Abstract

Background: Horizontal gene transfer (HGT) played an important role in shaping microbial genomes. In addition to genes under sporadic selection, HGT also affects housekeeping genes and those involved in information processing, even ribosomal RNA encoding genes. Here we describe tools that provide an assessment and graphic illustration of the mosaic nature of microbial genomes.

Results: We adapted the Maximum Likelihood (ML) mapping to the analyses of all detected quartets of orthologous genes found in four genomes. We have automated the assembly and analyses of these quartets of orthologs given the selection of four genomes. We compared the ML-mapping approach to more rigorous Bayesian probability and Bootstrap mapping techniques. The latter two approaches appear to be more conservative than the ML-mapping approach, but qualitatively all three approaches give equivalent results. All three tools were tested on mitochondrial genomes, which presumably were inherited as a single linkage group.

Conclusions: In some instances of interphylum relationships we find nearly equal numbers of quartets strongly supporting the three possible topologies. In contrast, our analyses of genome quartets containing the cyanobacterium *Synechocystis* sp. indicate that a large part of the cyanobacterial genome is related to that of low GC Gram positives. Other groups that had been suggested as sister groups to the cyanobacteria contain many fewer genes that group with the *Synechocystis* orthologs. Interdomain comparisons of genome quartets containing the archaeon *Halobacterium* sp. revealed that *Halobacterium* sp. shares more genes with Bacteria that live in the same environment than with Bacteria that are more closely related based on rRNA phylogeny. Many of these genes encode proteins involved in substrate transport and metabolism and in information storage and processing. The performed analyses demonstrate that relationships among prokaryotes cannot be accurately depicted by or inferred from the tree-like evolution of a core of rarely transferred genes; rather prokaryotic genomes are mosaics in which different parts have different evolutionary histories. Probability mapping is a valuable tool to explore the mosaic nature of genomes.

Background

The introduction of small subunit ribosomal RNA as a tool in microbial taxonomy by Carl Woese and George Fox [1] led most microbiologists to assume that the concepts of animal and plant taxonomy could be extended to the realm of prokaryotes. In particular, it was assumed...
that a natural taxonomic system for microorganisms was feasible [2]. The goal of a natural taxonomic system is the formation of taxonomic groups that are defined by shared ancestry [3]. By definition, an ancestor that defines a monophyletic group can only give rise to members of this group. No organism outside this group has a lineage that traces back to the same ancestor (paraphyletic group); however, there might be earlier ancestors that define more inclusive monophyletic groups. The metaphor for organismal evolution that underlies a natural taxonomic system is a strictly bifurcating tree of species. A decade ago ribosomal RNA promised that one day it might be possible to place every extant organism on a universal tree of life, and the hope was that more genomic sequences would make this placement more accurate.

However, the analyses of completely sequenced genomes initiated a reassessment of concepts in microbial evolution [4]. While some molecular markers were found to agree with one another e.g., [5], others do not [6–12]. Transfer of genetic information between divergent organisms has turned the tree of life into a net or web [13], and genomes into mosaics. Different parts of genomes have different histories, and representing the history of genome evolution as a single tree appears inconsistent with the data. Nevertheless, the assumption of a tree-like process still underlies many approaches. Genome content trees have been calculated based on the presence and absence of genes [14–16] or types of protein folds [17]. While there is limited agreement between genome and rRNA phylogeny, at present it remains unclear whether this similarity is based on shared ancestry of part of a less frequently exchanging genome core [18], or if the apparent congruence is itself the result of horizontal gene transfer [19].

Overall genome content is not best represented on a single tree. Fig. 1 gives an example of an alternative depiction, where thickness of a line reflects percentage of genes shared between two genomes. The coherence among the three domains of life (Bacteria, Archaea, Eucarya [20]), is clearly reflected in genome content; i.e., Archaea share more genes with other Archaea than with Bacteria, but many features are incompatible with representing the relationships between different genomes as a tree. For example, the mesophilic euryarchaeon Halobacterium sp. has more genes in common with the mesophilic Bacteria than does the thermophilic crenarchaeote Aeropyrum pernix. However, the extremophilic euryarchaeote Archaeoglobus fulgidus shares many more genes with the extremophilic bacteria, Aquifex aeolicus and Thermotoga maritima than does Halobacterium. While this example illustrates the web-like relationships among genomes, recent phylogenetic reconstructions from molecular data have explored only few alternatives to the tree-paradigm (e.g. [21,22]).

One obvious drawback of the star-like representation in Fig. 1 is that it utilizes BLAST search results only. Any phylogenetic information retained in the sequences is not utilized beyond the presence or absence decision based on a single expectation value cut-off. Because of recombination, individual genes themselves might be mosaic [23]; however, within-gene recombination of protein coding genes occurs mostly between closely related organisms. The redundancy of the genetic code greatly reduces recombination between divergent proteins. Even if a region is 100% conserved on the amino acid level, the encoding DNA can be so different as to allow the mismatch repair system to prevent recombination. For studies of single divergent orthologous protein encoding genes the assumption of a tree-like evolutionary history remains a reasonable expectation. In this manuscript we focus on methods that utilize the phylogenetic information that is retained in molecular sequence data, while not presuming that genomes as a whole evolved in a tree-like fashion.

In an elegant approach Korbinian Strimmer and Arndt von Haeseler [24] utilized Bayesian posterior probabilities to assess the phylogenetic information contained in an alignment of four homologous sequences. With four sequences there are only three possible tree topologies, and thus the three posterior probabilities corresponding to these three trees must sum up to one. Utilizing a barycentric coordinate system, the resulting probability vector is represented as a point in an equilateral triangle (Fig. 2), where the distances of the point P to the three sides represent the three probabilities. Strimmer and von Haeseler applied this approach to depict the phylogenetic information content present in a multiple sequence alignment. They plot the results from the analyses of all possible quartets, where the four sequences are selected from a single multiple sequence alignment in the same coordinate system. If there is a lot of phylogenetic information in the alignment, then most probability vectors will fall close to one of the corners; conversely datasets containing little phylogenetic information will mainly result in vectors falling into the center of the triangle. Here we explore the application of this and similar approaches in comparative genome analyses. In particular, we compare different approaches to calculate Bayesian posterior probabilities, and we compare these probabilities to the more widely used bootstrap support values. We assess the reliability of the different probability mapping approaches through their application to mitochondrial genomes, and we illustrate their usefulness by mapping selected interphylum and interdomain relationships.

