Screening of wild tomato species and interspecific hybrids for resistance/tolerance to *Tomato brown rugose fruit virus* (ToBRFV)

Aylin Kabas¹*, Hakan Fidan², Huseyin Kucukaydin³, and H. Nur Atan³

¹Akdeniz University, Manavgat Vocational School, P.O. Box 07070, Antalya, Turkey. *Corresponding author (demirelliaylin@hotmail.com).
²Akdeniz University, Faculty of Agriculture, Department of Plant Protection, P.O. Box 07070, Antalya, Turkey.
³Antalya Agriculture Production Consultancy and Marketing Company, P.O. Box 07300, Antalya, Turkey.

ABSTRACT

Tomato (*Solanum* spp.) is the second most-consumed vegetable after potato and grown all over the world. *Tomato brown rugose fruit virus* (ToBRFV) was first identified in 2014 on tomato plants, since then it has been reported in many countries. It is a significant threat to tomato production. This work aimed to identify the disease resistance source(s). To achieve this aim, a total of 44 tomato materials including 28 accessions of eight wild species, two accessions of *Solanum arcanum* Peralta, *S. pennellii* Correll, and *S. sitiens* I.M. Johnst., seven accessions of *S. chilense* (Dunal) Reiche, five accessions of *S. pimpinellifolium* L., four accessions of *S. habrochaites* S. Knapp & D.M. Spooner, three accessions of *S. peruvianum* L., one accession of *S. chmielewskii* (C.M. Rick et al.) D.M. Spooner et al. and *S. huaylasense* Peralta, 5 cultivated tomatoes (*S. lycopersicum* L.) and 11 interspecific F₁ hybrids derived from *S. habrochaites* and *S. pennellii* were tested with ToBRFV isolates by using the biological testing method. Mechanical inoculation method was used for biological testing. ToBRFV was inoculated to 10 plants with 2-3 true leaves two replicates for each genotype. As a result, *S. pimpinellifolium* (LA1651), *S. pennellii* (LA0716), and *S. chilense* (LA4117A, LA2747) were found tolerant to ToBRFV with the lowest disease severity index (DSI) with 19.6%, 28.3% and 35.0%, respectively. Also, molecular genetic analysis of the plant material by using molecular markers revealed that there was no interaction between other virus resistance genes (*Tm-22* and *Tm-1*) and ToBRFV resistance. These wild tomato species identified in the present study are valuable genetic resources to develop new resistance cultivars for ToBRFV resistance in tomato breeding programs.

Key words: Resistance, ToBRFV, tomato, wild species.

INTRODUCTION

Tomato (*Solanum lycopersicum* L.) is one of the most economically essential vegetables in the world. The world tomato production is over 180 million tons from an area of 5.03 million hectares (FAO, 2021). Tomato production is affected by biotic stress due to the susceptibility of cultivated tomato to more than 200 diseases, including fungi, nematodes, bacteria, and viruses that can cause significant economic losses (Singh et al., 2017). Although natural resistance genes originating from wild tomato species are used to improve the disease resistance of cultivated tomatoes, newly evolved biotic factors can overcome the resistance provided by the resistance genes. A freshly discovered *Tobamovirus* in Jordan and Israel called *Tomato brown rugose fruit virus* (ToBRFV) endangers the production of tomatoes by overcoming the resistance of *Tm-22* resistance gene and confer resistance to *Tomato mosaic virus* (Levitzky et al., 2019). The disease has spread throughout the Middle East, Europe, America, and China (Salem et al., 2016; Luria et al., 2017; Fidan et al., 2019; Beris et al., 2020). ToBRFV has since been reported in several countries on tomato in China, UK, USA, Germany, Turkey, Spain, Egypt, Mexico (Cambrón-Crisantos et al., 2019; Fidan et al., 2019; Ling et al., 2019; Menzel et al., 2019; Skelton
et al., 2019; Yan et al., 2019; Alfaro-Fernández et al., 2020; Amer and Mahmoud, 2020) and on pepper in Italy and Jordan (Panno et al., 2020a; Salem et al., 2020) and is likely to spread to other countries.

