Population-level risks of alcohol consumption by amount, geography, age, sex, and year: a systematic analysis for the Global Burden of Disease Study 2020

GBD 2020 Alcohol Collaborators*

Summary

Background The health risks associated with moderate alcohol consumption continue to be debated. Small amounts of alcohol might lower the risk of some health outcomes but increase the risk of others, suggesting that the overall risk depends, in part, on background disease rates, which vary by region, age, sex, and year.

Methods For this analysis, we constructed burden-weighted dose–response relative risk curves across 22 health outcomes to estimate the theoretical minimum risk exposure level (TMREL) and non-drinker equivalence (NDE), the consumption level at which the health risk is equivalent to that of a non-drinker, using disease rates from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2020 for 21 regions, including 204 countries and territories, by 5-year age group, sex, and year for individuals aged 15–95 years and older from 1990 to 2020. Based on the NDE, we quantified the population consuming harmful amounts of alcohol.

Findings The burden-weighted relative risk curves for alcohol use varied by region and age. Among individuals aged 15–39 years in 2020, the TMREL varied between 0 (95% uncertainty interval 0–0) and 0·603 (0·400–1·00) standard drinks per day, and the NDE varied between 0·002 (0–0) and 1·75 (0·698–4·30) standard drinks per day. Among individuals aged 40 years and older, the burden-weighted relative risk curve was J-shaped for all regions, with a 2020 TMREL that ranged from 0·114 (0–0·403) to 1·87 (0·500–3·30) standard drinks per day and an NDE that ranged between 0·193 (0·0–0·900) and 6·94 (3·40–8·30) standard drinks per day. Among individuals consuming harmful amounts of alcohol in 2020, 59·1% (54·3–65·4) were aged 15–39 years and 76·9% (73·0–81·3) were male.

Interpretation There is strong evidence to support recommendations on alcohol consumption varying by age and location. Stronger interventions, particularly those tailored towards younger individuals, are needed to reduce the substantial global health loss attributable to alcohol.

Funding Bill & Melinda Gates Foundation.

Introduction Alcohol use accounted for 1·78 million (95% uncertainty interval [UI] 1·39–2·27) deaths in 2020 and was the leading risk factor for mortality among males aged 15–49 years (Bryazka D, unpublished). The relationship between moderate alcohol use and health is complex, as shown in multiple previous studies.1–6 Alcohol consumption at any level is associated with health loss from several diseases, including liver cirrhosis, breast cancer, and tuberculosis, as well as injuries.7–10 At the same time, some studies have found that consumption of small amounts of alcohol lowers the risk of cardiovascular diseases and type 2 diabetes.11–13 As a corollary, the amount of alcohol that minimises health loss is likely to depend on the distribution of underlying causes of disease burden in a given population. Since this distribution varies widely by geography, age, sex, and time, the level of alcohol consumption associated with the lowest risk to health would depend on the age structure and disease composition of that population.14–16 Two quantities are crucially relevant when formulating effective, evidence-based guidelines and alcohol-control policies: the theoretical minimum risk exposure level (TMREL), which represents the level of consumption that minimises health loss from alcohol for a population, and the non-drinker equivalence (NDE) level, which measures the level of alcohol consumption at which the risk of health loss for a drinker is equivalent to that of a non-drinker. The majority of studies to date consider one or a small subset of health outcomes associated with alcohol consumption at a time, although several broader systematic meta-analyses have been done.1,4,17–19 Findings from these studies vary in their estimates of the TMREL. Several studies have found evidence of a J-shaped relationship between alcohol use and all-cause mortality.1,6,8 However, others have reported that the all-cause or attributable cause burden weighted TMREL of alcohol is zero standard drinks per day.11–13 Uncertainty about the effect of alcohol on all-cause health loss results from differences in the relative disease composition between studies, conflicting studies on individual health
Research in context

Evidence before this study
The risks of moderate alcohol use on health outcomes have been widely studied and debated for many years. Studies have considered the health impacts associated with alcohol consumption through a variety of approaches, ranging from exploring the effects on a single disease, to considering multiple health outcomes, to using all-cause mortality as an outcome. Several systematic reviews have also been published on this topic, and in recent years several publications have used Mendelian randomisation to explore the association between alcohol use and health outcomes. Overall, the findings have varied, which partly contributes to this topic being controversial and a subject of debate. Several studies have found evidence of a j-shaped relationship between alcohol use and all-cause mortality or burden; in other words, at low levels of consumption, alcohol lowers the risk of all-cause mortality, whereas above some threshold it increases the risk. However, other studies, including a publication by the GBD 2016 Alcohol Collaborators in The Lancet in 2018, have reported that the level of alcohol consumption that minimises health loss is zero standard drinks per day. The apparent contradiction in findings across existing studies highlights the significance of continuing to study this topic and updating the evidence base as more information becomes available. Importantly, few previous studies analysing the effects of alcohol consumption on all-cause mortality have considered how the relationship between alcohol use and health is contingent on background rates of disease. We did a systematic review of the literature in which we searched PubMed and previous published meta-analyses using search terms such as “alcohol” and “drinking behavior”, terms concerning study outcomes such as “risk”, “odds ratio”, and “hazard ratio”, and terms concerning the specific causes included in the study, such as “ischemic heart disease” or “tuberculosis”. We searched for studies published up to Dec 31, 2019; the search was limited to English language publications.

Added value of this study
In this systematic analysis for the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2020, we estimated levels of alcohol consumption that minimise health loss using updated systematic reviews and meta-regressions, building on results from GBD 2016 and incorporating region-specific background rates of diseases and injuries within our assessment. To the best of our knowledge, this is the first study to consider the implications of background rates of disease on levels of alcohol consumption that minimise health loss. We updated the previously published systematic review and meta-regressions to consider all published studies through to December, 2019, reporting on the association between alcohol and the six alcohol-attributable health outcomes accounting for the highest number of global disability-adjusted life-years. We found insufficient evidence for an association between alcohol use and one of these outcomes and subsequently omitted it from further analysis. This analysis has yielded updated relationships on the relative risk of mortality for five causes, at various levels of alcohol consumption, which we combined with relative risk estimates from GBD 2016 for an additional 17 outcomes. We used this information, along with information on the burden of disease from these 22 diseases and injuries, to estimate the level of alcohol consumption that minimises health loss separately for each age group, sex, year, and region. In addition to estimating the level of consumption that is associated with minimising health loss, known as the theoretical minimum risk exposure level (TMREL), we also estimated the level of alcohol consumption at which the risk to health for a drinker is equivalent to that of a non-drinker—a quantity we refer to as the non-drinker equivalence.

Implications of all the available evidence
Our results are consistent with previous findings at the global level, and at the same time the more nuanced analysis done in this study strongly suggests that statements, guidelines, and recommendations on the optimal level of alcohol consumption need to take into consideration the background rates of diseases and injuries for each population. We provide clear evidence that the level of alcohol consumption that minimises health loss varies significantly across populations and remains zero or very close to zero for several population groups, particularly young adults. At the same time, small amounts of alcohol consumption are associated with improved health outcomes in populations that predominantly face a high burden of cardiovascular diseases, particularly older adults in many world regions. Given these findings, we recommend a modification of existing policy guidelines to focus on emphasising differential optimal consumption levels by age, rather than the current practice of recommending different consumption levels by sex. This study highlights the importance of prioritising interventions targeted at minimising alcohol consumption among young adults.

outcomes, differences in study covariates and methods, estimation of drinking patterns, as well as issues relating to selection bias.22,23 Importantly, no study to date has examined the variation in the theoretical minimum risk of alcohol consumption by geography, age, sex, and time, conditioned on background rates of disease. National dietary guidelines on low-risk drinking, such as those in the USA, UK, France, and Australia, base recommendations on studies of the risk of alcohol use on all-cause mortality and some cause-specific outcomes.24-27 This complicates interpretation of the risk of alcohol use on mortality, given three aspects of all-cause mortality. First, causal pathways between alcohol use and cause-specific outcomes can differ, creating multiple confounding structures that are not readily adjustable when embedded within models analysing the effects of alcohol use on all-cause mortality.28 Second, all-cause mortality includes non-causally related outcomes, further increasing the threat to internal validity for evidence produced from analysing the effects of alcohol
use on all-cause mortality. Third, and most importantly for the present study, the composition of causes within all-cause mortality can differ substantially between populations, changing the proportional risk of mortality due to alcohol use across these populations. In tandem, these features limit the applicability of determining minimum risk exposures on the basis of observational data on alcohol use and all-cause mortality. In this study, we used the distribution of causes of disability-adjusted life-years (DALYs) in each population, along with alcohol consumption patterns from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2020, to estimate the TMREL and NDE for each region, age group, sex, and year from 1990 to 2020. Using these estimates, we quantified the proportion of the population consuming alcohol in amounts exceeding these thresholds by location, age, sex, and year, serving as a guide for targeting alcohol control efforts. This manuscript was produced as part of the GBD Collaborator Network and in accordance with the GBD Protocol.

Methods

Overview

GBD is the most comprehensive effort to date to understand the changing health challenges around the world. In the most recent revision, GBD 2020, estimates were produced for the mortality and health burden from 287 causes of death, 370 diseases and injuries, and 88 risk factors in 204 countries and territories by 5-year age groups and sex and from 1990 to 2020. As part of GBD 2020, we estimated the TMREL and NDE of alcohol consumption for 21 regions by 5-year age group, sex, and year for individuals aged 15–95 years and older from 1990 to 2020 (Bryazka D, unpublished). Using the comparative risk assessment framework, we also quantified the risk exposure within all-cause mortality. Third, and most importantly for the present study, the composition of causes within all-cause mortality can differ substantially between populations, changing the proportional risk of mortality due to alcohol use across these populations. In tandem, these features limit the applicability of determining minimum risk exposures on the basis of observational data on alcohol use and all-cause mortality.

Estimating dose–response relative risks

As part of GBD, a previous systematic literature review and meta-analysis was published in 2018 that included 592 cohort and case-control studies across 23 outcomes associated with alcohol use. These outcomes included ischaemic stroke, intracerebral haemorrhage, ischaemic heart disease, hypertensive heart disease, atrial fibrillation and flutter, lip and oral cavity cancer, nasopharynx cancer, other pharynx cancer, oesophageal cancer, larynx cancer, colon and rectum cancer, breast cancer, liver cancer, type 2 diabetes, cirrhosis and other chronic diseases of the liver, pancreatitis, idiopathic epilepsy, tuberculosis, lower respiratory infection, transport injuries, unintentional injuries, self-harm, and interpersonal violence. As part of this previous meta-analysis, dose–response relative risk curves for each of these outcomes were estimated through use of a Bayesian meta-regression tool, DisMod ODE.

For GBD 2020, we updated this review for the six alcohol-attributable outcomes that accounted for the greatest number of global DALYs: ischaemic heart disease, ischaemic stroke, intracerebral haemorrhage, type 2 diabetes, tuberculosis, and lower respiratory infection. Through the update, we included 71 additional studies. After evaluating all available evidence, we found insufficient evidence for a relationship between alcohol use and lower respiratory infection. Based on these results, we removed this as a risk–outcome pair for GBD 2020 and from this analysis, resulting in 22 remaining relative risk curves. Further details of the systematic review, including search strings, inclusion criteria, Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagrams, and relative risk curves are provided in appendix 1 (pp 18–47).

Using the updated data for these five outcomes, we revised the relative risk curves associated with each outcome using the meta-regression Bayesian, regularised, trimmed (MR-BRT) meta-regression tool. MR-BRT is a tool that is well suited to the complex task of estimating the dose–response risk association between alcohol and health because it does not enforce a log-linear functional form, instead parameterising the log relative risk as a B-spline (Zheng P, Institute for Health Metrics and Evaluation, personal communication). It uses an ensemble approach for knot selection of splines based on level of exposure, and incorporates unexplained between-study heterogeneity into the uncertainty of the relative risk estimates. To adjust for aspects of study design that contribute to bias in relative risks, we included covariates for study reference group, adjustment for sick quitter bias, sex, age, population representativeness, outcome reporting method, exposure measurement timing, geographical representativeness, outcome measure (incidence versus mortality), and adjustment for confounders in risk estimation. The MR-BRT tool uses a generalised Lasso approach to select the most relevant bias covariates to adjust for in the final model. A full list of the confounders tested and included in each of these five models is summarised on in appendix 1 (p 15). Consistent with the previous systematic review, we utilised a reference group of non-drinkers. We estimated parameter uncertainty using 1000 draws from the posterior distribution, sampled at 1 g intervals of pure alcohol consumption between 0 g and 100 g per day. Further details of the meta-regression approach are available in appendix 1 (pp 14–16).

Estimating TMREL and NDE

The TMREL and NDE are based on aggregate, burden-weighted relative risk curves across health outcomes associated with alcohol use. Burden was quantified with...
DALY rates for each region, age, sex, and year obtained from GBD 2020 (Bryazka D, unpublished). DALYs are the sum of years of life lost (capturing the effect of premature mortality) and years lived with disability (capturing the effect of morbidity). For each region, age, sex, and year, we produced all-attributable cause relative risk curves as a weighted average of cause-specific relative risk curves, with weights based on the share of the overall DALY rates from each cause. The step-by-step process and formula for computing the weighted all-attributable cause curves are provided in appendix 1 (p 16). Using these estimates, we computed the TMREL and NDE by region, age, sex, and year. Uncertainty in the relative risk curve, based on 1000 draws of each cause-specific relative risk curve and 1000 draws of DALY rates used for weighting, was propagated to the estimates of TMREL and NDE. All estimates are presented to three significant figures. An example of a weighted all-attributable cause alcohol relative risk curve, for all 22 alcohol associated causes combined, is shown in figure 1.

Since alcohol use contributes to the DALY rates that are used as weighting factors when constructing the TMREL and NDE, we did a sensitivity analysis that utilised risk-deleted DALY rates as alternative weights. We generated risk-deleted DALY rates by multiplying the DALY rate of each cause by the complement of the cause-specific population-attributable fraction due to alcohol (Bryazka D, unpublished). Additionally, our weighted attributable-cause relative risk curves were based on only 22 of 24 health outcomes since no relative risk curves could be computed for alcohol use disorder or alcoholic cardiomyopathy due to the paucity of studies on dose-response relative risks. To assess whether inclusion of these two outcomes could potentially affect the TMREL and NDE levels, we did a second sensitivity analysis in which we generated conservative hypothetical relative risk functions for alcohol use disorder and alcoholic cardiomyopathy and re-computed TMREL and NDE levels that reflect all 24 alcohol-associated outcomes. Additional details of the sensitivity analyses are presented in the appendix (p 17).

Estimating prevalence of alcohol use and alcohol consumption

To estimate the proportion of the population consuming alcohol in excess of the NDE, estimates of alcohol consumption in units of grams of pure ethanol consumed per day, on average, by current drinkers for 204 countries and territories, by age, sex, and year, were obtained from GBD 2020 (Bryazka D, unpublished). Briefly, this process combines supply-side data, household survey data, and administrative data, which allows us to adjust for underreporting due to self-report bias in surveys, account for unrecorded alcohol consumption, and adjust for consumption among tourists. Current drinkers were defined as individuals who had consumed at least one standard drink in the past 12 months. To facilitate interpretation, we report estimates in terms of standard drinks per day, where one standard drink is defined as 10 g of pure ethanol, consistent with previous GBD publications (Bryazka D, unpublished). Further details on estimation of the prevalence of alcohol use and alcohol consumption have been published previously.

Role of the funding source

The funder of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report.

Results

The distribution of DALYs arising from outcomes associated with alcohol by GBD super-region, age, and sex for 2020 are shown in figure 2. The TMREL and NDE by region, age, and sex for 2020 are shown in figure 3. Overall, we found that the TMREL remained low regardless of geography, age, sex, or time, varying between 0 (95% UI 0–0) and 1·87 (0·500–3·30) standard drinks per day. As a result of the differences in the cause distributions across world regions, both the TMREL and NDE varied by region. The TMREL and NDE did not vary significantly by sex or year. There was significant variation in the TMREL and the NDE across ages, with
younger age groups having much lower TMREL and NDE levels than older adults. In 2020, the TMREL varied between 0 (0–0) and 0·603 (0·400–1·00) standard drinks per day among individuals aged 15–39 years and between 0·114 (0–0·403) and 1·87 (0·500–3·30) standard drinks per day among individuals aged 40 years and older. The NDE varied between 0·002 (0–0) and 1·75 (0·698–4·30) standard drinks per day among individuals aged 15–39 years and between 0·193 (0–0·900) and 6·94 (3·40–8·30) standard drinks per day among individuals aged 40 years and older. This result was mainly driven by differences in the major causes of death and disease burden across ages, as seen in figure 2. Overall, we did not observe any significant differences in the TMREL

Figure 2: Relative proportions of DALYs for causes associated with alcohol use, by GBD super-region, age group, and sex, in 2020
The proportions represent the weights associated with each cause-specific relative risk curve when constructing each all-cause relative risk curve. The green shades signify causes with a lower risk at low levels of consumption, compared to no consumption. The red and purple shades signify causes with an entirely harmful effect at all levels of consumption. The black line separates causes for which moderate alcohol use lowers risk from causes with an entirely harmful effect. Diabetes includes only type 2 diabetes. Cancers include lip and oral cavity cancer, nasopharynx cancer, other pharynx cancer, oesophageal cancer, larynx cancer, colon and rectum cancer, breast cancer, and liver cancer. Cirrhosis includes cirrhosis and other chronic diseases of the liver. Infectious disease includes tuberculosis. Injuries includes transport injuries, unintentional injuries, self-harm, and interpersonal violence. Other causes include pancreatitis, idiopathic epilepsy, hypertensive heart disease, and atrial fibrillation and flutter. DALY=disability-adjusted life-year.
One standard drink is equivalent to 10 g of pure ethanol.

