A General System of Regularized Non-convex Variational Inequalities

Lee BS¹ and Salahuddin S²
¹Department of Mathematics, Kyungsung University, Busan, 608-736, Korea
²Department of Mathematics, Jazan University, Jazan, Kingdom of Saudi Arabia

Abstract

In this communication, we introduced a general system of regularized non-convex variational inequalities (GSRNVI) and established an equivalence between this system and fixed point problems. By using this equivalence we define a projection iterative algorithm for solving GSRNVI, we also proved existence and uniqueness of GSRNVI. The convergence analysis of the proposed iterative algorithm is studied.

Keywords: General system of regularized non-convex variational inequalities; Uniformly t-prox regular sets; Iterative schemes; Convergence analysis

Introduction

The originally variational inequality problem introduced by Stampacchia [1] in the early sixties has a great impact and in influence in the development of almost all branches of pure and applied sciences and has witnessed an explosive growth in theoretical advances, algorithmic development. As a result of interaction between different branches of mathematical and engineering sciences, we now have a variety of techniques to suggest and analyze various algorithms for solving variational inequalities and related optimizations [2-6]. Verma [7-10] studied systems of variational inequality with single valued mappings and suggest some iterative algorithms to compute approximate solutions of these systems in Hilbert spaces. Agarwal et al. [11] studied sensitivity analysis for a system of generalized nonlinear mixed quasi variational inclusions with single valued mappings. Several authors studied different kinds of systems of variational inequalities and suggested iterative algorithms to find the approximate solutions of the systems [12-15]. We remark that the results regarding the existence of solutions and iterative schemes for solving the system of variational inequalities and related problems are being considered in the setting of convex sets and the technique defined on the characteristics of the projection operator over convex a set which does not hold in general when the sets are non-convex. It is well known that the uniform prox regular sets are convex and include the convex set as special cases. Wen [16] considered a system of non-convex variational inequalities with different nonlinear operators and asserted that this system is equivalent to the fixed point problem and suggested an iterative algorithm for the system of non-convex variational inequalities. The convergence analysis of the proposed iterative algorithm under some certain assumption is also studied. In [17] point out the equivalence formulation used by Wen [16] is not correct. Inspired and motivated by the works of [18-26], we introduced and studied a general systems of regularized non-convex variational inequalities. By using the equivalence, we defined a projection iteration algorithm for solving GSRNVI. Further, we proved the existence and uniqueness of solutions of general system of regularized non-convex variational inequalities. The convergence analysis of the proposed iterative algorithm is also studied.

Basic Foundation

Let H be a real Hilbert space endowed with norm \(\| \cdot \| \) and an inner product \(\langle \cdot, \cdot \rangle \) respectively. Let \(\Omega \) be nonempty closed subsets of H. We represent \(d_{\Omega}(\cdot) \) or \(d_{\Omega}(\cdot;j) \) the distance function from a point to a set \(\Omega \) that is

\[
d_{\Omega}(u) = \inf_{v \in \Omega} \| u - v \|
\]

Definition 2.1: Let \(u \in H \) be a point not lying in \(\Omega \). A point \(v \in \Omega \) is called a closed point or a projection of \(u \) onto \(\Omega \) if \(d_{\Omega}(u) = \| u - v \| \); The set of all such closed points is denoted by \(P_{\Omega}(u) \), that is

\[
P_{\Omega}(u) = \{ v \in \Omega : d_{\Omega}(u) = \| u - v \| \}
\]

Definition 2.2: The proximal normal cone of \(\Omega \) at a point \(u \in \Omega \) is given by

\[
N_{\Omega}(u) = \{ \zeta \in H : u \in \Omega_{\zeta}(\omega + \alpha \zeta) \}
\]

where \(\alpha > 0 \) is a constant.

Lemma 2.3 [26]: Let \(\Omega \) be a nonempty closed subset of \(H \). Then \(\zeta \in \Omega_{\zeta}(\omega) \) if and only if there exists a constant \(\alpha = \alpha(\zeta, u) > 0 \) such that

\[
\langle \zeta, v - u \rangle \leq \alpha \| v - u \| \quad \forall v \in \Omega
\]

Lemma 2.4 [27]: Let \(\Omega \) be a nonempty closed and convex subset of \(H \). Then \(\zeta \in \Omega_{\zeta}(\omega) \) if and only if

\[
\langle \zeta, v - u \rangle \leq \alpha \| v - u \| \quad \forall v \in \Omega
\]

Definition 2.5 [4]: Let \(f : H \to R \) be a locally Lipschitz near a point \(x \). The Clark’s directional derivative of \(f \) at \(x \) in the direction \(v \), denoted by \(f^\circ(x; v) \) is defined by

\[
f^\circ(x; v) = \limsup_{y \to x, t \downarrow 0} \frac{f(y + tv) - f(y)}{t}
\]

where \(y \) is a vector in \(H \) and \(t \) is a positive scalar.

