The Economic Impact of Substandard and Falsified Antimalarial Medications in Nigeria

By:
Sarah M. Beargie

Honors Thesis
Global Health Economics for Pharmacy
UNC Eshelman School of Pharmacy
University of North Carolina at Chapel Hill

April 4, 2019

Advisors:
Sachiko Ozawa, Colleen Higgins, Daniel Evans, Sarah Laing, Daniel Erim
Abstract

Introduction

Substandard and falsified medications pose significant risks to global health. Nearly one in five antimalarials circulating in low- and middle-income countries are substandard or falsified. We assessed the health and economic impact of substandard and falsified antimalarials on children under five in Nigeria, where malaria is endemic and poor-quality medications are commonplace.

Methods

We developed a dynamic agent-based SAFARI (Substandard and Falsified Antimalarial Research Impact) model to capture the impact of antimalarial use in Nigeria. The model simulated children with background characteristics, malaria infections, patient care-seeking, disease progression, treatment outcomes, and incurred costs. Using scenario analyses, we simulated the impact of substandard and falsified medicines, antimalarial resistance, as well as possible interventions to improve the quality of treatment, reduce stock-outs, and educate caregivers about antimalarial quality.

Results

We estimated that poor quality antimalarials are responsible for 12,300 deaths annually and $892 million ($890-$893 million) in costs in Nigeria. If antimalarial resistance develops, we simulated that current costs of malaria could increase by $839 million (11% increase, $837-$841 million). The northern regions of Nigeria have a greater burden as compared to the southern regions, with 9,700 deaths and $698 million ($697-$700 million) in total economic losses annually due to substandard and falsified antimalarials. Furthermore, our scenario analyses demonstrated that possible interventions—such as removing stock-outs in all facilities ($1.11 billion), having only ACTs available for treatment ($594
million), and 20% more patients seeking care ($469 million)—can save hundreds of millions in costs annually in Nigeria.

Conclusions

The results highlight the significant health and economic burden of poor quality antimalarials in Nigeria, and the impact of potential interventions to counter them. In order to reduce the burden of malaria and prevent antimalarials from developing resistance, policymakers and donors must understand the problem and implement interventions to reduce the impact of ineffective and harmful antimalarials.
Introduction

Malaria is endemic in Nigeria where the entire country’s 191 million residents are at risk [1, 2].

Plasmodium falciparum causes an estimated 99.7% of deaths due to malaria with a disproportionate number of deaths in children under five [1, 3]. In 2017, Nigeria had an estimated 53.7 million cases of malaria across all ages, which accounted for 25% of all clinical episodes of malaria worldwide [1]. Furthermore, 19% of the global estimate of malaria deaths (81,600 deaths in 2017) occurred in Nigeria, making Nigeria the single most malaria-burdened country in the world [1, 4]. According to the Nigerian Ministry of Health, about 480 billion Naira ($2.3 billion 2017 USD) is lost annually to malaria in the form of treatment costs, prevention efforts, and loss of work time [5].

Antimalarials are one of the most commonly found medications to be substandard or falsified in low- and middle-income countries (LMICs) [6]. The World Health Organization (WHO) defines substandard medicines as authorized medical products that fail to meet either quality standards, specifications, or both [7]. Falsified medicines are medical products that deliberately or fraudulently misrepresent their identity, composition or source [7]. As a result of poor manufacturing, inadequate supply chain management and storage conditions, or sales beyond expiration, poor quality medications can contain sub-therapeutic concentrations of stated ingredients, improper ingredients or no active pharmaceutical ingredients [8, 9].

According to a recent meta-analysis, 19.1% of all antimalarials tested in LMICs were substandard or falsified [6]. Previous studies have estimated that 33-64% of antimalarial medicines circulating in Nigeria were substandard or falsified [10, 11]. Poor quality antimalarial medications place significant health, social, and economic burden on individuals and communities. Avertable costs are incurred through
prolonged illness from malaria due to treatment failure. Substandard and falsified antimalarials can extend the length of hospitalization, contribute to antimalarial resistance, and even lead to death [7, 12, 13]. In addition to health effects, poor quality antimalarials impose avoidable economic costs to patients, their families and the health system, through costs of medical care and productivity losses [14, 15]. Substandard and falsified antimalarials also increase health inequities [16].

Despite the large disease burden, no studies to date have examined the country-level impact of substandard and falsified antimalarials in Nigeria. This project estimates the health and economic impact of substandard and falsified antimalarials in Nigeria overall, and for the northern and southern regions. It also assesses the effects of potential interventions to inform policy decisions to improve the quality of treatment, reduce stock-outs, and educate caregivers about antimalarial quality.

Materials and methods

The SAFARI (Substandard and Falsified Antimalarial Research Impact) model is an agent based model used to estimate the health and economic impact of substandard and falsified antimalarials on children under five [17, 18]. The methods for the development of the SAFARI model are described in detail in another publication [17], with adaptations specific to Nigeria outlined here. The SAFARI model was built in Python to simulate population characteristics, malaria infection, patient care-seeking, disease progression, treatment outcomes, and associated costs of malaria for children under five years of age. The model simulates 25,000 children (agents) under five in Nigeria, with each agent possessing demographic characteristics, individual incidence, and individual care-seeking probabilities. The demographic characteristics – geographic region, rural/urban, wealth quintile, and level of maternal education – were applied to each child in the model, according to the distributions from the most recent (2015) Nigeria Malaria Indictor Survey (MIS) [5]. The rate of malaria transmission varies regionally in
Nigeria, with high transmission in the north and lower in the south. This was incorporated through each agent’s individual probability of getting sick with malaria, which reflects the prevalence of malaria by region.

