Boundary Multifractality at the Integer Quantum Hall Plateau Transition: Implications for the Critical Theory

H. Obuse,1 A. R. Subramaniam,2 A. Furusaki,1 I. A. Gruzberg,2 and A. W. W. Ludwig3

1Condensed Matter Theory Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
2James Franck Institute and Department of Physics, University of Chicago, Chicago, IL 60637, USA
3Department of Physics, University of California, Santa Barbara, CA 93106, USA
(Dated: August 11, 2008)

We study multifractal spectra of critical wave functions at the integer quantum Hall plateau transition using the Chalker-Coddington network model. Our numerical results provide important new constraints which any critical theory for the transition will have to satisfy. We find a non-parabolic multifractal spectrum and determine the ratio of boundary to bulk multifractal exponents. Our results rule out an exactly parabolic spectrum that has been the centerpiece in a number of proposals for critical field theories of the transition. In addition, we demonstrate analytically exact parabolicity of related boundary spectra in the two-dimensional chiral orthogonal ‘Gade-Wegner’ symmetry class.

PACS numbers: 73.43.-f, 72.15.Rn, 73.20.Fz, 71.30.+h

The physics of the quantum Hall effect has been an exciting area of research for more than two decades. While much progress has been made in this area, the identification of an analytically tractable theory describing the critical properties at the transitions between the plateaus in the integer quantum Hall (IQH) effect has been elusive ever since. These quantum phase transitions are famous examples of (Anderson) localization-delocalization (LD) transitions driven by disorder. The diverging localization length plays the role of a correlation dimension (2D). It is natural to expect that effective (field) theories describing IQH plateau transitions should generally also possess conformal symmetry (cf. [1]).

Many attempts have been made in the past to identify an analytically tractable description of the IQH plateau transition and, more recently, Wess-Zumino (WZ) field theories defined on a certain supermanifold were conjectured to provide such a description [2, 3, 4, 5, 6, 7]. These proposals focussed solely on bulk observables, i.e., on physical quantities measured in a sample without any boundaries. In this Letter, we provide important new constraints that arise when one studies the scaling behavior of wave functions near the boundaries of a sample. Any proposed candidate theory for the plateau transitions will have to be consistent with our numerical results for the boundary multifractal spectrum.

At LD transitions, critical wave functions obey scale-invariant, multifractal (MF) statistics, namely, disorder-averaged moments of wave functions have a power-law dependence on the linear dimension L of the system [3]:

$$\frac{\langle |\psi(r)|^{2q} \rangle}{\langle |\psi(r)|^2 \rangle} = C_q(L) L^{-\Delta_q^x},$$ \hspace{1cm} (1)

The MF exponents Δ_q^x, which are related to (‘anomalous’) scaling dimensions of certain operators in an underlyng field theory [11], can be defined for points r in the bulk ($x = b$) of the sample, Δ_q^{bx} or near its boundary (‘surface’: $x = s$) [10], Δ_q^{sx}. The prefactor $C_q(L)$ in Eq. (1) depends on q and, in general, on L if we include the possibility of corrections to scaling. Both sets of MF exponents satisfy the symmetry relation $\Delta_q^{sx} = \Delta_{1-q}^{sx}$ (in some interval $[1, 2]$ around $q = 1/2$).

Equivalently, the MF wave functions can be characterized by the so-called singularity spectra $f^s(\alpha_q)$ related to Δ_q^x by a Legendre transform: $f^s(\alpha_q^x) = (\alpha_q^x - 2) q - \Delta_q^x + d_s$, $\alpha_q^x - 2 = d\Delta_q^x/dq$, and $d_s = 2, d_s = 1$. The exponent α_q^x describes the scaling of typical wave functions: $\ln|\psi(r)|^2 \sim -\alpha_q^x \ln L$, as can be seen by taking the q derivative in Eq. (1) at $q = 0$.

Equivalently, the MF wave functions can be characterized by the so-called singularity spectra $f^s(\alpha_q)$ related to Δ_q^x by a Legendre transform: $f^s(\alpha_q^x) = (\alpha_q^x - 2) q - \Delta_q^x + d_s$, $\alpha_q^x - 2 = d\Delta_q^x/dq$, and $d_s = 2, d_s = 1$. The exponent α_q^x describes the scaling of typical wave functions: $\ln|\psi(r)|^2 \sim -\alpha_q^x \ln L$, as can be seen by taking the q derivative in Eq. (1) at $q = 0$.