Mean theoretical minimum risk exposure levels (Δ) and non-drinker equivalence levels (B), in units of standard drinks per day, by region, age group, and sex, in 2020:

Region	Age group (years)	Females	Males
North Africa and Middle East	0·1 – 0·9	0·1	0·0
South Asia	0·2	0·2	0·2
Central Europe	0·3	0·3	0·3
Eastern Europe	0·4	0·4	0·4
Australia	0·5	0·5	0·5
High-income Asia Pacific	0·6	0·6	0·6
Southern Latin America	0·7	0·7	0·7
Western Europe	0·8	0·8	0·8
Andean Latin America	0·9	0·9	0·9
Central Latin America	1·0	1·0	1·0
Tropical Latin America	1·1	1·1	1·1
North Africa and Middle East	1·2	1·2	1·2
South Asia	1·3	1·3	1·3
East Asia	1·4	1·4	1·4
Southeast Asia	1·5	1·5	1·5
Central sub-Saharan Africa	1·6	1·6	1·6
Eastern sub-Saharan Africa	1·7	1·7	1·7
Southern Latin America	1·8	1·8	1·8
Western sub-Saharan Africa	1·9	1·9	1·9

Figure 3: Mean theoretical minimum risk exposure levels (A) and non-drinker equivalence levels (B), in units of standard drinks per day, by region, age group, and sex, in 2020.

One standard drink is equivalent to 10 g of pure ethanol.

and NDE between males and females in any age group. In all super-regions, among individuals aged 15–39 years, injuries accounted for the majority of alcohol-related DALYs in 2020. Globally, in this age range, all injuries accounted for 66·3% (95% UI 65·1–67·5) of alcohol-related DALYs for males and 47·9% (46·0–49·8) of alcohol-related DALYs for females; transport injuries comprised 25·9% (25·0–27·0) of alcohol-related DALYs in 2020. Globally, in this age range, all injuries accounted for 66·3% (95% UI 65·1–67·5) of alcohol-related DALYs among males and 12·7% (12·0–13·4) among females, self-harm comprised 11·7% (10·1–13·3) of alcohol-related DALYs among males and 12·3% (10·8–13·8) among females, and interpersonal violence comprised 12·4% (11·8–13·0) of alcohol-related DALYs among males and 6·70% (5·90–7·69) among females. The TMREL among males aged 15–39 years in 2020 was 0·136 (0–0·400) standard drinks per day. Among females aged 15–39 years in 2020, the TMREL was 0·273 (0–0·500) standard drinks per day. The NDE was 0·249 (0–1·00) standard drinks per day among males and 0·546 (0–1·30) standard drinks per day among females. The
differences in the TMREL and the NDE between females and males were not statistically significant.

In individuals aged 40–64 years, the health outcomes contributing to the alcohol-related burden shifted to chronic health conditions, including cardiovascular disease and cancer. In this population, ischaemic heart disease comprised 24·1% (95% UI 23·0–25·3) of alcohol-related DALYs among males and 19·5% (18·0–21·0) among females, and intracerebral haemorrhage comprised 10·3% (9·6–10·9) of alcohol-related DALYs among males and 11·7% (10·7–12·8) among females, whereas injuries, such as transport or unintentional injuries, remained significant sources of burden, comprising 23·0% (21·7–24·4) of alcohol-related DALYs among males and 16·7% (15·3–18·3) of alcohol-related DALYs among females. Health outcomes for which moderate alcohol use is associated with a lower risk constituted an increasing portion of the cause distribution in this age group, resulting in a higher TMREL and NDE than in individuals aged 15–39 years. The global TMREL among individuals aged 40–64 years in 2020 was 0·527 (0·400–1·00) standard drinks per day among males and 0·562 (0·400–0·800) standard drinks per day among females. The global NDE in 2020 was 1·69 (0·800–3·20) standard drinks per day among males and 1·82 (1·00–3·10) standard drinks per day among females. As in the younger age group, the differences in the TMREL and the NDE between females and males aged 40–64 years were not statistically significant.

Among individuals aged 65 years and older, the major causes of disease burden were cardiovascular diseases. In 2020, ischaemic heart disease was responsible for 31·5% (95% UI 30·3–32·7) of all alcohol-related DALYs among males and 29·7% (28·2–31·2) among females, and intracerebral haemorrhage was responsible for 31·5% (95% UI 30·3–32·7) of all alcohol-related DALYs among males and 29·7% (28·2–31·2) among females, resulting in a higher TMREL and NDE than in individuals aged 15–39 years. The global TMREL for this age group was 0·876 (0·500–2·00) standard drinks per day in north Africa and the Middle East and 0·596 (0·300–2·00) standard drinks per day in central sub-Saharan Africa. The NDEs also varied, with an NDE of 3·89 (1·50–5·90) standard drinks per day in north Africa and the Middle East and 1·53 (0·600–4·70) standard drinks per day in central sub-Saharan Africa. The TMRELs and NDEs for each region by age and sex for 1990, 2000, 2010, and 2020 are shown in appendix 2 (pp 3–31).

The distribution of the major causes of DALYs varied slightly between sexes, with injuries making up a larger share of distributions for males than for females. This resulted in mean TMRELs and NDEs that were larger among males compared to females of the same region, age, and year. When taking uncertainty into account, these differences were not significant. However, a larger proportion of males compared to females consume alcohol, and their average level of consumption is also significantly higher. As a result, young males stood out as the group with the highest level of harmful alcohol consumption (figure 4).

Globally, 1·03 billion (95% UI 0·851–1·19) males (35·1% [29·1–40·7] of the male population aged ≥15 years) and 312 million (199–432) females (10·5% [6·7–14·6] of the female population aged ≥15 years) consumed alcohol in amounts exceeding the NDE in 2020; the number and proportion of people consuming alcohol in excess of the NDE, along with the percentage change since 1990 in the proportion of people consuming alcohol in excess of the NDE, by age group, sex, and location is reported in table 1. Since 1990, the global proportion of drinkers consuming alcohol in excess of the NDE has not changed significantly. Although the proportion of the population consuming harmful amounts of alcohol stayed at the same level over the past three decades, the number of people consuming harmful amounts of alcohol increased from 983 million (718–1190) in 1990 to 1·34 billion (1·06–1·62) in 2020, driven by population growth. Overall, among individuals consuming harmful amounts of alcohol in 2020, 76·9% (73·0–81·3) were male. Harmful consumption was predominantly concentrated among individuals aged 15–39 years, who had the lowest TMRELs and NDEs (figure 4). Of the 1·34 billion (95% UI 1·06–1·62) individuals consuming alcohol in excess of the NDE in 2020, 59·1% (54·3–65·4) were aged 15–39 years. Of these, 75·5% (70·3–80·7) were male (595 million [489–658]), Australasia (83·2% [71·1–86·9]), western Europe (79·3% [67·1–84·5]), and central Europe (78·3% [68·1–83·5]) had the highest percentages of males aged 15–39 years consuming harmful amounts of alcohol (table 1). Among females in the same age group,
Table 1

Age Group	Number (thousands)	Proportion of Population (%)	Percentage change since 1990 (%)	Number (thousands)	Proportion of Population (%)	Percentage change since 1990 (%)
Global						
15–39 years	195,000	33%	-4.0%	595,000	39%	-4.62%
40–64 years	98,600	22.5%	-4.22%	274,000	34%	-2.55%
≥65 years	18,400	4.49%	-0.63%	69,900	20%	-3.19%
Central Asia						
15–39 years	2200	11.9%	-2.93%	8420	44.5%	-1.11%
40–64 years	824	4.52%	-0.48%	3740	32.2%	-2.39%
≥65 years	27	0.84%	-0.94%	263	12.0%	-4.22%
Armenia						
15–39 years	648	11.8%	-1.76%	890	41.0%	0.163%
40–64 years	675	30.8%	-2.16%	502	33.3%	2.46%
≥65 years	2	0.32%	-0.19%	45	16.8%	1.92%
Azerbaijan						
15–39 years	191	9.19%	-1.6%	890	41.0%	0.163%
40–64 years	77	4.75%	-0.91%	502	33.3%	2.46%
≥65 years	2	0.32%	-0.19%	45	16.8%	1.92%
Georgia						
15–39 years	131	23.6%	-2.46%	427	71.9%	1.18%
40–64 years	375	8.64%	-2.61%	357	33.3%	2.46%
≥65 years	1	0.32%	-0.19%	24	17.2%	8.12%
Kazakhstan						
15–39 years	931	26.9%	-5.14%	1910	55.6%	-4.33%
40–64 years	386	14.4%	-3.39%	871	36.5%	-2.92%
≥65 years	16	1.91%	-0.95%	68	13.9%	-3.78%
Kyrgyzstan						
15–39 years	139	10.4%	-2.00%	529	39.0%	-1.29%
40–64 years	51	6.8%	-1.05%	221	31.2%	1.90%
≥65 years	8	0.8%	-0.78%	12	9.82%	-0.20%
Mongolia						
15–39 years	157	25.0%	-5.71%	350	55.1%	7.58%
40–64 years	62	14.4%	-0.78%	163	41.9%	21.2%
≥65 years	1	0.8%	-0.80%	8	8.92%	12.0%

Table 1 continues on next page
Country	Age Group 1	Age Group 2	Age Group 3	Proportion of population (%)	Percentage change since 1990 (%)	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)					
Tajikistan	15–39 years	28.8	1.42%	-0.182%	-0.0845 to 0.466	0.137 (0.017/0.036)	0.0214%	-0.133%	-0.0614 to 0.0600	3.75 (2.25 to 6.18)	1.54%	-0.259%	-0.128 to 0.187
Turkmenistan	15–39 years	123	12.7%	2.66%	-2.8 to 7.36	533	4.83%	17%	23.4%	17.6%	5.39%	19.0%	5.56 to 3.47
Uzbekistan	15–39 years	426	6.20%	-0.235%	-3.48 to 2.46	2970	42.4%	37.7%	70.6%	33.4%	-0.720%	-28.5%	5.87
Albania	15–39 years	112	24.3%	-0.178%	-9.18 to 6.39	289	57.0%	56.9%	46.9%	60.6%	-0.60%	-56.7%	13.6
Bosnia and Herzegovina	15–39 years	125	62.6%	3.91%	1.61 to 7.14	357	65.1%	56.8%	70.5%	70.6%	-1.26%	-12.6%	27.5
Bulgaria	15–39 years	488	52.1%	3.64%	-2.8 to 12.2	798	79.9%	20.7%	70.2%	70.7%	-0.45%	-28.5%	4.93
Croatia	15–39 years	315	50.8%	-0.297%	-8.93 to 8.88	513	79.3%	1.08%	69.7%	70.8%	3.76%	-15.7%	5.60
	40–64 years	183	24.5%	1.78%	-5.68 to 9.38	401	55.0%	4.94%	64.7%	64.8%	5.45%	-14.7%	4.54

(Continued from previous page)
Country	15–39 years	40–64 years	≥65 years
Montenegro	33.9	17.1	1.2%
North Macedonia	3.5%	3.6%	3.0%
Poland	3.3%	2.9%	3.3%
Romania	1.3%	2.6%	1.1%
Serbia	2.8%	2.1%	1.9%
Slovakia	1.5%	3.2%	1.7%

(Continued from previous page)
(Continued from previous page)

Country	Females	Males					
	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)	
	(≥65 years)	(40–64 years)	(15–39 years)	(≥65 years)	(40–64 years)	(15–39 years)	
Eastern Europe							
Slovenia							
15–39 years	151	54.0%	(17.7 to 78.7)	-5.6%	12.3	-3.3%	(78.7 to 18.1)
40–64 years	68.3	18.6%	(6.37 to 39.6)	-5.52%	14.0	-3.07%	(39.6 to 14.0)
≥65 years	7.75	2.35%	(0.104 to 8.41)	-2.20%	1.92	-1.3%	(8.41 to 1.92)
Belarus							
15–39 years	190	61.8%	(40.7 to 77.2)	-2.37%	12.0	-1.7%	(77.2 to 12.0)
40–64 years	55.6	30.9%	(19.9 to 47.4)	3.69%	9.27	0.2%	(47.4 to 9.27)
≥65 years	3.22	3.27%	(1.07 to 10.7)	-1.79%	1.90	-0.79%	(10.7 to 1.90)
Estonia							
15–39 years	137	71.3%	(50.9 to 84.5)	-1.86%	12.2	-1.02%	(84.5 to 12.2)
40–64 years	79.9	35.9%	(24.8 to 53.4)	11.9%	9.27	0.9%	(53.4 to 9.27)
≥65 years	4.75	2.74%	(0.720 to 10.2)	1.68%	1.90	0.68%	(10.2 to 1.90)
Latvia							
15–39 years	179	68.6%	(48.4 to 79.1)	-4.22%	12.2	-3.5%	(79.1 to 12.2)
40–64 years	122	35.5%	(24.6 to 50.8)	12.7%	9.27	1.7%	(50.8 to 9.27)
≥65 years	9.25	3.54%	(1.31 to 11.3)	2.51%	3.27	0.51%	(11.3 to 3.27)
Lithuania							
15–39 years	296	73.8%	(50.0 to 88.4)	-2.41%	12.8	-1.3%	(88.4 to 12.8)
40–64 years	173	33.4%	(21.8 to 51.5)	8.67%	12.7	0.8%	(51.5 to 12.7)
≥65 years	12.3	3.35%	(1.05 to 12.1)	1.79%	1.90	0.17%	(12.1 to 1.90)
Moldova							
15–39 years	366	58.9%	(41.7 to 71.9)	-1.16%	13.8	-0.9%	(71.9 to 13.8)
40–64 years	211	31.1%	(21.6 to 44.6)	0.328%	7.13	0.2%	(44.6 to 7.13)
≥65 years	13.0	3.93%	(1.35 to 12.1)	-1.29%	4.53	-0.49%	(12.1 to 4.53)

(Continued on next page)
	Females		Males			
	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)
(Continued from previous page) Russia						
15–39 years	12,400 (8350 to 15,600)	53.1% (35.7 to 66.8)	-5.67% (-16.6 to 5.08)	17,100 (14,700 to 18,400)	71.6% (61.7 to 77.4)	-2.71% (-8.47 to 2.07)
40–64 years	6,720 (4,460 to 10,500)	25.0% (16.6 to 39.0)	2.57% (-3.44 to 8.74)	11,900 (9,490 to 15,100)	52.0% (41.5 to 66.2)	3.08% (-3.45 to 10.7)
≥65 years	2,430 (578 to 875)	1.64% (0.39 to 5.91)	0.26% (-0.68 to 1.74)	1,550 (1050 to 2,820)	20.5% (13.8 to 37.3)	0.925% (-3.79 to 5.54)
Ukraine						
15–39 years	3,900 (2,420 to 4,980)	56.4% (35.0 to 71.9)	-4.74% (-18.3 to 7.58)	5,470 (4,350 to 6,030)	76.5% (60.9 to 84.4)	-0.693% (-8.78 to 4.87)
40–64 years	2,070 (1,280 to 3,370)	24.5% (15.1 to 39.9)	-3.55% (-9.68 to 6.68)	3,380 (2,340 to 4,790)	47.3% (32.8 to 67.0)	4.14% (-4.55 to 13.0)
≥65 years	926 (24.6 to 320)	1.89% (0.501 to 6.53)	0.032% (-1.30 to 1.45)	410 (223 to 921)	16.0% (8.69 to 35.9)	-0.119% (-5.36 to 5.13)
Australia						
15–39 years	3,180 (2,740 to 3,940)	78.1% (65.3 to 82.0)	-3.65% (-12.7 to 2.99)	3,500 (3,000 to 3,670)	83.5% (71.5 to 87.4)	-2.07% (-9.33 to 1.66)
40–64 years	2,230 (1,530 to 3,050)	56.7% (38.7 to 77.5)	4.33% (-6.08 to 1.54)	2,380 (1,810 to 3,050)	63.0% (47.9 to 80.7)	8.04% (-0.865 to 15.9)
≥65 years	439 (226 to 726)	19.7% (10.2 to 32.6)	10.7% (2.07 to 16.7)	656 (431 to 1,040)	34.0% (22.2 to 53.8)	8.35% (0.612 to 15.4)
New Zealand	634 (546 to 665)	75.6% (65.1 to 79.3)	-7.92% (-14.7 to -2.74)	709 (605 to 742)	81.7% (69.8 to 85.5)	-3.88% (-10.5 to -0.412)
40–64 years	463 (348 to 607)	58.2% (43.6 to 76.2)	1.44% (-8.62 to 10.8)	446 (330 to 589)	58.7% (43.5 to 77.6)	6.04% (-3.22 to 13.7)
≥65 years	97 (57.5 to 149)	23.4% (13.7 to 35.7)	9.97% (-0.197 to 17.0)	116 (72.2 to 189)	31.5% (19.7 to 51.5)	-6.85% (-1.20 to 14.4)
High-income Asia Pacific						
15–39 years	12,800 (7,820 to 15,200)	51.3% (31.4 to 61.1)	0.211% (-12.8 to 10.9)	17,800 (12,400 to 20,000)	66.9% (46.6 to 75.1)	-3.96% (-19.1 to 4.23)
40–64 years	12,000 (9,160 to 16,700)	36.5% (27.7 to 50.7)	-2.79% (-8.44 to 3.88)	17,700 (14,100 to 22,600)	52.3% (41.4 to 66.9)	-6.77% (-13.3 to -0.928)
≥65 years	3,390 (2,210 to 4,870)	12.2% (8.61 to 19.0)	-3.32% (-3.77 to 3.58)	6,110 (4,340 to 8,250)	30.6% (21.7 to 41.3)	-2.03% (-7.53 to 3.57)
Brunei	2.35 (1.4 to 3.29)	25.0% (12.2 to 3.52)	-1.01% (-2.24 to 0.248)	6.36 (2.75 to 8.58)	5.78% (2.50 to 7.79)	-4.43% (-7.49 to -2.20)
40–64 years	1.02 (0.395 to 1.66)	16.8% (0.655 to 2.76)	-1.04% (-2.42 to 0.405)	2.08 (0.311 to 3.94)	3.22% (0.511 to 5.94)	-4.92% (-7.44 to -2.81)
≥65 years	0.062 (0.007 to 0.119)	5.33% (0.067 to 1.01)	-0.397% (-1.011 to 0.158)	0.135 (0.004 to 0.263)	1.23% (0.0364 to 2.40)	-2.31% (-3.88 to -0.898)
Japan	9,850 (5,760 to 11,900)	62.2% (36.4 to 75.2)	1.84% (-16.3 to 15.2)	12,100 (7,770 to 13,800)	73.2% (47.0 to 83.6)	-2.86% (-21.8 to 6.97)
40–64 years	9,370 (6,930 to 13,400)	43.9% (32.5 to 62.9)	0.924% (-6.35 to 9.81)	12,000 (9,070 to 16,000)	55.6% (42.1 to 74.3)	-5.46% (-12.7 to 15.2)
≥65 years	2,910 (1,820 to 4,260)	14.1% (8.81 to 20.7)	0.357% (-3.97 to 4.47)	4,920 (2,180 to 6,840)	30.7% (20.5 to 42.7)	-2.14% (-7.99 to 4.04)

