The iterability hierarchy above I_3

Alessandro Andretta1 · Vincenzo Dimonte2

Received: 12 December 2017 / Accepted: 7 April 2018 / Published online: 18 April 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract In this paper we introduce a new hierarchy of large cardinals between I_3 and I_2, the iterability hierarchy, and we prove that every step of it strongly implies the ones below.

Keywords Large cardinals · Elementary embeddings · Rank-into-rank embeddings · Linear iterations

Mathematics Subject Classification 03E55

1 Introduction

In the late 1970s and early 1980s there was a flurry of activity around rank-into-rank axioms, a new kind of large cardinal hypotheses at the top of the hierarchy. They were I_3 (the existence of an elementary embedding $j : V_{\lambda} \prec V_{\lambda}$), I_2 (the existence of an elementary embedding $j : V \prec M$ with $V_{\lambda} \subseteq M$) and I_1 (the existence of an elementary embedding $j : V_{\lambda+1} \prec V_{\lambda+1}$). The initial belief of the majority of set theorists was that their existence was eventually going to be disproved in ZFC, and hence the I suggesting inconsistency, but a result by Martin started to change the mood: he proved in [9] that a hypothesis strictly below I_2 and above I_3 implies the
determinacy of Π^1_α sets. The hypothesis used by Martin was the existence of an *iterable* (see Sect. 3) $j: V_\kappa \prec V_\lambda$—we call this large cardinal axiom I_3^∞. The excitement grew when Woodin, a few years later, proved the consistency of the Axiom of Determinacy using an axiom stronger than I_1, called I_0. But in the following years Woodin, building on work of Martin and Steel, showed that determinacy had much lower consistency strength, so I_3^∞ slowly fell into oblivion. Interest in rank-into-rank axioms re-emerged twenty years ago, thanks to Laver’s results on the algebra of the I_3-embeddings, and more recently after Woodin’s extensive work on I_0. Moving to the present age, the researcher that wants to know more about I_3^∞, however, is going to be disappointed: the only reference is Martin’s original paper, that is very terse and lacking in details. For example, it says that I_2 strictly implies I_3^∞, but it provides no proof for that. Even the very definition of iterable embedding is not fully satisfactory, as it is founded on operations whose validity has not been fully provided in print (as in Lemma 3.3). Also, is I_3^∞ strictly stronger than I_3?

The aim of this paper is to approach iterability of I_3-embeddings in all the details and in a modern way, thanks to the better understanding of rank-into-rank axioms that decades of work has given us. In Sect. 2 the current knowledge of rank-into-rank axioms is described, introducing the concept of “strong implication”, more suitable for such axioms than the usual notion of strict implication. In Sect. 3 we define exactly what an iterable I_3-embedding is, and we introduce a new hierarchy of axioms, depending on how long the I_3-embedding can be iterable. It turns out that, like for iterations of a single measure or an extender, if an I_3-embedding is ω_1-iterable, then it is iterable for any length, and this is strictly (in fact: strongly) weaker than I_2. Finally, in Sect. 4 we prove that every step in the iterability hierarchy strongly implies the ones below, with even one more step at limit points. The final picture is therefore the following:

```
I_2
  ↓
I_3^\infty
  ↓
\forall \alpha < \omega_1 I_3^\alpha
  ↓
   ...
  ↓
I_3_\omega
  ↓
I_3^{< \omega_0}
  ↓
\forall n < \omega I_3^n
  ↓
   ...
  ↓
I_3_2
  ↓
I_3_1
  ↓
I_3 \leftrightarrow I_3_0
```
2 Preliminaries

To avoid confusion or misunderstandings, all notations and standard basic results are collected here.

If M and N are sets or classes, $j : M \prec N$ denotes that j is an elementary embedding from M to N, that is a function such that for any formula φ and any $x \in M$, $M \models \varphi(x)$ iff $N \models \varphi(j(x))$; when this holds only for Σ_n formulæ, we write $j : M \prec_n N$. The case in which j is the identity, i.e., if M is an elementary (or Σ_n-elementary) submodel of N, is simply written as $M \prec N$ (or $M \prec_n N$).

If $M \models \text{AC}$ or $N \subseteq M$ and $j : M \prec N$ is not the identity, then it moves at least one ordinal; the least such ordinal is the critical point of j and it is denoted by $\text{crt}(j)$. Let j be an elementary embedding and $\kappa = \text{crt}(j)$. Define $\kappa_0 = \kappa$ and $\kappa_{n+1} = j(\kappa_n)$. Then $(\kappa_n : n \in \omega)$ is the critical sequence of j.

Kunen [6] proved that if $M = N = V_\eta$ for some ordinal η, and λ is the supremum of the critical sequence, then η cannot be bigger than $\lambda + 1$ (and of course cannot be smaller than λ). Kunen’s result actually does not say anything about the cases $\eta = \lambda$ or $\eta = \lambda + 1$. Therefore we can introduce the following hypotheses without fearing an immediate inconsistency:

I3 There exists $j : V_\lambda \prec V_\lambda$, where λ is the supremum of the critical sequence of j.
I1 There exists $j : V_{\lambda+1} \prec V_{\lambda+1}$, where λ is the supremum of the critical sequence of j.

We will be flexible in handling this and other rank-into-rank notations, but the meaning will be always clear. For example, I3(λ) means that there is a $j : V_\lambda \prec V_\lambda$ (so it is a property of λ), while I3(j) indicates that $j : V_\lambda \prec V_\lambda$. Sometimes we write $I3(j, \lambda)$ to underline the role of λ, etc.

Another way to reach the apogee of the large cardinal hierarchy is via the usual template asserting the existence of an elementary embedding $j : V \prec M \subseteq V$ with M resembling V.

Definition 2.1 A cardinal κ is:

- **superstrong** iff there exists $j : V \prec M$ such that $\text{crt}(j) = \kappa$ and $V_{\kappa_1} \subseteq M$, where κ_1 is the second element of the critical sequence of j;
- **n-superstrong** iff there exists $j : V \prec M$ such that $\text{crt}(j) = \kappa$ and $V_{\kappa_n} \subseteq M$, where κ_n is the $n + 1$-th element of the critical sequence of j;
- **ω-superstrong** iff there exists $j : V \prec M$ such that $\text{crt}(j) = \kappa$ and $V_{\lambda} \subseteq M$, where λ is the supremum of the critical sequence of j.

If κ is ω-superstrong as witnessed by j, λ, then $j(\lambda) = \lambda$, and therefore I3 holds. Moreover, like other large cardinals, it can be formulated as the existence of an extender (see [5]), in this case a (κ, λ)-extender E such that $V_\lambda \subseteq \text{Ult}(V, E)$, where λ is the supremum of the κ_n’s.

It is possible to pinpoint exactly how much ω-superstrongness is stronger than I3, but for this we need to clarify what we mean by “being stronger”:

Definition 2.2 Let $\Phi(j, \lambda)$ and $\Psi(j, \lambda)$ be two large cardinal properties as above. Then
\begin{itemize}
 \item Φ implies Ψ iff $\text{ZFC} \vdash \Phi(j, \lambda) \rightarrow \Psi(j, \lambda)$;
 \item Φ strictly implies Ψ iff Φ implies Ψ and $\text{ZFC} \vdash \Phi(j, \lambda) \rightarrow \exists \lambda' \exists j' (\Psi(j', \lambda') \land \neg(\Phi(j', \lambda'))) ;$
 \item Φ strongly implies Ψ iff Φ implies Ψ and $\text{ZFC} \vdash \Phi(j, \lambda) \rightarrow \exists \lambda' < \lambda \exists j' (\Psi(j', \lambda')) .
\end{itemize}

Note that strong implication yields strict implication: If Φ strongly implies Ψ, let λ be the smallest such that there is a j such that $\Phi(j, \lambda)$ holds. Then there are j' and $\lambda' < \lambda$ such that $\Psi(j', \lambda')$ holds, and since λ was the smallest for Φ, then $\Phi(j', \lambda')$ does not hold. The difference between “strict” versus “strong” is a consequence of the peculiar nature of rank-into-rank axioms. For weaker axioms, usually the focal cardinal is the critical point of an elementary embedding, and such cardinal is measurable. If, assuming some property Φ of κ, we can find a $\kappa' < \kappa$ that satisfies a property Ψ, the reasoning is as follows: let κ be the smallest cardinal that satisfies Φ; find $\kappa' < \kappa$ that satisfies Ψ; then κ' must not satisfy Φ; then V_κ is a model of ZFC where no cardinal satisfy Φ, but some cardinal satisfy Ψ, so the consistency strength of Φ is stronger than that of Ψ. So actually strict implication and strong implication are the same.

In the rank-into-rank case, the focal cardinal is λ, as for the same λ there can be many different embeddings j and critical points of them (see discussion after Lemma 3.4). Therefore if for any j : $V_\lambda < V_\lambda$ satisfying Φ, there is another j' : $V_\lambda < V_\lambda$ with $\text{crt}(j') < \text{crt}(j)$ satisfying Ψ, then this would prove that Φ strictly implies Ψ—just choose j' with critical point as small as possible. But this argument falls short of actually proving that the consistency strength of one is stronger than the other, which is the motivation behind the definition of “strong implication”. In fact if Φ strongly implies Ψ and λ is least such that $\Phi(\lambda)$ holds, then V_λ is a model of ZFC plus the statement $\exists \lambda' (\Psi(\lambda') \land \forall \lambda' < \Phi(\lambda'))$.

There is an alternative way to look at \mathcal{I}^1, as a higher-order \mathcal{I}^3-embedding. A second-order language is formally a two-sorted language, where one sort is interpreted by elements of the model, and the other sort is interpreted by subsets of the model (usually the first sort is lowercase and the second is uppercase). Both variables and parameters have two sorts. So, for example, if φ has no quantifiers, $V_\lambda \models \forall X \forall x \varphi(x, X, a, A)$ means “$\forall X \subseteq V_\lambda \forall x \in V_\lambda \varphi(x, X, a, A)$”, where $a \in V_\lambda$ and $A \subseteq V_\lambda$. If a second-order formula does not have quantifiers with uppercase variables, then it is Δ^1_0 (or Σ^1_0 or Π^1_0). In a similar way to first-order formulæ, a formula is Σ^1_n if there are n alternations of \exists and \forall quantifiers with uppercase variable, the first one being a \exists.

