Children’s attitudes towards animals are similar across suburban, exurban, and rural areas

Stephanie G. Schuttler, Kathryn Stevenson, Roland Kays, Robert R. Dunn

1 North Carolina Museum of Natural Sciences, Raleigh, North Carolina, United States
2 Department of Parks, Recreation and Tourism Management, North Carolina State University, Raleigh, North Carolina, United States
3 Department of Forestry & Environmental Resources, North Carolina State University, Raleigh, North Carolina, United States
4 Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, United States
5 Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark

Corresponding Author: Stephanie G. Schuttler
Email address: stephanie.schuttler@naturalsciences.org

The decline in the number of hours Americans spend outdoors, exacerbated by urbanization, has affected people’s familiarity with local wildlife. This is concerning to conservationists, as people tend to care about and invest in what they know. Children represent the future supporters of conservation, such that their knowledge about and feelings towards wildlife have the potential to influence conservation for many years to come. Yet, little research has been conducted on children’s attitudes towards wildlife, particularly across zones of urbanization. We surveyed 2,759 4-8th grade children across 22 suburban, exurban, and rural schools in North Carolina to determine their attitudes toward local, domestic, and exotic animals. We predicted that children who live in rural or exurban areas, where they may have more direct access to more wildlife species, would list more local animals as ‘liked’ and fewer as ‘scary’ compared to children in suburban areas. However, children, regardless of where they lived, provided mostly non-native mammals for open-ended responses, and were more likely to list local animals as scary than as liked. We found urbanization to have little effect on the number of local animals children listed, and the rankings of ‘liked’ animals were correlated across zones of urbanization. Promising for conservation was that half of the top ‘liked’ animals included species or taxonomic groups containing threatened or endangered species. Despite different levels of urbanization, children had either an unfamiliarity with and/or low preference for local animals, suggesting that a disconnect between children and local biodiversity is already well-established, even in more rural areas where many wildlife species can be found.
Children's attitudes towards animals are similar across suburban, exurban, and rural areas

Authors: Stephanie G. Schuttler1, Kathryn Stevenson2, Roland Kays1,3, Robert R. Dunn4,5

1North Carolina Museum of Natural Sciences, Raleigh, NC USA
2Department of Parks, Recreation and Tourism Management, North Carolina State University, Raleigh, NC USA
3Department of Forestry & Environmental Resources, North Carolina State University, Raleigh, NC USA
4Department of Applied Ecology, North Carolina State University, Raleigh, NC USA
5Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark

Corresponding author:
Stephanie Schuttler
North Carolina Museum of Natural Sciences
11 West Jones Street
Raleigh, NC 27601
Stephanie.schuttler@gmail.com
Orcid ID: 0000-0001-9523-4448

Short title: Youth attitudes towards animals
Abstract

The decline in the number of hours Americans spend outdoors, exacerbated by urbanization, has affected people’s familiarity with local wildlife. This is concerning to conservationists, as people tend to care about and invest in what they know. Children represent the future supporters of conservation, such that their knowledge about and feelings towards wildlife have the potential to influence conservation for many years to come. Yet, little research has been conducted on children’s attitudes towards wildlife, particularly across zones of urbanization. We surveyed 2,759 4-8th grade children across 22 suburban, exurban, and rural schools in North Carolina to determine their attitudes toward local, domestic, and exotic animals. We predicted that children who live in rural or exurban areas, where they may have more direct access to more wildlife species, would list more local animals as ‘liked’ and fewer as ‘scary’ compared to children in suburban areas. However, children, regardless of where they lived, provided mostly non-native mammals for open-ended responses, and were more likely to list local animals as scary than as liked. We found urbanization to have little effect on the number of local animals children listed, and the rankings of ‘liked’ animals were correlated across zones of urbanization. Promising for conservation was that half of the top ‘liked’ animals included species or taxonomic groups containing threatened or endangered species. Despite different levels of urbanization, children had either an unfamiliarity with and/or low preference for local animals, suggesting that a disconnect between children and local biodiversity is already well-established, even in more rural areas where many wildlife species can be found.

Introduction
One of the biggest threats to the conservation of biodiversity is the “extinction of experience,” a term used to describe the large-scale decline of people’s time spent in nature and the diverse experiences time in nature entails (Pyle 1978). Individuals who have had more experiences are more likely to have pro-environmental attitudes, especially when those experiences occurred during childhood (Soga & Gaston 2016). Today, children spend much less time outdoors than the generations before them, and fewer people live in rural areas surrounded by large, natural spaces (Kellert et al. 2017). As people spend more time indoors and have less access to natural areas in their daily lives, their familiarity with and perspectives towards local wildlife will likely change.

While many conservation biologists focus on challenges associated with the health of an ecosystem such as habitat loss, declines in native biodiversity, increases in invasive species, and pollution (Aronson et al. 2014; Dirzo et al. 2014), challenges that relate to societal perceptions are equally important. These perceptions of nature set the template that influences the future willingness of the public to invest in the conservation of nature. For example, the intolerance of wildlife, perceived threats or nuisances, and a lack of funding and public support for policy can all thwart otherwise-successful conservation efforts (Brook et al. 2003; Inskip & Zimmermann 2009). It is especially pertinent to study the perceptions children have on wildlife, as they are the future stakeholders, and interventions made during childhood are more likely to be successful when values are still forming (Feinsinger 1987; Manfredo et al. 2017).

