Enhanced tensile strength and thermal conductivity in copper diamond composites with B₄C coating

Youhong Sun¹,²,³, Linkai He¹,², Chi Zhang¹,², Qingnan Meng¹,², Baochang Liu¹,²,³, Ke Gao¹,², Mao Wen³,⁴ & Weitao Zheng³,⁴

Boron carbide (B₄C) coating on diamond particle is synthesized by heating diamond particles in a powder mix of H₃BO₃ and B in Ar atmosphere. The composition, bond state and coverage fraction of boron carbide coating on diamond particles are investigated. The boron carbide coating favors to grow on diamond (100) surface rather than on diamond (111) surface. Cu matrix composites reinforced with B₄C-coated diamond particles were made by powder metallurgy. The addition of B₄C coating gave rise to a dense composite. The influence of B₄C coating on both tensile strength and thermal conductivity of the composite were investigated. When the B₄C fully covered on diamond particles, the composite exhibited a greatly increase in tensile strength (115 MPa) which was much higher than that for uncoated-diamond/Cu (60 MPa) composites. Meanwhile, a high thermal conductivity of 687 W/mK was achieved in the B₄C-coated-diamond/Cu composites.

Diamond reinforced metal composites have high hardness and excellent grinding ability suggesting a potential use in a variety of applications subjected to high stress, such as cut-off wheels and drills for concrete cutting, tunnelling or oil exploration. The working life of these tools is dependent on the bonding between the diamond reinforcement and surrounding matrix materials¹⁻⁵. In addition, the excellent thermal conductivity and low thermal expansion of diamond reinforced metal composites making them useful for heat sinks. The thermal conductivity of composite is also determined by interfacial state between diamond and metal matrix⁶⁻¹³. Recently, diamond reinforced copper or copper alloy composites have been proposed as candidate materials for above applications. However, unfortunately, copper is naturally un-wetting and un-reactive with diamond, which is not conducive to obtain a strong interfacial bonding for the transfer of stress and heat³,¹⁴⁻¹⁶.

Alloying metal matrix with strong carbide formers elements (e.g. boron) is benefit to the improvement of interfacial structure between copper and diamond. Weber and Tavangar¹⁰ have been report that the addition of boron in copper matrix gives rise to an obviously increase in thermal conductivity. It is, however, reported by Weidenmann et al.², diamond/Cu + 2.5%B exhibits a low value of tensile strength (~50 MPa), which is close to that of diamond/Cu composite (~60 MPa)⁹. It should be noted that the reactive process between boron and diamond is highly endothermic, and the synthesis temperature for B-C bond is usually maintained at >2000 °C¹⁷,¹⁸, which is quite higher than the synthesis temperature of diamond/Cu composite. Therefore, adding boron in copper matrix is not an effective method to improve the interfacial bonding between diamond and copper matrix, because there is still no strong B–C bond between diamond and matrix. In addition, nevertheless, most of the alloying elements will remain in the metal matrix and have an unpredictable effect in the properties of the matrix.

Surface metallization of diamond, i.e. coating strong carbide formers elements on diamond, is an effective method to enhance the properties of diamond/metal composites. The coating elements bond with diamond by forming corresponding carbide during plating process, and alloy with metal matrix during sintering process⁷,¹⁵,¹⁹. Boron strongly bonds with diamond via forming boron carbide during plating boron carbide coating on
Furthermore, Mansourzadeh et al.22 have found that the B$_4$C particles reinforced copper composites prepared by accumulative roll-bonding in room temperature shows an excellent tensile strength. It indicates that B$_4$C easily forms a strong bonding with copper at a relatively low temperature. Therefore, pre-plating B$_4$C coating on diamond is a potential effective method for obtaining a diamond/Cu composite with high tensile strength and thermal conductivity.

We describe in this paper the greatly enhancement in tensile strength and thermal conductivity for copper matrix composites reinforced with B$_4$C coated diamond particles. The B$_4$C coating on diamond is conductive to obtain a dense diamond/Cu composite because of the continual and strong bonding interface. And the enhancements of both mechanical and thermal properties are dependent on the interfacial gap width between diamond and copper matrix.

