Gravitational Wave Emission by Accretion of Matter and Magnetic Deformation in Fast Rotating White Dwarfs

M. F. Sousa* and J. C. N. de Araujo**
Divisão de Astrofísica, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, SP/12227-010, Brazil
*E-mail: manoel.sousa@inpe.br
**E-mail: jcarlos.dearaujo@inpe.br
www.inpe.br

J. G. Coelho
Departamento de Física, Universidade Tecnológica Federal do Paraná, Medianeira, PR/85884-000, Brazil
E-mail: jazielcoelho@utfpr.edu.br

We discuss some aspects of Sousa et al. [1,2] concerning two mechanisms of gravitational wave (GW) emission in fast-spinning white dwarfs (WDs): accretion of matter and magnetic deformation. In both cases, the GW emission is generated by an asymmetry around the rotation axis of the star. However, in the first case, the asymmetry is due to the amount of accreted matter in the magnetic poles, while in the second case it is due to the intense magnetic field. We have estimated the GW amplitude and luminosity for three binary systems that have a fast-spinning magnetized WD, namely, AE Aquarii, AR Scorpii and RX J0648.0-4418. In addition, we applied the magnetic deformation mechanism for SGRs/AXPs described as WD pulsars. We found that, for the first mechanism, the systems AE Aquarii and RX J0648.0-4418 can be observed by the space detectors BBO and DECIGO if they have an amount of accreted mass of $\delta m \geq 10^{-5} M_\odot$. For the second mechanism, the three systems studied require that the WD has a magnetic field above $\sim 10^{9} G$ to emit GWs that can be detected by BBO. Furthermore, we found that some SGRs/AXPs as WD pulsars can be detected by BBO and DECIGO, whereas SGRs/AXPs as highly magnetized neutron stars are far below the sensitivity curves of these detectors.

Keywords: Gravitational Waves; White Dwarfs; Magnetic Field; Rapid Rotation.

1. Introduction

Over the last years, the astrophysical community’s interest in highly magnetized white dwarfs (HMWDs) has increased. Recent results of the Sloan Digital Sky Survey (SDSS) have confirmed these white dwarfs (WDs) with surface magnetic fields ranging from $10^6 G$ up to $10^9 G$ [see e.g. Refs. 3-5]. Besides their high magnetic fields, most of them have been shown to be massive, and responsible for the high-mass peak at 1 M_\odot of the WD mass distribution [6-8].

Typically, WDs have rotation periods of days or even years. However, recently, a WD pulsar was discovered, called AR Scorpii. This star emits from X-ray to radio wavelengths, pulsing in brightness with a period of 1.97 min. Moreover, other sources have been proposed as candidates of WD pulsars. Specific examples
are AE Aquarii with a short rotation period of $P = 33.08$ s1 and RX J0648.0-4418 (RX J0648, hereafter) that is a massive WD with $M = 1.28M_\odot$ and with a very fast spin period of $P = 13.2$ s, that belongs to the binary system HD 49798/RX J0648.0-441811. Nevertheless, it is worth mentioning that the nature of RX J0648 is unclear, meaning it is not yet clearly known whether this star is a WD or a neutron star11,12.

Recently, from XMM-Newton observations, the authors in Ref. [13] reported that CTCV J2056-3014 is a X-ray-faint intermediate polar harboring an extremely fast-spinning WD with a coherent pulsation of 29.6 s, thus being the fastest confirmed spin in a WD [see also Ref. [14]]. Other fast-spinning WDs have been observed more recently. As examples we can cite: V1460 Her, which is an eclipsing cataclysmic variable, with a overluminous K5-type donor star and a WD that rotates with a period of 38.9 s15 and ZTF J190132.9+145808.7, which is a highly magnetized and rapidly rotating white dwarf, featuring a magnetic field with strengths between 600 MG and 900 MG on its surface, and a stellar radius that is only slightly larger than the radius of the Moon16. This WD has a rotation period of 6.94 min which is considered short as this star is an isolated WD.

Notwithstanding, several studies of magnetized and fast-rotating WDs have been done. In particular, we can highlight one involving WD pulsars in an alternative description for Soft Gamma Repeaters (SGRs) and Anomalous X-Ray Pulsars (AXPs) [see e.g. Refs. [17–20]]. From this perspective, the process of energy emission released by dipole radiation in a WD can be explained by a canonical spin-powered pulsar model, since they share quite similar aspects18,21.

