Predictors of mortality and morbidity following admission with chest pain

ABSTRACT — This study aimed to identify the predictors of outcome in 102 patients following their first admission with acute chest pain. Outcome was measured at three months by interview and at five years by questionnaire. Chest pain, change in physical activity, return to work, smoking, psychiatric disorder, and mortality were assessed. The principal predictors of chest pain and smoking were previous psychiatric disorder and a diagnosis of non-specific chest pain; a previous history of psychiatric disorder was associated with a five-fold increase in the risk of continued chest pain at five-year follow-up (95% CI = 1.1–25.0). Psychiatric disorder at five years was predicted by psychiatric disorder at admission (adjusted odds ratio (adj OR) = 3.2; 95% CI 1.0–11.0) and non-specific chest pain (adj OR = 7.5; 95% CI = 1.7–32.1). Mortality at five-year follow-up was independently associated with older age (adj OR = 1.1; 95% CI = 1.01–1.2), an elevated Norris score (adj OR = 1.41; 95% CI = 1.01–1.96) and a previous history of psychiatric disorder (adj OR = 5.06; 95% CI = 1.13–22.0). These findings suggest that prediction of outcome, irrespective of underlying diagnosis, requires careful assessment of previous or current psychiatric symptoms in patients admitted with chest pain. Early intervention with psychological treatment for patients with non-specific chest pain should be considered; this may also involve help to reduce smoking. The study provides further evidence that mortality following myocardial infarction is closely linked to psychiatric disorder, but suggests that prior psychiatric disorder may be more important than ‘post-infarction’ depression. A larger study is needed to confirm these results.

Chest pain is one of the most frequent reasons for urgent admission to hospital. Although the majority of such patients have ischaemic heart disease (IHD), 13–21% of patients have non-specific chest pain1,2 and a further 11% have non-cardiac organic pain (eg chronic renal failure, pulmonary embolus)2. In all groups of patients there is some association with psychiatric disorder, though the importance of this varies according to diagnosis.

STEVE KISELY, MD, FRANZCP, MRCPsych, MFHM, Consultant in Public Health Medicine, Birmingham Health Authority

ELSPETH GUTHRIE, MD, MRCPsych, Senior Lecturer in Liaison Psychiatry,

FRANCIS CRED, MD, FRCPsych, FRCP, Professor of Community Psychiatry,

ROSALIND TEW, Medical Student

University of Manchester

Among patients with myocardial infarction (MI), approximately 30–40% have psychiatric disorder in the first week of admission, with approximately 15% meeting DSM III (Diagnostic and Statistical Manual of Mental Disorders III) criteria for major depression3-6. One year after MI, psychological symptoms are still present in 20% of subjects7-9.

The importance of psychological factors in MI patients is their association with outcome. In terms of psychological and social outcome, one study found that social functioning one year after a myocardial infarction was more closely associated with psychiatric disorder than with severity of infarction or presence of angina10. In other studies, patients who were depressed following MI continued to experience psychiatric symptoms one year later and failed to return to work9,11. A particular risk factor appears to be the presence of psychiatric symptoms predating admission to hospital as opposed to symptoms which occurred after admission7,8. By contrast, neither the severity of cardiac disease nor the type of treatment received appears to be associated with psychiatric outcome4,10.

These results have been confirmed by studies that have used multivariate analyses which control for interactions between variables and so establish the importance of physical and psychosocial factors as independent predictors of psychosocial outcome12-14.

In terms of physical outcome (angina, arrhythmias and mortality), studies using multivariate analyses have produced conflicting results. In one study, post-infarction depression led to an increased reporting of angina but not of arrhythmias or other cardiac events15; it has been suggested that this finding could be explained by depressed patients being more likely to report somatic symptoms16. This study also demonstrated an association between depression and smoking.

With regard to mortality, studies using a standardised psychiatric instrument to measure psychiatric symptoms have reported an association between baseline psychiatric disorder and subsequent death at six-month3, one-year17, and 18-month follow-up assessments. However, in one cohort of patients only 50% of patients were successfully followed up17, while in the other, although overall compliance was satisfactory, a large proportion of women refused to participate5,18. Other studies with larger numbers of subjects and higher follow-up rates failed to demonstrate an association1,19,20. Two of these studies did not use a standardised psychiatric instrument, but did find an association between social stress and increased mortality19,20.

