Genome-Wide Association Study Identifies a Novel Susceptibility Locus at 12q23.1 for Lung Squamous Cell Carcinoma in Han Chinese

Jing Dong1,2,3, Guangfu Jin1,2,3, Chen Wu4, Huan Guo5, Baosen Zhou6, Jiachun Lv7, Daru Lu8, Yongyong Shi9, Yongqian Shu10, Lin Xu11, Minjie Chu1, Cheng Wang1, Ruyang Zhang1, Juncheng Dai1, Yue Jiang1, Danke Yu6, Hongxia Ma1, Xueying Zhao9, Zhihua Yin6, Lei Yang7, Zhiqiang Li9, Qifei Deng5, Songyu Cao1, Zhenzhen Qin1, Hongyan Chen6, Peng Guan6, Yijiang Chen10, Xiayang Liu12, Li Liu13, Pin Xu14, Baohui Han15, Chunxue Bai16, Yuxia Zhao17, Haibo Zhang18, Ying Yan18, Zhibin Hu1,2,3, Hongbing Shen1,2,3, Chunxue Bai16, Yuxia Zhao17, Haibo Zhang18, Ying Yan18, Zhibin Hu1,2,3, Hongbing Shen1,2,3

1 Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China, 2 Section of Clinical Epidemiology, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention, and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China, 3 State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China, 4 State Key Laboratory of Molecular Oncology and Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, 5 Institute of Occupational Medicine and Ministry of Education Key Laboratory for Modern Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China, 6 Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China, 7 The Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory Disease, Guangzhou Medical College, Guangzhou, China, 8 State Key Laboratory of Genetic Engineering, Center for Fudan–VARI Genetic Epidemiology and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China, 9 Bio-X Center and Affiliated Changning Mental Health Center, Ministry of Education Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai JiaoTong University, Shanghai, China, 10 Department of Thoracic Surgery and Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China, 11 Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China, 12 Department of Thoracic Surgery, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, 13 Cancer Center of Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China, 14 Department of Oncology, Wuhan Iron and Steel Group/Corporation Staff-Worker Hospital, Wuhan, China, 15 Department of Respiratory Disease, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China, 16 Department of Respiratory Disease, Zhejiang Hospital, Fudan University, Shanghai, China, 17 Department of Radiation Oncology, First Affiliated Hospital of China Medical University, Shenyang, China, 18 Department of Radiotherapy, Shenyang Northern Hospital, Shenyang, China, 19 Department of Surgery, Nantong Cancer Hospital, Nantong, China, 20 Department of Genetics, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America

Abstract

Adenocarcinoma (AC) and squamous cell carcinoma (SqCC) are two major histological subtypes of lung cancer. Genome-wide association studies (GWAS) have made considerable advances in the understanding of lung cancer susceptibility. Observed heterogeneity has been observed between different histological subtypes of lung cancer, but genetic determinants in specific to lung SqCC have not been systematically investigated. Here, we performed the GWAS analysis specifically for lung SqCC in 833 SqCC cases and 3,094 controls followed by a two-stage replication in additional 2,223 lung SqCC cases and 6,409 controls from Chinese populations. We found that rs12296850 in SLC17A8-NR1H4 gene region at 12q23.1 was significantly associated with risk of lung SqCC at genome-wide significance level [additive model: odds ratio (OR) = 0.78, 95% confidence interval (CI) = 0.72–0.84, P = 1.19 × 10−10]. Subjects carrying AG or GG genotype had a 26% (OR = 0.74, 95% CI = 0.67–0.81) or 32% (OR = 0.68, 95% CI = 0.56–0.83) decreased risk of lung SqCC, respectively, as compared with AA genotype. However, we did not observe significant association between rs12296850 and risk of lung AC in a total of 4,368 cases with lung AC and 9,486 controls (OR = 0.96, 95% CI = 0.90–1.02, P = 0.173). These results indicate that genetic variations on chromosome 12q23.1 may specifically contribute to lung SqCC susceptibility in Chinese population.

