The roles of transmembrane 6 superfamily member 2 rs58542926 polymorphism in chronic liver disease: A meta-analysis of 24,147 subjects

Xinpei Chen | Pengcheng Zhou | De Luo | Bo Li | Song Su

Abstract

Background: Some genetic association studies tried to investigate potential associations of transmembrane 6 superfamily member 2 (TM6SF2) polymorphisms with chronic liver disease. However, the results of these studies were not consistent. Thus, we performed the present meta-analysis to explore associations between TM6SF2 polymorphisms and chronic liver disease in a larger pooled population.

Methods: Systematic literature research of PubMed, Web of Science, Embase, and CNKI was performed to identify eligible studies for pooled analyses. I² statistics were employed to assess between-study heterogeneities. If I² was greater than 50%, random-effect models (REMs) would be used to pool the data. Otherwise, fixed-effect models (FEMs) would be applied for synthetic analyses.

Results: Totally 28 studies were included for analyses (13,137 cases and 11,010 controls). The pooled analyses showed that rs58542926 polymorphism was significantly associated with chronic liver disease in overall population (dominant model: \(p < 0.0001, \text{OR} = 0.70, 95\% \text{CI} = 0.64-0.76, \text{I}^2 = 47\% \)); recessive model: \(p < 0.0001, \text{OR} = 2.94, 95\% \text{CI} = 2.05-4.20, \text{I}^2 = 0\% \); over-dominant model: \(p < 0.0001, \text{OR} = 1.34, 95\% \text{CI} = 1.23-1.47, \text{I}^2 = 0\% \); allele model: \(p < 0.0001, \text{OR} = 0.68, 95\% \text{CI} = 0.63-0.73, \text{I}^2 = 47\% \)), and these significant findings were further confirmed in both Asians and Caucasians. Stratified analyses by type of disease revealed similar positive results in hepatocellular carcinoma (HCC), cirrhosis, alcoholic liver disease (ALD) and NAFLD (Nonalcoholic fatty liver disease), but not in chronic hepatitis B infection (CHB) and chronic hepatitis C infection (CHC).

Conclusions: These results suggested that TM6SF2 rs58542926 could be used to identify individuals at higher susceptibility to chronic liver disease, especially for HCC, cirrhosis, ALD, and NAFLD.

Keywords

chronic liver disease, meta-analysis, rs58542926 polymorphisms, transmembrane 6 superfamily member 2 (TM6SF2)
1 | INTRODUCTION

Chronic liver disease is a major global health threat and it currently accounts for approximately 3.5% of all deaths worldwide (Asrani, Devarbhavi, Eaton, & Kamath, 2019). Cirrhosis and hepatocellular carcinoma (HCC) are the two leading causes of liver-related deaths. Annually, cirrhosis causes 1.16 million deaths, and HCC causes 788,000 deaths, making them the 11th and 16th most common causes of death respectively (Marcellin & Kutala, 2018; Peery et al., 2019). The etiologies of chronic liver disease are highly complex. Although excessive alcohol intake, obesity, and chronic viral infection were already verified to be pathogenic factors of different types of chronic liver disease (Lee et al., 2012; Saracco et al., 2016), the fact that the likelihoods of developing chronic liver disease in these exposed to above mentioned etiological factors were quite different suggested that genetic factors also played crucial parts in the pathogenesis of chronic liver disease.

The transmembrane 6 superfamily 2 (TM6SF2) gene is responsible for regulating lipid metabolism in the liver. Previous experimental studies demonstrated that TM6SF2 siRNA inhibition was associated with a reduced secretion of triglyceride-rich lipoproteins and an increased triglyceride aggregation in hepatocytes, whereas TM6SF2 overexpression was associated with reduced liver cell steatosis (Li et al., 2018; Mahdessian et al., 2014). Recently, two genome-wide association studies conducted by Kozlitina et al. (2014) and Liu et al. (2014) found that the transmembrane 6 superfamily member 2 (TM6SF2) rs58542926 polymorphism (a functional variant that was associated with altered gene expression levels) was not only associated with higher liver fat levels, but also associated with elevated serum levels of alanine transaminase and advanced liver fibrosis, supporting that this polymorphism might play crucial roles in the development of different types of liver diseases. Since then, several genetic association studies were performed in diverse populations to estimate potential associations between rs58542926 polymorphism and chronic liver disease, with inconsistent results (Bale et al., 2017; Krawczyk et al., 2017; Manchiero et al., 2017; Milano et al., 2015). Therefore, we conducted a meta-analysis of all relevant studies to more comprehensively analyze the effects of TM6SF2 polymorphisms on individual susceptibility to chronic liver disease in a larger pooled population.

