Power Optimization of a Modified Closed Binary Brayton Cycle with Two Isothermal Heating Processes and Coupled to Variable-Temperature Reservoirs

Chenqi Tang 1,2, Lingen Chen 1,2,* Huijun Feng 1,2, Wenhua Wang 3, Yanlin Ge 1,2

1 Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China; tangchenqi7@163.com (C.T.); huijunfeng@139.com (H.F.); geyali9@hotmail.com (Y.G.)
2 School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
3 College of Power Engineering, Naval University of Engineering, Wuhan 430033, China; wwh_gt371@163.com

* Correspondence: lgchenna@yahoo.com or lingenchen@hotmail.com

Received: 27 May 2020; Accepted: 18 June 2020; Published: 20 June 2020

Abstract: A modified closed binary Brayton cycle model with variable isothermal pressure drop ratios is established by using finite time thermodynamics in this paper. A topping cycle, a bottoming cycle, two isothermal heating processes and variable-temperature reservoirs are included in the new model. The topping cycle is composed of a compressor, a regular combustion chamber, a converging combustion chamber, a turbine and a precooler. The bottoming cycle is composed of a compressor, an ordinary regenerator, an isothermal regenerator, a turbine and a precooler. The heat conductance distributions among the six heat exchangers are optimized with dimensionless power output as optimization objective. The results show that the double maximum dimensionless power output increases first and then tends to be unchanged while the inlet temperature ratios of the regular combustion chamber and the converging combustion chamber increase. There also exist optimal thermal capacitance rate matchings among the working fluid and heat reservoirs, leading to the optimal maximum dimensionless power output.

Keywords: finite time thermodynamics; modified binary Brayton cycle power plant; power output; energy saving; heat exchanger optimization

1. Introduction

Due to the characteristics of high power density (PD), small vibration, high automation, low operating pressure and easy lubrication, gas turbine plants (Brayton heat engine cycle) are extensively applied in the fields of aviation, energy, transportation, etc. According to the different working fluid (WF) circulation modes, the Brayton cycle is divided into open and closed cycles, and many works concerning the classical thermodynamic analyses and optimizations for various Brayton cycles have been performed [1–3]. The WF of closed Brayton cycle is not directly connected with the atmosphere, and does not participate in the combustion process. Hence, it is applied to convert nuclear energy, geothermal energy, solid fuel and other primary energy into electricity energy.

For the case of simple heating, the temperature of the gas elevates in the direction of a duct when the subsonic compressible gas flows through the smooth heating duct with a fixed cross-sectional area. For the case of simple cross-sectional area change, the temperature drops when
the gas flows through the smooth adiabatic duct with a reduced cross-sectional area. Based on these two gas properties, the isothermal processes can be realized when the subsonic compressible gas flows through the smooth heating duct with a reduced cross-sectional area. Vecchiarelli et al. [4] presented a combustion chamber where the WF could be heated isothermally. The introduction of this type of combustion chamber could effectively improve the thermal efficiency (TEF) of the Brayton cycle, and reduce the emissions of nitrogen oxides and other harmful gases. Göktun and Yavuz [5] applied the isothermal heating combustion chamber to the regenerative Brayton cycle, and discovered the isothermal pressure drop ratio impacted the cycle performance significantly. Based on [5], Erbay et al. [6] compared the optimal performances of an isothermal heating regenerative Brayton cycle under maximum power output (PO) and maximum PD. Jubeh [7] found the exergy efficiency was enhanced by adding the isothermal heating combustion chamber in regenerative Brayton cycle. El-Maksoud [8] combined the isothermal concept and double Brayton cycle to establish a new cycle model. Based on [8], Qi et al. [9] derived the specific work and exergy efficiency, and analyzed the impacts of different parameters on the exergy efficiency. All those works were carried out by using classical thermodynamics.

Finite time thermodynamics (FTT) [10] have been extensively applied in the analyses and optimizations of many thermodynamic systems. The purpose of FTT is to reduce the irreversibilities of processes and cycles and to improve the energy utilization rates [11]. Plenty of FTT studies have been conducted for various heat engine cycles, including the Novikov engine [12], the Stirling engine [13], Rankine cycles [14–21], heated gas expansion process [22], thermoelectric generators [23–26], the fuel cell hybrid cycle [27], the gas–mercury combined cycle [28], the thermocapacitive heat engine [29], the Maisotsenko–Diesel cycle [30], the trigeneration cycle [31], Dual-Miller cycles [32–34], Feynman’s ratchet [35], the Kalina cycle [36] and so on.

For the Brayton cycles, FTT studies have been also conducted for simple cycles [37], regenerative cycles [38–40], multi-intercooling-and-regenerative cycles [41–43], the fuel cell–Brayton combined cycle [44], Maisotsenko–Brayton cycles [45,46], Brayton cycle-based cooling, heat and power combined cycles [47,48] and so on.

For the Brayton cycles with isothermal heating modification, Kaushik et al. [49] optimized the regenerative Brayton cycle with isothermal process whose optimization objective was the PO. Tyagi et al. [50–56] optimized the performances of the isothermal heating modified simple, regenerated and intercooling Brayton cycles with different optimization objectives. Based on [49–56], Wang et al. [57,58] and Tang et al. [59,60] analyzed and optimized the endoreversible simple, irreversible simple and irreversible regenerative Brayton cycles with isothermal processes. Arora et al. [61] optimized the regenerative Brayton cycle with isothermal process by employing the NSGA-II algorithm.

Based on El-Maksoud’s classical thermodynamic model [8], Qi et al. [62] established a closed endoreversible binary Brayton cycle model with two isothermal processes, without internal irreversibility, and coupled to constant-temperature reservoirs (CTRs). They derived the functional expressions of PO, TEF, PD and ecological function, respectively. The impacts of different thermodynamic parameters on the relationships among performance indexes and the pressure ratio of the topping cycle were analyzed, and the heat conductance distributions (HCDs) among heat exchangers were further optimized.

Based on the previously established cycle models in [8,62], a modified closed binary Brayton cycle (MCBBC) with variable isothermal pressure drop ratios and internal and external irreversibilities will be established by using FTT in this paper. The HCDs will be optimized with dimensionless PO. The influences of different thermodynamic parameters on the optimal performance will be analyzed, and the thermal capacitance rate matchings (TCRMs) among the WF and the heat reservoirs will be also discussed.

2. Cycle Model

Figure 1a shows the schematic diagram of the MCBBC with two isothermal heating processes [8]. A topping cycle and a bottoming cycle are included in the model. The topping cycle is
composed of a compressor (Com1), a regular combustion chamber (RCC), a converging combustion chamber (CCC), a turbine (Tur1) and a precooler (PC1). The bottoming cycle is composed of a compressor (Com2), an ordinary regenerator (OR), an isothermal regenerator (IR), a turbine (Tur2) and a precooler (PC2).

Figure 1. (a) Schematic diagram of the cycle [8]; (b) T-s diagram of the cycle.

Figure 1b illustrates the T-s diagram of the MCBBC. In the figure, processes $1 \rightarrow 2$, $2 \rightarrow 3$, $3 \rightarrow 4$, $4 \rightarrow 5$, $5 \rightarrow 6$, $6 \rightarrow 7$ and $7 \rightarrow 1$ represent the irreversible adiabatic compression, isobaric heating, isothermal heating, irreversible adiabatic expansion and three isobaric exothermic processes of the WF in Com1, RCC, CCC, Tur1, IR, OR and PC1, respectively. Processes $1a \rightarrow 2a$, $2a \rightarrow 3a$, $3a \rightarrow 4a$, $4a \rightarrow 5a$ and $5a \rightarrow 1a$ represent the irreversible adiabatic compression, isobaric heating, isothermal heating, irreversible adiabatic expansion and isobaric exothermic process of the WF in Com2, OR, IR, Tur2 and PC2, respectively. Processes $1 \rightarrow 2s$, $4 \rightarrow 5s$, $1a \rightarrow 2as$ and $4a \rightarrow 5as$ are the isentropic processes corresponding to the processes $1 \rightarrow 2$, $4 \rightarrow 5$, $1a \rightarrow 2a$ and $4a \rightarrow 5a$ respectively.

It is assumed that the WFs of the topping and bottoming cycles are the same, both of which are ideal gases. The specific heat at constant pressure, thermal capacity rate, specific heat ratio, mass flow rate and gas constant of the WF are C_p, C_{pr}, k, m and R, respectively, where $C_{pr} = C_p/m$ and $m = (k-1)/k$. The temperatures and pressures at different state points are signed as T_i and P_i ($i = 1, 2, 3, 4, 5, 6, 7, 1a, 2a, 3a, 4a, 5a, 2s, 5s, 2as, 5as$), and the ambient temperature is T_0. The inlet temperatures of the outer fluids in the RCC, CCC, PC1 and PC2 are T_{HH1}, T_{HH3}, T_L1 and T_L3, and the outlet temperatures of outer fluids in the RCC, CCC, PC and PC2 are T_{HH2}, T_{HH4}, T_{L2} and T_{L4}, respectively. The thermal capacity rates of outer fluids in the RCC, CCC, OR, IR, PC1 and PC2 are C_{HH1}, C_{HH2}, C_{L1} and C_{L2}, respectively. The pressure ratios in the Com1 and Com2 are π_{com1} and π_{com2}, and the isothermal pressure drop ratios at the CCC and IR are π_i and π_u, respectively. The heat conductances of the heat exchangers for the RCC, CCC, OR, IR, PC1 and PC2 are U_j ($j = H1, H2, R1, R2, L1, L2$), and the corresponding effectivenesses are E_j; namely:

$$E_{H1} = \frac{1 - \exp[-N_{H1}(1 - C_{H1min} / C_{H1max})]}{1 - (C_{H1min} / C_{H1max})\exp[-N_{H1}(C_{H1min} / C_{H1max})]}$$

(1)

$$E_{H2} = 1 - \exp(-N_{H2})$$

(2)

$$E_{L1} = \frac{1 - \exp[-N_{L1}(1 - C_{L1min} / C_{L1max})]}{1 - (C_{L1min} / C_{L1max})\exp[-N_{L1}(C_{L1min} / C_{L1max})]}$$

