CHARACTERIZING CHAINABLE, TREE-LIKE, AND CIRCLE-LIKE CONTINUAE

TARAS BANAKH, ZDZISLAW KOSZTOŁOWICZ, SŁAWOMIR TUREK

ABSTRACT. We prove that a continuum X is tree-like (resp. circle-like, chainable) if and only if for each open cover $U_{i} = \{U_{1}, U_{2}, U_{3}, U_{4}\}$ of X there is a U_{i}-map $f : X \rightarrow Y$ onto a tree (resp. onto the circle, onto the interval).

Theorem 1 (Hemmingsen). For a compact Hausdorff space X the following conditions are equivalent:

(1) $\dim X \leq n$, which means that any open cover U of X has an open refinement V of order $\leq n + 1$;
(2) each open cover U of X with cardinality $|U| \leq n + 2$ has an open refinement V of order $\leq n + 1$;
(3) each open cover $\{U_{i}\}_{i=1}^{n+2}$ of X has an open refinement $\{V_{i}\}_{i=1}^{n+2}$ with $\bigcap_{i=1}^{n+2} V_{i} = \emptyset$.

We say that a cover V of a cover U is a refinement of a cover U if each set $V \in V$ lies in some set $U \in U$. The order of a cover U is defined as the cardinal

$$\text{ord}(U) = \sup\{|F| : F \subseteq U \text{ with } \bigcap F \neq \emptyset\}.$$

An open cover U of X is called

- a chain-like if for U there is an enumeration $U = \{U_{1}, \ldots, U_{n}\}$ such that $U_{i} \cap U_{j} \neq \emptyset$ if and only if $|i - j| \leq 1$ for all $1 \leq i, j \leq n$;
- circle-like if there is an enumeration $U = \{U_{1}, \ldots, U_{n}\}$ such that $U_{i} \cap U_{j} \neq \emptyset$ if and only if $|i - j| \leq 1$ or $\{i, j\} = \{1, n\}$;
- a tree-like if U contains no circle-like subfamily $V \subseteq U$ of cardinality $|V| \geq 3$.

We recall that a continuum X is called chainable (resp. tree-like, circle-like) if each open cover of X has a chain-like (resp. tree-like, circle-like) open refinement. By a continuum we understand a connected compact Hausdorff space.

The following characterization of chainable, tree-like and circle-like continua is the main result of this paper. For chainable and tree-like continua this characterization was announced (but not proved) in [1].

Theorem 2. A continuum X is chainable (resp. tree-like, circle-like) if and only if any open cover U of X of cardinality $|U| \leq 4$ has a chain-like (resp. tree-like, circle-like) open refinement.

In fact, this theorem will be derived from a more general theorem treating K-like continua.

Definition 1. Let K be a class of continua and n be a cardinal number. A continuum X is called K-like (resp. n-K-like) if for any open cover U of X (of cardinality $|U| \leq n$) there is a U-map $f : X \rightarrow K$ onto some space $K \in K$.

We recall that a map $f : X \rightarrow Y$ between two topological spaces is called a U-map, where U is an open cover of X, if there is an open cover \mathcal{V} of Y such that the cover $f^{-1}(\mathcal{V}) = \{f^{-1}(V) : V \in \mathcal{V}\}$ refines the cover U. It worth mentioning that a closed map $f : X \rightarrow Y$ is a U-map if and only if the family $\{f^{-1}(y) : y \in Y\}$ refines U.

2010 Mathematics Subject Classification. Primary 54F15, 54F50; Secondary 54D05.

Key words and phrases. Chainable continuum, tree-like continuum, circle-like continuum.
It is clear that a continuum X is tree-like (resp. chainable, circle-like) if and only if it is K-like for the class K of all trees (resp. for $K = \{[0,1]\}$, $K = \{S^1\}$). Here $S^1 = \{z \in \mathbb{C} : |z| = 1\}$ stands for the circle.

It turns out that each 4-K-like continuum is K-like for some extension \hat{K} of the class K. This extension is defined with help of locally injective maps.

A map $f : X \to Y$ between topological spaces is called locally injective if each point $x \in X$ has a neighborhood $O(x) \subseteq X$ such that the restriction $f \upharpoonright O(x)$ is injective. For a class of continua K let \hat{K} be the class of all continua X that admit a locally injective map $f : X \to Y$ onto some continuum $Y \in K$.

Theorem 3. Let K be a class of 1-dimensional continua. If a continuum X is 4-K-like, then X is \hat{K}-like.

In Proposition 1 we shall prove that each locally injective map $f : X \to Y$ from a continuum X onto a tree-like continuum Y is a homeomorphism. This implies that $\hat{K} = K$ for any class K of tree-like continua. This fact combined with Theorem 3 implies the following characterization:

Theorem 4. Let K be a class of tree-like continua. A continuum X is K-like if and only if it is 4-K-like.

One may ask if the number 4 in this theorem can be lowered to 3 as in the Hemmingsen’s characterization of 1-dimensional compacta. It turns out that this cannot be done: the 3-K-likeness is equivalent to being an acyclic curve. A continuum X is called a curve if $\dim X \leq 1$. It is acyclic if each map $f : X \to S^1$ to the circle is null-homotopic.

Theorem 5. Let $K \ni [0,1]$ be a class of tree-like continua. A continuum X is 3-K-like if and only if X is an acyclic curve.

