Age, sex and APOE-ε4 modify the balance between soluble and fibrillar β-amyloid in non-demented individuals: topographical patterns across two independent cohorts

Raffaele Cacciaglia1,2,14, Gemma Saladó1,2,14, José Luis Molinuevo1,2,4,5, Mahnaz Shekari1,2,3, Carles Falco1,2,5, Gregory Operto1,2,3, Marc Suárez-Calvet1,2,3,6, Marta Milà-Aloma1,2,3, Arianna Sala7, Elena Rodríguez-Vieitez7, Gwendlyn Kollmorgen8, Ivonne Suridjan9, Kaj Blennow10,11, Henrik Zetterberg10,11, Juan Domingo Gispert1,2,4,5, for the Alzheimer’s Disease Neuroimaging Initiative and for the ALFA study*

© The Author(s) 2022

INTRODUCTION

Amyloid (Aβ) pathology is thought to be among the earliest events occurring along the Alzheimer’s continuum, which is later followed by tau spread and cerebral atrophy [1]. Both cerebrospinal fluid (CSF) Aβ concentrations and Positron Emission Tomography (PET) with specific tracers, provide established biomarkers of Aβ pathology, and have shown considerable agreement, both on prognostic and diagnostic levels [2–4]. Yet, CSF and PET assays measure two different Aβ pools reflecting two distinct biological processes. While the former indexes the current status of soluble Aβ production versus clearance, the latter quantifies the presence of Aβ fibrillar plaques in the brain [5, 6]. It has been suggested that cumulative cerebral Aβ deposition observed in AD might stem from a dysregulation between the production and clearance of Aβ, and that Aβ plaques may act as a “sink”, hindering the transport of soluble Aβ fragments from the brain to the CSF [7]. In this respect, the study of factors affecting the balance between soluble and deposited Aβ may help identifying the underlying mechanisms promoting cerebral Aβ aggregation for any given level of CSF Aβ42/40, although in distinct cerebral topologies. While age and sex mapped onto neocortical areas, the effect of APOE-ε4 was prominent in the medial temporal lobe, which represents a target of early tau deposition. Further, we found that the effects of age and APOE-ε4 was stronger in women than in men. Our data indicate that specific AD risk factors affect the spatial patterns of cerebral Aβ aggregation, with APOE-ε4 possibly facilitating a co-localization between Aβ and tau along the disease continuum.

Molecular Psychiatry (2022) 27:2010–2018; https://doi.org/10.1038/s41380-022-01436-7

Received: 5 July 2021 Revised: 20 December 2021 Accepted: 4 January 2022

Published online: 2 March 2022
putatively different underlying mechanisms, we tested the interactions between each of the risk factors and CSF A\(\beta\)40, the most abundant A\(\beta\) isoform found in the CSF, which has been regarded as a marker of global protein clearance, rather than an index of pathology [11]. With this respect, some studies found moderate but significant increases of CSF A\(\beta\)40 in A\(\beta\)-PET positive compared with negative participants [12] as well as in AD patients compared with asymptomatic individuals [13, 14]. This suggests that abnormalities in both production and clearance of A\(\beta\) peptide may result in a net accumulation of fibrillar A\(\beta\) in the brain. We reasoned that if a significant interaction with CSF A\(\beta\)40 is found, that would be supportive of a deficient mechanism in total A\(\beta\) clearance, given that A\(\beta\)40 does not tend to aggregate in fibrillar plaques [15].

We tested our hypotheses in regions of vulnerability to AD proteinopathy and further examined the whole-brain using a voxel-wise approach, on a monocentric cohort of middle-aged cognitively unimpaired (CU) participants (ALFA sample). Furthermore, we repeated all analyses in an independent sample of nondemented participants derived from the Alzheimer’s Disease Neuroimaging Initiative (ADNI), which included CU individuals along with participants with mild cognitive impairment (MCI), in order to extend the analysis further in the Alzheimer’s *continuum*.