Children tend to favor what have been termed “loveable animals,” which includes domestic pets and large, charismatic megafauna (Bjerke et al. 1998; Borgi & Cirulli 2015; Lindemann-Matthies 2005). In fact, some pets can have a negative impact on wildlife (Doherty...
Many species of charismatic megafauna are of conservation concern, such as the case for pandas, great apes, big cats, elephants, and rhinoceros. Indeed, to the extent that megafauna are often not only threatened, but also conservation targets (Dietz et al. 1994; Smith & Sutton 2008), the fondness of children for “loveable animals” may actually lead to a fondness for species of conservation concern. One recent study even showed potential for children to align more closely with conservationists’ prioritization of species attributes (Frew et al. 2016) than adults in a similarly designed study (Meuser et al. 2009).

Yet, if children only value charismatic megafauna and pets, they may lose connections to local species and hence a willingness to conserve species nearby. One arbiter of whether children value local species may be their experience with those species (Ballouard et al. 2011; Lindemann-Matthies 2005; Schlegel & Rupf 2010). Given that more children live in urban or urbanized landscapes than in previous generations, and that urbanization impacts the richness and diversity of wildlife communities (McKinney 2008), a “pigeon paradox” (Dunn et al. 2006) may occur, where people will be motivated to protect species they are most familiar with, but in places where those species tend to be common and pest species. Under this scenario, people will primarily experience nature through these common and even invasive, urban species (which only rarely need conservation attention) or virtually through the Internet and television (where the focus is often on exotic megafauna). Whether this is the case in practice is unclear.

Children in some regions have been shown to prefer species they never experience in real life (Ballouard et al. 2011) and struggle to identify local wildlife compared to exotic species popularized in the media and even imaginary Poke´mon characters (Ballouard et al. 2011;
Balmford et al. 2002; Genovart et al. 2013). Whether the preferences of children for particular species varies with the degree of urbanization of their home place is unknown. Additionally, modern lifestyle can even play a role in children viewing the outdoors negatively. One study found that children who had a stronger desire for modern comforts and manicured parks, had a dislike of wild, more natural spaces (Bixler & Floyd 1997), whereas another found that some children in the UK even viewed wooded areas as “scary places” (Milligan & Bingley 2007). With an increase in modern lifestyle, children today may be viewing nature as more scary, which could carryover to wild animals as well. For example, urban children in Norway viewed wolves and eagles as significantly more scary and dangerous than rural children did (Bjerke et al. 1998).

We investigated the preferences of 9-14 year old children towards wildlife, specifically animals, across different levels of urbanization in North Carolina, USA. We were interested in which animals children considered to be positive (i.e., liked), which were viewed negatively (i.e., scary) and whether these rankings were associated with how likely the children were to be able to experience these animals in their everyday lives (as a function of whether they were domestic, local, or exotic animals). Our objectives were to (1) identify the animals children recalled, (2) determine if children listed different animals for those they liked and those they considered scary, (3) categorize liked or scary animals as local, domestic, or exotic, and (4) understand how these categorizations varied across the level of urbanization (suburban, exurban, or rural) of the children’ school and other demographic and socioeconomic factors. Due to presumed increased opportunities for encounters with animals in rural and exurban areas (Zhang et al. 2014), we predicted that children from these schools would include more
local species for liked animals and fewer for scary than children from suburban schools. In zones of higher urbanization (i.e. suburban areas), we predicted that children would favor non-native animals, as we expected their relationship with wildlife to be primarily based on virtual encounters, zoos, or pets.

Materials and Methods

Sampling Plan

We surveyed 4th, 6th, 7th, and 8th grade children in classrooms of teachers participating in the eMammal citizen science camera trap program (eMammal.org) in North Carolina from 2014-2017 (Schuttler et al. 2017; Schuttler et al. 2018). North Carolina teachers were recruited through program advertisements, direct emailing, word of mouth, and through presentations at conferences. As this research was part of a study on the potential impacts of eMammal citizen science in the classroom, we also invited teachers from different schools within the same school districts to participate in the surveys, even if they would not be participating in the eMammal program. Surveys for this study were conducted prior to any mention of or implementation of the eMammal program. We asked participating teachers to include their children in the study by administering surveys in their classrooms. Although teachers were self-selected into this study, which may relate to their perceptions of wildlife, children were included in the study based on their assignments to teachers, which relied on factors not related to wildlife perceptions or experiences in nature.

Survey Design and Data Collection
The questionnaire asked children to free-write four animals they liked most, four they found most scary, and to rank their top five favorite mammals from a list of 20. Children were asked the free list question first, but could see the rank question. As children do not think of animals based on biologists’ taxonomic classifications, we named species or groups of species at the taxonomic level they would be able to identify (Ballouard et al. 2011). For the list of 20 mammals, we tried to pair local animals with exotic animals that children would know. While this included a list of more charismatic, exotic species compared to local ones, we did not expect local species to outrank charismatic, exotic species. Rather, we were interested to see where local species ranked amongst those that are well-known and liked by children and to determine if there are differences in rankings between children from different levels of urbanization. The list included 11 mammals local to North Carolina and 9 exotic mammals (local: bobcat, coyote, raccoon, skunk, deer, rabbit, opossum, fox, bear, squirrel, bat; exotic: kangaroo, zebra, lion, panda, rhinoceros, monkey, wolf, whale, hedgehog). We defined local species in the context of children’ ability to see a species in their daily lives and therefore included non-domestic, non-marine species (all schools were inland) with current range in North Carolina. Further, while red wolves do exist in North Carolina, they are restricted to a small range far from the schools surveyed in this study, so we categorized wolves as exotic.

Survey questions are in Supporting Fig 1.

