COHERENT CONTROL OF A QUBIT IS TRAP-FREE

Alexander N. Pechen* and Nikolay B. Il’in†

Steklov Mathematical Institute of Russian Academy of Sciences, Gubkina str., 8, Moscow 119991, Russia.

Abstract

There is a strong interest in optimal manipulating of quantum systems by external controls. Traps are controls which are optimal only locally but not globally. If they exist, they can be serious obstacles to the search of globally optimal controls in numerical and laboratory experiments, and for this reason the analysis of traps attracts considerable attention. In this paper we prove that for a wide range of control problems for two-level quantum systems all locally optimal controls are also globally optimal. Hence we conclude that two-level systems in general are trap-free. In particular, manipulating qubits—two-level quantum systems forming a basic building block for quantum computation—is free of traps for fundamental problems such as the state preparation and gate generation.

1 Introduction

Manipulation of single quantum systems is an important branch of modern science with applications ranging from laser-driven population transfer in atomic systems and laser-assisted control of chemical reactions to quantum technologies and quantum information [1, 2, 3, 4, 5, 6]. The 2012 Nobel Prize in Physics was awarded to Serge Haroche and David Wineland “for groundbreaking experimental methods that enable measuring and manipulation of individual quantum systems” [7].

A fundamental issue is to control qubits, that is, two-state quantum systems which serve as a basic building block for quantum computation and quantum information processing [8, 9, 10, 11, 12, 13, 14, 15, 16]. Physical implementation of qubits includes nuclear spins addressed through nuclear magnetic resonance, electrons in a double quantum dot controlled by small voltages applied to the leads, holes in quantum dots controlled by optical pulses [10], charge states of nanofabricated superconducting electrodes coupled through Josephson junctions, ions in traps [11], polarization or spatial modes of a single photon manipulated using optical elements [12], etc. In any physical implementation, the qubit interacts with the environment, which causes its dynamics to be non-unitary and decreases the performance of control operations. The simplest way to avoid the influence of the environment is to perform fast control operations such that their duration T is significantly smaller than the decoherence time. If this is impossible, a promising method of dynamical decoupling [19] can be used to minimize the influence of the environment. This method has recently been experimentally tested for the Hadamard, NOT, and $U_{\pi/8}$ gates for the gate time T exceeding the decoherence time by the order of magnitude [20].

Any physical implementation of the qubit requires the ability to optimally prepare in a controlled manner arbitrary superpositions of the two qubit basis states and produce arbitrary
single-qubit quantum circuits. Finding controls which optimally achieve these goals is crucial for laboratory implementation of various quantum computing schemes [14]. Often the search for optimal controls is performed using numerical methods (see, e.g., [17, 18]) including the gradient methods (see [21]).

Traps are controls which are optimal only locally but not globally. Arbitrary small variations of a trapping control do not increase the performance of the target (e.g., a circuit operation), but globally their outcomes can be far from good. Locally, traps look optimal, and if they exist, they can be serious obstacles to finding desired globally optimal controls and can significantly slow down or even completely prevent finding such solutions in numerical and laboratory experiments. For this reason the analysis of traps has recently attracted much attention [22, 23, 24, 25, 26, 27, 28, 29, 30]. Despite of these extensive studies, the absence of traps has been proved only for the two-level Landau–Zener system [28] and for the control of the transmission coefficient of a quantum particle passing through a potential barrier [31]. Moreover, trapping behavior has been revealed for three-level and multi-level quantum systems [25, 29].

The present paper contributes significantly to the field by showing that the control of general two-level systems is completely free of traps for many fundamental problems including those of optimal state preparation and single qubit gate generation.

In this paper we assume that the environmental influence can be avoided so that the Schrödinger equation provides a reasonable approximation for the qubit evolution. We assume that the system is controllable so that available controls are sufficient to produce any unitary evolution. As was shown numerically and theoretically for the Landau–Zener system, these assumptions can be significantly relaxed while still keeping the trap-free behavior [28]. We also consider manipulating a single qubit. Important problems involving control of multi-qubit dynamics, as necessary, for example, for producing entangled states or a C-NOT gate, are beyond the scope of this work.

