EXPANSIONS OF THE REAL FIELD BY DISCRETE SUBGROUPS OF $\text{GL}_n(\mathbb{C})$

PHILIPP HIERONYMI, ERIK WALSBERG, AND SAMANTHA XU

Abstract. Let Γ be an infinite discrete subgroup of $\text{GL}_n(\mathbb{C})$. Then either $(\mathbb{R}, <, +, \cdot, \Gamma)$ is interdefinable with $(\mathbb{R}, <, +, \cdot, \lambda\mathbb{Z})$ for some $\lambda \in \mathbb{R}$, or $(\mathbb{R}, <, +, \cdot, \Gamma)$ defines the set of integers. When Γ is not virtually abelian, the second case holds.

1. Introduction

Let $\bar{\mathbb{R}} = (\mathbb{R}, <, +, 0, 1)$ be the real field. For $\lambda \in \mathbb{R}_{>0}$, set $\lambda\mathbb{Z} := \{\lambda^m : m \in \mathbb{Z}\}$. Throughout this paper Γ denotes a discrete subgroup of $\text{GL}_n(\mathbb{C})$, and G denotes a subgroup of $\text{GL}_n(\mathbb{C})$. We identify the set $M_n(\mathbb{C})$ of n-by-n complex matrices with \mathbb{C}^{n^2} and identify \mathbb{C} with \mathbb{R}^2 in the usual way. Our main result is the following classification of expansions of $\bar{\mathbb{R}}$ by a discrete subgroup of $\text{GL}_n(\mathbb{C})$.

Theorem A. Let Γ be an infinite discrete subgroup of $\text{GL}_n(\mathbb{C})$. Then either

- (\mathbb{R},Γ) defines \mathbb{Z} or
- there is $\lambda \in \mathbb{R}_{>0}$ such that $(\bar{\mathbb{R}},\Gamma)$ is interdefinable with $(\bar{\mathbb{R}},\lambda\mathbb{Z})$.

If Γ is not virtually abelian, then $(\bar{\mathbb{R}},\Gamma)$ defines \mathbb{Z}.

By Hieronymi [11, Theorem 1.3], the structure $(\bar{\mathbb{R}},\lambda\mathbb{Z},\mu\mathbb{Z})$ defines \mathbb{Z} whenever $\log_\lambda \mu \not\in \mathbb{Q}$, and is interdefinable with $(\bar{\mathbb{R}},\lambda\mathbb{Z})$ otherwise. Therefore Theorem A extends immediately to expansions of $\bar{\mathbb{R}}$ by multiple discrete subgroups of $\text{GL}_n(\mathbb{C})$.

Corollary A. Let \mathcal{G} be a collection of infinite discrete subgroups of various $\text{GL}_n(\mathbb{C})$. Then either

- $(\bar{\mathbb{R}},(\Gamma)_{\Gamma \in \mathcal{G}})$ defines \mathbb{Z} or
- there is $\lambda \in \mathbb{R}_{>0}$ such that $(\bar{\mathbb{R}},(\Gamma)_{\Gamma \in \mathcal{G}})$ is interdefinable with $(\bar{\mathbb{R}},\lambda\mathbb{Z})$.

The dichotomies in Theorem A and Corollary A are arguably as strong as they can be. An expansion of the real field that defines \mathbb{Z}, has not only an undecidable theory, but also defines every real projective set in sense of descriptive set theory (see Kechris [16, 37.6]). From a model-theoretic/geometric point of view such a structure is a wild as can be. On the other hand, by van den Dries [4] the structure $(\bar{\mathbb{R}},\lambda\mathbb{Z})$ has a decidable theory whenever λ is recursive, and admits quantifier-elimination in a suitably extended language. It satisfies combinatorical model-theoretic tameness conditions such as NIP and distality (see [9, 13]). Furthermore, it follows...
from these results that every subset of \mathbb{R}^n definable in $(\bar{\mathbb{R}}, \lambda^2)$ is a boolean combination of open sets, and thus $(\bar{\mathbb{R}}, \lambda^2)$ defines only sets on the lowest level of the Borel hierarchy. See Miller [18] for more on tameness in expansions of the real field.

Our proof of Theorem A relies crucially on the following two criteria for the definability of \mathbb{Z} in expansions of the real field.

Fact 1.1. Suppose $D \subseteq \mathbb{R}^k$ is discrete.

1. If $(\bar{\mathbb{R}}, D)$ defines a subset of \mathbb{R} that is dense and co-dense in a nonempty open interval, then $(\bar{\mathbb{R}}, D)$ defines \mathbb{Z}.
2. If D has positive Assouad dimension, then $(\bar{\mathbb{R}}, D)$ defines \mathbb{Z}.

The first statement is [12] Theorem E, a fundamental theorem on first-order expansions of $\bar{\mathbb{R}}$, and the second claim is proven using the first in Hieronymi and Miller [14, Theorem A]. We recall the definition of Assouad dimension in Section 5. This important metric dimension bounds more familiar metric dimensions (such as Hausdorff and Minkowski dimension) from above. We refer to [14] for a more detailed discussion of Assouad dimension and its relevance to definability theory.

The outline of our proof of Theorem A is as follows. Let Γ be a discrete, infinite subgroup of $\text{Gl}_n(\mathbb{C})$. Using Fact 1.1(1), we first show that $(\bar{\mathbb{R}}, \Gamma)$ defines \mathbb{Z} whenever Γ contains a non-diagonalizable matrix. It follows from a theorem of Mal’tsev that $(\bar{\mathbb{R}}, \Gamma)$ defines \mathbb{Z} when Γ is virtually solvable and not virtually abelian. In the case that Γ is not virtually solvable, we prove using Tits’ alternative that Γ has positive Assouad dimension, and hence $(\bar{\mathbb{R}}, \Gamma)$ defines \mathbb{Z} by Fact 1.1(2). We conclude the proof of Theorem A by proving that whenever Γ is virtually abelian and $(\bar{\mathbb{R}}, \Gamma)$ does not define \mathbb{Z}, then $(\bar{\mathbb{R}}, \Gamma)$ is interdefinable with $(\bar{\mathbb{R}}, \lambda^2)$ for some $\lambda \in \mathbb{R}_{>0}$. Along the way we give (Lemma 3.4) an elementary proof showing that a torsion free non abelian nilpotent subgroup of $\text{Gl}_n(\mathbb{C})$ has a non-diagonalizable element. As every finitely generated subgroup of $\text{Gl}_n(\mathbb{C})$ is either virtually nilpotent or has exponential growth, this yields a more direct proof of Theorem A in the case when Γ is finitely generated.

