ACCUMULATION OF RADIONUCLIDES BY PYLAISIELLA MOSS (PYLAISIA POLYANTHA) UNDER URBOECOSYSTEM CONDITIONS

1Varduni, T.V., 1T.M. Minkina, 2E.A. Buraeva, 3S.N. Gorbov, 3S.S. Mandzhieva, 4G.V. Omel’chenko, 3E.I. Shimanskaya, 3A.A. V’yukhina and 3S.N. Sushkova

1Faculty of Biological Sciences, 2Faculty of Physics, 3Academy of Life Sciences, Southern Federal University, Rostov-on-Don, Russia 4Rostov State Medical University, Rostov-on-Don, Russia

ABSTRACT

Contamination of environment by radionuclides in territories under urboecosystem conditions is actual problem. The search of new express methods for radioactivity determination of environment is important task of research. In present work it was shown that mosses are bioindicators of radioactive contamination, because they accumulate radioactive substances in high concentrations. Using of bryoindication methods are promising techniques for the assessment of the contamination of ecosystems with radionuclides. The use of epiphytic mosses is the most efficient technique for assessing the contents of radionuclides in the surface air layer. The epiphytic moss (Pylaia polyantha) growing in different zones of the city of Rostov-on-Don, was used for the radioactivity biomonitoring of urbosystems. The accumulation features of radionuclides in the epiphytic pylaisiella moss (Pylaisia polyantha) in the territory of the city of Rostov-on-Don have been considered. It was shown that Pylaia polyantha is effective indicator of radioactivity for biomonitoring. The activity concentration of 137Cs, 226Ra, 40K and 232Th in the samples of moss, soils and aerosol air have been compared. The capacity of Pylaia polyantha to accumulate radionuclides has been estimated for four radionuclides (137Cs, 226Ra, 232Th and 40K) with consideration for the background level. On the basis of radionuclide analysis, zones in the city of Rostov-on-Don with the highest accumulation coefficients of 137Cs, 226Ra, 40K and 232Th were revealed. These were primarily the zones with both industrial and traffic loads and the motor transport zones. The results of investigation showed that the epiphytic moss (Pylaia polyantha) can be used as indicator of radioactivity pollution in different polluted zones.

Keywords: Pylaiaella Moss, Radionuclides, Activity Concentration, Build-Up Factor

1. INTRODUCTION

There are about 300 radionuclides (both natural and artificial, i.e., human-made) in the environment. The Earth biosphere contains more than 60 natural radionuclides. About 80 radionuclides are formed in nuclear reactors; about 200 radionuclides result from nuclear explosions and more than 140 radionuclides are produced by the Russian industry. Nuclear explosions; environmental contamination with radioactive waste; exploitation of various mineral deposits, including uranium-thorium deposits; accidents on enterprises of the nuclear fuel cycle result in the radioactive contamination of the atmosphere and the ingress of radioactive
Radionuclides get into the surface air layer due to different processes: The generation in the atmosphere and stratosphere and aerial transfer (for 7Be) with the wind-blown dust from the geological substrate (radionuclides of terrestrial origin, artificial radionuclides); the emissions from the thermal enterprises and power stations working on hydrocarbon fuels (210Pb); the direct input caused by accidents on the enterprises of the nuclear fuel cycle (artificial radionuclides) (Ajlouni et al., 2009). The content of 40K in the moss samples is significantly higher than those of 232Th and 238U. This is related to the fact that potassium is an essential macroelement for the metabolism of living organisms, in distinction from thorium and uranium, which are not involved in the vital activity of mosses and lichens. In the soil, the content of the potassium isotope also exceeds those of thorium and uranium, which is a norm, according to the data on the average activity concentrations of 40K (300-400 Bq/kg), 232Th (25-35 Bq/kg) and 238U (25-30 Bq/kg) in soils throughout the world. It is important to take into consideration that the adsorption of these radionuclides by mosses occurs in two main ways: First, at the adsorption of soil particles suspended in the air and, second, at the adsorption of liquid atmospheric precipitations (rain, dew, snow).

