K-THEORY OF BERNOULLIhifts OF FInITE GroUPSh ON UHF-ALGEBRAS

JULIAN KRANZ AND SHINTARO NISHIKAWA

ABSTRACT. We show that the Bernoulli shift and the trivial action of a finite group G on a UHF-algebra of infinite type are KK^G-equivalent and that the Bernoulli shift absorbs the trivial action up to conjugacy. As an application, we compute the K-theory of crossed products by approximately inner flips on classifiable C^*-algebras.

CONTENTS
1. Introduction 1
2. KK-theory of Bernoulli shifts 3
3. K-theory of approximately inner flips 9
References 16

1. INTRODUCTION

In topological dynamics, a very fertile class of examples is given by Bernoulli shifts, that is, by the shift action of a group G on the product $X^G := \prod_G X$ of G-many copies of a given compact space X. When the space X is moreover totally disconnected, the K-theory of the crossed product $C(X^G) \rtimes_r G$ can be computed in many cases [CEL13]. These computations and the techniques appearing in them are not only of intrinsic interest, but they make possible the computation of the K-theory of C^*-algebras associated to large classes of (inverse) semigroups, wreath products, and many more examples [CEL13, Li19, Li22]. The simplest non-commutative analogue of a totally disconnected space is a UHF-algebra, that is, a (possibly infinite) tensor product of matrix algebras. The non-commutative version of the Bernoulli shift is the shift action of a group G on the tensor product $A^G = \bigotimes_{g \in G} A$ for a given unital C^*-algebra A. Our main result computes...
the K-theory of the associated crossed product in the case that \(G \) is finite and that \(A \) is a UHF-algebra:

Theorem A (Theorem 2.8). Let \(G \) be a finite group, let \(Z \) be a countable \(G \)-set and let \(M_n \) be a UHF-algebra of infinite type. Then \(M_n \) is \(\text{KK}^G \)-equivalent to \(M_n \hat{\otimes} Z \) where we equip \(M_n \) with the trivial \(G \)-action and \(M_n \hat{\otimes} Z \) with the Bernoulli shift. In particular, we have

\[
K_*(M_n \hat{\otimes} Z \rtimes G) \cong K_*(C^*(G) \otimes M_n) \cong K_*(C^*(G))[1/n].
\]

The proof of Theorem A relies on a representation theoretic argument about invertibility of a certain element in the representation ring \(R_{C^*}(G) \) after inverting sufficiently many primes (see Proposition 2.1). A byproduct of the proof is that the Bernoulli shift absorbs the trivial action not only in \(\text{KK} \)-theory, but up to conjugacy. We point out that this fact may alternatively be extracted from [HW08, Lemma 3.1].

Theorem B (Theorem 2.7). With the notation as in Theorem A, there is a \(G \)-equivariant isomorphism

\[
M_n \hat{\otimes} Z \cong M_n \otimes M_n \hat{\otimes} Z.
\]

One immediate consequence of Theorem A and [Zu04, Theorem 3.13] is that the Bernoulli shift \(G \rtimes M_n \hat{\otimes} Z \) as above does not have the Rokhlin property (see Corollary 2.10). Beyond finite group actions, Theorem A also has consequences for infinite groups satisfying the Baum–Connes conjecture with coefficients [BCH94].

Corollary C (Corollary 2.11). Let \(G \) be a countable discrete group satisfying the Baum–Connes conjecture with coefficients, let \(Z \) be a \(G \)-set, let \(A \) be a \(G \)-\(C^* \)-algebra and let \(M_n \) be a UHF-algebra. Assume that \(Z \) is infinite or that \(n \) is of infinite type. Then the inclusion \(A \to A \otimes M_n \) induces an isomorphism

\[
K_*(A \rtimes G)[1/n] \cong K_* \left(A \otimes M_n \hat{\otimes} Z \rtimes G \right).
\]

In particular, the right hand side is a \(\mathbb{Z}[1/n] \)-module.

Corollary C will be used in the follow-up paper [CEKN24] together with S. Chakraborty and S. Echterhoff to compute the K-theory of many more general Bernoulli shifts. Another consequence of Theorem A is that the Bernoulli shift of a countable amenable group \(G \) on a strongly self-absorbing (in the sense of [TW07]) \(C^* \)-algebra \(\mathcal{D} \) satisfying the UCT is \(\text{KK}^G \)-equivalent to the trivial \(G \)-action on \(\mathcal{D} \) (see Corollary 2.12 for \(\mathcal{D} = \mathcal{O}_\infty \), this is [Sza18, Corollary 6.9]).

In Section 3 we apply Theorem A and compute \(K_* \left(B \hat{\otimes} C_2 \rtimes C_2 \right) \) whenever \(B \) is a \(C^* \)-algebra with approximately inner flip (in the sense of [ER78]) satisfying the assumptions of the Elliott classification programme.¹ Here,

¹We refer to [Win18, Whi23] and the references therein for an overview of the Elliott programme.
C_2 is the cyclic group of order 2. Thanks to Tikuisis’ classification of such C*-algebras \[^{[Tik16, EST24]}\], the computation reduces to the following special case (only the case $n = 1$ is relevant):

Theorem D (Theorem 3.2). For supernatural numbers m and n of infinite type, we have

$$K_* \left(q_{C_2}^{\infty \otimes C_2} \rtimes C_2 \right) \cong \begin{cases} \mathbb{Q}_n / \mathbb{Z} \oplus \mathbb{Q}_r / \mathbb{Z}, & * = 0; \\ \mathbb{Q}_m / \mathbb{Z} \oplus \mathbb{Q}_m / \mathbb{Z}, & * = 1, \end{cases}$$

where r is the greatest common divisor of m and n.

We refer to Section 3 for the definition of the notation appearing above. Our methods heavily build on Izumi’s computation of the K-theory of flip automorphisms on C^*-algebras with finitely generated K-theory \[^{[Izu19]}\].

Acknowledgements. We acknowledge with appreciation helpful correspondences with Sayan Chakraborty, Siegfried Echterhoff, Jamie Gabe, Eusebio Gardella, Masaki Izumi, Gábor Szabó and Aaron Tikuisis. We would like to thank Nigel Higson and David Vogan for their helpful comments on the representation theory of finite groups and the referee for helpful suggestions.

2. KK-theory of Bernoulli shifts

For a finite group G, denote by $R_C(G)$ its representation ring, defined as the Grothendieck group of the monoid of isomorphism classes of finite-dimensional complex representations of G with the direct sum as addition and the tensor product as multiplication. The character of a finite-dimensional complex representation $\pi: G \to GL(V_\pi)$ is denoted by

$$\chi_\pi: G \to \mathbb{C}, \quad \chi_\pi(g) := \text{tr} \left(V_\pi \xrightarrow{\pi(g)} V_\pi \right),$$

where tr denotes the (non-normalized) trace. Recall that the map

$$R_C(G) \to C_{\text{class}}(G), \quad \pi \mapsto \chi_\pi$$

is an injective ring homomorphism with values in the algebra $C_{\text{class}}(G)$ of conjugation invariant functions on G with pointwise multiplication. There is a natural isomorphism $R_C(G) \cong KK^G(\mathbb{C}, \mathbb{C})$. We refer to \[^{[Ser77]}\] for an introduction to representation theory of finite groups and to \[^{[Kas88]}\] for the definition of equivariant KK-theory.

