Holidays and economic growth: Evidence from a panel of Indian states

Sayantan Ghosh Dastidar¹ | Nicholas Apergis²

Abstract
The number of holidays differs significantly across Indian states. Moreover, some of the governing political parties have been accused of using holidays as a tool either to mollify disgruntled workers or to woo voters before the state elections. In this context, this paper explores the relationship between the number of holidays and economic growth across 24 Indian states, spanning the period 2008–2016, by employing a panel model analysis. The paper presents evidence suggesting that holidays seem to affect growth negatively in the rich states but are inconsequential for the growth performance of the poor states.

Keywords
economic growth, holidays, Indian states, panel data, regional economic activity

JEL Classifications
H70; O12; O47; R11

1 University of Derby, Derby, UK
2 University of Texas at El Paso, El Paso, TX, USA

Correspondence
Sayantan Ghosh Dastidar, University of Derby, Kedleston Road, Derby DE22 1GB, UK.
Email: s.dastidar@derby.ac.uk

1 INTRODUCTION

A holiday can be defined as a time off a regular schedule of activities in observance of other periodic activities of religious, cultural and festive significance (see e.g. Amavilah, 2009). Holidays undoubtedly play an important role in the modern human life. The theoretical relationship between holidays and economic growth is somewhat ambiguous. On the one hand, working time lost to holidays adversely affects firms' productivity, which, in turn, lowers economic growth. On the other hand, it can...
be argued that private domestic consumption increases during holidays, which will be beneficial for economic growth (see e.g. Ramasamy et al., 2008). Moreover, holidays facilitate social leisure time, which leads to the formation of social capital and improvements in the workers’ health (see e.g. Merz & Osberg, 2006). In such cases, the growth effects of holidays are expected to be positive.

The question that this empirical paper attempts to explore is whether increased leisure time (through more holidays) has any impact on economic growth across the Indian states. The motivation behind this study is twofold. Firstly, the number of holidays differs significantly across the Indian states. For instance, in 2016, the number of holidays in the southern state of Andhra Pradesh was only 15, whereas that in the eastern state of West Bengal was 35; secondly, some of the state governments, such as those in West Bengal and Uttar Pradesh, have been allegedly involved in ‘holiday politics’. For instance, being unable to keep up with the increasing Dearness Allowance (paid by the government to its employees to offset the impact of inflation) in the other states, the West Bengal government has often announced additional holidays for its employees (see e.g. Chakraborty, 2016). The English daily, The Telegraph, reported in 2017 that the current ruling political party in West Bengal has offered at least 10 additional holidays to its employees, since coming to power in the state in 2011. Similarly, the state governments in Uttar Pradesh (UP) have often been suspected of attempting to entice voters via declaration of extra holidays. There has been a 50% increase in the number of public holidays in UP during the last decade (see e.g. Hindustan Times, 2015).

In the above context, we attempt, for the first time, to empirically examine how an increase in the number of holidays affects economic growth across the 24 Indian states over the time period 2008–2016. To the best of our knowledge, there exists no empirical study which attempts to estimate the relationship between these two variables in the context of India. This study attempts to extend the literature in this direction.

2 | REVIEW OF THE RELEVANT LITERATURE

The literature on the holiday–growth association is highly limited. A few studies have documented that the amount of leisure time does have an impact on both economic growth and business cycles (see e.g. Eichenbaum et al., 1988; Hek, 1998; Kydland & Prescott, 1982; Ladrón-de-Guevara et al., 1999; Wilensky, 1961). These studies highlight that leisure time should be brought into agent's utility function, provided that they accept a backward curve of labour supply. This implies that households prefer more leisure to additional income, once their average income exceeds certain levels. Furthermore, their findings indicate towards the presence of a strong relationship between leisure time, income distribution, aggregate consumption, interest rates and economic growth. In particular, introducing leisure time into a utility function may lead either to saddle point stability (see e.g. Ioannides & Taub, 1992) or to the potential presence of multiple growth paths (see e.g. Ladrón-de-Guevara et al., 1999). Previous research studies introduced leisure time into economic systems. The majority of these studies noticed the presence of substitution effects of leisure time on the economy, whereas the compensation effects of leisure time seem to have been neglected. The substitution effect of leisure time is the reduction in agents’ working time and their income in substitution of more leisure, while the compensation effect of leisure time is the positive effect of leisure activities on individual efficiency which, in turn, improves aggregate output.

1Excludes those holidays that fell on Sundays. The data for Andhra Pradesh and West Bengal were obtained from the General Administration Department of the Government of Andhra Pradesh and WBXPress (West Bengal Government Notification website) respectively.
This paper is close to the strand of the leisure literature that focuses on both economic growth and business cycles. Some studies have analysed the relationship between education time (which belongs to leisure time) and economic growth (see e.g. Chase, 1967; Ryder et al., 1976). These models assume that education does not affect the quality of leisure. In other words, the marginal utility of leisure time is not affected by human capital (see e.g. Ladrón-de-Guevara et al., 1999). Under the assumption that productivity improves when the time spent on education increases (given that education can enhance the competence of human capital), time spent on leisure activities would decrease, because agents wish to increase their income through spending more efforts on education, while working more (see e.g. Ladrón-de-Guevara et al., 1999).

Next, it is the literature on the representative agent model of the aggregate labour market which analyses the impact of leisure time on economic growth (see e.g. Hall, 1980; Ioannides & Taub, 1992; Kydland & Prescott, 1982; Lucas & Rapping, 1969; Mankiw et al., 1985). According to this strand of the literature, there is a general implicit price of leisure across all consumers (see e.g. Eichenbaum et al., 1985; Rubinstein, 1974) which, however, has received negative criticism on the rationality hypothesis. Therefore, the literature found new ways to analyse the impact of leisure time on economic growth. More specifically, it provided solid evidence that the relationship between preferences and consumption is not always linear (see e.g. Eichenbaum et al., 1985). This strand introduces both consumption and leisure time into service, while it indicates that multiple equilibria might exist (see e.g. Ladrón-de-Guevara et al., 1999). Moreover, it uses the Cobb–Douglas utility function framework along with a labour production function, while the dynamic optimal economy by the planner may be either one or two inner point roots, or one outer point root (when no time is spent on education).

Research into the association between leisure time and economic growth has been brought on to a new level within the framework of the real business cycle theory. According to this approach, technological shocks have a strong negative effect on non-working time, i.e. leisure time. Certain empirical findings document that technological shocks sometimes positively affect non-production investment through R&D expenses. Shea (1998) found that the periodical fluctuation of input factors can be explained partially by technology shocks, while through the framework of sticky-price models and data from seven developed countries, Gali (1999) found that technical progress could potentially lead to the decline of working time and increase of leisure time in the short run. In addition, the aggregate output derived from demand shocks has a notable negative correlation with changes in leisure time. The author argues that the primary reason for the presence of periodical economic fluctuations is the impact of demand shocks versus technological shocks. In this framework of discussion, increases in returns and sustainable growth can be explained by working time activities, such as, exogenous technological shocks, R&D expenses (see e.g. Barro & Sala-I-Martin, 1992; Jones, 1995a, 1995b) and endogenous knowledge accumulation processes (see e.g. Lucas, 1988; Romer, 1986, 1990). Overall, this literature shows that leisure time can have a compensation effect on both individual efficiency and economic growth (see e.g. Maguire, 2008).

