Oxidation kinetics of \(\text{YBaCo}_4\text{O}_{7+\delta} \) and substituted oxygen carriers

Limin Hou, Qingbo Yu, Kun Wang, Qin Qin, Mengqi Wei and Fan Yang

School of Metallurgy, Northeastern University, No. 11, Lane 3, Wenhua Road, He Ping District, Shenyang 110819, Liaoning, People's Republic of China

In this paper, the relaxation kinetics of the oxidation process of the \(\text{YBaCo}_4\text{O}_{7+\delta} \), \(\text{Y}_{0.95}\text{Ti}_{0.05}\text{BaCo}_4\text{O}_{7+\delta} \) and \(\text{Y}_{0.5}\text{Dy}_{0.5}\text{BaCo}_4\text{O}_{7+\delta} \) oxygen carriers is studied with isothermal reaction data. XRD analysis for fresh samples shows that all the samples have \(\text{YBaCo}_4\text{O}_{7+\delta} \) structure. Scanning electron microscopy images of samples show that the samples consist of porous agglomerates of primary particles. Isothermal TG experiments are conducted with temperatures of 290°C, 310°C, 330°C and 350°C, respectively. It is found that the Avrami-Eroféev model describes solid-phase changes in the oxygen absorption process adequately. The results show that the distributed activation energies of the oxidation process obtained by the Avrami-Eroféev model are 42.079 kJ mol\(^{-1}\), 42.944 kJ mol\(^{-1}\) and 41.711 kJ mol\(^{-1}\) for the \(\text{YBaCo}_4\text{O}_{7+\delta} \), \(\text{Y}_{0.95}\text{Ti}_{0.05}\text{BaCo}_4\text{O}_{7+\delta} \) and \(\text{Y}_{0.5}\text{Dy}_{0.5}\text{BaCo}_4\text{O}_{7+\delta} \) oxygen carriers, respectively. The kinetic model was obtained to predict the oxygen carrier conversion of oxygen absorption for different time durations. The kinetic parameters obtained here are quite vital when this material is used in reactors.

1. Introduction

It is generally accepted that carbon dioxide (CO\(_2\)) emission is the main contributor to global warming. Oxygen-enriched combustion, one of the possible options to reduce CO\(_2\) emission, is not applied widely in industry due to the high cost of oxygen production. The process of chemical looping air separation (CLAS) was developed by Moghtaderi & Song in 2010 [1]. The process saves 74% of the power of the cryogenic air separation process [1]. The schematic of the CLAS process is described elsewhere [2]. The oxygen carrier circulates between the oxidation reactor and the reduction reactor. In the oxidation reactor, the oxygen carrier is fully oxidized by oxygen. In the reduction reactor, the oxygen carrier is fully reduced by steam or CO\(_2\).
Oxygen carrier materials are mainly those of metal oxide, perovskite and sulfate. The metal oxide oxygen carriers such as those that are Cu-based, Co-based and Mn-based have attracted the interest of researchers [3–13]. Perovskite oxygen carriers such as Ca$_{1-x}$Pr$_x$MnO$_3$–δ, SrCoFe$_2$–δ and LaFe$_{1-x}$Mn$_x$O$_3$ also have been investigated [14–16]. Zhao et al. [15] found that Mn substitution in LaFeO$_3$ not only was conducive to the partial oxidation of CH$_4$, but also enhanced the lattice oxygen mobility from the bulk to the surface of the oxygen carrier. Because of a low melting point and serious agglomeration of metal oxide, various support materials such as ZrO$_2$, TiO$_2$ and SiO$_2$ have been explored [11,17,18]. Wang et al. [19] reported that the reduction rate of the combined CuO/Mn$_2$O$_3$ oxygen carrier with ZrO$_2$ as a binder weakened the effects of Al substitution [31]. It was more favourable than a single substitution of Al or Ga for improving thermal stability. However, Fe in the syngas chemical looping process.

Waste heat resources have not been used effectively. YBaCo$_4$O$_7$ was an effective candidate as an oxygen carrier that works at low temperatures in the CLAS system. The point size [40–42]. Generally, the kinetics of gas–solid reactions is complex. However, for YBaCo$_4$O$_7$ oxygen carriers, the kinetic description of the process is relatively simple as there is no phase change. Indeed, the product of the gas–solid reaction is of a different solid phase from that of the solid reactant, the difference in density of the two solid phases imposing chemical constraints on the solid–solid interface [43,44]. As this surface area is a kinetic parameter for the gas–solid reaction, a phenomenological kinetic description of the process is often impossible. In the case of perovskite, the oxidation process involves physical adsorption on the surface and the oxygen vacancies are filled by oxygen ions migrating
from the bulk. The oxygen ions are involved in dissociative adsorption and chemical adsorption. The diffusion of oxygen ions is one of the processes which might control the rate of the oxidation reaction. The different adsorption steps and the possible surface migration of these adsorbed species to the reaction sites might also be rate-controlling [43]. In the case of the chemical reaction-controlled process, action there proceeds uniformly throughout the solid particles. In this case, different models need to be employed. The mechanism and kinetic parameters obtained here are quite vital when this material is used in the reactors.

2. Experimental section

2.1. Preparation of materials

Samples of YBaCo$_4$O$_{7+\delta}$, Y$_{0.95}$Ti$_{0.05}$BaCo$_4$O$_{7+\delta}$ and Y$_{0.5}$Dy$_{0.5}$BaCo$_4$O$_{7+\delta}$ were synthesized by a solid-state reaction. Mixed appropriate stoichiometric amounts of the starting materials, Y$_2$O$_3$, TiO$_2$, Dy$_2$O$_3$, BaCO$_3$ and Co$_3$O$_4$, were ground thoroughly and then calcined at 1000$^\circ$C for 15 h. The calcined samples were reground and calcined at 1100$^\circ$C for 30 h. After calcination, all the samples were ground with a mortar and sieved with a 400-mesh sieve (average particle size less than or equal to 37.5 µm) for experiments and kinetic analysis.