Citation: Dong J, Jin G, Wu C, Guo H, Zhou B, et al. (2013) Genome-Wide Association Study Identifies a Novel Susceptibility Locus at 12q23.1 for Lung Squamous Cell Carcinoma in Han Chinese. PLoS Genet 9(1): e1003190. doi:10.1371/journal.pgen.1003190

Editor: Mark I. McCarthy, University of Oxford, United Kingdom

Received June 27, 2012; Accepted November 1, 2012; Published January 17, 2013

Copyright: © 2013 Dong et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work is partly supported by the Key Project of the National Natural Science Foundation of China (81230067), National Outstanding Youth Science Foundation of China (812220), the National Key Basic Research Program Grant (2013CB911400, 2011CB503805, 2013CB910304), the National Natural Science Foundation of China (30973244, 3127044, 30972233, and 8100276), Jiangsu Natural Science Foundation (BK2011028, BK2012042), Natural Science Foundation of the Jiangsu Higher Education Institutions of China (11KJA330001), the China National High-Tech Research and Development Program Grant (2009AA022705), U.S. NIH Grant (U19 CA148127), the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Doctoral Scientific Fund Project of the Ministry of Education of China (20093234110001). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Published: January 17, 2013

Copyright: © 2013 Dong et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work is partly supported by the Key Project of the National Natural Science Foundation of China (81230067), National Outstanding Youth Science Foundation of China (812220), the National Key Basic Research Program Grant (2013CB911400, 2011CB503805, 2013CB910304), the National Natural Science Foundation of China (30973244, 3127044, 30972233, and 8100276), Jiangsu Natural Science Foundation (BK2011028, BK2012042), Natural Science Foundation of the Jiangsu Higher Education Institutions of China (11KJA330001), the China National High-Tech Research and Development Program Grant (2009AA022705), U.S. NIH Grant (U19 CA148127), the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Doctoral Scientific Fund Project of the Ministry of Education of China (20093234110001). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Published: January 17, 2013

Copyright: © 2013 Dong et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work is partly supported by the Key Project of the National Natural Science Foundation of China (81230067), National Outstanding Youth Science Foundation of China (812220), the National Key Basic Research Program Grant (2013CB911400, 2011CB503805, 2013CB910304), the National Natural Science Foundation of China (30973244, 3127044, 30972233, and 8100276), Jiangsu Natural Science Foundation (BK2011028, BK2012042), Natural Science Foundation of the Jiangsu Higher Education Institutions of China (11KJA330001), the China National High-Tech Research and Development Program Grant (2009AA022705), U.S. NIH Grant (U19 CA148127), the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Doctoral Scientific Fund Project of the Ministry of Education of China (20093234110001). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.
Author Summary

Previous genome-wide association studies (GWAS) strongly suggested the importance of genetic susceptibility for lung cancer. However, the studies specific to different histological subtypes of lung cancer were limited. We performed the GWAS analysis specifically for lung squamous cell carcinoma (SqCC) with 570,009 autosomal SNPs in 833 SqCC cases and 3,094 controls and replicated in additional 2,223 lung SqCC cases and 6,409 controls from Chinese populations (822 SqCC cases and 2,243 controls for the first replication stage and 1,401 SqCC cases and 4,166 controls for the second replication stage). We found a novel association at rs12296850 (SLC17A8-NR1H4) on 12q23.1. However, rs12296850 didn’t show significant association with risk of lung adenocarcinoma (AC) in 4,368 lung AC cases and 9,486 controls. These results indicate that genetic variations on chromosome 12q23.1 may specifically contribute to lung SqCC susceptibility in Chinese population.

Introduction

Lung cancer is the most commonly diagnosed cancer and the leading cause of cancer death around the world [1]. Adenocarcinoma (AC) and squamous cell carcinoma (SqCC) are two major histological subtypes of lung cancer [2]. Although tobacco smoking increases the risk of all major histological subtypes of lung cancer, it appears to be stronger for SqCC than AC [3]. Different spectra and frequencies of “driver” mutations have been described between lung AC and SqCC and result in a histology-specific therapy [4]. These evidences support a histology-specific pathogenesis process and biological characteristics of lung cancer, and studies specifically focused on individual histological subtype are required for understanding lung carcinogenesis.

Several large genome-wide association studies (GWAS) of lung cancer have been conducted to uncover genetic factors associated with lung cancer risk [3–15] (Table S1). Three loci at 5p15, 6p21 and 15q25 were initially identified to contribute to the susceptibility to lung cancer in populations of European ancestry [3,6,16–18]. These findings have provided new clues for the mechanism of lung cancer development. Interestingly, some of these loci reflected different associations across lung cancer histology. For example, the 5p15 locus defined by rs2736100 showed stronger association with AC in populations of both European [7] and Asian [19] ancestries. However, most of lung cancer GWAS combined lung cancer cases with multiple subtypes of histology together when compared with controls in the discovery stage, making it difficult to identify histology-specific susceptibility loci due to dilution of effect.

