A REMARK ON AN INEQUALITY FOR THE PRIME COUNTING FUNCTION

DIETRICH BURDE

ABSTRACT. We note that the inequalities $0.92 \frac{x}{\log(x)} < \pi(x) < 1.11 \frac{x}{\log(x)}$ do not hold for all $x \geq 30$, contrary to some references. These estimates on $\pi(x)$ came up recently in papers on algebraic number theory.

1. Chebyshev’s estimates for $\pi(x)$

Let $\pi(x)$ denote the number of primes not greater than x, i.e.,

$$\pi(x) = \sum_{p \leq x} 1.$$

One of the first works on the function $\pi(x)$ is due to Chebyshev. He proved (see [2]) in 1852 the following explicit inequalities for $\pi(x)$, holding for all $x \geq x_0$ with some x_0 sufficiently large:

$$c_1 \frac{x}{\log(x)} < \pi(x) < c_2 \frac{x}{\log(x)},$$

where

$$c_1 = \log\left(\frac{2^{1/2}3^{1/3}5^{1/5}}{30^{1/30}}\right) \approx 0.921292022934,$$

$$c_2 = \frac{6}{5} c_1 \approx 1.10555042752.$$

This can be found in many books on analytic number theory (see for example [1], [3], [11] and [14]). But it seems that this result is sometimes cited incorrectly: it is claimed that the estimates are valid for all $x \geq 30$. For example, in [6], page 21 we read that

$$c_1 \frac{x}{\log(x)} < \pi(x) < c_2 \frac{x}{\log(x)}, \quad \forall x \geq 30.$$

But a quick numerical computation shows that this is wrong. To give an example, take $x = 100$. Then we have $\pi(x) = 25$ and

$$c_2 \frac{x}{\log(x)} \approx 24.00672250690558538515780234 < 25.$$

Actually, the inequality is far from true for small x. We have the following result:
Theorem 1.1. Let $c_2 \approx 1.10555042752$ be Chebyshev’s constant. Then the inequality

$$\pi(x) < c_2 \frac{x}{\log(x)}$$

is true for all $x \geq 96098$. For $x = 96097$ it is false.

Proof. In [10] it is shown that

$$\pi(x) < \frac{x}{\log(x)} - 1.11, \quad x \geq 4.$$

The RHS is less or equal to $c_2 x/\log(x)$ if and only if

$$x \geq \exp \left(\frac{1.11 \cdot c_2}{c_2 - 1} \right) \approx 112005.18.$$

This shows the claim for $x \geq 112006$. Since $x/\log(x)$ is a monotonously increasing function it is enough to check the claimed estimate for integers x in the intervall $[96098, 112006]$ by computer. For $x = 96097$ we have $\pi(96097) = 9260$ and $c_2 x/\log(x) \approx 9259.92$. \hfill \Box

The incorrect inequality was also used in a former version of Khare’s proof of Serre’s modularity conjecture for the level one case, see [8], [9]. Let F be a finite field of characteristic p. The conjecture stated that an odd, irreducible Galois representation $\rho: \text{Gal}(\overline{Q}/Q) \rightarrow GL_2(F)$ which is unramified outside p is associated to a modular form on $SL_2(\mathbb{Z})$. Khare’s proof is an elaborate induction on p. Starting with a p for which the conjecture is known one wants to prove the conjecture for a larger prime P. Kahre’s arguments do only work if P and p are not Fermat primes, and if

$$\frac{P}{p} \leq a$$

for certain values $a > 1$, close to 1. At this point Khare used the incorrect estimate on $\pi(x)$, as explained above. Fortunately the proof easily could be repaired by using better estimates on $\pi(x)$ provided by Rosser and Schoenfeld [12], and Dusart [4].

Indeed, P. Dusart proved inequalities for $\pi(x)$ which are much better than Chebyshev’s estimates. He verifies this for smaller x numerically. Nevertheless he claims in his thesis [5], that Chebyshev gave the following inequality

$$0.92 \frac{x}{\log(x)} < \pi(x) < 1.11 \frac{x}{\log(x)}, \quad x \geq 30,$$

which is equally wrong.