2 | MATERIALS AND METHODS

We reported this meta-analysis as suggested by the Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guideline (Moher, Liberati, Tetzlaff, Altman, & PRISMA group, 2009).
If I^2 was greater than 50%, random-effect models (REMs) would be used to pool the data on account of significant heterogeneities. Otherwise, fixed-effect models (FEMs) would be used for synthetic analyses. Subgroup analyses by ethnicity of participants and type of disease were performed. Stabilities of synthetic results were evaluated with sensitivity analyses, and publication biases were evaluated with funnel plots.

3 | RESULTS

3.1 | Characteristics of included studies

The initial literature search found 263 potential relevant articles. Among these articles, totally 28 studies met the inclusion criteria and thus were included for pooled analyses (see Figure 1). The NOS score of eligible articles ranged from 7 to 8, which indicated that all included studies were of high quality. Baseline characteristics of included studies were shown in Table 1.

3.2 | Overall and subgroup analyses

The results of overall and subgroup analyses were summarized in Table 1. To be brief, 13,137 cases and 11,010 controls were eligible for analyses, the pooled analyses showed that rs58542926 polymorphism was significantly associated with chronic liver disease in overall population (dominant model: $p < 0.0001$, $OR = 0.70$, 95% CI = 0.64–0.76, $I^2 = 47%$; recessive model: $p < 0.0001$, $OR = 2.94$, 95% CI = 2.05–4.20, $I^2 = 0%$; over-dominant model: $p < 0.0001$, $OR = 1.34$, 95% CI = 1.23–1.47, $I^2 = 0%$; allele model: $p < 0.0001$, $OR = 0.68$, 95% CI = 0.63–0.73, $I^2 = 47%$), and these significant findings were also confirmed in both Asians (dominant, recessive, over-dominant, and allele models) and Caucasians (dominant, recessive, over-dominant, and allele models). Further stratified analyses by type of disease revealed similar positive results in hepatocellular carcinoma (HCC), cirrhosis, alcoholic liver disease (ALD), and NAFLD (Nonalcoholic fatty liver disease), but not in chronic hepatitis B infection (CHB) and chronic hepatitis C infection (CHC) (see Table 2).

3.3 | Sensitivity analyses

We performed sensitivity analyses to test the effects of individual study on pooled results. No any altered results were observed in overall and subgroup comparisons, which indicated that our findings were statistically robust.

3.4 | Publication biases

We used funnel plots to assess publication biases. We did not find obvious asymmetry of funnel plots in any comparisons, which suggested that our findings were unlikely to be impacted by severe publication biases (see Figure S1).

4 | DISCUSSION

As far as we know, this is to date the first meta-analysis on associations of TM6SF2 polymorphisms with chronic liver disease, and our pooled analyses suggested that rs58542926 polymorphism was significantly associated with chronic liver disease in both Asians and Caucasians. Further stratified analyses revealed similar positive results in HCC, cirrhosis, ALD and NAFLD, but not in CHB and CHC.

There are several notable points about this meta-analysis. Firstly, although several different types of chronic liver disease were combined for analyses, between-study heterogeneities in overall analyses were only mild, which suggested that pool the results of these studies was feasible. Secondly, subgroup analyses by type of disease suggested that the positive results were mainly driven by HCC, cirrhosis, ALD, and NAFLD, but not in CHB and CHC.

