Homotypic and heterotypic in cis associations of MHC class I molecules at the cell surface

Fernando M. Ruggiero, Sebastian Springer*

School of Science, Jacobs University Bremen, Campus Ring 1, D-28759, Bremen, Germany

ARTICLE INFO

Keywords:
MHC class I
Dimers
Oligomers
Free heavy chain
Homotypic associations
Open conformers
Closed conformers
Empty conformers
Non-covalent associations

ABSTRACT

Through the presentation of peptide antigens to cytotoxic T lymphocytes, major histocompatibility complex (MHC) class I molecules mediate the adaptive immune response against tumors and viruses. Additional non-immunological functions include the heterotypic association of class I molecules with cell surface receptors, regulating their activities by unknown mechanisms. Also, homotypic associations resulting in class I dimers and oligomers - of unknown function - have been related to pathological outcomes. In this review, we provide an overview of the current knowledge about the occurrence, biochemical nature, and dynamics of homotypic and heterotypic associations of class I molecules at the cell surface with special focus on the molecular species that take part in the complexes and on the evidence that supports novel biological roles for class I molecules. We show that both heterotypic and homotypic class I associations reported in the literature describe not one but several kinds of oligomers with distinctive stoichiometry and biochemical properties.

1. Introduction

Major histocompatibility (MHC) class I molecules mediate the cellular adaptive immune response by presenting antigenic peptides of virus-infected and tumorigenic cells to cytotoxic CD8+ lymphocytes (Townsend and Bodmer, 1989; Huppa and Davis, 2003). Besides this classically recognized function, other immunological roles exist: for natural killer (NK) cells, MHC class I molecules are inhibitory ligands; thus, cells that lack one or more self-MHC class I molecules on their surfaces may be rapidly eliminated as the result of NK cell activation (missing self hypothesis) (Ljunggren, 2021; Ljunggren and Kärre, 1990).

Recently, it has become evident that class I molecules are involved in non-immunological tasks, regulating synaptic remodeling and plasticity (Cebrián et al., 2014; Shatz, 2009) and synapse density in the developing brain (Glynn et al., 2011; Elmer et al., 2013). Roles in neurological and psychiatric disorders such as amyotrophic lateral sclerosis, schizophrenia, and bipolar disorder have been described (Stefansson et al., 2009; Shi et al., 2009). Such roles might involve the modulation of intracellular signal transduction events through the association of class I molecules with cell surface receptors on the same cell (in cis heterotypic associations) (Dixon-Salazar et al., 2014; Fishman et al., 2004). However, the molecular mechanisms by which class I molecules might regulate the receptor activity are not well understood.

There is also evidence for in cis homotypic interactions, i.e., associations of class I molecules with other class I molecules at the cell surface. Such homotypic associations might be involved in immunological or non-immunological processes. For example, oligomers of class I free heavy chains observed on the cell surface of neurons were found to negatively regulate synapse density during the establishment of neuronal connections (Glynn et al., 2011; Elmer et al., 2013). In addition, covalent HLA-B*27:05 dimers were postulated to be ligands of activating NK cell receptors and to trigger autoimmune inflammatory disease (Chen et al., 2017). The molecular mechanisms of such processes warrant further investigation.

There are three forms, or species, of monomeric class I molecules at the cell surface (Fig. 1A). Antigenic peptides (P) are presented to cytotoxic T cells as part of a non-covalent complex formed by the polymorphic class I transmembrane heavy chain (H) and the non-polymorphic light chain beta-2 microglobulin (β2m, β). This heavy chain/β2m/peptide (HβP) complex is assembled in the endoplasmic reticulum (ER) and then exported to the plasma membrane (Fritzsche and Springer, 2013; Donaldson and Williams, 2009; Peaper and Cresswell, 2008), where it typically resides for hours to days (Springer, 2015; Lu et al., 2012).

Peptide-free class I molecules are also known to exist. These can be...
either complexes between heavy chain (H) and β2m (i.e., Hβ2m) or else free heavy chains (H) (Fig. 1A). Hβ2m may escape from the ER before loading with high-affinity peptide (Montealegre et al., 2015; Ortiz-Navarrete and Hammerling, 1991; Day et al., 1995; Saini et al., 2013; Allen et al., 1986a), and/or they may arise after dissociation of the peptide from HβP at the cell surface or in recycling endosomes (Montealegre et al., 2015; Dirscherl et al., 2018; Matko et al., 1994; Rock et al., 1991a; Schumacher et al., 1990; Hochman et al., 1991; Pickl et al., 1996). Some Hβ2m can rapidly re-bind peptides to form HβP (Sugita and Brenner, 1994; Saini et al., 2019), whereas others cannot (Montealegre et al., 2015). The steady state level of Hβ2m remains low compared to HβP, since Hβ2m are rapidly internalized from the cell surface by endocytosis (Montealegre et al., 2015; Merzougui et al., 2011; Montealegre and van Endert, 2018).

Alternatively, Hβ2m dissociate, releasing β2m as a soluble protein, with the resulting H remaining membrane-associated (Dirscherl et al., 2018). If the loss of β2m from Hβ2m is delayed by mutation (or in a recombinant single-chain Hβ construct), then cell surface removal is dramatically slowed, suggesting that endocytic degradation occurs via H (Montealegre et al., 2015).

As mentioned, H are formed at the plasma membrane from Hβ2m, but they also exist in the ER and Golgi complex of β2m-defective, virus-infected, and tumorigenic cells, from where they can travel through the secretory pathway to reach the plasma membrane (Tu et al., 2012; Capps et al., 1993; Potter et al., 1984; Lhotakova et al., 2019). There are two biochemically different species of H, one that is able to re-bind β2m, producing Hβ2m (Chakrabarti et al., 1992), whereas the other one (perhaps as a result of a slow conformational rearrangement of the former species) cannot re-associate with β2m and peptide and thus remains as H (Montealegre et al., 2015; Matko et al., 1994; Edidin et al., 1997; Marozzi et al., 1993).

For both Hβ2m and H, the experimental observations of a short lifetime and a low steady-state level might – at least partially – be caused by their participation in homotypic and/or heterotypic associations that conceal epitopes, precluding their detection by antibodies (Matko et al., 1994). This is in line with the many observations that report large amounts of Hβ2m at the cell surface as shown by addition of exogenious peptides (Ortiz-Navarrete and Hammerling, 1991; Day et al., 1995; Saini et al., 2013; Schumacher et al., 1990; Sugita and Brenner, 1994; Ljunggren et al., 1990; Christinck et al., 1991; Neefjes et al., 1992; Burshkyn and Barber, 1993; Carreno and Hansen, 1994; Su et al., 1998). Thus, the observed short lifetime of Hβ2m and H does not necessarily argue against a biological function for these molecules. Indeed, major efforts have been undertaken to uncover the occurrence and the roles of homotypic and heterotypic associations involving all three different species of class I molecules, as described in the following sections.

In the literature, the different class I molecular species are usually referred to as “closed” (corresponding to HβP) and “open” or even “empty” (corresponding to Hβ2m and/or H) conformers. But these terms do not provide a precise molecular description. The term “empty” is particularly inaccurate, since the lack of bound peptide does not necessarily imply that the binding groove is empty. Indeed, a recent study showed that the peptide binding groove of HLA-A2 was occupied by small organic molecules when it was in a peptide-free form (Anjana et al., 2020). Water molecules in the binding groove might also contribute to the binding energy of peptides, playing an active role as mediators in the MHC-peptide interaction (Petrone and Garcia, 2004).

![Fig. 1. Known species of MHC class I monomers and dimers. A, Schematic representation of the different molecular species of class I molecules (HβP, Hβ and H) found at the cell surface. P: antigenic peptide; H: class I transmembrane heavy chain; β: beta-2 microglobulin. B, Non-covalent homotypic associations between class I species (HβP/HβP, HβP/H and H/H) of the same or different allotypes (Table 1). C, Covalently bound class I dimers. For those dimers formed between free heavy chains (H), the same or different allotypes might be involved, and the disulfide bond links the extracellular domains (H-H) or the cytosolic domains (H-H). Covalent dimers of HβP species (HβP/HβP) were only reported for HLA-G (Table 1). D, Example of heterotypic association. The non-covalent interaction between HβP or H with the insulin receptor (IR) is depicted as an example. The structure of the IR is simplified and does not reflect the actual structure of the receptor. Different interacting partners were described in the literature (Table 2). For clarity, only dimeric associations of a single allotype are shown.](image-url)
Hβ also bind dipeptides and short peptides (Saini et al., 2013, 2015; Ljunggren et al., 1990) or low-affinity full-length peptides. Due to weak binding and rapid dissociation of these peptides, they cannot be co-isolated with class I upon cell lysis and immunoprecipitation. Thus, the word “empty” is inaccurate, and Hβ that can bind peptide are better called peptide-receptive. Finally, the term “open conformers” alludes to the venus flytrap structural model of peptide binding, in which the lateral helices of the peptide binding groove are hypothesized to open up outwards, away from each other, when no peptide is bound. In contrast to this simplistic static model, it is now known that the main property of peptide-empty class I molecules is the conformational fluctuation, or instability, of the peptide binding groove, which strongly depends on the allotype, and which may lead – on the average of conformational fluctuation – to an inward, outward, or no net movement of the helices (Jantz-Naem and Springer, 2021; Bouvier and Wiley, 1998; Kurimoto et al., 2013; Zacharias and Springer, 2004). Also, the term “open conformers” does not differentiate the Hβ and H species, which have very distinct biochemical properties (Montealegre et al., 2015).

In this review, we describe the molecular species of class I that are involved in homotypic and heterotypic associations at the cell surface (Tables 1 and 2). Tables 3 and 4 show the class I allotypes and the specificity of the antibodies in each experimental approach. Literature information was sometimes insufficient to precisely assess the molecular species involved in the associations.

