Systematic review and evolution of the early Cytheruridae (Ostracoda)

ROBIN WHATLEY & IAN BOOMER

1 Micropalaeontology Research Group, University of Wales, Aberystwyth SY23 3DB, UK.
2 Department of Geography, University of Newcastle, Newcastle NE1 7RU, UK.

ABSTRACT – A review of the literature on the taxonomy of Triassic and Early Jurassic cytheracean Ostracoda reveals that the validity of many genera is questionable. A number of studies of the Triassic microfaunas from eastern European sequences have, in particular, obscured the true generic and suprageneric classification of many ostracod taxa. The present study concentrates on the diverse extant cytheracean family the Cytheruridae, whose origins are in the earliest Mesozoic–latest Palaeozoic, but it is clear that many contemporary cytheracean families present similar problems. This review clarifies the previous taxonomic confusion and obfuscation by demonstrating that many of these genera are spurious having been erected on specific rather than generic morphological criteria. Many of them are best accommodated within the extant genus Eucytherura Müller, 1894. Most of the cytherurid genera known from the Liassic deposits of NW Europe can be traced back to these Triassic assemblages. In considering the origin and earliest evolution of the Cytheruridae, we note that some Triassic taxa share characteristics typical of both the Cytheruridae and the Bythocytheridae and it is suggested that the former may have arisen from the latter family during the latest Permian or earliest Triassic. We also note that the palaeoenvironmental interpretation of many of the Triassic deposits is brackish-water, marginal marine.

J. Micropalaeontology, 19(2): 139–152, December 2000.

INTRODUCTION

The family Cytheruridae G. W. Müller, 1894 is one of the most diverse extant families of ostracods with a fossil record extending back to the Early Jurassic or possibly the latest Permian. Today they are almost exclusively marine, although there are some euryhaline species. During the Cenozoic the family was almost equally diverse in shelf and deep-sea environments. Mesozoic cytherurids seem to have been largely confined to shelf depths but shallow, brackish-water taxa are also known. This paper is limited to a consideration of Permian, Triassic and earliest Jurassic taxa.

In an attempt to establish the phylogenetic origin of the cytherurids we have re-evaluated the available published descriptions of Triassic marine and marginal-marine cytheracean taxa in a literature search of global scope. In this study we have considered a large number of genera and species, many of which are discussed here. We have found it necessary to synonymize a number of genera and also entire families as Whatley & Moguilevsky (1998) did in a similar study of the Limnocytheridae. Within these Triassic assemblages we recognize some of the earliest representatives of the Cytheruridae. With some taxa we have experienced difficulties in determining their familial status. This is only to be expected early in the adaptive radiation of a superfamily and that of the Cytheracea is no exception (Whatley & Stephens, 1976, Whatley, 1988).

The first major evolutionary radiation within the Cytheruridae is recognized to have taken place during the latest Triassic to Early Jurassic (Whatley et al., 1993), with some of these newly established genera surviving to the present day (e.g. Cytheropteron, Eucytherura). A large number of post-Palaeozoic cytheracean ostracod families can be traced back to the earliest Mesozoic, following the final extinction of many 'palaeocopid' ostracods by the close of the Permian (Whatley & Stephens, 1976). Some authors signally failed to recognize that many of these early Cytheracea belonged to pre-existing post-Permian genera and placed them in a series of spurious new genera. This is particularly true of the marine and euryhaline assemblages of Central, East and SE Europe. One of the consequences is that these 'new' genera appear to be stratigraphically restricted to the Triassic. Furthermore, many of the new genera have been erected on the basis of what we regard as specific characteristics and this is supported by the observation that many of them are mono-specific and, in some cases, were erected on a single specimen. The true suprageneric position of these taxa has, therefore, been obscured and the phylogenetic significance of these assemblages has only recently become apparent. The problem is compounded by the fact that these new taxa were placed in new families that were also stratigraphically confined to the Triassic. Many Liassic species, as demonstrated below, were also placed in new genera restricted to the Early Jurassic and we have synonymized a number of them.

The Late Palaeozoic demise of the 'palaeocopids' and other ostracod groups resulted in the emergence of typical Mesozoic assemblages, many of which have not previously been recorded in pre-Jurassic sediments. It would appear that their 'absence' from Triassic sediments was an artefact caused by misidentification and mis-interpretation. We believe that it is now possible to establish the antiquity, if not necessarily the origin, of the Cytheruridae within these Triassic assemblages.

The taxonomic problems outlined above have been compounded further by the fact that fully marine Triassic sequences are rather rare in NW Europe, so that most attention has been directed towards marginal-marine or freshwater ostracod assemblages (e.g. Beutler & Gründel, 1963). Although most modern post-Liassic cytherurids (with notable exceptions) are marine, it now seems that some of their earliest representatives inhabited brackish-water marginal-marine environments. Marine sequences from the Early Mesozoic Tethys were largely unknown or ignored by European workers prior to the last 30 years. European studies in the epicontinental extension of Tethys, mainly by Kozur and colleagues (Kozur, 1968a,b, 1970a,b, 1971, 1972a, 1973; Kozur & Nicklas, 1970; Kozur et
al., 1974) epitomised the problems outlined above, with what is
in our opinion, unnecessary ‘splitting’ at generic level. Subse-
quently, Kristan-Tollmann (1972, 1983, 1986, 1989) Kristan-
Tollmann & Hasibuan, (1990), Kristan-Tollmann & Gramann
(1992), Kristan-Tollmann et al. (1991a,b) have extended our
knowledge of Tethyan faunas through studies of Triassic marine
deposits from the European Alps, Iran, Indonesia, China,
Australia and New Zealand (see review in Kristan-Tollman,
1988). Most importantly she illustrated many Triassic taxa using
scanning electron micrographs which are a significant improve-
ment on the poorer quality reflected light microscope illustra-
tions of earlier workers. Sohn (1968, 1970, 1987) has also added
valuable information on Triassic ostracods from Israel, Pakistan
and Alaska respectively. Basha (1982) reported Triassic ostra-
cods from Jordan. A number of papers describe Triassic ostracods
from ODP Leg 122 of NW Australia (Crasquin-
Soleau et al., 1990; Crasquin-Soleau & Dépèche, 1992; Dépèche
& Crasquin-Soleau, 1992; Kristan-Tollmann & Gramann,
1992). Marine Triassic ostracods have also been described from
China (Guan, 1985; Zheng, 1988).

The Cytheruridae belong to the Superfamily Cytheracea
(Order Podocopina, Ordovician to Recent) which dominate
most post-Palaeozoic marine assemblages. The Cytheracea are
characterized, among other features, by a vertically aligned row
of four (rarely three or five) adductor muscle scars. The majority
of Palaeozoic ostracods are distinguished by the possession of a
sub-circular, irregularly arranged group of between 10 and 100
individual muscle scars, the only known Palaeozoic cytheracean
ostracods are the Permianidae, the Limnocytheridae (Whatley &
Moguilevsky, 1998) which are non-marine, and the marine
Bythocytheridae. The Permianidae are characterised by a
vertically aligned row of three and the Bythocytheridae by five
adductor muscle scars, while the Limnocytheridae like virtually
all other Cytheracea have four vertically aligned adductors. It is
our contention that the Bythocytheridae were the root stock
which, during the Late Palaeozoic or Early Mesozoic interval,
gave rise directly or indirectly to all other Cytheracea and that
one of the earliest recognizable cytheracean families is the
Cytheruridae.

Conventionally, three subfamilies are recognized within the
Cytheruridae: the Cytherurinae, the Cytheropterinae (Hanai,
1957) and the Paracytherideinae (Mandelstam, in Orlov, 1960)
(although some authors accord the latter separate familial status
while others would include additional subfamilies such as the
Late Cretaceous to Recent Oculocytheropterinae Bate & Cole-
am, 1975 and the Jurassic to Recent Eucytherurinae Puri, 1974.
The present authors contend that the majority of cytherurid
species identified in the Triassic belong to the Cytherurinae while
some are certainly, and others possibly, members of the
Cytheropterinae. The family is known to be well established by
the Early Jurassic. The Paracytherideinae are believed to
have their earliest record in the Cretaceous and are not
considered further in this study.

