Exploring crystal, electronic, optical and NLO properties of ethyl 4-(3,4-dimethoxy phenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydro pyrimidine-5-carboxylate (MTTHPC)

M. A. M. El-Mansy1,2 · A. Suvitha3 · B. Narayana4

Received: 2 July 2020 / Accepted: 20 June 2021 / Published online: 22 July 2021 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Both theoretical and experimental studies are briefly discussed to shed lights on crystal shape, FT-IR, electronic, and non-linear opto-response (NLO) characteristics of ethyl4-(3,4-dimethoxyphenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (MTTHPC). Theoretical FT_IR results are in a proper concord with recorded measurements. MTTHPC has TDM (4.78 Debye) and a doublet spins that splits original FMOs into α(\uparrow, 2.44 eV) and β(\downarrow, 1.28 eV) offsets, respectively. MTTHPC is a potential competitor for finest perovskite solar cells (MAPbI3/Au-nanospheres) that possess a band offset (3.1 eV) with conversion-efficiency 24.84%. MTTHPC may be the next chapter for unique avalanche photodetectors (APD). MTTHPC 1st order hyperpolarizability is 14.15×10^{-30} esu, surpass reference urea ($\approx 40 \beta_{\text{urea}}$, $\beta_{\text{urea}} = 0.3728 \times 10^{-30}$ esu). Briefly, MTTHPC may be admitted as the next stage in forthcoming NLO technology.

Keywords MTTHPC · FT-IR · Band offsets · NLO · ADME indices · Drug-like nature

1 Introduction

Organo-crystals are specified by its magnificent nonlinear/linear responses that made them a potential nominee for optoelectronic devices like optocommunicator, optoswitchers and memory processors (Davanagere et al. 2019; Karnan et al. 2019; Amutha et al. 2017a, b). Most of noncentro/symmetric crystals have a high 2nd harmonic generation (SHG) efficiency surpass centrosymmetric ones. Centrosymmetric crystals possess a remarkable 3rd nonlinear
optical behaviors made them right choice for optical sensing, switching, and limiting processes (Amudha et al. 2017a, b; Karuppanan and Kalainathan, 2018; He et al. 2018). The seek for improving their photoconductive characters are carried by tailoring their band offsets (El-Nahass et al. 2013; Ibrahim et al. 2012, 2013; Soliman et al. 2013) to facilitate electrons rush across conduction domain. Ternary organic solar cells (TOSCs) achieve about 15–17% efficiencies as bulk-heterojunctions (Jiang et al. 2021a; Ma et al. 2021; Liu et al. 2021) whereas pseudo-bilayer architecture photocells have 17.42% efficiencies (Jiang et al. 2021b) surpassing organic/inorganic hybrid ones (Zhao et al. 2021) (∼17.19%). The non-fullerene solar cells via alkyl and alkoxy as Y-axis substituents show an outstanding efficiency (17.6%) (Chen et al. 2021) while those via polymeric substituents provides efficiency up to (17.1%) (Guo et al. 2021). Pyrimidines derivatives have attracted chemists on account of their vast biological antiviral characters (Yerragunta et al. 2021; ur Rashid et al. 2021) as well as antioxidant agents (El-Badawy et al. 2021). For instance, 4-amino-2,6-chloropyrimidine is an inhibitor of human immune deficiency virus type I (HIV-1) reverse transcriptase and possesses antiviral HIV activity (Althaus et al. 1996; Balzarini 2002) whereas 1-(3-Azido-2,3-dideoxy pentofuranosyl)-5-methyl-2,4(1H,3H)-pyrimidine-dione shows a significant inhibitor potency for in-vivo replica (Jeong et al. 1993; Tber et al. 1995). Molecular simulation technique turned into a unique tool to foresee both structural, electronic, and linear/non-linear optical (NLO) features through computer based-programs (Lian et al. 2021; Zhu et al. 2021; Halim et al. 2021). Density-functional theorem (DFT) is an excellent computation fashion to investigate optoelectronic (Pandit et al. 2021; Yu 2021; Lee et al. 2021) and NLO (Yankova 2021; Parte et al. 2021; Sathiya et al. 2021) aspects as well as drug-nature properties for intended structures. As further as known, no recent reports are recorded for ethyl4-(3,4-dimethoxyphenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (MTTHPC) characteristics until now. So, authors present a prime trial to document optical and NLO responses for MTTHPC molecule and its potential applications. Moreover, drug-like features for MTTHPC are supplementary checked as forthcoming drug-receptors designs.

2 Computational details

MTTHPC calculations are achieved through G09W (Frisch 2009) and GV5.0.8 (Frisch et al. 2009) programs. The run computations are performed using B3LYP and WB97XD via 6-311G(d,p) set that achieve best precision. Optimized geometry, band offset, overall dipole moment (TDM), thermo-chemistry, and NLO response for MTTHPC are calculated. Various parameters like ionizing-potential (I), electronic-affinity (A), hardness (η), chemical-potential (μ), electrophilic-index (ψ), softness (ζ), static-polarizability (α), and 1st hyper-polarizability (β) are registered. Moreover, Swiss-ADME webtool (Banik et al. 2021; Uslu et al. 2021; Novianty et al. 2021) is performed to find out physicochemical measures, pharmacokinetics, Lipophilicity, drug-likeness, and medicinal inhibitors amiability features for MTTHPC (Fig. 1).

