Zeeman smearing of the Coulomb Blockade

Karyn Le Hur
Département de Physique Théorique, Université de Genève, CH-1211, Genève 4, Switzerland.

Charge fluctuations of a large quantum dot coupled to a two-dimensional lead via a single-mode good Quantum Point Contact (QPC) and capacitively coupled to a back-gate, are investigated in presence of a parallel magnetic field. The Zeeman term induces an asymmetry between transmission probabilities for the spin-up and spin-down channels at the QPC, producing noticeable effects on the quantization of the grain charge already at low magnetic fields. Performing a quantitative analysis, I show that the capacitance between the gate and the lead exhibits — instead of a logarithmic singularity — a reduced peak as a function of gate voltage. Experimental applicability is discussed.

PACS numbers: 73.23.Hk, 73.23.-b, 72.15.Qm

Recent research on mesoscopic quantum dots has led to a revival of Kondo physics. There is an extensive literature on the (one-channel) Kondo behavior of small dots with an odd number of electrons and a finite level spacing on the (one-channel) Kondo behavior of small dots coupled to a back-gate, is mathematically equivalent to the two-channel model in the Emery-Kivelson limit [4] (Fig. 1). The two channels of the Kondo problem correspond to the two spin channels for tunneling through the QPC. For recent reviews, see Refs. [3].

The non-Fermi-liquid nature of the ground state of the two-channel Kondo model is here reflected by the non-analyticity of the capacitance measured between the gate and the reservoir near the points where the dot charge Q is half-integer [2] \((C =
\partial Q/\partial V_G) \)

\[C(N) = C_o - bC_{gd}|\lambda|^2 \cos(2\pi N) \ln \frac{1}{|\lambda|^2 \cos^2(\pi N)}. \]

(1)

N is a parameter proportional to the gate voltage \(eN = V_GC_{gd}, \) \(C_{gd} \) denotes the gate-dot capacitance, \(C_o \) is the total dot capacitance and \(|\lambda|^2 \ll 1 \) is the small reflection probability at the QPC. Here, \(b > 0 \) is proportional to the Euler constant \(\gamma = e^C, \) with \(C \approx 0.5772. \) The second term describes the cross-over from the linear charge-voltage dependence to the “Coulomb staircase” behavior (inset in Fig. 3). This effect has been observed by Berman et al., in AlGaAs/GaAs heterostructures [5].

Below, I investigate how the capacitance \(C(N) \) evolves if a magnetic field B is applied parallel to the 2DEG [4]. I will show that the logarithmic divergence in the differential capacitance \(\delta C(N) = C(N) - C_o \) with \(N \to 1/2 \) gets already cutoff by a small magnetic field (Fig. 3)

\[\frac{\delta C}{C_{gd}}(N) = b|\lambda|^2(1 - \delta^2) \cos(2\pi N) \times \]

\[\ln \text{Max}[|\lambda|^2\delta^2\sin^2(\pi N); |\lambda|^2\cos^2(\pi N)], \]

\[0 < \delta \ll 1, \text{ being proportional to the Zeeman energy, } \Delta = g\mu_BB. \] This results from a Zeeman-like asymmetry between reflection probabilities for the spin-up and spin-down channels at the QPC. For a high field \((\delta \approx 1), \) only the spin-channel will be transmitted producing a one-channel QPC model. The capacitance (or charge Q) only exhibits periodic oscillations as a function of N \[3, \]

\[C(N) = C_o - bC_{gd}|\lambda|\cos(2\pi N). \]

(3)

The Coulomb staircase behavior gets completely smeared out (inset in Fig. 3). An experiment using AlGaAs/GaAs heterostructures is presumably appropriate to probe this effect in the capacitance [10]. Indeed, Zeeman splitting at the QPC in an in-plane magnetic field has been confirmed by Thomas et al via conductance measurements [11], and for few conducting modes at the QPC the Landé factor is enhanced \(g \approx 1 \) (the bulk value is \(g = 0.4). \)

Let me emphasize that below a quantitative analysis of the smearing out of the logarithmic peak for the capacitance \(\delta C(N) \) is performed (which has not been previously done in Ref. [2]). The crossover from the two- to the one-channel QPC model is carefully investigated.

First, it is useful to compute reflection probabilities at the QPC in presence of a magnetic field parallel to the 2DEG, and to discuss the necessary magnetic-field dependent adjustment of the QPC potential \(V_G(B). \) In the close vicinity of the contact, the (smooth) confining potential will be approximated as a harmonic one [4].

