Association of VDR polymorphisms (Taq I and Bsm I) with prostate cancer: a new meta-analysis

Sheng Liu1, Hairong Cai1, Weisong Cheng1, Haitao Zhang1, Zhengbo Pan1 and Dongguo Wang2

Abstract

Objective: Prostate cancer is a malignant tumour that poses a serious risk to human health. Epidemiological studies suggest that it may be associated with vitamin D receptor gene (VDR) polymorphisms. Previous work investigated potential risks between Taq I (rs731236) and Bsm I (rs1544410) VDR polymorphisms with prostate cancer in humans; however, results are inconsistent.

Methods: We conducted a meta-analysis to retrieve genetic association analyses of rs731236 and rs1544410 polymorphisms with prostate cancer from studies published between 2006–2016. Pooled odds ratios with 95% confidence intervals were used to assess genetic associations, and heterogeneity was assessed by Q and I² statistics.

Results: Our findings suggest a significant association between rs731236 and prostate cancer risk in Asians and African Americans, but rs1544410 was not associated with prostate cancer under three genetic models.

Conclusion: Future studies including larger sample sizes and the analysis of gene functions are needed to help develop prostate cancer treatment.

Keywords

VDR, polymorphisms, Taq I, Bsm I, meta-analysis, prostate cancer

Introduction

Prostate cancer originates from epithelial cells and is a serious threat to human health. Its incidence in China was reported to be 9.92/10 million in 2012, representing the sixth most common male malignant tumour. Similar incidences were also seen in the United States, where 192,000 new cases of
prostate cancer were reported in 2009 according to the American Cancer Society. In recent years, numerous medical studies have made important progress in the field. Clinical studies showed that the incidence of prostate cancer increases with age, with a high incidence of disease concentrated in individuals 70–80 years of age. However, patients with familial hereditary prostate cancer are usually less than 50 years old. An increased disease incidence is also related to frequent sexual activity, a high-fat diet, race, and regional location.

Molecular biology and epidemiological studies results suggest that the pathogenesis of prostate cancer may be associated with single nucleotide polymorphisms (SNPs) in several genes. For example, polymorphisms of the vitamin D receptor gene (VDR) are closely associated with prostate cancer. VDR is located on human chromosome 12 and encodes the nuclear hormone receptor for vitamin D3. VDR is a ligand-dependent nuclear transcription factor, which plays an important role in maintaining calcium metabolism, and regulating cell proliferation and differentiation. Several SNPs have been identified in VDR that appear to influence the risk of cancer and other disease, including bone mineral density, hyperparathyroidism, and osteomalacia. In normal and malignant prostate cells, VDR expression mediates the biological actions of 1,25(OH)2D, and polymorphisms in different regions of VDR cause different effects. The Bsm I (rs1544410) restriction site is in intron 8 of VDR; this polymorphism does not affect the amino acid sequence of VDR, but many studies have suggested that it is closely related to prostate cancer risk. The Taq I (rs731236) polymorphism is a synonymous mutation located in VDR exon 9, which is also associated with prostate cancer risk.

Several studies have investigated the potential risk of Taq I (rs731236) and Bsm I (rs1544410) polymorphisms on prostate cancer worldwide. However, the results are inconsistent. Therefore, we conducted a new meta-analysis to assess the effect of these two SNPs on the risk of prostate cancer.

Materials and methods
Search strategy and data extraction
We carried out a search of the literature to retrieve association analyses of Taq I (rs731236) and Bsm I (rs1544410) polymorphisms with prostate cancer published between 2006–2016. We searched PubMed, Springer, and ScienceDirect databases using the search terms ‘Taq I (or rs731236)’, ‘Bsm I (or rs1544410)’, ‘prostate cancer’, and ‘association analysis’. For data extraction, we paid attention to the publication time, country of publication, population information, genetic models used, case and control sample size, and polymorphism genotype and allele frequencies.

