Molecular and cellular regulation of Toll-like receptor-4 activity induced by lipopolysaccharide ligands

Ardiyanto Liaunardy-Jopeace† and Nicholas J. Gay *

Department of Biochemistry, University of Cambridge, Cambridge, UK

As well as being the primary signaling receptor for bacterial endotoxin or lipopolysaccharide, Toll-like receptor-4 function is modulated by numerous factors not only in the context of microbial pathogenesis but also autoimmune and allergic diseases. TLR4 is subject to multiple levels of endogenous control and regulation from biosynthesis and trafficking to signal transduction and degradation. On the other hand regulation of TLR4 activity breaks down during Gram−ve sepsis leading to systemic damage, multi organ failure, and death. In this article, we review how TLR4 traffics from the early secretory pathway, the cis/trans Golgi to the cell surface and endolysosomal compartments. We will present evidence about how these processes influence signaling and can potentially lead to increased sensitivity to ligand-dependent activation as well as ligand-independent constitutive activation that may contribute to pathogenesis in sepsis. We will also discuss how sustained signaling may be coupled to endocytosis and consider the potential molecular mechanisms of immuno-modulators that modify TLR4 signaling function including the cat allergen FelD1 and endogenous protein ligands such as the extracellular matrix protein tenascin C and calprotectin (MRP8/14).

Keywords: toll-like receptor 4, trafficking, sensitization, allergens, endogenous ligands

INTRODUCTION

Due to its importance in host innate immune response against infection, as well as in pathogenesis of autoimmune diseases and chronic inflammatory conditions, TLR4 signaling activity is subject to complex regulation (1). TLR4 activates two distinct pathways originating from different cellular locations, the cell surface, and the endosome. This results either in inflammatory responses mediated by the adaptor MyD88 and transcription factor NFκB or anti-viral signaling responses transduced by TRAM/TRIF and IRF3 (2). It is thus critical to ensure that signals are appropriately activated at the right place and the right time, and are terminated when no longer required. The roles of accessory and adaptor molecules in the regulation of TLR4 signaling from biosynthesis to activation and eventually to degradation have been subject to intensive study (Table 1). CD14 and MD2, for example, are important for recognition and delivery of lipand LPS to receptor at the cell surface, whereas the cytosolic TIR domain-containing adaptors determine which pathway is activated. These two molecules, however, have additional roles in the trafficking and localization of TLR4 receptor, before and after LPS stimulation, which will be discussed in Sections “Biosynthesis and Localization of TLR4” and “Vesicular Trafficking and Signaling of TLR4.” Last year the Nobel Prize in Physiology or Medicine was awarded for molecular studies of vesicular trafficking, recognizing the importance of these fundamental processes for the biosynthesis and trafficking of secreted proteins and for cellular regulation. Dysregulation of these pathways can result in over-sensitization TLR4 responses. In addition, several non-canonical activators of TLR4, such as cat allergen FelD1, have been described recently to induce sensitization of the receptor. Here, we review recent advances that shed light on the mechanisms that regulate TLR4 at the molecular and cellular level with an emphasis on the role of protein secretory pathways.

BIOSYNTHESIS AND LOCALIZATION OF TLR4

Two chaperone molecules glycoprotein (gp) 96 and protein associated with TLR4 (PRAT4A) are required for the correct folding of TLR4, and other TLRs, in the ER (3–5, 32). Both chaperones interact with TLR4 in the ER and depletion of either molecule results in reduced cell surface expression of TLR4 and hence lower activity in response to LPS stimulation [Reviewed in Ref. (33)]. In addition to its role as a co-receptor for LPS on the cell surface, MD2 is also required for correct glycosylation of TLR4 during its biosynthesis. MD2 associates with the nascent TLR4 in the ER, possibly assisted by the chaperones, and at least in embryonic fibroblasts from MD2−/− mice, TLR4 is not transported to the cell surface but accumulated in the Golgi (6). This is because MD2 is required for correct N-glycosylation of TLR4 that enables the mature receptor complex to be trafficked to the cell surface (7, 8). Overall, correct post-translational modification of TLR4 in the ER, especially the addition of mannosyl N-linked glycans, is important for cell surface localization of the mature receptor, which is crucial for ligand-dependent signaling activity.