Now, as $V_{\lambda+1}$ is just $\mathcal{P}(V_\lambda)$, if there is a j : $V_\lambda < V_\lambda$, for any $X \in V_{\lambda+1}$ we can define $j^+(X) = \bigcup_{\alpha < \lambda} j(X \cap V_\alpha)$, so that j extends to j^+ : $V_{\lambda+1} \rightarrow V_{\lambda+1}$. With this in mind, it makes sense now to ask whether j preserves second-order formulæ, i.e., whether $V_\lambda \models \varphi(a, A)$ iff $V_\lambda \models \varphi(j(a), j^+(A))$. If j preserves all second-order formulæ then, clearly, j^+ : $V_{\lambda+1} \rightarrow V_{\lambda+1}$. We say that j is a Σ^1_n-elementary embedding if it preserves Σ^1_n formulæ. If j is a Σ^1_n-elementary embedding for any $n \in \omega$, then j^+ witnesses \mathcal{I}^1. The other direction also holds: if j : $V_{\lambda+1} \rightarrow V_{\lambda+1}$, then the extension of $j \upharpoonright V_\lambda$ is j itself (see Lemma 3.4 in [3]), so every \mathcal{I}^3-embedding, if it can be extended to a \mathcal{I}^1-embedding, it can be extended in a unique way. It is a standard fact that if j witnesses \mathcal{I}^3, then it is a Σ^1_0-elementary embedding (this is a consequence of the more
The iterability hierarchy above \mathbf{I}_3

The general concept of Σ_n^1-elementary embeddings appears first in the paper by Laver [8], building on Martin’s seminal work.

In order to state and prove the results that follow, we introduce the following

Definition 2.3 $\mathcal{E}(\lambda)$ is the set of all $j : V_{\lambda} \prec V_{\lambda}$, and $\mathcal{E}_n(\lambda)$ is the set of all $j \in \mathcal{E}(\lambda)$ that are Σ_n^1-elementary.

Therefore $\mathcal{E}(\lambda) = \bigcap_n \mathcal{E}_n(\lambda) \neq \emptyset$, and $\mathbf{I}_1(\lambda)$ means $\mathcal{E}(\lambda) \neq \emptyset$.

Now we can characterize ω-superstrongness within this template:

Theorem 2.4 (Martin [9]) Any $j \in \mathcal{E}_1(\lambda)$ can be extended to an $i : V \prec M$ such that $V_{\lambda} \subseteq M$. Conversely, if $i : V \prec M$ is such that $V_{\lambda} \subseteq M$, with λ supremum of the critical sequence, then $i \upharpoonright V_{\lambda} \in \mathcal{E}_1(\lambda)$.

In view of Theorem 2.4, we write $\mathbf{I}_2(\lambda)$ for one of the two following equivalent statements:

- there is a $j : V \prec M$ such that $V_{\lambda} \subseteq M$, where λ is the supremum of the critical sequence of j;
- $\mathcal{E}_1(\lambda) \neq \emptyset$.

Going back to Σ_n^1-embeddings, there is a hierarchy of hypotheses of length $\omega + 1$, that starts with \mathbf{I}_3, \mathbf{I}_2, and then Σ_2^1-, Σ_3^1-, \ldots elementarity up to \mathbf{I}_1. Do they really form a proper hierarchy?

Theorem 2.5 (Laver [8] and Martin [9]) For every $n \in \omega$

(1) $\mathcal{E}_{2n+1}(\lambda) = \mathcal{E}_{2n+2}(\lambda)$;
(2) if $j \in \mathcal{E}_{2n+1}(\lambda)$ and $\kappa = \text{crt}(j)$, then $C_n = \{ \lambda' < \kappa : \mathcal{E}_{2n}(\lambda') \neq \emptyset \}$ is ω-club in κ.

Thus the existence of a Σ_1^2-embedding from V_{λ} to itself strongly implies the existence of a Σ_1^2-embedding from V_{λ} to itself.

The following result is Corollary 5.24 in [3]. Since the proof in that paper follows from a long-winded argument, for the reader’s convenience we present a self-contained one.

Corollary 2.6 $\mathbf{I}_1(\lambda)$ strongly implies $\forall n \mathcal{E}_n(\lambda) \neq \emptyset$.

Proof If $j : V_{\lambda+1} \prec V_{\lambda+1}$ witnesses \mathbf{I}_1, then $j \upharpoonright V_{\lambda}$ is in $\mathcal{E}_{2n+1}(\lambda)$ for any $n \in \omega$. Let $C_n \subseteq \text{crt}(j)$ be as in Theorem 2.5; as $\text{crt}(j)$ is regular, $\bigcap_{n \in \omega} C_n \neq \emptyset$, therefore there is a $\lambda' < \text{crt}(j) < \lambda$ such that $\mathcal{E}_{2n}(\lambda') \neq \emptyset$ for any $n \in \omega$. \Box

Figure 1 summarizes the situation until now, where all vertical arrows are strong implications.

3 Iterations of \mathbf{I}_3

If E is an extender in a transitive model M of ZFC, the iteration of length ν is a commutative system of transitive models, extenders, and elementary embeddings $\langle (M_\alpha, E_\alpha, j_{\beta, \alpha}) : \beta \leq \alpha < \nu \rangle$ defined as follows:

\[E_\alpha = \bigcup_{\beta \leq \alpha} E_\beta, \quad j_{\beta, \alpha} = j_{\beta, \alpha} \upharpoonright V_{\beta+1}. \]
Fig. 1 Hierarchy between I_3 and I_1

$$\begin{align*}
I_1(\lambda) & \iff \bigcap_{n} \mathcal{E}_n(\lambda) \neq \emptyset \\
\forall n \mathcal{E}_n(\lambda) & \neq \emptyset \\
\vdots & \\
\mathcal{E}_4(\lambda) & = \mathcal{E}_3(\lambda) \neq \emptyset \\
I_2(\lambda) & \iff \mathcal{E}_2(\lambda) = \mathcal{E}_1(\lambda) \neq \emptyset \\
I_3(\lambda) & \iff \mathcal{E}(\lambda) = \mathcal{E}_0(\lambda) \neq \emptyset \\
\end{align*}$$

- $M_0 = M, E_0 = E,$ and $j_{0,0}$ is the identity on M,
- $j_{\alpha,\alpha + 1} : M_\alpha \prec \text{Ult}(M_\alpha, E_\alpha)^{M_\alpha} = M_{\alpha + 1}$ is the ultrapower embedding, and $\text{Ult}(M_\alpha, E_\alpha)^{M_\alpha}$ is the ultrapower of M_α via E_α computed in M_α,
- $E_{\alpha + 1} = j_{\alpha,\alpha + 1}(E_\alpha)$, and for $\beta \leq \alpha$ we set $j_{\beta,\alpha + 1} = j_{\alpha,\alpha + 1} \circ j_{\beta,\alpha}$,
- for γ limit M_γ is the direct limit of the M_αs for $\alpha < \gamma$.

If $\nu \subseteq M$ one verifies by induction on $\alpha \in \nu$ that M_α is well-founded—see the proof of Lemma 19.5 in [4]. In particular, if M is a proper class then ν can be replaced by Ord.

In 1978 Martin showed that the determinacy of Π^1_1 sets followed from the existence of an elementary embedding $j : V_\lambda \prec V_\lambda$ that is iterable [9]. Before considering iterability, we need to define this concept rigorously. The crux of the matter is that j is a proper class of V_λ, and it cannot be a definable class by a generalization of Kunen’s Theorem by Suzuki [11]. So the hypothetical $j_{1,2}$ cannot be calculated directly as a $j(j)$, since j is not an element of V_λ, but it cannot even be calculated indirectly, as j is not an ultrapower embedding via some extender. The idea is then to exploit the fact that λ has cofinality ω, defining the first iterate as $j^+(j)$, and at limit stages finding a way to define $j_{0,\alpha}^+(j)$. In this process, however, we do not have the assurance that we can always prolong the iterate, and in fact we will see in Theorem 4.1 that there are cases where it cannot even reach the ω-limit.

It is worthwhile noticing that climbing the hierarchy of rank-into-rank axioms up to I_0 and beyond, this problem disappears again. In fact: $I_2(\lambda)$ is witnessed by ω-superstrong embeddings defined by an extender, which is iterable by the argument at the beginning of this section; $I_1(\lambda)$ is taken care by Proposition 3.1 below; $I_0(\lambda)$ can be witnessed by proper embeddings (see [1,2,12]) which are in fact iterable, as they are defined from a normal ultrafilter. It seems therefore that iterability is a problem peculiar to I_3.

Proposition 3.1 Every $j : V_{\lambda + 1} \prec V_{\lambda + 1}$ is iterable.

Proof Let $j : V_{\lambda + 1} \prec V_{\lambda + 1}$. In particular $j \upharpoonright V_\lambda = k$ is a Σ^1_1-embedding, therefore it can be extended to an embedding $i : V \prec M$ with $V_\lambda \subseteq M$. Now, i is iterable, so
\(i_\alpha = i_{\alpha, \alpha + 1}\), the \(\alpha\)-th iterate, and \(i_{0, \alpha}\), the limit embedding, are defined for any \(\alpha\) ordinal, and \(M_\alpha\), the \(\alpha\)-th model of the iteration, is well-founded. We want to define an iterate for \(j\). Since \(j(\lambda) = \lambda\), we have that \(j(k) : V_\lambda \prec V_\lambda\), so we can define \(j_2 = j(k)^+\), i.e., the extension of \(j(k)\) to \(V_{\lambda + 1}\), \(j_3 = j(j_2)^+\) and so on. Now, as the extension of an I3-embedding is uniquely defined, \(i_n \upharpoonright V_{\lambda + 1} = j_n\), and the \(\omega\)-th model of the iteration of \(j\) is \((V_{i_\omega(\lambda) + 1})^\omega\) (see proof of Proposition 3.8). We can define therefore \(j_\omega = j_{0, \omega}(k)^+\), with \(j_{0, \omega}(k) : (V_{i_\omega(\lambda)})^\omega \prec (V_{i_\omega(\lambda)})^\omega\) and \(i_\omega \upharpoonright (V_{i_\omega(\lambda) + 1})^\omega = j_\omega\). Finally, \(k\) is \(\Sigma^1_n\) is a \(\Sigma^1_n\)-formula, (see Lemma 2.1 in [8]) and therefore by elementarity of the \(j_{0, \omega}\), \(j_{0, \omega}(k)\) is a \(\Sigma^1_n\)-embedding for any \(n \in \omega\), and therefore an I1-embedding. So we can continue indefinitely the construction, and \(j\) is iterable.

