Synopses

Hundreds of millions of cases of malaria occur annually, and infections with *Plasmodium falciparum*, the most virulent human malaria parasite, cause more than one million deaths per year (1). Despite extensive control efforts, the incidence of the disease is not decreasing in most malaria-endemic areas of the world, and in some it is clearly increasing (2). Malaria also remains a major risk to travelers from industrialized to developing countries. Because malaria parasites are increasingly resistant to antimalarial drugs, appropriately counseled travelers to malaria-endemic regions are more likely to contract malaria now than they were 40 years ago.

Malaria control efforts include attempts to develop an effective vaccine, eradicate mosquito vectors, and develop new drugs (2,3). However, the development of a vaccine has proven very difficult, and a highly effective vaccine will probably not be available in the near future (4). Efforts to control *Anopheles* mosquitoes have had limited success, although the use of insecticide-impregnated bed nets does appear to reduce malaria-related death rates (5). In addition, methods to replace natural vector populations with mosquitoes unable to support parasite development are under study and may contribute to malaria control in the long term (6). However, the current limitations of vaccine and vector control, as well as the increasing resistance of malaria parasites to existing drugs, highlight the continued need for new antimalarial agents.

Established Antimalarial Drugs

Antimalarial drugs have been used for centuries. Early natural products, including the bark of the cinchona tree in South America and extracts of the wormwood plant in China, were among the first effective antimicrobial agents to be used. Cinchona bark was used in Europe beginning in the 17th century, and upon its isolation from bark in 1820, quinine became widely used. In the last 50 years, extensive efforts, including the screening of hundreds of thousands of compounds, have led to the development of a number of effective synthetic antimalarial drugs. The most important of these, chloroquine, has been the mainstay of antimalarial chemotherapy for the last 50 years. The compound eradicates parasites rapidly, has minimal toxicity, is widely available at low cost throughout the world, and needs to be taken only once a week for chemoprophylaxis. However, resistance to chloroquine has been steadily increasing since the drug's initial use in South America and Southeast Asia in the late 1950s. Chloroquine resistance is now widespread in most *P. falciparum*-endemic areas of the world (3). Thus, the use of chloroquine for presumptive treatment of falciparum malaria...
or for chemoprophylaxis is usually no longer appropriate (7). Moreover, resistance to chloroquine of *P. vivax*, the second most lethal human malaria parasite, is increasing in South Asia (8). No other antimalarial drug (9-12) is as efficacious and safe as chloroquine (Table 1). The best antimalarial drug for treating chloroquine-resistant falciparum malaria remains quinine (or intravenous quinidine), which is fairly toxic; quinine resistance is increasing in Southeast Asia, particularly in the border areas of Thailand (9). Amodiaquine, used to treat chloroquine-resistant malaria in developing countries, is also quite toxic, and resistance to it is also common (13). Mefloquine (14) is widely used for chemoprophylaxis against chloroquine-resistant *P. falciparum*, but its use is limited by toxicity (15) and (in the developing world) high cost. Mefloquine is not approved for treatment of malaria in the United States because of the neurotoxicity of doses required for the treatment. Fansidar, a combination of sulfadoxine and pyrimethamine, is no longer recommended for chemoprophylaxis because of its dermatologic toxicity (15). Fansidar is also not an ideal drug for treatment because it is slow acting, but it is increasingly important in treating chloroquine-resistant malaria in developing countries because economic constraints limit the use of other agents (16). The use of both mefloquine and Fansidar will increasingly be limited by drug resistance, already widespread in parts of Southeast Asia (9,17).

Other antimalarial drugs have specialized uses. Tetracyclines and some other antibiotics (clindamycin, sulphas) are slow acting and generally best used as an adjunct to quinine therapy in treating falciparum malaria (9). Doxycycline is also used for chemoprophylaxis in regions with high levels of drug resistance, especially Southeast Asia (10,17). Other drugs for chemoprophylaxis include proguanil, which remains effective in combination with chloroquine in many areas other than Southeast Asia, and Maloprim, a combination of dapsone and pyrimethamine (10,17). Resistance to these drugs is fairly common, however. Primaquine has a well-defined specific role: eradicating chronic liver stages of *P. vivax* and *P. ovale* after treating the acute blood infection with chloroquine.

