Usefulness of 3D sonography of the central nervous system in neonates and infants in the assessment of intracranial bleeding and its consequences when examined through the anterior fontanelle

Edyta Zielonka-Lamparska, Andrzej Paweł Wieczorek

Zakład Radiologii Dziecięcej, Uniwersytet Medyczny w Lublinie, Lublin, Polska

Correspondence: Zakład Radiologii Dziecięcej, Uniwersytet Medyczny w Lublinie, ul. Chodźki 2, 20-097 Lublin, e-mail: rtg@dsk.lublin.pl

Streszczenie

Ultrasonografia centralnego układu nerwowego, a szczególnie obrazowanie przez cień mięczko przednie, ze względu na możliwość wykonania badania przy łóżku pacjenta lub też w inkubatorze jest najczęściej stosowaną metodą diagnostyczną u noworodków i niemowląt z problemami neurologicznymi. Jednak pomimo powszechnego zastosowania metoda ta ma pewne ograniczenia. Są nimi płaszczyzny przekroju struktur mózgowia możliwe do uzyskania w obrazowaniu przez cień mięczko przednie. Celem pracy jest ocena przydatności ultrasonografii trójwymiarowej centralnego układu nerwowego u noworodków i niemowląt w ocenie krwawienia wewnątrzczaszkowego i jego następstw w badaniu przez ciemięczko przednie. Badaniami objęto 283 pacjentów leczonych w Dziecięcym Szpitalu Klinicznym Uniwersytetu Medycznego w Lublinie, u których istniały wskazania do badania przecięmięczkowego mózgu. Badanie ultrasonograficzne centralnego układu nerwowego w opcji dwu- i trójwymiarowej przeprowadzono u 283 pacjentów w wieku od 1 dnia do 18 miesięcy (średnio 2 miesiące). W badaniu ultrasonograficznym centralnego układu nerwowego otrzymano 254 wyniki badań mające wartość diagnostyczną. Liczba zmian patologicznych wykrywanych w badaniu ultrasonograficznym była znamienie statystycznie większa (p = 0,007) w badaniu ultrasonograficznym trójwymiarowym. W badaniach własnych największa czułość i istotna statystycznie przewaga metody trójwymiarowej nad dwuwymiarową dotyczyła krwawień do układu komorowego i krwawień wewnątrzmięczkowych. Nowe techniki badania ultrasonograficznego, a wśród nich trójwymiarowego, niewątpliwie zwiększyły możliwości diagnostyczne ultrasonografii, zachowując przy tym wszystkie jej zalety.
Usefulness of 3D sonography of the central nervous system in neonates and infants in the assessment of intracranial bleeding and its consequences when examined through the anterior fontanelle

Abstract
Due to the possibility to examine at the patient bedside or incubator, ultrasound imaging of the central nervous system, particularly through the anterior fontanelle, is the most common diagnostic examination performed in neonates and infants with neurological problems. Despite its common application, this method has certain limitations. These limitations are associated with cross-sections of the cerebral structures that can be obtained when examining through the anterior fontanelle. The aim of the paper was to assess the usefulness of three dimensional sonography of the central nervous system in neonates and infants in the assessment of intracranial bleeding and its consequences when examined through the anterior fontanelle. The study enrolled 283 patients treated at the Pediatric Teaching Hospital at the Medical University of Lublin in whom a transfontanelle cerebral examination was indicated. The two- and three-dimensional ultrasound examinations of the central nervous system were conducted in 283 patients aged from 1 day to 18 months (mean age: 2 months). 254 three-dimensional examinations were of diagnostic value. The number of detected pathological lesions was higher in a statistically significant way (p = 0.007) in the three-dimensional ultrasound examination. In the authors’ own studies, the highest sensitivity and statistically significant superiority of the three-dimensional method over the two-dimensional one referred to detecting intraventricular or intracerebral hemorrhages. Novel techniques of ultrasound imaging, including the three-dimensional one, have undoubtedly increased the diagnostic possibilities of sonography and, at the same time, retained all its advantages.

Wstęp
Ultrasonografia (USG) centralnego układu nerwowego (CUN), a szczególnie obrazowanie przez ciemieniakowo przednie, jest najczęściej stosowaną metodą diagnostyczną u noworodków i niemowląt z obciążonym wywiadem okołoporodowym, wcześniątwym, niską masą urodzeniową, objawami infekcji, zaburzeniami neurologicznymi czy zaburzeniami układu krążenia krwi(1).

Badanie ultrasonograficzne jest nieinwazyjną metodą obrazowania, umożliwiającą diagnostykę przy łóżku pacjenta lub w inkubatorze. Pozwala zatem na uniknięcie transportu na inny oddział lub do innego szpitala, jak ma to miejsce w przypadku tomografii komputerowej (CT) lub – mniej dostępnego – rezonansu magnetycznego (MRI). Badanie USG jest również kilkakrotnie tańsze od wyżej wspomnianych(2). Ze względu na swoje liczne zalety ultrasonografia stała się najczęściej wybieraną metodą oceny CUN na oddziałach położnico-noworodkowych.