2. MHC class I in cis homotypic associations

Homotypic associations were first described both for human (Matko et al., 1994; Chakrabarti et al., 1992) and murine (Capps et al., 1993) class I molecules in the early 1990s, and many times since then (Table 1). The first reports stated that β2m-free heavy chains (H, Fig. 1A) are necessary participants of homotypic associations between class I molecules, since such associations were only detected when class I species reactive with the mAb HC-10 (i.e., H; Table 4) were also present at the cell surface (Matko et al., 1994; Chakrabarti et al., 1992). Also, class I associations were reduced after addition of exogenous β2m, which binds to H at the cell surface (Capps et al., 1993; Chakrabarti et al., 1992; Bodnar et al., 2003).

Depending on the MHC I allotype (Table 3) and on the specificity of the antibodies (Table 4), two class I molecular species were mainly found to be involved in dimer formation, giving rise to three non-covalent homotypic complexes, namely HβP/HβP, HβP/H, and H/H (Fig. 1B and Table 1), and to three covalently linked complexes, HβP-HβP, HβP/H, H–H (both linked through extracellular domains) and H–H through cytoplasmic domains (Fig. 1C and Table 1). Still, some conformation-specific monoclonal antibodies that are commonly thought to depend on the presence of peptide, such as W6/32, might also bind to Hβ species of some allotypes, and thus, the participation of, or a requirement for, Hβ in these complexes cannot be excluded. Higher-order associations such as trimers, tetramers, and oligomers containing approximately 20–250 class I molecules were also described (Lu et al., 2012; Matko et al., 1994; Capps et al., 1993; Bodnar et al., 2003; Triantaflou et al., 2000; Ferez et al., 2014; Blumenthal et al., 2016; Fooksman et al., 2006; Jeney et al., 1997). The size of class I oligomeric associations at steady state depends on both the rates of class I entry into and exit from these associations, the latter being partially regulated by components of the actin cytoskeleton (Blumenthal et al., 2016; Lavi et al., 2012). This dynamic equilibrium defines the lifetime of associations at the plasma membrane, which were described to be in the range of seconds (Blumenthal et al., 2016; Lavi et al., 2007, 2012), minutes (Matko et al., 1994), and even hours (Lu et al., 2012), possibly depending on the allotype and/or the cell type. The rate of association is also related to plasma membrane cholesterol levels, although the molecular mechanism by which cholesterol influences the size and dynamics of class I associations is unclear (Ferez et al., 2014; Bodnár et al., 1996).

Even though the existence of homotypic associations between class I molecules has been recognized for almost half a century, the molecular mechanisms governing the interactions have only recently begun to emerge. Dimerization mediated by the formation of disulfide bonds between cysteine residues located in the extracellular domain of some allotypes has been described, including HLA-B27 through Cys-67 (Allen et al., 1999) (Fig. 1C, H-H), or Cys-42 in the nonclassical HLA-G (Boyson et al., 2002; Gonen-Gross et al., 2003, 2005; Shiroishi et al., 2006) (Fig. 1C, HβP/HβP). Relatively recently, a different type of covalent association - through cysteine residues localized in the cytosolic domain of class I - has been described (Lynch et al., 2009) (Fig. 1C, H.H). HLA-B27, the cytosolic disulfide bond occurs between Cys-325, and in HLA-A2, it probably involves its unique Cys-339, since deletion of the cytosolic domain prevented dimerization. Covalent association through the cytosolic tail was found in exosomes derived from various cell lines, but it was rarely found in the corresponding live cells (Lynch et al., 2009; Makhadiyeva et al., 2012), where the cytosol maintains a strong reducing environment. Indeed, the glutathione concentration in exosomes is only a quarter of that in the cytosol (Lynch et al., 2009), and conditions that deplete intracellular glutathione (such as treatment with oxidizers (Makhadiyeva et al., 2012) or changes in cell density and proliferation rate (Baia et al., 2016)) resulted in class I cytosolic-mediated dimer formation in live cells. In one study, HLA-A2 disulfide-bonded dimers were shown to be an artifact of sample processing, which could be avoided by the inclusion of iodoacetamide (a blocker of disulfide bond formation through covalent modification of free cysteines) (Boyson et al., 2002). Thus, current evidence limits the formation of covalent class I dimers through cytosolic cysteine residues (Fig. 1C, H.H) to the specific oxidizing conditions found in exosomes.

In contrast to the covalent dimers, disulfide bonds – at least those observed so far – do not suffice to explain the observations of class I trimers and oligomers. Purely disulfide-mediated association would mostly limit class I complexes to dimers, since the formation of higher order oligomers would require additional non-covalent interactions. Another line of evidence supporting a non-covalent nature of associations is that some class I dimers were temperature-sensitive. Heating of immunoprecipitated samples containing HLA dimers and trimers to temperatures above 37 °C abolished their association, suggesting that non-covalent forces govern the dimerization (Triantaflou et al., 2000).

At this stage of research into class I homotypic associations, conflicting descriptions of the phenomena still exist. The human lymphoblastoid cell line JY has been extensively used in the research of non-covalent class I associations, since it displays a high degree of class I oligomerization as well as substantial levels of H on its plasma membrane. However, under similar experimental conditions in the same cell line, some reports observed dimers and oligomers of class I molecules composed of HβP/HβP or HβP/H on the surface of JY cells (Matko et al., 1994; Chakrabarti et al., 1992; Bodnár et al., 2003), whereas others only described the formation of HβP/H but not of HβP/H (Bodnár et al., 1996) or were unable to detect any homotypic class I associations at all (Szollosi et al., 1989). Recently, mass spectrometry was used to map the native HLA interactome on the plasma membrane of JY cells (Armony et al., 2021). This work showed non-covalent interactions between class I molecules in detail, but it was not established which species of class I were part of the associations. Similarly, murine class I H-2Dβ molecules were found to form non-covalent oligomers containing HβP species (Ferez et al., 2014), but under different experimental conditions, only H. H complexes of 2–5 molecules were detected (Capps et al., 2003).

Human class I allotypes are able to form HβP/HβP dimers (Ferez et al., 2014; Jeney et al., 1997; Lynch et al., 2009). For murine allotypes, these dimers were only reported for H-2Kβ after expression of its extracellular domain fused to a C-terminal histidine tag. Capture through a nickel chelating lipid then allowed binding of the protein to a lipid bilayer and mimicking the normal in vivo display (Mitra et al., 2004). In living cells, HβP of H-2Kβ were detected in class I clusters (Lu et al., 2012); however, it is not clear whether they interact directly with each...
Table 1
Some reported homotypic in cis interactions between class I molecules.

Allotype	Species in the complex	Homotypic association	Cells, mice, model	Antibody	Methodology	Ref.
HLA-A2, B7, C7	H	Oligomers ³	JY cells	HC-10	FRET by flow cytometry	Matko et al. (1994)
HLA-A2, B7, C7	HβP ¹ and H		JY cells	KE-2	EEQ by flow cytometry	
HLA-A, B, C	HβP ¹ and H	Activated B or T-cells	KE-2	EEQ by flow cytometry		
HLA-A2	HβP ¹ and H	Between HLA-A2	JY cells	BB7.2	FRET by flow cytometry	Chakrabarti et al. (1992)
HLA-A2	HβP ¹ and H	Affinity purified (BB7.2) and labelled HLA-A2 reconstituted in liposomes	–	FRET by flow cytometry, TPA, FRAP		
HLA-A2	HβP ¹ and H	Between HLA-A2	JY cells	BB7.2	FRET by flow cytometry	Chakrabarti et al. (1992)
H-2L⁶	H	Dimers ⁷	HCT-Ld3 cells	28.14.8, 64.3.7	Cell surface labeling using ¹²⁵I or metabolic labeling followed by IP	Capps et al. (1993)
H-2Dβ	H	Dimers ⁷	18.48 cells	34.2.12		
H-2Kb	H	Non-covalent dimers	STF1 cells transfected with H-2Kb	–	Two-hybrid assay based on antibody microarrays	Dirscherl et al. (2018)
H-2Kb	HβP	Between Kβ bound to OVA peptide SIINFEKL	L-Kβ cells	25-D1.16	TIRFM	Lu et al. (2012)
HLA-A2, B7, C7	H	Non-covalent dimers mediated by N-linked sugars	ElD3 cells	28.14.8		
HLA-A2, B7, C7	HβP	Dimers ³	Raji cells	W6/32	Cell surface biotinylation or metabolic labeling followed by IP	Triantafillou et al. (2000)
HLA-A2, B7, C7, C4	HβP and H	Dimers and trimers ³	JY cells	W6/32, KE-2, HC-10	SNOM, FRET by flow cytometry, pFRET	Bodnar et al. (2003)
HLA-A2, B7, C7	HβP	Dimers and trimers ³	JY cells	W6/32, KE-2, HC-10	AFM, TEM, FRET by flow cytometry	Jenet et al. (1997)
H-2Kb	HβP	Oligomers	EL4 cells	AF6-88.5	TEM	Perez et al. (2014)
H-2Dβ	HβP	Oligomers	Dendritic cells	B22.249		
HLA-A9, A25, B7, B41	HβP	Oligomers ⁷	Jurkat cells	W6/32		
HLA-A2 (YFP)	HβP ¹ and H ²	Between HLA-A2-YFP with itself or with endogenously expressed A2, B7 or C7	JY cells	–	TIRFM	Fooksman et al. (2006)
HLA-A2, B7, C7	HβP	Each allotype with itself or with any other allotype ³	JY cells	W6/32, KE-2, HC-10	FRET by flow cytometry, pFRET	Bodnar et al. (1996)
HLA-A66	HβP	Between HβP of HLA-A66	HUT-102R2 cells	W6/32		
HLA-A2, B7, C7	HβP	Each allotype with itself or with any other allotype ³	JY cells	W6/32, KE-2, HC-10	FRET by flow cytometry, pFRET	Bodnar et al. (1996)
HLA-B27	H	Dimers ³ ⁷ through Cys-67	–	HC-10	In vitro refolding followed by R SDS-PAGE and SEC	Allen et al. (1999)
HLA-B27	H	Tetramers	T2 cells transfected with HLA-B27	W6/32 (IP)	Cell surface biotinylation followed by IP and NR SDS-PAGE	
HLA-A2, B7, C7	HβP ¹ and H ²	Each allotype with itself or with any other allotype ³	JY cells	–	Cross-linked MS	Armony et al. (2021)
HLA-A2, B27, C1	H	Dimers ³	Jenthom cells	HC-10	NR SDS-PAGE	
HLA-A2, B27, C1	H	Dimers ³ ⁴	Jenthom exosomes	HC-10	NR/R SDS-PAGE, NR 2D electrophoresis	Lynch et al. (2009)
HLA-A2	H	Dimers of HLA-A2	Jenthom exosomes	HCA2	NR 2D electrophoresis	Lynch et al. (2009)

