Association Between Charlson Comorbidity Index and Complications of Endoscopic Resection of Gastric Neoplasms in Elderly Patients

CURRENT STATUS: UNDER REVIEW

Sunmin Kim
Chonnam National University Hospital
ORCiD: https://orcid.org/0000-0003-0077-1924

Dong Hyun Kim
Chonnam National University Hospital

Seon-Young Park
Chonnam National University Hospital

drpsy@naver.comCorresponding Author

Chang Hwan Park
Chonnam National University Hospital

Hyun Soo Kim
Chonnam National University Hospital

Sung Kyu Choi
Chonnam National University Hospital

Jong Sun Rew
Chonnam National University Hospital

DOI:
10.21203/rs.2.16786/v1

SUBJECT AREAS
Gastroenterology & Hepatology

KEYWORDS
Endoscopic mucosal resection, Aged, Comorbidity, Stomach neoplasms
Abstract

Background Although endoscopic resection is safe and effective for gastric epithelial neoplasms, information is limited on its efficacy and safety in extremely elderly patients who have various comorbidities. Further, the relationship between comorbidities and complications of endoscopic resection is not well established. Therefore, we aimed to evaluate the efficacy and safety of endoscopic resection of gastric epithelial neoplasms in extremely elderly patients.

Methods From October 2008 to December 2017, 4475 consecutive patients underwent endoscopic resection of gastric epithelial neoplasms. Among them, 242 were 75 years or older. We assessed Charlson comorbidity index (CCI) scores, procedural outcomes, and procedure- and sedation-related complications related to endoscopic resection.

Results Mean patient age was 78 (range, 75–88) years. Of the 242 patients, 124 (51.2%) had low-grade dysplasia and 112 (46.3%) had high-grade dysplasia or adenocarcinoma. The most common comorbidity was hypertension (55.4%), followed by diabetes (23.1%). The mean CCI score was 5.0 ± 1.5. Eighty patients (33.1%) had a CCI score ≥ 6. During the procedure, 10 (4.1%) patients had desaturation that recovered by flumazenil use with mask (n=2) or Ambu bag (n=3) ventilation. During subsequent admission, in addition to abdominal pain (35.1%), atelectasis and pneumonia occurred in 45 (18.6%) patients, hypotension in 27 (11.2%), and post-procedural bleeding in 12 (5.0%). Respiratory complications were more common in patients with a CCI score ≥ 6 (23/80, 28.7%) than in those with a CCI score < 6 (22/162, 13.6%, P=0.001).

Conclusions CCI score is related to respiratory complications of endoscopic resection in elderly patients. Endoscopic resection must be performed cautiously, particularly in elderly patients with a high CCI score, to prevent respiratory complications.

Background

Endoscopic resection is safe and effective for the treatment of gastric epithelial neoplasms and has a low risk of procedure-related complications [1–3]. In increasingly aged societies, a growing number of endoscopic treatments are performed for the elderly, and several reports have shown contrasting treatment outcomes and complications of endoscopic resection in elderly and non-elderly patients [4–
Elderly patients, especially those aged 75 years or older (extremely elderly patients), have various comorbidities and functional disabilities that influence daily life [9, 10]. Although several studies have reported that endoscopic mucosal resection (EMR) and endoscopic submucosal dissection (ESD) are safe and reliable in the elderly [4–8], endoscopy itself carries risks in elderly patients, particularly those with renal or respiratory comorbidities [11, 12].

In the real-world clinical setting, endoscopists must consider comorbidities, performance status (PS), and expected survival in elderly patients. The relationship between comorbidities and complications of endoscopic resection in elderly patients is not well established. The Charlson comorbidity index (CCI) has been widely utilized to measure the burden of complex comorbidities by health researchers [13]. The CCI predicts mortality by classifying or weighting comorbidities and has been validated in various disease subgroups, including stroke, cardiac disease, renal disease, and liver disease [14–17]. However, no studies to date have examined the relationship between CCI score and incidence of complications after endoscopic resection of gastric epithelial neoplasms in elderly patients.