Statistical analysis and meta-analysis
We detected allele frequencies by Hardy–Weinberg equilibrium (HWE) using the χ² test. Ideally, allele frequencies were stable and unchanged (P > 0.05). Heterogeneity was tested for using Q and I² statistics, with P < 0.05 indicating significant difference. In the absence of heterogeneity, the fixed-effects model was used to calculate the odds ratio (OR) of each study; otherwise the random-effects model was used. The strength of association between Taq I (rs731236), Bsm I (rs1544410), and prostate cancer was accessed by calculating pooled ORs and 95% confidence intervals (CIs) under additive, dominant, and recessive genetic models. Publication bias was tested by Begg’s test and Egger’s linear regression. STATA software (version 12.0) was used for statistical analysis.
Results

Data statistics

A total of eight case–control studies about the Taq I (rs731236) polymorphism and the relationship between prostate cancer were identified. These included a total of 1,720 prostate cancer patients (502 Asians, 829 Caucasians, and 389 African Americans) and 1,729 controls (730 Asians, 866 Caucasians, and 133 African Americans). A total of six case–control studies about the Bsm I (rs1544410) polymorphism and the relationship between prostate cancer were identified. These included a total of 1,555 prostate cancer patients (350 Asians, 816 Caucasians, and 389 African Americans) and 1,376 controls (369 Asians, 870 Caucasians, and 137 African Americans). In these studies, the Bsm I (rs1544410) allele frequency was in line with the HWE (χ^2 test, $P > 0.05$) (Table 1).

Meta-analysis and publication bias

The results of the associations between Taq I (rs731236) and Bsm I (rs1544410) polymorphisms with prostate cancer and heterogeneity are shown in Table 2 and Figures 1–3. Our meta-analysis suggested that Taq I (rs731236) is associated with prostate cancer in the Asian population (dominant model: OR = 1.618, 95% CI 1.071–2.445, $P = 0.022$) and African American population (recessive model: OR = 1.668, 95% CI 1.115–2.496, $P = 0.013$) under the dominant model and recessive model, respectively. However, Bsm I (rs1544410) was not associated with prostate cancer under any of the three genetic models (additive model, OR = 1.005, 95% CI 0.746–1.353, not significant (NS); dominant model, OR = 1.237, 95% CI 0.753–2.031, NS; recessive model, OR = 0.906, 95% CI 0.623–1.316, NS).

We used Begg’s test and Egger’s linear regression to estimate the publication bias.

Ethnicity (country)	Year of publication	Author	Case/control genotype	Hardy–Weinberg P-value			
Asians (Lebanon)	2014	Ezzi et al.	23/26	75/112/21	7/11	0.006	0.11
Asians (China)	2009	Bai et al.	0/109	10/112/21	112/121	NS	
Asians (Pakistan)	2014	Hu et al.	2/1022	119/96/21	96/219	NS	
Asians (India)	2014	Yousaf et al.	2/1022	119/96/21	96/219	NS	
Caucasians (America)	2016	Manchanda et al.	4/32	13/111	13/111	NS	
Caucasians (America)	2016	Nunes et al.	16/30	52/760	52/760	0.011	
African Americans	2009	Holt et al.	10/23	60/71	60/71	NS	
African Americans	2015	Jingwi et al.	106/108	349/328	349/328	NS	
NS	No statistically significant differences ($P \geq 0.05$)						
Table 2. Summary of ORs and 95% CIs under different genetic models and heterogeneity estimates.

