Disease Milestones through Bibliometric Analysis of the Top 100 Cited Articles in Multiple Myeloma

Azka Latif 1, Vikas Kapoor 1, Qurat ul ain riaz Sipra 2, Saad Malik 1, Jawad Bilal 3, Irbaz Bin Riaz 4, Anwer Faiz 5

1. Hematology and Oncology, University of Arizona 2. Department of Internal Medicine, University of Arizona 3. Medicine, University of Arizona 4. Hematology and Oncology, Mayo Clinic and Foundation, Rochester, MN, USA 5. Hematology/Oncology, University of Arizona, Tucson, AZ

Corresponding author: Jawad Bilal, jawad.bilal@hotmail.com
Disclosures can be found in Additional Information at the end of the article

Abstract

Multiple myeloma (MM) accounts for 1.6% of all cancers and 5%-10% of all hematologic malignancies in the United States (US) [1]. Worldwide, approximately 154,000 cases are diagnosed, and 101,000 deaths are attributed to MM every year [2]. Due to the advent of novel therapeutic agents, median overall survival has increased from one to two years to seven to eight years with a meaningful improvement in the quality of life [1]. Although there has been marked progress in disease management, MM remains incurable with high rates of relapse. Ongoing clinical trials have significantly contributed to favourable disease outcomes; however, many of these interventions remain unknown to clinicians. This highlights the need for citation analysis to reflect these advances and substantial progress in this field.

Introduction And Background

Multiple myeloma (MM) accounts for 1.6% of all cancers and 5% to 10% of all hematologic malignancies in the United States (US) [1]. Worldwide, approximately 154,000 cases are diagnosed, and 101,000 deaths are attributed to MM every year [2]. Due to the advent of novel therapeutic agents, median overall survival has increased from one to two years to seven to eight years with a meaningful improvement in the quality of life [1]. Although there has been marked progress in disease management, MM remains incurable with high rates of relapse. Ongoing clinical trials have significantly contributed to favourable disease outcomes; however, many of these interventions remain unknown to clinicians. This highlights the need for citation analysis to reflect these advances and substantial progress in this field.

Citation analysis is a type of bibliometric analysis in which evaluation and ranking of an article or journal is done on the basis citation count [3]. It identifies the milestones completed in
understanding core aspects of a disease and emphasizes on major developments made in the subject matter [4–5]. Clinicians often modify their disease management based on research published in high impact journals [6] thus if most important articles can be highlighted via citation analysis it will help clinicians in making better choices for their patients. So far, no such study has been performed to conclude the most influential articles in the field of MM. The aim of the current study is to identify the 100 top-cited publications in MM and highlight the most significant advances made in the field over the preceding several decades.

Review

Materials and methods

We conducted a bibliographic analysis on the Web of Science (WOS). The time covered in WOS is between 1900 and 2017. We included journals listed in the Science Citation Index Expanded, without specific restrictions on the journals. We retrieved articles for analysis by typing "Multiple Myeloma" into the WOS search box and conducted data search with the application of English language filter on July 25, 2017. We identified 27,718 articles that were published between 1901 and 2017, ranked the articles based on citation frequency from highest to lowest, and thereafter, shortlisted the top 100 cited articles. Statistical analysis of studies was not performed, and data were reported in the form of tables. To capture the most important and latest research, we conducted a second search on July 29, 2017 to limit articles to those published during the last five years.

Results

Among the top 100 included articles, the most cited article received 2404 citations while the least cited article received 336 citations. All articles were arranged according to citation frequency (Table 1). The top 100 cited articles were published between 1990 and 2007. In our analysis, we found that the highest number of articles were published in the year 2007 (Table 2). Forty-eight of the 100 articles were published in journals with impact factors (IF) greater than 20 (Table 3). The journal with the highest number of publications was Blood with 33% of the publications (IF 13.16) followed by New England Journal of Medicine (NEJM) with 20% of the publications (IF 72.406). The country of origin with the highest number of publications on the topic of MM was the US (n=73) followed by France (n=10), Italy, and Germany (Table 4). These 100 articles sourced from 50 major institutions, with top three most significant contributors being Dana Farber Cancer Institute, Mayo Clinic, and the University of Arkansas Medical Sciences (Table 5). Most articles focused on disease management followed by pathogenesis and disease staging respectively (Table 6).

