Evidences for the random singlet phase in a new honeycomb iridate SrIr$_2$O$_6$–δ

Pengbo Song,1,2,3 Kejia Zhu,4,1 Fan Yang,5 Yuan Wei,1,3 Lu Zhang,1,3 Huaxin Yang,1,3,6 Xian-Lei Sheng,5 Yang Qi,7,8 Jiamin Ni,8 Shiyun Li,8 Yanchun Li,9 Guanghan Cao,10,11,12 Zi Yang Meng,1,13 Wei Li,1,5,14 Youguo Shi,1,2,15,* and Shiliang Li1,3,15,†

1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
4School of Physics and Materials Science, Anhui University, Hefei, Anhui, 230601 P. R. China
5School of Physics, Beihang University, Beijing 100191, China
6Yangtze River Delta Physics Research Center Co., Ltd., Liyang, Jiangsu, 213300, People’s Republic of China
7Center for Field Theory and Particle Physics, Department of Physics, Fudan University, Shanghai 200433, China
8State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200438, China
9Multidiscipline Research Center, Institute of High Energy Physics, Chinese Academy of Science, Beijing 100049, China
10Department of Physics, Zhejiang University, Hangzhou 310027, China
11Zhejiang Province Key Laboratory of Quantum Technology and Devices, Interdisciplinary Center for Quantum Information, and State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027, China
12Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China
13Department of Physics and HKU-UCAS Joint Institute of Theoretical-and Computational Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China
14International Research Institute of Multidisciplinary Science, Beihang University, Beijing 100191, China
15Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China

Strong spin-orbital-coupling magnetic systems with the honeycomb structure can provide bond-directional interactions which may result in Kitaev quantum spin liquids and exotic anyonic excitations. However, one of the key ingredients in real materials–disorders–has been much less studied in Kitaev systems. Here we synthesized a trigonal SrIr$_2$O$_6$–δ with $\delta \approx 0.25$, which consists of two-dimensional honeycomb Ir planes with edge-sharing IrO$_6$ octahedra. First-principles computation and experimental measurements suggest that the electronic system is gapped, and there should be no magnetic moment as the Ir$^{3+}$ ion has no unpaired electrons. However, significant magnetism has been observed in the material, and it can be attributed to disorders that are most likely from oxygen vacancies. No magnetic order is found down to 0.05 K, and the low-temperature magnetic properties exhibit power-law behaviors in magnetic susceptibility and zero-field specific heat, and a single-parameter scaling of the specific heat under magnetic fields. These results provide strong evidence for the existence of the random singlet phase in SrIr$_2$O$_6$–δ, which offers a different member to the family of spin-orbital entangled iridates and Kitaev materials.

A two-dimensional (2D) honeycomb magnetic system may host a so-called Kitaev quantum spin liquid (QSL) if the magnetic interactions are strongly bond-dependent [1–3]. Many iridates and α-RuCl$_3$ have raised great interest recently, as the edge-sharing IrO$_6$ or RuCl$_6$ octahedra provides the unique building block of such bond-directional Kitaev interactions [4–16]. Although many of them show long-range magnetic ordering due to the presence of other types of interactions, such as Heisenberg and off-diagonals exchanges [5–7], possible QSL states may be still realized through tuning magnetic field, pressure and chemical modification [13, 14, 17–20]. However, despite great efforts and progress made, theoretical discussions and experimental verifications of the effects of disorder and randomness in the electronic and magnetic states of Kitaev materials are much less studied [21–27], even though they are inevitable in real materials.