2.2. Characterization of materials

Phase composition was studied by a powder X-ray diffraction technique (Panalytical, PW 3040/60; X'Pert Pro system with Cu Kα radiation). X-ray data were recorded with a step scan of 0.02° for 2θ between 10° and 70°, and the cell parameters were determined with JADE software. The microstructure of the synthesized samples was observed with scanning electron microscopy (SEM) on an ultra plus field emission scanning electron microscope. The oxygen absorption behaviour was observed with isothermal TG experiments in a thermogravimetric analyzer-TGA (STA409PC). During the TG experiment, a powder sample, with a mass of 10 mg, was heated to the target temperature (290, 310, 330 and 350$^\circ$C) in a N$_2$ atmosphere to prevent the occurrence of oxygen absorption. Then the atmosphere was changed to an air flow of 40 ml min$^{-1}$, keeping the target temperature for 2 h to investigate the oxygen absorption behaviour. Before the kinetic experiments, the internal and external diffusion were eliminated by the experiments by varying the gas flow rate and the sample loading weight in the ranges of 20–40 ml min$^{-1}$ and 10–20 mg, respectively.

3. Results and discussion

3.1. Characterization

The phase composition of the YBaCo$_4$O$_{7+\delta}$, Y$_{0.95}$Ti$_{0.05}$BaCo$_4$O$_{7+\delta}$ and Y$_{0.5}$Dy$_{0.5}$BaCo$_4$O$_{7+\delta}$ samples is shown in figure 1. The cell parameters of the samples are refined from the data in space group $P6_3/mc$, and the refined cell parameters are presented in table 1. By combining with the XRD patterns and refined cell parameters, the present samples are indexed to be of YBaCo$_4$O$_{7+\delta}$ structure. Typical SEM images of samples are shown in figure 2. It is seen that the samples consist of porous agglomerates of primary particles. The differences in morphology with different substituting ions of the oxygen carriers are very small.

The 114 phase oxygen carriers can absorb certain amounts of oxygen at different temperatures. The percentage change in mass Δm (%) and total stoichiometric change (δ) obtained at different oxidation temperatures are presented in table 2. The amount of oxygen absorption increases with increase in the oxidation temperature lower than 330$^\circ$C. The amount of oxygen absorption obtained at 350$^\circ$C is lower than that of the value obtained at 330 and 310$^\circ$C. Furthermore, at a given oxidation temperature, the amount of oxygen absorption of Ti and Dy substituting samples is larger than that of the unsubstituted sample. Figure 3a–c shows the conversions of the YBaCo$_4$O$_{7+\delta}$, Y$_{0.95}$Ti$_{0.05}$BaCo$_4$O$_{7+\delta}$ and Y$_{0.5}$Dy$_{0.5}$BaCo$_4$O$_{7+\delta}$ oxygen carriers during oxidation reactions at different temperatures, respectively. As can be seen, the oxygen absorption rate of oxygen carriers increases with increase in the oxidation temperature. The oxygen carriers absorb oxygen completely within 70 min when the temperatures are 330 and 350$^\circ$C. When the temperatures are 290 and 310$^\circ$C, the saturation time of oxygen adsorption is approximately 100 min. The reason behind this may be that increase in oxidation temperature is conducive to the greater diffusion of oxygen ions.
Figure 1. The XRD of the YBaCo₄O₇₊δ, Y₀.₉₅Ti₀.₀₅BaCo₄O₇₊δ and Y₀.₅Dy₀.₅BaCo₄O₇₊δ samples.

Figure 2. SEM images of the (a) YBaCo₄O₇₊δ, (b) Y₀.₉₅Ti₀.₀₅BaCo₄O₇₊δ and (c) Y₀.₅Dy₀.₅BaCo₄O₇₊δ samples.

Table 1. Refinement details for the samples.

sample	a (Å)	b (Å)	c (Å)	V (Å³)
YBaCo₄O₇₊δ	6.2983	6.2983	10.1728	349.4661
Y₀.₅Dy₀.₅BaCo₄O₇₊δ	6.3076	6.3076	10.1953	351.2900
Y₀.₉₅Ti₀.₀₅BaCo₄O₇₊δ	6.2969	6.2969	10.1725	349.3005
Figure 3. The conversion of oxidation in air atmosphere for the (a) $YBaCo_4O_{7+\delta}$, (b) $Y_{0.95}Ti_{0.05}BaCo_4O_{7+\delta}$ and (c) $Y_{0.5}Dy_{0.5}BaCo_4O_{7+\delta}$ samples.

Table 2. The mass change of the samples under different temperatures.

	YBaCo$_4$O$_{7+\delta}$	$Y_{0.95}Ti_{0.05}BaCo_4O_{7+\delta}$	$Y_{0.5}Dy_{0.5}BaCo_4O_{7+\delta}$
$\Delta m/$%	290°C 310°C 330°C 350°C	290°C 310°C 330°C 350°C	290°C 310°C 330°C 350°C
	1.982 2.211 2.244 2.123	2.011 2.341 2.376 2.209	1.897 2.289 2.315 2.237
δ	0.711 0.793 0.805 0.762	0.719 0.837 0.849 0.790	0.724 0.874 0.884 0.854

3.2. Kinetic models

The reaction rate of the process [45] can be written as follows:

$$ k = \frac{d\alpha}{dt} = k(T)f(\alpha), \quad (3.1) $$

where α is the extent of conversion, $k(T)$ is the reaction rate content and $f(\alpha)$ is the kinetic model function. Equation (3.1) can be modified as follows:

$$ \frac{d\alpha}{f(\alpha)} = k(T)dt. \quad (3.2) $$

Equation (3.2) can be transformed into equations (3.3a,b):

$$ \int_{0}^{\alpha_1} \frac{d\alpha}{f(\alpha)} = G(\alpha) = \int_{0}^{t_1} k(T)dt \quad (3.3a) $$

$$ G(\alpha) = k(T)t. \quad (3.3b) $$
Table 3. Kinetic mechanism functions used for describing oxidation kinetics of oxygen carriers.