Zmianami patologicznymi najczęściej diagnozowanymi w badaniu USG CUN są: krwawienia wewnątrzmózgowy lub dokomorowe, poszerzenie komór, leukomalacja okołomorowa, malformacje naczyńowe, inne wady rozwojowe CUN, rzadziej guzy mózgu(2,3). Pomimo powszechnego zastosowania metoda ta ma jednak pewne ograniczenia. Są nimi płaszczyzny przekroju struktur mózgowia możliwe do uzyskania w obrazowaniu przez ciemieniakowo przednie4. Uzyskanie wielu optymalnych dla postawienia prawdziwej diagnozy projekcji (takich jak przekroje skośne i osiowe) jest niewielu znacznie utrudnione lub wręcz niemożliwe.

Obrazowanie trójwymiarowe (3D) pozwala uniknąć ograniczeń konwencjalnej ultrasonografii (2D) – badany obiekt jest przedstawiany w przestrzeni w trzech wzajemnie do siebie prostopadłych płaszczyznach.

Introduction
Ultrasound imaging (US) of the central nervous system (CNS), particularly through the anterior fontanelle, is the most common diagnostic examination performed in neonates and infants with significant perinatal history, prematurity, low birth weight, symptoms of infections, neurological disorders or disorders in the coagulation system(1).

Sonography is a non-invasive method of imaging enabling diagnosis at the patient’s bedside or incubator. Thus, it does not necessitate transportation to a different ward or to a different hospital, as it may happen in the case of computed tomography (CT) or, a less available, magnetic resonance imaging (MRI). The US examination is also several times cheaper than the methods mentioned above(2). Due to its numerous advantages, sonography became the most frequently selected method for the assessment of the CNS in obstetric and neonatal departments.

The most common pathologies in the CNS diagnosed by means of US examinations are: intracerebral or intraventricular hemorrhages, ventricular extension, periventricular leukomalacia, vascular malformations and other developmental anomalies of the CNS, more rarely – brain tumors(2,3). However, despite its common application, this method has certain limitations. They are connected with cross-sections of the cerebral structures that can be obtained when examining through the anterior fontanelle(4). Obtaining optimal slices for establishing a correct diagnosis (such as oblique and axial views) is sometimes hindered or even impossible.

Three-dimensional (3D) imaging allows for jumping over the shadows of conventional two-dimensional (2D) sonography – the examined structure is presented in three perpendicular planes.
Wykonanie badania USG w opcji 3D jest mniej czasochłonne od tradycyjnego. Pojedyncza akwizycja odbywa się automatycznie i trwa najwyżej kilka sekund. Ma to szczególne znaczenie w diagnostyce chorych w ciężkim stanie oraz podatnych na wychłodzenie pacjentów leżących w inkubatorze.

Zebrałe podczas badania dane trójwymiarowe można następnie edytować i opracować w sposób umożliwiający jak najlepsze uwidocznienie interesującej struktury lub zmiany patologicznej. Odbywa się ono na ekranie monitora aparatu ultrasonograficznego lub na dodatkowej roboczej stacji diagnostycznej, już bez udziału pacjenta. Możliwe są również pomiary objętości oparte na rzeczywistych danych objętościowych\(^{(5-9)}\).

Opracowywanie danych trójwymiarowych \textit{(postprocessing)} jest najbardziej czasochłonnym etapem trójwymiarowego badania ultrasonograficznego.

Nowoczesna ultrasonografia 3D nie jest jednak pozbawiona wad – ściśle zależy od jakości wyjściowego obrazu dwuwymiarowego, co oznacza, że nie da się poprawić warunków badania, a tym samym złej jakości obrazu dwuwymiarowego. Niektóre artefakty (rozdzielczości, wzmacnienia, propagacji lub ruchowe) występujące podczas uzyskiwania obrazu 2D ulegają przełożeniu na obraz trójwymiarowy. Ponadto w rekonstruowanych przekrojach należy liczyć się z utratą rozdzielczości. Niemniej wraz z pojawianiem się coraz nowocześniejszych aparatów ultrasonograficznych i ta słabość metody jest stopniowo eliminowana\(^{(3,6)}\).

Cel pracy

Celem pracy jest ocena przydatności ultrasonografii 3D CUN u noworodków i niemowląt w ocenie krwawienia wewnątrzczaszkowego i jego następień w badaniu przez ciemiączko przednie.

Mając na uwadze cel pracy, poszukiwano odpowiedzi na następujące pytania:

1. Jaka jest wartość badania 3D USG CUN w porównaniu z wartościami 2D USG w ocenie krwawienia wewnątrzczaszkowego?
2. Jakich informacji na temat krwawienia i jego następień może dostarczyć badanie 3D USG w porównaniu z badaniem tomograficznym mózgu?

Material i metodyka badań

Badaniami objęto 283 pacjentów leczonych w Dziecięcym Szpitalu Klinicznym Uniwersytetu Medycznego w Lublinie, u których istniały wskazania do badania przeciemięczkowego mózgu. Badania przeprowadzono między 08.01.2007 a 29.10.2007 roku u pacjentów w wieku od 1 dnia do 18 miesięcy (średnio 2 miesiące).

Badania wykonano za pomocą aparatu Philips iU22 głowicą C8-5, a następnie przeprowadzono ocenę ultrasonograficzną 3D – głowicą endowaginalną 3D9-3V.

