Stable solution of the log-Minkowski problem in the case of many hyperplane symmetries

Károly J. Böröczky,† Apratim De‡

January 12, 2021

Abstract

In the case of symmetries with respect to \(n \) independent linear hyperplanes, the stability of the solution of the Logarithmic Minkowski problem on \(S^{n-1} \) is established.

MSC 2010
Primary: 35J96, Secondary: 52A40

1 Introduction

The so-called Minkowski problem forms the core of various areas in fully nonlinear partial differential equations and convex geometry (see Trudinger, Wang [65] and Schneider [64]). Extending it, the rapidly developing new \(L_p \)-Minkowski theory initiated by Lutwak [50, 51, 52], have become main research areas in geometric analysis.

The classical Minkowski’s existence theorem due to Minkowski and Alexandrov describes the so-called surface area measure \(S_K \) of a convex body \(K \) (the case \(p = 1 \)) where the regularity of the solution is well investigated by Nirenberg [57], Cheng and Yau [28], Pogorelov [59] and Caffarelli [24].

First major results about the \(L_p \)-Minkowski problem for \(p \neq 1 \) have been obtained by Chou, Wang [29] and Hug, Lutwak, Yang, Zhang [42], and more recently the papers Boroczky, Lutwak, Yang, Zhang [19], Andrews, Guan, Ni

*Supported by NKFIH grant K 132002
†Alfréd Rényi Institute of Mathematics, Realtanoda u. 13-15, H-1053 Budapest, Hungary, and Department of Mathematics, Central European University, Nador u. 9, H-1051, Budapest, Hungary, boroczky.karoly.j@renyi.hu
‡Department of Mathematics, Central European University, Nador u. 9, H-1051, Budapest, Hungary, de.apratim91@gmail.com
For a compact convex set K in \mathbb{R}^n, we write $V(K)$ to denote the n-dimensional Lebesgue measure. We say that a compact set K in \mathbb{R}^n is a convex body if $V(K) > 0$; or equivalently, the interior of K is non-empty. The cone volume measure or L_0 surface area measure V_K on S^{n-1}, originating from the paper Gromov and Milman [31], has become an indispensable tool in the last decades (see say Barthe, Guédon, Mendelson, Naor [8], Naor [55], Paouris, Werner [58], Boroczky, Henk [14]). If a convex body K contains the origin, then its cone volume measure is $dV_K = \frac{1}{n} h_K dS_K$ where h_K is the support function of K and the total measure is the volume of K. In particular, the Monge-Ampère equation on the sphere S^{n-1} corresponding to the logarithmic (or L_0-) Minkowski problem is
\[h \det(\nabla^2 h + h \text{Id}) = nf \] (1)
where ∇h and $\nabla^2 h$ are the gradient and the Hessian of h with respect to a moving orthonormal frame. We recall that for a given finite Borel measure μ on S^{n-1}, a positive h on S^{n-1} that is the restriction of a convex homogeneous function on \mathbb{R}^n is the solution of (1) in the Alexandrov sense if the corresponding Monge-Ampère measure satisfies
\[\det(\nabla^2 h + h \text{Id}) d\sigma = \frac{n}{h} \cdot \mu \] (2)
where σ is the Lebesgue measure on S^{n-1}. In particular, for any Alexandrov solution h of (1) (or equivalently of (2)), there exists a unique convex body K with $o \in \text{int } K$ such that $h = h_K$ where $h_K(u) = \max_{x \in K} \langle u, x \rangle$ is the support function of K for $u \in \mathbb{R}^n$, $\mu = V_K$ and the corresponding Monge-Ampère measure is S_K.

We observe that the Monge-Ampère equation (1) is homogeneous in the sense that replacing f by λf for $\lambda > 0$ is equivalent replacing h by $\lambda^{1/n} h$. Therefore, we may assume that $V(K) = 1$; or in other words, the f in (1) is a probability density, or the μ in (2) is a probability measure.

Following partial and related results by Andrews [1], Chou, Wang [29], B. He, G. Leng, K. Li [34], Henk, Schürman, Wills [37], Stancu [65], Xiong [70] the paper Boroczky, Lutwak, Yang, Zhang [19] characterized even cone volume measures by the so called subspace concentration condition. Recently, breakthrough results have been obtained by Chen, Li, Zhu [27], Chen,
Huang, Li [25], Kolesnikov [44], Nayar, Tkocz [56], Kolesnikov, Milman [46], Putterman [60] about the uniqueness of the solution, which is intimately related to the conjectured log-Minkowski inequality Conjecture 3.1.

We note that the logarithmic Minkowski problem (2) for possibly non-even measures is wide open, as the best sufficient condition for a measure being a cone-volume measure is provided by Chen, Li, Zhu [27] (solving for example the case of absolutely continuous measures), and some obstruction (necessary condition) is provided by Boroczky, Hegedus [13].

The subspace concentration condition obtained in the framework of the logarithmic Minkowski problem has interesting applications for linear images of measures on the sphere (see [20]). In addition, the versions of the so called dual Minkowski problem (which is another generalization of the logarithmic Minkowski problem) are discussed say in Huang, Lutwak, Yang, Zhang [40], Lutwak, Yang, Zhang [54], Li, Sheng, Wang [48], Boroczky, Fodor [12], Boroczky, Lutwak, Yang, Zhang, Zhao [21, 22], Henk, Pollehn [36], Huang, Zhao [41].

In order to understand better the objects with \(n \) independent hyper-plane symmetries, for independent \(u_1, \ldots, u_n \in S^{n-1} \), we observe that a linear subspace \(V \subset \mathbb{R}^n \) is invariant under the orthogonal reflections through \(u_1^\perp, \ldots, u_n^\perp \) if and only if \(u_1, \ldots, u_n \subset V \cup V^\perp \). In particular, there exist only finitely many invariant subspaces, and the orthogonal complement of an invariant subspace and intersection of invariant subspaces are invariant.

Boroczky, Kalantzopoulos [17] proved the following characterization of cone-volume measures under hyperplane symmetry assumption.

THEOREM 1.1 (Boroczky, Kalantzopoulos) Let \(G \) be the closure of the group generated by the reflections through linear \((n-1)\)-spaces \(H_1, \ldots, H_n \) in \(\mathbb{R}^n \) with \(H_1 \cap \ldots \cap H_n = \{0\} \). For a finite non-trivial Borel measure \(\mu \) on \(S^{n-1} \) invariant under \(G \), there exists a \(G \) invariant Alexandrov solution of the logarithmic Minkowski equation (2) if and only if

\[
(i) \hspace{1cm} \mu(L \cap S^{n-1}) \leq \frac{\dim L}{n} \cdot \mu(S^{n-1}) \text{ for any proper linear subspace } L \text{ invariant under } G; \\
(ii) \hspace{1cm} \mu(L \cap S^{n-1}) = \frac{\dim L}{n} \cdot \mu(S^{n-1}) \text{ in } (i) \text{ for a proper invariant linear subspace } L \text{ is equivalent with } \text{supp } \mu \subset L \cup L^\perp.
\]

In addition, if strict inequality holds in (i) for each proper linear subspace \(L \) invariant under \(G \), then the \(G \) invariant solution is unique.

We note that the measure in Theorem 1.1 may not be even; for example, possibly \(\mu = V_K \) for a regular simplex \(K \) whose centroid is the origin.
For compact convex sets M and N, we write $M \oplus N$ to denote $M + N$ if $\langle x, y \rangle = 0$ holds for $x \in M$ and $y \in N$. In addition, we say that a linear subspace L of \mathbb{R}^n is proper if $1 \leq \dim L \leq n - 1$. We note that [17] proved that $V_K(L \cap S^{n-1}) = \frac{\dim L}{n} \cdot V(K)$ holds in Theorem 1.1 (i) for a proper invariant subspace L if and only if $K = (K \cap L) \oplus (K \cap L^\perp)$.

According to [17], $V_K = V_C$ holds for convex bodies K and C in \mathbb{R}^n invariant under reflections through n independent linear $(n-1)$-planes H_1, \ldots, H_n if and only if $V(K) = V(C)$, and $K = K_1 \oplus \ldots \oplus K_m$ and $C = C_1 \oplus \ldots \oplus C_m$ for compact convex sets $K_1, \ldots, K_m, C_1, \ldots, C_m$ of dimension at least one and invariant under reflections through H_1, \ldots, H_n where K_i and C_i are dilates for $i = 1, \ldots, m$. Naturally, if $m = 1$, then $K = C$.

In order to prepare for the stability version Theorem 1.2 of Theorem 1.1, for any compact $X \subset S^{n-1}$ and $\varrho \in [0, 2]$, we consider the tube

$$\Psi(X, \varrho) = \{u \in S^{n-1} : \exists x \in X, \|x - u\| \leq \varrho\}.$$

The cone volume measure V_K of a convex body K readily satisfies $dV_{tK} = t^n dV_K$ for $t > 0$. Therefore, when comparing the cone volume measures of convex bodies K and C, we may assume that $V(K) = V(C) = 1$, and hence V_K and V_C are probability measures on S^{n-1}. In turn, one natural distance between two probability measures μ and ν on S^{n-1} is the l_1 Wasserstein distance. First, we consider the family of Lipschitz functions on S^{n-1}; namely, for $\theta > 0$, let

$$\text{Lip}_\theta = \{f : S^{n-1} \to \mathbb{R} : \forall a, b \in S^{n-1}, |f(a) - f(b)| \leq \theta \|a - b\|\}. \quad (3)$$

Now the Wasserstein distance of the Borel probability measures μ and ν on S^{n-1} is

$$d_W(\mu, \nu) = \sup \left\{ \int_{S^{n-1}} f \, d\mu - \int_{S^{n-1}} f \, d\nu : f \in \text{Lip}_1 \right\}.$$

It is known that convergence of a sequence of probability measures with respect to the Wasserstein distance is equivalent with weak convergence.

