Massive small bowel bleeding caused by scrub typhus in Korea

Ki Beom Bae, Won Hwa Youn, Youn Jae Lee, Soo Jin Jung, Kwan Hee Hong

A 79-year-old man was diagnosed with scrub typhus based on fever, eschar, skin rash and a markedly elevated serum tsutsugamushi antibody and doxycycline was started. Five days later, hematochezia developed and multiple small bowel ulcerations with hemorrhage were seen on colonoscopy. Despite intensive therapy, the massive hematochezia worsened and the distal small bowel was resected. Multiple ulcerated lesions were identified pathologically as vasculitis caused by scrub typhus. This is the first reported case of pathologically proven small bowel involvement in scrub typhus infection.

INTRODUCTION

Scrub typhus, or tsutsugamushi disease, is an acute febrile illness caused by infection with (O. tsutsugamushi)1, an obligate intracellular bacterium transmitted by the bite of larval trombiculid mites (chiggers)2. Usually its symptoms are similar to a mild influenza-like illness and the clinical course is self-limited with spontaneous recovery after a few days. However, some cases are more severe and protracted and the disease may be fatal, especially in the elderly3.

Scrub typhus is characterized by focal or disseminated vasculitis and perivasculitis which may involve the lungs, heart, liver, spleen, and central nervous system4.5. Gastrointestinal involvement is uncommon and bleeding through the gut is a rare complication of scrub typhus. Hematemesis or melena is a reported complication in 6.25%-7% of scrub typhus cases, especially in septic patients, and the site of bleeding is almost always in the...
stomach8,9. Pathologically proven small bowel involvement caused by scrub typhus has never been reported before. Therefore, we present the first case of massive small bowel bleeding caused by scrub typhus infection with its clinicopathological findings.

CASE REPORT

A 79-year-old male farmer was admitted with hematochezia. Seven days earlier, he had been treated with doxycycline for scrub typhus diagnosed at a local clinic based on clinical findings which included a fever of up to 39°C, headache, myalgia, skin rash and eschar. The hematochezia developed 2 d before admission. He complained of general weakness and fatigue but no abdominal pain. He was taking an antihypertensive drug but no other medications such as nonsteroidal anti-inflammatory drugs (NSAIDs). On examination, blood pressure was 110/60 mmHg, heart rate 90/min, respiratory rate 18/min and temperature 36.7°C. He looked acutely ill and was jaundiced with pale conjunctiva. Examination of the abdomen showed normal bowel sounds with no distention, tenderness or rebound tenderness. No generalized or peripheral edema was observed but hematochezia was detected on digital rectal examination. His initial hematological and biochemical results showed leukocytosis, anemia, thrombocytopenia, hypoalbuminemia, hyperbilirubinemia, and elevated liver enzymes (Table 1). Serologic testing using the passive hemagglutination assay was strongly positive for *O. tsutsugamushi*. To identify the cause of the hematochezia, gastrofiberscopy, colonoscopy, and contrast-enhanced abdominopelvic computed tomography (CT) were carried out. At gastrofiberscopy, no abnormal findings except a polyp in the fundus were noted. Colonoscopy revealed multiple ulcerations with bleeding in the terminal ileum (Figure 1), and abdominal CT showed the extravasation of contrast dye in the small bowel lumen (Figure 2). No focal hemorrhagic lesion was detected on sequential angiography. Conservative treatment with doxycycline and transfusion was continued for 3 d but the hematochezia did not cease and amounted to 900-1500 mL/d. His hemoglobin gradually fell and vital signs deteriorated, necessitating emergency surgery. During surgery, multiple small ovoid erythematous lesions were seen on the outside of the small bowel which corresponded to ulcerative lesions inside the small bowel lumen (Figure 3). These were scattered throughout the small intestine, especially in the terminal ileum, and were bleeding actively. The involved small bowel was resected and the healthy gut was re-anastomosed. Microscopically, the small bowel showed multiple flask-shaped ulcers and lymphocytic vasculitis in the ulcer bed (Figure 4). Postoperatively, vital signs were stabilized and no further hematochezia was observed 5 d after the surgery, at which time a normal diet was started. Normal feaces were observed 10 d postoperatively and the laboratory findings, including liver function, normalized.

Table 1 Initial laboratory findings

Laboratory test	Initial value
White cell count (mm\(^3\))	18,990
Hemoglobin (g/dL)	8.7
Hematocrit (%)	25.8
Platelets (mm\(^3\))	94,000
Protein (g/dL)	4.5
Albumin (g/dL)	2.7
Bilirubin (mg/dL)	5.2
Aspartate aminotransferase (IU/L)	70
Alanine aminotransferase (IU/L)	73
Alkaline phosphatase (IU/L)	784
Blood urea nitrogen (mg/dL)	24
Serum creatinine (mg/dL)	1.4
Hantian virus antibody	Negative
Leptosira antibody	Negative
O. tsutsugamushi antibody	Positive (1:280)
HBs Ag	Negative
HBs Ab	Negative
HCV Ab	Negative
HBo Ab IgM	Negative
HAV IgM	Negative
CRP	5.19 (normal < 0.5)

![Figure 1: Colonoscopic findings. Multiple ulcerations with bleeding in terminal ileum (arrows).](image)

DISCUSSION

O. tsutsugamushi is transmitted by chiggers of the genus *Leptotrombidium* and causes scrub typhus in Southeast Asia, the former Soviet Union, Japan, and Australia. New foci of scrub typhus have recently been described in Australia, Japan, Thailand, and Korea[10]. The activity of the infected mite is influenced by temperature and humidity and transmission occurs all year in tropical areas. In Korea, transmission is seasonal, and peaks in October and November[11,12]. After an incubation period of 10-21 d, the disease is characterized by fever, headache, myalgia, eschar with skin rash, and gastrointestinal symptoms. It is usually treated with doxycycline. Some cases are more severe and protracted and the disease may be fatal, especially in the elderly. The reported severe complications of scrub typhus include meningoencephalitis[13], pneumonitis and acute respiratory distress syndrome[14], hepatitis[15], acute renal failure[16], and upper gastrointestinal bleeding[8,9]. These
A: Multifocal flask-shaped ulcers are noted [1994; 1]. A: Multiple erythematous lesions in the serosal surface of small bowel (white arrows) are found; B: Multiple ulcerations in the luminal surface of small bowel (black arrows) are noted.

