Association of common variation in ADD3 and GPC1 with biliary atresia susceptibility

Mei-Rong Bai1,2,3,*, Wei-Bo Niu1,2,3,*, Ying Zhou1,2,3,*, Yi-Ming Gong1,2,3, Yan-Jiao Lu2,3, Xian-Xian Yu2,3, Zhi-Liang Wei2,3, Wenjie Wu1,2,3, Huan-Lei Song2,3, Wen-Wen Yu2,3, Bei-Lin Gu2,3, Wei Cai1,2,3, Xun Chu1,2,3

1Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
2Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
3Shanghai Institute of Pediatric Research, Shanghai, China
*Equal contribution

Correspondence to: Xun Chu, Wei Cai; email: chuxun@xinhua.com.cn, caiw204@sjtu.edu.cn
Keywords: biliary atresia, ADD3, GPC1, single nucleotide polymorphism, association
Received: November 13, 2019 Accepted: March 29, 2020 Published: April 21, 2020

Copyright: Bai et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ABSTRACT

Biliary atresia (BA) is an idiopathic neonatal cholestatic disease. Recent genome-wide association study (GWAS) revealed that common variation of ADD3, GPC1, ARF6, and EFEMP1 gene was associated with BA susceptibility. We aimed to evaluate the association of these genes with BA in Chinese population. Twenty single nucleotide polymorphisms (SNPs) in these four genes were genotyped in 340 BA patients and 1,665 controls. Three SNPs in ADD3 were significantly associated with BA, and rs17095355 was the top SNP (P_{allele} = 3.23×10^{-6}). Meta-analysis of published data and current data indicated that rs17095355 was associated with BA susceptibility in Asians and Caucasians. Three associated SNPs were expression quantitative trait loci (eQTL) for ADD3. Two GPC1 SNPs in high linkage disequilibrium (LD) showed nominal association with BA susceptibility (P_{allele} = 0.03 for rs6707262 and P_{allele} = 0.04 for rs6750380), and were eQTL of GPC1. Haplotype harboring these two SNPs almost reached the study-wide significance (P = 0.0035). No association for ARF6 and EFEMP1 was found with BA risk in the current population. Our study validated associations of ADD3 and GPC1 SNPs with BA risk in Chinese population and provided evidence of epistatic contributions of genetic factors to BA susceptibility.

INTRODUCTION

Biliary atresia (BA) is a devastating inflammatory and fibro-obliterative disease of the infant biliary tree involving extra- and intrahepatic bile ducts which invariably leads, if left untreated, to cholestasis and hepatic fibrosis even progresses to liver cirrhosis and eventually liver failure [1]. The most effective treatment of choice is palliative surgery (Kasai operation) and the majority of patients would still need liver transplantation later in life due to the progressive intrahepatic bile ducts injury [2]. The majority of BA (about 80% of cases) occurs as an isolated defect without any associated disorders, and 10%-20% of patients with at least one major congenital malformation [3, 4]. The incidence of BA has geographical, seasonal and gender differences. The incidence rate of BA in western countries is about (0.5 to 0.8)/10,000, which is lower than Asians. The incidence is 1.5/10,000 in Taiwan, and about 1.1/10,000 in Japanese population [5, 6]. BA exhibits a slight gender bias, with a female to male ratio about 1.25:1 [7]. It is likely to be a multifactorial disease, in that environmental and genetic interaction underlies its pathogenesis. The genetic basis of BA is quite complicated. It was found that the disease could be inherited in a dominant or recessive
pattern but more probably was a polygenic condition with incomplete penetrance, genetic heterogeneity and variable clinical manifestations [3, 8]. In the past twenty years, a number of risk genes were found [9–16]. Recent genome-wide association studies (GWASs) revealed that variants in adducing-3 (ADD3), glypican-1 (GPC1), adenosine diphosphate-ribosylation factor-6 (ARF6) and epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1) were associated with BA susceptibility [9, 10, 12, 16].

A previous GWAS in Chinese population firstly identified a susceptibility locus for BA on 10q24.2 with rs17095355 as the lead single nucleotide polymorphism (SNP), which is located in the intergenic region between the X-prolyl aminopeptidase 1 (XPNPEPI) and ADD3 genes [9]. The association was then validated in Thai, Chinese and European population [11, 17–21]. Further study in model organism revealed that both xpnpep1 and add3a were expressed in the liver of developing zebrafish, only knockdown of add3a produced intrahepatic defects and decreased biliary function by activating Hedgehog signaling [22]. Chromosome 2q37 was identified as a potential susceptibility region for BA in a GWAS and continued fine-mapping indicated GPC1 as a susceptibility gene [10, 23]. Disruption of gpc1 in zebrafish led to biliary defects for overactivation of Hedgehog signaling [23]. Two common SNPs in GPC1 were subsequently investigated in a Chinese case-control sample-set containing 134 cases and 618 controls, which found a significant association with rs2292832 and a marginal effect with rs3828336 [24]. A GWAS with 80 Caucasian BA cases and 2,818 controls found SNPs rs3126184 and rs10140366 in the 3′ flanking region of ARF6 were associated with BA risk [12]. Knockdown of the two zebrafish homologs, arf6a and arf6b, caused a sparse intrahepatic biliary network, several biliary epithelial cell defects, and poor bile excretion to the gall bladder [12]. EFEMP1 was found association with BA in a recent European-American population-based GWAS including 343 isolated BA patients and 1,716 controls, which was validated an independent European-American cohort including 156 patients with BA and 212 genetically-matched controls [16]. RNA expression analysis and immunohistochemistry analysis demonstrated that expression of EFEMP1 was higher in BA patients than in controls [16].

With the aim to comprehensively investigate these newly identified susceptibility genes from recent GWASs, we conducted a case-control study in Chinese population consisting of 340 patients and 1,665 controls. Since ADD3 variants were repeatedly studied, we performed a meta-analysis for BA association with the top SNP rs17095355. We also explored the functional consequences of associated SNPs via bioinformatics methods.

RESULTS

Case-control association study

Detailed clinical information and biochemical indexes of 340 BA patients are shown in Table 1. A total of 340 cases and 1,665 controls were genotyped for 20 SNPs. Two SNPs (rs10140366 and rs2292832) were filtered out for failure in assays. Seven samples were excluded for further analysis for genotyping missing rates ≥ 5%. The genotypes of the remaining 18 SNPs were conformed to Hardy-Weinsberg equilibrium (HWE) (P > 0.05) and the minor allele frequencies (MAFs) were all above 0.01. The allele and genotype frequencies are shown in Table 2 and Table 3.

All three tag SNPs of ADD3 showed significant association (Table 2), rs17095355 (odds ratio (OR) = 1.49, 95% confidence interval (95% CI) = 1.26–1.76; PAllele = 3.23×10^{-6}, rs10509906 (OR = 0.68, 95% CI = 0.55–0.85; PAllele = 4.78×10^{-4}) and rs2501577 (OR = 1.36, 95% CI = 1.15–1.61; PAllele = 2.91×10^{-4}). The association signal of these three SNPs in BA patients were also significantly different from those in controls (PGenotypic- rs17095355 = 1.15×10^{-5}; PGenotypic- rs10509906 = 2.46×10^{-3}; PGenotypic- rs2501577 = 5.88×10^{-4}; Table 3). Analysis of model of inheritance for three SNPs showed a dominant model had the most significant effect on BA in the current population (rs17095355, PDominant = 4.34×10^{-6}; rs10509906, PDominant = 8.57×10^{-4}; rs2501577, PDominant = 1.39×10^{-4}; Table 3). Linkage disequilibrium (LD) analysis showed the top SNP rs17095355 were in moderate LD with rs2501577 (r^2 = 0.72), while in low LD with rs10509906 (r^2 = 0.14) (Figure 1A). Conditional logistic analysis found no SNPs were significantly associated with disease risk after adjusting for rs17095355 effect (P > 0.05), suggesting that rs17095355 could solely account for ADD3 association signal.

