Molecular modeling of the structures, properties and glycating power of some reducing disaccharides

Abstract

The molecular structures, properties and glycating power of some reducing disaccharides (Cellobiose, Gentiobiose, Isomaltose, Lactose, Laminaribiose, Maltose, Mannobiose and Xylobiose) have been studied by resorting to Chemical Reactivity Theory including Conceptual DFT and Molecular Electron Density Theory (MEDT). The reactivity sites for nucleophilic and electrophilic attacks have been chosen by relating them to the Fukui function indices, the condensed dual descriptor Af(r) and the Parr functions. The glycating power of the reducing disaccharides is compared with that of simple hexoses and pentoses through the values of the calculated reactivity descriptors.

Keywords: conceptual DFT, reducing disaccharides, glycating power

Abbreviations: AGEs, advanced glycation end products; DFT, density functional theory; ASD, atomic spin density

Introduction

The nonenzymatic reaction between amino groups of proteins, lipids and nucleic acids with carbonyl group of reducing sugars is called glycation. Glycation primarily occurs at intra- chain lysine residues of proteins and involves the condensation reaction of the carbonyl group of reducing sugar aldehydes with the amino groups of lysine residues. Several other carbonyl compounds bearing a reducing carbon C atom can behave as glycating agents. The Schiff base formed in the nucleophilic addition reaction if followed by a molecular rearrangement and later to the formation of the so called Advanced Glycation End products (AGEs).

This kind of reactions is amenable of being studied through Conceptual Density Functional Theory (DFT). Conceptual DFT or Chemical Reactivity Theory (as it is also known) is a powerful tool for the prediction, analysis and interpretation of the outcome of chemical reactions.

Following the works of Adrover et al. we have previously studied the chemical reactivity of simple carbohydrates and other glycating carbonyl compounds and found a relationship between the glycating power and the calculated Conceptual DFT descriptors.

From an empirical and practical point of view, for the calculation of the Conceptual DFT descriptors it is meaningful to follow the procedure of assigning the KS HOMO as equal to and opposite of the vertical electron affinity, \(\varepsilon_L = A \) atom can behave as glycating agents. The Schiff base formed in the nucleophilic addition reaction if followed by a molecular rearrangement and later to the formation of the so called Advanced Glycation End products (AGEs).

As this work is part of an ongoing project, the theoretical background is similar to that presented in previous research and has been described in detail before, the chemical potential \(\mu \) is defined as:

\[
\mu = \left(\frac{\partial E}{\partial N} \right)_V(r) = -\chi
\]

Where \(\chi \) is the electro negativity.

The global chemical hardness is:

\[
\eta = \left(\frac{\partial^2 E}{\partial N^2} \right)_V(r)
\]

Using a finite difference approximation and the “Koopmans in DFT” procedure (KID), the former expressions can be written as:

\[
\mu = -1/2(A + 1) = 1/2(\varepsilon_L + \varepsilon_H) = \chi_K
\]

\[
\eta = (1 - A) = (\varepsilon_L - \varepsilon_H) = -\eta_K
\]

where \(\varepsilon_H \) and \(\varepsilon_L \) are the highest occupied and the lowest respectively, all of them calculated at the geometry of the neutral. This is a necessary condition because the Conceptual DFT descriptors are defined and calculated at constant external potential \(V(r) \).

Therefore, we believe that it is worth to extend this kind of studies in order to understand the chemical reactivity of reducing disaccharides (Cellobiose, Gentiobiose, Isomaltose, Lactose, Laminaribiose, Maltose, Mannobiose and Xylobiose). Thus, the objective of this work is to conduct a comparative study of the performance of some recently proposed density functionals for the description of the molecular properties and chemical reactivity of those reducing disaccharides.

Theoretical background

As this work is part of an ongoing project, the theoretical background is similar to that presented in previous research and has been described in detail before, the chemical potential \(\mu \) is defined as:

\[
\mu = \left(\frac{\partial E}{\partial N} \right)_V(r) = -\chi
\]

Where \(\chi \) is the electro negativity.

The global chemical hardness is:

\[
\eta = \left(\frac{\partial^2 E}{\partial N^2} \right)_V(r)
\]

Using a finite difference approximation and the “Koopmans in DFT” procedure (KID), the former expressions can be written as:

\[
\mu = -1/2(A + 1) = 1/2(\varepsilon_L + \varepsilon_H) = \chi_K
\]

\[
\eta = (1 - A) = (\varepsilon_L - \varepsilon_H) = -\eta_K
\]

where \(\varepsilon_H \) and \(\varepsilon_L \) are the highest occupied and the lowest
unoccupied molecular orbitals, HOMO and LUMO, respectively. In turn, the electrophilicity index ω has been defined as: \[\omega = \mu^2 / 2\eta = (1 + A)^2 / 4(1 - A) = (\epsilon_{L} + \epsilon_{H})^2 / 4(\epsilon_{L} - \epsilon_{H}) = \omega_K. \] (5)

The condensed Fukui functions can be employed to determine the reactivity of each atom in the molecule. The corresponding condensed functions are given by

\[
\begin{align*}
&f_k^+ = q_k(N+1) - q_k(N) \\
&(f \text{ for nucleophilic attack}),
\end{align*}
\]

(6)

\[
\begin{align*}
&f_k^- = q_k(N) - q_k(N-1) \\
&(f \text{ for electrophilic attack}),
\end{align*}
\]

(7)

\[
\begin{align*}
&f_k = \frac{[q_k(N+1) - q_k(N-1)]}{2} \\
&(f \text{ for radical attack}), \text{ where } q_k \text{ is the gross charge of atom } k \text{ in the molecule.}
\end{align*}
\]

The condensed dual descriptor has been defined as: \[\Delta f_k = f_k^+ - f_k^- \] (8)

From the interpretation given to the Fukui function, one can note that the sign of the dual descriptor is very important to characterize the reactivity of a site within a molecule toward a nucleophilic or an electrophilic attack. That is, if \[\Delta f_k > 0 \]
then the site is favored for a nucleophilic attack, whereas if \[\Delta f_k < 0 \]
then the site may be favored for an electrophilic attack.\ 18–20

In 2013, Domingo proposed the Parr functions $P(r)$ which are given by the following equations:

\[
P^-(r) = \rho^{RC}(r) \quad (\text{for electrophilic attacks})
\] and

\[
P^+(r) = \rho^{qa}(r) \quad (\text{for nucleophilic attacks})
\]

(5)

(for nucleophilic attacks) which are related to the atomic spin density (ASD) at the r atom of the radical cation or anion of a given molecule, respectively. The ASD over each atom of the radical cation and radical anion of the molecule gives the local nucleophilic ξ^- and electrophilic ξ^+ Parr functions of the neutral molecule.\ 23

Results and discussion

As a first step, the most stable conformers of the reducing disaccharides Cellobiose, Gentiobiose, Isomaltose, Lactose, Laminaribiose, Maltose, Mannobiose and Xylobiose whose structures are shown in Figure 1 were found by means of the Avogadro 1.2.0 program through molecular mechanics calculations. The structures of the resulting conformers were then reoptimized with the density functional mentioned in the previous section in connection with the Def2SVP basis set and the SMD solvation model, using water as a solvent.

