Observational Study

TAZ and myostatin involved in muscle atrophy of congenital neurogenic clubfoot

Jia-Xing Sun, Ze-Yu Yang, Li-Mei Xie, Bing Wang, Ning Bai, Ai-Lu Cai

ORCID number: Jia-Xing Sun (0000-0002-7667-6686); Ze-Yu Yang (0000-0002-2329-9610); Li-Mei Xie (0000-0002-5308-1786); Bing Wang (0000-0002-4475-5013); Ning Bai (0000-0002-4956-0266); Ai-Lu Cai (0000-0003-0390-8930).

Author contributions: Sun JX, Yang ZY, and Cai AL designed research; Sun JX, Xie LM, and Wang B performed clinical ultrasound examination; Sun JX and Bai N performed the biological experiments; Sun JX and Yang ZY analyzed data; and Sun JX, Yang ZY, and Cai AL wrote the paper.

Institutional review board statement: This study was reviewed and approved by the Ethics Committee of Shengjing Hospital of China Medical University.

Informed consent statement: The clinical data used in this study were anonymous.

Conflict-of-interest statement: The authors declare that they have no conflict of interest.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See:

Abstract

BACKGROUND
Muscular atrophy is the basic defect of neurogenic clubfoot. Muscle atrophy of clubfoot needs more scientific and reasonable imaging measurement parameters to evaluate. The Hippo pathway and myostatin pathway may be directly correlated in myogenesis. In this study, we will use congenital neurogenic clubfoot muscle atrophy model to verify in vivo. Further, the antagonistic mechanism of TAZ on myostatin was studied in the C2C12 cell differentiation model.

AIM
To identify muscle atrophy in fetal neurogenic clubfoot by ultrasound imaging and detect the expression of TAZ and myostatin in gastrocnemius muscle. To elucidate the possible mechanisms by which TAZ antagonizes myostatin-induced atrophy in an in vitro cell model.

METHODS
Muscle atrophy in eight cases of fetal unilateral clubfoot with nervous system abnormalities was identified by 2D and 3D ultrasound. Western blotting and immunostaining were performed to detect expression of myostatin and TAZ. TAZ overexpression in C2C12 myotubes and the expression of associated proteins were analyzed by western blotting.

RESULTS
The maximum cross-sectional area of the fetal clubfoot on the varus side was reduced compared to the contralateral side. Myostatin was elevated in the atrophied gastrocnemius muscle, while TAZ expression was decreased. They
were negatively correlated. TAZ overexpression reversed the diameter reduction of the myotube, downregulated phosphorylated Akt, and increased the expression of forkhead box O4 induced by myostatin.

CONCLUSION
Ultrasound can detect muscle atrophy of fetal clubfoot. TAZ and myostatin are involved in the pathological process of neurogenic clubfoot muscle atrophy. TAZ antagonizes myostatin-induced myotube atrophy, potentially through regulation of the Akt/forkhead box O4 signaling pathway.

Key words: Congenital clubfoot; Neurogenic; Muscle atrophy; Myostatin; TAZ

INTRODUCTION
Muscle atrophy is the basic defect of clubfoot and is important for functional outcomes[1]. Treatment that targets muscle atrophy is insufficient due to the lack of research on the mechanism of the disease. Muscular atrophy affects a patient’s physical activities and even impairs their cognitive function. Therefore, it is important to explore the pathogenic mechanism and treatment of muscular atrophy.

Although it is still controversial, the occurrence of congenital clubfoot muscle atrophy is thought to be a neuromuscular abnormality[2], and studies have clearly confirmed that the changes in clubfoot muscle atrophy with neuropathy are more dramatic[3-5]. Therefore, the present study investigated patients with clubfoot atrophy with neurological abnormalities by ultrasound examination.

The Hippo signaling pathway plays a crucial role in the process of myogenesis and skeletal muscle regeneration[6,7]. Previous studies have confirmed that TAZ has a positive role in muscle function by upregulating myoD and activating gene transcription of myogenin and MCK[8,9]. Our previous studies showed that upregulation of TAZ in C2C12 cells could enhance the combination of myoD and myogenin promoter, promote myoD-dependent gene transcription, and antagonize the inhibition of muscle differentiation induced by myostatin. These effects were diminished by endogenous knockdown of TAZ[10].

