DNA damage—how and why we age?
Matt Yousefzadeh†, Chathurika Henpita†, Rajesh Vyas, Carolina Soto-Palma, Paul Robbins, Laura Niedernhofer*

Institute on the Biology of Aging and Metabolism Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, United States

Abstract Aging is a complex process that results in loss of the ability to reattain homeostasis following stress, leading, thereby, to increased risk of morbidity and mortality. Many factors contribute to aging, such as the time-dependent accumulation of macromolecular damage, including DNA damage. The integrity of the nuclear genome is essential for cellular, tissue, and organismal health. DNA damage is a constant threat because nucleic acids are chemically unstable under physiological conditions and vulnerable to attack by endogenous and environmental factors. To combat this, all organisms possess highly conserved mechanisms to detect and repair DNA damage. Persistent DNA damage (genotoxic stress) triggers signaling cascades that drive cells into apoptosis or senescence to avoid replicating a damaged genome. The drawback is that these cancer avoidance mechanisms promote aging. Here, we review evidence that DNA damage plays a causal role in aging. We also provide evidence that genotoxic stress is linked to other cellular processes implicated as drivers of aging, including mitochondrial and metabolic dysfunction, altered proteostasis and inflammation. These links between damage to the genetic code and other pillars of aging support the notion that DNA damage could be the root of aging.

Introduction Aging is a multifactorial process that results in increased risk of a myriad of chronic diseases. Being elderly is the greatest risk factor, by orders of magnitude, for cancer, osteoporosis, cardiovascular disease, dementia and most other degenerative diseases (Kirkwood, 2005). While no single mechanism or pathway fully accounts for age-associated functional decline, one prevailing theory is that macromolecular damage, accumulating over time, plays a causal role in driving aging. Most macromolecules in the cell when damaged are simply degraded and replaced. In contrast, the nuclear genome, which is the blueprint for all cellular functions, has dedicated and energetically costly repair mechanisms to rapidly correct DNA damage. This intimates that DNA damage is a particularly hazardous type of macromolecular damage and therefore likely to be deleterious to cellular homeostasis.

Maintaining genome stability is a continuous process. Deoxyribonucleic acids are chemically unstable under physiological conditions (aqueous, oxygen-rich, and pH 7.4) (Lindahl, 1993). DNA is also vulnerable to chemical attack by electrophiles and free radicals. While exogenous sources of genotoxic stress can be quite potent, endogenous threats are constant and relentless (Table 1). The most common DNA lesion is hydrolytic cleavage of the glycosidic bond between the DNA base and sugar phosphate group, leading to abasic sites. Hydrolytic deamination of the DNA bases is also common. Products of normal cellular metabolism can cause oxidation, nitrosylation, and alkylation of the DNA bases (De Bont and van Larebeke, 2004). Breaks in the phosphate deoxyribose backbone arise as a consequence of high energy radiation or during DNA metabolism (replication, decatenation). Spontaneous DNA damage occurs on the order of 10^4–10^5 events per cell per day (Lindahl, 1993; De Bont and van Larebeke, 2004).
DNA is also susceptible to damage by environmental factors such as ultraviolet (UV), ionizing radiation, and alkylating agents used to treat proliferative disorders like cancer (Table 1). Notably, even when exogenous genotoxin exposure is instigated with the purpose of driving cell death (e.g., in cancer therapy) adduct burdens are well below the incidence of endogenous damage (Jackson and Loeb, 2001). Fortunately, all organisms have robust mechanisms to sense all types of DNA damage, delay genome replication (if needed), signal for repair, and correct or tolerate the large number of genomic insults that occur on a daily basis (Hoeijmakers, 2009). DNA damage that is not repaired in a timely manner or is too egregious to be repaired induces signaling events that lead to one of many cell fates, one of which, senescence, plays a causal role in aging.

Conceptually, could DNA damage drive aging?

Why? and how? organisms age remain challenging questions. Why one ages interrogates the reasons. How one ages interrogates the method. The antagonistic pleiotropic theory of aging provides a genetic solution to why we age, positing that genes that provide an advantage during reproductive life are disadvantageous post reproduction, yet these genes cannot be selected against (Kirkwood, 2005). As an example of antagonistic pleiotropy, activation of the DNA damage response (DDR) is critical for preventing cancer; however, chronic activation of the DDR is thought to drive the accumulation of senescent cells and chronic sterile inflammation in old age, as described in more detail below. The pillars of aging (Kennedy et al., 2014) describe the method by which (or how) we age: loss of or impaired, mitochondrial integrity and function, metabolism, stem cell function, proteostasis, nutrient sensing, adaptation to stress, autophagic flux, epigenetic control, and an accumulation of damaged cellular macromolecules. This includes damage to the nuclear and mitochondrial genomes. Nevertheless, it has proven challenging to establish the pillars of aging as true causes of aging rather than merely consequences of aging.