Considering that the sample sizes of pooled analyses with regard to the ALD, CHB, and CHC were still relatively small. It is possible that our study was still not statistically adequate
to detect the actual associations between rs58542926 polymorphism and these liver diseases. Therefore, further studies with larger sample sizes still need to test the associations between rs58542926 polymorphism and chronic liver disease, especially for ALD, CHB and CHC. Thirdly, the pathogenesis of chronic liver disease is extremely complex, and therefore the probability that a specific genetic polymorphism could significantly contribute to its development is low, and

TABLE 1 The characteristics of included studies for *TM6SF2* rs58542926 polymorphism and chronic liver disease

First author (year)	Country	Ethnicity	Type of disease	Sample size	Genotype distribution	P-value for HWENOS score	NOS score
Bale (2017)	India	Mixed	NAFLD	250/232	171/66/13	0.947	8
Buch (2015)	Germany	Caucasian	ALD	712/1426	NA	NA	NA
Coppola (2015)	Italy	Caucasian	Cirrhosis	101/47	85/16/0	0.882	7
Donati (2017)	Italy	Caucasian	HCC	132/633	109/19/4	0.121	8
Eslam (2016)	Australia	Caucasian	CHB	507/228	450/55/2	0.901	8
Eslam (2016)	Australia	Caucasian	CHC	2023/228	1778/235/10	0.901	8
Eslam (2016)	Australia	Caucasian	NAFLD	502/228	391/100/11	0.901	8
Falleti (2016)	Italy	Caucasian	Cirrhosis	511/228	443/66/2	0.381	8
Falleti (2016)	Italy	Caucasian	CHB + CHC	285/228	255/30/0	0.381	8
Falleti (2016)	Italy	Caucasian	ALD	226/228	188/36/2	0.381	8
Falleti (2016)	Italy	Caucasian	NAFLD	150/228	123/26/1	0.381	8
Goffredo (2016)	Italy	Caucasian	NAFLD	158/296	135/22/1	0.429	7
Grove (2018)	UK	Caucasian	NAFLD	186/439	NA	NA	NA
Jiang (2018)	China	Asian	CHB	288/106	254/33/1	0.610	8
Koo (2018)	Korea	Asian	NAFLD	365/96	306/57/2	0.630	7
Krawczyk (2016)	Germany	Caucasian	NAFLD	143/180	110/30/3	0.258	8
Krawczyk (2016)	Germany	Caucasian	Cirrhosis	90/205	68/20/2	0.641	8
Kruk (2018)	Poland	Caucasian	Cirrhosis	55/123	50/5/0	0.440	7
Li (2019)	China	Asian	NAFLD	201/239	188/13/0	0.870	8
Liu (2014)	UK	Caucasian	NAFLD	349/379	271/70/8	0.908	8
Manchiero (2017)	Brazil	Mixed	Cirrhosis	58/232	46/12/0	0.562	7
Milano (2015)	Italy	Caucasian	CHC	815/231	746/69/0	0.966	8
Musso (2017)	Italy	Caucasian	NAFLD	60/60	37/21/2	0.121	7
Raksayot (2019)	Thailand	Asian	CHB	270/105	218/51/1	0.682	8
Raksayot (2019)	Thailand	Asian	CHC	131/105	101/29/1	0.682	8
Raksayot (2019)	Thailand	Asian	HCC	132/105	78/46/8	0.682	8
Sagnelli (2016)	Italy	Caucasian	Cirrhosis	31/136	26/5/0	0.590	7
Sookoian (2015)	Argentina	Mixed	NAFLD	226/135	184/37/5	0.494	8
Stickel (2018)	Switzerland	Caucasian	HCC	751/1165	558/164/29	0.143	7
Teng (2018)	China	Asian	CHB	160/179	142/18/0	0.479	8
Teng (2018)	China	Asian	Cirrhosis	239/179	209/29/1	0.479	8
Wang (2018)	China	Asian	NAFLD	367/366	302/65/0	0.366	8
Wang (2016)	China	Asian	CHB	683/364	608/73/2	0.365	8
Wang (2016)	China	Asian	Cirrhosis	677/364	602/74/1	0.365	8
Wang (2016)	China	Asian	HCC	418/364	363/55/0	0.365	8
Xu (2018)	China	Asian	CHB	260/156	229/30/1	0.500	8
Yue (2018)	China	Asian	NAFLD	118/122	111/7/0	0.708	7
Zhang (2018)	China	Asian	ALD	507/645	435/65/7	0.966	8

