflections on the detector and the distance crystal-detector.

The fluorescence target was made of a 25 x 20 mm2 GaAs plate mounted in the rear part of the gas cell outside the pion stop volume and 82 mm off the centre of the cyclotron trap away from the crystal (fig. 4). X-rays were excited by means of an X-ray tube mounted on a window of the cyclotron trap chamber below the gas cell.

In order to exclude the distortion of the $\pi D(3p-1s)$ line shape from beam-induced excitation of Ga X-rays, data were taken using H$_2$ gas at an equivalent density of 10 bar. Using a hydrogen filling guarantees similar stopping conditions for the pion beam. No Ga X-rays could be identified during a measuring time corresponding to about 15% of the one used for D$_2$ at the same density. Other sources of background are discussed in sect. 5.

The distance from the centre of the crystal to the centre of the cyclotron trap was 2100 mm, about 10% outside the Rowland circle given by the focal condition $R \cdot \sin \theta_B$. The advantage of placing the X-ray source somewhat off the focal position is an averaging over non-uniformities of the target. Both GaAs and D$_2$ target were extended enough that no cuts in the tails of the reflection occur. The distance crystal-detector (fig. 5), chosen to be at the assumed πD focal length, was found to be $y_{\text{CD}} = 1918.1 \pm 0.5$ mm from a survey measurement.

Alternating measurements of the Ga fluorescence radiation and the πD line were performed at least once per day. The Ga fluorescence X-rays were in addition used to monitor the stability of the line position.

The spectrometer response was measured at the energies 3104, 2765, and 2430 eV using the narrow M1 X-ray lines from helium-like argon, chlorine, and sulphur produced in a dedicated electron-cyclotron resonance ion trap (ECRIT) [118–120]. It turned out that the resolution function at a given energy can be built up from the ideal response calculated from the dynamical theory of diffraction for a perfect flat crystal (intrinsic resolution) convoluted with the geometrical imaging at the measurement position by means of a Monte Carlo ray-tracing code and by folding in an additional Gaussian contribution. The intrinsic
resolution is calculated here with the code XOP [121,122]. The Gaussian models possible imperfections of the crystal material and mounting and was found to be sufficiently precise, that no difference is visible by eye between data and Monte Carlo simulations.

The value for the Gaussian width at the energy of the \(\pi D(3p-1s) \) transition energy of 3075 eV was found from the fit to the results for argon, chlorine, and sulphur to be \((122 \pm 8)\) meV. The narrow structure in fig. 8 (middle) shows the Monte Carlo generated response for the setup of the \(\pi D \) experiment. The total width of this resolution function is \((436 \pm 3)\) meV (FWHM) and close to the theoretical limit of 403 meV —calculated by means of XOP—for the intrinsic resolution of a silicon crystal cut along the (111) plane.

Details on the experimental setup and analysis may be found elsewhere [123].

5 Analysis

Raw data of the X-ray detector consist of the digitized charge contents and a position index of the pixel. The granularity of the CCDs allows for efficient background rejection by means of pattern recognition (cluster analysis). Photoelectrons from few keV X-ray conversion are stopped within a few micrometer only and, therefore, deposit charge in one or two pixels with one common boundary. Beam-induced background, mainly high energetic photons from neutrons produced in pion absorption and captured in surrounding nuclei, lead to larger structures. Together with a massive concrete shielding (fig. 3) such events are highly suppressed. Defect pixels are masked by software.

At first, the cluster analysis is performed. As expected only single (\(\approx 75\% \)) or two pixel events (\(\approx 25\% \)) contribute. The spectra of the collected charge cleaned in this way show a pronounced peak originating from the 3 keV \(\pi D \) X-rays (fig. 6). For each CCD an individual energy calibration was performed by using the \(\pi D(3p-1s) \) line, necessary because of the different gain and noise behaviour of the various devices. The second calibration point is zero because the noise peak is suppressed on line during data acquisition which reduces the amount of data to be recorded substantially. The energy resolution in terms of charge is determined by means of a Gaussian fit and found to be between 170 and 300 eV at 3 keV.

The good resolution in energy (i.e. in collected charge) by CCDs allows to apply a narrow “energy cut” in the ADC spectra (fig. 6). Thus an additional and significant background reduction is achieved in the two dimensional position spectra (fig. 7, top). Assuming a Gaussian shape for the energy resolution and setting various windows ranging from \(\pm 1\sigma \) to \(\pm 4\sigma \), the influence of the peak-to-background ratio on the result for the hadronic broadening was studied and found to be marginal. The minimum statistical error is achieved for a cut of \(\pm 2.5\sigma \). The X-ray count rates at the equivalent densities of 3.3, 10, and 17.5 bar are given in table 2.

