On the classification of unstable $H^*V - A$-modules

Dorra BOURGUIBA *

Abstract

In this work, we begin studying the classification, up to isomorphism, of unstable $H^*V - A$-modules E such that $F_2 \otimes_{H^*V} E$ is isomorphic to a given unstable A-module M. In fact this classification depends on the structure of M as unstable A-module. In this paper, we are interested in the case M a nil-closed unstable A-module and the case M is isomorphic to $\sum^n F_2$. We also study, for $V = \mathbb{Z}/2\mathbb{Z}$, the case M is the Brown-Gitler module $J(2)$.

1 Introduction

Let V be an elementary abelian 2-group of rank d, that is a group isomorphic to $(\mathbb{Z}/2\mathbb{Z})^d$, $d \in \mathbb{N}$, BV be a classifying space for the group V and $H^*V = H^*(BV; F_2)$. We recall that H^*V is an F_2-polynomial algebra $F_2[t_1, \ldots, t_d]$ on d generators t_i, $1 \leq i \leq d$, of degree one.

Let A be the mod.2 Steenrod algebra and \mathcal{U} the category of unstable

* pris en charge par l’unité de recherche 00/UR/15-05, Faculté de Sciences–Mathématiques, Université de Tunis, TN-1060 Tunis, Tunisie. e-mail: dorra.bourguiba@fst.rnu.tn
A-modules. We recall that $H^*V - U$ is the category whose objects are unstable $H^*V - A$-modules and morphisms are H^*V-linear and A-linear maps of degree zero. For example, the mod.2 equivariant cohomology of a V-CW-complex, which is the cohomology of the Borel construction, is an unstable $H^*V - A$-module.

Let E be an unstable $H^*V - A$-module, we denote by \overline{E} the unstable A-module $\mathbb{F}_2 \otimes_{H^*V} E = E/\tilde{H}^*V.E$, where \tilde{H}^*V denotes the augmentation ideal of H^*V.

We have the following problem:

\[(P): \text{Let } M \text{ be an unstable A-module.} \]

Classify, up to isomorphism, unstable $H^*V - A$-modules such that $\overline{E} \cong M$ (as unstable A-modules).

It is clear that, for every subgroup W of V, the unstable $H^*V - A$-module:

$$H^*W \otimes M$$

is a solution for the problem (P).

For $W = 0$, a solution of (P) is given by the unstable $H^*V - A$-module M which is trivial as an H^*V-module.

For $W = V$, a solution of (P) is given by the unstable $H^*V - A$-module $H^*V \otimes M$ which is free as an H^*V-module.

If $V = \mathbb{Z}/2\mathbb{Z}$ and $M = \Sigma N$ a suspension of an unstable A-module N, then we have, at least, the following two solutions of the problem (P) which are free as $H^*(\mathbb{Z}/2\mathbb{Z})$-modules:

1. $\Sigma(H^*(\mathbb{Z}/2\mathbb{Z}) \otimes N)$.

2. $((H^*(\mathbb{Z}/2\mathbb{Z})^{\geq 1}) \otimes N$.

2
These two solutions are different as unstable A-modules (here $H^*(\mathbb{Z}/2\mathbb{Z})_{\geq 1}$ is the sub-algebra of $H^*(\mathbb{Z}/2\mathbb{Z})$ of elements of degree bigger than or equal to one). This shows that the solutions of the problem (P) i.e. the classification, up to isomorphism, of unstable $H^*V - A$-modules such that $\overline{E} \cong M$ (as unstable A-modules), depends on the structure of E as an H^*V-module and on the structure of M as unstable A-module.

In this paper we will discuss the solutions of (P) if M is a nil-closed unstable A-module and E is free as an H^*V-module and the solutions of (P) if M is isomorphic to $\sum F_2$ or to $J(2)$ and E is free as an H^*V-module.

We begin by proving the following result (which is solution of (P) when M is a nil-closed unstable A-module).

Theorem 1.1. Let E be unstable $H^*V - A$-module which is free as an H^*V-module. If \overline{E} is a nil-closed unstable A-module, then there exists two reduced U-injectives I_0, I_1 and an $H^*V - A$-linear map $\varphi : H^*V \otimes I_0 \to H^*V \otimes I_1$ such that:

1. $E \cong \ker \varphi$
2. $\overline{E} \cong \ker \overline{\varphi}$

The proof of this result is based on the classification of $H^*V - U$-injectives and on some properties of the injective hull in the category $H^*V - U$.

Our work is naturally motivated by topology as shown in the study of homotopy fixed points of a $\mathbb{Z}/2$-action (see [L1]). Let X be a space equipped with an action of $\mathbb{Z}/2$ and $X^{h\mathbb{Z}/2}$ denote the space of homotopy fixed points of this action. The problem of determining the mod.2 cohomology of $X^{h\mathbb{Z}/2}$ (we ignore deliberately the questions of 2-completion) involves two steps:
- determining the mod. 2 equivariant cohomology \(H^*_{Z/2}X \);
- determining \(\text{Fix}_{Z/2} H^*_{Z/2}X \) (for the definition of the functor \(\text{Fix}_{Z/2} \) see section 2).

For the first step, see for example [DL], the main information one has about the \(Z/2 \)-space \(X \) is that the Serre spectral sequence, for mod. 2 cohomology, associated to the fibration

\[
X \to X_{hZ/2} \to BZ/2
\]
collapses (\(X_{hZ/2} \) denotes the Borel construction \(EZ/2 \times_{Z/2} X \)). This collapsing implies that \(H^*_{Z/2}X \) is H-free and that \(H^*_{Z/2}X \) is canonically isomorphic to \(H^*X \). This gives clearly a topological application of problem (P).