During year one, we asked teachers to administer surveys in classrooms on paper. We asked children clarifying questions to assess how well they understood survey questions. Some children misunderstood how to rank species (e.g. they gave all species a 1 or 5) and in subsequent years, we instructed teachers to verbally explain this question when administering
surveys. Children sometimes asked questions about what was considered an animal and in subsequent surveys we instructed teachers to tell children to include only non-human, extant animals. We found no difficulties for children in answering any other questions and therefore continued to use the survey data from all years. After the first year, we moved the survey online using Qualtrics, and provided teachers with a script to read before administering the survey. We included the year as a random effect in analyses to test for potential differences and removed any responses in which children clearly misinterpreted the question or had incomplete responses.

Children self-reported demographic information including race (Asian, African American, Caucasian, Hispanic or Latino, Native American, and other), gender, and grade. In 2015, we started asking children whether they or anyone in their family hunted as hunting can influence children’ exposure to, and knowledge of local biodiversity (Peterson et al. 2017). We also collected school-level socioeconomic data by calculating the percentage of children eligible for free and reduced lunches from the National Center for Education Statistics (https://nces.ed.gov). We distributed permission slips with information about the study to parents/guardians for schools that required written consent. For schools that did not require written consent, we distributed informational sheets for parents/guardians to opt their children out of the study. Survey methods were reviewed and approved by the North Carolina State University Institutional Review Board for the Protection of Human Subjects (application #4166).

Data analysis
We coded animals children listed first to their taxonomic class, with the following modifications: fish species were all grouped into one class (fish) and invertebrates were grouped into marine and terrestrial invertebrates. We placed humans, animals that are not real (mythical animals), extinct animals, and the written response “none” into separate categories. We classified each extant, non-human species as local, domestic or exotic (species were assigned one category only). Domestic species included livestock: cows, horses or ponies, sheep, goats, swine, and poultry (chicken and turkey, https://www.nal.usda.gov/animals-and-livestock). Domestic pets included dogs and cats, and the categories of specialty and exotic animals listed by the American Veterinary Medicine Foundation (fish, ferrets, rabbits, hamsters, guinea pigs, gerbils, turtles, snakes, lizards). We used the same criteria described above to identify species as local (i.e., children might have an opportunity to see locally). Some responses children listed were generic to geographic location (e.g. bears, birds) and could have referred to both local and exotic species. We classified these species as local as they fit the definition for local, and children could have the opportunity to view such species, but may not know the specific species name. Any species that did not meet the definition for local or domestic was considered exotic.

Schools were considered suburban, exurban, or rural based on the Silvis housing density categories: suburban (147.048-1000 houses/km2), exurban (12.64-147.047 houses/km2), rural (0.51-12.63 houses/km2) (Hammer et al. 2004). All analyses were conducted in the Program R (R Development Core Team, 2011). We tested for significant differences across the variances and means of local animals for liked, scary, and ranked responses using the Fligner-Killeen and the Kruskal-Wallis tests respectively. For significant results, we used a Tukey and Kramer
(Nemenyi) test to determine which treatments were significantly different from each other. For the question on how children ranked species, we also conducted a Spearman rank correlation test between the overall rank of species according to each level of urbanization and applied a Bonferroni correction for multiple tests. Before running models, we tested for correlations between categorical covariates using Goodman and Kruskal’s tau with the package GoodmanKruskal, and removed the covariate whether a student’s family hunts as this was correlated with hunting (>0.50).

We ran three generalized linear mixed models with family set as Poisson using package lme4. The response variables for the three models included the (1) number of local animals children free listed as those they liked, (2) the number of local animals children free listed as scary, and (3) the number of local animals included in children’s top five when asked to rank animals (0-5, Table 1). Before running models, we removed responses where the children did not specify a gender as there were very few surveys with no response to this question (n=23), and this was largely due to children running out of time (other responses were incomplete). In initial models, race was not a significant factor. Due to the small sample size of some races, we collapsed all races into white (children who only checked Caucasian) and non-white categories (children who checked at least one non-white race category) for final models. Random effects included the school the student attended and year the survey was taken, while fixed effects included the following: gender, race, housing development, the percentage of free or reduced lunches, and hunting (Table 1). For all models, random effects estimates were <0.001 and we therefore proceeded with final models run as generalized linear models in the package MuMIn in R. We ran all combinations of all covariates and considered top models to be those within 2
AIC points (Burnham & Anderson 2002). We determined coefficient values and significant covariates from the top model or model averaged if there was more than one.

Results

We implemented surveys in 1 private and 21 public schools in North Carolina. We included 15 suburban, six exurban, and one rural school. Some schools were sampled multiple years, but with different children. In total, across these schools we collected data from 2,759 children (Table 2). Teacher participation was distributed across schools located in areas ranging from 8.52 to 482.43 houses/km². We sampled fewer rural and exurban schools, in line with the demographics of the state in which more students and schools are in urbanized areas. Our dataset included children from all races and the entire range of socioeconomic status (0 to 100% of children qualify for reduced/free lunches).

Children listed 8,630 and 8,280 responses (up to four responses per student) for animals they liked and thought were scary, respectively. After removing humans, “none,” animals that were not real, extinct animals, and responses we could not decipher, 8,477 responses of liked animals and 8,049 of scary animals were useable for analyses. Of these freeform responses, 24.9% consisted of local animals, 43.3% exotic, and 31.5% domestic. For the ranking question, most children (67%) ranked species according to the directions and incomplete responses or incorrect ranks were removed.