symbol	reaction model	\(f(\alpha) \)	\(g(\alpha) \)
R1	zero-order	1	\(\alpha \)
R2	phase-boundary controlled reaction	\(2(1 - \alpha)^{1/2} \)	\(1 - (1 - \alpha)^{1/2} \)
R3	phase-boundary controlled reaction	\(3(1 - \alpha)^{2/3} \)	\(1 - (1 - \alpha)^{2/3} \)
F/2	three-halves order	\((1 - \alpha)^{1/2} \)	\(2((1 - \alpha)^{-1/2} - 1) \)
F2	second-order	\((1 - \alpha)^2 \)	\((1 - \alpha)^{-1} - 1 \)
F3	third-order	\((1 - \alpha)^3 \)	\((1/2)((1 - \alpha)^{-2} - 1) \)
A1/4	Avrami-Eroféev \((n = 1/4) \)	\((1/4)(1 - \alpha)[(-\ln(1 - \alpha)]^{-3} \)	\((-\ln(1 - \alpha)]^4 \)
A1/3	Avrami-Eroféev \((n = 1/3) \)	\((1/3)(1 - \alpha)[(-\ln(1 - \alpha)]^{-2} \)	\((-\ln(1 - \alpha)]^3 \)
A1/2	Avrami-Eroféev \((n = 1/2) \)	\((1/2)(1 - \alpha)[(-\ln(1 - \alpha)]^{-1} \)	\((-\ln(1 - \alpha)]^2 \)
A2/3	Avrami-Eroféev \((n = 2/3) \)	\((2/3)(1 - \alpha)[(-\ln(1 - \alpha)]^{-1/2} \)	\((-\ln(1 - \alpha)]^{3/2} \)
A1	Avrami-Eroféev \((n = 1) \)	\((1 - \alpha) \)	\((-\ln(1 - \alpha)] \)
A3/2	Avrami-Eroféev \((n = 3/2) \)	\((3/2)(1 - \alpha)[(-\ln(1 - \alpha)]^{-1/3} \)	\((-\ln(1 - \alpha)]^{2/3} \)
A2	Avrami-Eroféev \((n = 2) \)	\(2(1 - \alpha)[(-\ln(1 - \alpha)]^{1/2} \)	\((-\ln(1 - \alpha)]^{1/2} \)
A3	Avrami-Eroféev \((n = 3) \)	\(3(1 - \alpha)[(-\ln(1 - \alpha)]^{2/3} \)	\((-\ln(1 - \alpha)]^{1/3} \)
A4	Avrami-Eroféev \((n = 4) \)	\(4(1 - \alpha)[(-\ln(1 - \alpha)]^{3/4} \)	\((-\ln(1 - \alpha)]^{1/4} \)

The plots of \(G(\alpha) \) versus \(t \) should be straight lines whose slope can be used to determine the reaction rate \(k(T) \). The model showing the best linear fitting is chosen as the favoured model. The reaction models used for describing the oxidation process of oxygen carriers are presented in Table 3 [41,42,45–49].

By linear fitting the mechanism functions against \(t \) (parameters were estimated in the 0.1–0.90 conversion range), the linear correlation coefficient \(R^2 \) and the residual sum of squares (RSS) of each function can be obtained. Figure 4 shows the fitting linear curves \(G(\alpha) \) versus \(t \) under different oxidation temperatures.

Tables 4 and 5 list the \(R^2 \) and RSS values obtained by fitting functions, respectively. The discrimination among the models was based on the higher \(R^2 \) and lower RSS. The functions with the bigger \(R^2 \) and smaller RSS values are selected as the mechanism functions. For the YBaCo4O7-δ and \(Y_{0.5}Dy_{0.5}BaCo_4O_7+\delta \) samples, given the \(R^2 \) and RSS values obtained, it was concluded that the A model and R better fitting were achieved with \(n \) values of 4 and 1, respectively. For the \(Y_{0.95}Ti_{0.05}BaCo_4O_7+\delta \) sample, it was concluded that the A model and R better fitting were achieved with \(n \) values of 3 and 1, respectively. For the Avrami-Eroféev random nucleation and the nuclei growth model, the overall conversion of the oxygen absorption reaction is determined by the relative rates of nucleation, nuclei growth and nucleus formation [24,50–52]. Nucleation and crystal growth are a dynamic process which practically initiates the oxygen absorption reaction. Generally, for the unreacted shrinking-core model, the overall conversion of the oxygen absorption reaction is determined by the chemical process [24]. That is, the overall conversion of the reaction is dominated by the chemical reaction, not the diffusion process for the A models and R models. The determined models can be used to evaluate the reaction rate, apparent activation energy and pre-exponential factor of the oxygen absorption reaction. For the \(YBaCo_4O_7+\delta \), \(Y_{0.95}Ti_{0.05}BaCo_4O_7+\delta \) and \(Y_{0.5}Dy_{0.5}BaCo_4O_7+\delta \) samples, the reaction rate constants are evaluated and presented in Table 6.

From Table 6, for the different mechanism functions and oxygen carriers, the reaction rate constant increases with increase in the reaction temperature, indicating that high temperature is propitious to the rate of oxygen adsorption. Low temperature may be one of the reasons accounting for the slow reaction rates shown in Figure 3. Furthermore, the reaction rate (except for the reaction rate obtained at 290°C for the \(Y_{0.95}Ti_{0.05}BaCo_4O_7+\delta \) sample) obtained by the A model is lower than that of the R model. After evaluating the reaction rate constant, the pre-exponential factor and apparent activation energy can be evaluated.

