Raman and Infrared Spectroscopy For Phase Identification and Strain Calibration of HfO$_2$.

Aldo Raeliarijaonaa and R. E. Cohenb

Extreme Materials Initiative, Earth and Planets Laboratory, Carnegie Institution for Science, 5241 Broad Branch Road NW, Washington, DC 20015, USA

(Dated: 21 March 2022)

Using density functional perturbation theory (DFPT) we computed the phonon frequencies, Raman and IR activities of hafnia polymorphs (P4$_2$mm, Pca$_2$, Pmn$_2$, Pbca OI, brookite, and baddeleyite) for phase identification. We investigated the evolution of Raman and IR activities with respect to epitaxial strain and provide plots of frequency differences as a function of strain for experimental calibration and identification of the strain state of the sample. We found Raman signatures of different hafnia polymorphs: $\omega(A_{1g}) = 300$ cm$^{-1}$ for P4$_2$mm , $\omega(A_1) = 343$ cm$^{-1}$ for Pca$_2$, $\omega(B_2) = 693$ cm$^{-1}$ for Pmn$_2$, $\omega(A_g) = 513$ cm$^{-1}$ for Pbca (OI), $\omega(A_g) = 384$ cm$^{-1}$ for brookite, and $\omega(A_g) = 496$ cm$^{-1}$ for baddeleyite. We also identified the Raman peak B_{1g} mode, an anti-phase vibration of dipole moments, ($\omega(B_{1g}) = 758$ cm$^{-1}$ for OI, $\omega(B_{1g}) = 784$ cm$^{-1}$ for brookite) as the Raman signature of antiferroelectric Pbca structures. We calculated a large splitting between longitudinal optical (LO) and transverse optical (TO) modes ($\Delta \omega_{\text{LO-TO}}(A_1) = 255$ cm$^{-1}$ in Pca$_2$, and $\Delta \omega_{\text{LO-TO}}(A_1) = 263$ cm$^{-1}$ in Pmn$_2$) to the same order as those observed in perovskite ferroelectrics, and related them to the anomalously large Born effective charges of Hf atoms (Z^*(Hf) = 5.54).

Hafnia is of great interest because of its compatibility with silicon and its robust ferroelectricity at the nanoscale. Recent investigations have highlighted the possibility and importance of ferroelectricity in hafnia$^{1-6}$. It is also of fundamental interest due to its fluorite-based structure, different from the wide class of well-studied perovskite ferroelectrics. One hindrance to the rapid development of hafnia ferroelectrics has been a lack of basic understanding of ferroelectricity, although there has been significant progress7.

Structural studies are usually based on X-ray diffraction (XRD) methods. Complementary to XRD, inelastic light scattering such as Raman or IR spectroscopy is also a tool that can be used to determine the structure and structural response of different hafnia phases. The latter approach reveals information about interatomic interaction, hence atomic arrangements, through the vibrational spectra. Epitaxial strain is important in thin films and it can affect the Raman frequencies and intensities. One of the advantages of Raman spectroscopy is that it can provide information about the strain on the sample once calibrated. Only Raman shifts and peak intensities are accessible experimentally thus the need of first-principles studies of atomic vibrations for symmetry assignment of Raman peaks. Although Raman and IR data are available from previous calculations of hafnia polymorphs$^{8-10}$ they do not cover all the relevant phases, namely both polar orthorhombic phases or both antipolar orthorhombic phases.

Our aim in this paper is to provide tools for experiments to identify the structure of hafnia and determine the epitaxial strain to which the sample is subject.

Using DFPT we computed the phonon frequencies and their activities (Raman and IR) at different strain values ($\eta = [-3.0\%, -1.5\%, 0.0\%, 1.5\%, 3.0\%]$) for different hafnia polymorphs, namely baddeleyite, P4$_2$mm , Pmn$_2$, Pca$_2$, Pbca (OI), and brookite. We tracked the evolution of phonon mode frequencies under strain, and provided means to identify the strain through identification of strain-induced frequency shifts of signature phonons.

We performed first-principles calculations using QUANTUM ESPRESSO$^{11-13}$, with optimized norm-conserving Vanderbilt (ONCV) pseudopotentials14. The cell parameters and atomic positions were optimized using the local density approximation (LDA) with the Perdew-Zunger (PZ) exchange-correlation functional15, generated using the oncvvpsp code14. The plane-wave expansion is truncated using a cutoff energy of $E_{\text{cutoff}} = 1306.6$ eV, and the Brillouin zone was sampled using an $8 \times 8 \times 8$ Monkhorst-Pack grid16. We calculated the Brillouin zone center phonon frequencies using density functional perturbation theory (DFPT)17 implemented in the QE/PH package$^{11-13}$.

