Accuracy of genotype imputation in Nelore cattle

Roberto Carvalheiro1*, Solomon A Boison2†, Haroldo H R Neves1,3†, Mehdi Sargolzaei4,5, Flavio S Schenkel4, Yuri T Utsunomiya1, Ana Maria Pérez O’Brien2, Johann Sölkner2, John C McEwan6, Curtis P Van Tassell7, Tad S Sonstegard7 and José Fernando Garcia1,8

Abstract

Background: Genotype imputation from low-density (LD) to high-density single nucleotide polymorphism (SNP) chips is an important step before applying genomic selection, since denser chips tend to provide more reliable genomic predictions. Imputation methods rely partially on linkage disequilibrium between markers to infer unobserved genotypes. Bos indicus cattle (e.g. Nelore breed) are characterized, in general, by lower levels of linkage disequilibrium between genetic markers at short distances, compared to taurine breeds. Thus, it is important to evaluate the accuracy of imputation to better define which imputation method and chip are most appropriate for genomic applications in indicine breeds.

Methods: Accuracy of genotype imputation in Nelore cattle was evaluated using different LD chips, imputation software and sets of animals. Twelve commercial and customized LD chips with densities ranging from 7 K to 75 K were tested. Customized LD chips were virtually designed taking into account minor allele frequency, linkage disequilibrium and distance between markers. Software programs FImpute and BEAGLE were applied to impute genotypes. From 995 bulls and 1247 cows that were genotyped with the Illumina® BovineHD chip (HD), 793 sires composed the reference set, and the remaining 202 younger sires and all the cows composed two separate validation sets for which genotypes were masked except for the SNPs of the LD chip that were to be tested.

Results: Imputation accuracy increased with the SNP density of the LD chip. However, the gain in accuracy with LD chips with more than 15 K SNPs was relatively small because accuracy was already high at this density. Commercial and customized LD chips with equivalent densities presented similar results. FImpute outperformed BEAGLE for all LD chips and validation sets. Regardless of the imputation software used, accuracy tended to increase as the relatedness between imputed and reference animals increased, especially for the 7 K chip.

Conclusions: If the Illumina® BovineHD is considered as the target chip for genomic applications in the Nelore breed, cost-effectiveness can be improved by genotyping part of the animals with a chip containing around 15 K useful SNPs and imputing their high-density missing genotypes with FImpute.

Background

Genomic information from dense single nucleotide polymorphism (SNP) chips provides the opportunity to increase the rate of genetic progress in breeding programs, if a sufficient number of markers and animals with phenotypes (or pseudo-phenotypes such as estimated breeding values, EBV) are genotyped [1]. Because the cost of genotyping is high, alternative methods are necessary for cost-efficient genomic applications. A strategy that is used in dairy breeding programs is to genotype influential animals using a denser chip (e.g. Illumina® BovineSNP50 v2 - 50 K; Illumina Inc., San Diego, CA) and selection candidates and cows using a lower-density chip (e.g. Illumina® BovineLD - 7 K) and then to impute (i.e. predict) missing genotypes from lower to higher density before calculating genomic estimated breeding values (GEBV) [2]. This cost-effective strategy provides reliabilities of GEBV that are similar to those obtained if selection candidates were genotyped with the higher-density chip [3,4].

The Nelore (indicine) breed is the most important beef cattle breed in Brazil [5]. For this breed, the Illumina® BovineHD chip (HD) is used as the “gold standard” for research purposes, since a low level of linkage disequilibrium...
between adjacent markers is observed in lower-density chips (e.g., 50 K) [6,7]. Profit margins from beef cattle operations are too low for the use of a HD chip at the commercial level. Thus, lower-density chips are required to overcome this limitation, which highlights the importance of assessing the accuracy of imputing genotypes in the Nelore breed.

The objective of this study was to assess the accuracy of genotype imputation in Nelore cattle, using different imputation methods, different commercial and customized SNP chips and sets of animals whose genotypes were to be imputed. The importance of relatedness between validation and reference animals was also evaluated for the different chips and methods.

Methods

Genotyped animals

Both sires and dams of the Nelore breed were genotyped. Sires that were widely used for artificial insemination were chosen as representative of the main Nelore breeding programs in Brazil. A total of 995 sires born between 1955 and 2008 were genotyped, spanning over 10 generations. A total of 1247 dams born between 1993 and 2008 were also genotyped. They included part of the genomic selection reference population of a commercial breeding program (DeltaGen) and were chosen among the dams that had the highest EBV accuracies for weaning, yearling and reproductive traits. Details about pedigree information of the genotyped animals are in Table 1.