We want to make an extra comment about the case when Γ is a discrete, virtually solvable, and not virtually abelian subgroup of $\text{Gl}_n(\mathbb{C})$. The Novosibirsk theorem [22] of Noskov (following work of Mal’tsev, Ershov, and Romanovskii) shows that a finitely generated, virtually solvable and non-virtually abelian group interprets $(\mathbb{Z}, +, \cdot)$. It trivially follows that if G is finitely generated, virtually solvable, and non-virtually abelian, then $(\bar{\mathbb{R}}, G)$ interprets $(\mathbb{Z}, +, \cdot)$. However, it does not directly follow that $(\bar{\mathbb{R}}, G)$ defines \mathbb{Z}. We use an entirely different method below to show that if G is in addition discrete, then $(\bar{\mathbb{R}}, G)$ defines \mathbb{Z}. Our method also applies when G is not finitely generated, but relies crucially on the discreteness of G.

This paper is by no means the first paper to study expansions of the real field by subgroups of $\text{Gl}_n(\mathbb{C})$. Indeed, there is a large body of work on this subject, often not explicitly mentioning $\text{Gl}_n(\mathbb{C})$. Because we see this paper as part of a larger investigation, we survey some of the earlier results and state a conjecture. It is convenient to consider three distinct classes of such expansion. By Miller and Speissegger [20] every first-order expansion \mathcal{R} of $\bar{\mathbb{R}}$ satisfies at least one of the following:
EXPANSIONS OF THE REAL FIELD BY DISCRETE SUBGROUPS OF $\text{GL}_n(C)$

1. \mathcal{R} is o-minimal,
2. \mathcal{R} defines an infinite discrete subset of \mathbb{R},
3. \mathcal{R} defines a dense and co-dense subset of \mathbb{R}.

The open core \mathcal{R}^o of \mathcal{R} is the expansion of $(\mathbb{R}, <)$ generated by all open \mathcal{R}-definable subsets of all \mathbb{R}^k. By [20], if \mathcal{R} does not satisfy (2), then \mathcal{R}^o is o-minimal.

The case when \mathcal{R} is o-minimal, is largely understood. Wilkie’s famous theorem [28] that $(\overline{\mathbb{R}}, \exp)$ is o-minimal is crucial. This shows the expansion of $\overline{\mathbb{R}}$ by the subgroup

$$\left\{ \begin{pmatrix} 1 & 0 & t \\ 0 & \lambda^t & 0 \\ 0 & 0 & 1 \end{pmatrix} : t \in \mathbb{R} \right\}$$

for $\lambda \in \mathbb{R}_{>0}$, and so is the expansion of $\overline{\mathbb{R}}$ by any subgroup of the form

$$\left\{ \begin{pmatrix} t^s & 0 \\ 0 & t^r \end{pmatrix} : t \in \mathbb{R}_{>0} \right\}$$

for $s, r \in \mathbb{R}_{>0}$. Indeed, by Peterzil, Pillary, and Starchenko [24], whenever an expansion $(\overline{\mathbb{R}}, G)$ by a subgroup G of $\text{GL}_n(\mathbb{R})$ is o-minimal, then G is already definable in $(\overline{\mathbb{R}}, \exp)$. Furthermore, note that by a classical theorem of Tamagaki and Chevalley [3] every compact subgroup of $\text{GL}_n(\mathbb{C})$ is the group of real points on an algebraic group defined over \mathbb{R}. Thus every compact subgroup of $\text{GL}_n(\mathbb{C})$ is $\overline{\mathbb{R}}$-definable, and therefore the case of expansions by compact subgroups of $\text{GL}_n(\mathbb{C})$ is understood as well.

We now consider the case when infinite discrete sets are definable. Corollary A for discrete subgroups of \mathbb{C}^\times follows easily from the proof of [11, Theorem 1.6]. While Corollary A handles the case of expansions by discrete subgroups of $\text{GL}_n(\mathbb{C})$, there are examples of subgroups of $\text{GL}_n(\mathbb{C})$ that define infinite discrete sets, but fail the conclusion of Theorem A. Given $\alpha \in \mathbb{R}^\times$ the logarithmic spiral

$$S_\alpha = \{(\exp(t)\sin(\alpha t), \exp(t)\cos(\alpha t)) : t \in \mathbb{R}\}$$

is a subgroup of \mathbb{C}^\times. Let s and e be the restrictions of sin and exp to $[0, 2\pi]$, respectively. Then $(\overline{\mathbb{R}}, S_\alpha)$ is a reduct of $(\overline{\mathbb{R}}, s, e, \lambda^\mathbb{Z})$ when $\lambda = \exp(2\pi\alpha)$, as was first observed by Miller and Speissegger. As $(\overline{\mathbb{R}}, s, u)$ is $\overline{\mathbb{R}}$-minimal with field of exponents \mathbb{Q}, the structure $(\overline{\mathbb{R}}, S_\alpha)$ is d-minimal by Miller [18, Theorem 3.4.2] and thus does not define \mathbb{Z}. It can be checked that $(\overline{\mathbb{R}}, S_\alpha)$ defines a analytic function that is not semi-algebraic, and thus is not interdefinable with $(\overline{\mathbb{R}}, \lambda^\mathbb{Z})$ for any $\lambda \in \mathbb{R}_{>0}$.

Most work in the case of expansions that define dense and co-dense sets, concerns expansions by finite rank subgroups of \mathbb{C}^\times (see introduction of [2] for a thorough discussion of expansions by subgroups of \mathbb{C}^\times). In [5] van den Dries and Günaydın

1. A **d-minimal** expansion \mathcal{R} of $\overline{\mathbb{R}}$ is d-minimal if every definable unary set in every model of the theory of \mathcal{R} is a union of an open set and finitely many discrete sets.