On the other hand, LIGO and Virgo detectors have recently made direct observations of gravitational waves (GWs)22,23. All these GW detections are within a frequency band ranging from 10 Hz to 1000 Hz, which is the operating band of LIGO and Virgo. Nevertheless, as is well known, there are proposed missions for lower frequencies, such as LISA24,25, whose frequency band is of (10-4 – 0.01) Hz, BBO26,27 and DECIGO28,29 in the frequency band ranging from 0.01 Hz to 10 Hz.

The generation of continuous GWs in different possibilities has already been proposed30–34. More recently, in Refs. [1,2,35], it has been suggested that rotating magnetized WDs can emit continuous GWs with amplitudes possibly detected by upcoming GW detectors such as LISA, DECIGO and BBO. Here we revisit our two works [Refs. [12]], where we investigate two mechanisms of gravitational radiation emission in fast-rotating magnetized WD: matter accretion and magnetic deformation. In both cases, the emission in GW is produced by the asymmetry around the star’s rotation axis.

2. Gravitational emission mechanisms

WDs might generate gravitational radiation whether they are not perfectly symmetric around their rotation axis. The huge dipole magnetic field that can make the star become oblate20 and accretion of matter are two examples where this asymmetry
can occur.

2.1. Accretion of matter

The GW emission is shown here for the case of a WD accreting matter via the magnetic poles which do not coincide with the rotation axis of the star. In this scenario, the system’s secondary star transfers matter to the WD through an accretion column and accumulates an amount of mass on the magnetic poles.

Thus, we consider a rigid object rotating about a non-major axis (x_1, x_2, x_3) and which has a deformity about one of the major axes (x_1, x_2, x_3), where are positioned the main moments of inertia I_1, I_2 e I_3, respectively.

With this configuration and doing $I_1 = I_2$, the gravitational amplitude and luminosity are given respectively by37,38

\begin{align}
 h_{0,ac} &= \frac{4G}{c^4} \frac{(I_1 - I_3)\omega^2}{r} \sin^2 \theta, \quad (1) \\
 L_{GW_{ac}} &= -\frac{2}{5} \frac{G}{c^5} (I_1 - I_3)^2 \omega^6 \sin^2 \theta (16 \sin^2 \theta + \cos^2 \theta), \quad (2)
\end{align}

where, ω is the angular velocity, θ is the angle between the rotation and magnetic dipole axes and r is the distance to the emitting source.

Now, to determine the moments of inertia I_1 and I_3, we consider that the object has an amount of mass accumulated on the x_3' axis. We reduce this system to a large sphere with two smaller spheres of matter on the x_3' axis: one at each of the poles of the larger sphere. This would be equivalent to a WD accreting matter by the two magnetic poles. Therefore, it follows immediately that

\begin{align}
 I_1 &= \frac{2}{5} MR^2 + 2\delta m R^2, \\
 I_3 &= \frac{2}{5} MR^2 + 2\frac{2}{5} \delta m a^2, \quad (3)
\end{align}

where M is the mass of the star, R is the radius of the star, δm is the amount of mass accumulated on one magnetic pole and a its radius.

Considering that $R \gg a$ and by substituting these last expressions into Eqs. (1) and (2), one obtains

\begin{align}
 h_{0,ac} &= \frac{8G}{c^4} \frac{\delta m R^2 \omega^2}{r} \sin^2 \theta, \quad (4) \\
 L_{GW_{ac}} &= -\frac{8}{5} \frac{G}{c^5} \delta m^2 R^4 \omega^6 \sin^2 \theta (16 \sin^2 \theta + \cos^2 \theta). \quad (5)
\end{align}
Thereby, we find expressions for the gravitational luminosity and the GW amplitude for the case of a WD accumulating mass, which depends on the accreted mass, the distance to the source, the radius of the star and how fast it is rotating.

2.2. Magnetic deformation

This section deals with the deformation of the WD induced by its own huge magnetic field. Due to the combination of magnetic field and rotation, a WD can become triaxial, presenting therefore a triaxial moment of inertia. In order to investigate the effect arising from the magnetic stress on the equilibrium of stars, let us introduce the equatorial ellipticity, defined as

\[\epsilon = \frac{I_1 - I_2}{I_3}. \]

(6)

where \(I_1, I_2 \) and \(I_3 \) are main moments of inertia with respect to the \((x, y, z)\) axes, respectively.

If the star rotates around the \(z \)-axis, then it will emit monochromatic GWs with a frequency twice the rotation frequency, \(f_{\text{rot}} \), with amplitude given by

\[h_{\text{rot}} = \frac{16\pi^2 G I_3 f_{\text{rot}}^2}{c^5} \rho \epsilon, \]

(7)

and luminosity as follows:

\[L_{\text{GW},\text{rot}} = -\frac{32}{5} \frac{G}{c^5} I_3^2 \rho^2 \omega_{\text{rot}}^6. \]

(8)

On the other hand, recall that the ellipticity of magnetic origin can be written as

\[\epsilon = \kappa \frac{B_s^2 R^4}{G M^2}, \]

(9)

where, \(B_s \) is the magnetic field strength on the star’s surface and \(\kappa \) is the distortion parameter, which depends on the magnetic field configuration and equation of state (EoS) of the star.