New Antimalarial Drugs
Relatively few new antimalarial drugs are undergoing clinical testing (Table 2). Halofantrine, identified in the 1940s, was not developed until

Table 1. Established antimalarial drugs

Drug	Role	Best Feature(s)	Limitations
Chloroquine	TX of and CP against non-Pf and sensitive Pf parasites	Very safe; low cost; long half-life	Widespread R
Quinine/quinidine	Best TX for Pf malaria; low cost	Limited R; rapidly acting	Fairly toxic (cinchonism, cardiac)
Amodiaquine	TX of R Pf malaria	Low cost	Toxicity (bone marrow, liver); R common
Mefloquine	CP against R Pf malaria; not approved for TX in United States	Relatively little R, though increasing; long half-life	Moderately toxic (mostly CNS); high cost; R in SE Asia
Fansidar	TX of Pf malaria; no longer recommended for CP	Relatively low cost; long half-life	Skin toxicity (can be fatal); increasing R
Primaquine	Eradication of chronic liver stage Pv, Po malaria	Only drug for this indication	Hemolysis with G6PD deficiency; increasing R
Proguanil	CP only (often with chloroquine)	Low cost; nontoxic	R common
Maloprim	CP only (often with chloroquine)	Low cost	R common; skin rashes
Tetracyclines	CP; TX of Pf malaria in combination with quinine	Low cost	Skin and gastrointestinal toxicity

*aTX, therapy; CP, chemoprophylaxis; R, resistance/resistant; Pf, Plasmodium falciparum; Pv, P. vivax; Po, P. ovale; CNS, central nervous system; G6PD, glucose 6-phosphate dehydrogenase.

*bNot available in the United States.
Synopses

Table 2. New antimalarial drugs

Drug	Role	Best Feature(s)	Limitations
Halofantrine	TX of Pf malaria; not approved for CP	Usually effective against R Pf malaria	Variable bioavailability, cardiac toxicity
Artemisinin and related compounds	TX of Pf malaria	Rapidly acting; effective against multidrug-R strains	Recurrence after TX fairly common
Atovaquone	? TX of Pf malaria; ? CP (probably in combination with proguanil)	Limited toxicity	Limited studies so far show frequent recurrence after TX
Pyronaridine	? TX of Pf malaria	Effective against R strains	Studies limited to date
Desferrooxamine	? TX of severe Pf malaria	Well tolerated when used for iron overload	Studies limited to date
Azithromycin	? CP	Limited toxicity	Studies limited to date

For abbreviations, see Table 1, footnote a.

aNot available in the United States.

The 1980s; its use has been limited by variable oral absorption and cardiac toxicity (12,18). The drug is approved in the United States for treatment of chloroquine-resistant P. falciparum infection, although in most cases quinine (or intravenous quinidine) is preferable. The most effective new drugs are artemisinin and related compounds. Artemisinin was isolated in 1972 from Artemisia annua, a plant used in China for centuries to treat fever (19). Artemisinin derivatives (artesunate, artelinate, arteether, dihydroartemisinin) have been synthesized and are undergoing extensive clinical testing. These compounds, which are already widely used in some areas, are potent, rapidly acting antimalarials that are effective against chloroquine-resistant P. falciparum (20). Because recrudescences of infection after treatment are common, however, artemisinin and related compounds might best be used in combination with another drug.

Other compounds are under evaluation. Atovaquone (21), which is approved for treating patients with Pneumocystis infections, appears to be effective against malaria in combination with proguanil (22), but its use has been limited by recrudescence after treatment. Pyronaridine, an acridine derivative used to treat malaria in China, has shown efficacy against falciparum malaria (23). The iron chelator desferroxamine enhances the clearance of parasites in mild malaria (24) and, in conjunction with quinine and Fansidar, hastens recovery from deep coma in severe falciparum malaria (25). Azithromycin, a quinolone antibiotic, appears efficacious in malaria chemoprophylaxis (26).

