Asymptotical stability analysis of conformable fractional systems

Yongfang Qi and Xuhuan Wang

Department of Mathematics, Pingxiang University, Pingxiang, People’s Republic of China

ABSTRACT
In this paper, we analyses the asymptotical stability of the system in the form $T_\alpha y(\tau) = A y(\tau) + f(\tau, y(\tau))$ with the initial value $y(\tau_0) = y_0$. With the help of the Grönwall’s Inequality and function analysis, we have proved asymptotical stability of solution for the conformable fractional system. Two examples are included to apply the results.

1. Introduction
Fractional differential systems have gained considerable popularity due to its important applications in physics and engineering [1–8] etc. In recent years, several types of fractional definitions are given, such as Riemann–Liouville, Grunwald–Letnikov and Caputo’s fractional definition and so on. However, there are some disadvantages about Riemann–Liouville and Caputo fractional derivative, such as all of them do not satisfy the following rules,

\[D_\alpha^\alpha (gf) = fD_\alpha^\alpha g + gD_\alpha^\alpha f, \]
\[D_\alpha^\alpha \left(\frac{g}{f} \right) = \frac{fD_\alpha^\alpha g - gD_\alpha^\alpha f}{f^2}. \]

Over the past few decades, a simple definition called conformable fractional derivative was proposed in [9]. For more results about conformable fractional derivative, we refer the reader to [10–18]. This derivative seems to be more natural, and it coincides with the classical definition of the first derivative. In 2015, Thabet Abdeljawad proceeded on to develop the definition, some basic concepts about conformable fractional derivative such as chain rule, Grönwall’s Inequality, exponential functions and Lyapunov inequality were studied in [19–22]. In addition, the Laplace transform was introduced to solve the linear differential systems [23].

In order to solve the conformable fractional equations, more and more methods have been proposed, such as invariant subspace method [24], the new extended direct algebraic method [25], the first integral method [26], modified Kudryashov method [27], the analytical method [28] and stochastic method [29], thanks to these methods, the exact solutions are formally established for many systems. Although so many methods have been presented, there are still a large number of systems cannot be solved, hence, the numerical simulations method is proposed, the results are proved to be very accurate [30].

On the other hand, more and more conformable fractional models have been established, such as conformable fractional dynamic cobweb model [31], conformable time-fractional schrödinger model [32], conformable fractional Biswas–Milovic model [33]. The stability of the differential system is also attracted for researchers, that is because the stable system is very important in our life. Recently, stability problems of nonlinear fractional systems have been extensively investigated by many authors [34–36]. In addition, Abdourazek Souahi et al. studied the stability of conformable fractional-order nonlinear systems by using Lyapunov function [37]. However, to the best of the authors’ knowledge, few contributions addressing the asymptotical stability for the conformable fractional system have been reported in the literature, which motivates us to carry out this work.

It is well-known that the Lyapunov function is difficult to obtain for stability analysis of uncertain nonlinear systems. The purpose of this paper is to present more convenient methods to analyse the asymptotical stability of the conformable fractional system. The main contributions of this paper are as follows: (1) By using the Grönwall’s Inequality and function analysis, the asymptotical stability results of a class of conformable fractional system are established, (2) To overcome the difficulty of finding suitable Lyapunov function, the asymptotical stability of the system is studied by the limit method.

The rest of this paper is organized as follows. In Section 2, we introduce some Definitions and the necessary Lemmas. In Section 3, we given our main...
The trivial solution of Equation (5) is called to be
\[
\text{Definition 2.3 (Fractional Exponential Stability [23]):}
\]
\[
\varepsilon
\]
for all \(\varepsilon > 0 \) such that the solution of Equation (5) satisfies
\[
\text{where } 0 < \alpha \leq 1.
\]

\[
\text{Lemma 2.1 ([23]): Assume that } y: [0, \infty) \to \mathbb{R} \text{ such that } y'(\tau) \text{ is continuous. Then the following equation holds}
\]
\[
T_\alpha T_\alpha y(\tau) = y(\tau), 0 < \alpha \leq 1.
\]

