JACKSON THEOREM AND MODULUS OF CONTINUITY FOR
UNITARY REPRESENTATIONS OF LIE GROUPS.

ISAAC Z. PESENSON

Abstract. For a strongly continuous unitary representation of a Lie group
G in a Hilbert space H we consider an analog of the Laplace operator L
and use it to define subspaces of Paley-Wiener vectors $PW_{\sigma}(L^{1/2})$. It allows to
introduce notion of the best approximation $E(\sigma, f)$ of a general vector in H
by Paley-Wiener vectors of a certain bandwidth $\sigma > 0$. The existence of a
group representation in H is used to introduce a family of moduli of continuity
$\Omega^r(s, f)$, $r \in \mathbb{N}$, $s > 0$, of vectors in H. The main objective of the paper is to
prove the so-called Jackson-type estimate $E(\sigma, f) \leq C\Omega^r(\sigma^{-1}, f)$.

1. Introduction and Main Results

One of the main goals of the classical harmonic analysis is to describe relations
between frequency content of a function and its smoothness. A famous result in
this direction is the so-called Jackson Theorem for functions in $L_2(\mathbb{R})$:
(1.1) $\inf_{g \in PW_{\sigma}(\mathbb{R})} \| f - g \| = \| f - \mathcal{P}_\delta f \| = \mathcal{E}(\sigma, f) \leq C\omega^r(\sigma^{-1}, f)$, $\sigma > 0$, $r \in \mathbb{N},$
where the Paley-Wiener space $PW_{\sigma}(\mathbb{R})$, $\sigma > 0$, is the space of functions in $L_2(\mathbb{R})$
whose Fourier transform has support in $[-\sigma, \sigma]$, \mathcal{P} is the orthogonal projection of
$L_2(\mathbb{R})$ onto $PW_{\sigma}(\mathbb{R})$, and
$\omega^r(s, f) = \sup_{0 \leq \tau \leq s} \| (T(\tau) - I)^r f \|_2$, $T(\tau)f(x) = f(x + \tau),$
is the modulus of continuity. Similar estimate also holds true in the case of one
dimensional torus \mathbb{T} if one will replace PW_{σ} by the space of trigonometric polynomials degree $\leq n$. In the case of \mathbb{R}^d and \mathbb{T}^d one defines corresponding modules of
continuity by using one-parameter translation groups along single coordinates
(1.2) $T_j(\tau)f(x_1, ..., x_j, ..., x_d) = f(x_1, ..., x_j + \tau, ..., x_d), \ f \in L_p$, $1 \leq p \leq \infty,$
whose infinitesimal operators are partial derivatives $\partial/\partial x_j$, $1 \leq j \leq d$. The corre-
sponding spaces PW_{σ} and spaces on trigonometric polynomials can be introduced
in terms of the Laplace operator $\Delta = \partial^2_1 + ... + \partial^2_d$.

The goal of this paper is to develop a unified approach to Jackson-type estimates
in a space of a strongly continuous unitary representation of a Lie group. Namely,
we consider an appropriate notion of Paley-Wiener vectors and a modulus of con-
tinuity in a space of unitary representation of a Lie group G in a Hilbert space H
and prove an analog of the Jackson inequality (1.1) in a such general setting. Note

1991 Mathematics Subject Classification. 43A85, 41A17;
Key words and phrases. Non-compact symmetric space, Laplace-Beltrami operator, entire
functions of exponential type, Bernstein and Nikol'skii inequalities.
that an approach to a generalization of the classical approximation theory to a Banach space in which a strongly continuous bounded representation of a Lie group is given was outlined without complete proofs in [14]-[20]. The problem of developing approximation theory in non-Euclidean settings attracted attention of many mathematicians and in particular was recently considered in [2, 3, 4, 5, 8, 11, 12, 13, 21].

In the present paper we show (see also [14]-[21]) that the existence of a strongly continuous unitary representation of a Lie group in a Hilbert space H implies that H is equipped with a set of operators $D_1, D_2, ..., D_d$ which generate strongly continuous one-parameter groups of unitary operators $T_1(t), T_2(t), ..., T_d(t), \ t \geq 0$ and the following properties hold:

1. The operator $L = -D_1^2 - ... - D_d^2$ is a non-negative self-adjoint operator in H and the domain of $L^{r/2}$, $r \in \mathbb{N}$, with the graph norm $\|f\| + \|L^{r/2}f\|$ coincides with the space H_r with the norm

$$\|f\|_r = \|f\|_H + \sum_{1 \leq i_1, ..., i_r \leq d} \|D_{i_1}...D_{i_r}f\|_H, \ r \in \mathbb{N}. \quad (1.3)$$

2. For every $f \in H^1$ the following formula holds true

$$D_jTf(t_1, ..., t_d) = \sum_{k=1}^{d} \zeta_{j}^k(t)\partial_k Tf(t_1, ..., t_d), \ f \in H^1, \quad (1.4)$$

where $t = (t_1, ..., t_d)$ is in the standard open unit ball U in \mathbb{R}^d, a vector-valued function $Tf : \mathbb{R}^d \rightarrow H$ is defined as

$$Tf(t_1, t_2, ..., t_d) = T_1(t_1)T_2(t_2)...T_d(t_d)f,$$

functions $\zeta_{j}^k(t)$ belong to $C^\infty(U), \ \partial_k = \frac{\partial}{\partial t_k}$. \quad (1.5)

The fact that the formula (1.4) holds for any strongly continuous unitary representation is proved in Appendix. The first property on this list allows to introduce Paley-Wiener vectors which are used as the apparatus for approximation. The formula (1.4) allows for construction of an abstract version of the Hardy-Steklov smoothing operator. This construction is used to establish equivalence of a modulus of continuity (see below) and the K-functional for the pair (H, H') (section 3).

Definition 1. $PW_\sigma(L) \subset H$ denote the image space of the projection operator $1_{[0, \sigma]}(L)$ to be understood in the sense of Borel functional calculus for self-adjoint operators.

It is obvious that the space $PW_\sigma(L)$ is a linear closed subspace in H and the space $\bigcup_{\sigma > 0} PW_\sigma(L)$ is dense in H.

The following theorem contains generalizations of several results from classical harmonic analysis (in particular the Paley-Wiener theorem). It follows from our results in [16], [19], [20], [6].