3 Result and discussions

3.1 Optimized structure and FT-IR analyses

Table 1 displays optimized MTTHPC crystallographic domain calculated via B3LYP_6-311G (d, p). Inasmuch of crystallographic data paucity on MTTHPC crystallinity, a

 Springer
 comparative recorded and calculated structural scheme data can only be reported with similar structures so far. The computed C=C extent (1.39 ~1.42 Å) concours with index data (1.48 Å) (Lin et al. 2002) whereas C=O (~1.24 Å) matches experiment (1.23 Å). All calculated H-antennae associated with C (CH = 1.08 ~ 1.09 Å) and N (NH = 1.00 ~1.01 Å) atoms are comparable to experiment (1.08, 1.02 Å) (Novaković et al. 2007; Jaćimović et al. 2020). The predicted C-S bond (~1.72 Å) is a little shorter than index crystal-range (~2.4 Å). The MTTHPC observed FT-IR is scanned via 500–1500 cm⁻¹ spectral fingerprint domain. GaussView 5.0.8 are used to assign both observed and computed IR wavenumbers. All theoretical wavenumbers are multiplied by 0.96 (El-Sheshtawy et al. 2015; Ghrib et al. 2021; Ünal et al. 2021) to fit with recorded ones. Both recorded and computed wavenumbers and the appropriate assignments are registered in Table 2. A comparable agreement is established between both observed and calculated data. Figure 2 shows MTTHPC observed and predicted IR charts. Remarkable interference among recorded and calculated data may be attributed to outspread H antennas. In a brief discussion, MTTHPC vibrations are clarified as:

Mode (1) is assigned as collective stretch of C=O + C=C at 1479 cm⁻¹, proportional to recorded peak at 1448 cm⁻¹. Modes (2–4) are recognized for NH bend-in at 1272, 1232, 1170 cm⁻¹, match observed peaks at 1284, 1225, 1186 cm⁻¹, respectively. Modes (5–8) are assigned for CH bend-in at 1158, 1120, 1077, 1055 cm⁻¹, concours with recorded values at 1148, 1129, 110, 1027 cm⁻¹, respectively. Modes (10–11) are assigned to NH bend-out at 855, 842 cm⁻¹, corresponding to experimental results at 880, 816 cm⁻¹. Modes (12–13) are referred to CH bend-out at 752, 704 cm⁻¹, analogous to scanned ones at 790, 676 cm⁻¹. Mode (9) is assigned for collective C–O + C–S + C–N + C–C stretch at 1013 cm⁻¹, correspond to defined peak at 1011 cm⁻¹. Mode (14) is specified for C–O + C–S + C–N + C–C

Fig. 1 Optimized structure for MTTHPC molecule
Table 1 Optimized MTTHPC crystal data

Bond length (Å)	Bond angles (°)				
C1–C2	1.42	C2–C1–C6	117.90	H23–C22–H24	108.30
C1–C6	1.40	C2–C1–C7	120.29	H23–C22–C25	112.87
C1–C7	1.46	C6–C1–C7	121.77	H24–C22–C25	112.65
C2–C3	1.39	C1–C2–C3	121.39	C22–C25–H26	110.85
C2–H11	1.08	C1–C2–H11	119.37	C22–C25–H27	109.88
C3–C4	1.42	C3–C2–H11	119.13	C22–C25–H28	110.82
C3–O34	1.39	C2–C3–C4	119.87	H26–C25–H27	108.49
C4–C5	1.39	C2–C3–O34	124.40	H26–C25–H28	108.38
C4–O33	1.39	C3–C4–O34	115.73	H27–C25–H28	108.35
C5–C6	1.40	C3–C4–C5	119.08	C9–C29–H30	111.24
C5–H12	1.08	C3–C4–O33	116.07	C9–C29–H31	111.59
C6–H13	1.08	C5–C4–O33	124.85	C9–C29–H32	110.42
C7–C10	1.42	C4–C5–C6	120.94	H30–C29–H31	108.90
C7–N14	1.42	C4–C5–H12	120.05	H30–C29–H32	107.26
C8–N14	1.36	C6–C5–H12	118.99	H31–C29–H32	107.24
C8–S16	1.72	C1–C6–C5	120.82	C3–O33–C35	118.76
C8–N17	1.37	C1–C6–H13	120.11	C3–O34–C39	118.94
C9–C10	1.39	C5–C6–H13	119.01	C33–C35–H36	111.30
C9–N17	1.41	C1–C7–C10	127.84	O33–C35–H37	104.90
C9–C29	1.50	C1–C7–N14	116.01	O33–C35–H38	111.33
C10–C19	1.49	C10–C7–N14	116.06	H36–C35–H37	109.71
N14–H15	1.00	N14–C8–S16	123.10	H36–C35–H38	109.80
N17–H18	1.00	N14–C8–N17	114.42	H37–C35–H38	109.69
C19–O20	1.24	S16–C8–N17	122.48	O34–C39–H40	104.86
C19–O21	1.37	C10–C9–N17	117.59	O34–C39–H41	111.38
O21–C22	1.48	C10–C9–C29	128.07	O34–C39–H42	111.29
C22–H23	1.09	N17–C9–C29	114.25	H40–C39–H41	109.66
C22–H24	1.09	C7–C10–C9	120.54	H40–C39–H42	109.70
C22–C25	1.51	C7–C10–C19	120.97	H41–C39–H42	109.84
C25–H26	1.09	C9–C10–C19	118.39		
C25–H27	1.09	C7–N14–C8	125.92		
C25–H28	1.09	C7–N14–H15	118.19		
C29–H30	1.10	C8–N14–H15	115.50		
C29–H31	1.08	C8–N17–C9	125.32		
C29–H32	1.10	C8–N17–H18	115.64		
O33–C35	1.45	C9–N17–H18	119.03		
O34–C39	1.45	C10–C19–O20	125.49		
C35–H36	1.09	C10–C19–O21	112.00		
C35–H37	1.08	O20–C19–O21	122.46		
C35–H38	1.09	C19–O21–C22	117.53		
C39–H40	1.08	O21–C22–H23	108.21		
C39–H41	1.09	O21–C22–H24	107.95		
C39–H42	1.09	O21–C22–C25	106.64		
bend-in at 566 cm$^{-1}$, coincide to experiment whereas mode (15) is attributed to C–O + C–S + C–N + C–C bend-out at 521 cm$^{-1}$, proportional to indexed band at 516 cm$^{-1}$.

