Non-Parametric Neuro-Adaptive Formation Control

Christos K. Verginis, Zhe Xu, and Ufuk Topcu

Abstract—We develop a learning-based algorithm for the distributed formation control of networked multi-agent systems governed by unknown, nonlinear dynamics. Most existing algorithms either assume certain parametric forms for the unknown dynamic terms or resort to unnecessarily large control inputs in order to provide theoretical guarantees. The proposed algorithm avoids these drawbacks by integrating neural network-based learning with adaptive control in a two-step procedure. In the first step of the algorithm, each agent learns a controller, represented as a neural network, using training data that correspond to a collection of formation tasks and agent parameters. These parameters and tasks are derived by varying the nominal agent parameters and a user-defined formation task to be achieved, respectively. In the second step of the algorithm, each agent incorporates the trained neural network into an online and adaptive control policy in such a way that the behavior of the multi-agent closed-loop system satisfies the user-defined formation task. Both the learning phase and the adaptive control policy are distributed, in the sense that each agent computes its own actions using only local information from its neighboring agents. The proposed algorithm does not use any a priori information on the agents’ unknown dynamic terms or any approximation schemes. We provide formal theoretical guarantees on the achievement of the formation task.

Note to Practitioners—This paper is motivated by control of multi-agent systems, such as teams of robots, smart grids, or wireless sensor networks, with uncertain dynamic models. Existing works develop controllers that rely on unrealistic or impractical assumptions on these models. We propose an algorithm that integrates offline learning with neural networks and real-time feedback control to accomplish a multi-agent task. The task consists of the formation of a pre-defined geometric pattern by the multi-agent team. The learning module of the proposed algorithm aims to learn stabilizing controllers that accomplish the task from data that are obtained from offline runs of the system. However, the learned controller might result in poor performance owing to potential data inaccuracies and the fact that learning algorithms can only approximate the stabilizing controllers. Therefore, we complement the learned controller with a real-time feedback-control module that adapts on the fly to such discrepancies. In practice, the data can be collected from pre-recorded trajectories of the multi-agent system, but these trajectories do need to accomplish the task at hand. The real-time feedback-control is a closed-form function of the states of each agent and its neighbours and the trained neural networks and can be straightforwardly implemented. The experimental results show that the proposed algorithm achieves greater performance than algorithms that use only the trained neural networks or only the real-time feedback-control policy. Our future research will address the sensitivity of the algorithm to the quality and quantity of the employed data as well as to the learning performance of the neural networks.

I. INTRODUCTION

During the last decades, decentralized control of networked multi-agent systems has attracted significant attention due to the great variety of its applications, including multi-robot systems, transportation, multi-point surveillance as well as biological systems [1–3]. In such systems, each agent calculates its own actions based on local information, as modeled by a connectivity graph, without relying on any central control unit. This absence of central control and global information motivates leader-follower architectures, where a team of agents (followers) aims at following a pre-assigned leader agent that holds information about the execution of a potential task. The coordination problem of leader–follower architectures has been the focus of many works [4–9] because of its numerous applications in various disciplines including autonomous vehicles coordination (satellite formation flying, cooperative search of unmanned aerial vehicles and synchronization of Euler–Lagrange systems), systems biology (control and synchronization in cellular networks), and power systems (control of renewable energy microgrids).

Although many works on distributed cooperative control consider known and simple dynamic models, there exist many practical engineering systems that cannot be modeled accurately and are affected by unknown exogenous disturbances. Thus, the design of control algorithms that are robust and adaptable to such uncertainties and disturbances is important. For multi-agent systems, ensuring robustness is particularly challenging due to the lack of global information and the interacting dynamics of the individual agents. A promising step towards the control of systems with uncertain dynamics is the use of data obtained a priori from system runs. However, engineering systems often undergo purposeful modifications (e.g., substitution of a motor or link in a robotic arm or exposure to new working environments) or suffer gradual faults (e.g., mechanical degradation), which might change the systems’ dynamics or operating conditions. Therefore, one cannot rely on the aforementioned data to provably guarantee the successful control of the system. On the other hand, the exact incorporation of these changes in the dynamic model, and consequently, the design of new model-based algorithms, can be a challenging and often impossible procedure. Hence, the goal in such cases is to exploit the data obtained a priori and construct intelligent online policies that achieve a user-defined task while adapting to the aforementioned changes.

A. Contributions

This paper addresses the distributed coordination of networked multi-agent systems governed by unknown nonlinear dynamics. Our main contribution lies in the development of a distributed learning-based control algorithm that provably
guarantees the accomplishment of a given multi-agent formation task without any a priori information on the underlying dynamics. The algorithm draws a novel connection between distributed learning with neural-network-based representations and adaptive feedback control, and consists of the following steps. Firstly, it trains a number of neural networks, one for each agent, to approximate controllers for the agents that accomplish the given formation task. The data used to train the neural networks consist of pairs of states and control actions of the agents that are gathered from runs of the multi-agent system. Secondly, it uses an online adaptive feedback control policy that guarantees accomplishment of the given formation task. Both steps can be executed in a distributed manner in a sense that each agent uses only local information, as modeled by a connectivity graph. Our approach builds on a combination of controllers trained offline and online adaptations, which was recently shown to significantly enhance performance with respect to single use of the offline part [10]. Numerical experiments show the robustness and adaptability of the proposed algorithm to different formation tasks, interactions among the agents, and system dynamics. That is, the proposed algorithm is able to achieve the given formation task even when the neural networks are trained with data that correspond to different multi-agent dynamic models (resembling a change in the dynamics of the agents), as well as different formation tasks and interactions among the agents. This paper extends our preliminary version [11] by providing (1) formal guarantees on the theoretical correctness of the proposed algorithm, and (2) a larger variety of experimental results.

B. Related Work

Robust and adaptive control: A large variety of works focus on distributed learning-based control to achieve multi-agent coordination under uncertain dynamics [25]–[32]. Such works resort to neural-network approximations of the unknown dynamic terms. In particular, they assume that the unknown functions of the dynamics are approximated arbitrarily well as a single-layer neural network with known radial-basis activation functions and a vector of unknown but constant weights. However, the accuracy of such approximations depends on the size of that vector, i.e., the number of neural-network neurons, implying that an arbitrarily small approximation error might require arbitrarily many weights. Additionally, there are no guidelines for choosing the activation functions in practice. Multi-agent coordination with unknown dynamics has also been tackled via cooperative reinforcement learning with stochastic processes [33]–[43]. However, such works usually adopt the conservative assumption that the agents have access to the states and actions of all other agents in the learning, execution, or both phases [56], [57]. Moreover, these works exhibit scalability problems with respect to the number of agents [35], or assume the availability of time or state discretizations of the underlying continuous-time and continuous-state models. Additionally, the related works on multi-agent cooperative reinforcement learning usually consider common or team-average reward functions for the agents [33], [39], which cannot be easily extended to account for inter-agent formation specifications that we account for. When relative inter-agent formation specifications are considered, the environment becomes non-stationary creating problems in the theoretical convergence analysis [33].