(continued on next page)
Allotype	Species in the complex	Homotypic association	Cells, mice, model	Antibody	Methodology	Ref.
HLA-A2,	H	Dimers 5	Jesthom exosomes	HC-10,	NR 2D electrophoresis	
B27, C1				HCA2		
HLA-A2,	HjP, H	Dimers 5	Jesthom exosomes	W6/32 (IP),	IP followed by NR SDS-PAGE	
B27, C1				HC-10 (blot)		
HLA-A2,	HjP, H	Dimers of HLA-B27	Jesthom exosomes	ME1 (IP),	IP followed by NR SDS-PAGE	
B27, C1		HjP/H dimers of HLA-A2		HC-10 (blot)		
HLA-A2	HjP, H	Dimers between HjP of HLA-A2 and H of any other allotype	Jesthom exosomes	BB7.2 (IP),	IP followed by NR SDS-PAGE	
B27, C1				HCA2 (blot)		
HLA-A2	H	Dimers of HLA-B27	Exosomes of C58 cells transfected with HLA-B27	HC-10	NR SDS-PAGE	
B27				HCA2		
HLA-A2	H	Dimers detected in B27 transfected cells. In non-transfected cells, dimers are undetectable	Exosomes of KG-1 cells transfected with HLA-B27	HC-10	NR SDS-PAGE	
A30, A31, A33, B35, B27						
HLA-A30	H	Dimers 5	KG-1 cells	HCA2	NR SDS-PAGE	
A31, A33, B35, B27						
HLA-B27	H	Dimers of HLA-B27 through Cys-325	Exosomes of LCL 721.221 cells transfected with wild-type, C308A or C325A HLA-B27	HC-10	NR SDS-PAGE	
HLA-A2,	H	Dimers of endogenously expressed allotypes only detectable after diamide treatment	Jesthom cells	HC-10	NR SDS-PAGE	
B27, C1						
HLA-A2	HjP, B27, C1	Dimers of endogenously expressed allotypes only detectable after diamide treatment	Jesthom cells	W6/32	IP followed by NR SDS-PAGE	
HLA-A1,	H	Dimers 5	Exosomes of LCL 721.221 cells transfected with wild-type, C308A or C325A HLA-B27	HC-10	NR SDS-PAGE	
A31, B08, B40, B27						
HLA-B27	H	Dimers 5 of HLA-B27 through Cys-325	Exosomes of LCL 721.221 cells transfected with wild-type, C308A or C325A HLA-B27	HC-10	NR SDS-PAGE	
HLA-A2	H	Dimers 5 of HLA-A2 that are no longer detected when a cytoplasmic domain-deleted “tail-less” version is expressed	Exosomes of C58 cells transfected with HLA-B27	HC-10	NR SDS-PAGE	
HLA-B7	H	Dimers 5 of HLA-B7 through Cys-325 and Cys-308	LCL 721.221 cells transfected with HLA-B7	HC-10	NR/R SDS-PAGE, mutagenesis	
HLA-B27	H	Dimers of HLA-B27	LCL 721.221 cells transfected with HLA-B27	HC-10	NR SDS-PAGE	
HLA-A2	H	Dimers of HLA-A2	LCL 721.221 cells transfected with HLA-A2	HC-10	NR SDS-PAGE	
HLA-A3	H	Dimers of HLA-A3	LCL 721.221 cells transfected with HLA-A3	HC-10	NR SDS-PAGE	
HLA-G	HjP	Dimers of HLA-G through Cys-42	LCL 721.221 cells transfected with HLA-G	BBM.1	Cell surface biotinylation followed by IP and NR/R SDS-PAGE	
HLA-G	HjP	Dimers of HLA-G through Cys-42, trimer 5, 6 through Cys-42, and Cys-147, and oligomers	LCL 721.221 cells transfected with HLA-G	MEM-G/09 (IP)	Cell surface biotinylation followed by IP and 2D (NR/R) SDS-PAGE	
HLA-G	HjP	Dimers of HLA-G through Cys-42, trimer 5, 6 through Cys-42, and Cys-147, and oligomers	LCL 721.221 cells transfected with HLA-G	MEM-G/09 (IP)	Cell surface biotinylation followed by IP and 2D (NR/R) SDS-PAGE	
HLA-G	HjP	Dimers through Cys-42	–	–	In vitro refolding followed by crystallization	

(continued on next page)
other. Recently, a novel two-hybrid assay that uses antibody micro-patterns printed on glass to capture cell surface class I molecules (Dirscherl et al., 2017) was used to study the formation of H-2Kβ associations at the plasma membrane of living cells (Dirscherl and Springer, 2018). Briefly, cells express two different tagged versions of the same class I molecule, namely an N-terminally (extracellularly) HA-tagged version of H-2Kβ (i.e., HA-H-2Kβ), and a C-terminally (intracellularly) GFP-tagged variant (H-2Kβ–GFP). Cells are then seeded on a surface covered with anti-HA antibodies that are arranged in a micropattern. Cell surface HA–H-2Kβ is captured by the antibodies in the micropatterns. If a homotypic interaction between H-2Kβ–GFP and HA–H-2Kβ occurs, then GFP patterns can be detected by fluorescence microscopy. When using a TAP-deficient cell line and manipulating the incubation conditions (temperature, exogenous addition of class I binding peptide), this assay also reveals the species of the interacting molecules (HβP, HbP or H). The STF1 cell line lacks the transporter associated with antigen presentation (Dir) and might be responsible for the enhancement of T cell responses against tumors where low-abundance peptides are expressed among an ocean of self-peptides (Lu et al., 2012; Fooksman et al., 2006).

Formation of free heavy chain dimers (H/H) might also play a role in sequestering this species to prevent re-binding of βm and exogenous peptides, avoiding innocent bystander killing by cytotoxic T cells (Capps et al., 1993). Recognition of surface HLA-B27 dimers (H–H) by NK cell immunoreceptors may contribute to the pathogenesis of autoimmune inflammatory disorders such as ankylosing spondylitis (AS) (Chen et al., 2017; Bird et al., 2003). There is still much to learn though, since some HLA-B27 subtypes, for example B*27:05, are statistically associated with the development of AS, but others, even closely related and also dimer-forming, such as B*27:09, are not (Bird et al., 2003; Benjamin et al., 1991; Tsai et al., 2002; Raine et al., 2006). Other disease-associated class I molecules have not been thoroughly tested for dimerization (McGonagle et al., 2015; Arosa et al., 2021).

Physiologically, the non-classical MHC class I (or class Ib) molecule HLA-G is exclusively expressed in trophoblast cells that invade the maternal endometrium during the formation of the placenta (Kovats et al., 1990). HLA-G forms disulfide-linked HβP dimers, trimers, and oligomers on the cell surface of transfected cell lines (Boyson et al., 2002; Gonen-Gross et al., 2003) and on normal first-trimester trophoblast cells (Apps et al., 2007). These HβP-HβP complexes were found to bind to the leukocyte immunoglobulin-like inhibitory receptor 1 (LILR1) (Gonen-Gross et al., 2003, 2005; Shirnishi et al., 2006) in decidual NK cells with a nanomolar dissociation constant, as opposed to micromolar for monomeric HLA-G (Shirnishi et al., 2006). These results are in line with the high local concentrations of HLA-G that are necessary to trigger LILR1-mediated inhibition (Chapman et al., 1999). Also, HLA-G HβP-HβP dimers on the trophoblast cell surface engage with LILR1 on decidual macrophages, inducing the local production of anti-inflammatory cytokines (Apps et al., 2007). On the other hand, HLA-G homodimers were also proposed to stimulate decidual macrophages and NK cells through the engagement of LILR1 and KIR2DL3 (killer cell immunoglobulin-like receptor 2DL3), respectively, to secrete proinflammatory cytokines that might play a role in the implantation of the developing embryo (Li et al., 2009). In contrast to these HβP-HβP dimers, there are also H–H dimers and mixed complexes of HβP and H of HLA-G on the trophoblast cell surface, but these cannot engage the NK cell receptors and may even interfere with this interaction (Gonen-Gross et al., 2005). Thus, the enhanced binding of HLA-G HβP-HβP

Table 1 (continued)

Allotype	Species in the complex	Homotypic association	Cells, mice, model	Antibody	Methodology	Ref.
HLA-G	HβP	Dimers	Human-derived first-trimester trophoblast cells	MEM-G/11 (IP), 87G (IP)	Cell surface biotinylation followed by IP and NR/R SDS-PAGE	Apps et al. (2007)
HLA-G	HβP	Dimers	G233 (IP)			

Abbreviations: AFM: atomic force microscopy; APCs: antigen presenting cells; CTL: cytotoxic T lymphocytes; EFQ: electron-exchange quenching; FRAP: fluorescence recovery after photobleaching; FRE: Förster resonance energy transfer; pFRET: photobleaching FRE; IP: immunoprecipitation; MS: mass spectrometry; NR SDS-PAGE: non-reducing SDS-polyacrylamide gel electrophoresis; R SDS-PAGE: reducing SDS-PAGE; SEC: size exclusion chromatography; SNOM: scanning near field optical microscopy; TEM: transmission electron microscopy; TIRFM: total internal reflection fluorescence microscopy; TPA: time-resolved phosphorescence anisotropy.

