Improving Natural Products Identification through Molecular Features Orientated Precursor Ions Selection and Targeted MS/MS Analysis: A Case study of Zhi-Ke-Yang-Yin capsule

Hongping Wang a, Qiong Yin a, ZiJian Wang a, Ping Peng a, Chunlan Fan c, Run Zhang b, Chen Zhao a and Zhaozhou Lin c

a Scientific Research Institute of Beijing Tongrentang Co., Ltd., Beijing 100011, China

b Beijing Tongrentang Technology Development Co., Ltd., Beijing 100079, China

c Beijing Zhongyan Tongrentang Pharmaceutical R & D Co., Ltd., Beijing 100000, China

The first author. Tel.: +86 10 87632655; fax: +86 10 87632655.

E-mail address: sungirl9626@163.com

Supplementary Data
Fig. S1 The structures of the reference standards.
S1 Optimization of the chromatographic conditions and mass spectrometric conditions of ZKYY extract

1) Optimization of the chromatographic conditions of ZKYY extract

A Vanquish™ Flex UHPLC system (Thermo Scientific, USA), equipped with a binary pump and a thermostatted column compartment, was used to perform the separation of the multiple components.

Two types of chromatographic columns, including Waters ACQUITY UPLC® BEH C_{18} column (2.1 x 100 mm, 1.7 μm) and Waters ACQUITY UPLC® HSS T3 column (2.1 x 100 mm, 1.8 μm), were used to perform the separation of multiple components. Good separations of multiple components were obtained on Waters ACQUITY UPLC® BEH C_{18} column (2.1 x 100 mm, 1.7 μm) which was finally selected to analyze ZKYY extract.

The mobile phase system of methanol aqueous solution, methanol-formic acid aqueous solution, acetonitrile aqueous solution and acetonitrile-formic acid aqueous solution were investigated in our study. We found that acetonitrile-formic acid aqueous solution offers good separation of multiple components, so it was chosen as the mobile phase system.

The elution gradient was also optimized by constantly adjusting the proportion of the mobile phase A (0.1% formic acid/water, v/v) and mobile phase B (acetonitrile) and the optimized elution gradient was 0-7 min, 2-20% B; 7-10 min, 20-25% B; 10-20 min, 25-40% B; 20-25 min, 40-65% B; 25-30 min, 65%B-95% B; 30-31 min, 95%B-95% B.

The influence of different column temperatures (25°C, 30°C and 35°C) was also investigated. We found when the column temperature was set at 35°C, not only the lower column pressure but also better separations of multiple components were obtained. Thus, 35°C was much suitable for us.

Taking all of the aforementioned factors into account, we established the chromatographic conditions as follows: A Waters ACQUITY UPLC® BEH C_{18} column (2.1 x 100 mm, 1.7 μm) coupled with a ACQUITY UPLC® BEH C_{18} VanGuard™ Pre-Column (2.1 x 5 mm, 1.7 μm) was employed to perform the
chromatographic separation of ZKYY extract using mobile phase A (0.1% formic acid/water, v/v) and mobile phase B (acetonitrile) by the following gradient elution program: 0-7 min, 2-20% B; 7-10 min, 20-25% B; 10-20 min, 25-40% B; 20-25 min, 40-65% B; 25-30 min, 65%B-95%B; 30-31 min, 95%B-95%B. The flow rate was 0.3 mL/min and the temperature was set at 35°C. The injection volume was 2 uL.

2) Optimization of the mass spectrometric conditions of ZKYY extract

High-accuracy mass spectrometric data were recorded on Orbitrap Exploris 240 mass spectrometer (Thermo Scientific, USA) equipped with Heated ESI source.

Due to all kinds of constituents exhibited significantly stronger ion responses in negative-ion mode than in positive-ion mode, the instrument was operated in negative-ion mode.

The MS parameters were selectively optimized and the collision energy were optimized. Fixed collision energy 35V and stepped collision energy 30%, 45% and 60% (in normalized collision energy type) were compared in our study. From Fig. S2, we found when performing the above collision energy separately, there was no much difference in the MS spectra of flavonoids (B), iridoids (C), phenylethanoid glycosides (D), phenylpropanoids (E) and ionones (F). However, most saponins such as ginsenoside Rd (A) produced relatively lower abundance of [M-H]$^-$ ion but higher abundance of fragmentation ions at collision energy 35V and exhibited relatively higher abundance of [M-H]$^-$ ion but lower abundance of fragmentation ions at stepped collision energy 30%, 45% and 60% (in normalized collision energy type). It can be seen, probably 35V was much suitable for saponins. Thus, taking saponins, flavonoids, iridoids, phenylethanoid glycosides, phenylpropanoids and ionones into consideration, fixed 35V was finally selected as the collision energy.
Fig. S2 The MS spectra of saponins (A), flavonoids (B), iridoids (C), phenylethanoid glycosides (D), phenylpropanoids (E) and ionones (F) in fixed collision energy 35V and stepped collision energy 30%, 45% and 60% (in normalized collision energy type).
S2 Identification of saponins

Except for ginsenosides identified mentioned in text, other known compounds and their isomerized, acetylated and malonylated compounds were also identified. Thirty-four triterpenoids, namely, ginsenoside Re₃ (R2), ginsenoside Re₄ (R3), 20-Glc-Rf (R5), ginsenoside Re₁ (R7), notoginsenoside R₁ (R9), ginsenoside Re₂ (R10), ginsenoside Rg₁ (R16), ginsenoside Re (R17), ginsenoside Rf (R42), notoginsenoside R₂ (R47), ginsenoside Ra₂ (R55), ginsenoside Ra₃ (R58), ginsenoside Rb₁ (R59), 20(S)-ginsenoside Rg₂ (R60), 20(S)-ginsenoside Rh₁ (R61), 20(R)-ginsenoside Rg₂ (R68), ginsenoside Re (R70), 20(R)-ginsenoside Rh₁ (R71), ginsenoside Ra₁ (R72), ginsenoside Ro (R74), ginsenoside Rb₂ (R81), ginsenoside Rb₃ (R82), quinquenoside R₁ (R86), ginsenoside Rs₂ (R91), ginsenoside Rd (R92), ginsenoside Ro methyl ester (R113), ginsenoside F₄ (R129), ginsenoside Rg₆ (R133), 20(S)-ginsenoside Rg₃ (R139), 20(R)-ginsenoside Rg₃ (R141), 20(S)-ginsenoside Rh₂ (R147), 20(R)-ginsenoside Rh₂ (R148), astragaloside IV (H13), astragaloside II (H18), were confirmed and validated by comparing the mass spectra, retention times and fragmentation pathways with those of reference standards. Then, the fragmentation pathways were used to deduce the other compounds. **R18, R23, R25 and R29** owned the same not only precursor ion but also the same fragmentation pathways and fragmentation ions as those of ginsenoside Re, so that they were tentatively assigned as the isomers of ginsenoside Re. Similarly, the isomers of the other reference standards were characterized, and **R39** as well as **R65** were identified as ginsenoside Rb₁ isomer while **R53, R56** as well as **R62** were
characterized as ginsenoside Ro isomer. R41, R46, R50 and R64 were the isomers of notoginsenoside R4 or ginsenoside Ra3, and R104, R112 as well as R134 were the isomers of ginsenoside Rd. R124 was elucidated as isomerized ginsenoside Rg2 while R88 and R96 were elucidated as the isomerized quinuenoside R1. R11 was the isomer of notoginsenoside R1.

Other known ginsenosides including R4, R8, R13, R31, R32, R40, R48, R51, R80, R84, R89, R90, R99, R101, R103, R109, R116, R117, R119, R122, R125, R136, R142, R145 and R146 were tentatively assigned according to their diagnostic ions and the successively losses of a series of saccharide moiety. Their isomers, which own the same precursor ions, fragmentation pathways and fragmentation ions as the above known compounds were tentatively characterized. R1, R20, R26, R30 and R34 were tentatively identified as floralginsenoside P and its isomers. All fragmentation ions were detailed in Table S1.

Except for some isomers were founded, the acetylated and malonylated of known ginsenosides were also detected. After loss of acetyl (42 Da), the remaining fragmentation ions of R27 and R36 were the same as those of the reference standard of ginsenoside Re, thus, R27 and R36 were deduced as acetyl-ginsenoside Re. Similarly, R95 was deduced as acetyl-ginsenoside Rd, while R135, R137 and R140 were deduced as acetyl-ginsenoside Rg3. R107 and R111 were deduced as acetyl-pseudo-ginsenoside RC1. The remaining fragmentation ions of R22 were the same as those of the reference standard of ginsenoside Rg1 after loss of malonyl (86 Da), therefore, R22 was characterized as malonyl-ginsenoside Rg1. R24 was
characterized as malonyl-ginsenoside Re while R94 was identified as malonyl-ginsenoside Rd in the same way. Also, R28, R45, R54, R57, R66, R67, R69, R73, R75, R77, R79, R83, R85, R100, R106, R123 and R126 were identified as the malonyl compounds of corresponding reference standards.

Except for ginsenosides, 25 stragalus saponins were also detected and most of them produced the diagnostic ion at m/z 489.3580 by successively losses of a series of acetyl and saccharide moiety. The detailed fragmentation ions were shown in Table S1.

S3 Identification of flavonoids

Except for identified flavonoids mentioned in text, other known compounds and their isomers were also characterized. H84 was extracted at m/z 315.0873 with a mass deviation of 1.27 ppm, indicating its molecular formula was C_{17}H_{16}O_{6}. In its MS/MS spectrum, the fragmentation ions at m/z 285.0409 and 257.0464 suggested the successive losses of OCH_{2} and CO from [M-H]^− ion, respectively, while m/z 241.0522 and 211.1346 indicated the successive losses of CO_{2} and OCH_{2} from m/z 285.0409, respectively. Thus, H84 was tentatively deduced as 2′, 4′-Dihydroxy-5, 6-Dimethyisoflavaone, a known compound isolated from Astragalus membranaceus. Similarly, other known compounds such as H27-H29, H32, H34-H36, H46, H47, H57, H58, H59, H64-H66, H69, H70, H72, H76, H77, H81, H82, H87, H88, S67, S69, S74-S76, S77, S78, S80, S81, S86 and S87 were tentatively characterized. Beyond that, the isomers of known compounds were also characterized. For instance, the extracted precursor ion of H37, H41, H49, H53, H61, H80, H85 and H90 was
observed at \(m/z \) 285.0768, which was the same as that of H69, indicating their molecular formula was C_{16}H_{14}O_{5}. Their fragmentation ions were observed the same as those of H69 at \(m/z \) 270.0513 and 228.0424 suggesting CH_{3} and C_{2}H_{2}O were successively eliminated from the precursor ion. Thus, H37, H41, H49, H53, H61, H80, H85 and H90 were tentatively assigned as vesticarpan isomers.

Actually, the sugar moieties of the flavonoids existing in forms of glycosides were always firstly eliminated from the precursor ions in their targeted analysis and then followed by a series of neutral losses of small molecular. The precursor ion of S80 was extracted at \(m/z \) 593.1508 with a mass derivation of 0.34 ppm suggesting its molecular formula was C_{27}H_{30}O_{15}. The fragmentation ions at \(m/z \) 285.0410 suggesting Gal and Rha were eliminated from the precursor ion and the ions at \(m/z \) 267.0302 and 241.0510 indicating H_{2}O and CO_{2} were eliminated from \(m/z \) 285.0410. Thus, S80 was deduced as a known compound kaempferol-3-O-\alpha-L-Rhamnosyl(1-6)-\beta-D-galactoside. The precursor ions as well as the fragmentation ions of S64, S66, S70, S72 and S83 were the same as S80, thus, they were tentatively assigned as the isomers of kaempferol-3-O-\alpha-L-Rhamnosyl(1-6)-\beta-D-galactoside. In the same way, the other known compounds and isomers were tentatively assigned, the fragmentation ions were shown in Table S2.

