An evaluation of selected chemical, biochemical, and biological parameters of soil enriched with vermicompost

Sebastian Wojciech Przemieniecki1 · Anita Zapalowska2 · Andrzej Skwiercz1,3 · Marta Damszel1 · Arkadiusz Telesiński4 · Zbigniew Sierota5 · Anna Gorczyca6

Received: 10 July 2019 / Accepted: 21 September 2020 © The Author(s) 2020

Abstract
The aim of this study was to assess the changes in chemical and microbial properties and enzymatic activity of soil enriched with vermicompost derived from household waste. The vermicompost was tested in the rhizosphere of Larix decidua seedlings cultivated in 10-L pots in: (i) nursery soil (as the control), (ii) soil with 10% v/v vermicompost, and (iii) with 20% v/v vermicompost. The impact of vermicompost was assessed in terms of soil C/N ratio; bacterial, fungal, and nematode counts; and enzymatic activity. It was found that vermicompost increased the C/N ratio from 21 to 32, as well as the content of nitrate from 78 to 134 mg kg\(^{-1}\), of ammonium from 14 to 139 mg kg\(^{-1}\), of phosphorus from 92 to 521 mg kg\(^{-1}\), and of potassium from 142 to 1912 mg kg\(^{-1}\), compared with the control soil. The abundance of beneficial bacteria was increased (from 8.61 × 10\(^{7}\) to 37.9 × 10\(^{7}\)), along with decreases in microbiological ratios of fungi and bacteria (e.g. fungi/Bacillus from 0.18818 to 0.00425). A significant 2- to 4-fold increase was observed compared with the control in the number of beneficial nematodes belonging to bacterivorous, fungivorous, and predatory groups with no change in the abundance of plant-parasitic nematodes. Addition of vermicompost brought about a change in soil enzyme activity. Vermicompost reduced the activity of alkaline phosphatase only. Both doses of vermicompost led to an increase in the activity of acid phosphatase, inorganic pyrophosphatase, dehydrogenases, \(\beta\)-glucosidase, and urease. Only the higher dose had an effect on increasing the activity of o-diphenol oxidase and proteases. No significant change was observed for nitrate reductase. Also, the presence of antibiotics produced by bacteria was detected depending on the dose of vermicompost, e.g. iturin (\(ituC\)) and bacillomycin (\(bmyB\)) were found in soil with a dose of 20% v/v vermicompost. Overall, vermicompost produced from household waste can be an excellent organic fertilizer for larch forest nurseries.

Keywords Vermicompost · Larch · Soil · Chemical properties · Microbiota · Enzymes

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s11356-020-10981-z) contains supplementary material, which is available to authorized users.

1 Faculty of Environmental Management and Agriculture, Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, Prawochezimskiego 17, 10-720 Olsztyn, Poland
2 College of Natural Sciences, Institute of Agricultural Sciences, Land Management and Environmental Protection, University of Rzeszów, Cwiklinskiej 1a, 35-601 Rzeszów, Poland
3 Department of Pests Management, Research Institute of Horticulture in Skierniewice, Pomologiczna 18, 96-100 Skierniewice, Poland
4 Faculty of Environmental Management and Agriculture, Department of Bioengineering, West Pomeranian University of Technology in Szczecin, Slowackiego 17, 71-434 Szczecin, Poland
5 Faculty of Environmental Management and Agriculture, Department of Forestry and Forest Ecology, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 2, 10-727 Olsztyn, Poland
6 Faculty of Agriculture and Economics, Department of Microbiology and Biomonitoring, University of Agriculture in Krakow, Mickiewicza 21, 31-120 Krakow, Poland
Introduction

Vermicomposting is a sustainable technology for utilizing organic waste as a result of which natural fertilizer applied to soil improves its yielding properties. The production and application of vermicompost directly counteract the threats inherent to the modern bioeconomy, i.e., the generation of a huge amount of organic waste and the loss of soil yielding properties (FAO and ITPS 2015; Silpa et al. 2018). Rapid biodegradation of organic waste during vermicomposting is a result of the interaction between earthworms and microorganisms.

Earthworms cause fragmentation and conditioning of the substrate. Epigeic earthworms (sensu Bouché 1977) are the most suitable for producing vermicompost as they live in organic horizons, feed primarily on decaying organic matter, and are the most efficient in biodegrading organic waste and releasing nutrients into the soil (Lim et al. 2016). Among the epigeic earthworms, Eisenia fetida is the most commonly used in vermicomposting because of its worldwide distribution, and it is resilient and has a wide temperature tolerance (Edwards 2004). In addition to rapidly fragmenting and processing the biodegradable fraction (6–18 h), earthworms cause the secretion of enzymes, eliminate harmful microorganisms, and contribute to the development of beneficial microorganisms (actinides, fungi) in the soil (Flegel and Schrader 2000; Pathma and Sakthivel 2012). Microorganisms are responsible for the stabilization of biological processes in soil solution, and soil enzymes produced by microorganisms participate in the circulation of organic and inorganic matter. In a state of equilibrium of the environment (homeostasis), in addition to naturally occurring plant defence mechanisms, soil microorganisms play a key role in supporting these mechanisms, providing nutrients, and producing growth stimulants.