Myostatin, a member of the transforming growth factor-β super family, is specifically expressed in embryonic and adult skeletal muscle and acts as an inhibitor of skeletal muscle protein production and hypertrophy[11,12]. Myostatin has been shown to play an important role in the process of denervation of gastrocnemius atrophy[13]. Myostatin signal transduction is mediated by two different types of serine/threonine kinase receptors. It can transduce signals into the nucleus through SMAD, MAPK, and Akt pathways[14,15].

Our previous studies confirmed the role of TAZ in muscle atrophy in a variety of in vivo models[16,17]. In this study, we confirmed our theory in vivo, using a new model of neurogenic muscular atrophy of congenital clubfoot with nervous system abnormalities and further explored how TAZ acts on myostatin-induced C2C12
TAZ overexpression and myostatin treatment in C2C12 cells
TAZ overexpression plasmid and control constructions were synthesized by Bioengineering (Shanghai) Co. Ltd. (Shanghai, China). Cells were transfected using the Lipofectamine 3000 transfection reagent. Following transfection, the protein levels were assessed 48 h later. The cells were cultured to confluence and myotube formation was induced by differentiation medium with DMSO or 100 ng/mL myostatin. Three days later, myotubes were observed and measured.

Western blotting
Total proteins from primary tissues and cell lines were extracted in lysis buffer (Thermo Fisher Scientific, Rockford, IL, United States) and quantified using the Bradford method. Fifty micrograms of protein were separated by 12% SDS–PAGE. After transferring, the polyvinylidene fluoride membranes (Millipore, Billerica, MA, United States) were incubated overnight at 4 °C with the following antibodies TAZ (560235, 1:1000; Becton Dickinson, Franklin Lakes, NJ, United States), myostatin (98337, 1:100; Abcam, Cambridge, MA, United States), Akt (#9272, 1:500; GST), p-Akt (4060S, 1:500; GST), forkhead box (FOX)O4 (#9472, 1:500; GST), and GAPDH (TA-08, 1:500; ZSGB-BIO, Beijing, China). After incubation with peroxidase-coupled anti-mouse IgG (Beyotime, Jiangsu, China) at 37 °C for 2 h, bound proteins were visualized using Bio-Rad GS-800 and analyzed using Image J software. The relative protein levels were calculated based on GAPDH as the loading control.

Immunohistochemistry
Muscle tissue specimens were fixed with 10% neutral formalin, embedded in paraffin, and 5-μm-thick sections were prepared. Immunostaining was performed using the avidin–biotin–peroxidase complex method (Ultra Sensitive TM; Maixin, Fuzhou, China). The sections were deparaffinized in xylene, rehydrated in graded alcohol series, and boiled in 0.01 mol/L citrate buffer (pH 6.0) for 2 min in an autoclave. Endogenous peroxidase activity was blocked using hydrogen peroxide (0.3%), which was followed by incubation with normal goat serum to reduce nonspecific binding. Tissue sections were incubated with antibody to TAZ (560235, 1:100; BD) or myostatin (98337, 1:100; Abcam). Staining for all primary antibodies was performed at 4 °C overnight. Biotinylated goat anti-mouse serum IgG (ready-to-use) (Maixin) was used as the secondary antibody at room temperature for 25 min. After washing three times in phosphate-buffered saline, the sections were incubated with hors eradish-peroxidase-conjugated streptavidin–biotin for 20 min, followed by 3, 3′-diaminobenzidine tetrahydrochloride to develop the peroxidase reaction. Counterstaining of the sections was done with hematoxylin and then dehydrated in

WJCC https://www.wjgnet.com
ethanol before mounting.

Statistical analysis

Data are expressed as mean ± SD. Statistical analyses were performed using paired-samples t-test for comparison between two samples or one-way analysis of variance followed by Bonferroni’s test for multiple comparisons using GraphPad Prism 5.0. (GraphPad Software, La Jolla, CA, United States). P < 0.05 means the difference was statistically significant.