Notes:
1. HβP associations that were only detected when HC-10 reactive class I molecules (H) were also present, or HβP associations that were reduced after addition of exogenous βm.
2. Uncertainty about the class I molecular species (HβP, HbP or H) involved in the homotypic association.
3. Each allotype with itself or with other allotypes. Not possible to unequivocally define which of the allotypes took part in the described association.
4. Dimers sensitive to reducing agents.
5. Covalent dimers confirmed by mutagenesis.
Table 2
Some heterotypic in cis interactions of class I molecules from the literature.

Allotype	Species in the complex	Associated Partner	Cells, mice, model	Antibody	Methodology	Ref.
H-2D^a, H-2K^b	H_jP	Insulin receptor	CS7BL/6J mice	20.8.4	Cell surface labeling of IR with¹²⁵I-photoreactive insulin analog followed by IP and SDS-PAGE	Chvatchko et al. (1983)
H-2K^c, H-2D^d	H_jP	Insulin receptor	AKR/J mice	3.83		
H-2K^d	H_jP	Insulin receptor	CIIH mice	H-100-30/23, 3.83, H-100-5/28, 11.4.1, 16.3.1	Cell surface labeling of IR with¹²⁵I-photoreactive insulin analog followed by IP and SDS-PAGE	Fehlmann et al. (1985)
H-2D^d	H_jP	Insulin receptor	CIIH mice	H-100-30/23, 3.83		
H-2K^c, H-2D^d	H_jP	Insulin receptor	CS7BL/6J mice	20.8.4		
H-2D^d	H_jP, H_j, H_j	Insulin receptor	RE1 cells transfected with β_m and H-2D^d	28.14.8	Cell surface labeling of IR with¹²⁵I-photoreactive insulin analog followed by IP and SDS-PAGE	Ligger et al. (1991)
H-2K^d	H_jP	2 Insulin receptor	CIIH mice	11.4.1	Cell surface labeling of IR with¹²⁵I-photoreactive insulin analog followed by IP and SDS-PAGE	Phillips et al. (1986)
H-2D^d	H_jP	Insulin receptor	B10.S mice	34.1.2		
H-2K^d	H_jP	Insulin receptor	BALB/B mice	28.13.3		
H-2D^d	H_jP, H_j, H_j	Insulin receptor	BALB/B mice	28.14.8		
H-2K^d	H_jP	2 Insulin receptor	NIH 3T3 HIR cells	R1-9.6	FRET by flow cytometry	
H-2K^d	H_jP	Insulin receptor		CP28		
H-2D^d, H-2Lⁿ	H_jP	Insulin receptor	C3H mice	30.5.7		
H-2D^d, H-2Lⁿ	H_jP, H_j, H_j	Insulin receptor		28.14.8		
H-2^b	2 Insulin receptor	CS7BL/6J mice	anti IR/β_m (IP)	MCAS51R (blot)	IP followed by SDS-PAGE	Dixon-Salazar et al. (2014)
HLA-A3	H_jP, H_j	Insulin receptor	U937 cells	4F2 (IP), GAP-A3 (blot)	Cell surface labeling of IR with¹²⁵I-photoreactive insulin analog followed by IP and SDS-PAGE	Due et al. (1986)
HLA-A1	2 Insulin receptor	LCL 721.13 cells	GSC142.1	Cell surface labeling of IR with¹²⁵I-insulin, followed by cross-linking, IP, and SDS-PAGE	Reiland and Edidin (1991)	
HLA-A2	H_jP	LCL 721.1 cells	BB7.2			
HLA-A2	H_jP	LCL 721.45.1 cells	BB7.2			
HLA-A2	H_jP	LCL 721.53 cells	BB7.2			
HLA-B5	H_jP	LCL 721.1 cells	PA2.1			
HLA-B8	2 Insulin receptor	LCL 721.13 cells	B8			
HLA-A2, A25	H_jP, H_j	Insulin receptor	IM-9 cells	B8.1.23.2 B9.12.1	Cell surface labeling of IR with¹²⁵I-insulin analog followed by crosslinking, IP and SDS-PAGE	Samson et al. (1986)
E21, B22, Cw4	H_jP					
HLA-A2	H	Insulin receptor	Proteoliposomes	–	FRET by flow cytometry using proteoliposomes containing purified IR and HLA-A2	Ramalingam et al. (1997)
H-2K^c, H-2D^d	H_jP	LH/hCG receptors	Ovaries of C3H mice	3.83 or 16.1.2	Homogenates incubated with¹²⁵I-hCG followed by IP with anti-MHC mAbs and reprecipitation of LH/hCG receptors by polyethylene glycol	(Solano et al., 1988a), (Solano et al., 1988b)
H-2K^d	H_jP		Ovaries of BALB/c mice	34.1.2		
H-2D^d	H			34.2.12		
HLA-A, B, C	H_jP	CD1a	Human thymic-derived cells	W6/32	Cell surface iodination (¹²⁵I) followed by IP, SDS-PAGE and chymotryptic peptide mapping	Amiot et al. (1988)
HLA-A, B, C	H_jP		Human activated PBTC	anti-CD8		
HLA-A, B, C	H_jP	CD8		W6/32		
HLA-A, B, C	CD8	T cell clone, activated T cells	W6/32, BB7.7	Metabolically labeling of cells followed by cell surface cross-linking, IP, SDS-PAGE and chymotryptic peptide mapping	Blue et al. (1988)	
HLA-A, B, C	CD8	Activated PBL	HC-10	Cell surface biotinylation followed by IP and SDS-PAGE	Santos et al. (2004)	

(continued on next page)
Table 2 (continued)

Allotype	Species in the complex	Associated Partner	Cells, mice, model	Antibody	Methodology	Ref.
H-2K⁴	H₂K	CD8	K85.C20 cells	Anti-CD8	Cell surface iodination (125I) followed by IP and SDS-PAGE	Auphan et al. (1991)
HLA-A66	H₂K	IL-2 receptor	HUT-102B2 cells	W6/32	Metabolically labelling of cells followed by, IP, SDS-PAGE and proteolytic peptide mapping	Sharon et al. (1988)
HLA-A66	H₂K	IL-2 receptor	HUT-102B2 cells	W6/32	FRET by flow cytometry	Szallasi et al., (1987)
HLA-A, B, C	H₂K	IL-2 receptor	Activated PBTC	W6/32	FRET by flow cytometry	Harel-Bellan et al. (1990)
HLA-A, B, C	H₂K	IL-2 receptor	HUT-102B2 cells	KE-2	FRAP	Edidin et al. (1988)
HLA-A66	H₂K	IL-2 receptor	FT7.10 cells	W6/32	FRET by flow cytometry, apFRET	Mocsar et al. (2016)
HLA-A, B, C	H₂K	IL-2 receptor	FT7.10 cells	W6/32	FRET by flow cytometry, apFRET	Mocsar et al. (2016)
H-2D⁴	H	Ly49A	C1498 cells transfected to express H-2D⁴	34.2.12	IP followed by SDS-PAGE	Doucey et al. (2004)
H-2D⁴	H	Ly49A	C1498 cells transfected to express HA-H 2D⁴ and VSV-Ly49A	anti-VSV (IP) anti-HA (blot)	Cell surface cross-linking followed by IP and SDS-PAGE	Back et al. (2009)
HLA-A3, B07, C07	HLA-D_{Qw}1,3	PGF cells	W6/32	FRET by flow cytometry	Szallasi et al., (1989)	
HLA-B7	HLA-D_{Qw}1,3	PGF cells	W6/32	FRET by flow cytometry	Szallasi et al., (1989)	
HLA-B7	HLA-D_{Qw}1,3	PGF cells	W6/32	FRET by flow cytometry	Szallasi et al., (1989)	
HLA-A3	HLA-D_{Qw}1,3	PGF cells	W6/32	FRET by flow cytometry	Szallasi et al., (1989)	
HLA-A3	HLA-D_{Qw}1,3	PGF cells	W6/32	FRET by flow cytometry	Szallasi et al., (1989)	
HLA-A3, B07, C07	HLA-D_{Qw}1,3	PGF cells	W6/32	FRET, TEM, AFM	Jenei et al. (1997)	
HLA-A66	H₂K	ICAM-1	HUT-102B2 cells	W6/32	Cell surface iodination (125I) followed by IP and SDS-PAGE	Szallasi et al. (1987)
HLA-A66	H₂K	ICAM-1	HUT-102B2 cells	W6/32	Cell surface iodination (125I) followed by IP and SDS-PAGE	Szallasi et al. (1987)
HLA-A2	H₂K	ICAM-1	JY cells	W6/32	Cell surface iodination (125I) followed by IP and SDS-PAGE	Szallasi et al. (1987)

Abbreviations: AFM: atomic force microscopy; FRAP: fluorescence recovery after photobleaching; hCG: human chorionic gonadotrophin; MS: mass spectrometry; IP: immunoprecipitation; IR: insulin receptor; LH: luteinizing hormone; mAb: monoclonal antibody; PBTC: peripheral blood T cells; PBL: peripheral blood lymphocytes; apFRET: acceptor photobleaching FRET.; TEM: transmission electron microscopy.

Notes: First column shows endogenously expressed (not bold) and transfected (bold) allotypes by each cell line. A list of the allotypes expressed by cells and mice, the binding specificity, and the class I species (H_βP, H_β or H) that are recognized by antibodies can be found in Tables 3 and 4, respectively.

1. Associations were reduced after addition of exogenous β₂m.
2. Uncertainty about the molecular species (H_βP, H_β and/or H) involved in the heterotypic association.
3. Chemical cross-linking of the cell surface is necessary to detect or enhance detection of interacting proteins.
Table 3 Human and mouse class I allotypes expressed by cell lines and mice.

