A systematic review on outcome reporting in randomised controlled trials assessing treatment interventions in pregnant women with pregestational diabetes

O Kgosidialwa, D Bogdanet, A Egan, C Newman, PM O’Shea, L Biesty, C McDonagh, C O’Shea, D Devane, F Dunne; On behalf of the INSPIRED research group

School of Medicine, National University of Ireland Galway, Galway, Ireland
Department of Endocrinology, Mayo Clinic Rochester, Rochester, Minnesota, USA
School of Nursing and Midwifery, National University of Ireland Galway, Galway, Ireland
Ireland HRB-Trials Methodology Research Network, National University of Ireland Galway, Galway, Ireland

Correspondence: Dr O Kgosidialwa, Galway Diabetes Research Centre, Galway University Hospital, Galway, Ireland. Email: oratile.kgosidialwa2@hse.ie

Accepted 25 May 2021. Published Online 1 August 2021.

Background Pregestational diabetes mellitus (PGDM) is associated with adverse pregnancy outcomes. Studies assessing interventions to improve maternal and infant outcomes have increased exponentially over recent years. Several outcomes in this field of maternal diabetes are rare, making it difficult to synthesise evidence.

Objectives To collect outcomes reported in studies assessing treatment interventions in pregnant women with PGDM.

Search strategy CENTRAL, Web of Science, Medline, CINAHL, Embase and ClinicalTrials.gov from their inception until 27 January 2020.

Selection criteria Any randomised controlled trial assessing treatment interventions in pregnant women with PGDM reported in English.

Data collection and analysis Two independent reviewers assessed the suitability of articles and retrieved the data. Outcomes extracted from the literature were broadly categorised into maternal, fetal/infant or other outcomes by the study advisory group.

Main results Sixty-seven of the 1475 studies identified fulfilled the inclusion criteria. The median number of outcomes reported per study was 15 (range 1–46). The majority of studies were from North America and Europe. Insulin and metformin were the most commonly investigated pharmacological interventions. Glucose monitoring was the most assessed technological intervention. In all, 131 unique outcomes were extracted: maternal (n = 69), fetal/infant (n = 61) and other (n = 1).

Conclusions Outcome reporting in treatment interventions trials of pregnant women with PGDM is varied, making it difficult to synthesise evidence, especially for rare outcomes. Systems are needed to standardise outcome reporting in future clinical trials and so facilitate evidence synthesis in this area of maternal diabetes.

Registration The systematic review was registered prospectively with the International Prospective Register of Systematic Reviews (PROSPERO) database (Registration number CRD42020173549).

Keywords Core outcome set, interventions, pregestational diabetes, pregnancy.

Tweetable abstract Outcome reporting is heterogeneous in intervention trials of pregnant women with diabetes existing before pregnancy.

Linked article This article is commented on by Naderpoor, pp. 1905–1906 in this issue. To view this mini commentary visit https://doi.org/10.1111/1471-0528.16841.

Please cite this paper as: Kgosidialwa O, Bogdanet D, Egan A, Newman C, O’Shea PM, Biesty L, McDonagh C, O’Shea C, Devane D, Dunne F; the INSPIRED research group. A systematic review on outcome reporting in randomised controlled trials assessing treatment interventions in pregnant women with pregestational diabetes. BJOG 2021;128:1894–1904.

Introduction

Diabetes is one of the most common pre-existing medical conditions complicating pregnancy. Women with pregestational diabetes mellitus (PGDM) and their babies are particularly vulnerable to adverse pregnancy outcomes compared with women with normal glucose tolerance. The St Vincent declaration (1989), stating that pregnancy
outcomes in women with diabetes should approximate those of women without diabetes, has not been achieved.\(^2\) PGDM is associated with increased morbidity to both mother and baby including preterm birth, small and large for gestational age, macrosomia, congenital malformations and pre-eclampsia.\(^3\)

In recent years, there has been a significant increase in treatment interventions to help alleviate morbidity and mortality in pregnant women with PGDM. These interventions include education programmes,\(^4,5\) pharmacological\(^6,7\) and technological interventions\(^8,9\) and pre-pregnancy care.\(^10\) In addition, organisations such as the Diabetic Pregnancy Study Group (DPSG) and the International Association of Diabetes in Pregnancy Study Groups (IADPSG), have facilitated and disseminated research to improve outcomes in these high-risk pregnancies. Guidelines for the management of pregnant women with PGDM are also easily available globally to help clinicians care for these women.

It is important to monitor over time whether these interventions have had a positive impact on morbidity and mortality in pregnancies complicated by PGDM. There is evidence to suggest that many of these interventions have yielded positive results.\(^11,12\) However, robust evidence on how different interventions affect morbidity and mortality in pregnancies complicated by PGDM is inconsistent, in part due to the measurement and reporting of a variety of outcomes.\(^13,14\) One way to overcome the problem of variable outcome reporting is through the creation of Core Outcome Sets (COS), which measure a consensus-derived collection of outcomes to be reported on a particular healthcare topic. This work involves all relevant stakeholders including patients and patient representatives, healthcare workers, researchers and policy-makers. The CoRe Outcomes in WomeN’s health (CROWN) initiative, established to improve outcome reporting in maternal diabetes, made a call to researchers to produce, disseminate and implement COS to improve outcome reporting, build evidence synthesis and reduce research waste.\(^15\) The initial step in the COS development process was a systematic review to create a list of all unique outcomes reported in the literature.

The aim of this systematic review was to collate a list of outcomes reported in randomised controlled trials evaluating treatment interventions in pregnant women with PGDM. This systematic review formed the basis for an eDelphi process to create a COS in this topic.

Methods

The protocol for this systematic review has been published.\(^16\) This systematic review was registered prospectively with the International Prospective Register of Systematic Reviews (PROSPERO) database (Registration number CRD42020173549). The study was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement guidelines.