**METHODS**

**Study participants**

The ALFA study (NCT01835717) comprises a longitudinal monocentric research platform aiming at the identification of pathophysiological alterations in preclinical AD. The ALFA cohort is composed of 2,743 CU individuals, all reporting a Clinical Dementia Rate score of 0, most of them being first-order descendants of AD patients [16]. Within this research framework, the ALFA+ is a nested study that includes advanced imaging protocols, including magnetic resonance imaging (MRI) and PET acquisitions, along with cognitive, lifestyle factors as well as fluid biomarkers. The present study included the first 320 consecutive participants of the ALFA+ study with available CSF, A\(\beta\) PET, MRI and cognitive data. None of the subjects had a neuropsychiatric or a psychiatric diagnosis. All the tests and image acquisitions were measured within less than a year time difference. The ALFA+ study (ALFA-FPM-0311) was approved by the Independent Ethics Committee “Parc de Salut Mar,” Barcelona, and registered at Clinicaltrials.gov (Identifier: NCT02485730). All participating subjects and signed the study’s informed consent form that had also been approved by the Independent Ethics Committee “Parc de Salut Mar,” Barcelona. The study was conducted according to the Declaration of Helsinki. The confirmation cohort included all CU and MCI ADNI participants, with available A\(\beta\) CSF, A\(\beta\) PET and MRI data acquired within less than one year, resulting in a sample of 682 individuals. ADNI is a multi-site open access dataset designed to accelerate the discovery of biomarkers to identify and track AD pathology ([http://adni.loni.usc.edu/methods/](http://adni.loni.usc.edu/methods/)). A\(\beta\) PET, MRI and cognitive data. None of the subjects had a neurologic or a cognitive impairment [17].

Procedures for APOE genotype are described in the Supplementary Materials.

**CSF sampling and analysis**

For ALFA participants, CSF samples were obtained by lumbar puncture following standard procedures [18] (please refer to the Supplementary Material for details on CSF sampling). A\(\beta\)40 as well as A\(\beta\)42 concentrations were determined with the NeuroToolK\(\text{\textregistered}\) (Roche Diagnostics International Ltd.) on cobas E\(\text{\textregistered}\)601 (A\(\beta\)42) and e\(\text{\textregistered}\)411 (A\(\beta\)40) instruments at the Clinical Neurochemistry Laboratory, University of Gothenburg, Sweden. CSF collection and analyses for ADNI participants are described in the ADNI procedure manual ([http://adni.loni.usc.edu/methods/](http://adni.loni.usc.edu/methods/)). A\(\beta\)40 and A\(\beta\)42 concentrations in ADNI were measured with 2D-UPIT (tandem mass-spectrometry) at the University of Pennsylvania. To increase sensitivity, both in ALFA and ADNI the ratio between A\(\beta\)42 and A\(\beta\)40 was finally calculated [12].

**PET imaging acquisition procedures**

Imaging procedures from ALFA have been described previously [19]. In brief, A\(\beta\) PET images were acquired 90 min post-injection using [\(\text{\textsuperscript{18}}\text{F}\)] flutemetamol with 4 frames of 5 min each. A T1-weighted 3D-TFE sequence was acquired with a 3 T Philips Ingenia CX scanner with the following sequence parameters: voxel size = 0.75 mm isotropic, field of view (FOV) = 240 × 240 × 180 mm\(^3\), flip angle = 8°, repetition time = 9.9 ms, echo time = 4.6 ms, TI = 900 ms. Details of ADNI imaging procedures can also be found in the website ([http://adni.loni.usc.edu/methods/documents/](http://adni.loni.usc.edu/methods/documents/)). In brief, [\(\text{\textsuperscript{18}}\text{F}\)] florbetapir A\(\beta\) PET images were acquired in four frames of five minutes each, 50–70 min post-injection. Finally, structural MRI data were acquired on 3T scanning platforms using T1-weighted sagittal 3-dimensional magnetization-prepared rapid-acquisition gradient echo sequences (MP-RAGE). Image preprocessing is described in the Supplementary Materials.

**Regional A\(\beta\)-PET quantification**

SUVRs were extracted from a-priori defined regions of interest (ROI). We tested the cortical Centiloid composite ROI ([http://www.gaan.org/centiloid-project](http://www.gaan.org/centiloid-project)) as A\(\beta\)-sensitive cerebral region [20]. As tau-vulnerable regions, we selected the Braak stages ROIs [21] defined according to the Dutch Reference Atlas (DK atlas) on Brainnetome [22]. Supplementary Fig. 1 shows both the Centiloid and Braak stages ROIs mapped onto the DK atlas. For visualization purposes, the Centiloid ROIs was parceled onto the DK atlas according to a best-match visual criterion. Supplementary Table 1 shows the full list of the DK atlas labels that were used for both composite ROIs.

**Statistical analyses**

Demographic information from both cohorts was compared using t-test for continuous variables and Chi-squared test for categorical ones.