In this work, we develop a distributed neuro-adaptive control algorithm for the formation control of continuous-time and -state multi-agent systems with unknown nonlinear dynamics. In contrast to the related works in the literature, we do not assume linear parametrizations [12], [13], neural-network approximations [26], [27], global boundedness or growth conditions [6], [16], [18], passivity properties [22], or known upper bounds [20], [21] for the unknown dynamic terms. According to the best of our knowledge, the distributed formation-control problem with unknown dynamics has not been solved in the absence of the aforementioned assumptions.

The rest of the paper is organized as follows. Section II describes the considered problem. We provide our theoretical results in Section III and Section IV verifies the proposed methodology through experimental evaluation. Finally, Section V concludes the paper.

II. PROBLEM FORMULATION

Consider a networked multi-agent group comprised of a leader, indexed by \(i = 0\), and \(N\) followers, with \(N := \{1, \ldots, N\}\). The leading agent acts as an exosystem that generates a desired command/reference trajectory for the multi-agent group. The followers, which have to be controlled, evolve according to the 2nd-order dynamics

\[
\dot{x}_{i,1} = x_{i,2} \\
\dot{x}_{i,2} = f_i(x_i, t) + g_i(x_i, t)u_i
\]
where \(x_i := [x_{1,i}^T, x_{2,i}^T]^T \in \mathbb{R}^n \times \mathbb{R}^n \) is the \(i \)th agent’s state, assumed available for measurement by agent \(i \), \(f_i : \mathbb{R}^{2n} \times [0, \infty) \rightarrow \mathbb{R}^n \), \(g_i : \mathbb{R}^{2n} \times [0, \infty) \rightarrow \mathbb{R}^n \) are unknown functions modeling the agent’s dynamics, and \(u_i \) is the \(i \)th agent’s control input. The vector fields \(f_i(\cdot) \) and \(g_i(\cdot) \) are assumed to be locally Lipschitz in \(x_i \) over \(\mathbb{R}^{2n} \) for each fixed \(t \geq 0 \), and uniformly bounded in \(t \) over \([t_0, \infty)\) for each fixed \(x_i \in \mathbb{R}^{2n} \), for all \(i \in \mathcal{N} \). In contrast to the works of the related literature, we do not assume any knowledge of the structure, Lipschitz constants, or bounds of \(f_i(\cdot) \) and \(g_i(\cdot) \), and we do not use any scheme to approximate them. The lack of such assumptions renders the multi-agent coordination problem significantly difficult, since there is no apparent way to counteract the effect of the unknown drift terms \(f_i(\cdot) \). Moreover, in contrast to the funnel-based schemes, we do not resort to the use of reciprocal-like terms to dominate \(f_i(\cdot) \). Nevertheless, we do require the following assumption on the control directions \(g_i(\cdot) \):

Assumption 1. The matrices \(g_i(x_i, t) \) are positive definite, for all \(x_i \in \Omega_i \), \(t \geq 0 \), where \(\Omega_i \subset \mathbb{R}^{2n} \) are compact sets, \(i \in \mathcal{N} \).

Assumption 1 is a sufficiently controllability condition for (1) and is adopted in numerous related works (e.g., [5], [24], [29], [44]). The dynamics (1), subject to Assumption 1, consist of a large class of nonlinear dynamical systems that capture contemporary engineering problems in mechanical, electromechanical and power electronics applications, such as rigid/flexible robots, induction motors and DC-to-DC converters, to name a few. Systems not covered by (1) or Assumption 1 consist of underactuated or non-holonomic systems, such as unicycle robots, underactuated aerial or underwater vehicles. Such systems require special attention and their study consist part of our future work. Finally, the 2nd-order model (1) can be easily extended to account for higher-order integrator systems [45].

We use an undirected graph \(\mathcal{G} := (\mathcal{N}, \mathcal{E}) \) to model the communication among the agents, with \(\mathcal{N} \) being the index set of the agents, and \(\mathcal{E} \subseteq \mathcal{N} \times \mathcal{N} \) being the respective edge set, with \((i, i) \notin \mathcal{E} \) (i.e., simple graph). The adjacency matrix associated with the graph \(\mathcal{G} \) is denoted by \(A := [a_{ij}] \in \mathbb{R}^{\mathcal{N} \times \mathcal{N}} \), with \(a_{ij} \in \{0, 1\}, i, j \in \{1, \ldots, \mathcal{N}\} \). If \(a_{ij} = 1 \), then agent \(i \) obtains information regarding the state \(x_j \) of agent \(j \) (i.e., \((i, j) \in \mathcal{E}) \), whereas if \(a_{ij} = 0 \) then there is no state-information flow from agent \(j \) to agent \(i \) (i.e., \((i, j) \notin \mathcal{E}) \). Furthermore, the set of neighbors of agent \(i \) is denoted by \(\mathcal{N}_i := \{j \in \mathcal{N} : (i, j) \in \mathcal{E}\} \), and the degree matrix is defined as \(D := \text{diag}\{|\mathcal{N}_1|, \ldots, |\mathcal{N}_N|\} \). Since the graph is undirected, the adjacency is a mutual relation, i.e., \(a_{ij} = a_{ji} \), rendering \(A \) symmetric. The Laplacian matrix of the graph is defined as \(L := D - A \) and is also symmetric. The graph is connected if there exists a path between any two agents. For a connected graph, it holds that \(\tilde{L} \equiv 0 \), where \(\tilde{L} \) is the vector of ones of appropriate dimension.

Regarding the leader agent, we denote its state variables by \(x_0 := [x_{0,1}^T, x_{0,2}^T]^T \in \mathbb{R}^{2n} \), and consider the 2nd-order dynamics

\[
\begin{align*}
\dot{x}_{0,1}(t) &= x_{0,2}(t) \\
\dot{x}_{0,2}(t) &= u_0(t)
\end{align*}
\]

where \(u_0 : [0, \infty) \rightarrow \mathbb{R}^n \) is a bounded command signal. However, the leader provides its state only to a subgroup of the \(N \) agents. In particular, we model the access of the follower agents to the leader’s state via a diagonal matrix \(\mathcal{L} := \text{diag}\{b_1, \ldots, b_N\} \in \mathbb{R}^{N \times N} \); if \(b_i = 1 \), then the \(i \)th agent has access to the leader’s state, whereas it does not if \(b_i = 0 \), for \(i \in \mathcal{N} \). Thus, we also define the augmented graph as \(\tilde{\mathcal{G}} := (\mathcal{N} \cup \{0\}, \tilde{\mathcal{E}}) \), where \(\tilde{\mathcal{E}} := \mathcal{E} \cup \{(0, i) : b_i = 1\} \). We further define

\[
H := (\mathcal{L} + \mathcal{B}) \otimes I_n,
\]

where \(\otimes \) denotes the Kronecker product, as well as the stacked vector terms

\[
\begin{align*}
x_1 := [x_{1,1}^T, \ldots, x_{N,1}^T]^T &\in \mathbb{R}^{Nn} \\
x_2 := [x_{1,2}^T, \ldots, x_{N,2}^T]^T &\in \mathbb{R}^{Nn} \\
x := [x_1^T, \ldots, x_N^T] &\in \mathbb{R}^{2Nn} \\
x_{0,1} := [x_{0,11}^T, \ldots, x_{0,1n}^T] &\in \mathbb{R}^{Nn} \\
x_{0,2} := [x_{0,21}^T, \ldots, x_{0,2n}^T] &\in \mathbb{R}^{Nn} \\
x_0 := [x_{0,1}^T, x_{0,2}^T] &\in \mathbb{R}^{2Nn}.
\end{align*}
\]