Theorem 1.1. The following statements hold:

1. (Bernstein inequality) $f \in PW_\sigma(L)$ if and only if $f \in H^\infty = \bigcap_{k=1}^\infty H^k$, and the following Bernstein inequalities holds true

$$\|L^{s/2}f\|_H \leq \sigma^s \|f\|_H \quad \text{for all } s \in \mathbb{R}_+; \quad (1.6)$$
(2) (Paley-Wiener theorem) \(f \in PW_\sigma (L) \) if and only if for every \(g \in H \) the scalar-valued function of the real variable \(t \mapsto \langle e^{itL} f, g \rangle \) is bounded on the real line and has an extension to the complex plane as an entire function of the exponential type \(\sigma; \)

Next, we define the best approximation

\[
\mathcal{E} (\sigma, f) = \inf_{g \in PW_\sigma (L)} \| f - g \| = \| f - P_\sigma f \| ,
\]

where \(P_\sigma \) is the orthogonal projector of \(H \) onto \(PW_\sigma (L) \). We also use the Schrödinger group \(e^{itL} \) to introduce the modulus of continuity

\[
\omega_L^r (t, f) = \sup_{0 \leq \tau \leq t} \| (e^{itL} - I)^r f \| .
\]

In section 2 in Theorem 2.1 we prove the following Jackson-type estimate

\[
\mathcal{E} (\sigma, f) \leq C \omega_L^r (\sigma^{-1}, f).
\]

An analog of a Sobolev space is introduced as the space \(H^r \) of vectors in \(H \) for which the following norm is finite

\[
\| f \|_{H^r} = \| f \|_H + \sum_{k=1}^r \sum_{1 \leq j_1, \ldots, j_k \leq d} \| D_{j_1} \ldots D_{j_k} f \|_H,
\]

where \(r \in \mathbb{N} \), \(f \in H \). By using the closed graph theorem and the fact that each \(D_i \) is a closed operator in \(H \), one can show that this norm is equivalent to the norm

\[
\| f \|_r = \| f \|_H + \sum_{1 \leq j_1, \ldots, j_r \leq d} \| D_{j_1} \ldots D_{j_r} f \|_H, \quad r \in \mathbb{N}.
\]

Note, that for the \(K \)-functional

\[
K \left(s^r, f, H, D\left(L^{r/2} \right) \right) = \inf_{g \in D\left(L^{r/2} \right)} \left(\| f - g \|_H + s^r \| g \|_{D\left(L^{r/2} \right)} \right),
\]

one has \(1 \)

\[
\omega_L^r (s^r, f) \leq CK \left(s^r, f, H, D\left(L^{r/2} \right) \right) \leq C \left(\omega_L (s^r, f) + s^r \| f \| \right)
\]

We show in section 3 that the space \(D\left(L^{r/2} \right) \) with the graph norm coincides with the space \(H^r \) and their norms are equivalent, i.e.

\[
\| L^{r/2} f \| \sim \| f \| + \| L^{r/2} f \| \sim \| f \| + \sum_{1 \leq j_1, \ldots, j_r \leq d} \| D_{j_1} \ldots D_{j_r} f \|,
\]

where \(\Lambda = I + L = I - D_1 - \ldots - D_d \).

Using the groups \(T_1, \ldots, T_d \), \(d \geq n = \text{dim} M \), we define the modulus of continuity by the formula

\[
\Omega^r (s, f) = \sum_{1 \leq j_1, \ldots, j_r \leq d} \sup_{0 \leq \tau_{j_1} \leq s} \ldots \sup_{0 \leq \tau_{j_r} \leq s} \| (T_{j_1} (\tau_{j_1}) - I) \ldots (T_{j_r} (\tau_{j_r}) - I) f \|_H,
\]

where \(f \in H \), \(r \in \mathbb{N} \), and \(I \) is the identity operator in \(H \). It is shown in Theorem 4.4 that for the \(K \)-functional

\[
K (s^r, f, H, H^r) = \inf_{g \in H^r} (\| f - g \|_H + s^r \| g \|_{H^r}),
\]
the following double inequality holds
\[c\Omega(s, f) \leq K(s', f, H, H') \leq C (\Omega(s, f) + s\|f\|_{H'}) , \]
where positive constant \(c, C \) are independent on \(f \). Thus from (1.16) the main result of the paper follows
\[\mathcal{E}(\sigma, f) \leq C \{ \Omega^-(\sigma^{-1}, f) + \sigma^{-\tau}\|f\| \} , \]
Remark 1.2. It is important to notice that since \(\Omega(f, \tau) \) cannot be of order \(o(\tau^+) \)
when \(\tau \to 0 \) (unless \(f \) is invariant), the behavior of the right-hand side in (1.17) is
determined by the first term when \(\sigma \to \infty \). In particular, if \(f \in H' \), then due to
the inequality (see below)
\[\Omega(s, f) \leq s^{-k}\Omega(s, f) \leq C \|f\|_{H'} , \]
one has the best possible estimate
\[\mathcal{E}(\sigma, f) \leq C \Omega(s, f) \leq C \sigma^{-\tau}\|f\|_{H'} . \]

Example 1. A compact homogeneous manifold. The situation on a unit
sphere is typical for at least all two-point homogeneous compact manifolds. Consider
the unit sphere
\[S^n = \{ x = (x_1, x_2, \ldots, x_{n+1}) \in \mathbb{R}^{n+1} : \|x\|^2 = x_1^2 + x_2^2 + \ldots + x_{n+1}^2 = 1 \} . \]
Let \(e_1, \ldots, e_{n+1} \) be the standard orthonormal basis in \(\mathbb{R}^{n+1} \). If \(SO(n+1) \) and \(SO(n) \)
are the groups of rotations of \(\mathbb{R}^{n+1} \) and \(\mathbb{R}^n \) respectively then \(S^n = SO(n+1)/SO(n) \).
On \(S^n \) we consider vector fields \(X_{ij} = x_i \partial_{x_j} - x_j \partial_{x_i}, i < j \), which are generators
of one-parameter groups of rotations \(\exp tX_{ij} \in SO(n+1) \) in the plane \((x_i, x_j) \).
These groups are defined by the formulas for \(\tau \in \mathbb{R} \),
\[\exp \tau X_{ij} \cdot (x_1, \ldots, x_{n+1}) = (x_1, \ldots, x_i \cos \tau - x_j \sin \tau, \ldots, x_i \sin \tau + x_j \cos \tau, \ldots, x_{n+1}) . \]
Clearly, there are \(d = \frac{1}{2}n(n-1) \) such groups. Let \(T_{ij}(\tau) \) be a one-parameter group
which is a representation of \(\exp \tau X_{ij} \) in the space \(L_2(S) \). It acts on \(f \in L_2(S^n) \) by
the following formula
\[T_{ij}(\tau)f(x_1, \ldots, x_{n+1}) = f(x_1, \ldots, x_i \cos \tau - x_j \sin \tau, \ldots, x_i \sin \tau + x_j \cos \tau, \ldots, x_{n+1}) . \]
The infinitesimal operator of this group will be denoted as \(D_{ij} \). The operator \(L = -\sum_{i,j} D_{ij}^2 \)
is the regular Laplace-Beltrami operator on \(S^n \) and spaces \(PW_\sigma(S^n) \)
are comprised of appropriate linear combinations of spherical harmonics.

Remark 1.3. This example explains reasons why \(d \) is typically greater than \(n = \dim M \).
In this case it happens because vector fields \(D_{ij} \) can vanish along low dimen-
sional submanifolds. For example on \(S^2 \subset \mathbb{R}^3 \) one needs three fields \(X_{12}, X_{13}, X_{23} \)
since they vanish at the poles \((0, 0, \pm 1), (0, \pm 1, 0), (\pm 1, 0, 0) \) respectively.

