DESTROYING SATURATION WHILE PRESERVING PRESATURATION AT AN INACCESSIBLE: AN ITERATED FORCING ARGUMENT

NOAH SCHoEM

Abstract. We prove that nonsaturated, presaturated ideals can exist at inaccessible cardinals, answering both a question of Foreman and of Cox and Eskew. We do so by iterating a generalized version of Baumgartner and Taylor’s forcing to add a club with finite conditions along an inaccessible cardinal, and invoking Foreman’s Duality Theorem.

ideals, saturation, presaturation, iterated forcing, Foreman’s Duality Theorem

Primary 03E05, 03E35, 03E55, 03E65

1. Introduction

It is a classical result of Solovay [16] that the nonstationary ideal NS_κ always has a κ-sized disjoint family of nonstationary sets; that is, in modern parlance, we say that NS_κ is not κ-saturated. One can argue Solovay’s theorem using generic ultrapowers. Suppose for sake of contradiction that NS_κ is κ-saturated; then a V-generic filter G for $(\mathcal{P}(\kappa)/NS_\kappa \setminus \emptyset, \supseteq_{NS_\kappa})$ is a V-κ-complete V-normal V-ultrafilter with wellfounded ultrapower $Ult(V,G)$. Ultrapower arguments then yield a stationary set $S \subseteq \kappa$ in V that is no longer stationary in $Ult(V,G)$, hence is nonstationary in $V[G]$. But since NS_κ was assumed to be κ-saturated, our forcing has the κ-chain condition and hence S must be stationary in $V[G]$; this is a contradiction.

Solovay then asked whether NS_κ is κ^+-saturated, and subsequent work by Gitik and Shelah in [11] showed that NS_κ is not κ^+-saturated, except when $\kappa = \omega_1$. Here, it is consistent (e.g. in the presence of Martin’s Maximum, c.f. [7]) for NS_{ω_1} to be ω_2-saturated. Likewise, the nonstationary ideal on $\mathcal{P}_\kappa(\lambda)$ (for $\lambda \geq \kappa$) is known not to be κ^+-saturated unless $\kappa = \lambda = \omega_1$. This was due to Burke, Foreman, Gitik, Magidor, Matsubara, and Shelah; a summary and the proof of the case $\kappa = \lambda = \omega_1$ can be found in [10].

However, there are still useful arguments that can be written just assuming that $\mathcal{P}(\kappa)/NS_\kappa$ is precipitous, i.e. induces a wellfounded ultrapower $Ult(V,G)$. For instance, this simplifies Silver’s original argument in [15] that if SCH fails at a singular cardinal, then the first singular cardinal at which SCH fails must have countable cofinality.

One can also ask whether there is any ideal on κ that is κ-saturated, κ^+-saturated, or even just precipitous. Results here are well-established and comprehensive.

The existence of exactly κ-saturated or κ^+-saturated ideals on inaccessible κ are equiconsistent with a measurable cardinal. This was first shown by Kunen and Paris in [12], with weakly compact being compatible with κ^+-saturation (and it was known since early work of Lévy and Silver that a κ-saturated ideal on κ...
prevents \(\kappa \) from being weakly compact). Subsequently, Boos showed that an exactly \(\kappa^+ \)-saturated ideal on \(\kappa \) can exist at a non-weakly compact \(\kappa \) in [3].

As for successor cardinals, the consistency results are more striking. Certain arguments show that if \(\kappa \) carries a \(\kappa \)-saturated ideal, then \(\kappa \) must be weakly Mahlo, and hence not a successor. Proofs can be found in [2] and [17]. However, \(\kappa^+ \)-saturated ideals can occur at successor \(\kappa \); the known ways to achieve this come from forcing over models with huge cardinals as done by Kunen in [13] and Laver in [14].

Ideals on arbitrary sets \(Z \) project downwards to subsets \(Z' \) of \(Z \), and it is natural to ask whether regularity of the inverse embedding implies nice saturation properties of the projected ideal:

Question 1.1 ([8], Question 13 of Foreman). Let \(n \in \omega \) and let \(\mathcal{I} \) be an ideal on \(Z \subseteq \mathcal{P}(\kappa^{+(n+1)}) \). Let \(\mathcal{J} \) be the projection of \(\mathcal{I} \) from \(Z \) to some \(Z' \subseteq \mathcal{P}(\kappa^{+n}) \). Suppose that the canonical homomorphism from \(\mathcal{P}(Z')/\mathcal{J} \) to \(\mathcal{P}(Z)/\mathcal{I} \) is a regular embedding. Is \(\mathcal{J} \) \(\kappa^{+(n+1)} \)-saturated?

The answer is no; prior work by Cox and Zeman in [6] established counterexamples. Later work by Cox and Eskew provided a template for finding counterexamples as follows. We observe that \(\mathcal{J} \) a \(\kappa^{+n+1} \)-saturated ideal on \(\kappa^{+n} \) induces a wellfounded generic ultrapower and preserves \(\kappa^{+n+1} \). So we will say that an ideal \(\mathcal{J} \) on \(\kappa^{+n} \) is \(\kappa^{+n+1} \)-presaturated if \(\mathcal{J} \) induces a wellfounded generic ultrapower and preserves \(\kappa^{+n+1} \). Our template is then:

Fact 1.1 ([4], corollary of Theorem 1.2). Any \(\kappa^{+n+1} \)-presaturated, non-\(\kappa^{+n+1} \) saturated ideal on \(\kappa^{+n} \) provides a counterexample to Question 1.1.

To construct such ideals for successor cardinals \(\kappa = \mu^+ \) (with \(\mu \) regular and mild assumptions on cardinal arithmetic), Cox and Eskew in [4] generalized a forcing of Baumgartner and Taylor in [1] to add a club subset \(C \) of \(\kappa \) with \(< \mu \)-conditions. (Baumgartner and Taylor’s original version in [1] was for \(\mu = \omega \).) This \(C \) prevented \(\kappa^+ \)-saturated ideals on \(\kappa \) from existing in the generic extension. At the same time, their forcing was strongly proper; with use of Foreman’s Duality Theorem [8], a powerful tool for computing properties of ideals in generic extensions, Cox and Eskew were then able to argue that their forcing preserved the \(\kappa^+ \)-presaturation of a large class of ideals (including \(\kappa^+ \)-saturated ideals) in the generic extension.

This produces a generic extension in which all \(\kappa^{+n+1} \)-saturated ideals on \(\kappa^{+n} \) in the ground universe have induced \(\kappa^{+n+1} \)-presaturated, non-\(\kappa^{+n+1} \)-saturated ideals in the generic extension.

It remained open as to whether the above could be done for \(n = 0 \) and \(\kappa \) an inaccessible cardinal; this was the content of Question 8.5 of [4] and further clarifications provided in [5].