Fig 1. Flow diagram for the Nigeria SAFARI model depicting 5 days in a one-year care-seeking cycle

Fig 1 depicts a flow diagram of the SAFARI model for Nigeria. The model simulates a one-year time horizon in five-day increments to match the reported average duration of an uncomplicated malaria case, accounting for care-seeking and average duration of symptoms [19]. All agents (simulated children under five) move through the disease and care-seeking simulations based on their individual background characteristics. Agents become infected and symptomatic based on estimates of under-five malaria incidence and cases in Nigeria [1, 20, 21]. We simulate treatment from one of six locations: public facilities, private facilities, pharmacies/chemists, drug stores/drug hawkers/general retailers, community health workers (CHWs), or self-treatment; or observe the progression of the disease without seeking
care. Antimalarial treatment available in each location is based on the market share of three options: artemisinin combination therapies (ACTs), chloroquine, or other treatments (sulfadoxine-pyrimethamine (SP), amodiaquine, quinine and others) [5]. Each care location could run out of stock of antimalarials based on ACTwatch national stock data [22], where non-severe cases remain symptomatic through the next period. Agents may progress to severe malaria and then face the probability of dying while receiving treatment for severe malaria when hospitalized, or dying without receiving treatment in the community [23]. To account for the increase in adverse outcomes caused by substandard or falsified antimalarials, it was assumed that patients who received poor quality antimalarials faced a 50% increase in the probability of developing severe malaria within the week of receiving the treatment, reflecting the impact of reduced efficacy of antimalarials with lower amounts of active pharmaceutical ingredients (API) [7].

A literature review was conducted across five electronic databases [PubMed, EconLit (EBSCOhost), Global Health, Embase, and SCOPUS] to identify model inputs specific to Nigeria. Grey literature was also searched to identify inputs from sources such as ACTwatch, the Global Burden of Disease study, Malaria Atlas Project (MAP), Nigeria MIS, World Malaria Report, World Development Indicators, and the Worldwide Antimalarial Resistance Network (WWARN) [2, 20, 22, 24-32]. The main demographic, epidemiological, and cost inputs are outlined in Table 1, with additional inputs and coefficients included in Supporting Information Files. In order to account for the natural variation in epidemiological and cost inputs, data ranges were utilized where available to assign distributions and simulated to vary probabilistically. Epidemiological rates were varied with beta distributions and cost inputs with gamma distributions. Costs in Nigerian Naira were converted to 2017 USD using Nigeria’s inflation rates and 2017 exchange rates from the Central Bank of Nigeria [33].
Table 1. Key Input Data for the SAFARI Model in Nigeria

Model Inputs	Input	Range	Source
Demographic & Epidemiological Data			
<5 Population at Risk	32,379,000		[34]
Malaria Incidence	0.8096		[20]
Inpatient Severe Malaria cases (per 100,000 people per year)	44.8		Estimated based on: [23]
Treatment Failure Progression to Severe	0.020	(0.005–0.05)	[28]
Inpatient Severe Case Fatality Rate	0.08		[23]
Severe Case Fatality Rate in the Community	0.15		[23]
Case Fatality Rate Without Receiving Treatment	0.6	(0.45 – 0.8)	[24]
Inpatient Severe Case Rate of Neurological Sequelae	0.0313	(0.028–0.035)	Estimated based on: [29]
Healthcare Seeking Behavior			
Care-Seeking Behavior (%)			
Public Facilities	19.9%		[5]
Private Facilities	7.0%		
Pharmacies/Chemists	39.1%		
Drug Stores/Drug Hawkers/General Retailers	0.8%		
CHWs	0.9%		
Self/Neighbors	20.2%		
No Treatment	12.3%		
Medication Stock by Facility			
Public Facilities			
% Stock ACTs	48.5%		
% Stock Chloroquine	25.1%		
% Stock Other Treatments	25.4%		
Private Facilities			
% Stock ACTs	48.1%		
% Stock Chloroquine	22.8%		
% Stock Other Treatments	29.1%		
Pharmacies/Chemists			
% Stock ACTs	36.7%		
% Stock Chloroquine	30.8%		
% Stock Other Treatments	32.6%		
Drug Stores/Drug Hawkers/General Retailers			
% Stock ACTs	53.8%		
% Stock Chloroquine	7.7%		
% Stock Other Treatments	38.5%		
CHWs			
% Stock ACTs	54.5%		
% Stock Chloroquine	0.0%		
% Stock Other Treatments	45.5%		
Probability of stock-out	Proportion of facilities without stock of ACTs		
--------------------------	---		
Self/Neighbors	% Stock ACTs 29.1%		
	% Stock Chloroquine 32.1%		
	% Stock Other Treatments 38.8%		
Public Facilities	12.7% Estimated based on: [22]		
Private Facilities	25.5% Assumption		
Pharmacies/Chemists	0.1%		
Drug Store/Drug Hawkers/General Retailers	11.6%		
CHWs	0%		
Self/Neighbors	0%		

Medication Effectiveness
ACT Cure Rate
Chloroquine Cure Rate
Other Treatment Cure Rate
No Treatment Cure Rate

Medication Costs by Facility
Public Facilities
Average Cost of ACTs
Average Cost of Chloroquine
Average Cost of Other Treatments
Private Facilities
Average Cost of ACTs
Average Cost of Chloroquine
Average Cost of Other Treatments
Pharmacies/Chemists
Average Cost of ACTs
Average Cost of Chloroquine
Average Cost of Other Treatments
Drug Stores/Drug Hawkers/General Retailers
Average Cost of ACTs
Average Cost of Chloroquine
Average Cost of Other Treatments
CHWs
Average Cost of ACTs
Average Cost of Quinine
Average Cost of Other Treatments
Self/Neighbors
Average Cost of ACTs
Average Cost of Quinine
Non-Medication Costs

Median Cost per Hospitalization
Median Testing Costs
Average Transportation Costs
Productivity Losses Per Sick Day
Productivity Losses per Death

Proportions of SF Medications	ACTs	
Not SF (API > 85%)	0.882	
Category 1: API = 75-85%	0.064	
Category 2: API = 50-75%	0.027	
Category 3: API < 50%	0.027	
Chloroquine		
Not SF (API > 85%)	-0.494	
Category 1: API = 75-85%	0.273	
Category 2: API = 50-75%	0.118	
Category 3: API < 50%	0.116	
Other Treatments		
Not SF (API > 85%)	0.479	
Category 1: API = 75-85%	0.281	
Category 2: API = 50-75%	0.121	
Category 3: API < 50%	0.119	

ACTs - Artemisinin-based combination therapy; API – Active pharmaceutical ingredient; CHWs – community health workers; SF – substandard and falsified

