Tuned high dielectric constant, low dielectric loss tangent with positive and negative values for PPy/MWCNTs/TiO2/Al2O3/n-Si

Adel Asherya, A. E. H. Gaballah and Emad M. Ahmed

Abstract
The paper presents structural and dielectric properties of Polypyrrole-MWCNTs/TiO2/Al2O3/n-Si emphasizing that one of the superior characteristics is the appearance of negative dielectric constant and dielectric loss tangent at both high and low frequencies. It may worth mentioning that the need to develop electronic devices based on new materials combination has motivated the development of such structures as supercapacitors and diodes. The structural characterization of PPy-MWCNTs/TiO2/Al2O3/n-Si was investigated using X-ray diffraction, FTIR, Raman spectroscopy, and scanning electron microscope. The oxide film thickness (dox), the density of state (NSS), admittance (Ym), electric field (Em), depletion layer width (Wd), and Dr (eV) were examined using the C/C0^2/C0 relationship. At low frequencies, the values of Wd, Φh increase, however as frequency rises, the Wd, NSS, and Rs decrease. The dielectric constant (ε) takes only negative values at a high frequency of 2x10^7 Hz, whereas it takes both negative and positive values at frequencies of 10^7, 100, and 10 Hz. The dielectric loss tangent (tanδ) has positive and negative values at frequencies 10^7, 10^6, 100, and 10 Hz.

1. Introduction
In microelectronics, although high-power-density dielectric capacitors provide rapid charging and discharging, they also have the disadvantage of having a low energy density [1]. It’s still critical to find an alternative dielectric material with a high energy density. Aimed at dielectrics, the energy density is determined by together of the electrical breakdown strength and dielectric constant [2]. Consequently, resources with a high dielectric constant have been widely deliberate in the previous [3,4], to obtain a controllable...
dielectric capacitor, we need to process the dielectric materials several times. Several studies have been dedicated to polymer dielectrics with great processing properties, then it has been found that the slight polarization covalent dipoles yield a comparatively little dielectric constant. The little dielectric constant bounds the growth of neat polymer dielectrics [5]. To increase the dielectric constant of polymer resources, the composite dielectrics must be manufactured by mixing a great dielectric constant of ferroelectric ceramic particles with the polymers [6]. Inappropriately, the great weight content of ferroelectric ceramics can lead to a decline in the processing presentations of the composites. Ceramic particles with a great electrical conductivity must be regularly spread in the polymers as in the conductor/polymer composite dielectrics [7]. The weight content of conductive particles remains actual low in most suitcases. The great dielectric constant of the
composites is due to the influence of conductive fillers and remains frequently tracked by together of high dielectric loss and high conductivity [8,9]. The great electrical conductivity remains negative when the high energy density conflicts with high collapse strength. Asymmetry point must originate between the low dielectric loss and the high dielectric constant aimed at obtaining a great energy density in composites. Thus, it is significant to investigate the dielectrics of polymer/conductor composites in the field of electrostatic energy storage. Recently, studying the dielectric properties of materials and composites plays a pivotal role in electronic device manufacturing. Dielectric properties such as a high dielectric constant (ε), low dielectric loss (tanδ), and high electrical breakdown intensity (E_b) are extremely required for several requests containing energy storage. Together polymers and ceramics have been extensively used as energy storage dielectrics. Generally, ceramics, for example, the ferroelectric display a higher ε than polymers [10–14], though the polymers display a greater E_b than the ceramics [15–19]. Moreover, polymers are elastic and can be treated at low temperatures, since it is a pioneering material for capacitors manufacturing. In recent years, dielectric composites that combine the properties of ceramics, MWCNTs, and polymers have been commonly used to develop high dielectrics [20–24]. The electrical and dielectric properties of polymer with desired high dielectric constant and low dielectric loss can be modified by improving their microstructure and controlling the regulatory of nano-fillers [25–28]. In this paper, we synthesized a composite of polypyrrole with MWCNTs then deposited it on the surface of TiO$_2$/SiO$_2$/n-Si. This structure has a high dielectric constant and low dielectric loss emphasizing the appearance of negative dielectric constant and dielectric loss tangent at both high and low frequencies, in contrast to what is preserved as the appearance of a negative value only at high or low frequencies [29,30]. The main aim of this study is to fine-tune the dielectric constant and dielectric loss tangent so that high-energy storage such as supercapacitors and electronic devices as diodes can be manufactured [31–35]. The structure of Polypyrrole-MWCNTs composite/TiO$_2$/Al$_2$O$_3$/n-Si has been fully characterized by X-ray diffraction pattern, FTIR, Raman spectroscopy, and scanning electron