(Table 1 continues on next page)
Articles

(Continued from previous page)

Age & Region	Females	Males
South Korea		
15–39 years	2630 (1860 to 3230)	5560 (3420 to 8610)
40–64 years	5280 (4570 to 5810)	3420 (2060 to 4240)
≥65 years	1160 (960 to 1380)	1040 (840 to 1240)
Singapore		
15–39 years	286 (126 to 384)	435 (200 to 568)
40–64 years	157 (98 to 262)	260 (154 to 431)
≥65 years	10.9 (5.86 to 17.9)	26.0 (14.2 to 44.3)
High-income North America		
15–39 years	32200 (21700 to 38700)	41000 (34300 to 44300)
40–64 years	18500 (12300 to 26000)	25700 (18000 to 32100)
≥65 years	4120 (2270 to 7140)	6120 (4050 to 9890)
Canada		
15–39 years	3420 (2170 to 4240)	4340 (3540 to 4730)
40–64 years	2060 (1460 to 3010)	2870 (2170 to 3730)
≥65 years	425 (209 to 780)	708 (453 to 1170)
Greenland		
15–39 years	5.26 (3.31 to 6.59)	7.13 (5.76 to 7.77)
40–64 years	2.4 (1.42 to 3.62)	4.41 (2.86 to 5.87)
≥65 years	0.249 (0.0861 to 0.475)	0.615 (0.307 to 1.02)
USA		
15–39 years	28800 (19900 to 34700)	36600 (29800 to 43600)
40–64 years	16500 (12000 to 23300)	22800 (17600 to 29400)
≥65 years	3590 (2040 to 6340)	5420 (3570 to 8690)
Southern Latin America		
15–39 years	7500 (5340 to 8610)	9690 (8560 to 10700)
40–64 years	3200 (2350 to 4670)	4790 (3790 to 6700)
≥65 years	556 (322 to 863)	979 (666 to 1360)
Argentina		
15–39 years	5290 (3750 to 6190)	6700 (5890 to 7960)
40–64 years	2050 (1460 to 2600)	3070 (2400 to 3980)

(Table 1 continues on next page)
Articles

Table 1 (Continued from previous page)

Females	Males																													
Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)																									
≥65 years	343 (187 to 565)	11.5% (6.27 to 18.9)	-1.72% (-5.92 to 2.50)	603 (397 to 856)	27.8% (18.3 to 39.5)	-6.87% (-12.1 to -1.57)																								
40–64 years	1000 (752 to 1410)	34.3% (25.7 to 48.1)	2.39% (-4.80 to 8.83)	2600 (2230 to 2740)	76.0% (67.5 to 80.1)	1.58% (-3.14 to 6.33)																								
≥65 years	178 (106 to 268)	14.1% (8.38 to 21.2)	3.83% (-0.52 to 7.63)	318 (223 to 431)	32.5% (22.8 to 44.2)	4.90% (-0.005 to 10.6)																								
Western Europe																														
15–39 years	264 (189 to 314)	43.6% (31.2 to 51.9)	4.20% (-5.20 to 13.5)	395 (345 to 423)	66.2% (57.9 to 71.0)	0.745% (-4.29 to 5.94)																								
40–64 years	146 (107 to 214)	27.5% (20.1 to 40.4)	1.67% (-4.43 to 8.32)	231 (183 to 294)	47.8% (37.9 to 60.9)	1.51% (-3.45 to 7.00)																								
≥65 years	34.6 (19.3 to 55.4)	11.1% (6.16 to 17.7)	2.03% (-2.02 to 5.89)	57.9 (39.5 to 80.4)	27.4% (18.7 to 38.1)	1.88% (-4.33 to 7.51)																								
Andorra																														
15–39 years	8.28 (5.59 to 9.89)	66.9% (45.1 to 79.8)	-5.56% (-10.97 to 4.71)	10.5 (8.71 to 11.4)	80.5% (66.6 to 87.4)	-3.96% (-10.3 to 0.358)																								
40–64 years	8.56 (6.04 to 12.2)	50.5% (35.7 to 72.1)	-1.18% (-10.60 to 8.82)	1.4 (9.0 to 14.6)	35.6% (25.9 to 52.7)	2.85% (-1.86 to 6.59)																								
≥65 years	1.26 (0.73 to 1.94)	19.3% (11.0 to 29.7)	4.90% (-0.92 to 11.6)	2.28 (1.53 to 3.42)	35.6% (23.8 to 53.3)	2.85% (-9.51 to 11.8)																								
Austria																														
15–39 years	8.74 (6.12 to 10.30)	63.8% (44.6 to 75.3)	-6.59% (-18.10 to 3.50)	11.6 (9.82 to 1250)	79.9% (67.7 to 85.9)	-3.48% (-9.90 to 0.603)																								
40–64 years	7.74 (5.67 to 10.70)	49.1% (35.9 to 68.1)	-1.47% (-9.42 to 7.35)	0.95 (7.80 to 1200)	61.4% (50.7 to 76.7)	-0.70% (-5.00 to 4.53)																								
≥65 years	1.87 (1.16 to 2.75)	19.5% (12.1 to 28.7)	3.68% (-2.40 to 8.83)	2.59 (1.79 to 378)	35.3% (24.5 to 51.5)	2.06% (-3.46 to 7.57)																								
Belgium																														
15–39 years	11.60 (8.10 to 13.70)	66.8% (46.5 to 78.5)	-3.76% (-16.00 to 5.81)	14.00 (11.90 to 1500)	79.1% (67.7 to 85.0)	-2.61% (-8.21 to 1.53)																								
40–64 years	9.66 (7.00 to 1380)	50.9% (36.9 to 72.9)	0.23% (-8.05 to 10.0)	1.16 (9.23 to 1470)	60.6% (48.3 to 76.8)	-0.549% (-5.74 to 5.54)																								
≥65 years	2.47 (1.46 to 3.81)	20.1% (11.9 to 30.9)	5.35% (-0.92 to 10.87)	3.36 (2.22 to 503)	34.5% (22.9 to 51.7)	1.25% (-4.32 to 6.50)																								
Cyprus																														
15–39 years	13 (8.40 to 17.1)	54.8% (33.9 to 68.8)	-6.12% (-19.95 to 5.20)	212 (172 to 230)	83.1% (67.4 to 90.1)	-9.76% (-8.12 to 3.36)																								
40–64 years	8.6 (4.98 to 12.6)	36.1% (22.1 to 55.8)	0.596% (-8.51 to 10.1)	124 (96.8 to 162)	61.1% (47.8 to 79.8)	-2.93% (-9.83 to 9.34)																								
≥65 years	11.3 (5.66 to 18.4)	11.2% (5.60 to 18.2)	4.60% (0.0601 to 8.89)	30 (19.6 to 44.6)	33.0% (21.5 to 48.9)	7.14% (0.206 to 13.0)																								
Denmark																														
15–39 years	666 (439 to 779)	75.1% (49.5 to 87.9)	-3.91% (-18.5 to 6.36)	790 (645 to 852)	85.2% (69.6 to 91.9)	-2.19% (-9.90 to 1.66)																								
Country	40–64 years	≥65 years	Finland	15–39 years	40–64 years	≥65 years	France	15–39 years	40–64 years	≥65 years	Germany	15–39 years	40–64 years	≥65 years	Greece	15–39 years	40–64 years	≥65 years	Iceland	15–39 years	40–64 years	≥65 years	Ireland	15–39 years	40–64 years	≥65 years	Israel	15–39 years	40–64 years	≥65 years
---------	-------------	-----------	---------	-------------	-------------	-----------	--------	-------------	-------------	-----------	---------	-------------	-------------	-----------	--------	-------------	-------------	-----------	----------	-------------	-------------	-----------	----------	-------------	-------------	-----------	----------	-------------	-------------	-----------
	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)	Number (thousands)	Proportion of population (%)	Number (thousands)	Proportion of population (%)	Proportion of population (%)	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)	
Greece	15–39 years	999	67.0%	(629 to 1210)	-5.81%	(-17.0 to 4.10)	11,100	83.6%	(69.2 to 88.8)	-2.97%	(-4.8 to 0.59)	1990	(96.0 to 1010)	-1.72%	(-3.3 to 0.90)	15–39 years	556	69.5%	(50.6 to 80.1)	-4.42%	(-15.9 to 4.48)	618	78.7%	(67.2 to 84.7)	-2.38%	(-7.9 to 1.99)	40–64 years	412	50.8%	(37.2 to 69.3)
Comparative Analysis of Percentage Change in Population

Country	Females	Males				
	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)
Italy	15-39 years	4010	51.6%	32 to 61.9	-2.55%	140 to 6.32
	40-64 years	4530	39.9%	29 to 55.2	-4.83%	11.2 to 2.23
	≥65 years	1420	18.1%	11 to 25.6	0.23%	-5.15 to 5.33
Luxembourg						
	15-39 years	717	67.1%	44 to 80.2	-5.55%	-18.7 to 4.22
	40-64 years	568	51.9%	37 to 74.2	-0.38%	-9.38 to 8.85
	≥65 years	99	19.7%	11 to 31.4	5.61%	-0.641 to 11.0
Malta	15-39 years	40.4	61.3%	37 to 76.5	-3.90%	-16.9 to 7.94
	40-64 years	25	35.1%	23 to 54.8	1.21%	7.32 to 8.80
	≥65 years	5.3	10.5%	5 to 17.7	6.09%	2.27 to 10.1
Monaco	15-39 years	2.9	64.0%	29 to 79.2	-4.16%	-29.5 to 18.9
	40-64 years	2.8	40.0%	40 to 69.3	2.47%	-35.7 to 37.2
	≥65 years	0.665	12.6%	1 to 29.8	6.49%	-12.3 to 25.2
Netherlands						
	15-39 years	1660	68.8%	47 to 75.8	-2.73%	-16.0 to 7.70
	40-64 years	1430	49.1%	34 to 71.0	-0.46%	-8.76 to 8.35
	≥65 years	397	21.8%	13 to 32.8	7.76%	-1.9 to 13.2
Norway	15-39 years	599	69.8%	45 to 82.2	-2.79%	-17.1 to 7.98
	40-64 years	431	50.8%	33 to 77.6	7.08%	-1.82 to 16.2
	≥65 years	86.6	17.1%	8 to 28.5	11.8%	6.77 to 16.9
Portugal	15-39 years	719	47.8%	32 to 59.0	-0.371%	-11.2 to 9.71
	40-64 years	743	36.6%	26 to 51.0	1.34%	-6.41 to 9.92
	≥65 years	318	22.6%	8 to 19.2	2.93%	-9.95 to 7.36
San Marino	15-39 years	3.01	65.7%	30 to 79.3	-4.69%	-12.1 to 15.3
	40-64 years	3.11	47.1%	12 to 71.1	2.58%	-38.3 to 40.9
(Table 1 continues on next page)						
(Continued from previous page)

	Females		Males						
	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)			
	(0 to 1·20)	(0 to 32·8)	(–13·5 to 23·5)	(0 to 1·75)	(0 to 56·2)	(–18·6 to 40·5)			
Switzerland									
15–39 years	3500	(2550 to 4330)	(40·7 to 69·0)	7·6%	(1·3 to 7·9)	(0·3 to 2·7)	76·3	(4·1 to 12·9)	(3·2 to 7·3)
40–64 years	3400	(2600 to 4870)	(29·9 to 55·9)	8·6%	(7·78 to 8·23)	(7·08 to 8·12)	4850	(1400 to 5260)	(64·1 to 82·1)
≥65 years	670	(391 to 956)	(7·2 to 18·5)	1·5%	(8·21 to 5·85)	(1·75 to 5·34)	5170	(1910 to 6510)	(48·5 to 75·2)
Spain									
15–39 years	1590	(1200 to 1980)	(15·7 to 80·0)	4·3%	(1·67 to 6·3)	(1·57 to 7·07)	1350	(920 to 1740)	(65·2 to 88·5)
40–64 years	875	(593 to 1250)	(38·4 to 79·9)	5·4%	(5·75 to 11·2)	(5·70 to 11·2)	920	(692 to 1260)	(43·2 to 78·7)
≥65 years	230	(134 to 361)	(11·1 to 32·1)	3·8%	(9·85 to 15·0)	(9·85 to 15·0)	270	(158 to 457)	(21·7 to 46·5)
Sweden									
15–39 years	898	(578 to 1080)	(42·7 to 80·0)	6·4%	(6·21 to 4·45)	(6·21 to 4·45)	1140	(928 to 1240)	(65·2 to 87·2)
40–64 years	763	(536 to 1120)	(35·2 to 72·3)	5·0%	(5·10 to 11·6)	(5·10 to 11·6)	720	(692 to 1260)	(43·2 to 78·7)
≥65 years	179	(102 to 292)	(11·1 to 31·8)	4·67%	(1·67 to 10·5)	(1·67 to 10·5)	250	(162 to 397)	(21·7 to 53·1)
UK									
15–39 years	7400	(5310 to 8550)	(45·7 to 92·5)	6·9%	(6·82 to 7·8)	(6·82 to 7·8)	8710	(7420 to 9320)	(68·0 to 85·4)
40–64 years	5700	(4150 to 8070)	(38·4 to 75·0)	5·2%	(5·24 to 7·65)	(5·24 to 7·65)	6470	(5220 to 8210)	(49·6 to 78·0)
≥65 years	1300	(1738 to 2040)	(11·1 to 30·6)	14·4%	(11·1 to 16·5)	(11·1 to 16·5)	2000	(1320 to 3010)	(23·4 to 51·3)
Andean Latin America									
15–39 years	4470	(3630 to 6290)	(20·2 to 48·3)	34·4%	(34·4 to 35·1)	(34·4 to 35·1)	8990	(7150 to 9590)	(54·8 to 73·4)
40–64 years	1290	(775 to 2050)	(9·83 to 26·0)	16·3%	(1·04 to 11·4)	(1·04 to 11·4)	3810	(3000 to 4880)	(39·8 to 64·5)
≥65 years	101	(44·3 to 184)	(1·72 to 7·14)	3·94%	(2·51 to 2·93)	(2·51 to 2·93)	507	(343 to 682)	(21·7 to 29·2)
Bolivia									
15–39 years	880	(477 to 1330)	(19·7 to 54·8)	36·4%	(3·61 to 38·1)	(3·61 to 38·1)	1670	(1270 to 1820)	(51·7 to 74·4)
40–64 years	219	(124 to 378)	(9·45 to 28·9)	16·8%	(7·54 to 11·8)	(7·54 to 11·8)	641	(472 to 864)	(36·9 to 67·6)
≥65 years	160	(578 to 327)	(3·97 to 8·13)	3·97%	(2·76 to 3·46)	(2·76 to 3·46)	853	(448 to 1348)	(24·3 to 34·8)
Ecuador									
15–39 years	598	(349 to 863)	(9·74 to 24·1)	16·7%	(4·40 to 16·7)	(4·40 to 16·7)	2040	(1630 to 2250)	(45·7 to 63·1)
40–64 years	145	(87 to 236)	(4·11 to 31·1)	6·82%	(1·35 to 5·55)	(1·35 to 5·55)	820	(641 to 1060)	(39·8 to 52·6)
≥65 years	720	(322 to 136)	(0·455 to 1·92)	1·02%	(0·199 to 1·15)	(0·199 to 1·15)	876	(585 to 1193)	(9·23 to 18·7)
Peru									
15–39 years	2990	(1700 to 4200)	(25·3 to 59·9)	42·7%	(6·70 to 42·9)	(6·70 to 42·9)	5280	(4220 to 5620)	(60·0 to 79·9)
40–64 years	922	(549 to 1440)	(12·3 to 32·4)	20·7%	(8·86 to 14·2)	(8·86 to 14·2)	2350	(1820 to 2980)	(42·6 to 69·7)

(Continued from previous page)
The Bahamas ≥65 years

Age Group	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)
≥65 years	2420 (1480 to 3350)	26.5%	(−3.25% to 1.90)
	599 (292 to 777)	7.7%	(0.28% to −1.78)
≥65 years	31.5 (11.7 to 71.9)	1.25%	(0.361% to 0.773)

Cuba

Age Group	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)
15–39 years	475 (277 to 704)	27.1%	(−3.32% to 1.07)
40–64 years	160 (83 to 258)	7.5%	(0.61% to −2.17)
≥65 years	11.6 (3.5 to 28.4)	1.2%	(0.492% to −0.526)

Dominica

Age Group	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)
15–39 years	3.76 (2.2 to 5.5)	30.0	(−5.34% to −1.8)

(Continued from previous page)

Caribbean

Age Group	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)
15–39 years	202 (124 to 314)	5.34%	(−3.92 to 4.32)
40–64 years	334 (223 to 448)	24.8%	(16.6 to 33.3)

Antigua and Barbuda

Age Group	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)
15–39 years	484 (291 to 726)	27.8%	(−6.63 to 10.6)
40–64 years	131 (208 to 212)	8.63%	(1.98 to 8.28)
≥65 years	0.0679 (0.059 to 0.170)	1.23%	(0.0342 to 0.873)

Barbados

Age Group	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)
15–39 years	208 (105 to 213)	26.5%	(−7.55% to 1.74)
40–64 years	4.44 (2.25 to 14.2)	7.1%	(−9.51 to −0.874)
≥65 years	0.192 (0.020 to 0.602)	1.10%	(−0.967% to 0.0998)

Belize

Age Group	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)
15–39 years	231 (14.4 to 32.5)	24.6%	(−6.35 to 8.86)
40–64 years	681 (4.67 to 9.56)	12.5%	(−0.934 to 5.94)
≥65 years	0.770 (0.282 to 1.42)	1.94%	(−0.921 to 2.80)

Bermuda

Age Group	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)
15–39 years	3.69 (2.29 to 7.27)	40.8%	(−4.82 to −1.4)
40–64 years	1.88 (1.03 to 3.93)	35.1%	(−8.52 to 1.79)
≥65 years	0.226 (0.070 to 0.501)	3.11%	(−0.507% to 2.66)