The treatment outcome for each agent in the model was determined based on individual treatment adherence rates, treatment efficacy by medication, and the API concentration of the specific treatment the agent-child received [35-47, 50-55]. Treatment efficacy and prevalence of substandard and falsified medicines for each antimalarial treatment was estimated with data extracted from the Worldwide Antimalarial Resistance Network (WWARN) database and prevalence studies specific to Nigeria [35-45, 48, 49, 52]. Each modeled antimalarial medication was assigned an API percentage category (>85%, 75-85%, 50-75% and <50%) and given a corresponding treatment efficacy where lower APIs reduced the likelihood of successful treatment. Each agent in the model was assigned a rate of treatment adherence, which also affected treatment success.
The primary model outputs are estimates of the health impact, direct costs, and productivity losses attributable to substandard and falsified antimalarials for all children under five in Nigeria. The health impact is presented as the number of uncomplicated and severe cases, neurological sequelae, and deaths due to malaria. Economic outputs assessed direct costs for transportation, testing, medications, consultation and hospitalization costs as well as productivity losses. Consultation costs included the cost to the patient and facility of supplemental medicines or food, additional increased costs of private facility care, and the cost of health care services excluding medication and testing. Productivity losses included lost caretaker time caring for sick children and long-term productivity losses over a lifetime due to malaria-induced disability or premature death. Direct costs were further separated into amounts paid by patients and caretakers out-of-pocket versus those incurred by health facilities.

We compared the baseline estimate to a scenario with no substandard and falsified antimalarials (i.e. assuming all medicines have an API > 85%) to assess the added expenses of poor quality medications. In addition, we present a scenario where Plasmodium falciparum developed resistance to artemisinin-based antimalarials, where treatment efficacies for ACTs were lowered to be the same as those for other treatments, leading to increased treatment duration. We present the health and economic outputs separately for the northern and southern regions of Nigeria. In addition to the main simulations, seven other scenarios of potential interventions were examined. These scenarios were chosen to represent various supply chain, antimalarial treatment policies and caregiver education interventions. The scenarios included: having no medication stock-outs (1) across all sectors,(2) in public facilities, or (3) in private facilities; (4) replacing chloroquine and other treatments with ACTs such that only ACTs are available for treatment; (5) replacing all substandard or falsified ACTs with good quality ACTs; (6) encouraging 20% more patients to seek care for malaria treatment; and (7) encouraging perfect adherence to antimalarial medications.
Results

Annually, we simulated approximately 24 million cases of malaria in children under five in Nigeria. Of simulated cases that progressed to severe, we estimated 147,000 hospitalizations, 8,200 cases of neurological sequelae, and 78,000 deaths. The total economic impact of malaria in Nigeria was estimated at $7.76 billion (7.73-7.80 billion) with $7.36 billion (95% of total economic impact, 7.33-7.40 billion) in productivity losses, including $4.1 billion in lifetime productivity losses and $3.08 billion in short-term productivity losses. Direct costs of seeking medical treatment for malarial were approximately $401 million (5% of total economic impact, 400.4-401.4 million), which included $7.5 million for testing costs, $9.5 million for transportation costs, $316 million for consultation costs, $59.3 million for medication costs, and $8.97 million for hospitalization costs. Up to 33% of the direct costs of malaria treatment ($124 million) were paid out-of-pocket, whereas the health facility incurred the remainder of the costs ($247 million). The health and economic burden of malaria in Nigeria is summarized in Table 2.

Table 2. Estimated Burden of Malaria, the Health and Economic Impact of Substandard and Falsified Antimalarials, and Effect of Antimicrobial Resistance of ACTs in Nigeria

Burden of Malaria	No Substandard or Falsified Antimalarials	Antimicrobial Resistance						
	Baseline	95% CI	Potential Savings	Percent Difference	p-value†	Additional Costs	Percent Difference	p-value†
Health Impact								
Average Number of Cases	24,000,000	(23,995,800 – 24,002,700)	+1,300	0%	0.596	-1,300	0%	0.579
Average Number Hospitalized	147,000	(146,900 – 147,700)	-33,300	-23%	<0.001	+19,200	+13%	<0.001
Average Number with NS	8,200	(8,100 – 8,200)	-500	-6%	<0.001	+800	+10%	<0.001
Average Number of Deaths	78,000	(77,800 – 78,300)	-12,300	-16%	<0.001	+7,700	+10%	<0.001
Economic Impact								
Total Economic Impact	$7,760,000,000	(7,729,178,500 – 7,800,795,900)	-$892,000,000	-11%	<0.001	+$839,000,000	+11%	<0.001
Direct Costs	$401,000,000	(400,398,700 – 401,399,000)	-$29,800,000	-7%	<0.001	+$44,600,000	+11%	<0.001
Facility Costs	$267,000,000	(266,997,100 – 267,799,200)	-$20,000,000	-7%	<0.001	+$29,900,000	+11%	<0.001
Substandard and falsified antimalarials contributed significantly to the malaria burden in Nigeria.

Replacing poor quality antimalarials with good quality ones resulted in 33,300 fewer hospitalizations and 12,300 fewer deaths annually in the country. The annual economic impact of substandard and falsified antimalarials in Nigeria was estimated at $892 million ($890-$893 million), around 11% of the total economic burden of malaria. This included $648 million ($647.9-$649.1 million) in lifetime productivity losses and $203 million ($202-$205 million) in short-term productivity losses each year as a result of poor quality antimalarials. Substandard and falsified antimalarials accounted for $29.85 million ($29.82-$29.87 million) in direct costs annually, including $9.8 million ($9.78-$9.81 million) in out-of-pocket costs to patients who sought care.

If artemisinin resistance were to emerge reducing the effectiveness of ACTs to the level of other treatments, we estimated that Nigeria could face 19,200 more hospitalizations and 7,700 additional deaths in patients under five seeking treatment each year. In our simulation, antimalarial resistance increased costs to Nigeria by $839 million ($837-$841 million) annually, representing 11% of the economic burden of malaria. This included increases in lifetime productivity losses by $405 million ($404.8-$406 million), short-term productivity losses by $369 million ($368-$371 million), and direct costs by $44.65 million ($44.63-$44.67 million). We estimated that antimalarial resistance could add
$29.89 million ($29.87-$29.91 million) to health facility costs and $14.76 million ($14.75-$14.78 million) in out-of-pocket costs to patients who seek treatment every year, resulting in an 11% increase in direct costs.