Now, substituting this last equation into Eqs. (7) and (8) and considering \(I_3 = 2MR^2/5 \), one immediately obtains that

\[h_{\text{ef}} = \frac{32\pi^2}{5c^4} \frac{R_0^6 f_{\text{rot}}^2}{r M} \kappa B_s^2, \]

(10)

\[L_{\text{GW},\text{ef}} = -\frac{2^{13} \pi^6}{5^3 c^5 \kappa^2} \frac{R_0^{12} f_{\text{rot}}^6}{GM^2} B_s^4. \]

(11)
Note that the two equations just above depend on the rotation frequency and the magnetic field strength.

In contrast, the GW amplitude can also be written as a function of the variation of the star’s rotation frequency \dot{f}_{rot}. In this case, we must consider that a part of the spindown luminosity is converted into GWs. Thus, we can infer an efficiency, η_{df}, for the variation of the rotation frequency as $\dot{f}_{\text{rot}} = \eta_{df} \ddot{f}_{\text{rot}}$, such that \dot{f}_{rot} can be interpreted as the part of f_{rot} related to the GW brake. Hence, the GW amplitude can be written as follows

$$h_0^{\text{sd}} = \left(\eta_{df} \frac{5}{2} \frac{G}{c^3} \frac{I_0^{\text{rot}}}{r_f^{\text{rot}}} \right)^{1/2}.$$

(12)

3. Gravitational waves from rapid rotation white dwarfs

3.1. Accretion of matter

Considering the scenario of an amount of mass accumulated on the magnetic poles, we apply Eq. (4) for the three binary systems that have fast-spinning WDs: AE Aqr, AR Sco and RX J0648. The parameters for the systems are listed in Table 1.

From Eq. (4), one notes that the amplitude depends on the amount of mass accumulated; however, it is not easy to predict how much matter may have been accreted to WD and how much has been dispersed on its surface. Thus, for this analysis, we assign four values for the mountain of matter for the analyzed systems: $\delta m = (10^{-3}M_\odot, 10^{-4}M_\odot, 10^{-5}M_\odot, 10^{-6}M_\odot)$ [see Refs. 41–43 for details about accretion in WDs]. Besides that, we consider that the angle between the magnetic and rotation axes is $\theta = 30^\circ$.

Table 1. Parameters of 3 binary systems: Period (P), spindown (\dot{P}), WD radius (R) and distance to Earth (r).

Systems	P (s)	\dot{P} $(10^{-15}$ s/s)	R $(10^8$ cm)	r (pc)
AE Aqra	33.08	56.4	7.0	100
AR Scob	118.2	392	7.1	116
RX J0648c	13.18	6.0	3.0	650

Note: a see 44; b see 34; c see 45.

Assuming these values for δm and the parameters listed in Table 1, we obtain h_0^{ac} for the three systems, which are shown in Figure 1.

With the amplitude estimations, we compare them with the sensitivity curves of the gravitational wave space detectors. This outcome is shown in Figure 2 where we have the sensitivity curve for LISA, BBO and DECIGO with a signal-to-noise ratio (SNR) of 8 and an integration time of $T = 1$ yr. We notice from this figure that AE Aqr and RX J0648 are good candidates to be detected by BBO and DECIGO.
Fig. 1. GW amplitude as a function of accreted mass to AE Aqr, AR Sco and RX J0648 if they have an accumulated mass of $\delta m \geq 10^{-5} M_\odot$. For the AR Sco system, the gravitational radiation emitted by this process would hardly be able to be detected by the three space instruments. This system would need to have a very high mass mountain of $\sim 10^{-3} M_\odot$ to be above, for example, the sensitivity curve of the BBO detector.

Fig. 2. GW amplitude for AE Aqr, AR Sco and RX J0648 for different values of mass ($10^{-3} M_\odot$, $10^{-4} M_\odot$, $10^{-5} M_\odot$, $10^{-6} M_\odot$, from top to bottom) and the sensitivity curves for LISA, BBO and DECIGO for $SNR = 8$ and integration time of $T = 1$ yr.