RESULTS

Identification of muscle atrophy in fetuses with clubfoot using 2D or 3D ultrasound

Two-dimensional ultrasound showed the fetal calf and foot, and the inversion side and healthy side images were obtained (Figure 1A and 1B). Ultrasound clearly showed bilateral calf muscles and bones and confirmed clubfoot. Three-dimensional tomographic ultrasound imaging was used to position the largest cross-section perpendicular to the tibia, and the cross-sectional area of bilateral calves was measured (Figure 1C and 1D). Quantitative results showed that the area of the varus side was significantly reduced (Figure 1E), and muscle atrophy was confirmed.

Expression of TAZ and myostatin in muscle tissue specimens from congenital neurogenic clubfoot

Gastrocnemius muscle tissue specimens were obtained from eight fetuses. We defined the varus limb as a positive experimental group and the normal limb of the same fetus as a negative control group. Western blotting was used to detect the protein levels of endogenous TAZ and myostatin. Western blotting (Figure 2A) and immunostaining (Figure 2B) showed that myostatin was increased in the atrophied gastrocnemius muscle, while TAZ expression was decreased. There was a negative correlation between expression of TAZ and myostatin.

TAZ rescues myostatin-induced C2C12 myotube atrophy via Akt/FOXO4 pathway

To investigate the interaction between TAZ and myostatin in muscle atrophy, we created TAZ-overexpressing and control C2C12 cells by transfection. We induced myotube atrophy by adding exogenous myostatin. Three days later, photomicrographs and quantitative data showed that myotube diameter in myostatin-treated control cells was smaller than that in DMSO-treated cells (Figure 3A and 3B left two columns), and TAZ overexpression reversed this condition (Figure 3A and 3B right two columns). As a key element that cross talks with myostatin in skeletal muscle atrophy, phosphorylated Akt was expectedly decreased by myostatin treatment, while TAZ recovered it to nearly its original level. FOXO4, a downstream factor of Akt, is also reported to be closely related with clubfoot, but it showed the opposite trend to phosphorylated Akt (Figure 3C).

DISCUSSION

Previous studies have focused on the use of magnetic resonance after birth to determine the presence of muscle atrophy in clubfoot. We first attempted to use ultrasound to prenatally diagnose muscle atrophy. Our results show that combination of 2D and 3D ultrasound can achieve accurate localization, measurement, and quantitative comparison. As it is convenient to operate and there is no radiation, it is the preferred method for prenatal diagnosis of muscle atrophy of fetal clubfoot.

The Hippo pathway is important for regulating differentiation of mesenchymal stem cells, and its downstream cotranscription factor TAZ has been shown to promote muscle differentiation. However, there are few reports about the relationship between TAZ and myostatin in muscle differentiation. In our previous screening assay, we found that the low molecular weight compound that could activate TAZ had an antagonistic effect on myostatin in a TAZ-dependent manner. This compound has been commercialized as a TAZ activator and muscle differentiation promoter (TAZ activator, IBS008738: Calbiochem; 530961: Merck Millipore). The results encouraged us to further investigate the interaction between the Hippo and myostatin pathways and explore the possibility of TAZ activators as myogenic drugs. The myostatin pathway is a classical inhibitory pathway of muscle differentiation. It plays an important role in congenital myasthenic muscle atrophy, so we chose fetal specimens with abnormal neurological malformation in clubfoot. The myostatin pathway plays its role by interacting with the IGF-1/PI3K, mTOR, and MAPK pathways.
Figure 1 Identification with 2D or 3D ultrasound of muscle atrophy in fetus with clubfoot. The 2D ultrasound image of calves (A) and feet (B). The left side shows the normal condition and the right side the clubfoot condition. The 3D tomographic ultrasound imaging [normal (C); clubfoot (D)] fixed the positioning line at the largest cross-section perpendicular to the tibia (center of the nine-square image), and measurement of the area was done at the cross-section image (upper left of the nine-square image); E: Quantitative data and statistical analysis of cross-section area in paired fetal calves. *P < 0.05 vs control.

IGF-1/PI3K/Akt signaling reduces during muscle atrophy induced by denervation, unloading, and joint immobilization[26]. Myostatin inhibits Akt and thereby downregulates mTOR, S6K, and Akt inhibition and protein degradation associated with the FOXO family[27], while FOXO4 is reported to be closely associated with clubfoot[29]. Previous studies have shown that TAZ activators upregulate TAZ and p-Akt in a TAZ-dependent manner (data not shown). Therefore, we speculated that TAZ antagonizes myostatin partially because it reverses the inhibition of Akt by myostatin and the resulting increase of FOXO4.

