Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Bioinformatics pipeline unveils genetic variability to synthetic vaccine design for Indian SARS-CoV-2 genomes

Nimisha Ghosh a,1, Indrajit Saha b,*,1, Nikhil Sharma c,1, Suman Nandi b

a Department of Computer Science and Information Technology, Institute of Technical Education and Research, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
b Department of Computer Science and Engineering, National Institute of Technical Teachers’ Training and Research, Kolkata, West Bengal, India
c Department of Electronics and Communication Engineering, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India

ARTICLE INFO

Keywords:
Bioinformatics Pipeline
Clade
Conserved Regions
Non-synonymous signature SNP
SARS-CoV-2
T-cell epitopes

ABSTRACT

In the worrisome scenarios of various waves of SARS-CoV-2 pandemic, a comprehensive bioinformatics pipeline is essential to analyse the virus genomes in order to understand its evolution, thereby identifying mutations as signature SNPs, conserved regions and subsequently to design epitope based synthetic vaccine. We have thus performed multiple sequence alignment of 4996 Indian SARS-CoV-2 genomes as a case study using MAFFT followed by phylogenetic analysis using Nextstrain to identify virus clades. Furthermore, based on the entropy of each genomic coordinate of the aligned sequences, conserved regions are identified. After refinement of the conserved regions, based on its length, one conserved region is identified for which the primers and probes are reported for virus detection. The refined conserved regions are also used to identify T-cell and B-cell epitopes along with their immunogenic and antigenic scores. Such scores are used for selecting the most immunogenic and antigenic epitopes. By executing this pipeline, 40 unique signature SNPs are identified resulting in 23 non-synonymous signature SNPs which provide 28 amino acid changes in protein. On the other hand, 12 conserved regions are selected based on refinement criteria out of which one is selected as the potential target for virus detection. Additionally, 22 MHC-I and 21 MHC-II restricted T-cell epitopes with 10 unique HLA alleles each and 17 B-cell epitopes are obtained for 12 conserved regions. All the results are validated both quantitatively and qualitatively which show that from genetic variability to synthetic vaccine design, the proposed pipeline can be used effectively to combat SARS-CoV-2.

1. Introduction

More than two years ago, SARS-CoV-2 put a massive halt to the freedom of human movement due to its high transmission rates [1]. Early study established the fact that SARS-CoV-2 virus is highly similar to that of the SARS-CoV-1 (95%–100%) [2]. In April 2021, India registered its second sudden surge in official cases with the Delta (B.1.617.2) variant. In late 2021, the third wave hit the country which was led by Omicron. Though, India is pushing towards a very large vaccination drive, concerns over the efficacy of the vaccine for such aggressive mutations are also increasing. Meanwhile, India is not the only country which has witnessed the new mutation strain of the evolving virus, variants in South Africa (501Y.V2) [3], United Kingdom (B.1.1.7) [4], Japan (E484K) [5], Brazil (P.1) [5] are also making their rounds. The latest variant to join the bandwagon is Omicron (B.1.1.529). Although, previously it was suggested that such mutants are not going to affect the effectiveness of the vaccines currently in use, the emergence of Omicron has changed the equation. Moreover, new variants can affect the diagnosing procedure such as primer identification or antibody binding in RT-PCR. Ascoli [6] also suggested that a mutation in the Spike region of SARS-CoV-2 may affect the diagnosing procedure with greatest impact along with the increasing infection rates, transmissibility or even impacting people of younger age.

In the current scenario, it is an important and urgent task to study the frequently occurring mutations within the virus. In this regard, Yuan et al. [7] have analysed 11,183 SARS-CoV-2 genome from around the globe to identify the SNPs and critical SNPs with specific high mutation frequency along with the geographical pattern analysis. Further, they

* Corresponding author.
E-mail address: indrajit@nitttrkol.ac.in (I. Saha).
1 Equally contributed

https://doi.org/10.1016/j.intimp.2022.109224
Received 24 June 2022; Received in revised form 22 August 2022; Accepted 31 August 2022
Available online 6 September 2022
1567-5769/© 2022 Elsevier B.V. All rights reserved.
have found 74 non-synonymous and 43 synonymous mutations. Most importantly they have identified Nucleocapsid (N) as the gene with the highest mutational frequency changes. This directly undermines the claim of Ascoli [6] that Nucleocapsid can be targeted for the diagnosing purposes as N gene undergoes very less mutations or is mostly conserved. Hence, it is important to take a closer look how SARS-CoV-2 is evolving over time. Moreover, Tang et al. [8] have found new developing variations on the receptor binding sites of Spike gene of SARS-CoV-2 in the form of S and L lineages. Here, S and L lineages are defined by two tightly linked SNPs at positions 8,782 (orf1ab:T8517C, synonymous) and 28,144 (ORF8: C251T, S84L) which might affect the virus pathogenesis. Phylogenetic analysis done by Maitra et al. [9] revealed the signature mutations such as C14408T in RdRp along with A23403G change in Spike protein majorly forming A2a clade within 9 Indian sequences. Further, they have also reported a triplet based mutation in N gene 2881–3 GGG/AAC which might affect the miRNAs bindings to original sequences. Genome analysis by Saha et al. [10] for 72 different countries has shown multiple unique mutation points in the form of substitution, deletion, insertion and SNPs in each country, resulting in 7209, 11700, 119 and 53 mutations respectively. Further, they have identified 11 SNPs which are unique to India, the most frequent being T1198K, A97V, T315N and P13L mutation points in NSP3, RdRp, Spike and ORF8. Therefore, it has become more important than ever to constantly monitor the continually evolving virus in order to take up proper measures to battle the contagious virus. Study conducted by Nagy et al. [11] identified genomic alterations and the association of each mutation and outcome. As a result, they have found 3733 mutation points related to mild outcome in ORF8, NSP6, ORF3a, NSP4 and Nucleocapsid genes whereas the mutations in Spike glycoprotein, RNA polymerase, ORF3a, NSP3, ORF6 and N provided inferior outcome. Also, severe outcomes are associated to the mutations in ORF3a and NSP7 proteins. Thus, mutations are important in the significant genes such as Spike, N etc. and such mutations may even lead to a false diagnosis in RT-PCR testing. Hence, it is also important to extract the conserved regions in a genome sequence for more effective diagnosis. In this regard, [10] have identified a conserved region in NSP6 gene as a potential target for SARS-CoV-2 detection using RT-PCR.

On the other hand, alteration in the RNA virus can lead to vaccine failures as was noticed in the case of Influenza virus in 2013–14 [12]. Hence, to fight against a highly evolving virus like SARS-CoV-2, it is important to have stable vaccine. In this regard, Ghosh et al. [13] have performed a genome-wide analysis of 10644 SARS-CoV-2 sequences to identify the conserved regions in a virus genome, followed by which they have proposed epitope based vaccine design targeting the T-cell and B-cell epitopes. Another study conducted by Ghosh et al. [14] for identifying the conserved regions specifically focussed on 566-Indian SARS-CoV-2 sequences as a case study using MAFFT followed by phylogenetic analysis of the aligned sequences using Nextstrain. As a result, the sequences are found to be distributed in 5 clades, viz 19A, 19B, 20A, 20B and 20C. Thereafter, from the aligned sequences, mutation points as SNPs are identified in each clade. Subsequently, top 10 signature SNPs based on their frequency are identified in each clade resulting in a total of 50 such SNPs. Out of 50 signature SNPs, 40 unique signature SNPs are identified resulting in 23 non-synonymous signature SNPs which gives 28 amino acid changes in protein which are visualised in protein structures as well. Furthermore, the sequence and structural homology-based prediction along with the protein structural stability of the amino acid changes for such SNPs are evaluated using PROVEAN, PolyPhen2.0 and I-Mutant 2.0 in order to judge the characteristics of the identified clades. As a consequence, A97V in RdRp in 19A, V354L in Nucleocapsid in 19B, Q57H in Nucleocapsid in 20A, R203M in Nucleocapsid in 20B while T85I in NSP2 and Q57H in ORF3a in 20C are the unique amino acid changes which are responsible for defining each clade as they are all deleterious and unstable and are also responsible for decreasing the protein structural stability. Moreover, based on the entropy of each genomic coordinate of the aligned sequences, conserved regions are identified. Conserved regions are such places in genomic sequences for which the corresponding protein sequences remain unchanged. These conserved regions are then filtered based on the criteria that their lengths are greater than or equal to 125nt and their BLAST specificity score is equal to 100% resulting in 12 conserved regions belonging to NSP2, NSP8, NSP10, RdRp, Exon, Spike glycoprotein, ORF3a and ORF7a proteins. Based on its length, one conserved region as potential target is identified in the NSP10 gene for which the primers and probes are reported as well. Such primers and probes can be used for detecting SARS-CoV-2 virus. The 12 conserved regions are also used to identify the T-cell and B-cell epitopes along with their immunogenic and antigenic scores. Using such scores, most immunogenic and antigenic epitopes are selected for the 12 conserved regions thereby identifying 23 MHC-I and 22 MHC-II restricted T-cell epitopes with 10 unique HLA alleles each and 17 B-cell epitopes. Finally, the binding conformation of the MHC-I and MHC-II restricted T-cell epitopes with respect to HLA alleles are shown to judge their relevance. Also, the physico-chemical properties of the epitopes are reported along with structural properties using Ramchandran plots, ERRAT score and Z-Scores. Thus, based on the comprehensive bioinformatics pipeline, the main contributions of this work can be summarised as: (a) phylogenetic analysis in Nextstrain to identify virus clades, (b) identification of SNPs in the aligned sequences, (c) based on frequency, top 10 signature SNPs identification in each virus clade, (d) identification of conserved regions and based on length selecting one such region as potential target for reporting the corresponding primers and probes to detect SARS-CoV-2 and (e) identification of T-cell and B-cell epitopes for peptide based synthetic vaccine design.