![Figure 1 Molecular Structures of A) Cellobiose, B) Gentiobiose, C) Isomaltose, D) Lactose, E) Laminaribiose, F) Maltose, G) Mannobiose and H) Xylobiose.](image)
The next step was to perform single-point energy calculations on the chosen conformers for each reducing disaccharide for the neutral, radical cation and radical anion species, all at the optimized geometry of the neutral molecules, with the M11, M11L, MN12L, MN12SX, N12, N12SX, SOGGA11 and SOGGA11X density functional and the Def2TZVP basis set using water as solvent simulated with the SMD parameterization of the IEF-PCM model.

The HOMO and LUMO orbital energies (in eV), ionization potentials I and electron affinities A (in eV), and global electron negativity χ, total hardness η, global electrophilicity ω, electron donating power (ω+), electron accepting power (ω−), and net electrophilicity Δω of the reducing disaccharides are presented in Tables SIA-S8A of the Electronic Supplementary Information (ESI), showing the results derived assuming the validity of KID procedure (hence the subscript K) and the calculated vertical ∆SCF energies.

With the object of analyzing the behavior of the studied density functional in fulfilling the KID procedure, we have previously designed several accuracy descriptors that relate the results obtained through the HOMO and LUMO calculations with those obtained by means of the vertical I and A with a ASCF procedure. The first three descriptors are:

\[J_I = \left| E_H + E_{gs}(N-1) - E_{gs}(N) \right| \]
\[J_A = \left| E_L + E_{gs}(N) - E_{gs}(N+1) \right| \]
\[J_{KL} = \sqrt{J_I^2 + J_A^2} \]

However, it is convenient to consider next how well the studied density functional are useful for the prediction of the electro negativity χ, the global hardness η and the global electrophilicity ω. Thus another four accuracy descriptors were devised:

\[J_\chi = |\chi - \chi_K| \]
\[J_\eta = |\eta - \eta_K| \]
\[J_\omega = |\omega - \omega_K| \]
\[J_{D1} = \sqrt{(J_\chi^2 + J_\eta^2 + J_\omega^2)} \]

where D1 stands for the first group of Conceptual DFT descriptors.

The results of the calculations of the local reactivity descriptors (LRD) as the condensed Fukui functions, the condensed dual descriptor and the Parr functions. The condensed Fukui functions and condensed dual descriptors have been calculated using the AOM1 molecular analysis program, and the condensed dual descriptors \(\Delta_f \) and Parr functions \(\Phi_f \) over the car- bonyl C atoms of the reducing disaccharides calculated with the MN12SX and N12SX density functional and the Def2TZVP basis set using water as solvent simulated with the SMD parameterization of the IEF-PCM model are displayed in Tables S1B-S8B of the Electronic Supplementary Information (ESI). On the basis of the results for the descriptors presented on Tables S1B-S8B of the ESI, we have compiled the average values for each density functional on the whole group of reducing disaccharides and the calculated results are displayed on Table 1.

As can be seen from Table 1, the KID procedure is fulfilled with great accuracy for the MN12SX and N12SX density functional, while the usual GGA (SOGGA11) and hybrid- GGA (SOGGA11X) as well as the M11 and the local functional M11L, MN12L and N12 are not good for the fulfillment of the KID procedure. It is worth to mention that this is the same behavior that we found in our previous studies on simple carbohydrates and reducing carbonyl compounds.

The next step was the calculation of the local reactivity descriptors (LRD) as the condensed Fukui functions, the condensed dual descriptor and the Parr functions. The condensed Fukui functions and condensed dual descriptors have been calculated using the AOM1 molecular analysis program, and the condensed dual descriptors \(\Delta_f \) and Parr functions \(\Phi_f \) over the car- bonyl C atoms of the reducing disaccharides calculated with the MN12SX and N12SX density functional and the Def2TZVP basis set using water as solvent simulated with the SMD parameterization of the IEF-PCM model are shown in Table 2.

It would be very interesting to find a relationship between the glycation power GP of the reducing disaccharides and the Conceptual DFT descriptors as we have performed in our previous work on simple carbohydrates and carbonyl compounds. Unfortunately, to the best of our knowledge, the experimental rate constants for the reaction of the disaccharides with the amino group of amino acids and proteins have not been yet reported. Notwithstanding, we believe that it could be possible to apply the previous for simple carbohydrates, that is,

\[GP = a \times \omega + b \]

where \(a = 67.52 \) and \(b = -134.33 \), or

\[GP = a_1 \times \omega + a_2 \times \omega \]

where \(a_1 = 94.65 \), \(a_2 = -29.60 \) and \(b = -128.28 \). In order to do not report negative glycation powers, it is necessary to renormalize both expressions by correcting the parameter \(b \), in both cases, giving \(b = -116.60 \) for the first case and \(b = -116.60 \) for the second case.

Using these expressions, the following trend for the glycation power of the reducing disaccharides is found:

Maltose > Mannobiose > Xylobiose > Lactose > Cellobiose > Gentibiobiose > Isomaltose > Laminaribiose

Citation: Frau J, Mitnik DG. Molecular modeling of the structures, properties and glycating power of some reducing disaccharides. MOJ Drug Des Develop Ther. 2017;1(1):12–24. DOI: 10.15406/mojddt.2017.01.00003

\[J_\omega^+ = |\omega^+ - \omega_K^+| \]
\[J_\omega^- = |\omega^- - \omega_K^-| \]
Table S1A HOMO and LUMO orbital energies (in eV), ionization potentials I and electron affinity A (in eV), and global electrophilicity, electron donating power (ω^-), and electron accepting power (ω^+), and net electrophilicity $\Delta \omega^+$ of cellobiose, gentiobiose, isomaltose, lactose, laminaribiose, maltose, mannobiose and xylobiose calculated with the M11 density functional and the Def2TZVP basis set using water as solvent simulated with the SMD parameterization of the IEF-PCM model. The upper part of the table shows the results derived assuming the validity of the KID procedure and the lower part shows the results derived from the calculated vertical SCF energies.

