On Beurling’s sampling theorem in \mathbb{R}^n

Alexander Olevskii and Alexander Ulanovskii

January 27, 2013

Abstract

We present an elementary proof of the classical Beurling sampling theorem which gives a sufficient condition for sampling of multi-dimensional band-limited functions.

1 Introduction

Let $\mathcal{S} \subset \mathbb{R}^n$, $n \geq 1$, be a compact. The Bernstein space $B_{\mathcal{S}}$ consists of all bounded functions on \mathbb{R}^n whose spectrum belongs to \mathcal{S}. The latter means that

$$\int_{\mathbb{R}^n} f(x) \hat{\varphi}(x) \, dx = 0, \quad f \in B_{\mathcal{S}},$$

for every smooth function $\varphi(x)$ whose support belongs to a ball disjoint from \mathcal{S}. Here $\hat{\varphi}$ denotes the Fourier transform

$$\hat{\varphi}(x) = \int_{\mathbb{R}^n} e^{-it \cdot x} \varphi(t) \, dt.$$

A set $\Lambda \subset \mathbb{R}^n$ is called a sampling set for $B_{\mathcal{S}}$, if there is a positive constant C such that

$$\|f\|_{\infty} \leq C\|f|_{\Lambda}\|_{\infty}, \quad \text{for every} \quad f \in B_{\mathcal{S}},$$

where

$$\|f\|_{\infty} := \sup_{x \in \mathbb{R}^n} |f(x)|, \quad \|f|_{\Lambda}\|_{\infty} := \sup_{\lambda \in \Lambda} |f(\lambda)|.$$

It is a classical problem to determine when Λ constitutes a sampling set for $B_{\mathcal{S}}$. Beurling discovered the importance of the lower uniform density $D^{-}(\Lambda)$ of Λ for this problem:

$$D^{-}(\Lambda) := \lim_{r \to \infty} \min_{x \in \mathbb{R}^n} \frac{\text{Card}(\Lambda \cap (x + r\mathcal{B}))}{|r\mathcal{B}|},$$
where \mathcal{B} is the unit ball in \mathbb{R}^n, $x + r\mathcal{B}$ is the ball of radius r centered at x and $|S|$ denotes the measure of a set S. In [2] he proved the following

Theorem 1 Let $S = [a, b] \subset \mathbb{R}$. Then $\Lambda \subset \mathbb{R}$ is a sampling set for B_{S} if and only if

$$D^{-}(\Lambda) > |S|/2\pi.$$

(1)

Hence, when S is an interval in \mathbb{R}, the sampling problem can be solved in terms of the density $D^{-}(\Lambda)$. Condition $D^{-}(\Lambda) \geq |S|/(2\pi)^n$ remains necessary for sampling in B_{S}, for every compact set $S \subset \mathbb{R}^n$. This follows from a general result of Landau [6]. On the other hand, simple examples show that in dimension one condition (1) ceases to be sufficient already when S is a union of two intervals.

A new phenomenon occurs in several dimensions: Even for the simplest sets S like a ball or a cube, no sufficient conditions for sampling in B_{S} can be expressed in terms of $D^{-}(\Lambda)$. The reason for that is that the zeros of the multi-dimensional entire functions are not discrete. One can check that if $S \subset \mathbb{R}^n$ contains at least two points, then there are functions $f \in B_{S}$ whose zero set contains sets $\Lambda \subset \mathbb{R}^n$ with arbitrarily large $D^{-}(\Lambda)$. Clearly, if a function $f \in B_{S}$ vanishes on Λ, then Λ is not a sampling set for B_{S} (see also discussion in [8], pp. 122–123).

In [1] Beurling obtained the following sufficient condition for sampling in B_{S}:

Theorem 2 Assume $\Lambda \subset \mathbb{R}^n$, $n \geq 1$, and $\rho < \frac{n}{2}$ satisfy

$$\Lambda + \rho \mathcal{B} = \mathbb{R}^n.$$

Then

$$\|f\|_{\infty} \leq \frac{1}{1 - \sin \rho} \|f|_{\Lambda}\|_{\infty}, \text{ for every } f \in B_{\mathcal{B}},$$

(2)

and so Λ is a sampling set for $B_{\mathcal{B}}$.