Freeform responses

Collectively, in the freeform responses where children could write any animal they liked or thought was scary, most children wrote mammals. The most frequently mentioned
mammals, regardless of whether they were liked or thought of as scary, were dogs (16.0%), cats (8.2%), pandas (5.6%), rabbits (4.4%), and wolves (3.8%, Fig 1). For animals that children liked, mammals were recorded nearly twice as often as other animal classes (82.5%, Fig 2). Birds were the second most frequently mentioned taxonomic class liked (5.8% of listed animals), followed by reptiles (5.2%), fish (3.8%), and terrestrial invertebrates (1.3%; Fig 2).

Of the animals listed as liked, 44.4% were exotic, 43.5% were domestic, and only 12.1% were local. Suburban children listed the most exotic animals making up 46.04% of their responses, and included a large percentage of domestic animals (41.7%), but few local (12.22%) animals. Similarly, the responses of exurban and rural children consisted mostly of domestic (44.8% and 53.48%) and exotic animals (43.8% and 31.4%) with few local (11.47% and 15.11%, Fig 3) animals. We allowed children to list up to four species they liked and on average suburban children included 0.45 (±0.68 SD) local animals, exurban children listed 0.41 (±0.68 SD), and rural children added 0.57 (±0.86 SD) local species (Fig 4). A Fligner-Killeen test found no significant differences among these groups of children in the variance in the proportion of the animals that they listed that were local ($\chi^2=5.61$, df=2, p=0.06) and a Kruskal-Wallis test found no significant differences across the means ($\chi^2=4.88$, df=2, p=0.09).

Mammals were also the dominant class for animals considered scary, but whereas nearly all liked taxa were mammals, fewer than half of scary taxa were mammals (40.5%, Fig 2). Children listed terrestrial invertebrates as the second most scary class of animals (20.23%), followed by reptiles (19.7%), fish (13.4%), and marine invertebrates (2.02%). Children listed almost the same percentage of exotic animals as scary (42.4%) that they listed as liked (44.4%). However, scary animals included far fewer domestic animals (19.1%), and a higher percentage
of local animals (38.5%) than the liked species listed for animals children liked. In other words, local, non-domesticated animals were more than three times as likely to be mentioned by children as scary than as liked. When children were asked to free-list four scary animals, on average, suburban children included 1.47 (±1.03) local animals, exurban children listed 1.42 (±0.99), and rural children listed 1.32 (±0.91). A Fligner-Killeen test found no significant differences across variances ($\chi^2=0.04$, df=2, p=0.11) and a Kruskal-Wallis test found no significant differences across the means ($\chi^2=2.61$, df=2, p=0.27).

Animal ranking results

Of the five animals ranked from the provided list of 20, the most favorably were all exotic (except for the rabbit); they included the panda, wolf, monkey, and lion (Fig 5). Animals least often included in children’s top five were almost all local animals including the opossum, skunk, raccoon, and bat. The one exception was the rhinoceros, which was the only exotic animal least often included in children’s top five. On average, children included 1.94 (±1.04 SD) local animals in their top five rankings with suburban children listing 1.93 (±1.01 SD) local animals, exurban children listing 1.90 (±1.08 SD), and rural children listing 2.33 (±1.11 SD) local animals. We found significant differences in variance ($\chi^2=7.85$, df=2, p=0.02) using Fligner-Killeen test and log transformed responses after adding one to perform a Kruskal-Wallis one-way ANOVA. These results were also significant ($\chi^2=15.19$, df=2, p<0.00) and a post-hoc Tukey and Kramer (Nemenyi) test revealed significant differences between suburban and rural (p=0.00), and rural and exurban areas (p<0.00) in the average number of local animals ranked. Rural children ranked the panda lower and had higher rankings of most local animals (Fig 5).

However, the Spearman rank correlation test found that the actual rankings of animals, the way
the children ordered animals from most favorite to least, was significantly correlated among all
levels of urbanization (rural and suburban, S=222, p<0.00, ρ=0.83; rural and exurban, S=168,
p<0.00, ρ=0.87; and suburban and exurban, S=24, p<0.00, ρ=0.98), suggesting that children
across rural, exurban, and suburban areas rank mammals similarly.

Model results

For animals that children liked, children who hunted included more local animals
(p=0.001), as did white children (p=0.025), and children in sixth grade (p=0.004, Table 1)
compared to children that didn’t hunt, were non-white, and enrolled in other grades. Female
children included fewer local animals (p=0.000) than males for animals they liked. For scary
animals, female and white children recorded more local animals as scary compared to male
children and non-white children (p=0.002 and 0.025 respectively). Only fourth grade children
listed fewer local animals as scary than did the other grades (p=0.016, Table 1). When children
were asked to rank animals, children that hunted (p=0.001) or those who were in grade six
ranked more local animals in their top five (p=0.008, Table 1) than those who didn’t hunt or
were in other grades.

Discussion

The similarity of children’s categorization of animals across different levels of
urbanization suggests that the presumed higher levels of familiarity children in more rural areas
have with local wildlife is limited. While we did find that children in rural areas ‘liked’ more local
animals, and listed fewer local animals as scary, we also found that youth in exurban, and not
suburban areas, ‘liked’ the fewest local animals. However, these differences were marginal, and
housing density was not found to be an important factor in the model results when we controlled for student demographics. In short, children across all levels of urbanization viewed wildlife in similar ways. We offer two possible explanations. First, children’s exposure to local wildlife species by living in more undeveloped areas may not necessarily translate to more favorable wildlife perceptions or knowledge of local species. Our results may instead suggest that other factors are important in shaping how children perceive wildlife, for instance, outdoor recreation (James et al. 2010) and cultural norms (Pease 2011). Another possibility is that despite the higher levels of undeveloped land found in rural versus suburban areas, children may not be interacting with it. This latter explanation is supported by mounting evidence that even the most rural children spend more and more time indoors (Larson et al. 2018).

