Two-Volume Dynamic CT Pulmonary Perfusion:

Contrast Timing Optimization

Yixiao Zhao, M.S. a, Logan Hubbard, Ph.D. a, Shant Malkasian, B.S a. Pablo Abbona a, M.D.,

Sabee Molloi, Ph.D. a

Department of Radiological Sciences a, University of California, Irvine,

Irvine, California, 92697, USA

Manuscript Type: Original Research

Total Word Count: 3,000

Address for Correspondence:

Sabee Molloi, Ph.D.

Department of Radiological Sciences, Medical Sciences I, B-140

University of California, Irvine, CA 92697

Telephone: (949) 824-5904, Fax: (949) 824-8115

E-mail: symolloi@uci.edu
Abstract

**Purpose:** To develop and validate an optimal timing protocol for a low-radiation-dose CT pulmonary perfusion technique using only two volume scans.

**Methods:** A total of 24 swine (48.5±14.3 kg) underwent contrast-enhanced dynamic CT. Multiple contrast injections were made under different pulmonary perfusion conditions, resulting in a total of 147 complete pulmonary arterial input functions (AIF). Using the AIFs, an optimal timing protocol for acquisition of two-volume scans was developed for the first-pass CT perfusion technique. Specifically, the first volume scan was obtained at the base of the AIF using bolus-tracking and the second volume scan was obtained at the peak of the AIF using a time-to-peak relation derived by regression analysis. Additionally, a subset of 14 swine with 60 CT acquisitions were used to validate the prospective timing protocol. The prospective perfusion measurements using the two-volume scans, were quantitatively compared to the retrospective perfusion measurements using the entire AIF with t-test, linear regression and Bland-Altman analysis. The CT dose index (CTDI\text{vol}$^3_{32}$) and size-specific dose estimate (SSDE) of the two-volume perfusion technique were also determined.

**Results:** The pulmonary artery time-to-peak ($T_{PA}$) was related to one-half of the contrast injection duration ($\frac{T_{ inj}}{2}$) by $T_{PA} = 1.06 \frac{T_{ inj}}{2} + 0.90$ ($r=0.97$). Simulated prospective two-volume perfusion measurements ($P_{PRO}$) in ml/min/g were related to the retrospective measurements ($P_{RETR}$) by $P_{PRO} = 0.87P_{RETR} + 0.56$ ($r=0.88$). The CTDI\text{vol}$^3_{32}$ and SSDE of the two-volume CT technique were estimated to be 28.4 and 47.0mGy, respectively.

**Conclusion:** The optimal timing protocol can enable an accurate, low-radiation-dose two-volume dynamic CT perfusion technique.

**Keywords:** Tomography, X-Ray Computed; Lung; Perfusion; Contrast Media
Introduction

Computed tomography (CT) has enabled the non-invasive quantification of pulmonary perfusion allowing for the assessment of pulmonary embolism and pulmonary hypertension [1-5]. Existing dynamic CT perfusion techniques require the entire contrast pass curve over many cardiac cycles for perfusion measurement, resulting in high radiation dose [6,2,7,8,3]. Moreover, the pulmonary perfusion measured by such techniques is known to be underestimated due to the use of small tissue volumes for measurement [9-11]. Although dual-energy CT iodine map is also used to depict pulmonary perfusion defects, it has limited contrast-to-noise ratio and cannot provide absolute pulmonary blood flow [12-15]. Hence, an accurate, low-dose dynamic CT perfusion technique is necessary for improved physiological assessment of pulmonary disease.

Fortunately, previous studies have demonstrated that accurate cardiac and pulmonary perfusion measurement is feasible with a first-pass analysis (FPA) technique using only two volume scans[9-11]: one at the base (V1) and one at the peak (V2) of the arterial input function (AIF). Nevertheless, these prior validations required the entire AIF curve and retrospectively down-sampled to two volume scans for blood flow measurement. Hence, a timing protocol for the true prospective implementation of two-volume FPA technique remains necessary, where such protocol can also account for different hemodynamic conditions and cardiac outputs [16,17].

Thus, the purpose of this study is to develop an optimal timing protocol for the prospective two-volume FPA dynamic CT pulmonary perfusion technique. The central hypothesis is that the time interval between the two volume scans can be pre-determined using the contrast injection parameters and an empirical time constant. Finally, using the proposed timing protocol, the accuracy of the two-volume prospective FPA dynamic CT perfusion technique was assessed as compared to the previously validated retrospective FPA perfusion technique[11].
Materials and Methods