Results

The scanning electron microscopy (SEM) images for the uncoated (D0, Fig. 1a) and coated diamond particles (D1-3, Fig. 1b–d) are shown in Fig. 1. The coating coverage is dependent on the synthesis time. For the two-hours-coated diamond (D1), only nucleation of the coating is obtained on diamond (111) surface (triangle

![Figure 1. SEM images for (a) typical un-coated diamond particle (D0), (b) two-hours-coated diamond (D1), (c) four-hours-coated diamond (D2), and (d) six-hours-coated diamond (D3).](image-url)
or hexagon surfaces20). Meanwhile complete coverage of the diamond (100) surface (square surfaces20) was achieved, as shown in Fig. 1b. The increase in synthesis time gives rise to a grown of coating on the diamond (111) surface. When the synthesis time reached 6 hours, the diamond particles are completely covered by coating. (see Fig. 4d, sample D3).

The X-ray diffraction (XRD) pattern for the six-hours-coated diamond particles (D3) is displayed in Fig. 2. As shown in Fig. 2, a high-intensity peak located at 43.92° is attributed to diamond (JCPDF#06-0675), which is partially truncated for clearly observing the other peaks for the coating on the diamond particle. Compared to

Figure 3. Raman spectra for two-hours-coated (D1), four-hours-coated (D2) and six-hours-coated (D3) diamond particles.

Figure 4. XPS (a) C1s and (b) B1s spectra for the two-hours-coated (D1), four-hours-coated (D2) and six-hours-coated (D3) diamond particles.
the standard JCPDS PDF card No.35-0798, which is also shown in Fig. 2, the diffraction peaks located at 21.88°, 23.33°, 31.76°, 34.73°, 37.56° and 49.86° are ascribed to the typical B\textsubscript{4}C structure.

Raman spectroscopy was used for obtaining more information regarding the bonding conditions for the coatings on diamond particles. The Raman spectra for coated diamond particles (D1-3) in a range between 200 and 2000 cm-1 are shown in Fig. 3, wherein the high-intensity peak located at approximately 1333 cm-1 is closed to diamond20. In addition, a series of bonds located at 478, 530, 720, 830, 1000 and 1085 cm-1 are assigned to vibrations of the principal structural elements, icosahedra and three-atom linear chains in the B\textsubscript{4}C crystal23–27, which is in good agreement with the XRD analysis. Moreover, the common amorphous structure for boron carbide and diamond system, such as amorphous boron carbide (269 and 325 cm-1) or amorphous carbon (1350 and 1550 cm-1) is not obtained in the coating20.

The XPS C\textsubscript{1}s spectra for boron carbide coated diamond are displayed in Fig. 4a, wherein two peaks are identified. The peak located at 285.2 eV and 282.4 eV is assigned to C-C and C-B bonds20, 28, respectively. The high fraction of C-C in C\textsubscript{1}s spectrum for two-hours-coated diamond (D1) is attributed to the bare plane of diamond particles. The increase in plating time gives rise to a decrease in the fraction of C-C in C\textsubscript{1}s spectrum since the growth of boron carbide on diamond (111) plane. When plating time reaches 6 hours, the peak for C-C bond is hardly apparent, because diamond particles are completely covered by coating, which agrees well with SEM results. The XPS B\textsubscript{1}s spectra are shown in Fig. 4b. As shown in Fig. 4b, there is only one peak located at 187.5 eV, which is assigned to B-C bonds20, 29. In addition, the B:C atomic ratio for six-hours-coated-diamond (D3) is close to 4:1, confirming the coating exhibit B\textsubscript{4}C phase.

Figure 5 shows the density for diamond/Cu composite as a function of plating time. The theoretical density of composite ρ\textsubscript{theoretical} is determined by

\[
\rho_{\text{theoretical}} = \rho_D V_D + \rho_M V_M
\]

(1)

where ρ\textsubscript{D} (3.52 g/cm3) and ρ\textsubscript{M} (8.96 g/cm3) is theoretical density of diamond and copper matrix, respectively. In addition, V\textsubscript{D} (50 vt.%) and V\textsubscript{M} (50 vt.%) is the volume fraction of diamond particles and copper matrix, respectively. Therefore, the theoretical density of composite ρ\textsubscript{theoretical} is 6.24 g/cm3, which is also shown in Fig. 5. However, the density for uncoated-diamond/Cu composite (C0) exhibits a low value (5.56 g/cm3). By plating boron carbide coating on diamond reinforcement particles, the diamond/Cu composite exhibits a significant densification. For the two-hours-coated diamond/Cu composite (C1), the density obviously increases to 5.86 g/cm3. With further increasing plating time, the density of diamond/Cu composite continually increases. When the plating time increases to 6 hours, the density for sample D3 reaches 6.21 g/cm3, which is close to the theoretical density of composite. The relative density ρ\textsubscript{relative} is determined by

\[
\rho_{\text{relative}} = \frac{\rho_{\text{measured}}}{\rho_{\text{theoretical}}}
\]