Abbreviations: TM6SF2, Transmembrane 6 superfamily 2; HCC, Hepatocellular carcinoma; NAFLD, Nonalcoholic fatty liver disease; ALD, Alcoholic liver disease; CHB, Chronic hepatitis B infection; CHC, Chronic hepatitis C infection; HW, Hardy–Weinberg equilibrium; NOS, Newcastle-Ottawa scale; NA, Not available.
Table 2 Results of pooled analyses for TM6SF2 rs58542926 polymorphism and chronic liver disease

Population	Sample size	Dominant comparison	Recessive comparison	Overdominant comparison	Allele comparison								
		p value	OR (95%CI)	I² statistic	p value	OR (95%CI)	I² statistic	p value	OR (95%CI)	I² statistic			
Overall	13137/11010	<0.0001	0.70 (0.64-0.76)	47%	<0.0001	2.94 (2.05-4.20)	0%	<0.0001	1.34 (1.23-1.47)	0%	<0.0001	0.68 (0.63-0.73)	47%
Asian	4816/3495	<0.0001	0.69 (0.60-0.79)	34%	0.03	2.29 (1.07-4.87)	0%	<0.0001	1.41 (1.22-1.63)	28%	<0.0001	0.69 (0.60-0.79)	28%
Caucasian	7787/6916	0.004	0.77 (0.64-0.92)	52%	<0.0001	2.85 (1.85-4.37)	0%	0.0002	1.25 (1.11-1.40)	39%	<0.0001	0.74 (0.63-0.86)	54%
HCC	1433/2267	0.003	0.58 (0.40-0.83)	65%	<0.0001	3.29 (1.92-5.66)	0%	0.01	1.55 (1.10-2.18)	59%	0.0007	0.58 (0.42-0.79)	62%
Cirrhosis	1762/1514	0.006	0.72 (0.57-0.91)	25%	0.37	1.79 (0.50-6.37)	0%	0.01	1.36 (1.08-1.71)	27%	0.004	0.73 (0.58-0.90)	18%
NAFLD	3075/3000	<0.0001	0.54 (0.46-0.64)	0%	<0.0001	5.20 (2.43-11.13)	0%	<0.0001	1.69 (1.44-1.98)	0%	<0.0001	0.55 (0.48-0.63)	0%
ALD	1445/2299	0.18	0.82 (0.62-1.10)	40%	0.06	3.33 (0.97-11.44)	0%	0.41	1.13 (0.84-1.51)	42%	<0.0001	0.71 (0.60-0.84)	26%
CHB	2168/1138	0.34	0.89 (0.71-1.12)	0%	0.84	1.14 (0.33-3.92)	0%	0.38	1.11 (0.88-1.40)	0%	0.31	0.89 (0.72-1.11)	0%
CHC	2969/564	0.44	0.60 (0.16-2.19)	65%	0.71	1.10 (0.68-1.77)	0%	0.75	0.93 (0.58-1.49)	63%	0.65	0.90 (0.57-1.41)	64%

Note: The values in bold represent there is statistically significant differences between cases and controls.

Abbreviations: HCC, Hepatocellular carcinoma; ALD, Alcoholic liver disease; NAFLD, Nonalcoholic fatty liver disease; CHB, Chronic hepatitis B infection; CHC, Chronic hepatitis C infection; OR, Odds ratio; CI, Confidence interval; NA, Not available.
we strongly recommend further studies to perform haplotype analyses and explore potential gene-gene interactions. Fourthly, to more precisely measure the effects of certain endogenous/exogenous factors on disease occurrence and development, molecular pathologic epidemiology (MPE) analyses should be adopted. However, since included studies only focused on the effects of rs58542926 polymorphism on individual susceptibility to chronic liver disease, such analyses were not applicable in the current meta-analysis. But to better elucidate the underlying pathogenesis mechanisms of chronic liver disease, future studies should try to investigate the interaction of rs58542926 polymorphism (as endogenous factors) with potential pathogenic environmental factors (as exogenous factors) as an MPE approach (Nishi et al., 2016). Fifthly, the present meta-analysis aimed to explore associations between all TM6SF2 polymorphisms and chronic liver disease. However, only rs58542926 polymorphism could be analyzed in the current study because no any other TM6SF2 polymorphisms were investigated by at least two different genetic association studies.