FIG. 1. The experimental setup: A large dot coupled to a 2DEG via a single mode QPC and capacitatively coupled to a back-gate, in a parallel magnetic field B (\(C_o = C_{gd} \)).
An electron with spin-projection \(\alpha = \uparrow, \downarrow \) (or \(\alpha = \pm 1 \)) along the magnetic field axis, is then subjected to the total potential \(V_\alpha(B) = m\omega_x^2 x^2/2 + m\omega_y^2 y^2/2 - \alpha\Delta/2 \). Here, \(\omega_x \) and \(\omega_y \) are the curvatures of the potential, and \(m \) the mass of an electron. The transverse part of the Hamiltonian produces “n transverse modes”. Then, the one-dimensional (1D) wave function \(\Psi_\alpha^n(x) \) for motion along \(x \) is determined by the effective potential

\[
V_\alpha^n(x) = V_\alpha(B) - \alpha \frac{\Delta}{2} + \hbar \omega_y(n + \frac{1}{2}) - \frac{1}{2} m \omega_x^2 x^2, \tag{4}
\]

the explicit form of which is of no interest here. The height of the barrier potential at the QPC for a spin-up channel of the transverse mode \(n = 0 \) remains at \(\hbar \omega_x > 0 \). Below, I will focus on low magnetic field effects. Using Eq. (5), similarly I adjust \(V_\alpha(B) = V_\alpha(B = 0) + \Delta/2 \), because I want field-independent reflection probabilities for spin-up channels.

Near the saddle-point \((x \approx 0) \), the threshold energies of the mode \(n \) are then spin-splitted, as follows

\[
E_n^\uparrow = E_n = V_\alpha(B = 0) + \hbar \omega_y(n + \frac{1}{2}), \tag{5}
\]

\[
E_n^\downarrow = E_n + \Delta.
\]

Classically, modes with threshold energy below the Fermi energy \(E_F \) are perfectly open and the others remain closed. But, quantum mechanically transmission and reflection at the saddle are neither completely open nor completely closed \([13]\). Here, I fix the voltage \(V_\alpha(B = 0) \) such that \(E_0 \ll E_F < E_1 \). In Fig. 2, this corresponds to adjust \(\xi \) such that \(0.5 \ll \xi < 1.5 \). Then, the spin-up channel of the transverse mode \(n = 0 \) remains at almost perfect transmission whatever the applied magnetic field. Moreover, I can disregard modes \(n \geq 1 \) which are almost perfectly reflected, because I am interested only in transport through the constriction.

The reflection/transmission amplitude of a 1D particle passing through an inverted parabolic barrier has been studied in detail by Connor \([14]\). Taking \(n = 0 \), small reflection probability for the spin-up channel reads

\[
R_0^\uparrow = |\lambda|^2 = \frac{1}{1 + \exp(2\pi i \xi_0^\uparrow)} \approx \exp(-2\pi i \xi_0^\uparrow), \tag{6}
\]

where \(\xi_0^\uparrow = (E_F - E_0)/\hbar \omega_x > 0 \). Below, I will focus on low magnetic field effects. Using Eq. (5), similarly I obtain \((\delta = \Delta/2\hbar \omega_x \ll 0.4) \)

\[
R_0^\downarrow \approx \exp(-2\pi i \xi_0^\downarrow) \approx R_0^\uparrow (1 + 4\pi \delta). \tag{7}
\]

Both channels are transmitted but \(1 \gg R_0^\downarrow > R_0^\uparrow \) (See Fig. 2). Applying an in-plane magnetic field, one gets what I call a two-channel anisotropic QPC model; This is defined, below. The limit of strong fields will be reached when the Zeeman energy approaches the curvature energies of the potential: \(E_0^\uparrow = E_1 \) and \(T_0^\uparrow = 1 - R_0^\uparrow \ll 0 \). A single channel will subsist in the constricton.

