Orthologous nuclear markers and new transcriptomes that broadly cover the phylogenetic diversity of Acanthaceae

Barroso de Morais, Erica; Schönengerer, Jürg; Conti, Elena; Antonelli, Alexandre; Szövényi, Péter

Abstract: Premise Information on orthologous groups of genes, their sequence variability, and annotation is required for project design in phylogenetic reconstruction. This resource is unavailable for the flowering plant family Acanthaceae (>4000 species). Methods We compared transcriptome sequences spanning the extant diversity of Acanthaceae in order to provide a set of orthologous low-copy nuclear genes and assess their utility for reconstructing phylogenetic relationships within this group of plants. Results We present new transcriptome assemblies for eight species representing all major clades of Acanthaceae. The assemblies of five of these species are entirely based on new sequence data. Of these five species, three are from subfamilies for which no genomic resources were previously available (Nelsonioideae and Thunbergioideae). These five new transcriptomes are more complete than all others from public databases. Furthermore, we provide alignments with sequence information, annotation, and statistics for potential phylogenetic utility of 1619 orthologous low-copy nuclear markers. Discussion Our method of inferring assemblies from multiple pooled tissue samples delivers more complete transcriptomes than any available ones from Acanthaceae. We make available to the community new resources (e.g., sequence information, variability, and annotation of orthologous low-copy nuclear genes) that will help phylogenetic reconstruction in Acanthaceae.

DOI: https://doi.org/10.1002/aps3.11290

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-174983
Journal Article
Published Version

The following work is licensed under a Creative Commons: Attribution 4.0 International (CC BY 4.0) License.

Originally published at:
Barroso de Morais, Erica; Schönengerer, Jürg; Conti, Elena; Antonelli, Alexandre; Szövényi, Péter (2019). Orthologous nuclear markers and new transcriptomes that broadly cover the phylogenetic diversity of Acanthaceae. Applications in Plant Sciences, 7(9):e11290.
DOI: https://doi.org/10.1002/aps3.11290
Acanthaceae belongs to the order Lamiales (>23,000 species [Chase et al., 2016]). It is among the 15 most species-rich families of flowering plants (>4000 species) and is an ecologically and economically important clade, especially in the tropics (Tripp and McDade, 2014). Despite earlier efforts (e.g., Borg et al., 2008; McDade et al., 2008; Tripp and McDade, 2014), phylogenetic relationships within Acanthaceae remain contentious. In particular, the relationships among major evolutionary lineages within the family (e.g., the four subfamilies) as well as the generic limits within the largest subfamily (Acanthoideae) remain unresolved (e.g., McDade et al., 2018). Furthermore, the phylogenetic relationships in several smaller clades are currently not well understood (e.g., in Avicennia L. [Glasenapp et al., 2019], Barleria L. [Darbyshire et al., 2019], Dyschoriste Nees [Chuchim et al., 2015], Thunbergioidae T. Anderson [Borg et al., 2008], Ruellia L. [Tripp et al., 2018]). In addition to this obstacle, the rooting of the Acanthaceae phylogeny is uncertain, as interfamilial relationships in Lamiales remain unresolved (e.g., McDade et al., 2018). Furthermore, the phylogenetic relationships within Acanthaceae in order to provide a set of orthologous low-copy nuclear genes and assess their utility for reconstructing phylogenetic relationships within this group of plants.

RESULTS: We present new transcriptome assemblies for eight species representing all major clades of Acanthaceae. The assemblies of five of these species are entirely based on new sequence data. Of these five species, three are from subfamilies for which no genomic resources were previously available (Nelsonioideae and Thunbergioidae). These five new transcriptomes are more complete than all others from public databases. Furthermore, we provide alignments with sequence information, annotation, and statistics for potential phylogenetic utility of 1619 orthologous low-copy nuclear markers.

