On the zeroth-order general Randić index, variable sum exdeg index and trees having vertices with prescribed degree

Sohaib Khalid, Akbar Ali

Department of Mathematics, University of Management & Technology, Sialkot-Pakistan
E-mail: sohaib4uus@gmail.com, akbarali.maths@gmail.com

February 20, 2018

Abstract

The zeroth-order general Randić index (usually denoted by \(R_0^\alpha \)) and variable sum exdeg index (denoted by \(SEI_a \)) of a graph \(G \) are defined as
\[
R_0^\alpha (G) = \sum_{v \in V(G)} (d_v)^\alpha
\]
and
\[
SEI_a (G) = \sum_{v \in V(G)} d_v a^{d_v}
\]
where \(d_v \) is degree of the vertex \(v \in V(G) \), \(a \) is a positive real number different from 1 and \(\alpha \) is a real number other than 0 and 1. A segment of a tree is a path \(P \), whose terminal vertices are branching or pendent, and all non-terminal vertices (if exist) of \(P \) have degree 2. For \(n \geq 6 \), let \(PT_{n,n_1}, ST_{n,k}, BT_{n,b} \) be the collections of all \(n \)-vertex trees having \(n_1 \) pendant vertices, \(k \) segments, \(b \) branching vertices, respectively. In this paper, all the trees with extremum (maximum and minimum) zeroth-order general Randić index and variable sum exdeg index are determined from the collections \(PT_{n,n_1}, ST_{n,k}, BT_{n,b} \). The obtained extremal trees for the collection \(ST_{n,k} \) are also extremal trees for the collection of all \(n \)-vertex trees having fixed number of vertices with degree 2 (because it is already known that the number of segments of a tree \(T \) can be determined from the number of vertices of \(T \) with degree 2 and vise versa).

1 Introduction

Let \(G = (V(G), E(G)) \) be a finite and simple graph, where \(V(G) \) and \(E(G) \) are the nonempty sets, known as vertex set and edge set respectively. For a vertex \(v \in V(G) \), degree of \(v \) is denoted by \(d_v \) and is defined as the number of vertices adjacent to \(v \). Undefined terminologies and notations can be found in [5, 8].

“A molecular descriptor is the final result of a logical and mathematical procedure which transforms chemical information encoded within a symbolic representation of a molecule into an useful number or the result of some standardized experiment” [25]. A topological index is a type of molecular descriptor based on the molecular graph of chemical compounds [3]. In graph theoretic words, topological indices are numerical quantities which are invariant under graph isomorphism [4]. The Randić index [21] (devised in 1975 for measuring the branching of molecules) and first Zagreb index [12] (appeared in 1972 within the study of total \(\pi \)-electron energy of molecules) are among the most studied topological indices [10]. Kier and Hall [14] proposed the zeroth order Randić index. In 2005, general first Zagreb index (also known as the zeroth-order general Randić index) was introduced by Li and Zheng [15]. The zeroth-order general Randić index is denoted by \(R_0^\alpha \) and is defined as:
\[
R_0^\alpha (G) = \sum_{v \in V(G)} (d_v)^\alpha
\]
where α is a real number other than 0 and 1. Indeed, R^0_α reduces to first Zagreb index and zeroth-order Randić index for $\alpha = 2$ and $\alpha = -\frac{1}{2}$, respectively. The topological index R^0_α has attracted a considerable attention from mathematicians, for example see the papers [1][3][8][20][23][29], particularly the recent ones [7][22][24][26] and related reference listed therein.

Variable sum exdeg index, introduced by Vukičević [27] in 2011, is denoted by SEI_a and is defined as:

$$SEI_a(G) = \sum_{v \in V(G)} d_v a^{d_v},$$

where a is any positive real number such that $a \neq 1$. The topological index SEI_a is very well correlated with octanol-water partition coefficient of octane isomers [27]. Detail about the chemical applicability and mathematical properties of this index can be found in the references [2][9][27][28][30].

A vertex having degree 1 is called pendent vertex and a vertex which have degree greater than 2 is named as branching vertex. A segment of a tree is a path subtree branching vertices, is solved. The number of segments of a tree is very well correlated with octanol-water partition coefficient of octane isomers [27]. Detail about the chemical applicability and mathematical properties of this index can be found in the references [2][9][27][28][30].

Denote by $\mathcal{PT}_{n,1}$ the collection of all n-vertex trees having fixed (i) pendent vertices (ii) segments (iii) branching vertices. Clearly, 2 $\leq n_1 \leq n - 1$. Both the collections $\mathcal{PT}_{n,2}$ and $\mathcal{PT}_{n,n-1}$ contain only one graph, namely, the path graph P_n and star graph S_n, respectively. Thereby, in order to make the extremal problem well defined we always take $3 \leq n_1 \leq n - 2$.