Cuba

Age Group	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)
15–39 years	475 (277 to 704)	27.1%	(−3.32% to 1.07)
40–64 years	160 (83 to 258)	7.5%	(0.61% to −2.17)
≥65 years	11.6 (3.5 to 28.4)	1.2%	(0.492% to −0.526)

(Continued on next page)
Females

Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)
40–64 years	0.919 (0.462 to 1.51)	-2.6% (-5.20 to 2.59)
≥65 years	0.074 (0.020 to 0.187)	-0.0057% (-1.25 to 1.14)

Males

Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)
40–64 years	4.09 (3.02 to 5.32)	38.5% (28.4 to 50.1)
≥65 years	0.624 (0.364 to 0.988)	16.8% (9.0 to 26.6)

Dominican Republic

Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)
40–64 years	15.80 (12.80 to 17.30)	68.8% (56.0 to 75.4)
≥65 years	469 (336 to 639)	35.5% (25.4 to 48.3)

Grenada

Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)
40–64 years	11.2 (9.93 to 12.2)	53.0% (46.8 to 57.5)
≥65 years	0.822 (0.617 to 1.07)	20.0% (15.0 to 26.0)

Guyana

Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)
40–64 years	304 (277.4 to 331.6)	75.5% (60.0 to 76.9)
≥65 years	3.26 (2.77 to 4.73)	14.8% (8.18 to 25.1)

Haiti

Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)
40–64 years	1710 (1410 to 1860)	65.6% (54.2 to 71.4)
≥65 years	36 (27.7 to 47.3)	38.8% (30.5 to 51.3)

Jamaica

Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)
40–64 years	1710 (1410 to 1860)	65.6% (54.2 to 71.4)
≥65 years	36 (27.7 to 47.3)	38.8% (30.5 to 51.3)

Puerto Rico

Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)
40–64 years	320 (272.7 to 342.3)	59.8% (50.6 to 68.4)
≥65 years	40.6 (26.7 to 65.0)	13.5% (8.8 to 21.9)

Saint Kitts and Nevis

Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)
40–64 years	5.59 (3.63 to 6.54)	49.3% (32.0 to 57.6)
≥65 years	2.02 (0.120 to 4.00)	19.3% (0.114 to 3.81)

Table 1 (continued on next page)
Table 1

(Continued from previous page)

	Females		Males			
	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)
Saint Lucia						
15–39 years	14.5	(10.5 to 18.3)	44.2%	(31.9 to 57.4)	-3.94%	(12.8 to 4.68)
40–64 years	5.99	(4.18 to 8.18)	19.8%	(13.9 to 27.1)	-0.864%	(5.47 to 3.57)
≥65 years	0.427	(0.209 to 0.799)	3.96%	(1.94 to 7.42)	-0.0652%	(1.83 to 1.84)
Virgin Islands						
15–39 years	29.2	(15.5 to 44.3)	26.4%	(14.0 to 40.0)	-5.53%	(13.7 to 3.16)
40–64 years	5.84	(2.68 to 10.1)	9.7%	(2.1 to 11.7)	-1.80%	(1.91 to 1.06)
≥65 years	0.278	(0.0690 to 0.782)	0.97%	(0.242 to 2.75)	-0.194%	(0.250 to 0.667)
Trinidad and Tobago						
15–39 years	71.0	(39.9 to 108)	28.5%	(16.0 to 43.2)	-5.06%	(13.3 to 3.09)
40–64 years	20.6	(11.1 to 33.6)	9.43%	(5.30 to 15.4)	-0.512%	(4.39 to 0.02)
≥65 years	1.69	(0.497 to 4.29)	1.82%	(0.534 to 6.42)	0.461%	(0.563 to 1.57)
Central Latin America						
15–39 years	11200	(6490 to 14 900)	21.3%	(12.4 to 28.4)	-3.10%	(7.93 to 1.60)
40–64 years	1970	(1130 to 3070)	5.67%	(3.25 to 8.82)	-4.66%	(4.00 to 7.14)
≥65 years	111	(40.8 to 254)	0.88%	(0.362 to 2.26)	0.0384%	(0.539 to 0.493)
Colombia						
15–39 years	2230	(1310 to 3040)	23.3%	(13.6 to 31.7)	-1.43%	(7.84 to 4.88)
40–64 years	385	(207 to 664)	5.48%	(2.95 to 8.74)	-3.32%	(6.36 to 0.582)
≥65 years	17.6	(4.68 to 47.2)	0.676%	(0.380 to 1.81)	-0.513%	(1.58 to 0.33)
Costa Rica						
15–39 years	252	(125 to 734)	25.6%	(12.8 to 38.1)	-3.41%	(13.11 to 4.30)
40–64 years	45.8	(20.9 to 83.1)	6.54%	(2.99 to 11.8)	-3.70%	(8.02 to 0.400)

(Continued on next page)
	Number (thousands)	Proportion of population (%)	Percentage change since 1980 (%)	Number (thousands)	Proportion of population (%)	Percentage change since 1980 (%)
Females				**Males**		
a65 years	2.99 (0.67/2.85)	1.19% (0.27/3.43)	–6.59% (-2.46/0.300)	32.8	15.7% (9.33/26.0)	–8.47% (-13.8/2.63)
El Salvador	15–39 years	107 (54.4/160)	1.85% (3.97/11.8)	8.2 (49.7/721)	53.7% (40.6/58.8)	–2.37% (-8.3/2.89)
	40–64 years	515 (8.8/32.6)	2.9% (1.05/85.3)	26.9 (172.2/290)	35.6% (27.9/47.0)	–3.49% (-9.8/2.46)
	≥65 years	1.08 (0.26/2.87)	0.34% (0.08/805)	2.6 (15.6/41.9)	11.2% (6.7/18.0)	–0.46% (-5.02/3.12)
Guatemala	15–39 years	331 (6.4/95)	1.46% (4.0/14.1)	14.2 (1090.0/1570)	43.9% (33.8/48.6)	–0.42% (-6.5/5.49)
	40–64 years	454 (8.3/83.9)	2.7% (1.15/52)	3.9 (296.0/330)	28.0% (21.3/38.1)	–3.56% (-9.6/1.38)
	≥65 years	2.40 (0.39/7.47)	0.59% (0.08/1.57)	0.9 (19.5/63.1)	8.7% (4.6/14.9)	–3.21% (-7.4/07.8)
Honduras	15–39 years	137 (8.2/197)	1.03% (1.42/8.75)	7.2 (591.0/815)	35.3% (28.7/39.6)	0.16% (-8.4/5.2)
	40–64 years	20.4 (10.4/39.9)	1.41 (1.41/4.03)	2.3 (195.0/298)	23.7% (22.3/34.1)	–1.24% (-15.9/2.37)
	≥65 years	1.77 (0.61/3.79)	0.67% (0.23/1.43)	0.5 (17.3/36.8)	11.1% (7.4/15.9)	0.11% (-3.4/3.33)
Mexico	15–39 years	6570 (393/8740)	2.5% (15.1/33.5)	15.0 (122.0/16.100)	59.7% (48.4/64.1)	–4.61% (-10.3/1.09)
	40–64 years	1180 (659/1850)	6.5% (3.6/10.3)	7.1 (604.0/865)	43.7% (36.8/52.8)	–8.8% (-11.7/0.36)
	≥65 years	69.8 (25.6/150)	1.26% (0.46/2.71)	0.25 (63.0/1370)	18.3% (13.3/24.7)	–0.086% (-4.8/4.23)
Nicaragua	15–39 years	254 (133/165)	1.8% (9.4/25.9)	7.81 (593.0/854)	55.3% (42.0/60.5)	–1.14% (-7.1/4.62)
	40–64 years	36.0 (18.1/628)	4.79% (2.41/8.36)	2.53 (204.0/333)	38.4% (30.9/48.9)	–1.55% (-8.4/4.42)
	≥65 years	1.55 (0.39/4.02)	0.729% (0.18/1.88)	0.23 (15.0/35.5)	11.6% (8.6/20.4)	1.01% (-3.5/5.08)
Panama	15–39 years	148 (89/207)	1.91% (11.6/26.8)	4.5 (372.0/488)	57.4% (47.4/62.2)	–3.12% (-9.1/7.45)
	40–64 years	34.0 (19.4/55)	6.33% (3.6/28.8)	2.26 (190.0/274)	42.5% (35.7/51.5)	–4.6% (-4.0/6.04)
	≥65 years	2.47 (0.83/5.59)	1.26% (0.46/2.85)	0.23 (12.2/24.9)	17.8% (12.2/24.9)	–9.9% (-5.8/3.86)
Venezuela	15–39 years	1140 (503/1670)	1.77% (9.4/26.0)	36.0 (2850.0/3980)	56.0% (43.8/61.3)	–6.8% (-13.7/1.22)
	40–64 years	209 (97.9/364)	4.90% (2.3/8.53)	15.8 (1250.0/2010)	38.1% (30.2/48.7)	–15.0% (-19.9/9.10)
	≥65 years	11.6 (3.0/30.1)	0.822% (0.21/2.13)	0.16 (105.0/251)	14.4% (9.1/21.8)	–10.9% (-15.8/6.24)
Tropical Latin America	15–39 years	15000 (10,400/18,000)	3.37% (23.4/40.5)	25.6 (19000.0/27300)	58.1% (43.2/61.9)	3.52% (-1.6/2.47)
	Females		Males			
----------	---------	------------------------------	-------	------------------------------		
	Number (thousands)	Proportion of population (%)	Number (thousands)	Proportion of population (%)		
40–64 years	4000	11.7 (8.00 to 16.6)	12800	40.9 (33.8 to 50.2)		
≥65 years	351	2.89 (1.29 to 5.26)	1680	18.0 (12.7 to 24.9)		
Brazil						
15–39 years	14300	32.2 (23.2 to 39.9)	24300	57.2 (42.5 to 61.2)		
40–64 years	3870	11.6 (7.90 to 16.4)	12300	40.4 (33.4 to 49.6)		
≥65 years	339	2.86 (1.37 to 5.19)	1620	17.9 (12.5 to 24.6)		
Paraguay						
15–39 years	707	46.9 (26.7 to 58.5)	1280	82.1 (64.1 to 86.0)		
40–64 years	127	16.1 (9.81 to 23.9)	454	57.3 (46.6 to 70.4)		
≥65 years	11.7	4.63 (1.82 to 9.20)	565	25.5 (17.7 to 26.7)		
North Africa and Middle East						
15–39 years	729	0.58% (0.348 to 1.00)	7800	5.81% (4.51 to 6.94)		
40–64 years	242	0.34% (0.149 to 0.632)	2820	3.66% (2.36 to 5.40)		
≥65 years	18.5	0.11% (0.0433 to 0.289)	258	1.54% (0.989 to 2.66)		
Afghanistan						
15–39 years	126	0.144% (0.0270 to 0.509)	278	2.99% (1.26 to 4.50)		
40–64 years	0.673	0.0226% (0.00353 to 0.0966)	162	0.955% (0.0538 to 1.153)		
≥65 years	0.0124	0.0024% (0.00058 to 0.00952)	0.253	0.0486% (0.00152 to 0.292)		
Algeria						
15–39 years	371	0.439% (0.259 to 0.690)	542	6.28% (5.02 to 7.67)		
40–64 years	13.0	0.246% (0.104 to 0.455)	210	3.91% (2.74 to 5.31)		
≥65 years	1.12	0.0834% (0.00285 to 0.0205)	21.0	1.48% (0.951 to 2.25)		
Bahrain						
15–39 years	1.06	0.433% (0.252 to 0.698)	32.1	6.76% (5.43 to 8.23)		
40–64 years	0.353	0.238% (0.0997 to 0.447)	13.2	4.41% (3.16 to 6.09)		
≥65 years	0.0129	0.0795% (0.0078 to 0.209)	0.490	1.79% (1.17 to 2.82)		
Egypt						
15–39 years	34.9	0.172% (0.0303 to 0.284)	466	2.18% (1.65 to 2.68)		
40–64 years	9.52	0.0977% (0.00342 to 0.177)	150	1.32% (0.820 to 1.99)		
≥65 years	0.518	0.0271% (0.00064 to 0.0475)	10.7	0.46% (0.230 to 0.857)		

(Continued from previous page)
	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)
Iran						
15–39 years	762	0.44%	(0.245 to 0.689)	1150	6.40%	(5.07 to 7.81)
40–64 years	293	0.25%	(0.086 to 0.483)	478	4.01%	(2.65 to 5.53)
≥65 years	2.53	0.086%	(0.019 to 0.221)	42.3	1.48%	(0.819 to 2.40)
Iraq						
15–39 years	405	0.57%	(0.417 to 0.788)	91.3	1.23%	(1.02 to 1.49)
40–64 years	19	0.483%	(0.310 to 0.700)	33.6	0.826%	(0.662 to 1.02)
≥65 years	2.12	0.241%	(0.139 to 0.383)	3.52	0.442%	(0.328 to 0.587)
Jordan						
15–39 years	2.83	0.116%	(0.0725 to 0.175)	54.1	1.82%	(1.46 to 2.18)
40–64 years	1.19	0.0989%	(0.0425 to 0.175)	22.0	1.50%	(1.00 to 2.06)
≥65 years	0.0683	0.0296%	(0.00886 to 0.0646)	2.32	0.958%	(0.328 to 0.457)
Kuwait						
15–39 years	0.597	0.0588%	(0.000884 to 0.169)	17.6	1.66%	(0.407 to 2.62)
40–64 years	0.107	0.0174%	(0.00685)	3.77	0.474%	(0.00213 to 1.30)
≥65 years	0.00148	0.00254%	(0.00155)	0.0692	0.0725%	(0.00346)
Lebanon						
15–39 years	26.7	0.31%	(1.24 to 6.74)	168	19.0%	(14.0 to 23.4)
40–64 years	4.86	0.726%	(0.112 to 2.06)	47.3	8.72%	(4.57 to 14.6)
≥65 years	0.256	0.0859%	(0.00541 to 0.435)	8.47	3.33%	(1.50 to 7.20)
Libya						
15–39 years	1.82	0.125%	(0.0649 to 0.215)	55.5	3.55%	(2.73 to 4.37)
40–64 years	0.379	0.0405%	(0.0127 to 0.278)	21.2	2.0%	(1.28 to 3.07)
≥65 years	0.0225	0.0133%	(0.00178 to 0.0385)	1.36	0.810%	(0.382 to 1.42)
Morocco						
15–39 years	3.23	0.0444%	(0.00811 to 0.147)	419	5.69%	(4.24 to 7.07)
40–64 years	0.272	0.0055%	(0.00018 to 0.0224)	96.1	1.97%	(1.28 to 2.79)
≥65 years	0.0079	0.00075%	(0.00039)	2.80	0.213%	(0.117 to 0.380)
Oman						
15–39 years	1.96	0.261%	(0.0930 to 0.565)	68.5	4.94%	(3.41 to 6.46)
40–64 years	0.31	0.0890%	(0.0129 to 0.237)	15.2	2.17%	(0.913 to 3.86)

(Continued from previous page)

(Table 1 continues on next page)
Females	Males					
(Continued from previous page)	**(Continued from previous page)**					
Number (thousands)	**Proportion of population (%)**	**Number (thousands)**	**Proportion of population (%)**	**Percentage change since 1990 (%)**	**Percentage change since 1990 (%)**	
≥65 years	0.0821 (0 to 0.0570)	0.0162 (0 to 0.0731)	-0.00399 (-0.0536 to 0.0242)	0.343 (0 to 0.104 to 0.876)	0.520 (0.160 to 1.35)	0.143 (-0.219 to 0.474)
15–39 years	5.43 (3.45 to 8.15)	0.519 (0.330 to 0.779)	-0.100 (-0.39 to 0.148)	78.1 (64.8 to 92.6)	7.18% (5.96 to 8.53)	-0.339 (-1.89 to 1.27)
40–64 years	0.75 (0.765 to 2.58)	0.360 (0.177 to 0.598)	-0.115 (-0.44 to 0.173)	24.0 (17.9 to 30.7)	5.22% (3.99 to 6.83)	-0.418 (-2.06 to 1.30)
≥65 years	0.132 (0.0480 to 0.272)	0.146 (0.0533 to 0.302)	-0.076 (-0.267 to 0.0878)	1.85 (1.22 to 2.61)	2.36% (1.56 to 3.3)	-0.253 (-1.37 to 0.859)
Palestine						
15–39 years	1.11 (0.495 to 2.23)	0.309 (0.137 to 0.619)	-0.0905 (-0.32 to 0.0707)	85.1 (63.7 to 108)	6.05% (4.53 to 7.6)	-0.192 (-1.60 to 1.16)
40–64 years	0.247 (0.0540 to 0.586)	0.139 (0.0304 to 0.339)	-0.0703 (-0.268 to 0.0563)	16.7 (9.41 to 26.1)	3.05% (1.71 to 4.7)	-0.475 (-1.70 to 0.615)
≥65 years	0.00343 (0 to 0.0140)	0.0304 (0 to 0.124)	-0.0220 (-0.188 to 0.0619)	0.327 (0.144 to 0.654)	1.02% (0.4449 to 2.04)	-0.103 (-0.892 to 0.553)
Saudi Arabia						
15–39 years	8.09 (0.9937 to 15.4)	0.107 (0.0137 to 0.619)	-0.0926 (-0.32 to 0.0707)	267.0 (126.0 to 372)	2.47% (1.26 to 3.43)	-0.682 (-1.31 to 0.087)
40–64 years	0.842 (0.00700 to 2.61)	0.0220 (0 to 0.0124)	-0.0220 (-0.0608 to 0.000410)	55.8 (4.51 to 118)	0.99% (0.0732 to 1.91)	-0.537 (-1.33 to -0.13)
≥65 years	0.0183 (0 to 0.0930)	0.00493 (0 to 0.0251)	-0.00930 (-0.0297 to 0.0)	1.53 (0.0120 to 5.02)	0.256% (0.00201 to 0.841)	-0.306% (-0.652 to -0.0281)
Syria						
15–39 years	2.13 (0 to 26.1)	0.0243 (0 to 0.297)	-0.0931 (-0.3815 to -0.362)	132 (0 to 324)	1.53% (0 to 3.78)	-10.7% (-13.4 to -8.07)
40–64 years	0.0183 (0 to 0.0210)	0.00561 (0 to 0.00645)	-0.0033 (-0.0840 to -0.303)	0.580 (0 to 1.85)	0.017% (0 to 0.0058)	-11.8% (-14.2 to -9.49)
≥65 years	0.00114 (0 to 0)	0.000190 (0 to 0)	-0.0064 (-0.0413 to -0.111)	0.0014 (0 to 0)	0.0028% (0 to 0)	-6.68% (-8.73 to -5.09)
Tunisia						
15–39 years	3.22 (1.27 to 6.88)	0.145% (0 to 0.0571)	-0.00404 (-0.105 to 0.0657)	352 (294 to 414)	16.3% (13.8 to 19.1)	3.70% (1.07 to 6.38)
40–64 years	0.617 (0.0104 to 1.93)	0.0374% (0 to 0.00580)	-0.00064% (-0.0440 to -0.0299)	154 (119 to 193)	8.82% (6.81 to 11.1)	2.16% (0.326 to 3.89)
≥65 years	0.0462 (0 to 0.0032)	0.00479% (0 to 0.00342)	-0.00025% (0 to 0.0266 to 0.0722)	18.4 (13.1 to 25.6)	3.18% (2.56 to 4.4)	0.757% (-0.245 to 1.67)
Turkey						
15–39 years	4.08 (2.25 to 6.85)	2.6% (1.42 to 4.35)	-0.068% (-0.3247 to 0.245)	2770 (2110 to 3340)	17.0% (12.0 to 20.5)	-1.14% (-4.16 to 1.90)
40–64 years	147 (57.7 to 284)	1.20% (0.470 to 2.31)	-0.068% (-0.170 to 0.135)	1160 (699 to 1810)	9.39% (5.67 to 14.7)	-0.262% (-3.22 to 2.45)
≥65 years	11.2 (3.29 to 31.0)	0.258% (0.0757 to 0.713)	-0.0101% (-0.441 to 0.104)	130 (75.0 to 235)	3.65% (2.11 to 6.59)	0.412% (-1.25 to 1.58)
United Arab Emirates						
15–39 years	13.0 (3.24 to 36.3)	1.76% (0.437 to 4.88)	-1.78% (-4.19 to -0.231)	176 (114 to 246)	16.7% (10.9 to 23.4)	-5.29% (-8.96 to -1.62)