It is known that each tree-like continuum is an acyclic curve but there are acyclic curves, which are not tree-like \mathbb{R}. On the other hand, each locally connected acyclic curve is tree-like (moreover, it is a dendrite \mathbb{R}, Chapter X). Therefore, for any continuum X and a class $K \ni [0,1]$ of tree-like continua we get the following chain of equivalences and implications (in which the dotted implication holds under the additional assumption that the continuum X is locally connected):

$$
\begin{align*}
4\text{-chainable} & \iff 4\text{-K-like} \iff 4\text{-tree-like} \iff 3\text{-K-like} \\
\downarrow & \downarrow & \downarrow & \downarrow \\
\text{chaining} & \iff \text{K-like} \iff \text{tree-like} \iff \text{acyclic curve}
\end{align*}
$$

Finally, let us present a factorization theorem that reduces the problem of studying n-K-like continua to the metrizable case. It will play an important role in the proof of the “circle-like” part of Theorem 2.

Theorem 6. Let $n \in \mathbb{N} \cup \{\omega\}$ and K be a family of metrizable continua. A continuum X is n-K-like if and only if any map $f : X \to Y$ to a metrizable compact space Y can be written as the composition $f = g \circ \pi$ of a continuous map $\pi : X \to Z$ onto a metrizable n-K-like continuum Z and a continuous map $g : Z \to Y$.

2. Proof of Theorem 5

Let $K \ni [0,1]$ be a class of tree-like continua. We need to prove that a continuum X is 3-K-like if and only if X is an acyclic curve.

To prove the “if” part, assume that X is an acyclic curve. By Theorem 2.1 of \mathbb{R}, X is 3-chainable. Since $[0,1] \in K$, the continuum X is 3-K-like and we are done.

Now assume conversely, that a continuum X is 3-K-like. First, using Hemmingsen’s Theorem \mathbb{R} we shall show that $\dim X \leq 1$. Let $\mathcal{V} = \{V_1, V_2, V_3\}$ be an open cover of X. Since the space X is 3-K-like, we can find a \mathcal{V}-map $f : X \to T$ onto a tree-like continuum T. Using the 1-dimensionality of tree-like continua, find an open cover \mathcal{W} of T order ≤ 2 such that the cover $f^{-1}(\mathcal{W}) = \{f^{-1}(W) : W \in \mathcal{W}\}$ is a refinement of \mathcal{V}. The continuum X is 1-dimensional by the implication (2) \Rightarrow (1) of Hemmingsen’s theorem.

It remains to prove that X is acyclic. Let $f : X \to S^1$ be a continuous map. Let $\mathcal{U} = \{U_1, U_2, U_3\}$ be a cover of the unit circle $S^1 = \{z \in \mathbb{C} : |z| = 1\}$ by three open arcs U_1, U_2, U_3, each of length $< \pi$. Such a cover necessarily has $\operatorname{ord}(\mathcal{U}) = 2$. By our assumption there is an open finite cover \mathcal{V} of X inscribed in $\{f^{-1}(U_i) : i = 1, 2, 3\}$. So, there is a tree-like continuum $T \in K$ and \mathcal{V}-map $g : X \to T$. We can assume that T is a tree and \mathcal{V} is a tree-open cover of X. It is well known (see e.g. \mathbb{R}) that there exists a continuous map $h : T \to S^1$ that $h \circ g$ is homotopic to f. But each map from a tree to the circle is null-homotopic. Hence $h \circ g$ as well f is null-homotopic too.
3. Proof of Theorem

We shall use some terminology from Graph Theory. So at first we recall some definitions.

By a (combinatorial) graph we understand a pair $G = (V, E)$ consisting of a finite set V of vertices and a set $E \subseteq \{\{a, b\} : a, b \in V, a \neq b\}$ of unordered pairs of vertices, called edges. A graph $G = (V, E)$ is connected if any two distinct vertices $u, v \in V$ can be linked by a path (v_0, v_1, \ldots, v_n) with $v_0 = u, v_n = v$ and $\{v_{i-1}, v_i\} \in E$ for $i \leq n$. The number n is called the length of the path (and is equal to the number of edges involved). Each connected graph possesses a natural path metric on the set of vertices V: the distance between two distinct vertices equals the smallest length of a path linking these two vertices.

Two vertices $u, v \in V$ of a graph are adjacent if $\{u, v\} \in E$ is an edge. The degree $\deg(v)$ of a vertex $v \in V$ is the number of vertices $u \in V$ adjacent to v in the graph. The number $\deg(G) = \max_{v \in V} \deg(v)$ is called the degree of a graph. By an r-coloring of a graph we understand any map $\chi : V \to r = \{0, \ldots, r - 1\}$. In this case for a vertex $v \in V$ the value $\chi(v)$ is called the color of v.

Lemma 1. Let $G = (V, E)$ be a connected graph with $\deg(G) \leq 3$ such that $d(u, v) \geq 6$ for any two vertices $u, v \in V$ of order 3. Then there is a 4-coloring $\chi : V \to 4$ such that no distinct vertices $u, v \in V$ with $d(u, v) \leq 2$ have the same color.

