Efficient photocatalytic degradation of aniline blue under solar irradiation by ternary cobalt ferrite/graphitic carbon nitride/bentonite nanocomposite

Debasish Guha Thakurata1,2 · Krishna Chandra Das2,3 · Siddhartha Sankar Dhar2

Received: 8 March 2021 / Accepted: 16 December 2021 / Published online: 17 January 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
The current research describes the synthesis, characterization and application of CoFe2O4/g-C3N4/bentonite as a novel nanocomposite for the efficient degradation of aniline blue under solar irradiation. Powder XRD, TIR, SEM, TEM, VSM and UV-DRS were used to describe the formation and morphology of the composite. The composite has been used as a heterogeneous photocatalyst to degrade aniline blue in the presence of H2O2. In the presence of H2O2 in solar radiation, it was possible to degrade 88.5% of 10 ppm aniline blue solution just in 50 min using 50 mg of the composite. The improvement in photodegradation rate in the existence of H2O2 was attributed to the advanced oxidation process (AOP) mechanism of photo-Fenton involving the production of reactive hydroxyl and perhydroxyl radicals. The degradation was found to follow first-order kinetics with high regression coefficient with elevated rate constant.

Keywords Nanocomposite · Aniline blue · Advanced Oxidation Process (AOP) · Photo-Fenton

Introduction
Aniline blue (AB) is an acidic dye that belongs to the triphenylmethane class of dye (Egzar et al. 2013). This dye is readily soluble (Lorenc-Grabowska and Gryglewicz 2007) in water and is extensively used in different textile industries for dying of nylon, wool, silk and cotton for which its presence in the industrial effluents may contribute aquatic environmental contamination (Eykholt and Davenport 1998). Besides, aniline blue is exceptionally steady for which its occupancy time in the aquatic environment is extremely high (Pare et al. 2008). This dye is also identified as China blue, marine blue and soluble blue 3 M. Aniline blue has a characteristic of two benzene rings attached to the central carbon atom in addition to a p-quinoid group which acts as the chromophore along with –NH2 and –NR2 groups as auxochromes (Sirés et al. 2008). Usually, aniline blue is considered as the xenobiotic compounds, recalcitrant molecules and noxious substances to microorganisms, animals and plants. Due to the poor competence of conventional supervision, this dye sustains more in industrial wastewaters and dirt (Azmi et al. 1998; Culp and Beland 1996).

Effluents from the textile industry containing different toxic organic dyes pose a serious threat to our aquatic environments (Daneshvar et al. 2003; Ledakowicz and Gonera 1999). These dyes have a very complex structure and generate carcinogenicity in the course of hydrolysis, oxidation and other chemical reactions (Ooi et al. 2012; Hayati and Mahmoodi 2012; Man et al. 2012). Different conventional techniques such as biological treatment, reverse osmosis and activated carbon adsorption are in force to eliminate such toxicity from the aquatic environment. However, in modern research advanced oxidation processes (AOPs) which account for photocatalysis (Rauf and Ashraf 2009; Liu et al. 2011) and Fenton’s processes (Alnuaimi et al. 2007; Bouasla et al. 2010) are considered as the most encouraging method for organic dye degradation from the aquatic environment. The advanced oxidation process utilizes the in situ generations of hydroxyl and superoxide radicals as an oxidizing
agent which initiate the sequence of a chemical reaction and smash down the complex molecules in less toxic components (Rauf and Ashraf 2012). Photocatalyst having band gap in the range of 1.1 – 3.0 eV makes use of visible light to degrade organic dyes competently (Vijayaraghavan et al. 2016). Spinel metal ferrites with distinctive structural features and two or more cations along with imperfect oxygen sublattice along with a narrow band gap play a significant role in the photodegradation (Dom et al. 2011). Metal ferrites have recently received a lot of attention for their use as visible light photocatalysts for the degradation of organic dyes in water. One more benefit of using ferrites is their magnetic nature. Iron (III) oxides are especially much magnetic materials (Machala et al. 2011), and hence, ferrites are used alone as photocatalysts in the motive that they can be easily detached from the reaction medium easily (Ao et al. 2008). The PbS quantum dots decorated ZnO/TiO2 photocatalyst exhibit a superior aniline blue degradation efficiency and photocatalytic activity (Lee et al. 2018). In UV/solar radiation, 3d series transition metal ions doped in TiO2 show enhanced photodegradation potential of aniline blue. (Devi et al. 2010). Different semiconducting nanomaterials like ZnO, ZnS and SnO2 have been investigated for efficient degradation of aniline blue in visible light (Egzar et al. 2013). Even though literature assessment supports some efficient mode of degradation of aniline blue by different nanomaterials, the application of metal ferrite-based ternary composite is still unexplored in this category of effort. Considering this aspect, the present paper discusses the novel ternary cobalt ferrite-based nanocomposite with narrow band gap of 1.59 eV for efficient degradation of aniline blue in visible light radiation. The physical and optical properties were documented by FTIR, powdered XRD, VSM, SEM, TEM and UV–Vis-DRS techniques.

