Ortalama ve Maksimum Üreter Duvar Kalınlığı Üreteroskopi Sonuçları için Öngörücü Faktör müdür?

Average, and Maximum Ureteral Wall Thickness are Predictor Factor for Ureteroscopy Outcomes?

Muğdat DEMİR, İlyas DÜNDAR, Recep ERYILMAZ, Rahmi ASLAN, Kasım ERTAŞ, Fatma DURMAZ, Mehmet SEVİM, Kerem KÖRPE, Kerem TAKEN

Van Yüzüncü Yıl University, Faculty of Medicine, Department of Urology, Van, Turkey
Van Yüzüncü Yıl University, Faculty of Medicine, Department of Radiology, Van, Turkey
Van Training and Research Hospital, Department of Urology, Van, Turkey

ABSTRACT
Objective: The aim of our study is to investigate the effect of average and maximum ureteral wall thicknesses measured by computed tomography before the operation on ureteroscopy results.

Materials and Methods: This prospective study was conducted with 103 patients who underwent ureteroscopy for ureteral stones between July and December 2021. The maximum ureteral wall thickness in the region of the ureteral stone and the average of the ureteral wall thicknesses measured from the 3-6-9-12 lines were calculated by non-contrast computed tomography. The operation time, residual stone, double j insertion status, and intraoperative complication status were examined according to the average ureteral wall thickness and maximum wall thickness.

Results: Of the 103 patients included in the study, 77 were male, and 26 were female. The mean age of the patients was 43.83±15.11 years. The mean stone length was 10.76±3.84 mm. The average ureteral wall thickness was 3.81±1.24 mm, while the maximum ureteral wall thickness was 4.9±1.8 mm. It was found that as the maximum, and average ureteral wall thickness increased, the operation time, residual stone, double insertion rate, and post-ureteroscopic lesion scale grade increased (p<0.05).

Conclusion: Maximum and average ureteral wall thicknesses are predictive factors for ureteroscopy results.
Keywords: Tomography, ureteral calculi, ureteral wall thickness, ureteroscopy

ÖZ
Amaç: Çalışmanın amacı operasyon öncesi bilgisayarlı tomografi ile ölçülen ortalaması ve maksimum ureter duvar kalınlıklarının ureteroskopi sonuçları üzerindeki etkisini araştırmaktır.

Maleryal ve Metot: Bu prospektif çalışma Temmuz-Aralık 2021 tarihleri arasında ureter taşı nedeniyle üreteroskopinin yapılmıştır. Kontrastlı bilgisayarlı tomografi ile ureter taşı nedeniyle üreteroskopinin yapılmıştır. Ureteroskopi yapılan 103 hasta ile yapılmıştır. Kontrastlı bilgisayarlı tomografi ile ölçülen ortalama ve maksimum ureter duvar kalınlıkları ortalamada alınmıştır. Örterlo, ureter taşı nedeniyle ve maksimum ve ortalaması duvar kalınlığına göre operasyon süresi, rezidü taş ve double j takılması durumu ve intraoperative complicasyon durumu incelendi.

Bulgular: Çalışmaya dahil edilen 103 hastanın 77’si erkek, 26’sı kadındı. Hastaların yaş ortalaması 43.83±15.11 yıl idi. Ortalamasızta uzuşulu 10.76±3.84 mm idi. Maksimum ureter duvar duvar kalınlığı 4.9±1.8 mm iken ortalaması ureter duvar kalınlığı 3.81±1.24 mm idi. Maksimum ve ortalaması ureter duvar kalınlığı artıkçaoperate cinsiyeti, rezidü taş ve double j takılması oranı, post-ureteroskopi lezyonu skala derecesinin arttığı görülü (p<0.05).

Sonuç: Maksimum ve ortalaması ureter duvar kalınlıklarını ureteroskopi sonuçları öngörmede prediktif faktörlerdir.

