Photothermal Imaging using Non-Contact Photopyroelectric Method
(Pengimejan Fototerma menggunakan Kaedah Fotopiroelektrik Tidak Bersentuhan)

AZURA AMRAN, NOR KAMILAH SAAT*, NIZAM TAMCHEK & TING LEE MON

ABSTRACT
Photothermal imaging is a non-destructive and contactless technique for testing and monitoring defect of materials. This work is demonstrated thermal images for film sample of Al, Cu, Ni, and Cu with artificial defect with sampling area of 10 mm × 12 mm (21 × 25 pixels), 10 mm × 14 mm (21 × 29 pixels), 10 mm × 14 mm (21 × 29 pixels), 10 mm × 10 mm (21 × 21 pixels) respectively, acquired by raster scanning with the step size of 500 μm at fixed frequency modulation of 6 Hz and lock in detection in the range of 50 to 500 mV depending of studied material. The thermal image of defect sample is successfully acquired by introducing artificial defect onto the sample of Cu film. The thermal signal is obtained by taking transmission measurement which is defined by the ratio of intensity with sample to without sample. This paper also involves a photopyroelectric non-contact configuration for thermal diffusivity of the Al, Cu, and Ni film samples. Normalization procedure was used to wipe out the amount of photopyroelectric cell media parameter that should usually known before the sample’s thermal diffusivity could be decided. In this case, sample Al, Cu, and Ni were nearly to literature values but therefore justified the suggested model, the thermal diffusivity acquired.

Keywords: Photopyroelectric; photothermal; thermal diffusivity

INTRODUCTION
In the field of thermal parameters for material, the photothermal (PT) technique has been used extensively since 1985. The fundamental idea behind these aspect is applying an amplitude modified heating beam at a frequency concentrated onto the sample surface for the purpose of produce a temperature change at frequency that can detected by varying ways such as laser flash method (Parker 1979; Taylor 1961) and mirage technique (Murphy 1980; Wong et al. 1998). The sample can be scanned in a raster manner, while the detected signal is used to brightness modify a scan and display at the same time as to construct an image. There have recently been numerous relevant photopyroelectric (PPE) applications in the measurement of the thermal as well as optical absorption properties of solids. A thin film pyroelectric detector produces a voltage proportional to its variations in surface temperatures, as thermal waves propagate with the thin pyroelectric PVDF in close contact with the sample.

THEORY
PPE effect is a reaction caused by the PE sensor’s periodic optical rotation or by periodic heating of the material in the thermal contact to the PE sensor that regulates the detection of PE. The light intensity on the sample surface is determined (Sang et al. 2003).

\[
(\omega) = \frac{1}{2} I(1 + \cos \omega t)
\]
and \(\omega \) provided the amplitude of light incidence and the modulation angular frequency on the sample surface. The light is absorbed in the sample then converts into heat that diffused to the transducer through the sample. The heat generates a piezoelectric polymer, which acts as a PE transducer, with a voltage (Mandelis 2011).

The sample is mounted in thermal contact between the PE sensor and the TW generator. For generating the TW generator, a modulated laser beam is used. The TW generator absorbs the laser light and converts it into TW that is diffused via the sample to the PE detector. The TW is reflected and transmitted by the transmission coefficient \(T_{12} \) and reflection coefficient \(R_{12} \) for TW propagating from medium 1 through medium 2, as it cross the limits of two different materials as follows (Almond 1996; Bennett 1982).

\[
R_{12} = \frac{1 - b_{12}}{1 + b_{12}}, \quad T_{12} = \frac{2}{1 + b_{12}} \tag{2}
\]

The variable \(b_{12} \) shows the ratio of the thermal effusivity of material 1 to material 2. The complete duration of the sample transmission of the TW will provide the PE back detection signal PE. If the sample is extremely opaque as well as the optical absorption length is lower than the sample thickness, this technique is further facilitated by taking into account only the sample surface produced by heat source. The thermal wave results in an autonomous sample of the optical characteristics.