\[
\text{Lemma 2.2 ([23]):}
\]
\[
T_\alpha (au + bv) = a T_\alpha u + b T_\alpha v,
\]
\[
T_\alpha (uv) = v T_\alpha u + u T_\alpha v,
\]
\[
T_\alpha \left(\begin{array}{c} u \\ v \end{array} \right) = \frac{v T_\alpha u - u T_\alpha v}{\sqrt{v^2}}.
\]

\[
\text{Lemma 2.3 (Grönwall’s Inequality):}
\]
\[
f(\tau) \leq \lambda + \int_a^\tau f(s) g(s) \, ds, \tau \in [a, b],
\]
then
\[
f(\tau) \leq \lambda e^{\int_a^\tau g(\tau) \, d\tau}, \tau \in [a, b].
\]

\[
\text{Lemma 2.4 ([23]):}
\]
\[
T_\alpha y(\tau) = A y(\tau) + f(\tau, y(\tau)), y(\tau_0) = y_0,
\]
has the solution
\[
T_\alpha y(\tau) = y(\tau) + f(\tau, y(\tau)), y(\tau_0) = y_0,
\]
\[
y(\tau) = y(0) \exp \left(A (\tau - \tau_0)^\alpha \right) + \int_{\tau_0}^\tau \exp \left(A (\tau - \tau_0)^\alpha \right) \times \exp \left(-A (\tau - \tau_0)^\alpha \right) f(s, y(s)) (s - \tau_0)^{1-\alpha} \, ds.
\]

\[
\text{Lemma 2.5 ([34]):}
\]
\[
\exp(At) \in \mathbb{R}^{-w},
\]
where \(\lambda \) is eigenvalue of the real matrix \(A \in \mathbb{R}^{n \times n} \) and \(w = -\max(\text{Re}(A)). \)

\[
\text{Lemma 2.6:}
\]
\[
\exp(At + Bt) = \exp(At) \exp(Bt),
\]
where \(A \in \mathbb{R}^{n \times n} \) and \(B \in \mathbb{R}^{n \times n} \) are real matrices.
3. Main result

In this section, we will pay attention to the following conformable fractional differential system. The main purpose of this section is to analysis the asymptotical stability of the system.

\[T_\alpha y(\tau) = Ay(\tau) + f(\tau, y(\tau)), y(\tau_0) = y_0, \]

where \(0 < \alpha \leq 1 \), \(A \in \mathbb{R}^{n \times n} \) is a constant matrix, \(y(\tau) \), \(f(\tau, y(\tau)) \) are column vectors and \(f(\tau, 0) = 0 \).

Theorem 3.1 ([37]): Let \(x = 0 \) be an equilibrium point of the system (14), and Lyapunov function \(V(\tau, y(\tau)) \) is continuous. If there exist positive constants \(c_1, c_2, c_3 \) satisfying the following conditions:

\[c_1 \| y \|^2 \leq V(\tau, y) \leq c_2 \| y \|^2, \]

\[T_\alpha c V(\tau, y) \leq -c_3 \| y \|^2, \]

then the origin of system (14) is fractional exponentially stable.

Theorem 3.2: Let \(\hat{y}(\tau) = [y_1(\tau), y_2(\tau), \ldots, y_n(\tau)] \) and \(P \) be positive symmetric matrix, then there exist \(\lambda_1 > 0 \) and \(\lambda_n > 0 \) satisfying the following inequality for arbitrary \(y(\tau) \).

\[\lambda_1 y^T(\tau)y(\tau) \leq y^T(\tau)Py(\tau) \leq \lambda_n y^T(\tau)y(\tau). \]

Proof: \(P \) is positive symmetric matrix implies that there exists orthogonal matrix \(Q \) (or \(Q^T Q = I \)) satisfying

\[Q^T P Q = \begin{bmatrix}
\lambda_1 & 0 & \cdots & 0 \\
0 & \lambda_2 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & \lambda_n
\end{bmatrix}, \]

where \(\lambda_1, \lambda_2, \ldots, \lambda_n \) are eigenvalues of \(P \) and \(0 < \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n \). Let \(y(\tau) = Qz(\tau) \), then

\[\hat{y}(\tau)^T Py(\tau) = (Qz(\tau))^T P Q z(\tau) = z^T(\tau) PQ z(\tau) = \lambda_{1} z_{1}^{2}(\tau) + \cdots + \lambda_{n} z_{n}^{2}(\tau). \]