We further investigated whether ADD3 SNP haplotypes were associated with BA susceptibility. Three associated SNPs of ADD3 constructed a haplotype block. The frequency of haplotype rs17095355T - rs10509906G - rs2501577G in cases was significantly higher than that in controls (44% vs 36%, P = 4.86×10^{-5}, OR = 1.42, 95% CI = 1.20–1.68; Table 4). Haplotype rs17095355C - rs10509906C - rs2501577A showed significant protective effect with P = 1.00×10^{-4} (16% in cases vs 22% in controls; OR = 0.65, 95% CI = 0.52-0.81; Table 4).
Table 1. Clinical information and biochemical indexes of BA patients.

Variables	BA patients
Male/Female	192 / 125
Age (month)	2.20 ± 0.09
bile acid (µmol/L)	128.62 ± 2.98
ALT (IU/L)	168.72 ± 6.29
AST (IU/L)	257.66 ± 8.31
ALP (IU/L)	567.75 ± 12.82
GGT (IU/L)	581.64 ± 27.79
TB (µmol/L)	166.01 ± 3.32
DB (µmol/L)	115.70 ± 2.40

Data are means ± SEM; SEM: standard error of the mean; BA: Biliary atresia; ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; ALP: Alkaline phosphatase; GGT: Gamma-glutamyl transpeptidase; TB: Total bilirubin; DB: Direct bilirubin.

Table 2. Case-control association tests for SNPs of ADD3, GPC1, ARF6 and EFEMP in 333 BA patients and 1,665 controls.

CHR	BP	SNP	Gene	Functional annotation	A1/A2	Minor Allele Frequency	Allelic P value	OR (95% CI)	
2	5610833	rs1346786	EFEMP1	intron	G/A	0.121	0.141	0.164	0.84(0.65-1.08)
2	5611583	rs1125609	EFEMP1	intron	A/G	0.440	0.457	0.426	0.93(0.79-1.11)
2	5611804	rs10865291	EFEMP1	intron	A/T	0.087	0.090	0.846	0.97(0.72-1.30)
2	241359706	rs1316479	GPC1	5'upstream	A/G	0.076	0.090	0.232	0.83(0.60-1.33)
2	241362669	rs6750380	GPC1	5'upstream	G/A	0.434	0.392	0.041	1.19(1.01-1.41)
2	241371065	rs6707262	GPC1	5'upstream	G/A	0.438	0.392	0.027	1.21(1.02-1.43)
2	241382083	rs7577243	GPC1	3'UTR	G/A	0.429	0.393	0.083	1.16(0.98-1.37)
2	241385681	rs11692341	GPC1	intron	G/A	0.476	0.445	0.139	1.13(0.96-1.34)
2	241392025	rs13431676	GPC1	intron	G/A	0.017	0.018	0.745	0.90(0.47-1.72)
2	241403957	rs12695020	GPC1	intron	A/G	0.317	0.325	0.687	0.96(0.81-1.15)
2	241404499	rs2283327	GPC1	synonymous	A/G	0.129	0.124	0.700	1.05(0.82-1.35)
2	241405528	rs2283331	GPC1	missense	G/A	0.326	0.336	0.610	0.95(0.80-1.14)
2	241419842	rs639196	GPC1	intron	G/A	0.048	0.051	0.747	0.94(0.64-1.38)
10	111735750	rs17095355	ADD3	intron	T/C	0.494	0.397	3.23×10^{-6}	1.49(1.26-1.76)
10	111757674	rs10509906	ADD3	intron	C/G	0.173	0.235	4.78×10^{-4}	0.68(0.55-0.85)
10	111864687	rs2501577	ADD3	intron	G/A	0.464	0.389	2.91×10^{-4}	1.36(1.15-1.61)
14	50322886	rs3126184	ARF6	5'upstream	G/A	0.030	0.037	0.401	0.81(0.50-1.32)

CHR: Chromosome; BP: Base pair; SNP: Single Nucleotide Polymorphism; OR: odds ratio; CI: confidence interval.

Two SNPs in GPC1 showed nominal association with BA susceptibility, rs6707262 (OR = 1.21, 95% CI = 1.02-1.43; P\text{Allele} = 0.03; Table 2) and rs6750380 (OR = 1.19, 95% CI = 1.01-1.41, P\text{Allele} = 0.04; Table 2). However, the two SNPs could not reach study-wide significance (0.05/18 = 0.0027). The genotype distribution of rs6707262 was nominally different between cases and controls (P\text{Genotypic} = 0.043; Table 3). Haplotype analysis revealed these two SNPs and an adjacent SNP (rs1316479) constructed a haplotype block, and haplotype rs1316479G - rs6750380G - rs6707262G almost reached the study-wide significance (P = 0.0035) (Table 5). These two SNPs were in nearly perfect LD (r^2 = 0.98), suggesting that they represent a same signal (Figure 1B). These data indicated common genetic variation of GPC1 contributed to BA susceptibility in Chinese population.
Table 3. Genotype distributions of ADD3 associated SNPs (rs17095355, rs10509906 and rs2501577) and GPC1 SNPs (rs6750380 and rs6707262) in BA patients and healthy controls.

SNP	Genotype	Genotype distribution N (%)	P value				
		Case	Control		Genotype Dominant	Recessive	
rs17095355	TT	76(22.8)	275(16.5)		1.15×10^{-5}	4.34×10^{-6}	5.77×10^{-3}
	TC	177(53.2)	771(46.3)				
	CC	80(24.0)	619(37.2)				
rs10509906	CC	11(3.3)	98(5.9)				
	CG	93(27.9)	584(35.1)				
	GG	229(68.8)	981(59.0)				
rs2501577	GG	66(19.8)	262(15.7)				
	GA	177(53.2)	770(46.2)				
	AA	90(27.0)	633(38.0)				
rs6750380	GG	69(20.7)	263(15.8)		0.078	0.218	0.028
	GA	151(45.3)	777(46.7)				
	AA	113(33.9)	624(37.5)				
rs6707262	GG	71(21.2)	263(15.8)	0.043	0.203	0.014	
	GA	150(45.0)	780(46.9)				
	AA	112(33.6)	621(37.3)				

SNP: Single Nucleotide Polymorphism.

Figure 1. The linkage disequilibrium (LD) patterns of SNPs in ADD3 (A) and GPC1 (B). Haplotype blocks in ADD3 and GPC1 were defined according to the default method of Haplovlew. The numbers in the boxes are the pairwise correlation coefficient r^2 between respective SNPs. r^2 values of 1 represent complete LD, r^2 values greater than 0.8 represent strong evidence of LD, r^2 values of 0.2 – 0.8 represent inconclusive LD, and r^2 less than 0.2 represent negligible evidence of LD. The r^2 value between rs6750380 and rs6707262 of was 0.98.
Table 4. Association of ADD3 haplotypes constructed by rs17095355, rs10509906 and rs2501577.

Haplotypes	Frequency	OR(95% CI)	P value	
	Cases	Controls		
TGG	0.44	0.36	1.42(1.20-1.68)	4.86×10⁻⁵
CGA	0.33	0.35	0.90(0.76-1.08)	0.25
CCA	0.16	0.22	0.65(0.52-0.81)	1.00×10⁻⁴
TGA	0.04	0.03	1.30(0.82-2.05)	0.25
CGG	0.02	0.03	0.80(0.47-1.36)	0.38
TCA	0.02	0.01	1.51(0.79-2.89)	0.23

OR: odds ratio; CI: confidence interval.

