Effects of cyclic acute and chronic hypoxia on the expression levels of metabolism related genes in a pancreatic cancer cell line

NOUR M. OBEIDAT1, MALEK A. ZIHLIF2, DANAA. ALQUUDAH3, WALHAN ALSHAER3, MOATH ALQARALEH4, AHMAD SHARAB5 and SHTAYWY S. ABDALLA1

1Department of Biological Sciences, School of Science; 2Department of Pharmacology, School of Medicine; 3Cell Therapy Center, The University of Jordan, Amman 11942; 4Pharmacological and Diagnostic Research Center (PDRC), Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328; 5Department of Biology and Biotechnology, Faculty of Science, American University of Madaba, Madaba 17110, Jordan

Received October 16, 2021; Accepted July 11, 2022

DOI: 10.3892/br.2022.1564

Abstract. The aim of this study was to characterize cycling hypoxia-induced changes in the expression of metabolism-related genes in the pancreatic cancer cell line PANC1. PANC1 cells were exposed to either 7 h cycles of hypoxia every other day for 20 cycles (cyclic acute hypoxia), or for 72 h cycles of hypoxia once a week for 5 cycles (cyclic chronic hypoxia). Changes in gene expression were profiled using reverse transcription-quantitative PCR and compared to cells cultured under normoxic conditions. Western blotting analysis confirmed upregulation of genes encoding enzymes participating in glycolysis (12), glucose transporters, and hexokinase2 and phosphoglycerate kinase 1. Genes encoding pyruvate dehydrogenases that block pyruvate flow to the TCA cycle were significantly upregulated. The expression of genes encoding pentose phosphate pathway (PPP) enzymes (transketolase and transaldolase) were upregulated to a similar degree. The expression of genes encoding pyruvate dehydrogenases that block pyruvate flow to the TCA cycle was significantly upregulated. Thus, exposure of PANC1 cells to acute hypoxia resulted in the upregulation of genes that shift the metabolism of cells towards glycolysis and the pentose phosphate pathway (PPP) in adaptation to hypoxic stress.

Introduction

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with an extremely high mortality rate and poor overall prognosis, largely due to delays in diagnosis, paucity of specific biomarkers, early metastases, and resistance to chemotherapy and other therapies (1). Therefore, its biology and genetics are of interest to researchers and practitioners (2). Several solid tumors, including PDAC, are characterized by the presence of regions of hypoxia, which is defined as a state of insufficient oxygen levels for the maintenance of normal cellular functions (3). Hypoxia, in this context, does not necessarily refer to a certain concentration of oxygen since several tissues can function physiologically at oxygen levels as low as 1% (4,5).

During hypoxia, the aberrant blood vessels (poorly organized, elongated, dilated, twisted, and blind-ended blood vessels) and the rapid proliferation of cells cause marked heterogeneity in oxygen consumption is greater than oxygen supply, especially at the boundaries where the distance from a functional blood vessel may be >100 µm (7). Although several tumor cells die under these hypoxic conditions, other cells may survive in a dormant state (6), and yet several other cells undergo genetic and adaptive changes that permit them to survive and even proliferate in a hypoxic environment. Therefore, as realized by Vaupel and Harrison in 2004, hypoxia exerts a selection pressure that leads to the survival of a subpopulation of cells that have the genetic machinery for malignant progression (8). This selection pressure includes proteomic and genomic changes within tumor cells leading to cell cycle arrest, differentiation, necrosis, apoptosis, and at a molecular level, accumulation of HIF (9,10).

HIF is a heterodimeric transcription factor that dissociates into HIF-1α and HIF-1β under normoxic conditions, but accumulates during hypoxia to affect hypoxia-response elements of target genes. It has been shown that HIF directly or indirectly regulates >100 genes (11). Many of those genes are implicated in tumor processes including angiogenesis, invasion, metastasis, and metabolic adaptation. In particular, HIF-1α is involved in the transcription of genes that encode enzymes participating in glycolysis (12), glucose transporters, multidrug resistance protein 1, and several growth factors (13).

Conversely, recent studies have shown the importance of the crosstalk between tumor cells and their microenvironmental

Correspondence to: Dr Malek A. Zihlif, Department of Pharmacology, School of Medicine, The University of Jordan, Queen Rania Street, Amman 11942, Jordan E-mail: m.zihlif@ju.edu.jo

Key words: cyclic hypoxia, gene expression, HIF1-α, glucose-6-phosphate isomerase, ribokinase, doxorubicin
factors through the release of exosomes from hypoxic tumor
cells (14). Exosomes are vesicles 30-100 nm in diameter, which
contain various types of proteins, RNAs, non-coding RNAs
such as miRNAs, and DNA and they can act as messengers
for intercellular communication in local and distant microen-
vironments and can regulate the expression of numerous genes
to promote tumor growth, local invasion, and create premeta-
static or metastatic niches (15-17). For example, it was found
that hypoxia-resistant multiple myeloma cells produced more
exosomes with a significantly higher expression of miR-135b
as compared to normoxic cells. Exosomal miR-135b targets
HIF-1 in endothelial cells in hypoxia-resistant myeloma cells,
thereby enhancing angiogenesis (18).

Although we now know many of the aspects of how
tumor-induced hypoxia leads to tumor-related phenomena
such as angiogenesis, tumor growth, invasion, and metastasis,
the exact mechanisms and the specific genes and enzymes
involved in the metabolic changes associated with cancer are
far from completely established. For example, during hypoxia,
a shift towards anaerobic glycolysis seems intuitive due to the
deficiency of oxygen as the ultimate electron acceptor. Due to
the need for intermediates in the synthesis of macromolecules,
cancer cells, through HIF, modify this process and regulates
the expression of the pertinent enzymes such as hexokinase,
phosphofructokinase I, and phosphoglycerate kinase 1 as
well as the glucose transporters required for internaliza-
tion of glucose (19). Moreover, the gluconeogenic enzyme
fructose-1,6-bisphosphatase, which opposes glycolytic flux
and inhibits HIF function, was found to be downregulated in
clear cell renal carcinoma tumors (20). Such examples have
been used to demonstrate the complex regulation between
HIF and its transcriptional targets, especially those related
to metabolism, and to provide potential alternate therapeutic
strategies in tumors dependent on HIF signaling (21). More
recently, Jia et al (22) used mathematical modeling followed by
in vitro testing on triple-negative breast cancer cells (TNBC)
to demonstrate a direct association between the activities of
adenosine monophosphate-activated protein kinase (AMPK),
a regulator of oxidative phosphorylation, and HIF-1, a regu-
lator of glycosis, with the activities of three major metabolic
pathways: Glucose oxidation, glycolysis, and fatty acid oxida-
tion. The maintenance of the hybrid metabolic phenotype by
TNBC suggested that targeting both glycosis and oxidative
phosphorylation is necessary for the elimination of the ‘meta-
abolic plasticity’ of these cells (22). Therefore, understanding
such complex regulation of tumor metabolism is a prerequisite
for identifying efficient therapies for tumors.