DISCUSSION: Our method of inferring assemblies from multiple pooled tissue samples delivers more complete transcriptomes than any available ones from Acanthaceae. We make available to the community new resources (e.g., sequence information, variability, and annotation of orthologous low-copy nuclear genes) that will help phylogenetic reconstruction in Acanthaceae.

KEY WORDS Acanthaceae; Lamiales; nuclear markers; phylogeny; transcriptomes.
(A. J. Borg and J. Schönenberger, unpublished data). The methods currently available for sequencing molecular markers without prior sequence information of orthologous loci are either expensive (e.g., whole genome sequencing) or inappropriate (e.g., restriction site–associated DNA, which has low confidence for homology assessment [i.e., potential paralogy, high levels of missing data, and low reproducibility]) for phylogenetic inference at deeper phylogenetic levels or in older clades. The establishment of low-copy nuclear genes (LCNG) suitable for phylogenetic analysis would help to further clarify the evolutionary history of Acanthaceae and of the Lamiales.

Compared to other currently used strategies of genome reduction prior to sequencing in plant systematics, high-throughput targeted capture (Gnirke et al., 2009) offers several advantages (recently reviewed by Johnson et al., 2019) and has been widely applied in plant systematics and evolution. Transcriptome sequences have been successfully used to develop probe sets for targeting nuclear markers in several plant groups (Chamala et al., 2015; Landis et al., 2016; Crowl et al., 2017; García et al., 2017; Villaverde et al., 2018; Johnson et al., 2019; Vargas et al., 2019). The hybridization between RNA probes and DNA sequences is directly linked to their similarity. Hybridization leads to efficient target enrichment if sequence similarity between RNA probes and DNA sequences shows at least 85% similarity (Orin McCormick, RAPiD Genomics, unpublished data). Therefore, we decided to obtain sequence information for designing specific probes for Acanthaceae.

Currently, there is only a single draft genome published for Acanthaceae (Ruella speciosa Mart. ex Nees, subfamily Acanthoideae; Zhuang and Tripp, 2017), but no genomic resources are available for the subfamilies Thunbergioideae and Nelsonioideae, which comprise some 180 and 172 species, respectively. To maximize the potential for successful hybridization to probe sequences from a set of phylogenetically diverse species such as the Acanthaceae (approximately 80 million years old; Tripp and McDade, 2014), it is critical to include a phylogenetically broad set of taxa when designing probes. In line with this, we generated new transcriptomic data for five species, representing all major clades of Acanthaceae (Fig. 1). Next, we compared our own sequences with transcriptomic data available for Acanthaceae in public data repositories (NCBI Resource Coordinators, 2016). We provide information on the utility for phylogenetic inference of orthologous loci within this plant group. This study provides a much-needed set of nuclear markers that will facilitate phylogenetic reconstruction within the family Acanthaceae, as well as in Lamiales.

METHODS

Sampling

In order to sample all the major clades (the three first splits in the phylogeny of crown group Acanthaceae, according to Tripp and MacDade, 2014) within Acanthaceae (Fig. 1), we carried out RNA sequencing of five species and added data from three additional species from the National Center for Biotechnology Information Short Read Archive (NCBI SRA). We provide new transcriptomic data for two subfamilies lacking genomic resources: (1) Nelsonioideae (Eltytraria carolinien-sis (Walter ex J. F. Gmel.) Nees and (2) Thunbergioideae (Mendancia retusa Turrill and Thunbergia erecta (Benth.) T. Anderson). In addition, we sequenced two species that represent major lineages within the subfamily Acanthoideae, Pachystachys lutea Nees and Aphelandra aurantiaca (Scheidw.) Lindl. (voucher information given in Appendix 1). In order to further increase our sampling (Fig. 1) and to obtain more information on sequence variability, we also retrieved RNA sequencing data for the species Acanthus leucostachyus Wall. ex Nees (representing Acantheae), Andrographis paniculata (Burm. f.) Nees (representing Andrographideae), and Avicennia marina (Forssk.) Vierh. (representing Avicennioidae) from the NCBI SRA (Appendix 1). A recent phylogenomic study comprising Acanthaceae sensu stricto presents a different topology from the one presented by Tripp and McDade (2014) (Amanda Fisher, California State University, unpublished data). However, our sampling still comprises all major clades in the family according to this new topology.