Non-specific chest pain is a common reason for
Previous studies have noted the importance of psychological, social and physical predictors in establishing the relative importance of psychological, social and physical predictors in controlling for possible confounding variables.

The aim of the present study was to analyse further the data quoted in our two previous reports to assess predictors of physical and psychosocial outcomes in patients admitted for the first time with chest pain. Previous studies have either been confined to a single group of patients (IHD or non-specific chest pain) or not been confined to first admission patients (previous admission for MI tends to swamp other factors in a multivariate analysis).

Table 1. Predictors of morbidity three months after a first admission with chest pain

Chest pain*	Change in physical activity*				
No (n = 29)	**Yes** (n = 57)	**Crude OR (95% CI)**	**No** (n = 39)	**Yes** (n = 47)	**Crude OR (95% CI)**
Age over 40 years old					
17 (59%)	32 (56%)	0.9 (0.4-2.2)	20 (51%)	30 (63%)	1.6 (0.7-3.7)
Male					
18 (62%)	34 (60%)	1.0	24 (52%)	27 (58%)	1.0
Female					
11 (38%)	23 (40%)	1.1 (0.6-1.9)	15 (38%)	20 (42%)	1.1 (0.7-1.8)
Single					
8 (28%)	11 (19%)	1.0	13 (33%)	6 (13%)	1.0
Married					
14 (18%)	29 (51%)	1.5 (0.5-4.6)	19 (49%)	23 (49%)	2.7 (0.9-8.6)
Widowed					
6 (21%)	8 (14%)	0.9 (0.2-3.9)	3 (8%)	12 (25%)	3.3 (0.6-15.9)
Divorced/Separated					
1 (3%)	9 (16%)	6.5 (0.7-62.0)	4 (10%)	6 (13%)	8.7 (0.7-42.6)
In work prior to admission					
17 (59%)	31 (54%)	0.8 (0.3-2.1)	21 (54%)	22 (56%)	1.1 (0.5-2.6)
Chest pain before episode leading to admission					
18 (62%)	39 (71%)	1.5 (0.6-3.9)	22 (56%)	36 (78%)	2.7 (1.1-7.2)
Complications at the time of admission					
4 (14%)	11 (19%)	1.5 (0.4-5.2)	4 (10%)	11 (23%)	2.7 (0.8-9.2)
Abnormal cardiac enzymes					
5 (17%)	9 (19%)	0.9 (0.3-3.0)	5 (13%)	9 (19%)	1.6 (0.5-5.3)
Fibrinolytics/beta-blockers following admission					
9 (31%)	28 (49%)	2.1 (0.8-5.5)	14 (35%)	24 (51%)	1.9 (0.8-4.4)
Past history of psychiatric illness					
6 (21%)	17 (28%)	1.6 (0.6-4.7)	10 (26%)	13 (27%)	1.1 (0.4-2.8)
Psychiatric case three months prior to admission					
5 (17%)	10 (18%)	1.02 (0.3-3.3)	7 (18%)	8 (17%)	0.9 (0.3-2.9)
Psychiatric case at admission					
7 (24%)	18 (32%)	1.5 (0.5-4.0)	11 (28%)	14 (29%)	1.1 (0.4-2.8)
Non-specific chest pain					
6 (21%)	17 (28%)	1.6 (0.6-4.7)	11 (28%)	6 (13%)	0.4 (0.1-1.1)

*Data on chest pain and physical activity were missing on two subjects. †Adjusted odds ratio = 10.2 (3.5-30.5), log likelihood ratio p = 0.000.

seeking medical attention. It is the most frequent reason for referral to cardiac clinics, and relatively few are admitted urgently to hospital but, in contrast to outpatients with chronic pain, there is an opportunity to intervene early and, possibly, prevent chronic disability.

In our previous reports, patients with non-specific chest pain experienced significantly more psychiatric disorder than patients with ischaemic heart disease at three-month and five-year follow-up; they also consumed greater amounts of alcohol and tobacco. In addition, patients who had psychiatric disorder at the time of the admission experienced more chest pain at follow-up than the remainder.

