Characterization of the Fibonacci Cobweb Poset as oDAG

Ewa Krot

Institute of Computer Science, Białystok University
PL-15-887 Białystok, ul.Sosnowa 64, POLAND
e-mail: ewakrot@wp.pl, ewakrot@ii.uwb.edu.pl

February 8, 2008

Abstract

The characterization of Fibonacci Cobweb poset P as DAG and oDAG is given. The dim 2 poset such that its Hasse diagram coincide with digraf of P is constructed.

1 Fibonacci cobweb poset

The Fibonacci cobweb poset P has been invented by A.K.Kwaśniewski in [1, 2, 3] for the purpose of finding combinatorial interpretation of fibonomial coefficients and eventually their recurrance relation.

In [1] A. K. Kwaśniewski defined cobweb poset P as infinite labeled digraph oriented upwards as follows: Let us label vertices of P by pairs of coordinates: $\langle i, j \rangle \in \mathbb{N}_0 \times \mathbb{N}_0$, where the second coordinate is the number of level in which the element of P lies (here it is the j-th level) and the first one is the number of this element in his level (from left to the right), here i.

Following [1] we shall refer to Φ_s as to the set of vertices (elements) of the s-th level, i.e.:

$$\Phi_s = \{\langle j, s \rangle, \ 1 \leq j \leq F_s \}, \ s \in \mathbb{N} \cup \{0\},$$

where $\{F_n\}_{n \geq 0}$ stands for Fibonacci sequence.

Then P is a labeled graph $P = (V, E)$ where

$$V = \bigcup_{p \geq 0} \Phi_p, \quad E = \{\langle \langle j, p \rangle, \langle q, p + 1 \rangle \rangle \}, \ 1 \leq j \leq F_p, \ 1 \leq q \leq F_{p+1}.$$
We can now define the partial order relation on P as follows: let $x = (s, t), y = (u, v)$ be elements of cobweb poset P. Then

$$(x \leq_P y) \iff [(t < v) \lor (t = v \land s = u)].$$

Fig. 1. The picture of the Fibonacci ”cobweb” poset

2 DAG \rightarrow oDAG problem

In [5] A. D. Plotnikov considered the so called ”DAG \rightarrow oDAG problem”. He determined condition when a digraph G may may be presented by the corresponding $dim \ 2$ poset R and he established the algorithm for finding it.

Before citing Plotnikov’s results let us recall (following [5]) some indispensable definitions.

If P and Q are partial orders on the same set A, Q is said to be an extension of P if $a \leq_P b$ implies $a \leq_Q b$, for all $a, b \in A$. A poset L is a chain, or a linear order if we have either $a \leq_L b$ or $b \leq_L a$ for any $a, b \in A$. If Q is a linear order then it is a linear extension of P.
The **dimension** $\dim R$ of R being a partial order is the least positive integer s for which there exists a family $F = (L_1, L_2, \ldots, L_s)$ of linear extensions of R such that $R = \bigcap_{i=1}^{s} L_i$. A family $F = (L_1, L_2, \ldots, L_s)$ of linear orders on A is called a **realizer** of R on A if

$$R = \bigcap_{i=1}^{s} L_i.$$

We denote by D_n the set of all acyclic directed n-vertex graphs without loops and multiple edges. Each digraph $\vec{G} = (V, \vec{E}) \in D_n$ will be called **DAG**.

A digraph $\vec{G} \in D_n$ will be called **orderable** (oDAG) if there exists are $\dim 2$ poset such that its Hasse diagram coincide with the digraph \vec{G}.

Let $\vec{G} \in D_n$ be a digraph, which does not contain the arc (v_i, v_j) if there exists the directed path $p(v_i, v_j)$ from the vertex v_i into the vertex v_j for any $v_i, v_j \in V$. Such digraph is called **regular**. Let $D \subset D_n$ is the set of all regular graphs.

Let there is a some regular digraph $\vec{G} = (V, \vec{E}) \in D_n$, and let the chain \vec{X} has three elements $x_{i_1}, x_{i_2}, x_{i_3} \in X$ such that $i_1 < i_2 < i_3$, and, in the digraph \vec{G}, there are not paths $p(v_{i_1}, v_{i_2})$, $p(v_{i_2}, v_{i_3})$ and there exists a path $p(v_{i_1}, v_{i_3})$. Such representation of graph vertices by elements of the chain \vec{X} is called the representation in **inadmissible form**. Otherwise, the chain \vec{X} presents the graph vertices in **admissible form**.

Plotnikov showed that:

Lemma 1. \cite{5} A digraph $\vec{G} \in D_n$ may be represented by a $\dim 2$ poset if:

1. there exist two chains \vec{X} and \vec{Y}, each of which is a linear extension of \vec{G};

2. the chain \vec{Y} is a modification of \vec{X} with inversions, which remove the ordered pairs of \vec{X} that there do not exist in \vec{G}.

Above lemma results in the algorithm for finding $\dim 2$ representation of a given DAG (i.e. corresponding oDAG) while the following theorem establishes the conditions for constructing it.