The trees with extremum SEI_a values from the collection \mathcal{PT}_{n,n_1} have already been determined in [28] for $a > 1$. Thereby, in this section, we solve this problem concerning SEI_a for $0 < a < 1$, which gives a partial solution of a problem posed in [28].

Lemma 2.1. If $T \in \mathcal{PT}_{n,n_1}$ contains more than one branching vertex then there exist a tree $T' \in \mathcal{PT}_{n,n_1}$ such that $SEI_a(T) > SEI_a(T')$ for $0 < a < 1$ and

$$R^0_\alpha(T) \begin{cases} < R^0_\alpha(T') & \text{if } \alpha < 0 \text{ or } \alpha > 1, \\ > R^0_\alpha(T') & \text{if } 0 < \alpha < 1. \end{cases}$$

Proof. Let $u,v \in V(T)$ be branching vertices such that $d_u \geq d_v$. Let w be the neighbor of v which does not lie on the unique $u-v$ path. Take $T' = T - uv + uw$ then Lagrange’s mean value theorem guaranties the existence of numbers Θ_1, Θ_2 such that $d_v - 1 < \Theta_1 < d_v \leq d_u < \Theta_2 < d_u + 1$ and

$$SEI_a(T) - SEI_a(T') = d_v a^{d_v} - (d_v - 1)a^{d_v - 1} - [(d_u + 1)a^{d_u + 1} - d_u a^{d_u}]$$

$$= a^{\Theta_1}(1 + \Theta_1 \ln a) - a^{\Theta_2}(1 + \Theta_2 \ln a)$$

(1)
From the inequalities $\Theta_1 < \Theta_2$ and $0 < a < 1$, it follows that
\[a^{\Theta_1}(1 + \Theta_1 \ln a) > a^{\Theta_1}(1 + \Theta_2 \ln a) > a^{\Theta_2}(1 + \Theta_2 \ln a), \]
which together with Equation \((\ref{eq:inequality})\) implies that $SEI_a(T) > SEI_a(T')$ for $0 < a < 1$.

Again, by virtue of Lagrange’s mean value theorem there exist numbers Θ_3, Θ_4 such that $d_v - 1 < \Theta_3 < d_v < d_u < \Theta_4 < d_v + 1$ and
\[
R_0^0(T) - R_0^0(T') = (d_u)^\alpha - (d_v - 1)^\alpha - [(d_u + 1)^\alpha - (d_u)^\alpha] \\
= \alpha(\Theta_3^{\alpha-1} - \Theta_4^{\alpha-1}) \\
\begin{cases} < 0 & \text{if } \alpha < 0 \text{ or } \alpha > 1, \\ > 0 & \text{if } 0 < \alpha < 1. \end{cases}
\]

This completes the proof.

If $V(G) = \{v_1, v_2, \ldots, v_n\}$ such that $d_{v_1} \geq d_{v_2} \geq \cdots \geq d_{v_n}$ then the sequence $\pi = (d_{v_1}, d_{v_2}, \ldots, d_{v_n})$ is called degree sequence of G.

Theorem 2.2. If $T \in \mathbb{PT}_{n,n_1}$ then $SEI_a(T) \geq 2a^2n + (a^{n_1} - 2a^2 + a)n_1 - 2a^2$ for $0 < a < 1$ and
\[
R_0^0(T) \begin{cases} < 2^\alpha n + (n_1)^\alpha - (2^\alpha - 1)n_1 - 2^\alpha & \text{if } \alpha < 0 \text{ or } \alpha > 1, \\ > 2^\alpha n + (n_1)^\alpha - (2^\alpha - 1)n_1 - 2^\alpha & \text{if } 0 < \alpha < 1. \end{cases}
\]

The equality sign in any of the above inequalities holds if and only if T has the degree sequence \((n_1, 2, \ldots, 2, 1, \ldots, 1)\) for all non-\(\Theta\)\(\alpha\)\(\Theta\).2.1

Proof. The result directly follows from Lemma \(\ref{lemma:degree_sequence}\). \(\square\)

Lemma 2.3. If $T \in \mathbb{PT}_{n,n_1}$ contains two non-pendent vertices u, v such that $d_u \geq d_v + 2$ then there exist $T' \in \mathbb{PT}_{n,n_1}$ such that $SEI_a(T) < SEI_a(T')$ for $0 < a < 1$ and
\[
R_0^0(T) \begin{cases} < R_0^0(T') & \text{if } \alpha < 0 \text{ or } \alpha > 1, \\ > R_0^0(T') & \text{if } 0 < \alpha < 1. \end{cases}
\]