ToBRFV has local and systemic symptoms and mild to severe mosaic on leaves with occasional narrowing of leaves. The fruit affected by this virus has yellow spots, necrotic and brown areas which result in a non-marketable product (Salem et al., 2016; Luria et al., 2017; Fidan et al., 2021). ToBRFV was expected to cause a total 30%-70% reduction in marketable tomato fruit production in Florida, resulting in an annual economic effect of USD 262 million (Klap et al., 2020). However, studies estimating gross tomato fruit production losses are still to be completed (Jones, 2021).

ToBRFV transmission is mainly mechanical, but it can also be transmitted via contaminated seeds or fruits over long distances and bumblebees in a greenhouse (Levitzky et al., 2019; Panno et al., 2020b). The source of inoculum may differ depending on field or greenhouse conditions. The disease is spread by mechanical contact or through the vector bumblebees, which carry the virus from plant to plant (Levitzky et al., 2019; Panno et al., 2020). ToBRFV outbreaks have been observed in a number of countries worldwide (Chanda et al., 2021). Thus, this study’s main objective was to screen wild species, cultivated tomato genotypes, and interspecific hybrids for ToBRFV resistance to determine the resistance source used in tomato breeding programs.

MATERIALS AND METHODS

Plant material

A total of 44 tomato (Solanum spp.) materials including 28 wild species (two accessions of S. arcanum Peralta, S. pennellii Corell and S. sitiens I.M. Johnst., seven accessions of S. chilense (Dunal) Reiche, five accessions of S. pimpinellifolium L., four accessions of S. habrochaites S. Knapp & D.M. Spooner, three accessions of S. peruvianum L., one accession of S. chmielewskii (C.M. Rick et al.) D.M. Spooner et al. and S. huaylasense Peralta, five cultivated tomatoes (S. lycopersicum L.) and 11 interspecific F1 hybrids derived from S. habrochaites and S. pennellii were used as plant materials (Table 1).

Entire genome of virus isolate (MT107885.1 TBRFV-Ant-Tom) used in the study was registered in the National Center for Biotechnology Information (NCBI, Bethesda, Maryland, USA).

Name of species	Accession number	Origin	Name of species	Accession number	Origin
Solanum arcanum	LA2151 TGRC	S. peruvianum L.	LA1337 TGRC		
S. arcanum	LA2157 TGRC	S. peruvianum	LA2744 TGRC		
S. chilense (Dunal) Reiche	LA4117A TGRC	S. peruvianum	LA0462 TGRC		
S. chileana	LA2748 TGRC	S. pimpinellifolium L.	LA2656 TGRC		
S. chilense	LA2880 TGRC	S. pimpinellifolium	LA2903 TGRC		
S. chilense	LA2931 TGRC	S. pimpinellifolium	LA1651 TGRC		
S. chilense	LA1932 TGRC	S. pimpinellifolium	LA0442 TGRC		
S. chilense	LA1971 TGRC	S. pimpinellifolium	LA1579 TGRC		
S. chilense	LA2747 TGRC	S. sitiens I.M. Johnst.	LA4110 TGRC		
S. chmielewskii (C.M. Rick et al.) D.M. Spooner et al.	LA1318 TGRC	S. sitiens	LA4331 TGRC		
S. habrochaites S. Knapp & D.M. Spooner	LA1393 TGRC	Other	LA4135 TGRC		
S. habrochaites	LA1777 TGRC	S. lycopersicum × S. habrochaites	AKT11 AKD		
S. habrochaites	LA0407 TGRC	S. lycopersicum × S. habrochaites	AKT4 AKD		
S. habrochaites	LA1778 TGRC	S. lycopersicum × S. habrochaites	AKT5 AKD		
S. huaylasense Peralta	LA1982 TGRC	S. lycopersicum × S. habrochaites	AKT6 AKD		
S. lycopersicum L.	AKT44 AKD	S. lycopersicum × S. habrochaites	AKT8 AKD		
S. lycopersicum	AKT45 AKD	S. lycopersicum × S. habrochaites	AKT9 AKD		
S. lycopersicum	Ayuş Local variety	S. lycopersicum × S. habrochaites	AKT10 AKD		
S. lycopersicum	Lice Local variety	S. lycopersicum × S. habrochaites	AKT11 AKD		
S. lycopersicum	Torry F1 Sygenta	S. lycopersicum × S. pennellii	AKT13 AKD		
S. pennellii Corell	LA0716 TGRC	S. lycopersicum × S. penellii	AKT14 AKD		
S. pennellii	LA1940 TGRC	S. lycopersicum × S. penellii	AKT16 AKD		