Our previous studies confirmed that TAZ and its activator promoted muscle differentiation and resisted muscular atrophy, based on in vivo animal models of muscular atrophy induced by toxins, glucocorticoids[10], traumatic brain injury[16], disuse, starvation, and cancer-related cachexia[30]. These results suggest the potential of TAZ activators for treatment of muscle atrophy. In this study we selected gastrocnemius muscle tissue specimens from fetuses with congenital clubfoot. We confirmed that both TAZ and myostatin are involved in the pathological process of neurogenic clubfoot muscle atrophy, and they are negatively correlated. TAZ antagonizes myostatin-induced myotube atrophy, potentially through regulation of the Akt/FOXO4 signaling pathway. We also provide a theoretical basis for further application of TAZ activators in the treatment of neurogenic muscle atrophy.
Figure 2 Expression of TAZ and myostatin in gastrocnemius muscles of fetus with congenital neurogenic clubfoot. A: Paired muscle specimens from three different fetuses are shown: normal limb (-); varus limb (+). Western blotting shows protein expression; GAPDH was used as the loading control; B: Immunohistochemical staining showed muscle fiber morphology and expression and location of TAZ and myostatin. Bar: 100 μm.
Figure 3 Myotube formation in each group of C2C12 cells and protein expression. A: Images of the myotube formation. Bar: 100 μm; B: Quantitative data and statistical analysis of myotube diameter in each group. *P < 0.05, **P < 0.01; C: Western blotting showing protein expression; GAPDH was used as the loading control.

ARTICLE HIGHLIGHTS

Research background
Muscle atrophy and volume reduction in neurogenic congenital clubfoot are the main factors causing limb mobility disorder, which seriously affects the quality of life of children. The rehabilitation treatment of muscle atrophy has great significance. At present, there are few reports on the study of clubfoot muscle atrophy. Therefore, it is of great clinical significance to use effective methods to diagnose and study in-depth mechanism research of clubfoot muscle atrophy.

Research motivation
Until now, the diagnose of clubfoot muscle atrophy is mainly depended on magnetic resonance imaging. Ultrasound is simple and real-time, and it is more suitable for follow-up prenatal observation and postnatal treatment. Therefore, this study clarifies the diagnostic value of 3D tomographic ultrasound imaging (TUI) for neurogenic congenital clubfoot muscle atrophy. There is no targeted drug treatment for clubfoot muscle atrophy currently, so this study attempts to reveal the mechanism of TAZ involvement in clubfoot muscle atrophy and to find drug therapeutic targets.

Research objectives
The objective of this study was to establish an ultrasound evaluation system for clubfoot muscle atrophy and to reveal the possible mechanisms of TAZ and myostatin involvement in clubfoot muscle atrophy and provide a theoretical basis for the development of potential drug therapy.

Research methods
Prenatal 2D and 3D ultrasound imaging was used to diagnose fetuses with neurological clubfoot. Quantitative evaluation of muscle atrophy was performed by 3D TUI. Muscle specimens were obtained, and protein expression was determined by western blotting and immunostaining. TAZ overexpressed C2C12 cells were differentiated and treated with myostatin, muscle differentiation of each group was compared quantitatively, and the Akt/FOXO4 signaling pathway expression was detected by western blotting.

Research results
The 3D TUI can detect the muscle atrophy on the varus side, which is significantly smaller than
the contralateral side. In the gastrocnemius specimens, TAZ and myostatin had opposite expression trends and were negatively correlated. Myostatin inhibited C2C12 muscle differentiation, manifested as thinner myotubes, and was rescued by TAZ overexpression. Overexpressed TAZ reduces the increased p-Akt and FOXO4 expression caused by myostatin.

Research conclusions

The 3D TUI technology can be used to evaluate neurogenic clubfoot muscle atrophy. TAZ and myostatin expression are negatively correlated in muscle samples. TAZ antagonizes muscle differentiation inhibition induced by myostatin, and the mechanism may potentially work through repression of the Akt/FOXO4 signaling pathway.

