ON THE NUMERICAL APPROXIMATION OF VECTORIAL
ABSOLUTE MINIMISERS IN L^∞

NIKOS KATZOURAKIS AND TRISTAN PRYER

Abstract. Let Ω be an open set. We consider the supremal functional

$$E_\infty(u, O) := \|Du\|_{L^\infty(O)}, \quad O \subseteq \Omega \text{ open},$$

applied to locally Lipschitz mappings $u : \mathbb{R}^n \supseteq \Omega \rightarrow \mathbb{R}^N$, where $n, N \in \mathbb{N}$. This is the model functional of Calculus of Variations in L^∞. The area is developing rapidly, but the vectorial case of $N \geq 2$ is still poorly understood. Due to the non-local nature of (1), usual minimisers are not truly optimal. The concept of so-called absolute minimisers is the primary contender in the direction of variational concepts. However, these cannot be obtained by direct minimisation and the question of their existence under prescribed boundary data is open when $n, N \geq 2$. Herein we present numerical experiments based on a new method recently proposed by the first author in the papers [33, 35].

1. Introduction

Let $n, N \in \mathbb{N}$ be fixed integers and Ω an open set in \mathbb{R}^n. In this paper we perform numerical experiments and make some theoretical observations regarding appropriately defined minimisers of the functional

$$E_\infty(u, O) := \|Du\|_{L^\infty(O)}, \quad O \subseteq \Omega \text{ open},$$

which is the archetypal model functionals of the Calculus of Variations in the space L^∞. The appropriate functional setting to place this functional is the Sobolev space $W^{1,\infty}(\Omega; \mathbb{R}^N)$, which (by the Rademacher theorem) consists of a.e. differentiable continuous mappings $u : \mathbb{R}^n \supseteq \Omega \rightarrow \mathbb{R}^N$ with L^∞ derivative Du. Here the gradient is understood as an $N \times n$ matrix-valued map

$$Du = (D_i u_\alpha)_{i=1}^N = \partial \frac{\partial}{\partial x_i}$$

where $D_i \equiv \partial / \partial x_i$ and the L^∞ norm in (1.1) is understood as the essential supremum of the Euclidean (Frobenius) norm on $\mathbb{R}^{N \times n}$, defined through the associated trace inner product $A : B := \text{tr}(A^T B)$.

The area of Calculus of Variations in L^∞ has a relatively short history in Analysis, pioneered by G. Aronsson in the 1960s, see e.g. [4, 5, 6]. Nonetheless, since its inception it has attracted the interest of many mathematicians due to both the theoretical importance (see e.g. [2, 9, 10, 15, 25, 19, 39] and the expository texts [7, 14, 28]) as well as due to the relevance to various and diverse applications (see for instance [11, 13, 18, 38, 8, 12, 26]).

Key words and phrases. Supremal functionals; vectorial absolute minimisers; ∞-Laplacian; Aronsson equation, Calculus of Variations in L^∞.

N.K. has been partially financially supported through the EPSRC grant EP/N017412/1. T.P. has been partially financially supported through the EPSRC grant EP/P000836/1.
One of the starting difficulties to the study of (1.1) is that, quite surprisingly, the standard (global) minimisers are not truly optimal objects any more, in the sense that “they can be minimised even further” and in general may not solve any kind of Euler-Lagrange equations. Namely, there are many simple examples even in one space dimension where a minimiser does not minimise with respect to its own boundary conditions on subdomains. The latter property is of course automatic for integral functionals. In essence, this owes to the “non-local” nature of (1.1): although one can see (1.1) as the limit case of the p-Dirichlet functional as $p \to \infty$

$$(1.2) \quad E_p(u, \Omega) := \left(\int_{\Omega} |Du|^p \right)^{1/p}, \quad \Omega \subseteq \Omega \text{ open}, \quad u \in W^{1,p}(\Omega; \mathbb{R}^N),$$

when passing to the extreme case of $p = \infty$, the σ-additivity properties of the Lebesgue integral are lost. This was already realised by Aronsson, who introduced the next concept.

Definition 1 (Absolute minimisers). A mapping $u \in W^{1,\infty}(\Omega; \mathbb{R}^N)$ is called an absolute minimiser of (1.1) on Ω if

$$E_{\infty}(u, \Omega) \leq E_{\infty}(u + \phi, \Omega)$$

for any open sets $\Omega \subseteq \Omega$ and any variation $\phi \in W^{1,\infty}_0(\Omega; \mathbb{R}^N)$.