**General Method:** The study was approved by the Institutional Animal Care and Use Committee (IACUC, Protocol Number: AUP-18-191). A total of 24 male Yorkshire swine (48.5±14.3 kg) were used with 154 contrast injections, where seven were excluded due to injection failures (Fig 1). In total, 147 successful contrast injections were used to retrospectively develop an optimal timing protocol for the two-volume perfusion technique (Fig 1). The time-to-peak delay between V1 and V2 was predicted using the contrast injection duration and a dispersion time constant. Finally, using the predicted time-to-peak, prospective acquisition of V1 and V2 was simulated in a subset of fourteen swine, where the accuracy of the two-volume prospective technique was compared to the previously validated retrospective perfusion measurement[11]. All experimental data was prospectively acquired by all authors between March 2016 and December 2017 and was retrospectively analyzed between June 2018 and July 2019. Y.Z., L.H. and Sh.M. conducted the data analysis, and a radiologist with more than 15 years of clinical experience (P.A.) conducted the surgical and interventional procedures.

**Animal Preparation:** All 24 swine were premedicated with Telazol (4.4 mg/kg), Ketamine (2.2 mg/kg) and Xylazine (2.2 mg/kg) then intubated (Mallinckrodt, tube 6.0 - 8.0 mm, Covidien, Mansfield, MA). Anesthesia was maintained with 1.5% - 2.5% Isoflurane (Baxter, Deerfield, IL) in oxygen via mechanical ventilation (Surgivet, Norwell, MA, and Highland Medical Equipment, Temecula, CA). Two femoral venous and one femoral arterial introducer sheaths (5-Fr AVANTIR, Cordis Corporation, Miami Lakes, FL) were placed for intravenous contrast medium injection, fluid administration, and arterial pressure monitoring, respectively. An introducer sheath and Swan-Ganz catheter were then placed into a distal pulmonary arterial branch, via the jugular vein, under fluoroscopic guidance for the eventual induction of balloon occlusion. The cardiac output was varied by producing balloon occlusion in the left caudal lobe at different locations of the pulmonary artery. On average six pulmonary perfusion studies were performed during each experiment. At the conclusion of each experiment, all animals were euthanized with saturated KCl.

**CT Imaging Protocol:** Contrast material (Isovue 370, Bracco Diagnostics, Princeton, NJ) was injected followed by a saline flush (Empower CTA, Acist Medical Systems, Eden Prairie, MN). Different injection rates and volumes were used as shown in Table 1. ECG-gated dynamic scanning was then performed with a 320-slice CT scanner (Aquilion One, Canon America Medical Systems, Tustin, CA) for approximately 30 cardiac cycles during a ventilator-
controlled inspiratory breath hold. The following scan parameters were used: tube voltage, 100 kVp; tube current, 200mA; detector collimation, 320 x 0.5 mm; volume scanning mode; gantry rotation time, 0.35 seconds; slice thickness, 0.5 mm; scan field-of-view, 240-400 mm; voxel raster, 512x512; and a FC07 soft tissue reconstruction kernel with AIDR3D iterative reconstruction. A 20-minute time delay was used between all acquisitions to allow for adequate contrast material recirculation and redistribution.

**Bolus Characterization and Time-to-Peak Delay Estimation:** Bolus tracking is commonly used to detect the contrast arrival time within a region of interest in a monitoring artery. A fixed time delay is then used to estimate the time to peak of the contrast bolus. In this study, we will use a patient-specific time to peak estimation. Prior to recirculation phase of the contrast agent bolus passage, the geometry of the arterial input function (AIF) is predominantly determined by the contrast bolus injection geometry and the bolus dispersion within the circulatory system, given a short contrast injection duration (< 15 seconds) [18,17]. Specifically, the initial approximate rectangular geometry of an undiluted contrast bolus injection will dilute and disperse into a contrast pass curve, where the area under the curve remains conserved and the width of the curve remains proportional to the amount of the contrast volume injected at a fixed rate[19,20]. Moreover, despite contrast mixing and hemodynamic perturbation, the dispersion of the bolus primarily occurs at its temporal edges or tails; hence, the center of the AIF has the maximal contrast attenuation. As such, we investigated the possibility of relating one-half the contrast bolus injection time ($T_{\text{inj}}/2$) and the time-to-peak delay ($T_p$) of the AIF (Fig 2). In this study, such a relation was derived using the known contrast injection duration and the time-to-peak delay from the AIF, as described in Eq 1. An empirically derived dispersion delay ($D_x$) time constant was also introduced to describe the degree of the contrast bolus mixing. Such a factor is proportional to the physical distance between the contrast injection site and vessel of interest used for the AIF generation (Eq 1)

$$T_p = \alpha \times \frac{T_{\text{inj}}}{2} + D_x$$  \hspace{1cm} (1)

where $\alpha$ is the coefficient of the relation between one-half the injection time ($T_{\text{inj}}/2$) and the time-to-peak ($T_p$), $D_x$ is the dispersion delay time constant.