The hit pattern of the X-rays on the CCD surface shows a curvature originating from the imaging properties of the crystal spectrometer. The curvature is corrected by means of a parabola fit before projecting onto the axis of dispersion, which is equivalent to an energy axis (fig. 7).

The penetration depths of the \(\pi D(3p-1s) \) and the Ga X-rays differ significantly (5 and 105 \(\mu m \) for 3.075 and 9.224 keV, respectively [124]). Ga K X-rays also convert at or beyond the boundary of the depletion region of the CCD, where charge diffusion is already significant. Therefore, in this case compact clusters up to size 9 were
The tabulated values for the Ga Kα energies [116] were obtained using the compound GaAs [126]—the same material used in this experiment, i.e. a possible chemical shift is irrelevant for this calibration. The position of the Ga Kα2 line was determined applying a single Voigt profile in the fit, which is also the procedure used for the tabulated values [126]. The matching of the angular positions owing to the Ga Kα2 and πD(3p-1s) energies is evident from fig. 8.

The πD line was modeled both with a Voigt profile, where Doppler broadening and response function together are approximated by a single Gaussian, and the true response as determined from the ECRIT data convoluted with the imaging properties by means of a ray tracing MC code and including the Doppler contributions from Coulomb de-excitation. Both methods yield the same position value within a few hundreds of one CCD pixel.

Various corrections to the measured line positions must be applied. Significant are, besides the index of refraction shift, bending and penetration correction, a shift of the gallium line due to the non-uniform illumination of the fluorescence target, and mechanical shifts from temperature changes from the nitrogen filling of the detector. These corrections are discussed in the following and listed together with less significant corrections in table 3.

- **Index of refraction.** The Ga calibration line and the πD(3p-1s) transition were measured in third- and first-order diffraction (table 1). As the index of refraction strongly depends on the X-ray wavelength a significant correction must be applied in order to obtain the right Bragg angle difference. The index of refraction Δn is calculated here from the atomic scattering factors as used by the code XOP [121, 122]. The accuracy of such amplitudes is claimed to be of the order of 1% for 3 and 9 keV, respectively, as are the angular corrections derived from them. The amplitudes of various sets vary by less than 0.5% [127, 128].

- **Crystal bending.** Crystal bending leads to a depth dependence of the lattice spacing d, where close to the surface the maximum lattice distance is assumed. Because of the difference in energy and accordingly the different mean penetration depth of the X-rays, the average lattice spacing and, consequently, the diffraction angle is different. The change of d depends on the elastic properties of the non-isotropic crystal material and is calculated following the approach of ref. [129] using the value ν′ = 0.182 for Poisson’s ratio together with an expression for the angular correction as given by ref. [130].

- **Penetration depth.** The difference in penetration depth into the crystal leads to an offset of higher energetic X-rays to smaller diffraction angles, which has been corrected according to the approach of ref. [130]. The penetration depths (including absorption) were obtained from the code XOP to 0.72 μm and 3.84 μm for 3.075 and 9.225 keV, respectively.

- **Fluorescence-target illumination.** The intensity profile of the X-ray tube, used to illuminate the GaAs target, was found to decrease in the direction of dispersion towards larger Bragg angles. Therefore, the centre of gravity of the line is shifted towards smaller Bragg angles or higher energies. The shape of the intensity distribution has been measured precisely and used for a Monte Carlo simulation to quantify the shift.

- **Mechanical stability.** Due to a fixed sequence for refill filling the X-ray detector with liquid nitrogen (twice per day) and the gallium calibration (once per day after filling), small mechanical distortions arose from the cold nitrogen gas. These distortions were monitored every 15 min with two inclination sensors (of 1 μrad precision), one attached to the crystal chamber and the second to the detector cryostat. In this way, both
Table 2. Experiment parameters. Rates (counts/Cb) are meant for a detector width of 24 mm and normalised to the integrated accelerator proton current (typically 2 mA) for “energy cut” of ±2.5σ. The equivalent density of the target gas is expressed as pressure value at a temperature of 20°C (NTP). The number of Ga calibration runs for each density is indicated in the last column. The background rate is density independent and scales linearly with the width of the “energy cut”. The background given here stems from a detector area of 17.28 cm² corresponding to 3 CCDs.