Along with the Arrhenius expression, the following is obtained:

\[
k(T) = A \exp \left(-\frac{E}{RT} \right),
\tag{3.4}
\]
Figure 4. Trends of $G(\alpha)$ versus t under different temperatures with common mechanism functions for the YBaCo$_4$O$_{7+\delta}$ oxidation process at (a) 290°C, (b) 310°C, (c) 330°C and (d) 350°C; for the Y$_{0.95}$Ti$_{0.05}$BaCo$_4$O$_{7+\delta}$ oxidation process at (e) 290°C, (f) 310°C, (g) 330°C and (h) 350°C; and for the Y$_{0.5}$Dy$_{0.5}$BaCo$_4$O$_{7+\delta}$ oxidation process at (i) 290°C, (j) 310°C, (k) 330°C and (l) 350°C.
where \(A \) is the pre-exponential factor, \(E \) is the apparent activation energy, \(R \) is the gas constant and \(T \) is the reaction temperature.

Along with the Arrhenius expression, the following form is obtained:

\[
\ln k(T) = \ln A - \frac{E}{RT},
\]

where the \(\ln k(T) \) has been evaluated above, the plots \(\ln k(T) \) versus \(1/T \) are straight lines whose slope and intercept can be used to evaluate the apparent activation energy and pre-exponential factor, respectively.

Figure 5 shows the plots \(\ln k(T) \) versus \(1/T \) as a function of different mechanism functions. Table 7 lists the estimated apparent activation energy and pre-exponential factor as a function of reaction temperatures. The apparent activation energies obtained by the different mechanism functions remain close to constant levels for an oxygen carrier. The activation energies for \(\mathrm{Y}_{0.5}\mathrm{Dy}_{0.5}\mathrm{BaCo}_4\mathrm{O}_{7+\delta} \) oxidation are found to be lower than those for \(\mathrm{YBaCo}_4\mathrm{O}_{7+\delta} \) and \(\mathrm{Y}_{0.95}\mathrm{Ti}_{0.05}\mathrm{BaCo}_4\mathrm{O}_{7+\delta} \) oxidation, thus confirming the favourable effect of \(\mathrm{Dy} \) on the oxidizability of the \(\mathrm{YBaCo}_4\mathrm{O}_{7+\delta} \) oxygen carrier. This may be accounted for by the cell volume. The larger the cell volume, the easier is the absorption of oxygen. For an oxygen carrier, the pre-exponential factor obtained by the R model is larger than that of the A model.

For the purpose of further model discrimination between the A and R models, the A model is more favourable considering the higher unity of data values. In the case of the A model, the activation energies and the frequency factor remain close to constant levels at the different temperatures. Moreover, the activation energies with the R model vary in a much wider range. Thus, these results confirm the adequacy of the A model over the R model [24]. Thus, the nucleation and nuclei growth model is chosen as the most possible mechanism function.

The values of the established kinetic parameters, the apparent activation energies, the pre-exponential factors and the mechanism function were introduced into equation (3.1) and the differential equation was obtained to predict the oxygen carrier conversion of the oxidation process for different reaction time durations. The kinetic models are listed in table 8.
Table 4. The linear correlation coefficient R^2 of the mechanism models under different temperatures. The values in italics are the three largest values of R^2 obtained by fitting functions.

code	YBaCo$_4$O$_{7+\delta}$	Y$_{0.95}$Ti$_{0.05}$BaCo$_4$O$_{7+\delta}$	Y$_{0.5}$Dy$_{0.5}$BaCo$_4$O$_{7+\delta}$												
	290°C	310°C	330°C	350°C	average	290°C	310°C	330°C	350°C	average	290°C	310°C	330°C	350°C	average
R1	0.9657	0.9388	0.9984	0.9548	0.9644	0.9842	0.9862	0.9984	0.9992	0.9902	0.9833	0.9959	0.9975	0.9855	0.9906
R2	0.9962	0.9837	0.9729	0.8833	0.9590	0.9984	0.9943	0.9729	0.9999	0.9814	0.9961	0.9996	0.9773	0.9799	0.9862
R3	0.9978	0.9913	0.9542	0.8501	0.9484	0.9932	0.9868	0.9942	0.9400	0.9786	0.9903	0.9801	0.9605	0.9692	0.9750
F3/2	0.9260	0.9518	0.7883	0.6351	0.8253	0.8826	0.8648	0.7883	0.7740	0.8274	0.8769	0.8436	0.8040	0.8438	0.8421
F2	0.8358	0.8773	0.6330	0.5040	0.7125	0.7731	0.7505	0.6630	0.6521	0.7097	0.7667	0.7270	0.6824	0.7359	0.7280
F3	0.6635	0.7203	0.4680	0.3261	0.5445	0.5812	0.5546	0.4689	0.4648	0.574	0.5749	0.5348	0.4905	0.5554	0.5389
A1/4	0.6446	0.7028	0.4482	0.3047	0.5251	0.5625	0.5362	0.4482	0.4439	0.4977	0.5558	0.5143	0.4699	0.5348	0.5187
A1/3	0.7314	0.7834	0.5392	0.3820	0.6090	0.6579	0.6331	0.5392	0.5304	0.5902	0.6507	0.6068	0.5601	0.6209	0.6092
A1/2	0.8560	0.8930	0.6890	0.5246	0.7406	0.8013	0.7803	0.6890	0.6741	0.7362	0.7948	0.7530	0.7071	0.7555	0.7526
A2/3	0.9270	0.9508	0.7910	0.6346	0.8285	0.8877	0.8705	0.7910	0.7740	0.8308	0.9896	0.8471	0.8061	0.8429	0.8714
A1	0.9851	0.9915	0.9006	0.7713	0.921	0.9652	0.9540	0.9006	0.8852	0.9263	0.9611	0.9401	0.9110	0.9324	0.9362
A3/2	0.9994	0.9928	0.9619	0.8470	0.9503	0.9937	0.9877	0.9619	0.9517	0.9738	0.9896	0.9835	0.9676	0.9788	0.9799
A2	0.9939	0.9809	0.9827	0.7957	0.9383	0.9900	0.9919	0.9827	0.9767	0.9853	0.9802	0.9934	0.9856	0.9925	0.9879
A3	0.9778	0.9589	0.9937	0.9365	0.9667	0.9852	0.9850	0.9937	0.9931	0.9893	0.9796	0.9924	0.9935	0.9971	0.9907
A4	0.9654	0.9491	0.9949	0.9527	0.9642	0.9757	0.9769	0.9949	0.9974	0.9862	0.9694	0.9933	0.9939	0.9957	0.9881
Table 5. The residual sum of squares RSS of the mechanism models under different temperatures. The values in italics are the RSS values obtained by fitting three functions with the largest values of R^2.