Figure 2 Abdominal CT findings. Extravasation of contrast dye in small bowel (arrow).

Figure 3 Operative findings. A: Multiple erythematous lesions in the serosal surface of small bowel (white arrows) are found; B: Multiple ulcerations in the luminal surface of small bowel (black arrows) are noted.

tiple actively bleeding ulcerative lesions were identified in the terminal ileum at colonoscopy. Pathologically, these lesions consisted of vasculitis and perivascularitis in the affected bowel wall. Although other causes of small bowel bleeding, such as Meckel's diverticulum, angiodyplasia, small bowel tumor, Crohn's disease and NSAID-induced small bowel injury, should be considered, our patient had no history of illness other than hypertension and was not taking any medications such as NSAIDs. Therefore, the cause of his small bowel bleeding was considered to be infection-induced immune-complex vasculitis associated with scrub typhus.

We report the first case of massive small bowel bleeding in scrub typhus with clinical and histopathological findings. The affected small intestine showed multiple actively bleeding ulcerations identified as vasculitis and perivascularitis microscopically.

Figure 4 Microscopic Features. A: Multifocal flask-shaped ulcers are noted (HE × 40); B: Vasculitis is noted with dense infiltration of lymphocytes within the vessel walls in submucosal layer (PAS × 200).

REFERENCES

1. Saah AJ. Orientia tsutsugamushi (scrub typhus). In: Mandell GL, Bennett JE, Dolin R, editors. Principles and practice of infectious disease. 5th ed. Philadelphia, Pa: Churchill Livingstone, 2000: 2056-2057
2. PHILIP CB. Tsutsugamushi disease in World War II. J Parasitol 1948; 34: 169-191
3. Watt G. Parola P. Scrub typhus and tropical rickettsioses. Curr Opin Infect Dis 2003; 16: 429-436
4. Silpapojakul K. Scrub typhus in the Western Pacific region. Ann Acad Med Singapore 1997; 26: 794-800
5. Watt G, Strickman D. Life-threatening scrub typhus in a traveler returning from Thailand. Clin Infect Dis 1994; 18: 624-626
6. Settle EB, Pinkerton H, Corbett AJ. A pathologic study of tsutsugamushi disease (scrub typhus) with notes on clinicopathologic correlation. J Lab Clin Med 1945; 30: 639-661
7. Levine HD. Pathologic study of thirty-one cases of scrub typhus fever with especial reference to the cardiovascular system. Am Heart J 1945; 31: 314-326
8. Aung-Thu, Supanaranond W, Phumiratanaprarin W, Phonrat B, Chinpasatsak S, Ratanajaratroj N. Gastrointestinal manifestations of septic patients with scrub typhus in Maharat Nakhon Ratchasima Hospital. Southeast Asian J Trop Med Public Health 2004; 35: 845-851
9. Kim SJ, Chung IK, Chung IS, Song DH, Park SH, Kim HS, Lee MH. The clinical significance of upper gastrointestinal endoscopy in gastrointestinal vasculitis related to scrub...
Bae KB et al. Massive small bowel bleeding

10 Tarasevich I. Scrub typhus (epidemiology and ecology). In: Kazar J, Toman R, editors. Rickettsiae and rickettsial diseases. Bratislava: Slovak Republic: VEDA, 1996

11 Seong SY, Choi MS, Kim IS. Orientia tsutsugamushi infection: overview and immune responses. Microbes Infect 2001; 3: 11-21

12 Silpapojakul K, Ukkachoke C, Krisanapan S, Silpapojakul K. Rickettsial meningitis and encephalitis. Arch Intern Med 1991; 151: 1753-1757

13 Walker DH, Mattern WD. Rickettsial vasculitis. Am Heart J 1980; 100: 896-906

14 Chien RN, Liu NJ, Lin PY, Liaw YF. Granulomatous hepatitis associated with scrub typhus. J Gastroenterol Hepatol 1995; 10: 484-487

15 Yen TH, Chang CT, Lin JL, Jiang JR, Lee KF. Scrub typhus: a frequently overlooked cause of acute renal failure. Ren Fail 2003; 25: 397-410

16 Joklik WK, Willet DB, Amos, Wilfred CM. Zinssner Microbiology. 19th ed. Los Alamos, NM: Appleton Lange Press, 1988

17 Wang NC, Ni YH, Peng MY, Chang FY. Acute acalculous cholecystitis and pancreatitis in a patient with concomitant leptospirosis and scrub typhus. J Microbiol Immunol Infect 2003; 36: 285-287

18 Yi SY, Tae JH. Pancreatic abscess following scrub typhus associated with multiorgan failure. World J Gastroenterol 2007; 13: 3523-3525

19 Berner JS, Mauer K, Lewis BS. Push and sonde enteroscopy for the diagnosis of obscure gastrointestinal bleeding. Am J Gastroenterol 1994; 89: 2139-2142

20 Jennette JC, Falk RJ. Small-vessel vasculitis. N Engl J Med 1997; 337: 1512-1523