Experimental

Materials

Merck supplies iron (III) nitrate nanohydrate [Fe(NO3)3.9H2O], cobalt nitrate hexahydrate [Co(NO3)3.6H2O] and urea, including sodium hydroxide (NaOH). Sigma-Aldrich provides hydrogen peroxide (6%), bentonite and aniline blue. Without any further purification, all chemicals were utilized for synthesis. Cinnamon is collected from local market.

Preparation of cinnamon extract assisted cobalt ferrite

CoFe2O4 nanoparticles were synthesized via self-combustion using aqueous extract of cinnamon followed by calcinations in muffle furnace (Deraz 2010; Kooti et al. 2013). 5 mM ferric nitrate [Fe(NO3)3.9H2O] and 2.5 mM cobalt nitrate [Co(NO3)3.6H2O] were added slowly in the aqueous cinnamon extract. This mixture (pH = 2) is heated at 80°C to get a gel like substance. The reddish-brown gel-like substance was again heated on a heater at 250 °C to decompose completely by self-combustion. The ample powder so obtained is finally calcined at 600 °C for 3 h to get fine crystals of cobalt ferrites.

Preparation of graphitic carbon nitride

Graphitic carbon nitride (g-C3N4) was prepared by heat treatment of urea under ambient pressure in a muffle furnace (Isotemp Programmable Muffle Furnace 650–750 Series, Fisher Scientific) for 3 h at 600°C to conclude the reaction. The resulting yellowish powder was washed with distilled water to eliminate any remaining matter adsorbed on it and lastly dried up at 80°C.

Fabrication of ternary composite

Two stages have been used to develop the ternary nanocomposite. First, a binary composite of nickel ferrite and graphitic nitride was developed, and this binary composite was then converted into a ternary composite by introducing bentonite. In a distinctive procedure, 100 mg of cobalt ferrite and 80 mg of graphitic carbon nitride mixed homogeneously by using mortar pestle for 30 min. The solid mixture is calcined at 400°C for 2 h. To achieve uniform dispersion, the binary mixture was dissolved in distilled water and sonicated for 30 min. Centrifugation was used to separate the solid binary mixture. In another experiment, 50 mg of bentonite was dissolved in 50 mL deionized water and magnetically stirred. The solid binary composite was introduced to this solution and stirred for 12 h. After that, centrifugation has been used to extract the ternary composite.

Study of photocatalytic degradation of aniline blue (AB)

The photocatalytic activity of the as-synthesized CoFe2O4/g-C3N4/bentonite ternary composite was investigated by degrading aniline blue (AB) under solar irradiation, which has an average solar insolation of 4.29 kwh/m2/day in this geographical area at a latitude of 24.81°N when compared to National Renewable Energy Laboratory (NREL) satellite data. In a typical experiment, 10 mg, 30 mg and 50 mg of composite was introduced into 60 mL of 10 ppm aniline blue solution with 1 mL of 10% hydrogen peroxide (H2O2) and stirred in the absence of light for 30 min to reach adsorption–desorption equilibrium. Under constant stirring, the mixture was exposed to solar radiation. The degradation
of the dye was monitored periodically with the help of spectrophotometer (Shimazu UV-1900i) by withdrawing 4 mL of the mixture and centrifuging immediately (5 min, 3000 rpm). The absorbance was recorded over a wavelength range of 200 to 800 nm. Equation (1) has been used to evaluate the catalytic degradation efficiency.

\[
\text{Degradation(\%)} = \left(\frac{A_0 - A}{A_0} \right) \times 100
\]

where \(A_0\) is the absorbance of AB before degradation and \(A\) is the absorbance of AB after degradation.