No.	\(t_{R} \) (min)	Molecular formula	Measured value (\(m/z \))	Diff (ppm)	Product ions	Compound name
Saponins from *panax ginseng*						
R1	10.12	C_{53}H_{90}O_{23}	1093.5817	2.01	799.4976[M-H-Ara-Glc]^{+}, 637.4310[M-H-Ara-2Glc]^{+}	Floralginsenoside P/Isomer
R2	10.57	C₄₉H₆₀O₁₉	961.5381	0.94	475.3813[M-H-Ara-3Glc]⁻, 799.4852[M-H-Glc]⁻, 637.4333[M-H-2Glc]⁻, 475.3802[M-H-3Glc]⁻, Ginsenoside Re₃⁺	
-----	-------	-------------	---------	------	---	
R3	10.96	C₄₇H₆₀O₁₈	931.5259	-0.75	799.4870[M-H-Ara(f)]⁻, 637.4312[M-H-Ara(f)-Glc]⁻, 475.3810[M-H-Ara(f)-2Glc]⁻, Ginsenoside Re₄⁺	
R4	11.04	C₅₃H₆₀O₂₂	1077.5845	0.00	945.5450[M-H-Ara]⁻, 783.4838[M-H-Ara-Glc]⁻, 637.4318[M-H-Ara-Glc-Rha]⁻, Floralginsenoside M/Floralginsenoside N	
R5	11.18	C₄₉H₆₀O₁₉	961.5378	0.62	799.4838[M-H-Glc]⁻, 637.4320[M-H-2Glc]⁻, 475.3791[M-H-3Glc]⁻, 20-Gluco-ginsenoside Rf⁺	
R6	11.31	C₅₃H₆₀O₂₃	1107.5961	0.90	945.5485[M-H-Glc]⁻, 783.4889[M-H-2Glc]⁻, 637.4330[M-H-2Glc-Rha]⁻, Protopanaxatriol+3Glc+Rha	
R7	11.32	C₄₉H₆₀O₁₉	961.5381	0.94	799.4897[M-H-Glc]⁻, 637.4309[M-H-2Glc]⁻, 475.3794[M-H-3Glc]⁻, Ginsenoside Re₅⁺	
R8	11.39	C₅₃H₆₀O₂₂	1077.5846	0.09	945.5465[M-H-Ara]⁻, 799.4873[M-H-Ara-Rha]⁻, 637.4344[M-H-Ara-Rha-Glc]⁻, Floralginsenoside M/Floralginsenoside N	
R9	11.49	C₄₇H₆₀O₁₈	931.5272	0.64	799.4841[M-H-Xyl]⁻, 637.4319[M-H-Xyl-Glc]⁻, 475.795[M-H-Xyl-2Glc]⁻, Notoginsenoside R₁⁺	
R10	11.60	C₄₉H₆₀O₁₉	961.5377	0.52	799.4895[M-H-Glc]⁻, 637.4328[M-H-2Glc]⁻, 475.3805[M-H-3Glc]⁻, Ginsenoside Re₂⁺	
R11	11.81	C₄₇H₆₀O₁₈	931.5276	1.07	799.4841[M-H-Xyl]⁻, 637.4303[M-H-Xyl-Glc]⁻, 475.3780[M-H-Xyl-2Glc]⁻, Notoginsenoside R₁ isomer	
R12	11.89	C₅₃H₆₀O₂₃	1107.5970	1.72	945.5467[M-H-Glc]⁻, 783.4889[M-H-2Glc]⁻, 637.4330[M-H-2Glc-Rha]⁻, Protopanaxatriol+3Glc+Rha	
R13	12.01	C₅₃H₆₀O₂₄	1123.5905	0.45	961.5388[M-H-Glc]⁻, 799.4835[M-H-2Glc]⁻, 637.4330[M-H-3Glc]⁻, 475.3788[M-H-4Glc]⁻, Koryoginsenoside R₂	
R14	12.08	C₅₃H₆₀O₂₃	1107.5941	-0.90	945.5471[M-H-Glc]⁻, 783.4981[M-H-2Glc]⁻, Protopanaxatriol+3Glc+Rha	
R15	12.09	C_{44}H_{82}O_{19}	961.5362	-1.04	637.4370[M-H-2Glc-Rha]^−, 475.3776[M-H-3Glc-Rha]^−	Notoginsenoside N isomer
R16	12.16	C_{42}H_{72}O_{14}	799.4849	0.63	637.4355[M-H-Glc]^−, 475.3808[M-H-2Glc]^−	Ginsenoside Rg_{1}a
R17	12.20	C_{44}H_{82}O_{18}	945.5431	0.85	783.4901[M-H-Glc]^−, 637.4330[M-H-Glc-Rha]^−, 475.3795[M-H-2Glc-Rha]^−	Ginsenoside Rea
R18	12.38	C_{44}H_{82}O_{18}	945.5433	1.06	783.4897[M-H-Glc]^−, 637.4321[M-H-Glc-Rha]^−, 475.3792[M-H-2Glc-Rha]^−	Re isomer
R19	12.55	C_{53}H_{90}O_{22}	1077.5848	0.28	945.5455[M-H-Ara]^−, 799.4869[M-H-Ara-Rha]^−, 637.4371[M-H-Ara-Rha-Glc]^−, 475.3776[M-H-Ara-Rha-2Glc]^−	Floralginsenoside M isomer/Floralginsenoside N isomer
R20	12.58	C_{53}H_{90}O_{23}	1093.5812	1.55	799.4867[M-H-Ara-Glc]^−, 637.4344[M-H-Ara-2Glc]^−, 475.3759[M-H-Ara-3Glc]^−	Floralginsenoside P/aisomer
R21	12.90	C_{44}H_{82}O_{19}	961.5363	-0.94	799.3902[M-H-Glc]^−, 637.4371[M-H-Glc-Rha]^−, 475.3743[M-H-3Glc]^−	Notoginsenoside N isomer
R22	12.90	C_{43}H_{74}O_{17}	885.4840	-0.90	637.4316[M-H-Malonyl-Glc]^−, 475.3789[M-H-Malonyl-2Glc]^−	Malonyl-ginsenoside Rg_{1}
R23	13.08	C_{44}H_{82}O_{18}	945.5412	-1.16	783.4919[M-H-Glc]^−, 637.4326[M-H-Glc-Rha]^−, 475.3794[M-H-2Glc-Rha]^−	Ginsenoside Re isomer
R24	13.43	C_{51}H_{84}O_{21}	1031.5428	0.10	945.5392[M-H-Malonyl]^−, 783.4880[M-H-Malonyl-Glc]^−, 637.4326[M-H-Malonyl-Glc-Rha]^−, 475.3799[M-H-Malonyl-2Glc-Rha]^−	Malonyl-ginsenoside Re
R25	13.44	C_{44}H_{82}O_{18}	945.5433	1.06	783.4930[M-H-Glc]^−, 637.4330[M-H-Glc-Rha]^−, 475.3818[M-H-2Glc-Rha]^−	Ginsenoside Re isomer
R26	13.52	C_{53}H_{90}O_{23}	1093.5802	0.64	799.4709[M-H-Ara-Glc]^−, 637.4294[M-H-Ara-2Glc]^−, 475.3743[M-H-Ara-3Glc]^−	Floralginsenoside P/aisomer
R27	13.54	C_{50}H_{84}O_{19}	987.5520	-0.91	945.5434[M-H-Ac]^−, 783.4855[M-H-Ac-Glc]^−, 637.4315[M-H-Ac-Glc-Rha]^−, 475.3791[M-H-Ac-2Glc-Rha]^−	Acetyl-ginsenoside Re
R28	13.64	C_{43}H_{74}O_{17}	885.4843	-0.56	637.4310[M-H-Malonyl-Glc]^−, 475.3799[M-H-Malonyl-2Glc]^−	Malonyl-ginsenoside Re
R29	13.88	C_{48}H_{82}O_{18}	945.5437	1.48	783.4935[M-H-Glc], 637.4331[M-H-Glc-Rha], 475.3801[M-H-2Glc-Rha]	Ginsenoside Re isomer
R30	14.11	C_{33}H_{60}O_{23}	1093.5811	1.46	799.4862[M-H-Ara-Glc], 637.4322[M-H-Ara-2Glc], 475.3789[M-H-Ara-3Glc]	Floralginosenoside P isomer
R31	14.12	C_{48}H_{82}O_{19}	961.5377	0.52	799.4824[M-H-Glc], 637.4315[M-H-2Glc], 475.3791[M-H-3Glc]	Notoginsenoside N
R32	14.34	C_{33}H_{60}O_{23}	1123.5907	0.62	961.5371[M-H-Glc], 799.4849[M-H-2Glc], 475.3796[M-H-3Glc]	Vina-ginsenoside R4
R33	14.40	C_{33}H_{60}O_{23}	1093.5814	1.74	799.4885[M-H-Ara-Glc], 127637.4363[M-H-Ara-2Glc], 475.3785[M-H-Ara-3Glc]	Floralginosenoside P isomer
R34	15.46	C_{48}H_{82}O_{19}	961.5384	1.25	799.4858[M-H-Glc], 637.4312[M-H-2Glc], 475.3802[M-H-3Glc]	Vina-ginsenoside R4 isomer
R36	15.53	C_{50}H_{84}O_{19}	987.5526	-0.30	945.5323[M-H-Ac], 783.4905[M-H-Ac-Glc], 637.4360[M-H-Ac-Glc-Rha], 475.3814[M-H-Ac-2Glc-Rha]	Acetyl-ginsenoside Re
R37	15.89	C_{60}H_{102}O_{28}	1269.6488	0.71	1107.5858[M-H-Glc], 945.5471[M-H-2Glc], 783.4899[M-H-3Glc], 621.4368[M-H-4Glc], 459.3851[M-H-5Glc]	Protopanaxadiol+5Glc
R38	16.19	C_{48}H_{82}O_{19}	961.5389	1.77	799.4788[M-H-Glc], 637.4316[M-H-2Glc], 475.3803[M-H-3Glc]	Vina-ginsenoside R4 isomer
R39	16.25	C_{54}H_{82}O_{23}	1107.5951	0.00	945.5400[M-H-Glc], 783.4893[M-H-2Glc], 621.4345[M-H-3Glc], 459.3834[M-H-4Glc]	Ginsenoside Rb1 isomer
R40	16.26	C_{42}H_{72}O_{14}	799.4854	1.25	637.4312[M-H-Glc], 475.3799[M-H-2Glc]	Ginsenoside Ia
R41	16.36	C_{50}H_{100}O_{27}	1239.6377	0.24	1107.5924[M-H-Glc], 945.5419[M-H-Glc-Xyl], 783.4904[M-H-2Glc-Xyl], 621.4343[M-H-3Glc-Xyl]	Notoginsenoside R4 isomer
R42	16.51	C_{52}H_{72}O_{14}	799.4849	0.63	459.3808[M-H-4Glc-Xyl]^-	Ginsenoside Rf^a
------	--------	-------------------	-----------	-------	--------------------------	---------------------------
					637.4326[M-H-Glc]^-,	
					475.3797[M-H-2Glc]^-,	
R43	16.55	C_{58}H_{100}O_{27}	1239.6381	0.56	1107.5955[M-H-Glc]^-,	Notoginsenoside R₄
					945.5423[M-H-Glc-Xyl]^-,	
					783.4895[M-H-2Glc-Xyl]^-,	
					621.4370[M-H-3Glc-Xyl]^-,	
					459.3840[M-H-4Glc-Xyl]^-,	
R44	16.76	C_{43}H_{62}O_{19}	961.5388	1.66	799.4815[M-H-Glc]^-,	Vina-ginsenoside R₄ isomer
					637.4232[M-H-2Glc]^-,	
					475.3837[M-H-3Glc]^-,	
R45	16.88	C_{62}H_{102}O_{30}	1325.6359	-1.43	1239.6378[M-H-Malonyl]^-	Malonyl-notoginsenoside R₄
					1107.5916[M-H-Malonyl-Xyl]^-	
					945.5457[M-H-Malonyl-Xyl-Glc]^-	
					783.4915[M-H-Malonyl-Xyl-2Glc]^-	
					621.4358[M-H-Malonyl-Xyl-3Glc]^-	
					459.3822[M-H-Malonyl-Xyl-4Glc]^-	
R46	16.98	C_{58}H_{100}O_{27}	1239.6383	0.73	1107.5941[M-H-Glc]^-,	Notoginsenoside R₄ isomer/Ginsenoside Ra₃ isomer
					945.5395[M-H-Glc-Xyl]^-,	
					783.4912[M-H-2Glc-Xyl]^-,	
					621.4358[M-H-3Glc-Xyl]^-,	
					459.3817[M-H-4Glc-Xyl]^-,	
R47	17.17	C_{41}H_{70}O_{13}	769.4743	0.65	637.4322[M-H-Xyl]^-,	Notoginsenoside R₂^a
					475.3795[M-H-Xyl-Glc]^-,	
					799.4834[M-H-Ac]^-,	
					637.4298[M-H-Ac-Glc]^-,	
					475.3789[M-H-Ac-2Glc]^-,	
R48	17.23	C_{44}H_{72}O_{15}	841.4943	-0.71	1077.5818[M-H-Xyl]^-,	Yesanchinoside D
					945.5433[M-H-Xyl-Ara]^-,	
					783.4882[M-H-Xyl-Ara-Glc]^-,	
					621.4371[M-H-X2yl-Ara-2Glc]^-,	
					459.3804[M-H-Xyl-Ara-3Glc]^-,	
R49	17.42	C_{58}H_{98}O_{26}	1209.6273	0.41	1077.5818[M-H-Xyl]^-,	Ginsenoside Ra₁ isomer/Ginsenoside Ra₂ isomer
					945.5433[M-H-Xyl-Ara]^-,	
					783.4882[M-H-Xyl-Ara-Glc]^-,	
					621.4371[M-H-X2yl-Ara-2Glc]^-,	
					459.3804[M-H-Xyl-Ara-3Glc]^-,	
R50	17.49	C_{59}H_{100}O_{27}	1239.6375	0.08	1107.5958[M-H-Glc]^-,	Notoginsenoside R₄ isomer/Ginsenoside Ra₃ isomer
					945.5432[M-H-Glc-Xyl]^-,	
					783.4883[M-H-2Glc-Xyl]^-,	
					621.4380[M-H-3Glc-Xyl]^-,	
					459.3831[M-H-4Glc-Xyl]^-,	
R51	17.49	C_{41}H_{70}O_{13}	769.4744	0.78	637.4319[M-H-Ara]^-,	Ginsenoside F₃/Ginsenoside F₅
					475.3796[M-H-Ara-Glc]^-,	
					799.4853[M-H-Ac]^-,	
					637.4254[M-H-Ac-Glc]^-,	
					475.3789[M-H-Ac-2Glc]^-,	
R52	17.52	C_{44}H_{72}O_{15}	841.4954	0.59	793.4329[M-H-Glc]^-,	Yesanchinoside D isomer
					731.4350[M-H-Glc-CO₂H₂O]^-	
					841.4954[M-H-Glc-CO₂H₂O]^-	
R54	17.62	C_{62}H_{102}O_{30}	1325.6356	-1.66	569.3911[M-H-2Glc-H_2O-CO_2]^+; 1239.6321[M-H-Malonyl]^-; 1107.5948[M-H-Malonyl-Xyl]^-; 945.5408[M-H-Malonyl-Xyl-Glc]^-; 783.4899[M-H-Malonyl-Xyl-2Glc]^-; 621.4373[M-H-Malonyl-Xyl-3Glc]^-; 459.3832[M-H-Malonyl-Xyl-4Glc]^-	Malonyl-notoginsenoside R_4 isomer/Malonyl-ginsenoside Ra_3 isomer
R55	17.69	C_{58}H_{98}O_{26}	1209.6262	-0.50	1077.5858[M-H-Xyl]^+; 945.5461[M-H-Xyl-Ara(f)]^-; 783.4919[M-H-Xyl-Ara(f)-Glc]^-; 621.4398[M-H-Xyl-Ara(f)-2Glc]^-; 459.3864[M-H-Xyl-Ara(f)-3Glc]^-	
R56	17.77	C_{48}H_{76}O_{19}	955.4907	0.42	793.4390[M-H-Glc]^-; 613.3750[M-H-2Glc-H_2O]^+; 455.3515[M-H-2Glc-Glu A]^-	
R57	17.84	C_{62}H_{102}O_{30}	1325.6376	-0.15	1239.6368[M-H-Malonyl]^-; 1107.6024[M-H-Malonyl-Xyl]^-; 945.5449[M-H-Malonyl-Xyl-Glc]^-; 783.4921[M-H-Malonyl-Xyl-2Glc]^-; 621.4388[M-H-Malonyl-Xyl-3Glc]^-; 459.3872[M-H-Malonyl-Xyl-4Glc]^-	Malonyl-notoginsenoside R_4 isomer/Malonyl-ginsenoside Ra_3 isomer
R58	17.86	C_{59}H_{100}O_{27}	1239.6375	0.08	1107.5958[M-H-Glc]^-; 945.5416[M-H-Glc-Xyl]^-; 783.4886[M-H-2Glc-Xyl]^-; 621.4367[M-H-3Glc-Xyl]^-; 459.3842[M-H-4Glc-Xyl]^-	
R59	17.90	C_{54}H_{92}O_{23}	1107.5958	0.63	945.5414[M-H-Glc]^-; 783.4903[M-H-2Glc]^-; 621.4366[M-H-3Glc]^-; 459.3860[M-H-4Glc]^-	
R60	17.96	C_{42}H_{72}O_{13}	783.4893	-0.26	637.4333[M-H-Rha]^-; 475.3715[M-H-Rha-Glc]^-	
R61	17.98	C_{36}H_{62}O_{9}	637.4317	0.16	475.3786[M-H-Glc]^-	
R62	17.99	C_{48}H_{78}O_{19}	955.4897	-0.63	793.4382[M-H-Glc]^-; 613.3737[M-H-2Glc-H_2O]^+; 455.3526[M-H-2Glc-Glu A]^-	
R63	18.04	C_{58}H_{98}O_{26}	1209.6265	-0.25	1077.5839[M-H-Xyl]^-; 945.5435[M-H-Xyl-Ara]^-; 783.4897[M-H-Xyl-Ara-Glc]^-; 621.4370[M-H-Xyl-Ara-2Glc]^-; 459.3864[M-H-Xyl-Ara-3Glc]^-	
R64	18.08	C_{59}H_{100}O_{27}	1239.6389	1.21	1107.5950[M-H-Glc]^-; 945.5428[M-H-Glc-Xyl]^-; 783.4910[M-H-2Glc-Xyl]^-; Notoginsenoside R_4 isomer/Notoginsenoside Ra_3 isomer	
Entry	R	Mass	Molecular Formula	Molar Mass	Charge	
-------	---	-------	-------------------	-----------	-------	
R65	18.13	1107.5953	C_{56}H_{92}O_{23}	1107.5953	0.18	Ginkgoside Ra₃ isomer
R66	18.18	1325.6371	C_{62}H_{102}O_{30}	1325.6371	-0.53	Ginkgoside Rb₁ isomer
R67	18.25	1193.5942	C_{57}H_{94}O_{26}	1193.5942	-1.09	Malonylginkgoside Ra₃
R68	18.29	783.4895	C_{42}H_{72}O_{13}	783.4895	0.00	Malonylginkgoside Rb₁
R69	18.38	1325.6383	C_{62}H_{102}O_{30}	1325.6383	0.38	Malonylnotoginkgoside Ra₄ isomer/Malonylginkgoside Ra₃ isomer
R70	18.46	1077.5848	C_{53}H_{90}O_{22}	1077.5848	0.28	Ginkgoside Re₃
R71	18.48	637.4325	C_{36}H_{62}O_{9}	637.4325	1.41	Ginkgoside 20(R)-Rg₂ a
R72	18.54	1209.6263	C_{35}H_{98}O_{26}	1209.6263	-0.41	Ginkgoside Ra₁ a
R73	18.58	1193.5953	C_{57}H_{94}O_{26}	1193.5953	-0.17	Malonylginkgoside Rb₁ isomer
R74	18.70	955.4907	C_{48}H_{76}O_{19}	955.4907	0.42	Ginkgoside Ro a
R75	18.78	C_{58}H_{92}O_{25}	1163.5842	-0.60	455.3528[M-H-2Glc-Glu A]^-; 1077.5850[M-H-Malonyl], 945.5405[M-H-Malonyl-Ara(f)], 783.4891[M-H-Malonyl-Ara(f)-Glc], 621.4354[M-H-Malonyl-Ara(f)-2Glc]; 459.3852[M-H-Malonyl-Ara(f)-3Glc]^-; Malonyl-ginsenoside Rc	
R76	18.86	C_{58}H_{98}O_{26}	1209.6248	-1.65	1077.5869[M-H-Xyl]; 945.5433[M-H-Xyl-Ara], 783.4961[M-H-Xyl-Ara-Glc], 621.4344[M-H-Xyl-Ara-2Glc], 459.3845[M-H-Xyl-Ara-3Glc]^-; Ginsenoside Ra1 isomer/Ginsenoside Ra2 isomer	
R77	18.96	C_{62}H_{102}O_{30}	1325.6382	0.30	1239.6331[M-H-Malonyl], 1107.5958[M-H-Malonyl-Xyl], 945.5432[M-H-Malonyl-Xyl-Glc], 783.4890[M-H-Malonyl-Xyl-2Glc], 621.4368[M-H-Malonyl-Xyl-3Glc], 459.3842[M-H-Malonyl-Xyl-4Glc]^-; Malonyl-notoginsenoside R4 isomer/Malonyl-ginsenoside Ra3 isomer	
R78	19.03	C_{58}H_{98}O_{26}	1209.6252	-1.32	1077.5842[M-H-Xyl]; 945.5430[M-H-Xyl-Ara], 783.4901[M-H-Xyl-Ara-Glc], 621.4365[M-H-Xyl-Ara-2Glc], 459.3849[M-H-Xyl-Ara-3Glc]^-; Ginsenoside Ra1 isomer/Ginsenoside Ra2 isomer	
R79	19.03	C_{55}H_{94}O_{26}	1193.5946	-0.75	1107.6008[M-H-Malonyl], 945.5464[M-H-Malonyl-Glc], 783.4849[M-H-Malonyl-2Glc], 621.4401[M-H-Malonyl-3Glc], 459.3840[M-H-Malonyl-4Glc]^-; Malonyl-ginsenoside Rb1 isomer	
R80	19.07	C_{47}H_{74}O_{18}	925.4801	0.43	793.4316[M-H-Xyl/Ara], 613.3721[M-H-Xyl/Ara(f)-Glc-H2O]^-; 455.3538[M-H-Xyl/Ara(f)-Glc-Glu A]^-; Pseudo-ginsenoside-RT1	
R81	19.10	C_{55}H_{90}O_{22}	1077.5848	0.28	945.5414[M-H-Ara(p)], 783.4916[M-H-Ara(p)-Glc], 621.4418[M-H-Ara(p)-2Glc], 459.3886[M-H-Ara(p)-3Glc]^-; Ginsenoside Rb2^a	
R82	19.28	C_{55}H_{96}O_{22}	1077.5854	0.84	945.5438[M-H-Xyl], 783.4904[M-H-Xyl-Glc], 621.4388[M-H-Xyl-2Glc], 459.3851[M-H-Xyl-3Glc]^-; Ginsenoside Rb3^a	
R83	19.39	C_{56}H_{92}O_{25}	1163.5847	-0.17	1077.5853[M-H-Malonyl], 945.5468[M-H-Malonyl-Ara(p)], 783.4906[M-H-Malonyl-Ara(p)-Glc]^-; Malonyl-ginsenoside Rb2	

