CONSTRUCTING KRALL-HAHN ORTHOGONAL POLYNOMIALS

ANTONIO J. DURÁN AND MANUEL D. DE LA IGLESIA

Abstract. Given a sequence of polynomials \((p_n)_n\), an algebra of operators \(\mathcal{A}\) acting in the linear space of polynomials and an operator \(D_p \in \mathcal{A}\) with \(D_p(p_n) = \theta_n p_n\), where \(\theta_n\) is any arbitrary eigenvalue, we construct a new sequence of polynomials \((q_n)_n\) by considering a linear combination of \(m + 1\) consecutive \(p_n\): \(q_n = p_n + \sum_{j=1}^{m} \beta_{n,j} p_{n-j}\). Using the concept of \(D\)-operator, we determine the structure of the sequences \(\beta_{n,j}\), \(j = 1, \ldots, m\), in order that the polynomials \((q_n)_n\) are eigenfunctions of an operator in the algebra \(\mathcal{A}\). As an application, from the classical discrete family of Hahn polynomials we construct orthogonal polynomials \((q_n)_n\) which are also eigenfunctions of higher-order difference operators.

1. Introduction

The issue of orthogonal polynomials which are also eigenfunctions of a higher-order differential operator was raised by H. L. Krall in 1939, when he obtained a complete classification for the case of a differential operator of order four ([23]). After his pioneer work, orthogonal polynomials which are also eigenfunctions of higher-order differential operators are usually called Krall polynomials. This terminology can be extended for finite order difference and \(q\)-difference operators. Krall polynomials are also called bispectral, following the terminology introduced by Duistermaat and Grünbaum ([6]; see also [13], [14]).

Regarding Krall polynomials, there are important differences depending whether one considers differential or difference operators. Indeed, roughly speaking, one can construct Krall polynomials \(q_n(x), n \geq 0\), by using the Laguerre \(x^\alpha e^{-x}\), or Jacobi weights \((1-x)^\alpha(1+x)^\beta\), assuming that one or two of the parameters \(\alpha\) and \(\beta\) are nonnegative integers and adding a linear combination of Dirac deltas and their derivatives at the endpoints of the orthogonality interval ([23], [20], [21], [22], [24], [25], [13], [15], [16], [18], [19], [27]). This procedure of adding deltas seems not to work if we want to construct Krall discrete polynomials from the classical discrete measures of Charlier, Meixner, Krawtchouk and Hahn (see the papers [2] and [3] by Bavinck, van Haeringen and Koekoek answering, in the negative, a question posed by R. Askey in 1991 (see pag. 418 of [4])).

As it has been shown recently by one of us, instead of adding deltas, Krall discrete polynomials can be constructed by multiplying the classical discrete weights by certain polynomials (see [8]). The kind of transformation which consists in

1991 Mathematics Subject Classification. 33C45, 33E30, 42C05.

Key words and phrases. Orthogonal polynomials. Difference operators and equations. Hahn polynomials. Krall polynomials.

Partially supported by MTM2012-36732-C03-03 (Ministerio de Economía y Competitividad), FQM-262, FQM-4643, FQM-7276 (Junta de Andalucía) and Feder Funds (European Union).
multiplying a measure μ by a polynomial r is called a Christoffel transform. It has a long tradition in the context of orthogonal polynomials: it goes back a century and a half ago when E. B. Christoffel (see [5] and also [26]) studied it for the particular case $r(x) = x$.

Using suitable polynomials, a number of conjectures have been posed in [8] on how to construct bispectral polynomials from the families of Charlier, Meixner, Krawtchouk and Hahn. For Charlier, Meixner and Krawtchouk, those conjectures have been proved by the authors in [11]. Those families have in common that the eigenvalues for their associated second-order difference operator are linear sequences in n.

The purpose of this paper is to prove the conjecture 5 in [8] for the Hahn polynomials. In this case, the eigenvalues for its associated second-order difference operator are now a second degree polynomial in n. We consider higher-order difference operators of the form

\begin{equation}
D = \sum_{l=s}^{r} h_l s_l, \quad s, r \in \mathbb{Z},
\end{equation}

where h_l are polynomials and s_l stands for the shift operator $s_l(p) = p(x + l)$. If $h_r, h_s \neq 0$, the order of D is then $r - s$. We also say that D has genre (s, r).

The conjecture we will prove here is the following:

Conjecture. Let $\rho_{a,b,N}$ be the Hahn weight (see Section 5 for details). Given a quartet of finite sets $F = (F_1, F_2, F_3, F_4)$ of positive integers (the empty set is allowed) consider the weight $\rho_{a,b,N}^F$ defined by

\begin{equation}
\rho_{a,b,N}^F = \prod_{f \in F_1} (b + N + 1 + f - x) \prod_{f \in F_2} (x + a + 1 + f) \prod_{f \in F_3} (N - f - x) \prod_{f \in F_4} (x - f) \rho_{a,b,N}.
\end{equation}

Assume that the measure $\rho_{a,b,N}^F$ has an associated sequence of orthogonal polynomials. Then they are eigenfunctions of a higher-order difference operator of the form (1.1) with

\[-s = r = \sum_{f \in F_1, F_2, F_3, F_4} f - \frac{4}{i=1} \left(\frac{n_{F_i}}{2} \right) + 1, \]

where n_F denotes the cardinal of F.

The content of this paper is as follows. In order to prove the conjecture above, we use the approach developed in [11] for constructing Krall polynomials from the Charlier, Meixner and Krawtchouk families. The main ingredients of this approach will be considered in Sections 3 and 4. The first ingredient is the D-operators (see Section 3). This is an abstract concept introduced in [9] by one of us which has shown to be very useful to generate Krall, Krall discrete and q-Krall families of polynomials (see [9], [1], [11], [12], [10]). For a positive number m and m polynomials Y_j, $j = 1, \ldots, m$, (which act as parameters) we can construct from the classical discrete families $(p_n)_n$, using D-operators, a huge class of families of polynomials $(q_n)_n$ which are also eigenfunctions of difference operators of the form (1.1). The sequence of polynomials $(q_n)_n$ are not in general orthogonal. The second ingredient establishes how to choose the polynomials Y_j’s such that the polynomials $(q_n)_n$ are also orthogonal with respect to a measure. As for the case of Charlier, Meixner and
Krawtchouk (studied in [11]), this second ingredient turns into a very nice symmetry between the Hahn family and the polynomials Y_j’s. Indeed, the polynomials Y_j’s can be chosen to be dual Hahn polynomials, but with a suitable modification of the parameters.

In Sections 5 and 6 we will put together all these ingredients to construct bispectral Krall-Hahn orthogonal polynomials and prove the conjecture above.

2. Preliminaries

For a linear operator D acting in the linear space of polynomials \mathbb{P}, i.e. $D : \mathbb{P} \rightarrow \mathbb{P}$, and a polynomial $P(x) = \sum_{j=0}^{k} a_j x^j$, the operator $P(D)$ is defined in the usual way as $P(D) = \sum_{j=0}^{k} a_j D^j$.

Let μ be a moment functional on the real line, that is, a linear mapping $\mu : \mathbb{P} \rightarrow \mathbb{R}$. It is well-known that any moment functional on the real line can be represented by integrating with respect to a Borel measure (positive or not) on the real line. We say that a measure μ is orthogonal to the moment functional μ if $\langle \mu, p_n p_m \rangle = 0$, for $n \neq m$ and $\langle \mu, p_n^2 \rangle \neq 0$. Since the Hahn polynomials considered in this paper are orthogonal with respect to a measure (the measure is a finite combination of Dirac deltas), we will stress this property of non-vanishing norms when necessary.

As we wrote in the Introduction, the kind of transformation which consists in multiplying a moment functional μ by a polynomial r is called a Christoffel transform. The new moment functional $r \mu$ is defined by $\langle r \mu, p \rangle = \langle \mu, rp \rangle$. Its reciprocal is the Geronimus transform $\hat{\mu}$ which satisfies $r \hat{\mu} = \mu$. Notice that the Geronimus transform of the moment functional μ is not uniquely defined. Indeed, write a_i, $i = 1, \ldots, u$, for the different real roots of the polynomial r, each one with multiplicity b_i, respectively. It is easy to see that if $\hat{\mu}$ is a Geronimus transform of μ then the moment functional $\hat{\mu} + \sum_{i=1}^{u} \sum_{j=0}^{b_i-1} \alpha_{i,j} \delta_{a_i}$ is also a Geronimus transform of μ, where $\alpha_{i,j}$ are real numbers. These numbers are usually called the free parameters of the Geronimus transform.

In the literature, Geronimus transform is sometimes called Darboux transform with parameters while Christoffel transform is called Darboux transform without parameters. The reason is the following. The three-term recurrence relation

$$xp_n(x) = a_{n+1} p_{n+1}(x) + b_n p_n(x) + c_n p_{n-1}(x), \quad n \geq 0,$$

for the orthogonal polynomials $(p_n)_n$ with respect to μ can be rewritten as $xp_n = J(p_n)$, where J is the second-order difference operator $J = a_{n+1} \mathbf{5}_1 + b_n \mathbf{5}_0 + c_n \mathbf{5}_{-1}$ and $\mathbf{5}_i$ is the shift operator (acting on the discrete variable n): $\mathbf{5}_i(x_n) = x_{n+i}$. For any $\lambda \in \mathbb{C}$, decompose J into $J = AB + \lambda I$ whenever it is possible, where $A = \alpha_{i} \mathbf{5}_0 + \beta_{i} \mathbf{5}_1$ and $B = \delta_{i} \mathbf{5}_{-1} + \gamma_{i} \mathbf{5}_0$. We then call $J = BA + \lambda I$ a Darboux transform of J with parameter λ. It turns out that the second-order difference operator \hat{J} associated to a Geronimus transform $\hat{\mu}$ of μ can be obtained by applying a sequence of k Darboux transforms (with parameters λ_i, $i = 1, \ldots, k$) to the operator J associated to the measure μ. This kind of Darboux transform has been
used by Grünbaum, Haine, Hozorov, Yakimov and Iliev to construct Krall and q-Krall polynomials ([13], [16], [17], [18] or [19]).