Anahat Kelimeler: Tomografi, ureter duvar kalınlığı, ureter taşı, ureteroskopi

Sorumlu Yazar / Corresponding Author:
Murat Demir
Van Yüzüncü Yıl Üniversitesi, Tip Fakültesi, Üroloji AD, Van, Türkiye.
Tel: +905426214313
E-mail: urologmurat72@gmail.com

Yayın Bilgisi / Article Info:
Gönderi Tarihi: 18/01/2022
Kabul Tarihi: 13/03/2022
Online Yayın Tarihi: 06/06/2022

Afı / Cited: Demir M and et al. Average, and Maximum Ureteral Wall Thickness are Predictor Factor for Ureteroscopy Outcomes? Online Türk Sağlık Bilimleri Dergisi 2022;7(2):215-220. doi: 10.26453/otjhs.1059414
INTRODUCTION
Ureteral stones are one of the most common urological diseases. Its incidence and prevalence are increasing. Although most of these stones are eliminated by spontaneous passage, some require intervention. Many methods such as medical expulsive therapy, extracorporeal shock wave therapy (ESWL), open ureterolithotomy, laparoscopic ureterolithotomy, and ureteroscopy are used for the treatment of ureteral stones. However, the most frequently preferred method is ureteroscopy (URS), a minimally invasive surgery.1

Although URS is minimally invasive, it is not without complications, and success is uncertain. Many factors affect the success of URS and the development of complications. One of them is the impact of the stone. During the ureteral passage, because of the stone staying in a region of the ureter for a long time, edema, and hypertrophy occur in the ureteral wall through local mediators. The thickened ureteral wall compresses the stone and causes the stone to be impacted. This causes difficulty accessing the stone during URS, more postoperative (post-op) residual stones, more mucosal damage, and bleeding. Therefore, new techniques are needed to understand preoperative (pre-op) impacted stone formation.2–4

Studies have been reported to predict the success of ESWL and spontaneous stone passage by measuring the wall thickness of the ureter where the stone is shown by computed tomography.5,6 In this study, we aimed to study the effect of the maximum wall thickness in the stone region, and the average wall thickness on the success of URS.

MATERIALS AND METHODS
Patients and Ethical Status: This prospective study was conducted between July and December 2021 after obtaining local ethics committee approval by Van Yuzuncu Yil University Interventional Clinical Research ethics committee (Date: 29.04.2021, decision no: 10) The study was performed following the Helsinki criteria. Written informed consent was obtained from all participating patients. The inclusion criteria of the patients were being older than 18 years of age, and having ureteral stones between 7 and 20 mm, while the exclusion criteria were being younger than 18 years of age, having solid kidneys, having more than one ureteral stone, having acute azotemia, being pregnant, with a Double J stent (DJ) or having a nephrostomy, a history of ESWL or URS, and any ureteral pathology. Of the 124 adult patients examined, 21 were excluded because of acute azotemia, having DJ or nephrostomy catheter, and having a history of ESWL or URS. The study was conducted with a total of 103 patients who met the inclusion criteria. All patients were operated on after pre-op negative urine culture was documented.

Computed Tomography (CT) Technique: Non-contrast CT examination of the urinary tract (stone protocol) has been performed in all patients in our center. The routine CT scan protocols were as follows; CT scans were acquired using the multislice CT device with 16 detectors (Somatom Emotion 16-slice; CT 2012 Siemens AG Berlin, and Munchen-Germany). The patients lay on the CT table in the supine position with their arms raised behind their heads. Initially, a topogram in anteroposterior view was extended from the lower chest to the upper thighs. Then, scans were performed using a slice thickness of 3 mm from the liver dome to the underside of the ischial tuberosity, and images were reconstructed with a slice thickness of 1.5 mm.

Imaging Analysis: A radiologist with eight years experienced in abdominal radiology made CT evaluations without prior knowledge of patient’s data. Stone side, stone location, hydronephrosis (HN) levels were recorded in pre-op non-contrast CT of all patients.