The classification of hypoxia has been recently reviewed by
Saxina and Jolly (23). They characterized 3 types of hypoxia:
chronic hypoxia or diffusion-limited hypoxia due to over
proliferation and extending over 24 h; acute hypoxia or perfu-
sion limited due to aberrant shut down of small blood vessels
and extending from a few mins to a few h; and intermittent or
cyclic hypoxia extending from a few mins to days (23). The
latter type results from transient shut down of vasculature
followed by reoxygenation and reoxygenation injury. The
overlapping time scale of the latter 2 categories makes it
difficult to interpret the research data obtained using varying
time periods of hypoxia in experimental approaches (24).

The present study was designed to mimic short-term and
long-term cycling hypoxic conditions in tumors, and to char-
acterize metabolism-related gene changes that may occur in
pancreatic cancer cells in response to cyclic acute or chronic
hypoxia using the PANC1 cell line, which is representative of
PDAC. The primary aim of this study was to uncover novel biomarkers present in tumor hypoxia that may assist in the
clinical decision regarding the use of chemotherapeutic agents
in cancer patients.

Materials and methods

Cell culture conditions. PANC1, a human pancreatic cancer
cell line, was purchased from the American Type Culture
Collection. PANC1 cells were cultured in DMEM high-glucose
medium (EuroClone), supplemented with 10% (v/v) heat-inac-
tivated FBS, 2 mM L-glutamine, and antibiotics (100 U/ml
penicillin and 100 µg/ml streptomycin (all from HyClone;
Cytiva). PANC1 cells were grown in 75 cm² attached-type,
filter-cap culture flasks (Membrane Solutions). Cells were
kept cultured at 37°C in a humidified incubator supplied with
5% CO₂. All cell culture procedures were performed
under sterile conditions in a class II biological safety cabinet
(Heal-Force). All materials and disposables were disinfected
with 76% ethanol before use, and subculturing was performed
twice a week when cells reached 80-90% confluence.

Hypoxic modeling. The hypoxic atmosphere was generated
using a hypoxia chamber apparatus (Stem Cell Technologies,
Inc.). The chamber was connected to a gas cylinder that
provided a hypoxic gas mixture of 94% N₂, 5% CO₂, and 1% O₂. To expose the cells to the hypoxic atmosphere,
PANC1 cells were placed into the chamber and purged with
the gas mixture for 5 min to establish the hypoxic condition.
The hypoxic chamber was then placed into the CO₂ incubator
(NuAire).

For cycling acute hypoxia, PANC1 cells were exposed to
7-h cycles of hypoxia, every other day for a total of 20 hypoxic
cycles. For cycling chronic hypoxia, PANC1 cells were
exposed to 72-h cycles of hypoxia once a week for a period
of 5 weeks. Each chronic hypoxic cycle was separated from
the other by 96 h of incubation under the normoxic conditions.
For comparison, a subset of PANC1 cells was incubated under
normoxic (95% O₂, 5% CO₂) conditions (control PANC1 cells).

Cell proliferation assay. A non-radioactive cell proliferation
assay kit® (Promega Corporation) was used to assess the cyto-
toxicity of doxorubicin (Ebewe) on PANC1 cells by measuring
the cell titer. An MTT proliferation assay was performed
for the control PANC1 cells and for the cells exposed to the
hypoxic conditions after 10 and 20 cycles of acute hypoxia,
and after 5 cycles of chronic hypoxia.

The cytotoxicity of doxorubicin was determined using
an MTT assay. Briefly, cells were seeded at an initial density
of 7-10x10³ cells/well in 96-well culture plates (Costar) in
100 µl complete culture medium and incubated in a humidifi-
cated incubator supplied with 5% CO₂ at 37°C for 24 h. Cells
were incubated in a stock solution of doxorubicin and dilu-
tions thereof (8x10⁻⁶ to 1x10⁻⁴ M) were prepared in DMEM
high glucose medium in a humidified incubator supplied with
5% CO₂ at 37°C for 72 h. The solutions were then removed and
RNA extraction. RNA was isolated from cells using an RNeasy® Mini kit (Qiagen GmbH). Briefly, cells were disrupted in RLT buffer (RNeasy lysis buffer: guanidine-thiocyanate-containing buffer) and homogenized by vortexing.

A total of 1 ml 70% ethanol was then added to the lysate, creating conditions that promote selective binding of RNA to the RNeasy membrane. The sample was then applied to the RNeasy Mini spin column where total RNA bound to the membrane, whilst contaminants were efficiently washed away, and high-quality RNA was eluted in RNase-free water.

Binding, washing, and elution steps were performed by centrifugation in a micro-centrifuge (Qiagen GmbH). The purity of isolated RNA was determined by measuring the optical density of the samples at 260 and 280 nm. The optical density ratio (OD260/OD280) ranged from 1.9-2.2 for all samples. All RNA samples were stored at -80˚C until required for cDNA synthesis.

Wound healing assay. In each 6-well plate, 2x10^4 control PANC1 cells, PANC1 cells after 10 and 20 cycles of acute hypoxia, and PANC1 cells after 5 cycles of chronic hypoxia were seeded. Cells were incubated in a humid atmosphere of 5% CO2 at 37˚C until the cells formed confluent monolayers, after which they were incubated in media supplemented with 10% FBS for 24 h. The monolayer of cells was wounded using a 200 µl pipette tip to create a 300-500 µm-wide scratch. Wounded monolayers were washed twice to remove non-adherent cells. Images were then taken at 0, 24, and 48 h after the scratch was made using the Leica Application Suite version 2.1.0 (Leica GmbH; magnification, x40). Wound healing was quantified using ImageJ version 1.44 (National Institutes of Health) as the mean percentage of the remaining cell-free area compared with the area of the initial wound (25).

Reverse transcription-quantitative (RT-q)PCR. The effect of hypoxia on gene expression in PANC1 cells was studied using a 96-well glucose metabolism RT2 profiler PCR array (cat. no. PAHS-006Z, Qiagen GmbH). In this array, 96-well plates containing different primers for 84 genes known to respond to hypoxia in addition to 12 genes for quality control purposes (GEO accession no. GSE207065; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE207065). Primers were supplied by the manufacturer as part of the array.

