One-year follow-up of the nutritional status of celiac people on a gluten-free diet

Gesala Perez-Junkera
University of the Basque Country: Universidad del Pais Vasco

Maialen Vazquez-Polo
University of the Basque Country: Universidad del Pais Vasco

Francisco Jose Elzagirre
Hospital Universitario de Donostia

Laura Benjumea
Hospital Universitario de Donostia

Carlos Tutau
Hospital Universitario Cruces

Blanca Esteban
Asociacion de Celiacos y Sensibles al Gluten de Madrid

Idola Larretxi
University of the Basque Country: Universidad del Pais Vasco

Virginia Navarro
University of the Basque Country: Universidad del Pais Vasco

Itziar Churruca
University of the Basque Country: Universidad del Pais Vasco
https://orcid.org/0000-0003-3771-3963

Arrate Lasa
University of the Basque Country: Universidad del Pais Vasco

Research

Keywords: Celiac disease, Non-Celiac Gluten Sensitivity, Gluten-Free Diet, Dietary Assessment

DOI: https://doi.org/10.21203/rs.3.rs-445540/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background

The gluten-free diet (GFD), the only effective treatment for celiac disease, is usually nutritionally imbalanced. The present work aimed to analyze the evolution of the nutritional status, dietary profile, and symptoms present among celiac people over one year on a GFD while receiving individualized dietary advice.

Methods

Twenty-seven adults and thirty-one celiac children/adolescents participated in the cohort study. They were followed by 3 visits, at diagnosis (vt0) and after 3 and 12 months (vt3;vt12). Participants filled out dietary and gastrointestinal symptoms questionnaires and received a personalized form from dietitians containing dietary advice and anthropometric and biochemical data evolution.

Results

Most patients presented normal BMI, fat and muscle mass, and biochemical parameters at diagnosis and vt12. By contrast, all participants consumed protein and lipids in excess and carbohydrates in defect, in both vt0 and vt12. Low intakes of cereals, fruits and vegetables and high of meat were observed, these also remaining unchanged after dietary counseling. Symptoms present decreased after vt3 but rebounded in vt12.

Conclusions

Few changes in dietary pattern and symptom elimination suggested that the intervention was not effective enough. More research is necessary to evaluate whether closer follow up and face-to-face dietary advice improve dietary habits of celiac people.

Trial registration:

Code PI2016069, Ethical Comitee of the Clinical Investigation of the Basque Country. Registered on 15 July 2016.

1. Background

A strict lifelong Gluten-Free Diet (GFD) is currently the only effective treatment for celiac disease (CD), consisting in the total elimination of all products containing gluten from the diet [1, 2]. Small amounts of gluten ingestion, which can cause important damage-causing disorders in the intestinal mucosa of celiac people, need to be avoided. In addition, other gluten-related disorders, such as Non-celiac Gluten Sensitivity (NCGS), have appeared in recent years. These also benefit from following this dietary restriction [3].

Apart from the absence of gluten, a GFD must guarantee nutritional balance and prevent deficiencies. However, when nutritional assessments of celiac people have been carried out, imbalanced proportions of macronutrients and lack of several vitamin and minerals have been observed in their diets [4–9]. In particular, these studies have confirmed that a GFD is usually characterized by a poor intake of carbohydrates, iron, calcium, folate, niacin, zinc and fiber, as well as of excessive saturated fats. Therefore, following a GFD could lead to increased risk of several pathologies related to dietary imbalances, such as higher probabilities of CV diseases [10], anemia, osteoporosis or constipation [11–13]. Indeed, clinical trials performed among celiac participants have observed altered biochemical parameters, which are related to the aforementioned associated pathologies [7, 14–17].

Therefore, and in view of this scenario, a nutritional intervention based on personalized nutritional advice and a close follow-up of celiac patients carried out by dietitian-nutritionists should be highly recommended in order to establish suitable dietary guidelines. In fact, authors working in this field have proposed a regular control of the dietary history, apart from measurements of serum antibodies, body composition and examination of nutritional deficiencies related symptoms, as a strategy for improving the nutritional status of celiac sufferers and for making GFD more balanced [18].

Nevertheless, dietitians/nutritionists working with this collective have to deal with a specific problem since they only can make approximations when evaluating a GFD. Dietary software available on the market does not include nutritional information about a large number of specific gluten-free products (GFP), which has been demonstrated to be different from those of their gluten-containing homologues [19, 20]. Thus, the diet of people with CD cannot be precisely designed and their nutrient intake is usually miscalculated. Moreover, most commercial softwares focus on dietary plan designs for healthy people and are not freely available. Only a small number of these programs are also useful for therapeutic dietary plans, including diseases such as diabetes, hypercholesterolemia, or hypertension and not CD.

It must be also taken into account that nutritional imbalances are not the only difficulty that people with CD have to deal with. Gluten elimination from the diet should lead to a total remission of symptoms. However, data in the literature indicate that approximately 20–30% of celiac people continue suffering from symptoms even though they follow a strict GFD [21–25]. One of the reasons attributed to these complications is involuntary ingestions
of small amounts of gluten, called gluten transgressions [23]. These can occur due to several factors, which may include a lack of knowledge about both gluten-containing and non-containing products, the high price of GFP, sharing the meal with non-CD diners [26], socialization problems of the collective or anxiety and depression [27–31]. Thus, ensuring adherence to GFD or a strict compliance have proved to be crucial not only for a faster improvement of intestinal lesion but also for the reduction of symptoms related to the CD and the normalization of body composition [32].

2. Methods

Taking into account all of the above, it is obvious that nutritional assessment, education and follow up is necessary among this collective. Thus, the aim of the present work was to analyze a 1 year evolution of the nutritional status, dietary habits and symptoms present in celiac people who were receiving individualized dietary counseling in order to improve their nutritional status.

2.1. Participants and procedure

A study group of celiac people was recruited between 2016 and 2018 in two hospitals of the Basque Country (Hospital Universitario de Cruces and Hospital Universitario de Donostia) and in the Celiac Association of Madrid (Asociación de Celiacos y Sensibles al Gluten de Madrid). All pediatric patients (n = 31) were referred to the clinics to confirm a CD diagnosis (intestinal biopsy and/or serological tests) over this time span (2016–2018) and were consecutively enrolled and followed for the first 12 months after diagnosis confirmation. In the case of adults, who were taken from Celiac Association of Madrid members, 10 participants were newly diagnosed and 17 had been on a GFD for less than 1 year. The number of recruited participants was defined by the capacity of recruitment of each center. They attended medical/dietitian offices on three occasions: at diagnosis (v0); after three months on a GFD (v3); and after 12 months on a GFD (v12). Twenty-seven adults (5 men, 22 women; mean age ± SD: 37.1 ± 9.1) and thirty-one celiac children and adolescents (mean age ± SD: 7.1 ± 3.9) took part in the study at v0; thirteen adults (3 men and 10 women) and twenty-two children and adolescents continued the study at v3 and four adults (0 men and 4 women) and sixteen children and adolescents at v12 (Fig. 1). Efforts to maintain subjects’ participation in the study were carried out, such as: telephone calls to encourage participants to continue in the study, controlling individually the data of each visit, giving personalized attention to each one, etc. All available data were used.

Exclusion criteria included a history of chronic diseases such as cardiovascular disease, diabetes, hyperthyroidism/hypothyroidism, hypercholesterolemia, hypertriglyceridemia or high blood pressure levels, other digestive pathologies that need specific dietary advice and as well as lack of motivation to participate in the study. Written informed consent was obtained from all participants, after receiving information about the survey. This study was approved by the Ethical Committee of The Basque Country (Comité Éticode Investigación Clínica de Euskadi, CEIC Code PI 2016069).

