On D_ℓ-extensions of odd prime degree ℓ

Henri Cohen and Frank Thorne

Abstract

Generalizing the work of Morra and the authors, we give explicit formulas for the Dirichlet series generating function of D_ℓ-extensions of odd prime degree ℓ with given quadratic resolvent. Over the course of our proof, we explain connections between our formulas and the Ankeny–Artin–Chowla conjecture, the Ohno–Nakagawa relation for binary cubic forms, and other topics. We also obtain improved upper bounds for the number of such extensions (over \mathbb{Q}) of bounded discriminant.

1. Introduction

The theory of cubic number fields is, in many respects, well understood. One reason for this is that the Delone–Faddeev \cite{17} and Davenport–Heilbronn \cite{16} correspondences parametrize cubic fields in terms of binary cubic forms, up to equivalence by an action of $GL_2(\mathbb{Z})$, and satisfying certain local conditions. Therefore questions about counting cubic fields can be reduced to questions about counting lattice points, and this idea has led to asymptotic density theorems as well as other interesting results.

In more recent work, Bhargava \cite{3, 4} obtained similar parametrization and counting results for S_4-quartic and S_5-quintic fields. However, generalizing this work to number fields of arbitrary degree ℓ seems difficult, if not impossible: the parametrizations of S_3-cubic, S_4-quartic, and S_5-quintic fields are all by prehomogeneous vector spaces, and for higher degree fields there is no apparent prehomogeneous vector space for which one could hope to establish a parametrization theorem.

In \cite{13, 15}, Morra and the authors contributed to the cubic theory by giving explicit formulas for the Dirichlet generating series of discriminants of cubic fields having given resolvent. For example, we have the explicit formula

$$
\Phi_{-107}(s) := \sum_{[K:\mathbb{Q}] = 3 \atop \text{Disc}(K) = -107n^2} n^{-s} = -\frac{1}{2} + \frac{1}{2} \left(1 + \frac{2}{3^{2s}}\right) \prod_{(\frac{221}{p}) = 1} \left(1 + \frac{2}{p^s}\right)
\prod_p \left(1 + \frac{\omega(p)}{p^s}\right),
$$

where $\omega(p)$ is equal to 2 or -1 if p is totally split or inert in the unique cubic field of discriminant 321, determined by the polynomial $x^3 - x^2 - 4x + 1$, and $\omega(p) = 0$ otherwise. Similar formulas hold when -107 is replaced by any other fundamental discriminant D; the formula has one main term, and one additional Euler product for each cubic field of discriminant $-D/3$, $-3D$, and $-27D$.

The proofs involve class field theory and Kummer theory; see also work of Bhargava and Shnidman \cite{5} obtaining related results through a study of binary cubic forms.

Received 26 January 2017; revised 26 February 2020; published online 4 July 2020.

2010 Mathematics Subject Classification 11R21 (primary), 11R29, 11R45 (secondary).

This material is based on work supported by the National Science Foundation under Grant No. DMS-1201330, (F.T.), by the National Security Agency under a Young Investigator Grant (No. H98230-16-1-0051, F.T.), and by the Simons Foundation under a Simons Collaboration Grant (No. 586594).

© 2020 The Authors. The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence.
The object of the present paper is to generalize the theory developed in [13, 15] to degree \(\ell \) extensions having Galois group \(D_\ell \), for any odd prime \(\ell \). (See also [9, 10, 12, 28, 38], among other references, for further related results.)

Let \(L/k \) be an extension\(^\dagger\) of odd prime degree \(\ell \), let \(N = \bar{L} \) be a Galois closure of \(L \), and assume that \(\text{Gal}(N/k) \cong D_\ell \), the dihedral group with \(2\ell \) elements. We will refer to any such \(L \) as a \(D_\ell \)-extension of \(k \), or a \(D_\ell \)-field when \(k = \mathbb{Q} \). Below we also refer to \(F_\ell \)-extensions with the analogous meaning.

There exists a unique quadratic subextension \(K/k \) of \(N/k \), called the quadratic resolvent of \(L \), with \(\text{Gal}(N/K) \cong C_\ell \), and a nontrivial theorem of Martinet involving the computation of higher ramification groups (see [7, Propositions 10.1.25 and 10.1.28]) tells us that its conductor \(f(N/K) \) is of the form \(f(N/K) = f(L)\mathbb{Z}_K \), where \(f(L) \) is an ideal of the base field \(k \), and that the relative discriminant \(\mathfrak{d}(L/k) \) of \(L/k \) is given by the formula \(\mathfrak{d}(L/k) = \mathfrak{d}(K/k)(\ell-1)/\ell f(L)^{\ell-1} \).

We study the set \(\mathcal{F}_\ell(K) \) of \(D_\ell \)-extensions of \(k \) whose quadratic resolvent field is isomorphic to \(K \). (Here and in the sequel, extensions are always considered up to \(k \)-isomorphism.) More precisely, we want to compute as explicitly as possible the Dirichlet series

\[
\Phi_\ell(K, s) = \frac{1}{\ell - 1} + \sum_{L \in \mathcal{F}_\ell(K)} \frac{1}{\mathcal{N}(f(L))^s},
\]

where \(\mathcal{N}(f(L)) = N_{k/\mathbb{Q}}(f(L)) \) is the absolute norm of the ideal \(f(L) \).

Our most general result is Theorem 6.1, which we specialize to a more explicit version in the case \(k = \mathbb{Q} \) as Theorem 7.3. This should be considered as the most important result of this paper. In Section 9, we prove that our formulas can always be brought into a form similar to (1.1). For example, we have

\[
\Phi_\ell(\mathbb{Q}(\sqrt{5}), s) = \frac{1}{20} \left(1 + \frac{4}{5^s} \right) \prod_{p \equiv 1 \,(\text{mod} \, 5)} \left(1 + \frac{4}{p^s} \right) + \frac{1}{5} \left(1 - \frac{1}{5^s} \right) \prod_{p \equiv 1 \,(\text{mod} \, 5)} \left(1 + \frac{\omega_E(p)}{p^s} \right),
\]

where \(E \) is the field defined by \(x^5 + 5x^3 + 5x - 1 = 0 \) of discriminant \(5^7 \), and \(\omega_E(p) = -1, 4, \) or 0 according to whether \(p \) is inert, totally split, or other in \(E \).

In a companion paper, joint with Rubinstein–Salzedo [14], we investigate a curious twist to this story. Taking the \(n = 1 \) term of formula (1.1) (or, rather, its generalization to any \(D \)) yields the nontrivial identity

\[
N_3(D^*) + N_3(-27D) = \begin{cases} N_3(D) & \text{if } D < 0, \\ 3N_3(D) + 1 & \text{if } D > 0, \end{cases}
\]

for any fundamental discriminant \(D \), where \(D^* = -3D \) if \(3 \nmid D \) and \(D^* = -D/3 \) if \(3 \mid D \). (Here \(N_3(k) \) is the number of cubic fields of discriminant \(k \). Note that there are no cubic fields of discriminant \(-3D \) if \(3 \mid D \).) This identity was previously conjectured by Ohno [33] and then proved by Nakagawa [31], as a consequence of an ‘extra functional equation’ for the Shintani zeta function associated to the lattice of binary cubic forms. Our generalization of (1.1) thus subsumes the Ohno–Nakagawa theorem (1.2).

Our proof there used the Ohno–Nakagawa theorem, but in [14] we further develop some of the techniques of this paper (in particular, of Section 8) to give another proof of (1.2) and give a generalization to any prime \(\ell \geq 3 \). For \(\ell > 3 \), our work relates counts of \(D_\ell \)-fields (the right-hand side of (1.2)) to counts of \(F_\ell \)-fields \(\ell \) (the left-hand side), where \(F_\ell \) is the Frobenius group of

\[^\dagger\text{A remark on our choice of notation: Readers familiar with [15] or [13] should note that by and large we adopt the notation of [15] and the progression of [13]; the reader knowledgeable with the latter paper can immediately see the similarities and differences. (See also Morra’s thesis [30] for a version of [13] with more detailed proofs.) What was called } (K_2, K, L, K_2') \text{ in [13] will now be called } (K, L, K_2, K') \text{ (so that the main number field in which most computations take place is } K_2), \text{ and the field names } (k, k_2, N, N_2) \text{ stay unchanged. The primitive cube root of unity } \zeta_3 \text{ is replaced by a primitive } \ell \text{th root of unity } \zeta_{\ell}.\]
\[^\dagger\text{The series also depends on the base field } k, \text{ which we do not include explicitly in the notation.}\]
order \(\ell(\ell - 1)\), whose definition is recalled in Section 9. (Note that \(S_3 = D_3 = F_3\).) The result involves a technical (Galois theoretic) condition on the \(F_\ell\)-fields which is not automatically satisfied for \(\ell > 3\), and we defer to [14] for a complete statement of the results. It is, however, important to note that, as for the cubic case, even the case \(n = 1\) of our Dirichlet series identities gives interesting results: for instance, for any negative fundamental discriminant \(-D\) coprime to 5, we have

\[
N_{F_5}((-1)^05^3D^2) + N_{F_5}((-1)^05^5D^2) + N_{F_5}((-1)^05^7D^2) = N_{D_5}((-D)^2) + N_{D_5}((-5D)^2),
\]

and if instead \(D > 1\), then we have

\[
N_{F_5}((-1)^25^3D^2) + N_{F_5}((-1)^25^5D^2) + N_{F_5}((-1)^25^7D^2) = 5(N_{D_5}(D^2) + N_{D_5}((5D)^2)) + 2.
\]

(Here, \(N_G((-1)^rX)\) denotes the number of quintic fields with discriminant exactly equal to \(X\), with \(r\) pairs of complex embeddings, and whose Galois closure has Galois group \(G\) over \(\mathbb{Q}\).)

If we want an identity counting \(D_5\)-fields of discriminant \((\pm D)^2\) or \((\pm 5D)^2\) alone, then the left side of (1.3) and (1.4) becomes more complicated, and involves the Galois condition mentioned above. The relevance to the present paper is that it is precisely those \(F_\ell\)-fields counted by this identity that yield Euler products. We describe this in more detail in Section 9.

There is one further curiosity that emerges in our work: a connection to a well-known conjecture attributed to\(^1\) Ankeny, Artin, and Chowla [1] which states that if \(\ell \equiv 1 \pmod{4}\) is prime and \(\epsilon = (a + b\sqrt{\ell})/2\) is the fundamental unit of \(\mathbb{Q}(\sqrt{\ell})\), then \(\ell \nmid b\). As we will see, the truth or falsity of the conjecture will be reflected in our explicit formula for \(D_\ell\)-extensions having quadratic resolvent \(\mathbb{Q}(\sqrt{\ell})\). Note that the conjecture is known to be true for \(\ell < 2 \cdot 10^{11}\) (see [35]), but on heuristic grounds it should be false: if we assume independence of the divisibility by \(\ell\), the number of counterexamples for \(\ell \leq X\) should be around \(\log(\log(X))\)/2; in addition, numerous counterexamples can easily be found for ‘fake’ quadratic fields, see, for example, [6, 32].

Separately, we obtain improved bounds for the number \(N_\ell(D_\ell, X)\) of \(D_\ell\)-fields \(L\) with \(|\text{Disc}(L)| < X\):

Theorem 1.1. We have

\[
N_\ell(D_\ell, X) \ll_{\ell, \epsilon} X^{\frac{2}{\ell-1}} - X^{\frac{2}{\ell-1} - \epsilon}.
\]

This improves on Klüners’s [25] bound of \(O(X^{\frac{2}{\ell-1}} + \epsilon)\). The proof (in Section 11) is independent of the rest of the paper, and is an immediate consequence of applying Ellenberg, Pierce, and Wood’s [19] recent bounds on \(\ell\)-torsion in quadratic fields within Klüners’s method.

Our work follows several other papers studying dihedral field extensions. Much of the theory (such as Martinet’s theorem) is described in the first author’s book [7]. Another reference is Jensen and Yui [22], who studied \(D_\ell\)-extensions from multiple points of view. They proved that if \(\ell \equiv 1 \pmod{4}\) is a regular prime, then no \(D_\ell\)-extension of \(\mathbb{Q}\) has discriminant a power of \(\ell\), and we will recover and strengthen their result. Jensen and Yui also studied the problem of constructing \(D_\ell\)-extensions, and gave several examples.

Another relevant work is the paper of Louboutin, Park, and Lefeuvre [27], who developed a general class field theory method to construct real \(D_\ell\)-extensions. These problems have also been addressed in the function field setting by Weir, Scheidler, and Howe [37].

Since some of the proofs are quite technical, we give a detailed overview of the contents of this paper.

\(^1\) Ankeny, Artin, and Chowla did not conjecture this in [1], although they did explicitly ask if it is true. Mordell [29] attributed the conjecture to them in follow-up work, where he proved the conjecture for regular primes.
We begin in Section 2 with a characterization of the fields $L \in \mathcal{F}_\ell(K)$ using Galois and Kummer theory. These fields are in bijection with elements of $K_z := K(\zeta)$ modulo ℓth powers, satisfying certain restrictions which guarantee that the associated Kummer extensions of K_z descend to degree ℓ extensions of k. Writing such an extension as $K_z(\sqrt{\alpha})$ with $\alpha \in K_z = \prod_{0 \leq i \leq \ell - 2} a_i^q q^i$, we further characterize these fields in terms of conditions on the a_i and an associated member π of a Selmer group associated to K_z.

These conditions are described in terms of the group ring $\mathbb{F}_q[G]$, where $G = \text{Gal}(K_z/k)$. Groups such as K_z^*/K_z^{ℓ}, $\text{Cl}(K_z)[\ell]$, and the Selmer group are naturally $\mathbb{F}_q[G]$-modules, and our conditions correspond to being annihilated by certain elements of $\mathbb{F}_q[G]$ (see Definition 2.2).

In Section 2, we also study the subfields of K_z/k, with particular attention to a degree $\ell - 1$ extension K'/k called the mirror field of K; we will see that much of the arithmetic of prime splitting in various extensions can be conveniently expressed in terms of K'.

The reader who is willing to take our technical computations for granted is advised to look only at the necessary definitions in the intermediate sections and to skip directly to Section 6.

In Section 3, we give an expression for the ‘conductor’ $f(L)$ in terms of the quantities a_i and π defined in Section 2. The main result, Theorem 3.8, was proved by the first author, Diaz y Diaz, and Olivier in [9] in their study of cyclic extensions of degree ℓ. Unfortunately, the results of that section are rather complicated to state, and oblige us to introduce a fair amount of notation.

In Section 4, we begin to study the fundamental Dirichlet series using the results proved in Section 3, and in Section 5 we study the size of a certain Selmer group appearing in our formulas. The latter section is heavily algebraic and again appeals heavily to the results of [9].

In Section 6, we put everything together to obtain our most general formula (Theorem 6.1) for $\Phi_\ell(K, s)$, a generalization of the main theorem of [13]. Subsequently, we work to make everything more explicit, for the most part specialized to the case $k = \mathbb{Q}$. In Section 7, we compute various quantities appearing in Theorem 6.1 for $k = \mathbb{Q}$, leading to Theorem 7.3, a more explicit specialized version of Theorem 6.1. We also obtain asymptotics for counting D_ℓ-extensions of \mathbb{Q}, proved in Corollary 7.5.

The formula of Theorem 7.3 involves a somewhat complicated group G_b, and in Section 8 we further study its size. The main result is the Kummer pairing of Theorem 8.2, familiar from (for example) the proof of the Scholz reflection principle, and fairly simple to prove. One important input (Proposition 8.1) is a very nice relationship, due essentially to Kummer and Hecke, between the conductor of Kummer extensions of K_z, and congruence properties of the ℓth roots used to generate them.

In Section 8, we also explore the connection to the conjecture of Ankeny, Artin, and Chowla mentioned above. The truth or falsity of this conjecture will then be reflected in our explicit formula (Proposition 9.2) for $\Phi_\ell(\mathbb{Q}(\sqrt{\ell}), s)$, and in Corollary 9.3 we will give a proof of an observation of Lemmermeyer, that the existence of D_ℓ-fields ramified only at ℓ is equivalent to the falsity of the Ankeny–Artin–Chowla (AAC) conjecture.

In Section 9, we further study the characters of the group G_b, and prove (in Theorem 9.1) that each such character corresponds to an F_ℓ-extension E/k, such that the values of χ correspond to the splitting types of primes in E. This was done for $\ell = 3$ and $k = \mathbb{Q}$ in [15], but in Theorem 9.1 we do not require $k = \mathbb{Q}$.

It is here that the connection to the Ohno–Nakagawa theorem emerges; for $\ell = 3$ and $k = \mathbb{Q}$, we established in [15] (using Ohno–Nakagawa) that the set of characters of G_b corresponds precisely to a suitable and easily described set of fields E. For $\ell > 3$, we require the generalization of Ohno–Nakagawa established in [14], and so in Section 9 we say a bit more about the results of [14] and explain their relevance. We also prove an explicit formula valid for the ‘special case’ $K = \mathbb{Q}(\sqrt{\ell})$.

We conclude in Section 10 with a brief discussion of explicit formulas in cases where $k = \mathbb{Q}$, and in Section 11 with a proof of 1.1.
2. Galois and Kummer theory

2.1. Galois and Kummer theory, and the group ring

We will use the results of [9], but before stating them we need some notation. We denote by \(\zeta_\ell \) a primitive \(\ell \)-th root of unity, we set \(K_z = K(\zeta_\ell) \), \(k_z = k(\zeta_\ell) \), \(N_z = N(\zeta_\ell) \), and we denote by \(\tau, \tau_2 \), and \(\sigma \) generators of \(k_z/k \), \(K/k \), and \(N/K \), respectively, with \(\tau^{\ell-1} = \tau_2^2 = \sigma^\ell = 1 \).

The number \(\zeta_\ell \) could belong to \(K \), or to \(k \), or generate a nontrivial extension of \(K \) of degree dividing \(\ell - 1 \). These essentially correspond, respectively, to cases (3), (4), and (5) of [13] (cases (1) and (2) correspond to cyclic extensions of \(k \) of degree \(\ell \), which have been treated in [9]).

Cases (3) and (4) are considerably simpler since we do not have to adjoin \(\zeta_\ell \) to \(K \) to apply Kummer theory.

We are particularly interested in the case \(k = \mathbb{Q} \), in which case either \([K_z : K] = \ell - 1 \) or \([K_z : K] = (\ell - 1)/2 \), that is, \(K \subset k_z \), which is equivalent to \(K = \mathbb{Q}(\sqrt{\ell^*}) \) with \(\ell^* = (-1)^{(\ell-1)/2} \ell \). To balance generality and simplicity, we assume that \(k \) is any number field for which \([k_z : k] = \ell - 1 \), and \(K \subset k_z \) and \([K_z : K] = (\ell - 1)/2 \), which we will call the special case.

Note that if \(\ell = 3 \), this means that \(\zeta_\ell \in K \), so we are in case (4), but there is no reason to treat this case separately. It should not be particularly difficult to extend our results to any base field \(k \), as was done in [9].

We set the following notation.

- We let \(g \) be a primitive root modulo \(\ell \), and also denote by \(g \) its image in \(\mathbb{F}_\ell^* = (\mathbb{Z}/\ell\mathbb{Z})^* \).
- We let \(G = \text{Gal}(K_z/k) \). Thus, in the general case \(G \cong (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/\ell\mathbb{Z})^* \), while in the special case \(G = \text{Gal}(k_z/k) \cong (\mathbb{Z}/\ell\mathbb{Z})^* \). We denote by \(\tau \) the unique element of \(\text{Gal}(k_z/k) \) such that \(\tau(\zeta_\ell) = \zeta_\ell^g \), so that \(\tau \) generates \(\text{Gal}(k_z/k) \), and we again denote by \(\tau \) its lift to \(K_z \) or \(N_z \).

The composite extension \(N_z = NK_z \) is Galois over \(k \), and \(\sigma \) and \(\tau \) naturally lift to \(N_z \). In the general case, \(\tau \) and \(\sigma \) commute; in the special case, \(\tau_2 \) is a generator of \(\text{Gal}(K_z/K) \) and \(\tau_2 \) can be taken to be any odd power of \(\tau \), for instance, \(\tau_2 \) itself, so that \(\tau \sigma \tau^{-1} = \sigma^{-1} \).