3.2 Mulliken charges and frontiers molecular orbital (FMOs) analyses

Mulliken atomic charges(Q) play a vital role in describing electro negativity, charge transport during a chemical process and overall electronic configuration of the molecule (Guidara et al. 2014). The calculated Mulliken distributions of MTTHPC charges are listed at Table 3. Figure 3 shows Mulliken charge analysis for MTTHPC molecule. It is merited to point out that C3, C4, C7, C8, C9 and C19 exhibit positive charges, while others exhibit negative charges. Prime hydrogen holds positive charges. All S, O and N atoms hold a negative due to their high electron withdrawing property (high electronegativity).

Many FMO indices via Koopmans theorem are extracted such as ionization_carry \(I = -E_{\text{HOMO}} \), electron_affinity \(A = -E_{\text{LUMO}} \), hardenable \(\mu = (E_{\text{LUMO}} - E_{\text{HOMO}})/2 \), chemical_caray \(\psi = \mu^2 \), and plasticity \(\zeta = 1 \) (Sert et al. 2014). Extensively, assorted thermochemistry features are listed in Table 4 for MTTHPC. The \(E_{\text{LUMO}}/E_{\text{HOMO}} \) offset is a precise index for electron carry via conduction domain (Sheela et al. 2015; Verma et al. 2021; Dwivedi, Kumar 2021). The MTTHPC has TDM (4.78 Debye) and a doublet spins that splits original FMOs into alpha(↑) and beta (↓) offsets with energies 2.44 and 1.28 eV, respectively. Which predicts that increasing dipole moment state will increase optical nonlinearity. In a logic way, MTTHPC is a potential competitor for finest perovskite solar cells (MAPbI$_3$) embedded with Au nanospheres that possess a band offset (3.1 eV) with conversion-efficiency 24.84% (Tabrizi et al. 2021). Figures 4 and 5 show computed band offsets and electronic density of states (DOS) for MTTHPC, respectively. Obviously, doublet spins drag Fermi level up to

No	Exp. wave number (cm$^{-1}$)	Theo. wave number (cm$^{-1}$)	Vibrational assignments
1	1448	1479	ν C=O + ν C=C
2	1284	1272	β N–H
3	1225	1232	
4	1186	1170	
5	1148	1158	β C–H
6	1129	1120	
7	1110	1077	
8	1027	1025	
9	1011	1013	ν C–O + ν C–S + ν C–N + ν C–C
10	880	855	γ N–H
11	816	842	
12	790	752	γ C–H
13	676	704	
14	566	566	β C–O + β C–S + β C–N + β C–C
15	516	521	γ C–O + γ C–S + γ C–N + γ C–C

ν (stretch mode); β (in-plane mode); γ (out-plane mode)
conduction domain that increase electrons avalanche percent. Hereby, authors declare that
MTTHPC may be the next chapter for unique avalanche photodetectors (APD).

3.3 NLO Properties

To inspect MTTHPC NLO response, its polarizability and 1st hyperpolarizability are
determined via WB97XD_6-311G (d,p). Static polarizability (α_{tot}), polarizability anisotropy ($\Delta \alpha$) and 1st hyperpolarizability (β_{tot}) are derived via assorted formulas (Kosar et al. 2021; Yousif 2021):

$$\alpha_{\text{tot}} = \frac{\alpha_{xx} + \alpha_{yy} + \alpha_{zz}}{3}$$

$$\Delta \alpha = \frac{1}{\sqrt{2}} \left[(\alpha_{xx} - \alpha_{yy})^2 + (\alpha_{yy} - \alpha_{zz})^2 + (\alpha_{zz} - \alpha_{xx})^2 + 6\alpha_{xy}^2 + 6\alpha_{yx}^2 + 6\alpha_{xz}^2 \right]^{1/2}$$

$$\beta_{\text{tot}} = \left[(\beta_{xxx} + \beta_{xyy} + \beta_{xzz})^2 + (\beta_{yyy} + \beta_{yzz} + \beta_{yxx})^2 + (\beta_{zzz} + \beta_{zxx} + \beta_{zyy})^2 \right]^{1/2}$$

NLO response depend upon associated TDM, α_{tot}, and β_{tot} values. MTTHPC calculated results for α_{tot}, $\Delta \alpha$ and β_{tot} are listed in Table 5. Results are transmuted from SI \Rightarrow esu scale (α; 1 a.u = 1.482×10^{-24} esu, β; 1 a.u = 8.6393×10^{-33} esu). MTTHPC has β_{tot} is 14.15×10^{-30} esu, which is a significant increase above related compounds (Shavel et al. 2004; Bouchouit et al. 2008; Guezguez et al. 2013, 2014). Such behavior is induced by electrons rush across crystal that cause 1st hyperpolarizability to be doubled over conventional prototype. The close resemblance between NLO value and our finding supports the notion that POM’s electro-optic effect is mostly of electronic origin (Dou et al. 1993). The observation has been discussed in a variety of organic molecular crystals (Stevenson et al. 1973; Stevenson et al. 1973; Garito et al. 1980), and it appears to be a property shared by those molecules. Within the 0.5–2.0 µm transparency region, many organic compounds exhibit higher nonlinear optical susceptibilities than most inorganics (Morrell et al. 1979). The disparity between an experimental POM’s NLO and that predicted by theory (most
found in organic crystals) can be utilized as a crystal quality criterion (Zyss et al. 1981; Dou et al. 1991, 1992). Novelty of proposed research insights focused on how nonlinear optical responses can open novel vistas in crystalline optics technology. Such elevated NLO response acknowledges MTTHPC as the next stage in forthcoming NLO technology.

