Inverse problems for one dimensional conformable fractional Dirac type integro differential system

Baki Keskin

Department of Mathematics, Faculty of Science, Sivas Cumhuriyet University, Turkey
E-mail: bkeskin@cumhuriyet.edu.tr

Received 27 November 2019, revised 20 February 2020
Accepted for publication 9 March 2020
Published 29 April 2020

Abstract
In this paper, one dimensional conformable fractional Dirac-type integro differential system is considered. The asymptotic formulae for the solutions, eigenvalues and nodal points are obtained. We investigate the inverse nodal problem and give an effective procedure for solving the inverse nodal problem with respect to given a dense subset of nodal points.

Keywords: conformable fractional Dirac system, intego-differential operators, inverse nodal problem

1. Introduction

The Dirac operator is the relativistic Schrödinger operator in quantum physics. The basic and comprehensive results about Dirac operators were given in [34]. Inverse problems for the Dirac operators have been extensively well studied in various publications (see [14, 18, 20, 24–26, 42] and the references therein). The subject of fractional calculus has acquired significant popularity and major attention from several authors in various science due mainly to its direct involvement in the problems of differential equations in mathematics, physics (classic and quantum mechanics, thermodynamics, etc), engineering, signal and image processing, control theory and others. Fractional calculus is also a powerful and effective tool for modelling nonlinear systems. This topic is initiated by [1, 29]. In the past few years, fractional calculus has been investigated by several author [2, 3] and references therein. In recent years, scholars have focussed on a fractional generalization of the well known Sturm–Liouville and Dirac problems [4–8, 16, 19, 30, 31, 40, 53].

Inverse nodal problem was started for the Sturm–Liouville operator by McLaughlin [36] in 1988. In 1989, Hald and McLaughlin showed that it is sufficient to know just the nodal points to determine the potential function of the regular Sturm–Liouville problem with more general boundary conditions and gave some numerical schemes for the reconstruction of the potential...
from nodal points [23]. Yang proposed an algorithm to solve an inverse nodal problem for the Sturm–Liouville operator in 1997 [47]. Such problems have been considered by several researchers in [11, 15, 21, 37, 39, 41, 43, 44, 46, 48, 50, 51] and other works. The inverse nodal problems for the Dirac operators with various boundary conditions have been studied and shown that a dense subset of the zeros of the first component of the eigenfunctions alone can determine the coefficients of discussed problem [22, 49, 52]. In [38], the authors have developed the spectral theory for a conformable fractional Sturm–Liouville problem and have proved uniqueness theorem with respect to the nodal points.

Nowadays, the studies concerning the perturbation of a differential operator by a Volterra type integral operator, namely the integro-differential operator has acquired significant popularity and major attention from several authors and take significant place in the literature [9, 10, 12, 13, 17, 32, 33, 45]. Integro-differential operators are nonlocal, and therefore they are more difficult for investigation, than local ones. New methods for solution of these problems are being developed. The inverse nodal problem for Dirac type integro-differential operators was first studied by Keskin and Ozkan in [27]. In their study, it is shown that the coefficients of the differential part of the operator can be determined by using nodal points and nodal points also gives the partial information about integral part. In [28], the authors considered Dirac type integro-differential operators with boundary conditions depend on the spectral parameter linearly.

2. Conformable fractional preliminaries

Firstly, we want to recall some basic definitions and properties of conformable fractional calculus which can be found in [1, 29].

Definition 1. Let $f : [0, \infty) \to \mathbb{R}$ be a given function. Then the conformable fractional derivative of f of order α is defined by:

$$
D^\alpha_{t} f(t) = \lim_{\varepsilon \to 0} \frac{f(t + \varepsilon t^{1-\alpha}) - f(t)}{\varepsilon}, \quad D^\alpha_{t} f(0) = \lim_{t \to 0^+} D^\alpha f(t),
$$

for all $t > 0$, $\alpha \in (0, 1]$. If this limit exist and finite at t_0, we say f is $\alpha -$differentiable at t_0. Note that if f is differentiable, then $D^\alpha f(t) = t^{1-\alpha} f'(t)$.

Definition 2. The conformable fractional integral starting from 0 of order α is defined by

$$
I^\alpha_{t} f(t) = \int_{0}^{t} f(x) \, d_{C} x = \int_{0}^{x} x^{\alpha-1} f(x) \, d x, \quad \text{for all } t > 0.
$$

Lemma 1. Let $f : [a, \infty) \to \mathbb{R}$ be any continuous function. Then, for all $t > a$, we have $D^\alpha_{t} I^\alpha_{t} f(t) = f(t)$.