Work emerging [3, 4] from Ref. [5] led to the conjecture that the proposed theory would give rise to an exactly parabolic bulk MF spectrum for the IQH transition

$$\Delta_q^b = \gamma_q^b q(1 - q),$$ \hspace{1cm} (2)

ruministic of analytically obtained MF spectra for Dirac fermions in, e.g., random abelian gauge potentials [13, 14]. In those models the parabolicity of the MF spectrum can be understood through a reformulation of the problem in terms of free fields.

Previous numerical studies [13] of wave function statistics at the IQH transition appeared to exhibit a bulk MF spectrum that was indeed well described (with an accuracy of $\sim 1\%$) by a parabolic fit [3] with $\gamma_q^b = 0.262 \pm 0.003$, seemingly providing support for the conjectures advanced in Ref. [3, 3, 5, 6]. (In Ref. [3] the results are presented in terms of $f^l(\alpha)$. For a parabolic MF spectrum Δ_q^s, $f^b(\alpha_q^s)$ is also parabolic, with a maximum at $\alpha_q^b = \gamma_q^b + 2$.)

Equivalently, the MF wave functions can be characterized by the so-called singularity spectra $f^s(\alpha_q)$ related to Δ_q^x by a Legendre transform: $f^s(\alpha_q^x) = (\alpha_q^x - 2) q - \Delta_q^x + d_s$, $\alpha_q^x - 2 = d\Delta_q^x/dq$, and $d_s = 2, d_s = 1$. The exponent α_q^x describes the scaling of typical wave functions: $\ln|\psi(r)|^2 \sim -\alpha_q^x \ln L$, as can be seen by taking the q derivative in Eq. (1) at $q = 0$.

Equivalently, the MF wave functions can be characterized by the so-called singularity spectra $f^s(\alpha_q)$ related to Δ_q^x by a Legendre transform: $f^s(\alpha_q^x) = (\alpha_q^x - 2) q - \Delta_q^x + d_s$, $\alpha_q^x - 2 = d\Delta_q^x/dq$, and $d_s = 2, d_s = 1$. The exponent α_q^x describes the scaling of typical wave functions: $\ln|\psi(r)|^2 \sim -\alpha_q^x \ln L$, as can be seen by taking the q derivative in Eq. (1) at $q = 0$.

Equivalently, the MF wave functions can be characterized by the so-called singularity spectra $f^s(\alpha_q)$ related to Δ_q^x by a Legendre transform: $f^s(\alpha_q^x) = (\alpha_q^x - 2) q - \Delta_q^x + d_s$, $\alpha_q^x - 2 = d\Delta_q^x/dq$, and $d_s = 2, d_s = 1$. The exponent α_q^x describes the scaling of typical wave functions: $\ln|\psi(r)|^2 \sim -\alpha_q^x \ln L$, as can be seen by taking the q derivative in Eq. (1) at $q = 0$.

Equivalently, the MF wave functions can be characterized by the so-called singularity spectra $f^s(\alpha_q)$ related to Δ_q^x by a Legendre transform: $f^s(\alpha_q^x) = (\alpha_q^x - 2) q - \Delta_q^x + d_s$, $\alpha_q^x - 2 = d\Delta_q^x/dq$, and $d_s = 2, d_s = 1$. The exponent α_q^x describes the scaling of typical wave functions: $\ln|\psi(r)|^2 \sim -\alpha_q^x \ln L$, as can be seen by taking the q derivative in Eq. (1) at $q = 0$.
Besides its conjectured relevance to the IQH transition, the above-mentioned WZ theory is known to describe transport properties of a disordered electronic system in a different universality class ([14, 18] (the chiral unitary ‘Gade-Wegner’ class AIII of [20, 21]) which possesses an additional discrete (chiral) symmetry [23], not present in microscopic models for the IQH transition. Well-known microscopic realizations of field theories in class AIII are random bipartite hopping models, and certain network models [17, 18, 19]. The theory possesses a line of fixed points, with continuously varying critical properties parametrized by the critical longitudinal DC conductivity. (It was argued in Ref. [19] that for a particular value of this continuous parameter the WZ theory would provide a description of the IQH transition.)

In this paper we obtain two kinds of results. First, we provide results of extensive numerical work on the MF exponents at the IQH transition both at a boundary (Δ^s_q) and in the bulk (Δ^b_q). Based on these numerical results quadratic behavior in q is ruled out for both quantities. Deviations from the parabolic form (3) are found to be much larger in the MF exponents Δ^s_q at a boundary. Here it is important to note that in complete analogy to the bulk, the above conjectures would also yield a quadratic dependence on q of the boundary MF exponents Δ^s_q. We further determine the ratio Δ^s_q/Δ^b_q over a range of q. Accounting for this ratio is an important constraint on any proposed critical theory for the transition.