We then prove the following results (related to the case \(E \) is \(\sum^n \mathbb{F}_2 \) and \(J(2) \)).

Theorem 1.2. Let \(E \) be unstable \(H^*V - A \)-module which is free as an \(H^*V \)-module. If \(E \) is isomorphic to \(\sum^n \mathbb{F}_2 \), then there exists an element \(u \) in \(H^*V \) such that:

1. \(u = \prod_i \theta_i^{\alpha_i} \), where \(\theta_i \in (H^1V) \setminus \{0\} \) and \(\alpha_i \in \mathbb{N} \)
2. \(E \cong \sum^d uH^*V \) with \(d + \sum_i \alpha_i = n \)

Proposition 1.3. Let \(E \) be an \(H - A \)-module which is \(H \)-free and such that \(E \) is isomorphic to \(J(2) \) then:
\(E \cong H \otimes J(2) \)
or
\(E \) is the sub-\(H - A \)-module of \(H \oplus \sum H \) generated by \((t, \Sigma 1)\) and \((t^2, 0)\).
The proofs of these two results are based on Smith theory, some properties of the functor Fix and on a result of J.P. Serre.

The paper is structured as follows. In section 2, we introduce the definitions of reduced and nil-closed unstable A-modules. We give the classification of injective modules in the category \mathcal{U} and in the category $H^*V - \mathcal{U}$. We also recall the algebraic Smith theory. In section 3, we establish some properties of E when \overline{E} is a reduced unstable A-module. The results will be useful in section 4, where we give the solutions of the problem (\mathcal{P}) when E is free as an H^*V-module and \overline{E} is nil-closed. In section 5, we give some topological applications. In section 6, we give the solutions of the problem (\mathcal{P}) when E is free as an H^*V-module and \overline{E} is isomorphic to $\sum^n \mathbb{F}_2$, we also give a topological application. In section 7, we solve the problem (\mathcal{P}) when \overline{E} is the Brown-Gitler module $J(2)$ and V is $\mathbb{Z}/2\mathbb{Z}$.

Acknowledgements. I would like to thank Professor Jean Lannes and Professor Said Zarati for several useful discussions. I am grateful to the referee for his suggestions.

2 Preliminaries on the categories \mathcal{U} and $H^*V - \mathcal{U}$

In this section, we will fix some notations, recall some definitions and results about the categories \mathcal{U} and $H^*V - \mathcal{U}$.
2.1 Nilpotent unstable A-modules

Let N be an unstable A-module. We denote by Sq_0 the $\mathbb{Z}/2\mathbb{Z}$-linear map:

$$Sq_0 : N \to N, \ x \mapsto Sq_0(x) = Sq^{|x|}x.$$

An unstable A-module N is called nilpotent if:

$$\forall \ x \in N, \ \exists \ n \in \mathbb{N}; \ Sq_0^n x = 0.$$

For example, finite unstable A-modules and suspension of unstable A-modules are nilpotent. Let $Tor_{H^V}^1(F_2, N)$ be the first derived functor of the functor $F_2 \otimes_{H^V} - : H^V - U \to U$, we have the following useful result.

Proposition 2.1.1. ([S] page 150) Let N be an unstable $H^V - A$-module, then the unstable A-module $Tor_{H^V}^1(F_2, N)$ is nilpotent.

2.2 Reduced unstable A-modules

An unstable A-module M is called reduced if the $\mathbb{Z}/2\mathbb{Z}$-linear map:

$$Sq_0 : M \to M, \ x \mapsto Sq_0(x) = Sq^{|x|}x,$$

is an injection.

Another characterization of reduced unstable A-module in terms of nilpotent modules is the following.

Lemma 2.2.1. ([LZ1]) An unstable A-module is reduced if it does not contain a non-trivial nilpotent module.

In particular, any A-linear map from a nilpotent A-module to a reduced one is trivial.
2.3 Nil-closed unstable A-modules

Let M be an unstable A-module. We denote by Sq_1 the $\mathbb{Z}/2\mathbb{Z}$-linear map:

$$Sq_1 : N \to N, \ x \mapsto Sq_1(x) = Sq^{|x|-1}x.$$

Definition 2.3.1. ([EP]) An unstable A-module M is called nil-closed if:

1. M is reduced.
2. $\text{Ker}(Sq_1) = \text{Im}(Sq_0)$.

We have the following two characterizations of unstable nil-closed A-modules.

Lemma 2.3.2. ([LZ1]) Let M be an unstable A-module and $\mathcal{E}(M)$ be its injective hull. The unstable A-module M is nil-closed if and only if M and the quotient $\mathcal{E}(M)/M$ are reduced.

Let $Ext^s_U(-, M)$ be the s-th derived functor of the functor $\text{Hom}_U(-, M)$.

Lemma 2.3.3. ([LZ1]) An unstable A-module M is nil-closed if and only if $Ext^s_U(N, M) = 0$ for any nilpotent unstable A-module N and $s = 0, 1$.

2.4 Injectives in the category \mathcal{U}

Let I be an unstable A-module, I is called an injective in the category \mathcal{U} or \mathcal{U}-injective for short, if the functor $\text{Hom}_\mathcal{U}(-, I)$ is exact.

The classification of \mathcal{U}-injectives (see [LZ1], [LS]) is the following.

Let $J(n), \ n \in \mathbb{N},$ be the n-th Brown-Gitler module, characterized up to isomorphism, by the functorial bijection on the unstable A-module M:

$$\text{Hom}_\mathcal{U}(M, J(n)) \cong \text{Hom}_{\mathbb{F}_2}(M^n, \mathbb{F}_2)$$
Clearly $J(n)$ is an \mathcal{U}-injective and it is a finite module.