Sample preparation and sequencing

All tissues for RNA sequencing were freshly collected in botanical gardens (see Appendix 1 for voucher information).

FIGURE 1. Phylogenetic relationships among major clades of Acanthaceae according to Tripp and McDade (2014). Names of species sampled are given on the right side. Taxa for which we provide new data are in green, and taxa for which we used GenBank data are in blue.
Vegetative and reproductive fresh juvenile tissues of each sample were flash-frozen in liquid nitrogen or preserved in RNAlater (Ambion, Waltham, Massachusetts, USA). We attempted to sample as much different young tissues/organs as possible in order to maximize the number of unique genes sequenced. Total RNA was extracted either using the NucleoSpin Plant RNA kit (Macherey-Nagel, Düren, Germany) or the RNeasy Plant Mini Kit (QIAGEN, Hilden, Germany), following the manufacturer’s recommendations (Appendix 1).

Illumina TruSeq Stranded mRNA (Illumina, San Diego, California, USA) libraries were prepared (with poly-A RNA enrichment) and sequenced on an Illumina HiSeq2500 sequencer (HiSeq Control Software 2.2.58/RTA 1.18.64) with a 2 × 126-bp setup using HiSeq SBS Kit v4 chemistry (run date 29 January 2016). We pooled all five samples on one lane (output of 249.31 million reads) of one flow cell to generate RNA-Seq reads for each species.

Data cleaning, transcriptome assembly, and annotation

Data quality was visually assessed with FastQC version 0.11.4 (Andrews, 2010) before and after data filtering and trimming. Adapter sequences (the first 13 base pairs), low-quality reads (Phred score < 33), and reads shorter than 50 bp were removed with Trimmomatic-0.35 (Bolger et al., 2014). The sequences were assembled into putative transcripts using Trinity version 2.1.1 (Haas et al., 2013). General statistics for quality assessment of transcriptome assemblies were obtained with the package GenomeTools (Gremme et al., 2013). We used the TRAPID pipeline (Van Bel et al., 2013) based on the PLAZA 2.5 database to get protein translations and to assess the number of fully or quasi–fully sequenced transcripts. We used BUSCO version 3.0.2 (Simão et al., 2015) with the embryophyte single-copy ortholog set to assess the completeness of the transcriptome assemblies. All commands used for this study are available at Figshare (https://figshare.com/s/7c91497e3fb1cd0ceed7).

Orthology assessment

To minimize the possibility of obtaining paralogous loci, we aimed at finding orthologous LCNG most appropriate for phylogenomic analyses. These genes are generally highly conserved and are, therefore, not ideal to resolve shallow phylogenetic relationships. However, they often contain introns with greater levels of variability, making them useful for a broad range of phylogenetic analyses even at low taxonomic ranks. We used MarkerMiner (Chamala et al., 2015) to establish groups of orthologous genes by using transcriptome assemblies and their protein translations as input. This approach uses the same predefined set of genes as a reference and has been successfully applied to capture sequences in other phylogenetic studies in angiosperms (e.g., Nicholls et al., 2015; Landis et al., 2016; Crowl et al., 2017; García et al., 2017; Villaverde et al., 2018; Vargas et al., 2019).