Unfortunately, many of the specimens figured in the literature
on Triassic ostracods are often poorly illustrated and/or poorly
preserved. As an additional complication, it is now clear that
few of the types or specimens illustrated by Kozur and his
colleagues were deposited in accessible collections and many are
now certainly lost (Kozur, pers. comm.). Therefore, it is not
possible to re-examine the majority of the type specimens and we
are left with only the original illustrations, type descriptions and
personal communications with the original authors. There are
very few descriptions of taxonomically important internal
features such as adductor muscle scars or hingement. Never-
theless, we believe that it is possible to draw important
conclusions based on external features and gross carapace
morphology. Hingement in Early Mesozoic cytheracean ostra-
cods is generally lophodont, more rarely merodont. In the
following sections we discuss the validity of many Permian to
Early Jurassic genera. In many cases the type material is lost or
was never curated. A complete taxonomic revision would
warrant re-collection from all of the type localities combined
with an exhaustive search of museum collections. We have
chosen not to figure the few taxa that are available since they are
already well illustrated in the literature. We have fully referenced
the type description of each taxon discussed, since only through
observing the original illustrations can the taxonomic problems
be fully appreciated. We hope that this paper will stimulate
further research on an important period in ostracod evolution.

It is our opinion that many of the species recorded from the
marginal-marine and marine Triassic deposits world-wide can
easily be accommodated within already existing genera originally
described from younger strata. Many previous taxonomic
studies have obscured true evolutionary relationships by not
distinguishing between generic and specific criteria. We have
adopted the taxonomic philosophy outlined by Whatley &
Ballent (1996) in which generic characters are of kind while
specific characters are of degree. Clearly there is scope for future
research into the Early Mesozoic development of cytheracean
ostracods, a fundamentally important period in their evolution.

SYSTEMATIC DISCUSSION
What follows, in alphabetical order, is an evaluation of a
number of Late Palaeozoic–Early Mesozoic genera that are
possible candidates for inclusion within the Cytheruridae. Some
are accepted as members of the family while others are rejected.
Genera which we consider valid, whatever their family, are given
in titulo underlined and are diagnosed, those that we consider
valid but which only occur in sediments younger than Early
Jurassic are not diagnosed. The family to which we believe the
valid taxa belong is also given and modern diagnoses of the
Cytheruridae and its two relevant subfamilies are also presented.
LV, left valve; RV, right valve. The following convention is used
to describe ostracod size (in adult specimens).

Size	
Very small	< 0.4 mm
Small	0.4–0.5 mm
Medium	0.5–0.7 mm
Large	0.7–1.0 mm
Very large	> 1.0 mm

Suprageneric classification
- Class Ostracoda Latreille, 1802
- Order Podocopida Müller, 1894
- Suborder Podocopina Sars, 1866
- Superfamily Cytheracea Baird, 1850
- Family Cytheruridae Sars, 1925
Diagnosis. Small. Calcification ranging from thin to thick-shelled. Subovate, subrhomboidal, subquadrate to subrectangular. Often with caudal process and many with flattened venter. Right valve only slightly larger than left. With or without subcentral tubercle. Ranging from non-alate to very strongly alate ventro-laterally or postero-ventrally. Blind or with eye spots or strong eye tubercles. Valves smooth, punctate, reticulate, costate to strongly carinate or combinations of these. Normal pore canals ranging from simple (the most common) to primitive sieve-type. Radial pore canals rather few, simple, often sinusous and with false canals. Mainly asteatobal or small vestibula may be developed at either end. Inner margin usually regular but may be very irregular. Frontal scar ovate, reniform to v-shaped and sometimes subdivided. Hinge lophodont or merodont, often strongly modified and sometimes secondarily adont, very rarely pentadont.

Subfamily Cytherurinae Sars, 1925

1968 Judahellidae Sohn: 12
1971 Kerocytheridae Kozur: 48
1972b Trachycytherinae Kozur: 13
1973 Mostlerellidae Kozur: 19

Diagnosis. Carapace generally subrectangular in lateral view and usually without strong alae. Caudal process often pronounced. Smooth to strongly ornamented with ribs, tubercles, etc. Vestibula small or absent. Hinge as for family but never adont. Inner margin parallel to widely divergent. Radial pore canals often long, sinusous with false canals. Eye tubercles frequently well developed in ornate taxa.

Subfamily Cytheropterinae Hanai, 1957

Diagnosis. Carapace subovate, with dorsal margin often rounded, to subquadrate and sub-rectangular. Feebly ornamented, smooth to punctate or reticulate. Usually strongly alate or tumid ventro-laterally. Small vestibula usually present. Hinge usually antimerodont but often modified. Without eye tubercles.

Generic classification

Genus Blomella Kozur, 1973

?1956 Spelunella Schneider; Mandelstam et al.: 120.

Type species. Spelunella sulcata Kozur, 1968b (p. 509, pl. 1, figs 3, 8, 23, 24, 27-29).

Diagnosis. Carapace small to medium size, smooth, LV > RV. Ventral margin straight; anterior, dorsal and posterior margins form a highly arched outline in lateral view. Ventral margin flat and extended laterally into distinct flanges. Hinge short, lophodont.

Remarks. The type species, Blomella sulcata, was originally assigned to Spelunella Schneider (in Mandelstam et al., 1956) which Whatley & Moguilevsky (1998) place in the Limnocytheridae, Timiriasevinae. B. sulcata is at least outwardly similar to members of the Timiriasevinae. The type species is somewhat cytheropterine (reminiscent of Modern deep-sea taxa such as Cytheropteron testudo) but Kozur (pers. comm., 1997) states that the genus was recovered from brackish water sediments and it is very rare for fossil or Recent members of Cytheropteron or its allies to occur in environments of reduced salinity. Although Whatley & Moguilevsky (1998) did not include Blomella in their review of the Limnocytheridae, it is probably a valid member of that family and not a cytherurid. Blomella may be a junior synonym of Spelunella but for the time being we accept it as a valid taxon but not a member of the Cytheruridae.

Genus Citrella Oertli, 1959

Type species. Citrella nitida Oertli, 1959 (p. 118, pl. 2, figs 16–19, p.117, text-fig. 3).

Diagnosis. Carapace small, ovate in lateral view with short, sharp caudal process posteriorly, LV overlaps RV along dorsal and ventral margins. Lateral surface smooth. Ventro-lateral margin slightly extended. Anterior and posterior marginal pore canals few and straight. Four ovate adductor muscle scars and two frontal scars. Lophodont hinge.

Remarks. Citrella is a cytheropterine genus with smooth hinge elements which was originally described from Middle Jurassic sediments in France. It has superficial similarities with Cytheropterina Mandelstam (in Mandelstam et al., 1956) but the two genera are certainly not synonymous. Kozur & Bolz (in Kozur, 1971) described two species, Citrella? lata (p. 19, pl. 3, figs 4–5) and Citrella? bairdiformis (p. 18, pl. 3, figs 2–3) which they assigned, questionably, to this genus. Kozur (pers. comm., 1997) confirmed that these species were recovered from Triassic (Late Norian) marine sediments. A similar species, Cytheropteron? triassica Kozur (in Kozur, 1971) was described from what were 'probably marine sediments' (Kozur, pers. comm., 1997); the species has a lophodont hinge and cannot, therefore, belong to Cytheropteron sensu stricto although it is certainly cytheropterine and probably belongs to Citrella. Kozur (pers. comm., 1997) now concurs with this conclusion.

Spelunella? ampelsbachensis, from 'probable marine Late Norian sediments' (Kozur, pers. comm., 1997), was described by Kozur & Bolz in the same publication (Kozur, 1971, p. 46, pl. 3, figs 6–7) and is probably congeneric. A number of similar species are also present in the Early Jurassic sediments of the Mochras Borehole, Wales (Boomer, 1989 and unpublished data) and these almost certainly constitute a distinct group within the Cytheropterinae. It is our opinion, therefore, that the genus Citrella ranges from the Late Norian to the mid-Bathonian and possibly to the Tithonian (Pokorny, 1973).

Genus Cytheropteron Alexander, 1933

1964 Infracytheropteron Kaye: 105.
1974 Lobosocytheropteron Ishizaki & Gunther: 32

Diagnosis. Subcircular, subovate or subrhomboidal. With or without caudal process. Alate or, alternatively, very tumid ventro-laterally. Smooth, punctate, rarely reticulate or delicately ribbed. Blind. Median element of hinge sometimes strongly crenulate. Radial pores relatively few, well spaced, straight and simple.

Remarks. The genus Cytheropteron has been reported in Triassic assemblages as two distinct subgenera, Cytheropteron (Cytheropteron), Cytheropteron (Stykieella); the nominative subgenus has its oldest certain record in the Toarcian (Cytheropteron alafastigatum Fischer, 1962, falciferum Zone, Mochras Borehole, Great Britain; Boomer, 1989). The species Cytheropteron? triassica described by Kozur (1971) is almost certainly not a valid member of that genus. Bate & Coleman (1975) erected the subfamily Oculocytheropterinae to incorporate the eyed Cyther-
operon-like species, i.e. the Late Cretaceous to Recent Oculocysteroperteron Bate and they included the Liassic genera Rutlandella and Wellandia (see below). In the following sections we synonymize the latter two genera with Eucytheropteron which is accommodated within the Cytherurinae. The Oculocysteroperterinae are not considered further here. Lobosocytheropteron is based solely on the fact that species such as C. alatum Sars, 1866 have a bend in the median element of the hinge. We do not consider this to be a generic characteristic.

