Sex-related differences in postoperative complications following elective craniotomy for intracranial lesions
An observational study

Giovanna Brandi, MD*, a, Vittorio Stumpo, MDb, Marco Gilone, MDc, Lazar Tosic, MDb, Johannes Sarnthein², Victor E. Staartjes, PhDd, Sophie Shih-Yüng Wang, MDe, Bas Van Niftrik, MDb, Luca Regli², Emanuela Keller², Carlo Serra, MDb

Abstract

Introduction: The integration of sex-related differences in neurosurgery is crucial for new, possible sex-specific, therapeutic approaches. In neurosurgical emergencies, such as traumatic brain injury and aneurysmal subarachnoid hemorrhage, these differences have been investigated. So far, little is known concerning the impact of sex on frequency of postoperative complications after elective craniotomy. This study investigates whether sex-related differences exist in frequency of postoperative complications in patients who underwent elective craniotomy for intracranial lesion.

Material and Methods: All consecutive patients who underwent an elective intracranial procedure over a 2-year period at our center were eligible for inclusion in this retrospective study. Demographic data, comorbidities, frequency of postoperative complications at 24 hours following surgery and at discharge, and hospital length of stay were compared among females and males.

Results: Overall, 664 patients were considered for the analysis. Of those, 339 (50.2%) were females. Demographic data were comparable among females and males. More females than males suffered from allergic, muscular, and rheumatic disorders. No differences in frequency of postoperative complications at 24 hours after surgery and at discharge were observed among females and males. Similarly, the hospital length of stay was comparable.

Conclusions: In the present study, no sex-related differences in frequency of early postoperative complications and at discharge following elective craniotomy for intracranial lesions were observed.

Abbreviations: ACS = acute coronary syndrome, ASA = American Society of Anesthesiology, ICU = intensive care unit, LOS = length of stay.

Key Words: gender medicine, neurosurgery, surgical complications, intracranial tumors, intensive care unit

1. Introduction

Sex-related differences regarding patients’ characteristics at hospital admission, provided care, and outcomes have been extensively studied within the field of cardiology[1–3] and critical care.[4,5] In the context of neurosurgery, the impact of sex is less investigated. While some data in patients following neurosurgical emergencies, such as after traumatic brain injury and aneurysmal subarachnoid hemorrhage, are available, [6–4] in patients admitted for elective neurosurgical procedures the evidence on the impact of sex is scarce. In patients who underwent elective lumbar spine surgery, sex-related differences in preoperative disabilities[8–11] hospital length of stay (LOS),[14] and postoperative satisfaction[15] were found. Indeed, in patients who underwent elective neurosurgery for intracranial lesions, only few studies in patients with glioblastoma,[16–18] meningioma,[19] and pituitary macroadenomas[20] specifically investigated sex-associated differences preoperatively and on outcomes. Most of the available studies investigated the impact of sex on mortality. However, sex-related differences in frequency of postoperative complications are rarely investigated and systematically collected.

* Correspondence: Giovanna Brandi, MD, Neurosurgical Intensive Care Unit, Institute for Intensive Care Medicine, University Hospital Zurich, Rämistrasse 100, CH-8006 Zurich, Switzerland. (e-mail: Giovanna.brandi@usz.ch).
The integration of sex-related differences in health care is crucial to bring insight for new, and possible sex-specific, therapeutic approaches, including in neurosurgery. In patients with acute coronary syndrome, for example, sex-differences in symptom presentation are well-established, so that the terms “atypical” and “typical” to label symptoms of acute coronary syndrome are now outdated.[3]

The present retrospective study investigates whether sex-related differences exist in frequency of postoperative complications in patients who underwent elective intracranial procedures for intracranial lesion. A better understanding of predictors of postoperative complications may allow clinicians to more accurately advise patients on the risks and benefits of undergoing neurosurgical procedure, as well as adapt postoperative care to patient need.

2. Materials and Methods
All patients who underwent elective resection or biopsy for a suspected intracranial lesion between June 2015 and May 2017 at
our hospital were eligible for inclusion in this retrospective observational study. Inclusion criteria were as follows: (1) adults (>18 years aged), (2) presence of an intracranial lesion, (3) elective craniotherapy, (4) postoperative admission at the ICU. Exclusion criteria was written or documented oral refusal of the patient to have his data analyzed for research projects. Primary endpoint was a difference in frequency of postoperative complications within 24 hours after surgery and during the hospital stay among women and men.