D₂ density (equivalent) / bar	Target Parameters / K	pressure / bar	Counts πD(3p-1s) total / Cb	No. of Ga calibrations	
3.3 ± 0.1	33	0.51	1448 ± 49	1.98 ± 0.07	10
10.0 ± 0.3	27	1.09	4010 ± 74	6.40 ± 0.12	8
17.5 ± 0.4	25	1.36	4877 ± 80	7.35 ± 0.12	7

Background 1.64 ± 0.11

Table 3. Angular corrections (in seconds of arc (″)) with associated uncertainties as well as other sources of systematic and calibration errors occurring in the determination of the πD(3p-1s) transition energy and hadronic shift ϵ₁. The total angular correction being the sum of the individual terms and associated uncertainties are converted to meV. The total systematic error owing to experiment and setup (errors are assumed to be uncorrelated) is given conservatively as the quadratic sum and is calculated assuming on average the mechanical stability of the 17.5 bar measurement. For comparison, the statistical error and the uncertainty of the QED transition energy (see sects. 6.1 and 6.2) is shown together with the one of the Ga calibration line.

Uncertainty	πD Ga Kα Total correction correction / ″ / ″ / meV
Index of refraction – 2.4 42.6 ± 0.4	
Index of refraction 21.8 – 387.2 ± 3.9	
Crystal bending –3.73 –3.65 –1.4 ± 0.4	
Penetration depth –0.06 –0.32 4.6 ± 11.7	
Illumination GaAs target 0 –1.075 19.1 ± 3.8	
Mechanical stability 3.3 bar 0.24 4.2 ± 2.5	
Mechanical stability 10 bar 0.71 12.6 ± 4.0	
Mechanical stability 17.5 bar 0.80 14.2 ± 1.3	
Curvature correction ± 2.0	
Defocussing 0 –0.006 0.11 ± 0.01	
Focal length ± 0.05	
Alignment crystal-detector +0.0 0.015	
Height alignment +0.0 0.016	
Pixel size ± 0.14	
Temperature renormalisation ± 0.02	
Bias due to asymmetric errors –0.4	
Total systematic error ± 6.0 – 6.6	
Statistical error ± 10.9	
ϵ_QED ± 7.9	
Ga Kα₂ ± 27	

Fig. 8. Top: Ga Kα₂ calibration line. The Kα₁ component is slightly reduced by the asymmetric emission characteristics of the X-ray tube. Middle: sum spectrum of the πD(3p-1s) transition measured at the equivalent densities of 10 and 17.5 bar. The narrow structure represents the response function of the crystal spectrometer (normalised to the height of the measured spectrum). Bottom: residuum of data and fit. The fit is performed without assuming any Doppler components.
short- and long-term movements of the vertical crystal axis relative to the X-ray detector were recognized. For each of the three measurement periods an average correction was determined from the inclinometer data. The maximal deviations were found to be about ±0.1 mrad corresponding to about one pixel.

- **Curvature correction.** The curvature of the reflection is determined from a parabola fit both to the πD and the Ga Kα2 line, which can be assumed to be equal within the envisaged accuracy. The centres of gravity are determined choosing a left and right boundary aligned with the curvature of the reflection itself, the reflection divided vertically in 12 slices per CCD, and iterated until the minimal χ^2 is reached. The maximum position by the various choices for the line and the boundaries are summarised in the given uncertainty.

- **Defocussing.** The small difference in the focal length of the πD and the Ga Kα2 leads to a small defocussing correction, which was determined by means of a Monte Carlo simulation.

- **Focal length.** The parts constituting the mechanical connection between crystal and detector were adjusted to the assumed focal length of the πD(3p-1s) transition. Their length and the non-parallelity of the flanges were precisely surveyed resulting in an uncertainty of the distance of ±0.5 mm.

- **Alignment.** A possible deviation from the detector surface from being perpendicular to the direction crystal centre to detector centre leads to a correction for the measured distance of the πD and Ga Kα2 reflection. The uncertainty is composed of the setup of the CCD array inside the cryostat and the deviation from being parallel of the flanges of the connecting tubes, which were obtained from a survey measurement.

- **Height alignment.** If X-ray source, bragg crystal and detector centre are aligned perfectly in-plane, a symmetric reflection with respect to this plane occurs at the detector surface. A misalignment causes a tilt of the reflection inducing a small error using the parabola approach for the curvature correction. The vertical positions of target, crystal, and detector centre relative to the incoming pion beam were measured to be 206.5, 205.1, and 206.1 mm with an accuracy of ±0.2 mm.