(3)
\[E_{L2} = \frac{1 - \exp[-N_{L2}(1 - C_{L2\min} / C_{L2\max})]}{1 - (C_{L2\min} / C_{L2\max}) \exp[-N_{L2}(1 - C_{L2\min} / C_{L2\max})]} \quad (4) \]

where \(C_{H1\max} = \max\{C_{sf}, C_{H1}\} \), \(C_{H1\min} = \min\{C_{sf}, C_{H1}\} \), \(C_{L1\max} = \max\{C_{sf}, C_{L1}\} \), \(C_{L1\min} = \min\{C_{sf}, C_{L1}\} \), \(C_{L2\max} = \max\{C_{sf}, C_{L2}\} \) and \(C_{L2\min} = \min\{C_{sf}, C_{L2}\} \). The numbers of heat transfer units for the heat exchangers are calculated as:

\[N_{H1} = U_{H1} / C_{H1\min}, N_{H2} = U_{H2} / C_{H2} \quad (5) \]

\[N_{R1} = U_{R1} / C_{sf}, N_{R2} = U_{R2} / C_{sf} \quad (6) \]

\[N_{L1} = U_{L1} / C_{L1\min}, N_{L2} = U_{L2} / C_{L2\min} \quad (7) \]

When \(C_{H1\max} = C_{H1\min}, C_{L1\max} = C_{L1\min} \) and \(C_{L2\max} = C_{L2\min} \), Equations (1), (3) and (4) are simplified into:

\[E_{H1} = N_{H1} / (N_{H1} + 1), E_{L1} = N_{L1} / (N_{L1} + 1), E_{L2} = N_{L2} / (N_{L2} + 1) \quad (8) \]

The efficiencies in the Com1, Com2, Tur1 and Tur2 are \(\eta_{\text{com1}}, \eta_{\text{com2}}, \eta_{\text{tur1}} \) and \(\eta_{\text{tur2}} \), respectively:

\[\eta_{\text{com1}} = (T_{2a} - T_1) / (T_2 - T_1) \quad (9) \]

\[\eta_{\text{com2}} = (T_{2aa} - T_{1a}) / (T_{2a} - T_{1a}) \quad (10) \]

\[\eta_{\text{tur1}} = (T_4 - T_2) / (T_4 - T_3) \quad (11) \]

\[\eta_{\text{tur2}} = (T_{4a} - T_{1a}) / (T_{4a} - T_{3a}) \quad (12) \]

The heat absorbing rates of WF in the RCC, CCC, OR and IR are \(\dot{Q}_{2-3}, \dot{Q}_{3a-4}, \dot{Q}_{2a-3a} \) and \(\dot{Q}_{3a-4a} \), and the heat releasing rates in the PC1 and PC2 are \(\dot{Q}_{7-1} \) and \(\dot{Q}_{5a-1a} \). They are calculated as:

\[\dot{Q}_{2-3} = C_{H1}(T_{H1} - T_{H2}) = C_{sf}(T_3 - T_2) = C_{H1\max} E_{H1}(T_{H1} - T_2) \quad (13) \]

\[\dot{Q}_{3a-4} = C_{H2}(T_{H3} - T_{H4}) = C_{H2}E_{H2}(T_{H3} - T_2) = \dot{m}(V_{4}^2 - V_{3}^2) / 2 \quad (14) \]

\[\dot{Q}_{2a-3a} = C_{sf}(T_{2a} - T_{3a}) = C_{sf}(T_2 - T_{3a}) = C_{sf}E_{R1}(T_2 - T_{2a}) \quad (15) \]

\[\dot{Q}_{3a-4a} = C_{sf}(T_4 - T_{3a}) = C_{sf}E_{R2}(T_3 - T_{3a}) = \dot{m}(V_{4}^2 - V_{3}^2) / 2 \quad (16) \]

\[\dot{Q}_{7-1} = C_{sf}(T_7 - T_{1}) = C_{L1}(T_{L1} - T_{L2}) = C_{L1\min} E_{L1}(T_{L1} - T_{L2}) \quad (17) \]

\[\dot{Q}_{5a-1a} = C_{sf}(T_{5a} - T_{1a}) = C_{L1}(T_{L1} - T_{L3}) = C_{L2\min} E_{L2}(T_{5a} - T_{L3}) \quad (18) \]

The power output and thermal efficiency of the cycle are \(W \) and \(\eta \), respectively:

\[W = \dot{Q}_{2-3} + \dot{Q}_{3a-4} - \dot{Q}_{2a-3a} - \dot{Q}_{7-1} \quad (19) \]

\[\eta = W / (\dot{Q}_{2-3} + \dot{Q}_{3a-4}) \quad (20) \]

Processes 3–4 and 3a–4a are the isothermal ones, and the heat absorbing rates of the two processes are:

\[\dot{Q}_{3a-4} = \dot{m}(h_4 - h_3) - n \int h_{4a}^{4} v dp = \dot{m}R_g T_4 \ln \pi_g \quad (21) \]

\[\dot{Q}_{3a-4a} = \dot{m}(h_{4a} - h_{3a}) - n \int h_{4a}^{4a} v dp = \dot{m}R_g T_{4a} \ln \pi_{ga} \quad (22) \]

Processes 1–2s, 1–2as, 4–5s and 4a–5as are the isentropic processes; namely:

\[T_{2s} / T_1 = \pi_{com1} = \frac{\pi \text{com1}}{\pi \text{com2}} = \frac{x_s}{x_a} \quad (23) \]
\[T_4 / T_5 = \pi_{com1}^{x} \pi_{com2}^{y} = x y, \quad T_{3a} / T_{4a} = \pi_{com1}^{x} \pi_{com2}^{y} = x_y y_a \]

(24)

where \(x, y, x_y \) and \(y_a \) are the parameters of temperature ratios which can be calculated by the pressure ratios.

The upper limits of \(\pi \) and \(\pi_y \) are 1, which means that the isothermal heating is not used. When \(\pi < 1 \) or \(\pi_y < 1 \), the topping or bottoming cycle adopts the isothermal process. The isothermal pressure drop ratios must meet the following constraints:

\[\pi_y \geq \pi_{com1}^{x}, \quad \pi_y \geq \pi_{com2}^{x} \]

(25)

\[\ln \pi_y = -\frac{C_y (k-1) (M_4^2 - M_3^2)}{2 R_y} = -0.7(M_4^2 - M_3^2) \]

(26)

\[\ln \pi_y = -\frac{C_y (k-1) (M_4^2 - M_3^2)}{2 R_y} = -0.7(M_4^2 - M_3^2) \]

(27)

where \(M_3 \) and \(M_4 \) (\(M_{3a} \) and \(M_{4a} \)) are the Mach numbers at the inlet and outlet of CCC (IR), respectively. If \(M_3 = M_{3a} = 0 \) and \(M_4 = M_{4a} = 1 \), \((M_4^2 - M_3^2) \) and \((M_{4a}^2 - M_{3a}^2) \) get their maximum values of 1, and \(\pi \) and \(\pi_y \) get their minimum values of 0.4966. For the initial velocity of the WF, the Mach numbers satisfy \(M_3 = M_{3a} = 0.2 \) and \(M_4 = M_{4a} = 1 \), and the corresponding minimum values of \(\pi \) and \(\pi_y \) are 0.5107. At the same time, \(\bar{W} \) must be greater than or equal to zero; otherwise, the cycle is meaningless.

The major difference between the model in this paper and that in [8] is that all the heat transfer losses in the six heat exchangers are considered in this paper. This is also the major difference between classical thermodynamic model and FTT model. The major differences between the model in this paper and that in [62] are two aspects: One is that the irreversible compression and expansion losses are considered in this paper; this is also the major difference between the endoreversible model and the irreversible one. Another is that the heat reservoirs are assumed to be variable-temperature ones in this paper; this is one of basic characteristics of practical closed engineering cycles.

According to the above model, the dimensionless PO \(\bar{W} \) and TEF \(\eta \) can be given by:

\[\bar{W} = \frac{\{a_3 + a_3 \bar{T}_{H3} - C_{H3} E_{H3} (a_3 + a_3 \bar{T}_{H3}) \} / C_{H3} E_{H3} + C_{H3} E_{H3} (a_3 + a_3 \bar{T}_{H3})}{C_{H3} \bar{T}_{H3}} \]

(28)

\[\eta = 1 - \frac{C_{H3} E_{H3} (a_3 + a_3 \bar{T}_{H3}) / C_{H3} E_{H3} (a_3 + a_3 \bar{T}_{H3}) + C_{H3} E_{H3} (a_3 + a_3 \bar{T}_{H3})}{C_{H3} E_{H3} (a_3 + a_3 \bar{T}_{H3}) / C_{H3} E_{H3} (a_3 + a_3 \bar{T}_{H3}) + C_{H3} E_{H3} (a_3 + a_3 \bar{T}_{H3})} \]

(29)

where \(a_1, a_2, a_3, a_4, a_5, a_6, a_7 \) and \(a_8 \) are listed in Appendix A.

If Equations (21) and (22) are not considered when solving Equations (28) and (29), the final analytical solutions for \(\bar{W} \) and \(\eta \) of the cycle cannot be obtained. Considering Equations (21) and (22), the values of \(x \) and \(y \) in Equations (28) and (29) are obtained by numerical calculation, and the corresponding values of \(\bar{W} \) and \(\eta \) can be obtained.

If \(C_{H1}, C_{H2}, C_{L1}, C_{L2}, E_{H1}, E_{H2}, E_{L1}, E_{L2}, \eta_{com1}, \eta_{com2}, \eta_{tur1} \) and \(\eta_{tur2} \) take different values, the model can be converted into different special models; Equations (28) and (29) can be reduced to the corresponding dimensionless PO and TEF respectively, which have a certain universality.

When \(\eta_{com1} = \eta_{com2} = \eta_{tur1} = \eta_{tur2} = 1 \), Equations (28) and (29) can be reduced to the dimensionless PO and TEF of a modified closed endoreversible binary Brayton cycle with two isothermal heating processes and coupled to variable-temperature heat reservoirs (VTHRs):
\[\begin{align*}
\bar{T} &= \frac{C_{uf} E_{H1}(h_2 + T_H) - C_{lim} E_{H1}(h_2 + T_H) / C_{uf}}{C_{uf} + C_{uf} (b_a - b_3) - C_{lim} E_{H1}(h_2 + T_H) / C_{uf}}
\end{align*}\]
\[\begin{align*}
\eta &= 1 - \frac{C_{uf} (h_2 + T_H - b_3 + b_4) / C_{uf} [b_a - b_3 - b_4 + b_4]}{C_{uf} [b_a - b_3 - b_4 + b_4]} \quad \text{(31)}
\end{align*}\]

where \(b_1, b_2, b_3, b_4\) and \(b_5\) are listed in Appendix A.