Randomised controlled trials assessing any treatment interventions of pregnant women with PGDM were included in the study. Non-randomised controlled trials, longitudinal follow-up studies, secondary analyses, reviews, reports of conference proceedings or abstracts where there was no complete description of the trial methodology were excluded. Only studies reported in English were eligible for inclusion. Any comparator and any outcome were noted. Studies were restricted to interventions that occurred during pregnancy only.

The following databases were searched: CENTRAL (via the Cochrane Library), Web of Science (WOS), Medline (via OVID platform), Cumulative Index of Nursing and Allied Health Literature (CINAHL) (via EBSCO host platform) and Embase. In addition, ClinicalTrials.gov was searched for ongoing trials and references of relevant articles were reviewed for studies not captured in the search. There was no time restriction; however, the final database search was completed on 27 January 2020.

A search strategy was formulated with the assistance of the school librarian at the National University of Ireland, Galway (NUI Galway). A combination of keywords and Medical Subject Headings (MeSh) terms was used to search for specific concepts. These were then combined using Boolean operators to formulate the final search strategy. The full search strategy is shown in Appendix S1.

Studies deemed suitable for inclusion were identified from the search using the predetermined inclusion criteria. The reference management tools ZOTERO (https://www.zotero.org/) and RAYAN (https://www.rayyan.ai/) were used to manage and identify duplicate articles downloaded from the search results. Two independent reviewers (OK and DB) screened titles and abstracts of the selected studies to ensure eligibility. Full-text papers of selected studies were reviewed by both reviewers before the final decision regarding inclusion. Disagreements were resolved through discussion and recourse to a third author (FD) if necessary.

All reported outcomes were extracted from the Methods and Results sections of each paper. A data extraction template consisting of the following parameters was used to extract outcomes; authors, journal and year of publication, the condition of interest (type 1 diabetes mellitus, type 2 diabetes mellitus or both), outcome of interest and time-points or periods of outcome measurement. We also assessed how each outcome was defined and the instruments or indicators used to measure the outcome. Two independent reviewers (OK and DB) assessed the articles independently, reviewed outcomes together and ensured that all outcomes were identified and included.
Risk of bias in individual studies was not carried out because our study aimed to extract all outcomes reported in the literature regardless of reporting bias. In addition, some of the included studies were ongoing, making bias reporting not possible.

Outcomes extracted from the literature were broadly categorised into maternal, fetal/infant or other outcomes. The study advisory group (SAG) including women with PGDM, healthcare providers and researchers then carefully reviewed the outcomes and grouped them into the following domains: maternal (blood/urine parameters and monitoring, complications, life impact/psychological, miscellaneous), fetal/infant (laboratory measures, biometrics and anthropometrics, complications, miscellaneous) and other. Where clarification was needed for particular outcomes regarding suitability for grouping, advice was sought from the relevant experts.

Results

Of the 1475 potentially relevant studies, 67 \(^{4,9,11,17-76}\) fulfilled the inclusion criteria as shown on the PRISMA 2020 flowchart77 (Figure 1). The number of outcomes reported in each study is shown in Table S1. The median numbers of maternal and fetal/infant outcomes reported per article were seven and eight, respectively. On average, most studies reported a median of 15 outcomes. The number of overall reported outcomes ranged from one\(^5\) to 46.\(^{11}\) Twenty-four, 10 and 14 studies assessed interventions in women with pre-existing type 1 diabetes, type 2 diabetes and a combination of both, respectively. In some cases, the population was defined as women with PGDM \((n = 18)\) or with insulin-requiring diabetes \((n = 1)\).

Studies were carried out in North America \((n = 33)\), Europe \((n = 30)\), Asia \((n = 10)\), South America \((n = 7)\), Africa \((n = 6)\) and Australia/New Zealand \((n = 6)\). The earliest study was published in 1971\(^{58}\) with the most recent studies still ongoing. Interventions are shown in Table 1. The most researched pharmacological interventions were insulin \((n = 14)\) and metformin \((n = 9)\). Glucose monitoring \((n = 12)\) was the most assessed technological intervention, with continuous glucose monitoring \((n = 6)\) accounting for half of the studies.

Forty-one (61.2\%) studies specifically reported primary outcomes. Four studies (6.0\%) reported the primary outcome as a composite outcome. There were differences in items reported in composites. For example, two of the studies assessing metformin treatment included one

Figure 1. PRISMA 2020 flowchart of selection of studies.
composite outcome; perinatal mortality, preterm birth,
neonatal hypoglycaemia, hyperbilirubinemia, small and
large for gestational age, low birthweight and birth
trauma. The other study included the following in the
large for gestational age, low birthweight and birth
neonatal hypoglycaemia, hyperbilirubinemia, small and
composite outcome; perinatal mortality, preterm birth, birth injury, moderate/severe respiratory distress, neonatal hypoglycaemia, neonatal intensive care unit admission and pregnancy loss. Thirty-six (53.7%) studies specifically reported sec-
ondary outcomes.

No studies specifically engaged Public and Patient Involvement (PPI). Wen et al. commented that although they did not actively seek patient engagement, physicians’ input was provided through a survey, suggesting that their patient population would be interested in the trial and their advice was sought on best practices to roll out the trial. However, no explicit PPI was sought.

Data extracted from the first ten studies are shown in Table S2. Before SAG review, a total of 210 outcomes were extracted from the literature (Table S3). The SAG then reviewed the outcomes, combining similar outcomes, removing duplicates and clarifying outcome terminology. Some examples of outcomes that were combined are as follows: vaginal birth and caesarean section birth were combined as ‘mode of birth’, sepsis and pyelonephritis were combined as ‘maternal infection’ and birthweight SD score, birthweight Z core, birthweight centile and customised birthweight centiles were combined as ‘birthweight’. Some outcomes that were not clearly defined were not listed as a unique outcome. For example, pregnancy loss was listed as miscarriage, stillbirth, ectopic pregnancy or pregnancy termination.