3.4 Pharmaco-kinetics and drug-like nature

Swiss-ADME online-software (Rana et al. 2021; Alshammari 2020) is utilized to predict pharmaceutical features such as physicochemicals, pharmacokinetics, lipophilicity,

Table 3 Mulliken charges distributions for MTTHPC

Atom	Q (a. u)	Atom	Q (a. u)
C1	0.00	C22	−0.09
C2	−0.18	H23	0.20
C3	0.21	H24	0.19
C4	0.23	C25	−0.53
C5	−0.18	H26	0.20
C6	−0.07	H27	0.18
C7	0.35	H28	0.19
C8	0.16	C29	−0.62
C9	0.44	H30	0.20
C10	−0.12	H31	0.24
H11	0.20	H32	0.20
H12	0.17	O33	−0.49
H13	0.18	O34	−0.50
N14	−0.75	C35	−0.30
H15	0.38	H36	0.18
S16	−0.10	H37	0.20
N17	−0.73	H38	0.18
H18	0.38	C39	−0.30
C19	0.36	H40	0.21
O20	−0.40	H41	0.19
O21	−0.46	H42	0.18
pH, drug-likeness, and medicinal inhibitors amiability for MTTHPC that are collected in Table 6. Presence of tetrahydro-pyrimidine moiety in MTTHPC provides antimicrobial activity (Makvandi et al. 2020). Bioavailability Radar (Mishra et al. 2019) is displayed via pre-six physico-chemical indices, namely lipophilia scale, polarity, solubility, edibility, and saturation (see Fig. 6a). All predicted values acknowledge MTTHPC as a promising drug-like carriers. Target classes for MTTHPC molecule with ligand protein interactions are represented in Fig. 6b. MTTHPC polar surface area is 100.91 Å² that shows a high gastrointestinal (GI) absorption and bioavailability (55%). MTTHPC blood–brain barrier (BBB) is nil that indicates a highly hydrophilic-polar drug-nature to predict intestinal permeation.

Table 4 MTTHPC thermochemistry

B3LYP_6-311G (d, p)

Ground-energy (Hartree)	−1429.661567
Zero-energy (Kcal/Mol)	209.59091
Rotational coefficients (GHz)	0.28034
	0.16497
	0.11785

Entropy (S) (Cal/Mol·°K)
Total
Transational
Vibrational
Rotational

Specific-heat (C_v) (Cal/Mol·°K)
Total
Transational
Vibrational
Rotational

Dipole moment (Debye)	5.7*10⁴
	4.78

Spin
Doublet

Alpha MOs	Beta MOs	
E_LUMO (eV)	−1.77	−4.72
E_HOMO (eV)	−4.20	−5.99
E_LUMO-HOMO (eV)	2.44	1.28
Ionization-potential (I) (eV)	1.77	4.72
Electron-affinity (A) (eV)	4.20	5.99
Hardness (η) (eV)	1.22	0.64
Chemical potential (µ) (eV)	−2.98	−5.36
Electrophilic index (ψ) (eV)	3.66	22.44
Softness (ζ) (eV⁻¹)	0.82	1.56

(continued...
(Corazza et al. 2020). Eventually, MTTHPC may be efficiently used as drug-carriers for gastrointestinal diseases.
Conclusion

MTTHPC crystal data, FT-IR, electronic and NLO response is fulfilled via DFT model. Optimized structure, IR, and band offsets are calculated using B3LYP level whereas NLO indices are computed through WB97XD. The good agreement between experimental and theoretical FT-IR confirms calculations precision level. The electronegativity, charge transit during a chemical process, and the molecule’s overall electronic configuration are all detected using Mulliken atomic charges analysis. MTTHPC possesses a TDM (4.78 Debye) and a doublet-spin offsets, namely α^{\uparrow} (2.44 eV) and α^{\downarrow} (1.28 eV). Such doublet-spins drag push Fermi level nearby conduction domain facilitating electrons rush across. So, MTTHPC is a promising candidate for premier avalanche photodetectors as well as solar cells. Also, MTTHPC exhibits a magnificent NLO response, β_{tot} is 1.64×10^{-30} esu, which is a significant increase surpass other relatives. Such behavior is induced by electrons rush across crystal that cause 1^st hyperpolarizability to be doubled over ordinary prototype. Intellectually, MTTHPC may be the next stage in forthcoming NLO technology. Moreover, pharmaceutical features for MTTHPC show its eligibility as efficient drug-carriers for gastrointestinal diseases.

Table 5

| Mean Polarizability α_{tot} ($\times 10^{-24}$ esu), polarizability anisotropy $\Delta\alpha$ ($\times 10^{-24}$ esu) and β_{tot} ($\times 10^{-30}$ esu) 1st hyperpolarizability for MTTHPC |
|-----------------|----------------|----------------|----------------|
| α_{xx} | 321.93 | 47.71 | 731.71 |
| α_{yy} | 15.24 | 2.26 | 576.49 |
| α_{zz} | -3.15 | -0.47 | 162.65 |
| α_{xy} | -17.33 | -2.57 | 716.67 |
| α_{zy} | 243.26 | 36.05 | 162.65 |
| α_{zt} | 188.53 | 27.94 | 65.37 |
| $\Delta\alpha$ | 293.05 | 43.43 | 100.24 |
| β_{xx} | -34.59 | -0.30 | 0.87 |
| β_{yy} | -16.19 | -0.14 | 0.87 |
| β_{zz} | 1.64 | 14.15 | 1.64 |
| β_{xy} | 65.37 | 0.87 | 1.64 |
| β_{zy} | 716.67 | 6.19 | 14.15 |
| β_{zt} | 162.65 | 1.41 | 0.05 |
Table 6 Biological activity and ADME parameters of MTTHPC molecule