Let \mathcal{L} be a set of representatives for \mathcal{U}-isomorphism classes of indecomposable direct factors of $H^*(\mathbb{Z}/2\mathbb{Z})^m$, $m \in \mathbb{N}$ (each class is represented in \mathcal{L} only once).

We have:

Theorem 2.4.1. Let I be an \mathcal{U}-injective module. Then there exists a set of cardinals $a_{L,n}$, $(L, n) \in \mathcal{L} \times \mathbb{N}$, such that $I \cong \bigoplus_{(L, n)} (L \otimes J(n))^\oplus a_{L,n}$.

Conversely, any unstable A-module of that form is \mathcal{U}-injective.

Let’s remark that H^*V is an \mathcal{U}-injective.

2.5 The injectives of the category $H^*V - \mathcal{U}$

The classification of injectives of the category $H^*V - \mathcal{U}$ ($H^*V - \mathcal{U}$-injectives for short) is given by Lannes-Zarati [LZ2] as follows.

Let $J_V(n)$, $n \in \mathbb{N}$, be the unstable $H^*V - A$-module characterized, up to isomorphism, by the functorial bijection on the unstable $H^*V - A$-module M:

$$\text{Hom}_{H^*V - \mathcal{U}}(M, J_V(n)) \cong \text{Hom}_{F_2}(M^n, F_2)$$

Clearly $J_V(n)$ is an $H^*V - \mathcal{U}$-injective.

Let \mathcal{W} be the set of subgroups of V and let $(W, n) \in \mathcal{W} \times \mathbb{N}$, we write

$$E(V, W, n) = H^*V \otimes_{H^*V/W} J_{V/W}(n)$$

(in this formula H^*V is an H^*V/W-module via the map induced in mod.2 cohomology by the canonical projection $V \rightarrow V/W$).

Theorem 2.5.1. ([LZ2]) If I is an injective of the category of $H^*V - \mathcal{U}$, then $I \cong \bigoplus_{(L,W,n) \in \mathcal{L} \times \mathcal{W} \times \mathbb{N}} (E(V, W, n) \otimes_{F_2} L)^\oplus a_{L,W,n}$.

Conversely, each $H^*V - A$-module of this form is an $H^*V - \mathcal{U}$-injective.
Clearly H^*V is an $H^*V - \mathcal{U}$-injective.

2.6 Algebraic Smith theory

2.6.1 The functors Fix

We introduce the functors Fix ([L1], [L2]). We denote by

$$\text{Fix}_V : H^*V - \mathcal{U} \to \mathcal{U}$$

the left adjoint of the functor

$$H^*V \otimes - : \mathcal{U} \to H^*V - \mathcal{U}$$

We have the functorial bijection:

$$\text{Hom}_{H^*V - \mathcal{U}}(N, H^*V \otimes P) \cong \text{Hom}_\mathcal{U} (\text{Fix}_V N, P)$$

for every unstable $H^*V - A$-module N and every unstable A-module P.

The functor Fix_V has the following properties.

1. The functor Fix_V is an exact functor.
2. Let N be an unstable $H^*V - A$-module and $\mathcal{E}(N)$ be its injective hull. Then, the module $\text{Fix}_V \mathcal{E}(N)$ is the injective hull of $\text{Fix}_V N$.

2.6.2

Let N be an unstable $H^*V - A$-module, we denote by

$$\eta_V : N \to H^*V \otimes \text{Fix}_V N$$

the adjoint of the identity of $\text{Fix}_V N$. We denote by $c_V = \prod_{u \in H^*V - \{0\}} u$ the top Dickson invariant, we have the following result (see [L2] corollary 2.3).
Proposition 2.6.1. Let N be an unstable $H^*V - A$-module. The localization of the map η_V

$$\eta_V[c^{-1}_V] : N[c^{-1}_V] \rightarrow H^*V[c^{-1}_V] \otimes \text{Fix}_V N$$

is an injection.

This shows in particular, that if N is torsion-free then the map η_V is an injection.

The proposition 2.6.1 can be reformulated as follows.

Proposition 2.6.2. Let N be an unstable $H^*V - A$-module. If N is torsion-free then its injective hull in $H^*V - \mathcal{U}$ is free as an H^*V-module and is isomorphic to \(\bigoplus_{(L,n) \in \mathcal{L} \times N} (H^*V \otimes J(n)) \otimes L \)

Proof. Since the module is torsion-free then the map $\eta_V : N \rightarrow H^*V \otimes \text{Fix}_V N$ adjoint of the identity of $\text{Fix}_V N$ is an injection. So N is a sub-$H^*V - A$-module of $H^*V \otimes \text{Fix}_V N$. By 2.6.1.1 and 2.6.1.2, we have that the injective hull of N is isomorphic to $H^*V \otimes I$, where I is an \mathcal{U}-injective. \qed

Remark 2.6.3. As a consequence of proposition 2.6.2, we have that if E is an unstable $H^*V - A$-module which is free as an H^*V-module then its injective hull (in the category $H^*V - \mathcal{U}$) is also free as an H^*V-module.

Proposition 2.6.4. [LZ2]. Let N be an unstable $H^*V - A$-module which is of finite type as an H^*V-module. The localization of the map η_V

$$\eta_V[c^{-1}_V] : N[c^{-1}_V] \rightarrow H^*V[c^{-1}_V] \otimes \text{Fix}_V N$$

is an isomorphism.

