Construction of the Vacuum String Field Theory on a non-BPS Brane

I.Ya. Aref’eva
Steklov Mathematical Institute,
Gubkin st. 8, GSP-1, Moscow, 117966, Russia
arefeva@mi.ras.ru

D.M. Belov*
Department of Physics, Rutgers University,
Piscataway, NJ 08855, USA
belov@physics.rutgers.edu

and

A.A. Giryavets
Faculty of Physics, Moscow State University,
Moscow, 119899, Russia
alexgir@mail.ru

Abstract

In the framework of the Sen conjectures a construction of vacuum superstring field theory on a non-BPS brane is discussed. A distinguished feature of this theory is a presence of a ghost kinetic operator mixing GSO± sectors. We proposed a candidate for such kinetic operator with zero cohomology.

*On leave from Steklov Mathematical Institute.
1 Introduction

During the last year the bosonic vacuum string field theory (VSFT) proposed to describe physics around the bosonic tachyon vacuum [1] has been investigated in many papers [2]-[34]. VSFT action has the same form as the original Witten SFT action [35], but with a new differential operator Q (for a review of SFT see [36, 37, 38]). The absence of physical open string excitations around the tachyon vacuum [39]-[43] supports a suggestion [1] that after some field redefinition Q can be written as a pure ghost operator. Under this assumption solutions to VSFT equation of motion admit a factorized form with the projector-like matter part. Solutions of projector equation have been discussed in many details in the references [2]-[8]. This equation is similar to the non-commutative soliton equations in the large non-commutativity limit [44].

A generalization of VSFT to superstrings has been discussed in [1] and more recently in [15] and [16] in the context of cubic SSFT [19, 20] and non-polynomial SSFT [17], respectively. Open fermionic string in the NSR formalism has a tachyon in the GSO— sector that leads to a classical instability of the perturbative vacuum in the theory without supersymmetry.
It has been proposed \cite{39} to interpret the tachyon condensation in the GSO− sector of the NS string as a decay of unstable non-BPS D9-brane.

The cubic action unifying NS GSO± sectors was constructed \cite{48} as a generalization of the cubic action for GSO+ sector \cite{49, 50}. As in the bosonic case the vacuum superstring field theory (VSSFT) is obtained by a shift of string field \(\hat{A} = (A_+, A_-) \), which describes both GSO+ and GSO− sectors, by the tachyon vacuum \(\hat{A}_0 = (A_{0,+}, A_{0,-}) \). This shift leads to the new (shifted) BRST charge, that inevitably has matrix form. Assuming the statements of Sen conjectures we can also think that after a proper field redefinition the shifted BRST charge acts non-trivially only in (super)ghost sector. In this case VSSFT equations of motion factorizes into a matter part and a ghost part. But the factorization in the ghost part is a bit different as compare to one in the bosonic VSFT. In the matter part we will have standard equations for the projectors. Fermionic projectors, such as the sliver, have been constructed recently in \cite{45, 46}.

In the present paper we discuss a possible form of the vacuum ghost kinetic operator \(\hat{Q} \) in cubic VSSFT. Within the level truncation scheme it has been shown \cite{48} that the tachyon potential in the cubic open SFT has a non-trivial minimum with \(A_{0,+} \neq 0 \) and \(A_{0,-} \neq 0 \). Therefore, there is a reason to assume that the vacuum ghost kinetic operator \(\hat{Q} \):

\[
\hat{Q} = \begin{pmatrix} Q_{\text{odd}} & Q_{\text{even}} \\ -Q_{\text{even}} & -Q_{\text{odd}} \end{pmatrix},
\]

mixes GSO± sectors, i.e. with \(Q_{\text{even}} \neq 0 \). If \(Q_{\text{even}} \) would be zero, we can take \(Q_{\text{odd}} \) to be the ghost kinetic operator used in the bosonic VSFT \cite{24}. But since it is not the case we have to search for another expression for \(Q_{\text{odd}} \).

To be derivatives of the star algebra operators \(Q_{\text{odd}} \) and \(Q_{\text{even}} \) should satisfy some identities, in particular, \(\langle I | Q_{\text{odd}} = 0 \) and \(\langle I | Q_{\text{even}} = 0 \), here \(I \) is the identity of the star algebra \cite{52}. Both \(\langle I | Q_{\text{odd}} \) and \(\langle I | Q_{\text{even}} \) are singular \cite{52}, therefore these expressions require some regularization and we will discuss it in Section 3.2.

Note that to come back from VSSFT to the perturbative vacuum one has to study solutions of the VSSFT equations with non-zero components in both GSO+ and GSO− sectors (see Figure \ref{fig:1}).

The paper is organized as follows. In Section 4 we describe cubic vacuum superstring field theory on the non-BPS D-brane. Construction of the kinetic operators is presented in Section 3. Appendix A contains some technical details about matrix representation of the cubic action. Appendix B contains the construction of non-polynomial Vacuum SSFT on a non-BPS brane.

\[\text{Note, that the pure GSO+ slightly modified theory has a non-trivial saddle-point } A_{0,+} \neq 0 \text{ at list at the first truncated levels } \cite{53}. \text{ However in this case there is no reason to assume that the corresponding } Q \text{ is pure ghost.}\]
Figure 1: Scheme of vacua in SSFT. The point P denotes the perturbative vacuum, the points T and T' denote the true vacua, the E denotes a solution found in [53]. The arrow connecting T and P denotes a solution of VSSFT representing the original non-BPS brane.

2 Cubic Vacuum String Field Theory on a non-BPS D-brane

2.1 Review of Cubic String Field Theory on a non-BPS D-brane

To describe the open string states living on a single non-BPS D-brane one has to consider GSO$^\pm$ states [39]. GSO$^-$ states are Grassmann even, while GSO$^+$ states are Grassmann odd (see Table 1). The unique (up to rescaling of the fields) gauge invariant cubic action unifying GSO$^+$ and GSO$^-$ sectors is [48]

$$S[A_+, A_-] = \frac{1}{g_0^2} \left[\frac{1}{2} \langle Y_{-2} | A_+, Q_B A_+ \rangle + \frac{1}{3} \langle Y_{-2} | A_+, A_+, A_+ \rangle
+ \frac{1}{2} \langle Y_{-2} | A_-, Q_B A_- \rangle - \langle Y_{-2} | A_+, A_-, A_- \rangle \right].$$ (2.1)

Here the factors before the odd brackets are fixed by the constraint of gauge invariance, that

Notion	Parity	GSO	Superghost number	Weight (h)	Comments
A_+	odd	+	1	$h \in \mathbb{Z}$, $h \geq -1$	string
A_-	even	-	1	$h \in \mathbb{Z} + \frac{1}{2}$, $h \geq -\frac{1}{2}$	fields
A_+	even	+	0	$h \in \mathbb{Z}$, $h \geq 0$	gauge
A_-	odd	-	0	$h \in \mathbb{Z} + \frac{1}{2}$, $h \geq \frac{1}{2}$	parameters