Property	HOMO	LUMO	χ	η	ω^-	ω^+	$\Delta \omega^+$	
Cellobiose	-9.859	1.217	4.321	11.076	0.843	4.538	0.217	4.756
Gentiobiose	-10.070	1.274	4.398	11.345	0.853	4.613	0.215	4.828
Isomaltose	-10.070	1.274	4.398	11.344	0.853	4.613	0.215	4.828
Lactose	-9.656	1.155	4.250	10.811	0.835	4.472	0.221	4.693
Laminaribiose	-10.019	1.359	4.330	11.378	0.824	4.524	0.194	4.718
Maltose	-10.039	1.147	4.446	11.186	0.884	4.690	0.243	4.933
Mannobiose	-10.106	1.204	4.451	11.309	0.876	4.684	0.233	4.917
Xylobiose	-10.17	1.231	4.469	11.401	0.876	4.699	0.230	4.929

Table S1B Descriptors J_I, J_A, J_{HL}, J_{χ}, J_{η}, J_{ω^-}, J_{ω^+}, $J_{\Delta \omega^+}$ and J_{D2} for the cellobiose, gentiobiose, isomaltose, lactose, laminaribiose, maltose, mannobiose and xylobiose molecules calculated from the results of Table S1A.

Property	J_I	J_A	J_{HL}	J_{χ}	J_{η}	J_{ω^-}	J_{ω^+}	$J_{\Delta \omega^+}$			
Cellobiose	2.35	2.86	3.7	0.26	5.2	0.94	5.29	1.68	1.43	3.11	3.81
Gentiobiose	2.39	2.86	3.7	0.25	5.2	0.91	5.33	1.6	1.37	2.97	3.64
Isomaltose	2.39	2.86	3.7	0.25	5.2	0.91	5.33	1.6	1.37	2.97	3.64
Lactose	2.33	2.85	3.68	0.26	5.17	0.97	5.27	1.74	1.48	3.22	3.95
Laminaribiose	2.38	2.83	3.7	0.22	5.21	0.86	5.29	1.5	1.28	2.78	3.41
Maltose	2.38	2.76	3.65	0.19	5.14	0.89	5.22	1.56	1.37	2.93	3.59
Mannobiose	2.27	2.85	3.65	0.29	5.12	0.94	5.22	1.7	1.41	3.12	3.82
Xylobiose	2.33	2.85	3.68	0.26	5.17	0.92	5.26	1.65	1.39	3.03	3.72
Average	2.35	2.84	3.69	0.24	5.19	0.92	5.28	1.63	1.39	3.02	3.7

Citation: Frau J, Mitnik DG. Molecular modeling of the structures, properties and glycating power of some reducing disaccharides. MOJ Drug Des Develop Ther. 2017;1(1):12–24. DOI: 10.15406/mojddt.2017.01.00003
Table S2A: HOMO and LUMO orbital energies (in eV), ionization potentials I and electron affinity A (in eV), and global electrophilicity, electrophile donating power (\(\chi^{-}\)), electron accepting power (\(\chi^{+}\)), and net electrophilicity \(\chi\) of cellobiose, gentiobiose, isomaltose, lactose, laminaribiose, maltose, mannobiose and xylobiose calculated with the M11L density functional and the Def2TZVP basis set using water as solvent simulated with the SMD parameterization of the IEF-PCM model. The upper part of the table shows the results derived assuming the validity of the KID procedure and the lower part shows the results derived from the calculated vertical SCF energies.

Property	HOMO	LUMO	\(\chi\)	\(\eta\)	\(\omega\)	\(\omega^{-}\)	\(\Delta\omega\)	\(\omega^{+}\)	\(\Delta\omega^{+}\)
Cellobiose	-6.385	-1.84	4.112	4.545	1.86	6.06	1.948	8.009	
Gentiobiose	-6.557	-1.811	4.184	4.746	1.844	6.077	1.893	7.97	
Isomaltose	-6.557	-1.812	4.184	4.745	1.845	6.079	1.894	7.973	
Lactose	-6.124	-1.92	4.022	4.204	1.924	6.121	2.099	8.22	
Laminaribiose	-6.469	-1.656	4.062	4.813	1.715	5.761	1.699	7.46	
Maltose	-6.477	-1.859	4.168	4.618	1.881	6.135	1.967	8.101	
Mannobiose	-6.555	-1.854	4.204	4.701	1.88	6.157	1.952	8.109	
Xylobiose	-6.599	-1.842	4.22	4.757	1.872	6.151	1.931	8.083	

Property	I	A	\(\chi^{-}\)	\(\eta\)	\(\omega\)	\(\omega^{-}\)	\(\Delta\omega\)	\(\omega^{+}\)	\(\Delta\omega^{+}\)
Cellobiose	6.595	1.533	4.064	5.061	1.632	5.612	1.548	7.16	
Gentiobiose	6.759	1.461	4.11	5.297	1.594	5.575	1.465	7.04	
Isomaltose	6.76	1.462	4.111	5.297	1.595	5.576	1.466	7.042	
Lactose	6.408	1.592	4	4.816	1.661	5.623	1.623	7.246	
Laminaribiose	6.685	1.341	4.013	5.344	1.507	5.355	1.341	6.696	
Maltose	6.699	1.544	4.122	5.155	1.647	5.678	1.556	7.234	
Mannobiose	6.717	1.537	4.127	5.181	1.644	5.675	1.548	7.224	
Xylobiose	6.796	1.528	4.162	5.268	1.644	5.698	1.536	7.235	

Table S2B: Descriptors \(J_{I}^{L}, J_{A}, J_{HL}, J_{\chi}, J_{\eta}, J_{\omega}, J_{\Delta\omega}^{+}, J_{\Delta\omega}^{-}\) and MJ2 for the cellobiose, gentiobiose, isomaltose, lactose, laminaribiose, maltose, mannobiose and xylobiose molecules calculated from the results of Table S2A.

	\(J_{I}^{L}\)	\(J_{A}\)	\(J_{\chi}\)	\(J_{\eta}\)	\(J_{\omega}\)	\(J_{\Delta\omega}^{-}\)	\(J_{\Delta\omega}^{+}\)	\(J_{MJ2}\)			
Cellobiose	0.21	0.31	0.37	0.05	0.52	0.23	0.57	0.45	0.4	0.85	1.04
Gentiobiose	0.2	0.35	0.4	0.07	0.55	0.25	0.61	0.4	0.4	0.93	1.14
Isomaltose	0.2	0.35	0.4	0.07	0.55	0.25	0.61	0.4	0.4	0.93	1.14
Lactose	0.28	0.33	0.43	0.02	0.61	0.26	0.67	0.5	0.4	0.97	1.19
Laminaribiose	0.22	0.31	0.38	0.05	0.53	0.21	0.57	0.41	0.36	0.76	0.94
Maltose	0.22	0.32	0.39	0.05	0.54	0.23	0.59	0.46	0.41	0.87	1.06
Mannobiose	0.16	0.32	0.36	0.08	0.48	0.24	0.54	0.48	0.4	0.89	1.09
Xylobiose	0.2	0.31	0.37	0.06	0.51	0.23	0.56	0.45	0.39	0.85	1.04
Average	0.21	0.32	0.39	0.06	0.54	0.24	0.59	0.47	0.41	0.88	1.08