Proposition 2.1. Let G be a finite group, let $k \geq 1$ and let Z be a finite G-set. Denote by $\pi_k: G \to GL(\ell^2(\{1, \ldots, k\}^Z))$ the permutation representation associated to the G-set $\{1, \ldots, k\}^Z$. Then the following hold.

1. There exist $\alpha \in R_C(G)$ and $r \geq 1$ such that $[\pi_k]^r = k\alpha$.
2. There exist $\beta \in R_C(G)$ and $l \geq 1$ such that $[\pi_k] \cdot \beta = k^l$.

Proof. By considering the standard basis in $\ell^2(\{1, \ldots, k\})$, it is easy to see that the trace of $\pi_k(g)$ for $g \in G$ is given by the number of g-fixed points in $\{1, \ldots, k\}$, which is the same as the number of $\langle g \rangle$-invariant functions $Z \to \{1, \ldots, k\}$. In other words, the character of π_k is given by

$$\chi_{\pi_k}(g) = k^{[Z/\langle g \rangle]}.$$

We therefore have

$$\prod_{g \in G} \left(\chi_{\pi_k} - k^{[Z/\langle g \rangle]}\right) = 0 \text{ in } C_{\text{class}}(G).$$

Since the map $\pi \mapsto \chi_\pi$ is injective, we also have

$$\prod_{g \in G} \left([\pi_k] - k^{[Z/\langle g \rangle]}\right) = 0 \text{ in } R_C(G).$$

In particular, there are polynomials $p, q \in \mathbb{Z}[t]$ satisfying

$$[\pi_k]^G = kp([\pi_k]), \quad [\pi_k] \cdot q([\pi_k]) = \prod_{g \in G} k^{[Z/\langle g \rangle]},$$

which proves the proposition. \hfill \Box

Definition 2.2. Let Z be a set and let $(A_z)_{z \in Z}$ be a collection of unital C^\ast-algebras. The infinite tensor product $\bigotimes_{z \in Z} A_z$ is defined as

$$\bigotimes_{z \in Z} A_z := \lim_{F \subseteq Z} \bigotimes_{z \in F} A_z,$$

where the inductive limit is taken over all finite subsets $F \subseteq Z$ ordered by inclusion, with respect to the connecting maps $a \mapsto a \otimes 1$. Given a discrete group G, a unital C^\ast-algebra A and a G-set Z, the *Bernoulli shift* of G on $A^{\otimes Z} := \bigotimes_{z \in Z} A$ is the G-action induced by permuting the tensor factors according to the G-action on Z.

Definition 2.3. A *supernatural number* is a formal product $n = \prod_p n_p$ where p runs over all primes and $n_p \in \{0, \ldots, \infty\}$. The *UHF-algebra* associated to n is the infinite tensor product

$$M_n := \bigotimes_p M_{p^{n_p}},$$

with $M_p^{\infty} := M_p^{\otimes \mathbb{N}}$. We call n or M_n of *infinite type* if $n_p \in \{0, \infty\}$ for all p. We say that $n = \prod p^{n_p}$ divides $m = \prod p^{m_p}$ if $n_p \leq m_p$ for all p.

Remark 2.4. Note that the above definition includes natural numbers and matrix algebras as a special case.

Definition 2.5. If M is an abelian group, we denote by $M[1/n]$ the inductive limit of the system

$$M \xrightarrow{p_1} M \xrightarrow{p_2} M \xrightarrow{p_3} \ldots,$$

where (p_1, p_2, \ldots) contains each prime dividing n infinitely many times.
Remark 2.6. If \(q = \prod_p p^{n_p} \) with \(n_p \geq 1 \) for all \(p \), then
\[M[1/q] \cong M \otimes \mathbb{Q}. \]
If \(k \geq 1 \) is a positive integer, then
\[\mathbb{Z}[1/k] \cong \left\{ \frac{m}{k^n} \mid m \in \mathbb{Z}, n \in \mathbb{Z}_{>0} \right\} \subseteq \mathbb{Q}. \]
In general, the group \(\mathbb{Z}[1/n] \) is different from the closely related group
\[\mathbb{Q}_n := \left\{ \frac{m}{k} \mid m \in \mathbb{Z}, k \in \mathbb{Z}_{>0} \text{ divides } n \right\}, \]
unless \(n \) is of infinite type.

Theorem 2.7 (cf. [HW08, Lemma 3.1]). Let \(G \) be a finite group, let \(M_n \) be a UHF-algebra and let \(Z \) be a \(G \)-set. Assume that \(Z \) is infinite or that \(n \) is of infinite type. Equip \(M_n \) with the trivial \(G \)-action and \(M_n \otimes Z \) with the Bernoulli shift. Then there is an equivariant isomorphism
\[M_n \otimes Z \cong M_n \otimes \mathbb{Q}. \]
If \(Z \) is infinite, and \(m < \infty \), there is an equivariant isomorphism
\[M_m \otimes Z \cong M_m \otimes \mathbb{Q}. \]

Proof. Note that it suffices to prove the statement in the case that \(M_n = M_{p^k} \) (or \(M_m = M_{p^k} \)) for a prime \(p \) and \(k \in \{0, 1, \ldots, \infty\} \), since the general case follows by taking (possibly infinite) tensor products over all primes. As before, if \(Z \) is finite, we denote by \(\pi_p \) the permutation representation of \(G \) on \(V_p := \ell^2([1, \ldots, p]^Z) \), so that \(M_p \otimes Z \) is equivariantly isomorphic to \(\text{End}(V_p) \).

Assume first that \(k = \infty \). We only need to prove the theorem for (any) one \(G \)-orbit of \(Z \) so we may assume that \(Z \) is finite. Let \(\alpha \in R_C(G) \) and \(r \geq 1 \) be as in Proposition 2.1 so that \([\pi_p]^r = p\alpha \in R_C(G) \). Since \([\pi_p] \) is a non-negative linear combination of irreducible representations of \(G \), \(\alpha \) has to be the class of a finite-dimensional representation \(\pi_\alpha : G \to \text{GL}(W_\alpha) \). In particular, we have an equivariant isomorphism \(V_p^{\otimes r} \cong \mathbb{C}^p \otimes W_\alpha \). Passing to endomorphisms, we obtain an equivariant isomorphism
\[\left(M_p \otimes Z \right)^{\otimes r} \cong M_p \otimes \text{End}(W_\alpha) \]
with the trivial \(G \)-action on \(M_p \). By taking the infinite tensor product we obtain an equivariant isomorphism
\[M_p^{\otimes Z} \cong M_p^{\otimes} \otimes \text{End}(W_\alpha)^{\otimes_\mathbb{N}} \cong M_p^{\otimes} \otimes M_p^{\otimes} \otimes \text{End}(W_\alpha)^{\otimes_\mathbb{N}} \cong M_p^{\otimes} \otimes M_p^{\otimes Z}. \]