In particular, the previous result shows that:
1. If \(N \) is free as an \(H^*V \)-module, then the map \(\eta_V \) is an injection.

2. The isomorphism of the proposition proves that \(\text{dim} \overline{E} = \text{dim} \text{Fix}_V E \) where \(\text{dim} \) is the total dimension (see [LZ2]).

3 Some properties of \(E \) when \(\overline{E} \) is reduced

In this section we will prove some algebraic results which will be useful for section 4. In fact, we will analyze the relation between an unstable \(H^*V - A \)-module \(E \) and its (associated) unstable \(A \)-module \(\overline{E} \). For this, we will begin by giving some technical results.

3.1 Technical results

Lemma 3.1.1. Let \(P \) and \(Q \) be unstable \(H^*V - A \)-modules, free as \(H^*V \)-modules and \(f : P \to Q \) an \(H^*V - A \)-linear map. If the induced map \(\overline{f} : \overline{P} \to \overline{Q} \) is an injection then \(f \) is also an injection.

Proof. Let’s denote by \(\text{Im} f \) the image of \(f \), by \(\overline{f} : \overline{P} \to \overline{Q} \) the natural surjection and by \(i : \text{Im} f \hookrightarrow Q \) the inclusion of \(\text{Im} f \) in \(Q \). Since \(\overline{f} \) is an injection so the induced map \((\overline{f}) \) is an isomorphism of unstable \(A \)-modules and then the induced map \(\overline{i} \) is an injection. This shows that \(\overline{\text{Im} f} \) is the image of \(\overline{f} \). Since the module \(\text{Im} f \) is a sub-\(H^*V \)-module of the \(H^*V \)-free module \(Q \) and \(\overline{i} : \overline{\text{Im} f} \hookrightarrow \overline{Q} \) is an injection, so \(\text{Im} f \) is free as an \(H^*V \)-module. In particular, we have that \(\text{Tor}_1^{H^*V}(\mathbb{F}_2, \text{Im} f) = 0 \) (see for example [R]). Let’s denote by \(N \) the kernel of the map \(\overline{f} \), so we have the following short exact sequence in \(H^*V - \mathcal{U} \):

\[
0 \longrightarrow N \longrightarrow P \overset{\overline{f}}\longrightarrow \text{Im} f \longrightarrow 0 .
\]
By applying the functor \((\mathbb{F}_2 \otimes_{H^*V} -)\) to the previous sequence, we prove that \(\overline{N}\) is trivial (since the map \(\overline{f}\) is an isomorphism and \(Imf\) is free as an \(H^*V - A\)-module). Hence the module \(N\) is trivial and the map \(f\) is an injection.

\(\square\)

The converse of this lemma is not true in general, but we have the following result:

Lemma 3.1.2. Let \(P\) and \(Q\) be unstable \(H^*V - A\)-modules, free as \(H^*V\)-modules and \(f: P \rightarrow Q\) an \(H^*V - A\)-linear map which is an injection. If \(\overline{P}\) is a reduced unstable \(A\)-module, then the induced map \(\overline{f}: \overline{P} \rightarrow \overline{Q}\) is an injection.

Proof. We denote by \(C\) the quotient of \(Q\) by \(P\), we have the following short exact sequence in \(H^*V - U\):

\[
0 \rightarrow P \xrightarrow{f} Q \xrightarrow{} C \xrightarrow{} 0 .
\]

By applying the functor \((\mathbb{F}_2 \otimes_{H^*V} -)\) to the previous sequence, we obtain an exact sequence in \(U\):

\[
0 \rightarrow Tor_1^{H^*V}(\mathbb{F}_2, C) \xrightarrow{} \overline{P} \xrightarrow{\overline{f}} \overline{Q} \xrightarrow{} \overline{C} \xrightarrow{} 0 .
\]

Since \(\overline{P}\) is reduced as unstable \(A\)-module and \(Tor_1^{H^*V}(\mathbb{F}_2, C)\) is nilpotent (see proposition 2.1.1), then the map \(\overline{f}\) is an injection.

\(\square\)
3.2 Statement of some properties of E when \overline{E} is reduced

The first result of this paragraph concerns the relation between the injective hull of E and the induced module \overline{E}.

Theorem 3.2.1. Let E be an unstable $H^*V - A$-module which is free as an H^*V-module and let $\mathcal{E}(E)$ be its injective hull (in the category $H^*V - U$). We suppose that \overline{E} is reduced and let I be its injective hull in the category U.

Then $\mathcal{E}(E)$ is isomorphic, as an unstable $H^*V - A$-module, to $H^*V \otimes I$.

Proof. Since E is free as an H^*V-module, then $\mathcal{E}(E)$ is isomorphic, in the category $H^*V - U$, to $H^*V \otimes J$, where J is an U-injective (see proposition 2.6.2).

Let’s denote by i the inclusion of E in $\mathcal{E}(E)$, we have, by lemma 3.1.2, that the induced map \tilde{i} is an injection. We will prove, by using the definition, that J is the injective hull of \overline{E}, in the category U. Let P be a sub-A-module of J such that the A-module $(\tilde{i})^{-1}(P)$ is trivial, we have to show that the unstable A-module P is trivial.

Since $(\tilde{i})^{-1}(P)$ is trivial then the composition: $\pi \circ \tilde{i}: E \xrightarrow{\tilde{i}} J \xrightarrow{\pi} J/P$ is an injection. By lemma 3.1.1, the following composition

$E \xrightarrow{i} H^*V \otimes J \xrightarrow{\pi} H^*V \otimes (J/P)$

is an injection, which proves that the unstable $H^*V - A$-module $i^{-1}(H^*V \otimes P)$ is trivial. Since $H^*V \otimes J$ is the injective hull of E so the unstable $H^*V - A$-module $H^*V \otimes P$ is trivial.