Table 5. Association of GPC1 haplotypes constructed by rs1316479, rs6750380 and rs6707262.

Haplotypes	Frequency	OR(95% CI)	P value	
	Cases	Controls		
GAA	0.562	0.606	0.83(0.70-0.98)	0.0327
GGG	0.356	0.299	1.30(1.09-1.54)	0.0035
AGG	0.078	0.090	0.85(0.62-1.16)	0.2874

OR: odds ratio; CI: confidence interval.

The previously associated ARF6 SNP rs3126184 showed no significance in our samples (Table 2). The frequencies of rs3126184 allele T were 0.030 in cases and 0.037 in controls in current Chinese population. However, it was more frequent with 0.29 in cases and 0.13 in controls in Caucasian [12]. We found no associations of four previously reported risk SNPs of EFEMP1 with BA susceptibility in current samples. The allele frequencies in healthy controls of these four SNPs were different between current study and the European-American cohort, where the associations were firstly discovered [16]. But the effect direction of three SNPs was consistent with that in previous study (Supplementary Table 1).

We further investigated the potential gene-gene interactions among SNPs in ADD3, GPC1, ARF6 and EFEMP1 using Generalized multifactor dimensionality reduction (GMDR) strategy (Figure 2 and Table 6). In terms of BA risk prediction, the best single factor model was ADD3 (rs17095355) (P = 0.0012). The best two-factor model ADD3 (rs17095355) - GPC1 (rs7577243) was found significantly associated with BA (P = 0.0003). Besides, our result demonstrated that ADD3 (rs17095355) - GPC1 (rs7577243) - EFEMP1 (rs11125609) was the best three-factor model and showed the most significant association (P < 0.0001; OR = 2.41, 95% CI = 1.68-3.46).

Lastly, we investigated whether there was a cumulative genetic effect with respect to the disease risk for ADD3 SNP rs17095355 and GPC1 SNP rs6707262 (Figure 3). The individuals can be divided into four classes according to the number of risk alleles that they carry (Figure 3A). There is an increase in ORs for BA occurrence with the increasing number of risk alleles against the baseline group of individuals carrying no risk alleles. Those carrying four risk alleles were more than twice as likely to have BA (OR = 2.56, 95% CI = 1.23-5.32; Supplementary Table 2) compared with those

![Figure 2. Gene-gene interaction networks derived from GMDR regarding BA risk. Multilocus genotype combinations of a two-factor model are associated with risk to BA best. In each cell, the left bar represents a positive score, and the right bar represents a negative score. High risk are represented by dark shading cells and low-risk cells by light shading. Rs17095355 was in ADD3 region and rs7577243 was in GPC1 region.](image-url)
Table 6. Gene-gene interaction models contribution to BA risk by GMDR analysis.

Number of factors	Best model a	Training accuracy	Testing accuracy	CVC	Chi²	P value	OR(95% CI)
1	rs17095355	0.5663	0.5637	10/10	10.4962	0.0012	1.89(1.28-2.78)
2	rs7577243-rs17095355	0.5782	0.5216	6/10	12.8256	0.0003	1.94(1.35-2.79)
3	rs11125609-rs7577243-rs17095355	0.6072	0.5713	10/10	23.2364	<0.0001	2.41(1.68-3.46)

a. The best model was referred to as the one with the maximum testing accuracy and maximum cross-validation consistency (CVC). GMDR: generalized multifactor dimensionality reduction; OR: odds ratio; CI: confidence interval. Rs17095355, rs7577243 and rs11125609 were on ADD3, GPC1 and EFEMP1, respectively.

carrying none. We then evaluated the discriminatory power of a genetic test based on these two susceptibility SNPs by calculating the area under the receiver operating characteristic (ROC) curve, and the area under the curve (AUC) was estimated to be 0.58 (Figure 3B).

Meta-analysis

Literature searches and selection yielded 7 involved studies, which comprised 8 case-control studies [9, 11, 16–19, 21]. The study of Garcia-Barcelo MM, et al. included a GWAS stage and a replication stage in two independent samples [9], which were considered as two case-control studies in our meta-analysis (Table 7). Additionally, we included the data from the GWAS by Chen Y, et al [16] and the allele information of rs17095355 was obtained from the authors, which was imputed from the GWAS data with a info score of 0.998. The cases in the study of Tsai E.A et al [20] were part of samples from the study by Chen Y, et al, we therefore only included data from Chen Y, et al in the meta-analysis. Together with present study, a total of 9 case-control data consisting of 2,227 cases and 6859 controls was included in the meta-analysis (Figure 4). The risk allele T of has a higher frequency in Asians than in Europeans. The significant associations were consistent among 9 studies, although heterogeneity was found ($I^2=66\%$, p value <0.01, Figure 4). Therefore, the pooled OR was 1.61 (95% CI = 1.40-1.84) calculated by random effects model, which confirmed the association of rs17095355 with BA risk. In general, none of the studies produced a significantly biased result, but no obvious heterogeneity existed ($I^2 = 3.5\%$, p value = 0.26) after the data sets of Laochareonsuk, W et al. (OR =2.13, 95% CI = 1.37-3.32) [19] and Wang Z, et al.

Figure 3. Cumulative impact of two associated SNPs on BA risk. (A) Distribution of cumulative risk alleles in BA cases (red) and controls (blue) for ADD3 SNP rs17095355 and GPC1 SNP rs6707262. The ORs are relative to group with zero risk alleles; vertical bars correspond to 95% confidence intervals. Horizontal line denotes the reference value (OR = 1.0). (B) Receiver operating characteristic (ROC) curve for assessment of the discriminative power of the risk prediction model. The area under curve (AUC) of the model is 0.58.
Table 7. Summary of association studies for rs17095355 with BA susceptibility.

Authors	Year	Ethnic group	Numbers	Cases Frequencies of T allele	Controls Frequencies of T allele
Garcia-Barcelo MM, et al.	2010a	Chinese	181	481	0.551
Garcia-Barcelo MM, et al.	2010b	Chinese	124	90	0.539
Kaewkkiattiyot S, et al.	2011	Thai	124	114	0.569
Cheng G, et al.	2013	Chinese	267	324	0.540
Tsai E.A, et al.	2014	Caucasian	171	1630	0.204
Zeng S, et al.	2014	Chinese	133	618	0.538
Laohchareonsuk, W et al.	2018	Thai	56	166	0.643
Wang Z, et al.	2018	Chinese	510	1473	0.452
Chen Y, et al.	2018	Caucasian	499	1928	0.198
Present study	2019	Chinese	333	1665	0.494

(OR =1.18, 95% CI = 1.02-1.36) [21], were removed, which should be explained by the relatively larger and smaller OR values. The pooled OR of the remaining seven studies was 1.61 (95% CI = 1.48-1.76) calculated by fixed effects model.

Functional annotation of associated SNPs

At ADD3 locus, three associated SNPs (rs17095355, rs10509906 and rs2501577) were located in the intron region of ADD3. Rs17095355 and rs2501577 fall within a strong enhancer activity region (Supplementary Table 3) and they all alter the sequences of DNase I hypersensitivity sites and transcription factor binding motifs annotated by Roadmap (Supplementary Table 3). These three SNPs were expression quantitative trait loci (eQTLs) in multiple tissues from Genotype-Tissue Expression (GTEx) databases and were correlated with ADD3 expression in immune system tissues including spleen and whole blood, where was thought to be involved in the progress of BA (Supplementary Figure 1). Of note, the risk allele T of rs17095355 was significantly associated the increased level of ADD3 in spleen (P = 5.1×10^{-13}, Supplementary Figure 1).