Proof. Let w be the neighbor of u which does not lie on the unique $u-v$ path. If $T' = T - uw + vw$ then there exist numbers Θ_1, Θ_2 such that $d_v < \Theta_1 < d_v + 1 \leq d_u - 1 < \Theta_2 < d_u$ and
\[
SEI_a(T) - SEI_a(T') = d_u a^{d_u} - (d_u - 1)a^{d_u-1} - [(d_u + 1)a^{d_u+1} - d_v a^{d_v}] \\
= \alpha^{\Theta_2}(1 + \Theta_2 \ln a) - a^{\Theta_1}(1 + \Theta_1 \ln a) < 0. \tag{2}
\]
There also exist numbers Θ_3, Θ_4 such that $d_v < \Theta_3 < d_v + 1 \leq d_u - 1 < \Theta_4 < d_u$ and
\[
R_0^0(T) - R_0^0(T') = (d_u)^\alpha - (d_v - 1)^\alpha - [(d_v + 1)^\alpha - (d_v)^\alpha] \\
= \alpha(\Theta_3^{\alpha-1} - \Theta_4^{\alpha-1}) \\
\begin{cases} > 0 & \text{if } \alpha < 0 \text{ or } \alpha > 1, \\ < 0 & \text{if } 0 < \alpha < 1. \end{cases}
\]

This completes the proof. \(\square\)

Lemma 2.4. \(\square\) If $T \in \mathbb{PT}_{n,n_1}$ such that the inequality $|d_u - d_v| \leq 1$ holds for all non-pendent vertices $u, v \in V(T)$, then $n_t = (n - n_1)t - n_1 + 2$ and $n_{t+1} = n - (n - n_1)t - 2$ where $t = \left\lfloor \frac{n_2}{n-n_1} \right\rfloor + 1$.\(\square\)
Theorem 3.3. If $T \in PT_{n,n_1}$ and $t = \left\lfloor \frac{n-2}{n-n_1} \right\rfloor + 1$ then

$$SEI_a(T) \leq [(n-n_1)t - n_1 + 2]a^t + [n - (n-n_1)t - 2](t+1)a^{t+1} + n_1a \quad \text{for} \quad 0 < a < 1$$

and

$$R_a^0(T) \begin{cases}
> [n - (n-n_1)t - n_1 + 2]a^t + [n - (n-n_1)t - 2](t+1)a^{t+1} + n_1a & \text{if } \alpha < 0 \text{ or } \alpha > 1, \\
< [(n-n_1)t - n_1 + 2]a^t + [n - (n-n_1)t - 2](t+1)a^{t+1} + n_1a & \text{if } 0 < \alpha < 1.
\end{cases}$$

The equality sign in any of the above inequalities holds if and only if T has the degree sequence $(t+1, \cdots, t+1, t, \cdots, t, 1, \cdots, 1)$.

Proof. From Lemma 2.3 and Lemma 2.4, the desired result follows. \qed

3 Zeroth-order general Randić index, variable sum exdeg index and branching vertices of trees

For $n \geq 6$, let $BT_{n,b}$ be the collection of all n-vertex trees with branching vertices b. It is known that $b \leq \frac{n}{2} - 1$ [16]. Throughout this section we take $1 \leq b \leq \frac{n}{2} - 1$ because the set $BT_{n,0}$ contains only one graph, namely the path graph P_n.

Lemma 3.1. If $T \in BT_{n,b}$ contains a vertex having degree greater than 3 then there is a tree $T' \in BT_{n,b}$ such that

$$SEI_a(T) > SEI_a(T') \quad \text{if } \alpha > 1,$$

$$< SEI_a(T') \quad \text{if } 0 < \alpha < 1.$$

and

$$R_a^0(T) \begin{cases}
> R_a^0(T') & \text{if } \alpha < 0 \text{ or } \alpha > 1, \\
< R_a^0(T') & \text{if } 0 < \alpha < 1.
\end{cases}$$