We set a coordinate system similar to the ones defined in Ref.18. We consider the epitaxy of the tetragonal case with a square substrate such as Yttria-stabilized zirconia (YSZ), with z normal to the epitaxial plane, and a and b in registry with the epitaxial surface. Strain η was applied by setting:

$$a_\eta = (1 + \eta)a_0,$$

where a_0 is the strain-free ground state lattice constant of the tetragonal phase. The out-of-plane lattice constant (c) and the atomic positions were relaxed at each strain.

To validate the accuracy of our DFPT calculations, we compared the calculated Raman spectra of the strain-free baddeleyite and brookite to the measured Raman spectra19 (Fig.1). The Raman spectrum of brookite19 was measured from a sample under hydrostatic pressure

aElectronic mail: araeliarijaona@carnegiescience.edu
bElectronic mail: rcohen@carnegiescience.edu
of $P = 5.9$ GPa. So, for fair comparison, the cell parameters and the atomic positions for our calculations for brookite were relaxed under the same pressure. The calculated spectra of baddeleyite and brookite match the experimentally measured spectra well (Fig.1). For baddeleyite, the high intensity A_g peaks ($\omega(A_g) = 495$ cm$^{-1}$), the shoulder peak B_g ($\omega(B_g) = 510$ cm$^{-1}$), and the double peaks B_g ($\omega(B_g) = 637$ cm$^{-1}$) and A_g ($\omega(A_g) = 670$ cm$^{-1}$) all closely match with experimental peaks; for brookite we can point to the high intensity A_g peak ($\omega(A_g) = 384$ cm$^{-1}$), the B_{1g} peak ($\omega(B_{1g}) = 513$ cm$^{-1}$), the double peaks B_{3g} ($\omega(B_{3g}) = 593$ cm$^{-1}$) and B_{1g} ($\omega(B_{1g}) = 604$ cm$^{-1}$). Our calculated spectra for baddeleyite, tetragonal and brookite also compare well with other calculations.

Additionally, we find a signature mode for antipolar polymorphs. This is the high frequency B_{1g} peak ($\omega(B_{1g}) = 811$ cm$^{-1}$ for brookite, or $\omega(B_{1g}) = 791$ cm$^{-1}$ for Pbca OI). This mode is absent in the FE (Pca2$_1$ and Pmn2$_1$) structures and it is an anti-phase vibration of the O atoms in neighboring cells of the Pbca (Fig.3). This anti-phase vibration of the O atoms can be thought as an anti-phase collective motion of the dipole moments.

We plot the Raman spectra of the different strain-free hafnia polymorphs (Fig.1, Fig.2) to help with the identification of the crystal structures. The high intensity peaks of the Raman spectra can help in the identification of the structure symmetry. For example, the high intensity mode at $\omega(A_g) = 496$ cm$^{-1}$ is found only in baddeleyite. The Pmn2$_1$ structure can be identified using the high frequency B_2 ($\omega(B_2) = 693$ cm$^{-1}$) and A_1 ($\omega(A_1) = 722$ cm$^{-1}$) peaks. The Pca2$_1$ structure can be identified using the A_1 peak ($\omega = 340$ cm$^{-1}$). Although there is a peak around that frequency in baddeleyite, XRD data can be used to differentiate between the monoclinic and the orthorhombic structure. In Pbca (OI) the signature mode is the strong A_g peak at $\omega(A_g) = 513$ cm$^{-1}$. Finally, in brookite the A_g mode ($\omega(A_g) = 384$ cm$^{-1}$) can be used as its fingerprint.
field induced by atomic displacements. Perovskite ferroelectrics are known to have phonon modes that exhibit giant LO-TO splittings20. Using the rigorous definition of LO-TO splitting21, we show that these large LO-TO splittings also occur in hafnia. In polar Pmn2\textsubscript{1} phase, the calculated LO-TO splitting is $\Delta \omega_{\text{LO-TO}}(A_1) = 263$ cm-1 for the high frequency A_1 mode ($\omega(A_1) = 722$ cm-1); for the Pca2\textsubscript{1} phase we computed the LO-TO splitting to be $\Delta \omega_{\text{LO-TO}}(A_1) = 255$ cm-1 for $\omega(A_1^\text{Pca2}) = 676$ cm-1 and $\Delta \omega_{\text{LO-TO}}(B_2^\text{Pca2}) = 146$ cm-1 for the B_2^Pca2 mode at $\omega(B_2^\text{Pca2}) = 722$ cm-1 (Fig.2). These large LO-TO splittings can be attributed to the unusually large Born effective charge (Z^*) of Hf atoms in hafnia (see Supplementary Materials). Although the Born effective charges $Z^*(O)$ are close to the nominal charge of O atoms (-2), with few exceptions such as: $Z^*_{yy}(O1) = -3.42$ in P4\textsubscript{2}nm, $Z^*_{zz}(O1) = -3.15$ and $Z^*_{zz}(O2) = -3.08$ in Pmn2\textsubscript{1}, the Hf atoms have anomalously large dynamical charges that can be of the order of 5.54. Other calculations also reported similar values.10,22 The three modes with large LO-TO splitting mentioned earlier all have in common the antiphase motion between the Hf and O.