Subgenus Cytheropteron (Infracytheropteron) Kaye, 1964

Type species. Cytheropteron (Infracytheropteron) exquisita Kaye, 1964 (p. 105, pl. 5, figs 9–10).

Remarks. The subgenus Infracytheropteron (originally erected as a monospecific Early Cretaceous taxon) was differentiated from Cytheropteron on the basis of hingeament which was said to consist of a smooth bar in each valve, produced by the enlargement of the selvage and valve margins. This may have been erroneously described from a juvenile specimen, no internal views were figured in the type description although the duplicature was described as narrow. A number of Liassic views were figured in the type description although the status of this taxon is at best questionable and we consider it to be a junior synonym of Cytheropteron.

Subgenus Cytheropteron (Stykella) Kozur, 1971

Type species. Cytheropteron (Stykella) sevatica Kozur, 1971 (p. 20, pl. 3, fig. 8).

Remarks. This was erected as a subgenus of Cytheropteron to accommodate a single species. The straight hinge line precludes its inclusion in Cytheropteron. It is described as having a ‘hemmererodont’ hinge and from the type figures it clearly possesses an eye node, a caudal process and a ventro-lateral extension which terminates posteriorly in a small blunt spine. Its shape disqualifies it for inclusion within Aersosvalva Hornibrook, 1952 or Oculocysteroperteron Bate, 1972. In all characteristics it clearly belongs within Eucytherura Müller.

Genus Dettermania Sohn, 1987

Type species. Dettermania truncata Sohn, 1987 (p. 11, pl. 7, figs 4–15).

Remarks. Sohn (1987) described the type species of Dettermania together with two similar species which he assigned to Covractythere (Gramm, 1975) from the marine Triassic deposits of Alaska. All three species are morphologically similar and it is possible that they are congeneric. The genus Covractythere is, without doubt, a bythocytherid (possessing five adductor muscle scars) and was originally described along with two other bythocytherid genera, Racervetina and Aevocaria, from the Far East of the Former Soviet Union (Gramm, 1975). All three species figured by Sohn possess median sulci and straight dorsal margins, indicating that they may belong within the Bythocytheridae. However, without supporting details of the muscle scars, any such assignments must remain uncertain.

No details of the muscle scars or hingeament of Dettermania are available. The carapace shape and external morphology is distinct and strongly suggests that it is congeneric with Mockella.

Bunza & Kozur, 1971, as is Hasibuana Kristan-Tollmann (in Kristan-Tollmann & Hasibuan, 1990; see below). Dettermania differs slightly from Mockella in that it lacks secondary intercostal ornament, however, we conclude that this is a specific character and therefore Dettermania is a junior synonym of Mockella.

Genus Eucytherura Müller, 1894

Type species. Eucytherura ventralis Anderson, 1964 (p. 145, pl. 13, figs 79–80).

Remarks. Anderson (1964) placed this genus in the Trachyleberidae which has its origins in the Early Cretaceous (Whatley et al., 1993). Recent examination of the type material (originally erected on a single carapace), from the Rhaetian, Cotham Beds of Warwickshire, Great Britain (Anderson, 1964) reveals that it is congeneric with (and a junior synonym of) Eucytherura.

Genus Eucytherursis Anderson, 1964

Type species. Eucytherursis vertebralis Anderson, 1964 (p. 145, pl. 13, figs 79–80).

Remarks. Anderson (1964) placed this genus in the Trachyleberidae which has its origins in the Early Cretaceous (Whatley et al., 1993). Recent examination of the type material (originally erected on a single carapace), from the Rhaetian, Cotham Beds of Warwickshire, Great Britain (Anderson, 1964) reveals that it is congeneric with (and a junior synonym of) Eucytherura.

Genus Eucytherura Müller, 1894

Type species. Eucytherura ventralis Anderson, 1964 (p. 145, pl. 13, figs 79–80).

Remarks. Anderson (1964) placed this genus in the Trachyleberidae which has its origins in the Early Cretaceous (Whatley et al., 1993). Recent examination of the type material (originally erected on a single carapace), from the Rhaetian, Cotham Beds of Warwickshire, Great Britain (Anderson, 1964) reveals that it is congeneric with (and a junior synonym of) Eucytherura.

Genus Eocycythereis Anderson, 1964

Type species. Eocycythereis vertebralis Anderson, 1964 (p. 145, pl. 13, figs 79–80).

Remarks. Anderson (1964) placed this genus in the Trachyleberidae which has its origins in the Early Cretaceous (Whatley et al., 1993). Recent examination of the type material (originally erected on a single carapace), from the Rhaetian, Cotham Beds of Warwickshire, Great Britain (Anderson, 1964) reveals that it is congeneric with (and a junior synonym of) Eucytherura.

Genus Eucytherura Müller, 1894

Type species. Eucytherura ventralis Anderson, 1964 (p. 145, pl. 13, figs 79–80).

Remarks. Anderson (1964) placed this genus in the Trachyleberidae which has its origins in the Early Cretaceous (Whatley et al., 1993). Recent examination of the type material (originally erected on a single carapace), from the Rhaetian, Cotham Beds of Warwickshire, Great Britain (Anderson, 1964) reveals that it is congeneric with (and a junior synonym of) Eucytherura.

Genus Eucytherura Müller, 1894

Type species. Eucytherura ventralis Anderson, 1964 (p. 145, pl. 13, figs 79–80).

Remarks. Anderson (1964) placed this genus in the Trachyleberidae which has its origins in the Early Cretaceous (Whatley et al., 1993). Recent examination of the type material (originally erected on a single carapace), from the Rhaetian, Cotham Beds of Warwickshire, Great Britain (Anderson, 1964) reveals that it is congeneric with (and a junior synonym of) Eucytherura.

Genus Eucytherura Müller, 1894

Type species. Eucytherura ventralis Anderson, 1964 (p. 145, pl. 13, figs 79–80).

Remarks. Anderson (1964) placed this genus in the Trachyleberidae which has its origins in the Early Cretaceous (Whatley et al., 1993). Recent examination of the type material (originally erected on a single carapace), from the Rhaetian, Cotham Beds of Warwickshire, Great Britain (Anderson, 1964) reveals that it is congeneric with (and a junior synonym of) Eucytherura.

Genus Eucytherura Müller, 1894

Type species. Eucytherura ventralis Anderson, 1964 (p. 145, pl. 13, figs 79–80).

Remarks. Anderson (1964) placed this genus in the Trachyleberidae which has its origins in the Early Cretaceous (Whatley et al., 1993). Recent examination of the type material (originally erected on a single carapace), from the Rhaetian, Cotham Beds of Warwickshire, Great Britain (Anderson, 1964) reveals that it is congeneric with (and a junior synonym of) Eucytherura.

Genus Eucytherura Müller, 1894

Type species. Eucytherura ventralis Anderson, 1964 (p. 145, pl. 13, figs 79–80).

Remarks. Anderson (1964) placed this genus in the Trachyleberidae which has its origins in the Early Cretaceous (Whatley et al., 1993). Recent examination of the type material (originally erected on a single carapace), from the Rhaetian, Cotham Beds of Warwickshire, Great Britain (Anderson, 1964) reveals that it is congeneric with (and a junior synonym of) Eucytherura.

Genus Eucytherura Müller, 1894

Type species. Eucytherura ventralis Anderson, 1964 (p. 145, pl. 13, figs 79–80).

Remarks. Anderson (1964) placed this genus in the Trachyleberidae which has its origins in the Early Cretaceous (Whatley et al., 1993). Recent examination of the type material (originally erected on a single carapace), from the Rhaetian, Cotham Beds of Warwickshire, Great Britain (Anderson, 1964) reveals that it is congeneric with (and a junior synonym of) Eucytherura.
(e.g. Michelsen, 1975). All the above spurious taxa, and others erected in the subsequent Mesozoic and Cenozoic are, in our opinion, the product of confusing generic and specific criteria. Gründel (1975) claimed that all Mesozoic Eucytherura are vestiulate, however, our own observations do not support this statement. We consider the subgenus Eucytherura (Vesticytherura) (Gründel, 1964) to be an unnecessary taxon.

