Impact of a Model Used to Simulate Socio-Environmental Stressors Encountered During Spaceflight on Murine Intestinal Microbiota

Corentine Alauzet (c.alauzet@chru-nancy.fr)  
Universite de Lorraine  
https://orcid.org/0000-0001-7953-4870

Lisiane Cunat  
Universite de Lorraine

Maxime Wack  
Centre de Recherche des Cordeliers

Laurence Lanfumey  
Centre de Psychiatrie et Neurosciences

Christine Legrand-Frossi  
Universite de Lorraine

Alain Lozniewski  
Universite de Lorraine

Nelly Agrinier  
Universite de Lorraine

Catherine Cailliez-Grimal  
Universite de Lorraine

Jean-Pol Frippiat  
Universite de Lorraine

Short report

Keywords: gut microbiota, Chronic Unpredictable Mild Stress, spaceflight, Barnesiella

DOI: https://doi.org/10.21203/rs.3.rs-47901/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. 
Read Full License
Abstract

Background: During deep-space travels, crewmembers face various physical and psychosocial stressors that could alter gut microbiota composition. Since it is well known that intestinal dysbiosis is involved in the onset or exacerbation of several disorders, the aim of this study was to evaluate changes in intestinal microbiota in a ground-based murine model mimicking psychosocial stressors encountered during a long-term space mission.

Results: We demonstrate that 3 weeks of exposure to Chronic Unpredictable Mild Stress (CUMS) induce significant change in intracaecal β-diversity characterized by an important increase of the Firmicutes/Bacteroidetes ratio. These stress-induced alterations are associated with a decrease of Porphyromonadaceae, particularly of the genus Barnesiella that is a major member of gut microbiota in mice, but also in human, where it is described as having protective properties.

Conclusions: These results raise the question of the impact of stress-induced decrease of beneficial taxa, support recent data obtained with in-flight experimentations or gravity change models, and emphasize the critical need for further studies exploring the impact of spaceflight on intestinal microbiota in order to propose strategies to countermeasure spaceflight-associated dysbiosis and its consequences on health.

Background

Gut microbiota (GM) is a complex microbial ecosystem whose balance and homeostasis are essential to the well-being of the host. Its composition is affected by numerous intrinsic and extrinsic factors such as antibiotics or diet [1, 2]. Recent works have also shown that host stress, particularly chronic stress, has profound effects on the composition and organization of GM [3–9]. Stress is a physiological adaptive response to aversive stimuli (endogenous or exogenous, psychological or physical, real or perceived) that represent a common life experience of one's daily life [2, 10–12]. Chronic or excessive stress could be involved in the onset or exacerbation of chronic disorders such as anxiety and depression or intestinal bowel diseases (IBD) [13]. Indeed, more and more studies suggest a link between these pathologies and intestinal dysbiosis [2, 12–15]. The sympathetic nervous system as well as the hypothalamic-pituitary-adrenal (HPA) axis represent the main biological stress axes and are strongly involved in the bidirectional communication between the gut and the central nervous system, also called brain gut axis [7, 8, 11, 12, 16]. This could explain how host stress impacts intestinal bacteria. Stress-induced modulation of GM could also be explained by the alteration of local immunity, intestinal motility, mucin secretion or visceral perception [5, 17]. Furthermore, stressor exposure is able to directly affect GM composition by the action on bacteria of stress mediators released in the lumen, such as glucocorticoids and catecholamines that are known to modulate bacterial growth, virulence and gene expression [6, 11, 18–20].

During spaceflight, astronauts face chronic or intermittent stressors of psychosocial (confinement, isolation, sleep deprivation, persistent circadian misalignment) or physical (gravitational changes, radiations) origin [21]. These stressors, associated to dysregulation of the immune system [22, 23], put
astronauts at high risk of developing intestinal dysbiosis and a recent study on International Space Station crew members described an alteration of the composition of astronauts’ microbiome during space travel [24]. Such dysbiosis could have an impact not only on immune system efficiency, but also on energy intake, nutrients assimilation and intermediary metabolisms such as those of antibiotics [25]. As imbalance in GM could be correlated with a shift from a healthy state to a diseased state, it is important to evaluate the status of GM in response to stressors encountered during long-duration space missions [26].

Recently, we showed that hypergravity disrupts murine intestinal microbiota in a G-level-dependent manner [3]. In this study, we now evaluated the impact of a model used to mimic psychosocial stressors encountered during a long-term space mission [27]. This model involves the exposure of mice to chronic unpredictable psychosocial and environmental stressors of various nature and mild intensity separated by resting periods (CUMS model, Fig. 1A).