The local ethic committee approved the study. STROBE guidelines were employed to draft the manuscript. Data were obtained from our institutional ongoing prospective patient registry. Demographic data collected included: sex, age, comorbidities, smoking, or alcohol abuse. Comorbidities were assessed by the preoperative anesthesiology evaluation, and they were organ-specifically collected. Preoperative laboratory values were evaluated in a binary way (yes/no) and included electrolyte disorders of sodium or potassium, coagulation test disorders (prolonged prothrombin time, reduced platelets count), hepatic or renal disorders (increased transaminases, decreased glomerular filtration rate below 60 ml/min), and cardiac disorders (increased cardiac markers as troponin and myoglobin). Furthermore, at hospital admission, the following scores were determined and collected: Karnofsky Performance Scale and the American Society of Anesthesiology classification. The histological nature of the intracranial lesion was collected. Primary outcome was the occurrence of a postoperative complication within the first 24 hours as well as until discharge. Complications were defined as any deviation from expected postoperative course and classified according to the Clavien-Dindo-classification (Table 1). [22]

Table 3
List of postoperative complications

Complication	N (%)	P
None	440 (67.2)	
New neurological deficit (including transient)	101 (15.1)	
Seizures	17 (2.5)	
Delayed awakening	21 (3.1)	
Postoperative bleeding	10 (1.5)	
Intraoperative bleeding	4 (0.6)	
Others	19 (2.8)	
Metabolic	12 (1.8)	
Urinary tract infection	7 (1.0)	
Delirium	6 (0.9)	
Cerebral infarction	6 (0.9)	
Thromboembolic complication	6 (0.9)	
CSF fistula	4 (0.6)	
Postoperative bleeding	4 (0.6)	
Intraoperative bleeding	4 (0.6)	
Others	19 (2.8)	
Urinary tract infection	6 (0.9)	
Metabolic	12 (1.8)	
Intraoperative bleeding	4 (0.6)	
Others	19 (2.8)	

Data are presented in frequency (percentage). CSF = cerebrospinal fluid.

Table 4
Frequency of complications at discharge and at 24 hours following intracranial surgery, and hospital length of stay in the study population

Outcome	Overall (N/%)	Male (N/%)	Female (N/%)	P
Complication at discharge				
CDG N = 663	184/664 (27.7)	87/325 (26.8)	97/339 (28.6)	.61
0	448 (67.5)	222 (68.6)	226 (66.7)	.70
1	128 (19.3)	62 (19.1)	66 (19.5)	
2	60 (9.0)	26 (8.0)	34 (10.0)	
3	4 (0.6)	2 (0.6)	2 (0.6)	
3a	3 (0.9)	1 (0.3)	2 (0.6)	
3b	12 (1.8)	7 (2.2)	5 (1.5)	
4	1 (0.2)	1 (0.3)		
4a	6 (0.9)	3 (0.9)	3 (0.9)	
5	1 (0.2)		1 (0.3)	
Complication at 24 h				
CDG N = 663	171/663 (25.8)	84/325 (25.8)	87/338 (25.7)	1
0	490 (73.9)	241 (74.2)	249 (73.7)	.97
1	138 (20.8)	64 (19.7)	74 (21.9)	
2	31 (4.7)	17 (5.2)	14 (4.1)	
3b	4 (0.6)	3 (0.9)	1 (0.3)	

Data are expressed as frequency and percentage or mean and standard deviation. CDC = Clavien-Dindo Classification; hospital LOS = hospital length of stay.
our patients' sample can be expected to reflect true incidence in ing patients referral system in Switzerland, data resulting from on the contrary, were found more often in men. Given the exist-

Therefore, postoperative complications were not collected prospectively and systematically with a recognized score such as the Clavien-Dindo classification, which has been validated for multiple neurological conditions.

Finally, comorbidities were not summarized organ-specifically, as we did. Our approach thus reduces the risk of underestimation of the real frequency of postoperative complications and comorbidities.

As possible explication of the lack of any sex-associated differences in postoperative complications following elective craniotomy, we postulate that the role of sex hormones might differ in critical settings as compared to elective surgery. Accordingly, it has been shown, that men and women react differently to stress-induced increased cortisol levels, as might be the case in emergencies. Furthermore, previously reported sociodemographic aspects and gender-bias favorable for males influencing treatment decisions and care delivery might be less pronounced in elective settings. Finally, it is also possible that gender-bias are less disseminated in the medical personnel of our institution than in others, thus resulting in the findings presented in this study.