This information is summarized in the two Hasse diagrams below, depicting the general and special cases, respectively.
In the above p, q, p_k, p_z indicate our typical notation (to be used later) for primes of k, K, k_z, K_z, respectively. We write ℓL to indicate the existence of ℓ fields isomorphic to L.

Lemma 2.1. For $a \mod (\ell - 1)$ and $b \mod 2$, set

$$e_a = \frac{1}{\ell - 1} \sum_{j \mod (\ell - 1)} g^{a_j} \tau^{-j} \in \mathbb{F}_\ell[G]$$

and, in the general case, $e_{2,b} = \frac{1}{2} \sum_{j \mod 2} (-1)^{kj} \tau^{-j}$.

The e_a form a complete set of orthogonal idempotents in $\mathbb{F}_\ell[G]$, as do the $e_{2,b}$ in the general case, so in the general case any $\mathbb{F}_\ell[G]$-module M has a canonical decomposition $M = \sum_{a \mod (\ell - 1), b \mod 2} e_a e_{2,b} M$, while in the special case we simply have $M = \sum_{a \mod (\ell - 1)} e_a M$.

Proof. Immediate and classical; see, for example, [18, Section 7.3].

We set the following definitions:

Definition 2.2. In the group ring $\mathbb{F}_\ell[G]$, we set

$$T = \begin{cases} \{\tau_2 + 1, \tau - g\} & \text{in the general case,} \\ \{\tau + g\} & \text{in the special case.} \end{cases}$$

1. We define $\iota(\tau_2 + 1) = e_{2,1} = \frac{1}{2}(1 - \tau_2)$, and for any a we define $\iota(\tau - g^a) = e_a$, so that, for instance, $\iota(\tau + g) = e_{(\ell + 1)/2}$.
2. For any $\mathbb{F}_\ell[G]$ module M, we denote by $M[T]$ the subgroup annihilated by all the elements of T.

Lemma 2.3. Let M be an $\mathbb{F}_\ell[G]$-module.

1. For any $t \in T$, we have $t \circ \iota(t) = \iota(t) \circ t = 0$, where the action of t and $\iota(t)$ is on M.
2. For all $t \in T$, we have $M[t] = \iota(t) M$ and $M[\iota(t)] = t(M)$.
3. If $x \in M[t]$, then $\iota(t)(x) = x$.

Proof. This follows from Lemma 2.1. In particular, $\tau e_a = g^a e_a$, so that the image of $\tau - g^a$ is $\sum_{b \neq a} e_b M$. \hfill \Box

2.2. The bijections

Proposition 2.4. (1) There exists a bijection between elements $L \in \mathcal{F}_\ell(K)$ and classes of elements $\overline{\pi} \in (K_z^*/K_z^\ell)[T]$ such that $\overline{\pi} \neq \overline{1}$, modulo the equivalence relation identifying $\overline{\pi}$ with $\overline{\alpha^j}$ for all j with $1 \leq j \leq \ell - 1$.

(2) If $\alpha \in K_z^*$ is some representative of $\overline{\pi}$, the extension L/k corresponding to α is the field $K_z(\sqrt[\ell]{\alpha})^G$, that is, the fixed field of $K_z(\sqrt[\ell]{\alpha})$ by a lift of $G = \text{Gal}(K_z/k)$ to $\text{Gal}(K_z(\sqrt[\ell]{\alpha})/k)$.

Proof. First assume $L \in \mathcal{F}_\ell(K)$; since $\zeta_\ell \in K_z$, by Kummer theory cyclic, extensions of degree ℓ of K_z are of the form $N_z = K_z(\sqrt[\ell]{\alpha})$, where $\overline{\alpha} \neq \overline{1}$ is unique in K_z^*/K_z^ℓ modulo the equivalence relation mentioned in the proposition. As N_z determines L up to conjugacy, we must prove that $\overline{\pi}$ is annihilated by T.

Writing $N_z = K_z(\theta)$ with $\theta^\ell = \alpha$, we may assume the generator σ chosen so that $\sigma(\theta) = \zeta_\ell \theta$. Set $\varepsilon = 1$ if we are in the general case, $\varepsilon = -1$ if we are in the special case, so that $\tau \sigma \tau^{-1} = \sigma^\varepsilon$. We have $\tau(\zeta_\ell) = \zeta_\ell^\varepsilon$, so that

$$\sigma(\tau(\theta)) = \tau(\sigma^\varepsilon(\theta)) = \tau(\zeta_\ell^\varepsilon) \tau(\theta) = \zeta_\ell^\varepsilon \tau(\theta),$$

where $\varepsilon = 1$ if we are in the general case, $\varepsilon = -1$ if we are in the special case, so that $\tau \sigma \tau^{-1} = \sigma^\varepsilon$. We have $\tau(\zeta_\ell) = \zeta_\ell^\varepsilon$, so that

$$\sigma(\tau(\theta)) = \tau(\sigma^\varepsilon(\theta)) = \tau(\zeta_\ell^\varepsilon) \tau(\theta) = \zeta_\ell^\varepsilon \tau(\theta),$$

where $\varepsilon = 1$ if we are in the general case, $\varepsilon = -1$ if we are in the special case.
hence if we set \(\eta = \tau(\theta)/\theta^{\prime\prime} \), we have \(\sigma(\eta) = \zeta_{\ell}^{2g} \tau(\theta)/\xi_{\ell}^{2g} = \eta \). It follows by Galois theory that \(\eta \in K_z \), so that \(\tau(\alpha)/\alpha^{\prime\prime} = \eta^t \in K_z^{*\ell} \), hence that \(\pi \in (K_z^{*\ell}/K_z^{*\ell})[\tau - e] \).

Concerning \(\tau_2 \) (in the general case only), the relation \(\tau_2 \sigma \tau_2^{-1} = \sigma - 1 \) similarly shows that \(\sigma(\tau(\theta)/\theta^{\prime\prime}) = \theta \tau(\theta) \) so that \(\pi \in (K_z^{*\ell}/K_z^{*\ell})[\tau_2 + 1] \), in other words \(\pi \in (K_z^{*\ell}/K_z^{*\ell})[T] \) as desired.

To conclude, we must prove that each \(\pi \in (K_z^{*\ell}/K_z^{*\ell})[T] \) determines such an \(L \in \mathcal{F}_\ell(K) \). Again write \(\theta = \sqrt[\ell]{\alpha} \) with \(\sigma(\theta) = \zeta_{\ell} \theta \), where \(\eta_2 = \alpha \tau_2(\alpha) \). Define an automorphism \(\tau \) of \(N_z \), agreeing with \(\eta \) on \(K_z \), by writing \(\tau(\theta) = \eta \theta^g \) (\(\pm \) as before), where \(\eta^\ell = \tau(\alpha)/\alpha^{\prime\prime} \in K_z^{*\ell} \), so that \(\eta \in K_z \) is well defined up to an \(\ell \)th root of unity, and we make an arbitrary such choice.

Computations show that \(\tau \sigma^\ell(\theta) = \sigma \tau(\theta) \) and that \(\tau^{-1}(\theta) = \theta \) times a root of unity. Each \(\tau \sigma^i \) is also a lift of \(\tau \).

In the general case, we check that there is a unique such lift, which we denote simply by \(\tau \), for which \(\tau(t^{-1}(\theta)) = \theta \). Write \(\tau_2(\theta) = \eta_2/\theta \) with \(\eta_2 = \alpha \tau_2(\alpha) \), where \(\eta_2 \in K_z \) and indeed \(k_z \). We check that \(\tau_2^2(\theta) = \theta \) and \(\tau_2 \sigma(\theta) = \sigma^{-1} \tau_2 \), so that by rewriting \(\tau_2 \) as \(\tau_2 \) we see that \(N_z/k \) is Galois with Galois group \(C_{\ell - 1} \times D_1 \), as required. Here the choice of lift \(\tau_2 \) is not uniquely determined: \(D_1 \) has \(\ell \) elements of order \(2 \), corresponding to the \(\ell \) conjugate subextensions \(L/k \) of degree \(\ell \).

In the special case, rewriting \(\tau \) as \(\tau \) we now have \(\tau^{\ell - 1} = 1 \) regardless of the choice of lift: we have \(\tau^{\ell - 1}(\theta) = \zeta_{\ell}^i \theta \) for some integer \(i \), so that unless \(i \equiv 0 \) (mod \(\ell \)), \(\tau \) is of order \(\ell(\ell - 1) \).

We already know that \(N_z/k \) is Galois, as the \(\tau \sigma^i \) are distinct automorphisms of \(N_z/k \) for \(0 \leq \tau < \ell - 1 \), \(0 \leq \sigma < \ell \). We have already proved that \(\text{Gal}(N_z/k) \) is nonabelian, and in particular noncyclic, hence \(i = 0 \). So \(\tau^{\ell - 1} = 1 \) and \(\text{Gal}(N_z/k) \) has the required presentation. \(\square \)

Recall from [7] the following definition:

Definition 2.5. We denote by \(V_\ell(K_z) \) the group of \((\ell\text{-})\text{virtual units} \) of \(K_z \), in other words the group of \(u \in K_z^{*} \) such that \(u\mathbb{Z}_{K_z} = q^\ell \) for some ideal \(q \) of \(K_z \), or equivalently such that \(\ell \mid v_{p_z}(u) \) for any prime ideal \(p_z \) of \(K_z \). We define the \((\ell\text{-})\text{Selmer group} \) \(S_\ell(K_z) \) of \(K_z \) by \(S_\ell(K_z) = V_\ell(K_z)/K_z^{*\ell} \).

The following lemma shows in particular that the Selmer group is finite.

Lemma 2.6. We have a split exact sequence of \(\mathcal{F}_\ell[G] \)-modules:

\[
1 \rightarrow \frac{U(K_z)}{U(K_z)^\ell} \rightarrow S_\ell(K_z) \rightarrow \text{Cl}(K_z)[\ell] \rightarrow 1,
\]

where the last nontrivial map sends \(\pi \) to the ideal class of \(q \) such that \(u\mathbb{Z}_{K_z} = q^\ell \).

Proof. Exactness follows from the definitions, and the sequence splits because \(\ell \not| |G| \) (see, for example, [11, Lemma 3.1] for a proof). \(\square \)

From Lemma 2.3 we extract the following technical result.

Lemma 2.7. Given \(t \in T \) and \(\alpha \in K_z^{*} \) such that \(t(\alpha) \) is a virtual unit, we have \(t(\alpha) = \gamma^\ell t(u) \) for some \(\gamma \in K_z^{*} \) and some virtual unit \(u \).

Moreover, if \(\alpha \) is annihilated modulo \(K_z^{*\ell} \) by \(t' \neq t \in T \), we may choose \(u \) to be annihilated by \(t' \) in \(S_\ell(K_z) \).

Proof. Given \(t \) and \(\alpha \), (1) of Lemma 2.3 applied to \(M = K_z^{*}/K_z^{*\ell} \) implies \(t(\alpha)) \in K_z^{*\ell} \). Since \(t(\alpha) \) is a virtual unit, its image \(\overline{t(\alpha)} \) is annihilated by \(t(\beta) \) in the Selmer group. By Lemma 2.3 applied to \(M = S_\ell(K_z) \), we have \(t(\alpha) = t(\beta) \) for some \(\beta \in S_\ell(K_z) \), giving the first
result. For the second, we replace each of the modules M by $M[t']$; since t and t' commute, if $\alpha \in M$ is annihilated by t', so is $t(\alpha)$. □

Proposition 2.8. (1) There exists a bijection between elements $L \in \mathcal{F}_t(K)$ and equivalence classes of ℓ-tuples $(\alpha_0, \ldots, \alpha_{\ell-2}, \overline{\pi})$ modulo the equivalence relation

$$(a_0, \ldots, a_{\ell-2}, \overline{\pi}) \sim (a_{-1}, \ldots, a_{\ell-2-i}, w^{ij})$$

for all i (with the indices of the ideals a considered modulo $\ell - 1$), where the a_i and π are as follows.

(a) The a_i are coprime integral squarefree ideals of K_z such that if we set $a = \prod_{0 \leq i \leq \ell-2} a_i^{q_i}$, then the ideal class of a belongs to $\text{Cl}(K_z)^\ell$, and $\overline{\pi} \in (I(K_z)/I(K_z)^\ell)[T]$, where as usual $I(K_z)$ denotes the group of (nonzero) fractional ideals of K_z.

(b) $\overline{\pi} \in S_t(K_z)[T]$, and in addition $\overline{\pi} \neq 1$ when $a_i = \mathbb{Z}_{K_z}$ for all i.

(2) Given $(a_0, \ldots, a_{\ell-2})$, a, and $\overline{\pi}$ as in (a), the field $L \in \mathcal{F}_t(K)$ is determined as follows: There exist an ideal \mathfrak{q}_0 and an element $\alpha_0 \in K_z$ such that $a \mathfrak{q}_0 = \alpha_0 \mathbb{Z}_{K_z}$, with $\overline{\mathfrak{q}_0} \in (K_z^*/K_z^\ell)[T]$. Then L is any of the ℓ conjugate degree ℓ subextensions of $N_z = K_z(\sqrt[\ell]{\alpha_0 u})$, where u is an arbitrary lift of $\overline{\pi}$.

Proof. Given L, associate $N_z = K_z(\sqrt[\ell]{\alpha})$ as in Proposition 2.4. We may write uniquely $\alpha \mathbb{Z}_{K_z} = \prod_{0 \leq i \leq \ell-2} a_i^{q_i} \mathfrak{q}_i$, where the a_i are coprime integral squarefree ideals of K_z, and they must satisfy the conditions of (a).

Each \mathfrak{q}_i which thus occurs satisfies $a \mathfrak{q}_i = \alpha_0 \mathbb{Z}_{K_z}$ for some α_0 with $\overline{\alpha_0} \in (K_z^*/K_z^\ell)[T]$, and for each a we arbitrarily associate such an α_0. Given $a \mathfrak{q}_i = \alpha \mathbb{Z}_{K_z}$, $u = \alpha/\alpha_0$ is a virtual unit; writing $\overline{\mathfrak{q}_i}$ for its class in $S_t(K_z)$, $\overline{\pi}$ is annihilated by T because both $\overline{\pi}$ and $\overline{\mathfrak{q}_i}$ are.

This establishes the bijection, and we conclude by observing the following.

- The elements α and β give equivalent extensions if and only if $\beta = \alpha^{q_i} \gamma^f$ for some element γ and some i modulo $\ell - 1$, and then if $\alpha \mathbb{Z}_{K_z} = \prod_{i} a_i^{q_i} \mathfrak{q}_i$ and $\alpha = \alpha_0 u$, we have on the one hand $\beta \mathbb{Z}_{K_z} = \prod_{i} a_i^{q_i} \mathfrak{q}_i$ for some ideal \mathfrak{q}_i, so the ideals a_i are permuted cyclically, and on the other hand $\beta = (\alpha_0 u)^{q_i} \gamma^f = \alpha_0^{q_i} u^{q_i} \gamma^f$, so $\overline{\pi}$ is changed into w^{ij}, giving the equivalence described in (1).

- The only fixed point of the transformation $(a_0, \ldots, a_{\ell-2}, \overline{\pi}) \mapsto (a_{\ell-2}, a_0, \ldots, a_{\ell-3}, w^{ij})$ is obtained with all the a_i equal and $\overline{\pi} = w^{ij}$, but since the a_i are pairwise coprime, this means that they are all equal to \mathbb{Z}_{K_z}, and $\overline{\pi} = w^{ij}$ for all i, and so $\overline{\pi} = 1$.

Remark 2.9. Note that condition (a) implies $\overline{\alpha} \in (\text{Cl}(K_z)/\text{Cl}(K_z)^\ell)[T]$, and for any modulus m coprime to a also that $\overline{\alpha} \in (\text{Cl}_m(K_z)/\text{Cl}_m(K_z)^\ell)[T]$.

Lemma 2.10. Keep the above notation, and in particular recall that $a = \prod_{0 \leq i \leq \ell-2} a_i^{q_i}$. The condition $\overline{\alpha} \in (I(K_z)/I(K_z)^\ell)[T]$ is equivalent to the following.

(1) In the general case, $\tau(\alpha_i) = a_{i-1}$ (equivalently, $a_i = \tau^{-1}(\alpha_0)$, and $\tau^{(\ell-1)/2}(\alpha_0) = \tau_2(\alpha_0)$.

(2) In the special case, $\tau(\alpha_i) = a_{i+(\ell-3)/2}$, so that $a_{2i} = \tau^{-2i}(\alpha_0)$ and $a_{2i+1} = \tau^{-2i}(\alpha_1)$, with the following conditions on (a_0, a_1).

- If $\ell \equiv 1 \pmod{4}$, then $a_1 = \tau^{(\ell-3)/2}(\alpha_0)$, or equivalently $\alpha_0 = \tau^{(\ell+1)/2}(\alpha_1)$.

- If $\ell \equiv 3 \pmod{4}$, then $\tau^{(\ell-1)/2}(\alpha_0) = \alpha_0$ and $\tau^{(\ell-1)/2}(\alpha_1) = \alpha_1$.

Proof. Since $\tau(\alpha) = \prod_{i} \tau(\alpha_i)^{q_i}$ and the $\tau(\alpha_i)$ are integral, squarefree, and coprime ideals, this is the canonical decomposition of $\tau(\alpha)$ (up to ℓth powers). On the other hand, $\alpha^{q_i} = \prod_{i} a_i^{q_i}$.
Assume first that we are in the general case. Since \(\tau(a)/a^\theta \) is an \(\ell \)th power, by uniqueness of the decomposition we deduce that \(\tau(a_i) = a_i - 1 \). A similar proof using that \(g^{(\ell-1)/2} \equiv -1 \) (mod \(\ell \)) shows that \(\tau_2(a_i) = a_i + (\ell-1)/2 \), and putting everything together proves (1). Assume now that we are in the special case, so that \(\tau(a)/a^{-\theta} \) is an \(\ell \)th power. Since \(-g \equiv g^{(\ell+1)/2} \) (mod \(\ell \)), the same reasoning shows that \(\tau(a_i) = a_i - (\ell+1)/2 = a_i + (\ell-3)/2 \), so in particular \(\tau^2(a_i) = a_i - (\ell+1) = a_i - 2 \), and the other formulas follow immediately.

Definition 2.11. Let \(D \) (respectively, \(D_\ell \)) be the set of all prime ideals \(p \) of \(k \) with \(p \nmid \ell \) (respectively, with \(p \mid \ell \)) such that the prime ideals \(p, \ p_z \), and (in the general case) \(p_k \) of \(K, \ K_z, \) and \(k_z \) above \(p \) satisfy the following conditions.

1. In all cases, \(p \) is totally split in the extension \(K_z/K \).
2. In the general case, \(p_k \) is split in the quadratic extension \(K_z/k_z \).
3. In the special case with \(\ell \equiv 1 \) (mod 4), \(p \) is totally split in the extension \(K_z/k \) (equivalently \(p \) is split in the quadratic extension \(K/k \)).

Note that these conditions are independent of the choices of \(p, \ p_z \), and \(p_k \) above any particular \(p \).

Corollary 2.12. If \(p_z \) is a prime ideal of \(K_z \) dividing some \(a_i \), above a prime \(p \) of \(k \), then \(p \in D \cap D_\ell \).

Proof. Assume first that we are in the general case. Then \(\tau \) acts transitively on the \(a_i \), all of which are squarefree and coprime, and so any \(p \) dividing \(a_i \) must have \(\ell - 1 \) nontrivial conjugates (including \(p \) itself), establishing (1). Similarly, \(\tau_2(a_i) = a_i + (\ell-1)/2 \), and for the same reason the prime ideals of \(K_z \) dividing the \(a_i \) come from prime ideals \(p_k \) of \(k_z \) which split in \(K_z/k_z \).

