DISCONTINUITY OF A DEGENERATING ESCAPE RATE

LAURA DEMARCO AND YUSUKE OKUYAMA

Abstract. We look at degenerating meromorphic families of rational maps on \mathbb{P}^1—holomorphically parameterized by a punctured disk—and we provide examples where the bifurcation current fails to have a bounded potential in a neighborhood of the puncture. This is in contrast to the recent result of Favre-Gauthier that we always have continuity across the puncture for families of polynomials; and it provides a counterexample to a conjecture posed by Favre in 2016. We explain why our construction fails for polynomial families and for families of rational maps defined over finite extensions of the rationals \mathbb{Q}.

1. Introduction

Let f_t be a holomorphic family of rational maps on \mathbb{P}^1 of degree $d > 1$, parameterized by the punctured unit (open) disk $D^* = \{t \in \mathbb{C} : 0 < |t| < 1\}$, and assume that the coefficients of f_t extend to meromorphic functions on the unit disk $D = \{t \in \mathbb{C} : |t| < 1\}$. Let $a : D \to \mathbb{P}^1$ be a holomorphic map. In this article, we examine the potential function $g_{f_t,a}$ on D^* (having the order $o(\log |t|)$ as $t \to 0$) for the bifurcation measure associated to the pair (f, a). Our main result is that this potential function does not necessarily extend continuously across the puncture at $t = 0$.

The question of continuous extendability of $g_{f_t,a}$ across $t = 0$ arose naturally in the study of degenerating families of rational maps, and specifically in the context of equidistribution questions and height functions associated to the family f_t; see, e.g., [BD, Fa2]. Continuity of the potential at $t = 0$ was required to apply certain equidistribution theorems on arithmetic varieties (as in the proofs of the main results of [BD, DM, FG1, GY], and others). Moreover, when $a(t)$ parameterizes a critical point of f_t, the bifurcation measure and its potential are related to the structural stability of the family f_t [De1, DF]. It is well known that continuity holds when f_t has a uniform limit on the whole \mathbb{P}^1 as $t \to 0$, for any choice of a. It is also true when f_t is any family of polynomials with coefficients meromorphic in t, again for any choice of a [FG2].

To formulate the problem and our construction more precisely, we will work with f_t in homogeneous coordinates: assume that we are given a family of homogeneous polynomial maps $\tilde{f}_t : \mathbb{C}^2 \to \mathbb{C}^2$ of degree d, where the coefficients are holomorphic functions on the entire disk D, such that for every $t \in D^*$, $\tilde{f}_t^{-1}(0,0) = \{(0,0)\}$ and \tilde{f}_t projects to f_t on \mathbb{P}^1.

Date: September 23, 2018.

This research was partially supported by JSPS Grant-in-Aid for Scientific Research (C), 15K04924, and the National Science Foundation DMS-1600718.
There exists a continuous plurisubharmonic escape rate
\[G_f : \mathbb{D}^* \times (\mathbb{C}^2 \setminus \{(0,0)\}) \to \mathbb{R} \]
such that for each fixed \(t \in \mathbb{D}^* \), the current \(df \cdot G_f(t, \cdot) \) on \(\mathbb{C}^2 \setminus \{(0,0)\} \) projects to the measure of maximal entropy of \(f_t \) on \(\mathbb{P}^1 \). Given a holomorphic lift of \(a \) to \(\tilde{a} : \mathbb{D} \to \mathbb{C}^2 \setminus \{(0,0)\} \), we may write
\[G_{\tilde{f}}(t, \tilde{a}(t)) = \eta \log \| t \| + g_{f,a}(t), \]
where \(\eta \in \mathbb{R} \) represents a “local height” for the pair \((f,a) \), and the function \(g_{f,a} \) on \(\mathbb{D}^* \) satisfies
\[g_{f,a}(t) = o(\log \| t \|) \]
as \(t \to 0 \) [De4; see §2.1]. The value of \(\eta \) and the subharmonic function \(g_{f,a} \) depend on the choices of \(\tilde{f} \) and \(\tilde{a} \), but \(g_{f,a} \) is uniquely determined up to the addition of a harmonic function on \(\mathbb{D}^* \) which is bounded near \(t = 0 \). The Laplacian \(\mu_{f,a} = \frac{1}{2\pi} \Delta g_{f,a} \) on \(\mathbb{D}^* \) is the bifurcation measure associated to the pair \((f,a)\) [DF, §3].

It turns out that the function \(g_{f,a} \) is always bounded from above near \(t = 0 \) (Lemma 2.1). In this article, we construct examples of pairs \((f,a)\) that satisfy
\[\limsup_{t \to 0} g_{f,a}(t) = -\infty \]
to show that it need not be bounded from below, so in particular does not extend continuously across \(t = 0 \). In our examples, the maps \(f_t \) will converge to a rational map \(\varphi \) on \(\mathbb{P}^1 \) of degree \(< d \) as \(t \to 0 \) locally uniformly on \(\mathbb{P}^1 \setminus H \), where \(H \) is a non-empty finite set. The idea of the construction is to choose \(\varphi \) and \(a \) so that some sequence of iterates \(\varphi^{n_j}(a(0)) \) accumulates fast on \(H \) as \(n_j \to \infty \).

Furthermore, choosing \(a(t) \) to parameterize a critical point of the family \(f_t \), we obtain a counterexample to the continuity statement in [Fa2, Conjecture 1], in proving:

Theorem 1.1. For every integer \(d > 1 \), there exists a holomorphic family \(f_t \) of rational maps on \(\mathbb{P}^1 \) of degree \(d \), parameterized by \(t \in \mathbb{D}^* \), whose coefficients extend to meromorphic functions on \(\mathbb{D} \) but for which the bifurcation current associated to the family \(f_t \) fails to have a bounded potential in any punctured neighborhood of \(t = 0 \).