2. By induction on the complexity of terms it follows easily from [Theorem II, vdD] that the definable functions in $(\overline{\mathbb{R}}, \lambda^\mathbb{Z})$ are given piecewise by a finite compositions of $x \mapsto \max \left(\{0\} \cup (\lambda^\mathbb{Z} \cap [-\infty, x])\right)$ and functions definable in $\overline{\mathbb{R}}$. From this one can deduce that every definable function in this structure is piecewise semi-algebraic.
showed that an expansion of \(\mathbb{R} \) by a finitely generated dense subgroup of \((\mathbb{R}_{>0},\cdot)\) admits quantifier-elimination in a suitably extend language. Günaydın \[8\] and Belegradek and Zilber \[1\] proved similar results for the expansion of \(\mathbb{R} \) by a dense finite rank subgroup of the unit circle \(U := \{ a \in \mathbb{C}^\times : |a| = 1 \} \). This covers the case when \(G \) is the group of roots of unity. In all these cases the open core of the resulting expansion is interdefinable with \(\mathbb{R} \). This does not always have to be the case. In Caulfield \[?\] studies expansions by subgroups of \(\mathbb{C}^\times \) of the form

\[
\{ \lambda^k \exp(i \alpha l) : k, l \in \mathbb{Z} \} \quad \text{where} \quad \lambda \in \mathbb{R}_{>0} \text{ and } \alpha \in \mathbb{R} \setminus \pi \mathbb{Q}.
\]

Such an expansions obviously defines a dense and co-dense subset of \(\mathbb{R} \), but by \[?\] its open core is interdefinable with \((\mathbb{R}, \lambda^\mathbb{Z})\). Furthermore, even if the open core is \(\omega \)-minimal, it does not have to be interdefinable with \(\mathbb{R} \). By \[13\] there is a co-countable subset \(\Lambda \) of \(\mathbb{R}_{>0} \) such that if \(r \in \Lambda \) and \(H \) is a finitely generated dense subgroup of \((\mathbb{R}_{>0},\cdot)\) contained in the algebraic closure of \(\mathbb{Q}(r) \), then the open core of the expansion of \(\mathbb{R} \) by the subgroup

\[
\left\{ \begin{pmatrix} t & 0 \\ 0 & t^r \end{pmatrix} : t \in H \right\}
\]

is interdefinable with the expansion of \(\mathbb{R} \) by the power function \(t \mapsto t^r : \mathbb{R}_{>0} \to \mathbb{R}_{>0} \).

All these previous results suggest that the next class of subgroups of \(\text{GL}_n(\mathbb{C}) \) for which we can hope to prove a classification comparable to Theorem A, is the class of finitely generated subgroups. Here the following conjecture seems natural, but most likely very hard to prove. Let \(\mathbb{R}_{\text{Pow}} \) be the expansion of \(\mathbb{R} \) by all power functions \(\mathbb{R}_{>0} \to \mathbb{R}_{>0} \) of the form \(t \mapsto t^r \) for \(r \in \mathbb{R}^\times \).

Conjecture. Let \(G \) be a finitely generated subgroup of \(\text{GL}_n(\mathbb{C}) \) such that \((\mathbb{R}, G)\) does not define \(\mathbb{Z} \). Then the open core of \((\mathbb{R}, G)\) is a reduct of \(\mathbb{R}_{\text{Pow}} \) or of \((\mathbb{R}, \text{Pow} \alpha)\) for some \(\alpha \in \mathbb{R}_{>0} \).

Even when the statement “\((\mathbb{R}, G)\) does not define \(\mathbb{Z} \)” is replaced by “\((\mathbb{R}, G)\) does not interpret \((\mathbb{Z}, +, \cdot)\)”, the conjecture is open. However, this weaker conjecture might be easier to prove, because the Novosibirsk theorem can be used to rule out the case when \(G \) is virtually solvable and non-virtually abelian. It is worth pointing out that Caulfield conjectured that when \(G \) is assumed to be a subgroup of \(\mathbb{C}^\times \), then the open core \((\mathbb{R}, G)\) is either \(\mathbb{R} \) or a reduct of \((\mathbb{R}, \text{Pow} \alpha)\) for some \(\alpha \in \mathbb{R}_{>0} \). See \[?\] for progress towards this later conjecture.

2. **Notation and Conventions**

Throughout \(m, n \) range over \(\mathbb{N} \) and \(k, l \) range over \(\mathbb{Z} \), \(G \) is a subgroup of \(\text{GL}_n(\mathbb{C}) \), and \(\Gamma \) is a discrete subgroup of \(\text{GL}_n(\mathbb{C}) \). Let \(\mathbb{R}_\Gamma \) be the expansion of \(\mathbb{R} \) by a \((2n)^2\)-ary predicate defining \(\Gamma \). We set \(\mathbb{R}_\Lambda := \mathbb{R}_\chi^\mathbb{C} \). A subset of \(\mathbb{R}^k \) is **discrete** if every point is isolated. We let \(UT_n(\mathbb{C}) \) be the group of \(n \)-by-\(n \) upper triangular matrices, \(D_n(\mathbb{C}) \) be the group of \(n \)-by-\(n \) diagonal matrices, and \(U \) be the multiplicative group of complex numbers with norm one.

All structures considered are first-order, “definable” means “definable, possibly with parameters”. Two expansions of \((\mathbb{R}, <)\) are **interdefinable** if they define the same subsets of \(\mathbb{R}^k \) for all \(k \). If \(P \) is a property of groups then a group \(H \) is **virtually \(P \)** if there is finite index subgroup \(H' \) of \(H \) that is \(\mathbb{P} \).
3. Linear Groups

We gather some general facts on groups. Throughout this section H is a finitely generated group with a symmetric set S of generators. Let S_m be the set of m-fold products of elements of S for all m. If S' is another symmetric set of generators then there is a constant $k \geq 1$ such that

$$k^{-1}|S_m| \leq |S'_m| \leq k|S_m|$$

for all m.

Thus the growth rate of $m \mapsto |S_m|$ is an invariant of H. We say H has exponential growth if there is a $C \geq 1$ such that $|S_m| \geq Cm$ for all m and H has polynomial growth if there are $k, t \in \mathbb{R}_{>0}$ such that $|S_m| \leq tm^k$ for all m. Note finitely generated non-abelian free groups are of exponential growth.