Theorem 1. \cite{5} A digraph $\vec{G} = (V, \vec{E}) \in D_n$ can be represented by $\dim 2$ poset iff it is regular and its vertices can be presented by the chain \vec{X} in admissible form.
3 Fibonacci cobweb poset as DAG and oDAG

In this section we show that Fibonacci cobweb poset is a DAG and it is orderable (oDAG).

Obviously, cobweb poset $P = (V, E)$ defined above is a DAG (it is directed acyclic graph without loops and multiple edges). One can also verify that it is regular. For two elements $\langle i, n \rangle, \langle j, m \rangle \in V$ a directed path $p(\langle i, n \rangle, \langle j, m \rangle) \not\in E$ will exist iff $n < m + 1$ but then $\langle (i, n), (j, m) \rangle \not\in E$ i.e. P does not contain the edge $\langle (i, n), (j, m) \rangle$.

It is also possible to verify that vertices of cobweb poset P can be presented in admissible form by the chain \vec{X} being a linear extension of cobweb P as follows:

$$\vec{X} = (\langle 1, 0 \rangle, \langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 1, 3 \rangle, \langle 2, 3 \rangle, \langle 1, 4 \rangle, \langle 2, 4 \rangle, \langle 3, 4 \rangle, \langle 1, 5 \rangle, \langle 2, 5 \rangle, \langle 3, 5 \rangle, \langle 4, 5 \rangle, \langle 5, 5 \rangle, ...),$$

where

$$(s, t) \leq_{\vec{X}} (u, v) \iff [(s \leq u) \land (t \leq v)]$$

for $1 \leq s \leq F_t$, $1 \leq u \leq F_v$, $t, v \in \mathbb{N} \cup \{0\}$.

Fibonacci cobweb poset P satisfies the conditions of Theorem 1 so it is oDAG. To find the chain \vec{Y} being a linear extension of cobweb P one uses Lemma 1 and arrives at:

$$\vec{Y} = (\langle 1, 0 \rangle, \langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 3 \rangle, \langle 1, 3 \rangle, \langle 3, 4 \rangle, \langle 2, 4 \rangle, \langle 1, 4 \rangle, \langle 5, 5 \rangle, \langle 4, 5 \rangle, \langle 3, 5 \rangle, \langle 2, 5 \rangle, \langle 1, 5 \rangle, ...),$$

where

$$(s, t) \leq_{\vec{Y}} (u, v) \iff [(t < v) \lor (t = v \land s \geq u)]$$

for $1 \leq s \leq F_t$, $1 \leq u \leq F_v$, $t, v \in \mathbb{N} \cup \{0\}$ and finally

$$(P, \leq_P) = \vec{X} \cap \vec{Y}.$$

4 Closing remark

For any sequence $\{a_n\}$ of natural numbers one can define corresponding cobweb poset as follows:

$$\Phi_s = \{\langle j, s \rangle, 1 \leq j \leq a_s\}, \ s \in \mathbb{N} \cup \{0\},$$
and \(\text{cob}P = (V, E) \) where

\[
V = \bigcup_{p \geq 0} \Phi_p, \quad E = \{\langle j, p \rangle, \langle q, p + 1 \rangle \}, \quad 1 \leq j \leq a_p, \quad 1 \leq q \leq a_{p+1}
\]

with the partial order relation on \(\text{cob}P \):

\[
(x \leq_P y) \iff [(t < v) \lor (t = v \land s = u)]
\]

for \(x = \langle s, t \rangle, y = \langle u, v \rangle \) being elements of cobweb poset \(\text{cob}P \). Similarly as above one can show that the family of cobweb posets consist of DAGs representable by corresponding \(\text{dim} \ 2 \) posets (i.e. of oDAGs).

References

[1] A. K. Kwaśniewski: More on Combinatorial Interpretation of Fibonacci Coefficients, Bulletin de la Societe des Sciences et des Lettres de d(54) Serie: Recherches sur les Deformations Vol. 44, p.23-38, ArXiv:math.CO/0402311 v1 26 Oct 2004

[2] A. K. Kwaśniewski: Information on combinatorial Interpretation of Binomial Coefficients, Bull.Soc.Lett.Lodz.Ser.Rech.Deform. 42(2003) p.39-41 ArXiv:math.CO/0402291 v1 22 Feb 2004

[3] A. K. Kwaśniewski: The Logarythmic Fib-binomial Formula, Adv. Stud. Math. v. 9 (2004) No.1, p.19-26, ArXiv: math. CO/0406258 13 June 2004

[4] A. K. Kwaśniewski: Comments on Combinatorial Interpretation of Fibonacci Coefficients, an e-mail style letter, Bulletin of the Institute of Combinatorics and its Applications, vol. 42 September 2004, p.10-11

[5] A. D. Plotnikov: About Presentation of a Digraf by dim 2 Poset http://www.cumulativeinquiry.com/Problems/solut2.pdf