Proof. Let $V_3 = \{v \in V : \deg(v) = 3\}$ denote the set of vertices of order 3 in G and let $\bar{B}(v) = \{v\} \cup \{u \in V : \{u, v\} \in E\}$ be the unit ball centered at $v \in V$. It follows from $\deg(G) \leq 3$ that $|\bar{B}(v)| \leq 4$ for each $v \in V$. Moreover, for any distinct vertices $v, u \in V_3$ the balls $\bar{B}(v)$ and $\bar{B}(u)$ are disjoint (because $d(v, u) \geq 6 > 2$). So we can define a 4-coloring χ on the union $\bigcup_{v \in V_3} \bar{B}(v)$ so that χ is injective on each ball $\bar{B}(u)$ and $\chi(v) = \chi(w)$ for each $v, w \in V_3$. Next, it remains to color the remaining vertices all of order ≤ 2 by four colors so that $\chi(x) \neq \chi(y)$ if $d(x, y) \leq 2$. It is easy to check that this always can be done. □

Each graph $G = (V, E)$ can be also thought as a topological object: just embed the set of vertices V as a linearly independent subset into a suitable Euclidean space and consider the union $|G| = \bigcup_{\{u, v\} \in E} [u, v]$ of intervals corresponding to the edges of G. Assuming that each interval $[u, v] \subseteq |G|$ is isometric to the unit interval $[0, 1]$, we can extend the path-metric of G to the path-metric d on the geometric realization $|G|$ of G. For a point $x \in |G|$ by $B(x) = \{y \in |G| : d(x, y) < 1\}$ and $\bar{B}(x) = \{y \in |G| : d(x, y) \leq 1\}$ denote respectively the open and closed unit balls centered at x. More generally, by $B_r(x) = \{y \in |G| : d(x, y) < r\}$ we shall denote the open ball of radius r with center at x in $|G|$.

By a topological graph we shall understand a topological space Γ homeomorphic to the geometric realization $|G|$ of some combinatorial graph G. In this case G is called the triangulation of Γ. The degree of $\Gamma = |G|$ will be defined as the degree of the combinatorial graph G (the so-defined degree of Γ does not depend on the choice of a triangulation).

It turns out that any graph by a small deformation can be transformed into a graph of degree ≤ 3.

Lemma 2. For any open cover \mathcal{U} of a topological graph Γ there is a \mathcal{U}-map $f : \Gamma \to G$ onto a topological graph G of degree ≤ 3.

This lemma can be easily proved by induction (and we suspect that it is known as a folklore). The following drawing illustrates how to decrease the degree of a selected vertex of a graph.

Now we have all tools for the proof of Theorem. So, take a class K of 1-dimensional continua and assume that X is a 4-K-like continuum. We should prove that X is K-like.

First, we show that X is 1-dimensional. This will follow from Hemmingsen’s Theorem as soon as we check that each open cover \mathcal{U} of X of cardinality $|\mathcal{U}| \leq 3$ has an open refinement \mathcal{V} of order ≤ 2. Since $|\mathcal{U}| \leq 4$ and X is 4-K-like, there is a \mathcal{U}-map $f : X \to K$ onto a continuum $K \in K$. It follows that for some open cover \mathcal{V} of K
the cover \(f\inv(\mathcal{V}) \) refines the cover \(\mathcal{U} \). Since the space \(K \) is 1-dimensional, the cover \(\mathcal{V} \) has an open refinement \(\mathcal{W} \) of order \(\leq 2 \). Then the cover \(f\inv(\mathcal{W}) \) is an open refinement of \(\mathcal{U} \) having order \(\leq 2 \).

To prove that \(X \) is \(K \)-like, fix any open cover \(\mathcal{U} \) of \(X \). Because of the compactness of \(X \), we can additionally assume that the cover \(\mathcal{U} \) is finite. Being 1-dimensional, the continuum \(X \) admits a \(\mathcal{U} \)-map \(f : X \to \Gamma \) onto a topological graph \(\Gamma \). By Lemma \(\ref{lem:2} \) we can assume that \(\deg(\Gamma) \leq 3 \). Adding vertices on edges of \(\Gamma \), we can find a triangulation \((V_\Gamma, E_\Gamma)\) of \(\Gamma \) so fine that

- the path-distance between any vertices of degree 3 in the graph \(\Gamma \) is \(\geq 6 \);
- the cover \(\{ f\inv(B_2(v)) : v \in V_\Gamma \} \) of \(X \) is inscribed into \(\mathcal{U} \).

Lemma \(\ref{lem:3} \) yields a 4-coloring \(\chi : V_\Gamma \to 4 \) of \(V_\Gamma \) such that any two distinct vertices \(u, v \in V_\Gamma \) with \(d(u, v) \leq 2 \) have distinct colors. For each color \(i \in 4 \) consider the open 1-neighborhood \(U_i = \bigcup_{v \in \chi^{-1}(i)} B(v) \) of the monochrome set \(\chi^{-1}(i) \subseteq V_\Gamma \) in \(\Gamma \). Since open 1-balls centered at vertices \(v \in V_\Gamma \) cover the graph \(\Gamma \), the 4-element family \(\{U_i : i \in 4\} \) is an open cover of \(\Gamma \). Then for the 4-element cover \(\mathcal{U}_4 = \{f\inv(U_i) : i \in 4\} \) of the 4-\(K \)-like continuum \(X \) we can find a \(\mathcal{U}_4 \)-map \(g : X \to Y \) to a continuum \(Y \in K \). Let \(\mathcal{W} \) be a finite open cover of \(Y \) such that the cover \(g\inv(\mathcal{W}) \) refines the cover \(\mathcal{U}_4 \). Since \(Y \) is 1-dimensional, we can assume that \(\operatorname{ord}(\mathcal{W}) \leq 2 \). For every \(W \in \mathcal{W} \) find a number \(\xi(W) \in 4 \) such that \(g\inv(W) \subseteq f\inv(\{U_{\xi(W)}\}) \).