RNA was extracted using an RNeasy® Mini kit (Qiagen GmbH) as mentioned above. Then, cDNA was synthesized by converting 0.5 µg total RNA using the RT® First Strand Kit® (Qiagen GmbH) by genomic DNA elimination followed by reverse transcription to produce cDNA. A diluted cDNA aliquot was mixed with the RT® SYBR® green MasterMix (glucose metabolism RT2 profiler PCR array; cat. no. PAHS-006Z; Qiagen GmbH) and loaded into the 96-well array plate.

qPCR reactions were performed using a CFX thermo-cycler (Bio-Rad Laboratories, Inc.) with the following thermocycling conditions: Initial denaturation of 95˚C for 10 min; followed by 40 cycles of 95˚C for 15 sec and 60˚C for 1 min. Data analysis was performed using the 2^(-ΔΔCT) method available from the Biosciences company (Qiagen GmbH) web portal. Data were normalized across all plates to the β-actin housekeeping gene. The threshold cycle values of the control wells were all within the ranges recommended by the PCR array user manual.

Fold change is the normalized gene expression in the test sample divided by the normalized gene expression in the control sample. Fold regulation represents fold change values in a biologically meaningful way. Fold change values >1 indicate upregulation, and fold regulation is equal to the fold change.

Western blotting analysis. Total protein was extracted from cells using a Protein Extraction Kit (cat. no. ab270054, Abcam) according to manufacturers’ instructions. The protein concentration in cell lysates from the control, acute, and chronic hypoxic PANC1 cells were measured using a BCA Protein Quantification Kit (cat. no. ab102536, Abcam). Protein samples were stored at -80˚C for further use. A total of 20 µg of each protein sample was loaded onto 7.5% mini-protein TGX precast gels (tris-glycine xE xtended) (Bio-Rad Laboratories, Inc.), and the resolved proteins were electrophoretically transferred onto mini PVDF transfer packs (Trans‑blot® Turbo team, Bio-Rad Laboratories, Inc.) using a Trans-Blot® Turbo™ blotting system. The membrane was then incubated with a β-actin antibody (cat. no. ab8227, Abcam), anti-human HIF1-α rabbit polyclonal antibody (cat. no. ab51608, Abcam), anti-human G6PI rabbit polyclonal antibody (cat. no. ab76598, Abcam), or anti-human RBKS rabbit polyclonal antibody (cat. no. ab228850, Abcam) all at a 1:1,000 dilution at 4˚C overnight. The membrane was then incubated with goat anti-rabbit IgG heavy and light HRP (Abcam) at room temperature for 1 h, then with tetramethylbenzidine substrate (Thermo Fisher Scientific, Inc.) for 2-3 min at room temperature in the dark. Then membranes were incubated in skimmed-milk in TBST for 1 h at room temperature. Finally, images were obtained using a ChemiDoc™ XRS+ System (Bio-Rad Laboratories, Inc.).

Statistical analysis. Differences between the groups were compared using a one-way ANOVA, followed by a Dunnett’s post hoc test using GraphPad Prism version 7 (GraphPad Software, Inc.). Data are presented as the mean ± SD. P<0.05 was considered to indicate a statistically significant difference.

Results and Discussion

Effect of hypoxia on the morphology of PANC1 cells. Cells exposed to cyclic acute and chronic hypoxia exhibited an irregular, mostly elongated shape with abnormal appendages and extensions in comparison to cells cultured under normoxic conditions (Fig. 1). Cells exposed to acute and chronic hypoxia extend their cell membranes to give them support under the stress of hypoxia (25). Cells exposed to normoxia showed regularity in size and distribution among the growth field. This observation is consistent with that of Song et al (26) who...
showed that hypoxic culturing altered cell morphology. Cell morphology changes include cell flattening and acquisition of a fibroblast-like shape with several cytoplasmic extensions and the absence of tight junctions observed in an invasive phenotype (26).

Effect of hypoxia on the resistance of PANC1 cells to doxorubicin. PANC1 cells exposed to hypoxia exhibited higher resistance to doxorubicin compared to the control PANC1 cells (Table I). The IC₅₀ of doxorubicin doubled when cells were exposed to chronic hypoxia, tripled with 10 cycles of acute hypoxia, and increased by ~7x when cells were exposed to 20 cycles of acute hypoxia. This is consistent with several previous observations relating hypoxia to drug resistance in tumor cells. For example, Minassian et al. (27) showed that incubation of certain human and non-human tumor cell lines in hypoxic conditions transiently increased their resistance to drugs such as etoposide and doxorubicin. In addition, He et al. (28) demonstrated that hypoxia-induced chemoresistance to the pyrimidine analog gemcitabine in pancreatic cancer cells and that was due to the regulation of ABCG2 through the activation of ERK1/2/HIF-1α. Moreover, Shukla et al. (29) showed that gemcitabine-resistant pancreatic cancer cells exhibited increased HIF-1α expression, which was accompanied by the acquisition of a glycolytic phenotype and dependence on glucose, and that cancer cells increased their intracellular cytidine pools, which in turn, rendered gemcitabine ineffective via molecular competition. They further emphasized that inhibition of HIF-1α increased the sensitivity of pancreatic cancer cells to gemcitabine.

In addition, Kim and Lee (30) showed that tumor cells adapt to chronic hypoxia by stimulating angiogenic factors, lowering consumption of oxygen, and selecting for more invasive and drug-resistant cancer types. The mechanisms by which hypoxia and HIF signaling promote chemoresistance are now being revealed and therefore, should be tackled for more effective therapies. In hypoxia, which is a common feature of the microenvironment of several solid tumors and even hematological malignancies, there are multiple mechanisms including upregulation of drug efflux, induction of autophagy, hypoxia-driven selection of tumor cells with reduced apoptotic capacity, and inhibition of DNA damage, metabolic reprogramming of epithelial to mesenchymal transition and the cancer stem cell phenotype, and readjusting the immunosuppressive tumor microenvironment (31,32).

Effect of hypoxia on wound healing. Fig. 2 shows that the rate of wound closure of PANC1 cells exposed to acute and chronic hypoxic conditions was significantly higher compared to normoxic cells. Moreover, PANC1 cells exposed to 20 hypoxic cycles exhibited a slightly higher wound closure rate compared to cells exposed to 10 acute cycles and 5 chronic hypoxic cycles. Fig. 3 summarizes the percentages of wound closure under normoxic conditions, 10 and 20 cycles of acute hypoxia, and 5 chronic cycles of hypoxia after 48 h of exposure, suggesting cell proliferation and migration.