Genus Falloticythere Kozur et al. 1974.
Type species. Falloticythere mulderae Kozur et al. 1974 (p. 36, text figs 19a,b,d; pl. 2, figs 9–13).
Remarks. This genus was placed in the Cytherissinellidae by Kozur et al. (1974) and this family has now been subsumed within the Limnocytheridae (Whatley & Moguilevsky, 1998). Kozur et al. commented on the presence in the type species, Falloticythere mulderae, of an antero-ventral node and an antero-median to mid-anterior node, these features produce a mid-valve sulcus which is found in most bythocytherid and many limnocytherid taxa. The hinge was described as lophodont with weak terminal teeth. The type species occurs in salinities ranging from marine to continental hyposaline (Kozur, pers. comm.).

Although possibly a cytherurid, and without internal details it is impossible to be sure, we believe that the weak hingement and carapace shape are best accommodated within the Bythocytheridae, and Falloticythere may be a junior synonym of Monoceratina Roth, 1928. As with Covractythere a number of Triassic cytheracean taxa appear to share common bythocytherid and cytherurid characteristics, indicating the possible origin of the Cytheruridae from bythocytherid stock in the Late Permian or earliest Triassic.

Genus Grammannicythere Gründel, 1975.
Type species. Lophodentina bachi Gramann, 1962 (p. 195, fig. 2; pl. 2, fig. 5a–c).
Remarks. This is synonymous with Nanacythere (Goniocythere) Michelsen, 1975 which was published a few months later. The genus comprises a few, mainly Plensbachian, cytherurid species with a strongly angular development in the lateral primary ribbing. The taxonomic status of both Nanacythere (Domeria) Herrig, 1969 and Nanacythere (Nanacythere) are discussed below. We consider Grammannicythere and, therefore, Nanacythere (Goniocythere) to be junior synonyms of Eucytherura. Although possibly a valid taxon (and we consider it as such in the summary table), the lack of descriptive and illustrative material makes it impossible to provide a meaningful diagnosis at this time.

Genus Grammicythere Kozur, 1972a nom. nov.
Type species. Grammella hungarica Kozur, 1971 (p. 22, pl. 1, fig. 1; pl. 4, fig. 3).
Remarks. Grammicythere replaced Grammella Kozur, a junior objective homonym of a bryozoan. The original publication also mis-spelt the name as Gramella. The type species possesses a straight to slightly convex dorsal margin and reticulate lateral surfaces with a ventro-lateral rib, it clearly belongs within the Cytherurinae and seems best accommodated within Eucytherura, although no eye-spots were recorded (many modern species of Eucytherura lack eyes, especially those which occur in deep water). Kozur (1971) states that it is closely related to Lutkevichinella Schneider (in Mandelstam et al., 1956) a genus which Whatley & Moguilevsky (1998) have shown to be a limnocytherid. However, on the basis of the very poor illustrations of the type species of Grammicythere it is difficult to observe any points of similarity with Lutkevichinella. Notwithstanding this, we believe the genus to be another junior synonym of Eucytherura.

Genus Gruendeliclythere Kozur, 1971
Type species. Gruendeliclythere ampelsbachensis Kozur & Bolz n. sp. in Kozur, 1971 (p. 24, pl. 6, figs 6–10).
Diagnosis. Carapace small, rather elongate, dorsal and ventral margins straight converging slightly posteriorly. Posterior and anterior margins rounded in lateral view, compressed in dorsal view. Lateral surface bears marked reticulate nodes and sulci, the largest of which are in the mid- to postero-ventral region. They do not extend beyond the dorsal margin in lateral view. Ventral surface flat and broad. Hinge probably lophodont.
Remarks. The type species is a very small cytherurid and, although it resembles Eucytherura, it differs from most species of that genus in possessing particularly large nodes and tubercles for such a small ostracod. It has a slightly produced posterior with compressed anterior and posterior margins. Kozur (1971) refers to the similarity of its noding to Judahella Sohn, 1968 but the distribution and nature of the noding in the two genera is quite different, as is the carapace outline (most species of Judahella have well developed nodes which extend beyond the dorsal margin) and the similarity is probably convergence. In the shape of the carapace and the distribution of nodes it differs significantly from the nodose Liassic cytherurid Trachcythere Triebel & Klingler, 1959. There are superficial similarities with Cretaceous and Cenozoic genera, such as Chapmanicythere Weaver, 1982, Hemingwayella Neale, 1975 and Parahemingwayella Dingle, 1984 but Gruendeliclythere differs sufficiently from all the above comparitors for us to consider it valid. A species assigned to this genus has been described from the Late Permian of northern Hungary (Kozur, 1985).

Genus Hasibuana Kristen-Tollmann (in Kristen-Tollmann & Hasibuau, 1990)
Type species. Hasibuana asiatica Kristen-Tollmann (in Kristen-Tollmann & Hasibuau, 1990) (p. 176, pl. 1, figs 1–5).
Remarks. The type species possesses a well-developed pair of diagonal, lunate ribs with weak intercostal reticulation; a poorly developed eye-spot is also present. The carapace has a straight dorsal and highly convex ventral margin and in this respect is very similar to Detttermania in lateral outline. However, it lacks the median sulcus of that genus. Kristen-Tollmann (in Kristen-Tollmann & Hasibuau, 1990) noted that Hasibuana differs from Detttermania in possessing an eye-spot, and antero and postero-marginal ribs. We consider these differences to be of specific rank only and, therefore, that Hasibuana, like Detttermania, is a junior synonym of Mockella based on carapace shape, size and distribution of major ribs.

Genus Judahella Sohn, 1968
1968 Ophthalmonodella Knüpper & Kozur: 322
1971 Judahella (Costahella) Kozur: 42
Type species. Judahella tsorfatia Sohn, 1968 (p. 15, pl. 3, figs 20–21).

Diagnosis. Small, oval to triangular in lateral view. Dorsal margin straight, ventral margin convex, strongly so in some species. Anterior margin flat to broadly rounded. Greatest length near dorsal margin, greatest height near anterior margin. The valves are sometimes smooth but more commonly reticulate and bear a number of distinct swellings or nodes which are consistently developed within species. In many species these nodes extend beyond the dorsal margin in lateral view. There may also be a longitudinal rib present ventro-laterally. Hinge consistently developed within species. In many species these nodes extend beyond the dorsal margin in lateral view. There may also be a longitudinal rib present ventro-laterally. Hinge merodont. Muscle scars a vertically aligned row of four.

Remarks. Sohn (1968) originally placed this genus in the Palaeocopida (Superfamily unknown) and in a new family, the Judahellidae. Sohn discussed its possible relationship to a number of genera such as Cornigella Warthin, 1930 and Trachycythere. We consider Judahella to be a cytheracean, and almost certainly a cytherurid, characterized by a small, straight-hinged carapace with 3–4 large dorsal tubercles extending beyond the dorsal margin.

Kozur (1968b, p. 502) noted that Casachstanella scungayica Schliefer, 1966, the type species of that genus, is a brackish-water form related to Judahella. Kozur (1970a) later considered Judahella to be a junior synonym of Triassinella Schneider (in Mandelstam et al., 1956), however, Whatley & Moguilevsky (1998) placed Triassinella in the Limnocytheridae which precludes synonymy with the present genus. Confusingly, in the same paper Kozur (1970a) also established Judahella as a subgenus of Triassinella. The species illustrated by Kristan-Tollmann et al. (1991b, pl. 8, fig. 1) as Triceratina fortenodosa (Urlichs, 1972) is a species of Judahella.

Sohn (1968) discussed the possible relationship between Judahella and Liassic species of Trachycythere Triebel & Klingler (1959) which also bear large tuberculae. However, the disposition of tuberculae in the two genera is quite different and we believe that this similarity is merely homeomorphic (see further discussion on Trachycythere below). Judahella andrassovi Kozur & Bolz, 1971 of Kristan-Tollmann et al., 1991a,b resembles another Liassic genus, Paratrichocythere Park, 1987. That genus was named for its superficial similarity to the younger Trachycythere (Triebel & Klingler), which is unfortunate because the two Liassic taxa are quite different, particularly in hingement, size and lateral outline. Neither genus can be confidently related to Judahella which we consider to be a valid cytherurid taxon. There is evidence that Judahella ranges back to at least the Late Permian of northern Hungary (Kozur, 1985). In the same publication a new genus was erected, Buukkella Kozur, which may be a junior synonym of Judahella.

Subgenus Judahella (Costahella) Kozur, 1971

Type species. Judahella (Costahella) hungarica Kozur, 1971 (p. 28, pl. 2, fig. 6).

Remarks. Erected as a subgenus of Judahella Sohn, based on the presence of a rib below the four main dorsal tubercles. In our opinion this is at best a specific character, or common to a group of Judahella species, and the diagnosis of Judahella has been emended above accordingly. We consider the subgenus to be a junior synonym of Judahella.