Remark. It will be clear from the proof that the family \(f_t \) can be chosen to be algebraic, in the sense that it extends to define a holomorphic family parameterized by \(t \) in a quasiprojective curve \(X \), with coefficients that are meromorphic on a compactification of \(X \).

The bifurcation current associated to the family \(f_t \) is equal to the Laplacian of the continuous and subharmonic function \(t \mapsto L(f_t) \) on \(\mathbb{D}^* \), where for each \(t \), \(L(f_t) \) is the Lyapunov exponent of \(f_t \) with respect to its unique measure of maximal entropy. For more details on \(L(f_t) \) and its relationship to \(g_{f,a} \), see Section 3.

The construction of examples of pairs \((f,a)\) for which \(g_{f,a} \) fails to extend continuously across \(t = 0 \) is laid out in Section 2. Our use of the Baire category theorem in the
construction is similar to that of [Fa1, Example 4], [Bu], or [DG] in the context of higher-dimensional (bi)rational maps. In Section 3 we give the proof of Theorem 1.1. In Section 4 we comment on why the strategy for producing these examples fails for families of polynomials and for rational maps on \(P^1\) defined over \(\mathbb{Q}\). We expect that a continuous extension of \(g_{f,a}\) to \(D\) always exists when the pair \((f,a)\) is algebraic and defined over \(\mathbb{Q}\), as is known for algebraic families of elliptic curves [Si2, Theorem II.0.1] and therefore also for Lattès maps on \(P^1\) [DM, Proposition 3.4]; see also [JR, Theorem A] in the context of (bi)rational maps in dimension 2. The bifurcation current associated to a family \(f\) was introduced in [De1]; its properties at infinity in the moduli space of quadratic rational maps (related to our Theorem 1.1) were studied in [BG].

We would like to thank Charles Favre, Thomas Gauthier, and the anonymous referee for helpful comments and suggestions.

2. A recipe for discontinuity

In this section, we construct the examples for which \(g_{f,a}\) fails to extend continuously to the disk \(D\).

2.1. The potential is bounded from above. Suppose we are given a family of homogeneous polynomial maps \(\tilde{f}_t : \mathbb{C}^2 \to \mathbb{C}^2\) of degree \(d > 1\), where the coefficients are holomorphic functions on the entire disk \(D\), and such that for every \(t \in D^*\), we have \(\tilde{f}_t^{-1}(0,0) = \{(0,0)\}\) so \(\tilde{f}_t\) projects to a rational map \(f_t\) on \(P^1\) of degree \(d\). We let \(\tilde{a} : D \to \mathbb{C}^2 \setminus \{(0,0)\}\) be any holomorphic map, and let \(a : D \to P^1\) be its projection. For each \(n \in \mathbb{N}\), there is a unique non-negative integer \(o_n\) so that

\[F_n(t) := t^{-o_n} \tilde{f}_t^n(\tilde{a}(t)) \]

is a holomorphic map from \(D\) to \(\mathbb{C}^2 \setminus \{(0,0)\}\). Choose any norm \(\| \cdot \|\) on \(\mathbb{C}^2\). The function \(g_{f,a}\) on \(D^*\) defined by (1.1) is the locally uniform limit on \(D^*\) of the sequence of continuous and subharmonic functions

\[g_n(t) := \frac{1}{d^n} \log \|F_n(t)\| \quad \text{on } D, \]

as \(n \to \infty\), and the value \(\eta\) of (1.1) is given by

\[\eta = \lim_{n \to \infty} \frac{o_n}{d^n}, \]

as explained in [De4 §3]. Note, in particular, that the function \(g_{f,a}\) is continuous and subharmonic on \(D^*\).

The following observation is not required in this section, but it will be useful in Section 3.

Lemma 2.1. The function \(g_{f,a}\) is bounded from above on \(\{0 < |t| \leq r\}\) for every \(r \in (0,1)\).
2.2. The ingredients for discontinuity. Let \(\varphi \in \mathbb{C}(z) \) be a rational map on \(\mathbb{P}^1 \) of degree \(e \geq 1 \), and suppose that there is a point \(a_0 \in \mathbb{C} \) such that \(\# \{ \varphi^n(a_0) : n \in \mathbb{N} \} = \infty \) and that \(\omega_{\varphi}(a_0) \cap \{ \varphi^n(a_0) : n \in \mathbb{N} \} \neq \emptyset \), where

\[
\omega_{\varphi}(a_0) := \bigcap_{N \in \mathbb{N}} \{ \varphi^n(a_0) : n > N \}
\]

is the \(\omega \)-limit set of \(a_0 \) under \(\varphi \). Then there exists \(N_0 \in \mathbb{N} \) so that \(\{ \varphi^n(a_0) : n \geq N \} \) is dense in \(\omega_{\varphi}(a_0) \) for all \(N \geq N_0 \).

Let \(\{ r_n \} \) be any sequence in \(\mathbb{R}_{>0} \) decreasing to 0 as \(n \to \infty \), which will be chosen appropriately later. It follows that the set

\[
U_N(a_0, \{ r_n \}) := \left(\bigcup_{n \geq N} \{ z \in \omega_{\varphi}(a_0) : [z, \varphi^n(a)] < r_n \} \right) \setminus \{ a_0, \varphi(a_0), \ldots, \varphi^{N-1}(a_0) \}
\]

is open and dense in \(\omega_{\varphi}(a_0) \) for all \(N \geq N_0 \). Here \([\cdot, \cdot] \) denotes the chordal distance on \(\mathbb{P}^1 \). Therefore, by the Baire category theorem,

\[
B_{\varphi}(a_0, \{ r_n \}) := \bigcap_{N \geq N_0} U_N(a_0, \{ r_n \})
\]

is dense in \(\omega_{\varphi}(a_0) \).