The family of measures $\rho_{a,b,N}(x)$ in the Introduction is defined by applying a Christoffel transform to the Hahn weight. But, it turns out that they can also be defined by using the Geronimus transform. This Geronimus transform is however defined by a different polynomial. We also have to make a suitable choice of the free parameters of this Geronimus transform and apply it to a Hahn weight but maybe with different parameters and affected by a shift in the variable. The following example will clarify this point. Consider $F_1 = \{1\}$, $F_2 = \{1\}$, $F_3 = \{1\}$, $F_4 = \{1\}$ and the Christoffel transform $\rho_{a,b,N}(x)$ of the Hahn weight $\rho_{a,b,N}$ defined by the polynomial $p(x) = (b + N - x)(x + a + 2)(N - x)(x - 1)$. That is,

$$\rho_{a,b,N}(x) = (b + N - x)(x + a + 2)(N - x)(x - 1)\rho_{a,b,N}.$$

From the definition of the Hahn weight $\rho_{a,b,N}$ (see (5.5) below), we have after a simple computation

$$\rho_{a,b,N}(x) = -\frac{\Gamma(N + b + 3)(N - 1)(a + 2)\delta_0 - \Gamma(N + a + 3)(N - 1)(b + 2)\delta_N}{(N + b + 1)\Gamma(b + 1)} - \frac{\Gamma(N + a + 3)(N - 1)(b + 1)\delta_N}{(N + a + 1)\Gamma(a + 1)} \sum_{x=2}^{N-2} \frac{\Gamma(N - x + b + 3)\Gamma(x + a + 3)}{\Gamma(a + 1)\Gamma(b + 1)} (a + x + 1)(N - x + b + 1)(x - 2)! \delta_x.$$

This shows that

$$x(N - x)(a + x + 1)(N - x + b + 1)\rho_{a,b,N}(x) = (N - 3)\frac{(a + 1)(4\rho_{a + 4,b + 4,N - 4}(x - 2)}{4\rho_{a + 4,b + 4,N - 4}(x - 2)},$$

where $(z)_j = z(z + 1) \cdots (z + j - 1)$ stands for the Pochhammer symbol.

That is, $\rho_{a,b,N}(x)$ is also the Geronimus transform defined by the polynomial $x(N - x)(a + x + 1)(N - x + b + 1)$ of the Hahn weight $\rho_{a + 4,b + 4,N - 4}(x - 2)$ where the free parameters (associated to the roots $x = 0, N, -a - 1, N + b + 1$) have to be necessarily chosen equal to $-\frac{\Gamma(N + b + 3)(N - 1)(a + 2)}{(N + b + 1)\Gamma(b + 1)}$, $\frac{\Gamma(N + a + 3)(N - 1)(b + 2)}{(N + a + 1)\Gamma(a + 1)}$, 0 and 0, respectively.

Along this paper, we use the following notation: given a finite set of positive integers $F = \{f_1, \ldots, f_m\}$, the expression

$$\begin{bmatrix} \begin{array}{c} z_{f,j} \\ f \in F \end{array} \end{bmatrix}$$

inside of a matrix or a determinant will mean the submatrix defined by

$$
\begin{pmatrix}
 z_{f_1,1} & z_{f_1,2} & \cdots & z_{f_1,m} \\
 \vdots & \vdots & \ddots & \vdots \\
 z_{f_m,1} & z_{f_m,2} & \cdots & z_{f_m,m}
\end{pmatrix}
$$

3. D-operators

The concept of D-operator was introduced by one of us in [9]. In [9], [11], [12] and [14], it has been showed that D-operators turn out to be an extremely useful tool of an unified method to generate families of polynomials which are eigenfunctions
of higher-order differential, difference or q-difference operators. Hence, we start by
reminding the concept of D-operator.

The starting point is a sequence of polynomials $(p_n)_n$, $\deg p_n = n$, and an
algebra of operators A acting in the linear space of polynomials \mathbb{P}. For the Hahn
polynomials, we will consider the algebra A formed by all finite order difference
operators, i.e.

$$
A = \left\{ \sum_{i=s}^{r} h_l \delta_i : h_l \in \mathbb{P}, l = s, \ldots, r, s \leq r \right\},
$$

where δ_i stands for the shift operator $\delta_i(p) = p(x + l)$. If $h_r, h_s \neq 0$, the order of
D is then $r - s$. We also say that D has genre (s, r).

In addition, we assume that the polynomials p_n, $n \geq 0$, are eigenfunctions of
certain operator $D_p \in A$. We write $(\theta_n)_n$ for the corresponding eigenvalues, so that
$D_p(p_n) = \theta_n p_n$, $n \geq 0$. Although for the Hahn polynomials p_n is a second degree polynomial
in n, in this section we do not assume any constraint on the sequence $(\theta_n)_n$.

Given two sequences of numbers $(\varepsilon_n)_n$ and $(\sigma_n)_n$, a D-operator associated to the
algebra A and the sequence of polynomials $(p_n)_n$ is defined as follows. We first
consider the operator $D : \mathbb{P} \to \mathbb{P}$ defined by linearity from

$$
D(p_n) = -\frac{1}{2} \sigma_{n+1} p_n + \sum_{j=1}^{n} (-1)^{j+1} \sigma_{n-j+1} \varepsilon_n \cdots \varepsilon_{n-j+1} p_{n-j}, \quad n \geq 0.
$$

We then say that D is a D-operator if $D \in A$. In [9] this kind of D-operator was
called of type 2; D-operators of type 1 appears when the sequence $(\sigma_n)_n$ is constant.

As it was shown in [9], [10] and [11], D-operators of type 1 are useful when the
eigenvalues θ_n are linear in n. Otherwise, we have to consider D-operators of type 2.

The purpose of this section is to extend the method developed in [11] to D-operators
of type 2. Therefore we will be able to construct, from the sequence $(p_n)_n$, new
sequences of polynomials $(q_n)_n$ such that there exists an operator $D_q \in A$ for which they are eigenfunctions.

To do that, we will consider a combination of m, $m \geq 1$, consecutive p_n's. We also
use m arbitrary polynomials Y_1, Y_2, \ldots, Y_m, and m D-operators, D_1, D_2, \ldots, D_m,
(not necessarily different) defined by the pairs of sequences $(\varepsilon_n^h)_n$, $(\sigma_n^h)_n$, $h = 1, \ldots, m$:

$$
D_h(p_n) = -\frac{1}{2} \sigma_{n+1}^h p_n + \sum_{j=1}^{n} (-1)^{j+1} \sigma_{n-j+1}^h \varepsilon_n^h \cdots \varepsilon_{n-j+1} p_{n-j}.
$$

We will assume that for $h = 1, 2, \ldots, m$, the sequences $(\varepsilon_n^h)_n$ and $(\sigma_n^h)_n$ are
rational functions in n. We write $\xi_{x, i}^h$, $i \in \mathbb{Z}$ and $h = 1, 2, \ldots, m$, for the auxiliary
functions defined by

$$
\xi_{x, i}^h = \prod_{j=0}^{i-1} \xi_{x-j}^h, \quad i \geq 1, \quad \xi_{x, 0}^h = 1, \quad \xi_{x, i}^h = \frac{1}{\xi_{x-i, -i}^h}, \quad i \leq -1.
$$

We will consider the $m \times m$ (quasi) Casorati determinant defined by

$$
\Omega(x) = \det (\xi_{x-j, m-j}^i Y_i(\theta_{x-j}))_{i,j=1}^{m}.
$$

The details of our method are included in the following Theorem:
Theorem 3.1. Let \(A \) and \((p_n)_n\) be, respectively, an algebra of operators acting in the linear space of polynomials, and a sequence of polynomials \((p_n)_n\), \(\deg p_n = n \). We assume that \((p_n)_n\) are eigenfunctions of an operator \(D_p \in A \), that is, there exist numbers \(\theta_n, n \geq 0 \), such that \(D_p(p_n) = \theta_n p_n \), \(n \geq 0 \). We also have \(m \) pairs of sequences of numbers \((\varepsilon_n^h)_n, (\sigma_n^h)_n\), \(h = 1, \ldots, m \), which define \(m \) \(\mathcal{D} \)-operators \(\mathcal{D}_1, \ldots, \mathcal{D}_m \) (not necessarily different) for \((p_n)_n\) and \(A \) (see (3.1)) and assume that for \(h = 1, 2, \ldots, m \), each one of the sequences \((\varepsilon_n^h)_n\), \((\sigma_n^h)_n \) is a rational function in \(n \).

Let \(Y_1, Y_2, \ldots, Y_m \), be \(m \) arbitrary polynomials satisfying that \(\Omega(n) \neq 0 \), \(n \geq 0 \), where \(\Omega \) is the Casorati determinant defined by (3.3).

Consider the sequence of polynomials \((q_n)_n\) defined by

\[
q_n(x) = \begin{vmatrix}
 p_n(x) & -p_{n-1}(x) & \cdots & (-1)^m p_{n-m}(x) \\
 \varepsilon^1_{n,m} Y_1(\theta_n) & \varepsilon^1_{n-1,m-1} Y_1(\theta_{n-1}) & \cdots & Y_1(\theta_{n-m}) \\
 \vdots & \vdots & \ddots & \vdots \\
 \varepsilon^m_{n,m} Y_m(\theta_n) & \varepsilon^m_{n-1,m-1} Y_m(\theta_{n-1}) & \cdots & Y_m(\theta_{n-m})
\end{vmatrix}
\]

(3.5)

For a rational function \(S \), we define the function \(\lambda_x \) by

\[
\lambda_x - \lambda_{x-1} = S(x)\Omega(x),
\]

and for \(h = 1, \ldots, m \), we define the function \(\mathcal{M}_h(x) \) by

\[
\mathcal{M}_h(x) = \sum_{j=1}^m (-1)^{h+j}\varepsilon^h_{x,m-j} S(x+j) \det \left(\varepsilon^l_{x+j-r,m-r} Y_l(\theta_{x+j-r}) \right)_{l \in I_h, r \in I_j},
\]

where \(I_h = \{1, 2, \ldots, m\} \setminus \{h\} \). Assume the following:

(3.8) \(S(x)\Omega(x) \) is a polynomial in \(x \).

(3.9) There exist \(\mathcal{M}_1, \ldots, \mathcal{M}_m \), polynomials in \(x \) such that

\[
\mathcal{M}_h(x) = \sigma^h_{x+1} \mathcal{M}_h(\theta_x), \quad h = 1, \ldots, m.
\]

(3.10) There exists a polynomial \(P_S \) such that \(P_S(\theta_x) = 2\lambda_x + \sum_{h=1}^m \mathcal{M}_h(\theta_x)\mathcal{M}_h(x) \).