In fact, Beurling in [1] proves a result on balayage of Fourier–Stieltjes transforms which is equivalent to Theorem 2: For every Dirac’s measure δ_{ξ}, there exists a finite measure with masses on Λ such that the values of their Fourier–Stieltjes transforms agree in the ball \mathcal{B}. We use a completely different elementary approach which allows us to get a more general result, see Theorem 3 below. We
shall see that unlike the case of interpolation in several dimensions (see [7]), the ”Beurling-type” sampling is in fact a one-dimensional phenomenon.

Observe that condition $\Lambda + \rho \mathcal{B} = \mathbb{R}^n$ in Theorem 2 means that Λ is a ρ-net, i.e. for every $x \in \mathbb{R}^n$ there exists $\lambda \in \Lambda$ with $|x - \lambda| \leq \rho$. Hence, every ρ-net with $\rho < \pi/2$ is a sampling set for $B_\mathcal{B}$. This is sharp: Beurling shows that the theorem ceases to be true for $\pi/2$–nets.

Let us in what follows denote by \mathcal{K} a closed convex central-symmetric body with positive measure. Then

$$
\mathcal{K}^o := \{x \in \mathbb{R}^n : x \cdot t \leq 1 \text{ for all } t \in \mathcal{K}\}
$$

denotes the polar body of \mathcal{K}. In particular, we have $\mathcal{B}^o = \mathcal{B}$.

The following propositions are formulated in [1] without proof:

(i) Estimate (2) in Theorem 2 can be replaced with a better one:

$$
\|f\|_\infty \leq \frac{1}{\cos \rho} \|f|_\Lambda\|_\infty.
$$

(ii) Every set Λ satisfying $\Lambda + \rho \mathcal{K}^o = \mathbb{R}^n$ with some $\rho < \pi/2$ is a sampling set for $B_\mathcal{K}$.

We show that estimate (3) holds for every convex central-symmetric body \mathcal{K}:

Theorem 3 Assume $\Lambda \subset \mathbb{R}^n$ and $\rho < \frac{\pi}{2}$ satisfy

$$
\Lambda + \rho \mathcal{K}^o = \mathbb{R}^n.
$$

Then (3) is true, and so Λ is a sampling set for $B_\mathcal{K}$.

Clearly, condition (4) means that for every $x \in \mathbb{R}^n$ there exists $\lambda \in \Lambda$ such that $\|x - \lambda\|_{\mathcal{K}^o} \leq \rho$, where $\|x\|_{\mathcal{K}^o} := \inf_{a > 0} \{x \in a\mathcal{K}^o\}$. Hence, every ρ-net in the norm $\|\cdot\|_{\mathcal{K}^o}$ is a sampling set for $B_\mathcal{K}$ provided $\rho < \pi/2$. This is sharp:

Proposition 1. Suppose a closed convex central-symmetric body \mathcal{S} contains a point x_0 with $\|x_0\|_{\mathcal{K}^o} = \pi/2$. Then there exists $\Lambda \subset \mathbb{R}^n$ with $\Lambda + \mathcal{S} = \mathbb{R}^n$ and a function $f \in B_\mathcal{K}$ such that $f(\lambda) = 0$, $\lambda \in \Lambda$.

Corollary 1. Suppose a closed convex central-symmetric body \mathcal{S} has the property that every set $\Lambda \subset \mathbb{R}^n$ satisfying $\Lambda + \mathcal{S} = \mathbb{R}^n$ is a sampling set for $B_\mathcal{K}$. Then $\mathcal{S} \subset \rho \mathcal{K}^o$ for some $\rho < \pi/2$.

3
2. Proofs

1. Proof of Proposition 1. By assumption, there exist $x_0 \in S$ and $t_0 \in K$ such that $x_0 \cdot t_0 = \pi/2$. The spectrum of the function $\sin(x \cdot t_0)$ consists of two points $\pm t_0 \in K$, and so $\sin(x \cdot t_0) \in B_K$.

