Agronomic performance of provitamin A-rich banana cultivars in Burundi and the Democratic Republic of Congo

Kamira Muller¹, Simbare Alice²*, Sivirihauma Charles³, Mpoki Shimwela⁴, Nabuuma Deborah⁵ and Ekesa Beatrice⁵

¹Bioversity International, P. O. Box 1222 Bukavu, South Kivu, Democratic Republic of Congo.
²Bioversity International, P. O. Box 1893, Avenue du Japon N055, Bujumbura, Burundi.
³Department of Crop production, Faculty of Agriculture, Catholic University of Graben, P.O. Box 29, Butembo, Democratic Republic of Congo.
⁴Agricultural Research Institute-Maruku, P. O. Box 127, Bukoba, Tanzania.
⁵Bioversity International, P. O. Box 24384, Plot 106, Katalima Road, Naguru, Kampala, Uganda.

Received 6 June, 2021; Accepted 22 July, 2021

Vitamin A deficiency (VAD) is a major global health issue, contributing to morbidity and mortality. East and Central Africa face VAD prevalence that exceeds the World Health Organization (WHO) threshold of 15%. In Burundi and the Democratic Republic of Congo (DRC), VAD prevalence is greater than 43% in rural communities. Promoting vitamin A-rich foods (including banana) is an effective and sustainable strategy to address VAD in poor rural communities. Supported principally by HarvestPlus over more than a decade, banana researchers have been evaluating the performance of high provitamin A banana cultivars to address this challenge. This study evaluated the agronomic performance of six provitamin A-rich banana cultivars originally from outside Burundi and Eastern DRC. Growth and yield parameters were collected for the first, second and third crop cycles. Results revealed that growth and yield parameters were significantly affected by the interaction between sites and cultivars (P<0.05). Banana cultivar yield was also influenced by the combined effect of bunch weight and crop cycle duration. The most promising cultivars in terms of yield were ‘Apantu-AAB’, ‘Lahi-AAB’, ‘Lai- AA’, ‘Bira-AAB’ and ‘Pelipita-ABB’ across all sites and crop cycles. This indicates that although ecological factors could have influenced their performances over sites, genotype could be the most important influencing factor. These evaluations provide hard evidence of the high potential for adoption of the most promising cultivars by the local community members to boost (pro) vitamin A consumption and effectively eliminate VAD.

Key words: Agronomic performance, vitamin A rich banana, crop cycle, Burundi, Democratic Republic of Congo.

INTRODUCTION

Hidden hunger, caused by low intake and absorption of micronutrients especially iron, vitamin A, iodine and zinc, is a form of under-nutrition affecting over 2 billion people worldwide (Ekholuenetale et al., 2020). It has far-
reaching effects such as poor health, mental and physical impairment, low human productivity and even death (Kennedy et al., 2003). Lack of diet diversification, diseases, and increased micronutrient needs during infancy, pregnancy, and lactation are some of the factors that contribute to hidden hunger in many developing countries (Frison et al., 2011; Thompson and Cohen, 2012). Among these, is vitamin A deficiency (VAD) which significantly affects children under five and women of reproductive age with a prevalence for children of 48% in sub-Saharan Africa, 43% in Burundi and 42% in the Democratic Republic of Congo (DRC) (Stevens et al., 2015).

To address this, supplementation, fortification, bio-fortification, dietary diversification and public health and disease-control measures have been implemented (Greiner, 2013; Kennedy et al., 2003; Ruel and Levin, 2001; Thompson and Amoroso, 2014). Food-based approaches that promote production and consumption of vitamin A-rich foods were noted to be sustainable particularly among rural poor communities (Greiner, 2013; Thompson and Amoroso, 2014). The common foods that have been promoted as good sources of vitamin A (pro-vitamin A carotenoids (pVACs)) have been dark green leafy vegetables, red palm oil, yellow and orange fruits, and orange-fleshed sweet potatoes (Greiner, 2013; Uusiku et al., 2010). There is currently an increasing interest in using potential staple foods like bananas, maize, cassava, rice, and potatoes that have higher than average levels of pVACs; (Greiner, 2013; Tang et al., 2009). Among the staple foods, bananas are exceptional because the carotenoids in bananas have higher bio-accessibility compared to roots, tubers and some vegetables (Ekesa et al., 2012; Failla et al., 2009).

Over 17 million tonnes of bananas are annually produced in East and Central Africa, mostly being East African Highland cooking bananas consumed as a staple (Mbwika, 2009; Ordonez et al., 2015; Tripathi et al., 2009). Regionally, bananas are a major source of livelihood for over 20 million people and play a significant role in households’ and pre-school children’s diets (Ekesa et al., 2013; Karamura and Gold, 2000). In addition, there are banana cultivars around the world that contain high pVACs levels (up to 61.10 μg) (Davey et al., 2009; Ekesa et al., 2013 ; Engberger et al., 2003; Fungo and Pillay, 2011). Some banana cultivars have been estimated to meet over 50% of the Vitamin A requirements of women when 3-5 fingers are consumed daily (Ekesa et al., 2015; Engberger et al., 2006). These banana cultivars with higher pVACs levels could help address and prevent VAD in East and Central Africa. However, acceptance and adoption of introduced banana cultivars do not rely solely on nutritional importance and familiarity with the crop, but is also greatly influenced by the production characteristics like yield, bunch weight, finger size, disease and pest resistance and sensory attributes (Akankwasa et al., 2013; Barekye et al., 2013; Kikulwe et al., 2011). This study therefore evaluated the agronomic performance of selected pVAC-rich banana cultivars originally from outside the Eastern Africa region to establish their potential for inclusion in the farming systems of Burundi and Eastern DRC.

MATERIALS AND METHODS

Six sites, one in Burundi, and five in DRC, were purposively selected for the study based on different agroecological zoning with contrasting altitudes, rainfall and soil characteristics. These sites were Cibitoke (Burundi), Butembo, Maboya and Mavivi (North Kivu-DRC), Mulungu and Mushweshwe (South Kivu-DRC) (Table 1).

Six pVAC-rich banana cultivars namely ‘Apantu’-AAB African plantain originally from Ghana, ‘Bira’-AAB Pacific plantain from Papua New Guinea, ‘Pelipita’-ABB plantain from the Philippines, ‘Lahi’-AAB Pacific plantain from Hawaii, ‘Lai’-AAA Dessert banana from Thailand and ‘To’o’- AA Dessert banana from Papua New Guinea with Provitamin A carotenoids (pVAC) retinol activity equivalents >333μg/100gdw were selected for fast-tracking. The six cultivars were ordered from Bioversity International’s International Transit Centre (ITC) in Leuven, Belgium and sent to Burundi’s tissue culture (TC) laboratory, Phytolab for planting material multiplication. The hardening of TC plantlets was done in Phytolab for the Burundi site, at the Catholic University of Graben Butembo for the North Kivu sites, and at the National Institute of Agronomic Studies and Research (INERA) Mulungu for the South Kivu sites. At three months, fifteen plants of each cultivar (in three replicates of five plants) were planted at each experimental site for agronomic evaluation. Plants were spaced at 3x2 m, providing a density of 1,667 plants/ha. The size of the planting hole was 60 x 60 x 60 cm and 10 kg of rotted cow manure was applied each planting hole during planting. Weeding was carried out at three-monthly intervals, while de-suckering and de-leafing of dead leaves were conducted as needed. Three stems were kept per mat (mother plant, first sucker and second sucker) except for the third cropping cycle of ‘Lahi’ in Burundi which was missing due to its genetic degeneration. Mulching was carried out at the beginning of each dry season (once a year). Where necessary, forked wooden sticks were used to support mature plants bearing heavy bunches to prevent toppling.

