Background: Reliable testing for SARS-CoV-2 is key for the management of the COVID-19 pandemic. Aim: We estimate diagnostic accuracy for nucleic acid and antibody tests 5 months into the COVID-19 pandemic, and compare with manufacturer-reported accuracy. Methods: We reviewed the clinical performance of SARS-CoV-2 nucleic acid and antibody tests based on 93,757 test results from 151 published studies and 20,205 new test results from 12 countries in the European Union and European Economic Area (EU/EEA). Results: Pooling the results and considering only results with 95% confidence interval width ≤ 5%, we found four nucleic acid tests, including one point-of-care test and three antibody tests, with a clinical sensitivity ≥ 95% for at least one target population (hospitalised, mild or asymptomatic, or unknown). Nine nucleic acid tests and 25 antibody tests, 12 of them point-of-care tests, had a clinical specificity of ≥ 98%. Three antibody tests achieved both thresholds. Study heterogeneity was low for eight of 14 sensitivity and 68 of 84 specificity results with confidence interval width ≤ 5%, and lower for nucleic acid tests than antibody tests. Manufacturer-reported clinical performance was significantly higher than independently assessed in 11 of 32 and four of 34 cases, respectively, for sensitivity and specificity, indicating a need for improvement in this area. Conclusion: Continuous monitoring of clinical performance within more clearly defined target populations is needed.

Introduction
Testing is one of the central pillars of public health actions in epidemic and pandemic situations to allow timely identification, contact tracing and isolation of infectious cases to reduce the spread of infectious diseases. In addition, it allows estimating disease incidence, disease prevalence, and prevalence and duration of humoral immunity. Reliable testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and timely reporting of the data to public health authorities is therefore key for the management of the coronavirus disease (COVID-19) pandemic. This requires appropriate and sufficiently accurate diagnostic tests to identify individuals who are currently infected with SARS-CoV-2 as well as those who have been infected in the past. Timely access to testing, sufficient supply of testing materials, availability of tests and related reagents and consumables as well as high-throughput testing are pivotal in this context.

By August 2020, a large number of commercial tests for SARS-CoV-2 RNA detection (nucleic acid tests) were available, as well as serological tests for SARS-CoV-2-specific antibodies. The various types of tests can be used for different purposes and many of these tests have the CE certificate for in vitro diagnostics (CE-IVD) that indicates compliance with the European IVD directive (98/79/EC) and can thus be marketed in the countries in the European Union and European Economic Area (EU/EEA). In addition, the United States (US) Food and Drug Administration has granted emergency use authorisations for many commercial tests in the US, and the World Health Organization (WHO) maintains an emergency use listing of commercial tests [1,2]. It is, however, important to note that CE certification is based on a self-declaration of the test manufacturer, including the claims on performance of the test. Independent information on the clinical performance of these tests in terms of sensitivity and specificity is still limited, and yet this is critical for proper interpretation of results.

For this reason, the European Centre for Disease Prevention and Control (ECDC) launched a continuous
EC: European Commission COVID-19 In Vitro Diagnostic Devices

Table of data screening and selection criteria:

Database/Filter	n = 1,738	n = 1,520	n = 118	
PubMed search up to 22 August	Screened out	n = 1,420	Screened out	n = 268
FIND database up to 22 August	n = 385			
EC database up to 22 August	n = 188			
Systematic reviews:				
• Boger et al. n = 10				
• Caini et al. n = 6				
• Deeks et al. n = 52				
• Dénies et al. n = 18				
• ElmirFTR, n = 41				
• La Marca et al. n = 64				
• Lisboa Basto et al. n = 39				
• Moura et al. n = 5				
• FDAs genotype dataset up to 21 August	n = 1			
Excluded:				
• No data on commercial tests n = 105				
• Potential conflict of interest n = 34				
• Ineligible design n = 74				
Unique full text assessed for eligibility	n = 364			
Public studies included	n = 151			
sensitivity results below the threshold number of days after onset were excluded. Sensitivity and positive agreement results were further stratified by case population as hospitalised cases, mild or asymptomatic cases, or unknown. We calculated pooled sensitivity and specificity values using fixed effects analysis, i.e. separately summing and dividing the number of correct predictions by the total number of samples in the group. Wilson score 95% confidence intervals (CI) were calculated for pooled results. Study heterogeneity was assessed through the I² statistic, calculated through random effects analysis using R version 4.0.2 and the metafor package [18]. We considered I² values < 50.0% as low heterogeneity, 50.0–74.9% as moderate and ≥ 75% as high heterogeneity.

Results

Minimum performance criteria
By 1 June 2020, minimum performance criteria for tests were publicly available from Belgium, France, the Netherlands and the UK (Supplementary Table S1). All were applicable solely to antibody tests. The intended uses included diagnosis of COVID-19, determination of exposure to SARS-CoV-2 and determination of the immune status against SARS-CoV-2. Minimum clinical sensitivity for all of the specified intended uses ranged

Table 1

Descriptive statistics on the number of published studies on clinical performance of SARS-CoV-2 nucleic acid and antibody tests, whether we included additional original data, and number of samples included in the meta-analysis, up to 22 August 2020 (n = 151 studies)

Country	Studies	Original data	PCR sens/spec	CLIA sens/spec	ELISA sens/spec	LFIA sens/spec	Other* sens/spec	Total sens/spec
Australia	3	No	125/59	0/0	1,511/1,012	0/0	1,845/1,071	
Austria	5	No	115/75	195/2,308	421/0	220/0	0/0	951/2,383
Belgium	6	Yes	22/6	1,192/1,031	957/922	3,934/2,985	287/254	6,392/5,198
Brazil	1	No	0/0	0/0	0/100	0/0	0/0	
Canada	1	No	0/0	84/150	185/150	499/450	0/0	768/750
China	17	No	36/6	3,659/1,572	1,494/726	1,038/557	0/0	6,555/2,855
Croatia	0	Yes	168/271	0/0	0/0	0/0	0/0	168/271
Cyprus	0	Yes	6/466	0/0	0/0	0/0	0/0	6/466
Denmark	2	No	0/0	1,495/4,421	195/1,403	126/62	0/0	1,816/5,886
Ecuador	1	No	33/21	0/0	0/0	0/0	0/0	33/21
Finland	3	Yes	121/75	0/82	64/238	0/242	0/0	185/637
France	13	Yes	567/324	173/165	515/154	1,160/486	154/625	2,569/1,754
Germany	9	No	85/200	643/1,597	508/568	32/13	0/0	1,268/2,378
Greece	0	Yes	0/0	0/0	139/20	0/0	0/0	139/20
Hong Kong SAR	1	No	72/114	0/0	0/0	0/0	0/0	72/114
Italy	10	No	0/0	139/37	531/203	60/97	0/0	730/337
Japan	5	No	340/435	0/0	735/245	98/111	0/0	1,173/791
Luxembourg	0	Yes	0/0	0/0	235/218	0/0	0/0	235/218
The Netherlands	4	Yes	253/210	415/1,177	2,107/3,449	2,336/1,642	0/0	5,111/6,478
Norway	1	No	0/0	0/0	0/207	0/0	0/0	207/0
Poland	0	Yes	390/662	0/0	0/0	0/0	0/0	390/662
Portugal	0	Yes	0/0	0/0	0/0	22/28	0/0	22/28
Singapore	2	No	0/0	202/878	0/0	0/0	0/0	202/878
Slovenia	1	Yes	168/641	0/0	0/0	0/0	0/0	168/641
South Korea	1	No	0/0	0/0	140/158	0/0	0/0	140/158
Spain	4	No	0/0	0/0	0/124	806/566	0/0	806/566
Sweden	2	Yes	39/4	58/113	0/0	78/248	0/0	175/356
Switzerland	6	No	1,920/3,816	0/0	312/50	129/50	100/200	2,461/4,116
Taiwan	1	No	0/0	0/0	0/129	0/0	0/0	129/0
United Kingdom	17	No	15/170	1,975/5,247	65/0	412/200	0/0	2,467/7,157
United States	35	No	2,273/2,628	1,260/4,164	794/769	5,446/11,140	587/1,295	10,360/19,996
Total	151	NA	7,076/11,717	11,490/22,942	8,731/8,994	19,020/20,281	1,226/2,485	47,543/66,419

CLIA: chemiluminescence assay; ELISA: enzyme-linked immunosorbent assay; LFIA: lateral flow immunoassay; sens/spec: number of samples that are reference test positive/negative; NA: not applicable; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2.