**Results**

**21 days of CUMS exposure do not induce a major stress response**

Male mice were divided in two groups: 10 mice submitted to 21 days of CUMS and 10 controls placed in another room of the animal facility. Animals presenting injuries, such as bites that could induce inflammation, were discarded resulting in ten CUMS mice and seven controls at the end of the experiment. To evaluate stress, mice were weighted at the end of the experimental procedure and the amount of corticosterone in peripheral blood was quantified by ELISA. Figures 1B and 1C show that these two parameters were similar in both groups of mice. We also determined thymus weight since it is well known that stress induces its involution. This organ weight was normalized to body weight (Fig. 1D). Again, no statistically significant difference could be noted between the two groups of mice.

**Intestinal microbiome β-diversity is significantly modified by CUMS**

The quantification of the number of 16S rRNA encoding gene copies per mg of intracaecal content revealed that bacterial load was not significantly affected by CUMS exposure (CUMS: $1.12 \times 10^8 \pm 1.34 \times 10^7$ vs. controls: $1.39 \times 10^8 \pm 1.67 \times 10^7$, $p = 0.19$) (Fig. 2A). Our pyrosequencing experiments generated an average of 9,024 reads per sample (ranging from 4,276 to 24,502) with a mean length of 527 bp (ranging from 517 to 533 bp). Individual rarefaction curves (Suppl. Figure S1) showed that the mean numbers of observed operational taxonomic units (OTUs), that is 140 taxa (ranging from 61 to 210 OTUs), reached in all samples a plateau of approximately 5,000 sequence reads. The read coverage was therefore sufficient to capture most of the bacterial diversity of each intracaecal microbiome.
The within-sample diversity (α-diversity) indicated no significant difference between CUMS and control mice (Fig. 2B). This suggests that CUMS mice had no change in microbial richness and evenness. However, in terms of β-diversity, Principal Component Analysis (PCA) showed distinct clustering between samples from control and CUMS mice indicating a significant change in microbiome composition (Fig. 2C, PERMANOVA \( p = 0.029 \)).

**CUMS modified caecal microbiome composition.**

A more in-depth taxonomic analysis of bacterial types revealed several changes in the microbiome composition, and variations appeared at different phylogenetic levels. Nine divisions were identified by pyrosequencing. In all samples, the majority of caecal bacteria (ranging from 92 to 98% of total 16S) belonged either to the *Firmicutes* (ranging from 49.3 to 94.4%) or to the *Bacteroidetes* phylum (ranging from 2.5 to 46.8%), with a small proportion (2–8% of the identified sequences) of bacteria from seven others phyla: *Actinobacteria*, Candidatus *Melainobacteria*, Candidatus *Saccharibacteria* (TM7), *Cyanobacteria*, *Proteobacteria*, *Tenericutes* and *Verrucomicrobia* (Suppl. Database S1). Moreover, 16 classes, 26 orders, 53 families, and 123 genera were identified.

CUMS led to an increase of the *Firmicutes* phyla (\( p = 0.0041 \)) and a decrease of the *Bacteroidetes* taxa (\( p = 0.0062 \)) compared to control mice (Fig. 3A). These alterations induced a significant rise of the *Firmicutes/Bacteroidetes* ratio from 2.28 ± 0.38 in controls to 11.75 ± 3.43 in CUMS mice (Fig. 3B, \( p = 0.00072 \)). The gain of *Firmicutes* in CUMS mice was not clearly associated to the expansion of distinct genera, except the *Clostridiales* members *Anaerotruncus*, *Coprococcus* and *Sporobacter* (Fig. 3C), but seemed rather to be due to a general moderate rising of several taxa within the phylum. Concerning the diminution of *Bacteroidetes*, it is clearly linked to a significant decrease of *Porphyromonadaceae* (\( p = 0.022 \)) and *Flavobacteriaceae* (\( p = 0.073 \)) with the corresponding impacted genera being *Barnesiella*, *Prevotella*, *Coprobacter*, *Porphyromonas*, *Pricia*, *Parabacteroides*, *Dysgonomonas* and the vanishing of *Nonlabens* and *Maribacter* (Fig. 3C, Suppl. Database S1). We also noticed the lowering of another *Bacteroidetes* (Candidatus *Armantifilum* and *Odoribacter*) and of members of the genus *Akkermansia*.

At the species level, of the 389 taxa assigned, 275 species were found in control mice and 337 species in the CUMS mice, corresponding to 223 species recovered in both groups (Fig. 3D). Among them, only 27 were shared by all animals (core microbiome).

