Coexistence of long-range magnetic order and superconductivity from Campbell penetration depth measurements

R Prozorov, M D Vannette, R T Gordon, C Martin, S L Bud'ko and P C Canfield

Ames Laboratory, Iowa State University, Ames, IA 50011, USA
and
Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA

E-mail: prozorov@ameslab.gov

Received 17 September 2008, in final form 26 November 2008
Published 28 January 2009
Online at stacks.iop.org/SUST/22/034008

Abstract

Application of a tunnel-diode resonator (TDR) technique for studies of the vortex response in magnetic superconductors is described. Operating at very small excitation fields and a sufficiently high frequency, the TDR was used to probe the small-amplitude linear AC response in several types of single crystals where long-range magnetic order coexists with bulk superconductivity. Full local-moment ferromagnetism destroys superconductivity and can coexist with it only in a narrow temperature range (~0.3 K). In contrast, weak ferromagnetic as well as antiferromagnetic orders can coexist with bulk superconductivity and may even lead to an enhancement of vortex pinning. By analyzing the Campbell penetration depth we find a sharp increase of the true critical current in the vicinity of the magnetic phase transitions. We conclude that critical magnetic fluctuations are responsible for this enhancement.

On the occasion of his 80th birthday, we dedicate this paper to Alexey Alexeevich Abrikosov who discovered two types of superconductors and described vortices in type-II superconductors (Abrikosov 1957 Sov. Phys.—JETP 5 1174 and Zh. Eksp. Teor. Fiz. 32 1442).

1. Introduction

The coexistence of bulk superconductivity (SC) and long-range magnetic order (LRMO) has been studied by many researchers over the past half-century [3–13]. In fact, this topic has been the subject of so many works and in so many materials that we have to apologize beforehand for any inadvertent omission of some key references. While full local-moment ferromagnetism (LMFM) can coexist with superconductivity only in narrow temperature and field intervals, antiferromagnetic (AFM) and weak and/or itinerant ferromagnetic (IFM) order can occupy significant portions of the H–T phase diagram in many superconductors. Magnetic superconductors can be classified according to their transition temperatures. Let us use T_{SC} for the superconducting transition, T_{C} for the Curie temperature of a ferromagnet and T_{N} for the Néel temperature of an antiferromagnet. Then antiferromagnetic superconductors are the materials with $T_{N} < T_{SC}$ (e.g. ErNi$_2$B$_2$C, $T_{N} = 6$ K and $T_{SC} = 11$ K), superconducting antiferromagnets with $T_{N} > T_{SC}$ (e.g. DyNi$_2$B$_2$C, $T_{N} = 12$ K and $T_{SC} = 6$ K), superconducting ferromagnets with $T_{C} > T_{SC}$ (e.g. Y$_9$Co$_7$ [14], $T_{C} = 8$ K and $T_{SC} = 3$ K) and ferromagnetic superconductors with $T_{C} < T_{SC}$ (e.g. ErRh$_4$B$_4$, $T_{C} = 1.1$ K and $T_{SC} = 8.5$ K). Full local-moment ferromagnetic superconductors are rare. In addition to ErRh$_4$B$_4$ [15], there is Ho$_3$Mo$_6$S$_8$ [16] ($T_{C} \approx 0.7$ K, $T_{SC} \approx 1.8$ K). Other types of coexisting phases are more abundant, with borocarbides being among the most interesting due to their robust ambient pressure and relatively high T_{SC} superconductivity, weak pinning and availability in (clean) single-crystal form. A separate discussion should include itinerant ferromagnetic superconductors, such as Y$_9$Co$_7$ [14], as well as the more recent UGe$_2$ [17, 18] and UIr [19]. In this case, the coexisting phase may be quite different from the local-moment systems.
Practically all techniques used in low-temperature solid-state physics have been employed to study magnetic superconductors (see, for example, [5−7]). The general consensus is that local-moment ferromagnetism destroys superconductivity (at least with singlet pairing) due to spin–flip pair breaking, so the coexisting region is narrow but finite [5, 20]. Close to the FM boundary various exotic effects are possible. For example, Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) spatially modulated superconductivity with finite pairing momentum, a crossover from type-II to type-I superconductivity as well as unusual spin configurations of the ferromagnetic subsystem [5−7]. A weak and/or itinerant ferromagnetic state can coexist with superconductivity more easily, while developing spatially inhomogeneous configurations (spiral or domain-like) on length scales less than the superconducting coherence length, so that the effect of the exchange field on the Cooper pairs is reduced. AFM order can coexist with superconductivity in an even wider range of materials. Of course, the spin configurations may be quite different from simple parallel or antiparallel alignment and various metamagnetic transitions can still be found in the superconducting region of the $H−T$ diagram. Adding the effect of anisotropy, both superconducting and magnetic, leads to a variety of interesting effects and coexisting phases.