With efforts to determine genetic variants associated with a specific type of lung cancer, two GWAS of lung AC have been conducted in populations of eastern Asian. Hsiung et al. performed a GWAS of AC and subsequent replications in never-smoking females and further confirmed that rs2736100 at 5p15 is associated with risk of lung AC [20]. Recently, Miki et al. carried out a GWAS of lung AC in Japanese and Korean populations and identified a new susceptibility locus at TP63 on 3q28 [13], which have also been confirmed by following studies [11,21]. Interestingly, Landi et al. conducted a lung cancer histology-specific association study in 917 selected genes with 19,802 SNPs in the HuGE-defined “inflammation” pathway using available GWAS data from populations of European descent, and identified a locus at 12p13.33 associated with SqCC risk [15]. These evidences suggest the importance of exploring susceptibility loci by subtypes in lung cancer.

Recently, we conducted a three-stage GWAS for overall lung cancer in the Han Chinese populations and identified two new loci at 13q12.12 and 22q12.2 that were consistently associated with multiple subtypes of lung cancer [11]. Here, in order to identify genetic variants across whole genome specifically related to lung SqCC risk, we carried out the GWAS analysis in 833 cases with lung SqCC and 3,094 controls (Nanjing study: 428 cases and 1,977 controls; and Beijing study: 405 cases and 1,117 controls), and further evaluated suggestive associations involving lung SqCC risk by a two-stage replication with a total of 2,223 cases with lung SqCC and 6,409 controls in the Han Chinese populations.

Results

After filtering by standard quality-control procedures, a total of 3,927 subjects (833 lung SqCC cases and 3,094 controls) with 570,009 SNPs were qualified for further GWAS analysis (Table S2). A quantile-quantile plot using P values from additive model showed a relatively low inflation factor (λ = 1.04), suggesting a low possibility of false-positive associations due to population substructure (Figure S1). After excluding the SNPs at reported loci of our previous study [11], P value on a -log scale for each SNP was plotted by location on chromosome (i.e., Manhattan plot; Figure S2).

We determined promising SNPs associated with risk of lung SqCC based on P value of ≤1×10−4 in additive model and consistent associations between Nanjing and Beijing studies (P<0.01 with the same direction of associations). After linkage disequilibrium (LD) analysis (excluding 9 SNPs at r2 of 0.8; Table S4), 14 autosomal SNPs were selected to be further evaluated in the first replication stage (Replication I) including 822 cases with lung SqCC and 2,243 controls (Table S3). Three SNPs at 6p22.2 (rs16889835), 11p15.1 (rs7112278) and 12q23.1 (rs12296850) that were confirmed in the Replication I were further assessed in the second replication stage (Replication II) using additional 1,401 cases and 4,166 controls (Tables S5). In the Replication II, rs12296850 at 12q23.1 remained to be significantly associated with risk of lung SqCC (OR = 0.82, 95%CI = 0.74–0.91, P = 3.47×10−4), consistent with those observed in the GWAS stage (OR = 0.73, 95%CI = 0.63–0.86, P=9.30×10−5) and the first replication stage (OR = 0.75, 95%CI = 0.63–0.88, P = 5.08×10−4) (Table S5; Table 1). After combining results from the GWAS and two-stage replications, rs12296850 was associated with the risk of lung SqCC at genome-wide significance level (P<5.0×10−8), and the OR for additive model is 0.78 (95%CI = 0.72–0.84, Pcombined = 1.19×10−10). The combined ORs for the heterozygote (AG) and minor homozygote (GG) are 0.74 (95% CI = 0.67–0.81) and 0.68 (95%CI = 0.56–0.83), respectively, as compared with major homozygote (AA) (Table 1).

To further characterize the association of genetic variants at 12q23.1 with lung SqCC risk, we performed imputation analyses based on CHB+jPT data of 1000 Genomes Project (released at June 2010). In a 300-kb region around rs12296850, 243 imputed SNPs at imputed r2>0.5 and MAF>0.05 were evaluated with association of lung SqCC risk. As shown in Figure 1 and Table S6, two SNPs, rs17030141 and rs1568535 having strong LD (r2>0.9) with rs12296850, showed similar associations with risk of lung SqCC at a P value of 6.46×10−5 and 7.43×10−5, respectively.