Here we aimed to evaluate the CCI and efficacy and safety of endoscopic resection of gastric epithelial neoplasms in extremely elderly patients.

Methods

Study population

This retrospective study was conducted in accordance with the Ethical Guidelines of the Declaration of Helsinki. This study was approved by the Institutional Review Board of Chonnam National University Hospital (no. CNUH–2018–236).

From October 2008 to December 2017, a total of 4475 consecutive patients underwent endoscopic resection of gastric epithelial neoplasms in our center. Among them, 242 aged 75 years or older were included in this study. The patients underwent ESD or EMR for gastric epithelial neoplasms. We reviewed their medical records and extracted information about their demographic and clinical characteristics, procedural outcomes, and procedure- or sedation-related complications.

Assessment of CCI scores before endoscopic...
procedure

The components of CCI include: age, previous myocardial infarction, congestive cardiac failure, peripheral vascular disease, dementia, chronic obstructive pulmonary disease, connective tissue disease, peptic ulcer disease, diabetes, renal disease, hemiplegia, leukemia, lymphoma, solid tumor with or without metastatic disease, liver disease, and acquired immunodeficiency syndrome status.

We calculated the CCI by summing the weights of all comorbid parameters. The total CCI score was 0–37. We divided the patients into those with a CCI < 6 and those with a CCI ≥ 6.

Performance status

We reviewed the patients’ medical records to investigate their social history, body mass index, and comorbidities. Based on these data, the performance status of all enrolled patients was evaluated using the American Society of Anesthesiologists-Performance Status and Eastern Cooperative Oncology Group-Performance Status.

Endoscopic procedure

Endoscopists determined the methods of removal for the lesions (EMR or ESD) according to shape, size, presence of fibrosis, or presence of lesion ulceration before endoscopic resection. For ESD or EMR, patients were placed in the left lateral decubitus position. Each endoscopic procedure was performed using a single-channel upper gastrointestinal endoscope with transparent hood under CO₂ insufflation.

Anesthesia procedure

Patients were sedated with midazolam and pethidine with or without propofol. The target sedation level was mild to moderate [18]. For sedation induction, midazolam 3 mg and pethidine 25 mg were intravenously injected. Thereafter, additional propofol, midazolam, or pethidine was intravenously injected to ensure adequate sedation or pain control. Oxygen was supplied at a constant level of 2 L/min via a nasal prong during the procedure, and sedative medication doses were adjusted according to the vital signs of patients. We monitored blood pressure, heart rate, and oxygen saturation during the procedure.

Outcome Measures
The primary outcome was procedure- and sedation-related complications, while the secondary outcomes were procedure time and complete resection rate.

Procedure-related complications

Procedure-related bleeding was defined as bleeding requiring transfusion or emergency endoscopy or that reduced the hemoglobin level by more than 2 g/dL following the procedure. Procedure-related perforation was defined as endoscopically observed extraluminal space or intraabdominal free air on chest radiography taken after the procedure.

Sedation-related complications

Sedation-related complications were divided into immediate complications (hypotension, arrhythmia, hypoxia) during endoscopy and post-procedural complications (respiratory complications such as atelectasis and pneumonia).

Hypotension during the procedure was defined as systolic blood pressure below 90 mmHg. Oxygen desaturation was defined as oxygen arterial saturation < 90% for at least 10 seconds. Supplemental oxygen was given to maintain oxygen arterial saturation > 90%. Bradycardia was defined as any episode of heart rate < 40 beats per minute.

All patients underwent pre-procedure chest radiography at the time of admission. Atelectasis was diagnosed by comparison of post-procedure and pre-procedure chest radiographic findings, regardless of clinical symptoms. Radiographic findings of atelectasis include direct signs such as crowding of pulmonary vessels, crowed air bronchogram, and displacement of interlobar fissure as well as indirect signs such as pulmonary opacification and elevation of the ipsilateral diaphragm. Pneumonia was defined as newly developed pulmonary infiltration with clinical symptoms such as cough, sputum, and fever with chilling. In these cases, proper antibiotics were administered.