Agronomic data were collected on banana growth at the flowering stage and yield at harvest over the three cropping cycles (C1: mother plant, C2: first sucker and C3: second sucker). Data collected on banana growth included the height of pseudostem (cm), girth of pseudostem at 1m from the base and the number of functional leaves. Banana height and girth are important traits that indicate the potential of resistance of the plant to strong wind (lodging-resistance), whereas functional leaves contribute to the photosynthesis process of the plant for optimal growth and productivity. Plant height was measured from soil level to the point where the leaf petioles of the youngest two leaves intersect, while the total number of functional leaves was determined by counting all the existing green leaves on a plant that had at least 50% green leaf lamina surface area. Data collected on banana yield at harvest was the weight of bunch (kg), number of hands in a bunch, number

*Corresponding author. E-mail: A.Simbare@cgiar.org.

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License.
of fruits in lower row of second lowest hand, and total number of fruits in the bunch. Mature bunches were harvested when the fingers of the second lowest hand had attained a round shape (Ndaiyitegeye et al., 2017). Bunch weight was measured with a spring balance.

Statistical analysis was carried out using Statistics Analysis System (SAS Institute Inc., 2008) (Shim et al., 2014). The General Linear Model procedure was used to analyze the data and Tukey’s student range test was used for multiple comparisons. The average student range test was used for multiple comparisons. The average linear model procedure was used to analyze the data and Tukey’s student range test was used for multiple comparisons. The average student range test was used for multiple comparisons.

RESULTS

Overall cultivars’ growth performance at flowering across sites

Within cultivars and across sites, the growth performance differed significantly (P<0.05) (Table 2). The tallest cultivar was ‘Pelipita’ (291 cm), ‘Lai’ (289 cm) and ‘Pelipita’ (290 cm). ‘Lai’ was recorded as the tallest cultivar in each of the three crop cycles in Burundi. Pelipita was also identified as one of the tallest cultivars in the 2nd and 3rd cycles (364 - 386 cm), while the shortest cultivar was ‘To’o’ in all three cycles. In North Kivu, the tallest cultivars were ‘Lai’ in cycle 1, ‘Bira’ and ‘Pelipita’ in cycle 2 and cycle 3. In cycle 2, the height of ‘Lai’ was not significantly different from the heights of ‘Bira’ and ‘Pelipita’ while in cycle 3, ‘Lai’ had almost the same height as ‘Pelipita’. The shortest cultivar was ‘To’o’ in all cycles with the height ranging between 229 cm and 258 cm. In South Kivu, ‘Lai’ and ‘To’o’ were recorded to be the tallest and the shortest cultivars for all three crop cycles respectively. There was no significant difference between the height at flowering of ‘Lai’, ‘Bira’, ‘Lai’, and ‘Pelipita’ in cycle 3; and between ‘Apantu’ and ‘To’o’ in cycle 2 in South Kivu (Table 3).

Cultivars’ growth performance at flowering within cropping cycles

Within crop cycles, the height of the evaluated cultivars differed significantly (P<0.05) (Table 3). In Burundi in cycle 1, the tallest cultivars were ‘Bira’ (291 cm), ‘Lai’ (289 cm) and ‘Pelipita’ (290 cm). ‘Lai’ was recorded as the tallest cultivar in each of the three crop cycles in Burundi. Pelipita was also identified as one of the tallest cultivars in the 2nd and 3rd cycles (364 - 386 cm), while the shortest cultivar was ‘To’o’ in all three cycles. In North Kivu, the tallest cultivars were ‘Lai’ in cycle 1, ‘Bira’ and ‘Pelipita’ in cycle 2 and cycle 3. In cycle 2, the height of ‘Lai’ was not significantly different from the heights of ‘Bira’ and ‘Pelipita’ while in cycle 3, ‘Lai’ had almost the same height as ‘Pelipita’. The shortest cultivar was ‘To’o’ in all cycles with the height ranging between 229 cm and 258 cm. In South Kivu, ‘Lai’ and ‘To’o’ were recorded to be the tallest and the shortest cultivars for all three crop cycles respectively. There was no significant difference between the height at flowering of ‘Lai’, ‘Bira’, ‘Lai’, and ‘Pelipita’ in cycle 3; and between ‘Apantu’ and ‘To’o’ in cycle 2 in South Kivu (Table 3).

In Burundi, the cultivars with the largest girth (56-69 cm) were ‘Lai’ in all cycles and ‘Pelipita’ in cycle 1. In North Kivu, the cultivars with the largest girth (68-75 cm) and 342 cm, respectively. The most robust plant was ‘Lai’ in Burundi and in South Kivu, with the heights of 71, 66 and 64 cm, for Lai, ‘Lahi’, ‘Pelipita’ and ‘Bira’ respectively (Table 2). In addition, it was noticed that ‘Lai’ produced the most robust plant with a girth averaging 37 to 49 cm across sites (Table 2). The cultivar with the highest number of leaves at flowering stage was ‘Lahi’ in South Kivu, producing an average of 11 leaves, followed by ‘Pelipita’ in South Kivu and in Burundi. The lowest number of functional leaves was produced by ‘To’o’ and ‘Apantu’ in North Kivu (Table 2).
Table 2. Performance traits of pVAC-rich banana cultivars at flowering across sites.

Sites	Cultivars	Height (cm)	Girth at 1 m base (cm)	Functional leaves at bunch emergence
South Kivu	'Apantu'	296^{ed}	53^{gh}	9^{fg}
	'Bira'	315^{bdc}	55^{gfh}	10^{bdec}
	'Lahi'	314^{bdc}	58^{fedh}	11^a
	'Lai'	341^{ba}	60^{bdec}	11^{bac}
	'Pelipita'	304^{dc}	55^{gfh}	14^{bcd}
	'To'o'	273^{ef}	42^k	9^{de}
North Kivu	'Apantu'	260^{df}	58^{gfh}	8^{hg}
	'Bira'	302^{dc}	64^{bdc}	9^{fgh}
	'Lahi'	301^{dc}	66^{ba}	9^{fgh}
	'Lai'	318^{bdc}	71^a	9^{fg}
	'Pelipita'	326^{bac}	65^{bac}	9^{fg}
	'To'o'	242^f	49ⁱ	8^{ig}
Burundi	'Apantu'	257^{df}	45^{jk}	9^{fg}
	'Bira'	307^{bdc}	53^h	11^{bba}
	'Lahi'	175^h	48ⁱ	9^{fgh}
	'Lai'	342^{ba}	62^{bdec}	10^{bdec}
	'Pelipita'	346^a	59^{bdec}	11^{ba}
	'To'o'	237^f	371	10^{bdec}

Values are averages of 45 plants per cultivar per site. Means followed by the same letter within a column are not significantly different at P<0.05.

were 'Lai' in cycle 1 and cycle 2 and 'Lahi' in cycle 3. There were no significant differences between 'Apantu', 'Bira', 'Lahi', 'Lai' and 'Pelipita' in cycle 2; between 'Bira', 'Lai', 'Lahi' and 'Pelipita' in cycle 3. In South Kivu, the cultivars with the largest girth (60-68 cm) were 'Lai' in cycle 1 and cycle 3 and 'Pelipita' in cycle 2. 'To'o' had the thinnest girth in all three cycles in all sites. No significant variations were observed in terms of the number of functional leaves amongst cultivars within crop cycles (at P<0.05) (Table 3).

