Operative considerations for rectovaginal fistulas

Kevin R Kniery, Eric K Johnson, Scott R Steele

Kevin R Kniery, Eric K Johnson, Scott R Steele, Department of Surgery, Division of Colorectal Surgery, Madigan Army Medical Center, Tacoma, WA 98431, United States

Author contributions: All authors contributed to this manuscript.

Conflict-of-interest statement: The authors do not have any conflicts-of-interest to disclose.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Correspondence to: Kevin R Kniery, MD, General Surgery Resident, Department of Surgery, Division of Colorectal Surgery, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA 98431, United States. krmkniery@gmail.com

Received: April 29, 2015
Peer-review started: April 29, 2015
First decision: May 14, 2015
Revised: May 26, 2015
Accepted: June 30, 2015
Article in press: July 2, 2015
Published online: August 27, 2015

INTRODUCTION

Rectovaginal fistula (RVF) is an epithelial lined tract between the rectum and vagina, and generally presents with passage of air, stool or even purulent discharge from the vagina. Operative considerations for rectovaginal fistulas (RVFs) address the etiology, anatomy and pathophysiology of RVFs; and to describe a systematic surgical approach to help achieve optimal outcomes.

A current review of the literature was performed to identify the most up-to-date techniques and outcomes for repair of RVFs. RVFs present a difficult problem that is frustrating for patients and surgeons alike. Multiple trips to the operating room are generally needed to resolve the fistula, and the recurrence rate approaches 40% when considering all of the surgical options. At present, surgical options range from collagen plugs and endorectal advancement flaps to sphincter repairs or resection with colo-anal reconstruction. There are general principles that will allow the best chance for resolution of the fistula with the least morbidity to the patient. These principles include: resolving the sepsis, identifying the anatomy, starting with least invasive surgical options, and interposing healthy tissue for complex or recurrent fistulas.

Key words: Rectovaginal fistulas; Anovaginal fistulas

© The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: There are general principles that will allow the best chance for resolution of a rectovaginal fistula with the least morbidity to the patient. Identifying and addressing the disease process that caused the fistula is critical, including medical management for Crohn’s, and resolving inflammation or sepsis with a seton. Then the exact anatomy of the fistula should be defined to determine operative approaches. The operative algorithm should begin with fistula plugs and local advancement flaps, if these fail more invasive options such as diversion, and interposition of healthy tissue should be pursued for complex and recurrent fistulas.
dystocia, operative vaginal delivery and prolonged and obstructed labor still occur and remain the highest risk for causing a RVF.

Outside of delivery complications, hysterectomy and rectal surgery are the highest risk procedures for causing RVFs. Use of stapling devices (specifically the double-stapled technique) and placement of perineal or vaginal mesh also have been shown to be associated with an increase in the likelihood of RVF formation. The incidence of RVF after a resection for low rectal cancer is widely variable (0.9% to 10%), likely reflecting the heterogeneity in both the individual tumor and operating surgeon. Another possibility is that an anastomotic leak and the resulting pelvic sepsis may lead to the development of a RVF. To avoid the inciting event (i.e., leak), fecal diversion is commonly utilized following a proctectomy and low-lying anastomosis to “protect” it and minimize the clinical consequence of a leak. Although proximal diversion may play a role in improving outcomes (and is itself used in the management of RVFs), fecal diversion does not completely eliminate the risks of RVF, with up to 11% of patients after a proctocolectomy developing RVFs despite complete enteric diversion.

Another setting where RVFs can occur is in the setting of malignancy. Anal cancer, rectal cancer and pelvic cancer can all cause RVFs by various mechanisms. First, the lesion itself can be locally destructive, resulting in direct erosion between the two luminal surfaces. Another potential source of the RVF is from the adjuvant radiation therapy that is commonly used to help treat these pelvic malignancies. In this situation, the radiation is cytotoxic, leading to obliterator endarteritis, chronic inflammation and ischemia, and eventually resulting in a fistula between the two anatomical structures. With regards to inflammatory bowel disease, RVFs are most commonly seen in Crohn’s disease and rarely in ulcerative colitis. While still relatively infrequent, women with Crohn’s disease have a reported cumulative 10% lifetime risk of developing a RVF. Of these, Crohn’s patients who have a significant disease burden in their colon are the most likely to be affected by RVFs. While ulcerative colitis patients, especially following total proctocolectomy and ileal-anal pouch procedures, may still develop a RVF, this should be a “red flag” to providers to re-evaluate the patient for the possibility of a misdiagnosis of Crohn’s disease.