16
17

621.4352[M-H-Malonyl-Ara(p)-2Glc]

459.3855[M-H-Malonyl-Ara(p)-3Glc]

Pseudoginsenoside-RT1

793.4379[M-H-Xyl]−

613.3748[M-H-Xyl-Glc-H2O]−

455.3550[M-H-Xyl-Glc-Glu A]−

Malonyl-ginsenoside Rb3

1077.5847[M-H-Malonyl]−

945.5458[M-H-Malonyl-Xyl]−

783.4883[M-H-Malonyl-Xyl-Glc]−

621.4370[M-H-Malonyl-Xyl-2Glc]−

459.3842[M-H-Malonyl-Xyl-3Glc]−

Quinquenoside R1 a

1107.5984[M-H-Ac]−

945.5443[M-H-Ac-Glc]−

783.4930[M-H-Ac-2Glc]−

621.4387[M-H-Ac-3Glc]−

Chikusetsusaponin Iva isomer

Quinquenoside R1 isomer

631.3846[M-H-Glc]−

455.3521[M-H-Glc-Glu A]−

1209.6250[M-H-Ac]−

1077.5850[M-H-Ac-Xyl]−

945.5430[M-H-Ac-Xyl-ara(p)]−

783.4898[M-H-Ac-Xyl-ara(p)-Glc]−

Ginsenoside Ra5

1219.6259[M-H-Ac-Xyl-ara(p)]−

Ginsenoside Rs2 a

1209.6250[M-H-Ac-Xyl-ara(p)]−

1077.5850[M-H-Ac-Xyl]−

945.5430[M-H-Ac-Xyl-ara(p)]−

783.4898[M-H-Ac-Xyl-ara(p)-Glc]−

Ginsenoside Rs5

945.5422[M-H-Ac-Xyl-ara(p)]−

Ginsenoside Rd a

Ginsenoside Rs5 isomer
R94	20.75	C_{51}H_{84}O_{21}	1031.5425	-0.19	783.4895[M-H-Ac-Xyl-ara(p)-Glc]^{-}, 621.4377[M-H-Ac-Xyl-ara(p)-2Glc]^{-}, 459.3824[M-H-Ac-Xyl-ara(p)-3Glc]^{-}	Malonyl-ginsenoside Rd
R95	20.91	C_{50}H_{84}O_{19}	987.5528	-0.10	945.5433[M-H-Malonyl]^{-}, 783.4901[M-H-Malonyl-Glc]^{-}, 621.4374[M-H-Malonyl-2Glc]^{-}, 459.3849[M-H-Malonyl-3Glc]^{-}	Acetyl-ginsenoside Rd
R96	20.95	C_{52}H_{94}O_{24}	1149.6045	-1.04	1107.5840[M-H-Ac]^{-}, 945.5441[M-H-Ac-Glc]^{-}, 783.4883[M-H-Ac-2Glc]^{-}, 621.3635[M-H-Ac-3Glc]^{-}, 459.3830[M-H-Ac-4Glc]^{-}	Quinquenoside R_{1} isomer
R97	20.99	C_{47}H_{74}O_{18}	925.4813	1.73	793.4382[M-H-Xyl/Ara]^{-}, 613.3756[M-H-Xyl/AraGlc-H_{2}O]^{-}, 455.3536[M-H-Xyl/Ara-Glc-Glu A]^{-}	Pseudo-ginsenoside-RT_{1} isomer/Chikusetsusaponin IV isomer
R98	20.95	C_{52}H_{94}O_{23}	1119.5952	0.09	1077.5868[M-H-Ac]^{-}, 945.5418[M-H-Ac-Ara(p)]^{-}, 783.4923[M-H-Ac-Ara(p)-Glc]^{-}, 621.4371[M-H-Ac-Ara(p)-2Glc]^{-}, 459.3832[M-H-Ac-Ara(p)-3Glc]^{-}	Ginsenoside R_{s2} isomer
R99	21.11	C_{62}H_{102}O_{27}	1277.6539	0.70	1209.6308[M-H-(E)-but-2-enoyl]^{-}, 1077.5824[M-H-(E)-but-2-enoyl-Xyl]^{-}, 945.5358[M-H-(E)-but-2-enoyl-Xyl-ara(p)]^{-}, 783.4861[M-H-(E)-but-2-enoyl-Xyl-ara(p)-Glc]^{-}, 621.4417[M-H-(E)-but-2-enoyl-Xyl-ara(p)-2Glc]^{-}, 459.3851[M-H-(E)-but-2-enoyl-Xyl-ara(p)-3Glc]^{-}	Ginsenoside R_{a4} isomer
R100	21.23	C_{53}H_{86}O_{22}	1073.5527	-0.47	945.5427[M-H-Malonyl-Ac]^{-}, 783.4915[M-H-Malonyl-Ac-Glc]^{-}, 621.4370[M-H-Malonyl-Ac-2Glc]^{-}, 459.3838[M-H-Malonyl-Ac-3Glc]^{-}	Acetyl+Malonyl+Ginsenoside Rd
R101	21.41	C_{58}H_{96}O_{24}	1175.6215	0.17	1107.5950[M-H-(E)-but-2-enoyl]^{-}, 945.5409[M-H-(E)-but-2-enoyl-Glc]^{-}, 783.4881[M-H-(E)-but-2-enoyl-2Glc]^{-}	Ginsenoside R_{a6}
Compound	R Value	Molecular Formula	MW	p	Major Adducts
R102	21.44	C_{50}H_{100}O_{27}	1251.6384	0.80	621.4368[M-H-(E)-but-2-enoyl-3Glc]⁻, 459.3838[M-H-(E)-but-2-enoyl-4Glc]⁻, 1209.6195[M-H-Ac]⁻, 1077.5830[M-H-Ac-Xyl]⁻, 945.5414[M-H-Ac-Xyl-ara(p)]⁻, 783.4885[M-H-Ac-Xyl-ara(p)-Glc]⁻, 621.4354[M-H-Ac-Xyl-ara(p)-2Glc]⁻, 459.3880[M-H-Ac-Xyl-ara(p)-3Glc]⁻, Ginsenoside R₈ isomer
R103	21.50	C_{48}H_{76}O_{15}	867.5113	0.81	799.4869[M-H-(E)-but-2-enoyl]⁻, 637.4230[M-H-(E)-but-2-enoyl-Glc]⁻, 475.3830[M-H-(E)-but-2-enoyl-2Glc]⁻, Koryoginsenoside R₁/Ginsenoside R₆,
R104	21.54	C_{48}H_{82}O_{18}	945.5416	-0.74	783.4899[M-H-Glc]⁻, 621.4362[M-H-2Glc]⁻, 459.3837[M-H-3Glc]⁻, Ginsenoside Rd isomer
R105	21.74	C_{58}H_{96}O_{24}	1175.6213	0.00	1107.4648[M-H-(E)-but-2-enoyl]⁻, 27945.5414[M-H-(E)-but-2-enoyl-Glc]⁻, 783.4913[M-H-(E)-but-2-enoyl-2Glc]⁻, 621.4352[M-H-(E)-but-2-enoyl-3Glc]⁻, 459.3857[M-H-(E)-but-2-enoyl-4Glc]⁻, Ginsenoside R₆ isomer
R106	21.84	C_{53}H_{86}O_{22}	1073.5527	-0.47	987.5481[M-H-Malonyl]⁻, 945.5444[M-H-Malonyl-Ac]⁻, 783.4901[M-H-Malonyl-Ac-Glc]⁻, 621.4376[M-H-Malonyl-Ac-2Glc]⁻, 459.3846[M-H-Malonyl-Ac-3Glc]⁻, Acetyl+Malonyl+Ginsenoside Rd
R107	21.85	C_{52}H_{86}O_{20}	1029.5642	0.78	945.5521[M-H-2Ac]⁻, 783.5035[M-H-2Ac-Glc]⁻, 621.4399[M-H-2Ac-2Glc]⁻, 459.3840[M-H-2Ac-3Glc]⁻, Acetyl-pseudo-ginsenoside RC₁
R108	21.86	C_{62}H_{102}O_{27}	1277.6537	0.55	1209.6394[M-H-(E)-but-2-enoyl]⁻, 1077.5834[M-H-(E)-but-2-enoyl-Xyl]⁻, 945.5376[M-H-(E)-but-2-enoyl-Xyl-ara(p)]⁻, 783.4856[M-H-(E)-but-2-enoyl-Xyl-ara(p)-Glc]⁻, 621.4391[M-H-(E)-but-2-enoyl-Xyl-]
Compound	Mespolarity	Molar Mass	Retention Time	M/z Values	
---	---	---	---	---	---
R109	22.05	C₂₅H₆₉O₂₃	1145.6122	1077.5836[M-H-(E)-but-2-enoyl-Xyl-ara(p)-2Glc]⁻, 945.5428[M-H-(E)-but-2-enoyl-Ara-3Glc]⁻, 783.4880[M-H-(E)-but-2-enoyl-Ara-2Glc]⁻, 621.4377[M-H-(E)-but-2-enoyl-Ara-3Glc]⁻, 459.3861[M-H-(E)-but-2-enoyl-Ara-3Glc]⁻	Ginsenoside Ra₁/Ginsenoside Rb₁/Ginsenoside Ra₆
R110	22.06	C₅₈H₈₀O₂₅	1191.6165	945.5482[M-H-2Ac-Glc]⁻, 783.4897[M-H-2Ac-2Glc]⁻, 621.4391[M-H-2Ac-3Glc]⁻, 459.3807[M-H-2Ac-4Glc]⁻	Acetyl-quinquenoside R₁
R111	22.11	C₅₂H₈₆O₂₀	1029.5645	945.5443[M-H-2Ac]⁻, 783.4893[M-H-2Ac-2Glc]⁻, 621.4373[M-H-2Ac-3Glc]⁻, 459.3841[M-H-2Ac-3Glc]⁻	Acetyl-pseudo-ginsenoside RC₁
R112	22.13	C₄₆H₈₂O₁₈	945.5441	783.4899[M-H-Glc]⁻, 621.4385[M-H-2Glc]⁻, 459.3848[M-H-3Glc]⁻	Ginsenoside Rd isomer
R113	22.13	C₄₆H₇₈O₁₉	969.5059	807.4559[M-H-Glc]⁻, 645.4022[M-H-2Glc]⁻, 455.3533[M-H-2Glc-CH₂-Glu]⁻	Ginsenoside Ro methyl ester⁺
R114	22.37	C₅₈H₈₆O₂₅	1191.6169	945.5467[M-H-2Ac-Glc]⁻, 783.4882[M-H-2Ac-2Glc]⁻, 621.4377[M-H-2Ac-3Glc]⁻, 459.3858[M-H-2Ac-4Glc]⁻	Acetyl-quinquenoside R₁ isomer
R115	22.38	C₅₈H₉₆O₂₄	1175.6218	1107.5952[M-H-(E)-but-2-enoyl]⁻, 945.5443[M-H-(E)-but-2-enoyl-Glc]⁻, 783.4917[M-H-(E)-but-2-enoyl-2Glc]⁻, 621.4363[M-H-(E)-but-2-enoyl-3Glc]⁻, 459.3848[M-H-(E)-but-2-enoyl-4Glc]⁻	Ginsenoside Ra₆ isomer
R116	22.53	C₄₇H₉₈O₁₇	915.5324	783.4891[M-H-Xyl]⁻, 621.4368[M-H-Xyl-Glc]⁻, 459.3842[M-H-Xyl-2Glc]⁻	Vina-ginsenoside R₁₆
R117	22.55	C₅₈H₉₄O₂₃	1145.6121	1077.5864[M-H-(E)-but-2-enoyl]⁻, 945.5388[M-H-(E)-but-2-enoyl-Ara]⁻	Ginsenoside Ra₁/Ginsenoside Rb₁/Ginsenoside Ra₆
R118	22.55	C_{53}H_{96}O_{25}	1191.6167	0.42	783.4950[M-H-(E)-but-2-enoyl-Ara-Glc]^________, 621.4338[M-H-(E)-but-2-enoyl-Ara-2Glc]^________, 459.3842[M-H-(E)-but-2-enoyl-Ara-3Glc]^________
R119	22.61	C_{42}H_{88}O_{17}	915.5328	1.20	783.4875[M-H-Xyl]^_______, 621.4374[M-H-Xyl-Glc]^________, 459.3851[M-H-Xyl-2Glc]^________
R120	22.65	C_{62}H_{102}O_{27}	1277.6533	0.23	1209.6272[M-H-(E)-but-2-enoyl-Xyl]^________, 1077.5864[M-H-(E)-but-2-enoyl-Xyl-ara(p)]^________, 945.5404[M-H-(E)-but-2-enoyl-Xyl-ara(p)-Glc]^________, 945.5404[M-H-(E)-but-2-enoyl-Xyl-ara(p)-2Glc]^________, 459.3837[M-H-(E)-but-2-enoyl-Xyl-ara(p)-3Glc]^________
R121	22.67	C_{53}H_{96}O_{25}	1191.6169	0.59	945.5380[M-H-2Ac-Glc]^________, 783.4918[M-H-2Ac-2Glc]^________, 621.4365[M-H-2Ac-3Glc]^________, 459.3831[M-H-2Ac-4Glc]^________, 945.5404[M-H-(E)-but-2-enoyl-Xyl-ara(p)]^________, 783.4888[M-H-(E)-but-2-enoyl-Xyl-ara(p)-Glc]^________, 783.4888[M-H-(E)-but-2-enoyl-Xyl-ara(p)-2Glc]^________
R122	22.72	C_{42}H_{88}O_{17}	915.5332	1.64	783.4983[M-H-Ara(f)]^________, 621.4365[M-H-Ara(f)-Glc]^________, 459.3858[M-H-Ara(f)-2Glc]^________
R123	22.72	C_{53}H_{96}O_{22}	1073.5532	0.00	945.5435[M-H-Malonyl-Ac]^________, 783.4878[M-H-Malonyl-Ac-Glc]^________, 621.4377[M-H-Malonyl-Ac-2Glc]^________, 459.3854[M-H-Malonyl-Ac-3Glc]^________
R124	22.87	C_{42}H_{72}O_{13}	783.4908	1.66	621.4396[M-H-Glc]^________, 475.3831[M-H-Rha-Glc]^________, 945.5404[M-H-(E)-but-2-enoyl-Xyl-ara(p)]^________, 783.4888[M-H-(E)-but-2-enoyl-Xyl-ara(p)-Glc]^________, 783.4888[M-H-(E)-but-2-enoyl-Xyl-ara(p)-2Glc]^________
R125	22.91	C_{32}H_{94}O_{23}	1145.6123	1.31	1077.5928[M-H-(E)-but-2-enoyl]^________, 945.5350[M-H-(E)-but-2-enoyl-Ara]^________, 783.4876[M-H-(E)-but-2-enoyl-Ara-Glc]^________, 621.4327[M-H-(E)-but-2-enoyl-Ara-2Glc]^________