Malarial Proteases: New Targets for Chemotherapy

The limitations of antimalarial chemotherapy underscore the need for new drugs, ideally directed against new targets. Potential targets for chemotherapy include malarial proteases (27). The erythrocytic life cycle, which is responsible for all clinical manifestations of malaria, begins when free merozoites invade erythrocytes. The intraerythrocytic parasites develop from small ring-stage organisms to larger, more metabolically active trophozoites and then to multinucleated schizonts. The erythrocytic cycle is completed when mature schizonts rupture erythrocytes, releasing numerous invasive merozoites. Proteases appear to be required for the rupture and subsequent reinvasion of erythrocytes by merozoite-stage parasites and for the degradation of hemoglobin by intraerythrocytic trophozoites (Figure).

Proteases and Erythrocyte Rupture and Invasion

The rupture of erythrocytes by mature schizonts and the subsequent invasion of erythrocytes by free merozoites appear to require malarial protease activity, possibly to breach the erythrocyte cytoskeleton, a complex network of proteins. In addition, a number of malarial proteins are proteolytically processed during the late schizont and merozoite life-cycle stages; for example, merozoite surface protein-1 is processed in a manner inhibited by serine protease inhibitors (28), presumably to facilitate the complex series of events involved in erythrocyte
rupture and invasion (29). Although the specific roles of different classes of proteases are not completely clear, inhibitors of cysteine and serine proteases have consistently blocked erythrocyte rupture and invasion (27).

Candidate *P. falciparum* rupture/invasion proteases have been identified, but none has been fully characterized biochemically or molecularly: 1) a 68 kD cysteine protease was identified in schizonts and merozoites and localized to the merozoite apex, suggesting that it may be released from the rhoptry organelle during invasion (30); 2) a cysteine protease of mature schizonts and a serine protease of merozoites were identified in highly synchronized parasites (31); 3) a serine protease was shown to be bound to the schizont/merozoite membrane by a glycosyl-phosphatidylinositol anchor, to be activated by phosphatidylinositol-specific phospholipase C during the merozoite stage, and to be capable of cleaving the erythrocyte cytoskeletal protein band 3 (32,33); 4) another protease, inhibited by both cysteine and serine protease inhibitors, hydrolyzed the erythrocyte cytoskeletal proteins spectrin and band 4.1 (34); and 5) the serine repeat antigen (35,36) and the related protein SERP H (37), both expressed in mature schizonts, have important similarities in their sequences with cysteine proteases. Further research should identify the specific biologic roles of the proteases mentioned and better characterize these enzymes, thus fostering the development of specific inhibitors.

Host proteases may also play a role in erythrocyte rupture by *P. falciparum*. In recent studies, host urokinase was shown to bind to the surface of *P. falciparum*-infected erythrocytes, and the depletion of urokinase from parasite culture medium inhibited erythrocyte rupture by mature schizonts (38). This inhibition was reversed by exogenous urokinase.

Drug Development Efforts

Synthetic peptide inhibitors of the *P. falciparum* schizont cysteine protease Pf 68 inhibited erythrocyte invasion by cultured parasites (39,40). The most effective peptide, GlcA-Val-Leu-Gly-Lys-NHC$_2$H$_5$-, inhibited the protease and blocked parasite development at high micromolar concentrations (40; Table 3). Although these results do not demonstrate levels of inhibition expected to be therapeutically relevant, they suggest that a specific protease activity is required for erythrocyte invasion by malaria parasites and thus is a potential target for antimalarial drugs.

Proteases and Malarial Hemoglobin Degradation

Extensive evidence suggests that the degradation of hemoglobin is necessary for the growth of erythrocytic malaria parasites, apparently to provide free amino acids for parasite protein synthesis (27,50). In *P. falciparum*, hemoglobin degradation occurs predominantly in trophozoites and early schizonts, the stages at which the parasites are most metabolically active. Trophozoites ingest erythrocyte cytoplasm and transport it to a large central food vacuole. In the food vacuole, hemoglobin is broken down into heme, a major component of malarial pigment (51), and globin, which is hydrolyzed to its constituent amino acids. The food vacuole is an acidic organelle analogous to lysosomes. Several lysosomal proteases are well characterized, including cysteine (cathepsins B, H, and L) and aspartic (cathepsin D) proteases (52), and malaria parasites contain analogous food vacuole proteases that degrade hemoglobin. At least two aspartic proteases and one cysteine protease have been isolated from purified *P. falciparum* food vacuoles (53).