In contrast to studies of patients with IHD, those concerning other causes of chest pain have tended to use univariate analysis of possible predictor variables. If findings are to be applied clinically it is important to establish the relative importance of psychological, social and physical predictors by controlling for possible confounding variables.

The method of the present study was to analyse further the data quoted in our two previous reports to assess predictors of physical and psychosocial outcomes in patients admitted for the first time with chest pain. Previous studies have either been confined to a single group of patients (IHD or non-specific chest pain) or not been confined to first admission patients (previous admission for MI tends to swamp other factors in a multivariate analysis).

Method

The sample comprised a consecutive series of patients with chest pain admitted for the first time to the coronary care unit or medical wards of Manchester Royal Infirmary and followed up to five years later. In the first wave, patients were interviewed within a few days of admission using the Psychiatric Assessment Schedule (PAS) to record psychiatric morbidity at the time of admission and three months prior to admission. We also established whether the patient had ever been treated for psychiatric disorder. Other data included demographic characteristics, medication before and after admission, the results of investigations and the occurrence of complications during admission. Further details about subjects' social circumstances were collected using the Social Stress and Support Interview.

The following assessments of patients' physical status were made: abnormal cardiac enzymes, diagnosis made by the responsible physician based on the history, clinical signs and appropriate investigations including routine electrocardiograms, x-rays, barium studies, stress tests, echocardiograms and coronary angiograms when indicated. At the end of the admis-
Predictors of mortality and morbidity following admission with chest pain

Psychiatric caseness (PAS)	No (n = 56)	Yes (n = 32)	Crude OR (95% CI)
37 (64%)	15 (46%)	0.5 (0.2-1.1)	
38 (68%)	16 (50%)	1.0	
18 (32%)	16 (50%)	1.3 (0.9-1.9)	
13 (23%)	6 (19%)	1.0	
30 (54%)	13 (41%)	1.0 (0.3-3.1)	
7 (13%)	7 (22%)	2.7 (0.6-10.8)	
6 (10%)	6 (19%)	2.3 (0.5-10.3)	
32 (55%)	18 (54%)	1.0 (0.4-2.3)	
36 (64%)	23 (77%)	1.8 (0.7-5.0)	
7 (12%)	8 (24%)	2.5 (0.8-7.6)	
10 (18%)	4 (13%)	0.7 (0.2-2.3)	
26 (43%)	12 (43%)	0.8 (0.3-1.8)	
9 (16%)	17 (52%)	5.8 (2.2-15.5)	
4 (7%)	12 (36%)	8.1 (2.4-28.1)	
7 (12%)	20 (61%)	11.9 (4.1-33.4)	
7 (13%)	10 (31%)	3.2 (1.1-9.5)	

...content...
five years after their admission \((n = 68)\) had similar demographic characteristics to those patients who could not be traced, and reflected the demographic features of the original consecutive series\(^2\).

Predictors of morbidity at three-month follow-up

Psychological outcome. Psychiatric disorder at three-month follow-up was significantly associated (on univariate analysis) with a past history of psychiatric treatment and presence of psychiatric disorder three months before or at the time of admission and a diagnosis of non-specific chest pain (Table 1).

By contrast, physical factors, such as the presence of complications, use of fibrinolytics or beta-blockers or the presence of raised cardiac enzymes, were not associated with psychiatric disorder at three-month follow-up (Table 1).

On logistic regression only one variable – psychiatric disorder at admission – was significantly associated with psychiatric disorder at three-month follow-up (Table 1).

Smoking. Patients who had psychiatric disorder three months before admission were less likely than the remainder to have reduced their average daily number of cigarettes three months later (mean daily consumption: 3.8 versus 10.9, \(t\)-test = -1.98, \(df = 86, p = 0.05\)). No other variables were significantly associated with this outcome.

Chest pain, physical activity and return to work. Chest pain at three-month follow-up was not significantly associated with any of the baseline predictors. Reduction of physical activity was only significantly associated with one variable – chest pain prior to the index admission (Table 1). There were no significant associations with a return to work among the 48 patients who had been in work before admission to hospital (data not shown).