To evaluate the accuracy of genotype imputation, the animals were divided into reference and validation sets. The reference set comprised 793 sires that were born before 2005. Two separate validation sets were considered, including the animals most likely to have their genotypes imputed in practice: the first with the 202 younger sires and the second with the dams. Reference sets with different numbers of animals were not considered because the effect of size of the reference set on imputation accuracy is well documented in the literature e.g. [3,8]. Statistics on genomic relationships between reference and validation sets are in Table 2. The genomic relationship matrix (G) was defined as $G = MM'/2\Sigma p_i(1-p_i)$, in which M is the incidence matrix of markers whose elements in the i^{th} column are 0-2p_i, 1-2p_i, and 2-2p_i, for genotypes AA, AB and BB, respectively, and p_i is the frequency of allele B at the i^{th} marker [9]. To compute G, only the HD markers that passed quality control (described later) were used. As shown in Table 2, young sires were compared to dams, more related (on average) to the reference sires, based on the maximum (Maxr) or the average of the top 10 (Mean10) genomic relationships of a given animal in the validation set with all animals in the reference set.

SNP chips

All sires and dams were genotyped with the HD chip, which contains approximately 777 K SNPs. Animals from the validation set had their HD genotypes masked, except for the genotypes of markers present on the LD chip under evaluation, thus mimicking a situation in which these animals were genotyped with LD chips. Imputation from commercial LD panels to the HD chip was simulated by assuming that genotypes of animals from the validation set were available only for markers that were present on the HD and the following commercial chips: Illumina® BovineLD (7 K), Illumina® BovineSNP50 v2 (50 K) and GeneSeek® Genomic Profiler 20 K and 75 K for indicine breeds (GGP20Ki and GGP75Ki, respectively).

Eight customized (mimicked) 15 K LD chips were also tested, with varying densities and SNP selection criteria. Testing customized LD chips with less than 15 K SNPs was not relevant because their cost-effectiveness would not be attractive (Illumina®, personal communication). Using markers of the HD chip that passed quality control (see below), four 15 K chips were simulated based on selection of one marker from each window of 29 subsequent markers, according to the UMD v3.1 assembly. For the first 15 K chip (15 K_e), SNPs were evenly spaced by selecting the last marker from each window. For the second 15 K chip (15 K_em), the SNP with the highest minor allele frequency (MAF) was selected from each window, and for the third chip (15 K_el), the SNP with the highest average linkage disequilibrium with other SNPs from the same window was selected from each window. The r^2 [10] was adopted as the measure of linkage disequilibrium. In the fourth 15 K chip (15K_eimg), the SNP with the highest value for the product between its MAF and its average r^2 with other SNPs from the same window was selected from each window.

The remaining four customized LD chips were developed based on the add-on concept offered by Illumina®, where additional SNPs can be added to an existing

![Table 1 Pedigree information of genotyped animals](http://www.gsejournal.org/content/46/1/69)

Animals	Number
Individuals in pedigree	9631
Sires	1536
Dams	6125
Individuals with progeny	7661
Individuals with no progeny	1970
Individuals with only known sire	17
Individuals with only known dam	1464
Individuals with known sire and dam	5067
Founders	3083
Founders with no progeny	350
commercial chip in a cost-effective way. The Illumina® Bovine LD chip (7 K) was used as the base chip. Additional SNPs were selected using the same criteria as used for the 15K_eml chip. Windows containing 39, 25, 16 and 9 subsequent markers were used to compose chips with densities around 18 K (11a7 K), 24 K (17a7 K), 34 K (27a7 K) and 55 K (48a7 K) markers.

Quality control of the genotypes
Quality control was performed for HD genotypes of the reference set, using the following criteria for excluding SNPs: (1) SNPs that were located in non-autosomal regions; (2) SNPs that had the same genomic coordinates, i.e. mapped to the same positions (just the replicates were removed); (3) SNPs with a p-value in the Hardy-Weinberg equilibrium z-test [11] less than or equal to 10^{-5}; (4) SNPs with a MAF less than 0.02; and (5) SNPs with a call rate per SNP less than 0.98 (genotypes with a GenCall score less than 0.70 were considered missing when computing this statistic). After these edits, 439 595 SNPs remained. All samples from the reference set had a call rate per individual greater than 0.9 for SNPs passing quality control and were kept for the analyses.

SNPs excluded from the reference set were also discarded from the validation sets, in addition to masking subsets of HD SNPs as previously described. For each LD chip, the numbers of SNPs that were shared with the HD chip before and after quality control are in Table 3.

Imputation methods
Imputation of genotypes from the LD chips to the HD chip was performed using the software packages BEAGLE v.3.3 [12] and FImpute v.2.2 [13]. BEAGLE is a commonly used population-based imputation program (i.e. it does not rely on pedigree information) that adopts a stochastic procedure based on a Hidden Markov Monte-Carlo process to infer the probabilities of each haplotype/genotype. We used the most likely genotype as the predicted genotype. FImpute uses a family and population-based algorithm, or only the population-based algorithm, if pedigree information is not available, to deterministically phase the haplotypes and impute the missing genotypes. To evaluate the performance when considering family information in FImpute, we used both approaches, i.e. with or without pedigree information. Both programs were run with default parameters [12,13].

