Solving inverse problems of unknown contaminant source in groundwater-river integrated systems using a surrogate transport model based optimization

Azade Jamshidi 1,1, Jamal Mohammad Vali Samani1,*, Hossein Mohammad Vali Samani2, Andrea Zanini3,*, Maria Giovanna Tanda3, Mehdi Mazaheri1

1 Tarbiat Modares University, Department of Hydro Structures, Tehran, Iran; azade_jamshidi@modares.ac.ir, samani_j@modares.ac.ir, m.mazaheri@modares.ac.ir
2 Islamic Azad University, Department of Civil Engineering, Shahr-e-Qods Branch, Tehran (Iran); hossein.samani@gmail.com
3 University of Parma, Department of Engineering and Architecture, Parco Area delle Scienze 181/A, 43124 Parma (Italy); andrea.zanini@unipr.it, mariagiovanna.tanda@unipr.it
* Correspondence: samani_j@modares.ac.ir; andrea.zanini@unipr.it

List of Symbols

Symbol	Description
T_x	Transmissivity tensor at location x
h_p	Piezometric head
w	Volumetric flux per unit area
S_{stv}	Storativity of the porous material
t	Time
x	Position in the domain
x_0	Source location
ϕ	Effective porosity
$u(x,t)$	Effective velocity at location x and time t
$D(x)$	Dispersion tensor
$C(x,t)$	Concentration at location x and time t
∇	Nabla operator
$s(t)$	Unknown release function
$\delta(t)$	Dirac delta temporal distribution function
$\delta(x)$	Dirac delta spatial distribution function
$g(x,t)$	Transfer function at location x and time t
Symbol	Description
--------	---
τ	Time
$H(t)$	Heaviside step function
F_0	Constant and known mass rate input function
z	Observations
T	Sampling time
$h(s)$	Vector that describes the transport process
H	Sensitivity matrix
x_M	Monitoring location
Δt	Numerical model time step
N	Number of sources
n	Number of the discretized time values
m	Number of monitoring point
Q	Discharge
A	Cross-sectional area
q	Lateral inflow
h_w	Water level
S_f	Flow resistance term
α	Momentum distribution coefficient
x_l	Curvilinear coordinate
M_{tot}	Discharged contaminant total masses
$f_r(t)$	Release histories
$g_r(x_l)$	Source spatial distribution in the rth source
$k(x_{IM},t)$	Transfer function
$C(x_{IM},t)$	Concentration at location x_{IM} and time t
R	Number of sources
p	Number of measurement point
t_j	Time
h	Model function
v	Random vector
f_s	Vector of discretized release history
Symbol	Description
--------	-------------
w_0	Unknown input vector value of injected source flux
w_{max}	Upper value of injected source flux
C_i	Measured concentration
\hat{C}_i	Estimated concentration
objF	Optimization objective function
x_n	Position in the domain
$C_{\text{sampled}}(x_n, t)$	Sampled true concentration data at location x_n and time t
$C_{\text{new, sampled}}(x_n, t)$	Corrupted concentration data at location x_n and time t
δ_n	Random number
α	Error amplitude
$\alpha \delta_n$	Relative measurement error
NE	Normalized error
$PAEE$	Percent average estimation error
SD	Standard deviation
ME	Mean error
MAE	Mean absolute error
$RMSE$	Root mean squared error
$NRMSE$	Normalized root mean squared error
$\bar{W}_{i, \text{est}}$	Average computed source flux
$W_{i, \text{act}}$	Actual source fluxes
N_R	Number of realization
K	Hydraulic conductivity
O	Monitoring location
S	Pollutant source
SP	Stress period
TF	Transfer function
α_L	Longitudinal dispersivity
α_T	Transverse dispersivity
b	Saturated thickness
Δx	Size of numerical cell grid in x direction
Δy	Size of numerical cell grid in y direction