When \(C_{H1} = C_{H2} = C_{L1} = C_{L2} \rightarrow \infty\), Equations (28) and (29) can be reduced to the dimensionless PO and TEF of a modified closed irreversible binary Brayton cycle with two isothermal heating processes and coupled to CTRs:

\[\begin{align*}
\bar{T} &= \frac{C_{uf} E_{H1} [c_1 (c_2 + T_H) - E_{H1}(c_1 c_2 + T_H)] - C_{uf} [c_1 c_2 \eta_{com} / (\eta_{com} + x) + c_1] + (c_2 + T_H)}{C_{uf} T_0}
\end{align*}\]
\[\begin{align*}
\eta &= 1 - \frac{C_{uf} [c_1 c_2 \eta_{com} / (\eta_{com} + x) + c_1] + (c_2 + T_H)}{C_{uf} [c_1 c_2 \eta_{com} / (\eta_{com} + x) + c_1] + (c_2 + T_H)} \quad \text{(33)}
\end{align*}\]

where \(c_1, c_2, c_3, c_4\) and \(c_5\) are listed in Appendix A.

When \(\eta_{com} = \eta_{com2} = \eta_{tur1} = \eta_{tur2} = 1\) and \(C_{H1} = C_{H2} = C_{L1} = C_{L2} \rightarrow \infty\), Equations (28) and (29) can be reduced to the dimensionless PO and TEF of a modified closed endoreversible binary Brayton cycle with two isothermal heating processes and coupled to CTRs [62]:

\[\begin{align*}
\bar{T} &= \frac{-C_{uf} [d_1 d_2 / x + c_1] + C_{uf} E_{H1} [d_1 d_2 + T_H - E_{H1}(d_1 d_2 + T_H)] + C_{uf} E_{H1}(d_1 d_2 + T_H)}{C_{uf} T_0}
\end{align*}\]
\[\begin{align*}
\eta &= 1 - \frac{C_{uf} (d_1 d_2 / x + d_3 - d_3 - d_4 + d_4)}{C_{uf} E_{H1} [d_1 d_2 + T_H - E_{H1}(d_1 d_2 + T_H)] + C_{uf} E_{H1}(d_1 d_2 + T_H)} \quad \text{(35)}
\end{align*}\]

where \(d_1, d_2, d_3, d_4\) and \(d_5\) are listed in Appendix A.

When \(E_{H1} = E_{H2} = E_{L1} = 0\), Equations (28) and (29) can be reduced to the dimensionless PO and TEF of a modified closed irreversible Brayton cycle with an isothermal heating process and coupled to VTHRs:

\[\begin{align*}
\bar{T} &= \frac{C_{uf} E_{H1}[x y (C_{H2} E_{H2} T_H + C_{lim} E_{H1} T_1)] + C_{lim} E_{H1} T_1 [\{C_{uf} - C_{H2} E_{H2} + C_{lim} E_{H1} (\eta_{tur1} - 1)\}] + e^{-xy}[C_{lim} C_{uf} E_{H1} + C_{H2} E_{H2} (C_{uf} - C_{lim} E_{H1})] + C_{lim} E_{H1} (C_{uf} - C_{lim} E_{H1})}{C_{uf} T_0 x y}
\end{align*}\]
\[\begin{align*}
\eta &= 1 - \frac{C_{lim} E_{H1} [x y (C_{H2} E_{H2} T_H + C_{lim} E_{H1} T_1)] + e^{-xy}[C_{lim} C_{uf} E_{H1} + C_{H2} E_{H2} (C_{uf} - C_{lim} E_{H1})] - E_{H1}}{C_{lim} (C_{uf} - C_{lim} E_{H1}) [\{\eta_{tur1} - 1\} x y - \eta_{H1}]} \quad \text{(37)}
\end{align*}\]

where \(e\) is listed in Appendix A.

When \(E_{H1} = E_{H2} = E_{L1} = 0\) and \(C_{H1} = C_{H2} = C_{L1} \rightarrow \infty\), Equations (28) and (29) can be reduced to the dimensionless PO and TEF of a modified closed irreversible Brayton cycle with an isothermal heating process and coupled to CTRs:
\(\bar{\eta} = \frac{x(y(C_{H2}E_{H2}T_{H2} + C_{of}E_{of}T_{of}) + E_{H1}T_{H1}[(C_{of} - C_{of}E_{H2} + C_{of}E_{of}(\eta_{frac} - 1)]xy - C_{of})}{C_{of}T_{of}xy} \) (38)

\(C_{of}E_{H1}E_{H2}(\eta_{frac} - 1)xy[E_{H1}T_{H1}[C_{of} - C_{of}E_{H2} + C_{of}E_{of}(\eta_{frac} - 1)] + (T_{H1} + C_{of}E_{H1}T_{H1} + C_{of}E_{H1}T_{of})] \)

\(\eta = \frac{x[C_{of}E_{H1}E_{H2}(\eta_{frac} - 1)xy[E_{H1}T_{H1}[C_{of} - C_{of}E_{H2} + C_{of}E_{of}(\eta_{frac} - 1)] + (T_{H1} + C_{of}E_{H1}T_{H1} + C_{of}E_{H1}T_{of})] + E_{H1}[(C_{of}E_{H1} - C_{of}E_{H2}T_{H1} + C_{of}E_{of}(\eta_{frac} - 1))]xy - C_{of})}{C_{of}T_{of}xy} \) (39)

When \(E_{H1} = E_{H2} = E_{L2} = 0 \) and \(\eta_{com1} = \eta_{frac} = 1 \), Equations (28) and (29) can be reduced to the dimensionless PO and TEF of a modified closed endoreversible Brayton cycle with an isothermal heating process and coupled to VTHRs [59,60]:

\[C_{of}T_{of}x[C_{of}E_{of}E_{H1}(y - 1) + C_{of}E_{H2}E_{of}[C_{of}E_{of}T_{H1}(y - 1)]] + E_{H1}[(C_{of}E_{H1}E_{H2}(T_{H1} - T_{H1})y)] \]

\[\eta = \frac{C_{of}T_{of}x[C_{of}E_{of}E_{H1}(y - 1) + C_{of}E_{H2}E_{of}[C_{of}E_{of}T_{H1}(y - 1)] + E_{H1}[(C_{of}E_{H1}E_{H2}(T_{H1} - T_{H1})y)]}{C_{of}T_{of}x[C_{of}E_{of}E_{H1}(y - 1) + C_{of}E_{H2}E_{of}[C_{of}E_{of}T_{H1}(y - 1)] + E_{H1}[(C_{of}E_{H1}E_{H2}(T_{H1} - T_{H1})y)]} \] (40)

When \(E_{H1} = E_{H2} = E_{L2} = 0 \), Equations (28) and (29) can be reduced to the dimensionless PO and TEF of a modified closed endoreversible Brayton cycle with an isothermal heating process and coupled to CTRs:

\[x[C_{of}E_{of}E_{H1}(y - 1) + C_{of}E_{H2}E_{of}[C_{of}E_{of}T_{H1}(y - 1)] + E_{H1}[(C_{of}E_{H1}E_{H2}(T_{H1} - T_{H1})y)] \]

\[\eta = \frac{x[C_{of}E_{of}E_{H1}(y - 1) + C_{of}E_{H2}E_{of}[C_{of}E_{of}T_{H1}(y - 1)] + E_{H1}[(C_{of}E_{H1}E_{H2}(T_{H1} - T_{H1})y)]}{x[C_{of}E_{of}E_{H1}(y - 1) + C_{of}E_{H2}E_{of}[C_{of}E_{of}T_{H1}(y - 1)] + E_{H1}[(C_{of}E_{H1}E_{H2}(T_{H1} - T_{H1})y)]} \] (42)

When \(E_{H1} = E_{H2} = E_{L2} = 0 \), Equations (28) and (29) can be reduced to the dimensionless PO and TEF of a closed irreversible simple Brayton cycle coupled to VTHRs [37,63]:

\[\frac{1}{\eta_{com1}}[C_{of} - (1 - \eta_{frac} + \eta_{frac} / x)][(C_{of} - C_{of}E_{of}E_{of}(1 + \eta_{frac} / x)] + \eta_{com1}C_{of}E_{of}E_{of}(1 - \eta_{frac} + \eta_{frac} / x)] C_{of}E_{of}E_{of}E_{of} (1 - \eta_{frac} + \eta_{frac} / x)] \]

\[\eta = \frac{1}{\eta_{com1}}[C_{of} - (1 - \eta_{frac} + \eta_{frac} / x)][(C_{of} - C_{of}E_{of}E_{of}(1 + \eta_{frac} / x)] + \eta_{com1}C_{of}E_{of}E_{of}(1 - \eta_{frac} + \eta_{frac} / x)] C_{of}E_{of}E_{of}E_{of} (1 - \eta_{frac} + \eta_{frac} / x)] \] (44)

When \(E_{H1} = E_{H2} = E_{L2} = 0 \) and \(C_{of}E_{of}E_{of}(1 - \eta_{frac} + \eta_{frac} / x)] + \eta_{com1}C_{of}E_{of}E_{of}(1 - \eta_{frac} + \eta_{frac} / x)] C_{of}E_{of}E_{of}E_{of} (1 - \eta_{frac} + \eta_{frac} / x)] \]

\[\eta = \frac{1}{\eta_{com1}}[C_{of} - (1 - \eta_{frac} + \eta_{frac} / x)][(C_{of} - C_{of}E_{of}E_{of}(1 + \eta_{frac} / x)] + \eta_{com1}C_{of}E_{of}E_{of}(1 - \eta_{frac} + \eta_{frac} / x)] C_{of}E_{of}E_{of}E_{of} (1 - \eta_{frac} + \eta_{frac} / x)] \] (45)

When \(E_{H1} = E_{H2} = E_{L2} = 0 \) and \(C_{of}E_{of}E_{of}(1 - \eta_{frac} + \eta_{frac} / x)] + \eta_{com1}C_{of}E_{of}E_{of}(1 - \eta_{frac} + \eta_{frac} / x)] C_{of}E_{of}E_{of}E_{of} (1 - \eta_{frac} + \eta_{frac} / x)] \]

\[\eta = \frac{1}{\eta_{com1}}[C_{of} - (1 - \eta_{frac} + \eta_{frac} / x)][(C_{of} - C_{of}E_{of}E_{of}(1 + \eta_{frac} / x)] + \eta_{com1}C_{of}E_{of}E_{of}(1 - \eta_{frac} + \eta_{frac} / x)] C_{of}E_{of}E_{of}E_{of} (1 - \eta_{frac} + \eta_{frac} / x)] \] (46)