No.	Author	Title	Journal	Number of Citations				
1	Durie, BGM et al.	Clinical staging system for multiple myeloma - correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival	CANCER 1975;36(842);1182674;	2404				
2	Attal, M	A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma	New England journal of medicine 1996 Jul 11;335(2);91-7	1909				
3	Singhal, S et al.	Antitumor activity of thalidomide in refractory multiple myeloma.	New England journal of medicine	1665				
	Authors	Title	Journal	Year	Volume	Page	DOI	
---	-----------------------------	--	----------------------------------	------	--------	------------	----------------	
1	Latif et al.	Efficacy of pamidronate in reducing skeletal events in myeloma	NEJM	2018	10(4)	e2438	10.7759/cureus.2438	
2	Kawano, M et al.	Autocrine generation and requirement of bsf-2/il-6 for human multiple myeloma	Nature	1999	341(91)	10564685		
3	Richardson, PG et al.	Bortezomib or high-dose dexamethasone for relapsed multiple myeloma	New England journal of medicine	2006	352	2487;15958804		
4	Durie, BGM et al.	International uniform response criteria for multiple myeloma	Leukemia	2006	20	(1467);16855634		
5	Child, JA et al.	High-dose chemotherapy with hematopoietic stem-cell rescue for multiple myeloma	New England journal of medicine	2003	348	(1875);12736280		
6	Greipp, PR et al.	International staging system for multiple myeloma	Journal of clinical oncology	2005	23	(3412);15809451		
7	Hideshima, T et al.	The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells	Cancer research	2001	61	(3071);11306489		
8	Kumar, Shaji et al.	Improved survival in multiple myeloma and the impact of novel therapies	Blood	2008	111	(2516);17975015		
9	Kyle, RA et al.	Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: a report of the International Myeloma Working Group	British journal of Hematology	2003	121	(749);12780789		
10	San M et al.	Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma	NEJM	2008	359	(906);18753647		
11	Kyle RA et al.	Drug therapy: Multiple myeloma	NEJM	2004	351	(1860);15509819		
12	Tian, E et al.	The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma	NEJM	2003	349	(2483);14695408		
13	Dimopoulos, M et al.	Lenalidomide plus dexamethasone for relapsed or refractory multiple myeloma	NEJM	2007	357	(2123);18032762		
14	Kyle, RA et al.	Review of 1027 patients with newly diagnosed multiple myeloma	Mayo clinic proceedings	2003	78	(21);12528874		
15	Kyle, RA et al.	Multiple-myeloma - review of 869 cases	Mayo clinic proceedings	1975	50	(29);1110582		
16	Palumbo, A et al.	Medical progress multiple myeloma	NEJM	2011	364	(1046);21410373		
17	Weber, DM et al.	Lenalidomide plus dexamethasone for relapsed multiple myeloma in North America	NEJM	2007	357	(2133);18032763		
	Name et al.	Title	Journal	Year	Volume	Page	DOI	
---	-------------	-------	---------	------	--------	------	-----	
20	Chapman, MA et al.	Initial genome sequencing and analysis of multiple myeloma	Nature	2011	471	1430775	10.1038/nature10379	
21	Hideshima, T et al.	NF-kappa B as a therapeutic target in multiple myeloma	Journal of Biological Chemistry	2002	277	16639	10.1016/S0021-9258(02)00351-3	
22	Attal, M et al.	Single versus double autologous stem-cell transplantation for multiple myeloma	NEJM	2003	349	2495	10.1056/NEJMoa030986	
23	Hideshima, T et al.	Thalidomide and its analogs overcome drug resistance of human multiple myeloma cells to conventional therapy	Blood	2000	96	243	10.1053/bl.2000.19220	
24	Dalton, WS et al.	Drug-resistance in multiple-myeloma and non-Hodgkin’s lymphoma - detection of p-glycoprotein and potential circumvention by addition of verapamil to chemotherapy	Journal of Clinical Oncology	1989	7	415	10.1002/jco.21005	
25	Davies, FE et al.	Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma	Blood	2001	98	210	10.1053/bl.2001.25805	
26	Barlogie, B et al.	Effective treatment of advanced multiple-myeloma refractory to alkylating-agents	NEJM	1984	310	1353	10.1056/NEJM198412073102403	
27	Keats, JJ et al.	Promiscuous mutations activate the noncanonical NF-kappa B pathway in multiple myeloma	Cancer Cell	2007	12	131	10.1016/j.ccr.2007.08.010	
28	Richardson, PG et al.	Immunomodulatory drug CC-5013 overcomes drug resistance and is well tolerated in patients with relapsed multiple myeloma	Blood	2002	100	3063	10.1053/bl.2002.26135	
29	Hallek, M et al.	Multiple myeloma: Increasing evidence for a multistep transformation process	Blood	1998	91	3	9414264	10.1053/bl.1998.14264
30	Annunziata, CM et al.	Frequent engagement of the classical and alternative NF-kappa B pathways by diverse genetic abnormalities in multiple myeloma	Cancer Cell	2007	12	115	10.1016/j.ccr.2007.06.016	
31	Rajkumar, SV et al.	Phase III clinical trial of thalidomide plus dexamethasone compared with dexamethasone alone in newly diagnosed multiple myeloma: A clinical trial coordinated by the eastern cooperative oncology group	Journal of Clinical Oncology	2006	24	431	10.1200/JCO.2005.03.7283	
32	Palumbo, A et al.	Oral melphalan and prednisone chemotherapy plus thalidomide compared with melphalan and prednisone alone in elderly patients with multiple myeloma: randomised controlled-trial	Lancet	2006	367	825	10.1016/S0140-6736(06)68649-9	
33	Rosen, LS et al.	Zoledronic acid versus pamidronate in the treatment of skeletal metastases in patients with breast cancer or osteolytic lesions of multiple myeloma: A phase III, Cancer Journal	2001	7	377	11693896	10.1007/BF03185175	
35	Facon, T et al.	Melphalan and prednisone plus thalidomide versus melphalan and prednisone alone or reduced-intensity autologous stem cell transplantation in elderly patients with multiple myeloma (IFM 99-06): a randomised trial	Lancet	2007;370(1209);17920916	529			
36	Mitsiades, N et al.	Molecular sequelae of proteasome inhibition in human multiple myeloma cells	Proceedings of the national academy of sciences of USA	2002;99(14374);12391322	514			
