WATKINS’ CONJECTURE FOR ELLIPTIC CURVES OVER FUNCTION FIELDS

JERSON CARO

Abstract. In 2002 Watkins conjectured that given an elliptic curve defined over \(\mathbb{Q} \), its Mordell-Weil rank is at most the 2-adic valuation of its modular degree. We consider the analogous problem over function fields of positive characteristic, and we prove it in several cases. More precisely, every modular semi-stable elliptic curve over \(\mathbb{F}_q(T) \) after extending constant scalars, and every quadratic twist of a modular elliptic curve over \(\mathbb{F}_q(T) \) by a polynomial with sufficiently many prime factors satisfy the analogue of Watkins’ conjecture. Furthermore, for a well-known family of elliptic curves with unbounded rank due to Ulmer, we prove the analogue of Watkins’ conjecture.

1. INTRODUCTION

Let \(\mathcal{E} \) be an elliptic curve over \(\mathbb{Q} \) of conductor \(N \). The modular degree \(m_\mathcal{E} \) of \(\mathcal{E} \) is the minimum degree of all modular parametrizations \(\phi : X_0(N) \to \mathcal{E} \) over \(\mathbb{Q} \). The modularity Theorem \([24, 20, 2]\) implies that it is well-defined. In 2002 Watkins \([23]\) conjectured that for every elliptic curve \(\mathcal{E} \) over \(\mathbb{Q} \) we have \(r \leq \nu_2(m_\mathcal{E}) \), where \(\nu_2 \) denotes the 2-adic valuation and \(r := \text{rank}_{\mathbb{Z}}(\mathcal{E}(\mathbb{Q})) \).

Let \(k \) be a finite field of characteristic \(p > 3 \), write \(A = k[T] \) for the polynomial ring, and let \(K = k(T) \) be its fraction field. Let \(\infty \) denote the place of \(K \) associated with \(1/T \). Let \(E \) be a non-isotrivial (see Section 2.3 for the definition) elliptic curve defined over \(K \). Under the assumption that \(E \) has split multiplicative reduction at \(\infty \), there is an analogue to the modularity Theorem cf. Theorem 2.1. Namely, if \(E \) is non-isotrivial and has split multiplicative reduction at \(\infty \) and conductor ideal \(n \), then there is a non-constant map \(\phi_E : X_0(n) \to E \), where \(X_0(n) \) is the corresponding Drinfeld modular curve. Thus, from now on we say that \(E \) is modular if it is non-isotrivial and has split multiplicative reduction at \(\infty \). Given a modular elliptic curve \(E \) over \(K \), we say that it satisfies Watkins’ conjecture if \(\text{rank}_\mathbb{Z}(E(K)) \leq \nu_2(m_\mathcal{E}) \), where \(m_\mathcal{E} \) is the minimal degree of a modular parametrization \(\phi_E \).

Using Atkin-Lehner involutions we prove a potential version of Watkins’ conjecture for semi-stable elliptic curves over \(K \) (see \([7]\) and \([3]\) for other applications of Atkin-Lehner involutions in the context of Watkins’ conjecture).

Theorem 1.1. Let \(E \) be a modular semi-stable elliptic curve defined over \(K \) with conductor \(n_E = (n)^\infty \). Let \(k' \) be a finite field containing the splitting field of \(n \) over \(k \), then Watkins’ conjecture holds for \(E' = E \times_{\text{Spec}K} \text{Spec}K' \), where \(K' := k'(T) \).

It is not known whether the Mordell-Weil rank of elliptic curves over \(\mathbb{Q} \) is unbounded or not. Over \(K \) we know that the rank is unbounded thanks to the work of Shafarevitch and Tate \([19]\) in the isotrivial case and Ulmer \([21]\) in the non-isotrivial case. The next result proves Watkins’ conjecture for one of the families given by Ulmer, thus, we obtain Watkins’ conjecture for elliptic curves over \(K \) with arbitrarily large rank.

Theorem 1.2. Let \(p \) be a prime and \(n \) be a positive integer, such that \(6 \mid p^n + 1 \). The elliptic curve \(E : y^2 + T^dxy = x^3 - 1 \) where \(d = (p^n + 1)/6 \) defined over \(\mathbb{F}_q(T) \), satisfies Watkins’ conjecture.
On the other hand, Esparza-Lozano and Pasten [8] prove that, over \(\mathbb{Q} \), the quadratic twist \(E(D) \) of \(E \) by \(D \) satisfies Watkins’ conjecture whenever the number of distinct prime divisor of \(D \) is big enough. Using results of Papikian [13] on \(L(\text{Sym}^2 f, 2) \) over function fields, when \(f \) is a Drinfeld modular form, we can prove an analogue over function fields. In the following we write \(\omega_K(g) \) for the number of distinct irreducible factors of a polynomial \(g \) in \(A \).

Theorem 1.3. Let \(E \) be an elliptic curve over \(K \) with minimal conductor among its quadratic twists. Let its conductor be \(\mathfrak{n} \infty = (n_1^2 n_2) \infty \), where \(n_1, n_2 \) are square-free coprime polynomials. Assume that \(E \) has a non-trivial \(K \)-rational 2-torsion. Let \(g \) be a monic square-free polynomial of even degree such that \(\gcd(n_1, g) = 1 \), and \(\omega_K(g) \geq 2 \omega_K(n) - \nu_2(m_E) \), then Watkins’ conjecture holds for \(E(g) \).