When $E_{H2} = E_{R1} = E_{R2} = E_{L2} = 0$ and $\eta_{com1} = \eta_{tur1} = 1$, Equations (28) and (29) can be reduced to the dimensionless PO and TEF of a closed endoreversible simple Brayton cycle coupled to VTHRs \[64\]:

$$
\eta = 1 - \frac{E_{H1}(\eta_{com1}E_{H1}(1-\eta_{tur1} + \eta_{tur1}/x) - \eta_{com1} + (x-1+\eta_{com1})(1-E_{H1})(1-\eta_{tur1} + \eta_{tur1}/x))}{E_{H1}(\eta_{com1} - (x-1+\eta_{com1})(1-E_{H1})(1-\eta_{tur1} + \eta_{tur1}/x))} \quad (47)
$$

When $E_{H2} = E_{R1} = E_{R2} = E_{L2} = 0$, $\eta_{com1} = \eta_{tur1} = 1$ and $C_{H1} = C_{H2} = C_{L} \to \infty$, Equations (28) and (29) can be reduced to the dimensionless PO and TEF of the closed endoreversible simple Brayton cycle coupled to CTRs \[65,66\]:

$$
\bar{\mathcal{W}} = \frac{C_{H1\min}C_{L\min}E_{H1}E_{L1}(x-1)(E_{H1} - xE_{L1})}{C_{H1\min}C_{L\min}E_{H1}(C_{H1\min} - C_{L\min})} \quad (48)
$$

$$
\eta = 1 - x^{-1} \quad (49)
$$

3. Optimal Heat Conductance Distributions

With $\bar{\mathcal{W}}$ as the optimization objective, the heat conductances of six heat exchangers will be optimized by fixing the total heat conductance (THC); namely, $U_{j} = \sum U_{j}$ \(j = H1, H2, R1, R2, L1, L2\). The HCDs in the RCC, CCC, OR, IR, PC1 and PC2 are defined as:

$$
\eta_{j} = U_{j} / U_{r} \quad (52)
$$

where u_{j} must meet the following constraints:

$$
\sum u_{j} = 1, 0 < u_{j} < 1 \quad (53)
$$

The dimensionless PO of the MCBBC can be maximized by optimizing the HCDs. Finally, the maximum dimensionless PO ($\bar{\mathcal{W}}_{\text{max}}$) and the corresponding optimal HCDs $\left((u_{H2})_{\pi_{\text{max}}} , (u_{R1})_{\pi_{\text{max}}} , (u_{R2})_{\pi_{\text{max}}} \right)$ and $\left(u_{L1} \right)_{\pi_{\text{max}}} , \left(u_{L2} \right)_{\pi_{\text{max}}} , \left(u_{R1} \right)_{\pi_{\text{max}}} , \left(u_{R2} \right)_{\pi_{\text{max}}} \right)$ can be obtained. Moreover, the optimal isothermal pressure drop ratios $\left((\pi_{\text{r1}})_{\pi_{\text{max}}} , (\pi_{\text{r2}})_{\pi_{\text{max}}} \right)$ can be calculated based on the optimal HCDs. The values or ranges of the variables are listed in Table 1. The flow chart of dimensionless PO optimization is displayed in Figure 2. Calculate the negative number of the dimensionless power output, and then the function “fmincon” in MATLAB is used to solve the minimum value. The parameters of “fmincon” are: “TolCon” is 10^{-6}, “TolConSQP” is 300 and “TolFun” is 10^{-6}.

![Figure 2. Flow chart of dimensionless power output (PO) optimization.](image-url)
Figures 3a,b, 4a,b, 5a,b and 6 illustrate the relationships of the maximum dimensionless PO (\bar{W}_max), the corresponding dimensionless PO (\bar{W}_up)$_\text{max}$ of the topping cycle, dimensionless PO (\bar{W}_bot)$_\text{max}$ of the bottoming cycle, TEF η_{max}, isothermal pressure drop ratios (π_i)$_\text{max}$ and (π_u)$_\text{max}$) and HCDs ($\left(u_{\text{fj}},\pi_i\right)_\text{max}$, $\left(u_{\text{fj}},\pi_u\right)_\text{max}$, $\left(u_{\text{fj}},\pi_u\right)_\text{max}$, $\left(u_{\text{fj}},\pi_u\right)_\text{max}$) versus the pressure ratios (π_com1 and π_com2) in the Com1 and Com2, respectively.

Table 1. Values or ranges of the variables.

Parameters	Symbol	Initial Value	Range	Unit
Thermal capacity rate of outer fluid at RCC	C_{f1}	1.2	——	kW / K
Thermal capacity rate of outer fluid at CCC	C_{f2}	1	——	kW / K
Thermal capacity rate of outer fluid at PC1	C_{c1}	1.2	——	kW / K
Thermal capacity rate of outer fluid at PC2	C_{c2}	1.2	——	kW / K
Thermal capacity rate of WF	C_{nf}	1	——	kW / K
Specific heats ratio	k	1.4	——	——
Gas constant	R_g	0.287	——	kJ / (kg · K)
Ambient temperature	T_0	300	——	K
THC	U_{tot}	18	8–36	kW / K
Compressor efficiencies	η_{com1}, η_{com2}	0.9	0.7–1	——
Turbine efficiencies	η_{tur1}, η_{tur2}	0.9	0.7–1	——
Inlet temperature ratio of outer fluid at RCC	τ_{f1}	4	3–6.67	——
Inlet temperature ratio of outer fluid at CCC	τ_{f3}	5	3–6.67	——
Inlet temperature ratio of outer fluid at PC1	τ_{c1}	1	——	——
Inlet temperature ratio of outer fluid at PC2	τ_{c3}	1	——	——
Pressure ratio at Com1	π_{com1}	——	2–20	——
Pressure ratio at Com2	π_{com2}	——	1–6	——

Figure 3a shows that \bar{W}_max increases first and then decreases as π_{com1} or π_{com2} increases. There is a set of optimal pressure ratios ($\left(\pi_{\text{com1}}\right)$_{\text{max}}$ and $\left(\pi_{\text{com2}}\right)$_{\text{max}}$), so that \bar{W}_max achieves the double maximum dimensionless PO $\bar{W}_{\text{max,2}}$. This is because when π_{com1} gradually increases, $\dot{Q}_{\text{2-3}}$, $\dot{Q}_{\text{7-1}}$ and $\dot{Q}_{\text{3-4}}$ gradually reduce, and $\dot{Q}_{\text{3-4}}$ slightly increases. With the increase in π_{com2}, $\dot{Q}_{\text{2-3}}$ decreases, $\dot{Q}_{\text{3-4}}$ decreases slightly, $\dot{Q}_{\text{7-1}}$ decreases first and then increases, and $\dot{Q}_{\text{2-3}}$ decreases. Under the given conditions, $\bar{W}_{\text{max,2}}$, $\left(\pi_{\text{com1}}\right)$_{\text{max}}$ and $\left(\pi_{\text{com2}}\right)$_{\text{max}}$ are approximately 1.01, 7.7 and 2.8, respectively.

Figure 3b shows that \bar{W}_{up} increases first; then decreases as π_{com1} increases; and remains substantially unchanged with the change of π_{com2}. \bar{W}_{bot} decreases at first and then tends to remain unchanged with the increase in π_{com1}, the value of which is much smaller than that of \bar{W}_{up}. This is because T_3 decreases at first and then tends to be constant as π_{com1} increases. As π_{com2} increases, \bar{W}_{bot} increases at first and then tends to be constant when π_{com1} is smaller; \bar{W}_{bot} increases at first and then decreases to zero when π_{com1} is larger. That is, $\dot{Q}_{\text{3-4}}$ and $\dot{Q}_{\text{3-4}}$ can only be used to maintain the operation of the bottoming cycle. Figure 4a shows that η_{max} increases at first and then becomes constant with the increase in π_{com1} or π_{com2}.

Figure 4b shows that π_{max} remains unchanged as π_{com1} or π_{com2} increases, and is always located at the lower limit. This indicates that the degree of the isothermal heating in CCC always reaches the maximum. Therefore, $\dot{Q}_{\text{3-4}}$ only slightly changes with the change of π_{com1} or π_{com2}.
When \(\pi_{\text{com1}} \) or \(\pi_{\text{com2}} \) is smaller, \((\pi_u)_{\pi_{\text{com}}} \) decreases slightly with the increase in \(\pi_{\text{com1}} \) and reaches the lower limit with the increase in \(\pi_{\text{com2}} \). That indicates that under this condition, the degree of the isothermal heating in IR increases as \(\pi_{\text{com1}} \) or \(\pi_{\text{com2}} \) does; when \(\pi_{\text{com1}} \) and \(\pi_{\text{com2}} \) are larger, \((\pi_u)_{\pi_{\text{com}}} \) increases with the increase in \(\pi_{\text{com1}} \) or \(\pi_{\text{com2}} \); when \((\tilde{W}_{\text{bot}})_{\pi_{\text{com}}} \) is zero, \((\pi_u)_{\pi_{\text{com}}} \) remains substantially unchanged as \(\pi_{\text{com1}} \) or \(\pi_{\text{com2}} \) increases.

Figure 3. (a) Relationships of \(\tilde{W}_{\text{max}} \) versus \(\pi_{\text{com1}} \) and \(\pi_{\text{com2}} \); (b) relationships of \((\tilde{W}_{\text{top}})_{\pi_{\text{com}}} \) and \((\tilde{W}_{\text{bot}})_{\pi_{\text{com}}} \) versus \(\pi_{\text{com1}} \) and \(\pi_{\text{com2}} \).

Figure 4. (a) Relationships of \(\eta_{\pi_{\text{com}}} \) versus \(\pi_{\text{com1}} \) and \(\pi_{\text{com2}} \); (b) relationships of \((\pi_r)_{\pi_{\text{com}}} \) and \((\pi_u)_{\pi_{\text{com}}} \) versus \(\pi_{\text{com1}} \) and \(\pi_{\text{com2}} \).

Figure 5. (a) Relationships of \((u_{H1})_{\pi_{\text{com}}} \) and \((u_{H2})_{\pi_{\text{com}}} \) versus \(\pi_{\text{com1}} \) and \(\pi_{\text{com2}} \); (b) relationships of \((u_{L1})_{\pi_{\text{com}}} \) and \((u_{L2})_{\pi_{\text{com}}} \) versus \(\pi_{\text{com1}} \) and \(\pi_{\text{com2}} \).
Figure 6. Relationships of \((u_{\text{ref}})_{\tau_{\text{max}}}\) and \((u_{\text{ref}})_{\tau_{\text{max}}}\) versus \(\pi_{\text{com1}}\) and \(\pi_{\text{com2}}\).

