Viral Regulation of RNA Granules in Infected Cells

Qiang Zhang¹ · Nishi R. Sharma² · Zhi-Ming Zheng³ · Mingzhou Chen¹

Received: 15 January 2019 / Accepted: 2 April 2019 / Published online: 29 April 2019
© The Author(s) 2019

Abstract
RNA granules are cytoplasmic, microscopically visible, non-membrane ribo-nucleoprotein structures and are important posttranscriptional regulators in gene expression by controlling RNA translation and stability. TIA/G3BP/PABP-specific stress granules (SG) and GW182/DCP-specific RNA processing bodies (PB) are two major distinguishable RNA granules in somatic cells and contain various ribosomal subunits, translation factors, scaffold proteins, RNA-binding proteins, RNA decay enzymes and helicases to exclude mRNAs from the cellular active translational pool. Although SG formation is inducible due to cellular stress, PB exist physiologically in every cell. Both RNA granules are important components of the host antiviral defense. Virus infection imposes stress on host cells and thus induces SG formation. However, both RNA and DNA viruses must confront the hostile environment of host innate immunity and apply various strategies to block the formation of SG and PB for their effective infection and multiplication. This review summarizes the current research development in the field and the mechanisms of how individual viruses suppress the formation of host SG and PB for virus production.

Keywords Stress granules (SG) · P-bodies (PB) · RNA virus · DNA virus

Introduction

While the intracellular environment and embedded cellular machinery provide the needed vital force and necessary materials for viruses to replicate after infection, these host machineries are not available to these foreign invaders at ease. In fact, viruses have to counter the multiple layers of intracellular defense to replicate and establish their dominance for their propagation. RNA granules (Thomas et al. 2011) are dynamic non-membrane subcellular structures (Ivanov et al. 2018) containing translationally silenced messenger ribonucleoproteins (mRNPs), which play an important role in regulation of cellular homeostasis, RNA metabolism and gene expression at the posttranscriptional level (Anderson and Kedersha 2009). Stress granules (SG) and processing bodies (PB) (Eulalio et al. 2007) are two of RNA granules well characterized in yeast and mammalian cells (Poblete-Duran et al. 2016) and are important components of the host cell antiviral defense.

SG are non-membranous, transiently assembled cytoplasmic aggregates of 48S mRNPs and associated proteins (Stohr et al. 2006; Buchan and Parker 2009), where stalled translation preinitiation complexes (PICs) repress the translation of nonessential mRNAs (Anderson et al. 2015) and modulate cell signaling by sequestering key signal translation proteins (Kedersha et al. 2013). Thus, SG are thought to be the aggregates of stable, translationally silent mRNAs (Kedersha and Anderson 2002). A variety of environmental stresses, including viral infection, can trigger SG formation in eukaryotic cells (Anderson and Kedersha 2008). In contrast, PB can exist in the absence of stress (Stoecklin and Kedersha 2013), which are sites of active mRNA decay (Decker and Parker 2012). SG initiate global translational arrest by storing mRNA (Anderson and Kedersha 2009) for exchange with either polysomes for translation or PB for degradation (Kedersha et al. 2005). RNA-binding proteins TIA-1 (Kedersha et al. 1999; Gilks
et al. 2004), G3BP (Tourriere et al. 2003; Matsuki et al. 2013) and PABP (Ma et al. 2009; Smith and Gray 2010; Burgess et al. 2011) are three fundamental components of SG during stress (Fig. 1). GW182 and de-capping/de-adenylating enzymes are specific components of PB (Kedersha et al. 2005), where siRNA- or miRNA-guided mRNAs are processed and degraded (Liu et al. 2005) (Fig. 1). Virus infection imposes stress on host cells (McInerney et al. 2005) and thereby induces SG formation. SG can shut off the translation of bulk mRNAs (Poblete-Duran et al. 2016) to regulate gene expression and compartmentalization of heterologous viral RNAs and proteins. At the same time, viruses must take strategies to confront these responses and maximize their own replication efficiency (White and Lloyd 2012) by inhibition of SG formation and disruption of PB assembly via virally encoded factors.

Viral Regulation of RNA Stress Granule Formation

SG Formation and Induction of SG by RNA Virus Infections

The process of SG formation can be artificially divided into the following steps (Fig. 2): (1) accumulation of stalled translation initiation complexes (Panas et al. 2016) in response to various types of stress; (2) the RNA-binding proteins such as RAS-GTPase-activating protein SH3 domain-binding protein 1 (G3BP1) and T cell-restricted intracellular antigen 1 (TIA1) bind mRNAs and aggregate to nucleate SG formation. Self-aggregation of G3BP1 (Tourriere et al. 2003) and the binding of TIA1 and TIAR (TIA-1-related protein) to polysome-free mRNAs, which exposes prion-like domains (Gilks et al. 2004), trigger mRNP aggregation. The aggregation of proteins is dynamic, and can rapidly exchange between SG and cytosol (Kedersha et al. 2000, 2005). (3) large SG aggregate from smaller foci via posttranslational modification and microtubule transport (McCormick and Khaperskyy 2017). Many SG proteins undergo multiple post-translational modifications (Jayabalan et al. 2016; Protter and Parker 2016). For example, G3BP1 must be demethylated (Tsai et al. 2016), dephosphorylated (Kedersha et al. 2016) and poly(ADP)-ribosylated (Leung et al. 2011) to promote SG nucleation. Accordingly, SG formation also requires ongoing transport of mRNPs along with an intact microtubule cytoskeleton (Ivanov et al. 2003). Theoretically, viral interference with any of these important steps may modulate SG formation in cells. In fact, many viral factors can interfere with SG formation and/or function. Meanwhile, SG can entrap viral RNA in some cases (McCormick and Khaperskyy 2017). Therefore, SG are thought to be antiviral (Rozelle et al. 2014). Thus, to illustrate the relationship between SG and RNA viruses would be important for us to better understand the interactions of host and viruses.

Up to the present, SG can be divided into two types according to their formation mode. Type I SG formation depends on phosphorylation of eukaryotic translation initiation factor-2α (eIF2α) by one of the eIF2 kinases—double-stranded RNA (dsRNA)-activated protein kinase or protein kinase R (PKR) (Srivastava et al. 1998; Garcia et al. 2007; Onomoto et al. 2012), PKR-like ER kinase (PERK) (Harding et al. 2000a, b), general control non-derepressible protein 2 (GCN2) (Wek et al. 1995; Deng et al. 2002) or haeme-regulated inhibitor (HRI) (McEwen et al. 2005), which are activated by distinct types of stress. Phosphorylated eIF2α stably binds to eIF2β, which prevents the recycle of eIF2α and regeneration of the eIF2-GTP-Met-tRNA^{Met} ternary complex. Thus, eIF2α phosphorylation blocks recognition of the

Fig. 1 Mammalian RNA granules. HeLa cells immunostaining with anti-TIA-1 (left and middle, red) show stress granules (SG) during stress of NaAs₂O₃ (+arsenite, middle) and with anti-GW182 show processing bodies (PB) under physiological condition. Arrows indicate granules (SG or PB).
initiation codon and joining of the large ribosomal subunit, resulting in accumulation of stalled 48S mRNPs (Jackson et al. 2010). Type II SG formation is independent of eIF2α phosphorylation, but requires eIF4F complex disruption such as inhibition of eIF4A RNA helicase (Bordeleau et al. 2006; Dang et al. 2006) or disruption of eIF4E activity (von der Haar et al. 2004; Fournier et al. 2013) for recognition and binding of RNA cap structure. The stress induced by nutrient, energy, oxygen or growth factor insufficiency inhibits mTOR complex 1 (mTORC1), whose activity is required for the dissociation of 4EBPs from eIF4E (Fujimura et al. 2012) and enables eIF4E to form the eIF4F complex, and thus blocks assembly of pre-initiation complexes (Zoncu et al. 2011).

