In Ovo Antiviral Screening of Cholistani Plants Against Swine Influenza Virus and Confirmation Through Real Time PCR

Mirza Imran shahzad1*, Mahboob Ahmed2, Nadeem Asghar3, Hina Ashraf4, Summayya Anwar5, Mussarat Ramzan6, Jaweria Aslam1, Muhammad Arshad7, Sana zahoor2, Muhammad Tariq Perwaiz1.

1Department of Biochemistry, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Pakistan
2Department of Molecular Biology Faculty of Science & Technology Virtual University of Pakistan Lahore, Pakistan
3Department of Medical Biology, University of Quebec at Trois Riveres, Canada
4Department of Botany, Govt Sadiq College Women University Bahawalpur, Pakistan
5Institute of Molecular Biology and Biotechnology, The University of Lahore, Pakistan.
6Department of Botany, The Islamia University of Bahawalpur, Pakistan
7Department of Biochemistry, College of Veterinary and Animal Sciences, Jhang Campus UVAS, Lahore, Pakistan.

*Corresponding email: mirza.imran@iub.edu.pk

Abstract

Cholistani plants are a rich source of many biological/pharmacological agents. Recent studies have supported the idea that cholistani plants are rich in antimicrobial agents especially against viruses. Medicinal plants like Haloxylon recurvum, Salsola baryosma, and Achyranthes aspera hold the potential to control viruses like Avian Influenza and Swine Influenza. Prevention by vaccination is the best treatment so far, but some side effects are associated with vaccines alone or in combination with other influenza virus strains. Eleven different Cholistani plants (H. recurvum, H. salicornicum, A. aspera, Suaeda fruticosa, Sporobolus icolados, Solanum surattense, Ochthochloa compressa, Neurada procumbens, Panicum antidotal, Oxystelma esculentum, and Salsola baryosma) were selected and tested against SIV H1N1. The samples were washed and dried under shade at RT. All the plants were ground and used in making extracts using different solvents. The SIV H1N1 isolate was confirmed through real-time (rt) PCR and then subjected to 9-11 days old chick embryonated eggs. Eggs were candled and viability of embryo was confirmed. After 48hrs, allantoic fluids were collected, and viral loads were also confirmed through HA test and RT-PCR. Most of the extracts were found effective in controlling growth of the virus. Among these, n-hexane and ethanol (EtOH) extracts were found most effective, and all extracts were active against SIV H1N1. In the case of ethyl acetate and methanol (MtOH) 9 out of 11, similarly, in n-butanol (BtOH), 7 out of 11 extracts were active against SIV H1N1. All the results were first confirmed HA test and later through rt-PCR. The virus was not detected in the outcomes of rt-PCR, confirming the antiviral potentials of extracts of Cholistani plants. This study strongly supported the idea that Cholistani plants are a rich source of antiviral agents and can be used in pure and crude form.

Key Words: Antiviral activity, Cholistani Plants, Swine Influenza, RTPCR

1. Introduction

Swine influenza virus (SIV) strain H1N1 is a widespread pathogenic strain in the swine herds. In the last century influenza virus has been considered a causative agent in 1918,1957,1968 for the Spanish, Asian, and Hong Kong Flu, respectively (Rewar, 2015). Furthermore, SIV H1N1 is also related to the descendant's strain that prompted the 1918 flu epidemics. Moreover, through the 20th century, the descendants of this virus also spreading in humans, contributing to the classical flu of seasonal epidemics. Now, about 60% of the world's pigs are produced in Asia, and over 40% of pigs have been associated
with China alone, and due to this reason, the chances of the viral outbreak were also increased. It is a definitive cause for the survival of the swine virus, leading to higher chances for the interaction between the pigs, humans, poultry flocks, and the wild birds of Asia (Lemey et al., 2014). It has been generally observed that pigs are the prominent transitional host in developing avian viruses to mammalian hosts due to interspecies transfer (Fragaszy et al., 2016). In 2009, H1N1 arose from pigs inflicting a preliminary outbreak in Mexico and enhancing a worldwide epidemic in a couple of months. Through the first couple of weeks of surveillance, the virus spread globally, affecting over 214 states and bringing about over 18,449 deaths (Cheng et al., 2012). On 13th August 2009, WHO recommended 1 82,166 research laboratory-confirmed cases of H1N1 and 1799 were expiries from 178 states. In India, from 2015-2016, a significant outbreak of H1N1 have killed more than 1,900 people. In 2016, several infections and deaths due to SIV were reported. In 2017 there was a revival of this disease. H1N1 outbreak started in January 2017 resulted in 22 186 infections. By keeping in view, WHO raised its pandemic alert level to 5 and increased the demand of antiviral compounds for the medication of this diseases (Lin et al., 2017).