Genus Kerocythere Kozur & Nicklas, 1970

1972 Recycythe Kristan-Tollmann: 46

Type species. Cythere rablina Gümbel, 1869 (p. 184, pl. 6, fig. 36a).

Diagnosis. Carapace elongate, triangular in lateral view, greatest height near anterior margin. Dorsal margin straight, ventral margin convex, greatest length above mid-height. Carapace outline triangular in end view with greatest width across ventral surface. Surface of valves smooth or reticulate. Valves bear distinct circum-marginal ribs or flanges (which may be perforate, see Kristan-Tollmann et al., 1991a, pl. 2, figs 1,2), cardinal angles well marked and may bear projections. One species, Kerocythere bulbosa (Kristan-Tollmann, 1972), also possess large bulbous inflations anteriorly. Eye spots weak or absent. The hinge is very characteristic. The terminal elements in the LV are single smooth loculi, while the median element, a possibly denticulate bar, is extended distally (both anteriorly and posteriorly) into a large hemispherical boss.

Remarks. The genus was originally placed in the Trachyleberidae. In the type description Kozur & Nicklas (1970) designated Cythere rablina Gümbel, 1869 as the type species but did not figure any new specimens of that species. They figured three species, two of which were referred to Kerocythere n. sp.1 Bolz and Kerocythere n. sp.2 Bolz and the third to Kerocythere n. sp. The reason for reference to Bolz on this publication is unclear.

Kerocythere sp.1 Bolz (Kozur & Nicklas, 1970, pl. 2, fig. 1) possesses three distinct longitudinal ribs (dorsal, mid- and ventral), a denticulate anterior margin and a weak eye spot. Kerocythere sp. 2 Bolz (Kozur & Nicklas, 1970, pl. 2, fig. 2) possesses a dorsal, ventral and antero-marginal rib. The dorsal part of the ventral rib displays a series of short vertical riblets. The antero-cardinal angle terminates in a small boss while the postero-dorsal cardinal angle possesses a short, dorso-ventrally projecting spine (an extension of the dorsal rib). Kozur & Nicklas (1970) also figured material assigned to Kerocythere n. sp. which is probably a juvenile of one of the aforementioned species.

According to Kozur & Nicklas (1970), the genus possesses an amphiend hing, which is both phylogenetically unlikely and entirely unsubstantiated by the illustrations. Indeed, the hingement appears to be peratodont (sensu Bate, 1972), whereby the median element is inflated terminally. Indeed, from the available illustrations it appears that the terminal teeth (in the right valve and terminal inflations of the median element in the left valve) are very strongly developed, although this may be an artefact of the illustration process (possibly retouched). The hingement is better illustrated in Kozur, 1971 (pls 7 & 8), indeed pl. 7, fig. 5b shows a crenulate median element although this too may have been manually retouched. The hingement closely resembles that of certain Campanian to Recent taxa belonging to the Pectocytheridae, an essentially Southern Hemisphere and mostly Pacific family whose hinge is termed pentadont (Hanai, 1957), which seems to be synonymous with holoperatodont, the former having priority. We consider Kerocythere to be a valid
cytherurid genus with a distinctive carapace outline, ornament and hingement.

Subgenus Kerocythere (Rekocythere) Kristan-Tollmann, 1972

Type species. Kerocythere (Rekocythere) bulbosa Kristan-Tollmann, 1972 (p. 46, pl. 2, figs 6, 7).

Remarks. A subgenus which was originally distinguished from Kerocythere sensu stricto by the presence of a median rib, which we consider to be a differentiating character at species level only. Furthermore, the type species is almost certainly a junior synonym of Kerocythere veghae Kozur, 1971 (in Bunza & Kozur, 1971). Kristan-Tollmann (1972) made no reference to this species when erecting the subgenus nor did she reference the publication and it is probable that she did not see it before publishing her work. We do not accept the validity of this subgenus and have emended the diagnosis of Kerocythere to accommodate it.

Genus Lophodentina Apostolescu, 1959

Type species. Lophodentina lacunosu Apostolesca, 1959 (p. 814, pl. 3, figs 56, 57).

Diagnosis. Carapace medium sized, well calcified, ovate to sub-rectangular in lateral view. Anterior and posterior margins broadly rounded, dorsum straight, venter sinuous to weakly concave. Carapace uniformly inflated without distinct marginal compression. External ornament variable but usually well developed as reticulae and a combination of longitudinal, transverse or marginal ribbing. Hinge straight, weakly merodont. Inner lamella of medium width.

Remarks. The genus was originally described from Liassic sediments in the Paris Basin and was placed within the Cytheridae. This medium-sized genus was named for its lophodont hinge which, in fact, now seems to be merodont with a weakly crenulate median element. Subsequently, Gramann (1962) assigned one new species (Lophodentina? buchii) and one undescribed Liassic species to this genus. Those latter two species we consider to belong to Eucytherura. The taxonomic status of Lophodentina remains in question but may be a valid genus. The earliest representatives of the genus are probably Liassic. Given its large size, carapace shape and lateral outline we do not consider this to be a cytherurid.

Genus Metacytheropteron Oertli, 1957

Type species. Metacytheropteron elegans Oertli, 1957 (p. 8, pl. 1, fig. 12).

Remarks. Metacytheropteron is a Middle Jurassic to Cretaceous member of the Cytheropterinae and, as such, is outside the scope of this study. However, Anderson (1964) assigned a Rhaetian species (Metacytheropteron nannodes) to this genus. We have now examined the type specimen of Metacytheropteron nannodes and consider that it belongs to the genus Procytherura Whatley, 1970. Since the genus does not occur in Permian or Triassic sediments a diagnosis is not included.

Genus Mockella Bunza & Kozur, 1971

1981 Renicytherura Gründel: 543
1987 Dettmerania Sohn: C11.
1990 Hasibuana Kristan-Tollmann; Kristan-Tollmann & Hasibuana: 175.

Type species. Mockella meulleri Bunza & Kozur, 1971 (by subsequent designation; Kozur, 1973) (p. 8, pl. 1, fig. 12).

Diagnosis. Medium-sized carapace, dorsal margin slightly convex and sinuous, ventral margin strongly convex, LV > RV. Medially sulcate, may have antero-central node in front of sulcus. Lateral surfaces smooth or finely punctate with median and ventro-lateral longitudinal ribs present, the latter parallels ventral margin. Eye spot may be well developed. Hingement lophodont, small vestibulum both anteriorly and posteriorly.

Remarks. The authors assigned a taxon as type species which was due to be published shortly afterwards (Mockella marinae), however, that publication never appeared (Kozur, pers. comm.). In 1973, Kozur subsequently designated Mockella meulleri Bunza & Kozur, 1971 as the type. The type species described and figured by Bunza & Kozur (Mockella meulleri, p. 8, pl. 1, fig. 12) was originally assigned to the Glorianellidae which is now considered to be a junior synonym of the Limnocytheridae (Whatley & Mogulevsky, 1998). From published illustrations and the original generic diagnosis, we infer that Mockella is a senior synonym of both Dettmerania Sohn, 1987 and Hasibuana Kristan-Tollmann (in Kristan-Tollmann & Hasibuan, 1990). Lord et al. (1993) figured a nomina aperta species of Renicytherura Gründel, 1981 from the Early Jurassic off Western Australia which may be congenere. We therefore consider Mockella to be a senior synonym of Dettmerania and Hasibuana and to be a valid genus of the Cytheruridae, Cytherurinae.

Genus Mostlerella Kozur, 1971

Type species. Mostlerella nodosa nodosa Kozur, 1971 (p. 38, pl. 4, figs 10, 12, 14, 16).

Remarks. Kozur assigned two new species to this genus. Both possess a very straight dorsal margin, bulbous swellings along the dorsal margin and a ventro-lateral rib. These features accord well with the emended diagnosis of Judahella (see above). Kozur originally described the genus as possessing a lophodont hinge, however, Kristan-Tollmann (1982) illustrated a number of Mostlerella species and emended the diagnosis to include a noridont hinge. We regard this genus as a junior synonym of Judahella.

Genus Mowschovischia Kozur, 1971

Type species. Mowschovischia norica Kozur & Bolz, in Kozur, 1971 (p. 33 pl. 3, figs 9–14).

Remarks. Originally erected as a subgenus of Lophodentina, illustrations of the type species clearly show great similarity with the type species of Rutlandella (Rutlandella transversiplicata Bate & Coleman, 1975) which is a junior synonym of Eucytherura (see below). All of the species assigned to this genus are congenere and we regard Mowschovischia as a junior synonym of Eucytherura.

