A correlational study between microstructural, macrostructural and functional age-related changes in the human visual cortex

Sahar Rahimi Malakshan¹, Farveh Daneshvarfard¹,², Hamid Abrishami Moghaddam¹*¹

¹ Faculty of Electrical Engineering, Department of Biomedical Engineering, K.N. Toosi University of Technology, Tehran, Iran, ² INSERM U1105, Université de Picardie, CURS, Amiens, France

* moghaddam@kntu.ac.ir

Abstract

Age-related changes in the human brain can be investigated from either structural or functional perspectives. Analysis of structural and functional age-related changes throughout the lifespan may help to understand the normal brain development process and monitor the structural and functional pathology of the brain. This study, combining dedicated electroencephalography (EEG) and magnetic resonance imaging (MRI) approaches in adults (20–78 years), highlights the complex relationship between micro/macrophostructural properties and the functional responses to visual stimuli. Here, we aimed to relate age-related changes of the latency of visual evoked potentials (VEPs) to micro/macrophostructural indexes and find any correlation between micro/macrophostructural features, as well. We studied age-related structural changes in the brain, by using the MRI and diffusion-weighted imaging (DWI) as preferred imaging methods for extracting brain macrostructural parameters such as the cortical thickness, surface area, folding and curvature index, gray matter volume, and microstructural parameters such as mean diffusivity (MD), radial diffusivity (RD) and axial diffusivity (AD). All the mentioned features were significantly correlated with age in V1 and V2 regions of the visual cortex. Furthermore, we highlighted, negative correlations between structural features extracted from T1-weighted images and DWI. The latency and amplitude of the three dominants peaks (C1, P1, N1) of the VEP were considered as the brain functional features to be examined for correlation with age and structural features of the corresponding age. We observed significant correlations between mean C1 latency and GM volume averaged in V1 and V2. In hierarchical regression analysis, the structural index did not contribute to significant variance in the C1 latency after regressing out the effect of age. However, the age explained significant variance in the model after regressing out the effect of structural feature.

1. Introduction

The human brain undergoes extensive structural and functional changes from infancy to adulthood. Age-related changes of the human brain can be explored from two structural and...
Several functionalities of the brain, such as the speed of problem solving as well as the memory and learning degrade as a normal part of aging. Cerebral cortex, plays a prominent role in phenomena like episodic memory, movement, thought, perception and attention. Investigating structural changes in both the cerebral cortex and white matter (WM) is of great interest. A steady increase in WM volume has been observed from birth and even beyond adolescence into middle age, while it continuously declines afterward. On the other hand, gray matter (GM) volume follows an inverted U-shaped trajectory peaking at around first years after birth and continuously declines later [1,2]. There are several mechanisms underlying the loss of GM volume and density such as the shrinkage, synaptic pruning [3] and cell loss [4], as well as the continued myelination which is extended to late adolescence [5].

Quantitative analysis of magnetic resonance images (MRIs) is important in identifying and evaluating anatomical brain changes, neurodegenerative and brain disorders. Structural features such as the volume and weight of the brain diminish in elderly subjects [6] which are related to the shrinking of the cells [7]. Storsve et al. [8] indicated an average annual percentage reduction of 0.35 for the cortical thickness of subjects aged between 23 and 87 years. Several other studies proved a similar declining procedure by aging [8–12]. Aging-related reduction of the cortical thickness is also a consequence of cellular alternation like changing in the myelination or synaptic pruning [13,14]. Storsve et al. [8] further reported the annual 0.19 percent reduction in surface area of the cortex which is consistent with other studies [15–19]. During aging, the surface area is reduced due to the reduction of dendritic size and complexity [20,21]. The cortical surface area and folding are essential parameters of cognitive development, optimizing the functional organization. Magnotta et al. [9] reported that by aging, the gyri become more steeply curved and sulci widen [22] which lead to declining of the local gyriﬁcation index (LGI) [23–26]. This reduction of LGI is parallel to the decline in surface area.

Brain changes due to aging can be further investigated using microscopic information provided by diffusion tensor imaging (DTI) [27,28]. The measures commonly used in diffusion MRI (dMRI) include mean diffusivity (MD), fractional anisotropy (FA), axial diffusivity (AD) and radial diffusivity (RD). These parameters are sensitive to the microstructures of the neurons such as the myelination, axon density, and axon coherence. MD represents the average magnitude of water displacement by diffusion, while FA measures the anisotropic diffusion and is sensitive to alignment of water-restricting barriers [29,30]. AD reflects the direction of maximum diffusion which quantifies diffusion parallel to the axonal fiber, and RD is supposed to increase with de-myelination and reduction in axon density [30]. There is evidence that a decline in the length and number of myelinated fibers as well as a breakdown in axon density will happen in normal aging [31,32]. Fractal dimension (FD), is another parameter that has been investigated in some studies as an index of fractal geometry [33,34]. FD has the potential to provide information of cortical thickness, sulcal depth, and folding area into a single numeric value. Due to the complexity of such values the fractal analysis has consistently been applied on brain MRI at 7 T strength.

GM is mostly composed of dendrites and neuronal cell bodies as well as the myelinated axons. However, there are little explorations about myelination in GM compared to WM. Uddin et al. [35] studied the diffusion parameters of subcortical GM or some cortical regions like anterior and posterior cingulate and insular cortex. It has been supposed that the increase of MD in GM reﬂects the breakdown of microstructural barriers to diffusion, indicating probable volumetric alterations [36]. Therefore, GM’s MD could be a valuable measure of early GM cell damage. DTI measures were particularly aimed at highly anisotropic structures. In spite of the fact that most parts of the cortex contain GM and are relatively isotropic, some studies assessed DTI parameters in GM structures due to the presence of ferritin-bound iron...
which could influence the DTI measurements [37,38]. Due to the fact that iron accumulates during the individual's life, the study of DTI parameters in older ages could be beneficial [39]. Glasser et al. [40] proved that the T1 and T2-weighted imaging are sensitive to microstructural features and changes in these images can be related to tissue properties such as the cell density and iron concentration that influence water mobility. Therefore, investigating the associations between the features from T1-weighted images and DTI would broaden our perspective. For instance, the results revealed in [41] showed that MD, AD and RD are correlated with WM volume.

Functional analysis of age-related changes can be performed by using event-related potentials (ERPs). While there is an increase in the peak amplitude and a decrease in the peak latency of the responses at the first years of life, during aging the latency increases and the amplitude declines in some cases and is stable in others [42–44]. The visual C1 component, generated in the striate visual cortex, is considered to reflect the processing of elementary visual features (the “analysis” stage) [45]. Similarly, P1 and N1 peaks, are generated largely in the primary and secondary visual cortex (V1 and V2) as a response to the central region of the visual field that receives input from the lateral geniculate nucleus in the thalamus [46–49]. Myelination as a maturational process is the strong ground for developmental changes in the components’ characteristics. Increasing the latency and decreasing the conduction velocity during the aging is related to demyelination as a biochemical and neurophysiological change of the brain [50].