* Includes loop-mediated isothermal amplification, microarray, transcription-mediated amplification, and enzyme-linked fluorescent assay.
from 85% to 98%, with a median of 95%. These thresholds applied to samples collected at least 15 days post onset of symptoms (dpo), taking into account the time to seroconversion. Minimum clinical specificity for all of the specified intended uses was 98% in three countries and 98.5% in one. For nucleic acid confirmatory tests, the draft WHO Target Product Profiles for priority diagnostics to support response to the COVID-19 pandemic state >95% to >98% sensitivity (acceptable/desired) and >99% specificity [19].

We used general thresholds of >95% sensitivity and >98% specificity to determine if a test met the minimum performance criteria, together with a maximum 95% CI width ≤ 5%. For results on IgM antibodies only, an upper limit of ≤ 28 dpo, or the highest dpo category with an upper limit ≤ 28 dpo, was added since IgM antibodies decrease fairly rapidly and such tests are not intended to be used long after exposure [20]. These sensitivity and specificity thresholds can be converted to false positives (FP) and negatives (FN), and positive and negative predictive value (PPV, NPV) if the prevalence of the condition, i.e. SARS-CoV-2 nucleic acid or antibody positivity, is known. These metrics better express the real impact of the accuracy. For a hypothetical low prevalence of 1% in a population of 100,000 people, the PPV would be 32.4% (FP<1,980) and NPV >99.9% (FN<50). For a high prevalence of 5%, these values would be 71.4% (FP<1,900) and >99.7% (FN<1,500). Finally, for a high prevalence of 30%, PPV would be >95.3% (FP<1,400) and NPV >97.9% (FN<1,500).

Primary clinical performance data

We identified eight systematic reviews, including one by health technology assessment bodies not listed as a peer-reviewed study, and included the primary studies they were based on [6-9,21-24]. The full list of studies in the FIND and EC databases was retrieved on 22 August 2020. PubMed was searched on the same date. From the EC database, 268 of 385 studies were screened out because their description did not indicate that they contained clinical performance data on commercial tests. Of the remaining 117 studies, 81 were not present in the FIND database and 82 were not present in the EC database. From the PubMed results, 1,520 of 1,738 studies were screened out. From the combined list of 364 unique studies, 105 had no clinical performance data on commercial nucleic acid or antibody tests, 34 were excluded because of a potential conflict of interest and 74 were excluded because of ineligible design, leaving a total of 151 included studies. Of those, 53 were exclusively found through the Pubmed search and 15 in the FIND database. The remaining studies were listed by at least two sources.

A complete overview of the study selection is given in Figure 1. After exclusion of antibody test sensitivity results ≤ 14 dpo and ineligible specificity results, a total of 37,435 and 56,322 index test results remained for calculation of sensitivity and specificity, respectively.

After addition of original, previously unpublished results provided by the authors of this study, this increased to 47,543 and 66,419 index test results, respectively, for 198 tests. A descriptive overview of the number of studies and results per country is given in Table 1. A complete overview of the studies is given in Supplementary Tables S2-S4.

Meta-analysis

Pooled estimates for clinical sensitivity and specificity per test, target and, for sensitivity, case population were made. For antibody tests, we restricted the results to those estimates that had a 95% CI width ≤ 5% and were derived from at least two studies, to be able to assess study heterogeneity. Based on the minimum performance criteria analysis, results >95% sensitivity and/or >98% specificity for a particular population are highlighted in Table 2. Among these results, there were two CLIA, one ELISA and no LFIA/POC that had >95% sensitivity and nine CLIA, four ELISAs and 12 LFIA/POC that had >98% specificity, including the three with >95% sensitivity. Study heterogeneity was low for four of 10 sensitivity and 53 of 69 specificity results with CI width ≤ 5%. There were few sensitivity results for IgG for mild or asymptomatic cases, for IgA and for total antibody, none of which had a CI width ≤ 5%. In four cases where the same test was used for hospitalised cases, a reduction in sensitivity was observed of 7.4%, 11.0%, 13.1% and 19.2% for IgG (Table 2). For IgA and total antibody, data were available for only one test each. A reduction of 28.8% was observed for IgA and an increase of 6.0% for total antibody. The latter increase was probably due to the small number of samples for both populations.

For nucleic acid tests, results were restricted as for antibody tests (Table 3). Four tests, including one POC, had >95% positive agreement with a CI width ≤ 5%, and nine had >98% specificity. Study heterogeneity was low for all five sensitivity and all 15 specificity results with CI width ≤ 5%.

The correlation between independently assessed clinical performance results and manufacturer-reported results is shown in Figure 2. The manufacturer-reported documents are listed in Supplementary Table S2. Only independently assessed results with CI width ≤ 5% are included. A total of 11 of 32 sensitivity and four of 33 specificity results reported by the manufacturer were significantly larger (p<0.05).

Discussion

This review presents a comprehensive independent overview of clinical performance of commercially available nucleic acid and antibody tests 5 months into the COVID-19 pandemic. A substantial amount of previously unpublished data from European countries are included as well. By August 2020, there are numerous commercial tests for which sufficient performance data are available to allow calculation of clinical sensitivity or positive agreement, and specificity with narrow
Table 2a
Pooled sensitivity and specificity results for SARS-CoV-2 antibody tests with confidence interval width ≤ 5% for either or both and based on at least two studies, up to 22 August 2020

Category	Test	Target	Case population	Sensitivity*	Specificity*
CLIA	Abb, SARS-CoV-2 IgG assay on Architect	IgG	Hospitalised	95.9 (93.4–97.5)	99.9 (99.3–99.6)
				n = 368 BE, CA, NL, UK, US(3)	n = 8,243 AT, BE(2), CA, DE(2), DK, FI, FR(3), IT, NL, SE, SG, UK(3), US(8)
CLIA	Abb, SARS-CoV-2 IgG assay on Architect	IgG	Mild/asymptomatic	88.5 (84.6–91.5)	Same as above
				n = 331 NL, UK(2), US	
CLIA	Abb, SARS-CoV-2 IgG assay on Architect	IgG	Unk	92.0 (90.4–93.3)	Same as above
				n = 1,332 AT, BE, DE, DK, FI, FR(2), SE, SG, UK(2), US(4)	
LFIA, POC	Anhui Deep Blue Medical Technology, COVID-19 (SARS-CoV-2) IgG/IgM Antibody Test Kit	IgG	Na	Nd	99.4 (96.5–99.9)
					n = 158 CA, US
ELISA	Beijing Wantai Biological Pharmacy Enterprise, Wantai SARS-CoV-2 IgM ELISA	IgM	Hospitalised	92.8 (88.3–95.7)	98.7 (98.0–99.1)
				n = 195 CN(2), NL	n = 1,505 CN(2), DK, NL(2)
ELISA	Beijing Wantai Biological Pharmacy Enterprise, Wantai SARS-CoV-2 total Ab ELISA	Total Ab	Hospitalised	97.5 (95.9–98.5)	99.5 (99.2–99.7)
				n = 603 CN(2), DE, DK, NL	n = 3,097 CN(2), DE, DK(2), FR(2), NL(3)
ELISA	Beijing Wantai Biological Pharmacy Enterprise, Wantai SARS-CoV-2 total Ab ELISA	Total Ab	Unk	97.5 (94.9–98.8)	Same as above
				n = 279 AT, DK, FR	
ELISA	Bio-Rad, Platelia SARS-CoV-2 Total Ab	Total Ab	Na	Nd	96.4 (93.3–98.1)
					n = 250 BE, FR, LU, NL
LFIA, POC	CTK Biotech, OnSite COVID-19 IgG/IgM Rapid Test	IgG	Na	Nd	98.6 (95.2–99.6)
					n = 148 AU, NL
CLIA	DiaSorin, Liaison XL S1/S2 IgG chemiluminescence immunoassay	IgG	Hospitalised	92.9 (89.6–95.2)	97.7 (97.3–98.0)
				n = 324 CA, DE, NL	n = 5,994 AT, BE(2), CA, DE(3), DK, FI, FR, NL(2), SE, UK, US(2)
CLIA	DiaSorin, Liaison XL S1/S2 IgG chemiluminescence immunoassay	IgG	Mild/asymptomatic	81.9 (76.3–86.3)	Same as above
				n = 226 NL, UK	

Ab: antibody; AT: Austria; AU: Australia; BE: Belgium; BR: Brazil; CA: Canada; CH: Switzerland; CLIA: chemiluminescence assay; CN: China; COVID-19: coronavirus disease; DE: Germany; DK: Denmark; ELISA: enzyme-linked immunosorbent assay; ES: Spain; FI: Finland; FR: France; GR: Greece; IT: Italy; JP: Japan; LFIA: lateral flow immunoassay; LU: Luxembourg; Na: not applicable; Nd: not determined, either due to no data or due to data from only one country or study; NL: The Netherlands; POC: point-of-care test; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; SE: Sweden; SG: Singapore; TW: Taiwan; UK: United Kingdom; Unk: unknown or unclearly defined; US: United States.