Secondly, we demonstrate analytically the exact parabolicity of boundary spectra, not for the chiral unitary class AIII, but for the related time-reversal invariant version, the chiral orthogonal ‘Gade-Wegner’ class BDI [17, 18, 19, 20]. We expect such parabolicity to also hold in the chiral unitary symmetry class.

We begin with the numerical part. Here, we study the multifractality of critical wave functions in a way similar to Ref. [3], with the goal of numerically determining the rescaled anomalous exponents

$$\gamma^x_q = \Delta^x_q/q(1-q), \quad (4)$$

both for $x = s$ (boundary) and $x = b$ (bulk).

For the case of boundary exponents we consider the critical Chalker-Coddington network model (CCNM) [23] with $4L^2$ links placed on a cylinder. The dynamics of wave functions on links of the network is governed by a unitary evolution operator U. For each disorder realization, we numerically diagonalize U and retain one critical wave function whose eigenvalue is closest to 1. The largest system size we studied was $L = 180$, and the ensemble average was taken over 3×10^5 samples for $L = 50, 60$, 5×10^3 samples for $L = 80$, and 2×10^5 samples for $L = 120, 180$.

We obtain the anomalous dimensions Δ^b_q from Eq. (1). The boundary wave function coarse-grained over each plaquette along the boundary, is substituted into the left-hand side of Eq. (4), where the overline denotes ensemble and spatial averages along the boundary. Taking the logarithm, we numerically obtain $D^q_s(L) \equiv (q \ln |\psi(r)|^2 - \ln |\psi(r)|^2)/\ln L = \Delta^s_q - \ln C^s_q(L)/\ln L$, and plot this quantity as a function of $1/\ln L$ in Fig. 1. We see that corrections to scaling are significant for small systems ($L \lesssim 30$). Therefore, we used our numerical data for $L \geq 50$ only to extract γ^s_q by linear fitting.

Independently, we numerically obtain α^s_0 and f^* from $\langle |\psi(r)|^2 \ln |\psi(r)| \rangle/\langle |\psi(r)|^2 \rangle \sim -\alpha^s_0 \ln L$, and $\ln |\psi(r)| \sim f^*(\alpha^s_0) - \alpha^s_0 q - d_s \ln L$, using our numerical data for $L \geq 50$. For example, the exponent α^s_0 is obtained by linear fitting (Fig. 1). $A^s \equiv -\ln |\psi(r)|^2/\ln L = \alpha^s_0 + \text{const}./\ln L$, which yields $\alpha^s_0 = 2.386 \pm 0.004$.

We show in Fig. 2(a) the rescaled boundary anomalous dimension γ^s_q (red filled circles) obtained from this analysis. We see clearly that γ^s_q is not constant, implying that the boundary MF spectrum Δ^s_q is not parabolic. The change in γ^s_q over the interval $0 < q \leq 1/2$ is about $4 \sim 5\%$ and is significantly larger than the error bars. This provides the strongest numerical evidence against the parabolicity of the MF exponents.

Shown in the same figure by blue open circles is the mirror image of γ^s_q with respect to $q = 1/2$, γ^{1-q}_q. We see that the symmetry relation (3) is satisfied within error bars for $0 \lesssim q \lesssim 1$. The rescaled anomalous dimension γ^s_q approaches $\alpha^s_0 - 2$ (the horizontal line) at $q = 0, 1$, indicating that the two independent calculations of α^s_0 and Δ^s_q are consistent.

We have also computed the bulk anomalous dimension Δ^b_q using the CCNM on a torus. In this case the overline in Eq. (1) implies both the ensemble and the spatial average over the whole torus. Wave functions are coarse-grained on each plaquette. We have employed the same fitting procedure as in the boundary case. The biggest system size we examined for the bulk analysis is $L = 270$. The number of samples over which we took the average is 5×10^5 for $L = 50$, 3×10^5 for $L = 60, 80$, 2×10^5 for $L = 100$.
FIG. 2: (Color online) (a) Rescaled boundary MF exponents \(\gamma_q^s \) and \(\gamma_{1-q}^b \). The curve is \(0.370 + 0.042(q - 1/2)^2 \), obtained by fitting the data for \(\gamma_q^s \) in \(0 < q < 1 \) to a parabolic form. The horizontal solid line shows \(\alpha^s_0 - 2 = 0.386 \pm 0.004 \) with error bars indicated by dashed lines, which is consistent with \(\lim_{q \to 0} \gamma_q^s \). (b) Rescaled bulk MF exponents \(\gamma_q^b \) and \(\gamma_{1-q}^b \). The curve is \(0.2599 + 0.0065(q - 1/2)^2 \) obtained by fitting the data for \(\gamma_q^b \) in \(0 < q < 1 \) to a parabolic form. The horizontal solid line shows \(\alpha^b_0 - 2 = 0.2617 \pm 0.0006 \) with error bars indicated by dashed lines. (c) Ratios \(\gamma_q^s/\gamma_q^b \) and \(\gamma_{1-q}^s/\gamma_{1-q}^b \). As above, the curve is obtained from the parabolic fits for \(\gamma_q^s,b \), which amounts to quartic approximations for \(\Delta_q^s,b \).