Gromov’s theorem [7] says H has polynomial growth if and only if it is virtually nilpotent. Gromov’s theorem for subgroups of $\text{GL}_n(\mathbb{C})$ is less difficult and may be proven using the following two theorems:

Fact 3.1. If G does not contain a non-abelian free subgroup, then G is virtually solvable.

Fact 3.1 is Tits’ alternative [26]. Fact 3.2 is due to Milnor [21] and Wolf [29].

Fact 3.2. Suppose H is virtually solvable. Then H either has exponential or polynomial growth. If the latter case holds then H is virtually nilpotent.

Note Fact 3.1 and Fact 3.2 imply every finitely generated subgroup of $\text{GL}_n(\mathbb{C})$ is of polynomial or exponential growth. This dichotomy famously does not hold for finitely generated groups in general, see for example [6].

The Heisenberg group \mathbb{H} is presented by generators a, b, c and relations

$$[a, b] = c, \quad ac = ca, \quad bc = cb.$$

The following fact is folklore; we include a proof for the reader.

Fact 3.3. Let E be a nilpotent, torsion-free, and non-abelian group. Then there is a subgroup of E isomorphic to \mathbb{H}.

Proof. Let e be the identity element of E. We define the lower central series $(E_k)_{k \in \mathbb{N}}$ of E by declaring $E_0 = E$ and $E_k = [E_{k-1}, E]$ for $k \geq 1$. Nilpotency means there is an m such that $E_m \neq \{e\}$ and $[E_m, E] = \{e\}$. Moreover $m \geq 1$ as E is not abelian.

On one hand, $[E_{m-1}, E] = E_m \neq \{e\}$ and so E_{m-1} is not contained in $Z(E)$. Thus, there exists $a \in E_{m-1} \setminus Z(E)$ and $b \in E_m$ that does not commute with a. On the other hand, $[E_m, E] = \{e\}$ implies E_m is contained in the center $Z(E)$ of E and is thus abelian. So, $c := [a, b]$ is an element of $Z(E)$ and commutes with both a and b.

Finally, a, b, c have infinite order because E is torsion-free. So, a, b, c generate a subgroup of E isomorphic to the Heisenberg group.

3.1. Non-diagonalizable elements. We show certain linear groups necessarily contain non-diagonalizable elements.

Lemma 3.4. If G is nilpotent, torsion-free, and not abelian, then G contains a non-diagonalizable element.

Lemma 3.4 follows from Fact 3.3 above and Lemma 3.5 below.
Lemma 3.5. Suppose $a, b, c \in \text{GL}_n(\mathbb{C})$ satisfy

$$[a, b] = c, \quad ac = ca, \quad bc = cb,$$

and c is not torsion. Then either a or c is not diagonalizable.

Proof. Suppose a, c are both diagonalizable. As a, c commute, they are simultaneously diagonalizable and share a basis \mathcal{B} of eigenvectors. As c is not torsion, there is $\lambda_c \in \mathbb{C}^\times$ which is not a root of unity and $v \in \mathcal{B}$ such that $cv = \lambda_c v$. Let $\lambda_a \in \mathbb{C}^\times$ be such that $av = \lambda_a v$.

By way of contradiction, we will show $a(b^k v) = (\lambda_a \lambda_c^k)(b^k v)$ for all $k \geq 1$. As λ_c is not a root of unity, this implies a has infinitely many eigenvalues, which is impossible for an $n \times n$ matrix. The base case holds as

$$a(bv) = bacv = (\lambda_a \lambda_c)(bv).$$

Let $k \geq 2$ and suppose $a(b^{k-1} v) = (\lambda_a \lambda_c^{k-1})(b^{k-1} v)$. As c commutes with b,

$$a(b^k v) = ab(b^{k-1} v) = bac(b^{k-1} v) = bab^{k-1}cv = (\lambda_c)(bab^{k-1}v).$$

Applying the inductive assumption,

$$(\lambda_c)(bab^{k-1}v) = (\lambda_c)b(\lambda_a \lambda_c^{k-1}b^{k-1}v) = (\lambda_a \lambda_c^k)(b^k v).$$

We now prove a slight weakening of Lemma 3.4 for solvable groups. Recall $a \in \text{GL}_n(\mathbb{C})$ is unipotent if some conjugate of a is upper triangular with every diagonal entry equal to one. The only diagonalizable unipotent matrix is the identity. We recall a theorem of Mal’tsev [17].

Fact 3.6. Suppose G is solvable. Then there is a finite index subgroup G' of G such that G' is conjugate to a subgroup of $\text{UT}_n(\mathbb{C})$.

We now derive an easy corollary from Fact 3.6.

Lemma 3.7. Suppose G is solvable and not virtually abelian. Then G contains a non-diagonalizable element.

Proof. Suppose every element of G is diagonalizable. After applying Fact 3.6 and making a change of basis if necessary we suppose $G' = G \cap \text{UT}_n(\mathbb{C})$ has finite index in G. Let $\rho : \text{UT}_n(\mathbb{C}) \to \text{D}_n(\mathbb{C})$ be the natural quotient map; that is the restriction to the diagonal. Every element of the kernel of ρ is unipotent. Thus the restriction of ρ to G' is injective, and so G' is abelian. □

4. Non-diagonalizable matrices

Lemma 4.1. Suppose G contains a non-diagonalizable matrix. Then there is a rational function h on $\text{GL}_n(\mathbb{C}) \times \text{GL}_n(\mathbb{C})$ such that $h(G \times G) \subseteq \mathbb{C}$ is dense in $\mathbb{R}_{>0}$.

Proof. Suppose $a \in G$ is non-diagonalizable. Let $b \in \text{GL}_n(\mathbb{C})$ be such that bab^{-1} is in Jordan form, i.e.

$$bab^{-1} =
\begin{pmatrix}
A_1 & 0 & \cdots & 0 \\
0 & A_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & A_l
\end{pmatrix}$$
where each A_i is a Jordan block and each O is a zero matrix of the appropriate dimensions. We have

$$ba^k b^{-1} = \begin{pmatrix} A_1^k & O & \ldots & O \\ O & A_2^k & \ldots & O \\ \vdots & \vdots & \ddots & \vdots \\ O & O & \ldots & A_1^k \end{pmatrix}$$

for all k.