![Figure 1](image.png)

FIGURE 1. One-dimensional configuration of photopyroelectric cell with the thermal wave display path; s is sample, c is the coating, p is PVdF film; b is backing

\[
\theta_{sc1} = T_{sc} A e^{-\sigma_s L_s}, \quad R_{sc} A e^{-\sigma_s L_s} \tag{3}
\]

where \(T_{sc} \) is transmitted wave on the boundary sample coating; \(R_{sc} \) is the reflected wave at sample-coating boundary; \(A = Q_0 / 2K \sigma_s \); \(Q_0 \) is the intensity of the source; \(K \) is thermal conductivity; \(\sigma_s = (1+i)/\mu_i \); \(\mu_i \sqrt{\alpha_s / \pi f} \) is thermal diffusion length of the light modulation frequency \(f \); \(L_s \) is the thickness; \(\alpha_s = K_\rho C_s \) is thermal diffusivity, whereas \(\rho \) is the density; and \(C_s \) is the specific heat of medium; and \(f (s, c, p, b) \) where \(s \) is the sample; \(c \) is the coating; \(p \) is PVDF film and \(b \) is backing.

In a thermally thin sample, the reflected waves will then be reflected between the sample-coating interfaces \(X = -L_c \) and \(X = (L_c + L_s) \), and the coating gap transmission at \(X = -L_c \). The first wave was transmitted \(\theta_{sc1} \) is then given as (Zakaria et al. 2006)

\[
\theta_{sc} = \frac{T_{sc} A e^{-\sigma_s L_s}}{1 - R_{sc} e^{-2\sigma_s L_s}} \tag{4}
\]

In the coating gap, a further series reflection will be performed by the transmitted thermal wave in \(X = -L_c \), where the sample coating gaps and the coating PVDF interfaced of \(X = 0 \) and the transmissions at interfaces will occur. The first sequence of transmitted waves is given by the following \(\theta_{sc1} \theta_{sc} \) which comes from the reflected
wave, \(\theta_{\text{avg}} = \theta \cdot R \cdot e^{2 \alpha x} / (1 - R) \cdot e^{2 \alpha x} \) at \(X = -L_c \), that experience multiple reflection in the sample, and the transmitted into the sample at \(X = -L_c \) that is \(\theta_{\text{avg}} \neq \theta \). The transmission coefficients are shown in Figure 2. The frequency chopper (Stanford Research, SR540) modulates the beam intensity of 150 mW He-Ne laser (532 nm) to give pulse laser and reflected using a mirror and focused onto the PVDF thin sample. The average PE voltage \(V(\omega) \) generated by the PVDF film is \(pL \cdot \theta / e \cdot \varepsilon \), hence by using expression \(\theta \) in eq. (5), the voltage may be indicated as (Zakaria et al. 2006)

\[
V(\omega) = \frac{qL \cdot \theta}{2 \sigma_p \varepsilon \cdot \varepsilon_p \cdot \varepsilon_p \cdot (1 - R_p) \cdot e^{2 \alpha x} / (1 - R_p) \cdot e^{2 \alpha x}}
\]

The film has an average temperature of \(\theta_p \)

\[
\theta_p(\omega) = \frac{\theta_{p}}{\theta_p} \int_0^\theta e^{-\alpha x} dx
\]

The average PE voltage \(V(\omega) \) generated by the PVDF film is \(pL \cdot \theta / e \cdot \varepsilon \), hence by using expression \(\theta \) in eq. (5), the voltage may be indicated as (Zakaria et al. 2006)

\[
V(\omega) = \frac{qL \cdot \theta}{2 \sigma_p \varepsilon \cdot \varepsilon_p \cdot \varepsilon_p \cdot (1 - R_p) \cdot e^{2 \alpha x} / (1 - R_p) \cdot e^{2 \alpha x}}
\]

where \(p \) is the PE coefficient; \(\varepsilon \) is the dielectric constant of the PE detector; and the \(\varepsilon_p \) is the vacuum permittivity constant. For a particular situation, such as for the sample’s thermally thick condition, we have \(e^{2 \alpha x} \approx 0 \) or \(1 - R_p \cdot e^{2 \alpha x} \approx 1 \). Furthermore, the normalizing of the test signal for the reference sample could remove a number of pertinent values for the coating and PVDF film. The term denominator \((1 - R_p) \cdot e^{2 \alpha x} \), can also be cancelled in this method because the values of the coating-to-sample reflection coefficient, \(R_{cs} \), of most metals are usually very tightly linked to each other (Azmi 2004). Therefore, (7) can be interpreted into

\[
\frac{V_x}{V_r}(\omega) = \frac{C e^{-\alpha x}}{e^{-\alpha x}}
\]

\[
\frac{V_x}{V_r}(\omega) = C e^{-\alpha x} \left[\frac{\pi L}{\alpha x} + \sqrt{\frac{\pi L}{\alpha x}} \right] e^{-\alpha x} \left[\frac{\pi L}{\alpha x} + \sqrt{\frac{\pi L}{\alpha x}} \right]
\]

For thermal diffusivity measurement using the same setup, the laser beam is modulated at variable frequency modulation from 5 Hz up to 11 Hz. To optimize the sample sensor for thermal contact, a very thin thermal grease layer has been used. The grease layer affects the measured signal; in addition the normalization process can eliminate it. The PE signal output is supplied for signal analysis with a lock-in amplifier (SR530). Measurement of Al (Ls=500 µm), Cu (Ls=800 µm) and Ni (Ls=500 µm) was done at room temperature and PPE signal was detected in a static position over a frequency.
range in keeping with the theory approach.

