Multilevel Diversity Coding with Regeneration: Separate Coding Achieves the MBR Point

Shuo Shao and Tie Liu
Dept. of Electrical & Computer Engineering
Texas A&M University, College Station TX
Email: {shaoshuo,tieliu}@tamu.edu

Chao Tian
Dept. of Electrical Engineering & Computer Science
University of Tennessee, Knoxville TN
Email: chao.tian@utk.edu

Abstract—The problem of multilevel diversity coding with regeneration is considered in this work. Two new outer bounds on the optimal tradeoffs between the normalized storage capacity and repair bandwidth are established, by which the optimality of separate coding at the minimum-bandwidth-regeneration (MBR) point follows immediately. This resolves a question left open in a previous work by Tian and Liu.

Index Terms—Information theory, distributed storage, multilevel diversity coding, regenerating codes

I. INTRODUCTION

Diversity coding and node repair are two fundamental ingredients of reliable distributed storage systems. This paper considers the problem of \((n, d) \) multilevel diversity coding with regeneration (MLDR), which was first introduced in [1]. In this problem, a total of \(d \) independent messages \(M_1, \ldots, M_d \) of \(B_1, \ldots, B_d \) bits, respectively, are to be stored in \(n > d \) nodes each of capacity \(\alpha \) bits. Two requirements need to be satisfied: (i) **Diversity reconstruction:** For any \(k = 1, \ldots, d \), the message \(M_k \) can be recovered by accessing any \(k \) (out of the total \(n \)) storage nodes, and (ii) **Node regeneration:** For any \(i = 1, \ldots, n \), the data stored at node \(i \) can be regenerated by extracting \(\beta \) bits of information each from any \(d \) other nodes. We call such a code an \((n, d, (B_1, \ldots, B_d), (\alpha, \beta)) \) MLDR code. A normalized storage-capacity vs. repair-bandwidth pair \((\bar{\alpha}, \bar{\beta})\) is said to be achievable for a given normalized message size tuple \((B_1, \ldots, B_d) \) if an \((n, d, (B_1, \ldots, B_d), (\alpha, \beta)) \) MLDR code can be found such that \(\bar{B}_k = \frac{B_k}{\sum_{j=1}^d B_j} \) for \(k = 1, 2, \ldots, d \),

\[
\bar{\alpha} = \frac{\alpha}{\sum_{j=1}^d B_j} \quad \text{and} \quad \bar{\beta} = \frac{\beta}{\sum_{j=1}^d B_j}.
\]

A precise mathematical description of the problem can be found in [1]. A natural strategy for this problem is to encode each individual message separately using an exact-repair regenerating code [2, 3] of necessary parameters. More precisely, suppose that each message \(M_k \) is encoded using an \((n, k, d, B_k, (\alpha_k, \beta_k)) \) exact-repair regenerating code (i.e., when storing a single message \(M_k \) of \(B_k \) bits, accessing any \(k \) nodes of capacity \(\alpha_k \) each can reconstruct \(M_k \), and any node can be regenerated by extracting \(\beta_k \) bits of data each from any \(d \) other nodes). Then, we have \(\alpha = \sum_{k=1}^d \alpha_k \) and \(\beta = \sum_{k=1}^d \beta_k \) for the resulting MLDR code. Let us define the individually normalized storage-capacity vs. repair-bandwidth pair as \((\bar{\alpha}_k, \bar{\beta}_k) := \left(\frac{\alpha_k}{B_k}, \frac{\beta_k}{B_k} \right)\) for \(k = 1, \ldots, d \). The overall storage-capacity vs. repair-bandwidth pair achieved by the separate coding scheme for the MLDR problem is thus given by:

\[
(\bar{\alpha}, \bar{\beta}) = \left(\sum_{k=1}^d \bar{\alpha}_k \bar{B}_k, \sum_{k=1}^d \bar{\beta}_k \bar{B}_k \right).
\]

A fundamental problem of interest is whether separate coding can achieve the **optimal** tradeoffs between the normalized storage capacity and repair bandwidth for the MLDR problem. This question was first answered in [1], where it was shown that separate coding is in general *suboptimal*. For concreteness, Figure 1 shows the optimal tradeoff curve between the normalized storage capacity and repair bandwidth (the solid line) and the best possible tradeoffs that can be achieved by separate coding (dashed line) for the \((4, 3)\) MLDR problem with \((\bar{B}_1, \bar{B}_2, \bar{B}_3) = (0, 1/3, 2/3)\). The two new outer bounds \(\mathbb{A}\) and \(\mathbb{B}\) intersect precisely at the MBR point.