Table 3. The Health and Economic Impact of Substandard and Falsified Antimalarials in Nigeria: Northern vs. Southern Regions

Burden of Malaria	No Substandard or Falsified Antimalarials	Antimicrobial Resistance						
	Baseline	95% CI	Potential Impact	Percent Difference	p-value	Additional Costs	Percent Difference	p-value
North Health Impact								
Average Number of Cases	18,900,000	(18,905,600 – 18,912,500)	+6,200	0%	0.013	-5,900	0%	0.017
Average Number Hospitalized	116,000	(115,900 – 116,600)	-26,300	-23%	<0.001	+14,900	+13%	<0.001
Average Number of Deaths	61,000	(60,700 – 61,200)	-9,700	-16%	<0.001	+6,000	+10%	<0.001
Total Economic Impact	$6,090,000,000	($6,057,711,900 – $6,114,788,000)	-$698,000,000	-11%	<0.001	+$653,000,000	+11%	<0.001
Facility Costs	$209,000,000	($208,768,500 – $209,401,200)	-$15,600,000	-7%	<0.001	+$23,100,000	+11%	<0.001
All Productivity Losses	$5,770,000,000	($5,743,514,900 – $5,800,573,400)	-$675,000,000	-12%	<0.001	+$619,000,000	+11%	<0.001
Out-of-Pocket Costs	$105,000,000	($104,899,200 – $105,352,800)	-$7,660,000	-7%	<0.001	+$11,500,000	+11%	<0.001

Burden of Malaria	No Substandard or Falsified Antimalarials	Antimicrobial Resistance						
	Baseline	95% CI	Cost Savings	Percent Difference	p-value	Additional Costs	Percent Difference	p-value
South Health Impact								
Average Number of Cases	5,090,000	(5,088,000 – 5,092,000)	-4,800	0%	0.003	+4,600	0%	0.004
Average Number Hospitalized	31,000	(30,900 – 31,200)	-6,900	-22%	<0.001	+4,300	+14%	<0.001
Average Number of Deaths	17,100	(17,000 – 17,100)	-2,700	-16%	<0.001	+1,700	+10%	<0.001
Total Economic Impact	$1,680,000,000	($1,669,991,000 – $1,687,483,600)	-$193,000,000	-12%	<0.001	+$185,000,000	+11%	<0.001
Facility Costs	$58,300,000	($58,218,600 – $58,408,100)	-$4,480,000	-8%	<0.001	+$6,740,000	+12%	<0.001
All Productivity Losses	$1,590,000,000	($1,583,302,900 – $1,600,785,600)	-$187,000,000	-12%	<0.001	+$175,000,000	+11%	<0.001
Out-of-Pocket Costs	$28,400,000	($28,315,100 – $28,444,300)	-$2,140,000	-8%	<0.001	+$3,250,000	+11%	<0.001

CI – Confidence interval

The northern and southern regional breakdown of results is presented in Table 3. The economic burden of malaria was found to be much greater in the northern region of Nigeria at $6.09 billion ($6.06-$6.11 billion) vs. the southern region at $1.68 billion ($1.67-$1.70 billion).
billion) as compared to $1.68 billion ($1.67-$1.69 billion) in the south. Much of the difference between north and south can be explained by transmission rates, with populations in the north at greater risk for malaria. Our model simulated 18.9 million malaria cases (79% of all cases) in Nigeria’s northern region, where 65% of all children under five in the country live. In the southern region, we estimated 5.09 million cases (21% of all cases) of malaria. In the north, we estimated that 261,000 cases per year advance to severe malaria leading to 61,000 deaths, compared to 70,500 severe cases and 17,100 deaths in the south.

The burden of substandard and falsified medicines was especially large in northern Nigeria, where their removal from the north would save $698 million ($697-$700 million) annually in contrast to $193 million ($193.1-$193.8 million) in the South. On the other hand, if antimalarial resistance were to emerge for ACTs, we estimated that total costs of malaria would increase by $653 million ($652-$655 million) in the northern region and $185 million ($185.0-$185.8 million) in the southern region of Nigeria.

Fig 2. Total Economic Impact of Intervention Scenarios
Fig 2 presents the impact that various interventions could have including improving the quality of antimalarial medications in Nigeria. Eliminating all stock-outs provided the greatest cost-savings at $1.11 billion ($1.10-$1.11 billion) annually. Removing all substandard and falsified antimalarials offered an estimated annual savings of $892 million ($890-$893 million). Due to frequent utilization of other treatments, improving only the quality of ACTs but not those of other treatments saved only $161 million ($157-$164 million) in costs annually. When ACTs were the only treatment option available for malaria, replacing chloroquine and other treatments, we estimated $594 million ($591-$698 million) in annual savings. Increasing the number of individuals who seek care for malaria by 20% was estimated to result in $469 million ($465-$473 million) in cost savings. Perfect medication adherence to antimalarials demonstrated a smaller impact ($63 million; $59.6-$67.2 million).

Discussion

The results demonstrate the threat posed by substandard and falsified antimalarials and the importance of improving access to good quality malaria treatment in Nigeria. Substandard and falsified antimalarials were estimated to be responsible for $892 million in costs annually in Nigeria, and was attributable for 6-23% of the health and economic burden of malaria. If artemisinin resistance were to develop, reducing the effectiveness of ACTs, we simulated that current economic costs could increase by 11% annually, including rises in direct costs by 11%. Therefore, improving the quality of antimalarials would make a meaningful impact in reducing the burden of malaria in Nigeria.

We observed that substandard and falsified antimalarials affect many more children in the north (9,700 deaths and $698 million in costs) compared to the south (2,700 deaths and $193 million in costs). This is in line with known regional disparities where northern Nigeria has fewer healthcare providers, weaker infrastructure, more porous supply chains and a larger malaria disease burden. Although the north
comprises a larger area and population, the south tends to have greater availability of financial resources and lower poverty rates, leading to disparities in access to malaria testing, medications, and education about proper treatments [56, 57]. Humanitarian crisis such as the Boko Haram insurgency in the northern region of Borno contribute to increased burden of malaria in endemic regions from the disruptions in the health system [34]. Our results suggest that poor quality antimalarials are further exacerbate inequities, which was also observed in Uganda [16]. Greater efforts are especially needed in the northern region to protect vulnerable populations and reduce health and economic inequities.