Now, we consider the efficiency of this mechanism with respect to the rotational energy rate lost by the systems. To do this, we consider the efficiency of the process $(\eta_{acr} = L_{GW_{acr}} / L_{sd})$ for the four δm’s considered above, i.e., how much of the spindown luminosity is converted to gravitational luminosity for every δm (see Table 2). We find that the contribution of gravitational luminosity to the spindown lumi-
nosity is irrelevant, since, for the four values of δm adopted, the efficiency $\eta_{acr} \ll 1$. Thereby, the contribution of gravitational luminosity to the spindown luminosity is negligible when we consider this mechanism.

AE Aquarii	AR Sco	RX J0648			
δm	η_{acr}	δm	η_{acr}	δm	η_{acr}
(M$_\odot$)	($L_{GW_{acr}}/L_{sd}$)	(M$_\odot$)	($L_{GW_{acr}}/L_{sd}$)	(M$_\odot$)	($L_{GW_{acr}}/L_{sd}$)
10^{-3}	1.02×10^{-4}	10^{-3}	3.41×10^{-7}	10^{-3}	0.175
10^{-4}	1.02×10^{-6}	10^{-4}	3.41×10^{-9}	10^{-4}	1.75×10^{-3}
10^{-5}	1.02×10^{-8}	10^{-5}	3.41×10^{-11}	10^{-5}	1.75×10^{-5}

3.2. Magnetic deformation

Here, we consider the generation of GWs due to the deformation of the WD structure of the same binary systems (AE Aqr, AR Sco and RX J0648) caused by their own intense magnetic field. For this, we use Eq. (12) to calculate the GW amplitude as a function of the efficiency $\eta_{df} = L_{GW_{def}}/L_{sd}$. The GW amplitudes are shown in Figure 3 as a function of η_{df}, where we use the parameters of Table 1 for all 3 systems.

![GW amplitude for different values of efficiency](image)

Fig. 3. GW amplitude for different values of efficiency ($\eta_{df} = L_{GW_{def}}/L_{sd}$) to AE Aqr, AR Sco and RX J0648

From Figure 4 we plot the GW amplitudes inferred in Figure 3 together with sensitivity curves for LISA, BBO and DECIGO for one year of integration time and $SNR = 8$. It is worth noting that all three systems are detectable by BBO and DECIGO as long as AE Aqr has an efficiency $\eta_{df} \geq 10^{-6}$, AR Sco an efficiency
\[\eta_d f \geq 10^{-4} \] and RX J0648 an efficiency \(\eta_d f \geq 10^{-5} \). Thus, even if the GWs have a small contribution to the spindown of these systems, they can emit GWs with amplitudes that can be detected by the space antennas.

![Fig. 4. GW amplitudes as presented in Figure 3 compared to the sensitivity curves of LISA, BBO and DECIGO for \(SNR = 8 \) and integration time of \(T = 1 \) year. Here, the efficiency values (1, \(10^{-1} \), \(10^{-2} \), \(10^{-3} \), \(10^{-4} \), \(10^{-5} \), \(10^{-6} \), \(10^{-7} \) and \(10^{-8} \)) are displayed from top to bottom.]

Nevertheless, it is interesting to know what the value of the magnetic field needed to produce these detectable amplitudes. Thus, we calculate the magnetic field strength so that these sources can be detected by BBO, which is the most sensitive instrument of the three considered in the present work. To do so, we use Eq. (10) together with the minimum efficiency for which each system is detectable by this instrument and we adopted \(\kappa \approx 10 \) [see Ref. 46]. Table 3 shows theses results. Notice that the systems must have WDs with high magnetic fields, around \((10^9 - 10^{10}) \) G, which are about two orders of magnitude larger than the canonical model of WD pulsars.

In addition, we can further calculate the GW amplitude by considering the upper limit values of the magnetic field strength, \(B_{dip} \), inferred from the canonical model of WD pulsars. Table 4 presents the results of this study. Notice that the amplitudes of the GW shown in this Table is very small to be observed by the space detectors, since they are well below the sensitivities of these detectors. In other words, the space detectors will not be able to detect these sources when considering the upper limit of the magnetic field strength.

3.3. GWs from SGRs/AXPs as fast-spinning WDs

An alternative model has been proposed for SGRs/AXPs considering they are fast-rotating and magnetized WDs [see e.g. Refs. 17–20 for further details]. From this perspective, a canonical spin-powered pulsar model can explain the process of
energy emission released by dipole radiation in a WD, since they share quite similar aspects21. In addition, these sources could also be candidates for GW emission, since the high magnetic field can deform the star in a non-symmetrical way, thus generating a variation in the quadrupolar moment of the star.