Lemma 2. Let $f : (a, b) \to \mathbb{R}$ be any differentiable function. Then, for all $t > a$, we have $I^\alpha_{t} D^\alpha_{t} f(t) = f(t) - f(a)$.

Theorem 1 (α-integration by parts). Let $f, g : [a, b] \to \mathbb{R}$ be two conformable fractional differentiable functions. Then,

$$
\int_{a}^{b} f(t)D^\alpha_{t} g(t) \, d_{C} t = f(b)g(b) - f(a)g(a) - \int_{a}^{b} g(t)D^\alpha_{t} f(t) \, d_{C} t
$$
Theorem 2 (α-Leibnitz rule). Let \(f^\alpha(x,t) \) and \(f^\alpha_a(x,t) \) be continuous in \(x \) on some regions of the \((x,t)\)-plane, including \(a(t) \leq t \leq b(t) \), \(x_0 \leq x \leq x_1 \). If \(a(x) \) and \(b(x) \) are both \(\alpha \)-differentiable for \(x_0 \leq x \leq x_1 \), then

\[
D_x^\alpha \left[\int_{a(x)}^{b(x)} f(x,t) \, dt \right] = f(x,b(x))D_x^\alpha b(x) - f(x,a(x))a^{\alpha-1}(x)D_x^\alpha a(x) + \int_{a(x)}^{b(x)} D_x^\alpha f(x,t) \, dt.
\]

Definition 3. The space \(C_\alpha^n[a,b] \) consists of all functions defined on the interval \([a, b]\) which are continuously \(\alpha \)-differentiable up to order \(n \).

3. Conformable fractional Dirac systems

In this work, we consider the following one-dimensional conformable fractional Dirac type integro-differential system

\[
BY + \Omega(x)Y + \int_0^x M(x,t)Y_d\,dt = \lambda Y, \quad x \in (0,\pi),
\]

with the boundary conditions

\[
y_1(0) \sin \theta + y_2(0) \cos \theta = 0 \tag{2}
\]

\[
y_1(\pi) \sin \beta + y_2(\pi) \cos \beta = 0 \tag{3}
\]

where, \(0 \leq \theta, \beta < \pi \) are real numbers, \(\lambda \) is the spectral parameter, \(B = \begin{pmatrix} 0 & D_x^\alpha \\ -D_x^\alpha & 0 \end{pmatrix} \), \(\Omega(x) = \begin{pmatrix} p(x) & 0 \\ 0 & r(x) \end{pmatrix}, \ M(x,t) = \begin{pmatrix} M_{11}(x,t) & M_{12}(x,t) \\ M_{21}(x,t) & M_{22}(x,t) \end{pmatrix}, \ Y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}, \ p(x), \ r(x), \ M(x,t) \) are real-valued conformable fractional differentiable functions and \(x^{\alpha-1}p(x) \) and \(x^{\alpha-1}r(x) \) are continuous on \((0,\pi)\).

Let \(\varphi(x,\lambda) = (\varphi_1(x,\lambda), \varphi_2(x,\lambda))^T \) be the solution of (1) satisfying the initial condition \(\varphi(0,\lambda) = (\cos \theta, -\sin \theta)^T \). It is clear that \(\varphi(x,\lambda) \) is an entire function of \(\lambda \) satisfies the following conformable fractional Volterra integral equations:

\[
\varphi_1(x,\lambda) = \cos \theta \cos \left(\lambda x^{\alpha-1} \right) + \sin \theta \sin \left(\lambda x^{\alpha-1} \right) + \int_0^x \sin \left(\lambda x^{\alpha-1} - \lambda x^{\alpha-1} \right) p(t)\varphi_1(t,\lambda)\,dt + \int_0^x \cos \left(\lambda x^{\alpha-1} - \lambda x^{\alpha-1} \right) r(t)\varphi_2(t,\lambda)\,dt
\]