2.2. Anthropometric Measurements

Trained personnel collected anthropometric measurements. Body weight (± 10 g) was measured after using a digital integrating scale (SECA 760). Height was determined to the nearest 5 mm using a stadiometer (SECA 220). Body Mass Index (BMI) was calculated from weight and height (kg/m2). The BMI values of adult patients were categorized according to the World Health Organization (WHO) criteria as follows: Below 18.5 kg/m2 considered as underweight, 18.5–24.9 kg/m2 as normal weight, 25–29.9 kg/m2 as overweight and > 30 kg/m2 as obese (WHO). In case of children and adolescents, the criteria established by Sobradillo et al. [33] were used to categorize BMI values as follows: < percentile 3 was considered as underweight; between percentile 3 and 85 normal weight, between percentile 85 and 95 overweight and > percentile 95, obesity.

2.3. Body Composition and Energy Expenditure

Fat mass, muscle mass, water, protein and mineral body content were estimated by a direct segmental multiple-frequency bioelectrical impedance analysis method (Inbody 120; Microcaya, S.A., Bilbao). Two skin electrodes were placed on the feet and two on the hands. Following the standard procedure, whole-body resistance and reactance were measured. The guidelines of WHO [34, 35] and Moreno et al. [36, 37] were used as reference for body fat mass in adults and children respectively. Muscle mass values were compared to the limits described by Heymsfield et al (1990) and Ito et al (2001) [38, 39]. Protein, mineral and water content classified according to the limits established by InBody 120 for each participant.

Resting metabolic rate (RMR) and waist and hip circumferences (WHC) were also calculated by the bioelectrical impedance analysis method. In order to calculate energy expenditure, standard activity level value was applied to the RMR. The limits defined by the WHO were used to classify waist-height ratio data [40].

2.4. Biochemical data

Fasting glucose, total cholesterol, HDL-cholesterol (HDL-c), LDL-cholesterol (LDL-c), triglycerides, ferritin and transferrin levels were measured at each visit. Values were compared to the Basque Health System references.

2.5. Analysis of symptoms presence

For the systematic evaluation of current gastrointestinal symptoms, participants filled out a self-administered, structured Gastrointestinal Symptom Rating Scale (GSRS) questionnaire [4]. This is a validated questionnaire used widely in research on celiac disease and other gastrointestinal disorders [42–47]. The questionnaire measures five subdimensions of gastrointestinal symptoms: Indigestion, diarrhea, abdominal pain, reflux and constipation. It comprises 15 separate items altogether. Values for each of the five subdimension scores were calculated as a mean of the respective items and the total GSRS score as a mean of all 15 items. Scoring is based on a Likert scale from 1 to 7 points, where 1 point signifies minimal gastrointestinal
2.6. Dietary Assessment and Counseling

Dietary intake was assessed using 3-day 24-h food recalls (24 HR), two on weekdays and one at the weekend, in each visit to the medical/dietitian office (vt0, vt3 and vt12). Participants also filled out a food frequency questionnaire (FFQ) at the first and last visit (vt0 and vt12). Registered dieticians-nutritionists recorded the answers of participants. In order to avoid bias in the measurement of the diet, food portions and amounts were determined by using photographs of rations and sizes described in Rusolillo and Marques’ Photo Album [48]. Energy and nutrient intakes were calculated by GlutenFreeDiet software, a specific free software created by our team for GFD evaluation and analysis (http://www.ehu.eus/dieta-singluten/) that contains, apart from the nutritional composition of conventional products, the energy, macronutrient, cholesterol and fiber content of more than 700 specific GFP obtained from the food labels [49].

Dietary reference intakes (DRI) for Spanish population issued by the Spanish Societies of Nutrition, Feeding and Dietetics (FESNAD) in 2010 were taken as references for the interpretation of the 24 HR [50]. In the case of FFQ, Spanish Society of Community Nutrition (SENC) recommendations were used for the correct interpretation of the results [51].

All patients received a personalized form by email, after each visit to the medical/dietitians office (after vt0, vt3 and vt12). These reports detailed their nutritional status diagnosis and the quality of their diet, such as their consumption of macronutrients, food groups, their micronutrient deficiencies and possible associated risks, etc. Moreover, specific dietary guidelines were provided to each patient to correct particular imbalances detected. Despite patients having the option of requesting personalized consultations concerning their results, most of them did not use this service.

2.7. Statistical analysis

Statistical analyses of results were performed by using the IBM SPSS statistical program, version 23 (IBM Inc., Armonk, NY, USA). Normality in the distribution was assessed by the Kolmogorov-Smirnov test, and homogeneity by Levene's test. Follow-up was addressed by indicating the number of participants in each visit. Statistical analyses were performed in order to calculate differences between measurements performed with Wilcoxon test (vt0 vs vt3 and vt0 vs vt12). Correlation between variables was calculated with Pearson’s correlation coefficient test. p values < 0.05 were accepted as statistically significant.

3. Results

3.1. Evolution of anthropometric and biochemical parameters over 1 year of GFD in adults, children and adolescents with CD

Table 1 and Table 2 show the evolution of anthropometric and biochemical data among adult participants and children and adolescents during one year on GFD. As may be observed, with regard to BMI, fat mass and muscle mass these were normal at diagnosis except for men’s values, which were worse than those of other participants. Going on a GFD for 3 and 12 months did not change any of the anthropometric parameters measured except in the case of children’s weight, height, Resting Metabolic Rate and Energy Expenditure which increased in all cases due to growth. Nevertheless, BMI of the majority of these participants remained in the normal range. Likewise, all biochemical parameters were under normal values at diagnosis, except in the case of men’s total cholesterol, which was above 200 mg/ml. Unfortunately, there were no more data collected in men. Women’s biochemical data remained unchanged after 3 and 12 months on GFD. In the case of children and adolescents, even though fasting glucose values increased from vt0 to vt3 and to vt12, they remained within normal values. No changes were observed in the rest of the parameters in the infant population.
Table 1

Anthropometric and biochemical data of celiac adults.

	Men				Women			
	vt0	vt3	vt12	p value	vt0	vt3	vt12	p value
N	5	3	0		22	10	4	
Anthropometric measurements								
Weight (kg)								
	v0							
BMI (kg/m²)								
low	<18.5							
	24.5±2.2							
normal	18.5–24.9							
	60							
overweight	>30.0							
	40							
Obesity								
	0							
WHR								
low risk								
	0							
high risk								
	0							
Fat mass (kg)								
low	<8.9/12.9% of BW							
	20.3±3.2							
normal	40% of BW							
	20							
high	>40.1% of BW							
	40							
Muscle mass (kg)								
low	<39.9% of BW							
	34.7±4.2							
normal	40% of BW							
	80							
high	>40.1% of BW							
	20							
Protein content (kg)	12.1±1.3	13.1±2.1			8.1±0.8	8.0±1.0	6.8±2.7	
low								
normal								
high								
Mineral content (kg)	4.2±0.5	4.5±0.9			2.9±0.3	2.9±0.3	2.9±0.4	
low								
normal								
high								
Water content (L)								
low								
normal								
high								