TGRC: Tomato Genetic Resource Center; AKD: Akdeniz University Manavgat Vocational School Tomato Gene Pool.
Growth conditions and inoculum preparation

The test plants for inoculation were in an equal volume of steam-sterilized perlite: peat mix. The experiment was conducted in a completely randomized block with two replicates. Each replicate tested 10 plants, and non-inoculated plants from each tomato material were used as control plants. The origin of the *Tomato brown rugose fruit virus* (ToBRFV) was greenhouse tomato plants grown in Antalya, reported by Fidan et al. (2019). Details of molecular validation of ToBRFV were described in the respective publication. The inoculum was prepared from the collected symptomatic fruit and leaf samples which were individually homogenized in 0.01 mol L⁻¹ phosphate buffer (0.8 mol L⁻¹ KH₂PO₄, 0.1 mol L⁻¹ Na₂HPO₄, pH 7.0). A sponge was dipped into the inoculum and rubbed across healthy, immature leaves of the test plants. This process created micro-abrasions that served as entry points for virus infection after inoculation test plants were grown in a growth chamber with a photoperiod of 16:8 h and a target air temperature set at 28 °C/20 °C day/night (Fidan et al., 2021).

Disease severity index (DSI)

The symptoms of ToBRFV were evaluated according to disease severity index (DSI) after 30 d of the mechanical inoculation and using the 0 to 3 DSI modified by Zinger et al. (2021) given in Table 2; where: 0 indicates no ToBRFV symptoms, and 3 indicates severe symptoms (Figure 1). The tested plants were scored using a scale of 0-3 as specified, and whether all plants were infected with ToBRFV. The DSI values were calculated as follows (Chiang et al., 2017):

\[
\text{DSI} \% = \frac{\sum (\text{Class frequency} \times \text{Score of rating class})}{(\text{Total number of observations}) \times (\text{Maximal disease index})} \times 100
\]

Molecular markers and PCR amplifications

Genomic DNA of the genotypes was isolated from the fresh leaves according to CTAB method (Doyle and Doyle, 1990). The presence of the resistance genes *Tm-1* and *Tm-2* was investigated essentially, using sequence characterized amplified region (SCAR) markers (Ohmori et al., 1996) and tetra-primer amplification refractory mutation system (ARMS) (Lanfermeijer et al., 2003) primers, respectively.

Classes	Symptoms	Disease classes interval	Disease reaction
0	No visible symptoms	0	Resistant
1	Very slight chlorosis, mosaic form on apical leaf	0.01-1.4	Tolerant
2	Severe mosaic form and blistering on the leaf surface	1.5-2.4	Susceptible
3	Very severe blistering on the leaf and leaf narrowing, wilt, and death of complete plants	2.5-3.0	Highly susceptible

Figure 1. *Tomato brown rugose fruit virus* (ToBRFV) symptoms of the tomato leaves: 0 indicates no symptoms and 3 indicates severe symptoms.
RESULTS AND DISCUSSIONS