Our results are comparable to previously reported estimates of the malaria disease burden. For example, our model estimated a total of 24 million malaria cases in Nigerian children under five, which is comparable to approximately 25.8 million under-five malaria cases based on the WHO estimate that 45% of malaria cases in Nigeria (53.7 million) occur in children under five [7, 34]. Our model estimated a total of 78,000 deaths, which is in line with UNICEF estimations that 9.8% of all under-five deaths in Nigeria in 2017 were due to malaria, estimated at 69,990 (50,509-96,460) deaths [58]. Furthermore, our model estimate of the annual burden of malaria in Nigeria at $7.76 billion 2017 USD is comparable to the annual cost of malaria estimated in Nigeria at 2,231 billion 2011 Naira ($12 billion 2017 USD) as malaria cases and deaths have comparably lessened by 2017 (89% and 60% of 2011 estimates, respectively) [59].

Despite efforts by the Nigerian National Agency for Food and Drug Administration and Control (NAFDAC) to manage the supply chain and regulate medicine quality, substandard and falsified medicines continue to proliferate in the Nigerian market. A disorganized network of sellers and weak regulation make the pharmaceutical system in Nigeria particularly vulnerable to unethical and corrupt practices, such as extortion of bribes and diversion of donated medications [60, 61]. Small numbers of pharmaceutical
manufacturers in Nigeria are insufficient to meet the local demand, requiring medications to be imported from other countries. The majority of imported medications originate from countries such as China and India, where substandard and falsified medications have been identified [62, 63]. To reduce the total burden of substandard and falsified antimalarials, policymakers should strengthen regulatory capacity to license manufacturers, ensure good manufacturing practices and perform quality control of antimalarials. This could protect malaria medication from threats of falsification, poor manufacturing, expiration, and degradation. The hot and humid conditions in which medications are transported, stored, and sold in these locations often facilitate the degradation of medicines, which can result in substandard effectiveness [64]. In addition, medications frequently expire due to weak distribution systems, making them ineffective. Improving pharmaceutical governance, supply chain management and antimalarial surveillance are essential to close doors to substandard and falsified antimalarials from permeating the supply chain. NAFDAC and the Federal Ministry of Health must coordinate to play a larger role in ensuring quality of medicines by securing supply chains, regulation and inspection while improving access to high quality medicines.

Increasing access and utilization of ACTs would have a significant health and economic impact in Nigeria. ACTs are recommended as the first-line treatment for malaria by the World Health Organization (WHO) [34], and Nigeria adopted this recommendation in 2005 [4, 65]. The use of ACTs for malaria treatment in Nigeria increased from 2% in 2008 to 18% in 2013 [2]. Using existing data in our model, we show that ACTs were used only 36.6% of the time across all care sectors, suggesting that the use of ACTs is far below the national target of 80% by 2010 as specified in the National Malaria Strategic Plan [2, 5]. Chloroquine and SP therapies are other commonly prescribed antimalarial medications in Nigeria [2]. If ACTs replaced chloroquine, SP and other antimalarial treatments, we simulate that there will be $594 million in total savings and 7,900 fewer deaths among children under five.
Efforts to empower pharmacists at public and private facilities to better manage antimalarials and reduce stock-outs can prevent patients from purchasing medicines from unregulated markets. The Nigerian supply chain of antimalarials result in frequent public (12.7%) and private (25.5%) facility stock-outs [22]. Malaria medicine stock-outs are common in these sectors due to unmet funding needs, lack of proper training of workers in medicine procurement, and inadequate storage, transportation and distribution [64]. Prevalent stock-outs push many patients to seek treatment in informal sectors, often receiving antimalarials from drug hawkers, unregistered pharmacies, or open drug markets [61]. Chemists and drug hawkers are often not trained in pharmacy and cannot ensure the legitimacy or safety of medications. We simulated that removing public and private stock-outs of antimalarials resulted in $732 million and $416 million in annual savings in Nigeria, respectively. Reducing stock-outs of antimalarial medications would not only improve access to malaria treatment but also reduce the overall costs of malaria for patients and the government.

Our analysis has a number of key limitations. First, availability of some data inputs were limited, which made it difficult to capture the large heterogeneity within Nigeria [66, 67]. Extensive literature searches were conducted and data analyses were carried out to utilize the best and most recent data available for model parameters. To account for some heterogeneity, demographic characteristics were assigned to each agent as well as individual-specific incidence and care-seeking rates based on an analysis of the Nigeria MIS data so that results could be examined separately for northern and southern regions. Data on the prevalence of substandard and falsified antimalarials by location were limited, where we had to apply the same rates to all facility types within the country. While our scenario analyses examined the impact of various interventions, we did not have data to model the costs of implementing each scenario. Further data should be gathered to inform implementation costs for regulation, quality control, and education to reduce the impact of substandard and falsified medicines. Despite these limitations, we
believe this analysis presents important estimates of the health and economic impact of substandard and falsified antimalarials in Nigeria to raise awareness of the problem.

Our results inform the Federal Ministry of Health, NAFDAC, the malaria community and policymakers of the significant impact that substandard and falsified antimalarials have in Nigeria. We demonstrate not only the current health and economic impact, but also the benefits that potential interventions could have in reducing the burden. These results should be used to ensure that investments are made to not only guarantee medication safety but also increase access to high quality antimalarial treatment. Reducing substandard and falsified antimalarials in Nigeria would decrease the malaria burden and also safeguard existing malaria treatments to remain viable. The Federal government, in collaboration with implementation agencies, international organizations, and healthcare workers including pharmacists should set up efforts to alleviate barriers of access to ACTs, and strengthen antimalarial supply chains. Improving antimalarial quality is essential in ensuring that people can place their trust in medications and their healthcare system, and reducing avertable illnesses, deaths, and costs.