In the special case, if \(p \) splits as a product of \(h \) conjugate ideals in \(K_z \), the decomposition group \(D(p_z/p) \) has cardinality \(e f = (\ell - 1)/h \) and hence is the subgroup of Gal(\(K_z/k \)) generated by \(\tau^h \) since \([K_z:k] = \ell - 1 \). Since \(\tau^h(a_i) = a_i + (\ell-3)/2 + 1 \) and \(\tau^h \) fixes \(p_z \), it follows as before that \((\ell - 1) \mid (\ell - 3)/2 + 1 \). Now evidently \((\ell - 1, (\ell - 3)/2) \) is equal to 1 if \(\ell \equiv 1 \) (mod 4) and to 2 if \(\ell \equiv 3 \) (mod 4). Thus, when \(\ell \equiv 1 \) (mod 4), we deduce as above that \((\ell - 1) \mid h \) and hence that \(e = f = 1 \), so that \(p \) is totally split in \(K_z/k \). On the other hand, if \(\ell \equiv 3 \) (mod 4) we only have \((\ell - 1)/2 \mid h \). If \(h = \ell - 1 \), then \(p \) is again totally split. On the other hand, if \(h = (\ell - 1)/2 \), then \(e f = 2 \), so \(p \) is either inert or ramified in the quadratic extension \(K/k \), so \(p \) is totally split in \(K_z/K \).

2.3. The mirror field

We now introduce the **mirror field of** \(K \). When \(\ell = 3 \) this notion is classical and well known: the mirror field of \(Q(\sqrt{D}) \) is \(Q(\sqrt{-3D}) \) and the Scholz reflection principle establishes that the 3-ranks of their class groups differ by at most 1.

In the case \(\ell > 3 \), this notion is less well known but does appear in the literature (see, for instance, the works of Gras [20, 21]), and in particular Scholz’s theorem can be generalized to this context, see, for instance, [24] for the case \(\ell = 5 \).

Definition 2.13. In the general case, we define the **mirror field** \(K' \) of \(K \) (implicitly, with respect to the prime \(\ell \)) to be the degree \(\ell - 1 \) subextension of \(K_z/k \) fixed by \(\tau^{(\ell-1)/2} \).

We do not define the mirror field for the special case, so in this subsection we assume that we are in the general case.
Lemma 2.14. Write $K = k(\sqrt{D})$ for some $D \in \mathbb{Z}^* \setminus \mathbb{Z}^{*2}$.

1. The extension K'/k is cyclic of degree $\ell - 1$, and $K' = k(\sqrt{D}(\zeta_\ell - \zeta_\ell^{-1}))$.
2. The field K' is a quadratic extension of $k(\zeta_\ell + \zeta_\ell^{-1})$, more precisely $K' = k(\zeta_\ell + \zeta_\ell^{-1})\left(\sqrt{-D(4-\alpha^2)}\right)$, where $\alpha = \zeta_\ell + \zeta_\ell^{-1}$.

Proof. Straightforward; for (2), note that $-D(4-\alpha^2) = D(\zeta_\ell - \zeta_\ell^{-1})^2$. □

The point of introducing the mirror field is the following result:

Proposition 2.15. Assume that we are in the general case. As before, let p be a prime ideal of k, p_z an ideal of K_z above p, and p_k and p the prime ideals below p_z in k_z and K, respectively. The following are equivalent.

1. The ideals p_k and p are both totally split in K_z/k_z and K_z/K, respectively (in other words $p \in D \cup D_k$).
2. The ideal p is totally split in K'/k.

In particular (by Corollary 2.12), (1) and (2) are true if p_z divides some a_i. Moreover, these conditions imply that exactly one of the following is true.

(a) p is split in K'/k and totally split in k_z/k.
(b) p is inert in K'/k and split in k_z/k as a product of $(\ell - 1)/2$ prime ideals of degree 2.
(c) p is above ℓ, is ramified in K/k, and its absolute ramification index $e(p/\ell)$ is an odd multiple of $(\ell - 1)/2$ (equivalently $e(p/\ell)$ is an odd multiple of $\ell - 1$).

Proof. (1) if and only if (2): We see that any nontrivial elements of $D(p_z/p)$ must be of the form $\tau^i\tau_2$ with $i \neq 0$ (mod $\ell - 1$), and squaring we have $\tau^{2i} \in D(p_z/p)$, so $2i \equiv 0$ (mod $\ell - 1$), so $D(p_z/p) \subset \{1, \tau^{(\ell - 1)/2}\}$, yielding (2). The converse is proved similarly.

To prove the last statement, first recall from [11] the following result:

Lemma 2.16. Let K be any number field and $K_z = K(\zeta_\ell)$. The conductor of the extension K_z/K is given by the formula

$$f(K_z/K) = \prod_{p | \ell, p \nmid \ell} p.$$

It follows in particular that if $p \nmid \ell$, or if $p | \ell$ and $(\ell - 1) | e(p/\ell)$, then p is unramified in k_z/k, and therefore also (arguing via inertia groups) in K/k, since otherwise the ideal p_k would be ramified in K_z/k_z. Thus, assuming (2), the only prime ideals p which can be ramified in K'/k are with $p | \ell$ and $(\ell - 1) \nmid e(p/\ell)$.

If p is split or inert in K/k, we check that $f(p_z/p)$ equals 1 or 2, respectively, showing (a) and (b). If p is ramified, then (3.1) implies $(\ell - 1) | e(p/\ell) = e(p/p)e(p/\ell)$. Since $(\ell - 1) \nmid e(p/\ell)$, we conclude that $e(p/\ell) = n(\ell - 1)/2$ with n odd.

The following corollaries are immediate.

Corollary 2.17. Let p be a prime ideal of k below a prime ideal p_z of K_z dividing some a_i, as defined above. If p is ramified in the quadratic extension K/k, then p is above ℓ.
COROLLARY 2.18. In both the general and special cases, assume that for any prime ideal p of K above ℓ the absolute ramification index $e(p/\ell)$ is not divisible by $(\ell - 1)/2$. Then all the a_i are coprime to ℓ.

Note that for $\ell = 3$ this corollary is empty, but the conclusion of the corollary always holds when $\ell > 2[k : \mathbb{Q}] + 1$, and in particular when $k = \mathbb{Q}$ and $\ell \geq 5$.

PROPOSITION 2.19. There exists an ideal a_α of K such that $\prod_{0 \leq i < \ell - 2} a_i = a_\alpha Z_{K_z}$. In addition:

(1) in the general (respectively, special) case, a_α is stable by τ and τ_2 (respectively, by τ); (2) if either the assumption of Corollary 2.18 is satisfied (for instance, when $\ell > 2[k : \mathbb{Q}] + 1$), or we are in the special case with $\ell \equiv 1 \pmod{4}$, then $a_\alpha = a'_\alpha Z_K$ for some ideal a'_α of k.

Proof. (1) In the general case, since $\tau(a_i) = a_i - 1$ we have $\prod_{0 \leq i < \ell - 2} a_i = a_\alpha Z_{K_z}$ with $a_\alpha = \mathcal{N}_{K_z/K}(a_0)$, and since $\tau_2(a_i) = a_i(\ell - 1)/2$, a_α is stable by τ_2. In the special case, since $\tau^2(a_i) = a_i - 1$, we have $\prod_{0 \leq i < (\ell - 1)/2} a_{2i} = \mathcal{N}_{K_z/K}(a_0) Z_{K_z}$, so that $\prod_{0 \leq i < (\ell - 1)/2} a_{2i + 1} = \mathcal{N}_{K_z/K}(a_1) Z_{K_z}$, so that $\prod_{0 \leq i < \ell - 1} a_i = a_\alpha Z_{K_z}$ with $a_\alpha = \mathcal{N}_{K_z/K}(a_0 a_1)$ an ideal of K, and since $\tau(a_i) = a_i(\ell - 3)/2$, a_α is stable by τ.

(2) In the special case with $\ell \equiv 1 \pmod{4}$, then $(\ell - 3)/2$ is odd, so that $a_i = \tau(\ell - 3)/2(a_0)$ it follows that $\tau(\mathcal{N}_{K_z/K}(a_0)) = \mathcal{N}_{K_z/K}(a_0)$, so that $\prod_{0 \leq i < \ell - 2} a_i = \mathcal{N}_{K_z/K}(a_0) Z_{K_z} = a'_\alpha Z_{K_z}$ with a'_α an ideal of the base field k. On the other hand, if the assumption of Corollary 2.18 is satisfied then a_α is coprime to ℓ, hence by Corollary 2.17 it is not divisible by any prime ramified in K/k, and since it is stable by $\text{Gal}(K/k)$ it comes from an ideal a'_α of k. \Box

3. Hecke theory: conductors

Our goal (see Theorem 3.8) is to give a usable expression for the ‘conductor’ $f(L)$ in terms of the fundamental quantities $(a_0, \ldots, a_{\ell - 2}, \pi)$ given by Proposition 2.8, where we recall that the conductor of the C_{ℓ}-extension N/K is equal to $f(N/K) = f(L) Z_K$ and that $\mathfrak{d}(L/k) = \mathfrak{d}(K/k)(\ell - 1)/2 f(L)^{\ell - 1}$.

We first recall from [9, 11] some results concerning the cyclotomic extensions k_z/k and K_z/K.

REMARK 3.1. By and large we stick to the notation of [9] except that the notation $m(p)$ of [9] is the same as $M(p)$ here, which corresponds to numbers A_α, while our $m(p)$ corresponds to numbers a_α.

PROPOSITION 3.2 [9, Theorem 2.1]. As above, let p be a prime of k over ℓ, and let $e(p)$ and $e(p)$ be the respective absolute ramification indices over ℓ. Then we have

$$e(p_z/p) = \frac{\ell - 1}{(\ell - 1, e(p))} \quad \text{and} \quad \frac{e(p_z/\ell)}{\ell - 1} = \frac{e(p)}{(\ell - 1, e(p))}. \quad (3.1)$$

DEFINITION 3.3. Suppose that p, π, and p_z are as above, so that $e(p_z/p) \mid (\ell - 1)$. Moreover, let $\alpha \in (K_z/K_{\ell})[T]$ be as in Proposition 2.4.

(1) If $pZ_K = p^2$ in K/k, we set $p^{1/2} = p$, and if $pZ_{K_z} = p^e(p_z/p)$ in K_z/K, we set $p_z = p^{1/e(p_z/p)}$.

(2) We say that an ideal \(p \) of \(k \) divides some \(\text{Gal}(K_\tau/k) \)-invariant ideal \(b \) of \(K \) (respectively, of \(K_\tau \)) when \((p\mathcal{O}_K)^{1/e(p/p)} \) (respectively, \((p\mathcal{O}_\tau)^{1/e(p/\tau)} \)) does, or equivalently when \(p \) (respectively, \(p^{1/e(p/\tau)} \)) does, where this last condition is independent of the choice of ideal \(p \) of \(K \) above \(p \).

(3) If \(e \) is an integer, write \(r(e) \) for the unique integer such that \(e \equiv r(e) \pmod{\ell-1} \) and \(1 \leq r(e) \leq \ell-1 \).

(4) We write
\[
M(p) = \frac{\ell e(p/\ell)}{\ell - 1} = \frac{\ell e(p)}{\ell - 1, e(p)} \in \mathbb{Z}, \quad m(p) = \frac{M(p)}{e(p/\tau)} = \frac{\ell e(p)}{\ell - 1, e(p)}.
\]

(5) Denote by \(E_n \) the congruence \(x^{\ell}/\alpha \equiv 1 \pmod{\ast p^n} \) in \(K_\tau \).

(6) Define quantities \(A_\alpha(p) \) and \(a_\alpha(p) \) as follows.
\[
\begin{align*}
&\bullet \text{ If } E_n \text{ is soluble for } n = M(p), \text{ we set } A_\alpha(p) = M(p) + 1 \text{ and } a_\alpha(p) = m(p). \\
&\bullet \text{ Otherwise, if } n < M(p) \text{ is the largest exponent for which it is soluble, we set } A_\alpha(p) = n \\
&\text{ and we define } \quad a_\alpha(p) = \frac{A_\alpha(p) - r(e(p))/\ell - 1, e(p))}{e(p/\tau)} = \left[\frac{A_\alpha(p)}{e(p/\tau)} \right] - 1 \in \mathbb{Z}.
\end{align*}
\]

Remarks 3.4. (1) The quantity \(r(e(p))/\ell - 1, e(p)) = r(e(p))/\ell - 1, r(e(p)))) \) is an integer, and equals 1 when \(\ell = 3 \) or when \(k = \mathbb{Q} \), for instance, and the second equality for \(a_\alpha(p) \) is proved below.

(2) The notation \(A_\alpha(p) \) and \(a_\alpha(p) \) (instead of \(A_\alpha(p) \) and \(a_\alpha(p) \)) is justified by the following lemma.

Lemma 3.5. With the above assumptions, the solubility of \(E_n \) is independent of the ideal \(p_\tau \) of \(K_\tau \) above \(p \); that is, it is equivalent to \(x^{\ell}/\alpha \equiv 1 \pmod{\ast p^n/e(p/\tau)} \) or to \(x^{\ell}/\alpha \equiv 1 \pmod{\ast p^n/e(p/\tau)} \).

Proof. If \(p_\tau' \) is another ideal above \(p \), there exists \(h = \tau^i \tau_2 \in \text{Gal}(K_\tau/k) \) with \(p_\tau' = h(p_\tau) \) (respectively, simply \(h = \tau^i \) in the special case). Thus, if \(x^{\ell}/\alpha \equiv 1 \pmod{\ast p^n} \), we have \(h(x)^\ell/h(\alpha) \equiv 1 \pmod{\ast p_\tau'^n} \). However, since \(\alpha \in (K_\tau^{*}/K^{*})[T] \), modulo \(\ell \)th powers we have \(\tau(\alpha) = \alpha^{\gamma} \) and \(\tau_2(\alpha) = \alpha^{-\gamma} \) (respectively, \(\tau(\alpha) = \alpha^{-\gamma} \)), hence \(h(\alpha) = \alpha^{(-1)^i g^\ell} \gamma^\ell \) (respectively, \(h(\alpha) = \alpha^{(-1)^i g^\ell} \gamma^\ell \)) for some \(g \in K_\tau^{*} \). We deduce that \(y^{\ell}/\alpha \equiv 1 \pmod{\ast p_\tau'^n} \), with \(y = (h(x)/\gamma)^{(-1)^i g^{-i}} \) (respectively, \(y = (h(x)/\gamma)^{(-1)^i g^{-i}} \)), proving the lemma. \(\square \)

Proposition 3.6. (1) We have \(\ell \nmid A_\alpha(p) \), and if \(A_\alpha(p) \leq M(p) \) (equivalently, if \(A_\alpha(p) \leq M(p) - 1 \)), then
\[
A_\alpha(p) \equiv \frac{e(p)}{(\ell - 1, e(p))} \left(\frac{\ell - 1}{\ell - 1, e(p)} \right).
\]

(2) We have \(a_\alpha(p) = m(p) \) if \(A_\alpha(p) = M(p) + 1 \), and otherwise
\[
0 \leq a_\alpha(p) \leq \frac{\ell e(p)}{\ell - 1} - \frac{\ell - 1 + r(e(p))}{\ell - 1} < \frac{\ell e(p)}{\ell - 1} - 1 = m(p) - 1.
\]

Proof. (1) follows from [9, Proposition 3.8], and (2) follows from the definitions and from (3.1). \(\square \)

Remark 3.7. As mentioned in [13], the congruence (1), or equivalently the integrality of \(a_\alpha(p) \) (when \(A_\alpha(p) < M(p) \)) comes from a subtle although very classical computation involving higher ramification groups; see [9, Proposition 3.6] along with [36, Chapter 4].
We can now quote the crucial result from [9] which gives the conductor of the extension N/K:

Theorem 3.8 [9, Theorem 3.15]. Assume that $(a_0, \ldots, a_{\ell-2})$ are as in Proposition 2.8, so that $\prod_{0 \leq i \leq \ell-2} a_i = a_n \mathbb{Z}_K$, with a_n an ideal of K stable by τ_2 (respectively, by τ in the special case), and sometimes coming from k (see Proposition 2.19). Then the conductor of the associated field extension N/K is given as follows:

$$f(N/K) = \ell a_n \prod_{p|\ell} p^{[e(p)/(\ell - 1)]}.$$

Remark 3.9. One can now draw additional conclusions about the $a_n(p)$. For example, suppose that p is a prime ideal k above ℓ with $p\mathbb{Z}_K = p^2$, $p \nmid a_n$, and $a_n(p) < m(p)$. Then $v_p(f(N/K)/\ell) \equiv 0 \pmod{2}$, as $f(N/K) = f(L)\mathbb{Z}_K$ for an ideal $f(L)$ of k, and it follows from the theorem and Proposition 3.6 that

$$a_n(p) \equiv [e(p)/(\ell - 1)] \pmod{2}. \quad (3.2)$$

Definition 3.10. Let a equal either $m(p)$, or an integer with $0 \leq a < m(p) - 1$, and define

$$h(0, a, p) = \begin{cases}
0 & \text{if } (\ell - 1) \nmid e(p) \text{ or } a = m(p), \\
1 & \text{if } (\ell - 1) \mid e(p) \text{ and } a < m(p);
\end{cases}$$

$$h(1, a, p) = \begin{cases}
1 & \text{if } (\ell - 1) \nmid e(p), \\
2 & \text{if } (\ell - 1) \mid e(p).
\end{cases}$$

Remark 3.11. Note that if $\ell > 2[k: \mathbb{Q}] + 1$, for instance, when $k = \mathbb{Q}$ and $\ell \geq 5$, we have $e(p) < \ell - 1$ so $(\ell - 1) \nmid e(p)$. Thus in this case we simply have $h(\varepsilon, a, p) = \varepsilon$, independently of a and p. We will also see in Remark 4.7 that a number of other formulas simplify.

Lemma 3.12. Let p be a prime ideal of K above ℓ and denote by C_n the congruence $x^\ell \equiv 1 \pmod{p^n}$ in K. Then $a_n(p)$ is equal to the unique value of a as in the previous definition such that C_n is soluble for $n = a + h(0, a, p)$ and not soluble for $n = a + h(1, a, p)$, where this last condition is ignored if $a + h(1, a, p) > m(p)$.

Proof. By Lemma 3.5, the solubility of E_n is equivalent to that of $C_n/e(p_z/\ell)/p$ in K. If $a = a_n(p) = m(p)$, then E_n is soluble for $n = \ell e(p_z/\ell)/\ell - 1$, which is equivalent to $C_m(p) = C_n$ as desired.

If $a = a_n(p) < m(p)$, we have $A_n(p) = a e(p_z/\ell) + r(e(p))/\ell - 1, e(p))$, and Proposition 3.6 (1) implies that the solubility of E_n for $n = A_n(p)$ is equivalent to that of E_n' when $A_n(p) - (\ell - 1)/e(p_z/\ell) < n' < A_n(p)$. If $(\ell - 1) \nmid e(p)$, we have $r(e(p)) < \ell - 1$ and choose $n' = a e(p_z/\ell)$, while if $(\ell - 1) \mid e(p)$, we choose $n' = n = a e(p_z/\ell) + 1$. Thus, the solubility of $E_{A_n(p)}$ and $E_{n'}$ is equivalent to that of C_n'', where $n'' = n'/e(p_z/\ell) = a + h(0, a, p)$ by definition of $h(0, a, p)$. (Recall that $e(p_z/\ell) = 1$ when $(\ell - 1) \mid e(p)$.)

Furthermore, since E_n is not soluble for $n = A_n(p) + 1$, we also have that $E_{n'}$ is not soluble, where $n' = n$ if $(\ell - 1) \mid e(p)$ and $n' = a e(p_z/\ell) + (\ell - 1)/e(p_z/\ell) \geq n'$ otherwise. The solubility of $E_{n''}$ is equivalent to that of C_n'' where $n'' = n'/e(p_z/\ell) = a + h(1, a, p)$, as desired.