A number of studies use certain new methods or new modelling approaches to illustrate the effects of leisure time. Ortigueira (2000) used the term ‘qualified leisure’ through an endogenous economic growth model in which ‘qualified leisure’ implies that leisure time can be adjusted by human capital, which represents a certain type of compensation effect of leisure. Weder (2004) used the term ‘conspicuous leisure’ to define another type of compensation effect of leisure. His outcome shows that an agent’s utility function is affected by her counterparts’ amount of leisure time. By introducing this type of externality of leisure into the growth model, he documents that the economy may converge to a saddle stable point. By contrast, Fernandez et al. (2004) suggested that the presence of competitive equilibrium can be indeterminate because of plausible values of the elasticity of inter-temporal...
substitution of consumption. This occurs because public consumption and leisure cannot be separated in the utility function.

When it comes to the direct association between leisure time and holidays, hours of work lost to holidays may reduce firm productivity; at the same time, holidays may invigorate workers so that their productivity goes up in the post-holiday period. Romer (1990) advanced the ‘learning by leisure effect’, according to which, leisure activities, such as holidays and travelling, have a technological externality that enhances creativity, thus promoting innovations and economic growth. Silver (1995) saw an important role to symbolic representations, such as holidays that promote the accumulation of trust as capital, which in turn facilitates economic growth. Ausubel and Grubbler (1995) suggested that human longevity substantially depends on leisure; as personal income rises and the workweek shortens, people live longer than before. This leads to higher labour productivity, which indicates that leisure influences human capital building. Merz and Osberg (2006) examined whether holidays facilitate leisure time coordination. They found that holidays do not constrain the annual amount of leisure; instead, they are needed because they are beneficial to social life, thus contributing to human capital building. This connection is consistent with Amartya Sen’s ‘capabilities approach’ to human welfare, in which welfare is measured by the human development index (see e.g. Anand & Sen, 1994; Dolan et al., 2002; Sen, 1979). Ramasamy et al. (2008) estimated the effects of holidays on domestic private consumption in Hong Kong; their findings highlight that increasing holidays by a day a quarter raises private consumption significantly, and consequently GDP also goes up by 0.34%.

3 | METHODOLOGY AND DATA

Our modelling effort comes from a standard macroeconomic production function. We specify this function in a manner that it incorporates the number of holidays as an input. In its basic form, the model looks as follows:

\[
NSDP_{it} = \beta_0 + \beta_1 \text{Holidays}_{it} + \beta_2 P\text{capital}_{it} + \beta_3 H\text{capital}_{it} + \beta_4 \text{Labour}_{it} + \beta_5 \text{Credit}_{it} + \beta_6 \text{Govt}_{it} + a_1 + a_2 + e_{it},
\]

where, in state \(i \) and at time \(t \), \(NSDP \) denotes Net State Domestic Product per capita (Indian Rupee INR, constant 2004 prices), \(\text{Holidays} \) represents the number of holidays, \(P\text{capital} \) and \(H\text{capital} \) denote physical capital (proxied by gross fixed capital formation) and human capital (literacy rate) respectively, \(\text{Labour} \) is the size of the labour force, \(\text{Credit} \) stands for state-wise credit deposit ratio of scheduled commercial banks according to place of utilization and \(\text{Govt} \) denotes developmental expenditure by state governments as a percentage of \(NSDP \). Finally, \(a_1 \) and \(a_2 \) denote state and time fixed effects, respectively, and \(e \) is the error term. All variables are expressed in their natural logarithms. The study includes 24 Indian states which cover around 95% of the Indian population, spanning the time period 2008–2016. Other states and earlier years could not be included because of data limitations. The data mostly come from the Reserve Bank of India, Election Commission of India and various other official government websites. Data sources and the list of the states covered in our analysis have been provided in Tables A1 and A2, respectively, in Appendix A.

We start by checking the order of integration of the variables by employing the Pesaran (2007) unit root test. The unit root results indicate that all our variables are \(I(1) \), i.e. they are stationary in first

\footnote{All holidays that fell on Sundays have been excluded from the analysis.}
differences (Table 1). Therefore, we express all the variables in our model in first differences, instead of levels.

Moreover, the effects of policy variables like government spending, capital formation and industrial credit are often felt on the economy with a lag. According to the Akaike information criterion, the optimal number of lags for our model is 1. Therefore, instead of estimating Equation 1, we estimate the following equation:

$$
\Delta NSDP_{it} = \beta_0 + \beta_1 \Delta Holidays_{it} + \beta_2 \Delta Pcapital_{it} + \beta_3 \Delta Pcapital_{it-1} + \beta_4 \Delta Hcapital_{it} + \beta_5 \Delta Hcapital_{it-1} + \beta_6 \Delta Labour_{it} + \beta_7 \Delta Credit_{it} + \beta_8 \Delta Credit_{it-1} + \beta_9 \Delta Govt_{it} + \beta_{10} \Delta Govt_{it-1} + a_1 + a_2 + e_{it},
$$

where Δ denotes the first difference operator; $Pcapital_{it-1}, Hcapital_{it-1}, Credit_{it-1}$ and $Govt_{it-1}$ stand for 1-year lagged values of physical capital, human capital, bank credit and government spending respectively.

Next, we insert some controls for political ideology in our econometric model. Hypothetically speaking, the behaviour or ideology of politicians is expected to affect economic policies. The ‘Partisan theory’ of macroeconomic policy is based on the idea that left-wing governments are more likely to pursue expansive policies than right-wing governments, which lead to lower unemployment and higher growth, albeit running the risk of higher inflation (Hibbs, 1994). That is because left-wing parties appeal primarily to the labour base, whereas right-wing parties appeal primarily to the capital owners and hence are more concerned with maintaining a low inflation (see e.g. Hibbs, 1977).

In addition to the size of the government budget, the ideology of the ruling party may also affect the composition of the budget. The clientele of the incumbent party may value spending in certain sectors more than that in others. By shifting the composition of spending towards those sectors, the incumbent party will try to signal that their preferences are close to those of voters, implying that they will choose high post-election spending on those same goods (see e.g. Drazen & Eslava, 2010). Herwartz and Theilen (2017) argued that public spending can be broadly categorized into two parts – social spending and non-social spending. The former consists of, among other categories, healthcare, old age, survivors, incapacity-related benefits, family programmes, active labour market programmes and housing programmes. More social spending is expected to benefit the low-income groups the most. Non-social spending includes expenditure on infrastructure, security and administration. Higher expenditures on the ‘non-social’ categories more than proportionally favour the middle- and upper-income classes.