Type I SG formation induced by viruses is the most and best-studied example (Table 1, Fig. 3A). Various RNA products derived by viruses including long dsRNA (Rojas et al. 2010), 5′-triphosphate RNA (5′-ppp-RNA) (Nallagatla et al. 2007), dsRNA that is formed by the antiparallel mRNA transcripts of some DNA viruses (Willis et al. 2011), and human immunodeficiency virus (HIV) transactivation-response region (TAR) RNA hairpins (Heinicke et al. 2009), can be recognized by PKR. The activated PKR initiates SG assembly through eIF2α phosphorylation. For instance, the persistent phosphorylation of eIF2α (Montero et al. 2008) during rotavirus infection is PKR-dependent as a consequence of the accumulation of viral dsRNA in the cytoplasm outside the viroplasms (virus-induced cytoplasmic inclusion bodies called viroplasms [VMs]) (Rojas et al. 2010). Even though eIF2α is phosphorylated in rotavirus-infected cells, the formation of SG is prevented and viral proteins are efficiently translated, suggesting that the virus prevents the assembly of these structures presumably downstream of eIF2α phosphorylation to allow the translation of its mRNAs (Mazroui et al. 2006). Very recently, Dhillon and Rao found that rotavirus induces formation and sequestration of remodeled SG and PB in the VMs which contain the majorities of their components but selective exclusion of a few proteins (G3BP1 and ZBP1 for SG, DDX6, EDC4 and Pan3 for PB), to promote virus replication (Dhillon and Rao 2018). Oceguera et al. demonstrated that viral RNA of rotavirus could interact with several RNA binding proteins (RBPs) (Xrn1, Dcp1, Ago2, Hur) and interfere with their subcellular localization (Oceguera et al. 2018). Lindquist et al. (Lindquist et al. 2011) first determined that SG induction by respiratory syncytial virus (RSV) was mediated by PKR-dependent eIF2α phosphorylation. The RSV-mediated SG formation was significantly reduced in PKR-knockdown cells (Lindquist et al. 2010). In addition, it has been shown that Hepatitis C virus (HCV) strongly activates PKR via the 5′-untranslated region (UTR) of its genome (Toroney et al. 2010), thereby inducing SG. NS1-mutant Influenza virus A (IAV) (Khaperskyy et al. 2012; Mok et al. 2012; Ng et al. 2013) and C protein-deficient Sendai virus (SeV) (Takeuchi et al. 2008) lead to significant activation of PKR and eIF2α phosphorylation. Besides, PERK could be activated by high levels of glycoproteins produced from enveloped proteins.
Genome	Virus family	Virus	Type	Mechanism	References
dsDNA	Herpesviridae	HCMV	Induction	Modifies the UPR and activates PERK pTRS1 and pIRS1 antagonistize PKR to facilitate virus replication	Isler et al. (2005)
			Inhibition	ORF57 interacts with PKR and PACT to inhibit PKR activation	Ziehr et al. (2016)
		KSHV	Inhibition	ORF57 interacts with PKR and PACT to inhibit PKR activation	Sharma et al. (2017)
		HSV-1	Inhibition	vhs and Us11 protein play a key role in blocking the activation of PKR	Sciortino et al. (2013)
		HSV-2	Inhibition	vhs localizes to SG and its endoribonuclease activity is required to disrupt SG formation	Finnen et al. (2012, 2014, 2016)
	Poxviridae	VV	Inhibition	Sequesters crucial SG components within DNA factories	Katsafanas and Moss (2012), Zaborowska et al. (2012)
			Induction	Untranslated mRNA accumulation in viral DNA factories induces RNA granules formation	Meng and Xiang (2019)
dsRNA	Reoviridae	Rotavirus	Inhibition	Phosphorylation of eIF2α is PKR-dependent as a consequence of the accumulation of viral dsRNA	Montero et al. (2008), Rojas et al. (2010)
(+)ssRNA	Picornaviridae	PV	Inhibition	Viral 3C protease cleaves G3BP	White et al. (2007)
		FMDV	Inhibition	Viral 3C protease cleaves G3BP	Ye et al. (2018)
		TMEV	Inhibition	Leader Protease Cleaves G3BP1 and G3BP2 aggregation	Visser et al. (2019)
		Mengovirus	Inhibition	Express the leader (L) protein to inhibit G3BP1 aggregation	Borghese and Michiels (2011)
		EV71	Modulation	Induces formation and sequestration in the VMs of remodeled SG and PB	Dhillon and Rao (2018)
	Caliciviridae	FCV	Inhibition	NS6Pro cleaves G3BP1	Humoud et al. (2016)
	Togaviridae	SINV	Induction	Genomic RNA activates GCN2	Berlanga et al. (2006)
	Flaviviridae	WNV	Inhibition	3′-end viral genome captures TIA-1/TIAR	Li et al. (2002), Emara and Brinton (2007)
		DENV	Inhibition	3′-end viral genome captures TIA-1/TIAR	Li et al. (2002), Emara and Brinton (2007), Ward et al. (2011)
				3′-UTR interacts with G3BP1, G3BP2, Caprin1 and USP10	
				Recruits G3BP and USP10 to the perinuclear region	Tu et al. (2012)
				NS2A interact with PKR and prevent PKR dimerization	Ward et al. (2011)
			Induction	Activates PKR via the 5′- UTR of its genome	Toroney et al. (2010)
			Inhibition	NS5A protein binds to the PKR dimerization domain to inhibit PKR activation	Toroney et al. (2010)
				Modulate GADD34 and PP1 to de-phosphorylate eIF2α	Ruggieri et al. (2012)
			Modulation	Redistributes several SG components to the HCV replication complex (RC)	Ariumi et al. (2011), Garaigorta et al. (2012), Pene et al. (2015)
			Inhibition	Induces the redistribution of TIAR to the viral RNA replication sites	Hou et al. (2017)
	Arenaviridae	JUNV	Inhibition	N and GPC impair the phosphorylation of eIF2α	Linero et al. (2011)
	Bunyaviridae	RVFV	Inhibition	RVFV attenuates mTOR signaling to inhibit 4EBP phosphorylation	Habjan et al. (2009), Ikegami et al. (2009), Hopkins et al. (2015)
viruses (Chan and Egan 2005), and general control non-derepressible-2 (GCN2) could be activated by Sindbis virus (SINV) genomic RNA (Berlanga et al. 2006), both leading to phosphorylation of eIF2α. GCN2 prevents replication of SINV in the early stages of the viral replicative cycle by blocking the synthesis of NSPs from SINV RNA (Berlanga et al. 2006; Frolova et al. 2006; Gorchakov et al. 2008).

Viruses also induce SG formation independent of eIF2α phosphorylation (Table 1). The most typical example is from Rift Valley fever virus (RVFV) (Habjan et al. 2009; Ikegami et al. 2009) (Fig. 2). RVFV (Hopkins et al. 2015) infection attenuates Akt/mTOR signaling and inhibits 4EBP phosphorylation and translation of 5′-TOP mRNAs, subsequently leading to an inhibition of global protein translation. 5′-TOP–containing mRNAs are indeed targeted to PB, where RVFV uses these cellular mRNAs for cap-snatching (Hopkins et al. 2015). This can reflect that SG may interact with PB in a process that is thought to result in the exchange of mRNA cargos (Kedersha et al. 2008). Whether any virus induces SG formation to cause translation inhibition due to the destruction of eIF4G or eIF4A is worth exploring in the future.

RNA Viruses Modulate SG Formation or Assembly

SG formation shuts off bulk host protein synthesis. However, all viruses depend on the host translation apparatus for their gene expression. Therefore, viruses, as intracellular parasites, have to modulate the stress response pathway and SG assembly to translate their proteins for virus replication. RNA viruses modulate stress response pathway at different levels of SG formation (Table 1): One is to regulate eIF2α phosphorylation, and the other is to regulate the process of SG nucleation.

RNA Viruses Modulate eIF2α Phosphorylation to Interfere with SG Formation

In some cases, viral gene products can act as antagonists by targeting the virus-activated eIF2α kinases such as PKR or even by directly modulating the phosphorylation of eIF2α (Fig. 3A). IAV NS1 (Khapersky et al. 2012; Ng et al. 2013), Middle East respiratory syndrome coronavirus (MERS-CoV) accessory protein 4a (Rabouw et al. 2016; Nakagawa et al. 2018), and Ebola virus (EBOV) multi-functional protein VP35 (Nelson et al. 2016; Le Sage et al. 2017) bind viral dsRNA and prevent the viral dsRNA from PKR binding to inhibit SG formation. Inhibition of SG formation facilitates the translation of viral mRNAs, leading to efficient virus replication. HCV NS5A protein (Toroney et al. 2010) binds to the PKR dimerization domain to inhibit PKR activation. Japanese encephalitis virus (JEV) NS2A protein (Tu et al. 2012) might similarly interact with PKR and then prevent PKR dimer formation. SeV (Takeuchi et al. 2008) and measles virus (MV) (Okonski and Samuel 2013) encode a C protein to limit the accumulation of dsRNA.

Table 1 (continued)

Genome	Virus family	Virus	Type	Mechanism	References
Coronaviridae	MERS-CoV	Inhibition	Accessory protein 4a bind viral dsRNA and prevent the viral dsRNA from PKR binding	Rabouw et al. (2016), Nakagawa et al. (2018)	
Filoviridae	EBOV	Inhibition	VP35 bind viral dsRNA and prevent the viral dsRNA from PKR binding	Nelson et al. (2016), Le Sage et al. (2017)	
Rhabdoviridae	VSV	Modulation	SG proteins are selectively sequestered within virus inclusions and co-localize with viral RNA to form inclusion-bound granules	Dinh et al. (2013)	
Paramyxoviridae	MV	Inhibition	Encode a C protein to limit the accumulation of dsRNA	Okonski and Samuel (2013)	
	SeV	Inhibition	Encode a C protein to limit the accumulation of dsRNA	Takeuchi et al. (2008)	
	RSV	Induction	Mediated by PKR-dependent eIF2α phosphorylation	Lindquist et al. (2011)	
		Inhibition	Sequestration of OGT in IBs	Fricke et al. (2013)	
HPIV3	Inhibition	IBs shield viral RNAs from recognition by PKR	Hu et al. (2018)		
phosphorylation of eIF2α through its nucleoprotein (N) and glycoprotein precursor (GPC) (Linero et al. 2011). However, its mechanism remains to be elucidated, although it may be similar to HCV. Ruggieri and colleagues reported that HCV rapidly de-phosphorylated eIF2α through protein phosphatase 1 (PP1) and its regulatory subunit GADD34 (growth arrest and DNA-damage-inducible 34) (Kojima et al. 2003; Clavarino et al. 2012; Ruggieri et al. 2012).
RNA Viruses Cleave/Sequester/Redistribute Stress Granule-Nucleating Proteins to Interfere with SG Assembly