Vermicompost produced by earthworms can improve soil physical properties such as aggregate stability, total porosity, air and water permeability related to decreasing in bulk density, and penetration resistance. Also, soil water-holding capacity can be increased with the addition of vermicompost. Within chemical properties, it was found that nitrate-nitrogen, phosphorus, calcium, magnesium, zinc, copper, and iron content, as well as electrical conductivity, increased. In comparison with mineral fertilizers, vermicompost produces significantly greater increases in soil organic carbon and some plant nutrients (Bachman and Metzger 2007; Weber et al. 2007; Aksakal et al. 2016; Lim et al. 2016). One gramme of vermicompost contains up to 2000 billion bacteria belonging to the Bacteroides, Gammaproteobacteria, Deltaproteobacteria, Actinobacteria, Alphaproteobacteria, Betaproteobacteria, Chloroflexi, Firmicutes, Acidobacteria, Gemmatimonadetes, Verrucomicrobia, and Planctomycetes (Pathma and Sakthivel 2012; Neher et al. 2013). During vermicomposting, the nutrients locked up in the organic waste are changed into simple and more readily available forms, such as nitrate or ammonium nitrogen; exchangeable phosphorus; and soluble potassium, calcium, and magnesium in the worm gut (Atiyeh et al. 2002). Microorganisms, as the second producer of vermicompost after earthworms, provide therefore soil environment which has very favourable properties for the development of plants and determining their healthiness (Lehman et al. 2015; Jacoby et al. 2017). There is some data available on the effect of vermicomposting in improving plant resistance to pests (Arancon et al. 2005; Cardoza 2011; Hussain et al. 2017), and in particular to soil nematodes, an area in which conventional methods of control are really weak (Szczech et al. 1993; Blouin et al. 2005; Rajiv et al. 2013). The bacteria that are responsible for the production of effective antibiotics against phytopathogens include the three most widely described groups: Pseudomonadaceae, Actinomycetes, and Bacillus spp. They can be immobilized in soil mineral matter, be inactivated or degraded by microorganisms, and are sensitive to unfavourable environmental conditions (pH, temperature, water availability) (Burns et al. 2013; Schimel et al. 2017).

Vermicompost can be used in all farming systems, especially in organic farming, where there are problems with fertilizing crops. As a consequence, it is also suitable for use in households too (Venkatesh and Eevera 2008; Sinha et al. 2011; Lim et al. 2015). Unlike agricultural and horticultural crops, forest crops and especially forest nurseries have not yet been well studied in terms of the benefits of using vermicompost. There are a few results which indicate the positive effect of vermicompost on germination and early growth of seedlings (Lazcano et al. 2010), as well as on morphological and physiological quality of four genotypes of pine (Atik 2014; Atik and Yilmaz 2014). In turn, Pérez-Piqueres et al. (2018) observed the lack of a clearly beneficial effect of vermicompost as a root-growth promoter of four genotypes, also of pine. To date, the properties of forest nursery soils enriched with vermicompost have not been assessed, also with regard to other tree species.

The aim of the study was to assess the microbial diversity and enzymatic activity in soil amended with household vermicompost—to recognize a pool of soil organisms in the substrates and the number of nematodes against the background of the basic physicochemical properties of soil and soil enzymes. The results obtained were used as a basis for determining the usefulness of vermicomposts in larch forestry nursery production and the implementation of IPM principles.

Materials and methods

Soil and vermicompost

The experiment was carried out near the Baltic coast (54° 35′ 29″ N, 18° 27′ 42″ E). Soils used in this study are classified as
Eutrophic Cambisols, with loam texture (Kabala et al. 2019). A quantity of 300 L of soil was obtained from a forest nursery. The humidity of the samples before the test was 60% of the maximum water volume.

Vermicompost was produced by the earthworm (E. fetida) processing fresh household waste (waste from lawnmower clippings, fruit waste—mainly apples and pears, vegetable waste—mainly potatoes and carrots) in a continuous, long-term decomposition process (6 months) in a concrete composter. Vermicompost was obtained from the upper part, free from earthworms, and was mixed with soil to create 10% v/v (variant V10) and 20% v/v (variant V20) mixtures. Soil without vermicompost was used as the control. Ten-litre pots filled with the prepared substrates in 3 replicates for seedlings of larch (Larix decidua Mill.). Larch seedlings came from the Domatowo Forest Nursery (Wejherowo Forest District, Pomeranian Voivodeship, Poland) and were of 30 cm high; measurements were performed in the rhizosphere of seedlings after 12 months of cultivation.

Chemical properties of samples

The pH of the samples and the salinity were measured according to Kabala and Karczewska (2019): pH in H2O and KCl by the potentiometric method; salinity by electrical conductivity; phosphorus and potassium by the Egner-Riehm method; magnesium by the Schachtelbächer method; calcium and chloride by atomic absorption spectrophotometry method; total nitrogen by the Kjeldahl method; total organic carbon spectrophotometrically after oxidation; ammonium (N–NH4) by Nessler’s colorimetric method; nitrate (N–NO3) by the colorimetric method with phenol-2,4 disulphonic acid.