Table 1: Parity of string fields and gauge parameters in the 0 picture.
is specified below, and reality of the string fields \(A_\pm \). Variation of this action with respect to \(A_+ \), \(A_- \) yields the following equations of motion (see [48] for details)

\[
\begin{align*}
Q_B A_+ + A_+ * A_+ - A_- * A_+ &= 0, \\
Q_B A_- + A_- * A_- - A_+ * A_- &= 0.
\end{align*}
\]

(2.2)

The action (2.1) is invariant under the gauge transformations

\[
\begin{align*}
\delta A_+ &= Q_B \Lambda_+ + [A_+, \Lambda_+] + \{A_-, \Lambda_+\}, \\
\delta A_- &= Q_B \Lambda_- + [A_-, \Lambda_-] + \{A_+, \Lambda_-\},
\end{align*}
\]

(2.3)

where \([,] \) (\(\{ , \} \)) denotes \(*\)-commutator \((-\text{anticommutator})\) and \(\Lambda_\pm \) are gauge parameters (see Table 1).

The action (2.1) can be rewritten in the matrix form as (see Appendix A)

\[
S[\hat{A}] = \frac{1}{2g_o^2} \text{Tr} \left[\frac{1}{2} \int' \hat{A} * \hat{Q}_B \hat{A} + \frac{1}{3} \int' \hat{A} * \hat{A} * \hat{A} \right],
\]

(2.4)

where

\[
\hat{Q}_B = Q_B \otimes a, \quad \hat{Y}_{-2} = Y_{-2} \otimes a,
\]

(2.5)

\[
\hat{A} = A_+ \otimes a + A_- \otimes b
\]

(2.6)

and \(a \) and \(b \) are \(2 \times 2 \) matrices such that

\[
a^2 = 1, \quad b^2 = -1, \quad \{a, b\} = 0.
\]

(2.7)

One can check the following identity

\[
\hat{Q}_B (\hat{\Phi} * \hat{\Psi}) = (\hat{Q}_B \hat{\Phi}) * \hat{\Psi} + (-1)^{\hat{\Phi} | \hat{\Phi}} (\hat{Q}_B \hat{\Psi}),
\]

(2.8)

where \(\hat{\Phi} \) and \(\hat{\Psi} \) are string fields

\[
\hat{\Phi} = \Phi_+ \otimes a + \Phi_- \otimes b \quad \text{and} \quad \hat{\Psi} = \Psi_+ \otimes a + \Psi_- \otimes b
\]

(2.9)

and parity operator \((-1)^{|\Phi|}\) is defined as\(^2\)

\[
(-1)^{|\Phi|} \Phi_+ = (-1)^{\Phi_+} | \Phi_+ \quad \text{and} \quad (-1)^{|\Phi|} \Phi_- = -(1)^{\Phi_-} | \Phi_-.
\]

(2.10)

The equation of motion following from the action (2.4) is

\[
\hat{Q}_B \hat{A} + \hat{A} * \hat{A} = 0.
\]

(2.11)

\(^2\) Our parity operator (2.10) can also be written as \((-1)^{|\Phi|}\). This is true because all string fields and gauge parameters which we use satisfy the condition \((-1)^{|\Phi|} (-1)^{|\Phi|} = 1\).
One can check that the equation (2.11) yields the equations (2.2). The action (2.4) is invariant under the following gauge transformations

\[
\delta \hat{A} = \hat{Q}_B \hat{A} + [\hat{A}, \Lambda],
\]

where

\[
\Lambda = \Lambda_+ \otimes 1 + \Lambda_- \otimes ab.
\]

It is a matter of simple algebra to check that the gauge transformations (2.12a) yield the gauge transformations (2.3) for the fields \(A_\pm\).

Symmetries

The action (2.4) is invariant under the following symmetry transformations:

1. GSO symmetry. It is given by the following transformations

\[
\hat{A} \mapsto ((-1)^F \otimes 1) \hat{A},
\]

or in components

\[
A_+ \mapsto A_+ \quad \text{and} \quad A_- \mapsto -A_-
\]

One can also check that the BRST charge \(\hat{Q}_B\) commutes with \((-1)^F \otimes 1\);

2. Twist symmetry. The generator of this discrete symmetry is denoted by \(\Omega\). Its action on the string field is given by the conformal transformation \(M(z) = e^{-\pi i z}\). One can easily check that the BRST charge \(Q_B\) commutes with \(\Omega\).

2.2 Construction of the Cubic Vacuum Superstring Field Theory

Let \(\hat{A}_0\) be a solution of the equation (2.11). A shift of a string field \(\hat{A}\)

\[
\hat{A} = \hat{A}_0 + \hat{\Lambda}
\]

yields the following form of the action (2.4)

\[
S[\hat{A}_0, \hat{A}] = S[\hat{A}_0] + \frac{1}{2g_0^2} \text{Tr} \left[\frac{1}{2} \int \hat{A} \ast \hat{Q} \hat{A} + \frac{1}{3} \int \hat{A} \ast \hat{A} \ast \hat{A} \right],
\]

where \(\hat{Q}\) is “a new BRST charge” of the form

\[
\hat{Q} = \hat{Q}_B + \{\hat{A}_0, \cdot\}.
\]

Further we will refer to \(\hat{Q}\) as to kinetic operator. One can check that the equation \(\hat{Q}^2 = 0\) yields the equation of motion for the field \(\hat{A}_0\) and therefore \(\hat{Q}\) is nilpotent.
Now let us investigate the structure of the shifted BRST charge more carefully. Consider an arbitrary string field Φ, then the operator \(2.15\) acts on it as follows

\[
\hat{Q}\Phi = Q_B\Phi + A_{0,+} \otimes \Phi + A_{0,-} \otimes \Phi \pm b \pm a + \Phi \otimes a + \Phi \otimes b = (Q_B\Phi + \{A_{0,+}, \Phi\} - \{A_{0,-}, \Phi\}) \otimes 1 + (Q_B\Phi + \{A_{0,+}, \Phi\} - \{A_{0,-}, \Phi\}) \otimes ab. \tag{2.16}
\]

Let us introduce two new operators Q_{odd} and Q_{even}:

\[
Q_{\text{odd}} Z = Q_B Z + A_{0,+} \ast Z - (-1)^{|Z|} Z \ast A_{0,+}, \tag{2.19a}
\]

\[
Q_{\text{even}} Z = A_{0,-} \ast Z + (-1)^{|Z|} Z \ast A_{0,-}, \tag{2.19b}
\]

where Z is a string field in GSO+ or GSO- sector and $|Z|$ is a parity of the field Z. One sees that \(2.16\) means that \hat{Q} can be written in the form

\[
\hat{Q} = Q_{\text{odd}} \otimes a + Q_{\text{even}} \otimes b. \tag{2.20}
\]

The nilpotency of the \hat{Q} yields the following identities for the operators Q_{odd} and Q_{even}

\[
Q_{\text{odd}}^2 = Q_{\text{even}}^2 = 0 \quad \text{and} \quad [Q_{\text{odd}}, Q_{\text{even}}] = 0. \tag{2.21}
\]

Symmetries

Let us now discuss what happened to the symmetries \(2.13\).

