BME-TUW at SR’20
Lexical grammar induction for surface realization

Gábor Recski1, Ádám Kovács1,2, Kinga Gémes1,2, Judit Ács2, András Kornai3

1TU Wien
\texttt{firstname.lastname@tuwien.ac.at}

2Dept. of Automation and Applied Informatics, Budapest U of Technology
\texttt{lastname.firstname@aut.bme.hu}

3SZTAKI Institute of Computer Science
\texttt{andras@kornai.com}

Third Workshop on Multilingual Surface Realisation, 12/12/2020
Summary

Rule-based system for word order restoration + DL reinsertion

Improves the grammar-based approach in Kovács et al. (2019)

Still inferior to DL systems, but opens up new possibilities

Recski, Kovács, Gémes, Ács, Kornai

BME-TUW at SR'20

SR'20 Workshop, 12/12/2020
Summary

- Rule-based system for word order restoration + DL reinflection

Improves the grammar-based approach in Kovács et al. (2019)

Still inferior to DL systems, but opens up new possibilities
Summary

- Rule-based system for word order restoration + DL reinflection
- Improves the grammar-based approach in Kovács et al. (2019)
Summary

- Rule-based system for word order restoration + DL reinflection
- Improves the grammar-based approach in Kovács et al. (2019)
- Still inferior to DL systems, but opens up new possibilities
Interpreted Regular Tree Grammars

...
Interpreted Regular Tree Grammars (IRTGs, Koller and Kuhlmann, 2011) encode the correspondence between operations over a string algebra and an s-graph algebra (Courcelle and Engelfriet, 2012; Koller, 2015).

\[
\text{VERB} \rightarrow \text{nsubj (VERB, NOUN)}
\]

\[
\text{[string]} \ast (\text{?2, ?1})
\]

\[
\text{[ud]} \text{f_depl (merge (merge (\text{?1, } (r < r \text{oot} > : n \text{subj d1 < depl1>})), r_depl1 (\text{?2}))}
\]

Read: constructing the subgraph \text{VERB} \rightarrow \text{nsubj} \rightarrow \text{NOUN} corresponds to concatenation in the order \text{NOUN VERB}.
Interpreted Regular Tree Grammars (IRTGs, Koller and Kuhlmann, 2011) encode the correspondence between operations over a string algebra and an s-graph algebra (Courcelle and Engelfriet, 2012; Koller, 2015).

\[
\text{VERB} \rightarrow _nsubj(\text{VERB}, \text{NOUN}) \\
[\text{string}] *(?2, ?1) \\
[\text{ud}] f_{\text{dep1}}(\text{merge}(\text{merge}(?1,"(r<\text{root}> :nsubj d1<\text{dep1}>)"),\text{r}_{\text{dep1}}(?2)))
\]

Read: constructing the subgraph \(\text{VERB} \xrightarrow{\text{nsubj}} \text{NOUN} \) corresponds to concatenation in the order \(\text{NOUN} \xrightarrow{} \text{VERB} \).
Generating subgraphs

For a head word with N dependents, we enumerate \(\sim 3 \) N subgraphs.
Generating subgraphs

\[\text{He/PRON} \xleftrightarrow{\text{nsubj}} \ \text{enjoy/VERB} \xrightarrow{\text{obj}} \ \text{it/PRON}. \]
Generating subgraphs

\[\text{He/PRON} \xleftrightarrow{nsubj} \text{enjoy/VERB} \xrightarrow{obj} \text{it/PRON}. \]

For a head word with \(N \) dependents, we enumerate \(\sim 3^N \) subgraphs.
Model statistics

| Lang | N_{patt} | D_{max} | $|V|$ | D_{words} | N_{tok} |
|------|------------|-----------|-------|------------|-----------|
| ar | 8.6M | 4.8 | 14K | 36.9 | 224K |
| en | 29.8M | 5.0 | 25K | 17.6 | 352K |
| es | 50.2M | 5.5 | 48K | 29.0 | 827K |
| fr | 37.1M | 5.7 | 34K | 24.6 | 429K |
| hi | 17.2M | 5.5 | 15K | 21.1 | 281K |
| id | 7.0M | 5.2 | 19K | 21.8 | 98K |
| ja | 14.5M | 5.6 | 24K | 22.5 | 160K |
| ko | 8.6M | 3.9 | 119K | 12.9 | 353K |
| pt | 27.2M | 5.2 | 32K | 25.7 | 462K |
| ru | 41.6M | 4.7 | 51K | 18.0 | 946K |
| zh | 14.8M | 6.8 | 20K | 24.7 | 99K |
Generating subgraphs

For each UD graph, we generate a separate IRTG. For each subgraph, we add the most frequent rule. Identical rule weights favor shorter derivations with more specific rules.
For each UD graph, we generate a separate IRTG.
Generating subgraphs

- For each UD graph, we generate a separate IRTG
- For each subgraph, we add the most frequent rule
Generating subgraphs

- For each UD graph, we generate a separate IRTG
- For each subgraph, we add the most frequent rule
- Identical rule weights → grammars favor shorter derivations with more specific rules
Generating subgraphs
Generating subgraphs

I really enjoyed reading it.