Let $\Lambda := \{x \in \mathbb{R}^n : x \cdot t_0 \in \pi \mathbb{Z}\}$ be the zero set of $\sin(x \cdot t_0)$. Denote by $I = \{-1 \leq \tau \leq 1\} \subseteq S$ the interval from $-x_0$ to x_0. Clearly, for every point $y \in \mathbb{R}^n$ there exist $n \in \mathbb{Z}$ and $-1 \leq \tau \leq 1$ such that $y \cdot t_0 = \pi n - \pi \tau/2$. Hence, $y - \tau x_0 \in \Lambda$, which implies $\Lambda + I = \mathbb{R}^n$. □

2. Proof of Theorem 3. We shall deduce Theorem 3 from the following

Lemma 1 Suppose a function $g \in B_{[-\tau, \tau]}$ satisfies $|g(0)| = \|g\|_{\infty}$. Then

$$|g(u)| \geq |g(0)| \cos(\tau u), \quad |u| < \pi/2\tau. \quad (5)$$

This lemma is proved in [3, proof of Theorem 4]. For completeness of presentation, we sketch the proof below.

Let us now prove Theorem 3. Take any function $f \in B_K$. Assume first that $|f|$ attains maximum on \mathbb{R}^n, i.e. $|f(x_0)| = \|f\|_{\infty}$ for some $x_0 \in \mathbb{R}^n$. By (4), there exists $\lambda_0 \in \Lambda$ with $\|\lambda_0 - x_0\|_{\mathcal{K}^0} \leq \rho$. Consider the function of one variable $g(u) := f(x_0 + u(\lambda_0 - x_0)), u \in \mathbb{R}$. One may check that $g \in B_{[-\tau, \tau]}$ with $\tau = \|\lambda_0 - x_0\|_{\mathcal{K}^0}$. Also, clearly $|g(0)| = \|g\|_{\infty}$ and $g(1) = f(\lambda_0)$. Since $\tau \leq \rho < \pi/2$, we may use inequality (5) with $u = 1$:

$$\|f\|_{\infty} = |f(x_0)| = |g(0)| \leq \frac{g(1)}{\cos \tau} \leq \frac{|f(\lambda_0)|}{\cos \rho} \leq \frac{1}{\cos \rho} \|f|_{\lambda}\|_{\infty}. \quad (6)$$

If $|f|$ does not attain maximum on \mathbb{R}^n, we consider the function $f_\epsilon(x) := f(x)\varphi(\epsilon x)$, where $\varphi \in B_{K^0}$ is any function satisfying $\varphi(0) = 1$ and $\varphi(x) \to 0$ as $|x| \to \infty$. It is clear that $f_\epsilon \in B_{K^0+\mathcal{B}}$ and that f_ϵ attains maximum on \mathbb{R}^n. Set $g_\epsilon(u) := f_\epsilon(x_0 + u(\lambda_0 - x_0)), u \in \mathbb{R}$, where x_0 and λ_0 are chosen so that $|g_\epsilon(0)| = \|f_\epsilon\|_{\infty}$ and $\|\lambda_0 - x_0\|_{\mathcal{K}^0} \leq \rho$. We have $g \in B_{[-\tau - \delta, \tau + \delta]}$, where $\tau = \|\lambda_0 - x_0\|_{\mathcal{K}^0} \leq \rho < \pi/2$ and $\delta = \delta(\epsilon) \to 0$ as $\epsilon \to 0$. So, if ϵ is so small that $\tau + \epsilon < \pi/2$, we may repeat the argument above to obtain $\|f_\epsilon\|_{\infty} \leq \|f_\epsilon|_{\Lambda}\|_{\infty}/\cos(\rho + \delta)$. By letting $\epsilon \to 0$, we obtain (3). □
3. Proof of Lemma 1

1. The proof in [3] is based on the following result from [4] (for some extension see [5]): Let \(f \in B_{[-\tau, \tau]} \) be a real function satisfying \(-1 \leq f(x) \leq 1\) for all \(x \in \mathbb{R} \). Then for every real \(a \) the function \(\cos(\tau z + a) - f(z) \) vanishes identically or else it has only real zeros. Moreover it has a zero in every interval where \(\cos(\tau z + a) \) varies between -1 and 1 and all the zeros are simple, except perhaps at points on the real axis where \(f(x) = \pm 1 \).

