Dispersive Liquid-Liquid Semi-Microextraction of Cu(II) with 6,7-dihydroxy-2,4-diphenylbenzopyrylium Chloride for its Spectrophotometric Determination

Alexander Chebotarev, Anastasiia Klochkova, Vitaliy Dubovyi and Denys Snigur

Odessa I.I. Mechnikov National University, Department of Analytical and Toxicological Chemistry, Dvorenska str., 2, Odessa 65082, Ukraine

* Corresponding author: E-mail: 270892denis@gmail.com

Received: 04-09-2020

Abstract

A novel dispersive liquid-liquid semi-microextraction (DLLsME) procedure for copper(II) preconcentration is proposed. The system containing copper(II) and 6,7-dihydroxy-2,4-diphenylbenzopyrylium chloride (DHDPhB), after addition a mixture of chloroform and methanol becomes cloudy and the formation of the organic phase was observed immediately. The optimal conditions of DLLsME were found to be: pH 5, absorption band maximum was 570 nm, 1 cm3 of 1×10^{-3} mol/dm3 of DHDPhB, and mixed extractant containing 1 cm3 of chloroform and 1 cm3 of methanol. Under optimal conditions, the calibration plot was linear in the range of copper(II) concentration $4.32 - 65 \mu g/dm^3$ and the limit of detection was $1.29 \mu g/dm^3$. The rocks and tap water samples were successfully analyzed according to the suggested procedure with RSD no more than 4.9%.

Keywords: Dispersive liquid-liquid semi-microextraction; spectrophotometry; copper(II); rocks analysis; water analysis.

1. Introduction

Copper is an essential element that plays a significant role in various biological processes that are necessary to sustain life. Wherein, excessive intake of copper(II) compounds in the human body can lead to irritation of the nose and throat, nausea, vomiting, and diarrhea. Copper is usually in trace level in environmental samples and food products. Moreover, well-known analytical methods for the copper(II) determination, such as flame atomic absorption spectroscopy, atomic absorption spectroscopy with a graphite furnace, ion chromatography and UV/Vis spectrophotometry, are often coupled with analyte preconcentration stage.

Many various techniques for copper(II) preconcentration have been proposed. For example, cloud point extraction, solid-phase extraction, liquid extraction etc., while most often copper(II) is pre-bound into ion pairs or complexes (chelates in particular) using reagents such as sodium diethyldithiocarbamate, 1-(2-pyridylazo)-2-naphthol, dimethyl-1,10-phenanthroline (neocuproine). It is important to note that interest in the development and modernization of various cloud point extraction and liquid extraction techniques does not disappear even today.

Liquid-liquid extraction has well-known advantages, namely, such as the possibility of increasing the concentration of the analyte, simplicity, high speed, low cost, and efficiency. Such modifications of liquid-liquid extraction as vortex-assisted LLE and dispersive LLE have been actively developed recently. The last one is based on the transfer of the analyte from the aqueous phase to another immiscible liquid phase, which is an extractant. A certain amount of a mixture of extraction and dispersive solvents is rapidly introduced into the aqueous phase of the sample containing the analyte, forming a cloudy solution. The cloudy state is caused by the formation of small droplets of water-immiscible extracting solvent that is dispersed in the sample solution. However, this is not often effective enough and is also being modified. For example, it was proposed to additionally irradiate the solution with ultrasound, introduce an auxiliary solvent, or use the vortex technique.

Since preconcentration of copper(II) initially implies its conversion into some intensely colored hydrophobic
complexes, UV/Vis spectrophotometry seems to be the most attractive detection method. At the same time, the wide availability of equipment, speed, accuracy, ease of operation, and low operating costs make UV/Vis spectrophotometry still attractive to use.

In this work, dispersive liquid-liquid semi-microextraction coupled with UV/Vis spectrophotometry (DLLsME-UV/Vis) was used for the preconcentration and quantification of Cu(II). On the one hand, the use of semi-microtechniques notably reduces the environmental load and does not require special equipment like microextraction and is not fraught with errors related to dosing microliter volumes. On the other hand, the proposed DLLsME-UV/Vis procedure for copper(II) determination does not need extra time-consuming steps like, for example, heating and cooling of solution, so the method is quite rapid. The 6,7-dihydroxy-2,4-diphenylbenzopyrylium chloride (DHDPhB) was chosen as the chelating ligand whose synthesis, physio-chemical, spectroscopic, and complexing properties were described in detail in our previous works.

2. Experimental

2.1. Chemicals

The Cu(II) 1 × 10⁻² mol/dm³ stock solution was prepared by dissolving CuCl₂·2H₂O in distilled water and standardized by iodometric titration.

