A Comprehensive Survey of Image-Based Food Recognition and Volume Estimation Methods for Dietary Assessment

Ghalib Tahir and Chu Kiong Loo

Abstract: Dietary studies showed that dietary-related problems such as obesity are associated with other chronic diseases like hypertension, irregular blood sugar levels, and increased risk of heart attacks. The primary cause of these problems is poor lifestyle choices and unhealthy dietary habits, which are manageable using interactive mHealth apps. However, traditional dietary monitoring systems using manual food logging suffer from imprecision, underreporting, time consumption, and low adherence. Recent dietary monitoring systems tackle these challenges by automatic assessment of dietary intake through machine learning methods. This survey discusses the most performing methodologies that have been developed so far for automatic food recognition and volume estimation.

First, we will present the rationale of visual-based methods for food recognition. The core of the paper is the presentation, discussion and evaluation of these methods on popular food image databases. Following that, we discussed the mobile applications that are implementing these methods. The survey ends with a discussion of research gaps and open issues in this area.

Keywords: Food recognition, Feature extraction, Automatic-diet monitoring, Image analysis, Volume estimation, Interactive segmentation, Food datasets

1. Introduction

Despite recent advancements in medicine, the number of people affected by chronic diseases is still significantly large. This rate is primarily due to their unhealthy lifestyles and irregular eating patterns. Some of the more notable chronic diseases include obesity, hypertension, blood sugar, cardiovascular diseases, and different kinds of cancers. Out of these, obesity and weight issues are becoming increasingly common around the globe. It affects almost every part of the world, from middle to low-income countries. In 2016, 1.9 billion adults 18 years and older were overweight, while 650 million were obese. With time, children are also becoming affected by obesity at an alarming rate. According to World Health Organization (WHO), over 340 million children and adolescents between 5 and 19 years were overweight or obese. [1].

The prevalence of these alarming statistics poses a serious concern. However, determining the effective remedial measures depends on different factors, ranging from a person’s genetics to lifestyle choices. To cope with chronic weight problems, people usually keep notes to track their dietary intake. In turn, dieticians require these records to estimate a patient’s nutrient consumption. Many dietary mobile applications automate this process by developing food recognition and volume estimation models that directly classify food categories, ingredients, estimate nutrients from smartphone camera pictures.

However, automatic food recognition using a smartphone camera in the real world is considered a multi-dimensional problem. Unlike other image classification problems,
food recognition is a complex task that involves several challenges. There is no spatial layout information that it can exploit like, in the case of the human body, there is a spatial relationship between body parts. The head is always present over the trunk of the human body [2–4] and feet towards the lower end. Similarly, the non-rigid structure of the food and intra-source variations make it even more complicated to classify food items correctly as preparation methods and cooking styles vary from region to region. Moreover, inter-class ambiguity is also a source of potential recognition problems as different food items may look very similar (e.g. soups). Moreover, in many dishes, some ingredients are concealed from view that can limit the performance of food ingredient classification models.

In addition to this, image quality from the smartphone camera is dependent on different types of cameras, lighting conditions, and orientations. As a result, the poor performance of food recognition models is highly susceptible to image distortions.

Despite these challenges, many food images possess distinctive properties to distinguish one food type from another. Firstly, the visual representations of food images are of fundamental importance as it significantly impacts classification performance. Therefore, many food recognition methods employ handcrafted features such as shape, colour, texture, local. Recent techniques are using deep visual features for image representation. Some of these methods implement a combination of handcrafted and deep visual features for image feature representation. Secondly, for enhanced classification performance and reduced computational complexity, an appropriate selection of attributes is essential for removing redundant features from feature vectors. Finally, wisely selecting classification techniques is crucial to address food recognition challenges effectively.

Similarly, manual logging of food volume is a tedious task and involves a high rate of human error by as much as 30% [5–10]. Several solutions are proposed whose aim is to estimate food volume from smartphone camera pictures. Previous studies [11] shows that using a mobile phone camera for food volume estimation increases the accuracy of calories estimation. Some methods involve capturing a single image, while multiple views are needed to determine accurate volume in other techniques. The food volume estimation process involves the following two steps 1) multiple images or a single image from a mobile camera is needed 2) computation of food volume from 3d construction or calibration object. Regardless of other volume estimation tasks, food volume estimation is a complex task with many specific challenges. Many foods have variations in shape and appearance due to shape and eating conditions.

The following research paper aims to scrutinize state-of-the-art vision-based approaches for dietary assessment. Figure 1. represents the detailed scope and taxonomy of our survey study. The contribution of this survey is summarized as follows:

1) We have briefly explored existing food databases for evaluating vision-based approaches and performance measures to thoroughly investigate food recognition, ingredient detection and volume estimation methods.

2) We present an extensive review of food recognition techniques, including traditional methods with handcrafted features and modern deep learning-based approaches.

3) We provided deep insight into multi-label methods for food ingredient classification.

4) We surveyed most performing single view and multiview methods for food volume estimation.

5) We presented existing mobile applications which implements these approaches and other potential applications of vision-based methods in health care.

6) We analyzed open issues and suggested possible solutions to overcome the limitations of the existing methodologies.

The rest of the article is organized as follows. Section II and III examine evaluation metrics and existing datasets. Section IV examines feature extraction methods for food
image representation including, handcrafted and deep visual features. In sections V and VI, we presented the most performing classifiers for food categorization and ingredient detection. Section VII represents the food volume estimation methods. In section VIII, we provide brief information about mobile applications implementing these methods and other potential applications. Section IX and X summarizes statistical analysis and open issues. Conclusively, we highlight our findings and future works related to this topic.

2. Evaluation Metrics

2.1. Evaluation Metrics for Food Categorization

Performance of automatic food recognition models is highly dependent on correct mapping of food images into their respective categories. Therefore, evaluation metrics plays an essential role to determine the correctness of food recognition models. Several metrics have been discussed in literature and their appropriate selection depends on the requirements of specific applications. It has also been observed that a classifier may perform well under one metric but poorly under another metric. However, intrinsic metrics generally used for better comparisons are ‘Accuracy’, ‘Precision’, ‘Recall’ and ‘F1’ are discussed in detail below.

Accuracy

Accuracy of a model determines whether a model is being able to predict food classes correctly or how well a certain model can perform generally. Eq. (1) represents mathematical form of accuracy. However, accuracy cannot be used as major performance metric, as it does not serve the purpose when there’s imbalance dataset. Therefore, we have incorporated ‘Precision’, ‘Recall’ and ‘F1 score’ to provide better insights of the results.

\[
Accuracy = \frac{(TP + FN)}{(TP + FP + FN + TN)} \times 100 \tag{1}
\]

Precision

Precision score can be defined as how often a certain model can correctly predict classified positive values. In simpler words, out of all predicted positive food classes what percentage
is truly positive. This score is beneficial when the cost of false positives is high. It is calculated by Eq. (2).

\[
\text{Precision Score} = \frac{TP}{(TP + FP)} \tag{2}
\]

Recall
Recall score identifies model’s ability to correctly classify food classes. It determines out of total positive food classes what percentage are predicted positives. It provides better insight when cost of false negatives is high. It is computed by using Eq. (3).

\[
\text{Recall} = \frac{TP}{(TP + FN)} \tag{3}
\]

F1 Score
F1 score represents the harmonic mean of recall and precision’s score. It considers both false positives and false negatives, therefore, it performs great on imbalanced datasets. It is calculated by following Eq. (4).

\[
F1 \text{ Score} = \frac{(2 \times (\text{Precision} \times \text{Recall}))}{\text{Precision} + \text{Recall}} \tag{4}
\]

Confusion Matrix:
Confusion Matrix is a widely used approach to summarize the performance of a classification model in machine learning. In some cases, classification accuracy alone can be misleading especially when there are more than two classes in a dataset or if there are unequal number of observations present in classes. Therefore, confusion matrix provides clear picture of actual and predicted classes obtained by classification model. Confusion matrix is basically a two dimensional matrix, where each row represents example of an actual class and each column represents state of predicted class. TP stands for true positive, TN represents the number of true negative, FP is the number of false positive and FN represents false negative in confusion matrix shown in Figure(2).

![Confusion Matrix](image)

Figure 2. Confusion Matrix

2.2. Catastrophic Forgetting During Progressive Learning

Catastrophic forgetting during open-ended learning measures the algorithm’s ability to add new neurons or classes corresponding to novel incoming concepts. Kemker et al.
[12] and Chaudry et al. [13] proposed five measures of catastrophic forgetting to achieve this objective.

Intransigence

It refers to the difference of classification performance between the reference model trained by batch learning technique and the model trained on feature vectors using incremental learning protocol. The negative intransigence represents that incrementally learning a set of classes is improving performance. Eq. (5) denotes its mathematical form.

\[I_k = a^*_k - a_{k/k} \] \hspace{1cm} (5)

Forgetting

It refers to the difference between the maximum classification performance of a particular session in previous sessions and its classification performance in the current session. Eq. (6) computes the average forgetting of the network up to the \(k^{th} \) session.

\[f_{kj}^k = \max_{1 \leq i \leq K-1} a_{ij}, j > k \]

\[F_k = \frac{1}{k-1} \sum_{j=1}^{k-1} f_{kj}^k \] \hspace{1cm} (6)

Base Session

It refers to the classification performance on test images of base classes in the current session as shown by eq. (7)

\[\Omega_{\text{base}} = \frac{1}{k-1} \sum_{j=2}^{k} \frac{a_{j,1}}{a_{\text{ideal}}} \] \hspace{1cm} (7)

New Session

It is the ability of a model to recall newly learning knowledge as shown in the eq. (8).

\[\Omega_{\text{new}} = \frac{1}{k-1} \sum_{j=2}^{k} a_{j,j} \] \hspace{1cm} (8)

All Session

It refers to the retention of the previously learned information by the network when learning new classes as computed by eq. (9).

\[\Omega_{\text{all}} = \frac{1}{k-1} \sum_{j=2}^{k} \frac{a_{j,\text{all}}}{a_{\text{ideal}}} \] \hspace{1cm} (9)

2.3. Evaluation Metrics for Food Ingredient Classification

Similarly, food ingredient recognition is equally important for dietary assessment applications. As food categorization is limited to the classification of generic food items present in the food images; food ingredient recognition and classification provides deep insights into the caloric content present in the food image. Therefore, food ingredient recognition applications widely incorporate multi-label classification. [109]. Since, food ingredient recognition is considered as multi-label problem as food image usually contains more than one ingredient. Therefore, evaluation metrics generally used for multi-label classification are different from traditional single-label classification. Following are the performance metrics are used by food ingredient recognition models.

Consider \(x_i, Y_i \) with L number of labels as training datasets. Let assume MLC is the training method and \(Z_i = MLC(x_i) \) is the output labels (Ingredients) predicted by the classification
method.

Precision

Precision is the ratio of correctly predicted labels to total number of actual labels, averaged across all instances. Eq(10) represents precision for food ingredient classification.

\[
\text{Precision} = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{\text{MLC}(x_i) \cap Y_i}{\text{MLC}(x_i)} \right)
\]

(10)

Recall

Recall is computed by Eq(11). It is the ratio of correctly predicted labels to the total number of predicted labels.

\[
\text{Recall} = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{\text{MLC}(x_i) \cap Y_i}{\text{MLC}(Y_i)} \right)
\]

(11)

F1 Score

Finally, F1 score is the harmonic mean of the precision and recall. Eq(12) represents the F1 score.

\[
\text{F1 Score} = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{2 \ast |\text{MLC}(x_i) \cap Y_i|}{|\text{MLC}(x_i)| + |Y_i|} \right)
\]

(12)

2.4. Evaluation Metrics for Food Volume Estimation

Similarly, various studies related to food volume estimation use ground truth values to compare the accuracy of their proposed methods to determine the accurate food volume [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144]. Unfortunately, there is no dataset available till date for accurate measurement of food volume. Nevertheless, method proposed by [145] uses controlled experiments that require participants to click images before and after their meal to compute consumed calories, which are later compared with ground truth values. Similarly, [146] has incorporated different food models to determine the true volume, however, various models failed to provide accurate information. Therefore, they implemented water displacement method which requires mean of three readings to find out true volume. Also, most of the studies used following equations to compute the relative error and estimate the accuracy of the method

\[
e = |v - v_{approx}|
\]

(13)

Where v is the actual volume and \(v_{approx}\) is the approximate volume

\[
e = \frac{1}{N} \sum_{i=1}^{n} \left| \frac{w_i - w_g}{w_g} \right|
\]

(14)

Where N is the number of food items; \(w_i\) is the estimated weight of the food item; \(w_g\) is the ground truth value of the food.

3. Datasets Used for Food Recognition

Performance of feature extraction and classification techniques is highly dependent on the detail-oriented collection of images, which, in our case, happen to be food images. As consolidated large food image datasets, for example, UECFOOD-100, Food-101, UECFOOD-256, UNCIT-FD1200, UNCIT-FD889 are eventually used as benchmarks to collate recognition performance of existing approaches with new classifiers. Such datasets can be distinctive in terms of characteristics, such as the total number of images in a particular
dataset, cuisine type, and included food categories. Table 1 summarizes the characteristics of food datasets surveyed in this research endeavour.

For instance, UECFOOD-100 contains 100 different sorts of food categories, and each food category has a bounding box that indicates the location of the food item in the photograph. Food categories in this dataset mainly belong to popular foods in Japan [84]. Similarly, UECFOOD-256 is another variant of UECFOOD-100. However, it differs in terms of the number of images as it contains 256 food images of different kinds [84]. Food-101 contains 101000 real-world images that are classified into 101 food categories. It includes diverse yet visually similar food classes [35]. Similarly, the PFID food dataset is composed of 1098 food images from 61 different categories. The PFID collection currently has three instances of 101 fast foods [107]. UNCIT-FD1200 is composed of 4754 food images of 1200 types of dishes captured from actual meals. Each food plate is acquired multiple times, and the overall dataset presents both geometric and photometric variability. Similarly, UNICT-FD 889 dataset has 3583 images [94] of 889 different real food plates captured using mobile devices in uncontrolled scenarios (e.g., different backgrounds and light environmental conditions). Moreover, they capture each dish image in UNICT-FD899 multiple times to ensure geometric and photometric variability (rotation, scale, point of view changes) [105].