- **Pixel size.** The average pixel size of the CCDs was determined in a separate experiment to be $(39.9775 \pm 0.0006) \mu m$ at the operating temperature of $-100^\circ C$ [117].

- **Temperature normalisation.** The crystal temperature was monitored regularly during the measurements. Though of minor impact, the lattice constant tabulated for 22 °C, was readjusted to the average temperature of $30^\circ C$. The temperature was found to be stable within less than ±1 °C. Hence, any position variation due to the change of the lattice constant can be neglected.

As described above, the total uncertainty in the determination of the πD(3p-1s) transition energy is dominated by the one of the Ga calibration line (±27 meV). The systematic error of about 6 meV is about 50% of the statistical uncertainty (sect. 6.1) and comparable to the uncertainty of the calculated electromagnetic transition energy (sect. 6.2).

5.2 Line width

For comparison with data, the line shape is constructed by folding the response function (see sect. 4 and fig. 8) with the Doppler induced width derived from a given kinetic-energy distribution (e.g., as shown in fig. 2), and a Lorentzian representing the natural width. Based on the experience of the study of the μH(3p-1s) line shape [87], in a cascade model-free approach, the kinetic-energy distribution is approximated by narrow intervals of a few eV width at energies which are inspired by the energy release of Coulomb de-excitation transitions. Such an energy spectrum assuming only a low-energy (0-2 eV) and one high-energy component starting at energy zero and variable width. This corresponds to πD systems not being accelerated or already moderated down again by collisions to energies of a few eV. The χ^2 analysis shows that the upper boundary of the low-energy contribution must not exceed 8 eV. This result was achieved independently for the spectra taken at 10 bar and the 17.5 bar equivalent density (fig. 9). The result for the natural line width Γ_{1s}...
turned out to be insensitive to the upper boundary when keeping its value at 8 eV or below. Therefore, the low-energy component was fixed to the interval 0–2 eV in the further analysis.

The most important higher energetic components are expected at about 80 and 115 eV stemming from the Coulomb de-excitation transitions (4-3) and (5-3). Searches for any of these contributions failed, even when using the sum spectrum of the two measurements at 10 and 17.5 bar. Varying energy or width of the high-energy Doppler contribution did not change this result.

In this respect, pionic deuterium differs significantly from pionic and muonic hydrogen. There, such high-energy contributions were clearly identified from the width analysis of the X-ray transitions [48,73,87]. For that reason, the ESCM calculation of the kinetic-energy distribution for the \(\pi H(3p-1s) \) case, scaled to \(\pi D \) kinematics (fig. 2), is unable to reproduce the \(\pi D(3p-1s) \) line shape, because it contains rather strong contributions from (4-3) and (5-3) Coulomb de-excitation. At present, no explanation has been found for such an unequal behaviour.

It has been studied in detail which fraction of high-energy components may be missed in the fit by studying Monte Carlo generated spectra for the statistics collected for the sum of the 10 and 17.5 bar measurements. The intensity of the Doppler contributions was not restricted to positive values to allow an unbiased search for the minimum \(\chi^2 \) (fig. 10, top). The normalization to one is then maintained by a correspondingly increased value for the other component.

The probability to miss a Doppler component, stemming from kinetic energies around 80 eV and corresponding to the (4-3) transition, is displayed in fig. 10 (bottom) as a function of its relative strength. It can be seen, that a contribution of 25% or larger can hardly be missed. For 10% relative intensity, the chance is about 15% to find intensities \(\leq 0 \) in the fit. Taking symmetric limits around the maximum at about 10% relative frequency (fig. 10, top) corresponds to 1\(\sigma \) with respect to the full distribution. For each set of conditions 400 simulations were performed.

Assuming no Doppler components yields an upper limit for \(\Gamma_{1s} \), which is identical to the result obtained when using only the low-energy component of 0–2 eV. The residuum of such a fit is shown in fig. 8 (bottom). The limit of sensitivity for a component at 80 eV kinetic energy of 10% yields a lower bound for \(\Gamma_{1s} \) (\(-\Delta \Gamma_{sys} \)) corresponding to the above-mentioned 1\(\sigma \) criterium (fig. 10). The distribution of the results for the weight of this component and the Lorentz width \(\Gamma \) reflects the fluctuations owing to the limited statistics (fig. 11).