Then there exists an operator \(D_{q,S} \in A \) such that

\[
D_{q,S}(q_n) = \lambda_n q_n, \quad n \geq 0.
\]

Moreover, the operator \(D_{q,S} \) is defined by

\[
D_{q,S} = \frac{1}{2} P_S(D_p) + \sum_{h=1}^m \mathcal{M}_h(\mathcal{D}_h)\mathcal{D}_h Y_h(D_p),
\]

where \(D_p \in A \) is the operator for which the polynomials \((p_n)_n\) are eigenfunctions.
Proof. The definition of (3.2), (3.6) and (3.11), along with the hypotheses (3.8)-(3.10), gives
\[
D_{q,S}(p_n) = \left(\frac{1}{2} P_S(\theta_n) - \frac{1}{2} \sum_{h=1}^{m} \sigma_{n+1}^{h} \tilde{M}_h(\theta_n) Y_h(\theta_n) \right) p_n
\]
\[
+ \sum_{h=1}^{m} \sum_{j=1}^{n} (-1)^{j+1} \tilde{M}_h(\theta_n-j) \xi_n^{h} \cdots \xi_{n-j+1}^{h} \sigma_{n-j+1}^{h} Y_h(\theta_n) p_{n-j}
\]
\[
= \lambda_n p_n + \lambda_{n,1} p_{n-1} - \lambda_{n,2} p_{n-2} + \cdots + (-1)^{m+1} \lambda_{n,m} p_{n-m}
\]
\[
+ \sum_{j=m+1}^{n} (-1)^{j+1} \lambda_{n,j} p_{n-j}
\]
where
\[
\lambda_{n,j} = \sum_{h=1}^{m} \xi_n^{h} \cdots \xi_{n-j+1}^{h} M_h(n-j) Y_h(\theta_n), \quad j = 1, 2, \ldots, n.
\]
Now we just have to follow exactly the same lines as the proof in Section 8 of [11] (from the formula (8.4) on). \[\square \]

Remark 3.2. We now see that the polynomial \(P_S \) (3.10) also satisfies
\[
(3.12) \quad P_S(\theta_n) - P_S(\theta_{n-1}) = S(x) \Omega(x) + S(x + m) \Omega(x + m).
\]
Indeed, \(P_S \) defined in (3.10) can be written, using (8.4) and (8.6) in the proof of Theorem 3.2 of [11], as
\[
P_S(\theta_x) = 2 \lambda_x + \sum_{h=1}^{m} S(x + h) \Omega_{-h+1,h}(x + 1),
\]
where \(\Omega_{i,j}(x) \) is the \(m \times m \) determinant defined in the same way as \(\Omega(x - i) \) but replacing the \(j \)-th column of \(\Omega(x - i) \) by the column vector
\[
(\xi_{x-1,m+i-1} Y_1(\theta_{x-1}), \ldots, \xi_{x-1,m+i-1} Y_m(\theta_{x-1}))^t.
\]
In particular \(\Omega_{0,1}(x) = \Omega(x) \).

Now, using (3.6) and the relations (which easily follows by definition)
\[
\Omega_{-h+1,h}(x + 1) = \Omega_{-h,h+1}(x), \quad h = 1, \ldots, m - 1,
\]
and
\[
\Omega_{-m+1,m}(x + 1) = \Omega_{0,1}(x + m) = \Omega(x + m),
\]
we obtain (3.12).

Remark 3.3. For the particular cases of Laguerre, Jacobi or Askey-Wilson polynomials, one can found Casorati determinants similar to (3.5) in [15], [16], [17], [18] or [19].

In Sections 5 and 6 we will apply Theorem 3.1 to the Hahn polynomials. We will see there that the degree of the polynomial \(P_S \) (see (3.10)) gives the order of the difference operator \(D_{q,S} \) (3.11) with respect to which the new polynomials \((q_n)_n \) are eigenfunctions. This will be a consequence of the following Lemma:
Lemma 3.4. With the same notation as in Theorem 3.1, write
\[\Psi_j^h(x) = \xi_{j-m-j}^h S(x) \det(\xi_{j-\tau,m-\tau}^h Y_1(\theta_{x-\tau}))_{\tau \in I_{h,j} \cap \epsilon_{h,j}}, \quad h, j = 1, \ldots, m, \]
and \(\Omega_g^h, h = 1, \ldots, m, g = 0, 1, 2, \ldots \) for the particular case of \(\Omega \) when \(Y_h(x) = x^g \).
Assume that \(\theta_x \) is a polynomial in \(x \) of degree 2 and that \(\Psi_j^h, h, j = 1, \ldots, m, \) are polynomials in \(x \) and write \(\tilde{d} = \max\{\deg \Psi_j^h : h, j = 1, \ldots, m\} \). Then \(M_h \) and \(S\Omega_g^h, h = 1, \ldots, m, g = 0, 1, 2, \ldots, \) are also polynomials in \(x \). If, in addition, we assume that the degree of \(S\Omega_g^h \) is at most \(2g + \deg(S\Omega_g^h) \) for \(h = 1, \ldots, m, \) and \(g \leq \tilde{d} - \deg(S\Omega_g^h) \), then \(M_h \) is a polynomial of degree at most \(\deg(S\Omega_g^h) \).

Proof. It is analogous to the proof of Lemma 3.2 in [10]. \(\square \)

4. Two more ingredients

In this Section we will assume that the polynomials \((p_n)_n \), \(p_n \) of degree \(n, n \geq 0 \), are orthogonal with respect to a moment functional \(\rho \). We automatically have that the polynomials \((p_n)_n \) satisfy the three-term recurrence relation \((p_{n-1} = 0) \)
\[xp_n(x) = a_{n+1} p_{n+1}(x) + b_n p_n(x) + c_n p_{n-1}(x), \quad n \geq 0. \]

The measure \(\rho \) might be degenerate, in which case for some \(n_0 \) we might have \(a_{n_0} c_{n_0} = 0 \).

The goal of this Section is to show how to choose appropriately the polynomials \(Y_1, \ldots, Y_m \), in order that the polynomials \((q_n)_n \) are also orthogonal with respect to a measure. To stress the dependence of the polynomials \((q_n)_n \) on the polynomials \(Y_1, \ldots, Y_m \), we write \(q_n = \text{Cas}_{n} Y_1, \ldots, Y_m \).

4.1. When are the polynomials \((\text{Cas}_{n} Y_1, \ldots, Y_m)_n \) orthogonal? Only for a convenient choice of the polynomials \(Y_j, j = 1, \ldots, m, \) are the polynomials \((q_n)_n \) also orthogonal with respect to a measure. In Section 4 of [11], a method to check the orthogonality of the polynomials \((q_n)_n \) was provided. This tool assumed that the sequences \((\varepsilon_n^h)_{n \in \mathbb{Z}}, h = 1, \ldots, m, \) do not vanish for any \(n \). This is not the case for the Hahn polynomials, hence we use the modified version of that tool given in [10] which includes also that case.

Indeed, given the sequences (in the integers) of the three-term recurrence relation \((a_n)_{n \in \mathbb{Z}}, (b_n)_{n \in \mathbb{Z}}, (c_n)_{n \in \mathbb{Z}} \) (see (3.5) and (4.1)) and \((\varepsilon_n^h)_{n \in \mathbb{Z}}, h = 1, \ldots, m, \) we assume that for each \(j \geq 0 \) and \(h = 1, \ldots, m, \) one more sequence denoted by \((Z_j^{(h)}(n))_{n \in \mathbb{Z}} \) satisfying
\[\varepsilon_{n+1}^j a_{n+1} Z_j^{(n+1)} - b_n Z_j^{(n)} + \frac{c_n}{\varepsilon_n^j} Z_j^{(n-1)} = (\eta_h j + \kappa_h) Z_j^{(n)}, \quad n \in \mathbb{Z}, \]
where, \(\eta_h \) and \(\kappa_h \) are real numbers independent of \(n \) and \(j \), and we assume that if for some \(n_0, h_0, \varepsilon_{n_0}^{h_0} = 0, \) then also \(c_{n_0} = 0 \) and there is a number \(d_{n_0}^{h_0} \) such that the identity (4.2) still holds when we replace \(c_{n_0} / \varepsilon_{n_0}^{h_0} \) by \(d_{n_0}^{h_0} \).

Define the auxiliary numbers \(\xi_{n,i}^h, i \geq 0, n \in \mathbb{Z} \) and \(h = 1, \ldots, m, \) by
\[\xi_{n,i}^h = \prod_{\tau = n-i+1}^{n} \varepsilon_{n-i}^\tau, \quad i \geq 1, \quad \xi_{n,0}^h = 1, \quad \xi_{n,i}^h = \frac{1}{\xi_{n-i,-i}^h}, \quad i \leq -1. \]
For \(i < 0 \), we take \(\varepsilon_{n,i}^h = \infty \) if \(\xi_{n-i,-i}^h = 0 \) (this can happen if for some \(n_0, h_0, \varepsilon_{n_0}^{h_0} = 0 \)). However, by assuming \(\varepsilon_n^h \neq 0, n \leq 0, h = 1, \ldots, m, \) one can straightforwardly
check that $\xi_{n,n+1}^h$ is finite for $n \leq 0$. Notice that for $x = n$, the number $\xi_{n,i}^h$ coincides with the number defined by (3.3).

Given a m-tuple G of m positive integers, $G = (g_1, \ldots, g_m)$, assume that the m numbers

$$\tilde{g}_h = (\eta_h g_h + \kappa_h), \quad h = 1, \ldots, m,$$

are different. Call $\tilde{G} = \{\tilde{g}_1, \ldots, \tilde{g}_m\}$. Consider finally the $m \times m$ Casorati determinant Ω_G defined by

$$\Omega_G(x) = \det (\xi_{n,m-j}^l (\theta_{x-j}))_{i,j=1}^m.$$

We then define the sequence of polynomials $(q_n^G)_n$ by

$$q_n^G(x) = \begin{vmatrix}
 p_n(x) & -p_{n-1}(x) & \cdots & (-1)^m p_{n-m}(x) \\
 \xi_{n,m}^l (\theta_n) & \xi_{n-1,m-1}^l (\theta_{n-1}) & \cdots & Z_{g_1}^l (\theta_{n-m}) \\
 \vdots & \vdots & \ddots & \vdots \\
 \xi_{m,m}^l Z_{g_m}^m (\theta_n) & \xi_{m-1,m-1}^l Z_{g_m}^m (\theta_{n-1}) & \cdots & Z_{g_m}^m (\theta_{n-m})
 \end{vmatrix}.$$

Notice that if for each $h = 1, \ldots, m$, $Y_h(x) = Z_{g_h} (x)$ is a polynomial in x, satisfying the hypotheses of Theorem 3.3, then the polynomials q_n^G (4.4) fit into the definition of the polynomials (5.3) in Theorem 3.3 and hence they are eigenfunctions of an operator in the algebra A.

The key to prove that the polynomials $(q_n^G)_n$ are orthogonal with respect to a measure $\tilde{\rho}$ are the following formulas. Assume that $\varepsilon_n^h \neq 0$, $n \leq 0$, $h = 1, \ldots, m$, and that there exists a constant $c_G \neq 0$ such that

$$\langle \tilde{\rho}, p_n \rangle = (-1)^n c_G \sum_{i=1}^m \xi_{n,n+1}^i \xi_{g_1}^i (\theta_n), \quad n \geq 0,$$

$$0 = \sum_{i=1}^m \xi_{g_1}^i (\theta_n), \quad 1 - m \leq n < 0,$$

$$0 \neq \sum_{i=1}^m \xi_{g_1}^i (\theta_{n-m}),$$

where \tilde{g}_h are the m different numbers (4.3) and $p_G(x) = \prod_{i=1}^m (x - \tilde{g}_i)$.

We then have the following version of Lemma 4.2 of [11]:

Lemma 4.1 (Lemma 3.4 of [11]). Assume that $\varepsilon_n^h \neq 0$, $n \leq 0$, $h = 1, \ldots, m$, and that there exist M, N (each of them can be either a positive integer or infinity) such that $a_n c_n \neq 0$ for $1 \leq n \leq N$ and $\Omega_G(n) \neq 0$ for $0 \leq n \leq M$. Assume also that (4.3), (4.6) and (4.7) hold. Then the polynomials q_n^G, $0 \leq n \leq \min\{M-1, N+m\}$, are orthogonal with respect to $\tilde{\rho}$ and have non-null norms.