![Fig. 1. The optimal tradeoff curve between the normalized storage capacity and repair bandwidth (the solid line) and the best possible tradeoffs that can be achieved by separate coding (dashed line) for the MLDR problem.](image)

This work was supported in part by the National Science Foundation under Grants CCF-13-20237, CCF-15-24839, and CCF-15-26095.
the MBR point as well; this problem was left open in [1].

In this paper, we proved two new outer bounds on the optimal tradeoffs between the normalized storage-capacity and repair-bandwidth for general MLDR problem, by which the optimality of separate coding at the MBR point follows immediately. Our proofs are based on the classical “peeling” argument, which sequentially removes the effects of certain coding requirements by grouping the corresponding random variables under the conditional terms. The technique was first introduced in [4] and subsequently used in [1] to prove the optimality of separate coding at the MSR point. The telescoping results here, however, are much more involved than those proved in [4] and [1].

Notation. For brevity, let \([i : j] := \{i, i + 1, \ldots, j\}\) for any positive integers \(i \leq j\), \(J_d := \sum_{i=1}^d i\) for any integer \(d \geq 0\), and
\[
T_{d,k} := \sum_{i=1}^k (d+1-i)
\]
for any integers \(d \geq 1\) and \(k \in \{1 : d\}\). Without loss of generality, we assume \(n \geq 2\) and \(d \leq n-1\).

II. MAIN RESULTS

Theorem 1: Any achievable normalized storage-capacity vs. repair-bandwidth pair \((\bar{\alpha}, \bar{\beta})\) for the MLDR problem must satisfy:

\[
\bar{\beta} \geq \sum_{k=1}^d T_{d,k} \bar{B}_k
\]

(2)

\[
\text{and } \bar{\alpha} + J_{d-1} \bar{\beta} \geq J_d \sum_{k=1}^d T_{d,k} \bar{B}_k.
\]

(3)

When set as equalities, the intersection of (2) and (3) is given by:

\[
(\bar{\alpha}, \bar{\beta}) = \left(\frac{d}{d} \sum_{k=1}^d T_{d,k} \bar{B}_k, \frac{d}{d} \sum_{k=1}^d T_{d,k} \bar{B}_k\right).
\]

For any \(k \in \{1 : d\}\), the MBR point for the \((n, k, d)\) exact-repair problem can be written as [2]

\[
(\bar{\alpha}_k, \bar{\beta}_k) = \left(dT_{d,k}, T_{d,k}\right).
\]

By [1], we immediately have the following corollary.

Corollary 1: Separate coding achieves the MBR point for the MLDR problem.

When \(n = 4, d = 3\), and \((B_1, B_2, B_3) = (0, 1/3, 2/3)\), the outer bounds [2] and [3] can be explicitly evaluated as \(\bar{\beta} \geq 8/45\) and \(\bar{\alpha} + 3\bar{\beta} \geq 16/15\), respectively. As illustrated in Figure 1 they intersect precisely at the MBR point (8/15, 8/45). Interestingly, for this example at least, the outer bound [3] is tight only at the MBR point.

A. Proof of Theorem 1 via Peeling Arguments

To prove the outer bounds (2) and (3), we may fix \(d \geq 1\) and assume, without loss of generality, that \(n = d + 1\). This is because if \(n > d + 1\), then the subsystem consisting of the first \(d + 1\) storage nodes forms an \((n' = d + 1, d)\) MLDR problem, which also needs to satisfy the same set of constraints.

The data stored at node \(k, k = 1, \ldots, n\), are denoted as \(W_k\); the set \((W_1, W_2, \ldots, W_k)\) is written as \(W(k)\). The data extracted from node \(j\) to regenerate node-\(k\) is denoted as \(S_{j,k}\).

Fig. 2. The repair diagram of Duursma [5] for \(n = 4\) and \(d = 3\). The key data structures \((a) l(2)\) and \((b) l'[2:3]\) are illustrated as the collections of shaded variables.