Proof. Let $u \in V(T)$ be a vertex having degree greater than 3. Let $P = v_0v_1 \cdots v_{r+1}$ be a longest path in T containing u, where $u = v_i$ for some $i \in \{1, 2, \cdots, r\}$. Let w be a neighbor of u different from both v_{i-1}, v_{i+1}. If $T' = T - uw + wv_{i+1}$ then

$$SEI_a(T) - SEI_a(T') = d_u a^{d_u} - (d_u - 1)a^{d_u-1} - (2a^2 - a)$$

$$= a^{\Theta_2(1 + \Theta_2 \ln a)} - a^{\Theta_1(1 + \Theta_1 \ln a)}$$

$$\begin{cases}
> 0 & \text{if } \alpha > 1, \\
< 0 & \text{if } 0 < \alpha < 1,
\end{cases}$$

where $1 < \Theta_1 < 2 < d_u - 1 < \Theta_2 < d_u$. Also, we have

$$R_a^0(T) - R_a^0(T') = (d_u)^\alpha - (d_u - 1)^\alpha - (2^\alpha - 1)$$

$$\begin{cases}
> 0 & \text{if } \alpha < 0 \text{ or } \alpha > 1, \\
< 0 & \text{if } 0 < \alpha < 1.
\end{cases}$$

Lemma 3.2. If $T \in BT_{n,b}$ has maximum degree 3 then $n_1 = b + 2$ and $n_2 = n - 2b - 2$.

Theorem 3.3. If $T \in BT_{n,b}$ then

$$SEI_a(T) \begin{cases}
\geq 2a^2n + (3a^3 - 4a^2 + a)b - 2a(2a - 1) & \text{if } \alpha > 1, \\
\leq 2a^2n + (3a^3 - 4a^2 + a)b - 2a(2a - 1) & \text{if } 0 < \alpha < 1
\end{cases}$$
Proof. The result follows from Lemma 3.1 and Lemma 3.2 \[\square \]

Lemma 3.4. If \(T \in \mathbb{BT}_{n,b} \) contains two or more vertices having degree greater than 3 then there exist \(T' \in \mathbb{BT}_{n,b} \) such that

\[
R_0^0(T) \begin{cases} < R_0^0(T') & \text{if } \alpha < 0 \text{ or } \alpha > 1, \\ > R_0^0(T) & \text{if } 0 < \alpha < 1. \end{cases}
\]

and

\[
SEI_\alpha(T) \begin{cases} < SEI_\alpha(T') & \text{if } a > 1, \\ > SEI_\alpha(T') & \text{if } 0 < a < 1. \end{cases}
\]

Proof. Let \(u, v \in V(T) \) such that \(d_u \geq d_v \geq 4 \). Suppose \(N_T(v) = \{v_1, v_2, \ldots, v_{r-1}, v_r\} \) and let \(u \) be connected to \(v \) through \(v_r \) (it is possible that \(u = v_r \)). If \(T' = T - \{uv_1, uv_2, \ldots, uv_{r-3}\} + \{uv, uv_2, \ldots, uv_r\} \) then

\[
R_0^0(T) - R_0^0(T') = (d_v)^{\alpha} - (d_u)^{\alpha} - [(d_u + d_v - 3)^{\alpha} - (d_u)^{\alpha}]
\]

\[
= \alpha(d_v - 3)(\Theta_1 - \Theta_2^{a-1})
\]

\[
\begin{cases} < 0 & \text{if } \alpha < 0 \text{ or } \alpha > 1, \\ > 0 & \text{if } 0 < \alpha < 1. \end{cases}
\]

where \(3 < \Theta_1 < d_u < \Theta_2 < d_u + d_v - 3 \). Also, we have

\[
SEI_\alpha(T) - SEI_\alpha(T') = d_v a^{d_v - 3} - [(d_u + d_v - 3)^{d_u + d_v - 3} - d_u a^{d_u}]
\]

\[
= (d_v - 3)[a^{\Theta_3}(1 + \Theta_3 \ln a) - a^{\Theta_4}(1 + \Theta_4 \ln a)]
\]

\[
\begin{cases} < 0 & \text{if } a > 1, \\ > 0 & \text{if } 0 < a < 1, \end{cases}
\]

where \(3 < \Theta_3 < d_v < \Theta_4 < d_u + d_v - 3 \). \[\square \]

Lemma 3.5. If \(T \in \mathbb{BT}_{n,b} \) contains at least one vertex of degree 2 then there is \(T' \in \mathbb{BT}_{n,b} \) such that

\[
R_0^0(T) \begin{cases} < R_0^0(T') & \text{if } \alpha < 0 \text{ or } \alpha > 1, \\ > R_0^0(T) & \text{if } 0 < \alpha < 1. \end{cases}
\]

and

\[
SEI_\alpha(T) \begin{cases} < SEI_\alpha(T') & \text{if } a > 1, \\ > SEI_\alpha(T') & \text{if } 0 < a < 1. \end{cases}
\]

Proof. The assumption \(b \geq 1 \) implies that there exist two adjacent vertices \(u, v \in V(T) \) such that \(d_u \geq 3 \) and \(d_v = 2 \). Let \(N_T(v) = \{u, w\} \) and \(T' = T - vw + uw \). Now, the desired result easily follows by observing the differences \(R_0^0(T) - R_0^0(T') \) and \(SEI_\alpha(T) - SEI_\alpha(T') \). \[\square \]

Lemma 3.6. If \(T \in \mathbb{BT}_{n,b} \) has no vertex of degree 2 and has at most one vertex of degree greater than 3 then \(T \) has the degree sequence \((n-2b+1, 3, \ldots, 3, 1, \ldots, 1) \).
The equality sign in the inequality holds if and only if

Proof. The result follows from Lemma 3.4, Lemma 3.5 and Lemma 3.6.