(2)

where ρ\textsubscript{measured} is the measured density. Thereby, the relative density for uncoated-diamonds/Cu composite (C0) is 89.05%. Plating boron carbide coating on diamond reinforcement gives rise to a densification of composite. With increasing plating time of boron carbide coating to 6 hours, the composite shows a nearly full relative density (99.52%).

The tensile strength as a function of plating time is displayed in Fig. 6. As shown in Fig. 6, plating boron carbide coating on diamonds is benefited to the improvement of tensile strength of diamond/Cu composites. Furthermore, the tensile strength of diamond/Cu composite increases from 60 to 115 MPa with increasing plating time of boron carbide coating from 0 to 6 hours.

SEM micrographs of tensile fracture surfaces of the uncoated-diamond/Cu (C0) and coated-diamond/Cu (C1-3) composites are shown in Fig. 7. For the uncoated-diamond/Cu composite (C0, Fig. 7a), large amounts of wide gap around diamond particles is observed. Meanwhile, un-wetting phenomenon between copper matrix and diamond particles is existence, which is marked in Fig. 7a. As shown in Fig. 7b–d, plating boron carbide coating
on diamonds gives rise to a narrow gap, indicating that plating boron carbide coating on diamonds contributed to the densification of diamond/Cu composite.

Figure 8 shows the thermal conductivity of uncoated-diamond/Cu (C0) and coated-diamond/Cu (C1–3) composites. As shown in Fig. 8, the uncoated-diamond/Cu composite (C0) exhibits a low thermal conductivity of 210 W/mK, which is even lower than the thermal conductivity of pure copper (385 W/mK). By plating boron carbide on diamonds, the thermal conductivity of composite is significantly improved. The thermal conductivity of composite increases with the increase in plating time of coating, and reaches 687 W/mK when six-hours-coated diamonds are used.

Discussion

The relative density for uncoated-diamond/Cu composite (C0) is only 89.05%, indicating large amount of hole exists in the sample C0. Meanwhile, as shown in the cross section image (Fig. 6a), wide interfacial gap is observed between uncoated diamond and copper matrix. The separation between diamond and copper is formed during the cooling process because of large different expansion coefficients between copper ($17.0 \times 10^{-6} \degree C^{-1}$) and carbon materials ($1.0 \times 10^{-6} \degree C^{-1}$). Therefore, the low density for uncoated-diamond/Cu composite (C0) is
attributed to large amount of wide gap around diamonds. Assuming diamonds to isotropic spherical particles, the
average gap width for sample is evaluated by
\[
\frac{a^3}{(a + x)^3} = \frac{(1 - V_p) V_D}{(1 - V_p) V_D + V_c}
\]
(3)
\[
V_p = 1 - \rho_{relative}
\]
where \(a\) is the radius of diamond particle, \(V_D\) is the volume fraction of diamond particle, and \(V_c\) is porosity. As
displayed in Fig. 9, plating boron carbide coating on diamond reinforcement gives rise to a decrease in average
gap width from 8.40 to 0.36 \(\mu\)m, which is agreement well with SEM results (Fig. 7). Because of the modest expan-
sion coefficients of boron carbide (5.65 \(\times\) \(10^{-6}\) °C\(^{-1}\)), B\(_4\)C interlayer is benefited to relieve the interfacial thermal
stress between copper and diamond during cooling process. Weber and Tavangar\(^{10}\) reports that 2.5 at.% boron
alloyed in copper matrix effectively prevented the copper separated from diamond. Hu and Kong\(^8\) also found
that diamond/Cu composite exhibited a continual interface via forming a B\(_4\)C interface between diamond and
copper. In addition, Ahn\(^{34}\) and Mansourzadeh\(^{22}\) et al. observed continual interfaces between copper and
boron carbide in Cu/B\(_4\)C composites. Therefore, we suggest that the formation of boron carbide is benefited to
the densification of diamond/Cu composite.