Although several studies investigated the structural and functional age-related changes of the human brain separately, there are only a few studies focusing on the joint structural and functional changes of the brain during aging. MRI-based studies have shown that brain aging is associated with distinct structural changes in the WM and GM. However, the relation between these changes and brain function is still poorly understood. In [51], the relationship between GM volume and EEG power was investigated showing that the reduction of GM (i.e. reflection of neurons or neuropil’s elimination) gives rise to the reduction in amplitude of EEG activity and absolute EEG power. In [52], the correlation between structure and function of the brain was investigated with increasing age, attempting to relate the gamma frequency band response of the V1 to age-related structural changes. While significant correlations were observed between the age and the gamma-band response as well as cortical features of pericalcarine and cuneus, hierarchical regression analysis failed to show unique effects of age or structural measure of cuneus on transient gamma peak frequency. Recently, Price et al. [53] related the latency of magnetic visual and auditory evoked fields (MEG) to age-related changes in the GM volume and WM microstructure (extracted by DTI) across the whole brain. Their results confirmed that while the functional properties of the visual responses were related to the microstructural properties of the WM, properties of auditory responses were related to the cortical GM and efficiency of local cortical processing.

In the current study, MR images and EEG signals were used for modeling structural and functional changes of the brain, respectively. Furthermore, DTI was used for extracting microstructural parameters to be investigated for correlations with the functional and structural features of T1-weighted MR images. A challenging question of “how structural changes in the brain lead to enhancement or degradation of the brain functions during the human life?” has encouraged us to study joint structural and functional changes of the visual cortex with increasing age. It has been shown previously, that WM microstructure in the optic radiation (connecting thalamus to the visual cortex) partially mediates age-related constant delay of the visually evoked fields which leads to increased transmission time for the arrival of information communicated from LGN to V1 [53]. Apart from these associations that are related to WM demyelination occurred by aging, we hypothesized that age-related delays may also depend on
some factors affecting the speed of processing after the visual information reaches the cortex. Specifically, the cortical GM microstructure would reflect the age-related neural conduction slowing in the VEPs. Therefore, we extracted the amplitude and latency of the components at occipital electrodes as the functional features, as well as several structural features of the visual cortex from MRI and DTI in a broad range of age (20–78 years). It is worth mentioning that similar relationships have been investigated between microstructure measures of cortical GM and auditory evoked responses in adults [53], though these effects disappeared after adjusting for the effect of age. DTI parameters seem to have relative sensitivity to neural changes and provide us with a wealth of information about brain aging. DTI might be a practical tool for following the visual cortex microstructural changes and reveal the existence of association with either functional or other macrostructural changes. To the best of our knowledge, this is the first study on investigating joint functional and structural age-related changes by extracting features from these three different modalities. Here, we aimed at presenting the functional and structural age-related changes of the visual cortex, as well as investigating the correlations between the structure and function at this specific brain region.

2. Materials and methods

The specific approach, proposed in the current study, for joint structural-functional analysis of the brain aging in the adults’ visual brain cortex can be presented as Fig 1. In the following sections, these procedures and results will be described in detail.

2.1 Functional data

2.1.1 Participants. The functional dataset includes the EEG signals recorded from 45 healthy adults with an age range of 20 to 78 years (recruited in [45]) in response to the visual stimuli. The neurobiological, psychiatric and medical history of the participants was checked. All the participants had normal or near to normal vision. Details related to the dataset and subjects’ information are presented in the Auditory-Visual Attention Shift Study of HeadIT Data Repository (HDR) [54]. Four subjects were exempted from our study due to the lack of information regarding their age.

Fig 1. The specific approach proposed for joint structural-functional analysis of the visual cortex alterations due to aging.

https://doi.org/10.1371/journal.pone.0266206.g001
2.1.2 Stimuli. The procedure of the original recording consisted of both visual and auditory stimulations. The visual (target and non-target) and auditory (target and non-target) stimuli were presented in focus attention blocks in which the subjects were instructed to attend the cue (i.e., ‘Look’ or ‘Hear’) prior to the beginning of the block. For each subject, one focus auditory block (FAB) and one focus visual block (FVB) were presented, followed by another 6 blocks including random FABs and FVBs. The order of the blocks was randomized across subjects. In the current study, we used non-attended non-target visual stimuli obtained in focus auditory conditions to reduce the effect of attention. Since the facilitation and inhibition are related strongly to attention or its withdrawal, avoiding the attentional confounds helps in a better understanding of age-related changes regarding the sensory domain. The visual target and non-target stimuli were light and dark blue squares (8.4 cm²), respectively. They subtended 3.3 degrees of visual angle and were presented for 100 ms on a light gray background of a computer. The reader may refer to [45] for the complete description of the stimuli paradigm design.

2.1.3 EEG recording and preprocessing. The EEG signals were recorded from 33 scalp electrodes (FP1, FPz, FP2, AF3, AF4, F7, F8, F3, Fz, F4, FC1, FC2, FC5, FC6, T7, T8, C3, Cz, C4, CP1, CP2, CP5, CP6, P3, Pz, P4, P7, P8, PO3, PO4, O1, Oz, O2) based on the international 10–20 system. The signals were amplified by 10 and filtered at 0.1–60 Hz. Reference of the recordings was right mastoid and the recordings were re-referenced to the average of the left and right mastoid. Independent component analysis (ICA) has been used to eliminating various kinds of artifacts. The signals were segmented into epochs from 200 ms pre- to 600 ms post-stimulus onset for the non-target visual stimulation in FABs. Baseline correction was performed according to 200 ms before the beginning of the stimulation and body movement artifacts, as well as false-alarm button press, were excluded from the epochs. The epochs were then averaged for each subject to obtain ERPs at each electrode. In our study, all of the preprocessing steps have been done by EEGLAB.

2.1.4 ERPs components. By taking simple visual stimuli and grand average source localization into account, C1, P1 and N1 peak were extracted for each subject at three occipital electrodes (O1, O2 and Oz). These values were then averaged across the channels to obtain one functional feature for each component’s amplitude and one for each component’s latency. The ERP peak search windows were defined by visual inspection of the grand average waveforms according to the paper that employs the same dataset as our study [45]. The features were then examined for the age and structure-related dependencies.

2.2 Structural dataset

2.2.1 MRI and DWI datasets. To develop a conjoint model of functional and structural brain changes, a structural dataset corresponding to the same age-range of the functional data is required. Ideally, the structural data acquired from the same subjects recruited for the functional data acquisition are appropriate for the joint analysis. However, due to the unavailability of structural data from the same subjects, we selected T1-weighted MR images from the Imperial College London repository (IXI dataset [55]) which contains almost 600 normal healthy subjects with the age range of 20–86 years. MRI data were collected from three different scanners (at three different hospitals in London), two of which were 1.5 T and one was 3 T scanner. Details of the IXI data and scan parameters are available at: (http://brain-development.org/ixi-dataset/).