R120: Acetyl-quinquenoside R_{1} isomer
R121: Notoginsenoside Fe
R123: Acetyl+Malonyl+Ginsenoside Rd
R124: Ginsenoside Rg_{2} isomer
R125: Ginsenoside R_{a9}/Ginsenoside Ra_{9}
R126	23.24	C_{53}H_{86}O_{22}	1073.5530	-0.19	987.5375[M-H-Malonyl], 945.5438[M-H-Malonyl-Ac], 783.4887[M-H-Malonyl-Ac-Glc], 621.4371[M-H-Malonyl-Ac-2Glc], 459.3844[M-H-Malonyl-Ac-3Glc], 1077.5844[M-H-Malonyl-Ginsenoside Rd]	Acetyl+Malonyl+Ginsenoside Rd	
R127	23.25	C_{53}H_{90}O_{23}	1145.6089	-1.66	1077.5844[M-H-(E)-but-2-enoyl-Ara], 945.5438[M-H-(E)-but-2-enoyl-Ara-Glc], 783.4897[M-H-(E)-but-2-enoyl-Ara-2Glc], 621.4393[M-H-(E)-but-2-enoyl-Ara-3Glc], 459.3865[M-H-(E)-but-2-enoyl-Ara-4Glc], Ginsenoside Ra7 isoemer/Ginsenoside Ra8 isoemer/Ginsenoside Ra9 isoemer		
R128	23.25	C_{58}H_{96}O_{25}	1191.6168	0.50	945.5350[M-H-2Ac-Glc], 783.4876[M-H-2Ac-2Glc], 621.4327[M-H-2Ac-3Glc], 459.3839[M-H-2Ac-4Glc], Acetyl-quinquenoside R1 isoemer		
R129	23.36	C_{42}H_{76}O_{12}	765.4796	0.91	619.4214[M-H-Rha], 457.3696[M-H-Rha-Glc], 631.3884[M-H-Glc], 455.3553[M-H-Glc-Glu A], Ginsenoside F4a		
R130	23.38	C_{42}H_{66}O_{14}	793.4376	0.25	783.4911[M-H-Rha], 621.4376[M-H-Rha-Glc], 459.3846[M-H-Rha-2Glc], Zingibroside R1 isoemer		
R131	23.56	C_{44}H_{81}O_{17}	929.5485	1.18	783.4911[M-H-Rha], 621.4376[M-H-Rha-Glc], 459.3846[M-H-Rha-2Glc], Protopanaxadiol+Rha+2Glc		
R132	23.60	C_{58}H_{96}O_{25}	1191.6167	0.42	945.5438[M-H-2Ac-Glc], 783.4897[M-H-2Ac-2Glc], 621.4393[M-H-2Ac-3Glc], 459.3865[M-H-2Ac-4Glc], Acetyl-quinquenoside R1 isoemer		
R133	23.64	C_{42}H_{76}O_{12}	765.4795	0.78	619.4216[M-H-Rha], 457.3698[M-H-Rha-Glc], 783.4922[M-H-Glc], 621.4371[M-H-2Glc], 459.3831[M-H-3Glc], Ginsenoside Rg6a		
R134	23.73	C_{42}H_{62}O_{18}	945.5425	0.21	783.4922[M-H-Glc], 621.4371[M-H-2Glc], 459.3831[M-H-3Glc], Zingibroside R1 isoemer		
R135	23.92	C_{44}H_{74}O_{14}	825.5000	0.00	783.4901[M-H-Ac], 621.4351[M-H-Ac-Glc], 459.3853[M-H-Ac-2Glc], Acetyl-ginsenoside Rg3		
R136	24.04	C_{42}H_{66}O_{14}	793.4367	-0.88	631.3837[M-H-Glc], 455.3500[M-H-Glc-Glu A], Zingibroside R1 isoemer		
R137	24.28	C_{44}H_{74}O_{14}	825.5006	0.73	783.4900[M-H-Ac], 621.4313[M-H-Ac-Glc], Acetyl-ginsenoside Rg3		
R138	24.49	C_{42}H_{66}O_{14}	793.4380	0.76	459.3844[M-H-Ac-2Glc]^-	Zingibroside R₁ isomer	
R139	24.68	C_{42}H_{72}O_{13}	783.4904	1.15	621.4378[M-H-Glc]^-; 459.3845[M-H-2Glc]^-	Ginsenoside 20(Ｓ)-Rg₃a	
R140	24.72	C_{44}H_{72}O_{14}	825.5006	0.73	783.4950[M-H-Ac]^-; 621.4360[M-H-Ac-Glc]^-; 459.3793[M-H-Ac-2Glc]^-	Acetyl-ginsenoside Rg₃	
R141	24.87	C_{42}H_{72}O_{13}	783.4903	1.02	621.4376[M-H-Glc]^-; 459.3851[M-H-2Glc]^-	Ginsenoside 20(Ｒ)-Rg₃a	
R142	25.48	C_{43}H_{76}O_{12}	753.4779	-1.33	621.4398[M-H-Ara]^-; 459.3819[M-H-Ara-Glc]^-; 621.4360[M-H-Ac-Glc]^-; 459.3793[M-H-Ac-2Glc]^-	Ginsenoside MC	
R143	25.87	C_{65}H_{100}O_{21}	1215.6663	-1.32	955.4944[M-H-Polyacetylene]^-; 793.4407[M-H-Polyacetylene-Glc]^-; 455.3534[M-H-Polyacetylene-2Glc-Glu A]^-	Polyacetyleneginsenoside	-Ro isomer
R144	26.04	C_{65}H_{100}O_{21}	1215.6658	-1.73	793.4395[M-H-Polyacetylene-Glc]^-; 455.3527[M-H-Polyacetylene-2Glc-Glu A]^-	Polyacetyleneginsenoside	-Ro isomer
R145	26.17	C_{36}H_{62}O_{8}	621.4362	-0.64	459.3872[M-H-Glc]^-	Ginsenoside Compound K	
R146	26.19	C_{65}H_{100}O_{21}	1215.6680	0.08	955.4922[M-H-Polyacetylene]^-; 793.4376[M-H-Polyacetylene-Glc]^-; 455.3531[M-H-Polyacetylene-2Glc-Glu A]^-	Polyacetyleneginsenoside	-Ro
R147	27.14	C_{36}H_{62}O_{8}	621.4360	-0.97	459.3807[M-H-Glc]^-	Ginsenoside 20(Ｓ)-Rh₂a	
R148	27.27	C_{36}H_{62}O_{8}	621.4371	0.80	459.3869[M-H-Glc]^-	Ginsenoside 20(Ｒ)-Rh₂a	

Saponins from Astragalus Radix

H1	14.71	C_{47}H_{78}O_{19}	945.5070	1.16	783.4504[M-H-Glc]^-; 489.3577[M-H-2Glc-Xyl]^-	Astragaloside VII
H2	16.03	C_{47}H_{78}O_{19}	945.5063	0.42	783.4534[M-H-Glc]^-; 489.3585[M-H-2Glc-Xyl]^-	Astragaloside V
H3	16.67	C_{48}H_{80}O_{20}	987.5167	0.20	945.5074[M-H-Ac]^-; 927.4952[M-H-Ac-H₂O]^-; 783.4525[M-H-Ac-Glc]^-; 765.4435[M-H-Ac-Glc-H₂O]^-; 621.3989[M-H-Ac-2Glc]^-; 489.3623[M-H-Ac-2Glc-Xyl]^-	Agroastagaloside IV isomer
H4	16.90	C_{41}H_{68}O_{14}	783.4536	-0.64	621.3996[M-H-Glc]^-; 489.3577[M-H-Glc-Xyl]^-	Isoastragaloside IV
H5	17.11	C_{48}H_{80}O_{20}	987.5170	0.51	945.5097[M-H-Ac]^-; 783.4512[M-H-Ac-Glc]^-; 489.3643[M-H-Ac-2Glc-Xyl]^-	Agroastagaloside IV isomer
H6	17.69	C_{40}H_{80}O_{20}	987.5159	945.5087 [M-H-Ac], 927.4955 [M-H-Ac-H_2O], 783.4543 [M-H-Ac-Glc], 765.4478 [M-H-Ac-Glc-H_2O], 621.3989 [M-H-Ac-2Glc], 489.3623 [M-H-Ac-2Glc-Xyl]	Agroastragaloside IV isomer	
H7	17.77	C_{43}H_{70}O_{15}	825.4646	783.4485 [M-H-Ac], 621.3974 [M-H-Ac-Glc], 489.3589 [M-H-Ac-Glc-Xyl]	Astragaloside II isomer	
H8	18.28	C_{51}H_{82}O_{21}	1029.5266	945.5078 [M-H-2Ac], 927.4976 [M-H-2Ac-H_2O], 783.4511 [M-H-2Ac-Glc], 765.4457 [M-H-2Ac-Glc-H_2O]	Agroastragaloside III isomer	
H9	18.40	C_{47}H_{78}O_{19}	945.5051	783.4573 [M-H-Glc], 489.3593 [M-H-Glc-Xyl]	Astragaloside VI	
H10	18.72	C_{51}H_{82}O_{21}	1029.5265	927.5116 [M-H-2Ac-H_2O], 783.4541 [M-H-2Ac-Glc], 765.4396 [M-H-2Ac-Glc-H_2O], 621.4099 [M-H-2Ac-2Glc]	Agroastragaloside III isomer	
H11	18.80	C_{43}H_{70}O_{15}	825.4640	945.5061 [M-H-Ac], 927.4971 [M-H-Ac-H_2O], 783.4526 [M-H-Ac-Glc], 765.4396 [M-H-Ac-Glc-H_2O], 621.4099 [M-H-Ac-2Glc], 489.3492 [M-H-Ac-2Glc-Xyl]	Astragaloside II isomer	
H12	19.48	C_{49}H_{80}O_{20}	987.5172	621.3884 [M-H-Glc], 489.3532 [M-H-Glc-Xyl]	Agroastragaloside IV isomer	
H13	19.72	C_{41}H_{68}O_{14}	783.4535	621.3884 [M-H-Glc], 489.3532 [M-H-Glc-Xyl]	Astragaloside IV a	
H14	19.90	C_{43}H_{70}O_{15}	825.4645	783.4624 [M-H-Ac], 621.3972 [M-H-Ac-Glc], 489.3575 [M-H-Ac-Glc-Xyl]	Astragaloside II isomer	
H15	20.22	C_{49}H_{80}O_{20}	987.5171	945.5200 [M-H-Ac], 783.4661 [M-H-Ac-Glc], 489.3623 [M-H-Ac-2Glc-Xyl]	Agroastragaloside IV isomer	
H16	20.64	C_{43}H_{70}O_{15}	825.4642	783.4567 [M-H-Ac], 489.3588 [M-H-Ac-Glc-Xyl]	Astragaloside II isomer	
H17	20.70	C_{51}H_{82}O_{21}	1029.5267	945.5063 [M-H-2Ac], 927.4969 [M-H-2Ac-H_2O], 783.4714 [M-H-2Ac-Glc], 765.4423 [M-H-2Ac-Glc-H_2O], 621.405873 [M-H-2Ac-2Glc]	Agroastragaloside III	
H18	21.44	C_{43}H_{70}O_{15}	825.4644	783.4563 [M-H-Ac], 621.3985 [M-H-Ac-Glc], 489.3577 [M-H-Ac-Glc-Xyl]	Astragaloside II a	
No.	\(t_r \) (min)	Molecular formula	Measured value \((m/z)\)	Diff (ppm)	Product ions	Compound name
-----	-----------------	-------------------	---------------------	------------	--------------	--------------
H19	21.62	C_{43}H_{70}O_{15}	825.4639	0.36	783.4533[A-H-Ac]\(^-\), 621.3995[A-H-Ac-Glc]\(^-\), 489.3585[A-H-Ac-Glc-Xyl]\(^-\)	Astragaloside II isomer
H20	22.17	C_{44}H_{72}O_{17}	911.5016	1.32	765.4301[A-H-Rha]\(^-\)	Astragaloside VIII
H21	22.23	C_{48}H_{80}O_{20}	987.5167	0.20	945.5215[A-H-Ac]\(^-\), 783.4659[A-H-Ac-Glc]\(^-\), 489.3621[A-H-Ac-2Glc-Xyl]\(^-\)	Agroastragaloside IV
H22	22.25	C_{46}H_{78}O_{18}	941.5106	-0.42	795.4499[A-H-Rha]\(^-\)	Soyasaponin I
H23	22.96	C_{48}H_{82}O_{16}	867.4746	0.46	765.5357[A-H-2Ac-H_{2}O]\(^-\)	Astragaloside I
H24	23.44	C_{47}H_{80}O_{17}	911.5011	0.77	765.4304[A-H-Rha]\(^-\)	Astragaloside VIII isomer
H25	23.61	C_{48}H_{78}O_{18}	909.4855	0.77	783.4506[A-H-3Ac]\(^-\), 765.4476[A-H-3Ac-H_{2}O]\(^-\)	Acetylastragaloside I

\(a: \) Compound identified by comparison with the reference standards.