Even if this is a “negative” study, it suggests that in the setting of elective neurosurgery for intracranial lesions sex-related differences seem to be less evident than in other medical fields.

There are several limitations to this study. First, this is the experience of a single-center, limiting the generalizability of our findings. There are some evidence the also geographical aspects might play a role in frequency of sex-related differences in delivery of care. Second, the results presented here may remain residually confounded by unmeasured factors associated with both sex and outcomes of interest. Third, we limited our analysis to early complications after surgery, further prospective studies with larger numbers and longer follow-up are required to investigate the long-term outcome. Fourth, we limited our analysis to patients admitted postoperative at the ICU. If the study had also taken into consideration patients admitted to the intermediate care unit or the neurosurgical ward, the results would probably have been different. Finally, the small sample size is a further limitation of the study.

The role of sex and gender on frequency of postoperative complications in patients undergoing elective neurosurgery for intracranial lesions is complex and is likely to be multifactorial, involving sociocultural, hormonal, and disease-specific aspects. Contrarily to previous reports, we did not observe any significant sex-related difference in the occurrence of postoperative complications, either in the short-term (<24 hours) or at the whole population. These results support that sex-differences in brain cancer exist. This might be attributed to the difference in molecular, genetic, hormonal and evolutionary biology of both sexes. Despite the small number of patients per type of intracranial lesion in the study population, these results confirm and correspond to previous epidemiological reports.

In case of emergencies, sex-related discrepancies in patients’ characteristics, provided care, and outcomes in many fields of health care have been reported. Similarly, in neurosurgical emergency patients, sex-related discrepancies are reported. In case of elective intracranial surgery, on the contrary, data concerning these sex-related differences are scarce, with some exceptions, such as in patients with glioblastoma or meningioma.

So far, very little is known about the frequency of short-term complications following elective craniotomy. In a previous investigation on the relationship between sex and postoperative complications after neurosurgery, male sex was associated with higher risk of postoperative complications as well as longer hospital stay. Our findings do not confirm that men fare worse than women do. However, in the previous report, both craniotomy and spinal cases were included in the analysis, while our study focuses on patients following craniotomy only. Furthermore, postoperative complications were not collected prospectively and systematically with a recognized score such as the Clavien-Dindo classification, which has been validated for multiple neurological conditions.

Finally, comorbidities were not summarized organ-specifically, as we did. Our approach thus reduces the risk of underestimation of the real frequency of postoperative complications and comorbidities.

As possible explication of the lack of any sex-associated differences in postoperative complications following elective craniotomy, we postulate that the role of sex hormones might differ in critical settings as compared to elective surgery. Accordingly, it has been shown, that men and women react differently to stress-induced increased cortisol levels, as might be the case in emergencies. Furthermore, previously reported sociodemographic aspects and gender-bias favorable for males influencing treatment decisions and care delivery might be less pronounced in elective settings. Finally, it is also possible that gender-bias are less disseminated in the medical personnel of our institution than in others, thus resulting in the findings presented in this study.

Even if this is a “negative” study, it suggests that in the setting of elective neurosurgery for intracranial lesions sex-related differences seem to be less evident than in other medical fields.

There are several limitations to this study. First, this is the experience of a single-center, limiting the generalizability of our findings. There are some evidence the also geographical aspects might play a role in frequency of sex-related differences in delivery of care. Second, the results presented here may remain residually confounded by unmeasured factors associated with both sex and outcomes of interest. Third, we limited our analysis to early complications after surgery, further prospective studies with larger numbers and longer follow-up are required to investigate the long-term outcome. Fourth, we limited our analysis to patients admitted postoperative at the ICU. If the study had also taken into consideration patients admitted to the intermediate care unit or the neurosurgical ward, the results would probably have been different. Finally, the small sample size is a further limitation of the study.

The role of sex and gender on frequency of postoperative complications in patients undergoing elective neurosurgery for intracranial lesions is complex and is likely to be multifactorial, involving sociocultural, hormonal, and disease-specific aspects. Contrarily to previous reports, we did not observe any significant sex-related difference in the occurrence of postoperative complications, either in the short-term (<24 hours) or at the whole population. These results support that sex-differences in brain cancer exist. This might be attributed to the difference in molecular, genetic, hormonal and evolutionary biology of both sexes. Despite the small number of patients per type of intracranial lesion in the study population, these results confirm and correspond to previous epidemiological reports.
discharge. This study gives more insight on the impact of sex on frequency of short-term complications following elective craniotomy and contributes to improve the use of resources and delivery of care.