Screening for tomato genotypes resistant or tolerant to ToBRFV

We have inoculated 44 tomato genotypes, including 28 wild genotypes, 5 cultivated tomatoes, and 11 interspecific hybrids with a mechanical inoculation technique. As a result, *S. pimpinellifolium* (LA1651), *S. penellii* (LA0716), and *S. chilense* (LA4117A, LA2747) were found to be tolerant to ToBRFV due to the lowest disease severity index (DSI) with 19.6%, 28.3%, 35.0% and 35.2%, respectively (Table 3). These lines also had lowest symptom severity classes based on Table 2 (0.6, 0.9, and 1.1, respectively) (Figure 2).

On the contrary, Torry F1, *S. pimpinellifolium* F1, Lice, *S. pimpinellifolium* (LA2656), *S. pimpinellifolium* (LA2093) (Figure 3), Ayaş, AKT45, and AKT10 were evaluated as highly susceptible to ToBRFV with 100% (DSI) (Table 3). The severity index value of these genotypes was evaluated 3 (Figure 1). The incidence of ToBRFV disease reached 100% in some commercially grown tomato cultivars planted in greenhouse environments (Samarah et al., 2021). For the first time, the tolerant genotypes are presented here to different wild genotypes.

Table 3. Disease severity index (DSI) of tomato plants infected with *Tomato brown rugose fruit virus* (ToBRFV).

Accession number	Disease severity (%)	Accession number	Disease severity (%)
LA1940	51.7	LA1337	54.2
LA0716	28.3	LA1318	44.4
LA4117A	35.0	LA1982	46.7
LA1971	74.1	LA2151	57.6
LA2747	35.2	LA2157	63.3
LA2748	70.0	LA4135	61.5
LA2880	52.4	AKT44	81.5
LA2931	47.9	AKT45	100.0
LA1932	61.1	Ayaş	100.0
LA0407	41.7	Lice	100.0
LA1778	40.0	Torry F1	100.0
LA1393	60.0	AKT1	66.7
LA1777	41.7	AKT4	80.0
LA4110	59.6	AKT5	83.3
LA4351	42.9	AKT6	71.4
LA2656	100.0	AKT8	77.8
LA0442	60.0	AKT9	66.7
LA1579	38.9	AKT10	100.0
LA2093	100.0	AKT11	81.0
LA1651	19.6	AKT13	54.2
LA2744	68.5	AKT14	69.4
LA0462	68.5	AKT16	75.8

Figure 2. Symptom severity classes of tested tomato material.
Resistant or tolerant variety is the most important variety to control this disease, so the breeders need resistance sources to improve the new variety. The resistance source of ToBRFV is not clear, but Zinger et al. (2021) determined that 160 genotypes were tested in a greenhouse with ToBRFV and 29 (18.1%) which consist of nine (31.0%) belong to S. pimpinellifolium and eight (27.6%) were cultivated lines or hybrids. Similar to the present study results, they reported that tolerance of S. pimpinellifolium (LA1651, LA1579), other accessions LA0442, LA2656, and LA2093 were susceptible and enhanced susceptible respectively. Many investigations reported that the response of accessions in the same tomato species could show different results to biotic stress. Foolad et al. (2014) reported that 16 out of 67 accessions of the wild tomato species, S. pimpinellifolium, were identified with strong late blight resistance in both field and greenhouse experiments.

Our study supports that S. pimpinellifolium (LA1651) could be used as a resistance source. Additionally, S. penellii (LA0716) and S. chilense (LA4117A, LA2747) could be another potential source to ToBRFV resistance (Figure 4). To our knowledge, this is the first time that a potential resistance source (different tomato species especially wild and cultivated) to ToBRFV was determined with pathogenicity tests.