Since \(Y \) is a continuum, in particular, a normal Hausdorff space, we may find a partition of unity subordinate to the cover \(\mathcal{W} \). This is a family \(\{\lambda_W : W \in \mathcal{W}\} \) of continuous functions \(\lambda_W : Y \to [0, 1] \) such that

\[
\begin{align*}
(\text{a}) & \quad \lambda_W(y) = 0 \quad \text{for } y \in Y \setminus W, \\
(\text{b}) & \quad \sum_{W \in \mathcal{W}} \lambda_W(y) = 1 \quad \text{for all } y \in Y.
\end{align*}
\]

For every \(W \in \mathcal{W} \) consider the “vertical” family of rectangles

\[R_W = \{W \times B(v) : v \in V_\Gamma, \chi(v) = \xi(W)\} \]

in \(Y \times \Gamma \) and let \(\mathcal{R} = \bigcup_{W \in \mathcal{W}} R_W \). For every rectangle \(R \in \mathcal{R} \) choose a set \(W_R \in \mathcal{W} \) and a vertex \(v_R \in V_\Gamma \) such that \(R = W_R \times B(v_R) \). Also let \(\mathcal{R}_R = \{S \in \mathcal{R} : R \cap S \neq \emptyset\} \).

Claim 1. For any rectangle \(R \in \mathcal{R} \) and a point \(y \in W_R \) the set \(\mathcal{R}_{R,y} = \{S \in \mathcal{R}_R : y \in W_S\} \) contains at most two distinct rectangles.

Proof. Assume that besides the rectangle \(R \) the set \(\mathcal{R}_{R,y} \) contains two other distinct rectangles \(S_1 = W_{S_1} \times B(v_{S_1}) \) and \(S_2 = W_{S_2} \times B(v_{S_2}) \). Taking into account that \(y \in W_R \cap W_{S_1} \cap W_{S_2} \) and \(\operatorname{ord}(\mathcal{W}) \leq 2 \), we conclude that either \(W_{S_1} = W_{S_2} \) or \(W_R = W_{S_1} \) or \(W_R = W_{S_2} \). If \(W_{S_1} = W_{S_2} \), then

\[\chi(v_{S_1}) = \xi(W_{S_1}) = \xi(W_{S_2}) = \chi(v_{S_2}). \]

Since \(B(v_R) \cap B(v_{S_1}) \neq \emptyset \neq B(v_R) \cap B(v_{S_2}) \) the property of 4-coloring \(\chi \) implies that \(v_{S_1} = v_{S_2} \) and hence \(S_1 = S_2 \). By analogy we can prove that \(W_R = W_{S_1} \) implies \(R = S_1 \) and \(W_R = W_{S_2} \) implies \(R = S_2 \), which contradicts the choice of \(S_1, S_2 \in \mathcal{R}_{R,y} \setminus \{R\} \). \(\square \)

Claim \(\ref{claim:1} \) implies that for every rectangle \(R = W_R \times B(v_R) \) the function \(\lambda_R : W_R \to \bar{B}(v_R) \subseteq \Gamma \) defined by

\[\lambda_R(y) = \begin{cases}
\lambda_{W_R}(y)v_R + \lambda_{W_S}(y)v_S, & \text{if } \mathcal{R}_{R,y} = \{R, S\} \text{ for some } S \neq R, \\
v_R, & \text{if } \mathcal{R}_{R,y} = \{R\}
\end{cases} \]

is well-defined and continuous. Let \(\pi_R : R \to W_R \times B(v_R) \subseteq \bar{R} \) be the map defined by \(\pi_R(y, t) = (y, \lambda_R(y)) \).

The graphs of two functions \(\lambda_R \) and \(\lambda_S \) for two intersecting rectangles \(R, S \in \mathcal{R} \) are drawn on the following picture:
Let us show that \(n \in \mathbb{N} \). Let us choose a set \(Y \) from every \(n \in \mathbb{N} \), which is not possible as \(Y \) belongs to the class \(\hat{G} \). Hence for every \(n \in \mathbb{N} \), the family \(Y \) is locally injective because \(\hat{G} \) is a homomorphism. The projection \(\text{pr}_Y : L \to Y \) is locally injective because \(L \subseteq \bigcup R \) and for every \(R \in \mathcal{R} \) the restriction \(\text{pr}_Y | R \cap L : R \cap L \to Y \) is injective. Taking into account that \(Y \in K \), we conclude that \(L \in \hat{K} \), by the definition of the class \(\hat{K} \).

4. Locally injective maps onto tree-like continua and circle

The following theorem is known for metrizable continua [6].

Proposition 1. Each locally injective map \(f : X \to Y \) from a continuum \(X \) onto a tree-like continuum \(Y \) is a homeomorphism.

Proof. By the local injectivity of \(f \), there is an open cover \(U' \) such that for every \(U \in U' \) the restriction \(f | U \) is injective. Let \(U \) be an open cover of \(X \) whose second star \(S_2(U) \) refines the cover \(U' \). Here \(S_2(U) = \bigcup \{ U' \subseteq U' : U \cap U' \neq \emptyset \} \), \(S_2(U) = \{ S_2(U, U) : U \in U \} \) and \(S_2(U) = \{ S_2(U, S_2(U)) : U \in U \} \).

For every \(x \in X \) choose a set \(U_x \in U \) that contains \(x \). Observe that for distinct points \(x, x' \in X \) with \(f(x) = f(x') \) the sets \(U_x, U_{x'} \) are disjoint. In the opposite case \(x, x' \in U_x \cup U_{x'} \subseteq S_2(U_x, U) \subseteq U \) for some set \(U \in U' \), which is not possible as \(f | U \) is injective.

Hence for every \(y \in Y \) the family \(U_y = \{ U_x : x \in f^{-1}(y) \} \) is disjoint. Since \(f \) is closed and surjective, the set \(V_y = Y \setminus f(X \setminus \bigcup U_y) \) is an open neighborhood of \(y \) in \(Y \) such that \(f^{-1}(V_y) \subseteq \bigcup U_y \).