Although the area is developing rapidly, the vectorial case of $N \geq 2$ is still poorly understood. In particular, to date neither the existence nor the uniqueness of absolute minimisers with prescribed boundary data on $\partial \Omega$ are known, unless $\min\{n, N\} = 1$, namely either when $n = 1$ (curves in \mathbb{R}^N) or $N = 1$ (scalar functions on \mathbb{R}^n), even in more general situations when one has a general Hamiltonian $H(\cdot, u, Du)$ instead of $|Du|$. The difficulty lies in the fact that for the “localised” variational concept of Definition 1, the standard approach of direct minimisation ([17, 22, 23]) of the functional (1.1) in the affine space

$$W^{1,\infty}_{u_0}(\Omega; \mathbb{R}^N) := u_0 + W^{1,\infty}_0(\Omega; \mathbb{R}^N)$$

for a fixed $u_0 \in W^{1,\infty}(\Omega; \mathbb{R}^N)$ does not in general yield absolute minimisers, but merely global minimisers which minimise on Ω only. Hence, in the absence of alternative methods, the main vectorial tool is to resort to L^p approximations and then let $p \to \infty$. To this end, let $(u_p)_p$ be the family of p-minimisers in $W^{1,\infty}_{u_0}(\Omega; \mathbb{R}^N)$. The problem that one encounters in the attempt to pass to the limit in

$$E_p(u_p, \Omega) \leq E_p(u_p + \phi, \Omega),$$

is that the weak* sequential compactness $u_p \rightharpoonup u_\infty$ one easily has is not strong enough to obtain that the limit is an absolute minimiser. This obstacle can be bypassed when $\min\{n, N\} = 1$ because of either the scalar nature of the competing functions and comparison methods, or because of the one-dimensionality of their domain of definition (see for instance [9, 29, 1]), although the mode of convergence itself cannot in general be strengthened. In particular, the functional (1.1) is only weakly* lower semi-continuous and not weakly* continuous.

Herein we present and perform numerical experiments based on a new method recently proposed by the first author in the joint papers [33, 35], where various existence and uniqueness have been obtained. This approach is motivated by the paper [19] and relates to developments in mass transportation (see e.g. [20, 21, 41], underpinning also the approach followed in the recent paper [32], despite in different
guises since the higher order case treated therein is quite special. We refrain from giving any details now, and instead expound on the main ideas of this method in some detail in Section 2.

The numerical method we employ is a finite element approximation, based on an earlier work of Barrett and Liu on numerical methods for elliptic systems [BL]. Therein the authors prove that, for a fixed exponent p, the method converges to the respective p-harmonic mapping under certain regularity assumptions on the solution. We would like to stress that significant care must be taken with numerical computations using this approach because the underlying nonlinear system is ill-conditioned. This owes to the nonlinearity of the problem which grows exponentially with p. Work to overcome this issue includes, for example, the work of Huang, Li and Liu [24] where preconditioners based on gradient descent algorithms are designed and shown to work well for p up to 1000.

Our mechanism for designing approximations of absolute minimisers is based on the approximation of the L^∞ minimisation problem by a respective L^p one. We then utilise the approach described in [40, 30, 31] where it was shown that by forming an appropriate limit we are able to select candidates for numerical approximation along a “good” sequence of solutions, the p-harmonic mappings.

The purpose of this work is to demonstrate some key properties of vectorial absolute minimisers using an analytically justifiable numerical scheme which currently is the only technique available to give insight into the limiting vector-valued problem. We note that our goal is not to construct an efficient approximation method for vectorial absolute minimisers; indeed this indirect approximation of the limiting problem is not computationally efficient.

We conclude by noting that, albeit the concept of absolute minimisers is the primary contender in the direction of variational concepts, is not the unique candidate in the vector case of $N \geq 2$. This is connected to that fact that, when $N \geq 2$, the associated Euler-Lagrange ∞-Laplace system admits smooth non-minimising solutions which are characterised by two distinct variational concepts, see e.g. [3, 27, 34].

Conflict of interest. The authors declare that there is conflict of interest.

2. Approximating absolute minimisers through p-concentration measures

In this section we present the recently proposed method to construct absolute minimisers. The ideas herein are taken from the papers in preparation [35, 33]. For the clarity of this discussion suppose that $u \in C^1(\Omega; \mathbb{R}^N)$. The central point of this approach is to bypass the difficulties caused by the lack of continuity of the essential-supremum with respect to weak convergence by attempting to write the supremum as an integral but for a different quirky measure, namely

\begin{equation}
E_\infty(u, \mathcal{O}) = \int_{\overline{\mathcal{O}}} |Du| d\sigma
\end{equation}

where σ is a Radon probability measure on the closure $\overline{\mathcal{O}}$, which in principle is \mathcal{O}-dependent as well as u-dependent. Of course one can define an infinity of different families of measures $\{\sigma^\mathcal{O} : \mathcal{O} \in \Omega\}$ performing this role: for instance, for any $\mathcal{O} \in \Omega$ choose any point $x_\mathcal{O}$ in the arg-max set of $|Du|$, namely any point $x_\mathcal{O} \in \overline{\mathcal{O}}$ such that

$|Du|(x_\mathcal{O}) = E_\infty(u, \mathcal{O})$
and then choose the Dirac mass \(\sigma^O := \delta_{x^O} \). However, this condition by itself does not suffice for our purposes and has to be coupled by another condition. Firstly, in order to utilise duality arguments with ease, let us modify (2.1) to its \(L^2 \) variant

\[
(2.2) \quad E^\infty(u, O)^2 = \int_{\overline{O}} |Du|^2 \, d\sigma
\]

and suppose in addition that the matrix-valued Radon measure \(D\sigma \) is divergence-free on \(\overline{O} \), namely that

\[
(2.3) \quad \text{div}(D\sigma) = 0.
\]

The PDE (2.3) is to be understood in a sense stronger than the usual distributional sense, due to the emergence of the boundary. In fact, (2.3) has to be interpreted as

\[
\int_{\overline{O}} Du : D\phi \, d\sigma = 0, \quad \text{for all } \phi \in C^1_0(O; \mathbb{R}^N),
\]

namely in the space of those \(C^1 \) test maps \(\phi : O \to \mathbb{R}^n \) which vanish on \(\partial O \) and extend continuously together with their derivative on \(\partial O \) (but whose derivative may not vanish on \(\partial O \)).