Fix any \(h \in B_{\varphi}(a_0, \{ r_n \}) \cap \mathbb{C} \). Then \(\varphi^n(a_0) \neq h \) for all \(n \in \mathbb{N} \cup \{ 0 \} \), and there is a sequence \(n_j \to \infty \) such that

\[
0 < [\varphi^{n_j}(a_0), h] < r_{n_j}
\]

for all \(j \in \mathbb{N} \).

We consider the family

\[
f_t(z) := \varphi(z) \cdot \frac{z - h - \varepsilon t}{z - h + \varepsilon t}
\]

parameterized by \(t \in \mathbb{D}^* \), where \(\varepsilon > 0 \) is chosen so that \(\varphi \) has neither zeros nor poles in the set \(\{ z : 0 < |z - h| < \varepsilon \} \). Thus, \(f_t \) defines a holomorphic family of rational maps of degree \(d := e + 1 > 1 \). As \(t \to 0 \), the maps \(f_t \) converge locally uniformly to \(\varphi \) on \(\mathbb{P}^1 \setminus \{ h \} \).
2.3. An unbounded escape rate. Set now

\[r_n = \exp(-n \, d^{n+1}) \]

for each \(n \in \mathbb{N} \). Working on \(\mathbb{C}^2 \), we define

\[\tilde{f}_t(z, w) := (P(z, w)(z - (h + \varepsilon t)w), Q(z, w)(z - (h - \varepsilon t)w)) \]

for all \(t \in \mathbb{D} \), where \(P \) and \(Q \) are homogeneous polynomials of degree \(e = \deg \varphi \) such that \(\varphi(z) = P(z, 1)/Q(z, 1) \). Let \(\tilde{a} : \mathbb{D} \to \mathbb{C}^2 \setminus \{(0, 0)\} \) be any holomorphic map such that \(\tilde{a}(0) = (a_0, 1) \) and let \(a : \mathbb{D} \to \mathbb{P}^1 \) be its projection to \(\mathbb{P}^1 \).

Choose any norm \(\| \cdot \| \) on \(\mathbb{C}^2 \). As \(\varphi^n(a_0) \neq h \) for all \(n \geq 0 \), we see that \(\tilde{f}_0^n(\tilde{a}(0)) \neq (0, 0) \) for all \(n \geq 0 \). Therefore, as described in [De4, Proposition 3.1], we have \(\eta = 0 \) and the function \(g_{f,a} \) is given by the formula

\[g_{f,a}(t) = \lim_{n \to \infty} \frac{1}{d^n} \log \| \tilde{f}_t^n(\tilde{a}(t)) \| \]

for \(t \in \mathbb{D}^* \) [De4, Proposition 3.1].

Set

\[\Phi := (P, Q) \quad \text{and} \quad H(z, w) := z - hw \]

so that \(\tilde{f}_0 = (HP, HQ) \). For all \(n \geq 0 \), as \(\deg \Phi = e > 0 \), the iteration formula of [De3, Lemma 2.2] states that

\[\tilde{f}_0^n = \left(P_n \cdot \prod_{k=0}^{n-1} ((\Phi^k)^* H)^{d^{n-k-1}}, Q_n \cdot \prod_{k=0}^{n-1} ((\Phi^k)^* H)^{d^{n-k-1}} \right), \]

where we set \(\Phi^n = (P_n, Q_n) \), so that

\[\log \frac{\| \tilde{f}_0^n \|}{d^n} = \sum_{k=0}^{n-1} \log \frac{\| (\Phi^k)^* H \|}{d^{k+1}} + \frac{\log \| \Phi^n \|}{d^n} \]

on \(\mathbb{C}^2 \setminus \{(0, 0)\} \), and consequently,

\[\log \frac{\| \tilde{f}_0 \circ \tilde{f}_0^n \|}{\| \tilde{f}_0^n \|} = \log \frac{\| (\Phi^n)^* H \|}{\| \Phi^n \|} + \log \frac{\| \Phi \circ \Phi^n \|}{\| \Phi^n \|} \]

on \(\mathbb{C}^2 \setminus \tilde{f}_0^{-n}(0, 0) \).

Note that \(\log \| \Phi \| \) is bounded on the unit sphere in \(\mathbb{C}^2 \), so the last term on the right-hand side of (2.4) is bounded on \(\mathbb{C}^2 \setminus \{(0, 0)\} \) uniformly in \(n \geq 0 \). The first term on the right-hand side of (2.4) is the log of [\(\varphi^n(\cdot), h \)], up to scaling of the metric [\(\cdot, \cdot \)]; therefore, combined with (2.1), we see that there is a constant \(C \) so that

\[\log \frac{\| \tilde{f}_0(\tilde{f}_0^n(\tilde{a}(0))) \|}{\| \tilde{f}_0^n(\tilde{a}(0)) \|} < C + \log(r_{n_j}) = C - n_j d^{n_j+1} \]

for all \(j \). For all \(j \), by continuity of \(\tilde{f}_t^n(\tilde{a}(t)) \) as a map from \(\mathbb{D} \) to \(\mathbb{C}^2 \setminus \{(0, 0)\} \), there is a radius \(\delta_j \in (0, 1/2) \) such that

\[\sup_{|t| \leq \delta_j} \log \frac{\| \tilde{f}_t(\tilde{f}_t^n(\tilde{a}(t))) \|}{\| \tilde{f}_t^n(\tilde{a}(t)) \|} \leq C - n_j d^{n_j+1}. \]
On the other hand, we also have from (2.3) that
\[
\begin{align*}
g_{f,a}(t) &= \log \|\tilde{a}(t)\| + \sum_{k=0}^{\infty} \frac{1}{d^{k+1}} \log \frac{\|\tilde{f}_t^k(\tilde{a}(t))\|}{\|\tilde{f}_t^k(\tilde{a}(t))\|^d} \\
&= \log \|\tilde{a}(t)\| + \frac{1}{d^{n_j+1}} \log \frac{\|\tilde{f}_t^{n_j}(\tilde{a}(t))\|}{\|\tilde{f}_t^{n_j}(\tilde{a}(t))\|^d} + \sum_{k \neq n_j} \frac{1}{d^{k+1}} \log \frac{\|\tilde{f}_t^k(\tilde{a}(t))\|}{\|\tilde{f}_t^k(\tilde{a}(t))\|^d}
\end{align*}
\]
for each \(j\).