Overall cultivars’ yield performance at harvesting across sites

Yield performance of cultivars was assessed in terms of number of hands, number of fingers on the second hand, length of finger, total number of fingers on a bunch, bunch weight and production (tons. ha⁻¹ per year) and showed significant differences (at P<0.05) (Table 4). Sites and cycles combined, the highest average number of hands (7) was recorded for 'Lahi'. Other cultivars had 6 hands ('Apantu', 'Bira' and 'Pelipita'), 5 hands ('Lai') and 4 hands ('To'o'). The average number of fingers on a hand ranged between 12 for 'Apantu', 'Bira' and 'Lai', and 11 for 'Lahi', 'Pelipita' and 'To'o'. 'Apantu' (22 cm) had the longest fingers while the shortest (17-18 cm) were for 'Bira', 'Lai' and 'Lahi' (Table 4). Fingers of 'Pelipita' and 'To'o' had a medium length (19 cm). The highest average total number of fingers on a bunch was recorded for 'Lahi' (81) followed by 'Lai' (66), 'Bira' (63), 'Apantu' (60) and 'Pelipita' (50). The highest average bunch weight was recorded for 'Apantu' and 'Lahi' (16 kg) followed by 'Lai' and 'Pelipita' (14 kg) and 'Bira' (12 kg) while 'To'o' produced the smallest bunches (4 kg). The production expressed in tons per hectare and per year was highest for 'Apantu' and 'Lahi' (12 t. ha⁻¹) followed by 'Pelipita' (10 t. ha⁻¹), 'Lai' and 'Bira' (9 t. ha⁻¹). The lowest yield was recorded on 'To'o' (412 t. ha⁻¹) (Table 4).

Yield performance of cultivars within crop cycles and sites

Across cultivars and sites, yield performance differed significantly with cropping cycles (P<0.05) (Table 5). Cultivars with the highest yield performance over crop cycles were 'Lahi', 'Apantu', 'Lai' and 'Bira'. 'Lahi' had the highest number of hands (6-9) on the bunch in all sites. The same cultivar 'Lahi' had the highest total number of fingers (111-113), bunch weight (17-20 kg) and yield (15-23 t/ha/year) in South Kivu and Burundi sites only. 'Apantu' recorded the longest fingers averaging 22 cm in all sites whereas the highest number of fingers on the
second hand (12), the highest bunch weight (15 kg) and the highest yield (11 t/ha/year) were only recorded in North Kivu site. ‘Lai’ produced the highest number of fingers on a hand (13-14) in Burundi and South Kivu whereas ‘Bira’ recorded the highest total number of fingers (60) in North Kivu.

Agronomic results across the three cropping cycles showed that the highest yield of 23.5 t/ha/year was for ‘Lahi’ and recorded in the lowest altitude in Burundi (cycles 1 and 2). The yield of the same cultivar in the highest altitude was acceptable but 11.5 t/ha/year less compared with that recorded in the lowest altitude. The other cultivars with an acceptable yield of more than 10 t/ha/year were ‘Apantu’ (14-19 kg) in all sites (cycle 1); ‘Pelipita’ in Burundi (all cycles) and in DRC (cycle 1); ‘Bira’ in Burundi (cycle 1), North Kivu (cycles 1 and 2) and Lai in all sites (cycle 1) (Table 5).

The highest average number of fingers on a bunch (55-58) in North Kivu was recorded from ‘Bira’ (cycles 1 and 3) and ‘Lahi’ (cycle 2) and was almost half of the number recorded from the other sites. The least number of fingers on a bunch (22-28) were recorded from ‘To’ in the highest altitude sites of South Kivu (cycles 1 and 2) and mid-altitude sites of North Kivu (cycles 2 and 3). The cultivar with the heaviest bunch (15-20 kg) was ‘Apantu’ in DRC sites (all cycles) and in

Table 3. Performance traits of pVAC-rich banana cultivars at flowering stage across cropping cycles and sites.

Cycles	Cultivars	Burundi	North Kivu	South Kivu						
		Height (cm)	Girth at 1 m base (cm)	Functional leaves at bunch emergence	Height (cm)	Girth at 1 m base (cm)	Functional leaves at bunch emergence	Height (cm)	Girth at 1 m base (cm)	Functional leaves at bunch emergence
C1	‘Apantu’	248^a	44^{ab}	8^a	260^c	51^d	9^b	315^b	56^b	9^b
	‘Bira’	291^a	50^{ba}	11^a	261^b	58^e	10^{ba}	319^b	55^b	10^a
	‘Lai’	177^a	54^a	9^a	282^b	64^b	10^a	315^b	56^{ba}	11^a
	‘Lahi’	289^a	56^a	9^a	339^a	75^b	9^{ba}	357^a	60^a	11^a
	‘Pelipita’	290^a	56^a	9^a	296^b	62^{ab}	10^a	300^c	53^b	11^a
	‘To’	227^a	38^c	8^a	234^d	40^e	9^{ba}	278^d	41^c	9^b
C2	‘Apantu’	262^a	45^b	9^a	269^c	66^a	9^a	293^c	53^b	9^b
	‘Bira’	338^a	55^{ba}	10^a	324^a	66^a	9^a	318^b	54^a	10^{bc}
	‘Lai’	170^a	25^c	9^a	284^{bc}	62^b	9^a	316^b	57^{ba}	11^a
	‘Lahi’	386^a	65^a	9^a	304^{ba}	68^b	9^a	338^a	56^{ba}	11^a
	‘Pelipita’	364^{ba}	61^a	12^a	336^a	65^b	9^a	300^{ab}	58^a	10^{ha}
	‘To’	250^c	32^c	10^a	258^c	55^b	8^b	293^c	45^c	9^c
C3	‘Apantu’	280^{ab}	47^c	11^a	251^c	55^b	7^b	266^b	50^c	9^d
	‘Bira’	303^a	57^b	12^a	317^b	67^a	9^a	300^a	60^b	10^{ab}
	‘Lai’	377^a	69^a	10^a	303^{ba}	66^a	8^{ba}	315^a	67^a	9^{bl}
	‘Lahi’	384^a	60^b	12^a	356^a	68^b	8^a	307^a	53^c	11^b
	‘To’	246^c	38^d	11^a	229^c	48^d	7^b	217^c	39^d	10^{cb}

Values are averages of 15 plants per cultivar per crop cycle. Means followed by the same letter within a column are not significantly different at P<0.05.
Table 4. Performance traits of pVAC-rich banana cultivars at harvest across sites.