Isolation of genetic material and qPCR execution

The assessment concerned the basic groups of microorganisms that are indicators of the condition of the soil environment. Samples were ground in a mortar and screened through a 2-mm sieve. One hundred milligrams of material was transferred to a 2-ml tube containing glass beads and lysis buffer, and then homogenized in a TissueLiser LT (Qiagen, Germany). Cell lysis was carried out for 5 min at maximum speed. DNA from the samples were isolated from soil and mixtures of soil with vermicompost (V10 and V20) using the Soil DNA Purification Kit (EURx, Poland). The quality of the isolated genetic material was ~ 1.8 (absorbance index 260/280). Isolation for each substrate was performed in two series.

To assess the number of bacteria, the real-time TaqMan method was used with the BAC338F and BAC805R primers, and the BACS16f probe (Yu et al. 2005) using a Maxima Probe qPCR Master Mix 2× (Thermo Fisher Scientific, USA). The Sybr Green technique with the NS11 and 58A2R primers was used for fungi determination (Martin and Rygiewicz 2005). Maxima SYBR Green qPCR Master Mix 2× (Thermo Fisher Scientific, USA) was used to prepare the reaction. Determination of the number of toxin-producing fungi of the *Fusarium* genus was performed with the SYBR Green methods with the Tox5-1 and Tox5-2 primer sets, described by Schnerr et al. (2001). The determination of the toxicity number of *Penicillium* spp. and *Aspergillus* spp. was made using primers and probes developed by Suanthie et al. (2009). Enumeration of the 16S rDNA copy gene of *Clostridium* was performed according to Song et al. (2004) using a Probe-I GTGCCAGCGCCGGTAGTACACG (Clostridium cluster I) forward primer, CI-F1, and reverse primer, CI-R2. The number of the *philD* gene of PGPB (plant growth-promoting bacteria) *Pseudomonadaceae* was determined according to the Hu et al. (2016) primer set. To determine *Bacillus* spp., 16SBACF and 16SBACR primers were used (Mora et al. 2011). Both Pseudomonadaceae and *Bacillus* were amplified with the Maxima Sybr Green qPCR Master Mix 2× (Thermo Fisher Scientific, USA).

DNA from pure cultures of *Bacillus subtilis*, *Pseudomonas putida*, *Clostridium perfringens*, *Fusarium culmorum*, *Penicillium chrysogenum*, and *Aspergillus niger* were used as standards for their respective domains. The PCR efficiency of the reactions was successively between 0.90 and 1.02 (R2 between 0.98 and 1). The number of actinomycetes was determined based on the dilution method using Actinomycete Isolation Agar (SigmaAldrich, USA).

Nematode abundance

The nematode population density was analyzed by a method described by Zapałowska and Skwiercz (2018) for four trophic groups of nematodes: plant-parasitic, bacterivorous, fungivorous, and predatory nematodes. From each of the samples (substrate), a subsample of 100 cm3 was taken and blended. Nematodes from the soil samples were collected by centrifugation. After centrifugation, nematodes were killed by 6% hot formalin. After processing to glycerin by the Reinhorst (1962) method, permanent slides were made. Plant-parasitic nematodes were identified for genus according to the Brzeski key (1998), whereas bacterivorous, fungivorous, and predatory nematodes were identified according to the Andrassy key (2007).

Detection of genes responsible for the production of antibiotics effective against phytopathogens

Antibiotics demonstrating antifungal activity were measured together with the primers used and the size of the expected PCR product. Genes coding antimicrobial non-hermospheric polypeptide synthetase/type I polyketide synthase PPKS-I
produced by Actinomycetes were detected for using primers and methods described by Ayuso-Sacido and Genilloud (2005). PCR for the srfAA, bacA, fenD, bmyB, and ituC genes was performed according to Ayuso-Sacido and Genilloud (2005) and McSpadden Gardener et al. (2001), respectively. All reaction products were detected by gel electrophoresis (UVP GelDoc-it, UVP, LLC, Canada).

Determination of soil enzyme activities

The activity of enzymes involved in P-, C-, and N-cycles was measured using a UV-1800 (Shimadzu, Japan) spectrophotometer. The analysis of P-cycle enzymes included determination of the activity of acid and alkaline phosphatases (ACP and ALP) and inorganic pyrophosphatase (IPP). The activity of ACP (EC 3.1.3.2) and ALP (EC 3.1.3.1) was assayed with the Tabatabai and Bremner (1969) method. The enzymatic activity was determined colorimetrically at a wavelength of 400 nm. IPP (EC 3.6.1.1) activity was determined according to the procedure proposed by Dick and Tabatabai (1978). Orthophosphate released by IPP activity was extracted with sulphuric acid and determined photometrically at 700 nm after colorization with ammonium molybdate.