The constraint on the lattice constant imposed by the substrate affects the interatomic distances in the sample, which not only shifts the phonon frequencies but also changes the Raman and IR intensities. The shift in Raman or IR frequencies can thus indicate the strains in the hafnia film. The evolution of phonon modes with respect to strain can be tracked using correspondence between the phonon eigenvectors at each strain following the approach in Ref.21. Firstly, the phonon eigenvectors at strain η_2 were projected to the eigenvectors at strain η_1:

$$
e_n^{\text{mn}}(\eta_2) = \sum_m a_m n^{\text{in}}_m(\eta_1),$$

where m and n are the phonon mode indices, i and α are the atoms and the direction indices respectively; the coefficient $a_{mn} = \sum_i \langle e_n^{\text{in}}(\eta_1)|e_m^{\text{in}}(\eta_2) \rangle$ indicates the correlation or projection of phonon eigenmode n at strain η_2 to the eigenmodes at strain η_1. Then by choosing the mode with the maximum coefficient a_{mn} (Eq. 2), i.e. the mode with the highest correspondence probability to mode n denoted by ω_n^{in}, we assign $\omega_n^{\text{in}} \rightarrow \omega_n^{\text{in}}$.

The calculation of the frequency difference is straightforward once equipped with the strain-to-strain mode correspondence (Eq.2):

$$\Delta \omega_{l,n}(\eta) = \omega_l(\eta) - \omega_n(\eta),$$

where it should be understood that $\omega_l(\eta)$, and $\omega_n(\eta)$ are the phonon modes that correspond to $\omega_l(0)$, and $\omega_n(0)$ at zero strain, respectively. $\Delta \omega_{l,n}(\eta)$ changing sign means that the order of the modes considered switched.

The evolution of the phonon modes is not straightforward, and choices had to be made on the modes used to compute the frequency difference (Fig.4). The modes chosen (Fig. 1, and Fig.2) were modes with non-negligible Raman or IR intensities and the ones showing monotonic behavior if possible, within a range of 100 cm-1 for plotting purposes.

We computed the phonon frequencies of P4\textsubscript{2}nnmc , Pmn2\textsubscript{1} , Pca2\textsubscript{1} , Pbca (O1), brookite, and baddeleyite using DFPT at different values of epitaxial strains. We found that Raman spectra can be used to identify the symmetry or phases of hafnia, namely $\omega(A_{1g}) = 300$ cm-1 for P4\textsubscript{2}nnmc , $\omega(A_{1g}) = 343$ cm-1 for Pca2\textsubscript{1} , $\omega(B_{2g}) = 693$ cm-1 for Pmn2\textsubscript{1} , $\omega(A_{g}) = 513$ cm-1 for Pbca (O1), $\omega(A_{g}) = 384$ cm-1 for brookite, and $\omega(A_{g}) = 496$ cm-1 for baddeleyite. We also identified the Raman signature of AFE structures as the $\omega(B_{1g}) = 784$ cm-1 peak for brookite or the $\omega(B_{1g}) = 758$ cm-1 peak for Pbca (O1). The presence (or absence) of this Raman signal can be used to distinguish between AFE and FE orthorhombic hafnia. Further, we showed the evolution of frequency differences between selected normal mode frequencies with respect to strain for calibration purposes and identification of strain state of the hafnia crystal.

FIG. 4. Evolution of frequency difference with respect to epitaxial strain for selected modes of (a) baddeleyite, (b) P4\textsubscript{2}nnmc , (c) Pmn2\textsubscript{1} , (d) Pca2\textsubscript{1} , (e) Pbca O1, and f brookite. The star symbols in (a) and (f) are frequency differences using experimental data from Ref.19 and the triangle symbol in (b) is the frequency difference obtained using modes and frequencies from Ref.23. The blue and red curves are calibration using IR and Raman active modes, respectively. The Raman modes used for calibrations are marked by the empty squares on the Raman spectra in Fig1 and the IR modes are marked as blue modes in Table S3–S8 (see Supplementary Material).

