Intuitionistic fuzzy set-based time series forecasting model via delegation of hesitancy degree to the major grade de-i-fuzzification and arithmetic rules based on centroid defuzzification

Nik Muhammad Farhan Hakim Nik Badrul Alam1, Nazirah Ramli2 and Ainun Hafizah Mohd3
1,2,3Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA Pahang, 26400 Bandar Jengka, Pahang, Malaysia
2E-mail: nazirahr@uitm.edu.my

Abstract. De-i-fuzzification is a process of converting the intuitionistic fuzzy set into a fuzzy set. It becomes one of the core procedures in fuzzy time series forecasting model based on the intuitionistic fuzzy set. In this paper, we propose a fuzzy time series forecasting model based on intuitionistic fuzzy set via de-i-fuzzification. The de-i-fuzzification approach used is assigning the hesitancy degree to the major grade. The data are partitioned into a few intervals using the frequency density-based method. The data in the fuzzy set form is then transformed into an intuitionistic fuzzy set using the definition of intuitionistic fuzzy set. The arithmetic rules based on centroid defuzzification is used to obtain the forecasted output. The model is implemented on the data of student enrolment at the University of Alabama. The results are then compared to forecasting method using classical fuzzy set and similar de-i-fuzzification approach using max-min operation. The proposed method outperforms the other two methods, thus supports the fact that intuitionistic fuzzy set is a generalization of a classical fuzzy set and gives better performance in forecasting.

1. Introduction
In 1993, Song and Chissom [1] introduced the concept of fuzzy time series (FTS) by implementing it on the data of student enrollments at the University of Alabama [2]. Since then, the knowledge of FTS has been widely studied by researchers with some modification and improvement on the setting of the interval lengths, the order of the fuzzy logical relationships and the defuzzification methods to obtain the forecasted output of the data being predicted [3-10].

The aforementioned literatures used the classical fuzzy sets [11] as a basis in their FTS forecasting models. Atanassov [12] introduced the concept of intuitionistic fuzzy set (IFS) as a generalization of classical fuzzy set, by incorporating both the membership and non-membership functions for the fuzzy sets. The application of IFS in FTS forecasting model is proposed by Castillo et al. [13] in plant monitoring and diagnosis. Afterwards, many intuitionistic fuzzy set-based FTS forecasting models were developed [14-22].

Joshi and Kumar [14] used the algorithm for FTS forecasting by establishing fuzzy logical relationships using hesitation index. In 2014, Gangwar and Kumar [15] proposed an FTS forecasting model based on the interval lengths formed by partitioning the universe of discourse using the
cumulative probability distribution approach. The proposed model used the degree of hesitancy to establish fuzzy logical relationships. The FTS forecasting model based on the fuzzy sets induced by IFS was established by Kumar and Gangwar [16]. Fan et al. [17] proposed an intuitionistic FTS forecasting model based on order decision and adaptive partition algorithm. An intuitionistic FTS forecasting model based on dual hesitant fuzzy set was proposed by Bisht et al. [18] to handle non-determinism caused by multiple valid fuzzification approaches in the FTS model.

In 2018, Abhishekh et al. [20] proposed the intuitionistic FTS forecasting model using the score function-based method. The score function is used to measure the intuitionistic fuzzy values (IFV), in which the bigger score will always be chosen. Bisht and Kumar [21] proposed an IFS-based computational method to handle non-determinism in forecasting financial time series data by using intuitionistic fuzzy logical relationships. Recently, Abhishekh et al. [22] modified the intuitionistic FTS forecasting model by partitioning the universe of discourse using the average-length method since this method gives better forecasting performance [23]. The defuzzification method used in [22] is based on the maximum score function and the frequency of occurrence of the intuitionistic fuzzy logical relationships.