Screening for tomato genotypes Tm-1 and Tm-2^2 locus

In the present study, the presence of the resistance genes Tm-1 and Tm-2^2 were determined using SCN20F, SCN20R (Ohmori et al., 1996), and Outer primer TM2-748F, TM2-1256R, TM2-SNP901misR, and TM2-SNP901misF (Lanfermeijer et al., 2003). Primers are shown in Table 4. The results of genotypes are given in Table 5. Among 36 out of 44 tomato genotypes had Tm-2^2 gene, 17 out of 44 genotypes had Tm-1 gene, and 16 tomato genotypes had two genes respectively (Figures 5a and 5b). The Tm-1 gene is a dominant gene found in S. habrochaites; while Tm-2^2 is determined in S. peruvianum (Pfitzner, 2006). Our result showed that Tm-1 and Tm-2^2 genes were not associated with ToBRFV. Plants carrying both Tm-1 and Tm-2^2 in a homozygous state were highly susceptible to ToBRFV (Zinger et al., 2021). Tomato cultivars containing the Tm-2^2 gene were not resistant to ToBRFV, but were resistant to Tomato mosaic virus (ToMV) and Tomato mottle mosaic virus (ToMMV), according to a comparative examination of disease resistance across tomato cultivars to three tobamoviruses (Chanda et al., 2021). The result of the present study was similar in terms of breaking the Tm-2^2 resistance to results of Zinger et al. (2021) and Chanda et al. (2021). Therefore, results were different because Zinger et al. (2021) reported that resistance gene in chromosome T11 had interaction with Tm-1 gene on chromosome T2. Comprehensive study is needed to find novel gene or loci conering resistance to ToBRFV.
Figure 4. Symptoms of tomato plants against *Tomato brown rugose fruit virus* (ToBRFV). Genotype LA1651 is disease tolerant and shows very slight chlorosis, mosaic forms on leaf (1) (a); LA0716 and LA2747 genotypes have different leaf types and disease tolerance too (b-c).

Table 4. Resistance genes and their primers used for sequencing.

Gene	Primer	Sequence	Resistance/susceptible alleles	References
Tm-1	SCN20F	GGTGCTCCGTCGATGCAAAGTGCA	1400 R	Ohmori et al., 1996
	SCN20R	GGTGCTCCGTAGACATAAAATCTCA		
Tm-22	Outer primer TM2-748F	CGGTCTGGGAAAAAACACTCT	179 R/382 S/509 other	Lanfermeijer et al., 2003
	Outer primer TM2-1256R	CTAGCGTATACCTCCAATCCAC		
	TM2-SNP901misR	GCAGGGTGTCCTCAAATTTTCCATC		
	TM2-SNP901misF	CAAATGGACTGACGGACAGAAAGTT		

Table 5. Genotypes of tomato accessions to *Tm-22* and *Tm-1* resistance genes determined by polymerase chain reaction analyses.

Accession number	Tm-22	Tm-1	Accession number	Tm-22	Tm-1
LA1940	RR	S	LA1337	S	R
LA0716	RR	S	LA1318	RR	S
LA4117A	RR	S	LA1982	RR	S
LA1971	RR	S	LA2151	RR	S
LA2747	RR	R	LA2157	RR	S
LA2748	RR	R	LA4135	RR	S
LA2880	RR	R	AKT44	S	S
LA2931	RR	R	AKT45	S	S
LA1932	RR	S	Ayaş	S	S
LA0407	RR	R	Lice	RR	S
LA1778	RR	R	Torry F1	RR	S
LA1393	RR	R	AKT1	RR	R
LA1777	RR	R	AKT4	RR	S
LA4110	RR	S	AKT5	RR	R
LA4331	S	S	AKT6	RR	S
LA2656	RR	R	AKT8	RR	R
LA0442	S	S	AKT9	RR	R
LA1579	RR	S	AKT10	RR	R
LA2093	S	S	AKT11	RR	R
LA1651	S	S	AKT13	RR	S
LA2744	RR	S	AKT14	RR	S
LA0462	RR	S	AKT16	RR	R