**Discussion**

It is increasingly evident that chronic psychosocial stresses influence intestinal homeostasis. Such alterations in microbiome composition can lead to local or central dysregulations that could be involved in the onset or exacerbation of chronic disorders such as IBD or psychiatric disorders [2, 12, 28, 29]. During spaceflight, astronauts are subjected to various physical and psychosocial stressors which could lead to dysbiosis, in a context associated with limited medical procedures and facilities. Whether space travel affects intestinal equilibrium has not been thoroughly investigated because of constraints imposed
by in-flight experimentation [30]. To overcome these limitations, ground-based experiments have been conducted to explore intestinal diversity in mice, mainly based on gravity modulation [3, 31]. However, gravity changes are not the only stressors encountered during space missions. Consequently, in this study, we used an easy-to-implement model (CUMS), involving the chronic exposure of mice to multiple unpredictable mild environmental and psychosocial stressors, to simulate socioenvironmental stresses encountered during a spaceflight and explore their effects on GM composition. Indeed, we previously showed that this model replicates some spaceflight-induced immunological changes observed in astronauts [27]. CUMS is also recognized as a reliable and effective rodent model of depression [9, 12, 16, 29, 32–34].

Our results revealed that after 3 weeks of CUMS exposure, a duration chosen to simulate a six-month flight at the human scale [35], there was no significant change in murine caecal bacterial load. Additionally, no statistically significant modification of the α-diversity was observed in CUMS mice by comparison to controls, indicating that the within-community diversity was not altered by this model of chronic stress. Although these results are in agreement with other studies using variants of the rodent CUMS model [9, 29], they are discrepant when compared to other works describing a decrease of α-diversity [14, 16, 33, 34]. Such differences could be explained by variation in the CUMS protocols (species, strains, age, gender and feeding conditions of rodents, type of stressors, duration of exposure to individual stress), the origin of the samples (fecal or intraluminal), or protocol parameters (DNA extraction method, PCR parameters) [3].

However, significant change in intracaecal global β-diversity was observed after CUMS treatment. Indeed, an important increase of the Firmicutes/Bacteroidetes ratio was observed in CUMS mice, consistently with other reports using variants of the rodent CUMS model [9, 16, 29, 33]. Within the Bacteroidetes phylum, we observed a decrease of Porphyromonadaceae that has already been noted with other chronic stress such as restraint stress [36] and multifactorial model of early-life adversity [37]. Within this family, the greatest impact of CUMS was observed on the relative abundance of Barnesiella sp., a genus composed of Barnesiella intestinihominis and Barnesiella viscericola, belonging to the core microbiome of mice and human gut. These species are described as having beneficial effects, such as protecting effects against colitis [38], enhancing the efficacy of antitumor treatments [39] and conferring resistance to intestinal colonization by pathogenic microorganisms [40]. These data raise the question of the impact of the decrease of this major member of GM in CUMS mice.

On the other hand, the increase of Firmicutes in CUMS mice cannot be statistically correlated with the increase of specific OTUs. This lack of correlation could be due to high interindividual variability in GM illustrated by the small number of species shared by all animals, stressed or not, suggesting the existence of only a reduced core microbiome. Such variability could also explain the lack of statistical significance at low taxa level and the fact that the impact of CUMS was manifest only at the phylum level. It is noteworthy that CUMS is associated with the appearance of several new taxa (114, Fig. 3D), mainly belonging to Firmicutes, among them various OTUs of Lactobacillus with a great interindividual variability. Some protective taxa appeared (Lactobacillus johnsonii) while other decreased (Lactobacillus
murinus), potentially offsetting each other. Interestingly, we observed opposite results when using a 3G-hypergravity model with a lowering of *L. johnsonii* and a rise of *L. murinus* [3]. Moreover, 3G-hypergravity was associated with increased bacterial load and α-diversity, as well as with a significant impact on the relative abundance of 50 intestinal species, whereas 2G-hypergravity seemed to modulate only moderately the GM composition. As described for the 2G-hypergravity model, the moderate alteration of GM observed with the CUMS model could be explained by a lower activation of the HPA axis without elevation of corticosterone level in mice sera. This hypothesis is supported by higher serum corticosterone concentrations noticed in mice exposed to 3G during 21 days [41], as well as during the first two weeks of exposition to the chronic mild stress model (CMS) which is more intense than CUMS because of water and food deprivation periods [42]. So, as previously reported for the TCRβ repertoire [43, 44], socio-environmental stressors seem to have less impact on intestinal microbiota than gravity changes.

**Conclusions**

The results of the present study demonstrate that 3-weeks of exposure to chronic unpredictable psychosocial and environmental stressors alter mice GM, although at a lower extent than physical stressors encountered during deep-space exploration such as gravity changes. Such alteration of GM must receive attention and should be monitored in crewmembers, especially since it has been recently shown that a fecal transfer of GM from CUMS mice to healthy mice induces despair-like behaviors associated with alterations in serotonin pathway [34]. Furthermore, these data provide additional arguments to the countermeasure protocol proposed by experts against spaceflight-associated perturbations to the immune system [23]. Their recommendations include physical and psychological exercises for stress management, pre- or probiotics supplementation and dietary approaches, that could also permit to limit dysbiosis and its consequences on health. Finally, note that the results of this study go beyond astronaut health protection because the CUMS model can also be used to study the impact of everyday life stresses and it is well established that stress can contribute to the development or aggravation of several pathologies [2, 45].