The following is elementary but useful:

Lemma 2.2. Let \(F_t = (P_t, Q_t)\) be any family of homogeneous polynomial maps of degree \(d \geq 2\), with coefficients that are bounded holomorphic functions of \(t\) in \(\mathbb{D}\). Then there is a constant \(C\) so that
\[
\|F_t(z, w)\| \leq C \|(z, w)\|^d
\]
for all \((z, w) \in \mathbb{C}^2 \setminus \{(0, 0)\}\) and all \(t \in \mathbb{D}\).

Proof. As \(F_t\) is homogeneous, it suffices to bound its values on the unit sphere in \(\mathbb{C}^2\). The result follows because the coefficients are bounded uniformly on \(\mathbb{D}\). \(\square\)

As a consequence of Lemma 2.2, we can bound all the terms in the final sum of (2.6) from above, uniformly on the disk \(\{|t| \leq 1/2\}\), and therefore there is a constant \(C'\) so that
\[
(2.7) \quad \sup_{|t| \leq 1/2} g_{f,a}(t) \leq C' + \frac{1}{d^{n_j+1}} \log \frac{\|\tilde{f}_t^{n_j}(\tilde{a}(t))\|}{\|\tilde{f}_t^{n_j}(\tilde{a}(t))\|^d}
\]
for every \(j\). Combined with (2.5), we conclude that there is another constant \(C\) so that
\[
\sup_{|t| \leq \delta_j} g_{f,a}(t) \leq C - n_j
\]
for every \(j\). Letting \(j \to \infty\) shows that
\[
\limsup_{t \to 0} g_{f,a}(t) = -\infty.
\]

2.4. Examples with degree \(d = 2\)

Fix any \(\theta \in \mathbb{R} \setminus \mathbb{Q}\), and let
\[
\varphi(z) = e^{2\pi i \theta} z.
\]
Set \(a_0 = 1\); the \(\omega\)-limit set \(\omega_\varphi(a_0)\) is the unit circle in \(\mathbb{C}\). Set \(r_n = \exp(-n 2^{n+1})\) for each \(n \in \mathbb{N}\), and define \(B_\varphi(1, \{r_n\})\) as above. Taking any \(h \in B_\varphi(1, \{r_n\})\) and setting \(\varepsilon = 1\), we define the family \(f_t\) as in (2.2). Then the potential function \(g_{f,a}\) fails to be bounded around \(t = 0\) for any holomorphic map \(a : \mathbb{D} \to \mathbb{P}^1\) with \(a(0) = 1\).

Note that only the Möbius transformations \(\varphi\) which are Möbius (i.e., \(\text{PSL}(2, \mathbb{C})\))-conjugate to an irrational rotation have recurrent orbits, as needed for the construction described above.
2.5. Examples in degree > 2, with a marked critical point. Fix an integer $d > 2$. For every $\theta \in \mathbb{R}$, the polynomial

\[(2.8) \quad \phi(z) = e^{2\pi i \theta} \left(z - \frac{e^{2\pi i \theta} - (d - 1)}{(d - 1)^{(d-1)/(d-2)}} \right)^{d-1} \]

of degree $d - 1$ has a fixed point with multiplier $e^{2\pi i \theta}$ and its unique finite critical value at $z = 0$. Now fix θ to be irrational; the critical point $a_0 := e^{2\pi i \theta} - \frac{(d - 1)}{(d - 1)^{(d-1)/(d-2)}}$ of ϕ satisfies $\#\{\phi^n(a_0) : n \in \mathbb{N}\} = \infty$ and $a_0 \in \omega_{\phi}(a_0)$ [Ma]. Let

\[r_n = \exp(-n d^{n+1}) \]

for each $n \in \mathbb{N}$ and fix any point $h \in B_\phi(a_0, \{r_n\})$. Choose any $\varepsilon \in (0, |a_0 - h|]$, and set

\[f_t(z) = \phi(z) \cdot \frac{z - h - \varepsilon t}{z - h + \varepsilon t}, \]

which is a rational map on \mathbb{P}^1 of degree d for all $t \in \mathbb{D}^*$. We let

\[a(t) = a_0 \]

for all $t \in \mathbb{D}$, which satisfies $f'_t(a(t)) = 0$ for all $t \in \mathbb{D}^*$. (This is the reason for requiring the unique finite critical value $\phi(a_0)$ of ϕ to be 0.) It follows that $g_{f,a}$ fails to be bounded around $t = 0$.

2.6. Example in degree 2, with a marked critical point. We can produce examples of (f, a) also for quadratic rational maps f_t where $a(t)$ parameterizes a critical point of f_t, though we do not have as much flexibility as in higher degrees. For example, we have:

Lemma 2.3. Suppose $f_t(z) = \varphi(z)(z - h - t^n)/(z - h + t^n)$ is a family of quadratic rational maps, for some $h \in \mathbb{C}$, $n \in \mathbb{N}$, and a rational map φ on \mathbb{P}^1 of degree 1, and suppose that $c_1, c_2 : \mathbb{D} \to \mathbb{P}^1$ are holomorphic maps parameterizing the two critical points of f_t. Then

\[\lim_{t \to 0} c_1(t) = \lim_{t \to 0} c_2(t) = h. \]

Proof. As φ has degree 1, it has no critical points of its own. On the other hand, $\lim_{t \to 0} f_t = \varphi$ locally uniformly on $\mathbb{P}^1 \setminus \{h\}$, so it must be that $c_1(t), c_2(t) \to h$ as $t \to 0$. \hfill \Box

In particular, if we wish to let $a(t)$ parameterize a critical point of f_t, then necessarily we will have $a(0) = h$, which was not allowed by the construction above.