As I am interested in the dynamics of the system at energies much smaller than \(E_F \), I may linearize the spectrum of the 1D-fermions in state \(\Psi_\alpha(x) = \Psi_\alpha^n(x) \). One can always write \(\Psi_\alpha(x) = \exp(i k_F x) \Psi_{R_\alpha}(x) + \exp(-i k_F x) \Psi_{L_\alpha}(x) \); \(\Psi_{L_\alpha} \) and \(\Psi_{R_\alpha} \) respectively describe left- and right moving fermions, and \(E_F = k_F^2/2m \). Finite reflection in the channel \(\alpha = \uparrow, \downarrow \) then can be simply accounted for by adding a backscattering term \([5,6,15]\).

\[
H_{bs} = v_F \sqrt{R_0^\uparrow R_0^\downarrow} \Psi_{R_\alpha}(0) \Psi_{R_\alpha}(0). \tag{8}
\]
\(v_F \) denotes the Fermi velocity \([16]\). One must also include the kinetic energy through the constriction,

\[
H_{kin} = iv_F \int_{-\infty}^{+\infty} dx \{ \Psi_{R_\alpha}^\dagger \partial_x \Psi_{R_\alpha} - \Psi_{L_\alpha}^\dagger \partial_x \Psi_{L_\alpha} \}. \tag{9}
\]

At almost perfect transmission, the electronic wave function is shared between the reservoir and the dot. I can neglect finite size effects in a dot at the micron scale \((\epsilon \to 0) \) \([17]\). Note that \((H_{kin} + H_{bs}) \) with \(1 \gg R_0^\dagger > R_0^\uparrow \) describes a two-channel anisotropic QPC model. Again, I ignore higher modes confined to the reservoir, and also neglect the Pauli contribution of the 2DEG. The charging process is described by the following usual term

\[
H_c = E_c \left(Q - N \right)^2, \tag{10}
\]

with \(E_c = e^2/(2C_{gd}) \ll E_F \) the (charging) energy that it costs to transfer a particle from the lead to the dot. The charge \(Q \) (of the dot) in \(H_c \) is now normalized to \(e \),

\[
Q = \int_0^{+\infty} dx \{ \Psi_{L_\alpha}^\dagger \partial_x \Psi_{L_\alpha} + \Psi_{R_\alpha}^\dagger \partial_x \Psi_{R_\alpha} \}. \tag{11}
\]

At low energies, I can proceed with this model by bosonizing the 1D Fermi fields \([5,6,15,18]\).

\[
\Psi_{ps} = \frac{1}{\sqrt{2\pi a}} \exp \left(i \sqrt{\frac{\pi}{2}} \left[p(\phi_c + \alpha \phi_s) - (\theta_c + \alpha \theta_s) \right] \right). \tag{12}
\]
\(a \) is a short-distance cutoff, again \(a = \pm \) for spin up and spin down, and \(p = \pm \) for right and left movers. The spectrum of 1D free electrons yields separation of spin and charge. Resulting Hamiltonians are plasmon-like

\[
H_{\text{kin}} = \sum_{j=c,s} \frac{v_F}{2} \int_{-\infty}^{+\infty} dx \left[(\partial_x \phi_j)^2 + \Pi_j^2 \right].
\]

(13)

\(\partial_x \phi_j \) with \(j = (c, s) \) measures fluctuations of charge/spin density in the constriction and \(\Pi_j = \partial_x \theta_j \) being its conjugate momentum. In this representation, the charging Hamiltonian \(H_c \) reads

\[
H_c = E_c \left[\sqrt{\frac{2}{\pi}} \phi_c(0) - N \right]^2.
\]

(14)

To minimize energy, the charge in the dot is pinned at the classical value \(Q_c = \phi_c(0) \sqrt{2/\pi} \approx N \). \[\[\]

Now, one has to examine the quantum corrections to the charge entering the constriction, in presence of a small (parallel) magnetic field. For energies smaller than \(E_c \) and \(|\lambda| \ll 1 \), I can replace \(\cos[\sqrt{2\pi} \phi_c(0)] \) by the averaged value \(\sqrt{\gamma E_c a / \pi v_F \cos(\pi N)} \) (similarly for the sinuss).

The backscattering contribution to the ground state energy then takes the form

\[
\delta E(N) = -\frac{\Gamma(N)}{2} \ln(E_c / \Gamma(N)),
\]

where \(\Gamma(N) = J_{\perp x} / \pi v_F a \) is the Kondo resonance. The quantum correction \(\delta E \) to the charge in the dot, becoming equal to \(\delta Q = -b \delta E / \Gamma(N) \). This results explicitly in \(\delta Q \approx -b R_0^\dagger \sin(2\pi N \ln(E_c / \Gamma(N))) \).