Results and Discussion
Overview of data flow in probability mapping
An outline of our approach to genome probability mapping is given in Figure 3. Using SEALS [25] and MySQL we
developed scripts that identify and retrieve quartets of orthologous protein-encoding open reading frames (QuartOPs) from four selected genomes. We use the term genome to denote the collection of all ORFs identified in a genome. (In the case of genomes that are not well annotated, it is feasible to use a very wide definition of ORF, e.g., all amino acid sequences encoded between two stop codons in any of the six possible reading frames. As long as one of the genomes included in the analyses is properly annotated, only those identified ORFs that are actually homologous to an identified ORF will become part of a quartet of orthologs.) We utilize an operational definition of an ortholog: two open reading frames are considered orthologous, if and only if they are each other's top scoring BLAST hit when one is used as a query to search the other genome. A QuartOP is formed when each of the open reading frames picks the other members of the quartet as the top scoring hit in searches of the respective genomes. QuartOPs are similar to the clusters of orthologous groups (COGs) maintained by the NCBI [26–28], but differ in that COGs require only unidirectional, circular best hit relationships for three of the reference genomes, whereas we require the reciprocal top hit relationship for the four genomes included in a quartet, and we do not limit our identification of QuartOPs to a number of reference genomes. Montague and Hutchison
The probability for topology \(T_3 \) is calculated using the three maximum likelihoods to calculate the likelihood for each of the three topologies given the data. We then use the three maximum likelihoods to calculate the likelihood for each of the three topologies given the data.

Routinely we calculated these probabilities using Strimmer’s and von Haeseler’s approach \[24\]: Using each of the three possible tree topologies given the aligned QuartOP, each of the aligned QuartOPs from a genome quartet was analyzed with respect to the posterior probability of the three topologies. Geometrically, each of the coordinates \((p_1, p_2, p_3)\) equals the distance between \(P \) and the side of the triangle opposite the corresponding vertex. Points closer to a vertex \(T_i \) have a larger corresponding probability \(p_i \) and represent a more probable tree topology than the two alternatives. All the points are classified by their position in one of three zones: "total" zone, "90%" zone and "99%" zone, which are depicted schematically and not drawn to scale. In this diagram, point \(P \) corresponds to a dataset which has highest probability for the topology \(T_3 \), but the probability is below 90%, so the point \(P \) is located in the "total" zone, but not in the 99% or 90% zone. Figure adapted from \[24\].

Figure 2
Mapping of the probability vector onto an equilateral triangle. Each QuartOP is represented as a probability vector \(P \) inside an equilateral triangle. The position of \(P \) is determined by the barycentric coordinates \((p_1, p_2, p_3)\), which correspond to the posterior probabilities or bootstrap support values of the three possible tree topologies. The vertices of the triangle \(T_1, T_2 \) and \(T_3 \) represent the three possible unrooted tree topologies.

Utilized a comparable approach in their definition of congruent COGs \[29\]. So far we have analyzed 68 genome quartets (see supplementary material). The number of QuartOPs identified per genome quartet ranges from 82 (for genome quartet #6: *Deinococcus radiodurans, Treponema pallidum, Escherichia coli*, and *Halobacterium sp.*) to 1182 (for genome quartet #63: *Agrobacterium tumifaciens, Sinorhizobium meliloti, Mezorhizobium loti* and *Caulobacter crescentus*).

Each of the aligned QuartOPs from a genome quartet was analyzed with respect to the posterior probability of the three possible tree topologies given the aligned QuartOP. Routinely we calculated these probabilities using Strimmer’s and von Haeseler’s approach \[24\]: Using each of the three topologies as a user tree, we calculated the maximum likelihood for each of the three topologies given the data. We then use the three maximum likelihoods to calculate the probability for topology \(i \) according to the formula: \(P_i = L_i / (L_1 + L_2 + L_3) \), where \(L_i \) is the likelihood for the best tree given topology \(i \). Other types of reliability measures used to evaluate QuartOPs were bootstrap support values and Bayesian posterior probabilities estimated using MrBayes program (see below).

An example for the comparison of four genomes from different phyla is given in Fig. 4A. Surprisingly, each of the three tree topologies is strongly supported by more than 40 QuartOPs, and most of the QuartOPs appear to strongly support one of the trees. None of the three possibilities has majority support. Figure 5 lists the functional categories of those QuartOPs that strongly support the different tree topologies. None of the categories shows a preference for a particular tree topology. For each tree topology more than 50% of the strongly supporting QuartOPs belong to the category "information storage and processing", while this category contains only about 1/3 of the genes present in the genomes. While the genes in this category appear more conserved and phylogenetically informative, the strong support that the genes in this category provide is nearly evenly split between the three possibilities.

Figure 3
Data flow for the genome quartet analysis. See Materials and Methods for details.
with posterior probability larger than 90% and 99%, respectively). To access the level of sequence conservation within the QuartOPs' sequences, we calculated the average percentage of pairwise identity per QuartOP. It varied from 40.53 ± 10.54% to 43.84 ± 9.7% when the E-value cutoff was varied between 10^-2 and 10^-20 (see supplementary material for the summary table). While pairwise sequence identity is not a universally dependable measure of phylogenetic information content, these values illustrate that the sequences within a QuartOP are neither identical to one another, nor so divergent as to be saturated with substitutions and of questionable homology [30]. Using only the most conserved QuartOPs does not change the qualitative result: each of the three possible tree topologies is supported by about an equal number of QuartOPs (see supplementary material).

We recalculated the likelihoods for all QuartOPs in genome quartet #8 using a model that incorporates among site rate variation (ASRV). The posterior probabilities calculated according to Strimmer and von Haeseler did not change dramatically and each of the three tree topologies is still supported by roughly equal number of QuartOPs. The maps for this analysis are available in the supplementary material.

Estimating Bayesian Posterior Probabilities

The formula used by Strimmer and von Haeseler [24] to calculate posterior probabilities (i.e. the probability that tree topology T_i is true given an aligned set of four sequences) considers only three trees (i.e. branch lengths and topology), each with the same prior probability. These three trees are those that have the highest likelihood for the three possible topologies. However, there are infinitely many other trees that differ from the three chosen ones only by differences in branch lengths. What is the effect on the calculated posterior probability of using only the single best tree as a representative of all the trees with the same topology? There is no *a priori* reason to exclude the other trees that have slightly lower likelihoods.

A different approach that does not make these assumptions is the use of Markov Chain Monte Carlo methods to explore tree space. We used the program MrBayes written by Huelsenbeck and Ronquist [31]. Using a QuartOP with posterior probabilities of .76, 10 and .13 we explored different parameter choices for the biased random walk through tree-space. We chose two chains with 5,000 burn-in cycles, and 25,000 cycles with sampling after every cycle as a compromise between increased precision of the probability estimate and computation time (see Materials and Methods for more details).

The result of calculating the posterior probabilities of all QuartOPs in genome quartet #8 is given in figure 4B.