* Sensitivity and specificity values given as value (confidence interval), number of samples (n = X), list of countries (number of studies per country if > 1). Value in bold if both confidence interval width ≤ 5% and value ≥ 95% (for sensitivity) or ≥ 98% (for specificity).

1 Confidence interval width ≤ 5%.
2 Moderate study heterogeneity (I² 50.0–75.0%).
3 High study heterogeneity (I² ≥ 75.0%).
4 Only samples taken > 14 days post onset of symptoms are included, and ≤ 28 days post onset for IgM only as target. Rows are sorted alphabetically by test, target and case population.
Table 2b
Pooled sensitivity and specificity results for SARS-CoV-2 antibody tests with confidence interval width ≤ 5% for either or both and based on at least two studies, up to 22 August 2020

Category	Test	Target	Case population	Sensitivity	Specificity
CLIA	DiaSorin, Liaison XL S1/S2 IgG chemiluminescence immunoassay	IgG	Unk	90.9 (88.9–92.6) \(^a\)	Same as above
				n = 967	
				AT(2), BE(2), DK, SE, UK, US	
CLIA	Diazyme Laboratories, DZ-Lite SARS-CoV-2 IgM and IgG CLIA	IgG	Unk	95.3 (84.5–98.7) \(^b\)	99.0 (97.5–99.6)
				n = 43	n = 414
				US(2)	US(2)
CLIA	Diazyme Laboratories, DZ-Lite SARS-CoV-2 IgM and IgG CLIA	IgG or IgM	Unk	100.0 (91.8–100.0) \(^b\)	98.6 (96.9–99.3)
				n = 43	n = 414
				US(2)	US(2)
CLIA	Diazyme Laboratories, DZ-Lite SARS-CoV-2 IgM and IgG CLIA	IgM	Unk	90.7 (78.4–96.3) \(^b\)	99.5 (98.3–99.9)
				n = 43	n = 414
				US(2)	US(2)
LFIA, POC	Dynamiker Biotechnology Tianjin, 2019 nCoV IgG/IgM Rapid test	IgG or IgM	Hospitalised	100.0 (89.0–100.0) \(^b\)	97.6 (94.8–98.9)
				n = 31	n = 248
				BE, DK	BE, DK, SE
LFIA, POC	Dynamiker Biotechnology Tianjin, 2019 nCoV IgG/IgM Rapid test	IgG or IgM	Unk	89.0 (79.8–94.3) \(^b,d\)	Same as above
				n = 73	
				SE, TW	
ELISA	Epitope Diagnostics, EPI-KT-1032 Coronavirus COVID-19 IgG ELISA Kit	IgG	Hospitalised	94.0 (86.2–97.4) \(^b,c\)	97.6 (96.7–98.3)
				n = 83	n = 1,451
				CA, NL, US	AT, CA, DE(2), NL, UK, US(3)
ELISA	Epitope Diagnostics, EPI-KT-1032 Coronavirus COVID-19 IgG ELISA Kit	IgG	Mild/asymptomatic	74.8 (65.8–82.0)\(^b,d\)	Same as above
				n = 107	
				NL, US	
ELISA	Epitope Diagnostics, EPI-KT-1032 Coronavirus COVID-19 IgG ELISA Kit	IgG	Unk	96.0 (90.1–98.4) \(^b,c\)	Same as above
				n = 99	
				AT, DE, US	
ELISA	Epitope Diagnostics, EPI-KT-1033 Coronavirus COVID-19 IgM ELISA Kit	IgM	Hospitalised	95.5 (78.2–99.2) \(^b,c\)	98.1 (97.0–98.9)
				n = 22	n = 810
				CA, NL	AT, CA, NL, US
ELISA	Epitope Diagnostics, EPI-KT-1033 Coronavirus COVID-19 IgM ELISA Kit	IgM	Unk	83.3 (70.4–91.3) \(^b,c\)	Same as above
				n = 48	
				AT, US	

Ab: antibody; AT: Austria; AU: Australia; BE: Belgium; BR: Brazil; CA: Canada; CH: Switzerland; CLIA: chemiluminescence assay; CN: China; COVID-19: coronavirus disease; DE: Germany; DK: Denmark; ELISA: enzyme-linked immunosorbent assay; ES: Spain; FI: Finland; FR: France; GR: Greece; IT: Italy; JP: Japan; LFIA: lateral flow immunoassay; LU: Luxembourg; Na: not applicable; Nd: not determined, either due to no data or due to data from only one country or study; NL: The Netherlands; POC: point-of-care test; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; SE: Sweden; SG: Singapore; TW: Taiwan; UK: United Kingdom; Unk: unknown or unclearly defined; US: United States.

\(^a\) Sensitivity and specificity values given as value (confidence interval), number of samples (n = X), list of countries (number of studies per country if > 1). Value in bold if both confidence interval width ≤ 5% and value ≥ 95% (for sensitivity) or ≥ 98% (for specificity).

\(^b\) Confidence interval width > 5%.

\(^c\) Moderate study heterogeneity (50.0 ≤ I² < 75.0%).

\(^d\) High study heterogeneity (I² ≥ 75.0%).

Only samples taken > 14 days post onset of symptoms are included, and ≤ 28 days post onset for IgM only as target. Rows are sorted alphabetically by test, target and case population.
Table 2c
Pooled sensitivity and specificity results for SARS-CoV-2 antibody tests with confidence interval width ≤ 5% for either or both and based on at least two studies, up to 22 August 2020

Category	Test	Target	Case population	Sensitivity	Specificity
ELISA	Euroimmun Medizinische Labordiagnostika, Anti-SARS-CoV-2 IgA S1 ELISA	IgA	Hospitalised	96.0 (92.5–97.9)	86.7 (84.9–88.3)
				n = 224	n = 1,459
				BE(2), CA, DK, FI, FR, GR, NL	AU, BE(2), CA, DK, ES, FI(2), FR(2), GR, LU, NL(2), US
ELISA	Euroimmun Medizinische Labordiagnostika, Anti-SARS-CoV-2 IgA S1 ELISA	IgA	Mild/asymptomatic	67.2 (55.0–77.4)	Same as above
				n = 64	
				FI, NL	
ELISA	Euroimmun Medizinische Labordiagnostika, Anti-SARS-CoV-2 IgA S1 ELISA	IgA	Unk	94.8 (90.9–97.1)	Same as above
				n = 212	
				AU, BE, FR, US	
ELISA	Euroimmun Medizinische Labordiagnostika, Anti-SARS-CoV-2 IgG S1 ELISA	IgG	Hospitalised	92.6 (89.7–94.7)	
				n = 431	
				BE(3), CA, CH(2), DE, DK, FI, FR, GR, NL, US	
					AU, BE(3), CA, CH(2), DE(6), DK(2), ES, FI(2), FR(3), GR, LU, NL(2), US(3)
ELISA	Euroimmun Medizinische Labordiagnostika, Anti-SARS-CoV-2 IgG S1 ELISA	IgG	Mild/asymptomatic	79.5 (71.9–85.5)	Same as above
				n = 132	
				CH, FI, NL, US	
ELISA	Euroimmun Medizinische Labordiagnostika, Anti-SARS-CoV-2 IgG S1 ELISA	IgG	Unk	89.0 (86.7–91.0)	Same as above
				n = 785	
				AT, AU, BE, DE(2), DK, FR, UK, US(2)	
LFIA, POC	Getein Biotech, One Step Test for Novel Coronavirus (2019-nCoV) IgM/IgG Antibody (Colloidal Gold)	IgG	Na	100.0 (96.9–100.0)	
				n = 120	
				CA, US	
LFIA, POC	Getein Biotech, One Step Test for Novel Coronavirus (2019-nCoV) IgM/IgG Antibody (Colloidal Gold)	IgG or IgM	Na	99.2 (95.4–99.9)	
				n = 120	
				CA, US	
LFIA, POC	Getein Biotech, One Step Test for Novel Coronavirus (2019-nCoV) IgM/IgG Antibody (Colloidal Gold)	IgM	Na	99.2 (95.4–99.9)	
				n = 120	
				CA, US	
LFIA, POC	Guangzhou Wondfo Biotech, Wondfo SARS-CoV-2 Antibody Test	IgG or IgM	Unk	88.0 (82.6–92.0)	
				n = 184	
				AU, ES, TW, US	
					AU, BR, ES, US(2)
LFIA, POC	Hangzhou Alltest Biotech, 2019-nCoV IgG/IgM Rapid Test Cassette	IgG	Unk	88.7 (81.6–93.3)	
				n = 115	
				AU, ES	