The analysis of C-cycle enzymes included determination of the activity of dehydrogenases (DHA), o-diphenol oxidase (oDPO), and β-glucosidase (GLU). The activity of DHA (EC 1.1.1.1) was determined by the method of Casida et al. (1964). The oDPO (EC 1.10.3.1) activity was determined according to the procedure presented by Perucci et al. (2000). The activity of GLU (EC 3.2.1.21) was determined with the method developed by Eivazi and Tabatabai (1988).

The analysis of N-cycle enzymes included determination of the activity of nitrate reductase (NR), proteases (PROT), and urease (URE). NR (EC 1.6.6.1) activity was determined according to Abdelmagid and Tabatabai (1987), using KNO₃ as a substrate. The activity of PROT (EC 3.4.4) was determined using casein as a substrate (Ladd and Butler 1972) along with sodium caseinate. URE activity (EC 3.5.1.5) was determined with the method developed by Kandeler and Gerber (1988) using urea as a substrate. Released ammonium was extracted with a potassium chloride solution and determined colorimetrically by a modified Berthelot reaction at 660 nm.

Statistics

The Kruskal-Wallis test at $p = 0.05$ was used in the statistical calculations for microbiological tests. For statistical calculations for the biometric and enzymatic tests, the univariate ANOVA with the Levene homogeneity test of variance, Neuman Keuls, and Tukey HSD were used at $p = 0.05$ (Statistica 13.1, StatSoft, https://www.statsoft.pl/statistica_13). The correlation was calculated and visualized using SigmaPlot 13 (Systat Software, http://www.sigmaplot.co.uk/products/sigmaplot); principal component analysis was performed in XLSTAT (Addinsoft, https://www.xlstat.com).

Results

The vermicompost caused soil alkalization—especially at the higher dose, with high K and P content (Table 1). Vermicompost increased the C/N ratio to 32 and 25 percentage in treatments V10 and V20, respectively. Also, the content of nitrate, ammonium, and magnesium was increased. Almost all favourable changes were dependent on the dose of vermicompost except for a lower nitrate content in V20. In the case of V20, strong nitrate assimilation could have occurred while ammonium remained in the soil sorption.

Parameter	Control soil	Vermicompost (input)	V10	V20
pH–H₂O	6.82	7.18	7.07	7.74
pH–KCl	6.6	7.0	6.7	7.0
Electrical conductivity (mS cm⁻¹)	2.08	2.42	2.4	2.66
Nitrate (mg kg⁻¹)	77.7	200	134	90.6
Ammonium (mg kg⁻¹)	13.8	68.8	95	139
Phosphorus (mg kg⁻¹)	92.2	618	358	521
Potassium (mg kg⁻¹)	142	1796	1199	1912
Calcium (mg kg⁻¹)	2680	1411	2046	1728
Magnesium (mg kg⁻¹)	144	370	306	375
Chlorine (mg kg⁻¹)	326	190	376	348
Organic carbon (%)	3.38	5.09	2.03	2.21
Total nitrogen (%)	0.21	0.24	0.15	0.19
C/N ratio	16/1	21/1	32/1	25/1

Table 1 Chemical properties of control and vermicompost-amended soil after 12-month Larix decidua seedling cultivation (V10—10% v/v vermicompost/soil and V20—20% v/v vermicompost/soil)
complex. Biological fixation and nitrification could have also determined nitrogen changes. Additionally, an enzymatic activity indicates that vermicompost additives did not affect the denitrification process (Table 5).

Vermicompost increased the number of bacteria and fungi up to 86% of the variance. The number of toxin-forming *Penicillium* spp. increased significantly in V10, while in the V20, the population of these fungi was significantly reduced in comparison with control soil (Table 2). It was found that toxicogenic *Fusarium* spp. occurred sporadically and the addition of vermicompost reduced it further. The Pseudomonadaceae family was stable and did not change significantly. *Bacillus* spp. strongly increased in the substrate with the higher addition of vermicompost (V20) and became predominant. The relatively large *Clostridium* spp. population in soil increased 7 to 9 times in both treatments. The lower dose of vermicompost was more favourable for the development of Actinomycetes than the higher dose. The ratio of total Fungi/Bacteria remained constant after the addition of vermicompost (Table 3). Depending on the dose of vermicompost (higher dose–greater change) the Fungi/Pseudomonadaceae and Fungi/Actinomycetes ratios changed. A higher dose of vermicompost reduced the Fungi/Pseudomonadaceae; *Bacillus*; and *Penicillium* to Actinomycetes, *Bacillus*, *Clostridium*, and Pseudomonadaceae ratios.

Only the number of plant-parasitic nematode individuals remained at the same level after the addition of vermicompost. A significant increase in the number of nematodes belonging to bacterivorous, fungivorous, and predatory groups was observed in the substrate with vermicompost compared with the control soil. In the present study, the most common type of nematodes were bacterivorous, and their dominance in the soil (about 49%) increased in vermicompost-soil mixtures to about 65% of the share of all observed nematodes in soil samples.