Figure 2. X-Ray diffraction pattern of PPy-MWCNTs/TiO$_2$/Al$_2$O$_3$/n-Si.
In this paper, the impacts of multi-layers on the electrical interface states and series resistance characteristics of Au/PPy-MWCNTs/Al2O3/TiO2/Al capacitors are reported, by analyzing Capacitance – Voltage (C – V), conductance (G – V). The density of state (N_{SS}), the oxide film thickness (d_{ox}), admittance (Y_m), electric field (E_m), depletion layer width (W_d), and ΔΦ_b (eV) were examined using the $C^{-2} - V$ relationship. The values of W_d, $Φ_b$ increase at low frequencies, but as frequency increases, the W_d, N_{SS}, and R_s decrease. At a high frequency of 2×10^7 Hz, dielectric constant $ε'$ takes only negative values, while at frequencies of 10^7, 100, and 10 Hz, $ε'$ takes both negative and positive values. Negative permittivity indicates that the electric displacement and electric field vectors are in opposite directions, but it does not imply that the electric energy stored in such a material is negative. The negative dielectric constant was observed at sufficiently high and
Figure 4. (a-à,b-b,c-c,d-d,e-è,f-f, g-g, h-h) ε and $\tan\delta$ vs T at different voltages and frequencies of PPy-MWCNTs/TiO$_2$/Al$_2$O$_3$/n-Si.
Figure 4. Continued.
Figure 4. Continued.
Figure 4. Continued.
low frequencies and it was attributed to the interfacial polarization, interface traps, recombination process, and series resistance. At low frequencies, both interfacial polarization and interface states can easily follow the same external signal. At frequencies of $10^7, 10^6, 100,$ and 10 Hz, the dielectric loss tangent ($\tan\delta$) has also positive and negative values.

2. Results and discussion

The Au/PPy-MWCNTs/TiO$_2$/Al$_2$O$_3$/n-Si/Al structure was manufactured by mixing multi-wall carbon nanotubes with polypyrrole with a ratio of 90:10 percentages respectively. PPy and MWCNTs were bought from Sigma Aldrich with a purity of 99.9%. Aluminum oxide thin film (Al$_2$O$_3$) was deposited on the surface of the silicon using certain drops of its suspension in water by a spin coater technique, titanium dioxide (TiO$_2$) thin film was deposited onto the Al$_2$O$_3$ by the similar procedure. Lastly, drops of PPy – MWCNTs composite were deposited on the surface of the TiO$_2$ film, the construction after that became PPy-MWCNTs/TiO$_2$/Al$_2$O$_3$. Two electrodes of gold and aluminum were deposited on the upper and lower surfaces to measure electrical and dielectric properties.
The surface topography and particle size of MWCNTs and PPy-MWCNTs composites were described using SEM [36–40]. Figure 1(a,b) shows the surface morphology of MWCNTs and PPy-MWCNTs composites, respectively. The tubular shape of carbon nanotubes with a diameter of around 15 nanometers is described in Figure 1a, and it was also observed in the PPy-MWCNTs composite after being coated with a thin layer of Polypyrrole with a larger diameter as seen in Figure 1b. The X-ray diffraction peaks of PPy-MWCNTs/TiO$_2$/Al$_2$O$_3$/n-Si are seen in Figure 2. The peak at 2Θ = 25.3$^\circ$ is related to both Polypyrrole and MWCNTs [23–25]. The peak at 2Θ = 43.7$^\circ$ is corresponding to MWCNTs, while peaks at 2Θ = 48.1$^\circ$ and 58.46$^\circ$ are corresponding to TiO$_2$, though at 2Θ = 26.5$^\circ$ connected to Al$_2$O$_3$, whilst at 2Θ = 37.8$^\circ$ connected to TiO$_2$ and Al$_2$O$_3$. The Raman spectroscopy of PPy-MWCNTs/TiO$_2$/Al$_2$O$_3$/Si is seen in Figure 3, the Raman spectrum of pure MWCNTs has two distinct peaks, the G band at 1576 cm$^{-1}$ and the D band at 1354 cm$^{-1}$ as seen in Figure 3b. The D band in the Raman spectroscopy of PPy-MWCNTs composite changes to a wideband as the MWCNTs/PPy nanocomposite is formed. Furthermore, as MWCNTs are mixed with the Polypyrrole matrix, the D and G bands change significantly, and one extra peak is observed at 1057 cm$^{-1}$ due to the
presence of PPY, as seen in Figure 3a. This is due to the doping of PPY from the carboxyl group of functionalized MWCNTs and the $\pi - \pi$ contact amid PPY and MWCNTs. The other peaks from 380 to 976 are related to TiO$_2$ and Al$_2$O$_3$.

3. Dielectric properties

Using a Novocontrol high-resolution alpha analyzer, the dielectric properties were measured throughout a frequency range of 10 Hz–20 MHz, at temperatures ranging from 233 to 323 K, and voltages ranging from -2 V to 2 V. We provide this instrument with the essential information in terms of temperature range, voltages, and frequency, and it measures the dielectric characteristics automatically. Though a high dielectric constant is important for high energy storage dielectrics, finding the right balance between a high dielectric constant and low dielectric loss is much more critical [41,42].

Figure 4 (a–a, b–b, c–c, d–d, e–e, f–f, g–g, h–h) clarifies dielectric constant (ε') and dielectric loss tangent (tan\(\delta\)) as a function of temperature at different voltages and frequencies of Au/PPy-MWCNTs/TiO$_2$/Al$_2$O$_3$/n-Si/Al heterostructure. At frequency 2×10^7 Hz, ε' has negative values at all voltages and temperatures the ε' decrease with temperature increase at about 300K, then increase with temperature as shown in Figure 4a, its values about (-280 to -210), though tan\(\delta\) has positive small values of (0.77 to 0.83), it increases and