Table S2 Flavonoids from ZKYY

No.	\(t_r \) (min)	Molecular formula	Measured value \((m/z)\)	Diff (ppm)	Product ions	Compound name
H26	5.31	C_{22}H_{22}O_{11}	461.1090	1.30	299.0554[A-H-Glc]\(^-\), 284.0328[A-H-Glc-CH_{3}]\(^-\)	Kaempferol-4'-methoxy-3-O-β-D-glucopyranoside isomer
H27	6.56	C_{23}H_{28}O_{11}	503.1558	0.99	299.0563[A-H-(6'-acetyl)Glc]\(^-\), 284.0327[A-H-(6'-acetyl)Glc-CH_{3}]\(^-\), (-)-Methylinissol in 3-O-β-D-(6'-acetyl)-glucoside daidzein	
H28	7.18	C_{21}H_{20}O_{9}	415.1032	0.72	253.0495[A-H-Glc]\(^-\)	7-O-β-D-glucoside de daidzein
H29	7.39	C_{16}H_{20}O_{11}	461.1086	0.43	299.0565[A-H-Glc]\(^-\), 284.032354[A-H-Glc-CH_{3}]\(^-\)	Kaempferol-4'-methoxy-3-O-β-D-glucopyranoside isomer
H30	7.54	C_{13}H_{10}O_{4}	253.0502	0.40	201.0707[M-H-C_{2}H_{2}O]\(^-\)	Daidzein isomer daidzein
H31	7.82	C_{13}H_{20}O_{9}	415.1026	-0.72	253.0503[M-H-Glc]\(^-\)	7-O-β-D-glucoside de isomer calycosin-7-O-β-D-glucoside
H32	7.97	C_{25}H_{22}O_{10}	445.1140	1.12	430.0913[M-H-CH_{3}]\(^-\), 283.0595[M-H-Glc]\(^-\), 268.0370[M-H-CH_{3}-Glc]\(^-\)	Calycosin isomer
H33	8.54	C_{16}H_{12}O_{5}	283.0610	1.41	268.0383[M-H-CH_{3}]\(^-\), 240.0429[M-H-CH_{3}-CO]\(^-\)	Calycosin isomer
---	---	---	---	---		
H34	8.58	C_{21}H_{26}O_{12}	463.0880	0.65	239.0355[M-H-CO_2], 224.0489[M-H-CO_2-CH_3], 301.0716[M-H-Glc]	Quercetin-3-O-β-D-glucopyranoside
H35	8.74	C_{21}H_{26}O_{12}	463.0882	1.08	301.0715[M-H-Glc], 285.0771[M-H-Glc], 270.0541[M-H-Glc-CH_3], 228.0424[M-H-CH_3-C_2H_2O]	Isoquercitrin
H36	8.93	C_{22}H_{24}O_{10}	447.1297	1.34	270.0513[M-H-CH_3], 228.0424[M-H-CH_3-C_2H_2O]	Vesticarpan isomer
H37	8.94	C_{18}H_{14}O_{5}	285.0768	1.75	270.0513[M-H-CH_3], 228.0424[M-H-CH_3-C_2H_2O]	Daidzein isomer
H38	9.34	C_{18}H_{16}O_{4}	253.0505	1.58	201.0715[M-H-C_2H_2O]	Calycosin isomer
H39	9.67	C_{18}H_{12}O_{5}	283.0609	1.06	268.0379[M-H-CH_3], 240.0430[M-H-CH_3-CO], 239.0351[M-H-CO_2], 224.0477[M-H-CO_2-CH_3]	Rhamnocitrin isomer
H40	9.71	C_{18}H_{12}O_{6}	299.0562	2.01	284.0337[M-H-CH_3], 256.0366[M-H-CH_3-CO]	Vesticarpan isomer
H41	9.77	C_{18}H_{14}O_{5}	285.0768	1.75	270.0455[M-H-CH_3]	Calycosin isomer
H42	9.89	C_{18}H_{12}O_{5}	283.0611	1.77	268.0383[M-H-CH_3], 240.0434[M-H-CH_3-CO], 239.0356[M-H-CO_2], 224.0482[M-H-CO_2-CH_3]	Rhamnocitrin isomer
H43	10.08	C_{18}H_{12}O_{6}	299.0561	1.67	284.0331[M-H-CH_3], 269.0460[M-H-OCH_2], 256.0384[M-H-CH_3-CO]	Rhamnocitrin-3-O-β-D-glucopyranoside isomer
H44	10.09	C_{22}H_{22}O_{11}	461.1086	0.43	446.0839[M-H-CH_3], 299.0558[M-H-Glc], 284.0324[M-H-Glc-CH_3], 269.0450[M-H-Glc-OCH_2], 256.0392[M-H-Glc-CH_3-CO]	Kumatakenin
H45	10.20	C_{18}H_{16}O_{4}	253.0503	0.79	201.0710[M-H-C_2H_2O]	Daidzein isomer
H46	10.21	C_{18}H_{12}O_{5}	283.0609	1.06	268.0381[M-H-CH_3], 240.0434[M-H-CH_3-CO], 239.0354[M-H-CO_2], 224.0488[M-H-CO_2-CH_3]	Calycosin isomer
H47	10.29	C_{17}H_{14}O_{6}	313.0716	1.28	298.0489[M-H-CH_3], 283.0254[M-H-OCH_2], 270.0534[M-H-CH_3-CO], 255.0301[M-H-OCH_2-CO]	Kumatakenin
H48	10.33	C_{22}H_{24}O_{10}	447.1294	0.67	285.0762[M-H-Glc]	licoagroside D isomer
H49	10.35	C_{18}H_{14}O_{5}	285.0768	1.75	270.0436[M-H-CH_3]	Vesticarpan isomer
H50	10.40	C_{18}H_{12}O_{6}	299.0561	1.67	284.0326[M-H-CH₃]^+	Rhamnocitrin isomer
------	-------	-------------------	----------	-----	-----------------------	----------------------
H51	11.17	C_{13}H_{10}O_{4}	253.0504	1.19	201.0715[M-H-C_{2}H_{2}O]^+	Daidzein isomer
H52	11.25	C_{14}H_{12}O_{6}	299.0561	1.67	284.0278[M-H-CH₃]^+	Rhamnocitrin isomer
					269.0359[M-H-OCH₃]^+	Vesticarpan isomer
					270.0479[M-H-CH₃]^+	
H53	11.29	C_{13}H_{14}O_{5}	285.0763	0.00	279.0571[M-H-Glc]^+	Rhamnocitrin-3-O-β-D-glucopyranoside isomer
					284.0305[M-H-Glc-CH₃]^+	
H54	11.37	C_{23}H_{22}O_{11}	461.1090	1.30	299.0570[M-H-Glc]^+	5,7,4’-Trihydroxy-isoflavonone isomer
					284.0301[M-H-Glc-CH₃]^+	
H55	11.50	C_{13}H_{10}O_{5}	269.0455	1.86	241.0504[M-H-CO]^+	5,7,4’-Trihydroxy-isoflavonone isomer
H56	11.72	C_{23}H_{22}O_{11}	461.1086	0.43	299.0570[M-H-Glc]^+	5,7,4’-Trihydroxy-isoflavonone isomer
					284.0301[M-H-Glc-CH₃]^+	
H57	11.72	C_{23}H_{24}O_{11}	475.1240	0.00	267.0659[M-H-Glc-OCH₃-CH₃]^+	Rhamnocitrin-3-O-β-D-glucopyranoside isomer
H58	11.72	C_{22}H_{22}O_{9}	429.1190	0.93	267.0661[M-H-Glc]^+	Ononin
					252.0432[M-H-Glc-CH₃]^+	
H59	11.77	C_{13}H_{10}O_{4}	253.0505	1.58	201.0712[M-H-C_{2}H_{2}O]^+	Daidzein licoagroside D isomer
H60	11.77	C_{23}H_{24}O_{10}	447.1295	0.89	285.0769[M-H-Glc]^+	Vesticarpan isomer
					299.0570[M-H-Glc]^+	Rhamnocitrin-3-O-β-D-glucopyranoside isomer
					284.0301[M-H-Glc-CH₃]^+	
H61	11.86	C_{18}H_{14}O_{5}	285.0768	1.75	270.0536[M-H-CH₃]^+	5,7,4’-Trihydroxy-isoflavonone isomer
H62	11.87	C_{14}H_{12}O_{6}	299.0561	1.67	284.0328[M-H-CH₃]^+	Rhamnocitrin a
					269.0454[M-H-OCH₂]^+	
					256.0379[M-H-CH₃-CH₂]^+	
					273.0411[M-H-CH₃]^+	
					257.0460[M-H-CH₂O]^+	
					245.0458[M-H-2CO]^+	
					229.0499[M-H-2CO-CH₃]^+	
H63	12.61	C_{15}H_{10}O_{7}	301.0349	0.33	217.0507[M-H-C₂O₂]^+	Quercetin a
H64	12.63	C_{15}H_{10}O_{6}	285.0405	2.10	217.0507[M-H-C₂O₂]^+	Kaempferol (6aR, 11aR)-9,10-Dimethoxypterocarpn-3-O-β-D-glucopyranoside Calycosin
H65	12.72	C_{23}H_{26}O_{10}	461.1450	0.43	299.0570[M-H-Glc]^+	
					284.0692[M-H-Glc-CH₃]^+	
H66	12.83	C_{10}H_{12}O_{5}	283.0609	1.06	268.0379[M-H-CH₃]^+	
					240.0431[M-H-CH₃-CH₂]^+	
					239.0352[M-H-2CO₂]^+	
					224.0477[M-H-2CO₂-CH₃]^+	
H67	12.84	C₁₆H₁₂O₆	299.0562	2.01	284.0337[M-H-CH₃]⁻	Rhamnocitrin isomer
H68	12.84	C₁₅H₁₀O₄	253.0503	0.79	201.0715[M-H-C₂H₅O]⁻	Daidzein isomer
H69	12.94	C₁₆H₁₄O₅	285.0768	1.75	270.0530[M-H-CH₃]⁻	vesticarpan
H70	13.34	C₁₇H₁₈O₅	301.1081	1.66	271.0623[M-H-OCH₃]⁻, 203.0864[M-H-OCH₂-C₂O₂]⁻	2',8-Dihydroxy-4',7-dimethoxyisoflavan/(3R)-7,2'-Dihydroxy-3',4'-dimethoxyisoflavone/ isomucronulatol
H71	13.34	C₁₆H₁₂O₆	299.0561	1.67	284.0327[M-H-CH₃]⁻, 269.0451[M-H-OCH₃]⁻, 256.0366[M-H-CH₃-CO]⁻	Rhamnocitrin isomer
H72	13.35	C₂₃H₂₈O₁₀	463.1604	0.00	301.1074[M-H-Glc]⁻, 286.0849[M-H-Glc-CH₃]⁻, 271.0613[M-H-Glc-2CH₃]⁻, 256.0374[M-H-Glc-OCH₃]⁻, 227.0708[M-H-Glc-2CH₃-CO₂]⁻	3S-(−)-Mucronulitol-7-O-β-D-glucopyranoside/(3R)-7,2'-dihydroxy-3',4'-dimethoxyisoflavone/-7-O-β-D-glucoside
H73	13.36	C₁₆H₁₂O₄	267.0662	1.87	252.0430[M-H-CH₃]⁻, 223.0415[M-H-CO₂]⁻	Formononetin isomer
H74	13.44	C₂₃H₂₈O₁₁	461.1087	0.65	299.0556[M-H-Glc]⁻, 284.0315[M-H-Glc-CH₃]⁻, 269.0445[M-H-Glc-OCH₃]⁻	Rhamnocitrin-3-O-β-D-glucopyranoside
H75	13.61	C₁₆H₁₂O₆	299.0562	2.01	284.0328[M-H-CH₃]⁻	Rhamnocitrin isomer
H76	13.62	C₂₃H₂₄O₁₀	471.1295	0.85	267.0671[M-H-(6″-O-acetyl)Glc]⁻, 252.0419[M-H-(6″-O-acetyl)Glc-CH₃]⁻	6″-O-acetyl-ononin
H77	14.12	C₁₇H₁₈O₅	301.1081	1.66	271.0511[M-H-OCH₃]⁻, 203.0863[M-H-OCH₂-C₂O₂]⁻	2',8-Dihydroxy-4',7-dimethoxyisoflavan/(3R)-7,2'-Dihydroxy-3',4'-dimethoxyisoflavone/ isomucronulatol
H78	14.30	C₁₅H₁₀O₅	269.0455	1.86	241.0520[M-H-CO₂]⁻	5,7,4'-Trihydroxyisoflavonone isomer
H79	14.30	C₂₅H₂₈O₁₁	503.1556	0.60	299.0942[M-H-(6′-acetyl)Glc]⁻	(−)-Methylinissol
H80	14.38	C₁₀H₁₂O₃	285.0768	1.75	270.0522[M-H-CH₃]⁻	3-O-β-D-(6'-acetyl)-glucoside isomer
------	-------	-----------	----------	------	----------------------	-------------------------------------
H81	14.58	C₁₃H₁₀O₅	269.0455	1.86	241.0516[M-H-CO]⁻	5,7,4'-Trihydroxy-iso-flavanone isomer
H82	14.96	C₁₇H₁₈O₅	301.1081	1.66	286.0861[M-H-CH₃]⁻, 271.0627[M-H-OCH₂]⁻, 203.0861[M-H-OCH₂-C₆H₃]⁻	2',8-Dihydroxy-4',7-dimethoxyiso-flavan/(3R), 7,2'-Dihydroxy-3',4'-dimethoxy iso-flavan/ isomucronulatol
H83	15.17	C₁₈H₁₂O₆	299.0560	1.34	284.0331[M-H-CH₃]⁻, 269.0455[M-H-OCH₂]⁻	Rhamnocitrin isomer
H84	15.25	C₁₇H₁₆O₆	315.0873	1.27	285.0409[M-H-OCH₂]⁻, 257.0464[M-H-OCH₂-CO]⁻, 241.0522[M-H-OCH₂-CO₂]⁻, 211.1346[M-H-OCH₂-CO₂]⁻	2',4'-Dihydroxy-5,6-Dimethoxy iso-flavanone
H85	15.51	C₁₈H₁₄O₅	285.0768	1.75	270.0480[M-H-CH₃]⁻	Vesticarpan isomer
H86	15.74	C₁₈H₁₂O₆	299.0561	1.67	284.0329[M-H-CH₃]⁻	Rhamnocitrin isomer
H87	16.42	C₁₈H₁₂O₅	283.0611	1.77	268.0377[M-H-CH₃]⁻, 240.0429[M-H-CH₃-CO]⁻, 239.0350[M-H-CO₂]⁻, 224.0482[M-H-CO₂-CH₂]⁻	Wogonin/Oroxylin A
H88	17.60	C₁₈H₁₂O₄	267.0660	1.12	252.0429[M-H-CH₃]⁻, 223.0405[M-H-CO₂]⁻	Formononetin
H89	17.78	C₁₈H₁₂O₆	299.0556	0.00	284.0340[M-H-CH₃]⁻, 269.0455[M-H-OCH₂]⁻	Rhamnocitrin isomer
H90	17.90	C₁₈H₁₄O₅	285.0766	1.05	270.0450[M-H-CH₃]⁻	Vesticarpan isomer
H91	18.45	C₁₈H₁₂O₆	299.0560	1.34	284.0325[M-H-CH₃]⁻, 269.0457[M-H-OCH₂]⁻	Rhamnocitrin isomer
H92						

Flavonoids from Corni officinalis

Flavonoids	Retention Time (min)	Molecular Formula	Molecular Weight	Exact Mass	Isotope Mass Difference	Exact Mass (Ppm)	Mass Range	
S64	5.77	C₂₇H₃₀O₁₅	593.1504	-0.34	285.0387[M-H-Gal-Rha]⁻	-0.34	593.1504	29

284.0690[M-H-(6'-acetyl)Glc-CH₃]⁻ in 3-O-β-D-(6'-acetyl)-glucoside isomer Vesticarpan isomer

5,7,4'-Trihydroxy-iso-flavanone 2',8-Dihydroxy-4',7-dimethoxyiso-flavan/(3R), 7,2'-Dihydroxy-3',4'-dimethoxyiso-flavan/ isomucronulatol