Physicochemical properties	Water solubility	
Formula	$\text{C}_{16}\text{H}_{20}\text{N}_{2}\text{O}_{4}\text{S}$	Log (S) (ESOL) -2.93
Molecular weight	336.41 g/mol	Solubility $3.93 \times 10^{-1} \text{ mg/ml; } 1.17 \times 10^{-3} \text{ mol/l}$
No. Non-H atoms	23	Class Soluble
No. Ar. Non-H atoms	6	Log (S) (Ali) -3.66
Fractional Csp3	0.38	Solubility $7.31 \times 10^{-2} \text{ mg/ml; } 2.17 \times 10^{-4} \text{ mol/l}$
No. rotational bonds	6	Class Soluble
No. H-bond acceptors	4	Log S (SILICOS-IT) -4.54
No. H-bond donors	2	Solubility $9.81 \times 10^{-3} \text{ mg/ml; } 2.92 \times 10^{-5} \text{ mol/l}$
Molar-Refractivity	97.96	Class Moderate (solubility)
TPSA	100.91 Å²	Log (S) (ESOL) -2.93
Lipophilicity	Drug-likeness	
Log (P_{ow}) (iLOGP)	2.99	Lipinski Y; 0 violation
Log (P_{ow})(XLOGP3)	1.92	Ghose Y
Log (P_{ow})(WLOGP)	0.97	Veber Y
Log (P_{ow})(MLOGP)	0.91	Egan Y
Log (P_{ow})(SILICOS-IT)	3.30	Muegge Y
Consensus Log (P_{ow})	2.02	Bioavailability score 0.55
Pharmacokinetics	Medicinal chemistry	
GI absorption	High	PAINS 0 alert
BBB permeant	No	Brenk 1 alert: thiocarbonyl group
P-gp substrate	Y	Leadlikeness Y
CYP1A2	Y	Synthetic accessibility 3.84
CYP2C19	Y	
CYP2C9	N	
CYP2D6	N	
CYP3A4	N	
Log K_p (skin permeation)	-6.99 cm/s	

Ar (Aromatic); Ali (Aliphatic); Y (Yes); N (No)
Declarations

Conflict of interests On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

Amudha, M., Muthu, S., Gunasekaran, B., Kumar, P.: Growth, structural and characterization of a novel third order nonlinear optical Benzimidazolium Maleate single crystal. J. Mol. Struct. 1146, 5–13 (2017a)
Amudha, M., Madhavan, J., Kumar, P.P.: Studies on the growth and characterization of benzimidazolium picrate single crystals. J. Opt. 46(4), 382–390 (2017b)
Alshammari, F.: Application of computational tools for ADME and target modeling of bioactive compounds from hydroalcoholic extracts of Erodium glaucophyllum flowers. Med. Sci. 24(106), 4178–4183 (2020)
Althaus, I.W., Chou, K.-C., Lemay, R.J., Franks, K.M., Deibel, M.R., Kezdy, F.J., Resnick, L., Busso, M.E., So, A.G., Downey, K.M.: The benzylthio-pyrimidine U-31,355, a potent inhibitor of HIV-1 reverse transcriptase. Biochem. Pharmacol. 51(6), 743–750 (1996)
Balzarini, J.: Non-Nucleoside Reverse Transcriptase Inhibitors of HIV-1. Hum. Immunodef. Virus Biol. Immunol. Therapy 132, 1 (2002)
Banik, A., Ghosh, K., Patil, U.K., Gayen, S.: Identification of molecular fingerprints of natural products for the inhibition of breast cancer resistance protein (BCRP). Phytomedicine 1, 523 (2021)
Bouchouit, K., Essaidi, Z., Abed, S., Migalska-Zalas, A., Derkowska, B., Benali-Cherif, N., Mihaly, M., Meghea, A., Sahraoui, B.: Experimental and theoretical studies of NLO properties of organic–inorganic materials based on p-nitroaniline. Chem. Phys. Lett. 455(4–6), 270–274 (2008)
Chen, Y., Bai, F., Peng, Z., Zhu, L., Zhang, J., Zou, X., Qin, Y., Kim, H.K., Yuan, J., Ma, L.K.: Asymmetric alkoxy and alkyl substitution on nonfullerene acceptors enabling high-performance organic solar cells. Adv. Energy Mater. 11(3), 2003141 (2021)
Corazza, F.G., Ernesto, J.V., Nambu, F.A., de Carvalho, L.R., Leite-Silva, V.R., Varca, G.H., Calixto, L.A., Vieira, D.P., Andréo-Filho, N., Lopes, P.S.: Papain-cyclodextrin complexes as an intestinal permeation enhancer: Permeability and in vitro safety evaluation. J. Drug Deliv. Sci. Technol. 55, 1413 (2020)
Davanagere, H., Jayarama, A., Patil, P.S.G., Maitur, S.R., Quah, C.K., Kwong, H.C.: The structural and third-order nonlinear optical studies of a novel nitro group-substituted chalcone derivative for nonlinear optical applications. Appl. Phys. A 125(5), 1–13 (2019)
Dou, S.X., Josse, D., Zyss, J.: Near-infrared pulsed optical parametric oscillation in N-(4-nitrophenyl)-L-prolinol at the 1-ns time scale. JOSA B 10(9), 1708–1715 (1993)

Dou, S.X., Josse, D., Zyss, J.: Noncritical properties of noncollinear phase-matched second-harmonic and sum-frequency generation in 3-methyl-4-nitropyridine-1-oxide. JOSA B 8(8), 1732–1739 (1991)

Dou, S.X., Jisse, D., Hierle, R., Zyss, J.: Comparison between collinear and noncollinear phase matching for second-harmonic and sum-frequency generation in 3-methyl-4-nitropyridine-1-oxide. JOSA B 9(5), 687–697 (1992)

Dwivedi, A., Kumar, A.: Molecular docking and comparative vibrational spectroscopic analysis, HOMOLUMO, polarizabilities, and hyperpolarizabilities of N-(4-Bromophenyl)-4-nitrobenzamide by different DFT (B3LYP, B3PW91, and MPW1PW91) Methods. Polycyclic Aromat. Compd. 41(2), 387–399 (2021)

El-Badawy, A.A., Elgubbi, A.S., El-Helw, E.A.: Acryloyl isothiocyanate skeleton as a precursor for synthesis of some novel pyrimidine, triazole, triazepine, thiaiodazolopyrimidine and acylthioureia derivatives as antioxidant agents. J. Sulf. Chem. 1, 1–13 (2021)

El-Mansy, M., El-Bana, M., Fouad, S.: On the spectroscopic analyses of 3-Hydroxy-1-Phenyl-Pyridazin-6 (2H) one (HPHP): a comparative experimental and computational study. Spectrochim. Acta A Mol. Biomol. Spectrosc. 176, 99–105 (2017)