4.2. **Finite sets of positive integers.** We still need a last ingredient for identifying the measure $\tilde{\rho}$ with respect to which the polynomials $(q_n^G)_n$ (4.4) are orthogonal. The measures $\rho_{a,b,N}$ in the Introduction depends on certain finite sets F_1, F_2, F_3 and F_4 while the polynomials $(q_n^G)_n$ depend on the finite set G (the degrees of the polynomials Z’s). The relationship between the sets F’s and G will be given by the following transforms of finite sets of positive integers.
Consider the sets Υ and Υ_0 formed by all finite sets of positive or nonnegative integers, respectively:

$$\Upsilon = \{ F : F \text{ is a finite set of positive integers} \},$$

$$\Upsilon_0 = \{ F : F \text{ is a finite set of nonnegative integers} \}.$$

We consider an involution I in Υ, and a family J_h, $h \geq 1$, of transforms from Υ into Υ_0. For $F \in \Upsilon$ write $F = \{f_1, \ldots, f_k\}$ with $f_i < f_{i+1}$, so that $f_k = \max F$. Then $I(F)$ and $J_h(F)$, $h \geq 1$, are defined by

\begin{align*}
I(F) &= \{1, 2, \ldots, f_k\} \setminus \{f - f, f \in F\}, \\
J_h(F) &= \{0, 1, 2, \ldots, f_k + h - 1\} \setminus \{f - 1, f \in F\}.
\end{align*}

(4.8) (4.9)

For the involution I, the bigger the holes in F (with respect to the set $\{1, 2, \ldots, f_k\}$), the bigger the involuted set $I(F)$. Here it is a couple of examples

$$I(\{1, 2, 3, \ldots, k\}) = \{k\}, \quad I(\{1, k\}) = \{1, 2, \ldots, k - 2, k\}.$$

Something similar happens for the transform J_h with respect to $\{0, 1, \ldots, f_k + h - 1\}$. Notice that

$$\max F = \max I(F), \quad h - 1 + \max F = \max J_h(F),$$

and if n_F denotes the cardinal of F, we also have

$$n_I(F) = f_k - n_F + 1, \quad n_{J_h}(F) = f_k + h - n_F.$$

(4.10)

For a quartet $\mathcal{F} = (F_1, F_2, F_3, F_4)$ of finite sets of positive integers, we will write $F_i = \{f_i^1, \ldots, f_{n_i}^1\}$, $i = 1, 2, 3, 4$, with $f_j^i < f_{j+1}^i$ (the use, for instance, of f_j^2 to describe elements of F_2 is confusing because it looks like a square. This is the reason why we use the notation f_j^i).

5. HAHN POLYNOMIALS

We start with some basic definitions and facts about Hahn and dual Hahn polynomials, which we will need later. For $a, a + b + 1, a + b + N + 1 \neq -1, -2, \ldots$ we write $(h_{n}^{a,b,N})_n$ for the sequence of Hahn polynomials defined by

\begin{equation}
\tag{5.1}
h_{n}^{a,b,N}(x) = \sum_{j=0}^{n} \frac{(-1)^j (N - n + 1)_{n-j} (a + b + 1)_{j+n}}{(2 + a + b + N)_{n} (a+1)_{j} (n-j)!} x^j, \quad n \geq 0,
\end{equation}

(we use a different normalization from the one used in [9], pp. 35. The equivalence is given by $(a+b+1)_n (2+a+b+N)_n h_{n}^{a,b,N}(x) = h_{n}^{b+N+1,a+1,N+1}(x)$, where $(h_{n}^{a,c,N})_n$ is the family used in [9]).

When N is a positive integer then the polynomial $h_{n}^{a,b,N}(x)$ for $n \geq N + 1$ is always divisible by $(-x)_{N+1}$. Hence

\begin{equation}
\tag{5.2}
h_{n}^{a,b,N}(i) = 0, \quad n \geq N + 1, \quad i = 0, \ldots, N.
\end{equation}

Hahn polynomials are eigenfunctions of the second-order difference operator

\begin{equation}
\tag{5.3}
D_{a,b,N} = x(x-b-N-1)S_{-1} - [(x+a+1)(x-N) + x(x-b-N-1)]S_0 + (x+a+1)(x-N)S_1.
\end{equation}

That is

\begin{equation}
\tag{5.4}
D_{a,b,N}(h_{n}^{a,b,N}) = \theta_n h_{n}^{a,b,N}, \quad \theta_n = n(n + a + b + 1), \quad n \geq 0.
\end{equation}
They satisfy the following three-term recurrence formula \(h_{-1}^{a,b,N} = 0 \)

\[
(5.4) \quad xh_n = a_{n+1}h_{n+1} + b_nh_n + c_nh_{n-1}, \quad n \geq 0,
\]

where

\[
a_n = -\frac{n(n+a)(n+a+b+N+1)}{(2n+a+b-1)(2n+a+b)},
\]

\[
b_n = \frac{N(a+1)(a+b)+a(2N+b-a)(a+b+1)}{(2n+a+b)(2n+a+b+2)},
\]

\[
c_n = -\frac{(n+a+b)(N-n+1)}{(2n+a+b)(2n+a+b+1)}
\]

(to simplify the notation we remove the parameters in some formulas).

Assume that \(a, b, a+b, a+b+N+1 \neq -1, -2, \ldots \), and \(N+1 \) is not a positive integer, then the Hahn polynomials are always orthogonal with respect to a moment functional \(\rho_{a,b,N} \) which we normalize by taking

\[
\langle \rho_{a,b,N}, 1 \rangle = \frac{\Gamma(a+b+N+2)\Gamma(a+1)\Gamma(b+1)}{\Gamma(a+b+2)}.
\]

When \(N+1 \) is a positive integer, \(a, b \neq -1, -2, \ldots, -N \), and \(a+b \neq -1, -2, \ldots, -2N-1 \), the first \(N+1 \) Hahn polynomials are orthogonal with respect to the Hahn measure

\[
(5.5) \quad \rho_{a,b,N} = N! \sum_{x=0}^{N} \frac{\Gamma(a+x+1)\Gamma(N-x+b+1)}{x!(N-x)!} \delta_x,
\]

and have non-null norms. The discrete measure \(\rho_{a,b,N} \) is positive only when \(a, b > -1 \) or \(a, b < -N \).

We also need the so-called dual Hahn polynomials, \(a \neq -1, -2, \ldots, n \geq 0 \),

\[
(5.6) \quad R_{a,b,N}^{n}(x) = \sum_{j=0}^{n} \frac{(-1)^j(-n)_j(-N+j)_{n-j}}{(a+1)_j j!} \prod_{i=0}^{j-1} [x-i(a+b+1)].
\]

Observe that \((-1)^j \prod_{i=0}^{j-1} (x(a+b+1) - i(a+b+1+i)) = (-x)_j(a+b+1)_j, \) therefore we have the duality

\[
R_{a,b,N}^{n}(n(a+b+1)) = \frac{(-1)^nn!(N+a+b+2)n(-N)_x}{(a+b+1)_n(-N)_n} h_{n}^{a,b,N}(x), \quad x, n \geq 0.
\]

Consider now the algebra of differential operators defined by (3.1). There are 4 different \(\mathcal{D} \)-operators for the Hahn polynomials (see Lemma 7.2 of [1]). They are defined by the sequences \((\varepsilon_n, h)_n \) and \((\sigma_n)_n, h = 1, 2, 3, 4 \), given by

\[
(5.7) \quad \varepsilon_{n,1} = -\frac{n-N+1}{n+a+b+N+1}, \quad \sigma_n = -(2n+a+b-1),
\]

\[
(5.8) \quad \varepsilon_{n,2} = \frac{(n+b)(n-N+1)}{(n+a)(n+a+b+N+1)}, \quad \sigma_n = -(2n+a+b-1),
\]

\[
(5.9) \quad \varepsilon_{n,3} = 1, \quad \sigma_n = -(2n+a+b-1),
\]

\[
(5.10) \quad \varepsilon_{n,4} = -\frac{n+b}{n+a}, \quad \sigma_n = -(2n+a+b-1).
\]
These sequences define four D-operators (see (3.2)):

\begin{align}
D_1 &= \frac{a+b+1}{2}I + x\nabla, \\
D_2 &= \frac{a+b+1}{2}I + (x - N)\Delta, \\
D_3 &= \frac{a+b+1}{2}I + (x + a + 1)\Delta, \\
D_4 &= \frac{a+b+1}{2}I + (x - b - N - 1)\nabla.
\end{align}

Here, Δ and ∇ denote, as usual, the first-order difference operators:

\[\Delta(f) = f(x + 1) - f(x), \quad \nabla(f) = f(x) - f(x - 1).\]

Let us call $N_{x}^{h,j}$ and $D_{x}^{h,j}$, $h = 1, 2$, the following functions:

\[N_{x}^{1,2} = (x - j + b + 1)_{j}, \quad N_{x}^{2,j} = (x - j - N)_{j}, \]
\[D_{x}^{1,j} = (-1)^{j}(x - j + a + 1)_{j}, \quad D_{x}^{2,j} = (-1)^{j}(x - j + a + b + N + 2)_{j}.\]

We will use the following properties, which easily hold by definition

\[N_{x-i}^{h,m-i} = N_{x-i}^{h,j}N_{x-i}^{h,m-i-j}, \quad D_{x-i}^{h,m-i} = D_{x-i}^{h,j}D_{x-i}^{h,m-i-j}, \quad h = 1, 2.\]

Given a quartet $U = (U_1, U_2, U_3, U_4)$ of finite sets of nonnegative integers, we write m_j for the cardinal of U_j, $j = 1, 2, 3, 4$, $m = m_1 + m_2 + m_3 + m_4$ and

\begin{align}
U_1 &= \{1, \ldots, m_1\}, \\
U_2 &= \{m_1 + 1, \ldots, m_1 + m_2\}, \\
U_3 &= \{m_1 + m_2 + 1, \ldots, m_1 + m_2 + m_3\}, \quad U_4 = \{m_1 + m_2 + m_3 + 1, \ldots, m\}.
\end{align}

We write $U_j = \{w_1^j, i \in U_j\}$ (see the end of Section 4.2 for a justification of this notation).