![Figure 4](image-url)
decrease with temperature as seen in Figure 4(a, à) [43–46]. At frequency 10^7 Hz, ε raises from (-2 V to 2 V) and decreases with temperature increase, the increase in ε was attributed to the surface states localized at interfacial layer/semiconductor, surface polarization, and series resistance (R_s). Similar results observed are quite compatible with the different materials [47–50]. On the other hand, the dielectric constant is inversely proportional to the temperature where raising temperature provides thermal energy to the dipoles which in turn randomizes them. As a result, a lesser number of dipoles remain aligned in the direction of the electric component of microwave radiation, resulting in a lower dielectric constant. It is worth mention that ε has both positive and negative values of (-600 to 1500), whilst $\tan\delta$ has positive and negative values of about (-60 to 15) as seen in Figure 4(b,b). At frequency 10^6 Hz, both ε and $\tan\delta$ increase with temperature increase and have positive values, though $\tan\delta$ takes positive and negative values at this frequency as seen in Figure 4(c,c). At all frequencies such as $(10^5,10^4,10^3)$ Hz, ε and $\tan\delta$ have only positive values which increase as the temperature increase. At frequencies (100) Hz, ε and $\tan\delta$ have both positive and negative values, we notice that the curve at a voltage -2 V has negative values, while the curves at voltages of (-1,0,1,2) V have positive values as seen in Figure 4(g-g). At a frequency of 10 Hz, although all ε curves at the entire voltages range have negative values as shown in Figure 4h, on the other hand, all $\tan\delta$ curves have negative values except the curve at zero voltage which has positive values as illustrated in

Figure 4. Continued.
Figure 5. (a-à,b-b,c-c,d-d,e-è,f-f, g-ğ, h-h) ε' and $\tan\delta$ vsV at different voltages and frequencies of PPy-MWCNTs/TiO$_2$/Al$_2$O$_3$/n-Si.
Figure 5. Continued.
Figure 5. Continued.
Figure 5. Continued.
Figure 4h. With a variety of frequencies, \(\varepsilon' \) is reaching its maximum of about (15000 to \(-600000\)), though \(\tan\delta \) has minimum values of about (0.01 to 0.08). The boost of the dielectric constant for the of Au/PPy-MWCNTs/TiO\(_2\)/Al\(_2\)O\(_3\)/n-Si Al is owing to the polarity influence such as Maxwell–Wagner–Sillars (MWS) or interfacial polarity influence [46, 51]. Besides, the charge can be gathered at the borders between layers due to their boosted dielectric constant at low frequency [52,53].

Figure 5 (a-a,b,b,c-c,d-d,e-e,f-f, g-g, h-h) demonstrates the variation of \(\varepsilon' \) and \(\tan\delta \) as a function of applied voltage at fixed temperatures and frequencies of Au/PPy, MWCNTs/ TiO\(_2\)/Al\(_2\)O\(_3\)/n-Si/Al heterostructure. At high frequency \(2 \times 10^7 \text{ Hz} \), \(\varepsilon' \) has negative values at all temperatures, while \(\tan\delta \) takes positive values, both \(\varepsilon' \), \(\tan\delta \) have positive and negative values at \(f = 10^7 \text{ Hz} \), the \(\varepsilon' \) raises with temperature decrease as shown in Figure 5b. At frequency \(10^6 \text{ Hz} \), \(\varepsilon' \) and \(\tan\delta \) increase with temperature increase taking positive values in both positive and negative regions of the voltage additionally \(\varepsilon' \) and \(\tan\delta \) increase with voltage in the positive and negative voltage region. At frequency \(10^5 \text{ Hz} \), \(\varepsilon' \) increases as
Figure 5. Continued.

the temperature rises, whereas \(\tan \delta \) is seen more regular compared to \(\varepsilon \), both have positive values as illustrated in figures (d,d). At frequencies, 104 Hz and 103 Hz, \(\varepsilon \) and \(\tan \delta \) have only positive values which increase as the temperature increase. At low frequencies (100, 10) Hz, \(\varepsilon \) and \(\tan \delta \) have positive and negative values, \(\varepsilon \) has a mean value of \((1.8 \times 10^3 \text{ to } -8 \times 10^5) \) at a low frequency while \(\tan \delta \) has a minimum value of \((0.03 \text{ to } -0.01) \) at high frequency. The behavior of \(\varepsilon \) and \(\tan \delta \) can be credited to the specific distribution of \(N_{ss} \) and Maxwell Wagner type interfacial polarization [54,55].

Figure 6 (a, a, b, b) shows the dependence of \(\varepsilon \) and \(\tan \delta \) with voltages at different frequencies and temperatures of Au/PPy-MWCNTs/TiO\(_2\)/Al\(_2\)O\(_3\)/n-Si/Al. As shown \(\varepsilon \) creates a reverse peak for each frequency at zero voltage, the values of \(\varepsilon \) increase with increasing frequencies in both positive and negative regions of the voltage reaching its maximum of \(2.8 \times 10^3 \) as seen in Figure 6a. At high frequencies, \(\tan \delta \) takes a minimum positive and negative values of about (-0.6 to 0.2) as seen in Figure 6a. At low frequencies, both \(\varepsilon \) and \(\tan \delta \) show positive and negative values, the dispersion in the \(\varepsilon \) and \(\tan \delta \) was attributed to the local surface states at interfacial layers/semiconductor, surface polarity and series resistance (\(R_s \)) [47,48]. In other words, at high frequencies, the influence of
interfacial polarity reaches a constant value as the electron hopping loses the capability of tracking alternate fields afterward a certain frequency of exterior field [46]. As a result, we can say that ε' and $\tan\delta$ can be affected by the four types of polarity operations (ionic, dipolar, electronic, and interfacial) at low frequencies. At very high frequencies, the influence of ionic and electronic shares becomes the dominant mechanism, while the others can be more active at lower frequencies. In addition, as exposed in Figure 6(a), $\tan\delta$ is nearly independent of the voltage at high frequencies, it is recognized that the value of $\tan\delta$ and ε' depends on several factors for example the temperature of substrates, frequency, the growth or preparation methods, annealing, thickness and homogeneities, applied voltage or electric field [56,57].