Rhamnocitrin isomer 2',4'-Dihydroxy-5,6-Dimethoxy iso-flavanone

Vesticarpan isomer

Wogonin/Oroxylin A

Formononetin

Rhamnocitrin isomer

Vesticarpan isomer

Rhamnocitrin isomer

Rhamnocitrin isomer

Kaempferol-3-O-α-L-rhamnosyl(1-6)-β-D-galactosi
Isomer	RRT	Formula	M.Wt	Molar Abs.	Mass Fragments		
S65	6.03	C_{21}H_{22}O_{11}	449.1091	1.56	287.0569[M-H-Glc], 269.0457[M-H-C_{6}H_{12}O_{6}],		
					431.0997[M-H-Gal], 285.0405[M-H-Gal-Rha],		
S66	6.21	C_{27}H_{30}O_{15}	593.1508	0.34	Aromadendrin 7-O-β-D-glucoside de isomer		
					Kaempferol-3-O-α-L-rhamnosyl(1-6)-β-D-galactosi de isomer		
S67	6.91	C_{21}H_{22}O_{11}	449.1086	0.45	287.0564[M-H-Glc], 269.0456[M-H-C_{6}H_{12}O_{6}], 259.0613[M-H-Glc-CO]		
					Aromadendrin 7-O-β-D-glucoside de isomer		
S68	7.10	C_{21}H_{22}O_{11}	449.1091	1.56	259.0637[M-H-Glc-CO], 243.0672[M-H-CO],		
					2R,3R-Trans-aromadendrin		
S69	7.40	C_{15}H_{12}O_{6}	287.0558	0.70	259.0606[M-H-CO], 243.0672[M-H-CO],		
					Kaempferol-3-O-α-L-rhamnosyl(1-6)-β-D-galactosi de isomer		
S70	7.77	C_{21}H_{22}O_{11}	449.1089	1.11	287.0569[M-H-Glc], 269.0455[M-H-C_{6}H_{12}O_{6}], 259.0633[M-H-Glc-CO]		
					Aromadendrin 7-O-β-D-glucoside de isomer		
S71	7.77	C_{27}H_{30}O_{15}	593.1497	-1.52	285.0407[M-H-Gal-Rha], 267.0315[M-H-Gal-Rha-H_{2}O], 241.0507[M-H-Gal-Rha-CO]		
					Kaempferol-3-O-α-L-rhamnosyl(1-6)-β-D-galactosi de isomer		
S72	8.24	C_{21}H_{18}O_{13}	477.0670	0.21	301.0374[M-H-GluA],		
					Quercetin 3-O-β-D-glucuronide de isomer		
S74	8.32	C_{27}H_{30}O_{16}	609.1459	0.49	301.0351[M-H-Glc/Gal-Rha],		
					Rutin/Naringenin -3-O-α-L-rhamnosyl(1-6)-β-D-galactoside		
S75	8.45	C_{27}H_{30}O_{16}	609.1459	0.49	301.0355[M-H-Glc/Gal-Rha],		
					Rutin/Naringenin -3-O-α-L-rhamnosyl(1-6)-β-D-galactoside		
S76	8.58	C_{21}H_{20}O_{12}	463.0880	0.65	301.0347[M-H-Glc/Gal], 259.0261[M-H-Glc/Gal-C_{2}H_{2}O],		
					Quercetin-3-O-β-D-galactopyranoside Quercetin-3-O-β-D-glucoside		
S77	8.65	C_{21}H_{18}O_{13}	477.0668	-0.21	301.0358[M-H-GluA],		
					Quercetin		
No.	Rf	C_xH_yO_z	M.Wt	RSD	MSH-	MSH-	Compound
-----	-----	-------------------------------	------	------	-----	-----	-----------
S78	8.74	C₂₁H₂₀O₁₂	463.0881	0.86	301.0361[M-H-Glc/Gal]⁻	3-O-β-D-glucuronide	
S79	8.80	C₂₁H₂₂O₁₁	449.1090	1.34	287.0561[M-H-Glc]⁻, 269.0466[M-H-C₄H₁₂O₃]⁻	Quercetin-3-O-β-D-galactopyranoside	
S80	8.92	C₂₇H₃₀O₁₅	593.1508	0.34	285.0410[M-H-Gal]⁻, 267.0302[M-H-Gal-Rha-H₂O]⁻, 241.0510[M-H-Gal-Rha-CO₂]⁻	Aromadendrin 7-O-β-D-glucoside	
S81	9.07	C₂₀H₁₈O₁₁	433.0775	0.92	301.0346[M-H-Xyl]⁻	Quercetin 3-O-β-D-Xylopyranoside	
S82	9.25	C₂₀H₁₈O₁₁	433.0773	0.46	301.0346[M-H-Xyl]⁻	Quercetin 3-O-β-D-Xylopyranoside isomer	
S83	9.28	C₂₇H₃₀O₁₅	593.1506	0.00	285.0407[M-H-Gal]⁻, 267.0302[M-H-Gal-Rha-H₂O]⁻, 241.0510[M-H-Gal-Rha-CO₂]⁻	Kaempferol-3-O-α-L-Rhamnosyl(1-6)-β-D-galactoside	
S84	10.18	C₁₅H₁₂O₆	287.0560	1.39	243.0652[M-H-CO₂]⁻	2R,3R-Trans-aromadendrin isomer	
S85	11.66	C₁₅H₁₂O₆	287.0561	1.74	259.0605[M-H-CO]⁻	2R,3R-Trans-aromadendrin isomer	
S86	11.82	C₁₆H₁₄O₅	285.0767	1.40	270.0539[M-H-CH₃]⁻, 217.0523[M-H-C₂O₂]⁻	Naringenin-7-O-methylether	
S87	14.65	C₁₅H₁₂O₅	271.0612	2.21	229.0507[M-H-C₄H₂O]⁻, 227.0726[M-H-CO₂]⁻, 203.0862[M-H-C₃O₂]⁻	Naringenin^a	

Flavonoid from *Chinese yam*

No.	Rf	C_xH_yO_z	M.Wt	RSD	MSH-	MSH-	Compound
SY8	19.45	C₁₆H₁₄O₄	269.0818	1.49	254.0583[M-H-CH₃]⁻, 239.0348[M-H-OCH₂H]⁻, 211.0399[M-H-OCH₂-CO]⁻	3,5-Dimethoxy-2,7-phenanthrenedione	

^a: Compound identified by comparison with the standard reference.
No.	t_R (min)	Molecular formula	Measured value (m/z)	Diff (ppm)	Product ions	Compound name
D1	1.40	C₁₅H₂₂O₁₀	361.1136	0.28	199.0604[M-H-Glc]⁻, 169.0508[M-H-Glc-CH₂O]⁻	Catalpol⁻
D2	2.03	C₁₅H₂₂O₁₅	523.1665	0.38	199.0614[M-H-2Glc]⁻, 169.0507[M-H-2Glc-OCH₂]⁻	Rehmannioside A
D3	2.72	C₁₅H₂₂O₁₀	361.1137	0.55	199.0617[M-H-Glc]⁻, 169.0511[M-H-Glc-CH₂O]⁻	Monomelittoside
D4	3.12	C₁₅H₂₂O₂₀	685.2192	0.15	505.1195[M-H-Glc-H₂O]⁻, 361.0782[M-H-2Glc], 343.0674[M-H-2Glc-H₂O]⁻, 181.0503[M-H-3Glc-H₂O]⁻	Rehmannioside D
D5	3.17	C₁₅H₂₄O₁₀	363.1295	1.10	201.0711[M-H-Glc]⁻	Dihydrocatalpol isomer
D6	3.19	C₉H₁₂O₃	167.0712	2.39	152.0117[M-H-CH₃]⁻, 123.0455[M-H-CO₂]⁻, 108.0218[M-H-CH₂-CO₂]⁻	6β-hydroxy-2-oxabicyclo[4.3.0]△8-9-nonen-1-one
D7	3.22	C₁₅H₂₂O₁₀	373.1140	1.34	329.0873[M-H-CO₂]⁻, 167.0346[M-H-CO₂-Glc]⁻	Gardoside
D8	3.27	C₁₅H₂₂O₁₅	523.1666	0.57	361.1154[M-H-Glc]⁻, 199.0609[M-H-2Glc]⁻	Melittoside
D9	3.30	C₁₅H₂₂O₁₀	361.1138	0.83	199.0605[M-H-Glc]⁻, 169.0511[M-H-Glc-CH₂O]⁻	Catalpol isomer/Monomelittoside isomer
D10	3.72	C₁₅H₂₂O₁₀	363.1295	1.10	201.0714[M-H-Glc]⁻	Dihydrocatalpol
D11	3.80	C₁₅H₂₂O₁₀	373.1138	0.80	329.0871[M-H-CO₂]⁻, 167.0349[M-H-CO₂-Glc]⁻	Geniposidic acid a
D12	3.81	C₁₅H₂₄O₁₄	509.1872	0.39	185.049213.0776[M-H-2Glc]⁻	Rehmannioside C
D13	4.46	C₁₅H₂₂O₉	347.1345	0.86	167.0468[M-H-Glc-H₂O]⁻	Ajugol
D14	4.47	C₁₅H₂₂O₁₀	375.1294	0.80	213.0773[M-H-Glc]⁻, 169.0866[M-H-Glc-CO₂]⁻	Mussaenosidic acid
D15	4.84	C₁₅H₂₂O₉	345.1189	0.87	183.0661[M-H-Glc]⁻	Aucubin
D16	5.17	C₁₅H₂₂O₁₀	375.1291	0.00	213.0776[M-H-Glc]⁻, 169.0872[M-H-Glc-CO₂]⁻	8-Epiloganic acid a
D17	5.45	C₁₇H₂₆O₁₀	389.1450	0.51	227.0942[M-H-Glc]⁻, 169.0143[M-H-Glc-COCH₂]⁻	Ajugoside
D18	6.03	C₁₅H₂₄O₁₅	549.1824	0.91	387.1440[M-H-Glc]⁻, 225.0766[M-H-2Glc]⁻	Genipin
D19	6.73	C₁₅H₂₆O₁₀	401.1451	0.75	167.0716[M-H-Glc-Ac-OCH₂]⁻, 225.0782[M-H-Glc]⁻, 181.0503[M-H-Glc-CO₂]⁻	1-gentiobioside a
D20	6.93	C₁₅H₂₄O₁₀	387.1296	1.29		Acetylcatalpol Geniposide a
----	-----	------------------------	----------------------	------------------------	------------------------	
D21	6.94	C_{31}H_{48}O_{18}	707.2766	0.57	163.0401[M-H-Glc-CO_{2}-H_{2}O]⁺	
					545.1743[M-H-Glc]⁺,	
					383.1188[M-H-2Glc]⁺	
					Frehmaglutoside	
					G/Frehmaglutoside de G	
D22	6.96	C_{17}H_{26}O_{10}	389.1449	0.26	227.0930[M-H-Glc]⁺,	
					169.0142[M-H-Glc-OCOCH_{2}]⁺	
D23	6.97	C_{16}H_{25}O_{8}	345.1553	1.16	139.1123[M-H-CO_{2}-Glc]⁺	
D24	8.66	C_{25}H_{32}O_{12}	523.1818	0.38	361.1681[M-H-Glc]⁺,	
					330.1437[M-H-C_{10}H_{2}O_{3}]⁺	
					193.0508[C_{10}H_{16}O_{4}-H]⁺	
					175.0405[C_{10}H_{16}O_{4}-H-Glc]⁺	
D25	8.69	C_{26}H_{30}O_{13}	525.1613	0.95	201.0719[M-H-C_{9}H_{18}O_{3}-Glc]⁺	
					6-O-E-caffeoylajugol isomer	
D26	9.28	C_{25}H_{28}O_{11}	467.1558	1.07	287.0901[M-H-Glc-H_{2}O]⁺	
					137.0246[C_{9}H_{4}O_{2}-H]⁻	
D27	9.30	C_{26}H_{30}O_{13}	525.1613	0.95	201.0703[M-H-C_{9}H_{18}O_{3}-Glc]⁺	
					6-O-E-caffeoylajugol isomer	
D28	9.61	C_{25}H_{32}O_{12}	523.1821	0.96	361.1662[M-H-Glc]⁺,	
					193.0509[C_{10}H_{16}O_{4}-H]⁺	
					175.0401[C_{10}H_{16}O_{4}-H-Glc]⁺	
D29	11.10	C_{26}H_{30}O_{10}	477.1765	0.84	315.0876[M-H-Glc]⁻	
					Frehmaglutoside A	
D30	11.17	C_{26}H_{32}O_{12}	523.1816	0.00	193.0508[C_{10}H_{16}O_{4}-H]⁺	
					175.0765[C_{10}H_{16}O_{4}-H-Glc]⁺	
D31	11.72	C_{26}H_{30}O_{13}	525.1613	0.95	201.0713[M-H-C_{9}H_{18}O_{3}-Glc]⁺	
					6-O-E-Feruloylajugol isomer	
D32	14.22	C_{25}H_{32}O_{12}	523.1819	0.57	193.0507[C_{10}H_{16}O_{4}-H]⁺	
					175.0401[C_{10}H_{16}O_{4}-H-Glc]⁺	

