A PROPERTY OF THE INVERSE OF A SUBSPACE OF A
FINITE FIELD

SANDRO MATTAREI

Abstract. We prove a geometric property of the set A^{-1} of inverses of the
nonzero elements of an F_q-subspace A of a finite field involving the size of its
intersection with two-dimensional F_q-subspaces. We give some applications,
including a new upper bound on $|A^{-1} \cap B|$ when A and B are F_q-subspaces of
different dimension of a finite field, satisfying a suitable natural assumption.

1. Introduction

The inversion map $x \mapsto x^{-1}$ in a finite field has been the object of various
studies in recent years. In particular, its interaction with the operation of addi-
tion is of interest for cryptographic applications. The best-known example is
that inversion in the finite field of 2^8 elements (patched by sending zero to it-
self) is the nonlinear transformation employed in the S-boxes in the Advanced
Encryption Standard (Rijndael, see [FIP01]). A study of an AES-like cryptosys-
tem in [CDVS09] required, in the special case of finite fields, the determina-
tion of the additive subgroups of a field which are closed with respect to inverting
nonzero elements, which was provided by the author in [Mat07]. (The more
general question in division rings was independently answered in [GGSZ06].) A
small variation of this fact was required in [KLS12] for a different crypto-
graphic application, and a more substantial generalization was studied in [Csa13],
to which we will return later in this Introduction. All those studies involve a set
$A^{-1} = \{x^{-1} : 0 \neq x \in A\}$, where A is an F_q-subspace of a finite field.

In this note we prove a geometric property of A^{-1}. Because the specific ambi-
et finite field plays no role in our result, it will be equivalent, but notationally
simpler, to rather work inside an algebraic closure $\overline{F_q}$ of F_q. Our result then
reads as follows.

Theorem 1. Let A be an F_q-subspace of $\overline{F_q}$, of dimension d. Let U be a two-
dimensional F_q-subspace of $\overline{F_q}$, and suppose $|A^{-1} \cap U| > d(q-1)$. Then $U^{-1} \subseteq A$,
and the F_q-span of U^{-1} is a one-dimensional F_q-subspace of $\overline{F_q}$, for some e.

Because set A^{-1} is closed with respect to scalar multiplication by elements of
F_q^*, it is natural to interpret its properties in a projective space $\mathbb{P}V$, where V is an

2000 Mathematics Subject Classification. Primary 11T30; secondary 51E20.
Key words and phrases. finite field, subspace, inverse, arc, cap.
\mathbb{F}_q-linear subspace of \mathbb{F}_q containing A^{-1}. (To resolve possible ambiguities, in this paper the operator \mathbb{P} will only be applied to vector spaces over the field \mathbb{F}_q.) From this geometric viewpoint, the two-dimensional space U of Theorem 1 represents a line in a projective space, and the condition on the integer $|A^{-1} \cap U|/(q - 1)$, which clearly equals $|A \cap U^{-1}|/(q - 1)$, can be read in terms of caps or arcs according as whether we focus our attention on A^{-1} or U^{-1}. We present some applications of our result which exploit, in turn, one or the other interpretation.

Our first application of Theorem 1 is a simpler proof of the main result of [FKMP02], which is their Theorem 3.3, and generalizes the following result of M. Hall [Hal74]: in the cyclic model of the projective plane $\text{PG}(2, q)$, the inverse of a line is a conic. We will explain this terminology, and state and prove the main result of [FKMP02] in Section 2, after proving Theorem 1.

Our next application, which we formalize in Theorem 3, uses Theorem 1 to deduce an upper bound on $|A^{-1} \cap B|/(q - 1)$ from any available general bounds on (higher) caps, where A and B are finite-dimensional subspaces of \mathbb{F}_q. Theorem 1 is the special case of this where B has dimension two. Of course a non-trivial bound can only be obtained provided one steers away from some special configurations, such as the extreme case $A^{-1} \subseteq B$. By employing a general bound on caps our result yields $|A^{-1} \cap B| \leq (d - 1)|B|/q + q - d$, where $|A| = q^d$, under the assumption that A does not contain any nonzero \mathbb{F}_q-subspace of \mathbb{F}_q with $e > 1$.

