Epidemiology of low birth weight in Iran: A systematic review and meta-analysis

Mehdi Shokri a, Parviz Karimi a, Hadis Zamanifar b, Fatemeh Kazemi c, Milad Azami d, Gholamreza Badfar e, f, *

a Department of Pediatrics, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran

b School of Nursing and Midwifery, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

c Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran

d School of Medicine, Ilam University of Medical Sciences, Ilam, Iran

e Department of Pediatric, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

ABSTRACT

Introduction: Low birth weight (LBW) is an important general health indicator. The present study was conducted to evaluate the prevalence and risk factors of LBW in Iran.

Method: This meta-analysis was reported based on the PRISMA guidelines. All stages were independently performed by two authors. This review is registered with PROSPERO (CRD42020163446). We searched epidemiological studies at international databases of Scopus, Embase, Science Direct, PubMed/Medline, CINAHL, EBSCO, Cochrane Library, Web of Science, and Google Scholar search engine, as well as Iranian databases of SID, IranDoc, Iranian National Library, Barakat Knowledge Network System, RICST and Magiran using MeSH keywords without time limit until 2019. After selecting the studies, applying the inclusion and exclusion criteria, data extraction and qualitative assessment, the data were analyzed based on random effects model using Comprehensive Meta-Analysis Software version 2. P < 0.05 was considered significant.

Results: The prevalence of LBW in Iran was 7.95% (95% confidence interval [CI]: 7.36–8.58) in 62 studies with a sample size of 301,839 newborns. The prevalence of LBW in girls and boys was 8.41% (95% CI: 7.47–9.45) and 6.67% (95% CI: 5.86–7.59), respectively. The girls-to-boys odds ratio of LBW was 1.25 (95% CI: 1.13–1.39, P < 0.001) very LBW and extremely LBW prevalence was estimated to be 0.61% (95% CI: 0.40–0.93) and 0.29% (95% CI: 0.18–0.45), respectively. The risk factors for LBW were age of < 20 vs. ≥ 20 years (P < 0.001), education of middle school and lower vs. high school and higher (P < 0.001), weight under 50 kg (P = 0.001), employed vs. housekeeper (P < 0.001), inadequate prenatal care (P = 0.046), interval with previous pregnancy < 2 vs. ≥ 2 (P < 0.001), prematurity (P < 0.001), history of LBW (P < 0.001), multiple birth (P < 0.001), abortion (P < 0.001), vaginal bleeding (P < 0.001), hypertension (P = 0.001) and preeclampsia (P < 0.001).

Conclusion: The results of this meta-analysis showed that LBW is prevalent in Iran. This study can be a national database for LBW that would be of interest to Iranian health policy-makers and planners.

1. Introduction

Low birth weight (LBW) is an important general health indicator, which is defined by the World Health Organization (WHO) as weight at birth less than 2500 g [1]. It is estimated that around 15.5% of newborns are born with LBW each year, and more than 95.6% of them are born in developing countries, while about 72% of LBW newborns are born in Asia and 8% are born in the eastern Mediterranean region, including Iran [2, 3]. The prevalence of LBW in developed and developing countries was estimated to be 5–7% and 19%, respectively [2].

LBW is one of the main causes of neonatal mortality, accounting for about 40% of all mortality among children under five years of age, and the mortality rate in LBW infants is approximately twenty times higher than heavier infants [1, 4]. The etiology of LBW is complex and is influenced by several factors such as demographic factors, maternal nutrition, reproduction and socioeconomic factors such as inadequate care and difficult physical labor during pregnancy, family's deprivation of social protection, low levels of education and financial poverty [5, 6, 7]. Additionally, infections, multiple pregnancies and complications of pregnancy such as preeclampsia, maternal emotional distress,
Substance abuse, smoking, infertility, preterm labor, and intrauterine growth restriction (IUGR) are associated with LBW [8, 9, 10, 11].

LBW imposes an economic burden on the health care system, which is equal to one-third of the world’s medical expenses [12]. In addition to health-related issues such as the need for hospital care, infants with LBW are at risk for chronic diseases and mental disabilities compared to infants with normal weight [13, 14]. LBW can be one of the major factors affecting growth disorder, cognitive development defects, and increased rate of diseases such as infectious diseases during pregnancy and childhood [15]. It is worth noting that recent epidemiological studies have shown that in people with LBW, the risk of developing chronic diseases in adulthood such as hypertension, coronary disease, kidney disease, diabetes, stroke and obesity is higher [16, 17]. Education level, age, poor diet, gravidity and parity, lack of proper prenatal care, as well as economic and social status are most important factors predicting of LBW risk [17, 18, 19, 20].

Several studies have been conducted in Iran on LBW [18, 19, 20, 21, 22, 23, 24]. In systematic reviews and meta-analyses, a complete picture of the dimensions of a problem in society can be presented by examining all relevant documentation and providing a general assessment [25, 26, 27]. Obviously, with the increase in the number of studies involved in the process of analysis, the confidence interval is reduced and the overall estimate is more reliable [27, 28]. Therefore, the present meta-analysis was conducted to determine the prevalence and risk factors of LBW in Iran.

2. Materials and methods

2.1. Study protocol

This meta-analysis was reported based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for systematic reviews and meta-analyses [26]. The study stages included the search strategy, the selection of studies, the qualitative assessment of studies, data extraction and statistical analysis. All these steps were independently performed by two authors. In the case of dispute, a third author was consulted. This review is registered with PROSPERO (CRD42020163446). Available from: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020163446.