Several datasets mainly consist of various food images collected through various sources such as web crawlers, social media platforms like Instagram, Flickr, and Facebook. Also, most of these datasets contain images of foods that are specific to certain regions, such as Vireo-Food 172 [41] and ChineseFoodNet [43]. Both datasets contain Chinese dishes. Similarly, Food-50 [25], Food-85 [25], Food log [103], UECFOOD-100 [84] and UECFOOD-256 [35] contains Japanese Foods items. Turkish foods-15 [97] is limited to Turkish food items only. Also, the Pakistani Food Dataset [67] accommodates Pakistani dishes, and the Indian Food Database incorporates Indian cuisines. In addition to this, few datasets only include fruits and vegetables like VegFru [88], Fruits 360 Dataset [87], and FruitVeg-81 [76]. Furthermore, Table 1 provides brief description about food image datasets. Figure 4 shows the sample images from the food datasets.

Therefore, it is evident from the survey that there is an immense need for broad and generic food datasets for better food recognition and enhanced performance. This necessity is because region-specific food items or datasets with fewer food categories can undermine the accuracy and performance of classification and extraction methods.

4. Representation of Food Images

Feature extraction plays a vital role in automated food recognition applications due to its noticeable impact on the recognition efficiency of an employed system. Feature extractors methods extract different food image representations. The process of feature extraction involves the identification of visual characteristics like colour, shape, and texture. The main objective of feature extraction is to reduced dimensionality space [14] and extract more manageable groups from raw vectors of food images.

Moreover, selecting the right set of features ensures that relevant information is extracted from input images to perform the desired task. We categorized the feature extraction techniques into two main types: Hand-crafted and Deep visual features. The term ‘hand-crafted’ refers to identifying relevant feature vectors of appropriate objects such as shape, colour, and texture. In contrast to that, the deep model provides state-of-the-art performance due to automatic feature extraction through series of connected layers. For this reason, recent studies have adopted combinations of both hand-crafted and deep visual features for food image representation.
Figure 3. System Flow

Figure 4. Sample images from few food datasets
Table 1: Food image datasets

Authors	Year	Dataset	Food Category	Total # images / Class	Image Source
S. Godwin et al. [131]	2006	Wedge Shape foods dataset	American Foods	3 categories	Controlled environment
Chen et al. [107]	2009	PFID	American Fast Foods	1038(61)	Fast food data captured in multiple restaurants
Mariappan et al. [83]	2009	TADA	Artificial And Generic Food	256(11)	Controlled environment
Yanai et al. [25]	2010	Food-50	Japanese Foods	5000(50)	Crawled from web
Hoashi et al. [25]	2010	Food-85	Japanese Foods	8500(85)	Existing food databases
Miyazaki et al. [134]	2011	Foodlog	Japanese Foods	6512(200)	Captured by users
Marc Bosch et al. [128]	2011	FNDIDS	American Foods	7000	Images of food acquired by users
Matsuda et al. [84]	2012	UEFOOD-100	Japanese Foods	14,361(100)	Captured by mobile camera
Chen et al. [43]	2012	ChineseFoodNet	Chinese dishes.	192,000(208)	Gathered from web
M.-Y. Chen et al. [106]	2012	Chen	Chinese Foods	5000/50	Crawled from the Internet
Bossard et al. [45]	2014	Food-101	American Foods	101,000(101)	Crawled from web
L. Bossard et al. [91]	2014	ETHZ-Food-101	American Foods	100,000(101)	Crawled from web
Kawano et al. [53]	2014	UEFOOD-256	Japanese Foods	25,088(256)	Captured by mobile camera
T. Stutz et al. [132]	2014	Rice dataset	Generic (Rice)	1 food type	Acquired from user
Farinella et al. [105]	2014	UNICT-FD889	Italian Foods	3583(899)	Acquired with a smartphone
Meyers et al. [74]	2015	FOOD201-Segmented	American Foods	12625	Manually annotated dataset
Xin Wang et al. [90]	2015	UPMC-Food-101	Generic	100,000(101)	Crawled from web
Ciocca et al. [92]	2015	UNIMB 2015	Generic	2000(15)	Using a Samsung Galaxy S3 smartphone
Shaobo Fang et al. [130]	2015	TADA(19 foods)	American Foods	19 categories	Controlled environment
Xu et al. [85]	2015	Dishes	Chinese Restaurant Foods	117,504(3,832)	Download from diamping
Bejpom et al. [44]	2015	Menu-Match	Generic Restaurant Food	646(41)	Captured from social media
Zhou et al. [99]	2016	Food-975	Chinese Foods	37,785(975)	Collected from restaurants
J. Chen et al. [41]	2016	Vireo-Food 172	Chinese Foods	110,241(172)	Downloaded from web
Ciocca et al. [93]	2016	UNIMB 2016	Italian Foods	1,027(73)	Captured from dinning tables
Hui Wu et al. [99]	2016	Food500	Generic	148,408 (508)	Crawled from web
Singla et al. [56]	2016	Food-11	Generic	16643(11)	Other food datasets
Farinella et al. [94]	2016	UNICT-FD1200	Generic	4754(1200)	Acquired using smartphone
Jaclyn Rich et al. [108]	2016	Instagram 800k	Generic	808,964(43)	Social Media
Liang et al. [101]	2017	ECUSTFD	Generic	2978(19)	Acquired using smartphone
Güngör et al. [97]	2017	Turkish-Foods-15	Turkish Dishes	7500/15	Collected from other datasets
Pandey et al. [51]	2017	Indian Food Database	Indian Foods	5000(50)	Downloaded from web
Termirthikun et al. [56]	2017	THFood-50	Thai Foods	700/30	Downloaded from web
Ciocca et al. [95]	2017	FOOD524DB	Generic	247,636(524)	Existing food database
Hou et al. [88]	2017	VegFru	Generic (Fruit and VEG)	160,731(292)	Collected from search engine
Waltner et al. [76]	2017	FruitFru	Generic (Fruit and VEG)	15,630(81)	Collected using mobile phone
Muresan et al. [87]	2018	Generic (Fruits 360 Dataset)	Fruit Dataset	71,125(103)	Camera
Qing Yu et al. [96]	2018	FLJD-469	Japanese Foods	209,710(469)	Smart Phone camera
Kaur et al. [89]	2019	FoodX-251	Generic	158,000(251)	Collected from web
Ghalib et al. [67]	2020	Pakistani Food Dataset	Pakistani Dishes	4928(100)	Crawled from web
Narayanan et al. [104]	2019	AI-Crowd	Swiss Foods	25389	Volunteer Users
Bolanos M. et al. [102]	2016	EgocentricFood	Generic	5038(9)	Taken by a wearable egocentric vision camera
E. Aguilar et al. [103]	2019	MAFood-121	Spanish Foods	21,175	Google search engine

4.1. Handcrafted Features

Existing literature exhibits a large number of methods to employ manually designed or handcrafted features. Handcrafted features are properties obtained through algorithms using help from information available in the image. Figure 7 categorizes the handcrafted
feature extraction methods. In the scenario of food image recognition, there is a variation among different food types in terms of texture, shape, and colour.

The term ‘texture’ refers to homogenous visual patterns that do not result from single colours such as sky and water [7]. Texture features usually consist of regularity, coarseness, and frequency. Texture-based characteristics are classified into two classes, namely statistical model and transform-based. Similarly, shape features attempt to quantify shape in ways that agree with human intuition or aid in perception based on relative proximity to well-known shapes. Based on the analysis, these shapes can either be declared perceptually similar to human perception or different. Also, extracted features should remain consistent concerning rotation, location, and scaling (changing the object size) of an image. Unlike shape and texture features, colour features are prevalent for image retrieval and image classification because of their invariant property concerning image translation, scaling, and rotation. The key items of the colour features extraction process are colour quantization and colour space. Therefore, the resulting histogram is only discriminative, when it projects the input image is to the appropriate colour space. Different methods like; HSV, CIELab, RGB, normalized RGB, opponent colour spaces, colour k-means clustering, a bag of colour features, colour patches, and colour-based kernel, are widely employed for food classification. Although, the colour features from the food images distinguish between different food items. However, due to intra-class similarity, these features alone are not enough to accurately classify food images. For this reason, most of the researchers have used colour features in combination with other feature extraction methods.

Hoashi et al. [25] employed Bag of features, colour histogram, Gabor features, and gradient histogram with multiple kernel learning for automatic food recognition of 85 different food categories. Similarly, Yang et al., [26] deal with pairwise statistics between local features for food recognition purposes using the PFID dataset. For real-time food image recognition Kavano and Yanai et al., 2014 [35] utilized handcrafted features like colour, HOG, and fisher vector. Moreover, the cloud-based food recognition method proposed by Pouladzadeh et al., 2015 [36] involves features like colour, texture, size, shape, and Gabor filter. They evaluated their framework on single food portions consisting of fruit and a single item of food. Furthermore, mobile food recognition systems proposed by Kawano and Yanai, 2013 [30], and Oliveira et al. 2014 [40] also used handcrafted features like colour and texture. Table 2 summarizes the details of proposed methods that employ handcrafted features for food recognition.

However, identification of food involves challenges due to varying recipes and presentation styles used to prepare food all around the globe resulting in different feature-sets [24]. For instance, the shape and texture of a salad containing vegetables differ from the shape, and texture of a salad containing fruits. For this reason, we should optimize the feature extraction process by extracting relevant visual information from food images. Such data is present in general information descriptors, which are a collection of visual descriptors that provide information about primary features like shape, colour, texture, and so forth. Some important descriptors used in existing studies include Gabor Filter, Local Binary Patterns (LBP), Scale-invariant Feature Transform (SIFT), and colour information to extract features of food images [28]. These descriptors can be applied individually or in combination with other descriptors for enhanced accuracy.

Nonetheless, feature selection remains a complex task for food types that involve mixed and prepared foods. Such food items are difficult to identify and are not easily separable due to the proximity of ingredients in terms of colour and texture features. In contrast, the evolution of deep learning methods has remarkably reduced the use of handcrafted features. It is due to their superior performance for both food categorization
and ingredient detection tasks. However, handcrafted methods for feature extraction may still serve as the foundation for automated food recognition systems in the future.

4.2. Deep Visual Features

Recently, deep learning techniques have gained immense attention due to their superior performance for image recognition and classification. The deep learning approach is a sub-type of machine learning, and it trains more constructive neural networks. The vital operation of deep learning approaches includes automatic feature extraction through the sequence of connected layers leading up to a fully connected layer, which is eventually
responsible for classification. Moreover, in contrast to conventional methods, deep learning techniques show outstanding performance while processing large datasets and have excellent classification potential [15][16].

Deep learning methods like convolutional neural networks (CNN) [17], Deep Convolutional Neural Networks (DCNN) [46], Inception-v3 [18] and Ensemble net are implemented by existing food recognition methods for feature extraction. Convolutional Neural network is one of the widely used deep learning techniques in the area of computer vision due to its impressive learning ability regarding visual data and achieves higher accuracy in contrast to other conventional techniques [19]. DCNN technique gained popularity owing to its large-scale object recognition ability. It incorporates all major object recognition procedures like feature extraction, coding, and learning. Therefore, DCNN is an adaptive approach for estimating adequate feature representation for datasets [20]. Similarly, Inception-v3 is also a new deep convolutional neural network technique introduced by Google. It is composed of small inception modules which are capable of producing very deep networks. As a result, this model has proved to have higher accuracy, decreased number of parameters, and computational cost in contrast to other existing models. Likewise, Ensemble Net is a deep CNN-based architecture and is a suitable method for extracting features. It is due to the outstanding performance of CNN feature descriptors as compare to handcrafted features.

Asymmetric multi-task CNN and spatial pyramid CNN [21] provides highly discriminative image representations. Jing et al. [41] proposed ARCH-D architecture for multi-class multilabel food recognition, and their model provides feature vectors for both food category and ingredient recognition. Although the feature vectors from multi-scale multi-view deep network [22] has a very high dimension however they were successful in achieving state-of-art performance. Ghalib et al. [67] proposed ARCIKELM for open-ended learning. They have employed InceptionResnetV2 for feature extraction due to their superior performance over other deep feature extraction methods such as ResNet-50 and DenseNet201. Table 3 further provides a brief description of deep visual features.