**Data Pre-Processing:** The images from each contrast-enhanced CT acquisition were first registered using a non-rigid algorithm[21]. Regions-of-interest were placed in the right ventricle, pulmonary artery, and descending aorta to
generate arterial input functions (AIFs, Fig 2). Next, a gamma-variate fitting (LSQCurveFit; Matlab 2013a, MathWorks) was performed on each dataset to generate smooth continuous AIF curves. Next, the 3D lung parenchyma was semi-automatically segmented using a standard commercial software (ViTAL Images, Lung CT, Pulmonary Analysis Workflow; Canon Medical Systems) and was used for the whole-lung FPA perfusion measurement. Further, 3D-segmented binary masks of approximately 800-1400 mm³ were generated to measure regional perfusion. In summary, nine segments were assessed for each animal, including one segment for the left cranial lobe, left lingula lobe, right cranial lobe, right middle lobe, and accessory lobe; two segments for the left and right caudal lobes.

**Optimal Retrospective Protocol:** Using the continuous AIF curve by the gamma variate fitting, the optimal acquisition timing for the baseline volume scan (V1) was defined as the peak of the second derivative, indicating the AIF curve starts to rise (Fig 2). The optimal acquisition timing for the second volume scan (V2) was then defined as the true peak of the gamma variate fit. The time-to-peak delay between V1 and V2 was then computed and then averaged over multiple acquisitions in each animal. The average time-to-peak delay was related to one-half of the contrast injection time through regression analysis for both pulmonary artery and descending aorta.

**Prospective Protocol Simulation:** Bolus-tracking (SureStart, Aquilion One, Canon Medical Systems, Tustin, CA) was simulated for the prospective acquisition of the first volume scan (V1) at the base of the pulmonary artery AIF. There is a minimal time delay of approximately 2 seconds between trigger during bolus-tracking and acquisition of the first volume scan [17]. Therefore, in order to acquire V1 early during pulmonary artery contrast enhancement, the monitoring region-of-interest was placed in the right ventricle (RV) instead of the pulmonary artery to acquire V1 at low contrast enhancement in pulmonary artery (Fig 2). Further, in order to define the baseline enhancement of the blood pool, a minimum of three pre-contrast images were used to emulate bolus-tracking. Multiple offset thresholds above the baseline, e.g. 40, 60, 80, 100, 120 and 140 HU, were compared to optimize the acquisition of V1. In addition, the second volume scan (V2) was automatically chosen using the predicted time-to-peak delay that was defined in Eq1. Hence, the prospective timing protocol simulation is summarized in Eq2 and Eq3 as:

\[ t_{V1} = t_{\text{trigger}} + TD \]  \hspace{1cm} (2)

\[ t_{V2} = t_{V1} + T_P \]  \hspace{1cm} (3)
where $t_{V1}$ and $t_{V2}$ are the acquisition time of the V1 and V2, $t_{trigger}$ is the triggering time determined by bolus-tracking in RV, $TD$ is the transition delay between the trigger of bolus-tracking and the acquisition of V1, and $T_P$ is the predicted time-to-peak between the trigger and the peak of the AIF (Fig 2).

**Two-volume FPA CT Perfusion Measurement:** First-pass analysis has previously been used for blood flow measurement [22,23]. Assuming no contrast leakage over the measurement period $([t_{V1}, t_{V2}])$, the whole-lobe compartment is used to calculate the integrated contrast mass change in the perfusion bed ($\Delta M_c/\Delta t$) between V1 and V2 [9,24]. The average input contrast concentration ($C_{in}$) of the pulmonary artery is also calculated between V1 and V2 (Fig 3). Thus, the blood flow ($Q_{ave}$) measurement is represented by [9,24]:

$$Q_{ave} = \frac{1}{C_{in}} \frac{\Delta M_c}{\Delta t} \quad (4)$$

where $C_{in}$ is the average input concentration, $\Delta M_c/\Delta t$ is the rate of contrast mass change between $t_{V1}$ and $t_{V2}$, $\Delta t = t_{V2} - t_{V1}$. Finally, the regional perfusion of each 3D-segment is calculated and compared between the prospective and the reference retrospective FPA perfusion techniques, where the retrospective FPA was previously validated against fluorescent microspheres[24].