There is currently no taxon closely related to Acanthaceae with a well-annotated high-quality genome available. We were unable to use (with exonerate; Slater and Birney, 2005) the *Ruellia speciosa* genome (Zhuang and Tripp, 2017) as a reference in our analysis due to its low contiguity leading to many fragmentary gene models. Therefore, we decided to use the genome of *Arabidopsis thaliana* (L.) Heynh. as a reference. For each orthogroup recovered by MarkerMiner, we calculated statistics to estimate its phylogenetic utility (e.g., alignment length, number of variable sites, number of parsimony informative sites, AT and GC content) using AMAS (Borowiec, 2016). The output from MarkerMiner gives well-annotated alignments for each orthogroup, including the boundaries of exonic regions in the assembled transcripts (alignments are available at https://figshare.com/s/9903aacaa3c34bc9ed9).

RESULTS

Transcriptome assembly

We compared transcriptome assemblies (available at https://figshare.com/s/aa884dbe565dd1f4530b2) of eight species of Acanthaceae, which represent all major clades (Fig. 1) within this family. Five of these species had no transcriptional data resources previously available in public databases. Of these five species, three are from subfamilies (Nelsonioideae and Thunbergioideae) for which no genomic resources were available at all. Our transcriptome sequencing resulted in a total of 41–58 million raw reads per sample (Table 1). The assembly of quality-filtered and trimmed reads produced 85,504–286,084 contigs per species. The functional annotation from TRAPID identified 7616–86,113 fully or quasi–fully sequenced transcripts per species (Table 1). Transcriptomes were 83–47.4% complete according to BUSCO (Table 2) (Simão et al., 2015). These five new transcriptomes are more complete than all others from public databases (Table 2).

Phylogenetic utility

We found 1619 putative orthologous LCNGs for Acanthaceae (alignments available at https://figshare.com/s/9903aacaa3c34bc9ed9). Here we provide sequence information for bait design in Acanthaceae, offering flexibility of choice based on variability,
phylogenetic reconstruction available at https://figshare.com/s/2603 (362 on average, median value 225) (statistics for potential six, five, and four species (160, 369, 590, and 840, respectively). Orthogroups were required to contain sequence data for at least seven, eight, five, and four species (160, 369, 590, and 840, respectively). Parsimony informative sites per orthogroup ranged from zero to 2603 (362 on average, median value 225) (statistics for potential phylogenetic reconstruction available at https://figshare.com/s/ebb5b55c721debdaaccb4).

DISCUSSION

The exons of all LCNGs (except nine that do not have any variable site: AT1G21370, AT1G31500, AT1G79120, AT3G25530, AT4G01030, AT4G18975, AT4G28830, AT4G38370, and AT5G14140) were found have the potential to solve phylogenetic questions (https://figshare.com/s/9903aacaaa3c34bc9ed9). We observed that exons are more conserved among species of the same major clade of Acanthaceae (e.g., Mendoncia and Thunbergia, or Acanthus and Aphetlandra). The variation within Thunbergioideae (Mendoncia and Thunbergia) is even lower. In order to resolve relationships among closely related species, targeting flanking regions of exons is an efficient approach to sequence the more variable introns (if the DNA is degraded and sequence reads are short, shorter introns are easier to capture and to sequence), which likely provide more phylogenetic information within the Acanthaceae. In this case, longer sequencing reads are desired to sequence introns captured by RNA baits, which are usually designed for exonic regions. Designing RNA primers for PCR is an alternative to hybrid capture. This method is efficient for amplifying long genes, including the introns (e.g., Valderrama et al., 2018). Vargas et al. (2019) published a python script (GoldFinder) to sub-select markers from the output of MarkerMiner (alignments available at https://figshare.com/s/9903aacaaa3c34bc9ed9) according to five relevant criteria for most users who work with molecular phylogenetics and evolution: (1) marker length, (2) percentage of short exons (relative to bait length), (3) number of user’s sequences per marker, (4) similarity, and (5) bait number, length, and coverage. GoldFinder makes the sub-selection task automatic and informed, so that it could be easily run using the data provided on Figshare (https://figshare.com/s/9903aacaaa3c34bc9ed9).