The condition that \(g \) has even degree is necessary to guarantee that \(E(g) \) is modular (cf. Section 4). The previous Theorem will be used to deduce the following:

Corollary 1.4. Assume that \(E \) is a semi-stable modular elliptic curve over \(K \). Then we have that \(E(g) \) satisfies Watkins’ conjecture whenever \(\omega_K(g) \geq 3 \). Furthermore, if every prime dividing \(\mathfrak{n} \) has non-split multiplicative reduction and \(E(K)[2] \cong \mathbb{Z}/2\mathbb{Z} \) then \(E(g) \) satisfies Watkins’ conjecture for every square-free polynomial \(g \in A \) of even degree.

2. Preliminaries

The idea of this section is to define the associated invariants to Watkins’ conjecture over function fields. Write \(K_\infty \) for the completion of \(K \) at \(T^{-1} \), and let \(\mathcal{O}_\infty \) be its ring of integers. Let \(C_\infty \) denote the completion of an algebraic closure of \(K_\infty \).

2.1. Drinfeld Modular Curves.** We denote by \(\Omega \) the Drinfeld upper half plane \(C_\infty - K_\infty \). Notice that \(GL(2, K_\infty) \) acts on \(\Omega \) by fractional linear transformations, in particular, so does the Hecke congruence subgroup associated with an ideal \(\mathfrak{n} \) of \(A \)

\[
\Gamma_0(\mathfrak{n}) = \left\{ g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G : a, b, c, d \in \mathbb{F}_q[T], c \equiv 0 \pmod{\mathfrak{n}}, \det(g) \in \mathcal{O}_\infty \right\}.
\]

The compactification of the quotient space \(\Gamma_0(\mathfrak{n}) \backslash \Omega \) by the finitely many cusps \(\Gamma_0(\mathfrak{n}) \backslash \mathbb{P}^1(K) \) is the Drinfeld modular curve. We denoted it by \(X_0(\mathfrak{n}) \).

2.2. Drinfeld Modular Forms and Hecke Operators.** In this section, we define an analogue of the cuspidal Hecke newforms over \(C \). Another way to understand \(\Omega \) is the Bruhat-Tits tree \(T \) of \(PGL(2, K_\infty) \), whose oriented edges are in correspondence with the cosets of \(GL(2, K_\infty)/K_\infty \cdot \mathcal{J} \) (see Section 4.2 [9]), where

\[
\mathcal{J} = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL(2, \mathcal{O}_\infty) : c \equiv 0 \pmod{T^{-1}} \right\}.
\]

This correspondence gives an action of \(GL(2, K_\infty) \) on the real-valued functions on the oriented edges of \(T \) by left-multiplying the argument. Let \(H^1(\Gamma_0(\mathfrak{n}), \mathbb{R}) \) be the finite-dimensional \(\mathbb{R} \)-space of real-valued, alternating, harmonic and \(\Gamma_0(\mathfrak{n}) \)-invariant functions on the oriented edges of \(T \) having finite support modulo \(\Gamma_0(\mathfrak{n}) \).

For each divisor \(\mathfrak{d} = (d) \) of \(\mathfrak{n} \), let \(i_\mathfrak{d} \) be the map

\[
i_\mathfrak{d} : (H^1(\Gamma_0(\mathfrak{n}/\mathfrak{d}), \mathbb{R}))^2 \longrightarrow H^1(\Gamma_0(\mathfrak{n}), \mathbb{R})
\]

given by

\[
i_\mathfrak{d}(f, g)(e) = f(e) + g \left(\begin{pmatrix} d & 0 \\ 0 & 1 \end{pmatrix} \cdot e \right),
\]

2
for every oriented edge e. The subspace of oldforms at level n is
\[
H^\text{old}_{\ell}(\Gamma_0(n), \mathbb{R}) = \sum_{p | n} \mathbb{Z}_p((H_{\ell}(\Gamma_0(n/p), \mathbb{R}))^2).
\]

Denote by $H^\text{new}_{\ell}(\Gamma_0(n), \mathbb{R})$ to the orthogonal complement of the oldforms with respect to the Petersson-norm (see Section 4.8 Gekeler op. cit.) defined over $H_{\ell}(\Gamma_0(n), \mathbb{R})$.

For any nonzero ideal m there is a Hecke operator T_m, for example, for m relatively prime to n is defined by
\[
T_m f(e) = \sum f \left(\left(\frac{a}{b} \right) \cdot e \right),
\]
where the sum runs over $a, b, d \in A$ such that a, d are monic, $m = (ad)$, and $\deg(b) < \deg(d)$, see Section 4.9 Gekeler op. cit. for a general definition. Finally, a newform is a normalized Drinfeld modular form $f \in H^\text{new}_{\ell}(\Gamma_0(n), \mathbb{R})$, and an eigenform for all Hecke operators.

2.3. **Elliptic curves.** Let E be an elliptic curve defined over K. Assume that E has an affine model
\[
Y^2 + a_1 XY + a_3 Y = X^3 + a_2 X^2 + a_4 X + a_6.
\]
where $a_i \in K$. For this cubic equation, define the usual Weierstrass invariants:
\[
\begin{align*}
 b_2 &= a_1^2 + 4a_2, & b_4 &= a_1 a_3 + 2a_4, & b_6 &= a_3^2 + 4a_6, \\
 b_8 &= a_1^2 a_6 - a_1 a_3 a_4 + 4a_2 a_6 + a_2 a_3^2 - a_4, \\
 c_4 &= b_2^2 - 24b_4, & c_6 &= -b_2^3 + 36b_2 b_4 - 216b_6, \\
 \Delta &= -b_2^2 b_8 - 8b_4^3 - 27b_6^2 + 9b_2 b_4 b_6, \\
 j_E &= c_4^3 \Delta^{-1}.
\end{align*}
\]