**Cardiac Output Estimation:** Since the pulmonary circulation carries the entire cardiac output (CO) from the right ventricle to the supply the lung, CO can be approximately estimated by the total pulmonary blood flow [25]. Based on Eq.4, the average contrast concentration change ($\Delta M_c$) within the entire compartment is proportional to the average pulmonary blood flow ($Q_{ave}$), the contrast concentration change per voxel ($\Delta M_{x,y,z}$) can be used to define pulmonary blood flow on a voxel-by-voxel basis ($Q_{x,y,z}$) as:

$$Q_{x,y,z} = Q_{ave} \frac{\Delta M_{x,y,z}}{\Delta M_c} \quad (5)$$

Thus, the cardiac output is the summation of the pulmonary blood flow into all voxels of the lung tissue:

$$CO \sim Q_{pa} = \sum_{k=0}^{n} Q_{x,y,z} \quad (6)$$
**Radiation Dose:** The CT dose index (CTDI\textsuperscript{vol}, mGy) and the dose-length product (DLP, mGy · cm) were recorded for each two-volume acquisition. Size-specific dose estimates (SSDE, mGy) were also calculated to account for the effective diameter of each swine\cite{26}.

**Statistical Approach:** For the time-to-peak estimation, the empirical time-to-peak delays in the pulmonary artery and descending aorta were related to one-half the contrast injection time through linear regression analysis, where the root-mean-square-error (RMSE) and root-mean-square-deviation (RMSD) of the function were also calculated. The V2 acquisition time and contrast enhancement determined by the prospective protocol simulation were then compared with the actual peak time and the actual peak enhancement using paired sample t-testing (SPSS, version 22, IBM, Armonk, NY). Finally, simulated prospective two-volume perfusion measurements were quantitatively compared to the corresponding retrospective perfusion measurements through regression, Bland-Altman, RMSE, RMSD, and Lin’s concordance correlation coefficient (CCC).
Results

**General Data and Radiation Dose Exposure:** A total of 24 swine with an average weight of 48.5±14.3kg (25–91kg) and an average heart rate of 89.5±15.0 bpm were used for this study. In total, 147 successful injections were included for the time-to-peak prediction study (**Fig 1**). Overall, the contrast injection durations ranged from 2 to 15 seconds and the cardiac outputs ranged from 1.4 to 5.1 L/min. The average CTDI\(^{32}\) and SSDE for each dynamic perfusion CT acquisition were 258.2 and 427.3mGy, respectively. For prospective perfusion measurement using only two volumes, the average CTDI\(^{32}\) and SSDE were estimated to be 28.4 and 47.0mGy, respectively.

**Time-to-Peak Validation:** The time-to-peak in the pulmonary artery (TPA) and descending aorta (TA) were related to one-half the contrast injection time by 
\[
T_{PA} = 1.06 \frac{T_{Inj}}{2} + 0.90 \quad (r=0.97, \text{RMSE}=0.44s, \text{RMSD}=0.41s)
\]
\[
T_{A} = 1.14 \frac{T_{Inj}}{2} + 1.91 \quad (r=0.96, \text{RMSE}=0.82s, \text{RMSD}=0.59s),
\]
respectively (**Fig 4**). The intercepts correspond to organ-specific dispersion delay time constants (\(D_x\) in **Eq1**).

**Prospective Protocol Simulation:** A total of 60 CT acquisitions from 14 swine were used for the prospective perfusion measurements with bolus-tracking simulation. For each of the triggering offsets, the pulmonary artery enhancement and acquisition time of the simulated volume scans were compared to the optimal volume scans, as shown in **Table 2** and **Table 3**. To acquire V1 at a relatively low contrast enhancement, the triggering offset of 60HU in the RV was used in this prospective perfusion validation.

**Two-Volume FPA CT Perfusion Measurement:** The perfusion assessments were based on a 9-segment model with a total of 540 lung segments. The mean perfusion of the retrospective and the simulated prospective measurements were 8.43±4.54 ml/min/g and 7.84±4.47 ml/min/g (p<0.001), respectively. The simulated prospective FPA perfusion (\(P_{PRO}\)) were related to reference retrospective perfusion (\(P_{RETRO}\)) measurements by 
\[
P_{PRO} = 0.87P_{RETRO} + 0.56
\]
(Pearson’s r=0.88, RMSD=0.85 ml/min/g, RMSE=2.29 ml/min/g), with a concordance correlation coefficient of 0.87 (**Fig 5a**). The corresponding Bland-Altman analyses is also displayed in **Fig 5b**. The linear regression results of perfusion measurements for individual lobes are shown in **Table 4**. There is no evident bias between lobes except for a larger error in the accessory lobe caused by the highly attenuating iodine in the vena cava. Representative examples of prospective two-volume FPA perfusion maps and the V2 image for one acquisition are shown in **Fig 6**. The perfusion defect by the balloon occlusion can be found in the distal left caudal lobe.
Discussion

In this study, the time-to-peak delay of the pulmonary and aortic AIFs were evaluated in animals with a range of body weights (25–91 kg), contrast doses (20-100mL), injection durations (2-15 seconds), and cardiac outputs (1.4-5.1 L/min). The results indicate that the injection duration is the most significant injection-related parameter impacting the bolus time-to-peak, particularly in the case of short contrast injection duration. Furthermore, the regional perfusion results show good correlation between the simulated prospective FPA measurements and the optimal retrospective FPA measurements. Such findings indicate that the proposed prospective timing protocol can potentially be used for accurate, prospective, two-volume FPA perfusion measurement.