2. Material and Methods

In this section, the details of data collection and the preparation are elucidated which is followed by a brief discussion on the pipeline of the workflow that has been considered in this work.

2.1. Data Collection and Preparation

The reference sequence of SARS-CoV-2 virus (NC_045512.2) is...
collected from National Center for Biotechnology Information (NCBI) while 4996 complete or near complete Indian SARS-CoV-2 genomes are collected from Global Initiative on Sharing All Influenza Data (GISAID) in fasta format. The 4996 SARS-CoV-2 sequences are mostly distributed from January 2020 to January 2021. These sequences are then aligned to find the conserved regions. The coded protein corresponding to each conserved region is extracted as well. Further, to map the protein sequences and changes in the amino acid, protein PDB are collected from Zhang Lab which are then used to model and identify the structural changes. All these analyses are executed on High Performance Computing (HPC) facility of NITTTR, Kolkata while the amino acid changes are checked in MATLAB R2019b. The HPC cluster has a master node with dual Intel Xeon Gold 6130 Processor having 32 Cores, 2.10 GHz, 22 MB L3 Cache and 128 GB DDR4 RAM and 2 GPU and 4 CPU computing nodes with dual Intel Xeon Gold 6152 Processor having 44 Cores, 2.1 GHz, 30 MB L3 Cache and 192 GB DDR4 RAM each, while GPU nodes have NVIDIA Tesla V100 GPU with 16 GB memory each. MSA is performed using the 2 GPU and 4 CPU computing nodes.

2.1.1. Pipeline of the work

The pipeline of this work is provided in Fig. 1. In this work, a comprehensive bioinformatics pipeline is proposed which encompasses identifying mutation points as SNPs, conserved regions and finally design of epitope based synthetic vaccine. To achieve these goals, in the first phase of the pipeline, multiple sequence alignment of 4996 Indian SARS-CoV-2 genomes as a case study using MAFFT is carried out followed by the phylogenetic analyses using Nextstrain. As MAFFT uses fast fourier transform, it outperforms all the other alignment techniques. On the other hand, analysis of the evolution and spread of pathogens is done using Nextstrain by considering phylogenomic and phylogeographic data. The spread and evolution of virus genomes can be visualised at nextstrain.org using auspice. By using this tool, the evolution and geographic distribution of SARS-CoV-2 genomes are visualised by creating the metadata in our High Performance Computing environment. Once the identification of the virus clades are performed using Nextstrain, clade specific aligned sequences are used to identify mutation points as substitutions especially SNPs in each clade. Henceforth, codon table is used to identify the amino acid changes in the virus proteins corresponding to the SNPs. Thereafter, based on their frequency in the virus genome, top 10 signature SNPs are identified in each clade. Please note that the amino acid changes in the SNPs can be either synonymous or non-synonymous. Furthermore, amino acid changes in the non-synonymous SNPs are visualised in the protein structures and they are used to evaluate their functional characteristics as well.

The second phase of the pipeline entails identification of conserved Regions (CnRs) in the aligned sequences using entropy (\mathcal{N}) which can be computed as:

$$\mathcal{N} = \ln 5 + \sum_{y=1}^{5} \ln(P_y)$$

where P_y represents the frequency of each residue x occurring at position y and 5 represents the four possible residues as nucleotides plus gap. To identify the conserved regions, a minimum segment length of 15 is considered with maximum average entropy as 0.2 along with a maximum entropy per position of 0.2 as well without any gaps. All these values are taken after following the literature. Thereafter, refinement criteria for the conserved regions are adopted based on the criteria that their lengths are ≥125nt and their BLAST specificity score as query coverage is equal to 100%. Subsequently, based on its length, a
particular conserved region is considered as potential target which is then used to identify primers and probes using Primer-BLAST for SARS-CoV-2 detection.

In the final phase of the pipeline, T-cell and B-cell epitopes along with their immunogenic and antigenic scores are predicted for the refined CnRs using IEDB\(^6\) and ABCPred\(^7\) respectively. For such MHC-I and MHC-II restricted T-cell epitopes, predictions are carried out using IEDB recommended NetMHCPan EL 4.1\(^8\) and Consensus Approach\(^9\) \([21]\) respectively while ABCPred \([22]\) is used for B-cell epitope prediction. Thereafter, by using these predicted epitopes, antigenic scores are evaluated by VaxiJen 2.0\(^{10}\) while the validation of the identified T-cell epitopes is carried out by studying their conformational 2D non-covalent structures using LigPlot\(^+\) \([23]\). For the verification of the predicted B-cell epitopes, BepiPred 2.0\(^{11}\) \([24]\) server is used. Allergen and toxicity properties of the epitopes are evaluated using AllerTop 2.0\(^{12}\) and ToxinPred\(^{13}\) respectively. The physico-chemical properties are also evaluated using ToxinPred. Moreover, docking of all the T-cell epitopes are performed using AutoDock Vina\(^{25}\) and their structural properties are reported using Ramachandran Plot\(^{26}\), ERRAT score\(^{27}\) and Verify 3D \([28]\) using SAVES 6.0\(^{14}\). Finally, Z-Score evaluation is performed using ProSA\(^{29}\).

3. Results

3.1. Phylogenetic analysis and Signature SNPs in each clade

To achieve the first step of the bioinformatics pipeline, multiple sequence alignment of 4996 Indian SARS-CoV-2 genomes is performed using MAFFT followed by phylogenetic analysis with the help of Nextstrain. This phylogenetic analysis results in 5 clades viz. 19A, 19B, 20A, 20B and 20C. Thereafter, mutation points as substitutions specifically SNPs are identified in each clade resulting in 708, 161, 3308, 3235 and 47 SNPs for 479, 88, 2486, 1925 and 18 sequences respectively in 19A,
resulting in 50 signature SNPs as reported in Table 1 and visualised in Fig. 2 (d) and (e). It is to be noted that for some sequences, the state name is not mentioned in the GISAID database. Thus, they are aggregated under the state name 'India'.

Once the SNPs are determined for each clade, top 10 SNPs based on their frequency viz. signature SNPs are identified in each clade, thereby resulting in 50 signature SNPs as reported in Table 1 and visualised in Fig. 2(f). In unsupervised learning, feature selection is a very crucial task. In this work, frequency of a SNP is considered to be the feature selection criterion. For example, G11083A and G11083T with a frequency of 425 is the top signature SNP in clade 19A while for 19B, T28144C having frequency of 87 is the top signature SNP. Subsequently, 27 amino acid changes are visualised in Fig. 3 as opposed to 28 reported changes; the discarded change is E110* in ORF8 as this amino acid change leads to a stop codon. Also, sequence and structure-based homology prediction of the amino acid changes for the non-synonymous SNPs are reported in Table 2, the details of which are discussed in Discussion section. All the changes are visualised in Fig. 3 as well. Please note that 27 amino acid changes are identified which results in 23 non-synonymous changes are visualised in Fig. 3 as opposed to 28 reported changes; the discarded change is E110* in ORF8 as this amino acid change leads to a stop codon. Also, sequence and structure-based homology prediction of the amino acid changes for the non-synonymous SNPs are reported in Table 2, the details of which are discussed in Discussion section. All the

Clade	Genomic Position	Frequency	Nucleotide Change	Protein Change	Protein Coordinate	Mapped with Coding and Non-Coding Region
19A	11083	425	G->A, G>T	Synonymous, L->F	37	NSP6
13730	374	C>T		A->V	97	RdRp
28311	364	C>T		P->L	13	Nucleocapsid
29529	360	C>T	Synonymous	T->I, T->K	789	Spike
6312	359	C>T, C>A	Synonymous	T->I, T->K	1198	NSP3
19524	111	C>T	Synonymous	Synonymous	495	Exon
6310	98	C>A, C>T	Synonymous	S->R, Synonymous	1197	NSP3
1397	77	G>A	V->I	198	NSP2	
29742	77	G->A, G>C, G>T	Not Present	Not Present	3' UTR	
28688	74	T->C	Synonymous	139	Nucleocapsid	

19B	28144	87	T->G	Synonymous	84	ORF8
8782	86	C>T	Synonymous	76	NSP4	
28878	83	G->A, G>T, G->C	S->N, S->I, S->T	202	Nucleocapsid	
29742	81	G->A, G>C, G->T	Not Present	Not Present	3' UTR	
22468	62	G>T,G>A	Synonymous, Synonymous	302	Spike	
11230	19	G>T	M->I	86	NSP6	
7945	16	C>T	Synonymous	1742	NSP3	
28167	15	G>A	E->K	92	ORF8	
2705	9	A->G	T->A	634	NSP2	
14500	9	G>T	V->L	354	RdRp	