VESICULAR TRAFFICKING AND SIGNALING OF TLR4

VESICULAR TRAFFICKING OF TLR4 FROM THE ER TO THE CELL SURFACE

In the ER, correctly folded cargo for anterograde transport to the Golgi is selected for packaging into COPII-coated vesicles (Figure 1). Selection of folded glycoprotein cargo such as TLR4...
Table 1 | Accessory molecules that regulate TLR4 signaling activity.

Accessory molecules	Roles in the regulation of TLR4 signaling	Reference
PRAT4A	TLR4 folding in the ER	(3, 4)
gp96	TLR4 folding in the ER	(5)
MD2	Correct glycosylation of TLR4, and accessory molecule for LPS recognition	(6–9)
CD14	Co-receptor for LPS on the cell surface, and promotes LPS-induced endocytosis of the activated receptor	(10–12)
TMED7	Trafficking of TLR4 to the cell surface/to the late endosome⁴	(13, 14)
Rab10	Trafficking of TLR4 to the cell surface	(15)
Rab11a	Trafficking of TLR4 from endocytic recycling compartment to E. coli-containing phagosome	(16)
Rab7b	Degradation of TLR4 in the lysosome	(17)
MyD88	Adaptor molecule for TLR4 signaling transduction inside the cell	(18–20)
Mal	Adaptor molecule for TLR4 signaling transduction inside the cell	(21, 22)
TRIF	Adaptor molecule for TLR4 signaling transduction inside the cell	(23, 24)
TRAM	Adaptor molecule for TLR4 signaling transduction inside the cell	(25, 26)
SARM	Negative regulator of TLR4 signaling	(27–29)
CD11b	Positive regulator of TLR4 signaling	(30)
PLC Cɛ-2	Promotes LPS-induced endocytosis of activated TLR4	(31)

A non-exhaustive list showing molecules that play roles in regulating the activity of TLR4 signaling that ranges from the biosynthesis stage of the receptor in the early secretory pathway to the degradation of the activated receptor in the lysosomes. Only references that have direct connections to TLR4 are listed here. *Currently, there are two opposite conclusions from two independent studies on the roles of TMED7 in the signaling of TLR4.

It remains unclear how TMED7 and TLR4 interact with each other in the ER and how they dissociate during trafficking to the cell surface. On the other hand, it is known that the small GTPase Rab10 co-localizes with TLR4 in the Golgi and enhances TLR4 signaling activity by increasing the rate of TLR4 trafficking to the cell surface from the Golgi when cells are stimulated with LPS (15). Rab10, a member of the Rab family, is likely to assist this process by positively regulating vesicle formation and fusion with the target compartments. Rab10 expression is elevated in dendritic cells and macrophages after LPS stimulation, which acts as a positive feedback to ensure more TLR4 receptors are translocated to the cell surface so that cells remain responsive to LPS. However, Rab10 is a soluble cytosolic protein and cannot itself select cargo for vesicular trafficking to the cell surface (44). Thus, it is likely that a transmembrane trafficking adaptor is required to act as a specific cargo receptor to couple Rab10 to TLR4, a role that could also be carried out by TMED7. Another family member, the mammalian TMED2, and its cargo molecule, the 7-TM protease-activated receptor 2 (PAR2) may provide a relevant analogy. Like TMED7 and TLR4, TMED2 forms complexes with its cargo PAR2 that require the GOLD and dimerization motifs of the adaptor and an extracellular loop of the receptor (45). In order for PAR2 to traffic to the surface, TMED2 is dissociated from the complex by the activation of Arf1, another member of the small GTPase superfamily. Interestingly, LPS stimulation leads to a significant reduction in the amount of TMED7/TLR4 complexes present in the cell consistent with the idea that Rab10 plays a similar role in trafficking to that fulfilled by Arf1 in the case of PAR2.