Figure 7 (a–e) illustrates the variation of ε' with lnf at different temperatures and voltages of Au/PPy-MWCNTs/TiO$_2$/Al$_2$O$_3$/n-Si/Al. At high frequencies, ε' has negative values reached to -1500, whilst at mid frequencies, it takes positive values of about 5.5×10^3, it takes also negative values at low frequency as displayed in Figure 7a while it takes negative values at both high and low frequencies as seen in Figure 7b. It takes the values
5.7 \times 10^3, 1.44 \times 10^4, 2.8 \times 10^4, 1.65 \times 10^4 and 1.38 \times 10^4 at the voltages (-2,-1,0,1,2) V respectively depending on the applied voltage. At low frequencies, ε has negative values another time, this is a novel in this paper where the negative values of ε occurred at both high and low frequencies. It also shows that the magnitude of ε decreases as the frequency increases throughout the range. The decline in ε at high frequencies can be assumed as: the ac field is applied to samples; at minor frequencies, all the dipoles can align themselves with practical frequency throughout the first cycle and reoriented in the opposite direction in the next cycle of the practical frequency. Then, when the frequency rises, dipoles cannot realign themselves, resulting in an additional dielectric dispersion at low frequencies, which becomes independent at higher frequencies.

Figure 8 (a,b,c,d,e),(a’,b’,c’,d’,e’) describes the ε- ε of Au/PPy/MWCNTs/TiO$_2$/Al$_2$O$_3$/ n-Si/Al heterostructure at different voltages and temperatures. The size of the semicircular increase with the voltage of (-2 V, 2 V, 1 V, 1 V, 0 V) respectively as shown in Figure 8 (a,b,c,d,e). The semicircle at a voltage of 2 V increases as seen in Figure 8b when compared to the same semicircle in Figure 8a, while the semicircles at (2,-2)V are merged as seen in Figure 8d, whereas it increases with temperature in Figure 8(a–e). On the other hand, figures (a’,b’,c’) show how the radius of the semicircle

![Figure 5. Continued.](image-url)
Figure 6. (a–a′, b–b′) ε and tan δ vs V at different frequencies and temperatures of PPy-MWCNTs/TiO₂/Al₂O₃/n-Si.
Figure 7. (a,b,c,d,e) ε^* vs f at different temperatures and voltages of PPy-MWCNTs/TiO$_2$/Al$_2$O$_3$/n-Si.
increases with decreasing voltages (2,1,0) V, whereas Figure 8 (d’.e’) show how the radius of a semicircle decreases as the voltage decreases (2,1,0) V. The constructed heterostructure performance was linked to an electrical circuit model derived from the parallel assembly of a constant phase element (CPE) and resistance (R_p) combined with R_s [58,59].

4. Capacitance–voltage (C–V)

(C–V) measurements of the structure were stated and verified at room temperature using a frequency range of 10 Hz–20 MHz, the C–V relation of diodes can be expressed by [60–62];

$$C^{-2} = \frac{2}{qe_sA^2N_p} \left(V_{bi} - \frac{KT}{q} - V \right)$$

(1)

$$N_p = \frac{2}{qe_sA^2} \left[d\left(\frac{1}{C^2} \right)/dV \right]$$

(2)
where \(N_p \) is the concentration of holes in the valence band, \(V \) is the voltage, \(A \) is the active diode area, and \(\varepsilon_s \) is the permittivity of diode material [38]. \(V_0 \) is determined by plotting of \(1/C^2 \) vs. \(V \). The potential \(V_{bi} \) is calculated from \(V_0 \) by

\[
V_{bi} = V_0 + \frac{kT}{q}
\]

The barrier height \(\Phi_b \) from the C–V measurement is agreed by

\[
\phi_{CV} = V_{bi} + E_F - \Delta \phi_b
\]

and \(E_F \) is the Fermi level which is given by [38]

\[
E_F = \frac{kT}{q} \ln \left(\frac{N_C}{N_p} \right)
\]
where N_c is the concentration of electrons in the conduction band, m^* is the effective electron mass which equals $1.08 \times m_e$ for Si, it is expressed by [38]:

$$N_C = 2 \left[\frac{2\pi m^*_e m_0 kT}{\hbar^2} \right]^{3/2}$$

(6)

Wherever \hbar is Plank's constant. $\Delta \Phi_b$ is the image force-induced barrier lowering, it is assumed by [62,63]:

Figure 8. Continued.
\[\Delta \varphi_b = 2 \left[\frac{qE_m}{4\pi \varepsilon \varepsilon_0} \right]^{1/2} \]

