On the rate of convergence to the semi-circular law

F. Götze
Faculty of Mathematics
University of Bielefeld
Germany

A. Tikhomirov
Department of Mathematics
Komi Research Center of Ural Branch of RAS,
Syktyvkar state University
Syktyvkar, Russia

September 6, 2011

Abstract

Let $X = (X_{jk})$ denote a Hermitian random matrix with entries X_{jk}, which are independent for $1 \leq j \leq k$. We consider the rate of convergence of the empirical spectral distribution function of the matrix X to the semi-circular law assuming that $E X_{jk} = 0$, $E X_{jk}^2 = 1$ and that the distributions of the matrix elements X_{jk} have a uniform sub exponential decay in the sense that there exists a constant $\kappa > 0$ such that for any $1 \leq j \leq k \leq n$ and any $t \geq 1$ we have

$$\Pr\{|X_{jk}| > t\} \leq \kappa^{-1} \exp\{-t^\kappa\}.$$

By means of a short recursion argument it is shown that the Kolmogorov distance between the empirical spectral distribution of the Wigner matrix $W = \frac{1}{\sqrt{n}} X$ and the semicircular law is of order $O(n^{-1} \log^b n)$ with some positive constant $b > 0$.

1 Introduction

Consider a family $X = \{X_{jk}\}$, $1 \leq j \leq k \leq n$, of independent random variables defined on some probability space $(\Omega, \mathcal{F}, \Pr)$. Assume that $X_{jk} = X_{kj}$, for $1 \leq k <
The rate of convergence to the semi-circular law

\[j \leq n, \text{ and introduce the symmetric matrices} \]

\[W = \frac{1}{\sqrt{n}} \begin{pmatrix} X_{11} & X_{12} & \cdots & X_{1n} \\ X_{21} & X_{22} & \cdots & X_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ X_{n1} & X_{n2} & \cdots & X_{nn} \end{pmatrix}. \]

The matrix \(W \) has a random spectrum \(\{\lambda_1, \ldots, \lambda_n\} \) and an associated spectral distribution function

\[F_n(x) = \frac{1}{n} \text{card} \{j \leq n : \lambda_j \leq x\}, \quad x \in \mathbb{R}. \]

Averaging over the random values \(X_{ij}(\omega) \), define the expected (non-random) empirical distribution functions

\[F_n(x) = \mathbb{E} F_n(x). \]

Let \(G(x) \) denote the semi-circular distribution function with density \(g(x) = G'(x) = \frac{1}{2\pi} \sqrt{4 - x^2} I_{[-2,2]}(x) \), where \(I_{[a,b]}(x) \) denotes an indicator function of interval \([a, b]\). We shall study the rate of convergence \(F_n(x) \) to the semi-circular law under the condition

\[\Pr\{|X_{jk}| > t\} \leq \varkappa^{-1} \exp\{-t^\varkappa\} \text{ for some } \varkappa > 0. \]

This problem has been studied by several authors. The authors proved in [7] that the Kolmogorov distance between \(F_n(x) \) and the distribution function \(G(x) \), \(\Delta^*_n := \sup_x |F_n(x) - G(x)| = O(n^{-\frac{1}{2}}) \), Bai, [1], and Girko, [4], showed that \(\Delta_n := \sup_x |F_n(x) - G(x)| = O(n^{-\frac{1}{2}}) \). Bobkov, Götze and Tikhomirov [3] proved that \(\Delta_n \) and \(\mathbb{E}\Delta^*_n \) have order \(O(n^{-\frac{2}{3}}) \) assuming a Poincaré inequality for the distribution of the matrix elements. For the Gaussian Unitary Ensemble in [6] and for the Gaussian Orthogonal Ensemble in [11] it has been shown that \(\Delta_n = O(n^{-1}) \). Denote by \(\gamma_{n1} \leq \ldots \leq \gamma_{nn} \), the quantiles of \(G \), i.e. \(G(\gamma_{nj}) = \frac{j}{n} \). We introduce the notation

\[l \log n := \log \log n \quad (1.1) \]

In Erdös, Yau and Yin [9] showed that for matrix elements \(X_{jk} \) which have a uniformly sub exponential decay in the sense that there exists a constant \(\varkappa > 0 \) such that for any \(1 \leq j \leq k \leq n \) and any \(t \geq 1 \)

\[\Pr\{|X_{jk}| \geq t\} \leq \varkappa^{-1} \exp\{-t^\varkappa\}, \]

the following result holds

\[\Pr\left\{ \exists j : |\lambda_j - \gamma_j| \geq (\log n)^c l \log n \left[\min\{(j, N-j+1]\right]^{-\frac{1}{4}} n^{-\frac{3}{2}} \right\} \leq C \exp\{- (\log n)^c l \log n \} \]

for large \(n \) enough. It is straightforward to check that this bound implies that with high probability

\[\Pr\left\{ \sup_x |F_n(x) - G(x)| \leq C n^{-1} (\log n)^c l \log n \right\} \geq 1 - C \exp\{- (\log n)^c l \log n \}. \quad (1.2) \]
From the last inequality it is follows that
\[E\Delta_{n}^{*} \leq Cn^{-1}(\log n)^{C\log n}. \]

In this paper we derive some improvement of the result (1.2) (reducing the power of logarithm) using arguments similar to [9] and provide a self-contained proof based on recursion methods developed in the papers of Götze and Tikhomirov [7], [5], [12].

For any positive constants \(\alpha > 0 \) and \(\kappa > 0 \) define the quantities
\[l_{n,\alpha} := \log n (\log \log n)^{\alpha} \quad \text{and} \quad \beta_{n} := (l_{n,\alpha})^{\frac{1}{2}} + \frac{1}{2}. \] (1.3)

The main result of this paper is the following

Theorem 1.1. Let \(E X_{jk} = 0, \ E X_{jk}^{2} = 1 \). Assume that there exists a constant \(\kappa > 0 \) such that for any \(1 \leq j \leq k \leq n \) and any \(t \geq 1 \),
\[\Pr \{ |X_{jk}| \geq t \} \leq \kappa^{-1} \exp\{-t^{\kappa}\}. \] (1.4)

Then, for any positive \(\alpha > 0 \) there exist a positive constants \(C \) and \(c \) depending on \(\kappa \) and \(\alpha \) only such that
\[\Pr \left\{ \sup_{x} |F_{n}(x) - G(x)| > n^{-1} \beta_{n}^{2} \right\} \leq C \exp\{-cl_{n,\alpha}\}. \] (1.5)

We apply the result of Theorem 1.1 to the investigation of the eigenvectors of the matrix \(W \). Let \(u = (u_{j1}, \ldots, u_{jn})^{T} \) be eigenvectors of the matrix \(W \) corresponding to the eigenvalues \(\lambda_{j}, j = 1, \ldots, n \). We prove the following result.

Theorem 1.2. Under the conditions of Theorem 1.1 for any positive \(\alpha > 0 \) there exist positive constants \(C \) and \(c \), depending on \(\kappa \) and \(\alpha \) only such that
\[\Pr \left\{ \max_{1 \leq j, k \leq n} |u_{jk}|^{2} > \frac{\beta_{n}^{2}}{n} \right\} \leq C \exp\{-cl_{n,\alpha}\}, \] (1.6)

and
\[\Pr \left\{ \max_{1 \leq k \leq n} \left| \sum_{\nu=1}^{k} |u_{j\nu}|^{2} - \frac{k}{n} \right| > \frac{\beta_{n}}{\sqrt{n}} \right\} \leq C \exp\{-cl_{n,\alpha}\}. \] (1.7)

2 Proof of the main Theorem

To bound error \(\Delta_{n}^{*} \) we shall use an approach developed in our paper [7]. We shall apply a bound of the Kolmogorov distance between distribution functions via the distance between their Stieltjes transforms. We denote the Stieltjes transform of \(F_{n}(x) \) by \(m_{n}(z) \) and the Stieltjes transform of a semi-circular law by \(s(z) \). Let \(R = R(z) \) be the resolvent matrix of \(W \) given by
\[R = (W - zI_{n})^{-1}, \]
The rate of convergence to the semi-circular law

for all $z = u + iv$ with $v \neq 0$. Here and in what follows I_n denotes the identity matrix of dimension n. Sometimes we shall omit the sub index in the notation of an identity matrix. It is well-known that the Stieltjes transform of a semi-circular distribution satisfies the equation

$$s^2(z) + zs(z) + 1 = 0$$

(see, for example, equality (4.20) in [7]). Furthermore, the Stieltjes transform of empirical spectral distribution function $F_n(x)$, say $m_n(z)$, is given by

$$m_n(z) = \frac{1}{n} \sum_{j=1}^{n} R_{jj} = \frac{1}{n} \text{ETr} \mathbf{R}.$$