Figure 5a shows that when \((u_{\text{ref}})_{\tau_{\text{max}}}\) is not zero, \((u_{\text{ref}})_{\tau_{\text{max}}}\) increases slightly at first and then decreases slightly with the increase in \(\pi_{\text{com1}}\); \((u_{\text{ref}})_{\tau_{\text{max}}}\) decreases first and then tends to remain unchanged with the increase in \(\pi_{\text{com2}}\). When \((u_{\text{ref}})_{\tau_{\text{max}}}\) is zero but both of \((\pi_{\text{at}})_{\tau_{\text{max}}}\) and \((\bar{W}_{\text{bt}})_{\tau_{\text{max}}}\) are not zero, \((u_{\text{ref}})_{\tau_{\text{max}}}\) decreases as \(\pi_{\text{com1}}\) or \(\pi_{\text{com2}}\) increases; when both of \((u_{\text{ref}})_{\tau_{\text{max}}}\) and \((\pi_{\text{at}})_{\tau_{\text{max}}}\) are zero but \((\bar{W}_{\text{bt}})_{\tau_{\text{max}}}\) is not zero, changing \(\pi_{\text{com1}}\) or \(\pi_{\text{com2}}\) does not change \((u_{\text{ref}})_{\tau_{\text{max}}}\); when \((u_{\text{ref}})_{\tau_{\text{max}}}\), \((\pi_{\text{at}})_{\tau_{\text{max}}}\) and \((\bar{W}_{\text{bt}})_{\tau_{\text{max}}}\) are zero, \((u_{\text{ref}})_{\tau_{\text{max}}}\) decreases with the increase in \(\pi_{\text{com1}}\) or \(\pi_{\text{com2}}\), \((u_{\text{ref}})_{\tau_{\text{max}}}\) has nothing to do with \(\pi_{\text{com1}}\) or \(\pi_{\text{com2}}\), and is far less than \((u_{\text{ref}})_{\tau_{\text{max}}}\). With the decrease in \((u_{\text{ref}})_{\tau_{\text{max}}}\), \(E_{\tau_{\text{ref}}}\) decreases, and then \(\tilde{Q}_{2;3}\) decreases. \((u_{\text{ref}})_{\tau_{\text{max}}}\) remains basically unchanged, \(E_{\tau_{\text{ref}}}\) is constant and the variation of \(\tilde{Q}_{2;3}\) is very small.

Figure 5b shows that when \((u_{\text{ref}})_{\tau_{\text{max}}}\) is not zero, \((u_{\text{ref}})_{\tau_{\text{max}}}\) increases as \(\pi_{\text{com1}}\) increases; it decreases first and then increases slightly as \(\pi_{\text{com2}}\) increases; \((u_{\text{ref}})_{\tau_{\text{max}}}\) decreases first and then tends to remain unchanged with the increase in \(\pi_{\text{com1}}\); it increases first and then tends to be the same with the increase in \(\pi_{\text{com2}}\). When \((u_{\text{ref}})_{\tau_{\text{max}}}\) is zero but both of \((\pi_{\text{at}})_{\tau_{\text{max}}}\) and \((\bar{W}_{\text{bt}})_{\tau_{\text{max}}}\) are not zero, \((u_{\text{ref}})_{\tau_{\text{max}}}\) decreases sharply with the increase in \(\pi_{\text{com1}}\) or \(\pi_{\text{com2}}\), while \((u_{\text{ref}})_{\tau_{\text{max}}}\) increases sharply with the increase in \(\pi_{\text{com1}}\) or \(\pi_{\text{com2}}\). When both of \((u_{\text{ref}})_{\tau_{\text{max}}}\) and \((\pi_{\text{at}})_{\tau_{\text{max}}}\) are zero but \((\bar{W}_{\text{bt}})_{\tau_{\text{max}}}\) is not zero, \((u_{\text{ref}})_{\tau_{\text{max}}}\) increases slightly with the increase in \(\pi_{\text{com1}}\) or \(\pi_{\text{com2}}\), and \((u_{\text{ref}})_{\tau_{\text{max}}}\) remains basically unchanged with the increase in \(\pi_{\text{com1}}\) or \(\pi_{\text{com2}}\). When \((u_{\text{ref}})_{\tau_{\text{max}}}\), \((\pi_{\text{at}})_{\tau_{\text{max}}}\) and \((\bar{W}_{\text{bt}})_{\tau_{\text{max}}}\) are zero, \((u_{\text{ref}})_{\tau_{\text{max}}}\) decreases and \((u_{\text{ref}})_{\tau_{\text{max}}}\) increases as \(\pi_{\text{com1}}\) or \(\pi_{\text{com2}}\) increases.

Figure 6 shows that \((u_{\text{ref}})_{\tau_{\text{max}}}\) decreases to zero with the increase in \(\pi_{\text{com1}}\), and increases at first and then decreases to zero as \(\pi_{\text{com2}}\) increases. When \((\pi_{\text{at}})_{\tau_{\text{max}}}\) is not zero, \((u_{\text{ref}})_{\tau_{\text{max}}}\) increases with the increase in \(\pi_{\text{com1}}\) or \(\pi_{\text{com2}}\). When \((\pi_{\text{at}})_{\tau_{\text{max}}}\) is zero but \((\bar{W}_{\text{bt}})_{\tau_{\text{max}}}\) is not zero, \((u_{\text{ref}})_{\tau_{\text{max}}}\) decreases with the increase in \(\pi_{\text{com1}}\) or \(\pi_{\text{com2}}\). When both of \((\pi_{\text{at}})_{\tau_{\text{max}}}\) and \((\bar{W}_{\text{bt}})_{\tau_{\text{max}}}\) are zero, \((u_{\text{ref}})_{\tau_{\text{max}}}\) increases with the increase in \(\pi_{\text{com1}}\) or \(\pi_{\text{com2}}\). Because increasing \((u_{\text{ref}})_{\tau_{\text{max}}}\) leads to the increases in \(E_{\tau_{\text{ref}}}\) and \(\tilde{Q}_{2;3}\), so as to avoid the negative value of \((\bar{W}_{\text{bt}})_{\tau_{\text{max}}}\), namely, inverse dimensionless PO of the bottoming cycle.

According to the numerical calculation, the influences of the temperature ratios, compressor efficiencies, turbine efficiencies and THC on optimization results are further analyzed. Figure 7a,b illustrates the relationships of the double maximum dimensionless PO \((\bar{W}_{\text{ref},2})\) and the corresponding TEF \((\eta_{\tau_{\text{max},2}})\) versus the temperature ratios \((\tau_{\tau_{\text{ref}}}\) and \(\tau_{\tau_{\text{ref}}}\)). As can be seen from figure 7a,b, both \(\bar{W}_{\text{ref},2}\) and \(\eta_{\tau_{\text{max},2}}\) increase first and then tend to be unchanged with the increase in \(\pi_{\text{com1}}\) or \(\pi_{\text{com2}}\). There is an optimal temperature ratio \((\tau_{\tau_{\text{ref}}}\) opt, which makes \(\bar{W}_{\text{ref},2}\) reach the optimal. The
corresponding fitting expression is \((\tau_{HI})_{\text{opt}} = 1.1\tau_{HI} + 0.14\), and the correlation coefficient is \(r = 0.9964\). As for \(\eta_{\text{com2}}\), there also exists \((\tau_{HI})_{\text{opt}}\) that satisfies the fitting expression: \((\tau_{HI})_{\text{opt}} = 1.1\tau_{HI} + 0.18\), and its correlation coefficient is also \(r = 0.9964\). In the actual design process, \(\tau_{HI}\) and \(\tau_{HJ}\) should meet the relationship similar to \((\tau_{HI})_{\text{opt}} = 1.1\tau_{HI} + 0.14\) or \((\tau_{HJ})_{\text{opt}} = 1.1\tau_{HJ} + 0.18\), in order to obtain as much \(W_{\text{max,2}}\) and \(\eta_{\text{com2}}\) as possible and reduce the requirement for high temperature resistances of materials.

Figure 7. (a) Relationships of \(\overline{W}_{\text{max,2}}\) versus \(\tau_{HI}\) and \(\tau_{HJ}\); (b) relationships of \(\eta_{\text{com1}}\) versus \(\tau_{HI}\) and \(\tau_{HJ}\).

Figure 8a illustrates the relationships of \(\overline{W}_{\text{max,2}}, (\overline{W}_{\text{up}})_{\pi_{\text{max,2}}}, (\overline{W}_{\text{bot}})_{\pi_{\text{max,2}}}\) and \(\eta_{\text{com2}}\). It shows that \(\overline{W}_{\text{max,2}}, \eta_{\text{com2}}\), and \((\overline{W}_{\text{bot}})_{\pi_{\text{max,2}}}\) increase and \((\overline{W}_{\text{up}})_{\pi_{\text{max,2}}}\) decreases slightly with the increase in \(\eta_{\text{com2}}\). With the increase in \(\eta_{\text{com2}}\), \(\dot{Q}_{2-3}\) and \(\dot{Q}_{3-1}\) basically increase. With the increase in \(\eta_{\text{com2}}\), \(\dot{Q}_{4-1}\) remains substantially unchanged, \(\dot{Q}_{3a-1a}\) decreases and \(\dot{Q}_{3a-4}\) increases. The amount of change in \(\overline{W}_{\text{max,2}}\) is mainly affected by that in \(\dot{Q}_{4-1}\). It should be noted that when \(\eta_{\text{com2}} \leq 0.75\), \(\overline{W}_{\text{max,2}}, \eta_{\text{com2}}, (\overline{W}_{\text{up}})_{\pi_{\text{max,2}}}\) and \((\overline{W}_{\text{bot}})_{\pi_{\text{max,2}}}\) do not exist and are indicated by dashed lines.

Figure 8b illustrates the relationships of \((\pi_{\text{com1}})_{\pi_{\text{max,2}}}, (\pi_{\text{com2}})_{\pi_{\text{max,2}}}, (\pi_{1})_{\pi_{\text{max,2}}}\) and \((\pi_{2})_{\pi_{\text{max,2}}}\) versus \(\eta_{\text{com2}}\). It shows that \((\pi_{\text{com1}})_{\pi_{\text{max,2}}}\) decreases and \((\pi_{\text{com2}})_{\pi_{\text{max,2}}}\) increases as \(\eta_{\text{com2}}\) increases. The decrease in \((\pi_{\text{com1}})_{\pi_{\text{max,2}}}\) reduces \(T_{1}\), thereby increasing \(\dot{Q}_{2-3}\). Under the given condition, \(T_{4a}\) is less than \(T_{5a}\) when \(\eta_{\text{com2}}\) is less than or equal to 0.76. As \(\eta_{\text{com2}}\) increases, \((\pi_{2})_{\pi_{\text{max,2}}}\) remains the lower limit, which indicates that the degree of the isothermal heating in CCC always reaches the maximum. As \(\eta_{\text{com2}}\) increases, \((\pi_{1})_{\pi_{\text{max,2}}}\) decreases to the lower limit, which indicates that increasing \(\eta_{\text{com2}}\) improves the degree of the isothermal heating in IR.