RR: Homozygote resistance; R: resistance; S: susceptible.
CONCLUSIONS

Tomato brown rugose fruit virus (*ToBRFV*) is the main *Tobamovirus* that can be spread very rapidly by mechanical wounding, seeds, and human activities in tomato production areas. The development of resistant cultivars is the most effective approach of *ToBRFV* control. The present study initiated such approach by screening eight wild tomato species. As result, three wild tomato species (*Solanum pimpinellifolium* LA1651, *S. penellii* LA0716, and *S. chilense* LA4117A, LA2747) were found to be tolerant to *ToBRFV* based on morphological evaluation and disease severity index. Also, the study revealed that other virus resistance genes (*Tm-22* and *Tm-1*) were independent for resistance to *ToBRFV*. The current study results will be invaluable to develop new resistant tomato lines or hybrids plants.

REFERENCES

Alfaro-Fernández, A., Castillo, P., Sanahuja, E., Rodríguez-Salido, M.C., and Font, M.I. 2020. First report of Tomato brown rugose fruit virus in tomato in Spain. *Plant Disease* 105(2):515.

Amer, M.A., and Mahmoud, S.Y. 2020. First report of *Tomato brown rugose fruit virus* on tomato in Egypt. *New Disease Reports* 41:24.

Beris, D., Malandraki, I., Kektsidou, O., Theologidis, I., Vassilakos, N., and Varveri, C. 2020. First report of Tomato brown rugose fruit virus infecting tomato in Greece. *Plant Disease* 104(7):2035.

Cambrón-Crisantos, J.M., Rodríguez-Mendoza, J., Valencia-Luna, J. B., Alcasio Rangel, S., García-Ávila, C., López-Buenfil, J.A., et al. 2019. First report of *Tomato brown rugose fruit virus* (*ToBRFV*) in Michoacan, Mexico. *Revista Mexicana de Fitopatología* 37(1):185-192.

Chanda, B., Gilliard, A., Jaiswal, N., and Ling, K.S. 2021. Comparative analysis of host range, ability to infect tomato cultivars with *Tm-22* gene and real-time reverse transcription PCR detection of *Tomato brown rugose fruit virus*. *Plant Disease* doi:10.1094/PDIS-05-20-1070-RE.

Chiang, K.S., Liu, H.I., and Bock, C.H. 2017. A discussion on disease severity index values. Part I: warning on inherent errors and suggestions to maximise accuracy. *Annals of Applied Biology* 171(2):139-154.
Dianese, E.C., de Fonseca, M.E., Goldbach, R., Kormelink, R.G., Inoue-Nagata, A.K., Resende, R.O., and Boiteux, L.S. 2010. Development of a locus-specific, co-dominant SCAR marker for assisted-selection of the Sw-5 (Tospovirus resistance) gene cluster in a wide range of tomato accessions. Molecular Breeding 25:133-142. doi:10.1007/s11032-009-9313-8.

Doyle, J.J., and Doyle, J.L. 1990. Isolation of plant DNA from fresh tissue. Focus 12:13-15.

FAO. 2021. FAOSTAT. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. Available at http://www.fao.org/faostat/en/#data/QC (accessed 24 January 2021).

Fidan, H., Sarikaya, P., and Calis, O. 2019. First report of Tomato brown rugose fruit virus on tomato in Turkey. New Disease Reports 39:18.

Fidan, H., Sarikaya, P., Yildiz, K., Topkaya, B., Erkis, G., and Calis, O. 2021. Robust molecular detection of the new Tomato brown rugose fruit virus in infected tomato and pepper plant from Turkey. Journal of Integrative Agriculture 20(8):2170-2179.

Foolad, M.R., Sullenberger, M.T., Ohlison, E.W., and Gugino, B.K. 2014. Response of accessions within tomato wild species, Solanum pimpinellifolium to late blight. Plant Breeding 133(3):401-411.