Corollary 3.2.2. Let E be an unstable $H^*V - A$-module such that:

1. E is free as an H^*V-module.

2. \overline{E} is reduced as unstable A-module.
Then E is reduced as unstable A-module.

Proof. We have, by theorem 3.2.1, that the injective hull of E is $\text{H}^*V \otimes I$, where I is the injective hull of \overline{E} in \mathcal{U}. Since \overline{E} is reduced, then I is a reduced \mathcal{U}-injective. This shows that E is reduced as an unstable A-module because its injective hull (in the category $\text{H}^*V - \mathcal{U}$) is $\text{H}^*V \otimes I$ which is reduced as unstable A-module.

Remark 3.2.3. In the previous result the condition (1): E is free as an H^*V-module is necessary. In fact, the finite $\text{H} - A$-module $J_{\mathbb{Z}/2\mathbb{Z}}(1)$ is not free as an H-module and not reduced as an unstable A-module, however $J_{\mathbb{Z}/2\mathbb{Z}}(1) = F_2$ is a reduced unstable A-module. Observe that $J_{\mathbb{Z}/2\mathbb{Z}}(1)$ is isomorphic, as unstable A-module, to $F_2 \oplus \sum F_2$, the structure of H-module is given by: $t.\iota = \Sigma \iota$, where ι is the generator of F_2 and t the generator of H.

Observe that the converse of corollary 3.2.2 is false. In fact, the $\text{H} - A$-module $E = H^{\geq 1}$ is reduced as unstable A-module however the unstable A-module $\overline{E} \cong \sum F_2$ is not reduced.

4 Description of E when \overline{E} is nil-closed

The main result of this paragraph concerns the relation between the two first terms of a (minimal) injective resolution of E and \overline{E}.

Theorem 4.1. Let E be an unstable $\text{H}^*V - A$-module which is free as an H^*V-module. We suppose that:

1. \overline{E} is nil-closed.

2. $0 \to \overline{E} \to I_0 \to I_1 \to \cdots$ is the beginning of a (minimal) \mathcal{U}-injective resolution of \overline{E}.

\[\text{E} \quad \text{I}_1 \quad \text{I}_2 \quad \cdots \text{I}_n \quad \overline{\text{I}}_1 \quad \overline{\text{I}}_2 \quad \cdots \]
Then there exists an \(H^*V - A \)-linear map \(\varphi : H^*V \otimes I_0 \to H^*V \otimes I_1 \) such that:

1. \(0 \to E \to H^*V \otimes I_0 \xrightarrow{\varphi} H^*V \otimes I_1 \to \cdots \) is the beginning of a (minimal) injective resolution of \(E \) (in the category \(H^*V - U \)).

2. \(\varphi = i_1 \)

Proof. The unstable \(A \)-module \(\overline{E} \) is nil-closed so is reduced, we have then, by theorem 3.2.1, that the injective hull of \(E \) is \(H^*V \otimes I_0 \). We denote by \(C_0 \) the quotient of \(H^*V \otimes I_0 \) by \(E \). We have the following short exact sequence in \(H^*V - U \):

\[
0 \to E \xrightarrow{i_0} H^*V \otimes I_0 \to C_0 \to 0.
\]

Since the induced map \(i_0 \) is an injection (see lemma 3.1.2), then the unstable \(A \)-module \(Tor^H^*V_1(\mathbb{F}_2, C_0) \) is trivial; this shows that the module \(C_0 \) is free as an \(H^*V \)-module (see for example [NS], proposition A.1.5).

We verify that the \(U \)-injective hull of \(C_0 \) is \(I_1 \) and that \(C_0 \) is reduced since \(\overline{C_0} \) is reduced (see corollary 3.2.2). This implies, by theorem 3.2.1, that the \(H^*V - U \)-injective hull of \(C_0 \) is isomorphic to \(H^*V \otimes I_1 \). \(\square \)

Remark 4.2. let \(M \) be a nil-closed unstable \(A \)-module and \(0 \to M \xrightarrow{i_0} I_0 \xrightarrow{i_1} I_1 \to \cdots \) be the beginning of a (minimal) \(U \)-injective resolution of \(M \). We denote by \((\text{Hom}_{H^*V - U}(H^*V \otimes I_0, H^*V \otimes I_1))_{i_1} \)

the set of \(H^*V - A \)-linear map \(\varphi : H^*V \otimes I_0 \to H^*V \otimes I_1 \) such that \(\varphi = i_1 \).

Using Lannes T-functor (see [LI]) we have:

\[
(\text{Hom}_{H^*V - U}(H^*V \otimes I_0, H^*V \otimes I_1))_{i_1} \cong (\text{Hom}_U(T_V I_0, I_1))_{i_1}
\]

where \((\text{Hom}_U(T_V I_0, I_1))_{i_1} \) is the set of \(A \)-linear map \(\psi : T_V I_0 \to I_1 \) such that \(\psi \circ i = i_1 \), where \(i : I_0 \hookrightarrow T_V I_0 \) denotes the natural inclusion.
The kernel of any element $\psi \in (\text{Hom}_U(T_V I_0, I_1))_{i_1}$, which is free as an H^*V-module, is an unstable $H^*V - A$-module such that $\overline{\ker \psi} \cong M$.

Remark 4.3. If E is an U-injective then the only unstable free $H^*V - A$-module, up to isomorphism, solution of the problem (P) is $H^*V \otimes \overline{E}$.