The question is: where lies the origin for this error? Chebyshev himself proved inequalities in [2] with his constants c_1 and $c_2 = \frac{6}{\pi} c_1$ indeed for all $x \geq 30$, but for inequalities involving $\psi(x) = \sum_{n \leq x} \Lambda(n)$ instead of $\pi(x)$. His estimates concerning $\psi(x)$ seem to be correct for all
$x \geq 30$. For example, he shows by elementary means that, for all $x \geq 30$,

\[
\psi(x) < \frac{6}{5} c_1 x + \frac{5}{4 \log(6)} \log^2(x) + \frac{5}{4} \log(x) + 1,
\]

\[
\psi(x) > c_1 x - \frac{5}{2} \log(x) - 1.
\]

To derive from this inequalities on $\pi(x)$ for $x \geq 30$, we have to estimate

\[
\psi(x) = \sum_{p \leq x} \left\lfloor \frac{\log(x)}{\log(p)} \right\rfloor \log(p).
\]

Using the estimates $[y] \leq y < [y] + 1 \leq 2[y]$ for $y \geq 1$ we obtain

\[
\psi(x) \leq \pi(x) \log(x) \leq 2\psi(x), \quad x \geq 2.
\]

On the RHS we cannot do easily much better than $2\psi(x)$. Hence we obtain

\[
c_1 \frac{x}{\log(x)} < \pi(x) < 2c_2 \frac{x}{\log(x)}, \quad x \geq 30.
\]

On the other hand we know that

\[
\pi(x) = \frac{\psi(x)}{\log(x)} + O \left(\frac{x}{\log^2(x)} \right), \quad x \geq 2,
\]

so that we obtain, as x tends to infinity,

\[
(c_1 + o(1)) \frac{x}{\log(x)} \leq \pi(x) \leq (c_2 + o(1)) \frac{x}{\log(x)}.
\]

Chebyshev used these estimates to prove Bertrand’s postulate: each interval $(n, 2n]$ for $n \geq 1$ contains at least one prime. Moreover his results were a first step towards the proof of the prime number theorem.

2. Other estimates for $\pi(x)$

There are many interesting inequalities on the function $\pi(x)$. Let us first consider inequalities of the form

\[
A \frac{x}{\log(x)} < \pi(x) < B \frac{x}{\log(x)}
\]
for all \(x \geq x_0 \), where \(x_0 \) depends on the constant \(A \leq 1 \) and respectively on \(B > 1 \). On the LHS we can choose \(A \) equal to 1, if \(x \geq 17 \). In fact, we have \[\frac{x}{\log(x)} < \pi(x), \quad \forall x \geq 17. \]

Note that for \(x = 16.999 \) we have \(x/\log(x) \approx 6.0000257 \), but \(\pi(x) = 6 \). Consider the RHS of the above inequalities: if we want to hold such inequalities on \(\pi(x) \) for all \(x \geq x_0 \) with a smaller \(x_0 \), we need to enlarge the constant \(B \). Conversely, if we need this inequality for smaller \(B \), we have to enlarge \(x_0 \). The prime number theorem ensures that we can choose \(B \) as close to 1 as we want, provided \(x_0 \) is sufficiently large. The following result of Dusart \[4\] enables us to derive adjusted versions for the above inequalities:

Theorem 2.1 (Dusart). For real \(x \) we have the following sharp bounds:

\[
\begin{align*}
\pi(x) &\geq \frac{x}{\log(x)} \left(1 + \frac{1}{\log(x)} + \frac{1.8}{\log^2(x)}\right), \quad x \geq 32299, \\
\pi(x) &\leq \frac{x}{\log(x)} \left(1 + \frac{1}{\log(x)} + \frac{2.51}{\log^2(x)}\right), \quad x \geq 355991.
\end{align*}
\]

One can derive, for example, the following inequalities.

\[
\begin{align*}
\pi(x) &< 1.095 \cdot \frac{x}{\log(x)}, \quad x \geq 284860, \\
\pi(x) &< 1.25506 \cdot \frac{x}{\log(x)}, \quad x \geq 17.
\end{align*}
\]