Surgical Procedure: All patients were operated on with the same semirigid ureterorenoscope (distal 8 fr proximal 9.8 fr diameter, Wolf brand German ureterorenoscope) after pre-op 2gr prophylactic ceftriaxone intravenous administration. Lithotripsy was performed with Wolf brand holmium laser with a frequency of 2000, and 1200 joules. Complications during the procedure were evaluated with the post-ureteroscopic lesion scale (PULS).7 Postureteroscopic lesion scale: Grade 0=No Lesion; Grade 1=Superficial mucosal lesion, and/or significant mucosal edema/hematoma; Grade 2=Submucosal lesion; Grade 3=Perforation with less than 50% (partial) transection; Grade 4=More than 50% but less than 100% (partial) transection; Grade 5=Complete transection. To avoid bias, the people who performed the operation and recorded the PULS score were not informed about the pre-op CT measurements. Post-op, residual stone control of all patients was evaluated with kidney-uretero-bladder (KUB) radiography. Patients with <2 mm stones in intra-op and post-op KUB evaluation were considered stone-free.

Statistical Analysis: Continuous variables are expressed as mean, and Standard Deviation, while categorical variables are expressed as numbers and percentages. One-way analysis of variance was performed to compare group means in terms of continuous variables. Pearson correlation coefficients were calculated to determine the relationship between these variables. The statistical significance level was taken as 5% (p<0.05) in the calculations, and the SPSS statistical package program was used for the
analyses.

RESULTS
Of the 103 patients included in the study, 77 (74.7%) were male, and 26 (25.2%) were female. The mean age of these patients was 43.83 ± 15.11 (18-82) years. The mean stone size was 10.76 ± 3.84 mm. The stone was on the left in 59 (57.2%) patients on the right in 44 (42.7%) patients. While the stone was in the proximal ureter in 31 (30%) patients, it was in the middle ureter in 29 (28.1%) patients and the distal ureter in 43 (41.7%) patients. The largest diameter of the stone, the thickest ureteral wall thickness at the point where the stone was located, and the average of four different thicknesses measured from the points 3-6-9-12 clockwise were taken, and the results were recorded (Figure 1).

The mean of maximum ureteral wall thickness was 4.9 ± 1.8 (2.2-12.3) mm, while the mean of average ureteral wall thickness was 3.81 ±1.24 (1.91-9.03) mm. The mean operation duration was 52.61 ± 13.83 (20-120) minutes. According to the average, and maximum ureteral wall thickness, PULS level, Dj insertion rate, HN level, and residual stone rate increase significantly (Table 1, 2).

![Figure 1. Ureteral wall thickness measurement on 3-6-9-12 lines in non-contrast computed tomography.](image-url)

Table 1. PULS level, DJ, and residual stone rate, hydronephrosis degree according to maximum ureteral wall thickness.

	Maximum Ureteral Wall Thickness	p Value
PULS		
0	*2.66 ± 0.26	0.001
1	*3.26 ± 0.37	
2	*5.22 ± 1.50	
3	*8.52 ± 1.42	
DJ		
Yes	5.08 ± 1.91	0.004
No	3.38 ± 0.69	
Residue Stone		
Yes	6.94 ± 1.86	0.001
No	4.05 ± 1.10	
Hydronephrosis		
1	*3.09 ± 0.49	0.001
2	*4.76 ± 1.41	
3	*7.02 ± 1.03	
4	*9.33 ± 2.52	

DJ: Double J; PULS: Post Ureteroscopic Lesion Scale; a, b, c, d: There is a significant difference between groups with different letters.

Table 2. PULS level, DJ, and residual stone rate, hydronephrosis degree according to average ureteral wall thickness.