Several RNA viruses have been shown to express viral effectors that can actively disrupt the accumulation of SG through cleavage of SG components (Fig. 3B). Poliovirus (PV) induces SG formation in early phase but induces SG disassembly at later stages via cleavage of G3BP by viral 3C, thus preventing SG formation (White et al. 2007). Similar findings were also reported for encephalomyocarditis virus (EMCV) (Ng et al. 2013), foot-and-mouth disease virus (FMDV) (Ye et al. 2018; Visser et al. 2019), coxsackievirus B3 (CBV3) (Fung et al. 2013) and feline calicivirus (FCV) (Humoud et al. 2016). FCV infection does not cause accumulation of SG, despite an increased phosphorylation of eIF2α (Humoud et al. 2016). This is because FCV NS6Pro, a 3C-like proteinase, cleaves G3BP1 at a site different from the poliovirus 3C proteinase. Unlike FCV, murine norovirus (MNV) does not cleave G3BP1 and thus does not inhibit SG formation during virus infection (Humoud et al. 2016). In general, picornviruses inhibit SG formation by viral 2A/L or 3C cleaving the major components of SG. In recent study, Yang et al. found that the 2A protease of picornavirus (EV71, PV, CVA) inhibits typical SG formation, which is PKR and eIF2α phosphorylation-dependent, but induces atypical SG formation by cleaving eIF4GI to sequester cellular mRNA and release viral mRNA, thereby facilitating viral infection (Yang et al. 2018). In other words, the 2A protease can transform the overall translation machinery favorable for productive viral infection by induction of atypical SG while blocking the typical SG in the presence of G3BP cleavage by viral 3C protease during viral infection (Yang et al. 2018).

Redistribution or sequestering SG components to the viral replication sites is another strategy used by many viruses to impair SG assembly in infected cells (Fig. 3B). ZIKV infection induces the redistribution of TIAR to the viral RNA replication sites (Hou et al. 2017); SeV Trailer RNA captures TIAR from SG (Iseni et al. 2002); West Nile Virus (WNV) and Dengue virus (DENV) 3'-end viral genome captures TIA-1/TIAR (Li et al. 2002; Emara and Brinton 2007; Xia et al. 2015); DENV 3′-UTR interacts with G3BP1, G3BP2, Caprin1 and USP10 (Ward et al. 2011; Reineke et al. 2015); JEV recruits G3BP and USP10 to the perinuclear region through the interaction of JEV core protein with Caprin-1, a SG-associated cellular factor (Ward et al. 2011). Theiler murine encephalomyelitis virus (TMEV) and mengovirus, a strain of EMCV, express the leader (L) protein to inhibit G3BP1 aggregation (Borghese and Michiels 2011). Sequestration or redistribution of SG components by viruses through protein–protein and protein-RNA interactions not only prevents SG assembly, but also facilitates viral genome replication. HCV-JFH1 infection redistributes several SG components, including G3BP1, ataxin-2 (ATX2), and poly(A)-binding protein 1 (PABP1), to the HCV replication complex (RC) (Ariumi et al. 2011; Pene et al. 2015), and co-opts G3BP1 to mediate efficient viral replication by interaction with NS5B and the 5′ end of the HCV minus-strand RNA (Ariumi et al. 2011; Garaigorta et al. 2012).

RNA Virus Inclusion Bodies (IBs) Emerging as a New Strategy Used by Viruses to Resist SG

Studies on Human parainfluenza virus type 3 (HPIV3) (Hu et al. 2018), RSV (Rinneval et al. 2017), EBOV (Hoenen et al. 2012), Rabies virus (RABV) (Lahaye et al. 2009) and Vesicular stomatitis virus (VSV) (Heinrich et al. 2010) showed that inclusion bodies (IBs) of negative stranded RNA viruses are the sites of viral RNA synthesis. A recent study suggested an emerging role of IBs in HPIV3 replication by shielding newly synthesized viral RNA from the antiviral effect of SG (Hu et al. 2018) (Fig. 3B). Sequestration of O-linked N-acetylglucosamine (OGN) transferase (OGT), an enzyme that catalyzes the posttranslational addition of OGN to protein targets, in RSV IBs was also proposed to regulate SG nucleation and suppression of SG formation (Fricke et al. 2013) (Fig. 3B). Viral transcription and replication of RABV take place within Negri bodies (NBs), which are IB-like structures (Lahaye et al. 2009). RABV-induced SG are normally located closely to NBs. Viral mRNAs rather than viral genomic RNA accumulate in the SG-like structures together with cellular mRNAs were found to be specially transported from NBs to SG-like structures (Nikolic et al. 2016). VSV infection also induces formation of the SG-like structures that co-localize with viral replication proteins and RNA, which are different from canonical SG (Dinh et al. 2013). SG proteins (eIF4G, eIF3, PABP) are selectively sequestered within Ebola virus inclusion bodies and co-localize with viral RNA to form inclusion body-bound granules, which are functionally and structurally different from canonical SG, probably leading to inhibit the antiviral role of SG (Nelson et al. 2016) (Fig. 3B). Collectively, these findings provoke more investigations on the roles of viral IBs in viral replication and resisting cellular responses.

DNA Viruses Regulate SG Formation

Unlike RNA viruses, the regulation of SG formation during infection with DNA viruses is poorly understood. It was reported that human cytomegalovirus (HCMV) infection modifies the unfolded protein response (UPR) and activates PERK (Fig. 2), but limiting the amount of phosphorylated
 EIF2α to maintain translation (Isler et al. 2005). Kaposi’s sarcoma-associated herpesvirus (KSHV) ORF57 (Sharma et al. 2017) interacts with PKR and PKR-activating protein (PACT) (Patel et al. 2000) to inhibit PKR binding dsRNA and prevent PACT-PKR interaction in the PKR pathway (Li et al. 2006), respectively. HCMV pTRS1 and pIRS1 antagonize PKR to facilitate virus replication (Ziehr et al. 2002; Durand et al. 2007), in addition to scaffolding proteins (Ge-1/Hedls) (Yu et al. 2005) and translation control factors (CPEB, eIF4E-T) (Andrei et al. 2005; Wilczynska et al. 2005), are the components of PB and used as routine markers to distinguish these granules. Nonetheless, some components (APOBEC3G, BRF1, DDX3, FAST, TTP, Rap55) (McEwen et al. 2005; Sen and Blau 2005; Gallois-Montbrun et al. 2007; Chen et al. 2008) have also been shown to be shared by both SG and PB, suggesting a substantial linkage of these two structures and movement of mRNAs between both RNA granules. Interestingly, among these components, PB also include RNA-induced silencing complex (RISC) or miRNA associated argonaute (Ago) proteins (also shared with SG) and the GW182 protein which provides scaffolding activities for RISC to function, suggesting PB being the sites of miRNA mediated translation repression. The scaffolding activity of GW182 is critical for PB and knockdown of GW182 expression disrupts PB formation (Liu et al. 2005). Notably, GW182 has been shown to bind to Ago2 which is critical for miRNA function and PB formation (Liu et al. 2005). Recent evidence indicates that GW182 can recruit up to three molecules of Ago2 via its three GW motifs (glycine-tryptophan repeats) while each Ago protein has a single GW182-binding site (Elkayam et al. 2017) (Fig. 4). By applying fluorescence-activated particle sorting to purify PB in combination with mass spectrometry, Hubstenberger et al. identified 125 proteins that are significantly associated with PB (Hubstenberger et al. 2017). By labeling several PB-localized proteins with a BirA (E. coli biotin ligase) enzyme in combination with mass spectrometry after streptavidin pulldown, Youn et al. identified 38 proteins in the PB (Youn et al. 2018). ISGs (interferon stimulated genes) can also be found in PB during virus infection (Hebner et al. 2006).

Viral Regulation of RNA Processing Body Assembly

Assembly of P-Bodies (PB)

PB were first reported in the scientific literature by Bashkirov et al. in 1997, and described as “small granules or discrete, prominent foci” or as the cytoplasmic location of the mouse exoribonuclease mXrn1p (Bashkirov et al. 1997). Like SG, PB lack outer lipid membrane and now are recognized to be the sites where non-translating mRNAs accumulate for different fates including decay, storage, or returning to translation. A variety of enzymes involved in mRNA deadenylation (Ccr1, Caf1, Not1) (Sheth and Parker 2006), decapping (Dcp1/2, Lsm1-7, Edc3proteins) (Ingelfinger et al. 2002; Yu et al. 2005), nonsense-mediated decay (NMD) proteins (SMG5-6-7, UPF1) (Ingelfinger et al. 2002; Durand et al. 2007), in addition to scaffolding proteins (Ge-1/Hedls) (Yu et al. 2005) and translation control factors (CPEB, eIF4E-T) (Andrei et al. 2005; Wilczynska et al. 2005), are the components of PB and used as routine markers to distinguish these granules. Nonetheless, some components (APOBEC3G, BRF1, DDX3, FAST, TTP, Rap55) (McEwen et al. 2005; Sen and Blau 2005; Gallois-Montbrun et al. 2007; Chen et al. 2008) have also been shown to be shared by both SG and PB, suggesting a substantial linkage of these two structures and movement of mRNAs between both RNA granules. Interestingly, among these components, PB also include RNA-induced silencing complex (RISC) or miRNA associated argonaute (Ago) proteins (also shared with SG) and the GW182 protein which provides scaffolding activities for RISC to function, suggesting PB being the sites of miRNA mediated translation repression. The scaffolding activity of GW182 is critical for PB and knockdown of GW182 expression disrupts PB formation (Liu et al. 2005). Notably, GW182 has been shown to bind to Ago2 which is critical for miRNA function and PB formation (Liu et al. 2005). Recent evidence indicates that GW182 can recruit up to three molecules of Ago2 via its three GW motifs (glycine-tryptophan repeats) while each Ago protein has a single GW182-binding site (Elkayam et al. 2017) (Fig. 4). By applying fluorescence-activated particle sorting to purify PB in combination with mass spectrometry, Hubstenberger et al. identified 125 proteins that are significantly associated with PB (Hubstenberger et al. 2017). By labeling several PB-localized proteins with a BirA (E. coli biotin ligase) enzyme in combination with mass spectrometry after streptavidin pulldown, Youn et al. identified 38 proteins in the PB (Youn et al. 2018). ISGs (interferon stimulated genes) can also be found in PB during virus infection (Hebner et al. 2006).