The relationship between tensile strength and average gap width is summarized in Fig. 10, wherein the ten-
sile strength is strongly dependent on the average gap width. Together gap width data (Fig. 9) and SEM images
(Fig. 7a), for uncoated-diamond/Cu composite the interface between copper matrix and diamond is very weak,
which is not benefited to the stress transfer, resulting in a low tensile strength. According to the analysis of com-
posite densification, plating boron carbide is benefited to the improvement of interface structure between dia-
mond and copper matrix. Obviously, the gap around diamond contributed to the extension of the crack during
tensile test. Therefore, plating boron carbide is benefited to the increase in tensile strength of diamond/Cu com-
posite, since the decrease in average gap width between diamond and copper matrix. For six-hours-coated dia-
mond/Cu composite (C3), there is no obvious gap between diamond and copper matrix. Thus the tensile strength
reaches the maximum value, because the continual interface is conducive to distribution of stress.

Figure 8. Thermal conductivity of uncoated-diamond/Cu (C0) and coated-diamond/Cu (C1-3) composites.

Figure 9. Gap width and porosity as a function of plating time.
Plating boron carbide on diamonds gives rise to a significantly increase in thermal conductivity for diamond/Cu composite (see Fig. 8). For further understand the thermal conductivity behavior of diamond/Cu composite, it is necessary to compare experimental results with theoretical predictions. Hasselman and Johnson proposed a theoretical equation to estimate effective thermal conductivity of composite by considering interfacial thermal barrier (H-J model).

\[
K_c = K_m \left(\frac{2 \left(\frac{K_r}{a_h} - \frac{K_m}{a_h} - 1 \right) V_r + \frac{K_r}{a_h} + 2}{\left(1 - \frac{K_r}{a_h} \right) V_r + \frac{K_r}{a_h} + 2} \right)
\]

where \(K_m\) and \(K_r\) are thermal conductivity of matrix and reinforcement particles respectively (\(K_{Cu} = 385\) W/mK, \(K_{diamond} = 1350\) W/mK), \(a\) is the radius of reinforcement particle, and \(V_r\) is the volume fraction of reinforcement particle. The interfacial thermal conductance \(h_c\) is identified as

\[
h_c = \frac{1}{2} \rho m c_m \frac{v_m^3}{V_r} \rho_r v_r \frac{1}{(\rho_m v_m + \beta v_r)^2}
\]

where \(\rho_m\) and \(\rho_r\) is theoretical density of matrix and reinforcement particle respectively. \(v_m\) and \(v_r\) is phonon velocity in matrix and reinforcement particle respectively (\(v_{Cu} = 2881\) m/s, \(v_{diamond} = 13924\) m/s), \(c_m\) is the specific heat of matrix (\(c_{Cu} = 385\) J/kgK). It is worth noting that the additional thermal resistance caused by the interphase should be considered, because Eq. (6) is on the assumption of perfect bonding between matrix and reinforcements. However, in this work, the interface between copper matrix and diamond reinforcement particles is constituted by Cu/B\(_4\)C interface, B\(_4\)C interlayer and B\(_4\)C/diamond interface. Therefore, based on the concept of an electrical resistance analogy the interfacial thermal conductance \(h_c\) can be estimated by

\[
\frac{1}{h_c} = \frac{1}{h_{Cu-\text{B}_4\text{C}}} + \frac{1}{h_{\text{B}_4\text{C}}} + \frac{1}{h_{\text{B}_4\text{C-diamond}}}
\]