**Methods**

**Animals.** C57BL/6j male mice (8-week-old, mean body mass of 20 g) were purchased from Charles River (Les Oncins, France). On arrival, animals were housed for 5 days in groups of five in standard cages in the animal facility of the INSERM UMR 894 laboratory (Paris). They were housed in a quiet room under constant conditions (22 °C, 50% relative humidity, 12-h light/dark cycles with dark periods from 8 pm to 8 am) with free access to standard food and water. Then, mice were randomly divided in two groups housed in two separate rooms: one control group and one group subjected to CUMS for 21 days. Experimental procedures were carried out in conformity with the National Legislation and the Council Directive of the European Communities on the Protection of Animals Used for Experimental and Other
Exposure to chronic unpredictable mild psychosocial and environmental stressors (CUMS model).

Isolated animals (one mouse per cage) were subjected during 21 days to different unpredictable mild psychosocial and environmental stressors, according to Pardon et al. (2000) [46]. The CUMS procedure presented in Fig. 1A was scheduled over a 1-week period and repeated throughout the 3 weeks of experimentation. Stress periods were always separated by stress-free intervals of at least 2 h to avoid any habituation process. The control group was left undisturbed in another room of the animal facility, five mice per standard cage (37.5 cm x 21.5 cm x 18 cm). Animals presenting injuries (such as bites that could induce inflammation) were discarded resulting in 7 Control mice and 10 CUMS mice.

Sample collection. At the end of the experiment, CUMS and control mice were anesthetized using isoflurane, weighed and then put to death by cervical dislocation. All samples were immediately processed to avoid degradation and/or contamination. The intestine was dissected in by excising the entire caecum. Samples were opened longitudinally and their contents were removed by two successive washes in DEPC (1‰)-treated PBS. Intra-luminal contents were immediately frozen in liquid nitrogen and stored at -80 °C until DNA isolation.

Corticosterone quantification. Corticosterone was quantified in serum samples without any extraction procedure using the Corticosterone Enzyme Immunoassay kit (ArborAssays, Ann Arbor, MI, USA). Samples were analyzed in duplicate. Absorbance at 405 nm was measured and concentrations, calculated from a standard curve established using calibrators, were expressed as ng/ml.

DNA isolation. Whole genomic DNA was extracted from caecal samples (50 mg) using the Fast DNA SPIN kit for Soil (MP Biomedicals, Santa Ana, CA, USA) [47] after bead beating with the FastPrep-24 Instrument (MP Biomedicals) at 6.0 ms⁻¹ for 40 s, according to manufacturer's instructions. Purified DNA was resuspended in sterile deionized DNAse/pyrogen-free water, analyzed by spectrophotometry (NanoDrop 2000C; Labtech, Heathfield, East Sussex), and frozen (-20 °C) until analysis.

Fecal microbiota sequencing. Barcoded primers Bact-515F (5'- GTGCCAGCMGCGCGC-3') and Bact-1061R (5'-CRRCACGAGCTGACGAC-3') described by Klindworth et al. (2013) [48] were used for the initial amplification of the V4-V6 region of the 16S rRNA gene as previously described [3]. PCR reactions contained 2.5 U of Taq DNA Polymerase (Invitrogen, Cergy Pontoise, France), 5 µl of 5X buffer, 75 nmol MgCl₂, 1 µl of 10 mM dNTPs, 1 µl of each primer (50 µM) and 50 ng of DNA. Three PCR reactions were run for each sample as follows: 95 °C for 5 min, followed by 40 cycles at 95 °C for 45 s, 60 °C for 45 s, 72 °C for 45 s and a final extension at 72 °C for 5 min. PCR reactions from the same sample were pooled, purified using the QIAquick PCR purification kit (Qiagen, Courtaboeuf, France) and quantified using a Qubit 2.0 Fluorometer (Life Technologies, Carlsbad, CA, USA) using the dsDNA HS Assay Kit (Life Technologies). To ensure equal representation of each sample in the sequencing run, each barcoded sample was standardized by calculating equimolar amounts (100 ng/sample) using the SequalPrep
Normalization Plate Kit (Invitrogen) prior to pooling. Pooled samples of the 16S rRNA gene multiplexed amplicons were sequenced on a Roche 454 Genome Sequencer FLX Titanium instrument using the GS FLX Titanium XLR70 sequencing reagents and protocols (Beckman Coulter Genomics, Danvers, USA).