RNA Viruses and PB

In comparison to viral regulation of SG, interaction of virus and PB was not much explored. It is an assumption that RNA viruses must regulate RNA decay processes/machinery to prevent degradation of virus genomes and mRNAs. Recently, some progress has been made to understand the relationship between PB components and some viruses in the context of viral gene expression. The data in published literatures are summarized in (Table 2). Mutation induced in the PB core components to affect the viral life cycles are well studied and tabulated in an earlier
review (Beckham et al. 2007). The report linking the assembly of yeast Ty3 retrotransposons virus—like particles with PB presented the first link between human retrovirus and PB (Checkley et al. 2010). The later study revealed PB to be the site of anti-viral host factors APOBEC3G and APOBEC3F (A3G or A3F, apolipoprotein B mRNA-editing enzyme catalytic polypeptide 1-like) family of cytidine de-aminases, presumably representing a component of innate immunity against HIV (Wichroski et al. 2006; Gallois-Montbrun et al. 2007). In a different study, A3F was found to specifically interact with cellular signal recognition particle RNA (7SL RNA). Efficient packaging of 7SL RNA and A3F into HIV virions was mediated by the RNA-binding nucleocapsid domain of HIV-1 Gag (Wang et al. 2007).

The bona fide and unique dependence of viruses on PB came from the studies on plant brome mosaic virus (BMV) (Beckham et al. 2007). This study suggested the accumulation of BMV mRNAs in PB was an important step in RNA replication complex assembly for BMV, and possibly for other positive-strand RNA viruses. Nonetheless, many RNA viruses initiate the process of transcription of viral RNA by the process of ‘cap snatching’ which involves the acquisition of capped 5’ oligonucleotides from cellular mRNAs. Interestingly, PB were shown to serve as a pool of primers in the case of Hantavirus while its nucleocapsid protein, which accumulates in PB, binds 5’ caps with high affinity (Mir et al. 2008).

The base-pair complementarity between a miRNA and a target mRNA dictates the miRNA to specifically repress posttranscriptional expression of mRNAs. Subsequent events in this process involve relocation of RNA-induced silencing complexes (RISCs) together with several other RNA binding proteins to form PB. In this context, HIV-1 mRNA interacts with RISC proteins and disrupting PB structures enhances viral production and infectivity, suggesting a role of PB against viral infection (Nathans et al. 2009). Specific miR-29a-HIV-1 mRNA interaction was found to enhance viral mRNA association with RISC and PB proteins and regulate HIV-1 production and infectivity.
Genome	Virus family	Virus	P-bodies: accumulation/inhibition	Mechanism	References
dsDNA	Adenoviridae	Adenovirus	Inhibition	Redistribution of PB components by E4 11K including (Rck/p54/DDX6, Ago2, xrn1, Ge1, and Lsm-1)	Greer et al. (2011)
	Herpesviridae	Kaposi’s sarcoma herpes virus (KSHV)	Inhibition	Disruption of Ago2-GW182 interaction during lytic infection via ORF57	Sharma N. et al. unpublished
		Herpes simplex virus-1 (HSV-1)	Inhibition	Via ICP27	Sharma N. et al. unpublished
		Cytomegalovirus (HCMV)	Accumulation	Increased expression of Dcp1a, EDC4, Rck/p54/DDX6 and Rap55 proteins	Seto et al. (2014)
dsRNA	Reoviridae	Rotavirus	Inhibition	Sponge for RNA binding proteins which can redistribute several components of PB including Ago2, GW182 and Dcp1	Oceguera et al. (2018)
			Decreased expression of Pan3 and relocalization of Xrn1 and Dcp1	Bhowmick et al. (2015)	
(+)ssRNA	Flaviviridae	West Nile virus (WNV)	Inhibition	Redistribution of Lsm1, GW182, DDX6, DDX3 and Xrn1 to viral replication factories (RF)	Chahar et al. (2013)
		Dengue virus (DENV)	Inhibition	N/A	Emara and Brinton (2007)
		Yellow fever virus (YFV)	Accumulation	siRNA stalls Xrn1 and co-localizes at PB	Silva et al. (2010)
		Hepatitis C virus (HCV)	Inhibition	Redistribution of DDX6, Lsm1, Xrn1, PATL1 and Ago2 to lipid droplets	Ariumi et al. (2011)
			Dcp2 does not localize to viral factories	Ariumi et al. (2011)	
	Picornaviridae	Poliovirus (PV)	Inhibition	Degradation of Xrn1, Dcp1a and Pan3 but not of GW182, EDC3/EDC4	Dougherty et al. (2011)
		Coxsackievirus B3 (CVB3)	Inhibition	Viral Protease 2A blocks PB formation	Dougherty et al. (2011)
	Dicistroviridae	Cricket paralysis virus (CrPV)	Inhibition	Cleavage of Xrn1, Dcp1a and Pan3	Dougherty et al. (2011)
	Togaviridae	Sindbis virus (SINV)	Inhibition	Disrupts only GW182/Dcp1 aggregate, but not Ago1/Ago2	Khong and Jan (2011)
(-)ssRNA	Orthomyxoviridae	Influenza virus A (IAV)	Inhibition	Interaction of RAP55 and NSP1	Mok et al. (2012)
ssRNA-RT	Bunyaviridae	Hantavirus	Accumulation	Cap snatching occurs in PB	Mir et al. (2008)
	Retroviridae	Human immunodeficiency virus type 1 (HIV-1)	Inhibition	HIV-1 mRNA interacts with DDX6, Ago 2 and APOBE3G and displaces from the PB	Nathans et al. (2009)
			Redistribution of PB components during the HIV-1 infection	Abrahamyan et al. (2010)	
			Assembly intermediates (AIs) recruits DDX6 and ABCE1	Reed et al. (2012)	
			miR-29a-HIV-1 mRNA interactions enhance viral mRNA association with RISC and PB	Nathans et al. (2009)	
			MOV10 overexpression inhibits HIV-1 replication	Burdick et al. (2010), Furtak et al. (2010)	
HIV Nef interacts with Ago2 via its glycine-tryptophan region and functions as a viral suppressor of RNAi (Aqil et al. 2013). While overexpression of Mov10, a component of PB and an ATP-dependent 5'-3' RNA helicase, inhibits HIV production (Burdick et al. 2010; Furtak et al. 2010). Mov10 and APOBEC3G localization to PB is not required for HIV virion incorporation and antiviral activity (Izumi et al. 2013). It becomes clear that Mov10 inhibits virus infection by enhancing RIG-I-MAVS-Independent IFN Induction (Cuevas et al. 2016) and stabilizing A3G from degradation (Chen et al. 2017).

The anticipated evidence of viral disruption of PB also came from the study with poliovirus (PV), a plus-strand RNA virus showing that PB are disrupted during PV infection in cells by 4 h post infection (Dougherty et al. 2011). This function is attributed to viral proteinase 3C which degrades several components of PB including Xrn1 and Dcp1a, but not affecting others such as GW182, Edc3 and Edc4. Rotaviruses disassemble PB by using viral RNA as a sponge for RNA binding proteins to redistribute several PB components, including Ago2, GW182 and Dcp1 PB (Oceguera et al. 2018). In fact, rotavirus disrupts PB through multiple mechanisms. The viral NSP1 protein seems to degrade PB component Pan3, while relocating other two components (Xrn1 and Dcp1a) (Bhowmick et al. 2015). Intriguingly, exclusion of SG and PB components from the viroplasm is important for rotavirus replication and progeny virus production (Dhillon and Rao 2018).

DNA Viruses and PB

While RNA viruses have evolved to co-opt or modulate the assembly of PB, this effect is rather unclear during infection by DNA viruses. Since most of the DNA viruses replicate and assemble in the nucleus, therefore as proposed for RNA viruses, accumulation of viral RNAs in PB for assembly cannot be a strategy required by DNA viruses. However, the close relationship of PB with translational repression reasonably provides a foundation for PB being antiviral cellular components against DNA viruses. Thus it is assumed that those factories suppressing mRNA translation would inhibit protein production of DNA viruses. To fight back, the DNA viruses have to develope strategies to bypass this antagonism mediated by PB for their survival and productive infection (Table 2).