1. GSO symmetry. It is now broken. This happens because the generator of this symmetry $(-1)^F$ does not commute the kinetic operator \(2.15\). Under the action of $(-1)^F$ the kinetic operator \(2.19\), \(2.20\) transforms to

\[
Q_{\text{odd}} \mapsto Q_{\text{odd}} \quad \text{and} \quad Q_{\text{even}} \mapsto -Q_{\text{even}}.
\]

It is very natural that GSO symmetry is broken when we consider a theory around the vacuum solution. The reason is the following \[55\]: the original theory has GSO symmetry, therefore if $(A_{0,+}, A_{0,-})$ is a solution of the EOM, then so is $(A_{0,+}, -A_{0,-})$ (see Figure \[4\]). And therefore we have to have two possible vacuum solutions. This kinetic operators are related to each other by GSO transformation.

\[3\]The generalization of \(2.15\) and \(2.19\) for the case of the arbitrary ghost number of Z was given in \[52\] :

\[
\hat{Q} \hat{Z} = Q_B \hat{Z} + \hat{A}_0 \ast \hat{Z} - (-1)^{gh(Z)} \hat{Z} \ast \hat{A}_0 \tag{2.17}
\]

and

\[
Q_{\text{odd}} Z = Q_B Z + A_{0,+} \ast Z - (-1)^{|Z|} Z \ast A_{0,+}, \tag{2.18a}
\]

\[
Q_{\text{even}} Z = A_{0,-} \ast Z - (-1)^{\text{GSO}(Z)} Z \ast A_{0,-}. \tag{2.18b}
\]

This coincides with \(2.15\) and \(2.19\) for odd ghost number.
2. Twist symmetry. In general the twist symmetry is broken. The only class of the kinetic operators which allows unbroken twist symmetry are the ones corresponding to the solutions satisfying \(\Omega(A_{0,+}) = A_{0,+} \) and \(\Omega(A_{0,-}) = A_{0,-} \).

2.3 VSSFT Equations of Motion

Equations of motion following from the VSFT action (2.14) have the same form as (2.11) but with the shifted BRST operator \(\hat{Q} \). In components these equations are

\[
\begin{align*}
Q_{\text{odd}}A_+ - Q_{\text{even}}A_- + A_+ \star A_- - A_- \star A_+ &= 0, \\
Q_{\text{odd}}A_- - Q_{\text{even}}A_+ + A_+ \star A_- - A_- \star A_+ &= 0.
\end{align*}
\]

(2.22)

It is more convenient to rewrite these equations in “light-cone” variables \(\mathcal{A} \) and \(\bar{\mathcal{A}} \):

\[
\mathcal{A} = A_+ - A_- \quad \text{and} \quad \bar{\mathcal{A}} = A_+ + A_-.
\]

(2.23)

Then equations (2.22) have the following simple form:

\[
q\bar{\mathcal{A}} + \mathcal{A} \star \bar{\mathcal{A}} = 0 \quad \text{and} \quad \bar{q}\mathcal{A} + \mathcal{A} \star \mathcal{A} = 0,
\]

(2.24)

where

\[
q = Q_{\text{odd}} - Q_{\text{even}} \quad \text{and} \quad \bar{q} = Q_{\text{odd}} + Q_{\text{even}}.
\]

(2.25)

From the relations (2.21) one can get the following properties of the charges \(q \) and \(\bar{q} \):

\[
q\bar{q} = 0 \quad \text{and} \quad \bar{q}q = 0.
\]

(2.26)

It is also fruitful to rewrite the gauge transformation

\[
\delta \mathcal{A} = \hat{Q}\Lambda + [\mathcal{A}, \Lambda]
\]

in the light-cone variables:

\[
\Lambda = \Lambda_+ - \Lambda_- \quad \text{and} \quad \bar{\Lambda} = \Lambda_+ + \Lambda_-.
\]

(2.27)

The gauge transformations become

\[
\begin{align*}
\delta \mathcal{A} &= q\Lambda + A \star \Lambda - \bar{\Lambda} \star A, \\
\delta \bar{\mathcal{A}} &= \bar{q}\bar{\Lambda} + \bar{\mathcal{A}} \star \bar{\Lambda} - \Lambda \star \bar{\mathcal{A}}.
\end{align*}
\]

(2.28)
3 Construction of the Ghost Kinetic Operators

3.1 Restrictions on \hat{Q} following from Sen conjectures

According to Sen conjectures \[39\] the solution \hat{A}_0 represents the vacuum without open string excitations\[4\], and therefore the cohomology of the kinetic operator \hat{Q} must be zero.

As in the bosonic case \[1\] here it also might be easier to guess the form of the BRST charge then to derive it. In proposing a simple form of the vacuum SSFT action, we have in mind field redefinition, which preserves the form of the cubic action, but simplifies the expression for the kinetic operator \hat{Q}. By an appropriate field redefinition

$$\hat{U} = \mathcal{U}_{\text{even}} \otimes 1 + \mathcal{U}_{\text{odd}} \otimes ab$$

we will assume a $*$-algebra homomorphism

$$\hat{U}(\hat{A} \ast \hat{B}) = (\hat{U}\hat{A}) \ast (\hat{U}\hat{B}),$$

which satisfy two additional conditions: the invariance of the integral with respect to this homomorphism

$$\text{Tr} \int' \hat{U}\hat{A} = \text{Tr} \int' \hat{A};$$

and the existence of the right inverse

$$\hat{U}\hat{U}^{-1} = 1.$$

The \ast in the expressions for the field redefinition \hat{U} is very important since this transformation acts in both GSO+ and GSO− sectors. Using (3.29) one can check that after the field redefinition

$$\hat{A} \mapsto \hat{U}\hat{A}$$

the kinetic operator transforms into

$$\hat{Q} = \hat{U}^{-1}\hat{Q}\hat{U}.$$

Note that the transformation \hat{U} is highly non-trivial and mixes GSO+ and GSO− sectors.