Example 2. A non-compact homogeneous manifold.
Consider the upper half of the hyperboloid
\[\mathbb{H}^+ = \{ x = (x_1, x_2, \ldots, x_{n+1}) \in \mathbb{R}^{n+1} : -x_1^2 - x_2^2 - \ldots - x_n^2 + x_{n+1}^2 = 1, x_{n+1} > 0 \} . \]
Let \(e_1, \ldots, e_{n+1} \) be the standard orthonormal basis in \(\mathbb{R}^{n+1} \). If \(SH(n+1) \) is the
group of hyperbolic rotations which means it preserves the form
\[[x, y] = -x_1 y_1 - \ldots - x_n y_n + x_{n+1} y_{n+1} \]
then \(\mathbb{H}^+ = SH(n+1)/SO(n) \). On \(\mathbb{H}^+ \) we consider the vector fields \(X_{ij} = x_j \partial_{x_i} - x_i \partial_{x_j}, i < j < n + 1 \), which generate euclidean rotation groups in the planes
(x_i, x_j), i < j < n + 1, and the fields X_{i,n+1} = x_{n+1} \partial_{x_i} + x_i \partial_{x_{n+1}} which are generators of the hyperbolic groups of rotations in the planes (x_i, x_{n+1}). These groups are defined by the formulas for $\tau \in \mathbb{R}$,

$$\exp \tau X_{i,j}(x_1, ..., x_{n+1}) = (x_1, ..., x_i \cosh \tau - x_j \sinh \tau, ..., x_i \sinh \tau + x_j \cosh \tau, ..., x_{n+1}),$$

$$\exp \tau X_{i,n+1} \cdot (x_1, ..., x_{n+1}) = (x_1, ..., x_i \cos \tau - x_{n+1} \sin \tau, ..., x_i \sin \tau + x_{n+1} \cos \tau).$$

Strictly continuous one-parameter groups of operators $T_{i,j}(\tau)$ which are representations of $\exp \tau X_{i,j}$ in the space $L_2(\mathbb{H}_n^+)$ can be used to construct corresponding modulus of continuity $\Omega(\sigma, f)$. Their infinitesimal operators $D_{i,j}$ are just operators $X_{i,j}$ in the space $L_2(\mathbb{H}_n^+)$ and $L = -\sum_{i,j=1}^{n+1} D_{i,j}^2$ is an elliptic self-adjoint non-negative operator in $L_2(\mathbb{H}_n^+)$ which has continuous spectrum. As well as we know, the spectral resolution of this operator is unknown. However, the abstract Definition 2 and notion of best approximation (1.4) still make sense.

Example 3. Schrödinger representation of the Heisenberg group.

The $(2n + 1)$-dimensional Heisenberg group \mathbb{H}_{2n+1} has a unitary representation in the space $L_2(\mathbb{R}^n)$

$$T(p, q, x) = e^{i(t + (p, x))} f(x + p), \quad p, q, x \in \mathbb{R}^n, \quad t \in \mathbb{R}.$$

One can consider the following set of infinitesimal operators where $i = \sqrt{-1}$:

$$D_j = \partial_j, \quad 1 \leq j \leq n; \quad D_j = ix_j, \quad n + 1 \leq j \leq 2n; \quad D_{2n+1} = i.$$

In this case every $T_j(\tau), 1 \leq j \leq n$, is a translation (1.3) along variable x_j,

$$T_j(\tau)f(x_1, ..., x_n) = e^{i\tau x_j}f(x_1, ..., x_n), \quad n + 1 \leq j \leq 2n,$$

and $T_{2n+1}(\tau)f(x_1, ..., x_n) = e^{i\tau}f(x_1, ..., x_n)$. The operator L is the shifted n-dimensional linear oscillator

$$L = -\Delta + |x|^2 + 1,$$

where

$$\Delta = \sum_{j=1}^{n} \partial_j^2, \quad |x|^2 = \sum_{j} x_j^2, \quad x = (x_1, ..., x_n).$$

It is known that the spectrum of this operator is discrete and its eigenfunctions are products of one-dimensional Hermite functions. One can easily describe corresponding Paley-Wiener spaces and to construct corresponding modulus of continuity by using groups of operators $T_j, 1 \leq j \leq 2n + 1.$

2. **Jackson inequality for the Schrödinger group of a self-adjoint operator**

Let L be a self-adjoint operator in a Hilbert space \mathbb{H} and ω_L^m is defined as in (1.8). For the modulus of continuity introduced in (1.8) the following inequalities hold:

$$\omega_L^m(s, f) \leq s^k \omega_L^{m-k}(s, L^k f)$$

and

$$\omega_L^m(as, f) \leq (1 + a)^m \omega_L^m(s, f), \quad a \in \mathbb{R}^+.$$

The first one follows from the identity

$$(e^{isL} - 1)^k f = \int_0^s ... \int_0^s e^{i(\tau_1 + ... + \tau_k)L} L^k f d\tau_1 ... d\tau_k,$$
Moreover, for any E because

\[E \leq (2.5) \]

\[f \in D \]

Using this formula we can extend the abstract function \(e \) as

\[\omega_1^1 (s_1 + s_2, f) \leq \omega_1^1 (s_1, f) + \omega_1^1 (s_2, f) \]

which is easy to verify.

Theorem 2.1. There exists a constant $c = c(m) > 0$ such that for all $\omega > 0$ and all f in H

\[(2.4) \]

\[E(\sigma, f) \leq c \omega_1^m (1/\sigma, f). \]

Moreover, for any $1 \leq k \leq m$ there exists a $C = C(m, k) > 0$ such that for any $f \in D(L^k)$ one has

\[(2.5) \]

\[E(\sigma, f) \leq C \sigma^m \omega_1^{m-k} (1/\sigma, L^k f), \quad 0 \leq k \leq m. \]

Proof. First, we note that if $h \in L_1(\mathbb{R})$ is an entire function of exponential type σ then for any $f \in L_2(M)$ the vector

\[g = \int_{-\infty}^{\infty} h(t) e^{itL} f dt \]

belongs to $PW_\sigma(L)$. Indeed, for every real τ we have

\[e^{i\tau L} g = \int_{-\infty}^{\infty} h(t) e^{i(t+\tau)L} f dt = \int_{-\infty}^{\infty} h(t - \tau) e^{itL} f dt. \]

Using this formula we can extend the abstract function $e^{i\tau L} g$ to the complex plane as

\[e^{izL} g = \int_{-\infty}^{\infty} h(t - z) e^{itL} f dt. \]

One has

\[\|e^{izL} g\| \leq \|f\| \int_{-\infty}^{\infty} |h(t - z)| dt. \]