2.2. Search strategy

We searched epidemiological studies at nine international databases of Scopus, Embase, Science Direct, PubMed/Medline, CINAHL, EBSCO, Cochrane Library, Web of Science, and Google Scholar search engine, as well as six Iranian databases of Scientific Information Database (SID) (http://www.sid.ir/), Iranian Research Institute for Information Science and Technology (IranDoc) (https://irandoc.ac.ir), Iranian National Library (http://www.nlai.ir/), Barakat Knowledge Network System (http://health.barakatkins.com), and Regional Information Center for Science and Technology (RICST) (http://en.ricest.ac.ir/), and Magiran (http://www.magiran.com/) using MeSH and non MeSH keywords including “prevalence”, “Incidence”, “epidemiology”, “frequency”, “newborn”, “infant”, “neonate”, “underweight”, “abnormal birth weight”, “birth outcome”, “low birth weight”, “preterm birth” and “Iran” without time limit until 2019. To perform a combined search, the ‘AND’ and ‘OR’ functions were used. An example of the PubMed search strategy were (prevalence OR epidemiology OR frequency) AND (newborn OR Infant OR neonate OR underweight OR abnormal birth weight OR birth outcome OR low birth weight OR preterm birth) AND (Iran). The manual search was also done using the list of references in the selected or review articles.

2.3. Selection of studies

First, all related articles, whose affiliation included Iranian authors, were collected and after completing the search and removal of duplicates, two independent researchers screened the titles. After the screening process, we reviewed the summary. If there were doubts about eligibility of the article based on the abstract, the full text was examined and if the full text was not available, we contacted the author.

Figure 1. PRISMA flowchart.
Table 1. Summary of studies entered into meta-analysis.

Ref.	First author, Published Year	Year Design Place	Sample size (N*)	LBW (%)	Quality
[18]	Mirahmadizadeh A, 2017	2014 Cross-sectional Fars	3594 1811 1778	8.7	High
[19]	Momeni M, 2017	2014-5 Cross-sectional Kerman	6027 29961 28226	9.42	High
[20]	Golestan M, 2011	2008 Cross-sectional Yazd	5897	8.79	Moderate
[21]	Rafiei M, 2007	2005 Cross-sectional Arak	4022 2051 1971	9.1	High
[22]	Delaram M, 2008	2005 Cross-sectional Shahr-e-Kord	5102 2637 2465	8.5	Moderate
[23]	Shadzi Sh, 2000	1996-7 Cross-sectional Isfahan	848 391 445	6	Moderate
[24]	Zarbakhsh Bhari M, 2012	2008-9 Cross-sectional Gilan	32471 6.95	High	
[25]	Hajian K, 2011	1998 Cross-sectional Babol	1087 550 528	6.2	Moderate
[26]	Eslami Z, 2002	2005-10 Cross-sectional Ardabil	6832	6.32	Moderate
[27]	Pasdary, 2010	2010 Cross-sectional Kerman	32450 5.7	Moderate	
[28]	Hashemian Nejad, 2014	2011-12 Cross-sectional Sabzevar	7599	6.32	High
[29]	Karamzad N, 2013	2014 Cross-sectional Tabriz	7353	6.4	High
[30]	Roudbari M, 2013	2011 Cross-sectional Yasuj	1000	7.19	High
[31]	Khoori E, 1999	1996 Cross-sectional Gorgan	2183 1107 1076	6.3	Moderate
[32]	Wafaie SM, 2005	2004 Cross-sectional Neishabour	1240 587 522	11.79	High
[33]	Zahed Pasha Y, 2004	2000 Cross-sectional Babol	2228 1134 1082	7.7	High
[34]	Yousefi J, 2015	2007-8 Cross-sectional Mashhad	866	16.5	Moderate
[35]	Khorsheid M, 2013	2011-12 Cross-sectional Mazandaran	3792 1899 1893	2.9	Moderate
[36]	Rafati S, 2005	2002-3 Cross-sectional Tehran	1927 985 921	11.79	Moderate
[37]	Talebian MH, 2013	2009 Cross-sectional Isfahan	9579	9.5	High
[38]	Jafari F, 2010	2004 Cross-sectional Zanjan	4510 2368 2142	6.80	Moderate
[39]	Vahdaninia M, 2005	2005 Cross-sectional Tehran	3734	4.7	High
[40]	Taheri FA, 2006	2004 Cross-sectional Birjand	2558	7.9	Moderate
[41]	Toootoonchi P, 2007	2005-6 Cross-sectional Tehran	905 395 514	8.6	High
[42]	Younesi F, 2008	2004-7 Cross-sectional Fars	2228 1134 1082	7.7	High
[43]	Saeedi R, 2011	2012 Cross-sectional Mashhad	461 221 240	6.72	High
[44]	Ranjbaran M, 2015	2013-4 Cross-sectional Arak	461 221 240	6.72	High
[45]	Nachvak SM, 2012	2002-7 Cross-sectional Tehran	866	16.5	Moderate
[46]	Ahmadi P, 2017	2005-9 Cross-sectional Tehran	600 237 312	9.5	High
[47]	Safari M, 2013	2013 Cross-sectional Garmser	681 340 340	4.7	High
[48]	Mahmoodi Z, 2013	2012 Cross-sectional Tehran	7353	6.4	High
[49]	Mousa-farkhani E, 2002	2001 Cross-sectional Quchan	803 426 377	12	Moderate
[50]	Shahika M, 2008	2000-1 Cross-sectional Rasht	5897	4.92	High
[51]	Veghari G, 2009	2007 Cross-sectional Gorgan	2881	9.8	Moderate
[52]	Nili F, 2002	1999-2000 Cross-sectional Tehran	2357	16	Moderate
[53]	Fadaii B, 2009	2009-10 Cross-sectional Isfahan	941	9.35	Moderate
[54]	Fallah MH, 2008	2007 Cross-sectional Yazd	941	9.35	Moderate
[55]	Ebrahimian M, 2008	1995-6 Cross-sectional Tehran	1500 812 688	19.1	Moderate
[56]	Eghbalian F, 2007	2004-5 Cross-sectional Hamedan	350	8.57	High
[57]	Tayebi T, 2013	2010 Cohort Sari	1500 812 688	19.1	Moderate
[58]	Bahrami N, 2014	2010 Cross-sectional Qazvin	3076 1572 1407	6.7	High
[59]	Shahiri P, 2012	2008 Cross-sectional Alborz	808 379 429	4.9	High
[60]	Tabatabi S, 2010	2007 Cross-sectional Tehran	2050	7.7	High
[61]	Eftekhari H, 2007	2005 Cross-sectional Bandar Abbas	5893	4.395	Moderate
[62]	Koohdani F, 2010	2001-3 Cross-sectional Tehran	225	7.10	Moderate
[63]	Garmaroudi Gh, 2001	1996-7 Cross-sectional Tehran	5893	4.395	Moderate
[64]	Sharififard G, 2012	2010 Cross-sectional Isfahan	225	7.10	Moderate
[65]	Faramarzi M, 2005	2001-3 Cross-sectional Babol	3275	11.20	High