The following lemmas provide the key construction for iterates of rank-into-rank embeddings:

Lemma 3.2 Let \(M, N \models \text{ZFC}\) be transitive sets, \(\pi : M < N\), and \(X \subseteq M\). If

- \(\pi\) is cofinal, i.e., \(\forall \beta \in N \cap \text{Ord} \exists \alpha \in M \cap \text{Ord} \pi(\alpha) > \beta\);
- \(X\) is amenable for \(M\), i.e., \(\forall \alpha \in M \cap \text{Ord} X \cap (V_\alpha)^M \subseteq M\),

define \(\pi^+(X) = \bigcup_{\alpha \in M \cap \text{Ord}} \pi(X \cap (V_\alpha)^M)\). Then \(\pi^+(X)\) is amenable for \(N\) and \(\pi : (M, X) <_1 (N, \pi^+(X))\).

Proof Well known. A simple induction proves that \(\pi : (M, X) <_0 (N, \pi^+(X))\), and every cofinal \(\Sigma^0_0\)-embedding is a \(\Sigma^1_1\)-embedding. \(\square\)

The next result shows that with an assumption on the cofinality of \(M \cap \text{Ord}\) we can have full elementarity:

Lemma 3.3 Let \(M, N \models \text{ZFC}\) be transitive sets. Suppose \(\pi : M < N\) is cofinal, that \(\gamma = \text{cof}(M \cap \text{Ord}) \in M\), and that \(M <^\gamma \subseteq M\). Then \(\pi : (M, X) < (N, \pi^+(X))\) for any \(X \subseteq M\) amenable in \(M\).

Proof We prove by induction on \(n\) that \(\pi : (M, X) <_n (N, \pi^+(X))\) for any \(X \subseteq M\) amenable in \(M\). The case \(n = 1\) holds by Lemma 3.2, so we may assume that the result holds for some \(n \geq 1\) towards proving the result for \(n + 1\).

Fix \(F = \langle \kappa_\alpha : \alpha < \gamma \rangle\) cofinal in \(M \cap \text{Ord}\). As \(M <^\gamma \subseteq M\) then \(F\) is amenable for \(M\). Let \(\text{Fml}_n\) be the set of (codes for) \(\Sigma_n\) formulæ in the language of set theory augmented with a 1-ary predicate \(\hat{X}\). Let

\[
B = \{ (\exists y \psi(x, y), \alpha) \in \text{Fml}_n \times \gamma : \psi \in \Pi_{n-1} \wedge (M, X) \models \exists y \in V_{\kappa_\alpha} \psi(x, y) \}.
\]

Note that \(B\) is amenable for \(M\). If \(\varphi(x) \in \text{Fml}_n\) is \(\exists y \psi(x, y)\), then

\[
\forall x (\varphi(x) \rightarrow \exists \alpha < \gamma (\varphi(x), \alpha) \in \hat{B})
\]

\[
\wedge \forall x \forall \kappa \forall \alpha < \gamma (((\varphi(x), \alpha) \in \hat{B} \wedge (\alpha, \kappa) \in \hat{F} \rightarrow \exists y \in V_{\kappa} \psi(x, y))
\]

is a \(\Pi_n\)-formula \(\Psi_{\varphi(x)}\) in the language of set theory augmented with predicates \(\hat{X}, \hat{F}, \hat{B}\) that holds true in \((M, X, F, B)\). (The assumption that the cofinality of \(M \cap \text{Ord}\)
is singular is used to bound the quantifier $\exists \alpha < \gamma$ so that $\Psi(x)$ is indeed a Π_1 formula when $n = 1$.) The formulæ $\Psi(x)$ with $\varphi(x) \in \text{Fml}_n$ describe that B is exactly as defined, therefore we can say that the Π_n-theory of (M, X, F, B) “knows” the definition of B. Since

$$\pi : (M, X, F, B) \prec_n (N, \pi^+(X), \pi^+(F), \pi^+(B)),$$

then $\pi^+(B)$ is as expected, i.e.,

$$\pi^+(B) = \{(\exists y \varphi(x, y), \alpha) \in \text{Fml}_n \times \pi(y) : \varphi \text{ is } \Pi_{n-1}$$

$$\land (N, \pi^+(X)) \models \exists y \in V_{\pi(\alpha)} \varphi(x, y)),\$$

so $(N, \pi^+(X), \pi^+(B)) \models \exists \alpha < \pi(\gamma) (\varphi(x), \alpha) \in \hat{B}$ iff $(N, \pi^+(X)) \models \varphi(x)$.

We are now ready to show that π preserves all Π_{n+1} formulæ and hence it is Σ_{n+1}-elementary. If φ is a Σ_n formula then

$$(M, X) \models \forall x \varphi(x) \iff (M, X, B) \models \forall x \exists \alpha < \gamma (\varphi(x), \alpha) \in \hat{B}$$

$$\iff (N, \pi^+(X), \pi^+(B)) \models \forall x \exists \alpha < \pi(\gamma) (\varphi(x), \alpha) \in \hat{B}$$

$$\iff (N, \pi^+(X)) \models \forall x \varphi(x)$$

where the second equivalence follows from $\pi : (M, X, B) \prec_1 (N, \pi^+(X), \pi^+(B))$ by Lemma 3.2 and therefore it preserves Π_1 formulæ.

When $M = N = V_\lambda$, then $\text{cof}(M \cap \text{Ord}) = \omega$ so that the hypothesis $M^{<\gamma} \subseteq M$ in the statement of Lemma 3.3 holds automatically. Lemma 3.3 for $M = N = V_\lambda$ appears in several places without proof (e.g., [5,8]), but only in [7] there is a proof of that. Unfortunately, as it is written in [7] there is a small gap: the proof is based on defining j^+ first on Skolem functions, but it is not clear why $j^+(f)$ should be total for any f Skolem function. This problem is solved as Claim 3.7 in [3]. The proof above is instead an argument by Woodin found on MathOverflow [10].

Lemma 3.2 shows how to extend an elementary embedding to amenable subsets. A simple calculation proves that such extensions behave as expected between each other:

Lemma 3.4 Let M_1, M_2, N_1, N_2 be transitive sets and models of ZFC.

1. If $j : M_1 \prec N_1$ and $\pi : N_1 \prec N_2$ are cofinal, and $X \subseteq M_1$ is amenable for M_1, then $\pi^+(j^+(X)) = (\pi^+(j))^+(\pi^+(X))$.

2. If $\pi_1 : M_1 \prec N_1, \pi_2 : M_2 \prec N_2, j_1 : M_1 \prec M_2$, and $j_2 : N_1 \prec N_2$ are cofinal and $\pi_2 \circ j_1 = j_2 \circ \pi_1$, then $\pi_2^+ \circ j_1^+ = j_2^+ \circ \pi_1^+$ on the sets amenable for M_1.

\[
\begin{array}{c}
\pi_1^\uparrow \\
N_1 \xrightarrow{j_2} N_2 \\
\pi_2^\uparrow \\
M_1 \xrightarrow{j_1} M_2
\end{array}
\]

The next result is folklore.
Lemma 3.5 If \(j, k : V_\lambda < V_\lambda \), then \(j^+(k) : V_\lambda < V_\lambda \).

Proof Let \(\text{Fml} \) be the set of all (codes of) first order formulæ in the language of set theory. Note that “\(k \) is an elementary embedding from \(V_\lambda \) to itself” amounts to say that \(V_\lambda \models \forall \varphi(x) \) for every \(\varphi(x) \in \text{Fml} \), where \(\forall \varphi(x) \) is

\[
\forall x \varphi(x) \rightarrow \exists y((x, y) \in \bar{k} \land \varphi(y))
\]

with \(\bar{k} \) a binary predicate predicate for \(k \). Since \(j : (V_\lambda, k) \rightarrow (V_\lambda, j^+(k)) \) by Lemma 3.3, it follows that \(j^+(k) : V_\lambda < V_\lambda \). \(\square \)

In particular \(j^+(j) = j_1 \) will be an embedding with critical point \(\text{crt}(j^+(j)) = j(\text{crt}(j)) = \kappa_1 \). Letting \(j_0 = j \) and \(j_{n+1} = j^+(j_n) \) one proves by induction on \(n \) that \(j_{n+1} = j_n^+(j_n) \). Note that \(\text{crt}(j_n) = \kappa_n \). By induction on \(n \) it follows that \(j_n(\kappa_m) = \kappa_{m+1} \) when \(m \geq n \):

\[
j_n(\kappa_m) = j_{n-1}(j_{n-1}(\kappa_{m-1})) = j_{n-1}(j_{n-1}(\kappa_{m-1})) = j_{n-1}(\kappa_m) = \kappa_{m+1}.
\]

Let \(M_\omega \) be the direct limit of the system \(\langle (V_\lambda, j_{n,m}) : n, m \in \omega, n < m \rangle \), where \(j_{n,m+1} = j_n \) and \(j_{n,m} = j_m \circ j_{m-1} \circ \cdots \circ j_n \). If \(M_\omega \) is well-founded, then it is defined \(j_{n,\omega} : V_\lambda < M_\omega \) for any \(n \in \omega \). Now, \(j_{0,\omega} \) is cofinal: Let \(\alpha \in M_\omega \). Then there exist \(n \in \omega \) and \(\beta \in \lambda \) such that \(\alpha = j_{n,\omega}(\beta) \). Let \(m \) be such that \(\beta < \kappa_m \) and \(m > n \). Then \(j_{n,m}(\kappa_{m-n}) = \kappa_m > \beta \), and

\[
j_{0,\omega}(\kappa_{m-n}) = j_{n,\omega}(j_{n,m}(\kappa_{m-n})) > j_{n,\omega}(\beta) = \alpha.
\]