As a is not diagonalizable, A_k has more than one entry for some k. We suppose A_1 is m-by-m with $m \geq 2$. For some $\lambda \in \mathbb{C}^\times$ we have

$$A_1 = \begin{pmatrix} \lambda & 1 & 0 & \ldots & 0 \\ 0 & \lambda & 1 & \ldots & 0 \\ 0 & 0 & \lambda & \ldots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & \lambda \\ 0 & 0 & 0 & \ldots & 0 \end{pmatrix}.$$

It is well-known and easy to show by induction that for every $k \geq 1$:

$$A_1^k = \begin{pmatrix} \lambda^k & (k_1)(\lambda^{k-1}) & (k_2)(\lambda^{k-2}) & (k_3)(\lambda^{k-3}) & \ldots & (k_m)(\lambda^{k-m}) \\ 0 & \lambda^k & (k_1)(\lambda^{k-1}) & (k_2)(\lambda^{k-2}) & \ldots & (k_{m-1})(\lambda^{k-m+1}) \\ 0 & 0 & \lambda^k & (k_1)(\lambda^{k-1}) & \ldots & (k_{m-2})(\lambda^{k-m+2}) \\ 0 & 0 & 0 & \lambda^k & \ldots & (k_{m-3})(\lambda^{k-m+3}) \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & \lambda^k & (k_1)(\lambda^{k-1}) \\ 0 & 0 & 0 & \ldots & 0 & \lambda^k \end{pmatrix}.$$

Let g_{ij} be the (i,j)-entry of $g \in \text{GL}_n(\mathbb{C})$. Thus, for each $k \geq 1$,

$$(ba^k b^{-1})_{01} = k\lambda^{k-1} \quad \text{and} \quad (ba^k b^{-1})_{11} = \lambda^k.$$

We define a rational function h' on $\text{GL}_n(\mathbb{C}) \times \text{GL}_n(\mathbb{C})$ by declaring

$$h'(g, g') := \frac{g_{01}g'_{11}}{g_{01}g_{11}}$$

for all $g, g' \in \text{GL}_n(\mathbb{C})$ such that $g_{11}, g'_{01} \neq 0$. Then define h by declaring

$$h(g, g') := h'(bg b^{-1}, bg' b^{-1})$$

We have

$$h(a^i, a^j) = \frac{(i\lambda^{i-1})(\lambda^j)}{(j\lambda^{j-1})(\lambda^i)} = \frac{i}{j}$$

for all $i, j \geq 1$.

Thus $\mathbb{Q}_{>0}$ is a subset of the image of $G \times G$ under h. \qed

Corollary 4.2. If Γ contains a non-diagonalizable matrix, then \mathbb{R}_Γ defines \mathbb{Z}. In particular, if Γ is either

- solvable and not virtually abelian, or
• torsion-free, nilpotent and non-abelian,
then \(\mathbb{R}_\Gamma \) defines \(\mathbb{Z} \).

Proof. Applying Lemma 4.1, suppose \(h \) is a rational function on \(\text{GL}_n(\mathbb{C}) \times \text{GL}_n(\mathbb{C}) \) such that the image of \(\Gamma \times \Gamma \) under \(h \) is dense in \(\mathbb{R}_{>0} \). Note \(\Gamma \) is countable as \(\Gamma \) is discrete. It follows that the image of \(\Gamma \times \Gamma \) under any function is co-dense in \(\mathbb{R}_{>0} \).

Fact 4.1(1) implies that \(\mathbb{R}_\Gamma \) defines \(\mathbb{Z} \). The second claim follows from the first by applying Lemma 3.4 and Lemma 3.7.

Corollary 4.3. If \(a \in \text{GL}_n(\mathbb{C}) \) is non-diagonalizable, then \((\mathbb{R}, \{ ak : k \in \mathbb{Z} \}) \) defines \(\mathbb{Z} \).

Proof. Set \(G := \{ ak : k \in \mathbb{Z} \} \). The proof of Lemma 4.1 shows that in this case \(\mathbb{Q}_{>0} \) is the intersection of \(h(G \times G) \) and \(\mathbb{R}_{>0} \). Thus the corollary follows by Julia Robinson’s classical theorem of definability of \(\mathbb{Z} \) in \((\mathbb{Q}, +, \cdot) \) in [25]. □

5. The case of exponential growth

We recall the Assouad dimension of a metric space \((X, d) \). See Heinonen [10] for more information. The Assouad dimension of a subset \(Y \) of \(\mathbb{R}^k \) is the Assouad dimension of \(Y \) equipped with the euclidean metric induced from \(\mathbb{R}^k \).

Suppose \(A \subseteq X \) has at least two elements. Then \(A \) is \(\delta \)-separated for \(\delta \in \mathbb{R}_{>0} \) if \(d(a, b) \geq \delta \) for all distinct \(a, b \in A \), and \(A \) is \(\delta \)-separated if \(A \) is \(\delta \)-separated for some \(\delta > 0 \). Let \(S(A) \in \mathbb{R} \) be the supremum of all \(\delta \geq 0 \) for which \(A \) is \(\delta \)-separated. Let \(\mathcal{D}(A) \) be the diameter of \(A \); that is the infimum of all \(\delta \in \mathbb{R} \cup \{ \infty \} \) such that \(d(a, b) < \delta \) for all \(a, b \in A \), and \(A \) is bounded if \(\mathcal{D}(A) < \infty \). Note \(S(A) \leq \mathcal{D}(A) \).

The Assouad dimension of \((X, d) \) is the infimum of the set of \(\beta \in \mathbb{R}_{>0} \) for which there is a \(C > 0 \) such that

\[
|A| \leq C \left(\frac{\mathcal{D}(A)}{S(A)} \right)^\beta \quad \text{for all bounded and separated } A \subseteq X.
\]

The proof of Fact 5.1 is an elementary computation which we leave to the reader.

Fact 5.1. Suppose there is a sequence \(\{ A_m \}_{m \in \mathbb{N}} \) of bounded separated subsets of \(X \) with cardinality at least two, and \(B, C, t > 1 \) are such that

\[
|A_m| \geq C^m \quad \text{and} \quad \frac{\mathcal{D}(A_m)}{S(A_m)} \leq tB^m \quad \text{for all } m
\]

then \((X, d) \) has positive Assouad dimension.