ENDOCYTIC TRAFFICKING OF TLR4

Activation of TLR4 by LPS appears to be coupled to internalization and this depletes the cell surface TLR4 receptors, which could cause cells to become desensitized to the stimuli. Indeed a study has shown that internalization of TLR4 in the absence of LPS, induced by an anti-CD14 antibody on the cell surface, reduced LPS responsiveness in human primary monocytes and THP-1 cells (46). Constant translocation of TLR4 from the Golgi to the cell surface is therefore required to replenish the level of cell surface TLR4
A simplified schematic of TLR4 trafficking in the early secretory and endocytic pathways. (1) Upon translation, folding, and glycosylation of the protein in the ER, nascent TLR4 is recognized by TMED7 cargo receptor to be trafficked anterogradely in COP II-coated vesicles toward the Golgi complex (13). (2) Following maturation within the Golgi complex, mature TLR4, along with MD2 (not shown in diagram), is transported to the cell surface via vesicular trafficking that is Rab10 dependent (15). (3) Alternatively, mature TLR4 can be translocated to endosomal recycling compartment (ERC) where it forms a distinct intracellular pool of receptors that can recognize phagocytosed Gram-negative bacteria such as *E. coli* (16). From here, activated TLR4 can mount innate immune responses intracellularly independent of the cell surface receptor. It is likely that the ERC also act as a recycling organelle for new and old receptors back to the cell surface to resensitize the cell. (4) Finally, upon receptor activation on the cell surface, receptor is endocytosed into early endosome where TRIF/TRAM pathway is initiated. Eventually, the early endosome matures into late endosome fuse with the lysosome where the receptor will be degraded to terminate the signaling. This process is Rab7b-dependent.

SENSITIZATION OF TLR4 RESPONSES BY ALLERGENS, METALS, AND ENDOGENOUS LIGANDS

The activation of innate pattern recognition receptors such as TLR4 is required to initiate both innate and adaptive immune responses. These recognition and signaling processes also play a central role in the development of inflammatory and autoimmune diseases such as rheumatoid arthritis, asthma, and septic shock (58). The lipid A moiety of LPS is sufficient to activate TLR4. The acyl chains of immunostimulatory LPS intercalate into the β-sandwich fold of MD-2. One of the six fatty acyl chains is partially exposed on the surface of MD-2, creating a hydrophobic patch that can form an interface with another TLR4/MD-2 heterodimer (59). Ionic interactions mediated by the glucosamine phosphate backbone of LPS further stabilize this MD-2-TLR4 interface and promote the formation of a secondary homo-dimerization site between the lateral surfaces of the receptor’s leucine rich repeat (LRR) solenoids (59). This leads to the assembly of an “M” shaped heterotetramer that positions the C-termini of the LRR solenoids in close proximity, allowing the cytosolic TIR domains of the receptor to dimerize. By contrast, divalent metal ions such as Ni²⁺ and Co²⁺ that can induce contact dermatitis in humans act by binding to specific histidine residues in the secondary receptor homo-dimerization site. A recent study has identified another direct mechanism for TLR4 activation. In this case the cationic, di-acyl lipid di-C14 amidine activates TLR4 by a mechanism that is independent of MD-2. Instead di-C14 amidine is predicted to bind to a hydrophobic crevice in the receptor homo-dimerization site, stabilizing the formation of this interface.

By contrast to the activators described above another group of immuno-modulators do not directly induce assembly of the...
activated TLR4/MD-2 heterotetramer. The major cat allergen, the dander protein FelD1, enhances TLR4 signaling by about 10-fold but does not bind to TLR4/MD-2 (53). Instead, it is likely that FelD1 can sequester environmental LPS and other lipid TLR agonists. Thus, dander proteins loaded with environmentally derived PAMPs may associate with cell membranes, facilitating lipid presentation, and transfer to accessory molecules such as CD14 or directly to receptor complexes. Alternatively, FelD1 may promote greater clustering of TLR4-bearing lipid rafts, leading to increased receptor activation. DerP2 from the dust mite and Canf6 from dog, two allergens that are structurally distinct from FelD1, also enhance TLR4 activity suggesting that this may be a common feature of allergen action. It is possible that this lipid transfer or raft stabilization mechanism may underlie the properties of endogenous TLR activators as well. For example, the Mrp8/Mrp14 protein complex calprotectin enhances LPS activation of TLR4 when presented preacall. Mrp8/14 are calcium binding EF-hand proteins and they associate with lipid raft structures (61). A third class of endogenous activator is the large extracellular matrix protein tenascin C. Tenascin C is induced by tissue damage and the C-terminal fibrinogen globule (FGB) module causes activation of TLR4 in chronic inflammatory disease such as rheumatoid arthritis (56). Attempts to show direct binding of FGB to TLR4/MD-2 have not been successful suggesting an indirect mode of action for FGB.