Figure 5. Handcrafted feature extraction methods

5. Food Category Classification

The primary requirement of any food recognition system is accurate identification and recognition of food components in the meal. Therefore, robust and precise food classification methods are crucial for several health-related applications like automated dietary assessment, calorie estimation, and food journals. Image classification refers to a machine learning technique that associates a set of unspecified objects with a subset (class) learned
Table 3: Deep visual features

Reference	Year	Features	Dataset	Recognition type
Kawano and Yanai, [54]	2014	Fisher Vector and DCNN	UECFOOD-100 and 100-class food Dataset	Food image recognition
Yanai and Kawano, [46]	2015	DCNN	UECFOOD-100 and UECFOOD-256	Food image recognition
Christodoulidis et al. [52]	2015	CNN	Manually annotated dataset with 573 food items	Food recognition
Pouladzadeh et al. [53]	2016	Graphcut and DCNN	Database consisting of 10000 high res images	Food recognition for calorie measurement
Hassannejad et al. [49]	2016	Inception	Food-101, UECFOOD-100 and UECFOOD-256	Food image recognition
Liu et al. [50]	2016	DCNN	Food-101, UECFOOD-256	Mobile food image recognition
Chen and Ngo, [41]	2016	Arch-D	Chinese Foods	Ingredient recognition and food categorization
Ciocca et al. [55]	2017	VGG	UNIMIB 2016	Food recognition
Termritthikun et al. [56]	2017	NU-InNet	THFOOD-30	Food recognition
Pandey et al. [51]	2017	AlexNet, GoogLeNet and ResNet	ETH Food-101 and Indian Food Image Database	Food Recognition
Liu et al. [48]	2018	GoogleNet	UECFOOD-100, UECFOOD-256 and Food-101	Food recognition for dietary assessment
McAllister et al. [57]	2018	ResNet-152, GoogLeNet	Food 5k, Food-11, RawFoods-DB and Food-101	Food recognition
Martinel et al. [58]	2018	WSeR	UECFOOD-100, UECFOOD-256 and Food-101	Food recognition
E. Aguilar et al. [60]	2018	AlexNet	UNIMIB2016	Automatic food tray analysis
S. Horiguchi et al. [65]	2018	GoogleNet	Built their own food dataset FoodLog	Food image recognition
Gianluigi Ciocca et al. [70]	2018	ResNet50	Food 475	Food image recognition and classification
B. Mandal et al. [66]	2019	SSGAN	ETH Food-101 and Indian Food Dataset	Food Recognition of Partially Labeled Data
G. Ciocca et al. [59]	2020	GoogleNet, Inception-v3, MobileNet-V2 and ResNet-50	Own dataset containing 20 different food categories of fruit and vegetables.	Food category recognition, Food state recognition
L. Jiang et al. [61]	2020	VGGNet	UECFOOD-100, UECFOOD-256 and introduced new dataset based on FOOD-101.	Food recognition and dietary assessment
C. Liu et al. [62]	2020	VGGNet, ResNet	Vireo-Food 172	Food ingredient recognition
H. Liang et al. [63]	2020	VGGNet, ResNet and DenseNet	ChineseFoodNet and Vireo-Food 172	Chinese food recognition
H. Zhao et al. [64]	2020	VGGNet, ResNet and DenseNet	UECFOOD-256 and Food-101	Mobile food recognition
G. A. Tahir and C. K. Loo [67]	2020	ResNet-50, DenseNet201 and InceptionResNet-V2	Pakistani Food Dataset, UECFOOD-100, UECFOOD-256, FOOD-101 and PFID	Food recognition
C. S. Won [68]	2020	ResNet50	UECFOOD-256, Food-101 and Vireo-Food 172	Fine grained Food image recognition
Zhidong Shen et al. [69]	2020	Inception-v3, Inception-v4	Dataset was created including hundreds and thousands of images of several food categories	Food recognition and nutrition estimation

by the classifier during the training phase. In the scenario of food image classification, food images are used as input data to train the classifier. Hence, an ideal classifier must recognize any food category explicitly included during the learning phase. The accuracy of a classifier mainly depends on the quantity and quality of images, as there are several variations in food images such as rotation, distortion, lighting distribution, and so forth. In this section, we discussed classification techniques used by traditional approaches which use handcrafted features. Following that, we analyzed state-of-the-art deep learning models for food recognition.

5.1. Traditional Machine Learning Methods

Major classifiers used by several traditional approaches in the domain of food image recognition include Support Vector Machines (SVM)[25], Multiple Kernel Learning (MKL)
and K-Nearest Neighbor (KNN)[41]. It is due to their outstanding performance as compared to other classification methods.

Food recognition method proposed by [42] employs colour, SIFT, and texture features to train KNN classifier. In contrast to SVM, KNN achieved higher classification accuracy i.e. 70%, whereas the accuracy of the SVM classifier was only 57%. Similarly, Anthimopoulos et al.[31] applied the Bag-of-features model using SIFT features. They also trained SVM linear image classifier to recognize 11 different food classes and acquired a classification accuracy of 78%.

Chen et al.[43], employed a multi-class SVM classifier for the identification of 50 different classes of Chinese food. It includes 100 food images in each category. However, obtained classification accuracy was 62.7% only. They further implemented a multi-class Adaboost algorithm and enhanced their classification accuracy up to 68.3%. Furthermore, Bejibom et al., [44] used LBP, colour, SIFT, MR8, and HOG features to train an SVM image classifier. They evaluated their work on two different datasets and achieved a classification accuracy of 77.4% on the dataset presented by [43], their classification accuracy was 51.2% when applied to the menu-matched dataset. Table 4 summarizes classifiers implemented by traditional classification methods along with their achieved classification accuracies.

5.2. Deep Learning Models

Deep learning approaches have gained significant attention in the field of food recognition. It is due to their exceptional classification performance in comparison to traditional approaches [56] [57]. Convolutional Neural Network (CNN), Deep Convolutional Neural Network (DCNN), Ensemble Net, and Inception-v3 are some of the most prominent techniques used by existing methods for food image recognition purposes.

Yanai and Kawano [54] employed a deep convolutional neural network (DCNN) on three food datasets: Food-101, UECFOOD-256, and UECFOOD-100. They explored the effectiveness of pre-training and fine-tuning a DCNN model using 100 images from each food category obtained from each dataset. During evaluation, classification accuracy achieved was 78.77% for UECFOOD-100, 67.57% for UECFOOD-256 and 70.4% for Food-101. Similarly, the study presented by [49] implemented Inception-v3 deep network established by Google [18] on the same datasets i.e. Food-101, UEC FOOD-100, and UECFOOD-256. Classification accuracy achieved using fine-tuned model V3 was greater than classification accuracy of the fine-tuned version of DCNN i.e. 88.28%, 81.45%, and 76.17% for UECFOOD-100, UECFOOD-256, and Food-101 respectively. The food recognition method proposed by [50] implemented CNN based approach using the Inception model on the same three datasets.

Classification accuracy achieved was 77.4%, 76.3% and 54.7% for UECFOOD-100, UECFOOD-256 and Food-101 respectively. Table 5 provides the overview of existing food recognition methods based on deep learning approaches and their classification performance.

6. Food Ingredient Classification

Over the past few years, nutritional awareness among people is increasing due to their intolerance towards certain types of food, mild or severe obesity problems, or simply because of interest in maintaining a healthy diet. This rise in nutritional awareness has also stirred a shift in the technological domain, as several mobile applications facilitate people in keeping track of their diet. However, such applications hardly offer features for automated food ingredient recognition.

For this purpose, several proposed models use multi-label learning for food ingredient recognition. It [109] can be defined as the prediction of more than one output category
Table 4: Traditional machine learning methods for food category classification

Reference	Year	Classification Technique	Classification Accuracy
Hoashi et al. [25]	2010	Multiple Kernel Learning (MKL)	Own Food Dataset = 62.5%
Yang et al. [26]	2010	Support Vector Machine (SVM)	PFID = 78.0%
Kong and Tan [27]	2011	Multi-class SVM	PFID = 84%
Bosh et al. [28]	2011	Support Vector Machine (SVM)	Dataset collected = 86.1% using nutritional studies Conducted at Prudue University
Zhang et al. [39]	2011	SVM regression with RBF kernel	Own Food Dataset = 82.9%
Matsuda et al. [29]	2012	Multiple Kernel Learning (MKL) and Support Vector Machine (SVM)	Own food Dataset = 55.8%
Kawano and Yanai [30]	2013	Linear SVM and fast toookernel	N/A
Anthimopoulos et al.[31]	2014	Linear SVM	N/A
Tamamchat and Pantuwong, [32]	2014	Support Vector Machine (SVM)	Own Food Dataset = 70.0%
Pouladzadeh et al. [33]	2014	Support Vector Machine (SVM)	Own Food Dataset = 95%
He et al. [34]	2014	K-nearest Neighbors and Vocabulary Trees	Own Food Dataset = 64.5%
Kawano and Yanai [35]	2014	One-vs-rest	UECFOOD-256 = 50.1%
Oliveira et al. [40]	2014	Support Vector Machine (SVM)	Own Food Dataset = 40.3%
Pouladzadeh et al. [36]	2015	Cloud-based Support Vector Machine	Own Food Dataset = 94.5%
Farinella et al. [37]	2016	Support Vector Machine (SVM)	UNICT-FD1200 = 75.74%

for each input sample. Therefore, food ingredient recognition is known as a multi-label learning problem. Marc Bolanos et al. have deployed CNN as a multi-label predictor to discover recipes in terms of the list of ingredients from food images [110]. Similarly, Yunan Wang et al. [111], used multi-label learning for mixed dish recognition, as they have no distinctive boundaries among them. Therefore labelling bounding boxes for each dish is a challenging task. Another system proposed by Amaia Salvador et al., [112] regenerates recipes from provided food images along with cooking instructions. On other hand, Jingjing Chen and Chong-Wah Ngo [41] proposed deep architectures for food ingredient recognition and food categorization and evaluated their proposed system on a large Chinese food dataset with highly complex food images. Moreover, food ingredient recognition is often overlooked and is a challenging task, as it requires training samples under different cooking and cutting methods for robust recognition. Therefore, methods proposed by Chen et al.[115] and J. Chen et al. [126] focuses around food ingredient recognition. [115] deploys multi-relational graph convolutional network which is later evaluated on Chinese and Japanese food dataset resulting in 36.7% for UECFOOD-100 and 48.8% for VireoFood-172. However, [126] proposed DCNN based method for food ingredient recognition and achieved Top1 accuracy up to 86.91% and Top 5 accuracy up to 97.59% for Vireo Food-251.

Furthermore, Table 6 provides brief information about accuracy scores of proposed systems along with methods and dataset used.

7. Food Volume Estimation

Automated food volume assessment is a convoluted task involving various challenges. Highly diverse and varying composition of food, increasing varieties of edibles, different methods of preparation are only some of the factors that need to be taken into consideration. Furthermore, the quality of pictures taken for food volume estimation also impacts the
Table 5: Deep learning models for food category classification

Reference	Year	Classification Technique	Classification Performance
Yanai and Kawano. [46]	2015	DCNN	UECFOOD-100 =78.8% UECFOOD-256 =67.6% N/A
Christodouliidis et al. [52]	2015	DCNN	Own dataset = 84.9% N/A
Chen and Ngo [41]	2016	DCNN	Own dataset =99% N/A
Pouladzadeh et al. [53]	2016	DCNN + Graph cut	ETH Food-101 = 88.3% UECFOOD-100 = 81.5% UECFOOD-256 = 76.2% UECFOOD-100 = 97.5%
Hassannejad et al. [49]	2016	DCNN	ETH Food-101 = 96.9% UECFOOD-100 = 97.5% UECFOOD-256 = 92.6%
Liu et al. [50]	2016	CNN	ETH-FOOD101 = 72.1% Indian Food =73.5% Database
Pandey et al. [51]	2017	Ensemble Net	ETH-Food101 = 91.6% Indian Food = 94.7% Database
Ciocca et al. [55]	2017	CNN	UNIMIB 2016 = 78.3% N/A
Termitthikun et al. [56]	2017	CNN	THFOOD-50 = 69.8% THFOOD-50 = 92.3%
McAllister et al. [57]	2018	CNN+ANN+SVM+ Random Forest	Food-5K =99.4% Food-11 = 91.3% RawFoot-DB = 99.3% Food-101 = 65.0% N/A
Liu et al. [48]	2018	DCNN	UECFOOD-256 = 54.5% UECFOOD-100 = 77.5% Food 101 = 77.0%
Martinel et al. [58]	2018	DNN	UECFOOD-100 = 89.6% UECFOOD-256 = 83.2% Food-101 = 90.3%
E. Aguilar et al. [60]	2018	CNN+SVM	UNIMIB 2016 = 90.0% N/A
Gianluigi Ciocca et al. [70]	2018	CNN	Food-475 = 81.6% Food-475 = 95.5%
S. Horiguchi et al. [65]	2018	Sequential Personalized Classifier (SPC) with fixed-class and incremental classification	FoodLog = 40.2% (t251-t300) FoodLog = 56.6% (t251-t300)
B. Mandal et al. [66]	2019	Generative Adversarial Network	ETH-Food-101 = 75.3% IndianFood Database = 85.3% ETH-Food-101 = 93.3% Indian Food Database = 95.6%
Aguilar-Torres et al. [116]	2019	CNN based on ResNet-50	MAFood-121 = 81.62% N/A
Kaiz Merchant and Yash Pande [119]	2019	Inception V3	ETHZ Food-101 =70.0% N/A
Mezgec, S. et al. [122]	2019	Deep Learning	Own Food dataset = 93% N/A
L. Jiang et al. [61]	2020	DCNN (Faster R-CNN)	FOOD20- with- bbx = 71.7% FOOD20- with- bbx = 93.1%
C. Liu et al.,2020 [62]	2020	JDNNet	UECFOOD-256 = 84.0% FOOD-101 = 91.2% UECFOOD-256 = 96.2% FOOD-101 = 98.8%
H. Zhao et al. [64]	2020	Adaptive Reduced Class Incremental Kernel Extreme Learning Machine (ARCIKELM)	Food-101 = 87.3% UECFOOD-100 = 88.7% UECFOOD-256= 76.51% PFID = 100% Pakiistani Food = 74.8%
G. A. Tahir and C. K. Loo [67]	2020	Three-scale CNN	UECFOOD-256 = 74.1% Food 101 = 88.8% Vireo-Food 172 = 91.3%
G. Song et al. [127]	2020	CNN	Web crawled dataset = 86.47% Web crawled dataset = 60.33
Lixi Deng et al. [124]	2021	ResNet-50	School lunch dataset =95.3% N/A
Table 6: Proposed methods for food ingredient classification

Reference	Year	Dataset	Method	Recall	Precision	F1
Chen et al. [41]	2016	Vireo-Food 172	Arch-D (Multi-task)	-	-	67.17% (Micro-F1)
						47.18% (Macro-F1)
		UECFOOD-100	Arch-D (Multi-task)	-	-	82.06% (Micro-F1)
						95.88% (Macro-F1)
Bolaños et al. [110]	2017	Food-101	ResNet50+ Ingredients 101	73.45%	88.11%	80.11%
Recipe 5k			ResNet50+ Recipe 5k	19.57%	38.93%	26.05%
Recipe 5k			Inception-v3+ Recipe 5k (Simplified)	42.77%	53.43%	47.51%
Wang, Yunan, et al. [111]	2019	Economic Rice	Inception-V4* + NS (multi-scale)	71.90%	72.10%	71.40%
Economic Behoon			Inception-V4* + NS (multi-scale)	77.60%	68.50%	69.70%
Salvador, Amaia, et al. [112]	2019	Recipe 1M	CNN Auto-Encoder	75.47%	77.13%	48.61%
J. Chen et al. [126]	2021	VireoFood-172	DCNN	-	-	75.77% (Micro-F1)

accuracy. Clear pictures taken in good lighting conditions would yield different results compared to low resolution or low-light images. Thus far, several methods have been proposed for accurate estimation of food volume ranging from simple techniques such as pixel counting to complex methods like 3D image reconstruction. They have been broadly categorized as either ‘single image view’ or ‘multi-image/video view’ methods in the subsequent sections.