Let \(|v| \) be the usual euclidean norm of \(v \in \mathbb{C}^n \). Given \(g \in \text{M}_n(\mathbb{C}) \) we let

\[
\|g\| = \inf \{ t \in \mathbb{R}_{>0} : |gv| \leq t|v| \quad \text{for all } v \in \mathbb{C}^n \}
\]

be the operator norm of \(g \). Then \(\| \| \) is a linear norm on \(\text{M}_n(\mathbb{C}) \) and satisfies \(\| gh \| \leq \| g \| \| h \| \) for all \(g, h \in \text{M}_n(\mathbb{C}) \). As any two linear norms on \(\text{M}_n(\mathbb{C}) \) are bi-Lipschitz equivalent the metric induced by \(\| \| \) is bi-Lipschitz equivalent to the usual euclidean metric on \(\mathbb{R}^{n^2} \).

Proposition 5.2. Suppose \(\Gamma \) contains a finitely generated subgroup \(\Gamma' \) of exponential growth. Then \(\Gamma \) has positive Assouad dimension.
Proof. Because Assouad dimension is a bi-Lipschitz invariant (see [10]), it suffices to show that \(\Gamma \) has positive Assouad dimension with respect to the metric induced by \(\| \cdot \| \). We let \(I \) be the \(n \times n \) identity matrix. Let \(S \) be a symmetric generating set of \(\Gamma' \), and let \(S_m \) be the set of \(m \)-fold products of elements of \(S \) for \(m \geq 2 \). Set

\[
B := \max\{\|g\| : g \in S\} \quad \text{and} \quad D := \min\{\|g - I\| : g \in \Gamma\}.
\]

Note that \(D > 0 \), as \(\Gamma \) is discrete, and that \(B > 0 \), as \(\Gamma \neq \{I\} \). Induction shows that \(\|g\| \leq B^m \) when \(g \in S_m \). The triangle inequality directly yields \(\mathcal{D}(S_m) \leq 2B^m \). Each \(S_m \) is symmetric as \(S \) is symmetric. Therefore \(\|g^{-1}\| \leq B^m \) for all \(g \in S_m \).

Let \(g, h \in \Gamma \). We have

\[
\|I - g^{-1}h\| \leq \|g^{-1}\|\|g - h\|.
\]

Equivalently,

\[
\frac{\|I - g^{-1}h\|}{\|g^{-1}\|} \leq \|g - h\|.
\]

Suppose \(g, h \in S_m \) are distinct. Then \(g^{-1}h \neq I \), and hence \(\|I - g^{-1}h\| \geq D \). So

\[
\|g - h\| \geq \frac{\|I - g^{-1}h\|}{\|g^{-1}\|} \geq \frac{D}{B^m}.
\]

Hence \(S(S_m) \geq D/B^m \). Thus

\[
\frac{\mathcal{D}(S_m)}{S(S_m)} \leq \frac{2B^m}{D/B^m} = \frac{2}{D}B^{2m}.
\]

As \(\Gamma' \) has exponential growth, there is a \(C > 0 \) such that \(|S_m| \geq C^m \) for all \(m \). An application of Fact 5.1 shows that \(\Gamma \) has positive Assouad dimension. \(\square \)

Proposition 5.3. Suppose \(\Gamma \) is not virtually abelian. Then \(\mathbb{R}_\Gamma \) defines \(\mathbb{Z} \).

Proof. By Corollary 4.2, we can assume that \(\Gamma \) is solvable. Thus by Fact 3.1, the group \(\Gamma \) contains a non-abelian free subgroup. Therefore \(\Gamma \) has positive Assouad dimension by Proposition 5.2. We conclude that \(\mathbb{R}_\Gamma \) defines \(\mathbb{Z} \) by Fact 1.1(2). \(\square \)

6. The virtually abelian case

We first reduce the virtually abelian case to the abelian case.

Lemma 6.1. Suppose \(G \) is virtually abelian and every element of \(G \) is diagonalizable. Then there is a finite index abelian subgroup \(G' \) of \(G \) such that \((\mathbb{R}, G)\) and \((\mathbb{R}, G')\) are interdefinable.

Proof. Let \(G'' \) be a finite index abelian subgroup of \(G \). As every element of \(G'' \) is diagonalizable, \(G'' \) is simultaneously diagonalizable. Fix \(g \in \text{Gl}_n(\mathbb{C}) \) such that \(gag^{-1} \) is diagonal for all \(a \in G'' \). Let \(G' \) be the set of \(a \in G \) such that \(gag^{-1} \) is diagonal, i.e., \(G' \) is the intersection of \(G \) and \(g^{-1}\text{D}_n(\mathbb{C})g \). Then \(G' \) is abelian, \((\mathbb{R}, G)\)-definable, and is of finite index in \(G \) as \(G'' \subseteq G' \). Because \(G' \) has finite index in \(G \), we have

\[
G = g_1G' \cup \ldots \cup g_mG' \text{ for some } g_1, \ldots, g_m \in G.
\]

So \(G \) is \((\mathbb{R}, G')\)-definable. \(\square \)

Proposition 6.2 finishes the proof of Theorem A.

Proposition 6.2. Suppose \(\Gamma \) is abelian and \(\mathbb{R}_\Gamma \) does not define \(\mathbb{Z} \). Then there is \(\lambda \in \mathbb{R}_{>0} \) such that \(\mathbb{R}_\Gamma \) is interdefinable with \(\mathbb{R}_\Lambda \).
Let \(u : \mathbb{C}^\times \to U \) be the argument map and \(|| : \mathbb{C}^\times \to \mathbb{R}_{>0} \) be the absolute value map. Thus \(z = u(z)||z| \) for all \(z \in \mathbb{C}^\times \). Let \(U_m \) be the group of \(m \)th roots of unity for all \(m \geq 1 \). In the following proof of Proposition 5.2 we will use the immediate corollary of [11, Theorem 1.3] that the structure \((\mathbb{R}, \lambda^z, \mu^z)\) defines \(\mathbb{Z} \) whenever \(\log \lambda \mu \not\in \mathbb{Q} \), and is is interdefinable with \((\mathbb{R}, \lambda^z)\) otherwise.