37	Mitsiades, N et al.	The proteasome inhibitor PS-341 potentiates sensitivity of multiple myeloma cells to conventional chemotherapeutic agents: therapeutic applications	Blood	2003;101(2377);12424198	505			
38	Peterson,TR et al.	DEPTOR Is an mTOR Inhibitor Frequently Overexpressed in Multiple Myeloma Cells and Required for Their Survival	Cell	2009;137(873);19446321	504			
39	Zhan, F et al.	The molecular classification of multiple myeloma	Blood	2006;108(2020);16728703	502			
40	Rosen, LS et al.	Long-term efficacy and safety of zoledronic acid compared with pamidronate disodium in the treatment of skeletal complications in patients with advanced multiple myeloma or breast carcinoma - A randomized, double-blind, multicentre, comparative trial	Cancer	2003;98(1735);14534891	493			
41	Alexanian, R et al.	Treatment for multiple myeloma - combination chemotherapy with different melphalan dose regimens	Journal of American Medical Association	1969;208(1689);5818682	493			
42	Chesi, M et al.	Frequent translocation t(4;14) (p16.3; q32.3) in multiple myeloma is associated with increased expression and activating mutations of fibroblast growth factor receptor 3	Nature Genetics	1997;16(260);9207791	491			
43	Guttermann, JU et al.	Leukocyte interferon-induced tumor-regression in human metastatic breast-cancer, multiple-myeloma, and malignant-lymphoma	Annals of Internal Medicine	1980;93(399);6159812	489			
44	Barlogie, B et al.	Thalidomide and hematopoietic-cell transplantation for multiple myeloma	NEJM	2006;354(1021);16525139	487			
45	Kuehl, WM et al.	Multiple myeloma: Evolving genetic events and host interactions	Nature Reviews Cancer	2002;2(175);11990854	486			
46	Obeng, EA et al.	Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells	Blood	2006;107(4907);16507771	483			
47	Matsui, W et al.	Characterization of clonogenic multiple myeloma cells	Blood	2004;103(2332);14630803	477			
	Authors	Title	Journal	Year	Page			
---	----------------------------------	--	--------------------------------	------	------			
48	Rajkumar, SV et al.	Lenalidomide plus high-dose dexamethasone versus lenalidomide plus low-dose dexamethasone as initial therapy for newly diagnosed multiple myeloma: an open-label randomised controlled trial	Lancet Oncology	2010	11(29);19853510			
49	Vacca, A et al.	Bone-marrow angiogenesis and progression in multiple-myeloma	British Journal of Hematology	1994	87(503);7527645			
50	Kyle, RA et al.	Criteria for diagnosis, staging, risk stratification and response assessment of multiple myeloma	Leukemia	2009	23(3);18971951			
51	Chauhan, D et al.	A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib	Cancer Cell	2005	8(407);16286248			
52	Vacca, A et al.	Bone marrow neovascularization, plasma cell angiogenic potential, and matrix metalloproteinase-2 secretion parallel progression of human multiple myeloma	Blood	1999	93(3064);10216103			
53	Bharti, AC et al.	Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor-kappa B and I kappa B alpha kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis	Blood	2003	101(1053);12393461			
54	Mitsiades, N et al.	Apoptotic signalling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: therapeutic implications	Blood	2002	99(4525);12036884			
55	Avet, LH et al.	Genetic abnormalities and survival in multiple myeloma: the experience of the Intergroupe Francophone du Myelome	Blood	2007	109(3489);17209057			
56	Mitsiades, CS et al.	Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma, other hematologic malignancies, and solid tumors	Cancer Cell	2004	5(221);15050914			
57	Klein, B et al.	Interleukin-6 in human multiple-myeloma	Blood	1995	85(863);7849308			
58	Hideshima, T et al.	Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets	Nature Reviews Cancer	2007	7(585);17646864			
59	Barlogie, B et al.	Total therapy with tandem transplants for newly diagnosed multiple myeloma	Blood	1999	93(355);9864146			
60	Broder, S et al.	Impaired synthesis of polyclonal (non-paraprotein) immunoglobulins by circulating lymphocytes from patients with multiple-myeloma - role of suppressor cells	NEJM	1975	293(887);1080834			
61	McCarthy, PL et al.	Lenalidomide after Stem-Cell Transplantation for Multiple Myeloma	NEJM	2012	366(1770);22571201			
	Authors	Title	Journal	Volume/Issue/Publication Number	Year	Page Numbers		
---	------------------	--	----------------------------------	---------------------------------	------	--------------		
62	Zhan, F et al.	Global gene expression profiling of multiple myeloma, monoclonal gammopathy of undetermined significance, and normal bone marrow plasma cells	Blood	2002;99(1745);11861292		436		
63	Ludwig, H et al.	Erythropoietin treatment of anemia associated with multiple-myeloma	NEJM	1990;322(1693);2342535		434		
64	Kunzmann, V et al.	Stimulation of gamma delta T cells by aminobisphosphonates and induction of antiplasma cell activity in multiple myeloma	Blood	2000;96(384);10887096		433		
65	Henry, DH et al.	Randomized, Double-Blind Study of Denosumab Versus Zoledronic Acid in the Treatment of Bone Metastases in Patients with Advanced Cancer (Excluding Breast and Prostate Cancer) or Multiple Myeloma	Journal of Clinical Oncology	2011;29(1125);21343556		428		
66	Attal, M et al.	Maintenance, therapy with thalidomide improves survival in patients with multiple myeloma	Blood	2006;108(3289);16873668		426		
67	Barlogie, B et al.	Superiority of tandem autologous transplantation over standard therapy for previously untreated multiple myeloma	Blood	1997;89(789);9028309		425		
68	Hideshima, T et al.	Advances in biology of multiple myeloma: clinical applications	Blood	2004;104(607);15090448		424		
69	Orlowski, RZ et al.	Randomized phase III study of PEGylated liposomal doxorubicin plus bortezomib compared with bortezomib alone in relapsed or refractory multiple myeloma: Combination therapy improves time to progression	Journal of Clinical Oncology	2007;25(3892);17679727		423		