In general, local animals made up a larger percentage of perceived scary animals, while they rarely showed up for animals that students liked. This could reflect low knowledge of native biodiversity, which was also found in a previous North Carolina study, in which children listed their favorite animals in North Carolina and the world (Peterson et al. 2017). Of these, 87% of the global species were correctly identified as wildlife (e.g., non-pet), but only 60% were correctly identified as native (Peterson et al. 2017). In this study, students included a higher percentage of local animals for those that they thought were scary, which suggested that children were aware of and could recall local species. Children frequently listed snakes, spiders, sharks, and bears as scary, and all of these taxa are found in North Carolina. However, emergency room visits for dog bites, the most ‘liked’ animal in this study, were nearly seven times greater than those for venomous snakes and spiders combined and four times more than other uncategorized animals combined (Langley 2012). This mismatch between actual and
perceived risk may be explained by negative portrayals of these types of wildlife in the media
(Muter et al. 2012; Peterson et al. 2010). Given the increase in screen time paired with the
decrease in time outdoors (Larson et al., 2018), it is plausible that children have infrequent
encounters with local wildlife, and experiences are primarily virtual.

The modestly higher numbers of local animals listed by rural children may have been
more heavily influenced by hunting rather than living in a rural area. Time spent outdoors
hunting can provide exposure to local biodiversity, increasing the number of animals students
could list and potentially dampen their fears of wildlife. Indeed, Peterson et al. (2017) found
hunting to be a positive predictor of biodiversity knowledge among children in North Carolina.
In our model, children who hunted or who had family members that hunted were more likely to
free list local animals for those that they liked and rank them more favorably. Furthermore,
rural children ranked deer, an important game species, as their most liked species, which may
be a result of the larger number of hunters among rural children. Fifty-five percent of rural
children hunted compared to 13.8% and 7.6% for exurban and suburban schools respectively.
Future research should measure time children spent outdoors and the types of activities
children engage in to better understand the mechanisms driving relationships between
children’s exposure to diversity and perceptions of wildlife.

Despite the troubling trends observed with respect to children’s unfamiliarity with local
wildlife, several encouraging results for conservation emerged. Of the top ten animals children
listed as ‘liked’, five included species or taxonomic groups with one or more species listed as
vulnerable or higher conservation status on the International Union for Conservation of Nature
and Natural Resources Red List (e.g. panda, wolf, monkey, dolphin, lion, and tiger). Charismatic,
“flagship” species have become iconic for conservation, and while controversial, they have increased positive attitudes towards species, and raised money for organizations (Dietz et al. 1994; Smith & Sutton 2008). We also found that children listed higher percentages of wild animals and fewer dominants in the free-listed questions than what has been observed in previous studies (Bjerke et al. 1998; Lindemann-Matthies 2005), again suggesting the potential influence of viewing exotic animals in zoos or in the media. This shift is encouraging, as domestic cats and dogs contribute to native species declines (Doherty et al. 2017; Loss et al. 2013), and when native and domestic species are at odds, difficult measures such as the euthanasia of domestic species are sometimes necessary. These methods are often unpalatable to the public (Peterson et al. 2017; Tennent et al. 2010), and preferences shifting towards wild animals may allow for greater understanding on such controversial management policies.

Model results revealed that efforts to connect children to nature should target girls and non-white children as well as continuing to engage children as they grow older. That these groups seemed to have particularly low familiarity with or view local animals as scary suggests that they are candidates for efforts to ensure broad support for biodiversity conservation in a local context. Similar trends have been found in other studies and calls to engage girls and minorities have existed for decades (Foster et al. 2013; Lopez et al. 2011; Stevenson et al. 2017). Our results that younger students included more local animals as liked (sixth graders) and fewer as scary (fourth graders) than other grade levels could be related to curriculum (e.g., both sixth and fourth grades have wildlife-related standards: NC Department of Public Instruction, http://www.ncreportcards.org/src/). However, other studies find that connections to nature and interest in the environment and wildlife decline as children age (Frew et al. 2016;
Stevenson et al. 2013), suggesting that efforts should continue to find ways to engage with older children. Finally, Caucasian children listed more local species for both liked and scary animals, suggesting a higher level of familiarity with local wildlife. This also reflects previous research, which finds that white children generally have higher environmental literacy levels than minority children (Stevenson et al. 2013). This has been linked to cultural views of the outdoors and the environment (Finney 2006; Johnson et al. 2004) and recreation patterns (Floyd et al. 2009; Shores et al. 2007). As suggested by many (Lopez et al. 2011; Stevenson et al. 2017), our results support the need for culturally sensitive opportunities to engage diverse constituents, including children, with local wildlife.

Although we offer these results as a contribution to conversations around the effects of children’s diminished exposure to nature, future research should continue to explore these questions with larger and more diverse samples. In our study, rural children were the least represented, and came from one rural school. While our model results found no school effect, future studies with larger sample sizes and more schools are needed to confirm the patterns observed in this study.