In this paper we describe a sensitive tunnel-diode resonator technique applied to study the small-amplitude linear AC response in the vortex state of magnetic superconductors. It directly probes the dynamic magnetic susceptibility, which in type-II superconductors is determined by the vibrations of Abrikosov vortices in their potential wells, and is usually expressed in terms of the so-called Campbell penetration depth [21, 22]. In the absence of vortices, the same measurement probes the London penetration depth. We will describe results obtained on several magnetic superconductors and show that such measurements can not only be used for precision mapping of the $H−T$ phase diagram, but also serve to study the mutual influence of LRMO and SC deep in the superconducting state.

2. Campbell penetration depth

The response of an elastic medium in the presence of disorder is a general problem in physics, applicable to charge density waves, dislocations, ferromagnetic domain walls and vortices in superconductors. In unconventional and magnetic superconductors, strong thermal, magnetic and quantum fluctuations add new levels of complexity [21−23]. Usually, the linear elastic response is sufficient to explain the data. In particular, the low-amplitude AC response assumes the validity of Hooke’s law [22, 24−29], so the reaction of Abrikosov vortices to small perturbations is perfectly elastic. Vortices transmit these perturbations caused by a small AC field at the surface as either compressional, tilt waves or both, depending upon the geometry of the experiment [22, 30]. In both cases the AC response has been calculated by several authors [21, 22, 28−32] and is given to a good approximation by $\lambda^2 = \lambda^2_L + \lambda^2_{vortex}$, where $\lambda_L(T)$ is the London penetration depth and λ^2_{vortex} is the extent of the vortex-transmitted perturbation, given by [31, 32]

$$\lambda^2_{vortex} = \frac{B^2}{4\pi \alpha} \frac{1 - i \omega / \omega_{pin} \exp \left(-U / k_B T \right)}{1 + i \omega / \omega_{pin}}$$

where the pinning is parameterized by the Labusch constant per unit volume α [24], $\omega_{pin} = \alpha / \eta$ is the pinning frequency and η is the viscous drag coefficient. ω_{pin} is typically 10^9 Hz or higher [33]. $U(T, B)$ is the vortex activation energy that determines the rate of thermal activation. This term becomes important near the usual irreversibility line and gives rise to a large increase in λ_{vortex}. The effects discussed in this paper are roughly 1000 times smaller and occur at temperatures well below T_{SC}, where $U(T, B)$ is large and $\omega_{pin} \exp \left(-U / k_B T \right) \ll \omega \ll \omega_{pin}$ where our working frequency $\omega / 2\pi \approx 10$ MHz. The vortex response is then dominated by the Campbell length [22, 25, 26, 28, 30], $\lambda^2_L = C_{xx} / \alpha$, where C_{xx} is the relevant elastic module, C_{11} for compression (excitation field is parallel to the vortices) or C_{44}−tilt module (AC field is perpendicular to the vortices). Both moduli are approximately equal to $B^2 / 4\pi$ and with the Labusch parameter, $\alpha = B j_c / \eta r_p$ [24], we obtain a widely observed \sqrt{B} dependence in the penetration depth in the vortex pinning regime. The radius of the pinning potential, r_p, is usually taken to be the size of the vortex core or the coherence length, ξ. The true critical current density, j_c, as opposed to that estimated from the relaxed persistent current density obtained from $M(H, T)$, can thus be obtained from the measurements of λ_L. This approach can be further generalized by taking into account the non-parabolic shape of the pinning potential and the presence of the Bean biasing current in a non-uniform vortex distribution [29]. It should be noted that certain sharp features observed in the measured $\lambda(T, B)$ can be interpreted as abrupt or discontinuous changes in the elastic moduli related, for example, to the transformation from the triangular to the square flux lattice [34].