Although the pair of conditions (2.2)-(2.3) seem to be ad-hoc and unmotivated, the payoff is that it is quite easy to see that if one has a \(C^1 \) map \(u : \Omega \to \mathbb{R}^N \) such that for any \(O \subset \Omega \) there is a Radon probability measure \(\sigma^O \) on \(\overline{O} \) such that the pair \(u, \sigma^O \) satisfies (2.2)-(2.3), then in fact \(u \) is an absolute minimiser in the sense of Aronsson (Definition 1.1). Indeed, fix a test function \(\phi \in C^1_0(O; \mathbb{R}^N) \) and for simplicity suppose that \(\partial O \) has zero Lebesgue \(n \)-measure. Then, we have

\[
E^\infty(u, O)^2 \overset{(2.2)}{=} \int_{\overline{O}} |Du|^2 \, d\sigma^O
\]

\[
\overset{(2.3)}{=} \int_{\overline{O}} |Du|^2 \, d\sigma + 2\int_{\overline{O}} Du : D\phi \, d\sigma^O
\]

\[
\leq \int_{\overline{O}} |Du|^2 \, d\sigma^O + 2\int_{\overline{O}} |Du|^2 \, d\sigma^O + \int_{\overline{O}} |D\phi|^2 \, d\sigma^O
\]

\[
= \int_{\overline{O}} |Du + D\phi|^2 \, d\sigma^O
\]

\[
\leq \sigma^O(\overline{O}) \sup_{\overline{O}} |Du + D\phi|^2
\]

\[
= E^\infty(u + \phi, O)^2.
\]

Hence, \(u \) is indeed minimising on \(O \), at least among smooth variations. The general case then needs some approximation arguments, appropriately adapted to \(L^\infty \). What is less clear is how one can actually prove the existence of such objects in \(W^{1,\infty}_{u_0}(\Omega; \mathbb{R}^N) \) with given boundary conditions. The idea is to use \(L^p \) approximations in the following way: for each \(p > n \), consider the minimisation problem

\[
E_p(u_p, \Omega) = \inf \left\{ E_p(u, \Omega) : u \in W^{1,p}_{u_0}(\Omega; \mathbb{R}^N) \right\}.
\]

By standard variational arguments (see e.g. [17, 22]), this problem has a solution \(u_p \), which is a weak solution to the celebrated \(p \)-Laplace system:

\[
(2.4) \quad \text{div}(|Du|^{p-2}Du) = 0, \quad \text{in } \Omega.
\]
In particular, this means that for any $O \subseteq \Omega$ and any $\phi \in W^{1,p}_0(O;\mathbb{R}^N)$, u_p satisfies
\begin{equation}
\int_O Du_p : D\phi |Du_p|^{p-2} = 0
\end{equation}

By defining the (absolutely continuous) probability measure
\begin{equation}
\sigma^O_p(A) := \frac{\int_{A \cap O} |Du_p|^{p-2}}{\int_O |Du_p|^{p-2}}, \quad A \subseteq \Omega \text{ Borel},
\end{equation}
we may rewrite (2.5) as
\begin{equation}
\int_O Du_p : D\phi \, d\sigma^O_p = 0.
\end{equation}

By juxtaposing (2.7) with (2.3), one sees that upon devising appropriate analytic tools in order to pass in an appropriate weak* sense to some limit
\begin{equation}
(Du_p, \sigma^O_p) \rightharpoonup (Du_\infty, \sigma^O_\infty)
\end{equation}

subsequentially as $p \to \infty$, one would in principle obtain (2.3). This is particularly challenging, as on the one hand mass might be lost towards the boundary ∂O and one has to consider measures on \overline{O} rather than on O, even though by definition $\sigma^O_p(\partial O) = 0$. On the other hand, the main cause of additional ramifications is the possible "oscillations" of the pair of weakly* converging objects (Du_p, σ^O_p) and one needs particular "compensated compactness" mechanisms to pass to the limit and show that the oscillations occur in such a way that cancel each other. Despite being highly non-obvious, the above approach can indeed work and this is done in [35, 33].