The empirical evidence on the impact of political ideology is somewhat ambiguous though. Potrafke (2011) examined whether government ideology has influenced the allocation of public expenditures in

Variable	Level	First difference	Conclusion
Holidays	−1.969	−2.956**	I(1)
NSDP	−2.006	−2.834*	I(1)
Pcapital	−2.566	−3.465**	I(1)
Hcapital	−0.283	−2.532*	I(1)
Govt	−1.352	−2.553*	I(1)
Labour	−1.873	−3.209**	I(1)
Credit	−1.929	−2.569*	I(1)

Note: The null hypothesis is that there is unit root. *, ** and *** represent statistical significance at 10%, 5% and 1% respectively.
OECD countries and concluded that government ideology hardly influences budgetary affairs. Jensen (2010) argued that in traditionally left-wing countries, there is a strong positive association between right-wing government and social spending. Chatterji et al. (2015) demonstrated that political ideology of the governing party does not affect state-level public education expenditure in India.

Nonetheless, we expand Equation 2 by including three sets of political interaction dummy variables. We categorize the political parties in India into four groups, namely ‘Centrist’, ‘Left’, ‘Right’ and ‘Regional’, where ‘Centrist’ denotes the Indian National Congress party, ‘Left’ stands for the communist parties, ‘Right’ represents the Bharatiya Janata Party, and lastly, ‘Regional’ includes all the regional parties which do not have a notable national presence, but are influential in their home states. The variable ‘Centrist’ takes the value of 1 for state \(i \) in year \(t \), if the Congress party is in power, and 0, otherwise. Similarly, all other political dummy variables have been be defined.

It can be asserted that the composition of physical capital accumulation (\(P_{capital} \)) and government spending (\(\text{Govt} \)) may be influenced by the ideology of the ruling party and therefore, the growth effects of these variables may vary depending on who is in power. Hence, we incorporate interaction terms (\(P_{capital} \times \text{Centrist}, P_{capital} \times \text{Left}, P_{capital} \times \text{Right} \) and \(P_{capital} \times \text{Regional} ; \text{Govt} \times \text{Centrist}, \text{Govt} \times \text{Left}, \text{Govt} \times \text{Right} \) and \(\text{Govt} \times \text{Regional} \)) into Equation 2. The hypothesis is that the growth effects of government spending will be more pronounced in states governed by centrist and left parties, as opposed to that in states governed by the right-wing party (BJP). In contrast, for physical capital accumulation, we hypothesize that the growth effects will be enhanced when the right-wing party (BJP) is in power, as opposed to the centrist, left or regional parties. That is because right-wing parties are hypothetically expected to promote private investments more than leftist or centrist parties. In the case of physical capital accumulation, we treat the regional parties as the control variable and in the case of government spending, we treat the BJP (‘Right’) as the control variable.

As discussed in Section 1, some of the regional parties are suspected of involving in ‘holiday politics’, so we insert interaction terms of political ideology variables with ‘holidays’ and take the regional parties (\(\text{Holidays} \times \text{Regional} \)) as the control variable in this case. The aim of this approach is to explore whether the growth effects of holidays are contingent on the ideology of the government. The augmented model can be expressed as follows:

\[
\Delta \text{NSDP}_{it} = \beta_0 + \beta_1 \Delta \text{Holidays}_{it} + \beta_2 \Delta P_{capitalit} + \beta_3 \Delta P_{capitalit-1} + \beta_4 \Delta H_{capitalit} \\
+ \beta_5 \Delta H_{capitalit-1} + \beta_6 \Delta \text{Labour}_{it} + \beta_7 \Delta \text{Credit}_{it} + \beta_8 \Delta \text{Credit}_{it-1} + \beta_9 \Delta \text{Govt}_{it} \\
+ \beta_{10} \Delta \text{Govt}_{it-1} + \beta_{11} \text{Govt} \times \text{Centrist}_{it} + \beta_{12} \text{Govt} \times \text{Left}_{it} + \beta_{13} \text{Govt} \times \text{Regional}_{it} \\
+ \beta_{14} P_{capital} \times \text{Centrist}_{it} + \beta_{15} P_{capital} \times \text{Left}_{it} + \beta_{16} P_{capital} \times \text{Right}_{it} \\
+ \beta_{17} \text{Holidays} \times \text{Centrist}_{it} + \beta_{18} \text{Holidays} \times \text{Left}_{it} + \beta_{19} \text{Holidays} \times \text{Right}_{it} + a_{11} + a_{21} + e_{it},
\]

where in state \(i \) and time \(t \), the variable \(\text{Govt} \times \text{Centrist} \) takes up a non-zero and positive value if the centrist party (Congress) was in power, and 0, otherwise. Similarly, all other interaction variables have been defined.

4 PANEL MODEL ANALYSIS AND DISCUSSION

Table 2 presents the summary statistics for the key variables considered in this paper.

The average number of holidays offered by the 24 Indian states is around 22, over the time period 2008–2016. However, there are significant cross-state variations as evidenced by the high standard
deviation and range. For instance, the second richest state in our sample, Goa, offered only seven holidays in 2008, whereas the poorest state in India, Bihar, offered 40 holidays in 2008 and 2010. There are huge dispersions in the levels of economic prosperity as well. Bihar had a per capita NSDP of only INR 10,297 in 2008 while, on the other hand, the richest state, Delhi, had a per capita NSDP of INR 91,845, which is nearly nine times higher than that of the former. Human capital stocks vary significantly with some states registering literacy rates comparable to the developed countries (95.36% in Kerala in 2016). In contrast, poor states are lagging significantly in educational attainments (Bihar and Rajasthan with around 63% and 66% literacy rates respectively). There is considerable variation in the size of the public sector as well. For instance, in states like Maharashtra, Gujarat and Punjab, government expenditure as a percentage of SDP are only about 8.4%, 9% and 9.3%, respectively, during the 2008–2016 period, whereas, in north-eastern states like Tripura, public sector plays a much larger role (22%).

The primary variable of interest in the context of this study is ‘Holidays’. A preliminary examination of the holiday–NSDP per capita relationship for 2016 indicates a negative correlation (correlation coefficient = −0.54) between the two variables (Figure 1).

The richer states, on average, enjoy a lower number of holidays as compared to the poorer states. For instance, Delhi and Goa were the two richest states in India in 2016 with NSDP per capita of INR 142,615.73 and INR 125,966 respectively. The number of holidays in the same year in those two states was 16. Conversely, Bihar and Uttar Pradesh were two of the poorest states in India, with NSDP per capita of INR 16,893 and INR 22,880 respectively. Both states offered double the number of holidays (32) to their employees, as compared to Delhi and Goa in 2016. West Bengal ranked 14th out of the 24 states in the sample, in terms of NSDP per capita, and offered the highest number of holidays (35) in 2016, amongst all states.

