Two novel cluster states in 10Be

Fumiharu Kobayashi and Yoshiko Kanada-En’yo
Department of Physics, Kyoto University, Kyoto 606-8502, Japan
E-mail: f-kobayashi@ruby.scphys.kyoto-u.ac.jp

Abstract. We have investigated the cluster structure of 10Be by using 6He+α cluster wave functions and $2\alpha+2n$ dineutron condensate wave functions. We found two novel cluster 0^+ states, one of which has an $\alpha+\alpha+dineutron$ gas-like structure and the other contains 6He and a well-separated α cluster. In this paper, we discuss their cluster structures.

1. Introduction
Cluster structure is a hot topic in nuclear physics, and it has been eagerly investigated both theoretically and experimentally. In Be isotopes, an α cluster, which is the most representative cluster, tends to be developed. As for the 0^+ states of 10Be, the $0_{1,2}^+$ states have been confirmed experimentally, and their structures are explained well by a 2α core and two valence neutrons in the molecular orbits around the core. In addition to these 0^+ states, a new 0^+ state was proposed experimentally [1], which may consist of a 6He and a well-developed α.

In conjunction with the cluster structure of finite nuclei, we are also interested in the dineutron correlation. Two neutrons coupled to spin-singlet have strong spatial correlation and become compact to be considered as a kind of cluster. Its universal properties are not well-known and we constructed a model, which we call the “dineutron condensate (DC) wave function”, to investigate the dineutron correlation in various nuclei systematically [2].

In this work, we have investigated cluster states in 10Be and put forward the possibility of a state which contains a compact dineutron and another state which contains 6He and a well-separated α. We discuss their cluster structures in this paper.

2. Theoretical framework
In the present work, we superpose two kinds of cluster wave functions, namely, 6He+α cluster wave functions used in Ref. [3] and $2\alpha+2n$ DC wave functions proposed in Ref. [2].

In the 6He+α cluster wave function, the system is composed of a 6He and an α cluster separated by a distance d_c. The single particle wave functions are described by the harmonic oscillator wave functions, and the configuration of an α is $(0s)^4$. The 6He cluster is composed of an α core and two valence neutrons in the $(0p)^2$ configuration represented by Gaussians shifted with respect to the α core. By using such 6He+α cluster wave functions, the $0_{1,2}^+$ states of 10Be are well-described as shown in Ref. [3].

In addition to the 6He+α wave functions, we superpose the $2\alpha+2n$ DC wave functions. In the $2\alpha+2n$ DC wave functions, we assume that the nuclear system is composed of a 2α core and two valence neutrons whose spins are coupled to singlet and their relative motion is an s-wave.
The relative and centre of mass (c.o.m.) wave functions of two neutrons are denoted by ψ_r and ψ_G, and the explicit form of the whole DC wave function is as follows.

$$\Phi_{DC} = \frac{1}{\sqrt{10!}} \text{det} \left[\psi_{\alpha 1}(r_1) \cdots \psi_{\alpha 1}(r_4) \psi_{\alpha 2}(r_5) \cdots \psi_{\alpha 2}(r_8) \psi_r(r) \psi_G(r_G) \right],$$

$$\psi_r(r) \propto \exp \left[-\frac{r^2}{4b_n^2} \right], \quad \psi_G(r_G) \propto \exp \left[-\frac{r^2_G}{\beta^2} \right],$$

where $\psi_{\alpha i} (i = 1, 2)$ are the single particle wave functions of the 2α core whose relative distance is d_n; r and r_G are the relative and c.o.m. coordinates of the two extra neutrons, respectively. The Gaussian widths in the relative and c.o.m. wave functions are b_n and β, and these parameters set the size and the spatial expansion of the dineutron around the core, respectively. In the DC wave functions, we fix the parameters β and b_n to various values to describe the system as a superposition of dineutron subsystems with various sizes and distributions.

In the present work, we include $^6\text{He}+\alpha$-type basis states with $d_c = 1, 2, \cdots, 8$ fm as well as $2\alpha+2n$ DC-type basis states with $d_n = 1, 2, \cdots, 6$ fm, $\beta = 2, 3, \cdots, 9$ fm and five b_n values for each β.

3. Results

By superposing the wave functions explained above, we obtain two kinds of excited states having distinct cluster structures above the 0^+_2 state. We explain the structures of two new 0^+ states below.