It is obvious that

\[\lambda_{1} z_{1}^{2}(\tau) + \cdots + \lambda_{n} z_{n}^{2}(\tau) \leq \lambda_{1} z_{1}^{2}(\tau) + \cdots + \lambda_{n} z_{n}^{2}(\tau) \leq \| y \|, \]

then we have

\[\lambda_{1} z_{1}^{2}(\tau) z(\tau) \leq \lambda_{1} z_{1}^{2}(\tau) + \cdots + \lambda_{n} z_{n}^{2}(\tau) \leq \| y \| \| z(\tau) \|. \]

From Definition 2.5 and (23), we have

\[T_\alpha V(\tau) = (T_\alpha y^T(\tau)) Py(\tau) + y^T(\tau) PT_\alpha y(\tau) \]

\[= (T_\alpha y(\tau))^T Py(\tau) + y^T(\tau) PT_\alpha y(\tau) \]

\[= [Ay(\tau) + f(\tau, y(\tau))]^T Py(\tau) + y^T(\tau) [Ay(\tau) + f(\tau, y(\tau))]|P|y(\tau) \]

\[= [y^T(\tau) A^T + f^T(\tau, y(\tau))] Py(\tau) + y^T(\tau) [Ay(\tau) + f(\tau, y(\tau))]|P|y(\tau) \]

\[= y^T(\tau) [A^T P + PA] y(\tau) + 2f^T(\tau, y(\tau)) Py(\tau). \]

By Theorem 3.1, it is easy to verify that the origin of system (14) is fractional exponentially stable, the proof is completed.

Theorem 3.3: For \(0 < \alpha \leq 1 \), if the function \(f(\tau, y(\tau)) \) is Lipschitz continuous, \(L \) is Lipschitz constant. Assume that the following assumption is satisfied: There exists a positive symmetric matrix \(P \) and positive constant \(\varepsilon \) such that the following inequalities hold

\[A^T P + PA + \varepsilon I < 0, \]

\[L < \frac{\varepsilon}{2\lambda_{\max}(P)}. \]

Then the origin of system (14) is fractional exponentially stable.

Proof: Choose a Lyapunov function \(V(\tau) = y^T(\tau) Py(\tau) \), it is obvious that the condition (15) holds.

From Theorem 3.2 and Lemma 2.2, we can conclude that

\[T_\alpha V(\tau) = (T_\alpha y^T(\tau)) Py(\tau) + y^T(\tau) PT_\alpha y(\tau) \]

\[= (T_\alpha y(\tau))^T Py(\tau) + y^T(\tau) PT_\alpha y(\tau) \]

\[= [Ay(\tau) + f(\tau, y(\tau))]^T Py(\tau) + y^T(\tau) [Ay(\tau) + f(\tau, y(\tau))]|P|y(\tau) \]

\[= [y^T(\tau) A^T + f^T(\tau, y(\tau))] Py(\tau) + y^T(\tau) [Ay(\tau) + f(\tau, y(\tau))]|P|y(\tau) \]

\[= y^T(\tau) [A^T P + PA] y(\tau) + 2f^T(\tau, y(\tau)) Py(\tau). \]

\[\leq \varepsilon \| y(\tau) \|^2 + 2L \| y(\tau) \|^2 \leq \varepsilon \| y(\tau) \|^2 + 2L \lambda_{\max}(P) \| y(\tau) \|^2, \]
Proof: With the help of Lemma 2.4, the solution of system (14) is obtained

\[
y(\tau) = y(0) \exp \left(\frac{A(\tau - \tau_0)^\alpha}{\alpha} \right) + \int_{\tau_0}^{\tau} \exp \left(\frac{A(\tau - \tau_0)^\alpha}{\alpha} \right) \times e^{-A(s - \tau_0)^\alpha} f(s, y(s)) (s - \tau_0)^{\alpha - 1} ds,
\]

Thus,

\[
||y(\tau)|| \leq ||y(0)|| \exp \left(\frac{A(\tau - \tau_0)^\alpha}{\alpha} \right) + \int_{\tau_0}^{\tau} \exp \left(\frac{A(\tau - \tau_0)^\alpha - (s - \tau_0)^\alpha}{\alpha} \right) \times |f(s, y(s))|(s - \tau_0)^{\alpha - 1} ds.
\]