**Amplicon sequencing data analysis.** Analysis of amplicon sequencing data was carried out using the MEGAN pipeline [49]. After demultiplexing, combined raw sequencing data plus metadata were filtered to exclude low-quality reads. Next, data were denoised and clustered using the MIRA 4 software (http://mira-assembler.sourceforge.net). Sequences with ≥ 98% similarity were binned and assigned to the same OTU to approximate species-level phylotypes. Representative sequences of each OTU, derived from clusters or singletons, were assigned at different taxonomic level by using the Ribosomal Database Project II Classifier [50]. To avoid a potential bias linked to variation of sequence coverage between samples, the data were normalized to 100000 sequences per samples. Rarefaction curves were constructed to evaluate sequencing depth. Relative abundances of each OTU were compared according to the different experimental conditions. Bacterial richness and diversity across samples were estimated by calculating the following indexes as previously described [3]: Shannon index, Evenness index, OTU’s number, Simpson’s index of diversity, and Simpson’s reciprocal index. PCA was conducted to appreciate overall distance between microbial communities, using relative abundance and taxa-to-taxa distance estimates. Obtained 16S rRNA gene sequences have been deposited into NCBI’s Sequence Read Archive database (https://www.ncbi.nlm.nih.gov/sra) under accession number SRP153311.

**Analysis of intracaecal bacterial load by qPCR.** The amount of total bacteria was assessed by amplifying 0.5 ng of DNA extracted from each fecal sample with pan-bacterial primers targeting the 16S rRNA gene as previously described [3]. Briefly, PCR assays were performed using the MESA FAST qPCR MasterMix for SYBRAssay as recommended by the manufacturer (Eurogentec, Seraing, Belgium). DNA extracted from the *Barnesiella intestinihominis* DSM 21032T strain using the QIAamp DNA Mini Kit (Qiagen) was used to establish the standard curves. All assays were performed in triplicate. The following thermocycling conditions were applied with the MyiQ™2 real-time PCR system (Bio-Rad Laboratories): initial denaturation at 95 °C for 5 min followed by 40 cycles of 95 °C for 15 s and 60 °C for 1 min. Melting curves were obtained immediately after the amplification under the following conditions: 70 cycles of 10 s with an increment of 0.5 °C/cycle starting at 60 °C.

**Statistical analysis.** Comparison of bacterial loads quantified by qPCR, relative abundances, and phylogenetic diversity indexes were performed using the Mann-Whitney U test with a significance level α of 0.05. *p*-values comprised between 0.05 and 0.10 indicate trend. The *p*-values were adjusted for multiple hypotheses testing using the False Discovery Rate method [51] for all the results within each taxonomy level. The PERMANOVA analysis (99 permutations) was conducted on dissimilarity indices produced by the Bray-Curtis method [52]. The β-diversity PCA was produced using Marti Anderson’s procedure for the analysis of multivariate homogeneity of group dispersions [53]. All the analysis were performed using R version 3.5.0 (https://www.R-project.org/).

**Abbreviations**
CMS: chronic mild stress
CUMS: chronic unpredictable mild stress.
GM: gut microbiota
HPA: hypothalamic-pituitary-adrenal
IBD: intestinal bowel disease
LDA: linear discriminant analysis
OTUs: operational taxonomic units
PCA: principal component analysis
TCR: T cell receptor

**Declarations**

**Ethics approval and consent to participate.**

Experimental procedures were carried out in conformity with the National Legislation and the Council Directive of the European Communities on the Protection of Animals Used for Experimental and Other Scientific Purposes (2010/63/UE). The CUMS protocol was approved by the French Ministry of Research (authorization 00966.02).

**Consent for publication.**

Not applicable.

**Availability of data and materials.**

All data generated or analyzed during this study are included in this published article (and its Supplementary Information files). 16S rRNA gene sequences are available through the NCBI's Sequence Read Archive (SRA) database ([https://www.ncbi.nlm.nih.gov/sra](https://www.ncbi.nlm.nih.gov/sra)) under accession number SRP153311.

**Competing interests.**

The authors declare that they have no competing interests.

**Funding.**

This work was supported by the French Space Agency (CNES) (grants DAR 4800000894, 4800000950 and 4800001008), the French Ministry of Higher Education and Research, the Université de Lorraine, the
French State-Region Project Contract (CPER), and the Institut National de la Santé et de la Recherche Médicale.

Authors' contributions.

CA conceived, designed and performed experiments, analyzed data, and wrote the manuscript. LC assisted with and performed experiments, and analyzed data. MW designed and performed statistical analysis. AL assisted with experimental design and analysis, and corrected the manuscript. LL designed animal experimentation and supervised mice treatments. CLF performed experiments and analyzed data. NA assisted with statistical design and corrected the manuscript. CCG analyzed data, and wrote the manuscript. JPF assisted with experimental conceiving, design and analysis, and corrected the manuscript. All authors contributed to manuscript revision, read, and approved the submitted version.

Acknowledgements.

We thank Amandine Simeon for technical assistance and Tevrasamy Marday for helping with the CUMS procedure.