Furthermore, the DWI dataset released by the Cambridge Centre for Ageing and Neuroscience (CAMCAN) [56] was employed, which includes approximately 600 normal subjects aged between 18–87 years [57,58]. They used a 3 T Siemens TIM Trio scanner with a 32-channel head coil. DWIs were acquired with a twice-refocused spin-echo sequence, with 30 diffusion
gradient directions for each of the two b-values: 1000 and 2000 s/mm2, plus three images acquired with a b-value of zero. The other parameters were as follows: Echo Time = 104 ms, repetition time = 9100 ms, voxel size = 2 mm isotropic, FOV = 192 mm × 192 mm, 66 axial slices, number of averages = 1. The images were processed for extracting DTI parameters (FA, MD, AD and RD). In our study, we used the data of one person at each age (i.e. each year) to extract the features. This leads to considering 59 subjects (20–78 years) from each of the MRI and DTI datasets.

2.2.2 Structural analysis. We processed MR images using the default recon-all preprocessing pipeline of FreeSurfer [59] (Center for Biomedical Imaging, Charlestown, MA). This procedure consists of brain extraction, motion correction, intensity normalization, registration, segmentation, tessellation, generation of white and pial surfaces, surface topology correction, spherical mapping, registration to the FsAverage surface based on a measure of surface shape, and finally cortical parcellation mapping. In the next step, we extracted various features including the surface area, GM volume, folding index, curvature index and average cortical thickness from MR images in V1 and V2 cortical regions which are responsible for processing the presented simple visual stimuli.

Cortical thickness is commonly defined as the distance between the white surface (the border between WM and GM) and the pial surface (the border between GM and CSF) [10,60]. The cortical surface area is calculated by summing the areas of all triangles that form the WM/GM boundary within a specific region [61]. While the surface area and thickness of the whole cortex or a region of interest (ROI) are known, the cortical volume can be obtained by a simple multiplication [62]. Considering that k_1 and k_2 are the maximum and minimum curvature respectively at any point on a surface cortex, the remaining features can be calculated in each ROI by a combination these two factors (Eqs 1 and 2) [63,64].

\[
\text{Folding index} = |k_1| \times (|k_1| - |k_2|)
\]

\[
\text{Curvature index} = \tan^{-1} \left(\frac{k_1 + k_2}{k_2 - k_1} \right)
\]

First step of diffusion preprocessing is to have both of our anatomical (T1w or T2w) images and our diffusion MRI images aligned. After aligning, eddy current distortions and subject motion artifacts were corrected. Due to low signal-to-noise ratio of dMRI which directly impacts on fitting microstructural models and analyzing diffusion data, noise, Gibbs ringing and bias field inhomogeneities have been removed. We used FSL 4.0 for all the preprocessing steps. DTI parameters including AD, RD, MD and FA were extracted for V1 and V2 regions using modified code from ExploreDTI (A. Leemans, Utrecht, Netherlands) [65]. All the structural features were averaged across V1 and V2 to be investigated for the age and function-related dependencies. Furthermore, linear regressions were conducted to investigate the correlations between the structural features of T1-weighted images and DTIs.

2.3 Joint functional-structural analysis

To investigate correlations between the function and structure, representative functional and structural features are required for each specific age. Therefore, the features were extracted for one subject at each year in the functional as well as MRI and DWI datasets. Linear regressions were performed to investigate the correlation between the functional and structural features. Furthermore, hierarchical regressions were conducted to examine the unique influence of age and structural changes on the functional changes. All the statistical analyses were carried out using IBM SPSS Statistics.
3. Results

3.1 Functional analysis of age-related changes

Grand average ERPs, for young (20–40 years) and old (65–78 years) groups, averaged across occipital electrodes are presented in Fig 2. In addition to the differences observed in the latency and amplitude, Fig 2 displays the appearance of P1 in the form of a double peak instead of a single one, occurred by aging. As Fig 3 shows, there is a significant positive correlation between the age and the latency of C1 (p = 0.009, r = 0.384) averaged in three occipital electrodes. However, no significant changes were observed for the amplitudes of C1 with increasing of age. Partial correlations were conducted to examine the strength of age-related correlation after controlling for the effect of gender and the result was still significant. Furthermore, there were no significant correlations between the latency and amplitude of other components (P1 and N1) with age.

3.2 Structural analysis of age-related changes

Significant negative correlations were observed between the age and surface area (p < 0.001, r = -0.55), cortical thickness (P < 0.001, r = -0.611), volume (p < 0.001, r = -0.587), folding (p < 0.001, r = -0.570) and curvature index (p = 0.003, r = -0.367) averaged in V1 and V2 regions (Fig 4). All the results were significant even after partial correlation analysis which investigated the effect of age on the structural index while correcting for the effect of gender. While analyzing the DWIs, significant positive correlations were observed between the age and MD (P < 0.001, r = 0.445), RD (p = 0.002, r = 0.382) and AD (p = 0.001, r = 0.418) averaged in V1 and V2 regions, but not for the FA (Fig 5). The results were still significant after controlling the gender effect. Moreover, we employed quadratic models to explore the age-related changes across the human lifespan that is shown for MD, RD and AD features in Fig 5. The significant results indicate the higher R^2 value for quadratic in comparison to the linear model.

3.3 Structure-function correlations

Significant negative correlations were observed between the C1 latency averaged in three occipital electrodes and GM volume (p = 0.048, r = -0.377) averaged in V1 and V2 regions.
We performed hierarchical regressions to investigate the unique effects of age and GM volume on the C1 latency. The full regression model (age and GM volume) predicted 51.6% of the variance in C1 latency \((p < 0.001) \). Added first, age predicted 51.4% of the variance \((p < 0.001) \). Including the GM volume explained a non-significant 0.2% of the additional variance in the model \((p = 0.753) \). Added first, GM volume predicted 14.2% of the variance \((p = 0.048) \). Including age explained a significant 37.4% of additional variance in the model \((p < 0.001) \).

In general, by applying hierarchical regression analyses to examine the relative contributions of age and cortical feature, GM volume, to the latency of C1 component in VEPs; we see that if structural feature was added first, both structural feature and age almost predict the significant variance in latency of the visual responses. However, after removing variance in the visual response latency associated with age, cortical characteristics accounted for no additional variance. As observed from the results, the correlation between the structural and functional features was not significant after removing the effect of age.

3.4 Structure-structure correlations

Table 1 presents the results of the negative correlations between the structural measures extracted from T1-weighted images and microstructural features computed from DTIs. Although significant negative correlations were observed between some features, the results were not significant after removing the effect of age.
4. Discussion

Our findings showed several associations between structural changes, electrophysiological function, and age, which present a biophysical model of age-related changes in the visual area of the human brain. The results presented regionally specific changes due to aging and may thus be informative for a better understanding of physiological processes of age-related decline. Here, structural features of the visual areas were extracted from T1-weighted images and functional features were extracted from the visual ERPs. Moreover, in this study, DTI microstructural features of the specific regions including V1 and V2 in the visual cortex were extracted and correlated with the age, functional and structural features. Although significant

Fig 4. Significant age-related changes in a) surface area, b) GM volume, c) folding index, d) curvature index and e) mean cortical thickness averaged in V1 and V2.

https://doi.org/10.1371/journal.pone.0266206.g004
correlations were observed between the structure and function, and also between the structural features of the T1-weighted images and DTIs, the correlations were not significant after controlling for the effect of age. To be more specific, although the GM volume was significantly (negatively) correlated with C1 latency, hierarchical regressions revealed that these correlations were not significant after removing the effect of age. Therefore, the increase in the C1 latency with increasing age is not likely the result of alteration in the structural features of the visual area. Rather the C1 latency, structural features and age may be related indices of the visual cortex aging. It is worth mentioning that age explained significant variance in the model after regressig out the effect of structural feature, which in turn gives rise to the idea that age, apart from the effect of the structural feature, contains biological underpinnings of age-related changes that occurred in V1 and V2 areas such as demyelination, fiber loss and degeneration.