Let \(S_{\tau,k} := \{S_{j,k} : j \in \tau\}\) for any \(k \in \{1 : d + 1\}\) and any \(\emptyset \neq \tau \subseteq \{1 : d + 1\} \setminus \{k\}\). Furthermore, let \(l_0 := \emptyset, l_k := S_{[k+1:d+1],k}\) for any \(k \in \{1 : d\}\), and \(l_{[i:j]} := \{l_k : k \in \{i,j\}\}\) for any \(1 \leq i \leq j \leq d\). As we shall see, the data structures \(l(k) := l_{[1:k]}\) for \(k \in \{1 : d\}\) and \((W_1, l'[2:k])\) for \(k \in \{2 : d\}\), which are closely related to the repair diagram introduced by Duursma [5], play a key role in the peeling arguments for proving the outer bounds (2) and (3); see Figure 2.

Due to the built-in symmetry in the problem, we only need to consider the so-called symmetrical codes [6] when discussing the optimal tradeoffs between the normalized storage capacity and repair bandwidth for the MLDR problem. For symmetrical codes, the joint entropy of any subset of random variables from \(W^{(d+1)} \cup S_{[j,k]} : j \in \{1 : d + 1\}, j \neq k\) \(\cap M(\emptyset)\) remains unchanged under any permutation over the storage-node indices. Further note that \(l_j\) is invariant (i.e., the collection of random variables from \(l_j\) remains unchanged) under any permutation \(\pi\) over \([1 : d + 1]\) such that \(\pi(i) = i\) for \(i \in \{1 : j\}\); this fact is used repeatedly in proving the following telescoping results.

Proposition 1 (Telescoping over \(l(k)\)): For any symmetrical \((n, d, (B_1, \ldots, B_d), (\alpha, \beta))\) MLDR code with \(n = d + 1\) and any \(k \in \{1 : d - 1\}\), we have

\[
T_{d,k} H(l(k)|M(k)) \geq T_{d,k+1} H(l(k+1)|M(k)).
\]

(4)

Proposition 2 (Telescoping over \((W_1, l'[2:k])\)): For any symmetrical \((n, d, (B_1, \ldots, B_d), (\alpha, \beta))\) MLDR code with \(n = d + 1\) and any \(k \in \{1 : d - 1\}\), we have

\[
H(W_1, l'[2:k])|M(k) + (d-k) T_{n,k} H(l(k)|M(k)) \geq H(W_1, l'[2:k+1])|M(k).
\]

(5)

With the help of the above telescoping results, we can now prove Theorem 1 using the peeling arguments as follows.

Proof of (2): We shall prove the following bound

\[
\beta \geq \sum_{j=1}^k T_{d,j} B_j + T_{d,k} H(l(k)|M(k))
\]

(6)

by induction. Note that

\[
\beta \geq \sum_{i=2}^{d+1} H(S_{i,1}) \geq T_{d,1} H(l_1)
\]

(7)

\[
\geq T_{d,1} H(l_1, M_1) \geq T_{d,1} H(M_1) + T_{d,1} H(l_1|M_1),
\]

and thus (6) holds for \(k = 1\). Here, (a) follows from the repair-bandwidth constraints \(H(S_{i,1}) \leq \beta\) for \(i \in \{2 : d + 1\}\) and the
fact that $T_{d,1} = 1/d$; (b) is due to the union bound on entropy; (c) follows from the fact that M_1 is a function of W_1, thus a function of l_1; and (d) is due to the chain rule for entropy.

Now assume that (6) holds for some $k \in [1 : d - 1]$. Substituting the telescoping result (4) into (5), we have

$$\beta \geq \sum_{j=1}^{k} T_{d,j} B_j + T_{d,k+1} H(l^{(k+1)} | M^{(k)})$$

which completes the induction and hence the proof of (6). Here, (a) follows from the fact that M_{k+1} is a function of $W^{(k+1)}$, which is turn a function of $l^{(k+1)}$; (b) is by the chain rule for conditional entropy; and (c) follows from the facts that all messages are independent and that $H(M_{k+1}) = B_{k+1}$.