Iridoids from Corni officinalis

S1	2.26	C_{18}H_{22}O_{5}	357.1188	0.56	195.0679[M-H-Glc]⁺,
					177.0551[M-H-Glc-H_{2}O]⁺
					Secoxyloganinin
					isomer
S2	3.22	C_{18}H_{22}O_{10}	373.1138	0.80	211.0613[M-H-Glc]⁺,
					167.0346[M-H-Glc-CO_{2}]⁺
					Secoxyloganinin
					isomer
S3	4.11	C_{18}H_{22}O_{10}	373.1137	0.54	211.0613[M-H-Glc]⁺,
					167.0350[M-H-Glc-CO_{2}]⁺
					Secologanoside isomer
S4	4.36	C_{18}H_{22}O_{11}	389.1088	1.03	345.1205[M-H-CO_{2}]⁺,
					301.1531[M-H-2CO_{2}]⁻,
					227.1404[M-H-Glc]⁻,
					183.0665[M-H-Glc-CO_{2}]⁻
					139.0402[M-H-2CO_{2}-Glc]⁻
S5	4.37	C_{25}H_{30}O_{16}	567.1924	-0.18	405.1412[M-H-Glc]⁺,
					243.0877[M-H-2Glc]⁻
					cornusglucoside
					D/E/G/isomer
S6	4.65	C_{17}H_{26}O_{11}	405.1400	0.74	243.0871[M-H-Glc]⁻
					Morroniside
S7	4.71	C_{23}H_{36}O_{16}	567.1924	-0.18	405.1410[M-H-Glc]\(^{\ddagger}\), 243.0878[M-H-2Glc] \(\ddagger\), 213.0775[M-H-Glc]\(^{\ddagger}\), 169.0874[M-H-Glc-CO\(_2\)]\(^{\ddagger}\), 151.0770[M-H-Glc-CO\(_2\)-H\(_2\)O]\(^{\ddagger}\), cornusglucoside D/E/G/isomer Loganic acid\(^a\)
S8	4.81	C_{16}H_{24}O_{10}	375.1292	0.27	213.0775[M-H-Glc]\(^{\ddagger}\), cornusglucoside Loganic acid\(^a\)
S9	4.86	C_{16}H_{22}O_{9}	357.1189	0.84	195.0681[M-H-Glc]\(^{\ddagger}\), 177.0569[M-H-Glc-H\(_2\)O]\(^{\ddagger}\), Sweroside isomer
S10	4.86	C_{23}H_{36}O_{16}	567.1925	0.00	243.0878[M-H-2Glc] \(\ddagger\), cornusglucoside D/E/G/isomer
S11	5.01	C_{23}H_{36}O_{16}	567.1924	-0.18	405.1410[M-H-Glc]\(^{\ddagger}\), 243.0880[M-H-2Glc] \(\ddagger\), cornusglucoside D/E/G/isomer
S12	5.10	C_{23}H_{36}O_{16}	567.1923	-0.35	405.1394[M-H-Glc]\(^{\ddagger}\), 243.0880[M-H-2Glc] \(\ddagger\), cornusglucoside D/E/G/isomer
S13	5.25	C_{23}H_{36}O_{16}	567.1927	0.35	405.1410[M-H-Glc]\(^{\ddagger}\), 243.0872[M-H-2Glc] \(\ddagger\), D/E,G/isomer β-dihydrocorin
S14	5.38	C_{17}H_{28}O_{10}	389.1450	0.51	227.0928[M-H-Glc]\(^{\ddagger}\), 209.0821[M-H-C\(_6\)H\(_{12}\)O\(_2\)]\(^{\ddagger}\), cornusglucoside D/E/G/isomer
S15	5.43	C_{23}H_{36}O_{16}	567.1927	0.35	405.1416[M-H-Glc]\(^{\ddagger}\), 243.0885[M-H-2Glc] \(\ddagger\), cornusglucoside D/E/G/isomer
S16	5.56	C_{17}H_{28}O_{11}	405.1398	0.25	243.0885[M-H-Glc]\(^{\ddagger}\), 225.0701[M-H-C\(_6\)H\(_{12}\)O\(_2\)]\(^{\ddagger}\), Morroniside\(^a\)
S17	5.82	C_{16}H_{24}O_{10}	375.1293	0.53	213.0771[M-H-Glc]\(^{\ddagger}\), 169.0871[M-H-Glc-CO\(_2\)]\(^{\ddagger}\), 151.0765[M-H-Glc-CO\(_2\)-H\(_2\)O]\(^{\ddagger}\), Loganic acid isomer
S18	5.91	C_{16}H_{22}O_{11}	389.1087	0.77	345.1190[M-H-CO\(_2\)]\(^{\ddagger}\), 227.1403[M-H-Glc]\(^{\ddagger}\), 183.0663[M-H-Glc-CO\(_2\)]\(^{\ddagger}\), 139.0770[M-H-2CO\(_2\)-Glc], Secologanoside
S19	5.94	C_{16}H_{23}O_{11}	419.1557	0.95	239.0653[M-H-C\(_6\)H\(_{12}\)O\(_2\)]\(^{\ddagger}\), 7R-O-methylmor
S20	6.15	C_{17}H_{24}O_{10}	387.1291	0.00	225.0739[M-H-Glc]\(^{\ddagger}\), 165.0513[M-H-Glc-COCH\(_3\)]\(^{\ddagger}\), Cornine isomer
S21	6.38	C_{17}H_{24}O_{10}	387.1295	1.03	225.0768[M-H-Glc]\(^{\ddagger}\), 165.0558[M-H-Glc-COCH\(_3\)]\(^{\ddagger}\), Cornine isomer
S22	6.50	C_{23}H_{36}O_{14}	505.1561	0.79	459.1069[M-H-HCOOH]\(^{\ddagger}\), 429.0970[M-H-HCOOH-OCH\(_2\)]\(^{\ddagger}\), 399.0876[M-H-HCOOH-2OCH\(_2\)]\(^{\ddagger}\), 371.0912[M-H-HCOOH-2OCH\(_2\)-CO\(_2\)]\(^{\ddagger}\), Logmalicid A isomer/Logmalicid B isomer
S23	6.72	C_{16}H_{28}O_{11}	419.1556	0.72	257.0820[M-H-Glc]\(^{\ddagger}\), 239.0720[M-H-C\(_6\)H\(_{12}\)O\(_2\)]\(^{\ddagger}\), 7S-O-methylmor
S24	6.81	C_{17}H_{24}O_{10}	387.1292	0.26	225.0780[M-H-Glc]\(^{\ddagger}\), Cornine \(^a\)
No.	Rf	Molecule Formula	M/z Value	% Int.	Compound Description
-----	-----	------------------	-----------	--------	----------------------
S25	6.83	C₁₁H₁₄O₅	225.0767	1.78	165.0530[M-H-Glc-COCH₃]⁻
S26	6.85	C₁₂H₂₀O₁₀	389.1453	1.28	195.0652[M-H-CH₂]⁻, 181.0772[M-H-CO₂]⁻
S27	7.01	C₁₆H₂₂O₉	357.1188	0.56	227.0941[M-H-Glc]⁻, 209.0812[M-H-C₆H₁₂O₆]⁻
S28	7.42	C₁₇H₂₆O₁₀	389.1451	0.77	195.0663[M-H-Glc]⁻, 177.0559[M-H-Glc-H₂O]⁻
S29	7.42	C₂₁H₃₀O₁₄	505.1557	0.00	227.0919[M-H-Glc]⁻, 209.0822[M-H-C₆H₁₂O₆]⁻
S30	7.50	C₂₁H₃₀O₁₄	505.1556	-0.20	487.1445[M-H-H₂O]⁻, 389.1441[M-H-HCOOH-HCOOCH₃]⁻, 227.0928[M-H-HCOOH-HCOOCH₃-Glc]⁻, 209.0825[M-H-HCOOH-HCOOCH₃-Glc-H₂O]⁻
S31	7.73	C₂₁H₃₀O₁₄	505.1561	0.79	487.1473[M-H-H₂O]⁻, 389.1416[M-H-HCOOH-HCOOCH₃]⁻, 227.0927[M-H-HCOOH-HCOOCH₃-Glc]⁻, 209.0804[M-H-HCOOH-HCOOCH₃-Glc-H₂O]⁻
S32	7.73	C₁₇H₂₄O₁₁	403.1242	0.25	241.1088[M-H-Glc]⁻, 197.1183[M-H-Glc-CO₂]⁻
S33	7.86	C₂₁H₃₀O₁₄	505.1557	0.00	487.1474[M-H-H₂O]⁻, 227.0930[M-H-HCOOH-HCOOCH₃-Glc]⁻, 209.0832[M-H-HCOOH-HCOOCH₃-Glc-H₂O]⁻
S34	7.91	C₁₇H₂₆O₁₀	389.1452	1.03	227.0950[M-H-Glc]⁻
S35	8.11	C₂₁H₃₀O₁₄	505.1562	0.99	227.0927[M-H-HCOOH-HCOOCH₃-Glc]⁻, 209.0833[M-H-HCOOH-HCOOCH₃-Glc-H₂O]⁻
S36	8.96	C₁₇H₂₆O₁₁	433.1714	0.92	271.0627[M-H-Glc]⁻, 253.0869[M-H-C₆H₁₂O₆]⁻, 225.0770[M-H-C₆H₁₂O₆-CO]⁻
S37	9.61	C₁₆H₂₂O₉	357.1188	0.56	195.0664[M-H-Glc]⁻, 177.0567[M-H-Glc-H₂O]⁻
S38	9.61	C₂₁H₂₄O₇	387.1447	0.77	372.1206[M-H-CH₃]⁻, 357.0978[M-H-2CH₃]⁻, 341.1096[M-H-CH₃-OCH₃]⁻
S39	9.66	C₂₀H₂₂O₆	357.1337	-0.28	342.1125[M-H-CH₃]⁻, 311.0929[M-H-CH₃-OCH₃]⁻

- Dehydromorronide aglycone
- Loganin
- Sweroside*
- Loganin isomer
- Logmalicid A isomer/Logmalicid B isomer
- Logmalicid A isomer/Logmalicid B isomer
- Kingside/8-epikingside
- Logmalicid A isomer/Logmalicid B isomer
- Loganin isomer
- Logmalicid A isomer/Logmalicid B isomer
- 7-O-ethylmorronide
- Sweroside isomer
- (-)-medioresinol
- (+)-pinoresinol/(+)-epipinoresinol
| No. | \(t_R \) (min) | Molecular formula | Measured value (m/z) | Diff (ppm) | Product ions | Compound name |
|-----|----------------|-------------------|---------------------|-----------|--------------|--------------|
| D42 | 4.65 | C_{20}H_{20}O_{12} | 461.1660 | 0.22 | 315.1091[M-H-Rha]^−, 297.0990[M-H-Rha-H_2O]^−, 153.0558[M-H-Rha-Glc]^− | Decaffeoylacteoside |
| D43 | 4.94 | C_{21}H_{20}O_{13} | 487.1456 | 0.82 | 179.0353[M-H-Rha-Glc]^−, 161.0247[C_6H_5O_2-H]^− | Cistanoside F |
| D44 | 6.56 | C_{21}H_{22}O_{12} | 475.1818 | 0.42 | 329.1248[M-H-Rha]^−, 311.1118[M-H-Rha-H_2O]^−, 167.0715[M-H-Rha-Glc]^− | Darendoside B/Deacetyl-martynoside |
| D45 | 7.66 | C_{33}H_{46}O_{20} | 785.2508 | 0.51 | 623.2194[M-H-C_6H_5O_3]^−, 605.2052[M-H-C_6H_5O_3-H_2O]^−, 477.1617[M-H-C_6H_5O_3-Rha]^−, 461.1667[M-H-C_6H_5O_3-Glc]^−, 443.1577[M-H-C_6H_5O_3-Glc-H_2O]^−, 161.0244[C_6H_5O_2-H]^− | Purpureaside C |
| D46 | 8.06 | C_{33}H_{46}O_{19} | 769.2556 | 0.13 | 623.2177[M-H-Rha]^−, 605.2121[M-H-Rha-H_2O]^−, 461.1709[M-H-Rha-Glc]^− | Jionoside E |
| D47 | 8.54 | C_{33}H_{48}O_{20} | 799.2662 | 0.13 | 637.2330[M-H-Glc]^−, 623.2192[M-H-C_10H_6O_3]^−, 605.2079[M-H-C_10H_6O_3-H_2O]^−, 477.1617[M-H-C_10H_6O_3-Rha]^−, 175.0401[C_6H_5O_2-H]^− | Jionoside A1/Jionoside A2 |
| D48 | 8.68 | C_{33}H_{46}O_{20} | 785.2508 | 0.51 | 623.2120[M-H-C_6H_5O_3]^−, 477.1508[M-H-C_6H_5O_3-Rha]^−, 461.1667[M-H-C_6H_5O_3-Glc]^−, 443.1560[M-H-C_6H_5O_3-Glc-H_2O]^−, 161.0245[C_6H_5O_2-H]^− | Dihoside B |
| D49 | 9.11 | C_{20}H_{20}O_{15} | 623.1969 | -1.12 | 461.1664[M-H-C_6H_5O_3]^−, 315.1078[M-H-C_6H_5O_3-Rha]^− | Verbascoside |

Compound identified by comparison with the standard reference.
Table S5 Phenylpropanoids from ZKYY

No.	t_R (min)	Molecular formula	Measured value (m/z)	Diff (ppm)	Product ions	Compound name
S45	4.15	C_6H_8O_4	179.0345	0.56	135.0453[M-H-CO_2]^+	Caffeic acid isomer
S46	4.53	C_6H_8O_3	163.0396	0.61	119.0504[M-H-CO_2]^+	p-Hydroxycinnamic acid isomer
S47	5.27	C_6H_8O_3	163.0396	0.61	119.0504[M-H-CO_2]^+	p-Hydroxycinnamic acid isomer
S48	5.33	C_6H_8O_4	179.0345	0.56	135.0453[M-H-CO_2]^+	Caffeic acid
S49	5.78	C_6H_8O_3	163.0396	0.61	119.0504[M-H-CO_2]^+	p-Hydroxycinnamic acid isomer
S50	5.95	C_6H_8O_4	179.0345	0.56	135.0453[M-H-CO_2]^+	Caffeic acid isomer
S51	6.55	C_6H_8O_3	163.0396	0.61	119.0504[M-H-CO_2]^+	p-Hydroxycinnamic acid
S52	7.47	C_2H_2O_12	477.1036	0.63	313.0566[M-H-C_6H_8O_3]^+	4-O-(6'-O-Galloyl-β-D-glucopyranosyl)-cis-p-coumaric acid isomer
S53	7.51	C_6H_8O_3	163.0396	0.61	119.0502[M-H-CO_2]^+	p-Hydroxycinnamic acid isomer
No.	R	Molecular Formula	Exact Mass	Charge	MRM Peaks	Compound Name
-----	---	------------------	------------	--------	-----------	---------------
S54	8.08	C_{22}H_{22}O_{12}	477.1039	1.26	459.0923[M-H-H_2O]^+, 433.1128[M-H-CO_2]^+, 313.0569[M-H-C_6H_5O_3]^+, 169.0143[C_6H_5O_5]^+, 163.0403[C_6H_5O_3-H]^+	4-O-(6′-O-Galloyl-β-D-glucopyranosyl)-cis-p-coumaric acid
S55	8.17	C_{26}H_{36}O_{11}	523.2184	0.96	361.1655[M-H-Glc]^+, 346.1419[M-H-Glc-CH_3]^+, 315.1208[M-H-Glc-C_2H_5-OCH_3]^+	(-)-Secoisolariciresinol-9′-O-β-D-glucopyranoside isomer
S56	8.41	C_{26}H_{34}O_{11}	521.2028	0.96	359.1506[M-H-Glc]^+, 344.1269[M-H-Glc-CH_3]^+, 331.1383[M-H-Glc-H_2O]^+, 311.0921[M-H-Glc-H_2O-2CH_3]^+	(7S,8R)-Urolignoside/Glochidioboside/(7S,8R)-Dihydrodehydrodiconiferyl alcohol
S57	8.66	C_{26}H_{34}O_{11}	521.2028	0.96	359.1500[M-H-Glc]^+, 344.1250[M-H-Glc-CH_3]^+, 326.1163[M-H-Glc-H_2O-CH_3]^+, 311.0921[M-H-Glc-H_2O-2CH_3]^+	(7S,8R)-Urolignoside/Glochidioboside/(7S,8R)-Dihydrodehydrodiconiferyl alcohol
S58	8.79	C_{26}H_{34}O_{11}	521.2028	0.96	359.1509[M-H-Glc]^+, 344.1248[M-H-Glc-CH_3]^+, 326.1163[M-H-Glc-H_2O-CH_3]^+, 311.0921[M-H-Glc-H_2O-2CH_3]^+	(7S,8R)-Urolignoside/Glochidioboside/(7S,8R)-Dihydrodehydrodiconiferyl alcohol
S59	9.23	C_{26}H_{36}O_{11}	523.2187	1.53	361.1674[M-H-Glc]^+, 346.1414[M-H-Glc-CH_3]^+	(-)-Secoisolariciresinol-9′-O-β-D-glucopyranosyl isomer
S60	9.46	C_{26}H_{36}O_{11}	523.2186	1.34	361.1659[M-H-Glc]^+, 346.1414[M-H-Glc-CH_3]^+, 315.1249[M-H-Glc-C_2H_5-OCH_3]^+	(-)-Secoisolariciresinol-9′-O-β-D-glucopyranosyl isomer
S61	9.83	C_{26}H_{34}O_{11}	521.2028	0.96	359.1518[M-H-Glc]^+, 344.1253[M-H-Glc-CH_3]^+	(-)-Isolariciresinol 3α-O-β-D-glucopyranoside/(/-)-Lyoniresinol 3α-β-D-glucopyranoside
S62	9.91	C_{22}H_{26}O_8	417.1549	0.00	402.1302[M-H-CH_3]^+, 387.1093[M-H-OCH_3]^+	(-)Episyringaresinol/Syringaresinol
S63	10.07	C_{26}H_{34}O_{11}	521.2028	0.96	341.1403[M-H-Glc-H_2O]^+	(-)-Isolariciresinol
Table S6 Ionones from ZKYY

No.	t_R (min)	Molecular formula	Measured value (m/z)	Diff (ppm)	Product ions	Compound name
D33	5.57	C$_{21}$H$_{34}$O$_{10}$	445.2076	0.45	265.1467[M-H-H$_2$O-Glc$]^{-}$; 311.0928[M-H-Glc-H$_2$O-OCH$_3$]$^{-}$	Frehmaglutoside F
D34	6.69	C$_{16}$H$_{26}$O$_8$	345.1553	1.16	183.1028[M-H-Glc]$^{-}$	Rehmapicroside
D35	6.84	C$_{21}$H$_{34}$O$_{10}$	445.2076	0.45	265.1461[M-H-H$_2$O-Glc$]^{-}$, 235.1345[M-H-H$_2$O-Glc-CH$_3$]$^{-}$, 191.1447[M-H-H$_2$O-CO$_2$]$^{-}$	Frehmaglutoside E
D36	7.22	C$_{10}$H$_{16}$O$_8$	405.2128	0.74	213.1499[M-H-Glc-2CH$_3$]$^{-}$, 195.1400[M-H-Glc-2CH$_3$-H$_2$O]$^{-}$	Oxyrehmanionoside B
D37	8.04	C$_{10}$H$_{10}$O$_3$	183.1023	1.09	139.1129[M-H-CO$_2$]$^{-}$	Rehmapicrogenin
D38	10.96	C$_{21}$H$_{34}$O$_9$	429.2129	0.93	267.1617[M-H-Glc]$^{-}$, 249.1500[M-H-Glc-H$_2$O]$^{-}$, 231.1394[M-H-Glc-2H$_2$O]$^{-}$, 223.1719[M-H-Glc-CO$_2$]$^{-}$, 205.1616[M-H-Glc-H$_2$O-CO$_2$]$^{-}$	Frehmaglutin B
D39	12.12	C$_{10}$H$_{16}$O$_3$	183.1024	1.64	139.1128[M-H-CO$_2$]$^{-}$	Rehmapicrogenin isomer
D40	14.89	C$_{28}$H$_{40}$O$_{10}$	535.2544	0.19	417.1024[M-H-C$_3$H$_6$O]$^{-}$, 163.0404[C$_5$H$_{10}$O$_2$-H]$^{-}$	Frehmaglutoside C
D41	17.81	C$_{12}$H$_{20}$O$_3$	211.1339	2.37	183.1396[M-H-CO]$^{-}$, 168.0661[M-H-CO-CH$_3$]$^{-}$, 167.1443[M-H-CO$_2$]$^{-}$	Frehmaglutoside A