SNP	Genetic model	Population	Pooled odds ratio [95% confidence interval]	P-value	Heterogeneity	Begg's test	Egger's test
rs731236 (TaqI)	Additive	Asians	1.224 [0.899–1.666] NS			NS	NS
		Caucasians	1.035 [0.812–1.319] NS			NS	NS
		African Americans	1.487 [0.948–2.330] NS			NS	NS
		Total	1.217 [0.988–1.499] NS			NS	NS
	Dominant	Asians	1.618 [1.071–2.445] 0.022			NS	NS
		Caucasians	1.110 [0.847–1.456] NS			NS	NS
		African Americans	1.694 [0.898–3.195] NS			NS	NS
		Total	1.288 [1.040–1.594] 0.020			NS	NS
	Recessive	Asians	1.259 [0.929–1.708] NS			NS	NS
		Caucasians	0.932 [0.765–1.135] NS			NS	NS
		African Americans	1.668 [1.115–2.496] 0.013			NS	NS
		Total	1.095 [0.940–1.276] NS			NS	NS
rs1544410 (BsmI)	Additive	Asians	0.969 [0.408–2.301] NS			NS	NS
		Caucasians	0.971 [0.845–1.115] NS			NS	NS
		African Americans	1.043 [0.400–2.722] NS			NS	NS
		Total	1.005 [0.746–1.353] NS			NS	NS
	Dominant	Asians	1.420 [0.347–5.814] NS			NS	NS
		Caucasians	1.054 [0.826–1.346] NS			NS	NS
		African Americans	1.424 [0.249–8.139] NS			NS	NS
		Total	1.237 [0.753–2.031] NS			NS	NS
	Recessive	Asians	1.109 [0.324–3.794] NS			NS	NS
		Caucasians	0.846 [0.582–1.230] NS			NS	NS
		African Americans	0.867 [0.273–2.750] NS			NS	NS
		Total	0.906 [0.623–1.316] NS			NS	NS

NS, no statistically significant differences (P ≥ 0.05)
As shown in Table 2, the results provided statistical evidence of no publication bias ($P > 0.05$) in case–control studies of Asians, Caucasians, and African Americans.

Discussion

Several previous studies have reported an association of the \textit{Taq} I (rs731236) and \textit{Bsm} I (rs1544410) polymorphisms with prostate cancer.20–29 However, other investigations reached the opposite conclusion.30–32 In the present study, we conducted a meta-analysis of recently published genetic association analyses. The results suggested that \textit{Bsm} I (rs1544410) was not associated with prostate cancer under the additive, dominant, or recessive genetic models. These negative association results could be explained by our method of identifying studies from the literature, or could reflect the fact that we did not analyse other prostate cancer risk factors.

![Figure 1. Forest plot of odds ratios for prostate cancer (additive model) a: \textit{Taq} I (rs731236); b: \textit{Bsm} I (rs1544410).](image1)

![Figure 2. Forest plot of odds ratios for prostate cancer (dominant model) a: \textit{Taq} I (rs731236); b: \textit{Bsm} I (rs1544410).](image2)
such as atmospheric pollution, autoimmune diseases, and dietary factors. Moreover, the observed heterogeneity may also explain why no association was detected between *Bsm*I (rs1544410) and prostate cancer risk.

We did reveal a significant association between the *Taq*I (rs731236) polymorphism and prostate cancer risk in both Asian and African American populations (Table 2 and Figures 2–3). In 1994, Morrison et al.38 reported that the *Taq*I (rs731236) polymorphism affects *VDR* transcriptional activity and mRNA stability, thus altering the abundance of VDR protein, and in turn affecting vitamin D levels. Low vitamin D levels have been shown to increase the risk of prostate cancer,39 which agrees with our meta-analysis findings and previous epidemiological studies and gene function research.

By extension, our results show that genetic association analysis between susceptibility loci and disease involving small sample sizes does not provide solid evidence. Increasing the sample size would avoid the false-positive results obtained from local samples. Larger investigations should therefore be conducted together with molecular function studies of susceptibility genes and loci. This will ultimately provide an important theoretical basis for the development of prostate cancer clinical treatment.

Contributors

All authors have reviewed the final version of this manuscript and approved its submission for publication.