(continued on next page)
Table 1 (continued)

Ref.	First author, Published Year	Year	Design	Place	Sample size (N*)	LBW (%)	Quality	
[88]	Nojomi M, 2006	2003	Cross-sectional	Tehran	430	12.79	High	
[89]	Sobhi A, 2013	2008–2011	Cross-sectional	Fariman	7763	6.1	Moderate	
[90]	Khojateh F, 2016	2014	Cross-sectional	Zahedan	2227	4.84	Moderate	
[91]	Delvarianzadeh M, 2007	2005	Cohort	Shahrood	424	13	Moderate	
[92]	Sharifzadeh F, 2012	2008	Cohort	Tehran	576	13.02	High	
[93]	Moghadam-Banaei L, 2010	2008	Cross-sectional	Tehran	344	3.5	High	
[94]	Goujani R, 2014	2011	Cross-sectional	RafaSanjan	5532	7.066	High	
[95]	Hoseini M, 2009	2004–5	Cohort	Tehran-Shemiran	610	11.79	Moderate	
[96]	Alizadegh Sh, 2014	2010–11	Cross-sectional	Guilan	590	4.10	High	
[97, 98]	Omani-Samani R, 2018	2015	Cross-sectional	Tehran	4899	5.16	High	
[99]	Rafiei M, 2008	2004	Cross-sectional	Arak	10241	5241	5000	8.99 High
[100]	Judipour Z, 2015	2013	Cross-sectional	Sistan and Baluchestan	1712	9.3	Moderate	
[101]	Amani R, 2000	1995–6	Cross-sectional	Ahvaz	876	7.3	Moderate	
[102]	Oskouie F, 2006	2005	Cross-sectional	Tehran	1000	14.7	Moderate	
[103]	Adlshoar M, 2005	2003	Cohort	Rasht	2500	5.2	Moderate	
[104]	Golestani M, 2008	2004	Cohort	Yazd	6016	8.4	Moderate	
[105]	Momenabadi V, 2017	2015	Cross-sectional	Shiraz	250	1811	1778	18 High

Number.

2.4. Inclusion and exclusion criteria

The inclusion criteria according to PICO (based on Evidence Based Medicine) [28] were: 1) Population: Epidemiologic studies (cross-sectional, cohort, and case-control) that examined the prevalence and risk factors of LBW; 2) Intervention: Weight less than 2500 g to confirm LBW and subcategories include very low birth weight (VLBW), which is less than 1500 g, and extremely low birth weight (ELBW), which is less than 1000 g; 3) Comparison: Evaluation of the demographic, medical diseases, obstetrics and gynecology variable in infants with LBW and without LBW for risk factors; 4) Outcome: Estimating the prevalence and risk factors of LBW.

The exclusion criteria were: 1) Non-Iranian studies; 2) Studies with non-random sample size to estimate the prevalence of LBW; 3) Non-related studies; 4) Duplicate studies; 5) Case reports, Case series, Letter to Editor, Editorial, Commentary and review; and 6) Low quality studies.

2.5. Definition

LBW defined by the WHO as weight at birth less than 2500 g. Subcategories include VLBW, which is less than 1500 g, and ELBW, which is less than 1000 g [1].

2.6. Qualitative assessment

To assess the quality of selected studies, the Modified Newcastle-Ottawa scale for non-randomized studies and its adapted form for cross-sectional studies was used [29]. This checklist includes 7 questions, each receiving up to 10 stars. Therefore, the quality of studies was divided into three categories: unsatisfactory (less than 5 stars), satisfactory (5–7 stars) and good (8–10 stars). Finally, the scores given to the articles were compared by the two researchers and discussions were held on differences. The minimum score for entering the meta-analysis process was 5.

2.7. Data collection

The two authors independently extracted the data, including the first author, year of publication, year of study, sample size (total, girl, and boy), study design, LBW prevalence, VLBW prevalence, ELBW prevalence, geographic area of study, number of LBW and normal LBW in available variables. Any disagreement was resolved in consultation with a third person as a judge.

2.8. Evidence assessment

The overall methodological quality of each analysis was classified according to the Grading of Recommendations, Assessment, Development, and, Evaluation (GRADE), taking into account study limitations (risk of bias), inconsistency, imprecision, indirectness, and publication bias. Then, the quality of the evidence was divided into three categories: high, moderate, low or very low [30].

2.9. Statistical analysis

To determine the prevalence of LBW, the total number and the number of events were used. To estimate the risk factors of LBW, we used the total number and the number of events in both case and control groups and we calculated the odds ratio (OR) and 95% confidence interval (CI). Heterogeneity of studies was evaluated using Cochran’s Q test and I² index. In this regard, the interpretation is as follows: 0–25% may not be important, 25–49% may indicate a moderate heterogeneity, 50–75% indicates substantial heterogeneity, and over 75% indicates significant heterogeneity [31]. Moreover, in order to find the cause of heterogeneity, subgroup analysis and meta-regression were performed [32]. Based on the Dersimmonian-Laird test, the random effects model was used in this study to combine the data [33]. To ensure the strength and validity of the findings, sensitivity analysis was performed by omitting a study at a time [34]. Specifically, the subgroup analysis was performed based on year of study, type of study, sample size, study quality, geographical region and province. Any probable bias in the publication was evaluated using the Egger and Begg’s tests [35]. Data were analyzed using Comprehensive Meta-Analysis Software (CMA) version 2. In this study, p < 0.05 was considered statistically significant.