By further defining

\[
\begin{align*}
f(x, t) &:= [f_1(x_1, t)^T, \ldots, f_N(x_N, t)^T]^T \in \mathbb{R}^{Nn} \\
g(x, t) &:= \text{diag}\{g_1(x_1, t), \ldots, g_N(x_N, t)\} \in \mathbb{R}^{Nn \times Nn}, \\
u &:= [u_1^T, \ldots, u_N^T]^T \in \mathbb{R}^{Nn},
\end{align*}
\]

the dynamics (1) can be written as

\[
\begin{align*}
\dot{x}_1 &= x_2 \\
\dot{x}_2 &= f(x, t) + g(x(t), t)u.
\end{align*}
\]

The goal of this work is to design a distributed control algorithm, where each agent has access only to its neighbors’ information, to achieve a pre-specified geometric formation of the agents in \(\mathbb{R}^n \). More specifically, consider for each agent \(i \in \mathcal{N} \) the constants \(c_{ij}, j \in \{0\} \cup \mathcal{N}_i \), prescribing a desired offset that agent \(i \) desires to achieve with respect to the leader \((J = 0)\), and its neighbors \((j \in \mathcal{N}_i)\). That is, each agent \(i \in \mathcal{N}_i \) aims at achieving \(x_{i,1} = x_{j,1} - c_{ij}, \) for all \(j \in \mathcal{N}_i \) and if \(b_i = 1 \) (i.e., the agent obtains information from the leader), \(x_{i,1} = x_{0,1} - c_{0i} \). Note that, in the case of undirected graph, \(c_{ij} = -c_{ji} \), for all \((i, j) \in \mathcal{E}) \), and we assume that the set

\[
\{x_1 \in \mathbb{R}^{Nn} : x_{i,1} - x_{j,1} + c_{ij} = 0, \forall (i, j) \in \mathcal{E},
\]

\[
b_i(x_{i,1} - x_{0,1} + c_{0i}) = 0, \forall i \in \mathcal{N}\}
\]

is non-empty in order for the formation specification to be feasible.

Furthermore, we impose the following assumption on the graph connectivity:

Assumption 2. The graph \(\mathcal{G} \) is connected and there exists at least one \(i \in \mathcal{N} \) such that \(b_i = 1 \).
The aforementioned assumption dictates that \(L + B \) is an irreducibly diagonally dominant M-matrix \([\text{[1]}]\). An M-matrix is a square matrix having its off-diagonal entries non-positive and all principal minors nonnegative, thus \(L + B \) is positive definite \([\text{[1]}]\).

We define now the error variables for each agent as

\[
e_{i,1} := \sum_{j \in \mathcal{N}_i} (x_{i,1} - x_{j,1} + c_{ij}) + b_i(x_{i,1} - x_{0,1} + c_{i0})
\]

for \(i \in \mathcal{N} \), and the respective stack vector

\[
e_1 := [e_{1,1}^T, \ldots, e_{N,1}^T]^T.
\]

Next, by employing the multi-agent graph properties, noticing that \((\mathcal{L} \otimes I_n)x_{0,1} = 0\), and assuming that \((\mathcal{L} + B)\) is invertible, \([\text{3}]\) can be written as

\[
e_1 := H(x_1 - \bar{x}_{0,1} + \bar{c}),
\]

where

\[
c := \begin{bmatrix} c_1 \\ \vdots \\ c_N \end{bmatrix} := H^{-1} \left[\sum_{j \in \mathcal{N}_i} c_{1j} + b_1c_{10} \\ \vdots \\ \sum_{j \in \mathcal{N}_N} c_{NJ} + b_Nc_{N0} \right]
\]

stacks the relative desired offsets \(c_i \) of the \(i \)th agent with respect to the leader, as dictated by the desired formation specification. In this way, the desired formation is expressed with respect to the leader state, and is thus achieved when the state \(x_{i,1} \) of each agent approaches the leader state \(x_{0,1} \) with the corresponding offset \(c_i \), \(i \in \mathcal{N} \). Therefore, the formation control problem is solved if the control algorithm drives the disagreement vector

\[
\delta_1 := \begin{bmatrix} \delta_{1,1} \\ \vdots \\ \delta_{N,1} \end{bmatrix} := x_1 - \bar{x}_{0,1} + c
\]

to zero. However, the disagreement formation variables \(\delta_{i,1} \), are global quantities and thus cannot be measured distributively by each agent based on the local measurements, as they involve information directly from the leader as well as from the whole graph topology via employing the inverse of \(\mathcal{L} + B \) in \([\text{3}]\). Nevertheless, from \([\text{4}]\), under the assumption that \(\mathcal{L} + B \) is invertible, one obtains

\[
\| \delta_1 \| \leq \frac{\| e_1 \|}{\sigma_{\min}(H)}
\]

where \(\sigma_{\min}(\cdot) \) denotes the minimum singular value. Therefore, convergence of \(e_1 \) to zero, which we aim to guarantee, implies convergence of \(\delta_1 \) to zero. We further define the augmented errors for each agent

\[
e_{i,2} := \dot{e}_{i,1} + k_1 e_{i,1}
\]

where \(k_1 \) is a positive constant, the respective stacked vector

\[
e_2 := [e_{i,2}^T, \ldots, e_{N,2}^T]^T \in \mathbb{R}^{2N}
\]

and the total error vector \(e := [e_1^T, e_2^T]^T \). By using \([\text{4}]\), the total error dynamics can be written as

\[
\dot{e}_1 = -k_1 e_1 + e_2 \\
\dot{e}_2 = H(f(x(e), t) + g(x(e), t)u - \bar{x}_{0,1}) - k_1^2 e_1 + k_1 e_2,
\]

where, with a slight abuse of notation, we express \(x \) as a function of \(e \) through \([\text{4}]\).

Before proceeding, we define the tuple

\[
\mathcal{F} := (x_0(t), f, g, c, \bar{G}, x(0))
\]

as the “formation instance”, characterized by the leader profile, the agent dynamics, the desired formation offsets, the graph topology, and the initial conditions of the agents.

III. MAIN RESULTS

This section describes the proposed algorithm, which consists of two steps. The first step consists of offline learning of distributed controllers, represented as neural networks, using training data derived from runs of the multi-agent system. In the second step, we design an adaptive feedback control policy that uses the neural networks and provably guarantees achievement of the formation specification.