Differences in outcome definitions and time-point measurements were noted. Definitions were not specified for all outcomes. We used the most reported maternal and neonatal complications as examples, pre-eclampsia and neonatal hypoglycaemia, respectively (see Table 2). Some, but not all, studies assessing pre-eclampsia as an outcome (1) specified the blood pressure measurement used for diagnosis, (2) included HELLP (haemolysis, elevated liver enzymes and low platelet count) syndrome, pulmonary oedema or other organ failure in the definition, or (3) specified the time-point of 20 weeks gestation in the definition. There was significant variety in how neonatal hypoglycaemia was defined as shown in Table 2. A total of 17 definitions were given for neonatal hypoglycaemia. Time-points for measur-
ing neonatal hypoglycaemia ranged from ‘first glucose after birth’, ‘within 24 hours and/or 48 hours of birth’ to ‘thereafter’. For the most part, we did not consider the same outcome measured at different time-points as unique outcomes but rather grouped them. Some definitions of neonatal hypoglycaemia included need for treatment whereas others did not.

On completion of outcome review, the SAG identified 131 unique outcomes (69 maternal, 61 fetal/infant and one other) for presentation to the first eDelphi round of COS development. Extracted outcomes listed according to frequency of reporting across all studies are shown in Fig-
ure 2. The most commonly reported maternal outcomes (n ≥ 20) across all studies were; pre-eclampsia (n = 30), maternal hypoglycaemia (n = 28), trimester-specific glycated haemoglobin (n = 22), self-monitored blood glucose (n = 22), trimester-specific insulin dose (n = 20) and weight gain during pregnancy (n = 20). The most com-
monly reported fetal/infant outcomes were; birthweight (n = 41), gestational age at birth (n = 37), mode of birth (n = 35), neonatal hypoglycaemia (n = 34), neonatal intensive care unit admission (n = 27), large for gestational age (n = 24), congenital malformations (n = 24), for gesta-
tional age (n = 22) and macrosomia (n = 20).

Fifteen (22.4%) studies involved patients in low- to mid-
dle-income countries (LMIC). Of these, six studies included collaborations between high-income countries (HIC) and LMIC. Interventions used in LMIC were insulin (n = 6), metformin (n = 4), sulphonylurea (n = 1), diet (n = 1), aspirin (n = 1), folic acid (n = 1) and glucose monitoring (n = 1). The most reported maternal outcomes in studies involving LMIC were pre-eclampsia (n = 7), glu-
cose control (n = 7) and adverse events (n = 7). The most

Table 1. Types of interventions reported in each study

Intervention	Total number of studies
Pharmacology	
Insulin	14
Metformin	9
Aspirin	3
Vitamin C and Vitamin E	2
Eicosapentaenoic acid and docosahexaenoic acid	2
Sulphonylurea	1
Folic acid	1
Intravenous fluids	1
Technology	
Glucose monitoring	12
Closed-loop insulin delivery system	4
Messaging and education systems	3
Insulin pump	2
Other	
Glycaemic targets	3
Home care (versus hospital care)	2
Induction of labour	2
Diet	2
Insulin regimen	1
Early discharge (versus routine discharge)	1
Expressing milk in the antenatal period	1
Cognitive behavioural therapy	1
reported fetal/infant outcomes in LMIC studies were stillbirth \((n = 10) \), preterm birth \((n = 10) \), neonatal hypoglycaemia \((n = 10) \) and birthweight \((n = 8) \).

There were differences in what outcomes were reported for each intervention. To underscore this point, we assessed the three commonly reported outcomes (maternal and fetal/infant) for the most researched intervention: insulin.

