Towards the minimal seesaw model for the prediction of neutrino CP violation

Kenta Takagi (Hiroshima Univ.)

7, March, 2018 at Hiroshima Univ.

JHEP 1711 (2017) 201 & Phys. Lett. B 778 (2018) 6

Y. Shimizu (Hiroshima Univ.), KT, M. Tanimoto (Niigata Univ.)
- Introduction
 --- Background and motivation

- Model
 --- Setup for minimal seesaw model

- Prediction of Dirac CP violating phase

- Baryon asymmetry in the Universe (BAU) and CP violation

- Summary and discussions
Background and motivation

CP violating interaction is necessary for the Baryon Asymmetry in the Universe (BAU).

Sakharov’s three conditions

- Baryon number violation
- C and CP violation
- Interact out of thermal equilibrium era

Kobayashi-Maskawa model:
Mixing among three flavors can violate CP symmetry (quark sector)

\[
V_{CKM} = \begin{pmatrix}
 c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{CP}} \\
-s_{12}c_{23} - c_{12}s_{13}s_{23}e^{i\delta_{CP}} & c_{13}c_{23} - s_{12}s_{13}s_{23}e^{i\delta_{CP}} & c_{13}s_{23} \\
s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\delta_{CP}} & -c_{12}s_{23} - s_{12}s_{13}c_{23}e^{i\delta_{CP}} & c_{13}c_{23}
\end{pmatrix}
\]

The origin of CP violation closely relates to the flavor structure
CP violating phase in the lepton sector δ_{CP}:

$$U_{PMNS} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{CP}} \\ -s_{12}c_{23} - c_{12}s_{13}s_{23}e^{i\delta_{CP}} & c_{13}c_{23} - s_{12}s_{13}s_{23}e^{i\delta_{CP}} & c_{13}s_{23} \\ s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\delta_{CP}} & -c_{12}c_{23} - s_{12}s_{13}c_{23}e^{i\delta_{CP}} & c_{13}c_{23} \end{pmatrix} \begin{pmatrix} 1 \\ e^{i\alpha} \\ e^{i\beta} \end{pmatrix}.$$

CP conservation ($\delta_{CP} = 0, \pm \pi$) is excluded in 2σ C.L.

$$\delta_{CP} = -\frac{\pi}{2}$$ may be favored?

Is there something symmetric structure?

2σ C.L.:
Normal Hierarchy (NH) $[-171^\circ, -34.4^\circ]$
Inverted Hierarchy (IH) $[-88.2^\circ, -68.2^\circ]$
How to predict CP violating phase

\[U_{PMNS} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{CP}} \\ -s_{12}c_{23} - c_{12}s_{13}s_{23}e^{i\delta_{CP}} & c_{13}c_{23} - s_{12}s_{13}s_{23}e^{i\delta_{CP}} & c_{13}s_{23} \\ s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\delta_{CP}} & -c_{12}s_{23} - s_{12}s_{13}c_{23}e^{i\delta_{CP}} & c_{13}c_{23} \end{pmatrix} \begin{pmatrix} 1 \\ e^{i\alpha} \\ e^{i\beta} \end{pmatrix} \]

PMNS mixing matrix is derived from neutrino mass matrix. 9 parameters contribute to the PMNS mixing matrix at most

Global experimental data of neutrino oscillation

NuFIT 3.2 (2018), JHEP 01 (2018) 087

3\sigma interval	Normal Hierarchy	Inverted Hierarchy
\(\Delta m^2_{12} \)	[6.80, 8.02] \(\times 10^{-5} \) [eV\(^2\)]	[6.80, 8.02] \(\times 10^{-5} \) [eV\(^2\)]
\(\Delta m^2_{13} \)	[2.399, 2.593] \(\times 10^{-3} \) [eV\(^2\)]	\(- [2.369, 2.562] \times 10^{-3} \) [eV\(^2\)]
\(\sin^2 \theta_{12} \)	[0.272, 0.346]	[0.272, 0.346]
\(\sin^2 \theta_{23} \)	[0.418, 0.613]	[0.435, 0.616]
\(\sin^2 \theta_{13} \)	[1.981, 2.436] \(\times 10^{-2} \)	[2.006, 2.452] \(\times 10^{-2} \)

5 parameters are available
Approaches to δ_{CP} -- reduce model parameters --

(A). 2 right-handed (RH) Majorana neutrinos
 -- The lightest neutrino becomes massless.