Swine influenza virus

SIV is a single-stranded RNA virus belongs to orthomyxoviridae family (Dayem et al.). It has four genera named A, B, C, and D (Li et al., 2016). Among all the types of SIV, only three subtypes, H1N1, H1N2, and H3N2, are responsible for human influenza (Chiapponi et al., 2018). Critical medical conditions of SIV include fever, high breathing rates, including cough, strolling nostril, and sore throat. Headache, bodyache, fatigue, diarrhea, and vomiting have also been noticed. Old age individuals with chronic clinical conditions have a higher chance of infection and severity of the fundamental conditions (Bhiari et al., 2019). The important factors involved in SIV transmission is inhalation or ingestion of droplets containing virus produced through sneezing or coughing by infected individual (Kaur & Kaushik, 2018). It is most likely to be expected that 3 to 5 million cases of H1N1 arise globally every year, and ¼ - ½ million deaths occur due to this disease (Nandy et al., 2018). For regular screening commercially available kits should be used for SIV testing. Now a day's latest techniques, e.g. genetic screening through real-time PCR is highly recommended by WHO (Jhunget al., 2013).

Cholistani plants with medicinal significance

Medicinal plants are an essential part of herbal as well as modern medicines. Modern medicines are still depends on natural sources for new templates. Nowadays, use of plant-based drugs are very common in different parts of the world. These drugs are considered effective, cheap, with no or least side effects, and several other motives. The demand for plant-based drugs has been increased manifold in the last twenty years. Recently, many antiviral drugs have been developed by herbal products and used as a substitute source against viral diseases (Ahmed et al., 2014).

Effective antiviral treatment is necessary to prevent and control viral pandemics in humans and livestock. The use of herbal medicinal plants with rare side effects compared to synthetic medications has successfully made them acceptable and famous worldwide. For the screening of antiviral activity, the extracts of Cholistani plants have been used. This screening has prompted the discovery of active inhibitors for in vitro viral development and the utilization of the ethno-pharmacological approach to separate new bioactive plant compounds. Numerous local plants have been utilized to treat several human infections and their livestock by the local inhabitants of Cholistan. The key points concerning the research are to discover the uses of the shrubs by local inhabitants, counsel with the specialists of plants with their assessment, and determine the synthetic arrangement of the above-cited plant extracts. The studies support that traditional plants have potential against viral diseases and can be used as a core basis in improving novel antiviral medications in the future. For this reason, there's a need to discover new and
more fantastic effective antiviral drugs for the remedy of various types of viral contagions, so this investigation was focused on plant remedies used in the treatment of cutaneous conditions. The extracts from the plants have been verified as an antidote for various types of viral disorders (Vijayan et al., 2004).

2. Materials and Methods

2.1 Collection of plants

Eleven different fresh plants, i.e., Haloxylon recurvum (Khar, Sajji), Haloxylon salicornicum (Lana), Achyranthesaspera (Puth Kanda), Suaeda fruticosa (Kali Lani), Sporobolus icolados, Solanum surattense (Kandiari, Muakri), Ochthochloa compressa (Chimber), Neurada procumbens (Chhapri), Panicum antidotale (Murrot, Bans, ghaa), Oxytocala esculentum (Dudhani) and Salsola baryosma (Lani) were collected as a whole plant from Cholistan Institute of Desert Studies, The Islamia University of Bahawalpur, Pakistan and nearby area of Lal Suhanra National Park Bahawalpur Punjab, Pakistan. The voucher for each plant was saved. The samples were washed and dried under shade at RT (25°C) for at least ten days.

2.2 Isolation and identification of Swine influenza virus (SIV) H1N1

SIV H1N1 was isolated from patient-reported at influenza diagnostic facility, Bahawal Victoria Hospital, Bahawalpur. The nasopharyngeal swabs were maintained in DMEM media, and the sample was confirmed through real-time (RT) PCR by strain-specific primers. The medium was filter-sterilized, and the virus was subjected to Inovo inoculation in 9-11 days old Chicken embryonated eggs (CEE).