Cell line/mouse strain	Expressed allotypes	Ref.
961	HLA-B5. Generated by stable HLA-B5 expression in the HLA negative LCL 721.221 cell line	(Reiland and Edidin, 1993; Shimizu and DeMars, 1989)
18.48	H-2K_d	Capps et al. (1989)
C1498	NK T cell line derived from H-2^d mice	(Doucey et al., 2004; LaBelle and Truitt, 2002)
C85	Rat-derived cell line	Lynch et al. (2009)
CEM	HLA-A1, A31, B8, B40	Robinson et al. (2020)
EL4	H-2^b	(Capps et al., 1989; Kane, 1994)
ELd3	H-2^b, H-2L^d (an H-2L^d transfectant of EL4 cells)	(Capps et al., 1989, 1993; Zuniga et al., 1983)
F77.10	HLA-A, B, C	Moscar et al. (2016)
HCT-1^L/3	HLA negative, b₂₇ negative, human cell line. Stably transfected to express H-2^L	(Capps et al., 1993; Gattoni-Celli et al., 1988)
HUT-102R2	HLA-A66	Robinson et al. (2020)
IM-9	HLA-A2, A25, B21, B22, Cw4	Samson et al. (1986)
Jeg-3	HLA-G	Gonen-Gross et al. (2005)
Jerthom	HLA-A2, B27, C1	Robinson et al. (2020)
Jurkat	HLA-A9, A25, B7, B41	Litwin et al. (1993)
JY	HLA-A2, B7, C7	Robinson et al. (2020)
KBS.C20	H-2^b	Auphan et al. (1991)
KG-1	HLA-A30, A31, A33, B35	(Lynch et al., 2009; Koeffler et al., 1980)
LCL 721.1	HLA-A2, B5, C	(Reiland and Edidin, 1993; Kavathas et al., 1980)
LCL 721.13	HLA-A1, B8, C	(Reiland and Edidin, 1993; Kavathas et al., 1980)
LCL 721.221	HLA negative	Shimizu and DeMars (1989)
LCL 721.45.1	HLA-A2, B5, C	(Reiland and Edidin, 1993; DeMars et al., 1983)
LCL 721.53	HLA-A2, C	(Reiland and Edidin, 1993; Shimizu and DeMars, 1989)
LCL 721.53	H-2^{K_b}	(Lu et al., 2012; Lapham et al., 1993)
NIH 3T3 HIR	NIH 3T3 (H-2^D, H-2^{K_b}, H-2L^b) stably transfected to express the human IR⁺	Liegler et al. (1991)
PFG	HLA-A3, B7, C7	Robinson et al. (2020)
PLH	HLA-A3, B47, C6	Robinson et al. (2020)
Raji	HLA-A3, B15, C3, C4	Robinson et al. (2020)
RE1	b₂₇ negative, H-2 negative	(Verland et al., 1989; Bix and Raulet, 1992)
STF1	HLA-A3, B15, C14	(de la Salle et al., 1994; Braunsgard et al., 2021)
T2	HLA-A2, B5	Salter and Crosswell (1986)
U937	HLA-A3, A31, B18, B51, C1, C7	Gebeselassie et al. (2006)
AKR/J mice	H-2^b	Chvatchko et al. (1983)
B10.S mice	H-2^b	Phillips et al. (1986)
BALB/c mice	H-2^b	Phillips et al. (1986)
BALB/c mice	H-2^{ab}	Solano et al. (1988a)
C3H mice	H-2^b	Phillips et al. (1986)
C57BL/6 mice	H-2^b	Chvatchko et al., 1983; Fehlmann et al., 1985

a IR: insulin receptor.
Table 4

Antibody Allotype	Recognized species Ref.
11.4.1 H-2K^a	H^p (Fehlmann et al., 1985; Oi et al., 1978)
15.5.S5 H-2D,[Cross-reaction with H-2K^b, H-2K^c]	2 (Ozato and Sachs, 1980)
16.1.2 H-2K^c, Cross-reactions with H-2K^d, H-2K^e, H-2K^f	H^p (Solano et al., 1988a; Bix and Ruuslet, 1992; Ozato and Sachs, 1980)
16.3.1 H-2K^d, Cross-reactions with H-2K^d, H-2K^f, K^a	H^p (Fehlmann et al., 1985; Ozato and Sachs, 1980; Lemke et al., 1979)
20.8.4 H-2D^b, H-2 K^c	H^p (Fehlmann et al., 1985; Ozato and Sachs, 1981)
25-D1.16 SIINFEKL-pulsed H-2K^d cells	H^p (Porgador et al., 1997; Mareeva et al., 2000)
28.13.3 H-2K^e	H^p (Ozato and Sachs, 1981)
28.14.8 H-2L^f, H-2L^g, H-2D^h, H-2D^i	H^p, H^j and H (Lie et al., 1991; Townsend et al., 1992; Allen et al., 1983; Fraser et al., 1987)
3.83 H-2D^b, H-2K^c, Cross-reaction with H-2K^b, H-2K^b, H-2K^b, H-2K^b, H-2K^b	H^p (Ozato and Sachs, 1980)
30.5.7 H-2L^i, H-2D^j, Cross-reactions with H-2L^i	H^p (Liegler et al., 1991; Lie et al., 1991; Harris et al., 1990)
34.1.2 H-2K^k, Cross-reaction with H-2K^k, H-2K^k, H-2K^k, H-2K^k	H^p (Phillips et al., 1988; Solano et al., 1988a)
34.12.12 H-2D^l	H (Solano et al., 1988a; K et al., 1982; Thor et al., 1993)
34.4.20 H-2K^k	H^p (Czepiiová et al., 1992)
4F2 a chain of the IR ^a	– (Due et al., 1987; Haynes et al., 1981; Srikanta et al., 1987)
64.3.7 H-2L^f, H-2L^g, H-2K^d	H (Lie et al., 1991; Shirougi et al., 1986; Simon et al., 2012)
87G HLA-G1	H^p (Menier et al., 2003)
A1.4 HLA-A, B, C	H^p and H (Bushkin et al., 1986, 1988)
AE6-88.5 H-2K^m	H^p (Rock et al., 1991b)
B22.249 H-2D^o	H^p (Capps et al., 1992; Potter et al., 1984; Perez et al., 2014; Allen et al., 1986a)
B8 HLA-B8	H^p (Reiland and Edidin, 1993)
B8.1.23.2 HLA-A, B, C	H^p and H (Reiba i and Malissen, 1983)
B9.12.1 HLA-A, B, C	H^p (Reiba i and Malissen, 1983)
BB7.1 HLA-B7	H^p (Brodsky et al., 1979a)
BB7.2 HLA-A2, A28	H^p (Brodsky et al., 1979a; Parham and Brodsky, 1981)
BB7.7 HLA-A, B, C	H^p (Brodsky et al., 1979a)
BBM.1 β^m (free β^m and non-covalently linked β^m to HLA molecules)	H^p (Brodsky et al., 1979b)
CP28 H-2D^o, D^o, Cross-reaction with K^o	H^p? (Liegler et al., 1991; Linsk et al., 1989; Philipp et al., 1985)
G233 HLA-G	H^p (Loke et al., 1997)

Table 4 (continued)

Antibody Allotype Recognized species Ref.
GAP-A3 HLA-A3 H^p Berger et al. (1982)
GSC142.1 HLA-A1 H^p (Reiland and Edidin, 1993)
H-100-30/23 H-2D^b, H-2K^a H^p? (Fehlmann et al., 1985; Lemke et al., 1979)
H-100-5/28 H-2K^b H^p (Fehlmann et al., 1985; Auhan et al., 1991; Lemke et al., 1979)
H141-30 H-2D^p H^p (Lemke et al., 1979)
HC-10 HLA-B, Cross-reaction with HLA-C and HLA-A H (Stam et al., 1986, 1990; Baas et al., 1992)
HCA2 HLA-A H (Stam et al., 1990; Baas et al., 1992)
KE-2 HLA-A, B, C H^p Damjanovich et al. (1995)
MCA51R H-2^a H^p (Saxon-Salazar et al., 2014; Fukumoto et al., 1982)
ME1 HLA-B7, B27, B22 H^p (Ellis et al., 1982; Malik et al., 1999)
MEM-G/09 HLA-G1 H^p Menier et al. (2003)
MEM-G/11 HLA-G H^p Boyson et al. (2002)
PA2.1 HLA-A2 H^p (Brodsky et al., 1979a; Parham and Bodmer, 1978)
PA2.6 HLA-A, B, C H^p (Brodsky et al., 1979a)
R1-9.6 H-2K^c, H-2K^c, H-2K^c, H-2D^c, H-2D^d, H-2L^d
W6/32 HLA-A, B, C H^p (Brodsky et al., 1979a; Barnstable et al., 1978; Ladosky et al., 1999)

a IR: insulin receptor.

b Uncertainty about the molecular species (H^p, H^j and/or H) recognized by the antibody.

c A specific variant of HLA-A^28 is recognized by BB7.2.

class I and IR (Fehlmann et al., 1985; Reiland and Edidin, 1993; Samson et al., 1986), CD8 (Bushkin et al., 1988b; Blue et al., 1988) or Ly49A (Back et al., 2009), which also suggests that non-covalent associations are involved. The cis interaction with the co-receptor CD8 was dependent on the presence of H species, since higher levels of CD8 were co-precipitated when the class I species recognized by HC-10 mAb (i.e., H; Table 4) also increased (Santos et al., 2004).