Setting $k = d$ in (6) and by the fact that $H(l^{(d)} | M^{(d)}) \geq 0$, we have

$$\beta \geq \sum_{j=1}^{d} T_{d,j} B_j. \quad \text{(7)}$$

Normalizing both sides of (7) by $\sum_{k=1}^{d} B_k$ completes the proof of the outer bound (3).

Proof of (3): We shall prove that

$$\alpha + J_{d-1} \beta \geq J_d \sum_{j=1}^{k} T_{d,j} B_j + H(W_1, l^{[2:k+1]} | M^{(k)}) + J_{d-k} T_{d,k} H(l^{(k)} | M^{(k)})$$

by induction. Note that

$$\alpha + J_{d-1} \beta$$

$$\geq H(W_1) + \frac{J_{d-1}}{d} \sum_{i=2}^{d+1} H(S_{i,1})$$

$$\geq H(W_1) + J_{d-1} T_{d,1} H(l_1)$$

$$\geq H(W_1, M_1) + J_{d-1} T_{d,1} H(l_1, M_1)$$

$$\geq H(M_1) + H(W_1 | M_1) + J_{d-1} T_{d,1} H(M_1) + J_{d-1} T_{d,1} H(l_1 | M_1)$$

$$\geq (1 + J_{d-1} T_{d,1}) B_1 + H(W_1 | M_1) + J_{d-1} T_{d,1} H(l_1 | M_1)$$

$$\geq J_{d} T_{d,1} B_1 + H(W_1 | M_1) + J_{d-1} T_{d,1} H(l_1 | M_1),$$

and thus (8) holds for $k = 1$. Here, (a) follows from the storage-capacity constraint $H(W_1) \leq \alpha$ and the repair-bandwidth constraints $H(S_{i,1}) \leq \beta$ for $i \in [2 : d + 1]$; (b) is by the union bound on entropy and the fact that $T_{d,1} = 1/d$; (c) follows from the fact that M_1 is a function of W_1, thus a function of l_1; (d) is due to the chain rule for entropy; (d) is due to the facts that all messages are independent and

$$1 + J_{d-1} T_{d,1} = (T_{d,k+1}^{-1} + J_{d-1-k}) T_{d,k+1}$$

$$= \sum_{i=1}^{k+1} (d+1-i) J_{d-1-k} T_{d,k+1}$$

$$= \sum_{j=d-k}^{d} j J_{d-1-k} T_{n,k+1} = J_{d} T_{d,k+1},$$

and (d) is due to the facts that all messages are independent.
and that $H(M_{k+1}) = B_{k+1}$.

Set $k = d$ in (8). By the fact that $H(W_1, l_{[2:d]} | M^{(d)}) \geq 0$ and $J_0 = 0$, we have

$$\alpha + J_{d-1} \beta \geq J_d \sum_{j=1}^{k} T_{d,j} B_j. \quad (10)$$

Normalizing both sides of (10) by $\sum_{k=1}^{d} B_k$ completes the proof of the outer bound 3.

III. PROOFS OF THE PROPOSITIONS

A. Proof of Proposition 7

We begin with a simple lemma, which is a consequence of Han’s inequality 7 and the definition of symmetrical codes.

Lemma 2 (Han’s inequality): For any $k \in [1 : d-1]$, $j \in [1 : k]$, and $0 \neq \pi \subseteq [k + 2 : d + 1]$, symmetrical MLDR codes must satisfy

$$\frac{1}{|\pi|} H(S_{\tau,k+1}|^{l(j-1)}, M^{(k)}) \geq \frac{1}{d-k} H(l_{k+1}^{(j-1)}|^{l(j-1)}, M^{(k)}). \quad (11)$$

Proof: Consider any two nonempty subsets of $[k + 2 : d + 1]$ of the same cardinalities, which are denoted as τ and τ'. If $H(S_{\tau,k+1}|^{l(j-1)}, M^{(k)}) = H(S_{\tau',k+1}|^{l(j-1)}, M^{(k)})$, in any symmetrical MLDR code, then the desired inequality (11) will follow directly from Han’s inequality 7. To prove the desired equality, recall symmetrical MLDR codes preserve joint entropy under any storage-node-index permutation. Consider a permutation π where only the indices in $[k + 2 : d + 1]$ are permuted, and τ and τ' are mapped to τ'. The set $l(j-1)$ is invariant under this permutation. Thus the joint entropies involved in (11) are indeed preserved under this permutation.