Imputation scenarios
Considering the two sets of animals to be imputed (young sires and dams), the 12 SNP chips to be tested (7 K, 50 K, GGP20K, GGP75K, 15K_e, 15K_el, 15K_eml, 11a7 K, 17a7 K, 27a7 K, 48a7 K), and the three methods (BEAGLE and FImpute considering or ignoring pedigree), a complete factorial comparison would require 72 imputation analyses. As illustrated in Figure 1, only a subset of these analyses was carried out.

Analyses 1 to 12 were used to compare SNP chips. Results from analyses 13 to 16 were compared to those of their counterpart analyses (1, 2, 8 and 9, respectively) to evaluate the gain in accuracy when considering family information with FImpute. Results from analyses 17 to 23 were compared to those from analyses 1 to 4, 8, 9 and 12, to evaluate imputation accuracy when using different sets of animals to be imputed. Finally, analyses 24 to 29 and 30 to 35 were performed to infer accuracy of the imputed genotypes of Nelore young sires and dams using BEAGLE and different LD chips.

Imputation accuracy
Two criteria were used to assess imputation accuracy. The first was the percentage of correctly imputed genotypes (PERC). For incorrectly imputed genotypes, either one or both alleles can be imputed incorrectly. To distinguish between these two cases, the Pearson's correlation (CORR) between imputed and observed genotypes (coded as 0, 1 or 2 copies of the B allele) was also computed, as in Hickey et al. [14]. Both PERC and CORR were calculated by individual and by SNP, for imputed SNPs only. Since both BEAGLE and FImpute imputed all missing genotypes, statistics on the proportion of imputed SNPs were not needed.

The impact of genetic relatedness between validation and reference animals on imputation accuracy was assessed by regressing CORR on the average of the top 10

Table 2 Genomic relationship statistics between reference and validation sets

Reference/Validation sets	Statistic	Minimum	Maximum	Mean	Median
Sire/sire (793; 202)	Maxr	0.0661	0.6241	0.4353	0.4677
	Mean10	0.0513	0.3795	0.2017	0.1970
Sire/dam (793; 1247)	Maxr	0.0392	0.6316	0.2813	0.2744
	Mean10	0.0333	0.3877	0.1351	0.1271

1Sire/sire: validation set composed of the 202 younger sires; sire/dam: validation set composed of 1247 dams; the same reference set of 793 sires was used in both cases; 2Maxr: maximum genomic relationship between each animal in the validation set and all the animals in the reference set; Mean10: average of the top 10 genomic relationships between each animal in the validation set and all the animals in the reference set.
genomic relationships between each animal in the validation set with all the animals in the reference set [15].

Results
Comparison of lower-density SNP chips
Results for CORR and PERC obtained with the different LD chips (analyses 1 to 12) are in Table 4. Values for PERC were proportionally smaller than the corresponding values for CORR since the penalty for one incorrectly imputed allele is relatively higher for PERC than for CORR. Since both measures provided comparable results, imputation accuracy will be presented and discussed in terms of CORR.

Imputation accuracy was greater than 0.97 for all chips except for the 7 K chip. Considering the proportion of SNPs to be imputed (99.1%), the imputation accuracy was high even for the 7 K chip. As documented in the literature [4,16], imputation accuracy increases with a decreasing proportion of SNPs to be imputed. However, the gain in accuracy from the 11a7 K to the 48a7 K chip, for example, was small (0.0108) because the accuracy obtained with the 11a7 K chip was already high.

Table 3 Number (Nb) of SNPs shared with the HD chip, for different SNP chips

SNP chip	Label	Nb common SNPs with HD	Nb common SNPs after QC
Illumina® BovineHD	HD	777962	439595
Illumina® BovineLD v2	7 K	6637	4086
Illumina® Bovine SNP50	50 K	49345	21014
GeneSeek® Genomic Profiler 20 K - Indicine	GGP20Ki	19493	13450
GeneSeek® Genomic Profiler 75 K - Indicine	GGP75Ki	73941	56169
Customized 15K_e	15K_e	15144	15144
Customized 15K_em	15K_em	15173	15173
Customized 15K_el	15K_el	15173	15173
Customized 15K_eml	15K_eml	15173	15173
Customized 11K_eml add-on 7 K	11a7 K	17841	15290
Customized 17 K_eml add-on 7 K	17a7 K	24121	21570
Customized 27 K_eml add-on 7 K	27a7 K	33942	31391
Customized 48K_eml add-on 7 K	48a7 K	55141	52590

1As described in the section “SNP chips” of “Methods”; 2QC: quality control of the genotypes.

Figure 1 Study design of the imputation analyses using FImpute and BEAGLE. A reference set of 793 sires and a validation set with 202 young sires (siresire) or 1247 dams (sire:dam), with (Ped) or without (Ped0) pedigree information and different lower-density chips; numbers in brackets correspond to the number given to the analysis.
Among the commercial chips, imputation accuracies with the 50 K and GGP20Ki chips were similar and outperformed that of the 7 K chip, while the GGP75Ki chip had the best accuracy. Among the virtual 15 K chips, selecting SNPs based on MAF (15K_em) rather than on linkage disequilibrium (15K_el), in addition of being evenly spaced, tended to result in slightly higher imputation accuracies. The highest accuracy was observed when both criteria and even spacing were combined to define the SNP content of a virtual chip (15K_eml). However, the increase in accuracy was nominal compared to the 15K_e evenly spaced chip. Imputation accuracy of the 11a7 K chip was comparable to that of 15K_eml, with the potential benefit of the former being cheaper to be manufactured/acquired by adding SNPs on the existing 7 K chip.