5. Biological roles of MHC class I heterotypic associations

The initial demonstration of a physical interaction between class I molecules and the insulin receptor (IR) has prompted researchers to reevaluate the physiological functions of class I molecules in the context of non-immunological processes (Chvatchko et al., 1983) such as signal transduction and the control of IR abundance and function (Fehlmann et al., 1985; Verland et al., 1989). With the subsequent findings of their complexes with other cell surface proteins (Suzuki et al., 1989; Solano et al., 1988a; Solano et al., 1988b; Solano et al., 1988c; Amdic et al., 1988; Bushkin et al., 1988; Blue et al., 1988; Sharon et al., 1988; Suzuki et al., 1989; Edidin et al., 1990), the idea that class I molecules regulate the activity not only of IR but also of different membrane receptors began to gain momentum (Verland et al., 1989). The expression of mouse class I affected insulin binding to the IR in an allotype-dependent fashion: one class I allotype (H-2D^b) was correlated with higher insulin binding affinity in mouse (Verland et al., 1989), whereas expression of H-2K^b, H-2D^b, or H-2L^d did not affect the binding affinity of the IR for its ligand but caused a
reduction in the rate of insulin-stimulated endocytosis of the receptor (Liegl et al., 1991). In the case of human class I molecules, both HLA-A2 and A3 allotypes interact with the IR, and the affinity of insulin increased when these HLA molecules were present at the plasma membrane (Due et al., 1986; Ramalingam et al., 1997). These results were in line with another report that described coprecipitation of high-affinity IR with HLA-A2 from an HLA-A’ B’ cell line (Reiland and Edidin, 1993). The same amount of IR coprecipitated with HLA-A2 from an HLA-A’ B’ cell line, but these two cell lines show remarkable differences in the insulin binding affinity of their cell surface IR. While the HLA-A’ B’ cell line expresses high-affinity IR, HLA-A’ B’ cells have low-affinity IR, and thus, the amount of class I molecules bound to the IR does not define its affinity for insulin (Reiland and Edidin, 1993). Rather, each allotype might differentially affect the receptor by either inducing conformational changes and/or even forming part of the receptor complex (Due et al., 1986; Reiland and Edidin, 1993). In agreement with this hypothesis, the affinity of insulin binding correlates with the expression of particular HLA allotypes and is similar in cell lines that express the same HLA class I molecules (Kittur et al., 1987). The binding of insulin to the HLA-negative cell line 721.221 indicates that class I molecules are not obligate subunits of the functional IR, but they can affect the quality and affinity of insulin binding sites when expressed with the receptor (Kittur et al., 1987).

In addition, another interesting although not completely explored mechanism is the co-regulation by two or more allotypes binding to a receptor at the same time. The formation of such complexes has been experimentally demonstrated in mice, where the entire fraction of IR bound to H-2Kβ was also associated with H-2Dβ and vice versa (Phillips et al., 1986). For human class I, two or more HLA molecules were proposed to interact with the same IR (Reiland and Edidin, 1993). What such associations might look like, and how they influence the binding and activity of receptors, is not known.

The species of class I that binds to the IR is unknown. Still, indirect evidence suggests that the IR competes with βm for binding to H. Furthermore, polymorphisms in the class I region involved in the association with βm dictate the stability of the Hβ association (Ribaudo and Margulies, 1995). These data suggest H/IR complexes, and thus, class I molecules with low and high affinities for βm might differentially associate with the IR and modulate its properties and functions. In contrast to this finding, βm-associated class I molecules have also been found as part of HLA/IR complexes (Reiland and Edidin, 1993).

With respect to the functional regulation of IR by class I, IR tyrosine kinase activity increased with the class I/IR ratio, i.e., as the amount of HLA molecules at the plasma membrane increased (Ramalingam et al., 1997). Tyrosine phosphorylation of HLA-A2 molecules also increased after binding to the IR, which enabled the subsequent binding of the downstream signaling-related molecule PI-3 kinase, implying that class I molecules are involved in the IR signaling cascade (Ramalingam et al., 1997). In the mouse brain, however, class I/IR association prevented signaling and led to a negative regulation of the number of synaptic connections. At the same time, neither expression nor trafficking of the IR were affected by its interaction with class I molecules (Dixon-Salazar et al., 2014). H species of HLA were also found to physically associate with CD8 and Lck kinase, and although no specific role was described, it might be interesting to assess if class I can modulate signaling events delivered by the CD8-Lck complex (Santos et al., 2004).

Class I can interact with NK cell receptors both in trans and in cis, using the same binding site beneath the peptide binding groove (Doucey et al., 2004; Back et al., 2009). The in cis interaction might then regulate the activity of the NK cell receptors. For example, expression of H-2Dβ on NK cells of H-2Kβ origin led to a weaker Ly49A-mediated inhibition response, since in cis binding of H-2Dβ to Ly49A association reduces the availability of Ly49A to associate in trans with H-2Dβ, its ligand on target cells (Doucey et al., 2004; Back et al., 2007).

Finally, in cis associations of class I molecules with ICAM-1 were proposed to enhance the function of the immunological synapse through the accumulation of HLA-A2 and ICAM-1 molecules in plasma membrane regions were antigen presentation occurs (Lebedeva et al., 2004).

Altogether, despite partly contradictory reports and a substantially incomplete understanding of the molecular mechanisms, the evidence suggests several functional roles for class I molecules in the regulation of cell surface receptors at different levels.

6. Concluding remarks and future perspectives

Over the past four decades, many groups have provided evidence for the existence of complexes formed by class I molecules with other class I molecules (homotypic) or with other cell surface receptors (heterotypic). Compared to other advances in the class I field, understanding of these phenomena and their physiological role has grown slowly, but evidence supporting both immunological and non-immunological roles is accumulating. To conclude this review, we would like to formulate four challenges to the field.

First, for more detailed understanding of the associations, it will be crucial to establish which species of class I (HLA-P, Hβ, Hβ) are involved in them, since class I homodimers might have different and even opposite functions depending on the species in the complex. One example for this is HLA-G, where Hβ-P-Hβ dimers are involved in the development of an immunotolerant environment during pregnancy (Gonen-Gross et al., 2003, 2005; Shiroishi et al., 2006), whereas mixed dimers composed of HβP and H and also H-I dimers seem to interfere with this process (Gonen-Gross et al., 2005).

Second, it will be important to standardize our observations by generating agreement between the differing results generated from different cell lines and from different class I allotypes. Such differing results may be real, or else they may be caused by technical variations in the experiments. This is especially true for non-covalent associations, which are more sensitive to disruption than disulfide-linked dimers when extracted from cell membranes. The use of detergents in the immunoprecipitation buffers can affect and even preclude the detection of non-covalent associations, and thus, very gentle detergents such as digitonin, otherwise known from peptide loading complex co-immunoprecipitations, might be required (Capps et al., 1993; Auphan et al., 1991). Addition of chemical crosslinkers prior to solubilization, although not always necessary (Dirscherl et al., 2018; Santos et al., 2004), has helped the detection of class I associations (Fehlmann et al., 1985; Samson et al., 1986), whereas in most studies, complexes were only observed in cross-linked samples (Reiland and Edidin, 1993; Bushkin et al., 1988; Blue et al., 1988; Back et al., 2009). Artificial post-lysis associations might arise when membranes are solubilized for immunoprecipitation experiments (Boyson et al., 2002), and thus, the detection of interactions in the native plasma membrane environment of live cells is principally preferable.

Importantly, some methods might not detect class I molecules which are indirectly associated, i.e., when another partner is involved in the interaction. Immunoprecipitation experiments have shown formation of such complexes between the insulin receptor (IR) and several class I molecules in mice, H-2Dβ and H-2Kβ, as well as mixed dimers composed of Hβ and H (Phillips et al., 1986), since the entirety of IR bound to one allotype was also associated with the other. A live cell approach by FRET microscopy, on the other hand, did not detect associations between H-2Dβ and H-2Kβ molecules (Liegl et al., 1991). Discrepancy in results might arise by the limitation of the live cell approach to detect class I molecules that are part of a complex in which the IR acts as mediator in the interaction (H-2K/IR/H-2D, indirect association) and therefore, class I would be more than 10 nm apart from one another, which precludes energy transfer between fluorophores. Other possibilities are inappropriate orientation of the fluorophores that impedes energy transfer, that the H-2K/IR/H-2D complex is a post-lysis artifact of the immunoprecipitations, or that H-2Dβ does not interact with H-2Kβ.

Indeed, the observation of the H-2K/IR/H-2D complex leads to the
question whether other proteins are necessary for the formation of homotypic class I associations, i.e., whether the participation of a non-class I protein might be required for the establishment of interactions between two or more class I molecules. The identification of such mediators will need proteomic screening methods. Recently, it has been possible to map the class I interactome at the plasma membrane via extracellular crosslinking followed by mass spectrometry (Armony et al., 2021), and these experiments did detect direct class I/class I homotypic associations. But such direct interactions between class I molecules do not necessarily prove that other proteins are absent from the complex; they may still be required for, and directly involved in, the formation of class I homotypic associations. Interestingly, to the best of our knowledge, the role of cytosolic proteins in the homotypic association of class I molecules has never been investigated.

Such technical insufficiency might obscure the difference between homotypic and heterotypic associations, since a H-2K/IR/H-2D complex might look like an H-2K/H-2D complex, if the presence of the IR is not specifically investigated. This is why, as a third challenge, it is desirable to come to a complete characterization of the constituents of class I associations, perhaps with a combination of genetic and proteomic (mass spectrometry) means and novel cell biological approaches. One example of a new method to detect interactions in the native plasma membrane environment of live cells and over a wider range of distances is a recently developed approach that employs antibody micropatterns printed on glass to capture cell surface class I molecules (Dirscherl et al., 2017), which was used to detect in cis class I homotypic associations in the plasma membrane of living cells and to define which class I molecular species (Hβ2M, Hβ2 or H; Fig. 1A) they consisted of (Dirscherl et al., 2018). The approach is versatile and can be combined with other methods. It was recently used in combination with fluorescence recovery after photobleaching (FRAP) and single molecule co-tracking to study the stoichiometry and dynamics of H/H complexes (Dirscherl et al., 2022).

As a fourth, but not least, challenge, the exploration of the physiological role and meaning of homotypic and heterotypic class I associations is essential. Again, novel techniques will prove valuable. For example, the above micropatterning approach can be combined with the co-expression of proteins known to function as signaling-adaptor molecules or involved in early endocytic events to study the pathways that become active after the association took place. With this knowledge in hand, we can finally hope to understand how homotypic and heterotypic associations involving class I molecules help maintain health and/or contribute to disease pathogenesis and hopefully translate this knowledge to clinical medicine.