\[
L = 120, 4 \times 10^4 \text{ for } L = 180, \text{ and } 2 \times 10^4 \text{ for } L = 270.
\]

Figure 3(b) shows the exponents \(\gamma_q^s,b \), together with their mirror image. The symmetry relation (2) is again satisfied for \(0 \leq q \leq 1 \) within error bars, which provides confirmation that our results are reliable. We see clearly that \(\gamma_q^b \) has \(q \) dependence, although it is weaker than that of \(\gamma_q^s \); compare the vertical scales of Fig. 2(a) and (b).

The ratio \(\gamma_q^s/\gamma_q^b \) is shown in Fig. 3(c) and is seen to be clearly dependent on \(q \). Any candidate theory for the IQH transition needs to be consistent with this ratio, and in particular its dependence on \(q \). (Note that for a free field this ratio would be equal to 2, and independent of \(q \).)

The ratio \(\gamma_q^s/\gamma_q^b \) is shown in Fig. 3(c) and is seen to be clearly dependent on \(q \). Any candidate theory for the IQH transition needs to be consistent with this ratio, and in particular its dependence on \(q \). (Note that for a free field this ratio would be equal to 2, and independent of \(q \).)
tion of q. (iii) If one combines (i) and (ii), and if one
assumes $X_q = x_q$ (following the conjectured description
of the IQH transition by the WZ model), then the wave
function exponents Δ_q at the IQH transition would be
quadratic functions of q, as in Eq. (2).

As already mentioned, this WZ theory is known to de-
scribe transport properties of the chiral unitary class AII
[17-19], lacking time-reversal symmetry. Below we
demonstrate the correctness of the conjecture made in
item (ii) above, at a boundary, and for the time-reversal
invariant version of the AIII model, the chiral orthogonal
class BDI [17-20]. Just as its cousin with broken time-
reversal symmetry, the chiral orthogonal theory also pos-
sesses a line of fixed points. Transport properties along
this line can be described [18] by the perturbation of the
KM point of the $\text{psl}(2|2)$-invariant WZ theory described
above, when the field ϕ_{ab} is replaced by the Kronecker
delta, $\phi_{ab} \rightarrow \delta_{ab}$. Denote the corresponding coupling constant by λ_t. Consider the theory in the upper half
plane where the system simply ends at the boundary, and
an operator of scaling dimension (ρ ‘conformal weight’)
$x^\rho_q(\lambda_t)$ on the boundary. At the KM point, where the
perturbation vanishes, $\lambda_t = 0$, such an operator is described
by a representation ρ of the global $\text{psl}(2|2)$ symmetry. It
is known [23] that $x^\rho_q(\lambda_t = 0) = C^{(2)}_\rho/k$, where $C^{(2)}_\rho$
is the quadratic Casimir invariant in the representation ρ.
It turns out to be straightforward [28] to compute the change of the scaling dimension, order by order in the
bulk coupling constant λ_t, yielding a geometric series.
The result is simply $x^\rho_q(\lambda_t) = C^{(2)}_\rho/(k + \lambda_t)$. Note that
for the (continuous series) representation ρ of $\text{psl}(2|2)$ in
which the q-th moment of the PCC at the IQH transition
transforms, one has $C^{(2)}_\rho = q(1 - q)$. This proves our
claim that the spectrum of scaling dimensions $x^\rho_q \rightarrow x^s_q$
of corresponding boundary operators in symmetry class
BDI is a strictly quadratic function of q.

In summary, our numerical results clearly demonstrate
that both, the boundary and the bulk MF spectra, Δ^b_q
and Δ^s_q, significantly deviate from parabolicity, and that
their q-dependent ratio is significantly different from 2.
(These conclusions were recently also reached, independ-
ently, by Evers, Mildenberger, and Mirlin [22].) These
results for the bulk as well as the boundary MF spectra
impose important constraints on any analytical theory
for the IQH plateau transition. Furthermore, we have
demonstrated analytically exact parabolicity of related
boundary spectra in the 2D chiral orthogonal ‘Gade-
Wegner’ symmetry class BDI.