Figure 6. Food Volume Estimation Methods
7.1. Single Image View Methods

Single Image View Methods for food volume estimation require only a single image for food volume estimation. These methods are relatively more user-friendly as compared to ‘multi image view methods’ because they do not require multiple images from different viewpoints. However, as a trade-off, most of the ‘single view’ methods are less accurate in contrast to ‘multi view’ methods. Table 7 summarizes single view methods for volume estimation. Following are few common methods that use ‘single view’ for food portion estimation:

7.1.1. Food Portion Estimation by Counting Pixels

This method utilizes pixel count in each relevant image section to estimate food portion size. Studies [69] show that these methods are less complex as compared to methods that rely on 3D modeling. Despite its simplicity, it gives good estimation of portion size, thus making caloric content and nutrient facts calculation easier.

7.1.2. Visual Similarities Between Target Image and Dictionary of Food Image

This method estimates visual similarities between a given image and an existing food image dictionary. It is used by many existing systems today [134], where the calorie and nutrient contents in the food image dictionary are defined by diet professionals to get better approximation. The method selects first ‘n’ images from the dictionary and calculates calorie content of target image based on average calorie content of dictionary images.

7.1.3. 3d Modeling for Food Portion Estimation

This method projects a 3D model of food portions on 2D space or uses 3D geometric models for volume estimation. Generally, this method gives finer approximation in contrast to the other methods for single image view methods.

7.1.4. Other Methods

Other methods for food portion estimation include estimating portion sizes using a ruler and adjustable wedge [131], Mobile Augmented Reality, Virtual reality [138], visual assessment [150] feature extraction and its matching [134] [44].

7.2. Multi-Image View or Video Methods

Multi-Image view or video methods require multiple images for food portion estimation. They are relatively more accurate as compared to single view image methods. However, multi-image methods are less user-friendly as they require multiple images from different viewpoints in order to provide better results. Table 8 summarizes single view methods for volume estimation. Following are few methods which use multi-image view techniques for food volume estimation.

7.2.1. Food Volume Estimation Using 3d Geometric Models

This multi-image view method uses a shape template method or 3D modeling for portion size estimation. As single shape template is not suitable for all food types, the use of geometric models with correct food classification labels and segmentation masks in the image is important to index food label to its respective class of predefined geometric models. These can be used later for finding correct parameters of selected geometric model [131] [130] [133] [145] [148].

Moreover, in 3D modeling and pose estimation, models for food are constructed in advance by using between 15 and 20 food images captured from several angles or a video.
sequence. Finally, food volume is estimated by registering pose from 3D model to 2D image [141].

7.2.2. Augmented Reality System for Food Volume Estimation

The use of augmented reality is also being widely used by researchers to estimate food portion size. Many systems like ‘Eat AR’ make use of it for portion size estimation [132] by developing prototypes to facilitate users. These prototypes generally require fiducial marker, or credit card sized objects for overlaying 3D forms. Finally, the volume of the overlaid forms is computed by using signed volume estimation algorithm for closed 3D objects. Similarly, the ‘Serv Ar’ augmented reality tool is used to provide guidance about food serving size [152]. Many of these technologies are being used with object recognition methods to identify food items and determine their caloric content. Similarly, methods that use augmented reality in combination with other portion estimation techniques have enhanced accuracy and much more interactive interfaces resulting in high retention rate.

7.2.3. Food Portion Estimation Using 3d Reconstruction (Dense Models)

Portion estimation by constructing dense 3D models usually requires multiple images or a video segment[155]. Joachim Dehais et al. [147] have shown the use of two views for volume estimation using 3D construction. In its first stage, the system learns about the configuration of different views; followed by construction of dense 3D model to extract the volume of each individual food item placed before it. Similarly, Wen Wu et al. [137] study the use of fast food videos for caloric estimation. Most of these methods require images from different viewpoints, and for this reason more advance methods like 3D construction from accidental motion can be explored for food volume estimation in future.

Table 9: Summary of studies employing single image vs multiple images for volume estimation

Method	Studies
Single Image	19
Multiple Images	10

7.3. Strengths and Weakness of the Food Volume Estimation Methods

Automatic food volume estimation method helps people to monitor their dietary intake suffering from chronic diseases without any expert intervention. It gives a quick result as compared to the traditional method which generally involves sending food images to the dietitian. Traditional method involves continuous involvement of dietitians which makes it unworkable for dietitians to immediately respond to a large number of patients. Conversely, automatic food volume estimation is not standardized. As there are no existing guidelines by experts which refers to the error rate of these applications. Furthermore, different volume estimation methods vary in terms of accuracy and usability. Most of these methods are classified into two categories single image view method and multiple image view method. Single view image methods are more user-friendly but accuracy is compromised as compared to multiple image view methods as it requires images from different. Therefore, standard guidelines are required for food volume estimation which should include criteria for a balanced trade between features like usability and accuracy and developed applications must be verified according to the standard guidelines.
Table 7: Comparison of single-view methods for food volume estimation

Reference	Year	Dataset	Results (E: error%)	Technique
S. Fang [130]	2015	19 food items	E: <6%	3D parameters and reference objects to compute density for estimating the weight of food item
Y. He [141]	2013	1453 food images	E: 11%(beverages)	“Integrated image segmentation and identification system”
T. Miyazaki [134]	2011	6512 images	E: 40%	Linear estimation
Beijbom, O [44]	2015	646 images, with 1386 tagged food items across 41 categories	E: 232±7.2	Restaurant-specific food recognition considers meal as a whole entry with all of its nutrients details in DB to solve the volume estimation problem for the restaurant scenario.
Koichi Okamoto [136]	2016	20 kinds of Japanese Foods (60 test image)	E:21.30%	Single-image-based food calorie estimation system which uses reference objects to determine food region and quadratic curve estimation from the 2D size of foods to their calories
Pettitt, C [166]	2016	Test data from N:6 participants who completed food diary during pilot study by wear micro camera	E:34%	Wearable micro camera in conjunction with food dairies
Akpa Akpro Hippocrates [139]	2016	119 food images	E: 6.87%	Image processing with cutlery
Jia, W. Y [140]	2012	224 pictures	E: <10%	3D location of a circular feature from a 2D image
Yang, Y. Q [138]	2011	72 images	E:-3.55%	Single digital image, plate reference imaging processing
Huang, J [144]	2015	fruits(n:6)	E: Length (-1.18)	A mathematical model based system involves a camera, circular object in a 3D space to compute food volume.
Yue, Y [146]	2012	6 food replicas	85%	Portion estimation by counting pixels
Zhang, W [143]	2015	15 different kinds of foods		Visual Assessment
Rob Comber [150]	2016	6 different meals		
S. Fang [135]	2016	10 objects		
Godwin, S. [131]	2006	Five portions of 9-inch cake, Seven portions of pizza, Pies were 9 or 10 inches	E:25%	“3D geometric models and depth images.” Estimated portion sizes using a ruler and the adjustable wedge
Hernández, Teresita [142]	2006	101 subjects, 5 foods	E: 4.8±±1.8%	Digital photographs printed onto a poster. Estimates volume by computing inner product between the probability vector from modified MobileNetV2 and the reference volume vector.
Yang et al. [156]	2021	Virtual Food Dataset and Real Food Dataset (RFD) (1500 images)	E:< 9% on VFD, E: 11.6% and 20.1% on RFD.	Generate 3-dimensional point cloud by using depth map, segmentation mask and camera parameters. It then approximates the volume with points cloud-to-volume algorithm.
Graikos et al. [155]	2021	EPIC-KITCHENS and their own food video datasets	46.32% average MAPE on 16 test foods and 36.90% average MAPE on 6 combined meals.	3D point cloud completion from RGB and depth images.
Lo, F.P.W et al. [165]	2019	Test dataset: 11 food items	E:15.32%.	

8. Existing and Potential Applications of Vision-Based Methods for Food Recognition in Healthcare

We summarized the core applications of vision-based methods for food recognition in context with public policy and health care.
Table 8: Comparison of multi-view methods for food volume estimation

Reference	Year	Dataset	Results (E: error%)	Technique	
F. Zhu [149]	2010	3000 images	E: 1%	19 food items(97.2%)	“camera calibration step and a 3D volume reconstruction step”
Kong, Fanyu [163]	2015	6 food items	84%-91%	Multi-View RGB images for 3D reconstruction to estimate the volume	
Trevno, Roberto [162]	2015	120 students (n=120 meals; 57 breakfast + 63 lunch)	74%(reliability)	Digital Food Imaging Analysis (DFIA) button for taking pictures and then portion size is calculated semi-automatically by using computer software	
Jia, W. Y [161]	2014	100 food samples	E: -2.80%	30%	3D MODELLING AND POSE ESTIMATION
Xu, C [141]	2013		E:10%	3D MODELLING AND POSE ESTIMATION	
Rhyner, D [160]	2016	6 meals	85.10%	Multi-View RGB images, reference card and 3D model for volume estimation	
T. Stutz [132]	2014	Rice, blinded servings	E:<33%	40% improvement in the accuracy of volume estimation as compared to manual calculation.	
Makhsous et al. [157]	2020	8 food items tested	E:0.83 5.23%.	Mobile Augmented Reality System Employs a mobile Structured Light System (SLS) to measure the food volume and portion size of a dietary intake.	
Yuan et al. [164]	2021	Test dataset: 6 food items		3D reconstruction from multi-view RGB images.	
Lo, F.P.W et al. [165]	2019	Test dataset: 11 food items	E:15.32%.	3D point cloud completion from RGB and depth images.	

![Automatic Food Estimation Methods](image)

Figure 7. Strengths and Weaknesses of automatic food estimation methods

8.1. mhealth Apps for Dietary Assessment

Today, several mobile applications have been developed to monitor diet and facilitate users to choose healthier alternatives regarding food consumption. Initially, these mobile applications were dependent on manually inputting food items by selecting from limited food databases. Therefore, such applications were not very reliable as they were prone to inaccuracies in dietary assessment, mainly extending from limited exposure to numerous food categories. With the advancement in the area of food image recognition,
a large number of mHealth applications for dietary assessment use images to recognize food categories. For this purpose, existing mobile applications use different combinations of traditional and deep visual feature extraction, and classification methods for food recognition described earlier in sections III and IV. Aizawa et al., [71] developed a mobile app ‘food log’ which uses traditional feature extraction methods like colour, Bag of Features, and SIFT; and uses an Adaboost classifier for classification purposes. Similarly, Ravi et al., [75] proposed the ‘FoodCam’ application, which uses traditional methods for feature extraction (LBP and RGB colour features) and SVM for classification. Alternatively, Meyers et al., [74] employed a deep visual technique (GoogleNet CNN model) for feature extraction and classification purposes. Similarly, the Food Tracker app proposed by Jiang et al., [81] uses a deep convolutional neural network for feature extraction and classification. Also, G. A. Tahir and C. K. Loo [67] utilized deep visual methods like ResNet-50, DenseNet201, and InceptionResNet-V2 for feature extraction and Adaptive Reduced Class Incremental Kernel Extreme Learning Machine (ARCIKELM) as classification method for their mobile application “My Diet Cam”. Table 10 summarizes existing mobile applications in terms of feature extraction and classification methods used. Based on these deep visual method combinations, food recognition accuracies differ for various existing mobile applications. Therefore, apps with higher food recognition and classification accuracies gain more popularity. These apps tend to ease the dietary assessment process. Figure 8 shows the mobile application by Ravi et al. [75].

8.2. Harnessing Vision-Based Method to Measure Nutrient Intake During COVID-19

As the covid-19 is a leading global challenge across the world, maintaining good nutritional status is mandatory for keeping good health to fight against the virus. Automatic vision-based methods for volume estimation and food image recognition in these nutrition tracking apps can assist patients to objectively measure nutrient intake of vital vitamins required for boosting the immune system.

8.3. Life’s Simple 7

Life’s Simple 7 health score is recently introduced based on modifiable health factors which contribute to heart health. Physical activity, non-smoking, healthy diet and body mass index are four modifiable health behaviours in it. The other three modifiable factors are biological. It includes blood pressure, fasting glucose and cholesterol details. Besides cardiovascular health, Life’s Simple 7 also impacts other health conditions such as Venous Thromboembolism, cognitive health, Atherosclerosis etc. As dietary intake plays a vital role in computing life’s simple 7, manually these factors and then calculating a life simple 7 score is a very tedious process. It makes it very difficult for both middle-aged patients and elderly patients to keep track of their health. So vision-based methods can play an important role in automating the diet score. However, there are no current studies that have explored this research direction.