Finally, we conclude by checking that the conditions are mutually exclusive. □
4. The Dirichlet series

Since \(f(N/K) = f(L)\mathbb{Z}_K \) for some ideal \(f(L) \) of \(k \), we have \(\mathcal{N}_{K/Q}(f(N/K)) = \mathcal{N}_{k/Q}(f(L))^2 \). To emphasize the fact that we are mainly interested in the norm from \(k/Q \), we set the following definition (norms from extensions other than \(k/Q \) will always indicate the field extension explicitly):

Definition 4.1. If \(a \) is an ideal of \(k \), we set \(\mathcal{N}(a) = \mathcal{N}_{k/Q}(a) \), while if \(a \) is an ideal of \(K \), we set

\[
\mathcal{N}(a) = \mathcal{N}_{K/Q}(a)^{1/2}.
\]

In particular, for each ideal \(a \) of \(k \), we have \(\mathcal{N}(a) = \mathcal{N}(a\mathbb{Z}_K) \).

Recall that we set

\[
\Phi_s(K, s) = \frac{1}{\ell - 1} + \sum_{L \in \mathcal{F}(K)} \frac{1}{\mathcal{N}(f(L))^s},
\]

with \(f(N/K) = f(L)\mathbb{Z}_K \) is given by Theorem 3.8. By Proposition 2.4, we have

\[
(\ell - 1)\Phi_s(K, s) = \sum_{\pi \in (K_1^e/K_0^e)[T]} \frac{1}{\mathcal{N}(f(L))^s},
\]

where \(L = K_0^e (\sqrt{a})^G \) (including \(\sqrt{a} = 1 \) corresponding to \(L = K_0^G = k \) with \(f(L) = \mathbb{Z}_k \) and \(\mathcal{N}(f(L)) = 1 \)), so by Proposition 2.8, we have

\[
(\ell - 1)\Phi_s(K, s) = \sum_{(a_0, \ldots, a_{\ell - 2}) \in J} \sum_{\pi S_{e}(K_0)[T]} \frac{1}{\mathcal{N}(f(L))^s},
\]

where \(J \) is the set of \((\ell - 1)\)uples of ideals satisfying condition (a) of Proposition 2.8, and \(f(L) \) is the conductor of the extension corresponding to \((a_0, \ldots, a_{\ell - 2}, \overline{a})\). Thus, replacing \(f(L) \) by the formula given by Theorem 3.8, recalling that \(\prod_{p|\ell} \mathcal{N}(p)^{e(p)} = \ell^{[k:Q]} \), and writing

\[
e(p) = ([\mathcal{N}(p)/(\ell - 1)] - 1)(\ell - 1) + r(e(p)),
\]

we obtain

\[
(\ell - 1)\Phi_s(K, s) = \ell - \mathbb{Z}_{[k:Q]} \prod_{p|\ell} \mathcal{N}(p)^{-\frac{r(e(p)) - r(\overline{e}(p))}{\ell - 1}} \sum_{(a_0, \ldots, a_{\ell - 2}) \in J} \mathcal{S}_{\alpha}(s) \mathcal{N}(a_0)^{s} \mathcal{N}(a_{\ell - 2})^{s},
\]

where

\[
\mathcal{S}_{\alpha}(s) = \sum_{\pi S_{e}(K_0)[T]} \prod_{p|\ell} \mathcal{N}(p)^{[\alpha_0(p)]}^{s},
\]

and where \(\alpha \) is any element of \(K_0^e \) such that \(\overline{\alpha} \in (K_0^e/K_{\ell - 1}^e)[T] \) and \(\alpha_0 \prod_{0 \leq i \leq \ell - 2} a_i^{q_i} = \alpha \mathbb{Z}_K \) for some ideal \(\mathbb{Z}_K \).

Definition 4.2. For \(\alpha \in K_0^e \) and an ideal \(b \) of \(K_0 \), we introduce the function

\[
f_{\alpha}(b) = |\{ \pi \in S_{e}(K_0)[T], \ x^\ell / (\alpha u) \equiv 1 \pmod{\mathcal{N}(b)} \text{ soluble in } K_0 \}|,
\]

with the convention that \(f_{\alpha}(b) = 0 \) if \(b \nmid (1 - \zeta_\ell)^i K_0 \).

Let \(p_i \) for \(1 \leq i \leq n = n(\alpha) \) be the prime ideals of \(k \) above \(\ell \) and not dividing \(a_{\alpha} \), and for each \(i \) let \(a_i \) be such that either \(a_i = m(p_i) \), or \(0 \leq a_i \leq m(p_i) - \frac{\ell - 1 + r(e(p_i))}{\ell - 1} = \lceil m(p_i) \rceil - 2 \) with
\(a_i \in \mathbb{Z}\), where as usual \(p_i\) is an ideal of \(K\) above \(p_i\), and let \(A\) be the set of such \((a_1, \ldots, a_n)\). Noting that due to the convention of Definition 4.1 we have \(\prod_{p_i | p_i} \mathcal{N}(p_i) = \mathcal{N}(\prod_{p_i})^{1/e(p_i/p_i)}\), we thus have

\[
S_{\alpha}(s) = \sum_{(a_1, \ldots, a_n) \in A} \prod_{1 \leq i \leq n} \mathcal{N}(p_i)^{[a_i]/s/e(p_i/p_i)} \sum_{\prod S \in S_{i}(K_{i})[T]}\end{align}
\]

By Lemma 3.12, we have \(a_{\alpha}(p_i) \geq a_i\) if and only if \(\pi\) is counted by \(f_{a_{\alpha}}(p_i^{b_i})\), where \(b_i = a_i + h(0, a, p_i)\), and we rewrite \(p_i^{b_i} = p_i^{b_i/e(p_i/p_i)}\). Let \(B(\alpha)\) be the set of \(n\)-uples \((b_1, \ldots, b_n)\) with \(0 \leq b_i \leq m(p_i)\), \(b_i \in \mathbb{Z} \cup \{m(p_i)\}\). By inclusion–exclusion, we obtain the following:

Lemma 4.3. We have

\[
S_{\alpha}(s) = \sum_{(b_1, \ldots, b_n) \in B(\alpha)} f_{\alpha} \left(\prod_{1 \leq i \leq n} p_i^{b_i/e(p_i/p_i)} \right) \prod_{1 \leq i \leq n} \left(\mathcal{N}(p_i)^{[b_i]/s/e(p_i/p_i)} \mathcal{Q}(p_i^{b_i/e(p_i/p_i)}, s) \right).
\]

where \(\mathcal{Q}(p_i^{b_i/e(p_i/p_i)}, s)\) is defined as follows. Let as usual \(p\) be an ideal of \(K\) above \(p\) and define \(q = \mathcal{N}(p)^{1/e(p/p)}\). Then if \(b = m(p)\) or \(0 \leq b < m(p)\) with \(b \in \mathbb{Z}\):

1. If \((\ell - 1) \nmid e(p)\), we set
 \[
 \mathcal{Q}(p^{b/e(p/p)}, s) = \begin{cases}
 1 & \text{if } b = 0, \\
 1 - 1/q^s & \text{if } 1 \leq b \leq \lfloor m(p) \rfloor - 2, \\
 -1/q^s & \text{if } b = \lfloor m(p) \rfloor - 1, \\
 1 & \text{if } b = m(p).
 \end{cases}
 \]

2. If \((\ell - 1) \mid e(p)\), we set
 \[
 \mathcal{Q}(p^{b/e(p/p)}, s) = \begin{cases}
 0 & \text{if } b = 0, \\
 1/q^s & \text{if } b = 1, \\
 1/q^s - 1/q^{2s} & \text{if } 2 \leq b \leq m(p) - 1, \\
 1 - 1/q^{2s} & \text{if } b = m(p).
 \end{cases}
 \]

Remark 4.4. There are conditions on the \(a_i\), for example, (3.2), such that the inner sum in (4.2) vanishes for impossible choices of the \(a_i\). One can use this to prove alternate versions of Lemma 4.3 that are nonobviously equivalent. In particular, if \((\ell - 1) \mid e(p)\), then one can restrict to \(b_i \in 2\mathbb{Z} \cup \{m(p_i)\}\) with suitably modified \(\mathcal{Q}(p_i^{b_i/e(p_i/p_i)}, s)\).

Definition 4.5. (1) We let \(B\) be the set of formal products of the form \(b = \prod_{p_i | p_i} p_i^{b_i/e(p_i/p_i)}\), where the \(b_i\) are such that \(0 \leq b_i \leq m(p_i)\) and \(b_i \in \mathbb{Z} \cup \{m(p_i)\}\).

(2) We will consider any \(b \in B\) as an ideal of \(K\), where by abuse of language we accept to have fractional powers of prime ideals of \(K\), and we will set \(b_\tau = b\mathbb{Z}_{K_\tau}\), which is a true ideal of \(K_\tau\) stable by \(\tau\), and also by \(\tau_2\) in the general case.

(3) If \(b \in B\) as above, we set
 \[
 [\mathcal{N}](b) = \prod_{p_i | b} \mathcal{N}(p_i)^{[b_i]/e(p_i/p_i)} \quad \text{and} \quad P(b, s) = \prod_{p_i | b} \tilde{\mathcal{Q}}(p_i^{b_i/e(p_i/p_i)}, s),
 \]
where \(\tilde{Q}(p^{b/e(p/p)}, s) := Q(p^{b/e(p/p)}, s) \) except in the case \((\ell - 1) | e(p) \) and \(b = 0 \), where we set \(\tilde{Q}(p^{b/e(p/p)}, s) = 1 \).

We thus obtain

\[
\sum_{(a_0, \ldots, a_{\ell-2}) \in J} \frac{S_{\alpha}(s)}{\mathcal{N}(a_\alpha)^s} = \sum_{b \in \mathcal{B}} [\mathcal{N}(b)^s] P(b, s) \sum_{(a_0, \ldots, a_{\ell-2}) \in J} \frac{f_\alpha(b)}{\mathcal{N}(a_\alpha)^s}.
\]

(4.4)

The case \(p \mid b \), \((\ell - 1) | e(p) \), and \(p \nmid a_\alpha \) is precisely that for which \(Q(p^{b/e(p/p)}, s) = 0 \) and \(\tilde{Q}(p^{b/e(p/p)}, s) = 1 \). By excluding this case, we may substitute \(\tilde{Q} \) for \(Q \) with \(\tilde{Q}(p^0, s) = 1 \).

Definition 4.6. (1) For \(b \) as above, we define

\[
r^e(b) = \prod_{p | (\ell \mathbb{Z}_k, p | b \text{ and } (\ell - 1) | e(p))} p.
\]

(2) We set \(\mathfrak{d}_\ell = \prod_{p \in D_\ell} p \) (see Definition 2.11).

Remark 4.7. Since \(e(p) = e(p/p)e(p) \leq 2[k : \mathbb{Q}] \), we note that if \(\ell > 2[k : \mathbb{Q}] + 1 \), then \(r^e(b) \) is always trivial, so that specializing to the case \(k = \mathbb{Q} \) and \(\ell \geq 5 \) now would avoid some complications.

Lemma 4.8. For each \(a_\alpha \) appearing in the inner sum of (4.4), we have

\[
(a_\alpha, \ell \mathbb{Z}_k) = r^e(b) = \prod_{p \in D_\ell, (p, b) = 1} \prod_{p | p \text{ and } (p, b) = 1} p,
\]

(4.5)

so that \(r^e(b) \mid \mathfrak{d}_\ell \).

Additionally, in the special case with \(\ell \equiv 1 \pmod{4} \), we have \(r^e(b) = \prod_{p \in D_\ell, (p, b) = 1} p \).

Proof. If \(p \not| b \) and \((\ell - 1) | e(p) \), then clearly \(p \mid a_\alpha \). Conversely, let \(p \mid a_\alpha \) be above \(\ell \). Since \((a_\alpha, b) = 1 \), we know that \(p \not| b \). If we had \((\ell - 1) \not| e(p) \), Proposition 3.2 would imply \(e(p_z/p) > 1 \), contradicting Corollary 2.12. This proves the first equality of (4.5), and the rest follows similarly.

Thus we obtain

\[
\sum_{(a_0, \ldots, a_{\ell-2}) \in J} \frac{S_{\alpha}(s)}{\mathcal{N}(a_\alpha)^s} = \sum_{b \in \mathcal{B}} [\mathcal{N}(b)^s] P(b, s) \sum_{(a_0, \ldots, a_{\ell-2}) \in J} \frac{f_\alpha(b)}{\mathcal{N}(a_\alpha)^s}.
\]

(4.6)

To compute \(f_\alpha(b) \), we set the following definition:

Definition 4.9. For any ideal \(b \in \mathcal{B} \), and for any subset \(T \) of \(F_\ell[G] \), we set

\[
S_{b_z}(K_z)[T] = \{ \pi \in S_T(K_z)[T] \mid \pi^e \equiv u \pmod{\mathfrak{b}_z} \text{ soluble} \},
\]

where \(u \) is any lift of \(\mathfrak{u} \) coprime to \(\mathfrak{b}_z \), and the congruence is in \(K_z \).
Lemma 4.10. Let $(a_0, \ldots, a_{\ell - 2})$ satisfy condition (a) of Proposition 2.8, suppose that α satisfies the condition described before Definition 4.2, and recall that we set $a = \prod_i a_i^{q_i}$. We have

$$f_\alpha(b) = \begin{cases} |S_{b_2}(K_2)[T]| & \text{if } \bar{a} \in \text{Cl}_{b_2}(K_2)^\ell, \\ 0 & \text{otherwise.} \end{cases}$$

Proof. The lemma and its proof are a direct generalization of Lemma 5.3 of [13], and we omit the details.

5. Computation of $|S_{b_2}(K_2)[T]|$

In this section, we compute the size of the group $S_{b_2}(K_2)[T]$ appearing in Lemma 4.10, as well as several related quantities.

Lemma 5.1. Set $Z_{b_2} = (Z_{K_2}/b_2)^*$. Then

$$|S_{b_2}(K_2)[T]| = \frac{|(U(K_2)/U(K_2)^\ell)[T]|\|(\text{Cl}_{b_2}(K_2)/\text{Cl}(K_2)^\ell)[T]|}{|Z_{b_2}/Z_{b_2}^0[T]|},$$

and in particular

$$|S_1(K_2)[T]| = |(U(K_2)/U(K_2)^\ell)[T]|\|(\text{Cl}(K_2)/\text{Cl}(K_2)^\ell)[T]|.$$

Proof. This is a minor variant of [9, Corollary 2.13], proved in the same way.

The quantity $|(U(K_2)/U(K_2)^\ell)[T]|$ is given by the following lemma.

Lemma 5.2. Assume $\ell > 3$, the case $\ell = 3$ being treated in [13, Lemma 5.4]. For any number field M, write $\text{rk}_\ell(U(M)) := \text{dim}_F(U(M)/U(M)^\ell)$, and denote by $r_1(M)$ and $r_2(M)$ the number of real and pairs of complex embeddings of M.

1. For any number field M, we have

$$\text{rk}_\ell(U(M)) = \begin{cases} r_1(M) + r_2(M) - 1 & \text{if } \zeta_\ell \notin M, \\ r_1(M) + r_2(M) & \text{if } \zeta_\ell \in M. \end{cases}$$

2. We have $|(U(K_2)/U(K_2)^\ell)[T]| = \ell^{\text{RU}(K)}$, where

$$\text{RU}(K) := \begin{cases} r_2(K) - r_2(k) & \text{in the general case,} \\ r_1(k) + r_2(k) & \text{in the special case with } \ell \equiv 3 \pmod{4}, \\ r_2(k) & \text{in the special case with } \ell \equiv 1 \pmod{4}. \end{cases}$$

3. In particular, if $k = \mathbb{Q}$, we have $\text{RU}(K) = r_2(K)$ in all cases.

Proof. (1) is Dirichlet’s theorem, and (3) is a consequence of (2). To prove (2) in the general case, where $T = \{\tau_2 + 1, \tau - g\}$, we apply the exact sequence

$$1 \rightarrow \frac{U(k_2)}{U(k_2)^\ell}[\tau - g] \rightarrow \frac{U(K_2)}{U(K_2)^\ell}[\tau - g] \rightarrow \frac{U(K_2)}{U(K_2)^\ell}[\tau_2 + 1, \tau - g] \rightarrow 1,$$

where the last nontrivial map sends ε to $\tau_2(\varepsilon)/\varepsilon$. Surjectivity follows from Lemma 2.3, and $(\tau_2 + 1)(\tau_2 - 1) = 0$ implies that the two nontrivial maps compose to zero. Finally, suppose $\varepsilon \in$
$U(K_z)$ satisfies $\tau_2(\epsilon) = \epsilon\eta^t$ for some $\eta \in K_z$. Applying τ_2 to both sides, we see that $\eta\tau_2(\eta) = \zeta^t$ for some a, and replacing η with $\eta_1 = \eta_k^t$ with $a + 2b \equiv 0 \pmod{\ell}$, we obtain $\eta_1\tau_2(\eta_1) = 1$ and $\tau_2(\epsilon) = \epsilon\eta_1^t$. By Hilbert 90, there exists η_2 with $\eta_1 = \eta_2/\tau_2(\eta_2)$, so that $\epsilon_1 = \epsilon\eta_2^t$ satisfies $\tau_2(\epsilon_1) = \epsilon_1$, in other words $\epsilon_1 \in k_z$, proving exactness of (5.1).

By a nontrivial theorem of Herbrand (see [9, Theorem 2.3]), we have $[(U(K_z))/U(K_z)^t][\tau - g] = \ell^{\epsilon_2(t^{K})+1}$ and $[(U(k_z))/U(k_z)^t][\tau - g] = \ell^{\epsilon_2(t^{K})+1}$, establishing (2) in the general case.

In the special case, with $T = \{\tau + g\} = \{\tau - g(t^{K}+1)/2\}$, (2) follows directly from Herbrand’s theorem applied to the extension $k_z/k = K_z/k$, for which τ generates the Galois group.

Note that for $\ell = 3$ the same is true except that in the special case we have $RU(K) = r_1(k) + r_2(k) - 1$. This follows from the shape of [9, Theorem 2.3], or may be easily verified from [13, Lemma 5.4].

Lemma 5.3. Let $b \in \mathcal{B}$ satisfy $b_z \mid (1 - \zeta^t)^t$, and define $c_z = \prod_{p \mid b_z} c_z[p^{v_p(b_z)/\ell}]$. We have

\[
|(Z_{b_z}/Z_{b_z}^t)(T)| = |(c_z/b_z)(T)|,
\]

the latter being considered as an additive group.

Proof. See [9, Proposition 2.6 and Theorem 2.7], or [30, Lemma 1.5.6].

Theorem 5.4. We have in the general case

\[
|(c_z/b_z)[\tau - g^t]| = \prod_{p \mid b_z} \mathcal{N}_{K/Q}(p)^{x_j(p)},
\]

where

\[
x_j(p) = \left(\frac{v_p(b)}{\ell} - \frac{j\epsilon(p)}{\ell - 1} - \left\lceil\frac{e(p_z/p)v_p(b)/\ell}{\ell - 1}\right\rceil\right).
\]

In the special case, (5.3) holds with p and K replaced throughout by p and k, respectively. Finally, in the general case, then (5.3) is also true with respect to k_z/k. In this case, one must replace p, K, b_z, and c_z, respectively, by p, k, $b_k := c_z \cap k_z$, and

\[
c_k := c_z \cap Z_{k_z} = \prod_{p \mid b_k} c_k[p^{v_p(b_k)/\ell}] .
\]

Proof. This is the result at the bottom of [9, p. 177], applied to K_z/K, k_z/k, and k_z/k, respectively. As in [9, Theorem 2.7], the result may be simplified if $v_p(b)$ is either an integer or equal to $\frac{\ell - 1}{\epsilon(p)}$, and in particular always in the general case with respect to Z_{k_z}/K, but in other cases v_p may be a half integer.

Finally, the equality in (5.4) is readily verified.