For our main objective, we first looked for interactions between CSF A\(\beta\)42/40 concentrations and each of the three assessed AD risk factors (i.e., age, sex and APOE\(\varepsilon\)4 status), in promoting cerebral A\(\beta\) deposition in regions that are selectively vulnerable to either A\(\beta\) (Centiloid composite ROI) or tau pathology (Braak stages ROIs). This first set of analyses was conducted with the SPSS software package ([https://www.ibm.com/analytics/spss-statistics-software](https://www.ibm.com/analytics/spss-statistics-software)). Next, we conducted a spatially unbiased whole-brain analysis to detect interaction effects in distributed brain areas. This was achieved by performing a voxel-wise non-parametric inference using randomize in the FMRI\(\text{\textregistered}\) Software Library v6.0 ([https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/](https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/)), using threshold-free cluster enhancement (TFCE) [23] with 5000 permutations. For both the ROI and whole-brain analyses, we set-up three different general linear models where A\(\beta\) PET was set as dependent variable, while CSF A\(\beta\)42/40, age, sex and APOE\(\varepsilon\)4 status were modeled as predictors. The interaction term involving CSF A\(\beta\)42/40 and any of the three AD risk factors was modeled as independent variable, as follows:

\[
A\beta\ PET = CSF A\beta + age + sex + APOE\varepsilon4 + CSF A\beta + APOE\varepsilon4
\]

\[
A\beta\ PET = CSF A\beta + age + sex + APOE\varepsilon4 + CSF A\beta + age
\]

\[
A\beta\ PET = CSF A\beta + age + sex + APOE\varepsilon4 + CSF A\beta + sex
\]

To avoid multicollinearities, continuous CSF A\(\beta\)42/40 values were centered to the group mean [24]. APOE\(\varepsilon\)4 was treated as categorical binary variable (i.e., 0 = non-carriers, 1 = e\(\varepsilon\)4-carriers). In all statistical models, age was treated as continuous variable. In addition, we investigated whether the interactions between CSF A\(\beta\)42/40 and APOE\(\varepsilon\)4 as well as age returned significantly different result in men and women. To this aim, we repeated the above-mentioned analyses stratifying by sex. For these ROI analyses, results were considered significant if surviving a threshold of \(p < 0.05\) corrected for multiple testing using a False-Discovery Rate (FDR) approach. In FSL, we set t-contrasts on the interaction terms, testing for putative significant interactions between CSF A\(\beta\)42/40 concentrations and each of the assessed risk factors, in both directions. For these analyses, results were considered significant if surviving a threshold of \(p < 0.05\) corrected for multiple testing with a family-wise error rate correction (FWE). All the above-mentioned statistical models were applied to the ADNI replication sample, with the inclusion of clinical diagnosis, defined as a binary categorical variable (0 = cognitively unimpaired, 1 = MCI), as a covariate.
RESULTS
Sample characteristics
Demographic characteristics of both cohorts can be found in Table 1. Of the 682 ADNI participants, 423 (62%) had a clinical diagnosis of MCI, including early, typical and late MCI. Compared to ALFA, ADNI participants were significantly older, more educated, and harbored a lower proportion of APOE-ε4 carriers. In addition, the ALFA cohort hosted a significantly higher proportion of women, compared with ADNI. Table 1 additionally includes the proportion of Aβ positive individuals based on both CSF and PET data, for both cohorts. Cut-off values for both of these measures are reported in the Supplementary Materials.

Table 1. Sample characteristics.

|               | ALFA (n = 320) | ADNI (n = 682) | p value |
|---------------|----------------|----------------|---------|
| Age, M(SD)*   | 61.11 (4.57)   | 72.64 (7.12)   | <0.001  |
| Age range, year | 49.99–73.64 | 55.10–93.80 |        |
| Education, M(SD)* | 13.41 (3.52) | 16.21 (2.62) | <0.001  |
| Female sex, n (%) | 200 (62.5%) | 329 (48.2%) | 0.001   |
| APOE-ε4, n (%) | 170 (53.12%) | 279 (39.58%) | <0.001  |
| CSF Aβ42/40 positive, n (%) | 110 (34.4%) | 370 (54.25%) | <0.001  |
| Centiloid range | −23.88–81.63 | −28.92–169.70 | <0.001  |
| Aβ PET positive, n (%)** | 50 (15.6%) | 423 (62.02%) | <0.001  |
| MMSE, M(SD) | 29.17 (0.96) | 28.43 (1.62) | 0.002   |

MMSE Mini-mental state examination test.
*Expressed in years.
**Based on Centiloid data.

Whole-brain analysis
Main effects. Supplementary Fig. 2 shows the main effects of our predictors on Aβ PET, in both cohorts. As expected, CSF Aβ42/40 concentrations were negatively related to Aβ PET uptake in widespread cortical areas. Age and APOE-ε4 were positively associated to cortical Aβ deposition, while the effects of sex were marginal (data not shown). Finally, we found a circumscribed yet significant effect of CSF Aβ40 on PET uptake in ALFA, and ADNI, in the thalamus and superior temporal areas.