Declaration of conflicting interest

The authors declare that there is no conflict of interest.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

References

1. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2009. *CA Cancer J Clin* 2009; 59: 225–249.
2. Steinberg GD, Carter BS, Beaty TH, et al. Family history and the risk of prostate cancer. *Prostate* 1990; 17: 337–347.
3. Dimitropoulou P, Lophatananon A, Easton D, et al. Sexual activity and prostate cancer risk in men diagnosed at a younger age. *BJU Int* 2009; 103: 178–185.
4. Smith JR, Freije D, Carpten JD, et al. Major susceptibility locus for prostate cancer on chromosome 1 suggested by a genome-wide search. *Science* 1996; 274: 1371–1374.

5. Xu J, Meyers D, Freije D, et al. Evidence for a prostate cancer susceptibility locus on the X chromosome. *Nat Genet* 1998; 20: 175–179.

6. Rebbeck TR, Walker AH, Zeigler-Johnson C, et al. Association of HPC2/ELAC2 genotypes and prostate cancer. *Am J Hum Genet* 2000; 67: 1014–1019.

7. Carpten J, Nupponen N, Isaacs S, et al. Germline mutations in the ribonuclease L gene in families showing linkage with HPC1. *Nat Genet* 2002; 30: 181–184.

8. Schaid DJ. The complex genetic epidemiology of prostate cancer. *Hum Mol Genet* 2004; 13(Spec No 1): R103–R121.

9. Adorini L and Penna G. Control of autoimmune diseases by the vitamin D endocrine system. *Br J Biomed Sci* 2013; 70: 161–172.

10. Cantorna MT. Vitamin D and its role in immunology: multiple sclerosis, and inflammatory bowel disease. *Prog Biophys Mol Biol* 2006; 92: 60–64.

11. Basit S. Vitamin D in health and disease: a literature review. *Br J Biomed Sci* 2013; 70: 161–172.

12. Deeb KK, Trump DL and Johnson CS. Vitamin D signalling pathways in cancer: potential for anticancer therapeutics. *Nat Rev Cancer* 2007; 7: 684–700.

13. Reichel H, Koeffler HP and Norman AW. The role of the vitamin D endocrine system in health and disease. *N Engl J Med* 1989; 320: 980–991.

14. Carling T, Kindmark A, Hellman P, et al. Vitamin D receptor alleles b, a, and T: risk factors for sporadic primary hyperparathyroidism (HPT) but not HPT of uremia or MEN 1. *Biochem Biophys Res Commun* 1997; 231: 329–332.

15. McDermott MF, Ramachandran A, Ogunkolade BW, et al. Allelic variation in the vitamin D receptor influences susceptibility to IDDM in Indian Asians. *Diabetologia* 1997; 40: 971–975.

16. Uitterlinden AG, Burger H, Huang Q, et al. Vitamin D receptor genotype is associated with radiographic osteoarthritis at the knee. *J Clin Invest* 1997; 100: 259–263.

17. Miller GJ, Stapleton GE, Ferrara JA, et al. The human prostatic carcinoma cell line LNCaP expresses biologically active, specific receptors for 1 alpha, 25-dihydroxyvitamin D3. *Cancer Res* 1992; 52: 515–520.

18. Skowronski RJ, Peehl DM and Feldman D. Vitamin D and prostate cancer: 1,25 dihydroxyvitamin D3 receptors and actions in human prostate cancer cell lines. *Endocrinology* 1993; 132: 1952–1960.

19. Kivineva M, Blauer M, Syvala H, et al. Localization of 1, 25-dihydroxyvitamin D3 receptor (VDR) expression in human prostate. *J Steroid Biochem Mol Biol* 1998; 66: 121–127.

20. Suzuki K, Matsui H, Ohtake N, et al. Vitamin D receptor gene polymorphism in familial prostate cancer in a Japanese population. *Int J Urol* 2003; 10: 261–266.

21. Habuchi T, Suzuki T, Sasaki R, et al. Association of vitamin D receptor gene polymorphism with prostate cancer and benign prostatic hyperplasia in a Japanese population. *Cancer Res* 2000; 60: 305–308.