Procedure time

Procedure time was defined as the time from the start of intravenous administration of the sedative agent to the time of endoscope extubation.

Complete resection

Complete resection was defined as follows: 1) tumor removed in one piece (en bloc resection) and
horizontal/vertical margin was histologically free from tumorous glands; or 2) tumor removed in multiple pieces (piecemeal resection) and follow-up endoscopy revealed no recurrence for at least 1 year.

Statistical analysis

Statistical analysis was performed using SPSS version 23.0 (SPSS Inc., Chicago, IL, USA). Continuous data are shown as mean ± standard deviation or median (range), while categorical data are shown as absolute and relative frequencies. Continuous variables were analyzed using Student’s t-test. Categorical data were examined using Fisher’s exact test or the chi-squared test. On multivariate analysis, binary logistic regression models with forward conditioning were used to investigate CCI-associated complications. The data included in the regression analysis are presented as crude or adjusted odds ratios with 95% confidence intervals (CIs). Variables with P values < 0.05 on the univariate analysis were selected for inclusion in the multivariate analysis.

Results

Patient demographics

The mean patient age was 78 (range, 75–88) years. Of the 242 patients, 124 (51.2%) had low-grade dysplasia and 112 (46.3%) had high-grade dysplasia or adenocarcinoma (Table 1). The most common comorbidity was hypertension (55.4%), followed by diabetes (23.1%) (Table 2). A total of 141 (58.3%) patients underwent ESD. Seventy-one (31%) patients underwent endoscopic resection of multiple lesions in a single session. The mean procedure time was 34.9 ± 23.7 minutes, and the mean hospital stay was 5.0 ± 1.7 days.

Charlson comorbidity index

The mean CCI score was 5.0 ± 1.5 (range, 3–10). Figure 1 shows the distribution of the CCI score in the 242 patients: 42 (17.4%) had a CCI score of 3, 55 (22.7%) had a CCI score of 4, 65 (26.9%) had a CCI score of 5, 40 (16.5%) had a CCI score of 6, 19 (7.9%) had a CCI score of 7, 18 (7.4%) had a CCI score of 8, 1 (0.4%) had a CCI score of 9, and 2 (0.8%) had a CCI score of 10. Thus, 162 patients had a low CCI score (<6) and 80 had a high CCI score (≥6).

Procedure-related complications

Procedure-related complications included post-procedural bleeding (4.9%) and perforation (1.2%). There were no significant differences in procedure-related complications between the low and high CCI groups.

Sedation-related complications
During the procedure, there were 10 (4.1%) patients with desaturation recovered by flumazenil with use mask (n = 2) or Ambu bag (n = 3) ventilation. There were no significant differences in the incidence of hypotension or hypoxia during the procedure between the low and high CCI groups. Post-procedural complications such as atelectasis and pneumonia occurred in 45 (18.6%) patients. In 4 patients, pneumonia was diagnosed due to fever, respiratory symptoms, and chest radiography abnormalities. These patients were treated with antibiotics and improved without sequelae. Most other patients improved spontaneously during the outpatient follow-up period. The incidence of respiratory complications such as atelectasis and pneumonia tended to increase with CCI score: 10.3% (n = 4/39) in patients with a score of 3, 20.0% (n = 11/55) in patients with a score of 4, 10.8% (n = 7/65) in patients with a score of 5, 25.0% (n = 10/40) in patients with a score of 6, 26.3% (n = 5/19) in patients with a score of 7, and 38.1% (n = 8/21) in patients with a score of 8 or more (Figure 2). The incidence of respiratory complications (atelectasis and pneumonia) was higher in the group with a CCI score ≥ 6 (Table 3).

Uni- and multivariate analyses showed that age and presence of a CCI score ≥ 6 were related to the incidence of atelectasis and pneumonia after endoscopic resection in extremely elderly patients. The adjusted odds ratio for patients with a CCI score ≥ 6 and the development of atelectasis and pneumonia was 2.242 (95% CI, 1.097–4.581) (Table 4).