\[
+ \int_0^x \int_0^t \sin \left(\lambda x^{\alpha-1} - \lambda x^{\alpha-1} \right) \left[M_{11}(t,\xi)\varphi_1(\xi,\lambda) + M_{12}(t,\xi)\varphi_2(\xi,\lambda) \right] \, d_\xi d_\xi + \int_0^x \cos \left(\lambda x^{\alpha-1} - \lambda x^{\alpha-1} \right) \left[M_{21}(t,\xi)\varphi_1(\xi,\lambda) + M_{22}(t,\xi)\varphi_2(\xi,\lambda) \right] \, d_\xi d_\xi \tag{4}
\]
\[
\varphi_2(x, \lambda) = \cos \theta \sin \left(\frac{\lambda x^o}{\alpha} \right) - \sin \theta \cos \left(\frac{\lambda x^o}{\alpha} \right) \\
- \int_0^x \cos \left(\frac{\lambda x^o - \epsilon'}{\alpha} \right) p(t) \varphi_1(t, \lambda) d_u t + \int_0^x \sin \left(\frac{\lambda x^o - \epsilon'}{\alpha} \right) r(t) \varphi_2(t, \lambda) d_u t \\
- \int_0^x \int_0^\epsilon' \cos \left(\frac{\lambda x^o - \epsilon'}{\alpha} \right) \left[M_{11}(t, \xi) \varphi_1(\lambda, \xi) + M_{12}(t, \xi) \varphi_2(\lambda, \xi) \right] d_u \xi d_u t \\
+ \int_0^x \int_0^\epsilon' \sin \left(\frac{\lambda x^o - \epsilon'}{\alpha} \right) \left[M_{21}(t, \xi) \varphi_1(\lambda, \xi) + M_{22}(t, \xi) \varphi_2(\lambda, \xi) \right] d_u \xi d_u t
\]

(5)

The proof of the following lemma is clear from [35] (lemma 1.3.1).

Lemma 3. Let \(f(x) \) be a function in \(C^4_0[0, \pi] \), \(\alpha \in (0, 1) \), then

\[
\lim_{|\lambda| \to \infty} \exp \left(- |\text{Im} \frac{\pi^0}{\alpha}| \right) \int_0^\pi f(x) \cos \frac{\lambda x^o}{\alpha} d_u x = 0
\]

and

\[
\lim_{|\lambda| \to \infty} \exp \left(- |\text{Im} \frac{\pi^0}{\alpha}| \right) \int_0^\pi f(x) \sin \frac{\lambda x^o}{\alpha} d_u x = 0
\]

Theorem 3. For \(|\lambda| \to \infty \), the following asymptotic formulae are valid:

\[
\varphi_2(x, \lambda) = \cos \theta \sin \left(\frac{\lambda x^o}{\alpha} - \mu(x) - \theta \right) - \frac{1}{2\lambda} \nu(0) \cos \left(\frac{\lambda x^o}{\alpha} - \mu(x) + \theta \right) + \frac{1}{2\lambda} \sin \left(\frac{\lambda x^o}{\alpha} - \mu(x) - \theta \right) \int_0^x \nu^2(t) d_u t \\
- \frac{1}{2\lambda} K(x) \cos \left(\frac{\lambda x^o}{\alpha} - \mu(x) - \theta \right) - \frac{1}{2\lambda} L(x) \sin \left(\frac{\lambda x^o}{\alpha} - \mu(x) - \theta \right) \\
+ o \left(\frac{1}{\lambda} \exp(|\tau| \frac{x^o}{\alpha}) \right).
\]

(6)

\[
\varphi_2(x, \lambda) = \sin \left(\frac{\lambda x^o}{\alpha} - \mu(x) - \theta \right) - \frac{1}{2\lambda} \nu(0) \sin \left(\frac{\lambda x^o}{\alpha} - \mu(x) + \theta \right) + \frac{1}{2\lambda} \cos \left(\frac{\lambda x^o}{\alpha} - \mu(x) - \theta \right) \int_0^x \nu^2(t) d_u t \\
- \frac{1}{2\lambda} K(x) \sin \left(\frac{\lambda x^o}{\alpha} - \mu(x) - \theta \right) + \frac{1}{2\lambda} L(x) \cos \left(\frac{\lambda x^o}{\alpha} - \mu(x) - \theta \right) \\
+ o \left(\frac{1}{\lambda} \exp(|\tau| \frac{x^o}{\alpha}) \right).
\]

uniformly in \(x \in [0, \pi] \), where \(\mu(x) = \frac{1}{2} \int_0^x (p(t) + r(t)) d_u t, \ \nu(x) = \frac{1}{2} (p(x) - r(x)), \ K(x) = \int_0^x (M_{11}(t, \xi) - M_{22}(t, \xi)) d_u \xi d_u t, \ L(x) = \int_0^x (M_{12}(t, \xi) - M_{21}(t, \xi)) d_u \xi d_u t \) and \(\tau = \text{Im} \lambda. \)
Proof. We denote

\[\varphi_{1,0}(x, \lambda) = \cos \left(\frac{\lambda x^0}{\alpha} - \theta \right), \]