Malarial aspartic protease activities have been identified (54-60). Two recently characterized aspartic proteases (plasmepsin I and
plasmepsin II) are located in the food vacuole, have
acid pH optima, and share sequence homology with
other aspartic proteases (41,53,61,62). Further-
more, the aspartic proteases can cleave hemoglo-
bin. One of the enzymes, plasmepsin I, cleaves
native hemoglobin (53,59). Plasmepsin II appears
to prefer denatured globin as a substrate (53). On
the basis of these data, plasmepsin I is thought to be
responsible for initial cleavages of hemoglobin after
the molecule is transported to the food vacuole (53).

Incubation of cultured *P. falciparum*
trophozoites with the protease inhibitor leupeptin caused
trophozoite food vacuoles to fill with apparently
undegraded erythrocyte cytoplasm (63-65). Analy-
sis of the leupeptin-treated parasites showed that
they contained large quantities of undegraded
globin, while minimal globin was detectable in
control parasites (64,66). Leupeptin inhibits both
cysteine and some serine proteases, but the highly
specific cysteine protease inhibitor E-64 also
caused undegraded globin to accumulate. After
parasites were incubated with inhibitors of other
classes of proteases including the aspartic
protease inhibitor pepstatin (63-67), globin did
not accumulate. More recent studies that used
nondenaturing electrophoretic methods demon-
strated that cysteine protease inhibitors not only
blocked malarial globin hydrolysis, but also
inhibited earlier steps in hemoglobin degrada-
tion, including denaturation of the hemoglobin
tetramer and the release of heme from globin (68).

Another study showed that E-64, but not
pepstatin, inhibited the production of hemozoin
(the malarial end product of heme) by cultured
parasites (69). These results suggest that a
cysteine protease is required for initial steps in
hemoglobin degradation by *P. falciparum*.

A *P. falciparum* trophozoite cysteine protease
with biochemical features expected for a food
vacuole hemoglobinase has been identified (31)
and biochemically (70-72) and molecularly (73)
characterized. This protease, called falcipain,
degraded denatured and native hemoglobin in
vitro; its acid pH optimum, substrate specificity,
and inhibitor sensitivity indicated that it was a
papain family cysteine protease (64,70,71).

Specific inhibitors of falcipain blocked hemoglo-
bin degradation and prevented parasite develop-
ment. The degree of inhibition of falcipain by
fluoromethyl ketones (44) and vinyl sulfones (46)
correlated with their inhibition of hemoglobin
degradation and parasite development, support-
ing the hypothesis that falcipain is the cysteine
protease required for hemoglobin degradation.

The specific mechanism for hemoglobin
degradation in the malarial food vacuole remains
unclear. As noted above, both the aspartic
protease plasmepsin I and the cysteine protease
falcipain have been identified in parasite food
vacuoles and shown to cleave denatured and
native hemoglobin in vitro (53,71). Results
showing that only cysteine protease inhibitors
block hemoglobin processing and globin hydroly-
sis in cultured parasites suggest that falcipain is
required for initial steps of hemoglobin degrada-
tion (66-68,74). However, other studies have

Table 3. Protease targets for chemotherapy

Protease	Biologic role	Effective inhibitorsa	\(\text{IC}_{50}; \mu \text{M} \)	\(\text{mg/kg/day} \)
Pf68	Erythrocyte invasion	GlcA-Val-Leu-Gly-Lys-NHC, H\(_5\) (40)	900	
Plasmepsin I	Hemoglobin degradation	SC-50083 (41)	2-5	
		Ro 40-4388 (42)	0.25	
Plasmepsin II	Hemoglobin degradation	Compound 7 (43)	20	
Falcipain	Hemoglobin degradation	Z-Phe-Arg-CH\(_2\)F (44)	0.064	
		Mu-Phe-HPh-CH\(_2\)F (45)	~0.03	400
		Mu-Leu-HPh-VSPh (46)	0.01	
		Oxalic bis ((2-hydroxy-1-naph-		
		thyl(methylene)hydrazide) (47)	7	
		1,2-dichlorophenyl)-3-		
		(4-quinolinyl)-2-propan-1-one (48)	0.23	
		7-chloro-1,2-dihydro-2-(2,3-di-		
		methoxy-phenyl)-5,5-dioxide-		
		4-(1H,10H)-phenothiazinone (49)	2	

