Recursive evolution of spin-wave multiplets in magnonic crystals of antidot-lattice fractals

Gyuyoung Park, Jaehak Yang & Sang-Koog Kim*

We explored spin-wave multiplets excited in a different type of magnonic crystal composed of ferromagnetic antidot-lattice fractals, by means of micromagnetic simulations with a periodic boundary condition. The modeling of antidot-lattice fractals was designed with a series of self-similar antidot-lattices in an integer Hausdorff dimension. As the iteration level increased, multiple splits of the edge and center modes of quantized spin-waves in the antidot-lattices were excited due to the fractals’ inhomogeneous and asymmetric internal magnetic fields. It was found that a recursive development \(F_n = F_{n-1} + G_{n-1} \) of geometrical fractals gives rise to the same recursive evolution of spin-wave multiplets.

A recursive sequence is one of the most fundamental growth mechanisms in nature, interest in it having grown significantly for its potential quantum applications. That is, a successive descendant of the nth generation is an aggregation of one or more preceding ascendants and their variations. More intriguing sequences are involved in fractal geometries in nature. Those fractals are classified as statistical and random fractals. Although the random fractals are relatively sporadic and weakly self-similar, the deterministic (exact) fractals have regularity and strong self-similarity. The recursive ordering has been discovered in the context of those two different fractal growths. Despite their close relationship, the recursive sequences in fractal growths have barely been studied in ordered spin systems.

Meanwhile, spatial periodicities of spin ordering in lattice crystals lead to the modifications of magnonic properties such as band structure and quantization of spin-waves. The antidot-lattice, a periodic array of many holes in a continuous film, has been a basic and promising two-dimensional (2D) magnonic crystal due to its scalability and good hysteric effect without superparamagnetic bottleneck. The alteration of internal magnetic fields in the antidot-lattices results in several non-propagating eigenmodes even in forbidden bands. For example, edge modes, which resemble a “butterfly state”, are localized around the boundary of each antidot, while center modes are extended along the channel in between the neighboring holes (antidots). Furthermore, standing spin-wave modes can be excited by different field conditions as well as in geometric confinements. A variety of types of antidot-lattices have been employed that include bi-component (of different materials or different sizes of holes), different Bravais type, and defective lattices. On the other hand, non-trivial magnonic dynamic behaviors were observed in aperiodic structures of antidots such as magnonic quasicrystals of Fibonacci structure, Penrose and Ammann tilings, and Sierpiński carpet. In fact, Sierpiński fractals have led to unique phenomena in electronics and photonics.

Model system of antidot-lattice fractals. Here, we propose magnonic crystals composed of ferromagnetic antidot-lattice fractals, arranged similarly to one of Sierpiński aperiodic motifs, as studied by micromagnetic simulations along with a delicate analysis of multiplet spin-wave modes. The overlap of scaled antidot-lattices in a regular routine yields deterministic fractals, e.g., periodic structures with a local aperiodicity. This controllable non-statistical geometry provides a self-similarity in a part of the structure at every magnification, and can be designated according to the Hausdorff dimension of \(\log_S N \), where \(S \) is the scale factor and \(N \) is the number of scaled objects. That is, we used a series of scaled antidot-lattices to construct antidot-lattice fractals deterministically with iterations, as illustrated in Fig. 1b. The antidot-lattices are self-similar in their geometric parameters, such as diameter \(D \) and lattice constant \(L \). The \(A_n \) and \(B_n \) of the nth antidot-lattice are exactly half of those of \(A_{n-1} \). For example, \(A_2 \) has \(L_2 = L_1/2 \) and \(D_2 = D_1/2 \). Next, the nth fractal \(F_n \) is constructed by the superposition of \(A_1 + A_2 + \cdots + A_n \) as follows: \(S_1 = A_1, S_2 = A_1 + A_2, S_3 = A_1 + A_2 + A_3, \) and \(S_4 = A_1 + A_2 + A_3 + A_4, \) respectively.