(see, for instance, equality (4.3) in [7]). Introduce the matrices $W^{(j)}$, which are obtained from W by deleting the j-th row and the j-th column, and the corresponding resolvent matrix $R^{(j)}$ defined by $R^{(j)} := (W^{(j)} - zI_{n-1})^{-1}$ and let $m_n^{(j)}(z) := \frac{1}{n} \text{Tr} R^{(j)}$. Consider the index sets $T_j := \{1, \ldots, n\} \setminus \{j\}$. We shall use the representation

$$R_{jj} = \frac{1}{-z + \frac{1}{n} X_{jj} - \frac{1}{n} \sum_{k,l \in T_j} X_{jk} X_{jl} R_{kl}^{(j)}}, \quad (2.1)$$

(see, for example, equality (4.6) in [7]). We may rewrite it as follows

$$R_{jj} = -\frac{1}{z + m_n(z)} + \frac{1}{z + m_n(z)} \varepsilon_j R_{jj}, \quad (2.2)$$

where $\varepsilon_j := \varepsilon_{j1} + \varepsilon_{j2} + \varepsilon_{j3} + \varepsilon_{j4}$ with

$$\varepsilon_{j1} := \frac{1}{\sqrt{n}} X_{jj}, \quad \varepsilon_{j2} := \frac{1}{n} \sum_{k \in T_j} (X_{jk}^2 - 1) R_{kk}^{(j)},$$

$$\varepsilon_{j3} := \frac{1}{n} \sum_{k \neq l \in T_j} X_{jk} X_{jl} R_{kl}^{(j)}, \quad \varepsilon_{j4} := \frac{1}{n} \left(\text{Tr} R^{(j)} - \text{Tr} R \right).$$

This relation immediately implies the following two equations

$$R_{jj} = -\frac{1}{z + m_n(z)} - \sum_{\nu=1}^{3} \frac{\varepsilon_{j\nu}}{(z + m_n(z))^2} + \sum_{\nu=1}^{3} \frac{1}{(z + m_n(z))^2} \varepsilon_{j\nu} \varepsilon_{j} R_{jj} + \frac{1}{z + m_n(z)} \varepsilon_{j4} R_{jj}, \quad (2.3)$$
The rate of convergence to the semi-circular law

and

\[m_n(z) = -\frac{1}{z + m_n(z)} - \frac{1}{z + m_n(z)} \sum_{j=1}^{n} \varepsilon_{j} R_{jj} \]

\[= -\frac{1}{z + m_n(z)} - \frac{1}{z + m_n(z)} ^{2} \sum_{j=1}^{n} \sum_{\nu=1}^{n} \varepsilon_{j\nu} \]

\[+ \frac{1}{z + m_n(z)} ^{2} \sum_{j=1}^{n} \sum_{\nu=1}^{n} \varepsilon_{j\nu} \varepsilon_{j} R_{jj} + \frac{1}{z + m_n(z)} \sum_{j=1}^{n} \varepsilon_{j4} R_{jj}. \quad (2.4) \]

2.1 Large deviations I

In the following Lemmas we shall bound \(\varepsilon_{j\nu} \), for \(\nu = 1, \ldots, n \)

Lemma 2.1. Assuming the conditions of Theorem 1.1 there exists positive constants \(C \) and \(c \) depending on \(\kappa \) and \(\alpha \) such that, for any \(j = 1, \ldots, n \)

\[\Pr\{|\varepsilon_{j1}| \geq 2l_{n, \alpha}^{1/2} n^{-1/2}\} \leq C \exp\{-cl_{n, \alpha}\} \]

Proof. The result follows immediately from the hypothesis (1.4).

Lemma 2.2. Assuming the conditions of Theorem 1.1 we have, for any \(z = u + iv \) with \(v > 0 \) and any \(j = 1, \ldots, n \), we have

\[|\varepsilon_{j4}| \leq \frac{1}{nv}. \]

Proof. The conclusion of Lemma 2.2 follows immediately from the obvious inequality \(|\text{Tr} R - \text{Tr} R^{(j)}| \leq v^{-1} \) (see Lemma 4.1 in [7]).

Lemma 2.3. Assuming the conditions of Theorem 1.1 for all \(v > 0 \), the following inequality holds

\[\Pr\{|\varepsilon_{j2}| > 2l_{n, \alpha}^{1/2} n^{-1/2} \geq n^{-1} \sum_{l \in T_{j}} |R_{jl}^{(j)}|^{2} \} \leq C \exp\{-cl_{n, \alpha}\} \]

for some positive constants \(c > 0 \) and \(C \), depending on \(\kappa \) and \(\alpha \) only.

Proof. We use the following inequality for sums of independent random variables. Let \(\xi_{1}, \ldots, \xi_{n} \) be independent random variables such that \(E\xi_{j} = 0 \) and \(|\xi_{j}| \leq \sigma_{j} \). Then

\[\Pr\{|\sum_{j=1}^{n} \xi_{j}| > x\} \leq c(1 - \Phi(x/\sigma) \leq \sigma \exp\{-x^{2}/2\sigma^{2}\}, \quad (2.5) \]

where \(\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} \exp\{-y^{2}/2\}dy \) and \(\sigma^{2} = \sigma_{1}^{2} + \cdots + \sigma_{n}^{2} \). We put \(\eta_{l} = X_{jl}^{2} - 1 \), and define,

\[\xi_{l} = \left(\eta_{l}\mathbb{I}\{|X_{jl}| \leq l_{n, \alpha}^{1/2}\} - E\eta_{l}\mathbb{I}\{|X_{jl}| \leq l_{n, \alpha}^{1/2}\}\right) R_{jl}^{(j)}. \]
The rate of convergence to the semi-circular law

Note that \(E \xi_l = 0 \) and \(|\xi_l| \leq 2l_{n,a}^2|R^{(j)}_l| \). Introduce the \(\sigma \)-algebra \(\mathcal{W}^{(j)} \) generated by the random variables \(X_{kl} \) with \(k, l \in T_j \). Let \(E_j \) and \(\text{Pr}_j \) denote the conditional expectation and the conditional probability with respect to \(\mathcal{W}^{(j)} \). Note that the random variables \(X_{jl} \) and the \(\sigma \)-algebra \(\mathcal{M}(j) \) are independent. Applying inequality (2.5) with \(x := 2n^{1/2}l_{n,a}^2(n^{-1} \sum_{l \in T_j} |R^{(j)}_l|^2)^{1/2} \), we get

\[
\text{Pr}\left\{ |\sum_{l \in T_j} \xi_l| > x \right\} = E \text{Pr}_j\left\{ |\sum_{l \in T_j} \xi_l| \geq x \right\} \leq E \exp\left\{ -\frac{x^2}{\sigma^2} \right\} \leq C \exp\{-cn_{a} \}. \tag{2.6}
\]

Furthermore, note that

\[
|E_j \eta_j (|\xi_l| \leq \frac{l}{n_{a}})| \leq E_j \frac{1}{\sigma} |\eta_l|^2 \text{Pr}_j\{ |\xi_l| > l_{n,a} \} \leq E_j \frac{1}{\sigma} |\eta_l|^2 \exp\{-\frac{c}{2}l_{n,a} \} \tag{2.7}
\]

The last inequality implies that

\[
\left| \sum_{l \in T_j} E_j \eta_j (|X_{jl}| \leq \frac{l}{n_{a}}) \right| R^{(j)}_l \right| \leq C \exp\{-\frac{c}{2}l_{n,a} \} \left(\frac{1}{n} \sum_{l \in T_j} |R^{(j)}_l|^2 \right)^{1/2}. \tag{2.8}
\]