3. Results

3.1. Overview of search

In the initial search, 640 studies were obtained and 320 duplicate studies were deleted. After reviewing the full text of 138 related articles, 63 articles were excluded due to lack of necessary criteria and finally, 75 eligible studies entered the qualitative assessment stage (Figure 1). Table 1 shows the characteristics of each study.
3.2. LBW, VLBW, and ELBW prevalence

Total heterogeneity for prevalence of LBW, VLBW, and ELBW was very high in the studies (Heterogeneity test: $P < 0.001$, $I^2 = 97.03\%$ for LBW, $P < 0.001$, $I^2 = 94.17\%$ for VLBW, and $P < 0.001$, $I^2 = 85.29\%$ for ELBW). The prevalence of LBW in Iran in 62 studies with sample size of 301,839 infants was estimated to be 7.95\% (95\% CI: 7.36–8.58). The lowest and highest LBW were related to studies in Mazandaran (2011-2) (2.9\%) and Hamadan (2004–5) (19.1\%), respectively (Figure 2). VLBW and ELBW prevalence was estimated to be 0.61\% (95\% CI: 0.40–0.93) and 0.29\% (95\% CI: 0.18–0.45), respectively (Figure 3).

3.3. Subgroup analysis

The subgroup analysis of LBW is shown in Table 2. The variables of geographical area ($P = 0.066$), study design ($P = 0.196$), quality ($P = 0.957$), sample size ($P = 0.241$) and year of studies ($P = 0.088$) were not significant, but the subgroup analysis of provinces ($P < 0.001$) was significant (Table 2).

3.4. LBW based on gender

Total heterogeneity was very high for prevalence of LBW in girls and boys (Heterogeneity test: $P < 0.001$, $I^2 = 93.18\%$ for girls gender and...
heterogeneity test: $P < 0.001$, $I^2 = 93.40\%$ for boys gender). The prevalence of LBW in girls in 25 studies with a sample size of 60,557 infants was 8.41% (95% CI: 7.47–9.45). The prevalence of LBW in boys in 25 studies with a sample size of 64,989 infants was 6.67% (95% CI: 5.86–7.59) (Figure 4-A,B). The female-to-male OR of LBW was 1.25 (95% CI: 1.13–1.39, $P < 0.001$) (Figure 4-C).

3.5. LBW based on place of residence

Total heterogeneity was very high for prevalence of LBW in urban and rural studies (Heterogeneity test: $P < 0.001$, $I^2 = 95.13\%$ for urban studies and heterogeneity test: $P < 0.001$, $I^2 = 95.18\%$ for rural studies). The prevalence of LBW in urban areas (14 studies with a sample size of 41,454 infants) and rural areas (13 studies with a sample size of 58,593 infants) were 6.94% (95% CI: 5.82–8.26) and 6.93% (95% CI: 5.72–8.38). The urban-to-rural OR of LBW was 1.01 (95% CI: 0.86–1.19; $P = 0.842$) (Figure 5).

3.6. Risk factors for LBW

The demographic risk factors for LBW, including age of >35 versus ≤ 35 (1.41 [95% CI: 1.04–1.90], $P = 0.024$), age of <18 vs. ≥ 18 years (1.39 [95% CI: 1.20–1.61], $P < 0.001$), education of middle school and lower vs. high school and higher (1.56 [95% CI: 1.28–1.90], $P < 0.001$), weight under 50 kg (2.49 [95% CI: 1.45–4.26], $P = 0.001$), employed vs. housewife (2.40 [95% CI: 1.52–3.80], $P < 0.001$) were significant, but smoking (3.52 [95% CI: 0.85–14.48], $P = 0.081$) was not significant (Table 3).

The obstetrics and gynecology risk factors for LBW, including inadequate prenatal care (1.54 [95% CI: 1.00–2.30], $P = 0.046$), interval with previous pregnancy <2 vs. >2 years (2.14 [95% CI: 1.46–3.14], $P < 0.001$), prematurity (13.86 [95% CI: 4.99–38.49], $P < 0.001$), history of LBW (3.57 [95% CI: 1.91–6.67], $P < 0.001$), multiple birth (13.20 [95% CI: 4.82–36.12], $P < 0.001$), abortion (1.28 [95% CI: 0.60–2.73], $P = 0.651$), vaginal bleeding (2.56 [95% CI: 1.83–3.57], $P < 0.001$) but unwanted pregnancy (1.64 [95% CI: 0.90–3.00], $P = 0.106$), nulliparity (1.14 [95% CI: 0.99–1.32], $P = 0.059$) and cesarean section (1.11 [95% CI: 0.76–1.62, $P = 0.584$]) were not significant (Table 3).

Risk factors of medical diseases for LBW, including hypertension ($P = 0.001$) and preeclampsia ($P < 0.001$) were significant but diabetes mellitus ($P = 0.77$), urinary tract infection ($P = 0.133$), pregnancy-induced hypertension (0.094) were not significant (Figure 6).