70	Shaughnessy, JD et al.	A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1	Blood	2007;109(2276);17105813		422		
71	Berenson, JR et al.	Long-term pamidronate treatment of advanced multiple myeloma patients reduces skeletal events	Journal of Clinical Oncology	1998;16(593);9469347		419		
72	Richardson, PG et al.	Lenalidomide, bortezomib, and dexamethasone combination therapy in patients with newly diagnosed multiple myeloma	Blood	2010;116(679);20385792		416		
73	Attal, M et al.	Lenalidomide Maintenance after Stem-Cell Transplantation for Multiple Myeloma	NEJM	2012;366(1782);22571202		411		
74	Mtsiades, CS et al.	Transcriptional signature of histone deacetylase inhibition in multiple myeloma: Biological and clinical implications	Proceeding of the National Academy of Sciences of the United States of America	2004;101(540);14695887		404		
ID	Authors	Title	Journal	Year	DOI			
----	--------------------	--	--------------------	-------	--------------			
75	Chauhan, D et al.	Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-kappa B	Blood	1996	87(1104);8562936			
76	Cavo, M et al.	Bortezomib with thalidomide plus dexamethasone compared with thalidomide plus dexamethasone as induction therapy before, and consolidation therapy after, double autologous stem-cell transplantation in newly diagnosed multiple myeloma: a randomised phase 3 study	Lancet	2010	376(2075);21146205			
77	Dankbar, B et al.	Vascular endothelial growth factor and interleukin-6 in paracrine tumor-stromal cell interactions in multiple myeloma	Blood	2000	95(2630);10753844			
78	Retting, MB et al.	Kaposi's sarcoma-associated herpesvirus infection of bone marrow dendritic cells from multiple myeloma patients	Science	1997	276(1851);9188529			
79	Weber, DM et al.	Thalidomide alone or with dexamethasone for previously untreated multiple myeloma	Journal of Clinical Oncology	2003	21(16);12506164			
80	Moreau, P et al.	Subcutaneous versus intravenous administration of bortezomib in patients with relapsed multiple myeloma: a randomised, phase 3, non-inferiority study	Lancet Oncology	2011	12(431);21507715			
81	Barlogie, B et al.	Extended survival in advanced and refractory multiple myeloma after single-agent thalidomide: identification of prognostic factors in a phase 2 study of 169 patients	Blood	2001	98(492);11435324			
82	Kyle RA et al.	Multiple myeloma	Blood	2008	111(2962);18332230			
83	Tricot, G et al.	Peripheral-blood stem-cell transplants for multiple-myeloma - identification of favourable variables for rapid engraftment in 225 patients	Blood	1995	85(588);7529066			
84	Bataille, R et al.	Multiple myeloma	NEJM	1997	336(1657);9171069			
85	Fonseca, R et al.	International Myeloma Working Group molecular classification of multiple myeloma: spotlight review	Leukemia	2009	23(2210);19798094			
86	Hideshima, T et al.	Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma	Proceedings of the national academy of sciences of the united states of America	2005	102(8567);15937109			
87	Sonneveld, P et al.	Modulation of multidrug-resistant multiple-myeloma by cyclosporine	Lancet	1992	340(255);1353189			
88	Raab, MS et	Multiple myeloma	Lancet	1996	357			
#	Author(s)	Title	Journal	Year	Volume	Issue	Pages	DOI
----	------------------------	--	--------------------------	------	--------	-------	---------	---------------
89	Mitsiades, CS et al.	Activation of NF-kappa B and upregulation of intracellular anti-apoptotic proteins via the IGF-1/Akt signalling in human multiple myeloma cells: therapeutic implications	Oncogene	2002	21	5673	12173037	10.6872/oncogene.2002.21.5673.12173037
90	Loeffler, D et al.	Interleukin-6-dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer	Blood	2007	110	1330	17496199	10.1182/blood.2007.110.1330.17496199
91	Bergsagel, PL et al.	Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma	Blood	2005	106	296	15755896	10.1182/blood.2005.106.296.15755896
92	DiPersio, JF et al.	Plerixafor and G-CSF versus placebo and G-CSF to mobilize hematopoietic stem cells for autologous stem cell transplantation in patients with multiple myeloma	Blood	2000	113	5720	19363221	10.1182/blood.2000.113.5720.19363221
93	Mandelli, F et al.	Maintenance treatment with recombinant interferon alfa-2b in patients with multiple-myeloma responding to conventional induction chemotherapy	NEJM	190	322	1430	2184356	10.1097/01.nejm.190.322.2184356
94	Landgren, O et al.	Monoclonal gammapathy of undetermined significance (MGUS) consistently precedes multiple myeloma: a prospective study	Blood	2009	113	5412	19179464	10.1182/blood.2009.113.5412.19179464
95	Pasquali, S et al.	Combination chemotherapy versus melphalan plus prednisone as treatment for multiple myeloma: An overview of 6,633 patients from 27 randomized trials	Journal of Clinical Oncology	1998	16	3832	9850028	10.1001/jco.1998.16.20.9850028
96	Fermand, JP et al.	High-dose therapy and autologous peripheral blood stem cell transplantation in multiple myeloma: Up-front or rescue treatment? Results of a multicentre sequential randomized clinical trial	Blood	1998	92	3131	9787148	10.1182/blood.1998.92.3131.9787148
97	Richardson, PG et al.	A randomized phase 2 study of lenalidomide therapy for patients with relapsed or relapsed and refractory multiple myeloma	Blood	2006	108	3458	16840727	10.1182/blood.2006.108.3458.16840727
98	Gupta, D et al.	Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications	Leukemia	2001	15	1950	11753617	10.1046/j.1042-4033.2001.00245.x
99	Richardson, PG et al.	Frequency, characteristics, and reversibility of peripheral neuropathy during treatment of advanced multiple myeloma with bortezomib	Journal of Clinical Oncology	2006	24	3113	16754936	10.1001/jco.2006.24.3113.16754936
100	Dispenzieri, A et al.	International Myeloma Working Group guidelines for serum-free light chain analysis in multiple myeloma and related disorders	Leukemia	2009	23	215	19020545	10.1016/j.leukres.2009.01.001