code	YBaCo$_4$O$_{7+δ}$	Y$_{0.5}$Y$_{0.05}$BaCo$_4$O$_{7+δ}$	Y$_{0.5}$Dy$_{0.5}$BaCo$_4$O$_{7+δ}$												
	290°C	310°C	330°C	350°C	average	290°C	310°C	330°C	350°C	average	290°C	310°C	330°C	350°C	average
R1	0.0206	0.0367	0.0010	0.0271	0.0214	0.0095	0.0083	0.0097	0.0053	0.0082	0.0100	0.0025	0.0027	0.0027	0.0044
R2	0.0014	0.0058	0.0097	0.0419	0.0147	0.0006	0.0020	0.0097	0.0043	0.0067	0.0014	0.0030	0.0008	0.0072	0.0050
R3	0.0005	0.0019	0.0102	0.0333	0.0115	0.0015	0.0029	0.1468	0.0033	2.8716	0.0021	0.0044	0.0088	0.0068	0.0055
F3/2	1.0945	0.7120	3.1300	4.3922	2.3224	1.7352	1.9987	3.1300	3.3400	2.5509	1.8195	2.3126	2.8974	2.3086	2.3345
F2	10.683	7.983	21.921	32.264	18.2128	14.7584	16.230	21.921	22.628	18.844	15.180	17.762	20.661	17.181	17.696
A1/4	241.74	202.18	375.31	472.94	323.04	297.61	315.47	375.31	378.25	341.66	302.14	330.40	360.58	316.42	327.39
A1/3	34.464	27.789	59.124	79.289	50.166	43.888	47.079	59.124	60.248	52.585	44.810	50.447	56.438	48.640	50.08
A1/2	3.4898	2.5931	7.5353	11.5183	6.2842	4.1832	5.3235	7.5353	7.8953	6.2342	4.9724	5.9834	7.0962	5.9233	5.9938
A2/3	0.7566	0.5093	2.1652	3.7844	1.8039	1.1636	1.3416	2.1652	2.3407	1.7528	1.2197	1.5838	2.0081	1.6278	1.6099
A1	0.0617	0.0351	0.4113	0.9465	0.3637	0.1439	0.1902	0.4113	0.4748	0.3051	0.1610	0.2481	0.3685	0.2798	0.2644
A3/2	0.0011	0.0141	0.0745	0.2617	0.0879	0.023	0.0240	0.0745	0.0943	0.0513	0.0203	0.0322	0.0633	0.0416	0.0394
A3	0.0073	0.0227	0.0206	0.1088	0.0399	0.0059	0.0097	0.0206	0.0276	0.0159	0.0115	0.0079	0.0172	0.0090	0.0114
A4	0.0125	0.0203	0.0019	0.0150	0.0124	0.0088	0.0084	0.0119	9.5628	2.3955	0.0111	0.0046	0.0026	0.0016	0.0048

Table 6. The reaction rate constants of the determined mechanism models under different temperatures.

code	YBaCo$_4$O$_{7+δ}$	Y$_{0.5}$Y$_{0.05}$BaCo$_4$O$_{7+δ}$	Y$_{0.5}$Dy$_{0.5}$BaCo$_4$O$_{7+δ}$											
	290°C	310°C	330°C	350°C	code	290°C	310°C	330°C	350°C	code	290°C	310°C	330°C	350°C
A4	0.00813	0.01050	0.01488	0.01895	A3	0.00933	0.01130	0.01727	0.02165	A4	0.00744	0.00956	0.01452	0.01677
R1	0.01037	0.01348	0.01918	0.02434	R1	0.00929	0.01134	0.01918	0.02168	R1	0.00949	0.01236	0.01878	0.02148
Figure 5. The plots of $\ln k(T)$ versus $1/T$ for different mechanism functions for the (a) YBaCo$_4$O$_{7+\delta}$, (b) Y$_{0.95}$Ti$_{0.05}$BaCo$_4$O$_{7+\delta}$ and (c) Y$_{0.5}$Dy$_{0.5}$BaCo$_4$O$_{7+\delta}$ samples.

Table 7. The apparent activation energy and pre-exponential factor of the obtained function for the oxidation process of oxygen carriers.

oxygen carrier	code	R^2	RSS	slope	intercept	E (J mol$^{-1}$)	A (min$^{-1}$)
YBaCo$_4$O$_{7+\delta}$	A4	0.9948	0.00814	-4526.9800	3.2842	42078.5466	64.1677
	R1	0.9949	0.00853	-4522.3570	3.5280	42649.0491	92.2406
Y$_{0.95}$Ti$_{0.05}$BaCo$_4$O$_{7+\delta}$	A3	0.9759	0.00977	-5165.2298	4.0446	42943.7206	84.8258
	R1	0.9739	0.01296	-5228.2237	4.5719	43467.4518	96.7277
Y$_{0.5}$Dy$_{0.5}$BaCo$_4$O$_{7+\delta}$	A4	0.9739	0.01177	-5016.9196	4.0446	41710.6696	57.0901
	R1	0.9723	0.01234	-5040.2659	4.2952	41904.7707	73.3469