For the purpose of this paper, we will therefore use the expression applicable deep in the superconducting state, which is far from the flux flow regime, because then $\lambda_L \ll \lambda_C$:

$$\lambda^2 = \lambda^2_L + \lambda^2_C \approx \xi \frac{B^2}{4\pi \xi j_c}.$$

3. Experimental details

3.1. Tunnel-diode resonator technique

The radio-frequency dynamic magnetic susceptibility, χ, was measured by using a sensitive tunnel-diode resonator (TDR) technique. The design and capabilities of the TDR are discussed elsewhere [35−38]. In brief, the resonance is maintained by a tunnel diode that exhibits negative differential resistance when properly biased, and thus acts as a low current AC power source that compensates for losses in an LC tank circuit. As a result, the circuit self-resonates at the natural resonant frequency, $2 \pi f_0 = 1 / \sqrt{L C}$, and the excitation field of the inductor, L, is very low, ~20 mOe. This small excitation field is especially advantageous when
Figure 1. (a) Dynamic magnetic susceptibility, $4\pi\chi(T)$, measured in different applied DC fields in a ErNi$_2$B$_2$C single crystal. External DC and AC magnetic fields were applied along the crystallographic a axis. (b) H–T phase diagram constructed by mapping various features detected in (a). (c) Similar to (a), but magnetic field is applied along the c axis. (d) H–T phase diagram constructed from (c).

studying vortices in superconductors, because it is not strong enough to displace them out of the potential wells, so it is only probing vortex oscillations about their static positions. This is known as the Campbell regime. Conventional AC techniques driven by external power sources usually require relatively large excitation fields (0.1–10 Oe), because they rely on measurements of the amplitude, whereas the TDR technique is based on the measurements of the frequency shift. A properly designed and stabilized circuit allows one to measure changes in the dynamic magnetic susceptibility of the order of a few parts per billion. For typical crystals (\sim1 mm in size) this translates into sub-Ångström resolution of the penetration depth or pico-emu sensitivity to the changes in the magnetic moment.

The sample to be studied is mounted on a sapphire rod with a small amount of low-temperature grease and inserted into a small copper coil which acts as the inductor in the LC tank circuit. Changes in the magnetic susceptibility of the sample induce changes in the resonant frequency of the LC circuit. It is straightforward to show that

$$\frac{\Delta f}{f_0} \approx -\frac{1}{2V_c(1-N)}\frac{V_s}{4\pi\chi},$$

where $\Delta f = f(H, T) - f_0$ is the change in the resonant frequency due to the sample, f_0 is the resonant frequency of an empty coil, V_s is the volume of the sample, V_c is the volume of the coil and N is the demagnetization factor. The magnetic susceptibility of a superconductor in the limit of small excitation field (linear AC response) can be written as

$$4\pi\chi \approx \frac{\lambda(\mu)}{R} \tanh \frac{R}{\lambda(\mu)} - 1,$$

where μ is the normal-state magnetic permeability of the material (which can be relevant for magnetic superconductors) and λ is the AC penetration depth. The effective dimension R takes into account the penetration of the magnetic field not only from the sides, but also from the top and bottom surfaces in a finite sample [36]. In the linear response regime, $\lambda(\mu) = \lambda/\sqrt{\mu}$, where λ is the AC penetration depth of a non-magnetic sample [5]. Therefore, by measuring the frequency shift, we can directly probe the AC penetration depth.

3.2. Samples

All samples used in this study were grown at US DOE Ames Laboratory. The borocarbide single crystals (RNi$_2$B$_2$C, $R =$ Er, Tm) were grown out of Ni$_2$B flux [39]. Detailed discussions of the superconducting properties with an emphasis on the interplay between superconductivity and magnetism as well as comparisons to non-magnetic borocaribdes can be found in [9–11, 40]. The borocarbide samples were large plates with typical dimensions of $1 \times 1 \times 0.2$ mm3. Single crystals of ErRh$_4$B$_4$ were grown at high temperatures from a molten copper flux as described in [41, 42]. The samples were needle-shaped, $0.2 \times 0.2 \times 1$ mm3 with the magnetic easy axis a perpendicular to the needle axis. The crystallographic c axis was along the needle.
Figure 2. (a) $4\pi \chi(T)$, measured in different applied DC fields in a TmNi$_2$B$_2$C single crystal. The external field was applied along the crystallographic c axis. (b) $H-T$ phase diagram constructed by mapping various features detected in (a). (c) Similar to (a), but magnetic field is applied along the ab plane. (d) $H-T$ phase diagram constructed from (c).