Interaction effects. The interaction between CSF Aβ42/40 and APOE-ε4 was significant in both cohorts in a highly symmetrical pattern involving medial temporal lobe areas including the anterior hippocampus and the inferior temporal cortex, as well as the orbitofrontal cortex. In ALFA, this interaction further mapped onto the bilateral entorhinal cortex (Fig. 1a–c), while in ADNI there was an involvement of additional areas such as the insular cortex, the orbitofrontal gyrus and the caudate nuclei (Fig. 1d–f).

Similarly, the interaction between CSF Aβ42/40 and age was significant in both cohorts, although in a different spatial pattern with respect to the interaction with APOE-ε4. Specifically, this interaction mapped onto distributed neocortical areas including the anterior, middle and posterior cingulate cortex as well as inferior parietal, middle temporal and insular cortices in both cohorts, even though in ADNI the effects sizes were generally lower and the topology for this interaction was less widespread (Fig. 2a–d).

Finally, we observed a significant, yet less spatially extended, interaction in both groups between CSF Aβ42/40 and sex, indicating a higher PET signal in women compared to men, for a given level of CSF Aβ42/40 concentrations, in posterior middle cortical regions (Fig. 3a–d).

To rule out that the topological patterns resulting from these interactions may be due to exceptionally low amount of fibrillar Aβ, and therefore driven by noise, we performed a post-hoc sensitivity analysis in the ALFA cohort, by repeating those interactions in the subsample of Aβ-positive individuals, defined based on their CSF Aβ42/40 concentrations. The results of these analyses are consistent with that observed in the entire cohort (please refer to the Supplementary Materials).

When assessing the interactions between each of the three risk factors and CSF Aβ40, in line with our previously shown ROI data, we found a significant interaction with age in the ALFA cohort mapping onto a distributed set of brain regions, indicating that, in older individuals, higher CSF Aβ40 concentrations reflected into higher cortical SUVRs (Supplementary Fig. 3). No significant interactions between CSF Aβ40 and APOE-ε4 or sex were found. Finally, in ADNI, there was no significant interaction between CSF Aβ40 and any of the assessed risk factors.

Analyses stratified by sex
In both samples, we found a significantly more widespread results in women than in men. Specifically, the interaction between CSF Aβ42/40 and APOE-ε4 did not return significant results in men in the ALFA sample (Fig. 4A, B), and only a small cluster in the caudate in ADNI (Fig. 4D, E). Similarly, the interaction with age, was more prominent in females than in males, in both samples (Fig. 4A, C, D, F). This indicates that the previous findings reported in the whole sample were largely driven by women compared to men. Supplementary Table 3 shows the results for each of the interaction models, computed separately for men and women, in our selected ROIs.

Confirmatory 3-way interactions performed in both samples indicate that the modulatory effects of age and APOE-ε4 were significantly larger in females compared with males, although the result involving APOE-ε4 reached statistical significance only in the ALFA cohort (Supplementary Figs. 5 and 6).
DISCUSSION
The present work aimed to determine whether unmodifiable risk factors for AD modulate the association between soluble and deposited Aβ species quantified with CSF concentrations and PET imaging, respectively. We tested our hypotheses on two independent cohorts of non-demented participants across distinct phases of the Alzheimer's continuum. We found that APOE-ε4, older age and female sex, resulted in a higher fibrillary plaques deposition for any given level of CSF Aβ42/40, with each risk factor mapping onto a specific topology. Similar, although not identical, patterns were observed in both cohorts for the same risk factors. Notably, the two cohorts differed in the PET tracers used for Aβ imaging and CSF Aβ sampling, as well as in the average age and level of progression in the Alzheimer's continuum, thus reinforcing the robustness and generalizability of our results.

In both cohorts, we observed significant interactions between CSF Aβ42/40 and APOE-ε4 in Braak stages I/II and III/IV ROIs, although in ADNI the former interaction only reached a nominal significance level (p = 0.037). Whole-brain analyses conducted in the ALFA cohort confirmed that, compared to non-carriers, APOE-ε4 carriers displayed higher SUVRs, for any given level of CSF Aβ42/40, in medial temporal regions including entorhinal cortex and hippocampus. These data suggest that APOE-ε4 carrihership may modify the patterned spreading of cerebral Aβ accumulation as a function of early Aβ dysmetabolism and point to the MTL as a vulnerable region for the incipient Aβ accumulation, in those individuals harboring the genetic risk. Importantly, MTL regions do not
2014

purposes, age continuous variable was broken down in four subgroups. LL Left lateral, LM Left medial, RL Right lateral, RM Right medial.