Social stress and support were not significantly associated with any outcome measure (data not shown), and Norris scores were not associated with either medical or psychosocial outcome (data not shown). Patients with non-specific chest pain were not significantly different from those with an organic cause, in terms of continued chest pain or return to full physical activity (Table 1).

Predictors of morbidity at five-year follow-up

Psychological outcome. At five-year follow-up, probable psychiatric disorder was significantly associated with psychiatric disorder at admission and the diagnosis of non-specific chest pain (Table 2).

| Table 2. Predictors of morbidity five years following a first admission with chest pain |
|----------------------------------|---------------------------|------------------|-----------------|
| Chest pain | Change in physical activity* |
| No \((n = 21)\) | Yes \((n = 47)\) | Crude OR | No \((n = 34)\) | Yes \((n = 32)\) | Crude OR |
| Age over 40 years old | | | | | |
| 13 (62%) | 25 (53%) | 0.7 (0.2-2.0) | 15 (44%) | 21 (66%) | 2.4 (0.9-6.5) |
| Male | | | | | |
| 12 (57%) | 27 (57%) | 1.0 | 20 (59%) | 18 (56%) | 1.0 |
| Female | | | | | |
| 9 (43%) | 20 (43%) | 1.0 (0.5-2.0) | 14 (41%) | 14 (44%) | 1.0 (0.7-1.7) |
| Single | | | | | |
| 1 (5%) | 8 (17%) | 1.0 | 7 (21%) | 2 (6%) | 1.0 |
| Married | | | | | |
| 13 (62%) | 24 (51%) | 0.2 (0.02-5.0) | 17 (50%) | 19 (59%) | 3.9 (0.7-21.6) |
| Widowed | | | | | |
| 4 (19%) | 9 (19%) | 0.3 (0.02-3.3) | 5 (15%) | 7 (22%) | 4.9 (0.7-34.3) |
| Divorced/Separated | | | | | |
| 3 (14%) | 6 (13%) | 2.5 (0.02-3.3) | 5 (15%) | 4 (13%) | 2.8 (0.4-21.7) |
| In work prior to admission | | | | | |
| 11 (52%) | 24 (51%) | 0.9 (0.3-2.5) | 19 (56%) | 16 (50%) | 0.8 (0.3-2.1) |
| Chest pain before episode leading to admission | 14 (67%) | 31 (71%) | 1.3 (0.4-3.3) | 21 (64%) | 24 (75%) | 1.7 (0.6-4.9) |
| Complications at the time of admission | 2 (10%) | 9 (19%) | 2.5 (0.4-2.5) | 3 (9%) | 8 (25%) | 3.4 (0.8-14.4) |
| Abnormal cardiac enzymes | 4 (19%) | 6 (13%) | 0.6 (0.2-1.3) | 4 (12%) | 6 (19%) | 1.7 (0.4-6.8) |
| Fibrinolytics/beta-blockers following admission | 9 (43%) | 23 (49%) | 1.3 (0.5-3.3) | 17 (50%) | 15 (47%) | 0.8 (0.3-2.3) |
| Past history of psychiatric illness | 2 (9%) | 16 (34%) | 5.0 (1.1-25.0) | 7 (21%) | 10 (31%) | 1.7 (0.6-5.4) |
| Psychiatric case three months prior to admission | 4 (19%) | 11 (23%) | 1.3 (0.4-5.0) | 7 (21%) | 8 (25%) | 1.3 (0.4-2.1) |
| Psychiatric case at admission | 5 (24%) | 17 (36%) | 1.7 (0.2-2.0) | 10 (29%) | 11 (34%) | 1.3 (0.5-3.5) |
| Non-specific chest pain | 8 (24%) | 24 (24%) | 1.0 (0.3-3.1) | 12 (26%) | 4 (19%) | 0.7 (0.2-2.4) |

*Data on physical activity were missing on two subjects.
\(\dagger\)Adjusted odds ratio = 3.2 (1.00-11.0); log likelihood ratio \(p = 0.06\).
\(\ddagger\)Adjusted odds ratio = 7.5 (1.70-32.1), log likelihood ratio \(p = 0.004\).
Predictors of mortality and morbidity following admission with chest pain