The inequalities (2.6) and (2.8) together conclude the proof of Lemma 2.3. Thus the Lemma is proved.

\[\square\]

Corollary 2.4. Assuming the conditions of Theorem 1.1 for any \(\alpha > 0 \) there exists positive constants \(c \) and \(C \), depending on \(\kappa \) and \(\alpha \) such that for any \(z = u + iv \) with \(v > 0 \)

\[
\text{Pr}\{|\epsilon_{j2}| > \beta_{n}^2(nv)^{-1/2}(\text{Im} \ m^{(j)}_n(z))^{1/2} \} \leq C \exp\{-cn_{a} \}. \tag{2.9}
\]

Proof. Note that

\[
n^{-1} \sum_{l \in T_j} |R^{(j)}_l|^2 \leq n^{-1} \text{Tr} |R^{(j)}|^2 = \frac{1}{v} \text{Im} m^{(j)}_n(z), \tag{2.10}
\]

where \(|R^{(j)}|^2 = R^{(j)}R^{(j)\ast} \). The result follows now from Lemma 2.3. \[\square\]

Lemma 2.5. Assuming the conditions of Theorem 1.1, for any \(j = 1, \ldots, n \) and for any \(v > 0 \), the following inequality holds

\[
\text{Pr}\{|\epsilon_{j3}| > \beta_{n}^2(nv)^{-1/2}(\frac{1}{n} \sum_{k \neq l \in T_j} |R^{(j)}_k|^2)^{1/2} \} \leq C \exp\{-cn_{a} \}. \tag{2.11}
\]

Proof. We shall use a large deviation bound for quadratic forms which follows from results by Ledoux (see [10]).
Proposition 2.1. Let \(\xi_1, \ldots, \xi_n \) be independent random variables such that \(|\xi_j| \leq 1 \). Let \(a_{ij} \) denote complex numbers such that \(a_{ij} = a_{ji} \) and \(a_{jj} = 0 \). Let \(Z = \sum_{l,k=1}^{n} \xi_l \xi_k a_{lk} \). Let \(\sigma^2 = \sum_{l,k=1}^{n} |a_{lk}|^2 \). Then for every \(t > 0 \) there exists some positive constant \(c > 0 \) such that the following inequality holds

\[
\Pr\{|Z| \geq \frac{3}{2} E[Z] + t\} \leq \exp\{-\frac{ct}{\sigma}\}. \tag{2.12}
\]

Proof. Proposition 2.1 follows from Theorem 3.1 in [10]. \(\square \)

In order to bound \(\varepsilon_{j3} \) we use Proposition 2.1 with

\[
\xi_l = (X_{jl}\{ |X_{jl}| \leq \frac{1}{n} \} - EX_{jl}\{ |X_{jl}| \leq \frac{1}{n} \}) / 2\frac{1}{n}. \tag{2.13}
\]

Note that the random variables \(X_{jl}, l \in T_j \) and the matrix \(R^{(j)} \) are mutually independent for any fixed \(j = 1, \ldots, n \). Moreover, we have \(|\xi_l| \leq 1 \). Put \(Z := \sum_{k \neq l \in T_j} \xi_l \xi_k R^{(j)}_{kl} \).

Applying Proposition 2.1 with \(t = l_{n, \alpha}(\sum_{l \neq k \in T_j} |R^{(j)}_{kl}|^2)^{\frac{1}{2}} \), we get

\[
EPr\{ |Z| \geq l_{n, \alpha}(\sum_{l \neq k \in T_j} |R^{(j)}_{kl}|^2)^{\frac{1}{2}} \} \leq C \exp\{-cl_{n, \alpha}\}. \tag{2.14}
\]

Furthermore,

\[
\Pr\{ \exists j, l \in [1, \ldots, n]: |X_{jl}| > \frac{1}{n} \} \leq C \exp\{-cl_{n, \alpha}\} \tag{2.15}
\]

and

\[
|EX_{jl}|(|X_{jl}| \leq \frac{1}{n}) | \leq \Pr\{\exists j, l, k \in [1, \ldots, n]: |X_{jl}| > \frac{1}{n} \} \leq C \exp\{-cl_{n, \alpha}\}. \tag{2.16}
\]

Introduce the random variables \(\hat{\xi}_l = \xi_{jl}\{ |X_{jl}| \leq \frac{1}{n} \} / 2\frac{1}{n} \) and \(\hat{Z} = \sum_{l, k \in T_j} \xi_l \xi_k R^{(j)}_{kl} \).

Note that

\[
\Pr\left\{ \sum_{l, k \in T_j} X_{jk} X_{jl} R^{(j)}_{kl} \neq \sum_{l, k \in T_j} \hat{\xi}_k \hat{\xi}_l R^{(j)}_{kl} \right\} \leq C \exp\{-cl_{n, \alpha}\}. \tag{2.17}
\]

Inequalities (2.14) - (2.17) together imply

\[
\Pr\left\{ |\varepsilon_{j3}| > \beta_n^2 n^{-\frac{1}{2}} (\frac{1}{n} \sum_{l \neq k \in T_j} |R^{(j)}_{kl}|^2)^{\frac{1}{2}} \right\} \leq C \exp\{-cl_{n, \alpha}\}. \tag{2.18}
\]

Thus Lemma 2.5 is proved. \(\square \)

Corollary 2.6. Under the conditions of Theorem 1.1 there exist positive constants \(c \) and \(C \) depending on \(\varkappa \) and \(\alpha \) such that for any \(z = u + iv \) with \(v > 0 \)

\[
\Pr\{ |\varepsilon_{j3}| > \beta_n^2 (nv) (-\frac{1}{2})(\text{Im} m_n^{(j)}(z))^{\frac{1}{2}} \} \leq C \exp\{-cl_{n, \alpha}\}. \tag{2.19}
\]
Proof. Note that
\begin{equation}
\frac{1}{n} \sum_{k \neq l \in T_j} |R^{(j)}_{kl}|^2 \leq \frac{1}{n} \text{Tr} |R^{(j)}|^2 = \frac{1}{v} \text{Im} m_n^{(j)}(z). \tag{2.20}
\end{equation}
The result now follows from Lemma 2.5.

To summarize these results we recall
\begin{equation}
\beta_n = (l_{n,\alpha})^{\frac{1}{2} + \frac{1}{2}}, \tag{2.21}
\end{equation}
defined previously in (1.3). Then we may write that, for \(\nu = 1, 2, 3 \)
\begin{equation}
\text{Pr}\left\{ |\varepsilon_{j\nu}| > \frac{\beta_n}{\sqrt{n}} \left(1 + \frac{\text{Im} \frac{1}{2} m_n(z)}{\sqrt{v}} + \frac{1}{\sqrt{v \sqrt{n} v'}} \right) \right\} \leq C \exp\{-cn_{n,\alpha}\}. \tag{2.22}
\end{equation}
Denote by
\begin{equation}
\Omega_n(z) = \left\{ \omega \in \Omega : |\varepsilon_j| \leq \frac{\beta_n}{\sqrt{n}} \left(1 + \frac{\text{Im} \frac{1}{2} m_n(z)}{\sqrt{v}} + \frac{1}{\sqrt{v \sqrt{n} v'}} \right) \right\}. \tag{2.23}
\end{equation}
Let \(v_0 = \frac{a^{\frac{3}{2}}}{n} \) with a sufficiently small positive constant \(a > 0 \). We introduce the region \(D = \{ z = u + iv \in \mathbb{C} : |u| \leq 2, v_0 < v \leq 2 \} \). Furthermore, we introduce the sequence \(z_t = u_t + v_t \) in \(D \), recursively defined via \(u_{t+1} - u_t = \frac{4}{n} \) and \(v_{t+1} - v_t = \frac{2}{n^2} \). Using a union bound, we have
\begin{equation}
\text{Pr}\{ \cap_{z_t \in D} \Omega_n(z_t) \} \geq 1 - C \exp\{-cn_{n,\alpha}\}. \tag{2.24}
\end{equation}
It is straightforward to check that
\begin{equation}
|\varepsilon_j(z) - \varepsilon_j(z')| \leq \frac{\beta_n}{v_0^2} \left(1 + \frac{\text{Im} \frac{1}{2} m_n(z)}{\sqrt{v}} + \frac{1}{\sqrt{v \sqrt{n} v'}} \right). \tag{2.25}
\end{equation}
This immediately implies that
\begin{equation}
\text{Pr}\{ \cap_{z \in D} \Omega_n(z) \} \geq 1 - C \exp\{-cn_{n,\alpha}\}, \tag{2.26}
\end{equation}
for appropriately some chosen constant in the definition (2.23) of the event \(\Omega_n(z) \).