Since the continuum \(Y \) is a tree-like, the cover \(V = \{ V_y : y \in Y \} \) has a finite tree-like refinement \(W \). For every \(W \in W \) find a point \(y_W \in Y \) with \(W \subseteq V_{y_W} \) and consider the disjoint family \(U_W = \{ U \cap f^{-1}(W) : U \in U_W \} \). It follows that \(f^{-1}(W) = \bigcup U_W \) and hence \(U_W = \bigcup_{W \in W} U_W \) is an open cover of \(X \).

Now we are able to show that the map \(f \) is injective. Assuming the converse, find a point \(y \in Y \) and two distinct points \(a, b \in f^{-1}(y) \). Since \(X \) is connected, there is a chain of sets \(\{ G_1, G_2, \ldots, G_n \} \subseteq U_W \) such that \(a \in G_1 \) and \(b \in G_n \). We can assume that the length \(n \) of this chain is the smallest possible. In this case all sets \(G_1, \ldots, G_n \) are pairwise distinct.

Let us show that \(n \geq 3 \). In the opposite case \(a \in G_1 = U_1 \cap f^{-1}(W_1) \in U_W \), \(b \in G_2 = U_2 \cap f^{-1}(W_2) \in U_W \) and \(G_1 \cap G_2 \neq \emptyset \). So, \(a, b \in U_1 \cup U_2 \subseteq S_2(U_1, U) \subseteq U \) for some \(U \in U' \) and then the restriction \(f | U \) is not injective. So \(n \geq 3 \).
For every \(i \leq n \) consider the point \(y_i = y_{i\mathbf{y}} \), and find sets \(W_i \in \mathcal{W} \) and \(U_i \in \mathcal{U}_y \) such that \(G_i = U_i \cap f^{-1}(W_i) \in \mathcal{U}_{W_i} \). Then \((W_1, \ldots, W_n)\) is a sequence of elements of the tree-like cover \(\mathcal{W} \) such that \(y = W_1 \cap W_n \) and \(W_i \cap W_{i+1} \neq \emptyset \) for all \(i < n \). Since the tree-like cover \(\mathcal{W} \) does not contain circle-like subfamilies of length \(\geq 3 \) there are two numbers \(1 \leq i < j \leq n \) such that \(W_i \cap W_j \neq \emptyset \), \(|j-i| > 1 \) and \(\{i, j\} \neq \{1, n\} \). We can assume that the difference \(k = j - i \) is the smallest possible. In this case \(k = 2 \). Otherwise, \(W_i, W_{i+1}, \ldots, W_j \) is a circle-like subfamily of length \(\geq 3 \) in \(\mathcal{W} \), which is forbidden. Therefore, \(j = i+2 \) and the family \(\{W_i, W_{i+1}, W_{i+2}\} \) contains at most two distinct sets (in the opposite this family is circle-like, which is forbidden). If \(W_i = W_{i+1} \), then \(U_i = U_{i+1} \) as the family \(\mathcal{U}_{W_i} \) is disjoint. The assumption \(W_{i+1} = W_{i+2} \) leads to a similar contradiction. It remains to consider the case \(W_i = W_{i+2} \neq W_{i+1} \). Since the sets \(U_i, U_{i+2} \in \mathcal{U}_y \) are distinct, there are distinct points \(x_i, x_{i+2} \in f^{-1}(y_i) \) such that \(x_i \in U_i \) and \(x_{i+2} \in U_{i+2} \). Since \(x_i, x_{i+2} \in U_i \cup U_{i+2} \subset S^{2}(U_i, U) \subset U \) for some \(U \in \mathcal{U} \), the restriction \(f|U \) is not injective. This contradiction completes the proof. \(\Box \)

Proposition 2. If \(f : X \to S^{1} \) is a locally injective map from a continuum \(X \) onto the circle \(S^{1} \), then \(X \) is an arc or a circle.

Proof. The compact space \(X \) has a finite cover by compact subsets that embed into the circle. Consequently, \(X \) is metrizable and 1-dimensional. We claim that \(X \) is locally connected. Assuming the converse and applying Theorem 1 of [1] \(\mathbb{V} \) [49.II] (or [9] 5.22(b) and 5.12), we could find a convergence continuum \(K \subseteq X \). This a non-trivial continuum \(K \), which is the limit of a sequence of continua \((K_{n})_{n \in \mathbb{N}} \) that lie in \(X \setminus K \).

By the local injectivity of \(f \), the continuum \(K \) meets some open set \(U \subseteq X \) such that \(f \upharpoonright U : U \to S^{1} \) is a topological embedding. The intersection \(U \cap K \), being a non-empty open subset of the continuum \(K \) is not zero-dimensional. Consequently, its image \(f(U \cap K) \subseteq S^{1} \) also is not zero-dimensional and hence contains a non-empty open subset \(V \subseteq S^{1} \). Choose any point \(x \in U \cap K \) with \(f(x) \in V \). The convergence \(K_{n} \to K \), implies the existence of a sequence of points \(x_{n} \in K_{n}, n \in \omega \), that converge to \(x \). By the continuity of \(f \), the sequence \((f(x_{n}))_{n \in \omega} \) converges to \(f(x) \in V \). So, we can find a number \(n \) such that \(f(x_{n}) \in V \subseteq f(U \cap K) \) and \(x_{n} \in U \). The injectivity of \(f \upharpoonright U \) guarantees that \(x_{n} \in U \cap K \) which is not possible as \(x_{n} \in K \subseteq X \setminus K \).