4.1 Full sample estimation

We start by estimating the initial equation (Equation 2) by employing a random effects model, given that the Breusch–Pagan Lagrange Multiplier (LM) test results indicate that there is a significant random effect in the panel data. However, those results seem to suffer from cross-sectional correlation and first-order autocorrelation, as suggested by the Pesaran test and Wooldridge test results reported in Table A3 in Appendix A. Consequently, we do not report the random effects model results in the paper.3 One way to control for the problems of first-order serial correlation and cross-sectional de-

3Results are available upon request.
pendsence is to use pooled OLS regression with panel-corrected standard errors. The estimates (column I, Table 3) are robust to heteroscedasticity, contemporaneously cross-sectional correlation and first-order autocorrelation (see e.g. Hoechle, 2007). Next, we estimate the fully specified model (Equation 3) through the Roodman (2009a, 2009b) improvement of the Arellano and Bond (1991) general method of moments (GMM) method, which has been established in contemporary development literature to produce more efficient estimates and restrict the proliferation of instruments. There is ample evidence in the growth literature that there can be problems of endogeneity while estimating production functions (see e.g. Gavin & Perotti, 1997; Jaimovich & Panizza, 2007). In other words, it is possible that there is a reverse causality flowing from economic growth towards government spending or capital accumulation. For example, a larger or richer economy generates higher revenues for the government, which enables the latter to undertake higher public spending. Similarly, steady economic growth persuades both the government and private firms to invest in the economy and thus physical capital stock expands faster in richer states. In the presence of such endogeneity, the results presented in Column 1 can be biased. Therefore, we apply the Arellano–Bond GMM estimation method, which overcomes any potential problems of endogeneity mentioned above. This approach to panel data models also involves the use of a dynamic effect through the inclusion of a lagged dependent variable (L.ΔNSDP) as an explanatory variable. The lagged dependent variable eliminates any problem of autocorrelation.

The results do hint towards a negative association between holidays and economic growth, even though the effect is marginally significant. According to the Arellano–Bond results, everything else constant, an increase in the growth rate of holidays by 1% decreases growth rate of NSDP per capita of Indian states by about 0.02%. Among other control variables, human capital stock seems to be another predictor of growth in the case of Indian states though the impact seems to be sensitive to different estimation methods. There is no positive impact of credit by commercial banks on the growth performance of the Indian states. If anything, we find that an increase in ‘Credit’ affects economic growth.

FIGURE 1
NSDP per capita and Number of Holidays Scatterplot, 2016
Source: Authors’ own calculations based on data from the Reserve Bank of India and other sources (see Table A1)
negatively in India and the negative impact (though statistically insignificant for poor states as seen later) is upheld in the successive analysis as well, as seen in Table 4. This lack of any growth effect of ‘Credit’ reflects the inefficiency of the financial sector of India, as observed by past studies, such as Patra and Ghosh Dastidar (2018). The net non-performing assets (NPA) ratio (as a percentage of net advances) of the Indian banks have persistently increased from 1.7% in 2012 to 8.5% in 2016 over

TABLE 3 Panel model estimation for full sample

Independent variables	Linear regression with panel-corrected standard errors (I)	Arellano–Bond GMM estimation (II)
L.ΔNSDP		0.207** [0.040]
ΔHolidays	−0.031* [0.071]	−0.023* [0.098]
ΔPcapital	−0.007 [0.230]	−0.004 [0.441]
ΔPcapital_{t−1}	−0.012* [0.072]	−0.005 [0.314]
ΔHcapital	0.978** [0.050]	0.895 [0.768]
ΔHcapital_{t−1}	1.083** [0.047]	0.920 [0.527]
ΔLabour	−0.010 [0.787]	0.016 [0.195]
ΔCredit	0.003 [0.982]	−0.042 [0.178]
ΔCredit_{t−1}	−0.059* [0.087]	−0.069*** [0.000]
ΔGovt	−0.015 [0.392]	0.001 [0.447]
ΔGovt_{t−1}	−0.004 [0.832]	0.008 [0.493]
Govt × Centrist		−0.000 [0.362]
Govt × Left	0.000 [0.856]	
Govt × Regional	0.000 [0.895]	
Pcapital × Centrist	−0.000 [0.988]	
Pcapital × Left	−0.000 [0.849]	
Pcapital × Right	−0.000 [0.813]	
Holidays × Centrist	−0.000 [0.935]	
Holidays × Left	0.001 [0.749]	
Holidays × Right	0.000 [0.910]	
Constant	0.051*** [0.000]	0.057** [0.48]
State fixed effects	Yes	
Time fixed effects	Yes	
AR2		[0.000]
R^2 (adjusted)	0.113	0.207
No. of observations	164	139
Wooldridge test for autocorrelation H_0: No first-order autocorrelation	[0.000]	
Sargan Test		[0.478]
H_0: Overidentifying restrictions are valid		

Notes: The dependent variable is growth rate in NSDP per capita (ΔNSDP). AR2 denotes the autocorrelation test (of second order) in relevance to the null hypothesis of autocorrelation. *, ** and *** denote statistical significance at 10%, 5% and 1% respectively. Heteroscedasticity-robust standard errors have been used. p-values are presented within square brackets.
the recent years (see e.g. Reserve Bank of India, 2016). On the other hand, nonperforming loans (as a percentage of total gross loans) have increased from 2.45% in 2008 to 7.6% in 2016 (see e.g. World Bank, 2016). These trends indicate a lack of efficiency of financial intermediation, which may have offset the potential growth effects of the volume of credit given out by the banks in our data. Reddy (2002) cited legal impediments, time-consuming nature of asset disposal process and manipulation by debtors using political influence as the primary reasons behind such high levels of industrial bad debts in India.

4.2 | Rich versus poor states

As mentioned earlier, there are significant differences in economic attributes between the affluent and less affluent regions in India and, consequently, we hypothesize that the nature of the relationship between NSDP and holidays may vary across states. The mean NSDP of the states in our sample during the time period considered by this study is INR 45,558. Those states whose average NSDP is above the mean have been categorized as ‘rich’ and ‘poor’, otherwise. Table A4 provides the details of the categorization of states as per this criterion.