We thank F. Evers, A. Mildenberger, and A. D. Mirlin
for helpful discussions and for sharing their data prior to
publication. We are grateful to T. Ohutsuki for his help-
ful suggestions on numerical algorithm. This work was
partly supported by the Next Generation Super Com-
puting Project, Nanoscience Program and a Grant-in-
Aid for Scientific Research (No. 16GS0219) from MEXT,
Japan (HO and AF), NSF Career award DMR-0448820,
NSF MRSEC DMR-0213745 (IAG), and DMR- 0706140
(AWWL). Numerical calculations were performed on the
RIKEN Super Combined Cluster System.

* Present address: Department of Physics, Kyoto University,
Sakyo-ku, Kyoto 606-8502, Japan

[1] K. v. Klitzing, G. Dorda, and M. Pepper, Phys. Rev.
Lett. 45, 494 (1980).
[2] R. E. Prange and S. M. Girvin (eds.), The quantum Hall
effect (Springer-Verlag, New York, 1990).
[3] H. Levine, S. B. Libby, and A. M. M. Pruisken, Phys.
Rev. Lett. 51, 1915 (1983); D. E. Khmelnitskii, JETP
Lett. 38, 552 (1983).
[4] H. Obuse et al., Phys. Rev. Lett. 98, 156802 (2007);
Physica E 40, 1404 (2008).
[5] M. R. Zirnbauer, arXiv:hep-th/9905054.
[6] M. J. Bhaseen et al., Nucl. Phys. B580, 688 (2000); A.
M. Tsvelik, Phys. Rev. B 75, 184201 (2007).
[7] A. LeClair, arXiv:0710.3778v1.
[8] M. Bershadsky, S. Zohov, and A. Vaintrob, Nucl.
Phys. B559, 205 (1999); N. Berkovits, C. Vafa, and E. Witten,
J. High Energy Phys. 03 (1999) 018.
[9] F. Evers and A. D. Mirlin, arXiv:0707.4378.
[10] F. Wegner, Z. Phys. B 36, 209 (1980); B. Duplantier and
A. W. W. Ludwig, Phys. Rev. Lett. 66, 247 (1991).
[11] A. R. Subramaniam et al., Phys. Rev. Lett. 96, 126802
(2006).
[12] A. D. Mirlin et al., Phys. Rev. Lett. 97, 046803 (2006).
[13] F. Evers, A. Mildenberger, and A. D. Mirlin, Phys.
Rev. B 64, 241303(R) (2001).
[14] R. Kless and M. R. Zirnbauer, Phys. Rev. Lett. 86, 2094
(2001).
[15] A. W. W. Ludwig et al., Phys. Rev. B 50, 7526 (1994).
[16] C. Mudry, C. Chamon, and X.-G. Wen, Nucl. Phys.
B466, 383 (1996).
[17] R. Gade and F. Wegner, Nucl. Phys. B360, 213 (1991); R.
Gade, Nucl. Phys. B398, 499 (1993).
[18] S. Guruswamy, A. LeClair, and A. W. W. Ludwig, Nucl.
Phys. B583, 475 (2000).
[19] M. Bocquet and J. T. Chalker, Phys. Rev. B 67, 054204
(2003).
[20] M. R. Zirnbauer, J. Math. Phys. 37, 4986 (1996).
[21] A. Altland and M. R. Zirnbauer, Phys. Rev. B 55, 1142
(1997).
[22] J. T. Chalker and P. D. Coddington, J. Phys. C 21, 2665
(1988).
[23] J. Cardy, Nucl. Phys. B240, 514 (1984).
[24] V. G. Knizhnik and A. B. Zamolodchikov, Nucl. Phys.
B247, 83 (1984).
[25] For a recent account, see: G. Götz, T. Quella, and V.
Schomerus, J. High Energy Phys. 03 (2007) 003.
[26] T. Quella, V. Schomerus, and T. Creutzig, arXiv:0712.3549.
[27] M. Janssen, M. Metzler, and M. R. Zirnbauer, Phys. Rev.
B 59, 15836 (1999).
[28] The simplicity of this kind of perturbation expansion in
a related context was observed in Ref. [26].
[29] F. Evers, A. Mildenberger, and A. D. Mirlin, Phys. Rev.
Lett. 101, 116803 (2008).