Figure 4

Maps of a genome quartet with organisms from four different bacterial phyla: *Escherichia coli* (Gram negative), *Deinococcus radiodurans* (Deinococcales), *Bacillus subtilis* (Gram positive) and *Treponema pallidum* (spirochete). Tree topologies assigned to the vertices are depicted in New Hampshire tree format near the corresponding vertex of the triangle and they are equivalent to the unrooted tree topologies as depicted in Figure 2. The three numbers associated with each tree topology indicate how many QuartOPs fall into each of the three zones: "total", 90% and 99% respectively. For definition of zones see figure 2. A) Probabilities are calculated according to Strimmer and von Haeseler [24]. There is no single topology that is supported by the majority of the QuartOPs and all three possible tree topologies are supported by roughly equal number of QuartOPs at the different probability levels. B) Probabilities are calculated with MrBayes program [31]. C) Bootstrap support values are plotted. For this case the zones are "total", 70% and 90% support, respectively. Bootstrapping appears to provide a more conservative reliability estimate than the posterior probabilities used in cases A and B. Nevertheless, each tree topology is still supported by a roughly equal number of bootstrapped datasets.
samples supports one of the three possible topologies, thus the sum of the bootstrap support values for the three topologies adds up to 100%, and the percentage of bootstrapped samples for each QuartOP that best supported each tree was again plotted in a barycentric coordinate system (Fig. 4C). Many more QuartOPs map into the central region of the triangle as compared to Figure 4A and 4B. Clearly, for this test bootstrap support values are more conservative measures of support than either of the posterior probabilities calculated above. Nevertheless, there are still several QuartOPs that strongly support each of the three tree topologies; however, there are 22 QuartOPs that support grouping E. coli with Treponema pallidum with better than 90% bootstrap support, whereas the alternatives are supported by only 12 and 13 QuartOPs, respectively. Comparing Figures 4A and 4C it appears that in analyzing quartets 70% bootstrap support is comparable to .99 posterior probability calculated according to [24].

Comparison of the different reliability assessment tools

ML-mapping according to [24] is the least conservative of the tools explored. For the test cases analyzed a posterior probability of .99 according to [24], corresponds to a Bayesian posterior probability of .90 calculating using a Markov chain exploration of tree-space using [31] and about 70% bootstrap support. We did not find a strong dependence of the results on the substitution models used in calculating likelihoods and separate runs indicated satisfactory precision of the calculated probabilities and bootstrap values. Given that we only analyzed about 300 QuartOPs using all three approaches it would be premature to generalize our findings; however, other analyses that utilized both bootstrapping and Bayesian posterior probabilities also found bootstrapping to be more conservative than posterior probabilities calculated using Bayesian methods with Markov chain Monte Carlo sampling (e.g., [33–35]).

Mitochondrial genomes

While gene transfer into the mitochondrial genomes has been inferred [36–39], mitochondrial genomes are expected to have undergone many fewer legitimate and illegitimate recombination events than free-living prokaryotes. Clearly, if probability mapping is to be considered a reliable approach, we expect that when analyzing quartets of mitochondrial genomes, the different genes should all support the same tree topology.

In most instances, this expectation is fulfilled (see Table 1), even though we selected instances in which the splits could be expected to be ill resolved, e.g., echinoderm, mammal, insect, mollusk (m4), or protist, fungus, animal, plant (m7). The only exception was an ORF in quartet m7 that encodes the cytochrome oxidase subunit II. This ORF did not support grouping the animal with the
fungal homolog as expected; rather it grouped the protist and animal homologs together (posterior probability according to [24] was t 0.99). Inspection of the aligned sequences (Fig. 6) revealed that there are more residues shared between the homologs from *Cafeteria roenbergensis* and *Homo sapiens* than between the homologs from *Cafeteria roenbergensis* and *Arabidopsis thaliana*. No artifact that could be responsible for this unexpected grouping was detected. The same high support for this unexpected grouping is also recovered in bootstrap analysis and in posterior probabilities calculated with MrBayes [31].

The finding of a QuartOP in a mitochondrial genome quartet that supports a non-traditional grouping could either reflect a rare recombination event, selection pressures that led to convergent evolution in two lineages, or a chance event – if one looks at enough samples one will find some that (considered by themselves) appear significant. At present it is not possible to decide between these three possible explanations. Our analysis of mitochondrial genomes shows that in most instances the calculated probabilities (ML-mapping, Bayesian posterior probabilities, or bootstrap values) support the expected tree topologies, albeit with surprisingly strong support values. Rarely, unexpected groupings can be recovered and support for these probably erroneous groupings can be high. In most instances the ML-mapping approach accurately revealed the expected relationships between the mitochondrial genomes. This confirms the suitability of this approach in genome analyses.

Interphylum genome quartets

Here we focus on examples that illustrate the utility of the probability mapping approach. Focusing on the relation-

#	Genome 1	Genome 2	Genome 3	Genome 4	((1,2),3,4)	((1,3),2,4)	((1,4),2,3)						
m1	Drosophila	Ceratitis capitata	Apis mellifera	((1,2),3,4)	9	8	8	0	0	0	1	0	0
	melanogaster		ligustica										
	yakuba												
m2	Alligator	Opossum	Stork	Donkey	0	0	0	11	11	11	0	0	0
m3	Turtle	Opossum	Stork	Donkey	0	0	0	12	12	12	0	0	0
m4	Starfish	Donkey	Fruit Fly	Doorsnail	8	7	7	2	1	1	0	0	0
m6	Reclinomonas	Saccharomyces	Arabidopsis	Homo sapiens	0	0	0	4	3	3	0	0	0
	americana	cerevisiae	thaliana										
m7	Cafeteria	Saccharomyces	Arabidopsis	Homo sapiens	0	0	0	3	2	2	1	1	1
	roenbergensis	cerevisiae	thaliana										

The groupings corresponding to the expected organismal phylogenies are given in bold. The three numbers in each table cell correspond to the three approaches used. The top number corresponds to results obtained using Strimmer and von Haeseler’s approach [24], the middle number corresponds to results obtained using MrBayes program [31], and the bottom number corresponds to results of bootstrap support values calculation. Column “Tot.” lists the number of QuartOPs from “total” zone, column A lists the number of QuartOPs from “90%” zone (70% for bootstrap support), and column B lists the number of QuartOPs from “99%” zone (90% for bootstrap support). For definition of zones see Fig. 2. With the exception of the one dataset for quartet #m7, the analyses proved to be consistent with organismal tree topologies. The alignment for the exceptional dataset is presented in Fig. 6. The common names for the organisms listed correspond to the following scientific names: alligator corresponds to *Alligator mississippiensis*, opossum to *Didelphis virginiana*, stork to *Ciconia ciconia*, donkey to *Equus asinus*, turtle to *Chelonia mydas*, starfish to *Asterina pectinifera*, doorsnail to *Albinaria caerulia*, fruit fly to *Drosophila melanogaster*.
There are nine parsimony informative positions favoring the \((\text{Homo sapiens, Cafeteria), Saccharomyces, Arabidopsis})\) tree topology. As can be seen, the majority of the matches are in favor of \((\text{Homo sapiens, Cafeteria), Arabidopsis, Saccharomyces, Arabidopsis})\) tree topology. The exact numbers of QuartOPs that support the unexpected \((\text{Homo sapiens, Cafeteria)})\) grouping are listed in Table 1.)