Therefore, the continuum \(X \) is locally connected. By the local injectivity, each point \(x \in X \) has an open connected neighborhood \(V \) homeomorphic to a (connected) subset of \(S^{1} \). Now we see that the space \(X \) is a compact 1-dimensional manifold (possibly with boundary). So, \(X \) is homeomorphic either to the arc or to the circle. \(\Box \)

5. Proof of Theorem \[6\]

In the proof we shall use the technique of inverse spectra described in [3] \(\mathbb{V} \) [2.5] or [4] Ch.1. Given a continuum \(X \) embed it into a Tychonov cube \([0, 1]^{\kappa}\) of weight \(\kappa \geq \aleph_0 \).

Let \(A \) be the set of all countable subsets of \(\kappa \), partially ordered by the inclusion relation: \(\alpha \leq \beta \) iff \(\alpha \subseteq \beta \).

For a countable subset \(\alpha \subseteq \kappa \) let \(X_{\alpha} = \text{pr}_{\alpha}(X) \) be the projection of \(X \) onto the face \([0, 1]^{\alpha}\) of the cube \([0, 1]^{\kappa}\) and \(p_{\alpha} : X \to X_{\alpha} \) be the projection map. For any countable subsets \(\alpha \subseteq \beta \subseteq \kappa \) let \(p_{\beta} : X_{\beta} \to X_{\alpha} \) be the restriction of the natural projection \([0, 1]^{\beta} \to [0, 1]^{\alpha}\). In such a way we have defined an inverse spectrum \(S = \{X_{\alpha}, p^{\beta}_{\alpha} : \alpha, \beta \in A\} \) over the index set \(A \), which is \(\omega \)-complete in the sense that any countable subset \(B \subseteq A \) has the smallest upper bound \(\sup B = \bigcup B \) and for any increasing sequence \(\{\alpha_{i}\}_{i \in \omega} \subseteq A \) with supremum \(\alpha = \bigcup_{i \in \omega} \alpha_{i} \) the space \(X_{\alpha} \) is the limit of the inverse sequence \(\{X_{\alpha_{i}}, p_{\alpha_{i+1}}^{\alpha}, \omega\} \). The spectrum \(S \) consists of metrizable compacta \(X_{\alpha}, \alpha \in A \), and its inverse limit \(\lim S \) can be written as the composition \(f = f_{\alpha} \circ p_{\alpha} \) for some index \(\alpha \in A \) and some continuous map \(f_{\alpha} : X_{\alpha} \to Y \).

Now we are able to prove the “if” and “only if” parts of Theorem \[6\]. To prove the “if” part, assume that each map \(f : X \to Y \) factorizes through a metrizable \(n \)-K-like continuum. To show that \(X \) is \(n \)-K-like, fix any open cover \(\mathcal{U} = \{U_{1}, \ldots, U_{n}\} \) of \(X \). By Lemma 5.1.6 of [5], there is a closed cover \(\{F_{1}, \ldots, F_{n}\} \) of \(X \) such that \(F_{i} \subseteq U_{i} \) for all \(i \leq n \). Since \(F_{i} \) and \(X \setminus U_{i} \) are disjoint closed subsets of the compact space \(X = \lim S \), there is an index \(\alpha \in A \) such that for every \(i \leq n \) the images \(p_{\alpha}(X \setminus U_{i}) \) and \(p_{\alpha}(F_{i}) \) are disjoint and hence \(W_{i} = X_{\alpha} \setminus p_{\alpha}(X \setminus U_{i}) \) is an open neighborhood of \(p_{\alpha}(F_{i}) \). Then \(\{W_{1}, \ldots, W_{n}\} \) is an open cover of \(X_{\alpha} \) such that \(p_{\alpha}^{-1}(W_{i}) \subseteq U_{i} \) for all \(i \leq n \).
By our assumption the projection \(p_\alpha : X \to X_\alpha \) can be written as the composition \(p_\alpha = g \circ \pi \) of a map \(\pi : X \to Z \) onto a metrizable \(n \)-K-like continuum \(Z \) and a map \(g : Z \to X_\alpha \). For every \(i \leq n \) consider the open subset \(V_i = g^{-1}(W_i) \) of \(Z \). Since \(Z \) is \(n \)-K-like, for the open cover \(\mathcal{V} = \{ V_1, \ldots, V_n \} \) of \(Z \) there is a \(\mathcal{V} \)-map \(h : Z \to K \) onto a space \(K \in K \). Then the composition \(h \circ \pi : X \to K \) is a \(\mathcal{U} \)-map of \(X \) onto the space \(K \in K \) witnessing that \(X \) is an \(n \)-K-like continuum.

Now we shall prove the “only if” part of the theorem. Assume that the continuum \(X \) is \(n \)-K-like. We shall need the following lemma.

Lemma 3. For any index \(\alpha \in A \) there is an index \(\beta \geq \alpha \) in \(A \) such that for any open cover \(\mathcal{V} = \{ V_1, \ldots, V_n \} \) of \(X_\alpha \) there is a map \(f : X_\beta \to K \) onto a space \(K \in K \) such that \(f \circ \pi : X \to K \) is a \(p_\alpha^{-1}(V) \)-map.

Proof. Let \(\mathcal{B} \) be a countable base of the topology of the compact metrizable space \(X_\alpha \) such that \(\mathcal{B} \) is closed under unions. Denote by \(\mathcal{U} \) the family of all possible \(n \)-set covers \(\{ B_1, \ldots, B_n \} \subseteq \mathcal{B} \) of \(X_\alpha \). It is clear that the family \(\mathcal{U} \) is countable.