20A	23403	2472	A->G	D->G	614	Spike
241	2458	C>T	Not Present	Not Present	5' UTR	
3037	2455	C>T	Synonymous	106	NSP3	
14408	2377	C>T	P->L	323	RdRp	
26735	1432	C>T	Synonymous	71	Membrane	
18877	1427	C>T	Synonymous	280	Exon	
25563	1418	G>A, G>T, G->C	Synonymous, Q->H, Q->H	57	ORF3a	
28854	1220	C>T	S->L	194	Nucleocapsid	
22448	1191	C>T	Synonymous	294	Spike	
2836	557	C>T	Synonymous	39	NSP3	

20B	3037	1923	C>T	Synonymous	106	NSP3
241	1922	C>T	Not Present	Not Present	5' UTR	
23403	1922	A->G	D->G	614	Spike	
14408	1912	C>T	P->L	323	RdRp	
28881	1868	G>A, G>T	R->K, R->M	203	Nucleocapsid	
28882	1868	G>A	Synonymous	203	Nucleocapsid	
28883	1867	G->A, G->C	G->R, G->R	204	Nucleocapsid	
313	1120	C>T	Synonymous	16	Leader protein	
5700	1106	C>A	A->D	994	NSP3	
4354	281	G->A	Synonymous	545	NSP3	

20C	241	18	C>T	Not Present	Not Present	5' UTR
1059	18	C>T	Synonymous	85	NSP2	
3037	18	C>T	Synonymous	106	NSP3	
14408	18	C>T	P->L	323	RdRp	
23403	18	A->G	D->G	614	Spike	
25563	18	G->A, G>T, G->C	Synonymous, Q->H, Q->H	57	ORF3a	
16260	9	C>T	Synonymous	8	Helicase	
28821	9	C>A	C->Y	183	Nucleocapsid	
28221	4	G>T, G->C	E->, E->Q	110	ORF8	
28371	4	G>T	S->I	33	Nucleocapsid	

19B, 20A, 20B and 20C. The details of the SNPs are provided in the supplementary Table S1. The resultant phylogenetic trees in radial and rectangular views are shown in Fig. 2(a) and (c) while the clade wise geographical distribution of the 4996 sequences is shown in Fig. 2(b). The clade wise evolution of the sequences for each month of each Indian state is shown in the form of pie charts in supplementary Table S2 while the month wise evolution of such sequences for each clade is reported in supplementary Table S3. The corresponding colour representation for the five major clades and the months are provided in supplementary Figure S1. Moreover, the entropy values for the nucleotide changes and coding regions of the SARS-CoV-2 genome are shown respectively in Fig. 2(d) and (e). It is to be noted that for some sequences, the state name is not mentioned in the GISAID database. Thus, they are aggregated under the state name 'India'.
detailed results are provided in supplementary Table S1.

3.2. Selection of CnRs

For the next phase of this study, we have obtained 473 conserved regions (CnRs) which are then mapped to the 11 coding regions of SARS-CoV-2: ORF1ab, Spike, ORF3a, Envelope, Membrane, ORF6, ORF7a, ORF7b, ORF8, Nucleocapsid and ORF10. For each CnR, the corresponding protein sequence is taken according to the reading frame it is associated with. For example, protein sequence of CnR in Spike region is taken from Frame 2 while that belonging to Envelope and Membrane are taken from Frames 1 and 3 respectively. These 473 conserved regions are then filtered based on the criteria that the length of the CnR should be greater than or equal to 125nt and their BLAST specificity score as

Fig. 3. Highlighted amino acid changes in the protein structures for the non-synonymous signature SNPs of (a) NSP2 (b) NSP3 (c) NSP6 (d) RdRp (e) Spike (f) ORF3a (g) ORF8 and (h) Nucleocapsid.
query coverage is equal to 100%. As a result, we have obtained 12 such regions as reported in Table 3. The table also shows the corresponding protein sequences for the conserved regions along with their length, BLAST specificity score, percent of BLAST specificity score as query highlighted in red. Using this conserved region, 10 primers and probes is taken from ZhangLab in the form of a PDB file and the CnR as target is confirmed. The structure of the NSP10 gene as shown in Table 4. With a score of 1.12, the most immunogenic and antigenic MHC-I restricted T-cell epitopes are identified resulting in 22 such epitopes and reported in Table 6. With a score of 0.4, any epitope beyond this cut-off are considered to be antigenic. Therefore, a total of 60 epitopes, each of length 9–10 mer, are obtained along with their immunogenic and antigenic scores. From each of the 12 CnRs, the total of 60 epitopes, each of length 9

Table 2
Sequence and structural homology-based prediction for non-synonymous signature SNPs along with their protein structural stability.

Clade	Genomic Coordinates	Amino residue	Protein	GENOMIC Effect	Score	PROTEIN Prediction Score	POLYPHEN-2 Score	MUTANT Score	STABILITY DDG
19A	11083 L37F	NSP6	Neutral	-1.369	Benign	0.027	Decrease 0.05		
13730	A97V	RdRP	Deleterious	-3.611	Probably Damaging	0.99	Decrease -0.53		
28311	P13L	Nucleocapsid	Neutral	-1.23	Probably Damaging	1.000	Increase 0.11		
6312	T1198I	NSP3	Neutral	-0.085	Probably Damaging	0.998	Decrease -0.72		
6312	T1198K	NSP3	Neutral	-0.353	NG	NG	Decrease -1.37		
6310	S1197R	NSP3	Neutral	-0.835	NG	NG	Decrease -0.88		
1397	V198I	NSP2	Neutral	-0.307	Benign	0.006	Increase 0.18		
19B	28144 L84S	ORF8	Neutral	2.333	Benign	0.002	Decrease -2.87		
28878	S202N	Nucleocapsid	Neutral	-0.404	Probably Damaging	0.994	Decrease -0.8		
28878	S202I	Nucleocapsid	Deleterious	-3.308	Probably Damaging	0.998	Increase 0.22		
28878	S202T	Nucleocapsid	Neutral	-1.428	Probably Damaging	0.986	Decrease -0.53		
11230	M86I	NSP6	Neutral	-0.427	Benign	0.025	Decrease -1.02		
28167	E92K	ORF8	Neutral	-1.5	NG	NG	Decrease -1.05		
2705	T634A	NSP2	Neutral	-0.004	Benign	0.106	Decrease -1.13		
14500	V354L	RdRP	Deleterious	-2.581	Probably Damaging	0.997	Decrease -1.95		
20A	23403 D614G	Spike	Neutral	0.598	Benign	0.004	Decrease -1.94		
14408	P232L	RdRP	Neutral	-0.865	Benign	0.005	Decrease -0.8		
25563	Q57HI	ORF3a	Deleterious	-3.286	Probably Damaging	0.966	Decrease -1.12		
28854	S194L	Nucleocapsid	Deleterious	-4.272	Probably Damaging	0.994	Increase 0.45		
20B	23403 D614G	Spike	Neutral	0.598	Benign	0.004	Decrease -1.94		
14408	P232L	RdRP	Neutral	-0.865	Benign	0.005	Decrease -0.8		
28881	R203K	Nucleocapsid	Neutral	-1.604	Probably Damaging	0.969	Decrease -2.26		
28881	R203M	Nucleocapsid	Deleterious	-3.305	Probably Damaging	0.998	Decrease -1.52		
28883	G204R	Nucleocapsid	Neutral	-1.656	Probably Damaging	1	Decrease 0		
5790	A994D	NSP3	Neutral	-1.103	NG	NG	Decrease -0.78		
20C	1059 T85I	NSP2	Deleterious	-4.00	Probably Damaging	0.998	Decrease -1.71		
14408	P232L	RdRP	Neutral	-0.865	Benign	0.005	Decrease -0.8		
23403	D614G	Spike	Neutral	0.598	Benign	0.004	Decrease -1.94		
25563	Q57HI	ORF3a	Deleterious	-3.286	Probably Damaging	0.966	Decrease -1.12		
28821	S183Y	Nucleocapsid	Deleterious	-2.75	Probably Damaging	0.998	Increase 0		
28221	E110Q	ORF8	Neutral	-0.25	NG	NG	Decrease -1.13		
28371	S33H	Nucleocapsid	Neutral	-1.372	NG	NG	Increase 0.63		

3.3. Identification of Conserved Region as Target and associated Primers and Probes

Among the 12 CnRs identified, the CnR with the largest length of 247nt is considered to be a potential target. This CnR belongs to ORF1ab region, specifically NSP10 gene which is shown in Table 4. With a Nucleotide BLAST score of 457 and BLAST specificity score as query coverage is equal to 100%, the global stability of this CnR as a global target is confirmed. The structure of the NSP10 gene as shown in Table 4 is taken from ZhangLab in the form of a PDB file and the CnR as target is highlighted in red. Using this conserved region, 10 primers and probes are identified from Primer-BLAST and reported in Table 5 and shown in Fig. 2(b). The table reports both the forward and the reverse primers. Moreover, high GC scores (45%-53%) of the identified primers suggest that the identified primers and probes can be used in RT-PCR for SARS-CoV-2 detection in order to correctly diagnose COVID-19 patients. Therefore, the target region of NSP10 gene can be considered as a confirmatory assay. It is to be noted that based on its adhesive properties, Ong et al. [30] have predicted NSP10 as a possible vaccine candidate.