Like all meta-analysis, this study certainly has some limitations. First, due to lack of raw data, adjusted analyses were inapplicable, and we have to admit that failure to perform further adjusted analyses for potential confounding factors might impact the reliability of our findings (Zhang, Guo, Qin, & Li, 2016; Zhang, Zhu, Huo, Qin, & Yuan, 2016). Second, associations between rs58542926 polymorphisms and chronic liver disease might also be modified by gene-environmental interactions. However, we could not perform relevant analyses accordingly since most of studies did not investigate these associations (Abdel-Hamed, Ghattas, Mesbah, Saleh, & Abo-Elmatty, 2017; Zhang, Guo, et al., 2016; Zhang, Zhu, et al., 2016). Third, gray literatures that were not formally published in academic journals were not considered to be eligible for analyses in this meta-analysis since it is hard to determine their quality. However, since gray literatures were not analyzed, although funnel plots suggested that severe publication biases were unlikely, it is still possible that our findings may be impacted by potential publication biases (Kapil et al., 2016). On account of above mentioned limitations, our findings should be cautiously interpreted.

In conclusion, our meta-analysis suggested that TM6SF2 rs58542926 polymorphism might affect individual susceptibility to chronic liver disease in both Asians and Caucasians. Further stratified analyses revealed similar positive results in HCC, cirrhosis and NAFLD, but not in ALD, CHB, and CHC. These results suggested that this polymorphism could be used to identify individuals at higher susceptibility to chronic liver disease, especially for HCC, cirrhosis, and NAFLD. Future investigations are warranted to explore potential roles of other TM6SF2 polymorphisms in the development of chronic liver disease.

ACKNOWLEDGMENTS

None.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

AUTHORS’ CONTRIBUTIONS

Xinpei Chen, Pengcheng Zhou, De Luo, and Song Su conceived of the study, participated in its design. Xinpei Chen, Pengcheng Zhou, and De Luo conducted the systematic literature review. Bo Li performed data analyses. Xinpei Chen, Pengcheng Zhou, De Luo, and Song Su drafted the manuscript. All gave final approval and agree to be accountable for all aspects of work ensuring integrity and accuracy.

ORCID

Song Su https://orcid.org/0000-0002-9729-3975

REFERENCES

Abdel-Hamed, A. R., Ghattas, M. H., Mesbah, N. M., Saleh, S. M., & Abo-Elmatty, D. M. (2017). Association of interleukin-1A insertion/deletion gene polymorphism and possible high risk factors with non-alcoholic fatty liver disease in Egyptian patients. Archives of Physiology and Biochemistry, 123, 330–333. https://doi.org/10.1080/13813455.2017.1339717

Asrani, S. K., Devabhavi, H., Eaton, J., & Kamath, P. S. (2019). Burden of liver diseases in the world. Journal of Hepatology, 70, 151–171. https://doi.org/10.1016/j.jhep.2018.09.014

Bale, G., Steffie, A. U., Ravi Kanth, V. V., Rao, P. N., Sharma, M., Sasikala, M., & Reddy, D. N. (2017). Regional difference in genetic susceptibility to non-alcoholic liver disease in two distinct Indian ethnicities. World Journal of Hepatology, 9, 1101–1107. https://doi.org/10.4254/wjh.v9.i26.1101

Buch, S., Stickel, F., Trépo, E., Way, M., Herrmann, A., Nischalke, H. D., … Hampe, J. (2015). A genome-wide association study confirms PNPLA3 and identifies TM6SF2 and MBOAT7 as risk loci for alcohol-related cirrhosis. Nature Genetics, 47, 1443–1448. https://doi.org/10.1038/ng.3417