Assume now that \(k < \infty \) and that \(Z \) is infinite. Then \(Z \) contains infinitely many orbits of the same type \(G/H \). We may thus assume\(^2\) that \(Z \) is of the form \(Z = \bigsqcup_n G/H \) for some subgroup \(H \subseteq G \). Then there is an equivariant isomorphism
\[M_n^{\otimes (Z \setminus U_n(G/H))}. \]

\(^2\)The general case follows by taking tensor products with the remaining factor \(M_n^{\otimes (Z \setminus U_n(G/H))} \).
isomorphism $M^\otimes_{p^k} \cong M^\otimes_{p^\infty}/H$. This reduces the proof to the case considered above. □

Theorem 2.8. Let G be a finite group, let Z be a countable G-set and let M_n be a UHF-algebra of infinite type. Then the canonical inclusions

$$M_n \hookrightarrow M_n \otimes M_n^\otimes Z \hookrightarrow M_n^\otimes Z$$

are KK^G-equivalences, where M_n is endowed with the trivial action and where $M_n^\otimes Z$ is endowed with the Bernoulli shift. If Z is infinite, and $m < \infty$, the same conclusion holds for the inclusions

$$M_m^\otimes \hookrightarrow M_m^\otimes \otimes M_m^\otimes Z \hookrightarrow M_m^\otimes Z.$$

Proof. Since M_n is strongly self-absorbing (in the sense of [TW07]), the map

$$\text{id}_{M_n} \otimes 1: M_n \to M_n \otimes M_n$$

is a KK-equivalence. Using Theorem 2.7, we can identify the map

$$\text{id}_{M_n^\otimes Z} \otimes 1: M_n^\otimes Z \hookrightarrow M_n^\otimes Z \otimes M_n$$

with the map

$$\text{id}_{M_n^\otimes Z} \otimes (\text{id}_{M_n} \otimes 1): M_n^\otimes Z \otimes M_n \to M_n^\otimes Z \otimes M_n \otimes M_n,$$

which is a KK^G-equivalence. Similarly, if Z is infinite and $m < \infty$, the map

$$M_m^\otimes \hookrightarrow M_m^\otimes \otimes M_m^\otimes Z$$

is a KK^G-equivalence. We prove that the map

(2.1) $\text{id}_{M_n^\otimes Z} \otimes 1: M_n \to M_n \otimes M_n^\otimes Z$

is a KK^G-equivalence. Note that this map is the inductive limit of the maps

(2.2) $\text{id}_{M_n^\otimes Y} \otimes 1: M_n \to M_n \otimes M_n^\otimes Y$

where k ranges over all positive integers that divide n and where Y ranges over all finite G-subsets of Z. It follows from the finiteness of G, the nuclearity of the involved algebras and [MN06, Proposition 2.6, Lemma 2.7] that the map in (2.1) is also the homotopy colimit (with respect to the triangulated structure of KK^G) of the maps in (2.2). Since a homotopy colimit of KK^G-equivalences is a KK^G-equivalence, it suffices to show that the maps appearing in (2.2) are KK^G-equivalences.

Note that $\ell^2([1, \ldots, k]^Y)$ implements an equivariant Morita equivalence between $M_k^\otimes Y$ and \mathcal{C} which maps the class of the inclusion $\mathcal{C} \to M_k^\otimes Y$ in $\text{KK}^G_{\mathcal{C}, M_k^\otimes Y}$ to the class $[\pi_k] \in \text{KK}^G_{\mathcal{C}, \mathcal{C}}$ of the permutation representation $\pi_k: G \to \text{GL}(\ell^2([1, \ldots, k]^Y))$. Therefore, the maps in (2.2) can be identified with the elements $[\text{id}_{M_n^\otimes} \otimes \chi_k] \in \text{KK}^G(M_n, M_n)$.

3 This follows from the axioms of a triangulated category. The fact that homotopy colimits of maps are not unique does not cause a problem here.
By Proposition 2.1, there is an element \(\beta \in \text{KK}^G(\mathbb{C}, \mathbb{C}) \) and \(l \geq 1 \) such that \([\pi_k \beta] = k^l \). Thus \([\text{id}_{M_n} \otimes_G [\pi_k]] \) is invertible with inverse \(\frac{1}{k^l} [\text{id}_{M_n} \otimes_G \beta] \). The same proof shows that, if \(Z \) is infinite and \(m < \infty \), the map

\[
\text{id}_{M_{n \infty}} \otimes_{C^*} \pi_{M_{n \infty}} : M_{n \infty} \rightarrow M_{m \infty} \otimes M_{m} \otimes Z
\]

is a \(\text{KK} \)-equivalence. \(\square \)

Remark 2.9. By [GL21, Theorem B] and [GHV22, Theorem B], a countable discrete group \(G \) is amenable if and only if for some (any) supernatural number \(n \neq 1 \) of infinite type, the Bernoulli shift on \(M_n^{\otimes_G} \) absorbs the trivial action on the Jiang-Su algebra \(Z \) up to cocycle conjugacy. In particular (since \(M_n \cong M_n \otimes Z \)), the conclusion of Theorem 2.7 is false for non-amenable groups. On the other hand, Theorem 2.8 together with the Higson-Kasparov Theorem [HK01] (applied in the form of [MN06, Theorem 8.5]) implies that if \(G \) is a countable amenable group, then \(M_n^{\otimes_G} \) absorbs the trivial action on \(M_n \) up to \(\text{KK} \)-equivalence. It is thus conceivable that a countable discrete group \(G \) is amenable if and only if the Bernoulli shift on \(M_n^{\otimes_G} \) absorbs the trivial action on \(M_n \) up to cocycle conjugacy.

The following observation provides some evidence for this: Let \(G \) be a countable amenable group, \(n \neq 1 \) a supernatural number of infinite type, and \(A \) a \(G \)-\(C^* \)-algebra. By the remarks above, the unital embedding

\[
\text{id} \otimes 1 : (A \otimes M_n^{\otimes_G}) \times G \rightarrow (A \otimes M_n^{\otimes_G}) \times G \otimes M_n
\]

is a \(\text{KK} \)-equivalence between \(Z \)-stable \(C^* \)-algebras that induces an isomorphism on the trace spaces, in particular it induces an isomorphism on the Elliott invariants. If we additionally assume that \((A \otimes M_n^{\otimes_G}) \times G \) is simple, separable, nuclear, and satisfies the UCT (which happens in many cases of interest), then the classification of unital, simple, separable, nuclear, \(Z \)-stable \(C^* \)-algebras satisfying the UCT [Phi00, EGLN15, TWW17, CET+21, CGS+23] implies that \((A \otimes M_n^{\otimes_G}) \times G \cong (A \otimes M_n) \times G \otimes M_n \). This condition is certainly necessary for \(M_n^{\otimes_G} \) to absorb \(M_n \) up to cocycle conjugacy.

Corollary 2.10. Let \(G \neq \{e\} \) be a finite group, let \(Z \) be a \(G \)-set and let \(M_n \) be a UHF-algebra of infinite type. Then the Bernoulli shift of \(G \) on \(M_n^{\otimes_Z} \) does not have the Rohlin property.