(7)
The C^{-2} vs V characteristics shown in Figure 9 can be used to determine certain electrical parameters of Au/PPy/MWCNTs/TiO$_2$/Al$_2$O$_3$/n-Si/Al structure for example V_D, N_A, E_F, $\Delta \phi_b$, W_D, ϕ_b (C–V). Extrapolation of the straight line to the voltage axis yielded the V_d values for each frequency, and their values are assumed in Table 1. The disparity of ϕ_b and W_d with frequency is exposed in Figure 10(a–c), while W_d values increase at low frequencies, they decrease as frequency increases. The ϕ_b values have the same behavior as W_d, which increases at low frequencies and decreases marginally as frequencies increase. Figure 11 (a and b) show the variation of N_{ss}, R_s versus frequency, the N_{ss} and R_s values reduce with raising frequency [64]. At lower frequencies, the N_{ss} that is affected by the practical signal can send and receive charges in response to it. The boundary state

$$E_m = \left[\frac{2qN_pV_0}{\varepsilon_r\varepsilon_0} \right]^{3/2}$$

$$W_d = \left[\frac{2\varepsilon_sV_d}{qN_d} \right]^{1/2}$$

Figure 8. Continued.
capacitance seems directly in parallel with the exhaustion capacitance, ensuing in a higher entire value of the capacitance. Instead, the boundary state density is almost free of the frequency at higher frequencies [64–66]. As seen in Figure 12a, Na values decrease as frequency increases, while in Figure 12b increases as frequency increases. This performance can be described by whether the border state charges contribute to the capacitance of the diode or the charge at the boundary states can track ac sign due to a variety of states of different lifetimes [64, 67]. Figure 13 displays that the Wd, Nss, Na, Ef were strongly dependent on the frequency. The values of φb, Wd, Nss, Na, Ef were drawn against lnf as seen in previous figures, all values of φb, Wd, Nss, Na, Ef are a robust function of frequency. Table 1 also assumes the additional variables calculated from C−2 − V curve.

5. Conclusion

The paper presented the possibility of tuning the dielectric constant and dielectric loss tangent so that the current structure can be used in manufacturing high-energy storage devices like

![Figure 9](image_url) C−2 vs. V at different frequencies and room temperatures of PPy-MWCNTs/TiO2/Al2O3/n-Si.

Table 1.

Frequency (Hz)	10⁷	10⁶	10⁵	10⁴	10³	10²	10¹
Na (cm⁻³)	2.81 × 10¹⁹	2.81 × 10¹⁹	2.81 × 10¹⁹	2.81 × 10¹⁹	2.81 × 10¹⁹	2.81 × 10¹⁹	2.81 × 10¹⁹
Nv (cm⁻³)	1.05 × 10¹⁹	1.05 × 10¹⁹	1.05 × 10¹⁹	1.05 × 10¹⁹	1.05 × 10¹⁹	1.05 × 10¹⁹	1.05 × 10¹⁹
Nss (cm⁻³)	1.54 × 10¹⁸	2.52 × 10¹⁷	1.49 × 10¹⁷	1.34 × 10¹⁷	1.46 × 10¹⁷	1.99 × 10²¹	1.69 × 10²⁴
Vb (V)	3.00	3.2	2.2	1.2	1.2	1.2	1.2
Vd (V)	3.00	3.2	2.2	1.2	1.2	1.2	1.2
E-Fermi (eV)	0.05	0.11	0.11	0.05	0.14	0.14	0.14
φb (eV)	3.08	3.34	2.34	1.28	1.09	1.2	1.82
Coo (F)	1.80 × 10⁻⁷	1.10 × 10⁻⁸	1.30 × 10⁻⁸	1.20 × 10⁻⁷	1.00 × 10⁻⁵	3.20 × 10⁻³	1.90 × 10⁻³
dso (nm)	6.19 × 10¹⁴	1.01 × 10¹⁵	8.58 × 10¹⁶	9.29 × 10¹³	1.11 × 10²	4.85 × 10⁻¹	5.87 × 10⁻¹
Nss (eV·cm⁻²)	2.06 × 10¹⁰	7.68 × 10¹⁰	3.31 × 10¹⁰	4.37 × 10¹⁰	3.15 × 10¹⁰	1.69 × 10¹⁰	1.26 × 10¹⁰
Rs (Ω)	6.30 × 10⁻⁴	1.15 × 10⁻⁴	2.67 × 10⁻²	2.02 × 10⁻²	2.72	5.22 × 10⁻²	7.02 × 10⁻²
Ym (cm)	1.13 × 10⁻³	6.91 × 10⁻⁴	8.18 × 10⁻²	7.55 × 10⁻²	6.58 × 10⁻³	1.45 × 10⁻¹	1.19 × 10⁻¹
Em (V/cm)	1.40 × 10⁻³	5.84 × 10⁻³	4.49 × 10⁻¹	3.53 × 10⁻¹	8.62 × 10⁻¹	3.18 × 10⁻¹	1.23 × 10⁻¹
Wd (cm)	1.69 × 10⁻¹	4.31 × 10⁻¹	5.60 × 10⁻¹	4.90 × 10⁻¹	1.10 × 10⁻¹	2.97 × 10⁻¹	1.35 × 10⁻¹
φb (eV)	1.31 × 10⁻⁵	8.48 × 10⁻⁴	7.43 × 10⁻⁴	6.59 × 10⁻⁴	1.03 × 10⁻³	6.25 × 10⁻³	1.35 × 10⁻³
supercapacitors highlighting the novel appearance of negative dielectric constant and dielectric loss tangent at both high and low frequencies. Polypyrrole with MWCNTs composite/TiO2/Al2O3/n-Si has been fully characterized using different techniques as X-ray diffraction pattern, FTIR, Raman spectroscopy, and scanning electron microscope. The surface topography and particle size of MWCNTs and PPy-MWCNTs composites show a tubular shape of carbon