3.1. The $\alpha+\alpha+$dineutron gas-like state

We obtained a state, which we label 0^+_3 here, containing a rather compact dineutron separated from the core. To see its dineutron component, we calculated the overlaps with the DC wave functions whose parameters d_n, β and b_n are fixed to various values. A component with a small b_n corresponds to a state containing a compact dineutron, while a component with a large β corresponds to a state containing two neutrons far from the 2α core. We show the overlap of the 0^+_3 state obtained with DC wave functions whose d_n is fixed to 4.0 fm in the β-b_n plane in Figure 1 (a), and that whose b_n is fixed to 2.2 fm on the β-d_n plane in Figure 1 (b). It can be seen in Figure 1 (a) that the peak is located at $(\beta, b_n) \sim (4.0, 2.2)$ with a broad width in both directions of β and b_n, and in Figure 1 (b) that the peak is at $(\beta, d_n) \sim (4.0, 4.0)$ also.

![Figure 1](image_url)

Figure 1. (a) The overlap of the 0^+_3 state with the DC wave functions with $d_n = 4$ fm. The horizontal axis is β and the vertical one is b_n. (b) The overlap of the 0^+_3 state with the DC wave functions with $b_n = 2.2$ fm. The horizontal axis is β and the vertical one is d_n. These figures are from Ref. [4]
with broad widths in both horizontal and vertical directions. This means that the dineutron is rather compact but its size is changeable to some extent, and such a soft dineutron and the two \(\alpha \) clusters are weakly interacting with each other and spread broadly. We propose that this \(0^+ \) state is a gas-like cluster state since it contains well-separated clusters loosely bound.

3.2. The state with a \(^6\text{He} \) plus a well-separated \(\alpha \)

![Image](image_url)

Figure 2. The overlaps of the \(0^+_3 \) and \(0^+_4 \) states with the \(^6\text{He}(0^+)+\alpha \) wave functions. The horizontal axis is \(d_{\alpha} \). This figure is from Ref. [4].

We also obtained a \(^6\text{He}+\alpha \) state. We label it by \(0^+_4 \). It lies energetically above the \(\alpha+\alpha+2\text{n} \) state \(0^+_3 \). In order to see its components consisting of a \(^6\text{He} \) and an \(\alpha \) cluster, as a function of their distance, in Figure 2 we show the overlap of the \(0^+_4 \) state with \(^6\text{He}(0^+)+\alpha \) wave functions (the subsystem \(^6\text{He} \) is projected to \(J^\pi = 0^+ \)) whose relative distance is \(d_{\alpha} \). The \(0^+_4 \) state has a large amplitude in the region of \(d_{\alpha} \sim 7 \text{ fm} \). This indicates that in the \(0^+_4 \) state there is a well-developed \(\alpha \) cluster displaced far from \(^6\text{He} \). On the other hand, the component of \(^6\text{He}+\alpha \) is minor in the \(0^+_3 \) state because the two \(\alpha \) clusters and the one dineutron in this state are weakly correlated, so that a \(^6\text{He} \) cluster cannot be formed. Thus these two \(0^+ \) states have cluster structures distinct from each other.

4. Summary

In the present work, we investigated excited cluster states in \(^{10}\text{Be}\) and indicated that there may exist two novel \(0^+ \) states with significantly different cluster structures. One of them has a gas-like structure of \(\alpha+\alpha+\text{dineutron} \) interacting weakly and extended spatially. Another consists of a \(^6\text{He} \) cluster and a well-separated \(\alpha \) cluster.

Acknowledgments

This work was supported by Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science (JSPS). It was also supported by the Grant-in-Aid for the Global COE Program “The Next Generation of Physics, Spun from Universality and Emergence” from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. A part of the computational calculations of this work was performed by using the supercomputers at YITP.

References

[1] Kuchera A N et al 2011 *Phys. Rev. C* **84** 054615
[2] Kobayashi F and Kanada-En’yo Y 2011 *Prog. Theor. Phys.* **126** 457
[3] Kanada-En’yo Y and Suhara T 2012 *Phys. Rev. C* **85** 024303
[4] Kobayashi F and Kanada-En’yo Y 2012 *Phys. Rev. C* **86** 064303