Impact of CP phases on neutrinoless double beta decay

Asmaa Abada ¹ and Gautam Bhattacharyya ²

¹) Laboratoire de Physique Théorique, Université de Paris XI, Bâtiment 210, 91405 Orsay Cedex, France
²) Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064, India

Abstract

We highlight in a model independent way the dependence of the effective Majorana mass parameter, relevant for neutrinoless double beta decay, on the CP phases of the PMNS matrix, using the most recent neutrino data including the cosmological WMAP measurement. We perform our analysis with three active neutrino flavours in the context of three kinds of mass spectra: quasi-degenerate, normal hierarchical and inverted hierarchical. If a neutrinoless double beta decay experiment records a positive signal, then assuming that Majorana masses of light neutrinos are responsible for it, we show how it might be possible to discriminate between the three kinds of spectra.

PACS number(s): 14.60.Pq, 23.40.-s.

The importance of looking for neutrinoless double beta decay ($0\nu\beta\beta$) lies in the fact that, if observed, it would establish a violation of the total lepton number, which is otherwise a conserved quantum number in the standard model. Any nonvanishing amplitude for this decay may be inferred as a signal for an effective Majorana mass of the electron neutrino. This way it is sensitive to some kind of an absolute mass of the neutrino, contrary to the oscillation experiments, which can fix only the neutrino mass squared differences. An evidence for this decay has recently been claimed on the basis of results from Heidelberg-Moscow experiments [1]. This claim has been criticized by authors in [2], which has subsequently been followed by a reply to the criticism made [3]. In any case, the currently running NEMO3 experiment [4] and future [5] (Majorana, EXO, CUORICINO, CUORE, GENIUS) ($0\nu\beta\beta$) experiments would either confirm this evidence or would put a stronger bound on the amplitude of this decay. The rate of ($0\nu\beta\beta$) is proportional to the square of the (ee)-element of the neutrino mass matrix, often called the effective mass parameter m_{ee}. This parameter depends on the absolute neutrino masses, the solar and CHOOZ mixing angles, and two CP phases. A detailed discussion of the dependence of m_{ee} on different parameters may be found, e.g., in [6 7].

The purpose of this short note is to highlight in a model independent way the dependence of m_{ee} on the CP phases, using the most recent oscillation data on mass square splittings and mixing angles [8 9 10 11 12 13], as well as the recent cosmological bound from WMAP on the sum of all neutrino masses [14] in conjunction with data from 2dF galaxy redshift survey (2dFGRS) [15]. We base our
analysis on the three possible kinds of mass spectra: quasi-degenerate, hierarchical and inverted hierarchical, in the context of three neutrino generations. The $(0\nu\beta\beta)$ experiment in a sense serves to distinguish between the spectra: due to the present sensitivity, its observation in the ongoing $(0\nu\beta\beta)$ experiment, as it would turn out, would only establish a nearly degenerate mass spectrum.

We stress at this point that even though the $(0\nu\beta\beta)$ amplitude does depend on the CP phases, this decay does not correspond to a manifest CP-violating phenomenon. The rate of this decay is indeed affected by the phases. But the effect is CP-even, i.e., the rate of this decay in a nucleus will be the same, in principle, to that in an antinucleus. The CP-odd effect that these Majorana phases might have been studied in the context of neutrino ↔ antineutrino oscillation, rare leptonic decays of the K and B mesons, and leptogenesis (for a recent discussion on this issue, see [16]).

Let us now set up our notations in a scenario with three active neutrino flavours. In other words, we keep the LSND results [17] out of our consideration.¹ We recall that observation of neutrino oscillation implies mixing between the flavours due to the fact that the flavour basis is not parallel to the mass basis. The flavour basis is written as $\nu_{\ell L}$ where $\ell = e, \mu, \tau$, and the mass basis is expressed as ν_iL where $i = 1, 2, 3$ (L stands for left-handed). The two bases are related to each other by

$$\nu_{\ell L} = \sum_{i=1}^{3} U_{\ell i} \nu_iL,$$

where the unitary matrix U is called the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [20]. A useful parametrization of U is given by [21]