Figure 10. (a,b,c) Wd, ϕ_b and Wd ϕ_b vs frequency of PPy-MWCNTs/TiO2/Al2O3/n-Si.
nanotubes with a diameter of about 15 nm, its diameter increased after forming a composite with polypyrrole. Temperatures, frequencies, and voltages have a significant impact on the dielectric constant and dielectric loss tangent, as a result, we can tune the magnitude of \(\varepsilon' \) and \(\tan\delta \). The thickness of the oxide film \((d_{\text{ox}}) \), the density of state \((N_{\text{SS}}) \), admittance \((Y_m) \), electric field \((E_m) \), depletion layer width \((W_d) \), and \(\Delta\Phi_b \) (eV) were determined using the \(C^{-2} - V \) relationship. The values of \(W_d, \Phi_b \) increase at low frequencies, but as frequency increases, the \(W_d, N_{\text{SS}}, \text{and } R_s \) decrease. At a high frequency of \(2 \times 10^7 \) Hz, dielectric constant \(\varepsilon' \) takes only negative values, while at frequencies of \(10^7, 100, \text{and } 10 \) Hz, \(\varepsilon' \) takes both negative and positive values. At frequencies of \(10^7, 10^6, 100, \text{and } 10 \) Hz, the dielectric loss tangent \((\tan\delta) \) has also positive and negative values, thus, we can conclude that the negative values of \(\varepsilon' \) and \(\tan\delta \) repeat two times in high and low frequency.

Figure 11. (a,b,c) \(N_{\text{SS}}, R_s, N_{\text{SS}}R_s \) vs frequency of PPy-MWCNTs/TiO\textsubscript{2}/Al\textsubscript{2}O\textsubscript{3}/n-Si.
Figure 12. (a,b,c) ϕ_0, η, N_a vs frequency of PPy-MWCNTs/TiO$_2$/Al$_2$O$_3$/n-Si.
Figure 13. (a,b,c,d) Wd, Nss, \(\phi_{fb} \), Na, Ef vs frequency of PPy-MWCNTs/TiO\(_2\)/Al\(_2\)O\(_3\)/n-Si.
Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

Taif University Researchers Supporting Project number (TURSP-2020/84), Taif University, Taif, Saudi Arabia.