Research perspectives

Using 3D ultrasound to evaluate the clubfoot muscle atrophy prenatally and postpartum is effective. Applying previously developed TAZ activators for future research in order to develop new drug therapy of clubfoot muscle atrophy is necessary.

REFERENCES

1. Bacino CA, Hecht JT. Etiopathogenesis of equinovarus foot malformations. *Eur J Med Genet* 2014; 57: 473-479 [PMID: 24932901 DOI: 10.1016/j.ejmg.2014.06.001]
2. Basit S, Khoshhal KI. Genetics of clubfoot; recent progress and future perspectives. *Eur J Med Genet* 2018; 61: 107-113 [PMID: 28919208 DOI: 10.1016/j.ejmg.2017.09.006]
3. Buzzo LF. What’s New in Idiopathic Clubfoot? *J Pediatric Orthop* 2015; 35: 547-550 [PMID: 25290255 DOI: 10.1097/BPO.0000000000000325]
4. Balasankar G, Luximon A, Al-Jumaily A. Current conservative management and classification of club foot. A review. *J Pediatric Rehabil Med* 2016; 9: 257-264 [PMID: 27935562 DOI: 10.3233/PRM-160394]
5. Wallander HM. Congenital clubfoot. Aspects on epidemiology, residual deformity and patient reported outcome. *Acta Orthop Suppl* 2010; 81: 1-25 [PMID: 21143777 DOI: 10.3109/1745676103619045]
6. Gaimassou O, Francaux M, Deldique L. Hippo Pathway and Skeletal Muscle Mass Regulation in Mammals: A Controversial Relationship. *Front Physiol* 2017; 8: 190 [PMID: 28424630 DOI: 10.3389/fpsyt.2017.00190]
7. Wackerhage H, Del Re DP, Judson RN, Sudol M, Sadoshima J. The Hippo signal transduction network in skeletal and cardiac muscle. *Sci Signal* 2014; 7: re8 [PMID: 25097035 DOI: 10.1126/scisignal.2005096]
8. Zhu Y, Wu Y, Cheng J, Wang Q, Li Z, Wang Y, Wang D, Wang H, Zhang W, Ye J, Jiang H, Wang L. Pharmacological activation of TAZ enhances osteogenic differentiation and bone formation of adipose-derived stem cells. *Stem Cell Res Ther* 2018; 9: 53 [PMID: 29514703 DOI: 10.1186/s12888-018-0799-z]
9. Jeong H, Bae S, An SY, Byun MR, Hwang JH, Yaffe MB, Hong JH, Kwang ES. TAZ as a novel enhancer of Myod-mediated myogenic differentiation. *FASEB J* 2010; 24: 3310-3320 [PMID: 20466877 DOI: 10.1096/fj.09-151324]
10. Yang Z, Nakagawa K, Sarkar A, Maruyama J, Iwasa H, Bao Y, Ishigami-Yuasa M, Ito S, Kagechika H, Hata S, Nishina H, Abe S, Kitagawa M, Hata Y. Screening with a novel cell-based assay for TAZ activators identifies a compound that enhances myogenesis in C2C12 cells and facilitates muscle repair in a muscle injury model. *Mod Cell Biol* 2014; 34: 1607-1621 [PMID: 24550007 DOI: 10.1128/MCB.01346-13]
11. Chen JL, Walton KL, Hagg A, Colgan TD, Johnson K, Qian H, Gregorevic P, Harrison CA. Specific targeting of TGF-β family ligands demonstrates distinct roles in the regulation of muscle mass in health and disease. *Proc Natl Acad Sci U S A* 2017; 114: E5266-E5275 [PMID: 28070896 DOI: 10.1073/pnas.1620013114]
12. Schiaffino S, Dyr KA, Ciccioli S, Blauw B, Sandri M. Mechanisms regulating skeletal muscle growth and atrophy. *FEBS J* 2013; 280: 4294-4314 [PMID: 23517348 DOI: 10.1111/febs.12253]