We say that E is **non-isotrivial** when $j_E \notin k$. Since we assume that $\text{char}(k) > 3$ the conductor of E is cubefree. Denote it by n_E and by n its finite part, in particular, $n_E = n_0 \cdot \infty$, where $i \in \{0, 1, 2\}$. When E has split multiplicative reduction at ∞, due to Drinfeld’s reciprocity law (Proposition 10.3 [6]) and the fact that E is automorphic (Theorem 9.8 in [5]), there is an analogue of the modularity Theorem over \mathbb{Q}:

Theorem 2.1 (Modularity Theorem). Let E be an elliptic curve over K of conductor $n_E = n_0 \cdot \infty$ having split multiplicative reduction at ∞. There is a non-constant morphism $X_0(n) \to E$ defined over K.

Remark 2.2. This Theorem gives a bijection between primitive newforms f (i.e., f is a newform such that $f \notin nH^\text{new}_{\ell}(\Gamma_0(n), \mathbb{Z})$ for $n > 1$) with integer eigenvalues and isogeny classes of modular elliptic curves over K with conductor $n_0 \cdot \infty$.

2.3.1. **L-functions.** There is an attached L-function to an elliptic curve with conductor n_E, which has an Euler product expansion
\[
L(E, s) = \sum_{n \text{ pos. div.}} \frac{a_n}{|n|^s} = \prod_{p} \left(1 - \frac{\alpha_p}{|p|^s} \right)^{-1} \left(1 - \frac{\beta_p}{|p|^s} \right)^{-1},
\]
where α_p, β_p are defined as follows: (1) if $p \nmid n_E$, $\alpha_p + \beta_p = a_p := |p| + 1 - #E(F_p)$ and $\alpha_p \beta_p = |p|$, (2) if $p \mid n_E$, $\alpha_p = 0$ and $\beta_p = \pm 1$, and (3) if $p^2 \mid n_E$, $\alpha_p = \beta_p = 0$.

Due to results of Grothendieck [10] and Deligne [5] $L(E, s) = L(f_E, s)$, where f_E is the newform associated to E, and $L(E, s)$ is a polynomial in the variable q^{-s} of degree $\deg(n) - 4$.

Over this newform \(f_E \) we define the \(L \)-function attached to its symmetric square \(L(\text{Sym}^2 f_E, s) \) with the following local factors

\[
L_p(\text{Sym}^2 f_E, s) = \begin{cases}
1, & \text{if } p^2 \mid n_E, \\
\left(1 - \frac{1}{p^2}\right)^{-1}, & \text{if } p \mid n_E, \\
\left(1 - \frac{\alpha^2}{|p|^s}\right)^{-1} \left(1 - \frac{\alpha}{|p|^s}\right)^{-1} \left(1 - \frac{\alpha^*}{|p|^s}\right)^{-1}, & \text{if } p \nmid n_E.
\end{cases}
\]

When \(E \) is semi-stable Proposition 5.4 from [12] implies that \(L(\text{Sym}^2 f_E, s) \) is a polynomial in the variable \(q^{-s} \) of degree \(2 \deg(n_E) - 4 \).

2.3.2. Upper Bounds for the Rank of the Mordell-Weil Group. The following is a geometric bound for the Mordell-Weil rank due to Tate [15]

\[
\text{rank}_{\mathbb{Z}}(E(K)) \leq \text{ord}_{s=1} L(E, s) \leq \deg(n_E) - 4.
\] (2)

See [22] for detailed proof. In addition, if the elliptic curve \(E \) has a non-trivial \(K \)-rational 2-torsion, we can give an upper bound for its Mordell-Weil rank in terms of \(\omega_K(n) \), the number of distinct primes that divide \(n \) in \(A \).

First of all, notice that the change of variables \(X = z/4, \ Y = y/8 - a_4 z/8 - a_3/2 \) transforms (1) into

\[
y^2 = z^3 + b_2 z^2 + 8 b_4 z + 16 b_6.
\] (3)

Let \(\gamma \in K \) be a root of the previous cubic, associated to a non-trivial \(K \)-rational 2-torsion point. Then \(\gamma \in A \) and the change of variables \(z = x + \gamma \) turns (3) into

\[
y^2 = x^3 + A x^2 + B x
\] (4)

where

\[
A = 3 \gamma + b_2 \quad \text{and} \quad B = 3 \gamma^2 + 2 b_2 \gamma + 8 b_4.
\]

Let \(\Delta_{\text{min}} \) be the discriminant of the minimal model (1) and let \(\Delta \) be the discriminant of (4). Notice that \(\Delta = 2^{12} \Delta_{\text{min}} \) by the standard transformation formulas, thus, (4) is a minimal model of \(E \). Now, recall the usual exact sequence related to a 2-descent,

\[
0 \longrightarrow \frac{E(K)}{2E(K)} \longrightarrow \text{Sel}_2(E/K) \longrightarrow \text{III}(E/K)[2] \longrightarrow 0.
\] (5)

Furthermore, consider the exact sequence from Lemma 6.1 of [15]

\[
0 \longrightarrow \frac{E'(K)[\theta]}{\phi[E(K)[2]]} \longrightarrow \text{Sel}^\theta(E/K) \longrightarrow \text{Sel}_2(E/K) \longrightarrow \text{Sel}^\theta(E'/K).
\] (6)