Since by assumption $h \in L_1(\mathbb{R})$ is an entire function of exponential type σ we have for $z = x + iy$ and $u = t - x$

\[\int_{-\infty}^{\infty} |h(t - z)| dt = \int_{-\infty}^{\infty} |h(u - iy)| du \leq e^{\sigma|y|} \|h\|_{L_1(\mathbb{R})}, \]

because

\[h(u - iy) = \sum_{k=0}^{\infty} \frac{(-iy)^k}{k!} h^{(k)}(u), \quad \|h^{(k)}\|_{L_1(\mathbb{R})} \leq \sigma^k \|h\|_{L_1(\mathbb{R})}. \]

Thus

\[\|e^{izL} g\| \leq \|f\| \int_{-\infty}^{\infty} |h(t - z)| dt \leq \|f\| e^{\sigma|y|} \|h\|_{L_1}. \]

It shows that for every vector $g^* \in H$ the function $\langle e^{izL} g, g^* \rangle$ is an entire function and

\[\left| \langle e^{izL} g, g^* \rangle \right| \leq \|g^*\| \|f\| e^{\sigma|y|} \|f\|_{L_1(\mathbb{R})}. \]

In other words the $\langle e^{izL} g, g^* \rangle$ is an entire function of the exponential type σ which is bounded on the real line and an application of the classical Bernstein theorem gives the inequality

\[\left| \left(\frac{d}{dt} \right)^k \langle e^{itL} g, g^* \rangle \right| \leq \sigma^k \sup_{t \in \mathbb{R}} \left| \langle e^{itL} g, g^* \rangle \right|. \]
Since
\[
\left(\frac{d}{dt} \right)^k \langle e^{itL}g, g^* \rangle = \langle e^{itL}(iL)^kg, g^* \rangle
\]
we obtain for \(t = 0 \)
\[
|\langle L^kg, g^* \rangle| \leq \sigma^k \|g^*\| \|f\| \int_{-\infty}^{\infty} |h(\tau)|d\tau.
\]
Choosing \(g^* \) such that \(\|g^*\| = 1 \) and \(\langle L^kg, g^* \rangle = \|L^kg\| \) we obtain the inequality
\[
\|L^kg\| \leq \sigma^k \|f\| \int_{-\infty}^{\infty} |h(\tau)|d\tau
\]
which implies that \(g \) belongs to \(PW_{\sigma}(L) \).

Let
\[
(2.6) \quad h(t) = a \left(\frac{\sin(t/n)}{t} \right)^n
\]
where \(n = 2(m + 3) \) and
\[
a = \left(\int_{-\infty}^{\infty} \left(\frac{\sin(t/n)}{t} \right)^n dt \right)^{-1}.
\]
With such choice of \(a \) and \(n \) function \(h \) will have the following properties:
(1) \(h \) is an even nonnegative entire function of exponential type one;
(2) \(h \) belongs to \(L^1(\mathbb{R}) \) and its \(L^1(\mathbb{R}) \)-norm is 1;
(3) the integral
\[
(2.7) \quad \int_{-\infty}^{\infty} h(t)|t|^m dt
\]
is finite.

Next, we observe the following formula
\[
(-1)^{m+1}(e^{i\sigma L} - I)^mf = (-1)^{m+1}\sum_{j=0}^{m}(-1)^{m-j}C_m^j e^{js(iL)}f = \sum_{j=1}^{m} b_j e^{js(iL)}f - f, \quad b_1 + b_2 + ... + b_m = 1.
\]
Consider the vector
\[
(2.9) \quad Q_{h}^{\sigma,m}(f) = \int_{-\infty}^{\infty} h(t) \left\{ (-1)^{m+1}(e^{i\sigma L} - I)^mf + f \right\} dt.
\]
According to (2) we have
\[
Q_{h}^{\sigma,m}(f) = \int_{-\infty}^{\infty} h(t) \sum_{j=1}^{m} b_j e^{j\sigma L}f dt = \int_{-\infty}^{\infty} \Phi(t)e^{t\sigma L}f dt.
\]
where
\[
\Phi(t) = \sum_{j=1}^{m} b_j \left(\frac{\sigma}{j} \right) \left(i\sigma \right) \left(t\frac{\sigma}{j} \right), \quad b_1 + b_2 + ... + b_m = 1.
\]
Since the function \(h(t) \) has exponential type one every function \(h(t\sigma/j) \) has the type \(\sigma/j \) and because of this the function \(\Phi(t) \) has exponential type \(\sigma \). It also belongs to \(L^1(\mathbb{R}) \) and as it was just shown it implies that the vector \(Q_{h}^{\sigma,m}(f) \) belongs to
operator. We introduce the self-adjoint non-negative operator means
\[D \]

Let
\[L \]

the formula
\[P W_c(L) \]

since
\[D \]

is finite by the choice of
\[h \]

we obtain by using (2.2)
\[\mathcal{E}(f, f) \leq \| f - Q^\sigma_m(f) \| \leq \int_{-\infty}^{\infty} h(t) \left\| (e^{iL} - I)^m f \right\| dt \leq \int_{-\infty}^{\infty} h(t) \omega^m_L(f, t/\sigma) dt \leq C \omega^m_L(f, 1/\sigma), \quad c = \int_{-\infty}^{\infty} h(t)(1 + |t|)^m dt. \]

If \(f \in D(L^k) \) then by using (2.1) we have
\[\mathcal{E}(\sigma, f) \leq \int_{-\infty}^{\infty} h(t) \omega^m_L(t/\sigma, f) dt \leq \frac{\omega^m_L(1/\sigma, L^k f)}{\sigma^k} \int_{-\infty}^{\infty} h(t)|t|^k(1 + |t|)^{m-k} dt \leq \frac{C}{\sigma^k} \omega^m_L(1/\omega, L^k f), \]

where
\[C = \int_{-\infty}^{\infty} h(t)|t|^k(1 + |t|)^{m-k} dt \]
is finite by the choice of \(h \). The inequalities (2.4) and (2.5) are proved. \(\square \)

3. Unitary representations. Equivalence of norms

A strongly continuous unitary representation of a Lie group \(G \) in a Hilbert space \(H \) is a homomorphism \(T : G \to U(H) \) where \(U(H) \) is the group of unitary operators of \(H \) such that \(T(g)f, \ g \in G, \) is continuous on \(G \) for any \(f \in H. \) The Garding space \(G \) is defined as the set of vectors \(h \) in \(H \) that have the representation \(h = \int_G \varphi(g)T(g)f dg, \) where \(f \in H, \ \varphi \in C_0^\infty(G), \) \(dg \) is a left-invariant measure on \(G. \) If \(X \in g \) is identified with a right-invariant vector field
\[X \varphi(g) = \lim_{t \to 0} \frac{\varphi(\exp tX \cdot g) - \varphi(g)}{t}, \]

then one has a representation \(D(X) \) of \(g \) by operators which act on \(G \) by the formula
\[D(X)h = -\int_G X \varphi(g)T(g)f dg. \] The Garding space \(G \) is invariant with respect to all operators \(D(X), \ X \in g, \) and dense in every \(H^r. \)