National Creative Research Initiative Center for Spin Dynamics and Spin-Wave Devices, Nanospinics Laboratory, Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, Republic of Korea. *email: sangkoog@snu.ac.kr
as depicted in the series up to S_4 (see Fig. 1b). In detail, A_1 with $D = D_1$ and $L = L_1$ corresponds to the initiator (mother). A_1 and A_2 make up S_2. Since the D_2 and L_2 of A_2 are half those of A_1, the number of antidots for A_2 is increased by 4 times, and thus the Hausdorff dimension is $\log_2 4 = 2$. Following A_n are scaled copies of previous A_{n-1} in the same manner. Due to the self-similarity of the fractals, a recursive sequence arises inside the geometry of the motifs: let F_n denote the geometrical sequence. $F_n \left(0 \leq x \leq L/2 \right)$ is a summation of $F_{n-1} \left(L/4 \leq x \leq L/2 \right)$ and $G_{n-1} \left(0 \leq x < L/4 \right)$. The appearance of F_{n-1} in S_n is a scaled recursion of F_{n-1} ($0 \leq x \leq L/2$) in S_{n-1}. In S_n, G_{n-1} is a variation of F_{n-1} and can be viewed as the A_1 antidot superimposed onto F_{n-1}.

Then, the 2D periodic lattice of magnonic crystals has a square Bravais symmetry, as shown in Fig. 1c.

Results

Recursive evolution of spin-wave multiplets. Figure 2 reveals that the spin-wave eigenmodes in the antidot-lattice fractals split into multiplets according to the recursive sequence (for better spectra, see also Supplementary Fig. S1). The first ordinary crystal denoted as $S_1 (= A_1)$ exhibited three normal standing spin-wave modes as indexed by E_1, C_1, and C_{V1}. The very weak mode (E_1) at 1.77 GHz corresponds to the edge mode, and the strongest mode (C_1) at 5.02 GHz to the center mode. The two modes are periodically excited along the bias field direction. The last minor mode (C_{V1}) at 5.80 GHz is a center-vertical mode (or a fundamental-localized mode) at the center between the neighboring antidots along the axis perpendicular to the bias field direction.

For S_2, while keeping the E_1 mode at a similar frequency, an additional doublet (E_2) of the edge mode appeared, which originated from A_2. The doublet (C_2) of the center mode appeared as its substitution for the singlet C_1 in S_1 (see Fig. 2b). The higher mode (5.61 GHz) of the doublet C_2 was hybridized with the C_{V1} mode (5.80 GHz) in S_1. In a similar manner, for S_3, an additional triplet (E_3) came from A_3, while the doublet C_2 in S_2 then became the triplet C_3. The center-vertical mode (C_{V2}) of A_2 was hybridized with the highest mode (6.38 GHz) of C_3. To
sum up, by adding A_2 and A_3 to S_2 and S_3, respectively, each E_n mode was newly updated while the C_n mode substituted for C_{n-1}. This happened because the edge mode is strongly localized at the boundary of each antidot while the center mode is extended through the channels between the neighboring holes in the antidot-lattices. Whenever the next scaled antidot-lattices were overlapped to the previous one, each boundary of antidot entity of A_n and A_{n-1} remained intact with each other, while the channels of A_n were impacted by the channels of A_{n-1}.

In the case of A_4, the edge mode and the center mode were hybridized into one mode, because the hole-to-hole distance was smaller than the previous antidot-lattices: the dipolar and exchange interactions were equally dominant at the narrow channel of A_4. Therefore, for S_4, the hybrid mode ($E_4 + C_4 \rightarrow E_{C4}$) appeared instead of the individual E_4 and C_4 modes. A total of five E_{C4} modes (pink-colored peaks) substituted for the C_3 triplet.

The number of multiplets in the serial spectra followed the recursive sequence, $F_n = F_{n-1} + G_{n-1}$. The two eigenmodes (E_n and C_n) appeared as a singlet, doublet, triplet, and quintet for S_1, S_2, S_3, and S_4, respectively. Since there is only one zeroth ($n = 0$) standing spin-wave mode in unpatterned (continuous) thin film (i.e., S_0), the

