tRNAdb 2009: compilation of tRNA sequences and tRNA genes

Frank Jühling¹, Mario Mörl², Roland K. Hartmann³, Mathias Sprinzl⁴, Peter F. Stadler¹,⁵,⁶,⁷ and Joern Pütz⁸,*

¹Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, ²Institute for Biochemistry, University of Leipzig, Brüderstrasse 34, 04103 Leipzig, ³Institut für Pharmazeutische Chemie, Philippus-Universität Marburg, D-35037 Marburg, ⁴Laboratorium für Biochemie, Universität Bayreuth, Universitätstrasse 30, D-95440 Bayreuth, ⁵RNomics Group, Fraunhofer Institut für Zelltherapie und Immunologie, Perlickstrasse 1, D-04103 Leipzig, Germany, ⁶Department of Theoretical Chemistry, University of Vienna, Währingerstrasse 17, A-1090 Wien, Austria, ⁷Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA and ⁸Architecture et Réactivité de l’ARN, Université Louis Pasteur de Strasbourg, CNRS, IBMC, 15 rue René Descartes, 67084 Strasbourg, France

Received September 11, 2008; Accepted October 7, 2008

ABSTRACT

One of the first specialized collections of nucleic acid sequences in life sciences was the ‘compilation of tRNA sequences and sequences of tRNA genes’ (http://www.trna.uni-bayreuth.de). Here, an updated and completely restructured version of this compilation is presented (http://trnadb.bioinf.uni-leipzig.de). The new database, tRNAdb, is hosted and maintained in cooperation between the universities of Leipzig, Marburg, and Strasbourg. Reimplemented as a relational database, tRNAdb will be updated periodically and is searchable in a highly flexible and user-friendly way. Currently, it contains more than 12 000 tRNA genes, classified into families according to amino acid specificity. Furthermore, the implementation of the NCBI taxonomy tree facilitates phylogeny-related queries. The database provides various services including graphical representations of tRNA secondary structures, a customizable output of aligned or un-aligned sequences with a variety of individual and combinable search criteria, as well as the construction of consensus sequences for any selected set of tRNAs.

DATABASE CONTENT AND ORGANIZATION

In the new tRNA database, sequences are stored on a MySQL database server (http://dev.mysql.com) and also as a BLAST database (2). The relational database management system implements a powerful search engine that allows access to all data and offers a high flexibility in queries. In particular, the opportunity of using the BLAST database provides highly efficient similarity searches. The database for mammalian mitochondrial tRNA sequences (Mamit-tRNA) with its user-friendly web interface (http://mamit-trna.u-strasbg.fr) served as

© 2008 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
template for the new database. Accordingly, color codes and visualization styles were adopted from the Mamit-
tRNA compilation (3).

The new version of tRNAdb is based on the ‘Compilation of tRNA sequences and sequences of
tRNA genes’, distributed as a collection of MS Excel
spread sheets (1). To integrate this original sequence col-
lection into the new compilation, the complete dataset
was retrieved and stored in indexed tables using
several custom-made scripts. After the integrity of the
individual sequences had been verified, the data were
transferred into the relational database system. For
detailed taxonomic queries, a tree provided by
the NCBI's taxonomy section (http://www.ncbi.nlm.nih.
gov/sites/entrez?db=taxonomy) was implemented, now
providing a complete set of individual taxon names and
synonyms. Furthermore, all taxon names appearing
in the original tRNA compilation were manually matched
with the taxonomic tree. Several outdated entries, where
the organisms have been renamed or reclassified in the
meantime, were identified and adjusted according to cur-
tent taxonomy. In addition, the bacterial sequences were
subjected to manual proofreading, replacing the previous
erroneous entry and being tagged as ‘corrected’ in the
comment note. New ID management was implemented
with prefixes ‘tbd’ and ‘tbr’ for DNA and RNA
sequences, respectively. However, for compatibility rea-
sons, the newly designed web interface supports both the
former and the new ID format.

Besides the imported data sets, 255 new tRNA gene
sequences retrieved from a series of completed archaeal
genomes recently submitted to NCBI (Methanococccus aer-
ficus Nankai-3, Methanosarcina acetivorans C2A,
Methanospirillum hungatetl JF-1, Nanoarchaeum equitans
Kin4-M, Staphylothermus marinus F1 and Sulfolobus acid-
ocaldarius DSM 639) were scanned by tRNAscan-SE (4)
and imported using a new data input interface directly
connected to the database.

For reasons of clarity and compatibility, all sequences
are presented in the alignment format of the Mamit-
tRNA database, consensus and typical structures of
tRNA domains including variable stem- and loop-sizes.
Positions of nucleotides are numbered according to
the cloverleaf structure of a selected tRNA, an
image generator has been implemented, supporting all
tRNA domains including variable stem- and loop-sizes.
Positions of nucleotides are numbered according to
conventional rules (1,7). Furthermore, an additional
module was implemented providing statistical informa-
tion for each alignment output to allow an easy compar-
ison of individual sequences. According to the Mamit-
tRNA database, consensus and typical structures of
selected sequences can be calculated and displayed (3).