CONCLUSION
In conclusion, TLR4 responsiveness to its bonafide ligand, LPS, can be further regulated by its cellular localization and the clustering effect induced by immuno-modulatory molecules such as the cat allergen FelD1. The regulation of the recycling and trafficking of many membrane receptors, especially TLR4, is dynamic and involves cargo receptors and small GTPase molecules. This provide an additional control to receptor signaling activity in addition to gene expression control, post-translational modifications prior to the arrival of signal, and recruitment of various adaptor molecules and kinesins downstream of the receptor activation by ligands. Compartmentalization is particularly important for TLR4 as it dictates which pathway is activated upon receptor stimulation (16). These studies provide insight into a different mode of receptor regulation through membrane-bound vesicular trafficking. Allergens and endogenous activators may display a second non-canonical mode of regulation of TLR4 by functioning as lipid binding proteins or membrane microdomain stabilizers (31, 62).

REFERENCES
1. Bryant CE, Spring DR, Gangloff M, Gay NJ. The molecular basis of the host response to lipopolysaccharide. Nat Rev Microbiol (2010) 8:8–14. doi:10.1038/nrmicro2266
2. O'Neill LA, Bowie AG. The family of five: TIR-domain-containing adaptors in signal transduction. Nat Rev Immunol (2002) 2:353–64. doi:10.1038/nri7209
3. Wakabayashi Y, Kobayashi M, Akashi-Takamura S, Tanimura N, Konno K, Takahashi K, et al. A protein associated with toll-like receptor 4 (PRAT4A) regulates cell surface expression of TLR4. J Immunol (2006) 177:1772–9. doi:10.4049/jimmunol.177.3.1772
4. Takahashi K, Shibata T, Akashi-Takamura S, Kiyokawa T, Wakabayashi Y, Tanimura N, et al. A protein associated with toll-like receptor 4 (TLR4) (PRAT4A) is required for TLR4-dependent immune responses. J Exp Med (2007) 204:2963–76. doi:10.1084/jem.20071132
5. Randow F, Seed B. Endoplasmic reticulum chaperone grp78 is required for innate immunity but not cell viability. Nat Cell Biol (2001) 3:891–6. doi:10.1038/ncb1001-891
6. Nagai Y, Akashi S, Nagafuku M, Ogata M, Iwakura Y, Akira S, et al. Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat Immunol (2002) 3:667–72. doi:10.1038/ni809
7. Correia JD, Ulevitch RJ. MD-2 and TLR4 N-linked glycosylations are important for a functional lipopolysaccharide receptor. J Biol Chem (2002) 277:1845–54. doi:10.1074/jbc.M109910200
8. Ohnishi T, Muroi M, Tanamoto K. MD-2 is necessary for the toll-like receptor 4 protein to undergo glycosylation essential for its translocation to the cell surface. Clin Diagn Lab Immunol (2003) 10:405–10. doi:10.1128/CDLI.2003.10.4.405
9. Giaianni TL, Teghanemet A, Zhang D, Coussens NP, Dockstader W, Ramaswamy S, et al. Isolation of an endotoxin-MD-2 complex that produces toll-like receptor 4-dependent cell activation at picomolar concentrations. Proc Natl Acad Sci U S A (2004) 101:4186–91. doi:10.1073/pnas.0306901101
10. Zanoni I, Ostuni R, Marek LR, Barresi S, Barton GM, et al. CD14 controls the LPS-induced endocytosis of toll-like receptor 4. Cell (2011) 147:868–80. doi:10.1016/j.cell.2011.09.051
11. Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC. Cd4a, a receptor for complexes of lipopolysaccharide (Lps) and Lps binding protein. Science (1999) 249:1431–3. doi:10.1126/science.1693811
12. Jiang QG, Akashi S, Miyake K, Petit HR. Cutting edge: lipopolysaccharide induces physical proximity between CD14 and toll-like receptor 4 (TLR4) prior to nuclear translocation of NP-kappa B. J Immunol (2000) 165:3541–4. doi:10.4049/jimmunol.165.7.3541
13. Liaunardy-Jopeace A, Bryant CE, Gay NJ. The COPT2 adaptor protein TMED9 is required to initiate and mediate the delivery of TLR4 to the plasma membrane. Sci Signal (2014) 7:ra70. doi:10.1126/scisignal.2005275