2.3 Preparation of plant extracts

The dried plants were cut into small pieces, crushed via pestle/mortar, and ultimately converted into powdered form by an electric grinder. Then these powders were preserved in sealed containers at RT. The 200ml of each solvent like MtOH, n-hexane, EtOH, n-butanol, and ethyl-acetate was mixed with 10g of powder from each plant. The solutions were saved in sealed containers for 96 h, with vigorous shaking. Finally, the solutions were exposed to a rotary evaporator at 45-50°C. After evaporation; the concentrates were cleaned with a respective solvent/chloroform mixture and then re-evaporated. Finally, the precipitates were weighted to respective solvent, vortexed, and filter through Whatman filter paper. The samples were sterilized by passing through a syringe filter (0.22 µm) and kept at -20°C (Joshi and Kaur, 2013).

2.4 Virus Inoculation

The 9-11 days old Specific pathogen-free were obtained from Govt poultry farm, Model Town A, Bahawalpur and used for inoculation purposes. SIV was injected in the chorioallantoic fluid of CEE. The eggs were candled before inoculations to check the viability of embryos. The broader ends of eggs were swabbed with 70% alcohol and allow to evaporate. This whole practice was done in Biosafety Cabinet type II. The broader ends of eggs were drilled by hand with a sterilized standard pin and instantly inoculated with viral strain via the chorioallantoic route. The hole was closed with melted wax after the inoculation, and eggs were incubated at 37°C. The viability of eggs was checked daily. The allantoic fluid was collected 48-72 h post-inoculation, and a hemagglutination test was performed to evaluate the titer of the virus. Serial passages were done before taking antiviral trials to take the desired titer of the SIV H1N1 virus (Wei et al., 2015).

2.5 Hemagglutination Test

Fresh chicken blood, 5 ml was added to 20 ml Alsever solution (sodium chloride=0.42g, citric acid=0.55g, sodium citrate=0.8g, D-glucose=2.05g, Distilled-H2O=100ml) in a test tube. The mixture was centrifuged at 4000 rpm for 5 min, and the supernatant was discarded. The packed red blood cells (RBCs)
were washed with 5 ml phosphate buffer saline (PBS) solution, and this step was repeated thrice. 1% RBC solution was made by taking 10µl packed RBC into 1 ml PBS solution. Then a round-bottom 96-well plate was taken, and 50µl of the PBS solution was added to all the plate wells. In the first well, 50µl of the viral strain was added and mixed and then transferred to 50µl volume to the next well on its right side (serial dilution), then repeated this mixing till the 11th well and lastly, 50µl was then discarded from the final (11th) well. The 12th well was a negative control (PBS solution). 1% of RBC's solution (50µl) was transferred to each of the wells and mixed smoothly, and the plate was incubated at 37°C for 1 hour to note down the results (Matusevich et al., 2015; Wang et al., 2018).

2.6 RNA extraction from allantoic fluid
For the RNA extraction, 1ml of allantoic fluid was taken and centrifuged at 1000-3000 rpm. The medium was removed by aspiration, and the cell pellets were resuspended in 1-2 ml of sterilized ice-cold PBS. The cells were harvested by 1000-3000 rpm centrifugation, and the PBS was removed. Then 1ml or 2 ml of solution D (25 mM sodium citrate, 0.1 M β-mercapto EtOH, 4 M guanidinium thiocyanate, and 0.5% (w/v) sodium lauryl sarcosinate) was added. The cells were homogenized for 15-30 seconds at RT. After this, the homogenates were transferred to a fresh polypropylene tube, and 0.1ml of 2 M sodium acetate (pH 4.0), 1ml Phenol, and 0.2ml of chloroform-isooamyl alcohol per ml of solution D were added. The mixtures were vortexed vigorously for ten seconds and incubated on ice for fifteen minutes, and then shifted to the next step centrifugation at 10000 rpm for 20 min at 4°C. The upper aqueous portion comprising extracted RNA was transferred to a new tube. An equivalent volume of isopropanol was mixed in the extracted RNA, and then the solution was vortexed. The RNA was permitted to precipitate for 30-45 min at 4°C. The precipitated RNA was collected using centrifugation at 10000 rpm for 10 min on the ice at 4°C. Washing of the pellet with 75% EtOH was done and the centrifugation step repeated. A pipette tip removed the EtOH. After this, open the tube on the bench to allow the EtOH to evaporate. They were dissolved in deionized formamide to store at -20°C (Chomczynski, 1992).

2.7 In ovo antiviral assay
Antiviral estimation was established to analyze antiviral activity from selected Cholistani plants, in ovo. The filter pure plant extracts were blended with an equivalent volume of viral inoculums and then inoculated 9-11 days old (CEE) as the process defined by (Rajbhandari et al., 2001). In case of negative control, a Phosphate buffer solution was used, and a virus without any plant extracts was used in case of virus control. All the inoculated eggs were collected after 48-72 h and assessed through hemagglutination test and RT-PCR.