\[\varphi_{1,n+1}(x, \lambda) = \int_0^x \sin \left(\frac{\lambda x^0 - t^0}{\alpha} \right) p(t) \varphi_{1,n}(t, \lambda) dt + \int_0^x \cos \left(\frac{\lambda x^0 - t^0}{\alpha} \right) r(t) \varphi_{2,n}(t, \lambda) dt + \int_0^x \int_0^x \sin \left(\frac{\lambda x^0 - t^0}{\alpha} \right) \{ M_{11}(t, \xi) \varphi_{1,n}(\lambda, \xi) + M_{12}(t, \xi) \varphi_{2,n}(\lambda, \xi) \} \, d\xi \, d\eta, \]

\[\varphi_{2,0}(x, \lambda) = \sin \left(\frac{\lambda x^0}{\alpha} - \theta \right), \]

\[\varphi_{2,n+1}(x, \lambda) = -\int_0^x \cos \left(\frac{\lambda x^0 - t^0}{\alpha} \right) p(t) \varphi_{1,n}(t, \lambda) dt - \int_0^x \sin \left(\frac{\lambda x^0 - t^0}{\alpha} \right) r(t) \varphi_{2,n}(t, \lambda) dt - \int_0^x \int_0^x \cos \left(\frac{\lambda x^0 - t^0}{\alpha} \right) \{ M_{11}(t, \xi) \varphi_{1,n}(\lambda, \xi) + M_{12}(t, \xi) \varphi_{2,n}(\lambda, \xi) \} \, d\xi \, d\eta, \]

applying successive approximations method to the equations (4) and (5) and using lemma 3, we get the estimates (6) and (7).

The characteristic function \(\Delta(\lambda) \) of the problem (1)–(3) is defined by the relation

\[\Delta(\lambda) = \varphi_1(\pi, \lambda) \sin \beta + \varphi_2(\pi, \lambda) \cos \beta, \quad (8) \]

It is obvious that \(\Delta(\lambda) \) is an entire function and its zeros, namely \(\{ \lambda_n \}_{n \in \mathbb{Z}} \), coincide with the eigenvalues of the problem (1)–(3). Using the asymptotic formulae (6) and (7), one can easily obtain

\[\Delta(\lambda) = \sin \left(\frac{\lambda x^0}{\alpha} - \mu(x) - \theta + \beta \right) - \frac{1}{2\lambda} v(x) \sin \left(\frac{\lambda x^0}{\alpha} - \mu(x) - \theta - \beta \right) - \frac{1}{2\lambda} v(0) \sin \left(\frac{\lambda x^0}{\alpha} - \mu(x) + \theta + \beta \right) - \frac{1}{2\lambda} \cos \left(\frac{\lambda x^0}{\alpha} - \mu(x) - \theta + \beta \right) \int_0^x v(t) \, dt - \frac{1}{2\lambda} K(x) \sin \left(\frac{\lambda x^0}{\alpha} - \mu(x) - \theta + \beta \right) + \frac{1}{2\lambda} L(x) \cos \left(\frac{\lambda x^0}{\alpha} - \mu(x) - \theta + \beta \right) + o \left(\frac{1}{\lambda} \exp(\tau |\lambda x^0|) \right), \quad (9) \]

for sufficiently large \(|\lambda| \). Since the eigenvalues of the problem (1)–(3) are the roots of \(\Delta(\lambda_n) = 0 \), we can write the following equation for them:
\[
\left(1 - \frac{1}{2\lambda_n} v(\pi) \cos 2\beta - \frac{1}{2\lambda_n} v(0) \cos 2\theta - \frac{1}{2\lambda_n} K(\pi) \right) \tan(\lambda_n^{\frac{\pi^\alpha}{\alpha}} - \mu(\pi) - \theta + \beta) \\
= - \frac{1}{2\lambda_n} v(\pi) \sin 2\beta - \frac{1}{2\lambda_n} v(0) \sin 2\theta + \frac{1}{2\lambda_n} \int_0^\pi v^2(t) dt - \frac{1}{2\lambda_n} L(\pi) + o \left(\frac{1}{\lambda_n} \right)
\]

which implies that

\[
\tan(\lambda_n^{\frac{\pi^\alpha}{\alpha}} - \mu(\pi) - \theta + \beta) = \left(1 - \frac{1}{2\lambda_n} v(\pi) \cos 2\beta - \frac{1}{2\lambda_n} v(0) \cos 2\theta - \frac{1}{2\lambda_n} K(\pi) \right)^{-1} \\
\times \left(- \frac{1}{2\lambda_n} v(\pi) \sin 2\beta - \frac{1}{2\lambda_n} v(0) \sin 2\theta + \frac{1}{2\lambda_n} \int_0^\pi v^2(t) dt - \frac{1}{2\lambda_n} L(\pi) + o \left(\frac{1}{\lambda_n} \right) \right)
\]

for sufficiently large \(n \).