C progressive ROIs. superior temporal cortex as well as medial prefrontal and inferior parietal areas. Group scatterplot show these interactions in a priori de

displayed, for any given level of CSF A

β typically display Aβ accumulation in the early stages of the disease, which rather involve neocortical areas and particularly prefrontal cortex, posterior cingulate, precuneus, and inferior parietal, as shown by in-vivo staging [25–27] and autopsy studies [21, 28]. On the other hand, the MTL displays selective vulnerability to early tau deposition, as previously documented [21, 28]. On the other hand, the MTL displays selective vulnerability to early tau deposition, as previously documented [21, 28].

Fig. 2 Age significantly modified the association between of CSF Aβ42/40 and Aβ PET. A, B In ALFA participants, older individuals displayed, for any given level of CSF Aβ42/40 concentration, a higher Aβ PET retention in distributed cerebral areas including inferior and superior temporal cortex as well as medial prefrontal and inferior parietal areas. Group scatterplot show these interactions in a priori defined progressive ROIs. C, D Interaction was replicated in the ADNI cohort, although in a less distributed topological pattern. For visualization purposes, age continuous variable was broken down in four subgroups. LL Left lateral, LM Left medial, RL Right lateral, RM Right medial.

in both cohorts. Hence, our results suggest that APOE-ε4, by exacerating cortical Aβ deposition in MTL areas; might facilitate the spread of tau in extra medial-temporal regions, plausibly promoting an earlier co-localization of Aβ and tau. In line with this, previous PET imaging studies have documented a higher tau deposition in APOE-ε4 carrier AD patients compared to non-carriers [29, 36–38]. Furthermore, our interaction effects may help to explain the faster disease progression [39–41] as well as the stronger relationship between Aβ and cognitive decline [42, 43] in APOE-ε4 carriers compared to non-carriers.

We next reported a significant modulatory effect for age in driving a higher Aβ PET uptake as a function of CSF Aβ42/40. This interaction was significant in brain areas typically subject to Aβ deposition (i.e., the Centiloid ROI), in both cohorts. Interestingly, in the ALFA cohort, this effect was also observed for the interaction between age and CSF Aβ40, thus suggesting that an age-related decline in the clearance of overall soluble Aβ species from the brain might underlie the higher levels of Aβ deposition observed with more advanced age, for any given level of CSF Aβ42/40. In ADNI, the significant interaction between CSF Aβ42/40 and age was also found, even though in a less extended topology and lower effect sizes. Such a reduced effect in ADNI compared to that in ALFA may be due to the different age range of the two samples (ALFA = 50-73; ADNI = 56–94 years). In fact, earlier studies indicate that, the effects of aging on cortical Aβ deposition drop significantly in individuals older than 60 years of age [44], which also may explain the non-significant result when we assessed the interaction between CSF Aβ40 and age in ADNI. That interaction was however significant in the ALFA cohort, suggesting a failure in the efficiency of Aβ clearance as putative candidate underlying mechanism, rather than an over production of Aβ42. The lack of a significant interaction between CSF Aβ40 and APOE-ε4 status suggests, by contrast, that APOE-ε4 carriers may be subject to an over-production of Aβ oligomers in MTL areas, in APOE-ε4 carriers compared to non-carriers. This interpretation is further supported by the evidence that CU APOE-ε4 carriers show hippocampal over-activation during memory tasks [45, 46], which may in turn favor a higher Aβ42 production over time, given that Aβ42 is released concomitantly with neural activity [47]. Hence, one possibility is that MTL hyper-activation may occur at the cost of higher Aβ42 production over time in APOE-ε4 carriers. Even though it is well acknowledged that APOE-ε4 relates to a deficient
Aβ clearance [8], our findings are now suggesting that these individuals might additionally be subject to a higher production of Aβ42 specifically in the medial MTL and inferior temporal regions. Finally, we reported that the interaction with sex was significant in the Centiloid ROI, as well as Braak stages ROIs III/IV and V/VI in the ALFA cohort, while no significant interactions involving sex were retrieved in the ADNI sample using an ROI approach. Whole-brain analyses yielded a significant interaction in posterior medial regions such as the posterior cingulate cortex and cuneus, as well as middle temporal areas in ALFA, while a less distributed effect was found in ADNI, involving the cuneus bilaterally. The lack of such a replication in the ADNI sample, however, may be substantiated by several factors. First, the ALFA cohort harbored a significantly higher proportion of women, compared to ADNI. Second, the effect of sex in promoting a higher risk for AD pathology may be further mitigated by age, and particularly being prominent during the perimenopause, a transitional phase occurring in midlife (i.e., 40 and 60 years of age), characterized by estrogen depletion with consequent loss of neuroprotective functions [48]. Perimenopause is characterized by increased variability in terms of neurological symptoms, which is restored later in life, presumably due to a new endocrine homeostasis [49]. Consistent with this, we observed a significant modulatory role of sex in the balance between Aβ dysmetabolism and Aβ aggregation, in a cohort of middle-aged individuals (ALFA) but not in a sample more advanced in age (ADNI). Our stratified analyses additionally indicate that the deleterious effects of APOE-ε4 and age in prompting a higher regional SUVRs as a function of CSF Aβ42/40 concentrations, is remarkably higher in women compared to men, suggesting that the three risk factors may further interact among each other to exacerbate the emergence and progression of AD pathology. Specifically, women may be more aggravated by harboring the APOE-ε4 allele than males, particularly when still completely asymptomatic and in their middle age (ALFA cohort), as also suggested previously [50]. This is reflected by the significant interaction we observed in women but not in men, between CSF Aβ42/20 and APOE-ε4, only in the ALFA sample. By contrast, the combined effects of age and sex over the unbalance of soluble vs deposited Aβ, may extend beyond this asymptomatic stage and persist in later stages of pathology (ADNI sample).