Results and discussion

FTIR analysis

Careful observation on the FTIR spectra of cobalt ferrite in Fig. 1(a) shows intense peaks at 455 cm\(^{-1}\) and 535 cm\(^{-1}\) corresponding to intrinsic stretching vibrations of Fe–O at the tetrahedral site and Co–O at the octahedral site (Das and Dhar 2020a, b; Topkaya et al. 2013). Co\(^{2+}\) ions prefer to be in the octahedral region, whereas Fe\(^{3+}\) ions prefer to be in both the octahedral and tetrahedral sites. Further observations show strong absorptions at 1104 cm\(^{-1}\) which is the same as phenolic hydroxyl group of flavonoids type of compound in the cinnamon extract (De Souza et al. 2018). The standard stretching modes of CN heterocycles were assigned to the different characteristic bands in the FTIR spectra of g-C\(_3\)N\(_4\) in the range 1200 to 1700 cm\(^{-1}\) (Fig. 1(b)) which is in good agreement with the literature (Shi et al. 2015). The FTIR spectra of the ternary composite Fig. 1(c) assign all the characteristic band of individual components present in it. The sharp peaks in the range 460-532 cm\(^{-1}\) are due to M–O bond in the tetrahedral and octahedral sites. Distinct peak on 811 cm\(^{-1}\) signifies bending vibration of heptazine of g-C\(_3\)N\(_4\). Separate peak at 1030 cm\(^{-1}\) is same as to the presence of bentonite in the composite. Three peaks in the range 1430-1620 correspond to heptazine derived repeating unit of g-C\(_3\)N\(_4\). The broad band in the range 3188-3370 cm\(^{-1}\) is due to partial condensation and absorption of water molecule.

XRD analysis

The XRD blueprint of CoFe\(_2\)O\(_4\), g-C\(_3\)N\(_4\) and CoFe\(_2\)O\(_4\)/g-C\(_3\)N\(_4\)/bentonite is presented in Fig. 2(a, b and c). In Fig. 2(a) the characteristic peaks at an angle 2\(\theta\) = 18.99, 32.13 and 35.58 correspond to the plane (111), (220) and (311) for the CoFe\(_2\)O\(_4\) sample precisely corresponding with the JCPDS card No. 770426. Further, the formation of the g-C\(_3\)N\(_4\) was justified by the presence of the peaks at 2\(\theta\) angles 13 and 27.54 corresponding to (100) and (002) planes (Fig. 2b) that matches very closely to JCPDS card No. 87–1526. These intense peaks are due to the tri-s-triazine units of the conjugated aromatic systems, correspondingly as supported by reported literature (Bhuyan et al. 2018, Sharma Fig. 1 FTIR of Cobalt ferrite (a), Graphitic Carbon Nitride (b) and Ternary Composite (c)

Fig. 2 XRD pattern of cobalt ferrite (a), g-C\(_3\)N\(_4\) (b) and ternary composite (b)
and Sasson 2017). Intense peaks of the XDR pattern of the composite (Fig. 2(c)) indicate high crystalline nature of the substance. The position of the peaks of the components including bentonite at an angle $2\theta = 20.64$, 26.52 and 54.00 corresponds to (110), (210) and (144) planes as reported in literature (Hebbar et al. 2018) that is well matched, which confirms the composite formation. The average crystallite diameter (D_c) of CoFe_2O_4 particles and $\text{CoFe}_2\text{O}_4/\text{g-C}_3\text{N}_4$/bentonite nanocomposite was deliberated to be 26.62 nm and 30.92 nm, respectively, by the Scherrer formula (Bunaciu et al. 2015). The increase in the value of crystallite size of the composite compared to cobalt ferrite confirms the encapsulation of the ferrite core by graphitic carbon nitride and bentonite.