If \(X_1, ..., X_d \) is a basis in \(g \) we associate with every \(X_j, \ 1 \leq j \leq d, \) a strongly continuous one-parameter group of isometries \(t \mapsto T(\exp tX_j), \ t \in \mathbb{R}, \) whose generator is denoted as \(D_j, \ 1 \leq j \leq d. \) The Laplace operator \(10 \) is defined on \(G \) by the formula
\[L_G = -D_1^2 - D_2^2 - ... - D_d^2. \]

Since \(L_G \) is symmetric and the differential operator \(-\sum_{i=1}^d X_i^2 \) is elliptic on the group \(G \) the Theorem 2.2 in [10] implies that \(L_G \) is essentially self-adjoint, which means \(L_G = \overline{L_G}. \) In other words, the closure \(\overline{L_G} = L \) of \(L_G \) from \(G \) is a self-adjoint operator. We introduce the self-adjoint non-negative operator
\[\Lambda = I + L = I - D_1^2 - ... - D_d^2. \]

Let \(D = \sqrt{\Lambda} \) be the non-negative square root from \(\Lambda. \) Our first result is the following.
Theorem 3.1. The space \mathbf{H}^r with the norm $\| \cdot \|_{\mathbf{H}}$ is isomorphic to the domain of $\Lambda^{r/2}$ with the norm $\| \Lambda^{r/2} f \|_{\mathbf{H}}$.

Proof. In the case $r = 2k$, the inequality

$\| f \|_{\mathbf{H}^{2k}} \leq C(k) \| \Lambda^k f \|_{\mathbf{H}}$ (3.1)

is shown in [9], Lemma 6.3. The reverse inequality is obvious. We consider now the case $r = 2k + 1$. If $f \in \mathbf{H}^2 = \mathcal{D}(\Lambda)$, then since $\mathcal{D}(\Lambda) \subset \mathcal{D}(\Lambda^{1/2})$ we have

$$
\| f \|_{\mathbf{H}}^2 + \sum_j \| D_j f \|_{\mathbf{H}}^2 = \langle f, f \rangle + \sum_j \langle D_j f, D_j f \rangle = \langle f, f \rangle + \left(- \sum_j D_j^2 f, f \right) = \langle f - \sum_j D_j^2 f, f \rangle = \langle \Lambda f, f \rangle = \| \Lambda^{1/2} f \|_{\mathbf{H}}^2.
$$

These equalities imply that \mathbf{H}^1 is isomorphic to $\mathcal{D}(\Lambda^{1/2})$. Our goal is to prove existence of an isomorphism between \mathbf{H}^{2k+1} and $\mathcal{D}(\Lambda^{k+1/2})$. It is enough to establish equivalence of the corresponding norms on the set $\mathbf{H}^{4k+2} = \mathcal{D}(\Lambda^{2k+1})$ since the latest is dense in \mathbf{H}^{2k+1}. If $f \in \mathbf{H}^{4k+2} \subset \mathbf{H}^{2k}$ then $D_j f \in \mathbf{H}^{2k+1} \subset \mathbf{H}^{2k}$ and $\Lambda^k f = \sum_{m \leq k} \sum D_{j_1}^2 \ldots D_{j_m}^2 f$. Thus if $f \in \mathbf{H}^{4k+2}$ then

$$
\| D_{j_1} \ldots D_{j_{2k+1}} f \|_{\mathbf{H}} \leq C \| \Lambda^k D_{j_{2k+1}} f \|_{\mathbf{H}} = \left\| \sum_{m \leq k} \sum D_{j_1}^2 \ldots D_{j_m}^2 D_{j_{2k+1}} f \right\|_{\mathbf{H}}.
$$

Multiple applications of the identity $D_i D_j - D_j D_i = \sum_k c_{i,j}^k D_k$ which holds on \mathbf{H}^2 lead to the inequality

$$
\| D_{j_1} \ldots D_{j_{2k+1}} f \|_{\mathbf{H}} \leq C \left(\| D_{j_{2k+1}} \Lambda^k f \|_{\mathbf{H}} + \| R f \|_{\mathbf{H}} \right),
$$

where R is a polynomial in D_1, \ldots, D_d whose degree $\leq 2k$. According to (3.1) and (3) we have that

$$
\| D_{j_{2k+1}} \Lambda^k f \|_{\mathbf{H}} \leq \| \Lambda^{1/2} \Lambda^k f \|_{\mathbf{H}} = \| \Lambda^{k+1/2} f \|_{\mathbf{H}}
$$

and also $\| R f \|_{\mathbf{H}} \leq \| f \|_{\mathbf{H}^{2k}} \leq C(k) \| \Lambda^k f \|_{\mathbf{H}}$. Since $\| \Lambda^k f \|_{\mathbf{H}}$ is not decreasing with k we get the following estimate

$$
\| D_{j_1} \ldots D_{j_{2k+1}} f \|_{\mathbf{H}} \leq C(k) \| \Lambda^{k+1/2} f \|_{\mathbf{H}}, \quad f \in \mathbf{H}^{4k+2}.
$$

Now, since for $f \in \mathbf{H}^{4k+2}$ we have $D_{j_1} \ldots D_{j_{2k}} f \in \mathbf{H}^{2k+2} \subset \mathbf{H} = \mathcal{D}(\Lambda^{1/2})$, and the equality $\Lambda^k f = \sum_{m \leq k} \sum D_{j_1}^2 \ldots D_{j_m}^2 f$, holds we obtain, by using (3)

$$
\| \Lambda^{k+1/2} f \|_{\mathbf{H}} = \| \Lambda^{1/2} \sum_{m \leq k} \sum D_{j_1}^2 \ldots D_{j_m}^2 f \|_{\mathbf{H}} \leq C \| f \|_{\mathbf{H}^{2k+1}}, \quad C = C(k).
$$

Theorem is proved. \qed
4. The Hardy-Steklov operator and the \(K \)-functional

We introduce a generalization of the classical Hardy-Steklov operator. For a positive small \(s \), natural \(r \) and \(1 \leq j \leq d \) we set

\[
H_{j,r}(s)f = (s/r)^{-r} \int_0^{s/r} \ldots \int_0^{s/r} \sum_{k=1}^{r} (-1)^k C_r^k \tau_j(k(\tau_{j,1} + \ldots + \tau_{j,r})f d\tau_{j,1} \ldots d\tau_{j,r},
\]

where \(C_r^k \) are the binomial coefficients and then define the Hardy-Steklov operator:

\[
H_r(s)f = \prod_{j=1}^{d} H_{j,r}(s)f = H_{1,r}(s)H_{2,r}(s) \ldots H_{d,r}(s)f, \quad f \in H.
\]