Therefore we can define \(j_\omega = j_{0,\omega}^+(j) : M_\omega < M_\omega \), and then \(j_{\omega+1} = (j_\omega)^+(j_\omega) : M_\omega < M_\omega \), and so on. At each limit \(\nu \) we ask

- whether the direct limit \(M_\nu \) is well-founded,
- whether \(j_{0,\nu} \) is cofinal (otherwise \(j_\nu \) is not defined),

and if so we continue, otherwise we stop. But the second case, once we know that \(M_\nu \) is well-founded, is by induction, for the same reason as for \(j_{0,\omega} \) being cofinal: Since \(\nu \) is limit let \(\langle \nu_n : n \in \omega \rangle \) be cofinal in \(\nu \). Then if \(\alpha \in M_\nu \), there exists \(n \in \omega \) and \(\beta \in \lambda \) such that \(\alpha = j_{\nu_n}(\beta) \). Now, by inductive hypothesis \(j_{0,\nu_n}(\gamma) \) is cofinal, so there is a \(\gamma < \nu_n \) such that \(j_{0,\nu_n}(\gamma) > j_{0,\nu_n}(\beta) \), and so by elementarity \(j_{0,\nu}(\gamma) = j_{\nu_n}(j_{0,\nu_n}(\gamma)) > j_{\nu_n}(\beta) = \alpha \). Therefore the construction stops at limit \(\nu \) iff \(M_\nu \) is not well-founded.

Note that, differently than in the case \(j : V < M \), the model \(M_\alpha \) is the same as \(M_{\alpha+1} \), so they are either both well-founded or not. In other words, the construction can stop only at limit ordinals. We say that \(j \) is \(\alpha \)-iterable, then, if the construction does not stop at the \(\omega \cdot \alpha \)-th step, i.e, if \(M_{\omega \cdot \alpha} \) is well-founded, and \(< \alpha \)-iterable if \(M_{\omega, \beta} \) is well-founded for any \(\beta < \alpha \). As usual, we identify \(M_\beta \) with its transitive collapse, when well-founded. We write \(I_3\alpha \) to indicate the existence of an \(\alpha \)-iterable embedding from \(V_\lambda \) to itself, and \(I_3 < \alpha \) for the existence of a \(< \alpha \)-iterable embedding. We say that \(j \) is iterable, and we indicate the relative hypothesis with \(I_3\infty \), if it is \(\alpha \)-iterable for any \(\alpha \) ordinal.

\(\square \) Springer
If j is 1-iterable, as $j_m(\kappa_n) = \kappa_n$ for any $m > n$, we have that $\Crt(j_n, \omega) = \kappa_n$, so if $x \in V_{\kappa_n}$, $j_{n+1, \omega}(x) = x \in M_\omega$. This means that $j_{0, \omega}(\kappa_0) = \lambda$ and $V_\lambda \subseteq M_\omega$, so M_ω is actually “taller” then V_λ. As $(V_\lambda)^{M_\omega} = V_\lambda$, and this implies that $V_\lambda \in M_\omega$. In the same way, if j is 2-iterable then $M_\omega \in M_\omega^{2}$, and, more generally, if j is β-iterable then $M_{\alpha, \omega} \in M_{\alpha, \beta}$ for any $\alpha < \beta$.

Suppose E is an extender in a transitive model M and let M_α denote the α-th model of the iteration. It is a standard result in inner model theory that if M_α is well-founded for every $\alpha < \omega_1$, then every M_α is well-founded. This holds also in our situation.

Proposition 3.6 For $j : V_\lambda \to V_\lambda$, the following are equivalent:

1. $\mathbf{I}_3(\lambda)$, that is M_α is well-founded for any α ordinal, i.e., j is iterable,
2. $\mathbf{I}_3(\alpha)$, that is M_ω is well-founded, i.e., j is ω_1-iterable,
3. $\forall \beta < \omega_1 \mathbf{I}_3(\beta)$, that is M_β is well-founded for any $\beta < \omega_1$, i.e., j is $<\omega_1$-iterable.

Proof Only one direction is not obvious. So suppose that $\forall \beta < \omega_1 \mathbf{I}_3(\beta)$ and that there exists θ such that M_θ is ill-founded. Without loss of generality, we can assume that θ is least, limit and $\geq \omega_1$. We will prove that this leads to a contradiction.

Pick α large enough so that $(M_\alpha : \nu < \theta) \in V_\alpha$ together with witnesses of the ill-foundedness of M_θ. Let $\pi : \mathcal{P} \to V_\alpha$ the inverse of the collapse such that j, $(M_\nu : \nu < \theta)$, V_λ, θ, κ_n for all $n \in \omega$ and the witnesses of the ill-foundedness of M_θ are all in the range of π, with \mathcal{P} countable. Let $M_0 = \pi^{-1}(V_\lambda)$, $j_0 = \pi^{-1}(j)$ and $\tilde{\theta} = \pi^{-1}(\theta)$, and let $(M_\nu : \nu \leq \tilde{\theta})$ be the iteration of (M_0, j_0). Then $M_{\tilde{\theta}}$ is ill-founded in \mathcal{P}.

We want all the models of the iterates of j and \tilde{j} to satisfy the hypothesis of Lemma 3.3, so to have singular height. But note that, as $(\kappa_n : n \in \omega)$ is cofinal in V_λ, for any $\nu < \theta$ we have that $(j_0, \nu)(\kappa_n) : n \in \omega)$ is cofinal in M_ν, as j_0, ν is a Σ_0-elementary embedding by Lemma 3.3 and $(j_0, \nu)(\kappa_n) : n \in \omega) = j_0, \nu((\kappa_n) : n \in \omega))$.

Let $\mu_n = \pi^{-1}(\kappa_n)$. Then also $(\mu_n : n \in \omega)$ is cofinal in $\tilde{M}_0 \cap \text{Ord}$ and for every $\nu < \tilde{\theta}$ $(j_0, \nu)(\mu_n) : n \in \omega)$ is cofinal in $\tilde{M}_\nu \cap \text{Ord}$. So $\tilde{M}_\nu \cap \text{Ord}$ has cofinality ω_1 for every $\nu \leq \tilde{\theta}$. As $\tilde{\theta}$ is countable, all the M_α and \tilde{M}_α are well-founded for $\alpha < \tilde{\theta}$ for case assumption.

We build by induction π_ν, for every $\nu \leq \tilde{\theta}$, such that:

1. $\pi_\nu : \tilde{M}_\nu < M_\nu$ and it is cofinal;
2. $\pi_\nu \circ j_{\delta, \nu} = j_{\delta, \nu} \circ \pi_\delta$ for every $\delta < \nu$;
3. $\pi_\nu^+(\tilde{j}_\nu) = j_\nu$.

\[\begin{array}{ccccccccc}
& j & & & j & & & j & & & j \\
V_\lambda & \tilde{V}_\lambda & \cdots & M_\delta & \cdots & M_\nu & \cdots & M_{\tilde{\theta}} & \cdots & M_\theta \\
\pi_0 & \tilde{\pi}_0 & \cdots & \pi_\delta & \cdots & \pi_\nu & \cdots & \pi_{\tilde{\theta}} & \cdots & \pi \\
M_0 & \tilde{M}_0 & \cdots & M_\delta & \cdots & M_\nu & \cdots & \tilde{M}_{\tilde{\theta}} & \cdots & M_\theta \\
\tilde{j}_{\delta, \nu} & \tilde{j}_{\delta, \nu} & \cdots & \tilde{j}_\delta & \cdots & \tilde{j}_\nu & \cdots & \tilde{j}_{\tilde{\theta}} & \cdots & \tilde{j}_\theta \\
\end{array}\]
If this can be achieved, we easily reach a contradiction: In M_θ there is a sequence that witnesses that M_θ is ill-founded, and by construction of π such witnesses are in the range of π, therefore also M_θ is ill-founded. But then, by elementarity via π_θ, also M_θ is ill-founded, a contradiction since θ is countable and we assumed that all the M_α with α countable are well-founded.

For $\nu = 0$, let $\pi_0 = \pi \restriction M_\theta$. Then, of course, $\pi_0 : \tilde{M}_0 \prec V_\lambda$. It is cofinal because for all n, $\kappa_n \in \text{ran}(\pi_0)$. Note that by elementarity $\tilde{M}_0 = (V_\eta)^\mathcal{P}$ for some η; so if $X \subseteq M_0$ and $X \in \mathcal{P}$, then X is amenable in M_0, and $\pi_0^+(X) = \pi(X)$, therefore $\pi_0^+(\overline{j}_0) = \pi(\overline{j}_0) = j_\nu$.

Let ν be a limit ordinal. Let $x \in \tilde{M}_\nu$. Then there exist $\delta < \nu$ and $y \in M_\delta$ such that $x = \overline{j}_\delta,y(y)$. We define then $\pi_\nu(x) = \overline{j}_\delta,y(\pi_\delta(y))$. It is easy to see that it is elementary and well defined. For any $n \in \omega$, then $\pi_\nu(j_{0,\nu}(\mu_n)) = \overline{j}_{0,\nu}(\pi_0(\mu_n)) = j_{0,\nu}(\kappa_n)$, therefore π_ν is cofinal. Let $\delta < \nu$ and let $x \in M_\delta$. Then $\pi_\nu(j_{\delta,\nu}(x)) = j_{\delta,\nu}(\pi_\delta(x))$ by definition of π_ν, therefore (2) holds. Also, $\pi_\nu^+(j_\nu) = \pi_\nu^+(\overline{j}_{0,\nu}(\overline{j}_0)) = j_{0,\nu}(\pi_0^+(\overline{j}_0)) = j_{0,\nu}(\overline{j}_0)$, the second equality holding by Lemma 3.4(2), so π_ν is as desired.