2 Formulation

We consider coherent control of a two-level quantum system which evolves under the action of coherent control \(f(t) \in \mathcal{U} = L^1([0, T]; \mathbb{R}) \) (\(T > 0 \) is some final time) according to the Schrödinger equation

\[
\frac{dU^f_t}{dt} = (H_0 + V f(t))U^f_t, \quad U^f_{t=0} = \mathbb{I}
\]

Here free and interaction Hamiltonians \(H_0, V \in \mathbb{C}^{2\times2} \) are two-by-two Hermitian matrices. Evolution is unitary, \(U^f_t \in U(2) \). The components of the matrix \(U^f_t \) belong to the space of absolutely continuous functions on the interval \([0, T]\), \(U^f_t \in AC[0, T] \).

Many important quantum control problems are terminal-time control problems, where the goal is to maximize an objective at a specific final time \(T \). Such objectives have the form

\[
\mathcal{F}(f) = \mathcal{F}(U^f_T)
\]

where \(\mathcal{F} : U(2) \to \mathbb{R} \) is a function on the unitary group. For definiteness, we consider maximization of the objective as the control goal, \(\mathcal{F}(f) \to \text{max} \). The function \(\mathcal{F} \) is assumed to be phase invariant, that is \(\mathcal{F}(U e^{i\phi}) = \mathcal{F}(U) \) for any \(\phi \), to reflect physical equivalence of states which differ only by a phase factor. Thus without loss of generality, we can naturally identify any \(U^f_T \in U(2) \) with an element of \(SU(2) \) and introduce the map \(\Phi : \mathcal{U} \to SU(2) \) defined as \(\Phi(f) = U^f_T / \sqrt{\det U^f_T} \). It is important to emphasize that the objective is a functional of the control whereas \(\mathcal{F} \) is a function of a unitary matrix.

The graph of the objective functional \(\mathcal{F}(f) \) is the dynamic control landscape. The graph of the function \(\mathcal{F}(U) \) is the kinematic control landscape. Control \(f \) is a trap if \(f \) is a local but...
of \(\rho \) or \(F \text{ of } \) trivial as producing a constant objective value \(F \) for a two-level system any traps for \(F \) Tr\[two orthogonal projectors such that \(P \) and \(P \) are two eigenvalues. Thus \(\text{Tr}[\rho^f_T O] = \lambda_1 + (\lambda_2 - \lambda_1)\text{Tr}[\rho^f_T P_2] \), and in the non-degenerate case \(\lambda_1 \neq \lambda_2 \) all traps of \(\text{Tr}[\rho^f_T O] \) coincide with traps of \(\text{Tr}[\rho^f_T P_2] \). The degenerate case \(\lambda_1 = \lambda_2 \) is trivial since in this case the objective takes the constant value \(F(f) = \lambda_1 \) and traps do not exist. Therefore without loss of generality we can consider \(O \) as a projector, \(O = |f\rangle\langle f| \). We denote by \(\omega_0 \) and \(\omega_1 \) two eigenvalues of \(\rho_0 \) and consider non-degenerate case \(\omega_0 \neq \omega_1 \) since the degenerate case \(\omega_0 = \omega_1 = 0.5 \) is trivial as producing a constant objective value \(F(f) = \text{Tr} O \).

The objective for generating a desired unitary gate \(W \) is

\[
F_W(f) = \frac{1}{4} |\text{Tr}(W^\dagger U^f_T)|^2.
\]

Examples for \(W \) include Hadamard gate \(W = \mathbb{I} \), phase shift gate \(W = U_\phi \), etc. This objective is maximized by any \(U^f_T = e^{i\varphi} W \), where \(\varphi \) is an arbitrary phase. The normalization factor 1/4 is chosen to have \(\max F_W = 1 \) and the absolute value is used to exclude the physically meaningless overall phase of the unitary operator.