It remains to show that, at least formally, one also obtains (2.2) in the limit as $p \to \infty$. To see this, note that for any $\alpha \in (0,1)$ for
\begin{equation}
L_p(O) := \left(\int_O |Du_p|^{p-2}\right)^{1/(p-2)},
\end{equation}
directly from the definition of σ^O_p we have the estimate
\begin{align*}
\sigma^O_p(\{|Du_p| \leq \alpha L_p(O)\}) &= \frac{\int_{\{|Du_p| \leq \alpha L_p(O)\} \cap O} |Du_p|^{p-2}}{\int_O |Du_p|^{p-2}} \\
&\leq \alpha^{p-2} \int_O (L_p)^{p-2} \\
&= \alpha^{p-2}.
\end{align*}

Since one can check with simple arguments that
\begin{equation}
E_\infty(u_\infty, O) \leq \liminf_{p \to \infty} L_p(O)
\end{equation}
(with semi-continuity methods similar to e.g. in [28, Ch. 8]), we see that, at least formally
\begin{equation}
\sigma^\infty_\infty(\{|Du_\infty| \leq \alpha E_\infty(u_\infty, O)\}) = 0, \quad \text{for all } \alpha \in (0,1),
\end{equation}
which implies
\begin{equation}
\sigma_\infty^O \left(\{ |Du_\infty| < E_\infty(u_\infty, \Omega) \} \right) = 0.
\end{equation}
Equality (2.8) implies that the limit probability measure \(\sigma_\infty^O \) is supported on the arg-max set
\[\Omega \cap \{ |Du_\infty| = E_\infty(u_\infty, \Omega) \}, \]
since its complement is a nullset with respect to \(\sigma_\infty^O \). Then, we have
\begin{align*}
\int_{\Omega} |Du| \, d\sigma_\infty^O &= \int_{\Omega \cap \{ |Du_\infty| = E_\infty(u_\infty, \Omega) \}} |Du_\infty|^2 \, d\sigma_\infty^O \\
&= E_\infty(u_\infty, \Omega)^2 \sigma_\infty^O (\Omega \setminus \{ |Du_\infty| < E_\infty(u_\infty, \Omega) \}) \\
&= E_\infty(u_\infty, \Omega)^2 \left(\sigma_\infty^O (\Omega) - \sigma_\infty^O (\{ |Du_\infty| < E_\infty(u_\infty, \Omega) \}) \right) \\
&= E_\infty(u_\infty, \Omega)^2.
\end{align*}
Hence, (2.2) indeed follows.

3. Numerical Approximations of \(p \)-Concentration Measures

In this section we perform several numerical experiments in both the scalar and the vectorial case for various appropriately selected boundary conditions. These experiments demonstrate in a concrete fashion the plethora of possible behaviours of the limit measures \(\sigma_\infty^O \), depending on the shape of \(\Omega \) and its position in relation to the level sets of the modulus of the gradient \(|Du_\infty| \).

The method we use is a conforming finite element discretisation of the \(p \)-Laplace system analysed in [BL] for fixed \(p \). We will describe the discretisation and summarise extensive numerical experiments aimed at quantifying the behaviour of the limit measure \(\sigma_\infty^O \). We refer to [40, 30, 31] for analytic justification.

We let \(T \) be an admissible triangulation of \(\Omega \), namely, \(T \) is a finite collection of sets such that

1. \(K \in T \) implies \(K \) is an open triangle,
2. for any \(K,J \in T \) we have that \(K \cap J \) is either \(\emptyset \), a vertex, an edge, or the whole of \(K \) and \(J \) and
3. \(\bigcup_{K \in T} K = \Omega \).

The shape regularity constant of \(T \) is defined as the number
\begin{equation}
\mu(T) := \inf_{K \in T} \frac{\rho_K}{h_K},
\end{equation}
where \(\rho_K \) is the radius of the largest ball contained inside \(K \) and \(h_K \) is the diameter of \(K \). An indexed family of triangulations \(\{ T^n \}_n \) is called shape regular if
\begin{equation}
\mu := \inf_n \mu(T^n) > 0.
\end{equation}

Further, we define \(h : \Omega \to \mathbb{R} \) to be the piecewise constant meshsize function of \(T \) given by
\begin{equation}
h(x) := \max_{K \ni x} h_K.
\end{equation}
A mesh is called quasiuniform when there exists a positive constant \(C \) such that \(\max_{x \in \Omega} h(x) \leq C \min_{x \in \Omega} h(x) \). In what follows we shall assume that all triangulations are shape-regular and quasiuniform.
We let $P^1(T)$ denote the space of piecewise linear polynomials over the triangulation T, i.e.,
\begin{equation}
P^1(T) = \{ \phi \text{ such that } \phi|_K \in P^1(K) \}
\end{equation}
and introduce the finite element space
\begin{equation}
V := P^1(T) \cap C^0(\Omega)
\end{equation}
to be the usual space of continuous piecewise linear polynomial functions.