The special case of this bounding problem where $|A| = |B|$ was studied in [Csaj13], and then in [Mat]. In particular, in the former Csajbók proved the general bound $|A^{-1} \cap B| \leq 2|B|/q - 2$, for any subspaces A and B of \mathbb{F}_q, of the same (finite) dimension, such that $A^{-1} \not\subseteq B$. This surpasses the bound given by our Theorem 3 when $|A| = |B| = q^d > q^3$. However, the method of [Csaj13], which expands on a polynomial argument of the author in [Mat07], seems unsuited to deal with the case $|A| > |B|$, where our Theorem 3 provides the only known nontrivial bound. (Note that our bound is larger than $|B| - 1$ when $|A| < |B|$, and hence trivial.)

Furthermore, Theorem 3 produces a contribution to the case $|A| = |B| = q^3$, where a slightly better available bound on caps yields $|A^{-1} \cap B| < 2|B|/q - 2$ apart from a special situation. Our final application of Theorem 3 is then the determination, in Theorem 5 of an exceptional geometric configuration which occurs when equality is attained in Csajbók’s bound for $|A| = |B| = q^3$: the image of $A^{-1} \cap B$ in $\mathbb{P}B$ is then the union of a conic and an external line. As we explain in Section 3, that result is included in a more general investigation in [Mat], but the short proof given here bypasses longer and more demanding arguments employed there.

The author is grateful to Bence Csajbók for interesting discussions on this topic.
A PROPERTY OF THE INVERSE OF A SUBSPACE OF A FINITE FIELD

2. A PROOF OF THEOREM 1 AND AN APPLICATION INVOLVING ARCS

Proof of Theorem 1. Our hypothesis means that there exist \(\xi, \eta \in \mathbb{F}_q \) with \(U = \mathbb{F}_q \xi + \mathbb{F}_q \eta \), and \(d \) distinct \(\alpha_1, \ldots, \alpha_d \in \mathbb{F}_q \), such that \(\eta, \xi, \eta, \ldots, \xi + \alpha_{d-1} \eta \in A^{-1} \).

The inverses of those elements must then be linearly dependent over \(\mathbb{F}_q \), because \(A \) has dimension \(d \). Consider a shortest linear dependence relation among them. Possibly after permuting those elements, which may include redefining \(\eta \), the relation takes the form

\[
\frac{1}{\eta} + \sum_{i=1}^{e} \frac{\beta_i}{\xi + \alpha_i \eta} = 0,
\]

for some \(\beta_1, \ldots, \beta_e \in \mathbb{F}_q^* \), with \(2 \leq e \leq d \). Clearing the denominators we find that the pair \((\xi, \eta) \) is a zero of a homogeneous polynomial of degree \(e \) with coefficients in \(\mathbb{F}_q \) and, consequently, \(\xi/\eta \in \mathbb{F}_q^* \) for some \(t \leq e \). Because \(\xi/\eta, \xi/(\xi + \alpha_1 \eta), \ldots, \xi/(\xi + \alpha_{e-1} \eta) \) belong to \(\mathbb{F}_q^* \) are linearly independent over \(\mathbb{F}_q \), we have \(t = e \), and they form a basis of \(\mathbb{F}_q^* \) over \(\mathbb{F}_q \). Hence the elements \(1/\eta, 1/(\xi + \alpha_1 \eta), \ldots, 1/(\xi + \alpha_{e-1} \eta) \) of \(A \cap U^{-1} \) span the one-dimensional \(\mathbb{F}_q^* \)-subspace \(\mathbb{F}_q^* \xi^{-1} \) of \(\mathbb{F}_q^* \). Because \(\eta \) and \(\xi + \alpha_1 \eta \) belong to \((\mathbb{F}_q^* \xi^{-1})^{-1} \cup \{0\} = \mathbb{F}_q^* \xi \) and their \(\mathbb{F}_q^* \)-span equals \(U \), we have \(U \subseteq \mathbb{F}_q^* \xi \), and hence \(U^{-1} \subseteq \mathbb{F}_q^* \xi^{-1} \subseteq A \). \(\square \)

In order to formulate our first application of Theorem 1, we need to introduce some terminology. The cyclic model of \(PG(n, q) \) is the \(n \)-dimensional projective space \(\mathbb{P} \mathbb{F}_{q^{n+1}} \), with the added cyclic group structure induced by the multiplicative group \(\mathbb{F}_{q^{n+1}}^* \). The inverse (called the additive inverse in [FKMP02]) of a subset of the cyclic model of \(PG(n, q) \) must be intended with respect to the group operation. An arc in \(PG(n, q) \) is a set of \(k \geq n + 1 \) points of which no \(n + 1 \) lie on the same hyperplane. We use our Theorem 1 to prove the main result of [FKMP02], which reads as follows.