Strong randomness can results in an interesting phase dubbed the random singlet phase (RSP), where the spins across arbitrary distances are able to form singlets due to the random distribution of antiferromagnetic (AFM) interactions [28]. A crucial feature of a RSP is that its heat capacity C and magnetic susceptibility χ must obey single-parameter scaling behaviors at low temperatures, such as both $C(T, H = 0)/T$ and $\chi(T)|_{H = 0}$ show power-law temperature dependence with a negative exponent between -1 and 0, and $C(H, T) \propto H^{-\gamma} F(T/H)$. The RSP has been well illustrated theoretically in one dimension (1D) [29–31]. The theoretical framework was extended to 2D and three-dimensional random spin-1/2 quantum magnets [32–35], but the problem cannot be solved in an analytically controlled manner. Only in recent years has unbiased quantum Monte Carlo seemed to reveal the existence of a 2D RSP for the square-lattice spin-1/2 quantum spin system with random interactions [36]. It should be noted that these studies have not involved spin-orbital couplings (SOCs), which are fundamentally present in the above Kitaev materials.

Experimentally, the RSP has long been found in doped semiconductors, such as Si:P and CdS [37, 38]. The essence for the existence of the RSP in these systems is that the spins are randomly distributed in space in essentially a continuum way, with the exchange coupling J between any two sites falling off exponentially with distance r. This "continuum" is because...
TABLE I. Nuclear structure parameters of SrIr$_2$O$_6$ with the space group of $P\overline{3}1m$ (No. 162): $a = b = 5.263(3)$ Å, $c = 5.222(3)$ Å, $\alpha = \beta = 90^\circ$, $\gamma = 120^\circ$. R: 0.048. S: 1.215.

Site	x	y	z	Occupancy	U (Å2)
Sr $1a$	0.0000	0.0000	0.0000	1	0.0079(6)
Ir $2d$	0.3333	0.6667	0.5000	1	0.0127(10)
O $6k$	0.378(3)	0.378(3)	0.296(4)	1	0.015(3)

the range of J is set by the radius a of the donor electron, which is much greater than the host lattice spacing. Recently, many frustrated magnetic systems showing no magnetic order have attracted a lot of interest, including iridates, as they may host the QSLs [13, 14, 39–42]. Alternately, the picture of RSP also emerges as a very good guess to explain experimental observations for some of these magnets [34–36, 43], especially considering that these materials are very different in composition and microscopic magnetic interactions but surprisingly exhibit part of the single-parameter scaling behaviors described above.

In this work we show that the RSP may also exist in a newly discovered strong SOC iridate, SrIr$_2$O$_6$–δ, where Ir$^{5+}$ ions form a 2D honeycomb lattice. While Ir$^{5+}$ itself should have zero spin number, the oxygen vacancies in the material give rise to magnetic moments. Both the magnetic susceptibility and specific heat show scaling behaviors expected for the RSP, but the exponents are slightly different for these two properties, which indicates strong SOC effects. Our experimental observations are further supplemented by state-of-art first-principles calculations.

Single crystals of SrIr$_2$O$_6$–δ were synthesized by mixing Sr(NO$_3$)$_2$ powders and Na$_2$IrO$_3$ single crystals, which were kept at 400 °C for 10 h. The product was washed by deionized water many times and pure samples were collected after drying at 80 °C. The final crystals typically have hexagonal shape, with an in-plane size of about 1 mm and thickness of about 0.2 mm. The resistivity and heat capacity were measured by a Physical Property Measurement System (Quantum Design) with the dilution refrigerator option, and the magnetic susceptibility was measured by a Magnetic Property Measurement System (MPMS, Quantum Design) and a MPMS with the He-3 option. The crystal structure was determined by the single-crystal x-ray diffraction (SC-XRD). Scanning transmission electron microscopy (STEM) observations were performed in the JEOL ARM200F equipped with double aberration correctors and operated at 200 kV. X-ray photoelectron spectroscopy (XPS) was measured on an AXIS Ultra system (Shimadzu, Japan) with an Al K_α radiation ($h\nu = 1486.6$ eV). All binding energies were calibrated against the C 1s peak (284.8 eV), which arises from surface adventitious carbon. The first-principles calculations were carried out based on density-functional theory (DFT) using the projector augmented wave method as implemented in Vienna ab initio simulation package [44, 45].