3.1. **Galerkin discretisation.** We consider the Galerkin discretisation, to find $U \in [V]^N$ with $U|_{\partial\Omega} = I_h g$, the piecewise Lagrange interpolant, such that
\begin{equation}
\int_{\Omega} |Du|^p - 2 Du : D\Phi = 0, \quad \forall \Phi \in [V]^N.
\end{equation}
This is a conforming finite element discretisation of the vectorial p-Laplacian system proposed in [BL]. Existence and uniqueness of solution to (3.6) follows from examination of the p-functional
\begin{equation}
E_p(u, \Omega) = \left(\int_{\Omega} |Du|^p \right)^{1/p}.
\end{equation}
Notice that (3.7) is strictly convex and coercive on $W^{1,p}_0(\Omega, \mathbb{R}^N)$ so we may apply standard arguments from the Calculus of Variations showing that the minimisation problem is well posed. Hence, there exists $u \in W^{1,p}_g(\Omega, \mathbb{R}^N)$ such that
\begin{equation}
E_p(u, \Omega) = \min_{v \in W^{1,p}_0(\Omega, \mathbb{R}^N)} E_p(v, \Omega).
\end{equation}
Since $[V]^N \subset W^{1,p}_0(\Omega, \mathbb{R}^N)$ the same argument applies for the Galerkin approximation.

Further, for fixed p, let $\{U_p\}$ be the finite element approximation generated by solving (3.6) (indexed by h) and u_p, the weak solution of the p-Laplace system, then we have that
\begin{equation}
U_p \rightharpoonup u_p \text{ in } C^0(\overline{\Omega}, \mathbb{R}^N), \text{ as } h \to 0.
\end{equation}

3.2. **Numerical experiments.** Our numerical approximations are achieved using Galerkin approximations to the p-Laplacian for sufficiently high values of p. We focus on studying the behaviour solutions have as p increases which allow us to make various conjectures on the behaviour of their asymptotic limit as $p \to \infty$.

The computation of p-harmonic mappings is an extremely challenging problem in its own right. The class of nonlinearity in the problem results in the algebraic system, which ultimately yields the finite element solution, being extremely badly conditioned. One method to tackle this class of problems is by using preconditioners based on descent algorithms [24]. For extremely large p, say $p \geq 10000$, this may be required; however for our purposes we restrict our attention to $p \sim 100$. This yields sufficient accuracy for the results we are illustrating.

We emphasise that even the case $p \sim 100$ is computationally difficult to handle. The numerical approximation we are using is based on a damped Newton solver. As it is well known, Newton solvers require a sufficiently close initial guess in order to converge. A reasonable initial guess for the p-Laplacian is given by numerically approximating with the q-Laplacian for $q < p$ sufficiently close to p. This leads
to an iterative process in the generation of the initial guess, i.e., we solve the 2-
Laplacian as an initial guess to the 3-Laplacian which serves as an initial guess to
the 4-Laplacian, and so on. In each of our experiments the number of nonlinear
iterations required to achieve a relative tolerance of 10^{-8} was achieved in less that
20 iterations.

Using the methodology of p-approximation which we advocate here, it has been
numerically demonstrated in the scalar case the rates of convergence both in p and
in h that we expect to achieve [40, Section 4]. It was noticed that these rates were
dependant on the regularity of the underlying ∞-harmonic function and that
\begin{equation}
\|u_\infty - U_{p^*}\|_{L^\infty} \approx O(h)
\end{equation}
for solutions $u_\infty \in C^\infty$ and
\begin{equation}
\|u_\infty - U_{p^*}\|_{L^\infty} = O(h^{1/3})
\end{equation}
if $u_\infty \in C^{1,1/3}$. Where we use p^* as the argmin$_p\|u_\infty - U_p\|_{L^\infty}$.

In both cases as h is decreased, an increasing value of p is required to achieve
optimal approximation (in h). This suggests a coupling $p = Ch^\alpha$ is necessary to
achieve convergence, where the α is determined by the regularity expected in u_∞.
We found experimentally that coupling $p = h^{-1/2}$ worked well for the singular case
($u_\infty \in C^{1,1/3}$) and $p = h^{-1}$ for the smooth case ($u_\infty \in C^\infty$).

We mention that we do not have access to exact solutions in general. For the
experiments in Sections 3.3–3.5 we only provide boundary data and in principle the
solutions to this problem are non-smooth and must be interpreted in an appropriate
weak sense. For the scalar problem this is through the viscosity solution framework
[16].

3.3. Scalar case - Aronsson solution. Here we examine the scalar problem with
prescribed boundary data given by the celebrated Aronsson solution
\begin{equation}
(3.12)
\quad u_\infty(x, y) = |x|^{4/3} - |y|^{4/3}.
\end{equation}
We study the measure $\sigma^O_p(T)$ with various domains O and increasing values of p
to enable conjectures to be made as to the structure of σ^O_∞ in some test cases. In
particular, we examine the interplay between σ^O_∞ and the level sets of $|Du_\infty|$. In
Figures 1–4 we plot the domain O and $\sigma^O_p(T)$ for $p = 2, 4, 10, 20, 100$. Specific
conjectures regarding the behaviour of the measure σ^O is provided at the captions
of each figure, since the particular behaviour depends on the shape of the domain
and its position in relation to the level sets of the gradient, but generally it is a
sum of lower-dimensional concentration measures.