Therefore, we consider in this section that SGRs/AXPs are fast-spinning and magnetized WDs which emit GWs due to the deformation caused by their own intense magnetic field. Thus, using Eq. 10 and adopting $\kappa \simeq 10$, we calculate the GW amplitude for the 23 confirmed SGRs/AXPs47 considering these objects as a very massive WD. To do so, we assume three values of mass and their corresponding radius, namely, $M_{WD} = 1.2 \, M_\odot$ ($R_{WD} = 6.0 \times 10^8$ cm) and $1.0 \, M_\odot$ ($R_{WD} = 7.5 \times 10^8$ cm) [see Ref. 48 for further details about the mass-radius relation].

After estimating the amplitude, we placed them on the sensitivity curves of the BBO and DECIGO detectors. Figure 5 shows these results, such that the GW amplitude is presented as a function of frequency for some SGRs/AXPs. In this Figure, the bullets stands for $M_{WD} = 1.2 \, M_\odot$ and the vertical bars, that crosses the bullets, stands for $1.0 \leq M_{WD} \leq 1.4 \, M_\odot$, from top to bottom.

Notice that some SGRs/AXPs produce GWs with amplitudes that can be detected by BBO and DECIGO. Some of them, for example 1E 1547.0-5408 and SGR 1806-20, could well be detected for the entire mass range considered, while others would be detected depending on how massive they are.

SGRs/AXPs described as WDs generate GW amplitudes much larger than SGRs/AXPs described in the magnetar model where they are neutron stars [see e.g. Refs. 49,50 for details about magnetar model]. This is because WDs have mo-

\begin{table}
\begin{tabular}{llll}
\hline
Systems & η_{df} & $h_{de,f}$ & B (G) \\
\hline
AE Aqr & 10^{-6} & 1.9×10^{-29} & 2.8×10^{10} \\
AR Sco & 10^{-4} & 2.3×10^{-24} & 3.6×10^{10} \\
RX J0648 & 10^{-5} & 2.5×10^{-26} & 1.6×10^{10} \\
\hline
\end{tabular}
\caption{Minimum efficiency detected by BBO.}
\end{table}

\begin{table}
\begin{tabular}{llllll}
\hline
SYSTEMS & B_{dp} (G) & ϵ & $h_{de,f}$ & $L_{GW,de,f}$ (erg/s) & η_{df} \\
\hline
AE Aqr & 5.0×10^8 & 5.1×10^{-7} & 6.2×10^{-29} & 2.13×10^{21} & 1.1×10^{-14} \\
AR Sco & 5.0×10^8 & 5.3×10^{-7} & 4.6×10^{-28} & 1.25×10^{22} & 4.02×10^{-12} \\
RX J0648 & 1.0×10^8 & 2.8×10^{-10} & 9.5×10^{-31} & 1.33×10^{20} & 1.4×10^{-14} \\
\hline
\end{tabular}
\caption{Ellipticity (ϵ), GW amplitude ($h_{de,f}$), GW luminosity ($L_{GW,de,f}$) and efficiency of the mechanism (η_{df}) for the upper limit of magnetic field (B_{dp}) of each system.}
\end{table}

21For information about the SGRs/AXPs, we refer the reader to the McGill University’s online catalog available at: \url{http://www.physics.mcgill.ca/~pulsar/magnetar/main.html}
Fig. 5. GW amplitude as a function of frequency for SGRs/AXPs as fast-spinning and magnetized WDs for masses in the interval $1.0 \leq M_{WD} \leq 1.4 \, M_{\odot}$, represented by the vertical bars, from top to bottom. The bullets stand for $M_{WD} = 1.2 \, M_{\odot}$. Also plotted the sensitivity curves for BBO and DECIGO for $SNR = 8$ and integration time $T = 1$ year.

Fig. 6. GW amplitude as a function of frequency for SGRs/AXPs as NSs. Also plotted the sensitivity curves for BBO and DECIGO for $SNR = 8$ and integration time of $T = 1$ year. We consider a NS of $M = 1.4 \, M_{\odot}$, radius $R = 10$ km.

ments of inertia four orders of magnitude greater than a neutron star. Consequently, the GW amplitudes generated by these sources as neutron stars are far below the sensitivity curves of BBO and DECIGO [see Fig. 6]. Therefore, if these space based instruments detect continuous GWs from these sources, this would corroborate the model of fast spinning and magnetic WDs.

4. Final Remarks
We investigate two mechanisms - accretion of matter and magnetic deformation - for the production of gravitational waves in fast-spinning WDs. These uncommon
WDs have high rotation and huge magnetic fields. Also, these stars are considered in an alternative model to describe SGRs and AXPs, where they are characterized as rotation-powered WD pulsars.