Let n be an even integer. The unstable free $H - A$-modules, up to isomorphism, solution of the problem (P) when M is $H^*BSO(n)$ are $H^*BO(n)$ and $H \otimes H^*BSO(n)$. We verify that these two $H - A$-modules are not isomorphic in the category $H - U$ (since it does not exist an A-linear section of the projection $H^*BO(n) \to H^*BSO(n)$).

5 Applications

5.1

Our first application concerns the determination of the mod. 2 cohomology of the mapping space $\text{hom}(B(\mathbb{Z}/2^n), Y)$ whose domain is a classifying space for the group $\mathbb{Z}/2^n$ and whose range is a space Y such that H^*Y is concentrated in even degrees.

We will just recall some facts, ignoring the p-completion problems. For further details see [DL].

One proceeds by induction on the integer n. Let us set

$$X = \text{hom}(E(\mathbb{Z}/2^n)/(\mathbb{Z}/2^{n-1}), Y).$$

The space X has the homotopy type of $\text{hom}(B(\mathbb{Z}/2^{n-1}), Y)$ and is equipped of an action $\mathbb{Z}/2$ such that one has a homotopy equivalence

$$\text{hom}(B(\mathbb{Z}/2^n), Y) \cong X^{h\mathbb{Z}/2},$$
$X^{h\mathbb{Z}/2}$ denoting the homotopy fixed point space: $\text{hom}_{\mathbb{Z}/2}(E\mathbb{Z}/2, X)$. Using $\text{Fix}_{\mathbb{Z}/2}$-theory \[L1\], one gets:

$$H^*\text{hom}(B(\mathbb{Z}/2^n), Y) \cong \text{Fix}_{\mathbb{Z}/2} H^*_{\mathbb{Z}/2}X.$$

Since the computation of the functor $\text{Fix}_{\mathbb{Z}/2}$ on an unstable $H - A$-module is not difficult in general, the determination of the mod. 2 cohomology of the mapping space $\text{hom}(B(\mathbb{Z}/2^n), Y)$ is reduced to the determination of the unstable $H - A$-module $H^*_{\mathbb{Z}/2}X$. As we are going to explain, this last point is closely related to problem (P).

One knows by induction on n that the mod. 2 cohomology of the space X as the one of the space Y is concentrated in even degrees and one checks that the action of $\mathbb{Z}/2$ on $H^*(Y; \mathbb{Z})$ is trivial. These two facts imply that the Serre spectral sequence, for mod. 2 cohomology, associated to the fibration

$$X \to X^{h\mathbb{Z}/2} \to B\mathbb{Z}/2$$

collapses ($X^{h\mathbb{Z}/2}$ denotes the Borel construction $E\mathbb{Z}/2 \times_{\mathbb{Z}/2} X$). This collapsing implies in turn that $H^*_{\mathbb{Z}/2}X$ is H-free and that $H^*_{\mathbb{Z}/2}X$ is isomorphic to H^*X. So the determination of $H^*\text{hom}(B(\mathbb{Z}/2^n), Y)$ is indeed reduced to the resolution of a problem (P).

We conclude this subsection by a concrete example (we follow \[De\], section 6); we take $n = 2$ and $Y = \text{BSU}(2)$. Using $T_{\mathbb{Z}/2}$-computations one sees that X has the homotopy type of $\text{BSU}(2) \coprod \text{BSU}(2)$; one checks also that the $\mathbb{Z}/2$-action preserves the connected components. The (P)-problem associated to the determination of the unstable $H - A$-module $H^*_{\mathbb{Z}/2}X$ is the following one:

Find the unstable $H - A$-modules E such that

- E is H-free;
the unstable A-module E is isomorphic to $H^{*}{\text{BSU}}(2)$.

Using the fact that the injective hull, in the category $H\mathcal{U}$, of E is $H \otimes H$ (see theorem 3.2), one checks that one has two possibilities:

- $E \cong H \otimes H^{*}{\text{BSU}}(2);$

- $E \cong H \otimes_{H^{*}{\text{BU}}(1)} H^{*}{\text{BU}}(2)$ (the structures of unstable $H^{*}{\text{BU}}(1) - A$-modules on $H = H^{*}{\text{BO}}(1)$ and $H^{*}{\text{BU}}(2)$ are respectively induced by the inclusion of $O(1)$ in $U(1)$ and the determinant homomorphism from $U(2)$ to $U(1)$).

5.2

The theorem 4.1 can be illustrated, topologically, as follows:

Proposition 5.2.1. Let X be a CW-complex on which acts an elementary abelian group 2-group V. Suppose that:

1. $H^{*}X$ is nil-closed
2. $0 \rightarrow H^{*}X \rightarrow I_{0} \xrightarrow{\alpha} I_{1} \rightarrow \cdots$ is the beginning of a (minimal) U-injective resolution of $H^{*}X$
3. $H^{*}_{V}X$ is free as an $H^{*}V$-module.

Then there exists an $H^{*}V - A$-linear map $\varphi : H^{*}V \otimes I_{0} \rightarrow H^{*}V \otimes I_{1}$ such that:

1. $H^{*}_{V}X \cong Ker(\varphi)$.
2. $0 \longrightarrow H^*_V X \longrightarrow H^* V \otimes I_0 \overset{\varphi}{\longrightarrow} H^* V \otimes I_1 \longrightarrow \cdots$ is the beginning of a (minimal) injective resolution of $H^*_V X$ (in the category $H^* V - \mathcal{U}$).

3. $\varphi = \alpha : I_0 \rightarrow I_1$.