We consider arbitrary \(H_0 \) and \(V \) assuming only that \([H_0, V] \neq 0 \) to have non-trivial quantum control properties. In this case \([H_0, V] \) and \(V \) are linearly independent. Indeed, assume \(\alpha V + \beta [H_0, V] = 0 \) for some \(\alpha, \beta \) such that \(|\alpha| + |\beta| > 0 \). Multiplying this equality by \(V \) either from the left or from the right and taking trace gives \(\alpha \text{Tr}(V^2) = 0 \), that implies \(\alpha = 0 \), since \(V^2 \) for a Hermitian \(V \) is positive. Then \(\beta [H_0, V] = 0 \) which for \([H_0, V] \neq 0 \) implies \(\beta = 0 \). This contradicts the assumption \(|\alpha| + |\beta| > 0 \) and therefore \([H_0, V] \) and \(V \) can not be linearly dependent.
3 Main result

Let \(\mathcal{M}_2 := \text{Mat}(2, \mathbb{C}) \) be the complex vector space of \(2 \times 2 \) matrices. Denote \(f_0 := -[\text{Tr} V \text{Tr} H_0 + 2 \text{Tr} (H_0 V)/(\text{Tr} V)^2] \). The key result for our analysis is the following lemma.

Lemma 1 Let \(V_t = U_t^\dagger V U_t^\dagger \) and suppose that the function \(f \) is not equal to the constant function \(f_0 \). Under this assumption if a linear map \(L : \mathcal{M}_2 \to \mathbb{R} \) satisfies \(L(\mathbb{I}) = L(V_t) = 0 \) for all \(t \in [0, T] \), then \(L \equiv 0 \).

Proof. To prove the lemma, consider the function \(l(t) := L(V_t) \). The equality \(L(V_t) = 0 \) means \(l(t) \equiv 0 \). Therefore, in particular, \(l(t) = l'(t) = l''(t) = 0 \), that implies

\[
0 = L(U_t^\dagger V U_t) \quad (1) \\
0 = L(U_t^\dagger [H_0, V] U_t) \quad (2) \\
0 = L(U_t^\dagger ([H_0, [H_0, V]] + f(t) [V, [H_0, V]]) U_t) \quad (3)
\]

We now show that if function \(f \) is not equal to the function \(f_0 \) then there exists \(t \) such that the matrices \(\mathbb{I}, V, [H_0, V] \), and \(E_t = [H_0, [H_0, V]] + f(t) [V, [H_0, V]] \) are linearly independent. Indeed, suppose that for all \(t \)

\[
\alpha_t \mathbb{I} + \beta_t V + \gamma_t [H_0, V] + \delta_t E_t = 0 \quad (4)
\]

where complex numbers \(\alpha_t, \beta_t, \gamma_t, \) and \(\delta_t \) satisfy

\[
|\alpha_t| + |\beta_t| + |\gamma_t| + |\delta_t| > 0 \quad (5)
\]

Multiplying this equality either by \(V \) or by \(H_0 \) from the left and taking trace, together with simply taking trace of Eq. (4), gives the system of equations

\[
0 = \alpha_t \text{Tr} V + \beta_t \text{Tr} V^2 - \delta_t \text{Tr}([H_0, V])^2 \\
0 = \alpha_t \text{Tr} H + \beta_t \text{Tr}([H_0, V]) \\
0 = 2\alpha_t + \beta_t \text{Tr} V
\]

This system is compatible only if \(f(t) = f_0 \) (recall that \([H_0, V] \) is anti-Hermitian and \([H_0, V] \neq 0 \); hence \(\text{Tr}([H_0, V])^2 \neq 0 \)). If \(f(t) \neq f_0 \) for some \(t \), then this system has only a trivial solution and the assumption of linear dependence (4) with the requirement (5) leads to contradiction. Therefore for any \(t \) such that \(f(t) \neq f_0 \) the matrices \(\mathbb{I}, V, [H_0, V] \) and \(E_t \) are linearly independent \(2 \times 2 \) matrices. Their unitary evolutions \(\mathbb{I}, U_t^\dagger V U_t, U_t^\dagger [H_0, V] U_t \) and \(U_t^\dagger E_t U_t \) are also linearly independent \(2 \times 2 \) matrices. They form a basis of \(\mathcal{M}_2 \) and hence the equations (1)–(3) together with the assumption \(L(\mathbb{I}) = 0 \) imply that \(L(A) = 0 \) for any \(A \in \mathcal{M}_2 \). This proves the lemma.