We note that as $\mu(S^{n-1}) = \nu(S^{n-1})$ in the definition of $d_W(\mu, \nu)$, we may assume that $\min f = -1$; therefore, $f \in \text{Lip}_1$ implies that

$$\|f\|_\infty = \max_{u \in S^{n-1}} |f(u)| \leq 1. \quad (4)$$

In turn, we observe that if $d\mu(u) = \varphi(u) \, du$ and $d\nu(u) = \psi(u) \, du$, then

$$d_W(\mu, \nu) \leq \int_{S^{n-1}} |\varphi(u) - \psi(u)| \, du. \quad (5)$$
THEOREM 1.2 Let G be the closure of the group generated by the reflections through linear $(n-1)$-spaces H_1, \ldots, H_n in \mathbb{R}^n with $H_1 \cap \ldots \cap H_n = \{0\}$. If μ_1 and μ_2 are Borel probability measures on S^{n-1} invariant under G, and
\begin{align*}
\mu_1(\Psi(L \cap S^{n-1}, \delta)) &\leq (1 - \tau) \cdot \frac{\dim L}{n}, \\
\mu_2(\Psi(L \cap S^{n-1}, \delta)) &\leq (1 - \tau) \cdot \frac{\dim L}{n}
\end{align*}
(6)
for $\delta, \tau \in (0, \frac{1}{2})$ and for any proper subspace L invariant under G, then the unique G invariant Alexandrov solution h_i of the logarithmic Minkowski problem (2) for $\mu = \mu_i$, $i = 1, 2$, satisfies
\begin{align*}
\|h_1 - h_2\|_\infty &\leq \gamma_0 \cdot d_W(\mu_1, \mu_2)^{\frac{1}{n+1}} \quad (7) \\
r_0 &\leq h_1, h_2 \leq R_0
\end{align*}
(8)
where for some absolute constant $c > 1$, we have
\begin{itemize}
 \item $R_0 = n$, $r_0 = \frac{1}{\sqrt{n}}$, $\gamma_0 = c^n \cdot \frac{1}{\sqrt{n+1}}$ and the condition (9) is irrelevant provided the action of G is irreducible;
 \item $R_0 = \left(\frac{n^5}{\delta^2} \right)^{\frac{1}{7}}$, $r_0 = \frac{n^{\frac{2}{7}}}{\sqrt{n}} \left(\frac{\delta}{n^6}\right)^{\frac{1}{7}}$ and $\gamma_0 = \frac{c^n}{\tau} \cdot \frac{\delta^{\frac{2}{7}}}{n^{\frac{12}{7}}}$ provided the action of G is reducible.
\end{itemize}

Actually, Theorem 1.2 can be extended to the case when $\mu_1(S^{n-1}) \neq \mu_2(S^{n-1})$ (see Corollary 1.3). In this case, we need the bounded Lipschitz distance $d_{BL}(\mu, \nu)$ of two Borel measures μ and ν on S^{n-1} (see Dudley [30]); namely,
\[
d_{BL}(\mu, \nu) = \sup \left\{ \int_{S^{n-1}} f \, d\mu - \int_{S^{n-1}} f \, d\nu : f \in \text{Lip}_1 \text{ and } \|f\|_\infty \leq 1 \right\}.
\]
Using the test function constant 1 shows that
\[
|\mu(S^{n-1}) - \nu(S^{n-1})| \leq d_{BL}(\mu, \nu). \quad (9)
\]
We observe that if $\mu(S^{n-1}) = \nu(S^{n-1}) = 1$, then $d_{BL}(\mu, \nu) = d_W(\mu, \nu)$. On the other hand, if $\lambda > 0$ and μ is any finite non-trivial Borel measure on S^{n-1}, then
\[
d_{BL}(\mu, \lambda \mu) \leq |\lambda - 1| \cdot \mu(S^{n-1}). \quad (10)
\]

COROLLARY 1.3 Let G be the closure of the group generated by the reflections through linear $(n-1)$-spaces H_1, \ldots, H_n in \mathbb{R}^n with $H_1 \cap \ldots \cap H_n =$
If μ_1 and μ_2 are finite Borel measures on S^{n-1} invariant under G satisfying $d_{bL}(\mu_1, \mu_2) \leq M = \min\{\mu_1(S^{n-1}), \mu_2(S^{n-1})\} > 0$ and

$$
\begin{align*}
\mu_1\left(\Psi(L \cap S^{n-1}, \delta)\right) &\leq (1 - \tau) \cdot \frac{\dim L}{n}, \\
\mu_2\left(\Psi(L \cap S^{n-1}, \delta)\right) &\leq (1 - \tau) \cdot \frac{\dim L}{n}
\end{align*}
$$

(11)

for $\delta, \tau \in (0, \frac{1}{2})$ and for any proper subspace L invariant under G, then the unique G invariant Alexandrov solution h_i of the logarithmic Minkowski problem (2) for $\mu = \mu_i$, $i = 1, 2$, satisfies

$$
\|h_1 - h_2\|_\infty \leq \gamma_0 M^{\frac{1}{n}} \cdot d_{bL}(\mu_1, \mu_2)^{\frac{1}{95n}}
$$

(12)

$$
r_0 M^{\frac{1}{n}} \leq h_1, h_2 \leq R_0 M^{\frac{1}{n}}
$$

(13)

where for some absolute constant $c > 1$, we have

- $R_0 = 2n$, $r_0 = \frac{1}{c}$, $\gamma_0 = c^n \cdot \varepsilon^{\frac{1}{95n}}$ and the condition (11) is irrelevant provided the action of G is irreducible;

- $R_0 = 2 \left(\frac{n^6}{\delta}\right)^{\frac{1}{7}}$, $r_0 = \frac{n^6}{5n} \left(\frac{\delta}{n^6}\right)^{\frac{1}{7}}$ and $\gamma_0 = c^n \cdot \delta^{-\frac{4n}{5n} n^{\frac{12n}{7n}}}$ provided the action of G is reducible.

Geometric inequalities under n independent hyperplane symmetries were first considered by Barthe, Fradelizi [7] and Barthe, Cordero-Erausquin [6]. These papers verified the classical Mahler conjecture and Slicing conjecture, respectively, for these type of bodies.

We observe that the error term in Theorem 1.2 in terms of ε is not far from being optimal. We provide an unconditional example; namely, when H_1, \ldots, H_n are the coordinate hyperplanes. Let K be the unit cube $K = [-\frac{1}{2}, \frac{1}{2}]^n$, and the unconditional C be obtained from K by chopping off vertices of K using simplices of volume ε and rescaling (to ensure $V(C) = 1$). Then $d_W(V_K, V_C) < \gamma_1 \cdot \varepsilon$, while $(1 - \gamma_2 \varepsilon n)K \not\subset C$ for suitable $\gamma_1, \gamma_2 > 0$ depending on n.

The stable solution Theorem 1.2 of the logarithmic Minkowski problem under hyperplane symmetry does use the metric structure on S^{n-1}. The next example shows that we can’t expect an “affine invariant” stability version of Theorem 1.2 even if the cone volume measure is affine invariant in certain sense.
EXAMPLE 1.4 If $e \in S^{n-1}$, and K and C are any convex bodies in \mathbb{R}^n containing the origin in their interior with $V(K) = V(C) = 1$ and $V_K(e^\perp \cap S^{n-1}) = V_C(e^\perp \cap S^{n-1}) = 0$, and Φ_s is the diagonal transformation with $\Phi_s(e) = s^{-(n-1)}e$ and $\Phi_s(x) = sx$ for $x \in e^\perp$, then both V_{Φ_sK} and V_{Φ_sC} tend weakly to μ_0 as s tends to infinity where μ_0 denotes the probability measure on S^{n-1} with $\mu_0(\{\pm e\}) = \frac{1}{2}$. In particular, V_{Φ_sK} and V_{Φ_sC} are arbitrarily close if s is large.

Next, we consider two partial converses of Theorem 1.2 to show that concerning Theorem 1.2, both the conditions involved and the conclusion are of the right kind. The first result does not require any symmetry assumption.

THEOREM 1.5 Let μ_1 and μ_2 be finite Borel measures on S^{n-1} such that there exists Alexandrov solution h_i of the logarithmic Minkowski problem (2) for $\mu = \mu_i$ and $i = 1, 2$. If $h_1, h_2 < R$ for $R > 0$, then

$$d_{bl}(\mu_1, \mu_2) \leq \gamma(R, n) \cdot \sqrt{\|h_1 - h_2\|_{\infty}}$$

where $\gamma(R, n) > 0$ depends on R and n.

Secondly, we show that if we have almost equality in Theorem 1.1 (ii) for measures μ_1 and μ_2 and a proper linear subspace L invariant under reflections through independent hyperplanes H_1, \ldots, H_n, then even if μ_1 and μ_2 are close, it is possible that the solutions h_1 and h_2 of (2) are arbitrarily far away.

THEOREM 1.6 Let $G \subset O(n)$ be a group acting without fixed point on S^{n-1}, let $R > \sqrt{n}$, and let h be a positive G invariant Alexandrov solution of (2) for a probability measure μ on S^{n-1} with $h < R$ such that

$$\mu(\Psi(L \cap S^{n-1}, \delta)) \geq (1 - \varepsilon) \cdot \frac{\dim L}{n}$$

for $\varepsilon \in (0, \frac{1}{R^2})$, $\delta \in (0, \varepsilon]$ and a proper subspace L invariant under G where $\varepsilon_0 > 0$ depends on n. Then for any $t > 1$, there exists a positive G invariant Alexandrov solution h_t of (2) for a probability measure μ_t on S^{n-1} such that

$$\|h - h_t\|_{\infty} \geq t$$

$$d_W(\mu, \mu_t) \leq \gamma(R, n)e^{\frac{1}{10n}}$$

where $\gamma(R, n) > 0$ depends on R and n.
Concerning the set-up of the paper, Section 2 proves the lower and upper bounds (8) on h_i in Theorem 1.2. Next Section 3 reviews the logarithmic Minkowski conjecture whose stability version Theorem 3.3 in the case of convex bodies with many hyperplane symmetries is essential in proving Theorem 1.2 in Section 4, leading also to Corollary 1.3. Finally, the two partial converses Theorem 1.5 and Theorem 1.6 of Theorem 1.2 are proved in Section 5.

2 Bounding the diameter of K in terms of V_K

First we point out a simple relation for balls contained in and containing a convex body.