where \(h_{\text{Cu-B}_4\text{C}}, h_{\text{B}_4\text{C}}\) and \(h_{\text{B}_4\text{C-diamond}}\) is thermal conductance of Cu/B\(_4\)C interface, B\(_4\)C interlayer and B\(_4\)C/diamond interface, respectively. \(K_{\text{B}_4\text{C}}\) (67 W/mK) is thermal conductivity of B\(_4\)C, and \(t\) is thickness of B\(_4\)C layer. The calculated results are compared with experimental data in Fig. 11a, wherein the results show a clear difference. The increase in plating time gives rise to an increase in B\(_4\)C layer thickness, resulting in a decrease in theoretically estimated thermal conductivity. However, experimental data shows an increase with the increase in plating time. Only for the six-hours-coated diamond/Cu composite (C3), the theoretically estimated data (707 W/mK) is close to experimental data (687 W/mK). Cross-section SEM image in Fig. 6 shows large amount of gap around diamond. However, the theoretically estimation is only in the consideration of perfect contact between matrix and reinforcement particles. It is well known that air (or vacuum) is an excellent heat insulation layer. Therefore, the existence of gap in composite contributed to the deterioration in thermal conductivity of composite. As shown in Fig. 11b, a narrower gap width is benefited to the improvement of thermal conductivity of composite, and the experimental data is close to the theoretically data when the gap is unapparent (sample C3).
To summarize, the B$_4$C coating on the diamond particles was synthesized by heating the diamond particles in a powder mixture consisting of H$_3$BO$_3$ and B under Ar atmosphere. Coverage fraction of the B$_4$C coating was strongly dependent on the synthesized time. Diamond/Cu composites were made by powder metallurgy. The addition of B$_4$C coating gave rise to a dense composite. In addition, both tensile strength and thermal conductivity of composite were dependent on the interfacial gap width between diamond and copper matrix. When the B$_4$C fully covered on diamond particles, the composite exhibited a nearly full relative density (99.52%) and narrow interfacial gap width (0.36 μm), leading to a greatly increase in tensile strength (115 MPa) which was much higher than that for uncoated-diamond/Cu (60 MPa) and diamond/CuB composites. Meanwhile, the six-hours-coated-diamond/Cu composite exhibited a thermal conductivity of 687 W/mK, which was close to the theoretically estimated data (707 W/mK) and much higher than that of uncoated-diamond/Cu composite (210 W/mK).

Method

Diamond/Cu composite materials were made by powder metallurgy methods of vacuum hot-pressing sintering, which the process included mixing, compacting and sintering. Copper powder (99.9% purity) was used as matrix material, and synthetic HPHT diamond particles (HSD90, particle size 70/80 mesh (180 – 212 μm), Henan huanghe whirlwind international Co., Ltd., China) with boron carbide coating were used as reinforcements.

For forming boron carbide coating on diamond particles, 25 g of diamond particles were immersed in a mixture consisting of 33 g of boron (B), and 23 g of boric acid (H$_3$BO$_3$) powders. The diamond-powder mixture was mixed using vigorously mechanical stirring at room temperature. This mixture was placed on an alumina boat and placed into a tube furnace. The diamond-powder mixture was heated to 1200 °C for 2, 4 and 6 hours in Ar atmosphere to synthesize the boron carbide coating on the diamond particles. The reaction equation was

$$2B + 2H_3BO_3 + 7C \xrightarrow{1200°C} B_4C + 6CO + 3H_2$$ (9)

The Gibbs energy changes of the reactions calculated through thermodynamic calculation was -366.6 kJ/mol. After cooling of the furnace, the samples were treated with dilute nitric acid to remove B$_2$O$_3$ from the product. The coated diamonds were separated from the excess B powders using a sieve. The coated diamond particles synthesized for 2, 4 and 6 is referred to as D1, D2 and D3, respectively. In addition, the uncoated diamond particles are referred to as D0.

Copper powders were mixed with diamond particles with boron carbide coating to prepare composite with 50 vol.% reinforcement. The furnace chamber was evacuated using a pump prior to sample heating. The composite...
Table 1. Thermal conductivity measurements of diamond/Cu composites.

Sample	Density g/cm³	Specific heat J/g K	Thermal diffusivity mm²/s	Thermal conductivity W/(m·K)
D0	5.56	0.42	49.9	210
D1	5.86	0.43	142.9	360
D2	6.10	0.45	196.7	540
D3	6.21	0.45	245.8	687

where α was thermal Diffusivity, ρ_{measured} was the measured density and C was specific heat. Detail results were shown in Table 1.

References

1. Webb, S. W. Diamond retention in sintered cobalt bonds for stone cutting and drilling. *Diamond and Related Materials* **8**, 2043–2052, doi:10.1016/S0925-9635(99)00167-3 (1999).

2. Xu, X., Tie, X. & Wu, H. The effects of a Ti coating on the performance of metal-bonded diamond composites containing rare earth. *International Journal of Refractory Metals and Hard Materials* **25**, 244–249, doi:10.1016/j.ijrmhm.2006.06.002 (2007).

3. Weidenmann, K. A., Tavangar, R. & Weber, L. Mechanical behaviour of diamond reinforced metals. *Materials Science and Engineering: A* **523**, 226–234, doi:10.1016/j.msea.2009.05.069 (2009).