Among other inequalities on \(\pi(x) \) we mention the following ones:

\[
\frac{x}{\log(x) - m} < \pi(x) < \frac{x}{\log(x) - M}
\]

for all \(x \geq x_0 \) with real constants \(m \) and \(M \). They have been studied by various authors. A good reference is the article \[10\]. There it is shown, for example, that

\[
\begin{align*}
\pi(x) &> \frac{x}{\log(x) - \frac{26}{29}}, \quad x \geq 3299, \\
\pi(x) &< \frac{x}{\log(x) - 1.11}, \quad x \geq 4.
\end{align*}
\]

The second inequality can also be used to obtain results on our estimate \(\pi(x) < B \frac{x}{\log(x)} \), in particular for smaller \(x \), where the second inequality of Theorem 2.1 is not valid. However we have

\[
\begin{align*}
\frac{x}{\log(x)} \left(1 + \frac{1}{\log(x)} + \frac{2.51}{\log^2(x)}\right) &< \frac{x}{\log(x) - 1.11}, \quad x \geq 28516.
\end{align*}
\]
For \(x > 10^6 \) and \(a = 1.08366 \) we can use \([10]\)

\[
\pi(x) < \frac{x}{\log(x) - a}.
\]

Here the upper bound of Dusart is better only as long as \(x \geq 2846396 \).

Finally we mention the book \([13]\), providing many references on inequalities on \(\pi(x) \), and the recent article \([7]\), where lower and upper bounds for \(\pi(x) \) of the form \(\frac{n}{H_n - c} \) are discussed, where \(H_n = 1 + \frac{1}{2} + \cdots + \frac{1}{n} \).

3. ACKNOWLEDGEMENT

We are grateful to the referee for drawing our attention to several approximations of \(\pi(x) \). We thank J. Sándor for helpful remarks.

REFERENCES

[1] T. Apostol: *Introduction to analytic number theory*. Springer Verlag, fünfte Auflage 1998.
[2] P. L. Chebyshev: *Mémoire sur les nombres premiers*. Journal de Math. Pures et Appl. 17 (1852), 366-390.
[3] K. Chandrasekharan: *Introduction to analytic number theory*, Moscow 1974.
[4] P. Dusart: *Ingalits explicites pour \(\psi(X) \), \(\theta(X) \), \(\pi(X) \) et les nombres premiers*. C. R. Math. Acad. Sci. Soc. R. Can. 21 (1999), no. 2, 53-59.
[5] P. Dusart: *Autour de la fonction qui compte le nombre de nombres premiers*. Thèse de Doctorat de l’Université de Limoges (1998).
[6] W. and F. Ellison: *Prime numbers*. Wiley Interscience 1985.
[7] M. Hassani: *Approximation of \(\pi(x) \) by \(\Psi(x) \).* J. of Inequ. in Pure and Apl. Math. 7(1) (2006), 1-7.
[8] C. Khare: *On Serre’s modularity conjecture for 2-dimensional mod p representations of Gal(\(\overline{Q} / Q \)) unramified outside p*. ArXiv math.NT/0504080 (2005).
[9] C. Khare: *Serre’s modularity conjecture: the level one case*. To appear in Duke Math. J.
[10] L. Panaitopol: *Several approximations of \(\pi(x) \).* Math. Inequal. & Appl. 2 No. 3 (1999), 317-324.
[11] K. Prachar: *Primzahlverteilung*. Grundlehren der Mathematischen Wissenschaften 91, Springer-Verlag, Berlin-New York, 1978.
[12] J. B. Rosser, L. Schoenfeld: *Sharper bounds for the Chebyshev functions \(\theta(x) \) and \(\psi(x) \).* Math. Comp. 29 (1975), 243-269.
[13] J. Sándor, D. S. Mitrinovic, B. Crstici: *Handbook of number theory I*. Springer, 2006.
[14] G. Tenenbaum: *Introduction to analytic and probabilistic number theory*. Cambridge studies in advanced mathematics 46 (1995).

E-mail address: dietrich.burde@univie.ac.at

Fakultät für Mathematik, Universität Wien, Nordbergstrasse 15, 1090 Wien