4 Zeroth-order general Randić index, variable sum exdeg index and segments of trees

For \(n \geq 6 \), denote by \(\mathbb{S}T_{n,k} \) the set of all \(n \)-vertex trees with \(k \) segments. Throughout this section we take \(3 \leq k \leq n-2 \) because \(\mathbb{S}T_{n,1} = \{P_n\}, \mathbb{S}T_{n,n-1} = \{S_n\} \) and the set \(\mathbb{S}T_{n,2} \) is empty.

Squeeze of an \(n \)-vertex tree \(T \) (is denoted by \(S(T) \)) is a tree obtained from \(T \) by replacing each segment with an edge \([7] \). Hence

\[
k = |E(S(T))| = |V(S(T))| - 1 = n - n_2 - 1
\]

(3)

By an even-prime vertex we mean a vertex with degree 2. From Equation (3) it is clear that the problem of finding extremal trees from the collection \(\mathbb{S}T_{n,k} \) is equivalent to the problem of finding extremal trees from the collection of all \(n \)-vertex trees with fixed even-prime vertices.

Lemma 4.1. [28] If \(T \) is an \(n \)-vertex tree then

\[
SEI_a(T) \leq (n - 1)a^{n-1} + (n - 1)a
\]

for \(a > 1 \) and \(n \geq 4 \). The equality sign in the inequality holds if and only if \(T \cong S_n \).

Lemma 4.2. [25] For \(n \geq 4 \), if \(T \) is an \(n \)-vertex tree then

\[
R_a^0(T) \begin{cases}
\leq (n - 1)^a + (n - 1) & \text{if } \alpha < 0 \text{ or } \alpha > 1, \\
\geq (n - 1)^a + (n - 1) & \text{if } 0 < \alpha < 1.
\end{cases}
\]

The equality sign in the inequality holds if and only if \(T \cong S_n \).

Theorem 4.3. If \(T \in \mathbb{S}T_{n,k} \) then

\[
R_a^0(T) \begin{cases}
\leq 2^n n + k^a - (2^a - 1)k - 2^a & \text{if } \alpha < 0 \text{ or } \alpha > 1, \\
\geq 2^n n + k^a - (2^a - 1)k - 2^a & \text{if } 0 < \alpha < 1,
\end{cases}
\]

and

\[
SEI_a(T) \leq 2^n a + k^a - (2a - 1)ak - 2^a
\]

for \(a > 1 \). The equality sign in any of the above inequalities holds if and only if \(T \) has the degree sequence \((k, 2, ..., 2, 1, ..., 1)\).
Proof. By definition of the squeeze of a tree, zeroth-order general Randić index and variable sum exdeg index, we have
\[R_0^0(T) = R_0^0(S(T)) + 2\alpha n_2 \] (4)
and
\[SEI_a(T) = SEI_a(S(T)) + 2\alpha^2 n_2. \] (5)
From Equation (3), we have \(n_2 = n - k - 1 \) and hence from Equation (4) and Equation (5) it follow that
\[R_0^0(T) = R_0^0(S(T)) + 2\alpha (n - k - 1) \] (6)
and
\[SEI_a(T) = SEI_a(S(T)) + 2\alpha^2 (n - k - 1). \] (7)
Since \(S(T) \) has \(n - n_2 = k + 1 \) vertices. So, by Lemma 4.1 and Lemma 4.2, we have
\[SEI_a(S(T)) \leq ka^k + ka \quad \text{and} \quad R_0^0(S(T)) \leq k^\alpha + k \] if \(\alpha < 0 \) or \(\alpha > 1 \),
\[R_0^0(S(T)) \geq k^\alpha + k \] if \(0 < \alpha < 1 \),
where \(\alpha > 1 \) and the equality sign in any of the above inequalities holds if and only if \(S(T) \cong S_{k+1} \). Now, from Equation (6) and Equation (7) the desired result follows.

A caterpillar is a tree which results in a path graph by deletion of all pendent vertices and incident edges.