A 3D ultrasound examination is less time-consuming than the conventional one. A single acquisition is automatic and does not last longer than several seconds. This is of particular relevance in the diagnosis of patients in a severe condition and patients in incubators who are susceptible to hypothermia.

The three-dimensional data acquired during the examination may be subsequently edited and processed so as to obtain the best visualization of the required structures or pathological lesions. It takes place in the monitor of the ultrasound equipment or at an additional diagnostic workstation, without the presence of the patient. It is also possible to conduct volume measurements based on genuine volumetric data\(^{(5-9)}\).

Cel pracy

The aim of this study was to determine the usefulness of 3D sonography of the CNS in neonates and infants in the assessment of intracranial bleeding and its aftereffects when examined through the anterior fontanelle.

It was attempted to answer the following questions:

1. What is the value of 3D sonography of the CNS compared to 2D US in intracranial hemorrhage assessment?
2. What information associated with hemorrhage and its aftereffects may be provided by 3D US examination when compared to brain CT?

Material and methods

The study enrolled 283 patients treated at the Pediatric Teaching Hospital at the Medical University of Lublin in whom a transfontanelle cerebral examination was indicated. The study was performed between 8 January 2007 and 29 October 2007 on patients aged from 1 day to 18 months (mean age: 2 months).

The examinations were performed by means of Philips iU22 system with a C8-5 transducer and subsequently, a 3D assessment was performed with the use of 3D9-3V endovaginal probe.
Badając struktury CUN obiema metodami ultrasonograficznymi, oceniano:

- wielkość i kształt układu komorowego;
- spłaty naczyniowe w układzie komór bocznych;
- echogeniczność struktur mózgu;
- ewentualną obecność zmian ogniskowych i krwawień z uwzględnieniem ich wielkości i lokalizacji;
- przestrzenie płynowe przymóżgowe;
- u pacjentów z zastawką – położenie drenu w drenażu komorowo-otrzewnowym.

Uzyskane obrazy oraz dane trójwymiarowe zapisywano na dysku aparatu ultrasonograficznego, a następnie na serwerze archiwizacyjnym DICOM na oddzielnej stacji. Służyła ona nie tylko do przechowywania i odtwarzania obrazów, ale również do przetwarzania i analizy danych trójwymiarowych.

U 23 pacjentów wykonano także tomografię komputerową mózgu.

Wyniki przypominano jako istotne statystycznie przy poziomie istotności $p = 0.05$.

Wyniki

Badanie ultrasonograficzne CUN w opcjach 2D i 3D

Badanie ultrasonograficzne CUN w opcji 2D i 3D wykono- nane u 283 pacjentów. W badaniu 3D USG otrzymano 254 wyniki badań mające wartość diagnostyczną.

Liczba wykrywanych zmian patologicznych była znamien- nie statystycznie większa ($p = 0.007$) w badaniu ultrasonograficznym 3D. Dane te ilustruje ryc. 1.

U 214 spośród 254 (84,25%) badanych wykazano zgodność rozpoznań ustalonych obiema metodami USG. U 40 (15,75%) w opcji 3D USG rozpoznania różniły się znacznie ($p = 0.007$) w porównaniu z 2D USG. U 171 (67,32%) pacjentów wynik badania był identyczny w obu opcjach USG. U 43 (16,93%) badanych w oparciu o obie metody USG, w tym 25 (9,92%) pacjentów, diagnozy różnych zmian w CUN ustanowiono.

During both examinations of the CNS structures, the following were assessed:

- size and shape of the ventricular system;
- choroid plexuses of the lateral ventricles;
- echogenicity of the cerebral structures;
- presence of focal lesions and hemorrhages including their size and localization;
- pericerebral fluid spaces;
- in patients with a valve – the ventriculoperitoneal shunt placement.

The acquired 3D images and data were stored in the memory of the ultrasound system and subsequently, they were placed on the DICOM archive server at a remote station. It was not only used for storing and playback of the images, but also for postprocessing and analysis of the three-dimensional data.

Twenty-three patients also underwent computed tomogra- phy of the brain.

The statistical analysis of the obtained results was conducted with the use of Statistica 6.0 PL software. The outcomes were presented as:

- arithmetic means ± standard deviation (SD) for variables with normal distribution;
- median, minimal (min.) and maximal (max.) values of the statistical series for variables with non-normal distribution.

The agreement of individual variables in the populations with normal distribution was checked by means of the Shapiro-Wilk test. Because the analyzed variables did not have the normal distribution, non-parametric tests were applied in further analysis.

The results were considered statistically significant at the level of $p = 0.05$.

Results

2D and 3D ultrasound examinations of the CNS

2D and 3D ultrasound examinations of the CNS were performed on 283 patients; 254 three-dimensional US examinations were of diagnostic value.

The number of detected pathological lesions was higher in a statistically significant way ($p = 0.007$) in the 3D ultrasound examination. These data are presented in fig. 1.

In 214 of 254 (84.25%) patients, the agreement between the diagnoses established with both methods was demonstrated. In 40 (15.75%) patients the diagnoses in 3D sonography were considerably different ($p = 0.007$) than those obtained in a 2D examination. In 171 (67.32%) cases, the results of both examinations were the same.
badanych w opcji 3D USG pomimo zgodności rozpoznania z 2D USG uzyskano znacznie większy zakres informacji dotyczący obserwowanej patologii. Dane te ilustruje ryc. 2.