The tangent cone to \(\Omega \) at a point \(x \in \Omega \), denoted by \(T_{\Omega}(x) \) is defined by

\[
T_{\Omega}(x) = \{ v \in H : d_{\Omega}^{\circ}(x; v) = 0 \}
\]

The normal cone to \(\Omega \) at \(x \in \Omega \), denoted by \(Q_{\Omega}(x) \) is defined by

*Corresponding author: Salahuddin S, Department of Mathematics, Jazan University, Jazan, Kingdom of Saudi Arabia, Tel: 966 7 321 0061; E-mail: salahuddin12@mailcity.com

Received May 21, 2014; Accepted May 27, 2014; Published June 25, 2014

Citation: Lee BS, Salahuddin S (2014) A General System of Regularized Non-convex Variational Inequalities. J Appl Computat Math 3: 169 doi:10.4172/2168-9679.1000169

Copyright: © 2014 Lee BS, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

J Appl Computat Math
ISSN: 2168-9679 JACM, an open access journal

Volume 3 • Issue 4 • 1000169
\[Q_\Omega(x) = \{ \zeta \in H : \langle \zeta, v \rangle \geq 0 \quad \forall v \in T_\Omega(x) \} \]

The Clarke normal cone denoted by \(Q_\Omega^C(x) \) is defined by
\[Q_\Omega^C(x) = \overline{\text{co}}(Q_\Omega(x)) \]
where \(\overline{\text{co}}(S) \) denotes the closure of the convex hull of \(S \) and \(Q_\Omega(x) \subset Q_\Omega^C(x) \); where \(Q_\Omega(x) \) is a closed convex cone and \(Q_\Omega^C(x) \) is convex but may not be closed.

Definition 2.6: [4] For a given \(t \in (0, +\infty) \); a subset \(t \) of \(H \) is called the normalized uniformly prox-regular (or uniformly t-prox-regular) if every nonzero proximal normal to \(\Omega \) can be realized by an t-ball.

That is for all \(x \in \Omega \), and \(0 \neq \zeta \in Q_\Omega^C(x) \)
\[<\zeta, x - x'> \leq \frac{1}{2t} \| x - x' \| \quad x \in \Omega, \]

Therefore, for all \(x \in \Omega \), and \(0 \neq \zeta \in Q_\Omega^C(x) \) with \(|\zeta| = 1 \) we have
\[<\zeta, x - x'> \leq \frac{1}{2t} \| x - x' \| \quad x \in \Omega, \]

Lemma 2.7 [23] A closed set \(\subset H \) is convex if and only if it is uniformly prox-regular for every \(t > 0 \).

Let \(t \neq 0 \) and \(\Omega \) be a nonempty closed and uniformly t-prox-regular subset of \(H \). Let \(U(t) = \{ u \in H : 0 \leq d_\Omega(u) < t \} \) Then the following statements are hold:

- (a) for all \(x \in U(t) \); \(\Pi_{\Omega}(x) \neq 0 \)
- (b) for all \(t > 0 \); \(\Pi_t \) is Lipschitz continuous mapping with constant \(\frac{t}{t - t'} \) on \(\Omega(t) = \{ u \in H : 0 \leq d_\Omega(u) < t' \} \).

If \(Q_\Omega^C(x) \) is a closed set valued mapping, hence \(Q_\Omega^C(x) = Q_\Omega^C(x) \) and
\[Q_\Omega(x) = Q_\Omega^C(x) \]

The union of two disjoint intervals \([a, b] \) and \([c, d] \) is uniformly t-prox-regular with \(t = \frac{c - b}{c - b} \). The infinite union of disjoint intervals is also uniformly t-prox-regular and t depends on the distance between the intervals.

Basic Remarks and Formulations

Let \(t \) be an uniformly \(\Omega \) prox-regular (nonconvex) set and \(g_i : \Omega \to \Omega \) be a given mapping for \(i = 1; 2; 3 \). For given mappings \(T_i, T_2, T_3, \Omega \to \Omega \) we consider the following problems of finding \((x', y', z') \in \Omega \times \Omega \times \Omega \) such that

\[<rT_i(x', x'') + g_i(x') - g_i(x''), g_i(x') - g_i(x'') > 0, g_i(x') \in \Omega, r_i > 0 \]
\[<rT_2(x', y'), g_i(y') - g_i(y') > 0, g_i(y') \in \Omega, r_2 > 0 \]
\[<rT_3(x', z'), g_i(z') - g_i(z') > 0, g_i(z') \in \Omega, r_3 > 0 \]

(3.1)

The problem (3.1) is called a general system of regularized non convex variational inequalities. We note that if \(T_i = T_i = T : \Omega \to \Omega \) is an unvariant nonlinear operator, \(g_i = 1; i = 1; 2; 3 \) (the identity operator) and \(x' = y' = z' = u \), then the system (3.1) reduces to the following classical variational inequalities defined on the nonconvex set \(\Omega \), find \(u \in \Omega \), such that
\[<T(u, v - u) > 0, \forall v \in \Omega \]
\[(3.2) \]

and (3.2) is equivalent to find \(u \in \Omega \) such that
\[0 \in Tu + Q_\Omega^C(u) \]
\[(3.3) \]

Where \(Q_\Omega^C(u) \) denotes the normal cone of \(\Omega \) at \(u \) over the non convex set.