Then, we firstly study the following three binary systems: AE Aqr, AR Sco and RX J0648. For the accretion of matter mechanism, our results show that the AE Aqr and RX J0648 are good candidates for BBO and DECIGO if they have an amount of mass accumulated of $\delta m \geq 10^{-5}M_\odot$, considering 1 year of integration time and $SNR = 8$. In contrast, AR Sco is unlikely to be detected because it is needed a large amount of mass accumulated in the magnetic pole of this WD.

Now, regarding the magnetic deformation mechanism, to emit gravitational radiation with amplitudes that are detectable by BBO, for example, the three binary systems studied require that the WD has a magnetic field above $\sim 10^9$ G. Nevertheless, these WDs are inferred to have magnetic fields with intensity around two orders of magnitude smaller. Moreover, we also conclude that gravitational radiation has an irrelevant contribution to the spindown luminosity of these systems for both mechanism.

Still, taking into account the magnetic deformation mechanism, we investigate the SGRs/AXPs as rotation-powered WD pulsars assigning a mass range $1.0M_\odot \leq M_{WD} \leq 1.4M_\odot$ for these objects. We conclude that a possible detection of continuous GWs coming from SGRs/AXPs would be a good indication that could corroborate the WD pulsar model, as for the neutron stars description, they are far below the BBO and DECIGO sensitivity curves.

Acknowledgements

M.F.S. thanks CAPES for the financial support. J.C.N.A. thanks FAPESP (2013/26258-4) and CNPq (308367/2019-7) for partial financial support. J.G.C. is likewise grateful to the support of CNPq (421265/2018-3 and 305369/2018-0), FAPESP Project No. 2015/15897-1, and NAPI (Fenômenos Extremos do Universo) of Fundaçãode Apoio à Ciência, Tecnologia e Inovação do Paraná.

References

1. M. F. Sousa, J. G. Coelho and J. C. de Araujo, Gravitational waves from fast-spinning white dwarfs, *Monthly Notices of the Royal Astronomical Society* **492**, 5949 (2020).
2. M. F. Sousa, J. G. Coelho and J. C. de Araujo, Gravitational waves from sgrs and axps as fast-spinning white dwarfs, *Monthly Notices of the Royal Astronomical Society* **498**, 4426 (2020).
3. B. Külebi, S. Jordan, F. Euchner, B. T. Gänsicke and H. Hirsch, Analysis of hydrogen-rich magnetic white dwarfs detected in the Sloan Digital Sky Survey, *Astronomy and Astrophysics* **506**, 1341 (November 2009).
4. S. O. Kepler, I. Pelisoli, S. Jordan, S. J. Kleinman, D. Koester, B. Külebi, V. Peçanha, B. G. Castanheira, A. Nitta, J. E. S. Costa, D. E. Winget, A. Kanaan and L. Fraga, Magnetic white dwarf stars in the Sloan Digital Sky Survey, *Monthly Notices of the RAS* **429**, 2934 (March 2013).
5. S. O. Kepler, I. Pelisoli, D. Koester, G. Ourique, S. J. Kleinman, A. D. Romero, A. Nitta, D. J. Eisenstein, J. E. S. Costa, B. Külebi, S. Jordan, P. Dufour, P. Giommi and A. Rebassa-Mansergas, New white dwarf stars in the Sloan Digital Sky Survey Data Release 10, *Monthly Notices of the RAS** 446*, 4078 (February 2015).

6. G. D. Schmidt, P. Bergeron, J. Liebert and R. A. Saffer, Two ultramassive white dwarfs found among candidates for magnetic fields, *Astrophysical Journal* **394**, 603 (August 1992).

7. B. Külebi, S. Jordan, E. Nelan, U. Bastian and M. Altmann, Constraints on the origin of the massive, hot, and rapidly rotating magnetic white dwarf RE J 0317-853 from an HST parallax measurement, *Astronomy and Astrophysics* **524**, p. A36 (December 2010).

8. R. T. Marsh, B. T. Gänsicke, S. Hümmerich, F.-J. Hambisch, K. Bernhard, C. Lloyd, E. Breddt, E. R. Stanway, D. T. Steeghs, S. G. Parsons, O. Toloza, M. R. Schreiber, P. G. Jonker, J. van Roestel, T. Kupfer, A. F. Pala, V. S. Dhillon, L. K. Hardy, S. P. Littlefair, A. Aungwerojwit, S. Arjyotha, D. Koester, J. J. Bochinski, C. A. Haswell, P. Frank and P. J. Wheatley, A radio-pulsing white dwarf binary star, *Nature* **537**, 374 (September 2016).