These two exact sequences imply that \(\text{rank}_{\mathbb{Z}}(E(K)) + 2 \leq s(E, \theta) + s'(E, \theta) \), where \(s(E, \theta) = \dim_{\mathbb{F}_2}(\text{Sel}^\theta(E/K)) \) and \(s'(E, \theta) = \dim_{\mathbb{F}_2}(\text{Sel}^\theta(E'/K)) \). In addition, there is a correspondence between Selmer groups and homogeneous spaces (see Chapter 4 from [14]), which shows that \(s(E, \theta) \leq \omega_K(A^2 - 4B) + 1 \) and \(s'(E, \theta) \leq \omega_K(B) + 1 \). Thus, we have the following proposition:

Proposition 2.3. Let \(E \) be an elliptic curve with \(K \)-rational 2-torsion and Weierstrass minimal model \(y^2 = x^3 + A x^2 + B x \), then:

\[
\text{rank}_{\mathbb{Z}}(E(K)) \leq \omega_K(A^2 - 4B) + \omega_K(B),
\]

consequently, if \(\alpha \) (resp. \(\mu \)) is the number of primes of additive (resp. multiplicative) bad reduction of \(E/K \). Then:

\[
\text{rank}_{\mathbb{Z}}(E(K)) \leq \mu + 2\alpha.
\]
2.3.3. **Modular Degree.** Let E be a modular elliptic curve defined over K. Let $X_0(n)$ be the Drinfeld modular curve parametrizing $\phi_E: X_0(n) \to E$ where ϕ_E is non-trivial and of minimal possible degree. The modular degree m_E is the degree of ϕ_E. The following Lemma relates the 2-adic valuations of m_E and $L(\text{Sym}^2 f, 2)$.

Lemma 2.4. Let E be a modular elliptic curve with conductor $n\infty$. Then we have that
\[
\nu_2(m_E) = \nu_2(L(\text{Sym}^2 f, 2)) - \nu_2(\text{val}_\infty(j_E)).
\]

Proof. Proposition 1.3 in [13] states that
\[
m_E = \frac{q^{\deg n-2}(c_E)^2}{-\text{val}_\infty(j_E)}L(\text{Sym}^2 f, 2),
\]
where c_E is the Manin constant and $q = \#E$. By taking 2-adic valuations we obtain
\[
\nu_2(m_E) = \nu_2(q^{\deg n-2}(c_E)^2) + \nu_2(L(\text{Sym}^2 f, 2)) - \nu_2(\text{val}_\infty(j_E)),
\]
and by Proposition 1.2 from [11] c_E is a power of q which yields the desired result. \qed

3. **WATKINS’ CONJECTURE FOR SEMI-STABLE ELLIPTIC CURVES**

For any ideal $\mathfrak{m} = (m)$, such that $\mathfrak{m} | n = (n)$, and \mathfrak{m} and n/\mathfrak{m} are relatively primes, there is an Atkin-Lehner involution $W_{\mathfrak{m}}$. This involution acts on $H_0(\Gamma_0(n), \mathbb{R})$ as follows
\[
W_{\mathfrak{m}} f(e) = f\left(\left(\begin{array}{cc} ma & b \\ nc & md \end{array} \right) \cdot e \right),
\]
where $a, b, c, d \in A$ and $m^2ab - nbc = \gamma m$ for some $\gamma \in k^\times$. We denote by $W(n)$ the 2-elementary abelian group of all Atkin-Lehner involutions. Let f be a primitive newform; since f is primitive, it is determined by its eigenvalues up to sign. By Lemma 11 from [1] the Hecke operators commute with the Atkin-Lehner involutions, hence $W_p(n)f$ and f have the same Hecke eigenvalues. By Lemma 1.2 from [16] $H_1^{\text{new}}(\Gamma_0(n), \mathbb{R})$ is stable under the Atkin-Lehner involutions, and consequently, we have that $W_p f = \pm f$.

Remark 3.1. Let E be a modular elliptic curve, and f_E be its attached primitive newform, then f_E is an eigenform of every Atkin-Lehner involution.

The following Proposition gives a lower bound of $\nu_2(m_E)$ in terms of $\omega_K(n)$.

Proposition 3.2. Let E be an elliptic curve with conductor $n_E = n\infty$. Let f_E be the primitive newform associated to E. Over this newform, we define $W' = \{ W \in W : W(f_E) = f_E \}$, and $\kappa := \dim\mathbb{F}_2(\mathbb{W}((n)) : W') + \dim\mathbb{F}_2(E(K)[2])$. Then $\omega_K(n) - \kappa \leq \nu_2(m_E)$.

Proof. Proposition 10.3 from [6] gives the following isomorphism
\[
H^1(X_0(n) \otimes K^{\text{sep}}_\infty, \mathbb{Q}_\ell) \cong H_0(\Gamma_0(n), \mathbb{Q}_\ell) \otimes \text{sp},
\]
where sp is the two-dimensional special ℓ-adic representation of $\text{Gal}(K^{\text{sep}}_\infty/K_\infty)$. Furthermore, this isomorphism is compatible with the action of the Atkin-Lehner involutions.