The functions $\xi_{x,j}^{h}$ defined in (3.8) can be written as

\[\xi_{x,j}^{h} = \begin{cases}
\frac{N_{x}^{2,j}}{D_{x}^{2,j}} = (-1)^{j} \frac{(x - j - N)_{j}}{(x - j + a + b + N + 2)_{j}}, & \text{for } h \in U_1, \\
\frac{N_{x}^{1,j}N_{x}^{2,j}}{D_{x}^{1,j}D_{x}^{2,j}} = \frac{(x - j + a + 1)_{j} (x - j - a - b - N - 2)_{j}}{(x - j + a + 1)_{j} (x - j + a + b + N + 2)_{j}}, & \text{for } h \in U_2, \\
1, & \text{for } h \in U_3, \\
\frac{N_{x}^{1,j}}{D_{x}^{1,j}} = (-1)^{j} \frac{(x - j + b + 1)_{j}}{(x - j + a + 1)_{j}}, & \text{for } h \in U_4.
\end{cases}\]

In the rest of this Section, we will prove that the three hypotheses (3.8), (3.9) and (3.10) in Theorem 3.1 hold for the four D-operators above associated to the Hahn polynomials. Hence, the polynomials $(q_n)_n$ defined by (3.5) for the Hahn family will be consequently eigenfunctions of the higher-order difference operator (3.11).

To check the first hypothesis (3.8) in Theorem 3.1 we will need the following lemma, which will be also useful to compute the order of the difference operator with respect to which the bispectral polynomials constructed in Section 5 will be eigenfunctions.
Lemma 5.1. Let \(Y_1, Y_2, \ldots, Y_m \), be nonzero polynomials satisfying that \(\deg Y_i = u_i \), if \(i \in U_j \) and \(1 \leq j \leq 4 \). Write \(r_i \) for the leading coefficient of \(Y_i \), \(1 \leq i \leq m \). For real numbers \(a, b, N \), consider the rational function \(P \) defined by

\[
(5.16) \quad P(x) = \frac{\begin{bmatrix}
N_x^{2; m-j} D_x^{2; j-1} Y_i(\theta_{x-j}) \\
i \in U_1 \\
N_x^{1; m-j} N_x^{2; m-j} D_x^{1; j-1} D_x^{2; j-1} Y_i(\theta_{x-j}) \\
i \in U_2 \\
Y_i(\theta_{x-j}) \\
i \in U_3 \\
N_x^{1; m-j} D_x^{1; j-1} Y_i(\theta_{x-j}) \\
i \in U_4
\end{bmatrix}}{\begin{bmatrix}
p(x) \\
q(x)
\end{bmatrix}},
\]

where \(p \) and \(q \) are the polynomials

\[
(5.17) \quad p(x) = \prod_{i=1}^{m_2+m_4-1} N_x^{1; m_2+m_4-i} D_x^{1; m_2+m_4-i} \prod_{i=1}^{m_1+m_3-1} N_x^{2; m_1+m_3-i} D_x^{2; m_1+m_3-i},
\]

\[
(5.18) \quad q(x) = (-1)^{m(m-1)/2} \prod_{p=1}^{m-1} \prod_{s=1}^{p} \sigma_{x-m+\varepsilon_{p+1}}.
\]

The determinant \((5.10) \) should be understood in the way explained in the Preliminaries (see \((2.1) \)). If

\[
(5.19) \quad z - u + b + N + 1, w - v + a + N + 1 \neq 0,
\]

for \(u \in U_1, v \in U_2, w \in U_3, z \in U_4 \), then \(P \) is a polynomial of degree

\[
d = 2 \sum_{u \in U_1, U_2, U_3, U_4} u - 2 \sum_{i=1}^{4} \binom{m_i}{2},
\]

with leading coefficient given by

\[
r = (-1)^{\sum_{i=1}^{4} \binom{m_i}{2} + m_1 m_2 + m_2 m_3 + m_3 m_4} V_{U_1} V_{U_2} V_{U_3} V_{U_4} \prod_{i=1}^{m} r_i \times \prod_{v \in U_2, w \in U_3} (N + a + 1 - v + w) \prod_{u \in U_1, z \in U_4} (N + b + 1 - u + z),
\]

where \(V_X \) denotes the Vandermonde determinant associated to the set \(X = \{x_1, x_2, \ldots, x_K\} \) defined by \(V_X = \prod_{i<j} (x_j - x_i) \).

Proof. The Lemma can be proved using the same approach as in the proof of Lemma 3.3 in \([10] \).
Let us now introduce the key concept in order to check the hypotheses (3.8) and (3.10) in Theorem 3.1 for the Hahn polynomials. We define an *involution* that characterizes the subring $R[θ_x]$ in $R[x]$. This involution is given by

\[
I^{a+b}(p(x)) = p(-(x+a+b+1)), \quad p \in R[x].
\]

Clearly we have $I^{a+b}(θ_x) = θ_x$. Hence every polynomial in $θ_x$ is invariant under the action of I^{a+b}. Conversely, if $p \in R[x]$ is invariant under I^{a+b}, then $p \in R[θ_x]$. We also have that if $p \in R[x]$ is skew invariant, i.e. $I^{a+b}(p) = -p$, then p is divisible by $θ_{x-1/2} - θ_{x+1/2}$, and the quotient belongs to $R[θ_x]$. We remark here that, in the case of Hahn polynomials and from the definition of $θ_x$ and $σ_x$, we have that $σ_{x+1} = θ_{x-1/2} - θ_{x+1/2}$. Observe that $σ_{x+1}$ is skew invariant itself.

We have the following properties according to the definition (5.20), $h = 1, 2$:

\[
I^{a+b+i}(θ_{x-j}) = θ_{x+i+j}, \quad I^{a+b+i}(σ_{x-j}) = -σ_{x+i+j+2},
\]

\[
I^{a+b+i}(h^{b;m-s}_{x-j-s}) = D^{h;m-s}_{x+m+i+j}, \quad I^{a+b+i}(D^{h;m-s}_{x-j-s}) = N^{h;m-s}_{x+m+i+j}.
\]

We are now ready to check that the three hypotheses (3.8), (3.9) and (3.10) in Theorem 3.1 hold for the four D-operators above associated to the Hahn polynomials.

Lemma 5.2. Let A and $(p_n)_n$ be respectively, the algebra of difference operators (3.1) and the sequence of Hahn polynomials $p_n = h^{a,b,N}_n$. We denote by D_p the second-order difference operator (5.3), so that $θ_n = n(n+a+b+1)$ and $D_p(p_n) = θ_n p_n$. For $j = 1, 2, 3, 4$, we also have m_j, D-operators defined by the sequences $(ε_{n,j})_n$, $(σ_{n,j})_n$ (see (5.7)–(5.10)). Write then $m = \sum_{i=1}^4 m_i$ and let $Ξ$ be a polynomial in x invariant under the action of $I^{a+b-m-1}$. Define the rational function S by

\[
S(x) = σ_{x-m-1}Ξ(x) \frac{(D^{1;m-1}_{x-1})^{m_2+m_4}(D^{2;m-1}_{x-1})^{m_1+m_2}}{p(x)q(x)},
\]

where p and q are the polynomials defined by (5.14) and (5.15), respectively. Then the three hypotheses (3.8), (3.9) and (3.10) in Theorem 3.1 hold.

Proof. Consider the sets U_j, $j = 1, 2, 3, 4$, given by (5.14). By interchanging rows, we can assume that each U_j is formed by the indexes h where the D-operator D_h is defined by the sequence $(ε_{n,j})_n$ (see (5.7)–(5.10)).

Since the polynomial $Ξ$ is invariant under the action of $I^{a+b-m-1}$, we have

\[
I^{a+b+i}(Ξ(x-j)) = Ξ(x + m + i + j + 1).
\]

As a consequence of (5.21) and (5.22), we have

\[
I^{a+b+i}(q(x-j)) = (-1)^{m(m-1)/2} q(x + i + j + m + 1),
\]

and

\[
I^{a+b+i}(p(x-j)) = p(x + i + j + m + 1).
\]

We now check the first assumption (3.8) in Theorem 3.1 that is: $S(x)Ω(x)$ is a polynomial in x.

From the definition of $S(x)$ in (5.23) and $Ω(x)$ in (3.4), it is straightforward to see, using (5.15) and (5.13), that
\[S(x)\Omega(x) = \sigma_{x-\frac{1}{2}} \Xi(x) \]
\[
\begin{vmatrix}
[\text{NOTES}]
\end{vmatrix}
\]

Therefore \(S(x)\Omega(x) = \sigma_{x-\frac{1}{2}} \Xi(x) P(x) \), where \(P \) is the rational function \([5.16] \) defined in the Lemma \(5.1 \). According to this Lemma, \(P \) is actually a polynomial and hence \(S(x)\Omega(x) \) is a polynomial as well.

We now check the second assumption \(3.9 \) in Theorem \(3.1 \) that is: there exist \(M_1, \ldots, M_m \), polynomials in \(x \) such that

\[M_h(x) = \sigma_{x+1} \tilde{M}_h(\theta_x), \quad h = 1, \ldots, m. \]

Write now

\[\Psi_j^h(x) = \xi_{x-j}^h S(x) \det \left(\xi_{x-r}^l m_r Y_i(\theta_x-r) \right)_{l \in I_h, r \in I_j}, \quad h, j = 1, \ldots, m. \]

A simple computation using \([5.15] \) shows that \(\Psi_j^h, h, j = 1, \ldots, m, \) are polynomials in \(x \). Hence Lemma \(5.4 \) gives that \(M_h \) is also a polynomial in \(x \).

It is now enough to see that

\[\mathcal{I}^{a+b}(M_h(x)) = -M_h(x), \quad h = 1, \ldots, m, \]

where \(M_h(x), h = 1, \ldots, m, \) are defined in \(3.7 \). Hence, \(M_h(x), h = 1, \ldots, m, \) according to the discussion after \((5.20) \), is divisible by \(\sigma_{x+1} \) and the quotient belongs to \(\mathbb{R}[\theta_x] \).

Assume that the \(h \)-th \(\mathcal{D} \)-operator is \(\mathcal{D}_1 \) (similar for \(\mathcal{D}_2, \mathcal{D}_3 \) and \(\mathcal{D}_4 \)). In that case, as before, we can remove all denominators in \(M_h(x) \) and rearrange the determinant to write

\[M_h(x) = \sum_{j=1}^{m} (-1)^{h+j} \sigma_{x+j-\frac{1}{2}} \Xi(x+j) \frac{p(x+j)q(x+j)}{p(x+j)q(x+j)} N_{x}^{2; m-j} D_{x+j-1}^{2; j-1} \]
Hence, using (5.22), (5.24), (5.25) and (5.26), we have

\[
\mathcal{I}^{a+b}(\mathcal{M}_h(x)) = -\sum_{j=1}^{m} (-1)^{h+j} (-1)^{m(m-1)} \frac{\sigma_{x+j} \Xi(x + m - j + 1)}{p(x + m - j + 1)q(x + m - j + 1)} \times
\]

\[
\begin{align*}
&\times D_{x+m-j}^{2m-j} N_{x}^{r-1} Y_i(\theta_{x+j-r}) \\
&\text{if } j \notin \{h\} \\
&\times D_{x+m-j}^{2m-r} N_{x}^{r-1} Y_i(\theta_{x+j-r}) \\
&\text{if } j \notin \{h\} \\
&\times D_{x+m-j}^{2m-r} N_{x}^{r-1} Y_i(\theta_{x+j-r}) \\
&\text{if } j \notin \{h\}
\end{align*}
\]

\[
= -(-1)^{m-m-1}(-1)^m(-1)^{\frac{m(m-1)}{2}} \sum_{j=1}^{m} (-1)^{h+j} \frac{\sigma_{x+j} \Xi(x + j)}{p(x + j)q(x + j)} \times
\]

\[
\begin{align*}
&\times D_{x+m-j}^{2m-j} N_{x}^{r-1} Y_i(\theta_{x+j-r}) \\
&\text{if } j \notin \{h\} \\
&\times D_{x+m-j}^{2m-r} N_{x}^{r-1} Y_i(\theta_{x+j-r}) \\
&\text{if } j \notin \{h\} \\
&\times D_{x+m-j}^{2m-r} N_{x}^{r-1} Y_i(\theta_{x+j-r}) \\
&\text{if } j \notin \{h\}
\end{align*}
\]
Call

\[H(x) = 2\lambda_x + \sum_{h=1}^{m} Y_h(\theta_x) M_h(x). \]

Observe that in the second step we have renamed the index \(j \) while in the determinant we have interchanged all columns, so we have the corresponding change of signs.