9. Y. Terada, T. Hayashi, M. Ishida, K. Mukai, T. Dotani, S. Okada, R. Nakamura, S. Naik, A. Bamba and K. Makishima, Suzaku Discovery of Hard X-Ray Pulsations from a Rotating Magnetized White Dwarf, AEAquarii, *Publications of the ASJ* **60**, 387 (April 2008).

10. S. Mereghetti, A. Tiengo, P. Esposito, N. La Palombara, G. L. Israel and L. Stella, An Ultramassive, Fast-Spinning White Dwarf in a Peculiar Binary System, *Science* **325**, p. 1222 (September 2009).

11. S. Mereghetti, F. Pintore, P. Esposito, N. La Palombara, A. Tiengo, G. L. Israel and L. Stella, Discovery of spin-up in the x-ray pulsar companion of the hot subdwarf hd 49798, *Monthly Notices of the Royal Astronomical Society* **458**, 3523 (2016).

12. S. Popov, S. Mereghetti, S. Blinnikov, A. Kuranov and L. Yungelson, A young contracting white dwarf in the peculiar binary hd 49798/rx j0648. 0- 4418?, *Monthly Notices of the Royal Astronomical Society* **474**, 2750 (2017).

13. R. Lopes de Oliveira, A. Bruch, C. V. Rodrigues, A. S. Oliveira and K. Mukai, CTCV J2056-3014: An X-Ray-faint Intermediate Polar Harboring an Extremely Fast-spinning White Dwarf, *The Astrophysical Journal Letters* **898**, p. L40 (August 2020).

14. E. Otoniel, J. G. Coelho, M. Malheiro and F. Weber, Mass limits of the extremely fast-spinning white dwarf CTCV J2056-3014, *arXiv e-prints*, p. arXiv:2010.12441 (October 2020).

15. R. P. Ashley, T. R. Marsh, E. Breedt, B. T. Gänsicke, A. F. Pala, O. Toloza, P. Chote, J. R. Thorstensen and M. R. Burleigh, V1460 Her: a fast spinning white dwarf accreting from an evolved donor star, *Monthly Notices of the Royal Astronomical Society* **499**, 149 (September 2020).

16. I. Caiazzo, K. B. Burdge, J. Fuller, J. Heyl, S. Kulkarni, T. A. Prince, H. B. Richer, J. Schwab, I. Andreoni, E. C. Bellm et al., A highly magnetized and rapidly rotating white dwarf as small as the moon, *Nature* **595**, 39 (2021).

17. M. Malheiro, J. A. Rueda and R. Ruffini, Sgrs and axps as rotation-powered massive white dwarfs, *Publications of the Astronomical Society of Japan* **64**, p. 56 (2012).

18. J. G. Coelho and M. Malheiro, Magnetic dipole moment of soft gamma-ray repeaters and anomalous x-ray pulsars described as massive and magnetic white dwarfs, *Publications of the Astronomical Society of Japan* **66**, p. 14 (2014).

19. R. V. Lobato, M. Malheiro and J. G. Coelho, Magnetars and white dwarf pulsars, *International Journal of Modern Physics D* **25**, p. 1641025 (July 2016).
20. B. Mukhopadhyay and A. R. Rao, Soft gamma-ray repeaters and anomalous X-ray pulsars as highly magnetized white dwarfs, *Journal of Cosmology and Astroparticle Physics* 5, p. 007 (May 2016).

21. V. V. Usov, Gamma-radiation generation by rotating magnetic white dwarfs, *Pisma v Astronomicheskii Zhurnal* 14, 606 (1988).

22. B. Abbott, R. Abbott, T. Abbott, S. Abraham, F. Acernese, K. Ackley, C. Adams, R. Adhikari, V. Adya, C. Affeldt *et al.*, GWTC-1: a gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs, *Physical Review X* 9, p. 031040 (2019).

23. R. Abbott, T. Abbott, S. Abraham, F. Acernese, K. Ackley, A. Adams, C. Adams, R. Adhikari, V. Adya, C. Affeldt *et al.*, GWTC-2: Compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run, *Physical Review X* 11, p. 021053 (2021).

24. P. Amaro-Seoane, H. Audley, S. Babak, J. Baker, E. Barausse, P. Bender, E. Berti, P. Binetruy, M. Born, D. Bortoluzzi *et al.*, Laser interferometer space antenna, *arXiv preprint arXiv:1702.00786* (2017).

25. T. Robson, N. J. Cornish and C. Liug, The construction and use of LISA sensitivity curves, *Classical and Quantum Gravity* 36, p. 105011 (2019).

26. G. M. Harry, P. Freitag, D. A. Shaddock, W. Folkner and E. S. Phinney, Laser interferometry for the big bang observer, *Classical and Quantum Gravity* 23, p. 4887 (2006).