However, let us fix our decreasing sequence as

\[r_n = \exp(-(n - 1) 2^n), \]
for each \(n \in \mathbb{N} \), and apply the Baire Category Theorem now to the space of rotations \(z \mapsto e^{2\pi i \theta} z \) to find

\[
\theta_0 \in \left(\bigcap_{N \in \mathbb{N}} \bigcup_{n \geq N} \{ \theta \in \mathbb{R} : [1, e^{2\pi i n \theta}] < r_n \} \right) \setminus \mathbb{Q}.
\]

Then \(e^{2\pi i n \theta_0} \neq 1 \) for all \(n \in \mathbb{N} \), and there is a sequence \(n_j \to \infty \) as \(j \to \infty \) such that

\[
0 < [1, e^{2\pi i n_j \theta_0}] < r_{n_j}
\]

for all \(j \).

Now set \(\varphi_0(z) = e^{2\pi i \theta_0} z \), and

\[
f_t(z) = \varphi_0(z) \cdot \frac{z - 1 - t^2}{z - 1 + t^2}
\]

for \(t \in \mathbb{D}^* \). Note that we have used \(t^2 \) here rather than \(t \) in (2.2); this is so that we can holomorphically parameterize the critical points of \(f_t \). Indeed, the critical points of \(f_t \) are

\[
c_{\pm}(t) = 1 - t^2 \pm \sqrt{2t^4 - 2t^2} = 1 - t^2 \pm i\sqrt{2t\sqrt{1 - t^2}},
\]

which extend holomorphically on \(\mathbb{D} \) by setting \(c_{\pm}(0) = 1 \). Define the function \(a : \mathbb{D} \to \mathbb{C} \) by either \(c_+ \) or \(c_- \) so that \(f_t \) has the critical value

\[
v(t) := f_t(a(t)) = e^{2\pi i \theta_0} + O(t) \quad \text{as } t \to 0,
\]

which also extends holomorphically to \(\mathbb{D} \) by setting \(v(0) := v_0 := e^{2\pi i \theta_0} = \varphi_0(1) \). We also set

\[
\tilde{f}_t(z, w) := (e^{2\pi i \theta_0} z(z - (1 + t^2)w), (z - (1 - t^2)w)w)
\]

for all \(t \in \mathbb{D} \).

We will work with the pair \((f, v) \). Then, since \(\varphi_0^n(v_0) \neq 1 \) for all \(n \in \mathbb{N} \cup \{0\} \) and since we also have

\[
0 < [1, \varphi_0^{n_j-1}(v_0)] < r_{n_j} = \exp(-(n_j - 1) 2^{(n_j-1)+1})
\]

for all \(j \), the arguments above go through exactly as before – applied to the sequence \(\{n_j - 1\}_j \) – to show that \(g_{f, v} \) fails to be bounded around \(t = 0 \).

Finally, if we set \(\tilde{v}(t) = (v(t), 1) \) and \(\tilde{a}(t) = (a(t), 1) \), then

\[
\tilde{f}_t(\tilde{a}(t)) = (a(t) - 1 + t^2) \tilde{v}(t).
\]

Note that \(a(t) - 1 + t^2 = \pm i\sqrt{2t\sqrt{1 - t^2}} \) on \(\mathbb{D} \), so that the function

\[
h(t) = \log |a(t) - 1 + t^2| - \log |t|
\]

on \(\mathbb{D}^* \) extends to a harmonic function on the disk \(\mathbb{D} \). We have

\[
G_{\tilde{f}}(t, \tilde{v}(t)) = g_{f, v}(t)
\]
on \mathbb{D}^* from the definitions given in (1.1) and because the pair satisfies the hypotheses for (2.3). Consequently,

$$G_f(t, \tilde{a}(t)) = \frac{1}{2} G_f(t, \tilde{f}_t(\tilde{a}(t)))$$

$$= \frac{1}{2} \left(G_f(t, \tilde{v}(t)) + \log |a(t) - 1 + t^2| \right)$$

$$= \frac{1}{2} g_{f,v}(t) + \frac{1}{2} h(t) + \frac{1}{2} \log |t|$$

so that, by the definition of $g_{f,a}$ in (1.1), we have $\eta = 1/2$ and

$$g_{f,a}(t) = \frac{1}{2} g_{f,v}(t) + \frac{1}{2} h(t)$$

on \mathbb{D}^*. We conclude that the function $g_{f,a}$ also fails to be bounded near $t = 0$.

3. LYAPUNOV EXPONENTS AND THE BIFURCATION CURRENT

The Lyapunov exponent of an individual rational map f on \mathbb{P}^1 of degree > 1, with respect to its unique measure μ_f of maximal entropy on \mathbb{P}^1, is the positive and finite quantity

$$L(f) = \int_{\mathbb{P}^1} \log |f'| d\mu_f,$$

where $| \cdot |$ is any choice of metric on the tangent bundle of \mathbb{P}^1.