Sites	Cultivars	Number of hands	Number of fingers on hand	Length of Finger	Total number of fingers on a bunch	Bunch weight (Kg)	Production (Tons/ha/year)
South Kivu	'Apantu'	8b	11^gb	22^a	75^b	18^b	13^cd
	'Bira'	6^dc	12^g^ef	15^c	64^c	9^i	7^g
	'Lahi'	9^a	12^e^g^ef	15^e^ef	111^a	20^a	15^b
	'Lai'	6^dc	13^b	15^e^ef	84^b	17^cb	14^ed
	'Pelipita'	5^e	12^ob^cd	17^d	46^e	14^ef	10^ef
	'To'o'	4^ab	13^b	17^d	31^g	4j	3^h
North Kivu	'Apantu'	5^e	12^e^d	22^a	47^g	15^ed	11^ed
	'Bira'	6^df	11^g^ef	19^c	60^c	13^hf	10^ef
	'Lahi'	6^a	11^g	20^bc	56^gfe	14^feg	9^f
	'Lai'	5^g	11^f	21^ba	51^gfe	13^feg	8^g
	'Pelipita'	5^e	10^h	22^a	46^e	13^hg	10^ef
	'To'o'	4^h	10^i	20^bc	30^g	4j	3^h
Burundi	'Apantu'	7^c	13^b^c	22^a	82^h	15^feg	15^b
	'Bira'	7^c	12^e^d^c	14^d	75^b	9^i	10^f
	'Lahi'	9^a	13^b^f	16^df	113^g	17^c^d	23^a
	'Lai'	5^g	14^a	14^g^f	76^b	12^h	9^e
	'Pelipita'	7^c	12^e^d	17^ed	80^b	15^c^d	14^cb
	'To'o'	4^h	12^obd	16^g^df	44^d	4j	4^h

Values are averages of 45 plants per cultivar per site. Means followed by the same letter within a row are not significantly different at P<0.05.

Burundi (cycles 1 and 3). Another cultivar producing the heaviest bunches was 'Lahi' recorded from Burundi (cycles 1 and 2), South Kivu (all cycles) and North Kivu sites (cycle 1). 'Pelipita' also produced the largest bunches at each crop cycle in Burundi, in North Kivu (cycle 2) and South Kivu (cycles 2 and 3) (Table 5).

Within sites, yields of cultivars differed significantly (P<0.05) (Table 5). In Burundi, 'Lahi' recorded the highest number of hands (9), the highest total number of fingers (112-119), the highest bunch weight (17-18 kg) and the highest yield (23-24 t/ha/year) in comparison to other cultivars. 'Apantu' produced the longest fingers (20-24 cm) in all three cycles and the highest bunch weight (15 kg) in cycle 3; 'Lai' was recorded with the highest number of fingers on a hand (14-15) in all the three cycles and highest total number of fingers recorded in cycle 3 (86). 'Bira' showed the highest number of hands (7) in cycle 3 whereas in the same cycle 'Pelipita' also recorded the highest number of hands (7), as well as the highest yield (11 t/ha/year).

In North Kivu, 'Bira' recorded the highest number of hands (6-7) and the highest total number of fingers (53-72) in all cycles while it produced a higher yield in cycle 2 (11t/ha/year). 'Apantu' recorded the highest number of fingers on a hand (12), the highest bunch weight (14-16 kg) and the highest yield (9-14t/ha/year) in the three cycles. 'Lahi' had the equal-highest number of fingers on a hand (12) in cycle 1. In South Kivu, 'Lahi' had the highest number of fingers on a hand (8-10), the highest total number of fingers (101-129), the highest bunch weight (17-23 kg) and the highest yield (11-17 t/ha/year) in the three cycles.
Table 5. Performance traits of pVAC-rich banana cultivars at harvest across cropping cycles and sites.

Cycles	Cultivars	Burundi	North Kivu	South Kivu										
	Number of Hands	Number of Fingers on Hand	Length Finger	Number of Fingers on Bunch	Bunch weight (Kg)	Number of Hands	Length Finger	Number of Fingers on Bunch	Bunch weight (Kg)	Number of Hands	Length Finger	Number of Fingers on Bunch	Bunch weight (Kg) per year	
C1	‘Apantu’ 7b 14ba 24a 84b	16a 19ba 6a 12c 23a 50b 14a 14c 8a 12b 22b 72b 16a 16b												
	‘Bira’ 7b 12b 14c 81b	9b 12c 6a 11ba 19b 55b 11b 12b 6b 13ba 15c 50c 7c 6c												
	‘Lahi’ 9a 14ba 16cb 112a 17a 23a 5a 12a 18b 53a 14ba 13ba 8a 12b 14c 101a 17a 17a	1a												
	‘Lai’ 5c 15a 15c 72b	11b 11c 5b 11ba 21b 49b 13a 10c 5b 13ba 14c 70b 16ba 13b												
	‘Pelpita’6b 12a 18c 82b	16a 18b 5b 10b 24b 48b 12b 13b 5b 13ba 17b 39bc 14b 12b												
	‘To’ 4c 12b 16cb 43c	4c 5d 4c 11ba 18b 40b 4c 4d 4c 14c 16b 28d 4e 4d												
C2	‘Apantu’ 7ba 14ba 20a 80b	11bc 8b 5b 12c 20b 45b 16b 9b 8a 10b 21b 82c 18b 10bc												
	‘Bira’ 7b 12b 15b 68b	9bc 8b 6b 14ba 20ba 40ba 16ba 11a 6c 13a 13b 78c 11d 8d												
	‘Lahi’ 9a 14a 14b 119a	18a 24a 5a 10bc 22b 53b 14b 9b 9a 13a 15c 115a 23a 14a												
	‘Lai’ 5bc 14a 14b 75b	11bc 7b 5b 11bc 22b 48ba 14b 8c 7b 12a 15c 97b 20b 12b												
	‘Pelpita’7ba 12b 16b 83b	15b 12a 5b 11bc 22ba 44b 15ba 9b 5c 11b 17bc 51d 15c 9c												
	‘To’ 4c 12b 16b 38b	4d 3c 4c 10d 22a 26c 5c 4d 4d 13a 17b 22d 4e 2g												
C3	‘Apantu’ 6ba 12a 21a 77a	15a 9a 6c 12c 23a 47a 16a 9a 8bc 13ba 16a 24a 69cd 19a 9a												
	‘Bira’ 7a 13a 15b 73a	10b 10a 7a 11ba 16a 72a 13b 7b 9ba 12b 18b 74bc 13c 7c												
	‘Lahi’ 6ba 14a 14b 21ba	10b 19b 6ba 13ba 6c 13ba 10a 13ba 17b 129a 22a 11a												
	‘Lai’ 6bc 14a 14b 86a	13ba 8a 5d 11ba 19b 58b 13b 6c 8bc 15a 18b 88b 17b 8b												
	‘Pelpita’7ba 12a 16b 76a	15b 11a 6bc 10bc 20b 46b 12b 6c 6d 13ba 19b 55cd 15c 8bc												
	‘To’ 5c 13a 15b 49b	5c 4b 4a 8d 204 25d 4c 4d 7cd 13b 20b 51a 6d 4d												

Values are averages of 15 plants per cultivar per crop cycle. Means followed by the same letter within a column are not significantly different at P<0.05.