Proof. Fact [11, 1) implies every countable \(\mathbb{R}_\Gamma \)-definable subset of \(\mathbb{R} \) is nowhere dense. It follows that every \(\mathbb{R}_\Gamma \)-definable countable subgroup of \(U \) is finite and every \(\mathbb{R}_\Gamma \)-definable countable subgroup of \((\mathbb{R}_{>0}, \cdot)\) is of the form \(\lambda^z \) for some \(\lambda \in \mathbb{R}_{>0} \).

Every element of \(\Gamma \) is diagonalizable by Corollary [12]. Thus \(\Gamma \) is simultaneously diagonalizable. After making a change of basis we suppose \(\Gamma \) is a subgroup of \(D_n(\mathbb{C}) \). We identify \(D_n(\mathbb{C}) \) with \((\mathbb{C}^\times)^n \). Let \(\Gamma_i \) be the image of \(\Gamma \) under the projection \((\mathbb{C}^\times)^n \to \mathbb{C}^\times \) onto the \(i \)th coordinate for \(1 \leq i \leq n \).

Each \(u(\Gamma_i) \) is finite. Fix an \(m \) such that \(u(\Gamma_i) \) is a subgroup of \(U_m \) for all \(1 \leq i \leq n \). For each \(1 \leq i \leq n \), \(|\Gamma_i| \) is a discrete subgroup of \(\mathbb{R}_{>0} \) and is thus equal to \(\alpha_i^z \) for some \(\alpha_i \in \mathbb{R}_{>0} \). By [11, Theorem 1.3] each \(\alpha_i \) is a rational power of \(\alpha_1 \). Let \(\lambda \in \mathbb{R}_{>0} \) be a rational power of \(\alpha_1 \) such that each \(\alpha_i \) is an integer power of \(\lambda \). We show \(\mathbb{R}_\Gamma \) and \(\mathbb{R}_\lambda \) are interdefinable. Note that \(\lambda^z \) is \(\mathbb{R}_\Gamma \)-definable; so it suffices to show \(\Gamma \) is \(\mathbb{R}_\lambda \)-definable.

Every element of \(\Gamma_i \) is of the form \(\sigma \lambda^k \) for some \(\sigma \in U_m \) and \(k \in \mathbb{Z} \). Thus \(\Gamma \) is a subgroup of

\[
\Gamma' = \left\{ \begin{pmatrix}
\sigma_1 \lambda^{k_1} & 0 & \ldots & 0 \\
0 & \sigma_2 \lambda^{k_2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \sigma_n \lambda^{k_n}
\end{pmatrix} : \sigma_1, \ldots, \sigma_n \in U_m, k_1, \ldots, k_n \in \mathbb{Z} \right\}.
\]

Note \(\Gamma' \) is \(\mathbb{R}_\lambda \)-definable. Abusing notation we let \(u : (\mathbb{C}^\times)^n \to U^n \) and we let \(|| : (\mathbb{C}^\times)^n \to (\mathbb{R}_{>0})^n \) be given by

\[
 u(z_1, \ldots, z_n) = (u(z_1), \ldots, u(z_n)) \quad \text{and} \quad ||(z_1, \ldots, z_n)| = (|z_1|, \ldots, |z_n|).
\]

Then the map \((\mathbb{C}^\times)^n \to U^n \times (\mathbb{R}_{>0})^n \) given by \(\bar{z} \mapsto (u(\bar{z}), ||\bar{z}|) \) restricts to a \(\mathbb{R}_\lambda \)-definable isomorphism between \(\Gamma' \) and \(U^n_m \times (\lambda^z)^n \). Lemma 6.3 below implies any subgroup of \(U^n_m \times (\lambda^z)^n \) is \(\mathbb{R}_\lambda \)-definable. \(\square \)

We consider \((\mathbb{Z}/m\mathbb{Z}, +)\) to be a group with underlying set \(\{0, \ldots, m-1\} \) in the usual way so that \((\mathbb{Z}/m\mathbb{Z}, +)\) is a \((\mathbb{Z}, +)\)-definable group. Lemma 6.3 is folklore. We include a proof for the sake of completeness.

Lemma 6.3. Every subgroup \(H \) of \((\mathbb{Z}/m\mathbb{Z})^l \times \mathbb{Z}^n \) for \(l \geq 0 \) is \((\mathbb{Z}, +)\)-definable.

Proof. We first reduce to the case \(l = 0 \). The quotient map \(\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z} \) is \((\mathbb{Z}, +)\)-definable, it follows that the coordinate-wise quotient \(\mathbb{Z}^l \times \mathbb{Z}^n \to (\mathbb{Z}/m\mathbb{Z})^l \times \mathbb{Z}^n \) is \((\mathbb{Z}, +)\)-definable. It suffices to show the preimage of \(H \) in \(\mathbb{Z}^{l+n} \) is \((\mathbb{Z}, +)\)-definable.
Suppose H is a subgroup of \mathbb{Z}^n. Then H is finitely generated with generators β_1, \ldots, β_k where $\beta_i = (b_{i1}, \ldots, b_{in})$ for all $1 \leq i \leq k$. Then

$$H = \left\{ \sum_{i=1}^{k} c_i \beta_i : c_1, \ldots, c_k \in \mathbb{Z} \right\} = \left\{ \left(\sum_{i=1}^{k} c_i b_{i1}, \ldots, \sum_{i=1}^{k} c_i b_{in} \right) : c_1, \ldots, c_n \in \mathbb{Z} \right\}.$$

Thus H is $(\mathbb{Z}, +)$-definable.

7. Countable $(\mathbb{R}, \lambda^\mathbb{Z})$-definable groups

Fix $\lambda \in \mathbb{R}_{>0}$ and an α-minimal \mathbb{R} with field of exponents \mathbb{Q}. Since $(\mathbb{R}, \lambda^\mathbb{Z})$ does not define \mathbb{Z} by [18, Theorem 3.4.2], Theorem A implies every $(\mathbb{R}, \lambda^\mathbb{Z})$-definable discrete subgroup of $\text{GL}_n(\mathbb{C})$ is virtually abelian. We extend this result to all countable interpretable groups.

Proposition 7.1. Every countable $(\mathbb{R}, \lambda^\mathbb{Z})$-interpretable group is virtually abelian.