(Table 1 continues on next page)
Females	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)	Males	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)
(Continued from previous page)							
40–64 years	3.51	0.607%	-0.98%	173	9.18%	2.6%	-5.52%
≥65 years	0.376	0.087%	-2.44%	3.76	2.6%	2.0%	-2.09%
Yemen							
15–39 years	19.0	0.184%	-0.354%	307	4.54%	3.00%	-3.00%
40–64 years	2.64	0.109%	-0.396%	49.6	2.06%	-3.88%	-3.88%
≥65 years	0.112	0.023%	-0.210%	2.37	0.504%	-2.38%	-2.38%
South Asia							
15–39 years	7260	(3860 to 10.800)	0.191%	92400	23.2%	(18.3 to 27.0)	4.63%
40–64 years	3380	(1470 to 5310)	0.193%	41500	19.6%	(12.4 to 25.7)	4.7%
≥65 years	370	(124 to 277)	0.034%	5500	9.62%	(5.16 to 14.7)	2.82%
Bangladesh							
15–39 years	214	(14.9 to 369)	0.080%	2150	6.59%	(3.64 to 8.42)	1.52%
40–64 years	36.9	(0.0609 to 82.8)	0.0981%	508	7.70%	(0.972 to 3.58)	1.70%
≥65 years	2.18	(0.0417 to 1.04)	0.0273%	44.1	1.70%	(0.000686 to 1.06)	0.539%
Bhutan							
15–39 years	16.0	(2.39 to 31.7)	0.38%	38.1	19.7%	(8.73 to 28.4)	-8.24%
40–64 years	1.98	(0.0709 to 33)	-2.87%	38.1	19.7%	(8.73 to 28.4)	-8.24%
≥65 years	0.0816	(0.0384 to 0.158)	-2.90%	0.272	1.11%	(0.0163 to 4.51)	-10.1%
India							
15–39 years	5390	(3070 to 7860)	1.8%	79.900	25.7%	(20.9 to 30.0)	5.24%
40–64 years	2950	(1360 to 4640)	1.78%	38.800	23.0%	(15.1 to 29.7)	5.63%
≥65 years	349	(121 to 685)	-0.0355%	5120	11.6%	(6.30 to 17.6)	2.88%
Nepal							
15–39 years	579	(229 to 875)	8.0%	1990	32.8%	(21.39 to 37.9)	9.75%
40–64 years	198	(46.9 to 352)	5.72%	655	21.9%	(8.35 to 33.7)	17.9%
≥65 years	12.4	(109 to 31.4)	1.26%	68.7	7.72%	(1.47 to 15.9)	7.17%
Pakistan							
15–39 years	1060	(209 to 1900)	2.20%	8370	17.1%	(9.38 to 23.0)	1.75%
40–64 years	196	(28.4 to 427)	0.981%	1560	7.37%	(1.66 to 14.0)	1.32%
≥65 years	6.01	(0.404 to 20.1)	0.149%	63.2	1.44%	(0.142 to 4.33)	0.0807%

(Table 1 continues on next page)
Articles

Females			Males					
	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)		
East Asia								
15–39 years	12,400	(7510 to 20,800)	4.92%	–0.560%	123,000	(98,400 to 145,000)	45.7%	0.912%
40–64 years	10,400	(6550 to 15,500)	3.86%	–0.770%	118,000	(99,300 to 140,000)	42.1%	1.612%
≥65 years	1,700	(767 to 3,050)	1.65%	–0.741%	21,900	(16,200 to 27,800)	24.2%	–1.22%
China								
15–39 years	12,000	(7230 to 20,100)	4.91%	–0.522%	119,000	(95,600 to 141,000)	45.8%	1.132%
40–64 years	10,100	(6,360 to 15,100)	3.88%	–0.734%	115,000	(96,900 to 136,000)	42.4%	–1.342%
≥65 years	1,600	(754 to 2,980)	1.69%	–0.721%	21,500	(16,000 to 27,200)	24.4%	–0.9932%
North Korea								
15–39 years	215	(105 to 418)	4.49%	–1.25%	2180	(1550 to 2710)	41.4%	–4.17%
40–64 years	128	(68 to 216)	2.89%	–1.31%	1460	(1120 to 1850)	33.3%	–8.12%
≥65 years	13	(4 to 29.7)	0.799%	–1.08%	154	(102 to 214)	16.3%	–6.96%
Taiwan (province of China)								
15–39 years	239	(129 to 423)	6.33%	–1.96%	1790	(1350 to 2190)	45.0%	–6.15%
40–64 years	179	(105 to 284)	3.86	–2.45	1460	(1150 to 1810)	32.9	–11.9
≥65 years	17.8	(6.10 to 36.4)	0.861%	–1.51%	252	(178 to 343)	14.5%	–10.4%
Oceania								
15–39 years	113	(17,3 to 192)	4.14%	–0.838%	668	(456 to 822)	23.6%	–3.23%
40–64 years	10	(1,74 to 22.3)	0.786%	–0.174%	105	(81 to 181)	76.3%	–1.606%
≥65 years	0	(0.00 to 0.00)	0	–0.0696%	7.9	(0.6 to 16.6)	32.0%	–0.6804%
American Samoa								
15–39 years	0.718	(0.000 to 1.82)	6.77%	–1.322%	2.91	(0.928 to 4.28)	37.5%	–2.41%
40–64 years	0.00950	(0.00 to 0.062)	0.133%	–0.200%	0.132	(0.050 to 0.550)	1.88%	–1.41%
≥65 years	0.000109	(0.00 to 0.001)	0.00857%	–0.0238%	0.00651	(0.00 to 0.0391)	0.36%	–0.513%
Cook Islands								
15–39 years	1.04	(0.439 to 1.39)	33.2%	15.1%	1.77	(0.663 to 31.2)	64.6%	25.5%
40–64 years	0.383	(0.188 to 0.592)	13.2%	11.6%	1.20	(0.842 to 1.50)	42.8%	37.1%
≥65 years	0.0466	(0.0190 to 0.0842)	3.94%	3.69%	0.287	(0.178 to 0.395)	35.3%	24.1%
Federated States of Micronesia								
15–39 years	0.210	(0.128 to 0.400)	10.2%	–0.50%	8.29	(5.12 to 10.6)	38.0%	–6.71%
40–64 years	0.0129	(0.00700 to 0.389)	1.06%	–1.66%	1.35	(0.267 to 2.78)	10.9%	–9.93%

(Continued from previous page)
Females	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)	Males	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)		
≥65 years	0·00297	0·116%	-0·416%	0·0905	4·46%	(0·0140 to 0·234)	-5·82%		
(0 to 0·0140)	0·00549		-1·52%	(0·0140 to 0·234)	0·0905	4·46%	(0·0140 to 0·234)	-5·82%	
Fiji 15–39 years	11·4	6·55%	1·13%	72·7	39·8%	(2·32 to 19·3)	(1·33 to 11·0)	(5·13 to 87·4)	(28·1 to 47·8)
40–64 years	1·55	1·34%	0·312%	16·5	12·8%	(0·266 to 3·41)	(0·229 to 2·93)	(6·33 to 27·2)	(5·26 to 22·6)
≥65 years	0·0584	0·190%	0·0403%	1·47	6·00%	(0·0600 to 1·82)	(0·0195 to 0·592)	(0·201 to 0·374)	(1·84 to 12·1)
Guam 15–39 years	0·723	0·18%	3·30%	16·0	49·9%	(0·316 to 9·69)	(1·10 to 33·8)	(9·72 to 20·2)	(30·4 to 63·3)
40–64 years	0·525	0·28%	1·32%	4·44	17·9%	(0·0020 to 1·86)	(0·0086 to 8·09)	(0·237 to 9·38)	(3·12 to 37·8)
≥65 years	0·0225	0·069%	0·166%	0·602	3·8%	(0·0128)	(0·153)	(0·064 to 2·96)	(2·3% to 22·5)
Kiribati 15–39 years	1·02	4·04%	-1·12%	5·23	21·8%	(0·0550 to 1·35)	(0·219 to 8·53)	(2·34 to 17·8)	(9·75 to 31·6)
40–64 years	0·064	0·501%	-0·52%	0·401	3·49%	(0·0128)	(0·199)	(0·915 to 0·172)	(1·96 to 21·7)
≥65 years	0·00219	0·0781%	-0·551%	0·0172	1·01%	(0·0140)	(0·500)	(-0·826 to 0·114)	(0·077)
Marshall Islands 15–39 years	0·474	4·14%	0·416%	3·51	32·1%	(0·0620 to 0·810)	(0·541 to 7·07)	(2·59 to 4·80)	(21·3 to 39·4)
40–64 years	0·0456	0·717%	0·103%	0·717	11·4%	(0·0050 to 0·112)	(0·0088 to 1·81)	(0·216 to 1·25)	(3·45 to 19·9)
≥65 years	0·00151	0·143%	0·0269%	0·0585	5·12%	(0·0603)	(0·571)	(-0·408 to 0·475)	(0·072)
Nauru 15–39 years	0·365	16·0%	-0·0133%	1·16	49·5%	(0·0521 to 0·595)	(2·42 to 26·1)	(0·841 to 1·36)	(36·1 to 58·2)
40–64 years	0·0364	3·59%	0·477%	0·231	24·1%	(0·0500 to 0·792)	(0·406 to 7·82)	(0·0984 to 0·360)	(3·03 to 37·7)
≥65 years	0·00356	0·672%	0·0504%	0·0070	12·5%	(0·00609)	(0·262)	(-2·33 to 1·94)	(3·73 to 24·2)
Niue 15–39 years	0·0602	21·9%	-0·382%	0·132	45·9%	(0·00709 to 0·101)	(2·57 to 36·8)	(0·8059 to 0·139)	(32·1 to 54·9)
40–64 years	0·0130	5·0%	0·781%	0·0642	23·7%	(0·0321)	(0·125)	(-5·73 to 6·99)	(7·12 to 40·1)
≥65 years	0·000706	0·639%	0·0096%	0·00871	11·5%	(0·00313)	(0·283)	(-2·31 to 2·05)	(1·37 to 23·6)
Northern Mariana Islands 15–39 years	0·795	12·2%	2·04%	3·01	42·1%	(0·0489 to 1·50)	(2·75 to 23·0)	(1·76 to 3·71)	(24·6 to 51·9)
40–64 years	0·131	1·57%	-0·0752%	1·22	13·8%	(0·428)	(0·513)	(-3·98 to 3·20)	(0·579 to 9·28)
≥65 years	0·00586	0·231%	0·0594%	0·128	7·09%	(0·0300)	(0·170)	(-1·19 to 1·25)	(0·056 to 1·88)
Palau 15–39 years	0·441	18·0%	-0·784%	1·64	46·3%	(0·020 to 0·852)	(1·31 to 34·7)	(0·825 to 2·22)	(23·3 to 62·7)
40–64 years	0·156	3·10%	-0·416%	0·128	7·09%	(0·017)	(0·112)	(-1·19 to 1·25)	(0·056 to 1·88)
≥65 years	0·0186	0·75%	0·605%	0·025	4·6%	(0·0300)	(0·170)	(-1·19 to 1·25)	(0·056 to 1·88)

(Table 1 continues on next page)
(Continued from previous page)

	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)
	≥65 years			≥65 years		
40–64 years	0.117	3.57% (0.0305 to 11.4)	-0.0146% (-7.43% to 6.34)	0.595		
≥65 years	0.00576	6.71% (0.03 to 2.77)	0.023% (-2.49% to 2.33)	0.0548		7.29% (0.002 to 0.163)
	≥65 years			≥65 years		
Solomon Islands	40–64 years	0.217 (0.084 to 1.3)	0.648% (-0.913% to 0.188)	0.086		4.14% (0.094% to 4.16)
≥65 years	0.164	0.62% (0.00901 to 0.360)	-0.38% (-0.42% to 0.044)	0.0472		4.38% (0.049% to 0.75)
	≥65 years			≥65 years		
Papua New Guinea	15–39 years	0.797 (0.075 to 7.08)	4.14% (-2.37 to 1.46)	0.472		19.6% (0.075 to 7.08)
≥65 years	0.150		-0.38% (-0.42% to 0.044)	0.0472		4.38% (0.049% to 0.75)
	≥65 years			≥65 years		
Samoan	15–39 years	0.797 (0.075 to 7.08)	4.14% (-2.37 to 1.46)	0.472		19.6% (0.075 to 7.08)
≥65 years	0.150		-0.38% (-0.42% to 0.044)	0.0472		4.38% (0.049% to 0.75)
	≥65 years			≥65 years		
Tokelau	15–39 years	0.280 (0.030 to 0.051)	11.5% (1.24 to 21.1)	0.086		4.78% (1.24 to 21.1)
≥65 years	0.0230		-0.93% (-2.37 to 1.04)	0.059		2.48% (0.059 to 1.04)
	≥65 years			≥65 years		
Tonga	15–39 years	0.869 (0.060 to 0.237)	3.84% (0.102 to 4.16)	0.018		2.51% (0.102 to 4.16)
≥65 years	0.0230		-0.93% (-2.37 to 1.04)	0.059		2.48% (0.059 to 1.04)
	≥65 years			≥65 years		
Tuvalu	15–39 years	0.869 (0.060 to 0.237)	3.84% (0.102 to 4.16)	0.018		2.51% (0.102 to 4.16)
≥65 years	0.0230		-0.93% (-2.37 to 1.04)	0.059		2.48% (0.059 to 1.04)
	≥65 years			≥65 years		
Vanuatu	15–39 years	0.467 (0.680 to 7.95)	7.57% (-4.93 to 3.82)	0.203		37.7% (14.4 to 24.8)
≥65 years	0.0230		-0.93% (-2.37 to 1.04)	0.059		2.48% (0.059 to 1.04)
	≥65 years			≥65 years		