Psychiatric caseness (HADS anxiety scale)	No (n = 48)	Yes (n = 20)	Crude OR (95% CI)
29 (60%)	8 (42%)	0.5 (0.2–1.4)	
27 (56%)	12 (58%)	1.0	
21 (44%)	8 (42%)	1.0 (0.7–1.3)	
6 (13%)	3 (16%)	1.0	
28 (57%)	9 (42%)	0.6 (0.1–2.8)	
8 (17%)	5 (26%)	2.7 (0.2–7.4)	
6 (13%)	3 (16%)	1.0 (0.2–7.0)	
24 (50%)	10 (53%)	1.1 (0.4–3.2)	
29 (64%)	15 (79%)	2.1 (0.6–7.3)	
6 (13%)	5 (26%)	2.5 (0.7–9.5)	
8 (17%)	2 (11%)	0.6 (0.1–3.1)	
24 (50%)	7 (37%)	0.6 (0.2–1.7)	
12 (25%)	6 (31%)	1.4 (0.4–4.5)	
9 (19%)	6 (32%)	2.0 (0.6–6.7)	
11 (23%)	11 (58%)	4.6 (1.5–14.4)†	
6 (13%)	10 (47%)	7.8 (2.2–26.9)‡	

On logistic regression, only non-specific chest pain remained independently predictive (p = 0.004); psychiatric disorder at admission just failed to reach significance (p = 0.06).

Chest pain. Continued chest pain at five-year follow-up was significantly associated with a past history of psychiatric illness (Table 2). There were no significant baseline predictors of a change in physical activity or return to work. As at three-month follow-up, Norris scores were not associated with either medical or psychosocial outcome (data not shown).

Smoking. Patients with non-specific chest pain were seven times less likely to have reduced their smoking levels than those with organic pain (11 out of 16 (68%) versus 46 out of 52 (93%), odds ratio = 7.0; 95% confidence interval CI = 1.4–33.7).

Mortality at five-year follow-up

At three-month follow-up, five patients had died, all of whom had IHD (7% of patients with IHD). Analysis of variables associated with mortality was not possible due to the small numbers.

At five-year follow-up, 15 patients had died, of whom all but one had IHD (19.7% of patients with IHD). As none of the patients with non-specific chest pain died, these subjects were excluded from the analysis.

On logistic regression, three baseline variables were significantly associated with greater mortality: older age, raised Norris score and a past history of psychiatric disorder (Table 3). None of the variables associated with social stress and support were significantly associated with mortality (data not shown).

Discussion

The results of this study must be treated with caution because of the small number of patients. The numbers reported in this paper are only half those in the Frasure-Smith study, but, in spite of this, statistically significant associations emerged between predictor variables recorded at admission and subsequent morbidity and mortality.

Other limitations of the present study include reliance on a postal, self-report questionnaire to assess physical, social and psychiatric morbidity at five-year follow-up, and the small number of subjects in the non-IHD and non-specific groups. In addition specific details of medication prescribed on admission to hospital, such as dosages and duration of treatment, were not recorded in the original sample. This may have disguised the therapeutic effect of interventions.

Specific strengths of the present study include the high recruitment (97%) and follow-up (80%) rates and the use of a structured psychiatric interview to measure psychiatric symptoms before admission, during admission and three months subsequently. We only included first admissions, thus avoiding the confounding effect of previous MI. A range of psychosocial and physical outcomes has been assessed on the same cohort of patients.

The sample included in our study differed from other studies, possibly because the population was drawn from an inner city area. In our sample, 42% of MI patients were women compared to 0–33% in other studies – divorced and depressed women are particularly likely to die following MI. The majority (79%) of the non-specific chest pain group was male, unlike the outpatient groups previously studied, which were predominantly female.

In common with previous studies, three months after admission to hospital, psychosocial variables were more important predictors of psychological or social outcome than cardiacological factors. The key predictor variable in the multivariate analysis was psychiatric disorder at admission. At five-year follow-up the importance of this variable was clear, together with a diagnosis of non-specific chest pain.