Alam et al. [24] proposed the intuitionistic FTS forecasting model based on delegation of hesitancy degree to the major grade de-i-fuzzification method with max-min composition operation. The forecasting performance was compared to the model which is based on classical fuzzy sets and it was shown that forecasting using IFS gives better performance. The result obtained is consistent with the findings presented in [21, 25]. However, the development of matrix logical relationship and the max-min composition operation in [24] involve large amount of computing time.

In the present paper, an intuitionistic FTS forecasting model based on delegation of hesitancy degree to the major grade de-i-fuzzification method with arithmetic rules based on centroid defuzzification is proposed. The arithmetic rules have simplified calculation compared to the max-min composition operator, and the centroid defuzzification considers the position of all the points since it describes the centre of the area or gravity for the membership function. This paper is organized as follows: section 2 presents some preliminaries on the fuzzy sets, fuzzy time series and intuitionistic fuzzy sets; section 3 proposes the intuitionistic FTS forecasting model; section 4 implements the proposed model on the student enrollment data at the University of Alabama; section 5 discusses the forecasted results; and finally the conclusion is given in section 6.

2. Preliminaries

In this section, some preliminaries on the fuzzy sets, fuzzy time series and intuitionistic fuzzy sets (IFS) are presented. The de-i-fuzzification approach by assigning the hesitancy degree to the major grade [26] and centroid defuzzification [27] are also reviewed.

2.1. Fuzzy set, fuzzy time series and IFS

The definition of fuzzy set is given in the following:

Definition 2.1 [11]: A fuzzy set S on the universe of discourse, $D = \{d_1, d_2, d_3, ..., d_n\}$ can be written as

$$D = \sum_{i=1}^{n} \frac{\mu_S(d_i)}{d_i} \quad (1)$$

where $\mu_S(d_i)$ is the membership grade of d_i in D for $i = 1, 2, 3, ..., n$.

Next, the definitions that are related to fuzzy time series are reviewed.

Definition 2.2 [1]: Suppose $Y(t) \ (t = 0, 1, 2, ...)$ be the universe of discourse with fuzzy sets $f_i(t), \ (i = 0, 1, 2, ...)$ defined on it. Then the fuzzy time series $Y(t)$ is a collection of fuzzy sets $f_i(t)$.

2
Definition 2.3 [1]: If only \(Y(t) \) affects \(F(t) \), then \(F(t) = F(t-1) \circ R(t, t-1) \) represents \(F(t-1) \rightarrow F(t) \), where \(R(t, t-1) \) is a fuzzy relation between \(F(t) \) and \(F(t-1) \).

The intuitionistic fuzzy set is defined as follows:

Definition 2.4 [12]: An intuitionistic fuzzy set \(I \) in \(D \) can be written in the form

\[
I = \{(x, \mu_i(x), \nu_i(x)) \mid x \in D\}
\]

where \(\mu_i(x) : D \rightarrow [0, 1] \) is the degree of membership of \(x \) and \(\nu_i(x) : D \rightarrow [0, 1] \) is the degree of non-membership of \(x \). Note that for every \(x \) in \(D \),

\[
0 \leq \mu_i(x) + \nu_i(x) \leq 1. \tag{3}
\]

The degree of non-determinacy or hesitancy is defined by \(\pi_i(x) = 1 - \mu_i(x) - \nu_i(x) \).

In the following definition, the conversion of classical fuzzy sets into IFS by Jurio et al. [28] is given.