Lemma 3.1 \((x', y', z') \in \Omega \times \Omega \times \Omega \) is a solution set of problem (3.1) if and only if
\[g_i(x') = P_{\Omega}(g_i(x') - r_iT_i(x', x')) \]
\[g_i(y') = P_{\Omega}(g_i(y') - r_iT_2(x', y')) \]
\[g_i(z') = P_{\Omega}(g_i(z') - r_iT_3(x', z')) \]
\[(3.4) \]

where \(P_{\Omega} \) is the projection of \(\Omega \) on to the uniformly t-prox-regular set \(\Omega \). In the proof of Lemma 3.1, there occur three fatal errors. First in view of Proposition 2.8, for any \(t \in (0, 1) \) the projection of points in the tube \(U(t') = \{ u \in H : 0 < d_{\Omega}(u) < t' \} \) into the set \(\Omega \) exists and unique, that is for any \(x \in U(t') \), the set \(\Pi_{\Omega}(x) \) is nonempty and singleton. From the Lemma 3.1 and Proposition 2.6 the points \(g_i(x') - r_iT_i(x', x') \) and \(g_i(x') - r_iT_i(x', x') \) should be in \(U(t') \) for some \(t' \in (0, t) \) it is not necessary true, hence (3.4) are not necessarily well defined. If \(r_i < -\frac{1}{t'} \), and \(r_i < -\frac{1}{t'} \) and \(t' \in (0, t) \). Then we have
\[d_{\Omega}(g_i(x') - r_iT_2(z', y')) \leq d_{\Omega}(g_i(y')) + r_i T_2(z', y') \]
\[\leq t' \frac{T_2(z', y')}{1 + T_2(z', y')} \quad \text{for} \quad g_i(y') \in \Omega \]

Hence, \((g_i(y') - r_iT_2(z', y')) \in U(t') \)

Similarly we have \((g_i(x') - r_iT_3(y', x')) \in U(t') \)

If \(t' < \frac{T_3(y', x')}{1 + T_3(y', x')} \quad \text{and} \quad r_i < -\frac{1}{t'} \), \(t' \in (0, t) \) then the equation (3.4) are well defined.

Secondly the following general system of regularized non convex variational inclusions is equivalence to the system (3.1):
\[0 \in rT_i(x', x') + g_i(x') - g_i(x') + r_iQ_\Omega^C(g_i(x')) \]
\[0 \in rT_2(z', y') + g_i(y') - g_i(y') + r_iQ_\Omega^C(g_i(y')) \]
\[0 \in rT_3(x', z') + g_i(z') - g_i(z') + r_iQ_\Omega^C(g_i(z')) \]
\[(3.5) \]

Since \(Q_\Omega^C(g_i(x')) \), \(Q_\Omega^C(g_i(y')) \) and \(Q_\Omega^C(g_i(z')) \) are cone, the system (3.1) is equivalent to the following system:
\[0 \in rT_i(x', x') + g_i(x') - g_i(x') + r_iQ_\Omega^C(g_i(x')) \]
\[0 \in rT_2(z', y') + g_i(y') - g_i(y') + r_iQ_\Omega^C(g_i(y')) \]
\[0 \in rT_3(x', z') + g_i(z') - g_i(z') + r_iQ_\Omega^C(g_i(z')) \]
\[(3.6) \]

The system (3.1) is equivalent to the system (3.5) which is not true in general.