The following “exchange” lemma plays an essential role in the proof of Proposition 7.

Lemma 3 (Exchange lemma): For any $k \in [1 : d-1]$ and $j \in [1 : k]$, symmetrical MLDR codes must satisfy

$$\frac{d + 1 - j}{d - k} H(l^{(k)}|^{l(j)}, M^{(k)}) + H(l^{(j)}|^{l(j)}, M^{(k)}) \geq \frac{d + 1 - j}{d - k} H(l^{(k+1)}|^{l(j-1)}, M^{(k)}) + H(l^{(j-1)}|^{l(j-1)}, M^{(k)}). \quad (12)$$

Proof: Since $j \leq k$ by the assumption, we have $d+1-j < d-k$. Thus, we may write $d + 1 - j = i(d-k) + p$ for some integer $i \geq 1$ and $p \in [1 : d-k]$. For any $q \in [1 : i-1]$, let $\tau_q := \{j + p + (q-1)(d-k) : j + p + q(d-k) - 1\}$. Furthermore, let $\tau_0 := \{j : j + p - 1\}$. Then we have $[j : k] = \bigcup_{q=0}^{i-1} \tau_q$. Next, let us show by induction that for any $q \in [1 : i]$,

$$qH(l^{(k)}|^{l(j)}, M^{(k)}) + H(l^{(j)}|^{l(j)}, M^{(k)}) \geq qH(l^{(k+1)}|^{l(j-1)}, M^{(k)}) + H(S_{\tau_q,k+1}|^{l(j-1)}, M^{(k)}). \quad (13)$$

To prove the base case of $q = 1$, note that

$$H(l^{(j)}|^{l(j)}, M^{(k)}) = H(l^{(j)}|^{l(j-1)}, M^{(k)}) \geq H(S_{[j+1:d+1],j}|^{l(j-1)}, M^{(k)}). \quad (a)$$

Next, assume (13) holds for any $q \in [1 : i-1]$, then

$$H(S_{\tau_{q+1},k+1}|^{l(j-1)}, M^{(k)}), + H(l^{(j)}|^{l(j)}, M^{(k)}) \geq qH(l^{(k+1)}|^{l(j-1)}, M^{(k)}) + H(l^{(j-1)}|^{l(j-1)}, M^{(k)}). \quad (16)$$

Consider a one-to-one swapping between the elements of τ_i-q and $[k + 2 : d + 1]$, and note that $l^{(j-1)}$ is invariant under such swaps. We can write

$$H(S_{\tau_{q+1},k+1}|^{l(j-1)}, M^{(k)}), = H(S_{\tau_{q+1},k+1}|^{l(j-1)}, M^{(k)}), + H(l^{(j)}|^{l(j)}, M^{(k)}). \quad (16)$$

It follows that

$$H(S_{\tau_{q+1},k+1}|^{l(j-1)}, M^{(k)}), + H(l^{(j)}|^{l(j)}, M^{(k)}). \geq H(S_{\tau_{q+1},k+1}|^{l(j-1)}, M^{(k)}), + H(l^{(j)}|^{l(j)}, M^{(k)}). \quad (16)$$

where (a) and (c) are due to the fact that $S_{\tau_{q+1},k+1}$ is a function of $l^{(k)}$, and (b) follows from the submodularity of entropy. Substituting (17) into (16) gives

$$(q + 1)H(l^{(k)}|^{l(j)}, M^{(k)}) + H(l^{(j)}|^{l(j)}, M^{(k)}). \quad (16)$$
\[\geq qH(l^{(k+1)}|M^{(k)}) + \left[H(l^{(k+1)}|M^{(k)}) + \\
H(S_{i=0}^{j-(q+1)} \tau_{r,k+1} l^{(j-1)}|M^{(k)}) \right] \]
\[= (q + 1) H(l^{(k+1)}|M^{(k)}) + \]
\[+ H(S_{i=0}^{j-(q+1)} \tau_{r,k+1} l^{(j-1)}|M^{(k)}) \]
which completes the induction and hence the proof of (13).