Acknowledgements

We would like to thank Dr. Steve Taylor for his input on the disease model.
References

1. World Health Organization. World Malaria Report 2018 Geneva2018 [cited 2019 April 1]. Available from: https://www.who.int/malaria/publications/world-malaria-report-2018/en/.

2. National Population Commission - NPC/Nigeria, ICF International. Nigeria Demographic and Health Survey 2013. Abuja, Nigeria: NPC/Nigeria and ICF International, 2014.

3. World Health Organization. Malaria in Children Under 5 2018 [updated 28 January 2018; cited 2018 October 9]. Available from: http://www.who.int/malaria/areas/high_risk_groups/children/en/.

4. Kaur H, Allan EL, Mamadu I, Hall Z, Ibe O, Sherbiny ME, et al. Quality of artemisinin-based combination formulations for malaria treatment: Prevalence and risk factors for poor quality medicines in public facilities and private sector drug outlets in Enugu, Nigeria. PLoS ONE. 2015;10(5). doi: 10.1371/journal.pone.0125577.

5. National Malaria Elimination Programme - NMEP/Nigeria, National Population Commission - NPC/Nigeria, National Bureau of Statistics - NBS/Nigeria, ICF International. Nigeria Malaria Indicator Survey 2015. Abuja, Nigeria and Rockville MD, USA: NMEP, NPC, and ICF International, 2016.

6. Ozawa S, Evans DR, Bessias S, et al. Prevalence and estimated economic burden of substandard and falsified medicines in low- and middle-income countries: A systematic review and meta-analysis. JAMA Network Open. 2018;1(4):e181662. doi: 10.1001/jamane: (13 November 2018). PubMed PMID: 10.1011/jamanetworkopen.2018.1662.

7. World Health Organization. A study on the public health and socioeconomic impact of substandard and falsified medical products. Geneva: 2017.

8. Attaran A, Barry D, Basheer S, Bate R, Benton D, Chauvin J, et al. How to achieve international action on falsified and substandard medicines. BMJ. 2012;345(e7381):(13 November 2012)-(13 November).

9. Kaur H, Allan EL, Mamadu I, Hall Z, Ibe O, El Sherbiny M, et al. Quality of artemisinin-based combination formulations for malaria treatment: prevalence and risk factors for poor quality medicines in public facilities and private sector drug outlets in Enugu, Nigeria. PLoS One. 2015;10(5):e0125577. Epub 2015/05/29. doi: 10.1371/journal.pone.0125577. PubMed PMID: 26018221; PubMed Central PMCID: PMCPMC4446036.

10. Kaur H, Clarke S, Lalani M, Phanouvong S, Guerin P, McLoughlin A, et al. Fake anti-malarials: start with the facts. Malaria journal. 2016;15:86. Epub 2016/02/14. doi: 10.1186/s12936-016-1096-x. PubMed PMID: 26873700; PubMed Central PMCID: PMCPMC4752758.

11. World Health Organization. Survey of the quality of medicines identified by the United Nations commission on life-saving commodities for women and children. 2016.

12. Buckley GJ, Gostin LO. Countering the problem of falsified and substandard drugs: National Academies Press; 2013.

13. White NJ, Pongtavornpinyo W, Maude RJ, Saralamba S, Aguas R, Stepniewska K, et al. Hyperparasitaemia and low dosing are an important source of anti-malarial drug resistance. Malaria journal. 2009;8(253):(11 November 2009)-(11 November). PubMed PMID: 20093361180. Publication Type: Journal Article. Language: English. Number of References: 47 ref. Registry Number: 63968-64-9. Subject Subsets: Tropical Diseases.

14. World Health Organization. Universal health coverage (UHC) Fact Sheet Geneva [updated 31 December 2017; cited 2018 October 9]. Available from: http://www.who.int/news-room/fact-sheets/detail/universal-health-coverage-(uhc).

15. Gallup JL, Sachs JD. The economic burden of malaria. The American journal of tropical medicine and hygiene. 2001;64(1-2 Suppl):85-96. Epub 2001/06/27. PubMed PMID: 11425181.

16. Evans DRH, C. R.; Laing, S. K.; Awor, P.; Ozawa, S. Poor-quality antimalarials further health inequalities in Uganda. Health Policy and Planning. 2019. doi: 10.1093/heapol/czz012.
17. Ozawa S, Evans DR, Higgins CR, Laing SK, Awor P. Development of an agent-based model to assess the impact of substandard and falsified anti-malarials: Uganda case study. Malaria journal. 2019;18(1):5. doi: 10.1186/s12936-018-2628-3.

18. Ozawa S, Haynie D, Bessias S, Laing S, Ngamasana EL, Yemeke TT, et al. Modeling the Economic Impact of Substandard and Falsified Antimalarials in the Democratic Republic of the Congo. The American journal of tropical medicine and hygiene. 2019. doi: https://doi.org/10.4269/ajtmh.18-0334.

19. Farrar J HP, Junghanss T, Kang G, Laloo D. Manson’s Tropical Diseases, 23rd Edition. 23 ed: Saunders Ltd.; 2013 2014.

20. Malaria Atlas Project. Under-five malaria incidence in Nigeria 2018 [cited 2019 April 1]. Available from: https://map.ox.ac.uk/.

21. President’s Malaria Initiative. Nigeria Malaria Operational Plan FY 2019. 2019.

22. ACTwatch Group. ACTwatch Study Reference Document: The Federal Republic of Nigeria Outlet Survey 2015. Washington, DC: PSI, 2015.

23. Camponovo F, Bever CA, Galaktionova K, Smith T, Penny MA. Incidence and admission rates for severe malaria and their impact on mortality in Africa. Malaria journal. 2017;16(1):1. doi: 10.1186/s12936-016-1650-6.

24. Lubell Y, Staedke SG, Greenwood BM, Kamya MR, Molyneux M, Newton PN, et al. Likely health outcomes for untreated acute febrile illness in the tropics in decision and economic models; a Delphi survey. PLoS One. 2011;6(2):e17439. Epub 2011/03/11. doi: 10.1371/journal.pone.0017439. PubMed PMID: 21390277; PubMed Central PMCID: PMCPMC3044764.