CLASSIFYING RVFS

Although several classifications of RVFs exist, most RVF are generally broken down into low vs high fistulas and simple vs complex fistulas. These basic categorizations are extremely helpful in selecting the optimal surgical procedure for the patient. Low fistulas are generally located through or distal to the sphincter complex, but proximal to the dentate line. Due primarily to their location, they may be approached via anal, perineal or...
vaginal routes. Anovaginal fistulas have a rectal opening distal to the dentate line and are generally approached the same as a low fistula. High fistulas are proximal to the sphincteric complex, with a vaginal opening near the cervix, and generally require an abdominal approach for repair.

The other classification (simple vs complex) primarily differentiates the RVF on whether it will be amenable to a local repair vs a more complicated underlying pathogenesis that will require resection, interposition grafts, and/or diversion. A simple fistula is one that is smaller in size (< approximately 2.5 cm), more distally located along the rectovaginal septum, and generally occurred as result of trauma or a cryptoglandular infection. Complex fistulas are typically a result of inflammatory bowel disease, radiation or invasive cancer. Fistulas that have failed prior attempts at repair are also included in the category. Complex fistulas are commonly more proximal on the rectovaginal septum and are not amenable to primary repair, though may occur anywhere due to the underlying etiology.

PREOPERATIVE CONSIDERATIONS

To optimize outcomes, it is important to ensure that any associated perineal sepsis has resolved completely before attempting an operative repair. This should be achieved primarily by addressing the underlying cause of the fistula (e.g., medical therapy for Crohn’s disease, removal of a foreign body such as a staple, or drainage of an abscess). Once this has been addressed, adjunctive measures such as fecal diversion or a draining seton will help resolve the active inflammation and allow the tissues to soften and be more amenable to operative repair.

SURGICAL OPTIONS

The anatomy of the individual patient and the fistula itself are the foremost factors in determining which procedure to perform. In general, our approach has been to recommend an attempt at less invasive procedures first, and if those fail, to then try more complex and potentially morbid procedures. However, depending on the underlying disease state of the patient, individual co-morbidities and the anatomy of the fistula, a more “complex” repair that includes diversion may be recommended at the initial operation (Table 1).

Table 1 Reported outcomes with various rectovaginal fistula repairs

Published number of cases	Success rate	Complications	Fistula anatomy	
Advancement flaps	515[161]	68%	Incontinence, Recurrence, Larger Fistula	Low
Transperineal/sphincteroplasty	72[154]	64%-100%	Incontinence, Sexual dysfunction, Wound Dehiscence	Low
Gracilis muscle flap	99[152]	43%-100%	Sexual dysfunction, Cosmesis, Wound dehiscence	Low + High
Plugs	49	45.9%	Recurrence, Cost	Low
Transabdominal ligation1	49[167]	95%-100%	Bleeding, Intraperitoneal Rectal injuries	High
Mesh repair	48[164]	71%-81%	Recurrence, Larger fistula, Cost	Low + High
Martius flap	104[168]	65%-100%	Sexual Function, Cosmesis	Low

1For high fistula only.

LOW FISTULAS

Plugs

The plugs currently available are composed of synthetic material or made from porcine small intestine submucosa. Regardless of the composition, the tract is debrided, and the plug is brought through the RVF fistula in an attempt to form a biologic seal. In some cases, surgeons will perform a concomitant endorectal advancement flap with plug placement to improve outcomes. Fistula plugs have shown some benefit in perianal fistulas of cryptoglandular origin; yet, the limited data for RVFs has shown only a 20%-50% closure rate. The length of the tract, which is almost always very short, likely plays a role in the high failure rate of this procedure, as has been seen with anal fistulas having short tracts.

Advancement flaps

Advancement flaps may be performed by raising either rectal or vaginal mucosa and using it to cover the fistulous tract. This is performed in conjunction with debridement/excision of the fistula tract and primary closure. Healthy surrounding tissue is mobilized along a wide pedicle to ensure adequate blood supply and brought distally to cover the RVF. Different opinions exist as to the best approach. Those that favor an endorectal flap feel it is easier to mobilize and approximate the rectal mucosa when compared with vaginal mucosa, and that the repair is performed from the high-pressure side. Proponents of the vaginal side feel it is better vascularized, less likely to result in a larger fistula, and an easier recovery. In either instance, the reported success rates of this repair are reported between 60%-90%. In general, this is the procedure of choice for low-lying/simple traumatic RVFs without a history of incontinence.

Transperineal

A transperineal repair is accomplished by approaching the fistula tract through the perineum, making an incision at the perineal body and dissecting in the rectovaginal septum above the level of the fistula. The
tract is then excised, and closure is performed in multiple layers on both the sides. The benefit of this approach is that an overlapping sphincteroplasty can be performed simultaneously for those patients that have associated defects or in those patients in which the fistula can be incorporated into the sphincter repair. This is best used in women with preexisting incontinence, or those a history of failed transanal or transvaginal approach\(^2\). Success rates are reported to be 64.7%-100%; however, this procedure is often more technically challenging, resulting in higher morbidity rates, and normally is not a first-line procedure\(^3\).