Rs6750380 and rs6707262 at 5’upstream of GPC1 were located in a strong enhancer region as well as a site altering regulatory motifs and proteins bounding sites annotated by Roadmap (Supplementary Table 3). Rs6707262 was eQTL of GPC1 in testis (P = 4.6×10^{-11}) and tibial artery (P = 8.2×10^{-6}; Supplementary Figure 2). Rs6750380 was also eQTL of GPC1 in testis (P = 6.3×10^{-15}) and cultured fibroblasts cells (P = 2.1×10^{-6}; Supplementary Figure 3).

Protein expression and epigenetic modification of associated genes

In silico analysis revealed that ADD3 had a medium expression level in liver and a high expression level in gallbladder (Supplementary Figures 4A and 5). GPC1

![Figure 4](image_url)

Figure 4. Forest plot of meta-analysis for rs17095355 association with BA risk. The sizes of the squares are proportional to study weights. Diamond markers indicated pooled effect sizes.
was not expressed in adult liver and gallbladder tissues (Supplementary Figures 4B and 5) ADD3 showed significant difference in expression levels and methylation status between fetal and adult liver, with an approximately 2-fold higher expression level in fetal liver [25]. Four CpG sites located at ADD3 gene region were differentially methylated when comparing the methylation patterns of the adult liver with the fetal liver [25].

The protein-protein interaction (PPI) and co-expression results

Hedgehog signaling is an important mechanism in the pathology of BA and liver development. PPI analysis showed GPC1, ARF6, and EFEMP1 gene interacted with Hedgehog pathway or related genes (Figure 5). GPC1 was linked with Sonic Hedgehog (SHH) with experimentally determined evidence (Figure 5). Experimentally determined evidence also demonstrated that ARF6 and EFEMP1 gene were interacted with cadherin 1 (CDH1), which was linked to Hedgehog pathway members glioma-associated oncogene homolog 1 (GLI1), SHH and smoothened (SMO) (Figure 5). Although knockdown of add3 activated the Hedgehog pathway in zebrafish larvae, no recognized link between ADD3 and the Hedgehog pathway was found.

DISCUSSION

We performed association analysis for four BA susceptibility genes of discovered in recent GWASs. Our results validated that three ADD3 variants (rs17095355, rs10509906 and rs2501577), and two GPC1 variants (rs6750380 and rs6707262) were associated with BA susceptibility in Chinese population. Meta-analysis for rs17095355 association with BA further confirmed the association in Asian and Caucasian population. Associations of ARF6 and EFEMP1 SNPs were not replicated in current sample-set.

The 10q24.2 region encompassing ADD3 and XPNPEP1 genes was found association in a GWAS of Chinese population, and further fine-mapping of this region identified ADD3 as the susceptibility gene [9, 17]. Morpholino antisense oligonucleotide (MO) knockdown targeting add3a in zebrafish, not xpnpep1, produced intrahepatic defects and decreased biliary function [22]. The risk allele T of the top SNP rs17095355 was found association with decreased level of ADD3 in BA liver tissues, but no such correlation was found for XPNPEP1 [17]. Rs17095355 was also found to act as an eQTL for ADD3 in whole blood and spleen from the GTEx database. These findings indicated that ADD3 was the BA susceptibility gene at 10q24.2. The association between rs17095355 of ADD3 and BA was investigated repeatedly in multiple studies from different population [11, 18–21], and a meta-analysis comprising six case-control studies before 2015 has been conducted [26]. We incorporated the published data before 2015, the newly published data and our current data to perform a further meta-analysis. In Asian population, rs17095355 showed consistent significant association with BA [11, 18, 19, 21]. Rs17095355 also showed significant association in European descent, but rs7095604 showed more significant association [20]. These evidences revealed ADD3 as a common susceptibility gene in Asian and Caucasian population. The risk allele T of rs17095355 was more frequent in Asian than in Europe deccedents, which might contribute to the higher incidence of BA in Asian.

ADD3 encodes adducin-γ belonging to Adducin family. Adducins are heteromeric membrane skeletal proteins composed of different subunits referred to as adducin alpha, beta and gamma. Adducin-γ are ubiquitously

Figure 5. The protein-protein interaction (PPI) network based on STRING database of studied genes. The network is constructed for the four studies genes and Hedgehog pathway genes. The network nodes are proteins. The edges represent the predicted functional associations. An edge may be drawn with up to four different colored lines and these lines represent the existing associations that were predicted. A green line: neighborhood evidence; a blue line: cooccurrence evidence; a purple line: experimental evidence; a yellow line: textmining evidence; a black line: coexpression evidence.
expressed and abundantly expressed in biliary epithelia [17]. Adducins are involved in the assembly of spectrin-actin network in erythrocytes and at sites of cell-cell contact in epithelial tissues. Notably, the functional roles of adducins in remodeling of epithelial junctions during embryonic morphogenesis indicated that adducins might be involved in the biliary pathology in BA [27]. Morpholino-mediated knockdown of add3 activated the Hedgehog pathway in zebrafish larvae, providing a previously unrecognized link between ADD3 and the Hedgehog pathway [17]. It has long been recognized that BA is characterized by excessive Hedgehog pathway activity, which stimulated biliary epithelial-mesenchymal transitions (EMT) and might contribute to biliary dysmorphogenesis during liver development [28]. The underlying molecular mechanisms though which ADD3 regulates Hedgehog signaling needs further exploration.

Rare copy number variants and common variants of GPC1 both contributed to BA risk [10, 23, 24]. We genotyped ten tag SNPs in the current sample-set and confirmed GPC1 association with BA risk. Two new associated SNPs were identified (rs6750380 and rs6707262), which also had eQTL effects on GPC1. GPC1 encodes glypican-1, one of six members of the glypican family, which attach to the cell membrane by a glycosyl-phosphatidylinositol linkage. Previous study showed that glypican-1 was located in the apical membrane of cholangiocytes and had reduced levels in diseased liver from BA patients [23]. Knockdown of gpc1 in zebrafish led to developmental biliary defects resembling BA and Hedgehog activity was increased in the livers of gpc1 morphants [23]. Glypican-3 (GPC3) acted as a negative regulator of Hedgehog signaling, through interacting with high affinity with Hedgehog and competing with Patched for Hedgehog binding [29]. Together, these findings suggest GPC1 could act as an inhibitor for Hedgehog ligands via the similar mechanisms as GPC3.

A GWAS in Caucasian identified ARF6 as a susceptibility gene at 14q21.3 [12]. ARF6 shows a medium expression level in liver and gallbladder (Supplementary Figures 4C and 5). Knockdown of the two zebrafish homologs resembled the syndromes of BA, which indicated that arf6 was required in early biliary development [12]. The frequency of rs3126184 risk allele in Caucasian controls was 0.13, but only 0.037 in current controls. The association was not validated in our samples. Since only two reported SNPs were studied, we could not preclude the possibility that other variants of ARF6 were associated with BA risk. Another explanation for lack replication of the association might be the genetic heterogeneity, that ARF6 might be a Caucasian specific susceptibility gene.

EFEMP1 mapping to chromosome 2p16, encodes epidermal growth factor-containing fibulin-like extracellular matrix protein 1, which is also known as Fibulin-3. Its main role is to maintain basement membrane stability and extracellular matrix integrity, which is implicated in cell proliferation and organogenesis [16, 30, 31]. **EFEMP1** is also a major extracellular matrix protein involving in the biological process of fibrosis [32]. The expression level of **EFEMP1** was higher in BA patients than in controls [16]. Together, these findings suggest a potential role for **EFEMP1** in the pathogenesis of BA. A cluster of SNPs within **EFEMP1** gene were significantly associated with BA susceptibility in a recent GWAS in Europeans [16]. Four tag SNPs in the current study did not reach the significance level, however, showed the same effect direction as in the original study [16]. Given the moderate effects of this locus, our sample was not large enough to detect the association. Therefore, further studies were needed to validate this association in other independent samples.