$$U = \begin{pmatrix}
 c_{12} & c_{13} \\
 -s_{12} c_{23} - c_{12} s_{23} s_{13} e^{i\delta} & c_{12} c_{23} - s_{12} s_{23} s_{13} e^{i\delta} \\
 s_{12} s_{23} - c_{12} c_{23} s_{13} e^{i\delta} & -c_{12} s_{23} - s_{12} c_{23} s_{13} e^{i\delta}
\end{pmatrix}
\begin{pmatrix} c_{13} & c_{23} & s_{13} e^{-i\delta} \\
 s_{13} e^{i\delta} & c_{23} & s_{13} \\
 s_{13} & s_{13} & c_{13}
\end{pmatrix} \text{diag} \{e^{i\alpha_1}, e^{i\alpha_2}, 1\},$$

where $c_{ij} = \cos(\theta_{ij})$ and $s_{ij} = \sin(\theta_{ij})$, δ is the Dirac CP phase and $\alpha_{1,2}$ are the Majorana phases.

If the $(0\nu\beta\beta)$ amplitude is indeed generated by a $(V-A)$ weak charged current interaction via Majorana neutrino exchange, and if the masses of those neutrinos are less than a typical Fermi momentum (~ 100 MeV) of the nucleons inside a nucleus, then the $(0\nu\beta\beta)$ amplitude is proportional to the effective mass m_{ee} defined as [22]

$$|m_{ee}| = |U_{e1}^2 m_1| = \left| m_1 |U_{e1}|^2 + m_2 |U_{e2}|^2 e^{2i\alpha_M} + m_3 |U_{e3}|^2 e^{2i\alpha_{MD}} \right|,$$

where $\alpha_M = (\alpha_2 - \alpha_1)$ is a pure Majorana type and $\alpha_{MD} = - (\delta + \alpha_1)$ is a mixture of the Majorana and Dirac type CP phases. Without any loss of generality, we can take the mass eigenvalues (m_1, m_2, m_3) to be positive. The effective mass parameter depends on the solar angle θ_{12}, the CHOOZ angle θ_{13}, the masses m_i and the CP phases. The solar angle measurement has become increasingly precise particularly after the SNO results came out. As regards θ_{13}, there exists only an upper limit from the CHOOZ [12] and Palo Verde [13] neutrino disappearance reactor experiments. The latter angle links the solar and the atmospheric sectors in the PMNS matrix. This angle is also important in the context of future CP violation measurements in the long baseline experiments. For an observable impact of CP violation θ_{13} should not be smaller than 0.2° (the other necessity is a large solar angle which has already been established anyway). More specifically, the future first generation superbeams JHF-SK [23] and NuMI [24] long baseline experiments (JHF-SK to start taking data in 2007) along with

¹Indeed, we know now that miniBoone [18] will either confirm or rule out the LSND signal earliest by 2006, see [19].
possible large reactor experiments will measure $\sin^2 \theta_{13}$ to a few 10^{-3} level \cite{25} and, if luck permits, will also determine some CP asymmetries. Now we turn our attention to the CP phases. As yet, these phases are completely unknown. Only the $(0\nu\beta\beta)$ amplitude offers a unique and direct probe to them. These phases take an active role in determining the size of the $(0\nu\beta\beta)$ amplitude, and the possibility of a likely signal for this decay in the current and foreseeable experiments hangs crucially on the amount of destructive interferences created by these phases.

We now briefly summarize the experimental data which concern the effective mass calculation related to neutrinoless double beta decay.

- The post-KamLAND analysis \cite{9} constrain the solar angle, θ_{sol} or θ_{12}, as (b.f. means best fit)
 \[0.70 \leq \sin^2 2\theta_{\text{sol}} \leq 0.96 \quad (95\% \ CL); \quad \sin^2 2\theta_{\text{sol}} \ (\text{b.f.}) = 0.82. \]

- The CHOOZ experiment \cite{12} constrains the θ_{13} angle as
 \[\sin \theta_{13} \leq 0.22 \quad (95\% \ CL), \]

and a global analysis by Fogli et al. \cite{26} led to $|U_{e3}|^2 < 5.0 \cdot 10^{-2}$ (99.7\% CL).