Remark 1 The exceptional control value \(f_0 \) in the common case of traceless interaction \(\text{Tr} V = 0 \) takes a simpler form \(f_0 = -\text{Tr}(H_0 V)/\text{Tr}(V^2) \). If, in addition, all diagonal elements of \(V \) are zero in the basis of the free Hamiltonian \(H_0 \) (the most common case), then \(f_0 = 0 \).

The exceptional control \(f_0 \) is not a trap if \(T \) is sufficiently large and \(\text{Tr} V = 0 \), as stated in the following lemma. Note that time should be large enough also to ensure controllability of the system.

Lemma 2 Let \(\text{Tr} V = 0 \) and \(T \geq \pi/(\|H_0 - \frac{1}{2} \text{Tr} H_0 + f_0 V\|) \), where \(\| \cdot \| \) is the matrix spectral norm. If \(\mathcal{F}(U) \) has no traps on \(U(2) \), then the control \(f(t) = f_0 \) is not a trap for \(\mathcal{F}(f) := \mathcal{F}(U_t^\dagger) \).
Proof. The evolution of the system under the action of the control \(f(t) = f_0 + \delta f(t) \), where \(\delta f \) is a small variation, is governed by the Schrödinger equation

\[i\dot{U}_t^{\delta f} = (H'_0 + \delta f(t)V)U_t^{\delta f} \] (6)

where \(H'_0 = H_0 + f_0 V \). The modified free Hamiltonian can be written as \(H'_0 = \frac{1}{2} \text{Tr}(H'_0)\mathbb{I} + H_0'' \), where \(H_0'' \) is traceless. The first term is proportional to the identity matrix and can be neglected. The second term in the suitable basis can be written as \(H'' = \omega_0 \sigma_z \), \(\omega_0 > 0 \) and by suitably rescaling time we can set \(\omega_0 = 1 \). Thus, instead of the evolution equation (6) we can consider the equivalent equation

\[i\dot{U}_t^{\delta f} = (\sigma_z + \delta f(t)V)U_t^{\delta f} \] (7)

Checking if \(f_0 \) is not a trap for eq. (6) is equivalent to checking if \(f(t) = 0 \) is not a trap for eq. (7).

The interaction can be written as \(V = v_x \sigma_x + v_y \sigma_y + v_z \sigma_z + v_0 \mathbb{I} \). We consider the non-trivial case \(v = \sqrt{v_x^2 + v_y^2} \neq 0 \). The evolution operator produced by \(\delta f(t) = 0 \) has the form \(U_t^0 = e^{-it\sigma_z} \). Introducing the angle \(\phi = \arctan(v_y/v_x) \), we can write \(V_t := V_t^0 := U_t^0 V U_t^0 = v \cos(2t - \phi)\sigma_x - v \sin(2t - \phi)\sigma_y + v_z \sigma_z + v_0 \). This gives for the gradient of the objective

\[\nabla \mathcal{F}_f(t) = v \cos(2t - \phi)L(\sigma_x) - v \sin(2t - \phi)L(\sigma_y) + v_z L(\sigma_z) \]

Suppose \(v_z \neq 0 \) or \(L(\sigma_z) = 0 \). If \(f_0 \) is a critical point, then the gradient \(\nabla \mathcal{F}_f(t) = 0 \) for any \(t \in [0, T] \) and, therefore \(L(\sigma_x) = L(\sigma_y) = 0 \). In addition, \(L(\mathbb{I}) = 0 \) for any phase-invariant objective and hence \(L \equiv 0 \) on \(\mathcal{M}_2 \). Then similarly to the proof of the Theorem 1 we conclude that \(f = f_0 \) is not a trap (it can be either a global maximum or a global minimum).