ACKNOWLEDGMENTS

The authors thank Pavlo Zubko for helpful discussions. This work is supported by U. S. Office of Naval Research Grants No. N00014-17-1-2768 and N00014-20-1-2699, and the Carnegie Institution for Science. Computations were supported by DOD HPC, Carnegie computational
resources, and REC gratefully acknowledges the Gauss Centre for Supercomputing e.V. (www.gauss-center.eu) for funding this project by providing computing time on the GCS Supercomputer SuperMUC-NG at Leibniz Supercomputing Centre (LRZ, www.lrz.de). Some of the computing for this project was performed on the Muenx cluster. We would like to thank Carnegie Institution for Science and the Carnegie Sci-Comp Committee for providing computational resources and support that contributed to these research results.

1T. S. Bösecke, J. Müller, D. Bräiuhaus, U. Schröder, and U. Böttger, “Ferroelectricity in Hafnium Oxide Thin Films,” Applied Physics Letters 99, 102903 (2011).

2U. Schroeder, C. Hwang, and H. Funakubo, Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices, Woodhead Publishing Series in Electronic and Optical Materials (Elsevier Science, 2010).

3H.-J. Lee, M. Lee, K. Lee, J. Jo, H. Yang, Y. Kim, S. C. Chae, U. Waghmare, and J. H. Lee, “Scale-free Ferroelectricity Induced by Flat Phonon Bands in HfO2,” Science 369, 1343–1347 (2020).

4Y. Qi, S. Singh, C. Lau, F.-T. Huang, X. Xu, F. J. Walker, C. H. Ahn, S.-W. Cheong, and K. M. Rabe, “Stabilization of Competing Ferroelectric Phases of HfO2 Under Epitaxial Strain,” Phys. Rev. Lett. 125, 257603 (2020).

5X. Xu, F.-T. Huang, Y. Qi, S. Singh, K. M. Rabe, D. Obeysekera, J. Yang, M.-W. Chu, and S.-W. Cheong, “Kinetically Stabilized Ferroelectricity in Bulk Single-Crystalline HfO2-Y.” Nature Materials 20, 826–832 (2021).

6T. Mikolajek and U. Schroeder, “Ferroelectricity in Bulk Hafnia,” Nature Materials 20, 718–719 (2021).

7A. Raeliarijaona and R. E. Cohen, “Origin of ferroelectricity in hafnia from epitaxial strain,” (2021), arXiv:2108.09884.

8B. Zhou, H. Shi, X. D. Zhang, Q. Su, and Z. Y. Jiang, “The Simulated Vibrational Spectra of HfO2 Polymorphs,” 47, 115502 (2014).

9T. Gunst, D. Stradi, and A. Blom, “Identification of zirconia and cubic zirconia crystalline phases by optical spectroscopy from first-principles,” in Nanoelectronics: Fabrication, Properties, Optics, Thin Films, and Devices XVII, Vol. 11467, edited by B. Panchapakisen, A.-J. Attias, and W. Park, International Society for Optics and Photonics (SPIE, 2020) pp. 34 – 47.

10S. Fan, S. Singh, X. Xu, K. Park, Y. Qi, a. V. S. W. Cheong, K. M. Rabe, and J. L. Musfeldt, “Vibrational fingerprints of ferroelectric hafnia,” arXiv:2201.12643.

11P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Ciocci, M. Cococcioni, D. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzerolo, S. Paolino, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Schlauer, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Materials,” Journal of Physics: Condensed Matter 21, 395502 (2009).

12P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B. Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. D. Corso, S. de Gironcoli, P. Delugas, R. A. D. Jr, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H.-Y. Ko, A. Kokalj, E. Küçükbilen, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H.-V. Nguyen, A. O. de-la Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umar, N. Vast, X. Wu, and S. Baroni, “Advanced Capabilities for Materials Modelling With QUANTUM ESPRESSO,” Journal of Physics: Condensed Matter 29, 465901 (2017).

13P. Giannozzi, O. Baseggio, P. Bonfà, D. Brunato, R. Car, I. Carnimeo, C. Cavazzoni, S. de Gironcoli, P. Delugas, F. Ferrari Ruffino, A. Ferretti, N. Marzari, I. Timrov, A. Urru, and S. Baroni, “Quantum ESPRESSO Toward the Exascale,” The Journal of Chemical Physics 152, 154105 (2020).

14D. R. Hamann, “Optimized Norm-Conserving Vanderbilt Pseudopotentials,” Phys. Rev. B 88, 085117 (2013).

15J. P. Perdew and A. Zunger, “Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems,” Phys. Rev. B 23, 5048–5079 (1981).

16H. J. Monkhorst and J. D. Pack, “Special Points for Brillouin-Zone Integrations,” Phys. Rev. B 13, 5188–5192 (1976).