Outcome	Number of studies reporting outcome \(N \) (%)	Definitions and time-points	Number of studies reporting similar outcome definition and time-point \(N \) (%)
Maternal			
Pre-eclampsia	30 (44.8)	Blood pressure \(\geq 140/90 \) mmHg and proteinuria \(\geq 300 \) mg/24 h \(n = 34, 67 \)	2 (6.7)
		Blood pressure \(\geq 140/90 \) mmHg on two occasions with significant proteinuria \(n = 3 \)	1 (3.3)
		Blood pressure \(\geq 140/90 \) on two occasions at least 4 h apart with significant proteinuria \(\geq 300 \) mg/24 h developing after 20 weeks of gestation \(n = 22, 46, 47, 50, 71 \)	5 (16.7)
		Diastolic blood pressure \(\geq 90 \) mmHg on two occasions \(\geq 4 \) h apart and proteinuria \(\geq 300 \) mg/24 h or urinary protein \(\geq 300 \) mg/24 h, or protein creatinine ratio \(\geq 30 \) mmol/mmol in women \(\geq 20 \) weeks of gestation or diagnosis of HELLP syndrome \(n = 59 \)	1 (3.3)
		Development of HTN (Blood pressure \(\geq 140/90 \) mmHg on two occasions at least 4 h apart) plus one of: proteinuria \(\geq 300 \) mg/24 h or two dipstick-test \(\geq 2 + \) on dipstick, or urinary protein \(\geq 300 \) mg/24 h, or protein creatinine ratio \(\geq 30 \) mmol/mmol in women \(\geq 20 \) weeks of gestation or diagnosis of HELLP syndrome \(n = \geq 2 \)	1 (3.3)
		New-onset HTN from gestational week 20 to delivery and simultaneous proteinuria or presence of eclampsia, HELLP syndrome or other severe organ involvement \(n = 22, 46, 47, 50, 71 \)	1 (3.3)
		No specific definition \(n = 11, 17-19, 29, 30, 31, 38, 39, 43, 45, 52, 58, 60, 62, 64, 65, 66 \)	18 (60.0)
Fetal/Infant			
Neonatal hypoglycaemia	34 (50.7)	Blood glucose \(\leq 2.6 \) mmol/l \(47 \) mg/dl \(n = 34, 67 \)	1 (2.9)
		Blood glucose \(\leq 2.5 \) mmol/l \(45 \) mg/dl \(n = 31 \)	1 (2.9)
		Two-hour plasma glucose \(< 2.5 \) mmol/l \(45 \) mg/dl \(n = 24, 67 \)	2 (5.9)
		Blood glucose \(< 2.2 \) mmol/l \(40 \) mg/dl \(n = 36, 37 \)	1 (2.9)
		Blood glucose \(< 1.9 \) mmol/l \(35 \) mg/dl within the first 24 hours of life \(n = 65, 66 \)	2 (5.9)
		Blood glucose \(< 1.9 \) mmol/l \(35 \) mg/dl in term infants or \(< 1.4 \) mmol/l \(25 \) mg/dl in preterm infants on at least two different occasions during first 48 h of life \(n = 65 \)	1 (2.9)
		Blood glucose \(< 1.7 \) mmol/l \(31 \) mg/dl \(n = 34, 47, 70 \)	3 (8.8)
		Blood glucose \(< 2.6 \) mmol/l \(47 \) mg/dl, measured before feeds \(n = 31 \)	1 (2.9)
		Capillary blood glucose \(< 1.7 \) mmol/l \(30 \) mg/dl on two or more occasions in the first 48 h of life \(n = 61 \)	1 (2.9)
		Capillary blood glucose \(< 1.7 \) mmol/l \(30 \) mg/dl in the first 24 hours of life and \(< 2.2 \) mmol/l \(40 \) mg/dl thereafter \(n = 74 \)	1 (2.9)
		Capillary blood glucose \(< 1.7 \) mmol/l \(31 \) mg/dl or \(< 2.5 \) mmol/l \(45 \) mg/dl within the first 24 h after birth \(n = 76 \)	1 (2.9)
		Capillary blood glucose \(< 1.7 \) mmol/l \(30 \) mg/dl during the first 24 h after birth or a Blood glucose \(< 2.5 \) mmol/l \(45 \) mg/dl between 24 and 48 h after birth \(n = 79 \)	1 (2.9)
		Hypoglycaemia requiring dextrose treatment \(n = 1, 63, 64, 69 \)	4 (11.8)
		Blood glucose \(< 2.2 \) mmol/l \(40 \) mg/dl in the first 24 h of life and \(< 2.8 \) mmol/l \(50 \) mg/dl after or requiring medical therapy \(n = 17 \)	1 (2.9)
		Capillary blood glucose \(< 2.2 \) mmol/l \(40 \) mg/dl or any hypoglycaemia that requires IV fluid treatment \(n = 19 \)	1 (2.9)
		Hypoglycaemia requiring intravenous dextrose therapy with Blood glucose \(< 1.4 \) mmol/l \(25 \) mg/dl \(n = 6 \)	1 (2.9)
		No specific definition \(n = 32, 34, 39, 44, 54, 58, 62, 65 \)	9 (26.4)

BGL, blood glucose levels; BP, blood pressure; CBG, capillary blood glucose; DBP, diastolic blood pressure; HELLP, haemolysis elevated liver enzymes low platelets; HTN, hypertension; PCR, protein creatinine ratio; PG, plasma glucose.

Overall, there were 14 published articles from 12 studies assessing insulin in pregnancy. With the exception of only two studies, \(n = 32, 65 \) most of the studies were performed in the first or second trimester. Of these, pre-eclampsia was reported in seven studies. Maternal hypoglycaemia was reported in 11 studies, with only five studies reporting on severe hypoglycaemia. Only four studies reported on
trimester-specific glycated haemoglobin. Neonatal birthweight was reported in eight trials. In one study,65 the intervention was during labour, so would not have been expected to have any effect on birthweight. Six studies reported gestational age at birth. Neonatal hypoglycaemia was reported in eight studies.

Discussion
Main findings
We identified significant heterogeneity in outcome reporting and a need to develop a COS in studies assessing treatment interventions in pregnant women with PGDM. The
differences are both in ‘what’ outcomes to report and ‘how’ to report these outcomes. The IADPSG has formulated a repository of definitions for outcomes commonly reported in the literature in order to help standardise the ‘how’ to report these outcomes. One of the common inconsistencies in outcome reporting in this study was related to variations in time-points at which each outcome was measured. This is not unique to this study. In addition, there were variations in some outcome definitions according to national guidelines.

Strengths and limitations

There are some limitations to this study. One limitation is that there is no consensus on how outcomes extracted from the literature should be classified. The Core Outcome Measures in Effectiveness Trials (COMET), an initiative that aims to bring together people interested in the development and application of COS, has endorsed the use of a 38-item scale to classify individual outcomes. Because our study involved two populations (mother and baby), we found this taxonomy unsuitable.

Another limitation is that studies from LMIC were under-represented. Therefore, it is not clear whether outcomes extracted from the current literature, mostly represented by HIC, would be clinically meaningful to these LMIC. Pre-eclampsia was the most reported maternal outcome in both LMIC and HIC. However, unlike in HIC, preterm birth and stillbirth were the most reported outcomes in LMIC.

In our study, a large number of outcomes were extracted (n = 210). As this systematic review was carried out in the context of a larger COS development study, it is important to recognise the risk of participant fatigue in the subsequent step (i.e. cDelphi survey) when such a large list of outcomes is generated. One way around this is grouping outcomes. There is currently no consensus on a reproducible method for developing a long list of unique outcomes for a COS with significant variation on how researchers extract, group and count trial outcomes. We maintained a systematic approach to outcome extraction and grouping.