Now consider the case \(v_z = 0 \) and \(L(\sigma_z) \neq 0 \). For this case we assume in addition that the interaction is traceless, that is \(v_0 = \text{Tr} V = 0 \). The evolution operator produced by a small variation of the control \(\delta f \) can be represented as \(U_T^f = U_T^0 \tilde{U}_T \), where \(U_T^0 = e^{-iT\sigma_z} \) and \(\tilde{U}_T \) satisfies

\[\tilde{U}_T = i\delta f(t) V_t^0 \tilde{U}_t^{\delta f}, \quad U_0^{\delta f} = \mathbb{I} \]

The operator \(\tilde{U}_T \) can be computed up to the second order in \(\delta f \) as

\[\tilde{U}_T^{\delta f} = \mathbb{I} + A_1 + A_2 + o(\|\delta f\|^2) \]

\[A_1 = -i \int_0^T dt \delta f(t) V_t^0, \]

\[A_2 = - \int_0^T dt_1 \int_0^{t_1} dt_2 \delta f(t_1) \delta f(t_2) V_{t_1}^0 V_{t_2}^0 \]

We choose \(\delta f_1 \) and \(\delta f_2 \) such that \(A_1 = 0 \), that is,

\[\int_0^T dt \delta f_k(t) \cos 2t = \int_0^T dt \delta f_k(t) \sin 2t = 0 \quad (k = 1, 2) \] (8)

For such \(\delta f_k \) noting that \(V_{t_1}^0 V_{t_2}^0 = v^2[\cos(2(t_1 - t_2) + i\sigma_z \sin(2(t_1 - t_2))] \), we get \(A_2 = -i I(\delta f_k)\sigma_z \), where

\[I(\delta f) = v^2 \int_0^T dt_1 \int_0^{t_1} dt_2 \delta f(t_1) \delta f(t_2) \sin 2(t_1 - t_2). \]

Then, up to the second order in \(\delta f \) we have

\[\mathcal{F}(\delta f) = \mathcal{F}(U_T^0(\mathbb{I} + A_2 + \ldots)) \]

\[= \mathcal{F}(U_T^0) + \text{Tr} \left(\frac{\delta \mathcal{F}}{\delta U} \bigg|_{U=U_T^0} A_2 \right) + o(\|\delta f\|^2) \]

\[= \mathcal{F}(U_T^0) + I(\delta f) L(\sigma_z) + o(\|\delta f\|^2) \]
Now suppose $T \geq \pi$ in the rescaled time frame (that corresponds to $T \geq \pi/(\|H_0 - \frac{1}{2} \text{Tr} H_0 + f_0 V\|)$ in the original time frame). We will show the existence of variations δf_1 and δf_2 which satisfy Eq. (3) and produce $I(\delta f_1)$ and $I(\delta f_2)$ with opposite signs. An example is $\delta f_1(t) = \chi_{[0,\pi]}(t)$ and $\delta f_2(t) = \cos(4t) \chi_{[0,\pi]}(t)$, where $\chi_{[0,\pi]}(t)$ is the characteristic function of the interval $[0,\pi]$. For these variations $I(\delta f_1) = \pi \nu^2/2$ and $I(\delta f_2) = -\pi \nu^2/12$. Therefore for $L(\sigma_z) \neq 0$ there exist directions at $f(t) = 0$ in which the objective increases and directions in which it decreases. This means that $f(t) = 0$ for Eq. (7) (and thus $f(t) = f_0$ for Eq. (6)) is neither a local maximum nor a local minimum, and hence is not a trap. This proves the lemma.

Our main result is the following theorem.

Theorem 1 Suppose the only extrema of the kinematic landscape $\mathcal{F}(U)$ are global maxima and global minima. If $\text{Tr} V = 0$ and $T \geq \pi/(\|H_0 - \frac{1}{2} \text{Tr} H_0 + f_0 V\|)$, then the only extrema of the dynamic landscape $\mathcal{F}(f)$ are global maxima and global minima.

Proof. Consider first the case $f(t) \neq f_0$. The variation of U_T^f has the form $\delta U_T^f / \delta f(t) = -i U_T^f V_T^f$, where $V_T^f = U_T^{f^\dagger} V_U^{f^\dagger}$. By the chain rule,

$$\frac{\delta \mathcal{F}}{\delta f(t)} = \text{Tr} \left(\frac{\delta \mathcal{F}}{\delta U} \bigg|_{U=U_T^f} \frac{\delta U_T^f}{\delta f(t)} \right) = -i \text{Tr} \left(\frac{\delta \mathcal{F}}{\delta U} \bigg|_{U=U_T^f} U_T^{f^\dagger} V_T^f \right) =: L(V_T^f)$$