17S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, “Phonons and Related Crystal Properties from Density-Functional Perturbation Theory,” Rev. Mod. Phys. 73, 515–562 (2001).

18S. Liu and B. M. Hannahan, “Effects of Growth Orientations and Epitaxial Strains on Phase Stability of HfO2 Thin Films,” Physical Review Materials 3, 054404 (2019).

19A. Jayaraman, S. Y. Wang, S. K. Sharma, and L. C. Ming, “Pressure-induced Phase Transformations in HfO2 to 50 GPa studied by Raman spectroscopy,” Physical Review B 48, 9205–9211 (1993).

20W. Zhong, R. D. King-Smith, and D. Vanderbilt, “Giant lo-to splittings in perovskite ferroelectrics,” Phys. Rev. Lett. 72, 3618–3621 (1994).

21A. Raeliarijaona and H. Fu, “ModeSequence, Frequency Change of Nonsoft Phonons, and LO-T0 Splitting in strained tetragonal batio3,” Phys. Rev. B 92, 094303 (2015).

22S. N. Neal, S. Li, T. Birol, and J. L. Musfeldt, “Chemical bonding and Born charge in 1T-HfS2,” npj 2D Materials and Applications 5, 45 (2021).

23Y. Masatomo, T. H., O. Katuyama, H. Terou, K. Masato, A. Haruo, I. Yasuo, S. Yasuo, and Y. Masahiro, “Formation of Metastable Forms by Quenching of the HfO2RO1.5 Melts (R = Gd, Y and Yb),” Journal of Physics and Chemistry of Solids 57, 289–295 (1996).
Supplementary Materials: Raman and Infrared Spectroscopy For Phase Identification and Strain Calibration of HfO$_2$.
A. Born effective charges

Phase	Atoms	\(Z_{xx}^* \)	\(Z_{xy}^* \)	\(Z_{xz}^* \)	\(Z_{yx}^* \)	\(Z_{yy}^* \)	\(Z_{yz}^* \)	\(Z_{zx}^* \)	\(Z_{zy}^* \)	\(Z_{zz}^* \)	Nominal charge
Baddeleyite	Hf1	5.33	-0.39	0.23	-0.12	5.34	0.15	0.24	0.35	4.75	4
	Hf2	5.33	0.39	0.23	0.12	5.34	-0.15	0.24	-0.35	4.75	4
	O1	-2.95	-1.05	-0.22	-1.30	-2.60	0.64	-0.19	0.63	-2.22	-2
	O2	-2.95	1.05	-0.22	1.30	-2.60	-0.64	-0.19	-0.63	-2.22	-2
	O3	-2.37	-0.11	-0.01	-0.18	-2.74	-0.35	-0.05	-0.42	-2.53	-2
	O4	-2.37	0.11	-0.01	0.18	-2.74	0.35	-0.05	0.42	-2.53	-2
P4\(_{2}nm\)c	Hf	5.54	0	0	0	5.54	0	0	0	4.84	4
	O1	-2.12	0	0	0	-3.42	0	0	0	-2.42	-2
	O2	-3.42	0	0	0	-2.12	0	0	0	-2.42	-2
Pmn\(_{2}1\)	Hf1	5.35	0	0	0	5.02	0.10	0	0.33	5.11	4
	Hf2	5.35	0	0	0	5.02	-0.10	0	-0.33	5.11	4
	O1	-3.15	0	0	0	-2.67	-0.80	0	-0.86	-2.03	-2
	O2	-3.15	0	0	0	-2.67	0.80	0	0.86	-2.03	-2
	O3	-2.20	0	0	0	-2.35	0.04	0	-0.05	-3.08	-2
	O4	-2.20	0	0	0	-2.35	-0.04	0	0.05	-3.08	-2