- The solar \cite{9} and atmospheric \cite{11} squared mass differences are constrained as (95\% CL)
 \begin{align*}
 5.8 \cdot 10^{-5} & \leq \Delta m^2_{\text{sol}} \ (eV^2) \leq 9.1 \cdot 10^{-5} \quad \Delta m^2_{\text{sol}} \ (\text{b.f.}) = 7.2 \cdot 10^{-5} \ (eV^2) \\
 1 \cdot 10^{-3} & \leq \Delta m^2_{\text{atm}} \ (eV^2) \leq 5.0 \cdot 10^{-3} \quad \Delta m^2_{\text{atm}} \ (\text{b.f.}) = 2.5 \cdot 10^{-3} \ (eV^2).
 \end{align*}

- The WMAP result \cite{14} in conjunction with the 2dFGRS data \cite{15} constrain the total mass of the active neutrino species (with the assumption that these neutrinos have decoupled while still being relativistic) as
 \[\sum_i m_i \approx 0.71 \text{ eV} \quad (95\% \ CL). \]

Implicitly, the limit in Eq. \cite{8} uses the Ly-α forest data \cite{27} whose interpretation is still controversial. Excluding the latter, one obtains a more robust and conservative bound $\sum_i m_i \approx 1.01 \text{ eV}$ \cite{28}.

- The Heidelberg-Moscow claim on evidence of $(0\nu\beta\beta)$ translates into an effective Majorana mass
 \[0.11 \leq |m_{ee}| \ (eV) \leq 0.56 \quad (95\% \ CL); \quad |m_{ee}| \ (\text{b.f.}) = 0.39 \text{ eV}. \]

- The Mainz \cite{29} and Troitsk \cite{30} Tritium beta decay experiments have put the bound $m_{\nu_e} \lesssim 2.2$ eV on the electron-type neutrino mass. The future KATRIN Tritium beta decay experiment \cite{31}, planned to be operative from 2007, has the possibility to probe m_{ν_e} down to 0.35 eV level.

We perform our analysis on the basis of the usual three kinds of mass hierarchy, and we discuss them one by one. But, before that, we observe that the WMAP limit automatically sets an upper limit for the effective mass parameter in neutrinoless double beta decay. In other words, keeping in mind Schwarz inequality, it follows from Eq. \cite{3} that $|m_{ee}| \lesssim 0.71$ eV (or a more conservative upper limit of 1.01 eV a la Hannestad \cite{28}). A similar conclusion was also drawn in \cite{32}.

3
1. **Quasi-degenerate**: The three eigenvalues are \(m_1 \simeq m_2 \simeq m_3 = m_0 \). The absolute scale can be made large enough to saturate the WMAP bound, i.e. \(m_0 \simeq 0.23 \) eV. In this case, Eq. (3) turns out to be

\[
|m_{ee}| \simeq m_0 \left| \frac{s_{12}^2 c_{13}^2 + s_{12}^2 c_{13} e^{2i\alpha_M} + s_{13}^2 e^{2i\alpha_{MD}}}{c_{13}} \right|.
\]

(10)

Since CHOOZ data constrain \(s_{13} \) to be small, one would naively throw away the third term in Eq. (10), as has been the usual practice. But the effect of this term can be significant when there is a cancellation between the first two terms. For \(s_{13} = 0 \), we obtain

\[
m_0 |\cos 2\theta_{\text{sol}}| \lesssim |m_{ee}| \lesssim m_0.
\]

(11)

As a matter of fact, the upper bound \(m_0 \) in Eq. (11) holds, thanks to the Schwartz inequality, irrespective of the value of \(s_{13} \). The rôle of the destructive interference can be seen in Fig. 1 where we have plotted the effective mass parameter for both left and right panels, we infer that a non-vanishing \(m_{ee} \), irrespective of the value of \(s_{13} \), is possible when there is a cancellation between the first two terms. For \(s_{13} = 0 \), we obtain

\[
m_0 |\cos 2\theta_{\text{sol}}| \lesssim |m_{ee}| \lesssim m_0.
\]