‘Apantu’ had the longest fingers (21-24 cm) in all cycles and the highest number of hands (8) in cycle 1. The highest number of fingers on a hand (13-15) was observed for ‘To’ (cycle 1 and 3) and ‘Bira’ and ‘Lahi’ (cycle 2).

Cultivars’ crop-cycle duration

Cultivars’ crop cycle duration was assessed in terms of the number of days from planting to flowering and from planting to harvest. Significant variations (P<0.05) were observed amongst cultivars across sites and within crop cycles (Table 6). In Burundi, the cultivars that took the longest time from planting to flowering and from planting to harvest were ‘Lai’ in cycle 1 (474 and...
Table 6. Crop cycle duration of pVAC-rich banana cultivars from planting to flowering and harvest across cropping cycles and sites.

Cycles	Cultivars	Burundi	North Kivu	South Kivu			
		Planting to flower (days)	Planting to harvest (days)	Planting to flowering (days)	Planting to harvest (days)		
C1	'Apan'tu'	409_b	528_b	475_b	601_b	485_{bc}	616_{bdc}
	'Bira'	339^b	410^c	403^c	511^c	550_{bc}	646_{bac}
	'Lahi'	346_b	449_b	487_b	587_b	495_{bc}	606_{bdc}
	'Lai'	474_a	608_a	660_a	780_a	569_a	676_a
	'Pelipita'	411_b	545_b	494_b	607_d	575_a	701_a
	'To'o'	465_b	534_a	402_c	485_c	459_c	562_d
C2	'Apan'tu'	766_{ba}	878_{ba}	934_a	1049_{ba}	942_a	1063_b
	'Bira'	675_a	736_b	789_c	894_c	818_c	889_b
	'Lahi'	351_b	449_c	785_c	916_c	924_{ba}	1076_a
	'Lai'	860_a	970_a	961_a	1093_a	948_a	1078_a
	'Pelipita'	658_a	786_{ba}	873_b	994_a	869_{bc}	948_b
	'To'o'	646_a	707_b	765_c	874_c	922_{ba}	1049_a
C3	'Apan'tu'	913_a	1026<sub<d</sub>	1048_b	1155_c	1115_{ba}	1218_b
	'Bira'	706_b	814_b	1013_d	1086_d	1068_d	1186_c
	'Lahi'	-	-	1101_b	1207_b	1171_a	1259_a
	'Lai'	885_a	1002_a	1142_c	1252_a	1149_a	1259_a
	'Pelipita'	721_b	842_{ba}	1061_c	1172_c	1132_a	1239_{ba}
	'To'o'	788_{ba}	853_{ba}	1064_c	1142_c	1140_c	1136_d

*: the third cycle for “Lahi” in Burundi was not recorded. Values are averages of 15 plants per cultivar per crop cycle. Means followed by the same letter within a column are not significantly different at P<0.05.

608 days respectively) and in cycle 2 and ‘Apan’tu’ (cycle 3), while ‘Bira’ took the shortest one in cycle 1 (339 days and 410 days) and cycle 3) and ‘Lahi’ (cycle 2). This indicated that Lai took 135 days and 198 days more compared to Bira in cycle 1. In North Kivu, ‘Lai’ took the longest time in all cycles with 660 days (flowering) and 780 days (harvest) in cycle 1 whereas ‘To’o’ (cycle 1 and cycle 2) and Lahi (cycle 3) took the shortest time from planting to flowering and from planting to harvest were ‘Pelipita’ in cycle 1 with 575 days and 701 days, Lai (cycle 2 and cycle 3) and ‘Lahi’ (cycle 3). Similar to other sites, To’o (cycle 1 and cycle 3) and ‘Bira’ (cycles 1 and 2) took the shortest time.

The assessment on crop cycle duration indicated that the average time taken by cultivars to flower and to yield bunch over the three cycles was generally lower in Burundi (the lowest altitude site) than in DRC sites (medium- and highest altitude sites) (Table 6).

Correlation between altitude and different cultivars’ growth and yield attributes

A significant relationship was observed between altitude and different growth and yield attributes (P<0.05) (Table 7). It was observed that plant height generally increased with increasing altitude across all the cultivars evaluated except for ‘Pelipita’ (R²= -0.15) which showed a significant decrease of plant height with increasing altitude. Generally, cultivar crop-cycle duration also significantly increased with altitude. Cultivars took significantly longer to mature at the high-altitude sites. It was also noted that production (Ton.ha⁻¹ per year) declined with increasing altitude. In addition, the bunch weight of ‘Lai’ (R²= 0.33) was most strongly correlated with altitude while ‘Bira’ (R²= -0.17), ‘Pelipita’ (R²= -0.24) and ‘To’o’ (R²= -0.13) were negatively correlated with
higher altitudes just after the first cycle while it continued in the higher altitude; ‘Lai’ that decreased in growth at only 2 cycles in the lower altitude while it had all 3 cycles unsuitable altitudes. The examples are ‘Lahi’ that had observed that some cultivars could degenerate rapidly in ‘To’o’) and lower altitude (‘Pelipita’). In addition, it was observed that farmers have less land. These alternatives could promote only short or medium-high cultivars such as ‘Bira’ and ‘Apantu’ and promote thinner cultivars in areas that experience strong winds, the alternative could be to grow two or more crops simultaneously on the same land. For male-bud removal, farmers can use forked sticks long enough to reach the male bud (Ocimati et al., 2013). In the areas where this may not apply, areas that occupy a large area, reducing space for other crops. This is a concern because it is common for smallholders in the East African region to intercrop bananas with different crops (Ouma, 2009).

To address these issues, farmers could install shelter-belts such as agroforestry tree species around the banana fields to alleviate the impact of strong winds and use appropriate banana plants spacing to maximize the use of land while intercropping bananas with other crops like legumes, cereals and multipurpose trees (Ouma, 2009). Over the study areas, bananas are generally intercropped with annual crops and there has been an increase in the grower interest in using intercropping, growing two or more crops simultaneously on the same land. For male-bud removal, farmers can use forked sticks long enough to reach the male bud (Ocimati et al., 2013). In the areas where this may not apply, areas that experience strong winds, the alternative could be to promote only short or medium-high cultivars such as ‘Bira’ and ‘Apantu’ and promote thinner cultivars in areas where farmers have less land. These alternatives could increase the rate of adoption of the different pVAC-rich cultivars by farmers in the study areas.

Yield differed with cultivars and growth performance. All cultivars except ‘To’o’ produced big bunches (15-20kg) and had good yields (10-23 t/ha/year) with differences in performance most likely due to altitude, in conformity with Turner et al., (2016) who observed altitude having a negative association with bunch weight, particularly when nitrogen, phosphate, potassium (NPK) and organic matter (OM) concentrations are low. ‘Apantu’, ‘Lahi’ and ‘Pelipita’ produced good bunch sizes in all sites while ‘Bira’ and Lai got bunches of similar sizes only in the medium and highest altitude sites in DRC.