2.8 Real-Time (RT) PCR
RT-PCR was used for quantification of SIV H1N1 after In Ovo antiviral assay. PCR master mixture was prepared on ice. The components used to prepare RT-PCR were given; Buffer 12.5 µL, Forward/reverse PCR primer 400 nM, Enzyme mixture 1µL, TaqMan probes 120 nM, RNA sample. The final volume of RT-PCR was 25 µL per reaction. For the negative controls, nuclease-free water was utilized instead of the sample. The master mix was dispensed to each PCR tube, and the sample was added to each reaction along with positive and negative control. Applied Biosystems® 7500 Real-Time PCR System verified the performance of the kit. The whole reaction was run at the WHO Influenza reference lab (BSL-3 lab) at Nishtar Medical University Multan, and all the lab staff was pre-vaccinated against SIV H1N1.

2.9 IC50
The serial dilution method (1:2, 1:4, 1:8) was used to determine the IC₅₀ of each positive extract. Easy fit software was used to calculate dose and time-dependent curves by linear regression.

3. Results

3.1 Antiviral activity

All the extracts of Cholistani plants selected for their antiviral effect effectively controlled SIV H₁N₁ growth. However, the effect varied from plant to plant and extract to extract. The antiviral effect is reported in terms of HA titers. The higher the HA titer value, the lower the antiviral effect of plant extracts. The n-hexane extract of all Cholistani plants has shown the highest antiviral effect revealing an HA titer value ranged between 0 to 32 and log reduction from 9 to 5 (table 1). The plant’s Salsola baryosma, Ochthochloa compressa, Neurada procumbens exhibited optimal antiviral activity with 0 HA titer (<log₂), showing almost complete control over viral growth. According to the results of this study, 11 out of 11, n-hexane and EtOH extracts, 9 out of 11, ethyl acetate and MtOH extracts, and similarly 7 out of 11 butanol extracts were strongly positive against SIV H₁N₁. The extracts of EtOH, MtOH, n-hexane, n-butanol, and ethyl acetate of Haloxylon recurvum, Salsola baryosma, Haloxylon salicornicum, Achyranthes aspera, Neurada procumbens, Sporobolus icolados, Solanum surattense, Ochthochloa compressa, Suaeda fruticosa, Oxystelma esculentum, and Panicum antidotale exhibit suitable antiviral activities against SIV H₁N₁. The HA-based results of n-hexane extracts were further confirmed through real-time (RT) PCR.

Fig 1. Anti SIV H₁N₁ activity of n-hexane extract of different Cholistani plants

Lane 1 shows HA titer of H. recurvum, Lane 2 shows HA titer of H. salicornicum, Lane 3 shows HA titer of A. aspera, Lane 4 shows HA titer of S. fruticosa, Lane 5 shows HA titer of S. icolados, Lane 6 shows HA titer of S. surattense, Lane 7 shows HA titer of O. compressa, Lane 8 shows HA titer of N.
procumbens, Lane 9 shows HA titer of *P. antidotale*, Lane 10 shows HA titer of *O. esculentum* Lane 11 shows HA titer of *S. baryosma* and Lane 12 shows HA titer of SIV H1N1 control.

Table 1: Anti SIV H1N1 activities of extracts of selected Cholistani plants

Cholistani Plant	EtOH extract	Ethyl acetate extract	MtOH extract	n-butanol extract	n-hexane extract								
H. recurvum	**<log₂** 12.5	4	-	9	12.5	<log₂	3.15	8	25				
H. salicornicum	5	50	6	50	8	25	8	25	25				
A. aspera	<log₂ 3.12	5	12.5	2	-	2	-	9	12.5				
S. fruticose	6	25	5	50	8	25	3	-	6	50			
S. icolados	9	25	7	25	9	12.5	9	9	3.12	8	25		
S. surattense	7	50	8	25	5	50	5	50	5	50			
O. compressa	8	25	<log₂ 3.12	5	6	25	4	-	<log₂	6.2	5		
N. procumbens	5	50	<log₂ 12.5	<log₂ 6.25	9	12.5	5	50	<log₂	3.12	5	5	50
P. antidotale	<log₂ 6.25	9	12.5	5	50	<log₂	3.12	5	5	50			
O. esculentum	6	25	3	-	3	-	7	25	9	12.5			
S. baryosma	<log₂ 12.5	8	25	<log₂ 12.5	4	-	<log₂	6.2	5				
Virus control	0	-	0	-	0	-	0	-	-	-			