From the various above-mentioned sets, each with 400 simulations, a possible systematic deviation (bias) of the analysis code was examined. Such a deviation stems from an imperfect description of the probability distribution by the fit model [132], here used to extract \(\Gamma_{1s} \), which becomes more and more important with decreasing statistics. Where for the individual spectra measured at 3.3, 10, and 17.5 bar the bias was found to depend significantly on the statistics ((\(-38 \pm 3\), (17 ± 2), and (11 ± 2) meV), for
6 Results and discussion

6.1 Experimental $\pi D(3p-1s)$ transition energy

The results for the $\pi D(3p-1s)$ X-ray energy are summarized in table 4 taking already into account the corrections and their uncertainties as given in table 3. The values obtained for the three different target densities are consistent within two standard deviations (neglecting the common uncertainty of the Ga $K\alpha_2$ energy).

It is concluded that we cannot identify radiative de-excitation from molecular states within the experimental accuracy, even more, as it is expected that such a process decreases the πD transition energy with density. Noteworthy, that also the analysis of the $\mu H(3p-1s)$ line shape yields no evidence for a broadening owing to molecular effects [87].

Inspecting the background at the low-energy side of the πD transition for possible Auger stabilised molecules, a weak structure was found separated by (28 ± 0.5) eV. Its relative intensity was determined to be $(3.4 \pm 1.6) \times 10^{-3}$ of the main line.

A weighted average is calculated for the $\pi D(3p-1s)$ transition energy from the results for the three different target densities by using the individual contributions to the statistical and systematical error. The final value and error (quadratic sum) is obtained when combining these errors with the uncertainty of ΔE_{Ga} for the Ga $K\alpha_2$ line

$$E_{\pi D(3p-1s)} = (3075.583 \pm 0.030) \text{ eV}.$$ \hspace{1cm} (21)

The experimental uncertainty is dominated by the error of the Ga $K\alpha_2$ calibration line. In case a significant theoretical progress requires further improvement, the calibration error could be reduced by a factor of about 2 in a dedicated measurement using a double flat crystal spectrometer.

Table 4. Measured $\pi D(3p-1s)$ transition energy and associated uncertainties.

Equivalent density /bar	$E(3p-1s)$ /eV	$\Delta E(3p-1s)$ stat /meV	$\Delta E(3p-1s)$ sys /meV	ΔE_{Ga} /meV
3.3	3075.509	± 28 $^{+5}_{-7}$ $^{+5}_{-7}$ $^{+5}_{-7}$ $^{+5}_{-7}$ $^{+5}_{-7}$ $^{+5}_{-7}$ $^{+5}_{-7}$		
10	3075.594	± 17 $^{+5}_{-7}$ $^{+5}_{-7}$ $^{+5}_{-7}$ $^{+5}_{-7}$ $^{+5}_{-7}$ $^{+5}_{-7}$ $^{+5}_{-7}$		
17.5	3075.599	± 16 $^{+5}_{-7}$ $^{+5}_{-7}$ $^{+5}_{-7}$ $^{+5}_{-7}$ $^{+5}_{-7}$ $^{+5}_{-7}$ $^{+5}_{-7}$		
Weighted average	3075.583	± 11 $^{+5}_{-7}$ $^{+5}_{-7}$ $^{+5}_{-7}$ $^{+5}_{-7}$ $^{+5}_{-7}$ $^{+5}_{-7}$ $^{+5}_{-7}$		

Again 400 Monte Carlo generated spectra, based on a calculated ESCM energy distribution, were used to quantify the sensitivity to any further high-energy component. An additional 6% fraction corresponding to the predicted strength of the (5-3) de-excitation together with a 10% contribution from the (4-3) is identified by the fit in more than 2/3 of all cases. In the other 1/3 of the fits, the (5-3) fraction is absorbed into the (4-3) contribution leading to an overestimate of its intensity and a shift to higher energies.

No evidence for an additional, i.e. asymmetric broadening from non resolved satellites due to molecular formation has been found within the experimental accuracy. This is corroborated by the observation that a possible density dependence of the $\pi D(3p-1s)$ energy contradicts the expected behaviour (see sects. 6.1 and 6.3).

Table 5. Contributions to the pure electromagnetic binding and the $(3p-1s)$ transition energies. The terms vac. pol. 11, 13, and 21 stand for Uehling, Wichmann-Kroll, and Källén-Sabry contributions. The shift value due to the polarizability of the deuteron is derived from results given in refs. [136,137]. A “0” indicates a negligibly small but finite value.