Set \(q = i \) in (13). We have
\[iH(l^{(k)}|M^{(k)}) + H(l^{(j)}|M^{(k)}) \]
\[\geq iH(l^{(k+1)}|M^{(k)}) + H(S_{i=0}^{j-(q+1)} \tau_{r,k+1} l^{(j-1)}|M^{(k)}) \]
\[= iH(l^{(k+1)}|M^{(k)}) + H(l^{(j-1)}|M^{(k)}) + \\
H(S_{i=0}^{j-(q+1)} \tau_{r,k+1} l^{(j-1)}|M^{(k)}) \]
\[= \frac{a}{d - k} H(l^{(k)}|M^{(k)}) + \frac{b}{d - k} H(l^{(k+1)}|M^{(k)}) \]
\[= \frac{p}{d - k} \left[H(l^{(k+1)}|M^{(k)}) - H(l^{(k)}|M^{(k)})\right], \]
where the last equality follows from the chain rule for conditional entropy. Consider a one-to-one swapping between the elements of \(\tau_0 = \{ j : j + p - 1 \} \) and \(\tau := \{ k + 2 : k + p + 1 \} \), and note \(l^{(j-1)} \) is invariant under such swaps. We can write
\[H(S_{i=0}^{j-(q+1)} \tau_{r,k+1} l^{(j-1)}|M^{(k)}) = H(S_{i=0}^{j-(q+1)} \tau_{r,k+1} l^{(j-1)}|M^{(k)}) \]
where (a) follows from Lemma 2 and (b) is because conditioning reduces entropy. Substituting (19) into (18) gives
\[\left(i + \frac{p}{d - k}\right) H(l^{(k)}|M^{(k)}) + H(l^{(j)}|M^{(k)}) \]
\[\geq \left(i + \frac{p}{d - k}\right) H(l^{(k+1)}|M^{(k)}) + H(l^{(j-1)}|M^{(k)}), \]
which is equivalent to (12) by noting that
\[i + \frac{p}{d - k} = \frac{i(d - k) + p}{d - k} = \frac{d + 1 - j}{d - k}. \]
This completes the proof of Lemma 3.

Proposition 1 can now be readily proved from Lemma 3 as follows. Fix \(k \in [1 : d - 1] \), add the inequalities (12) for \(j \in [1 : k] \), and cancel the common term \(\sum_{j=1}^{k-1} H(l^{(j)}|M^{(k)}) \)
on both sides. We have
\[\sum_{j=1}^{k} \frac{d + 1 - j}{d - k} H(l^{(k)}|M^{(k)}) + H(l^{(0)}|M^{(k)}) \]
\[\geq \sum_{j=1}^{k} \frac{d + 1 - j}{d - k} H(l^{(k+1)}|M^{(k)}) + H(l^{(0)}|M^{(k)}), \]
which can be equivalently written as
\[\sum_{j=1}^{k+1} \frac{d + 1 - j}{d - k} H(l^{(k)}|M^{(k)}) \]
\[\geq \sum_{j=1}^{k+1} \frac{d + 1 - j}{d - k} H(l^{(k+1)}|M^{(k)}), \]
by the fact that \(H(l^{(0)}|M^{(k)}) = 0 \). Multiplying both sides of (20) by \(d - k \) and writing \(\sum_{j=1}^{k+1} (d + 1 - j) \) and \(\sum_{j=1}^{k} (d + 1 - j) \) as \(1/T_{d,k+1} \) and \(1/T_{d,k} \) respectively complete the proof of Proposition 1.

B. Proof of Proposition 2

Lemma 4 (Han’s inequality): Define \(l'_{r} := \{ S_{1,r}, l_{r} \} \) for \(r \in [2 : d] \). For any \(k \in [1 : d - 1] \), \(j \in [1 : k] \), and \(\emptyset \neq \tau \subseteq [k + 2 : d + 1] \), symmetrical MLDR codes must satisfy
\[\frac{1}{|\tau|} H(l_{r,k+1} l'_{2[j]}|M^{(k)}) \geq \frac{1}{d - k} H(l_{k+1} l'_{2[j]}|M^{(k)}). \]

The proof follows identical steps to those for Lemma 2 and is omitted due to the space constraint.