In summary, we confirmed association of variants in ADD3 and GPC1 with BA susceptibility in Chinese population. The interaction of SNPs in disease-associated genes contributed to BA susceptibility. Bioinformatics analysis revealed that the risk SNPs influenced the expression of susceptibility genes.

MATERIALS AND METHODS

Subjects

A total of 340 unrelated patients were recruited. Diagnose of BA was based on clinical manifestations, laboratory tests, imaging examinations and ultimately confirmed by cholangiography. Patients with other associated congenital malformations were excluded from the study. Clinical information of patients was shown in Table 1. Totally, 1,665 unrelated healthy individuals without BA, other congenital diseases, autoimmune, or liver disease were enrolled as controls. All participants were biologically unrelated Chinese Han individuals and were recruited at Xinhua hospital affiliated to Shanghai Jiao Tong University School of Medicine from 2008 to 2018. Peripheral blood samples were collected in a standard EDTA tube for DNA extraction and all data was recorded anonymously. Genomic DNA was extracted from peripheral blood leukocytes using QIAamp DNA Blood Mini Kit according to the manufacturer’s protocol (Qiagen, Hilden, Germany). Written informed consent was obtained from all participants or their parents. This study was conducted in accordance with the Declaration of Helsinki (version 2002) and was approved by the institution review board of Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine.
SNP selection

A GWAS in Chinese population revealed BA association with 10q24.2 region encompassing \textit{ADD3} and \textit{XPNPEP1} [9]. Subsequent fine-mapping indicated that a risk haplotype, consisting of five SNPs: rs17095355, rs10509906, rs2501577, rs6584970, and rs7086057, could capture the 10q24.2 risk alleles [17]. Among the five SNPs, rs2501577, rs6584970 and rs7086057 were in high LD ($r^2 \geq 0.98$). Therefore, we select rs17095355, rs10509906 and rs2501577 for replication analysis. We selected 10 tag SNPs from South Han Chinese data in 1000 genomes project database to cover the common variation in \textit{GPC1} gene region. Rs2292832 failed in the assay. Two SNPs (rs3126184 and rs10140366) in perfect LD 3’ upstream of \textit{ARF6} were reported association with BA in Caucasian children [12]. We genotyped these two SNPs in our samples, but rs10140366 failed in the assay. About 13 SNPs in high LD within \textit{EFEMP1} region on 2p16.1 were associated with BA susceptibility in a European-American cohort [16]. We selected 4 tag SNPs including the top SNP (rs10865291) for replication.

SNP genotyping

Genotyping was performed using the Fluidigm 96.96 Dynamic Array IFCS (Fluidigm, San Francisco, CA, United States) [33]. Cases and controls were plated out in sets of 96 samples and combined into 384-well arrays for genotyping. Polymerase chain reaction (PCR) was performed in a 5-µl reaction and cycling conditions were set using the standard procedure according to the manufacturer’s protocol. To obtain genotype calls, we analyzed the data using EP1 SNP Genotyping Analysis manufacturer’s protocol. To obtain genotype calls, we analyzed the data using EP1 SNP Genotyping Analysis software. The software defined the genotype of each sample based on the relative fluorescence intensities.

Functional annotation

We first investigated the functional consequences of the associated SNP by checking HaploRegv4.1 database. To examine whether the associated SNPs were eQTL, we made inquiries in GTEx Analysis Release V8 (dbGap Accession phs000424.v8.p2) [34]. The GTEx project collected and analyzed multiple human tissues from donors who were densely genotyped to assess genetic variation within their genomes. By analyzing global RNA expression within individual tissues and treating the expression levels of genes as quantitative traits, variations in genes expression that are highly correlated with genetic variation can be identified as eQTL.

Meta-analysis

Since 2010 when 10q24.2 region was implicated association with BA in, rs17095355 was repeatedly genotyped in the following studies, thus we performed a meta-analysis of rs17095355 association with BA risk. In order to find eligible studies, we searched PubMed using combinations of the following terms: “ADD3” or “adducin 3” or “XPNPEP1” or “X-prolyl aminopeptidase 1” and “biliary atresia” and “association”. We also searched the reference list of review articles and lists of publications of researchers working in this field. The included data covered all English-language publications up to October 2019. Meta-analysis was conducted using the Meta package in R ([http://cran.r-project.org/web/packages/meta/index.html] [35]). The I^2 was calculated to quantify the magnitude of between-study heterogeneity and the Cochrane Q statistic was used to determine significance for heterogeneity. An I^2 of 25%, 50%, and 75% represents low, medium, and large heterogeneity, respectively.

\textit{In silico} protein expression and epigenetic analysis

We searched for the expression pattern of studied genes in THE HUMAN PROTEIN ATLAS ([https://www.proteinatlas.org/]). The immunohistochemistry results in liver and gallbladder tissues were extracted. EWAS Catalog β ([http://www.ewascatalog.org/]) was used as a lookup for epigenetic modifier of studied genes.

PPI network construction

We explored PPI using STRING database ([http://string-db.org/]) [36]. Four studied genes (\textit{ADD3}, \textit{GPC1}, \textit{ARF6}, and \textit{EFEMP1}) and Hedgehog pathway genes were used to query STRING database. The PPI relationships were analyzed on the STRING database with the required confidence (combined score) > 0.4 as the threshold. After the PPIs were searched, the PPI network was constructed on STRING website.

Statistical analysis

Quality control was performed using PLINK 1.09 [37]. HWE of each SNP in both case and control groups was tested. Four genetic models, including the allelic, additive, dominant and recessive model, together with a genotypic association test (2df test) were used to analyze the association for each SNP using PLINK 1.09 [37]. We calculated per allele OR and 95%CI. We calculated LD between SNPs and constructed haplotype block using Haploview4.2 [38]. Haplotype phasing was performed using SHAPEIT and haplotype association was tested using R package [39]. Conditional logistic analysis was performed to find additional markers with independent effect by adding the top associated markers as covariates in logistic regression. The study-wide significance threshold for SNP association analysis is
\(P = 0.027 \) (0.05/18). Gene-gene interactions were investigated using GMDR software Beta 0.9 [40]. \(ADD3 \) SNP rs17095355 and \(GPC1 \) SNP rs6707262 were used to build the risk assessment model. The genotypes of each SNP were coded as 0, 1, or 2 indicating the number of risk alleles in one individual. The cumulative genetic risk score of each individual is the sum of risk alleles from the two SNPs (score range, 0 - 4). To test the prediction capability of the model, we generated the ROC curve and calculated the AUC using the pROC R package [41].

Abbreviations

BA: biliary atresia; GWAS: genome-wide association study; SNP: single nucleotide polymorphism; eQTL: expression quantitative trait loci; LD: linkage disequilibrium; \(ADD3 \): adducin 3; \(GPC1 \): glypican 1; \(ARF6 \): adenosine diphosphate-ribosylation factor-6; \(EFEMP1 \): epidermal growth factor-containing fibulin-like extracellular matrix protein 1; \(XPNPEP1 \): X prolyl aminopeptidase P1 soluble; HWE: Hardy-Weinberg equilibrium; MAFs: minor allele frequencies; OR: odds ratio; CI: confidence interval; GMDR: Generalized multifactor dimensionality reduction; ROC: receiver operating characteristic; AUC: area under the curve; GTEx: Genotype-Tissue Expression; PPI: protein-protein interaction; \(SHH \): Sonic Hedgehog; \(CDH1 \): cadherin 1; \(GLI1 \): glioma-associated oncogene homolog 1; \(SMO \): smoothened; MO: morpholino antisense oligonucleotide; EMT: epithelial-mesenchymal transitions; \(GPC3 \): glypican-3; PCR: polymerase chain reaction.