Table 2 Abundance of selected groups of microorganisms colonising control and vermicompost-amended soil after 12-month *Larix decidua* seedling cultivation (copy gene·100 mg⁻¹ of substrate, CFU g⁻¹). Different letters following the values represent significant differences between group HSD test, p < 0.05

Group	Control soil	V10	V20
Total Bacteria	8.61 × 10⁷	14.2 × 10⁷	37.93 × 10⁷
Total Fungi	0.61 × 10⁴	1.56 × 10⁴	4.42 × 10⁴
Penicillium spp.	3.96 × 10⁵	5.31 × 10⁵	0.10 × 10⁵
Fusarium spp.	13	0	2
Pseudomonadaceae	2.03 × 10⁶	3.59 × 10⁶	3.01 × 10⁶
Bacillus spp.	0.003 × 10⁶	2.86 × 10⁶	10.4 × 10⁶
Clostridium spp.	1.05 × 10⁵	9.11 × 10⁵	7.38 × 10⁵
Actinomycetes*	4.67 × 10⁶	14.8 × 10⁶	8.53 × 10⁶

The low presence of predators despite the increase in numbers did not change overall. Fungivorous nematodes decreased from 38% to 30% with the addition of vermicompost (Table 4). While the V10 treatment increased ACP, DHA, GLU, and ERE activities in relation to the control soil, the V20 stimulated the activity of the majority of the soil enzymes determined involved in the transformation of phosphorus, carbon, and nitrogen compounds. Only in the case of NR were there no significant changes in activity. In contrast, ALP activity was significantly reduced after using higher dose of vermicompost. In addition, when comparing the effects of individual doses of vermicompost, significant differences were found between the activity of ALP, DHA, GLU, URE, and PROT. Significantly different results in comparison with the control soil were shown in V10 (without oDPO, PROT, and NR). However, in the V20 mixture only, NR was not significantly improved after vermicompost treatment (Table 5).

Table 3 Microbiological ratios of the soil as influenced with different concentration of the vermicompost after 12-month *Larix decidua* seedling cultivation

Ratio	Control soil	V10	V20
Fungi/Bacteria	0.00007	0.00011	0.00012
Fungi/Pseudomonadaceae	0.00302	0.00433	0.01470
Fungi/Bacillus	0.18818	0.00544	0.00425
Fungi/Clostridium	0.05802	0.01708	0.05991
Fungi/Actinomycetes	0.00131	0.00105	0.00518
Penicillium/Pseudomonadaceae	0.00195	0.00148	0.00003
Penicillium/Bacillus	0.12173	0.00186	0.00001
Penicillium/Clostridium	0.03753	0.00583	0.00014
Penicillium/Actinomycetes	0.00085	0.00036	0.00001

Table 4 Main groups of nematode abundance (pcs·100 cm⁻³ of substrate) in control and vermicompost-amended soil after 12-month *Larix decidua* seedling cultivation. Different letters following the values represent significant differences between group HSD test, p < 0.05. (PPN plant-parasitic nematodes, BN bacterivorous nematodes, FN fungivorous nematodes, PN predatory nematodes)

Group	Soil	V10	V20
PPN	60	50	48
BN	270	b	900 a
FN	185	b	420 a
PN	14	b	30 a
Table 5 Enzyme activity as influenced by different concentration of the vermicompost after 12-month Larix decidua seedling cultivation. Different letters following the values represent significant differences between group HSD test, p < 0.05. (ALP alkaline phosphatase (mg p-NP·kg⁻¹ substrate·h⁻¹), ACP acid phosphatase (mg p-NP·kg⁻¹ substrate·h⁻¹), IPP inorganic pyrophosphatase (mg P-(PO₄)₂·kg⁻¹ substrate·h⁻¹), DHA dehydrogenases (mg TPF·kg⁻¹ substrate·h⁻¹), oDPO o-diphenol oxidase (mmol oxidized catechol·kg⁻¹ substrate·h⁻¹), GLU β-glucosidase (mg p-NP·kg⁻¹ substrate·h⁻¹), URE urease (mg N-NH₄⁺·kg⁻¹ substrate·h⁻¹), PROT proteases (mg tyrosine·kg⁻¹ substrate·h⁻¹), NR nitrate reductase (mg N-NO₂⁻·kg⁻¹ substrate·h⁻¹))

Enzymes group	Type	Control soil	V10	V20
P-cycle	ALP	401.81 a	386.47 a	306.06 b
	ACP	348.18 b	440.56 a	453.48 a
	IPP	254.86 b	289.37 a	302.29 a
C-cycle	DHA	7.03 c	12.42 b	14.98 a
	oDPO	11.19 b	11.41 b	12.33 a
	GLU	180.90 c	193.67 b	207.44 a
N-cycle	URE	14.88 c	18.89 b	20.76 a
	PROT	2.94 b	3.08 b	3.33 a
	NR	192.73 a	192.87 a	195.12 a

Discussion

Vermicomposting in small-scale models like ours, at a low cost, can process organic household waste, which can be used to improve soil fertility (Pirsaeheb et al. 2013; Pereira Mde et al. 2014). Presented research with Larix rhizosphere has confirmed favourable changes, especially in the case of the supply of potassium, phosphorus, and magnesium, as well as soil alkalization. Ten to 20% addition of vermicompost from household organic waste significantly improves the chemical properties of the soil and is an optimal alternative to chemical fertilization in forest nurseries. But the main observation from the research was that the addition of vermicompost improved the soil microbiome properties. The fungi-to-bacteria frequency ratio was not changed, although there was an increased level of some desired bacteria.