Recall from [9, Theorem 2.1] and (3.1) that $e(p_z/p) = \frac{\ell - 1}{\epsilon(p)}$ and $e(p_k/p) = \frac{\ell - 1}{\epsilon(p)}$. In the special case, this theorem together with Lemma 5.3 gives the cardinality of $(Z_{b_z}/Z_{b_z}^t)(T)$ by choosing $j = (\ell + 1)/2$. In the general case, we require the following additional lemma:

Lemma 5.5. Assume that we are in the general case and set $c_k = c_z \cap k_z$ and $b_k = b_z \cap k_z$. We have

\[
|(Z_{b_z}/Z_{b_z}^t)(T)| = |(c_z/b_z)[\tau - g]|/|(c_k/b_k)[\tau - g]|,
\]

where the two terms on the right-hand side are given by Theorem 5.4.
Proof. We have an exact sequence of $\mathbb{F}_\ell[G]$-modules

$$1 \to \frac{c_z}{b_z} [\tau_2 - 1][\tau - g] \to \frac{c_z}{b_z} [\tau - g] \to \frac{c_z}{b_z} [T] \to 1,$$

the last map sending x to $x - \tau_2(x)$. It therefore suffices to argue that $(c_z/b_z)[\tau_2 - 1] = (c_z \cap k_z)/(b_z \cap k_z)$: if $x \in c_z$ satisfies $\tau_2(x) = x + y$ for some $y \in b_z$, then applying τ_2 we see that $\tau_2(y) = -y$, hence $\tau_2(x + y/2) = x + y/2$. Moreover, $x + y/2 \equiv x \pmod{b_z}$, because 2 is invertible modulo ℓ hence modulo b.

Definition 5.6. We set $G_b = (\text{Cl}_{b_z}(K_z)/\text{Cl}_{b_z}(K_z))^{\ell}[T]$.

We conclude with one additional lemma which will be needed in the next section.

Lemma 5.7. In the general case, set $u = i(\tau_2 + 1)(\tau - g)$ and in the special case set $u = i(\tau + g)$.

1. The map $I \to u(I)$ induces a surjective map from $\text{Cl}_{b_z}(K_z)/\text{Cl}_{b_z}(K_z)^{\ell}$ to G_b, of which a section is the natural inclusion from G_b to $\text{Cl}_{b_z}(K_z)/\text{Cl}_{b_z}(K_z)^{\ell}$.

2. Any character $\chi \in G_b$ can be naturally extended to a character of $\text{Cl}_{b_z}(K_z)/\text{Cl}_{b_z}(K_z)^{\ell}$ by setting $\chi(T) = \chi(u(I))$, which we again denote by χ by abuse of notation.

3. Let as usual $a = \prod_{0 \leq i < \ell - 2} a_i^{q^i}$ with the a_i satisfying condition (a) of Proposition 2.8.
 - In the general case and in the special case when $\ell \equiv 1 \pmod{4}$, we have $\chi(a) = \chi (\overline{a})^{-1}$.
 - In the special case when $\ell \equiv 3 \pmod{4}$, we have $\chi(a) = \chi(\overline{a})^{(\ell-1)/2}$, where χ on the right-hand side is defined in (2).

Proof. (1) and (2) are immediate from Lemma 2.3. For (3), assume that we are in the special case. Using Lemma 2.10, we have $a_{2i} = \tau^{-2i}(a_0)$, $a_{2i+1} = \tau^{-2i}(a_1)$, and $\chi(\tau^{2i}(T)) = \chi(T)^{q^i}$, so that

$$\chi(a) = \prod_{0 \leq i < (\ell - 1)/2} \chi(\tau^{-2i}(a_i a_i^q))^{q^i} \prod_{0 \leq i < (\ell - 1)/2} \chi(a_i a_i^q) = \chi(\overline{a})^{(\ell-1)/2}.$$

If in addition $\ell \equiv 1 \pmod{4}$, we have $a_1 = \tau^{(\ell-3)/2}(a_0)$ and $\chi(\tau^g(T)) = \chi(T)^g$, giving $\chi(a_1) = \chi(\overline{a})^g$. Hence $\chi(a_0^g) = \chi(\overline{a})^{-g}$ and $\chi(a_0^g) = \chi(\overline{a})^{-g}$, so $\chi(a_0 a_0^g)^{\ell-1} = \chi(\overline{a})^{\ell-1} = \chi(\overline{a})^{-1}$.

The general case of (3) is proved similarly, with $a_i = \tau^{-i}(a_0)$.

6. Semi-final form of the Dirichlet series

We can now put everything together, and obtain a complete analogue of the main theorem of [13]:

Theorem 6.1. We have

$$\Phi_{\ell}(K, s) = \frac{\ell^{RU(K)}}{(\ell - 1)^{\tau_e(z)}} \prod_{p|\ell} \frac{N(p)^{-\ell - (\ell - 1)^e(s + 1)}}{N(p)^{\ell - (\ell - 1)^e(s + 1)}} \sum_{b \in \mathcal{B}} \left(\frac{[N(b)]^{s}}{N(\tau^e(b))}\right) \frac{P(b, s)}{[Z_{b_1}/Z_{b_2}][T]} \sum_{\chi \in \hat{G}_b} F(b, \chi, s),$$
where

$$F(b, \chi, s) = \prod_{p \mid \ell} (\ell - 1) \prod_{\chi(p) \neq b} (-1) \prod_{\chi(p) = b} \left(1 + \frac{\ell - 1}{N(p)^s}\right) \prod_{p \in \mathcal{D}'(\chi)} \left(1 - \frac{1}{N(p)^s}\right),$$

and \(\mathcal{D}'(\chi)\) (respectively, \(\mathcal{D}'_k(\chi)\)) is the set of \(p \in \mathcal{D}\) (respectively, \(\mathcal{D}_k\)) such that \(\chi(p) = 1\), where \(p\) is any prime ideal of \(K\) above \(p\).

Proof. We begin with the formula for \(\Phi_1(K, s)\) given by (4.1) and (4.6). By Remark 2.9, we have \(\mathfrak{a} \in (\text{Cl}_{p_0}(K_\ell)/\text{Cl}_{p_0}(K_{\ell})^0)[T]\) with \(a = \prod_{0 \leq i \leq \ell - 2} a_i^{d_i}\). Thus \(\mathfrak{a} \in \text{Cl}_{p_0}(K_\ell)^e\) if and only if \(\chi(\mathfrak{a}) = 1\) for all characters \(\chi \in \hat{G}_0\). The number of such characters being equal to \(|G_0|\) by orthogonality of characters and Lemmas 4.10, 5.1, and 5.2, we obtain

$$\Phi_1(K, s) = \frac{\ell^{RU(K)}}{\ell - 1} \ell^{n_k^0} \prod_{p \mid \ell} N(p)^{\ell - 1} \sum_{b \in \mathcal{B}} \frac{\ell^{RU(K)}}{\ell - 1} \sum_{(a_0, ..., a_{\ell - 2}) \in J' \subset \mathcal{D}'_e} \chi(\mathfrak{a}) \frac{\chi(\mathfrak{a})^s}{N(\mathfrak{a})^s} H(b, \chi, s),$$

with

$$H(b, \chi, s) = \sum_{\chi(\mathfrak{a}) = 1} \frac{\chi(\mathfrak{a})^s}{N(\mathfrak{a})^s}.$$
Consider first the sum S_d. By multiplicativity we have $S_d = \prod_{p \in \mathcal{D}} S_{d,p}$ with

$$S_{d,p} = \sum_{\mathfrak{d} \mid p\mathcal{O}_K} \chi^{-1}(\mathfrak{d}) \frac{\chi^{-1}(\mathfrak{d})}{\mathcal{N}(\mathcal{N}_{K_z/K}(\mathfrak{d}))^s}.$$

As p is not above ℓ, it is unramified in K/k by Proposition 2.15 and we consider the remaining two cases.

(1) Assume $p\mathcal{O}_K = \mathfrak{p}$, that is, that p is inert in K/k. Since \mathfrak{p} is totally split in K_z/K, we have $p\mathcal{O}_K = \prod_{0 \leq j < \ell - 2} \tau^j(\mathfrak{p}_z)$ for some prime ideal \mathfrak{p}_z of K_z. Furthermore, since $\mathfrak{p}_z / \mathfrak{p}_k$ (with our usual notation) is split, we have $\tau_2(\mathfrak{p}_z) \neq \mathfrak{p}_z$, and since \mathfrak{p} is stable by τ_2, $\tau_2(\mathfrak{p}_z)$ is again above \mathfrak{p}, so we deduce that $\tau_2(\mathfrak{p}_z) = \tau^{(\ell-1)/2}(\mathfrak{p}_z)$.

Since \mathfrak{d} is squarefree and coprime to its K_z/K-conjugates, we see that $\mathfrak{d} = \mathcal{Z}_{K_z}$ or $\mathfrak{d} = \tau'(\mathfrak{p}_z)$ for some i, with $\mathcal{N}(\mathcal{N}_{K_z/K}(\mathfrak{d}))$ equal to 1 or $\mathcal{N}(\mathfrak{p})$, respectively. In the latter case, we have

$$S_{d,p} = 1 + \sum_{0 \leq j \leq \ell - 2} \frac{\chi(\mathfrak{p})^{-j}}{\mathcal{N}(\mathfrak{p})^s} = 1 + \sum_{1 \leq j \leq \ell - 1} \frac{\chi(\mathfrak{p})^{-j}}{\mathcal{N}(\mathfrak{p})^s}, \quad (6.1)$$

so that $S_{d,p} = 1 + (\ell - 1)/\mathcal{N}(\mathfrak{p})^s$ if $\chi(\mathfrak{p}) = 1$, and $S_{d,p} = 1 - 1/\mathcal{N}(\mathfrak{p})^s$ otherwise.

(2) If instead $p\mathcal{O}_K = \mathfrak{p}\tau_2(\mathfrak{p})$ is split in K/k, then similarly either $\mathfrak{d} = \mathcal{Z}_{K_z}$ or $\mathfrak{d} = \tau^i(\mathfrak{p}_z, \tau^{(\ell-1)/2}(\mathfrak{p}_z))$ for some i and \mathfrak{p}_z. We have that $\chi(\tau^{(\ell-1)/2}(\mathfrak{p}_z)) = \chi^{-1}(\tau_2(\mathfrak{p}_z)) = \chi(\mathfrak{p}_z)$, and hence obtain the same result as above.

Consider now the sum S_c. By multiplicativity, since \mathfrak{a} is stable by τ_2, and applying Lemma 4.8, we have

$$S_c = \frac{1}{\mathcal{N}(\tau^c(\mathfrak{b}))^s} \sum_{\mathcal{N}_{K_z/K}(\mathfrak{c}) = \tau^c(\mathfrak{b})} \chi^{-1}(\mathfrak{c}) = \frac{1}{\mathcal{N}(\tau^c(\mathfrak{b}))^s} \prod_{p \in \mathcal{D}} S_{c,p},$$

with

$$S_{c,p} = \sum_{\mathfrak{d} \mid p\mathcal{O}_K} \chi^{-1}(\mathfrak{d}) \frac{\chi^{-1}(\mathfrak{d})}{\mathcal{N}(\mathcal{N}_{K_z/K}(\mathfrak{d}))^s}.$$

Our analysis is essentially the same as before, except p can now be ramified in K/k and the possibility $c = \mathcal{Z}_{K_z}$ is now excluded. In all cases, we obtain that $S_{c,p} = \ell - 1$ if $\chi(\mathfrak{p}_z) = 1$ and -1 otherwise.

Putting everything together proves the theorem in the general case.

In the special case with $\ell \equiv 1 \pmod{4}$ the proof is similar; condition (a) is absent and (d) becomes $\mathcal{N}_{K_z/K}(\mathfrak{a}_0) = \mathcal{N}(\mathfrak{a}_1)$. Imitating the inert case of the previous argument, we obtain the same results.

In the special case with $\ell \equiv 3 \pmod{4}$, we replace the sum over J' by a sum over pairs $(\mathfrak{a}_0, \mathfrak{a}_1)$ of ideals of K_z satisfying suitable conditions.

- In place of (a), \mathfrak{a}_0 and \mathfrak{a}_1 are fixed by $\tau^{(\ell-1)/2}$.
- In place of (b), the ideals $\mathfrak{a}_0, \mathfrak{a}_1, \tau^2(\mathfrak{a}_0)$, and $\tau^2(\mathfrak{a}_1)$ must all be coprime.
- In place of (d), we have $\mathcal{N}_{K_z/K}(\mathfrak{a}_0 \mathfrak{a}_1) = \mathcal{N}(\mathfrak{a}_0)$.
- In place of (e), we have $\chi(\mathfrak{a}) = \chi(\mathfrak{a}_0 \mathfrak{a}_1)^{(\ell-1)/2}$.
We must again consider all splitting types in K/k, and the arguments are similar. If p is inert, we compute that

$$S_{d,p} = 1 + \sum_{0 \leq i \leq \frac{\ell-1}{2}} \frac{\chi(p_z)^{g(z)}(\ell-1)^{r(p)} N(p)^s}{N(p)^s} + \sum_{0 \leq i \leq \frac{\ell-1}{2}} \frac{\chi(p_z)^{g(z)}(\ell-1)^{r(p)} N(p)^s}{N(p)^s},$$

equal to the same expression as before. If p is split, recall that by Proposition 2.19, a_{α} must be stable by τ; the relevant computation is

$$\chi(p_z \tau(\ell-1)^{\frac{\ell-1}{2}}(p_z))^{(\ell-1)^{\frac{\ell}{2}}} = \chi(p_z \tau(\ell-1)^{\frac{\ell-1}{2}}(p_z))^{(\ell-1)^{\frac{\ell}{2}}} = \chi(p_z)^{-1},$$

and again we obtain the same results. For $p \in D_0$, the argument is similar, once again considering all three cases and obtaining the same result.

As mentioned in Remarks 3.11, if $\ell > 2[\ell : Q] + 1$, and in particular if $k = Q$ and $\ell \geq 5$, we always have $\tau^\ell(b) = (1)$. The theorem simplifies and gives the following.

Corollary 6.2. Keep the same notation, and assume $\ell > 2[\ell : Q] + 1$. We have

$$\Phi_\ell(K, s) = \frac{\ell^{\text{R}(\ell)}}{\ell-1 \ell^{\text{R}(\ell)[K:Q]^s} \prod_{p | \ell} N(p) - \ell - (\ell + 1)} \sum_{b \in B} \left[N(b)^s P(b, s) \prod_{p \in D'(\chi)} \left(1 + \frac{\ell - 1 - \ell N(p)^s}{\ell N(p)^s} \right) \prod_{p \in D'(\chi)} \left(1 - \frac{\ell - 1 - \ell N(p)^s}{\ell N(p)^s} \right) \right],$$

where

$$F(b, \chi, s) = \prod_{p \in D'(\chi)} \left(1 + \frac{\ell - 1 - \ell N(p)^s}{\ell N(p)^s} \right) \prod_{p \in D'(\chi)} \left(1 - \frac{\ell - 1 - \ell N(p)^s}{\ell N(p)^s} \right).$$

In the general case, we now prove that the group G_b can be described in somewhat simpler terms, in terms of the mirror field K' of K. (See also Theorems 9.1 and 9.7 for a further characterization.)

Proposition 6.3. There is a natural isomorphism

$$\frac{\text{Cl}_{b'}(K_z)}{\text{Cl}_{b'}(K'_z)[T]} \rightarrow \frac{\text{Cl}_{b'}(K')}{\text{Cl}_{b'}(K'_z)[T - g]},$$

where $b' = b \cap K'$.

Moreover, using this isomorphism to regard a character χ of $\text{Cl}_{b'}(K'_z)[T]$ as a character $\tilde{\chi}$ of $\text{Cl}_{b'}(K'_z)[T - g]$, the condition $\chi(\bar{p}_z) = 1$ defining $D(\chi) \cap D'_{\ell}(\chi)$ is equivalent to the condition $\tilde{\chi}(\bar{p}_K) = 1$ for the unique prime p_K of K' below p_z.

Proof. The first statement is also proved in [14, Proposition 3.6], so we will be brief. As $\tau(\ell-1)^{\frac{\ell}{2}}$ acts trivially on G_b, it can be checked that elements of G_b can be represented by an ideal of the form $a \tau(\ell-1)^{\frac{\ell}{2}}$, which is of the form $a' \mathcal{Z}_{K_z}$ for some ideal a' of K'. We therefore obtain a well-defined injective map $\text{Cl}_{b'}(K'_z)[T] \rightarrow \text{Cl}_{b'}(K'_z)[T - g]$, which may easily be shown to be surjective as well.

The latter statement follows because the condition $\tilde{\chi}(\bar{p}_K) = 1$ is equivalent to $\chi(\bar{p}_K \mathcal{Z}_{K_z}) = 1$, which is easily seen to be equivalent to $\chi(\bar{p}_K) = 1$ for any splitting type of $p_z | p_{K'}$.

7. Specialization to $k = Q$

We now specialize to $k = Q$, where we will obtain more explicit results. Henceforth, we assume that $K = Q(\sqrt{D})$ is a quadratic field with discriminant D, with $r_2(D) = 0$ if $D > 0$ and $r_2(D) = 1$ if $D < 0$.

By definition, \(B = \{ 1, (\ell), (\ell)\ell/(\ell-1) \} \) in the general case with \(\ell \nmid D \), and \(B = \{ 1, (\ell)^{1/2}, (\ell), (\ell)^{\ell/(\ell-1)} \} \) in the special case or in the general case with \(\ell | D \). Equivalently, we may write

\[
b_z \in \left\{ \mathbb{Z}_{K_z}, (1 - \zeta_\ell)^{\ell/(\ell-1)/2} \mathbb{Z}_{K_z}, (1 - \zeta_\ell)^{\ell-1} \mathbb{Z}_{K_z} = \ell \mathbb{Z}_{K_z}, (1 - \zeta_\ell)^{\ell/2} \mathbb{Z}_{K_z} \right\},
\]

(7.1)

with the second entry removed in the former case. Throughout, \((-,-,-,-)\) will describe quantities depending on \(B \), with asterisks denoting ‘not applicable’.

Proposition 7.1. We have that \(|(\mathbb{Z}_{b_z}/\mathbb{Z}_{b_z}^\ell)[T]|\) is equal to \((1,1,\ell,\ell)\) or \((1,1,\ell,\ell)\) for \(\ell \nmid D \) or \(\ell | D \), respectively, unless \(\ell = 3 \) in the special case, in which case case \(|(\mathbb{Z}_{b_z}/\mathbb{Z}_{b_z}^3)[T]|\) = \((1,1,1,3)\).

Proof. This follows from Theorem 5.4 and Lemma 5.5. In the general case, we obtain

\[
\log \ell |(\mathbb{Z}_{b_z}/\mathbb{Z}_{b_z}^\ell)[T]| = (0, \ast, 2, 2) - (0, \ast, 1, 1) = (0, \ast, 1, 1),
\]

\[
\log \ell |(\mathbb{Z}_{b_z}/\mathbb{Z}_{b_z}^\ell)[T]| = (0, 1, 2, 2) - (0, 1, 1, 1) = (0, 0, 1, 1),
\]

depending on whether \(\ell \nmid D \) or \(\ell | D \), respectively; in the special case, we obtain

\[
\log \ell |(\mathbb{Z}_{b_z}/\mathbb{Z}_{b_z}^\ell)[T]| = (0, 0, 1, 1),
\]

\[
\log \ell |(\mathbb{Z}_{b_z}/\mathbb{Z}_{b_z}^\ell)[T]| = (0, 0, 0, 1),
\]

depending on whether \(\ell \geq 5 \) or \(\ell = 3 \), respectively.

Recall by Lemma 2.14 that the mirror field of \(K = \mathbb{Q}(\sqrt{D}) \) with respect to \(\ell \) is the degree \(\ell - 1 \) field \(K' = \mathbb{Q}(\sqrt{D}(\zeta_\ell - \zeta_\ell^{-1})) \). The following is immediate from the results of Section 2:

Lemma 7.2. Let \(p \) be a prime different from \(\ell \).

- We have \(p \in D \) if and only if \(p \equiv \left(\frac{D}{p}\right) \) (mod \(\ell \)).
- In the general case, this is equivalent to \(p \) splitting completely in \(K'/\mathbb{Q} \).
- In the special case with \(\ell \equiv 1 \) (mod \(4 \)), this is equivalent to \(p \equiv 1 \) (mod \(\ell \)).
- In the special case with \(\ell \equiv 3 \) (mod \(4 \)), this is equivalent to \(p \equiv \pm 1 \) (mod \(\ell \)).