Citation: Frau J, Mitnik DG. Molecular modeling of the structures, properties and glycating power of some reducing disaccharides. MOJ Drug Des Develop Ther. 2017;1(1):12–24. DOI: 10.15406/mojddt.2017.01.00003
Table S3A HOMO and LUMO orbital energies (in eV), ionization potentials \(I \) and electron affinities \(A \) (in eV), and global electrophilicity, global electrophilicity!, electro donating power \(\delta_- \), and net electrophilicity \(\Delta \delta \) of cellobiose, gentiobiose, isomaltose, lactose, laminaribiose, maltose, mannobiose, and xylobiose calculated with the MN12L density functional and the Def2TZVP basis set using water as solvent simulated with the SMD parameterization of the IEF-PCM model. The upper part of the table shows the results derived assuming the validity of the KID procedure and the lower part shows the results derived from the calculated vertical SCF energies.

Property	HOMO	LUMO	\(\chi \)	\(\eta \)	\(\omega \)	\(\omega^+ \)	\(\Delta \omega^+ \)	
Cellobiose	-6.254	-1.463	3.858	4.791	1.553	5.335	1.477	6.813
Gentiobiose	-6.489	-1.481	3.985	5.008	1.585	5.476	1.491	6.967
Isomaltose	-6.494	-1.455	3.975	5.039	1.568	5.438	1.463	6.901
Lactose	-6.192	-1.573	3.882	4.619	1.632	5.493	1.611	7.104
Laminaribiose	-6.354	-1.322	3.838	5.032	1.464	5.161	1.323	6.484
Maltose	-6.333	-1.509	3.921	4.825	1.593	5.449	1.528	6.977
Mannobiose	-6.425	-1.5	3.963	4.924	1.594	5.478	1.515	6.993
Xylobiose	-6.488	-1.479	3.984	5.008	1.584	5.473	1.49	6.963

Table S3B Descriptors \(J_1, J_A, J_{HL}, J_J, J_{J1}, J_{J0}, J_{J10}, J_{J01}, J_{J01+}, J_{J10+} \) and \(J_{D2} \) for the cellobiose, gentiobiose, isomaltose, lactose, laminaribiose, maltose, mannobiose, and xylobiose molecules calculated from the results of Table S3A.

	\(J_1 \)	\(J_A \)	\(J_{HL} \)	\(J_J \)	\(J_{J1} \)	\(J_{J0} \)	\(J_{J10} \)	\(J_{J01} \)	\(J_{J01+} \)	\(J_{J10+} \)	
Cellobiose	0.2	0.24	0.32	0.02	0.45	0.15	0.47	0.28	0.26	0.53	0.65
Gentiobiose	0.2	0.29	0.35	0.05	0.48	0.17	0.52	0.34	0.29	0.63	0.77
Isomaltose	0.16	0.29	0.33	0.07	0.45	0.18	0.49	0.36	0.29	0.66	0.81
Lactose	0.26	0.28	0.38	0.01	0.54	0.18	0.57	0.32	0.31	0.64	0.78
Laminaribiose	0.22	0.26	0.35	0.02	0.49	0.14	0.51	0.27	0.25	0.51	0.63
Maltose	0.39	0.3	0.5	0.05	0.7	0.17	0.72	0.27	0.32	0.58	0.72
Mannobiose	0.16	0.26	0.3	0.05	0.41	0.16	0.45	0.32	0.27	0.59	0.73
Xylobiose	0.18	0.26	0.31	0.04	0.43	0.15	0.46	0.3	0.26	0.56	0.69

Average | 0.22 | 0.27 | 0.35 | 0.04 | 0.49 | 0.16 | 0.52 | 0.31 | 0.28 | 0.59 | 0.72 |

Citation: Frau J, Mitnik DG. Molecular modeling of the structures, properties and glycating power of some reducing disaccharides. MOJ Drug Des Develop Ther. 2017;1(1):12–24. DOI: 10.15406/mojddt.2017.01.00003
Table S4A HOMO and LUMO orbital energies (in eV), ionization potentials I and electron affinities A (in eV), and global electrophilicity χ, global nucleophilicity η, total chemical hardness ω, global electrophilic hardness ω^K, global nucleophilic hardness ω^K, global electrophilicity $\omega^*$$\omega$ and net electrophilicity $\Delta\omega$ of cellobiose, gentiobiose, isomaltose, lactose, laminaribiose, maltose, mannobiose and xylobiose calculated with the MN12SX density functional and the Def2TZVP basis set using water as solvent simulated with the SMD parameterization of the IEF-PCM model. The upper part of the table shows the results derived assuming the validity of the KID procedure and the lower part shows the results derived from the calculated vertical SCF energies.

Property	HOMO	LUMO	χ	η	ω	ω^K	ω^*	$\Delta\omega$
Cellobiose	-7.064	-1.262	4.163	5.802	1.494	5.431	1.268	6.7
Gentibiose	-7.337	-1.197	4.267	6.14	1.483	5.483	1.215	6.698
Isomaltose	-7.337	-1.197	4.267	6.14	1.483	5.482	1.215	6.698
Lactose	-6.819	-1.319	4.069	5.499	1.505	5.389	1.32	6.709
Laminaribiose	-7.153	-1.126	4.139	6.027	1.421	5.289	1.15	6.709
Maltose	-7.163	-1.32	4.241	5.843	1.539	5.565	1.32	6.888
Mannobiose	-7.255	-1.281	4.268	5.973	1.525	5.577	1.289	6.845
Xylobiose	-7.317	-1.266	4.291	6.051	1.522	5.557	1.276	6.843

Table S4B Descriptors J_I, J_A, J_{HL}, J_{χ}, J_{η}, J_{ω}, J_{ω^K}, J_{ω^*} and $J_{\Delta\omega}$ for the cellobiose, gentiobiose, isomaltose, lactose, laminaribiose, maltose, mannobiose and xylobiose molecules calculated from the results of Table S4A.