Example 3.2 Let \(H = R \) and \(t = [0, b] \) \([c, d] \) be the union of two disjoint intervals \([0, b] \) and \([c, d] \) where \(0 < b < c < d \). Then \(t \) is an uniformly t-prox-regular set with \(t = \text{cNB} \). Define \(T : \Omega \times \Omega \to \Omega \), and \(g_i : \Omega \to \Omega \), by...
where for \(i = 1, 2, 3 \), \(i = 1, 2, 3 \) be arbitrary and for \(i = 1, 2, 3 \) be arbitrary. Hence for all \(w \in \Omega \) we have
\[
\alpha > \max \left\{ \frac{-r_i \theta_i e^{\beta_i}}{c - kb^n}, \frac{r_i \theta_i e^{\beta_i}}{c - kb^n} \right\}
\]
be the fixed arbitrary. Hence for all \(w \in \Omega \),
\[
\left\{ r_i T_i(y', x') + g_i(x') - g_i(y'), w - g_i(x') \right\} + \alpha \| w - g_i(x') \|^2 = r_i \theta_i e^{\beta_i} (w - kb^n) + \alpha (w - kb^n)^2 = (w - kb^n)^2 (w - kb^n) + \alpha (w - kb^n)^2.
\]
If \(w \in [0, b] \), then
\[
kb^n - w - kb^n \leq b - kb^n = b(1 - kb^{-1})
\]
and
\[
-\alpha (w - kb^n) + \alpha (w - kb^n)^2 \leq \alpha (w - kb^n) + \alpha (w - kb^n)^2.
\]
From (3.7)-(3.8), we have
\[
r_i T_i(y', x') + g_i(x') - g_i(y'), w - g_i(x') \geq 0 \quad \forall \omega_i \in \Omega.
\]
Since \(r_i \theta_i e^{\beta_i} (w - kb^n) < 0 \), then (3.7) is valid. Hence
\[
r_i T_i(y', x') + g_i(x') - g_i(y'), w - g_i(x') \geq 0 \quad \forall \omega_i \in \Omega.
\]
Hence
\[
r_i T_i(y', x') + g_i(x') - g_i(y'), w - g_i(x') \geq 0, \quad \forall \omega_i \in \Omega,
\]
cannot hold. Similarly we have
\[
r_i T_i(x', y') + g_i(y') - g_i(x'), w - g_i(y') \geq 0 \quad \forall \omega_i \in \Omega,
\]
while the inequality
\[
r_i T_i(y', x') + g_i(y') - g_i(x'), w - g_i(y') \geq 0 \quad \forall \omega_i \in \Omega,
\]
cannot hold. Again in similar way we have
\[
r_i T_i(x', z') + g_i(z') - g_i(x'), w - g_i(z') \geq 0 \quad \forall \omega_i \in \Omega,
\]
the inequality
\[
r_i T_i(x', z') + g_i(z') - g_i(x'), w - g_i(z') \geq 0
\]
cannot hold. Therefore we can see that every solution of (3.2) is a solution of (3.3) but converse need not be true in general. On the basis of example we define as the general system of regularized non-convex variational inequality. For given nonlinear mappings \(T_i : H \times H \to H \) and \(g_i : H \to H \to H \) be arbitrary. Hence for all \(w \in \Omega \), we consider the general system of regularized non-convex variational inequality for finding \((x', y', z') \in H \times H \times H \) such that \((g_i(x'), g_i(y'), g_i(z')) \in \Omega \times \Omega \times \Omega \), and
\[
\left\{ r_i T_i(y', x') + g_i(x') - g_i(y'), g_i(x') - g_i(x') \right\} + \| r_i T_i(y', x') + g_i(x') - g_i(y') \|^2 = 0, \quad \forall \omega_i \in \Omega,
\]
and
\[
\left\{ r_i T_i(z', x') + g_i(x') - g_i(z'), g_i(x') - g_i(x') \right\} + \| r_i T_i(z', x') + g_i(x') - g_i(z') \|^2 = 0, \quad \forall \omega_i \in \Omega,
\]
and
\[
\left\{ r_i T_i(x', z') + g_i(z') - g_i(x'), g_i(x') - g_i(x') \right\} + \| r_i T_i(x', z') + g_i(x') - g_i(z') \|^2 = 0, \quad \forall \omega_i \in \Omega.
\]

Proposition 3.3: Let \(\Omega \) be a uniformly t-prox regular set. The system (3.9) is equivalent to the system (3.6).

Proof: Let \((x', y', z') \in H \times H \times H \) with \((g_i(x'), g_i(y'), g_i(z')) \in \Omega \times \Omega \times \Omega \), then \((x', y', z') \in \Omega \times \Omega \times \Omega \), and \(r_i T_i(y', x') + g_i(x') - g_i(y') = 0 \) then
\[
\left\{ r_i T_i(y', x') + g_i(x') - g_i(y'), g_i(x') - g_i(x') \right\} + \| r_i T_i(y', x') + g_i(x') - g_i(y') \|^2 = 0, \quad \forall \omega_i \in \Omega.
\]
Similarly we have
\[
\left\{ r_i T_i(z', x') + g_i(x') - g_i(z'), g_i(x') - g_i(x') \right\} + \| r_i T_i(z', x') + g_i(x') - g_i(z') \|^2 = 0, \quad \forall \omega_i \in \Omega,
\]
and
\[
\left\{ r_i T_i(x', z') + g_i(z') - g_i(x'), g_i(x') - g_i(x') \right\} + \| r_i T_i(x', z') + g_i(x') - g_i(z') \|^2 = 0, \quad \forall \omega_i \in \Omega.
\]