The alignment for the control mitochondrial quartet \(m7\) (see Table 1) that supports the unexpected \((\text{Homo sapiens, Cafeteria), Saccharomyces, Arabidopsis})\) topology. As can be seen, the majority of the matches are in favor of \((\text{Homo sapiens, Cafeteria), Arabidopsis, Saccharomyces, Arabidopsis})\) tree topology. There are nine parsimony informative positions favoring the latter topology, and only three for each of the other two topologies.

Figure 6
Alignment of mitochondrial cytochrome oxidase subunit II. The alignment for the control mitochondrial quartet \(m7\) (see Table 1) that supports the unexpected \((\text{Homo sapiens, Cafeteria), Saccharomyces, Arabidopsis})\) topology. As can be seen, the majority of the matches are in favor of \((\text{Homo sapiens, Cafeteria), Arabidopsis, Saccharomyces, Arabidopsis})\) tree topology. There are nine parsimony informative positions favoring the latter topology, and only three for each of the other two topologies.

Interdomain genome quartets

In our search for the "sister-phylum" to the cyanobacteria we also analyzed a few quartets including Archaea. One noteworthy finding was that in the genome quartet including \textit{Synechocystis sp.}, \textit{Halobacterium sp.}, \textit{Aquifex aeolicus} and \textit{Thermotoga maritima} the grouping of \textit{Halobacterium} sp. with \textit{Synechocystis} sp. was recovered by many more QuartOPs (56 with \(p > .99\)) than the grouping that would be expected following 16S rRNA phylogeny (12 QuartOPs with \(p > .99\); see Table 3). To test if this association was specific for \textit{Synechocystis} sp., we repeated the analyses replacing \textit{Synechocystis} sp. with \textit{Bacillus subtilis}. The result was qualitatively the same: at the \(p > .99\) level 53 QuartOPs supported grouping \textit{Bacillus subtilis} with \textit{Halobacterium} sp., and only 27 supported grouping \textit{Aquifex aeolicus} with \textit{Halobacterium} sp. (Fig. 7).

Clearly, there are many artifacts possible in analyzing divergent sequences. For many QuartOPs the ortholog from \textit{Halobacterium} sp. is expected to be the longest branch. To test for the possibility that long branch attraction [48] might be the reason for the strong support of \textit{Halobacterium} sp. grouping with \textit{Synechocystis} sp., we repeated the analysis replacing the \textit{Halobacterium} sp. genome with that of \textit{Aquifex aeolicus} with \textit{Halobacterium} sp. (Fig. 7).

An analysis of the putative functional assignments of the QuartOPs that grouped \textit{Halobacterium} sp. with the mesophilic bacteria is given in Table 4. To assess which of these categories have an increased percentage of QuartOPs than the grouping of \textit{B. subtilis} as a representative of the low GC Gram positive, and \textit{Synechocystis sp.}, the majority of these close associations reflects shared ancestry or are due to preferred HGT [19].
bacteria. The majority of QuartOPs that group the halo-
bacterial orthologs with the ortholog from the mesophilic
bacteria belong to two of four meta-categories: "Information
Storage and Processing" and "Metabolism". Quart-
OPs in Information Storage and Processing meta-
category that support the grouping of Halobacterium
sp. with Synechocystis/Bacillus are listed in the Table 5.
A complete listing is available in the supplementary
material. As expected, this list includes several tRNA
synthetases, which were previously found to be frequently
transferred [6–8], and enzymes involved in DNA repair (cf.
[9]). More surprisingly, this list also includes translation
initiation factors and several ribosomal proteins. The latter were
assumed to be infrequently transferred, but recent analyses
reported them to be horizontally transferred among bac-
terial lineages [10,11]. The initiation factor IF-2 in Halo-
bacterium sp. was previously shown to have strong
similarity to the initiation factor IF-2 from Bacteria [49].
Most of the genes that group Halobacterium with the mes-
ophilic bacteria encode functions that were postulated to
be frequently exchanged [50]. While no meta-category ap-
ner with the orthologs from the extremely thermophilic
Halobacterium sp. shows many more QuartOPs in support of
topology 3 than A. fulgidus.

The analyses described in this section reconfirm that genes
have been transferred across domain boundaries [6–12].
Not surprisingly, these transfers appear to occur preferen-
tially between organisms living in the same or similar en-
vironment. The genome of the mesophilic Halobacterium
sp. contains many genes that group with the orthologs
from mesophilic bacteria, whereas the majority of genes
from the thermophilic archaeon Archaeoglobus fulgidus
group with the orthologs from the extremely thermophilic

Table 2: Summary of the genome quartets that include Synechocystis sp., Bacillus subtilis, and two bacterial genomes from other phyla.

#	Genome 1	Genome 2	Genome 3	Genome 4	((1,2),3,4)	((1,3),2,4)	((1,4),2,3)						
9	Synechocystis	P. aeruginosa	D. radiodurans	B. subtilis	94	76	63	101	73	57	186	158	126
10	Synechocystis	P. aeruginosa	T. pallidum	B. subtilis	69	54	50	51	33	28	102	80	67
14	Synechocystis	R. sphaeroidei	B. subtilis	E. coli	65	53	44	286	263	248	28	25	17
15	Synechocystis	R. sphaeroidei	B. subtilis	D. radiodurans	95	72	60	201	173	149	73	60	47
16	Synechocystis	D. radiodurans	B. subtilis	T. pallidum	63	50	40	94	74	63	60	46	35
17	Synechocystis	B. subtilis	T. pallidum	E. coli	93	72	66	55	43	34	66	49	39
18	Synechocystis	D. radiodurans	T. pallidum	E. coli	86	68	54	65	49	38	75	54	47
19	Synechocystis	D. radiodurans	B. subtilis	E. coli	129	105	86	156	131	104	98	76	62
50	Synechocystis	B. subtilis	E. coli	M. loti	276	255	228	44	31	21	54	43	38
53	Synechocystis	B. subtilis	E. coli	M. leprae	125	104	82	101	84	65	119	19	66
54	Synechocystis	B. subtilis	E. coli	M. tuberculosis	141	114	97	101	82	69	128	101	89
55	Synechocystis	B. subtilis	M. loti	M. tuberculosis	189	164	139	92	74	59	80	58	44
64	Synechocystis	C. trachomatis	B. subtilis	T. pallidum	47	31	24	108	96	86	36	25	18
67	Synechocystis	C. trachomatis	M. loti	M. tuberculosis	64	48	32	116	104	84	72	51	44
68	Synechocystis	C. trachomatis	B. subtilis	M. tuberculosis	77	55	45	94	80	62	68	52	38
51	Synechocystis	B. subtilis	E. coli	S. aureus	33	19	15	361	349	333	15	7	5
52	Synechocystis	B. subtilis	E. coli	S. pyogenes	34	22	18	259	249	227	24	17	9