Foolad, M.R., Sullenberger, M.T., Ohlison, E.W., and Gugino, B.K. 2014. Response of accessions within tomato wild species, Solanum pimpinellifolium to late blight. Plant Breeding 133(3):401-411.

Foolad, M.R., Sullenberger, M.T., Ohlison, E.W., and Gugino, B.K. 2014. Response of accessions within tomato wild species, Solanum pimpinellifolium to late blight. Plant Breeding 133(3):401-411.

Foolad, M.R., Sullenberger, M.T., Ohlison, E.W., and Gugino, B.K. 2014. Response of accessions within tomato wild species, Solanum pimpinellifolium to late blight. Plant Breeding 133(3):401-411.

Foolad, M.R., Sullenberger, M.T., Ohlison, E.W., and Gugino, B.K. 2014. Response of accessions within tomato wild species, Solanum pimpinellifolium to late blight. Plant Breeding 133(3):401-411.

Foolad, M.R., Sullenberger, M.T., Ohlison, E.W., and Gugino, B.K. 2014. Response of accessions within tomato wild species, Solanum pimpinellifolium to late blight. Plant Breeding 133(3):401-411.

Foolad, M.R., Sullenberger, M.T., Ohlison, E.W., and Gugino, B.K. 2014. Response of accessions within tomato wild species, Solanum pimpinellifolium to late blight. Plant Breeding 133(3):401-411.

Foolad, M.R., Sullenberger, M.T., Ohlison, E.W., and Gugino, B.K. 2014. Response of accessions within tomato wild species, Solanum pimpinellifolium to late blight. Plant Breeding 133(3):401-411.

Foolad, M.R., Sullenberger, M.T., Ohlison, E.W., and Gugino, B.K. 2014. Response of accessions within tomato wild species, Solanum pimpinellifolium to late blight. Plant Breeding 133(3):401-411.

Foolad, M.R., Sullenberger, M.T., Ohlison, E.W., and Gugino, B.K. 2014. Response of accessions within tomato wild species, Solanum pimpinellifolium to late blight. Plant Breeding 133(3):401-411.

Foolad, M.R., Sullenberger, M.T., Ohlison, E.W., and Gugino, B.K. 2014. Response of accessions within tomato wild species, Solanum pimpinellifolium to late blight. Plant Breeding 133(3):401-411.

Foolad, M.R., Sullenberger, M.T., Ohlison, E.W., and Gugino, B.K. 2014. Response of accessions within tomato wild species, Solanum pimpinellifolium to late blight. Plant Breeding 133(3):401-411.

Foolad, M.R., Sullenberger, M.T., Ohlison, E.W., and Gugino, B.K. 2014. Response of accessions within tomato wild species, Solanum pimpinellifolium to late blight. Plant Breeding 133(3):401-411.

Foolad, M.R., Sullenberger, M.T., Ohlison, E.W., and Gugino, B.K. 2014. Response of accessions within tomato wild species, Solanum pimpinellifolium to late blight. Plant Breeding 133(3):401-411.

Foolad, M.R., Sullenberger, M.T., Ohlison, E.W., and Gugino, B.K. 2014. Response of accessions within tomato wild species, Solanum pimpinellifolium to late blight. Plant Breeding 133(3):401-411.

Foolad, M.R., Sullenberger, M.T., Ohlison, E.W., and Gugino, B.K. 2014. Response of accessions within tomato wild species, Solanum pimpinellifolium to late blight. Plant Breeding 133(3):401-411.

Foolad, M.R., Sullenberger, M.T., Ohlison, E.W., and Gugino, B.K. 2014. Response of accessions within tomato wild species, Solanum pimpinellifolium to late blight. Plant Breeding 133(3):401-411.

Foolad, M.R., Sullenberger, M.T., Ohlison, E.W., and Gugino, B.K. 2014. Response of accessions within tomato wild species, Solanum pimpinellifolium to late blight. Plant Breeding 133(3):401-411.