With regard to mortality rates in the organic groups (predominantly IHD), the three-month figure of 5% is similar to the rates reported by other studies. At five years this proportion had risen to just under 20%, which is higher than the American studies, but similar to the Nottingham study. As in previous
studies, none of the non-specific group had suffered a myocardial infarction in the intervening years.

Our findings in relation to mortality are similar to those of Frasure-Smith et al. but are interesting because they demonstrate that previous psychiatric history is more predictive than psychiatric disorder at the time of admission. One study has suggested that people with prior depression have more severe heart dysfunction during the acute phase of MI. Our findings also suggest that social stress at the time of the MI is less predictive of subsequent mortality than depression.

The reasons for the association between past psychiatric symptoms and mortality are unclear. Previous studies have suggested that the increased mortality among patients with psychiatric illness could be the result of physiological changes or be linked indirectly to physical ill health through neglect of symptoms, increased smoking or reduced compliance with treatment regimens. Our results confirm previous findings that psychiatric disorder prior to MI is associated with continued smoking.

This study requires replication with a larger sample of patients and more detailed documentation of extent of MI, cardiac function and social stress, as a precursor of depression. It is conceivable that the importance of previous psychiatric disorder lies in its association with social stresses early in life, which are thought to be associated with later IHD, possibly because of low birth weight.

The clinical implications of this study relate to the importance of proper psychosocial assessment of patients at the time of their first admission with chest pain. As the NHS becomes more preoccupied with the costs and outcome of illness episodes, there is considerable potential for predicting quality of life and health care costs, provided that an accurate account of previous and current psychiatric disorders is documented during the admission in addition to the accurate assessment of cardiac function. Improved outcomes may be achieved when effective treatment is offered to those with psychiatric disorder and to those who require help to reduce their smoking. The potential to intervene for non-specific chest pain at this early stage is especially appealing because of the poor quality of life and high health care costs associ-
ated with untreated non-specific chest pain30, provided that appropriate psychological treatment is available37.