Since $H^1(X_0(n) \otimes K^{\text{sep}}_\infty, \mathbb{Q}_\ell)$ is the dual of $V_i(J_0(n))$, we have that if $\pi: J_0(n) \to E$ is the projection, then $\pi((W(D)) = \pi([D])$ for every divisor D of degree 0 over $X_0(n)$ whenever $W \in W'$. By Remark 3.1 W' has at most index 2 in $W(n)$. Now, as in Proposition 2.1 in [7] we construct a homomorphism $\theta: W' \to E(K)[2]$. First of all, we fix a K-rational point $x_0 \in X_0(n)$, then for $W \in W'$ we define $\theta(W) = \pi([W(x_0) - (x_0)])$. Notice that $\theta(W) \in E(K)[2]$, since $x_0 \in X_0(n)(K)$ and
\[
\theta(W) = \pi([W(x_0) - (x_0)]) = \pi([W(W(x_0) - (x_0))]) = -\pi([W(x_0) - (x_0)]) = -\theta(W).
\]
Now, define \(W'' = \ker \theta \). Let \(\mathcal{X} = X_0(n)/W'' \), and denote by \(\psi : X_0(n) \to \mathcal{X} \) that is also defined over \(K \) and by \(\mathcal{J} \) the Jacobian of \(\mathcal{X} \). We can define \(i : X_0(n) \to J_0(n) \) based on \(x_0 \), and \(i' : \mathcal{X} \to \mathcal{J} \) based on \(\psi(x_0) \), so we obtain a commutative diagram

\[
\begin{array}{ccc}
X_0(n) & \xrightarrow{i} & J_0(n) \\
\downarrow \psi & & \downarrow \psi_* \\
\mathcal{X} & \xrightarrow{i'} & \mathcal{J}.
\end{array}
\]

Since \(\pi([W(x_0) - x_0]) = 0 \) for \(W \in \mathcal{W}' \), we have that \(\pi \circ i(w(x)) = \pi \circ i(x) \) for all \(x \in X_0(n) \), in particular, \(\pi \circ i \) factors through \(\mathcal{X} \). Since the image of \(i \) generates to \(J_0(n) \) as a group, there exists \(\pi' : \mathcal{J} \to E \) such that \(\pi = \pi' \circ \psi_* \), then

\[
[m_E] = \pi \circ \pi' = (\pi' \circ \psi_*) \circ (\psi \circ \pi') = \pi' \circ [\deg(\psi)] \circ \pi = \deg(\psi) \circ \pi = [\#W''] \circ (\pi' \circ \pi').
\]

Since the degree of \([i] \) (multiplication by \(i \)) is \(i \cdot i^* \) or \((i^*)^2 \), where \(i^* \) denotes the \(p \)-free part of \(i \), then \(\#W'' | m_E \), since \(p \neq 2 \).

\[\Box\]

The previous Proposition and Tate’s geometric bound (2) allow us to prove Theorem 1.1.

Proof of Theorem 1.1. Recall that \(E' = E \times_{\text{Spec} K} \text{Spec} K' \). Since the conductor of \(E' \) is also \(n_E = (n)\infty \), then by Tate’s geometric bound (2) \(\text{rank}(E'(K')) \leq \deg(n) - 4 \). On the other hand, we know that \(\omega_{K'}((n)) = \deg(n) \) because \(k' \) contains the splitting field of \(n \). Furthermore, since \(\text{dim}_{E'}([W(n) : W]) \leq 1 \), by Remark 3.1 we have \(\kappa \leq 3 \), then by Proposition 3.2 we have that

\[
\nu_2(m_{E'}) \geq \omega_K((n)) - 3 = \deg(n) - 3 = \deg(n_E) - 4 \geq \text{rank}(E'(k'(T))),
\]

which yields the desired result.

\[\Box\]

Ulmer [21] exhibits a closed formula for the rank of a family of elliptic curves. Proposition 3.2 together with this formula allow us to show Watkins’ conjecture for this family.

Proof of Theorem 1.2. First of all, we notice that \(E(\overline{\mathbb{F}_p}(T))[2] = (0) \), since the polynomial \(4x^3 + T^24x - 4 \) does not have solution over \(\overline{\mathbb{F}}_p(T) \). Notice that \(E \) is the change of base point of \(\mathbb{P}^1 \) given by \([0 : 1] \mapsto \infty \) of

\[
E' : y^2 + xy = x^3 - T^m,
\]

where \(m = p^n + 1 \). Theorem 1.5 in [21] shows that \(n_{E'} = T(1 - 2^{33}3^{T^m}) \), then in particular \(n_E = (T^m - 2^{33}3^{T^m})\infty \). We claim that \(f(T) = T^m - 2^{33}3^m \) always has a root in \(\mathbb{F}_{p^2} \). Let \(\alpha \in \mathbb{F}_{p^2} \) such that \(\alpha^2 = 3 \), and notice that if \(\alpha \in \mathbb{F}_p \), \(2^33^m \) is a root of \(f \). If \(\alpha \notin \mathbb{F}_p \), since \(6 | n^p - 1 \) we have that \(p \equiv -1 \mod 3 \), then \(p \equiv 1 \mod 4 \) by the law of quadratic reciprocity. This implies that \(2^33^m \) or \(2^33^m \beta \) is a root of \(f \), where \(\beta^2 = -1 \). Consequently, there is a bijection between the prime divisors of \(T^m - 1 \) and \(f(T) \).