* = IC₅₀ is measured in µg/mL conc. **<log<sub>2</log₂> virus quantity mean 0 HA titer

3.2 RT-PCR Assay

RT PCR was performed to quantify SIV H1N1 from allantoic fluids collected from n-hexane treated eggs. According to the results of this experiment, n-hexane extracts of all the selected plants showed strong antiviral activity against SIV H1N1, and these results were following the HA test results. The virus was not detected from any sample by RT PCR, and it showed that all n-hexane extracts were very effective against SIV H1N1. The CT value (30.5755) of virus control confirms that the SIV H1N1 titer was high in virus control.
Table 2: RT PCR results of Cholistani Plants

Sr.No	Sample Name	Detectors used	Well	Results
1	H. recurvum	INF.A & PMD-H1	A3	Undetected
2	H. salicornicum	INF.A & PMD-H1	B3	Undetected
3	A. aspera	INF.A & PMD-H1	C3	Undetected
4	S. fruticosa	INF.A & PMD-H1	D3	Undetected
5	S. icolados	INF.A & PMD-H1	E3	Undetected
6	S. surattense	INF.A & PMD-H1	F3	Undetected
7	O. compressa	INF.A & PMD-H1	G3	Undetected
8	N. procumbens	INF.A & PMD-H1	H3	Undetected
9	P. antidotale	INF.A & PMD-H1	A4	Undetected
10	O. esculentum	INF.A & PMD-H1	B4	Undetected
11	S. baryosma	INF.A & PMD-H1	C4	Undetected
12	SIV H1N1 (control)	INF.A & PMD-H1	F4	30.5755

4. Discussion

Cholistani plants have valuable biological activities, particularly against SIV H1N1. Wild plant extracts cover various principal active agents that can exert their antiviral effect either alone or in synergism, thereby providing less time for the virus to mutate and develop resistance against them. These plants can control the growth of SIV H1N1 and should be compared with commercially available products i.e., zanamivir, oseltamivir, and Amantadine. According to this research, selected plants were very active for SIV H1N1 growth under ovo conditions, particularly n-hexane and EtOH extracts. In the light of consequences, these plants were grouped into three sets. The first set consists of highly effective extracts of plants that reduced the log2 from 9 to 5 (HA titer 0 to 32) against SIV H1N1. The second set contains those extracts that partially control the virus, and their HA titers were 32 to 256, and the last comprises those extracts of the plants that were minimum effective against H1N1. EtOH and n-hexane extracts from selected plants belong to group 1 because extracts of all 11 out of 11 plants exhibited significant anti SIV H1N1 activity and kept HA titer and CT value of RT-PCR 0 or very low. Ethyl acetate and MtOH extracts belong to group 2 because ethyl acetate extracts of H. recurvum & O. esculentum and MtOH extracts of A. aspera & O. esculentum were partially active in controlling growth SIV H1N1. Similarly, butanol extracts of A. aspera, S. fruticosa, O. compressa, S. baryosma were least effective against H1N1 and classified into group 3. The n-hexane extracts treated virus was further confirmed through RT PCR. It was noticed that all the extracts were effective in controlling the growth of SIV H1N1, and the presence of virus in allantoic fluids was not detected except for virus control.

There are more than a few reports on plant-based antiviral compounds against influenza virus infection. Various antiviral studies have been confirmed on the medicinal plant's species, for example, screening of various plant species including T. ventricosa, C. spicata, R. melanophloeos, P. viridiflorum and C. glabrum was prominent against influenza virus (Mehrbod et al., 2018). Consistently, leave extracts of Annona muricata were also effective against dengue virus type2 and exposed antiviral activity (Wahab et al., 2018). Padilla et al. (2018) also revealed research on the invitro antiviral activity of Brazilian medicinal plants extracts, and these extracts showed antiviral activity against humans (HSV-1), equine (EqHV-1), and swine herpesviruses (SuHV-1). Similarly, MtOH extracts of Cholistani plants have been
tested and found rich in antiviral activities against avian infectious bursal disease (IBD) and infectious bronchitis (IB) viruses (Aslam et al., 2016). In another study, the antiviral potential of Cholistani plants against poultry pathogens was highlighted by Shahzad et al. (2020).