Property	J_I	J_A	J_{HL}	J_{χ}	J_{η}	J_{ω}	J_{ω^K}	J_{ω^*}	$J_{\Delta\omega}$		
Cellobiose	0.03	0.2	0.2	0.08	0.23	0.12	0.27	0.28	0.19	0.47	0.58
Gentibiose	0.04	0.19	0.2	0.08	0.23	0.11	0.27	0.25	0.18	0.43	0.53
Isomaltose	0.04	0.19	0.2	0.08	0.23	0.11	0.27	0.25	0.18	0.43	0.53
Lactose	0.03	0.2	0.2	0.08	0.23	0.13	0.27	0.28	0.2	0.49	0.6
Laminaribiose	0.04	0.18	0.19	0.07	0.23	0.1	0.26	0.23	0.16	0.39	0.48
Maltose	0.03	0.16	0.16	0.07	0.19	0.1	0.23	0.23	0.16	0.39	0.48
Mannobiose	0.02	0.19	0.19	0.09	0.21	0.12	0.26	0.27	0.18	0.46	0.56
Xylobiose	0.03	0.19	0.19	0.08	0.23	0.12	0.27	0.26	0.18	0.44	0.54
Average	0.03	0.19	0.19	0.08	0.22	0.12	0.26	0.26	0.18	0.44	0.54

Citation: Frau J, Mitnik DG. Molecular modeling of the structures, properties and glycating power of some reducing disaccharides. MOJ Drug Des Develop Ther. 2017;1(1):12–24. DOI: 10.15406/mojddt.2017.01.00003
Molecular modeling of the structures, properties and glycating power of some reducing disaccharides

Table S5A HOMO and LUMO orbital energies (in eV), ionization potentials I and electron affinities A (in eV), and global electro negativity, total chemical hardness, global electrophilicity!, electro donating power (!), and electro accepting power (!+) of cellobiose, gentiobiose, isomaltose, lactose, laminaribiose, maltose, mannobiose and xylobiose calculated with the N12 density functional and the Def2TZVP basis set using water as solvent simulated with the SMD parameterization of the IEF-PCM model. The upper part of the table shows the results derived assuming the validity of the KID procedure and the lower part shows the results derived from the calculated vertical SCF energies.

Property	HOMO	LUMO	χ_H	η_H	ω_H	ω_K	ω_K^+	$\Delta \omega_\text{K}^+$
Cellobiose	-5.611	-2.038	3.824	3.574	2.046	6.228	2.404	8.632
Gentiose	-5.918	-2.031	3.975	3.887	2.032	6.295	2.32	8.615
Isomaltose	-5.918	-2.031	3.975	3.887	2.032	6.295	2.32	8.615
Lactose	-5.523	-1.900	3.712	3.623	1.902	5.886	2.174	8.06
Laminaribiose	-5.734	-1.822	3.778	3.912	1.824	5.782	2.004	7.785
Maltose	-5.654	-1.983	3.819	3.671	1.986	6.111	2.292	8.403
Manobiose	-5.921	-2.014	3.967	3.907	2.014	6.256	2.289	8.545
Xylobiose	-5.93	-1.977	3.954	3.954	1.977	6.178	2.224	8.402

Table S5B Descriptors J_1, J_2, J_3, J_4, J_5, J_6, J_7, J_8, J_9, J_{10}, J_{11} and J_{12} for the cellobiose, gentiobiose, isomaltose, lactose, laminaribiose, maltose, mannobiose and xylobiose molecules calculated from the results of Table S5A.

Property	J_1	J_2	J_3	J_4	J_5	J_6	J_7	J_8	J_9	J_{10}	J_{11}	J_{12}
Cellobiose	0.31	0.69	0.76	0.19	0.6	1.18	1.24	1.05	2.28	2.8		
Gentiose	0.26	0.71	0.76	0.23	0.97	0.59	1.16	1.22	1	2.22	2.73	
Isomaltose	0.26	0.71	0.76	0.23	0.97	0.59	1.16	1.22	1	2.22	2.73	
Lactose	0.28	0.69	0.74	0.2	0.97	0.56	1.14	1.17	0.96	2.13	2.61	
Laminaribiose	0.23	0.67	0.71	0.22	0.9	0.51	1.05	1.07	0.85	1.91	2.35	
Maltose	0.23	0.7	0.74	0.24	0.93	0.59	1.13	1.25	1	2.25	2.77	
Manobiose	0.19	0.69	0.72	0.25	0.88	0.57	1.08	1.22	0.96	2.18	2.68	
Xylobiose	0.25	0.69	0.73	0.22	0.94	0.55	1.1	1.15	0.93	2.08	2.56	
Average	0.25	0.69	0.74	0.22	0.95	0.57	1.13	1.19	0.97	2.16	2.65	

Citation: Frau J, Mitnik DG. Molecular modeling of the structures, properties and glycating power of some reducing disaccharides. MOJ Drug Des Develop Ther. 2017;1(1):12–24. DOI: 10.15406/mojddt.2017.01.00003
Table S6A HOMO and LUMO orbital energies (in eV), ionization potentials I and electron affinities A (in eV), and global electro negativity, global electrophilicity χ, electron donating power ω^-, electron accepting power ω^+, and net electrophilicity $\Delta \omega$ of cellobiose, gentiobiose, isomaltose, lactose, laminaribiose, maltose, mannobiose and xylobiose calculated with the N12SX density functional and the Def2TZVP basis set using water as solvent simulated with the SMD parameterization of the IEF-PCM model. The upper part of the table shows the results derived assuming the validity of the KID procedure and the lower part shows the results derived from the calculated vertical SCF energies.

Property	HOMO	LUMO	χ_k	η_k	ω_k	ω_k^+	$\Delta \omega_k$	
Cellobiose	-6.711	-1.355	4.033	5.356	1.518	5.388	1.355	6.743
Gentiobiose	-7.089	-1.32	4.204	5.769	1.532	5.527	1.322	6.849
Isomaltose	-7.089	-1.32	4.204	5.769	1.532	5.527	1.322	6.849
Lactose	-6.569	-1.401	3.985	5.168	1.536	5.389	1.403	6.792
Laminaribiose	-6.846	-1.203	4.024	5.643	1.435	5.235	1.21	6.445
Maltose	-6.976	-1.35	4.163	5.626	1.54	5.514	1.351	6.865
Mannobiose	-7.043	-1.333	4.188	5.71	1.536	5.523	1.335	6.857
Xylobiose	-7.083	-1.304	4.194	5.779	1.522	5.501	1.307	6.808

Property	I	A	χ	η	ω	ω^-	ω^+	$\Delta \omega$
Cellobiose	6.708	1.496	4.102	5.212	1.614	5.605	1.503	7.108
Gentiobiose	7.079	1.455	4.267	5.624	1.619	5.723	1.456	7.178
Isomaltose	7.079	1.455	4.267	5.624	1.619	5.722	1.455	7.178
Lactose	6.568	1.538	4.053	5.031	1.633	5.607	1.554	7.165
Laminaribiose	6.836	1.343	4.089	5.493	1.522	5.432	1.343	6.775
Maltose	6.965	1.471	4.218	5.494	1.619	5.691	1.473	7.163
Mannobiose	7.039	1.472	4.256	5.566	1.627	5.729	1.474	7.203
Xylobiose	7.07	1.444	4.257	5.626	1.611	5.702	1.445	7.146

Table S6B Descriptors J_I, J_A, J_{HL}, J_J, J_H, J_D^1, J_D^2, J_{ω^-}, J_{ω^+} and $J_{\Delta \omega}$ for the cellobiose, gentiobiose, isomaltose, lactose, laminaribiose, maltose, mannobiose and xylobiose molecules calculated from the results of Table S6A.