Finally, let $\nu = \mu + 1$. Then define $\pi_\nu = \pi_{\mu,\nu}$. (1) is immediate. For (2), we prove it for $\delta = \mu$, and the rest is by easy induction. Note that $j_{\mu,\nu} = j_\mu$ and $j_{\mu,\nu} = j_\mu$. Let $x \in \tilde{M}_\nu$. Then

$$\pi_\nu(j_{\mu,\nu}(x)) = \pi_\nu(j_\mu(x)) = \pi_\mu(j_\mu(x)) = \pi_{\mu,\nu}(j_{\mu})(\pi_\mu(x)) = j_\mu(\pi_\mu(x)) = j_{\mu,\nu}(\pi_\mu(x)).$$

For (3), $\pi_\nu^+(j_\nu) = \pi_\nu^+(j_{\mu})(\pi_\mu(\pi_\mu(x))) = j_{\mu}(\pi_\mu(x)) = j_\nu$, the second equality holding by Lemma 3.4(1).

But now there is $\pi_\theta : M_\theta \prec M_\theta$, with M_θ well-founded because θ is countable and M_θ ill-founded in \mathcal{P}, and therefore in V, contradiction. \(\square\)

We say that $j : V_\lambda \prec V_\lambda$ is iterable if j satisfies one of the three equivalent conditions of Proposition 3.6, and we denote with $((M_\alpha, j_\alpha) : \alpha \in \text{Ord})$ the iteration of (V_λ, j).

Lemma 3.7 Suppose N is a transitive model of ZFC and that $N \models E$ is a (κ, λ)-extender witnessing κ is ω-superstrong. Let $i_E : N \rightarrow \text{Ult}(N, E)^N = N'$ be the ultrapower embedding, let $\kappa' = i_E(\kappa)$, and let $E' = i_E(E)$ so that E' is a (κ', λ)-extender witnessing in N' that κ' is ω-superstrong. Then $j_{\nu}^+(j) = i_{E'} \restriction V_\lambda$, where $j = i_E \restriction V_\lambda$.

Proof The result follows from the fact that a (κ, λ)-extender F is completely determined by $i_F \restriction V_\lambda$. \(\square\)

The next result shows $\mathbf{I}_3\infty$ sits between \mathbf{I}_3 and \mathbf{I}_2.

Proposition 3.8 $\mathbf{I}_2(j)$ implies $\mathbf{I}_3\infty(j)$, for all $j : V_\lambda \rightarrow V_\lambda$.

Proof Suppose $\mathbf{I}_2(j)$ and let $\kappa = \text{crt}(j)$. By Martin’s Theorem 2.4 let E be a (κ, λ)-extender such that $i : V \prec \text{Ult}(V, E) \supseteq V_\lambda$ and $i \restriction V_\lambda = j$. Let $((\mathcal{N}_\alpha, E_\alpha, i_{\beta,\alpha}) : \beta \leq \alpha \in \text{Ord})$ be the iteration of V via E. As argued at the beginning of this section, every
N_α is well-founded. It is enough to show that $\langle (M_\alpha, j_\alpha) : \alpha \in \text{Ord} \rangle$ is the iteration of $\langle V_\lambda, j \rangle$, where

$$\lambda_\alpha = i_{0,\alpha}(\lambda), \quad M_\alpha = N_\alpha \cap V_{\lambda_\alpha}, \quad j_\alpha = i_{\alpha,\alpha+1} \upharpoonright M_\alpha.$$

This boils-down to show that $j_\alpha^{+}(j_\alpha) = j_{\alpha+1}$, which follows from Lemma 3.7 and an easy induction on α. \hfill \square

Therefore all the iterable embeddings are in consistency strength between \mathfrak{I}_3 and \mathfrak{I}_2. Are they strictly or strongly between them? The tools developed in [8] by Laver will be essential to prove that $\mathfrak{I}_{3\infty}$ is strongly between \mathfrak{I}_3 and \mathfrak{I}_2:

Proposition 3.9 (Laver, Square root of elementary embeddings [8]) Let $j : V_\lambda < V_\lambda$ and let $\kappa = \text{crt}(j)$.

1. If j is Σ_1^1-elementary (so $\mathfrak{I}_2(j)$) and $\beta < \kappa$, then there exists $k : V_\lambda < V_\lambda$ such that $k^+(k) = j$ and $\beta < \text{crt}(k) < \kappa$.

2. If j is $\Sigma_{\kappa+2}^1$, then for any $B \subseteq V_\lambda$ there exists $\lambda' < \kappa$ and $J : V_{\lambda'} < V_\lambda$ that is Σ_1^1 such that $B \in \text{ran}(J^+)$.

Proposition 3.9(1) is enough to prove that \mathfrak{I}_2 strictly implies $\mathfrak{I}_{3\infty}$: Let $j : V_\lambda < V_\lambda$ be a Σ_1^1-elementary embedding with least critical point, so that j witnesses \mathfrak{I}_2. Then by Proposition 3.9(1) there is a $k : V_\lambda < V_\lambda$ such that $\text{crt}(j) < \text{crt}(k)$. Since j was chosen with least critical point, k cannot be Σ_1^1. But k is iterable, as $k_1 = j$ and therefore $k_{n+1} = j_n$ and their limit iterations are the same. But we can do better:

Proposition 3.10 Let $j : V_\lambda < V_\lambda$ be a Σ_1^1-elementary embedding. Then there is a $\lambda' < \lambda$ and a $k : V_{\lambda'} < V_{\lambda'}$ that is iterable. In other words, \mathfrak{I}_2 strongly implies $\mathfrak{I}_{3\infty}$.

Proof Let $j : V_\lambda < V_\lambda$ be Σ_1^1. Use Proposition 3.9(2) above with $B = j$, and let k with $\lambda' < \lambda$ and $J^+(k) = j$ (remember that being Σ_1^1 is the same as being Σ_1^1). Note that “$j : V_\lambda < V_\lambda$” is Δ_1^1 in V_λ, so $k : V_{\lambda'} < V_{\lambda'}$. Let $\langle (M_\alpha, k_\alpha) : \alpha < \gamma \rangle$ be an iteration of k of length $\gamma < \omega_1$, and let $\langle (M_\alpha, j_\alpha) : \alpha < \omega_1 \rangle$ be the iteration of length ω_1 of j. Now the proof is the same as in Proposition 3.6: define for any $\nu \leq \gamma$ $J_\nu : M_\nu < M_\nu$, cofinal, such that $J_\nu \circ k_{\alpha,\nu} = j_{\alpha,\nu} \circ J_\alpha$ for any $\alpha < \nu$ and $J_\nu^+(k_\nu) = j_\nu$.

![Diagram](https://via.placeholder.com/150)

If \tilde{M}_γ were ill-founded, then because of the elementarity of $J_\gamma : \tilde{M}_\gamma < M_\gamma$ also M_γ would be ill-founded, but j is iterable, so \tilde{M}_γ is well-founded. This holds for any $\gamma < \omega_1$, and therefore by Proposition 3.6 k is iterable. \hfill \square
Therefore the iterability hypotheses are not only between \(I_3 \) and \(I_2 \), but strongly below \(I_2 \). But this is where Laver’s tools stop, as they are too coarse to actually be useful in investigating gaps under \(I_3^\infty \). For this, we need tools that are partially borrowed from the “classic” iterability theory.

4 The iterability hierarchy

Recall from Definition 2.3 that \(E(\lambda) \) is the set of all \(j : V_\lambda < V_\lambda \). Then

\[
\mathcal{W}_\alpha(\lambda) = \{ j \in E(\lambda) : M_{\omega\cdot\alpha} \text{ is well-founded} \}
\]

is the set of all \(j : V_\lambda < V_\lambda \) that are \(\alpha \)-iterable. Therefore

\[
E(\lambda) = \mathcal{W}_0(\lambda) \supset \mathcal{W}_1(\lambda) \supset \cdots \supset \mathcal{W}_\alpha(\lambda) \supset \cdots
\]

With this notation Propositions 3.6 and 3.10 become

\[
E(\lambda) \subset \mathcal{W}_{\omega_1}(\lambda) = \bigcap_{\alpha < \omega_1} \mathcal{W}_\alpha(\lambda) = \mathcal{W}_\beta(\lambda)
\]

for any \(\beta \geq \omega_1 \). We will prove that there is a strong hierarchy below \(I_3^\infty \):

Theorem 4.1

- If \(\alpha < \omega_1 \), then \(I_3_{\alpha+1}(\lambda) \) strongly implies \(I_3_\alpha(\lambda) \), i.e., if \(j \in \mathcal{W}_{\alpha+1}(\lambda) \) then there is a \(\lambda' < \lambda \) and an \(e \in \mathcal{W}_\alpha(\lambda') \).
- If \(v < \omega_1 \) is limit, then \(I_3_v(\lambda) \) strongly implies \(I_3_{<v}(\lambda) \), i.e., if \(j \in \mathcal{W}_v(\lambda) \), then there is a \(\lambda' < \lambda \) and an \(e \in \bigcap_{\alpha < v} \mathcal{W}_\alpha(\lambda') \).
- If \(v \leq \omega_1 \) is limit, then \(I_3_{<v}(\lambda) \) strongly implies \(\forall \alpha < v \ I_3_\alpha(\lambda) \), i.e., if \(j \in \bigcap_{\alpha < v} \mathcal{W}_\alpha(\lambda) \), then there is a \(\lambda' < \lambda \) such that \(\mathcal{W}_\alpha(\lambda') \neq \emptyset \) for all \(\alpha < v \).

Moreover, for any instance of the above the \(\lambda' \) that witnesses the strong implication can be cofinally high under \(\lambda \), so for any \(\eta < \lambda \) there exists \(\eta < \lambda' < \lambda \) that witnesses the strong implication. We will call this cofinal strong implication.

The hierarchy just above \(I_3 \) will therefore look like in Fig. 2, where every vertical arrow is a cofinal strong implication.