This paper’s central result establishes that Question 1.1 is consistently false at \(\kappa \) inaccessible, by an argument analogous to that of Theorem 4.1 of [4]:

Theorem 1.2. Suppose \(V \) is a universe of \(\text{ZFC+GCH} \) with an inaccessible cardinal \(\kappa \) admitting \(\kappa \)-complete, \(\kappa^+ \)-saturated ideals on \(\kappa \). Then there is a poset \(\mathbb{Q} \) such that:

\[(i) \, V^\mathbb{Q} \models \text{“there are no } \kappa \text{-complete, } \kappa^+ \text{-saturated ideals on } \kappa \text{”}\]
(ii) If $I \in V$ is a κ-complete, normal, κ^+-saturated ideal on κ, then $V^Q \models \text{"} \bar{T} \text{ is } \kappa^+\text{-presaturated"}$

where $\bar{T} = \{ A \in \mathcal{P}^{V^Q}(\kappa) \mid \exists N \in I \ A \subseteq N \}$.

We can further generalize Theorem 1.2(ii) as follows:

Theorem 1.3. With the same assumptions, there is a Q such that if $\delta > \kappa$ is a regular cardinal, $I \in V$ is normal, fine, δ-presaturated ideal on Z of uniform completeness κ such that

- $\Vdash_{\mathcal{B}_I} |\dot{j}_I(\kappa)| = \delta < \dot{j}_I(\kappa)$ where \dot{j}_I is a name for the generic elementary embedding $j_I : V \rightarrow M$ added by $\mathcal{B}_I := \mathcal{P}(Z)/I$;
- \mathcal{B}_I is proper on $IA_{<\delta}$;

then in V^Q,

- \bar{T} is not δ-saturated
- but \bar{T} is δ-presaturated

where \bar{T} is as above.

Here, $IA_{<\delta}$ is the collection of internally approachable structures of length $< \delta$; we will give a precise definition later.

Remark 1.4. It will turn out that the same Q will work for both Theorem 1.2 and Theorem 1.3.

Remark 1.5. In [4], the analogous theorem (Theorem 4.1(2)) argued that there is an $S \in \bar{T}^+$ such that $\bar{T} \upharpoonright S$ is not δ-saturated, but it is δ-presaturated.

The use of such an S was required there due to the forcing involved not being κ-cc.

This paper is structured as follows. Section 2 presents the preliminary definitions and facts pertinent to this paper. Section 3 introduces the forcing iteration Q of Theorems 1.2(i), 1.2(ii), and 1.3. Section 4 shows that saturated ideals are sundered from V^Q. Section 5 proves that a portion of presaturated posets remain presaturated in V^Q. Section 6 concludes and catalogs some conjectures.

2. **Preliminaries and notations**

Here are some definitions, theorems, and notations we use.

For a cardinal κ, we will write Reg_κ for the set of regular cardinals below κ, and $\text{cof}(\kappa)$ for the proper class of cardinals of cofinality κ.

If \mathbb{P} is a notion of forcing in V, we will variously use $V^\mathbb{P}$ or $V[G]$ to refer to the generic extension of V by \mathbb{P}.

We will further take for granted that the reader is familiar with forcing, iterated forcing, and ultrapowers.

Definition 2.1 (ideals). Let κ be a cardinal. An ideal I on κ is a subset of $\mathcal{P}(\kappa)$ such that:

- $\emptyset \in I$, $\kappa \notin I$
(2) If $A \in I$ and $B \subseteq A$ then $B \in I$

(3) If $A, B \in I$ then $A \cup B \in I$

For $\mu \in \text{Reg}_\kappa$, the ideal I is said to be μ-complete if whenever $\lambda \in \text{Reg}_\mu$ and $\langle A_\alpha \mid \alpha < \lambda \rangle \subseteq I$ then

\[
\bigcup_{\alpha < \lambda} A_\alpha
\]

is also in I.

The ideal I is said to be normal if whenever $\langle A_\alpha \mid \alpha < \kappa \rangle \subseteq I$, we have that the diagonal union

\[
\bigcup_{\alpha < \kappa} A_\alpha := \{ \beta < \kappa \mid \exists \alpha < \beta \beta \in A_\alpha \}
\]

is also in I.

An ideal is principal if it contains a cofinite set; for our purposes, ideals are always assumed to be nonprincipal.

For an ideal I on κ, we define $I^+ := \{ S \subseteq \kappa \mid S \notin I \}$.

For example, NS_κ, the collection of nonstationary sets on κ, forms a normal ideal; its dual filter is the club filter on κ, and $(\text{NS}_\kappa)^+$ is the collection of stationary sets on κ.

Definition 2.2. If I is an ideal on κ then we may define an equivalence relation \simeq_I on $\mathcal{P}(\kappa)$ by $A \simeq B$ if and only if $(A \setminus B) \cup (B \setminus A) \in I$.

We say that $A \leq_I B$ if $A \setminus B \in I$.

We may consider the equivalence classes $\mathcal{P}(\kappa)/I := \{ [A]_{\simeq_I} \mid A \subseteq \kappa \}$ as a poset with partial order \leq_I.

Given I an ideal on κ, we will write $\mathcal{B}_I := (\mathcal{P}(\kappa)/I) \setminus \{ [\emptyset]_{\simeq_I} \}$; when thinking of \mathcal{B}_I as a poset, we will implicitly use the partial ordering \leq_I and in many cases, \mathcal{B}_I will be a separative notion of forcing (or even a complete Boolean algebra).

The above two definitions are Definitions 2.1, 2.17, and 2.18 of [8].

The following two definitions summarizes some forcing properties of posets that will come in handy:

Definition 2.3 (Chain condition, presaturation, and closure). Let (\mathbb{P}, \leq) be a poset. We say that:

(i) $(\mathbb{P}$, as Theorem 4.2) \mathbb{P} is μ-presaturated if for every $\lambda < \mu$ and every family $\langle A_\alpha \mid \alpha < \lambda \rangle$ of antichains, there are densely many $p \in \mathbb{P}$ such that for all α, $\{ q \in A_\alpha \mid p \parallel q \}$ has cardinality $< \mu$.

Note that μ-cc implies μ-presaturation.

(ii) \mathbb{P} is $< \kappa$-closed if whenever $\tau < \kappa$ and $\langle p_\alpha \mid \alpha < \tau \rangle$ is a \leq-decreasing sequence in \mathbb{P}, there is a $p \in \mathbb{P}$ such that $p \leq p_\alpha$ for all $\alpha < \tau$.

(iii) \mathbb{P} is $< \kappa$-directed closed ($< \kappa$-dc) if whenever $D \subseteq \mathbb{P}$ is a directed set, such that whenever $p \in D$, $q \leq p$ such that whenever $p \in D$, $q \leq p$.

1In [8], a different version of normality is taken to be definitional, and the equivalence of these two versions is Proposition 2.19 of [8].