Proof. Assume the contrary. Then [Izu04, Theorem 3.13] yields an isomorphism\(^4\)

\[
K_0 \left(M_n^{\otimes_{Z \times G}} \right) \cong K_0 \left(M_n^{\otimes_Z} \right) = Z/[1/n].
\]

On the other hand, Theorem 2.8 yields an isomorphism\(^5\)

\[
K_0 \left(M_n^{\otimes_{Z \times G}} \right) \cong K_0(C^*(G)) \otimes Z/[1/n] \cong Z/[1/n]^{\otimes \hat{G}},
\]

\(^4\)Theorem 3.13 of [Izu04] is applicable by the combination of [Phi87, Proposition 7.1.3] and [Kis81, Theorem 3.1].

\(^5\)This K-theoretic statement follows from the countable case by taking inductive limits over all countable \(G \)-subsets of \(Z \).
a contradiction.

The following corollary is used in the follow-up paper [CEKN24] with Sayan Chakraborty and Siegfried Echterhoff. We refer to [BCH94] for the formulation of the Baum–Connes conjecture with coefficients. Note that the Baum-Connes conjecture with coefficients holds for many groups, including a-T-menable groups [HK01] and hyperbolic groups [Laf12].

Corollary 2.11. Let G be a countable discrete group satisfying the Baum–Connes conjecture with coefficients, let Z be a G-set, let A be a G-C^*-algebra and let M_n be a UHF-algebra. Assume that Z is infinite or that n is of infinite type. Then the inclusion $A \rightarrow A \otimes M_n \otimes Z$ induces an isomorphism

$$K_*(A \rtimes_r G) \cong K_* \left((A \otimes M_n) \rtimes_r G \right).$$

In particular, the right hand side is a $\mathbb{Z}[1/n]$-module.

Proof. By an inductive limit argument, we may assume Z is countable and A is separable. If G is finite, the statement follows from Theorem 2.8 considering the commutative diagram

$$
\begin{array}{ccc}
A & \rightarrow & A \otimes M_n \otimes Z \\
\downarrow_{\phi_1} & & \downarrow_{\phi_2} \\
A \otimes M_n & \rightarrow & A \otimes M_n \otimes M_n \otimes Z
\end{array}
$$

where ϕ_1, ϕ_2 are KK^G-equivalences. Assume now that G is infinite. Consider the diagram (2.3). We know that (the restrictions of) ϕ_1, ϕ_2 are KK^H-equivalences for every finite subgroup $H \subseteq G$. Since G satisfies the Baum–Connes conjecture with coefficients, the results of [CEO04] (see also [MN06]) imply that ϕ_1 and ϕ_2 induce isomorphisms of the K-theory groups of reduced crossed products by G. The statement follows from this by identifying $K_* \left((A \otimes M_n) \rtimes_r G \right) \cong K_* \left(A \rtimes_r G \right)[1/n]. \qed$

We end this section with an application to Bernoulli shifts on strongly self-absorbing C^*-algebras. Recall that a separable, unital C^*-algebra $\mathcal{D} \neq \mathbb{C}$ is strongly self-absorbing [TW07] if there is an isomorphism $\mathcal{D} \cong \mathcal{D} \otimes \mathcal{D}$ which is approximately unitarily equivalent to the first factor inclusion $id_{\mathcal{D}} \otimes 1_{\mathcal{D}} : \mathcal{D} \rightarrow \mathcal{D} \otimes \mathcal{D}$. Strongly self-absorbing C^*-algebras are automatically simple, nuclear [TW07] and \mathcal{Z}-stable [Win11]. By the combination of [TW07], Proposition 5.1 and the classification of unital, simple, separable, nuclear, \mathcal{Z}-stable C^*-algebras in the UCT class [Phi00, EGLN15, TWW17, CET+21, CGS+23], a complete list of strongly self-absorbing C^*-algebras satisfying the UCT is given by

$$\mathcal{Z}, M_n, \mathcal{O}_\infty, \mathcal{O}_\infty \otimes M_n, \mathcal{O}_2,$$

where $n \neq 1$ is a supernatural number of infinite type. The following corollary is a generalization of [Sza18 Corollary 6.9]:

...
Corollary 2.12. Let D be a strongly self-absorbing C*-algebra satisfying the UCT and let G be a countable discrete group having a γ-element equal to 1. Then, for any countable G-set Z, the G-C*-algebra $D \otimes Z$ equipped with the Bernoulli shift is KK^G-equivalent to D equipped with the trivial G-action.

For the proof, we need the following result of Izumi [Izu19] which we spell out here for later reference.

Theorem 2.13 ([Izu19, Theorem 2.1], see also [Sza18, Lemma 6.8]). Let A, B be separable nuclear C*-algebras, let H be a finite group and let Z be a finite H-set. Then, there is a map from $KK(A, B)$ to $KK^H(A \otimes Z, B \otimes Z)$ which in particular, sends a class of a \ast-homomorphism ϕ to the class of $\phi \otimes Z$. Furthermore, this map is compatible with the compositions and in particular sends a KK-equivalence to a KK^H-equivalence. In particular, the Bernoulli shifts on $A \otimes Z$ and $B \otimes Z$ are KK^H-equivalent if A and B are KK-equivalent.

Proof of Corollary 2.12. We claim that the unital embeddings

\begin{equation}
D \leftrightarrow D \otimes Z \leftrightarrow D \otimes Z
\end{equation}

are KK^G-equivalences. By the assumption on G, this amounts to showing that they are KK^H-equivalences for every finite subgroup $H \subseteq G$. By the same homotopy co-limit argument as in the proof of Theorem 2.8 it is enough to show that the maps

\begin{equation}
D \leftrightarrow D \otimes Y \leftrightarrow D \otimes Y
\end{equation}

are KK^H-equivalences for all finite H-subsets Y of Z. Now Theorem 2.13 allows us to replace D by a KK-equivalent C*-algebra. Thanks to the list (2.4), this reduces the problem to the cases $D = \mathbb{C}$, $D = 0$ and $D = M_n$. The first two cases are trivial and the third one follows from Theorem 2.8. □

3. K-theory of Approximately Inner Flips

In this section we apply Theorem 2.8 to the K-theory of approximately inner flips. Recall that a C*-algebra A is said to have approximately inner flip if the flip automorphism $A \otimes A \to A \otimes A$, $a \otimes b \mapsto b \otimes a$ is approximately inner, i.e. a point-norm limit of inner automorphisms. A C*-algebra A with approximately inner flip must be simple, nuclear and have at most one trace [ER78]. An approximately inner flip necessarily induces the identity map on $K_0(A \otimes A)$ and this largely restricts the class of C*-algebras A with approximately inner flip. Effros and Rosenberg [ER78] showed that if A is AF, then A must be stably isomorphic to a UHF-algebra. Tikuisis [Tik16] determined a complete list of classifiable C*-algebras with approximately

6See [MN06, Section 8] for a definition of the γ-element (where $X = \text{pt}$ in our case). By the Higson–Kasparov theorem [HK01], this assumption is satisfied for all a-T-menable groups.