Fig 5. Significant quadratic age-related changes fit better in comparison to the linear model in a) MD, b) RD and c) AD averaged in V1 and V2.

https://doi.org/10.1371/journal.pone.0266206.g005
Similar to our result, Stothart et al. [66] reported the appearance of P1 in the form of a double peak instead of a single one by aging which can be due to de-synchronization of cortical sources. De-synchronization was confirmed by results showing that activation in older subjects changed in comparison to younger adults. In the old group, activation distributes to frontal areas indicating a Posterior Anterior Shift in Aging (PASA) functional activity [67]. Most of the VEPs findings reported age-related diminished activity in visual cortices which is consistent with the findings of fMRI studies [68]. In this respect, they showed greater activation in frontal and parietal regions coincided with reduced activation in the occipital region as a result.

Fig 6. Significant correlations between mean C1 latency and GM volume averaged in V1 and V2; for young (20–40 years), middle (40–65 years) and old group (65–78 years).

https://doi.org/10.1371/journal.pone.0266206.g006

Table 1. P-values and correlation coefficients for negative correlations between structural features extracted from T1-weighted images and DTI.

Structural features extracted from T1-weighted images	Structural features extracted from DTI	Surface area	Gray matter volume	Folding index	Curvature index	Average cortical thickness
Mean diffusivity (MD)	r	-0.287	-0.244	-0.348	-0.375	-0.132
	p	0.025	0.059	0.006	0.003	0.312
Radial diffusivity (RD)	r	-0.281	-0.240	-0.342	-0.382	-0.142
	p	0.028	0.062	0.007	0.002	0.274
Axial diffusivity (AD)	r	-0.253	-0.228	-0.341	-0.342	-0.149
	p	0.049	0.077	0.007	0.007	0.251

https://doi.org/10.1371/journal.pone.0266206.t001
of the compensation mechanism as well as a behavioral weakening in visual perceptual abilities occurred with aging. Decreases in occipital cortex activity by aging have been attributed to disorganized sensory processing in the ventral pathways. In fact, increasing age brings about dedifferentiation (a cellular process in which a differentiated cell loses its special form or function) of neural response in the ventral visual cortex [69].

Age-related changes we observed for MRI features are in accordance with previous studies, regarding the surface area, cortical thickness, cortical volume and folding index, both regionally [52,68] and globally [8,17,70,71]. For the folding index and curvature index, it is the first time that age-related changes are reported for V1 and V2 regions and their reduction pattern was in line with constant decrease of the similar measure (gyrification) during the adult's lifespan [72]. The reduction observed in the cortical thickness might be associated with synaptic pruning and related decrease of glial cells due to reduced metabolic requirements [73]. The decline in GM volume by aging, which has a higher R-squared value in comparison to other features, is due to a combination of synaptic exuberance, pruning of the myriad connections and neuronal loss as a regressive and progressive event. Furthermore, during aging, the surface area is reduced due to the reduction of dendritic size and complexity [20,21,74]. The process of atrophy in the cortex brings about widening and flattening of the sulcal regions resulting in a decreasing pattern in curvature index. Similarly, the cortical folding reduction would be a marker of brain atrophy in later decades of life which happens by increasing of age [75]. The reason for age-related changes in the folding pattern [71] is not adequately clarified yet. It is only hypothesized that perinatal pruning with programmed cell death and reduction of the cell numbers and connectivity results in cortical gyrification reduction.

Regarding the DTI parameters, age-related changes in FA were not significant. The reason behind this observation is that this metric mainly reflects the degree of non-isotropic diffusion, while the cortex is mostly an isotropic environment [31]. For MD, the age-related increase was shown regionally in pericalcarine [76]. Our report of U-shaped paths across the age, for MD, is similar to Grydeland et al. [76] findings in some cortical areas such as the insula and isthmus of cingulate gyrus. U-shaped trajectories, indicate an accelerated myelination process until 30 years of age, followed by a period of relative stability, before a decrease in myelin content from the late 50s. The results accord with the seminal histology study by Yakovlev and Lecours [77], who reported an increase of myelinated fibers in the association cortices until the third decade and possibly beyond. Furthermore, there is only one study considering deep GM structures [38] which showed similar higher DTI values in the older rather than the younger group. MD suggested as an inverse measure of membrane density, signified cellular changes in GM which consists of cell bodies and is an independent measure of direction.

According to the study conducted by Glasser et al. [40], T1 and T2 weighted imaging are sensitive to microstructural features of the brain and changes in these images can be related to some tissue properties such as the cell density and iron concentration that influence water mobility [78]. To date, there is no finding regarding the correlation between GM features in T1 weighted and DTI indices, particularly in the visual cortex. However, Pareek et al., [79] and Kochunov et al., [80] examined global features and showed that WM diffusion measures have a strong correlation with GM volume along the aging process. Similarly, in our study, the correlations between the DTI indices and some GM features were significant and elucidated how GM’s microstructural parameters have an association with GM’s macrostructural characteristics, during normal aging. However, they were not significant after controlling the effect of age.

Although this study and related works in the literature showed associations between certain brain structures and functions during aging, it has not been determined yet which is the cause and which is the consequence for these relationships. To sum up, despite strong evidence that
visual object processing slows down with age, the exact origins of the aging effects, as well as
the origin of the inter-individual differences within age groups [81], are still unclear. Apart
from physiological changes occurring in the aging brain, it is possible that part of the age-
related delays is due to factors affecting the speed of processing before visual information arri-
ves the cortex. Particular reduced retinal illumination and degeneration of the eyes and visual
function appears in the aging eye or the pathways till the information transforms to the cortex
[82,83]. Hence, maybe this would be the reason why the latency of C1 does not correlate with
cortical related features independent of age.