We obtain from the last equation,

\[
\lambda_n = \frac{\alpha}{\pi^{\alpha - n}} + \theta + \frac{\mu(\pi) - \beta}{\pi^n} \\
+ \frac{\alpha}{2\pi \pi^n} \left(v(\pi) \sin 2\beta - v(0) \sin 2\theta + \int_0^\pi v^2(t) dt - L(\pi) \right) + o \left(\frac{1}{n} \right) \quad (10)
\]

for \(|n| \to \infty \).

4. Main results

In this section, we obtain the asymptotic formula for the nodal points of considered problem and prove an inverse nodal problem for the one-dimensional conformable fractional Dirac-type integro differential system.

Lemma 4. For sufficiently large \(n \), the first component \(\varphi_1(x; \lambda_n) \) of the eigenfunction \(\varphi(x; \lambda_n) \) has exactly \(n \) nodes \(\{ x_j^n : j = 0, 1, \ldots, n - 1 \} \) in the interval \((0, \pi) \): \(0 < x_0^n < x_1^n < \cdots < x_{n-1}^n < \pi \). The numbers \(\{ x_j^n \} \) satisfy the following asymptotic formula:

\[
\left(x_j^n \right)^\alpha = \frac{(j + 1/2)^{\pi^\alpha}}{n} + \frac{\mu(x_0^n) + \theta}{n \pi^{1-\alpha}} - \frac{(j + 1/2)^{\pi^\alpha}}{n \pi} \left(\theta + \mu(\pi) - \beta \right) - \frac{\theta + \mu(\pi) - \beta}{\pi^{2-\alpha} n^2} \\
\times \left(\mu(x_0^n) + \frac{\alpha}{2\pi n^2} \left(v(0) \sin 2\theta + \int_0^{x_0^n} v^2(t) dt - L(x_0^n) \right) + o \left(\frac{1}{n^2} \right) \right) \quad (11)
\]

Proof. From (6), the following asymptotic formula can be written for sufficiently large \(n \)

\[
\varphi_1(x; \lambda_n) = \cos \left(\lambda_n^{\frac{x^\alpha}{\alpha}} - \mu(x) - \theta \right) + \frac{1}{2\lambda_n} v(x) \cos \left(\lambda_n^{\frac{x^\alpha}{\alpha}} - \mu(x) - \theta \right) \\
- \frac{1}{2\lambda_n} v(0) \cos \left(\lambda_n^{\frac{x^\alpha}{\alpha}} - \mu(x) + \theta \right) + \frac{1}{2\lambda_n} \sin \left(\lambda_n^{\frac{x^\alpha}{\alpha}} - \mu(x) - \theta \right) \int_0^x v^2(t) dt \\
- \frac{1}{2\lambda_n} K(x) \cos \left(\lambda_n^{\frac{x^\alpha}{\alpha}} - \mu(x) - \theta \right) - \frac{1}{2\lambda_n} L(x) \sin \left(\lambda_n^{\frac{x^\alpha}{\alpha}} - \mu(x) - \theta \right) \\
+ o \left(\frac{1}{\lambda_n} \exp|\tau| \frac{x^\alpha}{\alpha} \right),
\]
from \(\varphi_1((x^j)^\alpha, \lambda_n) = 0 \), we get

\[
\cos \left(\lambda_n \frac{(x^j)^\alpha}{\alpha} - \mu(x^j_\alpha) - \theta \right) = -\frac{1}{2\lambda_n} v(x^j_\alpha) \cos \left(\lambda_n \frac{(x^j)^\alpha}{\alpha} - \mu(x^j_\alpha) - \theta \right)
\]

\[
+ \frac{1}{2\lambda_n} v(0) \cos \left(\lambda_n \frac{(x^j)^\alpha}{\alpha} - \mu(x^j_\alpha) - \theta \right) \cos 2\theta
\]

\[
- \frac{1}{2\lambda_n} v(0) \sin \left(\lambda_n \frac{(x^j)^\alpha}{\alpha} - \mu(x^j_\alpha) - \theta \right) \sin 2\theta
\]

\[
- \frac{1}{2\lambda_n} \sin \left(\lambda_n \frac{(x^j)^\alpha}{\alpha} - \mu(x^j_\alpha) - \theta \right) \int_0^\alpha v^2(t)dt t
\]

\[
+ \frac{1}{2\lambda_n} K(x^j_\alpha) \cos \left(\lambda_n \frac{(x^j)^\alpha}{\alpha} - \mu(x^j_\alpha) - \theta \right)
\]