Genus Nanacythere Herrig, 1969

1969 Nanacythere (Domeria) Herrig: 1085.
1975 Nanacythere (Goniocythere) Michelsen: 201.

Type species. Nanacythere simplex Herrig, 1969 (p. 1081, pl. 1, figs 3–4, text figs 6, 7).

Remarks. Nanacythere was originally described from mid- and Upper Liassic deposits in northern Germany (Herrig, 1969), it.
has not been recorded from the Triassic or the Lower Liassic and it appears to be restricted to the Pliensbachian and Toarcian. Three subgenera have been described to date and we consider all three to be junior synonyms of *Eucytherura*.

Genus *Noricythere* Bolz & Kozur (in Kozur, 1971)

Type species. *Noricythere hartmanni* Bolz & Kozur, in Kozur, 1971 (p. 54, pl. 7, figs 1,4,5; pl. 8, figs 4,7).

Remarks. *Noricythere* is a junior synonym of *Kerocythere* Kozur & Nicklas, 1970. The type species bears regular punctuation and small nodes on the lateral surfaces with slight inflation of the circum-marginal rib at the cardinal angles. However, some species assigned to this genus, such as *Noricythere mostleri* Bolz & Kozur, 1971 are best assigned to *Eucytherura*.

Genus *Ophthalmonodella* Knüpf & Kozur, 1968

Type species. *Ophthalmonodella reticulata* Knüpf & Kozur, 1968 (p. 322, pl. 1, figs 3a-c, 10, 13–24).

Remarks. The type description was published just a few months after *Judahella* Sohn of which it is acknowledged to be a junior synonym (Kozur, 1970a, p. 404). The type illustrations show details of the adductor muscle pattern with four elongate oval scars.

Genus *Paratrachycythere* Park, 1987

Type species. *Paratrachycythere pseudotubulosa* Park, 1987 (p. 63, pl. 3, figs 19–22).

Remarks. This taxon was originally named for its alleged similarity to *Trachycythere tubulosa* Triebel & Klingler, 1959. The lateral tubercles which are the main feature linking the two genera can also be found, albeit weakly developed, in *Eucytherura* species from the Liassic of the Danish Embayment (Michelsen, 1975 as *Acrocythere*). We believe this feature is homeomorphic and that the two genera (*Eucytherura* and *Trachycythere*) are distinct and probably unrelated. We consider this genus to be a junior synonym of *Eucytherura*.

The suprageneric position of genera such as *Trachycythere* remains in question. It was originally assigned to the Trachyleberididae, however, that family is now considered to range from the Early Cretaceous.

Genus *Procytherura* Whatley, 1970

Type species. *Procytherura tenicostata* Whatley, 1970 (p. 323, pl. 6, figs 1–8).

Diagnosis. Carapace small, rounded, ovate elongate outline in lateral view. Dorsal and ventral margins weakly convex. Ornament variable but usually dominated by longitudinal ribs with secondary reticulation. Lateral projections rare. Hinge lophodont. Vestibulate.

Remarks. This valid cytherurid genus, which extends from the latest Triassic through to the Cretaceous and possibly into the Early Cenozoic, lacks the distinct eye tubercle and postero-ventral projection of *Eucytherura*. It can also be distinguished by its more elongate, lanceolate carapace lateral outline. It differs from *Cytherura* Sars in the presence of vestibula. Ornament is dominantly of ribbing rather than reticulation, although some species are smooth or very weakly ornamented. Recent examination of Anderson’s (1964) Rhaetian material has revealed that *Metacytheropteron nanodes* Anderson belongs to *Procytherura*, thus extending the range of this genus back to the Late Triassic.

Genus *Rutlandella* Bate & Coleman, 1975

Type species. *Rutlandella transversiplicata* Bate & Coleman, 1975 (p. 34, pls 13.7–13.10, 13.12, text figs 14a,b, 15, 16).

Remarks. This genus was erected on characteristics which are essentially specific. Within the literature there are a number of closely related species which have been assigned to genera such as *Rutlandella*, *Mvoschovitschia* and *Eucytheres*. We do not consider that these species warrant separate generic status and, therefore, *Rutlandella* is placed in synonymy with *Eucytherura*.

Genus *Simeonella* Sohn, 1968

Type species. *Simeonella brotenorum* Sohn, 1968 (p. 23, pl. 2, figs 1–4, 6–8, 12–22).

Remarks. *Simeonella* Sohn, 1968 was described from the Triassic of Israel. The carapace is sub-rectangular in lateral view, inflated laterally with a reticulate external surface and an antimerodont hinge. Sohn (1968) placed it questionably in the Cytheruridae, while Bunza & Kozur (1971) placed it in the Progonocytheridae. Sohn suggested that *Scabriculocypris* Anderson, 1940 and *Tchiunguania* Zhong, 1964 may be synonymous with *Simeonella*. *Tchiunguania*, however, is a non-marine genus belonging to the Permianidae, which is characterized by the possession of 3 adductor muscle scars (Whatley & Moguilevsky, 1998). Sohn also placed some Chinese species of *Gomphocythere* described by Zhong (1964) into *Simeonella*. We disagree with Sohn on these possible synonymies. We follow Whatley & Moguilevsky (1998) who placed *Simeonella* in the Cytherissinellidae in possible synonymy with *Lutkevichinella* Schneider (in Mandelstam et al., 1956). They also subsumed the Cytherissinellidae within the Limnocytheridae, Limnocytherinae. The adductor muscle scar pattern clearly precludes the inclusion of this genus within the Cytheracea and therefore the Cytheruridae.

Genus *Sohnetta* Kozur, 1971

Subgenus Sohnetta (Sohnetta) Kozur, 1971

Type species. *Sohnetta (Sohnetta) meulleri* Kozur, 1971 (p. 42, pl. 2, fig. 8).

Remarks. From the type figure and description, the genus possesses a very small, sub-triangular carapace and the hinge is probably lophodont. In our opinion this taxon certainly belongs to the Cytherurinae (Cytherurinae). Only one figure was given of the holotype which is sub-triangular in lateral outline, has a slightly convex dorsal margin and two dominant longitudinal ribs extending from postero-dorsal to antero-ventral. The type species is easily accommodated within *Eucytherura*. Kristan-Tollmann (1983, p. 153) placed the type species into *Judahella* (*Costahella*), however, the lack of tubercles and convex dorsal margin distinguish this species from *Judahella*. We consider *Sohnetta* to be a junior synonym of *Eucytherura*.

Genus *Boogaardella* Kozur, 1971

Type species. *Boogaardella (Boogaardella) triassica* Kozur & Bolz n.sp. in Kozur, 1971 (p. 45, pl. 5, figs 1, 3–5).

Diagnosis. Carapace small, triangular to sub-rectangular in lateral view, dorsum and venter straight and convergent.
posteriorly, anterior and posterior margins broadly rounded. Carapace only weakly inflated, trapezoidal in dorsal view, broadest in posterior ¼. Lateral surfaces reticulate and bear strong ribs and minor tubercles. Strong ventro-lateral rib extends along anterior margin. Smaller transverse ribs originate at postero-dorsal tubercle. Internal features unknown.

Remarks. The subgenus Sohnnetta (Boogaardella) Kozur was erected in the same publication as Sohnnetta (Sohnetta). However, the poor quality of the illustrations precludes a complete review of the relationship between these taxa. In our opinion the type species, Sohnnetta (Boogaardella) triassica Kozur, is clearly a cytherurid characterized by its small carapace size and ornamentation. Although external ornament is similar to that of other taxa discussed herein we have retained this as a valid genus due to the distinctly different carapace shape which is much more angular in lateral view that that of Judahella. More importantly the outline in dorsal/ventral view (Kozur, 1971, pl. 5, fig. 1c) is distinctly unlike that of any other contemporaneous species.

We conclude that Sohnnetta (Boogaardella) is a valid genus while Sohnnetta (Sohnetta) is a junior synonym of Eucytherura. Boogaardella is therefore raised to generic status.

Genus Speluncella Schneider (in Mandelstam et al., 1956)

Type species Speluncella spinosa Schneider (in Mandelstam et al., 1956, p. 120, pl. 19, fig. 3).

Diagnosis. Egg-shaped, very rounded anteriorly, almost pointed posteriorly, smooth apart from ventro-lateral and ventral ribs (after Whatley & Moguilevsky, 1998).

Remarks. Whatley & Moguilevsky (1998) retained this genus in the family Speluncellidae which they subsumed within the Limnoocytheridae, Timiriasevinae. Bunza & Kozur (1971) tentatively assigned a new species (Speluncella? karntca) to this genus but provided only two unremarkable line drawings to illustrate it (pl. 1, fig. 2a,b). These drawings are similar to some species of Cytheropterinae. However, without examination of the type material or clearer illustrations it is not possible to confirm its taxonomic position. We consider the genus to be a valid taxon but not a cytherurid. Speluncella may be a senior synonym of Blomella.