3 Large deviations II

In this Section we obtain bounds for large deviation probabilities of the sum of \(\varepsilon_j \). We start with
\begin{equation}
\delta_{n1} = \frac{1}{n} \sum_{j=1}^{n} \varepsilon_{j1}. \tag{3.1}
\end{equation}
Lemma 3.1. There exist constants c and C such that
\[
\Pr\{|\delta_{n1}| > n^{-1} \beta_n\} \leq C \exp\{-cl_{n,\alpha}\}.
\] \hfill (3.1)

Proof. We repeat the proof of Lemma 2.1. Consider the truncated random variables
\[
\hat{X}_{jj} = X_{jj} I\{|X_{jj}| \leq l_{n,\alpha}^{\frac{1}{2}}\}.
\] \hfill (3.2)

By assumption (1.4),
\[
\Pr\{|X_{jj}| > l_{n,\alpha}^{\frac{1}{2}}\} \leq C \exp\{-cl_{n,\alpha}\}.
\] \hfill (3.3)

Moreover,
\[
|E \hat{X}_{jj}| \leq C \exp\{-cl_{n,\alpha}\}.
\] \hfill (3.4)

We define
\[
\tilde{X}_{jj} = \hat{X}_{jj} - E \hat{X}_{jj}
\] \hfill (3.5)

and consider the sum
\[
\tilde{\delta}_{n1} := \frac{1}{n\sqrt{n}} \sum_{j=1}^{n} \tilde{X}_{jj}.
\] \hfill (3.6)

Since
\[
|\tilde{X}_{jj}| \leq 2l_{n,\alpha}^{\frac{1}{2}},
\]
we have
\[
\Pr\{|\tilde{\delta}_{n1}| > n^{-1} l_{n,\alpha}^{\frac{1}{2}}\} \leq C \exp\{-cl_{n,\alpha}\}.
\] \hfill (3.7)

Note that
\[
|\tilde{\delta}_{n1} - \delta_{n1}| \leq \frac{1}{n} \sum_{j=1}^{n} |E \hat{X}_{jj}| \leq \exp\{-cl_{n,\alpha}\}.
\] \hfill (3.8)

This inequality and inequality (3.7) together imply
\[
\Pr\{|\delta_{n1}| > n^{-1} l_{n,\alpha}^{\frac{1}{2}}\} \leq C \exp\{-cl_{n,\alpha}\}.
\] \hfill (3.9)

Thus, Lemma 3.1 is proved.

Consider now the quantity
\[
\delta_{n2} := \frac{1}{n^2} \sum_{j=1}^{n} \sum_{l \in \mathcal{T}_j} (X_{jl}^2 - 1) R_{il}^{(j)}.
\] \hfill (3.10)

We prove the following Lemma

Lemma 3.2. Assume that there exists a constant C such that for any $j = 1, \ldots, n$ and any $l \in \mathcal{T}_j$
\[
|R_{il}^{(j)}| \leq C.
\] \hfill (3.11)

Then there exist constants c and C, depending on ν and α such that
\[
\Pr\{|\delta_{n2}| \leq n^{-1} \beta_n^2\} \leq C \exp\{-cl_{n,\alpha}\}.
\] \hfill (3.12)
The rate of convergence to the semi-circular law

Proof. Introduce the truncated random variables

\[\xi_{jl} = \hat{X}_{jl}^2 - \mathbb{E}\hat{X}_{jl}^2, \]

where \(\hat{X}_{jl} = X_j\mathbb{I}\{|X_j| \leq \frac{l}{\sqrt{n}}\}. \) It is straightforward to check that

\[0 \leq 1 - E\hat{X}_{jl}^2 \leq C \exp\{-c l n, \alpha\}. \]

We shall need the following quantities as well

\[\hat{\delta}_n^2 = \frac{1}{n^2} \sum_{j=1}^{n} \sum_{l \in \mathcal{T}_j} (\hat{X}_{jl}^2 - 1) R_{ll}^{(j)} \quad \text{and} \quad \tilde{\delta}_n^2 = \frac{1}{n^2} \sum_{j=1}^{n} \sum_{l \in \mathcal{T}_j} \xi_{jl} R_{ll}^{(j)}. \]

By assumption (1.4),

\[\Pr\{\delta_n^2 \neq \hat{\delta}_n^2\} \leq C \exp\{-c l n, \alpha\}. \]

Let

\[\zeta_j := \frac{1}{\sqrt{n}} \sum_{l \in \mathcal{T}_j} \xi_{jl} R_{ll}^{(j)}. \]

Then

\[\hat{\delta}_n^2 = \frac{1}{n^2} \sum_{j=1}^{n} \zeta_j. \]

Note that the sequence \(\hat{\delta}_n^2 \) is a martingale with respect to the \(\sigma \)-algebras \(\mathcal{M}_j \). In fact,

\[\mathbb{E}\{\zeta_j | \mathcal{M}_{j-1}\} = \mathbb{E}\{\mathbb{E}\{\zeta_j | \mathcal{M}^{(j)}\} | \mathcal{M}_{j-1}\} = 0. \]

In order to use large deviation bounds for \(\hat{\delta}_n^2 \) we replace the differences \(\zeta_j \) by truncated random variables. We put

\[\hat{\zeta}_j = \zeta_j \mathbb{I}\{|\zeta_j| \leq \frac{l}{\sqrt{n}}\mathbb{I}\left\{\frac{1}{n} \sum_{l \in \mathcal{T}_j} |R_{ll}^{(j)}|^2 \right\}^{\frac{1}{2}}\}. \]

Since \(\zeta_j \) is a sum of independent bounded random variables with mean zero, we have

\[\Pr\{|\zeta_j| > \frac{1}{n} \sum_{l \in \mathcal{T}_j} |R_{ll}^{(j)}|^2 \} \leq C \exp\{-c l n, \alpha\}. \]

This implies that

\[\Pr\{\sum_{j=1}^{n} \zeta_j \neq \sum_{j=1}^{n} \hat{\zeta}_j\} \leq C \exp\{-c l n, \alpha\}. \]

Furthermore, introduce the random variables

\[\tilde{\zeta}_j = \hat{\zeta}_j - \mathbb{E}\{\hat{\zeta}_j | \mathcal{M}_{j-1}\}. \]
The rate of convergence to the semi-circular law

Using the Cauchy-Schwartz inequality and the boundedness of the random variables \(\xi_{jl} R^{(j)}_{ll} \) we may show that

\[
|E\{\zeta_j | M_{j-1}\}| \leq C \exp\{-cl_{n,\alpha}\}. \tag{3.24}
\]

Here, we may use a martingale bound due to Bentkus, \[2\], Theorem 1.1. It provides the following result. Let \(M_0 = \{\emptyset, \Omega\} \subset M_1 \subset \cdots \subset M_n \subset \mathbb{R} \) be a family of \(\sigma \)-algebras of a measurable space \(\{\Omega, \mathbb{R}\} \). Let \(M_n = \xi_1 + \cdots + \xi_n \) be a martingale with bounded differences \(\xi_j = M_j - M_{j-1} \) such that

\[
Pr\{|\xi_j| \leq b_j\} = 1 \quad \text{for} \quad j = 1, \ldots, n.
\]

Then, for \(x > \sqrt{8} \)

\[
Pr\{|M_n| \geq x\} \leq c(1 - \Phi(\frac{x}{\sigma})) = \int_{-\infty}^{\infty} \varphi(t)dt, \quad \varphi(t) = \frac{1}{\sqrt{2\pi}} \exp\{-\frac{t^2}{2}\}. \tag{3.25}
\]

with some numerical constant \(c > 0 \) and \(\sigma^2 = b_1^2 + \cdots + b_n^2 \). Note that for \(t > C \)

\[
1 - \Phi(t) \leq \frac{1}{C} \varphi(t).
\]