Theorem 2 (Theorem 3.3 of [FKMP02]). If \(q + 1 > n \), then in the cyclic model of \(PG(n, q) \) the inverse of any line is an arc in some subspace \(PG(m, q) \), where \(m + 1 \) divides \(n + 1 \).

Proof. A line in the cyclic model of \(PG(n, q) \) is the image in \(\mathbb{P} \mathbb{F}_{q^{n+1}} \) of a two-dimensional \(\mathbb{F}_q \)-subspace \(U \) of \(\mathbb{F}_{q^{n+1}} \). Fix such a line and let \(V \) be the \(\mathbb{F}_q \)-span of \(U^{-1} \). If \(V \) has dimension \(m + 1 \) then \(\mathbb{P} V \) is a projective geometry \(PG(m, q) \). Any hyperplane in \(\mathbb{P} V \), which is the image of an \(m \)-dimensional \(\mathbb{F}_q \)-subspace \(A \) of \(V \), meets the image of \(U^{-1} \) in \(\mathbb{P} V \) in at most \(m \) points, otherwise Theorem 1 would be contradicted because \(U^{-1} \not\subseteq A \). Hence the image of \(U^{-1} \), which is the inverse of our line, is an arc in \(\mathbb{P} V \).

It remains to show that \(m + 1 \) divides \(n + 1 \), and to this purpose we may assume \(m < n \). Because \(|V \cap U^{-1}|/(q - 1) = |U^{-1}|/(q - 1) = q + 1 > m + 1 \), an application of Theorem 1 with \(V \) in place of \(A \) shows that \(V \) is a one-dimensional
\(\mathbb{F}_{q^e} \)-subspace of \(\mathbb{F}_q \), whence \(e = m + 1 \). Because \(V \subseteq \mathbb{F}_{q^{n+1}} \) it follows that
\(\mathbb{F}_{q^{m+1}} \subseteq \mathbb{F}_{q^{n+1}} \), and hence \(m + 1 \) divides \(n + 1 \). \(\square \)

If \(n + 1 \) is a prime in Theorem 2, one concludes with [FKMP02] that the inverse of a line is an arc in \(PG(n, q) \), and for \(n = 2 \) one recovers the result of M. Hall mentioned in the introduction.

3. Applications involving caps

Our next application of Theorem 1 concerns caps rather than arcs. A \((k, r)\)-cap in the projective geometry \(PG(n, q) \) is a set of \(k \) points, of which no \(r + 1 \) are collinear. (A variant of this definition requires that the set contains at least one set of \(r \) collinear points, but this difference is immaterial here.) The largest size \(k \) of a \((k, r)\)-cap in \(PG(n, q) \) is denoted by \(m_{r}(n, q) \).

Theorem 3. Let \(A \) and \(B \) be \(\mathbb{F}_q \)-subspaces of \(\mathbb{F}_q \) of size \(q^d \) and \(q^{d'} \), respectively. Suppose that \(A \) does not contain any nonzero \(\mathbb{F}_q^e \)-subspace of \(\mathbb{F}_q \) with \(e > 1 \). Then \(|A^{-1} \cap B|/(q-1) \leq m_d(d'-1,q) \).