\(a \)The structures of these compounds and details of the described studies are in the references noted.
\(b \)Assays compared the development of new ring-form parasites or the uptake of \(^{3}H\)hypoxanthine by treated and control parasitess.
\(c \)Cure of Plasmodium vinckei-infected mice.
shown that native hemoglobin is cleaved by plasmepsin I, but not falcipain, in nonreducing conditions that may be present in the food vacuole (53,59,72). In any event, regardless of the exact sequence of hemoglobin processing, multiple enzymes, including at least the three proteases already identified, appear to participate in the degradation of hemoglobin. These proteases are thus logical targets for antimalarial drug development.

Aminopeptidase activity has also been described in malaria parasites (75-77). This activity, with a neutral pH optimum, was not found in food vacuole lysates (77). When these lysates were incubated with hemoglobin, discrete peptide fragments, but not free amino acids, were identified (77). These results suggest that hemoglobin is degraded to small peptides in the food vacuole, that these peptides are transported to the parasite cytosol, and that additional processing of hemoglobin peptides is mediated by cytosolic aminopeptidase activity (77).

Drug Development Efforts

Both the cysteine protease inhibitor E-64 and the aspartic protease inhibitor pepstatin blocked P. falciparum development (63-67). Administered together, the two inhibitors acted synergistically (67). However, only E-64 blocked globin hydrolysis (64-67). Numerous peptide-based cysteine protease inhibitors, including fluoromethyl ketones (44,70,78) and vinyl sulfones (46), inhibited falcipain at low nanomolar concentrations and inhibited P. falciparum development and hemoglobin degradation at concentrations below 100 nanomolar (Table 3). In a malaria animal model, a fluoromethyl ketone that inhibited falcipain at low nanomolar concentrations blocked P. vinckei protease activity in vivo after a single subcutaneous dose, and, when administered for 4 days, cured 80% of murine malaria infections (45). Thus, despite the theoretical limitations of potentially rapid degradation in vivo and inhibition of host proteases, peptide protease inhibitors show promise as candidate antimalarial drugs. Fluoromethyl ketones have subsequently shown toxicity in animal studies, but evaluations of related, apparently nontoxic inhibitors of falcipain as antimalarial drugs are under way.

A computer model for the structure of falcipain was used to identify nonpeptide inhibitors identified a low micromolar lead compound (47; Table 3). Subsequent synthesis and testing of small molecules based on the structure of the lead compound have identified biologically active falcipain inhibitors, including chalcones that block parasite metabolism at submicromolar concentrations (48) and phenothiazines that block parasite metabolism and development at low micromolar concentrations (49).

Peptidelike aspartic protease inhibitors are potent inhibitors of plasmepsins I and II. In independent studies SC-50083 (41), Ro 40-4388 (42), and “compound 7” (43) inhibited plasmepsin I or II at nanomolar concentrations and blocked parasite development at high nanomolar to micromolar concentrations (Table 3). Drug development efforts should be assisted by the recent determination of the structure of plasmepsin II (43). Inhibitors of aspartic and cysteine proteases have synergistic effects in inhibiting the growth of cultured malaria parasites (67), and these proteases also act synergistically to degrade hemoglobin in vitro (41). Therefore, the combination of inhibitors of malarial cysteine and aspartic proteases may provide the most effective chemotherapeutic regimen and best limit the development of parasite resistance to protease inhibitors. Ultimately, a better understanding of the biochemical properties and biologic roles of malarial proteases will foster the development of protease inhibitors that specifically inhibit parasite enzymes and thus are the most suitable candidates for chemotherapy.

Acknowledgments

Work in the author's laboratory was supported by grants from the National Institutes of Health, the UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases, and the American Heart Association.

Dr. Rosenthal is associate professor, Department of Medicine, Division of Infectious Diseases, San Francisco General Hospital and the University of California, San Francisco. His research interests include the evaluation of proteases of malaria parasites as chemotherapeutic targets.