Table 8. The kinetic models of different oxygen carriers.

oxygen carrier	code	kinetic model
YBaCo$_4$O$_{7+\delta}$	A4	$\frac{d\alpha}{dt} = 256.671 \exp\left(-\frac{42078.547}{RT}\right)(1-\alpha)^{3/4}$
Y$_{0.95}$Ti$_{0.05}$BaCo$_4$O$_{7+\delta}$	A3	$\frac{d\alpha}{dt} = 254.477 \exp\left(-\frac{42943.721}{RT}\right)(1-\alpha)^{2/3}$
Y$_{0.5}$Dy$_{0.5}$BaCo$_4$O$_{7+\delta}$	A4	$\frac{d\alpha}{dt} = 228.360 \exp\left(-\frac{41710.670}{RT}\right)(1-\alpha)^{3/4}$
In this work, kinetic behaviour of the oxidation process for the YBaCo$_4$O$_7$+δ, Y$_{0.95}$Ti$_{0.05}$BaCo$_4$O$_7$+δ and Y$_{0.5}$Dy$_{0.5}$BaCo$_4$O$_7$+δ oxygen carriers for CLAS operations was investigated for the temperature range of 290–350°C. The oxidation rate was found to increase gradually with increase in reaction temperature. It has been found that the A model provides a better description of the oxidation, indicating that the oxygen absorption process is rate-determined by nucleation and nuclei growth. The activation energies of the oxidation process obtained by the A model were determined as 42.079 kJ mol$^{-1}$, 42.944 kJ mol$^{-1}$ and 41.711 kJ mol$^{-1}$ for the YBaCo$_4$O$_7$+δ, Y$_{0.95}$Ti$_{0.05}$BaCo$_4$O$_7$+δ and Y$_{0.5}$Dy$_{0.5}$BaCo$_4$O$_7$+δ oxygen carriers, respectively. The distributed activation energy of Y$_{0.5}$Dy$_{0.5}$BaCo$_4$O$_7$+δ is lower than that of YBaCo$_4$O$_7$+δ, which corroborates the favourable effect of the substitution of Dy on the oxidizability of the oxygen carrier. The pre-exponential factors of the oxidation process obtained by the A model were determined as 64.168 min$^{-1}$, 84.826 min$^{-1}$ and 57.090 min$^{-1}$ for the YBaCo$_4$O$_7$+δ, Y$_{0.95}$Ti$_{0.05}$BaCo$_4$O$_7$+δ and Y$_{0.5}$Dy$_{0.5}$BaCo$_4$O$_7$+δ oxygen carriers, respectively. The kinetic model was obtained to predict the oxygen carrier conversion of oxygen absorption for different time durations.

Data accessibility. The data have been uploaded as the electronic supplementary file.

Authors’ contributions. L.H. and Q.Y. designed the study. L.H. and K.W. prepared the samples and conducted the experiments. L.H. and Q.Q. analysed the data. L.H., M.W. and F.Y. interpreted the results and wrote the manuscript.

Competing interests. We are grateful to Huaqing Xie and Haiyang Yu who provided the comments that reduced the grammatical and spelling errors.

Funding. This study was financially supported by the National Natural Science Foundation of China (grant nos. 51576035 and 51604078) and Fundamental Research Funds for the Central Universities (grant no. N162504012) and Post-Doctoral Science Foundation (grant nos. 2017M610185 and 20170101).

Acknowledgements. We are grateful to Huaqing Xie and Haiyang Yu who provided the comments that reduced the grammatical and spelling errors.

References

1. Moghtaderi B, Song H. 2010 Reduction properties of physically mixed metallic oxide oxygen carriers in chemical looping combustion. Energy Fuels 24, 5339–5368. (doi:10.1021/ef1009683)

2. Song H, Shah K, Doroodchi E, Moghtaderi B. 2014 Development of a Co-Mg-based oxygen carrier with SiO$_2$ as a support for chemical looping air separation. Energy Fuels 28, 163–172. (doi:10.1021/ef401646p)

3. Moghtaderi B. 2010 Application of chemical looping concept for air separation at high temperatures. Energy Fuels 24, 190–198. (doi:10.1021/ef900553s)

4. Song H, Shah K, Doroodchi E, Wall T, Moghtaderi B. 2014 Reactivity of Al$_2$O$_3$ or SiO$_2$-supported Cu, Mn, and Co-oxide carriers for chemical looping air separation. Energy Fuels 28, 1284–1294. (doi:10.1021/ef402266r)

5. Wang K, Yu QB, Qin Q. 2013 The thermodynamic method for selecting oxygen carriers used for chemical looping air separation. J. Therm. Anal. Calorim. 112, 747–753. (doi:10.1007/s10973-012-2596-8)

6. Shulman A, Cleverstam E, Mattisson T, Lyngfelt A. 2009 Manganese/iron, manganese/nickel, and manganese/silicon oxides used in chemical-looping with oxygen uncoupling for combustion methane. Energy Fuels 23, 5269–5275. (doi:10.1021/ef9005466)

7. Wang K, Yu QB, Xie HQ, Qin Q. 2013 Performance and apparent redox kinetic of a Cu-based oxygen carrier for chemical looping oxygen production. Funct. Mater. Lett. 6, 1–5.