	Average ureteral wall thickness	p Value
PULS		
0	*2.30 ± 0.303	0.001
1	*2.76 ± 0.372	
2	*4.08 ± 1.08	
3	*5.63 ± 1.034	
DJ		
Yes	3.94 ± 1.23	0.001
No	2.69 ± 0.49	
Residue Stone		
Yes	5.23 ± 1.12	0.001
No	3.22 ± 0.688	
Hydronephrosis		
1	*2.55 ± 0.393	0.001
2	*3.67 ± 0.74	
3	*5.52 ± 0.497	
4	*6.99 ± 1.55	

DJ: Double J; PULS: Post Ureteroscopic Lesion Scale; a, b, c, d: There is a significant difference between groups with different letters.
The relationship between average, and maximum wall thickness, stone size, and operation duration is in Table 3.

Table 3. The correlation between stone size, operation duration, maximum ureteral wall thickness, and average ureteral thickness.

Stone Size (mm)	Operation Duration (min)	Maximum Ureteral Wall Thickness (mm)	Average Ureteral Thickness (mm)
1	0.613	1	0.593
0.554	0.622	1	0.593
0.593	0.683	0.928	1

p=0.01; mm: milimeter; min: minute.

The effect of the size of the stone in the spontaneous passage of ureteral stones is known. While stones with a size of <7 mm are expected to fall spontaneously, this expectation is reduced for stones with a diameter of >10 mm. While the passage of large stones in the ureter decreases, the probability of being stuck at one point increases. Due to staying in the same area for a long time, ureteral wall thickness increases due to local inflammation, secreted mediators, and focal infective areas. Many definitions have been established for impacted stone. The first is that the distal part of the stone cannot be visualized in intravenous pyelography (IVP). The second is that the stone stays in the same region for more than two months. However, the inability to take IVP in all patients due to allergy or kidney failure, it takes time, and the time when the stone first impacts are not known, limiting these definitions. In addition, in some studies, an impacted stone was defined as the embedding of the stone in the ureteral wall in endoscopic imaging or the inability to send the sensor guide to the proximal part of the stone retrogradely. However, we did not use this definition because both conditions are subjective. Evaluate the ureteral wall only internally, and do not provide information about the outer part of the ureteral wall. In addition, in a study to investigate the effect of ureteral wall thickness in predicting impacted stone, and predicting the success of URS, the largest thickness of the ureteral wall was taken. However, we think that evaluation with a single thickness is not sufficient. Because the ureteral stone is wrapped all around, not from a single point. In addition, the ureteral wall at one point may be wide, while the other walls may be relatively thin due to the focal infectious area. For this reason, in our study, we found it appropriate to study the average of four thicknesses obtained at 90-degree intervals, as well as the widest wall thickness.

DISCUSSION AND CONCLUSION

The most frequently preferred minimally invasive method in the surgical treatment of ureteral stones is URS. However, URS is not free from complications and does not promise definitive treatment. URS has complications such as residual stone, retrograde migration of stone, hematuria, mucosal damage, laceration, and ureteral avulsion. Studies have reported that the impact of the stone affects the success of URS, ESWL, and spontaneous passage of the stone. Many definitions have been established for impacted stone. The first is that the distal part of the stone cannot be visualized in intravenous pyelography (IVP). The second is that the stone stays in the same region for more than two months. However, the inability to take IVP in all patients due to allergy or kidney failure, it takes time, and the time when the stone first impacts are not known, limiting these definitions. In addition, in some studies, an impacted stone was defined as the embedding of the stone in the ureteral wall in endoscopic imaging or the inability to send the sensor guide to the proximal part of the stone retrogradely. However, we did not use this definition because both conditions are subjective. Evaluate the ureteral wall only internally, and do not provide information about the outer part of the ureteral wall. In addition, in a study to investigate the effect of ureteral wall thickness in predicting impacted stone, and predicting the success of URS, the largest thickness of the ureteral wall was taken. However, we think that evaluation with a single thickness is not sufficient. Because the ureteral stone is wrapped all around, not from a single point. In addition, the ureteral wall at one point may be wide, while the other walls may be relatively thin due to the focal infectious area. For this reason, in our study, we found it appropriate to study the average of four thicknesses obtained at 90-degree intervals, as well as the widest wall thickness.