Denotes calculation of InBody 120 values.
	Men	Women
Basal Metabolic Rate (kcal)	1688.4±147.5 1793.3±232.0 NS -	1260.5±84.9 1264.8±118.2 1260.0±145.1 NS NS
Energy expenditure (kcal)	2802.2±196.8 2873.3±309.7 NS -	2042.2±140.0 2032.1±129.9 2025.0±168.4 NS NS
Biochemical data		
Glucose (mg/dl)	76–110 95±2.8 DNC - -	89.1±11.0 83.1±7.05 DNC NS -
Total cholesterol (mg/dl)	<200 234.5±12.0 DNC - -	164.0±26.0 168.7±19.2 DNC NS -
HDL (mg/dl)	>40 DNC DNC - -	50.2±10.9 59.4±16.0 DNC NS -
LDL (mg/dl)	<130 DNC DNC - -	99.4±24.5 91.8±28.1 DNC NS -
TG (mg/dl)	<150 143±17.0 DNC - -	135.6±270.4 70±30.0 DNC NS -
Ferritin (ng/ml)	20–200 DNC DNC - -	28.7±30.0 18.9±14.3 DNC NS -
Transferrin (mg/dl)	200–374 DNC DNC - -	273.7±21.1 310.5±159.1 DNC NS -
Table 2
Anthropometric and biochemical data of celiac children and adolescents.

Children and adolescents	vt0	vt3	vt12	p value
n	31	22	16	

Anthropometric measurements	Reference values*
Weight (kg)	29.7 ± 12.1
Height (m)	1.28 ± 0.2
BMI (kg/m2)	
% low	<P3
P3-P85	16.5 ± 1.8
% normal	P85-P95
7.4	
% overweight	>P95
3.7	
% obese	
3.7	
NS	
WHR	
very low risk	<P5
P5-P95	0.7 ± 0.1
low risk	P95
19	
high risk	
4	
Fat mass (kg)	
<P5	17.1 ± 6.2
% low	P5-P95
20	
% normal	>P95
60	
% high	
20	
Fat mass (kg)	
<P5	17.1 ± 6.2
% low	P5-P95
20	
% normal	>P95
60	
% high	
20	
Muscle mass (kg)	
< 41.9% of BW	12.1 ± 4.8
% low	42–47% of BW
38.5	
% normal	>47.1% of BW
61.5	
% high	
0	
Protein content (kg)	4.8 ± 1.7
% low	Personalized calculation of InBody 120
24	
% normal	76
90	
% high	0
Mineral content (kg)	1.7 ± 0.6
% low	Personalized calculation of InBody 120
8	
% normal	92
95	
% high	0
Water content (L)	17.9 ± 6.2

*Reference values: BMI: Sobradillo et al., 2004 [33] established limits; WHR and Fat Mass: Moreno et al. 1998 [36]and Moreno et al. 1999 [37]established limits; Muscle Mass: Heymsfield et al. 1990 [38]and Ito et al. 2001[39] established limits; Protein, Mineral and Water content: limits established by InBody 120 for each participant; Biochemical data: Basque Health System established values.
3.2. Evolution of energy, macronutrient, fibre and cholesterol intake of adults, children and adolescents with CD during 1 year of GFD

Table 3 and Table 4 show the energy intake, macronutrient distribution and fibre and cholesterol consumption of adults and children, respectively. Energy intake was according to the energy expenditure in most cases, with the exception of adult men in vt3, which was lower than ±20% of their energy waste. All participants showed a bad distribution of macronutrients in their diets, which was characterized by an excess of protein and lipids and a low consumption of carbohydrates. Saturated fatty acids intake was high among adults (except for men in vt3), whereas children’s intake was nearer to the recommended amount. By contrast, consumption of sugars was adequate in all participants. Data obtained after 3 and 12 months on GFD did not indicate a modification of this dietary profile, except for protein consumption among women, which increased significantly after 3 months on GFD.
Table 3
Energy and macronutrient intake of celiac adults.

	Men	Women	p value	Men	Women	p value				
N	5	3	0	vt0 vs vt3	vt0 vs vt12	vt0 vs vt3	vt0 vs vt12			
Energy intake (kcal)	± 20% of EE	2412.4 ± 831.0	1698.0 ± 606.0	NS	-	1867.5 ± 517.4	2194.2 ± 393.5	1944.0 ± 97.7	NS	NS
Protein (%)	12.5	16.4 ± 3.4	17.3 ± 3.5	NS	-	16.3 ± 3.7	20.3 ± 3.5	19.8 ± 2.0	< 0.05	NS
Lipids (%)	32.5	40.1 ± 10.4	38.7 ± 4.2	NS	-	41.3 ± 7.4	36.0 ± 7.3	40.6 ± 4.6	NS	NS
Saturated fatty acids (%)	< 10	16.4 ± 13.8	10.0 ± 1.3	NS	-	12.0 ± 4.3	12.8 ± 2.9	14.5 ± 2.6	NS	NS
Carbohydrates (%)	55	41.9 ± 9.5	42.0 ± 1.7	NS	-	40.2 ± 8.3	42.7 ± 8.0	36.3 ± 7.1	NS	NS
Simple sugars (%)	< 10	3.1 ± 2.1	3.4 ± 1.6	NS	-	4.6 ± 2.3	3.8 ± 1.1	4.1 ± 0.1	NS	NS
Fibre (g)	14 g/1000 kcal	32.0 ± 11.7	20.9 ± 20.6	NS	-	19.2 ± 10.0	25.9 ± 9.3	25.3 ± 7.1	0.059	NS
Cholesterol (mg)	< 300	309.5 ± 110.9	223.2 ± 62.9	NS	-	296.3 ± 138.9	326.5 ± 65.5	378.3 ± 125.2	NS	NS

Abbreviations: Vt0 = visit at time 0, at diagnosis; vt3 = visit after 3 months on a gluten-free diet; vt12 = visit after 12 months on a gluten-free diet NS = Not Significant; EE = Energy Expenditure.

*Recommended contribution in a balanced diet proposed by the Federation of Spanish Societies of Nutrition and Dietetics (FESNAD) and Spanish Society for Community Nutrition (SENC) [50, 51].

Table 4
Energy and macronutrient intake of celiac children and adolescents.

	Children and adolescents	p value	Men	Women	p value	
N	31	22	16	vt0 vs vt3	vt0 vs vt12	
Diet						
Energy intake (kcal)	± 20% of EE	2055.6 ± 497.1	2142.5 ± 6.3	1982.8 ± 231.3	NS	NS
Protein (%)	12.5	15.3 ± 2.7	15.2 ± 2.72	15.6 ± 2.5	NS	NS
Lipids (%)	32.5	38.6 ± 7.6	39.9 ± 6.2	38.8 ± 7.7	NS	NS
Saturated fatty acids (%)	< 10	11.5 ± 4.2	10.2 ± 2.6	9.4 ± 3.9	NS	NS
Carbohydrates (%)	55	44.9 ± 7.3	43.1 ± 5.5	44.8 ± 8.0	NS	NS
Simple sugars (%)	< 10	3.9 ± 3.2	2.9 ± 2.3	3.0 ± 0.6	NS	NS
Fibre (g)	10-13g/1000kcal	17.9 ± 6.7	18.1 ± 8.6	20.1 ± 6.9	0.079	NS
Cholesterol (mg)	< 200	274.3 ± 120.0	312.4 ± 114.6	317.1 ± 79.3	NS	NS

Abbreviations: NS = Not Significant; EE = Energy Expenditure.

*Recommended contribution in a balanced diet proposed by the Federation of Spanish Societies of Nutrition and Dietetics (FESNAD) and Spanish Society for Community Nutrition (SENC) [50, 51].