Coppola, N., Rosa, Z., Cirillo, G., Stanzione, M., Macera, M., Boemio, A., … Miraglia del Giudice, E. (2015). TM6SF2 E167K variant is associated with severe steatosis in chronic hepatitis C, regardless of PNPLA3 polymorphism. Liver International, 35, 1959–1963. https://doi.org/10.1111/liv.12781

Donati, B., Dongiovanni, P., Romeo, S., Meroni, M., McCain, M., Miele, L., … Valenti, L. (2017). MBOAT7 rs641738 variant and hepatocellular carcinoma in non-cirrhotic individuals. Scientific Reports, 7, 4492. https://doi.org/10.1038/s41598-017-04991-0

Eslam, M., Mangia, A., Berg, T., Chan, H. L., Irving, W. L., Dore, G. J., … George, J. (2016). Diverse impacts of the rs58542926 E167K variant in TM6SF2 on viral and metabolic liver disease phenotypes. Hepatology, 64, 34–46. https://doi.org/10.1002/hep.28475
Falleti, E., Cussigh, A., Cmet, S., Fabris, C., & Toniuotto, P. (2016). PNPLA3 rs738409 and TM6SF2 rs58542926 variants increase the risk of hepatocellular carcinoma in alcoholic cirrhosis. *Digestive and Liver Disease*, 48, 69–75. https://doi.org/10.1016/j.dld.2015.09.009

Goffredo, M., Caprio, S., Feldstein, A. E., D’Adamo, E., Shaw, M. M., Pierpont, B., … Santoro, N. (2016). Role of TM6SF2 rs58542926 in the pathogenesis of nonalcoholic pediatric fatty liver disease: A multiethnic study. *Hepatology*, 63, 117–125.

Grove, J. I., Thiagarajan, P., Astbury, S., Harris, R., Delahooke, T., Guha, I. N., & Aithal, G. P. (2018). Analysis of genotyping for predicting liver injury marker, procollagen III in persons at risk of non-alcoholic fatty liver disease. *Liver International*, 38, 1832–1838. https://doi.org/10.1111/liv.13733

Jiang, C. (2018). Relationship between TM6SF2 rs58542926 gene polymorphism and CAP in patients with chronic hepatitis B. Dissertation 2018, Dalian Medical University [Article in Chinese].

Kapil, S., Duseja, A., Sharma, B. K., Singla, B., Chakrabarti, A., Das, A., … Chawla, Y. (2016). Genetic polymorphism in CD14 gene, a co-receptor of TLR4 associated with non-alcoholic fatty liver disease. *World Journal of Gastroenterology*, 22, 9346–9355. https://doi.org/10.3748/wjg.v22.i42.9346

Kozlitina, J., Smagris, E., Stender, S., Nordestgaard, B. G., Zhou, H. H., Tybjærg-Hansen, A., … Cohen, J. C. (2014). Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to non-alcoholic fatty liver disease. *Nature Genetics*, 46, 352–356. https://doi.org/10.1038/ng.9001

Koo, B. K., Joo, S. K., Kim, D., Bae, J. M., Park, J. H., Kim, J. H., & Kim, W. (2018). Additive effects of PNPLA3 and TM6SF2 on the histological severity of non-alcoholic fatty liver disease. *Journal of Gastroenterology and Hepatology*, 33, 1277–1285.

Krawczyk, M., Rau, M., Schattenberg, J. M., Bantel, H., Pathil, A., Demir, M., … NAFLD Clinical Study Group. (2017). Combined effects of the PNPLA3 rs738409, TM6SF2 rs58542926, and MBOAT7 rs641738 variants on NAFLD severity: A multicenter biopsy-based study. *Journal of Lipid Research*, 58, 247–255. https://doi.org/10.1093/jlr/pfo07454

Krawczyk, M., Stachowska, E., Milkiewicz, P., Lammert, F., & Milkiewicz, M. (2016). Reduction of caloric intake might override the prosteatotic effects of the PNPLA3 p.I148M and TM6SF2 p.E167K variants in patients with fatty liver: Ultrasound-based prospective study. *Digestion*, 93, 139–148.