Denoting $X = -i(\delta \mathcal{F}/\delta U) U_T$, we get $L(A) = \text{Tr}(X A)$. The assumption $\mathcal{F}(U e^{i\phi}) = \mathcal{F}(U)$ for any ϕ implies that $L(1) = 0$. Indeed, then

$$0 = \frac{\partial \mathcal{F}(U_T^{f^\dagger} e^{i\phi})}{\partial \phi} \bigg|_{\phi=0} = i \text{Tr} \left(\frac{\delta \mathcal{F}}{\delta U} \bigg|_{U=U_T^f} U_T^{f^\dagger} \right) = -L(1)$$

If $f(t)$ is a critical control, then also $L(V_\dagger) = 0$ and the Lemma implies $L \equiv 0$. Taking $A = X^\dagger$, we get $L(X^\dagger) = \text{Tr}(X X^\dagger) = 0$ and therefore $X = 0$. Since U_T^f is unitary, that implies $\delta \mathcal{F}/\delta U = 0$, i.e. f is an extrema of the functional $\mathcal{F}(f)$ if and only if $U = U_T^f$ is an extrema of the function \mathcal{F}. Hence if the only extrema of \mathcal{F} are global maxima and global minima, then the same is true for $\mathcal{F}(f)$ apart possibly of the exceptional control $f = f_0$. The control $f(t) = f_0$ requires a separate analysis and is shown to be not a trap in Lemma 2. This completes the proof.

Remark 2 The statement of Theorem 1 is non-trivial and is a special property of two-level systems. In general, the trap-free property of $\mathcal{F}(U)$ might not imply the trap-free property of $\mathcal{F}(f)$ as was shown for various n-level systems with $n \geq 3$ [25, 22].

Remark 3 The statement of Lemma 2 means that the map $f \rightarrow U_T^f$ has the maximal rank at each point U_T^f of the unitary group SU(2) because the gradient $\nabla f U_T^f$ is surjective on the tangent bundle of SU(2). In this case, as follows from [22, Theorem 1], the critical points of the kinematic landscape are in bijective correspondence with the critical points of the dynamic landscape. Thus, if the kinematic landscape has not only global maxima and global minima but also saddle points, then the statement of Theorem 1 about the absence of traps remains valid.

While this theorem can be used to prove the absence of traps for objectives \mathcal{F}_O and \mathcal{F}_W, below we treat these important cases independently.

Theorem 2 Let $\text{Tr} V = 0$ and $T \geq \pi/(\|H_0 - \frac{1}{2} \text{Tr} H_0 + f_0 V\|)$. Then the only extrema of $\mathcal{F}_O(f)$ (hence also of $\mathcal{F}_{1\rightarrow 1}(f)$ as well) are global maxima and global minima.
The solution \(y \) maximum \(F \). The compatibility of the system for other solutions requires \(z \).

References

This work was supported by the Russian Foundation for Basic Research, project no. 14-01-31115.

Acknowledgements

The solution \(f \neq f_0 \). The gradient of the objective \(\mathcal{F}_O \) is \(\nabla \mathcal{F}_O(t) = L_O(V_t) \), where the map \(L_O : M_2 \rightarrow \mathbb{R} \) is defined by

\[
L_O(A) = -i\text{Tr}(|\rho_0, OA|)
\]

with \(O_T = U_T^f U_T^f \). At any critical control, \(\nabla \mathcal{F}_O = 0 \) and hence \(L_O(V_t) = 0 \). Clearly, \(L_O(1) = 0 \). Then the Lemma implies that \(L_O \equiv 0 \). In this proof, we denote by \(|f| \) vector such that \(O_T = |f\rangle \langle f| \), and denote by \(|f_\perp| \) vector orthogonal to \(|f| \). Now take the operators \(A = |f_\perp\rangle \langle f| + |f\rangle \langle f_\perp| \) and \(A' = i(|f_\perp\rangle \langle f| - |f\rangle \langle f_\perp|) \). The equalities \(L_O(A) = 0 \) and \(L_O(A') = 0 \) imply \(\text{Im}(f_\perp|\rho_0|f) = 0 \) and \(\text{Re}(f_\perp|\rho_0|f) = 0 \), respectively. Hence \((f_\perp|\rho_0|f) = 0 \) and therefore \(|f| \) is an eigenstate of \(\rho_0 \). Its only possible eigenvalues are \(\omega_0 \) and \(\omega_1 \) that correspond to the global minimum \((\mathcal{F}_O^\text{min} = \langle f|\rho_0|f \rangle = \omega_0 \) and the global maximum \((\mathcal{F}_O^\text{max} = \langle f|\rho_0|f \rangle = \omega_1 \) of the objective, respectively. These are the only allowed critical points except of \(f(t) \equiv f_0 \). The proof for the exceptional case \(f_0 \) follows from Lemma \cite{2}.