Definition 2.5 [28]: Let \(\beta \in \kappa \) where \(\kappa \) is the collection of all fuzzy sets in \(D \). Let \(\alpha : D \rightarrow [0, 1] \) and \(\beta : D \rightarrow [0, 1] \). \(f : [0,1] \times [0,1] \rightarrow L' \), where \(f(x, \alpha, \beta) = (f_\mu(x, \alpha, \beta), f_\nu(x, \alpha, \beta)) \) and \(f_\mu(x, \alpha, \beta) = x(1-\alpha \beta) \), \(f_\nu(x, \alpha, \beta) = 1 - \alpha \beta - f_\mu(x, \alpha, \beta) \). \(\tag{4} \)

2.2. De-i-fuzzification via delegation of hesitancy degree to the major grade

The method of de-i-fuzzification via equal distribution of hesitancy was proposed by Ansari et al. [26]. The proposed de-i-fuzzification method is defined in the following:

Definition 2.6 [26]: Let \(\pi_i \) be the degree of hesitancy for the IFS \(I = \{(x, \mu_i(x), \nu_i(x)) \mid x \in D\} \), then the new IFS obtained after the delegation of hesitancy degree to the major grade is given as follows:

\[
\tilde{I} = \begin{cases}
(x, \mu_i(x) + \pi_i(x), \nu_i(x)) & \text{if } \mu_i(x) > \nu_i(x) \\
(x, \mu_i(x), \nu_i(x) + \pi_i(x)) & \text{if } \mu_i(x) < \nu_i(x).
\end{cases} \tag{5}
\]

2.3. Defuzzification Using Centroid Method

The defuzzification using centroid method was introduced by Pedrycz [27] based on the centre of gravity. The formula for the defuzzification of discrete fuzzy sets is given by

\[
\tilde{C} = \frac{\sum_{j=1}^{m} x_j \mu(x_j)}{\sum_{j=1}^{m} \mu(x_j)}. \tag{6}
\]

3. Proposed IFS-Based FTS Forecasting Model via Delegation of Hesitancy Degree to the Major Grade De-i-fuzzification and Arithmetic Rules based on Centroid Defuzzification

In this section, the authors present eight steps of the proposed model which involves the delegation of hesitancy degree to the major grade in the de-i-fuzzification process and the arithmetic rules of centroid-based defuzzification of fuzzy sets. The steps are given as follows:
Step 1: Define the universe of discourse, \(D = [D_{\text{min}} - \psi, D_{\text{max}} + \phi] \) where \(D_{\text{min}} \) and \(D_{\text{max}} \) are the minimum and maximum values of the historical data and \(\psi \) and \(\phi \) are two proper positive integers.

Step 2: Divide \(D \) into some intervals using the frequency density-based method [29].

Step 3: Fuzzify the historical data using triangular fuzzy numbers to obtain the fuzzy sets.

Step 4: Convert the fuzzy sets into IFS using definition 2.5.

Step 5: De-i-fuzzify IFSs, \(I \) into fuzzy sets by assigning the hesitancy degree to the major grade [26].

Step 6: Establish the fuzzy logical relationships (FLRs) based on the induced fuzzy sets and group them.

Step 7: Based on centroid method, defuzzify the induced fuzzy sets using equation (6).

Step 8: Calculate the forecasted output using the FLRs obtained in Step 6 and the crisp values of induced fuzzy sets from step 7.

The following shows the arithmetic rules for calculating the forecasted output:

1. If the fuzzified data of year \(n \) is \(\tilde{F}_a \) and there is a unique FLR, say \(\tilde{F}_a \rightarrow \tilde{F}_b \), where the defuzzified value for \(\tilde{F}_b \) is \(\tilde{C}_b \), then the forecasted data for year \(n + 1 \) is \(\tilde{C}_b \).

2. If the fuzzified data of year \(n \) is \(\tilde{F}_a \) and there are \(p \) unique FLRs, say \(\tilde{F}_a \rightarrow \tilde{F}_b, \tilde{F}_a \rightarrow \tilde{F}_c, \ldots, \tilde{F}_a \rightarrow \tilde{F}_k \), where the defuzzified values for \(\tilde{F}_b, \tilde{F}_c, \ldots, \tilde{F}_k \) are \(\tilde{C}_b, \tilde{C}_c, \ldots, \tilde{C}_k \) respectively, then the forecasted data of year \(n + 1 \) is given by \(\frac{\tilde{C}_b + \tilde{C}_c + \ldots + \tilde{C}_k}{p} \).