Proof We prove it gradually, as going-up the iterability hierarchy will introduce more and more problems. As usual, if \(j : V_\lambda < V_\lambda \), then \(\langle \kappa_n : n \in \omega \rangle \) is the critical sequence. When it exists, we call \(\lambda_\alpha \) the height of \(M_\alpha \), i.e., \(M_\alpha \cap \text{Ord} \). Therefore \(\lambda_0 = \lambda \), \(\lambda_\omega = M_\omega \cap \text{Ord} \) and so on. At the same time, we define \(\kappa_\alpha = j_{0,\alpha}(\kappa_0) \). These two sequences overlap often, as \(\kappa_{\alpha+\omega} = \lambda_\alpha \) for any \(\alpha \) limit, but there is a slight difference at limit of limit stages: the \(\kappa_\alpha \) sequence is in fact continuous at limit points, so for example \(\kappa_{\omega\cdot\omega} = \sup_{n \in \omega} \kappa_{\omega\cdot n} \), while the \(\lambda_\alpha \) sequence is discontinuous, for example \(\lambda_{\omega\cdot\omega} > \sup_{n \in \omega} \lambda_{\omega\cdot n} = \kappa_{\omega\cdot\omega} \), as \(\kappa_{\omega\cdot\omega} \in M_{\omega\cdot\omega} \). In a certain sense, the \(\kappa_\alpha \) sequence is finer than the \(\lambda_\alpha \) sequence and continuously completes it.

Claim 4.2 \(I_3_1 \) cofinally strongly implies \(I_3 \), i.e., for any \(1 \)-iterable \(j : V_\lambda < V_\lambda \) there exists \(\lambda' < \lambda \) and \(k : V_{\lambda'} < V_{\lambda'} \), and for any \(\eta < \lambda \) we can find such \(\lambda' \) to be larger than \(\eta \).
Fig. 2 The first steps of the hierarchy

\[
\begin{align*}
\mathcal{W}_{\omega+1}(\lambda) & \neq \emptyset \\
\mathcal{W}_\omega(\lambda) & \neq \emptyset \\
\bigcap_n \mathcal{W}_n(\lambda) & \neq \emptyset \\
\forall n \in \omega \mathcal{W}_n(\lambda) & \neq \emptyset \\
\mathcal{W}_0(\lambda) & = \mathcal{E}(\lambda) \neq \emptyset
\end{align*}
\]

Proof Suppose there exists \(j : V_\kappa < V_\lambda \) that is 1-iterable and let \(M_\omega \) be the \(\omega \)-th iterated model, which is well-founded by assumption. Note that \(j_{\omega,0}(\kappa_0) = \lambda \), therefore \(\lambda \) is regular in \(M_\omega \).

As \(M_\omega \) is well-founded we build in \(M_\omega \) a descriptive set-theoretic tree of approximations of an I\(3 \)-embedding. So let \(T_1 \) be defined as:

\[
T_1 = \{ (\gamma_0, (e^0, \gamma_1), \ldots, (e^n, \gamma_{n+1})) : \forall i < n \ e^i \subseteq e^{i+1}, \ e^i \in V_\lambda, \\
\forall i \leq n \ e^i : V_{\gamma_i} < V_{\gamma_{i+1}} \}
\]

as defined in \(M_\omega \). Note that \(T_1 \) is a tree on \(V_\lambda \) and \(V_\lambda \in M_\omega \), so \(T_1 \in M_\omega \). Now, for any \(n \in \omega \), \(j \upharpoonright V_{\kappa_n} \in V_{\kappa_{n+1}} \subseteq V_\lambda \leq M_\omega \), therefore \(\langle \kappa_0, (j \upharpoonright V_{\kappa_0}, \kappa_1), \ldots \rangle \) is a branch of \(T_1 \) in \(V \). By absoluteness of well-foundedness there is therefore a branch of \(T_1 \) in \(M_\omega \). Let \(\langle (e^n, \gamma_{n+1}) : n \in \omega \rangle \) together with \(\gamma_0 \) be a branch of \(T_1 \) in \(M_\omega \). Let \(\gamma_\omega = \sup_{n \in \omega} \gamma_n \) and \(e = \bigcup_{n \in \omega} e^n \). Then \(e : V_{\gamma_\omega} < V_{\gamma_\omega} \), and \(\gamma_\omega \in \lambda \), since \(\lambda \) is regular in \(M_\omega \). So \(M_\omega \models \exists \lambda' < \lambda \exists e : V_{\lambda'} < V_{\lambda'} \), but then this is true also in \(V \). This proved that 1-iterability strongly implies I\(3 \).

Let now \(\eta < \lambda \), and let \(n \in \omega \) such that \(\kappa_n > \eta \). Define a revised version of \(T_1 \), adding the condition that \(\gamma_0 > \eta \). Then the sequence \(\langle \kappa_n, (j_n \upharpoonright V_{\kappa_n}, \kappa_{n+1}), \ldots \rangle \) is a branch of the revised \(T_1 \), so there is a branch also in \(V \), and the \(\gamma_\omega \) defined by the branch will be such that \(\lambda' = \gamma_\omega > \gamma_0 > \eta \).

\(\square \)

\(\copyright \) Springer
Claim 4.3 \(\frak{I}_2 \) cofinally strongly implies \(\frak{I}_1 \), i.e., for any 2-iterable \(j : V_\lambda < V_\lambda \) there exists \(\lambda' < \lambda \) and a 1-iterable \(k : V_{\lambda'} < V_{\lambda'} \), and for any \(\eta < \lambda \) we can find such \(\lambda' \) to be larger than \(\eta \).

Proof Suppose now that \(j : V_\lambda < V_\lambda \) is 2-iterable, so \(M_{\omega+\omega} \) is well-founded. Again, we are going to define a tree \(T_2 \) whose branches are going to bring us \(\frak{I}_3 \)-embeddings. But we want more, since we want such embeddings to be 1-iterable. The solution is to build in \(T_2 \) at the same time a family of embeddings \((k_m : m \in \omega) \) that commutes with the iterates of \(e \), so that the \(\omega \)-limit of such family will witness that the \(\omega \)-limit of \(e \) is going to be well-founded.

Let \((\gamma_0, (e^0, \gamma_1), \ldots, (e^n, \gamma_{n+1}), \ldots) \) be a branch of \(T_1 \), in other words a sequence of approximations of an \(\frak{I}_3 \)-embedding \(e \). We can define then approximations also for the iterates of \(e \): for example

\[
e_1 \upharpoonright V_{\gamma_1} = e^1_1 = e^1(e^0), \quad e_1 \upharpoonright V_{\gamma_2} = e^2_1 = e^2(e^1), \quad e_2 \upharpoonright V_{\gamma_2} = e^2_2 = e^2_1(e^1),
\]

where the subscript indicates the iteration number, the superscript the level up to which the iterate is approximate. In general, we define \(e^{n+m+1}_{m+1} = e^{n+m+1}_{m+1}(e^{n+m}_m) \) for any \(n, m \in \omega \), where \(e^0_m = e^m \). Of course, with this notation \(e^0_{1} \) or \(e^1_{1} \) would not be defined, but this is because they are the identity, as, for example, \(\text{crt}(e^1) = \gamma_1 \), so \(e^0_1 = e_1 \upharpoonright V_{\gamma_0} = \text{id} \). So if we know \(e \) up to \(V_{\gamma_n} \), then we know any finite iterate up to \(V_{\gamma_n} \).

Working in \(M_{\omega+\omega} \) we define a tree \(T_2 \) on the set \(M_\omega \in M_{\omega+\omega} \) in the following way:

1. the nodes of \(T_2 \) are of the form \((\gamma_0, (e^0, \gamma_1, \eta_1), (e^1, k_0^1, k_1^1, \gamma_2, \eta_2), \ldots, (e^n, k_0^n, \ldots, k_n^n, \gamma_{n+1}, \eta_{n+1}))\);

2. \(e^i, k^i_m \in M_\omega \) for any \(m \leq l, i \leq n \);
3. \(e^0 \subseteq e^1 \subseteq \cdots \subseteq e^n \), i.e., \(\forall i < n \ e^i \subseteq e^{i+1} \);
4. \(e^i : V_{\gamma_i} < V_{\gamma_{i+1}} \) for any \(i \leq n \);
5. note that \(k^m_m \) is defined only for \(m \leq l \leq n \), and we want \(k^m_m \subseteq k^{m+1}_m \subseteq \cdots \subseteq k^n_m \) for any \(m \leq n \), i.e. \(\forall i < n \ \forall l < n \ i \ k^i_{l+i} \subseteq k^i_{l+i+1} \);
6. for any \(m \leq l \leq n \), \(k^m_m : V_{\gamma_l} < (V_{\gamma_{l-n}})^M_\omega \);
7. for any \(m \leq l < n \), \(k^{l+1}_m \circ e^l_m = k^l_m \).