Figure 2. Modes' spectra in magnonic crystals of antidot-lattice fractals, S_1, S_2, S_3, and S_4, with $L_1 = 1400$ nm and $D_1 = 300$ nm. E_n and C_n denote the edge and center mode of S_n. A bias magnetic field of 30 mT was applied in the $+x$ direction.
In order to identify all of the excited modes represented by the FFT power-vs.-frequency spectra shown in Fig. 2, we performed FFTs on every single unit cell (or mesh) at the indicated resonance frequencies of the modes. Figure 3 shows the spatial distributions of FFT power in the bottom-right quarter of each motif (0 ≤ x ≤ L/2, −L/2 ≤ y ≤ 0) for each resonance frequency of the excited modes (for the corresponding phase profiles, see Supplementary Fig. S2). For S1, the major modes of E1 and C1 were visualized at 1.77 and 5.02 GHz, respectively. The edge mode was excited at the edge (or end) of the antidot (Fig. 3a), while the center mode was excited at the center (or channel) of the neighboring antidots (Fig. 3b). The higher mode (5.61 GHz) of the C2 doublet, was vertically localized between the neighboring holes of A1 in which CV1 was also localized in S1 (Fig. 3c). This explains why the higher mode of C2 was hybridized with CV1, as mentioned earlier. On the other hand, the lower (4.94 GHz) one of C2 remained extended along the channel between S2. The doublets of both E2 and C2 are antiphase with each other in temporal oscillation; S2 can be considered to be a two-dimensional nano-oscillator. For S3, the highest C3 at 6.38 GHz was fully localized in between the A2 antidots along the y-axis: it was hybridized with CV2 due to their shared localization area. The lowest C3 (5.35 GHz) remained extended along the channel between S3. Similarly, the lowest EC4 (4.04 GHz) for S4 was the only extended mode, while the others were localized in different local regions as noted by the red color. Since the distance between the antidots of A3 and A4 are close, some localized modes (4.30 GHz and 4.98 GHz) were excited at antidots of A4 together with certain antidots of A3. On the other hand, some of the E3 modes (4.04 GHz and 4.70 GHz) of S4 were excited at

Motif	E1	C1	E2	C2	(S1) CV1	E3	C3	EC4
S1	1.77 GHz	5.02 GHz	2.93 GHz	4.94 GHz	5.61 GHz	4.24 GHz	5.09 GHz	4.04 GHz
S2	2.93 GHz	5.61 GHz	3.65 GHz	5.35 GHz	5.80 GHz	4.72 GHz	5.72 GHz	4.30 GHz
S3	4.04 GHz	5.49 GHz	4.70 GHz	5.97 GHz	6.38 GHz	4.98 GHz	5.98 GHz	5.49 GHz
S4	5.49 GHz	5.98 GHz	4.70 GHz	5.97 GHz	6.38 GHz	4.98 GHz	5.98 GHz	5.49 GHz

Figure 3. Spatial distribution of power of FFTs in bottom-right quarter area of motifs of S1, S2, S3 and S4 at indicated frequencies of specific modes.
the same frequencies as those of the EC4 modes. Those E3 and EC4 modes become separated when the intensity of the bias field increased (see Supplementary Fig. S3).

The gap between the split modes narrowed down and finally merged into a singlet as the inhomogeneity of the magnetic energy decreased. In the other direction, the gap became wide and the corresponding different modes crossed over each other (showed conversion) as the inhomogeneity of the magnetic energy increased.

Similar to the recursive sequence in the geometrical fractals, we also found the recursive sequence in the evolution of the eigenmodes’ spatial profiles, as shown in Fig. 4. In detail, for the E_n modes, let E_1 in S_1 be F_1. The two E_2 modes in S_2 are F_2. The right part (L/4 ≤ x ≤ L/2) of the E_2 (2.93 GHz) profile is the same as the E_1 profile in S_1. E_1 (2.93 GHz) is F_1 in S_2. The left part of the E_2 (3.65 GHz) profile is a variation of the E_1 (2.93 GHz) profile. E_2 (3.65 GHz) is F_1 in S_2. The three E_3 modes in S_3 are F_3. The right parts of the E_3 (4.24 GHz and 5.09 GHz) profiles are similar to the E_2 profiles in S_2. The two E_3 modes are F_2 in S_3. The left part of the E_3 (4.72 GHz) profile is a variation of the E_2 (4.24 GHz) profile. E_3 (4.72 GHz) is F_2 in S_3. The five EC_4 modes in S_4 are F_4. The right parts of the EC_4 (4.04 GHz, 4.98 GHz, and 5.49 GHz) profiles are similar to the E_3 profiles in S_3. The three EC_4 modes are F_3 in S_4. The left parts of the EC_4 (4.30 GHz and 4.70 GHz) profiles are variations of the EC_4 (4.98 GHz and 4.04 GHz, respectively) profiles. The two EC_4 modes are F_2 in S_4. The right part of the EC_4 (4.94 GHz) profile is the same as the C_3 profile in S_1. C_3 (4.94 GHz) is F_1 in S_1. The left part of the C_3 (5.61 GHz) profile is a variation of the C_3 (4.94 GHz) profile. C_3 (5.61 GHz) is F_1 in S_1. The three C_3 modes in S_3 are F_3. The right parts of the C_3 (5.35 GHz and 6.38 GHz) profiles are the same as the C_2 profiles in S_2. C_3 (5.35 GHz and 6.38 GHz) are F_2 in S_3. The left part of the C_3 (5.72 GHz) profile is a variation of the C_3 (5.35 GHz) profile. C_3 (5.72 GHz) is F_2 in S_3. The EC_4 modes are considered in the same way as mentioned above.