One limitation of our study consists in the use of a linear model to explain the association between CSF and PET Aβ markers, which is known for being not linear [2–6]. To mitigate this risk, we used non-parametric statistics in our unbiased voxel-wise approach, which confirmed the findings of the ROI-based analyses. The adoption of non-linear statistical modeling may improve the proportion of the variance explained by this association. Second, the cross-sectional design concomitantly with the lack of tau PET prevents us from confirming that APOE-ε4 carriers may display higher tau spread in the MTL for a given level of Aβ dysmetabolism. In addition, future studies shall include a longitudinal assessment of neuropsychological data, to determine how an imbalance between soluble and aggregated Aβ impacts cognitive performance in multiple domains.

In summary, our strategy of assessing the impact of risk factors on the association between two distinct surrogate markers of
Fig. 4  Analyses stratified by sex. A Surface rendering of p value maps, for the interaction between CSF $A^\beta_{42}/40$ and APOE-ε4, as well as age, separately for women and men in the ALFA sample. B, C Group scatterplots, stratified by sex, of the assessed interactions in regions of interest. D Same as in A, in the ADNI sample. E, F Same as in B and C, in the ADNI sample. $W\varepsilon_4+$ Women APOE-ε4 carriers, $W\varepsilon_4-$ Women APOE-ε4 non-carriers, $M\varepsilon_4+$ Men APOE-ε4 carriers, $M\varepsilon_4-$ Men APOE-ε4 non-carriers.
cleared and aggregated Aβ provide novel insights into the biological pathways underlying Aβ aggregation in the brain. Moreover, these data clarify the mechanisms underlying the higher AD prevalence associated to those risk factors.

**DATA AVAILABILITY**

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report.