For every fixed \(f \in H \) the function \(H_r(s)f \) is an abstract valued function from \(\mathbb{R} \) to \(H \) and it is a linear combination of some abstract valued functions of the form

\[
(s/r)^{-rd} \int_0^{s/r} \ldots \int_0^{s/r} T f(\tau)d\tau_{1,1} \ldots d\tau_{d,r},
\]

where

\[
\tau = (k_1 \tau_1, k_2 \tau_2, \ldots, k_d \tau_d), \quad 1 \leq k_j \leq r,
\]

\[
\tau_j = (\tau_{j,1} + \tau_{j,2} + \ldots + \tau_{j,r}), \quad 1 \leq j \leq d,
\]

and

\[
T f(\tau) = T_1(k_1 \tau_1)T_2(k_2 \tau_2) \ldots T_d(k_d \tau_d)f.
\]

Let \(F(x_1, x_2, \ldots, x_N) \) be a function on \(\mathbb{R}^N \) that takes values in the Hilbert space \(H \)

\[
F : \mathbb{R}^N \mapsto H.
\]

For \(1 \leq i \leq N \) we introduce the difference operator by the formula

\[
(\Delta_i(s)F)(x_1, x_2, \ldots, x_N) = F(x_1, x_2, \ldots, x_{i-1}, s, x_{i+1}, \ldots, x_N) - F(x_1, x_2, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_N).
\]

Our nearest goal is to prove the following theorem.

Theorem 4.1. The following holds:

1. For every \(f \in H \) and \(s > 0 \) the function \(H_r(s)f \) belongs to \(H^r \).
2. For every \(0 \leq q < r \) the "mixed derivative" \(D_{j_1} \ldots D_{j_q} H_r(s)f \), \(1 \leq j_k \leq d \) is another abstract valued function with values in \(H^{r-q} \) and it is a linear combination of abstract valued functions (with values in \(H^r \)) of the form

\[
(s/r)^{-rd} \int_0^{s/r} \ldots \int_0^{s/r} \mu_{j_1, \ldots, j_q}^{i_1, \ldots, i_m}(\cdot) \Delta_{i_1, k_1}(s/r) \ldots \Delta_{i_l, k_l}(s/r) T f(\cdot) d\cdot,
\]

where

\[
\max_{0 \leq \tau_{i,j} \leq s} |\partial^p \mu_{j_1, \ldots, j_q}^{i_1, \ldots, i_m}(\cdot)| \leq cs^{r-l}, \quad p \in \mathbb{N} \cup \{0\},
\]

and \(0 < s < 1 \), \(0 \leq m \leq rd \), \(0 \leq l \leq m \), where \(l = 0 \) corresponds to the case when the set of indices \(\{i_1, \ldots, i_l\} \) is empty.
The main ingredient of the proof of this theorem is the next lemma which will be proved now. For the rest of the proof of Theorem 4.1 we refer to [21].

Lemma 4.2. For every $s > 0$ the operator $H_1(s)$ maps H to H^1.

Proof. Let’s assume first that $f \in H^1$. Since every D_j, $1 \leq j \leq d$, is a closed operator to show that the term (4.1) belongs to $D(D_j)$ it is sufficient to show existence of the integral (see notations (4.2), (4.3))

\[(4.8) \quad \int_0^{s/r} ... \int_0^{s/r} D_j T f(\tau) d\tau_{1,1} ... d\tau_{d,r}, \]

According to (1.1) the last integral equals to

\[(4.9) \quad \sum_{i=1}^{d} \left(s/r \right)^{-r d} \int_0^{s/r} ... \int_0^{s/r} \frac{\partial}{\partial \tau_{1,1,i}} \left(s/r \right) \Delta_i(s/r) T f(\tau) d\tau_i + \right.

\[\left. \left(s/r \right)^{-r d} \int_0^{s/r} ... \int_0^{s/r} \partial_i \xi_j \left(s/r \right) T f(\tau) d\tau_i \right) = B_j(s)f, \]

where $\tau = (\tau_{1,1}, ..., \tau_{1,r}, ..., \tau_{n,1}, ..., \tau_{n,r})$, $\tau_{i}^{s/r} = (\tau_{1,1}, ..., \tau_{1,r}, ..., \tau_{i,1}, ..., \tau_{i,r}, ..., \tau_{n,1}, ..., \tau_{n,r})$, $\tau_{0}^{s/r} = (\tau_{1,1}, ..., \tau_{1,r}, ..., \tau_{i,1}, ..., \tau_{i,r} + 0, ..., \tau_{i,1} + ... + \tau_{i,r}, ..., \tau_{n,1} + ... + \tau_{n,r})$, $d\tau = d\tau_{1,1} ... d\tau_{n,r}$, and $(d\tau)_i = d\tau_{1,1} ... d\tau_{i-1,r} d\tau_{i,r} d\tau_{i+1,1} ... d\tau_{n,r}$, where the term $d\tau_{i,r}$ is missing.

Since integrand of each of the three integrals is bounded it implies existence of (4.8) which, in turn, shows that (1.1) is an element of $D(D_j)$ for every $1 \leq j \leq d$.

Thus if f belongs to H^1 then $H(s)f$ takes values in H^1 and the formula $D_j H(s)f = B_j(s)f$ holds where the operator $B_m(s)$ is bounded. This fact along with the fact that H^1 is dense in H implies the formula $D_j H(s)f = B_j(s)f$ for every $f \in H$. Thus we proved the first part of the Lemma for $q = 1$.

We will need the following Lemma which can be verified directly.

Lemma 4.3. For every bounded operators $B_1, B_2, ..., B_n$ the following formulas hold

\[(4.11) \quad B_1 B_2 ... B_n - I = B_1 (B_2 - I) + ... + B_1 B_2 ... B_{n-1} (B_n - I), \]
\((B_1 - I)B_2...B_n = (B_1 - I) + B_1(B_2 - I) + ... + B_1B_2...B_{n-1}(B_n - I) \).

Theorem 4.4. For the \(K \)-functional

\[
K(s^r, f, H, H') = \inf_{g \in H'} (\| f - g \|_H + s^r \| g \|_{H'}) ,
\]

the following double inequality holds

\[
e^{-\Omega'}(s, f) \leq K(s^r, f, H, H') \leq C(\Omega'(s, f) + s^r \| f \|_H),
\]

where positive constant \(c, C \) are independent on \(f \).