Johnson et al. (2019) developed a universal probe set for targeted sequencing of 353 nuclear genes from any angiosperm. However, the efficiency of hybridization of this probe set varied considerably across the different species tested and in some species/clades it was rather low (e.g., 5%, median for all samples was 24.8%). Johnson et al. (2019) selected sequences with up to 30% divergence to design their probes. Accordingly, the capture efficiency for these targets will most likely be improved by designing baits more specific for Acanthaceae, which have not been included in their study. The transcriptome sequences we make available here are a crucial resource for this purpose and can be used to further improve universal probe sets, such as the one by Johnson et al. (2019).

Our method of inferring assemblies from multiple pooled tissue samples delivers more complete transcriptomes than any previously available from Acanthaceae. In addition to being useful for phylogenetic analyses (the main goal of this study), the data generated here provide a potentially important basis for a wide array of other research projects, such as population genomic analyses, metabolic pathway investigations, gene prediction, crop improvement, and analyses of phenotypic diversity. Here, we provide a comparative analysis of representatives of Acanthaceae with the necessary tools for RNA bait design.

DATA AVAILABILITY

The following data are available on Figshare: transcriptome assemblies (https://figshare.com/s/aa884dbe565dd1f453b2), alignments for each low-copy nuclear gene (input for baits design) (https://figshare.com/s/9903aacaaa3c34bc9ed9), statistics describing their potential for phylogenetic reconstruction (https://figshare.com/s/ebb5b55c721debdaaccb4), and commands used to perform analyses (https://figshare.com/s/7c91497e3f1cd0cede7). Raw sequence data are available in the National Center for Biotechnology Information Sequence Read Archive (accession numbers are shown in Appendix 1).

ACKNOWLEDGMENTS

The authors thank the Swiss Confederation (project 2014.0482), the Swiss National Science Foundation (project PIZHP3_178372 and 160004), the University of Vienna, Claraz Schenkung, Knut and Alice Wallenberg Foundation, the Swedish Research Council, and the Swedish Foundation for Strategic Research for funding. We thank the Science Life Laboratory, the Swedish National Genomics Infrastructure, and Uppmax for assistance in massive parallel
sequencing. We are grateful to the botanical gardens of the University of Gothenburg, Stockholm, and Vienna for plant material.

AUTHOR CONTRIBUTIONS

E.B.M. designed the project, carried out data acquisition and analyses, and wrote the manuscript. J.S. helped to develop the study and supervised the design. P.S. supervised data analyses and writing. All authors have read and revised various versions of the manuscript.

LITERATURE CITED

Andrews, S. 2010. FastQC: A quality control tool for high throughput sequence data. Website http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ [accessed 11 February 2016].

Bolger, A. M., M. Lohse, and B. Usadel. 2014. Trimmomatic: A flexible trimmer for Illumina sequence Data. Bioinformatics 30(15): 2114–2120.

Borg, A. J., L. A. McDade, and J. Schönengerber. 2008. Molecular phylogenetics and morphological evolution of Thunbergioideae (Acanthaceae). Taxon 57: 811–822.

Borowiec, M. L. 2016. AMAS: A fast tool for alignment manipulation and computing of summary statistics. PeerJ 4: e1660.

Chamala, S., N. García, G. T. Godden, V. Krishnakumar, I. E. Jordan-THaden, R. De Smet, W. B. Babazuk, et al. 2015. MarkerMiner 1.0: A new application for phylogenetic marker development using angiosperm transcriptomes. Applications in Plant Sciences 3(4): 1400115.

Chase, M. W., M. J. M. Christenhusz, M. F. Fay, J. W. Byng, W. S. Judd, D. E. Soltis, D. J. Madberley, et al. 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: AFG IV. Botanical Journal of the Linnean Society 181: 1–20.

Chumchim, N., L. McDade, and A. E. Fisher. 2015. Phylogeny of Dyschoriste (Acanthaceae). Aliso 33(2): 77–89.