(28)

According to Lemma 2.5, there exists a constant \(M > 0 \) such that

\[
||\exp \left(\frac{A(\tau - \tau_0)^\alpha}{\alpha} \right)|| \leq Me^{-\alpha (\tau - \tau_0)^\alpha}, \quad ||\exp \left(\frac{A(\tau - \tau_0)^\alpha - (s - \tau_0)^\alpha}{\alpha} \right)|| \leq Me^{-\alpha (\tau - \tau_0)^\alpha - (s - \tau_0)^\alpha},
\]

where \(w = -\max\{\text{Re}\lambda(\mathcal{A})\} \).

Combining (29), (30), and (31), we have

\[
||y(\tau)|| \leq ||y(0)|| Me^{-\alpha (\tau - \tau_0)^\alpha} + \int_{\tau_0}^{\tau} Me^{-\alpha (\tau - \tau_0)^\alpha - (s - \tau_0)^\alpha} \times |f(s, y(s))|(s - \tau_0)^{\alpha - 1} ds,
\]

(32)

the condition \(\lim_{\tau \to +\infty} ||y(\tau)|| = 0 \) implies that there exists \(\delta > 0 \) satisfying the following inequality

\[
||f(\tau, y(\tau))|| \leq \frac{1}{M} ||y(\tau)||, \quad \text{as} \ ||y(\tau)|| < \delta.
\]

(33)

Substituting (33) into (32), we have

\[
||y(\tau)|| \leq ||y(0)|| Me^{-\alpha (\tau - \tau_0)^\alpha} + \int_{\tau_0}^{\tau} Me^{-\alpha (\tau - \tau_0)^\alpha - (s - \tau_0)^\alpha} \times |f(s, y(s))|(s - \tau_0)^{\alpha - 1} ds,
\]

(34)

Multiplying both sides by \(e^{\alpha (\tau - \tau_0)^\alpha} \), we have

\[
e^{\alpha (\tau - \tau_0)^\alpha} ||y(\tau)|| \leq ||y(0)|| M + \int_{\tau_0}^{\tau} e^{\alpha (\tau - \tau_0)^\alpha - (s - \tau_0)^\alpha} \times |f(s, y(s))|(s - \tau_0)^{\alpha - 1} ds.
\]

(35)

From Lemma 2.3, the following inequality holds

\[
e^{\alpha (\tau - \tau_0)^\alpha} ||y(\tau)|| \leq ||y(0)|| M e^{\alpha (\tau - \tau_0)^\alpha} e_{\gamma}(\tau - \tau_0)^\alpha ds,
\]

(36)

inequality (36) implies that

\[
||y(\tau)|| \leq ||y(0)|| Me^{\alpha (\tau - \tau_0)^\alpha} e_{\gamma}(\tau - \tau_0)^\alpha,
\]

(37)

thus, one can obtain

\[
\lim_{\tau \to +\infty} ||y(\tau)|| = 0.
\]

(38)

Therefore, the origin of system (14) is asymptotically stable, the proof is completed.

\begin{center}
\textbf{4. Numerical results}
\end{center}

In this section, two examples will be provided to demonstrate the effectiveness of the proposed results.

Example 4.1: Consider the following conformable fractional differential system:

\[
T_\alpha y(\tau) = Ay(\tau) + f(\tau, y(\tau)), y(\tau_0) = y_0,
\]

where \(0 < \alpha \leq 1, y(\tau) = (y_1(\tau), y_2(\tau))^T, A = [-3, \frac{1}{2}], f(\tau, y(\tau)) = (\sin y_1(\tau), \sin y_2(\tau))^T \).

It is obvious that \(y(\tau) \) is Lipschitz continuous with \(L = 1 \), let \(P = \begin{bmatrix} 0 & 1 \\ 2 & 0 \end{bmatrix}, \epsilon = 1.1, A^T P + P A + \epsilon I = \begin{bmatrix} -1.9 & 1 \\ 1 & -0.9 \end{bmatrix} < 0, \lambda_{\max}(P) = \frac{1}{2}, \) and \(L < \frac{\epsilon}{\lambda_{\max}(P)} \). By using
Theorem 3.3, it is easy to obtain that the trivial solution of system (39) is fractional exponentially stable.