LCzba krwawień do układu komorowego i tkanki mózgowej zdiagnozowanych ultrasonograficznie była istotnie statystycznie wyższa ($p = 0.0006$) w badaniu 3D USG – 72 spośród 254 (28,34%) niż 2D USG – 50 spośród 283 (17,66%) badanych.

Istotna statystycznie różnica czułości ($p = 0.0003$) dotyczyła wykrywania krwawień Iº (IVH Iº), które uwidoczniło u 2 spośród 283 (0,7%) badanych w 2D USG i u 17 spośród 254 (6,69%) w 3D USG.

U 5 spośród 19 (26,32%) pacjentów, u których w 2D USG rozpoznano krwawienia II–IVº, w badaniu 3D USG zmieniło rozpoznanie dotyczące stopnia krwawienia lub jego lokalizacji (tab. 1).

Despite the agreement between the 2D and 3D examinations, in 43 (16.93%) patients, 3D sonography revealed a considerable larger range of information concerning the observed pathology. These data are presented in fig. 2.

The number of hemorrhages to the ventricular system and cerebral tissue diagnosed in sonography was higher in a statistically significant way ($p = 0.0006$) in a 3D examination – 72 from among 254 (28.34%) patients, than in a 2D examination – 50 out of 283 (17.66%) patients.

The statistically significant difference in sensitivity ($p = 0.0003$) was associated with grade I hemorrhage (IVH Iº) which was visualized in 2 out of 283 (0.7%) patients in a 2D examination and in 17 out of 254 (6.69%) patients in a 3D examination.

In 5 out of 19 (26.32%) patients in whom grade II–IVº hemorrhage was diagnosed based on the 2D method, the

Rozpoznanie w 2D USG

Stopień krwawienia	Lokalizacja krwawienia	Stopień krwawienia	Lokalizacja krwawienia
IVH IIº	Wewnątrzkomorowo	IVH Iº	Okolica bruzdy wzgórzo-ogoniaste
	Intraventricular		Region of the thalamocaudate groove
IVH IIIº	Przyściennie w komorze P	IVH IVº	Przyściennie w komorze P i śródmożgowo
	Mural in the right ventricle		Mural in the right ventricle and intracerebral
IVH IIIº	Przyściennie w komorze P	IVH IVº	Przyściennie w komorze P i śródmożgowo
	Mural in the right ventricle		Mural in the right ventricle and intracerebral
IVH IIIº	Obustronnie w komorze:	IVH IIIº	W komorze P w okolicy otworu Monro
	przyściennie i w okolicy splotów		i w komorze III, w komorze L jak w 2D USG
	Bilateral in the ventricle:		In the right ventricle – in the region of the foramen of Monro, and in the third ventricle;
	mural and in the region of pleuses		in the left ventricle – as in 2D US
IVH IIIº	Przyściennie w komorze L	IVH IIIº	Okolica L otworu Monro
	Mural in the left ventricle		Region of the left foramen of Monro

Tab. 1. Zestawienie różnic w lokalizacji i klasyfikacji krwawień II–IVº do CUN w 2D i 3D USG w 5 pacjentów

Tab. 1. Differences in the localization and classification of hemorrhages (grade II–IVº) to the CNS according to 2D and 3D ultrasound examinations in 5 patients
W 2D USG ocena drenu zastawki komorowo-otrzewnowej była zadowalająca u 2 spośród 7 (28,57%) pacjentów leczonych drenażem, natomiast niewystarczającą widoczną u 5 (71,42%) badanych.

W badaniu 3D USG lokalizację drenu oceniano u 6 pacjentów z wodogłowiem. U wszystkich badanych (100%) położenie drenu było zadowalająco widoczne.

U 2 spośród 14 pacjentów wykazujących cechy poszerzenia przestrzeni przymózgowych w 2D USG i 2 spośród 12 oce- nianych w 3D USG wykryto hiperechogeniczne odbicia szeroką podstawą skierowane ku wewnętrznemu powierzchni czaszy, co skierowało podejrzenie na obecność krwawienia do zbiorników przymózgowych. U jednego pacjenta zmiany te były zlokalizowane w okolicy ciemieniowo-potylicznej, u drugiego w okolicy skroniowo-potylicznej. Badanie 3D USG w obu przypadkach wykazało zgodność rozpoznań z 2D USG, dostarczyło jednak dodatkowych informacji dotyczących lokalizacji, dystrybucji i wielkości ogniska krwotocznego.

Porównanie wyników badań ultrasonograficznych z CT CUN

Dwudziestu trzech spośród 283 (8,12%) pacjentów po wykonaniu badań USG wymagało pogłębiania diagnostyki CUN w tomografii komputerowej. U 20 spośród 23 (86,95%) badanych uzyskano zgodny co do rozpoznania wynik z bada- niami USG. U pozostałych 3 (13,03%) powstały rozbieżności w rozpoznaniu. Polegały one na tym, że u 2 pacjentów nie uwidoczniło ognisk krwawienia widocznych w badaniach USG. U jednego nie potwierdzono ogniska krwawienia w okolicy komory bocznej, a w jego miejscu rozpoznano ognisko malacynie. U jednego pacjenta w badaniu CT uzyskano prawidłowy obraz struktur mózgu.