27. K. Yagi and N. Seto, Detector configuration of Decigo/BBO and identification of cosmological neutron-star binaries, *Physical Review D* 83, p. 044011 (2011).

28. S. Kawamura *et al.*, The Japanese space gravitational wave antenna—Decigo, *Classical and Quantum Gravity* 23, p. S125 (2006).

29. K. Yagi and N. Seto, Erratum: Detector configuration of Decigo/BBO and identification of cosmological neutron-star binaries [phys. rev. d 83, 044011 (2011)], *Physical Review D* 95, p. 109901 (2017).

30. S. Bonazzola and E. Gourgoulhon, Gravitational waves from pulsars: emission by the magnetic-field-induced distortion., *Astronomy and Astrophysics* 312, 675 (August 1996).

31. J. C. N. de Araujo, J. G. Coelho and C. A. Costa, Gravitational wave emission by the high braking index pulsar PSR J1640-4631, *Journal of Cosmology and Astroparticle Physics* 2016, p. 023 (Jul 2016).

32. J. C. N. de Araujo, J. G. Coelho and C. A. Costa, Gravitational Waves from Pulsars and Their Braking Indices: The Role of a Time Dependent Magnetic Ellipticity, *Astrophysical Journal* 831, p. 35 (Nov 2016).

33. J. C. N. de Araujo, J. G. Coelho and C. A. Costa, Gravitational waves from pulsars in the context of magnetic ellipticity, *European Physical Journal C* 77, p. 350 (May 2017).

34. B. Franzon and S. Schramm, Ar scorpii and possible gravitational wave radiation from pulsar white dwarfs, *Monthly Notices of the Royal Astronomical Society* 467, 4484 (2017).

35. S. Kalita and B. Mukhopadhayay, Continuous gravitational wave from magnetized white dwarfs and neutron stars: possible missions for LISA, DECIGO, BBO, ET detectors, *Monthly Notices of the Royal Astronomical Society* , p. 2346 (Oct 2019).

36. S. Chandrasekhar and E. Fermi, Problems of gravitational stability in the presence of a magnetic field., *The Astrophysical Journal* 118, 116 (1953).

37. S. L. Shapiro and S. A. Teukolsky, *Black holes, white dwarfs and neutron stars: the physics of compact objects* (John Wiley & Sons, 1983).
38. M. Maggiore, *Gravitational waves: volume 1: theory and experiments* (OUP Oxford, 2008).
39. K. Konno, T. Obata and Y. Kojima, Flattening modulus of a neutron star by rotation and magnetic field, *Astronomy and Astrophysics* 356, 234 (April 2000).
40. T. Regimbau and J. A. de Freitas Pacheco, Gravitational wave background from magnetars, *Astronomy and Astrophysics* 447, 1 (February 2006).
41. W. F. Welsh, K. Horne and R. Gomer, Doppler signatures of Hα flares in ae aquarīi, *Monthly Notices of the Royal Astronomical Society* 298, 285 (1998).
42. B. Warner, *Cataclysmic variable stars* (Cambridge University Press, 2003).
43. C. Hellier, *Cataclysmic Variable Stars-how and why they vary* (Springer Science & Business Media, 2001).
44. C.-S. Choi and I. Yi, On the rapid spin-down and low-luminosity pulsed emission from ae aquarīi, *The Astrophysical Journal* 538, 862 (2000).
45. S. Mereghetti, N. La Palombara, A. Tiengo, F. Pizzolato, P. Esposito, P. Woudt, G. Israel and L. Stella, X-ray and optical observations of the unique binary system hd 49798/rx j0648. 0-4418, *The Astrophysical Journal* 737, p. 51 (2011).
46. V. C. A. Ferraro, On the Equilibrium of Magnetic Stars., *Astrophysical Journal* 119, p. 407 (March 1954).
47. S. Olausen and V. Kaspi, The megill magnetar catalog, *The Astrophysical Journal Supplement Series* 212, p. 6 (2014).
48. K. Boshkayev, L. Izzo, J. A. Rueda and R. Ruffini, Sgr 0418+5729, swift j1822.3-1606, and 1e 2259+586 as massive fast rotating highly magnetized white dwarfs, *Astronomy and Astrophysics* 555 (05 2013).
49. R. C. Duncan and C. Thompson, Formation of very strongly magnetized neutron stars-implications for gamma-ray bursts, *The Astrophysical Journal* 392, L9 (1992).
50. V. M. Kaspi and A. M. Beloborodov, Magnetars, *Annual Review of Astronomy and Astrophysics* 55, 261 (2017).