7In the notation of [MN06], this would imply that the mapping cone of (2.5) is in $\mathbb{C} \subseteq KK^G$, but [MN06, Theorem 8.3] implies that $\gamma = 1$ if and only if $\mathbb{C} \subseteq 0$.\"
inner flip. We would like to thank Dominic Enders, André Schemaitat and Aaron Tikuisis for informing us about a corrigendum stated below:

Theorem 3.1. ([EST24, Theorem 1.3], Correction to [Tik16, Theorem 2.2]) Let A be a separable, unital C*-algebra with strict comparison, in the UCT class, which is either infinite or quasidiagonal. The following are equivalent.

1. A has approximately inner flip;
2. A is Morita equivalent to one of the following C*-algebras:
 - C;
 - $C_{n+1,m}$;
 - $C_{n+1,m} \otimes O_\infty$;
 - $F_{n,m}$.

Here m, n are supernatural numbers with m of infinite type such that m divides n, O_∞ is the Cuntz algebra on infinitely many generators, $C_{n+1,m}$ is the simple, separable, unital, \mathbb{Z}-stable, quasidiagonal C*-algebra in the UCT class with unique trace satisfying

$$K_0(C_{n+1,m}) \cong \mathbb{Q}_n, \quad [1]_0 = 1; \quad K_1(C_{n+1,m}) \cong \mathbb{Q}_m/\mathbb{Z},$$

and $F_{n,m}$ is the unique unital Kirchberg algebra in the UCT class satisfying

$$K_0(F_{n,m}) \cong \mathbb{Q}_n/\mathbb{Z}, \quad [1]_0 = 0; \quad K_1(F_{n,m}) \cong \mathbb{Q}_m/\mathbb{Z}.$$

Let C_2 be the cyclic group of order 2. Our strategy to compute the groups $K_*(A \otimes C_2 \rtimes C_2)$ with A as in Theorem 5.1 builds on Izumi’s remarkable computation of $K_*(B \otimes C_2 \rtimes C_2)$ for all separable nuclear C*-algebras B in the UCT class and with finitely generated K-theory [Izu19]. Izumi’s starting point is his Theorem 2.13 above. This allows him to replace the appearing C*-algebras by finite direct sums of building blocks of the form C, $C_0(\mathbb{R})$, O_{n+1} and D_n, where O_{n+1} denotes the Cuntz algebra on $n + 1$ generators and where D_n denotes the dimension drop algebra. For B one of these building blocks, Izumi explicitly computes $K_* (B \otimes C_2 \rtimes C_2)$.

We follow the same strategy here. Thanks to Theorems 3.1 and 2.13 above, the following theorem and its corollary determine the K-theory groups $K_* (B \otimes C_2 \rtimes C_2)$ whenever B is a UCT C*-algebra that is KK-equivalent to a C*-algebra in the list in Theorem 5.1 for m and n are of infinite type.

Theorem 3.2. Let m and n be supernatural numbers of infinite type. Let $F_{n,m}$ be any C*-algebra satisfying the UCT such that

$$K_*(F_{n,m}) \cong \begin{cases} \mathbb{Q}_n/\mathbb{Z}, & * = 0; \\ \mathbb{Q}_m/\mathbb{Z}, & * = 1. \end{cases}$$

Then we have

$$K_* \left(F_{n,m} \otimes C_2 \right) \cong \begin{cases} \mathbb{Q}_n/\mathbb{Z} \oplus \mathbb{Q}_\tau/\mathbb{Z}, & * = 0; \\ \mathbb{Q}_m/\mathbb{Z} \oplus \mathbb{Q}_m/\mathbb{Z}, & * = 1, \end{cases}$$

where τ is the greatest common divisor of m and n.

Corollary 3.3. For any supernatural numbers m and n of infinite type, we have

$$K_*(\varepsilon_{n,m} \otimes C_2) \cong \begin{cases} \mathbb{Q}_n \oplus \mathbb{Q}_n, & * = 0; \\ \mathbb{Q}_{mn} / \mathbb{Q}_n \oplus \mathbb{Q}_m / \mathbb{Z} \oplus \mathbb{Z}, & * = 1. \end{cases}$$

Proof. The algebra $\varepsilon_{n,m}$ is KK-equivalent to $M_1 \oplus \mathcal{F}_{1,m}$. Thus, using Theorem 2.13 we see that $\varepsilon_{n,m} \otimes C_2$ is KK-equivalent to

$$(M_n \otimes C_2 \times C_2) \oplus (\mathcal{F}_{1,m} \otimes C_2) \oplus (M_n \otimes \mathcal{F}_{1,m}).$$

Note that $K_0(M_n \otimes \mathcal{F}_{1,m}) \cong 0$ and $K_1(M_n \otimes \mathcal{F}_{1,m}) \cong \mathbb{Q}_n \otimes \mathbb{Q}_m / \mathbb{Z} \cong \mathbb{Q}_{mn} / \mathbb{Q}_n$. The assertion now follows from Theorem 3.2.

We break up the proof of Theorem 3.2 into two lemmas. We denote by $[e_0], [e_1], [1] \in K_0(C^*(\mathbb{Z}/2))$ the classes of the trivial representation, the sign representation and the unit of $C^*(\mathbb{Z}/2)$. We will abuse notation and write KK-elements as arrows \rightarrow_{KK} between C^*-algebras, well-aware that they might not be induced by $*$-homomorphisms.

Lemma 3.4. We have

$$K_* (\mathcal{F}_{m,1} \otimes C_2) \cong \begin{cases} \mathbb{Q}_m / \mathbb{Z}, & * = 0; \\ 0, & * = 1. \end{cases}$$

Proof. By the Kirchberg–Phillips classification theorem [Phi00], there is a unital $*$-homomorphism

$$M_m \otimes O_{\infty} \rightarrow \mathcal{F}_{m,1}$$

such that the composition

$$\phi: M_m \xrightarrow{id \otimes 1} M_m \otimes O_{\infty} \xrightarrow{} \mathcal{F}_{m,1}$$

induces the canonical quotient map $\mathbb{Q}_m \rightarrow \mathbb{Q}_m / \mathbb{Z}$ on K_0. Denote by

$$M_\phi := \{(a, f) \in M_m \oplus (C[0, 1] \otimes \mathcal{F}_{m,1}) | \phi(a) = f(0)\}$$

the mapping cylinder of ϕ and by $C_\phi := \ker(ev_1: M_\phi \rightarrow \mathcal{F}_{m,1})$ the mapping cone of ϕ. Note that the inclusion $M_m \hookrightarrow M_\phi$ is a KK-equivalence. The short exact sequence

$$0 \rightarrow C_\phi \rightarrow M_\phi \rightarrow \mathcal{F}_{m,1} \rightarrow 0,$$

induces an exact sequence

$$0 \rightarrow \mathbb{Z} \rightarrow \mathbb{Q}_m \rightarrow \mathbb{Q}_m / \mathbb{Z} \rightarrow 0$$

on K_0 and 0 on K_1. We streamline the notations and re-write the exact sequence (3.1) as

$$0 \rightarrow I \rightarrow B \rightarrow A_0 \rightarrow 0.$$

The only properties that we will use are the induced sequence (3.2) on K_0 and that the map $I \rightarrow B$ can be identified with the unital inclusion $\mathbb{C} \hookrightarrow M_m$ in KK-theory. From now on, we follow the beautiful computations of
[Izu19] Theorem 3.4. Writing $I_1 := I \otimes B + B \otimes I \subseteq B^\otimes \mathbb{Z}/2$, we have the following short exact sequences of C^*-algebras