3. If the fuzzified data of year \(n \) is \(\tilde{F}_a \), where the defuzzified value for \(\tilde{F}_a \) is \(\tilde{C}_a \), and there is no FLR, then the forecasted enrollment of year \(n + 1 \) is \(\tilde{C}_a \).

4. Forecasting Student Enrollments at the University of Alabama

To illustrate the proposed FTS forecasting model, it is implemented in forecasting the student enrollments at the University of Alabama. The figure below shows the historical data of student enrollments since 1971 till 1992. This data is adopted from [2-3] and is widely used by researchers to improve FTS forecasting model such as [4-9], [14-20] and [22-24].

![Enrollment of Students at the University of Alabama (1971-1992)](image-url)

Figure 1. Student enrollments at the University of Alabama (1971-1992).
Step 1: From the data, $D_{\text{min}} = 13055$ and $D_{\text{max}} = 19337$. Then $\psi = 55$ and $\varphi = 663$ are chosen such that the universe of discourse, $D = [13000,20000]$.

Step 2: Using the frequency density-based method [29], $D = [13000,20000]$ is divided into 14 intervals. These intervals are shown in table 1 with their corresponding triangular fuzzy sets.

Table 1. Intervals with corresponding triangular fuzzy numbers.

Intervals	Triangular fuzzy numbers	Intervals	Triangular fuzzy numbers
$D_1 = [13000,13500]$	$E_1 = (13000,13500,14000)$	$D_8 = [16000,16333]$	$E_5 = (16000,16333,16667)$
$D_2 = [13500,14000]$	$E_2 = (13500,14000,15000)$	$D_9 = [16333,16667]$	$E_6 = (16333,16667,17000)$
$D_3 = [14000,15000]$	$E_3 = (14000,15000,15250)$	$D_{10} = [16667,17000]$	$E_{10} = (16667,17000,18000)$
$D_4 = [15000,15250]$	$E_4 = (15000,15250,15500)$	$D_{11} = [17000,18000]$	$E_{11} = (17000,18000,18500)$
$D_5 = [15250,15500]$	$E_5 = (15250,15500,15750)$	$D_{12} = [18000,18500]$	$E_{12} = (18000,18500,19000)$
$D_6 = [15500,15750]$	$E_6 = (15500,15750,16000)$	$D_{13} = [18500,19000]$	$E_{13} = (18500,19000,20000)$
$D_7 = [15750,16000]$	$E_7 = (15750,16000,16333)$	$D_{14} = [19000,20000]$	$E_{14} = (19000,20000,20000)$

Step 3: The historical data is then fuzzified using the defined triangular fuzzy numbers in step 2. After fuzzification, the following fuzzy sets are obtained:

Step 4: The fuzzy sets are then converted into IFSs using Atanassov’s method of conversion as in definition 2.5. The obtained IFSs are as follows:

$I_1 = \{(13055,0.099,0.804),(13563,0.790,0.114),(13867,0.240,0.663)\}$

$I_2 = \{(13563,0.114,0.793),(13867,0.666,0.241),(14696,0.276,0.632)\}$

$I_3 = \{(14696,0.527,0.230),(15145,0.318,0.440),(15163,0.264,0.494)\}$

$I_4 = \{(15145,0.575,0.416),(15163,0.646,0.345),(15311,0.749,0.242),(15433,0.266,0.725)\}$

$I_5 = \{(15311,0.185,0.574),(15433,0.556,0.203),(15460,0.637,0.121),(15497,0.750,0.009)\}$

$(15603,0.446,0.313)\}$
The IFSs are then de-i-fuzzified into fuzzy sets by assigning the hesitancy degree to the major grade using definition 2.6 [26]. The induced fuzzy sets are obtained as follows:

\[
I_6 = \{(15603,0.397,0.567),(15861,0.536,0.428),(15984,0.062,0.903)\}
\]
\[
I_7 = \{(15861,0.259,0.325),(15984,0.547,0.037)\}
\]
\[
I_8 = \{(16388,0.253,0.050)\}
\]
\[
I_9 = \{(16388,0.149,0.755),(16807,0.524,0.380),(16859,0.383,0.522),(16919,0.220,0.685)\}
\]
\[
I_{10} = \{(16807,0.287,0.396),(16859,0.394,0.289),(16919,0.516,0.166)\}
\]
\[
I_{11} = \{(18150,0.357,0.153)\}
\]
\[
I_{12} = \{(18150,0.295,0.687),(18876,0.244,0.738),(18970,0.059,0.923)\}
\]
\[
I_{13} = \{(18876,0.283,0.093),(18970,0.354,0.023),(19328,0.253,0.124),(19337,0.250,0.127)\}
\]
\[
I_{14} = \{(19328,0.292,0.598),(19337,0.300,0.590)\}
\]

Step 5: The IFSs are then de-i-fuzzified into fuzzy sets by assigning the hesitancy degree to the major grade using definition 2.6 [26]. The induced fuzzy sets are obtained as follows:

\[
\tilde{F}_1 = 0.099/13055 + 0.886/13563 + 0.240/13867
\]
\[
\tilde{F}_2 = 0.114/13563 + 0.759/13867 + 0.276/14696
\]
\[
\tilde{F}_3 = 0.770/14696 + 0.318/15145 + 0.264/15163
\]
\[
\tilde{F}_4 = 0.584/15145 + 0.655/15163 + 0.758/15311 + 0.266/15433 + 0.159/15460 + 0.012/15497
\]
\[
\tilde{F}_5 = 0.185/15311 + 0.797/15433 + 0.879/15460 + 0.991/15497 + 0.687/15603
\]
\[
\tilde{F}_6 = 0.397/15603 + 0.572/15861 + 0.062/15984
\]
\[
\tilde{F}_7 = 0.259/15861 + 0.963/15984
\]
\[
\tilde{F}_8 = 0.950/16388
\]
\[
\tilde{F}_9 = 0.149/16388 + 0.620/16807 + 0.383/16859 + 0.220/16919
\]
\[
\tilde{F}_{10} = 0.287/16807 + 0.711/16859 + 0.834/16919
\]
\[
\tilde{F}_{11} = 0.847/18150
\]
\[
\tilde{F}_{12} = 0.295/18150 + 0.244/18876 + 0.059/18970
\]
\[
\tilde{F}_{13} = 0.907/18876 + 0.977/18970 + 0.876/19328 + 0.873/19337
\]
\[
\tilde{F}_{14} = 0.292/19328 + 0.300/19337
\]

Step 6: From the induced fuzzy sets obtained in the previous step, the fuzzy logical relationships (FLRs) are established, \(\tilde{F}_1 \rightarrow \tilde{F}_1, \tilde{F}_1 \rightarrow \tilde{F}_2, \tilde{F}_2 \rightarrow \tilde{F}_3, \tilde{F}_3 \rightarrow \tilde{F}_5, \tilde{F}_5 \rightarrow \tilde{F}_4, \tilde{F}_4 \rightarrow \tilde{F}_5, \tilde{F}_3 \rightarrow \tilde{F}_6, \tilde{F}_6 \rightarrow \tilde{F}_9, \tilde{F}_5 \rightarrow \tilde{F}_{10}, \tilde{F}_{10} \rightarrow \tilde{F}_8, \tilde{F}_8 \rightarrow \tilde{F}_9, \tilde{F}_5 \rightarrow \tilde{F}_5, \tilde{F}_5 \rightarrow \tilde{F}_4, \tilde{F}_4 \rightarrow \tilde{F}_7, \tilde{F}_7 \rightarrow \tilde{F}_{10}, \tilde{F}_{10} \rightarrow \tilde{F}_{11}, \tilde{F}_{11} \rightarrow \tilde{F}_{13}, \tilde{F}_{13} \rightarrow \tilde{F}_{13}, \tilde{F}_{13} \rightarrow \tilde{F}_{13} \) and \(\tilde{F}_{13} \rightarrow \tilde{F}_{13} \). The FLRs are then grouped as shown in table 2.