References

1. Love GR. Energy storage in ceramic dielectrics. J Am Ceramic Soc. 1990;73(2):323–328.
2. Wang H, Xie H, Wang S, et al. Enhanced dielectric property and energy storage density of PVDF-HFP based dielectric composites by incorporation of silver nanoparticles-decorated exfoliated montmorillonite nanoplatelets. Compos Part A Appl Sci Manuf. 2018;108:62–68.
3. Fu Y, Wang Y, Wang S, et al. Enhanced breakdown strength and energy storage of PVDF-based dielectric composites by incorporating exfoliated mica nanosheets. Polym Compos. 2019;40(5):2088–2094.
4. Bai Y, Cheng Z-Y, Bharti V, et al. High-dielectric-constant ceramic-powder polymer composites. Appl Phys Lett. 2000;76(25):3804–3806.
5. Chen L, Kim C, Batra R, et al. Frequency-dependent dielectric constant prediction of polymers using machine learning. Npj Comput Mater. 2020;6(1):61.
6. Cai Z, Wang X, Luo B, et al. Dielectric response and breakdown behavior of polymer-ceramic nanocomposites: the effect of nanoparticle distribution. Compos Sci Technol. 2017;145:105–113.
7. Yang T, Xu W, Peng X, et al. Crown ether-containing polyimides with high dielectric constant. RSC Adv. 2017;7(38):23309–23312.
8. Zhang C, Shi Z, Mao F, et al. Polymer composites with balanced dielectric constant and loss via constructing trilayer architecture. J Mater Sci. 2018;53(18):13230–13242.
9. Li L, Zhou B, Ye J, et al. Enhanced dielectric and energy-storage performance of nanocomposites using interface-modified anti-ferroelectric fillers. J Alloys Compd. 2020;831:154770.
10. Fletcher N, Hilton AD, Ricketts B. Optimization of energy storage density in ceramic capacitors. J Phys D: Appl Phys. 1996;29(1):253–258.
11. Lu X, Tong Y, Talebinezhad H, et al. Dielectric and energy-storage performance of Ba0.5Sr0.5TiO3–SiO2 ceramic-glass composites. J Alloys Compd. 2018;745:127–134.
12. Wang T, Jin L, Shu L, et al. Energy storage properties in Ba0.4Sr0.6TiO3 ceramics with addition of semi-conductive BaO–B2O3–SiO2–Na2CO3–K2CO3 glass. J Alloys Compd. 2014;617:399–403.
13. Hao X. A review on the dielectric materials for high energy-storage application. J Adv Dielect. 2013;03(01):1330001.
14. Xiao S, Xiu S, Zhang W, et al. Effects of BaxSr1−xTiO3 ceramics additives on structure and energy storage properties of Ba0.4Sr0.6TiO3–BaO–B2O3–Al2O3–SiO2 glass-ceramic. J Alloys Compd. 2016;675:15–21.
15. Cheng Z-Y, Zhang QM, Bateman FB. Dielectric relaxation behavior and its relation to microstructure in relaxor ferroelectric polymers: High-energy electron irradiated poly(vinylidene fluoride–trifluoroethylene) copolymers. J Appl Phys. 2002;92(11):6749–6755.
16. Chu B, Zhou X, Ren K, et al. A dielectric polymer with high electric energy density and fast discharge speed. Science. 2006;313(5785):334–336.
17. Zhang Z, Chung TCM. The structure–property relationship of poly(vinylidene difluoride)-based polymers with energy storage and loss under applied electric fields. Macromol. 2007;40(26):9391–9397.
18. Riggs BC, Adireddy S, Rehm CH, et al. Polymer nanocomposites for energy storage applications. Mater Today Proc. 2015;2(6):3853–3863.
19. Chen Q, Shen Y, Zhang S, et al. Polymer-Based dielectrics with high energy storage density. Annu Rev Mater Res. 2015;45(1):433–458.
20. Zhang M, Zhang L, Zhu M, et al. Controlled functionalization of poly(4-methyl-1-pentene) films for high energy storage applications. J Mater Chem A. 2016;4(13):4797–4807.
21. Hu T, Juuti J, Jantunen H, et al. Dielectric properties of BST/polymer composite. J Eur Ceram Soc. 2007;27(13-15):3997–4001.
22. Arbatti M, Shan X, Cheng Z-Y. Ceramic–polymer composites with high dielectric constant. Adv Mater. 2007;19(10):1369–1372.
23. Zhou T, Zha J-W, Cui R-Y, et al. Improving dielectric properties of BaTiO3/ferroelectric polymer composites by employing surface hydroxylated BaTiO3 nanoparticles. ACS Appl Mater Interfaces. 2011;3(7):2184–2188.
24. Ashery A, Farag AAM, Moussa MA, et al. Enhancement of electrical and dielectrically performance of graphene-based promise electronic devices. Synth Met. 2020;261:116303.
25. Zhang L, Shan X, Wu P, et al. Dielectric characteristics of CaCu3Ti4O12/P(VDF-TrFE) nanocomposites. Appl Phys A. 2012;107(3):597–602.
26. Zha J, Dang Z, Yang T, et al. Advanced dielectric properties of BaTiO3/polyvinylidene-fluoride nanocomposites with sandwich multi-layer structure. IEEE Trans Dielect Electr Insul. 2012;19(4):1312–1317.
27. Fan B-H, Zha J-W, Wang D-R, et al. Experimental study and theoretical prediction of dielectric permittivity in BaTiO3/polyimide nanocomposite films. Appl Phys Lett. 2012;100:92903.
28. Ashery A, Gad SA, Turky GM. Analysis of electrical and capacitance–voltage of PVA/nSi. J Electron Mater. 2021;50:3498–3516.
29. Tsai JTH, Wang W-S, Chen S-H, et al. Self-aligned gate dielectric in carbon nanotube field-effect transistors by anodic oxidation of aluminium. J Exp Nanosci. 2013;8(2):138–144.
30. Devi PI, Ramachandran K. Dielectric studies on hybridised PVDF–ZnO nanocomposites. J Exp Nanosci. 2011;6(3):281–293.
31. Saikia R, Gogoi P, Datta P. Fabrication of Ag/PVA nanocomposites and their potential applicability as dielectric layer in thin film capacitor. J Exp Nanosci. 2013;8(2):194–202.
32. Mishra AK, Ramaprabhu S. The role of functionalised multiwalled carbon nanotubes based super capacitor for arsenic removal and desalination of sea water. J Exp Nanosci. 2012;7(1):85–97.
33. Sagadevan S, Zaman Chowdhury Z, Johan MB, et al. A one-step facile route synthesis of copper oxide/reduced graphene oxide nanocomposite for supercapacitor applications. J Exp Nanosci. 2018;13(1):284–296.
34. Chen Y, Zhang X, Xu C, et al. The fabrication of asymmetry supercapacitor based on MWCNTs/MnO2/PPy composites. Electrochim Acta. 2019;309:424–431.