TABLE S1. Computed Born effective charges for baddeleyite, P4\(_{2}nm\)c and Pmn\(_{2}1\) hafnia polymorphs compared to their nominal charges. Hf1, Hf2 (resp. O1, O2 , O3, and O4) are the symmetrically inequivalent Hf (resp. O) atoms in the HfO\(_{2}\) unit cell.
Phase	Atoms	Z^*_{xx}	Z^*_{xy}	Z^*_{xz}	Z^*_{yy}	Z^*_{yz}	Z^*_{zx}	Z^*_{zy}	Z^*_zz	Nominal charge
Hf1	5.17	0.00	-0.035	-0.35	5.49	-0.14	0.05	-0.22	4.97	4
Hf2	5.17	0.00	0.035	-0.35	5.49	0.14	-0.05	0.22	4.97	4
Hf3	5.17	0.00	-0.035	0.35	5.49	0.14	0.05	0.22	4.97	4
Hf4	5.17	0.00	0.035	0.35	5.49	-0.14	-0.05	-0.22	4.97	4
O1	-2.49	-0.96	0.31	-0.76	-2.96	-0.69	0.31	-0.63	-2.46	-2
O2	-2.49	-0.96	-0.31	-0.76	-2.96	0.69	-0.31	0.63	-2.46	-2
O3	-2.49	-0.96	0.31	0.76	-2.96	0.69	0.31	0.63	-2.46	-2
O4	-2.49	0.96	-0.31	0.76	-2.96	-0.69	-0.31	-0.63	-2.46	-2
O5	-2.68	0.13	0.25	0.07	-2.52	-0.19	0.29	-0.13	-2.50	-2
O6	-2.68	0.13	-0.25	0.07	-2.52	0.19	-0.29	0.13	-2.50	-2
O7	-2.68	-0.13	0.25	-0.07	-2.52	0.19	0.29	0.13	-2.50	-2
O8	-2.68	-0.13	-0.25	-0.07	-2.52	-0.19	-0.29	-0.13	-2.50	-2
Hf1	5.28	0.34	0.13	0.34	4.78	-0.03	0.30	-0.08	5.43	4
Hf2	5.28	0.34	-0.13	0.34	4.78	0.03	-0.30	0.08	5.43	4
Hf3	5.28	-0.34	0.13	-0.34	4.78	0.03	0.30	0.08	5.43	4
Hf4	5.28	-0.34	-0.13	-0.34	4.78	-0.03	-0.30	-0.08	5.43	4
O1	-2.56	-0.87	-1.14	-0.87	-2.23	0.01	-0.89	0.10	-3.02	-2
O2	-2.56	-0.87	1.14	-0.87	-2.23	-0.01	0.89	-0.10	-3.02	-2
O3	-2.56	0.87	-1.14	0.87	-2.23	-0.01	-0.89	-0.10	-3.02	-2
O4	-2.56	0.87	1.14	0.87	-2.23	0.01	0.89	0.10	-3.02	-2
O5	-2.73	0.28	-0.12	0.41	-2.55	-0.10	0.07	-0.02	-2.41	-2
O6	-2.73	0.28	0.12	0.41	-2.55	0.10	0.07	0.02	-2.41	-2
O7	-2.73	-0.28	-0.12	-0.41	-2.55	0.10	-0.07	0.02	-2.41	-2
O8	-2.73	-0.28	0.12	-0.41	-2.55	-0.10	0.07	-0.02	-2.41	-2
Hf1	4.89	0.24	-0.02	0.04	5.46	0.39	-0.13	-0.00	5.31	4
Hf2	4.89	0.24	0.02	0.04	5.46	-0.39	0.13	0.00	5.31	4
Hf3	4.89	-0.24	-0.02	-0.04	5.46	-0.39	-0.13	0.00	5.31	4
Hf4	4.89	-0.24	0.02	-0.04	5.46	0.39	0.13	-0.00	5.31	4
O1	-2.49	0.04	0.36	-0.09	-2.49	0.04	0.31	0.01	-2.76	-2
O2	-2.49	0.04	-0.36	-0.09	-2.49	-0.04	-0.31	-0.01	-2.76	-2
O3	-2.49	0.04	0.36	0.09	-2.49	-0.04	0.31	-0.01	-2.76	-2
O4	-2.49	0.04	-0.36	0.09	-2.49	0.04	-0.31	0.01	-2.76	-2
O5	-2.39	-0.56	0.31	-0.62	-2.97	-0.80	0.32	-0.98	-2.55	-2
O6	-2.39	-0.56	-0.31	-0.62	-2.97	0.80	-0.32	0.98	-2.55	-2
O7	-2.39	0.56	0.31	0.62	-2.97	0.80	0.32	0.98	-2.55	-2
O8	-2.39	0.56	-0.31	0.62	-2.97	-0.80	-0.32	-0.98	-2.55	-2

TABLE S2. Computed Born effective charges for Pca2₁, Pbca (O1) and brookite hafnia polymorphs compared to their nominal charges. Hf1, Hf2, Hf3 and Hf4 (resp. O1, O2, O3, and O4) are the symmetrically inequivalent Hf (resp. O) atoms in the HfO₂ unit cell.
B. IR frequencies

Here we list the computed IR frequencies, their intensities and their symmetry.

