THE COMPASS SPIN PHYSICS PROGRAM

S. PANEBIANCO, on behalf of the COMPASS collaboration
CEA-Saclay, DSM / DAPNIA / SPbN, 91191 Gif/Yvette, France

COMPASS

One of the main aims of the COMPASS experiment at CERN is the study of the spin structure of the nucleon and in particular the determination of the gluon polarization in the nucleon. We present some new results of 2002-2003 data analysis. They concern a precise measurement of the deuteron structure function g_1 at small x, some preliminary result on Collins and Sivers asymmetries which are linked to transversity and a new measurement of $G = g_2$.

1 General overview

The structure of the nucleon in terms of its constituents is described by the Parton Distribution Functions (PDF). They are used to describe the soft part of the deep inelastic scattering (DIS) process, where a lepton scatters on a nucleon with the exchange of a high virtual photon. In unpolarized DIS one has access to the quark and gluon PDF, $q(x; Q^2)$ and $G(x; Q^2)$. On the contrary, in polarized DIS two other PDF can be measured: $q = q^\uparrow$ q^\downarrow and $G = G^\uparrow$, G^\downarrow. The polarized PDF are the fundamental pieces to understand the nucleon spin. For a nucleon with a helicity $+1$ we have: $\frac{1}{2} = \frac{1}{2} + G + L + L_2^g$, where $\frac{1}{2} = \frac{1}{2}(u + d + s)$ is the contribution from the spin of quarks, G is the contribution from the gluon spin and $L_2^g + L_2^q$ is the total orbital angular momentum of quarks and gluons. The theoretical prediction for G, coming from the parton model, is 0%, whereas EMC, SAID and SLAC measured $G = 0.27 \pm 0.13$. It is a surprising result suggesting that the spin of the quarks accounts for only a small fraction of the nucleon spin. A measurement of G is therefore mandatory. Both G and g_2 are accessible in polarized DIS experiments by measuring respectively inclusive and semi-inclusive double spin asymmetries.

COMPASS is a polarized deep inelastic scattering experiment installed at CERN SPS and uses a 160 GeV longitudinally polarized muon beam with an intensity of 2×10^{11} spill. The polarized deuteron (6LiD) target consists of an upstream and a downstream cell with opposite polarization. The particles produced in the interaction are detected behind the target in a two-stage spectrometer with high momentum resolution and high rate capability. COMPASS took
data from 2002 to 2004, accumulating an integrated luminosity of \(46 \pm 6 \text{ fb}^{-1}\). We present here some new results related to the nucleon spin structure, mostly based on 2002-2003 statistics, corresponding to \(22 \pm 1 \text{ fb}^{-1}\).

2 Virtual photon-deuteron asymmetry \(A_{1d}^d\)

Information about helicity quark PDF can be extracted from the inclusive asymmetry \(A_{1d}^d\) which is derived from the cross section asymmetry \(A_{LL}^d\) through \(D \rightarrow A_{1d}^d, A_{LL}^d:\)

\[
A_{1d}^d = \frac{P}{q \varepsilon_q (q+q)} \frac{1}{D \varepsilon_q (q+q)} = \frac{1}{D} \frac{1}{P_b P_t f} \frac{1}{2} \frac{N_u - N_d + N_u - N_d^*}{N_u + N_d + N_u^*} + \frac{N_d^* - N_u^*}{N_d + N_u^*} \quad ;
\]

where \(N\) is the counting rate (u and d denote the two target cells, "" and "# denote the two longitudinal spin configurations of the target), \(D\) is the depolarization factor from the muon to the virtual photon, \(P_b\) is the beam polarization (76%), \(P_t\) and \(f\) are the \(^6\text{LiD}\) target polarization (50%) and the process dependent dilution factor (40%). The data selection is the standard inclusive DIS, with \(Q^2 > 1 \text{ GeV}^2\). The results from 2002 and 2003 data are shown in Fig. 1, together with previous results from SM C, HERMES and SLAC. Owing to the high luminosity and a high dilution factor for a solid state target, they significantly improve the accuracy in the region \(x < 0.03\). The achieved accuracy very much constrains the \(g_1\) structure function extrapolation leading to a better precision in the determination of \(g_1\).

3 The \(G=G\) measurement

In COMPASS, we access the gluon polarization via the photon-gluon fusion (PGF) process, whereby a virtual photon couples to a gluon via a quark, leading to the production of a \(q\bar{q}\) pair. From the counting rate asymmetry between two target cells, one extracts the helicity asymmetry \(A_{LL}^d\) of the muon-deuteron cross section. If the muon-deuteron scattering involves a hard probe, the factorization theorem implies that the muon interacts perturbatively with a parton in the nucleon. At tree level, the three direct processes illustrated in Fig. 2 contribute to \(A_{LL}^d\). The

![Figure 1](image1.png)

Figure 1: The \(A_{1d}^d(x)\) asymmetry measured in COMPASS and previous results from SM C, HERMES and SLAC.

![Figure 2](image2.png)

Figure 2: At the order \(s\), three processes contribute to the cross section for lepton-nucleon scattering.

Gluon polarization in the nucleon, \(G=G\), is extracted from the cross section asymmetry of
the photon-gluon fusion: $A_{LL}^{(ggf)} = h_{LL}^{ggf} G = G$, where the asymmetry h_{LL}^{ggf} of the partonic (photon-gluon) reaction can be calculated. It is of course essential to get rid of the dominant background processes, such as the leading order DIS (LO DIS) and the QCD Compton (QCD C). In COMPASS this is done in two ways, through the selection of high transverse mom entum hadron pairs or of open charm events.