Fibre intake was high enough in men but low in women and children at vt0. However, both groups, adult women and children and adolescents, increased their fibre consumption after 3 and 12 months on a GFD even though this change only reached a tendency to increase after three months. Women complied with fibre recommendations in vt3 and vt12 and children only in vt12.

Cholesterol intake was only sufficient among men in vt3 and among women in vt0. The cholesterol intake reported in the rest of the visits of adult participants and among children was above recommendations.
3.3. Food frequency consumption and its evolution

The daily consumption of vegetables, fruits, oils and especially that of cereals was low at vt0 in all participants (Table 5 and Table 6). Men did not fulfil the recommendation for dairy products either. Meat consumption was extremely high in all subjects exceeding the recommended intake 2 fold in the case of women and children.

Table 5	Food group consumption frequency of adult participants.								
	Men	Women	Recommended intake*	vt0	vt12	p value	vt0	vt12	p value
N									
Daily consumption	Dairy	2–4	1.7 ± 0.8	-	2.7 ± 1.5	3.2 ± 0.3	NS	vt0 vs vt12	
	Cereals	4–6	1.4 ± 0.2	-	2.9 ± 1.4	2.7 ± 0.8	NS	vt0 vs vt12	
	Vegetables	2	0.7 ± 0.3	-	1.5 ± 1.5	2.0 ± 1.3	NS	vt0 vs vt12	
	Fruits	3	2.2 ± 0.7	-	2.5 ± 1.7	2.2 ± 1.5	NS	vt0 vs vt12	
	Oils	3–6	2.0 ± 1.0	-	2.5 ± 1.3	2.7 ± 2.3	NS	vt0 vs vt12	
Weekly consumption	Meat	3–4	4.8 ± 2.0	-	6.7 ± 2.5	4.5 ± 1.3	NS	vt0 vs vt12	
	Fish	3–4	2.3 ± 1.4	-	3.7 ± 2.3	4.3 ± 1.4	NS	vt0 vs vt12	
	Eggs	3–4	2.2 ± 1.1	-	3.1 ± 2.7	3.0 ± 0.1	NS	vt0 vs vt12	
	Legumes	2–4	2.3 ± 1.5	-	1.8 ± 1.4	1.7 ± 1.2	NS	vt0 vs vt12	
	Nuts	3–7	3.5 ± 2.7	-	1.9 ± 2.0	2.2 ± 1.4	NS	vt0 vs vt12	
	Pastries	Occasional	0.6 ± 0.4	-	0.8 ± 1.0	0.3 ± 0.3	NS	vt0 vs vt12	

Abbreviations: NS: Not significant

*Recommended intake according to the Spanish Society of Community Nutrition (SENC) [51].

Table 6	Food group consumption frequency of children and adolescents.					
	Children and adolescents	Recommended intake*	vt0	vt12	p value	
n	31	16	vt0 vs vt12			
Daily consumption	Dairy	2–4	2.7 ± 1.3	2.5 ± 0.6	NS	vt0 vs vt12
	Cereals	4–6	3.8 ± 1.9	2.7 ± 1.5	0.098	vt0 vs vt12
	Vegetables	2	0.8 ± 0.5	0.9 ± 0.6	NS	vt0 vs vt12
	Fruits	3	1.7 ± 1.3	2.0 ± 1.1	NS	vt0 vs vt12
	Oils	3–6	2.1 ± 1.4	2.4 ± 1.3	NS	vt0 vs vt12
Weekly consumption	Meat	3–4	7.2 ± 3.5	6.5 ± 1.4	< 0.01	vt0 vs vt12
	Fish	3–4	3.1 ± 1.6	3.4 ± 1.6	NS	vt0 vs vt12
	Eggs	3–4	2.7 ± 1.2	2.8 ± 0.6	NS	vt0 vs vt12
	Legumes	2–4	2.6 ± 1.2	2.5 ± 0.9	NS	vt0 vs vt12
	Nuts	3–7	1.3 ± 2.1	1.1 ± 1.2	NS	vt0 vs vt12
	Pastries	Occasional	1.8 ± 2.2	1.3 ± 1.7	NS	vt0 vs vt12

Abbreviations: NS: Not significant

*Recommended intake according to the Spanish Society of Community Nutrition (SENC) [51].
A year on a GFD with dietary advice reduced the frequency of meat consumption in women and children, reaching statistical significance in the latter group. However, the decrease observed was not enough to fulfill recommendations. The intake of the rest of food groups remained unchanged after the intervention. Moreover, cereal consumption among children showed a tendency toward decreased values \((p = 0.098)\) after 12 months on a GFD.

3.4. Gastrointestinal symptoms presence evolution during 1 year of GFD

Symptoms presence evolution indicated that in both adults and children, symptoms presence decreased after 3 and 12 months on a GFD (Fig. 2a and 2b) because the amount of participants that presented 0 symptoms increased after 3 and 12 months on a GFD. Similarly, 3 months on a GFD led to a reduction in the amount of patients with more than 6 symptoms at vt0 \((p = 0.059)\) in the case of children. However, the number of patients with more than 6 symptoms again increased between vt3 and vt12 in both populations (adults and children).

4. Discussion

It is known that CD is a common form of malabsorption [52–54]. For the time being, lifelong rigorous GFD is the only available treatment effective in remitting the symptoms of CD [1, 2]. Nevertheless, symptoms can sometimes remain even though patients go on a GFD. Moreover, this dietary pattern can bring as a result an imbalanced proportion of macro and micronutrient ingestion in both minors and adults with CD [4, 55, 56]. Several reasons have been proposed to justify these results, such as the scarce nutritional education of this collective or the lack of a strict compliance to the diet [6, 32]. Thus, nutritional counseling and a regular follow up by RDN to celiac and gluten sensitive people have been proposed as key strategies for achieving successful results in both symptom deletion and dietary balance [6, 18] and, as a consequence, in the nutritional status and quality of life of this collective. In this regard, the present work is a pilot study, an initial approach, to design a specific nutritional intervention suitable for the coeliac community.

Studies in the literature usually show that celiac people at diagnosis commonly present lower BMI values than does the general population, apart from lower fat and muscle mass, and that these parameters are normalized on average, after commencement, over the next two years [57–59]. However, recently published works have observed that, in the last 30 years a changing pattern in the clinical presentation of celiac people has occurred, mainly in paediatric patients, and that weight loss, for example, is not as common a symptom as it was [60]. Thus, recent research has also reported normal body weight and BMI values at diagnosis of CD [9, 61–65]. In the present work, most participants, adults and children, showed normal BMI, fat and muscle mass values at diagnosis indicating that their nutritional status was appropriate. Moreover, this remained unchanged 3 and 12 months after GFD commencement. This lack of changes after dietary treatment in celiac subjects with normal BMI values has also been described by other authors. Indeed, it has been proposed that following a GFD may have a beneficial effect on weight and body composition in patients whose BMI is out of its normal parameters [62–64, 66].