3.7. Meta-regression

The meta-regression model showed that the changes in the prevalence of LBW were not significant based on the year of study (meta-regression coefficient: -0.003, 95% CI: -0.019 to 0.012, $P = 0.663$). In addition, this model was not significant for the prevalence of LBW in girls (meta-regression coefficient: -0.009, 95% CI: -0.035 to 0.17, $P = 0.497$) and boys (meta-regression coefficient: -0.003, 95% CI: -0.031 to 0.024, $P = 0.801$) and also VLBW (meta-regression coefficient: 0.067, $P = 0.001$, $I^2 = 94.17\%$)
3.8. Sensitivity analysis and publication bias

The sensitivity analysis showed a strong point estimate by eliminating a study at a time for prevalence of LBW, VLBW, and ELBW (SF 3, 4). Publication bias was not significant for the prevalence of LBW based on P-values of Egger and Begg’s tests were 0.746 and 0.836, respectively. The publication bias was not significant for the female-to-male odds ratio of LBW based on Egger (P = 0.829) and Begg’s test (P = 0.387). Publication bias is shown in SF 5 file in the form of a funnel plot.

4. Discussion

The Millennium Development Goals (MDGs) are aimed at reducing the mortality of children under the age of 5 to two-thirds. The most important factor that can affect the survival of infants is LBW. This is an important health index in any country [106]. One of the goals of sustainable development is to reduce the mortality rate of infants to below 12 per 1,000 live births in all countries by 2030. The neonatal mortality rates in Iran have been reported to be 13.3 infants according to the World

95% CI: -0.004 to 0.139, P = 0.065 and ELBW (meta-regression coefficient: 0.055, 95% CI: -0.041 to 0.151, P = 0.262) (SF [Supplementary figure] 1, 2).

Table 2. Subgroup analysis of LBW based on region, quality of studies, study design, Provinces, year, and sample size.

Variable	Studies (N°)	Sample (N)	Heterogeneity	95% CI	Pooled prevalence (%)
Region					
Center	29	94154	7577	95.69	0.001
East	9	27442	2106	96.87	0.001
North	15	73969	4916	95.75	0.001
South	7	72333	6602	92.70	0.001
West	2	33950	2136	99.73	0.001
Test for subgroup differences: Q = 8.800, df(Q) = 4, P = 0.066					
Quality					
High	30	173298	14254	95.45	0.001
Moderate	32	128541	9084	97.68	0.001
Test for subgroup differences: Q = 0.003, df(Q) = 1, P = 0.957					
Study design					
Cross-sectional	57	291713	22500	98.17	0.001
Cohort	5	10126	837	94.14	0.001
Test for subgroup differences: Q = 1.67, df(Q) = 1, P = 0.196					
Provinces					
Khuzestan	2	1684	104	75.86	0.042
Qazvin	2	3326	229	51.47	0.151
Kerman	2	65805	6069	96.99	0.001
Mazandaran	5	12398	800	98.02	0.001
Tehran	12	29811	2259	97.67	0.001
Sistan and Baluchestan	3	5179	413	96.41	0.001
Hamadan	1	1500	287	0	-
Kermanshah	1	32450	1850	0	-
Qom	1	1927	227	0	-
Markazi	3	14724	1318	31.55	-
Chaharmahal va Bakhtiari	1	5102	434	0	-
Kohgiloyeh and Boyerahmad	1	1000	72	0	-
Semnan	2	1105	87	95.63	0.001
South Khorasan	1	2558	202	0	-
Ardabil	2	14815	902	0.845	0.001
Fars	2	3844	358	95.60	0.001
Gilan	4	41548	2799	93.71	0.001
Golestani	3	5414	450	89.85	0.001
Isfahan	4	16157	1257	96.88	0.001
Razavi Khorasan	5	19705	1491	97.98	0.001
Zanjan	1	4510	307	0	-
Test for subgroup differences: Q = 560.43, df(Q) = 21, P < 0.001					
Year					
1996-2005	31	91883	7356	96.97	0.001
2006-2015	31	209956	15982	97.10	0.001
Test for subgroup differences: Q = 2.91, df(Q) = 1, P = 0.088					
Sample					
≤1000	22	13838	1305	90.43	0.001
1001-10000	35	142379	10066	97.35	0.001
>10000	5	145622	11426	99.14	0.001

a Number.

b Confidence interval.
Figure 4. Prevalence of LBW in girls (A), boys (B) and an odds ratio of girls-to-boys (C).
Bank collection of development indicators [107], which could be due to improvements in Iran's national health system.

The prevalence of LBW in Iranian studies has been reported between 2.9% and 19.1% in different regions. In the present meta-analysis, the national prevalence of LBW in Iran among 301,839 infants was estimated to be 7.95%. The prevalence of LBW in 2015 was estimated to be worldwide (14.6%), Sub-Saharan Africa (14.0%), Southern Asia (26.4%), Northern Africa (12.2%), Southeastern Asia and Oceania (12.2%), Central Asia (5.4%), Eastern Asia (5.3%), Western Asia (9.9%), Latin America and Caribbean (8.7%) [108]. Considering high heterogeneity of LBW prevalence in Iranian studies, subgroup analysis was done to find its cause, and province (P < 0.001) was the only significant factor. Therefore, the prevalence of LBW varies according to differences in health care quality, sample size, and socioeconomic and cultural conditions in different regions of Iran, so it should be considered by policy makers and health care providers.
The meta-regression model for LBW prevalence did not change significantly based on the year of study (between 1993 and 2017). In a systematic global review article, its prevalence was 17.5% in 2000 and 20.6% in 2015 [108].

The sickest and youngest infants are often missed from information systems, including those who die soon after birth, or are hospitalized elsewhere. The information system and communication system should be improved to obtain information about these vulnerable infants. Incorrect classification of premature infant mortality as “stillbirths” still exists. Since these infants are more likely to suffer from LBW, failure to consider mortality may lead to underestimation of the prevalence of LBW. Therefore, it is important that any newborn, whether alive or dead, is registered in the information system [109]. Social and family demand for birth weight data is an issue that is not discussed. There is little information about family and community perceptions and the demand for birth weight measurement, including cultural barriers to birth weight measurement, especially in some areas of the community and for stillbirths.

Preterm delivery plays a major role in developing LBW. A systematic review and meta-analysis reported the prevalence of preterm labor to be 9.2% in Iran and considered it a relatively common problem in Iran [110].