We further conducted stratification analysis on the association between rs12296850 at 12q23.1 and lung SqCC risk by age, gender and smoking dose. As shown in Table S7, none of different
associations were significantly observed between subgroups. In addition, we did not detect significant interaction between rs12296850 and smoking on lung SqCC risk. Similar associations were observed among populations of Nanjing and Shanghai, Beijing, and Shenyang, and no significant heterogeneity between populations was detected for the association, though a non-significant association was shown in Guangzhou population (Figure S3).

To investigate whether the variant rs12296850 was SqCC-specific, we further evaluated the association between rs12296850 and the risk of lung AC and small cell carcinoma (SCC) using the shared controls as SqCC study for each stage. We found that rs12296850 was not consistently associated with risk of lung AC in the three stages (GWAS: OR = 0.85, 95% CI = 0.76–0.95; Replication I: OR = 1.08, 95% CI = 0.96–1.22; Replication II: OR = 0.96, 95% CI = 0.88–1.05) (Table 2). After combining three stages, rs12296850 was not significantly associated with lung AC risk (OR = 0.96, 95% CI = 0.90–1.02, P = 0.173). Similarly, rs12296850 was not consistently associated with lung SCC risk with a combined OR of 0.89 (95% CI = 0.79–1.01; P = 0.073) (Table 2). These results indicate that rs12296850 at 12q23.1 may be a specific susceptibility locus to lung SqCC in Chinese population.

To characterize the functional relevance of the rs12296850, we further evaluated the relationship of this variant with the expression levels of two surrounding genes (NRHI4 and SLC17A8).

Table 1. Summary of GWAS scan and replication studies for association between rs12296850 at 12q23.1 and risk of lung squamous cell carcinoma (SqCC).

Study	GG/AG/AA genotypes	G allele frequency	OR_{het} (95% CI)	OR_{homo} (95% CI)	OR_{add} (95% CI)	P_{add}
GWAS	35/287/511	0.214	0.76(0.63–0.92)	0.50(0.32–0.77)	0.73(0.63–0.86)	9.30×10^{-5}
Replication I	38/254/517	0.204	0.69(0.57–0.85)	0.68(0.43–1.06)	0.75(0.63–0.88)	5.08×10^{-4}
Replication II	86/447/832	0.227	0.77(0.67–0.88)	0.77(0.59–1.01)	0.82(0.74–0.91)	3.47×10^{-4}
Combined	159/988/1860	0.217	0.74(0.67–0.81)	0.68(0.56–0.83)	0.78(0.72–0.84)	1.19×10^{-10}

*Adjusted for age, gender, pack-year of smoking and the first principle component in GWAS, and for age, gender and pack-year of smoking in replication studies; OR_{het}: AG vs. AA; OR_{homo}: GG vs. AA; OR_{add} and P_{add}: derived from additive model.

Figure 1. Regional plot of the identified marker rs12296850 at 12q23.1. Results (−log10 P) are shown for SNPs in the region flanking 150 kb on either side of rs12296850. The marker SNP are shown in purple and the r^2 values of the rest of the SNPs are indicated by different colors. The genes within the region of interest are annotated, with arrows indicating transcription direction.

doi:10.1371/journal.pgen.1003190.g001
We examined NRIH4 mRNA levels in 46 paired lung cancer tumor and adjacent non-tumor tissues using quantitative RT-PCR, and observed that the relative expression of NRIH4 in adjacent non-tumor tissues was significantly higher in subjects with G allele of rs12296850 (n = 18) as compared with those carrying AA genotype (n = 28) (AG/AA: 0.54±0.25 versus AA: 0.36±0.19, P = 0.008)(Figure S4). Similar but non-significant results were also observed in tumor tissues (AG/AA: 0.50±0.22 versus AA: 0.39±0.26, P = 0.143). However, the mRNA expression level of SLC17A8 could not be detectable (Ct>40) in all of the adjacent non-tumor tissues (n = 46) and most of tumor tissues (n = 43) whereas only 3 subjects were measured with low expression levels in tumor tissues (Ct = 33.7, 36.1 and 39.0).