If DNA damage drives aging, mechanistically how does it do so? Through activating signaling responses (d’Adda di Fagagna et al., 2003), blocking transcription (Vermeij et al., 2016) and other DNA metabolism, altering the epigenome (Oberdoerffer et al., 2008), mutagenesis (Vijg, 2014), triggering cells senescence or apoptosis? DNA damage occurs stochastically but the amount and types of DNA damage one experiences is influenced by the expression of genes encoding antioxidant enzymes, genes linked to energetics and mitochondrial function, and a myriad of other factors such as histones, methylases, sirtuins, transcription, and replication factors. Every aspect of how DNA damage might drive aging is also genetically determined via the cellular response to DNA damage. The somewhat surprising finding is that DNA damage has far-reaching effects on many aspects of cellular metabolism tied to aging, the so-called pillars of aging (Kennedy et al., 2014). This suggests that aging might be driven by many types of cellular damage yet does not occur until

DNA lesion	DSB	Cytosine deamination	Cyclopurine adducts	Depyrimidination	8-oxoG	Malondialdehyde adducts	Alkylation adducts	Depurination	SSB
Frequency per cell per day	10^1	10^2	10^2	10^5	10^5	10^5	10^4	10^4	

Table 1. Estimated frequencies of DNA lesions caused by endogenous and common environmental sources of DNA damage. Adapted from Friedberg, 2006; Lindahl, 1993; Sander et al., 2005; Sears and Turchi, 2012; Mouret et al., 2006.
one reaches a state where multiple aspects of cell biology are perturbed, for example, genome integrity, proteostasis, and mitochondrial function.

DDR and cell fate decisions

Once DNA damage is recognized in the nuclear genome, bulky adducts, small miscoding lesions, single-strand breaks, or non-complex double-strand breaks (DSBs) can be directly repaired by nucleotide excision repair (NER), base excision repair (BER), and non-homologous end-joining (NHEJ), respectively. If replication forks or transcription complexes encounter polymerase-blocking lesions (Vermeij et al., 2016), this can lead to the formation of a DSB or R-loop (Tresini et al., 2015), which potently activate signaling events that halt cell cycle progression and promote repair. If the damage signals persist, then the cell selects a fate that avoids replicating a damaged genome and mutagenesis at all cost, by activating events that lead to cell death (apoptosis) or irreversible cell cycle arrest (senescence) (Figure 1). DNA damage signaling begins with the MRE11-RAD50-NBS1 (MRN) complex activating the phosphatidylinositol 3-kinase-like kinases (PIKKs) ataxia-telangiectasia mutated (ATM), ATM-related kinase (ATR) and/or related PIKK (Thompson, 2012). ATM is activated primarily

Figure 1. Schematic representation of signaling events within a cell that enable DNA damage to promote aging. Depicted are various stressors that can lead to genome instability and activation of the DNA damage response (DDR). The DDR (light blue) leads to cell cycle arrest (green). If signaling persists, apoptosis or senescence ensues. Senescence can affect neighboring, undamaged cells.
by DNA DSBs while ATR is primarily involved in the response to stalled replication forks, although overlap occurs. Initially ATM and ATR work with checkpoint mediator proteins like MDC1, 53BP1 and BRCA1, TOPBP1, which are sensor proteins that bind to lesions and recruit other DDR factors. Damage recognition is followed by phosphorylation (and activation) of transducer kinases like checkpoint kinase 2 (CHK2) or checkpoint kinase 1 (CHK1), which amplify the ATM-ATR signal. CHK2 activation leads to activation of p53, a master regulator of the cellular response to genotoxic stress (Senturk and Manfredi, 2013). Sustained activation of these transducer proteins leads to phosphorylation of several DNA repair and cell cycle checkpoint proteins (Thompson, 2012; Cheng and Chen, 2010). p53 can also be activated independently of ATM. p14/ARF inhibits MDM2–p53 interaction, resulting in the stabilization of p53 (Senturk and Manfredi, 2013; Meek and Anderson, 2009). p53 can mount a bimodal response to stress where it functions to activate apoptosis via various transcriptional targets like Bax, Puma, and Noxa, or promote transient or prolonged cell cycle arrest through transcriptional activation of the cyclin-dependent kinase inhibitor p21(Cip1) (Reinhardt and Schumacher, 2012). A myriad of factors determines the extent of p53 activation in response to genotoxic stress, and more factors likely will be discovered.