Property	J_I	J_A	J_{HL}	J_J	J_{ω^-}	J_{ω^+}	$J_{\Delta \omega}$
Cellobiose	0.14	0.14	0.07	0.14	0.18	0.15	0.37
Gentiobiose	0.14	0.14	0.14	0.14	0.18	0.13	0.33
Isomaltose	0.14	0.14	0.14	0.14	0.18	0.13	0.33
Lactose	0.14	0.14	0.14	0.14	0.18	0.15	0.37
Laminaribiose	0.14	0.14	0.15	0.10	0.19	0.13	0.33
Maltose	0.14	0.14	0.14	0.14	0.18	0.14	0.35
Mannobiose	0.14	0.14	0.14	0.14	0.19	0.14	0.34
Xylobiose	0.14	0.14	0.14	0.14	0.19	0.14	0.34
Average	0.14	0.14	0.14	0.14	0.18	0.14	0.34

Citation: Frau J, Mitnik DG. Molecular modeling of the structures, properties and glycating power of some reducing disaccharides. *MOJ Drug Des Develop Ther.* 2017;1(1):12–24. DOI: 10.15406/mojddt.2017.01.00003
Table S7A HOMO and LUMO orbital energies (in eV), ionization potentials I and electron affinity A (in eV), and global electrophilicity, global nucleophilicity, electrophilic hardness, nucleophilic hardness, electrophilic softness, nucleophilic softness, and global hardness of cellobiose, gentiobiose, isomaltose, lactose, laminaribiose, maltose, mannobiose and xylobiose, calculated with the SOGGA11 density functional and the Def2TZVP basis set using water as solvent simulated with the SMD parameterization of the IEF-PCM model. The upper part of the table shows the results derived assuming the validity of the KID procedure and the lower part shows the results derived from the calculated vertical SCF energies.

Property	HOMO	LUMO	χ_k	η_k	ω_k	ω^+_k	$\Delta \omega^+_k$	$\Delta \omega_k$
Cellobiose	-5.605	-2.271	3.938	3.334	2.326	6.829	2.891	9.72
Gentiose	-5.754	-2.235	3.994	3.519	2.267	6.751	2.757	9.508
Isomaltose	-5.754	-2.235	3.994	3.519	2.267	6.751	2.757	9.508
Lactose	-5.509	-2.173	3.841	3.336	2.211	6.551	2.71	9.261
Laminaribiose	-5.711	-2.032	3.871	3.679	2.037	6.239	2.368	8.606
Maltose	-5.58	-2.095	3.838	3.484	2.113	6.363	2.525	8.888
Mannobiose	-5.812	-2.237	4.024	3.575	2.265	6.765	2.741	9.506
Xylobiose	-5.876	-2.243	4.059	3.632	2.268	6.793	2.734	9.527

Table S7B Descriptors J_I, J_A, J_{HL}, J_J, J_L, J_{D1}, J_{D2}, J_{D1+}, J_{D2+} and J_{D1-} for the cellobiose, gentiobiose, isomaltose, lactose, laminaribiose, maltose, mannobiose and xylobiose molecules calculated from the results of Table S7A.

Property	J_I	J_A	J_{HL}	J_J	J_L	J_{D1}	J_{D2}	J_{D1+}	J_{D2+}	J_{D1-}	J_{D2-}
Cellobiose	0.27	0.76	0.81	0.25	1.03	0.76	1.3	1.58	1.34	2.92	3.58
Gentiose	0.28	0.71	0.77	0.22	0.99	0.69	1.23	1.42	1.2	2.62	3.21
Isomaltose	0.28	0.71	0.77	0.22	0.99	0.69	1.23	1.42	1.2	2.62	3.21
Lactose	0.33	0.6	0.69	0.14	0.93	0.6	1.12	1.21	1.08	2.29	2.81
Laminaribiose	0.26	0.75	0.79	0.24	1	0.63	1.21	1.32	1.08	2.4	2.95
Maltose	0.24	0.67	0.72	0.22	0.91	0.62	1.13	1.3	1.08	2.38	2.92
Mannobiose	0.22	0.78	0.81	0.28	0.99	0.73	1.26	1.54	1.26	2.79	3.43
Xylobiose	0.29	0.73	0.78	0.22	1.01	0.68	1.24	1.41	1.19	2.6	3.18
Average	0.27	0.71	0.76	0.22	0.98	0.68	1.21	1.4	1.18	2.58	3.16
Table S8A HOMO and LUMO orbital energies (in eV), ionization potentials I and electron affinities A (in eV), and global electropotentialities, electron donating power \(\lambda \), electron accepting power \(\lambda^+ \), and net electropotentiality \(\lambda_{\text{net}} \) of cellobiose, gentiobiose, isomaltose, lactose, laminaribiose, maltose, mannobiose and xylobiose calculated with the SOGGA11X density functional and the Def2TZVP basis set using water as solvent simulated with the SMD parameterization of the IEF-PCM model. The upper part of the table shows the results derived assuming the validity of the KID procedure and the lower part shows the results derived from the calculated vertical SCF energies.

Property	HOMO	LUMO	\(\chi \)	\(\eta \)	\(\omega \)	\(\omega^\prime \)	\(\omega^\prime \pm \)	\(\Lambda \omega^\prime \)
Cellobiose	-8.086	-0.28	4.183	7.806	1.121	4.821	0.638	5.459
Gentiobiose	-8.458	-0.222	4.34	8.237	1.143	4.971	0.632	5.603
Isomaltose	-8.458	-0.221	4.34	8.237	1.143	4.971	0.631	5.602
Lactose	-7.936	-0.32	4.128	7.616	1.119	4.777	0.649	5.427
Laminaribiose	-8.181	-0.142	4.162	8.039	1.077	4.738	0.576	5.314
Maltose	-8.269	-0.306	4.287	7.962	1.154	4.957	0.663	5.613
Mannobiose	-8.389	-0.263	4.326	8.126	1.151	4.974	0.648	5.622
Xylobiose	-8.454	-0.25	4.352	8.204	1.154	4.997	0.645	5.642