3.1 High p_t hadron pair leptonproduction

The selection of events with a pair of high p_t hadrons removes most of the LO DIS process, which is the dominant source of background to the PGF in the $Q^2 > 1$ GeV2 region. It requires the p_t of the two leading hadrons to be larger than 0.7 GeV and $p_{t1}^2 + p_{t2}^2 > 25$ GeV2. However, the QCD Compton process remains, and a Monte-Carlo simulation is necessary to estimate its contribution to the asymmetry. The helicity asymmetry in the production of high p_t hadron pairs from 2002 and 2003 data at $Q^2 > 1$ GeV2 is $A_{LL}^{-d} = 0.015 \pm 0.080_{\text{stat}} \pm 0.013_{\text{syst}}$. The systematic error takes into account false asymmetries due to spectrometer and target effects. The gluon polarization is then determined from the asymmetry, assuming LO DIS and QCD C contributions to be negligible and to be taken into account in the systematic error: $G = G_0 \pm 0.06 \pm 0.01_{\text{stat}} \pm 0.013_{\text{syst}}$. The analysis of the 2002-2003 data in the $Q^2 < 1$ GeV2 range is almost completed, leading to a reduction of the statistical uncertainty by at least a factor of four.

![Figure 3: The gluon polarization measured in COMPASS and previous results from SMC and HERMES.](image)

3.2 Open charm leptonproduction

Due to its large mass (1.5 GeV), the c quark has a very low probability to be present in the nucleon's sea or to be produced in the fragmentation. Moreover, at tree level, c quarks can only be produced in the photon-gluon fusion. Therefore, detecting a charm hadron in the final state is a very clean way to select PGF events. This is done by reconstructing D^0 and D^+ mesons from their hadronic decay products: $D^0 \rightarrow K^+ + K^-$ and $D^+ \rightarrow D^0 + K^+$ (and the charge conjugated processes). The difference between D^+ and D^0 masses is only 145 MeV, thus the available phase space for the soft pion is small in this decay. Therefore the combinatorial background is strongly suppressed. Additional cuts on the mom entum fraction of the D meson, on the decay angle distribution and on the kaon and pion identifier help to further reduce the background. Table I presents the counting rate asymmetry of untagged D^0 and off D^+ tagged events, obtained from 2002 and 2003 data. Despite the large number of D^0, leading to a smaller statistical error on the raw asymmetry, the so-called effective signal $S_{\text{eff}} = \frac{S}{1 + B - S}$, which is proportional to inverted squared statistical accuracy on $G = G$, is higher in the D^+ case because of the better S/B ratio. The extraction of $G = G$ is challenging because of the limited statistics. The analysis is ongoing and the expected accuracy from 2002, 2003 and 2004 data is 0.24.
Table 1: Counting rate asymmetry of untagged D^0 and of D^0 tagged events and corresponding S_{eff}.

Channel	Raw asymmetry	S_{eff}
Untagged D^0	0.001	391
D^0 tagged D^0	0.04	704

3.3 Looking for transversity

The third fundamental PDF of the quark is the transversity distribution $T_q(x)$. Because of its odd chirality, this distribution does not contribute to inclusive DIS. It may instead be extracted from measurements of the spin asymmetries in cross sections for semi-inclusive DIS of a lepton on transversely polarized nucleon. The $T_q(x)$ PDF can be measured in combination with a chiral-odd fragmentation function $D^0_T(z;p_T^h)$, via azimuth single spin asymmetries in the hadronic end-product (Collins effect). A similar effect can arise from a possible k_T structure of a transversely polarized nucleon (the Sivers function $T^0_0(x)$), which also causes an azimuthal asymmetry in the produced hadrons. Lepton scattering on transversely polarized nucleons is a favorable setting to disentangle the Collins and Sivers effects since they show a dependence from linearly independent kinematic variables. The results of the azimuthal asymmetries from hadron muon-production on a transversely polarized deuteron target, plotted against the kinematic variables x, z, and p_T, are shown in Fig. 4 (2002 data only). Within the statistical accuracy of the data, both the Collins and Sivers asymmetries turned out to be small and compatible with zero.

Figure 4: Collins (top) and Sivers (bottom) asymmetries against x, z, and p_T for positive (full points) and negative (open points) hadrons. The first column gives the asymmetries for all hadrons, the other three columns for leading hadrons. Error bars are statistical only.

References

1. B. Adeva et al. [SMC Coll.], Phys. Rev. D 58 (1998) 112002.
2. COMPASS Proposal, CERN/SPSLC 96-14, SPSC/P 297, CERN/SPSLC 96-30.
3. E. A. Ageev et al. [COMPASS Coll.], Phys. Lett. B 612 (2005) 154.
4. C. W. B. Eslam (HERMIS Coll.), Bologna 2001, "Deep Inelastic Scattering" 555.
5. P. L. Anthony et al. [E155 Coll.], Phys. Lett. B 463 (1999) 339.
6. A. A. Irapetian et al. [HERMIS Coll.], Phys. Rev. Lett. 84 (2000) 2584.
7. B. A. Adeva et al. [SMC Coll.], Phys. Rev. D 70 (2004) 012002.
8. E. A. Ageev et al. [COMPASS Coll.], accepted for publication on Phys. Rev. Lett.