2that is, for all $p, q \in D$, there is an $r \in D$ such that $r \leq p, q$.
(iv) P is μ-preserving (for μ a V-cardinal) if $V^P \models "\mu \text{ is a cardinal}"$

Some of these properties have analogues for ideals as well. For I an ideal on κ, we will say that I is μ-saturated if \mathcal{B}_I has the μ-cc. Additionally, we say that I is μ-presaturated if \mathcal{B}_I is μ-presaturated, and I is μ-preserving if $V^{\mathcal{B}_I} \models "\mu \text{ is a cardinal}"$.

For ideals, these notions relate to each other and yet another notion:

Definition 2.4 (Definition 2.4 of [8]). An ideal I is said to be precipitous if whenever U is a \mathcal{B}_I-generic object over V, $Ult(V, U)$ is well-founded.

These properties have the following chain of implications:

Theorem (Folklore). Let I be a κ-complete normal ideal on κ. Then:

I is κ^+-saturated $\implies I$ is κ^+-presaturated $\implies I$ is precipitous

and I is κ^+-presaturated $\iff I$ is precipitous and κ^+-preserving

Presaturation can be pushed downwards through an iteration:

Lemma 2.5 (Lemma 2.12 of [4]). If $P \ast \dot{Q}$ is κ-presaturated then P is κ-presaturated and $1_p \Vdash \dot{Q}$ is κ-presaturated.

Whether the converse holds is currently an open problem; this appears as Question 8.6 of [4].

Next we go over the notion of properness and relate properness and closedness to presaturation.

Let δ be regular uncountable, and let $H \supseteq \delta$. Then we write $P_\delta(H)$ for all subsets of H of size $< \delta$, and $P^*_\delta(H)$ to denote the set of all $x \in P_\delta(H)$ such that $x \cap \delta \in \delta$.

Definition 2.6. Let P be a notion of forcing, θ sufficiently large so that $P \in H_\theta$, and $M \prec (H_\theta, \in, P)$.

We say that $p \in P$ is an (M, P)-master condition if for every dense $D \in M$, $D \cap M$ is predense below p; equivalently, $p \Vdash P[M[\dot{G}_P] \cap V = M$.

Additionally, we say that p is an (M, P)-strong master condition if for every $p' \leq p$, there is some $p'_M \in M \cap P$ such that every extension of p'_M in $M \cap P$ is compatible with p'.

Further, P is (strongly) proper with respect to M if every $p \in M \cap P$ has a $q \leq p$ such that q is an (M, P)-(strong) master condition.

We say that P is (strongly) δ-proper on a stationary set if there is a stationary subset S of $P^*_\delta(H_\theta)$ such that for every $M \in S$, $M \prec (H_\theta, \in, P)$ and P is (strongly) proper with respect to M.

Note that $\{M \in P^*_\delta(H_\theta) \mid M \prec (H_\theta, \in, P)\}$ is a club subset of $P^*_\delta(H_\theta)$; so a forcing being δ-proper on a stationary set really only depends on the properness condition.

Fact 2.7. If P is δ-proper on a stationary set, then P is δ-presaturated.

\footnote{It is straightforward to see that strong master conditions are also master conditions.}
This fact appears as Fact 2.8 of [4], with proof; their proof, in turn, generalizes a result of Foreman and Magidor in the case of \(\delta = \omega_1 \) (namely, Proposition 3.2 of [9]).

For the posets we will be working with, we will have a specific stationary subset witnessing \(\delta \)-properness:

Definition 2.8. For \(\delta \) regular and \(\theta \gg \delta \), we say that \(IA_{<\delta} \subseteq \mathcal{P}_\delta^+(H_\theta) \), the “internally approachable sets of length \(< \delta \)”, is the collection of all \(M \in \mathcal{P}_\delta^+(H_\theta) \), with \(|M| = |M \cap \delta| \), that are *internally approachable*, i.e. such that there is a \(\zeta < \delta \) and a continuous \(\subseteq \)-increasing sequence \(\langle N_\alpha \mid \alpha < \zeta \rangle \) whose union is \(M \), such that \(\bar{N} \upharpoonright \alpha \in M \) for all \(\alpha < \zeta \).

In a sense, internal approachability is preserved by any generic extension:

Fact 2.9. Suppose \(\mathbb{P} \) is a poset, \(M < (H_\theta, \in, \mathbb{P}), \langle N_\alpha \mid \alpha < \zeta \rangle \) witnesses that \(M \in IA_{<\delta} \), and \(G \) is \((V, \mathbb{P}) \)-generic. Then in \(V[G] \), \(\langle N_\alpha[G] \mid \alpha < \zeta \rangle \) witnesses that \(M[G] \in IA_{<\delta} \). (Without loss of generality, we may assume that \(\mathbb{P} \in N_0 \).)

It is a standard fact that \(IA_{<\delta} \) is stationary. The following lemma makes clear its utility:

Lemma 2.10. Let \(\delta \) be regular and uncountable. Then:

(i) If \(\mathbb{P} \) is \(\delta \)-cc and \(M < (H_\theta, \in, \mathbb{P}) \) is an element of \(\mathcal{P}_\delta^+(H_\theta) \) (i.e. if \(M \cap \delta \in \delta \)), then \(1_{\mathbb{P}} \) is an \((M, \mathbb{P}) \)-master condition; in particular \(\mathbb{P} \) is \(\delta \)-proper on \(\mathcal{P}_\delta^+(H_\theta) \).

(ii) If \(\mathbb{Q} \) is \(< \delta \)-closed then \(\mathbb{Q} \) is \(\delta \)-proper on \(IA_{<\delta} \).

(iii) If \(\mathbb{P} \) is \(\delta \)-proper on \(IA_{<\delta} \) and \(\Vdash_{\mathbb{P}} \mathbb{Q} \) is \(\delta \)-cc or \(\Vdash_{\mathbb{P}} \mathbb{Q} \) is \(< \delta \)-closed then \(\mathbb{P} \ast \mathbb{Q} \) is \(\delta \)-proper on \(IA_{<\delta} \).

This is roughly Fact 2.9 out of [4]. The following proof is largely reproduced from [4] as well.

Proof. For part (i), let \(A \in M \) be a maximal antichain in \(\mathbb{P} \). Since \(|A| < \delta \) and \(M \cap \delta \in \delta \), we have that \(A \subseteq M \). Thus \(1_{\mathbb{P}} \Vdash M[G] \cap \bar{V} = M \), so \(1_{\mathbb{P}} \) is a master condition for \(M \).

Part (ii) is due to Foreman and Magidor in [9].