Adenovirus E4 11 k, the product of E4 ORF3, accumulates viral late mRNA transcripts and at least five proteins of PB (Rck/p54/DDX6, Ago2, xrn1, Ge1, and Lsm-1) in the E4 11 k-induced cytoplasmic aggresomes. Redistribution of the PB components to the aggresomes, not to the PB, leads to inactivate or destroy these proteins. E4 11 k protein interacts with RNA helicase DDX6, one of the PB proteins, for its redistribution. Because PB are the sites for mRNA degradation, their alteration by E4 11 k suggests a role of E4 11 k in viral late mRNA accumulation (Greer et al. 2011).

The role of PB in regulation of cytomegalovirus infection remains elusive. First, HCMV infection does not affect, but rather accumulates the formation of PB; second, PB formed during HCMV infection do not contain Ago2; third, HCMV prevents viral IE1 mRNA, a major IE gene product to encode a critical protein for viral gene expression and replication, from colocalization with PB (Seto et al. 2014).

By generating a transgenic mice deficient of PB component LSm14A (or Rap55), recent studies showed that LSm14A plays a critical and specific role in the induction of antiviral cytokines (IFN-β, IFN-α, and IL-6) in dendritic cells (DCs). DNA viruses (HSV-1 and murine herpesvirus 68) and RNA virus VSV trigger this induction, but Sendai virus lacks such an effect (Anderson and Kedersha 2009; Liu et al. 2016). LSm14A deficiency specifically down-regulates MITA/STING (stimulator of interferon genes) level in DCs by impairing its nuclear mRNA precursor processing. In contrast to its role in mRNA decay, this study revealed a role of LSm14 in nuclear mRNA precursor processing and cell-specific regulatory mechanism of antiviral immune responses (Liu et al. 2016).

KSHV kaposin B, a latent protein linked with cancer progression, induces PB dispersion (Corcoran et al. 2015). Kaposin B activates the stress-responsive kinase MK2 in endothelial cells (ECs) to selectively block the decay of AU-rich mRNAs (ARE-mRNAs) which encode pro-inflammatory cytokines and angiogenic factors and to reprogram ECs through post-transcriptional control of EC gene expression and secretion. KSHV ORF57 protein inhibits the formation of PB during lytic infection by disrupting the essential interaction of Ago2 with GW182 (unpublished data). These data provide the first evidence that a tumor virus RNA-binding protein ORF57 antagonizes the RNA regulatory pathway of host antiviral defenses during lytic infection.

Remarks and Perspectives

SG are highly dynamic structures (Jain et al. 2016), which constantly exchange their components to regulate gene expression and are thought to be antiviral. SG composition appears to vary according to the inducing stimulus (Table 3). It’s clear that SG assembly/disassembly is a tightly regulated process which accompanies rearrangements of RNA and proteins (Wheeler et al. 2016). Although significant advances have been made to understand how viruses regulate SG formation, our current knowledge is not sufficient to fully elucidate the
mechanism how SG are regulated in living cells. Further works are needed to address the following questions: First, is there any pathway to be a target for antiviral drug development? Second, do SG function as platforms that potentiate virus recognition? Third, is any unexplored pathway leading to SG formation which could be visualized by fluorescence in situ hybridization techniques—including single molecule RNA tracking methods in combination with super-resolution microscopy? Using viruses as a research tool will definitely teach us how the host fights virus infections and how the viruses get away from its host resistance.

PB affect viral infections in multiple ways. Thus, it is difficult to generalize a common viral strategy in a particular virus group to interact with the components of PB. The noticed evidence is that viruses in the same family may show extremely distant behavior when they come to interact with PB (Table 2). More studies on virus interactions with PB will be required to characterize the PB to be proviral or antiviral in a context-dependent manner. Other key questions in the field for future studies are: (1) to understand the mechanisms that regulate PB formation in cells. Viral manipulation of PB may provide a better platform to understand this regulation; (2) to determine which viral RNA species preferentially travel through these RNA granules and which ones do not? (3) to identify the RNA elements dictating viral RNA to escape from SG and PB. Thus, discovery of virus regulations of PB assembly represents a new paradigm of virus-host interactions.

Acknowledgements This work was supported by grants from the China Natural Science Foundation (81825015 and 31630086), the Natural Science Foundation of Hubei Province Innovation Group (2017CFA022), and Intramural Research Program of NCI/NIH (1ZIASC010357 to ZMZ).

Compliance with Ethical Standards

Conflict of interest The authors declare that they have no conflict of interest.

Animal and Human Rights Statement This article does not contain any studies with human or animal subjects performed by any of the authors.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Abrahamyan LG, Chatel-Chaix L, Ajamian L, Milev MP, Monette A, Clement JF, Song R, Lehmann M, DesGroseillers L, Laughrea
M. Boccaccio G, Moulard AJ (2010) Novel Staufen1 ribonucleoproteins prevent formation of stress granules but favour encapsidation of HIV-1 genomic RNA. J Cell Sci 123:369–383
Anderson P, Kedersha N (2008) Stress granules: the Tao of RNA triage. Trends Biochem Sci 33:141–150
Anderson P, Kedersha N (2009) RNA granules: post-transcriptional and epigenetic modulators of gene expression. Nat Rev Mol Cell Biol 10:430–446
Anderson P, Kedersha N, Ivanov P (2015) Stress granules, P-bodies and cancer. Biochim Biophys Acta 1849:861–870
Andrei MA, Ingelfinger D, Heintzmann R, Achsel T, Rivera-Pomar R, Lührmann R (2005) A role for eIF4E and eIF4E-transporter in targeting mRNPs to mammalian processing bodies. RNA 11:717–727
Aqil M, Naqvi AR, Bano AS, Jameel S (2013) The HIV-1 Nef protein binds argonaute-2 and functions as a viral suppressor of RNA interference. PLoS ONE 8:e74472
Ariumi Y, Kuroki M, Kushima Y, Osugi K, Hijiakata M, Maki M, Ikeda M, Kato N (2011) Hepatitis C virus hijacks P-body and stress granule components around lipid droplets. J Virol 85:6882–6892
Bashkirov VI, Scherthan H, Solinger JA, Buerstedde JM, Heyer WD (1997) A mouse cytoplasmic exoribonuclease (mXRN1p) with preference for G4 tetraplex substrates. J Cell Biol 136:761–773
Beckham CJ, Light HR, Nissan TA, Ahlquist P, Parker R, Noueiry A (2007) Interactions between brome mosaic virus RNAs and cytoplasmic processing bodies. J Virol 81:9759–9768
Berlanga JJ, Ventoso I, Harding HP, Deng J, Ron D, Sonenberg N, Carrasco L, de Haro C, et al (2009) The herpes simplex virus type 1 U11 domain. J Virol 83:2029–2035
Borghini J, Wang Q, Nakamura Y, Kuroda K, Imamura M, Akagi M, Boccaccio G, Mouland AJ (2010) Novel Staufen1 ribonucleoproteins prevent formation of stress granules but favour encapsidation of HIV-1 genomic RNA. J Cell Sci 123:369–383
Chen D, Wilkinson CR, Watt S, Penkett CJ, Toone WM, Jones N, Bahler J (2008) Multiple pathways differentially regulate global oxidative stress responses in fission yeast. Mol Biol Cell 19:308–317
Chen C, Ma X, Hu Q, Li X, Huang F, Zhang J, Pan T, Xia J, Liu C (2017) Moloney leukemia virus 10 (MO10) inhibits the degradation of APOBEC3G through interference with the Vif-mediated ubiquitin-proteasome pathway. Retrovirology 14:56
Clavario G, Claudio N, Dalet A, Terawaki S, Couderc T, Chasson L, Ceppi M, Schmidt EK, Wenger T, Lecuit M, Gatti E, Pierre P (2012) Protein phosphatase 1 subunit Ppp1r15a/GADD34 regulates cytokine production in polyinosinic-polycytidylic acid-stimulated dendritic cells. Proc Natl Acad Sci U S A 109:3006–3111
Corcoran JA, Johnston BP, McCormick C (2015) Viral activation of MK2-hsp27-p115RhoGEF-RhoA signaling axis causes cytoskeletal rearrangements, p-body disruption and ARE-mRNA stabilization. PLoS Pathog 11:e1004597
Cuevas RA, Ghosh A, Wallerath C (2016) MOV10 provides antiviral activity against RNA viruses by enhancing RIG-I-MAVS-independent IFN induction. J Immunol 196:3877–3886
Dang Y, Kedersha N, Low WK, Romo D, Gorospe M, Kaufman R, Anderson P, Liu JO (2006) Eukaryotic initiation factor 4A (eIF4A) binding to non- canonical ARE-containing mRNAs promotes translation. J Virol 80:6719–6728
Dauber B, Poon D, Dos Santos T, Dugay BA, Mehta N, Saffran D, Smiley JR (2016) The herpes simplex virus virion host shutoff protein enhances translation of viral late mRNAs by recruiting the translation initiation factor eIF2alpha kinase GCN2 against stress granule formation. J Virol 90:6049–6057
Decker CJ, Parker R (2012) P-bodies and stress granules: possible roles in the control of translation and mRNA degradation. Cold Spring Harb Perspect Biol 4:a012286
Deng J, Harding HP, Raught B, Gingras AC, Berlanga JJ, Scheuner D, Kaufman RJ, Ron D, Sonenberg N (2002) Activation of GCN2 in UV-irradiated cells inhibits translation. Curr Biol 12:1279–1286
Dhillon P, Rao CD (2018) Rotavirus induces formation of remodeled stress granules and P-bodies and their sequestration in viroplasms to promote progeny virus production. J Virol 92:e01363–18
Dinh PX, Beura LK, Das PB, Panda D, Das A, Pattnaik AK (2013) Induction of stress granule-like structures in vesicular stomatitis virus-infected cells. J Virol 87:372–383
Dougherty JD, White JP, Lloyd RE (2011) Poliovirus-mediated disruption of cytoplasmic processing bodies. J Virol 85:64–75
Durand S, Cougot N, Mahateau-Betzer F, Nguyen CH, Gierons D, Bertrand E, Tazi J, Lejeune F (2007) Inhibition of nonsense-mediated mRNA decay (NMD) by a new chemical molecule reveals the dynamic of NMD factors in P-bodies. J Cell Biol 178:1145–1160
Elkayam E, Faehlne CR, Morales M, Sun J, Li H, Joshua-Tor L (2017) Multivalent recruitment of human argonaute by GW182. Mol Cell 67:646–658.e643
Emara MM, Brinton MA (2007) Interaction of TIA-1/TIAR with West Nile and dengue virus products in infected cells interferes with stress granule formation and processing body assembly. Proc Natl Acad Sci U S A 104:9041–9046
Eulalio A, Behm-Asmann I, Schweizer D, Izaurralde E (2007) Induction of stress granule-like structures in vesicular stomatitis virus-infected cells. J Virol 81:7020–7030
Finnen RL, Pangka KR, Banfield BW (2012) Herpes simplex virus 2 infection impacts stress granule accumulation. J Virol 86:8119–8130
Finnen RL, Hay TJ, Dauber B, Smiley JR, Banfield BW (2014) The herpes simplex virus 2 virion-associated ribonucleic acid of an RNA virus is associated with stress granule formation. J Virol 88:12727–12739
Finnem RE, Zhu M, Li J, Romo D, Banfield BW (2016) Herpes simplex virus 2 virion host shutoff endoribonuclease activity is required to disrupt stress granule formation. J Virol 90:7943–7955