**REFERENCES**

1. Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Feldman HH, Frisoni GB, et al. A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology. 2016;87:539–47.
2. Fagan AM, Mintun MA, Mach RH, Lee SY, Dence CS, Shah AR, et al. Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans. Ann Neurol. 2006;59:512–9.
3. Landau SM, Lu M, Joshi AD, Pontecorvo M, Mintun MA, Trojanowski JQ, et al. Fluid and PET biomarkers for amyloid pathology in Alzheimer’s disease. Mol Cell Neurosci. 2019;97:3–17.
4. Mawuenyega KG, Iglesias GD, Ovov V, Munsell L, Kasten T, Morris JC, et al. Decreased clearance of CNA beta-amyloid in Alzheimer’s disease. Science. 2010;330:1774.
5. Liu CC, Liu CC, Kanekiyo T, Xu H, Bu G. Apolipoprotein E and Alzheimer disease: amyloid PET. Brain: a J Neurol. 2017;140:1486–36.
6. Mattson N, Insel PS, Landau S, Jagust W, Donohue M, Shaw LM, et al. Diagnostic value of blood Abeta42 and Cerebrospinal fluid Abeta42/40 ratios in the assessment of Alzheimer’s disease. Front Neurol. 2014;5:34–43.
7. Roberts BR, Lind M, Wagen AZ, Rembach A, Frueger T, Li QX, et al. Biochemically-defined pools of amyloid-beta in sporadic Alzheimer’s disease: correlation with amyloid-PET. Brain. J Neurolog. 2017;140:1486–98.
8. Cohen AD, Landau SM, Snitz BE, Klunk WE, Blennow K, Zetterberg H. Fluid and PET biomarkers for amyloid pathology in Alzheimer’s disease. Mol Cell Neurosci. 2019;97:3–17.
9. Mawuenyega KG, Sigurdson W, Ovov V, Munsell L, Kasten T, Morris JC, et al. Decreased clearance of CNA beta-amyloid in Alzheimer’s disease. Science. 2010;330:1774.
10. Liu CC, Liu CC, Kanekiyo T, Xu H, Bu G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurosci. 2013;9:106–18.
11. Launer LJ. The epidemiologic study of dementia: a life-long quest? Neurobiol aging. 2005;26:335–40.
12. Ferretti MT, Iulita MF, Cavveda E, Chiesa PA, Schumacher Domech A, Santuccione, et al. Sex differences in Alzheimer disease - the gateway to precision medicine. Nat Rev Neurol. 2018;14:457–69.
13. Blennow K, Mattsson N, Scholl M, Hansson O, Zetterberg H. Amyloid biomarkers in Alzheimer’s disease. Trends Pharmacol Sci. 2015;36:297–309.
14. Lewczuk P, Matzen A, Blennow K, Parnetti L, Molinuevo JL, Eusebi P, et al. Amyloid beta42/40 corresponds better than Abeta42 to amyloid PET in Alzheimer’s disease. J Alzheimer’s Dis. 2017;55:813–22.
15. Lewczuk P, Leclerc O, Spitzer P, Maler JM, Kornhuber J. Amyloid-beta 42/40 measurements of beta-amyloid. Ann Neurol. 2013;74:826–33.
16. Fagan AM, Mintun MA, Mach RH, Lee SY, Dence CS, Shah AR, et al. Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans. Ann Neurol. 2006;59:512–9.
17. Landau SM, Lu M, Joshi AD, Pontecorvo M, Mintun MA, Trojanowski JQ, et al. Comparing positron emission tomography imaging and cerebrospinal fluid measurements of beta-amyloid. Ann Neurol. 2013;74:826–36.
18. Mattson N, Insel PS, Landau S, Jagust W, Donohue M, Shaw LM, et al. Diagnostic accuracy of CSF Ab42 and Florbetapir PET for Alzheimer’s disease. Ann Clin Transl Neurol. 2014;1:534–43.
19. Roberts BR, Lind M, Wagen AZ, Rembach A, Frueger T, Li QX, et al. Biochemically-defined pools of amyloid-beta in sporadic Alzheimer’s disease: correlation with amyloid-PET. Brain. J Neurolog. 2017;140:1486–98.
20. Cohen AD, Landau SM, Snitz BE, Klunk WE, Blennow K, Zetterberg H. Fluid and PET biomarkers for amyloid pathology in Alzheimer’s disease. Mol Cell Neurosci. 2019;97:3–17.
21. Mawuenyega KG, Sigurdson W, Ovov V, Munsell L, Kasten T, Morris JC, et al. Decreased clearance of CNA beta-amyloid in Alzheimer’s disease. Science. 2010;330:1774.
22. Liu CC, Liu CC, Kanekiyo T, Xu H, Bu G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurosci. 2013;9:106–18.
23. Launer LJ. The epidemiologic study of dementia: a life-long quest? Neurobiol aging. 2005;26:335–40.
24. Ferretti MT, Iulita MF, Cavveda E, Chiesa PA, Schumacher Domech A, Santuccione, et al. Sex differences in Alzheimer disease - the gateway to precision medicine. Nat Rev Neurol. 2018;14:457–69.
25. Blennow K, Mattsson N, Scholl M, Hansson O, Zetterberg H. Amyloid biomarkers in Alzheimer’s disease. Trends Pharmacol Sci. 2015;36:297–309.
26. Lewczuk P, Matzen A, Blennow K, Parnetti L, Molinuevo JL, Eusebi P, et al. Cerebrospinal fluid Abeta42/40 corresponds better than Abeta42 to amyloid PET in Alzheimer’s disease. J Alzheimer’s Dis JAD. 2017;55:813–22.
27. Lewczuk P, Leclerc O, Spitzer P, Maler JM, Kornhuber J. Amyloid-beta 42/40 cerebrospinal fluid concentration ratio in the diagnostics of Alzheimer’s disease: validation of two novel assays. J Alzheimer’s Dis JAD. 2015;45:183–91.
28. Lorey A, Perret-Liaudet A, Tholance Y, Fourier A, Quirion RL, Quadriod P. Cerebrospinal fluid Abeta40 improves the interpretation of Abeta42 concentration for diagnosing Alzheimer’s disease. Front Neurolog. 2015;6:247.
29. Bates KA, Verdelis G, Li QX, Armin D, Hudson P, Masters CL, et al. Clearance mechanisms of Alzheimer’s amyloid-beta peptide: implications for therapeutic development. Mol Psychiatry. 2009;14:469–86.
30. Molinuevo JL, Gramunt N, Gispert JD, Fauria K, Esteller M, Minguillon C, et al. The ALFA project: a research platform to identify early pathophysiological features of Alzheimer’s disease: a Alzheimer’s Dement. 2016;2:82–92.
31. Folstein MF, Folstein SE, McHugh PR. Mini-mental state”. A practical method for grading the cognitive status of patients of the clinician. J Psychiatr Res. 1975;12:189–98.
32. Teunissen CE, Tumani H, Engelborghs S, Mollenhauer B. Biobanking of CSF: international standardization to optimize biomarker development. Clin Biochem. 2014;47:288–92.
33. Salvadó G, Molinuevo JL, Brugulat-Serrat A, Falcon C, Grau-Rivera O, Suarez-Calvet M, et al. Centiloid cut-off values for optimal agreement between PET and CSF amyloid imaging. J Alzheimer’s Dis JAD. 2015;42:183–91.
34. Klunk WE, Koeppa RA, Price JC, Benzinger TL, Devous MD Sr, Jagust WJ, et al. The Centiloid Project: standardizing quantitative amyloid plaque estimation by PET. Alzheimer’s Dement J Alzheimer’s Assoc. 2015;11:1–15 e11–14.
35. Braak H, Braak E. Neuropathological staging of Alzheimer-related changes. Acta Neuropathol. 1991;82:239–59.
ACKNOWLEDGEMENTS
This publication is part of the ALFA study (ALzheimer’s and fAmilies). The authors would like to express their most sincere gratitude to the ALFA project participants, without whom this research would have not been possible. The authors would like to thank Roche Diagnostics International Ltd. for kindly providing the kits for the CSF analysis of ALFA+ participants and GE Healthcare for kindly providing [18F] flumetamol doses of ALFA+ participants.