35. Kulandaivalu S, Mohd Azahari MN, Azman NHN, et al. Ultrahigh specific energy of layer by layer polypyrrole/graphene oxide/multi-walled carbon nanotube| polypyrrole/manganese oxide composite for supercapacitor. J Energy Storage. 2020;28:101219.
36. Wortmann T, Fatikow S. Carbon nanotube detection by scanning electron microscopy. MVA 2009 IAPR Conference on Machine Vision Applications, May 20–22, 2009, Yokohama, JAPA.
37. Ding D, Lu W, Xiong Y, et al. Facile synthesis of La2O2CO3 nanoparticle films and its CO2 sensing properties and mechanisms. Appl Surf Sci. 2017;426:725–733.
38. Mittal M, Kumar A. Carbon nanotube (CNT) gas sensors for emissions from fossil fuel burning. Sensors Actuators B Chem. 2014;203:349–362.
39. Kumar U, Sikarwar S, Sonker RK, et al. Carbon nanotube: Synthesis and application in solar cell. J Inorg Organomet Polym. 2016;26(6):1231–1242.
40. Sonker RK, Singh M, Kumar U, et al. MWCNT doped ZnO nanocomposite thin film as LPG sensing. J Inorg Organomet Polym. 2016;26(6):1434–1440.
41. Thakur Y, Dong R, Lin M, et al. Optimizing nanostructure to achieve high dielectric response with low loss in strongly dipolar polymers. Nano Energy. 2015;16:227–234.
42. Ray SK, Panda D, Aluguri R. Enhanced charge storage characteristics of nickel nanocrystals embedded flash memory structures. J Exp Nanosci. 2013;8(3):389–395.
43. Ashery A, Gad SA, Turky GM, et al. Negative capacitance, negative resistance in CNT/TiO2/SiO2/p-Si heterostructure for Light-Emitting diode applications. ECS J Solid State Sci Technol. 2021;10:31006.
44. Ashery A, Elnashtary MMM, Khalil AAI, et al. Negative resistance, capacitance in Mn/SiO2/p-Si MOS structure. Mater Res Express. 2020;7(8):85901–13.
45. Ashery A, Farag AAM, Moussa MA, et al. Electrical performance of nanocrystalline graphene oxide/SiO2-based hybrid heterojunction device. Mater Sci Semicond Process. 2021;121:105415.
46. Ashery A, Elnashtary MMM, Hameed TA. Investigation of electrical and dielectric properties of epitaxially grown Au/n-GaAs/p-Si/Al heterojunction. Opt Quantum Electron. 2020;52(490):1–19.
47. Afandiyeva IM, Bülbül MM, Altindal Ş, et al. Frequency dependent dielectric properties and electrical conductivity of platinum silicide/Si contact structures with diffusion barrier. Microelectron Eng. 2012;93:50–55.
48. Sattar AA, Rahman SA. Dielectric properties of rare earth substituted Cu–Zn ferrites. Phys Stat Sol (a). 2003;200(2):415–422.
49. Devikala S, Kamaraj P, Arthanareeswari M. AC conductivity studies of PVA/Al2O3 composites. Mater Today Proc. 2019;14:288–295.
50. Jeyabanu K, Siva V, Nallamuthu N, et al. Investigation of electrochemical studies of magnesium ion conducting poly(vinyl alcohol)-Poly(vinyl pyrrolidone) Based Blend Polymers. J Nanosci Nanotechnol. 2018;18(2):1103–1109.
51. Feng Y, Li M-L, Li W-L, et al. Polymer/metal multi-layers structured composites: a route to high dielectric constant and suppressed dielectric loss. Appl Phys Lett. 2018;112:22901.
52. Xiao X, Yang H, Xu N, et al. High performance of P(VDF-HFP)/Ag@TiO2 hybrid films with enhanced dielectric permittivity and low dielectric loss. RSC Adv. 2015;5(97):79342–79347.
53. Ashery A, Shaban H, Gad SA, et al. Investigation of electrical and capacitance-voltage characteristics of GO/TiO2/n-Si MOS device. Mater Sci Semicond Process. 2020;114:105070.
54. ChełkowskiTomaszczyk AJ. Dielectric physics. Amsterdam; New York; Warszawa; New York: Elsevier Scientific Pub. Co.; PWN-Polish Scientific Publishers; Distribution for the U.S.A. and Canada Elsevier North-Holland; 1980.
55. Baraz N, Yücedağ İ, Azizian-Kalandaragh Y, et al. Electric and dielectric properties of Au/ZnS-PVA/n-Si (MPS) structures in the frequency range of 10–200 kHz. J Elec Materi. 2017;46(7):4276–4286.
56. Chandra Sekhar M, Kondaiah P, Jagadeesh Chandra SV, et al. Effect of substrate bias voltage on the structure, electric and dielectric properties of TiO2 thin films by DC magnetron sputtering. Appl Surf Sci. 2011;258(5):1789–1796.
57. Chandra Sekhar M, Kondaiah P, Jagadeesh Chandra SV, et al. Substrate temperature influenced physical properties of silicon MOS devices with TiO2 gate dielectric. Surf Interface Anal. 2012;44(9):1299–1304.
58. Zemlyanov DY, Jespersen M, Zakharov DN, et al. Versatile technique for assessing thickness of 2D layered materials by XPS. Nanotechnology. 2018;29(11):115705.
59. Ashery A, Gad SA, Shaban H. Frequency and temperature dependence of dielectric properties and capacitance-voltage in GO/TiO2/n-Si MOS device. Appl Phys A. 2020;126:547.
60. Ashery A, Gad S, Shaban H, et al. Heterostructure device based on graphene oxide/TiO2/n-Si for optoelectronic applications. ECS J Solid State Sci Technol. 2020;10:021002.
61. Sze SM, Ng KK. Physics of semiconductor devices. Hoboken, NJ: John Wiley & Sons, Inc.; 1984.
62. Sharma BL. Metal-Semiconductor schottky barrier junctions and their applications. Sharma BL, editor. Boston, MA: Springer US; 1984.
63. Altindal Ş, Karadeniz S, Tugluoğlu N, et al. The role of interface states and series resistance on the I–V and C–V characteristics in Al/SnO2/p-Si Schottky diodes. Solid State Electron. 2003;47(10):1847–1854.
64. Manikandan V, Vanitha A, Ranjith Kumar E, et al. Effects of interface states and series resistance on electrical properties of Al/nanostructure CdO/p-GaAs diode. J Alloys Compd. 2012;541:462–467.
65. Bülbül MM, Zeyrek S. Frequency dependent capacitance and conductance–voltage characteristics of Al/Si3N4/p-Si(100) MIS diodes. Microelectron Eng. 2006;83(11-12):2522–2526.
66. Yildiz DE, Altindal Ş, Kanbur H. Gaussian distribution of inhomogeneous barrier height in Al/SiO2/p-Si Schottky diodes. J Appl Phys. 2008;103(12):124502.
67. Ashery A, El rasharry MMM, El Radaf IM. Current transport and dielectric analysis of Ni/SiO2/P-Si diode prepared by liquid phase epitaxy. Silicon. 2020.