Terrestrial mosses are frequently used for the detection of 7Be, 210Bi and 210Pb in the atmospheric air and the analysis of the spatial distribution of 7Be in the precipitations. Hypnum moss ($Hypnum cupressiforme$) is used for assessing the activity concentrations of 137Cs, 40K, 232U and 238U. It was shown that the concentrations of 137Cs, 40K, 232U and 238U in the hyphnum moss are higher than those in the lichen ($Cladonia rangiformis$) on the area studied (Krmar et al., 2014).

Terrestrial mosses are used for assessing the contents of the natural radionuclides 226Ra, 232Th and 40K, as well as the artificial radionuclide 137Cs, in soils, as well as their seasonal behavior (Krmar et al., 2014). The terrestrial mosses were analyzed for the radioactive contamination, because they accumulate radioactive substances in high concentrations. It was shown that the bryoisotopic method is promising for the assessment of the contamination of ecosystems with radionuclides (Smith et al., 2014; Minkina et al., 2013a; 2014; Motuzova et al., 2014; Batukaev et al., 2014).
2. OBJECTS AND METHODS

The use of epiphytic mosses is the most efficient technique for assessing the contents of radionuclides in the surface air layer. In our work, the epiphytic moss (*Pylaisia polyantha*), which grows in different zones of the city of Rostov-on-Don, was used for the biomonitoring of urbosystems (Fig. 1). Samples of *P. polyantha* were taken from poplar dark at a height of 1.5-2.0 m on the test plots of Rostov-on-Don. A total of 350 samples of *P. polyantha* were used for the radionuclide analysis.

The background plot was located in the relatively clean area of the Kamenskii district (Rostov Region, Russia) with the natural and climatic conditions similar to those of the area studied in the course of biomonitoring and located at more than 100 km from industrial centers.

The following parameters were also determined: The radionuclide composition in the 0- to 2-cm layer (more than 100 soil samples), as well as the specific contamination and radioactivity of the surface soil layer (more than 300 samples).

For the determination of radioisotope composition, the samples were dried in an oven at 105-110°C to a constant weight (for 24 h) and ground.

The contents of the radionuclides in the selected samples were determined by the gamma-spectrometric method of radionuclide analysis on a customized low-background REUS-II-15 unit with a GeHP semiconductor detector and Dent containers of 0.02 and 0.04 L according to the standard analytical procedures.

Fig. 1. Schematic map of biomonitoring plots: Transport emission zone (plot 9, Zmievskei St.; plot 10, Sholokhova Ave.); industrial emission zone (plot 2, thermal power plant; plot 3, thermal power plant 2; plot 10, bearing plant); industrial and transport emission zones (plot 4, Portnova St.; plot 5, Siversa St.; plot 6, Budenovskii Ave, Dolomanovskii St./Tekucheva St. and Mechnikova St.; plot 7, Vavilova St.; plot 8, Taganrogskoe sh.); recreation park zone (plot 1 (relative control), Botanic Garden)
The build-up factor of radionuclides K_c were calculated from the formula $K_c = K_s/K_b$, where K_s is the activity concentration of radionuclides in the sample and K_b is the activity concentration of radionuclides in the background. The accumulation coefficients of radionuclides with respect to the aerosol dust (K_{aa}) and the soil (K_{as}) were also calculated.

The capacity of pylaisiella moss to accumulate radionuclides was assessed for four radionuclides: 137Cs, 226Ra, 232Th and 40K with consideration for the background level. These radionuclides were used as the objects of study, because their presence mainly determines the ecological and radiation situation in the city of Rostov-on-Don and its district. The activity concentration of radionuclides in the samples of pylaisiella moss on the test plots of Rostov-on-Don was compared to that in the background mosses, the surface air layer and the soil. The degree of radionuclide accumulation in pylaisiella moss was determined from the concentration coefficient (K_c).