3.4. Identification of T-cell Epitopes

To achieve the final phase of the pipeline, design of epitope based synthetic vaccine is carried out. To predict the epitopes from the 12 CnRs, the corresponding protein sequences are fed to the various tools as inputs. For the prediction of MHC-I restricted T-cell epitopes, IEDB recommended NetMHCpan EL 4.1 [31] is considered targeting 27 unique HLA alleles. For each CnR, this resulted in the selection of 5 best HLA allele binder epitopes based on their immunogenic scores. Therefore, these best binders are provided as input to VaxiJen 2.0 [32] server for antigenic score prediction [31] with a cut-off score of 0.4. Any epitope beyond this cut-off are considered to be antigenic. Therefore, a total of 60 epitopes, each of length 9–10 mer, are obtained along with their immunogenic and antigenic scores. From each of the 12 CnRs, the most immunogenic and antigenic MHC-I restricted T-cell epitopes are identified resulting in 22 such epitopes and reported in Table 6. With a score of 0.99, the most immunogenic epitopes are SEVGPEHSL, DTDFVNEFY and QEYADVFHLY bounded to HLA-B*40:01, HLA-A*01:01 and HLA-B*44:03 alleles respectively belonging to NSP2 and RdRP coded proteins. On the other hand, with a score of 1.43, HPNPKGFCDL is the most antigenic epitope belonging to NSP10 coded
Table 3
Conserved Regions (CnRs) as derived from 4996 SARS-CoV-2 genomes with associated details

DNA Sequence of Conserved Region (CnR)	Protein Sequence	Length of CnR	BLAST Specificity Score of CnR	% of BLAST Specificity as Query Coverage	Coding Region (CR)	Coordinate of Starting	Coordinate of Ending	Length of Coding Region	Coded Proteins
1282-CACTTGGAATTTTGTG	TCEFGTENLREGATGTCY	137	254	100	ORF1ab	266	21552	21287	NSP2
GCCACTTACCTGTTGTTACTCTAC	LNPQNAVYKYPACRNAE								
CCAAAATCTGCTGTTGTTAATTATT									
GTTCTAGCTTGATCCAAATGCTGGAG									
AGGACACTTACATTGACTGTTGTTG									
12422-AGAGATGTTGTTGTTCTTGTTG	RDGCVPNNPLNPLANNFT	137	254	100	ORF1ab	266	21552	21287	NSP8
CCTTGAACATATTATCTCTTACACACG	PDNYTKNCNT								
AGGCAAATTAATGTGTTGCTGATTAGA	DGTFFYASALWE								
CCAGATTGATACCATTTGCTGATTAGA									
ACAATTTGATACCATTTGCTGATTAGA									
13125-GGGGACACAAATCTACAATAGGATTTATGTTGCTA	QQEPITNCVKMLCHITHTGTTGQATYTP	247	457	100	ORF1ab	266	21552	21287	NSP10
CACAACCTGACATCGTACAGCTTAACAGAGGCAC	EANMDQESFGGASGCCLYCRRCHKDHPP								
TTACACCGGAAGCCTATAGG	NPKGFDLKEGQYQIPT								
ATCAAGAATCTTCTGGTTGCTGATCTGTTG	TCANDSVGFTLNT								
TCAGTCATACATGTTGCTGTTGCTATAGA									
TATTTACACACCGGCTTTAAACTTGACTCACACAC	YSSLLMPILTLTALAES	132	244	100	ORF1ab	266	21552	21287	RdRp
14075-TCATTTGATACCTGTTGATTTGTCGA									
CGTGATTTCTCATACAAACACCGCC									
AGGGTATGCGATTCTGGTCTGGTGAGATT									
CTATATTTCTCATGTTGCTGATTAGA									
ATATTTACACACCGGCTTTAAACTTGACTCAC									
GCAGCTCCAC-14206									
14221-TTACACACCGCTATCATAGG	LGPRYKWDLLKYDFTIEELK	186	344	100	ORF1ab	266	21552	21287	RdRp
GGGATTTGCTAAAAATATAGCTCTCA	LFVFRYFYWDQYTHPNCVNLDDRCILHC								
GCCAGAGACGGGTAAAACCTCTGTGCT	AFNVLFSYVPP								
AGGCTATTATTTATGTTGGTGGTGGTGGTGAG									
AGACATACACACAAATATGGGTTGGAATCTGCT									
TTAGCATTGCTAGGTGACAGTGGCTGTA									
ATCTGACATCTGACGTGACGAGTTAATGCT									
GTTCTTATTTTTTATGTTGGTGGTGGTGGTTG									
15607-TTACACACAGCAGTTAGTGTATAGTGT	LGHRLYECYLKYNRDVD	131	243	100	ORF1ab	266	21552	21287	RdRp
GTTCCTATAGAAAATAGAGTGTGCTGAGGAGAA	DFVNYEHAYLREKHSMS								
CACACAGACTTGGCAAGGATGCAGACTGGT	MILSSDDAVVC								
TTATTCATTGTTGTTGTTGCTGTTGTTGCTT									
GATGCACTTGGTGGTGGTGGTGGTGGTGGT									
15991-GATTGGTCACTTATAGGCTGGGACGC GTGCTGCTTCTACTATGATGCTTAC	DGTLMFIERVSLSADAYPLTKH	215	398	100	ORF1ab	266	21552	21287	RdRp
CCACCTTAAACACATCCTAATC	PQOEAYADVFHLYQYIRLHDE								
AGGATGATGCTAGTGTCTTCTGAT	LTGHMIDMYSVLTNNTS								
AGGTCTGATAGTGGTACAGG	RYWEPFY								

(continued on next page)
Table 3 (continued)

DNA Sequence of Conserved Region (CnR)	Protein	Length of Coded Region	BLAST Specificity Score of Coded Region	% of BLAST Specificity Score as Query Coverage	Coding Region	Coordinate of Coding Region	Coordinate of BLAST Specificity Region as Query Coverage
ACACATGTGACATGTATTCTG							
TTAGCTTACATAGTAAACCTT							
CAAGGATTGGGAACACTT							
AGTGGTTGAG-16205							
18487-ATACACCTTATGTACAAAAGG							
ACCTTCTTGGAATTAGTGCCGTA							
TAAAGAGTTGACAAATGTTAAGTGA							
CACACTTAAAAATCTCCTC							
GCACAGATGGTATTGTGTGTATTGATGGCACAT							
GGGCTTAAATGACATCCTGATGATGGATTT							
CCTGGATTGCACACACGCAAGCCAA							
18980-ACATGGTTGTTAAGCTGCAT							
TATACGACAGACATTCCCCTACAGTC							
TGAGACAGAATTGTGAAAGCTGAAAAA							
TGATAGGGATGCTGCAAGGCAAGCAGACT							
TCCAAGGGTATGACACATGTTGAGGGCA							
CACACTTAAAAATCTCCTC							
CACGGGCAAAGTGTTGGAAGGGCTGAA							
25913-GCACACCAATGCTACTTATGTGCAACT							
GCTACACAGATTTGGTGTATATCTGGA							
AAAATTGGGATCCTGGAGATTAAAGCCTGTT							
GTATACACAGTCTACACCAAGGCAAGCAGACT							
TTACAGGCTGACTCAACTCAATTGGAG							
TACAGAAGACTACAGACT-25601							
27394-ATGAAGACTTCTTCTTCTTG							
GCCGACATGAACCTACGTGATGTT							
GACCTTTATGATACCAACAAAGT							
GTGGTACAGGATACACAGTACATTTT							
AAAAGACCCCTTGCTCTGCGA							
CATACAGGGCA-27520							
IPLMYKGPLWNVVRIKIVQ							
MLSDYKLENLSLRFYVFVLWAIHFELTSM							
KVPVEIKERTCCLC							
183 339 100 ORF1ab 266 21552 21287 Exon							
MVVKAALLAKDFVPYLHIDGNNPK							
AICVPQADVEKWFYDAQPC							
SDKAYKJE							
153 283 100 ORF1ab 266 21552 21287 Exon							
LNDLSSLKDVAFVQDRLLITGRLQ							
SLQTYVYQQRRAEI							
132 244 100 Spike 21563 25381 3819 Spike							
TTSPSEHDYQNGYTEKWEISVGKDCVLYSDYYQLYSTQSTD							
ORF3a protein							
149 276 100 ORF3a 25393 26217 825 ORF3a							
MKILLFLAJTLACTELYH							
YQECVRGTVGGTVEKPCSSGTYEG							
127 235 100 ORF7a 27394 27756 363 ORF7a							
N. Ghosh et al.							
protein and bounded to HLA-B*07:02 allele.