Lemma 3.4: For \(i = 1, 2, 3 \) let \(T_i : H \to H \) be the same as in the system (3.9), then \((x', y', z') \in H \times H \times H \) with \((g_i(x'), g_i(y'), g_i(z')) \in \Omega \times \Omega \times \Omega \), and \(r_i T_i(y', x') + g_i(x') - g_i(y') = 0 \) then
\[
\left\{ r_i T_i(y', x') + g_i(x') - g_i(y'), g_i(x') - g_i(x') \right\} + \| r_i T_i(y', x') + g_i(x') - g_i(y') \|^2 = 0, \quad \forall \omega_i \in \Omega.
\]

Proof: Let \((x', y', z') \in H \times H \times H \) with \((g_i(x'), g_i(y'), g_i(z')) \in \Omega \times \Omega \times \Omega \), then \((x', y', z') \in \Omega \times \Omega \times \Omega \), and \(r_i T_i(y', x') + g_i(x') - g_i(y') = 0 \) then
\[
\left\{ r_i T_i(y', x') + g_i(x') - g_i(y'), g_i(x') - g_i(x') \right\} + \| r_i T_i(y', x') + g_i(x') - g_i(y') \|^2 = 0, \quad \forall \omega_i \in \Omega.
\]
\(\Rightarrow g_i(y') - rT_i(y', x') \in (I + Q^\alpha_{\Omega_i})(g_i(x')) \)
\(\Rightarrow g_i(x') = P_{\Omega_i} [g_i(y') - rT_i(y', x')] \),

where I is an identity mapping. Similarly we have
\(0 \in rT_2(z', y') + g_2(y') - g_2(z') + Q^\alpha_{\Omega_i}(g_2(y')) \)
\(\Rightarrow g_2(z') - rT_2(z', y') \in g_2(y') + Q^\alpha_{\Omega_i}(g_2(y')) \)
\(g_2(z') - rT_2(z', y') \in (I + Q^\alpha_{\Omega_i})(g_2(y')) \)
\(\Rightarrow g_2(y') = P_{\Omega_i} [g_2(z') - rT_2(z', y')] \),

and
\(0 \in rT_3(x', z') + g_3(z') - g_3(x') + Q^\alpha_{\Omega_i}(g_3(z')) \)
\(\Rightarrow g_3(z') - rT_3(x', z') \in g_3(z') + Q^\alpha_{\Omega_i}(g_3(z')) \)
\(g_3(z') - rT_3(x', z') \in (I + Q^\alpha_{\Omega_i})(g_3(z')) \)
\(\Rightarrow g_3(z') = P_{\Omega_i} [g_3(z') - rT_3(x', z')] \)

This completes the proof.

Existence and Convergence Analysis

Definition 4.1 A mapping \(T \rightarrow H \times H \times H \) is said to be

(i) monotone in the first variable if for all \(x, y \in H \)
\(\langle T(x, u) - T(y, v), x - y \rangle \geq 0 \forall u, v \in H \),

(ii) \(\mu \) -strongly monotone in the first variable if there exists a constant \(\mu > 0 \) such that
\(\langle T(x, u) - T(y, v), x - y \rangle \geq \mu \| x - y \|^{2} \forall u, v \in H \),

(iii) \(\mu \) -cocoercive if there exists a constant \(\mu > 0 \) such that
\(\langle T(x, u) - T(y, v), x - y \rangle \geq \mu \| T(x, u) - T(y, v) \|^{2} \forall x, y \in H \),

(iv) relaxed \(\mu \) -cocoercive if there exists a constant \(\mu > 0 \) such that
\(\langle T(x, u) - T(y, v), x - y \rangle \geq - \mu \| T(x, u) - T(y, v) \|^{2} \forall x, y, u, v \in H \),

(v) \(\mu \) -Lipschitz continuous in the first variable if there exists a constant \(\mu > 0 \) such that for all \(x, y \in H \)
\(\| T(x, u) - T(y, v) \| \leq \mu \| x - y \| \forall x, y \in H \)

(i) \(\mu \) -monotone if there exists a constant \(\mu > 0 \) such that
\(\langle g(x) - g(y), x - y \rangle \geq K \| x - y \|^{2} \forall u, v \in H \)

(ii) \(\xi \) -Lipschitz continuous if there exists a constant \(\xi > 0 \) such that
\(\langle g(x) - g(y), x - y \rangle \geq K \| x - y \|^{2} \forall x, y \in H \)

Now we prove that existence and unique solution set of general system of regularized non-convex variational inequalities.