The DHDPhB was synthesized (Fig. 1) by condensation of 1,2,4-triacetoxybenzene (TOR, Ukraine) with 1,3-diphenyl-1,3-propanedione (Acros, Belgium) in glacial acetic acid, while sparging dry hydrogen chloride, and recrystallized from ethanol. A 1 × 10⁻³ mol/dm³ DHDPhB solution was prepared by dissolving its suitable weight in ethanol. The pH of the mixture was adjusted by the acetate buffer solution (concentrations of acetic acid and sodium acetate were 0.1 mol/dm³ and 0.0468 mol/dm³, respectively). Some organic solvents, such as methanol, acetonitrile, acetone, ethanol, chloroform, benzene, butyl acetate, isoamyl alcohol, and their mixtures were used for dispersive extraction. All organic solvents and chemicals used in the present study were analytically pure grade.

2.2. Instrumentations

An SF-56 spectrophotometer (OKB “Spectr”, Russia), equipped with 10 mm semi-micro quartz cells, was used for absorbance measurements. The pH measurements were carried out on an I-160 potentiometer (ZIP, Belarus) equipped with a combined glass electrode. A centrifuge model MPW-340 with conical 50 cm³ tubes was used for phase separation acceleration.

2.3. General Procedure

Appropriate amounts (0.1–3.0 cm³) of 1 × 10⁻⁵ mol/dm³ Cu(II) solution, 1.0 cm³ of 1 × 10⁻³ mol/dm³ ethanolic solution of DHDPhB, 8 cm³ of acetate buffer with pH 5 were placed into 50 cm³ centrifuge test tubes and diluted up to 30 cm³ with distilled water. Then a mixture of 1 cm³ of chloroform and 1 cm³ of methanol was injected using a syringe for dispersive extraction and the solution immediately became cloudy. The tubes were centrifuged for 5 min at 3,000 rpm to accelerate phase separation. The heavier organic phase, which contained the extracted complex, was at the bottom, and the upper aqueous layer was carefully removed from the test tube.

2.4. Sampling and Sample Pretreatment

The certified reference materials (CRM) of geological samples, such as carbonate-silicate loose sediments SGHM-1 (CRM №3483-86) and rock ST-1a Trap (CRM №519-74) were used to test the proposed method. A 0.1-0.3 g of CRM sample was transferred to a platinum crucible and 2 g of potassium persulfate was added and melted at 600 °C in a muffle for 25–30 min. After that, the melt
was cooled and dissolved in water and diluted to 100 cm³. The obtained solutions were used for analysis by the proposed method.

Tap water samples were collected in our laboratory and directly analyzed according to the proposed procedure without any special treatment.

3. Results and Discussion

3.1. Effect of Variables

Several factors were studied such as pH, type and volume of extracting solvent, type and volume of dispersive solvent, the concentration of DHDPbH, interfering ions that affect the efficiency of copper(II) determination after its DLLsME preconcentration.

3.1.1. Effect of pH

To study the effect of pH on the procedure, many solutions were prepared, which required pH level that was reached by the addition of standard acetate buffer with a pH of 3–8, and then 1 cm³ of chloroform was added for extraction.

As seen in Fig. 2, the optical absorbance increases to pH 5 and then decreases. Probably, in a strongly acidic medium the reagent is in a protonated form, which prevents the effective binding of copper(II). In a strongly alkaline medium, destructive hydrolysis of the DHDPbH takes place; therefore, the influence of the acidity of the medium was studied in the pH range 3-7. Henceforward, whole analysis is carried out at a pH of 5.

3.1.2. Effect of Type and Volume of Extracting Solvent

The solvent which is used for extraction has some mandatory requirements: insolubility or poor solubility in water, a large difference in density with water, an affinity for the extracted substance. According to these requirements, organic solvents such as benzene, chloroform, isomyl alcohol, and butyl acetate were tested. It was shown that chloroform removes a complex of copper(II) with DHDPbH from an aqueous solution best of all.

![Fig. 2. Effect of pH on the extraction: 3.33 × 10⁻⁵ mol/dm³ of DH-DPhB, 5 × 10⁻⁷ mol/dm³ of Cu(II), VChloroform = 1 cm³, λ = 570 nm.](image)

The effect of the volume of extractant on the recovery of the copper(II) complex with DHDPbH was studied (Fig. 3). As seen, 1 cm³ of chloroform is sufficient to extract the complex.

3.1.3. Effect of Type and Volume of Dispersive Solvent

Dispersive solvents are often used to increase the rate and efficiency of LLE. Such a solvent must dissolve both in the selected organic solvent and in water. Among the solvents considered, such as acetonitrile, acetone, ethanol, and methanol, methanol proved to be the most effective (Fig. 4a).

To determine the optimal volume of methanol for extraction, 1 cm³ of chloroform and 0.25–3.5 cm³ of methanol were added to several solutions. As shown in Fig. 4b, as the amount of dispersing solvent increases, the degree of complex recovery also increases. Thus, the ratio of the extracting and dispersive solvents in the mixture was 1:1, since a further increase in the volume of the dispersing solvent does not lead to an increase in optical absorbance. It is interesting to note that the complex has a high affinity for chloroform, and the use of the vortex technique does not significantly affect the extraction efficiency.