Existing dynamic CT perfusion techniques, such as the maximum slope model and the deconvolution model, require the entire contrast pass curve for perfusion measurement resulting in a high effective radiation dose [27,28,7,29,30,3,11]. Previous reports have shown that the reduction of temporal sampling frequency reduces the accuracies of these current techniques[32]. Although previous reports have shown that the FPA technique can accurately measure the perfusion using only two volume scans as validated using microspheres [11,9], the prospective acquisition of the two volume scans is challenging. Given the findings of this paper, the prospective implementation of the two-volume perfusion technique can be achieved by the optimal timing protocol, enabling the accurate pulmonary perfusion measurement while substantially reducing the radiation dose.

In addition, our results demonstrate that the injection duration can be used to predict the time-to-peak for different injection rates and volumes, and are therefore in agreement with a previous report indicating that the scanning delay for the aortic peak is primarily affected by the injection duration[17]. Such results may also have important implications for optimal CT pulmonary angiography (CTPA), as the optimal time-to-peak delay can be predicted using the contrast injection time interval. Although further validation remains necessary, the proposed time-to-peak prediction may result in an improved contrast opacification in CTPA and visualization of the vasculature.

Finally, previous studies have shown that pulmonary perfusion assessed with dual-energy CT (DECT) iodine density maps can be used for the clinical risk stratification of patients with acute pulmonary embolism[12,33]. Another study reported that the use of DECT perfusion can be a better indicator for balloon pulmonary angioplasty in patients with chronic thromboembolic pulmonary hypertension [15]. A different study has shown that subtraction CT has comparable diagnostic performance to DECT in detection of pulmonary embolism[13]. However, both
subtraction CT and DECT do not measure absolute perfusion. On the other hand, the proposed two-volume perfusion quantifies absolute perfusion (in ml/min/g). Quantitative absolute perfusion has the potential for improved assessment of the degree of perfusion defect. Hence, the dynamic two-volume perfusion technique can potentially be an alternative to the standard dynamic perfusion CT by providing functional assessment of pulmonary diseases, such as pulmonary embolism and chronic thromboembolic pulmonary hypertension, at a reduced radiation dose.

This study has several limitations. First, most of the swine used in the study were relatively small as compared to the average size of a patient. Additional studies may be necessary for larger patient sizes (> 90kg) to further validate the dispersion delay time constant robustness. Second, retrospective FPA perfusion measurement was used for validation of the simulated prospective two-volume perfusion measurement. However, the accuracy of the retrospective FPA perfusion technique has previously been validated using fluorescent microspheres as the reference standard[11]. Third, although the time-to-peak prediction has not been validated in patients with various cardiopulmonary conditions (such as acute pulmonary embolism, pulmonary hypertension, and heart failure), the prediction was tested following different levels of occlusion in the pulmonary artery of a swine model. Additionally, such timing protocol remained robust over a wide range of cardiac outputs. Fourth, since the scanner transition delay time is manufacturer-specific, the bolus tracking trigger location and threshold have not been optimized for other CT scanners. A longer scanner transition delay after triggering may result in a late acquisition of V1. This could be a potential reason for the slight underestimation of perfusion using the simulated prospective two-volume protocol. Alternatively, the contrast arrival time can be pre-determined using a diluted test bolus acquisition [34], although the contrast and radiation dose will be slightly increased. The simulated pharmacokinetic global circulation models can also be helpful in prediction of contrast timing [35]. Finally, the optimal prospective timing protocol was developed and assessed empirically; hence, the diagnostic performance of the two-volume FPA pulmonary perfusion technique with simultaneous CTPA (using the V2 volume scan), will require further studies.

In conclusion, an optimal timing protocol for a low-dose, two-volume dynamic CT pulmonary perfusion technique was retrospectively validated in 24 swine using pulmonary arterial AIF characterization and a first-pass analysis perfusion technique. Using dynamic bolus-tracking and time-to-peak delay estimation, the optimal timing protocol resulting in robust acquisition of the first volume scan at the base of the AIF and the second volume scan at the peak of AIF. Such finding enables a practical, low-dose, two-volume dynamic CT perfusion technique that may
potentially act as a perfusion-based biomarker for stratifying the severity, prognosis, and follow-up in patients with pulmonary embolism and other pulmonary pathologies.
References

1. Ippolito D, Capraro C, Guerra L, De Ponti E, Messa C, Sironi S (2013) Feasibility of perfusion CT technique integrated into conventional 18FDG/PET-CT studies in lung cancer patients: clinical staging and functional information in a single study. Eur J Nucl Med Mol Imaging 40 (2):156-165. doi:10.1007/s00259-012-2273-y