VSM analysis

Vibrating sample magnetometers were used to implement magnetic studies upon this synthesized cobalt ferrite nanoparticles and ternary composites. Magnetic parameters such as remnant magnetization (Mr), saturation magnetization (Ms) and coercivity (Hc) are shown in Table 1.

The hysteresis loop (Fig. 3) obtained indicates the ferromagnetic behaviors of the cobalt ferrite nanoparticles with saturation magnetization value 4.9348 emu / g. The abrupt drop in the saturation magnetization value of the ternary composite is due to incorporation of nonmagnetic graphitic carbon nitride and bentonite in the composite. Also some impurity phases may be present in the composite, which declines the magnetic property. Similar drop in Ms value is observed in some other metal ferrite composite with nonmagnetic components (Paul and Dhar 2020; Huang et al. 2015).

SEM analysis

SEM micrographs of cobalt ferrite, graphitic carbon nitride, bentonite and the ternary nanocomposite are shown in Fig. 4. The micrograph of the composite (F) shows that the semiconducting graphitic carbon nitride and bentonite segments are covered over cobalt ferrite consistently. The spherical encapsulated shape of the particle confirms the composite formation within the size range of 50 µm.

TEM analysis

The phase compositions of the ternary composite were studied using transmission electron microscopy. Figure 5 depicts a TEM representation of the composite. TEM picture of ternary composite in Fig. 5(A, B, C, D) indicates that the bentonite- and graphitic carbon nitride-encapsulated composite particles are almost nearly spherical and the average sizes of particles were found to be 49.29 nm. The crystalline nature of the nanocomposite was confirmed SAED analysis Fig. 5(F). Leading edge of lattice 0.410 nm relates to the [211] plane of bentonite; 0.272 nm is equivalent to [100] plane of g-C$_3$N$_4$ and 0.411 nm to the [111] plane of cobalt ferrite. The ternary nature of the composite is verified by the three important planes in this composite obtained from HR-TEM (Fig. 5E).

UV-DRS analysis

The plot of reflectance versus wavelength of the component material and composite confirms that the absorption of light will take place in the solar radiation’s visible spectrum. In addition, the measured band gap in the material and in the composite as obtained from the Tauc’s plot reveals that the composite can efficiently degrade the dye in the solar radiation (Fig. 6).

Investigation of aniline blue (AB) degradation by nanocomposite

The photocatalytic performance of the ternary composite was assessed by degrading aniline blue (AB) in the presence of 10% H$_2$O$_2$ in the acidic medium under solar irradiation.
The degradation of aniline blue (AB) with different composite amounts is shown in Fig. 7a, b and c. When 10 mg of composite is used along with 1 ml of 10 percent H$_2$O$_2$, 50% degradation of AB is achieved in 50 min. As soon as 30 mg and 50 mg composites are used concurrently in the same condition, the degradation percentage rises to 77.5% and 88.5%.

The kinetic studies

The degradation of aniline blue was found to follow first-order kinetics. The degradation of AB can be formulated as:

\[\ln(C_0/C) = kt \]
where ‘C_0’ is the initial concentration of AB and ‘C’ is the concentration of AB after certain time ‘t’ with rate constant ‘k’ of the reaction. Since Beer–Lambert’s law states that both absorbance and concentration are directly proportional, the concentration should be used to replace the absorbance. Plots of $\ln \frac{C_0}{C}$ versus time (t) at 600 nm for three different composite quantities revealed that they were all linear as shown in Fig. 8(a, b and c).

From this linear plot, the calculated rate constants are found to be 0.0132, 0.0323 and 0.0443, respectively. In the kinetics plots, the regression correlation coefficient (R^2) variables are found to be 0.9198, 0.9840 and 0.9849, respectively. These values suggest that the reaction rate seems to be very moderate in the presence of $H_2 O_2$. Also C/C_0 decreases exponentially with time, confirming that the degradation follows first-order kinetics.