Origin of recursive evolution. Next, in order to identify the splits of the spin-waves excited in S_n with respect to A_n, we plotted the contours of FFT power for the frequency and the longitudinal x-direction, as shown in the bottom row of Fig. 4. In the upper row of Fig. 4, we also plotted the spatial distributions of the total magnetic energy density (ε_tot), as expressed by

$$\epsilon_{tot} = -\frac{\mu_0}{2V_{mesh}} \int M \cdot \left(H_{Zeem} + H_{demag} \right) dV_{mesh} + A_{exch} \int |\nabla M|^2 dV_{mesh},$$

where H_{Zeem} and H_{demag} are the Zeeman and demagnetization fields, respectively, M is the magnetization, A_{exch} is the exchange constant, and V_{mesh} is the volume of the mesh. The gray-colored regions depict the locations of the antidots inside each motif. The color of each plot matches with the y-slice index (the black box) at the bottom of Fig. 4. The FFT powers along the x distance (0 ≤ x ≤ L/2) agree well with the spatial distributions of the total energy density in terms of the x position. For example, the FMR mode was excited in the thin film (denoted as S_0) at 5.10 GHz, as indicated by the homogeneous total energy distribution. The recursive sequence (F_n) marked at the top of Fig. 4 denotes the evolution of both the total magnetic energy and the frequency of the eigenmodes.
The right region ($L/4 \leq x \leq L/2$) of S_{n+1} is F_n. The appearance of F_n in S_{n+1} is similar to F_n in S_n. The left region ($0 \leq x < L/4$) of S_{n+1} is G_n, which is a variation of F_n in S_{n+1}.

In S_n, at a similar frequency to that of the FMR mode, the C_1 mode was excited at 5.02 GHz in the region of $D/2 < x < L/2$. To be specific, the FFT power spatially informed that the C_1 mode started to be excited at the end of the E_1 mode (1.77 GHz) in terms of the x position. This profile well matches the total energy distribution of $S_n (=A_n)$. The magnetic energy variation inside the magnonic crystal corresponds to the localization of the quantized spin-wave modes. The mode arrangement of A_n was similar to that of A_1. The C_2 mode of A_2 was excited at 5.03 GHz, whereas the E_2 mode was excited at 3.00 GHz. With regard to S_3, the E_2 and C_2 modes were split into doublets. Due to the existence of the A_1 antidot on the left side of the A_2 antidot, the energy profile on the left side is different from the right side of the A_2 antidot. The C_3 mode and the shifted C_2 mode were hybridized together, as shown in Fig. 3. In S_3, the magnetic energy profile inside the motif was divided into three distinct regions. Therefore, the E_3 mode at 4.42 GHz in A_3 became split into three modes at 4.24, 4.72, and 5.09 GHz in S_3. Similarly, the C_5 mode at 5.50 GHz in A_5 split into triplets (5.35, 5.72, and 6.38 GHz) in S_5. In A_4, the C_6 mode was excited at 4.45 GHz, and the excitation profile showed that the edge and center modes had been hybridized into a single mode. Then, for S_4, the EC_4 mode was split into five modes (quintets). Since the E_3 mode of A_3 and the EC_4 mode of A_4 were excited at almost an equal frequency, a total of 8 split modes (the E_3 triplets plus the EC_4 quintets) in S_4 were mixed up. The total energy distribution of S_4 is complicated compared with those of the previous motifs, because of the complex arrangement of antidots inside S_4.

The self-similarity of the fractal motifs introduces aperiodic arrangements of antidots in recursive order. In S_n, the total magnetic energy (most dominantly demagnetization energy) of the nth antidot array (A_n) became aperiodic since the previous antidots modulated the magnetization configurations around A_n antidots. The aperiodic energy variation inside the antidot-lattice fractals gives rise to the multiplets of the spin-wave eigenmodes under the recursive evolution. The energy aperiodicity can be induced according to the geometric parameters of the externally applied magnetic fields in order to make the magnons’ multiplets degenerate. As the dot-to-dot distance increased, the extent of aperiodicity decreased, and then the magnons’ modes became degenerated (see Supplementary Fig. S5). In the same way, as the strength of the external magnetic field increased, the split modes were reunited (see Supplementary Fig. S3).

