The number of trees in a graph

Dhruv Mubayi ∗ Jacques Verstraëte †

November 24, 2015

Abstract

Let T be a tree with t edges. We show that the number of isomorphic (labeled) copies of T in a graph $G = (V, E)$ of minimum degree at least t is at least

$$2|E| \prod_{v \in V} (d(v) - t + 1)^{\frac{(t-1)d(v)}{2|E|}}.$$

Consequently, any n-vertex graph of average degree d and minimum degree at least t contains at least

$$nd(d - t + 1)^{t-1}$$

isomorphic (labeled) copies of T. This answers a question of [3] (where the above statement was proved when T is the path with three edges) while extending an old result of Erdős and Simonovits [4].

1 Introduction

Let T be a t-edge tree and $G = (V, E)$ be a graph with minimum degree at least t. In this note we consider the question of how many (isomorphic) copies of T we can find in G. More precisely, if $V(T) = \{x_1, \ldots, x_{t+1}\}$, then we wish to count the number of injections $\phi : V(T) \to V$ such that $\phi(u)\phi(v) \in E$ for every edge uv of T. This is a basic question in combinatorics, for example, the simple lower bound $\sum_{v \in V} t!(\frac{d(v)}{t})$ in the case when T is a star is the main inequality needed for a variety of fundamental problems in extremal graph theory.

A natural way to count walks of length t in a graph G is to add up the entries of A^t, where A is the adjacency matrix of G. The Blakley-Roy [2] inequality uses linear algebra to show that the number of walks of length t is at least nd^t in any graph of average degree d with n vertices (in fact the inequality is a more general statement about inner products). Another approach to counting walks, and more generally homomorphisms of trees, was used by Sidorenko, using an analytic method and the tensor power trick [5]. Erdős and Simonovits [4] proved that in a graph with average degree d, the number of walks of length t that repeat a vertex is a negligible proportion of the total number

∗Department of Mathematics, Statistics, and Computer Science, University of Illinois, Chicago, IL, 60607 USA. Research partially supported by NSF grant DMS-1300138. Email: mubayi@uic.edu

†Department of Mathematics, University of California, San Diego, CA 92093-0112. Research supported by NSF grant DMS-1362650. Email: jacques@ucsd.edu
of walks of length t as $d \to \infty$. Consequently, their result implies that in a graph of average degree d with n vertices there are at least $(1 - o(1))d^n \frac{n}{2}$ paths with t edges as $d \to \infty$. On the other hand, in [3] the following lower bound for the number of homomorphic copies of T in a graph $G = (V, E)$ is proved, where a homomorphic copy is a (not necessarily injective) function $\phi : V(T) \to V$ such that $\phi(u)\phi(v) \in E$ for every edge uv of T:

$$2|E| \prod_{v \in V} \frac{t-1\cdot d(v)}{2|E|}. \quad (1)$$

Combining (1) with the result of [4], we obtain that the number of isomorphic copies of a path T in G is at least

$$(1 - o(1))2|E| \prod_{v \in V} \frac{t-1\cdot d(v)}{2|E|}. \quad (2)$$

The result of Erdős and Simonovits [4] does not give a precise expression for the $o(1)$ error term above (although presumably it could be worked out from their proof).

In [3] the following more precise lower bound was given in the case when $T = P_3$, the path with three edges, and G has minimum degree at least 3:

$$2|E| \prod_{v \in V} (d(v) - 2)^{2d(v)} \quad (2)$$

The authors in [3] asked whether a bound similar to (1) and (2) could be proved for the number of isomorphic copies of a tree T in G assuming that G has sufficiently large minimum degree. The spirit of the question was to obtain a bound that is a convex function of the degrees of the vertices (and in particular whose unique minimum occurs when G is regular). Here we provide such a bound that generalizes (2).

Theorem 1. Let T be a tree with t edges and G be an n-vertex graph with average degree d and minimum degree at least t. Then the number of isomorphic (labeled) copies of T in G is at least

$$nd \prod_{v \in V} (d(v) - t + 1)^{\frac{(t-1)\cdot d(v)}{nd}}.$$

A consequence of this is the following lower bound in terms of the average degree in G.