References

1. Walsh JA. Disease problems in the Third World. Ann N Y Acad Sci 1989;569:1-16.
2. Oaks SC, Mitchell VS, Pearson GW, Carpenter CCJ, editors. Malaria: obstacles and opportunities. Washington: National Academy Press; 1991.
3. Olliaro P, Cattani J, Wirth D. Malaria, the submerged disease. JAMA 1996;275:230-3.
4. Hoffman SL, Miller LH. Perspectives on malaria vaccine development. In: Hoffman SL, editor. Malaria vaccine development. Washington: ASM Press; 1996. p. 1-13.

5. Alonso PL, Lindsay SW, Armstrong JRM, Contehe M, Hill AG, David PH, et al. The effect of insecticide-treated bed nets on mortality of Gambian children. Lancet 1991;337:1499-502.

6. Collins FH, Besansky NJ. Vector biology and the control of malaria in Africa. Science 1994;264:1874-5.

7. Centers for Disease Control. Recommendations for the prevention of malaria among travelers. JAMA 1990;263:2729-40.

8. Murphy GS, Basri H, Purnomo, Andersen EM, Bangs MJ, Mount DL, et al. Vivax malaria resistant to treatment and prophylaxis with chloroquine. Lancet 1993;341:96-100.

9. Panisko DM, Keystone JS. Treatment of malaria—1996. Drugs 1996;52:818-36.

10. Keystone JS. Prevention of malaria. Drugs 1990;39:337-54.

11. Wyler DJ. Malaria chemoprophylaxis for the traveler. N Engl J Med 1993;327:57-63.

12. White JJ. The treatment of malaria. N Engl J Med 1996;335:800-6.

13. Olliário P, Neill C, LeBras J, Ringwald P, Musso P, Garner P, et al. Systematic review of amodiaquine treatment in uncomplicated malaria. Lancet 1996;348:1196-201.

14. Palmer KJ, Holliday SM, Brogden RN. Mefloquine: a review of its antimalarial activity, pharmacokinetic properties and therapeutic efficacy. Drugs 1993;45:430-75.

15. Luzzi GA, Peto TEA. Adverse effects of antimalarials: an update. Drug Saf 1993;8:295-311.

16. Hellgren U, Khamia CM, Bergqvist Y, Lebbad M, Premji Z, Rombo L. Standard and reduced doses of sulfadoxine-pyrimethamine for treatment of Plasmodium falciparum in Tanzania, with determination of drug concentrations and susceptibility in vitro. Trans R Soc Trop Med Hyg 1990;84:469-73.

17. Bradley DJ, Warhurst DC. Malaria prophylaxis: guidelines for travellers from Britain. BMJ 1995;310:709-14.

18. Bryson HM, Goa KL. Halofantrine: a review of its antimalarial activity, pharmacokinetic properties and therapeutic potential. Drugs 1992;43:236-58.

19. Meshnick SR, Taylor TE, Kamchowongpaian S. Artemisinin and the antimalarial endoperoxides: from herbal remedy to targeted chemotherapy. Microb Rev 1996;60:301-15.

20. de Vries PJ, Diën TK. Clinical pharmacology and therapeutic potential of artemisinin and its derivatives in the treatment of malaria. Drugs 1996;52:818-36.

21. Haile LG, Flaherty JF. Atovaquone: a review. Ann Pharmacother 1993;27:1488-94.

22. Radloff PD, Philipps J, Nkeyi M, Hutchinson D, Kremsner PG. Atovaquone and proguanil for Plasmodium falciparum malaria. Lancet 1996;347:1511-4.

23. Ringwald P, Bizik J, Basco L. Randomised trial of pyronaridine versus chloroquine for acute uncomplicated falciparum malaria in Africa. Lancet 1996;347:24-8.
Emerging Infectious Diseases Vol. 4, No. 1, January–March 1998

40. Mayer R, Picard I, Lawton P, Grelle P, Barrault C, Monsigny M, et al. Peptide derivatives specific for a Plasmodium falciparum protease inhibit the human erythrocyte invasion by merozoites. J Med Chem 1991;34:3029-35.

41. Francis SE, Gluzman IY, Oksman A, Knickerbocker A, Mueller R, Bryant ML, et al. Molecular characterization and inhibition of a Plasmodium falciparum aspartic hemoglobinase. EMBO J 1994;13:306-17.