Thus, this leads to the inequality

\[
Pr\{|M_n| \geq x\} \leq \exp\{-\frac{x^2}{2\sigma^2}\}, \tag{3.26}
\]

which we shall use to bound \(\tilde{\delta}_{n2} \). By assumption \((3.11)\) and definition of \(\tilde{\zeta}_j \), we may take \(\beta_j = \frac{\beta}{\sqrt{n,\alpha}} \). We get

\[
Pr\{|\tilde{\delta}_{n2}| > n^{-1} \beta^2_n\} \leq C \exp\{-cl_{n,\alpha}\} \tag{3.27}
\]

Inequalities \((3.22)\)–\((3.27)\) together conclude the proof of Lemma 3.2. \(\square \)

Let

\[
\delta_{n3} := \frac{1}{n^2} \sum_{j=1}^{n} \sum_{l \neq k \in T_j} X_{jl} X_{jk} R^{(j)}_{lk} \tag{3.28}
\]

Lemma 3.3. Assume that there exists a constant \(B > 0 \) such that for any \(j = 1, \ldots, n \)

\[
\text{Im} \ m_n^{(j)}(z) \leq B. \tag{3.29}
\]

Then there exist constants \(c \) and \(C \), depending on \(\kappa \) and \(\alpha \) such that

\[
Pr\{|\delta_{n3}| > \frac{\beta^2_n}{n \sqrt{v}}\} \leq C \exp\{-cl_{n,\alpha}\} \tag{3.30}
\]
The rate of convergence to the semi-circular law

Proof. The proof of this Lemma is similar to the proof of Lemma 3.2. We introduce the random variables

$$\eta_j = \frac{1}{\sqrt{n}} \sum_{l \neq k \in \mathcal{T}_j} X_{jk} X_{jl} R_{lk}^{(j)}$$ \hspace{1cm} (3.31)$$

and note that the sequence

$$M_n = \sum_{j=1}^{n} \eta_j$$ \hspace{1cm} (3.32)$$
is martingale with respect to the σ–algebras \mathfrak{M}_j. Then we apply the martingale bound of Bentkus twice replacing η_j by truncated random variables. Thus the Lemma is proved. \hfill \square

Finally, we shall bound

$$\delta_{n4} := \frac{1}{n^2} \sum_{j=1}^{n} (\text{Tr} R - \text{Tr} R^{(j)}) R_{jj}.$$ \hspace{1cm} (3.33)$$

Lemma 3.4. For any $z = u + iv$ with $v > 0$ the following inequality

$$|\delta_{n4}| \leq \frac{1}{nv} \text{Im} m_n(z)$$ \hspace{1cm} (3.34)$$
holds.

Proof. By formula (5.4) in [7], we have

$$(\text{Tr} R - \text{Tr} R^{(j)}) R_{jj} = (1 + \frac{1}{n} \sum_{l,k \in \mathcal{T}_j} X_{jl} X_{jk} (R^{(j)})_{lk}^2) R_{jj}^2 = \frac{d}{dz} R_{jj}.$$ \hspace{1cm} (3.35)$$

From here it follows that

$$\frac{1}{n^2} \sum_{j=1}^{n} (\text{Tr} R - \text{Tr} R^{(j)}) R_{jj} = \frac{1}{n^2} \frac{d}{dz} \text{Tr} R = \frac{1}{n^2} \text{Tr} R^2.$$ \hspace{1cm} (3.36)$$

Finally, we note that

$$|\frac{1}{n^2} \text{Tr} R^2| \leq \frac{1}{nv} \text{Im} m_n(z).$$ \hspace{1cm} (3.37)$$

The last inequality concludes the proof. Thus, Lemma 3.4 is proved. \hfill \square

3.1 Stieltjes transforms

We shall derive auxiliary bounds for the difference between the Stieltjes transforms $m_n(z)$ of the empirical spectral measure of the matrix X and the Stieltjes transform $s(z)$ of the semi-circular law. Introduce the additional notations

$$\delta_n := \delta_{n1} + \delta_{n2} + \delta_{n3}, \quad \hat{\delta}_n := \delta_{n4}, \quad \bar{\delta}_n := \frac{1}{n} \sum_{v=1}^{3} \sum_{j=1}^{n} \varepsilon_{jv} \varepsilon_j R_{jj}.$$ \hspace{1cm} (3.38)$$
Recall that \(s(z) \) satisfies the equation
\[
s(z) = \frac{1}{z + s(z)}.
\] (3.39)

Introduce \(g_n(z) := m_n(z) - s(z) \). The representation (2.4) and equality (3.39) together imply
\[
g_n(z) = \frac{g_n(z)}{(z + s(z))(z + m_n(z))} - \frac{\delta_n}{(z + m_n(z))^2} + \frac{\tilde{\delta}_n}{z + m_n(z)} + \frac{\overline{\delta}_n}{(z + m_n(z))^2}. \tag{3.40}
\]

This equality yields
\[
|g_n(z)| \leq \frac{|\delta_n| + |\overline{\delta}_n|}{|z + m_n(z)||z + s(z) + m_n(z)|} + \frac{|\tilde{\delta}_n|}{|z + s(z) + m_n(z)|}. \tag{3.41}
\]

For any \(z \in \mathcal{D} \) introduce the events
\[
\hat{\Omega}_n(z) := \{ \omega \in \Omega : |\delta_n| \leq \frac{\beta_n}{n\sqrt{v}} \}, \quad \overline{\Omega}_n(z) := \{ \omega \in \Omega : |\hat{\delta}_n| \leq \frac{C\text{Im} m_n(z)}{nv} \}, \tag{3.42}
\]
\[
\overline{\Omega}_n(z) := \{ \omega \in \Omega : |\overline{\delta}_n| \leq \left(\frac{\beta_n^2\text{Im} m_n(z)}{n^2v} + \frac{\beta_n^2}{nv^2} \right) \frac{1}{n} \sum_{j=1}^{n} |R_{jj}|^2 \}. \tag{3.43}
\]

Put \(\Omega_n^* := \hat{\Omega}_n(z) \cup \overline{\Omega}_n(z) \cup \overline{\Omega}_n(z) \). By Lemmas 3.1–3.4, we have
\[
\Pr\{\hat{\Omega}_n(z)\} \geq 1 - C \exp\{-c l_n,\alpha\}. \tag{3.44}
\]

By Lemma 3.4,
\[
\Pr\{\overline{\Omega}_n(z)\} = 1. \tag{3.45}
\]

Note that
\[
|\varepsilon_{j\nu}\varepsilon_{j4}| \leq \frac{1}{2}(|\varepsilon_{j\nu}|^2 + |\varepsilon_{j4}|^2). \tag{3.46}
\]

By inequality (2.22), we have, for \(\nu = 1, 2, 3 \),
\[
\Pr\left\{|\varepsilon_{j\nu}|^2 > \frac{\beta_n^2}{n}(1 + \frac{\text{Im} m_n(z)}{v} + \frac{1}{nv^2})\right\} \leq C \exp\{-c l_n,\alpha\} \tag{3.47}
\]
and
\[
\Pr\{|\varepsilon_{j4}|^2 \leq \frac{1}{n^2v^2}\} = 1. \tag{3.48}
\]

Similarly as in (2.26) we may show that
\[
\Pr\{\cap_{z \in \mathcal{D}} \Omega_n^*(z) \cap \Omega_n\} \geq 1 - C \exp\{-c l_n,\alpha\}. \tag{3.49}
\]

Let
\[
\Omega_n^* := \cap_{z \in \mathcal{D}} \Omega_n^*(z) \cap \Omega_n. \tag{3.50}
\]

We now prove now some auxiliary Lemmas.
Lemma 3.5. Let $z = u + iv \in \mathcal{D}$ and $\omega \in \Omega_n^*$. Assume that

$$|g_n(z)| \leq \frac{1}{2}. \quad (3.51)$$

Then the following bound holds

$$|g_n(z)| \leq \frac{C\beta_n^2}{nv} + \frac{C\beta_n^2}{n^2v^2\sqrt{\gamma + v}}.$$ \hspace{1cm} (3.52)