Higher yields were observed in the lower altitude sites of Burundi compared to the medium and highest altitude sites. For example, ‘Lahi’ in the lowest altitude produced almost twice the yield compared to when it was grown at the highest altitude. In addition, a decrease in yield across cycles was been observed within sites with a

Characteristic	‘Apantu’	‘Bira’	‘Lahi’	‘Pelipita’	‘Lai’	‘To’
Height (Cm)	0.22**	0.27**	0.48***	−0.15*	0.23**	0.16*
Girth at 1m base (Cm)	0.04	0.26**	0.33***	−0.30***	0.20**	−0.09
Functional leaves at bunch emergence	0	0.06	0.20*	0.08	0.21**	−0.12
Planting to Flowering (Days)	0.13	0.22*	0.23*	0.23*	0.33***	0.07
Planting to Harvesting (Days)	0.15	0.23*	0.24*	0.21*	0.35***	0.11
Hands	0.17*	0.16*	0.25*	−0.28**	0.18*	0.02
Fingers on Hand	−0.03	−0.07	0.01	−0.14	−0.35***	0.11
Fingers on bunch	0.01	0.05	0.26**	−0.54***	0.01	−0.07
Bunch weight (Kg)	0.03	−0.17*	0.06	−0.24**	0.33***	−0.13
Production (Tons.ha⁻¹ per year)	−0.09	−0.35***	−0.18	−0.34***	−0.01	−0.11

*, **, ***: F-value significant at (P <0.05), (P < 0.01), (P < 0.001), respectively.
higher yield in the first cycle compared to the 2 other cycles. The influence of plant growth on yield was observed also by Woomer et al., (1999) who noticed a highly significant relationship between plant mass and production expressed in terms of bunch weight across a range of management practices. In addition to plant growth, altitude significantly affected plant production. The yield of all cultivars except ‘Lai’ was higher at lower altitudes (Burundi) compared to medium altitudes. This association was also observed in previous findings (Sikyolo et al., 2013; Sivirihauma et al., 2016; Soares, 2012) which concluded that most assimilates could go towards sucker development at high altitude, where a higher frequency of sucker production is observed for most cultivars.

Cultivars with the highest and medium growth also produced big bunches and had higher yields compared to the shortest ones. This has been observed for ‘Lai’, ‘Lahi’ and ‘Pelipita’ which had an average of 65cm height, 18 cm girth and each producing 10kg bunches. The yield of these cultivars in different sites was significantly higher than the yield of existing local cultivars. In Burundi, the average annual yield of the 5 cultivars (9 to 23 t/ha) was much higher than the estimated national annual banana yield (7.9t/ha) (FAOSTAT, 2018). This can be further illustrated by the dessert cultivar ‘Lai’ which produced a 12kg bunch and an average yield of 9 t/ha in comparison with the common local dessert cultivars ‘Kigurube’ and ‘Kamaramasenge’ grown in Burundi which produce bunches of 9.5 kg and 8.0 kg and a yield of 8.1 t/ha and 8.0 t/ha, respectively (Kamira et al., 2013). A similar observation was made in DRC, where the cultivars ‘Bira’, ‘Lahi’, ‘Lai’ and ‘Pelipita’ generated annual yields (7-15 t/ha) higher than the overall national annual yield of bananas (4.6 t/ha) (Dowiya et al., 2009). In addition, the pVAC-rich dessert cultivar “Lai” with an average bunch weight of 17kg in South Kivu, though lower than local cultivar ‘Gros Michel’ with 32kg, has the potential to increase as seen by the maximum bunch weight of 22kg that was noted in a banana germplasm evaluation study (Kamira et al., 2016).

The observed yields and high to medium growth confirmed the previous findings stipulating that larger girths and greater pseudostem strength are important characteristics that could positively influence banana bunch weight (Donato et al., 2006; Nyombi et al., 2009). A significant positive relationship between bunch weight and number of fruits per bunch has been previously reported (Soares, 2012). It has been confirmed in this study with ‘Lai’ which had the highest bunch weight and yield at the same the highest overall number of hands and fingers on a bunch; likewise, this was observed for Apantu and Pelipita which ranked amongst the high performing cultivars in terms of bunch weight and yield. However, even though bunch weight and number of fingers, can be used to directly express banana productivity, they cannot be considered in isolation when choosing a cultivar (Silva et al., 2002). Therefore, it is vital that the best/ recommended agronomic practices are used in the management of the cultivars to enable them to achieve their optimal production potential.

‘To’o’, the cultivar with the lowest growth performance also produced the smallest bunch among the studied cultivars and when compared to the local cultivars. This could negatively impact the acceptance of that cultivar within the local communities. However, given the high pVAC level (Ekesa et al., 2015), that cultivar could be used in the improvement of pVACs of existing banana varieties.

In addition, across cultivars, it was generally noted that crop cycle duration increased with altitude in conformity with the observation of Sivirihauma et al., (2016) that high altitude and corresponding low temperatures significantly increased crop-cycle duration of banana cultivars. The increase in crop-cycle duration with increasing altitude could be explained by lower temperature characterizing the higher altitude that contributed to lengthen the crop cycle. This conforms with Sikyolo et al.(2013) who assessed an increase in banana crop cycles with altitude. Farmers can be sensitized to adopt the banana cultivars with short and long cycles to enhance food security as reported for rice (Sall et al., 2000). Growing cultivars with both short and long cycles will increase and sustain the availability of pVAC-rich bananas.

In addition to good agronomic performance and high pVAC content, the cultivars selected for promotion should be acceptable to the target communities (Dowiya et al., 2009; Nowakunda and Tushemereirwe, 2004). A series of sensory evaluation exercises conducted within the project sites in Burundi, North Kivu and South Kivu showed that ‘Apantu’, ‘Bira’ and ‘Lahi’ were acceptable especially when boiled, roasted without peel or pan-fried in Burundi and North Kivu, and when roasted with or without peel or pan-fried in South Kivu (Ekesa et al., 2017). Recipes that incorporate the pVAC-rich banana cultivars such as those developed for South Kivu (Nabuuma et al., 2020) and value-added products also have the potential to increase adoption and create demand for these cultivars.

Conclusion

We conclude that ‘Apantu’, ‘Lahi’, ‘Bira’, ‘Lai’, and ‘Pelipita’ are the most promising pVAC-rich banana cultivars with agronomic performance that shows good potential for adoption by farmers in the study areas. Promotion of these cultivars through multiplication, dissemination of planting material in banana-dependent communities across Burundi and Eastern DRC should consider the influence of altitude as shown by the results of the study. They should also be accompanied by promoting recommended agronomic practices to achieve good yield, and by supplying information on appropriate
storage and cooking methods to maintain the pVAC content and improve nutrient quality. Further investigations on the susceptibility of these cultivars to the prevailing banana diseases within the study areas and evaluation of cultivar performance in farmers’ fields are recommended.

CONFLICT OF INTERESTS
The authors have not declared any conflict of interests.