As for part (iii), let \(G \) be \(\mathbb{P} \)-generic over \(V \). Suppose that \(M < (H_\theta, \in, \mathbb{P} \ast \mathbb{Q}) \) and \(M \in IA_{<\delta} \). By Fact 2.9 combined with (i) and (ii), \(\mathbb{P} \) forces that \(\mathbb{Q} \) is proper with respect to \(M[G] \). Hence \(\mathbb{P} \ast \mathbb{Q} \) is proper with respect to \(M \). \(\square \)

Presaturation has a useful corollary:

Fact 2.11. If \(\mathbb{P} \) is \(\lambda \)-presaturated for \(\lambda \) regular then

\[
\Vdash_{\mathbb{P}} cof^V(\geq \lambda) = cof^{V[G]}(\geq \lambda)
\]

The above fact has a partial converse. We will not make use of it, but it is another known way to argue that certain iterations of presaturated forcings are presaturated:

Fact 2.12. If \(\mathbb{P} \) is \(\lambda^+ \omega \)-cc for some regular \(\lambda \geq \omega_1 \) and

\[
\forall n \in \omega \ \Vdash_{\mathbb{P}} cof^{V[G]}((\lambda^n)^V) \geq \lambda
\]
then \mathbb{P} is λ-presaturated.

This appears as Fact 2.11 in [4], which in turn is a generalization of Theorem 4.3 of [1].

Fact 2.13. For a κ-complete, κ^+-saturated ideal $I \in V$, if U is a \mathcal{B}_I-generic filter over V then in $V[U]$, $\kappa^\text{Ult}(V,U) \subseteq \text{Ult}(V,U)$; that is, $\text{Ult}(V,U)$ is closed under κ-sequences from $V[U]$.

This follows from Propositions 2.9 and 2.14 of [8].

We will sometimes write $\text{Ult}(V,I)$ to denote $\text{Ult}(V,U)$, and will also write j_I to denote $j_U : V \to \text{Ult}(V,U)$.

If $I \in V$ is an ideal on κ and \mathbb{P} is a notion of forcing understood from context, then we will write $\mathcal{T} := \{ N \in \mathcal{P}^{V^\mathbb{P}}(\kappa) \mid \exists A \in I \ N \subseteq A \}$.

The following two simplified versions of Foreman’s Duality Theorem will be useful later:

Lemma 2.14. For a κ-complete, κ^+ saturated $I \in V$, \mathcal{T} is κ^+-saturated in $V^\mathcal{Q}$ if and only if $\Vdash_{\mathcal{B}_I} j_I(\mathcal{Q})$ is κ^+-cc.

This appears as Corollary 7.21 in [8].

Theorem 2.15. Let I be a κ-complete normal precipitous ideal in V and \mathcal{Q} be a κ-cc poset. Then there is a canonical isomorphism witnessing that

$$\mathcal{B}(\mathcal{Q} * \mathcal{T}) \cong \mathcal{B}(\mathcal{B}_I * j_I(\mathcal{Q}))$$

where $\mathcal{B}(\mathbb{P})$ refers to the Boolean completion of \mathbb{P}.

This statement appears in [4] as Fact 2.24, and is a corollary of Theorem 7.14 of [8].

3. **The Forcing Iteration**

Through the rest of this paper, suppose GCH and fix κ to be an inaccessible cardinal.

Over cardinals below κ, we will define a forcing iteration that will destroy κ^+-saturation but preserve κ^+-presaturation for ideals on κ, by adding, for each $\mu < \kappa$, μ regular, a club subset C_μ of μ^+ using $< \mu$-conditions. This club C_μ will fail to contain certain ground model sets, in the sense that if $X \in V$ and $|X| \geq \mu$ then $X \not\subseteq C_\mu$.

Towards this end:

Definition 3.1. Let $\mu < \kappa$ be a regular cardinal. Let $\mathbb{P}(\mu)$ be the collection of all conditions (s,f) such that:

1. $s \in [\mu^+ \setminus \mu]^{<\mu}$
2. $f : s \to [\mu^+ \setminus \mu]^{<\mu}$ and if $\xi, \xi' \in s$ with $\xi < \xi'$ then $f(\xi) \subseteq \xi'$.

We say $(s,f) \leq (t,g)$ if $s \supseteq t$ and whenever $\xi \in t$, $f(\xi) \supseteq g(\xi)$.
For each \((s, f) \in P(\mu)\), \(s\) can be thought of as approximating \(C_\mu\), in the sense that \((s, f) \Vdash s \subseteq C_\mu\) (in fact, we will later define \(C_\mu = \bigcup_{(s, f) \in G} s\), for \(G\) a \(\mathbb{P}(\mu)\)-generic filter over \(V\)).

Additionally, \(f\) can be thought of as “banning” certain ordinals from ever appearing in \(\dot{C}_\mu\), in the sense that if \(\alpha < s, \beta > s\), and \(f(\alpha) \nsubseteq \beta\), then:

- it must be the case that \(s \cap (\alpha, \beta] = \emptyset\). Otherwise, if \(\gamma \in s \cap (\alpha, \beta]\), we would have that \(\beta \in f(\alpha)\) and \(\beta \notin \gamma\). Hence \(f(\alpha) \nsubseteq \gamma\), contradicting conditionhood of \((s, f)\).

- Additionally, \((s, f) \Vdash \dot{C}_\mu \cap (\alpha, \beta] = \emptyset\). This is since for every \((t, g) \leq (s, f), \beta \in g(\alpha)\); hence \(t \cap (\alpha, \beta] = \emptyset\).

Lemma 3.2. If \(\mu\) is a regular cardinal, then \(\mathbb{P}(\mu)\) has the following properties:

1. \(|\mathbb{P}(\mu)| = \mu^+\) hence \(\mathbb{P}(\mu)\) has the \(\mu^+\)-cc.
2. \(\mathbb{P}(\mu)\) is \(<\mu\)-directed closed.
3. If \(\theta \geq \mu^+, M \prec (H_\theta, \in, \mu^+)\), and \(M \cap \mu^+ \in \mu^+ \cap \text{cof}(\mu)\), then \(\mathbb{P}(\mu)\) is strongly proper for \(M\). Hence \(\mathbb{P}(\mu)\) preserves \(\mu^+\).
4. If \(G\) is \(\mathbb{P}(\mu)\)-generic over \(V\), then in \(V[G]\), we have that

\[
C_\mu := \bigcup_{(s, f) \in G} s
\]

is a club subset of \(\mu^+\) such that if \(X \in V\) and \(|X|^V \geq \mu\), then \(X \nsubseteq C_\mu\).
5. \(\mathbb{P}(\mu)\) is not \(\mu^+\)-cc below any condition.

Proof. The proofs are exactly as in Lemma 4.4 in \([3]\), where here (1) follows from assuming GCH.

For the sake of clarity, we will prove (3) and (4).