Biochemical parameters are also important when assessing the nutritional status of the celiac and gluten-sensitive collective. In the present study, all paediatric patients had normal biochemical parameters at the beginning of the study and all remained under normal ranges after 3 and 12 months on a GFD. These data are in accordance with the maintenance of normal body weight and composition observed for these subjects over the whole intervention. Only a fluctuation in fasting glucose was observed after 12 months among celiac children. These changes were also reflected in a recent study by Forchielli et al. [64], where authors described not only an increasing fasting glucose among celiac infants but also incremented HDL-c and decreased LDL-c values. However, it must be pointed out that the concentration of these parameters was maintained under normal ranges in both studies, and so no repercussion on celiac children’s health can be concluded. Among adult participants, celiac men had exceeded total cholesterol values at diagnosis, which is not borne out by the literature because, in general, celiac adults show lower total cholesterol values than the normal population at diagnosis [67, 68]. Moreover, this parameter was maintained unchanged after GFD treatment [69]. Unfortunately, the small sample size of adult males in the present study and the lack of biochemical data collected in this group in vt3 and vt12 render this work not comparable with the other studies mentioned.

The dietary pattern of celiac people on GFD in published works indicate that even though energy consumption can adjust to energy waste, macronutrient distribution is not balanced. Protein and lipids (especially saturated ones) are usually consumed in excess among people following a GFD, and by contrast, carbohydrate consumption is low [5, 6, 70, 71]. It has to be considered that GFP have partly been blamed for this imbalance, for several reasons: the high price of GFP (source of carbohydrates) that make celiac sufferers avoid them [72]; cereals used in GFP manufacturing that are poorer in proteins and usually not whole grains [19, 73]; the use of fats and gums in their production in order to improve palatability [19], etc. In fact, our previous studies indicated these nutritional composition differences between GFP and their gluten-containing counterparts [19]. Nevertheless, in the present study, all participants presented an imbalanced distribution of macronutrient at diagnosis, when GFP had not been consumed yet, and this was generally maintained until vt12. This fact would suggest that, apart from GFP consumption, there were other dietary factors that altered energy distribution, such as the dietary habits of the subjects.

By contrast, fiber intake among adult men at diagnosis and at vt3 was appropriate. Women and children consumed low amounts of this nutrient at diagnosis, but the GFP made women and children increase fiber consumption by vt3, and it was maintained in vt12. This could be due to the fact that fiber content does not differ between GFP and their homologues as much as macronutrient content does. In fact, it has been recently described that specially glutenfree breads can contain even more fibre than those containing gluten, suggesting that the food industry is making efforts to raise the content of this nutrient in GFP [74–76].
All these dietary imbalances observed among participants were linked to their dietary habits. In fact, imbalances remained unchanged across the whole study. According to the literature [4, 9, 55, 56, 65, 77], poor consumption of cereal, fruits, vegetables and oils was observed in all groups of participants. By contrast, meat was consumed in excess, which could be linked to the greater contribution of saturated fats in the diet at diagnosis. In fact, a positive correlation between both parameters was observed among celiac children at diagnosis (p = 0.02). Likewise, this nutrient consumption decreased slightly among children at vt3 and vt12, as did meat consumption. In the light of the above, giving dietary advice after vt0 and the followup in vt3 and vt12 did not change participants’ dietary pattern in our study. Thus, it can be stated that, in general, the dietary advice received by participants had little impact on their dietary profile improvement.

Even though dietary imbalances are observed frequently among people following a GFD, just as they are among the general population [4, 55], the introduction of a GFD is recommended for the partial or total elimination of symptoms [1, 78, 79]. Nevertheless, the period required for symptom remission varies between individuals [80, 81] and there is a small proportion of patients that continues suffering from symptoms even though they follow a GFD [81, 82]. In the present study, an amelioration of gastrointestinal symptoms in the first three months was observed among children, which was probably due to the motivation of starting the intervention and thus to a complete initial adherence to the diet. However, after this period a return of symptoms was observed in vt12, which indicated the probable relaxation of this collective in strictly following the GFD. In fact, dietitians suspected a lower dietary adherence at vt12 on face-to-face interviews among child participants. The literature also indicates that dietary adherence to GFD can decrease with the duration of treatments [83, 84] and the higher the adherence, the more effective the GFD is in resolving symptoms [85, 86]. Symptoms reported by adult participants did not change during the intervention indicating that concern about both the diet and symptom presence was not as important for children as it was for adults. Unfortunately, dietary adherence among the participants was not collected in the present study. In this respect, Silvester et al. have shown that almost all patients with CD only manage to maintain a diet which is reduced in gluten but not totally gluten-free [87]. Thus, these data suggest that a continuous follow up of patients is necessary for ensuring the total adherence to the diet and for obtaining its beneficial results in symptom absence not only in the short term, but also in the long term.

Considering all the above mentioned it is clear that correct personalized dietary counseling, nutritional education and a continuous follow-up of celiac and gluten sensitive patients performed by RDN is crucial for obtaining positive results. The lack of changes viewed in the present study indicates that the intervention may not have been the most appropriate. In an attempt to find a simple form of counseling, which is not too stressful for the patient and is feasible for healthcare personnel, patients were given personalized dietary advice through individualized reports by e-mail, which probably resulted in a lack of complete adherence, disinformation or failing to grasp the guidelines. It also appears that reports did not capture the interest of the participants. Although they had the option of requesting personalized consultations, most of them did not. Furthermore, the loss of participants in the study was substantial. For successful results, a continuous and more frequent monitoring as well as patient nutrition education should be carried out while applying a more effective methodology, namely: face-to-face intervention, regular phone calls, WhatsApp and mail attention, Internet forums, workshops and other educational tools for patient empowerment. Bearing this in mind, this study represents a pilot experience devoted to a second improved intervention study, which will start in the near future in order to achieve better outcomes.

The main limitation of the present study was the high number of participants that failed to continue with the study during the follow up and the consequent lack of data at vt3 and vt12. Thus, a second improved study, as well as any further interventions aimed to improve GFD in celiac people, must overcome this limitation. Moreover, it would be interesting to analyse vitamin and mineral consumption and to detect the main difficulties in following a safe and balanced GFD. However, it is worth highlighting the long period in which participants were monitored in the present study, as well as the amount of data collected about the evolution of their nutritional status and dietary habits. It is also noteworthy that this study provides relevant information about decisive aspects that future interventions should address.

5. Conclusions

It is clear that people with CD need both personalized and continuous nutritional assessment and advice by RDN in order to achieve improvements in their dietary habits, leading to a positive effect on their nutritional status and as a consequence on their quality of life. Whilst general nutrition education together with the provision of individualized information may serve as an encouragement for patients, simple intervention carried out by monitoring via email has not been effective enough; therefore, closer face-to-face and continuous counseling is required.

Abbreviations

It is clear that people with CD need both personalized and continuous nutritional assessment and advice by RDN in order to achieve improvements in their dietary habits, leading to a positive effect on their nutritional status and as a consequence on their quality of life. Whilst general nutrition education together with the provision of individualized information may serve as an encouragement for patients, simple intervention carried out by monitoring via email has not been effective enough; therefore, closer face-to-face and continuous counseling is required.

Declarations

Ethics approval and consent to participate: The study was conducted according to the guidelines of the Declaration of Helsinki, and approved by the Ethics Committee of Clinical Research of Basque Government (PI2016069). Written informed consent to participate was obtained from all participants.