(Table 1 continues on next page)
Age Group	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)			
Southeast Asia									
15–39 years	7610	5.55% (1.87 to 8.86)	-1.18% (-0.075 to 2.85)	49500	35.0% (27.6 to 39.9)	4.52% (1.91 to 10.4)			
40–64 years	2760	2.80% (1.61 to 4.04)	0.33% (0.439 to 1.19)	23600	24.7% (19.2 to 29.4)	8.49% (5.81 to 11.2)			
≥65 years	377	1.19% (0.607 to 1.86)	0.219% (-0.322 to 0.560)	2120	14.3% (9.37 to 18.2)	6.61% (4.49 to 8.43)			
Cambodia									
15–39 years	649	18.2% (8.26 to 26.3)	8.22% (2.69 to 13.9)	1580	41.7% (37.2 to 49.2)	11.7% (5.56 to 22.8)			
40–64 years	241	12.2% (7.65 to 17.0)	8.68% (5.37 to 12.2)	590	34.5% (28.6 to 39.5)	20.1% (12.3 to 27.1)			
≥65 years	124	1.29% (2.38 to 7.33)	3.61% (1.82 to 5.88)	69.4	20.4% (14.8 to 25.3)	14.7% (10.0 to 19.3)			
Indonesia									
15–39 years	375	6.67% (1.32 to 1.31)	-0.096% (-0.076 to 0.348)	4430	7.68% (4.21 to 10.4)	0.206% (-0.71 to 2.36)			
40–64 years	140	3.58% (0.072 to 0.274)	-1.022% (0.391 to 1.30)	1230	3.12% (2.07 to 5.11)	-0.56% (-2.64 to 0.574)			
≥65 years	124	0.129% (0.014 to 0.332)	-0.259% (-0.098 to 0.039)	83.7	1.05% (0.172 to 2.17)	-0.29% (-4.05 to 0.245)			
Laos									
15–39 years	459	29.1% (13.6 to 41.2)	3.42% (-5.69 to 17.5)	1060	66.1% (51.7 to 75.5)	2.90% (-3.39 to 35.9)			
40–64 years	108	14.3% (8.44 to 20.4)	2.52% (-3.87 to 9.10)	348	46.6% (33.8 to 57.7)	9.47% (-1.04 to 22.2)			
≥65 years	7.13	2.95% (1.76 to 7.41)	1.09% (-0.95 to 3.93)	37.4	25.3% (13.5 to 36.1)	7.30% (-1.34 to 16.3)			
Malaysia									
15–39 years	224	3.42% (1.17 to 5.62)	-0.659% (-2.41 to 1.38)	1130	15.6% (10.5 to 19.3)	-4.03% (-7.33 to -0.66)			
40–64 years	74.6	1.97% (0.882 to 3.28)	-1.40% (-2.90 to 0.116)	344	8.63% (5.02 to 12.1)	-5.60% (-8.50 to -2.50)			
≥65 years	9.24	0.81% (0.271 to 1.57)	-1.08% (-2.25 to -0.216)	39.2	15.9% (1.49 to 5.81)	-3.61% (-6.01 to -1.04)			
Maldives									
15–39 years	1.88	2.12% (0.081 to 5.99)	-0.947% (-4.03 to 1.53)	42.0	25.0% (9.87 to 39.7)	0.412% (-6.97 to 9.11)			
40–64 years	0.210	0.42% (0.014 to 1.45)	0.029% (-1.10 to 0.80)	7.65	10.0% (2.53 to 20.3)	4.73% (-2.32 to 12.1)			
≥65 years	0.0037	0.07% (0.0 to 0.347)	-0.218% (-0.461 to 0.207)	0.245	2.35% (0.163 to 6.50)	0.961% (-2.62 to 4.47)			
Mauritius									
15–39 years	19.8	8.67% (0.722 to 21.8)	-4.84% (-12.0 to 3.01)	121	51.9% (34.7 to 64.7)	-6.02% (-12.8 to 4.47)			
40–64 years	5.13	2.30% (0.364 to 5.55)	-2.05% (-4.40 to 0.80)	69.2	31.4% (17.9 to 44.2)	-7.35% (-35.1 to 3.35)			
≥65 years	0.501	0.564% (0.0404 to 1.92)	-0.762% (-2.77 to 0.224)	12.0	17.6% (6.55 to 28.2)	-5.92% (-13.6 to 3.42)			
Myanmar									
15–39 years	175	1.53% (0.314 to 2.94)	0.720% (-0.0482 to 1.39)	4010	36.7% (29.2 to 42.5)	12.6% (5.95 to 21.9)			
40–64 years	40.3	0.525% (0.140 to 1.10)	0.460% (0.129 to 0.912)	1770	26.7% (20.8 to 32.4)	18.8% (12.8 to 23.7)			
Country	15–39 years	≥65 years	40–64 years	15–39 years	≥65 years	40–64 years	15–39 years	≥65 years	40–64 years
--------------------------	-------------	-----------	-------------	-------------	-----------	-------------	-------------	-----------	-------------
Angola	214	40–64 years	15–39 years	1200	≥65 years	40–64 years	1200	≥65 years	40–64 years
Vietnam	1169	40–64 years	15–39 years	6790	≥65 years	40–64 years	6790	≥65 years	40–64 years
Thailand	15–39 years	40–64 years	15–39 years	679	15–39 years	40–64 years	679	15–39 years	40–64 years
Timor-Leste	15–39 years	40–64 years	15–39 years	484	15–39 years	40–64 years	484	15–39 years	40–64 years
Vietnam	15–39 years	40–64 years	15–39 years	1070	15–39 years	40–64 years	1070	15–39 years	40–64 years
Central sub-Saharan Africa	15–39 years	40–64 years	15–39 years	4950	15–39 years	40–64 years	4950	15–39 years	40–64 years
Angola	15–39 years	40–64 years	15–39 years	938	15–39 years	40–64 years	938	15–39 years	40–64 years

(Continued from previous page)
Central African Republic

Age Group	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)
≥65 years	514	(310 to 593)	-17·2 to 10·1	872	(513 to 1060)	11·1 to 28·7
40–64 years	3·04	(0·948 to 3·70)	1·06 to 8·7	20·9	(1·57 to 8·66)	47·8 to 16·8
15–39 years	680	(1·66 to 9·19)	-8·2 to 0·722	13·5	(1·08 to 1·65)	4·2 to 16·9

Congo (Brazzaville)

Age Group	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)
≥65 years	514	(310 to 593)	-17·2 to 10·1	872	(513 to 1060)	11·1 to 28·7
40–64 years	3·04	(0·948 to 3·70)	1·06 to 8·7	20·9	(1·57 to 8·66)	47·8 to 16·8
15–39 years	680	(1·66 to 9·19)	-8·2 to 0·722	13·5	(1·08 to 1·65)	4·2 to 16·9

Democratic Republic of the Congo

Age Group	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)
≥65 years	514	(310 to 593)	-17·2 to 10·1	872	(513 to 1060)	11·1 to 28·7
40–64 years	3·04	(0·948 to 3·70)	1·06 to 8·7	20·9	(1·57 to 8·66)	47·8 to 16·8
15–39 years	680	(1·66 to 9·19)	-8·2 to 0·722	13·5	(1·08 to 1·65)	4·2 to 16·9

Equatorial Guinea

Age Group	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)
≥65 years	514	(310 to 593)	-17·2 to 10·1	872	(513 to 1060)	11·1 to 28·7
40–64 years	3·04	(0·948 to 3·70)	1·06 to 8·7	20·9	(1·57 to 8·66)	47·8 to 16·8
15–39 years	680	(1·66 to 9·19)	-8·2 to 0·722	13·5	(1·08 to 1·65)	4·2 to 16·9

Gabon

Age Group	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)
≥65 years	514	(310 to 593)	-17·2 to 10·1	872	(513 to 1060)	11·1 to 28·7
40–64 years	3·04	(0·948 to 3·70)	1·06 to 8·7	20·9	(1·57 to 8·66)	47·8 to 16·8
15–39 years	680	(1·66 to 9·19)	-8·2 to 0·722	13·5	(1·08 to 1·65)	4·2 to 16·9

Eastern Sub-Saharan Africa

Age Group	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)
≥65 years	514	(310 to 593)	-17·2 to 10·1	872	(513 to 1060)	11·1 to 28·7
40–64 years	3·04	(0·948 to 3·70)	1·06 to 8·7	20·9	(1·57 to 8·66)	47·8 to 16·8
15–39 years	680	(1·66 to 9·19)	-8·2 to 0·722	13·5	(1·08 to 1·65)	4·2 to 16·9

Burundi

Age Group	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)
≥65 years	514	(310 to 593)	-17·2 to 10·1	872	(513 to 1060)	11·1 to 28·7
40–64 years	3·04	(0·948 to 3·70)	1·06 to 8·7	20·9	(1·57 to 8·66)	47·8 to 16·8
15–39 years	680	(1·66 to 9·19)	-8·2 to 0·722	13·5	(1·08 to 1·65)	4·2 to 16·9

(Table 1 continues on next page)
(Continued from previous page)

Country	15–39 years	40–64 years	≥65 years			
Comoros	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)
	(154 to 696)	(10 35 to 4 66)	(-5 35 to 1 67)	(41 41 to 16 3)	(1 41 to 1 50)	(-1 50 to 1 54)
	7 55	5 92	2 75			
Djibouti	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)
	(0 090 to 6 57)	(0 160 to 9 87)	(-4 22 to -1 01)	(0 167 to 3 10)	(1 21 to 6 8)	(-0 01 to 1 11)
	3 50	2 51	1 00			
Eritrea	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)
	(7 34 to 9 13)	(3 25 to 4 12)	(-3 07 to -0 24)	(6 56 to 12 20)	(1 32 to 13 8)	(-9 12 to 14 8)
	25 60	47 60	47 60			
Ethiopia	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)
	(1 48 to 9 0 1)	(3 42 to 13 7)	(-2 50 to -1 29)	(1 26 to 3 9)	(1 52 to 2 6)	(-5 84 to 2 6)
	6 50	3 29	4 30			
Kenya	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)
	(1 76 to 4 80)	(0 17 to 0 5)	(-1 02 to 1 2)	(2 69 to 7 1 4)	(1 32 to 13 8)	(-9 12 to 14 8)
	11 6	2 01	3 01			
Madagascar	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)
	(3 28 to 9 21)	(0 56 to 1 58)	(-4 90 to -1 63)	(8 91 to 21 7)	(1 18 to 1 7)	(-8 47 to 1 6)
	7 19	3 49	5 32			
Malawi	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)
	(3 15 to 7 0)	(0 74 to 4 12)	(-1 04 to 2 10)	(2 57 to 9 00)	(1 18 to 1 7)	(-9 85 to 1 6)
	2 72	4 35	5 32			
Mozambique	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)
	(3 29 to 6 2 8)	(1 07 to 1 0)	(-7 75 to -1 5)	(2 17 to 2 4)	(1 18 to 1 7)	(-8 47 to 1 6)
	4 75	3 70	4 75			
(Table 1 continues on next page)						
Botswana

Age Group	Females	Males
≥65 years	19.5	20.4
40–64 years	7.39	7.80

Rwanda

Age Group	Females	Males
≥65 years	14.9	15.3
40–64 years	6.05	6.44

Somalia

Age Group	Females	Males
≥65 years	0.228	0.237
40–64 years	0.101	0.104

South Sudan

Age Group	Females	Males
≥65 years	0.00491	0.00522
40–64 years	0.008381	0.00872

Tanzania

Age Group	Females	Males
≥65 years	0.00811	0.00872
40–64 years	0.0008811	0.00098

Uganda

Age Group	Females	Males
≥65 years	0.000872	0.00098
40–64 years	0.0008811	0.00098

Zambia

Age Group	Females	Males
≥65 years	0.00098	0.00103
40–64 years	0.0008811	0.00098

Southern sub-Saharan Africa

Age Group	Females	Males
≥65 years	0.00098	0.00103
40–64 years	0.0008811	0.00098

(Continued from previous page)

Age Group	Females	Males
≥65 years	0.00098	0.00103
40–64 years	0.0008811	0.00098

(Continued on next page)
(Continued from previous page)

	Females	Males				
	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)
40–64 years	21 8 (11.1 to 30.4)	8.40% (4.29 to 11.7)	0.055% (-2.99 to 3.08)	73.6 (43.9 to 89.9)	30.2% (18.0 to 36.9)	0.425% (-5.20 to 3.62)
≥65 years	1.61 (0.807 to 2.59)	2.70% (1.36 to 4.35)	-0.297% (-2.06 to 1.42)	5.63 (3.24 to 7.66)	13.8% (7.32 to 18.8)	-0.856% (-5.20 to 3.62)

Equatorial Guinea

	Females	Males				
	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)
40–64 years	18 0 (3.24 to 23.7)	6.90% (1.24 to 9.08)	-0.370% (-2.98 to 1.82)	67.3 (59.2 to 74.8)	17.5% (24.2 to 30.5)	1.97% (-2.30 to 6.54)
≥65 years	6.49 (3.80 to 8.67)	2.30% (1.38 to 4.19)	-1.38% (-4.28 to 1.90)	23.9 (17.2 to 28.0)	26.8% (19.3 to 31.5)	0.044% (-6.35 to 4.27)

	Females	Males				
	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)
40–64 years	1.34 (0.847 to 1.89)	6.59% (3.21 to 7.19)	-1.15% (-4.37 to 0.97)	2.68 (1.94 to 3.33)	18.1% (13.1 to 22.4)	-0.297% (-5.11 to 4.46)

Lesotho

	Females	Males				
	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)
40–64 years	83 5 (3.16 to 113)	20.0% (0.759 to 27.1)	-1.30% (-8.48 to 4.48)	202 (169.2 to 220.0)	49.2% (41.4 to 53.6)	2.87% (-2.63 to 8.45)
≥65 years	21 1 (7.27 to 32.8)	12.0% (4.13 to 18.6)	-0.94% (-5.77 to 3.69)	61.0 (25.5 to 73.7)	41.6% (17.4 to 52.7)	0.264% (-7.01 to 8.37)

Namibia

	Females	Males				
	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)
40–64 years	141 (2.3 to 180)	26.8% (4.40 to 34.1)	-1.90% (-10.3 to 5.90)	265 (236 to 287)	52.6% (46.0 to 56.9)	2.46% (-3.62 to 8.70)
≥65 years	95 8 (33.1 to 71.4)	13.0% (13.9 to 30.0)	4.00% (1.40 to 6.10)	92 6 (54.8 to 111)	42.4% (26.1 to 53.0)	0.041% (-2.07 to 19.1)

South Africa

	Females	Males				
	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)
40–64 years	250 (424 to 2740)	18.0% (3.54 to 22.9)	2.37% (-2.50 to 7.36)	5800 (5210 to 6270)	47.4% (42.6 to 51.3)	3.68% (-1.68 to 8.72)
≥65 years	93 1 (539 to 1220)	10.0% (8.51 to 17.3)	-2.66% (-6.68 to 1.21)	2680 (1880 to 3090)	42.7% (30.0 to 49.2)	-3.30% (-8.93 to 2.60)

Zimbabwe

	Females	Males				
	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)
40–64 years	210 (8.03 to 298)	6.28% (0.244 to 9.07)	-4.42% (-8.05 to 0.882)	3410 (1200 to 1540)	47.6% (40.5 to 51.8)	-7.92% (-13.4 to -2.02)
≥65 years	61.1 (22.0 to 95.0)	4.76% (1.72 to 7.40)	-3.79% (-7.75 to -0.070)	468 (200 to 590)	42.1% (17.9 to 53.1)	-4.31% (-11.5 to 5.58)

Western sub-Saharan Africa

	Females	Males				
	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)
40–64 years	11 000 (6610 to 16 500)	11.4% (6.83 to 17.1)	-0.675% (-4.29 to 5.43)	27 700 (21 700 to 30 400)	31.5% (24.3 to 34.6)	0.576% (-2.91 to 10.2)
≥65 years	40 500 (2730 to 5620)	11.5% (7.73 to 15.9)	0.584% (-2.35 to 4.22)	9890 (7470 to 12 100)	30.5% (23.0 to 37.3)	2.34% (-2.11 to 10.5)

	Females	Males				
	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)
40–64 years	470 (250 to 694)	6.74% (3.59 to 9.95)	-0.544% (-2.84 to 2.52)	1360 (918 to 1720)	21.2% (14.3 to 26.5)	1.14% (-2.88 to 6.32)
≥65 years	46 8 (25.0 to 10.2)	5.28% (3.04 to 5.19)	-1.19% (-5.34 to 2.25)	18.7 (7.31 to 29.8)	11.5% (4.49 to 18.3)	1.62% (-3.80 to 7.19)

* (Table 1 continues on next page)
Articles

(Continued from previous page)

Females	Proportion of population (%)	Percentage change since 1990 (%)	Males	Proportion of population (%)	Percentage change since 1990 (%)
Number (thousands)			Number (thousands)		
Burkina Faso			Cameroon		
15–39 years	505 (351 to 680)	11.2% (7.8 to 15.1)	15–39 years	1670 (872 to 2670)	14.7% (7.3 to 21.9)
	127,5 (133 to 230)	14.5% (11.5 to 18.5)	15–39 years	512 (283 to 765)	13.4% (11.3 to 19.4)
≥65 years	18.5 (9.8 to 29.0)	5.1% (2.7 to 8.0)	15–39 years	43.6 (11.0 to 77.5)	9.9% (3.0 to 17.6)
	127,5 (133 to 230)	14.5% (11.5 to 18.5)	≥65 years	7.89 (0.3 to 20.6)	3.9% (0.2 to 7.0)
Cameroon			Chad		
15–39 years	150 (6.4 to 25.2)	12.4% (5.3 to 21.0)	15–39 years	701 (166 to 2660)	21.2% (5.2 to 39.3)
	65 (26.4 to 90)	6.3% (4.5 to 10.4)	15–39 years	139 (30.9 to 264)	14.5% (10.0 to 19.3)
	8.4% (5.3 to 13.4)	-3.96% (6.7 to 14.3)	≥65 years	5.31 (0.11 to 2.52)	2.68% (1.5 to 3.7)
≥65 years	4.36 (1.3 to 7.7)	1.3% (0.5 to 2.6)	≥65 years	7.89 (0.3 to 20.6)	4.29% (0.2 to 7.0)
Chad			Côte d'Ivoire		
15–39 years	918 (476 to 1450)	14.9% (8.7 to 26.8)	15–39 years	918 (476 to 1450)	19.9% (12.2 to 27.6)
	277 (145 to 431)	14.4% (7.6 to 22.7)	15–39 years	277 (145 to 431)	14.4% (7.6 to 22.7)
≥65 years	29.7 (8.5 to 54.8)	8.7% (2.5 to 16.0)	≥65 years	29.7 (8.5 to 54.8)	8.7% (2.5 to 16.0)
≥65 years	1.43 (0.1 to 2.8)	3.6% (0.8 to 7.3)	≥65 years	1.43 (0.1 to 2.8)	3.6% (0.8 to 7.3)
Côte d'Ivoire			The Gambia		
15–39 years	52.5 (23.8 to 91.8)	10.6% (4.7 to 18.2)	15–39 years	52.5 (23.8 to 91.8)	10.6% (4.7 to 18.2)
	14.3 (6.7 to 23.1)	9.0% (4.2 to 14.6)	15–39 years	14.3 (6.7 to 23.1)	9.0% (4.2 to 14.6)
≥65 years	1.36 (0.08 to 2.8)	3.6% (1.2 to 5.9)	≥65 years	1.36 (0.08 to 2.8)	3.6% (1.2 to 5.9)
The Gambia			Ghana		
15–39 years	13.1 (5.2 to 22.1)	18.0% (7.2 to 30.4)	15–39 years	13.1 (5.2 to 22.1)	18.0% (7.2 to 30.4)
	3.85 (168 to 635)	12.7% (5.6 to 21.0)	15–39 years	3.85 (168 to 635)	12.7% (5.6 to 21.0)
≥65 years	3.36 (6.5 to 69.6)	9.8% (0.9 to 10.3)	≥65 years	3.36 (6.5 to 69.6)	9.8% (0.9 to 10.3)
Ghana			Guinea		
15–39 years	47.8 (11.4 to 106)	18.2% (4.3 to 4.0)	15–39 years	47.8 (11.4 to 106)	18.2% (4.3 to 4.0)
	12.5 (4.0 to 24.1)	3.9% (0.4 to 2.6)	15–39 years	12.5 (4.0 to 24.1)	3.9% (0.4 to 2.6)
≥65 years	1.8% (0.4 to 4.0)	0.9% (0.2 to 0.9)	≥65 years	1.8% (0.4 to 4.0)	0.9% (0.2 to 0.9)