Next, we re-estimate the growth–holidays nexus separately for the two samples by employing the Arellano–Bond dynamic panel model approach (Table 4). We found previously that political ideology

Independent variables	Arellano–Bond GMM estimation (rich states)	Arellano–Bond GMM estimation (poor states)
L.ΔNSDP	0.181** [0.028]	−0.054 [0.697]
ΔHolidays	−0.025** [0.034]	0.000 [0.943]
ΔPcapital	−0.008 [0.278]	−0.008 [0.197]
ΔPcapital\(_{t−1}\)	−0.017** [0.037]	−0.002 [0.601]
ΔHcapital	2.169*** [0.450]	0.609 [0.991]
ΔHcapital\(_{t−1}\)	1.040 [0.491]	−1.146 [0.815]
ΔLabour	−0.056 [0.139]	0.084** [0.039]
ΔCredit	−0.008 [0.975]	−0.023 [0.525]
ΔCredit\(_{t−1}\)	−0.123*** [0.001]	−0.041 [0.288]
ΔGovt	−0.011 [0.658]	−0.003 [0.933]
ΔGovt\(_{t−1}\)	−0.039 [0.121]	0.004 [0.288]
Constant	0.046*** [0.000]	0.039* [0.056]
State fixed effects	Yes	
Time fixed effects	Yes	
AR2	[0.000]	[0.000]
R\(^2\)-adjusted	0.232	0.082
No. of observations	66	73
Sargan Test	[0.153]	[0.772]

Notes: The dependent variable is growth rate in NSDP per capita (ΔNSDP). AR2 denotes the autocorrelation test (of second order) in relevance to the null hypothesis of autocorrelation. *, ** and *** denote statistical significance at 10%, 5% and 1% respectively. p-values are presented within square brackets.
did not matter in the context of Indian states. This finding is in line with earlier studies on India (see e.g. Chatterji et al., 2015). Therefore, we only draw inferences from our estimation results of Equation 2. However, it should be noted that our key findings stay unaltered even when inserting the ideology variables.\(^4\)

The econometric findings indicate that the nature of the relationship between holidays and economic growth does differ across the two groups of states. Only in the case of the rich states a growth in the number of holidays affects economic growth negatively and significantly. Everything else constant, if the growth rate in the number of holidays accelerates by 1\%, the economic growth rate slows down by approximately 0.025\% in the case of the rich states. In the context of the poor states, the association between the two variables is statistically insignificant. This difference in growth effects of holidays across the two groups probably explains why the relationship turns out to be marginally significant when we perform the full sample estimation in Table 3. We argue that the finding – holidays do not affect growth in poor states – is primarily driven by the fact that the economies of these states are still much more agrarian as compared to their more affluent counterparts. Table 5 below compares the rural–urban population ratio of the five most affluent and five least affluent states in our sample.

About 60\%–65\% of the rural population in India were engaged in agricultural activities over the last decade, which implies that blue- and white-collar jobs only constitute about 35\%–40\% of the rural workforce (see e.g. Hnatkovska & Lahiri, 2014). On the contrary, more than 90\% of the urban workforce were engaged in blue- and white-collar jobs. Hence, the employees who are affected by government policies on holidays predominantly belong to the urban population. As Table 5 indicates, the rich states are significantly more urbanized than the poor states. In the poorest states of Bihar and UP, the rural–urban ratios are a whopping 7.85 and 3.49, respectively, whereas that in the richest states of Delhi and Goa are only 0.07 and 0.61. Even if we compare the poor group with large rich states like Maharashtra and Gujarat, the difference in ratios is considerably large. Moreover, the Government of India census data suggest that during 2001–2011, the rural population had declined in some of the affluent states like Goa (by 19\%) and Kerala (by 26\%), whereas less affluent states like Bihar have witnessed a 24\% increase in the same. According to World Bank (2019), around 45\% of the total workforce in India was engaged in agriculture in 2016. However, in poorer states like Bihar, Assam, Madhya Pradesh and Uttar Pradesh, the percentage of the workforce involved in agrarian activities had been around 77\%, 75\%, 62\% and 55\%, respectively, in 2016 (see e.g. Government of Assam, 2017; Government of Bihar, 2019; Mamgain & Verick, 2017; PRS, 2016a). On the other hand, Delhi had less than 1\% of its working population working in the primary sector in 2016 (see e.g. Government of Delhi, 2017). According to the Government of India Ministry of Labour website, Goa had only 16\% of its population involved in agriculture even as early as in 2000–2001. Other rich states like Maharashtra and Haryana had 51\% and 40\% of their workers involved in agrarian activities in 2016 respectively (see e.g. PRS, 2016b; Singh & Singh, 2017). Another affluent and the most literate state in India, Kerala, only had around 5.9\% of its workforce in agriculture (see e.g. The Hindu, 2016). Thus, it could be argued that a significantly higher percentage of the workforce in the poor states is engaged in agrarian activities and is, subsequently, outside the purview of official holiday entitlements. We therefore do not see any significant effect of this variable on economic growth in the case of poor regions.

This difference in effect across the two groups is observed for other control variables as well. In the case of the poor states, it seems that only an increase in the labour force size leads to economic growth, whereas the labour force size does not play any role in the economic performance of rich states. An acceleration in the growth rate of human capital promotes economic growth in the rich states, whereas

\(^4\)Results withheld for the sake of brevity but available on request.
this factor is inconsequential for the poor states. The finding that physical capital accumulation has a negative or no association with growth is contrary to the predictions of neoclassical growth theories. Allocation and growth effects of both human and physical capital depend on the institutions of the country. Hall et al. (2010) argued that in countries with good institutions – where the social, political and legal rules provide for secure property rights and unbiased contract enforcement – investments in capital generate a positive return for society as a whole. By contrast, in countries with poor institutions, increases in capital stock lead to negative growth rates as additions to the capital stock tend to be employed in rent-seeking and other unproductive activities. Many other empirical studies have noted this ineffectiveness of human capital in the context of other developing economies. Easterly (2001) noted that despite larger increases in schooling than any other region since 1960, sub-Saharan African countries remained stuck in poverty, whereas Asian tigers, such as South Korea and Taiwan, registered much faster economic growth with much smaller increases in education levels. In cross-country growth regressions, Pritchett (2001) found no association between increases in human capital and the rate of growth of output per worker. He puts forward three possibilities that could explain this lack of any relationship: the newly created educational capital has gone into privately remunerative, but socially unproductive, activities; there has been slow growth in the demand for high-skilled labour, so supply has outstripped demand, and returns to schooling have declined rapidly; finally, the education system has failed, so schooling provides few (or no) skills.

The lack of efficient institutions and high incidence of corruption is indeed an issue in India. In 2018, the country ranked 78th out of 180 countries in the Corruption Perceptions Index (CPI) published by Transparency International.5 Likewise, India registered an abysmal rank in institutional quality (73rd out of 191 countries) according to the Institutional Quality Index 2017 published by the World Bank. However, the problem seems to be worse in the poorer states, because both physical and human capital failed to play any role in the growth process of the same. We argue that, in addition to

5The CPI ranks 180 countries by their perceived levels of public sector corruption according to experts and business people. The index employs a scale of 0–100, where 0 is highly corrupt and 100 is very clean (retrieved from the Transparency International website: https://www.transparency.org/cpi2018).