REFERENCES
Akankwasa K, Ottman GF, Wale E, Tushemereirwe WK (2013). Determinants of consumers willingness to purchase East African highland cooking banana hybrids in Uganda. African Journal of Agricultural Research 8(9):780-791.

Nabuuma D, Kamira M, Simbare A, Ekesa B (2020). Recipes for vitamin A-rich bananas: developed for South Kivu, Democratic Republic of Congo. https://cgspace.cgiar.org/handle/10569/108023

Barekye A, Tongoona P, Derera J, Laing MD, Tushemereirwe WK (2013). Analysis of farmer-preferred traits as a basis for participatory improvement of East African highland bananas in Uganda. In: Blomme, G., Asten, P. van, Vanlauwe, B. (Eds.), Banana Systems in the Humid Highlands of Sub-Saharan Africa: Enhancing Resilience and Productivity. CABI, Wallingford pp. 30-36. https://doi.org/10.1079/9781780642314.0030

Davey MW, Bergh IVD, Markham R, Swennen R, Keulemans J (2009). Genetic variability in Musa fruit provitamin A carotenoids, lutein and mineral micronutrient contents. Food Chemistry 115(3):806-813. https://doi.org/10.1016/j.foodchem.2008.12.088

Donato SLR, Silva SDOE, Lucca Filho, OA, Lima MB, Domingues H, Alves JD (2006). Correlations among characters of the plant and of the bunch in banana (Musa spp.). Ciência e Agrotecnologia 30(1):21-30. https://doi.org/10.1590/S1413-70542006000100003

Dowiya NB, Rweyemamu CL, Maerere AP (2009). Banana (Musa spp. Colla) cropping systems, production constraints and cultivar preferences in eastern Democratic Republic of Congo. Journal of Animal and Plant Sciences 4(2):341-356.

Ekesa B, Kimiywe J, Davey M, Dhuique-Mayer C, Bergh IVD, Blomme G (2013). Contribution of bananas and plantains to the diet and nutrition of Musa-dependent households with preschoolers in Beni and Bukavu territories, eastern Democratic Republic of Congo.. In: Blomme, G., Asten, P. van, Vanlauwe, B. (Eds.), Banana Systems in the Humid Highlands of Sub-Saharan Africa: Enhancing Resilience and Productivity. CABI, Wallingford pp. 202-209. https://doi.org/10.1079/9781780642314.0202

Ekesa B, Nabuuma D, Blomme G, Bergh IVD (2015). Provitamin A carotenoid content of unripe and ripe banana cultivars for potential adoption in eastern Africa. Journal of Food Composition and Analysis 43:1-6. https://doi.org/10.1016/j.jfca.2015.04.003

Ekesa B, Nabuuma D, Kennedy G, Bergh IVD (2017). Sensory evaluation of provitamin A carotenoid-rich banana cultivars on trial for potential adoption in Burundi and Eastern Democratic Republic of Congo. Fruits 72(5):261-272. https://doi.org/10.17660/fth2017/72.5.1

Ekesa B, Poulaert M, Davey MW, Kimiywe J, Bergh IVD, Blomme G, Dhuique-Mayer C (2012). Bioaccessibility of provitamin A carotenoids in bananas (Musa spp.) and derived dishes in African countries. Food Chemistry 133(4):1471-1477. https://doi.org/10.1016/j.foodchem.2012.02.036

Ekholuenetale M, Tudege G, Onikan A, Ekholuenetale CE (2020). Socioeconomic inequalities in hidden hunger, undernutrition, and overweight among under-five children in 35 sub-Saharan Africa countries. Journal of the Egyptian Public Health Association 95(1):1-15. https://doi.org/10.1186/s42506-019-0034-5

Engbberger L, Darnton-Hill I, Coyne T, Fitzgerald MH, Marks GC (2003). Carotenoid-Rich Bananas: A Potential Food Source for Alleviating Vitamin A Deficiency. Food and Nutrition Bulletin 24(4):303-318. https://doi.org/10.1177/156482650302400401

Engbberger L, Willis RBH, Blades B, Dufficy L, Danielis JW, Coyne T (2006). Carotenoid Content and Flesh Color of Selected Banana Cultivars Grown in Australia. Food and Nutrition Bulletin 27(4):281-291. https://doi.org/10.1177/156482650602700401

Failla ML, Thakkar SK, Kim YJ (2009). In Vitro Bioaccessibility of β-Carotene in Orange Fleshed Sweet Potato (Ipomoea batatas, Lam.). Journal of Agricultural and Food Chemistry 57(22):10922-10927. https://doi.org/10.1021/jf900415g

FAOSTAT (2018). Burundian Annual Banana Yield of 2018 [WWW Document]. Food and Agriculture Organization (FAO) URL http://www.fao.org/faostat/en/#data/QC (accessed 9.10.20).

Frison EA, Cherfas J, Hodgkin T (2011). Agricultural Biodiversity Is Essential for a Sustainable Improvement in Food and Nutrition Security. Sustainability 3(1):238-253. https://doi.org/10.3390/su3010238

Fungo R, Pillay M (2011). β-Carotene content of selected banana genotypes from Uganda. African Journal of Biotechnology 10(29):5423-5430. https://doi.org/10.5897/AJB10.1047

Gaidashova S, Karemera F, Karamura E (2010). Agronomic performance of introduced banana varieties in lowlands of Rwanda. African Crop Science Journal 16(9):1-16. https://doi.org/10.4314/acsj.v16i1.54321

Greiner T (2013). Vitamin A. Moving the food-based approach forward. Presented at the Second International Conference on Nutrition, FAO and WHO P 69. http://www.fao.org/about/meetings/icn2/preparations/document-detail/en/c/2223310/

Kamira M, Crichton RJ, Kanyaruguru JP, Van Asten PJA, Blomme G, Lorenzen J, Njuwe E, Bergh IVD, Ouma E, Muchunguzi P (2013). Agronomic evaluation of common and improved dessert banana cultivars at different altitudes across Burundı.. In: Blomme, G., Asten, P. van, Vanlauwe, B. (Eds.), Banana Systems in the Humid Highlands of Sub-Saharan Africa: Enhancing Resilience and Productivity. CABI, Wallingford, pp. 37–47. https://doi.org/10.1079/9781780642314.0037

Kamira M, Ntamwira J, Sivirhuaoma C, Ocimati W, Van Aplet, Vutsemve L, Blomme G (2016). Agronomic performance of local and introduced plantains, dessert, cooking and beer bananas (Musa spp.) across different altitude and soil conditions in eastern Democratic Republic of Congo. African Journal of Agricultural Research 11(43):4331-4332. https://doi.org/10.5897/AJAR2016.11424

Karamura EB, Gold CS (2000). The elusive banana weevil cosmopolites sordidus german. Acta Horticulturae 540:471-485. https://doi.org/10.17680/ActaHortic.2000.540.53

Kennedy G, Nantel G, Shetty P (2003). The scourge of" hidden hunger": global dimensions of micronutrient deficiencies. Food, Nutrition and Agriculture Security. Sustainability 3(1):238-253. https://doi.org/10.1186/s42506-019-00352-x