3.4. Scalar case - Eikonal solution. In this test we examine the scalar problem
with prescribed boundary data given by the conic solution
\begin{equation}
(3.13)
\quad u(x, y) = (x^2 + y^2)^{1/2}.
\end{equation}
Notice this function is Eikonal. We study the measure $\sigma^O_p(T)$ with O taken such
that $0 \notin O$. Results are shown in Figure 5 where we plot the domain O and $\sigma^O_p(T)$
for $p = 2, 4, 10, 20, 100$. Notice that, in contrast to the Aronsson case, the mass is
not sent toward the boundary as $p \to \infty$. In this case we conjecture that σ^O is
always absolutely continuous with respect to the Lebesgue measure $\mathcal{L}^n|_O$.
3.5. **Vectorial case - Eikonal solution.** In this test we examine the vectorial problem with prescribed boundary data given by

\[(3.14)\quad u(x, y) = e^{ix} - e^{iy},\]

where we use the notation \(e^{it} = (\cos t, \sin t)\). Notice this function is Eikonal. We study the measure \(\sigma^O_p(T)\) with \(O\) taken such that \(0 \notin O\). Results are shown in Figure 6 where we plot the domain \(O\) and \(\sigma^O_p(T)\) for \(p = 2, 4, 10, 20, 100\). Notice that mass is not sent towards the boundary as \(p \to \infty\). We conjecture that again \(\sigma^O\) is absolutely continuous with respect to the Lebesgue measure \(L^n\).\(\subseteq\)\(O\).

3.6. **Vectorial case - Mixed boundary conditions.** In this test we examine the vectorial problem with prescribed boundary data given by

\[(3.15)\quad u(x, y) = \begin{cases} (x, y), & \text{if } x \leq 0, \\ (\lambda x, y), & \text{if } x > 0, \end{cases}\]

for \(\lambda \in \{\pm \frac{1}{2}\}\). We study the measure \(\sigma^O_p(T)\) with \(O = \Omega\). Results are shown in Figure 7 and 8 where we plot the domain \(O\) and \(\sigma^O_p(T)\) for \(p = 2, 4, 10, 20, 100\). Specific conjectures regarding the behaviour of the measure \(\sigma^O\) is provided at the captions, since the particular behaviour depends on the shape of the domain and its position in relation to the level sets of the gradient. This case appears to combine both concentration and absolutely continuous parts.

3.7. **Vectorial case - Orientation preserving diffeomorphism.** In this test we examine the vectorial problem with prescribed boundary data given by

\[(3.16)\quad u(x, y) = e^{(\log |x|)S}x,\]

where \(S\) is the orthogonal, skew-symmetric matrix

\[(3.17)\quad S = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} .\]

This is the explicit example given in [34, Lemma 3.1]. Results are shown in Figure 9 where we plot the domain \(O\) and \(\sigma^O_p(T)\) for \(p = 2, 4, 10, 20, 100\). In this case we also conjecture that \(\sigma^O\) must be absolutely continuous with respect to the Lebesgue measure \(L^n\).\(\subseteq\)\(O\). Given that absolute continuity appears in all cases we have eikonal data, it appears that this must be a general fact regardless of any particular additional structures.
Figure 1. A test to characterise the σ^O_∞ for boundary data given by the Aronsson solution in (3.12). We show the domain O and the measure $\sigma_p^O(T)$ for increasing values of p. In each of the subfigures B-F we plot 10 contours that are equally spaced between the minimum and maximum values of σ_p^O. Notice that as p increases these contours tend toward the top right corner of O indicating that mass is concentrated there.
Figure 2. As Figure 1 with a different O. Notice that as p increases these contours tend toward the corners of O indicating that mass is concentrated there. We conjecture that $\sigma_{\infty}^O = \frac{1}{4} \sum_{j=0}^{3} \delta_{x_j}$, with x_j denoting the four corners of O.

(a) The domain O and the level sets of $|Du_{\infty}|$.

(b) $p = 2$

(c) $p = 4$

(d) $p = 10$

(e) $p = 20$

(f) $p = 100$
Figure 3. As Figure 1 with a different O. The corners of the square defining O are touching the level sets of $|Du_\infty|$. Again, we conjecture that $\sigma_\infty^O = \frac{1}{4}\sum_{j=0}^{3} \delta_{x_j}$, with x_j denoting the four corners of O.