Consent for publication: Written informed consent was obtained from the patients to publish this paper.
References

1. Melini V, Melini F. Gluten-Free Diet: Gaps and Needs for a Healthier Diet. Nutrients. 2019;11(1).
2. Itzlinger A, Branchi F, Elli L, Schumann M. Gluten-Free Diet in Celiac Disease—Forever and for All? Nutrients. 2018;10(11):1796.
3. Cha RR, Kim H J. Non-celiac Gluten Sensitivity. The Korean Journal of Gastroenterology. 2020;75(1):11-16.
4. Churruca I, Miranda J, Lasa A, Bustamante M, Larretxi I, Simon E. Analysis of Body Composition and Food Habits of Spanish Celiac Women. Nutrients. 2015;7(7): 5515-31.
5. Bordella MT, Fredella C, Prampolini L, Molteni N, Giunta A M, Bianchi P A. Body composition and dietary intakes in adult celiac disease patients consuming a strict gluten-free diet. Am J Clin Nutr. 2000;72(4):937-9.
6. Vicci G, Belli L, Biondi M, Polzonetti V. Gluten free diet and nutrient deficiencies: A review. Clin Nutr. 2016;35(6):1236-1241.
7. Martin J, Geisel T, Maresh C, Krieger K, Stein J. Inadequate Nutrient Intake in Patients with Celiac Disease: Results from a German Dietary Survey. Nutrition. 2013;87(4):240-246.
8. Theethira T G, Dennis M. Celiac Disease and the Gluten-Free Diet: Consequences and Recommendations for Improvement. Digestive Diseases, 2015, 33(2):175-182.
9. Suárez-González M, Bousoño García C, Jiménez Treviño S, Iglesias Cabo T, Díaz Martín J J. Influence of nutrition education in paediatric coeliac disease: impact of the role of the registered dietitian: a prospective, single-arm intervention study. J Hum Nutr Diet. 2020. 33(6):775-785.
10. Phillips CM, Kesse-Guyot E, McManus R, Herberg S, Lairon D, Planells R, Roche H M. High Dietary Saturated Fat Intake Accentuates Obesity Risk Associated with the Fat Mass and Obesity—Associated Gene in Adults. The Journal of Nutrition. 2012. 142(5):824-831.
11. Martín-Masot R, Nestares M T, Díaz-Castro J, López-Aliaga I, Alférez J M M, Moreno-Fernandez J, Maldonado J. Multifactorial Etiology of Anemia in Celiac Disease and Effect of Gluten-Free Diet: A Comprehensive Review. Nutrients. 2019. 11(11):2557.
12. Slavin J L. Dietary fiber and body weight. Nutrition. 2005. 21(3):411-418.
13. Ganji R, Moghbili M, Sadeghi R, Bayat G, Ganji A. Prevalence of osteoporosis and osteopenia in men and premenopausal women with celiac disease: a systematic review. Nutrition journal. 2019, 18(1):9-9.
14. Capristo E, Malandrino N, Farnetti S, Mingrone G, Leggio L, Addolorato G, Gasbarrini G. Increased serum high-density lipoprotein-cholesterol concentration in celiac disease after gluten-free diet treatment correlates with body fat stores. J Clin Gastroenterol. 2009. 43(10):946-9.
15. Capristo E, Addolorato G, Mingrone G, De Gaetano A, Greco A V, Tataranni P A, Gasbarrini G. Changes in body composition, substrate oxidation, and resting metabolic rate in adult celiac disease patients after a 1-y gluten-free diet treatment. Am J Clin Nutr. 2000. 72(1):76-81.
16. Capristo E, Mingrone G, Addolorato G, Greco A V, Corazza G R, Gasbarrini G. Differences in Metabolic Variables between Adult Coeliac Patients at Diagnosis and Patients on a Gluten-Free Diet. Scandinavian Journal of Gastroenterology. 1997. 32(12): 1222-1229.
17. Corazza G R, Di Sario A, Sacco G, Zoli G, Treggiari E A, Brusco G, Gasbarrini G. Subclinical coeliac disease: an anthropometric assessment. Journal of Internal Medicine. 1994. 236(2):183-187.
18. Pietzak M M. Follow-up of patients with celiac disease: achieving compliance with treatment. Gastroenterology. 2005. 128(4 Suppl 1):S135-41.
19. Miranda J, Lasa A, Bustamante M A, Churruca I, Simon E. Nutritional Differences Between a Gluten-Free Diet and a Diet Containing Equivalent Products with Gluten. Plant Foods For Human Nutrition. 2014. 69(2):182-187.
20. Larretxi I, Txurruka I, Navarro V, Lasa A, Bustamante M, Fernández-Gil M. D P, Simón E, Miranda J. Micronutrient Analysis of Gluten-Free Products: Their Low Content Is Not Involved in Gluten-Free Diet Imbalance in a Cohort of Celiac Children and Adolescent. Foods, 2019. 8(8).
21. Lanzini A, Lanzarotto F, Villanacci V, Mora A, Bertolazzi S, Turini D, Carella G, Malagoli A, Ferrante G, Cesana B M, Ricci C. Complete recovery of intestinal mucosa occurs very rarely in adult coeliac patients despite adherence to gluten-free diet. Alimentary Pharmacology & Therapeutics, 2009. 29(12):1299-1308.
22. Lebwohl B, Sanders D S, Green P H R. Coeliac disease. The Lancet. 2018. 391(10115):70-81.
23. Sharkey L M, Corbett G, Currie E, Lee J, Sweeney N, Woodward J M. Optimising delivery of care in coeliac disease – comparison of the benefits of repeat biopsy and serological follow-up. Alimentary Pharmacology & Therapeutics. 2013. 38(10):1278-1291.

24. Clifford S, Taylor A J, Gerber M, Devine J, Cho M, Walker R, Stefani I, Fidel S, Drahos J, Leffler D A. Concepts and Instruments for Patient-Reported Outcome Assessment in Celiac Disease: Literature Review and Experts’ Perspectives. Value in Health. 2020. 23(1):104-113.

25. Penny A H, Baggus M R E, Rej A, Snowden A J, Sanders S D. Non-Responsive Coeliac Disease: A Comprehensive Review from the NHS England National Centre for Refractory Coeliac Disease. Nutrients. 2020. 12(1).

26. Monzani A, Lionetti E, Felici E, Fransos L, Azzolina D, Rabbone I, Catassi C. Adherence to the Gluten-Free Diet during the Lockdown for COVID-19 Pandemic: A Web-Based Survey of Italian Subjects with Celiac Disease. Nutrients. 2020. 12(11).

27. Nachman F, Mauriño E, Vázquez H, Sfoggia C, Gonzalez A, Gonzalez V, del Campo M P, Smecuol E, Niveloni S, Sugai E, Mazure R, Cabanne A, Bai J C. Quality of life in celiac disease patients: Prospective analysis on the importance of clinical severity at diagnosis and the impact of treatment. Digestive and Liver Disease. 2009. 41(1):15-25.

28. Häuser W, Janke K-H, Klump B, Gregor M, Hinz A. Anxiety and depression in adult patients with celiac disease on a gluten-free diet. World journal of gastroenterology. 2010. 16(22):2780-2787.

29. Barratt S M, Leeds J S, Sanders D S. Quality of life in celiac disease is determined by perceived degree of difficulty adhering to a gluten-free diet, not the level of dietary adherence ultimately achieved. Journal of Gastrointestinal and Liver Diseases. 2011. 20(3):241-245.

30. Czaja-Bulska G, Bulsa M. Adherence to Gluten-Free Diet in Children with Celiac Disease. Nutrients. 2018. 10(10):1424.

31. Rodríguez M, Yonamine G H, Satiro C A F. Correction to: Rate and determinants of non-adherence to a gluten-free diet and nutritional status assessment in children and adolescents with celiac disease in a tertiary Brazilian referral center: a cross-sectional and retrospective study. BMC gastroenterology. 2018. 18(1):36-36.