Ab: antibody; AT: Austria; AU: Australia; BE: Belgium; BR: Brazil; CA: Canada; CH: Switzerland; CLIA: chemiluminescence assay; CN: China; COVID-19: coronavirus disease; DE: Germany; DK: Denmark; ELISA: enzyme-linked immunosorbent assay; ES: Spain; FI: Finland; FR: France; GR: Greece; IT: Italy; JP: Japan; LFIA: lateral flow immunoassay; LU: Luxembourg; Na: not applicable; Nd: not determined, either due to no data or due to data from only one country or study; NL: The Netherlands; POC: point-of-care test; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; SE: Sweden; SG: Singapore; TW: Taiwan; UK: United Kingdom; Unk: unknown or unclearly defined; US: United States.

a Sensitivity and specificity values given as value (confidence interval), number of samples (n = X), list of countries (number of studies per country if > 1). Value in bold if both confidence interval width ≤ 5% and value ≥ 95% (for sensitivity) or ≥ 98% (for specificity).

b Confidence interval width > 5%.

c Moderate study heterogeneity (50.0 ≤ I² < 75.0%).

d High study heterogeneity (I² ≥ 75.0%).

Only samples taken > 14 days post onset of symptoms are included, and ≤ 28 days post onset for IgM only as target. Rows are sorted alphabetically by test, target and case population.
Table 2D

Pooled sensitivity and specificity results for SARS-CoV-2 antibody tests with confidence interval width ≤ 5% for either or both and based on at least two studies, up to 22 August 2020

Category	Test	Target	Case population	Sensitivitya	Specificitya
LFIA, POC	Hangzhou Alltest Biotech, 2019-nCoV IgG/IgM Rapid Test Cassette	IgG or IgM	Unk	92.3 (87.2–95.4)	96.7 (93.8–98.2)
LFIA, POC	Hangzhou Alltest Biotech, 2019-nCoV IgG/IgM Rapid Test Cassette	IgM	Unk	21.7 (15.2–30.1)	97.2 (94.4–98.7)
LFIA, POC	Innovita Biological Technology, 2019-nCoV Ab Test (Colloidal Gold)	IgG	Hospitalised	86.9 (76.2–93.2)	100.0 (98.5–100.0)
LFIA, POC	Innovita Biological Technology, 2019-nCoV Ab Test (Colloidal Gold)	IgM	Hospitalised	75.4 (63.3–84.5)	98.4 (96.1–99.4)
ELISA	Mikrogen Diagnostik, recomWell SARS-CoV-2 IgG	IgG	Na	43.5 (31.9–55.9)	99.0 (97.0–99.9)
ELISA	NovaTec Immundiagnostica, NovaLisa SARS-CoV-2 IgA ELISA	IgA	Hospitalised	88.7 (78.5–94.4)	95.2 (92.1–97.3)
ELISA	NovaTec Immundiagnostica, NovaLisa SARS-CoV-2 IgG ELISA	IgG	Hospitalised	91.9 (82.5–96.6)	97.3 (94.7–98.6)
ELISA	NovaTec Immundiagnostica, NovaLisa SARS-CoV-2 IgM ELISA	IgM	Hospitalised	43.5 (31.9–55.9)	99.0 (97.0–99.9)
CLIA	Ortho Clinical Diagnostics, VITROS Immunodiagnostic Products Anti-SARS-CoV-2 IgG	IgG	Unk	93.4 (89.4–96.0)	99.7 (99.3–99.9)
CLIA	Ortho Clinical Diagnostics, VITROS Immunodiagnostic Products Anti-SARS-CoV-2 Total Ab	Total Ab	Na	85.7 (75.7–92.1)	99.8 (99.7–99.9)

Ab: antibody; **AT:** Austria; **AU:** Australia; **BE:** Belgium; **BR:** Brazil; **CA:** Canada; **CH:** Switzerland; **CLIA:** chemiluminescence assay; **CN:** China; **COVID-19:** coronavirus disease; **DE:** Germany; **DK:** Denmark; **ELISA:** enzyme-linked immunosorbent assay; **ES:** Spain; **FI:** Finland; **FR:** France; **GR:** Greece; **IT:** Italy; **JP:** Japan; **LFIA:** lateral flow immunoassay; **LU:** Luxembourg; **Na:** not applicable; **Nd:** not determined, either due to no data or due to data from only one country or study; **NL:** The Netherlands; **POC:** point-of-care test; **SARS-CoV-2:** severe acute respiratory syndrome coronavirus 2; **SE:** Sweden; **SG:** Singapore; **TW:** Taiwan; **UK:** United Kingdom; **Unk:** unknown or unclearly defined; **US:** United States.

- Sensitivity and specificity values given as value (confidence interval), number of samples (n = X), list of countries (number of studies per country if > 1). Value in bold if both confidence interval width ≤ 5% and value ≥ 95% (for sensitivity) or ≥ 98% (for specificity).
- **a** Sensitivity and specificity values given as value (confidence interval), number of samples (n = X), list of countries (number of studies per country if > 1). Value in bold if both confidence interval width ≤ 5% and value ≥ 95% (for sensitivity) or ≥ 98% (for specificity).
- **b** Confidence interval width > 5%.
- **c** Moderate study heterogeneity (50.0 ≤ I² < 75.0%).
- **d** High study heterogeneity (I² ≥ 75.0%).

Only samples taken > 14 days post onset of symptoms are included, and ≤ 28 days post onset for IgM only as target. Rows are sorted alphabetically by test, target and case population.
Table E
Pooled sensitivity and specificity results for SARS-CoV-2 antibody tests with confidence interval width ≤ 5% for either or both and based on at least two studies, up to 22 August 2020

Category	Test	Target	Case population	Sensitivity*	Specificity*
CLIA	Roche, Elecsys Anti-SARS-CoV-2	Total Ab	Mild/asymptomatic	91.7 (84.4–95.7)	Same as above
				n = 96	
				NL, UK	
CLIA	Roche, Elecsys Anti-SARS-CoV-2	Total Ab	Unk	94.7 (93.3–95.7)	Same as above
				n = 1,351	
				AT(2), BE(3), DE(2), DK, SE, SG, UK(2), US(2)	
LFIA, POC	SD BioSensor, Standard Q COVID-19 IgM/IgG Duo	IgG	Na	99.8 (99.3–99.9)	Same as above
				n = 1,254	
				US(2)	
LFIA, POC	SD BioSensor, Standard Q COVID-19 IgM/IgG Duo	IgM	Na	98.8 (98.0–99.3)	Same as above
				n = 1,256	
				US(2)	
CLIA	Shenzhen New Industries Biomedical Engineering (SNIBE), Maglumi 2019-nCoV (SARS-CoV-2) IgG/IgM kit	IgG	Hospitalised	93.4 (85.5–97.2)	Same as above
				n = 76	
				BE(2)	
CLIA	Shenzhen New Industries Biomedical Engineering (SNIBE), Maglumi 2019-nCoV (SARS-CoV-2) IgG/IgM kit	IgG or IgM	Hospitalised	96.1 (89.0–98.6)	Same as above
				n = 76	
				BE(2)	
CLIA	Shenzhen New Industries Biomedical Engineering (SNIBE), Maglumi 2019-nCoV (SARS-CoV-2) IgG/IgM kit	IgM	Hospitalised	93.4 (85.5–97.2)	Same as above
				n = 76	
				BE(2)	
CLIA	Shenzhen New Industries Biomedical Engineering (SNIBE), Maglumi 2019-nCoV (SARS-CoV-2) IgG/IgM kit	IgM	Unk	67.8 (65.0–70.5)	Same as above
				n = 1084	
				CN, DK	
CLIA	Shenzhen Yahulong (YHLO) Biotech, SARS-CoV-2 IgG/IgM antibody detection kit	IgG	Na	99.0 (98.3–99.4)	Same as above
				n = 1,313	
				CN(2), DK, IT	
CLIA	Shenzhen Yahulong (YHLO) Biotech, SARS-CoV-2 IgG/IgM antibody detection kit	IgM	Na	98.2 (97.9–99.2)	Same as above
				n = 1,314	
				CN(2), DK, IT	

Ab: antibody; AT: Austria; AU: Australia; BE: Belgium; BR: Brazil; CA: Canada; CH: Switzerland; CLIA: chemiluminescence assay; CN: China; COVID-19: coronavirus disease; DE: Germany; DK: Denmark; ELISA: enzyme-linked immunosorbent assay; ES: Spain; FI: Finland; FR: France; GR: Greece; IT: Italy; JP: Japan; LFIA: lateral flow immunoassay; LU: Luxembourg; Na: not applicable; Nd: not determined, either due to no data or due to data from only one country or study; NL: The Netherlands; POC: point-of-care test; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; SE: Sweden; SG: Singapore; TW: Taiwan; UK: United Kingdom; Unk: unknown or unclearly defined; US: United States.