The # column refers to the unique number assigned to the genome quartets analyzed. Columns "((1,2),3,4)", "((1,3),2,4)" and "((1,4),2,3)" refer to the three possible tree topologies. Numbers in columns "Tot", "0.9" and "0.99" give the number of QuartOPs that support the indicated tree topology with a posterior probability higher than the other two posterior probabilities, or with 90% or 99% probability, respectively. The numbers in bold indicate the number of orthologs supporting the grouping of Synechocystis sp. and Bacillus subtilis in the absence of another low GC gram-positive in the genome quartets. Note that those numbers are the largest of the three numbers, a finding that supports the recent analyses by [43]. In the presence of another low GC Gram-positive in addition to Bacillus subtilis, the largest number of QuartOPs support grouping of low GC Gram-positives with each other (underlined). Other groupings that involve putative sister groups to the cyanobacteria (Deinococaceae and spirochetes) that had been suggested by others (e.g., [40,41]) are indicated in italics.
pears exempt from HGT, some functions appear to be more often transferred than others (cf. Table 4).

Conclusions
Maximum likelihood mapping is a useful tool for analyzing and depicting the mosaic nature of genomes. ML-mapping is much less conservative than other approaches of estimating Bayesian posterior probabilities. If ML-mapping is used as the only probability mapping tool, the overestimation of supporting probabilities has to be taken into consideration. A posterior probability of .99 calculated with ML-mapping often corresponds to a posterior probability of only .90.

Many relationships among prokaryotes cannot be depicted by a tree-like pattern reflecting a core of rarely transferred genes. Rather prokaryotic genomes are mosaics where different parts have different evolutionary histories. However, HGT between divergent organisms has not erased all patterns of interphylum relationship. For example, the majority of QuartOPs group the cyanobacteria with the low GC Gram positives as sister phyla.

Due to horizontal gene transfer even organisms from different domains living in the same or similar environments share more genes with each other than organisms with a similar degree of divergence that live in different environments. These interdomain horizontal transfers mainly concern proteins involved in nucleotide, carbohydrate and amino acid transport and metabolism; however, proteins that are part of the translation machinery or are involved in DNA repair appear to be transferred across domain boundaries as well.

Materials and Methods

Genome Data
Completed genomes were retrieved from the NCBI’s FTP site [ftp://ncbi.nlm.nih.gov/genbank/genomes/] in the form of amino acid sequences encoded by open reading frames (ORFs) as identified in the annotated genomes. Mitochondrial genomes were obtained from the Organelle Genomes Page at NCBI [http://www.ncbi.nlm.nih.gov/PMGifs/Genomes/euk_o.html]. The genomes were formatted using the formatdb program from the stand-alone BLAST package, initially of version 2.0.11 and later of versions 2.1.2 and 2.2.1 as they were released [51]. All analyses were performed locally.

Data Flow in Quartet Analyses
For each set of four genomes, BLAST [51,52] searches of every ORF in one genome against the other three genomes were performed using the blastp program. The E-value cut-off for the BLAST searches was set to 10^-4 (in one test case an E-value cutoff of 10^-20 was used). For every BLAST search the GI number of the top hit (if it was below the cutoff) was saved along with the GI number of the query sequence forming a GI pair. This resulted in twelve lists of GI pairs for each of the twelve possible pairwise genome comparisons. This information was further used to identify quartets of orthologous proteins (QuartOPs). Following Tatusov et al. [27] we defined QuartOPs as those sets of genes that mutually pick each other as the top scoring hit in the BLAST comparisons. The detection of the QuartOPs was performed using the MySQL database software [http://www.mysql.com]. The lists of GI pairs were entered into twelve tables of a database. The tables were

Figure 7
ML map of the quartet representing Bacillus subtilis, the deep branching bacteria T. maritima and A. aeolicus, and the salt-loving archaeon Halobacterium sp.. The topology that corresponds to the 16S rRNA topology (lower left vertex) is supported by the least number of orthologous datasets. The result stayed qualitatively the same when B. subtilis was replaced with the cyanobacterium Synechocystis sp. (see results for quartet #11 in Table 3). For details on the figure notations see legend for Figure 4. A. Probabilities calculated according to Strimmer and von Haeseler [24]. B. Probabilities calculated with the MrBayes program [31].

The text continues with detailed analysis and findings related to the mapping of orthologous genes and the implications of horizontal gene transfer on genome structure.
joined into one table under conditions that satisfy the definition of the QuartOPs (see above). This resulted in a table with four columns of GI numbers for QuartOPs. The amino acid sequences for each QuartOP were retrieved from GenBank at NCBI and were aligned using ClustalW 1.8 [53]. QuartOPs were analyzed using the ML-mapping approach according to Strimmer and von Haeseler, Bayesian probabilities mapping and bootstrap support values (see details below).

Posterior probabilities according to Strimmer and von Haeseler

For all three possible unrooted tree topologies maximum-likelihood values and posterior probabilities were calculated using in-house JAVA programs that were written utilizing classes from the Phylogenetic Analysis Library version 1.0 [54] and parts of Vanilla package version 1.0 [54]. If not indicated otherwise, likelihood values were estimated using the automatically selected suitable substitution model (chosen from BLOSUM62, CPREV, Dayhoff, JTT, MTREV24, VT and WAG) without ASRV. The maximum-likelihood mapping approach was further used to visualize support for each tree topology [24], i.e. the posterior probability vector for each QuartOP was plotted into an equilateral triangle. Maximum-likelihood maps were generated using GNUPlot v. 3.7 [http://www.gnuplot.info/].

Posterior Probabilities calculated with MrBayes program

For all tree notations see legend for Table 2. Quartets #11 and 61 indicate that the majority of the QuartOPs group *Halobacterium* sp. together with *Synechocystis* sp and with *Bacillus subtilis* respectively, which is in disagreement with 16S rRNA topology. In two control quartets (#13 and #62) *Halobacterium* was substituted with *Archaeoglobus fulgidus*, and in these cases the majority of QuartOPs support the topology that is in agreement with SSU rRNA topology.

Table 3: Summary of the genome quartets that include the mesophilic archaean *Halobacterium* sp. or the thermophilic archaean *Archaeoglobus fulgidus*, deep-branching bacteria *Thermotoga maritima* and *Aquifex aeolicus*, and bacteria *Synechocystis* sp. or *Bacillus subtilis*.