(3.3) \[0 \longrightarrow I_1 \longrightarrow B^\otimes C_2 \longrightarrow A_0^\otimes C_2 \longrightarrow 0, \]

(3.4) \[0 \longrightarrow I^\otimes C_2 \longrightarrow I_1 \longrightarrow (I \otimes A_0) \oplus (A_0 \otimes I) \longrightarrow 0. \]

Taking crossed-products and applying K-theory for (3.4) produces the 6-term exact sequence

(3.5) \[\begin{array}{ccc}
Z \oplus Z & \longrightarrow & K_0(I_1 \times C_2) \longrightarrow Q_m/Z \\
0 & \longleftarrow & K_1(I_1 \times C_2) \longleftarrow 0.
\end{array} \]

Here the generators of $Z \oplus Z$ are the image of $[1]$ and $[e_1]$ via the KK-equivalence $C^\otimes C_2 \times C_2 \overset{\gamma_{KK}}{\longrightarrow} I^\otimes C_2 \times C_2$ obtained from the KK-equivalence $C \overset{\gamma_{KK}}{\longrightarrow} I$ as in Theorem 2.13 and Q_m/Z is identified with $K_0(I \otimes A_0)$. Consider the map from the exact sequence

(3.6) \[\begin{array}{ccc}
K_0(I \otimes I) \oplus Z & \overset{\cong Z}{\longrightarrow} & K_0(I \otimes B) \oplus Z \overset{\cong Q_m}{\longrightarrow} K_0(I \otimes A_0) \overset{\cong Q_m/Z}{\longrightarrow} \end{array} \]

to the top row of (3.5), which on K_0-groups is induced by the canonical algebra inclusions and which sends the generator of Z to the class $[e_1]$. This map clearly is an isomorphism on both the left-hand term and the right-hand term, and therefore also on the middle term. From this we see that $K_0(I_1 \times C_2) \cong Q_m \oplus Z$, with the generator of Z being the image of $[e_1]$ via the KK-element $C^\otimes C_2 \times C_2 \overset{\gamma_{KK}}{\longrightarrow} I^\otimes C_2 \times C_2 \rightarrow I_1 \times C_2$ and with Q_m being the image of $K_0(M_m)$ via the KK-element $M_m \rightarrow B \overset{\gamma_{KK}}{\longrightarrow} I \otimes B \rightarrow I_1$.

Taking crossed products and applying K-theory for (3.3) yields the 6-term exact sequence

(3.7) \[\begin{array}{ccc}
Q_m \oplus Z & \longrightarrow & Q_m \oplus Q_m \longrightarrow K_0 \left(A_0^\otimes C_2 \times C_2 \right) \\
K_1 \left(A_0^\otimes C_2 \times C_2 \right) & \leftarrow & 0 \leftarrow 0,
\end{array} \]

where the generators $Q_m \oplus Q_m$ over Q_m are the images of $[1]$ and $[e_1]$ by the KK-equivalence $M_m^\otimes C_2 \times C_2 \rightarrow B^\otimes C_2 \times C_2$. Here we have used Theorem 2.8. Thus the first arrow in the top row of (3.7) is the natural inclusion. We get $K_1 \left(A_0^\otimes C_2 \times C_2 \right) \cong 0$ and $K_0 \left(A_0^\otimes C_2 \times C_2 \right) \cong Q_m/Z$, generated by the image of $Q_m[e_1]$ in $K_0 \left(M_m^\otimes C_2 \times C_2 \right)$. \qed
Lemma 3.5. We have

\[K_\ast \left(F_{1,m}^\otimes C_2 \times C_2 \right) \cong \begin{cases} 0, & \ast = 0; \\ \mathbb{Q}_m/\mathbb{Z} \oplus \mathbb{Q}_m/\mathbb{Z}, & \ast = 1. \end{cases} \]

Proof. We write \(A_0 := F_{m,1} \) as in the proof of Lemma 3.4 and use \(A := C_0(\mathbb{R}) \otimes A_0 \) as a model for \(F_{1,m} \). Note that the flip action on \(C_0(\mathbb{R}) \otimes C_2 \) is conjugate to the action on \(C_0(\mathbb{R}) \otimes C_0(\mathbb{R}) \) that is trivial on the first factor and reflects at the origin \(0 \in \mathbb{R} \) on the second factor. We thus have

\[K_\ast \left(A^\otimes C_2 \times C_2 \right) \cong K_{\ast + 1} \left(\left(C_0(\mathbb{R}) \otimes A_0^\otimes C_2 \right) \times C_2 \right), \tag{3.8} \]

where \(C_2 \) acts via the flip on \(C_0(\mathbb{R}) \) and via the shift on \(A_0^\otimes C_2 \). We consider the short exact sequence

\[0 \to \left(C_0(-\infty, 0) \oplus C_0(0, \infty) \right) \otimes A_0^\otimes C_2 \to C_0(\mathbb{R}) \otimes A_0^\otimes C_2 \to A_0^\otimes C_2 \to 0 \]

of \(C^\ast \)-algebras. We have

\[K_\ast \left(\left(C_0(-\infty, 0) \oplus C_0(0, \infty) \right) \otimes A_0^\otimes C_2 \right) \times C_2 \right) \cong K_{\ast + 1} \left(A_0^\otimes C_2 \right) \]

by the Künneth theorem (since \(\text{Tor}_1^\mathbb{Z}(\mathbb{Q}_m/\mathbb{Z}, \mathbb{Q}_m/\mathbb{Z}) \cong \mathbb{Q}_m/\mathbb{Z} \)). In view of this and Lemma 3.4, taking crossed products and applying K-theory for \(\text{Tor}_1^\mathbb{Z}(\mathbb{Q}_m/\mathbb{Z}, \mathbb{Q}_m/\mathbb{Z}) \) produces the 6-term exact sequence

\[\begin{array}{c}
\mathbb{Q}_m/\mathbb{Z} \to K_0 \left(\left(C_0(\mathbb{R}) \otimes A_0^\otimes C_2 \right) \times C_2 \right) \to \mathbb{Q}_m/\mathbb{Z} \\
0 \to K_1 \left(\left(C_0(\mathbb{R}) \otimes A_0^\otimes C_2 \right) \times C_2 \right) \to 0.
\end{array} \tag{3.10} \]

By [11k16, Lemma 1.1], the top row of (3.10) splits. Now the Lemma follows from (3.10) and (3.8).