Similarly, MHC-II restricted T-cell epitopes are predicted using IEDB recommended consensus approach targeting a different set of 27 unique HLA alleles resulting in 60 epitopes, each of length 15 mer. Subsequently, the most immunogenic and antigenic MHC-II restricted T-cell epitopes are identified for the 12 CnRs which resulted in 21 such epitopes as reported in Table 6. It is to be noted that a MHC-II restricted T-cell epitope with a low immunogenic score is a better vaccine candidate. Thus, with a score of 0.02, NEFYAYLRKHFSMMI belonging to RdRp coded protein and bounded to HLA-DRB1*11:01 allele is the most immunogenic epitope while the most antigenic epitope is GCVPLNIIPLTTAAK belonging to NSP8 coded protein and bounded to HLA-DRB1*08:02 allele. All the 60 MHC-I and MHC-II restricted T-cell epitopes along with their HLA alleles are provided in the supplementary as an excel file and the corresponding link is provided in Table S1.

3.5. Identification of B-cell Epitopes

Epitope designing consists of both T-cell as well as B-cell epitopes; the latter one is particularly important for antigen production against a virus. In this regard, ABCPred is used for the prediction of B-cell epitopes where a threshold of 0.5 is maintained to consider the epitopes beyond this threshold to be immunogenic. With a cut-off value of 0.4, VaxiJen 2.0 server is used to evaluate the antigenic scores of the epitopes. Thus, we have identified 50 linear B-cell epitopes, each of length 16 mer, for the 12 CnRs, among which 17 are selected to be the most immunogenic and antigenic as shown in Table 6. These epitopes are also verified with the help of BepiPred 2.0 server and their corresponding graphical analysis is shown in supplementary Figure S2 where the red line represents the threshold which is set to 0.35 and the total green and yellow regions indicate a protein sequence. The most immunogenic and antigenic B-cell epitopes as reported in Table 6 are respectively VVKIYC-PACHNSEVGP belonging to NSP2 coded protein and PNPKGFCDLKGKYVQI belonging to NSP10 coded protein. Their corresponding graphical representations are provided in supplementary Figure S2 (a) and (c) respectively. All the 50 B-cell epitopes are provided the supplementary as an excel file and the corresponding link is provided in Table S1.

Additionally, in Table 7 we have provided a summarised list of all the epitopes belonging to these 12 CnRs along with their allergic and toxicity characteristics predicted using AllerTOP 2.015 and ToxinPred16 where 12, 6 and 8 allergic MHC-I, MHC-II T-cell and B-cell epitopes are identified respectively while only 1 and 5 epitopes in MHC-I restricted T-cell and B-cell epitopes are found to be toxic. The 3D structures of the epitopes summarised in Table 7 are further highlighted in Fig. 4 using ChimeraX. For better understandability, the identified epitopes are underlined in supplementary Figure S3.

4. Discussion

Since its emergence in Wuhan, China, SARS-CoV-2 has spread very rapidly around the world resulting in a global pandemic. Though the vaccination process has started, the number of COVID affected patients is still quite large. The waves of COVID-19 pandemic are a huge threat to the human population. In this regard, it is important to develop a bioinformatics pipeline in order to conduct in-depth analysis of SARS-CoV-2 genomes in every one or two months for next four to five years to know the evolution, genetic variability, virus strains and conserved regions, thereby to use such information for proper vaccine. Moreover, the mutated variants found in India are also a major concern of the researchers. Thus, identification of virus strains is very essential in today’s scenario. Moreover, vaccine is the only ray of hope in this dire situation.

Table 4	Targeted Conserved Region in SARS-CoV-2 Genome and its corresponding protein sequence in NSP10 which is highlighted by red colour in NSP10 gene.
DNA Sequence of Conserved Region (CnR)	Protein Sequence
13125-GGGGACAACCAATCACTAATTGTGTTAAGATGTTGTGTACACACACTGGTACTG	GTCAGGCAATAACAGTTACACCGGAAGCCAATATGGATCAAGAATCCTTTGGTGGTGCATCGTGTTGT
35-GQPITNCVKMLCTHTGTGQAITVTPEANMDQESFGGASCCLYCRCHIDHPNPKGFCDLKGKYVQIPTTCANDPVGFTLKNT	VQFPCTCNQVPQIYC-115

15 https://www.ddg-pharmfac.net/AllerTOP/
16 http://crdd.osdd.net/raghava/toxinpred/
thereby making development of peptide based synthetic vaccine viz. epitopes even more necessary. In this regard, we have analysed 4996 Indian SARS-CoV-2 genomes which has resulted in the identification of five clades and subsequently 10 signature SNPs in each clade. Also, based on entropy, conserved regions are identified for the aligned sequences and primers and probes are identified as well for SARS-CoV-2 detection. Furthermore, we have identified T-cell and B-cell epitopes for the development of vaccines.

Structural changes in amino acid residues can often result in changes in the protein translations which is conducive to functional instability of the proteins. In this regard, sequence and structural homology-based prediction of the amino acid changes in the non-synonymous signature SNPs along with their protein stability for the 4996 sequences are reported in Table 2 using PROVEAN (Protein Variation Effect Analyzer) [33], PolyPhen-2 (Polymorphism Phenotyping) [34] and I-Mutant 2.0 [35] to judge the characteristics of the identified clades. PROVEAN works with sequence based prediction algorithm while Polyphen-2 uses prediction based on sequence, structural and phylogenetic information of a SNP. I-Mutant 2.0 uses support vector machine (SVM) for

Table 5 Details of Primers and Probes of NSP10 gene.

Pair	Type	Sequence (5’->3’)	Length	Tm	GC%	Probe Sequence	Probe Length
1	Forward	117-TGTTGTCTGTAC TGCGTGTG-136	20	60.05	50	TGGTGCTGTACTGCGTGTGCC	113
2	Reverse	229-AAACCCACAG GGGCTATTAGGAC-210	20	59.46	50	ACATAGATCATCCAAATTCCCAAAGGATTGTGAC ATAAAAGGTAGTATGCAAATACCTCAACACTTG TGCTAATGACCCCTGTGGTT	118
3	Forward	95-AGAATCC TTTGCTGGTGTGCAT-114	20	59.08	45	AGAATCTCTTGTGGTGCATGGTTGTTGTTGCTGT GAGTCAATGACCCCTGTGGTT	113
4	Reverse	230-AAACCCACAG GTCATTAGGC-210	21	60.16	47.62	CTTGACACCTACGTCATGGTGTTGTTGCTGT GAGTCAATGACCCCTGTGGTT	113
5	Forward	35-GTGTTACAGCAG TGGTCACTGGGA-55	21	59.89	52.38	CTGTTGCTGTACTGGTGCTACGTTTGCTGT GAGTCAATGACCCCTGTGGTT	113
6	Reverse	120-AAACCTAGTGAC ACCAAAG-101	21	59.94	50	CTGTTGCTGTACTGGTGCTACGTTTGCTGT GAGTCAATGACCCCTGTGGTT	113
7	Forward	101-CTTTGCTGGTGTG CTATGTGT-120	20	60.97	50	CTGTTGCTGTACTGGTGCTACGTTTGCTGT GAGTCAATGACCCCTGTGGTT	113
8	Reverse	234-GTGTAAAC ACCACAGGCTATC-214	21	59.81	47.62	CTGTTGCTGTACTGGTGCTACGTTTGCTGT GAGTCAATGACCCCTGTGGTT	113
9	Forward	119-TGTTGTCTGTAC TGCGTGTG-137	19	60.23	50	CTGTTGCTGTACTGGTGCTACGTTTGCTGT GAGTCAATGACCCCTGTGGTT	113
10	Reverse	236-AAACCCACAG GTCATTAGGC-210	21	59.74	47.62	CTGTTGCTGTACTGGTGCTACGTTTGCTGT GAGTCAATGACCCCTGTGGTT	113
11	Forward	66-ACAGTTACACGGGAAGCCCA-85	20	61.25	55	GACAGTTACACGGGAAGCCCAATGATGCAAGAAT CCTTGGTGTGGTACGATGCTGACGTGTGACGTGT GAGTCAATGACCCCTGTGGTT	113
12	Reverse	152-TGGATGATCTATG GCGACAG-132	21	59.81	47.62	GACAGTTACACGGGAAGCCCAATGATGCAAGAAT CCTTGGTGTGGTACGATGCTGACGTGTGACGTGT GAGTCAATGACCCCTGTGGTT	113
13	Forward	44-CACTGGTACTGTCAGGCAA-63	20	61.27	55	GACAGTTACACGGGAAGCCCAATGATGCAAGAAT CCTTGGTGTGGTACGATGCTGACGTGTGACGTGT GAGTCAATGACCCCTGTGGTT	113
14	Reverse	120-AAACCGATGACGCCACCCAA-102	19	59.84	47.37	GACAGTTACACGGGAAGCCCAATGATGCAAGAAT CCTTGGTGTGGTACGATGCTGACGTGTGACGTGT GAGTCAATGACCCCTGTGGTT	113
15	Forward	65-ACAGTTACACGGGAAGCCCA-84	20	61.25	55	GACAGTTACACGGGAAGCCCAATGATGCAAGAAT CCTTGGTGTGGTACGATGCTGACGTGTGACGTGT GAGTCAATGACCCCTGTGGTT	113
16	Reverse	143-TAATGTTGGAAGCCCGGCTA-124	20	61.34	50	GACAGTTACACGGGAAGCCCAATGATGCAAGAAT CCTTGGTGTGGTACGATGCTGACGTGTGACGTGT GAGTCAATGACCCCTGTGGTT	113