A. Neural-network learning

As discussed in Section I, we are inspired by cases where systems undergo changes that modify their dynamics and hence the underlying controllers no longer guarantee the satisfaction of a specific task. In such cases, instead of carrying out the challenging and tedious procedure of identification of the new dynamic models and design of new model-based controllers, we aim to exploit data from offline system trajectories and develop a distributed online policy that is able to adapt to the aforementioned changes and achieve the formation task expressed via the offsets \(c_{ij} \), \((i, j) \in \mathcal{E} \). Consequently, we assume the existence of data gathered from a finite set of \(T \) trajectories \(\mathcal{J} \) generated by a priori runs of the multi-agent system. More specifically, we consider that \(\mathcal{J} \) is decomposed as \(\mathcal{J} = (\mathcal{J}_1, \ldots, \mathcal{J}_N) \), where \(\mathcal{J}_i \) is the set of trajectories of agent \(i \in \mathcal{N} \). Since the proposed control scheme is distributed, we consider that each agent \(i \) has access to the data from its own set of trajectories \(\mathcal{J}_i \), which comprises the finite set

\[
\mathcal{J}_i = \left\{ x_i(t), \{x_j\}_{j \in \mathcal{N}_i}, u_i^k(t), \{x_j^k\}_{j \in \mathcal{N}_i} \right\}_{t \in \mathcal{T}_i},
\]

where \(\mathcal{T}_i \) is a finite set of time instants, \(x_i^k \in \mathbb{R}^{2n} \) is the state trajectory of agent \(i \) for trajectory \(k \), \(\mathcal{N}_i^k \) are the neighbors of agent \(i \) in trajectory \(k \), with \(\{x_j^k\}_{j \in \mathcal{N}_i^k} \) being their respective state trajectories (which agent \(i \) has access to, being their neighbor), and \(u_i^k(x_i(t), \{x_j\}_{j \in \mathcal{N}_i}, t) \in \mathbb{R}^n \) is the control input trajectory of agent \(i \), which is a function of time and of its own and its neighbors’ states. Note that the agents’ state and control input trajectories are compliant with the dynamics \([\text{1}]\).

Each agent \(i \in \mathcal{N} \) uses the data to train a neural network in order to approximate a controller that accomplishes the formation task. More specifically, each agent uses the tuples \(\{x_i^k(t), \{x_j^k\}_{j \in \mathcal{N}_i^k}\}_{t \in \mathcal{T}_i} \) as input to a neural network, and \(u_i^k(x_i^k(t), \{x_j^k\}_{j \in \mathcal{N}_i^k}, t) \) as the respective output targets, for all \(T \) trajectories. For the inputs corresponding to agents that are not neighbors of agent \(i \) in a trajectory \(k \), we disable the respective neurons. For a given \(x \in \mathbb{R}^{2nN} \), we denote by
the similarity of the dynamic terms, the neural networks are expected to approximate a control policy that maintains the boundedness of the state trajectories as per (11). Contrary to the related works (e.g., [4], [44], [47]–[50]), however, we do not adopt approximation schemes for the system dynamics. In fact, a standard assumption in the related literature is the approximation of an unknown function by a single-layer neural network as $\Theta(x)\vartheta + \epsilon$, where $\Theta(x)$ is a known matrix of radial basis function, ϑ is a vector of unknown constants, and ϵ is a constant error assumed sufficiently small. Nevertheless, Assumption 3 is less strict assumption; it does not require sufficiently good neural-network approximation through a sufficiently small error ϵ or knowledge of any radial-basis term $\Theta(x)$. Moreover, Assumption 3 does not imply that the neural-network outputs $u_{i,nn}(x,t)$ guarantee accomplishment of the formation task. It is merely a growth condition on the solution of the system driven by $u_{i,nn}(x)$. In practice, (11) can be achieved by rich exploration of the state space by the leader agent x_0^k in the training data F^k. In the numerical experiments of Section IV we show that (11) holds true along the executed trajectories of the multi-agent system.

We note that the neural-network controllers u_{nn} can be replaced by other learning methodologies, as long as Assumption 3 holds. Nevertheless, the rich structure of neural networks makes them great candidates for approximating a control policy that satisfies (11).

B. Distributed Control Policy

We now design a distributed, adaptive feedback control policy to accomplish the formation task dictated by the graph topology \mathcal{G}, the leader profile $x_0(t)$, and offsets c_{ij}, $(i,j) \in \mathcal{E}$, given in Section II.

We define the adaptation variables $\hat{d}_{i,1}$ for each agent $i \in \mathcal{N}$, with $d_1 := [\hat{d}_{1,1}, \ldots, \hat{d}_{N,1}]^T \in \mathbb{R}^N$, and design the distributed control policy as

$$u_i = u_{i,nn}(x) - (k_2 + \hat{d}_{i,1})e_{i,2}$$

(12a) where k_2 is a positive constant. We further design the updates of the adaptation variables $\hat{d}_{i,1}$ as

$$\dot{\hat{d}}_{i,1} := \mu_{i,1}|e_{i,2}|^2$$

(12b) with $\hat{d}_{i,1}(0) > 0$ and $\mu_{i,1}$ are positive constants, for all $i \in \mathcal{N}$.

Remark 1. The control design is inspired by adaptive control methodologies [57], where the time-varying coefficients $\hat{d}_{i,1}$ adapt, in coordination with the neural-network controllers, to the unknown dynamics in order to ensure closed-loop stability. In particular, by inspecting the proof of Theorem 1, it can be concluded that $\hat{d}_{i,1}$ aims to counteract the term

$$(k_2||x||^2 + \alpha)e_{i,2}$$

where $\alpha \geq 0$. Intuitively, $\hat{d}_{i,1}$ increases according to (12b) until it dominates the aforementioned term, leading to convergence of $e_{i,2}$ to zero, for all $i \in \mathcal{N}$.

Note further that agent i’s control policy (12) does not use any information on its own or its neighbors’ dynamic terms $f_i(\cdot)$, $g_i(\cdot)$, or the constants τ, κ of (11). Additionally, note
The dynamics of the form (1), with boundedness condition (11), accompanied by the neural network output that ensures the feedback on ability. The resulting controller is essentially a simple linear mechanism guarantees \(\lim_{t \to \infty} (e_i(t), e_i(t)) \) such that, if (8), that each agent uses only relative feedback from its neighbors, as can be verified by (3). We do not impose reciprocal terms in the control input that take values in (0, 1); similarly, \(F_i \in \mathbb{R}^{3 \times 6} \) is a constant matrix whose elements take values in (0, 1). We evaluate the proposed algorithm in three test cases. In all of these cases, we choose the control gains of (12) as \(k_1 = 0.1, k_2 = \mu_{i,1} = 0.5 \).