Kikulwe EM, Birol E, Wesseler J, Falck-Zepeda J (2011). A latent class approach to investigating demand for genetically modified banana in Uganda. Agricultural Economics 42(5):547-560. https://doi.org/10.1111/j.1574-0862.2010.00529.x

Mbwika JM (2009). Feasibility study on technologies for improving banana for resistance against bacterial wilt in sub-Saharan Africa, African Agricultural Technology Foundation. 92 p. https://agris.fao.org/agris-search/search.do?recordID=XF2004414753

Kikuwe EM, Birol E, Wesseler J, Falck-Zepeda J (2011). A latent class approach to investigating demand for genetically modified banana in Uganda. Agricultural Economics 42(5):547-560. https://doi.org/10.1111/j.1574-0862.2010.00529.x

Mbwika JM (2009). Feasibility study on technologies for improving banana for resistance against bacterial wilt in sub-Saharan Africa, African Agricultural Technology Foundation. 92 p. https://agris.fao.org/agris-search/search.do?recordID=US201300002670

Ndakitejege O, Blomme G, Ocimati W, Crichton R, Ntamwira J, Muchunguzi P, Van AP, Bahati L, Gaidashova S (2017). Multi-locational evaluation of cooking banana cultivars NARITA 4 hybrid and Mpoloma in Rwanda. African Journal of. Agricultural Research 11(34):3068-3071. https://doi.org/10.5897/AJAR2017.12608

Nowakunda K, Tushemereirwe W (2004). Farmer acceptance of introduced banana genotypes in Uganda. African Crop Science Journal 12(1):1-6. https://doi.org/10.4314/acsj.v12i1.27656

Nyombi K, Van AP, Leffelaar PA, Corbeels M, Kaizzi CK, Giller KE (2009). Allometric growth relationships of East Africa highland bananas (Musa spp.) and Mwazuzume. Annals of Applied Biology 155:403-418. https://doi.org/10.1111/j.1744-7349.2008.00353.x

Ocimati W, Karamura D, Rutikanga A, Sivirhuaoma C, Ndungo V,
Ntamwira J, Kamira M, Kanyaruguru JP, Blomme G (2013). Agronomic practices for Musa across different agro-ecological zones in Burundi, eastern Democratic Republic of Congo and Rwanda., in: Blomme, G., Asten, P. van, Vanlauwe, B. (Eds.), Banana Systems in the Humid Highlands of Sub-Saharan Africa: Enhancing Resilience and Productivity. CABI, Wallingford pp. 175-190. https://doi.org/10.1079/9781780642314.0175

Ordonez N, Seidl MF, Waalwijk C, Drenth A, Kilian A, Thomma BPHJ, Ploetz RC, Kema GHJ (2015). Worse Comes to Worst: Bananas and Panama Disease—When Plant and Pathogen Clones Meet. PLOS Pathog. 11:e1005197. https://doi.org/10.1371/journal.ppat.1005197

Ouma G (2009). Intercropping and its application to banana production in East Africa: A review. Journal of Plant Breeding and Crop Science 1(2):013-015. https://doi.org/10.5897/JPBCS.0900088

Ruel MT, Levin CE (2001). Assessing the Potential for Food-based Strategies to Reduce Vitamin A and Iron Deficiencies. FCND briefs 92, International Food Policy Research Institute (IFPRI). https://ideas.repec.org/p/fpr/fcndbr/92.html

Sall S, Norman D, Featherstone AM (2000). Quantitative assessment of improved rice variety adoption: the farmer’s perspective. Agricultural systems 66(2):129-144.

Shim MY, Billard L, Pesti GM (2014). Experimental Design and Analysis with Emphasis on Communicating What Has Been Done: I. A Comparison of Statistical Models Using General Linear Model Procedure of SAS. International Journal of Poultry Science 13(2):76-87. https://doi.org/10.3923/ijps.2014.76.87

Sikyolo I, Sivirihauma C, Ndungo V, Langhe ED, Oclmari W, Blomme G (2013). Growth and yield of plantain cultivars at four sites of differing altitude in North Kivu, Eastern Democratic Republic of Congo., in: Blomme, G., Asten, P. van, Vanlauwe, B. (Eds.), Banana Systems in the Humid Highlands of Sub-Saharan Africa: Enhancing Resilience and Productivity. CABI, Wallingford, pp. 48–57. https://doi.org/10.1079/9781780642314.0048

Silva SDOE, Flores JCDOO, Lima Neto FP (2002). Avaliação de cultivares e híbridos de bananeira em quatro ciclos de produção. Pesquisa Agropecuária Brasileira 37(11):1567-1574. https://doi.org/10.1590/S0100-204X2002001100007

Sivirihauma C, Blomme G, Ocmari W, Vutseme L, Sikyolo I, Valimuziga K, De Langhe E, Turner DW (2016). Altitude effect on plantain growth and yield during four production cycles in North Kivu, eastern Democratic Republic of Congo. Acta Horticulturae 1114:139-148. https://doi.org/10.17660/ActaHortic.2016.1114.20

Soares JDR, Pasqual M, Rodrigues FA, Willian SL, Donato SJR, Silva SO, Paixão CA (2012). Correlation between morphological characters and estimated bunch weight of the Tropical banana cultivar. African Journal of Biotechnology 4(47):10682-10687. https://doi.org/10.5897/ABJ11.3408

Stevens GA, Bennett JE, Hennocq Q, Lu Y, De-Regil LM, Rogers L, Danaei G, Li G, White RA, Flaxman SR, Oehrle SP, Finucane MM, Guerrero R, Bhatta ZA, Then-Paulino A, Fawzi W, Black RE, Ezzati M (2015). Trends and mortality effects of vitamin A deficiency in children in 138 low-income and middle-income countries between 1991 and 2013: a pooled analysis of population-based surveys. Lancet Global Health 3(9):e528-e536. https://doi.org/10.1016/S2214-109X(15)00039-X

Tang G, Qin J, Dohnikowski GG, Russell RM, Grusak MA (2009). Golden Rice is an effective source of vitamin A. American Journal of Clinical Nutrition 89(6):1776-1783. https://doi.org/10.3945/ajcn.2008.27119

Thompson B, Amoroso L (2014). Improving diets and nutrition: food-based approaches. CABI, Wallingford.
http://www.fao.org/3/i3030e/i3030e.pdf

Thompson B, Cohen MJ (2012). The Impact of Climate Change and Bioenergy on Nutrition. Springer Netherlands, Dordrecht.
http://www.fao.org/3/as502e/as502e.pdf

Tripathi L, Mwangi M, Abele S, Arult V, Tushemereire WK, Bandypadhyay R (2009). Xanthomonas Wilt: A Threat to Banana Production in East and Central Africa. Plant Disease 93(5):440-451. https://doi.org/10.1094/PDIS-93-5-0440

Uusiku NP, Oelofse A, Duodu KG, Bester MJ, Faber M (2010). Nutritional value of leafy vegetables of sub-Saharan Africa and their potential contribution to human health: A review. Journal of Food Composition and Analysis 23(6):499-509. https://doi.org/10.1016/j.jfca.2010.05.002