Consider now

\[
((k_0, k_\omega), (j \upharpoonright V_{k_0}, j_{0, \omega} \upharpoonright V_{k_0}, k_1, k_{\omega+1}), (j \upharpoonright V_{k_1}, j_{1, \omega} \upharpoonright V_{k_1}, k_2, k_{\omega+2}), \ldots).
\]

We want to prove that this sequence is a branch of \(T_2 \). We need to prove that every element of the sequence is in \(M_\omega \). Clearly \(j \upharpoonright V_{\kappa_n} \in V_\lambda \in M_\omega \) for any \(n \in \omega \). Moreover, also \(j_{m,l} \upharpoonright V_{\kappa_n} \in V_\lambda \) for any \(m \leq l \in \omega \) and \(n \in \omega \). But then for any \(m \leq n \in \omega \)

\[
j_{m,\omega} \upharpoonright V_{\kappa_n} = j_{n+1,\omega} \circ j_{m,n+1} \upharpoonright V_{\kappa_n} = j_{n+1,\omega}(j_{m,n+1} \upharpoonright V_{\kappa_n}) \in M_\omega
\]
because $\text{crt}(j_{n+1,\omega}) = \kappa_{n+1} > \kappa_n$. Points (2), (3), (4) are immediate. For point (5),

$$j_{m,\omega}(\kappa_n) = j_{m,\omega}(j_{0,m}(\kappa_{n-m})) = j_{0,\omega}(\kappa_{n-m}) = \kappa_{\omega+n-m} \text{ for any } m \leq n \in \omega,$$

so by elementarity $j_{m,\omega} \upharpoonright V_{\kappa_n} : V_{\kappa_n} \prec (V_{\kappa_{\omega+n-m}})^{M_\omega}$ for any $m \leq n \in \omega$. Finally, for point (6), notice that the iterate j_m is $j_{m,m+1}$ for any $m \in \omega$, so if $x \in V_{\kappa_n}$ for some $n \leq m$, $n \in \omega$, $j_{m+1,\omega}(j_m(x)) = j_{m,\omega}(x)$, and since $j_m \upharpoonright V_{\kappa_n} : V_{\kappa_n} < V_{\kappa_{n+1}}$, we have that

$$j_{m+1,\omega} \upharpoonright V_{\kappa_n+1} \circ j_m \upharpoonright V_{\kappa_n} = j_{m+1,\omega} \circ j_m \upharpoonright V_{\kappa_n} = j_{m,\omega} \upharpoonright V_{\kappa_n}.$$

So T_2 has a branch in V, and therefore it has a branch in $M_{\omega+\omega}$. Consider such a branch, and let $\gamma_\omega = \sup_{n<\omega} \eta_n$, $\eta_\omega = \sup_{n<\omega} \eta_n$, $e = \bigcup_{n<\omega} e^n$ and $km = \bigcup_{n<\omega} k_m^n$ for any $m \in \omega$. Then, as before, $e : V_{\gamma_\omega} \prec V_{\eta_\omega}$, and $k_m : V_{\gamma_\omega} \prec (V_{\eta_\omega})^{M_\omega}$ for any $m \in \omega$. Note that $M_\omega = (V_{\eta_\omega})^{M_{\omega+\omega}}$, therefore $\lambda = \kappa_\omega$ is regular also in $M_{\omega+\omega}$ and $\gamma_\omega < \lambda$. Also $\lambda_\omega = \kappa_{\omega+\omega}$ is regular in $M_{\omega+\omega}$, so $\eta_\omega < \lambda_\omega$. Consider now N_ω the ω-iterated model of e. The picture is the following:

$$V_{\gamma_\omega} \xrightarrow{e} V_{\eta_\omega} \xrightarrow{\cdots} V_{\gamma_\omega} \xrightarrow{e_m} V_{\gamma_\omega} \xrightarrow{\cdots} N_\omega$$

By the properties of the direct limit, as the family of k_m commutes with the iterates of e, there exists a $k_\omega : N_\omega \prec (V_{\eta_\omega})^{M_{\omega}}$. Then, by elementarity and well-foundedness of M_ω, also N_ω is well-founded, and e is a 1-iterable embedding below λ. Note that it is not necessary that $\eta_\omega = \eta_0$, like in the branch in V.

Again, for any $\eta < \kappa_\omega < \lambda$ we can add to the definition of T_2 the condition $\gamma_0 > \eta$, and the branch generated by j_n instead of j will make the proof work, so that we will find a 1-iterable $e : V_{\lambda'} \prec V_{\lambda'}$ with $\eta < \gamma_0 < \gamma_\omega = \lambda'$.

Claim 4.4 I_3 cofinally strongly implies I_3^2.

Proof This adds another layer of complexity. The tree T_2 as calculated in $M_{\omega+3}$ would give a 1-iterable embedding, but our aim is to build a 2-iterable embedding. The strategy of adding more witnesses to well-foundedness (so further $k_{\omega+n}$) cannot work in the same way, as k_ω is defined on N_ω, and the initial segments of N_ω are known only when the whole e is known, so it is not possible to build at the same time small approximations of e and k_ω. The solution is instead to build a 1-iterable embedding h via $(T_2)^{M_{\omega'}}$, so that $k_\omega (e_\omega) = h$, and an iteration argument will show that this is enough to prove that e is 2-iterable.

Define T_3 in $M_{\omega+3}$ on $M_{\omega+2} \in M_{\omega+3}$ in the following way:

(1) the nodes of T_3 are of the form

$$\langle (\gamma_0, \eta_0, \delta_0), (e^0, k_0^0, h^0, g_0^0, \gamma_1, \eta_1, \delta_1), (e^1, k_1^0, k_1^1, h^1, g_0^1, g_1^1, \gamma_2, \eta_2, \delta_2), \ldots, (e^n, k_0^n, \ldots, k_n^n, h^n, g_0^n, \ldots, g_n^n, \gamma_{n+1}, \eta_{n+1}, \delta_{n+1}) \rangle;$$
(2) the sequence
\[(\gamma_0, \eta_0), (e^0, k_0^0, \gamma_1, \eta_1), (e^1, k_0^1, k_1^1, \gamma_2, \eta_2), \ldots, (e^n, k_0^n, \ldots, k_n^n, \gamma_{n+1}, \eta_{n+1})\]
is a node of \(T_2\);

(3) the sequence
\[(\eta_0, \delta_0), (h^0, g_0^0, \eta_1, \delta_1), (h^1, g_0^1, g_1^1, \eta_2, \delta_2), \ldots, (h^n, g_0^n, \ldots, g_n^n, \eta_{n+1}, \delta_{n+1})\]
is a node of \((T_2)^{M_\omega}\), that is defined as \(T_2\) but in \(M_\omega\) and with all instances of \(M_\omega\) replaced by \(M_\omega\), so for example \(h^n : (V_{\eta_n})^{M_\omega} < (V_{\eta_n})^{M_\omega}\) and \(g_m : (V_{\eta_n})^{M_\omega} < (V_{\delta_{m-1}})^{M^{\omega^2}}\);

(4) for any \(m \leq l < n, k_{m+1}(e_m^n) = h^{l-m} \).

As before, we can find a branch of \(T_3\) in \(V\) in the natural way, i.e., assign \(\gamma_n = \kappa_n, \eta_n = \kappa_{n+\omega}, \delta_n = \kappa_{n+\omega+\omega}, e^n = j \upharpoonright V_{\kappa_n}, k_m = j_{m, \omega} \upharpoonright V_{\kappa_{m+\omega}}\), \(h^n = j_\omega \upharpoonright (V_{\gamma_{n+\omega}})^{M_\omega}\), and \(g_m = j_{\omega, m+\omega} \upharpoonright (V_{\delta_{m+\omega}})^{M_\omega}\). As \(j\) is 3-iterate and

\[j_{m, \omega}(j^m) = j_{m, \omega}(j_{0, m}(j)) = j_{0, \omega}(j) = j_\omega,\]
everything works.

Consider a branch of \(T_3\) in \(M_{\omega+3}\). Then, calling \(\gamma_\omega = \sup_{n \in \omega} \gamma_n, \eta_\omega = \sup_{n \in \omega} \eta_n, \delta_\omega = \sup_{n \in \omega} \delta_n, e = \bigcup_{n \in \omega} e^n, k_m = \bigcup_{n \in \omega} k_m^n\) for any \(m \in \omega, h = \bigcup_{n \in \omega} h^n, g_m = \bigcup_{n \in \omega} g_m^n\) for any \(m \in \omega\), by the previous results we have that \(e : V_{\gamma_\omega} < V_{\gamma_\omega}, k_m : V_{\gamma_\omega} < (V_{\gamma_{m+\omega}})^{M_\omega}\) for any \(m \in \omega, h : (V_{\eta_\omega})^{M_\omega} < (V_{\eta_{\omega+m}})^{M_\omega}\) and \(g_m : (V_{\eta_\omega})^{M_\omega} < (V_{\delta_{m+\omega}})^{M_{\omega^2}}\). As before, by the regularity of \(\lambda, \lambda_\omega\) and \(\lambda_{\omega+2}\) in \(M_{\omega+3}\), \(\gamma_\omega < \lambda, \eta_\omega < \lambda_\omega\) and \(\delta_\omega < \lambda_{\omega+2}\). Moreover, \(e\) and \(h\) are 1-iterate, and point (4) of the definition of \(T_3\) guarantees that \(k_m^+(e_m^n) = h\) for any \(m \in \omega\). We want to prove that \(k_\omega^+(e_\omega) = h\). But \(e_\omega = e_{m, \omega}^+(e_m^n)\) for all \(m \in \omega\), so \(k_\omega^+(e_{m, \omega}^+(e_m^n))\) is, by definition, \(k_\omega^+(e_m^n)\).

Now, if \(e_\omega = h\), then we have that the \(\omega\)-iterate of \(e\) is 1-iterate, and so \(e\) is 2-iterate. Otherwise this is the picture, where \((V_{\eta_\omega})^{M_\omega} = \tilde{N}_0\) and \((V_{\delta_{\omega+\omega}})^{M_{\omega+2}} = \tilde{N}_0:\)

By the usual reasoning, there exists \(k_{\omega+2} : N_{\omega+2} \prec \tilde{N}_\omega\). We know that \((V_{\delta_{\omega}})^{M_{\omega+2}}\) is well-founded because \(j\) is 3-iterate, but then by elementarity of \(g_\omega\) we have that \(\tilde{N}_\omega\) is well-founded, and so by elementarity of \(k_{\omega+2}\) also \(N_{\omega+2}\) is well-founded.

Note that the usual remark on the cofinality of the possible \(\lambda'\) under \(\lambda\) still holds, with the same proof.

\(\square\)
The techniques used for T_3 can be used now to define T_4, T_5, and so on, therefore proving the first part of the theorem for α finite. For example this is the diagram generated by a branch of T_4.

It is immediate now to see that if for all $n \in \omega$ there is a $j : V_\lambda < V_\lambda$ that has $M_{\omega \cdot n}$ well-founded, in particular there is a j that is $(n+1)$-iterable, and this cofinally reflects the existence of an e that is n-iterable.