Table 2. Fuzzy logical relationship (FLR) groups.

Group	IFLRs	Group	IFLRs
Group 1	\(\tilde{F}_1 \rightarrow \tilde{F}_1, \tilde{F}_1 \rightarrow \tilde{F}_2 \)	Group 7	\(\tilde{F}_7 \rightarrow \tilde{F}_{10} \)
Group 2	\(\tilde{F}_2 \rightarrow \tilde{F}_3 \)	Group 8	\(\tilde{F}_9 \rightarrow \tilde{F}_5 \)
Group 3	\(\tilde{F}_3 \rightarrow \tilde{F}_5 \)	Group 9	\(\tilde{F}_4 \rightarrow \tilde{F}_{10} \)
Group 4	\(\tilde{F}_4 \rightarrow \tilde{F}_4, \tilde{F}_4 \rightarrow \tilde{F}_5, \tilde{F}_4 \rightarrow \tilde{F}_7 \)	Group 10	\(\tilde{F}_{10} \rightarrow \tilde{F}_8, \tilde{F}_{10} \rightarrow \tilde{F}_{11} \)
Group 5	\(\tilde{F}_5 \rightarrow \tilde{F}_4, \tilde{F}_5 \rightarrow \tilde{F}_3, \tilde{F}_5 \rightarrow \tilde{F}_6 \)	Group 11	\(\tilde{F}_{11} \rightarrow \tilde{F}_{13} \)
Group 6	\(\tilde{F}_6 \rightarrow \tilde{F}_9 \)	Group 12	\(\tilde{F}_{13} \rightarrow \tilde{F}_{13} \)
Step 7: The induced fuzzy sets are defuzzified using centroid method and 14 crisp values are
obtained,
\[\tilde{C}_1 = 13581.42, \quad \tilde{C}_2 = 14035.82, \quad \tilde{C}_3 = 14892.84, \quad \tilde{C}_4 = 15255.25, \quad \tilde{C}_5 = 15484.26, \]
\[\tilde{C}_6 = 15768.92, \quad \tilde{C}_7 = 15957.88, \quad \tilde{C}_8 = 16388.00, \quad \tilde{C}_9 = 16793.99, \quad \tilde{C}_{10} = 16878.18 \]
\[\tilde{C}_{11} = 18150.00, \quad \tilde{C}_{12} = 18527.05, \quad \tilde{C}_{13} = 19121.08 \quad \text{and} \quad \tilde{C}_{14} = 19332.56, \]
where \(\tilde{C}_i \) is the crisp value for \(F_i \) obtained using centroid formula for \(i = 1,2,...,n \) respectively.

Step 8: The forecasted output is finally calculated using the centroid values obtained in step 7
and based on FLR groups as in step 6.

5. Results and Discussion
In this section, the forecasted enrollments calculated from the steps in the previous section is
presented. The forecasted enrollments of the proposed model is compared to the method of forecasting
using fuzzy set and previously proposed method of de-i-fuzzification via delegation of hesitancy
degree to the major grade and max-min composition operation [24]. The comparison of the forecasted
enrollments is shown in Table 3.