Interpretation

In recent years, standardisation of outcome reporting in the area of diabetes in pregnancy in order to reduce research waste and synthesise evidence has been recognised. This systematic review employed rigorous methodology to capture all outcomes reported in the literature in this important topic of maternal diabetes. We also identified significant heterogeneity in both what outcomes are reported and how they are defined and measured.

Across all studies, outcomes in the maternal life impact/psychological effects domain were the least reported. This is even more so for studies based in LMIC. Only one outcome ‘patient satisfaction’ was reported in this domain in studies carried out in LMIC. Integration of patient-reported outcomes into studies assessing interventions in pregnant women with PGDM may be one way of improving outcome reporting in this domain. Another way of improving outcome reporting in this domain might be engaging with PPI. One such initiative is the James Lind Alliance (JLA). The JLA through the Diabetes and Pregnancy Priority Setting Partnership aims to improve research quality by ensuring that researchers and funders are aware of the issues that matter most to women with diabetes in pregnancy. We invited patients to participate as part of the SAG to ensure that their views and unique experiences are considered from study conception. Patients were actively involved in outcome review and finalising the list of unique outcomes. We hope that by involving women with diabetes in future studies this will translate into an increase in outcomes in the life impact and psychological effects domain.

The JLA has formulated a list of ten questions chosen by patients and clinicians to prioritise future research in diabetes and pregnancy to deliver maximum value and impact. Some of these questions include interventions in pregnant women with PGDM. This systematic review helps to inform what outcomes are reported in existing research in evaluating the effectiveness of interventions in pregnant women with PGDM. The planned COS derived from this work will help to prioritise a list of outcomes that are important to stakeholders, including women with PGDM, in this area of maternal diabetes.

Pre-pregnancy care has been shown to improve some pregnancy outcomes. Studies assessing pre-pregnancy care as an intervention were excluded from this review because a complimentary COS for studies evaluating the effectiveness of pre-pregnancy care for women with PGDM has already been developed. The planned COS will complement this previous work and provide stakeholders with guidance on outcome selection and reporting for studies conducted both before and during pregnancy in women with PGDM.

Conclusions

Outcome reporting in clinical trials evaluating treatment interventions in pregnant women with pregestational diabetes is varied both in ‘how’ and ‘what’ outcomes are measured and reported. A COS is needed to define what outcomes to report in future trials in this area of maternal diabetes. There is a need to prioritise and encourage LMIC participation and PPI in future studies evaluating treatment interventions in pregnant women to make research more applicable and impactful.

Disclosure of interests

OK has Sanofi through Royal college of Physicians Ireland (RCPI) (Fellowship grant); Astrazeneca (Meeting Chair). DB
has Wellcome Trust Irish Clinical Academic Training (ICAT) Programme fellow. All other authors have nothing to disclose.

Contribution to authorship
All authors were members for the SAG and participated in the formulation of the methodology for this review. OK and DB screened titles and abstracts and extracted all the outcomes from the literature. All authors reviewed the list of extracted outcomes. All authors revised the manuscript critically for important intellectual content and approved the final version to be published. OK co-ordinated the study and is responsible for the integrity of the work as a whole.

Details of ethics approval
Ethical approval for this study was granted by the Clinical Research Ethics Committee, Galway University Hospitals, Galway, Ireland (Ref: C.A 2293).

Funding
This research received no specific grant from any funding agency.

Acknowledgements
We thank the Librarian in Galway University Hospital, Ms Denise Duffy, for her assistance with the search strategy. Open access funding provided by IReL.

Data Availability Statement
Template data collection forms and data extracted from included studies can be requested from authors.

Supporting Information
Additional supporting information may be found online in the Supporting Information section at the end of the article.

Appendix S1. Full search strategy.

Table S1. Number of outcomes reported in each study. T2DM, type 2 diabetes mellitus; T1DM, type 1 diabetes mellitus; PGDM, pregestational diabetes mellitus.

Table S2. Data extraction. T2DM, type 2 diabetes mellitus; T1DM, type 1 diabetes mellitus; PIH, pregnancy-induced hypertension; PET, pre-eclampsia; NICU, neonatal intensive care unit; LGA, large for gestational age; SGA, small for gestational age; TTN, transient tachypnoea of the newborn; RDS, respiratory distress syndrome; BGL, blood glucose levels; BP, blood pressure; IV, intravenous; FBG, fasting plasma glucose; PPG, post-prandial glucose; GDM, gestational diabetes mellitus; SMBG, self-monitoring of blood glucose; HTN, hypertension; DM, diabetes mellitus; DKA, diabetic ketoacidosis; ICU, intensive care unit; IVH, intraventricular haemorrhage; NEC, necrotising enterocolitis; ROP, retinopathy of prematurity; PGDM, pregestational diabetes mellitus; CSII, continuous subcutaneous insulin infusion; PPROM, preterm prelabour rupture of membranes; IUGR, intrauterine growth restriction; PPH, postpartum haemorrhage; HELLP, haemolysis elevated liver enzymes and low platelets.

Table S3. All outcomes extracted from the literature (n = 210). PET, pre-eclampsia; HELLP, haemolysis elevated liver enzymes and low platelets; ICU, intensive care unit; HbA1c, glycated haemoglobin; NICU, neonatal intensive care units; LGA, large for gestational age; SD, standard deviation; IGF-1, insulin growth factor 1.