Crowl, A. A., C. Myers, and N. Cellinese. 2017. Embracing discordance: Dyschoriste

Johnson, M., L. Pokorny, S. Dodsworth, L. R. Botigué, R. S. Cowan, A. Devault, W. L. Eisenhardt, et al. 2019. A universal probe set for targeted sequencing of 353 nuclear genes from any flowering plant designed using k-medoids clustering. Systematic Biology 68(4): 594–606.

Landis, J. B., R. D. O’Toole, K. L. Ventura, M. A. Gitzendanner, D. G. Oppenheimer, D. E. Soltis, and P. S. Soltis. 2016. The phenotypic and genetic underpinnings of flower size in Polemoniaceae. Frontiers in Plant Sciences 5: 1144.

Li, H. T., T. S. Yi, L. M. Gao, P. F. Ma, T. Zhang, J. B. Yang, M. Gitzendanner, et al. 2019. Origin of angiosperms and the puzzle of the Jurassic gap. Nature Plants 5: 461–470.

McDade, L. A., T. F. Daniel, and C. A. Kiel. 2008. Toward a comprehensive understanding of phylogenetic relationships among lineages of Acanthaceae s.l. (Lamiales). American Journal of Botany 95(9): 1136–1152.

McDade, L. A., T. F. Daniel, and C. A. Kiel. 2018. The Tetramerium lineage (Acanthaceae, Justicieae) revisited: Phylogenetic relationships reveal polyphylly of many New World genera accompanied by rampant evolution of floral morphology. Systematic Botany 43(1): 97–116.

NCBI Resource Coordinators. 2016. Database resources of the National Center for Biotechnology Information. Nucleic Acids Research 44 (Database issue): D7–D19.

Nicholls, J. A., R. T. Pennington, E. J. M. Koenen, C. E. Hughes, J. Hearn, L. Bunnefeld, K. G. Dexter, et al. 2015. Using targeted enrichment of nuclear genes to increase phylogenetic resolution in the neotropical rain forest genus Inga (Leguminosae: Mimosoideae). Frontiers in Plant Sciences 6: 710.

Pease, J. B., D. C. Haak, M. W. Hahn, and L. C. Mylole. 2016. Phylogenomics reveals three sources of adaptive variation during a rapid radiation. PLoS Biology 14(2): e1002379.

Refulio-Rodríguez, N. F., and R. G. Olmstead. 2014. Phylogeny of Lamiiidae. American Journal of Botany 101(2): 287–299.

Sarzi, D. S., L. Haerold, F. S. Lopes, C. Furtado, D. R. Oliveira, C. M. Sakuragi, and F. Prosdocimia. 2019. Complete plastid genome of Lippia orinoides (Verbenaceae) and phylogenomic analysis of Lamiales. Mitochondrial DNA Part B 4(1): 808–810.

Schäferhoff, B., A. Fleischmann, E. Fischer, D. C. Albach, T. Borsch, G. Heubl, and K. F. Müller. 2010. Towards resolving Lamiales relationships: Insights from rapidly evolving chloroplast sequences. BMC Evolutionary Biology 10: 352.

Simão, F. A., R. M. Waterhouse, P. Ioannidis, E. V. Kriventseva, and E. M. Zdobnov. 2015. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31(19): 3210–3212.

Slater, G. S., and E. Birney. 2005. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics 6: 31.

Stull, G. W., R. D. S. Stefano, D. E. Soltis, and P. S. Soltis. 2015. Resolving basal lamidi phylogeny and the circumcision of Icacinaceae as a plaste-podale scale data set. American Journal of Botany 2(11): 1794–1813.

Tripp, E. A., and L. A. McDade. 2014. A rich fossil record yields calibrated phylogeny for Acanthaceae (Lamiales) and evidence for marked biases in timing and directionality of intercontinental disjunctions. Systematic Biology 63(5): 680–684.