Although commercial and customized chips resulted in similar imputation accuracies, the customized chips that had the highest accuracies outperformed commercial chips with a similar density (after quality control). For instance, the average accuracy of the 15K_eml chip was 0.6% and 0.7% higher than those of the 50 K and GGP20Ki chips, respectively.

Importance of pedigree information

Results of FImpute analyses with and without pedigree information are in Table 5. For the 50 K, 15K_eml and 11a7 K chips, there was no benefit from using pedigree information and for the 7 K chip, the gain in accuracy was marginal (+1%). These low gains in accuracy are in part due to the low quality of the available pedigree information, since the sire was unknown for a proportion (38%) of the genotyped animals from the validation set, but also because FImpute assumes that all animals are to some degree related when performing population imputation, by searching for common haplotypes shared by individuals [13].

Comparison of validation sets

Imputation accuracy was lower for dams than for young sires, especially for lower density chips (Table 6). For instance, the difference in accuracy between young sires and dams was 5.0% for the 7 K chip and 0.7% for the 48a7 K chip. As a consequence, the increase in accuracy for dams was more pronounced as the proportion of SNPs to be imputed decreased. This result is due to the fact that the young sires were, on average, more related to the reference sires than the dams (Table 2). This effect of relatedness on imputation accuracy will be discussed in more detail below.

Comparison of imputation methods

FImpute outperformed BEAGLE for the different chips and validation sets in terms of average accuracy (Table 7). The greatest difference was observed for the validation

Table 4 Average (standard deviation) imputation accuracy, for different imputation analyses using FImpute

Analysis	SNP chip	Nb (%) SNPs to be imputed	CORR	PERC
1	7 K	435509 (99.1)	0.9257 (0.0346)	90.56 (4.09)
2	50 K	418581 (95.2)	0.9783 (0.0136)	97.14 (1.76)
3	GGP20Ki	426145 (96.9)	0.9771 (0.0143)	96.96 (1.87)
4	GGP75Ki	383426 (87.2)	0.9922 (0.0056)	98.93 (0.76)
5	15K_e	424451 (96.6)	0.9784 (0.0135)	97.15 (1.75)
6	15K_em	424422 (96.5)	0.9820 (0.0112)	97.58 (1.61)
7	15K_el	424422 (96.5)	0.9763 (0.0138)	96.87 (1.77)
8	15K_eml	424422 (96.5)	0.9840 (0.0107)	97.85 (1.43)
9	11a7 K	424305 (96.5)	0.9823 (0.0117)	97.63 (1.54)
10	17a7 K	418025 (95.1)	0.9864 (0.0093)	98.17 (1.24)
11	27a7 K	408204 (92.9)	0.9897 (0.0072)	98.60 (0.97)
12	48a7 K	387005 (88.0)	0.9931 (0.0049)	99.05 (0.67)

Table 5 Average (standard deviation) imputation accuracy, using FImpute with or without pedigree (Ped) information

Analyses	SNP chip	With Ped	Without Ped
1 and 13	7 K	0.9257 (0.0346)	0.9164 (0.0351)
2 and 14	50 K	0.9783 (0.0136)	0.9781 (0.0132)
8 and 15	15K_eml	0.9840 (0.0107)	0.9832 (0.0113)
9 and 16	11a7 K	0.9823 (0.0117)	0.9819 (0.0120)

1Imputation analyses using FImpute software and 202 younger sires as the validation set; the numbers of each analysis refer to those in brackets from Figure 1; as described in the section “SNP chips” of “Methods”; 2CORR: Pearson’s correlation between imputed and observed genotypes; PERC: percentage of correctly imputed genotypes.
A set of dams and the 7 K chip, for which the average accuracy of FImpute was 3.4% higher than that of BEAGLE. The average differences in accuracy between FImpute and BEAGLE were more pronounced for dams (1.5 to 3.4%) than for young sires (0.7 to 3.1%). For both validation sets, differences between imputation methods tended to be higher as the relatedness between imputed and reference animals increased. This tendency was stronger for FImpute than for BEAGLE with the 7 K chip and was similar, on average, between both software in the 48a7 K chip. For below average levels of relatedness, the dispersion of imputation accuracies was higher for BEAGLE than for FImpute, notably for the 48a7 K chip.