(Table 1 continues on next page)
Females	Males						
Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)	Number (thousands)	Proportion of population (%)	Percentage change since 1990 (%)		
a65 years	109	0.52%	-0.57%	(10.05 to 2.78)	5.05%	1.54%	(3.89 to 6.32)
Guinea-Bissau	55	12%	-0.40%	(6.03 to 20.3)	31%	0.974%	(2.7 to 11.4)
40–64 years	173	12.1%	0.289%	(6.66 to 18.0)	26.9	29.3%	(19.8 to 37.8)
a65 years	130	4.20%	-1.00%	(1.25 to 7.79)	3.65	17.1%	(9.6 to 24.2)
Mauritania	162	16%	0.0744%	(9.84 to 23.7)	378	39.8%	(30.0 to 45.2)
15–39 years	132	14%	-0.334%	(6.2 to 23.1)	273	6.59%	(5.09 to 7.95)
a65 years	58	1.68%	-0.621%	(0.729 to 2.74)	20.6	6.26%	(3.66 to 8.84)
Mali	99.6	16%	-0.875%	(13.97 to 19.2)	55.7	7.02%	(0 to 11.4)
15–39 years	36	1%	-0.06%	(0.102 to 0)	0.385	0.123%	(0 to 2.44)
a65 years	10	0%	-0.0000223%	(0 to 0)	0	0%	(0 to 0)
Mauritanian	127	1%	-0.875%	(9.17 to 27.2)	127	7.02%	(0.10 to 0)
15–39 years	97	1.27%	-0.0206%	(0.003377)	0	0%	(0 to 0)
a65 years	10	0%	-0.0000223%	(0 to 0)	0	0%	(0 to 0)
Niger	234	5%	-1.23%	(2.15 to 4.0)	127	22%	(0 to 2.79)
15–39 years	25	1.78%	0.58%	(0.14 to 0.63)	76.8	5.98%	(0 to 1.93)
a65 years	0.599	0.210%	0.112%	(0.0000341 to 0.0104)	2.79	1.02%	(0 to 0.0138 to 0.91)
Nigeria	4390	9%	-0.222%	(0.42 to 6.62)	11.30	27%	(2.3 to 31.4)
15–39 years	2160	14%	-0.26%	(8.76 to 16.1)	487	32%	(26.1 to 37.7)
a65 years	307	9.71%	0.351%	(5.59 to 14.0)	754	26%	(18.6 to 32.0)
São Tomé and Príncipe	5.6	12%	-1.67%	(7.08 to 19.4)	16.7	37%	(30 to 42.7)
15–39 years	4.6	12%	0.447%	(7.08 to 19.4)	7.42	37%	(29 to 45.3)
a65 years	0.227	0.29%	(1.37 to 3.82)	(0 to 0.0129 to 0.21)	0.95	26%	(16.6 to 34.8)
Senegal	191	6%	-0.01%	(0.695 to 15.9)	799	25%	(9.13 to 33.5)
15–39 years	129	6%	-0.01%	(0.695 to 15.9)	799	25%	(9.13 to 33.5)
(Table 1 continues on next page)							
Discussion

We show that the estimation of the health effects associated with alcohol use requires consideration of
both the relationship between alcohol consumption and disease outcomes, and the observed disease rates in each population. We found that the population-level health risks associated with low levels of alcohol consumption varied across regions and were greater for younger populations than for older populations. Although we did not find significant differences in the risks of ill health by sex or by year, we did find that males made up 76·9% (95% UI 73·0–81·3) of the population consuming harmful amounts of alcohol in 2020. Notably, 1·03 billion (0·851–1·19) males and 312 million (199–432) females drank harmful amounts of alcohol in excess of the NDE in 2020. Harmful use of alcohol was particularly concentrated in males aged 15–39 years, primarily in Australasia, western Europe, and central Europe. These findings highlight the need for tailored guidelines that discourage alcohol consumption among young people, as well as alcohol control policies and interventions that are targeted especially towards young males.

Understanding the variation in the level of alcohol consumption that minimises the risk of ill health for populations can aid in setting effective consumption guidelines, supporting alcohol control policies, monitoring progress in reducing harmful alcohol use, and designing public health risk messaging. Most alcohol consumption guidelines for the general population combine recommendations to avoid alcohol use with the definition of lower-risk alcohol consumption thresholds, which tend to vary between 8 g and 42 g of alcohol per day for females, and between 10 g and 52 g of alcohol per day for males. Generally, thresholds are one standard drink greater for men than for women, and some lower-risk thresholds are framed in units of weekly consumption that come with a recommendation to avoid alcohol entirely for several days of the week.

In our analysis, the population-specific TMREls ranged between 0 (95% UI 0–0) and 0·603 (0·400–1·00) standard drinks per day among individuals aged 15–39 years across world regions, and the NDEs ranged between 0 (0–0) and 1·75 (0·698–4·30) standard drinks per day among individuals aged 15–39 years across world regions in 2020. Even if a conservative approach is taken and the lower bound of the uncertainty interval is used to set policy recommendations rather than the mean, this implies that the recommended level of alcohol consumption in existing
low consumption recommendations is too high for younger populations. Our estimates, based on currently available evidence, also do not support low consumption guidelines that differ by sex. Given the known difficulties associated with translating evidence into changes in consumer behaviour, clear messaging around updates to drinking guidelines will be crucial to ensure the full improvements are realised.

One key distinction between this study and existing recommendations on alcohol consumption is that our estimates focus on minimising health loss across all alcohol-attributable outcomes in a population. Thresholds exist for different purposes; in terms of injury prevention, several countries have moved to a zero-tolerance threshold that is consistent with evidence of the entirely harmful effect of alcohol consumption on injuries. Furthermore, individual-level as opposed to population-level risk minimisation will depend on individual-level factors, including comorbid conditions and the use of pharmaceuticals, which are more prevalent among older populations. Our results for older adults should be interpreted in the context of their additional uncertainty.2,43 Approaches to minimising individual-level risk are beyond the scope of this study and need to take into consideration not only alcohol use and specific health outcomes, but also interactions between environmental, genetic, and behavioural factors, as well as the societal and health system context of individuals.

Broadly, this analysis highlights the need to consider the existing prevalence of diseases and injuries for specific populations when determining the total harms posed by a risk factor. Although the biological effects of alcohol are unlikely to change across populations, except in the case of specific genetic interactions such as variants in alcohol dehydrogenase, disease rates vary substantially across regions, age, sex, and time.4 For example, alcohol use poses a greater risk to population health in areas with a high prevalence of tuberculosis than in areas with low prevalence. Although this consideration is perhaps most important for setting effective policy recommendations for risks with both harmful and protective relationships with disease, such as alcohol use and red meat consumption, it has implications for all risk factors. As countries navigate the epidemiological transition and their background rates of disease evolve from infectious diseases and injuries to non-communicable diseases, policy recommendations will need to evolve as well.

It is important to consider our findings in the context of those published by the GBD 2016 Alcohol Collaborators in 2018.1 Compared to that report, the analysis presented here includes three major changes: we updated five of the relative risk curves; we weighted the relative risk curves using DALY rates estimated as part of GBD 2020 rather than GBD 2016; and we estimated the TMREL separately for each region, age, sex, and year. Although the GBD 2016 Alcohol Collaborators found that the global, age-standardised, both-sexes TMREL was zero standard drinks per day, computing the global TMREL with the first two of these updates, we found that the global TMREL was still quite low, at 0·511 (95% UI 0·400–0·700) standard drinks per day. Re-estimating the TMREL with updated 2020 DALY weights but the former relative risk curves suggests a global TMREL of 0·534 (0–1·00) standard drinks per day. Region-specific, age-specific, and sex-specific differences between these approaches are summarised in appendix 2 (pp 45–55). Importantly, the differences across TMREL by region and age hold even with the relative risk curves estimated in 2016. The more nuanced analysis in the present study, where we explored the risks to ill health by age and region, represents a major step forward in our understanding of how to minimise health loss due to alcohol consumption across the world.

One challenge associated with using observational studies to measure the causal effect of alcohol consumption on health is the potential for the introduction of various forms of bias, including reverse causation, selection bias, and residual confounding. Mendelian randomisation is a method that attempts to mitigate bias by using genetic variation as a proxy for risk exposure.15 Although a small number of Mendelian randomisation studies have been done on alcohol use to date, a recent meta-analysis reported that those done on cardiovascular disease and diabetes had varied in their findings, with 67% of studies on cardiovascular disease and 75% of studies on diabetes reporting a null association with alcohol.1 However, only five of 24 studies examined whether alcohol had a non-linear relationship with these health outcomes. As additional Mendelian randomisation studies from diverse populations are increasingly published, they have the potential to improve the evidence base, and estimates should be regularly revised to reflect new evidence.

This study had various limitations that should be taken into account when interpreting the findings. First, we did not incorporate patterns of drinking, and therefore did not distinguish between individuals who infrequently engage in heavy episodic drinking and those who consume the same amount of alcohol over several days.6 Manthey and colleagues6 estimated that in 2018, 20% of adults engaged
in heavy episodic drinking—the consumption of 60 g or more of alcohol on a single occasion—over the past month. Second, due to a paucity of studies reporting a dose–response relationship between the risk of alcohol use and incidence of and mortality from alcohol use disorders, the burden of alcohol use disorders was not included in the TMREL calculation. As shown by the sensitivity analyses, which used conservative hypothetical relative risk curves for alcohol use disorder and alcoholic cardiomyopathy, inclusion of these diseases results in slightly lower estimates of TMREL and NDE, particularly among males in eastern Europe and in individuals aged 30–54 years globally. The decreases in the TMREL and NDE in the sensitivity scenarios were found to be quite small, since the risk of these two conditions is likely to be concentrated at higher levels of consumption and in younger adults, resulting in minimal impact on estimates of the TMREL and NDE. Third, although we attempted to adjust for the impacts of confounding and bias in our meta-regressions, it is possible that relative risk estimates did not account and adjust for all sources of bias, including measurement bias and selection bias, as well as the potential impacts of reverse causality. Fourth, studies reporting the relative risks of alcohol use were based on self-reported alcohol consumption, which is subject to social desirability and recall biases. Fifth, we did not consider differences in risk by type or quality of alcohol. Sixth, the weights used within the weighted alcohol-attributable relative risk curve used DAILY estimates that could be due to alcohol use. However, this limitation would only have had a marginal effect on estimates of the TMREL and NDE. Seventh, our estimates of the proportion of the population consuming alcohol in excess of the NDE were derived from alcohol consumption data collected through 2019. Because of delays in routine data collection on risk factors caused by the COVID-19 pandemic, we forecasted our estimates to obtain a time series through 2020. As a result, the estimates do not reflect changes in consumption patterns associated with the pandemic. Last, our results did not include health conditions with burgeoning evidence indicating a relationship with alcohol use, such as major depressive disorder, generalised anxiety disorder, or dementia, given the current scarcity of sufficient evidence to support a meta-analysis and the potential for reverse causality. Inclusions of these outcomes would possibly reduce estimates of the TMREL and NDE.

In conclusion, the relationship between moderate alcohol use and health has increased and has a great impact on controversy in the scientific literature. Given that the available evidence suggests that low levels of alcohol consumption are associated with a lower risk of some disease outcomes and an increased risk of others, alcohol consumption recommendations should take into account the full epidemiological profile that includes the background rates of disease within populations. The findings of this study support the development of tailored guidelines and recommendations on alcohol consumption by age and across regions and highlight that existing low consumption thresholds are too high for younger populations in all regions. Additionally, our results suggest that guidelines should not incorporate sex-specific recommendations, given the absence of variation in TMREL and NDE by sex across geographies and locations. Finally, recognising that the majority of the world’s population consuming harmful amounts of alcohol are young adults and predominantly young males, in order to minimise health loss due to alcohol consumption it is important to prioritise interventions targeted at these demographic groups.
School of Medicine (Prof J A Singh MD), University of Alabama at Birmingham, Birmingham, AL, USA; Department of Population and Health (A Seidu MPhil), University of Cape Coast, Cape Coast, Ghana; College of Public Health, Medical and Veterinary Sciences (A Seidu MPhil), James Cook University, Townsville, QLD, Australia; Department of Biotechnology (Prof N Senthil Kumar PhD), Mizoram University, Aizawl, India; National Heart, Lung, and Blood Institute (A Seylani BS), National Institute of Health, Rockville, MD, USA; Center for Biomedical Information Technology (P Shu PhD), Shenzhen Institutes of Advanced Technology, Shenzhen, China; Neuroimmunology Department (S Shahrooki MD), Universal Scientific Research Network (USERN), Tehran, Iran; Independent Consultant, Karachi, Pakistan (M A Shazlih MD); Infectious Diseases Department (Prof M Z Shakhmardanov PhD), Department of Infectious Diseases and Epidemiology (A A Skyabinina MD), Progorov Russian National Research Medical University, Moscow, Russia; School of Medicine (M Shams-Beyravan MSc), Alborz University of Medical Sciences, Karaj, Iran; National Institute of Infectious Diseases, Tokyo, Japan (M Shigematsu MSc); Finnish Institute of Occupational Health, Helsinki, Finland (R Shiri PhD); Public Health Dentistry Department (Prof K M Shrivakumar PhD), Krishna Institute of Medical Sciences Deemed to be University, Karad, India; Department of Clinical Immunology and Hematology (V Shivarow PhD), Sofia University "St. Kliment Ohridski", Sofia, Bulgaria; Department of Psychology (Prof I D Sigfusdottr PhD), Reykjavik University, Reykjavik, Iceland; Portuguese Institute of Sport and Youth, Lisbon, Portugal (N T d Silva MPH); Medicine Service (Prof J A Singh MD), US Department of Veterans Affairs (VA), Birmingham, AL, USA; Department No.16 (Y Y Skyabinina MD), Moscow Research and Practical Centre on Addictions, Moscow, Russia; Division of Injury Prevention (Prof D A Sleet PhD), The Bizzell Group, Atlanta, GA, USA; Rollins School of Public Health (Prof D A Sleet PhD), Emory University, Atlanta, GA, USA; Department of Psychiatry (M Solmi MD), University of Ottawa, Ottawa, ON, Canada; Department of Nursing (Y SOLOMON MSc), Dire Dawa University, Dire Dawa, Ethiopia; Taib Institute for Research on Alzheimer’s Disease and the Aging Brain (S Song PhD). Columbia University Medical Center, New York, NY, USA; Department of Land Surveying and Geo-Informatics (T Song PhD), Hong Kong Polytechnic University, Hong Kong, China: Laboratory of Public Health Indicators Analysis and Health Digitalization (S Soshnikov PhD), Moscow Institute of Physics and Technology, Moscow, Russia; Hull York Medical School (I N Soyiiri PhD), University of Hull, Hull City, UK; Department of Community Medicine and Family Medicine (Prof S H Subha MD), All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, India; Carlos III Health Institute (Prof R Tabarés-Seisdedos PhD), Biomedical Research Networking Institute, Aizawl, India; National Institute of Infectious Diseases, Tokyo, Japan; UK; Competence Center of Mortality-Follow-Up of the German National Cohort (R Westerman DSc), Federal Institute for Population Research, Wiesbaden, Germany; Department of Community Medicine (N D Wickramasinghe MD), Rajarata University of Sri Lanka, Anuradhapura, Sri Lanka; Department of Endocrinology, First Affiliated Hospital (Prof S Xu PhD), University of Science and Technology of China, Hefei, China; School of Medicine and Dentistry (Prof S Xu PhD), University of Rochester, Rochester, NY, USA; Cancer Epidemiology and Prevention Research (J L Yang PhD), Alberta Health Services, Calgary, BC, Canada; Department of Oncology (J L Yang PhD), University of Calgary, Calgary, AB, Canada; Department of Health Management (A Yigit PhD, V Yigit PhD), St George University Hospital, Toronto, ON, Canada; Department of Neuropsychopharmacology (N Yonemoto PhD), National Center of Neurology and Psychiatry, Kodaira, Japan; Department of Public Health (N Yonemoto PhD), Juntendo University, Tokyo, Japan; Duke Global Health Institute (S Zadeh MS), Duke University, Durham, NC, USA; Faculty of Medicine (Prof S Harran MD), Islamic Azad University, Tehran, Iran; Research and Development Department (I Zare BS), Sina Medical Biochemistry Technologies, Shiraz, Iran; Department of Bioengineering and Therapeutic Sciences (Prof M S Zastrozhin PhD), University of California San Francisco, San Francisco, CA, USA; Addictology Department (Prof M S Zastrozhin PhD), Russian Medical Academy of Continuous Professional Education, Moscow, Russia; Peoples’ Friendship University of Russia, Moscow, Russia (A Zastrozhina PhD); Health Technology Assessment Unit (Y Z Zuniga BS), Department of Health Philippines, Manila, Philippines; #MentalHealthPH, Inc., Quezon City, Philippines (Y Z Zuniga BS).

Contributors
Please see appendix 1 (pp 50–55) for more detailed information about individual author contributions to the research, divided into the following categories: managing the overall research enterprise; writing the first draft of the manuscript; primary responsibility for applying analytical methods to produce estimates; primary responsibility for seeking, cataloguing, extracting, or cleaning data; developing methods or computational machinery; providing critical feedback on methods or results; drafting the manuscript or revising it critically for important intellectual content; and managing the estimation or publications process. Members of the core research team for this topic area had full access to the underlying data used to generate estimates presented in this Article. All other authors had access to and reviewed estimates as part of the research evaluation process, which includes additional stages of formal review.