Proof of Theorem 3.2 We use a KK-equivalence

\[F_{n,m} \sim_{KK} F_{n,1} \oplus F_{1,m}, \]

obtained from the UCT. From this we obtain

\[K_\ast (F_{n,m}^\otimes C_2 \times C_2) \cong K_\ast (F_{n,1}^\otimes C_2 \times C_2) \oplus K_\ast (F_{1,m}^\otimes C_2 \times C_2) \oplus K_\ast (F_{n,1} \otimes F_{1,m}). \]

The first two summands are computed by Lemma 3.4 and 3.5 respectively, whereas the last summand can be computed using the Künneth theorem as

\[K_\ast (F_{m,1} \otimes F_{1,n}) \cong \begin{cases} \text{Tor}_1^\mathbb{Z}(\mathbb{Q}_m/\mathbb{Z}, \mathbb{Q}_n/\mathbb{Z}) = \mathbb{Q}_r/\mathbb{Z}, & \ast = 0, \\ \mathbb{Q}_m/\mathbb{Z} \otimes_\mathbb{Z} \mathbb{Q}_n/\mathbb{Z} = 0, & \ast = 1, \end{cases} \]

where \(r \) denotes the greatest common divisor of \(m \) and \(n \).
By Theorem 3.1, the list of the classifiable C^*-algebras with approximately inner flip is up to KK-equivalences given by

$$\varepsilon_{n,1,m} \cong F_{1,m}$$

for supernatural numbers m and n where m is of infinite type such that m divides n. Note that $\varepsilon_{n,1,m}$ is KK-equivalent to $M_n \cong F_{1,m}$ and $M_n \cong F_{1,m}$ is KK-equivalent to zero if m divides n. In particular, the flip on $\varepsilon_{n,1,m}$ is KK-equivalent to the sum of the flips on $M_n \cong F_{1,m}$. Thus, we have

$$K_*(\varepsilon_{n,1,m} \times C_2) \cong K_*(M_n \cong F_{1,m} \times C_2) \cong K_*(M_n \cong F_{1,m} \times C_2) \cong 0.$$

If both m and n are of infinite type, Theorem 2.8, Theorem 3.2, and Corollary 3.3 compute these K-groups:

$$K_0(M_n \cong F_{1,m} \times C_2) \cong \mathbb{Q}_n \oplus \mathbb{Q}_n,$$

and

$$K_1(M_n \cong F_{1,m} \times C_2) \cong 0,$$

$$K_n(M_n \cong F_{1,m} \times C_2) \cong 0.$$

Suppose n is essentially of infinite type, meaning $n = n_0 \cdot n_1$, where n_0 is a natural number and n_1 is a supernatural number of infinite type. Then, we have $K_*(M_n \cong F_{1,m} \times C_2) \cong K_*(M_{n_1} \cong F_{1,m} \times C_2)$.

Suppose $n = \prod_{i=1}^{\infty} p_i^{n_i}$ where $1 \leq n_i < \infty$ for infinitely many distinct primes p_i. Let $q_i = p_i^{n_i}$. Then, $M_n \cong F_{1,m} \times C_2$ is the inductive limit of the system

$$C \times C_2 \rightarrow M_{q_1} \cong F_{1,m} \times C_2 \rightarrow (M_{q_1} \cong F_{1,m} \times C_2 \times C_2 \rightarrow \cdots$$

From this (c.f. Proof of Theorem 2.8), we observe that $K_0(M_n \cong F_{1,m} \times C_2)$ is isomorphic to the inductive limit of the system

$$R_C(C_2) \xrightarrow{\tau_{q_1}} R_C(C_2) \xrightarrow{\tau_{q_2}} R_C(C_2) \xrightarrow{\tau_{q_3}} \cdots$$

where $\tau_k \colon C_2 \rightarrow GL(\ell^2(\{(1,\ldots,k)C_2\}))$ is the permutation representation. We identify $R_C(C_2) \cong \mathbb{Z}^2$ using the trivial representation σ_0 and the sign representation σ_1 of C_2 as a basis of $R_C(C_2)$. Since $\tau_k = \frac{k}{2}\sigma_0 + \frac{k}{2}\sigma_1$ in $R_C(C_2)$ we see that the system is isomorphic to

$$\mathbb{Z}^2 \xrightarrow{X_k} \mathbb{Z}^2 \xrightarrow{X_k} \mathbb{Z}^2 \xrightarrow{X_k} \cdots$$

where $X_k = \begin{bmatrix} \frac{k}{2} & \frac{k}{2} + 1 \\ \frac{k}{2} & \frac{k}{2} + 1 \end{bmatrix}$, which has eigenvectors $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and the corresponding eigenvalues k^2, k. The system has a subsystem consisting of

$\text{This is because the } C_2 \text{-set } \{(1,\ldots,k)C_2\} \text{ has } k \text{-many fixed points and } \frac{k^2 - 1}{2} \text{-many free orbits. Each fixed point contributes the trivial representation, and each free orbit contributes the regular representation.}$
the span of \[
\begin{bmatrix} 1 \\ 1 \end{bmatrix}
\] in each \(\mathbb{Z}^2\) on which \(X_{q_k}\) acts as \(q_k^2\). The quotient system is isomorphic to
\[
\mathbb{Z} \xrightarrow{q_1} \mathbb{Z} \xrightarrow{q_2} \mathbb{Z} \xrightarrow{q_3} \mathbb{Z} \xrightarrow{q_4} \cdots .
\]
From these, it is not hard to observe that we have the following short exact sequence
\[
0 \longrightarrow \mathbb{Q}_{n^2} \longrightarrow K_0(M_n \otimes C_2) \longrightarrow \mathbb{Q}_n \longrightarrow 0.
\]
Under the assumption on \(n\), we have
\[
K_0(M_n \otimes C_2^\infty) \cong \mathbb{Q}_{n^2} \cong \mathbb{Q}_n \cong K_0(M_n)
\]
and also
\[
K_0(M_n \otimes C_2) \not\cong \mathbb{Q}_{n^2} \oplus \mathbb{Q}_{n^2} \cong K_0(M_n \otimes C_2^\infty) .
\]
These conclusions remain to hold for \(n = n_0 \cdot n_1\) where \(n_0\) is a supernatural number of the type we just considered and \(n_1\) is a supernatural number of infinite type which is coprime to \(n_0\).

From these computations, we can observe the following: let \(A\) be any separable \(C^*\)-algebra that is KK-equivalent to \(E_{n,1,m}\) for supernatural numbers \(m\) and \(n\) where \(m\) is of infinite type such that \(m\) divides \(n\). Then, the following are equivalent:

1. \(n\) is essentially of infinite type;
2. \(K_*(A \otimes \mathbb{Z}) \cong K_*(A)\);
3. \(K_*(A \otimes C_2) \cong K_*(A \otimes C_2^\infty)\).

The conditions (2) and (3) are satisfied for \(A = F_{1,m}\) for any supernatural number \(m\) of infinite type. Note that the condition (3) is a necessary condition for a \(C_2-C^*\)-algebra \(\Lambda \otimes C_2\) equipped with the flip action to be KK\(C_2\)-equivalent to \(\Lambda \otimes \mathbb{Z}\) equipped with the trivial action. These observations naturally lead to the following question.

Question 3.6. Let \(A\) be any separable \(C^*\)-algebra that is KK-equivalent to \(E_{n,1,m}\) or \(F_{1,m}\) for supernatural numbers \(m\) and \(n\) where both \(m\) and \(n\) are of infinite type and \(m\) divides \(n\). Is the \(C_2-C^*\)-algebra \(\Lambda \otimes C_2\) equipped with the flip action KK\(C_2\)-equivalent to \(\Lambda \otimes \mathbb{Z}\) equipped with the trivial action?