Figure 8c illustrates the relationship of \(\eta_{\text{com1}}\) versus \(\eta_{\text{com2}}\). It shows that as \(\eta_{\text{com1}}\) decreases, \((u_{HI})_{\pi_{\text{max,2}}}, (u_{HJ})_{\pi_{\text{max,2}}}\), and \((u_{HI})_{\pi_{\text{com1}}}\) remains basically unchanged; \((u_{HI})_{\pi_{\text{com1}}}\) decreases first and then tends to remain unchanged; \((u_{HJ})_{\pi_{\text{com1}}}\) increases first and then tends to be unchanged; \((u_{HJ})_{\pi_{\text{com2}}}\) increases.

Similarly, both of \(\overline{W}_{\text{max,2}}\) and \(\eta_{\text{com2}}\) increase as \(\eta_{\text{com1}}, \eta_{\text{lar1}}\) and \(\eta_{\text{lar2}}\) increase. The effects of \(\eta_{\text{com1}}\) and \(\eta_{\text{lar1}}\) on \(\overline{W}_{\text{max,2}}\) and \(\eta_{\text{com2}}\) are greater than those of \(\eta_{\text{com2}}\) and \(\eta_{\text{lar2}}\). \((\overline{W}_{\text{up}})_{\pi_{\text{com2}}}\) increases with the increases in \(\eta_{\text{com1}}\) and \(\eta_{\text{lar1}}\), while \((\overline{W}_{\text{bot}})_{\pi_{\text{com2}}}\) decreases with the increases in \(\eta_{\text{com2}}\) and \(\eta_{\text{lar2}}\). \((\overline{W}_{\text{bot}})_{\pi_{\text{com2}}}\) decreases with the increases in \(\eta_{\text{com1}}\) and \(\eta_{\text{lar1}}\), while \((\overline{W}_{\text{up}})_{\pi_{\text{com2}}}\) increases with the
increases in η_{out} and η_{in}. It should be noted that when $\eta_{\text{in}} \leq 0.74$, $\bar{W}_{\text{max},2}^\pi$, $\eta_{\text{in},2}$, $(\bar{W}_{\text{tot}})_{\eta_{\text{in},2}}$ and $(\bar{W}_{\text{tot}})_{\eta_{\text{in},2}}^\pi$ also do not exist. When $\eta_{\text{in}} > 0.74$, the change of η_{in} has little effects on $\bar{W}_{\text{max},2}$ and $\eta_{\text{in},2}$. Within the given range, the changes in $\bar{W}_{\text{max},2}$ and $\eta_{\text{in},2}$ do not exceed 7% and 4%, respectively. In practical design of improving cycle performance, it is suggested to give priority to appropriately increasing $\eta_{\text{in},2}$ and η_{in}. Then one can choose to increase $\eta_{\text{in},1}$ and η_{in} successively. Apart from this, $\bar{W}_{\text{max},2}$ and $\eta_{\text{in},2}$ increase as U_f increases.

![Figure 8](image-url)

Figure 8. (a) Relationships of $\bar{W}_{\text{max},2}$, $\eta_{\text{in},2}$, $(\bar{W}_{\text{tot}})_{\eta_{\text{in},2}}$, and $(\bar{W}_{\text{tot}})_{\eta_{\text{in},2}}^\pi$ versus $\eta_{\text{in},2}$; (b) relationships of $(\eta_{\text{in}})_{\pi_{\text{in},2}}$, $(\pi_{\text{in},2})_{\pi_{\text{in},2}}$, $(\pi_{\text{in},2})_{\pi_{\text{in},2}}^\pi$, and $(\pi_{\text{in}})_{\pi_{\text{in},2}}$ versus $\eta_{\text{in},2}$; (c) relationships of $(\eta_{\text{in}})_{\pi_{\text{in},2}}$ versus $\eta_{\text{in},2}$.

4. Optimal Thermal Capacitance Rate Matchings

The \bar{W} of the cycle also affected by the TCRMs. By taking \bar{W} as the optimization objective, TCRMs are optimized. Figure 9a,b illustrates the relationships of \bar{W}_{max} and η_{max} versus $C_{\text{H}_1}/C_{\text{H}_2}$ and $C_{\text{H}_2}/C_{\text{H}_1}$ when $C_{\text{H}_1}/C_{\text{H}_2} = 1$ and $C_{\text{H}_2}/C_{\text{H}_1} = 1.2$. The figures show that both of \bar{W}_{max} and η_{max} increase, and then tend to remain constant with the increase in $C_{\text{H}_1}/C_{\text{H}_2}$ or $C_{\text{H}_2}/C_{\text{H}_1}$. These indicate that there is a set of the optimal $C_{\text{H}_1}/C_{\text{H}_2}$ and $C_{\text{H}_2}/C_{\text{H}_1}$, so that \bar{W}_{max} gets the optimal value. Similarly, there is a set of the optimal $C_{\text{H}_1}/C_{\text{H}_2}$ and $C_{\text{H}_2}/C_{\text{H}_1}$, so that η_{max} gets the optimal value.

Figure 10 illustrates that the effects of $C_{\text{H}_1}/C_{\text{H}_1}$ on the characteristics of $\bar{W}_{\text{max}} - C_{\text{H}_1}/C_{\text{H}_2}$ and $\eta_{\text{max}} - C_{\text{H}_1}/C_{\text{H}_2}$ when $C_{\text{H}_2} = 1$ and $C_{\text{H}_2}/C_{\text{H}_1} = 1.2$. It shows that when \bar{W}_{max} and η_{max} reach the
optimal values, \(C_{h1} / C_{n1} \) mainly reduces the corresponding \(C_{h1} / C_{n1} \), and has little effect on the optimal values of \(\overline{W}_{\text{max}} \) and \(\eta_{\text{max}} \). Similarly, \(C_{l1} / C_{n1} \) mainly reduces the corresponding \(C_{h1} / C_{n1} \) when \(\overline{W}_{\text{max}} \) and \(\eta_{\text{max}} \) reach the optimal values, and has little effects on the optimal values of \(\overline{W}_{\text{max}} \) and \(\eta_{\text{max}} \).

![Figure 9](image1)

(a) Relationships of \(\overline{W}_{\text{max}} \) versus \(C_{h1} / C_{n1} \) and \(C_{h2} / C_{n1} \); (b) relationships of \(\eta_{\text{max}} \) versus \(C_{h1} / C_{n1} \) and \(C_{h2} / C_{n1} \).

![Figure 10](image2)

Figure 10. Effects of \(C_{l1} / C_{h1} \) on the characteristics of \(\overline{W}_{\text{max}} - C_{h1} / C_{n1} \) and \(\eta_{\text{max}} - C_{h1} / C_{n1} \).

5. Conclusions

Based on the previous established models in [8,62], a modified closed binary Brayton cycle model coupled to VTHRs with two isothermal heating processes and variable isothermal pressure drop ratios is established by using FTT in this paper. The HCDs of the six heat exchangers are optimized, and the effects of \(\tau_{h1} \), \(\tau_{h3} \), \(U_T \), \(\eta_{\text{com1}}, \eta_{\text{com2}}, \eta_{\text{nat1}}, \eta_{\text{nat2}}, C_{h1} / C_{n1} \) and \(C_{h2} / C_{n1} \) on the optimal performances are analyzed by taking \(\overline{W} \) as the optimization objective. The results show that there is a set of \(\pi_{\text{com1}} \) and \(\pi_{\text{com2}} \) which makes \(\overline{W}_{\text{max}} \) reach \(\overline{W}_{\text{max,2}} = 1.01 \). \(\tau_{h1} \) and \(\tau_{h3} \) have certain linear relationship \((\tau_{h3})_{\text{opt}} = 1.1 \tau_{h1} + 0.14 \), and the correlation coefficient is \(r = 0.9964 \), which makes \(\overline{W}_{\text{max,2}} \) optimal. \(\overline{W}_{\text{max,2}} \) increases with the increases in \(U_T \), \(\eta_{\text{com1}}, \eta_{\text{com2}}, \eta_{\text{nat1}}, \eta_{\text{nat2}} \). It should be noted that when \(\eta_{\text{com2}} \leq 0.75 \) or \(\eta_{\text{nat2}} \leq 0.74 \), \(\overline{W}_{\text{max,2}} \) does not exist. \(\overline{W}_{\text{max,2}} \) increases first and then remain unchanged with the increases in \(C_{h1} / C_{n1} \) and \(C_{h2} / C_{n1} \). This cycle can effectively improve energy efficiency and reduce emissions of nitrogen oxide and other harmful gases. Additionally, the optimal results can guide the practical designs for the gas turbine plants.
Author Contributions: C.T., L.C., H.F., W.W. and Y.G. collectively finished the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded the National Natural Science Foundation of China (project number 51779262).