Theorem 4.3: Let the mappings \(T_i, g_i \) and \(r_i \) \(i = 1, 2, 3 \) be the same as in the system (3.1) such that \(g_i(H) \subseteq \Omega_i \). Let \(g_i \) be the \(\mu \) -cocoercive with constant \(\xi > 0 \) and Lipschitz continuous mapping with constant \(\mu > 0 \). Let \(T_i \) be the relaxed \((\eta_i, \nu_i) \) -cocoercive with respect to the first variable with constants \(\eta_i, \nu_i > 0 \) and \(\lambda \) -Lipschitz continuous mapping with constant \(\lambda > 0 \). If the constant \(r_i \) for \(i = 1, 2, 3 \) satisfy the following conditions:
\(r_i \leq \frac{\mu}{\lambda} \) for \(i = 1, 2, 3 \)
and
\(r_i \leq \frac{\mu}{\lambda} \) for \(i = 1, 2, 3 \)

And
\(\xi > \frac{\mu}{\lambda} \)
\(\nu > \frac{\mu}{\lambda} \)
\(2 \mu_\nu \xi i \leq 1 + \eta^2 \) for \(i = 1, 2, 3 \)

\(\delta = \frac{t}{t - 1} \) then the system (3.9) admits a unique solutions.

Proof. Define \(\phi, \psi, \psi : H \times H \rightarrow H \) by
\(\phi(x, y) = x - g_i(x) + P_{\Omega_i} [g_i(y) - r_iT_i(y, x)] \)
\(\psi(y, x) = y - g_i(y) + P_{\Omega_i} [g_i(x) - r_iT_i(x, y)] \)
\(\psi(x, z) = x - g_i(x) + P_{\Omega_i} [g_i(x - r_iT_i(x, z)] \), \(\forall x, y, z \in H \)

Define \(\| \| \) \(H \times H \times H \) by
\(\| x, y, z \| = \| x \| + \| y \| + \| z \| \forall x, y, z \in H \)

Since \((H \times H \times H, \| \|) \) is a Hilbert space, we define \(\Omega : H \times H \times H \rightarrow H \times H \times H \) by
\(\zeta(x, y, z) = (\phi(x, y), \psi(y, z), \psi(x, z)) \), \(\forall x, y, z \in H \times H \times H \)

We claim that \(\zeta \) is a contraction mapping. Indeed let \((x, y', y') \in H \times H \times H \) and \(r_i \leq \frac{\mu}{\lambda} \) for \(t = 0, 1 \), hence
\(g_i(y) - r_iT_i(y, x) \in U(t') \)
and the t-prox-regularity of \(\Omega \) implies that \(P_{\Omega_i} [g_i(y) - r_iT_i(y, x)] \) exists and unique.

Similarly \(P_{\Omega_i} [g_i(z) - r_iT_i(z, y)] \) and \(P_{\Omega_i} [g_i(z) - r_iT_i(z, x)] \) also exists and unique. Using

Proposition 2.8, we have
\(\| (x, y', y') - (x, y', y') \| = \| (x - g_i(x) + P_{\Omega_i} [g_i(y) - r_iT_i(y, x)]) - (x - g_i(x) + P_{\Omega_i} [g_i(y) - r_iT_i(y, x)]) \| \)
\(\leq \| x - x' \| + \| g_i(x) - g_i(x') \| + \| P_{\Omega_i} [g_i(y) - r_iT_i(y, x)] - P_{\Omega_i} [g_i(y) - r_iT_i(y, x)] \| \)
\(\leq \| x - x' \| + \| g_i(x) - g_i(x') \| + \| r_i \| \| T_i(y, x) - T_i(y, x') \| \| \)
\(\leq \| x - x' \| + \| g_i(x) - g_i(x') \| + \| r_i \| \| T_i(y, x) - T_i(y, x') \| \| \)

Where \(\delta = \frac{t}{t - 1} \) By \(\mu \) -cocoercive of \(g_i \) and \(\xi \) -Lipschitz continuity of \(g_i \) we have
\(\delta \leq \frac{t}{t - 1} \)
\(\leq \| x - x' \| + \| g_i(x) - g_i(x') \| + \| r_i \| \| T_i(y, x) - T_i(y, x') \| \| \)
\(\leq \| x - x' \| ^2 + 2 \mu_\nu \| g_i(x) - g_i(x') \| ^2 + \| (g_i(x) - g_i(x') \| ^2 \)
Similarly we obtain then the iterative sequences \((x_n, y_n, z_n) \) is a solution set of the system (4.1) - (4.9).

For arbitrary initial points \(x_0, y_0, z_0 \in \Omega \) compute the sequences \(\{x_n\}, \{y_n\}, \{z_n\} \) in \(\Omega \) in the following way:

\[
x_{n+1} = (1-\alpha_n) x_n + \alpha_n \left[x_n - g_1(x_n) + P_{\Omega_1} (g_1(y_n) - r_1 T_1(z_n, y_n)) \right]
\]

\[
y_{n+1} = (1-\alpha_n) y_n + \alpha_n \left[y_n - g_2(y_n) + P_{\Omega_2} (g_2(z_n) - r_2 T_2(z_n, y_n)) \right]
\]

\[
z_{n+1} = (1-\alpha_n) z_n + \alpha_n \left[z_n - g_3(z_n) + P_{\Omega_3} (g_3(x_n) - r_3 T_3(x_n, z_n)) \right],
\]

(4.14)

where \(\{\alpha_n\} \) is a sequence in \([0, 1]\). Assume that \(g_1 = g_2 = g_3 = I \), \(r_1 = r_2 = r_3 = 0 \) is an identity mappings, then we have the following algorithm.