Let f_t be a holomorphic family of rational maps on \mathbb{P}^1 of degree $d > 1$ parameterized by \mathbb{D}^* whose coefficients extend to meromorphic functions on \mathbb{D}. If all the critical points of f_t are parameterized by holomorphic maps $c_1, \ldots, c_{2d-2} : \mathbb{D} \to \mathbb{P}^1$, then

$$(3.1) \quad L(f_t) = h(t) + \sum_{j=1}^{2d-2} g_{f,c_j}(t)$$

on \mathbb{D}^*, for a harmonic function h on \mathbb{D}^* satisfying $h(t) = O(\log |t|)$ as $t \to 0$ [De2, Theorem 1.4], [Fa2, Theorem C]. By the symmetry in the critical points in (3.1), this formula holds even if the critical points cannot be holomorphically parameterized on \mathbb{D}^*. The bifurcation current associated to the family f_t can be given by

$$T_{\text{bif}} := \frac{1}{2\pi} \Delta L(f_t)$$

on \mathbb{D}^*, in the sense of distributions; the original definition of T_{bif} in [De1] was based on the right hand side of (3.1). From [De2, Theorem 1.1], the support of T_{bif} is equal to the bifurcation locus of the family f_t in the sense of [MSS, Ly].

In particular, because the sum $\sum_j g_{f,c_j}$ in (3.1) is $o(\log |t|)$ near $t = 0$, we see that the bifurcation current T_{bif} has a bounded potential if and only if the sum $\sum_j g_{f,c_j}$ is bounded near $t = 0$.
Proof of Theorem 1.1. We give examples in an arbitrary degree > 1. First, let f_t be the holomorphic family of quadratic rational maps on \mathbb{P}^1 parameterized by D^* described in §2.6. As we have seen, neither of the functions $g_{f,c_{\pm}}$ extend continuously to D; indeed, both tend to $-\infty$ as $t \to 0$. Hence by (3.1), the bifurcation current for the family f_t fails to have a potential bounded around $t = 0$.

Next, let f_t be the holomorphic family of rational maps on \mathbb{P}^1 of degree $d > 2$ parameterized by D^*, described in §2.5. As we have seen, the constant map $a(t) \equiv a_0$ on D satisfies $f_t'(a(t)) = 0$ for every $t \in D^*$, and the function $g_{f,a}$ tends to $-\infty$ as $t \to 0$. Taking an at most finitely ramified holomorphic covering $\pi : D^* \to D^*$ if necessary, all the critical points of $f_{\pi(s)}$ are parameterized by holomorphic maps $c_1, \ldots, c_{2d-2} : D \to \mathbb{P}^1$. We may assume the points are labeled so that $c_1 = a \circ \pi$ on D. By the formula (2.3) for g_{f,c_1}, we have $g_{f,a}(\pi(s))$ on D^*. On the other hand, for every $j \in \{2, \ldots, 2d-2\}$, the function $g_{f_{\pi(s)},c_j}$ is bounded from above on $\{0 < |s| \leq r\}$ for every $r \in (0,1)$, by Lemma 2.1. Hence the sum $\sum_j g_{f_{\pi(s)},c_j}(s)$ tends to $-\infty$ as $s \to 0$. Therefore, the bifurcation current associated to the family f_t fails to have a potential bounded around $t = 0$. □

4. Limitations of the construction

To find the examples of Section 2, we used a rational map $\varphi \in \mathbb{C}(z)$ of degree ≥ 1 and points $a_0, h \in \mathbb{P}^1(\mathbb{C})$ such that

$$0 < [\varphi^n(a_0), h] < r_{n_j}$$

in the chordal metric $[\cdot, \cdot]$, along a sequence $n_j \to \infty$, with (r_n) chosen so that

$$\lim_{n \to \infty} \frac{\log r_n}{d^n} = -\infty.$$

Combining (2.7) with (2.5) guaranteed that $\lim_{t \to 0} g_{f,a}(t) = -\infty$. Looking carefully at the estimates, we see that the orbit $\{\varphi^n(a_0)\}$ needs only to satisfy a weaker divergence condition

$$(4.1) \quad \sum_{n=0}^{\infty} \frac{\log [\varphi^n(a_0), h]}{d^n} = -\infty,$$

with $\varphi^n(a_0) \neq h$ for all $n \in \mathbb{N} \cup \{0\}$, to achieve our conclusion with this method.

As observed in the Introduction, the function $g_{f,a}$ will always extend continuously to \mathbb{D} when f_t is a family of polynomials, by [FG2, Main Theorem]. Here we explain explicitly why our construction breaks down for polynomials.

Proposition 4.1. The construction of Section 2 cannot produce any pair (f, a) such that for every $t \in \mathbb{D}^*$, f_t is Möbius conjugate to a polynomial.
Proof. Suppose that \(f_t \) is a holomorphic family of rational maps of degree \(d > 1 \) parameterized by \(\mathbb{D}^* \), that for every \(t \in \mathbb{D}^* \), there exists \(A_t \in \text{PSL}(2, \mathbb{C}) \) such that \(A_t \circ f_t \circ A_t^{-1} \) is a polynomial, and that \(\lim_{t \to 0} f_t = \varphi \) locally uniformly on \(\mathbb{P}^1 \setminus \{ h \} \) for some \(h \in \mathbb{P}^1 \) and some \(\varphi \in \mathbb{C}(z) \) of degree \(d - 1 \) \((> 0)\). For every \(t \in \mathbb{D}^* \), the point \(p_t := A_t^{-1}(\infty) \) is a superattracting fixed point of \(f_t \) for which \(\deg p_t f_t = d \). We first claim that \(\lim_{t \to 0} p_t = h \); otherwise, there is a sequence \((t_j)\) in \(\mathbb{D}^* \) tending to 0 as \(j \to \infty \) such that there is the limit \(p := \lim_{j \to \infty} p_{t_j} \in \mathbb{P}^1 \setminus \{ h \} \). By the locally uniform convergence \(\lim_{t \to 0} f_t = \varphi \) on \(\mathbb{P}^1 \setminus \{ h \} \), \(\deg \varphi > 0 \), and the Argument Principle, this \(p \) must be a superattracting fixed point of \(\varphi \) for which \(\deg p \varphi = d \), contradicting \(\deg \varphi = d - 1 \). We next claim that \(\varphi^{-1}(h) = \{ h \} \); for, if there is a point \(q \in \mathbb{P}^1 \setminus \{ h \} \) for which \(\varphi(q) = h \), then by the first claim, the locally uniform convergence \(\lim_{t \to 0} f_t = \varphi \) on \(\mathbb{P}^1 \setminus \{ h \} \), \(\deg \varphi > 0 \), and the Argument Principle, for any \(t \in \mathbb{D}^* \) close enough to 0, there must exist a point \(q_t \in \mathbb{P}^1 \setminus \{ p_t \} \) (near \(q \)) for which \(f_t(q_t) = p_t \), contradicting \(\deg f_t = d \).