Corollary 2. Let T be a tree with t edges and G be an n-vertex graph with average degree d and minimum degree at least t. Then the number of isomorphic (labeled) copies of T in G is at least

$$nd(d - t + 1)^{t-1}.$$

Indeed, Corollary 2 follows immediately from Theorem 1 by applying Jensen’s inequality to the function $f(x) = (t-1)x\log(x-t+1)$ which is convex for $x \geq t$. Note also that the Corollary is nearly sharp as shown by complete graphs. Indeed, if G is the n vertex graph of disjoint cliques, each with $d+1$ vertices and $d \geq t$, then the number of copies of T in G is $nd(d-1) \cdots (d-t+1)$.

The proof of Theorem 1 uses the ideas first introduced by Alon, Hoory and Linial [1], and subse-
2 Proof of Theorem [1]

We start with a graph G of minimum degree at least t and a tree T with t edges. Let Ω be the set of all isomorphic copies of T in G. In other words, Ω is the set of injections $\xi : V(T) \to V(G)$ such that $\xi(u)\xi(v) \in E(G)$ for every $uv \in E(T)$. Label the vertices of T by first fixing a leaf x_1 and then labeling vertices x_2, x_3, \ldots such that for any $j > 1$ there is a unique $f(j) < j$ such that $x_jx_{f(j)} \in E(T)$. We could, for example, label the vertices using Breadth-First Search or Depth-First Search. Let us call such a labeling of T good.

We consider oriented isomorphisms $\phi : V(T) \to V(G)$ which can be constructed as follows. Start with an arbitrary (directed) edge $v_1v_2 \in E(G)$ and map x_1 to v_1 and x_2 to v_2. Once $x_1, x_2, \ldots, x_i \in V(T)$ are embedded as $\omega_1, \omega_2, \ldots, \omega_i \in V(G)$, i.e., $\phi(x_j) = \omega_j$ for $j \leq i$, then choose an arbitrary neighbor ω_{i+1} of $\omega_{f(i+1)}$ outside $\{\omega_1, \omega_2, \ldots, \omega_i\}$ and embed x_{i+1} as ω_{i+1}. This gives us a natural probability on the sample space Ω of isomorphic copies of T in G, with associated probability measure \mathbb{P}. For convenience, given $\omega \in \Omega$, we let ω_i denote the ith vertex of ω in the embedding. This probability measure is defined on a specific isomorphic copy $\omega \in \Omega$ of T in G by

$$\mathbb{P}(\omega) = \frac{1}{nd^t} \prod_{i=2}^{t} \frac{1}{|N(\omega_{f(i+1)}) \setminus \{\omega_1, \omega_2, \ldots, \omega_i\}|}.$$

Since $|N(\omega_{f(i+1)}) \setminus \{\omega_1, \omega_2, \ldots, \omega_i\}| \geq d(\omega_{f(i+1)}) - t + 1$,

$$\mathbb{P}(\omega) \leq \frac{1}{nd^t} \prod_{i=2}^{t} \frac{1}{d(\omega_{f(i+1)}) - t + 1} := p(\omega).$$

Let d be the average degree of G and n the number of vertices. Then, by the inequality of arithmetic and geometric means (using that $\sum_{\omega} \mathbb{P}(\omega) = 1$),

$$|\Omega| \geq \prod_{\omega \subset G} \mathbb{P}(\omega)^{-p(\omega)} \geq \prod_{\omega \subset G} p(\omega)^{-p(\omega)} = nd \prod_{\omega \subset G} \prod_{i=2}^{t} (d(\omega_{f(i+1)}) - t + 1)^{p(\omega)}.$$

Interchanging the products we get

$$|\Omega| \geq nd \prod_{i=2}^{t} \prod_{\omega \subset G} (d(\omega_{f(i+1)}) - t + 1)^{p(\omega)}.$$