4. Results and discussion

We now show results obtained on some magnetic superconductors. In a typical experiment the sample is cooled in zero applied magnetic field and then an external DC magnetic field is applied and kept constant throughout warming and cooling when the data are collected (known as the zfc–fc process). The warming up and cooling down cycle may be repeated several times to study possible hysteretic behavior.

4.1. ErNi$_2$B$_2$C

We begin with ErNi$_2$B$_2$C, which exhibits a transition to an antiferromagnetic state with spins along the crystallographic b axis at $T_N \approx 6$ K, deep inside the superconducting phase that appears at $T_{SC} \approx 11$ K. At lower temperatures, below $T_C \approx 2.2$ K, a weak ferromagnetic order appears. Thus ErNi$_2$B$_2$C can be classified as both an antiferromagnetic and a weak ferromagnetic superconductor. The existence of both LRMO phases were directly detected by Bitter decoration [43], neutron diffraction [9, 44] and Hall-probe studies [45]. A detailed $H-T$ phase diagram shows significant impact of the long-range magnetic order on the anisotropic superconducting properties [40].

Figure 1 summarizes measurements of the dynamic magnetic susceptibility, $4\pi \chi$, as well as $H-T$ diagrams constructed from these measurements. Two prominent features can be see in $4\pi \chi(T)$ in the presence of vortices, whereas nothing appears in the $H = 0$ curves for both orientations. Therefore, we do not find any evidence for spontaneously generated vortices at either W-FM or AFM transitions. This is consistent with miniature Hall-probe studies [45] as well as measurements of the surface impedance at microwave frequencies [46]. A prominent dip in the response at about 6 K evidently marks the antiferromagnetic transition. While low-field decoration has detected the accumulation of vortices in the ordered phase along the AFM twin boundaries, which was interpreted as the enhancement of pinning, our results suggest that this pinning is either weak, significantly field-dependent or the density of such pinning centers is insufficient to result in a macroscopic enhancement of the critical current. (If bulk pinning were to develop below T_N, we would observe a step-like decrease in the penetration depth, see equation (2).) However, we only see the effect in the immediate vicinity of the magnetic phase transition.

We propose that this reduction of the Campbell length at T_N is caused by the enhancement of pinning due to large magnetic fluctuations accompanying this second-order transition. In a collective pinning theory, pinning comes from the mean square variation in the distribution of the normal pinning centers with concentration n_i and leads to $j_c = j_0 (\xi/L_c)^{2/3}$ [21]. Here j_0 is the depairing current density and L_c is the collective pinning length. In the vicinity of the LRMO phase transition, in addition to the condensation energy, there is an additional magnetic part of the pinning. A detailed description of this mechanism of magnetic...
fluctuations—mediated enhancement of the pinning strength—will be reported elsewhere [47]. On the other hand, below the weak ferromagnetic transition, the low-field data show a step-like feature that is consistent with the development of bulk pinning. It was also demonstrated in Bitter decoration experiments [43] as well as transport and magnetization measurements [48]. It is worth noting that, in the case of an external field applied along the magnetic easy axis, figure 1(a), a positive signal develops at high fields, probably due to a metamagnetic transition in the spin structure.

4.2. TmNi$_2$B$_2$C

We now discuss the results obtained in TmNi$_2$B$_2$C single crystals. In this antiferromagnetic superconductor, $T_{SC} \approx 11$ K and $T_N \approx 1.8$ K. Detailed neutron diffraction studies show that, contrary to ErNi$_2$B$_2$C crystals, in TmNi$_2$B$_2$C, the spins order along the crystallographic c axis [9]. Perhaps it is this fact that results in a rich low-temperature magnetic phase diagram. The magnetic phase diagram has been reported in several studies, for example in [49].

Figure 2 summarizes our measurements in a way similar to figure 1, showing the results for a magnetic field applied along the magnetic easy c axis in panels (a) and (b) and in the perpendicular orientation, panels (c) and (d). Similarly to ErNi$_2$B$_2$C, the transition to the ordered phase is marked by the decrease in the penetration depth around T_N. However, at the lower temperatures more structure appears, especially at the lower fields. The situation is complicated by the possible existence of two different magnetic moments as detected by inelastic neutron scattering and muon spin relaxation techniques [50].