Conclusions

Our results imply that it may not be urbanization alone that is driving the Extinction of Experience, as the disconnect with wildlife among children spans across areas of urbanization. As conservation biologists, we are encouraged by the large percentage of globally endangered animals included for animals children liked, but find the low knowledge and unfavorable attitudes towards local species troubling.
Previous research, as well as our own results around hunting, suggests that education and recreation can help. Lindemann-Matthies (2005) found educational activities that involved children just noticing native plants and animals on the way to school increased their appreciation of and concern for local species’ well-being. Species-targeted programs have even increased children’s attitudes towards “unlikeable” species (Ballouard et al. 2012; Tomazic 2011). A particularly impactful way of increasing exposure to native wildlife may be through nature-based citizen science programs, where active participation in research encourages observations about the environment, increasing participants’ knowledge on local biodiversity.

Future studies should focus on understanding the role of such intentional activities in connecting children to nature, and design and evaluate culturally responsive ways of doing so. As the disconnect between children and wildlife is perhaps even more pronounced than previously understood, intentionally providing children experiences in nature may be one of the most important actions conservation biologists can take to promote biodiversity conservation among and for future generations.

Acknowledgements

We would like to thank the teachers and school districts for allowing us to implement surveys in their schools. We also thank Mariah Patton, Rebecca Spears, Spencer Stone, Colleen Lippert, Caitlyn Mothes, and Kristen Lewey for help in survey data organization.

References
Aronson MFJ, La Sorte FA, Nilon CH, Katti M, Goddard MA, Lepczyk CA, Warren PS, Williams NSG, Cilliers S, Clarkson B, Dobbs C, Dolan R, Hedblom M, Klotz S, Kooijmans JL, Kühn I, MacGregor-Fors I, McDonnell M, Mörtberg U, Pyšek P, Siebert S, Sushinsky J, Werner P, and Winter M. 2014. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. *Proceedings of the Royal Society B: Biological Sciences* 281.

Ballouard J-M, Brischoux F, and Bonnet X. 2011. Children prioritize virtual exotic biodiversity over local biodiversity. *PLoS ONE* 6:e23152.

Ballouard J-M, Provost G, Barré D, and Bonnet X. 2012. Influence of a field trip on the attitude of schoolchildren toward unpopular organisms: An experience with snakes. *Journal of Herpetology* 46:423-428.

Balmford A, Clegg L, Coulson T, and Taylor J. 2002. Why conservationists should heed Pokémon. *Science* 295:2367.

Bixler RD, and Floyd MF. 1997. Nature is scary, disgusting, and uncomfortable. *Environment and Behavior* 29:443-467.

Bjerke T, Ødegårdstuen TS, and Kaltenborn BP. 1998. Attitudes toward animals among Norwegian children and adolescents: Species preferences. *Anthrozoös* 11:227-235.

Borgi M, and Cirulli F. 2015. Attitudes toward animals among kindergarten children: Species preferences. *Anthrozoös* 28:45-59.

Brook A, Zint M, and De Young R. 2003. Landowners' responses to an Endangered Species Act listing and implications for encouraging conservation. *Conservation Biology* 17:1638-1649.
Burnham KP, and Anderson DR. 2002. *Model selection and multimodel inference: a practical information-theoretic approach*. New York, New York, U.S.A.: Springer-Verlag Inc.

Dietz JM, Dietz LA, and Nagagata EY. 1994. The effective use of flagship species for conservation of biodiversity: the example of lion tamarins in Brazil. In: Olney PJS, Mace GM, and Feistner ATC, eds. *Creative Conservation: Interactive Management of Wild and Captive Animals*. London, 32-49.

Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJB, and Collen B. 2014. Defaunation in the Anthropocene. *Science* 345:401.

Doherty TS, Dickman CR, Glen AS, Newsome TM, Nimmo DG, Ritchie EG, Vanak AT, and Wirsing AJ. 2017. The global impacts of domestic dogs on threatened vertebrates. *Biological Conservation* 210, Part A:56-59.

Dunn RR, Gavin MC, Monica CS, and Jennifer NS. 2006. The pigeon paradox: Dependence of global conservation on urban nature. *Conservation Biology* 20:1814-1816.

Feinsinger P. 1987. Professional ecologists and the education of young children. *Trends in Ecology & Evolution* 2:51-52.

Finney C. 2006. Black faces, white spaces: African-Americans and the great outdoors. Worcester, MA: Clark University: Report to USA Community Forestry Research Fellowship.

Floyd MF, Taylor WC, and Whitt-Glover M. 2009. Measurement of park and recreation environments that support physical activity in low-income communities of color: Highlights of challenges and recommendations. *American Journal of Preventive Medicine* 36:S156-S160.
Foster MJ, Blair ME, Bennett C, Bynum N, and Sterling EJ. 2013. Increasing the diversity of U.S. Conservation Science Professionals via the Society for Conservation Biology. *Conservation Biology* 28:288-291.

Frew K, Peterson MN, and Stevenson K. 2016. Are we working to save the species our children want to protect? Evaluating species attribute preferences among children. *Oryx* 51:455-463.

Genovart M, Tavecchia G, Enseñat JJ, and Laiolo P. 2013. Holding up a mirror to the society: Children recognize exotic species much more than local ones. *Biological Conservation* 159:484-489.

Hammer RB, Stewart SI, Winkler RL, Radeloff VC, and Voss PR. 2004. Characterizing dynamic spatial and temporal residential density patterns from 1940–1990 across the North Central United States. *Landscape and Urban Planning* 69:183-199.

Inskip C, and Zimmermann A. 2009. Human-felid conflict: a review of patterns and priorities worldwide. *Oryx* 43:18-34.

James JJ, Bixler RD, and Vadala CE. 2010. From play in nature to recreation, then vocation: A developmental model for natural history oriented environmental professionals. *Children, Youth, and Environments* 20:231-256.