* Sensitivity and specificity values given as value (confidence interval), number of samples (n = X), list of countries (number of studies per country if > 1). Value in bold if both confidence interval width ≤ 5% and value ≥ 95% (for sensitivity) or ≥ 98% (for specificity).

* Confidence interval width ≤ 5%.

Moderate study heterogeneity (50.0 ≤ I2 < 75.0%).

High study heterogeneity (I2 ≥ 75.0%).

Only samples taken ≥14 days post onset of symptoms are included, and ≥28 days post onset for IgM only as target. Rows are sorted alphabetically by test, target and case population.
Table 2f
Pooled sensitivity and specificity results for SARS-CoV-2 antibody tests with confidence interval width ≤ 5% for either or both and based on at least two studies, up to 22 August 2020

Category	Test	Target	Case population	Sensitivity\(^a\)	Specificity\(^a\)
CLIA	Siemens, Healthineers SARS-CoV-2 Total Assay on Atellica/ADVIA Centaur	Total Ab	Unk	96.7 (95.2–97.8)\(^d\)	99.8 (99.5–99.9)
				\(n = 757\) DE, DK, UK	\(n = 2,208\) DE(2), DK, UK
LFIA, POC	SureScreen Diagnostic, Covid-19 IgG/IgM Rapid Test Cassette	IgG	Na	78.9 (69.7–85.9) \(^b\)	99.0 (96.4–99.7)
				\(n = 95\) AU, US	\(n = 198\) BE, NL
LFIA, POC	VivaChek Biotech, VivaDiag COVID-19 IgM/IgG Rapid Test	IgG	Unk	100.0 (89.0–100.0) \(^b\)	97.5 (95.2–98.7)
				\(n = 31\) BE, NL	\(n = 324\) AU, BE, IT, NL, US
LFIA, POC	VivaChek Biotech, VivaDiag COVID-19 IgM/IgG Rapid Test	IgG or IgM	Hospitalised	80.0 (70.9–86.8) \(^b\)	97.8 (95.6–98.9)
				\(n = 95\) AU, US	\(n = 324\) AU, BE, IT, US
LFIA, POC	VivaChek Biotech, VivaDiag COVID-19 IgM/IgG Rapid Test	IgM	Unk	80.0 (70.9–86.8) \(^b\)	Same as above
				\(n = 95\) AU, US	Same as above
LFIA, POC	Xiamen Biotime Biotechnology, SARS-CoV-2 IgG/IgM Rapid Qualitative Test Kit	IgG	Na	92.4 (85.1–96.3) \(^b\)	98.0 (94.3–99.3)
				\(n = 92\) FR, SE	\(n = 150\) FI, US
CLIA	Xiamen Innodx Biotech, Antibody test kit for 2019-nCoV	IgG or IgM	Na	96.7 (91.7–98.7) \(^b\)	97.7 (96.1–98.7)
				\(n = 120\) BE, CH, NL	\(n = 568\) BE, CH, FR, NL, SE
LFIA, POC	Zhejiang Orient Gene Biotech, COVID-19 IgG/IgM Rapid Test Cassette	IgG	Hospitalised	92.4 (85.1–96.3) \(^b\)	98.4 (96.3–99.3)
				\(n = 92\) FR, SE	\(n = 308\) BE, FR, SE
LFIA, POC	Zhejiang Orient Gene Biotech, COVID-19 IgG/IgM Rapid Test Cassette	IgM	Hospitalised	86.0 (77.5–91.6) \(^b\)	99.3 (98.0–99.8)
				\(n = 93\) BE, NL	\(n = 430\) CN(2)

Ab: antibody; AT: Austria; AU: Australia; BE: Belgium; BR: Brazil; CA: Canada; CH: Switzerland; CLIA: chemiluminescence assay; CN: China; COVID-19: coronavirus disease; DE: Germany; DK: Denmark; ELISA: enzyme-linked immunosorbent assay; ES: Spain; FI: Finland; FR: France; GR: Greece; IT: Italy; JP: Japan; LFIA: lateral flow immunoassay; LU: Luxembourg; Na: not applicable; Nd: not determined, either due to no data or due to data from only one country or study; NL: The Netherlands; POC: point-of-care test; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; SE: Sweden; SG: Singapore; TW: Taiwan; UK: United Kingdom; Unk: unknown or unclearly defined; US: United States.

\(^a\) Sensitivity and specificity values given as value (confidence interval), number of samples (\(n = X\)), list of countries (number of studies per country if > 1). Value in bold if both confidence interval width ≤ 5% and value ≥ 95% (for sensitivity) or ≥ 98% (for specificity).

\(^b\) Confidence interval width > 5%.

\(^c\) Moderate study heterogeneity (50.0 ≤ I\(^2\) < 75.0%).

\(^d\) High study heterogeneity (I\(^2\) ≥ 75.0%).

Only samples taken > 14 days post onset of symptoms are included, and ≤ 28 days post onset for IgM only as target. Rows are sorted alphabetically by test, target and case population.
confidence interval ranges. It is reassuring that the clinical performance of several nucleic acid and antibody tests exceeded the minimum performance criteria. As time progresses, the list of tests with sufficient available performance data is expected to grow.

At the same time, the available evidence for point-of-care nucleic acid and antigen tests remains scarce, even though these tests can have substantial practical advantages for e.g. screening. We therefore recommend more emphasis on the validation of these tests, including as part of a testing algorithm, whereby the sensitivity and specificity of taking two tests with a number of days in between is assessed, and which can for example be useful to reduce the duration of a quarantine period.

The comparison between the independently assessed clinical performance data and manufacturer-reported clinical performance revealed that in particular sensitivity is frequently (34.4% of the cases in this study) significantly overestimated by the manufacturer. At a minimum, this emphasises that such independent assessments are clearly necessary. In the longer term, an explicit and proactive regulatory mechanism in Europe to compare available independently generated evidence on these tests against the manufacturer-reported values, coupled with appropriate regulatory action, would be useful. This could also be rewarding towards those manufacturers that do provide robust estimates of their product’s performance. The new in vitro diagnostic medical devices Regulation (EU) 2017/746 (IVDR), which will enter into force in May 2022, will impose more stringent requirements on clinical performance studies done by manufacturers. In addition, the IVDR will also regulate the use of lab-developed tests such as the in-house PCR tests developed for COVID-19 [25]. Because of the COVID-19 pandemic, the European Commission has recently proposed to modify the roll-out [26].

Limitations of our article include that most of the included studies had a substantial risk of bias in the sample selection, especially for the sensitivity panel, as established also in the assessments performed in the systematic reviews that we used as a source. Results were mainly based on hospitalised cases or poorly defined populations, whereas the population of interest often consists of symptomatic cases in general, or even asymptomatic cases, and differences in performance may exist depending on disease severity. Performance also varies depending on the type of specimen used, and our study design allowed for the inclusion of multiple specimen types in accordance with the instructions for use. This reflected to some extent clinical practice, but is also a contributing factor to study heterogeneity that we did not address here. Similarly, the pre-analytical steps such as RNA extraction can

Table 2G

Pooled sensitivity and specificity results for SARS-CoV-2 antibody tests with confidence interval width ≤ 5% for either or both and based on at least two studies, up to 22 August 2020

Category	Test	Target	Case population	Sensitivity a	Specificity a
LFIA, POC	Zhejiang Orient Gene Biotech, COVID-19 IgG/IgM Rapid Test Cassette	IgM Unk	n = 92	82.6 (73.6–89.0) b,c	Same as above
				98.0 (94.3–99.3)	
LFIA, POC	Zhuhai Livzon Pharmaceutical Group, Diagnostic Kit for IgM / IgG Antibody to Coronavirus (SARS-CoV-2) (Lateral Flow)	IgG Hospitalised	n = 162	86.4 (80.3–90.9) b	CN, FR, US
				98.0 (94.3–99.3)	
LFIA, POC	Zhuhai Livzon Pharmaceutical Group, Diagnostic Kit for IgM / IgG Antibody to Coronavirus (SARS-CoV-2) (Lateral Flow)	IgM Hospitalised	n = 162	75.9 (68.8–81.9) b	CN(2), FR
				99.3 (96.3–99.9)	

Ab: antibody; AT: Austria; AU: Australia; BE: Belgium; BR: Brazil; CA: Canada; CH: Switzerland; CLIA: chemiluminescence assay; CN: China; COVID-19: coronavirus disease; DE: Germany; DK: Denmark; ELISA: enzyme-linked immunosorbent assay; ES: Spain; FI: Finland; FR: France; GR: Greece; IT: Italy; JP: Japan; LFIA: lateral flow immunoassay; LU: Luxembourg; Na: not applicable; Nd: not determined, either due to no data or due to data from only one country or study; NL: The Netherlands; POC: point-of-care test; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; SE: Sweden; SG: Singapore; TW: Taiwan; UK: United Kingdom; Unk: unknown or unclearly defined; US: United States.

a Sensitivity and specificity values given as value (confidence interval), number of samples (n = X), list of countries (number of studies per country if > 1). Value in bold if both confidence interval width ≤ 5% and values ≥ 95% (for sensitivity) or ≥ 98% (for specificity).

b Confidence interval width > 5%.
c Moderate study heterogeneity (I2 50.0 ≤ 75.0%).
d High study heterogeneity (I2 ≥ 75.0%).