Fournier MJ, Coudert L, Mellaloui S, Adjibade P, Gareau C, Cote MF, Sonenberg N, Gaudreault RC, Mazroui R (2013) Inactivation of the mTORC1-eukaryotic translation initiation factor 4E pathway alters stress granule formation. Mol Cell Biol 33:2285–2301

Fricke J, Koo LY, Brown CR, Collins PL (2013) p38 and OGT sequestration into viral inclusion bodies in cells infected with human respiratory syncytial virus suppresses MK2 activities and stress granule assembly. J Virol 87:1333–1347

Frolova E, Gorchakov R, Garmsa1nova N, Atasheva S, Vergara LA, Frolov I (2006) Formation of nsP3-specific protein complexes during Sindbis virus replication. J Virol 80:4122–4134

Fujimura K, Sasaki AT, Anderson P (2012) Selenite targets eIF4E-binding protein-1 to inhibit translation initiation and induce the assembly of non-canonical stress granules. Nucleic Acids Res 40:8099–8110

Fung G, Ng CS, Zhang J, Shi J, Wong J, Piesek P, Han L, Chu F, Jagdeo J, Jan E, Fujita T, Luo H (2013) Production of a dominant-negative fragment due to G3BP1 cleavage contributes to the disruption of mitochondria-associated protective stress granules during CVB3 infection. PLoS ONE 8:e79546

Furtak V, Mulky A, Rawlings SA, Kozhaya L, Lee K, Kewalramani VN, Unutmaz D (2010) Perturbation of the P-body component Mov10 inhibits HIV-1 infectivity. PLoS ONE 5:e9081

Gallois-Monbrun S, Kramer B, Swanson CM, Byers H, Lyham S, Ward M, Malim MH (2007) Antiviral protein APOBEC3G localizes to ribonucleoprotein complexes found in P bodies and stress granules. J Virol 81:2165–2178

Garaigorta U, Heim MH, Boyd B, Wieland S, Chisari FV (2012) Hepatitis C virus (HCV) induces formation of stress granules whose proteins regulate HCV RNA replication and virus assembly and egress. J Virol 86:11043–11056

Garcia MA, Meurs EF, Esteban M (2007) The dsRNA protein kinase PKR: virus and cell control. Biochimie 89:799–811

Gilks N, Kedersha N, Ayodele M, Shen L, Stoecklin G, Dember LM, Anderson P (2004) Stress granule assembly is mediated by prion-like aggregation of TIA-1. Mol Biol Cell 15:5383–5398

Gorchakov R, Garmsa1nova N, Frolova E, Frolov I (2008) Different G3BP1 fragments to aggresomes. Virology 417:161–168

Greer AE, Hearing P, Kettner G (2011) The adenosine virus E4 11 k protein binds and relocates the cytoplasmic P-body component Ddx6 to aggresomes. Virology 417:161–168

Habjan M, Pichlmair A, Elliott RM, Overby AK, Glatter T, Gstaiger M, Superti-Furga G, Unger H, Weber F (2009) NSs protein of Rift valley fever virus induces the specific degradation of the double-stranded RNA-dependent protein kinase. J Virol 83:4365–4375

Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, Ron D (2000a) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6:1099–1108

Harding HP, Zhang Y, Bertolotti A, Zeng H, Ron D (2000b) Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 5:897–904

Hebner CM, Wilson R, Rader J, Bidder M, Laimins LA (2006) Human papillomaviruses target the double-stranded RNA protein kinase pathway. J Gen Virol 87:3183–3193

Heinicke LA, Wong CJ, Lary J, Nallagatla SR, Diegelman-Parente A, Zheng X, Cole JL, Bevilacqua PC (2009) RNA dimerization promotes PKR dimerization and activation. J Mol Biol 390:319–338

Heinrich BS, Cureton DK, Rahme AA, Whelan SP (2010) Protein expression redirects vesicular stomatitis virus RNA synthesis to cytoplasmic inclusions. PLoS Pathog 6:e1000958

Hoenen T, Shabman RS, Groseth A, Herwig A, Weber M, Schudt G, Dolnik O, Basler CF, Becker S, Feldmann H (2012) Inclusion bodies are a site of ebolavirus replication. J Virol 86:11779–11788

Hopkins KC, Tartell MA, Herrmann C, Hackett BA, Taschuk F, Panda M, Denghani SV, Sabin LR, Cherry S (2015) Virus-induced translational arrest through 4EBP1/2-dependent decay of 5’-TOP mRNAs restricts viral infection. Proc Natl Acad Sci U S A 112:E2920–2929

Hou S, Kumar A, Xu Z, Airo AM, Stryapunina I, Wong CP, Branton W, Tchesnokov E, Gotte M, Power C, Hobman TC (2017) Zika virus hijacks stress granule proteins and modulates the host stress response. J Virol. https://doi.org/10.1128/jvi.00474-17

Hu Z, Wang Y, Tang Q, Yang X, Qin Y, Chen M (2018) Inclusion bodies of human parainfluenza virus type 3 inhibit antiviral stress granule formation by shielding viral RNAs. PLoS Pathog 14:e1006948

Hubenberger A, Courrel M, Benard M, Souquere S, Ernoult-Lange M, Chouaib R, Yi Z, Morlot JB, Munier A, Frairet M, Daunesse M, Bertrand E, Pierron G, Moziconacci J, Kress M, Weil D (2017) P-Body purification reveals the condensation of repressed mRNA regulons. Mol Cell 68:144–157.e145

Humoud MN, Doyle N, Royell E, Willcocks MM, Sorgeloos F, van Kuppeveld F, Roberts LO, Goodfellow IG, Langereis MA, Locker N (2016) Feline calcivirus infection disrupts assembly of cytoplasmic stress granules and induces G3BP1 cleavage. J Virol 90:6489–6501

Ikegami T, Narayanan K, Won S, Kamitani W, Peters CJ, Makino S (2009) Rift Valley fever virus NS5 protein promotes post-transcriptional downregulation of protein kinase PKR and inhibits eIF2alpha phosphorylation. PLoS Pathog 5:e1000287

Ingellinger D, Arndt-Jovin D, Luhrmann R, Achsel T (2002) The human LSm1–7 proteins colocalize with the mRNA-degrading enzymes Dcp1/2 and Xrn1 in distinct cytoplasmic foci. RNA 8:1489–1501

Iseni F, Garcia D, Nishio M, Kedersha N, Anderson P, Kolakofsky D (2002) Sendai virus RNA trailer RNS binds TIAR, a cellular protein involved in virus-induced apoptosis. EMBO J 21:5141–5150

Isler JA, Skalea AH, Alwne JC (2005) Human cytomegalovirus infection activates and regulates the unfolded protein response. J Virol 79:6890–6899

Ivanov PA, Chudinova EM, Nadezhdina ES (2003) Disruption of microtubules inhibits cytoplasmic ribonucleoprotein stress granule formation. Exp Cell Res 290:227–233