We come now to the analogue of [15, Theorem 3.2]. The case \(\ell = 3 \), which is slightly different, is treated in loc. cit.:

Theorem 7.3. Assume \(\ell \geq 5 \) and let \(K = \mathbb{Q}(\sqrt{D}) \). We have

\[
\Phi(K, s) = \frac{\ell^{r(D)}}{\ell - 1} \sum_{b \in B} A_b(s) \sum_{\chi \in G_b} F(b, \chi, s),
\]

where the \(A_b(s) \) are given by the following table:

Condition on \(D \)	\(A_{(1)}(s) \)	\(A_{(\sqrt{-1})^{(\ell-1)/2}}(s) \)	\(A_{(\ell)}(s) \)	\(A_{(\ell)/(\ell-1)}(s) \)	
\(\ell \nmid D \)	\(\ell^{-2s} \)	\(0 \)	\(-\ell^{-2s-1} \)	\(1/\ell \)	
\(\ell	D \)	\(\ell^{-2s/2} \)	\(\ell^{-s/2} - \ell^{-3s/2} \)	\(-\ell^{-s-1} \)	\(1/\ell \)

\[
F(b, \chi, s) = \prod_{p \equiv \left(\frac{D}{p}\right) \text{ (mod } \ell \text{), } p \neq \ell} \left(1 + \frac{\omega_\chi(p)}{p^s} \right),
\]
where we set

\[\omega_{\chi}(p) = \begin{cases} \ell - 1 & \text{if } \chi(p) = 1 \\ -1 & \text{if } \chi(p) \neq 1, \end{cases} \]

where as usual \(p \) is any ideal of \(K \) above \(p \).

Proof. The computation is routine, given the following consequences of our previous results.

- We have \(k = \mathbb{Q} \) so \(\ell^{\ell - 1}\mathbb{Q}^{s} = \ell^{s/(\ell - 1)} \).
- The factor \(\prod_{p \mid \ell} \mathcal{N}(p) \) is equal to \(\ell^{-(\ell - 2)s/(\ell - 1)} \) if \(\ell \not| D \) and to \(\ell^{-(\ell - 3)s/(2(\ell - 1))} \) if \(\ell \mid D \).

Multiplying by the first factor this gives \(\ell^{-2s} \) if \(\ell \not| D \) and \(\ell^{-3s/2} \) if \(\ell \mid D \).

- We have \(\ell^{\ell\mathbb{Q}(K) = \ell^{r_2(D)}} \) by Lemma 5.2, with \(r_2(D) := r_2(\mathbb{Q}(\sqrt{D})) \).
- By Definitions 4.5 and 4.1, we have \(\mathcal{N}(b) = (1, s, \ell, \ell^2) \) and \(\mathcal{N}(s) = (1, \ell^{1/2}, \ell, \ell^{3/2}) \) for \(\ell \not| D \) and \(\ell \mid D \), respectively.
- As already mentioned, if \(k = \mathbb{Q} \) and \(\ell > 3 \) we have \(r^*(b) = (1) \), so the terms and conditions involving \(r^*(b) \) disappear (in other words we use Corollary 6.2).
- By Lemma 4.3, we have \(p \in \mathbb{D} \) if and only if \(p \equiv (\frac{D}{p}) \mod \ell \) and \(p \neq \ell \), and \(D_\ell = 0 \) when \(\ell \neq 3 \) by what we have just said.
- By Lemma 4.3 and Definition 4.5 of \(P(b, s) \), when \(\ell \not| D \) and \(\ell \mid D \), respectively, we have \(P(b, s) = (1, * - \ell^{-s}, 1) \) and \(P(b, s) = (1, \ell^{-s/2}, 1) \) for \(\ell \not| D \), respectively, for the usual sequence of \(b \).
- The values of \(|(Z_{b,\ell}/Z_{\ell})[T]| \) are given in Proposition 7.1. □

Corollary 7.4. Assume \(\ell \geq 5 \), and set \(L_\ell(s) = 1 + (\ell - 1)/\ell^s \) if \(\ell \not| D \) and \(L_\ell(s) = 1 + (\ell - 1)/\ell^s \) if \(\ell \mid D \). There exists a function \(\phi_D(s) = \phi_D,\ell(s) \), holomorphic for \(\Re(s) > 1/2 \), such that

\[\Phi_\ell(K, s) = \phi_D(s) + \frac{1}{(\ell - 1)(\ell^{1-r_2(D)})L_\ell(s)} \prod_{p \equiv (\frac{D}{p}) \mod \ell, p \neq \ell} \left(1 + \frac{\ell - 1}{p^s} \right). \]

Proof. Same as in [13, Proposition 7.5]: The main term is the contribution of the trivial characters, and \(\phi_D(s) \) is the contribution of the nontrivial characters: we first regard each \(\chi \in \mathcal{G}_b \) as a character of \(\mathbb{C}^{\mathbb{Q}(K)} \) by Proposition 6.3 and then by setting \(\chi \) equal to 1 on the orthogonal complement of \(\mathcal{C}^{\mathbb{Q}(K)}[\tau - g] \). By the previous lemma, the primes occurring in the product are precisely those for which \(p \) is totally split in \(K' \). Therefore, for each set of nontrivial characters \(\chi, \chi^2, \ldots, \chi^{\ell - 1} \in \mathcal{G}_b \), the sum of products \(F(b, \chi, s) \) may be written as \(g(s) + \sum \chi L(s, \chi) \), where \(L(s, \chi) \) is the (holomorphic) Hecke \(L \)-function associated to \(\chi \), and \(g(s) \) is a Dirichlet series supported on squarefull numbers, absolutely convergent and therefore holomorphic in \(\Re(s) > 1/2 \). Therefore, \(\phi_D(s) \) is holomorphic in \(\Re(s) > 1/2 \) as well. We also note that the product of the main term may similarly be written as \(h(s) + L(s, \omega_0) \), where \(\omega_0 \) is the trivial Hecke character, and \(h(s) \) satisfies the same properties as \(g(s) \).

The \(\ell = 3 \) case is slightly different due to the nontriviality of \(r^*(b) \); see [13]. □

Corollary 7.5. Assume \(\ell \geq 5 \) and denote by \(M_{\ell}(D; X) \) the number of \(L \in \mathcal{F}_{\ell}(\mathbb{Q}(\sqrt{D})) \) such that \(f(L) \leq X \). Set \(c_1(\ell) = 1/((\ell - 1)\ell^{1-r_2(D)}) \), \(c_2(\ell) = (\ell^2 + \ell - 1)/\ell^2 \) when \(\ell \not| D \) or \(c_2(\ell) = 2 - 1/\ell \) when \(\ell \mid D \).
(1) In the general case, or in the special case with $\ell \equiv 1 \pmod{4}$, for any $\varepsilon > 0$, we have

$$M_\ell(D; X) = C_\ell(D)X + O_D(X^{1 - \frac{2}{\ell^2} + \varepsilon}),$$

with

$$C_\ell(D) = c_1(\ell) c_2(\ell) \prod_{p \equiv (\ell^2)} \left(1 + \frac{\ell - 1}{p^s}\right),$$

and in the special case the product is equivalently over $p \equiv 1 \pmod{\ell}$.

(2) In the special case with $\ell \equiv 3 \pmod{4}$, for any $\varepsilon > 0$, we have

$$M_\ell(D; X) = C_\ell(D)(X \log(X) + C_\ell'(D)) + O_D(X^{1 - \frac{2}{\ell^2} + \varepsilon}),$$

with

$$C_\ell(D) = c_1(\ell) c_2(\ell) \lim_{s \to 1^+}(s - 1)^2 \prod_{p \equiv \pm 1 \pmod{\ell}} \left(1 + \frac{\ell - 1}{p^s}\right),$$

and $C_\ell'(D)$ can also be given explicitly if desired.

Proof. The result follows by the same proof as in [13], with $C_\ell(D)$ equal to the residue at $s = 1$ of Φ.

We briefly recall how to obtain the error term. By the proof of Corollary 7.4, it equals (up to an implied constant depending on D and ℓ) the error made in estimating partial sums of Hecke L-functions of degree $\ell - 1$. We carry this out in the standard way, subject to the limitation that we may not shift any contour to $\Re(s) \leq 1/2$. We have by Perron’s formula, for each Hecke L-function $\xi(s) = \sum_n a(n)n^{-s}$ and any $c > 1$,

$$\sum_{n < X} a(n) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \xi(s) \frac{X^s}{s} ds,$$

and we shift the portion of the contour from $c - iT$ to $c + iT$ to $\Re(s) = \sigma$ for $\sigma \in (1/2, 1)$ and $T > 0$ to be determined. By convexity, we have $|\xi(s)| \ll T^{\frac{1}{2} - \frac{1}{2}(1 - \sigma + \varepsilon)}$, and choosing $c = 1 + \varepsilon$, $\sigma = 1/2 + \varepsilon$ our integral is $\ll T^{\frac{1}{2} - \frac{1}{2}(1 + 2\varepsilon)} X^{\frac{1}{2} + \varepsilon} + X^{1 + 2\varepsilon}/p^s$; then choosing $T = X^\frac{1}{2\varepsilon}$, we obtain an error term of $X^{1 - \frac{2}{\ell^2} + \varepsilon}$. \hfill \square

In a separate paper by the first author [8], one explains how to compute the constants $C_\ell(D)$ to high accuracy (100 decimal digits, say) for reasonably small values of $|D|$. For example, we have

$$C_3(-3) = 0.0669077333013783712918416 \cdots, \quad C_3(-4) = 0.13621906762412841449867 \cdots.$$

8. **Study of the groups G_ℓ**

In this section, where we continue to assume that $k = \mathbb{Q}$ and also assume that $\ell \geq 5$, we study the groups G_ℓ appearing in Theorem 7.3. Much of this was carried out in our paper [14] with Rubinstein–Salzedo, and we give only a brief account of those results which are proved there.

We are indebted to Hendrik Lenstra for help in this section.

We recall a few of the important notations used previously.

- K_ℓ is an abelian extension of \mathbb{Q} containing the ℓth roots of unity, with $G = \text{Gal}(K_\ell/\mathbb{Q}) = \langle \tau, \omega \rangle$ or $\langle \tau \rangle$ in the general and special cases, respectively.
- As in Proposition 2.4, $N_\ell = K_\ell(\sqrt{\alpha})$ is a cyclic extension, for which we wrote $a\mathbb{Z}_{K_\ell} = q^i \prod_{0 \leq i \leq \ell - 2} a_i^{\alpha_i}$ and (in Proposition 2.19) $\prod_{0 \leq i \leq \ell - 2} a_i = a_\alpha \mathbb{Z}_{K_\ell}$ for an ideal a_α of K.
- We recall the possibilities for b (equivalently, b_ℓ) from (7.1), and we continue to use the notation $(-, -, -, -)$ for quantities depending on b.

For any \(b \) as in (7.1), we define \(b^* := (1 - \zeta_\ell)^\ell / b_z \).

Proposition 8.1. With the notation above, we have \(f(N_z/K_z) | b_z \) if and only if \(\overline{\pi} \in S_{b^*}(K_z) \).

Proof. This is very classical, and essentially due to Kummer and Hecke: for instance, by [9, Theorem 3.7], we have

\[
f(N_z/K_z) = (1 - \zeta_\ell)^\ell a_\alpha / \prod_{p_\ell | f, p_\ell \notdivides a_\alpha} p_\ell^{A_\alpha(p_\ell) - 1}.
\]

Thus, since \(a_\alpha \) is coprime to the product, then \(f(N_z/K_z) | (1 - \zeta_\ell)^\ell \) if and only if \(a_\alpha = \mathbb{Z}_K \), that is, if and only if \(\alpha \) is a virtual unit. If this is the case, then \(f(N_z/K_z) | b_z \) if and only if the product is a multiple of \((1 - \zeta_\ell)^\ell / b_z = b^* \), and by the definition of \(A_\alpha \) and the congruence in Proposition 3.6, this is equivalent to the solubility of the congruence \(x^\ell / \alpha \equiv 1 (\text{mod } b^*) \), hence to \(\overline{\pi} \in S_{b^*}(K_z) \).

Theorem 8.2 [14, Corollary 3.2]. Writing \(C_\ell := \text{Cl}_{b^*}(K_z) / \text{Cl}_{b_z}(K_z) \), so that \(G_\ell = C_\ell[T] \), and \(\mu_\ell \) for the group of \(\ell \)-th roots of unity, there exists a perfect, \(G \)-equivariant pairing of \(\mathbb{F}_\ell[G] \)-modules

\[
C_\ell \times S_{b^*}(K_z) \mapsto \mu_\ell.
\]

Proof. This is the Kummer pairing: Given \(\overline{\pi} \in C_\ell \), let \(\sigma_\alpha \) denote its image under the Artin map; given \(\overline{\pi} \in S_{b^*}(K_z) \), let \(\alpha \) be any lift; then define the pairing by \((\overline{\pi}, \overline{\alpha}) \mapsto \sigma_\alpha(\sqrt[\ell]{\alpha}) / \sqrt[\ell]{\alpha} \in \mu_\ell \).

Corollary 8.3 [14, Corollary 3.3 (in part)]. In the general case, where \(T = \{ \tau - g, \tau_2 + 1 \} \), define \(T^* = \{ \tau - 1, \tau_2 + 1 \} \), and in the special case, where \(T = \{ \tau + g \} \), define \(T^* = \{ \tau + 1 \} \). Then we have a perfect pairing

\[
G_\ell \times S_{b^*}(K_z)[T^*] \mapsto \mu_\ell.
\]

In particular, we have

\[
|G_\ell| = |S_{b^*}(K_z)[T^*]|.
\]

Proof. Recalling that \(\tau(\zeta_\ell) = \zeta_\ell^j \), for any \(j \) the preceding corollary yields a perfect pairing

\[
C_\ell[\tau - g] \times S_{b^*}(K_z)[\tau - g^{1-j}] \mapsto \mu_\ell.
\]

We conclude by taking \(j = 1 \) and \(j = (\ell + 1)/2 \) in the general and special cases, respectively.

Proposition 8.4. In the special case, we have \(\text{Cl}(\mathbb{Q}_z) / \text{Cl}(\mathbb{Q}_z)[\tau + 1] = \{ 1 \} \).

Proof. We first show that there exists an isomorphism

\[
\text{Cl}(\mathbb{Q}_z) / \text{Cl}(\mathbb{Q}_z)[\tau + 1] \simeq \text{Cl}(K) / \text{Cl}(K)[\tau + 1].
\]

By Lemma 2.3 (which also applies to \(t = \tau + 1 \)), the left side consists of those classes which may be represented by ideals of the form \(\mathcal{N}_{\mathbb{Q}_z/K}(a) / \tau(\mathcal{N}_{\mathbb{Q}_z/K}(a)) \). We therefore obtain a well-defined injective map to \(\text{Cl}(K) / \text{Cl}(K)[\tau + 1] \). Any ideal in the target space may be represented by an ideal of the form \(\epsilon / \tau(\epsilon) \), which is equivalent to \((\epsilon / \tau(\epsilon))^{(\ell - 1)^2} \), and \((\ell - 1)^2 = \mathcal{N}_{\mathbb{Q}_z/K}(\epsilon^{2(\ell - 1)} \mathbb{Z}_{\mathbb{Q}_z}) \), so that the map is surjective as well.
Now it suffices to show that \(\ell \nmid h(\pm \ell) \), where \(h(D) \) denotes the class number of \(\mathbb{Q}(\sqrt{D}) \), and this follows from the fact that \(h(\pm \ell) < \ell \) for all prime \(\ell \).

Remark 8.5. For \(\ell \equiv 3 \pmod{4} \), it is also possible to prove the proposition via the Herbrand–Ribet theorem and a congruence for Bernoulli numbers.

Now suppose \(\ell \equiv 1 \pmod{4} \). Then the AAC conjecture \([1, 29]\) states that if \(\epsilon = (a + b\sqrt{\ell})/2 \) is the fundamental unit of \(\mathbb{Q}(\sqrt{\ell}) \), then \(\ell \nmid b \). We will use the statement of the conjecture directly, but we note that Ankeny and Chowla \([2]\) and Kiselev \([23]\) proved that it is equivalent to the condition \(\ell \nmid B_{(\ell-1)/2} \), which is trivially true if \(\ell \) is a regular prime, a result first proved by Mordell \([29]\). It has been verified for \(\ell \leq 2 \cdot 10^{11} \) by van der Poorten, te Riele, and Williams \([35]\), but as mentioned in the introduction, on heuristic grounds it is probably false.

Lemma 8.6. (1) If AAC is true for \(\ell \), the congruence \(x^\ell \equiv \varepsilon \pmod{(1 - \zeta)k\mathbb{Z}_{Q_\ell}} \) is solvable for \(k = (\ell - 1)/2 \), and not for any larger value of \(k \).

(2) If AAC is false for \(\ell \), then this congruence is solvable for all \(k \).

Proof. First assume AAC, and write \(\varepsilon = (a + b\sqrt{\ell})/2 \) with \(a, b \in \mathbb{Z} \). Note first that \((1 - \zeta)^{(\ell - 1)/2}\mathbb{Z}_{Q_\ell} = \sqrt{\mathbb{Z}_{Q_\ell}} \), and \(\varepsilon \equiv a/2 \equiv (a/2)^\ell \pmod{\sqrt{\mathbb{Z}_{Q_\ell}}} \), so the congruence is solvable with \(k = (\ell - 1)/2 \).

Conversely, for each \(x \in \mathbb{Z}_{Q_\ell} \), we have \(x^\ell \equiv m \pmod{\mathbb{Z}} \) for some \(m \in \mathbb{Z} \), so that a solution to \(x^\ell \equiv \varepsilon \pmod{\sqrt{\ell}(1 - \zeta)\mathbb{Z}_{Q_\ell}} \) would yield \(a + b\sqrt{\ell} \equiv 2m \pmod{\sqrt{\ell}(1 - \zeta)\mathbb{Z}_{Q_\ell}} \). We thus have \(a \equiv 2m \pmod{\sqrt{\ell}} \) and hence \(a \equiv 2m \pmod{\mathbb{Z}} \), yielding \(b \equiv 0 \pmod{(1 - \zeta)\mathbb{Z}_{Q_\ell}} \) and so \(\ell \nmid b \), violating AAC and proving (1).

To obtain (2), observe that the congruence may trivially be solved for \(k = 3(\ell - 1)/2 \) with \(x \in \mathbb{Z} \), after which a Newton–Hensel iteration as in \([7, \text{Lemma 10.2.10}] \) settles the matter.

We now return to the groups \(S_{b^\ast}((K_\ell)[T^\ast]) \).

Proposition 8.7. (1) In the general case, we have \(S_{b^\ast}((K_\ell)[T^\ast]) \simeq S_{b^\ast \cap K}(K) \).

(2) In the special case with \(\ell \equiv 3 \pmod{4} \), we have \(S_{b^\ast}((K_\ell)[T^\ast]) = \{1\} \) for all \(b \).

(3) In the special case with \(\ell \equiv 1 \pmod{4} \), if the AAC conjecture is true for \(\ell \), then we have \(|S_{b^\ast}((K_\ell)[T^\ast])| = (1, 1, \ell, \ell) \) for \(b \) as in (7.1). If AAC is false for \(\ell \), then we have instead \(|S_{b^\ast}((K_\ell)[T^\ast])| = (\ell, \ell, \ell, \ell) \).

Proof. (1) \([14, \text{Proposition 3.4}] \). We have an injection \(S_{b^\ast \cap K}(K) \to S_{b^\ast}(K_\ell)[\tau - 1] \) which we prove is surjective by Hilbert 90 and some elementary computations, yielding an isomorphism \(S_{b^\ast}(K_\ell)[\tau - 1, \tau_2 + 1] \simeq S_{b^\ast \cap K}(K)[\tau_2 + 1] \). Furthermore, we have

\[
S_{b^\ast \cap K}(K) = S_{b^\ast \cap K}(K)[\tau_2 + 1] \oplus S_{b^\ast \cap K}(K)[\tau_2 - 1],
\]

and we argue that \(S_{\ell}(K)[\tau_2 - 1] \) is trivial (and a fortiori all the \(S_{b^\ast \cap K}(\tau - 1) \)), again using Hilbert 90.