We finally check the third assumption (3.10) in Theorem 3.1 that is: there exists a polynomial \(P_S \) such that

\[P_S(\theta_x) = 2\lambda_x + \sum_{h=1}^{m} Y_h(\theta_x) M_h(x). \]

For this step it is enough to see that

\[\sum_{j=1,\ldots,m} \sigma_{x+m-j} \Xi(x+m) = -(H(x) - H(x-1)). \]

To proof (5.28) it is enough to see that

\[\sum_{j=1,\ldots,m} \sigma_{x+m-j} \Xi(x+m) = -(S(x)\Omega(x) + S(x + m)\Omega(x + m)). \]

From (5.27) we have, using again (5.22), (5.24), (5.25) and (5.26), that

\[\sum_{j=1,\ldots,m} \sigma_{x+m-j} \Xi(x+m) \times \]

\[\left[\begin{array}{c}
D_{x+m-j}^{2;m-j} N_{x+j-1}^{2;j-1} Y_i(\theta_{x+j-1}) \\
\{ \in U_1 \\
\end{array} \right], \]

\[\times \left[\begin{array}{c}
D_{x+m-j}^{1;m-j} D_{x+m-j}^{2;m-j} N_{x+j-1}^{1;j-1} N_{x+j-1}^{2;j-1} Y_i(\theta_{x+j-1}) \\
\{ \in U_2 \\
\end{array} \right], \]

\[\times \left[\begin{array}{c}
Y_i(\theta_{x+j-1}) \\
\{ \in U_3 \\
\end{array} \right], \]

\[\times \left[\begin{array}{c}
D_{x+m-j}^{1;m-j} N_{x+j-1}^{1;j-1} Y_i(\theta_{x+j-1}) \\
\{ \in U_4 \\
\end{array} \right] \]

\[= - (-1)^{m(m-1) / 2} \left(-1 \right)^{m(m-1) / 2} \frac{\sigma_{x+m-j} \Xi(x+m)}{p(x+m)q(x+m)} \times \]
equations. But only for a convenient choice of the polynomials Y_j. In the Introduction, when the sequence (p_n) is a large class of sequences of polynomials (q_n), satisfying higher-order difference equations. But only for a convenient choice of the polynomials Y_j, $j \geq 0$, these polynomials (q_n) are also orthogonal with respect to a measure. As we wrote in the Introduction, when the sequence (p_n) is the Hahn polynomials, a very nice symmetry between the family (p_n) and the polynomials Y_j’s appears. Indeed, the polynomials Y_j can be chosen as dual Hahn polynomials with parameters depending on the D-operator D_h. This symmetry is given by the recurrence relation (4.2), where $Y_i = Z_i^h$.

Lemma 6.1. Consider the dual Hahn polynomials

\[
\begin{align*}
Z_j^1(x) &= R_j^{-b,-a,a+b+N}(x+a+b), & j \geq 0, \\
Z_j^2(x) &= R_j^{-a,-b,a+b+N}(x+a+b), & j \geq 0, \\
Z_j^3(x) &= R_j^{-b,-a,-2-N}(x+a+b), & j \geq 0, \\
Z_j^4(x) &= R_j^{-a,-b,-2-N}(x+a+b), & j \geq 0.
\end{align*}
\]

Then they satisfy the recurrence (4.2), where $(a_n)_{n \in \mathbb{Z}}$, $(b_n)_{n \in \mathbb{Z}}$, $(c_n)_{n \in \mathbb{Z}}$ are the sequences of coefficients in the three-term recurrence relation for the Hahn polynomials $(h_n^{a,b,N})$ and

\[
\begin{align*}
\varepsilon_n^1 &= -\frac{n - N - 1}{n + a + b + N + 1}, & \eta_1 = 1, & \kappa_1 = -b - N, \\
\varepsilon_n^2 &= \frac{(n - N - 1)(n + b)}{(n + a)(n + a + b + N + 1)}, & \eta_2 = -1, & \kappa_2 = a, \\
\varepsilon_n^3 &= 1, & \eta_3 = -1, & \kappa_3 = -N - 1, \\
\varepsilon_n^4 &= -\frac{n + b}{n + a}, & \eta_4 = 1, & \kappa_4 = 1.
\end{align*}
\]
Proof. It is similar to the proof of Lemma 5.1 of [11]. □

From now on we will assume that N is a positive integer. This condition is necessary for the existence of a positive weight for the Hahn polynomials, and only in this case we have an explicit expression of that weight. However, this condition is not needed in our construction and hence Theorem 6.2 and Corollary 6.3 are also valid when N is not a positive integer (once one has adapted the constraints on the parameters a and b).

Since we have four D-operators for Hahn polynomials, we make a partition of the indices in Theorem 3.1 (see (5.14)) and take

$$h^j = \begin{cases} n - N - 1, & \text{for } h \in U_1, \\ \frac{n + a + b + N + 1}{(n - N - 1)(n + b)}, & \text{for } h \in U_2, \\ (n + a)(n + a + b + N + 1), & \text{for } h \in U_3, \\ 1, & \text{for } h \in U_4. \\ \end{cases} \quad (6.1)$$

For the sequences $(\sigma^h_n)_n$, we always take $\sigma^h_n = -\frac{1}{n+a+b-1}$. In particular, the auxiliary functions $\xi^h_{i,j}$, $h = 1, \ldots, m$, $i \in \mathbb{Z}$, (see (3.3)) are then defined by (6.1). Finally write

$$\mathbb{Z}_i = \{ j \in \mathbb{Z} : j \leq i \}, \quad i \in \mathbb{Z}.$$

We are now ready to establish the main Theorem of this paper.

Theorem 6.2. Let $\mathcal{F} = (F_1, F_2, F_3, F_4)$ be a quartet of finite sets of positive integers (the empty set is allowed, in which case we take $\max F = -1$). For $h = (h_1, h_2, h_3, h_4)$, $h_i \geq 1$, consider the quartet $\mathcal{U} = (U_1, U_2, U_3, U_4)$ whose elements are the transformed sets $J_h(F_j) = U_j = \{ u^j_i : i \in U_j \}$, $j = 1, 2, 3$, and $I(F_4) = U_4 = \{ u^4_i : i \in U_4 \}$, where the involution I and the transform J_h are defined by (4.8) and (4.9), respectively. Define $m = m_1 + m_2 + m_3 + m_4$, m_i denotes the cardinal of U_i, $f, M = \max(F_i)$, and n_F the cardinal of F_i for $i = 1, 2, 3, 4$. Let a and b be real numbers satisfying

$$a \notin \mathbb{Z}_{f_2,M+f_4,M+h_2}, \quad b \notin \mathbb{Z}_{f_1,M+f_3,M+h_1+h_3-1}, \quad a + b \notin \mathbb{Z}_{\sum_{i=1}^4 f_i, M+\sum_{i=1}^4 h_i}. \quad (6.2)$$

In addition, we assume that

$$a \neq 1, 2, \ldots, \text{ if } F_2 \text{ or } F_4 \neq \emptyset, \quad \text{and} \quad b \neq 1, 2, \ldots, \text{ if } F_1 \text{ or } F_3 \neq \emptyset. \quad (6.3)$$

Consider the Hahn and dual Hahn polynomials $(h_n^{a,b,N})_n$ and $(R_n^{a,b,N})_n$, respectively. Assume that $\Omega_{a,b,N}^h(n) \neq 0$ for $0 \leq n \leq N + m_3 + m_4 + 1$ where the
We then define the sequence of polynomials q_n, $n \geq 0$, by

\[
q_n(x) = (-1)^{j-1} h_{n+1-j} (x) + \sum_{j=1}^{m+1} \xi \left(x-j, m-j \right) \chi \left(\theta x-j + a + b \right) \chi \left(\theta x-j + a + b \right),
\]

where χ is defined by

\[
\xi \left(x-j, m-j \right) \chi \left(\theta x-j + a + b \right) \chi \left(\theta x-j + a + b \right).
\]

Then

1. The polynomials q_n, $0 \leq n \leq N + m_3 + m_4$, are orthogonal and have non-null norms with respect to the measure

\[
\rho_{a,b,N} = \prod_{f \in F_1} (b + N + 1 - f - x) \prod_{f \in F_2} (x + a + 1 - f) \prod_{f \in F_3} (N + f - x) \prod_{f \in F_4} (x + f_4 + 1 - f) \rho_{a,b,N}(x + f_4 + 1),
\]

where

\[
\hat{a} = a - f_2 - f_4 - h_2 - 1, \quad \hat{b} = b - f_1 - f_3 - h_3 - h_4, \quad \hat{N} = N + f_3 + f_4 + h_3 + 1,
\]

and $\rho_{a,b,N}$ is the Hahn weight (5.5).