However, we can find in Adibpour et al. [84] a relation between the conduction speed of
the auditory P2 and GM maturation (longitudinal diffusivity) in the inferior frontal region but
no relationship with DTI parameters alterations in acoustic radiations in infants. The strong
ground related to these findings would be various developmental mechanisms that occurred in
GM maturation at this age such as the myelination of intra-cortical fibers and the increase in
synaptic density [85]. Additionally, in visual stimulus, they only found an association between
P1 speed and optic radiations independent of age. A recent study indicates that structure-func-
tion relationships differ between the visual and auditory modalities [53]. In this respect, the
aging demyelination in cortical regions which can influence DTI indices is not as obvious and
effective as myelination and its influence on DTI measures in infants’ age; hence, we can sug-
gest that the visual system would be different in a structure-function relationship compared to
the auditory modality. Another reason would be the importance of paying attention to cortical
properties. For instance, subcortical diffusion measures are highly affected by localized
changes in iron accumulation that are specific and related to the subcortical GM regions of the
brain among older individuals [86,87]. Because, there is no measurement in the present study
related to the visual cortex, the possibility that cortical differentiation of diffusion measures are
associated with iron accumulation would be a hypothesis. So, we can propose that cortical
myelination in the visual cortex is not an accurate marker and is not associated with the func-
tion of visual cortex, independent of age.

Moreover, the existence of several microstructural components including the cellular mem-
branes, axonal sheaths, and organelles in the human brain tissues, specifically in the cerebral
cortex which is a complex microenvironment, leads to non-Gaussian diffusion of water mole-
cules which is not limited to an anisotropic environment [88]. In this situation, diffusion
would be better characterized by a high order tensor diffusion model [89] called diffusion kur-
tosis imaging (DKI). In this regard, metrics such as the mean kurtosis (MK), radial kurtosis
(RK) and axial kurtosis (AK) [90,91] have been used in various studies and are sensitive to
microstructure changes either in aging [92,93] or disease [94,95]. However, there is a lack of
investigations and details regarding these measures in the cortical GM which requires further
studies.

Finally, we should notice that the casual mechanism of joint structural and functional asso-
ciations is still an interesting and not well-defined subject. The most crucial point regarding
joint analysis is acquiring structural and functional data of the same subjects at the same time
that is recommended to characterize the aging more accurately. Also, recent studies [96,97]
indicate the importance of apparent differences in imaging measures between different scan-
ers. However, MRI system strength information corresponding to each subject is not avail-
able in IXI dataset and we cannot check the impact of this parameter on imaging measures. To
this end, we should point to this limitation of the dataset and suggest to investigate a similar
study on a dataset with the same MRI scanner for all the participants. In general, in joint struc-
tural-functional investigations, selecting structural and functional markers to be age predictive
and have a correlation with each other is a challenging topic.
Author Contributions

Conceptualization: Sahar Rahimi Malakshan, Farveh Daneshvarfard, Hamid Abrishami Moghaddam.

Formal analysis: Sahar Rahimi Malakshan.

Investigation: Sahar Rahimi Malakshan.

Methodology: Sahar Rahimi Malakshan, Farveh Daneshvarfard, Hamid Abrishami Moghaddam.

Project administration: Sahar Rahimi Malakshan.

Supervision: Farveh Daneshvarfard, Hamid Abrishami Moghaddam.

Validation: Sahar Rahimi Malakshan.

Visualization: Sahar Rahimi Malakshan.

Writing – original draft: Sahar Rahimi Malakshan.

Writing – review & editing: Farveh Daneshvarfard, Hamid Abrishami Moghaddam.

References

1. Sowell ER, Peterson BS, Thompson PM, Welcome SE, Henkenius AL, Toga AW. Mapping cortical change across the human life span. Nat Neurosci. 2003; 6: 309–315. https://doi.org/10.1038/nn1008 PMID: 12548289

2. Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D, Vaituzis AC, et al. Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci. 2004; 101: 8174–8179. https://doi.org/10.1073/pnas.0402680101 PMID: 15148381

3. Hong S, Dissing-Olesen L, Stevens B. New insights on the role of microglia in synaptic pruning in health and disease. Curr Opin Neurobiol. 2016; 36: 128–134. https://doi.org/10.1016/j.conb.2015.12.004 PMID: 26745839

4. Varela-nieto I, Rosa EJ De, Valenciano AI, León Y. Cell Death in the Nervous System Physiological and Pathological Cell Death in the Nervous System. Mol Neurobiol. 2003; 28: 23–49.

5. Miller DJ, Duke T, Stimpson CD, Schapiro SJ, Baze WB, McArthur MJ, et al. Prolonged myelination in human neocortical evolution. Proc Natl Acad Sci. 2012; 109: 16480–16485. https://doi.org/10.1073/pnas.1117943109 PMID: 23012402

6. Simpkins CA, Simpkins AM. Brain development through the life span. Neuroscience for Clinicians. Springer; 2013. pp. 151–164.

7. Grinberg F, Maximov II, Farher E, Neuner I, Amort L, Thönnessen H, et al. Diffusion kurtosis metrics as biomarkers of microstructural development: A comparative study of a group of children and a group of adults. Neuroimage. 2017; 144: 12–22. https://doi.org/10.1016/j.neuroimage.2016.08.033 PMID: 27639358

8. Storsve AB, Fjell AM, Tamnes CK, Westbye LT, Overbye K, Aasland Hj, et al. Differential Longitudinal Changes in Cortical Thickness, Surface Area and Volume across the Adult Life Span: Regions of Accelerating and Decelerating Change. J Neurosci. 2014; 34: 8488–8498. https://doi.org/10.1523/JNEUROSCI.0931-14.2014 PMID: 24948804

9. Magnotta VA, Andreassen NC, Schultz SK, Harris G, Cizadlo T, Heckel D, et al. Quantitative In Vivo Measurement of Gyriﬁcation in the Human Brain: Changes Associated with Aging. Cereb Cortex. 1999; 9: 151–160. https://doi.org/10.1093/cercor/9.2.151 PMID: 1022027

10. Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci. 2000; 97: 11050–11055. https://doi.org/10.1073/pnas.200033797 PMID: 10984517

11. Sowell ER. Longitudinal Mapping of Cortical Thickness and Brain Growth in Normal Children. J Neurosci. 2004; 24: 8223–8231. https://doi.org/10.1523/JNEUROSCI.1798-04.2004 PMID: 15385605

