High p_T identified hadrons in large and small systems measured by PHENIX

Balazs Ujvari (for the PHENIX Collaboration)
University of Debrecen, H-4032 Debrecen, Egyetem ter 1, Hungary
E-mail: balazs.ujvari@science.unideb.hu

Abstract. The PHENIX experiment at RHIC measured identified hadrons in several collision systems and centrality classes. Measurements were performed in different years and independent decay modes. The mesons show universal high-p_T suppression in the different collision systems which suggest no dependency on the size of the projectile. Yields of π^0, η, K_S, K^* and Φ mesons measured in large systems show similar suppression pattern at $\sqrt{s_{NN}} = 200$ GeV for similar numbers of participant nucleons. In the intermediate p_T region, between 2 and 5 GeV/c, a significant enhancement of baryon-to-meson ratios compared to those measured in pp collisions is observed. In small systems an ordering ($R_{pA} > R_{dA} > R_{HeA}$) for the mesons ($\pi^0$ and Φ) at mid-p_T was observed.
1. Introduction

One of the most important tools to study the properties of the Quark Gluon Plasma (QGP), formed in relativistic heavy ion collisions [1, 2, 3, 4], is the production of high p_T hadrons which as a rule are leading fragments of jets from hard scattered partons at the earliest stage of the collision [5]. Except for possible nuclear modifications of the parton distribution functions, the initial spectrum of the hard scattered partons is expected to be the same irrespective whether the scattering occurred in pp or nucleus-nucleus (NN) collision. However, if a hot, dense, colored medium is formed in NN, the scattered parton will traverse it and interact with it, losing energy [6]. Therefore, when they fragments into final state colorless particles, their average momentum, including that of the leading particle, will usually be smaller compared to the momenta of final state particles from a pp collision with similar hard scattering. As a result, the spectra of high p_T particles in NN will be shifted down with respect to the pp spectra scaled by the number of binary nucleon-nucleon collisions. The simplest observable to quantify this shift is the nuclear modification factor R_{AB} defined as

$$R_{AB}^{cent}(p_T) = \frac{1}{T_{AB}^{cent}} \frac{dN_{AB}^{cent}/dp_T}{d\sigma_{pp}/dp_T}$$

where A, B are the two nuclei, the upper index $cent$ is the centrality of the collision as derived from the Glauber-model [7, 8], dN_{AB}^{cent} is the invariant yield of the observable (high p_T hadron), $d\sigma_{pp}/dp_T$ is the cross-section for production of the hadron in pp collisions, while T_{AB} is the nuclear overlap function, proportional to the the number of binary nucleon-nucleon collisions at a given centrality ($N_{coll} = T_{AB}^{cent} \sigma_{NN}$). The volume of the overlap region is characterized by the number of ”participating” nucleons N_{part} [9].

The energy loss of the hard scattered parton depends, among others, on the path-length in the medium, which in turn can be controlled to some extent with the collision geometry. The idea and its limitations are illustrated in Figure 1. Partons scattered near the surface of the overlap volume (color shaded area) often have little medium to traverse before they exit in the vacuum and fragment, on the other hand, less frequently, have unusually high path in the medium. (Note that this ”surface bias” is a well-known phenomenon, that can be remedied studying the asymmetry of back-to-back dijets, but here we study single inclusive spectra.) The bias clearly increases with the surface to volume ratio, which in turn, for any fixed overlap volume (i.e. N_{part}) is maximum if the two colliding nuclei are of the same size (Au+Au in Figure 1). If one is much smaller than the other (Cu+Au), the same size (N_{part}) overlap volume is closer to spherical, decreasing the surface bias. Therefore, it is very interesting to compare R_{AB} as a function of N_{part} for same size (Au+Au) and different size (Cu+Au) nuclei. Note that both nuclei are spherical which makes determination of the overlap geometry (volume shape) relatively straightforward. The same is not true for U+U collisions; the nuclei are oblong, and their relative orientation can not be clearly determined event-by-event, also, N_{part} is no longer a reliable measure of the overlap volume. Fully aligned ”tip-to-tip” or ”body-to-body” collisions have the same N_{part}, but much smaller volume and higher energy density in case of ”tip-to-tip”, and vice versa for ”body-to-body” collisions. Nonetheless, in extreme cases they provide the highest possible (at RHIC) energy density QGP, so measuring their R_{AA} is very important.