SEQUENCE SEARCH TOOL

Using the advanced functionality of MySQL- and
BLAST-based databases, the new compilation provides a
powerful and fast search engine. Query results are stored
on the server and are linked to the corresponding session
object. Furthermore, the retrieved data can be edited
manually. Queries can include DNA or RNA sequences,
amino acid family, anticodon, references, Pubmed-ID of
the reference, gene description as well as comments. Taxa
can be identified by searching for specific names, strains,
taxonomic IDs or even synonyms. In addition, individu-
ual searches concerning sequence and/or structural char-
acteristics (e.g. conserved or semiconserved nucleotides)
are possible. Besides that, the server accepts sequence
IDs of the new and the previous tRNA database as
queries, and can perform BLAST searches.

Query results are displayed in a clearly arranged list
and can be adjusted concerning individual details. Since
the 3'CCA terminus is not included in the Mamit-tRNA
color code (CCA ends are not encoded in mitochondrial
tRNA genes), a new color was assigned to the CCA tri-
plet. In addition, the list covers information related to
each organism, the amino acid specificity and the primary
sequence of the tRNA. Optionally, the secondary struc-
ture can be displayed for each kind of sequence (DNA or
RNA). For convenience, a thumbnail presentation allows
a fast preview of the secondary structures. To directly
highlight the cloverleaf structure of a selected tRNA, an
image generator has been implemented, supporting all
tRNA domains including variable stem- and loop-sizes.
Positions of nucleotides are numbered according to
conventional rules (1,7). Furthermore, an additional
module was implemented providing statistical informa-
tion for each alignment output to allow an easy compar-
ison of individual sequences. According to the Mamit-
tRNA database, consensus and typical structures of
selected sequences can be calculated and displayed (3).

Table 1. Actual entries of the updated version of tRNAdb

| Taxon | Organisms | tRNA genes | tRNA sequences | tRNA genes | Mitochondria | Chloroplast | tRNA sequences | Mitochondria | Chloroplast |
|---------------|-----------|------------|----------------|------------|--------------|-------------|----------------|--------------|-------------|-------------|
| Root | 577 | 9758 | 71 | 376 | 474 | 111 | 38 |
| Cellular organisms | 571 | 9705 | 99 | 376 | 457 | 111 | 38 |
| Bacteria | 235 | 6368 | 19 | 0 | 139 | 0 | 0 |
| Archea | 49 | 1088 | 9 | 0 | 76 | 0 | 0 |
| Eukarya | 287 | 2249 | 71 | 376 | 242 | 111 | 38 |
| Viruses | 6 | 53 | 5 | 0 | 17 | 0 | 0 |
Most conveniently, the retrieved data can be downloaded in a variety of file formats for further investigation using other applications. Export of sequences in FASTA (8), ClustalW (9) and Vienna RNA Package (10) file formats facilitates further analysis.

The representation of tRNA sequences poses additional challenges compared to those of the tRNA genes. More than 90 modified nucleosides have been characterized in tRNAs from Bacteria, Archaea and Eukarya (http://library.med.utah.edu/RNAmods/). Most of the base modifications are faithfully represented in the tRNA database. However, further processing of this information is not trivial, as the majority of RNA bioinformatics software is unable to cope with non-standard nucleotides. Hence, retrieved RNA sequences can be transformed into compatible DNA sequences.

DISCUSSION AND CONCLUSION

Well-curated and up-to-date databases are a highly useful tool of molecular biology and genetics. While the first tRNA database edition was a valuable instrument for the tRNA research community, the overwhelming amount of newly available sequences released by the variety of different genome sequencing projects made it necessary to develop a modern relational database system. In the new edition, all sequences of the original Excel-based compilation (http://www.tRNA.uni-bayreuth.de) as well as complete sets of tRNA gene sequences of several recently published archaeal genomes have been included. Furthermore, the standardized NCBI taxonomy system has been implemented, leading to high compatibility with other sequence databases. The new versatile search engine allows complex query combinations concerning sequence, structure and taxonomy, thus meeting the demands of systematic investigations of tRNA sequence/structure relationships. For the next edition of this compilation, proofreading of the remaining sequences (Eukarya and Archaea) will be completed. In addition, newly published tRNA genes and tRNA sequences will be imported. Possible extensions of the database are (i) inclusion of 5′- and 3′-flanking nucleotides to extract information on tRNA maturation (11), (ii) indication of tRNA introns (12), (iii) tools to extract identity elements for aminoacylation (13), (iv) indication of anticodon editing (14), (v) display of pathological tRNA mutations (3,15), (vi) information on posttranscriptional modifications with known roles in fine-tuning tRNA structure and function (16), (vii) display of isoacceptors and isodecoders [tRNAs with identical anticodon but sequence deviations elsewhere (17)], or (viii) information on tRNA expression levels [e.g. tissue-specific differences in eukaryotes (18)].