Funding

This research was funded by the Deutsche Forschungsgemeinschaft, grant Sp583/18–1 to S.Sp.

CRediT authorship contribution statement

Fernando M. Ruggiero: Investigation, Resources, Data curation, Writing – original draft, Writing – review & editing, Visualization. Sebastian Springer: Conceptualization, Methodology, Software, Validation, Formal analysis, Writing – original draft, Writing – review & editing, Visualization, Supervision, Project administration, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The authors thank Prof. Fernando Arosa (Universidade da Beira Interior, Covilha, Portugal) for originally suggesting the writing of this article, and for advice and support, and Ursula Wellbrock for the preparation of the figure for publication.

References

Allen, H., Fraser, J., Flyer, D., Calvin, S., Flavell, R., 1986a. Beta 2-microglobulin is not required for cell surface expression of the murine class I histocompatibility antigen H-2Db or of a truncated H-2Db. Proc. Natl. Acad. Sci. U. S. A. 83, 7447–7451.

Allen, H., Fraser, J., Flyer, D., Calvin, S., Flavell, R., 1986b. Beta 2-microglobulin is not required for cell surface expression of the murine class I histocompatibility antigen H-2Db or a truncated Dβ. Proc. Natl. Acad. Sci. U.S.A. 83, 7447–7451.

Allen, R.L., O’Callaghan, C.A., McMichael, A.J., Bowness, P., 1999. Cutting edge: HLA-B27 can form a novel beta 2-microglobulin-free heavy chain homodimer structure. J. Immunol. 162, 5045–5047.

Amiot, M., Dastot, H., Degos, L., Auwerx, J., Bernard, A., Boumsell, L., 1988. HLA class I molecules are associated with CD1α heavy chains on normal human thymus cells. Proc. Natl. Acad. Sci. U. S. A. 85, 4451–4454. https://doi.org/10.1073/pnas.85.12.4451.

Anjannappa, R., Garcia-Alai, M., Kopicki, J.-D., Lockhausen, S., J., Abolmajm, M., Hinrichs, H., Nemtanu, I.M., Uetrecht, C., Zacharias, M., Springer, S., et al., 2020. Structures of peptide-free and partially loaded MHC class I molecules reveal mechanisms of peptide selection. Nat. Commun. 11, 1314. https://doi.org/10.1038/s41467-020-14862-4.

Apps, R., Gardner, L., Sharkey, A.M., Holmes, N., Moffett, A., 2007. A homodimeric complex of HLA-G on normal trophoblast cells modulates antigen-presenting cells via LILRB1. Eur. J. Immunol. 37, 1924–1937. https://doi.org/10.1002/eji.200737089.

Armony, G., Heck, A.J.R., Wu, W., 2021. Extracellular crosslinking mass spectrometry reveals HLA class I - HLA class II interactions on the cell surface. Mol. Immunol. 136, 147–156. https://doi.org/10.1016/j.molimm.2021.05.015.

Arosa, F.A., Esgalhado, A.J., Reste-Ferreira, D., Cardoso, E.M., 2021. Open MHC class I formers: a look through the looking glass. Int. J. Mol. Sci. 22, 9738. https://doi.org/10.3390/ijms22189738.

Auphan, N., Boyer, C., Andre, P., Bongrand, P., Schmitt-Verhulst, A.M., 1991. Biochemical and functional association between CD8 and H-2 at the surface of a T cell clone. Mol. Immunol. 28, 827–837. https://doi.org/10.1016/0161-5890(91)90134-3.

Baas, E.J., van Santen, H.M., Kleijmeer, M.J., Geuze, H.J., Peters, P.J., Ploegh, H.L., 1992. Peptide-induced stabilization and intracellular localization of empty HLA class complex. J. Exp. Med. 176, 147–156.

Back, J., Chalfour, A., Scarpellino, L., Held, W., 2007. Stable masking by H-2Dd ciss ligand limits Ly49A relocalization to the site of NK cell/target cell contact. Proc. Natl. Acad. Sci. U. S. A. 104, 3978–3983. https://doi.org/10.1073/pnas.0607418104.

Back, J., Mahedioli, E.I., Cho, S., Scarpellino, L., Schneider, P., Kericz, M.C., Mariusz, R. A., Held, W., 2009. Distinct conformations of Ly49 natural killer cell receptors mediate HLA class I recognition in trans and cis. Immunity 31, 598–608. https://doi.org/10.1016/j.immuni.2009.07.007.

Baia, D., Psoj, J., Jones, D., Mandelboim, O., Trowsdale, J., Muntassell, A., Lopez-Boet, M., 2016. Interaction of the LILRB1 inhibitory receptor with HLA class I dimers. Eur. J. Immunol. 46, 1681–1690. https://doi.org/10.1002/eji.201546149.

Barnstable, C.J., Bodmer, W.J., Brown, G., Galfre, G., Milstein, C., Williams, A.F., Ziegler, A., 1978. Production of monoclonal antibodies to group A erythrocytes, HLA and other human cell surface antigens- new tools for genetic analysis. Cell 14, 9–20.

Berger, A.E., Davis, J.E., Cresswell, P., 1982. Monoclonal antibody to HLA-A3. Hybridoma 1, 87–90. https://doi.org/10.1089/1982.1.87.

Bird, L.A., Peh, C.A., Kollnberger, S., Elliott, T., McMichael, A.J., Bowness, P., 2003. Lymphoblastoid cells express HLA-B27 homodimers both intracellularly and at the cell surface following endosomal recycling. Eur. J. Immunol. 33, 748–759. https://doi.org/10.1002/eji.200323678.

Blix, M., Raulstad, D., 1992. Functionally confused free class I heavy chains exist on the surface of beta-2-microglobulin negative cells. J. Exp. Med. 176, 829–834.

Blue, M.L., Craig, K.A., Anderson, P., Branton, K.R., Schlossman, S.F., 1988. Evidence for specific association between class I major histocompatibility antigens and the CD8 molecules of human suppressor/cytotoxic cells. Cell 54, 413–421. https://doi.org/10.1016/0092-8674(88)90284-8.

Blumenthal, D., Eidin, M., Geber, L.A., 2016. Trafficking of MHC molecules to the cell surface creates dynamic protein patches. J. Cell Sci. 129, 3342–3350. https://doi.org/10.1242/jcs.187112.

Bodnár, A., Jenei, A., Benz, L., Damjanovich, S., Matko, J., 1996. Modification of membrane cholesterol level affects expression and clustering of class I HLA molecules at the surface of JY human lymphoblasts. Immunol. Lett. 54, 221–226. doi:10.1016/0165-2478(96)02677-6.

Bodnár, A., Buzac, Z., Jenei, A., Jovic, T.M., Eidin, M., Damjanovic, S., Matko, J., 2003. Class I HLA oligomerization at the surface of B cells is controlled by exogenous beta(2)-microglobulin: implications in activation of cytotoxic T lymphocytes. Int. Immunol. 15, 331–339.
Lebedeva, T., Anikeeva, N., Kalams, S.A., Walker, B.D., Gaidarov, I., Keen, J.H., LaBelle, J.L., Truitt, R.L., 2002. Characterization of a murine NKT cell tumor previously described as an acute myelogenous leukemia. Leuk. Lymphoma 43, 1637–1644.

Kane, K.P., 1994. Ly-49 mediates EL4 lymphoma adhesion to isolated class I major histocompatibility complex antigens. J. Immunol. 153, 1313–1319.

Kittur, D., Shimizu, Y., Edidin, M., 1987. Insulin binding to human B lymphoblastoid cells. Proc. Natl. Acad. Sci. U. S. A. 84, 7269–7274. https://doi.org/10.1073/pnas.84.18.7269.

Ko, N., Min, M. D., Dh, S., Yoon, J., Cho, D., Kim, I., Jung, W., 2021. Monoclonal antibodies recognizing HLA-G or HLA-E: new tools to analyze the missing self hypothesis. Front. Immunol. 12, 6196. https://doi.org/10.3389/fimmu.2021.619690.

Kopp, K.P., 1994. Ly-49 mediates EL4 lymphoma adhesion to isolated class I major histocompatibility complex antigens. J. Immunol. 153, 1313–1319.

Koskiniemi, M., Halonen, J., Jalkanen, M., Arvela, K., et al., 1990. Empty MHC class I molecules. Nature 347, 609–615. https://doi.org/10.1038/347609a0.

Kosuke, M., Takahashi, Y., Yokoe, R., Yewdell, J.W., 2019. Specificity of HLA-A2-MHC class I complex antigens. J. Immunol. 153, 1313–1319.

Kostis, B.J., Prakash, A., Zavaleta, A., Eskin, E., Wu, Y., 2016. Comparison of allogeneic and xenogeneic determinants on the H-2Kk molecule. Transplantation 36, 177–180. https://doi.org/10.1097/00007890-198308000-00013.

Kothe, K., Erlich, E., Kopp, K.P., 1994. Ly-49 mediates EL4 lymphoma adhesion to isolated class I major histocompatibility complex antigens. J. Immunol. 153, 1313–1319.

Kurtt, D., Shimizu, Y., DeMars, R., Edidin, M., 1987. Insulin binding to human B lymphoblastoid cells. Proc. Natl. Acad. Sci. U. S. A. 84, 1351–1355. https://doi.org/10.1073/pnas.84.3.1351.

Koch, S., Koch, N., Robinson, P., Hämmerling, G., 1983. Comparison of allelogeic and xenogeneic determinants on the H-2Kk molecule. Transplantation 36, 177–180. https://doi.org/10.1097/00007890-198308000-00013.

Ko, N., Min, M. D., Dh, S., Yoon, J., Cho, D., Kim, I., Jung, W., 2021. Monoclonal antibodies recognizing HLA-G or HLA-E: new tools to analyze the missing self hypothesis. Front. Immunol. 12, 6196. https://doi.org/10.3389/fimmu.2021.619690.