\[\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]
See e.g. Ref. [3], page 401. Another energy scale related to the magnetic field emerges: \(\Upsilon = J_{\perp y}^2 / \pi v_{F} a = \gamma E_{C} \mathcal{R}_{0}^{-1/2} \sin^2(\pi N)/\pi \). This is associated with the divergence of \(J_{\perp y} \). For high fields, adjusting correctly the voltage at the QPC one reproduces a single-channel QPC model; For \(|\lambda| \ll 1 \), the charge entering the dot exhibits only a weak quantum oscillation around its classical value. Experimentally, the prominent smearing of the Coulomb staircase — predicted by increasing the in-plane magnetic field — could be possibly observed for sufficiently low temperatures \(T \), probing (preferably) the capacitance line shapes of the large dot in a single-terminal geometry [10]. To account for nonzero temperature, one must rescale \(\max\{\Gamma; \Upsilon\} \) as \(k_{B}T + \max\{\Gamma; \Upsilon\} \). Experimentally, it would be crucial to minimize the broadening of the capacitance peaks due to thermal effects.

This work is supported by the Swiss National Science Foundation.

[1] For a very recent review, see L. Kouwenhoven and L. Glazman, Physics World, v. 14, No 1, pp. 33-38 (2001).
[2] K. A. Matveev, Phys. Rev. B 51, 1743 (1995).
[3] Ph. Nozières and A. Blandin, J. Phys. (Paris) 41, 193 (1980).
[4] V. J. Emery and S. Kivelson, Phys. Rev. B 46, 10812 (1992); D. G. Clarke, T. Giamarchi, and B. I. Shraiman, ibid. 48, 7070 (1993); A. M. Sengupta and A. Georges, ibid. 49, R10020 (1994).
[5] A. O. Gogolin, A. A. Nersesyan, and A. M. Tsvelik, in *Bosonization and Strongly Correlated Systems* (Cambridge University Press, 1998).
[6] I. L. Aleiner, P. W. Brouwer, and L. I. Glazman, cond-mat/0103008 (from page 70).
[7] D. Berman, N. B. Zhitelev, R. C. Ashoori, and M. Shayshev, Phys. Rev. Lett. 82, 161 (1999).
[8] A similar divergence occurs in the weak-tunneling case; See K. A. Matveev, Sov. Phys. JETP 72, 892 (1991).
[9] An in-plane magnetic field is judicious to probe spin-splitting effects because the Lorentz force \(-e\mathbf{v} \times \mathbf{B} \to 0\), that allows to completely eliminate the cyclotron energy.
[10] In principle, to reproduce the result of Eq. (2) would require a smooth confining potential at the QPC and a “perfect” dot with no dephasing/relaxation process.
[11] K. J. Thomas et al., Phys. Rev. Lett. 77, 135 (1995).
[12] N. K. Patel et al., Phys. Rev. B 44, 13549 (1991).
[13] M. Büttiker, Phys. Rev. B 41, R7906 (1990).
[14] J. N. Connor, Mol. Phys. 15, 37 (1968).
[15] I. L. Aleiner and L. I. Glazman, Phys. Rev. B 57, 9608 (1998).
[16] At low magnetic fields \(\Delta \ll E_{F} \), one can neglect the renormalization of the Fermi velocities for spin-up and spin-down electrons. This does not affect the final result.
[17] I also neglect mesoscopic corrections to the capacitance \(C_{gd} \); V. A. Gopar, P. A. Mello, and M. Büttiker, Phys.
Rev. Lett. 77, 3005 (1996) and references therein.

[18] This method is appropriate to solve exotic 1D two-channel Kondo models. Consult e.g. K. Le Hur, Phys. Rev. B 59, R11637 (1999); K. Le Hur, Europhys. Lett., 49 (6), pp. 768-774 (2000).

[19] The Coulomb blockade disappears at perfect transmission: N. C. van der Vaart \textit{et al.}, Phys. B 189, 99 (1993).

[20] L. I. Glazman, I. M. Ruzin and B. I. Shklovskii, Phys. Rev. B 45, 8454 (1992).

[21] Similarly, I define $\theta_s(x) = [\Phi_s(x) - \Phi_s(-x)]/\sqrt{2}$.

[22] The spectrum is indeed a function of $J_{\perp x}^2$.

[23] For $N < 1/2$ ($N > 1/2$), the corresponding spin state in the dot is $S=0$ ($S=1/2$).

[24] M. Fabrizio, A. O. Gogolin and Ph. Nozières, Phys. Rev. B 51, 16088 (1995).