By definition, \(T^m - 1 \) factors over \(\overline{\mathbb{F}}_p[T] \) as follows

\[
T^m - 1 = \prod_{e|m} \Phi_e(T),
\]

where \(\Phi_n(T) \) is the \(n \)-th cyclotomic polynomial. Thus, the number of prime divisors over \(\mathbb{F}_q[T] \) of \(f(T) \) is

\[
\omega_{\mathbb{F}_q(T)}(n_E) = \sum_{e|m} \phi(e) - \begin{cases} 0 & \text{if } T^m - 2^{33}3^m \text{ has solution in } \mathbb{F}_q, \\ 1 & \text{otherwise}. \end{cases}
\]

6
where $\phi(e)$ is the cardinality of $(\mathbb{Z}/e\mathbb{Z})^\times$ and $\omega_e(q)$ is the order of q in $(\mathbb{Z}/e\mathbb{Z})^\times$. On the other hand, we know that $\text{rank}(E(\mathbb{F}_p(T))) = \text{rank}(E'(\mathbb{F}_p(T)))$. Theorem 1.5 in [21] states a closed expression for $\text{rank}(E'(\mathbb{F}_q(T)))$

$$\sum_{e|m \atop e \not| 6} \frac{\phi(e)}{\omega_e(q)} + \begin{cases} 2 & \text{if } 3 \mid q - 1 \\ 1 & \text{otherwise} \\ 0 & \text{otherwise} \end{cases}.$$

Since there are 4 divisors of 6 we obtain

$$\sum_{e|m \atop e \not| 6} \frac{\phi(e)}{\omega_e(q)} \geq \sum_{e|m \atop e \not| 6} \frac{\phi(e)}{\omega_e(q)} + 4.$$

Furthermore, if $3 \mid q - 1$ then q is a square since $p \equiv -1 \pmod{3}$; which implies that $T^m - 2^43^3$ has solution in \mathbb{F}_q.

Hence, Proposition 3.2 implies that

$$\nu_2(m_E) \geq \omega_{\mathbb{F}_q(T)}(n_E) - 1 = \sum_{e|m \atop e \not| 6} \frac{\phi(e)}{\omega_e(q)} - 1 \geq \sum_{e|m \atop e \not| 6} \frac{\phi(e)}{\omega_e(q)} + 3 \geq \text{rank}(E(\mathbb{F}_q(T))).$$

Finally, if $3 \nmid q - 1$ we obtain

$$\nu_2(m_E) \geq \omega_{\mathbb{F}_q(T)}(n_E) - 1 \geq \sum_{e|m \atop e \not| 6} \frac{\phi(e)}{\omega_e(q)} - 2 \geq \sum_{e|m \atop e \not| 6} \frac{\phi(e)}{\omega_e(q)} + 2 \geq \text{rank}(E(\mathbb{F}_q(T))),$$

which gives the desired result.

4. Watkins’ Conjecture for Quadratic Twists

Let E be a modular elliptic curve with conductor n_E, since $\text{char}(k) > 3$ there exist square-free coprime polynomials $n_1, n_2 \in A$ such that $n_E = (n_1^2n_2)^\infty$. For $g \in A$ be a monic square-free polynomial, with $(n_1, g) = 1$, we define the quadratic twist $E^{(g)}$ of E by g as follows

$$E^{(g)}: y^2 = x^3 + Ax^2 + Bg^2x.$$

We assume that $\deg(g)$ is even to ensure that $E^{(g)}$ is modular. To see that, notice that if the change of variables $x \mapsto T^{2n}x$ and $y \mapsto T^{3n}y$ makes E a minimal T^{-1}-integral model, then the change $x \mapsto T^{2(n+m)}x$ and $y \mapsto T^{3(n+m)}y$ makes $E^{(g)}$ a minimal T^{-1}-integral model, where $\deg(g) = 2m$; since g is a monic polynomial, both reductions modulo T^{-1} are the same. Note that the conductor $n_E^{(g)}$ of $E^{(g)}$ is equal to $n_E(g^2/d)$, where $d = \gcd(n_2, g)$. We denote by $f^{(g)}$ to the associated Drinfeld newform to $E^{(g)}$.

The following lemma gives an upper bound for the Mordell-Weil rank of $E^{(g)}$.

Lemma 4.1. With the notation above, we have that

$$\text{rank}_\mathbb{Z}(E^{(g)}(K)) \leq \omega_K(n_2) + 2(\omega_K(n_1) + \omega_K(g)).$$

Proof. First of all, we notice that $E^{(g)}$ has multiplicative reduction at p if $p \mid n_2/d$, $E^{(g)}$ has additive reduction at p if $p \mid n_1g$, and otherwise $E^{(g)}$ has good reduction at p. Then by Proposition 2.3 we obtain that

$$\text{rank}_\mathbb{Z}(E^{(g)}(K)) \leq \omega_K(n_2/d) + 2(\omega_K(n_1) + \omega_K(g)),$$

since $\omega_K(n_2/d) \geq \omega_K(n_2)$ we obtain the desired result.

□
To find a lower bound for $\nu_2(m_{E^{(g)}})$, we need to relate $L(\text{Sym}^2 f^{(g)}, 2)$ and $L(\text{Sym}^2 f, 2)$, so, we can use Lemma [2.4] and the fact that $j_E = j_{E^{(g)}}$ (since this two elliptic curves are isomorphic in a quadratic extension of K), but before, we need the following lemma

Lemma 4.2. Let p be a prime ideal of A and let $\left(\frac{p}{p} \right) : \mathbb{F}_p \to \{-1, 0, 1\}$ be the extended Legendre symbol. Then

$$a_p(E^{(g)}) = \left(\frac{g}{p} \right) a_p(E).$$

Proof. If $E^{(g)}$ has additive reduction at p, we have that $p | n_1$ or $p | g$, then $a_p(E^{(g)}) = 0$ and there is nothing to prove. On the other hand, assume that $E^{(g)}$ has multiplicative reduction at p. By Lemma 2.2 in [4] E has split multiplicative reduction at p if and only if $(\frac{-c_0(E)}{p}) = 1$, as a consequence, this quantity is equal to $a_p(E)$. Furthermore, since $c_0(E^{(g)}) = g^3c_0(E)$, we have

$$a_p(E^{(g)}) = \left(\frac{-c_0(E^{(g)})}{p} \right) = \left(\frac{-g^3c_0(E)}{p} \right) = \left(\frac{g}{p} \right) a_p(E).$$