Theorem 3 Let \(\text{Tr} V = 0 \) and \(T \geq \pi/(\|H_0 - \frac{1}{2}\text{Tr} H_0 + f_0 V\|) \). Then the only extrema of \(\mathcal{F}_W(f) \) are global maxima and global minima.

Proof. First we consider the case \(f \neq f_0 \). The gradient of the objective \(\mathcal{F}_W \) has the form \(\nabla \mathcal{F}_W(t) = L_W(V_t) \), where the map \(L_W : M_2 \rightarrow \mathbb{R} \) is defined by

\[
L_W(A) = \frac{1}{2} \left[\Im \text{Tr} Y \cdot \Re \text{Tr}(YA) - \Re \text{Tr} Y \cdot \Im \text{Tr}(YA) \right]
\]

Here \(Y = W^\dagger U_T^f \) (\(Y \) is unitary). Clearly, \(L_W(1) = 0 \). At any critical control \(\nabla \mathcal{F}_W = 0 \) and hence Lemma \cite{1} implies that \(L_W \equiv 0 \). We consider the operators \(A = Y + Y^\dagger \) and \(A' = i(Y - Y^\dagger) \) and denote \(\text{Tr} Y = y_R + iy_3 \) and \(\text{Tr} Y^2 = z_R + iz_3 \), where \(y_R \) and \(y_3 \) are real and imaginary parts of \(\text{Tr} Y \), \(z_R \) and \(z_3 \) are real and imaginary parts of \(\text{Tr} Y^2 \). The equalities \(L_W(A) = L_W(A') = 0 \) become

\[
\begin{align*}
y_3 y_R - (z_R + 2)y_3 &= 0 \\
(z_R - 2)y_R + z_3 y_3 &= 0
\end{align*}
\]

The solution \(y_R = y_3 = 0 \) corresponds to the global minimum of the objective \((\mathcal{F}_W^\text{min} = 0) \). The compatibility of the system for other solutions requires \(z_R^2 + z_3^2 = \|\text{Tr} Y^2\|^2 = 4 \). Since \(\mathcal{F} = (1/4)|\text{Tr} Y|^2 = (1/4)|\text{Tr} Y^2|^2 \), that implies that these solutions correspond to the global maximum \(\mathcal{F}_W^\text{max} = 1 \) and no other solutions exist. The proof for the exceptional case \(f_0 \) follows from Lemma \cite{2}.

References

[1] D. D’Alessandro, *Introduction to Quantum Control and Dynamics*. Chapman & Hall, Boca Raton, 2008.

[2] P. W. Brumer and M. Shapiro, *Principles of the Quantum Control of Molecular Processes*. Wiley-Interscience, 2003.

[3] *Control of Molecular and Quantum Systems*. (in Russian), Eds. A. L. Fradkov and O. A. Yakubovskii. Institute for Computer Studies, Moscow-Izhevsk, 2003.
[4] D. J. Tannor, *Introduction to Quantum Mechanics: A Time Dependent Perspective*. University Science Press, Sausalito, 2007.

[5] V. S. Letokhov, *Laser Control of Atoms and Molecules*. Oxford University Press, USA, 2007.

[6] C. Brif, R. Chakrabarti, and H. Rabitz, Control of quantum phenomena, in Advances in Chemical Physics, Ed. by S. A. Rice and A. R. Dinner (J. Wiley & Sons, New York, 2012), Vol. 148, pp. 1-76.

[7] The Nobel Prize in Physics 2012 Press Release, 9 October 2012.

[8] G. Gordon, G. Kurizki, and D. Lidar, Optimal dynamical decoherence control of a qubit, Phys. Rev. Lett. 101, 010403 (2008).