Proposition 7.1 follows directly from several previous results. Every d-minimal expansion of \mathbb{R} admits definable selection by Miller [19]. Therefore an $(\mathbb{R}, \lambda^\mathbb{Z})$-interpretable group is isomorphic to an $(\mathbb{R}, \lambda^\mathbb{Z})$-definable group. We now recall two results of Tychonievich. The first is a special case of [27, 4.1.10].

Fact 7.2. If $X \subseteq \mathbb{R}^k$ is $(\mathbb{R}, \lambda^\mathbb{Z})$-definable and countable, then there is an $\lambda^\mathbb{Z}$-definable surjection $f : (\lambda^\mathbb{Z})^m \to X$ for some m.

Fact 7.2 is a minor rewording of [27, 4.1.2].

Fact 7.3. Every $(\mathbb{R}, \lambda^\mathbb{Z})$-definable subset of $(\lambda^\mathbb{Z})^m$ is $(\lambda^\mathbb{Z}, <, \cdot)$-definable.

Facts 7.2 and 7.3 together imply that every countable $(\mathbb{R}, \lambda^\mathbb{Z})$-definable group is isomorphic to a $(\mathbb{Z}, <, +)$-definable group. Now apply the following result of Onshuus and Vicaria [23] to complete the proof of Proposition 7.1.

Fact 7.4. Every $(\mathbb{Z}, <, +)$-definable group is virtually abelian.

References

[1] O. Belegradek and B. Zilber. The model theory of the field of reals with a subgroup of the unit circle. *J. Lond. Math. Soc. (2)*, 78(3):563–579, 2008.

[2] E. Caulfield. *Classifying expansions of the real field by complex subgroups*. ProQuest LLC, Ann Arbor, MI, 2018. Thesis (Ph.D.)–UIUC.

[3] C. Chevalley. *Theory of Lie Groups. I*. Princeton Mathematical Series, vol. 8. Princeton University Press, Princeton, N. J., 1946.

[4] L. v. d. Dries. The field of reals with a predicate for the powers of two. *Manuscripta Math.*, 54(1-2):187–195, 1985.

[5] L. v. d. Dries and A. G"unaydin. The fields of real and complex numbers with a small multiplicative group. *Proc. London Math. Soc. (3)*, 93(1):43–81, 2006.

[6] R. Grigorchuk and I. Pak. Groups of intermediate growth: an introduction. *Enseign. Math. (2)*, 54(3-4):251–272, 2008.

[7] M. Gromov. Groups of polynomial growth and expanding maps. *Inst. Hautes Études Sci. Publ. Math.*, (53):53–73, 1981.

[8] A. G"unaydin. *Model theory of fields with multiplicative groups*. ProQuest LLC, Ann Arbor, MI, 2008. Thesis (Ph.D.)–University of Illinois at Urbana-Champaign.

[9] A. G"unaydin and P. Hieronymi. Dependent pairs. *J. Symbolic Logic*, 76(2):377–390, 2011.
[10] J. Heinonen. Lectures on analysis on metric spaces. Universitext. Springer-Verlag, New York, 2001.
[11] P. Hieronymi. Defining the set of integers in expansions of the real field by a closed discrete set. Proc. Amer. Math. Soc., 138(6):2163–2168, 2010.
[12] P. Hieronymi. Expansions of subfields of the real field by a discrete set. Fund. Math., 215(2):167–175, 2011.
[13] P. Hieronymi. The real field with an irrational power function and a dense multiplicative subgroup. J. Lond. Math. Soc. (2), 83(1):153–167, 2011.
[14] P. Hieronymi and C. Miller. Metric dimensions and tameness in expansions of the real field. Preprint, 2015.
[15] P. Hieronymi and T. Nell. Distal and non-distal pairs. J. Symb. Log., 82(1):375–383, 2017.
[16] A. S. Kechris. Classical descriptive set theory, volume 156 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995.
[17] A. I. Mal’cev. On some classes of infinite soluble groups. Mat. Sbornik N.S., 28(70):567–588, 1951.
[18] C. Miller. Tameness in expansions of the real field. In Logic Colloquium ’01, volume 20 of Lect. Notes Log., pages 281–316. Assoc. Symbol. Logic, Urbana, IL, 2005.
[19] C. Miller. Definable choice in d-minimal expansions of ordered groups. https://people.math.osu.edu/miller.1987/edimin.pdf, 2006. Unpublished note.
[20] C. Miller and P. Speissegger. Expansions of the real line by open sets: o-minimality and open cores. Fund. Math., 162(3):193–208, 1999.
[21] J. Milnor. Growth of finitely generated solvable groups. J. Differential Geometry, 2:447–449, 1968.
[22] G. A. Noskov. The elementary theory of a finitely generated almost solvable group. Izv. Akad. Nauk SSSR Ser. Mat., 47(3):498–517, 1983.
[23] A. Onshuus and M. Vicaria. Definable groups in models of presburger arithmetic and g^{∞}. preprint, 2017.
[24] Y. Peterzil, A. Pillay, and S. Starchenko. Linear groups definable in o-minimal structures. J. Algebra, 247(1):1–23, 2002.
[25] J. Robinson. Definability and decision problems in arithmetic. J. Symbolic Logic, 14:98–114, 1949.
[26] J. Tits. Free subgroups in linear groups. J. Algebra, 20:250–270, 1972.
[27] M. A. Tychonieich. Tameness results for expansions of the real field by groups. ProQuest LLC, Ann Arbor, MI, 2013. Thesis (Ph.D.)–The Ohio State University.
[28] A. J. Wilkie. Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function. J. Amer. Math. Soc., 9(4):1051–1094, 1996.
[29] J. A. Wolf. Growth of finitely generated solvable groups and curvature of Riemannian manifolds. J. Differential Geometry, 2:421–446, 1968.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN, 1409 WEST GREEN STREET, URBANA, IL 61801
E-mail address: phierony@illinois.edu
URL: http://www.math.illinois.edu/~phierony

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN, 1409 WEST GREEN STREET, URBANA, IL 61801
E-mail address: erikw@illinois.edu
URL: http://www.math.illinois.edu/~erikw

SCHOOL OF SOCIAL WORK, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN, 1010 WEST NEVADA STREET, URBANA, IL 61801
E-mail address: samxu@illinois.edu