References
1. Jolving LR, Nielsen J, Kesmodel US, Nielsen RG, Beck-Nielsen SS, Norgard BM. Prevalence of maternal chronic diseases during pregnancy - a nationwide population based study from 1989 to 2013. Acta Obstet Gynecol Scand 2016;95:1295–304.
2. Diabetes care and research in Europe: the Saint Vincent declaration. Diabet Med 1990;7:360.
3. Capobianco G, Gulotta A, Tupponi G, Dessole F, Pola M, Virdis G, et al. Materno-fetal and neonatal complications of diabetes in pregnancy: a retrospective study. J Clin Med 2020;9:2707.
4. Linden K, Berg M, Adolfsson A, Spauld-Lundin C. Person-centred, web-based support in pregnancy and early motherhood for women with Type 1 diabetes mellitus: a randomized controlled trial. Diabet Med 2018;35:232–41.
5. Mostello D. Adherence to a diabetes care regimen following text message intervention in pregnant women with diabetes. 2016 [https://ClinicalTrials.gov/show/NCT03025984]. Accessed 20 January 2020.
6. Ainuddin JA, Karim N, Zaheer S, Ali SS, Hasan AA. Metformin treatment in type 2 diabetes in pregnancy: an active controlled, parallel-group, randomized, open label study in patients with type 2 diabetes in pregnancy. J Diabetes Res 2015;2015:325851.
7. Carr KJ, Idrara TO, Masson EA, Ellis K, Lindow SW. A randomised controlled trial of insulin lispro given before or after meals in pregnant women with type 1 diabetes—the effect on glycaemic excursion. J Obstet Gynaecol 2004;24:382–6.
8. Bartholomew ML, Soules K, Church K, Shaha S, Burlingame J, Graham G, et al. Managing diabetes in pregnancy using cell phone/ internet technology. Clin Diabetes 2015;33:169–74.
9. Murphy HR, Kumareswaran K, Eller D, Allen JM, Caldwell K, Biagioni M, et al. Safety and efficacy of 24-h closed-loop insulin delivery in well-controlled pregnant women with type 1 diabetes: a randomized crossover case series. Diabetes Care 2011;34:2527–9.
10. Egan AM, Danyliv A, Carmody L, Kirwan B, Dunne FP. A Prepregnancy care program for women with diabetes: effective and cost saving. J Clin Endocrinol Metab 2016;101:1807–15.
11. Feig DS, Donovan LE, Corcor L, Murphy KE, Amiel SA, Hunt KF, et al. Continuous glucose monitoring in pregnant women with type 1 diabetes (CONCEPTT): a multicentre international randomised controlled trial. Lancet 2017;390:2347–59.
12. Feig DS, Donovan LE, Zinnman B, Sanchez JJ, Azntalos E, Ryan EA, et al. Metformin in women with type 2 diabetes in pregnancy (MiTy): a multicentre, international, randomised, placebo-controlled trial. Lancet Diabetes Endocrinol 2020;8:834–44.
13. Mehler S, Alfrevic Z. Choice of primary outcomes in randomised trials and systematic reviews evaluating interventions for preterm birth prevention: a systematic review. BJOG 2014;121:1188–94, discussion 95–6.

© 2021 The Authors. BJOG: An International Journal of Obstetrics and Gynaecology published by John Wiley & Sons Ltd. 1901
International Association of Diabetes in Pregnancy Study Group Working Group on Outcome, Feig DS, Corcos R, Jensen DM, Kautzky-Willer A, Nolan CJ, et al. Diabetes in pregnancy outcomes: a systematic review and proposed codification of definitions. *Diabetes Metab Res Rev* 2015;31:680–90.

Khan K. The CROWN Initiative: journal editors invite researchers to develop core outcomes in women’s health. *J Perinat Med* 2014;42:543–4.

Kgosidialwa O, Bogdanet D, Egan A, O’Shea PM, Biesty L, Devane D, et al. Developing a core outcome set for the treatment of pregnant women with pregestational diabetes—a study protocol. Trials 2020;21:1017.

Bartal M. Detemir versus NPH for type 2 diabetes mellitus in pregnancy: a comparative-effectiveness, open label, randomized controlled trial. 2018 [https://ClinicalTrials.gov/show/NCT03620890]. Accessed 20 January 2020.

Beazley D, Ahtokas R, Livingston J, Griggs M, Sibai BM. Vitamin C and E supplementation in women at high risk for preclampsia: a double-blind, placebo-controlled trial. *Am J Obstet Gynecol* 2005;192:520–1.

Berry DC, Thomas SD, Dorman KF, Ivins AR, de los Angeles Abreu M, Young L, et al. Rationale, design, and methods for the Medical Optimization and Management of Pregnancies with Overt Type 2 Diabetes (MOMPOD) study. *BMC Pregnancy Childbirth* 2018;18:488.

Beyuo T, Obed SA, Adjepong-Yamoah KK, Bugyai KA, Oppong SA, Marfoh K. Metformin versus insulin in the management of pregestational diabetes mellitus in pregnancy and gestational diabetes mellitus at the Korle Bu Teaching Hospital: a randomized clinical trial. *PLoS One* 2015;10:e0215712.

Brooten D, Youngblut JM, Brown L, Finkler SA, Neff DF, Madigan E. A randomized trial of nurse specialist home care for women with high-risk pregnancies: outcomes and costs. *Am J Manag Care* 2001;7:793–803.

Burkart W, Hanker JP, Schneider HP. Complications and fetal outcome in diabetic pregnancy. Intensified conventional versus insulin pump therapy. *Gynecol Obstet Invest* 1988;26:104–12.

Caris S, Sibai B, Hauth J, Lindheimer MD, Klebanoff M, Thor E, et al. Low-dose aspirin to prevent preeclampsia in women at high risk. *National Institute of Child Health and Human Development Network of Maternal-Fetal Medicine Units. N Engl J Med* 1998;338:701–5.

Cordua S, Secher AL, Ringholm L, Damm P, Mathiesen ER. Real-time continuous glucose monitoring during labour and delivery in women with Type 1 diabetes - observations from a randomized controlled trial. *Diabet Med* 2013;30:1374–81.

Demarini S, Mimouni F, Tsang RC, Khoury J, Hertzberg V. Impact of metabolic control of diabetes during pregnancy on neonatal hypocalcaemia: a randomized study. *Obstet Gynecol* 1994;83:918–22.