Lemma 4.4. [17] If \(T \) is an \(n \)-vertex non-caterpillar then there exist an \(n \)-vertex caterpillar \(T' \) such that \(T' \) and \(T \) have the same degree sequence (and same number of segments).

Lemma 4.5. If \(T \in \mathcal{ST}_{n,k} \) has maximum degree greater than 4 then there exist \(T' \in \mathcal{ST}_{n,k} \) such that
\[R_0^0(T) > R_0^0(T') \] if \(\alpha < 0 \) or \(\alpha > 1 \),
\[R_0^0(T) < R_0^0(T') \] if \(0 < \alpha < 1 \)
and
\[SEI_a(T) > SEI_a(T') \] if \(\alpha > 1 \),
\[SEI_a(T) < SEI_a(T') \] if \(0 < \alpha < 1 \).

Proof. Let \(\pi \) be the degree sequence of the tree \(T \). By Lemma 4.1 there must exist a caterpillar \(T^{(1)} \in \mathcal{ST}_{n,k} \) with degree sequence \(\pi \) (it is possible that \(T = T^{(1)} \)). Obviously,
\[R_0^0(T) = R_0^0(T^{(1)}) \quad \text{and} \quad SEI_a(T) = SEI_a(T^{(1)}). \]
Let \(P : v_0v_1 \ldots v_rv_{r+1} \) be the longest path in \(T^{(1)} \) containing the vertex of degree greater than 4. Obviously, \(v_0 \) and \(v_{r+1} \) are pendent vertices. Let \(d_{v_i} \geq 5 \) for some \(i \in \{1,2,\ldots,r\} \). The assumption that \(T^{(1)} \) is a caterpillar implies that there exist two pendent vertices \(u_1, u_2 \) adjacent to \(v_i \), not included in the path \(P \). Let \(T' = T^{(1)} - \{u_1v_i, u_2v_i\} + \{u_1v_{r+1}, u_2v_{r+1}\} \). Clearly, \(T' \in \mathcal{ST}_{n,k} \). By virtue of Lagrange’s mean value theorem there exists numbers \(\Theta_1, \Theta_2 \) such that \(1 < \Theta_1 < 3 \leq d_{v_i} - 2 < \Theta_2 < d_{v_i} \) and
\[R_0^0(T) - R_0^0(T') = R_0^0(T^{(1)}) - R_0^0(T') = [(d_{v_i})^\alpha - (d_{v_i} - 2)^\alpha] - [3^\alpha - 1^\alpha] = 2\alpha(\Theta_2^{\alpha-1} - \Theta_1^{\alpha-1}) \]
\[> 0 \quad \text{if} \quad \alpha < 0 \quad \text{or} \quad \alpha > 1, \]
\[< 0 \quad \text{if} \quad 0 < \alpha < 1. \]
Also, there exists numbers Θ_3, Θ_4 such that $1 < \Theta_3 < 3 \leq d_{v_i} - 2 < \Theta_4 < d_{v_i}$ and

$$SEI_a(T) - SEI_a(T') = SEI_a(T^{(1)}) - SEI_a(T')$$

$$= [d_{v_i}a^{d_{v_i}} - (d_{v_i} - 2)a^{(d_{v_i}-2)}] - [3a^3 - a]$$

$$= 2a^{\Delta + 4}(1 + \Theta_3 \ln a) - 2a^{\Theta_4}(1 + \Theta_3 \ln a)$$

$$\begin{cases} > 0 & \text{if } a > 1, \\ < 0 & \text{if } 0 < a < 1. \end{cases}$$

\[\square \]

Lemma 4.6. If $T \in \mathcal{S}_{n,k}$ has two or more vertices of degree 4 then there exist $T' \in \mathcal{S}_{n,k}$ such that

$$R^0_\alpha(T) \begin{cases} > R^0_\alpha(T') & \text{if } \alpha < 0 \text{ or } \alpha > 1, \\ < R^0_\alpha(T') & \text{if } 0 < \alpha < 1 \end{cases}$$

and

$$SEI_a(T) \begin{cases} > SEI_a(T') & \text{if } a > 1, \\ < SEI_a(T') & \text{if } \frac{\alpha + \sqrt{33}}{16} < a < 1. \end{cases}$$

Proof. Let π be degree sequence of the tree T. By Lemma 4.4 there must exist a caterpillar $T^{(1)} \in \mathcal{S}_{n,k}$ with degree sequence π (it is possible that $T = T^{(1)}$). Obviously,

$$R^0_\alpha(T) = R^0_\alpha(T^{(1)}) \quad \text{and} \quad SEI_a(T) = SEI_a(T^{(1)}).$$