2. Dakin JH, Evans TW, Hansell DM, Hoffman EA (2008) Regional Pulmonary Blood Flow in Humans and Dogs by 4D Computed Tomography. Academic Radiology 15 (7):844-852. doi:https://doi.org/10.1016/j.acra.2007.12.019

3. Lossnitzer D, Baumann S, Henzler T (2017) Dynamic four-dimensional CT angiography for the assessment of pulmonary perfusion in an adult patient with pulmonary artery occlusion and major aortopulmonary collateral after multistage repair of Fallot's Pentalogy. Cardiology in the young 27 (6):1212-1213. doi:10.1017/s1047951117000610

4. Moradi F, Morris TA, Hoh CK (2019) Perfusion Scintigraphy in Diagnosis and Management of Thromboembolic Pulmonary Hypertension. Radiographics 39 (1):169-185. doi:10.1148/rg.2019180074

5. Mirsadraee S, Reid JH, Connell M, MacNee W, Hirani N, Murchison JT, van Beek EJ (2016) Dynamic (4D) CT perfusion offers simultaneous functional and anatomical insights into pulmonary embolism resolution. Eur J Radiol 85 (10):1883-1890. doi:10.1016/j.ejrad.2016.08.018

6. Chon D, Beck KC, Larsen RL, Shikata H, Hoffman EA (2006) Regional pulmonary blood flow in dogs by 4D-X-ray CT. J Appl Physiol (1985) 101 (5):1451-1465. doi:10.1152/japplphysiol.01131.2005

7. Fuld MK, Halaweish AF, Haynes SE, Divekar AA, Guo J, Hoffman EA (2013) Pulmonary perfused blood volume with dual-energy CT as surrogate for pulmonary perfusion assessed with dynamic multidetector CT. Radiology 267 (3):747-756. doi:10.1148/radiol.12112789

8. Larici AR, Calandriello L, Amato M, Silvestri R, del Ciello A, Molinari F, de Waure C, Vita ML, Carnassale G, Bonomo L (2014) First-pass perfusion of non-small-cell lung cancer (NSCLC) with 64-detector-row CT: a study of technique repeatability and intra- and interobserver variability. La radiologia medica 119 (1):4-12. doi:10.1007/s11547-013-0300-0

9. Hubbard L, Lipinski J, Ziemer B, Malskisian S, Sadeghi B, Javan H, Groves EM, Dertli B, Molloi S (2018) Comprehensive Assessment of Coronary Artery Disease by Using First-Pass Analysis Dynamic CT Perfusion: Validation in a Swine Model. Radiology 286 (1):93-102. doi:10.1148/radiol.2017162821

10. Hubbard L, Ziemer B, Lipinski J, Sadeghi B, Javan H, Groves EM, Malskisian S, Molloi S (2016) Functional assessment of coronary artery disease using whole-heart dynamic computed tomographic perfusion. Circ Cardiovasc Imaging 9 (12):1-8. doi:10.1161/circimaging.116.005325

11. Berrington de Gonzalez A, Darby S (2004) Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries. Lancet 363 (9406):345-351

12. Kay FU, Beraldo MA, Nakamura MAM, De Santis Santiago R, Torsani V, Gomes S, Roldan R, Tucci MR, Abbara S, Amato MBP, Amaro E, Jr. (2018) Quantitative Dual-Energy Computed Tomography Predicts Regional Perfusion Heterogeneity in a Model of Acute Lung Injury. J Comput Assist Tomogr 42 (6):866-872. doi:10.1097/rct.0000000000000815

13. Grob D, Smit E, prince J, Kist J, Stöger L, Geurts B, Snoeren MM, van Dijk R, Oostveen LJ, Prokop M, Schaefer-Prokop CM, Sechopoulos I, Brink M (2019) Iodine Maps from Subtraction CT or Dual-Energy CT to Detect Pulmonary Emboli with CT Angiography: A Multiple-Observer Study. Radiology 292 (1):197-205. doi:10.1148/radiol.2019182666

14. Hoey ET, Mirsadraee S, Pepke-Zaba J, Jenkins DP, Gopalan D, Screaton NJ (2011) Dual-energy CT angiography for assessment of regional pulmonary perfusion in patients with chronic thromboembolic pulmonary hypertension: initial experience. AJR Am J Roentgenol 196 (3):524-532. doi:10.2214/ajr.10.4842
15. Koike H, Sueyoshi E, Sakamoto I, Uetani M, Nakata T, Maemura K (2016) Quantification of lung perfusion blood volume (lung PBV) by dual-energy CT in patients with chronic thromboembolic pulmonary hypertension (CTEPH) before and after balloon pulmonary angioplasty (BPA): Preliminary results. Eur J Radiol 85 (9):1607-1612. doi:10.1016/j.ejrad.2016.06.016