References

1 Wilcox RG, Roland JM, Hampton JR. Prognosis of patients with 'chest pain'?cause'. Br Med J 1981;282:431-3.
2 Kelsey SR, Creed F, Cotter L. The course of psychiatric disorder associated with non-specific chest pain [published erratum appears in J Psychiatr Res 1993;27:89]. J Psychiatr Res 1992;27:329-35.
3 Frasure-Smith N, Lesperance F, Talajic M. Depression following myocardial infarction. Impact on 6-month survival. JAMA 1993;270:1819-25.
4 Schliefer RR, Macari-Hinson MM, Coyle DA, Slater WR, et al. The nature and course of depression following myocardial infarcion. Arch Intern Med 1989;149:1785-9.
5 Forrester AW, Lipsev JR, Teitellbaum ML, DePaulo JR, Andrzejewski PL. Depression following myocardial infarction. Int J Psychiatry Med 1992;22:33-46.
6 Travella JF, Forrester AW, Schultz SK, Robinson RG. Depression following myocardial infarction: a one year longitudinal study. Int J Psychiatry Med 1994;24:357-68.
7 Lloyd GG, Cawley RH. Distress or illness? A study of psychological symptoms after myocardial infarction. Br J Psychiatry 1983;142:120-5.
8 Lloyd GG, Cawley RH. Psychiatric morbidity after myocardial infarction. Q J Med 1982;51:33-42.
9 Carney RM, Freedland KE, Eisen SA, Rich MW, Jaffe AS. Major depression and medication adherence in elderly patients with coronary artery disease. Health Psychol 1995;14:88-90.
10 Cay EL, Vetter N, Philip AE, Dugard P. Return to work after a cardiac attack. J Psychiatr Res 1973;17:231-43.
11 Stern MJ, Pascal L, Ackerman A. Life adjustment post myocardial infarction: predictive variables. Arch Intern Med 1977;137:1690-5.
12 Trelawney-Ross C, Russell O. Social and psychological responses to myocardial infarction: multiple determinants of outcome after 6 months. J Psychiatr Res 1987;31:125-30.
13 Wiklund I, Samne H, Verdin A, Wilhelmsson C. Psychosocial outcome one year after a first myocardial infarction. J Psychiatr Res 1984;28:390-21.
14 Mayou R. Prediction of emotional and social outcome after a heart attack. J Psychiatr Res 1984;28:17-25.
15 Ladwig KH, Roll G, Breithardt G, Budde T, Borggreve M. Post-infarction depression and incomplete recovery 6 months after acute myocardial infarction. Lancet 1994;343:29-3.
16 Leng GC. Depression following myocardial infarction. Lancet 1994;343:2-3.
17 Aher R, Gorkin L, Anderson JL, Tierney C, et al. Behavioural variables and mortality or cardiac arrest in the Cardiac Arrhythmia Pilot Study. Am J Cardiol 1990;66:59-63.
18 Frasure-Smith N, Lesperance F, Talajic M. Depression and 18-month prognosis after myocardial infarction. Circulation 1995;91:999-1005.
19 Jenkinson CM, Madeley RJ, Mitchell JR, Turner ID. The influence of psychosocial factors on survival after myocardial infarction. Public Health 1993;107:305-17.
20 Ruberman W, Weinblatt E, Goldberg JD, Chaudhary BS. Psychosocial influences on mortality after myocardial infarction. N Engl J Med 1984;311:552-9.
21 Mayou R. Invited review: atypical chest pain. J Psychiatr Res 1989;33:393-406.
22 Mayou R. Chest pain in the cardiac clinic. J Psychiatr Res 1979;137:1680-5.
23 Tew R, Guthrie E, Creed FH, Cotter L, et al. A long term follow-up study of patients with ischaemic heart disease versus patients with non-specific chest pain. J Psychiatr Res 1993;29:777-85.
24 Kelsey SR, Faragher B, Gask L, Goldberg D. Assessing psychiatric disorder in the recent past. Psychol Med 1992;22:457-63.
25 Jenkins R, Mann AH, Belsey E. The background, design and use of a short interview to assess social stress and support in research and clinical settings. Soc Sci Med 1981;15:195-202.
26 Norris RM, Brandt PWT, Caughey DE, Scott PJ. A new coronary prognostic index. Lancet 1969;1(589):274-9.
27 Norris RM, Brandt PWT, Lee AJ. Mortality in a coronary care unit analysed by a new coronary prognostic index. Lancet 1969;2:887-81.
28 Powell LH, Shaker LA, Jones BA, Vaccarino LV, et al. Psychological predictors of mortality in 83 women with premature acute myocardial infarction. Psychiatr Res 1993;55:426-33.
29 Potts SG, Bass CM. Psychosocial outcome and use of medical resources in patients with chest pain and normal or near-normal coronary arteries: a long-term follow-up study. Q J Med 1993;86:583-93.
30 Lesperance F, Frasure-Smith N, Talajic M. Depression and beyond: affect, arteriosclerosis and death. Eur Neuropsychopharmacol 1995;13:219-20.
31 Huppert FA, Whittington JE. Symptoms of psychological distress predict 7-year mortality. Psychol Med 1995;25:1073-86.
32 Lloyd GG, Cawley RH. Smoking habits after myocardial infarction. J R Coll Physicians Lond 1980;14:224-6.
33 Paneth N, Susser M. Early origin of coronary heart disease (the ‘Barker hypothesis’). Br Med J 1995;310:111-12.
34 Mutale T, Creed FH, Marles M, Hunt L. Life events and low birth weight – analysis by infants preterm and small for gestational age. Br J Obstet Gynaecol 1991;98:166-72.
35 Allison TG, Williams DE, Miller TD, Patten CA, et al. Medical and economic costs of psychologic distress in patients with coronary heart disease. Mayo Clin Proc 1995;70:734-42.
36 Klimes I, Mayou RA, Pearce MJ, Coles L, Fagg JR. Psychological treatment for atypical non-cardiac chest pain: a controlled evaluation. Psychol Med 1990;20:605-11.

Address for correspondence: Dr S Kelsey, Birmingham Health Authority, 1 Vernon Road, Edgbaston, Birmingham B16 5RQ.