(B). Flavor symmetry (A_4, S_4, A_5, etc.)
 -- control Yukawa couplings in the Lagrangian.
 -- introduce gauge singlet scalars (called as “flavons”).

(C). Texture zeros
 -- put zeros in some elements of the neutrino mass matrix.
 -- can not construct the Lagrangian.

Our model is a combination of the three methods
(--). First setting (without loss of generality)

-- Diagonal basis of charged lepton mass matrix

\[
M_l = \begin{pmatrix}
 m_e & m_\mu & m_\tau
\end{pmatrix}
\]

\[
U_{PMNS} = U_l^\dagger U_\nu = U_\nu
\]

(A). 2 right-handed (RH) Majorana neutrinos

\[
M_R = \begin{pmatrix}
 M_1 & 0 \\
 0 & M_2
\end{pmatrix} = M_2 \begin{pmatrix}
 p^{-1} & 0 \\
 0 & 1
\end{pmatrix} \quad p = \frac{M_2}{M_1}
\]

We can take diagonal basis of \(M_R \) in the seesaw mechanism

\[
M_\nu = -M_D M_R M_D^T
\]
(B). Flavor symmetry (A_4 or S_4 are implied)
--Assume tri-maximal mixing

$$U_{PMNS}^{TM_1} = \begin{pmatrix} \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0 \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & e^{i\sigma}\sin\theta \\ 0 & -e^{-i\sigma}\sin\theta & \cos\theta \end{pmatrix}$$

We focus on TM_1 here

$$U_{PMNS}^{TM_2} = \begin{pmatrix} \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0 \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \cos\theta & 0 & e^{i\sigma}\sin\theta \\ 0 & 1 & 0 \\ -e^{-i\sigma}\sin\theta & 0 & \cos\theta \end{pmatrix}$$

TM_2 will be discussed in numerically...

tri-bimaximal (TBM) mixing

$$V_{TBM} = \begin{pmatrix} 2 & 1 & 0 \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

Harrison, Perkins, Scott
Phys. Lett. B 458, (1999) 79

named by W. Rodejohann et al.
TM*\textsubscript{1} realization

We obtain the following Dirac mass matrix:

\[
M_D = v \begin{pmatrix}
 b + c & e + f \\
 2 & 2 \\
 b & e \\
 c & f
\end{pmatrix}
\]

This leads to TM*\textsubscript{1}** mixing with NH.

\[v \sim 174.1 \text{ GeV} : \text{Higgs doublet vacuum expectation value}\]

Assume the relative phase between \(b\) and \(c\) to be 0 or \(\pi\). \(\rightarrow b/c\) is real.

(C). **Texture zeros** -- finalize the model minimization --

- impose a 0 in the Dirac mass matrix.

\[
M_D = v \begin{pmatrix}
 0 & e + f \\
 2 & 2 \\
 b & e \\
 -b & f
\end{pmatrix}
\]

Case I

\[
M_D = v \begin{pmatrix}
 b & e + f \\
 2 & 2 \\
 b & e \\
 0 & f
\end{pmatrix}
\]

Case II

\[
M_D = v \begin{pmatrix}
 c & e + f \\
 2 & 2 \\
 0 & e \\
 c & f
\end{pmatrix}
\]

Case III

Excluded from 3\(\sigma\) interval (off the edge but near)
Symmetry realization by S_4

Dirac mass term: \[
\mathcal{L}_D = \frac{y_1}{\Lambda} \phi_1 L H_u \nu_{R1}^c + \frac{y_2}{\Lambda} \phi_2 L H_u \nu_{R2}^c
\]