Proof. First we note that the inequality $|g_n(z)| \leq \frac{1}{2}$ implies

$$|z + m_n(z)| \geq |z + s(z)| - |g_n(z)| \geq \frac{1}{2}. \quad (3.52)$$

Moreover,

$$\text{Im} m_n^{(j)}(z) \leq |m_n^{(j)}(z)| \leq |m_n(z)| + \frac{1}{nv} \leq |s(z)| + |g_n(z)| + \frac{1}{nv} \leq C. \quad (3.53)$$

Furthermore, we obviously obtain

$$|z + s_n(z) + s(z)| \geq \text{Im} z + \text{Im} m_n(z) + \text{Im} s(z) \geq \text{Im} (z + s(z)) \geq \text{Im}\{\sqrt{z^2 - 4}\}. \quad (3.54)$$

For $z \in \mathcal{D}$ we get $\text{Re}(z^2 - 4) \leq 0$ and $\frac{\pi}{2} \leq \arg(z^2 - 4) \leq \frac{3\pi}{2}$. Therefore,

$$\text{Im}\{\sqrt{z^2 - 4}\} \geq \frac{1}{\sqrt{2}}|z^2 - 4|^{\frac{1}{2}} \geq \frac{1}{4}\sqrt{\gamma + v}, \quad (3.55)$$

where $\gamma = 2 - |u|$. Inequality (3.41) implies that for $\omega \in \Omega_n^*$

$$|g_n(z)| \leq \frac{\beta_n}{n\sqrt{v}|z + m_n(z)||z + s(z) + m_n(z)|} + \frac{C\text{Im} m_n(z)}{nv|z + s(z) + m_n(z)|} + \frac{\beta_n^2}{nv|z + m_n(z)||z + s(z) + m_n(z)|} \left(\text{Im} m_n(z) + \frac{1}{nv}\right) \frac{1}{n} \sum_{j=1}^{n}|R_{jj}|^2. \quad (3.56)$$

Furthermore, equation (2.2), inequality (3.52) and the definition of Ω_n^* in (2.23) together imply that, for $\omega \in \Omega_n^*$ and $z \in \mathcal{D}$

$$|R_{jj}| \leq \frac{2}{|z + s_n(z)|}. \quad (3.57)$$

Equation (3.56) and inequality (3.57) together imply

$$|g_n(z)| \leq \frac{C\beta_n^2}{nv} \left(1 + \frac{1}{nv}\sqrt{\gamma + v}\right). \quad (3.58)$$

This inequality completes the proof of lemma. \hfill \Box
Put now $v_0' := v_0'(z) = \frac{v_0}{\sqrt{\gamma}}$, where $\gamma := 2 - |u|$ and $z = u + iv$. Denote $\hat{D} := \{z \in \mathcal{D} : v \geq v_0\}$.

Corollary 3.6. Assume that for $\omega \in \Omega_n^*$ and $z = u + iv \in \hat{D}$

$$|g_n(z)| \leq \frac{1}{2}.$$

Then

$$|g_n(z)| \leq \frac{1}{100}.$$

Proof. Note that for $v \geq v_0'$

$$\frac{C\beta^2_n}{nv} + \frac{C\beta^2_n}{n^2v^2\sqrt{\gamma + v}} \leq \frac{1}{100}$$ \hspace{1cm} (3.59)

Thus, the Corollary is proved.

Corollary 3.7. Let $z = u + iv \in \mathcal{D}$. Assume that

$$|z + g_n(z)| > \frac{1}{2}.$$

Then for any $\omega \in \Omega_n$, the following bound holds

$$|g_n(z)| \leq \frac{C\beta^2_n}{nv} + \frac{C\beta^2_n}{n^2v^2\sqrt{\gamma + v}}.$$

Proof. In the proof of Lemma 3.5 we have only used condition (3.51) of Lemma 3.5 to prove inequality (3.60). This proves the Corollary.

Assume that N_0 is sufficiently large number such that for any $n \geq N_0$ and for any $v \in \mathcal{D}$ the right hand side of inequality (3.58) is smaller then $\frac{1}{100}$. In the what follows we shall assume that $n \geq N_0$ is fixed. The following lemma plays a crucial role in our proof. It is similar to Lemma 3.4 in [S].

Lemma 3.8. Assume that for some $z = u + iv \in \mathcal{D}$ with $v \geq v_0$ condition (3.51) holds. Then it holds for $z' = u + iv' \in \mathcal{D}$ with $v \geq v' \geq v - n^{-8}$.

Proof. First of all note that

$$|m_n(z) - m_n(z')| = \frac{1}{n}(v - v')|\text{Tr} R(z)R(z')| \leq \frac{v - v'}{vv'} \leq \frac{C}{n^4} \leq \frac{1}{100}$$ \hspace{1cm} (3.61)

and

$$|s(z) - s(z')| \leq \frac{1}{100}$$ \hspace{1cm} (3.62)

By Corollary 3.7 we have

$$|g_n(z)| \leq \frac{1}{100}.$$ \hspace{1cm} (3.63)
The rate of convergence to the semi-circular law

All these inequalities together imply

\[|g_n(z')| \leq \frac{3}{100} < \frac{1}{2}. \] \hspace{2cm} (3.64)

Thus, the Lemma is proved.

Proposition 3.1. There exists positive constants \(C, c \), depending on \(\alpha \) and \(\kappa \) only such that

\[\Pr \left\{ |g_n(z)| > \frac{\beta_n^2 (\text{Im} m_n + \frac{1}{nv})}{n \sqrt{v} \sqrt{\gamma + v}} \right\} \leq C \exp \{-cl_{n,\alpha}\}. \] \hspace{2cm} (3.65)

for all \(z \in D \)

Proof. Note that for \(v = 2 \) we have, for any \(\omega \in \Omega_n^* \),

\[|z + m_n(z)| \geq \text{Im}(z + m_n(z)) \geq 2 \geq \frac{1}{2}. \] \hspace{2cm} (3.66)

By Lemma 3.5, we obtain inequality (3.65) for \(v = 2 \). By Lemma 3.8, this inequality holds for any \(v \) with \(v_0 \leq v \leq 2 \) as well. Thus Proposition 3.1 is proved.

\[\square \]

4 Proof of Theorem 1.1

To conclude the proof of Theorem 1.1 we modify the bound of the Kolmogorov distance of the spectral distribution functions via Stieltjes transforms obtained in [7] Lemma 2.1. Given \(\varepsilon > 0 \) introduce the interval \(\mathbb{I}_\varepsilon = [-2 + \varepsilon, 2 - \varepsilon] \) and \(\mathbb{I}'_\varepsilon = [-2 + \frac{1}{2}\varepsilon, 2 - \frac{1}{2}\varepsilon] \). For any \(x \in \mathbb{I}_\varepsilon \) define \(\gamma = \gamma(x) := 2 - |x| \). For any distribution function \(F \) denote by \(S_F(z) \) its Stieltjes transform,

\[S_F(z) = \int_{-\infty}^{\infty} \frac{1}{x - z} dF(x). \]

Proposition 4.1. Let \(v > 0 \) and \(a \) and \(\varepsilon > 0 \) be positive numbers such that

\[\alpha = \frac{1}{\pi} \int_{|u| \leq a} \frac{1}{u^2 + 1} du = \frac{3}{4}, \] \hspace{2cm} (4.1)

and

\[2va \leq \varepsilon \sqrt{\gamma}. \] \hspace{2cm} (4.2)

If \(G \) denotes the distribution function of the standard semi-circular law, and \(F \) is any distribution function, there exists some absolute constants \(C_1, C_2 \) and \(C_3 \) such that

\[\Delta(F, G) := \sup_x |F(x) - G(x)| \]

\[\leq \sup_{x \in \mathbb{I}'_\varepsilon} \left| \text{Im} \int_{-\infty}^{\infty} (S_F(u + i \frac{v}{\sqrt{\gamma}}) - S_G(u + i \frac{v}{\sqrt{\gamma}})) du \right| + C_2v + C_3\varepsilon^{\frac{3}{2}}. \] \hspace{2cm} (4.3)
Proof. The proof of Proposition 4.1 is straightforward adaptation of the proof of Lemma 2.1 from [7]. We include it here for the sake of completeness. Note that

$$\sup_x |F(x) - G(x)| \leq \sup_{x \in J_e^\varepsilon} |F(x) - G(x)| + G(-2 + \varepsilon),$$