\[
+ \frac{1}{2\lambda_n} L(x^j_\alpha) \sin \left(\lambda_n \frac{(x^j)^\alpha}{\alpha} - \mu(x^j_\alpha) - \theta \right) + o \left(\frac{1}{\lambda_n} \right),
\]

\[
\left(1 + \frac{1}{2\lambda_n} v(x^j_\alpha) - \frac{1}{2\lambda_n} v(0) \cos 2\theta - \frac{1}{2\lambda_n} K(x^j_\alpha) \right) \tan \left(\lambda_n \frac{(x^j)^\alpha}{\alpha} - \mu(x^j_\alpha) - \theta - \frac{\pi}{2} \right)
\]

\[
= \frac{1}{2\lambda_n} v(0) \sin 2\theta + \frac{1}{2\lambda_n} \int_0^\alpha v^2(t)dt t - \frac{1}{2\lambda_n} L(x^j_\alpha) + o \left(\frac{1}{\lambda_n} \right),
\]

Taking into account Taylor’s expansion formula for the arctangent, we get

\[
\lambda_n \frac{(x^j)^\alpha}{\alpha} - \mu(x^j_\alpha) - \theta - \frac{\pi}{2} = j\pi + \frac{1}{2\lambda_n} \left(v(0) \sin 2\theta + \int_0^\alpha v^2(t)dt t - L(x^j_\alpha) \right) + o \left(\frac{1}{\lambda_n} \right).
\]

It follows from the last equality

\[
\frac{(x^j)^\alpha}{\alpha} = \frac{(j + \frac{1}{2}) \pi + \mu(x^j_\alpha) + \theta}{\lambda_n} + \frac{1}{2\lambda_n^2} \left(v(0) \sin 2\theta + \int_0^\alpha v^2(t)dt t - L(x^j_\alpha) \right) + o \left(\frac{1}{\lambda_n} \right).
\]

The relation (11) is proven by using the asymptotic formula

\[
\lambda_n^{-1} = \frac{\pi^{n-1}}{2n\alpha} \left(1 - \frac{\mu(\pi) + \theta - \beta}{\pi} - \frac{v(\pi) \sin 2\beta - v(0) \sin 2\theta + \int_0^\alpha v^2(t)dt t - L(\pi)}{2\pi^2} \right)
\]

\[
+ o \left(\frac{1}{n^2} \right)
\]

\[
\square
\]

Let \(X \) be the set of nodal points. For each fixed \(x \in (0, \pi) \) and \(\alpha \in (0, 1] \) we can choose a sequence \(\{x^j_\alpha\} \subset X \) so that \(x^j_\alpha \) converges to \(x \). Then the following limits are exist and finite:

\[
\lim_{|n| \to \infty} n \left((x^j_\alpha)^\alpha - \frac{(j + 1/2) \pi^n}{n} \right) = f(x).
\]
where

$$f(x) = \frac{\mu(x) + \theta}{\pi^{1-\alpha}} = \frac{x^\alpha}{\pi} (\theta + \mu(\pi) - \beta)$$ \hspace{1cm} (12)$$

and

$$\lim_{|n| \to \infty} 2n^2 \left((x_n^0)^\alpha - \frac{(j + 1/2) \pi^\alpha}{n} - \frac{\mu(x_j^0) + \theta}{n \pi^{1-\alpha}} + \frac{(j + 1/2) \pi^\alpha}{n} \left(\frac{\theta + \mu(\pi) - \beta}{n \pi} \right) \right) = g(x),$$

where

$$g(x) = \alpha \left(\nu(0) \sin 2\theta + \int_0^x \nu^2(t) \, dt - L(x) \right)$$ \hspace{1cm} (13)$$

Therefore, proof of the following theorem is clear.

Theorem 4. Let $\mu(\pi) = 0$. The given dense subset of nodal points X uniquely determines the coefficients θ and β of the boundary conditions and if $L(x)$ is known, X also uniquely determines the potential $\Omega(x)$ a.e. on $(0, \pi)$. Moreover, $\Omega(x)$, $L(x)$, θ and β can be reconstructed by the following formulas:

Step 1: for each fixed $x \in (0, \pi)$ and $\alpha \in (0, 1]$, choose a sequence $(x_n^0) \subset X$ such that $\lim_{|n| \to \infty} x_n^0 = x$;

Step 2: find the function $f(x)$ from (12) and calculate

$$\theta = f(0) \pi^{1-\alpha}$$

$$\beta = f(\pi) \pi^{1-\alpha}$$

$$D^\alpha_x \mu(x) = \pi^{1-\alpha} D^\alpha_x f(x) + \frac{\alpha}{\pi^{2\alpha - 1}} (f(0) - f(\pi))$$ \hspace{1cm} (14)$$