TM$_1$ with NH

\[
M_D = v \begin{pmatrix}
\frac{b+c}{2} & \frac{e+f}{2} \\
\frac{2}{b} & \frac{2}{e} \\
\frac{2}{c} & \frac{2}{f}
\end{pmatrix}
\]

\[
\langle \phi_1 \rangle \sim \begin{pmatrix}
\frac{b+c}{2} \\
\frac{2}{c} \\
\frac{2}{b}
\end{pmatrix}
\] \[\langle \phi_2 \rangle \sim \begin{pmatrix}
\frac{e+f}{2} \\
\frac{2}{f} \\
\frac{2}{e}
\end{pmatrix}
\]

$SU^+ \langle \phi_1 \rangle = \langle \phi_1 \rangle$

$SU^+ \langle \phi_2 \rangle = \langle \phi_2 \rangle$

-- residual Z_2 symmetry from S_4

generators of $S_4 : S, T, U^\pm$

\[
S = \frac{1}{3} \begin{pmatrix}
-1 & 2 & 2 \\
2 & -1 & 2 \\
2 & 2 & -1
\end{pmatrix}, \quad T = \begin{pmatrix}
1 & \omega^2 \\
\omega & \omega
\end{pmatrix}, \quad U^\pm = \mp \begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}
\]

$-$: for 3
$+$: for 3'$
Profile of case I

The neutrino mass matrix (seesaw mechanism) \(M_\nu = -M_D M_R M_D^T \)

in the TBM basis:

\[
M_\nu^{TBM} \equiv V_{TBM}^T M_\nu V_{TBM} = -\frac{f^2 v^2}{M_2} \begin{pmatrix}
0 & 0 & 0 \\
0 & \frac{3}{4} (k + 1)^2 & -\frac{\sqrt{3}}{2\sqrt{2}} (k^2 - 1) \\
0 & -\frac{\sqrt{3}}{2\sqrt{2}} (k^2 - 1) & \left\{ 2|B|^2 p e^{2i\phi_B} + \frac{1}{2} (k - 1)^2 \right\}
\end{pmatrix}
\]

\(k \equiv e/f \)

\(|B| e^{i\phi_B} \equiv b/f \)

\(k \) can be make real by freedom of the phase redefinition.

- 3 model parameters in the mixing matrix : \(\{k, \ |B|' (\equiv |B|\sqrt{p}), \ \phi_B \} \)

- Jarlskog invariant :

\[
J_{CP} = -\frac{3}{8} \frac{f^{12}}{M_0^6} (|B|\sqrt{p})^6 (k + 1)^4 (k^2 - 1) \sin 2\phi_B \frac{v^{12}}{\Delta m^2_{13} - \Delta m^2_{12}} \frac{\Delta m^2_{13} \Delta m^2_{12}}{\Delta m^2_{13} \Delta m^2_{12}} \propto \sin \delta_{CP}
\]

This factor determines the sign of \(\sin \delta_{CP} \).
Profile of TM$_1$ with IH

\[M_{\nu}^{TBM} = -\frac{\nu^2}{M_2} \begin{pmatrix} 6b^2 p & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} - \frac{f^2\nu^2}{M_2} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & \frac{3}{4}(ke^{i\phi_k} + 1)^2 & -\frac{\sqrt{3}}{2\sqrt{2}}(k^2e^{2i\phi_k} - 1) & 0 \\ 0 & -\frac{\sqrt{3}}{2\sqrt{2}}(k^2e^{2i\phi_k} - 1) & \frac{1}{2}(ke^{i\phi_k} - 1)^2 & 0 \end{pmatrix} \]

Profile of TM$_2$ with NH or IH

\[M_{\nu}^{TBM} = -\frac{\nu^2}{M_2} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 3b^2 p & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} - \frac{f^2\nu^2}{M_2} \begin{pmatrix} \frac{3}{2}(ke^{i\phi_k} + 1)^2 & 0 & \sqrt{3} \frac{1}{2}(k^2e^{2i\phi_k} - 1) \\ 0 & 0 & 0 & 0 \\ \sqrt{3} \frac{1}{2}(k^2e^{2i\phi_k} - 1) & 0 & \frac{1}{2}(ke^{i\phi_k} - 1)^2 \end{pmatrix} \]