This relatively fast pace of wound healing under hypoxia was consistent with the reported fast invasion and metastasis of pancreatic cancer. Several reports described the impact of hypoxia on the proliferation and migration of PDAC. For instance, it has been shown that HIF-1 active cancer cells locally invaded, proliferated, and disseminated, creating a severely hypoxic environment, and that selective eradication of HIF-1 active cells by a pro-drug significantly suppressed the malignant progression of advanced pancreatic cancer in animal experiments (33). The role of hypoxia in regulating tumor invasion through numerous molecular pathways is widely accepted. For example, activation of multiple molecular pathways such as PI3K/Akt, Wnt/β-catenin,
Table I. Effect of cyclic acute and chronic hypoxia on the IC₅₀ of doxorubicin on PANC1 cells.

Treatment	IC₅₀, μM	IC₅₀ fold increase a
Control cells	0.44±0.2	1.0±0.2
10 cycles of acute hypoxia	1.32±0.3	3.0±0.2
20 cycles of acute hypoxia	3.01±0.5	6.8±0.7
5 cycles of chronic hypoxia	0.92±0.1	2.1±0.6

²Fold increase values were calculated by dividing the doxorubicin IC₅₀ value of the control PANC1 cells by the doxorubicin IC₅₀ value of the control PANC1 cells.

hedgehog, TGF-β, and tyrosine kinase receptors are well accepted (34-37). In general, hypoxia alters the expression of these genes through HIF binding to promoters of genes containing hypoxia response elements. Also, Chiu et al (37) found that intratumoral hypoxia in advanced human and murine PDAC induced the expression of the pro-metastatic transcription factor Blimp1 which serves as a key transcriptional regulator of metastatic ability. In addition, Velásquez et al (38) showed that hypoxia upregulated ODZ1 gene expression and this upregulation was correlated with a higher migratory capacity of glioblastoma cells and when ODZ1 was knocked down, migration was drastically reduced. The effect of hypoxia in the latter case was ascribed, in part, to its control of the levels of hypomethylation of the ODZ1 gene promoter. Furthermore, Yu et al (39) showed that hypoxia promoted colorectal cancer cell migration and invasion in a SIRT1-dependent manner, and Li et al (34) reported that hypoxia resulted in a notable increase in the migration rate in PANC1 cells after incubation for 24 h, an effect mediated by the hedgehog signaling pathway.

The increasing rate of wound closure (migration) in response to hypoxia occurred as a consequence of promoting HIF1-α and thus its effector genes. HIF1-α stimulation leads to increased glycolysis by upregulating key genes such as HK, PKM2, and LDHA among others (40), and by a shift towards the non-oxidative arm of the pentose phosphate pathway (PPP) by upregulating the expression of transketolases (TKT and TKTL2) (41). The finding in the present study that hypoxia upregulated HK2 (3.9 and 2.4-fold in acute and chronic hypoxia, respectively) and TKT (2.7 and 1.5-fold, respectively) expression are in agreement with the above findings.

Effect of hypoxia on gene expression. The coding genes of key glycolytic enzymes are directly responsible for the regulation of the Warburg effect, including GLUT1, HK2, GAPDH, PGK1, ENO1, PKM2, and LDHA (42).

Table II summarizes the effects of 20 cycles of acute hypoxia and 5 cycles of chronic hypoxia on the expression of selected genes. The metabolic pathways that we focused on were: Glycolysis pathway, PPP, and the TCA cycle. The upregulation of genes involved in these pathways showed how hypoxia affected metabolic pathways in PANC1 cell lines. In the glycolysis pathway, few enzymes were significantly upregulated when PANC1 cell lines were exposed to hypoxia. These enzymes included HK (3.9 and 2.4-fold for acute and chronic hypoxia, respectively), G6PI (5.5 and 1.3-fold), PDHA (4.4 and 1.2-fold), and PDK (3.7 and 2.0-fold). Acute cyclic hypoxia resulted in a larger upregulation in all of these enzymes compared with chronic hypoxia.

HK, the first enzyme in the glycolysis pathway, has 4 isoforms: HK1, HKII, HKIII, and glucokinase. Several studies indicated that HK is upregulated in PDAC (43,44). The overexpression of HK is, to some extent, the result of the HIF1-α cascade in hypoxic states. HKII enhances tumor development and spreading by controlling lactate production in pancreatic cancer (45). In general, the aforementioned studies stressed the fact that pancreatic cancer is always correlated with elevated HK expression, which is consistent with our findings.

The experiments performed in the present study also showed that the G6PI gene was upregulated 5.5 fold under acute hypoxia, but to a much lesser degree under chronic hypoxia (Table II). Additionally, Western blotting analysis confirmed the high expression of G6PI in PANC1 cells exposed to acute hypoxia (Fig. 4). Its expression decreased gradually in PANC1 cells exposed to 5 cycles of chronic hypoxia, and decreased further in normoxic PANC1 (Fig. 5), indicating that the more a cancer cell is stressed by hypoxia, the greater the upregulation in G6PI to adapt metabolically to that stress.

Consistent with this finding, Das et al (46) found that G6PI was upregulated in mouse tumor tissues in association with pyruvate kinase and GAPDH. Similarly, Chan et al (47) concluded that G6PI was overexpressed together with genes encoding enzymes involved in the glycolysis pathway to increase ATP production in PDAC cells that require energy for fast growth and proliferation. In addition, Lucarelli et al (48) showed that G6PI, also known as autocrine motility factor, is overexpressed in clear cell-renal cell carcinoma. The enzyme is not only overexpressed but in fact secreted by the tumor cells to work as a growth factor that plays key roles in cancer metastasis by activating the MAPK/ERK or PI3K/AKT pathway (49). This enzyme is involved not only in glycolysis but also in glucogenesesis and the PPP, processes that are required for tumor growth. This is consistent with the finding of De Padua et al (50) who showed that inhibition of G6PI resulted in cancer cells becoming reliant on oxidative phosphorylation and complete inhibition of the Warburg effect.