RESULTS AND DISCUSSION

PHOTOTHERMAL IMAGING

Figure 3(a), 3(b), 3(c) and 3(d) shows the amplitude image acquired by raster scanning at 6 Hz for different types of tested samples of Al, Cu, Ni, and Cu with artificial defect, respectively. The amplitude images were acquired directly from photothermal imaging system by measuring the voltage signal by PVDF which depends on the magnitude of the thermal waves, and then detected by lock-in amplifier. All images are displayed in red to blue color ranges so that red corresponds to a high signal and blue to low signal. The higher signal show that the signal detected on the PVDF film itself. Meanwhile, the lower signals onto the sample might be due to the thickness of sample. Green color range shows the signal between PVDF film and edge of samples. Figure 3(a) shows that the photothermal image of aluminum with sampling area of 10 mm × 12 mm corresponding to 525 pixels. Figure 3(b) shows that the photothermal image of copper with sampling area of 10 mm × 14 mm corresponding to 609 pixels. Figure 3(c) shows that the photothermal image of nickel with sampling area of 10 mm × 14 mm corresponding to the 609 pixels. The low signal was measured by PVDF film and then detected using lock-in amplifier showed in blue color ranges. Figure 3(d)(i) shows the photothermal image of copper with artificial defect with sampling area of 10 mm × 10 mm corresponding to 441 pixels. Meanwhile, Figure 3(d)(ii) shows zoom in of the photothermal image of copper with artificial defect. The signal was detected in artificial defect region was quite weak. It does not give clearly image of defect itself. All the images of photothermal of sample film depend on the thickness and source of laser.
FIGURE 3. The amplitude image acquired by raster scanning at 6 Hz for different types of tested samples: (a) Al, (b) Cu, (c) Ni, and (d) Cu (i) with artificial defect, and (ii) zoom in the area of defect.
and the samples in thermally thin condition will be decreased shortly after this initial frequency.

Figure 6 and 7 illustrated Al and Ni as reference plot with normalized phase signal and ln V signal. For the gradient and calculation of the value of the thermal diffusivity value of the studied sample, the linear fitting equation was used in both plots (Figures 6 & 7). For example, the thermal diffusivity of Al calculated by replacing the thermal diffusivity of Ni literature value is 1.0486×10^{-4} m2s$^{-1}$ when using m from the normalized phase (Figure 6). Meanwhile, thermal diffusivity of Al is 0.9425×10^{-4} m2s$^{-1}$ when using m from the normalized amplitude (Figure 7). The experimental error only

CONCLUSION

In conclusion, we have demonstrated photothermal imaging using non-contact pyroelectric method. Thermal image of thin film sample of Al, Cu, Ni as well as Cu with artificial defect were obtained by raster scanning the sample using He-Ne laser (532 nm) at frequency modulation of 6 Hz and lock-in detection in the range of 50 to 500 mV depending of studied material. Furthermore, we also evaluated thermal diffusivity of Al, Cu and Ni film effectively. By using normalization technique, the amount of media parameters has been removed effectively, where the value of the thermal diffusivity of thin film Al, Cu and Ni were well in line with the values of literature.

ACKNOWLEDGEMENTS

The authors are grateful to Universiti Putra Malaysia...
outcomes from error in the measurement of sample thickness and error from PPE cell components.

By using (10) in Table 1, the calculated values of \(\alpha \) were shown in the context of the various reference sample and the outcome obtained is sensible to the literature values, which is not as high as 4%. Only error in the measuring sample thickness and gradient of the plot are responsible for the experimental mistake. Table 2, the amplitude signal provides nice of 2% thermal diffusivity to literature values (Lide 1997) for samples that have been normalized in different reference samples. By using the normalization technique, the reflected term in the sample of the air interface is simply overlooked, as in the sample which is removed at the interface after a reflection at the interface, the modulated frequency is generated, for very short wavelength and brief thermal diffusion length. Likewise, due to its brief thermal diffusion length relative to its thickness physical no reflection in the PVdF film is taken into consideration.