Importance of genomic relatedness for imputation accuracy

The impact of relatedness between validation and reference animals on imputation accuracy is illustrated in Figure 2. For the purpose of clarity, only results of four representative analyses (17 and 30; 23 and 35) are presented. The impact of relatedness to the reference set on accuracy was more evident for lower (7 K) than for higher density (48a7 K) chips. Imputation accuracies tended to be higher as the relatedness between imputed and reference animals increased. This tendency was stronger for FImpute than for BEAGLE with the 7 K chip and was similar, on average, between both software in the 48a7 K chip. For below average levels of relatedness, the dispersion of imputation accuracies was higher for BEAGLE than for FImpute, notably for the 48a7 K chip.

SNP-wise imputation accuracy

Although imputation accuracy was in general high, SNP-wise imputation accuracy is relevant also. For brevity, only the result of analysis 9 for bovine autosome 1 is presented in Figure 3. As previously reported in the literature for other cattle breeds [17,18], some regions of the genome had very low imputation accuracy (CORR < 0.60). A more careful analysis revealed that these regions had markers with very low levels of linkage disequilibrium with neighboring markers (Figure 3), which suggests potential mapping or assembly issues in the reference genome. Comparatively, BEAGLE and FImpute had low imputation accuracy for the same genomic regions (data not shown). Markers of these regions were removed in an attempt to increase imputation accuracy of the markers from the surrounding regions, but no improvements on imputation accuracy were obtained, possibly because the proportion of discarded markers was small and the imputation accuracies were already high in the neighboring regions (data not shown).

Table 6 Average (standard deviation) imputation accuracy, using dams or young sires as validation set

Analyses1	SNP chip2	Dams	Young sires
17 and 1	7 K	0.8791 (0.0474)	0.9257 (0.0346)
18 and 2	50 K	0.9603 (0.01190)	0.9783 (0.01136)
19 and 3	GGP20Ki	0.9566 (0.0211)	0.9771 (0.0143)
20 and 4	GGP75Ki	0.9846 (0.0082)	0.9922 (0.0056)
21 and 8	15K_eml	0.9680 (0.0164)	0.9840 (0.0107)
22 and 9	11a7 K	0.9658 (0.0173)	0.9823 (0.0117)
23 and 12	48a7 K	0.9864 (0.0070)	0.9931 (0.0049)

1Imputation analyses using FImpute (considering family information) and different validation sets; the numbers of each analysis refer to those in brackets from Figure 1; the first and the second numbers refer to analyses using dams or young sires as validation set, respectively; 2as described in the section “SNP chips” of “Methods”.

Table 7 Summary statistics of imputation accuracy, using BEAGLE and FImpute

Anal.1	Validation set	SNP chip2	BEAGLE (FImpute)	\(\text{BEAGLE (FImpute)}\)		
			Minimum	Maximum	Mean	SD
24 (1)	Young sire	7 K	0.7525 (0.8003)	0.9717 (0.9845)	0.8982 (0.9257)	0.0392 (0.0346)
25 (3)	Young sire	GGP20Ki	0.8603 (0.8988)	0.9951 (0.9963)	0.9614 (0.9771)	0.0225 (0.0143)
26 (4)	Young sire	GGP75Ki	0.9142 (0.9568)	0.9986 (0.9990)	0.9842 (0.9922)	0.0120 (0.0056)
27 (8)	Young sire	15K_eml	0.8788 (0.9211)	0.9976 (0.9981)	0.9714 (0.9840)	0.0183 (0.0107)
28 (9)	Young sire	11a7 K	0.8773 (0.9163)	0.9979 (0.9975)	0.9697 (0.9823)	0.0190 (0.0117)
29 (12)	Young sire	48a7 K	0.9214 (0.9628)	0.9989 (0.9992)	0.9860 (0.9931)	0.0111 (0.0049)
30 (17)	Dam	7 K	0.6969 (0.7096)	0.9576 (0.9656)	0.8501 (0.8791)	0.0441 (0.0474)
31 (19)	Dam	GGP20Ki	0.8124 (0.8357)	0.9874 (0.9923)	0.9321 (0.9566)	0.0288 (0.0211)
32 (20)	Dam	GGP75Ki	0.8645 (0.9291)	0.9946 (0.9976)	0.9692 (0.9846)	0.0198 (0.0082)
33 (21)	Dam	15K_eml	0.8296 (0.8711)	0.9904 (0.9954)	0.9456 (0.9680)	0.0254 (0.0164)
34 (22)	Dam	11a7K	0.8249 (0.8640)	0.9893 (0.9951)	0.9430 (0.9658)	0.0260 (0.0173)
35 (23)	Dam	48a7K	0.8677 (0.9363)	0.9954 (0.9980)	0.9715 (0.9864)	0.0193 (0.0073)

1Results of imputation analyses using BEAGLE or FImpute (between brackets) and different validation sets (young sires and dams); the numbers of each analysis refer to those from Figure 1; 2as described in the section “SNP chips” of “Methods”; SD = standard deviation.
Discussion