Suppose \(a : \mathbb{D} \to \mathbb{P}^1 \) is any holomorphic map with \(a(0) =: a_0 \neq h \). If \(d > 2 \) so that \(\deg \varphi = d - 1 > 1 \), then by the second claim, we have a constant \(C < 0 \) so that

\[
\log [\varphi^n(a_0), h] \geq C \cdot (d - 1)^n
\]

for all \(n \in \mathbb{N} \). If \(d = 2 \) so that \(\deg \varphi = d - 1 = 1 \), then by the second claim above, the orbit \(\{ \varphi^n(a_0) \} \) can accumulate to \(h \) and satisfy \(\varphi^n(a_0) \neq h \) for any \(n \geq 0 \) only if \(h \) is an attracting or parabolic fixed point of \(\varphi \). Hence we still have a constant \(C < 0 \) so that

\[
\log [\varphi^n(a_0), h] \geq C \cdot n
\]

for all \(n \in \mathbb{N} \). Therefore in both cases, the points \(a_0, h \in \mathbb{P}^1 \) cannot satisfy (4.1).

Working over the field \(\mathbb{C} \) of complex numbers allowed us to exploit the Baire Category Theorem in our construction. In fact, the construction is impossible over a field such as \(\overline{\mathbb{Q}} \).

Proposition 4.2. The construction of Section 2 cannot produce any pair \((f, a)\) such that the map \(\varphi \) and points \(a_0 \) and \(h \) are simultaneously defined over \(\overline{\mathbb{Q}} \).

Proof. Suppose \(f_t \) is any holomorphic family of rational maps of degree \(d > 1 \) parameterized by \(\mathbb{D}^* \) such that \(\lim_{t \to 0} f_t = \varphi \) locally uniformly on \(\mathbb{P}^1 \setminus \{ h \} \), for some \(\varphi \in \overline{\mathbb{C}}(z) \) of degree \(d - 1 \) and some \(h \in \mathbb{P}^1(\overline{\mathbb{Q}}) \). Fix any point \(a_0 \in \mathbb{P}^1(\overline{\mathbb{Q}}) \) such that \(\varphi^n(a_0) \neq h \) for all \(n \geq 0 \).

Suppose first that \(d > 2 \), so that \(\deg \varphi = d - 1 > 1 \). If there is \(A \in \text{PSL}(2, \overline{\mathbb{Q}}) \) such that either \(A \circ \varphi \circ A^{-1} \) or \(A \circ \varphi^2 \circ A^{-1} \) is a polynomial and that \(A(h) = \infty \), then we have a constant \(C < 0 \) so that

\[
\log [\varphi^n(a_0), h] \geq C(d - 1)^n
\]

for all \(n \in \mathbb{N} \). Otherwise, by [11, Theorem E], which uses the Roth theorem, we have the stronger result that

\[
\log [\varphi^n(a_0), h] = o((d - 1)^n)
\]

as \(n \to \infty \). Therefore, in both cases, \(\varphi, a_0, \) and \(h \) cannot satisfy (4.1)
Now suppose that \(d = 2 \) so that \(\deg \varphi = d - 1 = 1 \). Note that the orbit \(\{ \varphi^n(a_0) \} \) can accumulate to \(h \) and satisfy \(\varphi^n(a_0) \neq h \) for any \(n \geq 0 \) only if either \(h \) is an attracting or parabolic fixed point of \(\varphi \) (in \(\mathbb{P}^1(\mathbb{Q}) \)) or there exists \(A \in \text{PSL}(2, \mathbb{Q}) \) such that \(A \circ \varphi \circ A^{-1} \) is an irrational rotation \(z \mapsto \lambda z \), where \(\lambda \) is not a root of unity, \(\lambda \in \mathbb{Q} \), and \(|\lambda| = 1 \), with \(|A(h)| = |A(a_0)| = 1 \). In the former case, we have a constant \(C < 0 \) so that \(\log |\varphi^n(a_0), h| \geq C \cdot n \) for all \(n \in \mathbb{N} \). So \(\varphi, a_0, \) and \(h \) cannot satisfy (1.1).