El-Mansy, M., El-Nahass, M.: On the spectroscopic analyses of Perylene-66. Spectrochim. Acta A Mol. Biomol. Spectrosc. 130, 568–573 (2014)

El-Mansy, M., El-Nahass, M., Khusayfan, N., El-Menawy, E.: DFT approach for FT-IR spectra and HOMO–LUMO energy gap for N-(p-dimethylaminobenzylidine)-p-nitroaniline (DBN). Spectrochim. Acta A Mol. Biomol. Spectrosc. 111, 217–222 (2013)

El-Mansy, M., Ismail, M.: On the spectroscopic analyses of 3-(4-Hydroxy-1-methyl-2-oxo-1, 2-dihydroquinolin-3-yl)-2-nitro-3-oxo-propionic acid (HMQNP). Spectrochim. Acta A Mol. Biomol. Spectrosc. 135, 704–709 (2015)

El-Mansy, M., El-Bana, M., Fouad, S.: On the spectroscopic analyses of 3-Hydroxy-1-Phenyl-Pyridazin-6 (2H) one (HPHP): a comparative experimental and computational study. Spectrochim. Acta A Mol. Biomol. Spectrosc. 176, 99–105 (2017)

El-Nahass, M., Kamel, M., El-Barbary, A., El-Mansy, M., Ibrahim, M.: FT-IR spectroscopic analyses of 3-Methyl-5-Pyrazole (MP). Spectrochim. Acta A Mol. Biomol. Spectrosc. 111, 37–41 (2013)

El-Sheheitawy, H.S., Ibrahim, M.M., El-Mehasseb, I., El-Kemary, M.: Orthogonal hydrogen/halogen bonding in 1-(2-methoxyphenyl)-1H-imidazole-2-(3H)-thione-I 2 adduct: An experimental and theoretical study. Spectrochim. Acta A Mol. Biomol. Spectrosc. 143, 120–127 (2015)

Frisch, A., Denninger, R., Keith, T., Millam, J., Nielsen, A., Holder, A., Hicsoks, J.: Gauss view version 5 user manual. Gaussian Inc., Wallingford, CT, USA (2009)

Garito, A.F., Singer, K.D., Hayes, K., Lipscomb, G.F., Lalama, S.J., Desai, K.N.: First single-crystal polymers exhibiting phase-matched second-harmonic generation (A). J. Opt. Soc. Am. 70, 1399 (1980)

Ghrib, T., Alshahrani, T., Mahmod, Q., Al-nauim, I.A., Rached, A., Algrafty, E., Kattan, N.A., Laref, A.: Physics: a new lead free double perovskites K2Ti(Cl/Br) 6 for renewable energy; probed by DFT. Mater. Chem. 1, 124435 (2021)

Guidara, S., Ahmed, A.B., Abid, Y., Feki, H.: Molecular structure, vibrational spectra and nonlinear optical properties of 2, 5-dimethylanilinium chloride monohydrate: A density functional theory approach. Spectrochim. Acta A Mol. Biomol. Spectrosc. 127, 275–285 (2014)

Guezguez, I., Karakas, A., Iliopoulos, K., Derkowska-Zielinska, B., El-Ghayoury, A., Ranganathan, A., Batail, P., Migalska-Zalas, A., Sahraoui, B., Karakaya, M.J.O.M.: Theoretical and experimental studies. Opt. Quantum Electron. 53(2), 1–19 (2021)

Habibi, M., El-Ghayoury, A., Sahraoui, B., Karakaya, M.J.O.M.: Theoretical and experimental study. Spectrochim. Acta A Mol. Biomol. Spectrosc. 111, 217–222 (2013)

Habibi, M., El-Ghayoury, A., Sahraoui, B., Karakaya, M.J.O.M.: Orthogonal hydrogen/halogen bonding in 1-(2-methoxyphenyl)-1H-imidazole-2-(3H)-thione-I 2 adduct: An experimental and theoretical study. Spectrochim. Acta A Mol. Biomol. Spectrosc. 143, 120–127 (2015)

Habibi, M., El-Ghayoury, A., Sahraoui, B., Karakaya, M.J.O.M.: Orthogonal hydrogen/halogen bonding in 1-(2-methoxyphenyl)-1H-imidazole-2-(3H)-thione-I 2 adduct: An experimental and theoretical study. Spectrochim. Acta A Mol. Biomol. Spectrosc. 143, 120–127 (2015)

Habibi, M., El-Ghayoury, A., Sahraoui, B., Karakaya, M.J.O.M.: Orthogonal hydrogen/halogen bonding in 1-(2-methoxyphenyl)-1H-imidazole-2-(3H)-thione-I 2 adduct: An experimental and theoretical study. Spectrochim. Acta A Mol. Biomol. Spectrosc. 143, 120–127 (2015)

Habibi, M., El-Ghayoury, A., Sahraoui, B., Karakaya, M.J.O.M.: Orthogonal hydrogen/halogen bonding in 1-(2-methoxyphenyl)-1H-imidazole-2-(3H)-thione-I 2 adduct: An experimental and theoretical study. Spectrochim. Acta A Mol. Biomol. Spectrosc. 143, 120–127 (2015)

Habibi, M., El-Ghayoury, A., Sahraoui, B., Karakaya, M.J.O.M.: Orthogonal hydrogen/halogen bonding in 1-(2-methoxyphenyl)-1H-imidazole-2-(3H)-thione-I 2 adduct: An experimental and theoretical study. Spectrochim. Acta A Mol. Biomol. Spectrosc. 143, 120–127 (2015)

Habibi, M., El-Ghayoury, A., Sahraoui, B., Karakaya, M.J.O.M.: Orthogonal hydrogen/halogen bonding in 1-(2-methoxyphenyl)-1H-imidazole-2-(3H)-thione-I 2 adduct: An experimental and theoretical study. Spectrochim. Acta A Mol. Biomol. Spectrosc. 143, 120–127 (2015)
Halim, S.A., Sikandari, A.G., Khan, A., Wadoo, A., Fatmi, M.Q., Csuk, R., Al-Harrasi, A.: Structure-based virtual screening of tumor necrosis factor-α inhibitors by cheminformatics approaches and bio-molecular simulation. Biomolecules 11(2), 329 (2021)