	$E_{\pi D}$ 3p /eV	1s /eV	$E_{\text{QED}}(3p-1s)$ /eV
Coulomb	$-384.31079 \pm 3.158.52442$	3074.21344	
Self-energy + finite size	0	0.000220	-0.000220
vac. pol. 11	-0.01432 ± 3.72948	3.71516	
Muon vac. pol. 11	0	-0.00034	-0.00034
vac. pol. 13	0	0.000022	0.000022
vac. pol. 21	-0.00013 ± 0.02793	0.02780	
Recoil 1	-0.00004 ± 0.00297	0.00293	
Relativistic recoil	0	0.000292	0.000292
Two-loop vac. pol.	0	-0.05577	0.05577
Pion finite size	0	-0.04764	0.04764
Deuteron polarizability	0	-0.0263	0.0263
ϵ_{3p}	-0.000008	-0.000008	
Atom recoil	-0.0235	-0.000008	
Total	$-384.32528 \pm 3.462.26684$	3077.93922	

The sum spectrum (10 + 17.5) bar it becomes almost negligible (\((2 \pm 2)\) meV). The error of \(2\) meV of the bias is given by the average of the results from the 400 Monte Carlo spectra, which in turn determines the number of simulations necessary.

The behaviour of the bias is understood as follows. For lower statistics, the suppression of the tails results in smaller widths, whereas in the case of higher statistics the fit tends to include background into the tail. The background has been found to be constant in all spectra. The systematical uncertainty of \(F_1\) due to different background levels within the limits as obtained from the fit to the data is estimated to below 1 meV by means of Monte Carlo simulations.

The density dependence of the \(\Delta E_{Ga}\) due to different background levels within the limits as obtained from the fit to the data is estimated to below 1 meV by means of Monte Carlo simulations.
pion \[133\] \((\pm 0.95 \text{ meV})\) contribute only marginally. The numerical accuracy is better than 1 meV. For this calculation, a deuteron charge radius \(r_D = (2.12809 \pm 0.00031) \text{ fm}\) has been used as derived from the most recent value of the proton charge radius \[134\] and the radii difference obtained from the hydrogen-deuteron isotope shift measured by means of two-photon spectroscopy \[135\].

The correction to the ground-state energy arising from the electric polarizability of the deuteron of \((-26.3 \pm 0.5) \text{ meV}\) is obtained by scaling from a calculation for neutral deuterium \[136,137\]. Contributions from the pion \[138\] have been used as derived from the most recent value of the \(K\alpha_2\) energy.

The combined result is obtained by averaging according to the statistical weight (table 6). The large negative error is dominated by the uncertainty that a Doppler contribution might be missed in the analysis.

6.4 Strong-interaction width \(\Gamma_{1s}\)

Corresponding to the discussion in sect. 5.2, the hadronic broadening is extracted by introducing only a low-energy component from 0–2 eV in the kinetic-energy distribution. The combined result is obtained by averaging according to the statistical weight (table 6). The large negative error is dominated by the uncertainty that a Doppler contribution of the level of about 10\% might be missed in the analysis.

Combining all errors (quadratic sum), we obtain

\[
\Gamma_{1s} = \left(1171 \pm \frac{23}{49} \right) \text{ meV. (23)}
\]

The result is in good agreement with the earlier measurements, but a factor of about 3 more precise (table 7). Combining the results of this experiment and the ones given in refs. \[45,46\] and \[47\] yields a weighted average of \(\epsilon_{1s} = (-2379 \pm 19) \text{ meV}\) assuming any absence of a density dependence for the \(\pi N(3p-1s)\) transition energy.

Inspecting fig. 12 suggests that an extrapolation to density zero yields the value aimed at. A linear fit yields a slope of \((6.3 \pm 1.7) \text{ meV/bar}\) and \(\epsilon_{1s} = (2445 \pm 27) \text{ meV}\) at density zero. However, at present there is no explanation for such a density dependence (see sect. 2), which might be subject for a next-generation experiment and, therefore, we stick to the density independent average given in (22).