Not only household waste is a good substrate for vermicomposting, but also the improvement of microbial properties is found for vermicompost produced from different wastes. Vermicomposting of white grape marc resulted in a significant increase in the diversity and abundance of microbial communities. White grape marc contains high levels of nitrogen, phosphorus, and potassium, which can stimulate the growth of microorganisms. The addition of vermicompost improved the soil microbiome properties, with a significant increase in the abundance of beneficial microorganisms, such as Pseudomonas, Bacillus, and Penicillium spp. (Kolbe et al. 2019). Yasir et al. (2009) reported that Proteobacteria, Bacteroidetes, Verrucomicrobia, Actinobacteria, and Firmicutes predominated in vermicompost from paper sludge. The activity of chitinolytic enzymes and enzymes degrading fungal cell walls was also detected, which was confirmed for the dangerous Fusarium moniliforme pathogen, whose population decreased after using vermicompost. In other studies, the analysis of the antifungal potential of vermicompost from E. fetida showed the dominance of Bacillus (57% in the bacterial population) and Pseudomonas (15%), the order Pseudomonadales (e.g.,...
Acinetobacter 5%), and the group Actinomycetes (Microbacterium sp. 12%, Arthrobacter, and Rhodococcus), and several representatives of the Xandomonadales order. Many strains which are part of the microbial community of vermicompost belong to the PGPB (plant growth-promoting bacteria) group of bacteria with huge plant-supporting properties. These strains can produce protease, cellulase, lipase, xylanase, chitinase, amylase, gelatinase, (ACC) 1-aminocyclopropane-1-carboxylate deaminase, and indole-3-acetic acid (IAA), and also lead to nitrate reduction, phosphate solubilization, and assimilation of different carbon sources and siderophores (Compant et al. 2005; Kundan et al. 2015; Pathma and Sakthivel 2012; Przemieniecki et al. 2014, 2018).

In addition, our own research has shown that toxicogenic Penicillium spp. were suppressed by Bacillus spp., Clostridium spp., Actinomycetes metabolites, and fungi. Nevertheless, lower doses of vermicompost did not significantly increase the frequency of Bacillus spp. or some other bacterial groups, though an increase in Bacillus spp. able to produce antifungal metabolites was found. Our observations confirm the studies by Zhao et al. (2014), since we found a relationship between antibiotics and the number of Bacillus spp. as well as a decrease in phytopathogens, especially Fusarium spp., which remains another benefit of adding vermicompost.

Current research showed that the addition of vermicompost resulted in a reduction in carbon and a change in the C/N ratio to close to optimal values. Furthermore, C/N was inversely correlated with Clostridium spp., Actinomycetes and Pseudomonadaceae, and Bacillus spp., bacterial groups responsible for the decomposition of organic matter and nitrogen storage in soil. The above dependence resulted in an increase in biological life and biological processes in the soil which caused an increase in the concentration of soil enzymes and all nematode groups, with the exception of plant-parasitic nematodes, which did not increase along with the concentration of the added vermicompost. As demonstrated by Xiao et al. (2016) for three types of fertilizers (mineral, compost, and vermicompost).
and vermicompost), vermicompost was the most beneficial for reducing the population of *Meloidogyne incognita* in artificially infected tomatoes and reduced damage (by up to 77%). These results were consistent with the findings by Renčo and Kovácik (2015), Seenivasan and Poornima (2010), and Pandey (2005), where vermicomposts produced from different kinds of wastes significantly reduced the populations of plant-parasitic nematodes. We showed the same results under nursery conditions for the cultivation of larch. Vermicompost treatment could adhere to the IPM principle in limiting phytophagous nematodes in various crops. A clear relationship between the size of the nematode community and plant biomass has already been stated. Gebremikael et al. (2016) demonstrated, in conditions without vermicompost, on soil with natural microbiome and model plants that the presence of nematodes significantly increased plant biomass production (+ 9%), net nitrogen (+ 25%), and phosphorus (+ 23%) availability compared with their absence. This proves the important role of useful nematode groups in shaping flora and increasing nutrient availability. In this work, the observed synergy between nitrogen and phosphorus growth and the nematode community caused by the addition of vermicompost emphasizes the positive aspect of such fertilization in relation to a standard mineral one. This is further proof that vermicompost can play a key role for sustainable intensification.

Vermicompost in this test used in low doses also improved soil enzymatic activity. There are many studies indicating the improvement of the microbiological quality of soil with a simultaneous increase in enzymatic activity. Uz and Tavali (2014) have shown, in terms of enzymology, that the addition of vermicompost to alkaline soil already has a significant effect at a dose of 10 t ha$^{-1}$, and the use of a four-time larger dose does not result in a very visible improvement in enzymatic activity or an increase in the number of bacteria. This indicates that even moderate doses of vermicompost, as in this test, can have a beneficial effect on enzymatic activity.