Step 3: find the function $g(x)$ from (13) and calculate

$$\nu(x) = \frac{1}{\sqrt{\alpha}} \sqrt{D^\alpha_x (g(x) + \alpha L(x))}$$ \hspace{1cm} (15)$$

Step 4: if $L(x)$ is known then from (14) and (15) calculate

$$p(x) = \nu(x) + D^\alpha_x \mu(x)$$

$$r(x) = D^\alpha_x \mu(x) - \nu(x)$$

If $p(x)$ and $r(x)$ are known then from (13) calculate

$$L(x) = \nu(0) \sin 2\theta + \int_0^x \nu^2(t) \, dt - \frac{g(x)}{\alpha}$$

ORCID iDs

Baki Keskin \(https://orcid.org/0000-0003-1689-8954\)
References

[1] Abdeljawad T 2015 On conformable fractional calculus J. Comput. Appl. Math. 279 57–6
[2] Hammad M A and Khalil R 2014 Conformable fractional heat differential equations Int. J. Pure Appl. Math. 94 215–21
[3] Hammad M A and Khalil R 2014 Abel’s formula and Wronskian for conformable fractional differential equations Int. J. Differ. Equ. Appl. 13 177–83
[4] Al-Refai M and Abdeljawad T 2017 Fundamental results of conformable Sturm–Liouville eigenvalue problems Complexity 2017 3720471
[5] Al-Towailb M A 2017 A q-fractional approach to the regular Sturm-Liouville problems Electron. J. Differ. Equ. 88 1–13
[6] Allahverdiev B P and Tuna H 2017 One-dimensional q-Dirac equation Math. Methods Appl. Sci. 40 7287–306
[7] Allahverdiev B P, Tuna H and Yalçınkaya Y 2019 Conformable fractional Sturm–Liouville equation Captivate Methods Appli. Sci. 42 3508–26
[8] Allahverdiev B P and Tuna H 2020 One-dimensional conformable fractional Dirac system Mat. Mex. 26 121–46
[9] Bondarenko N P 2018 An inverse problem for the integro-differential Dirac system with partial information given on the convolution kernel J. Inverse Ill-posed Probl. 27 151–7
[10] Bondarenko N P 2017 Inverse problem for the Dirac system with an integral delay of the convolution-type Mathematika Mekhanika vol 19 (Saratov: Saratov University) pp 9–12
[11] Brown P J and Sleeman B D 1996 Inverse nodal problem for Sturm–Liouville equation with eigenparameter depend boundary conditions Inverse Problems 12 377–81
[12] Buterin S A 2007 On an inverse spectral problem for a convolution integro-differential operator Results Math. 50 173–81
[13] Buterin S A 2006 The inverse problem of recovering the Volterra convolution operator from the incomplete spectrum of its rank-one perturbation Inverse Problems 22 2223–36
[14] Albeverio S, Hryniv R and Mykytyuk Y 2001 Inverse Sturm–Liouville Problems and Their Applications (New York: Nova Science)
[15] Guseinov IM 1999 On the representation of Jost solutions of a system of Dirac differential equations with discontinuous coefficients Izv. Akad. Nauk Azerb SSR 5 41–5
[16] Erdal B 2013 Fundamental spectral theory of fractional singular Sturm-Liouville operator J. Funct. Space I 113–29
[17] Freiling G and Yurko V A 2001 Inverse Sturm–Liouville Problems and Their Applications (New York: Nova Science)
[18] Gasymov M G 1968 Inverse problem of the scattering theory for Dirac system of order 2n Tr. Mosk Mat. Obsch. 19 41–112
[19] Gulsen T, Yilmaz E and Goktas S 2017 Conformable fractional Dirac system on time scales J. Inequalities Appl. 161 2017
[20] Guseinov I M 1999 On the representation of Jost solutions of a system of Dirac differential equations with discontinuous coefficients Izv. Akad. Nauk Azerb SSR 5 41–5
[21] Guo Y and Wei Y 2002 Inverse problems: dense nodal subset on an interior subinterval J. Differ. Equ. 255 2017
[22] Guo Y and Wei Y 2015 Inverse Nodal problem for Dirac equations with boundary conditions polynomially dependent on the spectral parameter Results Math. 67 95–110
[23] Hald O H and McLaughlin J R 1989 Solutions of inverse nodal problems Inverse Problems 5 307–47
[24] Horvath M 2001 On the inverse spectral theory of Schrödinger and Dirac operators Trans. Am. Math. Soc. 353 4155–71