Another interesting question is to study whether the flavor content of the leading (highest p_T) hadron makes any difference in the R_{AB}. The results presented include R_{AB} of mesons with light quarks only, with hidden strangeness and with open strangeness.

Contrary to mesons – where R_{AB} is everywhere at or below unity – baryons are typically enhanced at 2-3 GeV/c in p_T. This observation helps to shed light on the physics of hadronization. While at higher p_T virtually the sole possible source of hadrons is jet fragmentation, at lower p_T this is not the case. If a thermalized QGP was formed, up to a certain baryon p_T recombination of three quarks with momenta at the higher end of the thermal
distribution is a plausible source of moderate p_T baryons. Therefore, the observed ”baryon enhancement” is a powerful constraint on the QGP equation of state and the recombination model.

A fourth line of inquiry is collisions of very small and large ions (p+Au, d+Au, 3He+Au). Azimuthal asymmetries in particle emission at mid-rapidity indicated that formation of QGP even in such small systems is a plausible possibility. In large colliding systems such asymmetries always came hand in hand with strong suppression of high p_T leading hadrons (small R_{AB}). Therefore, it is paramount to study R_{AB} in small-on-large systems, too, although we should emphasize, that lack of suppression in p/d/3He+Au in itself does not disprove the creation of QGP in those systems. Parton energy loss depends on path length in the medium, and even if droplets of QGP are formed, they might be too small to induce any measurable energy loss. – Also, at intermediate p_T (2-5 GeV/c) it is important to see whether a ”Cronin-type” enhancement can be observed or not [10].

2. Experimental Details
All results presented are from data taken and analyzed by the PHENIX experiment (see Fig. 2) at the Relativistic Heavy Ion Collider (RHIC). The Cu+Au data were collected in 2012 [11], Au+Au in 2004 [12] and 2007 [13], Cu+Cu in 2005 [14], U+U in 2012 [15], p+Au in 2015, d+Au in 2003 [16] and 2008 [17], and 3He+Au in 2014.

For Year-2004 data collision centrality was determined from the correlation between the number of charged particles detected in the Beam-Beam Counters (BBC, 3.0 < $|\eta|$ < 3.9) and the energy measured in the Zero Degree Calorimeters (ZDC). For all other data the centrality classification was done solely with the total charge observed in the BBC. The two central spectrometer arms cover $|\eta|$ < 0.35 and an azimuthal angle range of $\pi/2$ each. The

![Figure 1. Cartoon showing Au+Au and Cu+Au collisions with comparable N_{part}. On panel (b) the overlap area is asymmetric, and part of the dilute surfaces of Au and Cu (corona) overlap.](image-url)
electromagnetic calorimeter (EMCal) consists of eight sectors, two are composed of lead-glass (PbGl) towers in the bottom sectors of the east arm while the remaining six are composed of lead-scintillator (PbSc) modules. Requiring energy-momentum matching with an associated hit in the Ring Imaging Čerenkov Counter (RICH) provides a hadron rejection factor of better than 10^4 up to 4.9 GeV/c momentum, thus providing good electron identification. Each arm is instrumented with a drift chamber (DC) and pad chambers (PCs) that determine the trajectories, and together with a magnetic field, measure the momenta of charged particles. The Time-of-Flight (TOF) detector identifies charged hadrons, i.e. pions, kaons and protons. Neutral pions and η are measured via the $\pi^0(\eta) \to \gamma\gamma$ decay channel. The K^0_S meson is reconstructed via the $K^0_S \to \pi^0\pi^0 \to 4\gamma$ decay mode. The K^0_S and \bar{K}^0_S mesons are reconstructed via the $K^0 \to K^+\pi^-$ and $\bar{K}^0 \to K^-\pi^+$ decay modes, respectively. Φ is reconstructed in the K^+K^- decay channel.