To see that (3) holds, let \(\theta \geq \mu^+, M \prec (H_\theta, \in, \mu^+)\), and \(M \cap \mu^+ \in \mu^+ \cap \text{cof}(\mu)\); suppose that \((s, f) \in \mathbb{P}(\mu) \cap M\). Observe that \(\mu^\mu = \mu\) and \(M \prec (H_\theta, \in, \mu^+, \mu)\). Let \(\delta = M \cap \mu^+\); since \(\mu^\mu = \mu^+\) as witnessed in \(H_\theta\), we have that there is a bijection \(\phi : \mu^+ \rightarrow [\mu^+]^\mu\) such that \(\phi(\mu) = M\). Without loss of generality, we may assume that for each \(\beta < \mu^+\) with \(\text{cf}(\beta) = \mu\), \(\phi \upharpoonright \beta\) surjects onto \(\beta^\mu\).

We wish to show that \(<\mu(M \cap \mu^+) \subseteq M\). Let \(\delta = M \cap \mu^+\) and suppose that \(b \in [\delta]^\mu\). Since \(\text{cf}(\delta) = \mu\), we have that \(\sup b < \delta\). But then by choice of \(\phi\), there is an \(\alpha < \sup b\) such that \(\phi(\alpha) = \beta\), and since \(\sup b < \delta\), \(\alpha \in M\). Thus \(b \in M\), and so we have shown

\(<\mu(M \cap \mu^+) \subseteq M\)

Since \(|s| < \mu \leq M \cap \mu^+\), we thus have that \(s \subseteq M\) and hence \(M \cap \mu^+ \nsubseteq s = \text{dom}(f)\). Further, if \(\xi \in s\) then \(f(\xi) \in M \cap [\mu^+]^\mu\); since \(\mu \subseteq M\) and \(\theta\) is sufficiently large, \(f(\xi) \subseteq M \cap \mu^+\).

Thus the following condition \((s', f')\) extends \((s, f)\):

\[(s', f') := (s \searrow (M \cap \mu^+), f \searrow (M \cap \mu^+ \rightarrow \{M \cap \mu^+\}))\]

We now must argue that \((s', f')\) is a strong master condition for \((M, \mathbb{P}(\mu))\). Let \((t, h) \leq (s', f')\). Then \(t_M := t \cap M\) is a \(<\mu\)-sized subset of \(M \cap \mu^+\), hence \(t_M \in M\). Further, since \((t, h) \leq (s', f')\), we have that
Proposition 3.4.

We define an Easton support iteration forcing X bounded below $\text{sup}(\text{otp} X)$. Hence we may assume that $\text{otp} X = \alpha$, with $\alpha < \kappa$.

To complete the proof of strong properness, let $(u, g) \in M \cap \mathbb{P}(\mu)$, $(u, g) \leq (t, h)$. Then let $F : u \cup t \rightarrow [\mu^+]^{<\mu}$, $F(\xi) = g(\xi)$ if $\xi \in u$, and $F(\xi) = h(\xi)$ otherwise. Then $(u \cup t, F) \in \mathbb{P}(\mu)$ and $(u \cup t, F) \leq (u, g), (t, h)$.

Since (u, g) was arbitrary, we have shown that every extension of (t, h) in $\mathbb{P}(\mu) \cap M$ is compatible with (t, h). Thus (s', f') is a strong master condition. This completes our proof of $\textbf{[3]}$.

To see that $\textbf{(i)}$ holds, we have three things to show:

(i) C_μ is unbounded in μ^+

(ii) C_μ is closed

(iii) If $X \in V$ and $|X|^V \geq \mu$ then $X \not\subseteq C_\mu$

To see (i), let $(s, f) \in \mathbb{P}(\mu)$ and let $\alpha < \mu^+$. By definition of $\mathbb{P}(\mu)$, $|s| < \mu$ and for each $\beta \in s$, $f(\beta)$ is a $<\mu$-sized subset of μ^+. Hence $\sup_{\beta \in s} \sup f(\beta) < \mu^+$, so let δ be such that $\sup_{\beta \in s} \sup f(\beta) < \delta < \mu^+$. Then $p := (s \smallsetminus \delta, f \smallsetminus (\delta \rightarrow \emptyset))$

is a condition below (s, f) such that $p \VDash \delta \in \check{C}_\mu$; thus C_μ is unbounded.

To see (ii), we argue contrapositively. Let $\beta \in \mu^+ \setminus (\mu + 1)$ and suppose $(s, f) \in \mathbb{P}(\mu)$ is such that $(s, f) \Vdash \check{\beta} \notin \hat{C}_\mu$. We will argue that $(s, f) \Vdash \check{\beta} \notin \text{Lim}(\hat{C}_\mu)$. Observe that there must be an $\alpha \in s \cap \beta$ such that $f(\alpha) \not\subseteq \beta$; for otherwise, we would have that for all $\alpha \in s \cap \beta$, $f(\alpha) \subseteq \beta$, hence $(s \smallsetminus \beta, f \smallsetminus (\beta \rightarrow \emptyset))$ would be a condition below (s, f) forcing $\beta \in \check{C}_\mu$. By conditionhood of (s, f), there is a unique such α and α is the largest element of $s \cap \beta$. Additionally, no extension (t, g) of (s, f) can have that $t \cap (\alpha, \beta) \neq \emptyset$, and hence $(s, f) \Vdash "\check{\alpha}\textrm{ is the largest element of } \check{C}_\mu \cap \check{\beta}"$. Thus $(s, f) \Vdash \check{\beta} \notin \text{Lim}(\hat{C}_\mu)$.

To see (iii), let $X \in V$ with $|X|^V \geq \mu$ and let $(s, f) \in \mathbb{P}(\mu)$. Observe that without loss of generality we may assume that $X \subseteq \mu^+ \setminus (\mu + 1)$. Further, by taking an initial segment of X we may assume that $\text{otp}(X) = \mu$ and hence that $\text{cf}(\text{sup}(X)) = \mu$. Since $|s| < \mu$ and $\text{sup}(X)$ has cofinality μ, $s \cap \text{sup}(X)$ is bounded below $\text{sup}(X)$.

Now we have two cases. If there is a $\xi \in s \cap \text{sup}(X)$ such that $f(\xi) \not\subseteq \text{sup}(X)$, let $\rho \in f(\xi) \setminus \text{sup}(X)$. Then $(s, f) \Vdash \check{C}_\mu \cap (\xi, \rho] = \emptyset$ and hence $(s, f) \Vdash "\check{C}_\mu \cap \check{X} \text{ is bounded below } \text{sup}(\check{X})"$. Thus $X \not\subseteq C_\mu$.