Fig. 6 UV-DRS absorbance spectrum of $CoFe_2O_4$, graphitic nitride, bentonite and the ternary composite (wavelength Vs reflectance and Tauc’s plot)

Fig. 7 Absorbance alteration of the degradation of aniline blue (10 ppm) for (a)10 mg, (b) 30 mg and (c) 50 mg composite, respectively, in the presence of 1 ml of 10% $H_2 O_2$

Fig. 8 Plots of $\ln \frac{C_0}{C}$ against irradiation time for (a) 10 mg (b) 30 mg (c) 50 mg composite
Effect of pH

The catalytic performance of the composite was optimum at a pH 3.5. The performance was monitored up to a pH of 7, and it was observed that beyond this pH range the degradation percentage declines. This observation points to a faster generation of hydroxyl radicals at this pH, which promotes Fenton degradation.

Effect of catalyst amount

The photocatalytic degradation of aniline blue by ternary cobalt ferrite/graphitic carbon nitride/bentonite nanocomposite in the presence of H_2O_2 was studied using different amounts of catalyst ranging from 10 to 50 mg. For a 50 mg catalyst, the degradation performance was obtained to be as significant as 88.5%. The catalytic performance decreases when the catalyst concentration is increased.

A plausible mechanistic approach to the degradation of Aniline Blue (AB) under solar irradiation in the presence of H_2O_2

Hydrogen peroxide-assisted photodegradation of AB in solar radiation by cobalt ferrite composite having $\text{g-C}_3\text{N}_4$ as one of the components may take place through photo-Fenton mechanism of advanced oxidation process (AOP). Here Fe (II) of cobalt ferrite and H_2O_2 efficiently generate hydroxyl radical which degrade the dye successfully. Moreover, the inclusion of $\text{g-C}_3\text{N}_4$ in the composite significantly reduces the composite's band gap and increases the composite's potential for charge transfer and also facilitates the generation of electron–hole pairs, resulting in hydroxyl radical generation (Mushtaq et al. 2020; Zhang et al. 2007; Sun et al. 2007). The reactions behind the degradation of aniline blue by photo-Fenton process can be depicted as follows (Das and Dhar 2020a, b) and is shown in Fig. 9.

Comparison with other Composite/ Materials for aniline blue degradation

Heterojunction nanocomposite dependent on cobalt ferrite has still not been thoroughly investigated, particularly in the area of toxic aniline blue degradation in aqueous solution. Some reported works are tabulated as under (Table 2).

Table 2 Correlation of efficiency of synthesized composite with some previously documented materials designed for photocatalytic degradation of aniline blue

Sl. No	Composite /Material	Dose	Time	Efficiency	Reference
1	PbS/ZnO/ TiO$_2$	-	300 min	82%	(Lee et al. 2018)
2	Mn$^{2+}$-doped polycrystalline titania	150 mg	140 min	100%	(Devi et al. 2010)
3	ZnO	10 mg	30 min	75%	(Egzar et al. 2013)
4	Cobalt ferrite/ $\text{g-C}_3\text{N}_4$/ bentonite	50 mg	50 min	88.5%	This Work

Conclusion

In a stepwise protocol, a novel type of ternary nanocomposite CoFe$_2$O$_4$/g-C$_3$N$_4$/bentonite was productively fabricated. The composite was thoroughly examined by powder FTIR, XRD, VSM, SEM, TEM and UV-DRS studies. The composite’s photodegradation ability to degrade aniline blue in the existence of H_2O_2 in solar radiation is well documented through spectrochemical observations. The composite can degrade aniline blue up to the extent of 88.5% in 50 min. The cobalt ferrite-based nanocomposite for such a degradation strategy is not endorsed by any such literature. In conclusion, the current finding can be said to be novel and widely recognized at the industrial scale to mitigate aquatic contamination from a hazardous dye such as aniline blue. This finding expands further scope to extrapolate the current work on environmental contamination mitigation in the future.

Acknowledgements The authors are appreciative to the Department of Chemistry, NIT Silchar, the Department of Chemistry, S. S. College, Hailakandi, and G. C. College, Silchar, Assam, India, for providing the research infrastructure. The authors would also like to appreciate STIC, Cochin, Kerala, and SAIC, Tezpur University, Assam, for providing analytical amenities.
References