Lemma 2.1 If K is a convex body in \mathbb{R}^n whose centroid is the origin, and $K \subset R\mathbb{B}^n$ for $R > 0$, then $r\mathbb{B}^n \subset K$ for some

$$r \geq \frac{n^{\frac{\pi}{2}}}{5^n} \cdot \frac{V(K)}{R^{n-1}}.$$

Proof: We set $r > 0$ be maximal with the property $r\mathbb{B}^n \subset K$. Since the origin is the centroid of K, we have $-K \subset nK$, and hence K is contained in a cylinder whose height is $(n + 1)r \leq 2nr$ and base is an $(n - 1)$-ball of radius R. Therefore,

$$V(K) \leq 2n\kappa_{n-1}R^{n-1}r.$$

As $\Gamma(t + 1) > (\frac{1}{e}t)^t \sqrt{2\pi t}$ for $t \geq 1$ (see Artin [3]) and $\kappa_{n-1} < \frac{\sqrt{n+1}}{\sqrt{2\pi}} \cdot \kappa_n$, we have

$$\kappa_{n-1} < \frac{\sqrt{n+1}}{\sqrt{2\pi}} \cdot \kappa_n = \frac{\sqrt{n+1}}{\sqrt{2\pi}} \cdot \frac{\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2} + 1)} < \frac{\sqrt{n+1}}{\sqrt{2\pi}} \cdot \frac{\Gamma(\frac{n}{2})^{\frac{1}{2}}}{\sqrt{2\pi} \cdot \frac{n}{2} \sqrt{\pi n}} < \frac{e\pi^{n-\frac{1}{2}}}{n^{\frac{1}{2}}}.$$

In turn, we deduce

$$r \geq \frac{V(K)}{2n\kappa_{n-1}R^{n-1}} > \frac{n^{\frac{\pi}{2}}}{n \cdot e^{\frac{\pi}{2}} \pi^{\frac{1}{2}} \cdot R^{n-1}} \cdot \frac{V(K)}{R^{n-1}},$$

completing the proof of Lemma 2.1 as $n \cdot e^{\frac{\pi}{2}} \pi^{\frac{1}{2}} < 5^n$. \hfill \Box

For a convex body K in \mathbb{R}^n, we write $R(K)$ to denote the minimal radius of a Euclidean ball containing K, and $r(K)$ to denote the radius of largest ball contained in K. We observe that if the convex body K is invariant under
the reflections through the hyperplanes H_1, \ldots, H_n with $H_1 \cap \ldots \cap H_n = \{o\}$, then its centroid is the origin, and

$$r(K)B^n \subset K \subset R(K)B^n.$$

For Proposition 2.2 and Lemma 2.3 let \tilde{B} denote the Euclidean ball centered at the origin with $V(\tilde{B}) = 1$.

PROPOSITION 2.2 Let $n \geq 2$ and $\delta, \tau \in (0, \frac{1}{2})$, Let the action of the closed group G generated by reflections through the linear $(n - 1)$-spaces H_1, \ldots, H_n in \mathbb{R}^n with $H_1 \cap \ldots \cap H_n = \{o\}$ on \mathbb{R}^n be reducible, and let the Borel probability measure μ on S^{n-1} be invariant under G and satisfy

$$\mu(\Psi(L \cap S^{n-1}, \delta)) < (1 - \tau) \cdot \frac{i}{n}$$

for any linear i-subspace L of \mathbb{R}^n, $i = 1, \ldots, n - 1$, invariant under G, and let $V(C) = 1$ hold for convex body C in \mathbb{R}^n invariant under G. Then

(i)

$$\int_{S^{n-1}} \log h_C \, d\mu \geq \log \frac{R(C)^\tau \delta}{n^5},$$

and

(ii) if $\int_{S^{n-1}} \log h_C \, d\mu \leq \int_{S^{n-1}} \log h_{\tilde{B}} \, d\mu$, then

$$R(C) < \left(\frac{n^6}{\delta} \right)^{\frac{1}{\tau}} \quad \text{and} \quad r(C) > \frac{n^2}{5n} \left(\frac{\delta}{n^6} \right)^{\frac{n-1}{\tau}}.$$

Proof: Let E be the John ellipsoid of maximal volume in C, and hence E is invariant under A_1, \ldots, A_n, and

$$E \subset C \subset nE. \quad (14)$$

Let L_1, \ldots, L_m be the irreducible linear subspaces invariant under A_1, \ldots, A_n. The symmetries of E yield that there exists a set of principal directions of E that are part of $L_1 \cup \ldots \cup L_m$, and for each L_i there exists $r_i > 0$ such that $E \cap L_i = r_i (B^n \cap L_i)$, $i = 1, \ldots, m$. We may assume that $r_1 \leq \ldots \leq r_m$.

If $m = 1$, then (14) yields that $r_1 B^n \subset C \subset nr_1 B^n$; therefore, Proposition 2.2 trivially holds. In particular, let

$$m \geq 2.$$

For

$$Q = \text{conv}\{r_i(B^n \cap L_i)\}_{i=1,\ldots,m},$$
E is the so-called Loewner (minimal volume ellipsoid) of Q, and hence $Q \subset E \subset \sqrt{n}Q$, thus \((14)\) yields that $Q \subset C \subset n^2 Q$. In particular, writing $d_i = \dim L_i$ for $i = 1, \ldots, m$, $Q \subset C$ satisfies

$$n^n \prod_{i=1}^{m} r_i^{d_i} \geq \prod_{i=1}^{m} r_i^{d_i \kappa_{d_i}} \geq V(Q) \geq n^{-2n}V(C) = n^{-2n} \quad (15)$$

where $d_1 + \ldots + d_m = n$. We observe that for any $u \in S^{n-1}$, there exists L_i such that $\|u|L_i\| \geq \frac{1}{\sqrt{m}} > \frac{\delta}{n}$. For $i = 1, \ldots, m$, we define

$$\Lambda_i = L_1 \oplus \ldots \oplus L_i$$

$$B_i = \left\{ u \in S^{n-1} : \|u|L_i\| \geq \frac{\delta}{n} \text{ and } \|u|L_j\| < \frac{\delta}{n} \text{ for } j > i \right\}.$$

It follows that S^{n-1} is partitioned into the Borel sets B_1, \ldots, B_m, and as $B_j \subset \Psi(\Lambda_i \cap S^{n-1}, \delta)$ for $1 \leq j \leq i \leq m - 1$, we have

$$\mu(B_1) + \ldots + \mu(B_i) \leq \frac{(d_1 + \ldots + d_i)(1 - \tau)}{n} \quad \text{for } i = 1, \ldots, m - 1 \quad (16)$$

$$\mu(B_1) + \ldots + \mu(B_m) = 1. \quad (17)$$

For $\zeta = \frac{1 - \tau}{n} > \frac{1}{2n}$, next we define

$$\beta_j = \mu(B_j) - d_j \zeta \quad \text{for } j = 1, \ldots, m - 1 \quad (18)$$

$$\beta_m = \mu(B_m) - d_m \zeta - \tau \quad (19)$$

where \((16)\) and \((17)\) yield

$$\beta_1 + \ldots + \beta_i \leq 0 \quad \text{for } i = 1, \ldots, m - 1 \quad (20)$$

$$\beta_1 + \ldots + \beta_m = 0. \quad (21)$$

It follows from $r_i B^n \cap L_i \subset Q$ and from the definition of B_i that $h_Q(u) \geq r_i \cdot \frac{\delta}{n}$ for $u \in B_i$, $i = 1, \ldots, m$. We deduce from applying \((15)\), \((17)\), \((18)\),
(19), (20), (21), \(r_1 \leq \ldots \leq r_m \) and \(\frac{1}{2n} < \zeta < \frac{1}{n} \) that

\[
\int_{S^{n-1}} \log h_C d\mu \geq \int_{S^{n-1}} \log h_Q d\mu = \sum_{i=1}^{m} \int_{B_i} \log h_Q d\mu \\
\geq \sum_{i=1}^{m} \mu(B_i) \log r_i + \sum_{i=1}^{m} \mu(B_i) \log \frac{\delta}{n} = \sum_{i=1}^{m} \mu(B_i) \log r_i + \log \frac{\delta}{n} \\
= \sum_{i=1}^{m} \beta_i \log r_i + \sum_{i=1}^{m} \zeta d_i \log r_i + \tau \log r_m + \log \frac{\delta}{n} \\
\geq \sum_{i=1}^{m} \beta_i \log r_i + \zeta \log \frac{1}{n^m} + \tau \log r_m + \log \frac{\delta}{n} \\
= (\beta_1 + \ldots + \beta_m) \log h_m + \sum_{i=1}^{m-1} (\beta_1 + \ldots + \beta_i)(\log r_i - \log r_{i+1}) \\
-3n\zeta \log n + \tau \log r_m + \log \frac{\delta}{n} \\
\geq -3 \log n + \tau \log h_n + \log \frac{\delta}{n}
\]

where we used \(\zeta < \frac{1}{n} \) at the end. Now \(r_m = R(E) \geq R(C)/n \) and \(\tau < 1 \) imply

\[-3 \log n + \tau \log r_m + \log \frac{\delta}{n} \geq -3 \log n + \tau \log \frac{R(C)}{n} + \log \frac{\delta}{n} \geq \log \frac{R(C)^\tau}{n^5}, \]

proving Proposition 2.2 (i).

For (ii), let \(\tilde{r}_n \) be the radius of \(\tilde{B} \), and hence \(\Gamma(\frac{n}{2}+1) < (\frac{n}{2e})^{\frac{n}{2}} \sqrt{2\pi(\frac{n}{2}+1)} < (\frac{2n}{e})^{\frac{n}{2}} \) implies

\[1 = \tilde{r}_n^m c_n = \tilde{r}_n^m \cdot \frac{\pi^{\frac{m}{2}}}{\Gamma(\frac{m}{2}+1)} > \tilde{r}_n^{m-n} \left(\frac{c \pi}{2n} \right)^{\frac{m}{2}}, \]

and hence

\[\tilde{r}_n < \sqrt{\frac{2n}{c \pi}}. \tag{22} \]

We deduce from (i) and (22) that

\[\log \frac{R(C)^\tau}{n^5} \leq \int_{S^{n-1}} \log h_C d\mu \leq \int_{S^{n-1}} \log h_{\tilde{B}} d\mu < \log \sqrt{\frac{2n}{c \pi}}. \]
thus $R(C) < \left(\frac{e^6}{3}\right)^{\frac{1}{2}}$.