Omówienie wyników

Badanie ultrasonograficzne ma zasadnicze znaczenie dla oceny struktur mózgowia u noworodków i niemowląt.

Nowe techniki USG, a wśród nich 3D USG, niewątpliwie zwiększyły możliwości diagnostyczne ultrasonogra- fii, zachowując przy tym wszystkie jej zalety (takie jak łatwo dostępność, możliwość przeprowadzenia badania przy lóżku chorego oraz brak szkodliwości fal ultra-dźwiękowych). Dzięki nim możliwe jest wyeliminowanie ograniczeń obrazowania w opcji 2D USG, takich jak duża zależność od osoby wykonującej badanie i związane z tym trudności w ocenie przebiegu leczenia, niska powtarzal- ność uzyskanych wyników oraz mała dokładność wykony- wania pomiarów objętości[3,8,10,11].

U 32,68% badanych uzyskano wyniki świadczące o przydatności dodatkowego obrazowania w opcji 3D USG. U 15,75% doszło do zmiany rozpoznania po wykonaniu 3D USG, zaś u pozostałych 16,93% badanie 3D USG dostarczyło dodatkowych informacji diagnostycznych. W 3D USG diagnosis concerning the grade or localization of bleeding was changed following a 3D examination (tab. 1).

In a 2D examination, the assessment of the ventriculoperi- toneal valve was satisfactory in 2 out of 7 (28.57%) patients with a shunt but in 5 (71.42%) cases, the shunt was not sufficiently visible.

In a 3D US examination, the localization of the shunt was assessed in 6 patients with hydrocephalus. The localization of the shunt was visible in a satisfactory way in all patients (100%).

In 2 out of 14 patients with signs of pericerebral space extension detected by means of 2D sonography and in 2 out of 12 patients examined with the use of the 3D method, hyperechoic reflections with a broad base directed towards the internal aspect of the cranium were visualized. This suggested the presence of bleeding to the pericerebral spaces. In one case, the lesions were localized in the parieto-occipital region and in the other – in the temporoparietal region. The diagnoses established based on 2D and 3D examinations were in agreement, but the 3D examination delivered additional information concerning the localization, distribution and size of the hemorrhagic focus.

Comparison of ultrasound findings with the CT of the CNS

The extended diagnosis in the form of a CNS assessment in computed tomography was necessary in 23 out of 283 (8.12%) patients. In 20 out of 23 (86.95%) cases, the outcome was in line with the US findings. In the 3 remaining patients (13.03%) there were discrepancies in the diagnoses. In 2 patients, the hemorrhagic foci, previously visualized in the US examination, were not visible. In one patient, the presence of the hemorrhagic focus in the region of the lateral ventricle was not confirmed. A focus of malacia was detected instead. In one case, CT revealed normal image of the cerebral structures.

Discussion

Sonography is of key importance in assessing the cerebral structures in neonates and infants.

Novel US techniques, including the 3D US, have undoubtedly increased the diagnostic possibilities of sonography and retained all its advantages (such as accessibility, possibility of bedside examination and harmless character of ultrasonic waves). They allow to overcome limitation of the 2D sonography, such as considerable examiner-dependency and associated difficulty in treatment monitoring as well as low reproducibility of results and low accuracy of volumetric measurements[3,8,10,11].

In 32.68% of patients, the results indicated that additional 3D ultrasound imaging is useful. In 15.75% of cases, the diagnosis was changed following a 3D US examination and in the remaining 16.93%, 3D sonography provided...
istotnie częściej wykrywano istniejące nieprawidłowości w porównaniu z 2D USG ($p = 0.007$).

Większa czułość metody 3D USG wynika z możliwości powrotu do danych objętościowych zapisanych na dysku i poddania ich ponownej analizie. Pozwala to nie tylko na przeanalizowanie zapisanych danych warstwa po warstwie, ale również na wizualną poprawę jakości uzyska- nych danych oraz ocenę parametryczną badanego obiektu, w tym również pomiary objętości oparte na rzeczywistych danych wolumetrycznych. W efekcie można wykryć zmiany patologiczne, które nie zostały zauważone wcześniej.$^{(4,6)}$

Niewątpliwą zaletą jest szybkość wykonywania akwizy- cji danych w obrazowaniu 3D w porównaniu z czasem potrzebnym do wykonania badania w opcji 2D USG. Z dru- giej strony więcej czasu należy poświęcić na obejrzenie i opracowanie badania 3D USG.

W badaniach własnych największa czułość i istotna staty- stycznie przewaga metody 3D nad 2D dotyczyła krwawień do układu komorowego i krwawień wewnętrznmóżgowych. W badaniach własnych dzięki metodzie obrazowania 2D USG wykryto krwawienia do CUN u 17,66% niemow- ląt; w 3D USG czułość była istotnie wyższa – ujawniono 28,34% krwawień ($p = 0.0006$).