17 https://provean.jcvi.org/index.php
18 http://genetics.bwh.harvard.edu/pph2/
19 http://folding.biofold.org/i-mutant/i-mutant2.0.html
Protein Sequence Coded Type	MHC-I restricted T-cell Epitopes	MHC-II restricted T-cell Epitopes	B-cell Epitopes	
160-TCEFCGTENLTKEGATTGGY	SEVGPEHSL HLA-B*40:01	TTGCLQPNAVVKIV	HLA-DRB5*01:01	4.30 0.04
NSP2	NSEVGPEHSL HLA-B*40:01	ATTGCLQPNAVVKIV	HLA-DRB5*01:01	5.20 0.18
111-RDGCVPNLPLTTAALKMVVIPDY	NTCDGTTFTY HLA-A*01:01	VPLNPIPLTTAALKM	HLA-DRB1*08:02	0.25 0.88
RdRp	SGVPPVVDY HLA-B*35:01	GCVPPVVDY	HLA-DRB1*08:02	0.27 1.13
35-GQPITNCVKMLCTHTGTGQAITV	DLKGKYYQPIPTCAD	HLA-DRB1*04:01	0.49 0.63	
NSP10	HPNPKGFCDLH	HLA-DRB1*04:01	0.66 1.55	
723-1QHLYECLYRNRDVDTDFVNEFY	NTCDGTTFTY HLA-A*01:01	VPLNPIPLTTAALKM	HLA-DRB1*08:02	0.25 0.88
RdRp	SGVPPVVDY HLA-B*35:01	GCVPPVVDY	HLA-DRB1*08:02	0.27 1.13
261-LTKPYIKWDLLKYDFTEERLKLFDR	KLFDFRKYK	HLA-DRB1*04:01	0.76 0.18	
RdRp	YFKYWDQTYHPNCVNC	HLA-DRB1*04:01	0.88 0.75	
213-NGNWYDFGDFQIPTPSGGVPVD	SYYSLLMPILTL	SYYSLLMPILTL	HLA-DRB1*01:01	0.16 0.55
RdRp	SGVPPVVDY HLA-B*35:01	GCVPPVVDY	HLA-DRB1*08:02	0.27 1.13
315-MVVKAALLADKFPVLHDIGNP	LLADKFPVL HLA-A*01:01	MVVKAALLADKFPVL	HLA-DRB1*01:01	0.51 0.86
RdRp	KCVPQADVHEVFYD	MVVKAALLADKFPVL	HLA-DRB1*01:01	0.51 0.86
977-1NDLISLRKKEAVAEEQFDRTGTGLRQLSQTYYTQLQIRAER-1019	Spike glycoprotein	MVVKAALLADKFPVL	HLA-DRB1*01:01	0.41 0.46
ORF7a	SEHDYQGGY	HLA-B*40:01	HLA-DRB1*01:01	0.33 0.25
ORF3a protein	HLA-A*01:01	HLA-DRB1*01:01	0.33 0.25	
1-MKIILFLALITLATCELYHYQECV	RGTIVLKEPCSSGTYG-42	RGTIVLKEPCSSGTYG	HLA-DRB1*01:01	0.16 0.19

Table 6: List of most Immunogenic and Antigenic Epitopes for MHC-I, MHC-II restricted T-cell and B-cell Epitopes for 12 CnRs. I.S.-Immunogenic Score; A.S.-Antigenic Score.
Summary of the most Immunogenic and Antigenic Epitopes along with the Allergic and Toxicity values.

Coded Proteins	MHC-I restricted T-cell Epitopes	Allergic	Toxicity	MHC-II restricted T-cell Epitopes	Allergic	Toxicity	Linear B-cell Epitopes	Allergic	Toxicity
NSP2 SEVGPEHSL	Non-Allergen	Non-Toxin		TTCGYLPQNAVVKIY	Non-Allergen	Non-Toxin	VVKIYCPACHNSEVGP	Allergen	Non-Toxin
TTFTYASALW	Allergen	Non-Toxin		GCVPLNIIPLTTAAK	Non-Allergen	Non-Toxin	VPLNIIPLTTAAKLMV	Non-Allergen	Non-Toxin
NSP10 DLKGKYVQI	Allergen	Non-Toxin		LRKGKYVQIPTTCAND	Allergen	Toxin	RCHIDHPNPKGFCDL	Allergen	Toxin
RdRp SLLMPILTL	Non-Allergen	Non-Toxin		SYYSLLMPILTLTRA	Non-Allergen	Non-Toxin	DFIQTTPGSGVPVVDS	Non-Allergen	Non-Toxin
RdRp KLFDRYFKY	Non-Allergen	Non-Toxin		TEERLKLFDRYFKYW	Allergen	Non-Toxin	YFKYWDQTYHPNCVNC	Non-Allergen	Toxin
RdRp DTDFVNEFY	Allergen	Non-Toxin		NEFYAYLRKHFSMMI	Non-Allergen	Non-Toxin	HRLYECLYRNRDVDTD	Non-Allergen	Toxin
RdRp QEYADVFHLY	Allergen	Non-Toxin		VFHLYLQYIRKLHDE	Non-Allergen	Non-Toxin	GHMLDMYSVMLTNDNT	Allergen	Non-Toxin
Exon NLSDRVVFV	Non-Allergen	Non-Toxin		VRIKIVQMLSDTLKN	Non-Allergen	Non-Toxin	GFELTSMKYFVKIGPE	Non-Allergen	Non-Toxin
Exon LLADKFPVL	Allergen	Non-Toxin		MVVKAALLADKFPVL	Allergen	Non-Toxin	KCVPQADVEWKFYDAQ	Non-Allergen	Non-Toxin
ORF3a FTSDYYQLY	Allergen	Non-Toxin		VLHSYFTSDYYQLYS	Non-Allergen	Non-Toxin	TSPISEHDYQIGGYTE	Allergen	Non-Toxin
ORF7a QECVRGTTVL	Non-Allergen	Non-Toxin		ILFLALITLATCELY	Non-Allergen	Non-Toxin	TCELYHYQECVRGTTV	Allergen	Toxin
Exon PWNVVRIK	Non-Allergen	Non-Toxin		VRIKIVQMLSD	Non-Allergen	Non-Toxin	LQTYVTQQLIRAAEI	Allergen	Non-Toxin
Exon RLDKVEAEV	Allergen	Non-Toxin		LQTYVTQQLIRAAEIQ	Allergen	Non-Toxin	LNDILSRLDKVEAEVQ	Allergen	Non-Toxin
ORF3a FTSDYYQLY	Allergen	Non-Toxin		VLHSYFTSDYYQLYS	Non-Allergen	Non-Toxin	TSPISEHDYQIGGYTE	Allergen	Non-Toxin

Table 2.

For further validation, the conformational 2D non-covalent structures of the MHC-I and MHC-II restricted T-cell epitopes are studied using LigPlot+. Also, it is very important to study their structural characteristics such as binding conformation. Hence, to identify the stable binding interactions, molecular docking of the MHC-I and MHC-II restricted T-cell epitopes are evaluated using AutoDock Vina. For the same, first the 3D structures of the epitopes are prepared with the help of the build structure function of Chimera 1.14 along with the retrieval of the crystal structures of the HLA alleles in PDB format from RCSB Protein Data Bank. To identify the binding energy at the binding groove in the HLA allele, grid search space is set to (60,60,60) with centre of grid at (0,0,0) for X,Y,Z coordinate with a spacing parameter of 0.964. The best is selected by higher binding affinity i.e. lowest docking score generated through Autodock Vina. Also, we have used DOE-MBI services such as PROCHECK, ERRAT, Verify3D for Ramachandran Plot, structure quality and 3D structure verification respectively. The results of the docking analysis along with Z-score, respective PDB ID\(^20\), total energy of the 3D complex, van der Waals energy and electric energy of each complex are reported in Tables 8,9 respectively for MHC-I and MHC-II restricted T-cell epitopes. The results of SEVGPEHSL and NEFYAYLRHFSMMI which are the most immunogenic and HNPFGDFDL and GCVPNHLTTAAK which are the most antigenic MHC-I and MHC-II restricted T-cell epitopes are shown respectively in Figs. 5–8 while the results of DTFVNEFY and QEYADVFHY which are also the most immunogenic MHC-I restricted T-cell epitopes are shown in supplementary Figures S11 and S13 respectively. In these figures, (a) shows the docked complex with epitopes (marked in green) interacting in the HLA pocket where for MHC-I the docking scores are -7.02, -7.02, -7.02, -7.02.

\(^20\) https://www.phila3d.com.br/alleles/index
Fig. 4. Modelling of MHC-I, MHC-II restricted T-cell and B-cell epitopes for 12 CnRs belonging to (a) NSP2 (b) NSP8 (c) NSP10 (f) RdRp (f) Exon (g) Spike glycoprotein (h) ORF3a and (i) ORF7a.
Fig. 4. (continued).
Table 8
Docking and Z-scores of most Immunogenic and Antigenic MHC-I restricted T-cell epitopes for 12 CnRs.