2. The polynomials q_n, $0 \leq n \leq N + m_3 + m_4$, are eigenfunctions of a higher-order difference operator of the form (1.1) with

\[
-s = r = \sum_{f \in F_4} f - \sum_{f \in F_1, F_2, F_3} f - \sum_{i=1}^{4} \left(n_{F_i} / 2 \right) + \sum_{i=1}^{3} n_{F_i} (f_{i,M} + h_i) + 1
\]

(which can be constructed using Theorem 3.7).
Proof. Notice that the assumption (6.2) on the parameters a and b implies that
\[
\tilde{a}, \tilde{b} \neq -1, \ldots, -N, \tilde{a} + \tilde{b} \neq -1, \ldots, -2N - 1,
\]
and hence the Hahn weight $\rho_{\tilde{a}, \tilde{b}, \tilde{N}}(x + f_{4M} + 1)$ is well defined and its support is
\[
\{-f_{4M} - 1, \ldots, N + f_{3M} + h_3\}.
\]
Using the assumptions (6.2) on the parameters a and b, we deduce that the support of the measure $\hat{\rho}_{a,b,N}$ is
\[
\{-f_{4M} - 1, \ldots, N + f_{3M} + h_3\} \setminus \left((N + F_3) \cup (-f_{4M} - 1 + F_4)\right).
\]
Notice that the support is formed by $N + f_{3M} + f_{4M} + h_3 + 2 - n_{F_3} - n_{F_4}$ integers.
Taking into account that $U_3 = J_{h_3}(F_3)$, $U_4 = I(F_4)$ and (4.10) we get
\[
N + f_{3M} + f_{4M} + h_3 + 2 - n_{F_3} - n_{F_4} = N + m_3 + m_4 + 1.
\]
Before going on with the proof we comment on the assumption that $\Omega^{a,b,N}_{a,b,N}(n) \neq 0$
for $0 \leq n \leq N + m_3 + m_4 + 1$. If $F_1 \neq \emptyset$ or $F_2 \neq \emptyset$, since the sequence c_n^h, $h \in U_1 \cup U_2$, vanish for $n = N + 1$, it is not difficult to see that $\Omega^{a,b,N}_{a,b,N}(n) = 0$ for
\[
N + m_3 + m_4 + 2 \leq n \leq N + m.
\]
If $F_1 = \emptyset$ and $F_2 = \emptyset$, the situation is different, and, except for exceptional values of the parameters a, b and N, we have $\Omega^{a,b,N}_{a,b,N}(n) \neq 0$
for all $n \geq 0$. In this case, the polynomials $(g_n)_a$ are defined for all $n \geq 0$ and always have degree n. However, it is not difficult to see that for $n \geq N + m_3 + m_4 + 1$, the polynomial $g_n(x)$ vanishes in the support of $\hat{\rho}_{a,b,N}$. Hence they are still orthogonal with respect to this measure but have null norms. This is completely analogous to the situation with the Hahn polynomials $h_{a,b,N}^n$, which are defined for all $n \geq 0$
(except when $a, a+b+1 = -1, -2, \ldots$) and always have degree n. But if $n \geq N + 1$, they vanish in the support of its weight (see (5.2)).

To prove (1) of the Theorem, we use the strategy of the Section 4.1.
We need some notation. Write Z^h_j, $h = 1, \ldots, m$, $j \geq 0$, for the polynomials
\[
Z^h_j(x) = \begin{cases} R_j^{-b-a,a+a+N}(x + a + b), & h \in U_1, \\
R_j^{-a-b,a+a+N}(x + a + b), & h \in U_2, \\
R_j^{-b-a,-2-N}(x + a + b), & h \in U_3, \\
R_j^{a-b,-2-N}(x + a + b), & h \in U_4. \end{cases}
\]
The assumptions (6.3) on the parameters a and b implies that these dual Hahn polynomials are well defined and have degree j. Denote by G and \tilde{G} the m-tuples
\[
G = (u_{m_1}^1, \ldots, u_{m_1}^1, u_{m_2}^2, \ldots, u_{m_2}^2, u_{m_3}^3, \ldots, u_{m_3}^3, u_{m_4}^4, \ldots, u_{m_4}^4), \quad (g_1, \ldots, g_m),
\]
where
\[
\tilde{g}_i = \begin{cases} u_{i_1} - b - N, & i \in U_1, \\
-u_{i_2}^2 + a, & i \in U_2, \\
u_{i_3} - N - 1, & i \in U_3, \\
u_{i_4}^4 + 1, & i \in U_4. \end{cases}
\]
Finally, write p_G for the polynomial
\[
p_G(x) = \prod_{u \in U_1} (x - u + b + N) \prod_{u \in U_2} (x + u - a) \prod_{u \in U_3} (x + u + N + 1) \prod_{u \in U_4} (x - u - 1).
It is easy to see that p_G has simple roots if and only if
\begin{equation}
 u + v - a - b - N, u + w - b + 1, v + z - a + 1, w + z + N + 2 \neq 0, \\
 z - u + b + N + 1, w - v + a + N + 1 \neq 0,
\end{equation}
for $u \in U_1, v \in U_2, w \in U_3, z \in U_4$. These constraints follow easily from the assumptions (6.2) on the parameters a and b. Hence, p_G has simple roots.

Proceeding as in the proof of Theorem 1.1 in [11], one can prove that
\begin{equation}
 c_{a,b,N}^{q,S}(\rho_{a,b,N}, h_{a,b,N}) = (-1)^n \sum_{i=1}^m \frac{\xi_i^{n+1} Z_{g_i}(n)}{p_G(\xi_i) Z_{g_i}(-1)}, \quad n \geq 0,
\end{equation}
where $c_{a,b,N}$ is the constant independent of n given by (6.15).

From the recurrence relation for the Hahn polynomials, we get that $a_n c_n \neq 0$ for $0 \leq n \leq N$, but $c_{N+1} = 0$. It is also easy to check that $\xi_i^h \neq 0$, $h = 1, \ldots, m$, when n is a negative integer. Since we assume that $\Omega_{a,b,N}(n) \neq 0$ for $0 \leq n \leq N + m_3 + m_4 + 1$, the orthogonality of the polynomials q_n, $0 \leq n \leq N + m_3 + m_4$, with respect to $p_{a,b,N}$ is now a consequence of the Lemmas 6.1, 4.1 and the identities (6.1) and (6.15). They have also non-null norms.

We now prove (2) of the Theorem. Using (5.15), it is straightforward to see that $\Omega_{a,b,N}(x)$ coincides with the (quasi) Casorati determinant
\begin{equation}
 \det \left(\xi_{x-j,m-1} Y_i(\theta_{x-j}) \right)_{l,j=1}^m,
\end{equation}
where $Y_i(x) = Z_{g_i}^l (x)$, and $Z_{g_i}^l, l = 1, \ldots, m, j \geq 0$, and $G = \{g_1, \ldots, g_m\}$ are defined by (6.5) and (6.6), respectively. Consider the particular case of the polynomial P (5.10) in Lemma 5.1 for $Y_i(x) = Z_{g_i}^l (x)$ (and denote it again by P), and write S for the rational function
\begin{equation}
 S(x) = \sigma_{x - \frac{m_2}{2}} \frac{(D_{x-1}^{1;m-1})^{m_2+m_4} (D_{x-1}^{2;m-1})^{m_1+m_2}}{p(x)q(x)},
\end{equation}
where p and q are the polynomials defined by (5.17) and (5.18), respectively. A simple computation shows that $S(x)\Omega_{a,b,N}^{l,h}(x) = \sigma_{x - \frac{m_2}{2}} P(x)$.

Notice that the rational function S is the particular case of the rational function (5.23) in Lemma 3.2 for $\Xi = 1$. Since obviously $\Xi = 1$ is a polynomial invariant under the action of $\mathcal{D}^{a+b-m-1}$, we get, as a direct consequence of Lemma 5.2 and Theorem 3.1 that the polynomials q_n, $0 \leq n \leq N + m_3 + m_4$, are eigenfunctions of a higher-order difference operator $D_{q,S}$ in the algebra of difference operators \mathcal{A} (3.1), explicitly given by (3.11).

We now compute the order of $D_{q,S}$.
Since $\mathcal{S}\Omega_{a,b,N}^{\mu,h} = \sigma_{x - \frac{m}{2} + 1} P$, Lemma 5.1 gives that the degree of $\mathcal{S}\Omega_{a,b,N}^{\mu,h}$ is $d + 1$, where d is the degree of P given by

$$d = 2 \sum_{u \in U_1, U_2, U_3, U_4} u - 2 \sum_{i=1}^{4} \binom{m_i}{2},$$

(notice that the assumption (5.19) in Lemma 5.1 is just (6.7) above). Hence the polynomial P_S defined by

$$P_S(\theta_x) - P_S(\theta_{x-1}) = S(x)\Omega_{a,b,N}^{\mu,h}(x) + S(x + m)\Omega_{a,b,N}^{\mu,h}(x + m)$$

has degree $d/2 + 1$ (since θ_x is a polynomial of degree 2), that is,

$$\sum_{u \in U_1, U_2, U_3, U_4} u - \sum_{i=1}^{4} \binom{m_i}{2} + 1.$$

Taking into account that the m-tuple $G(\ref{G})$ is formed by the sets $J_h(F_i), i = 1, 2, 3,$ and $I(F_4)$, the definitions of the involution $I(\ref{I})$ and the transform $J_h(\ref{J})$ give

$$\sum_{u \in U_1, U_2, U_3, U_4} u - \sum_{i=1}^{4} \binom{m_i}{2} + 1 = \sum_{f \in F_4} f - \sum_{f \in F_1, F_2, F_3} f - \sum_{i=1}^{4} \binom{n_{F_i}}{2} + \sum_{i=1}^{3} n_{F_i} (f_i, M + h_i) + 1 = r.$$

That is, P_S is a polynomial of degree r. Consider the coefficients B and D of \mathfrak{g}_1 and \mathfrak{g}_{-1} in the second-order difference operator $D_{a,b,N}$ for the Hahn polynomials (5.3). We then deduce that the operator $\frac{d}{d} P_S(D_{a,b,N})$ has the form

$$\sum_{l=-r}^{r} \tilde{h}_l(x) \mathfrak{g}_l,$$

where $\tilde{h}_r(x) = u_S \prod_{j=0}^{r-1} B(x + j), \tilde{h}_{-r}(x) = u_S \prod_{j=0}^{r-1} D(x - j)$ and u_S denotes the leading coefficient of the polynomial P_S. Using (5.3), we deduce that both \tilde{h}_{-r} and \tilde{h}_r are polynomials of degree 2r.

Consider now the coefficients \tilde{B}_h and \tilde{D}_h of Δ and ∇ in any of the D-operators D_h for the Hahn polynomials (see (5.11) and (5.12)). Notice that $\tilde{B}_h = 0, h \in U_1 \cup U_4,$ and $\tilde{D}_h = 0, h \in U_2 \cup U_3$. Using Lemmas 5.3 and 5.1, we can conclude that the polynomials $M_h(\ref{M})$ have degree at most $v_h = 2r - 2g_h - 1$. This implies that the polynomials $\tilde{M}_h(\ref{M})$ have degree at most $r - g_h - 1$.

Assume now $h \in U_1 \cup U_4$. Since Y_h has degree g_h, we get that the operator $M_h(D_{a,b,N}) D_h Y_h(D_{a,b,N})$ has the form

$$\sum_{l=-r}^{r-1} \tilde{h}_l(x) \mathfrak{g}_l,$$

where

$$\tilde{h}_{-r}(x) = u_{Y} u_M \tilde{D}_h(x - v_h) \prod_{j=0, j \neq v_h}^{r-1} D(x - j),$$

and

$$\tilde{h}_{r}(x) = u_{Y} u_M \tilde{B}_h(x + v_h) \prod_{j=0, j \neq v_h}^{r-1} B(x + j).$$
\(u_Y \) is the leading coefficient of \(Y_h \) and \(u_M \) is the coefficient of \(x^{\nu_h} \) in \(\hat{M}_h \). As before, we deduce that \(\hat{M}_{-r} \) is a polynomial of degree \(2r - 1 \).