AUTHOR CONTRIBUTIONS
RC and GS drafted the manuscript and conducted statistical analyses; MS conducted preprocessing of PET data for the ALFA study; GO, and CF assured proper imaging preprocessing of PET data; JLM and JDG designed the study.

FUNDING
The project leading to these results has received funding from the Universities and Research Secretariat, Ministry of Business and Knowledge of the Catalan Government under the grant no. 2017-SGR-892. JDG is supported by the Swedish Ministry of Science and Innovation (RYC-2013-13054). MSC receives funding from Instituto de Salud Carlos III (PI19/00155) and from the Spanish Ministry of Science, Innovation and Universities (Juan de la Cierva programme grant IJC2018-070478-I). KB holds the Torsten Söderberg Professorship in Medicine at the Royal Swedish Academy of Sciences, and is supported by the Swedish Research Council (K2018-02532), the European Research Council (#681712), Swedish State Support for Clinical Research (HALFGBG-720931), the Alzheimer Drug Discovery Foundation (ADDF), USA (#201809-2016862), the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 860197 (MIRIADE), and the UK Dementia Research Institute at UCL.

COMPETING INTERESTS
JLM has served/serve as a consultant or at advisory boards for the following for-profit companies: Roche Diagnostics, Genentech, Novartis, Lundbeck, Oryzon, Biogen, Lilly, Janssen, Green Valley, MSD, Eisai, Alector, BioCross, GE Healthcare, ProMIS Neurosciences, NovoNordisk, Zambrón, Cytox and Nutricia. MSC has given lectures in symposia sponsored by ROCHE DIAGNOSTICS, S.L.U. GK is a full-time employee of Roche Diagnostics GmbH. IS is a full-time employee and shareholder of Roche Diagnostics International Ltda. HZ has served at scientific advisory boards for Denali, Roche Diagnostics, Wave, Summed, Siemens Healthineers, Pinteon Therapeutics and CogRx, has given lectures in symposia sponsored by Fujirebio, Alzecure and Biogen, and is a co-founder of Brain Biomarker Solutions in Gothenburg AB (BBS), which is a part of the GU Ventures Incubator Program (outside submitted work). The rest of the authors have no conflict of interest to declare.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41380-022-01436-7.

Correspondence and requests for materials should be addressed to Raffaele Cacciaglia or Juan Domingo Gispert.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

FOR THE ALFA STUDY
Eider Arenaza-Urquijo, Annabella Beteta, Anna Brugulat-Serrat, Alba Cañas, Irene Cumplido, Carme Deulofeu, Ruth Domínguez, Maria Emilio, Karine Fauria, Sheherade Fuentes, José María González-de-Echavarría, Oriol Grau-Rivera, Laura Hernandez, Gema Huesa, Jordi Huguet, Iva Knezevic, Paula Marne, Carolina Minguillon, Tania Menchón, María Pascual, Albina Polo, Sandra Pradas, Gonzalo Sánchez-Benavides, Aleix Sala-Vila, Anna Soteras, Laia Tenas, Marc Vilanova and Natalia Vilor-Tejedor.