He, F., Wang, Q., Hu, C., He, W., Luo, X., Huang, L., Gao, D., Bi, J., Wang, X., Zou, G.: Centrosymmetric (NH4)2SbCl (SO4)2 and Non-centrosymmetric (NH4)SbCl2 (SO4): Synergistic Effect of Hydrogen-Bonding Interactions and Lone-Pair Cations on the Framework Structures and Macroscopic Centricities. Cryst. Growth Des. 18(10), 6239–6247 (2018)

Ibrahim, M., El-Barbary, A.A., El-Nahass, M., Kamel, M., El-Mansy, M., Asiri, A.M.: On the spectroscopic analyses of (E)-3-(dicyclopentyl methylene)-dihydro-4-[1-(2, 5 dimethylfuran-3-yl) ethylidene] furan-2, 5-dione. Spectrochim. Acta A Mol. Biomol. Spectrosc. 87, 202–208 (2012)

Ibrahim, M., El-Nahass, M., Kamel, M., El-Barbary, A., Wagner, B., El-Mansy, M.: On the spectroscopic analyses of thiouindigo dye. Spectrochim. Acta A Mol. Biomol. Spectrosc. 113, 332–336 (2013)

Jačimović, ŽK., Novaković, S.B., Bogdanović, G.A., Kosović, M., Libowitzky, E., Giester, G.: Crystal structure of ethyl 3-(trifluoromethyl)-1H-pyrazole-4-carboxylate, C7H7F3N2O2. Zeitschrift Für Kristallographie-New Cryst. Struct. 235(5), 1189–1190 (2020)

Jeong, L.S., Beach, J.W., Chu, C.K.: Stereoselective synthesis of 3-azido-2, 3-dideoxy-D-ribose derivatives and its utilization for the synthesis of anti-HIV nucleosides. J. Heterocycl. Chem. 30(5), 1445–1452 (1993)

Jiang, H., Han, C., Li, Y., Bi, F., Zheng, N., Han, J., Shen, W., Wen, S., Yang, C., Yang, R.: Rational mutual interactions in ternary systems enable high-performance organic solar cells. Adv. Func. Mater. 31(3), 2007088 (2021a)

Jiang, K., Zhang, J., Peng, Z., Lin, F., Wu, S., Li, Z., Chen, Y., Yan, H., Ade, H., Zhu, Z.: Pseudo-bilayer architecture enables high-performance organic solar cells with enhanced exciton diffusion length. Nat. Commun. 12(1), 1–9 (2021b)

Karnan, C., Prabakaran, A.R., Thamizharasan, K., Prabahararan, M., Aruna, S.: Structural, optical and thermal investigation on L-arginine potassium pentaborate dihydrate (LAKB5). In: AIP Conference Proceedings, Vol. 2117, No. 1, p. 020017. AIP Publishing LLC (2019)

Karuppanan, N., Kalainathan, S.: A new nonlinear optical stilbazolium family crystal of (E)-1-Ethyl-2-(4-nitrostyryl) pyridin-1-ium iodide: synthesis, crystal structure, and its third-order nonlinear optical properties. J. Phys. Chem. C 122(8), 4572–4582 (2018)

Kosar, N., Ayub, K., Mahmood, T.: Modelling: Surface functionalization of twisted graphene C32H15 and C104H52 derivatives with alkalis and superalkalis for NLO response; a DFT study. J. Mol. Graph. Model. 102, 107794 (2021)

Lee, B.D., Park, W.B., Lee, J.-W., Kim, M., Pyo, M., Sohn, K.-S.: Discovery of lead-free hybrid organic/inorganic surfactant adsorption on the component distribution in the crude oil droplet: A molecular simulation study. Fuel 283, 119252 (2021)

Lin, Y., Rajesh, N., Raghavan, P., Huang, Y.: Crystal growth of two-component new novel organic NLO crystals. Mater. Lett. 56(22), 21
Exploring crystal, electronic, optical and NLO properties…

Mishra, S.S., Ranjan, S., Sharma, C.S., Singh, H.P., Kalra, S., Kumar, N.: Dynamics: Computational investigation of potential inhibitors of novel coronavirus 2019 through structure-based virtual screening, molecular dynamics and density functional theory studies. J. Biomed. Struct. 1, 1–13 (2020)

Morrell, J.A., Albrecht, A.C., Levin, K.H., Tang, C.L.: The electro-optic coefficients of urea. J. Chem. Phys. 71(12), 5063–5068 (1979)

Novaković, S.B., Fraisse, B., Bogdanović, G.A., Spasojević-de Biré, A.: Experimental charge density evidence for the existence of high polarizability of the electron density of the free electron pairs on the sulfur atom of the thioureido group, NH− C (S)− NH2. Induced by N− H... S and C− H... S Interactions. Cryst. Growth Des. 7(2), 191–195 (2007)

Novianty, R., Ananta, S., Karim, M.: Herbal plants from Riau Province as inhibitors of COVID-19 binding to ACE2 receptor by computer aided molecular design an in-silico method. J. Phys: Conf. Ser. 1, 012019 (2021)

Pandit, B., Rondiya, S.R., Dzade, N.Y., Shaikh, S.F., Kumar, N., Goda, E.S., Al-Kahtani, A.A., Mane, R.S., Mathur, S., Salunkhe, R.R.: High stability and long cycle life of rechargeable sodium-ion battery using manganese oxide cathode: A combined density functional theory (DFT) and experimental study. ACS Appl. Mater. Interfaces 13(9), 11433–11441 (2021).