Finally, assume that $p \nmid n^{(g)}$, Define $M = \{x \in \mathbb{F}_p : x^3 + Ax^2 + B \neq 0\}$. Consequently, we obtain

$$\#E_p^{(g)}(\mathbb{F}_p) = |p| - 1 + \sum_{x \in M} \left(\frac{x^3 + Ax^2 + B}{p} \right)$$

$$= |p| - 1 + \sum_{x \in M} \left(\frac{g^3(x^3 + Ax^2 + B)}{p} \right)$$

$$= |p| - 1 + \left(\frac{g}{p} \right) \sum_{x \in M} \left(\frac{x^3 + Ax^2 + B}{p} \right)$$

by recalling the definition of $a_p(E)$ we get the desired result.

□

Proposition 4.3. Let E be a modular elliptic curve with conductor n_E and associated primitive newform f. Assume that E' is a quadratic twist of E, with conductor n'_E and associated primitive newform f', such that $\text{ord}_p(n_E) \leq \text{ord}_p(n'_E)$ for all p. Thus, there exist n_1, n_2, d, g square-free monic polynomials with $1 = \gcd(n_1, g)$, and $d = \gcd(n_2, g)$ such that $n_E = (n_1^2n_2)\infty$ and $n'_E = n_Eg^2/d$. Then one has

$$L(\text{Sym}^2 f', 2) = L(\text{Sym}^2 f, 2) \frac{|d|}{|g|^3} \prod_{p|d} (|p|^2 - 1) \prod_{p|g/d} ((|p| + 1)^2 - a_p(E^2)) (|p| - 1).$$

Proof. By Lemma 4.2 we have that when $\text{ord}_p(n) = \text{ord}_p(n')$ the local factors are equal, i.e. $L_p(\text{Sym}^2 f', 2) = L_p(\text{Sym}^2 f, 2)$. If $p | d$, we have that

$$L_p(\text{Sym}^2 f', s) = L_p(\text{Sym}^2 f, s)(1 - |p|^{-s}),$$

thus, at $s = 2$ we obtain

$$L_p(\text{Sym}^2 f', 2) = L_p(\text{Sym}^2 f, 2) \frac{1}{|p|^2}(|p|^2 - 1).$$

Finally, assume that $p | (g/d)$. The local factors are related as follows

$$L_p(\text{Sym}^2 f', s) = L_p(\text{Sym}^2 f, s) \left(1 - a_p^2|p|^{-s} \right) \left(1 - \frac{a_p^2}{|p|} |p|^{-s} \right) (|p| - 1)^{-s},$$
We know that helpful remarks. I was supported by ANID Doctorado Nacional 21190304.

On the other hand, Proposition 4.3 implies that Lemma 2.4 we obtain

\[\nu_2(m_{E^{(g)}}) = \nu_2(m_E) + \nu_2(L(\text{Sym}^2 f^{(g)}, 2)) - \nu_2(L(\text{Sym}^2 f, 2)). \]

Putting all together, we achieve the desired result. \(\Box \)

Proof of Theorem 1.3. Since \(E \) and \(E^{(g)} \) are isomorphic over \(\mathbb{C}_\infty \), we have that \(j_E = j_{E^{(g)}} \), thus by Lemma 2.4 we obtain

\[\nu_2(m_{E^{(g)}}) = \nu_2(m_E) + \nu_2(L(\text{Sym}^2 f^{(g)}, 2)) - \nu_2(L(\text{Sym}^2 f, 2)). \]

On the other hand, Proposition 4.3 implies that \(\nu_2(L(\text{Sym}^2 f^{(g)}, 2)/L(\text{Sym}^2 f, 2)) = \sum_{p \mid d} \nu_2(|p|^2 - 1) + \sum_{p \nmid g/d} \nu_2\left(\left(|p| + 1\right)^2 - a_p(E)^2\right)(|p| - 1)\right). \]

We know that \(|p|^2 - 1 \equiv 0 \pmod{8} \), meanwhile \(|p| - 1 \equiv 0 \pmod{2} \). As \(E(K)[2] \) is non-trivial and it maps injectively into \(E_p(\mathbb{F}_p) \) for every prime \(p \nmid \infty \), then \(|p| + 1 - a_p(E) \equiv 0 \pmod{2} \), which implies \((|p| + 1)^2 - a_p(E)^2 \equiv 0 \pmod{4} \). As a consequence

\[\nu_2(L(\text{Sym}^2 f^{(g)}, 2)) - \nu_2(L(\text{Sym}^2 f, 2)) \geq 3\omega_K(g). \]

Putting all together, we achieve the result.

\[\nu_2(m_{E^{(g)}}) \geq \nu_2(m_E) + 3\omega_K(g). \]

By Proposition 2.3 we know that \(\text{rank}(E^{(g)}) \leq 2(\omega_K(n) + \omega_K(g)) \). By our assumptions on \(g \) we obtain that

\[\nu_2(m_E) + 3\omega_K(g) \geq 2(\omega_K(n) + \omega_K(g)), \]

consequently, \(\text{rank}(E^{(g)}) \leq \nu_2(m_{E^{(g)}}) \). \(\Box \)