Algorithm 4.5. Let mapping \(T_i \) and constant \(r_i > 0 \) for \(i = 1, 2, 3 \) be the same as in the system (3.9). For arbitrary initial points \(x_0, y_0, z_0 \in \Omega \) compute the sequences \(\{x_n\}, \{y_n\}, \{z_n\} \) in \(\Omega \) in the following way:

\[
x_{n+1} = P_{\Omega_1} \left(y_n - r_1 T_1(x_{n+1}, y_{n+1}) \right)
\]

\[
y_{n+1} = P_{\Omega_2} \left(z_n - r_2 T_2(z_{n+1}, y_{n+1}) \right)
\]

\[
z_{n+1} = P_{\Omega_3} \left(x_n - r_3 T_3(x_{n+1}, z_{n+1}) \right),
\]

(4.15)

where \(\{\alpha_n\} \) is a sequence in \([0, 1]\). Again assume that \(g_1 = I = 1, 2, 3 \) is an identity mappings, then we have the following algorithm.

Algorithm 4.6. Let mapping \(T_i \) and constant \(r_i > 0 \) for \(i = 1, 2, 3 \) be the same as in the system (3.9). For arbitrary initial points \(x_0, y_0, z_0 \in \Omega \) compute the sequences \(\{x_n\}, \{y_n\}, \{z_n\} \) in \(\Omega \) in the following way:

\[
x_{n+1} = P_{\Omega_1} \left(y_n - r_1 T_1(x_{n+1}, y_{n+1}) \right)
\]

\[
y_{n+1} = P_{\Omega_2} \left(z_n - r_2 T_2(z_{n+1}, y_{n+1}) \right)
\]

\[
z_{n+1} = P_{\Omega_3} \left(x_n - r_3 T_3(x_{n+1}, z_{n+1}) \right),
\]

(4.16)

where \(\{\alpha_n\} \) is a sequence in \([0, 1]\). Now we prove the strong convergence of the sequences generated by Algorithm 4.4 to a unique solution set of the system.

Theorem 4.7. Let the mappings \(T_i, g_i \) and \(r_i > 0 \) for \(i = 1, 2, 3 \) be the same as in the system (3.9). Then \(\{x_n\}, \{y_n\}, \{z_n\} \) converges strongly to a unique solution set \((x^*, y^*, z^*) \) of the system (3.9).
where \(\alpha_n \) is a sequence in \([0, 1]\): Since \(n \in \mathbb{N} \), \((g(y*), g(yn)) \in \Omega_t; \)

Continuous mapping in the first variable and \(g_2 \) is \(\mu_2 \)-strong cocoercive

By \((4.14)-(4.15) \) and Proposition 2.8, we have

From (4.14),(4.15) and Proposition 2.8, we have

It is easy to see that for each \(n \in \mathbb{N} \),

\[
(g(y^*) - rT_1(y^*, y), (g(y_n) - rT_1(y_n, y_n)) \in \mathcal{U}(t')
\]

Since \(T_1 \) is relaxed \((\eta_1, v_1)\) cocoercive mapping and \(\lambda_1 \)-Lipschitz continuous mapping and \(\lambda_2 \)-Lipschitz continuous mapping in the first variable and \(g_1 \) is \(\mu_1 \)-strong cocoercive mapping and \(\xi_1 \)-Lipschitz continuous mapping, as same way of (4.16) - (4.20), we get

\[
\|z_n - z^*\| \leq (1 - \alpha_n) \|z_n - z^*\| + \alpha_n \|p_n\| \|z_n - z^*\| + \beta_n \|x_n - x^*\| \quad \text{(4.22)}
\]

where \(p_n \) and \(\Theta_n \) are same as in (4.12). Now

\[
(\|x_n - x^*\|, \|y_n - y^*\|, \|z_n - z^*\|) \leq (1 - \alpha_n) \|(x_n, y_n, z_n) - (x^*, y^*, z^*)\|,
\]

\[
+ \alpha_n \left(\|p_n + \beta_n\| \|x_n - x^*\| + (p_n + \beta_n) \|y_n - y^*\| + (p_n + \beta_n) \|z_n - z^*\|\right)
\]

\[
(\|x_n, y_n, z_n\| - (x^*, y^*, z^*)) \|, + \alpha_n \|(x_n, y_n, z_n) - (x^*, y^*, z^*)\|, \quad \text{and (4.23)}
\]

where \(\lambda \) is same as in (4.13). From condition (4.2) we get \(\lambda (0; 1) \). Since

we get

\[
\lim_{n \to \infty} \prod_{i=1}^{n} (1 - (1 - \lambda) \alpha_i) = 0
\]