Martius flap

In 1928 Dr. Heinrich Martius, a professor of gynecology in Gottingen, described using the bulbocavernous muscle and labial fat pad for vaginal wall defects due to its proximity which allows for a single operative field\(^4\). The Martius flap was first used in cysto- and urethral-vaginal fistulas. Only later was it adapted to its present use in RVFs. In sum, it is ideally suited for RVF repair, providing a local well-vascularized pedicle of adipose/muscular tissue that is mobile and results in low morbidity. It is most suited for complex, recurrent, or recalcitrant RVFs\(^5\). The Martius flap is best able to treat low and mid-level fistulas up to approximately 5 cm proximal to the vaginal introitus, but in reality is only limited by the reach of the bulbocavernous pedicle.

There are approximately 104 cases reported in the retrospective literature with a success rate ranging from 65%-100%\(^6\). Dyspareunia has been reported in as many as 30% of females at six weeks post operatively when they are allowed to resume vaginal intercourse, but it appears to improve with time. The only other more common complication reported in the literature are labial wound issues (< 10%), which largely resolve with local wound care\(^7\).

Gracilis muscle transposition

In this procedure, the gracilis muscle is harvested from the leg, mobilized on a proximal pedicle, and used as an interposition graft between the rectum and vagina. Success rates are reported from 60%-100%, but there is increased morbidity associated with the harvest site and there appears to be a prolonged decrease in sexual function\(^8\). Dyspareunia is reported in up to 57% of patients undergoing this operation and the decreased sexual desire has been felt to be, in part, related to the relatively large burden of perineal scarring\(^9\). Furthermore, when the gracilis is harvested for use in other procedures (e.g., plastic surgery free flaps), a short-term decrease in functionality of that leg has been reported for approximately 6 mo in 26% of the patients, and 6% of patients have long-term difficulties\(^10\).

HIGH FISTULAS

Transabdominal ligation

Transabdominal ligation procedures are typically performed when the RVF is high (i.e., vaginal cuff), and may be performed via a minimally invasive or open approach. The common bond to these fistulas is often the presence of a prior hysterectomy and an inflammatory condition that resulted in pelvic sepsis that eroded through the vaginal cuff (e.g., Crohn’s diverticulitis, anastomotic leak). In this procedure, the offending bowel is resected along with division of the fistula tract. It is often helpful to place a piece of omentum in between the rectum and vagina to avoid recurrence. Some gynecologists prefer to debride and re-close the vaginal cuff, although this is widely variable. Success rates are 95%-100%, and normally this is the preferred treatment for the patient has a high fistula tract\(^11\).

Mesh repair

A mesh repair is essentially the same as transabdominal ligation. However, rather than placing omentum between the rectum and vagina, various biologic meshes have been utilized as an interposition graft between the two structures to prevent re-fistulization. The largest study used porcine small intestine submucosa and showed a success rate of 71%-81% in 48 patients. Other biologic meshes such as acellular porcine dermal graft and acellular human dermal matrix have also been successful in small studies and case reports\(^12\). Biological mesh placement has also been described following perineal approaches, although this is less well described.

CONCLUSION

RVFs are a disease process that is a significant burden on women that are afflicted, and a difficult problem for surgeons from whom they seek help. The diverse disease pathology has prevented prospective trials, and consensus guidelines on the management of these patients. With a clear understanding of the anatomy, ensuring resolution of the sepsis, and large armamentarium of surgical approaches these patients can be treated successfully.

REFERENCES

1. Ommer A, Herold A, Berg E, Fürst A, Schiedek T, Sailer M. German S3-Guideline: rectovaginal fistula. Ger Med Sci 2012; 10: Doc15 [PMID: 23255878 DOI: 10.3205/000166]
2. Champagne BJ, McGee MF. Rectovaginal fistula. Surg Clin North Am 2010; 90: 69-82, Table of Contents [PMID: 20109633 DOI: 10.1016/j.suc.2009.09.003]
3. Brown HW, Wang L, Bunker CH, Lowder JL. Lower reproductive tract fistula repairs in inpatient US women, 1979-2006. Int Urogynecol J 2012; 23: 403-410 [PMID: 22278712 DOI: 10.1007/s00192-011-1653-3]
4. Göttgens KW, Smeets RR, Stassen LP, Beets G, Breukink SO. The disappointing quality of published studies on operative techniques for rectovaginal fistulas: a blueprint for a prospective multi-institutional study. Dis Colon Rectum 2014; 57: 888-898 [PMID: 2490169] DOI: 10.1097/DCR.0000000000000147]
5. White AJ, Buchsbaum BJ, Blythe JG, Lifshitz S. Use of the bulbocavernous muscle (Martius procedure) for repair of radiation-induced rectovaginal fistulas. Obstet Gynecol 1982; 60: 114-118 [PMID: 7088441]
6 Kin C, Gurland B, Zutshi M, Hull T. Martius flap repair for complex rectovaginal fistula. *Pol Przegl Chir* 2012; 84: 601-604 [PMID: 23399625 DOI: 10.2478/v10035-012-0099-8]