The first case consists of the stabilization of the followers around the leader, which is assigned with the tracking of a reference time-varying trajectory profile \(x_0(t) \). We consider a communication graph modeled by the edge set \(\mathcal{E} = \{ (1,2), (2,3), (3,4), (4,5), (1,0), (3,0), (5,0) \} \), i.e., agents 1, 3, and 5 have access to the information of the leader. The stabilization is dictated by the formation constants \(c_{1,2} = -c_{2,1} = [1,1,0]^T, c_{2,3} = -c_{3,2} = [1,-1,0]^T, c_{3,4} = -c_{4,3} = [0,-2,0]^T, c_{4,5} = -c_{5,4} = [-2,0,0]^T, c_{1,0} = [1,-1,0]^T, c_{3,0} = [-1,-1,0]^T, c_{5,0} = [1,1,0]^T \). The aforementioned parameters, along with the agents’ initial conditions, specify the first task’s formation instance \(\mathcal{F} := \{ x_0(0), f, g, c, \mathcal{G}, x(0) \} \). We generate data from 100 trajectories that correspond to

\[
\begin{align*}
 f_1(x_i, t) &= \frac{1}{m_i} (\bar{g}_r + d_{i,1}(t) + d_{i,2}(x_i)) \\
 g_1(x_i, t) &= \| x_i \| + 0.5 \sin(0.1 t) + 0.5
\end{align*}
\]

where \(\bar{g}_r = [0,0,9.81]^T \) is the gravity vector and \(m_i \in \mathbb{R} \) is the mass of agent \(i \in \mathcal{N} \). Furthermore, \(d_{i,1}(t), d_{i,2}(x_i) \) are chosen as

\[
d_{i,1}(t) = \begin{bmatrix} A_{i,1} \sin(\eta_{i,1} t + \phi_{i,1}) \\
A_{i,2} \sin(\eta_{i,2} t + \phi_{i,2}) \\
A_{i,3} \sin(\eta_{i,3} t + \phi_{i,3}) \end{bmatrix}
\]

\[
d_{i,2}(x_i) = F_i y_i
\]

Contrary to the works in the related literature (e.g., [5], [25]) we do not impose reciprocal terms in the control input that grow unbounded in order to guarantee closed-loop stability. The resulting controller is essentially a simple linear feedback on \(e_1, e_2 \) with time-varying adaptive control gains, accompanied by the neural network output that ensures the boundedness condition (11).

IV. NUMERICAL EXPERIMENTS

We consider \(N = 5 \) follower aerial vehicles in \(\mathbb{R}^3 \) with dynamics of the form (1), with

\[
\begin{align*}
 f_1(x_i, t) &= \frac{1}{m_i} (\bar{g}_r + d_{i,1}(t) + d_{i,2}(x_i)) \\
 g_1(x_i, t) &= \| x_i \| + 0.5 \sin(0.1 t) + 1
\end{align*}
\]

Theorem 1. Let a multi-agent system evolve subject to the dynamics (1) under an undirected communication graph \(\mathcal{G} \). Under Assumptions 2-3, there exists a set \(\bar{\Omega}_2 \subset \mathbb{R}^{N(2n+1)} \) such that, if \((e(0), d_1(0)) \in \bar{\Omega}_2 \), the distributed control mechanism guarantees \(\lim_{t \to \infty} (e_i(t), e_i(t)) = 0 \), for all \(i \in \mathcal{N} \), as well as the boundedness of all closed-loop signals.

Fig. 1. Snapshots of the first experiment in the \(x-y \) plane. The agents converge to the desired formation (see bottom-middle and bottom-right plots) around the leader, which follows a pre-specified trajectory (continuous blue line). The black lines represent the communication edge set \(\mathcal{E} \) of the agents.
Fig. 2. Evolution of the error signals $\|e_{i,1}(t)\|$ and $\|\dot{e}_{i,1}(t)\|$, and $\|e_{i,2}(t)\|$, for $i \in \{1, \ldots, 5\}$, and $t \in [0, 55]$, in the first experiment.

Fig. 3. Left: The evolution of the adaptation signals $\tilde{d}_{i,1}(t)$ for $i \in \{1, \ldots, 5\}$, in the first experiment. Right: The evolution of $\mathcal{CH}(t)$ in the first experiment.

Fig. 4. The evolution of the control inputs $u_{i}(t)$ and the neural-network controllers $u_{i,nn}(t)$, for $i \in \{1, \ldots, 5\}$, in the first experiment.

different f, g, $x(0)$ than in \mathcal{F}, but with the same leader profile x_0 and inter-agent formation offsets c and communication graph \mathcal{G}. The differences in f and g are created by assigning random values, in $(0, 1)$, to the constants m_i, $A_{i,i}$, η_i, n_i, ϕ_i, and F_i, for all $i \in \mathcal{N}$. We further assign the initial conditions for each agent as $x_{i,1}(0) = x_{0,1}(0) + \text{rand}(-4, 4)[1, 1, 1]^\top$, and $x_{i,2}(0) = \text{rand}(-2, 2)[1, 1, 1]^\top$, $i \in \mathcal{N}$; we set the leader agent’s initial condition as $x_{0,1}(0) = [5, 2, 10]^\top$, $x_{0,2}(0) = [0.0039, -0.9836, 0]^\top$ for all trajectories. We use the generated data to train 5 neural networks, one for each agent. More details regarding the training can be found at the end of the section. We test the control policy (12) using the task’s formation instance \mathcal{F}. The results are depicted in Figs. 1-4.

Fig. 1 depicts snapshots of the multi-agent formation in the environment. We choose the same communication graph as the agents need to periodically surveil three areas in the environment. We use the same communication graph as in the first case.

The second case comprises a surveillance task, where the agents need to periodically surveil three areas in the environment. We choose the same communication graph as in the first case. Each area consists of 6 spherical regions of interest; the regions of interest of the first area are centered at $[-50, -50, -10]^\top$, $[-70, -50, 10]^\top$, $[-60, -40, 10]^\top$, $[-40, -40, 10]^\top$, $[-40, -60, 10]^\top$, $[-60, -60, 10]^\top$; the regions of interest of the second area are centered at $[50, 50, 10]^\top$, $[40, 40, 10]^\top$, $[40, 60, 10]^\top$, $[50, 60, 10]^\top$, $[60, 50, 10]^\top$, $[50, 50, 10]^\top$; and the regions of interest of the third area are centered at $[50, -50, 10]^\top$, $[40, -40, 10]^\top$, $[60, -40, 10]^\top$, $[70, -50, 10]^\top$, $[60, 50, 10]^\top$, $[50, -50, 10]^\top$, $[40, 60, 10]^\top$, $[60, 60, 10]^\top$.
aim to visit the remaining five regions in each area.

According to the geometry of the regions, the followers aim to visit the remaining five regions in each area. More specifically, we set the formation constants as

\[c_{1,2} = -c_{2,1} = [10, 10, 0]^\top, \quad c_{2,3} = -c_{3,2} = [20, 0, 0]^\top, \]
\[c_{3,4} = -c_{4,3} = [0, -20, 0]^\top, \quad c_{4,5} = -c_{5,4} = [-20, 0, 0]^\top, \]
\[c_{1,0} = [20, 0, 0]^\top, \quad c_{3,0} = [-10, -10, 0]^\top, \quad c_{5,0} = [10, 10, 0]^\top \]

for the first area,

\[c_{1,2} = -c_{2,1} = [0, 20, 0]^\top, \]
\[c_{2,3} = -c_{3,2} = [10, 0, 0]^\top, \quad c_{3,4} = -c_{4,3} = [10, -10, 0]^\top, \]
\[c_{4,5} = -c_{5,4} = [-10, -10, 0]^\top, \quad c_{1,0} = [10, 10, 0]^\top, \]
\[c_{3,0} = [0, -10, 0]^\top, \quad c_{5,0} = [10, 10, 0]^\top \]

for the second area, and

\[c_{1,2} = -c_{2,1} = [20, 0, 0]^\top, \quad c_{2,3} = -c_{3,2} = [0, -10, 0]^\top, \]
\[c_{3,4} = -c_{4,3} = [-20, -10, 0]^\top, \quad c_{4,5} = -c_{5,4} = [0, 10, 0]^\top, \]
\[c_{1,0} = [10, -10, 0]^\top, \quad c_{3,0} = [-10, -10, 0]^\top, \quad c_{5,0} = [10, 0, 0]^\top \]

for the third area.