Author contributions

Study conception and design: GB, SW, CS, EK, LR
Material preparation, data collection and analysis: GB, VS, MG, LT, JS, SW, BVN
Writing the first draft of the manuscript: GB, VS
Approval of the final manuscript: all authors.

References

[1] Goto Y, Funada A, Maeda T, et al. Sex-specific differences in survival after out-of-hospital cardiac arrest: a nationwide, population-based observational study. Crit Care. 2019;23:263.
[2] Lindgren E, Covaciu L, Smekal D, et al. Gender differences in utilization of coronary angiography and angiographic findings after out-of-hospital cardiac arrest: A registry study. Resuscitation. 2019;143:189–95.
[3] van Oosterhout REM, de Boer AR, Maas AHEM, et al. Sex differences in symptom presentation in acute coronary syndromes: a systematic review and meta analysis. JAH. 2020;9:e014733.
[4] Hill A, Ramsey C, Dodd P, et al. Examining mechanisms for gender differences in admission to intensive care units. Health Serv Res 2020;55:35–43.
[5] Zettersten E, Jäderling G, Bell M, et al. Sex and gender aspects on intensive care. acohort study. J Crit Care. 2020;55:22–7.
[6] Albrecht JS, McCunn M, Stein DM, et al. Sex differences in mortality following isolated traumatic brain injury among older adults. J Trauma Acute Care Surg. 2016;81:486–92.
[7] Duiguissen JJ, Greebe P, Nieuwkamp DJ, et al. Sex- related differences in outcome in patients with aneurysmal subarachnoid hemorrhage. J Stroke Cerebrovasc Dis. 2016;25:2067–70.
[8] Leitge J, Mauritz W, Brazinova A, et al. Effects of gender on outcomes after traumatic brain injury. J Trauma Acute Care Surg. 2011;71:1620–6.
[9] Gauthsch OP, Scharlo B, Schaller K, et al. Clinically relevant complications related to pedicle screw placement in thoracolumbar surgery and their management: a literature review of 35,630 pedicle screws. Neurosurg Focus. 2011;31:E8.
[10] Hakkinen A, Kautaninen H, Jarvenpaia S, et al. Changes in the total Oswestry index and its ten items in females and males pre- and post-surgery for lumbar disc herniation: a 1-year follow-up. Eur Spine J. 2007;16:347–52.
[11] Triebel J, Snellman G, Sandén B, et al. Women do not fare worse than men in lumbar disc herniation surgery: a 1-year follow-up study. Acta Neurochir. 2020;11:2759–65.
[12] Staub S, Leitner Y, Nyska M, et al. Surgical treatment of lumbar spinal stenosis in patients aged 65 years and older. Arch Gerontol Geriatr. 2002;35:143–52.
[13] Ostrom QT, Rubin JB, Lathia JD, et al. Females have the survival advantage in glioblastoma. Neuro-Oncology. 2018;20:576–7.
[14] Tian M, Ma W, Chen Y, et al. Impact of gender on the survival of patients with glioblastoma. Biosci Rep. 2018;38:BSR20180752.
[15] Yang W, Warrington NM, Taylor SJ, et al. Sex differences in GBM revealed by analysis of patient imaging, transcriptome, and survival data. Sci Transl Med. 2019;11:eaaao5253.
[16] Westwick HJ, Shamas MJ. Effects of sex on the incidence and prognosis of spinal meningiomas: a surveillance, epidemiology, and end results study. SPI. 2015;23:368–73.
[17] Caputo C, Sutherland T, Farish S, et al. Gender differences in presentation and outcome of nonfunctioning pituitary macroadenomas. Clin Endocrinol. 2013;78:564–70.
[18] Sarnthein J, Stiegitz L, Clavien P-A, et al. A patient registry to improve patient safety: recording general neurosurgery complications. PLoS One. 2016;11:e0163545.
[19] Dindo D, Demartines N, Clavien P-A. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004;240:205–13.
[20] Kerkhof PLM, Khamaganova I. Sex-Specific cardiovascular comorbidities with associations in dermatologic and rheumatic disorders. Adv Exp Med Biol. 2018;1065:489–509.
[21] Matschon MC, Dharmar SC, Abramson MJ, et al. Early-life risk factors and incidence of rickets: results from the European Community Respiratory Health Study an international population-based cohort study. J Allergy Clin Immunol. 2011;128:816–823.e5.
[22] Moscato G, Apfelbacher C, Brockow K, et al. Gender and occupational allergy (GOA): report from the task force of the EACVI Environmental Allergy Interest Group. Allergy. 2007;62:752–63.