AUTHOR CONTRIBUTIONS

Xun Chu and Wei Cai conceived the study. Mei-Rong Bai, Yan-Jiao Lu, Xian-Xian Yu, Zhi-Liang Wei, Wen-Jie Wu, Huan-Lei Song, Wen-Wen Yu and Bei-Lin Gu conducted the experiment. Ying Zhou and Yi-Ming Gong recruited the samples and collected the demographic and clinical information. Mei-Rong Bai, Wei-Bo Niu and Xun Chu participated in data analysis and figure preparation. Mei-Rong Bai and Xun Chu drafted the manuscript. All authors read and approved the final manuscript.

ACKNOWLEDGMENTS

We thank all the study participants for contributing to this effort. We would like to thank Professor Marcella Devoto for providing the data of rs17095355 from their previous Genome-wide association study.

CONFLICTS OF INTEREST

The authors declare no conflicts of interest.

FUNDING

This work was supported by the National Natural Science Foundation of China (31671317, 31471190 and Key Program 81630039), Foundation of Shanghai Municipal Health Commission (201840014), Foundation for Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition (17DZZ2272000), Foundation of Science and Technology Commission of Shanghai Municipality (19495810500) and Shanghai Sailing Program (19YF1440700), and the Interdisciplinary Program of Shanghai Jiao Tong University (ZH2018QNA57).

REFERENCES

1. Hartley JL, Davenport M, Kelly DA. Biliary atresia. Lancet. 2009; 374:1704–13. [https://doi.org/10.1016/S0140-6736(09)60946-6] PMID: 19914515

2. Lloyd D, Jones M, Dalzell M. Surgery for biliary atresia. Lancet. 2000; 355:1099–100. [https://doi.org/10.1016/S0140-6736(05)60946-6] PMID: 10744115

3. Nakamura K, Tanoue A. Etiology of biliary atresia as a developmental anomaly: recent advances. J Hepatobiliary Pancreat Sci. 2013; 20:459–64. [https://doi.org/10.1007/s00534-013-0604-4] PMID: 23567964

4. Verkade HJ, Bezerra JA, Davenport M, Schreiber RA, Mieli-Vergani G, Hulscher JB, Sokol RJ, Kelly DA, Ure B, Whittington PF, Samyn M, Petersen C. Biliary atresia and other cholestatic childhood diseases: advances and future challenges. J Hepatol. 2016; 65:631–42. [https://doi.org/10.1016/j.jhep.2016.04.032] PMID: 27164551

5. Nizery L, Chardot C, Sissaoui S, Capito C, Henrion-Cauda A, Debray D, Girard M. Biliary atresia: clinical advances and perspectives. Clin Res Hepatol Gastroenterol. 2016; 40:281–87. [https://doi.org/10.1016/j.clinre.2015.11.010] PMID: 26775892

6. Bezerra JA, Wells RG, Mack CL, Karpen SJ, Hoofnagle JH, Doo E, Sokol RJ. Biliary Atresia: Clinical and Research Challenges for the Twenty-First Century. Hepatology. 2018; 68:1163–73. [https://doi.org/10.1002/hep.29905] PMID: 29604222

7. Asai A, Miethke A, Bezerra JA. Pathogenesis of biliary atresia: defining biology to understand clinical phenotypes. Nat Rev Gastroenterol Hepatol. 2015; 12:342–52. [https://doi.org/10.1038/nrgastro.2015.74] PMID: 26008129
8. Tsai EA, Grochowski CM, Falsey AM, Rajagopalan R, Wendel D, Devoto M, Krantz ID, Loomes KM, Spinner NB. Heterozygous deletion of FOXA2 segregates with disease in a family with heterotaxy, panhypopituitarism, and biliary atresia. Hum Mutat. 2015; 36:631–37. https://doi.org/10.1002/humu.22786 PMID:25765999

9. Garcia-Barceló MM, Yeung MY, Miao XP, Tang CS, Cheng G, So MT, Ngan ES, Lui VC, Chen Y, Liu XL, Hui KJ, Li L, Guo WH, et al. Genome-wide association study identifies a susceptibility locus for biliary atresia on 10q24.2. Hum Mol Genet. 2010; 19:2917–25. https://doi.org/10.1093/hmg/ddq196 PMID:20460270

10. Leyva-Vega M, Gerfen J, Thiel BD, Jurkiewicz D, Rand EB, Pawlowska J, Kaminska D, Russo P, Gai X, Krantz ID, Kamath BM, Hakonarson H, Haber BA, Spinner NB. Genomic alterations in biliary atresia suggest region of potential disease susceptibility in 2q37.3. Am J Med Genet A. 2010; 152A:886–95. https://doi.org/10.1002/ajmg.a.33332 PMID:20358598

11. Kaewkiaitlyot S, Honsawek S, Vejchapipat P, Chongsrirawat V, Poovorawan Y. Association of X-prolyl aminopeptidase 1 rs17095355 polymorphism with biliary atresia in Thai children. Hepatol Res. 2011; 41:1249–52. https://doi.org/10.1111/j.1872-2821.2010.00870.x PMID:22118303

12. Ningappa M, So J, Glessner J, Ashokkumar C, Ranganathan S, Min J, Higgs BW, Sun Q, Haberman K, Schmitt L, Vilarinho S, Mistry PK, Vockley G, et al. The Role of ARF6 in Biliary Atresia. PLoS One. 2015; 10:e0138381. https://doi.org/10.1371/journal.pone.0138381 PMID:26379158

13. Kohsaka T, Yuan ZR, Guo SX, Tagawa M, Nakamura A, Nakano M, Kawasaki H, Inomata Y, Tanaka K, Miyauchi J. The significance of human jagged 1 mutations detected in severe cases of extrahepatic biliary atresia. Hepatology. 2002; 36:904–12. https://doi.org/10.1053/jhep.2002.35820 PMID:12297837

14. Arikan C, Berdeli A, Ozgenc F, Tumgor G, Yagci RV, Aydogdu S. Positive association of macrophage migration inhibitory factor gene-173G/C polymorphism with biliary atresia. J Pediatr Gastroenterol Nutr. 2006; 42:77–82. https://doi.org/10.1097/01.mp.0000192247.55583.fa PMID:16385258

15. Liu B, Wei J, Li M, Jiang J, Zhang H, Yang L, Wu H, Zhou Q. Association of common genetic variants in VEGFA with biliary atresia susceptibility in Northwestern Han Chinese. Gene. 2017; 628:87–92. https://doi.org/10.1016/j.gene.2017.07.027 PMID:28710035

16. Chen Y, Gilbert MA, Grochowski CM, McEldrew D, Llewellyn J, Waisbourd-Ziman O, Hakonarson H, Bailey-Wilson JE, Russo P, Wells RG, Loomes KM, Spinner NB, Devoto M. A genome-wide association study identifies a susceptibility locus for biliary atresia on 2p16.1 within the gene EFEMP1. PLoS Genet. 2018; 14:e1007532. https://doi.org/10.1371/journal.pgen.1007532 PMID:30102696

17. Cheng G, Tang CS, Wong EH, Cheng WW, So MT, Miao X, Zhang R, Cui L, Liu X, Ngan ES, Lui VC, Chung PH, Chan IH, et al. Common genetic variants regulating ADD3 gene expression alter biliary atresia risk. J Hepatol. 2013; 59:1285–91. https://doi.org/10.1016/j.jhep.2013.07.021 PMID:23872602