#	Genome 1	Genome 2	Genome 3	Genome 4
11	*Synechocystis* sp.	*Thermotoga maritima*	*Aquifex aeolicus*	*Halobacterium* sp.
13	*Synechocystis* sp.	*Thermotoga maritima*	*Aquifex aeolicus*	*Archaeoglobus fulgidus*
61	*Bacillus subtilis*	*Thermotoga maritima*	*Aquifex aeolicus*	*Halobacterium* sp.
62	*Bacillus subtilis*	*Thermotoga maritima*	*Aquifex aeolicus*	*Archaeoglobus fulgidus*

For table notations see legend for Table 2. Quartets #11 and 61 indicate that the majority of the QuartOPs group *Halobacterium* sp. together with *Synechocystis* sp and with *Bacillus subtilis* respectively, which is in disagreement with 16S rRNA topology. In two control quartets (#13 and #62) *Halobacterium* was substituted with *Archaeoglobus fulgidus*, and in these cases the majority of QuartOPs support the topology that is in agreement with SSU rRNA topology.

Bootstrap Support Values

As an alternative to posterior probability vectors, bootstrap support values were calculated and plotted. Each QuartOP was bootstrapped 100 times and the proportion of bootstrapped datasets supporting each tree topology was recorded as a bootstrap probability vector. The bootstrap probability vectors were plotted into an equilateral triangle with the zones changed to "total", "70%" and "90%" (see Fig. 2).

Empirical Search for Optimal MrBayes Parameters

To find parameters that will return consistent posterior probabilities within reasonable computation time, one QuartOP from mitochondrial genome quartet #m1 was analyzed multiple times with different parameters. According to Strimmer and von Haeseler’s approach [24] this QuartOP has posterior probabilities of 0.76, 0.10 and 0.13. In all runs samples were taken at each cycle; two chains and the JTT substitution model [55] without ASRV were used.

First, we analyzed the dataset with 250,000 cycles. We tried different “burn in” options in the range of 1,000–20,000. The posterior probability values changed by less than 0.3% from case to case. We selected a “burn in” of...
5,000 cycles in further analyses. Second, we tried different numbers of cycles to calculate posterior probabilities. The probabilities were calculated using 10,000–240,000 cycles with increment of 10,000 cycles. Again, the posterior probability values did not change significantly from case to case. Third, we raised the "temperature" parameter T to 2.0 for the second, heated chain. This did not result in changes of the estimated posterior probabilities. Fourth, we used 25,000 cycles and repeated the analysis 10 times, calculating average and standard deviation of all runs. For all three probabilities the standard deviation was less than 0.01. Based on these analyses we selected 25,000 cycles with a "burn in" of 5,000 as a compromise between precision of probability estimation and computational time spent. As a final test, we performed the analysis of the quartet #8 twice with selected parameters. This did not result in significantly different maps. Graphs and tables depicting the results of these analyses are given in the supplementary material.

Mapping taking ASRV into account

For the genome quartet #8 we calculated posterior probabilities under the model which takes ASRV into account with Strimmer and von Haeseler's [24] approach and with the MrBayes program version 2.01 [31]. TREE-PUZZLE 5.0 [56] was used to calculate posterior probabilities according to Strimmer and von Haeseler [24]. A discrete approximation of the gamma distribution [57] was used to

Table 4: Distribution of the datasets that strongly support (with 99% posterior probability) one of the three topologies among different functional categories.

Functional Categories of COGs:	#11	#13	#61	#62	H	A									
Information storage and processing	5	7	20	7	7	10	11	4	17	12	4	0	24	17	
J Translation, ribosomal structure and biogenesis	4	6	14	5	6	9	9	3	11	10	3	0	31	44	
K Transcription	1	1	0	1	1	0	1	1	0	1	1	0	30	30	
L DNA replication, recombination and repair	0	0	6	1	0	1	1	0	6	1	0	0	39	26	
Cellular processes	1	5	4	1	5	7	1	5	1	6	6	3	1	21	16
D Cell division and chromosome partitioning	0	0	1	2	0	1	3	0	0	3	0	0	7	5	
O Posttranslational mod., protein turnover, chaperones	1	0	1	1	0	1	1	0	3	2	0	0	22	18	
M Cell envelope biogenesis, outer membrane	0	3	0	1	0	1	0	1	0	0	1	0	13	14	
N Cell motility and secretion	0	0	1	1	1	0	1	0	0	0	0	0	15	10	
P Inorganic ion transport and metabolism	0	2	1	0	4	0	0	0	3	0	3	1	30	31	
T Signal transduction mechanisms	0	0	0	0	0	0	0	0	0	0	0	0	14	22	
Metabolism	6	16	29	18	30	12	9	6	30	22	28	14	30	37	
C Energy production and conversion	2	3	1	1	4	1	0	0	0	0	3	0	0	23	31
G Carbohydrate transport and metabolism	1	2	1	2	2	0	3	0	2	2	1	1	12	8	
E Amino acid transport and metabolism	1	5	16	12	10	7	2	2	14	10	12	6	27	24	
F Nucleotide transport and metabolism	2	4	10	1	9	4	2	2	11	4	10	7	10	7	
H Coenzyme metabolism	0	2	1	2	5	0	2	2	3	3	5	0	19	16	
I Lipid metabolism	0	0	0	0	0	0	0	0	0	0	0	9	14		
Poorly characterized	1	1	3	1	1	0	2	1	2	1	1	24	30		
R General function prediction only	1	1	3	1	1	0	2	1	2	1	1	1	64	58	
S Function unknown	0	0	0	0	0	0	0	0	0	0	0	0	36	42	

The distribution corresponds to the genome quartets listed in Table 3. Functional categories are as designated in Fig. 5. Columns 1, 2 and 3 correspond to the three possible unrooted topologies for each genome quartet (see Table 3). Column entries indicate the number of QuartOPs in each functional category. The last two columns represent the distribution of ORFs in *Halobacterium* sp. (H) and *Archaeoglobus fulgidus* (A) genomes among different functional categories. For these two columns, numbers in the rows corresponding to the meta-categories give the percentage of proteins in each meta category relative to the total number of classifiable proteins and numbers in the rows for each functional category indicate the percent distribution of the proteins within the corresponding meta-category.
describe ASRV. Eight rate categories were used in TREE-
PUZZLE [56], and four rate categories were used in Mr-
Bayes [31]. The maps are available in the supplementary
material. Due to the amount of time required for calcula-
tions, the analyses were not performed for other genome
quartets.

Functional assignments using the COG database
Datasets for QuartOPs with strong preference for a partic-
ticular tree topology (i.e. with posterior probability above
99% for that particular topology, or in other words the
QuartOPs located in the very corners of the equilateral tri-
angle) were extracted. For each of those QuartOPs the
COG functional category [27] was identified. In order to
detect the functional categories, the COG database was
downloaded from NCBI’s FTP site (initially the year 2000
release and later the year 2001 release). The COG database
was formatted using the
formatdb
program of BLAST pack-
age. Every QuartOP was compared to the COG database
using the
blastp
program. The category of each se-
quence in the QuartOP was assigned according to the cat-
egory of the top hit of each BLAST search. The numbers of
QuartOPs in each functional category were calculated for
each of the three tree topologies.