(a) The domain O and the level sets of $|Du_\infty|$.
(b) $p = 2$
(c) $p = 4$
(d) $p = 10$
(e) $p = 20$
(f) $p = 100$
Figure 4. As Figure 2 with a different \mathcal{O}. The boundary of \mathcal{O} now contains a portion of the level sets of $|Du_\infty|$. Notice that as p increases, mass is concentrated on four portions of the boundary, where the red square intersects with the level sets. We conjecture that $\sigma^\mathcal{O} = \frac{1}{C} \sum_{i=0}^{3} \mathcal{H}^1_{\Gamma_i}$, where \mathcal{H}^1 is the Hausdorff measure, $\Gamma_0, \ldots, \Gamma_3$ are the four boundary portions and $C := \sum_{i=0}^{3} \mathcal{H}^3(\Gamma_i)$.
Figure 5. A test to characterise the σ_∞^O for boundary data given by the Eikonal function in (3.14). We show the domain \mathcal{O} and the measure $\sigma_\infty^O(T)$ for increasing values of p. In each of the subfigures B-F we plot 10 contours that are equally spaced between the minimum and maximum values of σ_p^O. Notice that as p increases these contours remain equally spaced indicating mass is not pushed to the boundary.
Figure 6. A test to characterise σ_∞^O for the boundary data given by (3.14). We show the domain O and the measure $\sigma_p^O(T)$ for increasing values of p. In each of the subfigures B-F we plot 10 contours that are equally spaced between the minimum and maximum values of σ_p^O. Notice that as p increases these contours remain equally spaced indicating mass is not pushed to the boundary.
Figure 7. A test to characterise $\sigma_{\infty}^{\mathcal{O}}$ for the boundary data given by (3.15) with $\lambda = \frac{1}{2}$. We show the domain \mathcal{O} and the measure $\sigma_{p}^{\mathcal{O}}(T)$ for increasing values of p. In each of the subfigures B-F we plot 10 contours that are equally spaced between the minimum and maximum values of $\sigma_{p}^{\mathcal{O}}$. Notice that as p increases these contours become concentrated at the four points $\{x_i\}_{i=0}^3$. In this case we conjecture that $\sigma^{\mathcal{O}}$ is given by the sum of four Dirac masses at the points $\{x_i\}_{i=0}^3$ and otherwise it is absolutely continuous with respect to $\mathcal{L}^{n} \mathcal{L}_{\mathcal{O}}$, rescaled so that it is a probability on $\overline{\mathcal{O}}$.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure7.png}
\caption{A test to characterise $\sigma_{\infty}^{\mathcal{O}}$ for the boundary data given by (3.15) with $\lambda = \frac{1}{2}$. We show the domain \mathcal{O} and the measure $\sigma_{p}^{\mathcal{O}}(T)$ for increasing values of p. In each of the subfigures B-F we plot 10 contours that are equally spaced between the minimum and maximum values of $\sigma_{p}^{\mathcal{O}}$. Notice that as p increases these contours become concentrated at the four points $\{x_i\}_{i=0}^3$. In this case we conjecture that $\sigma^{\mathcal{O}}$ is given by the sum of four Dirac masses at the points $\{x_i\}_{i=0}^3$ and otherwise it is absolutely continuous with respect to $\mathcal{L}^{n} \mathcal{L}_{\mathcal{O}}$, rescaled so that it is a probability on $\overline{\mathcal{O}}$.}
\end{figure}
Figure 8. As Figure 7 with $\lambda = -\frac{1}{2}$. Qualitatively the same behaviour is observed here as well.
Figure 9. A test to characterise σ_O^∞ for the boundary data given by (3.16) with $\lambda = \frac{1}{2}$. We show the domain O and the measure $\sigma_p^O(T)$ for increasing values of p. In each of the subfigures B-F we plot 10 contours that are equally spaced between the minimum and maximum values of σ_p^O. Notice that as p increases these contours are relatively evenly spaced. Again the conjecture is that σ^O is absolutely continuous with respect to $\mathcal{L}^{n\leq\delta}$.
References