8. Wang K, Yu QB, Qin Q, Zuo ZL. 2015 Study of the sorption property of copper oxygen carrier used for chemical looping air separation. J. Therm. Anal. Calorim. 120, 1627–1633. (doi:10.1007/s10973-015-4509-0)

9. Wang K, Yu QB, Qin Q. 2013 Reduction kinetics of Cu-based oxygen carriers for chemical looping air separation. Energy Fuels 27, 5466–5474. (doi:10.1021/ef301485p)

10. Ishida M, Yamamoto M, Ohba T. 2002 Experimental results of chemical-looping combustion with NiO/NiAl$_2$O$_4$ particle circulation at 1000°C. Energy Convers. Manage. 43, 1469–1478. (doi:10.1016/S0196-8904(02)00289-8)

11. Mattisson T, Lyngfelt A, Leonh H. 2009 Chemical-looping with oxygen uncoupling for combustion of solid fuels. Int. J. Greenhouse Gas Control 3, 11–19. (doi:10.1016/j.jggc.2008.06.002)

12. Arjmand M, Keller M, Leonh H, Mattisson T, Lyngfelt A. 2012 Oxygen release and oxidation rates of Mg(δ)$_2$O$_3$-supported Cu oxygen carrier for chemical-looping combustion with oxygen uncoupling (CLOU). Energy Fuels 26, 6528–6539. (doi:10.1021/ef3001004)

13. Wang K, Yu QB, Qin Q. 2015 Analysis of oxygen releasing rate of Cu-based oxygen carrier in N$_2$–O$_2$ atmosphere. J. Therm. Anal. Calorim. 119, 2221–2222. (doi:10.1007/s10973-014-4433-9)

14. Magnus R, Henrik L, Tobias M, Anders L. 2014 Combined oxides as oxygen-carrier material for chemical-looping with oxygen uncoupling. Appl. Energy 113, 1924–1932. (doi:10.1016/j.apenergy.2013.06.016)

15. Zhao K, He F, Huang Z, Wei QQ, Zheng AQ, Li HB, Zhao ZL. 2017 Perovskite-type LaFe$_{0.5}$Mn$_{0.5}$O$_3$ (x = 0, 0.3, 0.5, 0.7, 1.0) oxygen carriers for chemical looping steam reforming: oxidation activity and resistance to carbon formation. Korean J. Chem. Eng. 34, 1651–1660. (doi:10.1007/s10118-016-0929-6)

16. Leonidov IA, Konstantinova EV, Patrakeev MV, Markov AA, Kozhevnikov VL. 2017 Electrical conductivity and carrier mobility in Ca$_{1-x}$Pr$_x$Mn$_{1-y}$O$_y$ manganites. Inorg. Mater. 53, 589–594. (doi:10.1134/S1060355917060103)

17. Adánez J, de Diego LF, García-Labiano F, Gayán P, Abad A. 2004 Selection of oxygen carriers for chemical-looping combustion. Energy Fuels 18, 371–377. (doi:10.1021/ef030145z)

18. Abad A, Adaez-Rubio J, Laya P, Garcia-Labiano F, de Diego LF, Adaez J. 2002 Demonstration of chemical-looping with oxygen uncoupling (CLOU) process in a 1.5 kW th continuously operating unit using a Cu-based oxygen carrier. Int. J. Greenhouse Gas Control 6, 189–200. (doi:10.1016/j.jggc.2011.01.016)

19. Wang K, Luan WP, Yu QB, Qin Q. 2018 The reduction kinetic of the combined Cu-based oxygen carrier used for chemical looping gasification technology. In The Minerals, Metals & Materials Society Ann. Meeting & Exhibition, Phoenix, USA, 2018, pp. 89–97, Cham, Switzerland: Springer.

20. Wang BW, Li HY, Ding N, Shen QW, Zhao HB, Zheng GG. 2018 Chemical looping combustion characteristics of coal with Fe$_2$O$_3$ oxygen carrier. J. Therm. Anal. Calorim. 132, 17–27. (doi:10.1007/s10973-017-6775-5)

21. Whitby K, Clayton C. 2012 Measurement and modeling of kinetics for copper-based chemical looping with oxygen uncoupling. In Proc. 2nd Int. Conf. on Chemical Looping, Darmstadt, Germany, 2012, pp. 1–10, Amsterdam, The Netherlands: Elsevier.
22. Hassain MM. 2017 Solid-state kinetics of reduction of NiO/Co-γ-Al₂O₃ oxygen carriers for chemical-looping combustion. Arab. J. Sci. Eng. 43, 2211–2230. (doi:10.1007/s13369-017-2706-9)

23. Zhu J, Wang W, Lian SJ, Hua XN, Xia Z. 2017 Stepwise reduction kinetics of iron-based oxygen carriers by CO/CO₂ mixture gases for chemical looping hydrogen generation. J. Mater. Cycles Waste Manage. 19, 453–462. (doi:10.1007/s11663-015-0443-2)

24. Hassain MM, de Lasa HL. 2010 Reduction and oxidation kinetics of Co-Ni/Al₂O₃ oxygen carrier involved in a chemical-looping combustion cycles. Chem. Eng. Sci. 65, 98–106. (doi:10.1016/j.ces.2009.01.059)

25. Li F, Zeng L, Velazquez-Vargas LG, Yoscovits Z, Fan L. 2010 Syngas chemical looping gasification process: bench-scale studies and reactor simulations. AIChE J. 56, 2186–2199. (doi:10.1002/aic.12093)

26. Valldor M, Andersson M. 2010 The structure of the new compound YBaCo₄O₇ with a magnetic feature. New Journal of Chemistry 34, 2186–2199. (doi:10.1007/s10163-010-0443-2)

27. Kadota S, Kappinen M, Tsuchida S, Fujita T, Motohashi T, Huang YH, Valkapar® M, Fjellvåg H. 2006 Oxygen nonstoichiometry in YBaCo₄O₇: large low-temperature oxygen absorption/desorption capability. Chem. Mater. 18, 490–494. (doi:10.1021/cm052208o)

28. Motohashi T, Kadota S, Fjellvåg H, Kappinen M, Yamashita H. 2008 Uncommon oxygen intake/release capability of layered cobalt oxides RBA Co O/δ₅+ : novel oxygen-storage materials. Mater. Sci. Eng. B 148, 196–198. (doi:10.1016/j.mseb.2007.09.052)