18. Zeng S, Sun P, Chen Z, Mao J, Wang J, Wang B, Liu L. Association between single nucleotide polymorphisms in the ADD3 gene and susceptibility to biliary atresia. PLoS One. 2014; 9:e107977. https://doi.org/10.1371/journal.pone.0107977 PMID:25285724

19. Laochareonsuk W, Chiengkriwate P, Sangkhathat S. Single nucleotide polymorphisms within Adducin3 and Adducin 3 antisense RNA1 genes are associated with biliary atresia in Thai infants. Pediatr Surg Int. 2018; 34:515–20. https://doi.org/10.1007/s00383-018-4243-3 PMID:29508064

20. Tsai EA, Grochowski CM, Loomes KM, Bessho K, Hakonarson H, Bezerra JA, Russo PA, Haber BA, Spinner NB, Devoto M. Replication of a G variant in the ADD3 gene and susceptibility to biliary atresia. J Hepatol. 2013; 59:1285–91. https://doi.org/10.1016/j.jhep.2013.07.021 PMID:25285724

21. Wang Z, Xie X, Zhao J, Fu M, Li Y, Zhong W, Xia H, Zhang Y, Zhang RZ. The intragenic epistatic association of X chromosome with biliary atresia. Hum Genet. 2014; 133:235–49. https://doi.org/10.1007/s00439-013-1368-2 PMID:24104524

22. Tang V, Cofer ZC, Cui S, Sapp V, Loomes KM, Matthews RP. Loss of a Candidate Biliary Atresia Susceptibility Gene, add3a, Causes Biliary Developmental Defects in Zebrafish. J Pediatr Gastroenterol Nutr. 2016; 63:524–30. https://doi.org/10.1097/MPG.0000000000001375 PMID:27526058
23. Cui S, Leyva-Vega M, Tsai EA, EauClaire SF, Glessner JT, Hakonarson H, Devoto M, Haber BA, Spinner NB, Matthews RP. Evidence from human and zebrafish that GPC1 is a biliary atresia susceptibility gene. Gastroenterology. 2013; 144:1107–15.e3. https://doi.org/10.1053/j.gastro.2013.01.022 PMID: 23336978

24. Ke J, Zeng S, Mao J, Wang J, Lou J, Li J, Chen X, Liu C, Huang LM, Wang B, Liu L. Common genetic variants of GPC1 gene reduce risk of biliary atresia in a Chinese population. J Pediatr Surg. 2016; 51:1661–64. https://doi.org/10.1016/j.jpedsurg.2016.05.009 PMID: 27373597

25. Bonder MJ, Kasela S, Kals M, Tamm R, Lokk K, Barragan I, Buurman WA, Deelen P, Greve JW, Ivanov M, Rensen SS, van Vliet-Ostaptchouk JV, Wolfs MG, et al. Genetic and epigenetic regulation of gene expression in fetal and adult human livers. BMC Genomics. 2014; 15:860. https://doi.org/10.1186/1471-2164-15-860 PMID: 25282492

26. Li J, Gao W, Zuo W, Liu X. Association between rs17095355 polymorphism on 10q24 and susceptibility to biliary atresia: a meta-analysis. J Matern Fetal Neonatal Med. 2017; 30:1882–86. https://doi.org/10.1080/14767058.2016.1228102 PMID: 27557278

27. Naydenov NG, Ivanov AI. Adducins regulate remodeling of apical junctions in human epithelial cells. Mol Biol Cell. 2010; 21:3506–17. https://doi.org/10.1091/mbc.e10-03-0259 PMID: 20810786

28. Omenetti A, Bass LM, Anders RA, Clemente MG, Francis H, Guy CD, McCall S, Choi SS, Alpini G, Schwarz KB, Diehl AM, Whittington PF. Hedgehog activity, epithelial-mesenchymal transitions, and biliary dysmorphogenesis in biliary atresia. Hepatology. 2011; 53:1246–58. https://doi.org/10.1002/hep.24156 PMID: 21480329

29. Capurro MI, Xu P, Shi W, Li F, Jia A, Filmus J. Glypican-3 inhibits Hedgehog signaling during development by competing with patched for Hedgehog binding. Dev Cell. 2008; 14:700–11. https://doi.org/10.1016/j.devcel.2008.03.006 PMID: 18477453

30. Wang X, Sun X, Qu X, Li C, Yang P, Jia J, Liu J, Zheng Y. Overexpressed fibulin-3 contributes to the pathogenesis of psoriasis by promoting angiogenesis. Clin Exp Dermatol. 2019; 44:e64–72. https://doi.org/10.1111/ced.13720 PMID: 30146751

31. Hu J, Duan B, Jiang W, Fu S, Gao H, Lu L. Epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1) suppressed the growth of hepatocellular carcinoma cells by promoting Semaphorin 3B(SEMA3B). Cancer Med. 2019; 8:3152–66. https://doi.org/10.1002/cam4.2144 PMID: 30972979

32. de Vega S, Iwamoto T, Yamada Y. Fibulins: multiple roles in matrix structures and tissue functions. Cell Mol Life Sci. 2009; 66:1890–902. https://doi.org/10.1007/s00018-009-8632-6 PMID: 19189051

33. Fang W, Meinhardt LW, Mischke S, Bellato CM, Motilal L, Zhang D. Accurate determination of genetic identity for a single cacao bean, using molecular markers with a nanofluidic system, ensures cocoa authentication. J Agric Food Chem. 2014; 62:481–87. https://doi.org/10.1021/jf404402v PMID: 24354624

34. Murase N, Uchida H, Ono Y, Tainaka T, Yokota K, Tanano A, Shirota C, Shirotsuki R. A New Era of Laparoscopic Revision of Kasai Portoenterostomy for the Treatment of Biliary Atresia. Biomed Res Int. 2015; 2015:173014. https://doi.org/10.1155/2015/173014 PMID: 26266251

35. Schwarzer G. meta: An R Package for Meta-Analysis. Res News. 2007; 7:40–45. https://cran.rstudio.org/doc/Rnews/Rnews_2007-3.pdf#page=40

36. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015; 43:D447–52. https://doi.org/10.1093/nar/gku1003 PMID: 25352553

37. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007; 81:559–75. https://doi.org/10.1086/519795 PMID: 17701901

38. Barrett JC, Fry B, Maller J, Daly MJ. Haplovie: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005; 21:263–65. https://doi.org/10.1093/bioinformatics/bth457 PMID: 15297300
39. Delaneau O, Marchini J, Zagury JF. A linear complexity phasing method for thousands of genomes. Nat Methods. 2011; 9:179–81.
https://doi.org/10.1038/nmeth.1785
PMID: 22138821

40. Lou XY, Chen GB, Yan L, Ma JZ, Zhu J, Elston RC, Li MD. A generalized combinatorial approach for detecting gene-by-gene and gene-by-environment interactions with application to nicotine dependence. Am J Hum Genet. 2007; 80:1125–37.
https://doi.org/10.1086/518312 PMID: 17503330

41. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Müller M. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011; 12:77.
https://doi.org/10.1186/1471-2105-12-77 PMID: 21414208
Supplementary Figures

Supplementary Figure 1. Multi-tissue eQTL plot for rs17095355 on ADD3 expression.

The plot was based on genotype and transcriptome data from the GTEx Analysis Release V8 (dbGaP Accession phs000424.v8.p2). The modeled allele is rs17095355 risk allele T.