Richest five states	Rural–urban population ratio
Delhi	0.07
Goa	0.61
Maharashtra	1.21
Haryana	1.87
Gujarat	1.35

Poorest five states	Rural–urban population ratio
Bihar	7.85
Uttar Pradesh	3.49
Manipur	2.31
Assam	6.10
Madhya Pradesh	2.62

Note: The population census is conducted every 10 years. 2011 is the latest year for which data were available.
Source: Government of India (2011), Population Census.
the institutional factors, this lack of effect of human capital in poor states can also be attributed to the ‘brain drain’, whereby many skilled and semi-skilled workers from the poorer states migrate to the metropolitan cities and industrial and technological hubs located in the rich parts of India, such as Mumbai (Maharashtra), Bangalore (Karnataka), Delhi and Gurugram (Haryana) for employment opportunities. The Economic Survey of India 2016–2017, published by the Ministry of Finance of India, also notes that the affluent states of Tamil Nadu (1,013,000), Kerala (900,000), Maharashtra (507,000) and Delhi (466,000) experienced the largest net migration of people, aged 20–29 years, during the period 2001–2011, whereas the less affluent states of Uttar Pradesh (−5834,000), Bihar (−2695,000), Madhya Pradesh (−765,000) and Rajasthan (−791,000) experienced the largest out-migration of the same cohort during that period amongst all Indian states.

The impact of fiscal policy (government spending) is inconsequential as far as India's growth performance is concerned. This lack of impact can probably be attributed to the misallocation of resources. As highlighted in the Economic Survey 2016–2017, welfare spending in India suffers from significant misallocations. In fact, the districts that house the highest number of poor people are the ones that suffer from the greatest shortfall of funds in terms of social programmes. Resources allocated to districts are often a function of the districts’ ability to spend them (see e.g. Anand, 2018). Generally, the richer states have better administrative capabilities to implement the government schemes efficiently and, therefore, they end up getting more funds at the expense of the poorer districts. Such misallocations lead to the exclusion of the deserving poor from any access to government welfare benefits, leakages to non-poor and benefits to corrupt local actors, all of which reduce the growth effects of public spending.

5 | CONCLUSION

The number of holidays differs significantly across the Indian states, from only 15 in Andhra Pradesh to 35 in West Bengal for the year 2016. Some of the local governments (like those in West Bengal and Uttar Pradesh) are even accused of using holidays as a tool either to mollify disgruntled workers or to woo voters before the state elections. In this context, the paper explored the empirical relationship between the number of holidays and economic growth for 24 Indian states, spanning the time period 2008–2016. The panel model analysis for the entire sample did indicate a negative (though somewhat weak) holiday–growth association. Subsequently, the analysis disaggregated the sample into rich (or, more affluent) and poor (or, less affluent) states and re-estimated the relationship. The new results indicated that there was a dynamic association between growth in the number of holidays and economic growth as the relationship differs across the two groups. Holidays did seem to affect growth negatively in the rich states but were inconsequential for the growth performance of the poor states. Holidays offered by state governments affect the employees in blue- and white-collar jobs, whereas the majority of the workforce of the poor states is involved in agrarian activities. Therefore, we argue that holiday policies of the governments failed to exert any influence on the growth of the poor states.

Among other control variables, physical capital accumulation played a negative (or, no) role in the growth process which is indicative of the inefficiency of the institutions in India that encourages high levels of corruption and rent-seeking activities. Human capital accumulation did affect growth positively in the rich states but failed to affect growth performance of the poor states. The latter group does not only suffer from poor state-level institutions, but also experience brain drain as there are significant outward migration of skilled and semi-skilled workers from poor regions towards the technological and financial hubs located mostly in the affluent regions.
As far as policy implications are concerned, the results indicate that there is a trade-off between the number of holidays (increased leisure time for workers) and economic growth for the rich states. Therefore, instead of rewarding more holidays to their employees, these states may consider alternative forms of benefits (probably, benefits that are monetary in nature, such as higher perks and commission payments) for their workers. In the context of the laggard states, these results should not be used to conclude that the absolute number of holidays does not matter. These states, on average, offer a considerably larger number of holidays compared to the rich states and even though that is not affecting their growth at the moment because of the occupational structure of the workforce, offering so many holidays and, worse, playing ‘holiday politics’ are symptomatic of the larger problem of inefficient institutions and incompetent governance, which acts as an obstacle as these states actively seek to structurally transform into secondary and tertiary sector-driven economies.

ACKNOWLEDGEMENTS
The authors are grateful to the Editor and an anonymous referee for extremely valuable suggestions.

ORCID
Sayantan Ghosh Dastidar https://orcid.org/0000-0002-3174-9335

REFERENCES
Amavilah, V. H. (2009). Holidays and the economic growth of nations. MPRA Paper No. 17326, Munich Personal RePeC Archive. Retrieved from https://mpra.ub.uni-muenchen.de/17326/1/MPRA_paper_17326.pdf
Anand, A. (2018). Misallocation of welfare schemes’ resources. Livemint, February 15, 2018. Retrieved from https://www.livemint.com/Opinion/euFoDy2oKAM0uo8f4HAPgfj/Misallocation-of-welfare-schemes-resources.html
Anand, S., & Sen, A. (1994). Human development index: Methodology and measurement. Human Development Occasional Papers No. 1994-02, Human Development Report Office (HDRO), United Nations Development Programme (UNDP).
Arellano, M., & Bond, S. (1991). Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. *The Review of Economic Studies*, 58, 277–297. https://doi.org/10.2307/2297968
Ausubel, J., & Grubbler, A. (1995). Working less and living longer: Long-term trends in working time budgets. *Technological Forecasting and Social Change*, 50, 113–131.
Barro, R. J., & Sala-I-Martin, X. (1992). Public finance in models of economic growth. *Review of Economic Studies*, 59, 645–661. https://doi.org/10.2307/2297991
Chakraborty, A. (2016). Mamata rewards govt staff with extra Puja holiday. *The Times of India*, September 9, 2016. Retrieved from https://timesofindia.indiatimes.com/city/kolkata/Mamata-rewards-govt-staff-with-extra-Puja-holiday/articleshow/54229834.cms
Chase, E. S. (1967). Leisure and consumption. In K. Shell (Ed.), *Essays on the theory of optimal economic growth*. MIT Press.
Chatterji, M., Mohan, S., & Ghosh Dastidar, S. (2015). Determinants of public education expenditure: Evidence from Indian states. *International Journal of Education Economics and Development*, 6, 1–19. https://doi.org/10.1504/IJEED.2015.068355
Dolan, P., Tsuchiya, A., & Smith, P. (2002). Determining the parameters in a social welfare function using stated preference data: An application to health. Discussion Paper No. 2, University of Sheffield. Retrieved from http://eprints.whiterose.ac.uk/10950/1/HEDS_DP_02-02.pdf
Drazen, A., & Eslava, M. (2010). Electoral manipulation via voter-friendly spending: Theory and evidence. *Journal of Development Economics*, 92, 39–52. https://doi.org/10.1016/j.jdeveco.2009.01.001
Easterly, W. (2001). *The elusive quest for growth*. MIT Press.
Eichenbaum, M. S., Hansen, L. P., & Singleton, K. J. (1988). A time series analysis of representative agent models of consumption and leisure choice under uncertainty. *The Quarterly Journal of Economics*, 103, 51–78. https://doi.org/10.2307/1882642
Eichenbaum, S. M., Hansen, L. P., & Richard, S. F. (1985). *The dynamic equilibrium pricing of durable consumption goods*. Manuscript, Carnegie-Mellon University.