Genus Telocythere Kozur, 1970b

1973 Veghicythere Kozur: 14.

Type species. Glorianella? fischeri Kozur, 1968a (p. 860, pl. 2, fig. 12a–c).

Remarks. The type species is elongate sub-rectangular in lateral view, laterally compressed with longitudinal ribs. It was described from brackish-water deposits in association with Darwinula and Charna. The genus includes a number of species assigned by Kozur (1970a) to Lutkevichinella (Cytherissinella) which Whatley & Moguilevsky (1998) included within the Limnoocytheridae. Although the type species is somewhat similar in its external morphology to some Liassic cytherurids, there is no strong evidence to support its placement in the Cytheruridae. Based on the limited illustrations and descriptions available it is difficult to reconcile the inclusion of species such as T. tolmaani Kozur (1970b) in the same genus as the type species and there are major inconsistencies in that particular study. Pajanites, also described by Kozur (1970b), may be congeneric with Telocythere. Whatley & Moguilevsky (1998) suggested that Pajanites may belong within the Limnoocytheridae, Timiriasevinae, the brackish-water ecology of the type species supports the inclusion Telocythere within the Limnoocytheridae. Telocythere may be a valid genus but is not a cytherurid.

Genus Tramerrella Kozur, 1973

Type species. Timiriasevia ofentalensis Urlrichs, 1972 (p. 686, pl. 2, figs 1–4).

Remarks. Although the familial assignment of this genus is uncertain, it is clearly not a cytherurid. The poor quality of the type illustrations render it impossible to establish its true familial status. The ornament resembles that of Timiriasevia, a Triassic to Early Cenozoic, fresh–brackish-water genus, but the carapace shape is distinctly different. Indeed, the carapace shape is similar to the exclusively Triassic, brackish-water genus Rhombocythere (Anderson, 1964) which Whatley & Moguilevsky (1998) placed within the Luxoconchidae, Mandalstaminae. Until further material is made available we consider the genus valid, but not a member of the Cytheruridae.

Genus Trodocythere Kozur, 1971

Type species. Trodocythere annisica Kozur, 1971 (p. 47, pl. 2, fig. 7).

Remarks. The carapace is triangular in lateral outline with noding along the dorsal margin. There may be a lateral spine, but the type figure is unclear. There is at least one strong anteriorly produced spine (others may be missing). According to Kozur (pers. comm.), this is a marine deep water taxon. It has similarities to some deep-sea species of Eucytherura (such as Eucytherura parabatalaria Ayres et al., 1995) from the Cenozoic of the Pacific, if a little larger. Many aspects of this species suggest that it may well belong to the Bythocytheridae (straight dorsal margin, lateral spine and nodes), possibly related to genera such as Nagyella (Kozur, 1970a). This can only be resolved through studies of the adductor muscle scars; until then it is not possible to determine the validity or the familial status of this genus.

Genus Veghicythere Kozur, 1973

Type species. Lutkevichinella (Cytherissinella) multistriata Kozur, 1970a (p. 402, pl. 2, figs 6–7).

Remarks. Externally the type species is very similar to Telocythere fischeri, the type species of that genus, which we consider to belong within the Limnoocytheridae. The external ornament of longitudinal ribs is also similar to that of some Liassic species of Procyctherura but we do not believe this to be taxonomically significant. The genus is probably a junior synonym of Telocythere and, therefore, not a cytherurid.

Genus Wellandia Bate & Coleman, 1975

Type species. Wellandia ornata Bate & Coleman, 1975 (p. 32, figs 11.10–11.17).

Remarks. As with Rutlandella, which was erected in the same publication, we consider this genus, originally classified within the Oculocytheropterinae, to be a junior synonym of Eucytherura (see comments for Rutlandella above).
R. Whatley & I. Bloomer

FAMILY	SUBFAMILY	VALID GENERA	SYNONYMS
Cytheruridae	Cytherurinae	Cytheropteron Alexander, 1933	Cytheropteron (Styrella) Kozur, 1971
		Metacytheropteron Oartli, 1957	Eocythereis Anderson, 1964
			Gramanicythere Grundel, 1975
			Gramella Kozur, 1971
			Grammicythere Kozur, 1972
			Movachovitschia Kozur, 1971
			Nanacythere (Domenia) Herrig, 1969
			Nanacythere (Goniocythere) Herrig, 1969
			Nanacythere (Nanacythere) Herrig, 1969
			Paratrachycythere Park, 1987
			Ruttiandella Bate & Coleman, 1975
			Schmetta Kozur, 1971
			Wellandia Bate & Coleman, 1975
	Limnocytheridae	Eucytherura Müller, 1894	Buekkella Kozur, 1985?
			Judahella (Judahella) Sohn, 1958
			Mostlerella Kozur, 1971
			Ophthalmomodella Knüpf & Kozur 1988
		Kerocythere Kozur & Nicklas, 1970	Kerocythere (Rekocythere) Kristan-Tollmann, 1972
			Nancocythere Boz & Kozur, 1971
			Mockella Bunza & Kozur, 1971
			Bettermannia Sohn, 1987
			Hasibuana Kristan-Tollmann, 1990
			Renicythere Grundel, 1981
		Procicythere Whatley, 1970	Proticythere Grundel, 1973
			Boogardella Kozur, 1971
			Simoecythere Sohn, 1966
			Biomolla Kozur, 1973
			Speluncella Schneider, 1956
			Telocythere Kozur, 1970
			Pajaniites Kozur, 1970b?
			Vaghiicythere Kozur, 1973
	Loxoconchidae	Mandelstaminae	Trammerella Kozur, 1973
			Fallowicythere Kozur et al., 1974
			Trachyocythere Kozur, 1971
			Cyptheroidea? Subfamily uncertain
			Lophodontina Apostolescu, 1959
			Cyptheroidea? Subfamily uncertain

Table 1. A taxonomic, hierarchical revision of the Early Mesozoic Cytheruridae with a list of valid genera and synonymies.

SUMMARY

A summary of our taxonomic review is given in Table 1 and the stratigraphical distribution of valid genera is presented in Fig. 1.

It is well documented that many faunal and floral lineages did not survive the mass extinction at the close of the Permian and the Ostracoda are no exception (Whatley et al., 1993). Many of the major post-Palaeozoic ostracod families were established by the mid- to Late Jurassic and we are now in a position to outline the rise of one family in particular, the Cytheruridae.

1. It is clear that certain members of this family already existed during the Permian (namely Judahella and Gruendelicythere, recorded by Kozur (1985) from northern Hungary).

2. The great similarity between some early Cytheruridae (Triassic–Early Jurassic) and Early Mesozoic Bythocytheridae (which are distinguished by the possession of five rather than four adductor muscle scars) suggests that certain elements of this polyphyletic family may have arisen from the Bythocytheridae. Indeed, this may also have been the origin of genera such as Judahella during the Late Palaeozoic. The Bythocytheridae are the oldest and longest-ranging Podocopida (Ordovician to Recent).

3. External characteristics and gross carapace morphology also support the suggestion of Gründel & Kozur (1975) that some post-Palaeozoic Cytheracea may also have derived from the Palaeocopid Kirkbyacea (Devonian–Triassic).

4. Finally, it is significant to note that many of the Triassic assemblages referred to above are recorded from shallow shelf and marginal marine (even brackish-water) environments. The opening up of new environments consequent upon the global rise of Triassic sea-level clearly played an important role in increasing marine biodiversity at this time.

There are a number of papers describing Permian ostracod assemblages which may provide evidence of links between Palaeozoic and post-Palaeozoic ostracod lineages (Kozur, 1981, 1985, 1991a, 1991b; Gerry et al., 1987; Knüpf, 1967). Gerry et al. (1987) included a new genus, Arqoviellu, which may be ancestral to Triassic–Early Jurassic genera such as Ektyphocythere Bate, 1963.

Although this review deals essentially with the Cytheruridae, other podocopid lineages which first appeared in the Early Mesozoic also had their origins in Late Permian and Triassic times. A particular problem surrounds a number of genera recorded from Liassic sediments in NW Europe (e.g. Kinkeli-
Systematic review and evolution of the early Cytheruridae

Fig. 1. Stratigraphical occurrence of valid Cytheruridae from the Early Mesozoic.