Kruk, B., Liebe, R., Milkiewicz, M., Wunsch, E., Raszeja-Wysomirska, J., Lammert, F., … Krawczyk, M. (2018). PNPLA3 p.I148M and TM6SF2 p.E167K variants do not predispose to liver injury in cholestatic liver diseases: A prospective analysis of 178 patients with PSC. *PLoS ONE*, 13(8), e0202942. https://doi.org/10.1371/journal.pone.0202942

Li, Y., Liu, S., Gao, Y., Ma, H., Zhan, S., Yang, Y., … Xuan, S. (2019). Association of TM6SF2 rs58542926 gene polymorphism with the risk of non-alcoholic fatty liver disease and colorectal adenoma in Chinese Han population. *BMC Biochemistry*, 20, 3.

Lee, S. S., Byoun, Y. S., Jeong, S. H., Kim, Y. M., Gil, H., Min, B. Y., … Kim, J. W. (2012). Type and cause of liver disease in Korea: Single-center experience, 2005–2010. *Clinical and Molecular Hepatology*, 18, 309–315. https://doi.org/10.3350/cmh.2012.18.3.309

Li, T. T., Li, T. H., Peng, J., He, B., Liu, L. S., Wei, D. H., … Tang, Z. H. (2018). TM6SF2: A novel target for plasma lipid regulation. *Atherosclerosis*, 268, 170–176. https://doi.org/10.1016/j.atherosclerosis.2017.11.033

Liu, Y. L., Reeves, H. L., Burt, A. D., Tinakios, D., McPherson, S., Leathart, J. B., … Anstee, Q. M. (2014). TM6SF2 rs58542926 influences hepatic fibrosis progression in patients with non-alcoholic fatty liver disease. *Nature Communications*, 5, 4309.

Mahdessian, H., Taxiarchis, A., Popov, S., Silveira, A., Franco-Cereceda, A., Hamsten, A., … van’t Hoof, F. (2014). TM6SF2 is a regulator of liver fat metabolism influencing triglyceride secretion and hepatic lipid droplet content. *Proceedings of the National Academy of Sciences of the United States of America*, 111, 8913–8918. https://doi.org/10.1073/pnas.1323785111

Manchiero, C., Nunes, A. K. D. S., Magni, M. C., Dantas, B. P., Mazza, C. C., Barone, A. A., & Tengan, F. M. (2017). The rs738409 polymorphism of the PNPLA3 gene is associated with hepatic steatosis and fibrosis in Brazilian patients with chronic hepatitis C. *BMC Infectious Diseases*, 17, 780.

Marcellin, P., & Kutala, B. K. (2018). Liver diseases: A major, neglected global public health problem requiring urgent actions and large-scale screening. *Liver International: Official Journal of the International Association for the Study of the Liver*, 38(Suppl 1), 2–6.

Milano, M., Aghemo, A., Mancina, R. M., Fischer, J., Dongiovanni, P., De Nicola, S., … Valenti, L. (2015). Transmembrane 6 superfamily member 2 gene E167K variant impacts on steatosis and liver damage in chronic hepatitis C patients. *Hepatology*, 62, 111–117. https://doi.org/10.1002/hep.27811

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & PRISMA group. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. *Annals of Internal Medicine*, 151, 264–269. https://doi.org/10.7326/0003-4819-151-4-200908180-00135

Musso, G., Cipolla, U., Cassader, M., Pinach, S., Saba, F., De Michieli, F., … Gambino, R. (2017). TM6SF2 rs58542926 variant affects postprandial lipoprotein metabolism and glucose homeostasis in NAFLD. *Journal of Lipid Research*, 58(6), 1221–1229. https://doi.org/10.1019/jlr.M075028

Nishi, A., Milner, D. A. Jr, Giovannucci, E. L., Nishihara, R., Tan, A. S., Kawachi, I., & Ogino, S. (2016). Integration of molecular pathology, epidemiology and social science for global precision medicine. *Expert Review of Molecular Diagnostics*, 16, 11–23. https://doi.org/10.1586/14737159.2016.1115346

Peery, A. F., Crockett, S. D., Murphy, C. C., Lund, J. L., Dellen, E. S., Williams, J. L., … Sandler, R. S. (2019). Burden and Cost of Gastrointestinal, Liver, and Pancreatic Diseases in the United States: Update 2018. *Gastroenterology*, 156, 254–272.