25. The World Bank. Nigeria: Data 2016 [cited 2019 April 1]. Available from: https://data.worldbank.org/country/nigeria.

26. Institute for Health Metrics and Evaluation. Global Burden of Disease (GBD) [cited 2018 October 12]. Available from: http://www.healthdata.org/gbd.

27. Worldwide Antimalarial Resistance Network (WWARN) [cited 2018 October 12]. Available from: http://www.wwarn.org/.

28. Lubell Y, Dondorp A, Guerin PJ, Drake T, Meek S, Ashley E, et al. Artemisinin resistance--modelling the potential human and economic costs. Malaria journal. 2014;13:452. Epub 2014/11/25. doi: 10.1186/1475-2875-13-452. PubMed PMID: 25418416; PubMed Central PMCID: PMCPMC4254187.

29. Dondorp AM, Fanello CI, Hendriksen IC, Gomes E, Seni A, Chhaganal KD, et al. Artesunate versus quinine in the treatment of severe falciparum malaria in African children (AQUAMAT): an open-label, randomised trial. Lancet (London, England). 2010;376(9753):1647-57. Epub 2010/11/11. doi: 10.1016/s0140-6736(10)61924-1. PubMed PMID: 21062666; PubMed Central PMCID: PMCPMC3033534.

30. Ezeoke OP, Onwujekwe OE, Uzochukwu BS. Towards universal coverage: examining costs of illness, payment, and coping strategies to different population groups in southeast Nigeria. The American journal of tropical medicine and hygiene. 2012;86(1):52-7. Epub 2012/01/11. doi: 10.4269/ajtmh.2012.11-0090. PubMed PMID: 22232451; PubMed Central PMCID: PMCPMC3247109.

31. Onwujekwe O, Uguru N, Etiaba E, Chikezie I, Uzochukwu B, Adjagba A. The economic burden of malaria on households and the health system in Enugu State southeast Nigeria. PLoS One. 2013;8(11):e78362. Epub 2013/11/14. doi: 10.1371/journal.pone.0078362. PubMed PMID: 24223796; PubMed Central PMCID: PMCPMC3817251.

32. Obieche OA VU. Evaluation of cost of treatment of malaria in adults in Benin City, Nigeria: patients’ perspective. MWJ. 2016;7(12).

33. Central Bank of Nigeria. Monthly Average Exchange Rates of the Naira(Naira Per Unit of Foreign Currency) - 2018 Nigeria2018 [cited 2018]. Available from: https://www.cbn.gov.ng/rates/exrate.asp.

34. World Health Organization. World Malaria Report 2017. Geneva: 2017.
35. Falade C, Makanga M, Premji Z, Ortman CE, Stockmeyer M, de Palacios PI. Efficacy and safety of artemether-lumefantrine (Coartem) tablets (six-dose regimen) in African infants and children with acute, uncomplicated falciparum malaria. Transactions of the Royal Society of Tropical Medicine and Hygiene. 2005;99(6):459-67. Epub 2005/04/20. doi: 10.1016/j.trstmh.2004.09.013. PubMed PMID: 15837358.

36. Four Artemisinin-Based Combinations (4ABC) Study Group. A Head-to-Head Comparison of Four Artemisinin-Based Combinations for Treating Uncomplicated Malaria in African Children: A Randomized Trial. PLoS Medicine. 2011;8(11). doi: 10.1371/journal.pmed.1001119. PubMed PMID: 22087077; PubMed Central PMCID: PMCPMC3210754.

37. Falade C, Dada-Adegbola H, Ogunkunle O, Oguike M, Nash O, Ademowo O. Evaluation of the Comparative Efficacy and Safety of Artemether-Lumefantrine, Artesunate-Amodiaquine and Artesunate-Amodiaquine-Chlorpheniramine (Artemoclo™) for the Treatment of Acute Uncomplicated Malaria in Nigerian Children. Medical Principles and Practice. 2014;23(3):204-11. doi: 10.1159/000360578. PubMed PMID: 24732940; PubMed Central PMCID: PMCPMC5586877.

38. Grandesso F, Bachy C, Donam I, Ntambi J, Habimana J, D'Alessandro U, et al. Efficacy of chloroquine, sulfadoxine–pyrimethamine and amodiaquine for treatment of uncomplicated Plasmodium falciparum malaria among children under five in Bongor and Koumra, Chad. Transactions of the Royal Society of Tropical Medicine and Hygiene. 2006;100(5):419-26. doi: https://doi.org/10.1016/j.trstmh.2005.07.017.

39. Nahum A, Erhart A, Ahounou D, Bonou D, Van Overmeir C, Menten J, et al. Extended high efficacy of the combination sulphadoxine-pyrimethamine with artesunate in children with uncomplicated falciparum malaria on the Benin coast, West Africa. Malaria journal. 2009;8(2):37. Epub 2009/03/05. doi: 10.1186/1475-2875-8-37. PubMed PMID: 19257898; PubMed Central PMCID: PMCPMC2653068.

40. Adjuik M, Agnamey P, Babiker A, Borrmann S, Brasseur P, Cisse M, et al. Amodiaquine-artesunate versus amodiaquine for uncomplicated Plasmodium falciparum malaria in African children: a randomised, multicentre trial. Lancet (London, England). 2002;359(9315):1365-72. Epub 2002/04/30. PubMed PMID: 11978332.

41. Verret WJ, Arinaitwe E, Wanzira H, Bigira V, Kakuru A, Kamya M, et al. Effect of Nutritional Status on Response to Treatment with Artemisinin-Based Combination Therapy in Young Ugandan Children with Malaria. Antimicrobial Agents and Chemotherapy. 2011;55(6):2629-35. doi: 10.1128/aac.01727-10.

42. Yeka A, Tibenderana J, Achan J, D'Alessandro U, Talisuna AO. Efficacy of quinine, artemether-lumefantrine and dihydroartemisinin-piperazine as rescue treatment for uncomplicated malaria in Ugandan children. PLoS One. 2013;8(1):e53772. Epub 2013/01/26. doi: 10.1371/journal.pone.0053772. PubMed PMID: 23349741; PubMed Central PMCID: PMCPMC3551967.