Now it can be useful to consider an example of the field redefinition that can seriously simplify an expression for BRST charge. Let consider the standard BRST charge in the superconformal field theory

$$Q_B = \frac{1}{2\pi i} \int d\zeta \left[c(T_B + T_\phi + T_\eta + \frac{1}{2} T_{bc}) - \eta e^\phi T_F + \frac{1}{4} b\partial\eta e^{2\phi} \right].$$

\[3.31\]

\[4\]This conjecture has been checked for the non-BPS brane decay only at the first non-trivial level \[38\].
One can check that after the homogenous field redefinition \[U = e^{-R}, \quad \text{where} \quad R = \frac{1}{2\pi i} \oint d\zeta \left[cT_F e^{-\phi} e^\chi + \frac{1}{4} \partial(e^{-2\phi})e^{2\chi} c\partial c \right] \] (3.32)

the BRST charge (3.31) takes the form

\[Q = U^{-1} Q_B U = \frac{1}{2\pi i} \oint d\zeta b\gamma^2(\zeta). \] (3.33)

Following the idea of the paper [1], which is based on Sen conjectures, gauge invariance and algebraic properties of the BRST charge, we require \(\hat{Q} \) to satisfy the following properties:

1. \(\hat{Q} = Q_{\text{odd}} \otimes a + Q_{\text{even}} \otimes b; \)

2. Both \(Q_{\text{odd}} \) and \(Q_{\text{even}} \) have superghost number equal to one, but \(Q_{\text{odd}} \) is Grassmann odd, while \(Q_{\text{even}} \) is Grassmann even;

3. \(\hat{Q} \) is a nilpotent operator, that in components means the identities

\[Q_{\text{odd}}^2 - Q_{\text{even}}^2 = 0 \quad \text{and} \quad [Q_{\text{odd}}, Q_{\text{even}}] = 0; \] (3.34a)

4. \(\hat{Q} \) is a differentiation of the \(\star \)-algebra

\[\hat{Q}(\hat{A} \star \hat{B}) = (\hat{Q}\hat{A}) \star \hat{B} + (-1)^{|\hat{A}|} \hat{A} \star (\hat{Q}\hat{B}), \] (3.34b)

where the parity operator \((-1)^{|\hat{A}|} \) was defined in (2.10). In particular, this identity means that operators \(Q_{\text{odd}} \) and \(Q_{\text{even}} \) also satisfy the Leibnitz rule;

5. The integral of the full derivative is zero

\[\text{Tr} \int' \hat{Q}(\hat{A} \star \hat{B}) = 0; \] (3.34c)

6. The operator \(\hat{Q} \) must be universal, what means that it has to be written without reference to the brane boundary CFT;

7. The operator \(\hat{Q} \) must have vanishing cohomology;

8. The operator \(\hat{Q} \) must commute with the double step inverse picture-changing operator

\[[\hat{Y}_{-2}, \hat{Q}] = 0 \quad \text{or} \quad \{\hat{Y}_{-2}, \hat{Q}\} = 0. \] (3.34d)
We need this axiom to relate the axiom 5 with the fact that \hat{Q} annihilates the identity $|I\rangle$. Therefore we can have several variations of this axiom and in general we only need something like the following

$$Q_{\text{odd}}Y_{-2} \pm Y_{-2}Q_{\text{odd}} = 0 \quad \text{and} \quad Q_{\text{even}}Y_{-2} \pm Y_{-2}Q_{\text{even}} = 0;$$

Plus/minus in these formulae can be chosen independently.

9. \hat{Q} is a hermitian operator, which means that both Q_{odd} and Q_{even} are hermitian ones.

We will construct the operator satisfying these requirements in the next subsection.

Note that in the case of non-polynomial superstring field theory \cite{47} all the requirements remains the same, but the axiom 8 about commutation with the double step inverse picture-changing operator has to be changed into requirement of anticommutation with $\hat{\eta}_0$ (see Appendix B for details).

3.2 Construction of the new kinetic operator

The simplest way to satisfy the conditions (3.34) is to put $Q_{\text{even}} = 0$ and choose Q_{odd} as in the bosonic theory or put

$$Q_{\text{odd}} = \frac{1}{2\pi i} \oint d\zeta b\gamma^2(\zeta).$$

However since $A_{0,+} \neq 0$ and $A_{0,-} \neq 0$ we believe that after the field redefinition both charges Q_{odd} and Q_{even} are non zero.

One can try to take the following formal expression for the ghost kinetic operator \footnote{We have discussed this form of the ghost kinetic operator in the first version of this paper}

$$Q_{\text{odd}} = \mu^2 c(i) + \frac{1}{2\pi i} \oint b(z)\gamma^2(z)dz, \quad (3.35a)$$
$$Q_{\text{even}} = \mu \gamma(i), \quad (3.35b)$$

where μ is a complex number. This kinetic operator satisfies the conditions 1-8, however, as it has been noted by Ohmori \cite{57} this operator does not satisfy 9. The following modification of (3.35) has been proposed in \cite{57}

$$Q_{\text{odd}} = \frac{\mu^2}{4i} \left[c(i) - c(-i) \right] + \frac{1}{2\pi i} \oint b(z)\gamma^2(z)dz, \quad (3.36a)$$
$$Q_{\text{even}}^+ = \frac{\mu}{2i} \left[\gamma(i) - \gamma(-i) \right]; \quad (3.36b)$$
$$Q_{\text{even}}^- = \frac{\mu}{2} \left[\gamma(i) + \gamma(-i) \right], \quad (3.36c)$$

where Q_{even}^\pm means the restriction of the operator Q_{even} to GSO\pm sectors. In some sense (3.36) is the only form for the kinetic operator which satisfies the twist invariance and the
conditions (3.34). One can explain it as follows. Following [24] consider an original (before field redefinition) BRST charge Q defined as

$$Q = \sum_r \frac{1}{2\pi i} \oint d\zeta a_r(\zeta) \mathcal{O}_r(\zeta)$$

(3.37)

where a_r are smooth forms of ζ and $\mathcal{O}_r(\zeta)$ are some local conformal operators of ghost number 1. It was shown [24] that after a singular field redefinition the dominant contribution to the transformed charge \hat{Q} will come from the lowest dimensional conformal operators. This has led to the choice of $c(i)$ and $c(-i)$ in the bosonic case, and this also leads to our choice of $\mathcal{Q}_{\text{even}}$, since γ is the lowest dimensional even primary operator of ghost number 1.

The ansatz (3.36) obviously satisfies the axiom 2 from the previous subsection. The axiom 3 about nilpotency of \hat{Q} is also satisfied, because

$$\mathcal{Q}_{\text{odd}}^2 \equiv \mathcal{Q}_{\text{even}}^\dagger \mathcal{Q}_{\text{even}} = \mu^2 \frac{1}{4i} (\gamma^2(i) - \gamma^2(-i))$$

(3.38a)

and since there is no β in the expression for \mathcal{Q}_{odd} one gets

$$[\mathcal{Q}_{\text{odd}}, \mathcal{Q}_{\text{even}}] = 0.$$

(3.38b)

The most non trivial is to check the axiom 4, which in particular says that \mathcal{Q}_{odd} and $\mathcal{Q}_{\text{even}}$ admit the Leibnitz rule and the axiom 5, which says that integral of “the full derivative” is zero. These axioms are also related to the hermitian property of the kinetic ghost operator

$$\text{Tr} \langle \langle \hat{A}, \hat{Q}\hat{B} \rangle \rangle = \text{Tr} \langle \langle \hat{Q}\hat{A}, \hat{B} \rangle \rangle$$

(3.39)

and the gauge invariance of the vacuum string field theory action. It is a matter of overlap equations that if we could proof the axiom 5, then the axiom 4 will be automatically satisfied.