(2) and (3). Assume now that we are in the special case, so that \(K_\ell = Q_\ell = Q(\zeta_\ell) \). By Proposition 8.4, we have \((\text{Cl}(K_\ell))/\text{Cl}(K_\ell)^\ell)[\tau + 1] = \{1\} \), so that by Lemma 2.6 we have \(S_{\ell}(K_\ell)[T^\ast] \simeq (U(K_\ell^\ell))/U(K_\ell^\ell)^\ell)[\tau - \varrho^\ell] \). By \([9, \text{Theorem 2.3}] \), we deduce that \(S_{\ell}(K_\ell)[T^\ast] \) is trivial if \(\ell \equiv 3 \pmod{4} \), \(\ell \neq 3 \), and when \(\ell \equiv 1 \pmod{4} \) that it is an \(\mathbb{F}_\ell \)-vector space of dimension 1. If \(\varepsilon \) is a fundamental unit of \(K = Q(\sqrt{\ell}) \), then since \(\tau \) acts on \(\varepsilon \) as Galois conjugation of \(K/Q \), we have \(\varepsilon \tau(\varepsilon) = N_{K/Q}(\varepsilon) = \pm 1 \), which is an \(\ell \)th power. It follows that \(S_{\ell}(K_\ell)[T^\ast] = \{\varepsilon^j, j \in \mathbb{F}_\ell\} \).

The sizes of the ray Selmer groups are then established by Lemma 8.6.

\(\square \)
Remark 8.8. The assumption that $\ell \neq 3$ is required when applying [9, Theorem 2.3], and indeed (2) of the proposition is false for $\ell = 3$ (see [13, Proposition 7.3]).

This proposition, in combination with Corollary 8.3, gives the size of $|G_b|$ in the special case, with possible exceptions $\ell \equiv 1 \pmod{4}$ larger than $2 \cdot 10^{11}$. In the general case, we have the following:

Corollary 8.9 [14, Corollary 3.5]. Assume that we are in the general case.

1. We have a canonical isomorphism $G_b \simeq \text{Hom}(S_{b^* \cap K}(K), \mu_\ell)$.
2. In particular, $|G_b| = \ell^{r(b)}$ with $r(b) = 1 - r_2(D) - z(b) + \text{rank}(\text{Cl}_{b^* \cap K}(K))$,

with $z(b) = (2, 1, 0, 0)$, respectively, the second case occurring only if $\ell \nmid D$.

3. In particular, if $D < 0$ and $\ell \nmid h(D)$, then G_b is trivial for all $b \in \mathcal{B}$.

Proof. (1) is immediate. Lemma 2.6, and Proposition 2.12 of [9], the proofs of which adapt to K without change, yield

$$|S_b(K)||Z_{b^1}/Z_{b^1}| = \ell^{1-r_2(D)}|\text{Cl}_{b^1}(K)/\text{Cl}_{b^1}(K)^\ell|,$$

where $Z_{b^1} = (\mathbb{Z}_K/b^1)^*$ and $b_1 = b^* \cap K$. This gives (2) with $z(b) = \dim_{\mathbb{Q}_\ell}(Z_{b^1}/Z_{b^1}^{\ell})$, and to finish we compute for b as in (7.1):

- If $\ell \nmid D$, we have $b^* \cap K = (\ell^2\mathbb{Z}_K, *, \ell\mathbb{Z}_K, \mathbb{Z}_K)$.
- If $\ell \mid D$ with $\ell\mathbb{Z}_K = p_\ell^2$, we have $b^* \cap K = (p_\ell^2, p_\ell^2, p_\ell, \mathbb{Z}_K)$.

Note that (3) is a generalization of [13, Proposition 7.7].

Since the triviality of G_b for all b is equivalent to the vanishing of the ‘remainder term’ $\phi_D(s)$ of Corollary 7.4, we conclude that $\Phi_{\ell}(K,s)$ is given by a single Euler product in a wide class of examples.

Corollary 8.10. Assume $\ell \geq 5$, $D < 0$, and that either we are in the special case (so that $\ell \equiv 3 \pmod{4}$), or that we are in the general case with $\ell \nmid h(D)$. Then we have

$$\sum_{L \in \mathcal{F}_\ell(K)} \frac{1}{f(L)^s} = -\frac{1}{\ell - 1} + \frac{1}{\ell - 1} L_\ell(s) \prod_{p \equiv (\ell) \pmod{2}, p \neq \ell} \left(1 + \frac{\ell - 1}{p^s}\right),$$

where $L_\ell(s)$ is as above.

Note that for $\ell = 3$, which we have excluded here, the possible nontriviality of $v_\ell(b)$ forces us to also distinguish between $D \equiv 3$ and $D \equiv 6 \pmod{9}$.

Examples with $\ell = 5$:

$$\sum_{L \in \mathcal{F}_5(\mathbb{Q}(\sqrt{-1}))} \frac{1}{f(L)^s} = -\frac{1}{4} + \frac{1}{4} \left(1 + \frac{4}{5^{2s}}\right) \prod_{p \equiv \pm 1 \pmod{20}} \left(1 + \frac{4}{p^s}\right),$$

$$\sum_{L \in \mathcal{F}_5(\mathbb{Q}(\sqrt{-15}))} \frac{1}{f(L)^s} = -\frac{1}{4} + \frac{1}{4} \left(1 + \frac{4}{5^{s}}\right) \prod_{p \equiv \pm 1 \pmod{30}} \left(1 + \frac{4}{p^s}\right).$$
9. Transformation of the main theorem

We now prove, as we did in [15] for the case of $\ell = 3$, that the characters of G_b appearing in Theorem 6.1 can be given a simpler description, in terms of the splitting of primes in degree ℓ extensions of k. Our main result along these lines extends [15, Theorem 4.1] and [14, Proposition 3.7], and does not assume that $k = \mathbb{Q}$, and thus is new even for $\ell = 3$.

For the case $k = \mathbb{Q}$, we will further specialize the result and obtain an explicit formula, relying (in the general case) on the results of [14]. We will assume that we are in either the general case or in the special case with $\ell \equiv 1 \pmod{4}$. Recall that in the special case with $k = \mathbb{Q}$, $\ell \equiv 3 \pmod{4}$, and $\ell > 3$, G_b is trivial and Corollary 8.10 already gives a simple description of $\Phi_\ell(K, s)$. For simplicity’s sake, we will omit the special case with $k \neq \mathbb{Q}$, $\ell \equiv 3 \pmod{4}$; as we will see below the group theory would work out a bit differently.

Recall that the Frobenius group $F_\ell = C_\ell \times C_{\ell-1}$ is the nonabelian group of order $\ell(\ell - 1)$ given as

$$\langle \tau, \sigma : \tau^{\ell-1} = \sigma^\ell = 1, \tau \sigma \tau^{-1} = \sigma^h \rangle,$$

for any primitive root $h \pmod{\ell}$. As may be easily checked, $C_{\ell-1}$ is not normal in F_ℓ nor is any nontrivial subgroup of $C_{\ell-1}$; moreover, there are ℓ subgroups isomorphic to $C_{\ell-1}$, generated by $\tau \sigma^i$ for $0 \leq i \leq \ell - 1$, and all of these subgroups are conjugate. We will say that a degree ℓ field extension E/k is an F_ℓ-extension if its Galois closure has Galois group F_ℓ over k.

Now let K, K_1, τ, τ_2 be defined as before. In the general case recall that K' was defined to be the mirror field of K, for example, the subfield of K_2 fixed by $\tau^{(\ell-1)/2}\tau_2$; in the special case, write $K' = K_2 = \mathbb{Q}$. We chose $\tau \in \text{Gal}(k_2/k)$ and a primitive root $g \pmod{\ell}$ with $\tau(\zeta_\ell) = \zeta_\ell^g$. In the general case, τ lifts uniquely to an element of $\text{Gal}(K_2/K)$ and restricts to a unique element of $\text{Gal}(K'/k)$, so in either case the choice of $g \pmod{\ell}$ uniquely determines $\tau \in \text{Gal}(K'/k)$.

Theorem 9.1. Assume, if $\ell \equiv 3 \pmod{4}$, that we are in the general case. For each $b \in \mathcal{B}$ (as in Theorem 6.1), there exists a bijection between the following sets.

- Characters $\chi \in \hat{G}_b$, up to the equivalence relation $\chi \sim \chi^a$ for each a coprime to ℓ.
- Subgroups of index ℓ of G_b.
- F_ℓ-extensions E/k (up to isomorphism), whose Galois closure E' contains K' and whose conductor $f(E'/K')$ divides $b = b' \cap K$, and such that $\tau \sigma \tau^{-1} = \sigma^g$ for $\tau \in \text{Gal}(K'/k)$ as described above and any generator σ of $\text{Gal}(E'/K')$.

Moreover, for each corresponding pair (χ, E) and each prime $p \in \mathcal{D} \cup \mathcal{D}_\ell$, the following is true: we have $p \in \mathcal{D}'(\chi) \cup \mathcal{D}'_\ell(\chi)$ if and only if p is totally split in E; equivalently, $p \notin \mathcal{D}'(\chi) \cup \mathcal{D}'_\ell(\chi)$ if and only if p is totally inert or totally ramified in E.

Proof. The proof borrows heavily from those of [15, Proposition 4.1] and [14, Proposition 3.7].

The correspondence between the first two sets is immediate: G_b is elementary ℓ-abelian, and characters correspond to their kernels.

By Proposition 6.3, regard G_b as $\frac{\text{Cl}_{b'}(K')}{\text{Cl}_{b'}(K')^\ell} \lmod{\tau \mp g}$, where the sign is $-$ in the general case and $+$ in the special case. If we set $G'_b = \text{Cl}_{b'}(K')/\text{Cl}_{b'}(K')^\ell$, by Lemmas 2.1 and 2.3, we have the orthogonal decomposition $G'_b = G_b \times G''_b$, where G''_b is the direct sum of all of the other eigenspaces for the actions of τ. Thus, subgroups of G_b of index ℓ correspond to subgroups B of $\text{Cl}_{b'}(K')$ of index ℓ containing G''_b.

By class field theory, there exists a unique abelian extension E'/K', with Galois group C_ℓ and conductor dividing b', for which the Artin map induces an isomorphism $\text{Cl}_{b'}(K')/B \simeq$
Gal(E'/K'). The uniqueness forces E' to be Galois over k; here we use that b', B, and $\text{Cl}_{b'}(K')$ are preserved by $\text{Gal}(K'/k)$. For each fixed b, we obtain a different E' for each B.

Because the action of $\text{Gal}(K'/k)$ on $\text{Cl}_{b'}(K')/B_{\chi}$ matches its conjugation action on $\text{Gal}(E'/K')$, we have

$$\text{Gal}(E'/k) = \langle \tau, \sigma : \tau^\ell = 1, \sigma \tau = \sigma^{-g} \rangle \simeq F_{\ell},$$

and we take E to be the fixed field of $\langle \tau \rangle$ (or, alternatively, of any conjugate subgroup). Note that $-g$ is not a primitive root if $\ell \equiv 3 \pmod{4}$, so that in the special case with $\ell \equiv 3 \pmod{4}$ the group (9.1) contains $\tau^{(\ell-1)/2}$ in its center and is not isomorphic to F_{ℓ}.

It must finally be proved that whether $p \in \mathcal{D}'(\chi)$ is determined by its splitting in E. Proposition 2.15 or Corollary 2.12 implies that $\mathcal{D} \cup \mathcal{D}_\ell$ is precisely the set of primes p which split completely in K'/k, and by definition $\mathcal{D}'(\chi) \cup \mathcal{D}_\ell(\chi)$ is the set of primes $p \in \mathcal{D} \cup \mathcal{D}_\ell$ for which one (equivalently, all) of the primes $p_{K'}$ of K' above p splits completely in E'. If $p_{K'}$ splits completely in E', then so does p, so p also splits completely in E/k. Conversely, if any $p_{K'}$ is completely ramified or inert in K_2, then p must also do the same in each E, since ramification and inert degrees are multiplicative and $[E' : E] = \ell - 1$.

For $\ell = 3$ and $k = \mathbb{Q}$ in the general case, in [15] we further applied a theorem of Nakagawa to give a precise description of all the extensions E'/\mathbb{Q} occurring in the statement of Theorem 9.1 in terms of their discriminants. Using this, we obtained the formula

$$\frac{2}{3^{\omega_3(D)}} \Phi_3(Q(\sqrt{D}), s) = M_1(s) \prod_{(3, D) = 1} \left(1 + \frac{2}{p^2}\right) + \sum_{E \in \mathcal{L}_3(D)} M_{2, E}(s) \prod_{(3, D) = 1} \left(1 + \frac{\omega_E(p)}{p^s}\right),$$

where $\mathcal{L}_3(D)$ is the set of all cubic fields of discriminant $-D/3$, $-3D$, and $-27D$; $\omega_E(p)$ is 2 or -1 depending on whether p is split or inert in E, as in Theorem 9.1; and $M_1(s)$ and $M_{2, E}(s)$ are 3-adic factors (a sum of the appropriate $A_{b_0}(s)$).

9.1. Explicit computations for $k = \mathbb{Q}$ in the special case

For $\ell = 3$, we have the following explicit formula (corresponding to pure cubic fields), which was previously proved in [13].

$$\sum_{L \in \mathcal{F}_3(\mathbb{Q}(\sqrt{-3}))} \frac{1}{f(L)^3} = -\frac{1}{2} + \frac{1}{6} \left(1 + \frac{2}{3^2} + \frac{6}{3^2} \right) \prod_{p \neq 3} \left(1 + \frac{2}{p^s}\right) + \frac{1}{3} \prod_{p} \left(1 + \frac{\omega_E(p)}{p^s}\right),$$

where E is the cyclic cubic field defined by $x^3 - 3x - 1 = 0$ of discriminant 3^4, and

$$\omega_E(p) = \begin{cases}
-1 & \text{if } p \text{ is inert or totally ramified in } E, \\
2 & \text{if } p \text{ is totally split in } E \text{ (equivalently, } p \equiv \pm 1 \pmod{9}).
\end{cases}$$

For $\ell \equiv 3 \pmod{4}$ and $\ell > 3$, a generalization was proved in Corollary 8.10. For $\ell \equiv 1 \pmod{4}$, the generalization is more complicated due to the nontriviality of G_b. Define a polynomial

$$P(x) = -2iT_\ell(ix/2) = \sum_{k=0}^{(\ell-1)/2} \frac{(\ell-k-1)!}{k!(\ell-2k)!} x^{\ell-2k}.$$
Here $T_\ell(x)$ is the Chebyshev polynomial of the first kind, satisfying
\[P(x - x^{-1}) = x^\ell - x^{-\ell}, \tag{9.3} \]
so that $x^{-1}P(x)$ is the minimal polynomial of $\zeta_\ell - \zeta_\ell^{-1}$.

Proposition 9.2. Assume that $\ell \equiv 1 \pmod{4}$ satisfies the AAC conjecture, and let ε be a fundamental unit of $\mathbb{Q}(\sqrt{\ell})$. Then we have
\[
\sum_{L \in \mathcal{F}_\ell(\mathbb{Q}(\sqrt{\ell}))} \frac{1}{f(L)^s} = -\frac{1}{\ell - 1} + \frac{1}{\ell(\ell - 1)} \left(1 + \frac{\ell - 1}{\ell^s} \right) \prod_{p \equiv 1 \pmod{\ell}} \left(1 + \frac{\ell - 1}{p^s} \right)
+ \frac{1}{\ell} \prod_p \left(1 + \frac{\omega_E(p)}{p^s} \right),
\]
where E is the F_ℓ-field defined by $P(x) - \text{Tr}(\varepsilon) = 0$ of discriminant $\ell(3\ell^2 - 2\ell - 3)/2$, and
\[
\omega_E(p) = \begin{cases} -1 & \text{if } p \text{ is inert or totally ramified in } E, \\ \ell - 1 & \text{if } p \text{ is totally split in } E, \\ 0 & \text{otherwise.} \end{cases}
\]

If $\ell \equiv 1 \pmod{4}$ does not satisfy the AAC conjecture, we have the same formula, but with $\text{Disc}(E) = \ell^{\ell - 2}$ and $\omega_E(\ell) = \ell - 1$.

Corollary 9.3. Let $\ell \equiv 1 \pmod{4}$. Then there exist D_ℓ-fields ramified only at ℓ if and only if the AAC conjecture is false for ℓ.

Proof. Immediately for ℓ not satisfying the conjecture, the field is unique and has discriminant $\ell^{3(\ell - 1)}$. \(\square\)

Remark 9.4. This corollary recovers and strengthens a result of Jensen and Yui [22, Theorem I.2.2], who proved that if $\ell \equiv 1 \pmod{4}$ is regular, then there are no D_ℓ-fields with discriminant a power of ℓ. (This can also be seen for $\ell \equiv 3 \pmod{4}$ from Corollary 8.10.)

The connection to the AAC conjecture was previously observed by Lemmermeyer [26], who suggested that a proof of Corollary 9.3 may exist somewhere in the literature.

Before beginning the proof of Proposition 9.2, we establish the following:

Lemma 9.5. We have
\[
\text{Disc}(N_z) = \begin{cases} \ell(3\ell^2 - 2\ell - 3)/2 & \text{if AAC is true,} \\ \ell(\ell - 2) & \text{if AAC is false.} \end{cases}
\]

In addition, in the extension N_z/\mathbb{Q}_z the prime ideal $(1 - \zeta)\mathbb{Z}_Q$ is totally ramified if AAC is true and totally split otherwise.

Proof. The field N_z is a Kummer extension of $K_z = \mathbb{Q}_z$ with defining equation $x^\ell - \varepsilon = 0$, so that
\[
\text{Disc}(N_z) = \pm N_{\mathbb{Q}_z/Q}(\mathcal{O}(N_z/\mathbb{Q}_z))\text{Disc}(\mathbb{Q}_z)^\ell = \pm \ell(\ell - 2)N_{\mathbb{Q}_z/Q}(\mathcal{O}(N_z/\mathbb{Q}_z))^\ell - 1,
\]
where $\mathcal{O}(N_z/\mathbb{Q}_z)$ is the conductor.

By [9, Theorem 3.7] applied to $K = \mathbb{Q}_z$ and $\alpha = \varepsilon$ which is a unit, we have $\mathcal{O}(N_z/\mathbb{Q}_z) = (1 - \zeta)^{\ell + 1 - A_z}$, where $A_z = \ell + 1$ if $x^\ell \equiv \varepsilon \pmod{1 - \zeta^\ell}$ has a solution in \mathbb{Q}_z, and otherwise
A_{ℓ} is the maximal k such that $x^k \equiv \varepsilon \pmod{(1 - \zeta)^k}$ has a solution. By Lemma 8.6, we have $A_{\ell} = (\ell - 1)/2$ (respectively, $A_{\ell} = \ell + 1$) if AAC is true (respectively, false), hence $f(N_z/Q_z) = (1 - \zeta)^{(\ell + 3)/2}z_{Q_z}$ (respectively, $f(N_z/Q_z) = z_{Q_z}$), from which the formula follows (note that the sign of the discriminant is positive since Q_z hence N_z is totally complex). In addition, if AAC is false, so that C_k is soluble for all k, then Hecke’s Theorem [7, 10.2.9] (an extension of [9, Theorem 3.7]) implies that $(1 - \zeta)\mathbb{Z}_{Q_z}$ is totally split, while if AAC is true, then it is totally ramified. □

Proof of Proposition 9.2. The result follows for an undetermined E by Theorem 9.1 and Proposition 8.7. To determine E, observe that Proposition 8.1 and the proof of Proposition 8.7 imply that $N_z = k_x(\varepsilon^{1/\ell})$, and that the considerations in the proof of Theorem 9.1 allow us to take E to be any of the (conjugate) degree ℓ subfields of N_z, so that it suffices to exhibit one.