32. Newnham E D, Shepherd S J, Strauss B J, Hosking P, Gibson P R. Adherence to the gluten-free diet can achieve the therapeutic goals in almost all patients with coeliac disease: A 5-year longitudinal study from diagnosis. Journal of Gastroenterology and Hepatology. 2016. 31(2):342-349.

33. Sobradillo B, Aguirre A, Areu L, Bilbao A, Fernández-Ramos C, Lizarraga A, Lorenzo H, Madariaga L, Rica I, Ruiz I, Sánchez E, Santamaría C, Serrano J M, Tabala A, Zurimendi B, Hernández M. Curvas y tablas de crecimiento. Estudios longitudinal y transversal. Bilbao:Fundación Faustino Orbeago. 2004. pp 1-31.

34. Gallagher D, Heymsfield S B, Heo M, Jebb S A, Murgatroyd P R, Sakamoto Y. Healthy percentage body fat ranges: an approach for developing guidelines based on body mass index. The American Journal of Clinical Nutrition. 2000. 72(2):694-701.

35. Lean M E, Han T S, Morrison C E. Waist circumference as a measure for indicating need for weight management. BMJ (Clinical research ed.). 1995. 311(6998). 158-161.

36. Moreno Aznar L, Zaragozano J F, De Frenne L M, Solana C F, Martínez G R, Chueca A S, Sánchez M B. Distribución de la grasa en niños y adolescentes de ambos sexos. Anales Españoles de Pediatría. 1998. Vol.49:pp135-139.

37. Moreno Aznar L, Zaragozano J F, Martínez G R, Chueca A S, Sánchez M B. Masa grasa corporal en niños y adolescentes de sexo masculino. Anales Españoles de Pediatría. 1999. Vol.51:pp 629-632.

38. Heymsfield S B, Smith R, Aulet M, Bensen B, Lichtman S, Wang J, Pierson R N Jr. Appendicular skeletal muscle mass: measurement by dual-photon absorptiometry. The American Journal of Clinical Nutrition. 1990. 52(2):214-218.

39. Ito H, Ohshima A, Ohto N, Ogasawara M, Tsuzuki M, Takao K, Hijii C, Tanaka H, Nishioka K. Relation between body 462-70 composition and age in healthy Japanese subjects. European journal of clinical nutrition. 2001. 55(3):214-218.

40. Organization W H. Waist circumference and waist-hip ratio: report of a WHO expert consultation. Geneva, 8-11 December 2008. 2011.

41. Laurikka P, Salmi T, Collin P, Huhtala H, Mäki M, Kaukinen K, Kurppa K. Gastrointestinal Symptoms in Celiac Disease Patients on a Long-Term Gluten-Free Diet. Nutrients. 2016. 8(7).

42. Hopman E G D, Koopman H M, Wit J M, Mearin M L. Dietary compliance and health-related quality of life in patients with coeliac disease. European journal of gastroenterology & hepatology. 2009. 21(9):1056-1061.

43. Simrén M, Axelsson J, Gillberg R, Abrahamsson H, Svedlund J, Bjöömsson E S. Quality of life in inflammatory bowel disease in remission: the impact of IBS-like symptoms and associated psychological factors. The American journal of gastroenterology. 2002. 97(2):389-396.

44. Svedlund J, Sjödin I, Dotevall G. GSRS—A clinical rating scale for gastrointestinal symptoms in patients with irritable bowel syndrome and peptic ulcer disease. Digestive Diseases and Sciences. 1988. 33(2):129-134.

45. Olafsson S, Hatlebakk J G, Berstad A. Patients with Endoscopic Gastritis and/or Duodenitis Improve Markedly Following Eradication of Helicobacter pylori, Although Less So Than Patients with Ulcers. Scandinavian Journal of Gastroenterology. 2002. 37(12):1386-1394.

46. Hori K, Matsumoto T, Miwa H. Analysis of the gastrointestinal symptoms of uninvestigated dyspepsia and irritable bowel syndrome. Gut and liver. 2009. 3(3):192-196.

47. Dimenäs E, Carlsson G, Glise H, Israelsson B, Wiklund I. Relevance of Norm Values as Part of the Documentation of Quality of Life Instruments for Use in Upper Gastrointestinal Disease. Scandinavian Journal of Gastroenterology. 1996. 31(sup221):8-13.

48. Russolillo G, Marques I. Food Portion Sizes Album; Imagen Comunicación Multimedia. Madrid:Spain. 2008. p 186.
51. SENC. Objetivos nutricionales para la población española.

Consenso de la Sociedad Española de Nutrición. Revista Española de Nutrición Comunitaria. 2011. 17(4):178-199.

52. Clark R, Johnson R. Malabsorption Syndromes. Nursing Clinics of North America. 2018. 53(3):361-374.

53. Nolan J D, Johnston I M, Walters J R F. Physiology of malabsorption. Surgery (Oxford). 2015. 33(5):193-199.

54. van der Heide F. Acquired causes of intestinal malabsorption. Best Practice & Research Clinical Gastroenterology. 2016. 30(2):213-224.

55. González T, Larretxi I, Vitoria J C, Castaño L, Simón E, Churruca I, Navarro V, Lasa A. Celiac Male's Gluten-Free Diet Profile: Comparison to that of the Control Population and Celiac Women. Nutrients. 2018. 10(11).

56. Larretxi I, Simon E, Benjumea L, Miranda J, Bustamante M A, Lasa A, Eizaguirre F J, Churruca I. Gluten-free-rendered products contribute to imbalanced diets in children and adolescents with celiac disease. Eur J Nutr. 2019. 58(2):775-783.

57. Wiech P, Chmiel Z, Bazaliński D, Salacińska I, Bartosiewicz A, Mazur A, Korczowski B, Binkowsa-Bury M, Dąbrowski M. The Relationship between Body Composition and a Gluten Free Diet in Children with Celiac Disease. Nutrients. 2018. 10 (11):1817.

58. Dickey W, Kearney N. Overweight in celiac disease: prevalence, clinical characteristics, and effect of a gluten-free diet. Am J Gastroenterol. 2006. 101(10):2356-9.

59. Barone M, Della Valle N, Rosania R, Facciorusso A, Trotta A, Cantatore F P, Falco S, Pignatiello S, Viggiani M T, Amoruso A, De Filippis R, Di Leo A, Francavilla R. A comparison of the nutritional status between adult celiac patients on a long-term, strictly gluten-free diet and healthy subjects. European Journal of Clinical Nutrition 2016. 70(1):23-27.

60. ROMA E, Panayiotou J, Karantana H, Constantinidou C, Siakavellas S I, Krini M, Syriopoulou V P, Bamias G. Changing Pattern in the Clinical Presentation of Pediatric Celiac Disease: A 30-Year Study. Digestion. 2009. 80(3):185-191.

61. Singh I, Agnihotri A, Sharma A, Verma A K, Das P, Thakur B, Sreenivas V, Gupta S D, Ahuja V, Makaria G K. Patients with celiac disease may have normal weight or may even be overweight. Indian journal of gastroenterology : official journal of the Indian Society of Gastroenterology. 2016. 35(1):20-24.

62. Ukkola A, Máki M, Kurppa K, Collin P, Huhtala H, Kekkonen L, Kaukinen K. Changes in body mass index on a gluten-free diet in coeliac disease: A nationwide study. European Journal of Internal Medicine. 2012. 23(4):384-388.