42. Moon RP, Tyas L, Certa U, Rupp K, Bur D, Jacquet C, et al. Expression and characterization of plasminogen I from Plasmodium falciparum. Eur J Biochem 1997;244:552-60.

43. Silva AM, Lee AY, Gulnik SV, Majer P, Collins J, Bhat R. Molecular characterisation of the Plasmodium falciparum hemoglobinase. Proc Natl Acad Sci U S A 1996;93:10034-9.

44. Rosenthal PJ, Wollish WS, Palmer JT, Rasnick D. Antimalarial effects of peptide inhibitors of a Plasmodium falciparum cysteine protease. J Clin Invest 1991;88:1467-72.

45. Rosenthal PJ, Lee GK, Smith RE. Inhibition of a Plasmodium vinckei cysteine protease cures murine malaria. J Clin Invest 1993;91:1052-6.

46. Rosenthal PJ, Olson JE, Lee G, Palmer JT, Kraus J, Rasnick D. Antimalarial effects of vinyl sulfone protease inhibitors from Plasmodium falciparum. Antimicrob Agents Chemother 1996;40:1600-3.

47. Li R, Kenyon GL, Cohen FE, Chen X, Gong B, Dominguez JN, et al. In vitro antimalarial activity of calichexone and their derivatives. J Med Chem 1995;38:5031-7.

48. Dominguez JN, Lopez S, Charriss J, Iarruso L, Lobo G, Semenov A, et al. Synthesis and antimalarial effects of phenothiazine inhibitors of a Plasmodium falciparum cysteine protease. J Med Chem 1997;40:2726-32.

49. Rosenthal PJ, Moshnick SR. Hemoglobin catabolism and iron utilization by malaria parasites. Mol Biochem Parasitol 1996;83:131-9.

50. Slater AFG. Malaria pigment. Exp Parasitol 1987;67:333-44.

51. Gyang FN, Poole B, Trager W. Peptidases from Plasmodium falciparum cultured in vitro. Mol Biochem Parasitol 1982;5:263-7.

52. Aissi E, Charet P, Bouquet S, Biguet J. Endopeptidase in Plasmodium yoelii nigeriensis. Comp Biochem Physiol 1983;74:559-66.

53. Sherman IW, Tanigoshi L. Purification of Plasmodium lophurae cathepsin D and its effects on erythrocyte membrane proteins. Mol Biochem Parasitol 1983;8:207-26.
71. Salas F, Fichmann J, Lee GK, Scott MD, Rosenthal PJ. Functional expression of falcipain, a Plasmodium falciparum cysteine proteinase, supports its role as a malarial hemoglobinase. Infect Immun 1995;63:2120-5.

72. Francis SE, Gluzman IY, Oksman A, Banerjee D, Goldberg DE. Characterization of native falcipain, an enzyme involved in Plasmodium falciparum hemoglobin degradation. Mol Biochem Parasitol 1996;83:189-200.

73. Rosenthal PJ, Nelson RG. Isolation and characterization of a cysteine proteinase gene of Plasmodium falciparum. Mol Biochem Parasitol 1992;51:143-52.

74. Kamchonwongpaisan S, Samoff E, Meshnick SR. Identification of hemoglobin degradation products in Plasmodium falciparum. Mol Biochem Parasitol 1997;86:179-86.

75. Vander Jagt DL, Baack BR, Hunsaker LA. Purification and characterization of an aminopeptidase from Plasmodium falciparum. Mol Biochem Parasitol 1984;10:45-54.

76. Curley GP, O'Donovan SM, McNally J, Mullally M, O'Hara H, Troy A, et al. Aminopeptidases from Plasmodium falciparum, Plasmodium chabaudi, and Plasmodium berghei. J Eukaryot Microbiol 1994;41:119-23.

77. Kolakovich KA, Gluzman IY, Duffin KL, Goldberg DE. Generation of hemoglobin peptides in the acidic digestive vacuole of Plasmodium falciparum implicates peptide transport in amino acid production. Mol Biochem Parasitol 1997;87:123-35.

78. Rockett KA, Playfair JHL, Ashall F, Targett GAT, Angliker H, Shaw E. Inhibition of intraerythrocytic development of Plasmodium falciparum by proteinase inhibitors. FEBS Lett 1990;259:257-9.