Declaration of interests
O M Adebayo reports grants or contracts from Merck Foundation and Servier Nigeria; payment or honoraria for lectures, presentations, speakers bureaus, manuscript writing, or educational events from Merck Foundation; support for attending meetings or travel from Servier Nigeria; and a leadership or fiduciary role in a board, society, committee or advocacy group, paid or unpaid, with the Nigerian Association of Resident Doctors; all outside the submitted work. S Afral reports honorary participation on the Institutional Review Board of King Edward Medical University (Lahore, Pakistan), the Quality Enhancement Cell at Fatima Jinnah Medical University (Lahore, Pakistan), and the Corona Expert Advisory Group (Pakistan); an unpaid leadership or fiduciary role in board, society, committee or advocacy group, with the Pakistan Society of Community Medicine (Prof T N Tran PhD), Hanoi Medical University & Public Health, Pakistan Association of Medical Editors, and Pakistan Society of Medical Infections Diseases; all outside the submitted work. R Ancuceanu reports consulting fees from AbbVie; payment or honoraria for lectures, presentations, speakers bureaus, manuscript writing or educational events from AbbVie, B. Braun Medical, Sandox, and Laropharm; all outside the submitted work.
work. P Akorpar reports support for the present manuscript via funding from the School of Medicine and Public Health, The University of Newcastle (Callaghan, NSW, Australia); all outside the submitted work. Support from Hunter New England-Population Health and Hunger Medical Research Institute, Australia. M Auslos reports a research grant from the Romanian National Authority for Scientific Research and Innovation, CNDS-UEFISCVIDI (project number: PN-III-P4-ID-PCCF-2016-0084; title: “Understanding and modelling time-space patterns of psychology-related inequalities and polarization”) outside the submitted work. T Bärnighausen reports grants from the European Union (Horizon 2020 and EIT Health), German Research Foundation (DFG), US National Institutes of Health, German Ministry of Education and Research, Alexander von Humboldt Foundation, Else-Krönner Fresenius- Foundation, Wellesome Trust, Bill & Melinda Gates Foundation, KI, Joint United Nations Programme on HIV/AIDS (UNAIDS), World Health Organization; consulting fees from KI for the OSCAR initiative in Vietnam; participation on a Data Safety Monitoring Board or Advisory Board with National Institutes of Health (US)-funded study “Healthy Options” (PIs: Smith Fiewzi, Kaayu) as Chair of the Data Safety and Monitoring Board, with the German National Committee on the “Future of Public Health Research and Education”, as chair of the scientific advisory board to the EDCTP Evaluation, as a member of the UNAIDS Evaluation Expert Advisory Committee, as a National Institutes of Health (US)-funded study “Harm Reduction Approaches to HIV/AIDS (PPHA)”, with the US National Academies of Sciences, Engineering, and Medicine’s Committee for the “Evaluation of Human Resources for Health in the Republic of Rwanda under the President’s Emergency Plan for AIDS Relief (PEPFAR)”, with the University of Pennsylvania Population Aging Research Center (PARC) as an External Advisory Board Member; leadership or fiduciary role in a board, society, committee or advocacy group, paid or unpaid, with the Global Health Hub Germany (which was initiated by the German Ministry of Health) as a co-chair; all outside the submitted work. S M M Blaskar reports grants or contracts from the NSW Ministry of Health, Australia; a leadership or fiduciary role in a board, society, committee or advocacy group, paid or unpaid, with the Rotary Club of Sydney as board director, with the International Rotary Fellowship of Healthcare Professionals (UK) as board director, with Global Health & Migration Hub Community, Global Health Hub Germany, Berlin as a chair or manager; all outside the submitted work. J M Castaldi-Maia reports grants or contracts from Pfizer (Independent Grants for Learning and Change) and the French National Institute for Cancer (INCA); consulting fees from l’Oreal Mental Health Wellness International Board; all outside the submitted work. S Costanzo reports a research grant from the European Foundation for Alcohol Research (ERARB) (ID EA1676: 2018-2020); payment or honoraria for lectures, presentations, speakers bureaus, manuscript writing or educational events from The Dutch Beer Institute Foundation - The Brewers of Europe as a member of the Organizing Committee and speaker for the 9th European Beer and Health Symposium (Brussels 2019), and for giving a lecture at the 13th European Nutrition Conference FENS 2019 (Dublin), sponsored by the Beer and Health Initiative (The Dutch Beer Institute foundation - The Brewers of Europe); all outside the submitted work. I Filip reports financial or non-financial support from the Avicenna Medical and Clinical Research Institute (California, USA). R C Franklin reports leadership or fiduciary role in board, society, committee or advocacy group, paid or unpaid with Kidsafe. Farmsafe, Royal Life Saving Society – Australia, and PHAA – Injury Prevention SIG outside the submitted work. C Herteliu reports research grants from the Romanian Ministry of Research Innovation and Digitalization, MCID (ID-385-CTR-42-PFE-2021, Jan 2022-Jun 2023. “Enhancing institutional performance through development of infrastructure and transdisciplinary research ecosystem within socio-economic domain – PERFECTIS”), the Romanian National Authority for Scientific Research and Innovation, CNDS-UEFISCVIDI (PN-III-P4-ID-PCCF-2016-0084, October, 2018, to September, 2022. “Understanding and modelling time-space patterns of psychology-related inequalities and polarization”; PN-III-P2-1-L- SOL-2020-2-0351, June, 2020, to October, 2020. “Approaches within public health management in the context of COVID-19 pandemic”); and the Ministry of Labour and Social Justice, Romania (30/PSCD/2018, September, 2018, to June, 2019, “Agenda for skills Romania 2020-2025”).
acknowledges the support from CNPq (level 1D). J McGrath was supported by the Danish National Research Foundation (Niels Bohr Professor). J McGrath is employed by the Queensland Centre for Mental Health Research (Australia), which receives support from the Queensland Health Department. C Parry acknowledges institutional support from the Competence Cluster for Developmental and Intellectual Disabilities, MCID, project number PN-III-P4-ID-PCCF-2016-0084. C Ciochina acknowledges the support from the Romanian National Authority for Scientific Research and Innovation, CNCS-UEFISCDI, project number PN-III-P4-ID-PCCF-2016-0084. C Herteliu is partially supported by a grant from the Romanian National Authority for Scientific Research and Innovation, CNCS-UEFISCDI, project number PN-III-P4-ID-PCCF-2016-0084. C Herteliu is partially supported by a grant from the Romanian Ministry of Research, Innovation and Digitalization, MCID, project number ID-585-CTR-42-PFE-2021. S Hussain was supported by the Operational Programme Research, Development and Education – Project, Postdoc2MUNI (No. CZ.02.2.69/0.0/0.0/18_035/0006592). S M S Islam is funded by the National Health and Medical Research Council and received funding from the National Heart Foundation of Australia. The Serbian part of this GBD-related contribution has been co-financed through Grant O1 175 O14 of the Ministry of Education Science and Technological Development of the Republic of Serbia. M Kivimäki was supported by the Wellcome Trust (204143/Z/18/Z), the UK Medical Research Council (MR/U108676/1), the US National Institute on Aging (R01AG056677), and the Academy of Finland (350426). K Krishnan is supported by the UGC Centre of Advanced Study (Phase II), awarded to the Department of Anthropology, Panjab University, Chandigarh, India. B Lacey acknowledges support from the UK Biobank, funded largely by the UK Medical Research Council and Welcome. S Lorkowski acknowledges institutional support from the Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig (Germany; German Federal Ministry of Education and Research; grant agreement number 01EL1808A). G Lucchetti received a productivity scholarship from the Brazilian National Council for Scientific and Technological Development — CNPq (level 1D). J McGrath was supported by the Danish National Research Foundation (Niels Bohr Professor). J McGrath is employed by the Queensland Centre for Mental Health Research (Australia), which receives support from the Queensland Health Department. C Parry acknowledges the support from the South African Medical Research Council. A Peden is supported by a National Health and Medical Research Council Emerging Leadership Fellowship (Grant ID: APP2009306). M Phillips was supported in part by the Global Alliance for Chronic Diseases - National Natural Science Foundation of China (No. 7197128031). M Pinheiro acknowledges FCT for funding through program ID. 57/2016 – Norma Transitoria. A Rahman acknowledges the support from the Data Science Research Unit in Charles Sturt University (Bathurst, NSW, Australia). U Saeed would like to acknowledge the support of National Center of Medical Sciences Research (NCMSR), Islamabad, Pakistan. A Sany acknowledges support from Ain Shams University (Cairo, Egypt) and the Egyptian Fulbright Mission Program. N Senthil Kumar acknowledges the DBT, New Delhi sponsored Advanced State Level Biotech Hub (BT/NE/R/143/ SP44675/2021), Mizoram University (Aizawl, Mizoram, India) for facilitating this work. F Shi acknowledges support from the Shenzhen Science and Technology Program (Grant No. KQTD20190929172835662). A Shetty acknowledges Kasturba Medical College (Mangalore, India) and Manipal Academy of Higher Education (Manipal, India) for all the academic support. R Shrestha acknowledges a career development award from the National Institutes of Health (ROI DA031466). D Silva was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES)—Finance Code 001 and is supported in part by CNPq - Brazil (309589/2021-5). D Sleet acknowledges partial support from Veritas Management Group, Inc. and The Bizzell Group, LLC. S Trías-Llimós acknowledges research funding from the Juan de la Cierva-Formación program of the Spanish Ministry of Science and Innovation (FJC-2019-039314-I). Editorial note: The Lancet Group takes a neutral position with respect to territorial claims in published maps and institutional affiliations.

References
1 Griswold MG, Fullman N, Hawley C, et al. Alcohol use and burden for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2018; 392: 1015–35.
2 Shield K, Mazer J, Rylett M, et al. National, regional, and global burdens of disease from 2000 to 2016 attributable to alcohol use: a comparative risk assessment study. Lancet Public Health 2020; 5: e51–61.
3 Wood AM, Kaptoge S, Butterworth AS, et al. Risk thresholds for alcohol consumption: combined analysis of individual-participant data for 599,912 current drinkers in 83 prospective studies. Lancet 2018; 391: 1513–23.
4 Rehm J, Gmel GE, Sr Grivel G, et al. The relationship between different dimensions of alcohol use and the burden of disease—an update. Addiction 2017; 112: 968–1001.
5 Millwood IY, Walters RG, Mei XY, et al. Conventional and genetic evidence on alcohol and vascular disease aetiology: a prospective study of 500,000 men and women in China. Lancet 2019; 393: 1831–42.
6 van der Lee J, van Oort S, Bouman EJ, et al. Alcohol consumption in relation to cardiovascular diseases and mortality: a systematic review of Mendelian randomization studies. Eur J Epidemiol 2021; published online Aug 22. https://doi.org/10.1007/s10654-021-01079-5.
7 Liu Y, Nguyen N, Colditz GA. Links between alcohol consumption and breast cancer: a look at the evidence. Womens Health 2015; 11: 65–77.
8 Intiaze S, Shield KD, Roercke M, Samokhvalov AV, Linnrooth K, Rehm J. Alcohol consumption as a risk factor for tuberculosis: meta-analyses and burden of disease. Eur Respir J 2017; 50: 50.
9 Taylor B, Irving HM, Kanteres F, et al. The more you drink, the harder you fall: a systematic review and meta-analysis of how acute alcohol consumption and injury or collision risk increase together. Drug Alcohol Depend 2010; 110: 108–16.
10 Roercke M, Vafaei A, Hasan OSM, et al. Alcohol consumption and risk of liver cirrhosis: a systematic review and meta-analysis. Am J Gastroenterol 2019; 114: 1574–86.
11 Roercke M, Rehm J. Alcohol consumption, drinking patterns, and ischemic heart disease: a narrative review of meta-analyses and a systematic review and meta-analysis of the impact of heavy drinking occasion on risk for moderate drinkers. BMC Med 2014; 12: 182.
12 Pietrzasz E, Gregersen S, Hermansen K and Alcohol research. A review. Nutr Metab Cardiovasc Dis 2010; 20: 366–75.
13 Ding C, O’Neill D, Bell S, Stamatelakis E, Britton A. Association of alcohol consumption with morbidity and mortality in patients with cardiovascular disease: original data and meta-analysis of 48,423 men and women. BMC Med 2021; 19: 167.
14 Sherk A, Gilmore W, Churchill S, Lensvelt E, Stockwell T, Chikritzhs T. Implications of cardioprotective assumptions for national drinking guidelines and alcohol harm monitoring systems. Int J Environ Res Public Health 2019; 16: E4956.

15 Sherk A, Thomas G, Churchill S, Stockwell T. Does drinking within low-risk guidelines prevent harm? Implications for high-income countries using the international model of alcohol harms and policies. J Stud Alcohol Drugs 2020; 81: 352–61.

16 WHO. Global status report on alcohol and health 2018. Sept 27, 2018. https://www.who.int/publications/i/item/9789241565639 (accessed May 9, 2022).

17 Corraro G, Bagnard V, Zambon A, La Vecchia C. A meta-analysis of alcohol consumption and the risk of 15 diseases. Prev Med 2004; 38: 613–19.

18 Xi B, Veeranki SP, Zhao M, Ma C, Yan Y, Mi J. Relationship of alcohol consumption to cause-specific mortality and cause-related mortality in U.S. adults. J Am Coll Cardiol 2017; 70: 913–22.

19 Ma H, Li X, Zhou T, et al. Alcohol consumption levels as compared with drinking habits in predicting all-cause mortality and cause-specific mortality in current drinkers. Mayo Clin Proc 2021; 96: 1758–69.

20 Patra J, Buckley C, Kerr WC, Brennan A, Purshouse RC, Rehm J. Impact of body mass and alcohol consumption on all-cause and liver mortality in 240,000 adults in the United States. Drug Alcohol Rev 2021; 40: 1061–70.

21 Habtemichael LH, Djieck D, Rosengren AR, et al. Alcohol consumption in young men and risk of heart failure and all-cause mortality—a cohort study. Eur Heart J 2021; 42 (suppl 1): ehab274.0830.

22 Fillmore KM, Stockwell T, Chikritzhs T, Bostrom A, Kerr W. Moderate alcohol use and reduced mortality risk: systematic error in prospective studies and new hypotheses. Ann Epidemiol 2007; 17 (suppl): S16–23.

23 Wallach JD, Serghiou S, Chu L, et al. Evaluation of confounding in epidemiologic studies assessing alcohol consumption on the risk of ischemic heart disease. BMC Med Res Methodol 2020; 20: 64.

24 Dietary Guidelines Advisory Committee. Scientific Report of the 2020 Dietary Guidelines Advisory Committee: Advisory Report to the Secretary of Agriculture and Secretary of Health and Human Services. Washington, DC: US Department of Agriculture, Agricultural Research Service, 2020.

25 UK Department of Health. UK Chief Medical Officers’ Alcohol Guidelines Review. Summary of the proposed new guidelines. January, 2016. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/489795/summary.pdf (accessed May 9, 2022).

26 Santé Publique France. Alcool et santé: améliorer les connaissances et réduire les risques. March 26, 2019. https://www.santepubliquefrance.fr/presse/2019/alcool-et-sante-ameliorer-les-connaissances-et-reduire-les-risques (accessed March 20, 2022).

27 NHMRC. Australian guidelines to reduce health risks from drinking alcohol. Canberra: National Health and Medical Research Council, 2020.

28 Stockwell T, Zhao J, Panwar S, Roemer A, Naimi T, Chikritzhs T. Do “moderate” drinkers have reduced mortality risk? A systematic review and meta-analysis of alcohol consumption and all-cause mortality. J Stud Alcohol Drugs 2016; 77: 185–98.

29 Rehm J. Why the relationship between level of alcohol-use and all-cause mortality cannot be addressed with meta-analyses of cohort studies. Drug Alcohol Rev 2019; 38: 3–4.

30 Institute for Health Metrics and Evaluation. Protocol for the global burden of diseases, injuries, and risk factors study (GBD). February 26, 2018. http://www.healthdata.org/sites/default/files/files/Projects/GBD/GBD_Protocol.pdf (accessed May 9, 2022).

31 Murray CJL, Aravkin AY, Zheng P, et al. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020; 396: 1223–49.

32 Stevens GA, Alkema L, Black RE, et al. Guidelines for Accurate and Transparent Health Estimates Reporting: the GATHER statement. Lancet 2016; 388: e19–23.

33 Flaxman AD. An integrative metaregression framework for descriptive epidemiology. 1st edn. Seattle, WA: University of Washington Press, 2015.

34 Rehm J, Crépault J-F, Wettlaufer A, Manthey J, Shield K. What is the best indicator of the harmful use of alcohol? A narrative review. Drug Alcohol Rev 2020; 39: 624–31.

35 Chisholm D, Moro D, Bertram M, et al. Are the “best buys” for alcohol control still valid? An update on the comparative cost-effectiveness of alcohol control strategies at the global level. J Stud Alcohol Drugs 2018; 79: 514–22.

36 Brand DA, Saxaisa M, Rynn LA, Penmoni F, Lowenfels AB. Comparative analysis of alcohol control policies in 30 countries. PLoS Med 2007; 4: e151.

37 Ferreira-Borges C, Esser MB, Dias S, Baber T, Parry CDH. Alcohol control policies in 46 African countries: opportunities for improvement. Alcohol Alcohol 2015; 50: 76–70.

38 Burton R, Henn C, Lavoie D, et al. A rapid evidence review of the effectiveness and cost-effectiveness of alcohol control policies: an English perspective. Lancet 2017; 389: 1358–60.

39 Howard SJ, Gordon R, Jones SC. Australian alcohol policy 2001–2013 and implications for public health. BMC Public Health 2014; 14: 848.

40 Neufeld M, Ferreira-Borges C, Gil A, Manthey J, Rehm J. Alcohol policy has saved lives in the Russian Federation. Int J Drug Policy 2020; 80: 102636.

41 Kalinowski A, Humphreys K. Governmental standard drink definitions and low-risk alcohol consumption guidelines in 37 countries. Addiction 2016; 111: 1293–98.

42 Moore AA, Whiteman EJ, Ward KT. Risks of combined alcohol/medication use in older adults. Am J Geriatr Pharmacother 2007; 5: 64–74.

43 Ryan M, Merrick EL, Hodgkin D, et al. Drinking patterns of older adults with chronic medical conditions. J Gen Intern Med 2013; 28: 1326–12.

44 Edbergen HJ. The genetics of alcohol metabolism: role of alcohol dehydrogenase and aldehyde dehydrogenase variants. Alcohol Res Health 2007; 30: 5–13.

45 Christyba JR, Rehm J, Manthey J, Probst C, Wettlaufer A, Shield KD. A systematic comparison of the global comparative risk assessments for alcohol. Addiction 2021; 116: 2026–38.

46 Manthey J, Shield KD, Rylett M, Hasan OSM, Probst C, Rehm J. Global alcohol exposure between 1990 and 2017 and forecasts until 2026–38. A cross-sectional survey of US adults. Int J Environ Res Public Health 2020; 17: 9189.