In evaluating the effect of gender on LBW, we found that the prevalence of LBW in females was significantly higher than that of males. In a study conducted in Japan, there was a significant relationship between female gender and low birth weight [111], and it was also found that the mean birth weight of male infants was higher than that of female infants [112].

To assess the risk factors for preterm birth, a systematic review article in Ethiopia showed that maternal age (over 35) are more likely to suffer from LBW. This finding is similar to other studies [113, 114, 115]. The employment of pregnant women in hard, troublesome, and active jobs is among the factors affecting LBW, early delivery and fetal death [116]. Working conditions are also important predictors of the outcome of pregnancy and childbirth. Various studies have shown that type of occupation as well as working conditions may lead to LBW [117, 118, 119, 120]. Similarly, other studies have shown that economic status, education, and weight during pregnancy may play an important role [121].

In the present study, there was no significant relationship between smoking and LBW. But smoking should be considered as a dangerous side effect for pregnant women. Some studies show that any type of smoking during pregnancy may lead to LBW, cognitive impairment, respiratory problems, birth defects, early delivery, and even infant death [122, 123, 124, 125].

The risk factors for gynecologic and obstetric care in the present study included interval of less than 2 years with the previous pregnancy, inadequate prenatal care, prematurity, LBW history, multiple sclerosis, abortion and vaginal bleeding. In a review article in developing countries, maternal age of 35–49 years, illiteracy, inadequate antenatal care, delayed conception, and being in the poorest socioeconomic stratum were among the risk factors for increasing LBW [126].

Another review article emphasized the role of inter-pregnancy interval and found that it has significant effect on the short intervals between pregnancies for outcomes: extremely preterm birth (< 6 month aOR: 1.58 [1.40, 1.78], 6–11 month aOR: 1.23 [1.03, 1.46], moderate preterm birth (<6 m aOR: 1.41 [1.20, 1.65], 6–11 month aOR: 1.09 [1.01, 1.18]), low birthweight (<6 month aOR: 1.44 [1.30, 1.61], 6–11 month aOR: 1.12 [1.08, 1.17]), stillbirth (aOR: 1.35 [1.07, 1.71] and early neonatal death (aOR: 1.29 [1.02, 1.64]) [127]. A review article in Ethiopia showed that maternal age <20 years (aOR = 1.7; 95% CI: 1.5–2.0), BMI <18.5 kg/m2 (aOR = 5.6; 95% CI: 1.7–9.4), pregnancy interval <24 months (aOR = 2.6; 95% CI: 1.4–4.2), and premature (aOR = 6.4; 95% CI: 2.5–10.3) are among LBW risk factors [128].

In the present study, the relationship between cesarean section and LBW was not significant. Some studies show that LBW is higher in women with CS delivery. However, this conclusion is controversial, while in other studies, the risk of LBW was not reported to be higher in CS delivery [129].

The medical risk factors in the present study were LBW, hypertension and preeclampsia. The association between LBW and preeclampsia has
been confirmed in other countries [130, 131, 132]. Other meta-analytical studies have shown the effect of anemia on LBW and Small for gestational age [133, 134]. It is recommended that attention be paid to thyroid disorders and LBW in future meta-analytical studies [135].

The strengths of this study: 1. We used a comprehensive search strategy to maximize the identification of all relevant literature. 2. Following the PRISMA protocol, we were able to provide the largest data on LBW in Iran to date. 3. We contacted the first author or the corresponding author to eliminate the ambiguity of the articles. 4. We used random effects model to integrate the data to provide a conservative estimate of the prevalence of LBW, and subgroup analysis and meta-regression model were performed to detect the cause of heterogeneity and to evaluate the publication bias. Limitations of the present study: 1. Search in national databases was limited due to limitations in combined search in these databases. 2. Studies on specific infants such as preterm infants, etc. or non-random sample sizes were excluded and the resulting

Figure 6. Relationship of low birth weight and diabetes mellitus (AND), hypertension (B), urinary tract infection (C), induced pregnancy hypertension (D) and preeclampsia (E).
estimate may be attributable to the general public. 3. In addition, there was a high heterogeneity between studies in the meta-analysis, and based on available data, we could attribute this difference to the provinces under study (P < 0.001), but there appears to be other causes, including differences in lifestyle, dietary habits, ethnicity (given that Iran has different ethnicities with different customs [136]) may also be effective, which could not be investigated using the available data.

5. Conclusion

The results of this meta-analysis showed that LBW is prevalent in Iran. Effective risk factors in LBW in Iranian population include low and high maternal age, low level of education, low maternal weight, occupation, inadequate prenatal care, short interval with previous pregnancy, prematurity, LBW history, multiple sclerosis, abortion, income, inequality and poverty, maternal smoking, maternal alcohol and drug use, and the relationship of maternal subclinical hypothyroidism during pregnancy and preterm birth: a systematic review and meta-analysis, Iran. J. Obst. Gynecol. Infertil. 19 (40) (2017) 69–78.