Ivanov P, Kedersha N, Anderson P (2018) Stress granules and processing bodies in translational control. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a032813

Izumi T, Burdick R, Shigemi M, Plisov S, Hu WS, Pathak VK (2013) Mov10 and APOBEC3G localization to processing bodies is not required for virion incorporation and antiviral activity. J Virol 87:11047–11062

Jackson RJ, Hellen CU, Pestova TV (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 11:113–127

Jain S, Wheeler JR, Walters RW, Agrawal A, Barsic A, Parker R (2016) ATP-dependent transcription is required for virus production and virion incorporation. PLoS Pathog 12:e1005471

Jasen A, Sorgeloos F, van Kuppeveld F, Roberts LO, Goodfellow IG, Langereis MA, Locker N (2016) Feline calcivirus infection disrupts assembly of cytoplasmic stress granules and induces G3BP1 cleavage. J Virol 90:6489–6501

Jackson RJ, Hellen CU, Pestova TV (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 11:113–127

Jain S, Wheeler JR, Walters RW, Agrawal A, Barsic A, Parker R (2016) ATPase-modulated stress granules contain a diverse proteome and substructure. Cell 164:487–498

Jayabalak AK, Sanchez A, Park RY, Yoon SP, Kang YG, Baek JH, Anderson P, Kee Y, Ohn T (2016) NEDDylation promotes stress granule assembly. Nat Commun 7:12125

Katsafanas GC, Moss B (2007) Colocalization of transcription and translation within cytoplasmic poxviruses factories coordinates viral expression and subjugates host functions. Cell Host Microbe 2:221–228
Kedersha N, Anderson P (2002) Stress granules: sites of mRNA triage that regulate mRNA stability and translatability. Biochem Soc Trans 30:963–969

Kedersha NL, Gupta M, Li W, Miller I, Anderson P (1999) RNA-binding proteins TIAR and TIA-1 link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules. J Cell Biol 147:1431–1442

Kedersha N, Cho MR, Li W, Yacono PW, Chen S, Gilks N, Golan DE, Anderson P (2000) Dynamic shuttling of TIA-1 accompanies the recruitment of mRNA to mammalian stress granules. J Cell Biol 151:1257–1268

Kedersha N, Stoceklin G, Ayodele M, Yacono P, Lykke-Andersen J, Fritzler MJ, Scheuner D, Kaufman RJ, Golan DE, Anderson P (2005) Stress granules and processing bodies are dynamically linked sites of mRNA remodeling. J Cell Biol 169:871–880

Kedersha N, Tisdale S, Hickman T, Anderson P (2008) Real-time and quantitative imaging of mammalian stress granules and processing bodies. Methods Enzymol 448:521–552

Kedersha N, Ivanov P, Anderson P (2013) Stress granules and cell signaling: more than just a passing phase? Trends Biochem Sci 38:494–506

Kedersha N, Panas MD, Achorn CA, Lyons S, Tisdale S, Hickman T, Thomas M, Lieberman J, Mclnerney GM, Ivanov P, Anderson P (2016) G3BP-Caprin1-USP10 complexes mediate stress granule condensation and associate with 40S subunits. J Cell Biol 212:845–860

Khapersky DA, Hatchette TF, McCormick C (2012) Influenza A virus inhibits cytoplasmic stress granule formation. FASEB J 26:1629–1639

Khong A, Jan E (2011) Modulation of stress granules and P bodies during dicistrovirus infection. J Virol 85:1439–1451

Kojima E, Takeuchi A, Haneda M, Yagi A, Hasegawa T, Yamaki K, Takeda K, Akira S, Shimokata K, Isobe K (2003) The function of GADD34 is a recovery from a shutoff of protein synthesis induced by ER stress: elucidation by GADD34-deficient mice. FASEB J 17:1573–1575

Lahaye X, Vidy A, Pomier C, Obiang L, Harper F, Gaudin Y, Blondel D (2009) Functional characterization of Negri bodies (NBs) in rabies virus-infected cells: evidence that NBs are sites of viral transcription and replication. J Virol 83:7948–7958

Le Sage V, Cinti A, McCarthy S, Amorim R, Rao S, Daino GL, Lahaye X, Vidy A, Pomier C, Obiang L, Harper F, Gaudin Y, Blondel Khong A, Jan E (2011) Modulation of stress granules and P bodies during dicistrovirus infection. J Virol 85:1439–1451

Meng X, Xiang Y (2019) RNA granules associated with SAMD9-mediated poxvirus restriction are similar to antiviral granules in composition but do not require TIA1 for poxvirus restriction. Virology 529:16–22

Mir MA, Duran WA, Hjelle BL, Ye C, Panganiban AT (2008) Storage of cellular 5' mRNA caps in P bodies for viral caps-qatching. Proc Natl Acad Sci U S A 105:19294–19299

Nakagawa K, Narayan K, Wada M, Makino S (2018) Inhibition of PKR by RNAs with short stem-loops. Science 318:1455–1458

Nelson EV, Schmidt KM, Delflude LR, Doganay S, Banadlaya L, Olejnik J, Hume AJ, Ryabchikova E, Ebihara H, Kedersha N, Ha T, Muhlberger E (2016) Ebola virus does not induce stress granule formation during infection and sequesters stress granule proteins within viral inclusions. J Virol 90:7268–7284

Liu R, Moss B (2016) Opposing roles of double-stranded RNA effector pathways and viral defense proteins revealed with CRISPR-Cas9 Knockout cell lines and vaccinia virus mutants. J Virol 90:7864–7879

Liu J, Valencia-Sanchez MA, Hannon GJ, Parker R (2005) MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol 7:719–723

Liu TT, Yang Q, Li M, Zhong B, Ran Y, Liu LL, Yang Y, Wang YY, Sha HB (2016) LSm14A plays a critical role in antiviral immune responses by regulating MITA level in a cell-specific manner. J Immunol 196:5101–5111

Ma S, Bhattacharjee RB, Bag J (2009) Expression of poly(A)-binding protein is upregulated during recovery from heat shock in HeLa cells. FEBS J 276:552–570

Matsuki H, Takahashi M, Higuchi M, Makokha GN, Oie M, Fujii M (2013) Both G3BP1 and G3BP2 contribute to stress granule formation. Genes Cells 18:135–146

Mazroui R, Sukarieh R, Bordeleau ME, Kaufman RJ, Northcote P, Tanaka J, Gallouzi I, Pelletier J (2006) Inhibition of ribosome recruitment induces stress granule formation independently of eukaryotic initiation factor 2 alpha phosphorylation. Mol Biol Cell 17:4212–4219

McCormick C, Khapersky DA (2017) Translation inhibition and stress granules in the antiviral immune response. Nat Rev Immunol 17:647–660

McEwen E, Kedersha N, Song B, Scheuner D, Gilks N, Han A, Chen JJ, Anderson P, Kaufman RJ (2005) Heme-regulated inhibitor kinase-mediated phosphorylation of eukaryotic translation initiation factor 2 inhibits translation, induces stress granule formation, and mediates survival upon arsenite exposure. J Biol Chem 280:16925–16933

Mclnerney GM, Kedersha NL, Kaufman RJ, Anderson P, Liljestrom P (2005) Importance of elf2alpha phosphorylation and stress granule assembly in alphavirus translation regulation. Mol Biol Cell 16:3753–3763

Meng X, Xiang Y (2019) RNA granules associated with SAMD9-mediated poxvirus restriction are similar to antiviral granules in composition but do not require TIA1 for poxvirus restriction. Virology 529:16–22

Mir MA, Duran WA, Hjelle BL, Ye C, Panganiban AT (2008) Storage of cellular 5' mRNA caps in P bodies for viral caps-promatching. Proc Natl Acad Sci U S A 105:19294–19299

Mok BW, Song W, Wang P, Tai H, Chen Y, Zheng M, Wen X, Lau SY, Wu WL, Matsumoto K, Yuen KY, Chen H (2012) The NS1 protein of influenza A virus interacts with cellular processing bodies and stress granules through RNA-associated protein 55 (RAPP5) during virus infection. J Virol 86:12695–12707

Montero H, Rojas M, Arias CF, Lopez S (2008) Rotavirus infection induces the phosphorylation of elf2alpha but prevents the formation of stress granules. J Virol 82:1496–1504

Nakagawa K, Narayan K, Wada M, Makino S (2018) Inhibition of stress granule formation by middle east respiratory syndrome coronavirus 4a accessory protein facilitates viral translation, leading to efficient virus replication. J Virol 92:e00902–e18

Nallagatla SR, Hwang J, Toroney R, Zheng X, Cameron CE, Bevilaqua PC (2007) 5’-triphosphate-dependent activation of PKR by RNAs with short stem-loops. Science 318:1455–1458

Nathans R, Chu CY, Serquina AK, Lu CC, Cao H, Rana TM (2009) Cellular microRNA and P bodies modulate host-HIV-1 interactions. Mol Cell 34:696–709

Olejnik J, Hume AJ, Ryabchikova E, Ebihara H, Kedersha N, Ha T, Muhlberger E (2016) Ebola virus does not induce stress granule formation during infection and sequesters stress granule proteins within viral inclusions. J Virol 90:7268–7284
Ng CS, Jogi M, Yoo JS, Onomoto K, Koike S, Iwasaki T, Yoneyama M, Kato H, Fujita T (2013) Encephalomyocarditis virus disrupts stress granules, the critical platform for triggering antiviral innate immune responses. J Virol 87:9511–9522