13. Ko IG, Jeong JW, Kim YH, Jeon JW, Kim YS, Kim SH, Jin JJ, Kim CJ, Chung KJ. Aerobic exercise affects muscle mass and atrophy. *FEBS J* 2013; 280: 1442-1449 [PMID: 23772133 DOI: 10.1111/febs.12722]
14. Li D, Wang G, Zhang M, Zhao Y, Yang Z. TAZ Activator Is Involved in IL-10-Mediated Muscle Cachexia Sarcopenia Muscle Disease. *J Biol Chem* 2017; 292: 33101-33110 [PMID: 29003953 DOI: 10.1074/jbc.M117.791390]
15. Hata S, Nishina H, Abe S, Kitagawa M, Hata Y. Screening with a novel cell-based assay for TAZ activators identifies a compound that enhances myogenesis in C2C12 cells and facilitates muscle repair in a muscle injury model. *Mod Cell Biol* 2014; 34: 1607-1621 [PMID: 24550007 DOI: 10.1128/MCB.01346-13]
16. Chen JL, Walton KL, Hagg A, Colgan TD, Johnson K, Qian H, Gregorevic P, Harrison CA. Specific targeting of TGF-β family ligands demonstrates distinct roles in the regulation of muscle mass in health and disease. *Proc Natl Acad Sci U S A* 2017; 114: E5266-E5275 [PMID: 28070896 DOI: 10.1073/pnas.1620013114]
17. Schiaffino S, Dyr KA, Ciccioli S, Blauw B, Sandri M. Mechanisms regulating skeletal muscle growth and atrophy. *FEBS J* 2013; 280: 4294-4314 [PMID: 23517348 DOI: 10.1111/febs.12253]
18. Ko IG, Jeong JW, Kim YH, Jeon JW, Kim YS, Kim SH, Jin JJ, Kim CJ, Chung KJ. Aerobic exercise affects muscle mass and atrophy. *FEBS J* 2013; 280: 1442-1449 [PMID: 23772133 DOI: 10.1111/febs.12722]
19. Li D, Wang G, Zhang M, Zhao Y, Yang Z. TAZ Activator Is Involved in IL-10-Mediated Muscle Responses in an Animal Model of Traumatic Brain Injury. *Inflammation* 2017; 40: 100-105 [PMID: 27718096 DOI: 10.1007/s10753-016-0457-3]
20. Merrill LJ, Gurnett CA, Siegel M, Sonavane S, Dobbs MB. Vascular abnormalities correlate with pelvic floor muscle and urethral rhabdosphincter. *Int Neurourol J* 2017; 21: 100-105 [PMID: 28498831 DOI: 10.1186/s13287-017-0001-z]
21. Ippolito E, Dragoni M, Antonicoli M, Farsetti P, Simonetti G, Masala S. An MRI volumetric study for leg muscles in congenital clubfoot. *J Child Orthop* 2012; 6: 433-438 [PMID: 24082959 DOI: 10.1007/s11782-012-0444-9]
22. Chen JL, Walton KL, Gregorevic P, Harrison CA. The TGF-β Signalling Network in Muscle
Sun JX et al. TAZ and myostatin in club foot muscle atrophy

Development, Adaptation and Disease. Adv Exp Med Biol 2016; 900: 97-131 [PMID: 27003398 DOI: 10.1007/978-3-319-27511-6_5]

23 Consitt LA, Clark BC. The Vicious Cycle of Myostatin Signaling in Sarcopenic Obesity: Myostatin Role in Skeletal Muscle Growth, Insulin Signaling and Implications for Clinical Trials. J Frailty Aging 2018; 7: 21-27 [PMID: 29412438 DOI: 10.14283/jfa.2017.33]

24 Droguett R, Cabello-Verrugio C, Santander C, Brandan E. TGF-beta receptors, in a Smad-independent manner, are required for terminal skeletal muscle differentiation. Exp Cell Res 2010; 316: 2487-2503 [PMID:29471380 DOI: 10.1016/j.yexcr.2010.04.031]

25 Babeck LW, Knoblauch M, Clarke MS. The role of myostatin and activin receptor IIb in the regulation of unloading-induced myofiber type-specific skeletal muscle atrophy. J Appl Physiol (1985) 2015; 119: 633-642 [PMID: 26205544 DOI: 10.1152/japplphysiol.00762.2014]