Each cover \(\mathcal{U} = \{ B_1, \ldots, B_n \} \in \mathcal{U} \) induces the open cover \(p_\alpha^{-1}(\mathcal{U}) = \{ p_\alpha^{-1}(B_i) : 1 \leq i \leq n \} \) of \(X \). Since the continuum \(X \) is \(n \)-K-like, there is a \(p_\alpha^{-1}(\mathcal{U}) \)-map \(f_\mathcal{U} : X \to K_\mathcal{U} \) onto a space \(K_\mathcal{U} \in K \). By the metrizability of \(K_\mathcal{U} \) and the factorizing property of the spectrum \(S \), for some index \(\alpha \mathcal{U} \geq \alpha \) in \(A \) there is a map \(f_\mathcal{U} : X_\alpha \to K_\mathcal{U} \) such that \(f_\mathcal{U} = f_{\alpha \mathcal{U}} \circ p_\alpha \). Consider the countable set \(\beta = \bigcup_{\mathcal{U} \in \mathcal{U}} \alpha \mathcal{U} \), which is the smallest lower bound of the set \(\{ \alpha \mathcal{U} : \mathcal{U} \in \mathcal{U} \} \) in \(A \). We claim that this index \(\beta \) has the required property.

Let \(\mathcal{V} = \{ V_1, \ldots, V_n \} \) be any open cover of \(X_\alpha \). By Lemma 5.1.6 of [3], there is a closed cover \(\{ F_1, \ldots, F_n \} \) of \(X_\alpha \) such that \(F_i \subseteq V_i \) for all \(i \leq n \). Since \(\mathcal{B} \) is the base of the topology of \(X_\alpha \) and \(\mathcal{B} \) is closed under finite unions, for every \(i \leq n \) there is a basic set \(B_i \in \mathcal{B} \) such that \(F_i \subseteq B_i \subseteq V_i \). Then the cover \(\mathcal{U} = \{ B_1, \ldots, B_n \} \) belongs to the family \(\mathcal{U} \) and refines the cover \(\mathcal{V} \). Consider the map \(f = f_{\alpha \mathcal{U}} \circ p_\alpha^{-1} : X_\beta \to K \) and observe that \(f \circ \pi = f_{\alpha \mathcal{U}} \circ p_\alpha \) is a \(p_\alpha^{-1}(\mathcal{U}) \)-map and a \(p_\alpha^{-1}(\mathcal{V}) \)-map. \(\square \)

Now let us return back to the proof of the theorem. Given a map \(f : X \to Y \) to a second countable space, we need to find a map \(\pi : X \to Z \) onto a metrizable \(n \)-K-like continuum \(Z \) and a map \(g : Z \to Y \) such that \(f = g \circ \pi \). Since the spectrum \(S \) is factorizing, there are an index \(\alpha_0 \in A \) and a map \(f_0 : X_{\alpha_0} \to Y \) such that \(f = f_0 \circ p_{\alpha_0} \). Using Lemma 3 by induction construct an increasing sequence \((\alpha_n)_{n \in \omega} \) in \(A \) such that for every \(i \in \omega \) and any open cover \(\mathcal{V} = \{ V_1, \ldots, V_n \} \) of \(X_{\alpha_i} \) there is a map \(f : X_{\alpha_{i+1}} \to K \) onto a space \(K \in K \) such that \(f \circ p_{\alpha_{i+1}} \) is a \(p_{\alpha_i}^{-1}(\mathcal{V}) \)-map.

Let \(\alpha = \sup_{i \in \omega} \alpha_i = \bigcup_{i \in \omega} \alpha_i \). We claim that the metrizable continuum \(X_\alpha \) is \(n \)-K-like. Given any open cover \(\mathcal{U} = \{ U_1, \ldots, U_n \} \) of \(X_\alpha = \lim_{i \in \omega} X_{\alpha_i} \), we can find \(i \in \omega \) such that the sets \(W_i = X_{\alpha_i} \setminus p_{\alpha_i}^{-1}(\mathcal{U} \setminus U_i) \), \(i \leq n \), form an open cover \(W = \{ W_1, \ldots, W_n \} \) of \(X_{\alpha_i} \) such that the cover \((p_{\alpha_i}^{-1}(W)) \) refines the cover \(\mathcal{U} \). By the choice of the index \(\alpha_{i+1} \), there is a map \(g : X_{\alpha_{i+1}} \to K \) onto a space \(K \in K \) such that \(g \circ p_{\alpha_{i+1}} : X \to K \) is a \(p_{\alpha_i}^{-1}(\mathcal{V}) \)-map. It follows that \(g \circ p_{\alpha_{i+1}} : X_{\alpha} \to K \) is a \((p_{\alpha_i}^{-1}(W)) \)-map and hence a \(\mathcal{U} \)-map, witnessing that the continuum \(X_\alpha \) is \(n \)-K-like.

Now we see that the metrizable \(n \)-K-like continuum \(X_{\alpha} \) and the maps \(\pi = p_{\alpha} : X \to X_{\alpha} \) and \(g = f_0 \circ p_{\alpha_0} : X_{\alpha} \to Y \) satisfy our requirements.

6. **Proof of Theorem**

The “chainable and tree-like” parts of Theorem follow immediately from the characterization Theorem 3. So, it remains to prove the “circle-like” part. Let \(K = \{ S^1 \} \). We need to prove that each 4-K-like continuum \(X \) is K-like. Given an open cover \(\mathcal{U} \) of \(X \) we need to construct a \(\mathcal{U} \)-map of \(X \) onto the circle. By Theorem 3 there is a \(\mathcal{U} \)-map onto a metrizable 4-K-like continuum \(Y \). It follows that for some open cover \(\mathcal{V} \) of \(Y \) the cover \(\mathcal{V}^{-1} \) refines \(\mathcal{U} \). The proof will be complete as soon as we prove that the continuum \(Y \) is circle-like. In this case there is a \(\mathcal{V} \)-map \(g : Y \to S^1 \) and the composition \(g \circ f : X \to S^1 \) is a required \(\mathcal{U} \)-map witnessing that \(X \) is circle-like.