Zhang et al. (2018) concluded that Shixiangru total flavonoids (STF) could be a good competitor for SIV H1N1 and viral pneumonia medication. The inhibitory action and related molecular mechanism of STF against SIV H1N1 were also studied. Similarly, Silva-Mares et al. (2018) performed a screening on the north-east Mexican traditional plants (Salvia texana, Persea americana, Juglans mollis, Salvia ballotae flora, Hamelia patens, Ceanothus coeruleus, Clematis drummondii, and Chrysactinia Mexicana) to assess the antiviral activities against HSV-1 & 2 on HeLa cells. Sornpet et al. (2017) examined invitro antiviral activities of five Asian medicinal plants (Kaempferiaparviflora, Gynostemma pentaphyllum, Andrographis paniculata, Psidium guajava, and Curcuma longa) against AIV. The best inhibitory effect was shown by seed extracts and total alkaloids of P. harmala against influenza A virus growth (Moradi et al., 2017). Farid et al. (2017) investigated the phytochemical constituents associated with the butanol soluble fraction of Arum palaestinum aqueous MtOH extract against avian influenza virus (AIV). Not only plants but also derivatives of camphor have been reported as effective inhibitors in cell culture against AIV (Zarubaev et al., 2015). Along similar lines, the inhibitory action of Chongkukjang (fermented product prepared from soybeans of traditional Korean) against the influenza A virus proved to be very effective (Wei et al., 2015). Assessment of direct antiviral activity against AIV using the extracts of five Asian medicinal plants and Deva-5 herb formulation has also been reported (Oyuntsetseg et al., 2014). Anti SIV H1N1 and H3N1 activities were observed by the extracts of 50 medicinal plants present in the tropical rainforests of Borneo (Rajasekaran et al., 2013). The significant role of traditional Chinese medicine (TCM) was also reported for anti-influenza activity (He et al., 2011).

Even though our research is introductory in nature as the antiviral characteristics of plants presenting extensive inhibitory effects against the SIV but still need to be interpreted, to the best of our expertise, this is the primary description in scientific literature representing the antiviral potential of plants from the Cholistan desert against SIV H1N1. Moreover, the control of viral growth by certain plants is fascinating and should be investigated further. There is a massive gap for clarifying traditional plant utilization into current medication for humans, animals, and domesticated birds like the poultry industry. Another motive to utilize such plant extracts might be the mechanism of activity, e.g., plant-based crops, work synergistically, subsequently giving a shorter time for mutation and producing resistance against drugs. Despite the accessibility of suitable treatments, the interest in antiviral vaccines is increasing.

Furthermore, massive usage of vaccines might become the viable cause of genomic distinction, so screening novel and progressively fresh antiviral compounds from plants or other herbal sources must focus. In addition, deserts with relative natural environments have been additionally found in the Middle East, Africa and Canada, and several other world regions. Highly integrated and collaborative support is required for the antiviral discovery program from natural resources from these areas to combat emerging and existing viral infections.

5. Conclusion

Cholistani plants accomplish a significant role in controlling inovo growth of SIV H1N1. Cholistani plants, through their different extracts, control the growth of this virus. Among these, EtOH and n-hexane extracts of all the plants were effective against SIV H1N1. These results were further confirmed through RT PCR, and results confirmed that both RT PCR and HA test were equally good in determining the
antiviral effect of Cholistani plants. The study strongly supports the idea that Cholistani medicinal plants have strong anti-SIV H1N1 effects and offer alternate and cost-effective medication against SIV H1N1.

Future Work
The principle active agent(s) from extracts of Cholistani plants will be characterized through LCMS techniques. The extracts of these plants will be tested against other strains of AIV like H9N3, H7N2, and H5N1.

Acknowledgments: We thank the Bahawal Victoria Hospital for availability of H1N1 sample. We are also thankful to Nishtar Medical University Multan for real time PCR facility.

6. **References**

Abu Shady, A. E., Khaled, A. S., Azza, M. S., G. Mehreshan, *et al.*, (2017). The antiviral and antioxidant activity of some medicinal plants. *World Journal of pharmacy and pharmaceutical. sciences, 60*(11), 263-281.

Ahmed, N., Mahmood, A., Tahir, S., Bano, A., Malik, R. N., Hassan, *et al.*, (2014). Ethnomedicinal knowledge and relative importance of indigenous medicinal plants of Cholistan desert, Punjab Province, Pakistan. *155*(2), 1263-1275.

Arunkumar, S., & Muthuselvam, M. (2009). Analysis of phytochemical constituents and antimicrobial activities of Aloe vera L. against clinical pathogens. *World Journal of Agricultural Sciences, 5*(5), 572-576.