In turn, the bound for $r(C)$ follows from Lemma 2.1 completing the proof of Proposition 2.2. □

Lemma 2.3 Let the action of the closed group G generated by reflections through the linear $(n-1)$-spaces H_1, \ldots, H_n in \mathbb{R}^n with $H_1 \cap \ldots \cap H_n = \{0\}$ on \mathbb{R}^n be irreducible, and let the Borel probability measure μ on S^{n-1} be invariant under G, and let $V(C) = 1$ hold for convex body C in \mathbb{R}^n invariant under G. Then

$$\int_{S^{n-1}} \log h_C \, d\mu \geq -1;$$

$$\frac{1}{e} < r(C) \leq R(C) < n.$$

Proof: As the action of G is irreducible, it follows that the inscribed ball of C is the John ellipsoid; namely, the ellipsoid of maximum volume contained in C. According to Ball [4], $r(C)$ is at least the inradius r_n of the regular simplex of volume one, and hence $n! \leq \left(\frac{n}{e}\right)^n \sqrt{2\pi n}$ (see Artin [3]) yields

$$r(C)^n \geq r_n^n = \frac{n!}{n^\frac{n}{2} (n+1)^{\frac{n+1}{2}}} \geq \frac{(\frac{n}{e})^n \sqrt{2\pi n}}{2n^{n+\frac{1}{2}}} > \frac{1}{e^n}.$$

On the other hand, as the action of G is irreducible, it follows that the circumscribed ball of C is the Loewner ellipsoid; namely, the ellipsoid of minimum volume containing C. According to Barthe [5] (see also Lutwak, Yang, Zhang [53]), $R(C)$ is at most the inradius R_n of the regular simplex of volume one, and hence $n! < \left(\frac{n}{e}\right)^n \sqrt{2\pi (n+1)}$ (see Artin [3]) yields

$$R(C)^n \leq R_n^n = \frac{n^n \cdot n!}{n^\frac{n}{2} (n+1)^{\frac{n+1}{2}}} < \frac{n^\frac{n}{2} \cdot \left(\frac{n}{e}\right)^n \sqrt{2\pi (n+1)}}{(n+1)^{\frac{n+1}{2}}} \leq \frac{n^n \sqrt{2\pi}}{e^n} < n^n.$$

We conclude $\frac{1}{e} < r(C) \leq R(C) < n$.

Finally, $r(C) > \frac{1}{e}$ implies that $\log h_C(u) > -1$ for all $u \in S^{n-1}$. □

For a convex body K with $V(K) = 1$ and hyperplane symmetries, combining Proposition 2.2 with the consequence $\int_{S^{n-1}} \log h_K \, dV_K \leq \int_{S^{n-1}} \log h_\tilde{B} \, dV_K$ of the Logarithmic Minkowski Inequality Theorem 3.2 or using Lemma 2.3 yield the following.
COROLLARY 2.4 Let G be the closed group generated by reflections through the linear $(n-1)$-spaces H_1, \ldots, H_n in \mathbb{R}^n with $H_1 \cap \ldots \cap H_n = \{0\}$, and let the convex body K in \mathbb{R}^n, $n \geq 2$, be invariant under G. If, for $\delta, \tau \in (0, \frac{1}{2})$ and $i = \{1, \ldots, n-1\}$,

$$V_K(\Psi(L \cap S^{n-1}, \delta)) < (1 - \tau) \cdot \frac{i}{n} \cdot V(K)$$

for any i-dimensional subspace L invariant under G, then

$$R(K) < \begin{cases} \left(\frac{n^6}{\delta^7} \right)^{\frac{1}{7}} V(K)^{\frac{1}{7}} & \text{if the action of } G \text{ is reducible;} \\ nV(K)^{\frac{1}{3}} & \text{if the action of } G \text{ is irreducible;} \end{cases}$$

$$r(K) > \begin{cases} \frac{n^6}{\delta^7} \left(\frac{\delta}{n^6} \right)^{\frac{\delta-1}{n}} V(K)^{\frac{1}{n}} & \text{if the action of } G \text{ is reducible;} \\ \frac{1}{\varepsilon} \cdot V(K)^{\frac{1}{n}} & \text{if the action of } G \text{ is irreducible.} \end{cases}$$

Another consequence of Proposition 2.2 is a condition yielding that a convex body with hyperplane symmetries is not close to be the direct sum of lower dimensional invariant compact convex sets.

PROPOSITION 2.5 Let the action of the closed group G generated by reflections through the linear $(n-1)$-spaces H_1, \ldots, H_n in \mathbb{R}^n with $H_1 \cap \ldots \cap H_n = \{0\}$ on \mathbb{R}^n be reducible, and let the convex body K in \mathbb{R}^n, $n \geq 2$, be invariant under G. If $\delta, \tau \in (0, \frac{1}{2})$, and a convex body K in \mathbb{R}^n invariant under G satisfies

$$V_K(\Psi(L \cap S^{n-1}, \delta)) < (1 - \tau) \cdot \frac{\dim L}{n} \cdot V(K)$$

for any proper coordinate subspace L invariant under G, then

$$(1 - \eta)(\langle L \cap K \rangle \oplus (L^\perp \cap K)) \notin K$$

for any proper subspace L invariant under G where

$$\eta = \frac{\delta \tau}{4n} \cdot \frac{n^6}{5^n} \left(\frac{\delta}{n^6} \right)^{\frac{\delta}{n^6}}.$$

Proof: We may assume that $V(K) = 1$, and define

$$R_0 = \left(\frac{n^6}{\delta^7} \right)^{\frac{1}{7}}$$

$$r_0 = \frac{n^6}{\delta^7} \left(\frac{\delta}{n^6} \right)^{\frac{\delta-1}{n}}.$$
and hence
\[\eta = \frac{\delta \tau}{4n} \cdot \frac{r_0}{R_0} < \frac{\tau}{4n}. \] (23)
while Proposition 2.2 implies that
\[r_0 B^n \subset K \subset R_0 B^n. \]

We prove Lemma 2.5 by contradiction; therefore, we suppose that there exists a coordinate \(i \)-subspace \(L, 1 \leq i \leq n - 1 \), such that
\[(1 - \eta)(L \cap K) \oplus (L^\perp \cap K) \subset K. \] (24)

We define
\[\Omega_0 = \{ [o, x + y] : x \in (1 - \eta)\partial(L \cap K) \text{ and } y \in (1 - \eta) \left(1 - \frac{\tau}{2n}\right)(L^\perp \cap K) \}. \]
In addition, let
\[\begin{align*}
\Omega &= \{ z \in K : \exists t \in (0, 1], tz \in \Omega_0 \} \\
\Xi &= \{ u \in S^{n-1} : \exists x \in \Omega \cap \partial K, h_C(u) = \langle x, u \rangle \}.
\end{align*} \]
We deduce using \(\eta < \frac{\tau}{2n} \) that
\[V_K(\Xi) \geq \mathcal{H}^n(\Omega_0) \]
\[= \frac{i}{n} \cdot (1 - \eta)^i \mathcal{H}^i(L \cap K) \cdot (1 - \eta)^{n-i} \left(1 - \frac{\tau}{2n}\right)^{n-i} \mathcal{H}^{n-i}(L^\perp \cap K) \]
\[> (1 - \tau) \frac{i}{n} \cdot \mathcal{H}^i(L \cap K) \cdot \mathcal{H}^{n-i}(L^\perp \cap K) > (1 - \tau) \frac{i}{n}. \] (25)
Therefore, we contradict (24) by proving
\[\Xi \subset \Psi(L \cap S^{n-1}, \delta). \] (26)
Let \(u \in \Xi \) be an exterior normal at \(z \in \partial K \). We observe that
\[u = v \cos \beta + w \sin \beta \]
where \(v \in L \cap S^{n-1}, w \in L \cup S^{n-1} \) and \(\beta = \angle(u, v) \in [0, \frac{\pi}{2}) \). We write \(z = x + y \) for \(x \in L \cap K \) and \(y \in L^\perp \cap K \). As \(z \in \Xi \), we have
\[(1 - \eta)x + (1 - \eta)y = (1 - \eta)z \in \Omega_0 \]
\[\in (1 - \eta)(L \cap K) + (1 - \eta) \left(1 - \frac{\tau}{2n}\right)(L^\perp \cap K). \]
In turn, we deduce that
\[y \in \left(1 - \frac{\tau}{2n} \right) (L^\perp \cap K). \tag{27} \]
Let
\[p = (1 - \eta)x + y + \frac{\tau}{4n} \cdot r_0w, \]
which, using (27), \(r_0 B^n \subset K \), (23) and (24) satisfies
\[p \in (1 - \eta)(L \cap K) + \left(1 - \frac{\tau}{2n} \right) (L^\perp \cap K) + \frac{\tau}{4n} \cdot (L^\perp \cap K) \]
\[\subset (1 - \eta)(L \cap K) + (1 - \eta)(L^\perp \cap K) \subset K. \]
Since \(u \) is exterior normal at \(z = x + y \) where \(w \in L^\perp \cap S^{n-1} \), \(v \in L \cap S^{n-1} \) and \(x \in L \cap R_0 B^n \), we have
\[0 \geq \langle u, p - z \rangle = \langle u, \frac{\tau r_0}{4n} \cdot w - \eta x \rangle \]
\[= \langle v \cos \beta + w \sin \beta, \frac{\tau r_0}{4n} \cdot w - \eta x \rangle = \frac{\tau r_0}{4n} \cdot \sin \beta - \langle v, x \rangle \eta \cos \beta \]
\[\geq \frac{\tau r_0}{4n} \cdot \sin \beta - R_0 \eta \cos \beta. \]
We conclude that
\[\| u - v \| \leq \tan \beta \leq \frac{4n \eta}{\tau} \cdot \frac{R_0}{r_0} \leq \delta, \]
which in turn, yields (26) and contradicts (24), proving Proposition 2.5. \(\square \)

3 On the Logarithmic Minkowski conjecture

For origin symmetric convex bodies, the following is an equivalent form of the origin symmetric case of the Logarithmic Brunn-Minkowski conjecture (see Boroczky, Lutwak, Yang, Zhang [18]).

CONJECTURE 3.1 (Logarithmic Minkowski conjecture) If \(K \) and \(C \) are convex bodies in \(\mathbb{R}^n \) whose centroid is the origin, then
\[\int_{S^{n-1}} \log \frac{h_C}{h_K} dV_K \geq \frac{V(K)}{n} \log \frac{V(C)}{V(K)} \]
with equality if and only if \(K = K_1 + \ldots + K_m \) and \(L = L_1 + \ldots + L_m \) compact convex sets \(K_1, \ldots, K_m, L_1, \ldots, L_m \) of dimension at least one where \(\sum_{i=1}^m \dim K_i = n \) and \(K_i \) and \(L_i \) are dilates, \(i = 1, \ldots, m. \)
The argument in Boroczky, Lutwak, Yang, Zhang [19] yields that for o-symmetric convex bodies with smooth boundary, uniqueness of the cone volume measure is equivalent to the log-Minkowski conjecture. In particular, uniqueness of the cone volume measure of o-symmetric convex bodies with C^∞ boundary implies the log-Brunn-Minkowski and log-Minkowski conjectures (without the characterization of equality) for any o-symmetric convex bodies.