3. RESULTS

The results of determining the activity concentration of radionuclides and the build-up factor (K_c) in the samples of pylaisiella moss are given in Fig. 2 and 3.

In previous research it was determined that activity concentration of radionuclides in the mosses could be used as effective indicator of radioactivity pollution in different polluted zones (El-Gamal et al., 2013; Minkina et al., 2014). In research El-Gamal et al. (2013) it was shown that mosses are used for urboecomonitoring for definition of high radioactivity levels around assiut thermal power plants. In investigation of Minkina et al. (2014) describes additional influence of of heavy metal attendant anion on adsorption of polluted material by plants system.

The build-up factor of radionuclides with respect to the atmospheric air (K_{aa}) and the soil (K_{as}) are given in Fig. 4-7.

Investigation of the build-up factor of mosses gives a linear attenuation coefficient can be considered as the fraction of photons that interact with the shielding medium per centimeter of shielding. This coefficient assumes that all photons that interact are removed and ignores compton scatter and pair production photons (underestimates the shielded dose rate and the shielding required) (Kolupaev et al., 2014). It is also known as narrow beam conditions because the source and detector are assumed to be collimated and the measurement made at a short distance (Laxman Singh et al., 2014).

The factors of accumulation whis is a parameter of ability of biological objects to accumulate radionuclides from natural objects of their habitat were determined in samples of mosses (Hansson et al., 2014). The results compares with previous research which explained the possibility using P. polyantha as an effective bioindicator of radioactivity contamination of the total environment (Osman et al., 2005; Minkina et al., 2013b; Sushkova et al., 2014;).
Fig. 3. Concentration coefficient (Kc) of 137Cs, 226Ra, 232Th and 40K in the samples of pylaisiella moss (Pylaisia polyantha) from the test plots in the city of Rostov-on-Don.

Fig. 4. Build-up factor (Kaa and Kas) of 137Cs in the samples of pylaisiella moss (Pylaisia polyantha) from the test plots in the city of Rostov-on-Don.

Fig. 5. Build-up factor (Kaa and Kas) of 226Ra in the samples of pylaisiella moss (Pylaisia polyantha) from the test plots in the city of Rostov-on-Don.
4. DISCUSSION

The activity concentration of radionuclides in the aerosol dust in the surface air layer Aas (Bq/kg) was determined from their volume activity in aerosols Ava (Bq/m3) with consideration for the content of dust in the atmosphere (m, g/m3). The average activity concentrations of 137Cs, 226Ra, 232Th and 40K in the samples of moss, soil and aerosol dust coincided within the error of determination (20%). The value of Kc for 137Cs in the points, where its activity concentration exceeded the background levels, varied in the range from 1.05 to 6.6 (Fig. 4). The maximum Kc values were recorded in the Leniniskii, Zheleznodorozhnyi and Oktyabr’skii districts.

The maximum values of Kaa and Kas were found for 137Cs in the Leniniskii district. The maximum build-up factor Kaa for 137Cs was 41.5 (which exceeded the background value by 17.6 times); the values of Kas for 137Cs varied from 0.34 to 2.96 (Fig. 4).

The values of Kc for 226Ra varied from 1.8 to 55. Its maximums were recorded in the Sovetskii and Pervomaiskii districts (Fig. 3); the maximum Kaa and Kas values (3.6) were found in the Sovetskii district (Fig. 5).

The values of Kc for 232Th varied from 1.06 to 25, the maximums being recorded in the Sovetskii and Leniniskii districts (Fig. 3); the values of Kaa for 232Th varied from 0.06 to 1.5, the maximum being of 3.13 (Fig. 6).