In particular, we have:

Corollary 5.2.2. Let X be a CW-complex on which acts an elementary abelian group 2-group V. Suppose that:

1. $H^* X$ is a reduced \mathcal{U}-injective,
2. $H^*_V X$ is free as an $H^* V$-module.

Then $H^*_V X \cong H^* V \otimes H^* X$.

6 Description of E when \overline{E} is isomorphic to $\sum^n \mathbb{F}_2$

In this section, we prove the following result.

Theorem 6.1. Let E be unstable $H^* V - A$-module which is free as an $H^* V$-module. If \overline{E} is isomorphic to $\sum^n \mathbb{F}_2$, then there exists an element u in $H^* V$ such that:

1. $u = \prod_i \theta_i^{\alpha_i}$, where $\theta_i \in (H^1 V) \setminus \{0\}$ and $\alpha_i \in \mathbb{N}$
2. $E \cong \sum^d u H^* V$ with $d + \sum_i \alpha_i = n$.
Proof. Let N be an unstable A-module, we denote by $\dim N$ the total dimension of N that is $\dim N = \sum_i \dim N^i$. We have the equality $\dim E = 1 = \dim Fix_\nu E$ (see [LZ3]), so we deduce that $Fix_\nu E = \sum^l \mathbb{F}_2$, where $l \in \mathbb{N}$. Let $\eta_\nu : E \to H^*V \otimes Fix_\nu E$ be the adjoint of the identity of $Fix_\nu E$ (see [LZ2]). Since the map η_ν is an injection, then the module E is a sub-$H^*V - A$-module of $\sum^l H^*V$. Let’s write $E = \sum^l E'$, where E' is sub-$H^*V - A$-module of H^*V. By a result of J-P. Serre (see [Se]), there exists N such that: $c_N^V H^*V \subset E' \subset H^*V$. Since E' is free as an H^*V-module and of dimension one, then there exists $u \in H^*V$ such that $E' = uH^*V$. The inclusion $c_N^V H^*V \subset uH^*V$ proves that $u = \prod_i \theta^\alpha_i$, where $\theta_i \in (H^1V) \setminus \{0\}$ and $\alpha_i \in \mathbb{N}$.

Remark 6.2. We remark that by the previous result, we can determine E when \overline{E} is isomorphic to $\mathbb{F}_2 \oplus \sum^n \mathbb{F}_2$. In this case, we verify that $E \cong H^*V \oplus \sum^d uH^*V$, where $u = \prod_i \theta^\alpha_i$, $\theta_i \in H^*V \setminus \{0\}$, $\alpha_i \in \mathbb{N}$ and $d + \sum_i \alpha_i = n$. In fact, since the $H^*V - U$-injective module H^*V is a sub-H^*V-module of E, then $E \cong H^*V \oplus E'$, where E' is an unstable $H^*V - A$-module, free as an H^*V-module and such that $\overline{E'} \cong \sum^n \mathbb{F}_2$. The result holds from theorem 6.1.

6.3 Example

We give an example showing how to realize topologically the cases of theorem 6.1 and remark 6.2.

Let $\rho : V \to O(d)$ be a group homomorphism. ρ gives both an action of V on D^d, S^{d-1} and a d-dimensional orthogonal bundle whose mod.2 Euler class is denoted by $e(\rho)$.

The long exact sequence of the pair (D^d, S^{d-1}) and the Thom isomorphism give the long (Gysin) exact sequence (see for example [Hu]):

$$
\cdots \longrightarrow H^{* - 1}V \longrightarrow H^{* - 1}S^{d - 1} \longrightarrow \sum^d H^*V \overset{\cdot e(\rho)}{\longrightarrow} H^*V \longrightarrow H^*_V S^{d - 1} \longrightarrow \cdots
$$
The decomposition \(\rho \cong \oplus_{i=1}^{d} \rho_i \) of the representation \(\rho \) into orthogonal representations of dimension 1 gives \(e(\rho) = \prod_i e(\rho_i) \). We have now two cases.

- If none of the representations \(\rho_i \) is trivial then \(e(\rho) \) is non zero and \(H^*_V(\mathcal{D}^d, S^{d-1}) \) is isomorphic to \(e(\rho)H^*V \) as an \(H^*V - A \)-module. This illustrates theorem 6.1.

- Otherwise, let’s write \(\rho = \sigma \oplus \tau \), \(\sigma \) (resp. \(\tau \)) being the direct sum of the non trivial (resp. trivial) representations \(\rho_i \). Then \(H^*_V S^{d-1} \cong H^*V \oplus \Sigma \dim \tau e(\sigma)H^*V \) and \(H^*_V(S^{d-1}) \) is an illustration of the remark 6.2.

7 Determination of \(E \) when \(V \) is \(\mathbb{Z}/2\mathbb{Z} \) and \(\overline{E} \) is \(J(2) \)

In this section, we assume that \(V \) is \(\mathbb{Z}/2\mathbb{Z} \) and \(\overline{E} \) is the Brown-Gitler module \(J(2) \).

We denote by \(H = \mathbb{F}_2[t] \) the cohomology of \(\mathbb{Z}/2\mathbb{Z} \), where \(t \) is an element of \(H \) of degree one. We have the following result.

Proposition 7.1. Let \(E \) be an \(H - A \)-module which is \(H \)-free and such that \(\overline{E} \) is isomorphic to \(J(2) \) then:

\(E \cong H \otimes J(2) \)

or

\(E \) is the sub-\(H - A \)-module of \(H \oplus \sum H \) generated by \((t, \Sigma 1)\) and \((t^2, 0)\).