In \mathbb{R}^2, Conjecture 3.1 is verified in Boroczky, Lutwak, Yang, Zhang [18] for origin symmetric convex bodies, but it is still open in general. In higher dimensions, Conjecture 3.1 is proved for with enough hyperplane symmetries (cf. Theorem 3.2) and complex bodies (cf. Rotem [62]).

For origin symmetric convex bodies, Conjecture 3.1 is proved when K is close to be an ellipsoid by a combination of the local estimates by Kolesnikov, Milman [46] and the use of the continuity method in PDE by Chen, Huang, Li, Liu [25]. Another even more recent proof of this result based on Alexandrov’s approach of considering the Hilbert-Brunn-Minkowski operator for polytopes is due to Putterman [60]. Additional local versions of Conjecture 3.1 are due to Kolesnikov, Livshyts [38] and Hosle, Kolesnikov, Livshyts [39].

Following the result on unconditional convex bodies by Saroglou [63], Boroczky, Kalantzopoulos [17] verified the logarithmic Minkowski conjecture for convex bodies with n independent hyperplane symmetries.

THEOREM 3.2 (Boroczky, Kalantzopoulos) If the convex bodies K and C in \mathbb{R}^n are invariant under linear reflections A_1, \ldots, A_n through n independent linear $(n-1)$-planes H_1, \ldots, H_n, then

$$\int_{S^{n-1}} \log \frac{h_C}{h_K} dV_K \geq \frac{V(K)}{n} \log \frac{V(C)}{V(K)},$$

with equality if and only if $K = K_1 + \ldots + K_m$ and $L = L_1 + \ldots + L_m$ for compact convex sets $K_1, \ldots, K_m, L_1, \ldots, L_m$ of dimension at least one and invariant under A_1, \ldots, A_n where K_i and L_i are dilates, $i = 1, \ldots, m$, and $\sum_{i=1}^m \dim K_i = n$.

The Boroczky, De [11] proved the following stability version of the logarithmic-Minkowski inequality Theorem 3.2 for convex bodies with many hyperplane symmetries.

THEOREM 3.3 If the convex bodies K and C in \mathbb{R}^n are invariant under linear reflections A_1, \ldots, A_n through n hyperplanes H_1, \ldots, H_n with $H_1 \cap$
... ∩ H_n = \{o\}, and

\[\int_{S^{n-1}} \log \frac{h_C}{h_K} \frac{dV_K}{V(K)} \leq \frac{1}{n} \cdot \log \frac{V(C)}{V(K)} + \varepsilon \]

for \(\varepsilon > 0 \), then for some \(m \geq 1 \), there exist compact convex sets \(K_1, C_1, \ldots, K_m, C_m \) of dimension at least one and invariant under \(A_1, \ldots, A_n \) where \(K_i \) and \(C_i \) are dilates, \(i = 1, \ldots, m \), and \(\sum_{i=1}^{m} \dim K_i = n \) such that

\[K_1 + \ldots + K_m \subset K \subset \left(1 + c^n \varepsilon^{\frac{1}{2m^n}} \right) (K_1 + \ldots + K_m) \]

\[C_1 + \ldots + C_m \subset C \subset \left(1 + c^n \varepsilon^{\frac{1}{2m^n}} \right) (C_1 + \ldots + C_m) \]

where \(c > 1 \) is an absolute constant.

4 Proof of Theorem 1.2

For compact convex sets \(K \) and \(C \) in \(\mathbb{R}^n \), their Hausdorff distance is

\[d_\infty(K, C) = \| h_K - h_C \|_\infty = \min \{ r \geq 0 : K \subset C + r B^n \text{ and } C \subset K + r B^n \} \]

We prove Theorem 1.2 in the following form.

THEOREM 4.1 Let \(G \) be the closed group generated by reflections through the linear \((n-1)\)-spaces \(H_1, \ldots, H_n \) in \(\mathbb{R}^n \) with \(H_1 \cap \ldots \cap H_n = \{o\} \). If \(K \) and \(C \) are convex bodies in \(\mathbb{R}^n \) invariant under \(G \) and satisfy \(V(K) = V(C) = 1 \),

\[V_K(\Psi(L \cap S^{n-1}, \delta)) \leq (1 - \tau) \cdot \frac{\dim L}{n} \]

\[V_C(\Psi(L \cap S^{n-1}, \delta)) \leq (1 - \tau) \cdot \frac{\dim L}{n} \]

(28)

for \(\delta, \tau \in (0, \frac{1}{2}) \) and for any proper subspace \(L \) invariant under \(G \), then

\[r_0 < h_K, h_C < R_0; \]

\[d_\infty(K, C) \leq \gamma_0 \cdot d_W(V_K, V_C)^{\frac{1}{3m^n}} \]

(30)

where for some absolute constant \(c > 1 \), we have

- \(R_0 = n, r_0 = \frac{1}{c} \) and \(\gamma_0 = c^n \cdot \varepsilon^{\frac{1}{2m^n}} \) provided the action of \(G \) is irreducible (and hence the condition (28) is irrelevant);

- \(R_0 = \left(\frac{n^2}{\delta} \right)^{\frac{1}{2}}, r_0 = \frac{n}{\delta^{\frac{1}{2}}} \left(\frac{\delta}{2n} \right)^{\frac{n-1}{2}} \) and \(\gamma_0 = \frac{c^n}{\tau} \cdot \delta^{\frac{1}{2m^n}} n^{\frac{1}{2m^n}} \) provided the action of \(G \) is reducible.
We need the simple statements Lemma 4.2 and (31).

LEMMA 4.2 If K is a convex body with $K \subset RB^n$ for $R > 0$, then $|h_K(u) - h_K(v)| \leq R\|u - v\|$ for $u, v \in S^{n-1}$.

Proof: Let $x_0 \in \partial K$ satisfy that $h_K = \langle u, x_0 \rangle$, and hence

$$h_K(u) - h_K(v) \leq \langle u, x_0 \rangle - \langle v, x_0 \rangle = \langle u - v, x_0 \rangle \leq \|u - v\| \cdot R.$$

Since similar argument shows that $h_K(v) - h_K(u) \leq \|v - u\| \cdot R$, we conclude the lemma.

We also note that if μ, ν are Borel probability measures on S^{n-1}, and $f : S^{n-1} \to \mathbb{R}$ and $\omega > 0$ satisfy that $|f(u) - f(v)| \leq \omega \|u - v\|$ for $u, v \in S^{n-1}$, then

$$\left| \int_{S^{n-1}} f \, d\mu - \int_{S^{n-1}} f \, d\nu \right| \leq \omega \cdot d_W(\mu, \nu). \quad (31)$$

Proof of Theorem 4.1 Let $d_W(V_K, V_C) = \varepsilon$. In order to apply Corollary 2.4 we set

$$R_0 = \begin{cases} \left(\frac{n^6}{\delta} \right)^{\frac{1}{r}} & \text{if the action of } G \text{ reducible;} \\ n & \text{if the action of } G \text{ irreducible;} \end{cases}$$

$$r_0 = \begin{cases} \frac{n^3}{\delta n^2} \left(\frac{\delta}{n} \right)^{n-1} & \text{if the action of } G \text{ reducible;} \\ \frac{1}{\varepsilon} & \text{if the action of } G \text{ irreducible.} \end{cases}$$

and deduce (29) from Corollary 2.4 In particular, if $u, v \in S^{n-1}$, then first (29), secondly Lemma 4.2 and (29) imply that if $u, v \in S^{n-1}$, then

$$| \log h_K(u) - \log h_K(v) | \leq \frac{|h_K(u) - h_K(v)|}{r_0} \leq \frac{R_0}{r_0} \cdot \|u - v\|$$

$$| \log h_C(u) - \log h_C(v) | \leq \frac{|h_C(u) - h_C(v)|}{r_0} \leq \frac{R_0}{r_0} \cdot \|u - v\|$$

where

$$\frac{R_0}{r_0} = \begin{cases} \frac{n^6}{n^2} \left(\frac{n^6}{\delta} \right)^{\frac{1}{r}} & \text{if the action of } G \text{ reducible;} \\ en \varepsilon & \text{if the action of } G \text{ irreducible.} \end{cases} \quad (32)$$

For

$$\varepsilon = d_W(V_K, V_C),$$

18
we deduce from applying first (31) and \(d_W(V_K, V_C) = \varepsilon \), then from the Logarithmic Minkowski Inequality Theorem 3.2 and using again (31) and \(d_W(V_K, V_C) = \varepsilon \) that

\[
\int_{S^{n-1}} \log h_C dV_K \leq \int_{S^{n-1}} \log h_C dV_C + \frac{R_0}{r_0} \cdot \varepsilon \leq \int_{S^{n-1}} \log h_K dV_C + \frac{R_0}{r_0} \cdot \varepsilon
\]

\[
\leq \int_{S^{n-1}} \log h_K dV_K + \frac{2R_0}{r_0} \cdot \varepsilon.
\]

It follows from Theorem 3.3 that for some \(m \geq 1 \), there exist \(\theta_1, \ldots, \theta_m > 0 \) and compact convex sets \(K_1, \ldots, K_m > 0 \) invariant under \(G \) such that

\[
\sum_{i=1}^{m} \dim K_i = n
\]

\[
K_1 \oplus \ldots \oplus K_m \subset K \subset \left(1 + c_0^n \left(\frac{2R_0}{r_0} \cdot \varepsilon \right)^n \right)^{-1} K_1 \oplus \ldots \oplus K_m
\]

(33)

\[
\theta_1K_1 \oplus \ldots \oplus \theta_mK_m \subset C \subset \left(1 + c_0^n \left(\frac{2R_0}{r_0} \cdot \varepsilon \right)^n \right)^{-1} \theta_1K_1 \oplus \ldots \oplus \theta_mK_m
\]

where \(c_0 > 1 \) is an absolute constant.