Figure 1 (a) gives the crystal structure of SrIr$_2$O$_6$–δ (space group $P\overline{3}1m$), where Ir$^{5+}$ ions with edge-shared IrO$_6$ octahedra form the honeycomb layers separated by the Sr$^{2+}$ ions. SrIr$_2$O$_6$–δ can be viewed as alternately stacking structure of layered IrO$_3$ and Sr atom layer. The detailed information for the crystal structure determined by the SC-XRD is given in Table I. Figure 1 (b) shows a STEM image taken along the c-axis direction, which shows a perfect honeycomb arrangement of iridium ions. To obtain the valence of iridium in SrIr$_2$O$_6$–δ, we compare its XPS spectra with those of NaIrO$_3$ and Na$_2$IrO$_3$. Both peaks come from the iridium ions. (d) (left) The first Brillouin zone for SrIr$_2$O$_6$. (right) Band structure and projected DOS of SrIr$_2$O$_6$. The horizontal dashed line represents the Fermi energy E_F.

![Figure 1](image-url)
supposing one oxygen vacancy creates two Ir$^{4+}$.

We calculated the band structure of SrIr$_2$O$_6$ by the DFT+U method [46–48] to understand its basic electronic properties. An effective exchange parameter $U_{eff} = 1.5$ eV was found to quantitatively explain the experimental results as shown below and is also consistent with previous reports on some other iridates [49, 50]. The first Brillouin zone, the band structure and the density of states (DOS) are shown in Fig. 1(d).

Our calculations show that the states from -8 to 6 eV are dominated by Ir-5d and O-2p orbitals and the splitting gap between t_{2g} and e_g is about 2 eV. Moreover, the system is an insulator with a band gap ~ 0.18 eV. As already known [4–7], the octahedral crystal field of IrO$_6$ and strong SOC effects result in a high-energy $j = 1/2$ doublet and a low-energy $j = 3/2$ quartet. Therefore, for Ir$^{5+}$, the system has the fully occupied $j = 3/2$ and empty $j = 1/2$ states and thus should not exhibit magnetism, as shown in NaIrO$_3$ and Sr$_2$CaIr$_2$O$_9$ [51].

The temperature dependence of the resistivity is consistent with the above calculated results, as shown in Fig. 2 (a). The high-temperature data (> 300 K) shows a gap behavior, i.e., $\rho \propto \exp(-E_g/k_BT)$, as shown in the inset of Fig. 2 (a). The fitting gives a gap value of ~ 0.175 eV, which is close to the calculated one. At low temperatures, the temperature dependence of the resistivity can be described by the variable-range-hopping (VRH) theory [52], where the low-temperature conduction is determined by the activated hopping between the localized states near the Fermi level. Accordingly, the conductance σ is proportional to $\exp[-(T_0/T)^{1/2}]$, where T_0 is a characteristic temperature, as shown by the dashed lines in Fig. 2 (b). The power of 1/2 may come from the existence of the Coulomb gap in the localized states due to electron-electron interactions [52]. Fitting the data with this expression gives the values of T_0 for the current within the ab plane and along the c axis as about 5400 and 3600 K, respectively. According to the VRH theory [52], $T_0 = 2.8e^2/4\pi\epsilon_0\epsilon_0k_B$, where e, ϵ_0, ϵ, and k_B are the electron charge, vacuum permittivity, relative permittivity, and Boltzmann constant, respectively. Here a is the radius of localized states near the Fermi level, so we have $ea = 8.7$ nm within the ab plane and 12.8 nm along the c axis. These large values of radius closely resemble those of donor electrons in doped semiconductors [37, 38] and are consistent with the random but long-ranged interactions between the magnetic moments.