Alnuaimi MM, Rauf MA, Ashraf SS (2007) Comparative decoloration study of Neutral Red by different oxidative processes. Dyes Pigm 72(3):367–371
Ao Y, Xu J, Fu D, Shen X, Yuan C (2008) A novel magnetically separable composite photocatalyst: titania-coated magnetic activated carbon. Sep Purif Technol 61(3):436–441
Azmi W, Sani RK, Banerjee UC (1998) Biodegradation of triphenylmethane dyes. Enzyme Microb Technol 22(3):185–191
Bhuyan B, Koiri DJ, Devi M, Dhar SS (2018) A novel MnFe2O4/Graphitic carbon nitride (g-C3N4) nanocomposites as efficient magnetically retrievable catalyst in crossed aldol condensation. Mater Lett 218:99–102
Bouslaa C, Samar MEH, Ismail F (2010) Degradation of methyl violet 6B dye by the Fenton process. Desalination 254(1–3):35–41
Bunaciu AA, Udriştioiu EG, Aboul-Enein HY (2015) X-ray diffraction: instrumentation and applications. Crit Rev Anal Chem 45(4):289–299
Culp SJ, Beland FA (1996) Malachite green: a toxicological review. J Am Coll Toxicol 15(3):219–238
Daneshvar N, Salari D, Khataee AR (2003) Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters. J Photochem Photobiol A 157(1):111–116
Das KC, Dhar SS (2020a) Remarkable catalytic degradation of malachite green by zinc supported on hydroxyapatite encapsulated magnesium ferrite (Zn/HAP/MgFe2O4) magnetic novel nanocomposite. J Mater Sci 55(11):4592–4606
Das KC, Dhar SS (2020b) Effective catalytic degradation of organic dyes by nickel supported on hydroxyapatite-encapsulated cobalt ferrite (Ni/HAP/CoFe2O4) magnetic novel nanocomposite. Water Air Soil Pollut 231:43
De Souza VB, Thomazini M, Barrientos MAE, Nalin CM, Ferro-Furtado R, Genovese ML, Favaro-Trindade CS (2018) Functional properties and encapsulation of a proanthocyanidin-rich cinnamon extract (Cinnamomum zeylanicum) by complex coacervation using gelatin and different polysaccharides. Food Hydrocolloids 77:297–306
Deraz NM (2010) Glycine-assisted fabrication of nanocrystalline cobalt ferrite system. J Anal Appl Pyrol 88(2):103–109
Devi LG, Kottam N, Murthy BN, Kumar SG (2010) Enhanced photocatalytic activity of transition metal ions Mn2+, Ni2+ and Zn2+ doped polycrystalline titania for the degradation of Aniline Blue under UV/solar light. J Mol Catal A Chem 328(1–2):44–52
Dom R, Subasri R, Radha K, Borse PH (2011) Synthesis of solar active nanocrystalline ferrite, MnFe2O4 (Mg: Ca, Zn, Mg) photocatalyst by microwave irradiation. Solid State Commun 151(6):470–473
Egzar HK, Mashkour MS, Jada AM (2013) Study the photodegradation of aniline blue dye in aqueous phase by using different photocatalysts. Asian Trans Basic Appl Sci 3(2):23–28
Eykholt GR, Davenport DT (1998) Dechlorination of the chloroacetanilide herbicides alachlor and metolachlor by iron metal. Environ Sci Technol 32(10):1482–1487
Hayati B, Mahmoudi NM (2012) Modification of activated carbon by the alkaline treatment to remove the dyes from wastewater: mechanism, isotherm and kinetic. Desalin Water Treat 47(1–3):322–333
Hebbar RS, Isloor AM, Prabhu B, Asiri AM, Ismaiel AF (2018) Removal of metal ions and humic acids through polyetherimide membrane with grafted bentonite clay. Sci Rep 8(1):1–16
Huang S, Xu SY, Xie M, Xu H, He M, Xia J, Huang L, Huaming L (2015) Synthesis of magnetic CoFe2O4/g-C3N4 composite and its enhancement of photocatalytic ability under visible-light. Colloids Surf A 478:71–80
Kooti M, Saiali S, Motamedi H (2013) Fabrication of silver-coated cobalt ferrite nanocomposite and the study of its antibacterial activity. J Magn Magn Mater 333:138–143