Otherwise, let $\zeta = \sup \{\text{sup}(f(\xi)) \mid \xi \in s \cap \text{sup}(X)\}$. Since each $f(\xi) \subseteq \text{sup}(X)$ and μ is regular, $\zeta < \text{sup}(X)$. Let $p = (s \smallsetminus \zeta, f \smallsetminus (\zeta \rightarrow \{\text{sup}(X)\}))$. Then $p \leq (s, f)$ and $p \Vdash \text{max}(\check{C}_\mu \cap \text{sup}(X)) = \zeta$. Hence $p \Vdash X \not\subseteq \check{C}_\mu$.

Thus $X \not\subseteq C_\mu$. This completes our proof of $\textbf{(4)}$. \hfill \Box

Definition 3.3. We define an Easton support iteration forcing $Q = \langle Q_\mu \star \check{C}(\mu) \mid \mu < \kappa \rangle$ as follows:

For each $\mu < \kappa$, if μ is regular in V^{Q_μ}, let $\mathbb{C}(\mu) = \mathbb{P}(\mu)$ as above, and otherwise let $\mathbb{C}(\mu)$ be the trivial forcing.

Proposition 3.4. If $\nu < \kappa$ is regular in V, then ν is still regular in V^{Q_ν}.
Proof. This breaks into three cases:

1. \(\nu \) is inaccessible
2. \(\nu = \tau^+ \), for \(\tau \) a regular cardinal
3. \(\nu = \lambda^+ \), for \(\lambda \) a singular cardinal

If \(\nu \) is inaccessible, then by Lemma 3.2(1) for all \(\mu < \nu \), \(C(\mu) \) is \(\mu^{++}-cc \), hence is \(\nu-cc \). Thus by Easton support, \(Q_\nu \) is also \(\nu-cc \) so preserves \(\nu \).

If \(\nu = \tau^+ \) where \(\tau \) is regular, we may decompose \(Q_\nu \) as

\[
Q_\tau \ast \hat{P}(\tau)
\]

Since \(\tau \) is regular, \(|Q_\tau| = \tau \) hence is \(\nu-cc \). Thus \(Q_\tau \) preserves \(\nu \). By Lemma 3.2(3) \(\hat{P}(\tau) \) preserves \(\nu \). Thus \(\hat{Q}_{\geq \nu} \) preserves \(\nu \).

If \(\nu = \lambda^+ \) where \(\lambda \) is singular, we decompose \(Q_\nu \) as

\[
Q_\lambda \ast \hat{P}(\nu)
\]

Here, the situation is more complicated, since now \(|Q_\lambda| = \lambda^+ = \nu \). So we must verify more directly that \(\nu \) is preserved.

So observe that if \(\nu \) is collapsed, then \(V^{Q_\lambda} \models |\nu| \leq |\lambda| \) and since \(\lambda \) is singular, we would have a \(Q_\lambda \)-name \(\dot{f} : \delta \to \check{\nu} \) for a cofinal sequence in \(\check{\nu} \) for some regular cardinal \(\delta < \lambda \).

But we may decompose \(Q_\lambda \) into

\[
Q_\delta \ast \hat{P}(\delta) \ast \hat{Q}_{\geq \delta^+}
\]

Now, \(\hat{Q}_{\geq \delta^+} \) is \(< \delta^+-\text{directed closed} \), so \(\hat{Q}_{\geq \delta} \) could not have added such an \(f \). Additionally, \(\hat{P}(\delta) \) satisfies the \(\delta^{++}-cc \), hence is \(\nu-cc \). Thus \(\hat{P}(\delta) \) also could not have added \(f \). Finally, \(Q_\delta \) satisfies the \(\delta^+-cc \), hence is also \(\nu-cc \). Thus \(Q_\delta \) could not have added such an \(f \) either.

As in the successor of a regular case, \(\hat{P}(\nu) \) and \(\hat{Q}_{\geq \nu} \) preserve \(\nu \) as well. \(\square \)

Corollary 3.5. \(Q \) preserves cardinals.

Proof. Since \(\kappa \) is inaccessible, \(Q \) is, by Lemma 3.2(1) an Easton support iteration of \(\kappa-cc \) posets hence is \(\kappa-cc \). Thus \(Q \) preserves cardinals \(\geq \kappa \).

For \(\nu < \kappa \) regular, we have that \(Q = Q_\nu \ast \hat{C}(\nu) \ast \hat{Q}_{\geq \nu} \). By the preceding proposition, \(Q_\nu \) preserves \(\nu \). By Lemma 3.2(3) \(\hat{C}(\nu) \) preserves \(\nu \). And by Lemma 3.2(2) \(\hat{Q}_{\geq \nu} \) is \(< \nu^+-\text{directed closed} \) hence preserves \(\nu \). \(\square \)

Remark 3.6. Note that \(|Q| = \kappa \) so \(Q \) preserves \(GCH_{\geq \kappa} \).

By Lemma 3.2 each \(P(\mu), \mu < \kappa \) regular, preserves \(GCH \); hence \(Q \) preserves \(GCH_{\leq \kappa} \) as well.

4. Destroying Saturation

Since \(Q \) projects to each \(Q_\mu \ast \hat{P}(\mu) \), \(\mu < \kappa \) regular, we may, for each such \(\mu \), let \(G_\mu \) be the restriction of the \(Q \)-generic \(G \) to \(P(\mu) \) and define \(C_\mu = \{ \xi \mid \exists (s, f) \in G_\mu \xi \in s \} \). By Lemma 3.2(4) \(C_\mu \) is a club subset of \(\mu^+ \) in \(V^{Q_\mu \ast \hat{P}(\mu)} \) and for every \(X \in V^{Q_\mu} \) such that \(X \subseteq [\mu, \mu^+) \) and \(X \) has \(V^{Q_\mu} \)-cardinality \(\geq \mu \), \(X \not\subseteq C_\mu \).
Proposition 4.1. Suppose that $I \in V$ is κ-complete, normal, and κ^+-saturated. Then in $V^\mathcal{Q}$, \mathcal{T} is not κ^+-saturated.

Before we prove this, it will be helpful to isolate a lemma on what $j_I(\mathcal{Q})$ looks like in $\text{Ult}(V, I)$:

Lemma 4.2. Let I be a κ-complete, normal, fine precipitous ideal. Then in $\text{Ult}(V, I)$, $j_I(\mathcal{Q}) \cong \mathcal{Q} \ast \dot{\mathbb{R}}$, where $\dot{\mathbb{R}}$ is a name for an Easton support iteration $\langle \mathbb{R}_\lambda \ast \dot{\mathcal{C}}(\lambda) \mid \lambda \in [\kappa, j(\kappa)] \rangle$, such that if λ is regular, $\mathcal{C}(\lambda) = \mathbb{P}(\lambda)$, and $\mathcal{C}(\lambda)$ is the trivial forcing otherwise.

Proof. This follows from the elementarity of j_I. \qed

Remark 4.3. This is unlike a λ-complete, λ^+-saturated ideal J on λ a successor cardinal; for λ a successor cardinal, we would have that $j_J(\lambda) = \lambda^+$. The argument can be found in [8].