Figure 2 (c) gives the temperature dependence of the magnetic susceptibility χ. The data above 50 K can be fitted by the Curie-Weiss function with $\chi = C/(T - \theta) + \chi_0$, where θ, χ_0, and χ_0 are the Curie constant, Curie temperature, and background, respectively. Along both directions, θ is about -27 K, suggesting the interactions are dominated by the AFM exchanges. The effective moments μ_{eff} are 0.46 and 0.63 μ_B for the field within the ab plane and along the c-axis, respectively. These small values are consistent with the estimated amount of Ir$^{4+}$ with $S = 1/2$, as shown above. The value of χ_0 for the field within the ab plane and along the c axis is 4.5×10^{-4} and 2.8×10^{-4} emu/mol, respectively, suggesting a large Van Vleck contribution. At low temperatures, χ exhibits a power-law temperature dependence, i.e., $\chi \propto T^{-\alpha}$, as shown in Fig. 2 (d). Fitting the data below 2 K gives α equal to 0.62 and 0.67 for $H//c$ and $H//ab$, respectively. Alternately, fitting on the high-field $M - H$ curve shows that $\alpha = 0.6$, consistent with the result from $\chi(T)$.

Figure 2 (e) shows the specific heats of SrIr$_2$O$_6$ and its isomorphic nonmagnetic compound SrSb$_2$O$_6$ at zero field. The phonon part of the specific heat in the former, C_{ph}^{Sr}, can be obtained from that of the latter, C_{ph}^{Sb}, by simply introducing a renormalization factor b for the temperature, i.e., $C_{ph}^{Sr}(T) = C_{ph}^{Sb}(bT)$. Here b is calculated to be about 0.841 based on the molar mass of the two samples with no manual adjustment.
The low-temperature specific heat roughly shows magnetic specific heat can thus be obtained by subtracting the phonon contribution to the specific heat in SrIrO$_6$. The magnetic specific heat can thus be obtained by subtracting this part from the total specific heat, as shown in Fig. 2 (f). The low-temperature specific heat roughly show $T^{-0.5}$ behavior, but there are small features that deviate from this simple temperature dependence, which is reasonable for a RSP since the power-law DOS of the randomness is an approximation [34, 35]. A broad hump also appears around 15 K, which typically marks the temperature where the short-range correlations of spins for a 2D system are built up and is consistent with the absolute value of the Curie temperature θ_B obtained above. Accordingly, the magnetic entropy is about 1.6 J/mol K, which is about 0.27Rln2. This value is very close to the estimated absolute value of the Curie temperature θ obtained above. Therefore, the magnetic moment is μ_B, corresponding to 0.94 μ_B/Ir$^{4+}$. This value is very close to the magnetic moment of a spin 1/2 with $g = 2$, and thus gives rise to an effective moment of about 0.43 μ_B/Ir for with 25% Ir$^{4+}$, very close to the experimental values. The small values of the effective moment and magnetic entropy have also been observed in many iridium oxides with 5d^4 configurations, which have raised many interests and debates [54–63]. Here in SrIrO$_{6−δ}$, our analysis based on oxygen vacancies gives a natural explanation of the origin of its magnetism.

The ground states of the magnetic system in SrIrO$_{6−δ}$ can be revealed by the low-temperature specific heats as shown in Fig. 4 (a) and (b). At zero field, the C/T shows $T^{1−γ}$ behavior at low temperatures with $γ$ equal to about 0.5. The suppression of the specific heat at low temperatures by the magnetic field for $H//c$ is more significant than that for $H//ab$, which is consistent with $\chi_c > \chi_{ab}$. Figures 4 (c) and (d) show that all data fall onto one curve when they are plotted as $B^{γ}C/T$ vs T/B. In other words, a single-parameter scaling can describe the field effects on the specific heats in SrIrO$_{6−δ}$ [34, 35].