Imputation methods rely partially on linkage disequilibrium between markers to infer unobserved genotypes. The Nelore breed has lower levels of linkage disequilibrium at short distances than taurine breeds [6,7]. Nevertheless, the imputation accuracies obtained in this study are comparable to accuracies reported in the literature for taurine breeds [17-19]. For instance, Ma et al. [19] imputed genotypes from the 50 K to the HD chip in a population of Swedish and Finnish Red cattle and found similar accuracies (around 0.97) to those reported here. As documented in the literature e.g. [3,8,16], imputation accuracy increased with increasing density of the LD chip. Increasing the density of the LD chip from 7 K to 15 K resulted in a greater increase in imputation accuracy than an increase in density from 15 K to 75 K, because imputation accuracy was already high (>0.97) for the 15 K chip. This result is consistent, for example, with those of Khatkar et al. [3] who reported on the imputation of 50 K genotypes of Australian Holstein-Friesian cattle and observed a relatively greater increase in imputation accuracy when the density of the LD chip increased from 3 K to 7 K than from 7 K to 10 K.

Imputation accuracy has a large influence on the reliability of genomic predictions [3,4,20]. Mulder et al. [4] derived a deterministic equation to predict the accuracy of GEBV based on imputation accuracy (measured as a correlation) and observed that it increased linearly with increasing imputation correlation. Daetwyler et al. [21] suggested that the decline in accuracy of GEBV was actually slightly lower than the decline in accuracy of imputation. In a scenario with low-density genotypes (14 SNPs/Morgan), these authors observed that 87.8% of missing genotypes were correctly imputed but 95% of the accuracy of GEBV obtained with high-density SNP genotypes (1500 SNPs/Morgan) was achieved. Although reliability of GEBV was not evaluated in the present study, it is plausible to assume that the reliability of GEBV of Nelore cattle based on imputed genotypes from a chip with approximately 15 K SNPs, for which the imputation accuracy was around 0.98, would be similar to that of GEBV obtained with the HD chip.
Figure 3 (See legend on next page.)
Nevertheless, a more thorough analysis on this subject is needed.

Different (mimicked) customized LD chips were tested in order to evaluate changes in imputation accuracy when criteria for SNP selection were modified. As in Mulder et al. [4], selecting SNPs based on MAF (15K_em) and even spacing across the genome had little impact on imputation accuracy compared to selecting SNPs based only on even spacing. A small favorable difference was observed when SNPs were selected based on MAF (15K_em) rather than on linkage disequilibrium (15K_el), in addition to being evenly spaced. A slightly better accuracy was observed when both criteria (MAF and linkage disequilibrium), in addition to even spacing, were combined to select the SNPs for the chip (15K_eml). Increasing SNP density in the telomere regions of the chromosomes is expected to further increase the imputation performance of the customized chips [22]. We did not use refined algorithms to optimize the imputation accuracy of the customized chips since the development of an LD chip was outside the scope of our study. Results obtained with the 11a7 K chip suggests that if a new optimized LD chip was to be developed, adding SNPs to the existing commercial 7 K chip would be a good strategy since this would be less costly and provide an imputation accuracy that is comparable to that of a completely customized chip with similar density.

The customized chips that showed the highest imputation accuracy slightly outperformed the commercial chips with an equivalent density. It is important to mention that commercial and customized chips cannot be properly compared, since the design of the customized chips used information on genotypes from the same population than that to be imputed. However, it does highlight the importance of using population-specific information to design LD chips.

Imputation accuracy was not as much affected by pedigree information as by using different imputation methods. Flmpute resulted in higher imputation accuracies for the different chips and validation sets than BEAGLE. Ma et al. [19] found that Flmpute slightly outperformed BEAGLE when imputing Swedish and Finnish Red cattle genotypes from 50 K to HD, but BEAGLE outperformed Flmpute when imputing from 3 K to 50 K. Sun et al. [23] also observed a slightly better imputation performance of BEAGLE compared to Flmpute when imputing Angus genotypes from 7 K to 50 K. These results indicate that the choice of the imputation method depends on the chip and population, i.e. there is no single method that provides higher imputation accuracy for all scenarios. However, an outstanding advantage of Flmpute over BEAGLE is its computational efficiency. As reported by Ma et al. [19], processing time of the analysis with Flmpute was much shorter than with BEAGLE (data not shown).

Another factor that influenced imputation accuracy was the level of relatedness between imputed and reference animals. In agreement with the literature [14,19,24,25], imputation accuracy tended to increase as the relatedness between imputed and reference animals increased for both imputation methods. The influence of relatedness on imputation accuracy decreased with increasing SNP density of the LD chip. For the Nelore cattle population, using the denser LD chips (GGP75Ki and 48a7 K) resulted in high accuracies (>0.90) with Flmpute even for animals that were poorly related to the reference set.

For some genomic applications (e.g. genome-wide association (GWA) studies), SNP-wise imputation accuracy is relevant to prevent the propagation of genotyping errors. As in Erbe et al. [17] and VanRaden et al. [18], some regions of the genome contained markers that presented an erratic pattern of linkage disequilibrium, which suggests potential mapping and reference genome assembly problems. These regions had a negligible effect on imputation accuracy by individual but can potentially affect GWA studies. While the origin of this erratic linkage disequilibrium pattern is unknown, a precautionous strategy would be to exclude markers from these regions as a quality control criterion for GWA studies. To facilitate this, a supplementary table [See Additional file 1: Table S1] summarizes all the observed regions that presented poor imputation performance.