Equivalent density \(\bar{\rho}\) \(\text{/bar}\)	\(\Gamma_{1s}\) \(\text{/meV}\)	\(\Delta\Gamma_{1s}\) \(\text{stat} / \text{meV}\)	\(\text{sys} / \text{meV}\)
3.3	1246	\pm 71	\pm 0.62
10	1177	\pm 38	\pm 0.92
17.5	1121	\pm 32	\pm 0.81
\((10 + 17.5)\)	1162	\pm 24	\pm 0.43

Weighted average \(1171 \pm 23 \text{ meV}\).
isoscalar and isovector scattering length a_+^π and a_-^π by pionic hydrogen and deuterium data. In addition, in a combined analysis using the preliminary results for shift and width in π^0H as given in [73] together with the new shift value in π^0D from this experiment, the uncertainty for a_+^π could be reduced by a factor of two yielding a positive value by two standard deviations. By using the results for a_+^π and a_-^π from this combined analysis, Re $a_{\pi D}$ = $(-25.4 \pm 2.6) \times 10^{-3}$ is obtained.

The imaginary part was calculated in LO χPT to be Im $a_{\pi D}$ = $(5.65 \pm 1.75) \times 10^{-3}$ [68]. One result of this work is that the real part induced by this absorptive contributions turns out to be $(7 \pm 2)\%$ of the total Im $a_{\pi D}$. It is much smaller than the usual naive estimate of Re $a_{\pi D}$" induced \approx $\text{Im} a_{\pi N}$ [4], but can be traced back in the case of π^0D to cancellations of individually sizeable terms.

6.6 Threshold parameter α in pion absorption

The value derived from the π^0D hadronic width Γ_{1s} reads

$$\alpha = \left(\frac{251 + 5}{-11}\right) \mu b.$$ (27)

The central value differs by $1\mu b$ from the one given in ref. [74], because there the correction term δ_D^{exc} (see sect. 3.1) had not been considered.

The theoretical understanding of $NN \rightarrow NN\pi$ reaction is continuously increasing. Within the approach of χPT, a study of pion production including the terms in NLO yields $\alpha^{\text{NLO}} = (220 \pm 70) \mu b$ [67] in good agreement with the pionic deuterium results (table 8 and fig. 14). The theoretical uncertainty is expected to decrease to below 10\% within a few years from forthcoming NNLO calculations [143].

The parameter α when determined from pion production experiments shows wide fluctuations even when comparing recent data. Often, only the statistical error is given for the cross-section of the production experiments, but

Table 7. Transition energies and hadronic effects found for pionic deuterium and corresponding experimental conditions. The total error of the measured transition energy E_{exp} is calculated quadratically from the statistical and systematical contributions. The hadronic shift is defined by $\epsilon_{1s} \equiv E_{\text{exp}} - E_{\text{QED}}$. Note the change of E_{QED} (*) due to a new calculation performed for the analysis of this experiment which shifts the result of [45,46] to $\epsilon_{1s} = -2419 \pm 100$ meV. Also for the (2p-1s) transition a new QED value of 2597.519 ± 0.008 eV is obtained resulting in $\epsilon_{1s} = -2461 \pm 55$ meV for the experiment of [47]. No uncertainties for the QED values have been reported for the experiments described in refs. [47,141,142].

Transition	Equivalent density	Energy calibration	E_{exp}	E_{QED}	ϵ_{1s}	Γ_{1s}
$\pi D(2p-1s)$	4–8.5 Bi M$_1$ edge	2592.8 \pm 6.8	2597.61 \pm 0.15	-4800 \pm 1600/3600	-18	[140]
$\pi D(2p-1s)$	\approx 3.5 Cu Kα	2593.3 \pm 2.3	2598.1	-4800 \pm 2300	-	[141]
$\pi D(2p-1s)$	\approx 50 Cl Kα	2592.1 \pm 0.9	2597.6	-5500 \pm 900	-	[142]
$\pi D(3p-1s)$	15 Ar Kα	3075.52 \pm 0.07	3077.95 \pm 0.01*	-2430 \pm 100	1020 \pm 210	[45,46]
$\pi D(2p-1s)$	2.5 Cl Kα	2595.058 \pm 0.055	2597.527*	-2469 \pm 55	1194 \pm 105	[47]
$\pi D(3p-1s)$	3.3/10/17.5 Ga Kα_2	3075.583 \pm 0.030	3077.939 \pm 0.008*	-2356 \pm 31	1171 \pm 23/29	this exp.
the fluctuations suggest significant systematic uncertainties, which may arise from uncertainties in the normalisation and/or Coulomb corrections. The expected order of magnitude of isospin-breaking effects is about or less than a few percent. The CMS momentum of the neutrons acquired in the absorption reaction is $p_n^{\pi} = 2.6076 \, m_{\pi}$.