Lemma 5 (Exchange lemma): For any \(k \in [1 : d - 1] \) and \(j \in [1 : k] \), symmetrical MLDR codes must satisfy
\[\frac{d + 1 - j}{d - k} H(W_{1}, l'_{[2:k]}|M^{(k)}) + H(l^{(j)}|M^{(k)}) \]
\[\geq \frac{d + 1 - j}{d - k} H(W_{1}, l'_{[2:k+1]}|M^{(k)}) + H(l^{(j-1)}|M^{(k)}). \]

Proof: Since \(j \leq k \) by the assumption, we have \(d + 1 - j = i(d + p) + p \) for some integer \(i \geq 1 \) and \(p \in [1 : d - k] \). For any \(q \in [1 : i - 1] \), let
\[\tau_{q} := \{ j + p + q \} \cup \{ d - k \} : j + p + q \in [1 : i - 1] \].
Furthermore, let \(\tau_{0} := \{ 1 \} \cup \{ j + 1 : j + p - 1 \} \). Then we have \(\{ 1 \} \cup \{ j + 1 : j + p - 1 \} = \bigcup_{q=0}^{i-1} \tau_{q} \). Next, let us show by induction that for any \(q \in [1 : i] \), we have
\[qH(W_{1}, l'_{[2:k]}|M^{(k)}) + H(l^{(j)}|M^{(k)}) \]
\[\geq qH(W_{1}, l'_{[2:k+1]}|M^{(k)}) + H(S_{i=0}^{j-(q+1)} \tau_{r,k+1} l'_{2[j]}|M^{(k)}). \]

To prove the base case of \(q = 1 \), note that
\[H(l^{(j)}|M^{(k)}) \overset{a}{=} H(l'_{[2:j+1]}|M^{(k)}) = H(l'_{[2:j+1]}|M^{(k)}) \]
\[= H(S_{i=0}^{j-(q+1)} \tau_{r,k+1} l'_{2[j]}|M^{(k)}) \]
\[\overset{b}{=} H(S_{i=0}^{j-(q+1)} \tau_{r,k+1} l'_{2[j]}|M^{(k)}) \]
\[\overset{b}{=} H(S_{i=0}^{j-(q+1)} \tau_{r,k+1} l'_{2[j]}|M^{(k)}) \]
\[\overset{a}{=} H(W_{1}, l'_{[2:k]}|M^{(k)}) + H(l^{(j)}|M^{(k)}) \]
\[= H(W_{1}, l'_{[2:k]}|M^{(k)}) + H(l^{(j-1)}|M^{(k)}), \]
where (a) follows by swapping \(r \) with \(r + 1 \) for all \(r \in [1 : d] \) and \(d + 1 \) with 1, and (b) follows by swapping \(j + 1 \) with \(k + 1 \). We thus have
\[H(W_{1}, l'_{[2:k]}|M^{(k)}) + H(l^{(j)}|M^{(k)}) \]
\[= H(W_{1}, l'_{[2:k]}|M^{(k)}) + H(S_{i=0}^{j-(q+1)} \tau_{r,k+1} l'_{2[j]}|M^{(k)}) \]
\[\overset{a}{=} H(W_{1}, l'_{[2:k]}|M^{(k)}) + H(S_{i=0}^{j-(q+1)} \tau_{r,k+1} l'_{2[j]}|M^{(k)}) \]
\[\overset{b}{=} H(W_{1}, l'_{[2:k]}|M^{(k)}) + H(S_{i=0}^{j-(q+1)} \tau_{r,k+1} l'_{2[j]}|M^{(k)}) \]
\[\overset{c}{=} H(W_{1}, l'_{[2:k+1]}|M^{(k)}) + H(S_{i=0}^{j-(q+1)} \tau_{r,k+1} l'_{2[j]}|M^{(k)}) \]

...
Consider a one-to-one swapping between the elements of $\tau_q - q$ and $[k + 2 : d + 1]$, and note that $l'_{[2:j]}$ is invariant under such swaps. We have

$$
H(S_{j=0}^{l-1} \tau_{r, k+1} - 1, l'_{[2:j]} | M(k)) + H(W_1, l_{[2:k]} | M(k))
$$

$$
= H(S_{j=0}^{l-1} \tau_{r, k+1} - 1, l'_{[2:j]} | M(k)) + H(S_{j=0}^{l-1} \tau_{r, k+1} - 1, l'_{[2:j]} | M(k)) +
$$

$$
H(W_1, l_{[2:k]} | M(k)).
$$

where (a) and (c) follow from the facts that $\{S_1, 2, \ldots, S_1, k+1\}$ is a function of W_1 and that $S_j + 1, k+1$ is a function of $W_{[j+1:k]}$ which is in turn a function of $\{W_1, l'_{[2:k]}\}$, and (b) is due to the submodularity of entropy. This completes the proof of the base case of $q = 1$.