Discussion

In this study, we conducted a GWAS analysis in specific to lung SqCC in Chinese populations and identified a novel locus at 12q23.1 (lead SNP: rs12296850) that was specifically associated with lung SqCC. In our prior GWAS on overall lung cancer, we also showed genome-wide significant associations of loci at 3q28, 5p15.33, 13q12.12, and 22q12.2 with lung SqCC in stratification analysis [11]. Unlike previous study designed for overall lung cancer followed by a ‘post-hoc’ analysis on lung SqCC, the current study directly evaluated genetic variants across genome that might be specifically associated with lung SqCC risk. The identified locus was further assessed whether it was also associated with lung AC or SCC risk. The identified locus at 12q23 facilitated tumour progression and metastasis of lung SqCC and may serve as potential predictors for this disease [27]. These evidences as well as our findings collectively suggested the importance of chromosome 12q23 in the development of lung cancer, especially for SqCC.

At 12q23.1, the lead SNP rs12296850 is located in 4.2 kb downstream of SLC17A8 (encoding vesicular glutamate transporter 3) and 47.6 kb upstream of NRIH4 (encoding a ligand-activated transcription factor). Correlation analysis results indicate that this SNP may be associated with the expression of NRIH4, a gene known as nuclear farnesoid X receptor (FXR). FXR is a member of the nuclear receptor family of transcription factors and highly expressed in the entero-hepatic system where it transcriptionally regulates bile acid and lipid metabolism [28]. Bile acids are natural ligands for the FXR, and the bile acid-FXR interaction has been suggested to be involved in the pathophysiology of a number of inflammatory-associated cancers [29,30]. Loss of FXR increased tumor progression via promoting Wnt signaling by infiltrating neutrophils and macrophages, and elevated the tumor necrosis factor α (TNFα) production in vivo [30]. Furthermore, FXR was involved in CYP regulation through mutual repression with NF-kappaB which indirectly regulates the transcription of CYP genes [31]. Further studies are required to elucidate the potential role of NRIH4 on SqCC development.

SLC17A8 (also known as Vesicular Glutamate Transporter Type 3, VGLUT3) is a member of the solute carrier (SLC) superfamily encoding multiple transmembrane transporters that may involve in the development and progression of a number of diseases, including cancers [32]. Genetic variants in the urea transporter (UT) gene SLC14A1 were reported to be significantly associated with susceptibility to urinary bladder cancer in a GWAS of European population, whereas SLC3A2 may function as a tumor suppressor gene whose silencing by epigenetic changes may contribute to carcinogenesis and progression of pancreatic cancer.

Table 2. Association between rs12296850 at 12q23.1 and risk of lung adenocarcinoma (AC) and small cell carcinoma (SCC).

Histology	Study	GG/AG/AA genotypes	G allele frequency	ORhet	ORhomo	ORadd	Padd *		
		Case	Control						
AC	GWAS	70/452/782	184/1200/1693	0.227	0.255	0.81(0.70–0.93)	0.80(0.60–1.08)	0.85(0.76–0.95)	3.47×10⁻³
	Replication I	101/403/636	127/856/1241	0.265	0.250	0.91(0.78–1.07)	1.56(1.17–2.08)	1.08(0.96–1.22)	0.200
	Replication II	139/667/1064	289/1547/2235	0.253	0.261	0.91(0.81–1.03)	1.01(0.81–1.26)	0.96(0.88–1.05)	0.393
	Combined All	310/1522/2482	600/3603/5169	0.248	0.256	0.88(0.81–0.95)	1.08(0.93–1.25)	0.96(0.90–1.02)	0.173
SCC	GWAS	6/60/112	184/1200/1693	0.202	0.255	0.71(0.51–0.99)	0.45(0.19–1.04)	0.69(0.53–0.92)	9.86×10⁻³
	Replication I	7/51/85	127/856/1241	0.227	0.250	0.87(0.60–1.25)	0.75(0.33–1.71)	0.87(0.64–1.17)	0.345
	Replication II	38/157/261	289/1547/2235	0.256	0.261	0.89(0.72–1.10)	1.11(0.77–1.62)	0.98(0.83–1.15)	0.792
	Combined All	51/268/458	600/3603/5169	0.238	0.256	0.83(0.70–0.97)	0.92(0.68–1.26)	0.89(0.79–1.01)	0.073

*Adjusted for age, gender and pack/year of smoking; ORhet: AG vs. AA; ORhomo: GG vs. AA; ORadd and Padd derived from additive model.

doi:10.1371/journal.pgen.1003190.t002
In this GWAS of lung SqCC in Chinese, we reported evidence that common genetic variants at 12q23.1 are implicated in the development of lung SqCC. Our findings highlight the importance of studying subtype of lung cancer and may provide new insight into the mechanism of SqCC. Further studies, such as resequencing this region followed by fine-mapping study and eQTL analysis, may be needed to identify more SqCC-specific loci.