Property	I	A	\(\chi \)	\(\eta \)	\(\omega \)	\(\omega^\prime \)	\(\omega^\prime \pm \)	\(\Lambda \omega^\prime \)
Cellobiose	7.188	1.517	4.353	5.672	1.67	5.871	1.518	7.39
Gentiobiose	7.527	1.452	4.489	6.075	1.659	5.942	1.452	7.394
Isomaltose	7.526	1.452	4.489	6.075	1.659	5.941	1.452	7.394
Lactose	7.066	1.546	4.306	5.52	1.679	5.856	1.551	7.407
Laminaribiose	7.389	1.353	4.371	6.036	1.583	5.728	1.357	7.085
Maltose	7.406	1.465	4.436	5.941	1.656	5.901	1.466	7.367
Mannobiose	7.558	1.495	4.526	6.063	1.69	6.021	1.495	7.516
Xylobiose	7.587	1.479	4.533	6.108	1.682	6.012	1.479	7.492

Table S8B Descriptors \(J_1, J_2, J_{\text{HL}}, J_{\text{KL}}, J_{\text{JL}}, J_{\text{LJ}}, J_{\text{DL}}, J_{\text{D}} \), \(J_{\text{DA}} \), \(J_{\text{D} \text{A}} \) and \(J_{\text{D} \text{A}} \) for the cellobiose, gentiobiose, isomaltose, lactose, laminaribiose, maltose, mannobiose and xylobiose molecules calculated from the results of Table S8A.

	\(J_1 \)	\(J_2 \)	\(J_{\text{HL}} \)	\(J_{\text{KL}} \)	\(J_{\text{JL}} \)	\(J_{\text{LJ}} \)	\(J_{\text{DL}} \)	\(J_{\text{D}} \)			
Cellobiose	0.9	1.24	1.53	0.17	2.13	0.55	2.21	1.05	0.88	1.93	2.37
Gentiobiose	0.93	1.23	1.54	0.15	2.16	0.52	2.23	0.97	0.82	1.79	2.2
Isomaltose	0.93	1.23	1.54	0.15	2.16	0.52	2.23	0.97	0.82	1.79	2.2
Lactose	0.87	1.23	1.5	0.18	2.1	0.56	2.18	1.08	0.9	1.98	2.43
Laminaribiose	0.79	1.21	1.45	0.21	2	0.51	2.08	0.99	0.78	1.77	2.17
Maltose	0.86	1.16	1.44	0.15	2.02	0.5	2.09	0.95	0.8	1.75	2.15
Mannobiose	0.83	1.23	1.49	0.2	2.06	0.54	2.14	1.05	0.85	1.89	2.32
Xylobiose	0.87	1.23	1.5	0.18	2.1	0.53	2.17	1.02	0.83	1.85	2.27
Average	0.87	1.22	1.5	0.17	2.09	0.53	2.16	1.01	0.84	1.85	2.26

Citation: Frau J, Mitnik DG. Molecular modeling of the structures, properties and glycating power of some reducing disaccharides. *MOJ Drug Des Develop Ther.* 2017;1(1):12–24. DOI: 10.15406/mojddt.2017.01.00003
Table 1 Average descriptors $J_1, J_2, J_3, J_4, J_5, J_6, J_7, J_8, J_9, J_{10}, J_{11}, J_{12}$ for the reducing disaccharides calculated with the eight density functionals and the Def2TZVP basis set using water as solvent simulated with the SMD parameterization of the IEF-PCM model

	J_1	J_2	J_3	J_4	J_5	J_6	J_7	J_8	J_9	J_{10}	J_{11}	J_{12}
M11	2.35	2.84	3.69	0.24	5.19	0.92	5.28	1.63	1.39	3.02	3.70	
M11L	0.21	0.32	0.39	0.06	0.54	0.24	0.59	0.47	0.41	0.88	1.08	
MN12L	0.22	0.27	0.35	0.04	0.49	0.16	0.52	0.31	0.28	0.59	0.72	
MN12SX	0.03	0.19	0.19	0.08	0.22	0.12	0.26	0.26	0.18	0.44	0.54	
N12	0.25	0.69	0.74	0.22	0.95	0.57	1.13	1.19	0.97	2.16	2.65	
N12SX	0.01	0.14	0.14	0.06	0.14	0.09	0.18	0.2	0.14	0.34	0.42	
SOGGA11	0.27	0.71	0.76	0.22	0.98	0.58	1.21	1.4	1.18	2.58	3.16	
SOGGA11X	0.87	1.22	1.5	0.17	2.09	0.63	2.16	1.01	0.84	1.85	2.26	

Table 2 Condensed dual descriptors Δf_K and electrophilic Parr functions ω_+ for cellobiose, gentiobiose, isomaltose, lactose, laminaribiose, maltose, mannobiose and xylobiose calculated with the MN12SX and N12SX density functionals and the Def2TZVP basis set using water as solvent simulated with the SMD parametrization of the IEF-PCM model. MPA, mulliken Population Analysis; HPA, hirshfeld population analysis

	Δf_K	$P_{\omega+}$(MPA)	$P_{\omega+}$(HPA)	Δf_K	$P_{\omega+}$(MPA)	$P_{\omega+}$(HPA)
MN12SX						
Cellobiose	0.637	0.739	0.548	0.665	0.691	0.558
Gentiobiose	0.646	0.756	0.560	0.635	0.697	0.564
Isomaltose	0.640	0.756	0.560	0.637	0.697	0.564
Lactose	0.630	0.732	0.548	0.626	0.686	0.558
Laminaribiose	0.606	0.711	0.566	0.603	0.681	0.568
Maltose	0.612	0.744	0.531	0.626	0.692	0.554
Mannobiose	0.618	0.747	0.548	0.613	0.696	0.559
Xylobiose	0.616	0.75	0.547	0.625	0.697	0.558

Conclusion

The main conclusion from our work is that the quality of the model chemistry employed in the study of the chemical reactivity of reducing disaccharides that are susceptible to go into the Maillard reaction could be determined by resorting to some previously designed accuracy descriptors. With the object in mind of fulfilling the KID procedure, it has been established that the range-separated hybrid meta-NGA density functional (MN12SX) and the range-separated hybrid NGA density functional (N12SX) are the best for the accomplishment of this objective. Thus, it has been demonstrated that the tuning of the behavior of a density functional through a gap-fitting procedure can be avoided by selecting any of these density functional that represent a good prospect for their usefulness in the description of the chemical reactivity of molecular systems of large size.

Moreover, on the basis of previous studies, a trend for the glycating power GP of the reducing disaccharides has been found, being maltose the most powerful, with lactose in an intermediate level and laminaribiose with almost non GP. It is expected that these conclusions could be extended to larger glycating molecular systems.

This knowledge could be helpful in the design and development of new drugs useful as inhibitors of the formation of AGEs by interfering with the glycation process. Although only a few reducing disaccharides have been considered in this work, the ideas presented here could be extended to other potential similar molecules which mode of action is unknown leading to the design and development of specific drugs for every case under study.

Acknowledgements

None.