12. Vijayakumar N, Allen NB, Youssef G, Simmons JG, Whittle S, Dennison M, et al. Brain Development During Adolescence: A Mixed-Longitudinal Investigation of Cortical Thickness, Surface Area, and Volume. Hum Brain Mapp. 2016; 37: 2027–2038. https://doi.org/10.1002/hbm.23154 PMID: 26946457
13. Huttenlocher PR. The development of synapses in striate cortex of man. Hum Neurobiol. 1987; 6: 1–9. PMID: 3583840
14. C. A. Simpkins AMS. Brain development through the lifespan. in Neuroscience for clinicians. springer; 2013. pp. 158–161.
15. Pakkenberg B, Gundersen HJG. Neocortical Neuron Number in Humans: Effect of sex and age. J Comp Neurol. 1997; 384: 312–320. PMID: 9215725
16. Aleman-Gomez Y, Janssen J, Schnack H, Alfaro-Almagro F, et al. The Human Cerebral Cortex Flattens during Adolescence. J Neurosci. 2013; 33: 15004–15010. https://doi.org/10.1523/JNEUROSCI.1459-13.2013 PMID: 24048830
17. Schnack HG, Haren NEM Van, Boomsma DI, et al. Changes in Thickness and Surface Area of the Human Cortex and Their Relationship with Intelligence. Cereb Cortex. 2015; 25: 1608–1617. https://doi.org/10.1093/cercor/bht357 PMID: 24408955
18. Tamnes CK, Herting MM, Live M, Meuweese R, Blakemore SJ, Dahl RE, et al. The Development of the Cerebral Cortex across Adolescence: A Multisample Study of Inter-Related Longitudinal Changes in Cortical Volume, Surface Area, and Thickness. J Neurosci. 2017; 37: 3402–3412. https://doi.org/10.1523/JNEUROSCI.3302-16.2017 PMID: 28242797
19. Foulkes L, Blakemore SJ. Studying individual differences in human adolescent brain development. Nat Neurosci. 2018; 21: 315–323. https://doi.org/10.1038/s41593-018-0078-4 PMID: 29403031
20. Seldon HL. Laterality: Asymmetries of Body, Brain and Cognition Does brain white matter growth expand the cortex like a balloon? Hypothesis and consequences. Brain Cogn. 2010; 10: 81–95. https://doi.org/10.1080/13576500342000310 PMID: 15841825
21. Hill J, Inder T, Neil J, Dierker D, Harwell J, Evans A, Durston S, et al. Congenital heart disease affects local gyriﬁcation in 22q11.2 deletion syndrome. Dev Med Child Neurol. 2009; 51: 746–753. https://doi.org/10.1111/j.1469-8749.2009.03281.x PMID: 19416334
22. Jockwitz C, Caspers S, Lux S, Jutten K, Schleicher A, Eickhoff SB. Age- and function-related regional changes in cortical folding of the default mode network in older adults. brain Struct Funct. 2017; 222: 83–99. https://doi.org/10.1007/s00429-016-1202-4 PMID: 26943919
23. Palaniyappan L, Mallikarjun P, Joseph V, White TP, Liddle PF. Folding of the Prefrontal Cortex in Schizophrenia: Regional Differences in Gyriﬁcation. Biol Psychiatry. 2011; 69: 974–979. https://doi.org/10.1016/j.biopsych.2010.12.011 PMID: 20571517
24. Schaefer M, Glaser B, Caspers S, Lux S, Jutten K, Schleicher A, Eickhoff SB. Age- and function-related regional changes in cortical folding of the default mode network in older adults. brain Struct Funct. 2017; 222: 83–99. https://doi.org/10.1007/s00429-016-1202-4 PMID: 26943919
25. Sullivan EV, Pfefferbaum A. Diffusion tensor imaging and aging. Neurosci Biobehav Rev. 2006; 30: 749–761. https://doi.org/10.1016/j.neubiorev.2006.06.002 PMID: 16887187
26. Alexander AL, Lee JE, Lazar M, Field AS. Diffusion tensor imaging of the brain. Neurotherapeutics. 2007; 4: 316–329. https://doi.org/10.1016/j.nurt.2007.05.011 PMID: 17599699
27. Aboitiz F, Rodriguez E, Olivares R, Zaidel E. Age-related changes in fibre composition of the human corpus callosum: sex differences. Neuroreport. 1996; 7: 1761–1764. https://doi.org/10.1097/00001756-199607290-00013 PMID: 8905659
28. Kemper TL. Neuroanatomical and neuropathological changes during aging and dementia. 1994.
29. Reishofer G, Studencnik F, Koschutnig K, Deuschmann H, Ahammer H, Wood G. Age is reﬂected in the Fractal Dimensionality of MRI Diffusion Based Tractography, Sci Rep. 2018; 8: 1–9. https://doi.org/10.1038/s41598-018-23769-6 PMID: 29615717
30. Marzi C, Giannelli M, Tessa C, Mascalchi M, Diciotti S. Fractal Analysis of MRI Data at 7 T: How Much Complex Is the Cerebral Cortex? IEEE Access. 2021; 9: 69226–69234. https://doi.org/10.1109/ACCESS.2021.3077370
A correlative study between structural and functional age-related changes

35. Uddin N, Figley TD, Solar KG, Shatil AS. Comparisons between multi-component myelin water fraction, T1w/T2w ratio, and diffusion tensor imaging measures in healthy human brain structures. Sci Rep. 2019; 9: 1–17. https://doi.org/10.1038/s41598-019-39199-x PMID: 30792440

36. Weston PSJ, Simpson IJA, Ryan NS, Ourselin S, Fox NC. Diffusion imaging changes in grey matter in Alzheimer’s disease: a potential marker of early neurodegeneration. Alzheimer’s Res Ther. 2015; 7: 47. https://doi.org/10.1186/s13195-015-0132-3 PMID: 26136857

37. Pfefferbaum A, Adalsteinsson E, Rohlffing T, Sullivan E V. Diffusion tensor imaging of deep gray matter brain structures: effects of age and iron concentration. Neurobiol Aging. 2010; 31: 482–493. https://doi.org/10.1016/j.neurobiolaging.2008.04.013 PMID: 18513834

38. Keller J, Rulseh A, Syka M, Vymazal J. Fractional anisotropy in various white and gray matter regions in adulthood. Dependence on age and comparison of two dTI sequences. Book of Abstracts–ISMRM-ESMRMB Joint Annual Meeting: Poster. 2010.

39. Hallgren B, Sourander P. The effect of age on the non-haemin iron in the human brain. J Neurochem. 1958; 3: 41–51. https://doi.org/10.1111/j.1471-4159.1958.tb12607.x PMID: 13611557

40. Glasser MF, Goyal MS, Preuss TM, Raichle ME, Essen DC Van. Trends and properties of human cerebral cortex: Correlations with cortical myelin content. Neuroimage. 2014; 93: 165–175. https://doi.org/10.1016/j.neuroimage.2013.03.060 PMID: 23567887

41. Rathee R, Rallabandi VPS, Roy PK. Age-related differences in white matter integrity in healthy human brain: evidence from structural MRI and diffusion tensor imaging. Magn Reson Insights. 2016; 9: 9–20. https://doi.org/10.4137/MRI.S39666 PMID: 27279747

42. Pavarini SCI, Brigola AG, Luchesi BM, Souza EN, Rossetti ES, Fraga FJ, et al. On the use of the P300 as a tool for cognitive processing assessment in healthy aging: A review. Dement Neuropsychol. 2018; 12: 1–11. https://doi.org/10.1590/1980-5764.201812-010001 PMID: 29682227

43. Van Dinteren R, Huster RJ, Jongsmaj M, Kessels R, Arms M. Differences in cortical sources of the event-related P3 potential between young and old participants indicate frontal compensation. Brain Topogr. 2018; 31: 35–46. https://doi.org/10.1007/s10548-016-0542-y PMID: 28101703

44. Cycaowicz YM. Memory development and event-related brain potentials in children. Biol Psychol. 2000; 54: 145–174. https://doi.org/10.1016/s0301-0511(00)00055-7 PMID: 11035222