Year	Actual enrollment	Forecasting using fuzzy set [24]	Assigning hesitancy to major grade [24]	Proposed method
1972	13563	-	-	13808.62
1973	13867	14562.5	14562.5	13808.62
1974	14696	14562.5	14562.5	14892.84
1975	15460	14562.5	14562.5	15484.26
1976	15311	16104.25	16027.83	15565.8
1977	15603	16104.25	16027.83	15565.8
1978	15861	16104.25	16027.83	15502.81
1979	16807	16104.25	16027.83	15502.81
1980	16919	16500	16666.75	15502.81
1981	16388	16500	16666.75	15502.81
1982	15422	17062.5	17062.5	15502.81
1983	15497	16104.25	16027.83	16793.99
1984	15145	16104.25	16027.83	16878.18
1985	15163	16104.25	16027.83	15484.26
1986	15984	16104.25	16027.83	16878.18
1987	16859	16104.25	16027.83	16878.18
1988	18150	16500	16666.75	17269
1989	18970	17062.5	17062.5	19121.08
1990	19328	18750	18750	19121.08
1991	19337	18750	18750	19121.08
1992	18876	18750	18750	19121.08
1993	-	18750	18750	19121.08
Table 4. MSE, RMSE, MAE and MAPE of the forecasted enrollments.

Error	Forecasting using fuzzy set [24]	Assigning hesitancy to major grade [24]	Proposed method
MSE	769925.3406	723395.4344	545566.5818
RMSE	877.4538966	850.526563	738.624791
MAE	717.9375	690.4958	530.6330
MAPE	0.04354246	0.041827848	0.032652428

Referring to table 4, it is obviously shown that the proposed method outperforms the other forecasting methods. Referring to [21], [24] and [25], the obtained result supports the fact that the intuitionistic fuzzy set is a generalization of a fuzzy set and is capable of performing better in FTS forecasting model. The influence of centroid of induced fuzzy sets as the base of arithmetic rules has also improved the forecasting performance.

6. Conclusion

Comparing the MSE, RMSE, MAE and MAPE for each model, it can be obviously stated that the forecasting model based on the de-i-fuzzification via assigning hesitancy to major grade with centroid-based arithmetic rules performs better than the other models. The arithmetic rules based on centroid defuzzification have simplified calculation and consider overall information of the fuzzy sets compared to the max-min composition operation in [24]. This supports the fact that the proposed method is efficient and significantly closed to the actual observation data set.

Acknowledgement

The authors would like to thank Universiti Teknologi MARA Pahang for supporting financially under Geran Lestari Khas UiTM Pahang 600-TNCPI 5/3/DDN (06) (009/2020).