References

[1] T.M. Wardlaw, Low Birthweight: Country, Regional and Global Estimates, UNICEF and WHO Publications, 2004.
[2] J. Valero De Bernabe, T. Soriano, R. Albadejo, M. Juarranz, M.E. Calle, D. Martínez, et al., Risk factors for low birth weight: a review, Eur. J. Obstet. Gynecol. Reprod. Biol. 116 (2004) 3–15.
[3] L. Liu, S. Oza, D. Hogan, Y. Chu, J. Perin, J. Zhu, et al., Global, regional, and national causes of under-5 mortality in 2000–15: an updated systematic analysis with implications for the Sustainable Development Goals, Lancet 388 (10062) (2016) 3027–3035. Epub 2016 Nov 11.
[4] P. Karimi, I. Mahmoudi, M. Azami, G. Badfar, Mortality in Neonatal Intensive Care Units in Iran: A Systematic Review and Meta-Analysis, Iranian Journal of Neonatology 10 (3) (2019) 70–80.
[5] R.H. Dandekar, M. Shafee, S.P. Sinha, Prevalence and risk factors affecting low birth weight in a district hospital at Perambalur, Tamilnadu, Global J. Med. Publ. Health 3 (2) (2014) 18–20.
[6] S. Rahmati, M. Azami, G. Badfar, N. Parizad, K. Sayehmiri, The relationship between maternal anaemia during pregnancy with preterm birth: a systematic review and meta-analysis, J. Matern. Fetal Neonatal Med. 20 (2019) 11–11 [Epub ahead of print].
[7] A. Mansouri, S. Norouzi, A. Sharifir, M.H. Yektakoushal, M. Azami, The relationship of maternal subclinical hypothyroidism during pregnancy and preterm birth: a systematic review and meta-analysis of cohort studies, Iran. J. Obst. Gynecol. Infertil. 19 (40) (2017) 69–78.
[8] G. Badfar, M. Shohani, A. Mansouri, A. Soleymani, M. Azami, Vitamin D status in Iranian pregnant women and newborns: a systematic review and meta-analysis study, Expert. Rev. Endocrinol. Metab. 12 (5) (2017) 379–389.
[9] J. Katz, A.C. Lee, N. Kozuki, et al., Mortality risk in preterm and small-for-gestational-age infants in low-income and middle-income countries: a pooled country analysis, Lancet 382 (9896) (2013) 417–425.
[10] A. Le, J. Katz, H. Blencowe, et al., National and regional estimates of term and preterm babies born small for gestational age in 138 low-income and middle-income countries in 2010, Lancet Glob. Health 1 (1) (2013) e26–36.
[11] Jaima Gonzalez-Jimenez, Rocha-Buelvas Anderson, Risk factors associated with low birth weight in the American literature review, Rev. Fac. Med. 66 (2) (2018 June) 255–260 [Internet][cited 2019 Dec 15].
[12] M. Adilshoar, S. Pakseresht, M. Baghaee, A. Kazemzehad, Survey predictive factors of neonatal low birth weight in mothers referring to hospitals in Rast, Guilan Province, J. Sch. Nurs. Midwifery 15 (5) (2008) 33–38 [Persian].
[13] M. Azami, Z. Jaafari, S. Rahmati, A.D. Farahani, G. Badfar, Prevalence and risk factors of retinopathy of prematurity in Iran: a systematic review and meta-analysis, BMC. Ophthalmol. 19 (2019) 83.
[14] K.R. Rines, J.L. Vatten, J.L. Baker, et al., Birthweight and mortality in adulthood: a systematic review and meta-analysis, Int. J. Epidemiol. 40 (3) (2011) 647–661.
[15] F. Chiarotti, A.M. Castignani, M. Pupolo, F. Menniti-Ippolito, E. Minniti De Simeonibus, A. Di Paolo, [Effects of socio-environmental factors on neurocognitive performance in premature or low birth weight preschoolers], Ann. Ist. Super Sanita 37 (4) (2001) 553–559.
[16] X. Shan, F. Chen, W. Wang, J. Zhao, Y. Teng, M. Wu, et al., Secular trends of low birthweight and macrossomia and related maternal factors in Beijing, China: a longitudinal trend analysis, BMC Pregnancy Childbirth 14 (2014) 105.
[17] J.W. Rich-Edwards, M.J. Stampfer, J.E. Manson, B. Rosner, S.E. Hankinson, G.A. Colditz, et al., Birth weight and risk of cardiovascular disease in a cohort of women followed up since 1976, BMJ 315 (1997) 396–400.
[18] A. Mirahmadizadeh, A. Soleimanli, F. Moradi, E. Hesami, M. Karraein, H. Delam, Prevalence and risk factors of low birth weight in fars province, south of Iran, 2014, J. Health Sci. Survell. Sys. 5 (1) (2017) 2–6.
[19] M. Momeni, M. Danaei, A.J. Kermani, M. Bakhshandeh, S. Foroodnia, Z. Mahmoudabadi, et al., Prevalence and risk factors of low birth weight in the southeast of Iran, Int. J. Prev. Med. 8 (2017 Mar 7) 12.
[20] M. Golesan, S. Akhand Karbasi, R. Fallah, Prevalence and risk factors for low birth weight in Yazd, Iran, Singap. Med. J. 52 (10) (2011) 730–733.
[21] M. Rafiei, Prevalence of Low Birth Weight and Obesity and some concomitant factors in live offsprings in 2005 and compare with 2002 result’s in Arad Talleghani Hospital, Iran. J. Pediatr. 17 (1) (2007) 47–53.
[22] M. Delaram, A. Ahmad, Prevalence of low birth weight and its related factors in Shahre-kord, J. Reproduction Infertil. 9 (3) (2008) 263–270.
[23] Sh Shadi, Z. Mohammadzadeh, F. Mostafavi, A. Hassanazad, Prevalence of low birth weight and their relation with some of maternal risk factors in Isfahan, J. Guilan Univ. Med. Sci. 9 (33-34) (2000) 55–61.
[24] M. Zarbakht Bihari, S. Hoseinia, G. Afrozoo, H. Hooman, Prevalence of low birth weight and comparison of many biological characteristics of low birth weight – newborns, mothers with those of normal weight- newborns’ counterparts, J. Guilan Univ. Med. Sci. 21 (81) (2012) 37–44.
[25] K. Sayehmiri, M. Shohani, G. Kalvandi, R. Najafi, H. Tavan, Biochemicalparameters of rickets in Iranian children: a systematic review and meta-analysis, J. Res. Med. Sci. 24 (2019) 76.
[26] A. Khatony, S. Qavam, H. Tavan, A comparative study on the effect of iron supplement in preterm babies born small for gestational age in 138 low-income and middle-income countries in 2010, Lancet Glob. Health 1 (1) (2013) e26–36.
[27] W. Richardson, M.C. Wilson, J. Nishikawa, R.S. Hayward, The well-built clinical question: a key to evidence-based decisions, ACP J. Club 123 (1995).
B. Slaymaker, A. Shmida, S. Tsui, P. Metlay, S. Peters, J. Krapkowski, M. Muntz, et al., Clinical and occupational predictors of low birth weight in a historical series of deliveries in Campinas, Brazil, Rev. Assoc. Med. Bras. 55 (2009) 692–695.