2. **Normal Hierarchy**: In this case, \(m_1 < m_2 \ll m_3 \). As an illustrative example, we can take \(m_1 \simeq 0 \), \(m_2 \simeq \sqrt{\Delta m_{\text{sol}}^2} \), and \(m_3 \simeq \sqrt{\Delta m_{\text{atm}}^2} \). Then one can effectively get rid of one of the two CP phases in Eq. (6), and can write \((\alpha \equiv \alpha_{MD} - \alpha_{M})\)

\[
|m_{ee}| = \sqrt{\Delta m_{\text{sol}}^2 s_{12}^2 c_{13}^2 + \Delta m_{\text{atm}}^2 s_{13}^2 e^{2i\alpha}}.
\]

(12)

In Fig. 2, we have plotted \(|m_{ee}|/\sqrt{\Delta m_{\text{sol}}^2}\) against the CP phase \(\alpha \). We observe that even in the case of maximum cancellation \((\alpha = \pi/2)\) the effective mass never vanishes (see the zoom in Fig. 2) and thus corresponds to a lower bound, which is unfortunately much below the present and foreseeable experimental sensitivity. Putting numbers, we obtain within the 95% confidence level from the data

\[
|m_{ee}| \lesssim 0.007 \text{ eV}.
\]

(13)

A non-zero \(m_1 \) (but small enough to satisfy \(m_1 \ll \sqrt{\Delta m_{\text{sol}}^2} \)) can however push \(|m_{ee}|\) to slightly higher values.

3. **Inverted Hierarchy**: In this case, \(m_1 > m_2 \gg m_3 \). One can take \(m_1 \simeq m_2 \simeq \sqrt{\Delta m_{\text{atm}}^2} \) and \(m_3 \simeq 0 \). Again, only one CP phase, the pure Majorana one, enters into the expression for \(|m_{ee}|\), given by

\[
|m_{ee}| = \sqrt{\Delta m_{\text{atm}}^2 c_{13}^2 |c_{12}|^2 + s_{12}^2 e^{2i\alpha_M}}.
\]

(14)

This case is very similar to the quasi-degenerate scenario, except that the overall mass scale is suppressed by \(\sqrt{\Delta m_{\text{atm}}^2}/m_0 \) and that the third term in Eq. (3) is even further suppressed. This case is illustrated in Fig. 3 where we have plotted \(|m_{ee}|/\sqrt{\Delta m_{\text{atm}}^2}\) as a function of the CP phase \(\alpha_M \). The maximum cancellation holds for \(\alpha_M = \pi/2 \), as it was for the quasi-degenerate case. When \(\alpha_M = 0 \), which does not necessarily mean that the original Majorana phases \(\alpha_1 \) and \(\alpha_2 \)
in the PMNS matrix individually vanish, we obtain the maximum amplitude. Again putting
numbers, we obtain at 95% CL from experimental data
\[0.006 \text{ eV} \lesssim |m_{ee}| \lesssim 0.07 \text{ eV}. \] (15)