Parte, M., Vishwakarma, P., Jaget, P., Maurya, R.: Synthesis, spectral, FMOs and NLO properties based on DFT calculations of dioxidomolybdenum (VI) complex. J. Coord. Chem. 1, 1–14 (2021)

Rana, M., Arif, R., Khan, F.I., Maurya, V., Singh, R., Faizan, M.I., Yasmeen, S., Dar, S.H., Alam, R., Sahu, A.: Pyrazoline analogs as potential anticancer agents and their apoptosis, molecular docking, MD simulation, DNA binding and antioxidant studies. Bioorg. Chem. 108, 104665 (2021)

Sathiya, S., Senthilkumar, M., Umarani, M.: Synthesis, structural, spectroscopical and DFT studies on third order NLO crystal: Ethyl-5-hydroxy-4-(2-hydroxyphenyl)-3-oxo-6-(trifluoromethyl) hexahydropyrimidine5-carboxylate (EHOTHPC). J. Mol. Struct. 1224, 17 (2021)

Sert, Y., Sreenivasa, S., Doğan, H., Manojkumar, K., Suchetan, P., Ucen, F.: FT-IR, laser-Raman spectra and quantum chemical calculations of methyl 4-(trifluoromethyl)-1H-pyrrole-3-carboxylate-A DFT approach. Spectrochim. Acta A Mol. Biomol. Spectrosc. 127, 122–130 (2014)

Shavel, A., Gaponik, N., Eychmüller, A.: Efficient UV-blue photoluminescing thiol-stabilized water-soluble alloyed ZnSe (S) nanocrystals. J. Phys. Chem. B 108(19), 5905–5908 (2004)

Sheela, G.E., Manimaran, D., Joe, I.H., Ali, H., El-Mansy, M., Atef, S.: FT-IR spectroscopic analyses of 2-(2-furanylmethyl)ene) propanedinitrile. Spectrochim. Acta A Mol. Biomol. Spectrosc. 127, 40–48 (2015)

Soliman, H., Eid, K.M., Ali, H., El-Mansy, M., Atef, S.: FT-IR spectroscopic analyses of 2-(2-furanmethylene) propanedinitrile. Spectrochim. Acta A Mol. Biomol. Spectrosc. 105, 545–549 (2013)

Soliman, H., Ibrahim, M., El-Mansy, M., Atef, S.: Structural and optical study of nanostructure of 4-cyano-pyraanoquinolinedione (CPQ) thin films. Opt. Mater. 72, 122–129 (2017)

Stevenson, J.L., Skapski, A.C.: The crystal structure and linear electro-optic properties of meta-nitroaniline. J. Phys. C Solid State Phys. 127(1), 173 (1972)

Stevenson, J.L., Ayers, S., Faktor, M.M.: The linear electrochromic effect in metanitroaniline. J. Phys. Chem. Solids 34(2), 235–239 (1973)

Tabrizi, A.A., Saghaei, H., Mehranpour, M.A., Jahangiri, M.: Enhancement of absorption and effectiveness of a perovskite thin-film solar cell embedded with Gold nanospheres. Plasmonics 1, 1–14 (2021)

Tber, B., Fahmi, N.-E., Ronco, G., Villa, P., Ewing, D.F., Mackenzie, G.: An alternative strategy for the synthesis of 3′-azido-2′, 3′-dideoxy-4′-thionucleosides starting from d-xylose. Carbohyd. Res. 267(2), 203–215 (1995)

Ünal, Y., Nassif, W., Özaydin, B.C., Sayin, K.: Scale factor database for the vibration frequencies calculated in M06–2X, one of the DFT methods. Vib. Spectrosc. 112, 103189 (2021)

ur Rashid, H.,Martines, M.A.U., Duarte, A.P., Jorge, J., Rasool, S., Muhammad, R., Ahmad, N., Umar, M.N.: Research developments in the syntheses, anti-inflammatory activities and structure–activity relationships of pyrimidines. RSC Adv. 11(11), 6060–6098 (2021)

Uslu, H., Koparir, P., Sarac, K., Karatepe, A.: ADME predictions and molecular docking study of some compounds and drugs as potential inhibitors of COVID-19 main protease: A virtual study as comparison of computational results. Medicine 10(1), 18–24 (2021)

Verma, V.K., Guin, M., Solanki, B., Singh, R.C.: Molecular structure, HOMO and LUMO studies of Di (Hydroxybenzyl) diselenide by quantum chemical investigations. Mater. Today: Proc. (2021)

Yankova, R., Tankov, I.: NLO response as a function of structural water presence: A comparative experimental (UV-vis) and DFT (structural, NPA, MEP) study on Cs2Ni (SeO4) 2• H2O and Cs2Ni (SeO4) 2. J. Mol. Struct. 1224, 129047 (2021)

Yerragunta, V., Patil, P., Anusha, V., Swamy, T.K., Suman, D., Sammitha, T.: Pyrimidine and its biological activity: a review. Pharma News (2021)
Yousif, A.A., Fadhil, G.F.: DFT of para methoxy dichlorochalcone isomers. Investigation of structure, conformation, FMO, charge, and NLO properties. Chem. Data Collect. 31, 100618 (2021)
Yu, Y.-X.: High storage capacity and small volume change of potassium-intercalation into novel vanadium oxy-chalcogenide monolayers V2S2O, V2Se2O and V2Te2O: An ab initio DFT investigation. Appl. Surf. Sci. 546, 9062 (2021)
Zhao, C., Zhang, Z., Han, F., Xia, D., Xiao, C., Fang, J., Zhang, Y., Wu, B., You, S., Wu, Y.: An Organic-inorganic Hybrid Electrolyte as Cathode Interlayer for Efficient Organic Solar Cells. Angewandte Chemie International Edition (2021)
Zhu, L., Chen, X., Shi, R., Zhang, H., Han, R., Cheng, X., Zhou, C.: Tetraphenylphenyl-modified damping additives for silicone rubber: Experimental and molecular simulation investigation. Mater. Des. 109551 (2021)
Zyss, J., Chemla, D.S., Nicoud, J.F.: Demonstration of efficient nonlinear optical crystals with vanishing molecular dipole moment: Second-harmonic generation in 3-methyl-4-nitropyridine-1-oxide. J. Chem. Phys. 74(9), 4800–4811 (1981)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.