Mode	Freq (cm$^{-1}$)	IR (arb. u.)	Mode	Freq (cm$^{-1}$)	IR (arb. u.)	Mode	Freq (cm$^{-1}$)	IR (arb. u.)
Bu	236	22.84	Bu	232	20.07	Bu	249	5.72
Au	256	20.18	Bu	311	64.83	Au	256	20.18
Bu	320	41.87	Bu	345	24.74	Bu	256	2.02
Au	361	39.70	Bu	405	40.35	Bu	345	23.81
Bu	370	7.43	Bu	476	2.40	Au	361	39.70
Bu	411	24.29	Bu	520	19.66	Bu	400	49.06
Au	499	12.55	Au	575	9.21	Au	411	24.29
Bu	516	19.40	Bu	741	14.87	Bu	455	9.53
Au	614	12.53	Au	750	96.89	Au	499	12.55
Bu	651	76.23	Au	246	2.62	Au	614	12.53
Bu	743	16.88	Au	462	35.04	Au	720	51.99
Bu	813	60.68	Au	627	39.86	Au	606	2.84
Au	614	12.53	Au	432	3.06	Au	606	2.84
Bu	701	2.10	Au	451	31.75	Au	451	31.75
Au	722	43.82	B1	250	25.10	B1	300	32.60
B1	300	32.60	A1	254	3.80	B1	345	2.01
B1	300	32.60	B1	432	3.06	A1	364	2.93
A1	587	3.01	A1	451	31.75	A1	451	31.75
B1	587	3.01	B1	250	25.10	A1	451	31.75
A1	701	2.10	B1	250	25.10	B1	492	10.10
A1	722	43.82	B1	606	2.84	A1	606	2.84
B1	738	20.90	B1	632	20.16	B2	692	47.97

TABLE S3. Frequencies of IR-active modes in baddeleyite. Modes colored in blue are the modes used to compute frequency differences (see text).

Mode	Freq (cm$^{-1}$)	IR (arb. u.)	Mode	Freq (cm$^{-1}$)	IR (arb. u.)	Mode	Freq (cm$^{-1}$)	IR (arb. u.)
Bu	95	19.57	Bu	95	19.57	Bu	95	19.57
Au	95	19.57	Au	246	2.62	Au	246	2.62
E_u	462	35.04	A_{2u}	324	39.86	A_{2u}	324	39.86
E_u	462	35.04	E_u	462	35.04	E_u	462	35.04
A_{2u}	627	39.86	E_u	720	51.99	E_u	720	51.99

TABLE S4. Frequencies of IR-active modes for P4_{2}\text{mc}. Modes colored in blue are the modes used to compute frequency differences (see text).

Mode	Freq (cm$^{-1}$)	IR (arb. u.)	Mode	Freq (cm$^{-1}$)	IR (arb. u.)	Mode	Freq (cm$^{-1}$)	IR (arb. u.)
B2	250	25.10	A_1	177	6.80	A_1	177	6.80
B_1	300	32.60	B_2	250	25.10	B_1	254	3.80
B_2	451	24.87	B_1	254	3.80	B_1	300	32.60
B_1	492	10.10	A_1	364	2.93	A_1	254	3.80
A_1	587	3.01	A_1	364	2.93	A_1	364	2.93
B_1	701	2.10	B_2	451	24.87	B_2	345	2.01
A_1	722	43.82	B_1	451	24.87	A_1	492	10.10
B_1	738	20.90	A_1	606	2.84	B_1	606	2.84
B_1	738	20.90	B_1	632	20.16	B_2	692	47.97

TABLE S5. Frequencies of IR-active modes for Pmn2_{1}. Modes colored in blue are the modes used to compute frequency differences (see text).
Mode	Freq (cm\(^{-1}\))	IR (arb. u.)	Mode	Freq (cm\(^{-1}\))	IR (arb. u.)	Mode	Freq (cm\(^{-1}\))	IR (arb. u.)
B\(_1\)	144	1.06	A\(_1\)	122	2.18	A\(_1\)	122	2.18
B\(_1\)	237	40.77	A\(_1\)	163	8.47	B\(_1\)	144	1.06
B\(_1\)	248	1.29	A\(_1\)	260	2.19	A\(_1\)	163	8.47
B\(_2\)	275	37.59	B\(_2\)	275	37.59	B\(_1\)	237	40.77
B\(_2\)	335	2.14	B\(_1\)	305	2.09	B\(_1\)	248	1.29
B\(_2\)	393	50.69	A\(_1\)	333	5.98	A\(_1\)	260	2.19
B\(_1\)	397	49.25	B\(_2\)	335	2.14	A\(_1\)	333	5.98
A\(_1\)	431	3.16	A\(_1\)	342	46.83	A\(_1\)	342	46.83
B\(_2\)	490	1.94	B\(_2\)	393	50.69	B\(_1\)	397	49.25
B\(_1\)	532	8.19	A\(_1\)	471	19.92	A\(_1\)	471	19.92
A\(_1\)	593	8.10	B\(_2\)	490	1.94	B\(_1\)	532	8.19
B\(_2\)	644	3.79	B\(_1\)	510	4.39	A\(_1\)	606	1.95
A\(_1\)	676	75.48	A\(_1\)	606	1.95	B\(_2\)	610	22.60
B\(_1\)	747	7.78	B\(_2\)	644	3.79	B\(_2\)	692	22.93
B\(_1\)	652	49.35	B\(_1\)	796	53.18	B\(_1\)	747	7.78

TABLE S6. Frequencies of IR-active modes for Pca\(_2\)_1. Modes colored in blue are the modes used to compute frequency differences (see text).