Materials and Methods

Study populations

A three-stage case-control study was designed to evaluate the associations between genetic variants across human genome and the risk of lung SqCC. Study subjects for GWAS scan of lung cancer and two-stage replication have been described elsewhere [11]. Briefly, the cases newly diagnosed with lung cancer were recruited from hospitals. The histology for each case was observed in a strong linkage disequilibrium (LD) ($r^2 < 0.05$; or (iv) deviated from Hardy-Weinberg equilibrium ($P < 1 \times 10^{-4}$ in all GWAS samples or $P < 1 \times 10^{-4}$ in either of the Nanjing Study or the Beijing Study samples). We removed samples with low genotype call rates (< 0.95) and ambiguous gender (< 4 subjects). Unexpected duplicates or probable relatives (< 52 subjects) identified by pairwise identity-by-state comparisons were also excluded according to their PI_HAT value in PLINK ($\text{PI}_\text{HAT} > 0.25$). Heterozygosity rates were calculated, and samples were excluded if they were more than 6 s.d. away from the mean (< 12 subjects were excluded). We detected population outliers using a method based on principle component analysis and 6 subjects were removed. As a result, 833 lung SqCC cases and 3,094 controls with 570,099 SNPs remained after QC.

SNP selection and genotyping in the replication study

After genome-wide association analyses, we selected SNPs for the first stage replication based on the following criteria: (i) SNPs had $P < 1.0 \times 10^{-4}$ for all GWAS samples; (ii) they showed consistent associations between the Nanjing study and the Beijing study at $P < 1.0 \times 10^{-4}$; (iii) they are not located in the same chromosome regions or genes of SNPs reported in previous GWAS; (iv) they had clear genotyping clusters; (v) only the SNP with the lowest P value was selected when multiple SNPs were reported in previous GWAS; and (vi) SNPs were excluded if they did not map on autosomal chromosomes; (ii) had a call rate > 95; (iii) had a minor allele frequency (MAF) < 0.05; or (iv) deviated from Hardy-Weinberg equilibrium ($P < 1 \times 10^{-4}$ in all GWAS samples or $P < 1 \times 10^{-4}$ in either of the Nanjing Study or the Beijing Study samples). We removed samples with low genotype call rates (< 0.95) and ambiguous gender (< 4 subjects). Unexpected duplicates or probable relatives (< 52 subjects) identified by pairwise identity-by-state comparisons were also excluded according to their PI_HAT value in PLINK ($\text{PI}_\text{HAT} > 0.25$). Heterozygosity rates were calculated, and samples were excluded if they were more than 6 s.d. away from the mean (< 12 subjects were excluded). We detected population outliers using a method based on principle component analysis and 6 subjects were removed. As a result, 833 lung SqCC cases and 3,094 controls with 570,099 SNPs remained after QC.
selected and detected using both TaqMan Openarray platform and TaqMan assay for rs12296850, yielding a concordance rate of 99.97%.

Statistical analysis
The statistical analysis methodology of our lung cancer GWAS was described previously [11]. In brief, genome-wide association analysis was performed using logistic regression analysis in additive model as implemented in PLINK 1.07 (see URLs). EIGENSTRAT 3.0 was used for the principal component analysis of population structure. Minimac software (see URLs) was used to impute untyped SNPs using the CHB+JPT data from the hg18/1000 Genomes database (released at June 2010) as reference set. Regional plot was generated using the LocusZoom 1.1.(see URLs). R software (version 2.11.1; The R Foundation for Statistical Computing) was also used for statistical analysis and generating plots, including Q-Q plot and Manhattan plot.

Tissue samples
To determine the expression levels of NRIH4 and SLC17A8, we collected 46 paired lung cancer tissues from the patients who had undergone resection between June 2009 and April 2010 from the Nantong Cancer Hospital. All cases were histopathologically diagnosed lung cancer without radiotherapy or chemotherapy before surgical operation.