Ledakowicz S, Gomera M (1999) Optimisation of oxidants dose for combined chemical and biological treatment of textile wastewater. Water Res 33(11):2511–2516
Lee JH, Ahn HJ, Youn JI, Kim YJ, Suh SJ, Oh HJ (2018) Synthesis and characterization of ZnO/TiO2 photocatalyst decorated with PbS QDs for the degradation of aniline blue solution. Korean J Met Mater 56(12):900–909
 Liu DR, Jiang YS, Gao GM (2011) Photocatalytic degradation of an azo dye using N-doped NaTaO3 synthesized by one-step hydrothermal process. Chemosphere 83(11):1546–1552
Lorenc-Grabowska E, Gryglewicz G (2007) Adsorption characteristics of Congo Red on coal-based mesoporous activated carbon. Dyes Pigm 74(1):34–40
Machala L, Tucek J, Zboril R (2011) Polymorphous transformations of nanometric iron (III) oxide: a review. Chem Mater 23(14):3255–3272
Man LW, Kumar P, Teng TF, Wasewar KL (2012) Design of experiments for Malachite Green dye removal from wastewater using thermolysis–coagulation–flocculation. Desalin Water Treat 40(1–3):260–271
Mushhtag F, Zahid M, Mansha A, Bhatti IA, Mustafa G, Nasir S, Yaseen M (2020) MnFe2O4/coal fly ash nanocomposite: a novel sunlight-active magnetic photocatalyst for dye degradation. Int J Environ Sci Technol 17:4233–4248
Ooi BS, Sum JY, Lai SO (2012) Investigation on membrane morphological and chemical properties changes at different reaction times and its effect on dye removal. Desalin Water Treat 45(1–3):250–255
Pare B, Soni A, Bhagwat VW (2008) Kinetics of reduction of aniline blue dye using zero valent iron (Fe0). Rayasan J Chem 1:413–420
Paul A, Dhar SS (2020) Designing Cu2V2O7/CoFe2O4/g-C3N4 ternary nanocomposite: a high performance magnetically recyclable photocatalyst in the reduction of 4-nitrophenol to 4-aminophenol. J Solid State Chem 290:121563
Rauf MA, Asrash SS (2009) Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem Eng J 151(1–3):10–18
Rauf MA, Ashraf SS (2012) Survey of recent trends in biochemically assisted degradation of dyes. Chem Eng J 209:520–530
Rubio, D., Nebot, E., Casanueva, J. F., & Pulgarin, C. (2013) Comparative effect of simulated solar light, UV, UV/H₂O₂ and photo-Fenton treatment (UV–Vis/H₂O₂/Fe²⁺, ³⁺) in the Escherichia coli inactivation in artificial seawater. Water research.
Sharma P, Sasson Y (2017) Highly active g-C₃N₄ as a solid base catalyst for Knoevenagel condensation reaction under phase transfer conditions. RSC Adv 7:25589–25596
Shi L, Liang L, Wang F, Liu M, Chen K, Sun K, Sun J (2015) Higher yield urea-derived polymeric graphitic carbon nitride with mesoporous structure and superior visible-light-responsive activity. ACS Sustain Chem Eng 3(12):3412–3419
Sirès I, Guivarch E, Oturan N, Oturan MA (2008) Efficient removal of triphenylmethane dyes from aqueous medium by in situ electro-generated Fenton’s reagent at carbon-felt cathode. Chemosphere 72(4):592–600
Sun JH, Sun SP, Fan MH, Guo HQ, Qiao LP, Sun RX (2007) A kinetic study on the degradation of p-nitroaniline by Fenton oxidation process. J Hazard Mater 148(1–2):172–177
Topkaya R, Kurtan U, Junejo Y, Baykal A (2013) Sol–gel auto combustion synthesis of CoFe₂O₄/1-methyl-2-pyrrolidone nanocomposite with ethylene glycol: its magnetic characterization. Mater Res Bull 48:3247–3253
Vijayaraghavan T, Suriyaraj SP, Selvakumar R, Venkateswaran R, Ashok A (2016) Rapid and efficient visible light photocatalytic dye degradation using AFe₂O₃ (A= Ba, Ca and Sr) complex oxides. Mater Sci Eng, B 210:43–50
Zhang H, Fei C, Zhang D, Tang F (2007) Degradation of 4-nitrophenol in aqueous medium by electro-Fenton method. J Hazard Mater 145(1–2):227–232

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.