Sample	Measured value \((\times10^{-4}\text{ m}^2\text{s}^{-1})\)	Average \((\times10^{-4}\text{ m}^2\text{s}^{-1})\)	Literature value \((\times10^{-4}\text{ m}^2\text{s}^{-1})\)	Literature deviation (%)		
Al	-	0.9578±0.0027	1.0486±0.1085	1.0032	0.9790	2.47
Cu	1.1804±0.0019	-	1.237±0.127	1.209	1.1630	3.95
Ni	0.2225±0.0005	0.2202±0.0006	-	0.2213	0.2300	3.78

Sample	Measured value \((\times10^{-4}\text{ m}^2\text{s}^{-1})\)	Average \((\times10^{-4}\text{ m}^2\text{s}^{-1})\)	Literature value \((\times10^{-4}\text{ m}^2\text{s}^{-1})\)	Literature deviation (%)		
Al	-	0.9830±0.0028	0.9426±0.0975	0.9628	0.9790	1.65
Cu	1.1596±0.0019	-	1.1302±0.1164	1.1449	1.1630	1.56

CONCLUSION
In conclusion, we have demonstrated photothermal imaging using non-contact pyroelectric method. Thermal image of thin film sample of Al, Cu, Ni as well as Cu with artificial defect were obtained by raster scanning the sample using He-Ne laser (532 nm) at frequency modulation of 6 Hz and lock-in detection in the range of 50 to 500 mV depending of studied material. Furthermore, we also evaluated thermal diffusivity of Al, Cu and Ni film effectively. By using normalization technique, the amount of media parameters has been removed effectively, where the value of the thermal diffusivity of thin film Al, Cu and Ni were well in line with the values of literature.

ACKNOWLEDGEMENTS
The authors are grateful to Universiti Putra Malaysia GRANT No. GIPM/2015/9464700 and GP-IPS/2018/9664200.

REFERENCES
Almond, D.P. & Patel, P.M. 1996. Photothermal Science and Technique. London: Chapman & Hall.
Azmi, B.Z., Liaw, H.S., Yunus, W.M.M., Hashim, M., Moksin, M.M. & Yusoff, W.M.D.W. 2004. Normalisation procedure in thermal wave approach of thermal diffusivity measurement of solids using pyroelectric sensor. Infrared Phys. & Technol. 45: 315-321.
Bennett, C.A. & Patty, R.R. 1982. Thermal wave interferometry: A potential application of the photoacoustic effect. Appl. Optics 21: 49-54.
Delenclos, S., Chirtoc, M., Sahraoui, A.H., Kolinsky, C. & Buising, J.M. 2001. A new calibration procedure for the determination of thermal parameters and their temperature dependence using the photopyroelectric method. Analytical Sciences 17: s161-s164.
Lide, R.D. 1997. Handbook of Chemistry and Physics. 78th edition. Boca Raton: CRC Press Inc.
Mandelis, A. 2011. Perspective: Photopyroelectric effects and pyroelectric measurements: Photopyroelectric calorimeter
for the simultaneous thermal, optical, and structural characterization of samples over phase transitions. *Review of Scientific Instruments* 82(12901): 1-3.

Murphy, J.C. & Aamodt, L.C. 1980. Photothermal spectroscopy using optical beam probing: Mirage effect. *J. Appl. Phys.* 51: 4580.

Parker, W.J., Jenkins, R.J., Butler, C.P. & Abbot, G.L. 1961. Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. *J. Appl. Phys.* 32: 1979.

Sang, L.H. 2003. Photopyroelectric technique in thermal diffusivity determination and spectroscopic response of solid. Master Thesis, University Putra Malaysia (Unpublished).

Taylor, R.E. & Maglic, K.D. 1984. In *Compendium of Thermophysical Property Measurement Methods*, edited by Maglic, K.D., Cezairliyan, A. & Peletsky, V.E. 1st edition. New York: Plenum.

Wong, P., Fung, P. & Tam, H. 1998. Low thermal diffusivity measurements of thin films using mirage technique. *J. Appl. Phys.* 84: 6623.

Zakaria, A., Sang, L.H., Abbas, Z., Yunus, W.M.M. & Hassan, J. 2006. Measurement of thermal parameter using non-contact photopyroelectric method. *ScienceAsia* 32(1): 47-52.

Photoacoustic Laboratory
Department of Physics
Faculty of Science
Universiti Putra Malaysia
43400 Serdang, Selangor Darul Ehsan
Malaysia

*Corresponding author; email: kamilah@upm.edu.my

Received: 24 September 2019