[9] E. Shahmoon, S. Levit, and R. Ozeri, Qubit coherent control and entanglement with squeezed light fields, Phys. Rev. A 80, 033803 (2009).

[10] K. De Greve, P. L. McMahon, D. Press, et al., Ultrafast coherent control and suppressed nuclear feedback of a single quantum dot hole qubit, *Nature Phys.* 7, 872–878 (2011).

[11] C. Ospelkaus, U. Warring, Y. Colombe, et al., Microwave quantum logic gates for trapped ions, Nature 476, 181–184 (2011).

[12] N. K. Langford, S. Ramelow, R. Prevedel, et al., Efficient quantum computing using coherent photon conversion, Nature 478, 360–363 (2011).

[13] R. Blatt and C. F. Roos, Quantum simulations with trapped ions, Nature Phys. 8, 277 (2012).

[14] A. Bocharov and K. M. Svore, Resource-optimal single-qubit quantum circuits, Phys. Rev. Lett. 109, 190501 (2012).

[15] P. de Fouquieres, Implementing quantum gates by optimal control with doubly exponential convergence, Phys. Rev. Lett. 108, 110504 (2012).

[16] T. Schulte-Herbrüggen, R. Marx, A. Fahmy, et al., Control aspects of quantum computing using pure and mixed states, Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 370, 4651-4670 (2012).

[17] P. de Fouquieres, S. G. Schirmer, S. J. Glaser, and I. Kuprov, Second order gradient ascent pulse engineering, J. Magn. Reson. 212, 412-417 (2011).

[18] Y. Maday and G. Turinici, New formulations of monotonically convergent quantum control algorithms, J. Chem. Phys. 118, 8191-8196 (2003).

[19] L. Viola, E. Knill, and S. Lloyd, Dynamical decoupling of open quantum systems, Phys. Rev. Lett. 82, 2417 (1999).

[20] A. M. Souza, G. A. Alvarez, and D. Suter, Experimental protection of quantum gates against decoherence and control errors, Phys. Rev. A 86, 050301(R) (2012).

[21] T. Schulte-Herbrueggen, S. J. Glaser, G. Dirr, U. Helmke, Gradient flows for optimization in quantum information and quantum dynamics: Foundations and applications, Rev. Math. Phys. 22, 597–667 (2010).
[22] H. Rabitz, M. Hsieh, and C. Rosenthal, Quantum optimally controlled transition landscapes, Science 303, 1998 (2004).

[23] M. Hsieh, R. Wu, H. Rabitz, and D. Lidar, Optimal control landscape for the generation of unitary transformations with constrained dynamics, Phys. Rev. A 81, 062352 (2010).

[24] A. N. Pechen and H. Rabitz, Unified analysis of terminal-time control in classical and quantum systems, Europhysics Letters, 91, 60005 (2010).

[25] A. N. Pechen and D. J. Tannor, Are there traps in quantum control landscapes?, Phys. Rev. Lett. 106, 120402 (2011).

[26] K. W. Moore and H. Rabitz, Exploring quantum control landscapes: Topology, features, and optimization scaling, Phys. Rev. A 84, 012109 (2011).

[27] A. N. Pechen and D. J. Tannor, Pechen and Tannor reply, Phys. Rev. Lett. 108, 198902 (2012).

[28] A. N. Pechen and N. B. Ilin, Trap-free manipulation in the Landau-Zener system, Phys. Rev. A 86, 052117 (2012).

[29] P. de Fouquieres and S. G. Schirmer, A closer look at quantum control landscapes and their implication for control optimization, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 16(3), 1350021 (2013).

[30] A. N. Pechen and D. J. Tannor, Quantum control landscape for a Λ-atom in the vicinity of second-order traps, Israel Journal of Chemistry 52, 467 (2012).

[31] A. N. Pechen and D. J. Tannor, Control of quantum transmission is trap free, Canadian Journal of Chemistry 92(2), 157–159 (2014).

[32] R. Wu, A. Pechen, H. Rabitz, M. Hsieh, B. Tsou, Control landscapes for observable preparation with open quantum systems, J. Math. Phys. 49(2), 022108 (2008).