Clinical outcomes
En bloc resection was achieved in 90.5% (219/242) of patients, while complete resection was achieved in 87.2% (211/242) of patients. There was no significant difference in the en bloc resection or complete resection rates between the patients with low and high CCI scores (Table 3).

Discussion
Our study demonstrated that: (1) endoscopic resection was effective and safe for extremely elderly
(≥75 years of age) patients with gastric neoplasms under careful consideration; and (2) age and higher CCI score (≥6) were independent risk factors for atelectasis and pneumonia after endoscopic resection in extremely elderly patients.

As esophagogastroduodenoscopy has been widely used to provide regular surveillance for gastric cancer or other reasons, the frequency of finding gastric epithelial lesions such as dysplasia as well as early gastric cancer (EGC) is gradually increasing. Therefore, the use of endoscopic resection for diagnosis and treatment is gradually increasing. Furthermore, as the population ages and life expectancies increase, the number of elderly people who need endoscopic resection of gastric neoplasms increases. Several studies have examined the treatment outcomes and safety of endoscopic resection in elderly patients. Previous studies showed no significant difference in treatment outcomes of endoscopic resection of EGC in elderly patients [4–6]. In our study, the en bloc resection rate was 90.5% and the complete resection rate was 87.2%, similar to the rates reported in previous studies [19–22]. However, sedation-related complications such as intra-procedural hypotension and oxygen desaturation occurred more frequently in elderly patients [23]. Furthermore, post-procedural respiratory complications such as pneumonia developed more frequently in elderly patients than in nonelderly patients [7, 23]. Tokioka et al. demonstrated no significant difference in treatment outcomes or the incidence of complications including perforation or postoperative pneumonia [4]. However, recovery time from complications was longer and performance score was higher after endoscopic resection of EGC in patients aged 65 years and older [4]. In our study, significant hypoxemia and post-procedural respiratory complications occurred in 4.1% and 18.6% of patients, respectively, all of whom recovered spontaneously or with conservative treatment. It remains unclear which factors may affect the incidence of respiratory complications such as pneumonia. Charlson et al developed a scoring system to classify prognostic comorbidity and predict in-hospital and 1-year mortality rates [13]. Several studies reported that CCI predicted the prognosis of various diseases such as ischemic stroke [14], end-stage renal disease [15], cirrhosis [17], and lung cancer [24]. It could be adapted to patients in health care [25] and post-operative outcomes in acute cholecystitis [26]. In our study, CCI score was not related to procedure-related complications or
immediate sedation-related complications such as hypoxemia or hypotension. However, post-procedural complications including atelectasis/pneumonia were frequently observed in extremely elderly patients with higher a CCI score (≥6).

This study might not have included patients with very severe or uncontrolled comorbidities due to its retrospective design. All enrolled patients could be selected since they were considered suitable candidates for endoscopic therapy by the endoscopist. However, it is not possible to design a prospective study that enrolls only patients with severe morbidities due to ethical concerns.

Conclusions
In conclusion, although endoscopic resection is considered safe and effective for elderly patients, endoscopists must perform it cautiously, particularly in extremely elderly patients with a high CCI score, to prevent post-procedural respiratory complications such as pneumonia and atelectasis.

Declarations
• Ethics approval and consent to participate: Ethics Committee of the Chonnam National University Hospital approved this current study. CNUH–2018–236).
• Consent for publication: Not Applicable
• Availability of data and material: The datasets used and/or analyzed during the current study available from the corresponding author on request.
• Competing interests: The authors have no conflicts of interests
• Funding: This study was supported by the Chonnam National University Hospital Research Institute of Clinical Medicine (CRI 14011–1 and B2019–1047). This funding source had no role in the design of this study and collection, analysis and interpretation of data and in writing the manuscript.
• Authors’ contributions: All authors have read and approved this manuscript.

