Bidens alba (L.) DC. (Asteraceae) is a cosmopolitan subtropical and tropical weed that is native to North and Central America (Ballard, 1986) and has recently become invasive in China. Bidens alba reproduces vigorously and has been rapidly spreading in southern China. It grows along roadsides and in abandoned farmland and orchards, resulting in a decline in soil fertility and crop production (Tian et al., 2010). Bidens alba is a tetraploid species (2n = 48) (Grombone-Guaratini et al., 2005; Knope et al., 2013). Currently, no microsatellite markers are available for population genetic studies of B. alba. In this study, we isolated and characterized 20 polymorphic microsatellites for B. alba, which can be used to assess its genetic variation within and among populations and track its invasion route in China.

METHODS AND RESULTS

Genomic DNA was extracted from silica gel-dried leaves using a modified cetyltrimethylammonium bromide (CTAB) method (Doyle and Doyle, 1987). Genomic DNA from 20 individuals was mixed and sequenced using commercial services provided by Sangon Biotech (Shanghai, China) using 454 GS FLX Titanium (454 Life Sciences, Roche, Branford, Connecticut, USA) as the reference and visualized by silver staining. In total, 20 highly polymorphic primer pairs were successfully amplified with expected sizes. These loci showed clearly defined banding patterns ranging from 0 to 2.0937 (Table 2).

One hundred and twenty-eight primer pairs from B. alba designed by Primer Premier 6.0 (Premier Biosoft International, Palo Alto, California, USA) were tested in 10 individuals as preparatory screening. Primers that produced reproducible and clearly defined bands were further tested for polymorphism in one B. alba population (30 individuals; 23.41505°N, 111.24734°E) and one population of the closely related B. pilosa (30 individuals; 25.26276°N, 111.32731°E). Voucher specimens (S. Tang 20120701 for B. alba and S. Tang 20120701 for B. pilosa) were deposited at the herbarium of Guangxi Normal University. PCRs were performed in 20-μL reaction volumes containing 1 unit of Taq polymerase (TaKaRa Biotechnology Co., Dalian, China), 2 μL of 10× PCR buffer, 0.4 μL of dNTPs (2.5 mM), 0.2 μL of each primer (50 μM), and 40 ng of genomic DNA. PCR amplification conditions were as follows: an initial denaturation at 94°C for 5 min, 30 cycles of 45 s at 94°C, 45 s at the optimized annealing temperature (Table 1), 45 s of extension at 70°C, ending with a 10-min extension at 72°C. PCR products were resolved on a 6% polyacrylamide denaturing gel using a 10-bp DNA ladder (Invitrogen, Carlsbad, California, USA) as the reference and visualized by silver staining.

As a result, all of the 20 microsatellite loci were polymorphic in B. alba and the number of alleles per locus varied from one to 14, H_e varied from 0 to 0.8380, and H_i ranged from 0 to 2.0937 (Table 2).

CONCLUSIONS

The 20 microsatellite loci developed for B. alba are useful for investigating the genetic structure, genetic diversity, and invasion dynamics of B. alba. Some of these loci will also be useful for B. pilosa.
Table 1. Characteristics of 20 polymorphic microsatellite markers in *Bidens alba*.