F. Kadi, A. El-Kohen, M. Slaoui, Preeclampsia and cesarean section: a systematic review, Int. J. Gynecol. Obstet. 107 (Supplement) (2009).

A. Mohammadi, A. Aminzadeh, H. Ghasemi, H. Gorjian, N. Farzaneh, Maternal and perinatal outcomes among low birthweight infants in the Islamic Republic of Iran, J. Pediatr. Neonat. Nurs. 5 (3) (2017) 58–64.

B. Neufeld, J. Gaskins, A. Hatcher, et al., Two million at risk of prematurity, low birth weight and preterm delivery: assessment using state birth registry data, J. Occup. Environ. Med. 50 (2008) 306–315.

S. Mathur, M. Duggal, N. Arora, P. Garg, S. Alizadeh, G. Gomis, et al., Maternal risk factors for low birth weight, Iran. J. Health Sci. 5 (3) (2017) 55–60.

C. Rana, M. Sultana, A.R. Sarker, Distribution and determinants of low birth weight in developing countries, J. Prev. Med. Publ. Health 50 (1) (2017) 18–34.

J. West, C. Granja, E. Espinosa, et al., Maternal smoking, substance use, and the risk of preterm birth: findings from the longitudinal Health and Pregnancy in the Western Cape (HPWC) Study, S. Afr. Med. J. 109 (2019) e139-e144.

J.L. Li, H. Wang, J. Zhou, J. Zhou, et al., Maternal education and birth weight: a meta-analysis, J. Matern. Fetal Neonatal Med. (2019) 1–12.

C.A. Snijder, T. Brand, V. Jaddoe, A. Hofman, J.P. Mackenbach, E.A. Steegers, A. Burdorf, Physically demanding work, fetal growth and the risk of adverse birth outcomes: The Generation R Study, Occup. Environ. Med. 69 (8) (2012 Aug) 543–550. Epub 2012 Jun 27.

A. Nguira, C.C. Stanley, Determinants of low birth weight in Malawi: bayesian geo-additive modelling, PloS One 10 (2015), e0130057.

A. Qadri, F. Shaikh, H. Abid, M. Ansar, et al., Maternal smoking and low birth weight and preterm delivery, Matern. Child Health J. 15 (2011) 453–459.

A. Chiodo, P. Bover, F. Paccaud, Association between maternal smoking and low birth weight in Switzerland: the EDEN study, Swiss Med. Wkly. 135 (2005) 525–530.

J.T. Nigg, N. Breslau, Prenatal smoking exposure, low birth weight, and disruptive behavior disorders, J. Am. Acad. Child Adolesc. Psychiatry 46 (2007) 362–369.

R.A. Mahumud, M. Sultana, A.R. Sarker, Distribution and determinants of low birth weight in developing countries, J. Prev. Med. Publ. Health 50 (1) (2017) 18–34.

A.1 Wendt, C.M. Gibbs, S. Peters, C.J. Hogue, Impact of increasing inter-pregnancy interval on maternal and infant health, Paediatr. Perinat. Epidemiol. 26 (Suppl 1) (2012 Jul) 239–258.

A. Endalawneh, E.H. Engeda, D.T. Ekbabgewargies, G.M. Belay, M.A. Tekera, Low birth weight and its associated factors in Ethiopia: a systematic review and meta-analysis, Ital. J. Pediatr. 44 (1) (2018 Nov 26) 141.

N. Auger, F. Roncorolo, S. Harper, Increasing educational inequality in preterm birth in Quebec, Canada, 1981_2006, J. Epidemiol. Community Health 65 (2010) 1091–1096.

M.O. Cruz, W. Gao, J.U. Hibbard, Obstetrical and perinatal outcomes among women with gestational hypertension, mild preeclampsia, and mild chronic hypertension, Am. J. Obstet. Gynecol. 215 (2016) e1–e9, 260.

C.D. Johnson, S. Jones, S. Paranjothy, Low Birth Weight: Review of Risk Factors and Interventions, Cardiff: Public Health Wales, 2014.

Y.S. Khader, A. Batieha, R.A. Al-Njadat, K. Sayehmiri, Maternal Anemia during pregnancy and infant low birth weight: a systematic review and meta-analysis, J. Matern. Fetal Neonatal Med. (2017) 1–7, the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet.

S. Rahmati, A. Delipsie, M. Azami, M.R. Hafezi Ahmad, K. Sayehmiri, Maternal Anemia during pregnancy and infant low birth weight: a systematic review and Meta-analysis, J. Matern. Fetal Neonatal Med. (2018) 1–12 [Epub ahead of print].

G. Badfar, M. Shoiani, A. Soleymani, M. Azami, Maternal anemia during pregnancy and small for gestational age: a systematic review and meta-analysis, J. Matern. Fetal Neonatal Med. (2018 Jan 10) 1–7 [Epub ahead of print].

M. Parizad Nasirkandy, G. Badfar, M. Shoiani, et al., The relation of maternal hypothyroidism and hypothyroxinemia during pregnancy on preterm birth: an updated systematic review and meta-analysis, Int. J. Reprod. Biomed. (Yazd). 15 (9) (2017) 543–552.

M. Azami, M. Moslemirad, M.H. Yektakoshaali, S. Rahmati, A.S. Soleymani, M.B. Bigdeli Shamloo, et al., Workplace violence against Iranian nurses: a systematic review and meta-analysis, Violence Vict. 33 (6) (2018) 1148–1175.