Proof. Suppose for a contradiction that the desired conclusion is violated, that is, \(|A^{-1} \cap B|/(q-1) = k > m_d(d'-1,q) \). Then the image of \(A^{-1} \cap B \) in \(\mathbb{P}B \cong PG(d'-1, q) \) is not a \((k, d)\)-cap, and hence it meets a line in \(\mathbb{P}B \) in more than \(d \) points. According to Theorem 1 the preimage \(U \) in \(B \) of that line is contained in some one-dimensional \(\mathbb{F}_q^e \)-subspace \(\mathbb{F}_q^e \xi \) of \(\mathbb{F}_q \) with \(e > 1 \), which in turn is contained in \(A^{-1} \cup \{0\} \). But then \(A \) contains \(\mathbb{F}_q^e \xi^{-1} \), contradicting our hypotheses. \(\square \)

When \(d > 3 \) the only general bound on cap sizes available for use in Theorem 1 is \(m_r(t, q) \leq 1 + (r-1) \cdot (q^t-1)/(q-1) \), which is easily proved by considering all lines which pass through a fixed point of the cap. The conclusion of Theorem 1 then reads \(|A^{-1} \cap B| \leq (d-1)q^{d-1} + q - d \). As we noted in the Introduction, this is nontrivial when \(d \geq d' \), and new when \(d > d' \), whereas neither the polynomial method used in [Csa13], nor its more powerful variant employed in [Mat], seem capable to produce any essentially nontrivial bound in the latter case. When \(d' = 3 \) our bound can perhaps be more conveniently written as \(|A^{-1} \cap B|/(q-1) \leq (d-1)q + d \).

When \(d = d' \geq 2 \) the bound we have just given is worse than the bound \(|A^{-1} \cap B| \leq 2q^{d-1} - 2 \) proved by Csajbók in [Csa13]. (They match when \(d = d' = 2 \), an easy case briefly discussed in [Mat, Section 2].) For \(d > 3 \) the author strengthened Csajbók’s bound to \(|A^{-1} \cap B| \leq q^{d-1} + O_d(q^{d-3/2}) \) in [Mat]. However, Csajbók’s bound is sharp when \(d = 3 \), and the following corollary of Theorem 3 provides crucial information on the case where equality is attained.
Corollary 4. Suppose $q > 3$. Let A and B be \mathbb{F}_q-subspaces of $\overline{\mathbb{F}}_q$ of size q^3, with $A^{-1} \not\subseteq B$. If $|A^{-1} \cap B|/(q - 1) > 2q + 1$, then $(A^{-1} \cap B) \cup \{0\}$ contains a one-dimensional \mathbb{F}_{q^2}-subspace of $\overline{\mathbb{F}}_q$.

Proof. The general bound for $m_r(t, q)$ recalled above reads $m_3(2, q) \leq 2q + 3$ in the case of present interest. However, the latter can be improved to $m_3(2, q) \leq 2q + 1$ for $q > 3$, see [Hir98, Corollary 12.11 and Theorem 12.47]. Consequently, under our hypothesis the conclusion of Theorem 3 does not hold, and hence the argument in the proof of Theorem 3 applies. We necessarily have $e = 2$, the one-dimensional \mathbb{F}_{q^2}-subspace $\mathbb{F}_{q^2}\xi$ of $\overline{\mathbb{F}}_q$ found there coincides with U, and hence it is not only contained in $A^{-1} \cup \{0\}$, but in B as well. □

The information contained in the conclusion of Corollary 3 together with a further appeal to Theorem 3 and to a classical result of B. Segre, is sufficient to determine the geometric structure of the set $A^{-1} \cap B$ for three-dimensional \mathbb{F}_q-subspaces which attain equality in Csajbók's bound, as follows.

Theorem 5. Suppose q odd and $q > 3$. Let A and B be \mathbb{F}_q-subspaces of $\overline{\mathbb{F}}_q$ of size q^3, with $A^{-1} \not\subseteq B$, such that $|A^{-1} \cap B|/(q - 1) = 2q + 2$. Then the image of $A^{-1} \cap B$ in $\mathbb{P}B$ is the union of a line and a conic.

Proof. According to Corollary 3 the set $(A^{-1} \cap B) \cup \{0\}$ contains a one-dimensional \mathbb{F}_{q^2}-subspace $\mathbb{F}_{q^2}\xi$ of $\overline{\mathbb{F}}_q$. After replacing the subspaces A and B with ξA and $\xi^{-1}B$, which changes neither the hypotheses nor the conclusion, we may assume that $(A^{-1} \cap B) \cup \{0\}$ contains the subfield \mathbb{F}_{q^2} of $\overline{\mathbb{F}}_q$. Thus, both A and B contain \mathbb{F}_{q^2}. The image of \mathbb{F}_{q^2} in the two-dimensional projective space $\mathbb{P}(B)$ is the required line.