Origin of spin-wave multiplets. Finally, in order to examine the difference of the magnonic excitations between the fractal and non-fractal structures, we conducted the same simulation for the non-fractal, 2D type of NaCl lattice where two different radius holes are arranged alternately. This type of antidot-lattice has been studied under different terminologies, either composite-antidot array32,33 or bi-component antidot-lattice16,17. To avoid confusion, the term ‘2D NaCl type’ is employed to describe the antidot-lattice with alternating different diameters. The two antidot sublattices of A_1 and A_2 compose S_2 as well as 2D NaCl type. In S_2, they satisfy the initiator-generator relationship with $L_2 = L_1/2$ and $D_2 = D_1/2$. In 2D NaCl type geometry, both antidots exist in the 1:1 ratio, since $L_2 = L_1$ but $D_2 = D_1/2$. The location of the A_1 antidot is asymmetric to that of the A_2 antidot in the S_2 motif, while it is symmetric in the 2D NaCl type motif. In both structures, antidots of L_1 ($L_1 = 1400$ nm and D_1 ($D_1 = 300$ nm were used, while a 30 mT strength of magnetic field was applied in the $+x$-direction.

Figure 5 shows the FFT power versus frequency and the x position ($0 \leq x \leq L/2$) along with the total energy (E_{tot}) density distribution. In the range of $f = 1 \sim 6$ GHz, the E_1, E_2, and C_2 modes appeared noticeably in both S_2 and 2D NaCl type. Both of the E_1 modes were independent singlets derived from the A_1 antidots in both patterns. The only difference was that the E_1 mode in S_2 was excited at a slightly higher frequency, since the total magnetic field near the ends of the A_1 antidots in S_2 was higher than that of 2D NaCl type. The E_2 and C_2 modes appeared as doublets only in S_2, whereas those modes were typical singlets in 2D NaCl type. In a comparison of the energy distributions between the two structures, the above difference resulted from the asymmetry of the internal energy about $x = L/4$. Unlike S_2, the non-fractal 2D NaCl type has the same energy distribution at both sides of the A_1 hole; i.e., it shows a mirror symmetry about $x = L/4$. For S_2, the asymmetry of the total magnetic energy inside the fractal magnonic crystal is the origin of the spin-wave multiplets.

Discussion

The proposition of novel magnonic crystals composed of antidot-lattice fractals enlarges a basic understanding of quantized spin-wave modes. The fractals of 2-Hausdorff dimensions were constructed by the superposition of self-similar antidot-lattices. Local asymmetries inside the aperiodic magnonic motifs result in the split of the spin-wave eigenmodes: the edge mode, the center mode and the center-vertical mode (see Supplementary Fig. S5b,c). Due to the recursive sequence from the geometrical fractal growth, the local asymmetries inside the antidot-lattice fractals split the spin-waves into multiplets in the frequency spectra, showing the same recursive development. The split modes were finely localized into their own characteristic regions enabling selective excitation of the local area inside the magnonic crystals. Some of those split modes were reunited (or even duplicated) by the variations of the strength and direction of applied bias magnetic fields (see Supplementary Figs. S3 and S4, respectively). The reunion and the crossover among those finely divided modes would make the most of an active control with the bias magnetic field and the crystal geometry design (see Supplementary Fig. S5).

The proliferous standing spin-wave modes with fine localizations would be good candidates for magnonic devices that require diminutive excitation in a certain area of 2D nano-oscillators, memory devices, and sensors.

Methods

Micromagnetic simulation procedure. In the present simulations, we used an open-source software, MuMax334, which incorporates the Landau-Lifshitz-Gilbert equation35,36 along with GPU acceleration to solve the dynamic motions of individual magnetizations in given magnonic crystals, for example, as shown in Fig. 1c.
There, the motif, the S2 fractal marked by a dashed square box, was extended to sufficiently large dimensions (100 μm × 100 μm × 10 nm) with a periodic boundary condition in order to avoid the distortions of the static and dynamic magnetizations at the discontinuous boundaries of its finite dimensions. The sizes of unit cells in the simulations were set up to 5 nm × 5 nm × 10 nm. The material parameters used for Permalloy (Py: Ni80Fe20) were as follows: gyromagnetic ratio \(\gamma = 2.211 \times 10^5 \text{[m/A s]} \), saturation magnetization \(M_s = 8.6 \times 10^5 \text{[A/m]} \), exchange stiffness \(A_{\text{ex}} = 1.3 \times 10^{-11} \text{[J/m]} \), damping constant \(\alpha = 0.01 \), and zero magnetic anisotropy constant, \(K_1 = K_2 = 0 \text{[J/m}^3\text{]} \).