Di Biase N, Napoli A, Sabbatini A, Borrello E, Buongiorno AM, Fallucca F. Telemedicine in the treatment of diabetic pregnancy. *Ann Ist Super Sanita* 1997;33:347–51.

Dieb AS. Effect of adding metformin to insulin therapy on pregnancy outcomes in women with uncontrolled type 1 diabetes. 2019 [https://ClinicalTrials.gov/show/NCT03928340]. Accessed 20 January 2020.

Feghali MN. Metformin for preeclampsia prevention in pregnant women with type 1 diabetes mellitus. 2019 [https://ClinicalTrials.gov/show/NCT03570632]. Accessed 20 January 2020.

Feig DS, Murphy K, Asztalos E, Tomlinson G, Sanchez J, Zinnman B, et al. Metformin in women with type 2 diabetes in pregnancy (MfTy): a multi-center randomized controlled trial. *BMC Pregnancy Childbirth* 2016;16:173.

FinneGAN C, Breathnach F, Dicker P, Fernandez E, Tully E, Higgins M, et al. Investigating the role of early low-dose aspirin in diabetes: a phase III multicentre double-blinded placebo-controlled randomised trial of aspirin therapy initiated in the first trimester of diabetes pregnancy. *Contemp Clin Trials Commun* 2019;16:100045.

Forster DA, Moorhead AM, Jacobs SE, Davis PG, Walker SP, McGegan KM, et al. Advising women with diabetes in pregnancy to express breastmilk in late pregnancy (Diabetes and Antenatal Milk Expressing [DAME]): a multicentre, unblinded, randomised controlled trial. *Lancet* 2017;389:2204–13.

Gamry G. Effect of intrapartum glucose with compared to without constant intravenous insulin on neonatal hypoglycemia among diabetic women. A randomized controlled trial. 2017 [https://Clinica Trials.gov/show/NCT03273881]. Accessed 20 January 2020.

Gray L. Utilizing mHealth to improve diabetes in an obstetric population. 2018 [https://ClinicalTrials.gov/show/NCT03504592]. Accessed 20 January 2020.

Hanson U, Persson B, Enochsson E, Lennerhagen P, Lindgren F, Lundstrom V, et al. Self-monitoring of blood glucose by diabetic women during the third trimester of pregnancy. *Am J Obstet Gynecol* 1984;150:817–21.

Hayden T, Perantie DC, Nix BD, Barnes LD, Mostello DJ, Holcomb WL, et al. Treating prepartum depression to improve infant developmental outcomes: a study of diabetes in pregnancy. *J Clin Psychol Med Settings* 2012;19:285–92.

Herrera KM, Rosenn BM, Foroutan J, Binson BE, Al Ibraheemi Z, Moshier EL, et al. Randomized controlled trial of insulin detemir versus NPH for the treatment of pregnant women with diabetes. *Am J Obstet Gynecol* 2015;213:426.e1–7.

Hickman MA, McBride R, Bogess KA, Strauss R. Metformin compared with insulin in the treatment of pregnant women with overt diabetes: a randomized controlled trial. *Am J Perinatol* 2013;30:483–90.

Hod M, Dammp P, Kaaja R, Visser GH, Dunne F, Demidova I, et al. Fetal and perinatal outcomes in type 1 diabetes pregnancy: a randomized study comparing insulin aspart with human insulin in 322 subjects. *Am J Obstet Gynecol* 2008;198:186.e1–7.

Hod M, Mathiesen ER, Iovanovic L, McCance DR, Ivanovic M, Duran-Garcia S, et al. A randomized trial comparing perinatal outcomes using insulin detemir or neutral protamine Hagedorn in type 1 diabetes. *J Matern Fetal Neonatal Med* 2014;27:7–13.

Horvatiec M, Djelmis J, Ivanovic M, Oreskovic S, Herman M. Effect of ecosapentaenoic acid and docosahexaenoic acid supplementation on C-peptide preservation in pregnant women with type-1 diabetes: randomized placebo controlled clinical trial. *Eur J Clin Nutr* 2017;71:968–72.

Ibrahim ML, Hamdy A, Shafik A, Taha S, Anwar M, Faris M. The role of adding metformin in insulin-resistant diabetic pregnant women: a randomized controlled trial. *Arch Gynecol Obstet* 2014;289:959–65.

Incerpi MH, Fassett MJ, Kjos SL, Tran SH, Wing DA. Vaginally administered misoprostol for outpatient cervical ripening in pregnancies complicated by diabetes mellitus. *Am J Obstet Gynecol* 2001;185:916–9.

Iovanovic-Peterson L, Kitzmiller JL, Peterson CM. Randomized trial of human versus animal species insulin in diabetic pregnant women: improved glycemic control, not fewer antibodies to insulin, influences birth weight. *Am J Obstet Gynecol* 1992;167:1325–30.

Kjos SL, Henry OA, Montoro M, Buchanan TA, Mestman JH. Insulin-requiring diabetes in pregnancy: a randomized trial of active induction of labor and expectant management. *Am J Obstet Gynecol* 1993;169:611–5.

Laatikainen L, Teramo K, Hieta-Heikurainen H, Koivisto V, Pelkonen R. A controlled study of the influence of continuous subcutaneous insulin infusion treatment on diabetic retinopathy during pregnancy. *Acta Med Scand* 1987;221:367–76.
46 Lin L, Zhu Y, Li B, Yang H, APPEC Study Group. Low-dose aspirin in the prevention of pre-eclampsia in China (APPEC study): protocol for a multicentre randomized controlled trial. Trials 2018;19:608.

47 Manderson JG, Patterson CC, Hadden DR, Traub AL, Ennis C, McCance DR. Preparndual versus postprandial blood glucose monitoring in type 1 diabetic pregnancy: a randomized controlled clinical trial. Am J Obstet Gynecol 2003;189:507–12.