TABLE 1: Top 100 cited articles on the topic of multiple myeloma
Publication Year	Number of Records
2007	10
2006	9
2003	9
2009	7
2002	7
2005	5
2004	5
2001	5
2011	4
1998	4
1997	4
2010	3
2008	3
2000	3
1999	3
1996	3
1975	3
2012	2
1995	2
1990	2
1994	1
1992	1
1989	1
1988	1
1984	1
1980	1
1969	1

TABLE 2: Distribution of articles by year of publication
Source Journals	Impact Factor	Number of Records
Blood	13.16	33
New England journal of medicine	72.406	20
Journal of Clinical Oncology	24.008	9
Leukemia	11.702	5
The LANCET	47.83	5
Cancer cell	27.4	4
Proceedings of The National Academy of Sciences of The United States of America	9.661	3
Nature reviews cancer	37.147	2
Nature	40.137	2
Mayo Clinic Proceedings	6.686	2
LANCET Oncology	33.9	2
Cancer	5.99	2
British Journal of Haematology	5.67	2
Cancer Research	9.122	1
Journal of Biological Chemistry	4.125	1
Cancer Journal	4.218	1
Cell	30.41	1
Journal of American Medical Association	44.405	1
Nature Genetics	27.959	1
Annals of Internal Medicine	17.202	1
Science	37.205	1
Oncogene	7.519	1