Nikolic J, Civas A, Lama Z (2016) Rabies virus infection induces the formation of stress granules closely connected to the viral factories. PLoS Pathog 12:e1005942

Oceguera A, Peralta AV, Martinez-Delgado G, Arias CF, Lopez S (2018) Rotavirus RNAs sponge host cell RNA binding proteins and interfere with their subcellular localization. Virolology 525:96–105

Okonski KM, Samuel CE (2013) Stress granule formation induced by measles virus is protein kinase PKR dependent and impaired by RNA adenosine deaminase ADAR1. J Virol 87:756–766

Onomoto K, Jogi M, Yoo JS, Narita R, Morimoto S, Takemura S, Sambhara S, Kawaguchi A, Osari S, Nagata K, Matsumiya T, Namiki H, Yoneyama M, Fujita T (2012) Critical role of an antiviral stress granule containing RIG-I and PKR in viral detection and innate immunity. PLoS ONE 7:e43031

Panas MD, Ivanov P, Anderson P (2016) Mechanistic insights into mammalian stress granule dynamics. J Cell Biol 215:313–323

Patel CV, Handy I, Goldsmith T, Patel RC (2000) PACT, a stress-modulated cellular activator of interferon-induced double-stranded RNA-activated protein kinase, PKR. J Biol Chem 275:37993–37998

Pene V, Li Q, Sodroski C, Hsu CS, Liang TJ (2015) Dynamic interaction of stress granules, DDXX, and IKK-alpha mediates multiple functions in hepatitis C virus infection. J Virol 89:5462–5477

Poblete-Duran N, Prades-Perez Y, Vera-Otarola J, Soto-Rifo R, Valiente-Echeverria F (2016) Who regulates whom? an overview of RNA granules and viral infections. Viruses 8:E180

Potter DSW, Parker R (2016) Principles and properties of stress granules. Trends Cell Biol 26:668–679

Rabouw HH, Langeries MA, Knaap RC, Dalebout TJ (2016) Middle east respiratory coronavirus accessory protein 4a inhibits PKR-mediated antiviral stress responses. PLoS Pathog 12:e1005982

Reed JC, Molter B, Geary CD, McNevin J, McElrath J, Giri S, Klein KC, Lingappa JR (2012) HIV-1 Gag co-opts a cellular complex containing GDXX6, a helicase that facilitates capsid assembly. J Cell Biol 198:439–456

Reineke LC, Kedersha N, Langeries MA, van Kuppeveld FJ, Lloyd RE (2015) Stress granules regulate double-stranded RNA-dependent protein kinase activation through a complex containing G3BP1 and Caprin1. MBio 6:e02486

Rincheval V, Lelek M, Gault E, Bouillier C, Sitterlin D, Blouquit-Reineke LC, Kedersha N, Langereis MA, van Kuppeveld FJ, Lloyd Rabouw HH, Hensley LE, Connor JH (2011) Formation of antiviral cytoplasmic granules during orthopoxvirus infection. J Virol 85:1581–1593

Rivan G, Glushakov-Smith SG, Katsafanas GC, Americo JL, Moss B (2014) Human host range restriction of the vaccinia virus C7/K1 double deletion mutant is mediated by an atypical mode of translation inhibition. J Virol 90:e01329–18

Smith RW, Gray NK (2010) Poly(A)-binding protein (PABP): a common viral target. Biochem J 426:1–12

Sokoloski KJ, Dickson AM, Chaskey EL, Garneau NL, Wilusz CJ, Wilusz J (2010) Sindbis virus usurps the cellular HuR protein to stabilize its transcripts and promote productive infections in mammalian and mosquito cells. Cell Host Microbe 8:196–207

Srivastava SP, Kumar KU, Kaufman RJ (1998) Phosphorylation of eukaryotic translation initiation factor 2 mediates apoptosis in response to activation of the double-stranded RNA-dependent protein kinase. J Biol Chem 273:2416–2423

Stoecklin G, Kedersha N (2013) Relationship of GW/P-bodies with stress granules. Adv Exp Med Biol 768:197–211

Stohr N, Lederer M, Reineke C, Meyer S, Hatzfeld M, Singer RH, Huttelmaier S (2006) ZBP1 regulates mRNA stability during cellular stress. J Cell Biol 175:527–534

Takeuchi K, Komatsu T, Kitagawa Y, Sada K, Gotoh B (2008) Sendai virus C5 protein plays a role in restricting PKR activation by limiting the generation of intracellular double-stranded RNA. J Virol 82:10102–10110

Thomas MG, Loschi M, Desbats MA, Boccaccio GL (2011) RNA granules: the good, the bad and the ugly. Cell Signal 23:324–334

Toroney R, Nallagatla SR, Boyer JA, Cameron CE, Bevilacqua PC (2010) Regulation of PKR by HCV IRES RNA: importance of domain II and NS5A. J Mol Biol 400:393–412

Tourriere H, Cheblie K, Zekri L, Coursetaud B, Blanchard JM, Bertrand E, Tazi J (2003) The RasGAP-associated endoribonuclease G3BP1 promotes stress granule formation. J Virol 77:3799–3808

Von der Haar T, Gross JD, Wagner G, McCarthy JE (2004) The mRNA cap-binding protein eIF4E in post-transcriptional gene expression. Nat Struct Mol Biol 11:503–511
Wang T, Tian C, Zhang W, Luo K, Sarkis PT, Yu L, Liu B, Yu Y, Yu XF (2007) 7SL RNA mediates virion packaging of the antiviral cytidine deaminase APOBEC3G. J Virol 81:13112–13124
Ward AM, Bidet K, Yinglin A, Ler SG, Hogue K, Blackstock W, Gunaratne J, Garcia-Blanco MA (2011) Quantitative mass spectrometry of DENV-2 RNA-interacting proteins reveals that the DEAD-box RNA helicase DDX6 binds the DB1 and DB2 3' UTR structures. RNA Biol 8:1173–1186
Wek SA, Zhu S, Wek RC (1995) The histidyl-tRNA synthetase-related sequence in the eIF-2 alpha protein kinase GCN2 interacts with tRNA and is required for activation in response to starvation for different amino acids. Mol Cell Biol 15:4497–4506
Wheeler JR, Matheny T, Jain S, Abrisch R, Parker R (2016) Distinct stages in stress granule assembly and disassembly. Elife 5:e18413
White JP, Lloyd RE (2012) Regulation of stress granules in virus systems. Trends Microbiol 20:175–183
White JP, Cardenas AM, Marissen WE, Lloyd RE (2007) Inhibition of cytoplasmic mRNA stress granule formation by a viral proteinase. Cell Host Microbe 2:295–305
Wichroski MJ, Robb GB, Rana TM (2006) Human retroviral host restriction factors APOBEC3G and APOBEC3F localize to mRNA processing bodies. PLoS Pathog 2:e41
Wilczynska A, Aigueperse C, Kress M, Dautry F, Weil D (2005) The translational regulator CPEB1 provides a link between dcp1 bodies and stress granules. J Cell Sci 118:981–992
Willis KL, Langland JO, Shisler JL (2011) Viral double-stranded RNAs from vaccinia virus early or intermediate gene transcripts possess PKR activating function, resulting in NF-kappaB activation, when the K1 protein is absent or mutated. J Biol Chem 286:7765–7778
Xia J, Chen X, Xu F, Wang Y, Shi Y, Li Y, He J, Zhang P (2015) Dengue virus infection induces formation of G3BP1 granules in human lung epithelial cells. Arch Virol 160:2991–2999
Yang X, Hu Z, Fan S, Zhang Q, Zhong Y, Guo D, Qin Y, Chen M (2018) Picornavirus 2A protease regulates stress granule formation to facilitate viral translation. PLoS Pathog 14:e1006901
Ye X, Pan T, Wang D, Fang L, Ma J, Zhu X, Shi Y, Zhang K, Zheng H, Chen H, Li K, Xiao S (2018) Foot-and-mouth disease virus counteracts on internal ribosome entry site suppression by G3BP1 and Inhibits G3BP1-mediated stress granule assembly via post-translational mechanisms. Front Immunol 9:1142
Youn JY, Dunham WH, Hong SJ, Knight JDR, Bashkurov M, Chen GI, Bagci H, Rathod B, MacLeod G, Eng SWM, Angers S, Morris Q, Fabian M, Cote JF, Gingras AC (2018) High-density proximity mapping reveals the subcellular organization of mRNA-associated granules and bodies. Mol Cell 69:517–532.e511
Yu JH, Yang WH, Gullick T, Bloch KD, Bloch DB (2005) Ge-1 is a central component of the mammalian cytoplasmic mRNA processing body. RNA 11:1795–1802
Zaborowska I, Kellner K, Henry M, Meleady P, Walsh D (2012) Recruitment of host translation initiation factor eIF4G by the vaccinia virus ssDNA-binding protein I3. Virology 425:11–22
Ziehr B, Vincent HA, Moorman NJ (2016) Human cytomegalovirus pTRS1 and pIRS1 antagonize protein kinase R To facilitate virus replication. J Virol 90:3839–3848
Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12:21–35