ACCESS

tRNAdb is freely accessible at http://trnadb.bioinf.uni-leipzig.de. This article should be cited in research projects assisted by the use of the database. Comments, corrections and new entries are welcome.

ACKNOWLEDGEMENTS

We are grateful to Catherine Florentz and Richard Giegé for stimulating discussions and insightful comments on the manuscript.

FUNDING

This work was funded by the Centre National de la Recherche Scientifique (CNRS), Université Louis Pasteur Strasbourg 1, Association Française contre les Myopathies (AFM), Deutsche Forschungsgemeinschaft [DFG - MO-634/2, MO-634/3, HA 1672/7-3/4/5, and SPP-1174 (‘Metazoan Deep Phylogeny’)] project STA 850/3-2] and by the French-German PROCOPE program (DAAD D/0628236, EGIDE PHC 14770PJ). Funding for open access charge: CNRS and DFG.

Conflict of interest statement. None declared.

REFERENCES

1. Sprinzl,M. and Vassilenko,K.S. (2005) Compilation of tRNA sequences and sequences of tRNA genes. *Nucleic Acids Res.*, **33**, D139-D140.
2. Altschul,S.F., Gish,W., Miller,W., Myers,E.W. and Lipman,D.J. (1990) Basic local alignment search tool. *J. Mol. Biol.*, **215**, 403-410.
3. Pütz,J., Dupuis,B., Sissler,M. and Florentz,C. (2007) Mamit-tRNA, a database of mammalian mitochondrial tRNA primary and secondary structures. *RNA*, **13**, 1184-1190.
4. Lowe,T.M. and Eddy,S.R. (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. *Nucleic Acids Res.*, **25**, 955-964.
5. Rozencki,J., Crain,P.F. and McCloskey,J.A. (1999) The RNA Modification Database: 1999 update. *Nucleic Acids Res.*, **27**, 196-197.
6. Grosjean,H. and Benne,R. (eds) (1998) *RNA: structure, Properties and Recognition*, ASM Press, Washington, DC.
7. Schimmel,P.R., Soll,D. and Abelson,J.N. (eds) (1979) *Proposed Numbering System in tRNAs Based on Yeast tRNA*Phe *in Transfer-RNA: structure, Properties and Recognition*, Cold Spring Harbor Laboratory, New York, pp. 518-519.
8. Pearson,W.R. and Lipman,D.J. (1988) Improved tools for biological sequence comparison. *Proc. Natl. Acad. Sci. USA*, **85**, 2444-2448.
9. Thompson,J.D., Higgins,D.G. and Gibson,T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. *Nucleic Acids Res.*, **22**, 4673-4680.
10. Hofacker,I.L., Fontana,W., Stadler,P.F., Bonhoeffer,L.S., Tacker,M. and Schuster,P. (1994) Fast folding and comparison of RNA secondary structures. *Monatsh. Chem.*, **125**, 167-188.
11. Hartmann,R.K., Görlfinger,M., Späth,B., Fischer,S. and Marchfelder,A. (2008) The making of tRNAs and more - RNase P and *RNase Z*. *Progr. Nucleic Acid Res. Mol. Biol.*, in press.
12. Marc, C. and Grosjean,H. (2002) tRNomics: analysis of tRNA genes from 50 genomes of Eukarya, Archaea, and Bacteria reveals anticodon-sparing strategies and domain-specific features. *RNA*, **8**, 1189-1232.
13. Giegé,R., Sissler,M. and Florentz,C. (1998) Universal rules and idiosyncratic features in tRNA identity. *Nucleic Acids Res.*, **26**, 5017-35.
14. Mörl,M., Dörner,M. and Piático,S. (1995) C to U editing and modifications during the maturation of the mitochondrial tRNA*Asp* in marsupials. *Nucleic Acids Res.*, **23**, 3380-3384.
15. Scaglia, F. and Wong, L.J. (2008) Human mitochondrial transfer RNAs: role of pathogenic mutation in disease. *Muscle Nerve*, 37, 150–171.

16. Gustilo, E.M., Vendeix, F.A. and Agris, P.F. (2008) tRNA. *Curr. Opin. Microbiol.*, 11, 134–140.

17. Goodenbour, J.M. and Pan, T. (2006) Diversity of tRNA genes in eukaryotes. *Nucleic Acids Res.*, 34, 6137–6146.

18. Dittmar, K.A., Goodenbour, J.M. and Pan, T. (2006) Tissue-specific differences in human transfer RNA expression. *PLoS Genet.*, 2, e221.