Thus we may observe that a measurement of $|m_{ee}|$ may serve to distinguish between the spectra.
As an example, any measurement of $|m_{ee}|$ reasonably above the maximum $\sqrt{\Delta m_{\text{atm}}^2} \simeq 0.07$ eV will
conclusively rule in favour of the quasi-degenerate spectrum, irrespective of the present uncertainty
over the absolute mass upper limit. In the future experiments, if the effective mass is found between
0.007 eV and 0.07 eV, then the spectrum would correspond to inverted hierarchy pattern, while an
observation of $|m_{ee}|$ below 0.006 eV would imply a normal hierarchical pattern. But if $|m_{ee}|$ is observed
between 0.006 and 0.007 eV, then the two kinds of hierarchies cannot be discriminated. These divisions
are based on the basis of accepting the experimentally allowed regions at 95% CL. If, instead, one
employs 99% CL criterion, the lower bound of $|m_{ee}|$ in the case of inverted hierarchy enters more
into the zone admitted by normal hierarchy. Another point to note is that in future if the KATRIN
Tritium beta decay experiment confirms a large ($\gtrsim 0.35$ eV) absolute mass, then a measurement of
$|m_{ee}|$ in an ongoing neutrinoless double beta decay experiment would provide an idea about the CP
phases. The Heidelberg-Moscow and NEMO3 experiments have been designed to reach a sensitivity
of a few 10^{-1} eV. Thus a positive signal in these experiments will only imply a degenerate spectrum.
Among the future short term projects, CUORICINO will have a sensitivity of a few 10^{-1} eV, but
the Majorana, EXO, and CUORE experiments are expected to attain a sensitivity of few 10^{-2} eV.
Therefore, we will be able to distinguish between the inverted hierarchical and the degenerate spectra.
On the other hand, if the spectrum is normal hierarchical then we will have to wait for the long term
projects, which are expected to reach a sensitivity of few 10^{-3} eV (e.g. 10t GENIUS). We refer to
ref. 33 for a general discussion about the future direct neutrino mass measurements.

A word of caution is relevant here. Nonzero Majorana masses of light neutrinos are not necessarily
the only source behind a nonvanishing $(0\nu\beta\beta)$. Heavy Majorana neutrinos or doubly charged scalars
may also contribute to $(0\nu\beta\beta)$, where the contributions are suppressed by their heavy masses. In
fact, in the context of left-right symmetric SU(2)$_L \times$ SU(2)$_R \times$ U(1)$_{B-L}$ model, the see-saw generated
light Majorana neutrinos, the heavy Majorana neutrino, the doubly charged scalar, all contribute to
$(0\nu\beta\beta)$; additionally, there is a fourth contribution arising out of light and heavy neutrino mixing.
Nonobservation of $(0\nu\beta\beta)$ can therefore be translated into lower bounds on the relevant heavy masses in the
range of a few hundred GeV to a few TeV. In supersymmetric models with broken R-parity, the trilinear
λ'_{111} coupling or the product couplings $\lambda'_{11j} \cdot \lambda_1^{j1}$ also drive $(0\nu\beta\beta)$, and again stringent bounds emerge
on those couplings. The R-parity violating couplings will have distinct collider signals. So before one
interprets a nonzero signal of $(0\nu\beta\beta)$ as a direct consequence of light neutrino Majorana masses, one
must ensure that all other lepton number violating contributions are comparatively dwarfed. It should,
however, be noted that regardless of whatever mechanism is responsible for $(0\nu\beta\beta)$, once there is a
lepton number violating interaction, neutrino Majorana masses will be definitely generated at higher
loops, even if it is forbidden at tree level. Thus a nonvanishing $(0\nu\beta\beta)$ amplitude effectively implies a
nonvanishing neutrino Majorana mass, directly or indirectly. For an illustrative discussion on different
kinds of lepton number violating processes and their contributions to $(0\nu\beta\beta)$, see ref. 34.

In conclusion, assuming that the Majorana masses of light neutrinos are mainly responsible for $(0\nu\beta\beta)$,
the major ingredients for the prediction of $|m_{ee}|$ are the solar and atmospheric mass splittings (for
normal and inverted hierarchical cases), the absolute mass scale (for degenerate case), the solar mixing
angle, the CHOOZ angle and the CP phases. The ongoing oscillation experiments provide mass
squared splittings and mixing angles. In the near future the precision of all the oscillation parameters will be significantly enhanced, which will sharpen the $|m_{ee}|$ prediction. Then the chances of getting a positive signal in the $(0\nu\beta\beta)$ experiments will depend crucially on the CP phases. It was our aim to demonstrate the role of these phases in this context. Here we have not indulged ourselves in the discussion of theoretical uncertainties associated with $|m_{ee}|$ prediction. The uncertainty in the nuclear matrix element calculations is estimated to be roughly $O(2)$ (for a recent analysis on theoretical and experimental uncertainties associated with $|m_{ee}|$, see, e.g., [7]). Eventually, if a non-zero $(0\nu\beta\beta)$ signal is observed in experiment, then its size will give a hint on the nature of the spectrum. This is an advantage over the oscillation experiments. Additionally, such an event will give us a handle on the magnitude of the CP phases, which might lead to CP odd effects at an observable level [16]. Finally, we point out that following the WMAP results [14] a lot of enthusiasm has been generated towards a close scrutiny of neutrinoless double beta decay (some of these references are contained in [35]).