Distribution of ORFs among COG categories for complete
genomes of Halobacterium sp. (H. sp.) and Archaeoglobus fulgidus
Every predicted ORF in a genome was compared to the
COG database (release of year 2001) using the
blastp
program with E-value cutoff 10⁻⁴. The category of each ORF
was set to be equal to the category of the top hit of the cor-
responding BLAST search. Category Q was dropped from
the results, because the corresponding genome quartets
were analyzed with the previous release of the COG data-
base (release of year 2000) that did not contain the Q cat-
egory.

Data Analysis Automation
The repetitive tasks of analyses were automated using the
SEALS package version 0.824 [25]. The tasks that were not
available through SEALS package were programmed in
PERL v. 5.005. The PERL scripts and JAVA programs are
available upon request.

Mitochondrial Genome Quartets Analyses
Seven mitochondrial genome quartets were used as con-
trols and were analyzed with the three approaches for ge-
nome quartet analysis described above. For calculation of
posterior probabilities with MrBayes at least 25,000 cycles
were used.

List of Abbreviations

HGT horizontal gene transfer
COG cluster of orthologous groups
ML maximum likelihood
rRNA ribosomal ribonucleic acid
sp. species

Table 5: List of genes putatively horizontally transferred between Halobacterium sp. (H. sp.) and the mesophilic Bacteria Synechocystis
sp. and Bacillus subtilis (“Information Storage and Processing” meta-category only).

Protein Name	H. sp. GI number
tRNA synthetases for serine, valine, methionine, cysteine, arginine, proline	10581491, 10581937, 10579953, 10580644, 10584349, 10580016
phenylalanyl-tRNA synthetase subunit alpha	10581896
Glu-tRNA amidotransferase subunits A, B	10580435, 10579969
tRNA-pseudouridine synthase	10581191
dimethyladenosine transferase	10580702
DNA gyrase subunits A, B	[10580453, 10580452]
DNA helicase	10580995
excision nuclease ABC chains A, B, C (involved in DNA repair)	10582016, 10581796, 10581790
endonuclease V (involved in DNA repair)	10579981
DNA mismatch repair protein	10579807
Putative translation factor SUA5	10581723
Translation initiation factor elf-2B subunit alpha	10581299
Initiation factor IF2	10581429
ribosomal proteins L1, L11, L3, S4	[10580652, 10580653], 10581159, 10580672

GI numbers in brackets correspond to genes in operons. This list is derived analyses of genome quartets #11 and #61. A complete list of all GI
numbers for each QuartOP as well as the four definition lines is available in the supplementary material.
BLAST Basic Local Alignment Search Tool
QuartOP quartet of orthologous proteins
SEALS System for Easy Analysis of Lots of Sequences
NCBI National Center for Biotechnology Information
ASRV Among Site Rate Variation

Supplementary Material
Supplementary material is located at the QuartOP web page [http://carrot.mcb.uconn.edu/quarters/]. This web page includes the summary of all genome quartets analyzed (with maps), the results of control analyses, and a form to request the scripts described in this article. ML maps are available in postscript and PDF formats. An offline version of the QuartOP web page is available as a compressed archive named supp_material.zip and as a self-extracting archive supp_material.exe for Microsoft Windows users. The archive can be expanded using WinZip [http://www.winzip.com/] for Windows, StuffIt for Macintosh [http://www.stuffit.com/], or uniszip utility for Unix. The uncompress utilities have to be run with the option to preserve the subdirectory structure inside the archive. To access the information in the archive, the file index.html has to be opened using an Internet browser. This index.html file is located in the root directory named “offline_quartops”. All the files in the archive are hyperlinked and accessible through the index.html file.

Additional material

Additional file 1
Click here for file [http://www.biomedcentral.com/content/supplementary/1471-2164-3-4-S1.zip]

Additional file 2
Click here for file [http://www.biomedcentral.com/content/supplementary/1471-2164-3-4-S2.exe]

Acknowledgements
We thank Paul Lewis and Lorraine Olendzenski for many stimulating discussions and for critically reading the manuscript. The work was supported through the NASA Exobiology Program and through the NASA Astrobiology Institute at Arizona State University.