Sunmin Kim: analysis of electronic medical records; drafting of the manuscript
Dong Hyun Kim: study concept and design; analysis of electronic medical records; drafting of the manuscript
Seon-Young Park: study concept and design; data analysis and interpretation; drafting and finalization of the manuscript; study supervision
Chang Hwan Park, Hyun Soo Kim, Sung Kyu Choi and Jong Sun Rew: patient recruitment and care

• Acknowledgements: No

References
1. Oka S, Tanaka S, Kaneko I, Mouri R, Hirata M, Kawamura T, Yoshihara M, Chayama K: Advantage of endoscopic submucosal dissection compared with EMR for early gastric cancer. Gastrointest Endosc 2006, 64(6):877–883.

2. Takeuchi Y, Uedo N, Iishi H, Yamamoto S, Yamamoto S, Yamada T, Higashino K, Ishihara R, Tatsuta M, Ishiguro S: Endoscopic submucosal dissection with insulated-tip knife for large mucosal early gastric cancer: a feasibility study (with videos). Gastrointest Endosc 2007, 66(1):186–193.

3. Oda I, Gotoda T, Hamanaka H, Eguchi T, Saito Y, Matsuda T, Bhandari P, Emura F, Saito D, Ono H: Endoscopic submucosal dissection for early gastric cancer: technical feasibility, operation time and complications from a large consecutive series. Digestive endoscopy 2005, 17(1):54–58.

4. Tokioka S, Umegaki E, Murano M, Takeuchi N, Takeuchi T, Kawakami K, Yoda Y, Kojima Y, Higuchi K: Utility and problems of endoscopic submucosal dissection for early gastric cancer in elderly patients. Journal of gastroenterology and hepatology 2012, 27 Suppl 3:63–69.

5. Kakushima N, Fujishiro M, Kodashima S, Muraki Y, Tateishi A, Yahagi N, Omata M: Technical feasibility of endoscopic submucosal dissection for gastric neoplasms in the elderly Japanese population. Journal of gastroenterology and hepatology 2007, 22(3):311–314.

6. Hirasaki S, Tanimizu M, Nasu J, Shinji T, Koide N: Treatment of elderly patients with early gastric cancer by endoscopic submucosal dissection using an insulated-tip diathermic knife. Internal medicine (Tokyo, Japan) 2005, 44(10):1033–1038.

7. Isomoto H, Ohnita K, Yamaguchi N, Fukuda E, Ikeda K, Nishiyama H, Akiyama M, Ozawa E, Nakao K, Kohno S et al: Clinical outcomes of endoscopic submucosal dissection in elderly patients with early gastric cancer. Eur J Gastroenterol Hepatol 2010, 22(3):311–317.

8. Zhang Y, Huang L, Li L, Ji F: Endoscopic submucosal dissection for early gastric neoplasms in elderly patients. J Laparoendosc Adv Surg Tech A 2014, 24(6):391–398.

9. From the Centers for Disease Control and Prevention. Public health and aging: trends in aging—
10. Fried L, Barron J: Older adults. In: Handbook of Urban Health. Springer; 2005: 177-199.

11. Quine MA, Bell GD, McCloy RF, Charlton JE, Devlin HB, Hopkins A: Prospective audit of upper gastrointestinal endoscopy in two regions of England: safety, staffing, and sedation methods. Gut 1995, 36(3):462-467.

12. McLernon DJ, Donnan PT, Crozier A, Dillon J, Mowat C: A study of the safety of current gastrointestinal endoscopy (EGD). Endoscopy 2007, 39(8):692-700.

13. Charlson ME, Pompei P, Ales KL, MacKenzie CR: A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. Journal of chronic diseases 1987, 40(5):373-383.

14. Goldstein LB, Samsa GP, Matchar DB, Horner RD: Charlson Index comorbidity adjustment for ischemic stroke outcome studies. Stroke 2004, 35(8):1941-1945.

15. Hemmelgarn BR, Manns BJ, Quan H, Ghali WA: Adapting the Charlson Comorbidity Index for use in patients with ESRD. American journal of kidney diseases: the official journal of the National Kidney Foundation 2003, 42(1):125-132.

16. Lee DS, Donovan L, Austin PC, Gong Y, Liu PP, Rouleau JL, Tu JV: Comparison of coding of heart failure and comorbidities in administrative and clinical data for use in outcomes research. Med Care 2005, 43(2):182-188.