Only samples taken > 14 days post onset of symptoms are included, and ≤ 28 days post onset for IgM only as target. Rows are sorted alphabetically by test, target and case population.
Table 3A
Pooled positive agreement and specificity results for SARS-CoV-2 nucleic acid tests with confidence interval width ≤ 5% for either or both and based on at least two studies, up to 22 August 2020

Category	Test	Target	Case population	Positive agreementa	Specificityb
PCR	Altona Diagnostics, RealStar SARS-CoV-2 RT-PCR Kit 1.0	E	Unk	88.1 (80.4–93.1) b	
n = 101					
CH, FR, NL, US	100.0 (96.7–100.0) b				
n = 112					
CH, NL					
PCR	Altona Diagnostics, RealStar SARS-CoV-2 RT-PCR Kit 1.0	S	Unk	87.1 (79.2–92.3) b	
n = 101					
CH, FR, NL, US	100.0 (96.7–100.0) b				
n = 112					
CH, NL					
PCR	Altona Diagnostics, RealStar SARS-CoV-2 RT-PCR Kit 1.0	S or E	Unk	81.6 (75.8–86.3) b,c	
n = 207					
FR(3), NL	100.0 (98.4–100.0) b,c				
n = 237					
FR, NL, UK					
PCR	AusDiagnostics, Coronavirus Typing Assay	ORF1ab	Na	93.8 (88.7–96.7) b	
n = 146					
CH, JP, NL, PL	99.1 (95.1–99.8) b				
n = 112					
CH, NL					
PCR	BGI, Real-time fluorescent RT-PCR kit for detecting 2019 nCoV	ORF1ab	Unk	98.7 (97.3–99.5) b	
n = 427					
BE, CH, CY, DE, FI, FR, NL, SE, US(5)	100.0 (82.4–100.0) b				
n = 18					
BE, CH, SE					
PCR, POC	Cepheid, GeneXpert Xpert Xpress SARS-CoV-2	E or N	Unk	96.8 (89.1–99.1) b,c	
n = 63					
CH, NL	100.0 (96.7–100.0) b				
n = 112					
CH, NL					
PCR	CerTest Biotec, VIASURE SARS-CoV-2 Real Time PCR Detection Kit	N	Unk	93.7 (84.8–97.5) b,d	
n = 63					
CH, NL	100.0 (96.7–100.0) b,d				
n = 112					
CH, NL					
PCR	CerTest Biotec, VIASURE SARS-CoV-2 Real Time PCR Detection Kit	ORF1ab	Unk	97.8 (94.4–99.1) b,c	
n = 180					
US(3)	100.0 (96.7–100.0) b,c				
n = 112					
CH, NL					
PCR	DiaSorin, Simplexa COVID-19 Direct RT-PCR Kit	ORF1ab or S	Unk	98.7 (94.4–99.1) b,c	
n = 63					
CH, NL	100.0 (96.7–100.0) b,c				
n = 112					
CH, NL					
PCR	Hologic, SARS-CoV-2 Assay (Panther Fusion System)	ORF1ab	Unk	98.3 (96.8–99.1) b	
n = 525					
FR, US(6)	Nd				
n = 112					
CH, NL					
PCR	KH Medical, RADI COVID-19 Detection Kit and RADI COVID-19 Triple Detection Kit	RdRP	Unk	96.8 (89.1–99.1) b,c	
 n = 63
 CH, NL | 100.0 (96.7–100.0) b,c
 n = 112
 CH, NL |

AT: Austria; AU: Australia; BE: Belgium; CH: Switzerland; COVID-19: coronavirus disease; CY: Cyprus; DE: Denmark; E: envelope gene; FI: Finland; FR: France; JP: Japan; N: nucleoprotein gene; Na: not applicable; Nd: not determined, either because there were no data or because there were data from only one country or study; NL: The Netherlands; PL: Poland; S: spike gene; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; SE: Sweden; SI: Slovenia; UK: United Kingdom; Unk: unknown or unclearly defined; US: United States.

Positive agreement and specificity values given as value (confidence interval), number of samples (n = X), list of countries (number of studies per country if > 1).

Value in bold if both confidence interval width ≤ 5% and value ≥ 95% (for positive agreement) or ≥ 98% (for specificity).

Confidence interval width ≤ 5%.

Moderate study heterogeneity (50.0 ≤ I2 < 75.0%).

High study heterogeneity (I2 ≥ 75.0%).

Rows are sorted alphabetically by test, target and case population.
Table 3b

Pooled positive agreement and specificity results for SARS-CoV-2 nucleic acid tests with confidence interval width ≤ 5% for either or both and based on at least two studies, up to 22 August 2020

Category	Test	Target	Case population	Positive agreement	Specificity
PCR	KH Medical, RADI COVID-19 Detection Kit and RADI COVID-19 Triple Detection Kit	S	Unk	98.4 (91.5–97.7)	100.0 (96.7–100.0)
				n = 63	n = 112
				CH, NL	CH, NL
PCR	Primerdesign, genesig Real-Time PCR COVID-19 kit	RdRP	Unk	95.3 (89.4–98.0)	100.0 (98.8–100.0)
				n = 106	n = 307
				CH, NL, PL	CH, NL, UK
PCR	R-Biopharm, Ridogene SARS-CoV2	E	Unk	100.0 (94.3–100.0)	100.0 (96.7–100.0)
				n = 63	n = 112
				CH, NL	CH, NL
PCR	Roche, COBAS SARS-CoV-2 test	ORF1ab or E	Unk	98.8 (97.9–99.3)	100.0 (90.8–100.0)
				n = 1,125	n = 38
				AT, CH, DE, FR, SI, US(5)	CH, FR
PCR	Seegene, Allplex 2019-nCoV assay	E	Unk	85.0 (75.6–91.2)	100.0 (96.7–100.0)
				n = 80	n = 112
				CH, FR, NL	CH, NL
PCR	Seegene, Allplex 2019-nCoV assay	RdRP	Unk	91.3 (83.0–95.7)	100.0 (96.7–100.0)
				n = 80	n = 112
				CH, FR, NL	CH, NL
PCR	Tibmolbiol, SARS-CoV (COVID19) E-gene	E	Unk	100.0 (94.4–100.0)	100.0 (98.5–100.0)
				n = 65	n = 250
				CH, UK	CH, UK

AT: Austria; AU: Australia; BE: Belgium; CH: Switzerland; COVID-19: coronavirus disease; CY: Cyprus; DE: Denmark; E: envelope gene; FI: Finland; FR: France; JP: Japan; N: nucleoprotein gene; Na: not applicable; Nd: not determined, either because there were no data or because there were data from only one country or study; NL: The Netherlands; PL: Poland; S: spike gene; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; SE: Sweden; SI: Slovenia; UK: United Kingdom; Unk: unknown or unclearly defined; US: United States.

* Positive agreement and specificity values given as value (confidence interval), number of samples (n = X), list of countries (number of studies per country if > 1).

* Value in bold if both confidence interval width ≤ 5% and value ≥ 95% (for positive agreement) or ≥ 98% (for specificity).

* Confidence interval width > 5%.

* Moderate study heterogeneity (50.0 ≤ I² < 75.0%).

* High study heterogeneity (I² ≥ 75.0%).