8.4. Enforcing Eating Ban on Public Places During COVID-19 Pandemic or Other Restricted Places

Vision-based food recognition can automate the enforcement of an eating ban at public places by automatically detecting foods from CCTV AND wearable cameras to curb the spread of the virus. Similarly, vision-based food recognition coupled with CCTV or wearable cameras and smart apps automate the enforcement of eating ban at workplaces, laboratories etc.
Table 10: Summary of feature extraction and classification methods used by existing mobile applications

Reference	Year	Application Name	Food Segmentation	Feature Extraction Method	Classification Method
Aizawa et al. [71]	2013	FoodLog	No	Color, SIFT and Bag of Features	Adaboost Classifier
Oliveira et al. [40]	2014	-	Yes	Color and Texture	Support Vector Machine (SVM)
Probst et al. [73]	2015	-	-	SIFT, LBP and Color	Linear SVM
Meyers et al. [74]	2015	Im2Calories	Yes	GoogleNet CNN	GoogleNet CNN model
Ravi et al. [75]	2015	FoodCam	No	HoG, LBP and RGB Color Features	Linear SVM
Waltner et al. [76]	2017	-	Yes	RGB, HSV and LAB Color values	Random Forest Classifier
Mezgec and Seljak [77]	2017	-	-	NutriNet	NutriNet
Pouladzadeh et al. [78]	2017	-	Yes	CNN	Caffe Framework
Waltner et al. [79]	2017	-	Yes	CNN	CNN
Ming et al. [80]	2018	DietLens	-	ResNet-50 CNN	ResNet-50 CNN
Jiang et al. [81]	2018	-	Yes	Colors, Lines, Points, SIFT and Texture Features	Reverse Image Search (RIS) and Text Mining
Jianing Sun et al. [82]	2019	Food Tracker	Yes	DCNN	DCNN
G. A. Tahir and C.K. Loo [67]	2020	MyDietCam	Yes	ResNet-50, DenseNet201 and Inception ResNet-V2	Adaptive Reduced Class Incremental Kernel Extreme Learning Machine (ARCIKELM)

8.5. Monitoring Malnutrition in Low Income Countries

Coupling vision-based methods with wearable cameras can automatically detect foods from egocentric images with reasonable accuracy while reducing the burden of processing big data and addressing the user’s privacy concerns. Egocentric images acquired from these cameras are important to study diet and lifestyle, especially in low-income countries with a high malnutrition rate. For example, Jia et al. [168] focused on gathering image data from wearable cameras and discriminating between food/non-food classes based on their tag from the CNN to study human diet. Similarly, Chen et al. [167] studied malnutrition in low and middle-income countries by using the wearable device e-button.

8.6. Food Image Analysis From Social Media

We are in the era of social media, and food is a basic necessity of life, a great deal of content on social media platforms are related to food. User’s of these platforms frequently share new recipes, new methods of cooking, food pictures after restaurant check-in. Researchers have exploited this data on social media platforms for analyzing dietary intake. For example, Mejova et al. [169] studied food images from foursquare and Instagram to analyze the food consumption pattern in the USA. Similarly, food images on social me-
8.7. Food Quality Assessment

Evaluating fruits quality, freshness at the marketplace and the user end is of increasing interest as opposed to accessing quality at the time of manufacturing. Efforts to date have focused on accessing the quality of foods using vision-based methods. For example, Ismail et al. has contributed an Apple-NDDA dataset [170] which consists of defective and non-defective apple images for food quality assessment.

9. Statistical Analysis

We exhibit statistical analysis of our study based on the articles and conference proceedings gathered to write this survey paper. We surveyed research studies up to 2020 from various reputed sources IEEE, Elsevier, ACM and web of sciences. Figure 9 shows the pie
chart of the distribution of surveyed food databases according to the country to which food
dishes belongs. In it, Generic databases are those which contain food dishes of multiple
countries. We summarized the surveyed studies in two main categories, studies using
handcrafted features and studies using visual features representations from the convolu-
tional neural networks (CNN), as shown in Figure 10. As discussed in section 1.1, volume
estimation methods require a single view or multiple images from different viewpoints.
We presented a pie chart as shown in Figure 11 that describes the percentage of studies we
surveyed according to the number of image viewpoints required to estimate food volume.
For ingredient detection, all included studies are using CNN due to recent interest in this
extension. Similarly, for studies that have implemented mobile applications, the piechart
in figure 8 shows that 46.2% of applications are implementing CNN for food recognition
while 45.2% of mobile applications from surveyed studies are implementing traditional
methods for feature extraction.

Figure 9. Volume estimation methods using single image vs multiple images

Figure 10. Percentage of studies summarized according to the type of feature extraction methods.

10. Open Issues

We highlighted open issues based on the survey papers and the author’s first-hand
experience with existing methodologies.

10.1. Unsupervised Learning From Unlabelled Dataset

Preparing a large comprehensive annotated data is still a challenge, as manually
annotating a dataset is a difficult task with many challenges. Due to the large variety
of food dishes, different styles of preparation etc., it is difficult for an expert dietician to
Figure 11. Volume estimation methods using single image vs multiple images

Figure 12. Percentage of studies summarized according to the type of methods employed for feature extraction from food images and category of classifier used for food image analysis in a mobile application.
correctly label all the foods especially, in the preparation of a multi-culture food database. Similarly, it involves high costs and a large number of working hours to prepare such a dataset. Recent advancements in contrastive learning have opened a new research paradigm of unsupervised learning. Methods based on contrastive learning such as SimCLR [171] and SwAV [172] do not require labelled datasets and seems to be interesting potential areas of research that future works in food recognition should exploit.

10.2. Continual Learning

Food datasets are open-ended, and there is no cap on the number of dishes. So the network must adapt to continuously evolving datasets. All of these properties of food datasets have made them a strong use case for continual learning methods. One of the principal challenges in continuous learning methods is catastrophic forgetting. Catastrophic forgetting refers to completely or abruptly forget previously learned information while learning new classes. Many neural networks are susceptible to forgetting during continual learning. It is a prime hindrance to achieve the objective of continuously evolving networks similar to humans. Hence, researchers should also study catastrophic forgetting in context with food databases.

10.3. Explainability

Although, there have been numerous including, activation methods, SHAP values [174] and distillation methods. There is still a research gap in the context of food recognition. As food recognition has many domain-specific challenges such as intraclass variations, non-rigid structure, visualization of the reasoning behind model predictions is vital to trust its decisions. Recently unsupervised clustering methods [175] are exploited to explain model predictions by distilling knowledge into surrogate models. It provides similar images to test images for explaining prediction results. Explaining prediction results by showing images similar to test images seems more friendly as users do not need any specific domain knowledge to understand these results.

11. Discussion

Our research provides deep insight into computer vision-based approaches for dietary assessment. It focuses on both traditional and deep learning methodologies for feature extraction and classification methods used for food image recognition and single and multi-view methods for volume estimation. Similarly, this survey also explores and compares current food image datasets in detail, as vision-based techniques are highly dependent on a comprehensive collection of food images. In contrast to previous research work, Mohammad A. Sobhi et al. [113], Min, Weiqing, et al.[114]. Our survey scrutinizes traditional and current deep visual approaches for feature extraction and classification to enhance clarity in terms of their performance and feasibility. Unlike existing surveys, our survey emphasizes existing solutions developed for food ingredient recognition through multi-label learning. We also reviewed existing computer-based food volume estimation methods in detail as they have reduced dietitians and experts intervention and can accurately determine the portion size of the food in contrast to the self-estimation. Finally, our research study also explores real-world applications using the prior methodologies for dietary assessment purposes.

11.1. Findings

Our findings indicate that the ultimate performance of traditional and deep visual techniques depends on the type of dataset used. Therefore, it has been observed out of 38 datasets (as shown in Table 1) explored in this survey, 3 most commonly used datasets
were UECFOOD-256 [35], UECFOOD-100 [84] and Food-101 [45]. UECFOOD-256 (25088 images and 256 classes) and UECFOOD-100 (14361 images and 100 classes of food) are Japanese food datasets consisting of Japanese Foods images captured by users, whereas Food-101(101000 images and 101 classes) is an American fast food dataset containing images crawled from several websites. However, these widely used datasets are region-specific. Therefore, there is an immense need for generic food datasets for excluding regional bias from experimental results. Besides this, it is also evident from this survey that deep visual techniques have replaced traditional machine learning methodologies for food image recognition. As per our survey, systems proposed after the year 2015 are mainly using deep learning technologies for food classification purposes. It is due to their phenomenal classification performance. Speaking of classification performance of deep visual techniques, for food-non food classification McAllister et al. 2018 [57] (99.4%) and Pouladzadeh et al., 2016 [53] (99%) achieved the highest top 1 classification accuracy. Pouladzadeh et al., 2016 [53] used DCNN and Graph cut on their proposed dataset, whereas McAllister et al. 2018 [57] used CNN, ANN, SVM, and random forest on the food 5k dataset. Table 5 further compares classification accuracies of proposed deep visual models. Recent advancements and exceptional performance of food image classification methods have now led researchers to explore food images from a much deeper perspective in terms of retrieval and classification of food ingredients from food images. Therefore, we have also explored several proposed solutions for food ingredient recognition and classification. According to our survey, the system proposed by Chen et al., 2016 [41] has achieved the highest F1 score i.e. 95.88% macro-F1 and 82.06% micro-F1 using the Arch-D method on the UECFOOD-100 dataset (as shown in Table 6). Similarly, automatic food volume estimation methods have reduced dietitians and experts intervention and can accurately determine the portion size of the food in contrast to the self-estimation for food volume estimation. Single view methods involve capturing a single image while multi-views require multiple images to determine accurate food volumes. Results in Table 8 depicts that multi-view methods are mostly better than single-view methods.

Finally, food category recognition, ingredient classification, and volume estimation techniques helped provide an automatic dietary assessment with reduced human intervention in mHealth apps. For this purpose, we have also surveyed several mobile applications which employ deep learning methods for dietary assessment.

11.2. Limitations and Future Research Challenges

Despite enhanced performance and classification accuracy, food image recognition and volume estimation through vision-based approaches may continue to present interesting future research challenges. This is because the performance of the methodologies used for food image identification is highly dependent on the source of images in a particular food dataset. Although the growing number of food categories are being incorporated in food image datasets like UECFOOD-256 [35], Food 85 [25], and Food201-segmented [74], there is still an immense need for generalized, comprehensive datasets for better performance evaluation and benchmarking. Moreover, we observed that datasets with a large number of food images significantly positively impact classification accuracy. However, keeping these large image datasets updated is another challenge, especially since different types of foods are being prepared every day.

In addition to this, progressive learning during the classification phase is vital for food image datasets due to the continuous arrival of new concepts and domain variation within existing concepts. Similarly, developing frameworks interpretable by highlighting the contribution of the area of interest will improve the overall human trust level on a solution in a real-world environment.
Following food recognition, food volume estimation is a particularly complex and challenging assignment since food items have large variations in shape, texture and appearances. Since our article categorized food portion estimation methods into a single view and multi-view methods. Multi-view methods are more accurate, however, most of these methods also require calibration objects each time and images from different viewpoints that make the usability of these solutions tedious for elderly users.

Finally, there is a need to design and develop solutions that can respond to situations ethically. In our context, it refers to the removal of any biases concerning region-specific food preferences. It will help to ensure transparency in existing models.

12. Conclusion

In this work, we explored a broad spectrum of vision-based methods that are specifically tailored for food image recognition and volume estimation. In practice, the food recognition process incorporates four tasks: acquiring food images from the corresponding food datasets, feature extraction using handcrafted or deep visual, selection of relevant extracted features, and finally, appropriate selection of classification technique using either traditional machine learning approach or deep learning models followed by food ingredient classification to provide better insight of nutrient information.

Despite, impeccable performance exhibited by state-of-the-art approaches, there exists several limitations and challenges. There is an immense need for comprehensive datasets for benchmarking and performance evaluation of these models, as incorporating large food image datasets improves the overall performance. Consequently, when dealing with open-ended and dynamic food datasets, the classifier must be capable of open-ended continuous learning. However, existing methods have several bottlenecks, which undermine the food recognition ability when it comes to open-ended learning as proposed methods are prone to catastrophic forgetting. They tend to forget previous knowledge extracted from images while learning new information. Such methods work great only for fixed food image datasets. Moreover, proposed techniques for food ingredient classification are still struggling with performance issues when applied to prepared and mixed food items.

Similarly, automatic food portion estimation methods are categorized into two major categories single view image methods and multi-view image methods. As discussed earlier, most of the multi-view image methods are more accurate as compared to the single view methods but multi-view image methods require complex processing and images from different angles resulting in a reduced user retention rate. Furthermore, most of the single and multi-view methods require calibration objects each time, which makes the usability of these solutions tedious for elderly patients.

Therefore, there is substantial room for innovative health care and dietary assessment applications that can integrate wearable devices with a smartphone to revolutionize this research area. Moreover, dietary assessment systems should address these challenges to provide better insights into effective health maintenance and chronic disease prevention.

Author Contributions

Ghalib Ahmed Tahir was responsible for the literature search and writing the article and approved the final version as submitted. Loo Chu Kiong contributed to the study design, reviewed the study for intellectual content, and confirmed the final version as submitted.

Conflict of interest

The authors wish to confirm that there are no conflicts of interest.
Acknowledgement
This research was supported by the UM Partnership Grant: Project No: RK012-2019 from University of Malaya, IIRG Grant (IIRG002C-19HWB) from University of Malaya, International Collaboration Fund for project Developmental Cognitive Robot with Continual Lifelong Learning (IF0318M1006) from MESTEC, Malaysia and ONRG grant (Project No.: ONRG-NICOP- N62909-18-1-2086) / IF017-2018 from Office of Naval and Research Global, UK.