3. Results for large systems

In central Cu+Au collisions the Cu nucleus is fully submerged in the Au nucleus, which results in the reduction of nucleon-nucleon interactions in the corona region of the collision (see Fig. 1). In semi-central Cu+Au collisions an asymmetry of the nuclear overlap region is present along the axis connecting the centers of the interacting nuclei. These features make Cu+Au collision system an important part of the systematic study of the final-state effects in heavy-ion collisions.

Measurements of the production of different types of mesons (π^0, η, K, ϕ) allow a systematic study of jet quenching with respect to the fragmentation function and quantum numbers (mass, flavour, spin, etc.) of the final state hadrons. The nuclear modification factor R_{AB} of π^0, η, K^* and Φ mesons as functions of p_T are shown in Fig. 3 for different Cu+Au centrality intervals. For both π^0 and η R_{AB} is consistent within uncertainties in the whole p_T range for every analyzed centrality interval of Cu+Au collisions. For open or pure strangeness mesons the R_{AB} is larger at low p_T but the difference disappears at higher p_T.

Figure 2. Layout of the PHENIX detector
The nuclear modification factor R_{AA} of π^0, η, K_S, K^* and Φ mesons as functions of p_T is shown in Fig. 4 for different U+U centrality intervals. The absolute values are smaller than those in Cu+Au, but the pattern of separation of the π^0 and η from the open or pure strangeness mesons is similar, as is the p_T where the difference between them disappears.

Figure 3. R_{AB} for K^* and Φ meson $> R_{AB}$ for π^0 and η at low p_T in central events, difference disappears at high p_T.

Figure 4. R_{AA} of π^0, η, K^*, K_S and Φ mesons measured as a function of p_T in different centrality intervals of U+U collisions at $\sqrt{s_{NN}} = 192$ GeV.

Fig. 5 compares R_{AB} of π^0 mesons measured as a function of p_T in Cu+Au, Au+Au and Cu+Cu collisions at $\sqrt{s_{NN}} = 200$ GeV and at similar N_{part}. In central and semi-central Cu+Au collisions the π^0 R_{AB} is consistent with those measured in Au+Au and Cu+Cu, if applicable, which suggests that π^0 suppression mostly depends on the energy density and size of the produced medium. Since in the most central collisions the Cu ion is fully submerged in Au, without any "corona", but the suppression is the same as in Au+Au at comparable N_{part}, the corona-effect is either non-existent or very small compared to the uncertainties of the measurement.
Figure 5. Comparison of $\pi^0 R_{AB}$ measured in Cu+Au, Au+Au and Cu+Cu collisions.

As for baryons, Fig. 6 shows R_{AB} of $(p+\bar{p})/2$ as a function of p_T in different centrality classes in Cu+Au and Au+Au [18] at $\sqrt{s_{NN}} = 200$ GeV and similar N_{part}. Baryon enhancement is present in both systems, it reaches a maximum value above unity between 2 and 3 GeV, but above 3 GeV the R_{AB} values decrease and a suppression pattern emerges. The peripheral proton R_{AB}—smaller to begin with—decreases more slowly than the central proton R_{AB} and they reach unity at about the same p_T.

Figure 6. R_{AB} of $(p+\bar{p})/2$ consistent across Cu+Au and Au+Au [18] at similar N_{part}
4. Results for small systems
Since π^0 R_{AB} has been widely investigated in all large collision systems and up to a high p_T, it is a natural first candidate to investigate the nuclear modification factor of leading hadrons of jets in small system collisions, too. PHENIX measured the R_{AB} of π^0 in in p+Au (preliminary), d+Au [19] and 3He+Au (preliminary) collisions at $\sqrt{s_{NN}} = 200$ GeV, shown in Fig. 7. In central collisions a clear enhancement is observed at p_T about 5 GeV/c in p+Au collisions, while it disappears in the d+Au and 3He+Au collisions. Note that if the enhancement in p+Au is indeed a "Cronin-peak", it shows up at higher p_T than expected [10]. On the other hand at high p_T all three systems show a comparable suppression. The high-p_T nuclear modification is very comparable in the different collision systems: it appears to be independent on the projectile (p, d or 3He).