References

[1] Song Q, Chissom B S 1993 Fuzzy Time Series and its Model Fuzzy Sets and Systems 54 269-277
[2] Song Q, Chissom B S 1993 Forecasting Enrollments with Fuzzy Time Series – Part I Fuzzy Sets and Systems 54 1-9
[3] Song Q, Chissom B S 1994 Forecasting Enrollments with Fuzzy Time Series – Part II Fuzzy Sets and Systems 62 1-8
[4] Chen S M 1996 Forecasting Enrollments Based on Fuzzy Time Series Fuzzy Sets and Systems 81 311-319
[5] Huarng K 2001 Heuristic Models of Fuzzy Time Series for Forecasting Fuzzy Sets and Systems 123 369-386.
[6] Huarng K 2001 Effective Lengths of Intervals to Improve Forecasting in Fuzzy Time Series Fuzzy Sets and Systems 123 387-394
[7] Chen S M 2002 Forecasting Enrollments Based on High-Order Fuzzy Time Series Cybernetics and Systems 33 1-16
[8] Liu H T 2007 An Improved Fuzzy Time Series Forecasting Method using Trapezoidal Fuzzy Numbers Fuzzy Optimisation and Decision Making 6 63-80
[9] Chen S M, Zou X Y and Gunawan G C 2019 Fuzzy time series forecasting based on proportions of intervals and particle swarm optimization techniques Information Sciences 500 127-139
[10] De Lima e Silva P C, Severiano C A, Alves M A, Silva R, Cohen M W, Guimarães F G 2020 Forecasting in non-stationary environments with fuzzy time series Applied Soft Computing 97 106825
[11] Zadeh L A 1965 Fuzzy Sets Information and Control 8 338-353
[12] Atanassov K 1986 Intuitionistic Fuzzy Sets *Fuzzy Sets and Systems* **20** 87-96.
[13] Castillo O, Alanis A, Garcia M, Arias H 2007 An Intuitionistic Fuzzy System for Time Series Analysis in Plant Monitoring and Diagnosis *Applied Soft Computing* **7** 1227-1233
[14] Joshi B P, Kumar S 2012 Intuitionistic Fuzzy Sets Based Method for Fuzzy Time Series Forecasting *Cybernetics and Systems* **43** 34-47
[15] Gangwar S S, Kumar S 2014 Probabilistic and Intuitionistic Fuzzy Sets-based Method for Fuzzy Time Series Forecasting *Cybernetics and Systems* **45** 349-361
[16] Kumar S, Gangwar S S 2015 A Fuzzy Time Series Forecasting Method Induced by Intuitionistic Fuzzy Sets *International Journal of Modelling, Simulation and Scientific Computing* **6** 1-23
[17] Fan X, Lei Y, Wang Y 2017 Adaptive Partition Intuitionistic Fuzzy Time Series Forecasting Model *Journal of Systems Engineering and Electronics* **28** 585-596
[18] Bisht K, Joshi D K, Kumar S 2018 Dual Hesitant Fuzzy Set-based Intuitionistic Fuzzy Time Series Forecasting *Ambient Communications and Computer Systems* **696** 317-329.
[19] Gupta K K, Kumar S 2019 Fuzzy Time Series Forecasting Method using Probabilistic Fuzzy Sets *Advanced Computing and Communication Technologies*, ed J K Mandal, D Bhattacharyya and N Auluck (Singapore: Springer Singapore) p 35-43
[20] Abhishekh, Gautam S S and Singh S R 2018 A score function-based method of forecasting using intuitionistic fuzzy time series *New Mathematics and Natural Computation* **14** 91-111
[21] Bisht K, Kumar S 2019 Intuitionistic fuzzy set-based computational method for financial time series forecasting *Fuzzy Information and Engineering* **10** 307-323
[22] Abishshekh, Gautam S S and Singh S R 2020 A New Method of Time Series Forecasting using Intuitionistic Fuzzy Set Based on Average-Length *Journal of Industrial and Production Engineering* **37** 1-11
[23] Ramli N, Alam N M F H N B, Mutalib S M A and Mohamad D 2020 Comparison of Fuzzy Time Series Forecasting Model based on Similarity Measure Concept with Different Types of Interval Length *AIP Conference Proceedings* **2266** 050011
[24] Alam N M F H N B, Ramli N and Mohammed N 2021 Fuzzy Time Series Forecasting Model Based on Intuitionistic Fuzzy Sets via Delegation of Hesitancy Degree to the Major Grade De-i-fuzzification Method *Mathematics and Statistics* **9** 46-53
[25] Arora P and Tomar V P 2020 Measuring Given Partial Information about Intuitionistic Fuzzy Sets *Mathematics and Statistics* **8** 665-670
[26] Ansar A Q, Philip J, Siddiqui S A and Alvi J A 2010 Fuzzification of Intuitionistic Fuzzy Sets *International Journal of Computational Cognition* **8** 90-91
[27] Pedryz W 1993 *Fuzzy Control and Fuzzy Systems* Research Studies Press Ltd
[28] Jurio A, Patenain D, Bustince H, Guerra C and Beliakov G 2010 A Construction Method of Atanassov’s Intuitionistic Fuzzy Sets for Image Processing *2010 5th IEEE International Conference Intelligent Systems* 337-342
[29] Chen S M and Hsu C C 2004 A New Method to Forecast Enrollments using Fuzzy Time Series *International Journal of Applied Science and Engineering* **2** 234-244