Example 4.2: Consider the following conformable fractional differential system:

\[
T_\alpha y(\tau) = Ay(\tau) + f(\tau, y(\tau)), y(\tau_0) = y_0, \quad (40)
\]

where \(0 < \alpha \leq 1\), \(A = \begin{bmatrix} -10 & 10 & 0 \\ -20 & 0 & 0 \\ 0 & -2.5 & 0 \end{bmatrix}\), \(f(\tau, y(\tau)) = \begin{bmatrix} -10y_1y_3 \\ 4y_1^2 \end{bmatrix}\).

\[
\lim_{y(\tau) \to 0} \frac{|f(\tau, y(\tau))|}{|y(\tau)|} = \lim_{y(\tau) \to 0} \frac{\sqrt{(-10y_1y_3)^2 + (4y_1^2)^2}}{\sqrt{y_1^2 + y_2^2 + y_3^2}} \leq \lim_{y(\tau) \to 0} \frac{\sqrt{(-10y_1y_3)^2 + (4y_1^2)^2}}{\sqrt{y_1^2}} = \lim_{y(\tau) \to 0} \sqrt{(-10y_3)^2 + (4y_1)^2} = 0. \quad (41)
\]

Obviously, \(\text{Re} \lambda(A) < 0\). Therefore, by Theorem 3.4, it is clear that the trivial solution of system (40) is asymptotically stable.

5. Conclusions

This paper investigates the problem of asymptotical stability of a class of conformable fractional system. By using the Grönwall’s Inequality and function analysis, we have proved asymptotical stability of solution for the conformable fractional system. Two examples are given to show the validity of the proposed method. In the future, we will consider the limit cycle of the conformable fractional systems.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by Scientific Research Foundation of Jiangxi Provincial Education Department (grant numbers GJJ171135, GJJ161265), National Natural Science Foundation of China (grant number 11661065) and Youth Foundation of Pingxiang University (grant number 2018D0220).

ORCID

Yongfang Qi @ http://orcid.org/0000-0002-2667-9854
Xuhuan Wang @ http://orcid.org/0000-0001-9318-5152

References

[1] Bahaa GM, Hamiaz A. Optimal control problem for coupled time-fractional diffusion systems with final observations. J Taibah Univ Sci. 2019;13(1):124–135.

[2] Khamessi B, Hamiaz A. Existence and exact asymptotic behaviour of positive solutions for fractional boundary value problem with P-Laplacian operator. J Taibah Univ Sci. 2019;13(1):370–376.

[3] Bohner M, Hatipoğlu VF. Cobweb model with conformable fractional derivatives. Math Methods Appl Sci. 2018;41(18):9010–9017.

[4] Acan O, Quraishi MMA, Baleanu D. New exact solution of generalized biological population model. J Nonlinear Sci Appl. 2017;10(7):3916–3929.

[5] Hatipoğlu VF, Alkan S, Secer A. An efficient scheme for solving a system of fractional differential equations with boundary conditions. Adv Differ Equ. 2017;204:1–13.

[6] Kurt A. New periodic wave solutions of a time fractional integrable shallow water equation. Appl Ocean Res. 2019;85:128–135.

[7] Tasbozan O, Kurt A, Tozar A. New optical solutions of complex Ginzburg-Landau equation arising in semiconductor lasers. Appl Phys B. 2019;125:6–104.

[8] Bayram M, Hatipoğlu VF, Alkan S, et al. A solution method for integro-differential equations of conformable fractional derivative. Therm Sci. 2018;22(1):7–14.

[9] Khalil R, Al Horani M, Youssef A, et al. A new definition of fractional derivative. J Comput Appl Math. 2014;264:65–70.

[10] Ünal E, Gökdoğan A. Solution of conformable fractional ordinary differential equations via differential transform method. Optik. 2017;128:264–273.

[11] Khan TU, Khan MA. Generalized conformable fractional operators. J Comput Appl Math. 2019;346:378–389.

[12] Thabet H, Kendre S. Analytical solutions for conformable space-time fractional partial differential equations via fractional differential transform. Chaos Solitons Fractals. 2018;109:238–245.