Similarly to the first case, we generate data from 100 trajectories that correspond to different \(f, g, x(0) \) than in the task’s formation instance \(F \); the differences in \(f, g \) are created by assigning random values, in \((0, 1)\), to the constants \(m_i, A_i, \eta_i, \phi_i, \ell, \) and \(F_i \), for all \(i \in \mathcal{N} \). The initial conditions of the agents are set as \(x_i(0) = x_{0,i}(0) + \text{rand}(-10, 10)[1, 1, 1]^\top \), and \(x_{i,1}(0) = \text{rand}(-2, 2)[1, 1, 1]^\top, \), \(i \in \mathcal{N} \), and of the leader agent as \(x_{0,1} = [0, 0, 10]^\top, \ x_{0,2} = [0, 0, 0]^\top \). We use the data to train 5 neural networks, one for each agent. We test the control policy \((12) \) on \(F \), giving the results depicted in Figs. 5 and 6. Fig. 5 depicts snapshots of the agents’ visit to the three areas (at \(t = 50, t = 150, \) and \(t = 225 \) seconds, respectively), and Fig. 6 depicts the evolution of the signals \(||e_{1,1}(t)|| + ||e_{1,1}(t)|| \) and \(||e_{1,2}(t)|| \), for all agents \(i \in \{1, \ldots, 5\} \). Finally, Fig. 3 shows the evolution of the adaptation variables \(d_{i,1}(t), \) \(i \in \mathcal{N} \), and the signal \(CH(t) = e_{2}(t)^\top H(f(x(t), t) + g(x(t), t)u(t) - x_{0,1}(t)) - 100||e_{2}|| \), which is always negative, verifying thus Assumption 3 for \(\kappa = 100 \). Finally, Fig. 4 depicts the evolution of the control inputs \(u_i(t), u_{i,nn}(t), \) \(i \in \{1, \ldots, 5\} \). As illustrated in the figures, the agents converge successfully to the three pre-specified formations, visiting the regions of interest in the three areas.

The first two cases considered training data that correspond to the exact formation task, defined by the leader profile \(x_0 \) and the constants \(c_{ij} \), and communication graph \(\mathcal{G} \). In the third case, we generate 120 different formation instances \(F^k := (x_0^k, f^k, g^k, c_{ij}^k, x(0))^k \), \(k \in \{1, \ldots, 120\} \), i.e., different trajectory profiles for the leader, different terms \(f^k \) and \(g^k \) for the agents, different communication graphs \(\mathcal{G}^k \), different formation constants \(c_{ij} \), for \((i, j) \in \mathcal{E} \), and different initial conditions for the agents. In every instance \(k \), we set the parameters in \(f^k \) and \(g^k \) as in the previous two cases, we set randomly the communication graph \(\mathcal{G}^k \) such that it...
satisfies Assumption 2, we set random offsets c_{ij} in the interval $(-5,5)I_3$, for $(i,j) \in \mathcal{E}$, and the initial conditions of the agents as $x_{i,1}(0) = \text{rand}(-10,10)I_3$, $x_{i,2}(0) = \text{rand}(-2.5,2.5)I_3$, for all $i \in \{1,\ldots,5\}$. Finally, the leader trajectory x_0 is set for each instance $k \in \{1,\ldots,120\}$ as follows: we create four points in \mathbb{R}^3 randomly in $(-10,10)$ in the x- and y-directions, and in $(1,20)$ in the z direction. We then create a random sequence of these points, and set the leader trajectory as a smooth path that visits them according to that sequence, with a duration of 40 seconds.

We separate the 120 instances into 100 training and 20 test instances. We train next 5 neural networks, one for each agent, using data from system runs that correspond to the 100 first training instances \mathcal{F}^k, $k \in \{1,\ldots,100\}$. We test the control policy on the 20 first training instances \mathcal{F}^k, $k \in \{1,\ldots,20\}$, as well as on the 20 test instances that were not used in the training, i.e., \mathcal{F}^k, $k \in \{101,\ldots,120\}$. In addition, we compare the performance of the proposed control algorithm with a no-neural-network (no-NN) control policy, i.e., a policy that does not employ the neural network, (term $u_{i,nn}$ in (12a)) and with a non-adaptive control policy $u_i = u_{i,nn} - k_2 e_{i,2}$, i.e., without the adaptation terms $d_{i,1}$, $d_{i,2}$. The comparison results are given in Fig. 9, which depicts the mean and standard deviation of the signal $\|\hat{e}_1(t)\| + \|\hat{e}_1(t)\|$ for the 20 of the training instances (top), and for the 20 test instances (bottom). In both cases, the proposed control algorithm outperforms the other two policies, which, in many of the instances, resulted in unstable closed-loop systems.

We now provide more details regarding the collection of data and the training of the neural networks for the aforementioned experiments. For the execution of the trajectories that are used in the training of the neural networks, we use the control policies

$$u_i = g_i(x_i,t)^{-1}(u_0(t) - e_{i,2} - f_i(x_i,t)),$$

for all $i \in \mathcal{N}$. The data for the training of the neural networks consist of 100 system trajectories, sampled at 500 points, making a total of 50000 points. The neural networks we use consist of 4 fully connected layers of 512 neurons; each layer is followed by a batch-normalization module and a ReLU activation function. For the training, we use the adam optimizer, the mean-square-error loss function, and learning rate of 10^{-3}. Finally, we use a batch size of 256, and we train the neural networks until an average (per batch) loss of the order of 10^{-4} is achieved.

V. CONCLUSION AND FUTURE WORK

We develop a learning-based control algorithm for the formation control of networked multi-agent systems with
unknown nonlinear dynamics. The algorithm integrates distributed neural-network-based learning and adaptive control. We provide formal guarantees and perform extensive numerical experiments. Future efforts will focus on relaxing the considered assumptions and extending the proposed methodology to account for directed and time-varying communication graphs as well as underactuated systems.

REFERENCES

[1] A. Jadabaei, J. Lin, and A. S. Morse, “Coordination of groups of mobile autonomous agents using nearest neighbor rules,” *IEEE Transactions on automatic control*, vol. 49, no. 6, pp. 1002–1013, 2004.

[2] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation in networked multi-agent systems,” *Proceedings of the IEEE*, vol. 95, no. 1, pp. 215–233, 2007.

[3] L. C. See, L. H. S. Tsai, and C. J. Liao, “Optimal coordination of heterogeneous multi-agent systems with unknown dynamics,” *IEEE Transactions on Automatic Control*, vol. 60, no. 1, pp. 197–203, 2015.

[4] H. Modares, F. L. Lewis, W. Kang, and A. Davoudi, “Optimal synchronization of heterogeneous nonlinear systems with unknown dynamics,” *IEEE Transactions on Automatic Control*, vol. 63, no. 1, pp. 117–131, 2017.