In the latter case, we claim that we still have a constant \(C < 0 \) such that

\[
\log |\varphi^n(a_0), h| \geq C \cdot n
\]

for all \(n \in \mathbb{N} \); since \(A \in \text{PSL}(2, \mathbb{Q}) \) is biLipschitz with respect to \([\cdot, \cdot] \), we can assume that \(\varphi \) is an irrational rotation \(z \mapsto \lambda z \), where \(\lambda \) is not a root of unity, \(\lambda \in \mathbb{Q} \), and \(|\lambda| = 1 \), with \(h, a_0 \in \mathbb{Q} \) and \(|h| = |a_0| = 1 \). Fix a number field \(K \) so that \(\lambda, a_0, h \in K \), and denote by \(M_K \) the set of all places (i.e., equivalence classes of non-trivial either archimedean or non-archimedean absolute values) of \(K \). Recall that there are a family \((N_v)_{v \in M_K} \) in \(\mathbb{N} \) and a family \((|\cdot|_v)_{v \in M_K} \) of representatives \(|\cdot|_v \) of places \(v \) such that for every \(x \in K^* \), \(|x|_v = 1 \) for all but finitely many \(v \in M_K \) and \(\prod_{v \in M_K} |x|^N_v = 1 \). Then by the (strong) triangle inequality, we can choose a family of real numbers \(C_v \geq 1 \), \(v \in M_K \), such that \(|\lambda^n - h/a_0|_v \leq C^n_v \) for any \(v \in M_K \) and any \(n \in \mathbb{N} \) and that \(C_v = 1 \) for all but finitely many \(v \in M_K \). We also note that \(\lambda^n a_0 = \varphi^n(a_0) \neq h \) for all \(n \in \mathbb{N} \). Hence for every \(v_0 \in M_K \) and every \(n \in \mathbb{N} \), we have \(|\lambda^n - h/a_0|_{v_0} \geq (\prod_{v \in M_K} C_v^{-N_v})^n \). In particular, recalling that \([z, w] = |z - w|[z, \infty][w, \infty] \) on \(\mathbb{C} \times \mathbb{C} \), there is a constant \(C < 0 \) such that

\[
\log |\varphi^n(a_0), h| = \log |\lambda^n - h/a_0| - \log 2 \geq C \cdot n
\]

for all \(n \in \mathbb{N} \). So the claim holds, and \(\varphi, a_0, \) and \(h \) cannot satisfy (1.1). \(\square \)

References

[BD] M. Baker and L. DeMarco. Special curves and postcritically-finite polynomials. *Forum Math. Pi* 1(2013), 35 pages.

[BG] François Berteloot and Thomas Gauthier. On the geometry of bifurcation currents for quadratic rational maps. *Ergodic Theory Dynam. Systems* 35(2015), 1369–1379.

[Bu] Xavier Buff. Courants dynamiques pluripolaires. *Ann. Fac. Sci. Toulouse Math. (6)* 20(2011), 203–214.

[De1] L. DeMarco. Dynamics of rational maps: a current on the bifurcation locus. *Math. Res. Lett.* 8(2001), 57–66.

[De2] L. DeMarco. Dynamics of rational maps: Lyapunov exponents, bifurcations, and capacity. *Math. Ann.* 326(2003), 43–73.

[De3] L. DeMarco. Iteration at the boundary of the space of rational maps. *Duke Math. Journal* 130(2005), 169–197.

[De4] L. DeMarco. Bifurcations, intersections, and heights. *Algebra Number Theory* 10(2016), 1031–1056.

[DM] L. DeMarco and N.M. Mavraki. Variation of canonical height and equidistribution. Preprint, arXiv:1701.07947 [math.NT].
[DG] Jeffrey Diller and Vincent Guedj. Regularity of dynamical Green’s functions. *Trans. Amer. Math. Soc.* 361 (2009), 4783–4805.

[DF] R. Dujardin and C. Favre. Distribution of rational maps with a preperiodic critical point. *Amer. J. Math.* 130 (2008), 979–1032.

[Fa1] Charles Favre. Points périodiques d’applications birationnelles de \mathbb{P}^2. *Ann. Inst. Fourier (Grenoble)* 48 (1998), 999–1023.

[Fa2] Charles Favre. Degeneration of endomorphisms of the complex projective space in the hybrid space. Preprint, arXiv:1611.08490v1 [math.DS].

[FG1] Charles Favre and Thomas Gauthier. Classification of special curves in the space of cubic polynomials. To appear, *Int. Math. Res. Not.*, doi 10.1093/imrn/rnw245.

[FG2] Charles Favre and Thomas Gauthier. Continuity of the Green function in meromorphic families of polynomials. Preprint, arXiv:1706.04676v2 [math.DS].

[FS] J. E. Fornæss and N. Sibony. Complex dynamics in higher dimensions. In *Complex Potential Theory (Montreal, PQ, 1993)*, pages 131–186. Kluwer Acad. Publ., Dordrecht, 1994.

[GY] Dragos Ghioca and Hexi Ye. A Dynamical Variant of the Andr-Oort Conjecture. To appear, *Int. Math. Res. Not.*, doi 10.1093/imrn/rnw314.

[HP] J. Hubbard and P. Papadopol. Superattractive fixed points in \mathbb{C}^n. *Indiana Univ. Math. J.* 43 (1994), 321–365.

[JR] Mattias Jonsson and Paul Reschke. On the complex dynamics of birational surface maps defined over number fields. Preprint, arXiv:1505.03559 [math.DS].

[Ly] M. Yu. Lyubich. Some typical properties of the dynamics of rational mappings. *Uspekhi Mat. Nauk* 38 (1983), 197–198.

[MSS] R. Mañé, P. Sad, and D. Sullivan. On the dynamics of rational maps. *Ann. Sci. Ec. Norm. Sup.* 16 (1983), 193–217.

[Ma] Ricardo Mañé. On a theorem of Fatou. *Bol. Soc. Brasil. Mat. (N.S.)* 24 (1993), 1–11.

[Si1] Joseph H. Silverman. Integer points, Diophantine approximation, and iteration of rational maps. *Duke Math. J.* 71 (1993), 793–829.

[Si2] Joseph H. Silverman. Variation of the canonical height on elliptic surfaces. II. Local analyticity properties. *J. Number Theory* 48 (1994), 291–329.

Department of Mathematics, Northwestern University, USA

E-mail address: demarco@math.northwestern.edu

Division of Mathematics, Kyoto Institute of Technology, Japan

E-mail address: okuyama@kit.ac.jp