17. Myers RP, Quan H, Hubbard JN, Shaheen AA, Kaplan GG: Predicting in-hospital mortality in patients with cirrhosis: results differ across risk adjustment methods. Hepatology 2009, 49(2):568-577.

18. Early DS, Lightdale JR, Vargo JJ, 2nd, Acosta RD, Chandrasekhara V, Chathadi KV, Evans JA, Fisher DA, Fonkalsrud L, Hwang JH et al: Guidelines for sedation and anesthesia in GI endoscopy. Gastrointest Endosc 2018, 87(2):327-337.

19. Isomoto H, Ohnita K, Yamaguchi N, Fukuda E, Ikeda K, Nishiyama H, Akiyama M, Ozawa E, Nakao K, Kohno S et al: Clinical outcomes of endoscopic submucosal dissection in elderly patients with early gastric cancer. Eur J Gastroenterol Hepatol, 22(3):311-317.

20. Tokioka S, Umegaki E, Murano M, Takeuchi N, Takeuchi T, Kawakami K, Yoda Y, Kojima Y, Higuchi
K: Utility and problems of endoscopic submucosal dissection for early gastric cancer in elderly patients. J Gastroenterol Hepatol, 27 Suppl 3:63–69.

21. Kim SY, Sung JK, Moon HS, Kim KS, Jung IS, Yoon BY, Kim BH, Ko KH, Jeong HY: Is endoscopic mucosal resection a sufficient treatment for low-grade gastric epithelial dysplasia? Gut Liver, 6(4):446–451.

22. Yang TC, Hou MC, Chen PH, Hsin IF, Chen LK, Tsou MY, Lin HC, Lee FY: Clinical Outcomes and Complications of Endoscopic Submucosal Dissection for Superficial Gastric Neoplasms in the Elderly. Medicine (Baltimore), 94(44):e1964.

23. Yang TC, Hou MC, Chen PH, Hsin IF, Chen LK, Tsou MY, Lin HC, Lee FY: Clinical Outcomes and Complications of Endoscopic Submucosal Dissection for Superficial Gastric Neoplasms in the Elderly. Medicine 2015, 94(44):e1964.

24. Yang CC, Fong Y, Lin LC, Que J, Ting WC, Chang CL, Wu HM, Ho CH, Wang JJ, Huang CI: The age-adjusted Charlson comorbidity index is a better predictor of survival in operated lung cancer patients than the Charlson and Elixhauser comorbidity indices. European journal of cardio-thoracic surgery: official journal of the European Association for Cardio-thoracic Surgery 2018, 53(1):235–240.

25. Bannay A, Chaignot C, Blotiere PO, Basson M, Weill A, Ricordeau P, Alla F: The Best Use of the Charlson Comorbidity Index With Electronic Health Care Database to Predict Mortality. Medical care 2016, 54(2):188–194.

26. Bonaventura A, Leale I, Carbone F, Liberale L, Dallegri F, Montecucco F, Borganovo G: Pre-surgery age-adjusted Charlson Comorbidity Index is associated with worse outcomes in acute cholecystitis. Digestive and liver disease: official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver 2019, 51(6):858–863.

Tables
Table 1. Endoscopic and histologic findings in 242 elderly patients
Variables	
Number of lesions, n (%)	
Single	166 (69)
Multiple	75 (31)
Location of lesion, n (%)	
Upper 1/3	28 (11.5)
Mid 1/3	78 (32.2)
Lower 1/3	136 (56.2)
Macroscopic appearance, n (%)	
Flat/depressed	77 (27.7)
Elevated	175 (72.3)
Histologic findings, n (%)	
Low-grade dysplasia	124 (51.2)
Carcinoma in situ or adenocarcinoma	59 (24.4)
Other	6 (2.5)
Method of endoscopic resection, n (%)	
EMR	100 (41.3)
ESD	142 (58.7)
Mean procedure time, min, mean ± SD	
	34.9 ± 23.7
Dose of sedative agents, mean ± SD	
Midazolam, mg	3.43 ± 1.16
Propofol, mg	112.0 ± 88.0