The present study also showed modest overexpression of the pyruvate dehydrogenase complex PDHA1 (E1α) by 2.8 fold (Table II) and PDHB (E1β) by 4.4 fold in PANC1 cells exposed to acute hypoxia but even more modest expression in those under chronic hypoxia (2.1 and 1.2, respectively) compared to those incubated under normoxic conditions. PDH stimulation converts pyruvate to acetyl-CoA and CO₂. It is composed of several copies of three enzymatic constituents: Pyruvate dehydrogenase (E1), dihydrolipoamide acetyltransferase (E2), and lipoamide dehydrogenase (E3). In the mitochondria, the E1 enzyme is present as a heterotetramer of two E1α subunits and two E1β subunits, with thiamine pyrophosphate as a cofactor. Golias et al (51) recently showed that hypoxia inhibited phosphorylation of pyruvate dehydrogenase E1α in turn promoting tumor growth in three pancreatic carcinoma cell lines. More importantly, they also demonstrated that regulation of PDH should activity by hypoxia can support tumor growth. They showed
that hypoxia not only regulates the expression of PDHK1, but its kinase activity at serine 232 of pyruvate dehydrogenase E1α as well. For example, it has been demonstrated that patients with high levels of both PDHK1 and phosphoserine 232 E1α in head and neck cancers tended to have poorer outcomes due to tumor growth. Although there are 4 PDHK enzymes that are responsible for phosphorylation at different sites of PDH, a unique relationship has been established between hypoxia, PDHK1, phosphoserine 232 on E1α, and regulation of mitochondrial function (51). In the present study, PDHK1 was upregulated...
The PPP is the pathway that a cancer cell utilizes to synthesize lipids, nucleotides, amino acids, and NADPH needed for growth (54). PPP has two phases: The oxidative phase, which produces NADPH, and the non-oxidative phase which produces ribose-5-phosphate. In the present study, the RBKS gene was upregulated 6.8-fold in PANC1 cells exposed to acute hypoxia, and by 4.3-fold in PANC1 cells exposed to chronic hypoxia (Fig. 4; Table II). RBKS is the enzyme that phosphorylates ribose to form ribose-5-phosphate which then enters the PPP, and it is important for the synthesis of certain amino acids such as histidine and tryptophan. Since the two types of hypoxia assessed in the present study significantly increased the expression of RBKS, this indicated that cancer cells shift their metabolism towards the PPP and thus may also shift the synthesis of other building blocks that are needed for anabolic processes. Few reports found a change in the levels of RBKS expression in tumor cells. In 1982, Jin and Zhou (55) found that in parental Novikoff hepatoma cells, RBKS expression was cell cycle-dependent with peaks in activity seen during the S, G2, and M phases. The increased expression in the S phase is explained by the increased need for ribose-5-phosphate to support phosphoribosyl pyrophosphate that is in demand at this stage, whereas the high levels during the G2 phase are needed to maintain the flow of ribose-5-phosphate to support glycosylation. More recently, Chaika et al. (56) examined RBKS expression in tissues to which PDAC had migrated to and found that it was overexpressed in metastatic liver tissues of PDAC, while Je et al. (57) indicated that inhibition of the Src family kinases in pancreatic cancer halted cancer propagation, spread, and invasion, indicating that kinases are essential for cancer cell growth and development (56,57). Moreover, Payen et al. (58) revealed that pancreatic cancer cells tended to undergo metabolic changes, such as becoming highly dependent on the PPP which involves RBKS. Thus, pancreatic cancer cells have higher levels of RBKS than normal pancreatic cells. Oncogenic KRAS controls the diversion of glycolytic intermediates into ribose biosynthesis pathways via upregulation of the non-oxidative phase of the PPP, a pathway that is fundamental to nucleic acid synthesis and thus cancer cell proliferation (59).

In our experiments, we found that acute hypoxia increased the expression of TKTs by 2.7-fold compared to a modest 1.5-fold increase under chronic hypoxia (Table II). TKT, the rate-limiting enzyme of the non-oxidative part of the PPP, catalyzes the transfer of two carbon units between ketose- and aldosephosphate, reversibly. In contrast, TKT1L, with a 105 different substrate affinity and a different catalytic activity, produces ATP and either acetate or acetyl-CoA for lipid biosynthesis, thus promoting tumor growth. There is a positive correlation between the invasive capacity of different cancer types, including urethelial and colon carcinoma, and metastasis of renal cell, ovarian and papillary thyroid carcinoma, with TKT1 expression (58). The present study also found increased expression of transaldolase 1 (TALDO1) by 3.7 and 2.4-fold during acute and chronic hypoxia, respectively (Table II). TALDO enzymes are important for linking the PPP to glycolysis (60).

The present work also showed the overexpression of fumarate hydratase (FH) by 4.7-fold in PANC1 cell lines exposed to acute hypoxia (Table II). The FH enzyme is part of the TCA cycle, which stimulates the formation of...
Table II. Effect of cyclic acute hypoxia and chronic hypoxia on the mRNA expression levels of metabolism-related genes in PANC1 cells.

Gene symbol	Gene name	Acute hypoxia	Chronic hypoxia	Gene function
G6PI	Glucose-6-Phosphate Isomerase	5.5±0.9	1.3±0.3	Glycolysis
PDHA1	Pyruvate Dehydrogenase E1α	2.8±0.3	2.1±0.2	Catalyzes conversion of pyruvate to acetyl-CoA and CO₂.
PDHB	Pyruvate Dehydrogenase E1β	4.4±0.1	1.2±0.6	Tricarboxylic acid cycle
PDK1	Pyruvate Dehydrogenase Kinase 1	3.7±0.5	2.0±0.1	Downregulates mitochondrial pyruvate dehydrogenase
PDK2	Pyruvate Dehydrogenase Kinase 2	1.5±0.1	2.6±0.2	Downregulates mitochondrial pyruvate dehydrogenase
PDK3	Pyruvate Dehydrogenase Kinase 3	7.9±0.2	3.6±0.4	Downregulates mitochondrial pyruvate dehydrogenase
PDK4	Pyruvate Dehydrogenase Kinase 4	7.8±0.4	7.5±0.1	Downregulates mitochondrial pyruvate dehydrogenase
PGK1	Phosphoglycerate kinase 1	2.8±0.1	-1.2±0.2	Convert 1,3-DPG into 3-PG
RBKS	Ribokinase	6.8±0.6	4.3±0.7	Pentose phosphate pathway
HK2	Hexokinase 2	3.9±0.5	-2.4±0.8	Glycolysis
TKT	Transketolase	2.7±0.4	1.5±0.3	Channeling excess sugar phosphates to glycolysis in ppp
TaAldO1	Transaldolase	3.7±0.4	2.4±0.3	Provides ribose-5-phosphate for Nucleic acid synthesis and NADPH for lipid synthesis
FH	Fumarate Hydratase	4.7±0.1	3.8±0.2	Tricarboxylic acid cycle
PYGM	Glycogen phosphorylase/muscle	2.7±0.3	4.8±0.1	Glycogen degradation
MDH1B	Malate Dehydrogenase 1B	6.5±0.2	2.3±0.2	Tricarboxylic acid cycle

Cells were exposed to acute hypoxia of 20 cycles each 7 h over a period of 40 days or to chronic hypoxia of 5 cycles each of 72 h over a period of 5 weeks. Values presented are the fold change compared to cells cultured under normoxic conditions.

![Intermittent 20](image1.png) ![Continuous 5](image2.png) ![Control](image3.png)

Figure 4. Western blotting to determine the HIF1-α, G6PI, β-actin, and RBKS expression from PANC1 cells. PANC1 cells were cultured under normoxic conditions, or subjected to 5 cycles of chronic hypoxia, and to 20 cycles of acute hypoxia.