References

1. Lavelle A, Hoffmann TW, Pham H-P, Langella P, Guédon E, Sokol H. Baseline microbiota composition modulates antibiotic-mediated effects on the gut microbiota and host. Microbiome. 2019;7:111.
2. Rea K, Dinan TG, Cryan JF. Gut Microbiota: A Perspective for Psychiatrists. Neuropsychobiology. 2020;79:50–62.
3. Alauzet C, Cunat L, Wack M, Lozniewski A, Busby H, Agrinier N, et al. Hypergravity disrupts murine intestinal microbiota. Sci Rep. 2019;9:9410.
4. Bailey MT, Coe CL. Maternal separation disrupts the integrity of the intestinal microflora in infant rhesus monkeys. Dev Psychobiol. 1999;35:146–55.
5. Galley JD, Mackos AR, Varaljay VA, Bailey MT. Stressor exposure has prolonged effects on colonic microbial community structure in *Citrobacter rodentium*-challenged mice. Sci Rep. 2017;7:45012.
6. Geng S, Yang L, Cheng F, Zhang Z, Li J, Liu W, et al. Gut Microbiota Are Associated With Psychological Stress-Induced Defections in Intestinal and Blood–Brain Barriers. Front Microbiol. 2020;10:3067.
7. Lv L-X, Fang D-Q, Shi D, Chen D-Y, Yan R, Zhu Y-X, et al. Alterations and correlations of the gut microbiome, metabolism and immunity in patients with primary biliary cirrhosis: Gut microbiome in PBC patients. Environ Microbiol. 2016;18:2272–86.
8. Michels N, Van de Wiele T, Fouhy F, O'Mahony S, Clarke G, Keane J. Gut microbiome patterns depending on children's psychosocial stress: Reports versus biomarkers. Brain Behav Immun. 2019;80:751–62.
9. Qu W, Liu S, Zhang W, Zhu H, Tao Q, Wang H, et al. Impact of traditional Chinese medicine treatment on chronic unpredictable mild stress-induced depression-like behaviors: intestinal microbiota and gut microbiome function. Food Funct. 2019;10:5886–97.

10. Chrousos GP. The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA J Am Med Assoc. 1992;267:1244–52.

11. Frankiensztajn LM, Elliott E, Koren O. The microbiota and the hypothalamus-pituitary-adrenocortical (HPA) axis, implications for anxiety and stress disorders. Curr Opin Neurobiol. 2020;62:76–82.

12. Sun Y, Li L, Xie R, Wang B, Jiang K, Cao H. Stress Triggers Flare of Inflammatory Bowel Disease in Children and Adults. Front Pediatr. 2019;7:432.

13. Dinan TG, Cryan JF. The Microbiome-Gut-Brain Axis in Health and Disease. Gastroenterol Clin North Am. 2017;46:77–89.

14. Jianguo L, Xueyang J, Cui W, Changxin W, Xuemei Q. Altered gut metabolome contributes to depression-like behaviors in rats exposed to chronic unpredictable mild stress. Transl Psychiatry. 2019;9:40.

15. Mackner LM, Hatzakis E, Allen JM, Davies RH, Kim SC, Maltz RM, et al. Fecal microbiota and metabolites are distinct in a pilot study of pediatric Crohn's disease patients with higher levels of perceived stress. Psychoneuroendocrinology. 2020;111:104469.

16. Sun L, Zhang H, Cao Y, Wang C, Zhao C, Wang H, et al. Fluoxetine ameliorates dysbiosis in a depression model induced by chronic unpredicted mild stress in mice. Int J Med Sci. 2019;16:1260–70.

17. Bailey MT, Dowd SE, Galley JD, Hufnagle AR, Allen RG, Lyte M. Exposure to a social stressor alters the structure of the intestinal microbiota: Implications for stressor-induced immunomodulation. Brain Behav Immun. 2011;25:397–407.

18. Lyte M, Vulchanova L, Brown DR. Stress at the intestinal surface: catecholamines and mucosa–bacteria interactions. Cell Tissue Res. 2011;343:23–32.

19. Boyanova L. Stress hormone epinephrine (adrenaline) and norepinephrine (noradrenaline) effects on the anaerobic bacteria. Anaerobe. 2017;44:13–9.

20. Zhao H, Jiang X, Chu W. Shifts in the gut microbiota of mice in response to dexamethasone administration. Int Microbiol [Internet]. 2020 [cited 2020 Jun 26]; Available from: https://doi.org/10.1007/s10123-020-00129-x

21. Frippiat J-P, Crucian BE, De Quervain DJ, Grimm D, Montano N, Praun S, et al. Towards human exploration of space: The THESEUS review series on immunology research priorities. Npj Microgravity. 2016;2:16040.