On the other hand, if \(h \in \mathbb{U}_2 \cup \mathbb{U}_3 \), since \(Y_h \) has degree \(g_h \), we get that the operator \(\hat{M}_h(D_{a,b,N})D_hY_h(D_{a,b,N}) \) has the form

\[
\sum_{l=-r+1}^r \hat{h}_l(x)S_l,
\]

where

\[
\hat{h}_r(x) = u_Yu_MB_h(x-v_h)\prod_{j=0, j\neq v_h}^{r-1} B(x-j).
\]

As before, we deduce that \(\hat{h}_r \) is a polynomial of degree \(2r - 1 \).

To complete the proof of (2) it is enough to take into account the expression of \(D_{q,S} \) given by (5.11).

\[\square \]

Corollary 6.3. Let \(\mathcal{F} = (F_1, F_2, F_3, F_4) \) be a quartet of finite sets of positive integers (the empty set is allowed, in which case we take \(\max \mathcal{F} = -1 \)). Let \(a \) and \(b \) be real numbers satisfying

\[
a, b, a+b \neq -1, -2, -3, \ldots,
\]

\[
a + f_{2,M} + f_{4,M} + 1 \neq 0, 1, 2, \ldots, \quad \text{if} \quad F_2 \text{ or } F_4 \neq \emptyset, \quad \text{and}
\]

\[
b + f_{1,M} + f_{3,M} + 1 \neq 0, 1, 2, \ldots, \quad \text{if} \quad F_1 \text{ or } F_3 \neq \emptyset.
\]

Consider the weight \(\rho_{a,b,N}^\mathcal{F} \) defined by

\[
(6.8) \quad \rho_{a,b,N}^\mathcal{F} = \prod_{f \in F_1} (b + N + 1 + f - x) \prod_{f \in F_2} (x + a + 1 + f) \prod_{f \in F_3} (N - f - x) \prod_{f \in F_4} (x - f) \rho_{a,b,N},
\]

where \(\rho_{a,b,N} \) is the Hahn weight (5.5). Assume that

\[
\Omega_{a+f_{2,M}+f_{4,M}+2b+f_{1,M}+f_{3,M}+2N-f_{3,M}-f_{4,M}-2}(n) \neq 0, \quad 0 \leq n \leq N + m_1 + m_4 + 1,
\]

where \(\mathcal{U} = (I(F_1), I(F_2), I(F_3), I(F_4)) \). Then the measure \(\rho_{a,b,N}^\mathcal{F} \) has associated a sequence of orthogonal polynomials and they are eigenfunctions of a higher-order difference operator of the form (1.1) with

\[
(6.9) \quad -s = r = \sum_{f \in F_1, F_2, F_3, F_4} f - \sum_{i=1}^4 \binom{n_{F_i}}{2} + 1
\]

(which can be constructed using Theorem 3.2).

Proof. If we write \(\tilde{F}_j = \{ f \in F_j \}, j = 1, 2, 3, \) and \(h_j = \begin{cases} \min F_j, & \text{if } F_j \neq \emptyset, \\ 1, & \text{if } F_j \neq \emptyset, \end{cases} \)

using (4.8) and (4.9), one straightforwardly has \(J_{h_j}(\tilde{F}_j) = I(F_j) \). Write now \(\mathcal{F} = (\tilde{F}_1, \tilde{F}_2, \tilde{F}_3, \tilde{F}_4) \). It is now easy to see that

\[
\rho_{a,b,N}^\mathcal{F} = \rho_{a+f_{2,M}+f_{4,M}+2b+f_{1,M}+f_{3,M}+2N-f_{3,M}-f_{4,M}-2}(x-f_{4,M}-1).
\]

The corollary is then a straightforward consequence of the previous Theorem. \[\square \]
Remark 6.4. The hypothesis on $\Omega_{a,b,N}^{f,h}(n) \neq 0$, for $0 \leq n \leq N + m_3 + m_4 + 1$, in the previous Theorem and Corollary is then sufficient for the existence of a sequence of orthogonal polynomials with respect to the (possible signed) measure $\rho_{a,b,N}^{f,h}$. We guess that this hypothesis is also necessary for the existence of such sequence of orthogonal polynomials.

Remark 6.5. Notice that there are different sets F_3 and F_4 for which the measures $\rho_{a,b,N}^{F_3}$ are equal. Each of these possibilities provides a different representation for the orthogonal polynomials with respect to $\rho_{a,b,N}^{F_3}$ in the form (6.4) and a different higher-order difference operator with respect to which they are eigenfunctions.

It is not difficult to see that only one of these possibilities satisfies the condition $f_{3,M}, f_{4,M} < N/2$. This is the more interesting choice because it minimizes the order $2r$ of the associated higher-order difference operator. This fact will be clear with an example. Take $N = 100$ and the measure $\mu = (x-1)(x-5)(x-68)\rho_{a,b,N}^{F_3}$. There are eight couples of different sets F_3 and F_4 for which the measures μ and $\rho_{a,b,N}^{F_3}$ coincide (except for a sign). They are the following

$F_3 = \emptyset, F_4 = \{1,5,68\}$, $F_3 = \{32,95,99\}, F_4 = \emptyset$,
$F_3 = \{32\}, F_4 = \{1,5\}$, $F_3 = \{32\}, F_4 = \{95\}, F_4 = \{1,68\}$,
$F_3 = \{32,95\}, F_4 = \{1\}$, $F_3 = \{32,95\}, F_4 = \{99\}, F_4 = \{5,68\}$,
$F_3 = \{32,95\}, F_4 = \{5\}$, $F_3 = \{95,99\}, F_4 = \{68\}$.

Only one of these couples satisfies the assumption $f_{3,M}, f_{4,M} < N/2$: $F_3 = \{32\}, F_4 = \{1,5\}$. Actually, it is easy to check that this couple minimizes the number

$$\sum_{f \in F_3 \times F_4} f - \left(\frac{n_{F_3}}{2}\right) - \left(\frac{n_{F_4}}{2}\right) + 1.$$

Hence, it also minimizes de order $2r$ (see (6.9)) of the difference operator with respect to which the polynomials $(q_n)_n$ are eigenfunctions.

References

[1] R. Álvarez-Nodarse and A. J. Durán, Using \mathcal{D}-operators to construct orthogonal polynomials satisfying higher-order q-difference equations, submitted. See arXiv: 1309.3296.
[2] H. Bavinck and H. van Haeringen, Difference equations for generalized Meixner polynomials, J. Math. Anal. Appl. 184 (1994), 453–463.
[3] H. Bavinck and R. Koekoek, On a difference equation for generalizations of Charlier polynomials, J. Approx. Theory 81 (1995), 195–206.
[4] C. Brezinski, L. Gori and A. Ronveaux (Eds.), Orthogonal polynomials and their applications, IMACS Annals on Computing and Applied Mathematics (No. 9), J.C. Baltzer AG, Basel, 1991.
[5] E. B. Christoffel, Über die Gausssische Quadratur und eine Verallgemeinerung derselben, J. Reine Angew. Math. 55 (1858), 61–82.
[6] J. J. Duistermaat and F. A. Grünbaum, Differential equations in the spectral parameter, Comm. Math. Phys. 103 (1986), 177–240.
[7] A. J. Durán, The Stieltjes moments problem for rapidly decreasing functions, Proc. Amer. Math. Soc. 107 (1989), 731–741.
[8] A. J. Durán, Orthogonal polynomials satisfying higher-order difference equations, Constr. Approx. 36 (2012), 459–486.
[9] A. J. Durán, Using \mathcal{D}-operators to construct orthogonal polynomials satisfying higher-order difference or differential equations, J. Approx. Theory 174 (2013), 10–53.
[10] A. J. Durán, Constructing bispectral dual Hahn polynomials, submitted. See arXiv: 1407.6973.
[11] A. J. Durán and M. D. de la Iglesia, Constructing bispectral orthogonal polynomials from the classical discrete families of Charlier, Meixner and Krawtchouk, to appear in Constr. Approx.
[12] A. J. Durán and M. D. de la Iglesia, Differential equations for discrete Laguerre-Sobolev orthogonal polynomials, to appear in J. Approx. Theory.
[13] F. A. Grünbaum and L. Haine, Orthogonal polynomials satisfying differential equations: the role of the Darboux transformation, in: D. Levi, L. Vinet, P. Winternitz (Eds.), Symmetries and Integrability of Differential Equations, CRM Proc. Lecture Notes, vol. 9, Amer. Math. Soc. Providence, RI, 1996, 143–154.
[14] F. A. Grünbaum and L. Haine, Bispectral Darboux transformations: an extension of the Krall polynomials, Int. Math. Res. Not. 8 (1997), 359–392.
[15] F. A. Grünbaum, L. Haine and E. Horozov, Some functions that generalize the Krall-Laguerre polynomials, J. Comput. Appl. Math. 106, 271–297 (1999).
[16] F. A. Grünbaum and M. Yakimov, Discrete bispectral Darboux transformations from Jacobi operators, Pac. J. Math., 204, 395–431 (2002).
[17] L. Haine and P. Iliev, Askey-Wilson type functions with bound state, Ramanujan J. 11 (2006), 285–329.
[18] P. Iliev, Krall-Jacobi commutative algebras of partial differential operators, J. Math. Pures Appl. 96 (2011), 446–461.
[19] P. Iliev, Krall-Laguerre commutative algebras of ordinary differential operators, Ann. Mat. Pur. Appl. 192 (2013), 203–224.
[20] J. Koekoek and R. Koekoek, On a differential equation for Koornwinder’s generalized Laguerre polynomials, Proc. Amer. Math. Soc. 112 (1991), 1045–1054.
[21] R. Koekoek, Differential Equations for Symmetric Generalized Ultraspherical Polynomials, Trans. Amer. Math. Soc. 345 (1994), 47–72.
[22] J. Koekoek and R. Koekoek, Differential equations for generalized Jacobi polynomials, J. Compt. Appl. Math. 126 (2000), 1–31.
[23] H. L. Krall, On orthogonal polynomials satisfying a certain fourth order differential equation, The Pennsylvania State College Studies, No. 6, 1940.
[24] L. L. Littlejohn, The Krall polynomials: a new class of orthogonal polynomials, Quaest. Math. 5 (1982), 255–265.
[25] L. L. Littlejohn, An application of a new theorem on orthogonal polynomials and differential equations, Quaest. Math. 10 (1986), 49–61.
[26] G. Szegő, Orthogonal Polynomials, American Mathematical Society, Providence, RI, 1959.
[27] A. Zhedanov, A method of constructing Krall's polynomials, J. Compt. Appl. Math. 107 (1999), 1–20.

A. J. Durán, Departamento de Análisis Matemático, Universidad de Sevilla, Apdo (P. O. BOX) 1160, 41080 Sevilla, Spain.
E-mail address: duran@us.es

Manuel D. de la Iglesia, Instituto de Matemáticas, Universidad Nacional Autónoma de México, Circuito Exterior, C.U., 04510, Mexico D.F. Mexico.
E-mail address: mdi29@im.unam.mx