DISCUSSION AND CONCLUSION

The most frequently preferred minimally invasive method in the surgical treatment of ureteral stones is URS. However, URS is not free from complications and does not promise definitive treatment. URS has complications such as residual stone, retrograde migration of stone, hematuria, mucosal damage, laceration, and ureteral avulsion. Studies have reported that the impact of the stone affects the success of URS, ESWL, and spontaneous passage of the stone. However, we thought that the complication rate will increase. Due to staying in the same area for a long time, ureteral wall thickness increases due to local inflammation, secreted mediators, and focal infective areas. Many definitions have been established for impacted stone. The first is that the distal part of the stone cannot be visualized in intravenous pyelography (IVP). The second is that the stone stays in the same region for more than two months. However, the inability to take IVP in all patients due to allergy or kidney failure, it takes time, and the time when the stone first impacts are not known, limiting these definitions. In addition, in some studies, an impacted stone was defined as the embedding of the stone in the ureteral wall in endoscopic imaging or the inability to send the sensor guide to the proximal part of the stone retrogradely. However, we did not use this definition because both conditions are subjective. Evaluate the ureteral wall only internally, and do not provide information about the outer part of the ureteral wall. In addition, in a study to investigate the effect of ureteral wall thickness in predicting impacted stone, and predicting the success of URS, the largest thickness of the ureteral wall was taken. However, we think that evaluation with a single thickness is not sufficient. Because the ureteral stone is wrapped all around, not from a single point. In addition, the ureteral wall at one point may be wide, while the other walls may be relatively thin due to the focal infectious area. For this reason, in our study, we found it appropriate to study the average of four thicknesses obtained at 90-degree intervals, as well as the widest wall thickness.

DISCUSSION AND CONCLUSION

The most frequently preferred minimally invasive method in the surgical treatment of ureteral stones is URS. However, URS is not free from complications and does not promise definitive treatment. URS has complications such as residual stone, retrograde migration of stone, hematuria, mucosal damage, laceration, and ureteral avulsion. Studies have reported that the impact of the stone affects the success of URS, ESWL, and spontaneous passage of the stone. However, we thought that the complication rate will increase. Due to staying in the same area for a long time, ureteral wall thickness increases due to local inflammation, secreted mediators, and focal infective areas. Many definitions have been established for impacted stone. The first is that the distal part of the stone cannot be visualized in intravenous pyelography (IVP). The second is that the stone stays in the same region for more than two months. However, the inability to take IVP in all patients due to allergy or kidney failure, it takes time, and the time when the stone first impacts are not known, limiting these definitions. In addition, in some studies, an impacted stone was defined as the embedding of the stone in the ureteral wall in endoscopic imaging or the inability to send the sensor guide to the proximal part of the stone retrogradely. However, we did not use this definition because both conditions are subjective. Evaluate the ureteral wall only internally, and do not provide information about the outer part of the ureteral wall. In addition, in a study to investigate the effect of ureteral wall thickness in predicting impacted stone, and predicting the success of URS, the largest thickness of the ureteral wall was taken. However, we think that evaluation with a single thickness is not sufficient. Because the ureteral stone is wrapped all around, not from a single point. In addition, the ureteral wall at one point may be wide, while the other walls may be relatively thin due to the focal infectious area. For this reason, in our study, we found it appropriate to study the average of four thicknesses obtained at 90-degree intervals, as well as the widest wall thickness.