TABLE 3: Journals in which Top 100 cited articles were published
Countries	Number of Records
USA	73
France	10
Italy	7
Germany	4
England	1
Spain	1
Netherlands	1
Austria	1
Japan	1
Greece	1

TABLE 4: Country of origin for top 100 cited articles

Institutions	Number of Records
Dana Farber Cancer Institute	22
Mayo Clinic	13
University of Arkansas Medical Sciences	9
UTMD Anderson Cancer Center	5
University of California Los Angeles	4
Chu de Toulouse	4
Chu de Nantes	3
NIH national cancer institute (NCI)	3
University of Turin	2
University of Bari Bari	2
University of Arizona	2
John Hopkins University	1
Eli & Eddythe I. Broad Institute, Seven Cambridge Centers	1
University of Munich	1
Cancer Institute Medical Group	1
Institution	Count
--	-------
Adult division of The South West Cancer Chemotherapy Study Group	1
University of Miami Miller School of Medicine	1
University of South Carolina	1
Hiroshima University	1
Whitehead Institute Biomedical Research, Nine Cambridge Center	1
Bethesda Naval Hospital, Center Cancer Research	1
University of Leeds	1
International Myeloma Working Group	1
University of Athens School of Medicine	1
National Institute of Health	1
Chu Lille	1
University of Salamanca	1
University of Bologna	1
Sapienza University Rome	1
Erasmus University Rotterdam	1
Cedars Sinai Outpatient Cancer Center	1
University of Wurzburg	1
University of Muenster	1
Washington University	1
St Louis Hospital	1
University of North Carolina	1
University of Vienna	1
Institute of Molecular Genetics	1
Roswell Park Center Institute	1
University of Leipzig	1
Joan Karnell Cancer Center	1
Arcispedale Santa Maria Nuova	1

TABLE 5: Institutions contributing in the number of publications
TABLE 6: Classification of articles by categories.