Based on the above results, we conclude that the magnetic ground state in SrIrO$_{6−δ}$ is the RSP, which is the first kind in Kitaev materials. The major evidences for the existence of the RSP include that the magnetic susceptibility and specific heat at zero field follows power-law temperature dependence, i.e., $\chi_{H=0} \propto T^{−α}$ and $C(H=0) \propto T^{1−γ}$, and more importantly, the scaling behavior of the specific heat under field, i.e., $C/T \propto H^{γ} F_q(T/H)$, which have been treated as the funda-
magnetic order and Kitaev spin liquid states in LiRuO$_3$. The tendency of dimerization in this compound, which competes with another factor for the formation of singlets, may be the ten- dency of dimerization in this compound, which competes with another factor for the formation of singlets. A similar feature for the RSP in SrIrO$_3$ can only be answered in the future by establishing a random spin model and finding the quantum many-body states therein by solving this model.

A unique feature for the RSP in SrIrO$_3$ is that the values of α in the magnetic-susceptibility scaling and γ in the specific-heat scaling are not the same, which contradicts with the simple predicted properties of a RSP [34, 35]. We note that there is strong SOC in our system, which may give rise to this discrepancy. The effects of SOC can be indeed seen in the low-temperature behavior of B^C/T, which shows $(T/B)^{\gamma}$ dependence [Figs. 4(c) and 4(d)]. Theoretically, it has been argued that the value of q is associated with the SOC and anti-symmetric Dzyaloshinskii-Moriya spin exchanges [35]. Here the values of q are about 1.5 for both field directions, which may come from combinations of different cases. Moreover, the fact that there should be bond-directional interactions in this material may also have significant effects in its magnetic properties [54]. With all these findings, our results offer another honeycomb iridate member to the family of iridates and Kitaev materials, and reveal the fact that the SOC quantum magnets, can not only give rise to exotic magnetic order, quantum spin liquid but also the RSP. In future, it will be of great interests to investigate the possible competition and collaboration of these phases in the iridates and Kitaev materials.

This work is supported by Beijing Natural Science Foundation (Grants No. Z180008), the National Key Research and Development Program of China (Grants No. 2017YFA0302900, No. 2016YFA0300500, No. 2016YFA0300604, 2020YFA0406003), the National Natural Science Foundation of China (Grants No. 11874401, No. 1196160699, No. U2032204, No. 11774399, No. 11974036), the K. C. Wong Education Foundation (Grants No. GJTD-2020-01, No. GJTD-2018-01), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grants No. XDB33000000), and the RGC of Hong Kong SAR of China (Grant Nos. 17303019 and 17301420).