29. Kadota S, Kappinen M, Motohashi T, Yamashita H. 2008 R-site substitution effect on the oxygen-storage capability of RBA Co O/δ₅+ . Chem. Mater. 20, 6378–6381. (doi:10.1021/cm800412g)

30. Kozeeva LP, Kameneva MY, Lavrov AN, Podberezskaya NV. 2013 Synthesis and oxygen behavior of RBA Co O/δ₅+ . J. Alloys Compd. 569, 626–631. (doi:10.1016/j.jallcom.2013.06.058)

31. Wang S, Hao HS, Zhu BF, Jia JF, Hu X. 2008 Modifying the oxygen adsorption properties of YBaCo₄O₇ by Ca, Al, and Fe doping. J. Mater. Sci. 43, 5385–5389. (doi:10.1007/s10853-008-2806-8)

32. Hao HS, He QL, Cheng YG, Zhao LM. 2009 Oxygen adsorption/desorption behavior of YBaCoO/δ₅+ and its application to oxygen removal from nitrogen. J. Rare Earth 27, 815–818. (doi:10.1016/S1002-0721(08)60341-5)

33. Zhang SM. 2011 Study on the oxygen adsorption/desorption properties of doped-YBaCoO/δ₅+ and its oxygen permeation ability. MA Dissertation, China, Zhengzhou University.

34. Guo L. 2005 Study on the oxygen adsorption/desorption properties of YBaCoO/δ₅+ . MA Dissertation, China, Zhengzhou University.

35. Parkkima O, Yamashita H, Kappinen M. 2013 Oxygen intake/release characteristic of YBaCoO/δ₅+. Ind. Eng. Chem. Res. 52, 599–604. (doi:10.1021/ie4038729)

36. Kappinen M, Motohashi T, Yamashita H, Kappinen M. 2012 Ga-for-Co substitution in YBaCoO/δ₅+ : effect on high-temperature stability and oxygen-storage capacity. Solid State Ionics 208, 31–35. (doi:10.1016/j.ssi.2011.11.028)

37. Komiyama T, Motohashi T, Marubuchi Y, Kikkawa S. 2010 Synthesis, thermal stability, and oxygen intake/release characteristic of YBaCuO/δ₅+. Mater. Res. Bull. 45, 1527–1532. (doi:10.1016/j.materresbull.2010.06.031)

38. Jung-Hyun K, Arumugam M. 2010 Low thermal expansion RBaCoO/δ₅+ cathode materials based on tetrahedral-site cobalt ions for solid oxide fuel cells. Chem. Mater. 22, 822–831. (doi:10.1021/cm9015244)

39. Rui ZB, Bing JJ, Li F, Lin YS, Li YD. 2012 YBaCoO/δ₅+ sorbent for oxygen-enriched carbon dioxide stream production at a low-temperature. Fuel 94, 191–196. (doi:10.1016/j.fuel.2011.07.073)

40. de Diego LF, Garcia-Labiano F, Adánez J, Gayán P, Abad A, Corbella BM, María PJ. 2004 Development of Cu-based oxygen carriers for chemical-looping combustion. Fuel 83, 1749–1757. (doi:10.1016/j.fuel.2004.03.003)

41. Jin H, Okamoto T, Ishida M. 1998 Development of a novel chemical-looping combustion: synthesis of a looping material with a double metal oxide of CoO-NiO. Energy Fuels 12, 1272–1277. (doi:10.1021/ef980086g)

42. Jin H, Okamoto T, Ishida M. 2005 Development of a novel chemical-looping combustion: synthesis of a solid looping material of NiO/CoO-Al₂O₃. Ind. Eng. Chem. Res. 38, 126–132. (doi:10.1021/ie0403265)

43. Delmon B. 1969 Introduction à la Céntrique Het’reого́n. p. 256. Paris: Technip.

44. Sarshar Z, Kalajagin S. 2013 Reduction kinetics of perovskite-based oxygen carriers for chemical looping combustion. Ind. Eng. Chem. Res. 52, 6946–6955. (doi:10.1021/ie400766b)

45. Vyazovkin S, Wight CA. 1999 Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim. Acta 340–341, 53–68. (doi:10.1016/S0040-6031(99)00233-1)

46. Hallikä O, Neou-Syngoua P, Kolitsa D. 1998 Isothermal kinetic analysis of the thermal decomposition of magnesium hydroxide using thermogravimetric data. Thermochim. Acta 330, 75–88. (doi:10.1016/S0040-6031(98)00413-4)

47. Perkins C, Lichy P, Weimer NK. 2007 Determination of aerosol kinetics of thermal ZnO dissociation by thermogravimetry. Chem. Eng. Sci. 62, 5952–5962. (doi:10.1016/j.ces.2007.06.039)

48. Kubiackiewicz O, Alcaire CB. 1979 Metallurgical chemodynamics, pp. 1. New York, NY: Pergamon Press.

49. Pineau A, Kaniati N, Gbahaibal I. 2006 Kinetics of reduction of iron oxides by H₂: Part I: low temperature reduction of hematite. Thermochim. Acta 447, 89–100. (doi:10.1016/j.tca.2005.10.004)

50. Brown ME, Dollimore D, Galwey AK. 1980 Reactions in the solid state in comprehensive chemical kinetics, pp. 41–113. Amsterdam, Netherlands: Elsevier Science.

51. Hassain MM, Quddus MR, de Lasa HL. 2010 Reduction kinetics of La modified NiO/Co-γ-Al₂O₃ oxygen carrier for chemical-looping combustion. Ind. Eng. Chem. Res. 49, 11 009–11 017. (doi:10.1021/ie100424w)

52. Hassain MM, de Lasa HL. 2007 Chemical-looping combustion (CLC) for inherent CO₂ separations—a review. Chem. Eng. Sci. 63, 4433–4451. (doi:10.1016/j.ces.2008.05.028)