4.3. ErRh$_4$B$_4$

Finally we show the results obtained in full local-moment single crystals of the ferromagnetic superconductor ErRh$_4$B$_4$. A detailed investigation of the narrow coexistence region between FM and SC phases by using the tunnel-diode resonator is reported elsewhere [13]. Here we focus on a comparison of this ferromagnetic superconductor in the entire temperature range with the magnetic borocarbides discussed above.

ErRh$_4$B$_4$ becomes superconducting at $T_{SC} = 8.5$ K and undergoes a ferromagnetic transition at about $T_C = 1$ K, which apparently destroys superconductivity. Er$^{3+}$ ions carry a full local magnetic moment of 8 μ_B, almost equal to the free ion moment of 9 μ_B. The ferromagnetic easy axis is the crystallographic a axis. Figure 3 provides information similar to the previous figures, allowing for easy comparison.

First to note is the transition to a ferromagnetic state that also shows an increasing magnetic susceptibility approaching T_C. This is a typical feature of the TDR measurement performed on local-moment ferromagnets [51]. Comparing figures 3(a) and (c), one can see that, due to magnetic anisotropy, the degree of this paramagnetic enhancement...
depends on the orientation of the magnetic field with respect to a magnetic easy axis. While the narrow coexistence region exhibits interesting behavior, such as a significant amount of asymmetry and hysteresis between warming and cooling through T_C and a possible transition to a type-I superconducting state [13], here we focus on the behavior deeper inside the superconducting phase. A broad minimum in $4\pi \chi (T)$ around 5 K is simply due to a competition between the simultaneous increase of both the critical current and the paramagnetic magnetic permeability on cooling. The latter ultimately wins at T_C. However, just before this happens, there is another minimum in the susceptibility, most prominent in figure 3(c) at the elevated fields. This behavior cannot be understood in terms of the critical current, although some possibility of pinning on ferromagnetic fluctuations above T_C, similar to previously discussed superconductors, still remains. An alternative explanation could be the development of an elusive FFLO state, as predicted by Bulaevskii for this particular superconductor [5]. If one compares the phase diagrams, figures 3(b) and (d), where the open circles mark the position of this second minimum to that published in [5] for ErRh$_2$B$_4$ for different demagnetization factors, there is an apparent similarity. Of course, this observation is only a hint requiring further detailed studies.

5. Conclusions

Comparing figures 1–3, we conclude that precision measurements of the dynamic magnetic susceptibility imply that the increasing out-of-ab-plane component of the rare-earth moment leads to a suppression of superconductivity. Most likely in compounds like TmNi$_2$B$_2$C some uncompensated moment develops at low temperatures and higher fields. However, the pure antiferromagnetic transition seems to enhance the true critical current via additional magnetic pinning on critical fluctuations in the vicinity of T_N. This finding may provide some guidance to creating artificial AFM/SC structures, which would operate around T_N and in which the critical current can be tuned to the desired value.

Acknowledgments

Discussions with John Clem, Vladimir Kogan, Kazushige Machida and Roman Mints are appreciated. Work at the Ames Laboratory was supported by the Department of Energy—Basic Energy Sciences under contract no. DE-AC02-07CH11358. RP acknowledges support from the Alfred P Sloan Foundation.