In order to excite spin-wave modes in the given magnonic crystals, we used a sinc (sine-cardinal) field as expressed by \(h(t) = h_0 \sin\left[2\pi f_0(t - t_0)\right]/\left[2\pi f_0(t - t_0)\right] \) with \(\mu_0h_0 = 1 \text{ mT} \), \(f_0 = 20 \text{ GHz} \), \(t_0 = 1 \text{ ns} \), and \(t = 100 \text{ ns} \). This pumping field was applied along the film normal under a dc bias field of \(\mu_0H_{\text{bias}} = 30 \text{ mT} \) applied in the +x direction (The eigenmodes of antidot-lattice fractals were stabilized at magnetic fields of greater strength than 20 mT; see Supplementary Fig. S3). The temporal oscillations of local magnetizations at each cell were transformed into the frequency domain via Fast Fourier Transforms (FFTs).

Received: 20 August 2021; Accepted: 11 October 2021
Published online: 19 November 2021

References
1. Möttönen, M., Vartiainen, J. J., Bergholm, V. & Salomaa, M. M. Quantum circuits for general multiqubit gates. *Phys. Rev. Lett.* **93**, 130502 (2004).
2. Flindt, C., Novotný, T., Braggio, A., Sassetti, M. & Jauho, A.-P. Counting statistics of non-Markovian quantum stochastic processes. *Phys. Rev. Lett.* **100**, 150601 (2008).
3. Hormozi, L., Zíkös, G., Bonesteel, N. E. & Simon, S. H. Topological quantum compiling. *Phys. Rev. B* **75**, 165310 (2007).
4. Mitchison, G. J. Phyllotaxis and the Fibonacci series: An explanation is offered for the characteristic spiral leaf arrangement found in many plants. *Science* **196**, 270–275 (1977).
5. Mandelbrot, B. B. *Fractals: Form, Chance, and Dimension* (W. H. Freeman & Co., 1977).
6. Lee, K.-S., Han, D.-S. & Kim, S.-K. Physical origin and generic control of magnonic band gaps of dipole-exchange spin waves in width-modulated nanostrip waveguides. *Phys. Rev. Lett.* **102**, 127202 (2009).
7. Kim, S.-K. Micromagnetic computer simulations of spin waves in nanometre-scale patterned magnetic elements. J. Phys. D: Appl. Phys. 43, 264004 (2010).
8. Joritzc, J. et al. Spin wave wells in nonellipsoidal micrometer size magnetic elements. Phys. Rev. Lett. 88, 047204 (2002).
9. Mruczkiewicz, M. et al. Standing spin waves in magnonic crystals. J. Appl. Phys. 113, 093908 (2013).
10. Martynov, O. N. et al. Ferromagnetic resonance study of thin film antidot arrays: Experiment and micromagnetic simulations. Phys. Rev. B 75, 174429 (2007).
11. Yu, C., Pechan, M. J., Burgei, W. A. & Mankey, G. J. Lateral standing spin waves in permalloy antidot arrays. J. Appl. Phys. 95, 6648 (2004).
12. Neusser, S., Botters, B. & Grundler, D. Localization, confinement, and field-controlled propagation of spin waves in Ni81Fe19 antidot lattices. Phys. Rev. B 78, 054406 (2008).
13. Mandal, R. et al. Optically induced tunable magnetization dynamics in nanoscale Co antidot lattices. ACS Nano 6, 3397–3403 (2012).
14. Tacchi, S. et al. Universal dependence of the spin wave band structure on the geometrical characteristics of two-dimensional magnonic crystals. Sci. Rep. 5, 10367 (2015).
15. Vovk, A., Malkinski, L., Golub, V., Whittenburg, S. & O'Connor, C. Preparation, structural characterization, and dynamic properties investigation of permalloy antidot arrays. J. Appl. Phys. 97, 10J506 (2005).
16. Tacchi, S. et al. Forbidden band gaps in the spin-wave spectrum of a two-dimensional bicomponent magnonic crystal. Phys. Rev. Lett. 109, 137202 (2012).
17. Tripathy, D., Vavassori, P., Porro, J. M., Adeyeye, A. O. & Singh, N. Magnetization reversal and anisotropic magnetoresistance behavior in bicomponent antidot nanostructures. Appl. Phys. Lett. 97, 042512 (2010).