P. S., K. Z. and F. Y. contributed equally to this work.

[1] A. Kitaev, Anyons in an exactly solved model and beyond, Ann. Phys. 321, 2 (2006).
[2] G. Baskaran, S. Mandal, and R. Shankar, Exact results for spin dynamics and fractionalization in the Kitaev model, Phys. Rev. Lett. 98, 247201 (2007).
[3] X.-Y. Feng, G.-M. Zhang, and T. Xiang, Topological characterization of quantum phase transitions in a spin-1/2 model, Phys. Rev. Lett. 98, 087204 (2007).
[4] G. Jackeli and G. Khaliullin, Mott insulators in the strong spin-orbit coupling limit: From Heisenberg to a quantum compass and Kitaev models, Phys. Rev. Lett. 102, 017205 (2009).
[5] J. Chaloupka, G. Jackeli, and G. Khaliullin, Kitaev-Heisenberg model on a honeycomb lattice: Possible exotic phases in iridium oxides A$_2$IrO$_3$, Phys. Rev. Lett. 105, 027204 (2010).
[6] J. G. Rau, E. K.-H. Lee, and H.-Y. Kee, Generic spin model for the honeycomb iridates beyond the Kitaev limit, Phys. Rev. Lett. 112, 077204 (2014).
[7] Y. Yamaji, Y. Nomura, M. Kurita, R. Arita, and M. Imada, First-principles study of the honeycomb-lattice iridates Na$_2$IrO$_3$ in the presence of strong spin-orbit interaction and electron correlations, Phys. Rev. Lett. 113, 107201 (2014).
[8] F. Ye, S. Chi, H. Cao, B. C. Chakoumakos, J. A. Fernandez-Baca, R. Custelcean, T. F. Qi, O. B. Korneta, and G. Cao, Direct evidence of a zigzag spin-chain structure in the honeycomb lattice: A neutron and X-ray diffraction investigation of single-crystal Na$_2$IrO$_3$, Phys. Rev. B 85, 180403 (2012).
[9] X. Liu, T. Berlijn, W.-G. Yin, W. Ku, A. Tsvelik, Y.-J. Kim, H. Gretarsson, Y. Singh, P. Gegenwart, and J. P. Hill, Long-range magnetic ordering in Na$_2$IrO$_3$, Phys. Rev. B 83, 220403 (2011).
[10] S. K. Choi, R. Coldea, A. N. Kolmogorov, T. Lancaster, I. I. Mazin, S. J. Blundell, P. G. Radaelli, Y. Singh, P. Gegenwart, K. R. Choi, S.-W. Cheong, P. J. Baker, C. Stock, and J. Taylor, Spin waves and revised crystal structure of honeycomb Iridate Na$_2$IrO$_3$, Phys. Rev. Lett. 107, 137204 (2012).
[11] S. C. Williams, R. D. Johnson, F. Freund, S. Choi, A. Jesche, I. Kimchi, S. Manni, A. Bomardi, P. Manuel, P. Gegenwart, and R. Coldea, Incommensurate counterrotating magnetic order stabilized by Kitaev interactions in the layered honeycomb α-Ir$_2$O$_3$, Phys. Rev. B 93, 195158 (2016).
[12] T. Takayama, A. Kato, R. Dinnebier, J. Nuss, H. Kono, L. S. I. Veiga, G. Fabbri, D. Haskel, and H. Takagi, Hyperhoneycomb iridate β-Li$_2$IrO$_3$ as a platform for Kitaev magnetism, Phys. Rev. Lett. 114, 077202 (2015).
[13] K. Kitagawa, T. Takayama, Y. Matsumoto, A. Kato, R. Takano, Y. Kishimoto, S. Bette, R. Dinnebier, G. Jackeli, and H. Takagi, A spin-orbital-entangled quantum liquid on a honeycomb lattice, Nature (London) 554, 341 (2018).
[14] F. Bahrami, W. Lafargue-Dit-Hauret, O. I. Lebedev, R. Movshovich, H.-Y. Yang, D. Broido, X. Rocquefelte, and F. Tafti, Thermodynamic evidence of proximity to a Kitaev spin liquid in Ag$_3$Li$_2$O$_6$, Phys. Rev. Lett. 123, 237203 (2019).
[15] A. Banerjee, J. Yan, J. Knolle, C. A. Bridges, M. B. Stone, M. D. Lumsden, D. G. Mandrus, D. A. Tennant, R. Moessner, and S. E. Nagler, Neutron scattering in the proximate quantum spin liquid α-RuCl$_3$, Science 356, 1055 (2017).
[16] H. Takagi, T. Takayama, G. Jackeli, G. Khaliullin, and S. E. Nagler, Concept and realization of Kitaev quantum spin liquids, Nat. Rev. Phys. 1, 264 (2019).
tors, Springer Series in Solid-State Sciences, Vol. 45 (Springer, Berlin, Heidelberg, 1984).

[53] M. Bouvier, P. Lethuillier, and D. Schmitt, Specific heat in some gadolinium compounds. I. Experimental, Phys. Rev. B 43, 13137 (1991).

[54] G. Khaliullin, Excitonic magnetism in Van Vleck–type \(d^4 \) Mott insulators, Phys. Rev. Lett. 111, 197201 (2013).

[55] G. Cao, T. F. Qi, L. Li, J. Terzic, S. J. Yuan, L. E. DeLong, G. Murthy, and R. K. Kaul, Novel magnetism of \(\text{Ir}^{5+} (d^4) \) ions in the double perovskite \(\text{Sr}_2\text{YIrO}_6 \), Phys. Rev. Lett. 112, 056402 (2014).