Sketch of proof. We may assume \(a = 0 \) and \(\tau = 1 \). Consider the function

\[f_\epsilon(z) := (1 - \epsilon) \sin(\epsilon z) f((1 - \epsilon)z). \]

One may check that \(f_\epsilon \in B_{[-1,1]} \), \(-1 < f(t) < 1, t \in \mathbb{R}, \) and that the estimate holds

\[|f_\epsilon(z)| \leq \frac{e|y|}{\epsilon|z|}, z = x + iy \in \mathbb{C}. \]

This shows that \(|f_\epsilon(z)| < |\cos z| \) when \(z \) lies on a rectangular contour \(\gamma \) consisting of segments of the lines \(x = \pm N\pi, y = \pm N, \) where \(N \) is every large enough integer. By Rouché’s theorem, the function \(\cos z - f_\epsilon(z) \) has the same number of zeros in \(\gamma \) as \(\cos z \), that is, \(2N \) zeros. On the real axis \(|f_\epsilon| \leq 1 - \epsilon \). Hence, \(\cos z - f_\epsilon(z) \) is alternately plus and minus at the \(2N + 1 \) points \(k\pi, |k| \leq N, \) so it has \(2N \) real zeros inside \(\gamma \). Taking larger values of \(N \) we see that \(\cos z - f_\epsilon(z) \) has exclusively real and simple zeros, which lie in the intervals \((k\pi, (k + 1)\pi) \).

The zeros of \(\cos z - f(z) \) are limit points of the zeros of \(\cos z - f_\epsilon(z) \) as \(\epsilon \to 0 \). Thus \(\cos z - f(z) \) cannot have non-real zeros. Moreover, it has an infinite number of real zeros which are all simple, except those at the points \(k\pi \) iff \(f(k\pi) = (-1)^k \). Every interval \(k\pi < z < (k + 1)\pi \) at the endpoints of which \(|f(t)| < 1 \) contains exactly one zero. If \(f(k\pi) = (-1)^k \), we have a double zero at \(k\pi \) but no further zeros in the interior or at the endpoints of the interval \(((k - 1)\pi, (k + 1)\pi) \).

2. It suffices to prove Lemma 1 for real functions \(f \in B_{[-\pi, \pi]} \). Since \(f \) has a local maximum at \(t = 0 \), the function \(f(t) - \cos \tau t \) has a repeated zero at \(t = 0 \). By the discussion above we see that either \(f(t) \) is identically equal to \(\cos \tau t \) or \(f(t) - \cos \tau t \) does not vanish on \([-\pi/\tau, 0) \cup (0, \pi/\tau] \). Since \(|f(\pi)| \leq 1 \), it follows that \(f(t) > \cos \tau t \) on each of the intervals \([-\pi/\tau, 0) \) and \((0, \pi/\tau] \). □
References

[1] Beurling, A. Local harmonic analysis with some applications to differential operators. Some Recent Advances in the Basic Sciences, vol. 1, Belfer Grad. School Sci. Annu. Sci. Conf. Proc., A.Gelbart, ed., 1963–1964, 109–125. Reprinted in: The collected Works of Arne Beurling, Vol.2, Harmonic Analysis. Birkhauser, Boston, 1989.

[2] Beurling, A. Balayage of Fourier–Stieltjes Transforms. In: The collected Works of Arne Beurling, Vol.2, Harmonic Analysis. Birkhauser, Boston, 1989.

[3] Clunie, J., Rahman, Q. I., Walker, W. J. On entire functions of exponential type bounded on the real axis. J. London Math. Soc. (2) 61 (2000), no. 1, 163–176.

[4] Duffin, R.J., Schaeffer, A.C. Some properties of functions of exponential type, Bull. Amer. Math. Soc. 44 (1938) 236–240.

[5] Hörmander, L. Some inequalities for functions of exponential type, Math. Scand. 3 (1955) 21–27.

[6] Landau, H. J. Necessary density conditions for sampling and interpolation of certain entire functions. Acta Math. 117 (1967), 37–52.

[7] Olevskii, A., Ulanovskii, A. On Ingham-type interpolation in \mathbb{R}^n. C. R. Math. Acad. Sci. Paris 348 (2010), no. 13–14, 807–810.

[8] Seip, K. Interpolation and sampling in spaces of analytic functions. University Lecture Series, 33. American Mathematical Society, Providence, RI, 2004.