Now set $C := (A^{-1} \cap B) \setminus \mathbb{F}_{q^2}$. We claim that any two-dimensional \mathbb{F}_q-subspace U of B meets C in at most $2(q - 1)$ elements. Assuming $U \neq \mathbb{F}_{q^2}$ as we obviously may, we have $|U \cap \mathbb{F}_{q^2}| = q$. By way of contradiction, suppose that $|C \cap U| > 2(q - 1)$. Then $|A^{-1} \cap U| > 3(q - 1)$, and hence U^{-1} spans a one-dimensional \mathbb{F}_{q^2}-subspace of \mathbb{F}_q according to Theorem 3. This being clearly not the case, we have to concede that $|C \cap U| \leq 2(q - 1)$. Thus, the image of C in the two-dimensional projective space $\mathbb{P}(B)$ is an arc with $q + 1$ points. According to a celebrated result of B. Segre [Hir98, Theorem 8.14], when q is odd any such arc is a conic. □

The very special case of Theorem 3 where $A = B \subseteq \mathbb{F}_{q^2}$ was proved by Csajbók [Csa13, Theorem 4.8, Assertion (3)]. A much more general result than Theorem 3 was proved by the author by different methods in [Mat, Theorem 9], which gives a classification, and with it a precise count in a suitable sense, of all pairs of three-dimensional \mathbb{F}_q-subspaces A, B of $\overline{\mathbb{F}}_q$ such that $|A^{-1} \cap B|/(q - 1) = \{2q, 2q + 1, 2q + 2\}$, with no restriction on the parity of q (with $q > 5$ for the two smaller values). It turns out that in all those cases the image of $A^{-1} \cap B$ in $\mathbb{P}B$ is the union of a nonsingular conic and a secant, tangent or external line in
the three cases. The intermediate case occurs only for even q, and the other two cases only for odd q.

References

[CDVS09] Andrea Caranti, Francesca Dalla Volta, and Massimiliano Sala, *An application of the O’Nan-Scott theorem to the group generated by the round functions of an AES-like cipher*, Des. Codes Cryptogr. 52 (2009), no. 3, 293–301. MR 2506729 (2010a:94053)

[Csa13] Bence Csajbók, *Linear subspaces of finite fields with large inverse-closed subsets*, Finite Fields Appl. 19 (2013), 55–66. MR 2996759

[FIP01] FIPS Publication 197 (NIST), *Advanced Encryption Standard*, 2001, http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

[FKMP02] Giorgio Faina, György Kiss, Stefano Marcugini, and Fernanda Pambianco, *The cyclic model for PG(n,q) and a construction of arcs*, European J. Combin. 23 (2002), no. 1, 31–35. MR 1878772 (2003b:51017)

[GGSZ06] Daniel Goldstein, Robert M. Guralnick, Lance Small, and Efim Zelmanov, *Inversion invariant additive subgroups of division rings*, Pacific J. Math. 227 (2006), no. 2, 287–294. MR 2263018 (2007i:17041)

[Hal74] M. Hall, Jr., *Difference sets*, Combinatorics, Part 3: Combinatorial group theory (Proc. NATO Advanced Study Inst., Breukelen, 1974), Math. Centrum, Amsterdam, 1974, pp. 1–26. Math. Centre Tracts, No. 57. MR 0457254 (56 #15462)

[Hir98] James W. P. Hirschfeld, *Projective geometries over finite fields*, second ed., Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, 1998. MR 1612570 (99b:51006)

[KLS12] Gábor Korchmáros, Valentino Lanzone, and Angelo Sonnino, *Projective k-arcs and 2-level secret-sharing schemes*, Des. Codes Cryptogr. 64 (2012), no. 1-2, 3–15. MR 2914398

[Mat] S. Mattarei, *Inversion and subspaces of a finite field*, arXiv:1311.3644, submitted.

[Mat07] Sandro Mattarei, *Inverse-closed additive subgroups of fields*, Israel J. Math. 159 (2007), 343–347. MR 2342485 (2008j:12008)

E-mail address: mattarei@science.unitn.it

Dipartimento di Matematica, Università degli Studi di Trento, via Sommarive 14, I-38123 Povo (Trento), Italy