Mode	Freq (cm\(^{-1}\))	IR (arb. u.)	Mode	Freq (cm\(^{-1}\))	IR (arb. u.)	Mode	Freq (cm\(^{-1}\))	IR (arb. u.)
B\(_{3u}\)	477	7.51	B\(_{1u}\)	515	22.85	B\(_{1u}\)	233	15.82
B\(_{2u}\)	512	30.16	B\(_{1u}\)	262	9.72	B\(_{3u}\)	249	15.35
B\(_{3u}\)	393	64.30	B\(_{2u}\)	358	20.51	B\(_{1u}\)	262	9.72
B\(_{3u}\)	454	4.70	B\(_{2u}\)	386	64.30	B\(_{3u}\)	397	49.25
B\(_{3u}\)	477	7.51	B\(_{2u}\)	512	30.16	B\(_{3u}\)	353	1.43
B\(_{2u}\)	512	30.16	B\(_{1u}\)	515	22.85	B\(_{3u}\)	379	127.96
B\(_{1u}\)	573	7.54	B\(_{2u}\)	617	19.59	B\(_{3u}\)	454	4.70
B\(_{2u}\)	617	19.59	B\(_{3u}\)	653	154.48	B\(_{2u}\)	476	8.89
B\(_{1u}\)	623	73.73	B\(_{1u}\)	742	25.26	B\(_{3u}\)	477	7.51
B\(_{1u}\)	805	113.23	B\(_{3u}\)	811	9.98	B\(_{2u}\)	669	2.11
B\(_{3u}\)	806	2.00	B\(_{1u}\)	742	25.26	B\(_{2u}\)	742	184.42
B\(_{3u}\)	806	2.00	B\(_{2u}\)	742	184.42	B\(_{3u}\)	806	2.00

TABLE S7. Frequencies of IR-active modes in Pbca OI. Modes colored in blue are the modes used to compute frequency differences (see text).
Mode	Freq (cm$^{-1}$)	IR (arb. u.)	Mode	Freq (cm$^{-1}$)	IR (arb. u.)	Mode	Freq (cm$^{-1}$)	IR (arb. u.)
B$_{2u}$	191	17.37	B$_{2u}$	191	17.37	B$_{3u}$	253	8.16
B$_{2u}$	224	5.85	B$_{2u}$	224	5.85	B$_{3u}$	263	88.62
B$_{3u}$	253	8.16	B$_{1u}$	280	71.48	B$_{1u}$	280	71.48
B$_{3u}$	263	79.64	B$_{3u}$	319	2.92	B$_{3u}$	385	88.62
B$_{1u}$	323	2.28	B$_{2u}$	363	51.56	B$_{1u}$	392	82.96
B$_{2u}$	363	51.56	B$_{2u}$	368	55.47	B$_{2u}$	423	1.81
B$_{2u}$	368	55.47	B$_{1u}$	392	82.96	B$_{1u}$	425	33.01
B$_{3u}$	385	88.62	B$_{1u}$	425	33.01	B$_{1u}$	506	8.66
B$_{2u}$	441	30.44	B$_{2u}$	441	30.44	B$_{3u}$	555	21.39
B$_{1u}$	499	1.97	B$_{1u}$	506	8.66	B$_{2u}$	571	19.38
B$_{3u}$	555	21.39	B$_{3u}$	517	16.09	B$_{1u}$	646	7.35
B$_{2u}$	594	8.16	B$_{2u}$	594	8.16	B$_{2u}$	669	12.62
B$_{1u}$	620	31.91	B$_{1u}$	646	7.35	B$_{2u}$	683	133.57
B$_{1u}$	703	66.91	B$_{3u}$	658	85.45	B$_{1u}$	726	2.32
B$_{1u}$	750	102.39	B$_{1u}$	726	2.32	B$_{3u}$	752	17.74
B$_{3u}$	752	17.74	B$_{3u}$	808	111.77			

TABLE S8. Frequencies of IR-active modes in brookite. Modes colored in blue are the modes used to compute frequency differences (see text).