A term in the product above of the form $d(v) - t + 1$ appears when v is the ith vertex of some $\omega \in \Omega$, for some $i : 2 \leq i \leq t$. Therefore, we have

$$|\Omega| \geq nd \prod_{i=2}^{t} \prod_{v \in V} (d(v) - t + 1)^{g_i(v)} \quad (3)$$
where
\[g_i(v) := \sum_{\omega \subseteq G, \omega_i = v} p(\omega). \]

The key part of the proof is to show
\[g_i(v) \geq \frac{d(v)}{nd}. \tag{4} \]

We note that here is where our proof differs from the previous works \[1, 3\]. Those papers dealt with homomorphisms instead of isomorphisms, so there was no need to avoid previously embedded vertices of \(T \), and the corresponding probability distribution in that setting is
\[\mathbb{P}'(\omega) = \frac{1}{nd} \prod_{i=2}^{t} \frac{1}{d(\omega_{f(i+1)})}. \]

Moreover, if we use the probability measure \(\mathbb{P}' \) (instead of the function \(p \) which is not a probability measure), then \(4 \) actually holds with equality essentially because the Markov chain associated with the distribution \(\mathbb{P}' \) is reversible. This is not true in our case, and there are constructions showing that in our situation, \(g_i(v) > \frac{d(v)}{nd} \) is possible. Consequently, the argument showing \(4 \) in our situation is more delicate.

To this end, we will prove \(4 \) by proving the following stronger statement by induction on \(t \):

Given a \(t \)-edge tree \(T \) with good labeling \(x_1, \ldots, x_{t+1} \) and associated function \(f \), an \(n \)-vertex graph \(G = (V, E) \) with average degree \(d \), and \(1 \leq i \leq t+1 \), we have
\[g_i(v) \geq \frac{d(v)}{nd}. \]

Note that we have included \(i = 1 \) and \(i = t+1 \) in this statement as this will be needed in the induction argument that we will use.

The case \(t = 1 \) is trivial (for both \(i = 1 \) and \(i = 2 \)) so assume that \(t > 1 \). Let us first assume that \(i < t+1 \). Let \(T' = T - x_{t+1} \) be the tree obtained from \(T \) by deleting the leaf \(x_{t+1} \), let \(\omega^- = \omega_1, \ldots, \omega_t \) and \(N = N(\omega_{f(t+1)}) \setminus \{\omega_1, \ldots, \omega_t\} \) so that \(|N| \geq d(\omega_{f(t+1)}) - t + 1 \). Then
\[
\begin{align*}
g_i(v) &= \sum_{\omega^-: \omega_i = v} \sum_{\omega_{t+1} \in N} p(\omega) \\
&\geq \sum_{\omega^-: \omega_i = v} (d(\omega_{f(t+1)}) - t + 1)p(\omega) \\
&\geq \sum_{\omega^-: \omega_i = v} \frac{1}{nd} \prod_{i=2}^{t} \frac{1}{d(\omega_{f(i+1)})} \cdot t + 2.
\end{align*}
\]

Finally, we note that the rightmost expression is precisely \(g_i(v) \) for the tree \(T' \) which has \(t - 1 \) edges. So by induction it is at least \(\frac{d(v)}{nd} \) as required.

We now suppose that \(i = t+1 \). Given a copy \(\omega = \omega_1, \ldots, \omega_{t+1} \) of \(T \) in \(G \) with \(\phi(x_i) = \omega_i \) as usual, let us relabel the vertices with \(z = z_1, \ldots, z_{t+1} \) such that \(z_1 = \omega_{t+1}, z_{t+1} = \omega_1, \) and \(z \) is a good labeling of \(\omega = \phi(T) \). Note that this is clearly possible as we may just produce a good labeling of
ω beginning with ω_{t+1} and ending with ω_1 (recall that x_1 is a leaf of T). As before, define

\[p(z) := \frac{1}{nd} \prod_{j=2}^{t} \frac{1}{d(z_{f(j+1)}) - t + 1}. \]