[5] C. P. Bechlioulis and G. A. Rovithakis, “Decentralized robust synchronization of unknown high order nonlinear multi-agent systems with prescribed transient and steady state performance,” *IEEE Transactions on Automatic Control*, vol. 58, no. 8, pp. 2013–2018, 2013.

[6] C. K. Verginis and D. V. Dimarogonas, “Adaptive leader-follower coordination of lagrangian multi-agent systems under transient constraints,” *IEEE 55th Conference on Decision and Control (CDC)*, pp. 3833–3838, 2016.

[7] J. Ni and P. Shi, “Adaptive neural network fixed-time leader-follower consensus for multiagent systems with constraints and disturbances,” *IEEE Transactions on Cybernetics*, vol. 51, no. 4, pp. 3835–3848, 2020.

[8] H. Zhang and F. L. Lewis, “Adaptive cooperative tracking control of higher-order nonlinear systems with unknown dynamics,” *Automatica*, vol. 48, no. 7, pp. 1362–1369, 2012.

[9] J. Hu and W. X. Zheng, “Adaptive tracking control of leader-follower systems with unknown dynamics and partial measurements,” *Automatica*, vol. 50, no. 5, pp. 1416–1423, 2014.

[10] D. Bertsekas, “Lessons from alpha zero for optimal, model predictive, and adaptive control,” *arXiv preprint arXiv:2108.10315*, 2021.

[11] C. Verginis, Z. Xu, and U. Topcu, “Non-parametric neuro-adaptive coordination of multi-agent systems,” *To appear in the International Conference on Autonomous Agents and Multiagent Systems (AAMAS)*, 2022. Available online: https://arxiv.org/pdf/2110.05125.pdf.

[12] C. Chen, C. Wen, Z. Liu, K. Xie, Y. Zhang, and C. F. Chen, “Adaptive consensus of nonlinear multi-agent systems with non-identical partially unknown control directions and bounded modeling errors,” *IEEE Transactions on Automatic Control*, vol. 62, no. 9, pp. 4654–4659, 2017.

[13] Y. Wang, Y. Song, and W. Ren, “Distributed adaptive finite-time approach for formation–containment control of networked nonlinear systems under directed topology,” *IEEE transactions on neural networks and learning systems*, vol. 29, no. 7, pp. 3164–3175, 2017.

[14] W. Liu and J. Huang, “Adaptive leader-following consensus for a class of higher-order nonlinear multi-agent systems with directed switching networks,” *Automatica*, vol. 79, pp. 84–92, 2017.

[15] H. Rezaee and F. Abdollahi, “Adaptive consensus control of nonlinear multiagent systems with unknown control directions under stochastic topologies,” *IEEE Transactions on Neural Networks and Learning Systems*, vol. 29, no. 8, pp. 3358–3357, 2017.

[16] Z.-J. Yang, “Robust consensus tracking of second-order nonlinear systems using relative position information by k-filter and disturbance observer based control,” *International Journal of Systems Science*, vol. 49, no. 15, pp. 3117–3129, 2018.

[17] N. Rahimi and T. Binazadeh, “Distributed robust consensus control for nonlinear leader–follower multi-agent systems based on adaptive observer-based sliding mode,” *Journal of Vibration and Control*, vol. 25, no. 1, pp. 109–121, 2019.

[18] Z. Li, Z. Duan, and F. L. Lewis, “Distributed robust consensus control of multi-agent systems with heterogeneous matching uncertainties,” *Automatica*, vol. 50, no. 3, pp. 883–889, 2014.

[19] C. K. Verginis and D. V. Dimarogonas, “Adaptive robot navigation with collision avoidance subject to 2nd-order uncertain dynamics,” *Automatica*, vol. 52, pp. 109303, 2021.

[20] C. Wang and H. Ji, “Robust consensus tracking for a class of heterogeneous second-order nonlinear multi-agent systems,” *International Journal of Robust and Nonlinear Control*, vol. 25, no. 17, pp. 3367–3383, 2015.

[21] M. Lu and J. Huang, “Cooperative global robust output regulation for a class of nonlinear multi-agent systems with a nonlinear leader,” *IEEE Transactions on Automatic Control*, vol. 61, no. 11, pp. 3557–3562, 2016.

[22] U. Münz, A. Papachristodoulou, and F. Allgöwer, “Robust consensus controller design for nonlinear relative degree two multi-agent systems with communication constraints,” *IEEE Transactions on Automatic Control*, vol. 56, no. 1, pp. 145–151, 2010.

[23] C. P. Bechlioulis and K. J. Kyriakopoulos, “Robust model-free formation control with prescribed performance for nonlinear multi-agent systems,” *IEEE International Conference on Robotics and Automation (ICRA)*, pp. 1268–1273, 2015.

[24] C. K. Verginis, C. P. Bechlioulis, D. V. Dimarogonas, and K. J. Kyriakopoulos, “Robust distributed control protocols for large vehicular platoons with prescribed transient and steady-state performance,” *IEEE Transactions on Control Systems Technology*, vol. 26, no. 1, pp. 299–304, 2017.

[25] C. K. Verginis, A. Nikou, and D. V. Dimarogonas, “Robust formation control in se (3) for tree-graph structures with prescribed transient and steady state performance,” *Automatica*, vol. 103, pp. 538–548, 2019.

[26] Y. Liu and G.-H. Yang, “Neural learning-based fixed-time consensus tracking control for nonlinear multiagent systems with directed communication networks,” *IEEE Transactions on Neural Networks and Learning Systems*, vol. 32, no. 2, pp. 639–652, 2020.

[27] G. Wen, Q. Zang, H. X. Zheng, and D. Yang, “Neural network-based adaptive consensus control for a class of nonaffine nonlinear multiagent systems with actuator faults,” *IEEE Transactions on Neural Networks and Learning Systems*, vol. 30, no. 12, pp. 3633–3644, 2019.

[28] Z. Peng, D. Wang, H. Zhang, and G. Sun, “Distributed neural network control for adaptive synchronization of uncertain dynamical multiagent systems,” *IEEE transactions on neural networks and learning systems*, vol. 25, no. 8, pp. 1508–1519, 2013.

[29] G. Wen, C. P. Chen, Y.-J. Liu, and Z. Liu, “Neural network-based adaptive leader-following consensus control for a class of nonlinear multiagent state-delay systems,” *IEEE transactions on cybernetics*, vol. 47, no. 8, pp. 2151–2160, 2016.