4. Sun, Y. H. et al. The Effect of ZrO₂ Nanoparticles on the Microstructure and Properties of Sintered WC-Bronze-Based Diamond Composites. *Materials* **9**, 8, doi:10.3390/ma9050034 (2016).

5. Li, M. et al. Fabrication of Fe-Based Diamond Composites by Pressureless Infiltration. *Materials* **7**, 9, doi:10.3390/ma9121006 (2016).

6. Shen, X.-Y., He, X.-B., Ren, S.-B., Zhang, H.-M. & Qu, X.-H. Effect of molybdenum as interfacial element on the thermal conductivity of diamond/Cu composites. *Journal of Alloys and Compounds* **529**, 134–139, doi:10.1016/j.jallcom.2012.03.045 (2012).

7. Zhang, Y., Zhang, H. L., Wu, J. H. & Wang, X. T. Enhanced thermal conductivity in copper matrix composites reinforced with titanium-coated diamond particles. *Scripta Materialia* **65**, 1097–1100, doi:10.1016/j.scriptamat.2011.09.028 (2011).

8. Hu, H. & Kong, J. Improved Thermal Performance of Diamond-Copper Composites with Boron Carbide Coating. *Journal Of Materials Engineering And Performance* **23**, 651–657, doi:10.1007/s11665-013-0780-z (2014).

9. Schubert, T. et al. Interfacial characterization of Cu/diamond composites prepared by powder metallurgy for heat sink applications. *Scripta Materialia* **58**, 263–266, doi:10.1016/j.scriptamat.2007.10.011 (2008).

10. Weber, L. & Tavangar, R. On the influence of active element content on the thermal conductivity and thermal expansion of Cu–X (X = Cr, B) diamond composites. *Scripta Materialia* **57**, 988–991, doi:10.1016/j.scriptamat.2007.08.007 (2007).

11. Chu, K., Jia, C., Guo, H. & Li, W. On the thermal conductivity of Cu–Zr diamond composites. *Materials & Design* **45**, 36–42, doi:10.1016/j.matdes.2012.09.006 (2013).

12. Yoshida, K. & Morigami, H. Thermal properties of diamond/copper composite material. *Microelectronics Reliability* **44**, 303–308, doi:10.1016/j.microrel.2004.04.005 (2004).

13. Schubert, T., Trindade, B., Weißgärber, T. & Kieback, B. Interfacial design of Cu-based composites prepared by powder metallurgy for heat sink applications. *Materials Science and Engineering: A* **475**, 39–44, doi:10.1016/j.msea.2006.12.146 (2008).

14. Sun, Q. & Inal, O. T. Fabrication and characterization of diamond/copper composites for thermal management substrate applications. *Materials Science and Engineering: B* **141**, 261–266, doi:10.1016/S0921-5107(09)01664-9 (1996).

15. Abyzov, A. M., Kidalov, S. V. & Shakhov, F. M. High thermal conductivity composite of diamond particles with tungsten coating in a copper matrix for heat sink application. *Applied Thermal Engineering* **48**, 72–80, doi:10.1016/j.applthermaleng.2012.04.063 (2012).

16. Zhao, C. & Wang, J. Enhanced mechanical properties in diamond/copper composites with chromium carbide coating for structural applications. *Materials Science and Engineering: A* **588**, 221–227, doi:10.1016/j.msea.2013.09.034 (2013).

17. Suri, A. K., Subramanian, C., Sonber, J. K. & Murthy, T. S. R. C. Synthesis and consolidation of boron carbide: a review. *International Materials Reviews* **55**, 4–40, doi:10.1007/11950660909125060711662112 (2010).