References
1. “Obesity and Overweight.” World Health Organization (WHO) https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
2. N. Martinel and C. Micheloni Classification of local eigen-dissimilarities for person re-identification IEEE Signal Process. Lett., 22 (4) (2015), pp. 455-459, 10.1109/LSP.2014.2362573
3. Re-Identification in the function space of feature warps N. Martinel, A.K. Roy-Chowdhury IEEE Trans. Pattern Anal. Mach. Intell., 37 (8) (2015), pp. 1656-1669, 10.1109/TPAMI.2014.2377478
4. N. Martinel, C. Micheloni and G.L. Foresti Kernelized Saliency-Based Person Re-Identification Through Multiple Metric Learning IEEE Trans. Image Process., 24 (12) (2015), pp. 5645-5658, 10.1109/TIP.2015.2487048
5. S. Mahabir, D. J. Baer, C. Giffen, A. Subar, W. Campbell, T. Hartman, B. Clevendon, D. Albanes, P. R. Taylor, Calorie intake misreporting by diet record and food frequency questionnaire compared to doubly labeled water among postmenopausal women, European journal of clinical nutrition 60 (2006) 561–5.
6. L. Bandini, A. Must, H. Cyr, S. E. Anderson, J. L. Spadano, W. H. Dietz, Longitudinal changes in the accuracy of reported energy intake in girls 10–15 y of age, The American journal of clinical nutrition 78 (2003) 480–4.
7. D. J. H. D. B. G. Champagne CM, Baker NB, Assessment of energy intake underreporting by doubly labeled water and observations on reported nutrient intakes in children, J Am Diet Assoc.
8. C. Champagne, G. A. Bray, A. A. Kurtz, J. Bressan, E. Tucker, J. Volaufova, J. Delany, Energy intake and energy expenditure: a controlled study comparing dietitians and non-dietitians, Journal of the American Dietetic Association 102 (2002) 1428–32.
9. A. F. Subar, V. Kipnis, R. P. Troiano, D. Midthune, D. Schoeller, S. Bingham, C. O. Sharbaugh, J. Trabuls, S. Runswick, R. Ballard-Barbash, J. Sunshine, A. Schatzkin, Using intake biomarkers to evaluate the extent of dietary misreporting in a large sample of adults: The open study, American journal of epidemiology 158 (2003) 1–13.
10. C. A. Blanton, A. J. Moshfegh, D. J. Baer, M. J. Kretsch, The usda automated multiple-pass method accurately estimates group total energy and nutrient intake, The Journal of nutrition 136 (2006) 2594–9.
11. R. E.-G. F. Z. M. B. E. D. D. E. D. K. B. Daugherty, T. Schap, C. Boushey, Novel technologies for assessing dietary intake: Evaluating the usability of a mobile telephone food record among adults and adolescents, Journal of Medical Internet Research 14.
12. K. Ronald & M. Marc & A. Angelina & H. Tyler & K. Christopher. "Measuring Catastrophic Forgetting in Neural Networks," 2017.
13. W. S. Liew, C. Kiong Loo, V. Gryshchuk, C. Weber and S. Wermter, “Effect of Pruning on Catastrophic Forgetting in Growing Dual Memory Networks,” 2019
14. G. Kumar and P. K. Bhatia, “A Detailed Review of Feature Extraction in Image Processing Systems,” 2014 Fourth International Conference on Advanced Computing & Communication Technologies, Rohtak, India, 2014, pp. 5-12, doi: 10.1109/ACCT.2014.74.
15. G. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning, vol. 1. MIT Press Cambridge, 2016.
16. L. Deng and D. Yu, “Deep learning: methods and applications,” Foundations and Trends® in Signal Processing, vol. 7, no. 3–4, pp. 197–387, 2014
17. Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, p. 436, 2015.
18. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception architecture for computer vision,” in Proceedings of the IEEE conference on
19. O. Russakovsky et al., “Imagenet large scale visual recognition challenge,” International Journal of Computer Vision, vol. 115, no. 3, pp. 211–252, 2015.
20. A Krizhevsky, I Sutskever, and G E Hinton, “Imagenet classification with deep convolutional neural networks,” in Advances in Neural Information Processing Systems, 2012
21. E. Hera, H. Aghdam, D. Puig, “Classification of Foods Using Spatial Pyramid Convolutional Neural Network,” Artificial Intelligence Research and Development, vol. 288, pp. 163-168.
22. J. Shuqiang and M. Weiqing and L. Linhu and L. Zhengdong, "Multi-Scale Multi-View Deep Feature Aggregation," IEEE Transactions on Image Processing, 2020.
23. C. Gianluigi & N. Paolo & S. Raimondo. (2016). Food Recognition: A New Dataset, Experiments, and Results. IEEE Journal of Biomedical and Health Informatics. PP. 1-1. 10.1109/JBHI.2016.2636441.
24. M. Niki & P. Claudio & M. Christian., "A supervised extreme learning committee for food recognition", Computer Vision and Image Understanding 2016.

25. H. Haoshi, T. Joutou, and K. Yanai, “Image recognition of 85 food categories by feature fusion,” in Multimedia (ISM), 2010 IEEE International Symposium on, 2010, pp. 296–301.

26. S. Yang, M. Chen, D. Pomerleau, and R. Sukthankar, “Food recognition using statistics of pairwise local features,” in Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, 2010, pp. 2249–2256.

27. F. Kong and J. Tan, “Dietcam: Regular shape food recognition with a camera phone,” in Body Sensor Networks (BSN), 2011 International Conference on, 2011, pp. 127–132.

28. M. Bosch, F. Zhu, N. Khanna, C. J. Boushey, and E. J. Delp, “Combining global and local features for food identification in dietary assessment,” in Image Processing (ICIP), 2011 18th IEEE International Conference on, 2011, pp. 1789–1792.

29. Matsuda, H. Haoshi, and K. Yanai, “Recognition of multiple foods images by detecting candidate regions,” in Multimedia and Expo (ICME), 2012 IEEE International Conference on, 2012, pp. 25–30.

30. Y. Kawano and K. Yanai, “Real-time mobile food recognition system,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2013, pp. 1–7.

31. M. Anthimopoulos, L. Gianola, L. Scarnato, P. Diem, and S. G. Mougialiakou, “A food recognition system for diabetic patients based on an optimized bag-of-features model,” IEEE J. Biomedical and Health Informatics, vol. 18, no. 4, pp. 1261–1271, 2014.

32. N. Tammachat and N. Pantuwong, “Calories Analysis of Food Intake Using Image Recognition,” 2014 6th International Conference on Information Technology and Electrical Engineering (icitee), pp. 67–70, 2014.

33. P. Pouladzadeh, S. Shirmohammadi, and A. Yassine, “Using graph cut segmentation for food calorie measurement,” in MeMeA, 2014, pp. 621–626.

34. Y. He, C. Xu, N. Khanna, C. J. Boushey, and E. J. Delp, “Analysis of food images: Features and classification,” in Image Processing (ICIP), 2014 IEEE International Conference on, 2014, pp. 2744–2748.

35. Y. Kawano and K. Yanai, “Foodcam-256: a large-scale real-time mobile food recognition system employing high-dimensional features and compression of classifier weights,” in Proceedings of the 22nd ACM international conference on Multimedia, 2014, pp. 761–762.

36. P. Pouladzadeh, S. Shirmohammadi, A. Bakirov, A. Bulut, and A. Yassine, “Cloud-based SVM for food categorization,” Multimedia Tools Appl., vol. 74, no. 14, pp. 5243–5260, Jul. 2015.

37. G. M. Farinella, D. Allegra, M. Moltisanti, F. Stanko, and S. Battiato, “Retrieval and classification of food images,” Computers in biology and medicine, vol. 77, pp. 23–39, 2016.

38. M. Bosch, T. Schap, N. Khanna, F. Zhu, C. J. Boushey, and E. J. Delp, “Integrated databases system for mobile dietary assessment and analysis,” Proceedings of the 1st IEEE International Workshop on Multimedia Services and Technologies for E-health in conjunction with the International Conference on Multimedia and Expo, Barcelona, Spain, July 2011.

39. Mabel Mengzi Zhang. 2011. Identifying the cuisine of a plate of food. University of California San Diego, Tech. Rep (2011).

40. Luciano Oliveira, Victor Costa, Gustavo Neves, Talmai Oliveira, Eduardo Jorge, and Miguel Lizarda. 2014. A mobile, lightweight, poll-based food identification system. Pattern Recognition 47, 5 (2014), 1941–1952.

41. J. Chen and C.-W. Ngo, “Deep-based ingredient recognition for cooking recipe retrieval,” in Proceedings of the 2016 ACM on Multimedia Conference, 2016, pp. 32–41.

42. F. Zhu, M. Bosch, N. Khanna, C. J. Boushey, and E. J. Delp, “Multiple hypotheses image segmentation and classification with application to dietary assessment,” IEEE Journal of Biomedical and Health Informatics, vol. 19, no. 1, pp. 377–388, 2015.

43. M.-Y. Chen et al., “Automatic Chinese food identification and quantity estimation,” in SIGGRAPH Asia 2012 Technical Briefs, 2012, p. 29.

44. O. Beijbom, N. Joshi, D. Morris, S. Saponas, and S. Khullar, “Menu-match: Restaurant-specific food logging from images,” in Applications of Computer Vision (WACV), 2015, pp. 844–851.

45. L. Bossard, M. Guillaumin, and L. Van Gool, “Food-101–mining discriminative components with random forests,” in European Conference on Computer Vision, 2014, pp. 446–461.

46. K. Yanai and Y. Kawano, “Food image recognition using deep convolutional network with pre-training and fine-tuning,” in Multimedia & Expo Workshops (ICMEW), 2015 IEEE International Conference on, 2015, pp. 1–6.

47. A. Mariappan et al., “Personal dietary assessment using mobile devices,” in Computational Imaging VII, 2009, vol. 7246, p. 72460Z.

48. C. Liu et al., “A new deep learning-based food recognition system for dietary assessment on an edge computing service infrastructure,” IEEE Transactions on Services Computing, vol. 11, no. 2, pp. 249–261, 2018.

49. H. Hassannejad, G. Matrella, P. Ciampolini, I. De Munari, M. Mordonini, and S. Cagnoni, “Food image recognition using very deep convolutional networks,” in Proceedings of the 2nd International Workshop on M

50. C. Liu, Y. Cao, Y. Luo, G. Chen, V. Vokkarane, and Y. Ma, “Deepfood: Deep learning-based food image recognition for computer-aided dietary assessment,” in International Conference on Smart Homes and Health Telematics, 2016, pp. 37–48.

51. P. Pandey, A. Deepthi, B. Mandal, and N. B. Puhan, “Foodnet: recognizing foods using ensemble of deep networks,” IEEE Signal Processing Letters, vol. 24, no. 12, pp. 1758–1762, 2017.
S. Christodoulidis, M. Anthimopoulos, and S. Mougiaiakou, “Food recognition for dietary assessment using deep convolutional neural networks,” in International Conference on Image Analysis and Processing, 2015, pp. 458–465.

P. Poulandzadeh, P. Kuhad, S. V. B. Peddi, A. Yassine, and S. Shirmohammadi, “Food calorie measurement using deep learning neural network,” in IEEE International Instrumentation and Measurement Technology Conference Proceedings (I2MTC), 2016, pp. 1–6

Y. Kawano and K. Yanai, “Food image recognition with deep convolutional features,” in Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication, 2014, pp. 589–593.

G. Ciocca, P. Napoletano, and R. Schettini, “Food Recognition: A New Dataset, Experiments, and Results.,” IEEE J. Biomedical and Health Informatics, vol. 21, no. 3, pp. 588–598, 2017.

C. Termritthikun, P. Muneesawang, and S. Kanprachar, “NUlINet: Thai food image recognition using convolutional neural networks on smartphone,” Journal of Telecommunication, Electronic and Computer Engineering (JTEC), vol. 9, no. 2–6, pp. 63–67, 2017.

Patrick McAllister, Huiru Zheng, Raymond Bond, and Anne Moorhead. 2018. Combining deep residual neural network features with supervised machine learning algorithms to classify diverse food image datasets. Computers in Biology and Medicine 95 (2018), 217–233.

Niki Martinel, Gian Luca Foresti, and Christian Micheloni. 2018. Wide-slice residual networks for food recognition. In IEEE Winter Conference on Applications of Computer Vision. 567–576.

G. Ciocca, G. Micali and P. Napoletano, "State Recognition of Food Images Using Deep Features," in IEEE Access, vol. 8, pp. 32003-32017, 2020, doi: 10.1109/ACCESS.2020.2973704.

E. Aguilar, B. Remeseiro, M. Bolaños and P. Radeva, "Grab, Pay, and Eat: Semantic Food Detection for Smart Restaurants," in IEEE Transactions on Multimedia, vol. 20, no. 12, pp. 3266-3275, Dec. 2018, doi: 10.1109/TMM.2018.2831627.

L. Jiang, B. Qiu, X. Liu, C. Huang and K. Lin, "DeepFood: Food Image Analysis and Dietary Assessment via Deep Model," in IEEE Access, vol. 8, pp. 47477-47489, 2020, doi: 10.1109/ACCESS.2020.2973625.

C. Liu, Y. Liang, Y. Xue, X. Qian and J. Fu, "Food and Ingredient Joint Learning for Fine-Grained Recognition," in IEEE Transactions on Circuits and Systems for Video Technology, doi: 10.1109/TCSVT.2020.3020079.