Quantitative reverse transcription polymerase chain reaction
Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed to determine the mRNA expressions of NRIH4 and SLC17A8. RNAs from lung cancer tumor and adjacent non-tumor tissues were isolated with the Trizol reagent (Invitrogen). We used TaqMan gene expression probes (Applied Biosystems Inc.) and performed in triplicate. All real-time PCR reactions, including no-template controls and real-time minus controls, were run by using the ABI7900 Real-Time PCR System (Applied Biosystems Inc.) to perform qRT-PCR assay. Relative expression (2\(^{-\Delta Ct}\)) of NRIH4 and SLC17A8 was calculated using the equation 2\(^{-\Delta Ct}\) (Ct, Cycle Threshold), in which ΔCt = Ct gene - Ct β-actin.

Cis-eQTL analysis
We applied the publicly available data from GTEx (Genotype-Tissue Expression) eQTL Browser, eQTL.Chicago.edu and Gene Expression Analysis Based on Imputed Genotypes (see URLs) to perform cis-eQTL analysis and evaluated the cis association between rs12296850 and the expression of nearby genes in a variety of cells/tissues, including lymphoblastoid cell lines [37–42], monocytes [43], fibroblasts [42], liver [44] and brain tissues [45].

URLs
PLINK1.07, http://pngu.mgh.harvard.edu/~purcell/plink/; R 2.11.1 statistical environment, http://www.cran.r-project.org/; Minimac, http://genome.sph.umich.edu/wiki/Minimac ;LocusZoom 1.1, http://csg.sph.umich.edu/locuszoom/; GTEx (Genotype-Tissue Expression) eQTL Browser, http://www.ncbi.nlm.nih.gov/gtex/test/GTEXv2/gtex/cgi ; eQTL.Chicago.edu, http://eqtl.uchicago.edu/cgi-bin/gbrowse/eqtl/; Gene Expression Analysis Based on Imputed Genotypes, http://www.sph.umich.edu/cgi/lang/imputation/.

Supporting Information
Figure S1 Quantile-Quantile plot of P-values in −log10 scale. (TIF)
Figure S2 Genome-wide association results on lung SqCC in Han Chinese. Scatter plot of P values in −log10-scale from the additive model on 569,669 SNPs (833 cases and 3,094 controls). Note: SNPs located in the same chromosome regions or genes of SNPs reported in our previous GWAS were not included in the plot. Blue line: P=1.0×10\(^{-4}\). (TIF)
Figure S3 Association results for rs12296850 and lung SqCC risk by site of subjects collection. (TIF)
Figure S4 The relative expression levels of NRIH4 by rs12296850 genotypes in 46 paired lung cancer tumor and adjacent non-tumor tissues as measured by quantitative RT-PCR. Lines indicate the median with quartiles. (TIF)
Table S1 Effects of GWAS identified loci for lung cancer on subtypes of lung cancer by histology. (DOC)
Table S2 Summary description of the samples used in this study. (DOC)
Table S3 Summary of associations between 14 SNPs and lung SqCC risk in GWAS selected for replication. (DOC)
Table S4 SNPs satisfy the selection criteria for replication but are in strong linkage disequilibrium (r2>0.8) with selected SNPs. (DOC)
Table S5 Summary of associations of 14 SNPs with risk of lung SqCC in GWAS scan and replication studies. (DOC)
Table S6 SNPs at 12q13.1 associated with risk of lung SqCC at P<1.0×10\(^{-4}\). (DOC)
Table S7 Stratification analysis on association of rs12296850 at 12q13.1 and lung SqCC risk. (DOC)

Author Contributions
Conceived and designed the experiments: H Shen, Z Hu, J Dong, G Jin, D Lin. Performed the experiments: M Chu, C Wang, Y Jiang, S Cao, Z Qin, J Gong, C Sun. Analyzed the data: J Dong, G Jin, J Dai, R Zhang, Z Li. Contributed reagents/materials/analysis tools: Y Shu, L Xu, H Ma, Y Chen, C Wu, D Yu, X Liu, W Tan, H Guo, Q Deng, J Liu, P Xu, X Zhao, J Wang, G Zhou, H Chen, B Han, C Bai, Z Yin, W Wu, P Guan, Y Zhao, H Zhang, Y Yan, J Liu, T Wu, Y Shi, D Lu, J Jin, B Zhou, J Lv. Wrote the paper: J Dong, G Jin. Critical revision of the manuscript: H Shen, T Wu, Y Shi, D Lu, L Jin, B Zhou, J Lv. CI Amos. Obtained funding: H Shen, Z Hu, D Lin. Administrative, technical, or material support: CI Amos, F Chen. Study supervision: H Shen, D Lin, Z Hu.