We take $E = Q(\varepsilon^{1/\ell} - \varepsilon^{-1/\ell})$ for any fixed choice of $\varepsilon^{1/\ell}$, recalling that the fundamental unit has norm -1. Then the minimal polynomial of E is $P(x) \equiv Tr(\varepsilon)$ by construction, or more precisely by (9.3).

It remains only to argue that

$$\text{Disc}(E) = \begin{cases} \ell^{(3\ell - 1)/2} & \text{if AAC is true,} \\ \ell^{-2} & \text{if AAC is false.} \end{cases}$$

We assume that AAC is true (if false, a similar proof applies). On the one hand, we have

$$\text{Disc}(N_z) = \text{Disc}(E)^{\ell - 1}\mathcal{N}_{E/Q}(\mathfrak{d}(N_z/E)),$$

in other words taking valuations and using the proposition:

$$(\ell - 1)v_\ell(\text{Disc}(E)) = (3\ell^2 - 2\ell - 3)/2 - v_\ell(\mathcal{N}_{E/Q}(\mathfrak{d}(N_z/E)))$$

$$= (\ell - 1)(3\ell - 1)/2 + \ell - 2 - v_\ell(\mathcal{N}_{E/Q}(\mathfrak{d}(N_z/E))).$$

On the other hand, the extension N_z/E is of degree $\ell - 1$ and hence tame, so $v_\ell(\mathcal{N}_{E/Q}(\mathfrak{d}(N_z/E))) \leq \ell - 2$. Divisibility by $\ell - 1$ thus implies the result, together with the additional result that $\mathcal{N}_{E/Q}(\mathfrak{d}(N_z/E)) = \ell^{-2} = \text{Disc}(Q_z)$. □

We make some additional observations concerning Proposition 9.2:

Remarks 9.6.

1. In the equation for E, we may replace $Tr(\varepsilon)$ by $Tr(\pm \varepsilon^m)$ for any odd $m \in \mathbb{Z}$ coprime to ℓ.

2. Assuming AAC, the last product may be written as

$$\left(1 - \frac{1}{\ell^s}\right) \prod_{p \equiv 1 \pmod{\ell}} \left(1 + \frac{\omega_E(p)}{p^s}\right).$$

3. When $p \equiv 1 \pmod{\ell}$, then p is totally split in E if and only if $\varepsilon^{(p - 1)/\ell} \equiv 1 \pmod{p}$, and otherwise p is inert in E.

4. If in addition $Q_z = Q(\zeta_\ell)$ has class number 1, then p is totally split in E if and only if $p = \mathcal{N}_{Q_z/Q}(\pi)$ for some $\pi \equiv 1 \pmod{\ell}$ in Q_z.

For (1), it is easily seen that our construction still produces a degree ℓ subfield E. (2) follows because ℓ is totally ramified in E.

To prove (3), again apply [7, Theorem 10.2.9]: p is totally split in E if and only if it is in N_z/Q_z; hence if and only if $x^{\ell} \equiv \varepsilon \pmod{p}$ is soluble in Q_z. (Here p is any prime of Q_z above p, which must have degree 1 since $p \equiv 1 \pmod{\ell}$ is totally split in Q_z.) This is equivalent to $\varepsilon^{(p - 1)/\ell} \equiv 1 \pmod{p}$, which by Galois theory will then be true for all primes p above p since
for any $\sigma \in \text{Gal}(\mathbb{Q}_\ell / \mathbb{Q})$ we have either $\sigma(\varepsilon) = \varepsilon$ or $\sigma(\varepsilon) = -\varepsilon^{-1}$, and $(p - 1)/\ell$ is even so the sign disappears. Hence, this is equivalent to the condition $\varepsilon^{(p-1)/\ell} \equiv 1 \pmod{p}$, as desired.

Finally, (4) follows from Eisenstein’s reciprocity law.

9.2. Explicit computations for $k = \mathbb{Q}$ in the general case

Let $k = \mathbb{Q}$. In Theorem 9.1, we saw that characters χ of G_k (up to the equivalence $\chi \sim \chi^a$ for $(a, \ell) = 1$) correspond to degree ℓ fields E having certain properties. In our companion paper [14] with Rubinstein–Salcedo, we further proved the following:

Theorem 9.7 [14]. Suppose that $k = \mathbb{Q}$ and $K = \mathbb{Q}(\sqrt{D})$ with $D \neq 1, \pm \ell$, so that we are in the general case, and as before let K' be the mirror field of K.

Then the fields E enumerated in Theorem 9.1 are precisely those F_ℓ-fields E whose Galois closure contains K', subject to the condition $\tau \sigma \tau^{-1} = \sigma^g$ described there, satisfying the following additional conditions.

- E is totally real if $D < 0$, and has $\frac{\ell - 1}{2}$ pairs of complex embeddings if $D > 0$.
- $|\text{Disc}(E)|$ has the form $\ell^{k+b}D^{\frac{\ell-1}{2}}$, where k and b satisfy

 \begin{align*}
 k &\in \{0, 2\}, \quad b = \ell - 2 \quad \text{if } \ell \nmid D, \\
 k &\in \{0, (\ell + 3)/2\}, \quad b = \frac{\ell^2 - 3}{2} \quad \text{if } \ell \mid D \text{ and } \ell \equiv 1 \pmod{4}, \quad (9.4) \\
 k &\in \{0, (\ell + 5)/2\}, \quad b = \frac{\ell^2 - 5}{2} \quad \text{if } \ell \mid D \text{ and } \ell \equiv 3 \pmod{4}.
 \end{align*}

Moreover, if E is any F_ℓ-field satisfying these last two properties, then its Galois closure automatically contains K'.

Recall that we have $b \in \mathcal{B} = \{1, (\ell)^{1/2}, (\ell), (\ell)^{\ell/(\ell-1)}\}$, with the possibility $(\ell)^{1/2}$ occurring only if $\ell | D$. The complete list of fields enumerated in Theorem 9.7 corresponds to $b = (\ell)^{\ell/(\ell-1)}$.

A careful reading of the proof [14, Theorem 9.7], with k having the same meaning above as in [14, Section 4], shows that the remaining b correspond to the following possibilities for k in (9.4):

Condition on D	$b = 1$	$b = (\ell)^{1/2}$	$b = (\ell)$	$b = (\ell)^{\ell/(\ell-1)}$
$\ell \mid D$	$k = 0$	$k = 0$	$k = 0, 2$	$k = 0, 2$
$\ell \mid D$ and $\ell \equiv 1 \pmod{4}$	$k = 0$	$k = 0$	$k = 0, (\ell + 3)/2$	$k = 0, (\ell + 3)/2$
$\ell \mid D$ and $\ell \equiv 3 \pmod{4}$	$k = 0$	$k = 0$	$k = 0, (\ell + 5)/2$	$k = 0, (\ell + 5)/2$

One exception occurs for $\ell = 3$: Only $k = 0$ corresponds to $b = (\ell)$ when $\ell \mid D$; this is because the inequality $(\ell + 5)/2 \leq \ell - 1$ is true for all $\ell \equiv 3 \pmod{4}$ except for $\ell = 3$. (Note also for $\ell = 3$ that this result is equivalent to part of Proposition 4.1 in [15].)

This is sufficient to obtain an explicit formula for $\Phi_{\ell}(K, s)$ for any K and ℓ, provided that the appropriate F_ℓ-fields can be tabulated. We present two examples, which we also double-checked numerically using a program written in PARI/GP [34].

Example 9.8. Let $K = \mathbb{Q}(\sqrt{13})$ and $\ell = 5$. Then, we have

$$
\sum_{L \in \mathcal{F}_5(\mathbb{Q}(\sqrt{13}))} \frac{1}{f(L)^s} = -\frac{1}{4} + \frac{1}{20} \left(1 + \frac{4}{25^s}\right) \prod_p \left(1 + \frac{4}{p^s}\right) + \frac{1}{5} \left(1 - \frac{1}{25^s}\right) \prod_p \left(1 + \frac{\omega_E(p)}{p^s}\right)
$$

$$
= 59^{-s} + 409^{-s} + 475^{-s} + 619^{-s} + 709^{-s} + 1009^{-s} + \cdots + 4 \cdot 24131^{-s} + \cdots,
$$

for any $\sigma \in \text{Gal}(\mathbb{Q}_\ell / \mathbb{Q})$ we have either $\sigma(\varepsilon) = \varepsilon$ or $\sigma(\varepsilon) = -\varepsilon^{-1}$, and $(p - 1)/\ell$ is even so the sign disappears. Hence, this is equivalent to the condition $\varepsilon^{(p-1)/\ell} \equiv 1 \pmod{p}$, as desired.
where the products are over primes \(p \equiv 1, 16, 19, 24, 34, 36, 44, 51, 54, 56, 59, 61 \pmod{65} \), \(E \) is the field defined by the polynomial \(x^5 + 5x^3 + 5x - 3 \), and \(24131 = 59 \cdot 409 \).

Example 9.9. Let \(K = \mathbb{Q}(\sqrt{-7 \cdot 41}) \) and \(\ell = 7 \). Then, we have

\[
\sum_{L \in \mathcal{F}_7(\mathbb{Q}(\sqrt{-287}))} \frac{1}{f(L)^s} = -\frac{1}{6} + \frac{6}{1} \left(1 + \frac{6}{7^s}\right) \prod_p \left(1 - \frac{1}{7^s}\right) \prod_p \left(1 + \frac{\omega_p(p)}{p^s}\right)
\]

\[
= 1 + 7 \cdot 301^{-s} + 7 \cdot 337^{-s} + 7 \cdot 581^{-s} + 7 \cdot 791^{-s} + \cdots ,
\]

where the products are over primes \(p \equiv (\frac{D}{p}) (\text{mod } \ell) \) excluding \(p = \ell \), \(E \) is the field defined by the polynomial \(x^7 - 14x^5 + 56x^3 - 56x - 15 \), and \(296897 = 337 \cdot 881 \).

10. **Base fields other than \(\mathbb{Q} \)**

We briefly discuss the problem of making our results explicit for fields \(k \neq \mathbb{Q} \). As before, let \(k \) be a number field for which \(O_k \) this discriminant is \(2 \).

Corollary 6.2 as our starting point, and we consider the special case where the products are over primes \(x \) the polynomial \(\Phi_k(K, s) = \frac{F(B, \chi, s)}{\ell - 1} \sum_{b \in B} A_b([k : \mathbb{Q}] s) \sum_{\chi \in \hat{G}_k} F(b, \chi, s),\)

where \(B = \{1, (\ell), (\ell) \mapsto a\} \) and \(A_b(s) \) is as in the \(\ell \nmid D \) line of the table in Theorem 7.3.

Theorem 9.1 still holds, and gives a reinterpretation of the sum over \(\chi \in \hat{G}_k \) in (6.2). Each \(F(b, \chi, s) \) is an Euler product, roughly similar to an Artin L-function, described in terms of the splitting of primes in certain \(F_\ell \)-extensions of \(k \). Recall that the set \(\mathcal{D} \) was described in Proposition 2.15, in terms of the field \(K' \) described in Lemma 2.14.

This, then, can be described as a formula which is in many respects ‘explicit’, although in any given case it remains to compute generating polynomials for the \(F_\ell \)-extensions described in Theorem 9.1. Note in particular that we do not have an analogue of Theorem 9.7 for \(k \neq \mathbb{Q} \), although such an analogue seems likely to hold.

11. **Upper bounds for counting dihedral extensions of \(\mathbb{Q} \)**

Write \(N_{\ell}(D_\ell, X) \) for the number of \(D_\ell \)-fields \(L \) with \(\text{Disc}(L) \ll X \). Klüners \[25\] proved that \(N(D_\ell, X) \ll X^{\frac{1}{\ell} - \frac{1}{12\ell^2} + \epsilon} \) and in this section we prove Theorem 1.1, obtaining \(N(D_\ell, X) \ll X^{\frac{1}{\ell} - \frac{1}{12\ell^2} + \epsilon} \) as an easy consequence of work of Ellenberg, Pierce, and Wood \[19\].

As in the introduction, for each \(D_\ell \)-field \(L \) we have \(\text{Disc}(L) = n^{\ell - 1} |D|^{\frac{1}{\ell - 1}} \), where \(n \in \mathbb{Z} \) and \(\mathbb{Q}(\sqrt{D}) \) is the quadratic resolvent field of \(D \). For each \(D \) and \(n \), the multiplicity of \(L \) with this discriminant is \(O_{\ell}(f_{k, \ell}(\text{Cl}(D)) + 2\omega(n)) \); this follows from \[25, Lemma 2.3\] or alternatively Theorem 7.3 here.

We therefore have that

\[
N(D_\ell, x) \ll \sum_{|D| < X^{2/(\ell - 1)}} |\text{Cl}(D)|[\ell] \sum_{n < (X/|D|^{(\ell - 1)/2})^{1/(\ell - 1)}} f^{2\omega(n)} \ll X^{\frac{1}{\ell} - \frac{1}{12\ell^2} + \epsilon} \sum_{|D| < X^{2/(\ell - 1)}} D^{-\frac{1}{2}} |\text{Cl}(D)|[\ell].
\]
By [19, Theorem 1.1], for all but $O(X^{1/2 - (1 - \frac{1}{2})})$ discriminants D in the sum, we have $\text{Cl}(D) \ll D^{1/2 - \frac{1}{2} + \epsilon}$, and the contribution of these D is

$$\ll X^{1/2 - \frac{1}{2} + 2\epsilon} \sum_{D < X^{2/(\ell - 1)}} D^{-1/2 + 1 - \frac{1}{2}} \ll X^{1/2 - \frac{1}{2} + 2\epsilon} X^{1/\ell - (1 - \frac{1}{2})} = X^{1/\ell - \frac{1}{2} + 2\epsilon}.$$

By the trivial bound on $\text{Cl}(D)$, the contribution of the remaining D is also $\ll X^{1/\ell + 2\epsilon}$. $X^{1/\ell - (1 - \frac{1}{2})}$, completing the proof.

Acknowledgements. We would like to thank Michael Filaseta, David Harvey, Franz Lemmermeyer, Hendrik Lenstra, David Roberts, and John Voight for helpful comments and suggestions.

References
1. N. C. Ankeny, E. Artin and S. Chowla, ‘The class-number of real quadratic number fields’, Ann. of Math. (2) 56 (1952) 479–493.
2. N. C. Ankeny and S. Chowla, ‘A further note on the class number of real quadratic fields’, Acta Arith. 7 (1962) 271–272.
3. M. Bhargava, ‘The density of discriminants of quartic rings and fields’, Ann. of Math. (2) 162 (2005) 1031–1063.
4. M. Bhargava, ‘The density of discriminants of quintic rings and fields’, Ann. of Math. (2) 172 (2010) 1559–1591.
5. M. Bhargava and A. Shnidman, ‘On the number of cubic orders of bounded discriminant having automorphism group C_3, and related problems’, Algebra Number Theory 8 (2014) 53–88.
6. H. Cohen, ‘Experiments on fake quadratic orders’, unpublished manuscript.
7. H. Cohen, Advanced topics in computational number theory, Graduate Texts in Mathematics 193 (Springer, New York, NY, 1999).
8. H. Cohen, ‘Exact counting of D_2 number fields with given quadratic resolvent’, Math. Comp. 84 (2015) 1933–1951.
9. H. Cohen, F. Diaz y Diaz and M. Olivier, ‘On the density of discriminants of cyclic extensions of prime degree’, J. reine angew. Math. 550 (2002) 169–209.
10. H. Cohen, F. Diaz y Diaz and M. Olivier, ‘Enumerating quartic dihedral extensions of \mathbb{Q}’, Compos. Math. 133 (2002) 65–93.
11. H. Cohen, F. Diaz y Diaz and M. Olivier, ‘Cyclotomic extensions of number fields’, Indag. Math. 14 (2003) 183–196.
12. H. Cohen, F. Diaz y Diaz and M. Olivier, ‘Counting discriminants of number fields’, J. Théor. Nombres Bordeaux 18 (2006) 573–593.
13. H. Cohen and A. Morra, ‘Counting cubic extensions with given quadratic resolvent’, J. Algebra 325 (2011) 461–478.
14. H. Cohen, S. Rubinstein-Salzedo and F. Thorne, ‘Identities for field extensions generalizing the Ohno-Nakagawa relations’, Compos. Math. 151 (2015) 2059–2075.
15. H. Cohen and F. Thorne, ‘Dirichlet series associated to cubic fields with given quadratic resolvent’, Michigan Math. J. 63 (2014) 253–273.
16. H. Davenport and H. Heilbronn, ‘On the density of discriminants of cubic fields. II’, Proc. Roy. Soc. London Ser. A 322 (1971) 405–420.
17. B. N. Delone and D. K. Faddeev, The theory of irrationalities of the third degree (English translation) (American Mathematical Society, Providence, RI, 1964).
18. D. Eisenbud, Commutative algebra with a view toward algebraic geometry (Springer, New York, NY, 2004).
19. J. Ellenberg, L. B. Pierce and M. M. Wood, ‘On ℓ-torsion in class groups of number fields’, Algebra Number Theory 11 (2017) 1739–1778.
20. G. Gras, ‘Théorèmes de Réflexion’, J. Théor. Nombres Bordeaux 10 (1998) 399–499.
21. G. Gras, Class field theory, Springer Monographs in Mathematics (Springer, Berlin–Heidelberg, 2005).
22. C. Jensen and N. Yui, ‘Polynomials with D_2 as Galois group’, J. Number Theory 15 (1982) 347–375.
23. A. A. Kiselev, ‘An expression for the number of classes of ideals of real quadratic fields by means of Bernoulli numbers (in Russian)’, Dokl. Akad. Nauk. 61 (1948) 777–779.
24. Y. Kishi, ‘The Spiegelungssatz for $p = 5$ from a constructive approach’, Math. J. Okayama Univ. 47 (2005) 1–27.
25. J. Klüners, ‘Asymptotics of number fields and the Cohen-Lenstra heuristics’, J. Théor. Nombres Bordeaux 18 (2006) 607–615.
26. F. Lemmermeyer, ‘Dihedral extensions and the Ankeny-Artin-Chowla conjecture’, MathOverflow post, http://mathoverflow.net/questions/13152/dihedral-extensions-and-the-ankeny-artin-chowla-conjecture.
27. S. Louboutin, Y.-H. Park and Y. Lefeuvre, ‘Construction of the real dihedral number fields of degree \(2p\). Applications’, Acta Arith. 89 (1999) 201–215.

28. S. Mäki, ‘The conductor density of abelian number fields’, J. Lond. Math. Soc. (2) 47 (1993) 18–30.

29. L. J. Mordell, ‘On a Pellian equation conjecture’, Acta Arith. 6 (1960) 137–144.

30. A. Mora, ‘Comptage asymptotique et algorithmique d’extensions cubiques relatives (in English)’, doctoral thesis, Université Bordeaux I, 2009.

31. J. Nakagawa, ‘On the relations among the class numbers of binary cubic forms’, Invent. Math. 134 (1998) 101–138.

32. R. Oh, ‘Fake real quadratic orders’, PhD Thesis, University of South Carolina, 2014, http://scholarcommons.sc.edu/cgi/viewcontent.cgi?article=3870&context=etd.

33. Y. Ohno, ‘A conjecture on coincidence among the zeta functions associated with the space of binary cubic forms’, Amer. J. Math. 119 (1997) 1083–1094.

34. PARI/GP, version 2.5.1, Bordeaux, 2011, http://pari.math.u-bordeaux.fr/.

35. A. J. van der Poorten, H. J. J. te Riele and H. C. Williams, ‘Computer verification of the Ankeny-Artin-Chowla conjecture for all primes less than 100,000,000,000’, Math. Comp. 70 (2000) 1311–1328; corrigenda and addition, Math. Comp. 72 (2002) 521–523.

36. J.-P. Serre, Local fields (Springer, New York, NY, 1979).

37. C. Weir, R. Scheidler and E. Howe, ‘Constructing and tabulating dihedral function fields’, Proceedings of the Tenth Algorithmic Number Theory Symposium (ANTS-X 2012) (Mathematical Science Publishers, Berkeley, 2013).

38. D. Wright, ‘Distribution of discriminants of Abelian extensions’, Proc. Lond. Math. Soc. (3) 58 (1989) 17–50.