Tissue	Samples	NES	p-value	m-value
Brain - Cerebellum	209	0.843	2.3e-33	1.00
Brain - Cerebellar Hemisphere	175	0.818	1.6e-34	1.00
Uterus	129	0.514	4.1e-6	1.00
Pituitary	237	0.050	2.0e-14	1.00
Kidney - Cortex	73	0.404	2.3e-5	1.00
Spleen	135	0.386	5.1e-13	1.00
Virginia	141	0.312	6.5e-4	1.00
Small Intestine - Terminal Ileum	174	0.277	1.2e-3	1.00
Stomach	324	0.263	2.7e-7	1.00
Artery - Aorta	377	0.261	1.2e-10	1.00
Liver	208	0.247	8.6e-4	0.985
Adrenal Gland	233	0.245	1.1e-4	1.00
Cells - EBV-transformed lymphocytes	147	0.212	0.02	0.949
Colon - Sigmoid	318	0.200	6.1e-11	1.00
Colon - Transverse	368	0.195	2.2e-9	1.00
Nerve - Tibial	532	0.185	2.9e-11	1.00
Breast - Mammary Tissue	396	0.176	4.1e-6	1.00
Muscle - Skeletal	706	0.170	2.9e-10	1.00
Testes	322	0.170	1.1e-5	1.00
Prostate	221	0.162	1.2e-3	1.00
Lung	515	0.152	1.0e-7	1.00
Artery - Tibial	584	0.150	3.6e-9	1.00
Heart - Left Ventricle	385	0.145	3.1e-5	1.00
Brain - Caudate (basal ganglia)	194	0.139	2.1e-4	1.00
Adipose - Subcutaneous	581	0.134	1.8e-6	1.00
Esophagus - Muscularis	465	0.133	7.9e-8	1.00
Adipose - Subcutaneous	469	0.130	2.7e-6	1.00
Brain - Frontal Cortex (BA9)	175	0.129	3.3e-6	1.00
Thyroid	574	0.126	7.7e-10	1.00
Heart - Atrial Appendage	372	0.120	1.8e-3	1.00
Esophagus - Gastroesophageal Junction	330	0.109	3.6e-4	0.966
Ovary	167	0.101	0.7e-6	1.00
Whole Blood	670	0.0978	8.2e-9	1.00
Brain - Putamen (basal ganglia)	170	0.0976	4.4e-3	0.939
Brain - Cortex	205	0.0953	3.2e-3	0.986
Brain - Hippocampus	165	0.0837	1.0e-3	0.837
Cells - Cerebral fibrescence	483	0.0834	2.3e-4	0.726
Brain - Nucleus accumbens (basal ganglia)	202	0.0684	0.07	0.337
Artery - Coronary	213	0.0664	0.2	0.455
Skin - Not Sun Exposed (Suprapubic)	517	0.0651	0.06	0.222
Minor Salivary Gland	144	0.0630	0.4	0.550
Skin - Sun Exposed (Lower leg)	605	0.0446	0.2	0.060
Brain - Spinal cord (cervical c-1)	125	0.0391	0.7	0.701
Brain - Anterior circulate cortex (BA24)	147	0.0339	0.4	0.0070
Brain - Hypothalamus	170	0.0254	0.6	0.930
Esophagus - mucosa	497	0.0147	0.5	0.00
Brain - Amygdala	129	0.00315	0.1	0.129
Pancreas	305	-0.0058	0.3	0.00
Brain - Substantia nigra	114	-0.0374	0.6	0.0810
Supplementary Figure 2. Multi-tissue eQTL plot for rs6707262 on GPC1 expression. The plot was based on genotype and transcriptome data from the GTEx Analysis Release V8 (dbGaP Accession phs000424.v8.p2). The modeled allele is rs6707262 risk allele G.
Supplementary Figure 3. Multi-tissue eQTL plot for rs6750380 on GPC1 expression. The plot was based on genotype and transcriptome data from the GTEx Analysis Release V8 (dbGaP Accession phs000424.v8.p2). The modeled allele is rs6750380 risk allele G.
Supplementary Figure 4. The expression of \textit{ADD3}, \textit{GPC1}, \textit{ARF6} and \textit{EFEMP1} in human tissues. (A–D) stand for \textit{ADD3}, \textit{GPC1}, \textit{ARF6} and \textit{EFEMP1} expression respectively in human tissues from THE HUMAN PROTEIN ATLAS (https://www.proteinatlas.org/). The vertical axis indicates the expression level of the gene in each tissue.
Supplementary Figure 5. Immunohistochemistry analysis of ADD3, GPC1, ARF6 and EFEMP1 in adult human liver and gallbladder tissues from THE HUMAN PROTEIN ATLAS database (https://www.proteinatlas.org/).
Supplementary Tables

Supplementary Table 1. Allele frequencies of four Tag SNPs of *EFEMP1* in Europeans and Chinese.

Alleles	Risk allele	Risk allele frequency	Ethnic group	Study
rs1346786	T/C	0.39		Europeans, Chen Y, 2018, stage1
		0.35		European, Chen Y, 2018, stage2
		0.88		Chinese, Present study
rs11125609	C/T	0.36		Europeans, Chen Y, 2018, stage1
		0.31		European, Chen Y, 2018, stage2
		0.56		Chinese, Present study
rs10865291	A/G	0.43		Europeans, Chen Y, 2018, stage1
		0.40		European, Chen Y, 2018, stage2
		0.80		Chinese, Present study
rs1430193	T/A	0.44		Europeans, Chen Y, 2018, stage1
		0.42		European, Chen Y, 2018, stage2
		0.09		Chinese, Present study

Supplementary Table 2. Number of accounted risk alleles in BA cases and controls and ORs for BA by cumulative risk alleles.

Number of risk alleles	Control	Case	OR(95% CI)	P value
0	14.6%	9.0%	1	3.71E-01
1	32.9%	24.9%	1.23(0.79,1.91)	3.61E-03
2	34.9%	40.5%	1.88(1.23,2.87)	4.01E-04
3	15.2%	21.6%	2.30(1.45,3.65)	1.20E-02
4	2.5%	3.9%	2.56(1.23,5.32)	

OR: odds ratio; CI: confidence interval.

Supplementary Table 3. Functional annotation of SNPs correlated with newly identified risk variants using data from HaploReg v4.1.

SNP	Position	Promoter histone marks\(b\)	Enhancer histone marks\(c\)	DNase\(d\)	Proteins bound\(e\)	Motifs changed\(f\)
rs6750380	241362669	ESDR, CRVX		JUND, FOSL2		5 altered motifs
rs6707262	241371065	4 tissues				Hoxa5, XBP-1
rs17095355	111735750	11 tissues			Ets,Gfi1, Gfi1b	
rs10509906	111757674	BLD		ESDR,	IPSC, BLD, BLD	BDP1, TBX5
rs2501577	111846687	7 tissues		BLD		

SNP: Single Nucleotide Polymorphism; The chromosome position (bp) is based on GRCH37;
ESDR: H9 Derived Neuronal Progenitor Cultured Cells or H9 Derived Neuron Cultured Cells; CRVX: HeLa-S3 Cervical Carcinoma Cell Line; IPSC: iPS DF 6.9 Cells; BLD: Primary T cells from peripheral blood or Primary Natural Killer cells from peripheral blood.

b. Evidence of local H3K4Me1 and H3K27Ac modification (cell lines/types: if >3, only the number is included).
c. Evidence of local H3K4Me3 modification (cell lines/types: if >3, only the number is included).
d. Evidence of chromatin hypersensitivity to DNase (cell lines/types: if >3, only the number is included).
e. ChIP-seq experiments indicate alteration in binding of transcription factor (if >3, only the number is included).
f. Evidence of alteration in regulatory motif (if >3, only the number is included).