22. Crucian BE, Choukér A, Simpson RJ, Mehta S, Marshall G, Smith SM, et al. Immune System Dysregulation During Spaceflight: Potential Countermeasures for Deep Space Exploration Missions. Front Immunol. 2018;9:1437.

23. Makedonas G, Mehta S, Choukér A, Simpson RJ, Marshall G, Orange JS, et al. Specific Immunologic Countermeasure Protocol for Deep-Space Exploration Missions. Front Immunol. 2019;10:2407.
24. Voorhies AA, Mark Ott C, Mehta S, Pierson DL, Crucian BE, Feiveson A, et al. Study of the impact of long-duration space missions at the International Space Station on the astronaut microbiome. Sci Rep. 2019;9:9911.

25. Taylor P. Impact of space flight on bacterial virulence and antibiotic susceptibility. Infect Drug Resist. 2015;8:249–62.

26. Saei AA, Barzegari A. The microbiome: the forgotten organ of the astronaut's body – probiotics beyond terrestrial limits. Future Microbiol. 2012;7:1037–46.

27. Gaignier F, Legrand-Frossi C, Stragier E, Mathiot J, Merlin J-L, Cohen-Salmon C, et al. A Model of Chronic Exposure to Unpredictable Mild Socio-Environmental Stressors Replicates Some Spaceflight-Induced Immunological Changes. Front Physiol [Internet]. 2018 [cited 2018 Aug 29];9. Available from: http://journal.frontiersin.org/article/10.3389/fphys.2018.00514/full

28. Blanchard EB, Lackner JM, Jaccard J, Rowell D, Carosella AM, Powell C, et al. The role of stress in symptom exacerbation among IBS patients. J Psychosom Res. 2008;64:119–28.

29. Wei L, Li Y, Tang W, Sun Q, Chen L, Wang X, et al. Chronic Unpredictable Mild Stress in Rats Induces Colonic Inflammation. Front Physiol. 2019;10:1228.

30. Ritchie LE, Taddeo SS, Weeks BR, Lima F, Bloomfield SA, Azcarate-Peril MA, et al. Space environmental factor impacts upon murine colon microbiota and mucosal homeostasis. PloS One. 2015;10:e0125792.

31. Shi J, Wang Y, He J, Li P, Jin R, Wang K, et al. Intestinal microbiota contributes to colonic epithelial changes in simulated microgravity mouse model. FASEB J. 2017;fj.20170034R.

32. Antoniuk S, Bijata M, Ponimaskin E, Wlodarczyk J. Chronic unpredictable mild stress for modeling depression in rodents: Meta-analysis of model reliability. Neurosci Biobehav Rev. 2019;99:101–16.

33. Lv W, Wu X, Chen W, Li Y, Zhang G, Chao L, et al. The Gut Microbiome Modulates the Changes in Liver Metabolism and in Inflammatory Processes in the Brain of Chronic Unpredictable Mild Stress Rats. Oxid Med Cell Longev. 2019;2019:1–14.

34. Siopi E, Chevalier G, Katsimpardi L, Saha S, Bigot M, Moigneu C, et al. Changes in Gut Microbiota by Chronic Stress Impair the Efficacy of Fluoxetine. Cell Rep. 2020;30:3682-3690.e6.

35. Dutta S, Sengupta P. Men and mice: Relating their ages. Life Sci. 2016;152:244–8.

36. Bailey MT, Dowd SE, Parry NMA, Galley JD, Schauer DB, Lyte M. Stressor Exposure Disrupts Commensal Microbial Populations in the Intestines and Leads to Increased Colonization by Citrobacter rodentium. Infect Immun. 2010;78:1509–19.

37. Rincel M, Aubert P, Chevalier J, Grohard P-A, Basso L, Monchaux de Oliveira C, et al. Multi-hit early life adversity affects gut microbiota, brain and behavior in a sex-dependent manner. Brain Behav Immun. 2019;80:179–92.

38. Weiss GA, Chassard C, Hennet T. Selective proliferation of intestinal Barnesiella under fucosyllactose supplementation in mice. Br J Nutr. 2014;111:1602–10.
39. Daillère R, Vétizou M, Waldschmitt N, Yamazaki T, Isnard C, Poirier-Colame V, et al. Enterococcus hirae and Barnesiella intestinihominis Facilitate Cyclophosphamide-Induced Therapeutic Immunomodulatory Effects. Immunity. 2016;45:931–43.

40. Ubeda C, Bucci V, Caballero S, Djukovic A, Toussaint NC, Equinda M, et al. Intestinal Microbiota Containing Barnesiella Species Cures Vancomycin-Resistant Enterococcus faecium Colonization. Infect Immun. 2013;81:965–73.

41. Guéguinou N, Bojados M, Jamon M, Derradj H, Baatout S, Tschirhart E, et al. Stress response and humoral immune system alterations related to chronic hypergravity in mice. Psychoneuroendocrinology. 2012;37:137–47.