If the action of \(G \) is irreducible, then \(m = 1 \), and hence

\[
\left(1 + c_1^n \left(\frac{R_0}{r_0} \cdot \varepsilon \right)^\frac{1}{95n} \right)^{-1} K \subset C \subset \left(1 + c_1^n \left(\frac{R_0}{r_0} \cdot \varepsilon \right)^\frac{1}{95n} \right) K
\]

for some absolute constant \(c_1 > 1 \). In turn, \(K, C \subset R_0 B^n \) (cf. (29)), \(R_0 = n \) and \(\left(\frac{R_0}{r_0} \right)^\frac{1}{95n} < 2 \) (cf. (32)) yield (30) as

\[
d_{\infty}(K, C) \leq R_0 \cdot c_1^n \left(\frac{R_0}{r_0} \cdot \varepsilon \right)^\frac{1}{95n} \leq (2c_1)^n \cdot \varepsilon \frac{1}{95n}.
\]

Next, let the action of \(G \) be reducible. First, we assume that

\[
\varepsilon < c_2^{\delta_5n^2} (\delta \tau)^{95n} \left(\frac{\delta}{n^6} \right)^{\frac{95n^2}{n^6}}
\]

(34)

where \(c_2 \in (0, 1) \) is a suitably small absolute constant such that if \(\varepsilon > 0 \) satisfies (34), then

\[
c_0^n \left(\frac{2R_0}{r_0} \cdot \varepsilon \right)^\frac{1}{95n} < \frac{\delta \tau}{4n} \cdot \frac{r_0}{R_0} \quad (< 1)
\]

(35)
holds for the c_0 in (33) (cf. (32)). Therefore, on the one hand, we have

$$\left(1 - c_0^n \left(\frac{2R_0}{r_0} \cdot \varepsilon\right)^\frac{1}{95n}\right) \left((K \cap L_1) \oplus \ldots \oplus (K \cap L_m)\right) \subset K$$

for $L_i = \text{lin} K_i$, $i = 1, \ldots, m$, and, on the other hand, we deduce from (35) and Proposition 2.5 that $m = 1$. In particular,

$$\left(1 - c_3^n \left(\frac{n^6}{\delta}\right)^\frac{1}{95n} \varepsilon^\frac{1}{95n}\right) K \subset C \subset \left(1 + c_3^n \left(\frac{n^6}{\delta}\right)^\frac{1}{95n} \varepsilon^\frac{1}{95n}\right) K$$

for an suitable absolute constant $c_3 > 1$, and hence $K, C \subset R_0B^n$ implies

$$d_\infty(K, C) \leq R_0 \cdot c_3^n \left(\frac{n^6}{\delta}\right)^\frac{1}{95n} \varepsilon^\frac{1}{95n}.$$

We conclude Theorem 4.1 under the condition (34).

Finally, we assume that the condition (34) does not hold; namely,

$$\varepsilon \geq c_2^{95n^2} \left(\frac{\delta}{\tau}\right)^{95n} \left(\frac{\delta}{n^6}\right)^{\frac{96n^2}{\tau}}.$$

Since $o \in K, C \subset R_0B^n$, we have

$$d_\infty(K, C) \leq R_0 = \left(\frac{n^6}{\delta}\right)^\frac{1}{\tau} \leq c_2^{-n} \left(\frac{\delta}{\tau}\right) - 1 \left(\frac{n^6}{\delta}\right)^\frac{1}{\tau} \left(\frac{\delta}{n^6}\right)^{\frac{96n^2}{\tau}} \varepsilon^\frac{1}{95n}\leq c_2^{-n} \cdot \delta^{-1}. \left(\frac{n^6}{\delta}\right)^\frac{2n}{\tau} \varepsilon^\frac{1}{95n} \leq c_2^{-n} \cdot \delta^{-3n} n^{\frac{12n}{\tau}} \varepsilon^\frac{1}{95n},$$

proving Theorem 4.1. □

Proof of Theorem 1.2 According to Theorem 1.1 there exist convex bodies K and C invariant under G such that $h_1(u) = h_K(u)$ and $h_2(u) = h_C(u)$ for $u \in S^{n-1}$. In turn, we conclude (3) from (29), and (7) from (29) and (30). □

After verifying Theorem 1.2, we consider the case when $\mu_1(S^{n-1}) \neq \mu_2(S^{n-1})$.

20
Proof of Corollary 1.3 We may assume that
\[1 = M = \mu_1(S^{n-1}) \leq \mu_2(S^{n-1}). \]
For \(\varepsilon = d_{bL}(\mu_1, \mu_2) \leq 1 \), it follows from (9) that
\[1 \leq \mu_2(S^{n-1}) \leq 1 + \varepsilon. \]
(36)
We consider the probability measure \(\tilde{\mu}_2 = \mu_2(S^{n-1})^{-1} \cdot h_2 \) is the invariant Alexandrov solution of the Logarithmic Minkowski Problem (2).

We deduce from Theorem 1.2 that
\[\| h_1 - \tilde{h}_2 \|_\infty \leq \tilde{\gamma}_0 \cdot (2 \varepsilon) \frac{1}{n^{\frac{1}{2}}} \cdot n \leq \tilde{R}_0 \]
where for some absolute constant \(\tilde{c} < 1 \), we have
- \(\tilde{R}_0 = n \), \(r_0 = \frac{1}{\varepsilon} \) and \(\tilde{\gamma}_0 = \tilde{c} \varepsilon \cdot \frac{1}{n^{\frac{1}{2}}} \) provided the action of \(G \) is irreducible;
- \(\tilde{R}_0 = \left(\frac{n^\delta}{\delta} \right)^{\frac{1}{\tau}}, r_0 = \frac{n^\delta}{\delta^\tau} \left(\frac{\delta}{n^\tau} \right)^{\frac{n-1}{\tau}} \) and \(\tilde{\gamma}_0 = \tilde{c} n \cdot \frac{\delta^{\frac{\alpha}{2}}}{\tau^\tau} \cdot \frac{\alpha}{n^{\frac{12}{2}}} \) provided the action of \(G \) is reducible.

Therefore, \(h_2 = \mu_2(S^{n-1})^{\frac{1}{n}} \cdot h_2 \) and (36) imply Corollary 1.3 with \(c = 2\tilde{c} \) and \(R_0 = 2\tilde{R}_0 \). □

5 Partial converses Theorem 1.5 and Theorem 1.6 of Theorem 1.2

In this section, we prove the two partial converses Theorem 1.5 and Theorem 1.6 of Theorem 1.2 by verifying Theorem 5.1 and Theorem 5.2.
Our argument for Theorem 5.1 is based on Hug, Schneider [43], which paper proved that if $R > 0$ and K and C are convex bodies in \mathbb{R}^n satisfying $K, C \subset RB^n$, then

$$d_{bL}(S_K, S_C) \leq \tilde{\gamma}(R, n) \cdot \sqrt{d_\infty(K, C)} \tag{37}$$

where $\tilde{\gamma}(R, n) > 0$ depends on R and n. Theorem 1.5 directly follows from the following theorem (see the explanation after (2)).

THEOREM 5.1 If $R > 0$ and K and C are convex bodies in \mathbb{R}^n satisfying $o \in \text{int} K, \text{int} C$ and $K, C \subset RB^n$, then

$$d_{bL}(V_K, V_C) \leq \gamma(R, n) \cdot \sqrt{d_\infty(K, C)}$$

where $\gamma(R, n) > 0$ depends on R and n.

Proof: Let $\varepsilon = d_\infty(K, C) \leq R$. By the symmetry of K and C, it is sufficient to prove that if $f \in \text{Lip}_1$ with $\|f\|_\infty \leq 1$, then

$$\int_{S^{n-1}} f dV_K - \int_{S^{n-1}} f dV_C \leq \gamma(R, n) \cdot \sqrt{\varepsilon}$$

where $\gamma(R, n) > 0$ depends on R and n, which is equivalent to say that

$$\int_{S^{n-1}} f \cdot h_K dS_K - \int_{S^{n-1}} f \cdot h_C dS_C \leq n \gamma(R, n) \cdot \sqrt{\varepsilon}. \tag{38}$$

It follows from $d_\infty(K, C) \leq \varepsilon$ that

$$h_K \leq h_C + \varepsilon.$$

We deduce from $C \subset RB^n$ and Lemma 4.2 that $h_C \in \text{Lip}_R$, and hence $f \cdot h_C \in \text{Lip}_{2R}$. For $g = \frac{1}{2R} f \cdot h_C$, it follows that $g \in \text{Lip}_1$ and $\|g\|_\infty \leq 1$, thus $\|f\|_\infty \leq 1$, $K \subset RB^n$ and the result (37) by Hug, Schneider [43] yield

$$\int_{S^{n-1}} f h_K dS_K - \int_{S^{n-1}} f h_C dS_C \leq \int_{S^{n-1}} f (h_C + \varepsilon) dS_K - \int_{S^{n-1}} f h_C dS_C$$

$$= \varepsilon \cdot \int_{S^{n-1}} f dS_K +$$

$$2R \left(\int_{S^{n-1}} g dS_K - \int_{S^{n-1}} g dS_C \right)$$

$$\leq \varepsilon \cdot n \kappa_n + 2R \cdot \tilde{\gamma}(R, n) \cdot \sqrt{\varepsilon}.$$
We conclude (38) from \(\varepsilon < 2R \), and in turn Theorem 5.1.

Convex bodies whose centroid is the origin and having almost equality in Theorem 1.1 (ii) were characterized by Böröczky, Henk [15]. More precisely, if \(\varepsilon \in (0, \tilde{\varepsilon}_0) \) and the convex body \(K \subset \mathbb{R}^n \) have its centroid at the origin, and satisfies

\[
V_K(L \cap S^{n-1}) \geq (1 - \varepsilon) \cdot \frac{d}{n} \cdot V(K)
\]

for a linear \(d \)-space \(L \) with \(1 \leq d < n \), then

\[
(1 - \tilde{\gamma} \cdot \varepsilon^{\frac{1}{2n}})(C + M) \subset K \subset C + M
\]

for some compact convex set \(C \subset L^\perp \), and complementary \(d \)-dimensional compact convex set \(M \) where \(\tilde{\varepsilon}_0, \tilde{\gamma} > 0 \) depend on the dimension \(n \).

The paper [15] also verified two observations that we need in the sequel. For a convex body \(Q \) in \(\mathbb{R}^n \), we write \(\sigma(Q) \) to denote the centroid, and \(\|x\|_{Q-Q} \) to denote the norm of an \(x \in \mathbb{R}^n \) with respect to the origin symmetric convex body \(Q - Q \); namely, \(\|x\|_{Q-Q} = \min \{ t \geq 0 : x \in t(Q - Q) \} \).