Tripp, E. A., Y. Zhuang, M. Schreiber, H. Stone, and A. E. Berardi. 2018. Evolutionary and ecological drivers of plant flavonoids across a large latitudinal gradient. Molecular Phylogenetics and Evolution 128: 147–161.

Valderrama, E. J., E. Richardson, C. A. Kidner, S. Madritz, and G. N. Stone. 2018. Transcriptome mining for phylogenetic markers in a recently radiated genus of tropical plants (Renealmia L.f., Zingiberaceae). Molecular Phylogenetics and Evolution 119: 13–24.

Van Bel, M., S. Proost, C. Van Neste, D. Deforce, Y. Van de Peer, and K. Vandepoele. 2015. TRAPID, an efficient online tool for the functional and comparative analysis of de novo RNA-Seq transcriptomes. Genome Biology 16: R134.

Vargas, O. M., M. Heuritz, S. A. Smith, and C. W. Dick. 2019. Target sequence capture in the Brazil nut family (Lecythidaceae): Marker selection and in silico capture from genome skimming data. Molecular Phylogenetics and Evolution 135: 98–104.

Villaverde, T., L. Pokorny, S. Olsson, M. Rincón-Barrado, M. G. Johnson, E. M. Gardner, N. J. Wickett, et al. 2018. Bridging the micro- and macroevolutionary levels in phylogenomics: Hyb-Seq solves relationships from populations to species and above. New Phytologist 220: 636–650.

Wikström, N., K. Kainulainen, S. G. Razafimandimbison, J. E. S. Smedmark, and B. Bremer. 2015. A revised time tree of the Asterids: Establishing a temporal
framework for evolutionary studies of the coffee family (Rubiaceae). *PLoS ONE* 10(5): e0126690.
Xu, W.-Q., J. Losh, C. Chen, P. Li, R.-H. Wang, Y.-P. Zhao, Y.-X. Qiu, and C.-X. Fu. 2019. Comparative genomics of figworts (*Scrophularia*, Scrophulariaceae), with implications for the evolution of *Scrophularia* and Lamiales. *Journal of Systematics and Evolution* 57(1): 55–65.
Zhuang, Y., and E. A. Tripp. 2017. The draft genome of *Ruellia speciosa* (Beautiful Wild Petunia: Acanthaceae). *DNA Research* 24: 179–192.

APPENDIX 1. Sample details for taxa used in this study.

Taxon	Tissue	Fixation method	Extraction method	Voucher*	SRA accession no.	Botanical garden
Acanthus leucostachyus Wall. ex Nees	L, R	—	—	—	SRR1793319*	—
Andrographis paniculata (Burm. f) Nees	L	—	—	—	SRR1292497*	—
Aphelandra aurantiaca (Scheidw.) Lindl.	L, Fl	RNA later	QIAGEN	E.B. Morais 168, WU 0104498	SRR8782583	University of Vienna
Avicennia marina (Forssk.) Vierh.	L	—	—	—	SRR653719*	—
Elytraria carolinensis (Walter ex J. F. Gmel.) Pers.	L, Fl	Liquid nitrogen	QIAGEN	E.B. Morais 163, WU 0104492	SRR8756096	University of Vienna
Mendoncia retusa Turrill	S, L, Fl	Liquid nitrogen	Macherey-Nagel	A.J. Borg 1, S or Z 000172480	SRR8749657	University of Stockholm
Pachystachys lutea Nees	S, L, Fl	RNA later	QIAGEN	E.B. Morais 164, WU 0104493	SRR8755478	University of Vienna
Thunbergia erecta (Benth.) T. Anderson	S, L, Fl	Liquid nitrogen	Macherey-Nagel	E.B. Morais 173, Z 000172481	SRR8752193	University of Gothenburg

Note: — = not available; Fl = flower; L = leaf; R = root; S = stem.
*Herbaria abbreviations follow Index Herbariorum (see http://sweetgum.nybg.org/science/ih/).
*Data downloaded from the National Center for Biotechnology Information.