Proof. First we prove the right-hand side of the inequality (4.14). The following identities which can be verified directly play important role in the roof. By using the formula (4.11) we obtain

\[
\left\| \left(-1 \right)^{n(r+1)} H_r(s)f - f \right\|_H = \left\| \prod_{j=1}^{n} \left(-1 \right)^{n+1} H_j, r(s)f - f \right\|_H \leq \left(\Omega'(s, f) \right) \leq C \Omega'(s, f).
\]

To estimate \(s^r \| H_r(s)f \|_H \) we note that \(\| H_r(s)f \|_H \leq C \| f \|_H \). According to Theorem 4.4 the estimate \(\| H_r(s)f \|_H \) is estimated for \(0 \leq s \leq 1 \) by

\[
s^{-t} \sup_{0 \leq \tau \leq s} \| \Delta_{j_{1}, k_{1}}(s/r)\Delta_{j_{2}, k_{2}}(s/r)T(\cdot) \| \leq C \Omega^t(s, f),
\]

where \(T(\cdot) = \prod_{j=1}^{n} \prod_{k=1}^{r} \tau_j(\tau_{j,k}) \). By the definition of \(\Delta_{j,k}(s/r) \) the expression \(\Delta_{j,k}(s/r)T(\cdot) \) differs from \(T(\cdot) \) only in that in place of the factor \(T_j(\tau_{j,k}) \) the factor \(T_j(s/r) - I \) appears. Multiple applications of the identity (4.12) to the operator \(\Delta_{j_{1}, k_{1}}(s/r)\Delta_{j_{2}, k_{2}}(s/r)T(\cdot) \) allow its expansion into a sum of operators each of which is a product of not less than \(l \leq r \) of operators \(T_i(\sigma_i) - I, \sigma_i \in (0, s/r), 1 \leq i \leq n \). Consequently, (4.14) is dominated by a multiple of \(s^{-t} \Omega^t(s, f) \). By summing the estimates obtained above we arrive at the inequality

\[
K(s^r, f, H, H') \leq \left\| \left(-1 \right)^{n(r+1)} H_r(s)f - f \right\|_H + s^r \| H_r(s)f \|_H \leq \left(\sum_{l=1}^{n} s^{-l} \Omega^l(s, f) + s^r \| f \|_H \right), \quad 0 \leq s \leq 1.
\]

Note, that by repeating the known proof for the classical modulus of continuity one can prove the inequality

\[
\Omega^l(s, f) \leq C \left(s^l \| f \|_H + s^l \int_{l}^{1} \tau^{-1-i} \Omega^{k+r}(\tau, f) d\tau \right),
\]

which implies \(s^{-l} \Omega^l(s, f) \leq C \left(s^l \| f \|_H + \Omega^r(s, f) \right) \). By applying this inequality to (4.14) and taking into account the inequality \(K(s^r, f, H, H') \leq \| f \|_H \), we obtain the right-hand side of the estimate (4.14).

To prove the left-hand side of (4.14) we first notice that the following inequality holds

\[
\Omega^r(s, g) \leq C s^{k} \sum_{1 \leq j_1, \ldots, j_k \leq n} \Omega^{r-k}(s, D_{j_1} \ldots D_{j_k} g), g \in H^k, C = C(k, r), k \leq r,
\]
which is an easy consequence of the identity \(\mathbf{(1.12)} \) and the identity \((T_j(t) - I) g = \int_0^t T_j(\tau) D_j g d\tau, \ g \in D(D_j). \) From here, for any \(f \in \mathbf{H}, \ g \in \mathbf{H^r} \) we obtain
\[
\Omega^r(s, f) \leq \Omega^r(s, f - g) + \Omega^r(s, g) \leq C \left(\| f - g \|_\mathbf{H} + s^r \| g \|_\mathbf{H^r} \right).
\]
Theorem is proven.

\[\square\]

5. Appendix A. The Campbell-Hausdorff Formula

Lie algebra \(\mathbf{g} \) of a Lie group \(G \) can be identified with the tangent space \(T_e(G) \) of \(G \) at the identity \(e \in G \). Let \(\exp(tX) : T_e(G) \to G, \ t \in \mathbb{R}, \ X \in T_e(G), \) be the exponential geodesic map i.e. \(\exp(tX) = \gamma(1) \), where \(\gamma(t) \) is a geodesic of a fixed left-invariant metric on \(G \) which starts at \(e \) with the initial vector \(tX \in T_e(G) \):
\[
\gamma(0) = e, \quad \frac{d\gamma(0)}{dt} = tX.
\]
It is known that \(\exp \) is an analytic homomorphism of \(\mathbb{R} \) onto one parameter subgroup \(\exp(tX) \) of \(G \): \(\exp((s + t)X) = \exp(sX) \exp(tX), \ s, t \in \mathbb{R} \).

Let \(X_1, ..., X_d, \ d = \text{dim} \ G \) form a basis in the Lie algebra of \(G \), then one can consider the following coordinate system in a neighborhood of identity \(e \)
\[
(t_1, ..., t_d) \mapsto \exp(t_1X_1 + ... + t_dX_d).
\]

If \(Y_1 = s_1X_1 + ... + s_dX_d \) and \(Y_2 = t_1X_1 + ... + t_dX_d \) then \(\exp Y_1 \exp Y_2 = \exp Z \),
where \(Z \) is given by the Campbell-Hausdorff formula
\[
Z = Y_1 + Y_2 + \frac{1}{2}[Y_1, Y_2] + \frac{1}{12}[Y_1, [Y_1, Y_2]] - \frac{1}{12}[Y_2, [Y_1, Y_2]] - \frac{1}{24}[Y_2, [Y_1, [Y_1, Y_2]]] +
\]
It implies that \(Z = \zeta_1X_1 + ... + \zeta_dX_d \), where
\[
\zeta_j = s_j + t_j + O(\epsilon^2), \quad |t_j|, |s_j| \leq \epsilon, \quad 1 \leq j \leq d.
\]
One can also consider another local coordinate system around \(e \) which is given by the formula
\[
(t_1, ..., t_d) \mapsto \varphi \left(\sum_{j=1}^d t_j X_j \right) = \exp(t_1X_1) ... \exp(t_dX_d).
\]

Theorem 5.1. If \(T : G \to GL(\mathbf{H}) \) is a strongly continuous bounded representation of \(G \) in a Banach space \(\mathbf{H} \) and \(T_j(t) = T(\exp tX_j) \), where \(\{X_1, ..., X_d\} \) is a basis in \(\mathbf{g} \) then the formula \(\mathbf{(5.4)} \) is satisfied for groups \(T_j \) and their infinitesimal operators \(D_j \), \(1 \leq j \leq d \).

Proof. The fact that \(\mathbf{H^1} = \bigcap_{j=1}^d D(D_j) \) is dense in \(\mathbf{H} \) and invariant with respect to \(T \) is well known \(\mathbf{[9, 10]} \). Since \(\exp \) and \(\varphi \) are diffeomorphisms in a neighborhood of zero in \(\mathbf{g} \) the map \(\exp^{-1} \circ \varphi : \mathbf{g} \to \mathbf{g} \) is also a diffeomorphism. The formulas \(\mathbf{(5.2)} \) and \(\mathbf{(5.3)} \) give connection between \(\mathbf{(5.1)} \) and \(\mathbf{(5.4)} \)
\[
\varphi \left(\sum_{j=1}^d t_j X_j \right) = \exp \left(\sum_{k=1}^d \alpha_k(t) X_k \right), \quad t = (t_1, ..., t_d),
\]
where
\[
\alpha_j(t) = t_j + O(\epsilon^2), \quad |t_j| \leq \epsilon, \quad 1 \leq j \leq d.
\]
In particular, (5.2) implies $\exp \tau X_j \exp \sum_{i=1}^d t_i X_i = \exp \sum_{k=1}^d \gamma_k^j(t, \tau) X_k, \ t = (t_1, ..., t_d)$, where

\begin{equation}
\gamma_k^j(t, \tau) = t_k + \tau \zeta_k^j(t) + \tau^2 R_k^j(t, \tau),
\end{equation}

and $\zeta_k^j(t) = \delta_k^j + Q_k^j(t)$, where δ_k^j is the Kronecker symbol and $Q_k^j(t)$ and $R_k^j(t, \tau)$ are convergent series in $t_1, ..., t_d$ and $t_1, ..., t_d, \tau$ respectively.