Assume that (24) holds for some $q \in \{1 : i - 1\}$. We have

\[
(q + 1) H(W_1, l_{[2:k]} | M(k)) + H(l'_{[j]} | M(k))
\]

\[
\geq q H(W_1, l_{[2:k]} | M(k)) + H(S_{j=0}^{l-1} \tau_{r, k+1} - 1, l'_{[2:j]} | M(k)) +
\]

\[
H(l'_{[j]} | M(k))
\]

(25)

which completes the induction and hence the proof of (23).

Set $q = i$ in (23). We have

$$
i H(W_1, l_{[2:k]} | M(k)) + H(l_{[j]} | M(k))
$$

$$
\geq i H(W_1, l_{[2:k]} | M(k)) + H(S_{\tau_{r, k+1} - 1, l'_{[2:j]} | M(k)}
$$

(6)

where (a) follows from the chain rule for conditional entropy, and (b) follows by swapping r with $r + 1$ for $r \in [1 : d]$ and $d + 1$ with 1. Consider a one-to-one swapping between the elements of $\tau_j = \{1 \cup j + 1 : j + p - 1\}$ and $\tau := [k + 2 : k + p + 1]$, and note $l'_{[2:j]}$ is invariant under such swaps.

We can write

\[
H(S_{\tau_{r, k+1} - 1, l'_{[2:j]} | M(k}})
\]

\[
\geq \frac{p}{d - k} H(l_{[k+1]} | M(k))
\]

(7)

which is equivalent to (22) by noting that

\[
i + \frac{p}{d - k} = \frac{i(d - k) + p}{d - k} = \frac{d + 1 - j}{d - k}
\]

This completes the proof of Lemma 5.

Proposition 2 can now be readily proved with Lemma 5 as follows. Fix $k \in [1, d - 1]$, add the inequalities (23) for $j \in [1 : k]$, and cancel the common term $\sum_{k=1}^{j} H(l_{[j]} | M(k))$ on both sides. We have

\[
\sum_{j=1}^{k} (d + 1 - j) H(W_1, l_{[2:k]} | M(k)) + H(l_{[k]} | M(k))
\]

\[
\geq \frac{d}{d - k} H(W_1, l_{[2:k]} | M(k)) + H(l_{[0]} | M(k))
\]

which is equivalent to (5) by the fact that $H(l_{[0]} | M(k)) = 0$. This completes the proof of Proposition 2.

References

[1] C. Tian and T. Liu. “Multilevel diversity coding with regeneration.” Preprint. [Online] http://arxiv.org/abs/1503.00013

[2] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. Wainwright, and K. Ramchandran, “Network coding for distributed storage systems,” IEEE Transaction on Information Theory, vol. 56, no. 9, pp. 4539–4551, Sep. 2010.

[3] R. K. Vinaiky, N. B. Shah, and P. V. Kumar, “Optimal exact-regenerating codes for distributed storage at the MSR and MBR points via a product-matrix construction,” IEEE Transaction on Information Theory, vol. 57, no. 8, pp. 5227–5239, Aug. 2011.

[4] R. J. Roche, R. W. Yeung, and K. P. Hau, “Symmetrical multilevel diversity coding.” IEEE Transaction on Information Theory, vol. 43, no. 5, pp. 1059–1064, May 1997.

[5] J. M. Duursma, “Outer bounds for exact repair codes,” Preprint. [Online] http://arxiv.org/abs/1405.4855

[6] C. Tian, “Characterizing the rate region of the (4, 3, 3) exact-repair regenerating codes,” IEEE Journal on Selected Area in Communications, vol. 32, no. 5, pp. 967–975, May 2014.
[7] T. S. Han, “Nonnegative entropy measures of multivariate symmetric correlations,” *Inf. Control*, vol. 36, no. 2, pp. 133–156, Feb. 1978.