6.7 Pion absorption on nucleon-nucleon pairs

To describe the s-wave absorption strength on isoscalar ($I = 0$) and isovector ($I = 1$) nucleon-nucleon pairs (NN), effective couplings g_0 and g_1 have been introduced representing the transitions $^3S_1(I = 0) \rightarrow ^3P_1(I = 1)$ (g_0) and $^1S_0(I = 1) \rightarrow ^3P_1(I = 1)$ (g_1) [150]. The transition strength $|g_0|^2$ is hence related to the imaginary part of the scattering length $a_{\pi D}$ as determined from I_{1s} in πD by

$$
|g_0|^2 = \frac{1}{2\pi m_\pi} \cdot \frac{P_n}{P_n} \cdot \frac{1}{P_n} \cdot \alpha,
$$

(28)

(see sect. 3.2). The CMS momentum of the neutrons acquired in the absorption reaction is $p_n^{\pi} = 2.6076 \, m_{\pi}$.

The relative strength of the coupling for absorption on isoscalar to isovector NN pairs was obtained to $|g_0/g_1| = 2.48 \pm 0.24$ from the ratio of neutron-neutron to...
neutron-protons pairs emitted back-to-back after pion absorption in the helium isotopes [161, 162]. From its value, the transition strength \(\alpha \) for s-wave pion production in nucleon-nucleon collisions is determined. However, weak evidence (2\(\sigma \)) was found for a Auger stabilised state.

Noteworthy, that at the 10\% level no high-energy components could be identified stemming from low-lying Coulomb de-excitation transitions in contrast to pionic and muonic hydrogen.

We would like to thank N. Dolfus, B. Leoni, L. Stohwasser, and K.-P. Wieder for the technical assistance and V. Baru, C. Hanhart, A. Nogga, M. Hoferichter, and A. Rusetsky for continuous exchange of information on theoretical progress on the \(\pi D \) system. The Bragg crystal was manufactured by Carl Zeiss AG, Oberkochen, Germany. Partial funding and travel support was granted by FCT (Lisbon) and FEDER (Grant No. SFRH/BD/18979/2004 and project PTDC/FIS/102110/2008) and the Germaine de Staël exchange program. LKB is Unité Mixte de Recherche du CNRS, de l’École Normale Supérieure et de UPMC No. 8552. This work is part of the PhD thesis of one of us (Th. S., University of Cologne, 2009).

7 Summary

The \(\pi D(3p-1s) \) X-ray transition in pionic deuterium has been studied using a high-resolution crystal spectrometer to determine the ground-state strong-interaction effects.

The accuracy of 1.3\% obtained for the shift, supercedes the theoretical uncertainty of 9\% achieved recently, and which can be traced back mainly to insufficient knowledge of low-energy constants. However, when used as a constraint for the pion-nucleon scattering lengths \(a^+ \) and \(a^- \) as determined from pionic hydrogen, the new \(\pi D \) result reduces the uncertainty for the isoscalar scattering length \(a^+ \) by a factor of about two yielding a non-zero and positive value [64].

The accuracy achieved for the hadronic broadening of 4.2\% reaches already the expected final uncertainty of (5–10)\% of forthcoming NNLO \(\chi PT \) calculations [143]. From its value, the transition strength \(\alpha \) for s-wave pion production in nucleon-nucleon collisions is determined with unprecedented accuracy.

No line broadening by radiative de-excitation from non-stabilised molecular states was identified which is corroborated from the study of the energy dependence of the \(\pi D(3p-1s) \) transition energy. However, weak evidence (2\(\sigma \)) was found for a Auger stabilised state.

References

1. S. Deser, M.L. Goldberger, K. Baumann, W. Thirring, Phys. Rev. 96, 774 (1954).
2. D. Gotta, Prog. Part. Nucl. Phys. 52, 133 (2004).
3. T.E.O. Ericson, W. Weise, Pions and Nuclei (Clarendon, Oxford, 1988) chapt. 6.
4. K.A. Brückner, Phys. Rev. 98, 769 (1955).
5. J. Gasser, V.E. Lyubovitskij, A. Rusetsky, Phys. Rep. 456, 167 (2008).
6. M. Lüscher, Commun. Math. Phys. 105, 153 (1986).
7. M. Lüscher, Nucl. Phys. B 354, 531 (1991).
8. A. Torok et al., Phys. Rev. D 81, 074506 (2010).
9. S.R. Beane, W. Detmold, K. Originos, M.J. Savage, Prog. Part. Nucl. Phys. 66, 1 (2011).
10. S. Weinberg, Phys. Rev. Lett. 17, 616 (1966).