By Theorem 3 the metrizable continuum \(Y \) is \(\tilde{K} \)-like. By Proposition each continuum \(K \in \tilde{K} \) is homeomorphic to \(S^1 \) or \([0, 1] \). Consequently, the continuum \(Y \) is circle-like or chainable. In the first case we are done. So, we assume that \(Y \) is chainable.

By Theorem 12.5, the continuum \(Y \) is irreducible between some points \(p, q \in Y \). The latter means that each subcontinuum of \(X \) that contains the points \(p, q \) coincides with \(Y \). We claim that \(Y \) is either indecomposable
or Y is the union of two indecomposable subcontinua. For the proof of this fact we will use the argument of [9, Exercise 12.50] (cf. also [7, Theorem 3.3]).

Suppose that Y is not indecomposable. It means that there are two proper subcontinua A, B of Y such that $Y = A \cup B$. By the choice of the points p, q, they cannot simultaneously lie in A or in B. So, we can assume that $p \in A$ and $q \in B$.

We claim that the closure of the set $Y \setminus A$ is connected. Assuming that $\overline{Y \setminus A}$ is disconnected, we can find a proper closed-and-open subset $F \subseteq \overline{Y \setminus A}$ that contains the point q and conclude that $F \cup A$ is a proper subcontinuum of Y that contains both points p, q, which is not possible. Replacing B by the closure of $Y \setminus A$, we can assume that $Y \setminus A$ is dense in B. Then $Y \setminus B$ is dense in A.

We claim that the sets A and B are indecomposable. Assuming that A is decomposable, find two proper subcontinua C, D such that $C \cup D = A$. We can assume that $p \in D$. Then $B \cap D = \emptyset$ (as Y is irreducible between p and q). By Theorem 11.8 of [9], the set $Y \setminus (B \cup D)$ is connected. Let Z_1 and Z_2 be open disjoint subsets of X such that $B \subseteq Z_1$ and $D \subseteq Z_2$. Since Y is 4-$\{S^1\}$-like, for the open cover $Z = \{Z_1, Z_2, Y \setminus (B \cup D)\}$ of Y there exists a Z-map $h: Y \to S^1$. Thus $h(B) \cap h(D) = \emptyset$ and $S^1 \setminus (h(B) \cup h(D))$ is the union of two disjoint open intervals W_1, W_2. Since h is a Z-map, $Y \setminus (B \cup D) = h^{-1}(W_1) \cup h^{-1}(W_2)$ which contradicts the connectedness of the set $Y \setminus (B \cup D)$.

Now we know that Y is either indecomposable or is the union of two indecomposable subcontinua. Applying Theorem 7 of [2], we conclude that the metrizable chainable continuum Y is circle-like.

7. Open Problems

Problem 1. For which families K of connected topological graphs every 4-K-like continuum is K-like? Is it true for the family $K = \{8\}$ that contains 8, the bouquet of two circles?

Also we do not know if Theorem 4 can be generalized to classes of higher-dimensional continua.

Problem 2. Let $k \in \mathbb{N}$ and K be a class of k-dimensional (contractible) continua. Is there a finite number n such that a continuum X is K-like if and only if it is n-K-like?

Acknowledgment

The authors express their sincere thanks to the anonymous referee whose valuable remarks and suggestions helped the authors to improve substantially the results of this paper.

References

[1] T. Banakh, P. Bankston, B. Raines, W. Ruitenburg, *Chainability and Hemmingsen’s theorem*, Topology Appl. 153 (2006) 2462–2468.

[2] C. E. Burgess, *Chainable continua and indecomposability*, Pacific J. Math. 9 (1959) 653–659.

[3] J. H. Case, R. E. Chamberlin, *Characterizations of tree-like continua*, Pacific J. Math. 10 (1960) 73–84.

[4] A. Chigogidze, *Inverse spectra*, North-Holland Publishing Co., Amsterdam, 1996.

[5] R. Engelking, *Theory of Dimensions. Finite and Infinite*, Heldermann Verlag 1995.

[6] J. W. Heath, *Each locally one-to-one map from a continuum onto a tree-like continuum is a homeomorphism*, Proc. Amer. Math. Soc 124 (1996) 2571–2573.

[7] J. Krasinkiewicz, *On the hyperspaces of snake-like and circle-like continua*, Fund. Math. 83 (1974) 155–164.

[8] K. Kuratowski, *Topology, II*, Academic Press, NY and London; PWN, Warszawa, 1968.

[9] S. Nadler, *Continuum Theory. An Introduction*, Marcel Dekker, 1992.

(T.Banakh, Z.Kosztołowicz, S.Turek) INSTITUTE OF MATHEMATICS, UNIWERSYTET HUMANISTYCZNO-PRZYGODNICZY JANA KOCHANOWSKIEGO, UL. SWIETOKRZYSKA 15, 25-406 KIELCE, POLAND

E-mail address: zdzisko@ujk.kielce.pl, sturek@ujk.kielce.pl

(T.Banakh) DEPARTMENT OF MATHEMATICS, IVAN FRANKO NATIONAL UNIVERSITY OF LVIV, UKRAINE

E-mail address: tbanakh@yahoo.com