MHC-I restricted T-cell epitopes	Allele PDB ID	Score from AutoDock Vina	Total Energy	vdW Energy	Electric Energy	ERRAT Score	Z Score
SVGPEHSL	3LN4:A	-7.02	56.597	4.242	-84.058	92.1127	-8.92
NSEVGPFEHSL	3LN4:A	-7.826	62.78	0.135	-71.237	92.1127	-8.92
NTCDGTPTTY	3BOB:A	-7.896	79.478	0.388	-72.211	82.3529	-8.98
TTYDATAALW	3VRE:A	-9.932	131.03	-26.04	-49.8	81.5642	-9.27
DLKGYQVQ	4Q9U:A	-8.007	30.829	-7.715	-80.4	80.4469	-9.48
HPNPGRGCDL	4U11:A	-7.438	51.815	-3.509	-61.083	84.9592	-8.97
SLMPPLT	3UTQ:A	-8.166	117.669	-10.804	-48.976	83.3333	-9.38
SGYPVDVS	2C9:A	-8.074	79.882	-6.491	-77.615	84.0336	-9.28
KLFDRF KY	5B30:A	-8.323	38.063	0.837	-81.052	85.1955	-8.77
DTGVNFPF	3BOB:A	-7.786	84.77	-1.521	-75.162	82.3529	-8.98
YLRKHFSSM	4Q9U:A	-8.029	40.78	-18.508	-41.459	80.4469	-9.48
QVADVHL	1N2R:A	-8.848	88.793	-9.037	-85.66	85.1955	-8.95
QVADVHL	3LN4:A	-7.996	48.824	1.057	-95.906	92.1127	-8.92
NLSRDRVFV	30X:A	-7.321	2.558	-17.624	-83.824	82.5843	-9.3
LLADEXFKP	3UTQ:A	-7.845	60.256	-0.420	-73.612	83.3333	-9.38
KCVQPADVW	3VL:A	-7.362	44.618	9.799	-82.426	81.5642	-9.27
AEVQDRLL	1N2R:A	-7.302	-5.739	-14.044	-59.423	85.1955	-8.95
RLKVEAV	3UTQ:A	-7.406	-35.156	-10.383	-59.389	83.3333	-9.38
PTSYQYQYL	3BOB:A	-8.007	91.669	-12.984	-63.351	83.3333	-8.98
SHEDYQQY	1N2R:A	-9.458	67.521	-29.967	-56.642	85.1955	-8.95
QVCVRGTTL	3LN4:A	-8.409	-9.982	-8.186	-75.82	82.3333	-9.38
ILFALATL	3UTQ:A	-8.656	123.773	-19.829	-50.913	83.3333	-9.38

-7.786, -8.848 and -7.438 while for MHC-II the scores are -8.465 and -7.298 generated from AutoDock Vino, (b) shows the 2D binding representation between the epitopes and the respective allele pair, (c) shows the ERRAT Score (d) shows the Z-Score where negative scores of -8.92, -8.98, -8.95 and -8.98 for MHC-I and -9.50 and -9.91 for MHC-II represent the stability of the structures of the identified epitopes, (e) represents Ramachandran Plot which has been evaluated using PROCHECK where most favourable region for the residue is shown in the red regions, (f) shows the energy residue plot generated using Verify 3D in Chain A of the docked complex and (g) shows the energy residue plot generated using Verify 3D in Chain B of the docked complex. Similar structural based evaluation are carried out for all the T-cell epitopes of the 12 conserved regions and reported in supplementary figures S4-S42.

It is to be noted that in our previous works [13,14] with a refinement criteria of 60nt, respectively 17 and 23 conserved regions were identified with 30, 24 and 31, 27 and 39 best immunogenic and antigenic MHC-I and MHC-II T-cell and B-cell epitopes. These experiments were conducted for SARS-CoV-2 sequences till July 2020. As the virus is constantly evolving, a more recent analysis is needed to understand the evolution of the epitopes. Therefore, this work which uses sequences till January 2021 is very relevant in current scenario of constant virus mutation.

5. Conclusion

In the past two years, India has witnessed different surges of COVID-19 cases. Hence, it is important to provide a comprehensive bioinformatics pipeline to understand the virus evolution for identifying the mutation points as SNPs, conserved regions and design potential candidates for vaccine design. In this regard, initial, multiple sequence
Fig. 5. Structural analysis for the most immunogenic MHC-I restricted T-cell epitope “SEVGPEHSL” in 12 CnRs (a) Docking structure of MHC-I restricted T-cell epitope (b) 2D pose representation between the epitope and HLA allele showing the different non-covalent bonds (c) ERRAT Score (d) Z-Score plot (e) Ramachandran plot of the epitope allele structure showing lower energy sites of the residues in different frames and (f) Verify 3D scores in Chain A of the docked complex (g) Verify 3D scores in Chain B of the docked complex.
Fig. 6. Structural analysis for the most antigenic MHC-I restricted T-cell epitope “HPNPKGFCDL” in 12 CnRs (a) Docking structure of MHC-I restricted T-cell epitope (b) 2D pose representation between the epitope and HLA allele showing the different non-covalent bonds (c) ERRAT Score (d) Z-Score plot (e) Ramachandran plot of the epitope allele structure showing lower energy sites of the residues in different frames and (f) Verify 3D scores in Chain A of the docked complex (g) Verify 3D scores in Chain B of the docked complex.
Fig. 7. Structural analysis for the most immunogenic MHC-II restricted T-cell epitope “NEFYAYLRKHFSMMI” in 12 CnRs (a) Docking structure of MHC-I restricted T-cell epitope (b) 2D pose representation between the epitope and HLA allele showing the different non-covalent bonds (c) ERRAT Score (d) Z-Score plot (e) Ramachandran plot of the epitope allele structure showing lower energy sites of the residues in different frames and (f) Verify 3D scores in Chain A of the docked complex (g) Verify 3D scores in Chain B of the docked complex.
Fig. 8. Structural analysis for the most antigenic MHC-II restricted T-cell epitope “GCVPLNIIPLTTAAK” in 12 CnRs (a) Docking structure of MHC-I restricted T-cell epitope (b) 2D pose representation between the epitope and HLA allele showing the different non-covalent bonds (c) ERRAT Score (d) Z-Score plot (e) Ramachandran plot of the epitope allele structure showing lower energy sites of the residues in different frames and (f) Verify 3D scores in Chain A of the docked complex (g) Verify 3D scores in Chain B of the docked complex.
alignment of 4996 Indian SARS-CoV-2 genomes as a case study are carried out using MAFFT followed by phylogenetic analysis by Nextstrain to identify virus clades, resulting in 5 virus clades; 19A, 19B, 20A, 20B and 20C. Thereafter, mutation points as SNPs are identified in each clade from which top 10 signature SNPs are further identified based on their frequency in each clade. 40 unique signature SNPs are thus identified from the total 50 signature SNPs resulting in 23 non-synonymous signature SNPs which provides 28 amino acid changes in protein. These changes are visualised in their respective protein structure as well. The sequence and structural homology-based prediction of the non-synonymous signature SNPs along with their protein structural stability are evaluated to judge the characteristics of the identified clades. 40 unique signature SNPs are thus identified from the total 50 signature SNPs resulting in 23 non-synonymous signature SNPs which provide 28 amino acid changes in protein. As a consequence, A97V in RdRp in 19A, V354L in Nucleocapsid in 19B, Q57H in Nucleocapsid in 20A, R203M in Nucleocapsid in 20B while T85I in NSP2 and Q57H in ORF3a in 20C are the unique amino acid changes which are responsible for defining each clade as they are all deleterious and unstable as well as they decrease the protein structural stability. Furthermore, based on the entropy of each genomic coordinate of the aligned sequences, 473 conserved regions are identified which are then refined based on the criteria that their lengths are greater than 125nt and their BLAST specificity score as query coverage is equal to 100%. This refinement results in 12 conserved regions belonging to NSP2, NSP8, NSP10, RdRp, Exon, Spike glycoprotein, ORF3a and ORF7a proteins. Based on length, one conserved region belonging to NSP10 gene is considered to be the potential target for ORF3a and ORF7a proteins. Based on length, one conserved region belonging to NSP10 gene is considered to be the potential target for which the corresponding primers and probes are reported for SARS-CoV-2 detection. The 12 conserved regions are then used to identify the T-cell and B-cell epitopes along with their immunogenic and antigenic scores. Such scores are then used to select the most immunogenic and antigenic T-cell and B-cell epitopes resulting in 22 MHC-I and 21 MHC-II restricted T-cell epitopes with 10 unique HLA alleles each and 17 B-cell epitopes. Finally, the relevance of these epitopes are validated by showing the binding conformation of the MHC-I and MHC-II restricted T-cell epitopes with respect to HLA alleles. Also, the physico-chemical properties of the epitopes are reported along with the structural properties using Ramachandran plot, ERRAT scores and Z-Scores. Hence, from genetic variability to synthetic pipeline, a comprehensive bioinformatics pipeline is presented in this study to fight against SARS-CoV-2.

6. Ethics approval and consent to participate

The ethical approval or individual consent was not applicable.

7. Availability of data and materials

The aligned 4996 Indian SARS-CoV-2 genomes with the reference sequence and the final results of this work are available at ‘http://www.nitttrkol.ac.in/indrajit/projects/COVID-Pipeline-5K/’.