W materiale własnym zaobserwowano, że obrazowanie 3D USG było szczególnie skuteczne w wykrywaniu subtel- nych zmian, takich jak krwawienia podwyściółkowe (IVH I°) (6,69% w stosunku do 0,7% badanych w 2D USG – $p = 0,0003$) lub torbieli podwyściółkowych (14,57% w sto- sunku do 10,24% badanych w 2D USG – $p = 0,026$).

Uzyskane wyniki są zgodne z rezultatami innych badań, których autorzy opisują przewagę obrazowania 3D USG w różnicowaniu krwawień do warstwy rozrodczej wysięki komór (IVH I°) ze splotami naczyniowymi. Poniewa- śród 5 badanych w 20% zastosowania 3D USG można dokładnie prześledzić dystrybucję skrzelin w obrębie układu komorowego w stosunku do dróg odpływu płynu mózgowo-rodnieniowego – otworów Monro, nieco trudniej wodociągu mózgu. W materiale własnym zaobserwowano istotnie lepszą ($p = 0.013$), w porównaniu z 2D USG, przy- datność diagnostyki 3D USG do lokalizacji zmian krwo- tocznych. W rezultacie u 5 spośród 19 (26,32%) pacjen- tów, u których w 2D USG rozpozano krwawienia II–IV°, w badaniu 3D USG zmieniono rozpoznanie dotyczące stopnia krwawienia lub dokładniej oceniono jego loka- lizację. U następnych 2 spośród 5 badanych w 2D USG additional diagnostic information. Moreover, in a 3D examination, the existing anomalies were detected more frequently when compared to 2D sonography ($p = 0.007$). The higher level of sensitivity of the 3D method results from the possibility to return to and re-analyse the volumetric data stored in the memory. Not only does it allow for the re-analysis of the stored data slice by slice, but also enables visual quality improvement and parametric assessment of the examined structure, including volume measurements based on genuine volumetric data. As a result, one may detect pathological lesions which were not detected earlier.$^{(4,6)}$

An undoubted advantage is fast acquisition of data in 3D imaging in comparison to the time needed to conduct a 2D US examination. On the other hand, more time is needed for processing and analyzing the 3D image.

In the authors’ own studies, the greatest sensitivity and statistically significant superiority of the 3D method over the 2D one referred to intraventricular or intracerebral hemorrhages. In the authors’ own studies, 2D sonography visualized bleeding to the CNS in 17.66% of infants; in the 3D examination, the sensitivity was significantly higher – 28.34% of hemorrhages were detected ($p = 0.0006$).

In the authors’ own material, it was observed that a 3D US examination was more effective in visualizing subtle changes, such as subependymal hemorrhage (IVH I°) (6,69% compared to 0,7% of cases detected in a 2D US examination – $p = 0.0003$) or subependymal cysts (14,57% compared to 10,24% of cases detected in a 2D examination – $p = 0.026$).

The outcomes of this study are in line with the results of other studies whose authors report the superiority of 3D imaging in differentiating hemorrhages to the germinal matrix (IVH I°) with choroid plexuses. Since they are both hyperechoic in the ultrasound image and have similar localizations, their differentiation may be facilitated by an additional axial projection or oblique views$^{(4,6)}$.

A low number of data concerning the application of 3D sonography in brain imaging reveal that it shows not only bleeding, but also allows for an accurate assessment of localization, grade of hemorrhage, amount of extravasated blood and further development of hemorrhagic lesions$^{(4)}$.

In 3D US examination, it is possible to thoroughly evaluate the distribution of thrombi within the ventricular system and their relation to the ways of cerebrospinal fluid’s circulation – the foramina of Monro, or, which is slightly more difficult, the cerebral aqueduct. In the authors’ own material, the usefulness of 3D diagnosis was judged as significantly superior ($p = 0.013$) to the 2D sonography in deter- mining the localization of hemorrhagic lesions. As a result, in 5 out of 19 (26.32%) patients in whom grade II–IV hem- orrhage was diagnosed based on a 2D examination, the diagnosis concerning the grade or localization of bleeding was changed following a 3D examination. In further 2 out of 5 patents, 2D examinations revealed hydrocephalus.
stwierdzono wodogłowie i IVH III° oraz niezbyt istotną lokalizację skrzeplin w układzie komorowym. Po prześledzeniu tych pacjentów dystrybucji skrzeplin w układzie komorowym uwidoczniło ich niekorzystną lokalizację w stosunku do dróg odpływu płynu mózgowo-rdzeniowego. U jednego badanego skrzelina obejmowała lewy otwór Monro, u drugiego blokowała prawy otwór Monro, przechodzący do komory III. W obu przypadkach diagnoza była zdecydowanie łatwiejsza dzięki możliwości płaszczystoosiowej, na której można najlepiej uwidocznić połączenie komór bocznych z komorą III przez parzyste otwory Monro (ryc. 3).

U obu pacjentów wykazujących IVH III° w badaniu USG wykonano CT mózgowia, uwidaczniając cechy aktywnego przesiąkania okołokomorowego świadczące o wzmózonym ciśnieniu w układzie komorowym mózgu. Natomiast u żadnego z nich badanie CT nie potwierdziło informacji o obecności krwawienia wewnątrzkomorowego, mimo że w jednym przypadku CT wykonano po 4, a w drugim po 12 dniach od badania USG. Z tego względu trudno zgodzić się z opinią autorów twierdzących, że CT mózgu doskonale obrazuje krwawienia dokomorowe lub śródmożgowe (przynajmniej nie w każdej sytuacji). Jednak nie można zaprzeczyć, że CT lepiej niż każde badanie USG pokazuje objawy wzmózonym ciśnieniu śródczaszkowego, przesiąkanie okołokomorowe lub zagrożenie wgłębieniem2,12).