16. Bae KT, Seeck BA, Hildebolt CF, Tao C, Zhu F, Kanematsu M, Woodard PK (2008) Contrast enhancement in cardiovascular MDCT: effect of body weight, height, body surface area, body mass index, and obesity. AJR Am J Roentgenol 190 (3):777-784. doi:10.2214/ajr.07.2765

17. Bae KT (2010) Intravenous contrast medium administration and scan timing at CT: considerations and approaches. Radiology 256 (1):32-61. doi:10.1148/radiol.10090908

18. Cademartiri F, van der Lugt A, Luccichenti G, Pavone P, Krestin GP (2002) Parameters affecting bolus geometry in CTA: a review. J Comput Assist Tomogr 26 (4):598-607

19. Garcia P, Genin G, Bret PM, Bonaldi VM, Reinhold C, Atri M (1999) Hepatic CT enhancement: effect of the rate and volume of contrast medium injection in an animal model. Abdom Imaging 24 (6):597-603. doi:1680 [pii]

20. Han JK, Kim AY, Lee KY, Seo JB, Kim TK, Choi BI, Lhee CS, Han MC (2000) Factors influencing vascular and hepatic enhancement at CT: experimental study on injection protocol using a canine model. J Comput Assist Tomogr 24 (3):400-406. doi:00004728-200005000-00008 [pii]

21. Modat M, Ridgway GR, Taylor ZA, Lehmann M, Barnes J, Hawkes DJ, Fox NC, Ourselin S (2010) Fast free-form deformation using graphics processing units. Comput Methods Programs Biomed 98 (3):278-284. doi:10.1016/j.cmpb.2009.09.002

22. Molloi S, Bednarz G, Tang J, Zhou Y, Mathur T (1998) Absolute volumetric coronary blood flow measurement with digital subtraction angiography. Int J Cardiovasc Imaging 14 (3):137-145

23. Molloi S, Zhou Y, Kassab GS (2004) Regional volumetric coronary blood flow measurement by digital angiography: in vivo validation. Acad Radiol 11 (7):757-766. doi:10.1016/j.acra.2004.04.002

24. Zhao Y, Hubbard L, Malkasian S, Abbona P, Molloi S (2020) Dynamic pulmonary CT perfusion using first-pass analysis technique with only two volume scans: Validation in a swine model. Plos One 15 (2):e0228110. doi:10.1371/journal.pone.0228110

25. Levitzky MG (2013) Chapter 4. Blood Flow to the Lung. In: Pulmonary Physiology, 8e. The McGraw-Hill Companies, New York, NY,

26. Boone J, Strauss K, Cody D, McCollough C, McNitt-Gray M, Toth T, Goske M, Frush D (2011) Size-specific dose estimates (SSDE) in pediatric and adult body CT examinations: report of AAPM task group 204. College Park, Md: American Association of Physicists in Medicine

27. Ohno Y, Koyama H, Matsumoto K, Onishi Y, Takenaka D, Fujisawa Y, Yoshikawa T, Konishi M, Maniwa Y, Nishimura Y, Ito T, Sugimura K (2011) Differentiation of Malignant and Benign Pulmonary Nodules with Quantitative First-Pass Detector Row Perfusion CT versus FDG PET/CT. Radiology 258 (2):599-609

28. Ohno Y, Nishio M, Koyama H, Seki S, Tsubakimoto M, Fujisawa Y, Yoshikawa T, Matsumoto S, Sugimura K (2015) Solitary first-pass contrast-enhanced perfusion area-detector CT, dynamic first-pass contrast-enhanced MR imaging, and FDG PET/CT. Radiology 274 (2):563-575. doi:10.1148/radiol.14132289

29. Nguyen-Kim TD, Frauenfelder T, Strobel K, Veit-Haibach P, Huellner MW (2015) Assessment of bronchial and pulmonary blood supply in non-small cell lung cancer subtypes using computed tomography perfusion. Invest Radiol 50 (3):179-186. doi:10.1097/rli.0000000000000124