EMR, endoscopic mucosal resection; ESD, endoscopic submucosal dissection; SD, standard deviation

Table 2. Baseline characteristics and comorbidities of elderly patients who underwent endoscopic resection
Variables	Age, yrs, mean ± SD	78.7 ± 3.2
Female sex, n (%)	101 (41.7)	
Body mass index, kg/m², mean ± SD	23.7 ± 3.3	
Comorbidities, variable CCI, n (%)		
Acute myocardial infarction	1	30 (12.4)
Congestive heart failure	1	11 (4.5)
Peripheral vascular disease	1	3 (1.2)
Cerebrovascular accident	1	11 (4.5)
Dementia	1	5 (2.1)
Chronic pulmonary disease	1	27 (11.2)
Connective tissue disease	1	0 (0)
Ulcer disease	1	0 (0)
Mild liver disease	1	13 (5.4)
Hepatitis		
Diabetes	1	56 (23.1)
Diabetes with end organ damage	2	0 (0)
Hemiplegia	2	0 (0)
Moderate or severe renal disease	2	3 (1.2)
Any tumor	2	31 (12.8)
Leukemia	2	0 (0)
Lymphoma	2	0 (0)
Moderate to severe liver disease	3	5 (2.1)
Metastatic solid tumor	6	0 (0)
Acquired immunodeficiency syndrome	6	0 (0)
Charlson comorbidity index, mean ± SD		5.03 ± 1.53
ASA-PS, mean ± SD	2.01 ± 0.49	
ECOG-PS, mean ± SD	1.55 ± 0.55	
Medication, n (%)		
Aspirin	70 (28.9)	
Clopidogrel	10 (4.1)	
Antithrombotic agents	1 (0.4)	

SD, standard deviation; ASA-PS, American Society of Anesthesiologists Performance Status; ECOG-PS, Eastern Cooperative Oncology Group Performance Status

Table 3. Treatment outcomes and complications by CCI score

	CCI < 6 (n = 162)	CCI ≥ 6 (n = 80)	P
Age, mean ± SD	78.2 ± 2.9	79.8 ± 3.3	<
Sex (female)	76 (46.9)	25 (31.3)	
Procedure time, min, median (range)	30 (4-150)	29 (5-120)	
Resectability, n (%)	143 (88.3)	76 (95.0)	
En bloc resection	19 (11.7)	4 (5.0)	
Perforation	12 (7.4)	0	
Sedation-related complications, n (%)	3 (1.9)	0	
Immediate complication	1 (0.6)	0	
Hypotension	34 (21.0)	17 (21.3)	
Hypoxia	8 (4.9)	2 (2.5)	
Hypopnea or apnea	1 (0.6)	0	
Delayed complication	22 (13.6)	23 (28.7)	
Table 4. Univariate and multivariate analysis for predicting atelectasis/pneumonia after endoscopic resection in elderly patients

Variables	cOR (95% CI)	P value	aOR (95% CI)
Age, yrs	1.166 (1.046–1.301)	0.006	1.191 (1.077–1.318)
Sex (female)	0.659 (0.314–1.383)	0.270	1.191 (1.077–1.318)
Body mass index, kg/m²	1.032 (0.922–1.157)	0.582	1.242 (1.097–1.481)
CCI ≥ 6	2.563 (1.201–5.470)	0.015	2.242 (1.097–4.581)
Procedure time, min	1.011 (0.996–1.026)	0.150	1.011 (0.996–1.026)

cOR, crude odds ratio; aOR, adjusted OR; CCI, Charlson comorbidity index

Figures

Figure 1

Percentage of patients by CCI score
Figure 2

Atelectasis occurrence by CCI score (Data are expressed as mean ± standard error).

Figure 3

One example of atelectasis in an elderly patient (79-year-old woman who underwent endoscopic submucosal dissection). Photo of procedure (A). X-ray before procedure (B) and 24 hours after the procedure (C).