References
1. Woese CR, Fox GE: Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A 1977, 74:5088-5090.
2. Woese CR: Bacterial evolution. Microbiol Rev 1987, 51:221-271.
3. Hennig W: Phylogenetic systematics. Urbana, University of Illinois Press 1966.
4. Doolittle WF: Phylogenetic classification and the universal tree. Science 1999, 284:2124-2129.
5. Ludwig W, Strunk O, Klugbauer S, Klugbauer N, Weizenegger M, Neumaier J, Bachleitner M, Schleifer KH: Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 1998, 19:554-568.
6. Doolittle RF, Handy J: Evolutionary anomalies among the ami-noacyl-tRNA synthetases. Curr Opin Genet Dev 1998, 8:630-636.
7. Koonin EV, Mushegian AR, Galperin MY, Walker DR: Comparison of archaean and bacterial genomes: computer analysis of protein sequences predicts novel functions and suggests a chimeric origin for the archaee. Mol Microbiol 1997, 25:619-637.
8. Olendzenski L, Liu LG, Zhaxybayeva O, Murphey R, Shin DG, Gogarten JP: Horizontal transfer of archaean genes into the deinococ-caceae: detection by molecular and computer-based approaches. J Mol Evol 2000, 51:587-599.
9. Denamur E, Lecointre G, Darlu P, Tenaillon O, Acquaviva C, Sayada C, de Puytorac P: Rapid evolution of a bacterial gene involved in DNA repair. Cell 2000, 103:711-721.
10. Makarova KS, Ponomarev VA, Koonin EV: Two C or not two C: recurrent disruption of Zn-rings, gene duplication, lineage-specific gene loss, and horizontal gene transfer in evolution of bacterial ribosomal proteins. Genome Biol 2001, Z3research0033.1-0033.14.
11. Brochier C, Philippe H, Moreira D: The evolutionary history of ribosomal protein RpS14: horizontal gene transfer at the heart of the ribosome. Trends Genet 2000, 16:529-533.
12. Wolf YI, Aravind L, Grishin NV, Koonin EV: Evolution of aminoacyl-tRNA synthetases—analysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events. Genome Res 1999, 9:689-710.
13. Gogarten JP: The early evolution of cellular life. Trends in Ecology and Evolution 1995, 10:147-151.
14. Tekaia F, Lazcano A, Dujon B: The genomic tree as revealed from whole proteome comparisons. Genome Res 1999, 9:530-547.
15. Snell B, Bork P, Huynen MA: Genome phylogeny based on gene content [see comments]. Nat Genet 1999, 21:108-110.
16. Fitz-Gibbon ST, House CH: Whole genome-based phylogenetic analysis of free-living microorganisms. Nucleic Acids Res 1999, 27:418-422.
17. Lin J, Gerstein M: Whole-genome trees based on the occurrence of folds and orthologs: implications for comparing genomes on different levels. Genome Res 2000, 10:808-818.
18. Graham DE, Overbeek R, Olsen GJ, Woese CR: An archaeal genomic signature. Proc Natl Acad Sci U S A 2000, 97:3304-3308.
19. Olendzenski L, Zhaxybayeva O, Gogarten JP: Horizontal gene transfer: A new taxonomic principle? In: Horizontal Gene Transfer, edited by Woese CR, Kandler O, Woese CR. Oxford University Press, London, 1997.
20. Ribeiro S, Golding GB: The mosaic nature of the eukaryotic nucleus. Bioinformatics 1999, 14:69-73.
21. Gogarten JP, Olendzenski L: Orthologs, paralogs and genome comparisons. Curr Opin Genet Dev 1999, 9:630-636.
22. Strimmer K, von Haeseler A: Likelihood-mapping: a simple method to visualize phylogenetic content of sequence alignments. Proc Natl Acad Sci U S A 1999, 96:6801-6805.
23. Walker DR, Koonin EV: SEALS: a system for easy analysis of lots of sequences. ISMB 1999, 5:333-339.
24. Tatusov RL, Koonin EV, Lipman DJ: A genomic perspective on protein families. Science 1997, 278:631-637.
25. Tatusov RL, Galperin MY, NASA DA, Koonin EV: The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 2000, 28:33-36.
26. Tatusov RL, NASA DA, Koonin EV, Lipman DJ: A genomic perspective on protein families. Science 1997, 278:631-637.
27. Tatusov RL, Galperin MY, NASA DA, Koonin EV: The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res 2001, 29:22-28.
28. Montague MG, Hutchison CA: Third: Gene content phylogeny of herpesviruses. Proc Natl Acad Sci U S A 2000, 97:5334-5339.
30. Pearson WR: **Effective protein sequence comparison.** Methods Enzymol 1996, 266:227-258
31. Posada D, Crandall KA: MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 2001, 17:57-61
32. Felsenstein J: Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985, 39:783-791
33. Murphy WJ, Eizirik E, O'Brien SJ, Madsen O, Scally M, Douady CJ, Teeling E, Ryder OA, Stanhope MJ, de Jong WW, et al: Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 2001, 294:2348-2351
34. Rannala B, Yang Z: Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J Mol Evol 1996, 43:304-311
35. Karol KG, McCourt RM, Cimino MT, Delwiche CF. The closest living relatives of land plants. Science 2001, 294:2351-2353
36. Goddard MR, Burt A: Recurrent invasion and extinction of a selfish gene. Proc Natl Acad Sci U S A 1999, 96:13880-13885
37. Murphy WJ, Oudot M, Fontaine J, Kloareg B, Goer SL: Witnessing the evolution of transcription in mitochondria: the mitochondrial genome of the primitive brown alga Pylaiella littoralis (L.) Kjellm. Encodes a T7-like RNA polymerase. J Mol Biol 1998, 277:1047-1057
38. Cermakian N, Ikeda TM, Miramontes P, Lang BF, Gray MW, Cedergren R: On the evolution of the single-subunit RNA polymerases. J Mol Evol 1997, 45:671-681
39. Schinkel AH, Tabak HF: Mitochondrial RNA polymerase: dual role in transcription and replication. Trends Genet 1989, 5:149-154
40. Gupta RS, Johari V: Signature sequences in diverse proteins provide evidence of a close evolutionary relationship between the Deinococcus-thermus group and cyanobacteria. J Mol Evol 1998, 46:716-720
41. Gupta RS, Mukhtar T, Singh B: Evolutionary relationships among photosynthetic prokaryotes (Heliobacterium chlorum, Chloroflexus aurantiacus, cyanobacteria, Chlorobium tepidum and proteobacteria): implications regarding the origin of photosynthesis. Mol Microbiol 1999, 32:893-906
42. Gupta RS: The natural evolutionary relationships among prokaryotes. Crit Rev Microbiol 2000, 26:111-131
43. Xiong J, Fischer WM, Inoue K, Nakahara M, Bauer CE: Molecular evidence for the early evolution of photosynthesis. Science 2002, 298:1724-1730
44. Sicheritz-Ponten T, Andersson SG: A phylogenomic approach to microbial evolution. Nucleic Acids Res 2001, 29:545-552
45. Brochier C, Bapteste E, Moreira D, Philippe H: Eubacterial phylogeny based on translational apparatus proteins. Trends Genet 2002, 18:1-5
46. Wolf YI, Rogozin IB, Grishin NV, Tatusov RL, Koonin EV: Genome trees constructed using five different approaches suggest new major bacterial clades. BMC Biol 2001, 1:8
47. Koonin EV, Makarova KS, Aravind L: Horizontal gene transfer in prokaryotes: quantification and classification. Annu Rev Microbiol 2001, 55:709-742
48. Felsenstein J: Cases in which parsimony and compatibility methods will be positively misleading. Syst Zool. 1978, 27:401-410
49. Hasegawa Y, Sawaoka N, Kado N, Ochi M, Itoh T: Cloning and sequencing of the homologues of both the bacterial and eukaryotic initiation factor genes (hIF-2 and hIF-2 gamma) from archaea Halobacterium halobium. Biochem Mol Biol Int 1996, 46:495-507
50. Lawrence JG, Roth JR: Selfish operons: horizontal transfer may drive the evolution of gene clusters. Genetics 1996, 143:1843-1860
51. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389-3402
52. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215:403-410
53. Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994, 22:4673-4680
54. Drummond A, Strimmer K: PAL: an object-oriented programming library for molecular evolution and phylogenetics. Bioinformatics 2001, 17:662-663
55. Jones DT, Taylor WR, Thornton JM: The rapid generation of mutation data matrices from sequences. CABIOS 1992, 8:275-282
56. Strimmer K, von Haeseler A: Quartet puzzling: quartet A maximum-likelihood method for reconstructing tree topologies. Molecular Biology and Evolution 1996, 964-969
57. Yang Z: Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J Mol Evol 1994, 39:306-314

Publish with BioMed Central and every scientist can read your work free of charge

"BioMedcentral will be the most significant development for disseminating the results of biomedical research in our lifetime."

Paul Nurse, Director-General, Imperial Cancer Research Fund

Publish with BMC and your research papers will be:
- available free of charge to the entire biomedical community
- peer reviewed and published immediately upon acceptance
- cited in PubMed and archived on PubMed Central
- yours - you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/manuscript/
editorial@biomedcentral.com