Suppose that the vertices $u, v \in V(T^{(1)})$ have degree 4. Let $P : v_0v_1 \ldots v_rv_{r+1}$ be the longest path in $T^{(1)}$ containing the vertices u, v. Let $u = v_i$ and $u = v_j$ for some $i, j \in \{1, 2, \ldots, r\}$, $i \neq j$. There must exist two pendant vertices u_1, u_2, not included in the path P such that $u_1v_i, u_2v_j \in E(T^{(1)})$. Let $T' = T^{(1)} - \{u_1v_i, u_2v_j\} + \{u_1v_{r+1}, u_2v_{r+1}\}$. Clearly, $T' \in \mathcal{S}_{n,k}$ and

$$R^0_\alpha(T) - R^0_\alpha(T') = R^0_\alpha\left(T^{(1)}\right) - R^0_\alpha(T') = 2\left(4a^\alpha - 3a^\alpha\right) - (3a^\alpha - 1)$$

$$\begin{cases} > 0 & \text{if } \alpha < 0 \text{ or } \alpha > 1, \\ < 0 & \text{if } 0 < \alpha < 1. \end{cases}$$

Also, we have

$$SEI_a(T) - SEI_a(T') = SEI_a\left(T^{(1)}\right) - SEI_a(T') = a(8a^3 - 9a^2 + 1)$$

$$\begin{cases} > 0 & \text{if } a > 1, \\ < 0 & \text{if } \frac{\alpha + \sqrt{33}}{16} < a < 1. \end{cases}$$

\[\square \]

Lemma 4.7. [17] If T is a tree satisfying $\Delta \leq 4$ and $n_4 \leq 1$ then the degree sequence π of T is given below

$$\pi = \begin{cases} (4, 3, \ldots, 3, 2, \ldots, 2, 1, \ldots, 1) & \text{if } k \text{ is even}, \\ \frac{4}{n-k-1} & \frac{4}{n-k-1} \\
\frac{4}{n-k-1} & \frac{4}{n-k-1} \\
\frac{4}{n-k-1} & \frac{4}{n-k-1} \\
\frac{4}{n-k-1} & \frac{4}{n-k-1} \\
\end{cases}$$

if k is odd.
Theorem 4.8. Let \(T \in \mathcal{ST}_{n,k} \) where \(3 \leq k \leq n-2 \).

\((i)\). If \(\alpha < 0 \) or \(\alpha > 1 \), then the following inequality holds:

\[
R_{\alpha}^0(\mathcal{T}) \geq \begin{cases}
 f(n,k) + 4\alpha^2 - 2 \cdot 3\alpha - 2\alpha^2 + 2 & \text{if } k \text{ is even}, \\
 f(n,k) + \frac{3\cdot 3\alpha - 2\alpha^2 + 1}{2} & \text{if } k \text{ is odd},
\end{cases}
\]

where \(f(n,k) = 2^{\alpha}n + \left(\frac{3\cdot 3\alpha - 2\alpha^2 + 1}{2} \right) k \). If \(0 < \alpha < 1 \) then the inequality is reversed.

\((ii)\). For \(a > 1 \), the following inequality holds:

\[
SEI_a(T) \geq \begin{cases}
 g(n,k) + 4a^4 - 6a^3 - 2a^2 + 2a & \text{if } k \text{ is even}, \\
 g(n,k) + \frac{3a - 3a^2 - 4a^2}{2} & \text{if } k \text{ is odd},
\end{cases}
\]

where \(g(n,k) = 2a^2n + \left(\frac{3a - 4a^2 + a}{2} \right) k \). If \(\frac{1+\sqrt{33}}{16} < a < 1 \) then the inequality is reversed.

In each part, the bound is best possible and is attained if and only if \(T \) has the degree sequence \(\pi \) given below:

\[
\pi = \begin{cases}
 (4,3,\ldots,3,2,\ldots,2,1,\ldots,1) & \text{if } k \text{ is even}, \\
 (3,\ldots,3,2,\ldots,2,1,\ldots,1) & \text{if } k \text{ is odd},
\end{cases}
\]

Proof. From Lemma 4.5, Lemma 4.6 and Lemma 4.7, the desired result follows. \(\square\)

References

[1] A. Ali, A. A. Bhatti, Z. Raza, A note on the zeroth-order general Randić index of cacti and polyomino chains, *Iranian J. Math. Chem.* 5(2) (2014) 143–152.

[2] A. Ali, D. Dimitrov, On the extremal graphs with respect to bond incident degree indices, *arXiv*:1707.00733 [math.CO].

[3] S. C. Basak, V. R. Magnuson, Determining structural similarity of chemicals using graph-theoretic indices, *Discrete Appl. Math.* 19 (1988) 17–44.