1. H. Abugirda, N. Katzourakis, Existence of 1D Vectorial Absolute Minimisers in L^∞ under Minimal Assumptions, Proceedings of the AMS 145:6, 2567 - 2575 (2017).
2. S.N. Armstrong, M.G. Crandall, V. Julin, C.K. Smart, Convexity Criteria and Uniqueness of Absolutely Minimising Functions, Arch. Rational Mech. Anal. 200, 405 - 443 (2011).
3. B. Ayanbayev, N. Katzourakis, A Pointwise Characterisation of the PDE system of vectorial Calculus of variations in L^∞, Proc. Royal Soc. Edinburgh A, in press.
4. G. Aronsson, Minimization problems for the functional $\sup_x F(x, f(x), f'(x))$, Arkiv för Mat. 6 (1965), 33 - 53.
5. G. Aronsson, Minimization problems for the functional $\sup_x F(x, f(x), f'(x))$ II, Arkiv för Mat. 6 (1966), 409 - 431.
6. G. Aronsson, Extension of functions satisfying Lipschitz conditions, Arkiv för Mat. 6 (1967), 551 - 561.
7. G. Aronsson, M. Crandall, P. Juutinen A tour of the theory of absolutely minimizing functions, Bulletin of the AMS, New Series 41, 439 - 505 (2004).
8. E. N. Barron, L. C. Evans, R. Jensen, The infinity Laplacian, Aronsson’s equation and their generalizations, Trans. Amer. Math. Soc. 360 (2008), 77 - 101.
9. E. N. Barron, R. Jensen and C. Wang, The Euler equation and absolute minimisers of L^∞ functionals, Arch. Rational Mech. Analysis 157, 255 - 283 (2001).
10. N. Barron, R. Jensen, C. Wang, Lower Semicontinuity of L^∞ Functionals, Ann. I. H. Poincaré 18, 495 - 517 (2001).
11. M. Bocea, V. Nesi, Γ-convergence of power-law functionals, variational principles in L^∞ and applications, SIAM J. Math. Anal. 39, 15501576 (2008).
12. L. Capogna, A. Raich, An Aronsson type approach to extremal quasiconformal mappings, J. Differential Equations 253 (2012) 851 - 877.
13. A. Garroni, V. Nesi, M. Ponsiglione, Dielectric breakdown: optimal bounds, Proc. Roy. Soc. London A 457, 2317-2335 (2001).
14. M. G. Crandall, A visit with the ∞-Laplacian, in Calculus of Variations and Non-Linear Partial Differential Equations, Springer Lecture notes in Mathematics 1927, CIME, Cetraro Italy 2005.
15. M. G. Crandall, L. C. Evans, R. Gariepy, Optimal Lipschitz extensions and the infinity Laplacian, Calc. Var. 13, 123 - 139 (2001).
16. M.G. Crandall, H. Ishii, P.L. Lions, User’s Guide to Viscosity Solutions of 2nd Order Partial Differential Equations, Bulletin of the AMS, 27, 1 - 67 (1992).
17. B. Dacorogna, Direct Methods in the Calculus of Variations, 2nd Edition, Volume 78, Applied Mathematical Sciences, Springer, 2008.
18. A. Elmoataz, M. Toutain, D. Tenbrinck, On the p-Laplacian and ∞-Laplacian on Graphs with Applications in Image and Data Processing, SIAM Journal on Imaging Sciences 8:4, 2412-2451 (2015).
19. L.C. Evans, Y. Yu, Various properties of solutions to the Infinity-Laplacian equation, Communications in PDE 30:9, 1401 - 1428 (2005).
20. L. De Pascale, L.C. Evans, A. Pratelli, Integral estimates for transport densities, Bulletin of the London Mathematical Society, 36: 3, 383 - 395 (2004).
21. L. De Pascale, A. Pratelli, Regularity properties for Monge Transport Density and for Solutions of some Shape Optimization Problem, Calc. Var. PDE 14, 249 - 274 (2002).
22. I. Fonseca, G. Leoni, Modern methods in the Calculus of Variations: L^p spaces, Springer Monographs in Mathematics, 2007.
23. M. Giaquinta, L. Martinazzi, An Introduction to the Regularity Theory for Elliptic Systems, Harmonic Maps and Minimal Graphs, Publications of the Scuola Normale Superiore 11, Springer, 2012.
24. Y. Q. Huang, R. Li, and W. Liu, Preconditioned descent algorithms for p-Laplacian, J. Sci. Comput. 32 (2007), 343-371.
25. R. Jensen, Uniqueness of Lipschitz extensions minimizing the sup-norm of the gradient, Arch. Rational Mech. Analysis 123 (1993), 51-74.
26. N. Katzourakis, Optimal ∞-Quasiconformal Immersions, ESAIM Control, Optimisation and Calculus of Variations 21:2, 561 - 582 (2015).
27. N. Katzourakis, ∞-Minimal Submanifolds, Proceedings of the AMS 142, 2797-2811 (2014).
28. N. Katzourakis, An Introduction to Viscosity Solutions for Fully Nonlinear PDE with Applications to Calculus of Variations in L^∞, Springer Briefs in Mathematics, 2015, DOI 10.1007/978-3-319-12829-0.
29. N. Katzourakis, Absolutely minimising generalised solutions to the equations of vectorial Calculus of Variations in L^∞, Calculus of Variations and PDE 56 (1), 1 - 25 (2017) (DOI: 10.1007/s00526-016-1099-z).
30. N. Katzourakis, T. Pryer, On the numerical approximation of ∞-Harmonic mappings, Nonlinear Differential Equations & Applications 23 (6), 1-23 (2016).
31. N. Katzourakis, T. Pryer, On the numerical approximation of ∞-Biharmonic and p-Biharmonic functions, Numerical Methods for PDE, in press.
32. N. Katzourakis, R. Moser, Existence, Uniqueness and Structure of Second Order Absolute Minimisers, Archives for Rational Mechanics and Analysis, published online 06/09/2018, DOI: 10.1007/s00205-018-1305-6.
33. N. Katzourakis, R. Moser, in preparation.
34. N. Katzourakis, G. Shaw, Counterexamples in Calculus of Variations in L^∞ through the vectorial Eikonal equation, Comptes Rendus Mathematique Ser. I 356:5 (2018), 498-502, https://doi.org/10.1016/j.crma.2018.04.010.
35. N. Katzourakis, G. Shaw, in preparation.
36. O. Lakkis and T. Pryer. A finite element method for nonlinear elliptic problems. SIAM Journal on Scientific Computing, 35(4):A2025–A2045, 2013.
37. O. Lakkis and T. Pryer, An adaptive finite element method for the infinity laplacian, Numerical Mathematics and Advanced Applications, 283 - 291 (2013).
38. Y. Peres, O. Schramm, S. Sheffield, D.B. Wilson, Tug-of-war and the infinity Laplacian, J. Amer. Math. Soc. 22 (2009), 167 - 210.
39. F. Prinari, On the lower semicontinuity and approximation of L^∞-functionals, NoDEA 22, 1591 - 1605 (2015).
40. T. Pryer, On the finite element approximation of Infinity-Harmonic functions, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 148(4), 819-834 (2018).
41. F. Santambrogio, Absolute continuity and summability of transport densities: simpler proofs and new estimates, Calculus of Variations and PDE 36:3, 343 - 354 (2009).