- 2 model parameters in the mixing matrix: \{k, \phi_k\}
Numerical Results

3σ interval	Normal Hierarchy	Inverted Hierarchy
Δm_{12}^2	$[6.80, 8.02] \times 10^{-5}[eV^2]$	$[6.80, 8.02] \times 10^{-5}[eV^2]$
Δm_{13}^2	$[2.399, 2.593] \times 10^{-3}[eV^2]$	$-[2.369, 2.562] \times 10^{-3}[eV^2]$
$\sin^2 \theta_{12}$	$[0.272, 0.346]$	$[0.272, 0.346]$
$\sin^2 \theta_{23}$	$[0.418, 0.613]$	$[0.435, 0.616]$
$\sin^2 \theta_{13}$	$[1.981, 2.436] \times 10^{-2}$	$[2.006, 2.452] \times 10^{-2}$

We show these minimal models

Case I

$$M_D = v \begin{pmatrix} 0 & e + f \\ b & 2 \\ -b & f \end{pmatrix}$$

TM$_1$ with IH

$$M_D = v \begin{pmatrix} -2b & e + f \\ b & 2 \\ b & e \end{pmatrix}$$

TM$_2$ (common in NH and IH)

$$M_D = v \begin{pmatrix} b & e + f \\ b & 2 \\ b & f \end{pmatrix}$$

NuFIT 3.2 (2018), JHEP 01 (2018) 087
Predictions of Dirac CP violating phase

Numerical Results (case I)

\[\delta_{CP} : \pm [71.4^\circ, 97.9^\circ] \ (1\sigma) \]
\[: \pm [57.5^\circ, 112^\circ] \ (3\sigma) \]
\[: \pm [77.8^\circ, 101^\circ] \ (k = -3) \]

Blue : 3\sigma plot
Green : 1\sigma plot
Magenta : 3\sigma plot with \(k = -3 \)
Red (horizontal) : 2\sigma interval by T2K \([-171^\circ, -34.4^\circ]\)
Red (vertical) : 3\sigma interval by NuFIT

\[k = e/f \]
Numerical Results (TM$_1$ with IH)

\[\delta_{CP}: \pm [69.9^\circ, 84.7^\circ] \ (1\sigma) \]
\[: \pm [56.8^\circ, 107^\circ] \ (3\sigma) \]

Blue : 3\sigma plot
Green : 1\sigma plot
Magenta : 3\sigma plot with \(k = -3 \)
Red (horizontal) : 2\sigma interval by T2K \([-88.2^\circ, -68.2^\circ]\)
Red (vertical) : 3\sigma interval by NuFIT
Numerical Results (TM$_2$)

NH

\[\delta_{CP}: \pm [36.2^\circ, 180^\circ] \] (3σ)

IH

\[\delta_{CP}: \pm [51.0^\circ, 180^\circ] \] (3σ)

\[k = e/f \]
Predictions of Dirac CP violating phase

back to case I

The predicted δ_{CP} is sensitive to k.

But the sign of δ_{CP} is not determined...

This result (case I) indicates

$$\text{Sign}[J_{CP}] = \text{Sign}[\delta_{CP}]$$

*Recall

$$J_{CP} = -\frac{3f^{12}}{8M_0^6}(|B|\sqrt{p})^6(k + 1)^4(k^2 - 1)\sin 2\phi_B\frac{\nu^{12}}{\left(\Delta m_{13}^2 - \Delta m_{12}^2\right)\Delta m_{13}^2\Delta m_{12}^2}$$
Leptogenesis in our models

B—L asymmetry in the comoving volume \((M_1 \ll M_2)\)

\[
Y_{B-L} \equiv \frac{n_{B-L}}{s} = -\varepsilon_1 \kappa Y_{N1}^{eq}(T \gg M_1)
\]

is relevant to CP asymmetry of the lighter RH neutrino \(N_1\) decay.

\[
\varepsilon_1 \sim -\frac{3}{16\pi} \frac{\text{Im} \left[(Y_D^\dagger Y_D)_{21}^2 \right]}{\left(Y_D^\dagger Y_D \right)_{11}} \frac{1}{p} = \frac{M_2}{M_1}
\]