No correlation between changes in the ALP activity and other parameters was observed in this research. However, for ACP and IPP, the two enzymes associated with phosphorus transformation were the largest in the soil with the largest addition of vermicompost. Margalef et al. (2017), in phosphatase activity studies, found that one of the most important determinants of this class of enzymes was the availability of phosphorus-rich organic matter and total nitrogen content. In the current study, the activity of most enzymes was correlated with the total nitrogen content. We observed that nitrogen in the nitrate form may be a predictor of enzymatic activity, although it may be a synergistic effect due to the most favourable concentrations of potassium and phosphorus ions strongly correlated with this form of nitrogen.

Our own results demonstrated that the addition of vermicompost to the soil improved the chemical, biochemical, and biological properties of the substrates after 12 months of cultivation of *Larix* seedlings. An increase in the content of macronutrients, as well as a more favourable microbiome and level of antibiotics; an increase in the number of beneficial nematodes; and an increase in soil enzymes involved in the transformation of phosphorus, carbon, and nitrogen are important soil properties affecting its health and productivity. At the same time, we are faced with a problem of global importance regarding the management of waste, from which vermicompost is produced. These are two reasons why the value of the technology of vermicomposting needs to be better appreciated and made more popular, even at the level of domestic households.

Conclusions

In these studies, a beneficial cross-related effect was observed, associated primarily with the improvement of soil chemical parameters (including C/N value) which, in turn, improved the microbiological and nematological state of the soil along with the applied dose of vermicompost. Additives of vermicompost influenced bacteria, especially *Bacillus* spp. abundance (including Bacilli-produced antimicrobial compounds), along with a high level of other bacteria such as Actinomycetes and Pseudomonadaceae with a beneficial effect on soil. This situation decreased the level of undesirable fungi and plant-parasitic nematodes, while it increased the number of beneficial nematoda and the activity of soil enzymes. Considering utilization of waste, vermicomposting is a sustainable technology in the field of household waste management and for the natural strengthening of soil productivity in many areas, including forestry.

Acknowledgements The authors would also like to thank the anonymous reviewers for their valuable comments and suggestions.

Authors’ contributions SWP—drafting of the manuscript, microbiological analysis, manuscript preparation, statistical calculations

AZ—chemical analysis and interpretation, statistical calculations

AS—nematological analysis and interpretation, carrying out the experiment

MD—mycorrhizal analysis and interpretation

AT—enzymological analysis and interpretation

ZS—biometrical analysis and interpretation

AG—manuscript preparation and overall corrections

Funding This work was financed by the Ministry of Science and Higher Education, Republic of Poland No. 20.610.016-300.

Compliance with ethical standards

Competing interests The authors declare that they have no competing interests.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abdelmagid HM, Tabatabai MA (1987) Nitrate reductase activity of soils. Soil Biol Biochem 19:421–427. https://doi.org/10.1016/0038-0717(87)90033-2

Aksakal EL, Sari S, Angin I (2016) Effects of vermicompost application on soil aggregation and certain physical properties. Land Degrad Dev 27(4):983–995. https://doi.org/10.1002/ldr.2350

Andrássy I (2007) Free-living nematodes of Hungary (Nematoda errantia), II. In: Csuzdi C, Mahunka S (ed) Pedozoologica Hungariae No. 4. Hungarian Natural History Museum, Budapest, Hungary

Arancon NQ, Galvis PA, Edwards CA (2005) Suppression of insect pest populations and damage to plants by vermicomposts. Bioresour Technol 96(10):1137–1142. https://doi.org/10.1016/j.biortech.2004.10.004

Atik A (2014) Effect of different concentrations of vermicompost (Biohumus) on the root collar diameter and height growth in the seedlings of Anatolian Black pine. J For 1(2):29–36

Atik A, Yılmaz B (2014) Effects of treatment with vermicompost on the some morphological and physiological characteristics of scots pine (Pinus sylvestris L.). Eur J Soil Sci 3:42–55

Atiyeh RM, Lee S, Edwards CA, Arancon NQ, Metzger JD (2002) The influence of humic acids derived from earthworm-processed organic wastes on plant growth. Bioresour Technol 84(1):7–14. https://doi.org/10.1016/S0960-8524(02)00017-2

Ayuso-Sacido A, Genilloud O (2005) New PCR primers for the screening of NRPS and PKS-I systems in Actinomycetes: detection and distribution of these biosynthetic gene sequences in major taxonomic groups. Microb Ecol 49:10–24. https://doi.org/10.1007/s00248-004-0249-6

Bachman GR, Metzger JD (2007) Physical and chemical characteristics of a commercial potting substrate amended with vermicompost produced from two different manure sources. HorticTechnology 17(3):336–340. https://doi.org/10.21273/HORTTECH.17.3.336

Blouin M, Zuley-Fodil Y, Plam-Thi AT, Laffray D, Reversat G, Pando A, Tondoh J, Lavelle P (2005) Below-ground organism activities affect plant above-ground phenotype, inducing plant tolerance to parasitoids. Ecol Lett 8:202–208. https://doi.org/10.1111/j.1461-0248.2004.00711.x