43. Zongo I, Dorsey G, Rouamba N, Dokomajilar C, Lankoande M, Ouedraogo JB, et al. Amodiaquine, sulfadoxine-pyrimethamine, and combination therapy for uncomplicated falciparum malaria: a randomized controlled trial from Burkina Faso. The American journal of tropical medicine and hygiene. 2005;73(5):826-32. Epub 2005/11/12. PubMed PMID: 16282288.

44. Faucher JF, Aubouy A, Adeothy A, Cottrell G, Doritchamou J, Gourmel B, et al. Comparison of sulfadoxine-pyrimethamine, unsupervised artemether-lumefantrine, and unsupervised artesunate-amodiaquine fixed-dose formulation for uncomplicated Plasmodium falciparum malaria in Benin: a randomized effectiveness noninferiority trial. The Journal of infectious diseases. 2009;200(1):57-65. Epub 2009/05/28. doi: 10.1086/599378. PubMed PMID: 19469703.

45. Ramharter M, Oyakirome S, Klein Klouwenberg P, Adegnika AA, Agnandji ST, Missinou MA, et al. Artesunate-clindamycin versus quinine-clindamycin in the treatment of Plasmodium falciparum malaria: a randomized controlled trial. Clinical infectious diseases : an official publication of the
Infectious Diseases Society of America. 2005;40(12):1777-84. Epub 2005/05/24. doi: 10.1086/430309. PubMed PMID: 15909266.

46. Ioset JR, Kaur H. Simple field assays to check quality of current artemisinin-based antimalarial combination formulations. PLoS One. 2009;4(9):e7270. Epub 2009/10/01. doi: 10.1371/journal.pone.0007270. PubMed PMID: 19789707; PubMed Central PMCID: PMCPMC2749338.

47. Ochekpe NA, Agbowuro AA, Attah SE. Correlation of price and quality of medicines: Assessment of some artemisinin antimalarials in nigeria based on gphf minilab. International Journal of Drug Development and Research. 2010;2(1):211-8.

48. Onwujekwe O, Kaur H, Dike N, Shu E, Uzochukwu B, Hanson K, et al. Quality of anti-malarial drugs provided by public and private healthcare providers in south-east Nigeria. Malaria journal. 2009;8:22. Epub 2009/02/12. doi: 10.1186/1475-2875-8-22. PubMed PMID: 19208221; PubMed Central PMCID: PMCPMC2649149.

49. Sabartova JT, Amor. Survey of the quality of selected antimalarial medicines circulating in six countries of sub-Saharan Africa Geneva: 2011.

50. Affum AO, Lowor S, Osae SD, Dickson A, Gyan BA, Tulasi D. A pilot study on quality of artesunate and amodiaquine tablets used in the fishing community of Tema, Ghana. Malaria journal. 2001;357:1933-6. Epub 2001/06/27. PubMed PMID: 11425415.

51. Aina BA, Tayo F, Taylor O. Cost implication of irrational prescribing of chloroquine in Lagos State general hospitals. Journal of infection in developing countries. 2008;2(1):68-72. Epub 2008/01/01. PubMed PMID: 19736391.

52. Idowu OA, Apalara SB, Lasisi AA. Assessment of quality of chloroquine tablets sold by drug vendors in Abeokuta, Nigeria. Tanzania health research bulletin. 2006;8(1):45-6. Epub 2006/10/25. PubMed PMID: 17058801.

53. Bruxvoort K, Kalolella A, Cairns M, Festo C, Kenani M, Lyaruu P, et al. Are Tanzanian patients attending public facilities or private retailers more likely to adhere to artemisinin-based combination therapy? Malaria journal. 2015;14:87. Epub 2015/04/19. doi: 10.1186/s12936-015-0602-x. PubMed PMID: 25889767; PubMed Central PMCID: PMCPMC4340668.

54. Garuba HA, Kohler JC, Huisman AM. Transparency in Nigeria’s public pharmaceutical sector: perceptions from policy makers. Globalization and health. 2009;5:14. Epub 2009/10/31. doi: 10.1186/1744-8603-5-14. PubMed PMID: 19874613; PubMed Central PMCID: PMCPMC2775729.
Bate R, Hess K, Mooney L. Antimalarial medicine diversion: stock-outs and other public health problems. Research and Reports in Tropical Medicine. 2010;1:19-24. PubMed PMID: 20113060589.

Publication Type: Journal Article. Language: English. Number of References: 24 ref. Subject Subsets: Rural Development.

Blackstone EA, Fuhr JP, Jr., Pociask S. The health and economic effects of counterfeit drugs. American health & drug benefits. 2014;7(4):216-24. Epub 2014/08/16. PubMed PMID: 25126373; PubMed Central PMCID: PMCPMC4105729.

Fatokun O. Curbing the circulation of counterfeit medicines in Nigeria. Lancet (London, England). 2016;388(10060):2603. Epub 2016/11/12. doi: 10.1016/s0140-6736(16)32121-3. PubMed PMID: 27832872.

Erhun W, Babalola OO, M.O MO. Drug Regulation and Control in Nigeria: The Challenge of Counterfeit Drugs2013.

Davis B, Ladner J, Sams K, Tekinturhan E, de Korte D, Saba J. Artemisinin-based combination therapy availability and use in the private sector of five AMFm phase 1 countries. Malaria journal. 2013;12:135. Epub 2013/04/24. doi: 10.1186/1475-2875-12-135. PubMed PMID: 23607504; PubMed Central PMCID: PMCPMC3637826.

Gomez-Ramirez J, Sanz R. On the limitations of standard statistical modeling in biological systems: a full Bayesian approach for biology. Progress in biophysics and molecular biology. 2013;113(1):80-91. Epub 2013/04/02. doi: 10.1016/j.pbiomolbio.2013.03.008. PubMed PMID: 23542650.

Xie Y. VALUES AND LIMITATIONS OF STATISTICAL MODELS. Research in social stratification and mobility. 2011;29(3):343-9. Epub 2011/11/02. doi: 10.1016/j.rssm.2011.04.001. PubMed PMID: 22043133; PubMed Central PMCID: PMCPMC3203205.

Supporting Information

S1. Appendix Complete Input Table for the SAFARI Model in Nigeria