14. Doyle SL, Husebye H, Connolly DJ, Espievik T, O'Neill LA, McGettrick AF. The GOLD domain-containing protein TMED7 inhibits TLR4 signalling from the endosome upon LPS stimulation. Nat Commun (2012) 3:707. doi:10.1038/ncomms1706
15. Wang D, Lou J, Ouyang C, Chen W, Liu Y, Liu X, et al. Ras-related protein Rab10 facilitates TLR4 signaling by promoting replenishment of TLR4 onto the plasma membrane. Proc Natl Acad Sci U S A (2010) 107:13806–11. doi:10.1073/pnas.1009428107
16. Husebye H, Aune MH, Stenvik J, Samstad E, Skjeldal F, Halas O, et al. The Rab11A GTPase controls toll-like receptor 4-induced activation of interferon regulatory factor-3 on phagosomes. Immunity (2010) 33:583–96. doi:10.1016/j.immuni.2010.09.010
17. Wang Y, Chen C, He D, Liu H, An H, et al. Lysosome-associated small Ras GTPase Rab7 negatively regulates TLR4 signaling in macrophages by promoting lysosomal degradation of TLR4. Blood (2007) 110:962–71. doi:10.1182/blood-2007-01-066027
18. Muzio M, Ni J, Feng P, Dixit VM. IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science (1997) 278:1612–5. doi:10.1126/science.278.5343.1612
19. Wesche H, Henzel WJ, Shillinglaw W, Li S, Cao ZD. MyD88: an adaptor that recruits IRAK to the IL-1 receptor complex. Immunity (1997) 7:837–47. doi:10.1016/S1074-7613(00)80402-4
20. Kawai T, Adachi O, Ogawa T, Takeda A, Kira S. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity (1999) 11:115–22. doi:10.1016/S0174-7613(00)80886-2
21. Conrad HD, Palsson-McDermott EM, Bowie AG, Jeffries CA, Mansell AS, Brady G, et al. Mal (MyD88-adapter-like) is required for toll-like receptor-4 signal transduction. Nature (2001) 413:78–83. doi:10.1038/3502578
22. Horng T, Barton GM, Medzhitov R. TIRAP: an adapter molecule in the toll interleukin-1 receptor signaling pathway. Science (2003) 301:1649–53. doi:10.1126/science.1087262
23. Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H, et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science (2003) 301:1649–53. doi:10.1126/science.1087262
24. Yamamoto M, Sato S, Mori K, Hoshino K, Takeuchi O, Takeda K, et al. Cutting edge: a novel toll/IL-1 receptor Domain containing adaptor protein that preferentially activates the IFN-beta promoter in the toll-like receptor signaling. J Biol Chem (2003) 278:24526–32. doi:10.1074/jbc.M303451200
25. Bin LH, Xu LG, Shu HB. TIRF: a novel toll/interleukin-1 receptor (TIR) domain-containing adaptor protein involved in TLR signaling. J Biol Chem (2003) 278:24526–32. doi:10.1074/jbc.M303451200
26. Yamamoto M, Sato S, Hemmi H, Uematsu S, Hoshino K, Kaisho T, et al. TRAM is specifically involved in the toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat Immunol (2003) 4:1144–50. doi:10.1038/nim896
27. Carty M, Goodbody R, Schroder M, Stack J, Moynagh PN, Bowie AG. The human adaptor SARM negatively regulates adaptor protein TRIF-dependent toll-like receptor signaling. Nat Immunol (2006) 7:1074–81. doi:10.1038/nim1382
28. Peng J, Tian Q, Lin B, Panneerselvam P, Wang X, Luan XL, et al. SARM inhibits Liaunardy-Jopeace and Gay Trafficking and sensitization of TLR4 both TRIF- and MyD88-mediated AP-1 activation. Eur J Immunol (2010) 40:1738–47. doi:10.1002/eji.200940304
29. Mink M, Fogelgren B, Olzewska K, Maroy P, Cuisar A. A novel human innate (SARM) at chromosome 17q11 encodes a protein with a SAM motif and structural similarity to Armadillo/beta-catenin that is conserved in mouse, Drosophila, and Caenorhabditis elegans. Genomics (2001) 74:234–44. doi:10.1006/geno.2001.6548
30. Ling GS, Bennett J, Woollard KJ, Szajna M, Fossati-Inamik J, Taylor PR, et al. Integrin CD11b positively regulates TLR4-induced signalling pathways in dendritic cells but not in macrophages. Nat Commun (2014) 5:3039. doi:10.1038/ncomms4039