Table S7 Triterpenoids from ZKYY

No.	t_R (min)	Molecular formula	Measured value (m/z)	Diff (ppm)	Product ions	Compound name
						Triterpenoids from *Astragali Radix*
H92	29.09	C$_{30}$H$_{48}$O$_3$	455.3529	0.88	437.3365[M-H-H$_2$O]$^{-}$, 409.3488[M-H-H$_2$O-CO]$^{-}$	Betulinic acid
H93	29.87	C$_{30}$H$_{48}$O$_3$	455.3531	1.32	409.3483[M-H-H$_2$O-CO]$^{-}$	Oleanolic acid a
H94	29.95	C$_{30}$H$_{48}$O$_3$	455.3528	0.66	409.3474[M-H-H$_2$O-CO]$^{-}$	Ursolic acid a
						Triterpenoids from *Corni officinalis*
S88	16.17	C$_{36}$H$_{58}$O$_{10}$	649.3941	-1.69	487.3427[M-H-Glc]$^-$	Arjunglucoside II isomer
S89	16.86	C$_{36}$H$_{58}$O$_{10}$	649.3954	0.31	487.3418[M-H-Glc]$^-$	Arjunglucoside II

Triterpenoids from *Trichosanthis Radix*

T1	12.22	C$_{30}$H$_{47}$O$_{7}$	519.3325	0.58	501.3213[M-H$_2$O]$^-$, 459.3167[M-H-C$_3$H$_6$O]$^-$, 387.2559[M-H-C$_3$H$_6$O-4H$_2$O]$^-$	Cucurbitacin P isomer
T2	13.46	C$_{30}$H$_{47}$O$_{7}$	517.3171	1.16	499.3054[M-H$_2$O]$^-$, 457.2955[M-H-C$_3$H$_6$O]$^-$, 439.2862[M-H-C$_3$H$_6$O-2H$_2$O]$^-$, 385.2399[M-H-C$_3$H$_6$O-C$_2$H$_4$O-6H$_2$O]$^-$	Cucurbitacin R isomer/Dihydrocucurbitacin D isomer/Cucurbitacin O isomer
T3	14.30	C$_{30}$H$_{48}$O$_{7}$	519.3325	0.58	501.3223[M-H$_2$O]$^-$, 459.3122[M-H-C$_3$H$_6$O]$^-$, 441.3003[M-H-C$_3$H$_6$O-4H$_2$O]$^-$, 359.2242[M-H-C$_3$H$_6$O-4H$_2$O-CO]$^-$	Cucurbitacin P
T4	14.72	C$_{30}$H$_{44}$O$_{7}$	515.3013	0.78	479.2794[M-H$_2$H$_2$O]$^-$, 437.2691[M-H-C$_3$H$_6$O-C$_2$H$_4$O]$^-$, 341.2123[M-H-C$_3$H$_6$O-C$_2$H$_4$O-C$_2$H$_4$O]$^-$	Cucurbitacin D
T5	14.72	C$_{30}$H$_{46}$O$_{8}$	533.3116	0.38	497.2876[M-H$_2$H$_2$O]$^-$, 479.2806[M-H$_2$H$_2$O]$^-$, 464.2560[M-H$_2$H$_2$O-C$_2$H$_4$]$^-$, 437.2689[M-H$_2$H$_2$O-C$_3$H$_6$O]$^-$, 427.2495[M-H$_2$H$_2$O-C$_3$H$_6$O]$^-$, 409.2382[M-H$_2$H$_2$O-C$_3$H$_6$O]$^-$, 385.2419[M-H$_2$H$_2$O-C$_3$H$_6$O-C$_2$H$_4$O]$^-$, 341.2124[M-H$_2$H$_2$O-C$_3$H$_6$O-C$_3$H$_5$O-C$_2$H$_4$O]$^-$	Cucurbitacin H
T6	14.96	C$_{30}$H$_{46}$O$_{8}$	533.3118	0.75	497.2751[M-H$_2$H$_2$O]$^-$, 427.2480[M-H$_2$H$_2$O-C$_3$H$_6$O]$^-$, 385.2428[M-H$_2$H$_2$O-C$_3$H$_6$O-C$_2$H$_4$O]$^-$, 341.2119[M-H$_2$H$_2$O-C$_3$H$_6$O-C$_2$H$_4$O-C$_2$H$_4$O]$^-$	Cucurbitacin H isomer
T7	16.70	C$_{30}$H$_{46}$O$_{7}$	517.3171	1.16	499.3082[M-H$_2$H$_2$O]$^-$, 457.2949[M-H$_2$H$_2$O]$^-$, 455.2816[M-H$_2$H$_2$O-C$_3$H$_6$O]$^-$, 439.2861[M-H$_2$H$_2$O-C$_3$H$_6$O]$^-$	Cucurbitacin R/dihydrocucurbitacin D/cucurbitacin O
No.	t_R	Molecular formula	Measured value (m/z)	Diff (ppm)	Product ions	Compound name
T8	16.70	C_{30}H_{40}O_7	515.3007	-0.39	385.2377[M-H-H_2O-C_2H_4O-C_2H_6O]^−, 367.2302[M-H-2H_2O-C_2H_4O-C_2H_6O]^−	Cucurbitacin D isomer
T9	16.94	C_{30}H_{40}O_7	517.3170	0.97	499.3068[M-H-H_2O]^−, 457.2982[M-H-C_2H_4O]^−, 385.2389[M-H-H_2O-C_2H_4O-C_2H_6O]^−, 367.2295[M-H-2H_2O-C_2H_4O-C_2H_6O]^−	Cucurbitacin R/dihydrocucurbitacin D/cucurbitacin O
T10	17.62	C_{30}H_{40}O_7	517.3166	0.19	497.2771[M-H-H_2O]^−, 461.2759[M-H-3H_2O]^−, 385.2295[M-H-2H_2O-C_2H_4O-C_2H_6O]^−	Cucurbitacin R/dihydrocucurbitacin D/cucurbitacin O
T11	18.61	C_{30}H_{40}O_7	515.3014	0.97	437.2743[M-H-H_2O-C_2H_4O]^−	Cucurbitacin D isomer

a: Compound identified by comparison with the standard reference.

Table S8 Other compounds from ZKYY

No.	t_R	Molecular formula	Measured value (m/z)	Diff (ppm)	Product ions	Compound name
S90	0.96	C_6H_8O_7	191.0196	2.09	173.0460[M-H-H_2O]^−, 111.0090[M-H-CO_2-2H_2O]^−	Citric acid isomer
S91	1.10	C_7H_6O_5	169.0141	2.37	125.0246[M-H-CO_2]^−	Gallic acid isomer
S92	1.21	C_6H_8O_7	191.0196	2.09	173.0460[M-H-H_2O]^−, 147.0305[M-H-CO_2]^−, 129.0197[M-H-CO_2-H_2O]^−, 111.0091[M-H-CO_2-2H_2O]^−	Citric acid
S93	1.50	C_{13}H_{16}O_{10}	331.0667	0.60	169.0145[M-H-Glc]^−, 125.0250[M-H-Glc-CO_2]^−	Gallic acid 4-O-β-D-glucoside
S94	1.68	C_{13}H_{16}O_{10}	331.0668	0.91	169.0145[M-H-Glc]^−, 125.0247[M-H-Glc-CO_2]^−	Gallic acid 4-O-β-D-glucoside de isomer
S95	1.84	C_7H_6O_5	169.0141	2.37	125.0246[M-H-CO_2]^−	Gallic acid 3,5-Dihydroxybenzoic acid isomer
S96	2.50	C_7H_6O_4	153.0189	0.65	109.0298[M-H-CO_2]^−	Gallic acid 4-O-β-D-glucoside
S97	3.16	C_{13}H_{16}O_{10}	331.0668	0.91	169.0145[M-H-Glc]^−, 125.0246[M-H-Glc-CO_2]^−	Gallic acid 4-O-β-D-glucoside
S100	3.90	C_{13}H_{16}O_{10}	331.0671	1.81	169.0145[M-H-Glc]-, 125.0250[M-H-Glc-CO₂]-	
S110	7.04	C_{16}H_{18}O_{9}	353.0874	0.28	191.0555[M-H-C₆H₄O₃]-, 161.0242[C₆H₄O₃-H]-, 147.0452[M-H-C₆H₅O₃-CO₂]-, 129.0195[M-H-C₆H₅O₃-CO₂-H₂O]-, 111.0089[M-H-C₆H₅O₃-CO₂-2H₂O]-	
S111	7.83	C_{16}H_{18}O_{9}	353.0879	1.70	191.0560[M-H-C₆H₄O₃]-, 111.0093[M-H-C₆H₅O₃-CO₂-H₂O]-, 111.0088[M-H-C₆H₅O₃-CO₂-2H₂O]-	
S112	8.59	C_{16}H_{18}O_{9}	353.0876	0.85	111.0088[M-H-C₆H₅O₃-CO₂-2H₂O]-	
S113	9.14	C₆H₅O₅	183.0297	2.19	168.0065[M-H-CH₃]-, 139.0401[M-H-CO₂]-	
S104	5.37	C₆H₅O₅	183.0297	2.19	168.0065[M-H-CH₃]-, 139.0401[M-H-CO₂]-	
S101	4.28	C₆H₅O₅	183.0297	2.19	168.0065[M-H-CH₃]-, 139.0401[M-H-CO₂]-	
S102	4.84	C₆H₅O₅	183.0297	2.19	168.0065[M-H-CH₃]-, 139.0401[M-H-CO₂]-	
S105	5.47	C_{16}H_{18}O_{9}	353.0875	0.57	191.0565[M-H-C₆H₄O₃]-, 173.0456[M-H-C₆H₄O₃-H₂O]-, 161.0249[C₆H₄O₃-H]-, 147.0303[M-H-C₆H₅O₃-CO₂]-, 129.0195[M-H-C₆H₅O₃-CO₂-H₂O]-, 111.0095[M-H-C₆H₅O₃-CO₂-2H₂O]-	
S106	5.82	C_{16}H_{18}O_{9}	353.0875	0.57	191.0562[M-H-C₆H₄O₃]-, 173.0458[M-H-C₆H₄O₃-H₂O]-, 161.0245[C₆H₄O₃-H]-, 129.0191[M-H-C₆H₅O₃-CO₂-H₂O]-, 111.0088[M-H-C₆H₅O₃-CO₂-2H₂O]-	
S107	5.84	C₆H₅O₃	151.0397	1.32	123.0452[M-H-CO]-, 108.0454[M-H-CO-CH₃]-, 109.0296[M-H-CO₂]-	
S108	6.13	C₆H₅O₄	153.0191	1.96	109.0296[M-H-CO₂]-	
S109	6.63	C_{16}H_{18}O_{9}	353.0877	1.13	111.0090[M-H-C₆H₅O₃-CO₂-2H₂O]-	
S111	7.83	C_{16}H_{18}O_{9}	353.0879	1.70	191.0560[M-H-C₆H₄O₃]-, 111.0093[M-H-C₆H₅O₃-CO₂-H₂O]-, 111.0088[M-H-C₆H₅O₃-CO₂-2H₂O]-	

- **Gallic acid isomer**
- **3,5-Dihydroxybenzoic acid isomer**
- **Chlorogenic acid isomer**
- **Methyl gallate isomer**
- **Vanillin isomer**
- **3,5-Dihydroxybenzoic acid isomer**
- **Methyl gallate isomer**
- **Vanillin**
- **Chlorogenic acid isomer**
- **Chlorogenic acid isomer**
- **Chlorogenic acid isomer**
- **Methyl gallate**
| | | | | | |
|---|---|---|---|---|---|
| Polyphenols from *Chinese yam* | | | | | |
| SY1 | 11.64 | C$_{14}$H$_{13}$O$_3$ | 229.0870 | 2.18 | 123.0459[M-H-C$_2$H$_2$O]$_-$ 2', 3', 5-Trihydroxybibenzyl isomer |
| SY2 | 12.22 | C$_{19}$H$_{24}$O$_4$ | 315.1600 | 1.27 | 297.1503[M-H-H$_2$O]$_-$, 279.1394[M-H-2H$_2$O]$_-$, 191.1079[M-H-H$_2$O-C$_2$H$_4$O]$_-$, 173.0979[M-H-2H$_2$O-C$_2$H$_4$O]$_-$, 149.0610[M-H-C$_3$H$_5$O$_2$]$_-$ (3R,5R)-3,5-Dihydroxy-1,7-bis(4-hydroxyphenyl)-3,5-heptanediol |
| SY3 | 12.40 | C$_{14}$H$_{13}$O$_3$ | 229.0870 | 2.18 | 123.0453[M-H-C$_2$H$_2$O]$_-$ 2',3,5-Trihydroxybibenzyl isomer |
| SY4 | 13.15 | C$_{21}$H$_{26}$O$_6$ | 375.1811 | 0.80 | 360.1581[M-H-CH$_3$]$_-$, 203.0865[M-H-2H$_2$O-C$_4$H$_8$O$_2$]$_-$, 179.0715[M-H-C$_{10}$H$_{11}$O$_3$]$_-$, 149.0608[M-H-C$_{10}$H$_{11}$O$_3$-OCH$_2$]$_-$, 135.0452[C$_6$H$_5$O$_2$-H]$_-$ (3R,5R)-1,7-Bis(4-hydroxy-3-methoxyphenyl)-3,5-heptanediol |
| SY5 | 13.39 | C$_{21}$H$_{26}$O$_6$ | 375.1811 | 0.80 | 360.1573[M-H-CH$_3$]$_-$, 203.0860[M-H-2H$_2$O-C$_4$H$_8$O$_2$]$_-$, 179.0723[M-H-C$_{10}$H$_{11}$O$_3$]$_-$, 149.0616[M-H-C$_{10}$H$_{11}$O$_3$-OCH$_2$]$_-$, 135.0453[C$_6$H$_5$O$_2$-H]$_-$ (3R,5R)-1,7-Bis(4-hydroxy-3-methoxyphenyl)-3,5-heptanediol isomer |
| SY6 | 13.47 | C$_{16}$H$_{12}$O$_3$ | 229.0870 | 2.18 | 123.0453[M-H-C$_2$H$_2$O]$_-$ 2',3,5-Trihydroxybibenzyl isomer |
| SY7 | 18.97 | C$_{25}$H$_{16}$O$_3$ | 243.1026 | 2.06 | 137.0609[M-H-C$_2$H$_2$O]$_-$, 122.0374[M-H-C$_2$H$_2$O-CH$_3$]$_-$, 106.0425[M-H-C$_2$H$_2$O-OCH$_3$]$_-$ Batatasin III/Batatasin IV |
Fig. S3 The LC-MS traces of ginsenosides (saponins) on TIC of ZKYY extract.

Fig. S4 The LC-MS traces of astragalus saponins on TIC of ZKYY extract.
Fig. S5 The LC-MS traces of flavonoids on TIC of ZKYY extract.

Fig. S6 The LC-MS traces of iridoids on TIC of ZKYY extract.
Fig. S7 The LC-MS traces of phenylethanoid glycosides, phenylpropanoids and ionones on TIC of ZKYY extract.