DISCUSSION AND CONCLUSION

The most frequently preferred minimally invasive method in the surgical treatment of ureteral stones is URS. However, URS is not free from complications and does not promise definitive treatment. URS has complications such as residual stone, retrograde migration of stone, hematuria, mucosal damage, laceration, and ureteral avulsion. Studies have reported that the impact of the stone affects the success of URS, ESWL, and spontaneous passage of the stone. However, we thought that the complication rate will increase. Due to staying in the same area for a long time, ureteral wall thickness increases due to local inflammation, secreted mediators, and focal infective areas. Many definitions have been established for impacted stone. The first is that the distal part of the stone cannot be visualized in intravenous pyelography (IVP). The second is that the stone stays in the same region for more than two months. However, the inability to take IVP in all patients due to allergy or kidney failure, it takes time, and the time when the stone first impacts are not known, limiting these definitions. In addition, in some studies, an impacted stone was defined as the embedding of the stone in the ureteral wall in endoscopic imaging or the inability to send the sensor guide to the proximal part of the stone retrogradely. However, we did not use this definition because both conditions are subjective. Evaluate the ureteral wall only internally, and do not provide information about the outer part of the ureteral wall. In addition, in a study to investigate the effect of ureteral wall thickness in predicting impacted stone, and predicting the success of URS, the largest thickness of the ureteral wall was taken. However, we think that evaluation with a single thickness is not sufficient. Because the ureteral stone is wrapped all around, not from a single point. In addition, the ureteral wall at one point may be wide, while the other walls may be relatively thin due to the focal infectious area. For this reason, in our study, we found it appropriate to study the average of four thicknesses obtained at 90-degree intervals, as well as the widest wall thickness.
thickness, and the average wall thickness increased significantly with increasing stone size. In addition, increasing the average, and maximum wall thickness both decreased the stone-free rate, and increased the complication rate.

One of the limitations of our study is the relatively wide range of stone sizes. Studies investigating the effect of ureteral wall thickness independent of stone size on ureteroscopy are needed.

In conclusion, we revealed that ureteric wall thickness is a predictive factor for ureterorenoscopy to predict stone-free, DJ insertion, and complication rates. It can be useful for pre-op surgeons in predicting the perioperative clinical course, and informing their patients.

Ethics Committee Approval: Ethical approval was obtained from Van Yuzuncu Year University Interventional Clinical Research ethics committee (Date: 29.04.2021, decision no: 10). The study was performed following the Helsinki criteria. Written informed consent was obtained from all participating patients.

Conflict of Interest: No conflict of interest was declared by the authors.

Author Contributions: Concept – MD, İD, FD, KT, KK, MS; Supervision – RA, RE, KE, KT, MD, İD, FD, MS, KK; Materials – MD, KE, RA, KE; Data Collection and/or Processing – RA, RE, KE, KT, MD, İD, FD, MS, KK; Analysis and/or Interpretation – RA, RE, KE, KT, MD, İD, FD, MS, KK; Writing – MD, İD.

Peer-review: Externally peer-reviewed.