7 McNevin MS, Lee PY, Bax TW. Martius flap: an adjunct for repair of complex, low rectovaginal fistula. *Am J Surg* 2007; 193: 597-59; discussion 599 [PMID: 17434363 DOI: 10.1016/j.amjsurg.2007.01.009]

8 Lefèvre JH, Bretagnol F, Maggiori L, Alves A, Ferron M, Panis Y. Operative results and quality of life after gracilis muscle transposition for recurrent rectovaginal fistula. *Dis Colon Rectum* 2009; 52: 1290-1295 [PMID: 19571707 DOI: 10.1007/s00350-008-9339-8]

9 Papadopoulos O, Konofaos P, Georgiou P, Chrisostomidis C, Tsantoulas Z, Karypidis D, Kostakis A. Gracilis myocutaneous flap: evaluation of potential risk factors and long-term donor-site morbidity. *Microsurgery* 2011; 31: 448-453 [PMID: 21898880 DOI: 10.1002/micr.20899]

10 Ellis CN. Outcomes after repair of rectovaginal fistulas using bioprosthetics. *Dis Colon Rectum* 2008; 51: 1084-1088 [PMID: 18478298 DOI: 10.1007/s10330-008-9339-8]

11 Lowry AC, Thorson AG, Rothenberger DA, Goldberg SM. Repair of simple rectovaginal fistulas. Influence of previous repairs. *Dis Colon Rectum* 1998; 31: 676-678 [PMID: 3168676]

12 Wiskind AK, Thompson JD. Transverse transperineal repair of rectovaginal fistulas in the lower vagina. *Am J Obstet Gynecol* 1992; 167: 694-699 [PMID: 1530025]

13 Athanasiadis S, Köhler A, Weyand G, Nafe M, Kuprian A, Oladeinde I. [Endo-anal and transperineal continence preserving closure techniques in surgical treatment of Crohn fistulas. A prospective long-term study of 186 patients]. *Chirurg* 1996; 67: 59-71 [PMID: 8851677]

14 Wexner SD, Ruiz DE, Genua J, Nogueiras JJ, Weiss EG, Zmora O. Gracilis muscle interposition for the treatment of rectourethral, rectovaginal, and poutch-vaginal fistulas: results in 53 patients. *Ann Surg* 2008; 248: 39-43 [PMID: 18580205 DOI: 10.1097/SLA.0b013e31817d077d]

15 Fürst A, Schmidbauer C, Swol-Ben J, Iesalnieks I, Schwandner O, Agha A. Gracilis transposition for repair of recurrent anovaginal and rectovaginal fistulas in Crohn’s disease. *Int J Colorectal Dis* 2008; 23: 349-353 [PMID: 18084771 DOI: 10.1007/s00384-007-0413-9]

16 van der Hagen SJ, Soeters PB, Baeten CG, van Gemert WG. Laparoscopic fistula excision and omentoplasty for high rectovaginal fistulas: a prospective study of 40 patients. *Int J Colorectal Dis* 2011; 26: 1463-1467 [PMID: 21701809 DOI: 10.1007/s00384-011-1258-9]

17 Schloericke E, Hoffmann M, Zimmermann M, Kraus M, Bouchard R, Roblick UJ, Hildebrand P, Nolde J, Bruch HP, Limmer S. Transperineal omentum flap for the anatomic reconstruction of the rectovaginal space in the therapy of rectovaginal fistulas. *Colorectal Dis* 2012; 14: 604-610 [PMID: 21752173 DOI: 10.1111/j.1463-1318.2011.02719.x]

18 Schwandner O, Fuerst A, Kunstreich K, Scherer R. Innovative technique for the closure of rectovaginal fistula using Surgisis mesh. *Tech Coloproctol* 2009; 13: 135-140 [PMID: 19484346 DOI: 10.1007/s10151-009-0470-x]

19 Pitel S, Lefèvre JH, Pare Y, Chafai N, Shields C, Tiret E. Martius advancement flap for low rectovaginal fistula: short- and long-term results. *Colorectal Dis* 2011; 13: e112-e115 [PMID: 21564662 DOI: 10.1111/j.1463-1318.2011.02544.x]

P- Reviewer: Coskun A, Wong KKY
S- Editor: Ji FF
L- Editor: A
E- Editor: Jiao XK