For convex bodies \(K, \tilde{K} \) in \(\mathbb{R}^n \), Lemma 3.4 in [15] says that if \(V(K \Delta \tilde{K}) \leq t V(\tilde{K}) \) for \(t \in (0, \frac{4n}{\tilde{\varepsilon}_0}) \), then

\[
\|\sigma(\tilde{K}) - \sigma(K)\|_{\tilde{K} - \tilde{K}} \leq 4nt.
\]

The second observation, Lemma 3.3 in [15] states that if \(z \in \mathbb{R}^n \), then

\[
V(\tilde{K} \Delta (z + \tilde{K})) \leq 2n||z||_{\tilde{K} - \tilde{K}} V(\tilde{K}).
\]

The following statement exhibits why we need a condition of the type of (28) in Theorem 4.1.

Theorem 5.2 Let \(n \geq 2, R > \sqrt{n} \), and let the convex body \(K \subset RB^n \) with \(V(K) = 1 \) have its centroid at the origin. There exist constants \(\varepsilon_0, \gamma > 0 \) depending on the dimension \(n \), such that, if \(\varepsilon \in (0, \frac{\varepsilon_0}{R^n}) \) and \(\delta \in (0, \varepsilon] \) and

\[
V_K(\Psi(L \cap S^{n-1}, \delta)) \geq (1 - \varepsilon) \cdot \frac{d}{n}
\]

for a linear \(d \)-space \(L \) with \(1 \leq d < n \), then

\[
d_{\infty}(K, C + M) \leq \gamma R^{n+1} \varepsilon^{\frac{1}{2n}}
\]

for some compact convex set \(C \subset L^\perp \), and complementary \(d \)-dimensional compact convex set \(M \).

If, in addition, \(K \) is invariant under a group \(G \subset O(n) \) leaving \(L \) invariant and acting without fixed point on \(S^{n-1} \), then we may assume that \(C = K|L^\perp \) and \(M = K|L \).
Proof: We assume that $\varepsilon \in (0, \frac{\varepsilon_0}{R^n})$ where $\varepsilon_0 > 0$ depending on n is small enough to make the argument work.

We deduce from Lemma 2.1 that $r B^n \subset K$ for

$$r = \frac{n^{\frac{n}{2}}}{5^n R^n - 1}.$$

We plan to cut off a rim from K in order to apply (39). For

$$\eta = 4 \cdot 5^n R^n \cdot \delta,$$

we claim that if $u \in S^{n-1}$ is an exterior normal at $x \in \partial K$ with $x|L \in (1 - \eta)(K|L)$, then

$$u \not\in \Psi(L \cap S^{n-1}, \delta).$$ (42)

Let $\alpha \in [0, \frac{\pi}{2}]$, $v \in S^{n-1} \cap L$ and $w \in S^{n-1} \cap L^\perp$ such that $u|L = v \cos \alpha$ and $u|L^\perp = w \sin \alpha$, and hence $u = v \cos \alpha + w \sin \alpha$.

Next let $y \in \partial K$ be such that v is an exterior normal at y. Since $x|L \in (1 - \eta)(K|L)$, we have

$$\langle x, v \rangle \leq (1 - \eta)\langle y, v \rangle \leq \langle y, v \rangle - \eta r.$$

It follows that

$$0 \leq h_K(u) - \langle y, u \rangle = \langle x - y, v \cos \alpha + w \sin \alpha \rangle \leq -\eta r \cos \alpha + 2R \sin \alpha,$$

and hence $\tan \alpha \geq \frac{nr}{2R} = \frac{n^{\frac{n}{2}}}{2 \cdot 5^n R^n}$, proving (42).

We define

$$\tilde{K} = \{x \in K : x|L \in (1 - \eta)(K|L)\},$$

thus (42) implies that

$$V_{\tilde{K}}(L \cap S^{n-1}) \geq (1 - \eta)^n V_K(\Psi(L \cap S^{n-1}, \delta)) \geq (1 - \gamma_1(R^n \delta + \varepsilon)) \cdot \frac{d}{n}$$

$$\geq (1 - 2\gamma_1 R^n \varepsilon) \cdot \frac{d}{n} \cdot V(\tilde{K})$$ (43)

for $\gamma_1 > 0$ depending on n. Since $(1 - \eta)K \subset \tilde{K}$, it follows that

$$V(K \Delta \tilde{K}) \leq \gamma_2 R^n V(\tilde{K}) \cdot \varepsilon$$

for $\gamma_2 > 0$ depending on n. According to (40) based on (15), the centroid $\sigma(\tilde{K})$ of \tilde{K} satisfies

$$\|\sigma(\tilde{K})\|_{\tilde{K}} \leq 4n \gamma_2 R^n \cdot \varepsilon;$$ (44)
It follows from (11) based on [15] the convex body $K_0 = \tilde{K} - \sigma(\tilde{K})$ satisfies that $\sigma(K_0) = \sigma$ and

$$V(K_0 \Delta \tilde{K}) \leq 8n^2 \gamma_2 R^n V(\tilde{K}) \cdot \varepsilon,$$

and hence

$$V_{K_0}(L \cap S^{n-1}) \geq V_{\tilde{K}}(L \cap S^{n-1}) - V(K_0 \Delta \tilde{K}) \geq (1 - \gamma_3 R^n \varepsilon) \cdot \frac{d}{n} \cdot V(K_0)$$

for $\gamma_3 > 0$ depending on n. We deduce from (39) based on [15] and $V(K_0) \leq 1$ that there exist some compact convex set $C_0 \subset L^\perp$, and complementary d-dimensional compact convex set M_0 such that

$$(1 - \gamma_4 R^n \varepsilon^\frac{1}{m})(C_0 + M_0) \subset K_0 \subset C_0 + M_0$$

(45)

where $\gamma_4 > 0$ depends on the dimension n. Since

$$K_0 + \sigma(\tilde{K}) \subset K \subset (1 - \eta)^{-1}(K_0 + \sigma(\tilde{K})),$$

we deduce from $\tilde{K} - \tilde{K} = K_0 - K_0$, (44) and (45) that there exist some compact convex set $C \subset L^\perp$, and complementary d-dimensional compact convex set M such that

$$(1 - \gamma_5 R^n \varepsilon^\frac{1}{m})(C + M) \subset K \subset C + M$$

(46)

where $\gamma_5 > 0$ depends on the dimension n. As $K \subset RB^n$, we have $d_\infty(K, C + M) \leq \gamma_5 R^n \varepsilon^\frac{1}{m}$.

Finally, if K is invariant under a group $G \subset O(n)$ leaving L (and hence also L^\perp) invariant and acting without fixed point on $L \cap S^{n-1}$, then let $G' \subset O(n)$ be the group whose elements are of the form $\Phi|_L \oplus id_{L^\perp}$ for $\Phi \in G$ that acts without non-zero fixed point on L, and let $G'' \subset O(n)$ be the group whose elements are of the form $\Phi|_L \oplus id_L$ for $\Phi \in G$ that acts without non-zero fixed point on L^\perp. Now for any $x \in K|L^\perp$, the section $K \cap (x + L)$ is invariant under G', and hence the centroid $\sigma(K \cap (x + L))$ of $K \cap (x + L)$ is invariant under G', which in turn yields that $x|L^\perp = \sigma(K \cap (x + L)) \in K$. Therefore, $K|L^\perp = K \cap L^\perp$. Since similar argument implies $K|L = K \cap L$, we may choose $C = K|L^\perp$ and $M = K|L$. \(\square\)

Proof of Theorem 1.6: According to the remarks after (2), there exists a convex body K invariant under G such that $h = h_K$ and $\mu = V_K$. Since the centroid of K is invariant under the action of G that does not have non-zero fixed points, it follows that the centroid $\sigma(G)$ of G is the origin.
We deduce from Theorem 5.2 that there exists $\gamma_0(R, n) > 0$ depending on R and n such that

$$d_\infty(K, C_0 + M_0) \leq \gamma_0(R, n) \cdot \varepsilon^{\frac{1}{m}}$$

where $C_0 = K|L^\perp$ and $M_0 = K|L$. Rescaling C_0 and M_0, we obtain convex compact $C_1 \subset L^\perp$ and $M_1 \subset L$ invariant under G such that

$$d_\infty(K, C_1 + M_1) \leq \gamma_1(R, n) \cdot \varepsilon^{\frac{1}{m}} \quad \text{and} \quad V(C_1 + M_1) = 1$$

where $\gamma_1(R, n) > 0$ depends on R and n. For $Q = C_1 + M_1$, it follows from Theorem 5.1 that

$$d_W(V_K, V_Q) \leq \gamma(R, n) \cdot \varepsilon^{\frac{1}{m}}$$

where $\gamma(R, n) > 0$ depends on R and n.

Let $d = \dim L$, and let $\varrho > 0$ be the maximal radius of a d-dimensional ball centered at the origin and contained in M_1. We deduce that $d_\infty(\frac{t+\varrho}{\varepsilon} M_1, M_1) \geq t$ for any $t > 1$, and hence

$$Q_t = \frac{t+\varrho}{\varepsilon} \cdot M_1 + \left(\frac{\varrho}{t+\varrho}\right)^\frac{d}{n-d} \cdot C_1.$$

satisfies

$$d_\infty(K, Q_t) \geq t; \quad V(Q_t) = 1 \quad \text{and} \quad V_{Q_t} = V_Q;$$

$$d_W(V_K, V_{Q_t}) \leq \gamma(R, n) \cdot \varepsilon^{\frac{1}{m}}.$$

Therefore, we choose $h_t = h_{Q_t}$ and $\mu_t = V_{Q_t}$.

\textbf{Acknowledgement} We would like to thank Erwin Lutwak, Gaoyong Zhang and Richard Gardner for illuminating discussions.

\textbf{References}

[1] B. Andrews: Gauss curvature flow: the fate of rolling stone. Invent. Math., 138 (1999), 151-161.

[2] B. Andrews, P. Guan, L. Ni: Flow by the power of the Gauss curvature. Adv. Math., 299 (2016), 174-201.

[3] E. Artin: The Gamma function. Dover, 2015.
[4] K.M. Ball: Volume ratios and a reverse isoperimetric inequality. J. London Math. Soc. 44 (1991), 351-359.

[5] F. Barthe: Inégalité fonctionnelles et géométriques obtenues par transport des mesures, PhD thesis, Université de Marne-la-Vallée, Paris, 1997.

[6] F. Barthe, D. Cordero-Erausquin: Invariances in variance estimates. Proc. Lond. Math. Soc., (3) 106 (2013), 33-64.