Acknowledgments: The authors wish to thank the reviewers for their careful, unbiased and constructive suggestions, which led to this revised manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

\[a, b, c, d, e, m, x, y \] Intermediate variables

\(C \) Thermal capacity rate (kW/K)

\(C_p \) Specific heat at constant pressure (kJ/(kg·K))

\(E \) Effectiveness of heat exchanger

\(k \) Specific heat ratio

\(M \) Mach number

\(N \) Number of heat transfer units

\(\dot{Q} \) Heat absorbing rate or heat releasing rate

\(R_g \) Gas constant (kJ/(kg·K))

\(T \) Temperature (K)

\(U \) Heat conductance (kW/K)

\(u \) Heat conductance distribution

\(W \) Power output (kW)

\(\bar{W} \) Dimensionless power output

Greek symbol

\(\eta \) Efficiency

\(\pi \) Pressure ratio

\(\tau \) Temperature ratio

Subscripts

\(\text{bot} \) Bottoming cycle

\(\text{com} \) Compressor

\(H \) Hot-side heat exchanger

\(L \) Cold-side heat exchanger

\(R \) Regenerator

\(s \) Isentropic

\(t/ta \) Converging combustion chamber/isothermal regenerator

\(\text{tot} \) Total

\(\text{tur} \) Turbine

\(\text{top} \) Topping cycle

\(\text{wf} \) Working fluid

\(1,2,3,4,5,6,7,1a,2a,3a,4a,5a,2s,5s,2as,5as \) State points

Abbreviations

CCC Converging combustion chamber

CTR Constant-temperature reservoir

FTT Finite-time thermodynamics

HCD Heat conductance distribution

IR Isothermal regenerator

MCBBC Modified closed binary Brayton cycle

PO Power output

PD Power density

OR Ordinary regenerator

RCC Regular combustion chamber

TCRM Thermal capacitance rate matching

TEF Thermal efficiency

THC Total heat conductance

Tur Turbine

VTHR Variable-temperature heat reservoir
Appendix A

\[a_i = \begin{cases} \frac{1}{C_{12}E_1} \left(\frac{\eta_{\text{ref}} - 1}{\eta_{\text{ref}}} - x_{\text{ref}} - \eta_{\text{ref}} \right) - \left(C_{2A} \frac{2E_{2A} - 1}{(E_{2A} - 1)} \frac{\eta_{\text{ref}} + x - 1}{(\eta_{\text{ref}} - 1)} \eta_{\text{ref}} - \eta_{\text{ref}} \right) C_{\text{it,ref}} E_{\text{it,ref}} + C_{\text{it,ref}} E_2 \right) + C_{\text{it,ref}} C_{\text{it,ref}} E_{\text{it,ref}} E_{\text{it,ref}} (2E_{2B} - 1) (E_{2B} - 1) \eta_{\text{ref}} + x - 1) (\eta_{\text{ref}} - 1) \eta_{\text{ref}} - \eta_{\text{ref}} + C_{\text{ref}} (2E_{2B} - 1) (E_{2B} - 1) (\eta_{\text{ref}} - 1) \eta_{\text{ref}} - \eta_{\text{ref}} +\end{cases} \]

\[+ (2E_{2B} - 1) \eta_{\text{ref}} (\eta_{\text{ref}} + x - 1) x_{\text{ref}}) + \left(\frac{1}{\eta_{\text{ref}} + x - 1} (C_{\text{it,ref}} E_{\text{it,ref}}) + C_{\text{ref}} (2E_{2B} - 1) (\eta_{\text{ref}} - 1) \eta_{\text{ref}} - \eta_{\text{ref}} + \right) \]

\[+ (2E_{2B} - 1) \eta_{\text{ref}} (\eta_{\text{ref}} + x - 1) x_{\text{ref}}) + \left(\frac{1}{\eta_{\text{ref}} + x - 1} (C_{\text{it,ref}} E_{\text{it,ref}}) + C_{\text{ref}} (2E_{2B} - 1) (\eta_{\text{ref}} - 1) \eta_{\text{ref}} - \eta_{\text{ref}} + \right) \]

\[= \left(\frac{1}{\eta_{\text{ref}} + x - 1} (C_{\text{it,ref}} E_{\text{it,ref}}) + C_{\text{ref}} (2E_{2B} - 1) (\eta_{\text{ref}} - 1) \eta_{\text{ref}} - \eta_{\text{ref}} + \right) \]

\[+ (2E_{2B} - 1) \eta_{\text{ref}} (\eta_{\text{ref}} + x - 1) x_{\text{ref}}) + \left(\frac{1}{\eta_{\text{ref}} + x - 1} (C_{\text{it,ref}} E_{\text{it,ref}}) + C_{\text{ref}} (2E_{2B} - 1) (\eta_{\text{ref}} - 1) \eta_{\text{ref}} - \eta_{\text{ref}} + \right) \]

\[= \left(\frac{1}{\eta_{\text{ref}} + x - 1} (C_{\text{it,ref}} E_{\text{it,ref}}) + C_{\text{ref}} (2E_{2B} - 1) (\eta_{\text{ref}} - 1) \eta_{\text{ref}} - \eta_{\text{ref}} + \right) \]

\[+ (2E_{2B} - 1) \eta_{\text{ref}} (\eta_{\text{ref}} + x - 1) x_{\text{ref}}) + \left(\frac{1}{\eta_{\text{ref}} + x - 1} (C_{\text{it,ref}} E_{\text{it,ref}}) + C_{\text{ref}} (2E_{2B} - 1) (\eta_{\text{ref}} - 1) \eta_{\text{ref}} - \eta_{\text{ref}} + \right) \]

\[= \left(\frac{1}{\eta_{\text{ref}} + x - 1} (C_{\text{it,ref}} E_{\text{it,ref}}) + C_{\text{ref}} (2E_{2B} - 1) (\eta_{\text{ref}} - 1) \eta_{\ref}}$
\[\begin{align*}
d_1 &= \{ -C_{\text{u},E_{12}}C_{\text{u},E_{13}}x(2E_{\text{m}}-1)(E_{22}-1)(E_{11}+E_{1}) - C_{\text{u},E_{12}}E_{13}(2E_{\text{m}}-1)(E_{22}-1) + C_{\text{u}}(x(2E_{\text{m}}-1)(E_{22}-1) - x)(\eta_{\text{min}} - x) + x(E_{\text{m}}(1-E_{22}) + E_{13} - x) + x(E_{\text{m}}(1-E_{22}) - x) + x(E_{\text{m}}(1-E_{22}) - x) + x(E_{\text{m}}(1-E_{22}) - x) + x(E_{\text{m}}(1-E_{22}) - x)\} / \{C_{\text{u}}(x(2E_{\text{m}}-1)(E_{22}-1) - x)(\eta_{\text{min}} - x) + x(E_{\text{m}}(1-E_{22}) - x) + x(E_{\text{m}}(1-E_{22}) - x) + x(E_{\text{m}}(1-E_{22}) - x) + x(E_{\text{m}}(1-E_{22}) - x)\}.
\end{align*}\]

References

1. Invernizzi, C.M. Prospects of mixtures as working fluids in real-gas Brayton cycles. *Energies 2017*, 10, 1649.

2. Wang, J.P.; Wang, J.; Lund, P.D.; Zhu, H.X. Thermal performance analysis of a direct-heated recompression supercritical carbon dioxide Brayton cycle using solar concentrators. *Energies 2019*, 12, 4358.

3. Jaszczur, M.; Dudek, M.; Kolenda, Z. Thermodynamic analysis of advanced gas turbine combined cycle integration with a high-temperature nuclear reactor and cogeneration unit. *Energies 2020*, 13, 400.

4. Vecchiarelli, J.; Kawall, J.G.; Wallace, J.S. Analysis of a concept for increasing the efficiency of a Brayton cycle via isothermal heat addition. *Int. J. Energy Res. 1997*, 21, 113–127.

5. Göktun, S.; Yavuz, H. Thermal efficiency of a regenerative Brayton cycle with isothermal heat addition. *Energy Convers. Manag. 1999*, 40, 1259–1266.

6. Erbay, L.B.; Göktun, S.; Yavuz, H. Optimal design of the regenerative gas turbine engine with isothermal heat addition. *Appl. Energy 2001*, 68, 249–264.

7. Jubeh, N.M. Exergy analysis and second law efficiency of a regenerative Brayton cycle with isothermal heat addition. *Entropy 2005*, 7, 172–187.

8. El-Maksound, R.M.A. Binary Brayton cycle with two isothermal processes. *Energy Convers. Manag. 2013*, 73, 303–308.

9. Qi, W.; Wang, W.H.; Chen, L.G. Exergy analysis and optimization for binary Brayton cycle with two isothermal heat additions. *Therm. Sci. 2017*, 46, 76–81 (In Chinese).

10. Andresen, B.; Salamon, P.; Barry, R.S. Thermodynamics in finite time. *Phys. Today 1987*, 37, 62–70.

11. Chen, L.G.; Li, J. Thermodynamic optimization theory for Two-Heat-Reservoir cycles; Science Press: Beijing, China, 2020.