Since for $f \in \mathbf{H}^1$ one has $D_j T(g) f = \frac{d}{d\tau} \tau (\exp \tau X_j) T(g) f|_{\tau=0}$ we obtain for $f \in \mathbf{H}^1$ the following

\[
D_j T_1(t_1) ... T_d(t_d) f = D_j T \left(\varphi \left(\sum_{i=1}^d t_i X_i \right) \right) = D_j T \left(\exp \sum_{i=1}^d \alpha_i(t) X_i \right) f =
\]

\[
\frac{d}{d\tau} \tau (\exp \tau X_j) T \left(\varphi \left(\sum_{i=1}^d t_i X_i \right) \right) f|_{\tau=0} = \frac{d}{d\tau} \tau (\exp \sum_{i=1}^d \gamma_i^j(\alpha, \tau) X_i) f|_{\tau=0},
\]

where $\alpha = (\alpha_1(t), ..., \alpha_d(t))$ and according to (5.7) $\gamma_i^j(\alpha, \tau) = \alpha_i(t) + \tau \zeta_i^j(\alpha(t)) + \tau^2 R_i^j(\alpha, \tau)$. By using the Chain Rule and (5.5) we finally obtain the formula (1.4)

\[
D_j T_1(t_1) ... T_d(t_d) f = \frac{d}{d\tau} \tau (\exp \sum_{i=1}^d \gamma_i^j(\alpha, \tau) X_i) f|_{\tau=0} =
\]

\[
\sum_{k=1}^d \left(\frac{d}{d\tau} \gamma_k^j(\alpha, \tau) \right)|_{\tau=0} \partial_k T \left(\exp \sum_{i=1}^d \gamma_i^j(\alpha, \tau) X_i \right) f|_{\tau=0} = \sum_{k=1}^d \zeta_k^j(t) \partial_k T_1(t_1) ... T_d(t_d) f.
\]

Lemma is proved.

\section*{References}

1. P. Butzer, H. Berens, \textit{Semi-Groups of operators and approximation}, Springer, Berlin, 1967.
2. Dai, F., \textit{Some equivalence theorems with K-functional}, J. Appr. Theory. 121 (2003) 143-157.
3. Dai, Feng; Xu, Yuan, \textit{Moduli of smoothness and approximation on the unit sphere and the unit ball}, Adv. Math. 224 (2010), no. 4, 1233-1310.
4. Dai, Feng; Xu, Yuan, \textit{Approximation theory and harmonic analysis on spheres and balls}, Springer Monographs in Mathematics. Springer, New York, 2013. xviii+440 pp. ISBN: 978-1-4614-6659-8; 978-1-4614-6660-4
5. Feichtinger, Hans G.; Fhr, Hartmut; Pesenson, Isaac Z., \textit{Geometric space-frequency analysis on manifolds}, J. Fourier Anal. Appl. 22 (2016), no. 6, 1294-1355.
6. S. Krein, I. Pesenson, \textit{Interpolation Spaces and Approximation on Lie Groups}, The Voronezh State University, Voronezh, 1990.
7. S. Krein, Y. Petunin, E. Semenov, \textit{Interpolation of linear operators}, Translations of Mathematical Monographs, 54, AMS, Providence, R.I., 1982.
8. V. Kumar, M. Ruzhansky, \textit{A note on K-functional, Modulus of smoothness, Jackson theorem and Nikolskii-Steckkin inequality on Damek-Ricci spaces}, arXiv:2020.
9. E. Nelson, \textit{Analytic vectors}, Ann. of Math., 70(3), (1959), 572-615.
10. E. Nelson, W. Stinespring, \textit{Representation of elliptic operators in an enveloping algebra}, Amer. J. Math. 81, (1959), 547-560.
11. Nursultanov, Erlan; Ruzhansky, Michael; Tikhonov, Sergey, \textit{Nikolskii inequality and Besov, Triebel-Lizorkin, Wiener and Beurling spaces on compact homogeneous manifolds}, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 16 (2016), no. 3, 981-1017.
12. Nursultanov, E. D.; Ruzhansky, M. V.; Tikhonov, S. Yu., \textit{Nikolskii inequality and functional classes on compact Lie groups}, Translation of Funktsional. Anal. i Prilozhen. 49 (2015), no. 3, 83-87.
13. El Ouadih, S., \textit{An equivalence theorem for a K-functional constructed by Beltrami-Laplace operator on symmetric spaces}, J. Pseudo-Differ. Oper. Appl. (2020).
https://doi.org/10.1007/s11868-020-00326-2
14. I. Pesenson, *Interpolation spaces on Lie groups*, (Russian) Dokl. Akad. Nauk SSSR 246 (1979), no. 6, 1298–1303.
15. I. Pesenson, *Nikolski-Besov spaces connected with representations of Lie groups*, (Russian) Dokl. Akad. Nauk SSSR 273 (1983), no. 1, 45–49.
16. I. Pesenson, *The Best Approximation in a Representation Space of a Lie Group*, Dokl. Acad. Nauk USSR, v. 302, No 5, pp. 1055-1059, (1988) (Engl. Transl. in Soviet Math. Dokl., v.38, No 2, pp. 384-388, 1989.)
17. I. Pesenson, *On the abstract theory of Nikolski-Besov spaces*, (Russian) Izv. Vyssh. Uchebn. Zaved. Mat. 1988, no. 6, 59–68; translation in Soviet Math. (Iz. VUZ) 32 (1988), no. 6, 8092
18. I. Pesenson, *Approximations in the representation space of a Lie group*, (Russian) Izv. Vyssh. Uchebn. Zaved. Mat. 1990, no. 7, 43–50; translation in Soviet Math. (Iz. VUZ) 34 (1990), no. 7, 49-57.
19. I. Pesenson, *Lagrangian splines, spectral entire functions and Shannon-Whittaker theorem on manifolds*, Temple University Research Report 95-87 (1995),1-28.
20. I. Pesenson, *Sampling of Paley-Wiener functions on stratified groups*, J. Four. Anal. Appl. 4 (1998), 269-280.
21. I. Pesenson, *Sobolev, Besov and Paley-Wiener vectors in Banach and Hilbert spaces*, Functional analysis and geometry: Selim Grigorievich Krein centennial, 251-272, Contemp. Math., 733, Amer. Math. Soc., Providence, RI, 2019.

Department of Mathematics, Temple University, Philadelphia, PA 19122
E-mail address: pesenson@temple.edu