[7] F. Barthe, M. Fradelizi: The volume product of convex bodies with many hyperplane symmetries. Amer. J. Math., 135 (2013), 311-347.

[8] F. Barthe, O. Guédon, S. Mendelson, A. Naor: A probabilistic approach to the geometry of the l_p^n-ball. Ann. of Probability, 33 (2005), 480-513.

[9] G. Bianchi, K.J. Böröczky, A. Colesanti, D. Yang: The L_p-Minkowski problem for $-n < p < 1$ according to Chou-Wang. Adv. Math., 341 (2019), 493-535.

[10] G. Bianchi, H. Egnell: A note on the Sobolev inequality. J. Funct. Anal. 100 (1991), 18-24.

[11] K.J. Böröczky, A. De: Stability of the log-Brunn-Minkowski inequality in the case of many hyperplane symmetries. arXiv:2101.02549

[12] K.J. Böröczky, F. Fodor: The L_p dual Minkowski problem for $p > 1$ and $q > 0$. J. Differential Equations 266 (2019), 7980-8033.

[13] K.J. Böröczky, P. Hegedüs: The cone volume measure of antipodal points. Acta Mathematica Hungarica, 146 (2015), 449-465.

[14] K.J. Böröczky, M. Henk: Cone-volume measure of general centered convex bodies. Advances Math., 286 (2016), 703-721.

[15] K.J. Böröczky, M. Henk: Cone-volume measure and stability. Advances Math., 306 (2017), 24-50.

[16] K.J. Böröczky, M. Henk, H. Pollehn: Subspace concentration of dual curvature measures of symmetric convex bodies. Journal of Differential Geometry, 109 (2018), 411-429.

[17] K.J. Böröczky, P. Kalantzopoulos: Log-Brunn-Minkowski inequality under symmetry. arXiv:2002.12239
18] K.J. Böröczky, E. Lutwak, D. Yang, G. Zhang: The log-Brunn-Minkowski-inequality. Advances in Mathematics, 231 (2012), 1974-1997.

19] K.J. Böröczky, E. Lutwak, D. Yang, G. Zhang: The Logarithmic Minkowski Problem. Journal of the American Mathematical Society, 26 (2013), 831-852.

20] K.J. Böröczky, E. Lutwak, D. Yang, G. Zhang: Affine images of isotropic measures. J. Diff. Geom., 99 (2015), 407-442.

21] K.J. Böröczky, E. Lutwak, D. Yang, G. Zhang, Y. Zhao: The dual Minkowski problem for symmetric convex bodies. Adv. Math., 356 (2019), 106805.

22] K.J. Böröczky, E. Lutwak, D. Yang, G. Zhang, Y. Zhao: The Gauss image problem. Communications on Pure and Applied Mathematics, 73 (2020), 1406-1452.

23] P. Bryan, M. Ivaki, J. Scheuer: A unified flow approach to smooth, even Lp-Minkowski problems. Anal. PDE 12 (2019), 259-280.

24] L. Caffarelli: Interior $W^{2,p}$-estimates for solutions of the Monge-Ampère equation. Ann. of Math. (2), 131, 135-150 (1990).

25] S. Chen, Y. Huang, Q.-R. Li, J. Liu: The L^p-Brunn-Minkowski inequality for $p < 1$. Adv. Math., 368 (2020), 107166.

26] S. Chen, Q.-R. Li, G. Zhu: On the L^p Monge-Ampère equation. Journal of Differential Equations, 263 (2017), 4997-5011.

27] S. Chen, Q.-R. Li, G. Zhu: The Logarithmic Minkowski Problem for non-symmetric measures. Trans. Amer. Math. Soc., 371 (2019), 2623-2641.

28] S.-Y. Cheng, S.-T. Yau: On the regularity of the solution of the n-dimensional Minkowski problem. Comm. Pure Appl. Math. 29, 495-561 (1976).

29] K. S. Chou, X. J. Wang: The L^p-Minkowski problem and the Minkowski problem in centroaffine geometry. Adv. Math., 205 (2006), 33-83.

30] R.M. Dudley: Real Analysis and Probability. Cambridge University Press, New York, 2002.
[31] M. Gromov and V.D. Milman: Generalization of the spherical isoperi-
metric inequality for uniformly convex Banach Spaces, Compositio Math.
62 (1987), 263-282.

[32] P.M. Gruber: Convex and discrete geometry. Springer, Berlin, 2007.

[33] P. Guan, L. Ni: Entropy and a convergence theorem for Gauss curvature
flow in high dimension. J EMS, 19 (2017), 3735-3761.

[34] B. He, G. Leng, K. Li: Projection problems for symmetric polytopes.
Adv. Math., 207 (2006), 73-90.

[35] Y. He, Q.-R. Li, X.-J. Wang: Multiple solutions of the Lp-Minkowski
problem. Calc. Var. Partial Differential Equations, 55 (2016), Art. 117

[36] M. Henk, H. Pollehn: Necessary subspace concentration conditions for
the even dual Minkowski problem. Adv. Math., 323 (2018), 114-141.

[37] M. Henk, A. Schürman, J.M. Wills: Ehrhart polynomials and successive
minima, Mathematika, 52 (2006), 1-16.

[38] J. Hosle, A.V. Kolesnikov, G.V. Livshyts: On the Lp-Brunn-Minkowski
and dimensional Brunn-Minkowski conjectures for log-concave measures.
[arXiv:2003.05282]

[39] Y. Huang, J. Liu, L. Xu: On the uniqueness of Lp-Minkowski problems:
The constant p-curvature case in \mathbb{R}^3. Advances in Mathematics, 281
(2015), 906-927.

[40] Y. Huang, E. Lutwak, D. Yang, G. Zhang: Geometric measures in the
dual Brunn-Minkowski theory and their associated Minkowski problems.
Acta Math., 216 (2016), 325-388.

[41] Y. Huang, Y. Zhao: On the Lp dual Minkowski problem. Adv. Math.
332 (2018), 57-84.

[42] D. Hug, E. Lutwak, D. Yang, G. Zhang: On the Lp Minkowski problem
for polytopes. Discrete Comput. Geom., 33 (2005), 699-715.

[43] D. Hug, R. Schneider: Hölder continuity for support measures of convex
bodies. Arch. Math. (Basel), 104 (2015), 83-92.

[44] A.V. Kolesnikov: Mass transportation functionals on the sphere with
applications to the logarithmic Minkowski problem. Mosc. Math. J., 20
(2020), 67-91.
[45] A.V. Kolesnikov, G. V. Livshyts: On the Local version of the Log-
Brunn-Minkowski conjecture and some new related geometric inequali-
ties. arXiv:2004.06103

[46] A.V. Kolesnikov, E. Milman: Local \(L_p \)-Brunn-Minkowski inequalities
for \(p < 1 \). Memoirs of the American Mathematical Society, accepted.

[47] Q-R. Li: Infinitely many solutions for centro-affine Minkowski problem.
Int. Math. Res. Not., IMRN, (2019) 5577-5596.

[48] Q-R. Li, W. Sheng, X-J. Wang: Flow by Gauss curvature to the Alek-
sandrov and dual Minkowski problems. J EMS, 22 (2020), 893-923.

[49] H. Lewy: On differential geometry in the large. I. Minkowski problem.
Trans. Amer. Math. Soc. 43, (1938), 258–270.

[50] E. Lutwak: Selected affine isoperimetric inequalities. In: Handbook of
convex geometry, North-Holland, Amsterdam, 1993, 151-176.

[51] E. Lutwak: The Brunn-Minkowski-Firey theory. I. Mixed volumes and
the Minkowski problem. J. Differential Geom. 38 (1993), 131-150.

[52] E. Lutwak: The Brunn-Minkowski-Firey theory. II. Affine and geomin-
imal surface areas. Adv. Math. 118 (1996), 244-294.

[53] E. Lutwak, D. Yang, G. Zhang: Volume inequalities for isotropic mea-
ures. Amer. J. Math. 129 (2007), 1711–1723

[54] E. Lutwak, D. Yang, G. Zhang: \(L_p \) dual curvature measures. Adv.
Math. 329 (2018), 85-132.

[55] A. Naor: The surface measure and cone measure on the sphere of \(l_p^n \).
Trans. Amer. Math. Soc., 359 (2007), 1045-1079.

[56] P. Nayar, T. Tkocz: On a convexity property of sections of the cross-
polytope. Proc. Amer. Math. Soc., 148 (2020), 1271-1278.

[57] L. Nirenberg: The Weyl and Minkowski problems in differential geom-
etry in the large. Comm. Pure and Appl. Math., 6 (1953), 337-394.

[58] G. Paouris, E. Werner: Relative entropy of cone measures and \(L_p \)
centroid bodies. Proc. London Math. Soc., 104 (2012), 253-286.

[59] A.V. Pogorelov, The Minkowski multidimensional problem. V.H. Winston &
Sons, Washington, D.C, 1978.

30
[60] E. Putterman: Equivalence of the local and global versions of the L_p-Brunn-Minkowski inequality. [arXiv:1909.03729]

[61] A. Rossi, P. Salani: Stability for Borell-Brascamp-Lieb inequalities. Geometric aspects of functional analysis, Lecture Notes in Math., 2169, Springer, Cham, (2017), 339–363.

[62] L. Rotem: A letter: The log-Brunn-Minkowski inequality for complex bodies, [arXiv:1412.5321]

[63] C. Saroglou: Remarks on the conjectured log-Brunn-Minkowski inequality. Geom. Dedicata 177 (2015), 353-365.

[64] R. Schneider: Convex Bodies: The Brunn-Minkowski Theory. Cambridge University Press, 2014.

[65] A. Stancu: The discrete planar L_0-Minkowski problem. Adv. Math. 167 (2002), 160-174.

[66] A. Stancu: On the number of solutions to the discrete two-dimensional L_0-Minkowski problem. Adv. Math., 180 (2003), 290-323.

[67] T. Tao, V. Vu: Additive combinatorics. Cambridge University Press, 2006.

[68] N.S. Trudinger, X.-J. Wang: The Monge-Ampere equation and its geometric applications. In: Handbook of geometric analysis, Adv. Lect. Math. 7, Int. Press, Somerville, MA, 2008, 467-524.

[69] D. Xi, G. Leng: Dar’s conjecture and the log-Brunn-Minkowski inequality. J. Differential Geom., 103 (2016), 145-189.

[70] G. Xiong, Extremum problems for the cone-volume functional of convex polytopes. Adv. Math. 225 (2010), 3214-3228.