42. Silberman DM, Wald M, Genaro AM. Effects of chronic mild stress on lymphocyte proliferative response. Participation of serum thyroid hormones and corticosterone. Int Immunopharmacol. 2002;2:487–97.

43. Fonte C, Kaminski S, Vanet A, Lanfumey L, Cohen-Salmon C, Ghislin S, et al. Socioenvironmental stressors encountered during spaceflight partially affect the murine TCR-β repertoire and increase its self-reactivity. FASEB J. 2018;fj.201800969R.

44. Ghislin S, Ouzren-Zarhloul N, Kaminski S, Frippiat J-P. Hypergravity exposure during gestation modifies the TCRβ repertoire of newborn mice. Sci Rep [Internet]. 2015 [cited 2017 Sep 5];5. Available from: http://www.nature.com/articles/srep09318

45. Glaser R, Kiecolt-Glaser JK. Stress-induced immune dysfunction: implications for health. Nat Rev Immunol. Nature Publishing Group; 2005;5:243–51.

46. Pardon M-C, Gérardin P, Joubert C, Pérez-Diaz F, Cohen-Salmon C. Influence of prepartum chronic ultramild stress on maternal pup care behavior in mice. Biol Psychiatry. 2000;47:858–63.

47. Ferrand J, Patron K, Legrand-Frossi C, Frippiat J-P, Merlin C, Alauzet C, et al. Comparison of seven methods for extraction of bacterial DNA from fecal and cecal samples of mice. J Microbiol Methods. 2014;105:180–5.

48. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:e1–e1.

49. Huson DH, Beier S, Flade I, Górska A, El-Hadidi M, Mitra S, et al. MEGAN Community Edition - Interactive Exploration and Analysis of Large-Scale Microbiome Sequencing Data. Poisot T, editor. PLOS Comput Biol. 2016;12:e1004957.

50. Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014;42:D633–42.

51. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J R Stat Soc Ser B Methodol. 1995;57:289–300.

52. Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001;26:32–46.
Figures

Table 1

| Week | Morning (1 h) | Afternoon (2 h) | Night (15 h) |
|------|---------------|-----------------|--------------|
| Day 1| Confinement*  | Cage tilt (30°) | Difficult access to food |
| Day 2| Cage tilt (30°) | Paired housing   | Overnight illumination |
| Day 3| Cage tilt (30°) | Confinement*     | Moist bedding**   |
| Day 4| Confinement*  | Paired housing   | Cage tilt (30°)  |
| Day 5| Confinement*  | Cage tilt (30°)  | —              |
| Days 6-7| Reversed light-dark cycle (72 h) |

*in a small cage (11 cm x 8 cm x 8 cm); **50 ml of water in 1,000 ml of bedding.

Figure 1

Stress status of mice. (A) CUMS protocol, (B) body weights, (C) thymus weights (normalized to body weight), (D) serum corticosterone concentrations in control and CUMS mice.
Figure 2

Comparison of microbiota diversity between CUMS and control mice. (A) Total bacterial load quantification by qPCR corresponding to the total number of 16S rRNA gene copies per mg of intracaecal content of mice subjected to CUMS (n=10) and control mice (n=7) (p=0.19), and (B) α-diversity indexes: Observed OTUs (richness, p=0.73), Evenness (p=0.52), Shannon index (p=0.84), Simpson index of diversity (p=0.69), and Simpson's reciprocal index (p=0.81). Statistical analyses were done using the Mann-Whitney U test. The upper and lower ranges of the box represent the 75% and 25% quartiles, respectively. Error bars reflect standard error of the mean. (C) PCA of microbiomes from CUMS vs. control mice (Pr(>F)=0.029). The variance explained by each of the main two dimensions of the PCA is indicated in parentheses on the axes.
Figure 3

Differential abundance of bacterial taxa. (A) Mean relative abundance (%) of bacterial phyla and (B) Firmicutes/Bacteroidetes ratio in the caecal content of mice subjected to 21 days of CUMS compared to controls. A significant decrease of Bacteroidetes (p=0.006) and a significant increase of Firmicutes (p=0.004) were noted in CUMS mice by comparison to control mice. This was associated to a significant increase of the Firmicutes/Bacteroidetes ratio (p=0.00072) in CUMS mice. Statistical analyses were done using the Mann-Whitney U test. * p< 0.01; ** p<0.001. (C) Differentially abundant main genera in control mice (green) and CUMS mice (red) identified using Linear Discriminant Analysis (LDA) Effect Size (LEfSe) analysis. (D) Schematic representation of core microbiome at the species level. Green circle: number of species shared in all control mice. Red circle: number of species shared in all CUMS mice. Intersections and numbers inscribed within refer to shared species and in parentheses shared with all mice.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.