Rows are sorted alphabetically by test, target and case population.
have a substantial effect on performance. These are often not specified in detail or several processes may be allowed according to the instructions for use, which can have contributed to study heterogeneity. While this review addresses a pressing need for actionable clinical performance data, ideally, the clinical performance should be assessed through prospective studies or clinical trials with a guaranteed unbiased sample selection for a clearly defined target population and intended use of the test. Given the difficulty of assessing and extracting the data from individual studies in a coherent way, we recommend that the Standard for Reporting of Diagnostic Accuracy Studies (STARD) should also be followed when publishing the results [27].

In this context, the selection of the reference test is particularly important with respect to reference negative samples. As described in some of the assessed studies, it should be avoided that index test results are considered as false positives while the samples are from actual cases; for this reason we excluded nucleic acid-negative samples from suspected COVID-19 patients altogether. We therefore expect little bias in the specificity results, except potentially from under- or overrepresentation of confounders. This is especially relevant for seroprevalence studies where, in a low-prevalence situation, in particular the specificity of the test needs to be well defined and high. On the other hand, sensitivity results using a nucleic acid test as reference should be interpreted with caution because the positive samples may exclude some actual cases.

Possibilities to improve the reference test can include testing - potentially only the false positives - with a second reference nucleic acid test preferably targeting different genes, testing more than one sample from the same patient including for antibodies at a later time point, testing samples from both upper and lower respiratory tracts, and sequencing the sample. The handling of intermediate index test results is an issue that needs to be described in studies and in general, these should be considered as positive results rather than as negatives or excluding them from the validation, since in clinical practice they would normally require further follow-up to confirm the positivity of the sample. Finally, the quality of the execution of the tests is also an important factor. For non-point-of-care tests, external quality assessment exercises using well validated standard reference materials remain a critical tool to detect and address such issues.

Conclusion

Given the study limitations, the authors and organisations contributing to this study in no way recommend the use of the listed commercial tests over other not listed commercial or in-house tests. The clinical performance of tests may also change over time as the virus population evolves. We recommend, however, continuous monitoring of clinical performance both in Europe and globally, which is key for reliable monitoring of the pandemic and which will also support vaccine and antiviral development. These results should be shared publicly in a timely manner.

European COVID-19 microbiological laboratories group

Marjan Van Esbroeck: Institute of Tropical Medicine, Antwerpen, Belgium

Pieter Vermeersch: Clinical Department of Laboratory Medicine and National Reference Center for Respiratory Pathogens, University Hospitals Leuven, Leuven, Belgium

Kurt Beuselinck: Clinical Department of Laboratory Medicine and National Reference Center for Respiratory Pathogens, University Hospitals Leuven, Leuven, Belgium

Christos Karagiannis: Nicosia General Hospital, Cyprus

Merit Melin: Department of Health Protection, Expert Microbiology Unit, Finnish Institute for Health and Welfare (THL), Helsinki, Finland

Nina Ekström: Department of Health Protection, Expert Microbiology Unit, Finnish Institute for Health and Welfare (THL), Helsinki, Finland

Iris Erlund: Department of Government Services, Finnish Institute for Health and Welfare (THL), Helsinki, Finland

Terhi Vihervaara: Department of Government Services, Finnish Institute for Health and Welfare (THL), Helsinki, Finland

Figure 2

 Independently assessed vs manufacturer-reported clinical sensitivity and specificity per SARS-CoV-2 test, up to 22 August 2020 (n = 55)

SARS-CoV-2: severe acute respiratory syndrome coronavirus 2.

Significantly different (p<0.05) results are highlighted. Independently assessed results limited to those with 95% confidence interval width ≤ 5%. The inset expands the 95–100% region.

Sensitivity (p<0.05)

Specificity (p<0.05)
We would like to acknowledge the technicians in the European microbiology laboratories who work hard to support the
control of COVID-19 and supported the validations described in this manuscript.

We would like to acknowledge the companies that made some of the kits available for evaluation to some of the laboratories.

Funding: Pieter Vermeersch is a senior clinical investigator of the FWO-Vlaanderen. (Note: FWO-Vlaanderen is the Flemish public Fund for Scientific Research.)

Conflict of interest
None declared.

Authors’ contributions
Ivo Van Walle: conceptualisation, methodology, data curation, formal analysis, writing-review, editing
Katrin Leitmeyer: conceptualisation, methodology, data curation, writing-review, editing
Eeva K. Broberg: conceptualisation, methodology, data curation, writing-review, editing.
European COVID-19 microbiological laboratories group:
Marjan Van Esbroeck: investigation, data curation, writing-review
Pieter Vermeersch: data curation, writing-review, editing
Kurt Beuselinck: data curation
Christos Karagiannis: investigation, data curation, writing-review
Merit Melin: conceptualisation, investigation, data curation, writing-review
Nina Ekström: investigation, data curation
Iris Erlund: methodology
Terhi Vihervaara: methodology
Vanessa Escuret: investigation, data curation, writing-review
Emilie Frobert: investigation, data curation, writing-review
Alexandre Gaymard: investigation, data curation, writing-review
Andreas Mentis: methodology, data analysis
Stavroula Lampropoulou: investigation, data curation
Ivan-Christian Kurolt: investigation, data curation, writing-review
Tamir Abdelrahman: investigation, data curation, writing-review
Trung Nguyen: investigation, data curation, writing-review
Guillaume Fournier: investigation, data curation, writing-review
Chantal B.E.M. Reusken: conceptualisation, investigation, data curation, methodology, writing-review
Maaike J.C. van den Beld: investigation, data curation, methodology, writing-review
Janette Rahamat-Langendoen MD PhD: investigation, data curation, writing-review
Marjolijn C.A. Wegdam-Blans: investigation, data curation, writing-review
Jeroen H. T. Tjieie: investigation, data curation, writing-review
Peter Croughs: investigation, data curation, writing-review
Corine H. GeurtsvanKessel: investigation, data curation, writing-review
Johan Reimerink: Investigation, data curation
David S.Y. Ong: investigation, data curation, writing-review
Hans G.M. Koeleman: investigation, data curation, writing-review
Hannke Berkhout: investigation, data curation, writing-review
Christel F.M. van der Donk: investigation, data curation, writing-review
Menno D. de Jong MD PhD: investigation, data curation, writing-review
Rens Zonneveld MD PhD: investigation, data curation, writing-review
Suzanne Jurriaans PhD: investigation, data curation, writing-review
Nathalie Van Burgel: investigation, data curation, writing-review
Bas B. Wintermans MD: investigation, data curation, writing-review
Ger T. Rijkers: investigation, data curation, writing-review
Jean-Luc Murk MD PhD: investigation, data curation, writing-review
Khoa T.D. Thai MD PhD: investigation, data curation, writing-review
Melanie J de Graaf: investigation, data curation, writing-review
Annemarie van 't Veen: investigation, data curation, writing-review
Cornelis P. Timmerman: investigation, data curation, writing-review
Annette van Corteveen-Splinter: investigation, data curation, writing-review
Felix Geeraedts: investigation, data curation, writing-review
Adrian Klak: investigation, data curation, writing-review
Maria M. Konstantinovski MD: investigation, data curation, writing-review
Manou R. Batstra: investigation, data curation, writing-review
K. A. Heemstra: investigation, data curation
Jos J. Kerremans: investigation, data curation, writing-review
Inge H. M. van Loo: investigation, data curation, writing-review
Paul H. M. Savelkoul: investigation, data curation
Johan Kissing: investigation, data curation
Paul Martijn den Reijer: investigation, data curation, writing-review
Anne Russcher: investigation, data curation, writing-review
Moniek Heusinkveld PhD: investigation, data curation, writing-review
Ellen van Lochem: investigation, data curation, writing-review
Steven F. T. Thijsen: investigation, data curation, writing-review
Michiel Heron: investigation, data curation, writing-review
Susanne P. Stoof MD PhD: investigation, data curation, writing-review
Sim van Gysgemh BSc: investigation, data curation, writing-review
Sylvia B. Debast MD PhD: investigation, data curation, writing-review
Claudy Oliveira dos Santos MD: investigation, data curation, writing-review
Bjorn L. Herpers MD PhD: investigation, data curation, writing-review
Theo Mank PhD: investigation, data curation, writing-review
Kin Ki Jim: investigation, data curation, writing-review
Peter C. Wever: investigation, data curation, writing-review
Jutte J.C. de Vries: investigation, data curation, writing-review
Martine Hoogewerf: investigation, data curation, writing-review
Deborah J. Kaersenhout MD MSc: data curation, writing-review
Annette M. Stemerding: investigation, data curation, writing-review
Babette C. van Hees: investigation, data curation, writing-review
Vishal Hira: investigation, data curation, writing-review
Anne E. Bos: investigation, data curation, writing-review
Leontine Mulder: investigation, data curation, writing-review
Michiel van Rijn MD: investigation, data curation, writing-review
Aleksander Michalski: investigation, data curation, writing-review
Marta Pakiela: writing-review
Anna Siewierska-Puchlerska: investigation, data curation