Fernandez, E., Novales, A., & Ruiz, J. (2004). Indeterminacy under non-separability of public consumption and leisure in the utility function. *Economic Modeling*, 21, 409–428. https://doi.org/10.1016/S0264-9993(03)00038-5

Gali, J. (1999). Technology, employment and the business cycle: Do technology shocks explain aggregate fluctuations? *American Economic Review*, 89, 249–271. https://doi.org/10.1257/aer.89.1.249

Fernandez, E., Novales, A., & Ruiz, J. (2004). Indeterminacy under non-separability of public consumption and leisure in the utility function. *Economic Modeling*, 21, 409–428. https://doi.org/10.1016/S0264-9993(03)00038-5

Gavin, M., & Perotti, R. (1997). Fiscal policy in Latin America. In B. S. Bernanke & J. Rotemberg (Eds.), *NBER Macroeconomics Annual 1997* (pp. 1–63). MIT Press.

Government of Assam. (2017). *Economic Survey Assam 2017–18*. Transformation and Development Department. Retrieved from https://transdev.assam.gov.in/sites/default/files/swf_utility_folder/departments/pndd_medhassu_in_oid_2/menu/document/final-min.pdf

Government of Bihar. (2019). About Us’. Agriculture Department. Retrieved from https://state.bihar.gov.in/krishi

Government of Delhi. (2017). Economic Survey of Delhi 2017–18, Planning Department. Retrieved from https://delhi.gov.indiott/DoIT_Planning/ESEng.pdf

Government of India. (2011). *Census of India, Chapter VI*. Ministry of Home Affairs, Government of India.

Government of India. (2017). *Economic Survey 2016–17*. Ministry of Finance, Government of India. Retrieved from https://www.indiabudget.gov.in/es2016-17/echapater/pdf

Hall, J. C., Sobel, R. S., & Crowley, G. R. (2010). Institutions, capital, and growth. *Southern Economic Journal*, 77, 385–405. https://doi.org/10.4284/sej.2010.77.2.385

Hall, R. E. (1980). Labor supply and aggregate fluctuations. *Carnegie-Rochester Conference Series on Public Policy*, 12, 7–33.

Hek, P. A. (1998). An aggregative model of capital accumulation with leisure-dependent utility. *Journal of Economic Dynamics and Control*, 23, 255–276. https://doi.org/10.1016/S0165-1889(97)00119-X

Herwartz, H., & Theilen, B. (2017). Ideology and redistribution through public spending. *European Journal of Political Economy*, 46, 74–90. https://doi.org/10.1016/j.ejoe.2016.11.002

Hibbs, D. A. (1977). Political parties and macroeconomic policy. *American Political Science Review*, 71, 1467–1487. https://doi.org/10.1017/S0003055400269712

Hibbs, D. A. (1994). The Partisan model of macroeconomic cycles: More theory and evidence for the United States. *Economics and Politics*, 6, 1–23. https://doi.org/10.1111/j.1468-0343.1994.tb00081.x

Hindustan Times. (2015). With voters in mind, it is holiday politics again in Uttar Pradesh, October 29, 2015. Retrieved from https://www.hindustantimes.com/india/up-to-declare-holiday-on-sardar-patel-s-birth-anniversary/story-hvDGofoqWqb0rshVmhPskK.html

Hnatkovska, V., & Lahiri, A. (2014). Structural transformation and the rural-urban divide. Meeting Paper No. 246. Society for Economic Dynamics. Retrieved from https://ideas.repec.org/p/red/sed014/746.html

Hoechle, D. (2007). Robust standard errors for panel regressions with cross-sectional dependence. *State Journal*, 7, 281–312. https://doi.org/10.1177/1536867X0700700301

Ioannides, Y. M., & Taub, B. (1992). On dynamics with time-to-build investment technology and non-time-separable leisure. *Journal of Economic Dynamics and Control*, 16, 225–241. https://doi.org/10.1016/0165-1889(92)90032-A

Jaimovich, D., & Panizza, U. (2007). Procyclicality or reverse causality? Research Department Publications No. 4508, Inter-American Development Bank. Retrieved from https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1820869

Jensen, C. (2010). Issue compensation and right-wing government social spending. *European Journal of Political Research*, 49, 282–299.

Jones, C. I. (1995a). R&D-based models of economic growth. *Journal of Political Economy*, 103, 759–784.

Jones, C. I. (1995b). Time series tests of endogenous growth models. *Quarterly Journal of Economics*, 110, 495–525. https://doi.org/10.2307/2118448

Kydland, F. E., & Prescott, E. C. (1982). Time to build and aggregate fluctuations. *Econometrica*, 50, 1345–1370. https://doi.org/10.2307/1913386

Ladron de Guevara, A., Ortigueira, S., & Santos, M. S. (1999). A two-sector model of endogenous growth with leisure. *Review of Economic Studies*, 66, 609–631. https://doi.org/10.1111/1467-937X.00100

Lucas, R. E. (1988). On the mechanism of economic development. *Journal of Monetary Economics*, 22, 3–42.

Lucas, R. E., & Rapping, L. A. (1969). Real wages, employment and inflation. *Journal of Political Economics*, 77, 721–754.
Maguire, J. S. (2008). Leisure and obligation of self-work: An examination of the fitness field. *Leisure Studies*, 27, 59–75.

Mangain, R. P., & Verick, S. (2017). *The state of employment in Uttar Pradesh: Unleashing the potential for inclusive growth*. International Labour Organisation. Retrieved from https://www.ilo.org/wcmsp5/groups/public/---asia/---region-bangkok/---sro-new_delhi/documents/publication/wcms_614693.pdf

Mankiw, N. G., Rotenberg, J., & Summers, L. H. (1985). Intertemporal institution in macroeconomics. *Quarterly Journal of Economics*, 100, 225–251.

Merz, J., & Osberg, L. (2006). Keeping in touch – A benefit of public holidays. IZA Discussion Paper No. 2089, The Institute for the Study of Labor. Retrieved from http://ftp.iza.org/dp2089.pdf

Ortigueira, S. (2000). A dynamic analysis of an endogenous growth. *Economic Theory*, 16, 43–62.