3.2.1 Check of axiom 5.

It doesn’t seem that \mathcal{Q}_{odd} and $\mathcal{Q}_{\text{even}}$, which contain midpoint insertions, can satisfy axiom 5. The reason is that they diverge acting on the identity $|\mathcal{I}\rangle$. However, one can define \mathcal{Q}_{odd} and $\mathcal{Q}_{\text{even}}$ as a limit of a sequence with each element annihilating the identity.

To construct such a sequence let us consider the overlap equation for the identity. To write it one has to be very careful, because in the superconformal CFT we have conformal fields with half integer weights. We will also assume that we make double trick for antiholomorphic operators, and therefore the overlap equation will connect the fields on the boundary of the unit disk, and not only on the boundary of the upper half unit disk. The argument of coordinate z on the unit disk is in interval $(-\pi, \pi)$. The following overlap equations for a conformal operator \mathcal{O}_h of the weight h take place:

$$\left[\mathcal{O}_h(z) - \frac{1}{z^2} \mathcal{O}_h \left(\frac{e^{i\pi}}{z} \right) \right] |\mathcal{I}\rangle = 0, \text{ for } |z| = 1, \Re z < 0 \text{ and } \Im z > 0;$$

(3.40a)

$$\left[\mathcal{O}_h(z) - \frac{e^{-2\pi i}}{z^2} \mathcal{O}_h \left(\frac{e^{-i\pi}}{z} \right) \right] |\mathcal{I}\rangle = 0, \text{ for } |z| = 1, \Re z < 0 \text{ and } \Im z < 0.$$

(3.40b)
So one sees that if h is a half integer the second equation differs from the first by a sign of the second term.

Now the regularization is clear. Let us simply define kinetic operators $Q_{\text{odd}}^\varepsilon$ and $Q_{\text{even}}^\varepsilon$ by substitutions

\begin{align*}
 c(i) &\mapsto \frac{1}{2} \left[e^{-i\varepsilon c(i e^{i\varepsilon})} + e^{i\varepsilon c(i e^{-i\varepsilon})} \right], \\
 \gamma(i) &\mapsto \frac{1}{e^{-i\pi/4} - e^{i\pi/4}} \left[e^{-i\pi/4 - i\varepsilon/2} \gamma(i e^{i\varepsilon}) - e^{i\pi/4 + i\varepsilon/2} \gamma(i e^{-i\varepsilon}) \right].
\end{align*}

This regularization corresponds to a splitting of the midpoint insertion into two insertions on the left-half and on the right-half of the string. In limit $\varepsilon \to 0$ one recovers the midpoint insertion. From overlap equations (3.41) it follows that

\begin{align*}
 \left[e^{-i\varepsilon c(i e^{i\varepsilon})} + e^{i\varepsilon c(i e^{-i\varepsilon})} \right]|I\rangle = 0, \\
 \left[e^{-i\pi/4 - i\varepsilon/2} \gamma(i e^{i\varepsilon}) - e^{i\pi/4 + i\varepsilon/2} \gamma(i e^{-i\varepsilon}) \right]|I\rangle = 0.
\end{align*}

One can now define Q_{odd} and Q_{even} as

\begin{align*}
 Q_{\text{odd}} &\equiv \lim_{\varepsilon \to 0} Q_{\text{odd}}^\varepsilon \quad \text{and} \quad Q_{\text{even}} &\equiv \lim_{\varepsilon \to 0} Q_{\text{even}}^\varepsilon.
\end{align*}

This finishes the proof that Q_{odd} and Q_{even} annihilate the identity.

3.2.2 Check of axiom 7. Zero cohomology.

As in the bosonic case [24] the equation $\hat{Q}\hat{\Psi} = 0$ has no non-zero solutions which belong to Fock space $|I\rangle$. Let us suppose that there is a generalized state $\hat{\Psi}$ annihilated by \hat{Q}. We want to show that for any such $\hat{\Psi}$ there exists $\hat{\Lambda}$ such that

$$
\hat{\Psi} = \hat{Q}\hat{\Lambda}.
$$

To show this it is sufficient to find an operator \hat{K} such that

$$
\{ \hat{Q}, \hat{K} \} = \text{Id} \otimes 1.
$$

Indeed, acting by $\hat{K}\hat{Q}$ onto the expression (3.44)

$$
0 = \hat{K}(\hat{Q}\hat{\Psi}) = \hat{Q}(\hat{K}\hat{\Psi}),
$$

we find $\hat{\Lambda} = \hat{K}\hat{\Psi}$.

It is natural to search for the operator \hat{K} in the following form

$$
\hat{K} = \mathcal{K}_+ \otimes a + \mathcal{K}_- \otimes b.
$$

6This is so because \hat{Q} involves oscillators of all possible levels, while states in Fock space have to be polynomials.
The equation (3.43) yields
\[\text{Id} \otimes 1 = \{ \hat{Q}, \hat{K} \} = (\{ Q_{\text{odd}}, K_{+} \} - \{ Q_{\text{even}}, K_{-} \}) \otimes 1 + (-[Q_{\text{even}}, K_{+}] + [Q_{\text{odd}}, K_{-}]) \otimes ab. \]

For the operators \(Q_{\text{odd}} \) and \(Q_{\text{even}} \) defined by (3.36) one can take
\[K_{-} = 0 \quad \text{and} \quad K_{+} = \frac{2}{\mu^2} b_0. \]

3.2.3 Check of axiom 8.

We show that the following relations are true
\[[Q_{\text{odd}}, Y_{-2}] = 0 \quad \text{and} \quad [Q_{\text{even}}, Y_{-2}] = 0. \]

The first commutator is obviously zero, since \(Y_{-2} \) commutes with \(c(\cdot) \). It also commutes with \(\oint b \gamma^2 \), since it is a part of the original BRST charge. Let us check the second commutator. To this end let us remind, that
\[Y_{-2} = Y(i)Y(-i), \quad Y(z) = 4c\partial\xi e^{-2\phi(z)} \quad \text{and} \quad \gamma(z) = \eta e^{\phi(z)}. \]

Consider the following OPEs:
\[
Y(i)Y(-i)\gamma(z) = -c(i)c(-i) \left[\partial \xi(i)\partial \xi(-i)\eta(z) : -\frac{\partial \xi(i)}{(i + z)^2} + \frac{\partial \xi(-i)}{(i - z)^2} \right] (z^2 + 1)^2 e^{-2\phi(i)-2\phi(-i)+\phi(z)}
\]
\[
\gamma(z)Y(i)Y(-i) = -c(i)c(-i) \left[\partial \xi(i)\partial \xi(-i)\eta(z) : -\frac{\partial \xi(i)}{(i + z)^2} + \frac{\partial \xi(-i)}{(i - z)^2} \right] (z^2 + 1)^2 e^{-2\phi(i)-2\phi(-i)+\phi(z)}
\]

So one sees that \([\gamma(z), Y_{-2}] = 0\) for any \(z \). Now assuming that we are dealing with the regularized charge \(Q_{\text{even}}^\varepsilon \) we get that it commutes with the double step inverse insertion operator. And after taking the limit \(\varepsilon \to 0 \) we obtain the result required for \(Q_{\text{even}} \).