Acknowledgments: We thank C. Augier and S. Jullian from NEMO3 collaboration, and also J.-P. Leroy for a useful discussion and for suggesting improvements of the manuscript. GB acknowledges hospitality of LPT, Univ. de Paris XI, Orsay, where the work has been initiated. GB’s research has been supported, in part, by the DST, India, project number SP/S2/K-10/2001.

References

[1] H.V. Klapdor-Kleingrothaus, A. Dietz, H.L. Harney, I.V. Krivosheina, Mod. Phys. Lett. A 16 (2001) 2409.

[2] C.E. Aalseth et al., hep-ex/0202018 and F. Feruglio, A. Strumia, F. Vissani, hep-ph/0201291.

[3] H.V. Klapdor-Kleingrothaus, hep-ph/0205228; H.V. Klapdor-Kleingrothaus, A. Dietz, I.V. Krivosheina, Found. Phys. 32 (2002) 1181.

[4] NEMO3 Collaboration, C. Marquet et al., Nucl. Phys. B (Proc. Suppl.) 87 (2000) 298; L. Simard for the NEMO collaboration, Nucl. Phys. B (Proc. Suppl.) 110 (2002) 372.

[5] H.V. Klapdor-Kleingrothaus et al. (GENIUS), J. Phys. G 24 (1998) 483; M. Danilov et al., (EXO) Phys. Lett. B 480 (2000) 12; L. Braeckeleer (for Majorana Collaboration), Proceedings of the Carolina Conference on Neutrino Physics, Columbia SC USA, March 2000; E. Ejiri et al. (MOON), Phys. Rev. Lett. 85 (2000) 2917; see also, S.R. Elliott, P. Vogel, Annu. Rev. Nucl. Part. Sci., 52 (2002).

[6] H.V. Klapdor-Kleingrothaus, H. Päs, A.Y. Smirnov, Phys. Rev D 63 (2001) 073005, and references therein.

[7] S. Pascoli, S.T. Petcov, W. Rodejohann, Phys. Lett. B 558 (2003) 141; *ibid.* B 549 (2002) 177. See also, *e.g.*, S. Pascoli, S.T. Petcov, Phys. Lett. B 544 (2002) 239; S. Pascoli, S.T. Petcov, L. Wolfenstein, Phys. Lett. B 524 (2002) 319; S.M. Bilenky *et al.*, Phys. Rev. D 64 (2001) 053010; W. Rodejohann, hep-ph/0203214.

[8] SNO Collaboration, Q.R. Ahmad *et al.*, Phys. Rev. Lett. 89 (2002) 011301; KamLAND Collaboration, K. Eguchi *et al.*, Phys. Rev. Lett. 90 (2003) 021802.
[9] M. Maltoni, T. Schwetz, J. W. Valle, A. Bandyopadhyay et al., hep-ph/0212146; J. N. Bahcall, M. C. Gonzalez-Garcia, C. Pena-Garay, hep-ph/0212147; V. Barger and D. Marfatia, Phys. Lett. B555, 144 (2003); P.C. de Holanda, A.Y. Smirnov, hep-ph/0212270; H. Nunokawa et al., hep-ph/0212202; P. Aliani et al., hep-ph/0212212.

[10] Super-Kamiokande Collaboration, Y. Fukuda et al., Phys. Rev. Lett. 81 (1998) 1562; M. Shiozawa, talk given at “Neutrino’02”, Munich, Germany, 2002.

[11] N. Fornengo, M. Maltoni, R. T. Bayo, J. W. Valle, Phys. Rev. D 65 (2002) 013010.

[12] CHOOZ collaboration, M. Appolonio et al., Phys. Lett. B 466 (1999) 415.