30. Yuan X, Zhang J, Quan C, Cao J, Ao G, Tian Y, Li H (2013) Differentiation of malignant and benign pulmonary nodules with first-pass dual-input perfusion CT. Eur Radiol 23 (9):2469-2474. doi:10.1007/s00330-013-2842-x
31. Shan F, Zhang Z, Xing W, Qiu J, Yang S, Wang J, Jiang Y, Chen G (2012) Differentiation between malignant and benign solitary pulmonary nodules: use of volume first-pass perfusion and combined with routine computed tomography. Eur J Radiol 81 (11):3598-3605. doi:10.1016/j.ejrad.2012.04.003
32. Ng CS, Chandler AG, Wei W, Anderson EF, Herron DH, Kurzrock R, Charmsangavej C (2013) Effect of Sampling Frequency on Perfusion Values in Perfusion CT of Lung Tumors. American Journal of Roentgenology 200 (2):W155-W162. doi:10.2214/ajr.12.8664
33. Kong WF, Wang YT, Yin LL, Pu H, Tao KY (2017) Clinical risk stratification of acute pulmonary embolism: comparing the usefulness of CTA obstruction score and pulmonary perfusion defect score with dual-energy CT. Int J Cardiovasc Imaging 33 (12):2039-2047. doi:10.1007/s10554-017-1188-x
34. Ohno Y, Fujisawa Y, Sugihara N, Kishida Y, Seki S, Koyama H, Yoshikawa T (2017) Dynamic Contrast-Enhanced Perfusion Area-Detector CT: Preliminary Comparison of Diagnostic Performance for N Stage Assessment With FDG PET/CT in Non-Small Cell Lung Cancer. AJR Am J Roentgenol 209 (5):W253-W262. doi:10.2214/ajr.17.17959
35. Higaki T, Nakaura T, Kidoh M, Yuki H, Yamashita Y, Nakamura Y, Tatsugami F, Baba Y, Iida M, Awai K (2018) Effect of contrast material injection duration on arterial enhancement at CT in patients with various cardiac indices: Analysis using computer simulation. Plos One 13 (2):e0191347. doi:10.1371/journal.pone.0191347
Table and Fig Legends

Fig 1: Flowchart of the study. N = number of swine.

Fig 2: Prospective imaging protocol and the corresponding arterial input functions. Top, imaging protocol. $T_{\text{inj}}$ is the contrast injection duration, $TD$ is the scanner-specific transition delay (2s), and $T_p$ is the pre-defined time-to-peak delay. Bottom, right ventricle (RV) and pulmonary artery (PA) arterial input functions (AIF). $t_{V1}$ and $t_{V2}$ are the acquisition time of the first volume scan (V1) and the second volume scan (V2). The baseline volumes used to emulate the bolus-tracking are shown in blue circles.

Fig 3: Two-volume FPA perfusion protocol. The integrated contrast enhancement change ($\Delta M_c/\Delta t$) within the lung compartment is measured by the tissue time attenuation curve (TAC, blue line). The average input concentration ($C_{\text{in}}$) is estimated from the pulmonary arterial input function (AIF, black line) at V1 and V2. $T_p$ is the time-to-peak delay.

Fig 4: Time-to-peak delays in the pulmonary artery and descending aorta. Gamma-fit ideal time-to-peak delays were compared to the one-half injection time in all experimental animal data. Pulmonary arterial time-to-peak (black) and the aortic time-to-peak (red) are paralleled with different interceptions (dispersion factor). Gamma fit time-to-peak ($T_{PA}, T_A$) is defined as the time between the peak of the second derivative of the gamma fit and the true peak of the gamma fit, respectively. $T_{\text{inj}}$: contrast injection time; RMSE: root-mean-square-error; RMSD: root-mean-square-deviation; $r$: Pearson correlation coefficient.

Fig 5: (a) Regression analysis comparing the result of simulated two-volume prospective perfusion measurements ($P_{\text{PRO}}$) to the corresponding reference retrospective perfusion measurements ($P_{\text{RETRO}}$). Each data point represents a 3D perfusion segment from the swine. For the retrospective assessment, the optimal V1 and V2 were selected at the base and peak of the AIF from the gamma fitting curve. For the prospective measurement, bolus-tracking simulation was conducted in the right ventricle within triggering threshold at 60 HU above the blood pool enhancement. (b) Bland-Altman analysis was performed with the limits of agreement.

CCC = concordance correlation coefficient, RMSD = root-mean-square deviation, RMSE = root-mean-square error, SD = standard deviation.

Fig 6: Representative CT perfusion maps and the prospectively predicted V2 image. Top row: Axial, coronal, and 3D posterior views in the presence of balloon occlusions are shown. The color bar on the right indicates the perfusion in the range from 0 to 20 ml/min/g. Bottom row: Axial, oblique-coronal CT angiography using maximum
intensity projection reconstruction with 20mm thickness and 3D pulmonary arteries extraction (Using V2). Red
arrows point at the angioplasty balloon.

Table 1. Contrast injection protocols

Table 2. Simulated Prospective Acquisition Time versus Optimal Acquisition Time

Table 3. Simulated Prospective Enhancement versus Optimal Enhancement in the Pulmonary Artery

Table 4. Regression of Simulated Two-Volume Prospective FPA Perfusion versus Retrospective FPA
Perfusion