REFERENCES

1. Prasad D, Satani Y, Singh S, Gajera D. A prospective comparative study of ureterorenoscopy with and without DJ stenting for the management of ureteric stones. Int. Surg J. 2021;8(12):3606-3614. doi:10.18203/2349-2902.isj20214753
2. Okçelik S, Kurul NO, Kızılöz H, Temel MC, Yesildal C. Factors affecting success of semi-rigid ureterorenoscopy in proximal ureter stone treatment. J Coll Physicians Surg Pak. 2021;31(1):65-69. doi:10.29271/jcpsp.2021.01.65
3. Taken K, Parlak M, Günes et al. The urinary system infections caused by extended-spectrum B-lactamase-producing Escherichia coli and Klebsiella pneumoniae strains. East J Med. 2016;21(1):31-37.
4. Tran TY, Bamberger JN, Blum KA, et al. Predicting the impacted ureteral stone with computed tomography. Urology. 2019;130:43-47. doi:10.1016/j.urology.2019.04.020
5. Sarıca K, Kaftaslı A, Yazıcı Ö, et al. Ureteral wall thickness at the impacted ureteral stone site: a critical predictor for success rates after SWL. Urolithiasis. 2015;43(1):83-88. doi:10.1007/s00240-014-0724-6
6. Jendeberg J, Geijer H, Alshamari M, Cierzniaik B, Lidén M. Size matters: The width and location of a ureteral stone accurately predict the chance of spontaneous passage. Eur Radiol. 2017;27(11):4775-4785. doi:10.1007/s00330-017-4852-6
7. May M, Schönthaler M, Gilfrich C, et al. Interrater reliability and clinical impact of the Post-Ureteroscopic Lesion Scale (PULS) grading system for ureteral lesions after ureteroscopy: Results of the German prospective multicenter BUSTER project. Urologie A. 2018;57(2):172-180. doi:10.1007/s00120-017-0565-3
8. Sarıca K, Eryıldırım B, Akdere H, Karagoz MA, Karaca Y, Sahan A. Predictive value of ureteral wall thickness (UWT) assessment on the success of internal ureteral stent insertion in cases with obstructing ureteral calculi. Urolithiasis. 2021;49(4):359-365. doi:10.1007/s00240-020-01233-3
9. Yoshida T, Inoue T, Taguchi M, Omura N, Kinoshita H, Matsuda T. Ureteral wall thickness as a significant factor in predicting spontaneous passage of ureteral stones of ≤10 mm: a preliminary report. World J Urol. 2019;37(5):913-919. doi:10.1007/s00334-018-2461-x
10. Tonyalı Ş, Yılmaz M, Karaaslan M, Ceylan C, İşkay L. Prediction of stone-free status after single-session retrograde intrarenal surgery for renal stones. Turk J Urol. 2018;44(6):473-477. doi:10.5152/tuad.2018.88615
11. Yamashita S, Kohjimoto Y, Iguchi T, Nishizawa S, Kikkawa K, Hara I. Ureteral wall volume at ureteral stone site is a critical predictor for shock wave lithotripsy outcomes: comparison with ureteral wall thickness and area. Urolithiasis. 2020;48(4):361-368. doi:10.1007/s00240-019-01154-w
12. Dedê O, Şenler NC, Baş O, Dedê G, Bağbancı MŞ. Does morbid obesity influence the success and complication rates of extracorporeal shockwave lithotripsy for upper ureteral stones? Turk J Urol. 2015;41(1):20-23. doi:10.5152/tuj.2015.94824
13. Selvi I, Baydilli N, Tokmak TT, Akınsal EC, Basar H. CT-related parameters and Framingham score as predictors of spontaneous passage of ureteral stones ≤10 mm: results from a prospective, observational, multicenter study. Urolithiasis. 2021;49(3):227-237. doi:10.1007/s00240-020-01214-6
14. Mugiya S, Ito T, Maruyama S, Hadano S, Nagae H. Endoscopic features of impacted ureteral stones. J Urol. 2004;171(1):89-91. doi:10.1097/01.ju.0000100960.08768.81
15. Ventimiglia E, Godinez AJ, Traxer O, Somani BK. Cost comparison of single-use versus reu-
sable flexible ureteroscope: A systematic review. Turk J Urol. 2020;46(Supp. 1):40-45. doi:10.5152/tud.2020.20223

16. Guzelbure V, Guven S, Boz MY, et al. Intraoperative evaluation of ureteral access sheath-related injuries using post-ureteroscopic lesion scale. J Laparoendosc Adv Surg Tech A. 2016;26(1):23-26. doi:10.1089/lap.2015.0294

17. Al-Naimi A, Alobaidy A, Majzoub A, Ibrahim TA. Evaluation of ureteroscopy outcome in a teaching hospital. Turk J Urol. 2016;42(3):155-161. doi:10.5152/tud.2016.17037