Finally, it is not clear if the Illumina® BovineHD chip should be considered as the target high-density chip for genomic applications in the Nelore breed. Recent genomic prediction results (not published) have revealed that the 50 K and HD chips share similar predictive abilities for different traits in Nelore cattle. At present, it is...
not clear to what extent the size and composition of the reference population influence these results. As reported by VanRaden et al. [20], the benefit of using denser chips for genomic prediction becomes more evident as the reference population increases. Denser chips are also preferred for genomic applications that aim at identifying and subsequently using information from causal mutations [26,27]. Except for the most valuable breeding stock (e.g. influential sires and potential donor cows), genotyping the animals with dense chips is prohibitive for most beef cattle operations. Thus, genotyping strategies need to be further investigated to allow the incorporation of genomic information in beef cattle breeding programs in a cost-effective way. The results presented here show that a strategy of genotyping dams and young sire candidates with LD chips to predict missing HD genotypes by imputation is feasible. Future studies are needed to better identify the proper densities of genotyping chips to be used for each category of animals and in which proportion they should be genotyped for each application.

Conclusions
Our results indicate that if the HD chip is considered as the target chip for genomic applications in the Nellore breed, cost-effectiveness can be improved by genotyping part of the economically marginal animals with an LD chip that contains around 15 K useful SNPs and imputing the missing HD genotypes. A denser LD chip (50 K useful SNPs) is recommended for animals that are poorly related to the reference population. For the current Nellore population, FImpute is preferred over BEAGLE for imputation of missing genotypes.

Additional file
Additional file 1: Observed autosome regions presenting an average imputation accuracy (CORR) lower than 0.7. BTA refers to the bovine (Bos taurus) autosome for which the window was mapped; min win is the position in base pairs (according to Illumina® map) of the first SNP of the window; max win is the position in base pairs (according to Illumina® map) of the last SNP of the window; CORR; (sdCORR) is the average (SD) of the correlation between observed and imputed genotypes, considering the SNP within the window; PECQ (sdPECQ) is the average (SD) of the percentage of correctly imputed genotypes, considering the SNP within the window; mMAF (sdMAF) is the average (SD) of MAF, considering the SNP within the window; m2r (sd2r) is the average (SD) of LD (r²) between all pairs of SNPs located in the same window; median LD (r²) between all pairs of SNPs located in the same window; win is the window index (consecutive numbers on the same chromosome indicate contiguous windows); non is the number of markers in the window; avg dist is the average gap between adjacent markers within the same window (in kb).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
JFG and TSS conceived the study and JFG led its coordination. RC, SAB and HHRN led the analyses and the manuscript preparation. All authors contributed to design the study, discuss the results and review the manuscript. All authors read and approved the final version of the manuscript.

Acknowledgements
We acknowledge the technical assistance of Guilherme Penteado Coelho Filho and Daniel Biluca and the financial support of Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), process 560022/2010-8. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by authors and the US Department of Agriculture. The USDA is an equal opportunity provider and employer.

Author details
1. UNESP, Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, São Paulo 14884-900, Brazil. 2. Division of Livestock Sciences, Department of Sustainable Agricultural Systems BOKU, University of Natural Resources and Life Sciences, Vienna A-1180, Austria. 3. GenSys Consultores Associados S/C Ltda, Porto Alegre 90680-000, Brazil. 4. Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON N1G2W1, Canada. 5. The Semex Alliance, Guelph, Ontario, Canada. 6. Centre for Reproduction and Genomics, AgResearch, Invermay, Mosgiel, New Zealand. 7. United States Department of Agriculture, Agricultural Research Service, Bovine Functional Genomics Laboratory, Beltsville, MD 20705, USA. 8. UNESP, Universidade Estadual Paulista, Faculdade de Medicina Veterinária de Araçatuba, Araçatuba, São Paulo 16050-680, Brazil.