Consent for publication

Not applicable.

Funding

This work has been partially supported by CRG short term research grant on COVID-19 (CVD/2020/000991) from Science and Engineering Research Board (SERB), Department of Science and Technology, Govt. of India.

Author contributions

Nimisha Ghosh: Formal analysis; Methodology, Coding; Visualization; Writing - original draft & editing.
Indrajit Saha: Conceptualization; Data curation; Supervision; Funding acquisition; Formal analysis; Investigation; Methodology; Project administration; Resources; Validation; Visualization; Writing - review & editing.
Nikhil Sharma: Methodology; Visualization; Writing - review & editing.
Suman Nandi: Conceptualization; Formal analysis; Software; Validation; Visualization; Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgment

We thank all those who have contributed sequences to GISAID database and NCBI databases.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.intimp.2022.109224.

References

[1] P. Zhou, X.L. Yang, X.G. Wang, et al., A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature 579 (2020) 270–273, https://doi.org/10.1038/s41586-020-2012-7.
[2] J. Xu, X. Zhao, T. Teng, et al., Systematic comparison of two animal-to-human transmitted human coronaviruses: Sars-cov-2 and sars-cov, Viruses 12 (2020) 244, https://doi.org/10.3390/v12020244.
[3] M. Makoni, South africa responds to new sars-cov-2 variant, The Lancet 397 (2021) 267, https://doi.org/10.1016/S0140-6736(21)00144-6.
[4] J. Yang, O. Toovey, K. Harvey, et al., Introduction of the south african sars-cov-2 variant 501y.v2 into the uk, J. Infect. (2021), https://doi.org/10.1016/j.jinf.2021.01.007.
[5] I. Alam, A. Radvanovic, R. Incitti, et al., Covmt: an interactive sars-cov-2 mutation tracker, with a focus on critical variants, Lancet. Infect. Dis 21 (2021) 602, https://doi.org/10.1016/S1473-3099(21)00078-5.
[6] C. Ascoli, Could mutations of sars-cov-2 suppress diagnostic detection? Nat. Biotechnol. 39 (2021) 1–2, https://doi.org/10.1038/s41587-021-00845-5.
[7] F. Yuan, L. Wang, Y. Fang, et al., Global amp analysis of 11,183 sars-cov-2 strains reveals high genetic diversity, Transboundar. Emerging Diseases (11 2020), doi:10.1111/tbed.13931.
[8] X. Yang, C. Wu, X. Li, et al., On the origin and continuing evolution of sars-cov-2, National Science Review (2020), 03.
[9] A. Maitra, M. Sarkar, H. Rabeha, et al., Mutations in sars-cov-2 viral rna identified in eastern india: Possible implications for the ongoing outbreak in india and impact on viral structure and host susceptibility, Journal of Biosciences 45 (12 2020). doi:10.1007/s12038-020-00046-1.
[10] I. Saha, N. Ghosh, A. Pradhan, et al., Whole genome analysis of more than 10000 sars-cov-2 virus unveils global genetic diversity and target region of nsp6, Briefings in Bioinformatics 22 (2) (2021) 1106–1121, https://doi.org/10.1093/bib/bbaa025.
[11] A. Nagy, S. Pongor, B. Gyorffy, Different mutations in sars-cov-2 associate with severe and mild outcome, Int. J. Antimicrob. Agents 57 (2020) 106272, https://doi.org/10.1016/j.ijantimicag.2020.106272.
[12] W. Zhu, C. Wang, B.Z. Wang, From variation of influenza viral proteins to vaccine development, International Journal of Molecular Sciences 18 (07 2017). doi:10.3390/ijms18071554.
[13] N. Ghosh, N. Sharma, I. Saha, Immunogenicity and antigenicity based t-cell and b-cell epitopes identification from conserved regions of 1064 sars-cov-2 genomes, Infection Genetics and Evolution 4 (92) (2021) 104823, https://doi.org/10.1016/j.meegid.2021.104823.
[14] N. Ghosh, N. Sharma, I. Saha, Genome-wide analysis of sars-cov-2 genomes to identify t-cell and b-cell epitopes from conserved regions based on immunogenicity and antigenicity, Int. Immunopharmacol. 22 (91) (2020) 107276, https://doi.org/10.1016/j.intimp.2020.107276.
[15] I. Alam, A. Khan, N. Inam, et al., Design of an epitope-based peptide vaccine against the sars-cov-2: A vaccine-informatics approach, Briefings in Bioinformatics 22 (2020) 1–15, https://doi.org/10.1093/bib/bbaa340.
[16] M. Rahman, M. Hoque, R. Islam, et al., Epitope-based chimeric peptide vaccine design against s, m and e proteins of sars-cov-2 1 etiologic agent of global
pandemic covid-19: an in silico approach, PeerJ (2020) e9572, https://doi.org/10.1101/2020.03.30.015164.

[17] R. Liang, Y. Dai, B. Huang, et al., In silico design of antiviral peptides targeting the spike protein of sars-cov-2, Peptides 130 (2020) 170328, https://doi.org/10.1016/j.peptides.2020.170328.

[18] Y. Vashi, V. Jagrit, S. Kumar, Understanding the b and t cells epitopes of spike protein of severe respiratory syndrome coronavirus-2: A computational way to predict the immunogens, Infection, Genetics and Evolution (2020), https://doi.org/10.1101/2020.04.08.013516, 04.

[19] K. Kato, K. Minawa, K. Kuma, et al., Mafft: a novel method for rapid multiple sequence alignment based on fast fourier transform, Nucleic Acids Res. 30 (14) (2002) 3059–3066, https://doi.org/10.1093/nar/gkf436.

[20] J. Hadfield, C. Megill, S. Bell, et al., Nextstrain: real-time tracking of pathogen evolution, Bioinformatics (Oxford, England) 34 (2018), https://doi.org/10.1093/bioinformatics/bty407.

[21] J. Sidney, C. Dow, B. Mothé, et al., A systematic assessment of mhc class ii peptide binding predictions and evaluation of a consensus approach, PLoS computational biology 4 (2008) e1000048, https://doi.org/10.1371/journal.pcbi.1000048.

[22] S. Saha, G. Raghava, Prediction methods for b-cell epitopes, Methods in molecular biology (Clifton, N.J.) 409 (2007) 387–394, https://doi.org/10.1007/978-1-60327-118-9_29.

[23] A.C. Wallace, A.R. Laskowski, J.M. Thornton, Ligplot: a program to generate schematic diagrams of protein-ligand interactions, Protein Engineering, Design and Selection 8 (2) (1995) 127–134, https://doi.org/10.1093/protein/8.2.127.

[24] M. Jespersen, B. Peters, M. Nielsen, et al., Bepipred-2.0: Improving sequence-based b-cell epitope prediction using conformational epitopes, Nucleic acids research 45 (05 2017). doi:10.1093/nar/gkw290.

[25] A.R. Laskowski, W.M. MacArthur, S.D. Moss, et al., Procheck: a program to check the stereochemical quality of protein structures, J. Appl. Crystallogr. 26 (1993) 283–291.

[26] C. Colovos, T.-O. Yeates, Verification of protein structures: patterns of nonbonded atomic interactions, Protein science 2 (9) (1993) 1511–1519.

[27] D. Eisenberg, R. Luelty, J. Bowie, Verify3d: Assessment of protein models with three-dimensional profiles, Methods in enzymology 277 (1997) 396–404, https://doi.org/10.1016/S0076-6879(97)77702-8.

[28] M. Wiederstein, M. Sippl, Prosaweb: interactive web service for the recognition of errors in three-dimensional structures of proteins, Nucleic acids research 35 (2007) W407-10, https://doi.org/10.1093/nar/gkmz290.

[29] E. Ong, M.U. Wong, A. Huffman, et al., Covid-19 coronavirus vaccine design using reverse vaccinology and machine learning, Frontiers in Immunology 11 (2020) 1581, https://doi.org/10.3389/fimmu.2020.01581.

[30] V. Jurt, S. Paul, M. Andreotta, et al., Netmhcpan-4.0: Improved peptide–mhc class i interaction predictions integrating eluted ligand and peptide binding affinity data, J. Immunol. 199 (2017) ji1700893, https://doi.org/10.4049/jimmunol.1700893.

[31] I. Doytchinova, D. Flower, Vaxijen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. bmc bioinformatics 8:4, BMC bioinformatics 8 (2007) 4, https://doi.org/10.1186/1471-2105-8-4.

[32] Y. Choi, A.P. Chan, Provean web server: a tool to predict the functional effect of amino acid substitutions and indels, Bioinformatics 31 (16) (2015) 2745–2747, https://doi.org/10.1093/bioinformatics/btv195.

[33] I.A. Adzhubei, S. Schmidt, L. Peshkin, et al., A method and server for predicting damaging missense mutations, Nature methods 7 (4) (2010) 248–249, https://doi.org/10.1038/nmeth0410-248.

[34] E. Capriotti, P. Fariselli, R. Casadio, I-mutant2.0: predicting stability changes upon mutation from the protein sequence or structure, Nucleic Acid Res. 33 (2005) 306–310, https://doi.org/10.1093/nar/gki378.