[23] Larsson E, Lindström A-C, Eriksson M, et al. Impact of gender on post-traumatic intensive care and outcomes. Scand J Trauma Resusc Emerg Med. 2019;27:115.
[24] Sun T, Phutynsky A, Ward S, et al. An integrative view on sex differences in brain tumors. Cell Mol Life Sci. 2015;72:3322–4.
[25] American cancer society. Available at: http://www.cancer.org/acs/groups/cid/documents/document/acspc-044452.pdf.
[26] Cancer research UK. Available at: http://www.cancerresearchuk.org/cancer-info/cancerstats/incidence/.
[27] Ostrom QT, Gittleman H, Truitt G, et al. CBTRUS Statistical Report: primary brain and other central nervous system tumors diagnosed in the United States in 2011–2015. Neuro-Oncology. 2018;20(suppl_4):iv1–iv86.
[28] Samuelsson C, Sjöberg E, Karlström G, et al. Gender differences in outcome and use of resources do exist in Swedish intensive care, but to no advantage for women of premenopausal age. Crit Care. 2015;19:129.
[29] Sunden-Gullberg J, Nilsson A, Inghammar M. Sex-related differences in ED management of critically ill patients with sepsis: a nationwide cohort study. Intensive Care Med. 2020;46:727–36.
[30] Todorov A, Kaufmann F, Arslani K, et al. Swiss society of intensive care medicine. Gender differences in the provision of intensive care: a bayesian approach. Intensive Care Med. 2021;47:577–87.
[31] Aledran T, Drumheller BC, McCunn M, et al. Sex differences in in-hospital complications among older adults after traumatic brain injury. J Surg Res. 2019;243:427–33.
[32] Marcolini EG, Albrecht JS, Sethuraman KN, et al. Gender disparities in trauma care. Anesthesiol Clin. 2019;37:107–17.
[33] Johnston SC, Selvin S, Gress DR. The burden, trends, and demographics of mortality from subarachnoid hemorrhage. Neurology. 1998;50:1413–8.
[34] Davis MG, EI-Sayed AM, Ziewacz JE, et al. Sex disparities in postoperative outcomes after neurosurgical intervention: findings from the UMEND project. Neurosurg. 2012;70:959–64.
[35] Kerezoudis P, McCutcheon B, Murphy ME, et al. Thirty-day postoperative mortality from subarachnoid hemorrhage. Neurology. 1998;50:1413–8.
[36] Johnston MA, Selvin S, Gress DR. The burden, trends, and demographics of mortality from subarachnoid hemorrhage. Neurology. 1998;50:1413–8.
[37] Bucher B, Maldaner N, Regli L, et al. Standardized assessment of outcome and complications in chronic subdural hematoma: results from a large case series. Acta Neurochir. 2019;161:1297–304.
[38] Staartjes VE, Sebok M, Blum PG, et al. Development of machine learning-based preoperative predictive analytics for unruptured intracranial aneurysm surgery: a pilot study. Acta Neurochir. 2020;11:2759–65.
[39] Serra C, Akeret K, Staartjes VE, et al. Safety of the paramedian supracerebellar–transtentorial approach for selective amygdalohippocampectomy. Neurosurg Focus. 2020;48:E3.
[40] van Niftrik CHB, van der Wouden F, Staartjes VE, et al. Machine learning algorithm identifies patients at high risk for early complications after intracranial tumor surgery: registry- based cohort study. Neurosurgery. 2019;85:E56–64.
[41] van den Bos R, Taris R, Scheppink B, et al. Salivary cortisol and alpha-amylase levels during an assessment procedure correlate differentially with risk-taking measures in male and female police recruits. Front Behav Neurosci. 2014;7:219.
[42] Kluen LM, Agorastos A, Wiedemann K, et al. Cortisol boosts risky decision-making behavior in men but not in women. Psychoneuroendocrinology. 2017;84:181–9.
[43] Raine R. Influence of patient gender on admission to intensive care. J. Epilepsy Res. 2010;2:418–26.
[44] Bugiardini R, Estrada JL, Nikus K, et al. Gender bias in acute coronary syndromes. Curr Vasc Pharmacol. 2010;8:276–84.
[45] McNicholas BA, Madotto F, Pham T, et al. Demographics, management and outcome of female and males with acute respiratory distress syndrome in the LUNG SAFE prospective cohort study, Eur Respir J. 2019;54;1900609.