[25] Keskin B 2013 Inverse spectral problems for impulsive Dirac operators with spectral parameters contained in the boundary and discontinuity conditions polynomially Neural Comput. Appl. 23 1329–33
[26] Keskin B 2015 Inverse problems for impulsive Dirac operators with spectral parameters contained in the boundary and multitransfer conditions Math. Methods Appl. Sci. 38 3339–45
[27] Ozkan B and Keskin A. S. 2017 Inverse nodal problems for Dirac-type integro-differential operators J. Differ. Equ. 263 8838–47
[28] Keskin B and Tel H D 2018 Reconstruction of the Dirac-type integro-differential operator from nodal data Numer. Funct. Anal. Optim. 39 1208–20
[29] Khalil R, Al Horania M, Yousefa A and Sababheh M 2014 A new definition of fractional derivative J. Comput. Appl. Math. 264 65–70
[30] Khosravian-Arab H, Dehghan M and Eslahchi M R 2015 Fractional Sturm-Liouville boundary value problems in unbounded domains, theory and applications J. Comput. Phys. 299 526–60
[31] Klimek M and Agrawal O P 2013 Fractional Sturm-Liouville problem Comput. Math. Appl. 66 795–812
[32] Kuryshova Y V and Shieh C T 2010 An inverse nodal Problem for integro-differential operators J. Inverse Ill-Posed Probl. 18 357–69
[33] Kuryshova Y V 2007 Inverse spectral problem for integro-differential operators Math. Notes 81 767–77
[34] Levitan B M and Sargsyan I S 1991 Sturm Liouville and Dirac Operators (Dudrecht: Kluwer)
[35] Marchenko V A 1986 Sturm Liouville Operators N and Applications (Basel: Birkhäuser)
[36] McLaughlin J R 1988 Inverse spectral theory using nodal points as data—a uniqueness result J. Differ. Equ. 73 354–62
[37] Law C K, Shen C L and Yang C F 1999 The inverse nodal problem on the smoothness of the potential function Inverse Problems 15 253–63
[38] Law C K, Shen C L and Yang C F 2001 Inverse Problems 17 361–3
[39] Mortezaasl H and Jodayree Akbarfam A 2019 Trace formula and inverse nodal problem for a conformable fractional Sturm-Liouville problem Inverse Problems Sci. Eng. 28 524–55
[40] Orkaz A S and Keskin B 2015 Inverse nodal problems for Sturm–Liouville equation with eigenparameter dependent boundary and jump conditions Inverse Problems Sci. Eng. 23 1306–12
[41] Rivero M, Trujillo J J and Velasco M P 2013 A fractional approach to the Sturm-Liouville problem Cent. Eur. J. Phys. 11 1246–54
[42] Wang Y P and Yurko V 2016 On the inverse nodal problems for discontinuous Sturm Liouville operators J. Differ. Equ. 260 4086–109
[43] Wang Y P and Yurko V 2018 On the missing eigenvalue problem for Dirac operators Appl. Math. Lett. 80 41–7
[44] Wei Z, Guo Y and Wei G 2015 Incomplete inverse spectral and nodal problems for Dirac operator Adv. Differ. Equ. 2015 88
[45] Wu B and Yu J 2014 Uniqueness of an inverse problem for an integro-differential equation related to the Basset problem Bound. Value Probl. 2014 229
[46] Shieh C T and Yurko V A 2008 Inverse nodal and inverse spectral problems for discontinuous boundary value problems J. Math. Anal. Appl. 347 266–72
[47] Yang X F 1997 A solution of the nodal problem Inverse Problems 13 203–13
[48] Yang X F 2001 A new inverse nodal problem J. Differ. Equ. 169 633–53
[49] Yang C F and Huang Z Y 2010 Reconstruction of the Dirac operator from nodal data Integr. Equ. Operat. Theor. 66 539–51
[50] Yang C F and Xiao P Y 2001 Inverse nodal problems for the Sturm-Liouville equation with polynomially dependent on the eigenparameter Inverse Problems Sci. Eng. 19 951–61
[51] Yang C F 2014 Inverse nodal problems of discontinuous Sturm–Liouville operator J. Differ. Equ. 254 1992–2014
[52] Yang C F and Pivovarchik V N 2013 Inverse nodal problem for Dirac system with spectral parameter in boundary conditions Complex Anal. Operat. Theory 7 1211–30
[53] Zhaowen Z, Huixi L, Jinming C and Yanwei Z 2020 Criteria of limit-point case for conformable fractional Sturm-Liouville operators Math. Methods Appl. Sci. 43 2548–57