Proof of Proposition 4.1. By Lemma 4.2 in $V^{\mathcal{B}_I}$, $j_I(\mathcal{Q}) \cong \mathcal{Q} \ast \dot{\mathbb{R}}$, where $\dot{\mathbb{R}}$ is an Easton support iteration $\langle \mathbb{R}_\lambda \ast \dot{\mathcal{C}}(\lambda) \mid \lambda \in [\kappa, j_I(\kappa)] \rangle$ as in the lemma.

Since $\mathbb{P}(\alpha)$ is not κ^+-saturated for all $\alpha \in [\kappa, j_I(\kappa)]$ regular, $j_I(\mathcal{Q})$ is not κ^+-saturated. So by Lemma 2.13 in $V^\mathcal{Q}$, \mathcal{T} is not κ^+-saturated. \qed

We now prove Theorem 1.2(i).

Proof of Theorem 1.2(i). Let G be \mathcal{Q}-generic, and suppose that in $V[G]$ there is a κ-complete, κ^+-saturated ideal \mathcal{J} on κ.

Let U be $P(\kappa)/\mathcal{J}$-generic over $V[G]$, and let $j : V[G] \to \text{Ult}(V[G], U)$ be the generic ultrapower.

Let $N = \bigcup_{\alpha \in \text{ORD}} j(V_\alpha)$. Then $j(\mathcal{Q}) \in N$ and hence $\text{Ult}(V[G], U) = N[g']$ for some $g' \in V[G \ast U]$ which is $j(\mathcal{Q})$-generic over N.

Observe that κ is still inaccessible in $N[g']$ by inaccessibility in $V[G]$ and by being the critical point of j.

Since $j(\kappa) > \kappa$ and $j(\kappa)$ is a cardinal in $N[g']$, $j(\kappa) > (\kappa^+)^{N[g']} \geq (\kappa^+)^{V[G]}$ (by κ-closure and κ^+-saturation of \mathcal{J}). Further, by the usual ultrapower argument, $[j(\kappa)] \leq 2^\kappa = \kappa^+$.

So $j(\kappa)$ is not a cardinal in V, but by Fact 2.13 $N[g']$ is closed under κ-sequences from $V[G]$.

Work in $N[g']$. Let g' be the projection of $j(\mathcal{Q})$ to $\mathbb{P}(\kappa)$, and let

$$C_\kappa = \bigcup_{(s, f) \in g'} s$$

Then

$$N[g'] \models C_\kappa \text{ is club in } \kappa^+ \text{ and } \forall X \in N[X]^N \geq \kappa, \, X \not\in C_\kappa$$
Since $V[G * U]$ is a κ^+-cc extension of V, we may let $D \in V$ be such that in $V[G * U]$, D is a club subset of C_κ. Let $E \subseteq D$ be in V, $(o.t.(E))^V = \kappa$, $\alpha = \text{sup } E$; since $cf(\alpha) = \kappa$, let $\phi : \kappa \to \alpha$ be a normal increasing sequence.

Let $E' = \text{lim}(E) \cap \text{ran}(\phi)$.

Then $E' \subseteq D$ and $|E'|^V = \kappa$ since κ is inaccessible. Further, $j(\phi) \in N$ and $j(\phi) \restriction \kappa : \kappa \to \kappa^+$ is also in N.

Thus $\text{ran}(j(\phi) \restriction \kappa) \in N$ and $j''E' \subseteq \text{ran}(j(\phi) \restriction \kappa) \subseteq j''\alpha$.

But $j''E' = \text{ran}(j(\phi) \restriction \kappa) \cap j(E') \in N$; and since $E' = \{ \beta \in \text{ran}(\phi) \mid j(\beta) \in j(E') \}$, we have that E' is a subset of C_κ with $|E'|^N = \kappa$ and $E' \subseteq [\kappa, \kappa^+]$

This contradicts Statement 1.3(ii), and hence \mathcal{J} cannot be κ^+-saturated.

5. Preserving Presaturation

We now prove Theorem 1.3(ii).

Proof of Theorem 1.3(ii) Let $\mathcal{J} \in V$ be a κ-complete, normal, κ^+-saturated ideal in V. Work in $V^\mathcal{J}$ and let U be the generic ultrafilter. Then in $\text{Ult}(V, U)$, by Lemma 2.5, $\text{Ult}(Q) \cong Q * P(\kappa) * \mathbb{R}$, where \mathbb{R} is an Easton support iteration $(\mathcal{R}_\lambda * \mathbb{C}(\lambda) \mid \lambda \in [\kappa^+, j(\kappa))]$, such that if λ is regular, $\mathbb{C}(\lambda) = P(\lambda)$, and $\mathbb{C}(\lambda)$ is the trivial forcing otherwise.

We will argue that $\mathcal{B}_I * j_I(Q)$ is κ^+-proper on a stationary set, and hence is κ^+-presaturated.

Observe that \mathcal{B}_I is κ^+-cc. Since \mathcal{B}_I is $< \kappa$-closed, in $\text{Ult}(V, U)$, Q is still κ-cc (hence κ^+-cc). Thus, in $\text{Ult}(V, U)$, $\mathcal{B}_I * Q$ is κ^+-cc and hence is κ^+-proper on $P^*_\kappa(H_\theta)$ for all sufficiently large θ.

The difficulty comes in assuring $P(\kappa)$ and \mathbb{R} preserve the properness on a stationary set.

Work in $\text{Ult}(V, U)^Q$. Here, $P(\kappa)$ is proper on $S := \{ M \prec (H_\theta, \in, \kappa^+) \mid |M| = |M \cap \kappa^+| = \kappa \text{ and } M \cap \kappa^+ = \text{cof}(\kappa) \}$, and by the $< \kappa^+$-directed closedness of \mathbb{R} and Fact 2.9, $\text{Ult}(P(\kappa))$ is proper on $IA_{<\kappa^+}$. But not only is S stationary, S is a club subset of $P^*_\kappa(H_\theta)$, and hence $S \cap IA_{<\kappa^+}$ is also stationary.

Thus $\mathcal{B}_I * j_I(Q)$ is κ^+-proper on a stationary subset of $P^*_\kappa(H_\theta)^V$, hence is κ^+-presaturated. But by Theorem 2.14, $\mathcal{B}_I * j_I(Q) \cong Q * \mathcal{B}_P$, then by Lemma 2.5, $\mathcal{B}_I * j_I(Q)$ is κ^+-presaturated.

A more general argument will prove Theorem 1.3.

Proof of Theorem 1.3. This argument breaks into two cases.