48 Mathiesen ER, Hod M, Ivanisevic M, Duran Garcia S, Brondsted L, Jovanovic L, et al. Maternal efficacy and safety outcomes in a randomized, controlled trial comparing insulin detemir with NPH insulin in 310 pregnant women with type 1 diabetes. Diabetes Care 2012;35:2012–7.

49 Mathiesen ER, Kinsley B, Amiel SA, Heller S, McCance D, Duran S, et al. Maternal glycemic control and glycoplasmia in type 1 diabetic pregnancy: a randomized trial of insulin aspart versus human insulin in 322 pregnant women. Diabetes Care 2007;30:771–6.

50 McCance DR, Holmes VA, Maresh MJ, Patterson CC, Walker JD, Pearson DW, et al. Vitamins C and E for prevention of pre-eclampsia in women with type 1 diabetes (DAP1T): a randomised placebo-controlled trial. Lancet 2010;376:259–66.

51 Mirmouni F, Miodovnik M, Whitsett JA, Holroyde JC, Siddiqi TA, Tsang RC. Respiratory distress syndrome in infants of diabetic mothers in the 1980s: no direct adverse effect of maternal diabetes with modern management. Obstet Gynecol 1987;69:191–5.

52 Min Y, Dahanabakhch O, Hutchinson J, Bhullar AS, Raveendran M, Hallot A, et al. Effect of docosahexaenoic acid-enriched fish oil supplementation in pregnant women with Type 2 diabetes on membrane fatty acids and fetal body composition—double-blinded randomized placebo-controlled trial. Diabet Med 2014;31:1331–40.

53 Moninxc WM, Zondervan HA, Birnie E, Ris M, Bossuyt PM. High risk pregnancy monitored antenatally at home. Eur J Obstet Gynecol Reprod Biol 1997;75:147–53.

54 Murphy HR, Rayman G, Lewis K, Kelly S, Johal B, Duffield K, et al. Effectiveness of continuous glucose monitoring in pregnant women with diabetes: randomised clinical trial. BMJ 2008;337:a1680.

55 Nachum Z, Ben-Shlomo I, Weiner E, Shalev E. Twice daily versus four times daily insulin dose regimens for diabetes in pregnancy: randomised controlled trial. BMJ 1999;319:1223–7.

56 Ney D, Hollingsworth DR, Cousins L. Decreased insulin requirement and improved control of diabetes in pregnant women given a high-carbohydrate, high-fiber, low-fat diet. Diabetes Care 1982;5:29–33.

57 Nor Azlin MI, Nor NA, Sufian SS, Mustafa N, Jamil MA, Kamaruddin NA. Comparative study of two insulin regimes in pregnancy (GlucoMOMS): a multicentre randomized controlled trial. Diabetes Technol Ther 2007;9:860.

58 Notelovitz M. Sulphonylurea therapy in the treatment of the pregnant diabetic. S Afr Med J 1971;45:226–9.

59 Perichart-Perera O, Balas-Nakash M, Rodriguez-Canó A, Legorreta-Legorreta J, Parra-Covarrubias A, Vadillo-Ortega F. Low glyceremic index carbohydrates versus all types of carbohydrates for treating diabetes in pregnancy: a randomized clinical trial to evaluate the effect of glyceremic control. Int J Endocrinol 2012;2012:296017.

60 Persson B, Swahn ML, Hjertberg R, Hanson U, Nord E, Nordlander E, et al. Insulin lispro therapy in pregnancies complicated by type 1 diabetes mellitus. Diabetes Res Clin Pract 2002;58:115–21.

61 Petrovski G, Dimitrovski C, Bogoev M, Milenko T, Ahmeti I, Bitovska I. Is there a difference in pregnancy and glycomic outcome in patients with type 1 diabetes on insulin pump with constant or intermittent glucose monitoring? A pilot study. Diabetes Technol Ther 2011;13:1109–13.

62 Polsky S. Pregnancy intervention with a closed-loop system (PICS) study. 2019 [https://ClinicalTrials.gov/show/NCT03774186]. Accessed 20 January 2020.

63 Refuerzo JS, Gowen R, Pedroza C, Hutchinson M, Blackwell SC, Ramín S. A pilot randomized, controlled trial of metformin versus insulin in women with type 2 diabetes mellitus during pregnancy. Am J Perinatol 2015;30:163–70.

64 Ringholm L. Insulin fiasp vs. insulin novorapid during pregnancy and laktion in women with pre-existing diabetes. 2019 [https://ClinicalTrials.gov/show/NCT03770767]. Accessed 21 January 2020.

65 Rosenberg VA, Eglinton GS, Rauch ER, Skupski DW. Intrapartum maternal glycemic control in women with insulin requiring diabetes: a randomized clinical trial of rotating fluids versus insulin drip. Am J Obstet Gynecol 2006;195:1095–9.

66 Sacks DA, Feig DS, Liu IL, Wolde-Tsadik G. Managing type I diabetes in pregnancy: when do we need to help improve knowledge discovery. J Clin Epidemiol 2018;96:84–92.
80 Young AE, Brookes ST, Avery KNL, Davies A, Metcalfe C, Blazeby JM. A systematic review of core outcome set development studies demonstrates difficulties in defining unique outcomes. *J Clin Epidemiol* 2019;115:14–24.

81 Wahabi HA, Fayed A, Esmaeil S, Elmorshedy H, Titi MA, Amer YS, et al. Systematic review and meta-analysis of the effectiveness of pre-pregnancy care for women with diabetes for improving maternal and perinatal outcomes. *PLoS One* 2020;15:e0237571.

82 Egan AM, Galjaard S, Maresh MJA, Loeken MR, Napoli A, Anastasiou E, et al. A core outcome set for studies evaluating the effectiveness of prepregnancy care for women with pregestational diabetes. *Diabetologia* 2017;60:1190–6.