18. Goller, G., Toy, C., Tekin, A. & Gupta, C. K. The production of boron carbide by carbothermal reduction. *High Temp. Mater. Proc.* **15**, 117–122, doi:10.1515/HTMP-1996-15.1-2.117 (1996).
19. Wu, J. H., Zhang, H. L., Zhang, Y., Li, J. W. & Wang, X. T. The role of Ti coating in enhancing tensile strength of Al/diamond composites. *Materials Science and Engineering: A* **565**, 33–37, doi:10.1016/j.msea.2012.11.124 (2013).
20. Sun, Y. *et al.* Enhancement of oxidation resistance via a self-healing boron carbide coating on diamond particles. *Sci. Rep.* **6**, doi:10.1038/srep20198 (2016).
21. Ras, A. H., Auret, F. D. & Nel, J. M. Boron carbide coatings on diamond particles. *Diamond and Related Materials* **19**, 1411–1414, doi:10.1016/j.diamond.2010.08.013 (2010).
22. Mansourzadeh, S., Hosseini, M., Salahinejad, E. & Yaghin, A. H. Cu-(B4C)x metal matrix composites processed by accumulative roll-bonding. *Progress in Natural Science: Materials International* **26**, 613–620, doi:10.1016/j.pnsic.2016.11.006 (2016).
23. Aselage, T. L., Tallant, D. R. & Emin, D. Isotope dependencies of Raman spectra of B12As2, B12P2, B12O2, and B12,Cn+3, Bonding of intericosahedral chains. *Physical Review B* **56**, 3212–3219, doi:10.1103/PhysRevB.56.3212 (1997).
24. Werheit, H. *et al.* On the reliability of the Raman spectra of boron-rich solids. *Journal of Alloys and Compounds* **291**, 28–32, doi:10.1016/S0925-8388(99)00266-1 (1999).
25. Lazzari, R., Vast, N., Besson, J. M., Baroni, S. & Dal Corso, A. Atomic Structure and Vibrational Properties of Icosahedral B4C Boron Carbide. *Physical Review Letters* **83**, 3230–3233, doi:10.1103/PhysRevLett.83.3230 (1999).
26. Ge, D., Domnich, V., Juliano, T., Stach, E. A. & Gogotsi, Y. Structural damage in boron carbide under contact loading. *Acta Materialia* **52**, 3921–3927, doi:10.1016/j.actamat.2004.05.007 (2004).
27. Tallant, D. R., Aselage, T. L., Campbell, A. N. & Emin, D. Boron carbide structure by Raman spectroscopy. *Physical Review B* **40**, 5649–5656, doi:10.1103/PhysRevB.40.5649 (1989).
28. Meng, Q. N. *et al.* Deposition and characterization of reactive magnetron sputtered zirconium carbide films. *Surface and Coatings Technology* **232**, 876–883, doi:10.1016/j.surfcoat.2013.06.116 (2013).
29. Cermignani, W., Paulson, T. E., Onnby, C. & Pantano, C. G. Synthesis and characterization of boron-doped carbons. *Carbon* **33**, 367–374, doi:10.1016/0008-6223(94)00160-2 (1995).
30. Viljoen, P. E., Roos, W. D., Baroni, S. & Dal Corso, A. Atomic Structure and Vibrational Properties of Icosahedral B4C Boron Carbide. *Physical Review Letters* **83**, 3230–3233, doi:10.1103/PhysRevLett.83.3230 (1999).
31. Clyne, T. W. & Withers, P. J. *An Introduction to Metal Matrix Composites.* (1993).
32. Ruch, P. W., Beffort, O., Kleiner, S., Weber, L. & Uggowitzer, P. J. Selective interfacial bonding in Al(Si)-diamond composites and its effect on thermal conductivity. *Composites Science And Technology* **66**, 2677–2685, doi:10.1016/j.compscitech.2006.03.016 (2006).
33. Vast, N., Besson, J. M., Baroni, S. & Dal Corso, A. Atomic Structure and Vibrational Properties of Icosahedral B4C Boron Carbide. *Physical Review Letters* **83**, 3230–3233, doi:10.1103/PhysRevLett.83.3230 (1999).
34. Chu, K., Jia, C., Guo, H. & Li, W. On the thermal conductivity of Cu-Zr/diamond composites. *Composites Science And Technology* **70**, 298–304, doi:10.1016/j.compscitech.2009.10.021 (2010).

Acknowledgements

Supports from the National Natural Science Foundation of China (no. 41502344) and the China Postdoctoral Science Foundation (no. 2014MS60236 and 2016T90258) are highly appreciated.

Author Contributions

Q.N.M. and Y.H.S. designed the experiment. L.K.H. carried out sample preparation. M.W. and W.T.Z. carried out the XRD and Raman measurements. C.Z. carried out the SEM analysis. K.G. carried out the tensile strength measurements, B.C.L. carried out the thermal conductivity measurements, and Y.H.S. wrote the paper. All of the authors discussed the data and commented on the paper.

Additional Information

Competing Interests: The authors declare that they have no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017