45. Čeponienė R, Westerfield M, Torki M, Townsend J. Modality-specificity of sensory aging in vision and audition: Evidence from event-related potentials. Brain Res. 2008; 1215: 53–68. https://doi.org/10.1016/j.brainres.2008.02.010 PMID: 18482717

46. Walsh P, Kane N, Butler S. The clinical role of evoked potentials. J Neurol Neurosurg Psychiatry. 2005; 76: 116–118. https://doi.org/10.1136/jnp.2005.068130 PMID: 15961863

47. Russo F D, Sereno MI, Pitzalis S, Hillyard SA. Cortical Sources of the Early Components of the Visual Evoked Potential. Hum Brain Mapp. 2001; 15: 95–111. https://doi.org/10.1002/hbm.10010 PMID: 11835601

48. Hillyard SA, Anillo-Vento L. Event-related brain potentials in the study of visual selective attention. Proc Natl Acad Sci. 1998; 95: 781–787. https://doi.org/10.1073/pnas.95.3.781 PMID: 9448241

49. Clark VP, Fan S, Hillyard SA. Identification of early visual evoked potential generators by retinotopic and topographic analyses. Hum Brain Mapp. 1994; 2: 170–187.

50. Verdu E, Ceballos D, Vilches JJ, Navarro X. Influence of aging on peripheral nerve function and regeneration. Journals Peripher Nerv Syst. 2000; 5: 191–208. https://doi.org/10.1046/j.1529-8027.2000.00026.x PMID: 11151980

51. Whitford TJ, Rennie CJ, Grieve SM, Clark CR, Gordon E, Williams LM. Brain Maturation in Adolescence: Concurrent Changes in Neuroanatomy and Neurophysiology. Hum Brain Mapp. 2007; 28: 228–237. https://doi.org/10.1002/hbm.20273 PMID: 16767769

52. Gaetz W, Roberts TPL, Singh KD, Muthukumarswamy SD. Functional and Structural Correlates of the Aging Brain: Relating Visual Cortex (V1) Gamma Band Responses to Age-related Structural Change. Hum Brain Mapp. 2012; 33: 2035–2046. https://doi.org/10.1002/hbm.21339 PMID: 21769992

53. Price D, Tyler LK, Neto Henriques R, Campbell KL, Williams N, Treder MS, et al. Age-related delay in visual and auditory evoked responses is mediated by white and grey-matter differences. Nat Commun. 2017; 8. https://doi.org/10.1038/ncomms15671 PMID: 28598147

54. https://headit.ucsd.edu/studies/8d6db78-a236-11e2-b5e7-005063f2612.

55. https://brain-development.org/ixi-dataset/.

56. http://www.mrc-cbu.cam.ac.uk/datasets/camcan/.

57. Taylor JR, Williams N, Cusack R, Auer T, Shaffo MA, Dixon M, et al. The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) data repository: structural and functional MRI, MEG, and cognitive data
A correlational study between structural and functional age-related changes from a cross-sectional adult lifespan sample. Neuroimage. 2017; 144:262–269. https://doi.org/10.1016/j.neuroimage.2017.09.018 PMID: 26375206

58. Shafto MA, Tyler LK, Dixon M, Taylor JR, Rowe JB, Cusack R, et al. The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) study protocol: a cross-sectional, lifespan, multidisciplinary examination of healthy cognitive ageing. BMC Neurol. 2014; 14:204. https://doi.org/10.1186/s12883-014-0204-1 PMID: 25412575

59. http://surfer.nmr.mgh.harvard.edu/.

60. Dahnke R, Yotter RA, Gaser C. Cortical thickness and central surface estimation. Neuroimage. 2013; 65:336–348. https://doi.org/10.1016/j.neuroimage.2012.09.050 PMID: 23041529

61. Winkler AM, Sabuncu MR, Yeo BTT, Fischl B, Greve DN, Kochunov P, et al. Measuring and comparing brain cortical surface area and other areal quantitie. Neuroimage. 2012; 61:1428–1443. https://doi.org/10.1016/j.neuroimage.2012.03.026 PMID: 22446492

62. Winkler AM, Kochunov P, Blangero J, Altmasy L, Zilles K, Fox PT, et al. Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. Neuroimage. 2010; 53:1135–1146. https://doi.org/10.1016/j.neuroimage.2009.12.028 PMID: 2006715

63. Shimony JS, Smyser CD, Wideman G, Alexopoulos D, Hill J, Harwell J, et al. Comparison of cortical folding measures for evaluation of developing human brain. Neuroimage. 2016; 125:780–790. https://doi.org/10.1016/j.neuroimage.2015.11.001 PMID: 26550941

64. Fischl B. anatomical properties. Available: https://surfer.nmr.mgh.harvard.edu/fswiki/ FreeSurferCommands.

65. Ebadi A, Dalboni JL, Nagaraju D. Ensemble Classification of Alzheimer’s Disease and Mild Cognitive Impairment Based on Complex Graph Measures from Diffusion Tensor Images. Front Neurosci. 2017; 11:1–17. https://doi.org/10.3389/fnins.2017.00056 PMID: 28293162

66. Stothart G, Tales A, Hedge C, Kazanina N. Double peaked P1 visual evoked potentials in healthy ageing. Clin Neurophysiol. 2014; 125:1471–1478. https://doi.org/10.1016/j.clinph.2013.11.029 PMID: 24370492

67. Cabeza R, Daselaar SM, Dolcos F, Prince E, Budde M, Nyberg L. Task-independent and Task-specific Age Effects on Brain Activity during Working Memory, Visual Attention and Episodic Retrieval. Cereb Cortex. 2004; 14:364–375. https://doi.org/10.1093/cercor/bhg133 PMID: 15028641

68. Raz N, Gunning-Dixon F, Head D, Rodrigue KM, Williamson A, Acker JD. Aging, sexual dimorphism, and hemispheric asymmetry of the cerebral cortex: replicability of regional differences in volume. Neurobiol Aging. 2004; 25:377–396. https://doi.org/10.1016/S0197-4580(03)00118-0 PMID: 15123343

69. Park DC, Polk TA, Park R, Minear M, Savage A, Smith MR. Aging reduces neural specialization in ventral visual cortex. Proc Natl Acad Sci USA. 2004; 101:13091–13095. https://doi.org/10.1073/pnas.0405148101 PMID: 15322270

70. Wierenga LM, Langen M, Oranje B, Durston S. Unique developmental trajectories of cortical thickness and surface area. Neuroimage. 2014; 87:120–126. https://doi.org/10.1016/j.neuroimage.2013.11.010 PMID: 24246495

71. Zilles K, Palomerogallagher N, Amunts K. Development of cortical folding during evolution and ontogeny. Trends Neurosci. 2013; 36:275–284. https://doi.org/10.1016/j.tins.2013.01.006 PMID: 23415112

72. Raznahan A, Shaw P, Lalonde F, Stockman M, Wallace GL, Greenstein D, et al. How Does Your Cortex Grow? J Neurosci. 2011; 31:7174–7177. https://doi.org/10.1523/JNEUROSCI.2811-13.2013 PMID: 21562281