H. Liang, G. Wen, Y. Hu, M. Luo, P. Yang and Y. Xu, "MVANet: Multi-Tasks Guided Multi-View Attention Network for Chinese Food Recognition," in IEEE Transactions on Multimedia, doi: 10.1109/TMM.2020.3028478.

H. Zhao, K.-H. Yap, A. C. Kot and L. Duan, "JDNet: A Joint-Learning Distilled Network for Mobile Visual Food Recognition," in IEEE Journal of Selected Topics in Signal Processing, vol. 14, no. 4, pp. 665-675, May 2020, doi: 10.1109/JSTSP.2020.2969328.

S. Horiguchi, S. Amano, M. Ogawa and K. Aizawa, "Personalized Classifier for Food Image Recognition," in IEEE Transactions on Multimedia, vol. 20, no. 10, pp. 2836-2848, Oct. 2018, doi: 10.1109/TMM.2018.2814339.

B. Mandal, N. B. Puhan and A. Verma, "Deep Convolutional Generative Adversarial Network-Based Food Recognition Using Partially Labeled Data," in IEEE Sensors Letters, vol. 3, no. 2, pp. 1–4, Feb. 2019, Art no. 7000104, doi: 10.1109/LSENS.2018.2886427.

G. A. Tahir and C. K. Loo, "An Open-Ended Continual Learning for Food Recognition Using Class Incremental Extreme Learning Machines," in IEEE Access, vol. 8, pp. 82328-82346, 2020, doi: 10.1109/ACCESS.2020.2991810.

C. S. Won, "Multi-Scale CNN for Fine-Grained Image Recognition," in IEEE Access, vol. 8, pp. 116663-116674, 2020, doi: 10.1109/ACCESS.2020.3005150.

Zhidong Shen, Adnan Shehzad, Si Chen, Hui Sun, Jin Liu, "Machine Learning-Based Approach on Food Recognition and Nutrition Estimation, Procedia Computer Science, Volume 174, 2020, Pages 448-453, ISSN 1877-0509,https://doi.org/10.1016/j.procs.2020.06.113.

Gianluigi Ciocca, Paolo Napoletano, Raimondo Schettini, CNN-based features for retrieval and classification of food images, Computer Vision and Image Understanding, Volumes 176–177, 2018, Pages 70-77, ISSN 1077-3142, https://doi.org/10.1016/j.cviu.2018.09.001.

Aizawa, K., Maruyama, Y., Li, H., & Morikawa, C. (2013). Food balance estimation by using personal dietary tendencies in a multimedia food log. IEEE Transactions on Multimedia, 15, 2176–2185.

Oliveira, L., Costa, V., Neves, G., Oliveira, T., Jorge, E., & Lizarraga, M. (2014). A mobile, lightweight, poll-based food identification system. Pattern Recognition, 47, 1941–1952.

Probst, Y.; Nguyen, D.T.; Tran, M.K.; Li, W. Dietary Assessment on a Mobile Phone Using Image Processing and Pattern Recognition Techniques: Algorithm Design and System Prototyping. Nutrients 2015, 7, 6128-6138. https://doi.org/10.3390/nu7085274

Meyers, A, Johnston, N, Rathod, V, Korattikara, A, Gorban, A, Silberman, N, ... Murphy, KP (2015). Im2Calories: towards an automated mobile vision food diary. InProceedings of the IEEE International Conference on Computer Vision, 1233–1241.

Ravi, D., Lo, B., & Yang, G.-Z. (2015). Real-time food intake classification and energy expenditure estimation on a mobile device. Wearable and implantable body sensor networks (BSN). IEEE 12th International Conference on, IEEE

G. Waltner, M. Schwarz, S. Ladstätter, A. Weber, P. Luley, M. Lindschinger, I. Schmid, W. Scheitz, H. Bischof, L. Paletta, Personalized dietary self-management using mobile vision-based assistance, in: International conference on image analysis and processing, Springer, pp. 385-393.

Mezgec, S., & Koroušić Seljak, B. (2017). Nutrinet: A deep learning food and drink image recognition system for dietary assessment. Nutrients, 9, 657.
78. Pouladzadeh, P., & Shirmohammadi, S. (2017). Mobile multi-food recognition using deep learning. ACM Transactions on Multimedia Computing, Communications, and Applications, 13, 36
79. G. Waltner, M. Schwarz, S. Ladstätter, A. Weber, P. Luley, H. Bischof, M. Lindschinger, I. Schmid, L. Paletta, Mango-mobile augmented reality with functional eating guidance and food awareness, in: International conference on image analysis and processing, Springer, pp. 425–432.
80. Ming, J. Chen, Y. Cao, C. Forde, C.-W. Ngo, T. S. Chua, Food photo recognition for dietary tracking: System and experiment, in: International conference on multimedia modeling, Springer, pp. 129–141
81. Jiang, H., Starkman, J., Liu, M., & Huang, M.-C. (2018). Food nutrition visualization on google glass: Design tradeoff and field evaluation. IEEE Consumer Electronics Magazine, 7, 21–31
82. Sun, Jianing & Radecka, Katarzyna & Zilic, Zeljko. (2019). FoodTracker: A Real-time Food Detection Mobile Application by Deep Convolutional Neural Networks.
83. A. Mariappan et al., “Personal dietary assessment using mobile devices,” in Computational Imaging VII, 2009, vol. 7246, p. 72460Z.
84. Y. Matsuda and K. Yanai, “Multiple-food recognition considering co-occurrence employing manifold ranking,” in Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), 2012, pp. 2017-2020.
85. Herranz, Luis & Xu, Ruihan & Jiang, Shuqiang., ”A probabilistic model for food image recognition in restaurants,” in 2015 IEEE International Conference on Multimedia and Expo (ICME), 2015, pp. 1-6.
86. Singla, Ashutosh, Lin Yuan, and Touradj Ebrahimi. ”Food/non-food image classification and food categorization using pre-trained googlenet model.” Proceedings of the 2nd International Workshop on Multimedia Assisted Dietary Management. 2016.
87. Muresan, Horea, and Mihai Ollean. ”Fruit recognition from images using deep learning.” arXiv preprint arXiv:1712.00580 (2017).
88. Liu, Chang & Cao, Yu & Chen, Guanling & Vokkarane, Vinod & Ma, Yunsheng & Chen, Songqing & Hou, Peng. ”A New Deep Learning-Based Food Recognition System for Dietary Assessment on An Edge Computing Service Infrastructure,” IEEE Transactions on Services Computing, pp. 1-1, 2017.
89. Kaur, Parneet et al., “Foodx-251: a dataset for fine-grained food classification.” arXiv preprint arXiv:1907.06167 (2019).
90. Xin Wang, D. Kumar, N. Thome, M. Cord and F. Precioso, ”Recipe recognition with large multimodal food dataset,” 2015 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), 2015, pp. 1-6, doi: 10.1109/ICMEW.2015.7169757.
91. L. Bossard and et al., “Food-101 Mining Discriminative Components with Random Forests,” in ECCV, 2014.
92. Gianluigi Ciocca, Paolo Napoletano, and Raimondo Schettini. 2015. Food Recognition and Leftover Estimation for Daily Diet Monitoring. In New Trends in Image Analysis and Processing – ICIAP 2015 Workshops. 334–341.
93. Gianluigi Ciocca, Paolo Napoletano, and Raimondo Schettini. 2017. Food Recognition: a New Dataset, Experiments and Results. IEEE Journal of Biomedical and Health Informatics (2017).
94. Farinella, G.M., Allegra, D., Moltsisanti, M., Stanco, F., Battiatio, S.: Retrieval and classification of food images. Comput. Biol. Med. 77, 23–39 (2016).
95. Ciocca, G., Napoletano, P., Schettini, R., 2017b. Learning CNN-based features for retrieval of food images. In: New Trends in Image Analysis and Processing – ICIAP 2017, pp.426–434.
96. Q. Yu, M. Anzawa, S. Amano, M. Ogawa and K. Aizawa, ”Food Image Recognition by Personalized Classifier,” 2018 25th IEEE International Conference on Image Processing (ICIP), 2018, pp. 171-175, doi: 10.1109/ICIP.2018.8451422.
97. C. Gümüş, F. Baltaci, A. Erdem, and E. Erdem, ”Turkish cuisine:A benchmark dataset with Turkish meals for food recognition,” in Proc.25th Signal Process. Commun. Appl. Conf. (SIU), May 2017, pp. 1–4.
98. Feng Zhou and Yuanqing Lin. 2016. Fine-grained image classification by exploring bipartite-graph labels. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1124–1133.
99. Hui Wu, Michele Merler, Rosario Uceda-Sosa, and John R. Smith. 2016. Learning to make better mistakes: Semantics-aware visual food recognition. In Proceedings of the ACM on Multimedia Conference and Pattern Recognition. 1124–1133.
100. Jaclyn Rich, Hamed Haddadi, and Timothy M. Hospedales. 2016. Towards bottom-up analysis of social food. In Proceedings of the International Conference on Digital Health Conference. ACM, 111–120.
101. Yanchao Liang and Jianhua Li. 2017. Computer vision-based food calorie estimation: Dataset, method, and experiment. Retrieved from: arXiv preprint arXiv:1705.07632 (2017).
102. Bolaños M. and Radeva P. “Simultaneous Food Localization and Recognition” In Proceedings of the 23rd International Conference on Pattern Recognition (ICPR) 2016 (IN PRESS).
103. E. Aguilar, M. Bolaños, P. Radeva, Regularized Uncertainty-based Multi-Task LearningModel for Food Analysis, J. Vis. Commun. Image R. (2019), doi: https://doi.org/10.1016/j.jvcir.2019.03.011
104. https://www.aicrowd.com/challenges/food-recognition-challenge
105. G. M. Farinella, D. Allegra, F. Stanco, ”A Benchmark Dataset to Study the Representation of Food Images”, International Workshop on Assistive Computer Vision and Robotics (ACVR) 2014
106. M.-Y. Chen et al., “Automatic Chinese food identification and quantity estimation,” in Proc. SIGGRAPH Asia Tech. Briefs, 2012, p. 29.
107. M. Chen, K. Dhingra, W. Wu, L. Yang, R. Sukthankar and J. Yang, "PFID: Pittsburgh fast-food image dataset," 2009 16th IEEE International Conference on Image Processing (ICIP), 2009, pp. 289-292, doi: 10.1109/ICIP.2009.5413511.

108. Kiyoharu Aizawa and Makoto Ogawa. Foodlog: Multimedia tool for healthcare applications. IEEE MultiMedia, 22(2):48, 2015.

109. Grigoris Tsoumakas and Ioannis Katakis. Multi-label classification: An overview. International Journal of Data Warehousing and Mining, 3(3), 2006.

110. Bolaños, Marc, Aina Ferrà, and Petia Radeva. "Food ingredients recognition through multi-label learning." International Conference on Image Analysis and Processing. Springer, Cham, 2017.

111. Wang, Yunan, et al. "Mixed dish recognition through multi-label learning." Proceedings of the 11th Workshop on Multimedia for Cooking and Eating Activities. 2019.

112. Salvador, Amaia, et al. "Inverse cooking: Recipe generation from food images." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019.

113. Subhi, Mohammed Ahmed, Sawal Hamid Ali, and Mohammed Abulameer Mohammed. "Vision-based approaches for automatic food recognition and dietary assessment: A survey." IEEE Access 7 (2019): 35370-35381.

114. Min, Weiqing, et al. "A survey on food computing." ACM Computing Surveys (CSUR) 52.5 (2019): 1-36.

115. Chen, Jingjing and Pan, Liangming and Wei, Zhipeng and Wang, Xiang and Ngu, Chong-Wah and Chua, Tat-Seng. (2020). Zero-Shot Ingredient Recognition by Multi-Relational Graph Convolutional Network. Proceedings of the AAAI Conference on Artificial Intelligence. 34. 10542-10550.

116. Aguilar-Torres, Eduardo and Radeva, Petia. (2019). Food Recognition by Integrating Local and Flat Classifiers.

117. J. He, Z. Shao, J. Wright, D. Kerr, C. Boushey and F. Zhu, Multi-task Image-Based Dietary Assessment for Food Recognition and Portion Size Estimation, 2020 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR), 2020, pp. 49-54, doi: 10.1109/MIPR49039.2020.00018.

118. E. Aguilar, B. Nagarajan, R. Khantun, M. Bolaños and P. Radeva, Uncertainty-Aware Data Augmentation for Food Recognition, 2020 25th International Conference on Pattern Recognition (ICPR), 2021, pp. 4017-4024

119. Merchant, Kaiz and Pande, Yash. (2019). ConvFood: A CNN-Based Food Recognition Mobile Application for Obese and Diabetic Patients.

120. Nasr Esfahani, Shirin and Muthukumar, enkatesan and Regentova, Emma and Taghva, Kazem and Trabia, Mohamed. (2021). Food recognition improvement by using hyper-spectral imagery. International Journal of Advanced Computer Research. 11. 23-50. 10.19101/IJACR.2021.1152006.

121. Limei Xiao, Tian Lan, Dayou Xu, Weizhe Gao, Ce Li,A Simplified CNNs Visual Perception Learning Network Algorithm for Foods Recognition, Computers and Electrical Engineering, Volume 92, 2021, https://doi.org/10.1016/j.compeleceng.2021.107152.

122. Ortega Andrerez, D., Lotfi, A. and Pourabdollah, A. A deep learning based wearable system for food and drink intake recognition. J Ambient Intell Human Comput (2020). https://doi.org/10.1007/s12652-020-02684-7

123. L. Deng et al., "Mixed Dish Recognition with Contextual Relation and Domain Alignment," in IEEE Transactions on Multimedia, doi: 10.1109/TMM.2021.3075037.