Category	Number of Studies
Management	51
Pathogenesis	33
Staging	3
Review Articles	4

Regarding authors with the highest number of publications, Hideshima T and Mitsiades CS ranked first with six publications each, followed by Barlogie B, Kyle RA, and Richardson PG with five publications each, and Attal M with four publications (Table 7). Anderson KC was the top author with 26 publications as co-author. Most of the articles were categorized under the title of Hematology (40%) followed by General Internal Medicine (29%), and Oncology (27%), respectively.

TABLE 7: Most common first 15 authors

Author Name	Number of Records
Hideshima T	6
Mitsiades CS	6
Richardson PG	5
Kyle RA	5
Barlogie B	5
Attal M	4
Durie BGM	2
Chauhan D	2
Rajkumar SV	2
Palumbo A	2
Rosen LS	2
Bernson JR	2
Vacca A	2
Weber DM	2
Singhal S	1
A subgroup analysis was performed to capture the development and progress of MM therapy during the last five years. It demonstrated that the most cited article received 441 citations while the least cited article received only 70 citations. Forty-four of the 100 articles were published in 2012, 26 in 2013, and 20 in 2014. The top three journals targeted by authors were Blood (35%), Journal of Clinical Oncology (11%), and NEJM (11%). The author with the most publications as the first author was Palumbo A with five publications, whereas the second position was shared by San-Miguel J, Kumar S, and Richardson PG with four publications each. The country with the highest output in last five years was the US (79%). The top three research areas focused by authors were Hematology (50%), Oncology (38%), and General Internal Medicine (14%).

Discussion

Bibliometric analysis has been used in the past to identify frontiers in specific fields and to evaluate the contribution of authors, institutions, and nations. The total number of citations received by an article represents its overall contribution to the clinical world.

Our study demonstrates that over the years, the focus of research has shifted from diagnosis, staging, and pathogenesis to better treatment outcomes in patients with MM (51 publications). The timeline for the evolution of MM therapy has progressed starting with melphalan-prednisone in 1960’s which was the standard of care for about 50 years. During the next 30 years, therapy further evolved when drugs such as vincristine, doxorubicin, and dexamethasone (VAD), alkylating agents such as Carmustine (VBAD), cyclophosphamide and melphalan (VCMP) were introduced. However, these therapeutic agents did not significantly improve the outcomes. High-dose melphalan followed by autologous stem cell transplant (ASCT) was a step towards favorable clinical outcomes. The armamentarium against MM was revolutionized by the development of ground-breaking agents such as immunomodulators (thalidomide and lenalidomide) and the proteasome inhibitor (bortezomib).

After better treatment outcomes, the most frequently encompassed category was disease pathogenesis (29 publications). Over the years, a thorough understanding of aetiological factors and relation of genetic aberrations to pathogenesis has laid the foundation for significant improvement in disease management and prognostication. Two of the top ten most cited articles were aimed at the staging of disease. The first being the Clinical Staging System proposed by Durie BGM et al., although the most cited article in our list is no longer the primary staging system. Modern-day physicians rely on the International Staging System (eighth most cited article) and cytogenetics to classify MM.

The findings of this analysis demonstrated that 32 of 100 articles were published in general medical journals, for which there may be several reasons. Firstly, general medicine journals capture a wide range of population compared to speciality journals. Secondly, patients with MM are usually co-managed by internists and oncologists which would make the general medicine audience more interested in advancements in MM. Lastly, the novel therapeutic options have different mechanisms of actions and extensive side effect profiles. It is very important for the general internist to be aware of these side effects to effectively manage these patients in both inpatient and outpatient settings.