Bouché M (1977) Strategies lombriciennes. Ecol Bull 25:122–132

Brzeski MW (1998) Nematodes of Tylechinida in Poland and temperate Europe. Museum and Institute of Zoology. Polish Academy of Sciences, Warszawa

Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, Weintraub MN, Zoppini A (2013) Soil enzymes in a changing environment: current knowledge and future directions. Soil Biol Biochem 58:216–234

Cardoza YJ (2011) Arabidopsis thaliana resistance to insects, mediated by an earthworm-produced organic soil amendment. Pest Manag Sci 67(2):233–238. https://doi.org/10.1002/ps.2059

Casida L, Klein D, Santoro T (1964) Soil dehydrogenase activity. Soil Sci 98:371–376

Compan S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71(9):4951–4959. https://doi.org/10.1128/AEM.71.9.4951-4959.2005

Dick WA, Tabatabai MA (1978) Inorganic pyrophosphatase activity of soils. Soil Biol Biochem 10:59–65

Edwards CA (2004) Earthworm ecology, 2nd edn. CRC Press LLC, Boca Raton

Eivazi F, Tabatabai MA (1988) Glucosidas and galactosidas in soils. Soil Biol Biochem 20:601–606

FAO and ITPS (2015) Status of the World’s Soil Resources (SWR)–main report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, Rome, Italy

Flegel M, Schrader S (2000) Importance of food selected enzyme activities in earthworm casts (Dendrobaena octaedra, Lumbricidae). Soil Biol Biochem 32:1191–1196

Gebremikael MT, Steel H, Buchan D, Bert W, De Neve S (2016) Nematodes enhance plant growth and nutrient uptake under C and N-rich conditions. Sci Rep 6:32862. https://doi.org/10.1038/srep32862

Hu J, Wei Z, Friman V-P, Gu S-H, Wang X-F, Eisenhauer N, Yang T-J, Ma J, Shen Q-R, Xu Y-C, Jousset A (2016) Probiotic diversity enhances rhizosphere microbiome function and plant disease suppression. mBio 7(6):e01790-e01716. https://doi.org/10.1128/mBio.01790-16

Hussain N, Abbasi T, Abbasi SA (2017) Detoxification of parthenium (Parthenium hysterophorus) and its metamorphosis into an organic fertilizer and biopesticide. Bioresour Bioprocess 4(1):26. https://doi.org/10.1186/s40643-017-0156-6

Jacoby R, Peukert M, Sucurro A, Kopriva A, Koprivova A (2017) The distribution of these biosynthetic gene sequences in major taxonomic groups, mechanisms of action, and future prospects. Appl Environ Microbiol 83(4):995–1004. https://doi.org/10.1128/AEM.00094-16

Kabałka C, Karczewska A (2019) Methodology for laboratory analysis of soils and plants (in Polish), 5th edn. Institute of Soil and Environmental Sciences, University of Life Sciences Eds, Wroclaw

Kabałka C, Charzyński P, Chodorowski J, Drenick M, Glinka B, Greinert A, Hulisz P, Jankowski M, Jonczak J, Labaz B, Lachacz A, Marzec M, Mendyk Ł, Musiał P, Musielok B, Sowiński P, Świontak M, Uzarowicz Ł, Warowski J (2019) Polish soil classification, 6th edition–principles, classification scheme and correlations. Soil Sci Annu 70(2):71–97. https://doi.org/10.2478/ssa-2019-0009

Kandeler E, Gerber H (1988) Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol Fertil Soils 6:68–72. https://doi.org/10.1007/BF00257924

Kolbe AR, Aira M, Gómez-Brändón M, Pérez-Losada M, Domínguez J (2019) Bacterial succession and functional diversity during vermicomposting of the white grape marc Vitis vinifera v. Albariño. Sci Rep 9(1):7427. https://doi.org/10.1038/s41598-019-43907-y

Kundan R, Pant G, Jadon N, Agrawal PK (2015) Plant growth promoting rhizobacteria: mechanism and current prospective. J Fertil Pestic 6:155. https://doi.org/10.4172/2471-2728.1000155

Ladd JN, Butler JHA (1972) Short-term assays of soil protozoan enzyme activities using proteins and dipeptide derivatives as substrates. Soil Biol Biochem 4:19–30

Springer
vermicompost with antifungal activity. Bioresour Technol 100: 4396–4403. https://doi.org/10.1016/j.biortech.2009.04.015
Yu Y, Lee C, Kim J, Hwang S (2005) Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol Bioeng 89:670–679. https://doi.org/10.1002/bit.20347
Zapalowska A, Skwiercz AT (2018) Populations of parasitic nematodes colonizing Jerusalem artichoke (Helianthus tuberosus L.). Acta Soc Bot Pol 87(2):3578. https://doi.org/10.5586/asbp.3578
Zhao Y, Selvaraj J, Xing F, Zhou L, Wang Y, Song H, Tan X, Sun L, Sangare L, Folly Y, Liu Y (2014) Antagonistic action of Bacillus subtilis strain SG6 on Fusarium graminearum. PLoS One 9(3): e0092486. https://doi.org/10.1371/journal.pone.0092486

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.