Kostis, B.J., Prakash, A., Zavaleta, A., Eskin, E., Wu, Y., 2016. Comparison of allogeneic and xenogeneic determinants on the H-2Kk molecule. Transplantation 36, 177–180. https://doi.org/10.1097/00007890-198308000-00013.

Ko, N., Min, M. D., Dh, S., Yoon, J., Cho, D., Kim, I., Jung, W., 2021. Monoclonal antibodies recognizing HLA-G or HLA-E: new tools to analyze the missing self hypothesis. Front. Immunol. 12, 6196. https://doi.org/10.3389/fimmu.2021.619690.

Kostis, B.J., Prakash, A., Zavaleta, A., Eskin, E., Wu, Y., 2016. Comparison of allogeneic and xenogeneic determinants on the H-2Kk molecule. Transplantation 36, 177–180. https://doi.org/10.1097/00007890-198308000-00013.

Ko, N., Min, M. D., Dh, S., Yoon, J., Cho, D., Kim, I., Jung, W., 2021. Monoclonal antibodies recognizing HLA-G or HLA-E: new tools to analyze the missing self hypothesis. Front. Immunol. 12, 6196. https://doi.org/10.3389/fimmu.2021.619690.
Sharon, M., Gnaatr, J.R., Baniyash, M., Leonard, W.J., 1988. Possible association between IL-2 receptors and class I HLA molecules on T cells. J. Immunol. 141, 1279–1285.

Shatz, C.J., MHC Class I, 2009. An unexpected role in neuronal plasticity. Neuron 64, 40–45.

Shi, J., Levinson, D.F., Duan, J., Sanders, A.R., Zheng, Y., Ye, L., Dodbridge, F., Holmans, P.A., Whitmore, A.S., et al., 2015. Consistently expressed on chromosome 6p22.12 are associated with schizophrenia. Nature 460, 753–757.

Shimizu, Y., DelMars, R., 1989. Production of human cells expressing individual transferred HLA-A,B,C genes using an HLA-A,B,C null human cell line. J. Immunol. 142, 3320–3328.

Shiroishi, T., Evans, G.A., Appella, E., Ozato, K., 1985. Virot mutagenesis of a mouse MHC class I gene for the examination of structure-function relationships. J. Immunol. 134, 623–629.

Shiroishi, M., Kuroki, K., Ose, T., Raubula, L., Shiratori, I., Arase, H., Tsumoto, K., Kumagai, I., Kohda, D., Maenaka, K., 2006. Efficient leukocyte Ig-like receptor signaling and crystal structure of disulfide-linked HLA-G dimer. J. Biol. Chem. 281, 10439–10447. https://doi.org/10.1074/jbc.M512035200.

Simone, L.C., Georgesen, C.J., Simone, P.D., Wang, X., Solheim, J.C., 2012. Productive association between MHC class I and tapasin requires the transmembrane/cytoplasmic region and the tapasin C-terminal Ig-like domain. Mol. Immunol. 49, 628–639. https://doi.org/10.1016/j.molimm.2011.11.002.

Solano, A.R., Crema, G., Sánchez, M.L., Borda, E., Sterin-Borda, L., Podeszta, E.J., 1988a. Molecular and biological interaction between major histocompatibility complex class I antigens and luteinizing hormone receptors or beta-adrenergic receptors triggers cellular response in mice. Proc. Natl. Acad. Sci. U.S.A. 85, 5087–5091. https://doi.org/10.1073/pnas.85.15.5087.

Solano, A.R., Sánchez, M.L., Sardanoni, M.L., Dada, L., Podeszta, E.J., 1988b. Luteinizing hormone triggers a molecular association between IS1 and the major histocompatibility complex class I antigens to produce cell activation. Endocrinology 122, 2080–2083. https://doi.org/10.1210/endo-122-5-2080.

Springer, S., 2015. Transport and quality control of MHC class I molecules in the early endocytic pathway. Curr. Opin. Immunol. 34, 83–93. https://doi.org/10.1016/j.coi.2015.02.009.

Srikanta, S., Telen, M., Possilico, J.T., Dolinar, R., Krich, K., Haynes, B.F., Eisenbarth, G.S., 1987. Monoclonal antibodies to a human islet cell surface glycoprotein: 4F2 and LC7. J. Immunol. 136, 2244. https://doi.org/10.4049/jimmunol.136.6.2244.

Stam, N.J., Vroom, T.M., Pelgrom, P.J., Pastoors, E.B., Ploegh, H.L., 1990. HLA-A and HLA-B specific monoclonal antibodies reactive with free heavy chains in western blots, in formalin-fixed, paraffin-embedded tissue sections and in cryo-immuno-electron microscopy. Int. Immunol. 2, 113–125.

Stefansson, H., Ophoff, R.A., Steinberg, S., Andreassen, O.A., Gichon, S., Rujescu, D., Werge, T., Pietilainen, O.P.H., Mors, O., Mortensen, P.B., et al., 2009. Common variants conferring risk of schizophrenia. Nature 460, 744–747. https://doi.org/10.1038/nature08016.

Su, R.C., Kang, S.K., Garrépy, J., Barber, H.B., Miller, R.G., 1998. NK cells can recognize different forms of class I MHC. J. Immunol. 161, 755–766.

 Sugita, M., Brenner, M.B., 1994. An unstable beta-2-microglobulin : major histocompatibility complex heavy chain complex may dissociate from calnexin and then is stabilized by binding peptide. J. Exp. Med. 180, 2163–2171.

Szollosi, J., Damjanovich, S., Goldberg, C.K., Fulwyler, M.J., Aszalos, A.A., Goldstein, G., Rao, P., Talle, M.A., Waldmann, T.A., 1987. Flow cytometric resonance energy transfer measurements showing association of a 95-KDa peptide termed T27 with the 55-KDa tac peptide. Proc. Natl. Acad. Sci. U.S.A. 84, 7246–7250. https://doi.org/10.1073/pnas.84.20.7246.

Szollosi, J., Damjanovich, S., Balazs, M., Nagy, P., Trón, L., Fulwyler, M.J., Brodsky, F.M., 1989. Physical association between MHC class I and class II molecules detected on the cell surface by flow cytometric energy transfer. J. Immunol. 143, 208–213.

Thor, G., Sepulveda, H., Chada, S., Dutton, R.W., 1993. Monoclonal antibody that distinguishes between a phosphorylated, beta 2-microglobulin-associated, and a non-phosphorylated, beta 2-microglobulin-free HLA class I alpha-chains on activated T cells requires the transmembrane domain of the MHC class I. J. Immunol. 150, 948–955.

Townsend, A., Bodmer, H., 1989. Antigen recognition by class I -restricted cytotoxic T lymphocytes. Annu. Rev. Immunol. 7, 601–630.

Triantafilou, K., Triantafilou, M., Fernandez, N., 2000. Human major histocompatibility complex class I antigens. J. Immunol. 164, 2240–2246. https://doi.org/10.4049/jimmunol.164.6.2240.

Triantafilou, K., Triantafilou, M., Wilson, K.M., Fernandez, N., 2000. Human major histocompatibility complex class I antigens: evidence for selective molecular interactions. J. Immunol. 137, 2298.

Tronarp, E., Goodenow, R.S., Schreiber, R.H., 1985. Identification of a unique tumor-specific HLA-A28. Hum. Immunol. 3, 277–288.

Tsai, W.C., Chen, C.J., Yen, Y.H., Ou, T.T., Tsai, J.J., Liu, C.S., Liu, H.W., 2002. Free HLA class I heavy chain-carrying monocytes–a potential role in the pathogenesis of cpondyloarthropathies. J. Rheumatol. 29, 2167–2171.

Verdel, S., Simonson, M., Goodenow, R.S., Solano, A.R., Alewell, R.A., Oltvai, Z.N., 2000. Mouse MHC class I antigens have the intrinsic ability to form homotypic associations. Hum. Immunol. 61, 585–598. https://doi.org/10.1016/s0198-8859 (00)00112-9.

Verdel, S., Simonson, M., Goodenow, R.S., Solano, A.R., Alewell, R.A., Oltvai, Z.N., 2000. Mouse MHC class I antigens have the intrinsic ability to form homotypic associations. Hum. Immunol. 61, 585–598. https://doi.org/10.1016/s0198-8859 (00)00112-9.

Verdel, S., Simonson, M., Goodenow, R.S., Solano, A.R., Alewell, R.A., Oltvai, Z.N., 2000. Mouse MHC class I antigens have the intrinsic ability to form homotypic associations. Hum. Immunol. 61, 585–598. https://doi.org/10.1016/s0198-8859 (00)00112-9.

Verdel, S., Simonson, M., Goodenow, R.S., Solano, A.R., Alewell, R.A., Oltvai, Z.N., 2000. Mouse MHC class I antigens have the intrinsic ability to form homotypic associations. Hum. Immunol. 61, 585–598. https://doi.org/10.1016/s0198-8859 (00)00112-9.

Verdel, S., Simonson, M., Goodenow, R.S., Solano, A.R., Alewell, R.A., Oltvai, Z.N., 2000. Mouse MHC class I antigens have the intrinsic ability to form homotypic associations. Hum. Immunol. 61, 585–598. https://doi.org/10.1016/s0198-8859 (00)00112-9.

Verdel, S., Simonson, M., Goodenow, R.S., Solano, A.R., Alewell, R.A., Oltvai, Z.N., 2000. Mouse MHC class I antigens have the intrinsic ability to form homotypic associations. Hum. Immunol. 61, 585–598. https://doi.org/10.1016/s0198-8859 (00)00112-9.

Verdel, S., Simonson, M., Goodenow, R.S., Solano, A.R., Alewell, R.A., Oltvai, Z.N., 2000. Mouse MHC class I antigens have the intrinsic ability to form homotypic associations. Hum. Immunol. 61, 585–598. https://doi.org/10.1016/s0198-8859 (00)00112-9.