Jarosław Paciorek: investigation, data curation
Ewa Gajda: investigation, data curation
Katarzyna Pancer: investigation, data curation, writing-review
Agnieszka Kolakowska-Kulesza: investigation, data curation
Magdalena Nowakowska: investigation, data curation
Raquel Guiomar: writing-review
Libia Zé-Zé: data curation, writing-review
Inês Costa: investigation, data curation, writing-review
Johan Brynedal Öckinger: investigation, data curation, writing-review
Berit Hammas: investigation, data curation, writing-review
Katarina Prosen: investigation, data curation
Nataša Berginc: investigation, data curation

References

1. United States Food and Drug Administration (FDA). Emergency use authorizations for medical devices. Silver Spring: FDA. [Accessed: 20 Jul 2020]. Available from: https://www.fda.gov/medical-devices/emergency-situations-medical-devices/emergency-use-authorizations-medical-devices#covid19
2. World Health Organisation (WHO). WHO Emergency Use Listing for In vitro diagnostics (IVDs) Detecting SARS-Cov-2. Geneva: WHO. [Accessed: 31 Oct 2021]. Available from: https://www.who.int/publications/m/item/200922-eul-sars-cov2-product-list
3. Joint Research Centre of the European Commission. COVID-19 in vitro diagnostic devices and test methods database. Brussels: European Commission. [Accessed: 20 Jul 2020]. Available from: https://covid-19-diagnostics.jrc.ec.europa.eu
4. Foundation for Innovative Diagnostics (FIND). COVID-19 tests (commercialized & in development). Geneva: FIND. [Accessed: 20 Jul 2020]. Available from: https://www.findx.org/covid-19/ tests
5. United States Food and Drug Administration (FDA). openFDA COVID-19 serological testing evaluations. Silver Spring: FDA. [Accessed: 20 Jul 2020]. Available from: https://open.fda.gov/apis/device/covid19serology/download
6. Deeks J, Dinnes J, Takwoingi Y, Davenport C, Spijker R, Taylor-Phillips S, et al. Antibody tests for identification of current and past infection with SARS-CoV-2. Cochrane Database Syst Rev. 2020;6:CD013652. https://doi.org/10.1002/14651858. CD013652 PMID: 32684464
7. European Network for Health Technology Assessment (EUnetHTA). Rapid collaborative review on the current role of antibody tests for novel coronavirus SARS-CoV-2 in the management of the pandemic. Diemen: EUnetHTA; 2020. Available from: https://www.eunethta.eu/wp-content/uploads/2020/06/RCR_OT_01-Antibody-tests-for-SARS-COV-2_23-06-2020.pdf
8. Lisboa Bastos M, Tavažiga V, Abidi SK, Campbell JR, Harauqi LP, Johnston JC, et al. Diagnostic accuracy of serological tests for covid-19: systematic review and meta-analysis. BMJ. 2020;370:m2516. https://doi.org/10.1136/bmj.m2516 PMID: 32615558
9. Dinnes J, Deeks JI, Adriano A, Berhane S, Davenport C, Dittrich S, et al. Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection. Cochrane Database Syst Rev. 2020;8(8):CD013705. PMID: 32845525
10. Attwood LO, Francis MJ, Hamblin J, Korman TM, Druce J, Graham M. Clinical evaluation of AusDiagnostics SARS-Cov-2 multiplex tandem PCR assay. J Clin Virol. 2020;128:104448. https://doi.org/10.1016/j.jcv.2020.104448 PMID: 32461073
11. Pan Y, Li X, Yang G, Fan J, Tang Y, Zhao J, et al. Serological immunochromatographic approach in diagnosis with SARS-CoV-2 infected COVID-19 patients. J Infect. 2020;81(1):e28-32. https://doi.org/10.1016/j.jinf.2020.03.051 PMID: 32283541
12. Wang P. Combination of serological total antibody and RT-PCR test for detection of SARS-COV-2 infections. J Virol Methods. 2020;283:113919. https://doi.org/10.1016/j.jviromet.2020.113919. PMID: 32554043.

13. Zhao J, Yuan Q, Wang H, Liu W, Xiao X, Su Y, et al. Antibody responses to SARS-COV-2 in patients of novel coronavirus disease 2019. Clin Infect Dis. 2020;71(16):2027-34. https://doi.org/10.1093/cid/ciaa344. PMID: 32221519.

14. Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z, et al. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N Engl J Med. 2020;382(12):1177-9. https://doi.org/10.1056/NEJMcp2001737. PMID: 32074444.

15. Green DA, Zucker J, Westblade LF, Whittier S, Rennert H, Velu P, et al. Clinical performance of SARS-CoV-2 molecular tests. J Clin Microbiol. 2020;58(8):e00995-20. https://doi.org/10.1128/JCM.00995-20. PMID: 32513858.

16. Kim H, Hong H, Yoon SH. Diagnostic performance of CT and reverse transcriptase polymerase chain reaction for coronavirus disease 2019: a meta-analysis. Radiology. 2020;296(3):E145-55. https://doi.org/10.1148/radiol.2020201343. PMID: 32301646.

17. World Health Organization (WHO). Laboratory testing for coronavirus disease (COVID-19) in suspected human cases: interim guidance, 19 March 2020. Geneva: WHO; 2020. Available from: https://apps.who.int/iris/handle/10665/331501.

18. Viechtbauer W. Conducting meta-analyses in R with the metafor package. J Stat Softw. 2010;36(3):1-48. https://doi.org/10.18637/jss.v036.i03.

19. World Health Organization (WHO). COVID-19 target product profiles for priority diagnostics to support response to the COVID-19 pandemic v.0.1. Geneva: WHO; 2020. Available from: https://www.who.int/publications/m/item/covid-19-target-product-profiles-for-priority-diagnostics-to-support-response-to-the-covid-19-pandemic-v.0.1.

20. Sethuraman N, Jeremiah SS, Ryo A. Interpreting diagnostic tests for SARS-CoV-2. JAMA. 2020;323(22):2249-51. https://doi.org/10.1001/jama.2020.8259. PMID: 32374370.

21. La Marca A, Capuzzo M, Paglia T, Roli L, Trenti T, Nelson SM. Testing for SARS-CoV-2 (COVID-19): a systematic review and clinical guide to molecular and serological in-vitro diagnostic assays. Reprod Biomed Online. 2020;41(3):483-99. https://doi.org/10.1016/j.rbmo.2020.06.001. PMID: 32651106.

22. Böger B, Fachi MM, Vilhenra RO, Cobre AF, Tonin FS, Pontarolo R. Systematic review with meta-analysis of the accuracy of diagnostic tests for COVID-19. Am J Infect Control. 2021;49(1):21-9. https://doi.org/10.1016/j.ajic.2020.07.011. PMID: 32659413.

23. Caini S, Bellerba F, Corso F, Diaz-Basabe A, Natoli G, Paget J, et al. Meta-analysis of diagnostic performance of serological tests for SARS-CoV-2 antibodies up to 25 April 2020 and public health implications. Euro Surveill. 2020;25(21):2000980. https://doi.org/10.2807/1560-7917.ES.2020.25.23.2000980. PMID: 32553061.

24. Moura DTH, McCarty TR, Ribeiro IB, Funari MP, Oliveira PVAG, Miranda Neto AA, et al. Diagnostic characteristics of serological-based COVID-19 testing: a systematic review and meta-analysis. Clinics (São Paulo). 2020;75:e2212. https://doi.org/10.6061/clinics/2020/e2212. PMID: 32785570.

25. Vermeersch P, André E. How the European in vitro diagnostic regulation could negatively impact the European response to the next pandemic: an urgent call for action before May 2022. Clin Microbiol Infect. 2021;27(8):1074-5. https://doi.org/10.1016/j.cmi.2021.05.009. PMID: 33979703.

26. European Commission (EC). Questions and answers on the progressive roll-out of the new In Vitro Diagnostic Medical Devices Regulation. Brussels: EC. [Accessed: 1 Nov 2021]. Available from: https://ec.europa.eu/commission/presscorner/detail/en/qanda_21_5210.

27. Cohen JF, Korevaar DA, Altman DG, Bruns DE, Gatsonis CA, Hooft L, et al. STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration. BMJ Open. 2016;6(11):e012799. https://doi.org/10.1136/bmjopen-2016-012799. PMID: 28137831.

License, supplementary material and copyright

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0) Licence. You may share and adapt the material, but must give appropriate credit to the source, provide a link to the licence and indicate if changes were made.