Case 1: δ inaccessible. By Theorem 2.14, we once again have that

$$\mathcal{B}(Q * \mathcal{B}_P) \cong \mathcal{B}(\mathcal{B}_I * j_I(Q))$$

and by a slight modification of Lemma 4.2

$$j_I(Q) = \mathcal{Q} * (j_I(Q)) \restriction [\kappa, \delta] * P(\delta) * (j_I(Q)) \restriction [\delta^+, j_I(\kappa))$$

where

- \mathcal{Q} is κ-cc, hence δ-cc
Case 2: \(\delta \) is a successor cardinal with \(\rho^+ = \delta \). Theorem 2.15 and Lemma 4.2 now give that
\[
j_I(Q) = \hat{Q} \ast (j_I(Q)) \upharpoonright [\kappa, \rho] \ast \mathbb{P}(\rho) \ast j_I(Q) \upharpoonright [\delta, j_I(\kappa)]
\]
where
- \(\hat{Q} \) is \(\delta \)-cc
- \((j_I(Q)) \upharpoonright [\kappa, \rho] \) is an Easton support iteration of \(\delta \)-cc posets
- \(\mathbb{P}(\rho) \) is proper on \(S := \{ M < (H_\theta, \in, \delta) \mid |M| = |M \cap \delta| = \rho \text{ and } M \cap \delta \in \text{cof}(\rho) \} \)
- \(j_I(Q) \upharpoonright [\delta, j_I(\kappa)] \) is an Easton support iteration of \(< \delta \)-directed closed posets

Here, we have that in \(V, \mathcal{B}_I \) is proper on \(IA_{<\delta} \) by assumption. Additionally, in \(\text{Ult}(V, U)^Q, j_I(Q) \) is proper on \(S \cap IA_{<\delta} \) which is also stationary in \(\mathcal{P}_\delta^*(H_\theta) \) for sufficiently large \(\theta \); this is by Lemma 2.10.

Thus \(\mathcal{B}_I \ast j_I(Q) \) is \(\delta \)-proper on a stationary set, hence, by Lemma 2.10, is \(\delta \)-presaturated.

Theorem 2.15 and Lemma 2.5 then tell us that \(\mathcal{B}_I \) is \(\delta \)-presaturated.

\(\Box \)

6. Conclusions and Questions

We thus have that in \(V^Q \), \(\kappa^+ \)-saturated ideals on \(\kappa \) in \(V \) are no longer \(\kappa^+ \)-saturated, but remain \(\kappa^+ \)-presaturated. Hence we have counterexamples to Question 5.1 at inaccessible cardinals.

It seems plausible that \(\mathcal{Q} \) is not the only forcing that accomplishes this:

Question 6.1. Observe that Proposition 4.1 and the proof of Theorem 1.2(ii) only required arguing that \(\mathcal{Q} \) is \(\kappa \)-cc and if \(I \) is a \(\kappa \)-complete, \(\kappa^+ \)-saturated ideal in \(V \), then in \(V^{\mathcal{B}_I} \), \(j_I(Q) \) is not \(\kappa \)-cc but is \(\kappa^+ \)-presaturated.

Can we extend the proof of Theorem 1.2(ii) to any exactly \(\kappa \)-cc forcing?

Using Fact 2.12, Cox and Eskew argued in [4] that their forcing \(\mathbb{P} \) preserved the \(\kappa^+ \)-presaturation of a much larger class of ideals on \(\kappa \); this was possible because in their context, \(j_I(\mathbb{P}) \) was \(\delta^{+\omega} \)-cc. This naturally leads to the following question

Question 6.2. Does \(\mathcal{Q} \) preserve the \(\delta \)-presaturation of all \(\delta \)-presaturated ideals on \(\kappa \)?

However, for us, \(j_I(Q) \) will not be \(\delta^{+\omega} \)-cc, so Fact 2.12 does not apply. This is why we only show that ideals that are \(\delta \)-proper on \(IA_{<\delta} \) remain \(\delta \)-presaturated; \(\delta \)-saturated ideals are \(\delta \)-proper on \(IA_{<\delta} \), so this was sufficient for our purposes. We would need more powerful tools to argue that all \(\kappa^+ \)-presaturated ideals in \(V \) remain \(\kappa^+ \)-presaturated in \(V^Q \).
References

[1] James E. Baumgartner and Alan D. Taylor. Saturation Properties of Ideals in Generic Extensions. II. Transactions of the American Mathematical Society, 271(2):587, jun 1982.

[2] James E. Baumgartner, Alan D. Taylor, and Stanley Wagon. On Splitting Stationary Subsets of Large Cardinals. J. Symbolic Logic, 42(2):203–214, 1977.

[3] William Boos. Boolean extensions which efface the Mahlo property. Journal of Symbolic Logic, 39(2):254–268, jun 1974.

[4] Sean Cox and Monroe Eskew. Strongly proper forcing and some problems of Foreman. Transactions of the American Mathematical Society, 371(7):5039–5068, dec 2018.

[5] Sean Cox and Noah Schoem. Reference request: destroying saturation at an inaccessible? https://mathoverflow.net/q/315754, 2018.

[6] Sean Cox and Martin Zeman. Ideal Projections and Forcing Projections. The Journal of Symbolic Logic, 79(4):1247–1285, dec 2014.

[7] M. Foreman, M. Magidor, and S. Shelah. Martin’s Maximum, Saturated Ideals, and Non-Regular Ultrafilters. Part I. The Annals of Mathematics, 127(1):1, jan 1988.

[8] Matthew Foreman. Ideals and Generic Elementary Embeddings. In Handbook of Set Theory, pages 885–1147. Springer Netherlands, Dordrecht, 2010.

[9] Matthew Foreman and Menachem Magidor. Large cardinals and definable counterexamples to the continuum hypothesis. Annals of Pure and Applied Logic, 76(1):47–97, nov 1995.

[10] Matthew Foreman and Menachem Magidor. Mutually stationary sequences of sets and the non-saturation of the non-stationary ideal on $\mathcal{P}_\kappa(\lambda)$. Acta Math., 186(2):271–300, 2001.

[11] Moti Gitik and Saharon Shelah. Less saturated ideals. Proceedings of the American Mathematical Society, 125(5):1523–1531, may 1997.

[12] K. Kunen and J. B. Paris. Boolean extensions and measurable cardinals. Annals of Mathematical Logic, 2(4):359–377, 1971.

[13] Kenneth Kunen. Saturated Ideals. Journal of Symbolic Logic, 43(1):65–76, 1978.

[14] Richard Laver. Saturated Ideals and Nonregular Ultrafilters. Studies in Logic and the Foundations of Mathematics, 109:297–305, jan 1982.

[15] Jack Silver. On the singular cardinals problem II. Israel Journal of Mathematics, 28(1-2):1–31, mar 1977.

[16] Robert M. Solovay. Real-valued measurable cardinals. pages 397–428. 1971.

[17] Stanislaw Ulam. On measure theory in general set theory (doctoral dissertation). Wisconsin. Mat., 33:155–168, 1997.