[4] S. C. Basak, V. R. Magnuson, Topological indices: their nature, mutual relatedness, and applications, *Mathematical Modeling* 8 (1987) 300–305.

[5] J. A. Bondy, U. S. R. Murty, *Graph Theory*, Springer, 2008.

[6] B. Borovičanin, On the extremal Zagreb indices of trees with given number of segments or given number of branching vertices, *MATCH Commun. Math. Comput. Chem.* 74 (2015) 57–79.

[7] Z. Chen, G. Su, L. Volkmann, Sufficient conditions on the zeroth order general Randić index for maximally edge connected graphs, *Discrete Appl. Math.* 218 (2017) 64–70.

[8] R. Diestel, *Graph Theory*, Third edition, Springer, 2005.

[9] A. Ghalavand, A. R. Ashrafi, Extremal graphs with respect to variable sum exdeg index via majorization, *Appl. Math. Comput.* 303 (2017) 19–23.

[10] I. Gutman, Degree-based topological indices, *Croat. Chem. Acta* 86 (4) (2013) 351–361.

[11] I. Gutman, M. K. Jamil, N. Akhter, Graphs with fixed number of pendant vertices and minimal first Zagreb index, *Trans. Comb.* 4(1) (2015) 43–48.
[12] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total ϕ-electron energy of alternant hydrocarbons, *Chem. Phys. Lett.* **17** (1972) 535–538.

[13] Y. Hu, X. Li, Y. Shi, T. Xu, Connected (n, m)-graphs with minimum and maximum zeroth-order general Randić index, *Discrete Appl. Math.* **155** (2007) 1044–1054.

[14] L. B. Kier, L. H. Hall, The nature of structure-activity relationships and their relation to molecular connectivity, *European J. Med. Chem.* **12** (1977) 307–312.

[15] X. Li, J. Zheng, A unified approach to the extremal trees for different indices, *MATCH Commun. Math. Comput. Chem.* **54** (2005) 195–208.

[16] H. Lin, On the Wiener index of trees with given number of branching vertices, *MATCH Commun. Math. Comput. Chem.* **72** (2014) 301–310.

[17] H. Lin, On segments, vertices of degree two and the first Zagreb index of trees, *MATCH Commun. Math. Comput. Chem.* **72** (2014) 825–834.

[18] X. F. Pan, H. Liu, M. Liu, Sharp bounds on the zeroth-order general Randić index of unicyclic graphs with given diameter, *Appl. Math. Lett.* **24** (5) (2011) 687–691.

[19] L. Pavlović, M. Lazić, T. Aleksić, More on “Connected (n, m)-graphs with minimum and maximum zeroth-order general Randić index”, *Discrete Appl. Math.* **157** (2009) 2938–2944.

[20] S. Qiao, On zeroth-order general Randić index of quasi-tree graphs containing cycles, *Discrete Optim.* **7** (2010) 93–98

[21] M. Randić, On characterization of molecular branching, *J. Am. Chem. Soc.* **97** (1975) 6609–6615.

[22] G. Su, J. Tu, K. Das, Graphs with fixed number of pendent vertices and minimal zeroth-order general Randić index, *Appl. Math. Comput.* **270** (2016) 705–710.

[23] G. Su, L. Xiong, X. Su, Maximally edge-connected graphs and general Zeroth-order Randić index for 0 < α < 1, *Discrete Appl. Math.* **167** (2014) 261–268.

[24] G. Su, L. Xiong, X. Su, G. Li, Maximally edge-connected graphs and general zeroth-order Randić index for α < −1, *J. Comb. Optim.* **31** (2016) 182–195.

[25] R. Todeschini, V. Consonni, *Handbook of Molecular Descriptors*, Wiley-VCH, 2000.

[26] L. Volkmann, Sufficient conditions on the zeroth-order general Randić index for maximally edge-connected digraphs, *Commun. Comb. Optim.* **1** (1) (2016) 1–13.

[27] D. Vukičević, Bond Additive Modeling 4. QSPR and QSAR studies of the variable Adriatic indices, *Croat. Chem. Acta* **84**(1) (2011) 87–91.

[28] D. Vukičević, Bond additive modeling 5. mathematical properties of the variable sum exdeg index, *Croat. Chem. Acta* **84** (1) (2011) 93–101.

[29] S. Yamaguchi, Zeroth-order general Randić index of trees with given order and distance conditions, *MATCH Commun. Math. Comput. Chem.* **62** (2009) 171–175.

[30] Z. Yarahmadi, A. R. Ashrafi, The exdeg polynomial of some graph operations and applications in nanoscience, *J. Comput. Theor. Nanosci.* **12** (1) (2015) 45–51.