3.2.4 Check of axiom 9.

It has been shown in [57] that the hermitian property (3.39) holds due to the following conformal properties of the kinetic operator
\[
Q_{\text{even}}^+ = -I \circ Q_{\text{even}}^-;
\]
\[
Q_{\text{even}}^- = I \circ Q_{\text{even}}^+;
\]

where \(I(z) = -1/z \).
3.2.5 Symmetries.

Let us now check that the ghost kinetic operators (3.36) satisfy the symmetries we have discussed on page 8.

1. GSO symmetry. GSO transformation relates the ghost kinetic operators (3.36) with μ and $-\mu$.

2. Twist symmetry. Twist transformation Ω changes $i \mapsto -i$ and

 \begin{align}
 \Omega c(i)\Omega^{-1} &= -c(-i), & \Omega c(-i)\Omega^{-1} &= -c(i), \\
 \Omega \gamma(i)\Omega^{-1} &= i \gamma(-i), & \Omega \gamma(-i)\Omega^{-1} &= i \gamma(i).
 \end{align}

 (3.50a) (3.50b)

The twist operator Ω acts in the following way on the string fields of definite weight $|A\rangle$:

\begin{align}
\Omega(|A_+\rangle) &= (-1)^{h_A+1}|A_+\rangle, \\
\Omega(|A_-\rangle) &= (-1)^{h_A-\frac{1}{2}}|A_-\rangle.
\end{align}

(3.51a) (3.51b)

Using this fact Ohmori [57] has shown that the following identities hold

\begin{align}
\Omega(Q_{\text{even}}^+|A_+\rangle) &= Q_{\text{even}}^+\Omega(|A_+\rangle), \\
\Omega(Q_{\text{even}}^-|A_-\rangle) &= Q_{\text{even}}^-\Omega(|A_-\rangle).
\end{align}

(3.52a) (3.52b)

This means that the twist invariant choice of the kinetic operator Q_{even} takes the different form in GSO+ and GSO− sectors.

4 Conclusion and Discussions

In this paper we have considered a simplest candidate for the kinetic operator of the cubic VSSFT which describes a result of a decay of unstable non-BPS brane. In spite of the fact that we consider only cubic superstring field theory, our results concerning the ghost kinetic operator can be applied to the Berkovits non-polynomial superstring field theory (see Appendix 3).

As the problems to be solved let us note

- Find the solution of the ghost equations of motion

- Question about the restoration of the supersymmetry in the non-perturbative vacuum.

Acknowledgments

We would like to thank A.S.Koshelev for discussions. This work was supported in part by RFBR grant 02-01-00695 and RFBR grant for leading scientific schools and by INTAS grant 99-0590.

\footnote{Solutions of the ghost equations of motion has been discussed recently in [56], [57].}
Appendix

A Matrix Representation of non-GSO Projected String Fields

The cubic action involving these two sectors was constructed by the authors in [48]. Here we will rewrite it in more simple form using only one (matrix valued) string field:

\[\hat{A} = \mathcal{A}_+ \otimes a + \mathcal{A}_- \otimes b, \]

(A.1)

where \(a \) and \(b \) are \(N \times N \) matrices we wish to find. We have to write also

\[\hat{Q}_B = Q_B \otimes q \quad \text{and} \quad \hat{Y}_{-2} = Y_{-2} \otimes y, \]

(A.2)

where \(q \) and \(y \) are also \(N \times N \) matrices we need to determine. We propose the action for string field (A.1) in the form

\[S = \frac{1}{g_0^2} \frac{1}{N} \text{Tr} \left[\frac{1}{2} \int' \hat{A} \star \hat{Q}_B \hat{A} + \frac{1}{3} \int' \hat{A} \star \hat{A} \star \hat{A} \right], \]

(A.3)

where \(\text{Tr} \) is trace over the matrix multiplier and \(\int' \) denotes Witten’s integration but with the insertion of double step inverse picture changing operator \(Y_{-2} \), i.e. \(\int' = \int \hat{Y}_{-2}. \) One can check that to obtain the action proposed in [48] the matrices \(q, y, a, b \) have to satisfy the following conditions:

\[\text{Tr}(yaqa) = \text{Tr}(ybqb) = N; \]

(A.4a)

\[\text{Tr}(ya^3) = N; \]

(A.4b)

\[\text{Tr}(yab^2) = - \text{Tr}(ybab) = \text{Tr}(yb^2a); \]

(A.4c)

\[\text{Tr}(yab^2) = -N. \]

(A.4d)

The condition (A.4c) is satisfied if

\[[a, b^2] = 0 \quad \text{and} \quad \{a, b\} = 0. \]

(A.5a)

The condition (A.4b) is satisfied if

\[a^2 = 1 \quad \text{and} \quad y = a. \]

(A.5b)

And the conditions (A.4a) and (A.4d) are satisfied if

\[q = a \quad \text{and} \quad b^2 = -1. \]

(A.5c)

So we are left with two matrices \(a \) and \(b \) such that

\[a^2 = 1, \quad b^2 = -1 \quad \text{and} \quad \{a, b\} = 0. \]

(A.6)

Further we will assume that \(a \) and \(b \) are \(2 \times 2 \) matrices, for example

\[a = \sigma_3, \quad b = i\sigma_2 \quad \text{and} \quad ab = \sigma_1. \]

(A.7)
B Application to non-polynomial String Field Theory

Let us remind the action for the NS sector of the non-polynomial super string field theory on a non-BPS brane [47]:

\[S[\hat{\Phi}] = \frac{1}{4} \text{Tr} \left[\left(e^{-\hat{\Phi}} \hat{Q} e^{\hat{\Phi}} \right) \left(e^{-\hat{\eta}} \hat{\eta} e^{\hat{\Phi}} \right) - \int_0^1 dt \left(e^{-t\hat{\Phi}} \partial_t e^{t\hat{\Phi}} \right) \left(e^{-t\hat{\Phi}} \hat{Q} e^{t\hat{\Phi}} \right) \left(e^{-t\hat{\Phi}} \hat{\eta} e^{t\hat{\Phi}} \right) \right], \]

(B.1)

where

\[\hat{\Phi} = \Phi_+ \otimes 1 + \Phi_- \otimes ab, \quad \hat{Q}_B = Q_B \otimes a \quad \text{and} \quad \hat{\eta} = \eta_0 \otimes a. \]

(B.2)

Here matrices \(a \) and \(b \) are defined by (A.7), \(\Phi_+ \) and \(\Phi_- \) are picture zero superghost zero string fields in GSO+ (Grassmann even) and GSO− (Grassmann odd) sector respectively.