3.1.4. Effect of the Concentration of DHDPbH

The effect of the concentration of the chelating ligand on the efficiency of copper(II) extraction was studied.
As seen in Fig. 5, it is necessary to introduce a 200-fold excess of the reagent to maximize the binding of copper(II) to the complex and its extraction.

3. 2. Analytical Figures of Merit and Interferences Study

Analytical figures of merit for the developed DLLsME – UV/Vis spectrophotometry method obtained under optimal conditions are shown in Table 1. The precision and accuracy of the proposed technique were checked by performing 5 measurements at a concentration level of Cu(II) 30 μg/dm³ over two consecutive days.

Interfering ions	Tolerable concentration (analyze:interfering ion)
Fe²⁺, Fe³⁺	1:1
Al³⁺	1:5
I⁻	1:25
Zn²⁺, Ni²⁺, Co²⁺, Cd²⁺, Mn²⁺, HPO₄²⁻, CO₃²⁻, SO₄²⁻	1:100
Na⁺	1:250
K⁺, Br⁻, Cl⁻	1:500
Ca²⁺, Mg²⁺, NO₃⁻	1:5000

At this ratio no interfering effect was observed.

As seen, Fe²⁺ and Fe³⁺ ions interfere most of all and 2.5% solution of NaF was used to mask them. Besides, Al³⁺ ions can be masked by 0.1 mol/dm³ solution of malonic acid. A 1–3 cm³ of masking reagents solutions were used, because their required amount depends on the analyzed sample weight.
3. 3. Analysis of CRMs and Comparison with Literature Studies

The DLLsME–UV/Vis procedure was successfully applied to the preconcentration and determination of Cu(II) in CRM rocks samples and tap water sample (Table 3). As can be seen from Table 3, a good agreement was found between the proposed method data and certified values. Thus, the developed technique is suitable for the determination of copper in rocks and tap water samples.

CRMs	Certified values, μg/g	Spiked, μg/l	Found*	Recovery, %	RSD, %	**Student’s t-test
SGHM-1	220 ± 20	–	215.7 ± 13	98.1	4.9	0.91
№3483-86	–	50	263.3 ± 15	97.0	4.5	–
ST-1a Trap	48 ± 5	–	46.4 ± 3	96.7	4.7	1.64
№519-74	–	50	97.2 ± 6	98.3	4.6	–
Tap water	–	–	19.9 ± 1	98.3	4.6	–
	–	10	30.1	99.0	4.8	–

* Concentration is given in μg/g for rocks samples and in μg/dm³ for tap water sample. ** The experimental t-values were calculated according to equation \(\mu = x_{\text{average}} \pm tS/\sqrt{n} \); The critical t-value for five replicate measurements at a confidence level of 0.95 was 2.78.

4. Conclusions

A cheap, simple, sensitive and environmentally friendly dispersive liquid-liquid semi-microextraction method for preconcentration and quantification of Cu(II) which is based on the complex formation with 6,7-dihydroxy-2,4-diphenylbenzopyryl chloride was described. In optimal conditions, the calibration graph was linear in the range of Cu(II) concentrations 4.32–65 μg/dm³. The proposed DLLsME–UV/Vis method has been successfully applied to the quantification of Cu(II) traces in rocks and tap water samples.

5. References

1. WHO, Copper in drinking-water: Background document for development of WHO guidelines for drinking-water quality. Geneva: World Health Organization (WHO/SDE/WSH/03.04/88), 2004.
2. D. Snigur, A. Chebotarev, V. Dubovyi, et al., J. Serb. Chem. Soc., 2020, 85, 89–96. DOI:10.2298/JSC190212087S
3. H. Reffas, T. Benabdallah, M. H. Youcef et al., J. Surfact. Deterg., 2014, 17, 27–35. DOI:10.1007/s11743-013-1501-1
4. A. Pérez-Gramatges, A. Chatt, J. Radioanal. Nucl. Chem.,
Povzetek

Predlagamo postopek nove disperzivne semi-mikroekstrakcije tekoče-tekoče (DLLsME) za predkoncentracijo bakra(II). Sistem, ki je vseboval baker(II) in 6,7-dihidroksi-2,4-difenilbenzopirilijev klorid (DHDPhB), je po dodatku zmesi kloroforma in metanola postal moten in takoj je bilo opaziti tvorbo organske faze. Optimalni pogoji DLLsME so bili: pH 5, absorpcijski maksimum 570 nm, 1 cm³ raztopine 1 × 10⁻³ mol/dm³ DHDPhB in ekstrakcijska zmes, ki je vsebovala 1 cm³ kloroforma in 1 cm³ metanola. Pri optimalnih pogojih je bila kalibracijska krivulja linearna v območju koncentracij 0,432–65 µg/dm³, meja zaznave pa je bila 1,29 µg/dm³. S predlaganim postopkom smo uspešno analizirali vzorce bakra(II) 4,32–65 µg/dm³. S predlaganim postopkom smo uspešno analizirali vzorce bakra(II).