Now we make the crucial observation that \(p(\omega) = p(z) \). To see this, observe that

\[p(\omega) = \frac{1}{nd} \prod_{j=2}^{t} \frac{1}{d(\omega_{f(j+1)}) - t + 1} = \frac{1}{nd} \prod_{j=2}^{t} \left(\frac{1}{d(\omega_j) - t + 1} \right)^{d_T(x_j)-1} = p(z), \]

as each term is counted once for each child of the corresponding vertex as the good labeling is constructed. As \{x_2, \ldots, x_t\} = \{\omega_2, \ldots, \omega_t\}, we also obtain

\[p(\omega) = \frac{1}{nd} \prod_{j=2}^{t} \left(\frac{1}{d(z_j) - t + 1} \right)^{d_T(x_j)-1} = \frac{1}{nd} \prod_{j=2}^{t} \left(\frac{1}{d(z_j) - t + 1} \right)^{d_T(x_{\pi(j)})-1} = p(z), \]

where \(\pi \) is the permutation on \(t - 1 \) elements such that \(z_j = x_{\pi(j)} \) for all \(2 \leq j \leq t \). Consequently,

\[g_{t+1}(v) = \sum_{\omega : \omega_{t+1} = v} p(\omega) = \sum_{z : z_1 = v} p(\omega) = \sum_{z : z_1 = v} p(z) = g_1(v) \geq \frac{d(v)}{nd}. \]

Inserting this into (3) we get

\[|\Omega| \geq nd \prod_{v \in V} (d(v) - t + 1) \frac{\Pi_{v \in V} \left(d(v) - k + 1 \right)}{\Pi_{v \in V} \left(d(v) - t + 1 \right)} \cdot \frac{1}{nd}. \]

This proves the theorem.

3 Concluding Remarks

- If the maximum degree of the subgraph induced by any tree with \(t \) edges is \(k \), then the above proof gives a better bound:

Corollary 3. Fix a tree \(T \) with \(t \) edges. Let \(G = (V, E) \) be an \(n \)-vertex graph such that copy of \(T \) in \(G \) induces a subgraph of maximum degree at most \(k \), and such that \(G \) has minimum degree at least \(k \). Then the number of isomorphic copies of \(T \) in \(G \) is at least

\[2|E| \prod_{v \in V} (d(v) - k + 1) \frac{\Pi_{v \in V} \left(d(v) - t + 1 \right)}{\Pi_{v \in V} \left(d(v) - t + 1 \right)}. \]

- We were not able to decide if the following statement is true (even for paths):

 Fix a tree \(T \) with \(t \) edges. The number of isomorphic labeled copies of \(T \) in an \(n \)-vertex graph of large enough minimum degree and average degree \(d \) is at least \(nd(d-1) \cdots (d-t+1) \).
This statement if true would be best possible, since a graph consisting of disjoint cliques of order $d + 1$ has average degree d and exactly $nd(d - 1) \cdots (d - t + 1)$ isomorphic copies of any tree with t edges.

References

[1] N. Alon, S. Hoory, and N. Linial, The Moore Bound for Irregular Graphs, Graphs Combin. 18 (2002), no. 1, 53–57.
[2] G. Blakley and P. Roy, Hölder type inequality for symmetrical matrices with non-negative entries, Proc. Amer. Math. Soc. (1965) 16, 1244–1245.
[3] D. Dellamonica Jr., P. Haxell, T. Łuczak, D. Mubayi, B. Nagle, Y. Person, V. Rödl, M. Schacht, Tree-minimal graphs are almost regular, Journal of Combinatorics 3 (2012), no. 1, 4962.
[4] P. Erdős and M. Simonovits, Compactness results in extremal graph theory, Combinatorica 2 (1982) no. 3, 275–288.
[5] A. F. Sidorenko, Inequalities for functionals generated by bipartite graphs, Diskretnaya Matematika 3 (1991), 50-65 (in Russian), Discrete Math. Appl. 2 (1992), 489-504 (in English).