124. S. Fang, C. Liu, F. Zhu, E. J. Delp, C. J. Boushey, Single-View Food Portion Estimation Based on Geometric Models, Ism 2015 (2015) 385–390, internal-pdf://2689794743/Fang-2015-Single-View Food Portion Estimation.pdf. doi:10.1109/10.2015.3045639.

125. G. Song, Z. Tao, X. Huang, G. Cao, W. Liu and L. Yang, "Hybrid Attention-Based Prototypical Network for Unfamiliar Restaurant Food Image Few-Shot Recognition," in IEEE Access, vol. 8, pp. 14893-14900, 2020, doi: 10.1109/ACCESS.2020.2964836.

126. M. Bosch, T. Schap, F. Zhu, N. Khanna, C. J. Boushey, E. J. Delp, INTEGRATED DATABASE SYSTEM FOR MOBILE DIETARY ASSESSMENT AND ANALYSIS, Proc (IEEE Int Conf Multimed Expo) 2011 (2011). doi:10.1109/icme.2011.6102202.

127. K. M Bosch, F Zhu, Food texture descriptors based on fractal and local gradient information, in: 19th European Signal Processing Conference, 2011, pp. 764–768.

128. S. Fang, C. Liu, F. Zhu, E. J. Delp, C. J. Boushey, Single-View Food Portion Estimation Based on Geometric Models, Ism 2015 (2015) 385–390, internal-pdf://2689794743/Fang-2015-Single-View Food Portion Estimation.pdf. doi:10.1109/10.2015.3045639.

129. G. Song, Z. Tao, X. Huang, G. Cao, W. Liu and L. Yang, "Hybrid Attention-Based Prototypical Network for Unfamiliar Restaurant Food Image Few-Shot Recognition," in IEEE Access, vol. 8, pp. 14893-14900, 2020, doi: 10.1109/ACCESS.2020.2964836.

130. M. Bosch, T. Schap, F. Zhu, N. Khanna, C. J. Boushey, E. J. Delp, INTEGRATED DATABASE SYSTEM FOR MOBILE DIETARY ASSESSMENT AND ANALYSIS, Proc (IEEE Int Conf Multimed Expo) 2011 (2011). doi:10.1109/icme.2011.6102202.

131. K. M Bosch, F Zhu, Food texture descriptors based on fractal and local gradient information, in: 19th European Signal Processing Conference, 2011, pp. 764–768.
134. a. Miyazaki, T., Image-based Calorie Content Estimation for Dietary Assessment, in: IEEE International Symposium on Multimedia, 2011, pp. 363-368.
135. S. Fang, F. Zhu, C. Jiang, S. Zhang, C. Boushey, E. Delp, A comparison of food portion size estimation using geometric models and depth images (2016).
136. K. Okamoto, K. Yanai, Acm, An Automatic Calorie Estimation System of Food Images on a Smartphone, Madima ’16: Proceedings of the 2nd International Workshop on Multimedia Assisted Dietary Management (2016) 63-70doi:10.1145/2986035.2986040
137. W. Wu, J. Yang, Ieee, FAST FOOD RECOGNITION FROM VIDEOS OF EATING FOR CALORIE ESTIMATION, 2009.
138. Z. N. Zhang, Y. Q. Yang, Y. F. Yue, J. D. Fernstrom, W. Y. Jia, M. G. Sun, Ieee, Food Volume Estimation from a Single Image Using Virtual Reality Technology, 2011.
139. K. Y. Elder Akpa A.H., Yutaka Arakawa, Food Weight Estimation using Smartphone and Cutlery, in: IoT of Health ’16 Proceedings of the First Workshop on IoT-enabled Healthcare and Wellness Technologies and Systems, 2016, pp. 9–14.
140. Y. F. Yue, W. Y. Jia, M. G. Sun, Ieee, Measurement of Food Volume Based on Single 2-D Image without Conventional Camera Calibration, 2012.
141. C. Xu, Y. He, N. Khanna, C. J. Boushey, E. J. Delp, Ieee, MODEL-BASED FOOD VOLUME ESTIMATION USING 3D POSE, 2013.
142. T. Hernández, L. Wilder, D. Kuehn, K. Rubotzky, P. Moser-Veillon, S. Godwin, C. Thompson, C. Wang, Portion size estimation and expectation of accuracy, Journal of Food Composition and Analysis 19, Supplement (2006) S14-S21, internal.pdf://3186423384/Hernandez-2006-Portion size estimation and exp.pdf.doi:http://dx.doi.org/10.1016/j.jfca.2006.02.010.
143. W. Zhang, Q. Yu, B. Siddiquie, A. Divakaran, H. Sawhney, “Snap-n-Eat”: Food Recognition and Nutrition Estimation on a Smartphone, J Diabetes Sci Technol 9 (2015)
144. J. Huang, H. Ding, S. McBride, D. Ireland, M. Karunanithi, Use of Smartphones to Estimate Carbohydrates in Foods for Diabetes Management, Stud Health Technol Inform 214 (2015) 121–7.
145. N. Khanna, C. J. Boushey, D. Kerr, M. Okos, D. S. Ebert, E. J. Delp, An Overview of The Technology Assisted Dietary Assessment Project at Purdue University, Ism (2010) 290–295internalpdf://3878413157/Khanna-2010-An Overview of The Technology Assi.pdf.doi:10.1109/ism.2010.50.
146. W. Y. Jia, Y. F. Yue, J. D. Fernstrom, Z. N. Zhang, Y. Q. Yang, M. G. Sun, Ieee, 3D Localization of Circular Feature in 2D Image and Application to Food Volume Estimation, 2012.
147. J. Dehais, M. Anthimopoulos, S. Shevchik and S. Mougiakakou, "Two-View 3D Reconstruction for Food Volume Estimation," in IEEE Transactions on Multimedia, vol. 19, no. 5, pp. 1090-1099, May 2017, doi: 10.1109/TMM.2016.2642792.
148. W. Jia, Y. Yue, J. D. Fernstrom, Z. Zhang, Y. Yang and M. Sun, "3D localization of circular feature in 2D image and application to food volume estimation," 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012, pp. 4543-4548, doi: 10.1109/EMBC.2012.6346978.
149. Zhu, Fengqing & Bosch, Marc & Boushey, Carol & Delp, Edward. (2010). An image analysis system for dietary assessment and evaluation. Proceedings / ICIP ... International Conference on Image Processing. 185. 1853-1856. 10.1109/ICIP.2010.5650848.
150. Comber, Rob & Weeden, Jack & Hoare, Jennifer & Lindsay, Stephen & Teal, Gemma & Macdonald, Alastair & Methven, Lisa & Moynihan, Paula & Olivier, Patrick. (2012). Supporting visual assessment of food and nutrient intake in a clinical care setting. Conference on Human Factors in Computing Systems - Proceedings. 919. 10.1145/2207676.2208534.
151. Y. He, C. Xu, N. Khanna, C. J. Boushey and E. J. Delp, "Food image analysis: Segmentation, identification and weight estimation," 2013 IEEE International Conference on Multimedia and Expo (ICME), 2013, pp. 1-6, doi: 10.1109/ICME.2013.6607548.
152. Rollo, M.E., Bucher, T., Smith, S.P. et al. ServAR: An augmented reality tool to guide the serving of food. Int J Behav Nutr Phys Act 14, 65 (2017). https://doi.org/10.1186/s12966-017-0516-9
153. Lexa, Michael & Sandjaja, Iwan & Marks, Robert & Jean, Buford & Marquard, Kirk & Platt, William & Obi, Aghogho & Ncuelaes, Vasile & Webster, Jack. (2015). Using microwave metrology to count calories. Measurement. 65. 11-18. 10.1016/j.measurement.2014.12.050.
154. M. Bosch, T. Schap, F. Zhu, N. Khanna, C. J. Boushey and E. J. Delp, "Integrated database system for mobile dietary assessment and analysis," 2011 IEEE International Conference on Multimedia and Expo, 2011, pp. 1-6, doi:10.1109/ICME.2011.6012202.
155. Graikos, Alexandros & Charisis, Vasileios & Iakovakis, Dimitrios & Hadjidimitriou, Stelios & Hadjileontiadis, Leonios. (2020). Single Image-Based Food Volume Estimation Using Monocular Depth-Prediction Networks. 10.1007/978-3-030-49108-6_38.
156. Yang, Z.; Yu, H.; Cao, S.; Xu, Q.; Yuan, D.; Zhang, H.; Jia, W.; Mao, Z.-H.; Sun, M. Human-Mimetic Estimation of Food Volume from a Single-View RGB Image Using an AI System. Electronics 2021, 10, 1556.
157. Makhsoos, S.; Mohammad, H.M.; Schenk, J.M.; Mamishev, A.V.; Kristal, A.R. A Novel Mobile Structured Light System in Food 3D Reconstruction and Volume Estimation. Sensors 2019, 19, 564. https://doi.org/10.3390/s19030564
158. Tay, W.; Kaur, B.; Quek, R.; Lim, J.; Henry, C.J. Current Developments in Digital Quantitative Volume Estimation for the Optimisation of Dietary Assessment. Nutrients 2020, 12, 1167. https://doi.org/10.3390/nu12041167
159. Innocent Nyalala, Cedric Okinda, Qi Chao, Peter Mecha, Tchalla Korohou, Zuo Yi, Samuel Nyalala, Zhang Jiayu, Liu Chao & Chen Kunjie (2021) Weight and volume estimation of single and occluded tomatoes using machine vision, International Journal of Food Properties, 24:1, 818-832, DOI: 10.1080/10942912.2021.1933024
160. Rhyner D, Loher H, Dehais J, et al. Carbohydrate Estimation by a Mobile Phone-Based System Versus Self-Estimations of Individuals With Type 1 Diabetes Mellitus: A Comparative Study. J Med Internet Res. 2016;18(5):e101. Published 2016 May 11. doi:10.2196/jmir.5567

161. Jia W, Chen HC, Yue Y, Li Z, Fernstrom J, Bai Y, Li C, Sun M. Accuracy of food portion size estimation from digital pictures acquired by a chest-worn camera. Public Health Nutr. 2014 Aug;17(8):1671-81. doi: 10.1017/S1368980013003236. Epub 2013 Dec 4. PMID: 24476848; PMCID: PMC4152011.

162. Roberto Trevno, MD, NP42 Food Weight Estimation: A Comparative Analysis of Digital Food Imaging Analysis and 24-Hour Dietary Recall

163. Kong, Fanyu & Tan, Jindong. (2012). DietCam: Automatic Dietary Assessment with Mobile Camera Phones. Pervasive and Mobile Computing. 8. 147-163. 10.1016/j.pmcj.2011.07.003.

164. Yuan, D.; Hu, X.; Zhang, H.; Jia, W.; Mao, Z.H.; Sun, M. An automatic electronic instrument for accurate measurements of food volume and density. Public Health Nutr. 2021, 24, 1248–1255.

165. Lo, F.P.W.; Sun, Y.; Qiu, J.; Lo, B.P. Point2volume: A vision-based dietary assessment approach using view synthesis. IEEE Trans. Ind. Inform. 2019, 16, 577–586.

166. Pettitt, C., Liu, J., Kwansnicki, R., Yang, G., Preston, T., & Frost, G. (2016). A pilot study to determine whether using a lightweight, wearable micro-camera improves dietary assessment accuracy and offers information on macronutrients and eating rate. British Journal of Nutrition, 115(1), 160-167. doi:10.1017/S0007114515004262

167. Chen, Guangzong & Jia, Wenyan & Zhao, Yifan & Mao, Zhi-Hong & Lo, Benny & Anderson, Alex & Frost, Gary & Jobarteh, Modou & McCrory, Megan & Sazonov, Edward & Steiner, Matilda & Ansong, Richard & Baranowski, Thomas & Burke, Lora & Sun, Mingui. (2021). Food/Non-Food Classification of Real-Life Egocentric Images in Low- and Middle-Income Countries Based on Image Tagging Features. Frontiers in Artificial Intelligence. 4. 644712. 10.3389/frai.2021.644712.

168. Jia, Wenyan & Li, Yuecheng & Qu, Ruowei & Baranowski, Thomas & Burke, Lora & Zhang, Hong & Bai, Yicheng & Mancino, Juliet & Xu, Guizhi & Mao, Zhi-Hong & Sun, Mingui. (2018). Automatic food detection in egocentric images using artificial intelligence technology. Public Health Nutrition. 22. 1-12. 10.1017/S1368980018000538.

169. Mejova, Yelena & Abbar, Sofiane & Haddadi, Hamed. (2016). Fetishizing Food in Digital Age: foodporn Around the World.

170. Ismail, A.; Idris, M.Y.I.; Ayub, M.N.; Por, L.Y. Investigation of Fusion Features for Apple Classification in Smart Manufacturing. Symmetry 2019, 11, 1194, doi:10.3390/sym11101194.

171. Chen, Ting & Kornblith, Simon & Norouzi, Mohammad & Hinton, Geoffrey. (2020). A Simple Framework for Contrastive Learning of Visual Representations.

172. Caron, Mathilde & Misra, Ishan & Maier, Julien & Goyal, Priya & Bojanowski, Piotr & Joulin, Armand. (2020). Unsupervised Learning of Visual Features by Contrastiving Cluster Assignments.

173. Parisi, German & Kemker, Ronald & Part, Jose & Kanan, Christopher & Wermter, Stefan. (2019). Continual Lifelong Learning with Neural Networks: A Review. Neural Networks. 113. 54-71. 10.1016/j.neunet.2019.01.012.

174. Shapley sampling values: Strumbelj, Erik, and Igor Kononenko. “Explaining prediction models and individual predictions with feature contributions.” Knowledge and information systems 41.3 (2014): 647-665.

175. Arik, Sercan & Liu, Yu-han. (2020). Explaining Deep Neural Networks using Unsupervised Clustering.