The heavier RH neutrino decay is relevant at \(M_1 \geq 10^{14}\) [GeV]

Here, we assume \(M_1 \ll 10^{14}\) [GeV] for simplicity.
Baryon asymmetry in the Universe and CP violation

CP asymmetry in 1 loop decay of N_1

\[\epsilon_1 = -\frac{3}{16\pi} \frac{\text{Im} \left[(Y_D^\dagger Y_D)_{21} \right]}{(Y_D^\dagger Y_D)_{11}} \frac{1}{p} \]

Case I

\[Y_D^\dagger Y_D = \begin{pmatrix} 2|b|^2 & b^* (e - f) \\ b(e - f)^* & \frac{|e + f|^2}{4} + |e|^2 + |f|^2 \end{pmatrix} \]

\[\epsilon_1 = -\frac{3}{16\pi} \frac{1}{2} |f|^2 (k - 1)^2 \sin 2\phi_B \frac{1}{p} \]

TM$_1$ with IH

\[Y_D^\dagger Y_D = \begin{pmatrix} 6|b|^2 & 0 \\ 0 & \frac{|e + f|^2}{4} + |e|^2 + |f|^2 \end{pmatrix} \]

\[\epsilon_1 = 0 \]

No leptogenesis

TM$_2$

\[Y_D^\dagger Y_D = \begin{pmatrix} 3|b|^2 & 0 \\ 0 & |e + f|^2 + |e|^2 + |f|^2 \end{pmatrix} \]

\[\epsilon_1 = 0 \]

No leptogenesis
Numerical results (3σ)

Demanded Baryon asymmetry for the nucleosynthesis:

\[\eta_B \equiv \frac{n_B}{n_\gamma} = 7.04Y_B = [5.8, 6.6] \times 10^{-10} \text{ (95% C.L.)} \]

[PDG] Chin. Phys. C 40 (2016) 10, 10001

The sign of δ_{CP} is split by k

\[M_2 = 10^{14} \text{ [GeV]} \]
Sign of δ_{CP}

B and $B - L$ asymmetry are related (sphaleron transition at $T > T_{EW} \sim 100$[GeV]):

$$Y_B \equiv \frac{n_B}{s} = \frac{8N_{flavor} + 4N_{Higgs}}{22N_{flavor} + 13N_{Higgs}} \frac{Y_{B-L}}{Y_{B-L}} = \frac{28}{79} Y_{B-L}$$

(Suppose 3 flavors and 1 Higgs)

S.Yu. Khlebnikov, M.E. Shaposhnikov, Nucl. Phys. B 308, 885 (1998)

Demanded Baryon asymmetry for the nucleosynthesis:

$$\eta_B \equiv \frac{n_B}{n_Y} = 7.04 Y_B = [5.8, 6.6] \times 10^{-10} \ (95\% \ C.L.)$$

[PDG] Chin. Phys. C 40 (2016) 10, 10001

$$-\epsilon_1 \kappa \ Y_{N1}^{eq} = \frac{1}{7.04} \frac{79}{28} \eta_B > 0$$
For simple analysis

\[\frac{1}{\kappa} \sim \frac{3.3 \times 10^{-3} \text{[eV]}}{\tilde{m}_{1}} + \left(\frac{\tilde{m}_{1}}{0.55 \times 10^{-3} \text{[eV]}} \right)^{1.16} > 0 \quad \text{valid for } M_{1} \ll 10^{14} \text{[GeV]} \]

where \(\tilde{m}_{1} \equiv \frac{v^{2}(Y_{D}Y_{D}^{+})_{11}}{M_{1}} = 2|f|^{2}|B|^{2} \frac{v^{2}}{M_{2}} \) for case I

fitted by G.F. Giudice, A. Notari, M. Raidal, A. Riotto and A. Strumia, [Nucl. Phys. B 685 (2004) 89]

The number density of \(N_{1} \) in thermal equilibrium

\[Y_{N1}^{eq} = \frac{135\zeta(3)}{4\pi^{4}g_{*}} > 0 \quad g_{*} = 106.75 \text{ (SM)} \]