Proof. This proof uses the Smith theory (see [DW], [LZ2] theorem 2.1) which gives us an exact sequence \((*)\) in \(H - \mathcal{U} \):

\[
(*) \quad 0 \longrightarrow E \overset{\eta}{\longrightarrow} H \otimes \text{Fix}E \longrightarrow C \longrightarrow 0
\]
where C the quotient of $H \otimes \text{Fix}E$ is finite and also $\text{Fix}E$ is finite.

If the module C is trivial then E is isomorphic to $H \otimes J(2)$.

When C is a non trivial module. By applying the functor $\mathbb{F}_2 \otimes H$ to the exact sequence (*), we obtain:

$$0 \longrightarrow \sum \tau C \longrightarrow \overline{E} = J(2) \longrightarrow \text{Fix}E \longrightarrow C \longrightarrow 0$$

where τC is the trivial part of C (see [BHZ]).

Let’s denote by Q the quotient of E by $\sum \tau C$. By properties of the module $J(2)$, we have that $\sum \tau C = \sum^2 \mathbb{F}_2$ and $Q = \sum \mathbb{F}_2$. The exact sequence:

$$0 \longrightarrow \sum \mathbb{F}_2 \longrightarrow \text{Fix}E \longrightarrow C \longrightarrow \sum \mathbb{F}_2$$

gives that $\text{Fix}E \cong \sum \mathbb{F}_2 \oplus C$. One checks that the module C is either isomorphic to \mathbb{F}_2 or $\sum \mathbb{F}_2$. If $C = \sum \mathbb{F}_2$ then $\text{Fix}E \cong \sum \mathbb{F}_2 \oplus \sum \mathbb{F}_2$ as an unstable A-module, which implies that the module E is a suspension which is impossible because $E = J(2)$ is not a suspension. We conclude that $C = \mathbb{F}_2$. Since $\tau C = \sum \mathbb{F}_2$ then we get C is isomorphic to $H^\leq 1$, where $H^\leq 1$ denotes the sub-$H - A$-module of H consisting of elements of degree less or equal than 1. We have the following exact sequence in $H - \mathcal{U}$:

$$0 \longrightarrow \sum \mathbb{F}_2 \longrightarrow H \oplus \sum H \longrightarrow H^\leq 1 \longrightarrow 0.$$

The module E, we are searching for, is the kernel of φ and we check that it is the sub-$H - A$-module of $H \oplus \sum H$ generated by the elements $(t, \Sigma 1)$ and $(t^2, 0)$.

Remark 7.2. Let be $\mathbb{Z}/2\mathbb{Z}$ act on a real projective space $\mathbb{R}P^2$; let x_0 be a fixed point of this action (the set of fixed point is not empty for example by an argument of Lefschetz number). We have:

- The Serre spectral sequence collapses to give that: $H^*_V(\mathbb{R}P^2, x_0)$ is H-free and $H^*_V(\mathbb{R}P^2, x_0)$ is isomorphic to $J(2)$.

- In [DW], Dwyer and Wilkerson have shown that $H^*_V \mathbb{R}P^2 = \mathbb{F}_2[t, y]/(f)$
where \(y \) restricts to \(x \) and \(f = y^i(y + t)^j \) for \(i + j = 3 \). It is easy to check that this computation agrees with theorem 7.1.

References

[BHZ] D.Bourguiba, S.Hammouda, S.Zarati: Profondeur et cohomologie équivariante, African Diaspora Mathematics Research, Special Issue Vol 4 Number 3, 11-21.

[De] F.X.Dehon: Cobordisme complexe des espaces profinis et foncteur \(T \) de Lannes, Mémoires de la Société Mathématique de France \textbf{98}, SMF 2004.

[DL] F.X.Dehon, J.Lannes: Sur les espaces fonctionnels dont la source est le classifiant d’un groupe de Lie compact, commutatif I.H.E.S. 89 (1999) 127-177.

[DW] W.G.Dwyer, C.W.Wilkerson: Smith theory revisited, Annals of Mathematics, 127(1988) 191-198.

[EP] M.J.Errockh, C.Peterson:Injective resolutions of unstable modules, Journal of Pure and Applied Algebra 97(1994) 37-50.

[Hu] D.Husemoller: Fibre bundles, McGraw-Hill, series in higher mathematics, 1966.

[L1] J.Lannes: Sur les espaces fonctionnels dont la source est le classifiant d’un p-groupe abélien élémentaire, Publ. I.H.E.S. 75 (1992) 135-224.

[LS] J.Lannes, L.Shwartz: Sur la structure des \(A \)-modules instables injectifs, Topology 28 (1989) 153-169.
[LZ1] J.Lannes, S.Zarati: Sur les \mathcal{U}-injectifs, Ann. Scient. Ec. Norm. Sup. 19 (1986) 1-31.

[LZ2] J.Lannes, S.Zarati: Théorie de Smith algébrique et classification des $H^*V - \mathcal{U}$-injectifs, Bull. Soc. Math. France 123 (1995) 189-223.

[LZ3] J.Lannes, S.Zarati: Tor et Ext-dimensions des $H^*V - A$-modules instables qui sont de type fini comme H^*V-modules, Progress in Mathematics, Birkhäuser Verlag, vol 136 (1996) 241-253.

[NS] M.D. Neusel, L. Smith: Invariant theory of finite groups, volume 94 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2002.

[R] J. Rotman: An introduction to homological algebra, Academic Press, 1979.

[S] L. Schwartz: Unstable modules over the Steenrod algebra and Sullivan’s fixed point set conjecture, University of Chicago Press, 1984.

[Se] J-P. Serre: Sur la dimension cohomologique des groupes profini, Topology 3. (1965), 413-420.