(4.4)

and

$$G(-2 + \varepsilon) \leq C\varepsilon^{\frac{3}{2}}.$$

(4.5)

Let \(x \in J_e^\varepsilon \). Then according to condition (4.2) \(x + \frac{v_0}{\sqrt{\gamma}} \in J_e^\varepsilon \). Denote by \(v' = \frac{v}{\sqrt{\gamma}} \). For any \(x \in J_e^\varepsilon \)

$$\left| \frac{1}{\pi} \text{Im} \left(\int_{-\infty}^{x} (S_F(u + iv') - S_G(u + iv'))du \right) \right|$$

$$\geq \frac{1}{\pi} \text{Im} \left(\int_{-\infty}^{x} (S_F(u + iv') - S_G(u + iv'))du \right)$$

$$= \frac{1}{\pi} \left[\int_{-\infty}^{\infty} \frac{v'd(F(y) - G(y))}{(y - u)^2 + v'^2} \right] du$$

$$= \frac{1}{\pi} \int_{-\infty}^{x} \left[\int_{-\infty}^{\infty} \frac{2v'(y - u)(F(y) - G(y))dy}{((y - u)^2 + v'^2)^2} \right]$$

$$= \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{(F(y) - G(y)) \left[\int_{-\infty}^{x} \frac{2v'(y - u)du}{((y - u)^2 + v'^2)^2} \right]}{y^2 + 1}. \quad \text{(4.6)}$$

Since \(F \) is non decreasing, we have

$$\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{(F(x - v'y) - G(x - v'y))dy}{y^2 + 1}$$

$$\geq \alpha(F(x - v'a) - G(x - v'a)) - \frac{1}{\pi} \int_{|y| \leq a} |G(x - v'y) - G(x - v'a)|dy$$

$$\geq \alpha(F(x - v'a) - G(x - v'a)) - \frac{1}{v'\pi} \int_{|y| \leq v'a} |G(x - y) - G(x - v'a)|dy. \quad \text{(4.7)}$$

Denote by \(\Delta_e(F, G) = \sup_{x \in J_e^\varepsilon} |F(x) - G(x)| \). Let \(x_n \in J_e^\varepsilon \) such that \(F(x_n) - G(x_n) \to \Delta_e(F, G) \). Then \(x_n = x_n + v'a \in J_e^\varepsilon \). We have

$$\sup_{x \in J_e^\varepsilon} \left| \text{Im} \left(\int_{-\infty}^{x} (S_F(u + iv') - S_G(u + iv'))du \right) \right| \geq \alpha(F(x_n) - G(x_n))$$

$$- \frac{1}{\pi v} \sup_{x \in J_e^\varepsilon} \frac{1}{\sqrt{\gamma}} \int_{|y| < 2v'a} |G(x + y) - G(x)|dy - (1 - \alpha)\Delta_e(F, G). \quad \text{(4.8)}$$
The rate of convergence to the semi-circular law

Note that
\[\frac{1}{\pi v} \sup_{x \in J_\varepsilon} \frac{1}{\sqrt{\gamma}} \int_{|y| < 2v} |G(x + y) - G(x)| dy \]
\[\leq \frac{1}{\pi v} \sup_{x \in J_\varepsilon} \frac{1}{\sqrt{\gamma}} \sqrt{4 - x^2} \leq C_v. \] (4.9)

Inequalities (4.4), (4.8) and (4.9) together imply
\[\sup_{x \in J_\varepsilon} \left| \int_{-\infty}^{x} (S_F(u + iv') - S_G(u + iv')) du \right| \geq (2\alpha - 1)\Delta_\varepsilon(F, G) - C_v - C\varepsilon^2. \] (4.10)

Similar arguments may be used for the sequence \(x_n \in J_\varepsilon \) such \(F(x_n) - G(x_n) \to -\Delta_\varepsilon(F, G) \). This completes the proof.

Corollary 4.1. Under the conditions of Proposition 4.1, for any \(V > v \), the following inequality holds
\[\sup_{x \in J_\varepsilon} \left| \int_{-\infty}^{x} (S_F(u + iv') - S_G(u + iv')) du \right| \leq \int_{-\infty}^{L} |S_F(u + iV) - S_G(u + iV)| du
+ \sup_{x \in J_\varepsilon} \left| \int_{\varepsilon}^{V} (S_F(x + iu) - S_G(x + iu)) du \right|. \] (4.11)

Proof. Put \(z = u + iv' \). \(v' \leq 2 \). Since the functions of \(S_F(z) \) and \(S_G(z) \) are analytic in the upper half-plane, it is enough to use Cauchy’s theorem. We can write
\[\int_{-\infty}^{\infty} \text{Im}(S_F(z) - S_G(z)) du = \lim_{L \to \infty} \int_{-\infty}^{x} (S_F(u + iv') - S_G(u + iv')) du. \] (4.12)

Since \(v' = \frac{v}{\sqrt{\gamma}} \leq \frac{\varepsilon}{2a} \), we may assume without loss of generality that \(v' \leq 2 \). By Cauchy’s integral formula, we have
\[\int_{-\infty}^{L} (S_F(z) - S_G(z)) du = \int_{-\infty}^{L} (S_F(u + iV) - S_G(u + iV)) du
+ \int_{\varepsilon}^{V} (S_F(-L + iu) - S_G(-L + iu)) du
- \int_{\varepsilon}^{V} (S_F(x + iu) - S_G(x + iu)) du. \] (4.13)

Denote by \(\xi(\eta) \) a random variable with distribution function \(F(x)(G(x)) \). Then we have
\[|S_F(-L + iv')| = \left| \mathbb{E}_{\xi \sim L - iv'} \frac{1}{\xi + L - iv'} \right| \leq v'^{-1} \Pr\{|\xi| > L/2\} + \frac{2}{L}. \] (4.14)
The rate of convergence to the semi-circular law

Similarly,

$$|S_G(-L + iv^')| \leq v'^{-1} \Pr\{|\eta| > L/2\} + \frac{2}{L}. \quad (4.15)$$

These inequalities imply that

$$\left| \int_{v'}^V (S_F(-L + iu) - S_G(-L + iu))du \right| \to 0 \quad \text{as} \quad L \to \infty, \quad (4.16)$$

which completes the proof.

Combining the results of Proposition 4.1 and Corollary 4.1, we get

Corollary 4.2. Under the conditions of Proposition 4.1 the following inequality holds

$$\Delta(F, G) \leq 7C_1 \int_{-\infty}^{\infty} |S_F(u + iV) - S_G(u + iV)|du + C_2v + C_3 \varepsilon^{2} \quad (4.17)$$

where $v' = \frac{v}{\sqrt{\gamma}}$ with $\gamma = 2 - |x|$.

We shall now apply the result of Corollary 4.2 to the empirical spectral distribution function $F_n(x)$ of the random matrix X. At first we bound the integral over the line $V = 2$. Note that in this case we have $|z + m_n(z)| \geq 1$. Moreover, $\text{Im} m_n^{(j)}(z) \leq \frac{1}{V} \leq \frac{1}{2}$.