Due to its composition $\Phi(s\bar{s})$ is a very sensitive probe of the formation and evolution of the QGP both when compared to non-strange mesons and double-strange baryons [20]. For central collisions the R_{AB} of Φ shows enhancement at p+Au and d+Au [17] at p_T about 5 GeV, in

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure7.png}
\caption{R_{AB} of π^0, Φ mesons measured as a function of p_T in small systems in central and peripheral collisions}
\end{figure}
peripheral collisions the data are also consistent with unity within the experimental uncertainties.

5. Summary
In the Au+Au, Cu+Au, Cu+Cu and U+U collisions we observed an universal high p_T suppression for all measured mesons, which suggests that the QGP medium produced in these collisions either does not affect the jet fragmentation into light mesons or it affects them the same way. The nuclear modification factor of the mesons mostly depends on the energy density and size of the produced medium, characterized by N_{part}. At low p_T the strange mesons show an intermediate suppression between the more suppressed π^0 and the unsuppressed baryons. In the intermediate p_T region, between 2 and 5 GeV, a significant enhancement of baryon-to-meson ratios compared to those measured in pp collisions is observed. In small systems the data suggest an ordering ($R_{pA} > R_{dA} > R_{HeA}$) between the different collision systems for the mesons at mid-p_T. At high-p_T the nuclear modification factor is very similar between the different collision systems which suggest no dependency on the size of the projectile.

Acknowledgments
We thank the staff of the Collider-Accelerator and Physics Departments at Brookhaven National Laboratory and the staff of the other PHENIX participating institutions for their vital contributions. Thanks to the National Research, Development and Innovation Office (Hungary) OTKA-131991. The research was financed by the Thematic Excellence Programme of the Ministry for Innovation and Technology in Hungary (ED 18-1-2019-0028), within the framework of the Space Sciences thematic programme of the University of Debrecen.
References

[1] I. Arsene et al. “Quark gluon plasma and color glass condensate at RHIC? The Perspective from the BRAHMS experiment”. In: Nucl. Phys. A 757 (2005), p. 1. DOI: 10.1016/j.nuclphysa.2005.02.150.

[2] B. B. Back et al. “The PHOBOS perspective on discoveries at RHIC”. In: Nucl. Phys. A 757 (2005), p. 28. DOI: 10.1016/j.nuclphysa.2005.03.084.

[3] J. Adams et al. “Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisions”. In: Nucl. Phys. A 757 (2005), p. 102. DOI: 10.1016/j.nuclphysa.2005.03.085.

[4] K. Adcox et al. “Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration”. In: Nucl. Phys. A 757 (2005), p. 184. DOI: 10.1016/j.nuclphysa.2005.03.086.

[5] J. D. Bjorken. Energy Loss of Energetic Partons in Quark-Gluon Plasma: Possible Extinction of High p(t) Jets in Hadron-Hadron Collisions. FERMILAB-PUB-82-059-TH, FERMILAB-PUB-82-059-T. 1982.

[6] Guang-You Qin and Xin-Nian Wang. “Jet quenching in high-energy heavy-ion collisions”. In: Quark-Gluon Plasma 5. Ed. by Xin-Nian Wang. Vol. 24. 11. Oct. 2015, p. 1530014. DOI: 10.1142/S0218301315300143. arXiv: 1511.00790 [hep-ph].

[7] R. J. Glauber. Lectures in Theoretical Physics. New York: Interscience, 1959, p. 315.

[8] Roy J. Glauber. “Quantum Optics and Heavy Ion Physics”. In: Nucl. Phys. A 774 (2006), pp. 3–13. DOI: 10.1016/j.nuclphysa.2006.06.009. arXiv: nucl-th/0604021 [nucl-th].