[13] Palo Verde experiment, F. Boehm et al., Phys. Rev. Lett. 84 (2000) 3764.

[14] D.N. Spergel et al., astro-ph/0302209.

[15] O. Elgaroy et al., Phys. Rev. Lett. 89, 061301 (2002).

[16] A. de Gouvêa, B. Kayser, R. Mohapatra, Phys. Rev. D 67 (2002) 053004.

[17] LSND Collaboration, A. Aguilar et al., Phys. Rev. D 64 (2001) 112007.

[18] E.D. Zimmerman, hep-ex/0211039. Invited talk at the Seventh International Workshop on Tau Lepton Physics (TAU02), Santa Cruz, Ca, USA, Sept 2002.

[19] A. Green, Invited talk at 38th Rencontres de Moriond: Electroweak Interactions and Unified Theories, Les Arcs, France, 15-22 Mar 2003.

[20] B. Pontecorvo, Zh. Eksp. Teor. Fiz. 33 (1957) 549 and ibid. 34 (1958) 247; Z. Maki, M. Nakagawa, S. Sakata, Prog. Theor. Phys. 28 (1962) 870.

[21] L.L. Chau and W.Y. Keung, Phys. Rev. Lett. 53 (1984) 1802.

[22] S.M. Bilenky, S.T. Petcov, Rev. Mod. Phys. 59 (1987) 671.

[23] Y. Itow et al., hep-ex/0106019.

[24] D. Ayres et al., hep-ex/0210005.

[25] P. Huber, M. Lindner, T. Schwetz, W. Winter, hep-ph/0303232.

[26] G.L. Fogli et al., Phys. Rev. D 66 (2002) 093008.

[27] R.A. Croft et al. Astrophys. J. 581 (2002) 20; U. Seljak, P. McDonald, A. Makarov, astro-ph/0302571.

[28] S. Hannestad, astro-ph/0303076.

[29] C. Weinheimer et al., Phys. Lett. B 460 (1999) 219.

[30] V.M. Lobashev et al., Phys. Lett. B 460 (1999) 227.

[31] KATRIN Collaboration, A. Osipowicz et al., hep-ex/0109033 (letter of intent for next generation Tritium beta decay experiment).
[32] A. Abada, M. Losada, Nucl. Phys. B 585 (2000) 45.

[33] J.L. Vuilleumier, Invited talk at 38th Rencontres de Moriond: Electroweak Interactions and Unified Theories, Les Arcs, France, 15-22 Mar 2003.

[34] ‘Massive Neutrinos in Physics and Astrophysics’, R.N. Mohapatra and P.B. Pal (World Scientific, 2nd Edition, 1998).

[35] K. Matsuda, T. Fukuyama, H. Nishiura, hep-ph/0302254; K. Cheung, hep-ph/0302265; G. Battacharyya, H. Pás, L. Song, T. Weiler, hep-ph/0302191; H.V. Klapdor-Kleingrothaus, U. Sarkar, hep-ph/0304032.
Figure 1: The quasi-degenerate case is represented with the minimum and maximum allowed values for the CHOOZ angle. The left panel corresponds to $\sin \theta_{13} = 0$ and the right panel to $\sin \theta_{13} = 0.22$. The z axis represents $|m_{ee}|/m_0$ in terms of the two CP phases. The lowest value of $|m_{ee}|/m_0$ is not zero but $|\cos 2\theta|_{\text{sol}}$. The first, second and third rows correspond to $\sin^2 2\theta_{\text{sol}} = 0.96$ (95% CL upper limit), 0.82 (best fit) and 0.70 (95% CL lower limit), respectively.
Figure 2: The normal hierarchy case: the effective mass normalized as $|m_{ee}|/\sqrt{\Delta m^2_{\text{sol}}}$ is plotted against the only CP phase α (see text). We have used the best fit value for the solar angle. In the right panel we zoom the part where there is an extreme cancellation.

Figure 3: The inverted hierarchy case: the effective mass normalized as $|m_{ee}|/\sqrt{\Delta m^2_{\text{atm}}}$ is plotted against the only CP phase α_M (see text). We have used the best fit value for the solar angle.