Received: 1 April 2014 Accepted: 19 September 2014

References
1. Meuwissen THE, Hayes BJ, Goddard ME: Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001, 157:1819–1829.
2. Schefers JM, Weigel KA: Genomic selection in dairy cattle: integration of DNA testing into breeding programs. Anim Front 2012, 24–9.
3. Khanfar MG, Moser G, Hayes BJ, Radima HW: Strategies and utility of imputed SNP genotypes for genomic analysis in dairy cattle. BMC Genomics 2012, 13:538.
4. Mulder HA, Calus MPL, Druet T, Schrooten C: Imputation of genotypes with low-density chips and its effect on reliability of direct genomic values in Dutch Holstein cattle. J Dairy Sci 2012, 95:876–889.
5. Fenart B, Felico FE: Production systems – an example from Brazil. Meat Sci 2010, 84:238–243.
6. Espigolan R, Baldi F, Bolligon AA, Souza FR, Gordo DG, Tonussi RL, Cardoso DF, Oliveira HN, Tonhati H, Sangolzaei M, Schenkel FS, Carvalheiro R, Ferro JA, Albuquerque LG: Study of whole genome linkage disequilibrium in Nellore cattle. BMC Genomics 2013, 14:305.
7. Pérez O’Brien AW, Meléndez G, Utsumiomiya YT, Sonstegard TS, Garcia JF, Van Tassel CP, Carvalheiro R, Silva MVGB, Sołtner J: Linkage disequilibrium levels in Bos indicus and Bos Taurus cattle using medium and high density SNP chip data and different minor allele frequency distributions. Livest Sci 2014, 166:121–132.
8. Pausch H, Aigner B, Emmerling R, Edel C, Götz KU, Fries R: Imputation of high-density genotypes in the Fleckvieh cattle population. Genet Sel Evol 2013, 45:3.
9. VanRaden PM: Efficient methods to compute genomic predictions. J Dairy Sci 2008, 91:4414–4423.
10. Hill WG, Robertson A: Linkage disequilibrium in finite populations. Theor Appl Genet 1968, 38:226–231.
11. Clayton D: snpStats: SNPMatrix and XSnpMatrix Classes and Methods. In Edited by R package version 1.14.0, 2013. http://www.bioconductor.org/packages/release/bioc/html/snpStats.html
12. Browning BL, Browning SR: A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet 2009, 84:210–223.
13. Sorgolzaei M, Chensais JP, Schenkel FS: A new approach for efficient genotype imputation using information from relatives. BMC Genomics 2014, 15:478.
14. Hickey JM, Crossa J, Babu R, Campos G: Factors affecting the accuracy of genotype imputation in populations from several maize breeding programs. *Crop Sci* 2012, 52:654–663.

15. Daetwyler HD, Calus MPL, Pong-Wong R, Campos G, Hickey JM: Genomic prediction in animals and plants: simulation of data, validation, reporting, and benchmarking. *Genetics* 2013, 193:347–365.

16. Badke YM, Bates RO, Ernst CW, Schwab C, Fix J, Van Tassell CP, Steibel JP: Methods of tagSNP selection and other variables affecting imputation accuracy in swine. *BMC Genet* 2013, 14:8.

17. Erbe M, Hayes BJ, Matukumalli LK, Goswami S, Bowman PJ, Reich CM, Mason BA, Goddard ME: Improving accuracy of genomic predictions within and between dairy cattle breeds with imputed high-density single nucleotide polymorphism panels. *J Dairy Sci* 2012, 95:4114–4129.

18. VanRaden PM, Null DJ, Sargolzaei M, Wiggans GR, Tooker ME, Cole J, Sonstegard TS, Connor EE, Winters M, van Kaam JBCHM, Valentini A, Van Doormaal BJ, Faust MA, Doak GA: Genomic imputation and evaluation using high-density Holstein genotypes. *J Dairy Sci* 2013, 96:668–678.

19. Ma P, Brandum RF, Zhang Q, Lund MS, Su G: Comparison of different methods for imputing genome-wide marker genotypes in Swedish and Finnish red cattle. *J Dairy Sci* 2013, 96:4666–4677.

20. VanRaden PM, O’Connell JR, Wiggans GR, Weigel KA: Genomic evaluations with many more genotypes. *Genet Sel Evol* 2011, 43:10.

21. Daetwyler HD, Wiggans GR, Hayes BJ, Woolliams JA, Goddard ME: Imputation of missing genotypes from sparse to high density using long-range phasing. *Genetics* 2011, 189:317–327.

22. Boichard D, Chung H, Dassonneville R, David X, Eggen A, Fritz S, Gietzen KJ, Hayes BJ, Lawley CT, Sonstegard TS, Van Tassell CP, VanRaden PM, Vaau-Martinez KA, Wiggans GR: Design of a bovine low-density SNP array optimized for imputation. *PLoS One* 2012, 7:e34130.

23. Sun C, Wu XL, Weigel KA, Rosa GJM, Bauck S, Woodward BW, Schnabel RD, Taylor JF, Gianola D: An ensemble-based approach to imputation of moderate-density genotypes for genomic selection with application to Angus cattle. *Genet Res* 2012, 94:133–150.

24. Zhang Z, Drucet T: Marker imputation with low-density marker panels in Dutch Holstein cattle. *J Dairy Sci* 2010, 93:5487–5494.

25. Berry DP, Kearney JF: Imputation of genotypes from low- to high-density genotyping platforms and implications for genomic selection. *Animal* 2011, 5:1162–1169.

26. Visscher PM, Brown MA, McCarthy MI, Yang J: Five years of GWAS discovery. *Am J Hum Genet* 2012, 90:7–24.

27. Meuwissen T, Hayes B, Goddard M: Accelerating improvement of livestock with genomic selection. *Annu Rev Anim Biosci* 2013, 1:221–237.