31. Chiang CY, Veckman V, Limmer K, David M. Phospholipase Cgamma-2 and Mrp14 are endogenous activators of toll-like receptor 4 (TLR4) endocytosis and interferon regulatory factor 3 (IRF3) activation. J Biol Chem (2012) 287:3704–9. doi:10.1074/jbc.C111.328559
32. Horner MW, Normark BH, Vandewalle A, Normark S. Intracellular recognition and cobalt facilitate TLR4 homodimerization independently of MD2. J Biol Chem (2014) 289:11043–57. doi:10.1074/jbc.M114.535200
33. Brandizzi F, Barlowe C. Organization of the ER-Golgi interface for membrane traffic control. Nat Rev Mol Cell Biol (2013) 14:382–92. doi:10.1038/nrm3588
34. Lederkremer GZ. Glycoprotein folding, quality control and ER-associated degradation. Curr Opin Struct Biol (2009) 19:515–23. doi:10.1016/j.sbi.2009.06.004
35. Saitoh S. Chaperones and transport proteins regulate TLR4 trafficking and activation. Immunobiology (2009) 214:594–600. doi:10.1016/j.imbio.2008.11.012
36. Ledekramer GM. Glycoprotein folding, quality control and ER-associated degradation. Curr Opin Struct Biol (2009) 19:515–23. doi:10.1016/j.sbi.2009.06.004
37. Brandizzi F, Barlowe C. Organization of the ER-Golgi interface for membrane traffic control. Nat Rev Mol Cell Biol (2013) 14:382–92. doi:10.1038/nrm3588
38. Strating JR, Martens GJ. The p24 family and selective transport processes at the ER-Golgi interface. Biol Cell (2010) 101:495–509. doi:10.1042/BC20080233
39. Strating JR, van Bakel NL, Leunissen JA, Martens GJ. A comprehensive overview of the vertebrate p24 family: identification of a novel tissue-specifically expressed member. Mol Biol Evol (2009) 26:1707–14. doi:10.1093/molbev/msp099
40. Schmoller F, Singer-Krueger B, Schroder S, Kruger U, Barlowe C, Riezman H. The absence of Emp24p, a component of ER-derived COPII-coated vesicles, causes a defect in transport of selected proteins to the Golgi. EMBO J (1995) 14:1329–39.
41. Rojo M, Emery G, Marjomaki V, McDowall AW, Parton RG, Gruenberg J. The matrix component biglycan is proinflammatory and signals through toll-like receptors 4 and 2 in macrophages. J Cell Sci (2010) 123:3709–19. doi:10.1242/jcs.072787
42. Drenzel A, Otto F, Girod A, Pepperkok R, Watson R, Rosewell I, et al. The p24 family member p23 is required for early embryonic development. Curr Biol (2000) 10:55–6. doi:10.1016/S0960-9822(99)00266-3
43. Elrod-Erickson MJ, Kaiser CA. Genes that control the fidelity of endoplasmic reticulum to Golgi transport identified as suppressors of vesicle budding mutation. Mol Biol Cell (1996) 7:1043–58. doi:10.1091/mbc.7.7.1043
44. Belden WL, Barlowe C. Deletion of yeast p24 genes activates the unfolded protein response. Mol Biol Cell (2001) 12:957–69. doi:10.1091/mbc.12.4.957
45. Jerome-Majewska LA, Achatz T, Liu L, Lopu H, Facy E. The trafficking protein Timed2/p24beta1 is required for morphogenesis of the mouse embryo and placenta. Dev Biol (2010) 341:154–66. doi:10.1016/j.ydbio.2010.02.019
46. Chen Y, Lipnicki-Schwartz J, Rab1 delivers GLUT4 storage vesicles to the plasma membrane. Commun Integr Biol (2013) 6:e23779. doi:10.4161/cib.23779
47. Luo W, Wang Y, Reiser G, p24A, a type 1 transmembrane protein, controls ARF1-dependent resensitization of protease-activated receptor-2 by influence on receptor trafficking. J Biol Chem (2007) 282:30246-55. doi:10.1074/jbc.M703205200
48. Kim D, Kim JY. Anti-CD14 antibody reduces LPS responsiveness via TLR4 interactor. FEBS Lett (2014) 577:210–5. doi:10.1016/j.febslet.2013.09.009
49. Rocuts F, Ma Y, Zhang X, Gao W, Yue Y, Vartanian T, et al. Carbon monoxide suppresses membrane expression of TLR4 via myeloid differentiation factor-2 in betaTC3 cells. J Immunol (2010) 185:2134–9. doi:10.4049/jimmunol.0902782