[9] Michael L. Miller et al. “Glauber modeling in high energy nuclear collisions”. In: Ann. Rev. Nucl. Part. Sci. 57 (2007), pp. 205–243. DOI: 10.1146/annurev.nucl.57.090506.123020. arXiv: nucl-ex/0701025.

[10] J.W. Cronin et al. “Production of hadrons with large transverse momentum at 200, 300, and 400 GeV”. In: Phys. Rev. D 11 (1975). Ed. by J.R. Smith, pp. 3105–3123. DOI: 10.1103/PhysRevD.11.3105.

[11] C. Aidala et al. “Production of π0 and η mesons in Cu+Au collisions at √s_{NN}=200 GeV”. In: Phys. Rev. C 98.5 (2018), p. 054903. DOI: 10.1103/PhysRevC.98.054903. arXiv: 1805.04389 [hep-ex].

[12] A. Adare et al. “Suppression pattern of neutral pions at high transverse momentum in Au+Au collisions at √s_{NN} = 200 GeV and constraints on medium transport coefficients”. In: Phys. Rev. Lett. 101 (2008), p. 232301. DOI: 10.1103/PhysRevLett.101.232301. arXiv: 0801.4020 [nucl-ex].

[13] A. Adare et al. “Neutral pion production with respect to centrality and reaction plane in Au+Au collisions at √s_{NN} = 200 GeV”. In: Phys. Rev. C 87.3 (2013), p. 034911. DOI: 10.1103/PhysRevC.87.034911. arXiv: 1208.2254 [nucl-ex].

[14] A. Adare et al. “Onset of π0 Suppression Studied in Cu+Cu Collisions at √s_{NN} =22.4, 62.4, and 200 GeV”. In: Phys. Rev. Lett. 101 (2008), p. 162301. DOI: 10.1103/PhysRevLett.101.162301. arXiv: 0801.4555 [nucl-ex].

[15] U. Acharya et al. “Production of π0, η, and K_S mesons in U+U collisions at √s_{NN} = 192 GeV”. In: (May 2020). arXiv: 2005.14686 [hep-ex].

[16] S.S. Adler et al. “Centrality dependence of pT0 and eta production at large transverse momentum in s(NN) =200-GeV d+Au collisions”. In: Phys. Rev. Lett. 98 (2007), p. 172302. DOI: 10.1103/PhysRevLett.98.172302. arXiv: nucl-ex/0610036.
[17] Adare et al. “Nuclear modification factors of ϕ mesons in $d + Au$, Cu + Cu, and Au + Au collisions at $\sqrt{s_{NN}} = 200$ GeV”. In: Phys. Rev. C 83 (2 Feb. 2011), p. 024909. DOI: 10.1103/PhysRevC.83.024909. URL: https://link.aps.org/doi/10.1103/PhysRevC.83.024909.

[18] A. Adare et al. “Spectra and ratios of identified particles in Au+Au and $d + Au$ collisions at $\sqrt{s_{NN}} = 200$ GeV”. In: Phys. Rev. C 88 (2 Aug. 2013), p. 024906. DOI: 10.1103/PhysRevC.88.024906. URL: https://link.aps.org/doi/10.1103/PhysRevC.88.024906.

[19] S. Adler et al. “Centrality Dependence of π^0 and η Production at Large Transverse Momentum in $\sqrt{s_{NN}} = 200$ GeV $d + Au$ Collisions”. In: Phys. Rev. Lett. 98 (17 Apr. 2007), p. 172302. DOI: 10.1103/PhysRevLett.98.172302. URL: https://link.aps.org/doi/10.1103/PhysRevLett.98.172302.

[20] Peter Koch, Berndt Müller, and Johann Rafelski. “From strangeness enhancement to quark–gluon plasma discovery”. In: Int. J. Mod. Phys. A 32.31 (2017), p. 1730024. DOI: 10.1142/S0217751X17300241. arXiv: 1708.08115 [nucl-th].