73. Paus T, Keshavan M, Giedd JN. Why do many psychiatric disorders emerge during adolescence? Nat Rev Neurosci. 2008; 9:947–957. https://doi.org/10.1038/nrn2513 PMID: 19002191

74. Feldman M. L., & Dowd C. Loss of Dendritic Spines in Aging Cerebral Cortex. Anat Embryol (Berl). 1975; 148:279–301. https://doi.org/10.1007/BF00319848 PMID: 1221885

75. Hogstrom LJ, Westbye LT, Walhovd KB, Fjell AM. The Structure of the Cerebral Cortex Across Adult Life: Age-Related Patterns of Surface Area, Thickness, and Gyrification. Cereb Cortex. 2013; 23:2281–2290. https://doi.org/10.1093/cercor/bhs133 PMID: 23892423

76. Grydeland H, Walhovd KB, Tamnes CK, Westbye LT, Fjell AM. Intracortical Myelin Links with Performance Variability across the Human Lifespan: Results from T1- and T2-Weighted MRI Myelin Mapping and Diffusion Tensor Imaging. J Neurosci. 2013; 33:18618–18630. https://doi.org/10.1523/JNEUROSCI.2811-13.2013 PMID: 24259583

77. Yakovlev P. The myelogenetic cycles of regional maturation of the brain. Reg Dev brain early life. 1967; 3–70.

78. Gelman N, Ewing JR, Gorell JM, Spickler EM, Solomon EG. Interregional variation of longitudinal relaxation rates in human brain at 3.0 T: relation to estimated iron and water contents. Magn Reson Med An Off J Int Soc Magn Reson Med. 2001; 45:71–79.
79. Pareek V, Rallabandi VPS, Roy PK. A Correlational Study between Microstructural White Matter Properties and Macrostructural Gray Matter Volume Across Normal Ageing: Conjoint DTI and VBM Analysis. Magn Reson Insights. 2018; 11: 1178623X18799926. https://doi.org/10.1177/1178623X18799926 PMID: 30349289

80. Kochunov P, Giahn DC, Lancaster J, Thompson PM, Kochunov V, Rogers B, et al. Fractional anisotropy of cerebral white matter and thickness of cortical gray matter across the lifespan. Neuroimage. 2011; 58: 41–49. https://doi.org/10.1016/j.neuroimage.2011.05.050 PMID: 21640837

81. Rousselet GA, Gaspar CM, Perrett CR, Husk JS, Bennett PJ, Sekuler AB. Healthy aging delays scalp EEG sensitivity to noise in a face discrimination task. Front Psychol. 2010; 1: 19. https://doi.org/10.3389/fpsyg.2010.00019 PMID: 21833194

82. Owsley C. Aging and vision. Vision Res. 2011; 51: 1610–1622. https://doi.org/10.1016/j.visres.2010.10.020 PMID: 20974168

83. Gittings NS, Fozard JL. Age related changes in visual acuity. Exp Gerontol. 1986; 21: 423–433. https://doi.org/10.1016/0531-5565(86)90047-1 PMID: 3493168

84. Adibpour P, Lebenberg J, Kabdebon C, Dehaene-lambertz G, Dubois J. Anatomo-functional correlates of auditory development in infancy. bioRxiv. 2019; 585448.

85. Lebenberg J, Labit M, Auzias G, Mohiberg H, Fischer C, Riviè re D, et al. A framework based on sulcal constraints to align preterm, infant and adult human brain images acquired in vivo and post mortem. Brain Struct Funct. 2018; 223: 4153–4168. https://doi.org/10.1007/s00429-018-1735-9 PMID: 30187191

86. Bartzokis G, Tisher TA, Lu PH, Villablanca P, Altshuler LL, Carter M, et al. Brain ferritin iron may influence age-and gender-related risks of neurodegeneration. Neurobiol Aging. 2007; 28: 414–423. https://doi.org/10.1016/j.neurobiolaging.2006.02.005 PMID: 16563566

87. Bilgic B, Pfefferbaum A, Rohlfing T, Sullivan E V, Adalsteinsson E. MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping. Neuroimage. 2012; 59: 2625–2635. https://doi.org/10.1016/j.neuroimage.2011.08.077 PMID: 21925274

88. Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K. Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med An Off J Int Soc Magn Reson Med. 2005; 53: 1432–1440. https://doi.org/10.1002/mrm.20508 PMID: 15906300

89. Liu C, Mang SC, Moseley ME. In vivo generalized diffusion tensor imaging (GDTI) using higher-order tensors (HOT). Magn Reson Med An Off J Int Soc Magn Reson Med. 2010; 63: 243–252. https://doi.org/10.1002/mrm.22192 PMID: 19953513

90. Poot DHJ, Arnold J, Achten E, Verhoye M, Sijbers J. Optimal experimental design for diffusion kurtosis imaging. IEEE Trans Med Imaging. 2010; 29: 819–829. https://doi.org/10.1109/TMI.2009.2037915 PMID: 20199917

91. Jensen JH, Helpern JA. MRI quantification of non-Gaussian water diffusion by kurtosis analysis y. 2010; 698–710. https://doi.org/10.1002/hbm.1518 PMID: 20632416

92. Falangola MF, Jensen JH, Babbs JS, Hu C, Castellanos FX, Di Martino A, et al. Age-related non-Gaussian diffusion patterns in the prefrontal brain. J Magn Reson Imaging An Off J Int Soc Magn Reson Med. 2008; 28: 1345–1350. https://doi.org/10.1002/jmri.21604 PMID: 19025941

93. Grinberg F, Maximo IV, Neuner I, Amort L, Oberwelland E, Konrad K, et al. Author ‘s Accepted Manuscript. Neuroimage. 2016. https://doi.org/10.1016/j.neuroimage.2016.08.033 PMID: 27639358

94. Lee C, Tabesh A, Spampinato M V, Helpern JA, Jensen JH, Bonilha L. Diffusional kurtosis imaging reveals a distinctive pattern of microstructural alternations in idiopathic generalized epilepsy. Acta Neurol Scand. 2014; 130: 148–155. https://doi.org/10.1111/ane.12257 PMID: 24796428

95. Bonilha L, Lee C-Y, Jensen JH, Tabesh A, Spampinato M V, Edwards JC, et al. Altered microstructure in temporal lobe epilepsy: a diffusional kurtosis imaging study. Am J Neuroradiol. 2015; 36: 719–724. https://doi.org/10.3174/ajnr.ajnr.2015.36.5.719 PMID: 25500311

96. Buchanan CR, Muñoz Maniega S, Valdés Hernández MC, Ballerini L, Barclay G, Taylor AM, et al. Comparison of structural MRI brain measures between 1.5 and 3 T: Data from the Lothian Birth Cohort 1936. Hum Brain Mapp. 2021; 42: 3905–3921.

97. Keenan KE, Gimbutas Z, Dienstfrey A, Stupic KF, Boss MA, Russek SE, et al. Multi-site, multi-platform comparison of MRI T 1 measurement using the system phantom. PLoS One. 2021; 16: e0252966. https://doi.org/10.1371/journal.pone.0252966 PMID: 34191819