Oceniając czułość metody obrazowania, w tym USG i CT, w wykrywaniu zmian patologicznych, należy uwzględnić jakość aparatu, wielkość zmiany, doświadczenie osoby wykonującej badanie, a w przypadku CT również protokoł, według którego przeprowadzono badanie.

and IVH III° and insignificant localization of thrombi in the ventricular system. Following evaluation of the blood clots distribution in the ventricular system, their unfavorable localization with respect to the ways of cerebrospinal fluid’s circulation was demonstrated. In one of the patients a blood clot involved the left foramen of Monro and in the other, it blocked the right foramen and entered into the third ventricle. In both cases, the diagnosis was facilitated by the axial plane, in which the connection of the lateral ventricles with the third ventricle by the paired foramina of Monro is best visualized (fig. 3).

In both patients with IVH III° in the US examination, a cerebral CT scan was performed. It visualized the features of active periventricular transudation resulted from increased pressure in the ventricular system. However, a CT examination did not confirm the presence of intraventricular hemorrhage in either case even though in one patient, CT was performed after 4 days and in the second case – after 12 days of the ultrasound-based diagnosis. Therefore, it is difficult to concur with the opinion of the authors who claim that cerebral CT is the best tool for visualizing intraventricular or intracerebral bleeding (at least not in every situation). It cannot be denied, however, that CT is superior to any US examination in revealing the signs of increased intracranial pressure, periventricular transudation or herniation risk2,12).

When assessing the sensitivity of the imaging method, including US and CT, in detecting pathological lesions, one should take into consideration the quality of the equipment, size of the lesion, experience of the examiner and, in the case of CT, also the protocol according to which the examination is performed.
W obu przypadkach skrzeliny o średnicy 7 i 15 mm nie były widoczne w badaniu CT. Przyczyną mogła być zbyt mała gęstość tych zmian pokrwoocnych lub protokołów badania – niewidoczność mniejszej zmiany może wiązać się z wartością przesunięcia stołu wynoszącą 5 mm. U pacjenta z krwawieniem do komory III należy również brać pod uwagę możliwość ustąpienia zmiany po upływie 12 dni.

Poza badaniami CT przeprowadzonymi u 23 pacjentów, u których istniały wskazania do pogłębienia diagnostyki, nie było innej możliwości zrewidowania rozpoznawania ustalonych na podstawie badań 2D i 3D USG. We własnej grupie badanej wyniki weryfikowały badanie 3D USG – pozwala na zgromadzenie danych z badanego obszaru mózgowia i ich późniejszą ocenę.

W badaniu 3D USG na ekranie monitora w tym samym czasie widoczne są przekroje: wieńcowy, strzałkowy i poprzeczny (aksjonalny), ponadto umożliwia ono rekonstrukcję obiektów w badanej strukturze (rendered view), co ułatwia przestrzenną lokalizację zmiany lub też struktury anatomicznej. W ocenie zespołu komorowo-örtzewnowego ważne jest określenie położenia końcowa drenu – czy nie uległ on przemieszczeniu poza układ komorowy. W 2D USG na przekrojach końcówek drena może być równoległa do wąskościutowych, a przez to słabo widoczna. W projekcji wieńcowej dostępnej w 2D USG trudno ustalić jej położenie w kierunku głównowo-ogonowym, ponieważ jest ona często widoczna na krótkim odcinku jako hiperechogeniczny punkt lub linia(13).

Możliwości oceny położenia drena w badaniu 3D USG ilustruje ryc. 4.

W materiale własnym uwidoczniło zbiornik przymózgowy – krwiaka w prawej okolicy ciemieniowo-potylicznej, który w przekroju osiowym dostępny w opcji 3D wykazywał pełną zgodność obrazu z badaniem CT. Badanie CT potwierdziło obecność przymózgowego zbiornika płynowego położonego nadtwardówkowo, o współczynniku osłaniania krwi (ryc. 5).

Ważną zaletą ultrasonografii trójwymiarowej jest również możliwość przesłania zapisanych na dysku danych trójwymiarowych do innych specjalistów w celach konsultacyjnych, jak również ich wykorzystywania w nauczaniu specjalizujących się lekarzy oraz studentów.

Wnioski

1. 3D USG wykazuje istotnie większą czułość w wykrywaniu nieprawidłowości w obrębie struktur CUN u noworodków i niemowląt w porównaniu z 2D USG.
2. 3D USG dostarczyło dodatkowych (w porównaniu z 2D USG) informacji diagnostycznych u 43 (16,93%) pacjentów. U kolejnych 40 (15,75%) doprowadziło do zmiany rozpoznania.
3. Największa czułość diagnostyczna metody 3D USG dotyczy subtelnych zmian, takich jak IVH I° czy torbiele podwyróżnikowe, chociaż w badaniu 3D USG In both cases, thrombi with the size of 7 and 15 mm were not visible in CT. This might have been caused by too low density of these post-hemorrhagic lesions or by the examination protocol – the failure to visualize smaller lesions may be associated with table movement by 5 mm. In the case of hemorrhage to the third ventricle, the fact that the lesion may disappear within 12 days must also be considered.