It is shown in the papers [54] and [46] that the action for the shifted string field \(\hat{h} \) has the same form as the original one (B.1), but with the shifted BRST charge \(\hat{Q} \), which is defined on an arbitrary string field \(\hat{\Phi} \) as

\[\hat{Q}\hat{\Phi} = \hat{Q}_B \hat{\Phi} + \{\hat{A}, \hat{\Phi}\}. \]

(B.3)

Here

\[\hat{A} = e^{-\hat{\Phi}_0} \hat{Q}_B e^{\hat{\Phi}_0} \]

(B.4)

and \(\Phi_0 \) is a solution of the equations of motion following from (B.1). Using the matrix representations for \(\hat{Q}_B \) and \(\Phi_0 \) one can show that \(\hat{A} \) can be represented in the following form

\[\hat{A} = A_{\text{odd}} \otimes a + A_{\text{even}} \otimes b. \]

(B.5)

Now let us substitute this representation into (B.3)

\[\hat{Q}\hat{\Phi} = Q_B \Phi_+ \otimes a + Q_B \Phi_- \otimes b + \{A_{\text{odd}} \otimes a + A_{\text{even}} \otimes b, \Phi_+ \otimes 1 + \Phi_- \otimes ab\} \]

\[= (Q_B \Phi_+ + \{A_{\text{odd}}, \Phi_+\} + \{A_{\text{even}}, \Phi_-\}) \otimes a + (Q_B \Phi_- + \{A_{\text{odd}}, \Phi_-\} + \{A_{\text{even}}, \Phi_+\}) \otimes b. \]

(B.6)

Let us introduce two new operators \(Q_{\text{odd}} \) and \(Q_{\text{even}} \):

\[Q_{\text{odd}} X = Q_B X + A_{\text{odd}} \ast X + (-1)^{|X|} X \ast A_{\text{odd}}, \]

\[Q_{\text{even}} X = A_{\text{even}} \ast X - (-1)^{|X|} X \ast A_{\text{even}}, \]

(B.7a)

(B.7b)

where \(X \) is a string field in GSO+ or GSO− sector and \(|X|\) is a parity of the field \(X \). Notice that the difference between the formulae (2.19b) and (B.7b) in the sign is only due to the difference in the definition of the string field (compare (2.6) and (B.2)), but in principle the
operators defined by (B.7) and (2.19) are the same. One sees that (B.6) means that \(\hat{Q} \) can be written in the form

\[
\hat{Q} = Q_{\text{odd}} \otimes a + Q_{\text{even}} \otimes b.
\]

(B.8)

The nilpotency\(^8\) of the \(\hat{Q} \) yields the following identities for the operators \(Q_{\text{odd}} \) and \(Q_{\text{even}} \)

\[
Q_{\text{odd}}^2 - Q_{\text{even}}^2 = 0 \quad \text{and} \quad [Q_{\text{odd}}, Q_{\text{even}}] = 0.
\]

(B.9)

Starting from this moment all the results obtained in Section 3 can be applied to the BRST charge defined by (B.8) without any modifications. Moreover one can check that the ghost kinetic operator (3.36) satisfies the equation \(\{ \hat{\eta}_0, \hat{Q} \} = 0 \).

References

[1] L. Rastelli, A. Sen and B. Zwiebach, String field theory around the tachyon vacuum, hep-th/0012257.

[2] L. Rastelli and B. Zwiebach, Tachyon potentials, star products and universality, JHEP 0109 (2001) 038, hep-th/0006240.

[3] V.A. Kostelecky and R. Potting, Analytical construction of a nonperturbative vacuum for the open bosonic string, Phys.Rev. D63 (2001) 046007, hep-th/0008252.

[4] L. Rastelli, A. Sen, B. Zwiebach, Classical Solutions in String Field Theory Around the Tachyon Vacuum, hep-th/0102112.

[5] L. Rastelli, A. Sen and B. Zwiebach, Half-strings, projectors, and multiple D-branes in vacuum string field theory, JHEP 0111 (2001) 035, hep-th/0105058.

[6] D.J. Gross and W. Taylor, Split string field theory. I, JHEP 0108, 009 (2001), hep-th/0105059.

[7] D.J. Gross and W. Taylor, Split string field theory. II, JHEP 0108, 010 (2001), hep-th/0106036.

[8] L. Rastelli, A. Sen and B. Zwiebach, Boundary CFT construction of D-branes in vacuum string field theory, JHEP 0111 (2001) 045, hep-th/0105168.

[9] T. Kawano and K. Okuyama, Open string fields as matrices, JHEP 0106 (2001) 061, hep-th/0105129.

[10] L. Rastelli, A. Sen and B. Zwiebach, Vacuum string field theory, hep-th/0106010.

\(^8\)Let us notice the difference in cubic and non-polynomial SFTs. In the cubic SFT the nilpotency of the shifted BRST charge yields the equations of motion for the background field, while in the non-polynomial one the nilpotency of the shifted BRST charge is just an algebraic identity. The equations of motion for the background field are obtained from the requirement \(\{ \hat{\eta}_0, \hat{Q} \} = 0 \). Therefore one has to add this condition to the axioms in the Section 3.
[11] J.R. David, *Excitations on wedge states and on the silver*, JHEP 0107 (2001) 024, hep-th/0105184.

[12] D.J. Gross, V. Periwal, *String field theory, non-commutative Chern-Simons theory and Lie algebra cohomology*, JHEP 0108 (2001) 008, hep-th/0106212.

[13] T. Takahashi, S. Tanimoto, *Wilson Lines and Classical Solutions in Cubic Open String Field Theory*, Prog.Theor.Phys. 106 (2001) 863-872, hep-th/0107046.

[14] K. Furuuchi and K. Okuyama, *Comma vertex and string field algebra*, JHEP 0109 (2001) 035, hep-th/0107101.

[15] Y. Matsuo, *BCFT and silver state*, Phys.Lett. B513 (2001) 195-199, hep-th/0105173.

[16] H. Hata and T. Kawano, *Open string states around a classical solution in vacuum string field theory*, JHEP 0111 (2001) 038, hep-th/0108150.

[17] I. Kishimoto, *Some properties of string field algebra*, JHEP 0112 (2001) 007, hep-th/0110124.