Conflict of interest

The author declares no conflict of interest.

References

1. Parr RG, Yang W. Density-Functional Theory of Atoms and Molecules. New York, USA: Oxford University Press; 1989.
2. Geerlings P, Proft FD, Langenaeker W. Conceptual density functional theory. Chem Rev. 2003;103(5):1793–1873.
3. Labbé TA. Theoretical Aspects of Chemical Reactivity. Amsterdam, Netherlands: Elsevier Science; 2007.
4. Chattaraj PK. Chemical Reactivity Theory- A Density Functional View. CRC Press, Boca Raton, Florida, USA: Taylor & Francis Group; 2009.
5. Adrover M, Vilanova B, Muñoz F, et al. Pyridoxamine, a scavenger agent of carbohydrates. Int J Chem Kin. 2007;39(3):154–167.

Citation: Frau J, Mitnik DG. Molecular modeling of the structures, properties and glycating power of some reducing disaccharides. MOJ Drug Des Develop Ther. 2017;1(1):12–24. DOI: 10.15406/mojddt.2017.01.00003
Molecular modeling of the structures, properties and glycating power of some reducing disaccharides

6. Adrover M, Vilanova B, Fraj J, et al. A comparative study of the chemical reactivity of pyridoxamine, Ac-Phe-Lys and Ac-Cys with various glycating carbonyl compounds. Amino Acids. 2009;36(3):437–438.

7. Peverati R, Truhlar DG. Quest for a universal density functional: the accuracy of density functionals across a broad spectrum of databases in chemistry and physics. *Philos Trans A Math Phys Eng Sci.* 2014;372(2011):20120476.

8. Mitnik DG. A comparison of the chemical reactivity of naringenin calculated with the M06 family of density functionals. *Chem Cent J.* 2013;7(1):155.

9. Araya JIM, Morán GS, Mitnik DG. *J Phys Chem B.* 2013;117:6639.

10. Mitnik DG. *Procedia Computer Science.* 2013;18:816.

11. Araya JIM, Morán GS, Mitnik DG. *J Chem.* 2013;850270:8.

12. Mitnik DG. Chemical Reactivity Theory within DFT applied to the study of the Prunin Flavonoid. *Eur Int J Sci Techn.* 2014;3(9):195–204.

13. Mitnik DG. Computational chemistry of natural products: a comparison of the chemical reactivity of isonaringin calculated with the M06 family of density functionals. *J Mol Mod.* 2014;20(7):2316.

14. Fraj J, Muñoz F, Mitnik DG. A molecular electron density theory study of the chemical reactivity of Cis- and trans-resveratrol. *Molecules.* 2016;21(12):1650.

15. Mineva T, Sicilia E, Russo N. Density-functional approach to hardness evaluation and its use in the study of the maximum hardness. *Principle J Am Chem Soc.* 1998;120(35):9053–9058.

16. Luca DG, Sicilia E, Russo N, et al. On the hardness evaluation in solvent for neutral and charged systems. *J Am Chem Soc.* 2002;124(7):1494–1499.

17. Párr RG, Szentpaly L, Liu S. Electrophilicity index. *J Am Chem Soc.* 1999;121(9):1922–1924.

18. Morell C, Grand A, Labbé TA. New dual descriptor for chemical reactivity. *J Phys Chem A.* 2005;109(1):205–212.

19. Morell C, Grand A, Labbé AT. *Chem Phys Lett.* 2006;425:342.

20. Gámez JL. A Density Functional View. *Chemical Reactivity Theory.* Chattaraj PK, editor. CRC Press, Boca Raton, Florida, USA: Taylor & Francis Group; 2009:7–21.

21. Domingo LR, Pérez P, Sáez J. Understanding the local reactivity in polar organic reactions through electrophilic and nucleophilic Parr functions. *RSC Adv.* 2013;3(5):1486–1494.

22. Chamorro E, Pérez P, Domingo LR. On the nature of Parr functions to predict the most reactive sites along organic polar reactions. *Chem Phys Lett.* 2013;582:141–143.

23. Domingo LR, Gutiérrez MR, Pérez P. Applications of the conceptual density functional theory indices to organic chemistry reactivity. *Molecules.* 2016;21(6):748.

24. Yoon SJ, Park SY. Polymorphic and mechanochromic luminescence modulation in the highly emissive dicyanodistyrylbenzene crystal: secondary bonding interaction in molecular stacking assembly. *Journal of Materials Chemistry.* 2011;a1–a5.

25. Weigend F, Altirichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn. Design and assessment of accuracy. *Phys Chem Chem Phys.* 2005;7(18):3297–3305.

26. Weigend F. Accurate Coulomb-fitting basis sets for H to Rn. *Phys Chem Chem Phys.* 2006;8(9):1057–1065.

27. Peverati R, Truhlar DG. Improving the accuracy of hybrid meta-GGA density functionals by range separation. *J Phys Chem Lett.* 2011;2(21):2810–2817.

28. Weigend F, Truhlar DG. M11-L: A local density functional that provides improved accuracy for electronic structure calculations in chemistry and physics. *J Phys Chem Lett.* 2012;3(1):117–124.

29. Peverati R, Truhlar DG. An improved and broadly accurate local approximation to the exchange-correlation density functional: the MN12-L functional for electronic structure calculations in chemistry and physics. *Phys Chem Chem Phys.* 2012;14(38):13171–13174.

30. Peverati R, Truhlar DG. Screened-exchange density functionals with broad accuracy for chemistry and solid-state physics. *Phys Chem Chem Phys.* 2012;14(47):16187–16191.

31. Peverati R, Truhlar DG. Exchange-correlation functional with good accuracy for both structural and energetic properties while depending only on the density and its gradient. *J Chem Theory Comput.* 2012;8(7):2310–2319.

32. Peverati R, Zhao Y, Truhlar DG. Generalized gradient approximation that recovers the second-order density-gradient expansion with optimized across-the-board performance. *J Phys Chem Lett.* 2011;2(16):1991–1997.

33. Peverati R, Truhlar DG. Communication: A global hybrid generalized gradient approximation to the exchange-correlation functional that satisfies the second-order density-gradient constraint and has broad applicability in chemistry. *J Chem Phys.* 2011;135(19):191102.

34. Marenich AV, Cramer CR, Truhlar DG. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. *J Phys Chem B.* 2009;113(18):6378–6396.

35. http://avogadro.openmolecules.net

36. Hanweel MD, Lonie D, Vandermeersch T, et al. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. *J Chemin form.* 2012;4(1):17.

37. Gorelsky S, Mix AO. *Program for Molecular Orbital Analysis- Version 6.5.* Ottawa, Canada: University of Ottawa; 2011.

38. Gorelsky S, Lever A. *J Organomet Chem.* 2001;635:187.