...ella, Ektyphocythere, Pleurifera) which may have evolved from, or even belong to, the Cytheruridae given their merodont hinge patterns. While a study of these taxa is beyond the scope of this review, it is important to realize that such taxa may also be ancestral to other families which, with evolution, become readily separable during the Middle Jurassic. Such families include the Cytherideidae, Schulerideidae, Progonocytheridae and Procytheridae.

The physical and biological pressures which acted upon Early Mesozoic faunas to bring about relatively rapid diversification were not confined to the early Cytheruridae; they also caused other families to become abundant and diverse.

ACKNOWLEDGEMENTS
The authors wish to acknowledge useful discussions with H. Kozur during the compilation of this review. We also thank Dr Sylvie Crasquin-Soleau and an anonymous referee for their constructive comments.

Manuscript received February 2000
Manuscript accepted July 2000

REFERENCES
Alexander, C. I. 1933. Shell structure of the ostracod genus Cytheropteron and fossil species from the Cretaceous of Texas. Journal of Paleontology, 7 (2): 181–214.
Alexander, C. I. 1936. Ostracoda of the genera Eucytherura, Cytherura and Loxoconcha from the Cretaceous of Texas. Journal of Paleontology, 10 (8): 689–694.
Anderson, F. W. 1940. Ostracoda from the Portland and Parbeck Beds at Swindon. Proceedings of the Geologists’ Association, 51: 373–384.
Anderson, F. W. 1964. Rhaetic Ostracoda. Bulletin of the Geological Survey of Great Britain, 21: 133–174.
Apostolescu, V. 1959. Ostracodes du Lias du Bassin de Paris. Revue de l’Institut Français du Pétrole, 14 (6): 795–826.
Ayress, M. A., Whatley, R., Downing, S. E. & Millson, K. J. 1995. Cainozoic and Recent deep sea Cytherurid Ostracoda from the South Western Pacific and eastern Indian Oceans, Part 1: Cytherurinae. Records of the Australian Museum, 47: 203–223.
Basha, S. H. S. 1982. Microfauna from the Triassic rocks of Jordan. Revue de Micropaléontologie, 25 (1): 3–11.
Bate, R. H. 1963. Middle Jurassic Ostracoda from North Lincolnshire. Bulletin of the British Museum (Natural History) Geology, 8: 173–219.
Bate, R. H. 1972. Upper Cretaceous Ostracoda from the Carnarvon Basin, Western Australia. Special Papers in Palaeontology, 10: 1–148.
Bate, R. H. & Coleman, B. E. 1975. Upper Lias Ostracoda from Rutland and Huntingdonshire. Bulletin of the Geological Survey of Great Britain, 55: 1–42. London.
Beutler, G. & Gründel, J. 1963. Die Ostracoden des Unteren Keupers im Bereich des Thüringer Beckens. Freiberger Forschungshefte, C164: 33–92.
Boomer, I. D. 1989. The spatial and temporal distribution of Lower Jurassic ostracods from Northwest Europe. PhD thesis, University of London.
Brady, G. S. 1867. Report on the Ostracoda dredged amongst the Hebrides. Report of the British Association for the Advancement of Science, 1866: 208–211.
Busza, G. & Kozur, H. 1971. Ostracoden aus den Raibler Schichten östlich von Scholastika (Achensee, Tirol). Geologiš-Paläontologische Mitteilungen Innsbruck, 1 (2): 3–13.
Crasquin-Soleau, S. & Dépêche, F. 1992. Paleooecology of ODP Leg 122 Triassic Ostracodes (Wombat Plateau, NW Australia). Geobios, 26 (3): 331–344.
Crasquin-Soleau, S., Dépêche, F. & Gailbrun, B. 1990. Premiers ostracodes triasiques découverts dans un forage D.S.D.P./O.D.P.: Le Leg 122 (NW de l'Australie). Comptes rendus de l'Académie des Sciences, Paris (Series II), 311: 1081–1087.
Dépêche, F. & Crasquin-Soleau, S. 1992. Triassic marine ostracodes of the Australian Margin (Holes 759B, 760B, 761C, 764A, and 764B). Proceedings of the Ocean Drilling Program, Scientific Results, 122: 453–462.
Dingle, R. V. 1984. Mid-Cretaceous Ostracoda from Southern Africa and the Falkland Plateau. Annals of the South African Museum, 93 (3): 97–211.
Fischer, W. 1962. Ostracoden der Gattungen Monoceratina Roth, 1928, Cytheropteron G. O. Sars, 1865 und andere im Lias Zeta Schwabens. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 114 (3): 333–345.
Systematic review and evolution of the early Cytheruridae

(sondage Vernon 1). Revue de l'Institut Français du Pétrole. 12 (6): 664.
Oertli, H. J. 1959. Les Ostracodes du Bathonien du Boulonnais; I - 'Les Micro-Ostracodes'. Revue de Micropaléontologie. 2 (3): 117. Paris.
Orlov, Y. I. 1960. (Ed.) Osnovy Paleontologii. Arthropoda. Treatise on Paleontology, 1–515.
Park, S. M. 1987. The ostracod zones and subzones of the Lower Jurassic in the Southern North Sea Basin. Journal of the Paleontological Society of Korea, 3: 44–70.
Pokorny, V. 1973. The Ostracoda of the Klentnice Formation (Tithonian!) Czechoslovakia. Rozpravy, Ustredniho Ustavu Geologickeho, Svezek, 40: 1–105.
Schleifer, A. G. 1966. Ostracoda of the Lower Triassic Baskunchak Series from the Pricaspian Depression and their stratigraphic importance. In Gubkina, I. M. (Ed.), Geology of the Russian Platform, 112–139. Trudy, Moscow.
Sohn, I. G. 1968. Triassic ostracodes from Makhtesh Ramon, Israel. Israel Geological Survey, Bulletin, 44: 1–71.
Sohn, I. G. 1970. Early Triassic marine Ostracodes from the Salt Range and Surghar Range, West Pakistan. In Kummel, B. & Teichert, C. (Eds), Stratigraphic Boundary Problems: Permian and Triassic of West Pakistan, 193–206. University of Kansas Special Publication 4.
Sohn, I. G. 1987. Middle and Upper Triassic marine Ostracoda from the Shublik Formation, Northeastern Alaska. Bulletin of the United States Geological Survey, 1664 (C): 1–24.
Triebel, E. & Klingler, W. 1959. Neue Ostracoden-Gattungen aus dem deutschen Lias. Geologische Jahrbuch, 76: 335–372.
Urlich, M. 1972. Ostracoden aus den Kössener Schichten und ihre Abhängigkeit von der Ökologie. Mitteilungen Gesellschaft Geolisches Bergbaustudieren, 21: 661–710.
Warthin, A. S. 1930. Micropaleontology of the Wetumka, Wewoka and Holdenville Formations. Oklahoma Geological Survey, Bulletin, 53: 1–95.
Weaver, P. P. E. 1982. Ostracoda from the British Lower Chalk and Penus Marls. Palaeontographical Society Monograph, 135: 1–127.
Whatley, R. C. 1970. Scottish Callovian and Oxfordian Ostracoda. British Museum (Natural History) Bulletin, Geology, 19 (6): 299–358.
Whatley, R. C. 1988. Patterns and rates of Evolution among Mesozoic Ostracoda. In Hanai, T., Ikeya, N. & Ishizaki, K. (Eds), Evolutionary Biology of Ostracoda its fundamentals and applications, Volume 11, 1021–1040. Kodansha Ltd, Tokyo.
Whatley, R. C. & Ballent, S. 1996. A review of the ostracod genus Progonocythere and its close allies. Palaeontology, 39 (4): 919–939.
Whatley, R. C. & Moguilevsky A. 1998. The origin and early evolution of the Limnocytheridae (Crustacea, Ostracoda). In Crasquin-Soleau, S., Braccini, E. & Lethiers, F. (Eds), What about Ostracoda? Bulletin du Centre de Recherches Elf Exploration Production, Mémoires, 20: 271–285.
Whatley, R. C., Siveter, D. J. & Boomer, I. D. 1993. Arthropoda (Crustacea: Ostracoda). In Benton, M. J. (Ed.), The Fossil Record 2, 343–356. Chapman & Hall, London.
Whatley, R. C. & Stephens, J. M. 1976. The Mesozoic explosion of the Cytheracea. Abhandlungen und Verhandlungen des Naturwissenschaftlichen Vereins in Hamburg (Neue Folge), 18/19 (Suppl.): 63–76.
Zheng, S-Y. 1988. Marine Ostracods from the Middle Triassic near Nanjing. Acta Micropalaeontologica Sinica, 5 (2): 195–198. [In Chinese].
Zhong, X.-C. 1964. Upper Triassic and Middle Jurassic ostracodes from the Ordos Basin. Acta Palaeontologica Sinica, 12 (3): 426–474.