L-malate from fumarate (61). In support of this observation, Zhao and Jiang (62) reported that FH is essential in a cell's response to nutrient stress which is also induced by hypoxia whereas Wang et al (63) indicated that FH is upregulated in...
conditions of glucose shortage in human pancreatic cancer cells. In the present study, glucose shortages occurred during chronic hypoxia in which cells were cultured in the same medium for 72 h without replacement with fresh medium. Under such hypoxic conditions, FH gene expression was upregulated by 3.8-fold.

In the present study, PYGM was overexpressed by 2.7 and 4.8-fold in PANC1 cells exposed to 20 cycles of acute hypoxia and to 5 cycles of chronic hypoxia, respectively (Table II). This is consistent with the finding of Zois and Harris (64) that the liver form of PYG (PYGL) was upregulated under hypoxic conditions but also glycogen synthase and other components involved in glycogen metabolism were upregulated, indicating that tumor cells recruit all the available resources to secure their proliferation and metastasis.

In the present study, MDH1B was overexpressed by 6.5 and 2.3-fold in PANC1 cells exposed to 20 cycles of acute hypoxia and to 5 cycles of chronic hypoxia, respectively (Table II). This is consistent with the findings of Zhang et al (65) who found that MDH1 and MDH2 expression levels were elevated in primary lung tumors compared with the matched normal controls, indicating that the cancer cells had developed a dependence on these enzymes, especially in situations of stress, such as that experienced during hypoxia. In future studies, HIF-1 knockdown experiments should be performed to confirm the molecular changes regulated by this protein.

One limitation of this study is the fact that only one pancreatic cancer cell line was used, and this does not reflect all pancreatic cancer subtypes and their responses towards hypoxia. Also, it is important to mention that this study was designed to identify a molecular metabolic hypoxic biomarker rather than finding all genomic hypoxic biomarkers.

In conclusion, this study showed that pancreatic cancer cells adapt to hypoxic conditions at the genomic level. The changes were more prominent with cyclic acute hypoxia compared with chronic hypoxia. Genes encoding enzymes needed for glycolysis such as glucose 6-phosphate isomerase, hexokinase, and phosphoglycerate kinase 1 and those encoding enzymes for members of the pentose phosphate pathway such as ribokinase, transketolase, and transaldolase were significantly upregulated. These changes are consistent with the concept that tumors cells shift their metabolic machinery towards glycolysis and the PPP rather than to the TCA cycle in order to obtain the maximum amount of

Figure 5. Fold change in the protein expression levels of β-actin, HIF-1, G6PI, and RBKS in PANC1 cells. HIF-1, G6PI, and RBKS expression was normalized to β-actin. Densitometry analysis was performed on the blots using ImageJ. The results were analyzed using a one-way ANOVA followed by a Tukey’s post hoc test. *P<0.05, **P<0.01, ****P<0.001.
energy from the available nutrients, and to build up macromolecules such as nucleotides, fatty acids, and proteins to achieve longer sustainability and faster proliferation, a characteristic feature of cancer cells. The study uncovered biomarkers in tumor hypoxia that may assist in clinical decision-making regarding the use of chemotherapeutic agents in cancer patients.

Acknowledgements

Not applicable.

Funding

This work is supported by the Graduate School of The University of Jordan (grant no. 19/2016/2256).

Availability of data and materials

The raw data obtained during the present is available in GEO (GEO accession no. GSE207065) repository at: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE207065.

Authors’ contributions

NMO curated the data. MAZ conceived the study. SSA, DAA, and WA designed the study. DAA and WA performed the experiments. AS helped in performing the biological assays. MA analyzed the results. MAZ and SSA confirm the authenticity of all the raw data. All authors have read and approved the final manuscript.

Ethics approval and consent to participate

Not applicable.

Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

1. McDonald PC, Chafe SC, Brown WS, Saberi S, Swayampakula M, Venkateswaran G, Nemirovsky O, Gillespie JA, Karasinska JM, Kalloger SE, et al: Regulation of pH by carbonic anhydrase 9 mediates survival of pancreatic cancer cells with activated KRAS in response to hypoxia. Gastroenterology 157: 823-837, 2019.
2. Dalla Pozza E, Dando I, Biondani G, Brandi J, Costanzo C, Dalla Pozza E, Dando I, Biondani G, Brandi J, Costanzo C, et al: Pancreatic ductal adenocarcinoma cell lines display a plastic ability to bi-directionally convert into cancer stem cells. Int J Oncol 46: 1099-1108, 2015.
3. Nakazawa MS, Keith B and Simon MC: Oxygen availability and metabolic adaptations. Nat Rev Cancer 16: 663-673, 2016.
4. Keeley TP and Mann GE: Defining physiological normoxia for improved translation of cell physiology to animal models and humans. Physiol Rev 99: 161-234, 2019.
5. Silverman HS, Wei S, Haigney MC, Ocampo CJ and Stern MD: Myocyte adaptation to chronic hypoxia and development of tolerance to subsequent acute severe hypoxia. Circ Res 80: 699-707, 1997.
6. Butturini E, Carcereri de Prati A, Boriero D and Mariotto S: Tumor Dormancy and interplay with hypoxic tumor microenvironment. Int J Mol Sci 20: 4305, 2019.
7. A1-Tunali W, Dale TP, Al-Jumaily RMK and Forsyth NR: Hypoxia-modified cancer cell metabolism. Front Cell Dev Biol 7: 4, 2019.
8. VaupeL P and Harrison L: Tumor hypoxia: Caustive factors, compensatory mechanisms, and cellular response. Oncologist 9 (Suppl 5): S4-S9, 2004.
9. Schito L and Rey S: Hypoxic pathobiology of breast cancer metastasis. Biochim Biophys Acta Rev Cancer 1868: 239-245, 2017.
10. Wolff M, Kosyna FK, Dunst J, Jelkmann W and Depping R: Impact of hypoxia inducible factors on estrogen receptor expression in breast cancer cells. Arch Biochem Biophys 613: 23-30, 2017.
11. Goda N and Kanai M: Hypoxia-inducible factors and their role in energy metabolism. Int J Hematol 95: 457-463, 2012.
12. Hu CJ, Wang LY, Chudosh LA, Keith B and Simon MC: Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol 23: 9361-9374, 2003.
13. Masoud GN and Li W: HIF-1alpha pathway: Role, regulation and intervention for cancer therapy. Acta Pharm Sin B 5: 378-389, 2015.
14. Shao C, Yang F, Gao S, Liu W, Wang C, Shu Y and Shen H: Role of hypoxia-induced exosomes in tumor biology. Mol Cancer 17: 120, 2018.
15. Hannafohn BN and Ding WQ: Intercellular communication by exosome-derived microRNAs in cancer. Int J Mol Sci 14: 2143-2149, 2013.
16. Milane L, Singh A, Mattheolabakis G, Suresh M and Amiji MM: Exosome mediated communication within the tumor microenvironment. J Control Release 219: 278-294, 2015.
17. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ and Llovall JO: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9: 654-659, 2007.
18. Umezu T, Tadokoro H, Azuma K, Yoshizawa S, Ohhashiki K and Ohhashiki H: Exosomal miR-15b shed from hypoxic multiple myeloma cells enhances angiogenesis by targeting factor inhibiting HIF-1. Blood 124: 3748-3757, 2014.
19. Denko NC: Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 8: 705-713, 2008.
20. Li B, Qiu B, Lee DS, Walton ZE, Ochoki JD, Mathew LK, Mancuso A, Gade TP, Keith B, Nissim I and Simon MC: Fructose-1, 6-bisphosphatase opposes renal carcinoma progression. Nature 513: 251-255, 2014.
21. Xie C, Yagai T, Luo Y, Liang X, Chen T, Wang Q, Sun D, Zhao J, Ramakrishnan SK, Sun L, et al: Activation of intestinal hypoxia-inducible factor 2alpha during obesity contributes to hepatic steatosis. Nat Med 23: 1298-1308, 2017.
22. Jia D, Lu M, Jung KH, Park JH, Yu L, Onuchic JN, Kaipparettu BA and Levine H: Elucidating cancer metabolic plasticity by coupling gene regulation with metabolic pathways. Proc Natl Acad Sci USA 116: 3909-3918, 2019.
23. Saxena K and Jolly MK: Acute vs chronic vs cyclic hypoxia: Their differential dynamics, molecular mechanisms, and effects on tumor progression. Biomolecules 9: 339, 2019.
24. Roftstad EK, Galappathi K, Mathiesen B and Ruud EB: Fluctuating and diffusion-limited hypoxia in hypoxia-induced metastasis. Clin Cancer Res 13: 1971-1978, 2007.
25. Hu J and Verkman AS: Increased migration and metastatic potential of tumor cells expressing aquaporin water channels. Proc Natl Acad Sci USA 103: 14240-14269, 2013.
26. Song J, Miermont A, Lim CT and Kamm RD: A 3D microvascular network model to study the impact of hypoxia on the extravasation potential of breast cancer cells. Sci Rep 8: 17949, 2018.
27. Minassian LM, Cotechini T, Huitema E and Graham CH: Hypoxia regulates ABCG2 activity through the activation of ERK1/2/HIF-1alpha and contributes to chemoresistance in pancreatic cancer cells. Cancer Biol Ther 17: 1185-1191, 2016.
28. Shukla SK, Purohit V, Mehta K, Gunda V, Chaika NV, Vennuci E, King RJ, Abrego J, Goode GD, Dasgupta A, et al: MUC1 and HIF-1alpha signaling crossstalk induces anabolic glucose metabolism to impart gemcitabine resistance to pancreatic cancer cells. Cell Death Dis 11: e377, 2017.
29. Kim JY and Lee JY: Targeting tumor adaption to chronic hypoxia: Implications for drug resistance, and how it can be overcome. Int J Mol Sci 18: 1854, 2017.
31. Qian J and Rankin EB: Hypoxia-induced phenotypes that mediate tumor heterogeneity. In: Gilkes D (ed). Hypoxia and Cancer Metastasis. Advances in Experimental Medicine and Biology. Vol. 1136. Springer, Cham, pp43-55, 2019.

32. Kizaka-Kondoh S, Hisaka S, Zeng L, Tanaka S, Zhao T, Takahashi Y, Shibuya K, Hirota K, Semenza GL and Hiraoka M: Selective killing of hypoxia-inducible factor–active cells improves survival in a mouse model of invasive and metastatic pancreatic cancer. Clin Cancer Res 15: 3433-3441, 2009.

33. Joseph JV, Conroy S, Pavlov K, Sontakke P, Tomar T, Eggens-Meens E, Pälzal-Szollosi M, Vagia, M, den Dunnen WF and Kruyt FA: Hypoxia enhances migration and invasion in glioblastoma by promoting a mesenchymal shift mediated by the HIF-1α-ZEB1 axis. Cancer Lett 359: 107-116, 2015.

34. Li W, Cao L, Chen X, Lei J and Ma Q: Resveratrol inhibits hypoxia-driven ROS-induced invasive and migratory ability of pancreatic cancer cells via suppression of the Hedgehog signaling pathway. Oncol Rep 35: 1718-1726, 2016.

35. Huang W, Ding X, Ye H, Wang J, Shao J and Huang T: Hypoxia enhances the migration and invasion of human glioblastoma U87 cells through PI3K/Akt/mTOR/HIF-1α pathway. Neuroreport 29: 1579-1585, 2018.

36. Wang Y, Liu T, Yang N, Xu S, Li X and Wang D: Hypoxia and macrophages promote glioblastoma invasion by the CCL4-C4R5 axis. Oncol Rep 36: 3522-3528, 2016.

37. Chou SH, Riscia VI, Wang GX, Yang D, Grünert BM, Kathiria AS, Ma RK, Vaka D, Chu P, Kozak M, et al: BLM1p induces transient metastatic heterogeneity in pancreatic cancer. Cancer Discov 7: 1184-1199, 2017.

38. Velásquez C, Mansouri S, Guitiérrez O, Mamontyan J, Mollinedo P, Karimi S, Singh O, Terán N, Martino J, Zadeh G and Fernández-Luna JL: Hypoxia can induce migration of glioblastoma cells through a methylation-dependent control of OGD1 gene expression. PLoS Onc 19: e0263871, 2020.

39. Yu S, Zhou R, Yang T, Liu S, Cui Z, Qiao Q and Zhang J: Hypoxia promotes colorectal cancer cell migration and invasion in a SIRT1-dependent manner. Cancer Cell Int 19: 116, 2019.

40. Semenza GL: HIF-1 mediates metabolic responses to intra-tumoral hypoxia and oncogenic mutations. J Clin Invest 123: 647-657, 2013.

41. Zhao F, Mancuso A, Bai TV, Tong X, Gruber JJ, Swider CR, Sanchez PV, Lum JJ, Sayed N, Melo JV, et al: Imatinib resistance associated with BCRABL upregulation is dependent on HIF-1α pathway. Oncogene 29: 2902-2907, 2010.

42. Liberti M, Gourley J and Locasale JW: The Warburg effect: How does it benefit cancer cells? Trends Biochem Sci 41: 211-218, 2016.