Proof of Corollary 1.4. By Proposition 3.2 we have that \(\nu_2(m_E) \geq \omega_K(n) - 3 \). Since \(E \) is semi-stable, \(n \) is square-free, consequently, Lemma 4.1 implies that \(\text{rank}(E^{(g)}) \leq \omega_K(n) + 2\omega_K(g) \). Using the equation (7), we have

\[\nu_2(m_{E^{(g)}}) \geq \nu_2(m_E) + 3\omega_K(g) \geq \omega_K(n) - 3 + 3\omega_K(g) \geq \omega_K(g) - 3 + \text{rank}(E^{(g)}), \]

hence Watkins’ conjecture holds for \(E^{(g)} \), whenever \(\omega_K(d) \geq 3 \). Furthermore, if a prime ideal \(p \) divides \(n \) and has non-split multiplicative reduction, by Theorem 3 in [1] \(W_p f = f \), consequently, \(\mathcal{W} = \mathcal{W}' \). Therefore, if every prime \(p \) which divides \(n \) has non-split multiplicative reduction and \(E(K)[2] \cong \mathbb{Z}/2\mathbb{Z} \) Proposition 3.2 implies that \(\nu_2(m_E) \geq \omega_K(n) - 1 \), thus, equation (8) turns into

\[\nu_2(m_{E^{(g)}}) \geq \omega_K(g) - 1 + \text{rank}(E^{(g)}), \]

accordingly, Watkins’ Conjecture holds for every square-free polynomial \(g \) of even degree. \(\Box \)

Acknowledgements

I want to thank Professor Hector Pasten for suggesting this problem to me and for numerous helpful remarks. I was supported by ANID Doctorado Nacional 21190304.
References

[1] Atkin, A. O., & Lehner, J. (1970). *Hecke operators on $\Gamma_0(m)$*. Mathematische Annalen, 185(2), 134-160.

[2] Breuil, C., Conrad, B., Diamond, F. and Taylor, R. *On the modularity of elliptic curves over \mathbb{Q}: wild 3-adic exercises*. Journal of the American Mathematical Society, pages 843–939, 2001.

[3] Jerson Caro and Héctor Pastén. *Watkins’s conjecture for elliptic curves with non-split multiplicative reduction*. Preprint, 2021.

[4] Conrad, B., Conrad, K. and Helfgott, H. (2005) *Root numbers and ranks in positive characteristic*. Advances in Mathematics, 198(2): 684–731.

[5] Deligne, P. (1973) *Les constantes des équations fonctionnelles des fonctions L*, 501–597. Lecture Notes in Math., Vol. 349.

[6] Drinfel’d, V. G. (1974). *Elliptic modules*. Mathematics of the USSR-Sbornik, 23(4), 561.

[7] Dummit, N. and Krishnamoorthy, S. (2013) *Powers of 2 in modular degrees of modular abelian varieties*. Journal of Number Theory, 133(2):501–522.

[8] Esparza-Lozano, J. and Pastén, H. *A conjecture of Watkins for quadratic twists*. Proceedings of the American Mathematical Society, 149(6): 2381–2385, 2021.

[9] Gekeler, E. and Reversat, A. (1996) *Jacobians of Drinfeld Modular Curves*. J.Reine Angew. Math. 476, 27-93.

[10] Grothendieck, A. (1964) *Formule de Lefschetz et rationalité des fonctions L*, Sém. Bourbaki 279.

[11] Pál, A. (2010) *The Manin constant of elliptic curves over function fields*. Algebra & Number Theory, 4(5), 509-545.

[12] Papikian, M. (2002) *On the degree of modular parametrizations over function fields*. Journal of Number Theory, 97(2): 317–349.

[13] Papikian, M. (2007) *Analogue of the degree conjecture over function fields*. Transactions of the American Mathematical Society, 359(7): 3483–3503.

[14] Roberts, D. (2007) *Explicit descent on elliptic curves over function fields*. PhD thesis, University of Nottingham.

[15] Schaefer, E. and Stoll, M. (2004) *How to do p-descent on an elliptic curve*. Transactions of the American Mathematical Society, 356(3): 1209–1231.

[16] Schweizer, A. (1998). *Involuntary elliptic curves over $\mathbb{F}_q(T)$*. Journal de théorie des nombres de Bordeaux, 10(1), 107-123

[17] Shioda, T. (1992) *Some remarks on elliptic curves over function fields*. Astérisque, 209(12):90–114.

[18] Tate, J. (1965). *On the conjectures of Birch and Swinnerton-Dyer and a geometric analog*. Séminaire Bourbaki, 9(306), 415-440.

[19] Tate, J., & Shafarevich, I. R. (1967). *The rank of elliptic curves*. In Doklady Akademii Nauk (Vol. 175, No. 4, pp. 770-773). Russian Academy of Sciences.

[20] Taylor, R. and Wiles, A. *Ring-theoretic properties of certain hecke algebras*. Annals of Mathematics, pages 553–572, 1995.

[21] Ulmer, D. (2002) *Elliptic curves with large rank over function fields*. Annals of Mathematics, pages 295–315.

[22] Ulmer, D. (2011). *Park City lectures on elliptic curves over function fields*. arXiv preprint [arXiv:1101.1939]

[23] Watkins, M. *Computing the modular degree of an elliptic curve*. Experimental Mathematics, 11(4): 487–502, 2002.

[24] Wiles, A. *Modular elliptic curves and Fermat’s last theorem*. Annals of Mathematics, pages 443–551, 1995.

[25] Yazdani, S. *Modular abelian varieties of odd modular degree*. Algebra and Number Theory, 5(1): 37–62, 2011.

Email address: jocaro@uc.cl

Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Campus San Joaquín, Avenida Vicuña Mackenna 4860, Santiago, Chile.