Nucl. Phys. B 685 (2004) 89

\[-\epsilon_{1} = \frac{3}{16\pi} \frac{1}{2} |f|^{2}(k - 1)^{2} \sin 2\phi_{B} \frac{1}{p} > 0 \]
Mass hierarchy of RH neutrinos

\[p = \frac{M_2}{M_1} \]

Consistent with our assumptions:

\[M_1 \ll M_2 \]

\[M_1 \ll 10^{14} \text{[GeV]} \]
Summary and discussions

Minimal seesaw model with

2 RH neutrinos & tri-maximal mixing T_M^1 and T_M^2

$$M_D = v \begin{pmatrix} 0 & e + f \\ b & 2 \\ -b & e \\ f & f \end{pmatrix}$$

--- Normal hierarchy
--- distinct the sign of δ_{CP}
--- include $(\theta_{23}, \delta_{CP}) = (\frac{\pi}{4}, -\frac{\pi}{2})$

explain neutrino oscillation & BAU

Symmetry realization by S_4

Dirac mass term:

$$\frac{\gamma_1}{\Lambda} \phi_1 L H_u \nu_{R1}^c + \frac{\gamma_2}{\Lambda} \phi_2 L H_u \nu_{R2}^c$$

$$SU \begin{pmatrix} e + f \\ 2 \\ e \\ f \end{pmatrix} = \begin{pmatrix} e + f \\ 2 \\ e \\ f \end{pmatrix}$$

-- residual Z_2 symmetry from S_4

$s, t, u :$ generators of S_4

Is it consist with quark sector?

$\delta_{CKM}^{CP} \sim +70^\circ$ can be realized with our model?
THANK YOU
Global experimental data of neutrino oscillation

	Normal Ordering (best fit)	Inverted Ordering ($\Delta \chi^2 = 4.14$)
	bfp ±1σ	bfp ±1σ
	3σ range	3σ range
$\sin^2 \theta_{12}$	$0.307^{+0.013}_{-0.012}$	$0.307^{+0.013}_{-0.012}$
	$0.272 \rightarrow 0.346$	$0.272 \rightarrow 0.346$
$\theta_{12}/^\circ$	$33.62^{+0.78}_{-0.76}$	$33.62^{+0.78}_{-0.76}$
	$31.42 \rightarrow 36.05$	$31.43 \rightarrow 36.06$
$\sin^2 \theta_{23}$	$0.538^{+0.033}_{-0.069}$	$0.554^{+0.023}_{-0.033}$
	$0.418 \rightarrow 0.613$	$0.435 \rightarrow 0.616$
$\theta_{23}/^\circ$	$47.2^{+1.9}_{-3.9}$	$48.1^{+1.4}_{-1.9}$
	$40.3 \rightarrow 51.5$	$41.3 \rightarrow 51.7$
$\sin^2 \theta_{13}$	$0.02206^{+0.00075}_{-0.00075}$	$0.02227^{+0.00074}_{-0.00074}$
	$0.01981 \rightarrow 0.02436$	$0.02006 \rightarrow 0.02452$
$\theta_{13}/^\circ$	$8.54^{+0.15}_{-0.15}$	$8.58^{+0.14}_{-0.14}$
	$8.09 \rightarrow 8.98$	$8.14 \rightarrow 9.01$
$\delta_{CP}/^\circ$	234^{+43}_{-31}	278^{+26}_{-29}
	$144 \rightarrow 374$	$192 \rightarrow 354$
$\frac{\Delta m^2_{21}}{10^{-5} \text{ eV}^2}$	$7.40^{+0.21}_{-0.20}$	$7.40^{+0.21}_{-0.20}$
	$6.80 \rightarrow 8.02$	$6.80 \rightarrow 8.02$
$\frac{\Delta m^2_{3\ell}}{10^{-3} \text{ eV}^2}$	$+2.494^{+0.033}_{-0.031}$	$-2.465^{+0.032}_{-0.031}$
	$+2.399 \rightarrow +2.593$	$-2.562 \rightarrow -2.369$

NuFIT 3.2 (2018), JHEP 01 (2018) 087