Aslam, A., Shahzad, M. I., Parveen, S., Ashraf, H., Naz, N., Zehra, *et al.*, (2016). Evaluation of antiviral potential of different Cholistani plants against infectious bursal disease and infectious bronchitis virus. *Pakistan Veterinary Journal, 36*(3), 302-306.

Bhiari, S., Kumar, V., Kumar., R., Choudhary, R. (2019). Study of clinical profile among swine (H1N1) infected adult patients in Kota Rajasthan, January 2018 – April 2019. *Paripex – Ind J Res, 8*(7), 2250 – 1991

Cheng, V. C. u, To, K. K., Tse, H., Hung, I. F., & Yuen, K. Y. (2012). Two years after pandemic influenza A/2009/H1N1: what have we learned? *Clinical microbiology reviews, 25*(2), 223-263.

Chiapponi, C., Ebranati, E., Pariani, E., Faccini, S., Luppi, A., Baioni, *et al.*, (2018). Genetic analysis of human and swine influenza A viruses isolated in Northern Italy during 2010–2015. *65*(1), 114-123.

Dayem, A. A., Choi, H. Y., Kim, *et al.*, (2015). Antiviral effect of methylated flavonolisorhamnetin against influenza. *PLoS One, 10*(3), e0121610.

Farid, M. M., Hussein, S. R., Trendafilova, A., Marzouk, M. M., El Oqlah, *et al.*, (2017). Phytochemical constituents of the butanol fraction of Arum palaestinumBoiss.: cytotoxic and antiviral screening. Fragaszy, E., Ishola, D. A., Brown, I. H., Enstone, J., Nguyen-Van-Tam, J. S., Simons, R., ... & Flu Watch Group. (2016). Increased risk of A (H1N1) pdm09 influenza infection in UK pig industry workers compared to a general population cohort. *Influenza and other respiratory viruses, 10*(4), 291-300.

He, W., Han, H., Wang, W., & Gao, B. (2011). Anti-influenza virus effect of aqueous extracts from dandelion. *Virology journal, 8*(1), 538.

Hurt AC, (2014). The epidemiology and spread of drug resistant human influenza viruses. *CurrOpinVirol, 8*: 22-29.

Jhung, M. A., Epperson, S., Biggerstaff, M., Allen, D., Balish, A., Barnes, N., ... & Blythe, D. (2013). Outbreak of variant influenza A (H3N2) virus in the United States. *Clinical infectious diseases, 57*(12), 1703-1712.

Joshi, A., & Kaur, R. (2013). A review: Comparative study of various clustering techniques in data mining. *International Journal of Advanced Research in Computer Science and Software Engineering, 3*(3).
Kaur, R., & Kaushik, V. (2018). In Silico Peptide based Vaccine Identification against Swine Influenza Virus. In 2018 International Conference on Bioinformatics and Systems Biology (BSB) (pp. 157-160). IEEE.

Lemey, P., Rambaut, A., Bedford, T., Faria, N., Bielejec, F., Baele, G., & Suchard, M. A. (2014). Unifying viral genetics and human transportation data to predict the global transmission dynamics of human influenza H3N2. PLoS pathogens, 10(2), e1003932.

Li, Y., Lin, Z., Zhao, M., Guo, M., Xu, T., Wang, et al., (2016). Reversal of H1N1 influenza virus-induced apoptosis by silver nanoparticles functionalized with amantadine. RSC Advances, 6(92), 89679-89686.

Lin, C., Sun, C., Liu, X., Zhou, Y., Hussain, M., Wan, et al., (2016). Design, synthesis, and in vitro biological evaluation of novel 6-methyl-7-substituted-7-deaza purine nucleoside analogs as anti-influenza A agents. Antiviral research, 129, 13-20.

Matusevich, O. V., Egorov, V. V., Gluzdikov, I. A., Titov, M. I., Zarubaev, V. V., Shtro, et al., (2015). Synthesis and antiviral activity of PB1 component of the influenza A RNA polymerase peptide fragments. Antiviral research, 113, 4-10.

Mehrbd, P., Abdalla, M. A., Njoya, E. M., Ahmed, A. S., Fotouhi, F., Farahmand, et al., (2018). South African medicinal plant extracts active against influenza A virus. BMC complementary and alternative medicine, 18(1), 112.

Moradi, M. T., Karimi, A., Rafieian-Kopaei, et al., (2017). In vitro antiviral effects of Peganum harmala seed extract and its total alkaloids against Influenza virus. Microbial pathogenesis, 110, 42-49.