Patra, S., & Ghosh Dastidar, S. (2018). Finance and growth: Evidence from South Asia. *Jindal Journal of Business Research*, 7, 1–24. https://doi.org/10.1177/2278682118761747

Pesaran, M. H. (2007). A simple panel unit root test in the presence of cross-section dependence. *Journal of Applied Econometrics*, 22, 265–312. https://doi.org/10.1002/jae.951

Potrafke, N. (2011). Does government ideology influence budget composition? Empirical evidence from OECD countries. *Economics of Governance*, 12, 101–134. https://doi.org/10.1007/s10101-010-0092-9

Pritchett, L. (2001). Where has all the education gone? *The World Bank Economic Review*, 15, 367–391. https://doi.org/10.1093/wber/15.3.367

PRS. (2016a). *Madhya Pradesh Budget Analysis 2016–17*. PRS Legislative Research. Retrieved from https://www.prsindia.org/administrator/uploads/general/1456807123_Budgetpercent20Analysispercent2020MP.pdf

PRS. (2016b). *Maharashtra Budget Analysis 2016–17*. PRS Legislative Research. Retrieved from https://www.prsindia.org/administrator/uploads/general/1458640609_Maharashtrapercent20Budgetpercent20Analysispercent202016-17.pdf

Ramasamy, B., Yeung, M., & Au, A. (2008). Can holidays boost consumption? The case of Hong Kong. *Journal of Public Affairs*, 8, 281–287. https://doi.org/10.1002/pa.299

Reddy, P. K. (2002). A comparative study of non performing assets in India in the global context – Similarities and dissimilarities, remedial measures. Working Paper, Available at SSRN. https://doi.org/10.2139/ssrn.361322

Reserve Bank of India. (2016). Banking sector at a glance. Annual Publication Series under ‘Trend and Progress of Banking in India. Retrieved from https://www.rbi.org.in/scripts/AnnualPublications.aspx?head=Trendpercent20andpercent20Progresspercent20ofpercent20Bankingpercent20inpercent20India

Romer, P. M. (1986). Increasing returns and long run growth. *Journal of Political Economy*, 94, 1002–1037. https://doi.org/10.1086/261420

Romer, P. M. (1990). Capital, labor and productivity. *Brookings Papers on Economic Activity*, 98, 71–102.

Roodman, D. (2009a). A note on the theme of too many instruments. *Oxford Bulletin of Economics and Statistics*, 71, 135–158. https://doi.org/10.1111/j.1468-0084.2008.00542.x

Roodman, D. (2009b). How to do xtabond2: An introduction to difference and system GMM in Stata. *Stata Journal*, 9, 86–136. https://doi.org/10.1177/1536867X0900900106

Rubinstein, M. (1974). An aggregation theorem for securities market. *Journal of Financial Economics*, 1, 225–244.

Ryder, H. E., Stafford, F. P., & Stephan, P. E. (1976). Labor, leisure and training over the life cycle. *International Economic Review*, 17, 651–674. https://doi.org/10.2307/2525794

Sen, A. (1979). Tilitarianism and welfarism. *Journal of Philosophy*, 76, 463–489.

Shea, J. (1998). What do technology shocks do? *NBER Macroeconomics Annual*, 13, 275–310. https://doi.org/10.1086/ma.134623748

Silver, M. (1995). *The economic structures of the antiquity* (1st ed.). Greenwood Press.

Singh, A., & Singh, J. (2017). Comparative analysis of Punjab and Haryana economy. *International Research Journal of Management and Commerce*, 4, 672–684.

The Hindu. (2016). Kerala tops in unemployment rates. February 12, 2016. Retrieved from https://www.thehindu.com//news/national/kerala/kerala-tops-in-unemployment-rates/article8226139.ece

The Telegraph. (2017). General holiday for Chhath in Bengal. October 10, 2017. Retrieved from https://www.telegraphindia.com/states/west-bengal/general-holiday-for-chhath-in-bengal/cid/1450223

Wedel, M. (2004). A note on conspicuous leisure: Animal spirits and endogenous cycles. *Portuguese Economic Journal*, 3, 1–13. https://doi.org/10.1007/s10258-004-0026-y
Wilensky, H. L. (1961). Uneven distribute of leisure on growth: The impact of economic growth on ‘free time’. *Social Problems, 9*, 32–56.

World Bank. (2016). *World development indicators*. World Bank.

World Bank. (2019). *World development indicators*. World Bank.

How to cite this article: Ghosh Dastidar S, Apergis N. Holidays and economic growth: Evidence from a panel of Indian states. *Econ Transit Institut Change*. 2021;00:1–18. https://doi.org/10.1111/ecot.12282

APPENDIX A

TABLE A1
Data sources

Variable	Source
NSDP per capita	Handbook of Statistics on Indian economy 2016 from the Reserve Bank of India
Size of Labour Force	Handbook of Statistics on Indian states, Reserve Bank of India
Gross Fixed Capital Formation (INR Million, constant 2004 prices)	Handbook of Statistics on Indian states, Reserve Bank of India
State-wise Credit Deposit ratio of scheduled commercial banks according to place of utilization	Handbook of Statistics on Indian states, Reserve Bank of India
Government Spending	State Finances: A Study of Budgets, Reserve Bank of India
Literacy rate	Handbook of Statistics on Indian states, Reserve Bank of India
Ideological variables (ideology of governing party in states)	Election Commission of India website
Holidays	www.officeholidays.com; wbxpress.com; holidaytracker.com; gad.gujarat.gov.in; www.jk.gov.in; www.assamyellowpage.com; manipur.gov.in; www.jharkhand.gov.in; Karnataka Employers’ Association website; raj.nic.in; www.wbfin.nic.in

TABLE A2
States included in the study

Andhra Pradesh	Assam
Bihar	Chhattisgarh
Goa	Gujarat
Haryana	Himachal Pradesh
Jammu & Kashmir	Jharkhand
Karnataka	Kerala
Madhya Pradesh	Maharashtra
Manipur	Odisha
Punjab	Rajasthan
Tamil Nadu	Tripura
Uttar Pradesh	Uttarakhand
West Bengal	Delhi
Table A3 Random effects model diagnostic tests

Diagnostic test	p-value
Breusch and Pagan LM test for random effects	[0.000]
H_0: No significant difference across units (i.e. no panel effect)	
Pesaran test for cross-sectional dependence	[0.000]
H_0: No cross-sectional dependence	

Table A4 List of rich and poor states

Rich states	Mean NSDP (2008–2016)
Delhi	115,069.8
Goa	107,781.9
Maharashtra	65,067.22
Haryana	63,992.98
Gujarat	63,871
Tamil Nadu	58,202.62
Kerala	56,335.11
Uttarakhand	53,861.98
Himachal Pradesh	53,194
Punjab	48,789
Karnataka	46,130

Poor states	Mean NSDP (2008–2016)
Tripura	43,284.02
Andhra Pradesh	42,550.92
West Bengal	35,047.56
Rajasthan	29,252
Chhatisgarh	28,429.17
Jammu and Kashmir	28,398.95
Jharkhand	27,753.99
Odisha	26,200
Madhya Pradesh	24,584.22
Assam	22,429.6
Manipur	21,947.08
Uttar Pradesh	18,939.7
Bihar	13,258.28

Note: All figures are expressed in INR (Indian rupee). Average NSDP for all states in our sample is INR 45,598 for the time period 2008–2016.