Raksayot, M., Chuaypen, N., Khaiphuengsin, A., Pinjaroen, N., Treeprasertsuk, S., Poovorawan, Y., … Tangkijvanich, P. (2019). Independent and additive effects of PNPLA3 and TM6SF2 polymorphisms on the development of non-B, non-C hepatocellular carcinoma. *Journal of Gastroenterology*, 54(5), 427–436. https://doi.org/10.1002/jsg.8180-00135

Sagnelli, C., Merli, M., Uberti-Foppa, C., Hasson, H., Grondona, A., Cirillo, G., … Sagnelli, E. (2016). TM6SF2 E167K variant predicts severe liver fibrosis for human immunodeficiency/hepatitis C virus co-infected patients, and severe steatosis only for a non-3 hepatitis C virus genotype. *World Journal of Gastroenterology*, 22(38), 8509–8518. https://doi.org/10.3748/wjg.v22.i38.8509
Saracco, G. M., Evangelista, A., Fagione, S., Ciccone, G., Bugianesi, E., Caviglia, G. P., … Smedile, A. (2016). Etiology of chronic liver diseases in the Northwest of Italy, 1998 through 2014. *World Journal of Gastroenterology, 22*, 8187–8193. https://doi.org/10.3748/wjg.v22.i36.8187

Stang, A. (2010). Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. *European Journal of Epidemiology, 25*, 603–605. https://doi.org/10.1007/s10654-010-9491-z

Sookoian, S., Castaño, G. O., Scian, R., Mallardi, P., Fernández Gianotti, T., Burgueño, A. L., … Pirola, C. J. (2015). Genetic variation in transmembrane 6 superfamily member 2 and the risk of nonalcoholic fatty liver disease and histological disease severity. *Hepatology, 61*(2), 515–525. https://doi.org/10.1002/hep.27556

Stickel, F., Buch, S., Nischalke, H. D., Weiss, K. H., Gotthardt, D., Fischer, J., … Hampel, J. (2018). Genetic variants in PNPLA3 and TM6SF2 predispose to the development of hepatocellular carcinoma in individuals with alcohol-related cirrhosis. *American Journal of Gastroenterology, 113*(10), 1475–1483. https://doi.org/10.1038/s41395-018-0041-8

Teng, D. (2018). Association of TM6SF2 rs58542926 gene polymorphism with HBV related liver cirrhosis in Chinese Han population. Dissertation 2018, Dalian Medical University [Article in Chinese].

Wang, L. Q., Guo, W. H., Guo, Z. W., Qin, P., Zhang, R., Zhu, X. M., & Liu, D. W. (2018). Effects of PNPLA3, TM6SF2 gene polymorphisms and its interactions with smoking and alcohol drinking on hepatitis B virus-associated hepatocellular carcinoma. *Chinese Journal of Epidemiology, 39*, 1611–1616 [Article in Chinese].

Wang, X., Liu, Z., Wang, K., Wang, Z., Sun, X., Zhong, L., … Liu, W. (2016). Additive effects of the risk alleles of PNPLA3 and TM6SF2 on non-alcoholic fatty liver disease (NAFLD) in a Chinese population. *Frontiers in Genetics, 7*, 140. https://doi.org/10.3389/fgene.2016.00140

Xu, Y. (2018). Association between TM6SF2 rs58542926 and PNPLA3 rs738409 polymorphism chronic hepatitis B. Dissertation 2018, Dalian Medical University [Article in Chinese].

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Chen X, Zhou P, De L, Li B, Su S. The roles of transmembrane 6 superfamily member 2 rs58542926 polymorphism in chronic liver disease: A meta-analysis of 24,147 subjects. *Mol Genet Genomic Med*. 2019;7:e824. https://doi.org/10.1002/mgge.3.824