Diagram:

- **ROOT**
 - **ADVMOD**
 - **really**
 - **NSUBJ**
 - **enjoyed**
 - **XCOMP**
 - **I**
 - **OBJ**
 - **reading**
 - **it**

- **NSUBJ**
 - **ADVMOD**
 - **really**
 - **enjoyed**
Hierarchical SR

Cut UD graphs along edges between clauses: acl, advcl, ccomp, xcomp, conj.
Hierarchical SR

Cut UD graphs along edges between clauses: acl, advcl, ccomp, xcomp, conj.
Hierarchical SR

Cut UD graphs along edges between clauses: acl, advcl, ccomp, xcomp, conj.

```
I/PRON really/ADV enjoyed/VERB reading/VERB it/PRON
```

```
really/ADV enjoyed/VERB
```

```
I/PRON
```
Hierarchical SR

Cut UD graphs along edges between clauses: acl, advcl, ccomp, xcomp, conj.

Recski, Kovács, Gémes, Ács, Kornai
BME-TUW at SR'20
SR'20 Workshop, 12/12/2020
Hierarchical SR

Cut UD graphs along edges between clauses: acl, advcl, ccomp, xcomp, conj.

```
really/ADV  enjoyed/VERB  I/PRON  reading/VERB  it/PRON

I  really  enjoyed  reading  it  enjoyed  reading
```
Hierarchical SR

In a sample of 500 English sentences, we run 1794 iterations of the core method, and observe recursion depths up to 6.
In a sample of 500 English sentences, we run 1794 iterations of the core method, and observe recursion depths up to 6.

Perhaps had we not gone into this restaurant believing Zahav was going to be golden as its name suggests (and as the many golden reviews seem to attest), we would have enjoyed a decent little expensive experience.
In a sample of 500 English sentences, we run 1794 iterations of the core method, and observe recursion depths up to 6.

Perhaps had we not gone into this restaurant believing Zahav was going to be golden as its name suggests (and as the many golden reviews seem to attest), we would have enjoyed a decent little expensive experience.
Team	Meaning Ave.	Meaning Ave. z	Readability Ave.	Readability Ave. z
HUMAN	92.7	0.534	75.7	0.417
IMS	92.3	0.475	73.9	0.374
ADAPT	90.7	0.476	72.5	0.320
Concordia	87.0	0.332	70.2	0.270
BME 2020	79.3	0.086	58.2	-0.152
BME 2019	77.4	0.024	56.7	-0.208
Evaluation

Data	Meaning		Readability					
	BME 2020	BME 2019	BME 2020	BME 2019				
	Ave.	Ave. z						
en_ewt	79.3	0.086	77.4	0.024	58.2	-0.152	56.7	-0.208
en_wiki	81.8	-0.050	82.4	-0.074	60.8	-0.299	64.4	**-0.181**
ru_syn	81.2	-0.166	81.3	-0.177	69.7	-0.166	67.3	-0.230
ru_wiki	78.2	**-0.079**	68.2	-0.493	63.2	**0.050**	37.7	-0.781
es_ancora	70.2	-0.276	70.6	-0.271	66.4	-0.401	67.1	-0.378
es_wiki	69.8	**-0.170**	55.5	-0.726	77.2	**0.015**	62.2	-0.628
Plans

- Use ‘unlimited’ silver standard UD data
Plans

- Use ‘unlimited’ silver standard UD data
- Learn rule weights
Plans

- Use ‘unlimited’ silver standard UD data
- Learn rule weights
- Qualitative analysis of performance gap
All components of our system are free and open source:

Component	URL	License
Word order restoration	github.com/adaamko/surface_realization	MIT
Reinflection	github.com/juditacs/deep-morphology	MIT
IRTG generation	github.com/recski/tuw-nlp	MIT
IRTG parsing	github.com/coli-saar/alto	Apache 2.0
Thank you!

Courcelle, Bruno and Joost Engelfriet (2012). *Graph structure and monadic second-order logic*. Cambridge University Press.

Koller, Alexander (2015). “Semantic construction with graph grammars”. In: *Proceedings of the 14th International Conference on Computational Semantics (IWCS)*. London.

Koller, Alexander and Marco Kuhlmann (2011). “A generalized view on parsing and translation”. In: *Proceedings of the 12th International Conference on Parsing Technologies (IWPT)*. Dublin.

Kovács, Ádám, Evelin Ács, Judit Ács, András Kornai, and Gábor Recski (2019). “BME-UW at SRST-2019: Surface realization with Interpreted Regular Tree Grammars”. In: *Proceedings of the 2nd Workshop on Multilingual Surface Realisation (MSR 2019)*. Hong Kong, China: Association for Computational Linguistics, pp. 35–40. DOI: 10.18653/v1/D19-6304.