Johnson CY, Bowker JM, and Cordell HK. 2004. Ethnic Variation in environmental belief and behavior: An examination of the new ecological paradigm in a social psychological context. *Environment and Behavior* 36:157-186.
Kellert SR, Case DJ, Escher D, Witter DJ, Mikels-Carrasco J, and Seng PT. 2017. The nature of Americans: Disconnection and recommendations for reconnection. Mishawaka, IN. p 1-362.

Langley RL. 2012. Animal-related injuries resulting in emergency department visits and hospitalizations in the United States, 2006–2008. Human–Wildlife Interactions 6.

Larson LR, Szczytko R, Bowers EP, Stephens LE, Stevenson KT, and Floyd MF. 2018. Outdoor time, screen time, and connection to nature: Troubling trends among rural youth? Environment and Behavior:1-26.

Lindemann-Matthies P. 2005. ‘Loveable’ mammals and ‘lifeless’ plants: how children’s interest in common local organisms can be enhanced through observation of nature. International Journal of Science Education 27:655-677.

Lopez R, Brown C, and Unger BK. 2011. How workforce diversity helps conservation. Wildlife Professional 5:20-27.

Loss SR, Will T, and Marra PP. 2013. The impact of free-ranging domestic cats on wildlife of the United States. Nature Communications 4:1396.

Manfredo MJ, Bruskotter JT, Teel TL, Fulton D, Schwartz SH, Arlinghaus R, Oishi S, Uskul AK, Redford K, Kitayama S, and Sullivan L. 2017. Why social values cannot be changed for the sake of conservation. Conservation Biology 31:772-780.

McKinney ML. 2008. Effects of urbanization on species richness: A review of plants and animals. Urban Ecosystems 11:161-176.

Meuser E, Harshaw HW, and Mooers AØ. 2009. Public preference for endemism over other conservation-related species attributes. Conservation Biology 23:1041-1046.
Milligan C, and Bingley A. 2007. Restorative places or scary spaces? The impact of woodland on the mental well-being of young adults. *Health & Place* 13:799-811.

Muter BA, Gore ML, Gledhill KS, Lamont C, and Huveneers C. 2012. Australian and U.S. news media portrayal of sharks and their conservation. *Conservation Biology* 27:187-196.

Pease JL. 2011. Parks and underserved audiences: An annotated literature review. *Journal of Interpretation Research* 20:11-56.

Peterson MN, Birckhead JL, Leong K, Peterson MJ, and Peterson TR. 2010. Rearticulating the myth of human–wildlife conflict. *Conservation Letters* 3:74-82.

Peterson MN, Chesonis T, Stevenson KT, and Bondell HD. 2017. Evaluating relationships between hunting and biodiversity knowledge among children. *Wildlife Society Bulletin* 41:530-536.

Pyle RM. 1978. The extinction of experience. *Horticulture* 56:64-67.

Schlegel J, and Rupf R. 2010. Attitudes towards potential animal flagship species in nature conservation: A survey among students of different educational institutions. *Journal for Nature Conservation* 18:278-290.

Schuttler SG, Glenn D, Belair C, Hohm J, Humphries D, Pasion D, Dunn RR, and Kays R. 2017. What's in your school yard? Using citizen science wildlife cameras to conduct authentic scientific investigations. *Science Scope* 41:63-71.

Schuttler SG, Sears RS, Orendain I, Khot R, Rubenstein D, Rubenstein N, Dunn RR, Baird E, Kandros K, O'Brien T, and Kays R. 2018. Citizen science in schools: Students collect valuable mammal data for science, conservation, and community engagement. *Bioscience*:biy141-biy141.
Shores KA, Scott D, and Floyd MF. 2007. Constraints to outdoor recreation: A multiple hierarchy stratification perspective. *Leisure Sciences* 29:227-246.

Smith AM, and Sutton SG. 2008. The role of a flagship species in the formation of conservation intentions. *Human Dimensions of Wildlife* 13:127-140.

Soga M, and Gaston KJ. 2016. Extinction of experience: the loss of human–nature interactions. *Frontiers in Ecology and the Environment* 14:94-101.

Stevenson KT, Peterson MN, Bondell HD, Mertig AG, and Moore SE. 2013. Environmental, institutional, and demographic predictors of environmental literacy among middle school children. *PLoS ONE* 8:e59519.

Stevenson KT, Peterson MN, and Dunn RR. 2017. Leveraging natural capital to solve the shared education and conservation crisis. *Conservation Biology* 32:490-492.

Tennent JK, Downs CT, Wald DM, and Watson HK. 2010. Public perceptions of feral cats within an urban conservancy on a campus of the University of KwaZulu-Natal. *South African Journal of Wildlife Research* - 24-month delayed open access 40:16-26.

Tomazic I. 2011. Reported experiences enhance favourable attitudes toward toads. *Eurasia Journal of Mathematics, Science & Technology Education* 7:253-262.

Zhang W, Goodale E, and Chen J. 2014. How contact with nature affects children’s biophilia, biophobia and conservation attitude in China. *Biological Conservation* 177:109-116.

Figure Legends

Table 1. Summary table of the covariates included in the three models, their estimates, and p-values for animals children liked, thought were scary, and ranked from a list. *indicates p ≤
0.05, **p ≤0.005, ***p ≤0.0005, na refers to covariates not included in the top final models, and ref are covariates used as a reference level.