Therefore from (4.23)-(4.24)

\[
\left\| (x_n, y_n, z_n) - (x^*, y^*, z^*) \right\| \to 0 \text{ as } n \to \infty,
\]

and the sequences \((x_n, y_n, z_n)\) suggested by algorithm 4.4, converges strongly to a unique solution set \((x^*, y^*, z^*)\) of the general system of regularized nonconvex variational inequalities. In a similar way, we can prove the convergence of iterative sequences generated by Algorithm 4.5 and Algorithm 4.6.

References

1. Kinderlehrer D, Stampacchia G (1980) An introduction to variational inequalities and their applications. Acad Press.
2. Ahmad MK, Salahuddin S (2012) A stable perturbed algorithms for a new class of general convex nonlinear implicit quasi variational inclusions in Banach spaces. Advances in Pure Mathematics 2: 139-148.
3. Aubin JP (1982) Mathematical Methods of game theory and economics. North Holland, Amsterdam, The Netherlands.
4. Clarke FH (1983) Optimization and non smooth analysis. Wiley Int Science New York.
5. Khan MF, Salahuddin S (2006) Generalized multivalued quasi variational like inclusions. Adv Nonlinear VarInequal 9.
6. Pang LP, Shen J, Song HS (2007) A modified predictor-corrector algorithm for solving non convex generalized variational inequalities. Comput Math Appl 54: 319-325.
7. Verma RU (2001) Projection methods, algorithms and a new system of nonlinear variational inequalities. Comput Mat Appl 41: 1025-1031.
8. Verma RU (2002) Projection methods, and a new system of cocoercive variational inequality problems. Int J Diff Eq Appl 6: 359-367.
9. Verma RU (2004) Generalized system for relaxed cocoercive variational inequalities and projection methods. J Optim Theo Appl 121: 203-210.
10. Verma RU (2005) General convergence analysis for two step projection methods and applications to variational problems. Appl Math Lett 18: 1286-1292.
11. Agarwal RP, Huang NJ, Tan MY (2004) Sensitivity analysis for a new system of generalized nonlinear mixed variational inclusions. J Appl Math Lett 17: 345-352.
12. Ansari QH, Yao JC (1999) A fixed point theorem and its applications to the system of variational inequalities. Bull Austral Math Soc 59: 433-442.
13. Chang SS, Lee HWJ, Chan CK (2007) Generalized system for relaxed cocoercive variational inequalities in Hilbert space. Applied Math Lett 20: 329-334.
14. Cho YJ, Qin X (2009) Generalized system for relaxed cocoercive variational inequalities and projection methods in Hilbert spaces. Math Inequal Appl 12: 365-375.
15. Inchan I, Petrot N (2011) System of general variational inequalities involving different nonlinear operators related to fixed point problems and its applications. Fixed point Theory.
16. Wen DJ (2010) Projection methods for a generalized system of non-convex variational inequalities with different nonlinear operators. Nonlinear Anal 73: 2292-2297.
17. Ansari QH, Balooei J (2013) On a system of regularized non-convex variational inequalities. Math Inequal Appl Preprint.
18. Bounkhel M (2002) Existence results of non-convex differential inclusions. Port Math 59: 283-309.
19. Bounkhel M (2003) General existence results for second order non-convex sweeping process with unbounded perturbations. Port Math 60: 269-304.
20. Bounkhel M, Azzam L (2004) General existence results on the second order non convex sweeping process with unbounded perturbations. Set Valued Analysis 12: 291-318.
21. Bounkhel M, Tadji L, Aamdi A (2003) Iterative schemes to solve non convex variational problems. J Inequal Pure Appl Math 4: 1-14.
22. Canino A (1988) On p-convex sets and geodesics. J Differential Equations 75: 118-157.
23. Clarke FH, Stern RJ, Wolenski PR (1995) Proximal smoothness and the lower C property. J Convex Analysis 2: 117-144.
24. Hayashi S, Yamashita N, Fukushima M (2005) A combined smoothing and regularization method for monotone second order cone complementarity problems. SIAM J Optimizations 15: 593-615.
25. Poliquin RA, Rockafellar RT, Thibault L (2000) Local differentiability of distance functions. Trans Amer Math Soc 352: 5231-5249.
26. Weng X (1991) Fixed point iteration for local strictly pseudo contractive mapping. Proceedings of American Mathematical Society 113: 727-737.
27. Clarke FH, Ledyaev YS, Stern RJ, Wolenski PR (1988) Non smooth analysis and control theory. Springer-Verlag, New York.