Nandy, A., De, A., Roy, P., Dutta, M., Roy, M., Sen, D., & Basak, S. C. (2018). Alignment-Free Analyses of Nucleic Acid Sequences Using Graphical Representation (with Special Reference to Pandemic Bird Flu and Swine Flu). In Synthetic Biology (pp. 141-188). Springer, Singapore.

Okomo-Adhiambo, M., Fry, A. M., Su, S., Nguyen, H. T., Elal, A. A., Negron, et al., (2015). Oseltamivir-resistant influenza A (H1N1) pdm09 viruses, United States, 2013–14. Emerging infectious diseases, 21(1), 136.

Oyuntsetseg, N., Khasnatinov, M. A., Molor-Erdene, P., Oyunbileg, J., Liapunov, A. V., Danchinova, et al., (2014). Evaluation of direct antiviral activity of the Deva-5 herb formulation and extracts of five Asian plants against influenza A virus H3N8. BMC complementary and alternative medicine, 14(1), 235.

Padilla, M. A., Simoni, I. C., Hoe, V. M. H., Fernandes, M. J. B., Arns, et al., (2018). In vitro antiviral activity of Brazilian Cerrado plant extracts against animal and human herpesviruses. Journal of Medicinal Plants Research, 12(10), 106-115.

Rajasekaran, D., Palombo, E. A., Yeo, T. C., Ley, D. L. S., Tu, C. L., Malherbe, F., & Grollo, L. (2013). Identification of traditional medicinal plant extracts with novel anti-influenza activity. PLoS One, 8(11), e79293.

Rajbhandari, M., Wegner, U., Jülich, M., Schoepke, et al., (2001). Screening of Nepalese medicinal plants for antiviral activity. Journal of Ethnopharmacology, 74(3), 251-255.

Rewar, (2015). How pandemic H1N1 influenza is controlled in Indian hospitals.

Setiawaty V, Dharmayanti NL, Misriyah, Pawestri HA, et al., (2015). Avian influenza A(H5N1) virus outbreak investigation: application of the FAO-OIE-WHO four-way linking framework in Indonesia. Zoonoses Public Health 62(5): 381-387.

Shahzad, MI, Anwar, S, Ashraf, H, Manzoor, et al., (2020). Antiviral activities of Cholistani plants against common poultry viruses. Tropical Biomedicine, 37(4), 1129–1140.

Silva-Mares, D., Rivas-Galindo, V. M., Salazar-Aranda, R., Pérez-Lopez, L. A., Waksman De Torres, N., Pérez-Meseguer, et al., (2018). Screening of north-east Mexico medicinal plants with activities against herpes simplex virus and human cancer cell line. Natural product research, 33(10), 1531-1534.

Sornpet, B., Potha, T., Tragoolpua, Y., & Pringproa, (2017). Antiviral activity of five Asian medicinal plant crude extracts against highly pathogenic H5N1 avian influenza virus. Asian Pacific journal of tropical medicine, 10(9), 871-876.
Wahab, N. Z. A., Ibrahim, N., Kamarudin, M. K. A., Lananan, F., Juahir, H., Ghazali, et al., (2018). Cytotoxicity and antiviral activity of Annona muricata aqueous leaves extract against dengue virus type 2. Journal of Fundamental and Applied Sciences, 10(1S), 580-589.

Wang, L. B., Chen, Q. Y., Wu, X. M., Che, Y. L., Wang, C. Y., Chen, et al., (2018). Isolation of a reassortant H1N2 swine Flu strain of type "Swine-Human-Avian" and its genetic variability analysis. BioMed research international, 2018.

Wei, B., Cha, S. Y., Kang, M., Kim, Y. J., Cho, C. W., Rhee, et al., (2015). Antiviral activity of Chongkukjang extracts against influenza A virus in vitro and in vivo. Journal of Ethnic Foods, 2(2), 47-51.

Zarubaev, V. V., Garshinina, A. V., Tretiak, T. S., Fedorova, V. A., Shtro, A. A., Sokolova, et al., (2015). Broad range of inhibiting action of novel camphor-based compound with anti-hemagglutinin activity against influenza viruses in vitro and in vivo. Antiviral research, 120, 126-133.

Zhang, X. X., Wu, Q. F., Yan, et al., (2018). Inhibitory effects and related molecular mechanisms of total flavonoids in Moslachinensis Maxim against H1N1 influenza virus. Inflammation Research, 67(2), 179-189.

Zhu, H., Webby, R., Lam, T. T., Smith, D. K, et al., (2011). History of swine influenza viruses in Asia. In Swine Influenza (pp. 57-68). Springer, Berlin, Heidelberg.