The values of Kc for 40K varied from 1.2 to 7.8. The maximum values were recorded in the Leniniskii district for Kc and in the Leniniskii, Pervomaiskii and Sovetskii districts for Kaa and Kas (Fig. 7). The value of Kas for 40K with respect to aerosol dust was 12.21; the Kas variation range was from 0.4 to 2.622 (Fig. 7).
The increase of the activity concentration of 226Ra in the samples of P. polyantha can be also related to the functioning of coal-fired power plants in the close vicinity of the test areas. It is known that the average global activity of 226Ra in the power-plant volatile ash is 240 Bq/kg. The specific pollution density of the surface air is the main factor directly affecting the specific activity of 137Cs in this air layer. The activity concentration of the artificial radionuclide 137Cs in the samples of pylaisiella moss can be due to the atmospheric emissions and the wind-blown dust from the geological substrate.

The activity concentration of 40K in the samples was significantly higher than those of 137Cs (by 14.6 times), 226Ra (by 14.3 times) and 232Th (by 30.4 times). This is related to the fact that potassium is an essential macroelement for the metabolism of living organisms. In soil and air, the activity concentration of the potassium isotope also exceeds those of 137Cs, 226Ra and 232Th.

5. CONCLUSION

The activity concentration of 137Cs, 226Ra, 40K and 232Th in the samples of pylaisiella moss were found to be generally higher than in soils and aerosols. Radionuclide analysis revealed zones in the city of Rostov-on-Don with the highest accumulation coefficients (Kaa and Kas) of 137Cs, 226Ra, 40K and 232Th, including the zone with both industrial and traffic loads and the motor transport zone. The limitations of activity concentrations of 137Cs, 226Ra, 232Th and 40K in the samples of moss, soil and aerosol dust exceeded the background levels, varied in the range from 1.05 to 6.6. The maximum activity concentration values were recorded in the Lenskii, Zheleznozorozhnyi and Oktyabr'ski districts of the city.

This allows using pylaisiella moss to determine the radioactivity of the surface air layer, assess the accumulation of radionuclides during a long time period and study the contribution of radionuclides to the entire range of genotoxic substances affecting the genetic apparatus of pylaisiella moss. The obtained data gives a unique possibility to study environmental contamination by using simple and effective method of radioactive bioindication by pylaisiella moss in future.

6. ACKNOWLEDGEMENT

This research was performed with use of the equipment of Collective Using Center of the Southern Federal University “Biotechnology, Biomedicine and Environmental Monitoring” and “High Technology”.

This research was supported by project of the Ministry of Education and Science of Russia, no. 1894.

7. REFERENCES

Ajlouni, A.W., M. Abdelsalam, H. Al-Rabai and M.S. Abdullah Ajlouni, 2009. Diffusion of radioactive materials in the atmosphere. Am. J. Environ. Sci., 5: 53-57. DOI : 10.3844/ajessp.2009.53.57.

Batukaev, A.A., A.P. Endovitsky, T.M. Minkina, V.P. Kali-Nichenko and Z.S. Dikaev et al., 2014. Chemical equilibrium of soil solution in steppe zone soil. Am. J. Agric. Biol. Sci., 9: 420-429. DOI: 10.3844/ajabssp.2014.420.429.

Carvalho, F.P., 2011. Environmental radioactive impact associated to uranium production. Am. J. Environ. Sci., 7: 547-553. DOI: 10.3844/ajessp.2011.547.553.

Carvalho, F.P., J.M. Oliveira and M. Malta, 2012. Forest fires resuspension of radionuclides into the atmosphere. Am. J. Environ. Sci., 8: 1-4. DOI: 10.3844/ajessp.2012.1.4.

El-Gamal, H., M. El-Azab Farid, A.I. Abdel Mageed, M. Bady and M. Hasabelnaby et al., 2013. Monstrous hazards produced by high radioactivity levels around assiut thermal power plant. Am. J. Environ. Sci., 9: 388-397. DOI: 10.3844/ajessp.2013.388.397.

Hansson, S.V., J.M. Kaste, C. Olid and R. Bindler, 2014. Incorporation of radiometric tracers in peat and implications for estimating accumulation rates. Sci. Total Environ., 493: 170-177. DOI: 10.1016/j.scitotenv.2014.05.088.