22. Ingles SA, Coetzee GA, Ross RK, et al. Association of prostate cancer with vitamin D receptor haplotypes in African-Americans. *Cancer Res* 1998; 58: 1620–1623.

23. Chokkalingam AP, McGlynn KA, Gao YT, et al. Vitamin D receptor gene polymorphisms, insulin-like growth factors, and prostate cancer risk: a population-based case-control study in China. *Cancer Res* 2001; 61: 4333–4336.

24. Tayeb MT, Clark C, Haitez NE, et al. CYP3A4 and VDR gene polymorphisms and the risk of prostate cancer in men with benign prostate hyperplasia. *Br J Cancer* 2003; 88: 928–932.

25. Luscombe CJ, French ME, Liu S, et al. Prostate cancer risk: associations with ultraviolet radiation, tyrosinase and melanocortin-1 receptor genotypes. *Br J Cancer* 2001; 85: 1504–1509.

26. Hamasaki T, Inatomi H, Katoh T, et al. Clinical and pathological significance of vitamin D receptor gene polymorphism for prostate cancer which is associated with
higher mortality in Japanese. *Endocr J* 2001; 48: 543–549.

27. Gsur A, Madersbacher S, Haidinger G, et al. Vitamin D receptor gene polymorphism and prostate cancer risk. *Prostate* 2002; 51: 30–34.

28. Medeiros R, Morais A, Vasconcelos A, et al. The role of vitamin D receptor gene polymorphisms in the susceptibility to prostate cancer of a southern European population. *J Hum Genet* 2002; 47: 413–418.

29. Blazer DG 3rd, Umbach DM, Bostick RM, et al. Vitamin D receptor polymorphisms and prostate cancer. *Mol Carcinog* 2000; 27: 18–23.

30. Bai Y, Yu Y, Yu B, et al. Association of vitamin D receptor polymorphisms with the risk of prostate cancer in the Han population of Southern China. *BMC Med Genet* 2009; 10: 125.

31. Yousaf N, Afzal S, Hayat T, et al. Association of vitamin D receptor gene polymorphisms with prostate cancer risk in the Pakistani population. *Asian Pac J Cancer Prev* 2010; 11: 1005–1008.

32. Holt SK, Kwon EM, Peters U, et al. Vitamin D pathway gene variants and prostate cancer risk. *Cancer Epidemiol, Biomarkers Prev* 2009; 18: 1929–1933.

33. Nunes SB, de Matos Oliveira F, Neves AF, et al. Association of vitamin D receptor variants with clinical parameters in prostate cancer. *Springerplus* 2016; 5: 364.

34. Jingwi EY, Abbas M, Ricks-Santi L, et al. Vitamin D receptor genetic polymorphisms are associated with PSA level, Gleason score and prostate cancer risk in African-American men. *Anticancer Res* 2015; 35: 1549–1558.

35. El Ezzi AA, Zaidan WR, El-Saidi MA, et al. Association of benign prostate hyperplasia with polymorphisms in VDR, CYP17, and SRD5A2 genes among Lebanese men. *Asian Pac J Cancer Prev* 2014; 15: 1255–1262.

36. Hu J, Qiu Z, Zhang L and Cui F. Kallikrein 3 and vitamin D receptor polymorphisms: potentials environmental risk factors for prostate cancer. *Diagn Pathol* 2014; 9: 84.

37. Manchanda PK, Konwar R, Nayak VL, et al. Association of genetic variants of the vitamin D receptor (VDR) gene (Fok-I, Taq-I and Bsm-I) with susceptibility of benign prostatic hyperplasia in a North Indian population. *Asian Pac J Cancer Prev* 2010; 11: 1005–1008.

38. Morrison NA, Qi JC, Tokita A, et al. Prediction of bone density from vitamin D receptor alleles. *Nature* 1994; 367: 284–287.

39. Corder EH, Guess HA, Hulka BS, et al. Vitamin D and prostate cancer: a prediagnostic study with stored sera. *Cancer Epidemiol, Biomarkers Prev* 1993; 2: 467–472.