63. Reilly N, Aguilar K, Hassid B, Cheng J, DeFelice A, Kazlow P, Bhatat G, Green P. Celiac Disease in Normal-weight and Overweight Children: Clinical Features and Growth Outcomes Following a Gluten-free Diet. Journal of pediatric gastroenterology and nutrition. 2011. 53:S28-31.

64. Forchielli M L, Diani L, Labriola F, Bolasco G, Rocca A, Salfi N C, Leone A, Miserocchi C, Andreozzi L, Levi Della Vida F, Pessina A C, Lima M, Pession A. Gluten Deprivation: What Nutritional Changes Are Found During the First Year in Newly Diagnosed Coeliac Children?. Nutrients. 2019. 12(1):60.

65. Babio N, Alcázar M, Castillejo G, Recasens M, Martínez-Cerezo F, Gutiérrez-Pensado V, Masip G, Vaqué C, Vila-Martí A, Torres-Moreno M, Sánchez E, Salas-Salvadó J. Patients With Celiac Disease Reported Higher Consumption of Added Sugar and Total Fat Than Healthy Individuals. Journal of Pediatric Gastroenterology and Nutrition. 2017. 64(1).

66. Kabbani T A, Goldberg A, Kelly C P, Pallav K, Tariq S, Peer A, Hansen J, Dennis M, Leffler D A. Body mass index and the risk of obesity in coeliac disease treated with the gluten-free diet. Alimentary Pharmacology & Therapeutics. 2012. 35(6):723-729.

67. Ciacci C, Cirillo M, Giorgetti G, Alfinito F, Franchi A, Mazzetti di Pietralata M, Mazzocca G. Low plasma cholesterol: a correlate of nondiagnosed celiac disease in adults with hypochromic anemia. The American journal of gastroenterology. 1999. 94 (7):1888-1891.

68. West J, Logan R F A, Hill P G, Lloyd A, Lewis S, Hubbard R, Reader R, Holmes G K T, Khaw K T. Seroprevalence, correlates, and characteristics of undetected coeliac disease in England. Gut. 2003. 52(7):960-965.

69. Lewis N R, Sanders D S, Logan R F A, Fleming K M, Hubbard R B, West J. Cholesterol profile in people with newly diagnosed coeliac disease: a comparison with the general population and changes following treatment. British Journal of Nutrition. 2009. 102(4):509-513.

70. Mariani P, Viti M G, Montuori M, La Vecchia A, Cipolletta E, Calvani L, Bonamico M. The gluten-free diet: a nutritional risk factor for adolescents with celiac disease?. J Pediatr Gastroenterol Nutr. 1998. 27(5):519-23.

71. Forchielli M L, Fornicola P, Diani L, Scriver B, Salfi N C, Pessina A C, Lima M, Conti V, Pession A. Gluten-Free Diet and Lipid Profile in Children With Celiac Disease: Comparison With General Population Standards. Journal of Pediatric Gastroenterology and Nutrition. 2015. 61(2).

72. Dietrich W, Zopf Y. Gluten and FODMAPS-Sense of a Restriction/When Is Restriction Necessary?. Nutrients. 2019. 11(8):1957.

73. Fry L, Madden A M, Fallaize R. An investigation into the nutritional composition and cost of gluten-free versus regular food products in the UK. Journal of Human Nutrition and Dietetics. 2018. 31(1):108-120.

74. Larretxi I, Churruca I, Navarro V, Miranda J, Lasa A, Bustamante M Á, Simon E. Effect of analytically measured fiber and resistant starch from gluten-free products on the diets of individuals with celiac disease. Nutrition. 2020. 70:110586.
The Availability and Nutritional Adequacy of Gluten-Free Bread and Pasta. Nutrients. 2018. 10(10):1370.

Cornicelli M, Saba M, Machello N, Silano M, Neuhold S. Nutritional composition of gluten-free food versus regular food sold in the Italian market. Dig Liver Dis. 2018.

Lionetti E, Antonucci N, Marinelli M, Bartolomei B, Franceschini E, Gatti S, Catassi G N, Verma A K, Monachesi C, Catassi C. Nutritional Status, Dietary Intake, and Adherence to the Mediterranean Diet of Children with Celiac Disease on a Gluten-Free Diet: A Case-Control Prospective Study. Nutrients. 2020. 12(1):143.

Caio G, Volta U, Sapone A, Leffler D A, De Giorgio R, Catassi C, Fasano A. Celiac disease: a comprehensive current review. BMC medicine. 2019. 17(1):142-142.

Rajpoot P, Sharma A, Harikrishnan S, Baruah B J, Ahuja V, Makharia G K. Adherence to gluten-free diet and barriers to adherence in patients with celiac disease. Indian Journal of Gastroenterology. 2015. 34(5):380-386.

Pekki H, Kuppa K, Mäki M, Huhtala H, Sievänen H, Laurila K, Collin P Kaukinen K. Predictors and Significance of Incomplete Mucosal Recovery in Celiac Disease After 1 Year on a Gluten-Free Diet. Am J Gastroenterol. 2015. 110(7):1078-85.

Mooney P, Evans K, Singh S, Sanders D. Treatment Failure in Coeliac Disease: A practical guide to investigation and treatment of non-responsive and refractory coeliac disease. Journal of gastrointestinal and liver diseases : JGLD. 2012. 21:197-203.

Stasi E, Marafini I, Caruso R, Soderino F, Angelucci E, Del Vecchio Blanco G, Paoluzi O A, Calabrese E, Sedda S, Zorzi F, Pallone F, Monteleone G. Frequency and Cause of Persistent Symptoms in Celiac Disease Patients on a Long-term Gluten-free Diet. J Clin Gastroenterol. 2016. 50(3):239-43.

Ciacci C, Cirillo M, Cavallaro R, Mazzacca G. Long-Term Follow-Up of Celiac Adults on Gluten-Free Diet: Prevalence and Correlates of Intestinal Damage. Digestion. 2002. 66(3):178-185.

Moya D A, Nugent C A, Baker R D, Baker S S. Celiac Disease Nutritional Status and Poor Adherence to Follow-up. Clinical Pediatrics. 2020. 0009922820912216.

Murray J A, Watson T, Clearman B, Mitros F. Effect of a gluten-free diet on gastrointestinal symptoms in celiac disease. The American Journal of Clinical Nutrition. 2004. 79(4):669-673.

Norström F, Sandström O, Lindholm L, Ivarssoon A. A gluten-free diet effectively reduces symptoms and health care consumption in a Swedish celiac disease population. BMC gastroenterology. 2012. 12:125-125.

Silvester J A, Comino I, Rigaux, L N, Segura V, Green K H, Cebolla A, Welten D, Dominguez R, Leffler D A, Leon F, Bernstein C N, Graff L A, Kelly C P, Sousa C, Duerksen D R. Exposure sources, amounts and time course of gluten ingestion and excretion in patients with coeliac disease on a gluten-free diet. Aliment Pharmacol Ther. 2020. 52(9):1469-1479.

Figures

![Figure 1](image_url)

Figure 1

Patients included in the study. Vt0: visit at time 0, at diagnosis; vt3: visit after 3 months on a gluten-free diet; vt12: visit after 12 months on a gluten-free diet.
Figure 2

Percentage of adult (a) and children and adolescent (b) participants presenting 0, 1-5 or more than 6 symptoms. Vt0: visit at time 0, at diagnosis; vt3: visit after 3 months on a gluten-free diet; vt12: visit after 12 months on a gluten-free diet.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Coverletter.pdf
- STROBEchecklistcohortPerezJunqueraetal.pdf