The authors of these studies targeted high impact factor journals which is evidenced by the fact that most of the articles were published in journals with impact factors greater than 20. This suggests that MM researchers tend to publish in prestigious and well-respected journals that capture a wide range of the population. We noted diversity amongst the authors, as only a total of 12 articles were contributed by the top two publishers as first authors. These findings suggest a diverse group of researchers involved in the MM field.
Among the top 100 cited articles, only seven studies were focused on bortezomib-containing regimens, whereas none of them included carfilzomib or ixazomib based novel therapeutic regimens. This shows that articles with a high frequency of citations consisted mostly of early-published articles. Therefore, one limitation of such articles is that they favour older studies. Among the top 100 list, only two articles from 2012 were included and the articles published after 2012 did not have enough citations to be included in top 100 list. Therefore, we conducted a subgroup analysis of top 100 articles published after 2011. A bibliographic analysis of top cited articles published in the last five years (2012-2017) showed different results from our original search. Only two studies from the sub group analysis were included in the primary analysis due to a lower number of total citations received. Studies 2012, and onwards were focused on latest developments in the field of MM including therapeutic agents such as novel proteasome inhibitors (carfilzomib, ixazomib), monoclonal antibodies (daratumumab, elotuzumab), and chimeric antigen receptor T cell therapy [7-11].

Our primary limitation was conducting the search in the "title mode". Therefore, articles that did not contain MM in the title were not retrieved or included in our study. Secondly, our search was limited to the WOS database which excludes citations of textbooks and other databases which are weaker at tracking older publications. Finally, articles published in languages other than English were excluded.

Conclusions
This bibliographic analysis provides a list of the 100 top-cited articles in MM along with the captivating comprehension of the history and development in various aspects of disease processes. The landscape of MM is rapidly evolving, and bibliometric studies such as the one we present provides a valuable tool that can highlight important transitions in the field. As new evidence continues to emerge, these types of analyses can provide a quantitative instrument to guide the researchers and funding agencies to assess the overall direction of the field with limited health care resources.

Additional Information
Disclosures
Conflicts of interest: In compliance with the ICMJE uniform disclosure form, all authors declare the following: Payment/services info: All authors have declared that no financial support was received from any organization for the submitted work. Financial relationships: All authors have declared that they have no financial relationships at present or within the previous three years with any organizations that might have an interest in the submitted work. Other relationships: All authors have declared that there are no other relationships or activities that could appear to have influenced the submitted work.

Acknowledgements
We thank Ms. Marsha A Halajian for editing and final proofing of the manuscript.

References
1. Michels TC, Petersen KE: Multiple myeloma: diagnosis and treatment. American family physician. 2017, 95:373-383.
2. Fitzmaurice C, Allen C, Barber RM, et al.: Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study. JAMA Oncol. 2017, 3:524-548. 10.1001/jamaoncol.2016.5688
3. Pilkington A: Bibliometrics at Royal Holloway. Enterprise Engineering. 2009,
4. Miao Y, Liu R, Pu Y, Yin L: Trends in esophageal and esophagogastric junction cancer research from 2007 to 2016: a bibliometric analysis. Medicine. 2017, 96:e6924.
5. Powell AG, Hughes DL, Wheat JR, Lewis WG: The 100 most influential manuscripts in gastric cancer: a bibliometric analysis. Int J Surg. 2016, 28:83-90. 10.1016/j.ijsu.2016.02.028
6. Sackett DL, Rosenberg WM, Gray JA, Haynes RB, Richardson WS: Evidence based medicine: what it is and what it isn’t. BMJ. 1996, 312:71.
7. Stewart AK, Rajkumar SV, Dimopoulos MA, et al.: Carfilzomib, lenalidomide, and dexamethasone for relapsed multiple myeloma. N Engl J Med. 2015, 372:142-152. 10.1056/NEJMoa1411321
8. Lokhorst HM, Plesner T, Laubach JP, et al.: Targeting CD38 with daratumumab monotherapy in multiple myeloma. N Engl J Med. 2015, 373:1207-1219. 10.1056/NEJMoa1506348
9. Lonial S, Vij R, Harousseau JL, Faron T, et al.: Elotuzumab in combination with lenalidomide and low-dose dexamethasone in relapsed or refractory multiple myeloma. J Clin Oncol. 2012, 30:1953-1959. 10.1200/jco.2011.37.2649
10. Zonder JA, Mohrbacher AF, Singhal S, et al.: A phase 1, multicenter, open-label, dose escalation study of elotuzumab in patients with advanced multiple myeloma. Blood. 2012, 120:552-559. 10.1182/blood-2011-06-360552
11. Garfall AL, Maus MV, Hwang WT, et al.: Chimeric antigen receptor T cells against CD19 for multiple myeloma. N Engl J Med. 2015, 373:1040-1047. 10.1056/NEJMoa1504542