We may now apply the results of the previous Lemmas regarding large deviation probabilities. This implies the following bound for $g_n(z)$ for all $z = u + iV$ with $u \in \mathbb{R}$.

$$|g_n(z)| \leq \frac{\beta_n}{n \sqrt{V}|z + m_n(z)||z + s(z) + m_n(z)|} \left(1 + \frac{\beta_n \text{Im} m_n(z)}{\sqrt{V}} + \frac{\beta_n}{nV \sqrt{V}} \right)$$

$$+ \frac{C \text{Im} m_n(z)}{nV|z + s(z) + m_n(z)|}. \quad (4.18)$$

Note that for $V = 2$

$$|z + m_n(z)||z + m_n(z) + s(z)| \geq \begin{cases} 4 & \text{for} \quad |u| \leq 2, \\ \frac{1}{4}|z|^2 & \text{for} |u| > 2. \end{cases} \quad (4.19)$$

We may rewrite the bound (4.18) as follows

$$|g_n(z)| \leq \frac{C \beta_n^2}{n(|z|^2 + 1)} + \frac{C \text{Im} m_n(z)}{nV}. \quad (4.20)$$

Note that for any distribution function $F(x)$ we have

$$\int_{-\infty}^{\infty} \text{Im} s_F(u + iv)du \leq \pi \quad (4.21)$$
From here it follows that, for $V = 2$

$$\int_{|u| \geq n} |m_n(z) - s(z)| du \leq \frac{C}{n} \quad (4.22)$$

Denote $\mathcal{D}_n := \{z = u + 2i : |u| \leq n\}$ and

$$\Omega_n := \{\cap_{z \in \mathcal{D}_n} \{\omega \in \Omega : |g_n(z)| \leq \frac{C\beta^2_n}{n(|z|^2 + 1)}\} \cap \Omega_n^\ast\}$$

Using a union bound, we may show that

$$\Pr\{\Omega_n\} \geq 1 - C \exp\{-c\ell_n,\alpha\}. \quad (4.23)$$

It is straightforward to check that for $\omega \in \Omega_n$

$$\int_{-\infty}^{\infty} |m_n(z) - s(z)| du \leq \frac{C}{n} \quad (4.24)$$

We put $\varepsilon = n^{-\frac{2}{3}}$ and $v_0 = \frac{\beta^2_n}{n}$. To conclude the proof we need to consider the "vertical" integrals for $z = x + iv'$ with $x \in \mathbb{J}'$, $v' = \frac{\beta_n}{\sqrt{\gamma}}$ and $\gamma = 2 - |x|$. It is enough to consider one of these integrals only. For example

$$\int_{v'}^{2v_0} \frac{1}{n^2v^2\sqrt{\gamma} + v} dv \leq \frac{1}{n^2v_0^2\sqrt{\gamma}} \leq \frac{1}{n^2v_0} \leq \frac{\beta^2_n}{n}. \quad (4.25)$$

Finally, we get for any $\omega \in \Omega_n$

$$\Delta(F_n, G) = \sup_{x} |F_n(x) - G(x)| \leq \frac{\beta^2_n}{n}. \quad (4.26)$$

Thus Theorem 1.1 is proved.

5 Proof of Theorem 1.2

We may express the diagonal entries of the resolvent matrix R as follows

$$R_{jj} = \sum_{k=1}^{n} \frac{1}{\lambda_k - z}|u_{jk}|^2. \quad (5.1)$$

Consider the distribution function, say $F_{nj}(x)$, of the probability distribution of the eigenvalues λ_k

$$F_{nj}(x) = \sum_{k=1}^{n} |u_{jk}|^2 I\{\lambda_k \leq x\}. \quad (5.2)$$
The rate of convergence to the semi-circular law

Then we have
\[R_{jj} = R_{jj}(z) = \int_{-\infty}^{\infty} \frac{1}{x-z} dF_{nj}(x). \]

which means that \(R_{jj} \) is the Stieltjes transform of the distribution \(F_{nj}(x) \). Note that, for any \(\lambda > 0 \)
\[\max_{1 \leq k \leq n} |u_{jk}|^2 \leq \sup_x (F_{nj}(x + \lambda) - F_{nj}(x)) =: Q_{nj}(\lambda). \]

On the other hand, it is easy to check that
\[Q_{nj}(\lambda) \leq 2 \sup_u \lambda \text{Im} R_{jj}(u + i\lambda). \]

By relations (2.23) and (2.26), we obtain for any \(v \geq v_0 \) with \(v_0 = \frac{c_0}{n} \) with a sufficiently small constant \(c \),
\[\Pr\{ \left| \frac{\varepsilon_j}{|z + m_n(z)|} \right| \leq \frac{1}{2} \} \leq \exp\{-cl_{n,\alpha}\}. \]

Furthermore, the representation (2.2) and inequality (5.6) together imply, for \(v \geq v_0 \),
\[\text{Im} R_{jj} \leq |R_{jj}| \leq C_1 \]

with some positive constant \(C_1 > 0 \) depending on \(\kappa, \alpha \). This implies that
\[\Pr\{ \max_{1 \leq k \leq n} |u_{jk}|^2 \leq \frac{\beta_n}{n} \} \leq C\exp\{-cl_{n,\alpha}\}. \]

By a union bound we arrive at the inequality (1.6). To prove inequality (1.7), we consider the quantity
\[r_j := R_{jj} - s(z). \]

Using equalities (2.2) and (3.39), we get
\[r_j = -s(z)g_n(z) + \frac{\varepsilon_j}{z + m_n(z)} R_{jj}. \]

By inequalities (3.65) and (2.26), we have
\[|r_j| \leq \frac{c\beta_n}{\sqrt{nv}}. \]

From here it follows that
\[\sup_{x \in \mathbb{R}} \int_{-\infty}^{\infty} |r_j(x + iv)| dv \leq \frac{C}{\sqrt{n}}. \]

Similar to (1.24) we get
\[\int_{-\infty}^{\infty} |r_j(x + iV)| dx \leq \frac{C}{\sqrt{n}}. \]
Applying Corollary 4.2, we get
\[
\Pr\left\{ \sup_x |F_{nj}(x) - G(x)| \leq \frac{\beta_n}{\sqrt{n}} \right\} \geq 1 - C \exp\{-cl_{n,\alpha}\}. \tag{5.14}
\]
Using now that
\[
\Pr\left\{ \sup_x |F_n(x) - G(x)| \leq \frac{\beta_n^2}{n} \right\} \geq 1 - C \exp\{-cl_{n,\alpha}\}, \tag{5.15}
\]
we get
\[
\Pr\left\{ \sup_x |F_{nj}(x) - G(x)| \leq \frac{\beta_n}{\sqrt{n}} \right\} \geq 1 - C \exp\{-cl_{n,\alpha}\}. \tag{5.16}
\]
Thus, Theorem 1.2 is proved.

Acknowledgement. The authors would like to thank S. G. Bobkov for drawing their attention to some references about large deviations for martingales and quadratic forms.

References

[1] Bai, Z. D., Miao, Tsay, J. *Convergence rates of the spectral distributions of large Wigner matrices*. Int. Math. J. 1, 2002, 65–90.

[2] Bentkus, V. *Measure concentration for separately Lipschitz functions in product spaces*. Israel Journal of Mathematics, 158 (2007), 1–17.

[3] Bobkov, S.; Götze, F.; Tikhomirov, A. N. *On concentration of empirical measures and convergence to the semi–circle law*. Journal of Theoretical Probability, 23, no. 3, (2010), 792–823.

[4] Girko, V. L. *Extended proof of the statement: Convergence rate of expected spectral functions of symmetric random matrices \(\Sigma_n \) is equal \(O(n^{-\frac{1}{2}}) \) and the method of critical steepest descent*. Random Oper. Stochastic Equations 10, 2002, 253–300.

[5] Götze, F.; Tikhomirov, A. N. *The rate of convergence of spectra of sample covariance matrices*. Teor. Veroyatn. Primen. 54 (2009), no. 1, 196–206.

[6] Götze, F.; Tikhomirov, A. N. *The rate of convergence for spectra of GUE and LUE matrix ensembles*. Cent. Eur. J. Math. 3, no. 4, (2005), 666–704.

[7] Götze, F.; Tikhomirov, A. N. *Rate of convergence to the semi-circular law*. Probab. Theory Relat. Fields 127, (2003), 228–276.

[8] Erdös, L.; Yau ; H.-T, Yin, J. *Bulk universality for generalized Wigner matrices*. arXiv:1001.3453.
The rate of convergence to the semi-circular law

[9] Erdős, L.; Yau, H.-T.; Yin, J. *Rigidity of eigenvalues of generalized Wigner matrices*. arXiv:1007.4652.

[10] Ledoux, M. *On Talagrand’s deviation inequalities for product measures* ESAIM: Probability and Statistics, 1, (1996), 65–87.

[11] Timushev, D. A.; Tikhomirov, A. N.; Kholopov, A. A. *On the accuracy of the approximation of the GOE spectrum by the semi-circular law*. Teor. Veroyatn. Primen. 52 (2007), no. 1, 180–185

[12] Tikhomirov, A. N. *On the rate of convergence of the expected spectral distribution function of a Wigner matrix to the semi-circular law*. Siberian Adv. Math. 19, (2009), no. 3, 211–223.