43. Natsuiizaka M, Ozasa M, Darmanin S, Miyamoto M, Kondo S, Kamada S, Shindoh M, Higashino F, Suhara W, Koide H, et al: Synergistic up-regulation of Hexokinase-2, glucose transporters and angiogenic factors in pancreatic cancer cells by glucose deprivation and hypoxia. Exp Cell Res 313: 3337-3348, 2007.

44. von Forstner C, Egberts JH, Amerrholt O, Niedzielska D, Buchert R, Miècek P, Schumacher U, Peldschus K, Adam G, Pilarsky C, et al: Gene expression patterns and tumor uptake of 18F-FDG, 18F-FIT, and 18F-FEC in PET/MRI of an orthotopic mouse xenotransplantation model of pancreatic cancer. J Nucl Med 49: 1362-1370, 2008.

45. Anderson M, Marayati R, Moffatt R and Yeh JJ: Hexokinase 2 promotes tumor growth and metastasis by regulating lactate production in pancreatic cancer. Oncotarget 8: 56081-56094, 2016.

46. Das MR, Bag AK, Saha S, Ghosh A, Dey SK, Das P, Mandal C, Ray S, Chatterjee S, Ray M, et al: Molecular association of pyruvate dehydrogenase isomerase and pyruvate kinase M2 with glyceroldehyde-3-phosphate dehydrogenase in cancer cells. BMC Cancer 16: 152, 2016.

47. Chan AK, Bruce JI and Sirtiwardena AK: Glucose metabolic phenotype of pancreatic cancer. World J Gastroenterol 22: 4701-4715, 2016.

48. Lucarelli G, Rutigliano M, Sanguedolce F, Galleggiante V, Giglio A, Cagiano S, Bufo P, Maiorano E, Ribatti D, Ranieri E, et al: Increased expression of the autocrine motility factor is associated with poor prognostic in patients with clear cell-renal cell carcinoma. Medicine (Baltimore) 94: e2117, 2015.

49. Kheir DH, Nakada Y, Vaidyanathan V, Tait L, Wang Y, Tan A and Raz A: Autocrine motility factor promotes HER2 cleavage and signaling in breast cancer cells. Cancer Res 73: 1411-1419, 2013.

50. de Padua MC, Delodi G, Vučetic M, Durivault J, Vial V, Bayer P, Noleto GR, Masure NM, Zdralević M and Pouysségur J: Disrupting glucose-6-phosphate isomerase fully suppresses the ‘Warburg effect’ and activates OXPHOS with minimal impact on tumor growth except in hypoxia. Oncotarget 8: 87623-87637, 2017.

51. Golia T, Papandreou I, Sun R, Kumar B, Brown NV, Swanson BJ, Pai R, Jiadin T, Le QT, Teknos TN and Denko NC: Hypoxic repression of pyruvate dehydrogenase activity is necessary for metabolic reprogramming and growth of tumor malignancies. Sci Rep 6: 31146, 2016.

52. Prigione A, Rohwer N, Hoffmann S, Mlody B, Drewe K, Bukowiecki R, Blümlein K, Wanker EE, Ralser M, Cramer T and Adajie J: HIF-1α modulates cell fate reprogramming through early glycolytic shift and upregulation of PDK1-3 and PKM2. Stem Cells 32: 364-376, 2014.

53. Lu CW, Lin SC, Chen KF, Lai YY and Tsai SF: Induction of pyruvate dehydrogenase kinase-3 by hypoxia-inducible factor-1α promotes metabolic switch and drug resistance. J Biol Chem 283: 28106-28114, 2008.

54. Kulza J, Corazao-Rozas P, Touil Y, Jendoubi M, Maire C, Guerrissi P, Jonneaux A, Ballot C, Balayssac S, Valable S, et al: Inactivation of the HIF-1α/PDK3 signaling axis drives melanoma toward mitochondrial oxidative metabolism and potentiates the therapeutic activity of pro-oxidants. Cancer Res 72: 5035-5047, 2012.

55. Jin L and Zhou Y: Crucial role of the pentose phosphate pathway in malignant tumors. Oncol Lett 17: 4213-4221, 2019.

56. Chakha NV, Yu F, Purohit H, Mehla K, Lazenyb AJ, DiMaodo A, Anderson JM, Yeh JJ, Johnson KR, Hollingsworth MA and Singh PK: Differential expression of metabolic genes in tumor and stromal components of primary and metastatic loci in pancreatic adenocarcinoma. PLoS One 7: e32996, 2012.

57. Je DW, O YM, Ji YG, Cho Y and Lee DH: The inhibition of SRC family kinase suppresses pancreatic cancer cell proliferation, migration, and invasion. Pancreas 43: 768-776, 2014.

58. Payen VL, Porporato PE, Baselet B and Sonveaux P: Metabolic changes associated with tumor metastasis, part I: Tumor pH, glycolysis and the pentose phosphate pathway. Cell Mol Life Sci 73: 1333-1348, 2016.

59. Camelo F and Le A: The intricate metabolism of pancreatic cancers. In: Le A (ed): The Heterogeneity of Cancer Metabolism. Advances in Experimental Medicine and Biology. Vol. 1063. Springer, Cham, pp73-81, 2018.

60. Best SA, De Souza DP, Kersbergen A, Policheni AN, Dayalan S, Tull D, Rathi V, Gray DH, Ritchie ME, McConville MJ and Sutherland KD: Synergy between the KEAP1/NRF2 and PI3K pathways drives non-small-cell lung cancer with an altered immune microenvironment. Cell Metab 27: 935-943.e4, 2018.

61. Stewart L, Glenn GM, Stratton P, Goldstein AM, Merino MJ, Tucker MA, Linehan WM and Toro JR: Association of germline mutations in the fumarate hydratase gene and uterine fibroids in women with hereditary leiomyomatosis and renal cell cancer. Arch Dermatol 144: 1584-1592, 2008.

62. Zhao Q and Jiang Y: Fumarase mediates transcriptional response to nutrient stress. Cell Stress 1: 68-69, 2017.

63. Wang Z, Wang C, Wu Z, Xue J, Shen B, Zuo W, Wang Z and Wang SL: Artesunate suppresses the growth of prostatic cancer cells through inhibiting androgen receptor. Biol Pharm Bull 40: 489-495, 2017.

64. Zois CE and Harris AL: Glycogen metabolism has a key role in the cancer microenvironment and provides new targets for cancer therapy. J Mol Med (Berl) 94: 137-154, 2016.

65. Zhang B, Tormali J, Widgren J, Vakifahmetoglu-Norberg H and Norberg E: Characterization of the role of the malate dehydrogenase genes in lung tumor cell survival. J Cancer 8: 2088-2096, 2017.