References

[1] Abrikosov A A 1957 Sov. Phys.—JETP 5 1174
[2] Abrikosov A A 1957 Zh. Eksp. Teor. Fiz. 32 1442
[3] Ginzburg V L 1957 Sov. Phys.—JETP 4 153
[4] Anderson P W and Suhl H 1959 Phys. Rev. 116 898
[5] Bulaevskii L N, Buzdin A I, Kulic M L and Panjukov S V 1985 Adv. Phys. 34 175
[6] Sinha K P and Kakanis S L 1989 Magnetic Superconductors: Recent Developments (New York: Nova Science)
[7] Fischer O 1990 Magnetic superconductors Ferromagnetic Materials vol 5 (Amsterdam: Elsevier) chapter 6
[8] Maple M B 1995 Physica B 215 110
[9] Lynn J W, Skanthakumar S, Huang Q, Sinha S K, Hossain Z, Gupta L C, Nagarajan R and Godart C 1997 Phys. Rev. B 55 6584
[10] Canfield P C, Gammel P L and Bishop D J 1998 Phys. Today 51 40
[11] Muller K H and Narozhnyi V N 2001 Rep. Prog. Phys. 64 943
[12] Kulic M L 2006 C. R. Phys. 7 4
[13] Prozorov R, Vannette M D, Law S A, Bud’ko S L and Canfield P C 2008 Phys. Rev. B 77 100503
[14] Sarkissian B V and Grover A K 1982 J. Phys. F: Met. Phys. 12 L107
[15] Fertig W A, Johnston D C, Delong L E, McCallum R W, Maple M B and Matthews B T 1977 Phys. Rev. Lett. 38 987
[16] Ishikawa M and Fischer O 1977 Solid State Commun. 23 37
[17] Saxena S S et al 2000 Nature 406 587
[18] Aoki D, Huxley A, Ressouche E, Brailwaite D, Flouquet J, Brison J-P, Lhotel E and Paulsen C 2001 Nature 413 613
[19] Akazawa T, Hidaka H, Koteetawa H, Kobayashi T C, Fujiiwara T, Yamamoto E, Haga Y, Settai R and Onuki Y 2005 Physica B 359–361 1138
[20] Bulaevskii L N, Buzdin A I, Panjukov S V and Kulic M L 1982 Phys. Lett. A 89A 93
[21] Blatter G, Feigelman M V, Geshkenbein V B, Larkin A I and with Kogan V, Vannette M, Bud’ko S and Shishido T, Satao Y and Fukuda T 1996 Phys. Rev. Lett. A 91 85
[22] Prozorov R, Giannetta R, Kameda N, Tamegai T, Schlueter J and Fournier P 2003 Phys. Rev. B 67 184501
[23] Brandt E H 1995 Phys. Rev. Lett. 76 2219
[24] Coffey M W and Clem J R 1991 Proc. Phys. Lett. 45 953
[25] Coffey M W and Clem J R 1992 Phys. Rev. B 57 4407
[26] Onuki Y 2005 Physica B 359 613
[27] Prozorov R, Kogan V, Vannette M, Bud’ko S and Canfield P C 2007 Phys. Rev. B 76 094520
[28] VanDegrift C T 1975 Phys. Rev. 170 470
[29] Campbell A M 1969 J. Phys. C: Solid State Phys. 2 1492
[30] Campbell A M 1971 J. Phys. C: Solid State Phys. 4 1316
[31] Prozorov R and Evets J E 1972 Critical currents in superconductors Monographs on Physics (London: Taylor and Francis)
[32] Prozorov R and Vinokur V 1991 Physica C 173 465
[33] Prozorov R, Giannetta R, Kameda N, Tamegai T, Schluter J and Fournier P 2003 Phys. Rev. B 67 184501
[34] Brandt E H 1995 Phys. Rev. Lett. 76 2219
[35] Coffey M W and Clem J R 1991 Phys. Rev. Lett. 45 953
[36] Coffey M W and Clem J R 1992 Phys. Rev. B 57 4407
[37] Onuki Y 2005 Physica B 359 613
[38] Prozorov R, Giannetta R, Fournier P and Greene R 2000 Phys. Rev. Lett. 85 3700
[39] Prozorov R, Giannetta R, Fournier P and Greene R 2000 Physica C 341–348 1703
[40] Prozorov R and Giannetta R 2006 Supercond. Sci. Technol. 19 R41
[41] Cho B K, Canfield P C, Miller L L, Johnston D C, Beyermann W P and Yatskar A 1995 Phys. Rev. B 52 3684
[42] Prokhorov R and Gemel P L, Canfield P C and Bud’ko S L 2001 Phys. Rev. Lett. 87 107001
[43] Bluhm H, Sebastian S E, Guikema J W, Fisher I R and with Moler K A 2006 Phys. Rev. B 73 014514
[44] Jacobs T, Willemens B A, Srirad S, Nagarajan R, Gupta L C, Hossain Z, Mazumdar C, Canfield P C and Cho B K 1995 Phys. Rev. B 52 R7022
[47] Prozorov R, Vannette M D, Mints R G, Kogan V G, Bud’ko S L and Canfield P C 2008 in preparation
[48] Gammel P L, Barber B, Lopez D, Ramirez A P, Bishop D J, Bud’ko S L and Canfield P C 2000 Phys. Rev. Lett. 84 2497
[49] Eskildsen M R et al 1998 Nature 393 242
[50] Gasser U, Allenspach P and Furrer A 1998 J. Alloys Compounds 275–277 587–90
[51] Vannette M, Sefat A, Jia S, Law S, Lapertot G, Bud’ko S, Canfield P, Schmalian J and Prozorov R 2008 J. Magn. Magn. Mater. 320 354