12. Barranco-Jimenez, M.A.; Ramos-Gayosso, I.; Rosales, M.A.; Angulo-Brown, F. A proposal of ecologic taxes based on thermoeconomic performance of heat engine models. *Energies 2009*, 2, 1042–1056.
13. Chen, C.L.; Ho, C.E.; Yau, H.T. Performance analysis and optimization of a solar powered Stirling engine with heat transfer considerations. Energies 2012, 5, 3573–3585.
14. Gonca, G. Energy and exergy analyses of single and double reheat irreversible Rankine cycle. Int. J. Exergy 2015, 18, 402–422.
15. Han, Z.H.; Li, P.; Han, X.; Mei, Z.K.; Wang, Z. Thermo-economic performance analysis of a regenerative superheating organic Rankine cycle for waste heat recovery. Energies 2017, 10, 1593.
16. White, M.T.; Sayma, A.I. A generalised assessment of working fluids and radial turbines for non-submerged subcritical organic Rankine cycles. Energies 2018, 11, 800.
17. Chen, W.J.; Feng, H.J.; Chen, L.G.; Xia, S.J. Optimal performance characteristics of subcritical simple irreversible organic Rankine cycle. J. Therm. Sci. 2018, 27, 555–562.
18. Vittorini, D.; Cipollone, R.; Carapellucci, R. Enhanced performances of ORC-based units for low grade waste heat recovery via evaporator layout optimization. Energy Convers. Manag. 2019, 197, 111874.
19. Koo, J.; Oh, S.R.; Choi, Y.U.; Jung, J.H.; Park, K. Optimization of an organic Rankine cycle system for an LNG-powered ship. Energies 2019, 12, 1933.
20. Wang, S.; Zhang, W.; Feng, Y.Q.; Wang, X.; Wang, Q.; Liu, Y.Z.; Wang, Y.; Yao, L. Entropy, entransy and exergy analysis of a dual-loop organic Rankine cycle (DORC) using mixture working fluids for engine waste heat recovery. Energies 2020, 13, 1301.
21. Feng, H.J.; Chen, W.J.; Chen, L.G.; Tang, W. Power and efficiency optimizations of an irreversible regenerative organic Rankine cycle. Energy Convers. Manag. 2020, 220, 113079.
22. Chen, L.G.; Ma K.; Feng, H.J.; Ge, Y.L. Optimal configuration of a gas expansion process in a piston-type cylinder with generalized convective heat transfer laws. Energies, 2020, 13, in press.
23. Chen, L.G.; Meng, F.K.; Sun, F.R. Thermodynamic analyses and optimizations for thermoelectric devices: the state of the arts. Sci. China Technol. Sci. 2016, 59, 442–455.
24. Chen, J.L.; Li, K.W.; Liu, C.W.; Li, M.; Lv, Y.C.; Jia, L.; Jiang, S.S. Enhanced efficiency of thermoelectric generator by optimizing mechanical and electrical structures. Energies 2017, 10, 1329.
25. Feng, Y.L.; Chen, L.G.; Meng, F.K.; Sun, F.R. Influences of external heat transfer and Thomson effect on performance of TEG-TEC combined thermoelectric device. Sci. China Technol. Sci. 2018, 61, 1600–1610.
26. Li, G.; Wang, Z.C.; Wang, F.; Wang, X.Z.; Li, S.B.; Xue, M.S. Experimental and numerical study on the effect of interfacial heat transfer on performance of thermoelectric generators. Energies 2019, 12, 3797.
27. Açıklap, E.; Chen, L.G.; Ahmadi, M.H. Comparative performance analyses of molten carbonate fuel cell-alkali metal thermal to electric converter and molten carbonate fuel cell–thermoelectric generator hybrid systems. Energy Rep. 2020, 6, 10–16.
28. Gonca, G. Exergetic and thermo-ecological performance analysis of a Gas-Mercury combined turbine system (GMCTS). Energy Convers. Manag. 2017, 151, 32–42.
29. Lin, J.; Zhang, Z.H.; Zhu, X.Y.; Meng, C.; Li, N.; Chen, J.C.; Zhao, Y.R. Performance evaluation and parametric optimization strategy of a thermocapacitive heat engine to harvest low-grade heat. Energy Convers. Manag. 2019, 184, 40–47.
30. Zhu, F.L.; Chen, L.G.; Wang, W.H. Thermodynamic analysis and optimization of irreversible Maisotsenko-Diesel cycle. J. Therm. Sci. 2019, 28, 659–668.
31. Dumitrescu, G.; Feidt, M.; Popescu, A.; Grigorean, S. Endoreversible trigeneration cycle design based on finite physical dimensions thermodynamics. Energies 2019, 12, 3165.
32. Wu, Z.X.; Chen, L.G.; Feng, H.J. Thermodynamic optimization for an endoreversible Dual-Miller cycle (DMC) with finite speed of piston. Entropy 2018, 20, 165.
33. You, J.; Chen, L.G.; Wu, Z.X.; Sun, F.R. Thermodynamic performance of Dual-Miller cycle (DMC) with polytropic processes based on power output, thermal efficiency and ecological function. Sci. China Technol. Sci. 2018, 61, 453–463.
34. Abedinnejazhad, S.; Ahmadi, M.H.; Pourkiaei, S.M.; Pourfayaz, F.; Mosavi, A.; Feidt, M.; Shamshirband, S. Thermodynamic assessment and multi-objective optimization of performance of irreversible Dual-Miller cycle. Energies 2019, 12, 4000.
35. Ding, Z.M.; Ge, Y.L.; Chen, L.G.; Feng, H.J.; Xia, S.J. Optimal performance regions of Feynman’s ratchet engine with different optimization criteria. J. Non-Equilib. Thermodyn. 2020, 45, 191–207.
36. Feng, H.J.; Qin, W.X.; Chen, L.G.; Cai, C.G.; Ge, Y.L.; Xia, S.J. Power output, thermal efficiency and exergy-based ecological performance optimizations of an irreversible KCS-34 coupled to variable temperature heat reservoirs. Energy Convers. Manag. 2020, 205, 112424.
37. Chen, L.G.; Sun, F.R.; Wu, C. Performance analysis of an irreversible Brayton heat engine. J. Inst. Energy 1997, 70, 2–8.
38. Sadatsakkak, S.A.; Ahmadi, M.H.; Ahmadi, M.A. Thermodynamic and thermo-economic analysis and optimization of an irreversible regenerative closed Brayton cycle. Energy Convers. Manag. 2015, 94, 124–129.
39. Naserian, M.M.; Farahat, S.; Sarhaddi, F. Finite time exergy analysis and multi-objective ecological optimization of a regenerative Brayton cycle considering the impact of flow rate variations. Energy Convers. Manag. 2015, 103, 790–800.
40. Jansen, E.; Bello-Ochende, T.; Meyer, J.P. Integrated solar thermal Brayton cycles with either one or two regenerative heat exchangers for maximum power output. Energy 2015, 86, 737–748.
41. Sánchez-Orgaz, S.; Medina, A.; Calvo Hernández, A. Thermodynamic model and optimization of a multi-step irreversible Brayton cycle. Energy Convers. Manag. 2010, 51, 2134–2143.
42. Sanchez-Orgaz, S.; Pedemonte, M.; Ezzatti, P.; Curto-Risso, P.L.; Medina, A.; Calvo Hernández, A. Multi-objective optimization of a multi-step solar-driven Brayton plant. Energy Convers. Manag. 2015, 99, 346–358.
43. Chen, L.G.; Feng, H.J.; Ge, Y.L. Power and efficiency optimization for open combined regenerative Brayton and inverse Brayton cycles with regeneration before the inverse cycle. Entropy 2020, 22, 677.
44. Açıkkalp, E. Performance analysis of irreversible solid oxide fuel cell–Brayton heat engine with ecological based thermo-environmental criterion. Energy Convers. Manag. 2017, 148, 279–286.
45. Zhu, F.L.; Chen, L.G.; Wang, W.H. Thermodynamic analysis of an irreversible Maisotsenko reciprocating Brayton cycle. Entropy 2018, 20, 167.
46. Chen, L.G.; Shen, J.F.; Ge, Y.L.; Wu, Z.X.; Wang, W.H.; Zhu, F.L.; Feng, H.J. Power and efficiency optimization of open Maisotsenko-Brayton cycle and performance comparison with traditional open regenerated Brayton cycle. Energy Convers. Manag. 2020, 217, 113001.
47. Feng, H.J.; Tao, G.S.; Tang, C.Q.; Ge, Y.L.; Chen, L.G.; Xia, S.J. Exergoeconomic performance optimization for a regenerative gas turbine closed-cycle heat and power cogeneration plant. Energy Rep. 2019, 5, 1525–1531.
48. Chen, L.G.; Yang, B.; Feng, H.J.; Ge, Y.L.; Xia, S.J. Performance optimization of an open simple-cycle gas turbine combined cooling, heating and power plant driven by basic oxygen furnace gas in China’s steelmaking plants. Energy 2020, 203, 117791.
49. Kaushik, S.C.; Tyagi, S.K.; Singhal, M.K. Parametric study of an irreversible regenerative Brayton cycle with isothermal heat addition. Energy Convers. Manag. 2003, 44, 2013–2025.
50. Tyagi, S.K.; Kaushik, S.C.; Tiwari, V. Ecological optimization and parametric study of an irreversible regenerative modified Brayton cycle with isothermal heat addition. Entropy 2003, 5, 377–390.
51. Tyagi, S.K.; Chen, J.C. Performance evaluation of an irreversible regenerative modified Brayton heat engine based on the thermoeconomic criterion. Int. J. Power Energy Syst. 2006, 26, 66–74.
52. Kumar, R.; Kaushik, S.C.; Kumar, R. Power optimization of an irreversible regenerative Brayton cycle with isothermal heat addition. J. Therm. Eng. 2015, 1, 279–286.
53. Tyagi, S.K.; Chen, J.; Kaushik, S.C. Optimum criteria based on the ecological function of an irreversible intercooled regenerative modified Brayton cycle. Int. J. Exergy 2005, 2, 90–107.
54. Tyagi, S.K.; Wang, S.; Kaushik, S.C. Irreversible modified complex Brayton cycle under maximum economic condition. Indian J. Pure Appl. Phys. 2006, 44, 592–601.
55. Tyagi, S.K.; Chen, J.; Kaushik, S.C.; Wu, C. Effects of intercooling on the performance of an irreversible regenerative modified Brayton cycle. Int. J. Power Energy Syst. 2007, 27, 256–264.
56. Tyagi, S.K.; Wang, S.; Park, S.R. Performance criteria on different pressure ratios of an irreversible modified complex Brayton cycle. Indian J. Pure Appl. Phys. 2008, 46, 565–574.
57. Wang, J.H.; Chen, L.G.; Ge, Y.L.; Sun, F.R. Power and power density analyzes of an endoreversible modified variable-temperature reservoir Brayton cycle with isothermal heat addition. Int. J. Low-Carbon Technol. 2016, 11, 42–53.
58. Wang, J.H.; Chen, L.G.; Ge, Y.L.; Sun, F.R. Ecological performance analysis of an endoreversible modified Brayton cycle. Int. J. Sustain. Energy 2014, 33, 619–634.
59. Tang, C.Q.; Chen, L.G.; Wang, W.H.; Feng, H.J.; Xia, S.J. Performance optimization of the endoreversible simple MCBC coupled to variable-temperature reservoirs based on NSGA-II Algorithm. Power Gener. Technol. 2020, in press (In Chinese).
60. Tang, C.Q.; Feng, H.J.; Chen, L.G.; Wang, W.H. Power density analysis and multi-objective optimization for a modified endoreversible simple closed Brayton cycle with one isothermal heating process. *Energy Rep.* 2020, 6, in press.

61. Arora, R.; Kaushik, S.C.; Kumar, R.; Arora, R. Soft computing based multi-objective optimization of Brayton cycle power plant with isothermal heat addition using evolutionary algorithm and decision making. *Appl. Soft Comput.* 2016, 46, 267–283.

62. Qi, W.; Wang, W.H.; Chen, L.G. Power and efficiency performance analyses for a closed endoreversible binary Brayton cycle with two isothermal processes. *Therm. Sci. Eng. Prog.* 2018, 7, 131–137.

63. Chen, L.G.; Zheng, J.L.; Sun, F.R.; Wu, C. Performance comparison of an irreversible closed variable-temperature heat reservoir Brayton cycle under maximum power density and maximum power conditions. *Proc. IMechE Part A J. Power Energy* 2005, 219, 559–566.

64. Chen, L.G.; Zheng, J.L.; Sun, F.R.; Wu, C. Performance comparison of an endoreversible closed variable temperature heat reservoir Brayton cycle under maximum power density and maximum power conditions. *Energy Convers. Manag.* 2002, 43, 33–43.

65. Cheng, C.Y.; Chen, C.K. Ecological optimization of an endoreversible Brayton cycle. *Energy Convers. Manag.* 1998, 39, 33–34.

66. Zheng, J.L.; Chen, L.G.; Sun, F.R. Power density analysis of an endoreversible closed Brayton cycle. *Int. J. Ambient Energy* 2001, 22, 95–104.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).