We postpone the proof that $<_{\omega}$-iterability cofinally strongly implies the existence of n-iterable embeddings for any $n \in \omega$ to the end of the proof of the theorem because it uses different techniques.

Claim 4.5 If there exists $j : V_\lambda < V_\lambda$ that is ω-iterable (therefore $M_{\omega \cdot \omega}$ is well-founded), then there exists $\lambda' < \lambda$ and $e : V_{\lambda'} < V_{\lambda'}$ that is n-iterable for any $n \in \omega$. Moreover, the set of such λ' is cofinal in λ.

Proof We want to build in $M_{\omega \cdot \omega}$ a tree T_ω that “glues” together all the T_n trees, so that its branches will generate for any $n \in \omega$ a 1-iterable embedding e^n in $M_{\omega \cdot n}$ and families of k^m_n that witness that e^n is 1-iterable and such that $(k^m_n)^+ (e^n) = e^{n+1}$.

It is important to define T_ω so that it is in $M_{\omega \cdot \omega}$, so that the argument of the absoluteness of well-foundedness gives a branch that is in $M_{\omega \cdot \omega}$, and therefore bounded below λ, so T_ω should be a subset of a set in $M_{\omega \cdot \omega}$. Note that $(V_{\kappa_{\omega \cdot \omega}})^{M_{\omega \cdot \omega}} = \bigcup_{n \in \omega} M_{\omega \cdot n}$, because of the properties of the direct limit and because $\text{crt}(j_{\omega \cdot n, \omega \cdot \omega}) = \text{crt}(j_{\omega \cdot n}) = \kappa_{\omega \cdot n} = \lambda_{\omega \cdot (n-1)}$ for any $n > 0$.
The most immediate approach would be to build all the embeddings e^n and k^m_n at the same time, step by step. At every passage, each approximation of the e^n and k^m_n will be actually in $M_{\omega\cdot n}$, as we have seen in the previous claims, therefore they would be all in $M_{\omega\cdot \omega}$. This approach, however, has a problem: in the finite cases, each node is a finite sequence of finite sequences, so it suffices to know that all its elements are in $M_{\omega\cdot n}$ to say that the whole tree is contained in it. In a T_ω defined in such a way we have instead infinite sequences, for example the first step would be to decide the critical points of all the e^n, and it is not clear why this sequence should be in $M_{\omega\cdot \omega}$. If we restrict ourselves only to the sequences that are in $M_{\omega\cdot \omega}$ then we are in trouble, as we possibly cannot then build a branch in V: for example the “natural” branch generated by j will have the following first element:

$$\langle \kappa_0, \kappa_\omega, \kappa_{\omega+\omega}, \ldots \rangle.$$

and this cannot be in $M_{\omega\cdot \omega}$, as the supremum of it is exactly $\kappa_{\omega\cdot \omega}$, that is regular in $M_{\omega\cdot \omega}$. The solution is to rearrange the pace at which the approximations are introduced, so that every sequence that appears in the revised tree T_ω is finite. For example, introducing at the n-th level the n-th approximations of e^0 and k^0_1, the $n-1$-th approximations of e^1 and k^1_1, and so on. We leave the details to the reader. Now the tree T_ω is on $M_{\omega\cdot \omega}$, and the proof is as before, cofinally strong implication included.

As we have sufficiently analyzed the case of successor and limit of successors, the techniques just presented are enough to go up the hierarchy of the countable ordinals. We present the two adaptations that are needed to carry such techniques generally.

The first adaptation to be made is that, for any ω-limit, there should be a family of elementary embeddings that witnesses well-foundedness at such limit: for the case of “2-iterable strongly implies 1-iterable” we built:

- e;
- for any finite iterate e_m of e a k_m so that $k_{m+1} \circ e_m = k_m$ for any $m \in \omega$;
- a h such that $k_\omega(e_\omega) = h$, where k_ω is the limit of k_m and e_ω is the limit of e_m.

For the case “$\omega + 2$-iterable implies $\omega + 1$-iterable”, for example, we need to build:

- $e^0 = e$;
- a family of e^n that are 1-iterable;
- a family of k^m_n that commutes with the iterates of e^n and such that $k^m_\omega(e^n_\omega) = e^{n+1}$ (see picture at page 94);
- a family of k^ω_n that commutes with the e^n;
- a e^ω such that $k^\omega_\omega(e^{\omega}_{\omega\cdot \omega}) = e^\omega$, and this is done asking in the construction of k^ω_m that $k^\omega_m(e^m) = e^\omega$.

The branch that will witness that this tree is not well-founded will be with $e = j$, $e^n = j_{\omega\cdot n}$, $k^n_m = j_{\omega\cdot n+m,\omega\cdot (n+1)}$, $k^\omega_n = j_{\omega\cdot n,\omega\cdot \omega}$ and $e^\omega = j_{\omega\cdot \omega}$. The notation from here grows exponentially without introducing new ideas, so we leave the details to the reader. The important thing is that the objects we want to build are always countable.

Since the objects we want to build are countable, the other adaptation to be made is about the re-arranging above of infinite sequences in finite sequences: as it is written it
works only for ω sequences, but if α is countable then there is a bijection $f : \omega \to \alpha$, so at the n-th level are introduced the $f(n)$-th approximation of $e^{f(n)}$, the $f(n-1)$-th approximation of $e^{f(n-1)}$ and so on. As the set of approximations of the embeddings we need is countable, we can do everything so that each level of the approximation tree is finite. We leave again the details to the reader.

The following claim completes the proof. □

Claim 4.6 Let $\nu \leq \omega_1$ be a limit ordinal. If there exists a $j : V_\lambda < V_\lambda$ that is α-iterable for any $\alpha < \nu$, then there exists a $\lambda' < \lambda$ such that for any $\alpha < \nu$ there is an $e : V_\lambda < V_\lambda'$ that is α-iterable.

Proof Let $j : V_\lambda < V_\lambda$ that is α-iterable for any $\alpha < \nu$. Then, by the claims above, for any $\alpha < \nu$ there is a $\lambda' < \lambda$ and an $e : V_\lambda < V_\lambda'$ that is α-iterable. We want to prove that there is a single $\lambda' < \lambda$ that works for all the $\alpha < \nu$.

For any $\omega \cdot \alpha < \nu$ let

$$E_\alpha = \{ \lambda' < \lambda : \exists k : V_{\lambda'} < V_{\lambda'} \text{ that is } \alpha \text{-iterable} \}.$$

Then $E_\alpha \neq \emptyset$, and we need to prove that $\bigcap_{\omega \cdot \alpha < v} E_\alpha \neq \emptyset$. Since all the strong implications above are cofinal, E_α is cofinal in λ. We want to prove that E_α is definable in V_λ using only α as a parameter. If $\lambda' \in E_\alpha$, let e witness that, and let $n \in \omega$ be such that $e \in V_{\kappa_n}$. Then $N_{\omega n}$, its ω-iterate, is the set of the $e_{m,\omega}(y)$ with $m \in \omega$ and $y \in V_{\lambda'}$, therefore $|N_{\omega n}| = |V_{\lambda'}|$. By induction, $|N_{\omega \cdot \beta}| = |V_{\lambda'}|$ for any $\beta \leq \alpha$, and as $N_{\omega \cdot \beta}$ is transitive this means that $N_{\omega \cdot \beta} \in V_{\kappa_n}$. Therefore e is α-iterable iff $V_\lambda \models e \in \alpha$-iterable, i.e., V_λ computes correctly the iterability of embeddings inside it. Therefore E_α is definable in V_λ, so $j^+(E_\alpha) = E_\alpha$, and if $\eta < \text{crt}(j)$ and β is the η-th element of E_α, then $j(\beta)$ is the η-th element of E_α, i.e., β, so $\beta < \text{crt}(j)$. But then the ordertype of E_α must be bigger than $\text{crt}(j)$, otherwise E_α would be all inside $\text{crt}(j)$ and not cofinal, and the first $\text{crt}(j)$ elements of E_α are smaller than $\text{crt}(j)$. This means that $\bigcup_{\alpha < \beta} (E_\alpha \cap \text{crt}(j)) \neq \emptyset$, as $\text{crt}(j)$ is regular, and the proposition is proved. As E_α is cofinal under κ_0, by elementarity it is cofinal also under λ, therefore also cofinal strong implication is proved. □

Acknowledgements The second author would like to thank the program “Rita Levi Montalcini 2013” for the support, and the Department of Mathematics of the University of Turin for its hospitality.

References

1. Dimonte, V.: Totally non-proper ordinals beyond $L(V_{\lambda+1})$. Arch. Math. Log. 50, 565–584 (2011)
2. Dimonte, V.: A partially non-proper ordinal. Ann. Pure Appl. Log. 163, 1309–1321 (2012)
3. Dimonte, V.: I0 and rank-into-rank axioms. Boll. Unione Mat. Ital. (2017). https://doi.org/10.1007/s40574-017-0136-y
4. Jech, T.: Set Theory. The Third Millennium Edition, Revised and Expanded. Springer Monographs in Mathematics. Springer, Berlin (2003)
5. Kanamori, A.: The Higher Infinite. Large Cardinals in Set Theory from Their Beginnings. Springer Monographs in Mathematics, 2nd edn. Springer, Berlin (2003)
6. Kunen, K.: Elementary embeddings and infinite combinatorics. J. Symb. Log. 36, 209–231 (1971)
7. Laver, R.: On the algebra of elementary embeddings of a rank into itself. Adv. Math. 110, 334–346 (1995)
8. Laver, R.: Implications between strong large cardinal axioms. Ann. Pure Appl. Log. 90, 79–90 (1997)
9. Martin, D.A.: Infinite games. In: Proceedings of the ICM, Helsinki, Acad. Sci. Fennica, Helsinki, pp. 269–273 (1978)
10. https://mathoverflow.net/questions/191742/a-question-on-rank-to-rank-embeddings
11. Suzuki, A.: No elementary embedding from V into V is definable from parameters. J. Symb. Log. 64, 1591–1594 (1999)
12. Woodin, W.H.: Suitable extender models II: beyond ω-huge. J. Math. Log. 11, 115–436 (2011)