[30] L. Cheng, Z.-G. Hou, M. Tan, Y. Lin, and W. Zhang, “Neural-network-based adaptive leader-following control for multiagent systems with uncertainties,” *IEEE Transactions on Neural Networks*, vol. 21, no. 8, pp. 1351–1358, 2010.
Proof of Theorem 4 Let the continuously differentiable function
\[V_1 := \frac{k_1^2}{2\theta_1} H^{-1} e_1 + \frac{1}{2\theta_2} H^{-1} e_2. \] (13)

By differentiating \(V_1 \) and using \([9] \), one obtains
\[\dot{V}_1 = -\frac{k_3}{\theta} e_1^T H^{-1} e_1 + \frac{k_2}{\theta} e_1^T H^{-1} e_2 \\
- \frac{1}{\theta} e_2^T \left(f(x, t) + g(x, t)u - \tilde{x}_{0,1} \right) \\
- \frac{k_2}{\theta} e_2^T H^{-1} e_1 + \frac{k_1}{\theta} e_2^T H^{-1} e_2
\]
and by further using (12a),
\[\dot{V}_1 \leq -\frac{k_3}{\theta} e_1^T H^{-1} e_1 + \frac{k_1}{\theta} \|H^{-1}\| \sum_{i\in\mathcal{N}} \|e_{i,2}\|^2 \\
- \frac{1}{\theta} \sum_{i\in\mathcal{N}} e_{i,2}^T g_i(x_i, t)(k_2 + \hat{d}_{i,1})e_{i,2} \\
+ \frac{1}{\theta} e_2^T \left(f(x, t) + g(x, t)u_{\text{nn}}(x) - \tilde{x}_{0,1} \right) \]
By using the positive definiteness of \(g_i(x_i, t) \), the fact that \(\theta = \min_{i\in\mathcal{N}}(\lambda_{\text{min}}(g_i)) \), and the fact that \(d_{i,1}(t) \) is positive, \(i \in \mathcal{N} \), we obtain
\[\dot{V}_1 \leq -\frac{k_3}{\theta} e_1^T H^{-1} e_1 + \frac{k_1}{\theta} \|H^{-1}\| \sum_{i\in\mathcal{N}} \|e_{i,2}\|^2 \\
- \sum_{i\in\mathcal{N}} (k_2 + \hat{d}_{i,1})\|e_{i,2}\|^2 \\
+ \frac{1}{\theta} e_2^T \left(f(x, t) + g(x, t)u_{\text{nn}}(x) - \tilde{x}_{0,1} \right) \]
and in view of Assumption 3 for \(\|e\| \leq r \),
\[\dot{V}_1 \leq -\frac{k_3}{\theta} e_1^T H^{-1} e_1 - \sum_{i\in\mathcal{N}} (k_2 + \hat{d}_{i,1} - k_1\|H^{-1}\| - \frac{k}{\theta}) \|e_{i,2}\|^2 \] (14)
By further defining \(d_1 := \frac{k_1\|H^{-1}\|}{\theta} + \frac{r}{2} \), (14) becomes
\[\dot{V}_1 \leq -\frac{k_3}{\theta} e_1^T H^{-1} e_1 - \sum_{i\in\mathcal{N}} (k_2 + \hat{d}_{i,1} - d_1)\|e_{i,2}\|^2 \] (15)

In view of the aforementioned expression, the individual adaptation variables \(\hat{d}_{i,1} \) aim to approximate \(d_1 \). Therefore, we define the adaptation errors \(d_1 := \left[d_{1,1}, \ldots, d_{N,1} \right]^T := \hat{d}_{1,1} - \hat{d}_{1,1} - d_{1,1}, \ldots, d_{N,1} - d_{N,1} \right]^T \), and the overall state \(\tilde{x} := [e_1^T, e_2^T, d_1^T]^T \in \mathbb{R}^{N(2n+1)} \). Let the continuously differentiable function
\[V_2(\tilde{x}) := V_1(\tilde{x}) + \frac{1}{2\theta_1} M_1^{-1} \tilde{d}_1, \]
where \(M_1 := \text{diag} \{\mu_1, \ldots, \mu_{N,1}\} \). Note that \(V_2(\tilde{x}) \) satisfies
\[W_\infty(\tilde{x}) \leq V_2(\tilde{x}) \leq W_\infty(\tilde{x}) \], where \(W_\infty(\tilde{x}) := \frac{1}{2\theta}\|\tilde{x}\|^2 \),
\[W_{\bar{m}}(\bar{x}) := \bar{m} \|\bar{x}\|^2 \] for some positive constants \(m, \bar{m} \). By differentiating \(V_2 \) and using (15), we obtain
\[
\dot{V}_2 \leq -e_1^T K_1^2 H^{-1} K_1 e_1 - \sum_{i \in \mathcal{N}} (k_{i,2} + \hat{d}_{i,1} - d_1) \|e_{i,2}\|^2 \\
+ \sum_{i \in \mathcal{N}} \frac{1}{\mu_{i,1}} \tilde{d}_{i,1}
\]
and by substituting (12b),
\[
\dot{V}_2 \leq -k_3^1 e_1^T H^{-1} e_1 - \sum_{i \in \mathcal{N}} k_2 \|e_{i,2}\|^2 =: -W_Q(\bar{x})
\]
Therefore, \(V_2(t) \leq V_2(0) \), implying the boundedness of \(e_1(t) \), \(e_2(t) \), and \(\hat{d}_1(t) \), for all \(t \geq 0 \). In view of (12), we also conclude the boundedness of \(u(t) \) and \(\hat{d}_1(t) \), for all \(t \geq 0 \).
By differentiating \(\dot{V}_2 \) and using (9) and (12), we further conclude the boundedness of \(\ddot{V}_2 \), which implies the uniform continuity of \(V_2 \).
By employing Barbalat’s Lemma (Theorem 8.4 of [52]), we conclude that
\[\lim_{t \to \infty} e_1(t) = \lim_{t \to \infty} e_2(t) = 0. \]
In view of Assumptions 1 and 3, the aforementioned results hold under the conditions \(x \in \Omega_x := \Omega_1 \times \cdots \times \Omega_N \) and \(\|e\| \leq r \). Therefore, we need to establish that the proposed control algorithm and initial conditions do not force \(e(t) \) to grow larger than \(r \) at any point in time \(t \geq 0 \). Alternatively, we need to establish that, for \(\bar{x}(0) \in \Omega \), it holds that \(x(t) \in \Omega_x \) and \(\|e(t)\| \leq r \), for all \(t \geq 0 \). Let the set
\[\mathcal{M} := \{ \bar{x} \in \mathbb{R}^{N(2n+1)} : V_2(\bar{x}) \leq V_0 \}, \]
where we choose \(V_0 \) as the largest constant for which \(\mathcal{M} \subseteq \{ \bar{x} \in \mathbb{R}^{N(2n+1)} : \bar{x} \in \Omega_x, \|e\| \leq r, \hat{d}_1 \leq V_2(\bar{x}(0)) \} \). Then, for all \(\bar{x}(0) \in \bar{\Omega} \), where \(\bar{\Omega} \subseteq \mathcal{M} \), it follows that \(V_2 \) is bounded from above by \(V_2(\bar{x}(0)) \), which implies that \(\bar{x} \in \Omega_x \) and \(\|e(t)\| \leq r \), for all \(t \geq 0 \). Since \(\bar{x} = [e^T, \hat{d}_1] \), implies \([e^T, \hat{d}_1] \) is constant, \(\bar{x}(0) \in \Omega \) implies \([e(0)^T, \hat{d}_1(0)^T] \) \(\bar{x} \in \Omega_x \) \(\mathcal{Y} := \{ [e^T, \hat{d}_1] : e \in \Omega_x \} \), leading to the conclusion of the proof.