Table 2. Sample sizes of children’s responses by covariate categories. SES is socioeconomic status. Sample sizes vary across questions because not all children answered all questions or answered questions incorrectly (as in the ranking question).

Fig 1. Free list responses of children listing animals they liked or thought were scary. Light gray bars show the number of responses for ‘liked’ animals and black represent listing as ‘scary’.

Fig 2. Classification of animals (modifications noted in text) free listed by children as ‘liked’ or ‘scary’. Only responses with 50 or more counts are included. Light gray bars show the proportion of responses for ‘liked’ animals and black bars represent listing as ‘scary’.

Fig 3. Percent of local, exotic, and domestic animal animals children free listed as liked or scary. Light gray bars show the number of responses for ‘liked’ animals and black bars represent listing as ‘scary’.

Fig 4. Percent of ‘liked’ animals that were local, exotic, and domestic grouped by the school location in either a suburban, exurban, and rural areas.

Fig 5. The mean ranking of each animal in a provided list of 20 by children across different levels of urbanization. Higher scores indicate the ranking of animals more favorably. Error bars represent standard deviation of the mean.
Figure 1

Free list responses of children listing animals they liked or thought were scary. Light gray bars show the number of responses for ‘liked’ animals and black represent listing as ‘scary’.
Figure 2

Classification of animals (modifications noted in text) free listed by children as ‘liked’ or ‘scary’. Only responses with 50 or more counts are included.

Light gray bars show the proportion of responses for ‘liked’ animals and black bars represent listing as ‘scary’.
Figure 3

Percent of local, exotic, and domestic animal animals children free listed as liked or scary.

Light gray bars show the number of responses for ‘liked’ animals and black bars represent listing as ‘scary’.
Figure 4

Percent of ‘liked’ animals that were local, exotic, and domestic grouped by the school location in either a suburban, exurban, and rural areas.
Figure 5

The mean ranking of each animal in a provided list of 20 by children across different levels of urbanization.

Higher scores indicate the ranking of animals more favorably. Error bars represent standard deviation of the mean.
Table 1 (on next page)

Summary table of the covariates included in the three models, their estimates, and p-values for animals students liked, thought were scary, and ranked from a list.

*indicates $p \leq 0.05$, **$p \leq 0.005$, ***$p \leq 0.0005$, na refers to covariates not included in the top final models, and ref are covariates used as a reference level.
Table 1. Summary table of the covariates included in the three models, their estimates, and p-values for animals students liked, thought were scary, and ranked from a list. *indicates $p \leq 0.05$, **$p \leq 0.005$, ***$p \leq 0.0005$, na refers to covariates not included in the top final models, and ref are covariates used as a reference level.

Variable	Liked animals		Scary animals		Ranked animals	
	Estimate	p	Estimate	p	Estimate	p
Gender						
Male	ref	ref	ref	ref	ref	ref
Female	-0.400***	0.000	0.116**	0.002	-0.044	0.194
Grade						
Grade 4	-0.946	0.108	-0.621*	0.016	0.018	0.928
Grade 6	0.230**	0.004	-0.043	0.347	0.113**	0.008
Grade 7	0.065	0.505	-0.078	0.142	0.050	0.312
Grade 8	ref	ref	ref	ref	ref	ref
Race						
White	0.154*	0.025	0.086*	0.025	0.062	0.081
Non-white	ref	ref	ref	ref	ref	ref
Hunting						
Hunter	0.330***	0.001	0.081	0.166	0.182***	0.001
Not a hunter	ref	ref	ref	ref	ref	ref
No response	0.044	0.560	0.007	0.865	0.001	0.967
on hunting

	Housing	Density	Proportion	of free and	reduced lunches	
	0.000	0.276	0.000	0.082	0.000	0.255
Proportion	-0.044	0.806	-0.062	0.541	0.104	0.253
Table 2 (on next page)

Sample sizes of students’ responses by covariate categories.

SES is socioeconomic status. Sample sizes vary across questions because not all students answered all questions or answered questions incorrectly (as in the ranking question).

SES Category	Sample Size
Low	
Medium	
High	

Note: Sample sizes vary across questions due to incomplete responses.
Table 2. Sample sizes of students’ responses by covariate categories. SES is socioeconomic status. Sample sizes vary across questions because not all students answered all questions or answered questions incorrectly (as in the ranking question).

	Liked Animals	Scary Animals	Ranked Animals						
	Suburban	Exurban	Rural						
Total	1209	862	105						
Male	584	397	52						
Female	616	452	52						
Grade 4	20	0	0						
Grade 6	239	344	0						
Grade 7	290	0	105						
Grade 8	660	517	0						
White	532	360	62						
Non-white	677	502	43						
Hunter	93	123	58						
Not a hunter	696	295	47						
	Suburban	Exurban	Rural						
Total	1183	854	107						
Male	571	390	56						
Female	603	452	50						
Grade 4	20	0	0						
Grade 6	236	356	0						
Grade 7	289	0	107						
Grade 8	638	498	0						
White	526	361	61						
Non-white	649	482	46						
Hunter	91	126	58						
Not a hunter	692	303	49						
	Suburban	Exurban	Rural						
Total	1032	707	93						
Male	495	325	49						
Female	537	382	44						
Grade 4	15	0	0						
Grade 6	193	259	0						
Grade 7	252	0	93						
Grade 8	572	447	0						
White	479	326	60						
Non-white	381	33	33						
Hunter	78	100	52						
Not a hunter	595	240	41						
	420	444	0	400	425	0	359	367	0
------------	-----	-----	----	-----	-----	----	-----	-----	----
No response									
on hunting									