[56] O. N. Meetei, W. S. Cole, M. Randeria, and N. Trivedi, Novel magnetic state in \(d^4 \) Mott insulators, Phys. Rev. B 91, 054412 (2015).

[57] T. Dey, A. Maljuk, D. V. Efremov, O. Kataeva, S. Gass, C. G. F. Blum, F. Steckel, D. Gruner, T. Ritschel, A. U. B. Wolter, J. Geck, C. Hess, K. Koepernik, J. van den Brink, S. Wurmehl, and B. Büchner, \(\text{Ba}_2\text{YIrO}_6 \): A cubic double perovskite material with \(\text{Ir}^{5+} \) ions, Phys. Rev. B 93, 014434 (2016).

[58] A. Nag, S. Bhowal, S. K. Panda, R. Mathieu, J. C. Orain, F. Bert, P. Mendels, P. G. Freeman, M. Mansson, H. M. Rønnow, M. Telling, P. K. Biswas, D. Sheptyakov, S. D. Kaushik, V. Siruguri, C. Meneghini, I. Dag Gupta, and S. Ray, Origin of the spin-orbital liquid state in a nearly \(J = 0 \) iridate \(\text{Ba}_3\text{ZnIr}_2\text{O}_9 \), Phys. Rev. Lett. 116, 097205 (2016).

[59] L. T. Corredor, G. Aslan-Canser, M. Sturma, K. Manna, A. Maljuk, S. Gass, T. Dey, A. U. B. Wolter, O. Kataeva, A. Zimmermann, M. Geyer, C. G. F. Blum, S. Wurmehl, and B. Büchner, Iridium double perovskite \(\text{Sr}_2\text{YIrO}_6 \): A combined structural and specific heat study, Phys. Rev. B 95, 064418 (2017).

[60] S. Fuchs, T. Dey, G. Aslan-Canser, A. Maljuk, S. Wurmehl, B. Büchner, and V. Kataev, Unraveling the nature of magnetism of the \(d^4 \) double perovskite \(\text{Ba}_2\text{YIrO}_6 \), Phys. Rev. Lett. 120, 237204 (2018).

[61] M. Kusch, V. M. Katukuri, N. A. Bogdanov, B. Büchner, T. Dey, D. V. Efremov, J. E. Hamann-Borreto, B. H. Kim, M. Krisch, A. Maljuk, M. M. Sala, S. Wurmehl, G. Aslan-Canser, M. Sturma, L. Hozoi, J. van den Brink, and J. Geck, Observation of heavy spin-orbit excitons propagating in a non-magnetic background: The case of \(\text{(Ba, Sr)}_2\text{YIrO}_6 \), Phys. Rev. B 97, 064421 (2018).

[62] A. Nag, S. Bhowal, A. Chakraborty, M. M. Sala, A. Efimenko, F. Bert, P. K. Biswas, A. D. Hillier, M. Itoh, S. D. Kaushik, V. Siruguri, C. Meneghini, I. Dag Gupta, and S. Ray, Origin of magnetic moments and presence of spin-orbit singlets in \(\text{Ba}_2\text{YIrO}_6 \), Phys. Rev. B 98, 014431 (2018).

[63] A. Parameki, D. J. Singh, B. Yuan, D. Casa, A. Said, Y.-J. Kim, and A. D. Christianson, Spin-orbit coupled systems in the atomic limit: rhenates, osmates, iodides, Phys. Rev. B 97, 235119 (2018).

[64] J. Park, T.-Y. Tan, D. T. Adroja, A. Daoud-Aladine, S. Choi, D.-Y. Cho, S.-H. Lee, J. Kim, H. Sim, T. Morioka, H. Nojiri, V. V. Krishnamurthy, P. Manuel, M. R. Lees, S. V. Streltsov, D. I. Khomskii, and J.-G. Park, Robust singlet dimers with fragile ordering in two-dimensional honeycomb lattice of \(\text{Li}_2\text{RuO}_3 \), Sci. Rep. 6, 25238 (2016).