[18] P. Mukhopadhyay, *Oscillator representation of the BCFT construction of D-branes in vacuum string field theory*, Phys.Lett. B514 (2001) 407-412, hep-th/0106021.

[19] N. Moeller, *Some exact results on the matter star-product in the half-string formalism*, hep-th/0110201.

[20] H. Hata and S. Moriyama, *Observables as twist anomaly in vacuum string field theory*, hep-th/0111034.

[21] G. Moore and W. Taylor, *The singular geometry of the sliver*, hep-th/0111069.

[22] K. Okuyama, *Siegel Gauge in Vacuum String Field Theory*, hep-th/0111087.

[23] A. Hashimoto and N. Itzhaki, *Observables of String Field Theory*, hep-th/0111092.

[24] D. Gaiotto, L. Rastelli, A. Sen and B. Zwiebach, *Ghost Structure and Closed Strings in Vacuum String Field Theory*, hep-th/0111129.

[25] L. Rastelli, A. Sen and B. Zwiebach, *A Note on a Proposal for the Tachyon State in Vacuum String Field Theory*, hep-th/0111153.

[26] L. Rastelli, A. Sen and B. Zwiebach, *Star Algebra Spectroscopy*, hep-th/0111281.

[27] T. Takahashi, S. Tanimoto, *Dilaton Condensation in Cubic Open String Field Theory*, hep-th/0112124.

[28] I. Kishimoto, K. Ohmori, *CFT Description of Identity String Field: Toward Derivation of the VSFT Action*, hep-th/0112169.
[29] K. Okuyama, *Ghost Kinetic Operator of Vacuum String Field Theory*, hep-th/0201013.

[30] M. Schnabl, *Wedge states in string field theory*, hep-th/0201093.

[31] K. Okuyama, *Ratio of Tensions from Vacuum String Field Theory*, hep-th/0201136.

[32] T. Okuda, *The Equality of Solutions in Vacuum String Field Theory*, hep-th/0201149.

[33] H. Hata, S. Moriyama, S. Teraguchi, *Exact Results on Twist Anomaly*, hep-th/0201177.

[34] D. Gaiotto, L. Rastelli, A. Sen and B. Zwiebach, *Patterns in Open String Field Theory Solutions*, hep-th/0201159.

[35] E. Witten, *Noncommutative geometry and string field theory*, Nucl.Phys. B268 (1986) 253; E. Witten, *Interacting field theory of open superstrings*, Nucl.Phys. B276 (1986) 291.

[36] K. Ohmori, *A Review on Tachyon Condensation in Open String Field Theories*, hep-th/0102085.

[37] P. De Smet, *Tachyon Condensation: Calculations in String Field Theory*, hep-th/0109182.

[38] I.Ya. Aref’eva, D.M. Belov, A.A. Giryavets, A.S. Koshelev, P.B. Medvedev, *Noncommutative Field Theories and (Super)String Field Theories*, hep-th/0111208.

[39] A. Sen, *Stable non BPS bound states of BPS D-branes*, JHEP 08 010 (1998), hep-th/9805019. A. Sen, *Descent relations among bosonic D-branes*, Int. J. Mod. Phys. A 14 (1999) 4061, hep-th/9902103. A. Sen, *SO(32) spinors of type I and other solitons on brane-anti-brane pair*, JHEP 09 023 (1998), hep-th/9808141. A. Sen, *Non-BPS States and Branes in String Theory*, hep-th/9904207.

[40] H. Hata, S. Shinohara, *BRST Invariance of the Non-Perturbative Vacuum in Bosonic Open String Field Theory*, JHEP 0009 (2000) 035, hep-th/0009105.

[41] H. Hata, S. Teraguchi, *Test of the Absence of Kinetic Terms around the Tachyon Vacuum in Cubic String Field Theory*, JHEP 0105 (2001) 045, hep-th/0101162.

[42] I. Ellwood, W. Taylor, *Open string field theory without open strings*, Phys.Lett. B512 (2001) 181, hep-th/0103085.

[43] I. Ellwood, B. Feng, Y.-H. He and N. Moeller, *The Identity String Field and the Tachyon Vacuum*, JHEP 0107 (2001) 016, hep-th/0105024.

[44] R. Gopakumar, S. Minwalla and A. Strominger, *Noncommutative Solitons*, JHEP 0005 (2000) 020, hep-th/0003160.

[45] I.Ya. Aref’eva, A.A. Giryavets and P.B. Medvedev, *NS Matter Sliver*, Phys.Lett.B532 (2002) 291, hep-th/0112214.

[46] M. Marino, R. Schiappa, *Towards Vacuum Superstring Field Theory: The Supersliver*, hep-th/0112234.
[47] N. Berkovits, _Super-Poincare Invariant Superstring Field Theory_, Nucl.Phys. B450 (1995) 90, [hep-th/9503099].
N. Berkovits, A. Sen, B. Zwiebach, _Tachyon Condensation in Superstring Field Theory_, Nucl.Phys. B587 (2000) 147, [hep-th/0002211].

[48] I.Ya. Aref’eva, D.M. Belov, A.S. Koshelev and P.B. Medvedev, _Tachyon Condensation in the Cubic Superstring Field Theory_, to be published in Nucl.Phys. B, [hep-th/0011117].

[49] I.Ya. Aref’eva, P.B. Medvedev and A.P. Zubarev, _New representation for string field solves the consistency problem for open superstring field_, Nucl.Phys. B341 (1990) 464.

[50] C.R. Preitschopf, C.B. Thorn and S.A. Yost, _Superstring Field Theory_, Nucl.Phys. B337 (1990) 363.

[51] J.N. Acosta, N. Berkovits, O. Chandia, _A Note on the Superstring BRST Operator_, Phys.Lett. B454 (1999) 247, [hep-th/9902178].

[52] D. Gross and A. Jevicki, _Operator Formulation of Interacting String Field Theory, (I), (II)_ , Nucl.Phys. B283 (1987) 1; Nucl.Phys B287 (1987) 225.
D. Gross and A. Jevicki, _Operator Formulation of Interacting String Field Theory (III). NSP superstring_, Nucl.Phys. B293 (1987) 29.

[53] I.Ya. Aref’eva, P.B. Medvedev and A.P. Zubarev, _Nonperturbative vacuum for superstring field theory and supersymmetry breaking_, Mod. Phys. Lett. A6 (1991) 949.

[54] J. Kluson, _Some Remarks About Berkovits’ Superstring Field Theory_, JHEP 0106 (2001) 045, [hep-th/0105319].

[55] B. Zwiebach, private communication.

[56] I.Ya. Aref’eva, A.A. Giryavets and A.S. Koshelev, _NS Ghost Slivers_, Phys.Lett.B536 (2002) 138, [hep-th/0203227].

[57] K. Ohmori, _On Ghost Structure of Vacuum Superstring Field Theory_, [hep-th/0208009].