Locus	Primer sequences (5′–3′)	Repeat motif	Allele size range (bp)	\(T_a\) (°C)	GenBank accession no.
Ba1	F: TTCAGAAATAGTCAAAGGGTT	(AAT)\(_7\)	184–230	53	KF872208
	R: TAGTATAGCAGCAAAAGCA	(ATG)\(_{12}\)	144–236	52	KF872209
Ba2	F: CATATCTTCGGGATAGAGG	(CAT)\(_7\)	144–194	56	KF872210
	R: GATTAAAGTTAACGATGACT	(CAT)\(_{18}\)	166–230	54	KF872211
Ba3	F: TCTATTTCTATCTCTGTCG	(ATA)\(_1\)	202–224	54	KF872212
	R: TTAATAGTGAATCCTCTCCC	(ATA)\(_3\)	170–208	54	KF872213
Ba4	F: TTGTGAAGATACATATAGGGA	(TTA)\(_7\)	144–194	56	KF872214
	R: AGGTATTTAGGATCCGATTA	(TTA)\(_9\)	288–316	55	KF872215
Ba5	F: ATGTACAGTGTCGCTTCCC	(ATT)\(_7\)	200–270	58	KF872216
	R: GCTGCTCCAGACAAAAGGAG	(ATT)\(_{10}\)	160–260	56	KF872218
Ba6	F: TCTTCTCAGTGCTTCTTTA	(TAA)\(_7\)	202–318	58	KF872219
	R: GCCGCTGCTTTTGTTCTTCC	(TAA)\(_{10}\)	186–282	60	KF872220
Ba7	F: GATGAGCTGACGGCCCTC	(ATT)\(_{10}\)	238–340	60	KF872221
	R: GCTGCTGCTTTTTGGAAAA	(ATT)\(_{11}\)	186–282	60	KF872222
Ba8	F: ATGGGAACTCATCAGAAGG	(TTA)\(_7\)	160–194	56	KF872223
	R: ACGGCCCACCCCAAGCAAGG	(TTA)\(_9\)	224–250	59	KF872224
Ba9	F: TCTTCTCAGTGCTTCTTTAA	(TAT)\(_7\)	202–318	58	KF872225
	R: GCCGCTGCTTTTGTTCTTCC	(TAT)\(_{10}\)	186–282	60	KF872226
Ba10	F: GCTGCTGCTTTTTGGAAAA	(TAT)\(_{10}\)	238–340	60	KF872227
	R: GCTGCTGCTTTTTGGAAAA	(TAT)\(_{11}\)	186–282	60	KF872228
Ba11	F: ATGGGAACTCATCAGAAGG	(TTA)\(_7\)	160–194	56	KF872229
	R: ACGGCCCACCCCAAGCAAGG	(TTA)\(_9\)	224–250	59	KF872230
Ba12	F: TCTTCTCAGTGCTTCTTTA	(TAA)\(_7\)	202–318	58	KF872231
	R: GCCGCTGCTTTTGTTCTTCC	(TAA)\(_{10}\)	186–282	60	KF872232
Ba13	F: GCTGCTGCTTTTTGGAAAA	(ATT)\(_{10}\)	238–340	60	KF872233
	R: GCTGCTGCTTTTTGGAAAA	(ATT)\(_{11}\)	186–282	60	KF872234
Ba14	F: ATGGGAACTCATCAGAAGG	(TTA)\(_7\)	160–194	56	KF872235
	R: ACGGCCCACCCCAAGCAAGG	(TTA)\(_9\)	224–250	59	KF872236
Ba15	F: TCTTCTCAGTGCTTCTTTAA	(TAT)\(_7\)	202–318	58	KF872237
	R: GCCGCTGCTTTTGTTCTTCC	(TAT)\(_{10}\)	186–282	60	KF872238
Ba16	F: GCTGCTGCTTTTTGGAAAA	(TAT)\(_{10}\)	238–340	60	KF872239
	R: GCTGCTGCTTTTTGGAAAA	(TAT)\(_{11}\)	186–282	60	KF872240
Ba17	F: ATGGGAACTCATCAGAAGG	(TTA)\(_7\)	160–194	56	KF872241
	R: ACGGCCCACCCCAAGCAAGG	(TTA)\(_9\)	224–250	59	KF872242
Ba18	F: TCTTCTCAGTGCTTCTTTA	(TAA)\(_7\)	202–318	58	KF872243
	R: GCCGCTGCTTTTGTTCTTCC	(TAA)\(_{10}\)	186–282	60	KF872244
Ba19	F: GCTGCTGCTTTTTGGAAAA	(ATT)\(_{10}\)	238–340	60	KF872245
	R: GCTGCTGCTTTTTGGAAAA	(ATT)\(_{11}\)	186–282	60	KF872246
Ba20	F: ATGGGAACTCATCAGAAGG	(TTA)\(_7\)	160–194	56	KF872247
	R: ACGGCCCACCCCAAGCAAGG	(TTA)\(_9\)	224–250	59	KF872248

Note: \(T_a\) = annealing temperature.

LITERATURE CITED

Ballard, R. 1986. *Bidens pilosa* complex (Asteraceae) in North and Central America. *American Journal of Botany* 73: 1452–1465.

Doyle, J. J., and J. L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. *Phytochemical Bulletin* 19: 11–15.

Grombione-Guarratini, M. T., K. L. Silva-Brandão, V. N. Solferini, J. Semir, and J. R. Triego. 2005. Sesquiterpene and polyacetylene profile of the *Bidens pilosa* complex (Asteraceae: Heliantheae) from Southeast of Brazil. *Biochemical Systematics and Ecology* 33: 479–486.

Knopf, M. L., R. J. Pender, D. J. Crawford, and A. M. Wiecezorek. 2013. Invasive congeners are unlikely to hybridize with native Hawaiian *Bidens* (Asteraceae). *American Journal of Botany* 100: 1221–1226.

Tian, X. S., M. F. Yue, L. Feng, C. H. Yang, and H. M. Yang. 2010. Characteristics of alien weeds *Bidens alba*. *Jiangsu Agricultural Sciences* 5: 174–175 (in Chinese).

Van Puyvelde, K., A. Van Geert, and L. Triest. 2010. ATETRA, a new software program to analyse tetraploid microsatellite data: Comparison with TETRA and TETRASAT. *Molecular Ecology Resources* 10: 331–334.
Locus	\(A \)	\(\text{He} \)	\(H' \)	\(A \)	\(\text{He} \)	\(H' \)
Ba1	18	0.8159	1.9620	1	0.0000	0.0000
Ba2	7	0.7422	1.4501	1	0.0000	0.0000
Ba3	14	0.7904	1.9171	1	0.0000	0.0000
Ba4	32	0.9284	2.8401	8	0.7200	1.4553
Ba5	10	0.7621	1.6140	3	0.5460	0.8604
Ba6	15	0.8475	2.0272	3	0.1772	0.3771
Ba7	16	0.8696	2.1827	4	0.5558	0.9162
Ba8	8	0.7610	1.6188	6	0.6829	1.2395
Ba9	14	0.7654	1.8645	14	0.8380	2.0937
Ba10	18	0.8580	2.1811	6	0.6329	1.1316
Ba11	7	0.7017	1.3557	6	0.7132	1.3045
Ba12	14	0.7463	1.8020	1	0.0000	0.0000
Ba13	12	0.7141	1.5434	3	0.5870	0.9601
Ba14	18	0.7882	1.8878	10	0.8082	1.8309
Ba15	12	0.8207	1.9177	4	0.6036	1.0675
Ba16	11	0.7819	1.6952	7	0.7518	1.5176
Ba17	5	0.7821	1.6957	1	0.0000	0.0000
Ba18	15	0.8021	1.7816	8	0.6326	1.2040
Ba19	18	0.8544	2.1114	9	0.7389	1.5192
Ba20	3	0.3787	0.6796	1	0.0000	0.0000

Note: \(A \) = number of alleles; \(\text{He} \) = expected heterozygosity; \(H' \) = Shannon–Wiener diversity index.