Apart from the CT examination conducted in 23 patients, in whom extended diagnosis was indicated, there was no other way to review the diagnoses established by means of 2D and 3D ultrasound examinations. In the presented patients, the results were verified in the 3D ultrasound examination – it allows for collecting data from the studied cerebral region and enables their subsequent analysis.

In the 3D US examination, the monitor displays coronal, sagittal and axial planes simultaneously. Moreover, it enables volumetric reconstruction of the examined structure (rendered view), which facilitates the spatial localization of a lesion or a given anatomical structure. In the assessment of the ventriculoperitoneal shunt, it is necessary to determine the localization of its end to ensure that its position has not shifted beyond the ventricular system. In sagittal planes in 3D sonography, the end of the shunt may be parallel to the ultrasound beam, which makes it poorly visible. In the coronal plane, also available in 2D sonography, its cephalo-caudal location is difficult to determine since it is frequently visible in a short fragment as a hyperechoic dot or line(13).

The possibilities to assess shunt placement in 3D sonography is illustrated in fig. 4.

In the author’s own material, the pericerebral collection was visualized – a hematoma in the right parieto-occipital region, which in the axial plane, available to obtain in the 3D sonography, was in a complete agreement with the CT image. The CT scan confirmed the presence of an epidural fluid collection with blood attenuation (fig. 5).

An important advantage of three-dimensional sonography is also the possibility to send the three-dimensional data stored in the memory to other specialists for consultation. Moreover, it is possible to use them for education of future physicians and students.

Conclusions

1. By comparison with 2D US, 3D sonography shows higher sensitivity in detecting anomalies within the CNS structures in neonates and infants.
2. 3D sonography provided additional diagnostic information (by comparison with 2D sonography) in 43 (16.93%) patients. In further 40 (15.75%) cases, it led to changing the diagnosis.
3. Although 3D US examination significantly more frequently visualized all hemorrhages to the ventricular system and cerebral tissue, the greatest diagnostic sensitivity of the 3D method refers to detecting subtle changes, such as IVH I° or subependymal cysts.
Usefulness of 3D sonography of the central nervous system in neonates and infants in the assessment of intracranial bleeding and its consequences when examined through the anterior fontanelle

istotnie częściej wykrywano wszelkie krwawienia do układy komorowego i tkanki mózgowej.

4. By comparison with 2D sonography, the 3D method allowed for a significantly more accurate assessment of the extensiveness of hemorrhagic lesions within the cerebral structures.

5. 3D sonography enabled unambiguous assessment of the shunt position in the ventricle in all patients with ventriculoperitoneal shunt.

Conflict of interest

The authors do not report any financial or personal links with other persons or organizations that might negatively affect the content of this publication and claim authorship rights to this publication.

Piśmiennictwo/References

1. O’Hara SM: Extended field of view imaging: the big picture of pediatric patients. J Ultrasound Med 2002; 21: S38.
2. Barnes PD: Neuroimaging and the timing of fetal and neonatal brain injury. J Perinatol 2001; 21: 44–60.
3. Riccabona M, Fritz G, Ring E: Potential applications of three-dimensional ultrasound in the pediatric urinary tract: pictorial demonstration based on preliminary results. Eur Radiol 2003; 13: 2680–2687.
4. Salerno CC, Pretorius DH, Hilton SW, O’Boyle MK, Hull AD, James GM et al.: Three-dimensional ultrasonographic imaging of the neonatal brain in high-risk neonates: preliminary study. J Ultrasound Med 2000; 19: 549–555.
5. Fenster A, Downey DB: Three-dimensional ultrasound imaging. Annu Rev Biomed Eng 2000; 2: 457–475.
6. Riccabona M: Pediatric three-dimensional ultrasound: basics and potential clinical value. Clin Imaging 2005; 29: 1–5.
7. Riccabona M, Nelson TR, Weitzer C, Resch B, Pretorius DP: Potential of three-dimensional ultrasound in neonatal and paediatric neurosonography. Eur Radiol 2003; 13: 2082–2093.
8. Gordon I, Riccabona M: Investigating the newborn kidney: update on imaging techniques. Semin Neonatol 2003; 8: 269–278.
9. Szopiński K: Ultrasonografia 3D i 4D. Ultrasonografia 2004; 4 (15): 33–34.
10. Riccabona M: Advanced techniques in paediatric cranial ultrasound. J Ultrasound Med 2002; 21: S90.
11. Szopiński K, Rakoczy A, Słapa RZ: Podstawowe techniki prezentacji trój-wymiarowej stosowane w diagnostyce obrazowej. Pol Merkur Lekarski 2002; 12: 5–10.
12. Nell JJ, Inder TE: Imaging perinatal brain injury in premature infants. Semin Perinatol 2004; 28: 433–443.
13. Ichihashi K: Three-dimensional ultrasonography of hydrocephalus. J Med Ultrasounds 2005; 32: 181–185.