We note that to answer this question positively, it would suffice to answer it positively for \(A = F_{1,m}\) because the flip on \(E_{n,1,m}\) is KK\(C_2\)-equivalent to the sum of the flips on \(M_n \otimes C_2\) and Theorem 2.8 provides a required KK\(C_2\)-equivalence for \(A = M_n\).

Unfortunately, the methods used to establish the KK\(C_2\)-equivalence between \(M_n \otimes C_2\) and \(M_n\) in Theorem 2.8 do not apply for \(A = F_{1,m}\). Firstly, there is no representation-theoretic argument analogous to Proposition 2.1 for \(F_{1,m}\). Additionally, the diagram
\[
M_n \otimes C_2 \to M_n \otimes C_2 \oplus M_n \to M_n
\]
of KK2-equivalences in Theorem 2.8 does not have a counterpart for F_1,m. This is because the unit class $[1]_0 \in K_0(F_1,m) \cong 0$ is trivial.

In a forthcoming article, we will affirmatively answer Question 3.6 utilizing Ralf Meyer’s work [Mey21] on the equivariant bootstrap classes and Manuel Kühler’s equivariant UCT theorem [Köh10].

REFERENCES

[BCH94] Paul Baum, Alain Connes, and Nigel Higson, *Classifying space for proper actions and K-theory of group C^*-algebras, C^*-algebras: 1943–1993* (San Antonio, TX, 1993), Contemp. Math., vol. 167, Amer. Math. Soc., Providence, RI, 1994, pp. 240–291. MR 1292018

[CEKN24] Sayan Chakraborty, Siegfried Echterhoff, Julian Kranz, and Shintaro Nishikawa, *K-theory of noncommutative Bernoulli shifts*, Mathematische Annalen 388 (2024), no. 3, 2671–2703.

[CEL13] Joachim Cuntz, Siegfried Echterhoff, and Xin Li, *On the K-theory of crossed products by automorphic semigroup actions*, Q. J. Math. 64 (2013), no. 3, 747–784. MR 3094948

[CEO04] Jérôme Chabert, Siegfried Echterhoff, and Hervé Oyono-Oyono, *Going-down functors, the Künneth formula, and the Baum-Connes conjecture*, Geom. Funct. Anal. 14 (2004), no. 3, 491–528. MR 2100669

[CET+21] Jorge Castillejos, Samuel Evington, Aaron Tikuisis, Stuart White, and Wilhelm Winter, *Nuclear dimension of simple C^*-algebras*, Invent. Math. 224 (2021), no. 1, 245–290. MR 4228503

[CGS+23] José R. Carrión, James Gabe, Christopher Schafhauser, Aaron Tikuisis, and Stuart White, *Classifying $*$-homomorphisms I: Unital simple nuclear C^*-algebras*, arXiv:2307.06480 (2023).

[EGLN15] George A. Elliott, Guihua Gong, Huaxin Lin, and Zhuang Niu, *On the classification of simple amenable C^*-algebras with finite decomposition rank*, II, arXiv:1507.03437 (2015).

[ER78] Edward G. Effros and Jonathan Rosenberg, C^*-algebras with approximately inner flip, Pacific J. Math. 77 (1978), no. 2, 417–443. MR 510932

[EST24] Dominic Enders, André Schemaitat, and Aaron Tikuisis, *Corrigendum to “K-theoretic characterization of C^*-algebras with approximately inner flip”*, International Mathematics Research Notices 2024 (2024), no. 9, 7680–7699.

[GHV22] Eusebio Gardella, Ilan Hirshberg, and Andrea Vaccaro, *Strongly outer actions of amenable groups on Z-stable nuclear C^*-algebras*, J. Math. Pures Appl. (9) 162 (2022), 76–123. MR 4417284

[GL21] Eusebio Gardella and Martino Lupini, *Group amenability and actions on Z-stable C^*-algebras*, Adv. Math. 389 (2021), Paper No. 107931, 33. MR 4290140

[HK01] Nigel Higson and Gennadi Kasparov, *E-theory and KK-theory for groups which act properly and isometrically on Hilbert space*, Invent. Math. 144 (2001), no. 1, 23–74. MR 1821144

[HW08] Ilan Hirshberg and Wilhelm Winter, *Permutations of strongly self-absorbing C^*-algebras*, Internat. J. Math. 19 (2008), no. 9, 1137–1145. MR 2458564

[Izu04] Masaki Izumi, *Finite group actions on C^*-algebras with the Rohlin property, I*, Duke Math. J. 122 (2004), no. 2, 233–280. MR 2053753

[Izu19] , *The K-theory of the flip automorphisms*, Operator algebras and mathematical physics, Adv. Stud. Pure Math., vol. 80, Math. Soc. Japan, Tokyo, 2019, pp. 123–137. MR 3966586

[Kas88] Gennadi G. Kasparov, *Equivariant KK-theory and the Novikov conjecture*, Invent. Math. 91 (1988), no. 1, 147–201. MR 918241
K-theory of Bernoulli Shifts

Akitaka Kishimoto, *Outer automorphisms and reduced crossed products of simple C*-algebras*, Comm. Math. Phys. 81 (1981), no. 3, 429–435. MR 634163

K. Akitaka Kishimoto,

Manuel Köhler, *Universal coefficient theorems in equivariant KK-theory*, Ph.D. thesis, Georg-August-Universität Göttingen, 2010, http://hdl.handle.net/11858/00-1735-0000-0006-B6A9-9

Vincent Lafforgue, *La conjecture de Baum-Connes à coefficients pour les groupes hyperboliques*, J. Noncommut. Geom. 6 (2012), no. 1, 1–197. MR 2874956

Xin Li, *K-theory for generalized Lamplighter groups*, Proc. Amer. Math. Soc. 147 (2019), no. 10, 4371–4378. MR 4002549

Ralf Meyer, *On the classification of group actions on C*-algebras up to equivariant KK-equivalence*, Annals of K-Theory 6 (2021), no. 2, 157–238.

Ralf Meyer and Ryszard Nest, *The Baum-Connes conjecture via localisation of categories*, Topology 45 (2006), 209–259.

N. Christopher Phillips, *Equivariant K-theory and freeness of group actions on C*-algebras*, Lecture Notes in Mathematics, vol. 1274, Springer-Verlag, Berlin, 1987. MR 911880

R. Meyer and Ryszard Nest, *The Baum-Connes conjecture via localisation of categories*, Topology 45 (2006), 209–259.

S. Nishikawa: (CURRENT) SCHOOL OF MATHEMATICAL SCIENCES, UNIVERSITY OF SOUTHAMPTON, UNIVERSITY ROAD, SOUTHAMPTON, SO17 1BJ, UK; (PREVIOUS) MATHEMATISCHES INSTITUT, FACHBEREICH MATHEMATIK UND INFORMATIK DER UNIVERSITÄT MÜNSTER, EINSTEINSTRASSE 62, 48149 MÜNSTER, GERMANY.

Email address: s.nishikawa@soton.ac.uk

URL: https://sites.google.com/view/snishikawa/