[13] Rosales JJ, Godmez FA, Banda V, et al. Analysis of the Drude model in view of the conformable derivative. Optik. 2019;178:1010–1015.

[14] Chen C, Jiang YL. Simplest equation method for some time-fractional partial differential equations with conformable derivative. Comput Math Appl. 2018;75:2978–2988.

[15] Rezazadeh H, Mirhosseini-Alizamini SM, Eslami M, et al. New optical solitons of nonlinear conformable fractional Schrödinger-Hirota equation. Optik. 2018;172:545–553.

[16] Tariboon J, Ntouyas SK. Oscillation of impulsive conformable fractional differential equations. Open Math. 2016;14:497–508.

[17] Zhao DZ, Luo MK. General conformable fractional derivative and its physical interpretation. Calcolo. 2017;53:903–917.

[18] Chung WS, Zare S, Hassanabadi H. Investigation of conformable fractional schrodinger equation in presence of killingbeck and hyperbolic potentials. Commun Theor Phys. 2017;67:250–254.

[19] Liu S, Jiang W, Li XY, et al. Lyapunov stability analysis of fractional nonlinear systems. Appl Math Lett. 2016;51:13–19.

[20] Wang XH, Peng YH, Lu WC. Lyapunov-type inequalities for certain higher order fractional differential equations. J Nonlinear Sci Appl. 2017;10:5064–5071.

[21] Kayar Z. Lyapunov type inequalities and their applications for quasilinear impulsive systems. J Taibah Univ Sci. 2019;13(1):711–721.

[22] Shah K, Ali A, Khan RA. Degree theory and existence of positive solutions to coupled systems of multipoint boundary value problems. Bound Value Probl. 2016;43:1–12.
[23] Alfishawi T. On conformable fractional calculus. J Comput Appl Math. 2015;279:57–66.
[24] Hashemi MS. Invariant subspaces admitted by fractional differential equations with conformable derivatives. Chaos Solitons Fract. 2018;107:161–169.
[25] Rezazadeh H, Tariq H, Eslami M, et al. New exact solutions of nonlinear conformable time-fractional Phi-4 equation. Chin J Phys. 2018;56:2805–2816.
[26] Ilie M, Biazar J, Ayati Z. The first integral method for solving some conformable fractional differential equations. Opt Quantum Electron. 2018;50:55.
[27] Kumar D, Seadawy AR, Joardar AK. Modified Kudryashov method via new exact solutions for some conformable fractional differential equations arising in mathematical biology. Chin J Phys. 2018;56:75–85.
[28] Özkan O, Kurt A. The analytical solutions for conformable integral equations and integro-differential equations by conformable Laplace transform. Opt Quantum Electron. 2018;50:81.
[29] Çenesiz Y, Kurt A, Nane E. Stochastic solutions of conformable fractional cauchy problems. Stat Probab Lett. 2017;124:126–131.
[30] Yaslan HÇ. Numerical solution of the conformable space-time fractional wave equation. Chin J Phys. 2018;56:2916–2925.
[31] Bohner M, Hatipoğlu VF. Dynamic cobweb models with conformable fractional derivatives. Nonlinear Anal Hybrid Syst. 2019;32:157–167.
[32] Osman M, Korkmaz A, Rezazadeh H, et al. The unified method for conformable time fractional schrödinger equation with perturbation terms. Chin J Phys. 2018;56:2500–2506.
[33] Foroutan M, Kumar D, Manafian J, et al. New explicit soliton and other solutions for the conformable fractional biswas-milovic equation with kerr and parabolic nonlinearity through an integration scheme. Optik. 2018;170:190–202.
[34] Chen LP. Stability and synchronization control of fractional-order nonlinear systems. Chongqing: Chongqing University; 2013.
[35] Wang XH. Mittag-Leffler stabilization of fractional-order nonlinear systems with unknown control coefficients. Adv Differ Equ. 2018;16:1–14.
[36] Liu TD, Wang F, Lu WC, et al. Global stabilization for a class of nonlinear fractional-order systems. Int J Model Simul Sci Comput. 2019;10:1941009.
[37] Souahi A, Ben Makhlouf A, Hammami MA. Stability analysis of conformable fractional-order nonlinear systems. Indagationes Math. 2017;28:1265–1274.