18. Krivoruchko, V. N. & Marchenko, A. I. Apparent sixfold configurational anisotropy and spatial confinement of ferromagnetic resonances in hexagonal magnetic antidot lattices. J. Appl. Phys. 109, 083912 (2011).
19. Hu, X. K., Sievers, S., Müller, A. & Schumacher, H. W. The influence of individual lattice defects on the domain structure in magnetic antidot lattices. J. Appl. Phys. 113, 103907 (2013).
20. Frotanpour, A. et al. Magnetization dynamics of a Fibonacci-distorted kagome artificial spin ice. Phys. Rev. B 102, 224435 (2020).
21. Lisiecki, F. et al. Magnons in a quasicrystal: propagation, extinction, and localization of spin waves in Fibonacci structures. Phys. Rev. Appl. 11, 054061 (2019).
22. Lisiecki, F. et al. Reprogrammability and scalability of magnonic Fibonacci quasicrystals. Phys. Rev. Appl. 11, 054003 (2019).
23. Watanabe, S., Bhat, V. S., Baumgaertl, K. & Grundler, D. Direct observation of worm-like nanochannels and emergent magnon motifs in artificial ferromagnetic quasicrystals. Adv. Funct. Mater. 30, 2001388 (2020).
24. Swoboda, C., Martens, M. & Meier, G. Control of spin-wave excitations in deterministic fractals. Phys. Rev. B 91, 064416 (2015).
25. Dai, Y. Y., Wang, H., Yang, T. & Zhang, Z. D. Controlled magnetization reversal and magnetic spectra of artificial Sierpiński-fractal structure. J. Magn. Magn. Mater. 483, 70–75 (2019).
26. Barman, A., Mondal, S., Sahoo, S. & De, A. Magnetization dynamics of nanoscale magnetic materials: A perspective. J. Appl. Phys. 128, 17901 (2020).
27. Veen, E. V., Yuan, S., Katsnelson, M. I., Polini, M. & Tomadin, A. Quantum transport in Sierpiński carpets. Phys. Rev. B 93, 115428 (2016).
28. Fremling, M., van Hooft, M., Smith, C. M. & Fritz, L. Existence of robust edge currents in Sierpiński fractals. Phys. Rev. Res. 2, 013044 (2020).
29. De Nicola, F. et al. Multiband plasmonic Sierpiński carpet fractal antennas. ACS Photonics 5, 2418–2425 (2018).
30. Yang, Z., Lustig, E., Lumer, Y. & Segev, M. Photonic Floquet topological insulators in a fractal lattice. Light Sci. Appl. 9, 120 (2020).
31. Hausdorff, F. Dimension und außerst Maß. Math. Ann. 79, 157–179 (1918).
32. Vasseur, J. O., Dobrzensky, L., Djafari Rouhani, B. & Puszkarski, H. Magnon band structure of periodic composites. Phys. Rev. B 54, 1043 (1996).
33. Silhanek, A. V. et al. Enhanced vortex pinning by a composite antidot lattice in a superconducting Pb film. Phys. Rev. B 72, 014507 (2005).
34. Vansteenkiste, A. et al. The design and verification of MuMax3. AIP Adv. 4, 107133 (2014).
35. Landau, L. D. & Lifshitz, E. M. On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Z. Sowjet. 8, 153–169 (1935).
36. Gilbert, T. L. A Lagrangian formulation of the gyromagnetic equation of the magnetization field. Phys. Rev. 100, 1243 (1955).

Acknowledgements
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (Grant No. I-AM35-21(0417-20210049)). The Institute of Engineering Research at Seoul National University provided additional research facilities for this work.

Author contributions
S.K.K. and G.P. conceived the main idea and the conceptual design of the experiments. G.P. performed the micromagnetic simulations. G.P., J.Y., and S.K.K. analyzed the data. S.K.K. and G.P. led the work and wrote the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-00417-0.

Correspondence and requests for materials should be addressed to S.-K.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