1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, et al. (2011) Global cancer statistics. CA Cancer J Clin 61: 69–90.
2. Travis WD (2002) Pathology of lung cancer. Clin Chest Med 23: 65–81, viii.
3. Kenfield SA, Wei EK, Stampfer MJ, Rosner BA, Colditz GA (2008) Comparison of aspects of smoking among the four histological types of lung cancer. Tob Control 17: 198–204.
23. Rutherford S, Hampton GM, Frierson HF, Moskaluk CA (2005) Mapping of
22. Best CJ, Gillespie JW, Yi Y, Chandramouli GV, Perlmutter MA, et al. (2005)
21. Hosgood HD, 3rd, Wang WC, Hong YC, Wang JC, Chen K, et al. (2012)
20. Hsiung CA, Lan Q, Hong YC, Chen CJ, Hosgood HD, et al. (2010) The
19. Jin G, Xu L, Shu Y, Tian T, Liang J, et al. (2009) Common genetic variants on
18. Wang Y, Broderick P, Gorlov IP, Gu J, et al. (2008) Genome-wide
17. Thorgeirsson TE, Geller F, Sulem P, Rafnar T, Wiste A, et al. (2008) A variant
16. Amos CI, Wu X, Broderick P, Gorlov IP, Gu J, et al. (2008) Genome-wide
15. Shi J, Chatterjee N, Rotunno M, Wang Y, Pesatori AC, et al. (2012) Inherited
14. Shiraiishi K, Kunitoh H, Daigo Y, Takahashi A, Goto K, et al. (2012) A genome-wide
13. Miki D, Kubo M, Takahashi A, Yoon KA, Kim J, et al. (2010) Variation in
12. Ahn MJ, Won HH, Lee J, Lee ST, Sun JM, et al. (2012) The 18p11.22 locus is
11. Hu Z, Wu C, Shi Y, Guo H, Zhao X, et al. (2011) A genome-wide association
10. Li Y, Sheu CC, Ye Y, de Andrade M, Wang L, et al. (2010) Variant of lung cancer in never smokers: a genome-wide association study. Lancet Oncol 11: 321–330.
9. Yoon KA, Park JH, Han J, Park S, Lee GK, et al. (2010) A genome-wide association study reveals susceptibility variants for non-small cell lung cancer in the Korean population. Hum Mol Genet 19: 4948–4954.
8. Galvan A, Falvezza FS, Spinola M, Frullanti E, Leoni VP, et al. (2008) A polygenic model with common variants may predict lung adenocarcinoma risk in humans. Int J Cancer 125: 2327–2330.
7. Lanj DI, Chatterjee N, Yu K, Goldin LR, Goldstein AM, et al. (2009) A genome-wide association study of lung cancer identifies a region of chromosome 5p15 associated with risk for adenocarcinoma. Am J Hum Genet 85: 679–691.
6. McKay JD, Hung RJ, Gaborieau V, Boffetta P, Chabrier A, et al. (2008) Lung cancer susceptibility locus at 5p15.33. Nat Genet 40: 1404–1406.
5. Hung RJ, McKay JD, Gaborieau V, Boffetta P, Hashibe M, et al. (2008) A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature 452: 633–637.
4. Heist RS, Engelman JA (2012) SnapShot: non-small cell lung cancer. Cancer Cell 21: 448–449.
3. Thorgeirsson TE, Geller F, Sulem P, Rafnar T, Wiste A, et al. (2008) A variant of lung cancer in never smokers: a genome-wide association study. Lancet Oncol 11: 131–139.
2. An MJ, Won HH, Lee J, Lee ST, Sun JM, et al. (2012) The 18p11.22 locus is associated with never smoker non-small cell lung cancer susceptibility in Korean populations. Hum Genet 131: 365–372.
1. McKay JD, Hung RJ, Gaborieau V, Boffetta P, Chabrier A, et al. (2008) A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature 452: 633–637.