Kiliç, T., M. Belivermiş, Y. Çotuk and S. Topçuoglu, 2014. Radioactivity concentrations in mussel (Mytilus galloprovincialis) of Turkish Sea coast and contribution of 210Po to the radiation dose. Marine Pollut. Bull., 80: 325-329. DOI: 10.1016/j.marpolbul.2013.12.037.

Kolupaev, Y.E., O.I. Oboznyi and N.V. Shvidenko, 2014. Role of hydrogen peroxide in generation of a signal inducing heat tolerance of wheat seedlings. Russ. J. Plant Physiol., 60: 227-234. DOI: 10.1134/S102144371302012X.

Krmarić, M., D. Radnović and J. Hansman, 2014. Correlation of unsupported 210Po activity in soil and moss. J. Environ. Radioactivity, 129: 23-26. DOI: 10.1016/j.jenvrad.2013.11.009.

Laxman Singh, K., G. Sudhakar, S.K. Swaminathan and C. Muralidhar Rao, 2014. Identification of elite native plants species for phytoaccumulation and remediation of major contaminants in uranium tailing ponds and its affected area. Environ., Dev. Sustainability. DOI: 10.1007/s10668-014-9536-7.
Mandzhieva, S.S., T.M. Minkina, S.N. Sushkova, G.V. Motu-zova and T.V. Bauer et al., 2014. The group composition of metal compounds in soil as an index of soil ecological state. Am. J. Agric. Biol. Sci., 9: 19-24. DOI: 10.3844/ajabssp.2014.19.24.

Maxhuni, A., P. Lazo and M. Paqarizi, 2012. Comparison of two analytical techniques for lead determination in soils and mosses samples. Am. J. Environ. Sci., 8: 412-416. DOI: 10.3844/ajessp.2012.412.416

Minkina, T., S. Mandzhieva, Y. Fedorov, T. Bauer and D. Nevidomskaya et al., 2013a. Influence of organic matter on the mobility of copper, lead and zinc in soil. World Applied Sci. J., 26: 406-409. DOI: 10.5829/idosi.wasj.2013.26.03.13495

Minkina, T., S. Mandzhieva, T. Bauer, D. Nevidomskaya and S. Sushkova et al., 2013b. New approach in studying of zinc compounds in soil. World Applied Sci. J., 26: 177-180. DOI: 10.5829/idosi.wasj.2013.26.02.12206

Minkina, T.M., D.L. Pinskiy, T.V. Bauer, S.S. Mandzhieva and O.N. Belyaeva et al., 2014. Effect of attendant anions on zinc adsorption and transformation in Chernozem. J. Geochemical Explorat., 144: 226-229. DOI: 10.1016/j.gexplo.2013.12.016

Motuzova, G.V., T.M. Minkina, E.A. Karpova, N.U. Barsova and S.S. Mandzhieva, 2014. Soil contamination with heavy metals as a potential and real risk to the environment. J. Geochemical Explorat., 144: 241-246. DOI: 10.1016/j.gexplo.2014.01.026.

Osman, F., H. Hora, X.Z. Li, G.H. Miley and J.C. Kelly, 2005. Supporting the josephson interpretation of low energy nuclear reactions and stabilization of nuclear waste. Am. J. Applied Sci., 2: 1049-1057. DOI: 10.3844/ajassp.2005.1049.1057

Smith, G.M., K.L. Smith, R. Kowe, D. Pérez-Sánchez and M. Thorne et al., 2014. Recent developments in assessment of long-term radionuclide behavior in the geosphere-biosphere subsystem. J. Environ. Radioactivity, 131: 89-109.

Sushkova, S.N., G.K. Vasilyeva, T.M. Minkina, S.S. Mandzhieva and I.G. Tjurina et al., 2014. New method for benzo[a]pyrene analysis in plant material using subcritical water extraction. J. Geochemical Explorat., 144: 267-272. DOI: 10.1016/j.gexplo.2014.02.018