A variety of types of stress can activate the INK4a/ARF locus in cells. The gene products of the locus—p16(INK4a) and ARF—arrest cell progression by acting on the retinoblastoma protein and p53 (Senturk and Manfredi, 2013). p16(INK4a) inhibits CDK4 from binding to cyclin D, thereby preventing phosphorylation of RB. Hypo-phosphorylated retinoblastoma (RB) protein represses E2F-dependent gene expression, blocking G1/S cell cycle progression. Free E2F activates many genes involved in mitosis. While sensing DNA damage and responding to it is a positive attribute, persistent DNA damage signaling can have quite deleterious effects. It can lead to chronic activation of p53 and other response pathways (stress response, pro- and anti-apoptotic, pro-inflammatory, etc.), which impact many aspects of cellular function and impact cell fate. Definitive knowledge about which factors determine the selection of cell fate selection remains elusive. However, it seems likely that these factors may vary with the cell type, the level, and the duration of genotoxic stress.

Cellular senescence and the secretory phenotype

Leonard Hayflick and Paul Moorhead defined cellular senescence as the proliferative arrest that occurs in normal cells after a number of cell divisions (Hayflick and Moorhead, 1961; Hayflick, 1965). The first molecular explanation for senescence was the progressive telomere shorting that occurs with every cell division termed telomere-initiated cellular senescence (Harley et al., 1990). Many cells undergo senescence independently of telomere shorting due to replicative, mitochondrial, oxidative, metabolic, or genotoxic stress (Parrinello et al., 2003; Christoffersen et al., 2010; Correia-Melo et al., 2016; Nair et al., 2015). Senescent cells actively repress cell cycle progression preventing the replication of a damaged genome. Senescent cells have altered metabolism, morphology, and secretory profile called the senescence-associated secretory phenotype (SASP). The SASP includes pro-inflammatory cytokines, chemokines, and proteases (Coppe et al., 2008) and is heterogeneous depending on the cell type and the inducer of senescence (Basisty et al., 2020). The SASP is thought to instigate immune clearance of the damaged/stressed cells (Tasdemir et al., 2016), but the immediate negative consequence is the potential to drive local tissue damage and systemic chronic sterile inflammation (Franceschi and Campisi, 2014).

One of the challenges of studying senescence is the absence of a specific marker to identify senescent cells. Therefore, multiple endpoints must be measured simultaneously to identify them (Gorgoulis et al., 2019; Sharpless and Sherr, 2015). The most widely used marker is measurement of senescence-associated β-galactosidase (SA-β-gal) activity (Itahana et al., 2007). Other markers associated with cellular senescence include absence of proliferation markers (e.g., Ki-67), increased expression of the cyclin-dependent kinase inhibitors p16(INK4a) and p21(Cip1), persistent activation of the DDR (such as p53, ATM, ATR, γH2AX, telomere dysfunction-induced foci [TIF], senescence-associated heterochromatin foci [SAHF], and DNA segments with chromatin alterations reinforcing senescence [DNA-SCARS]), reduced lamin B1 expression, increased HMGB1 and SASP factors (such as IL-1β, IL-6, IL-10, MCP-1, and TNFα) (Coppe et al., 2010; Lawless et al., 2010; Serrano et al., 1997; Takai et al., 2003; Matjusaitis et al., 2016; Rodier et al., 2011).

Cellular senescence plays a critical role in preventing tumorigenesis, tissue repair, and wound healing, promoting insulin secretion and mammalian development (Kuilmans et al., 2008;
Accelerated aging in genome instability syndromes

The mammalian genome encodes over 150 proteins directly responsible for safeguarding its integrity (Friedberg, 2006; Wood et al., 2005). These gene products constantly monitor the quality and repair the nuclear genome (Sancar et al., 2004). Distinct DNA repair pathways cope with different types of DNA lesions: BER for small covalent additions to DNA bases, NER for bulky adducts that disrupt the DNA helix, interstrand crosslink (ICL) repair to remove covalent links between the two strands of DNA, NHEJ to ligate broken DNA ends, mismatch repair to correct replication errors, homologous recombination to manage replication stress and DSBs not readily ligated. Inherited defects in each of the DNA repair pathways are linked to distinct genome instability syndromes (Table 2). Broadly, the syndromes are characterized by developmental defects, increased incidence of cancer and features of accelerated aging (Cleaver, 1968; Menck and Munford, 2014; Wood, 2018). Progeroid syndromes are diseases of dramatically accelerated aging and include Hutchinson-Gilford, Werner, and Cockayne syndromes (CS), as well as XFE progeroid syndrome, all of which are linked to genome instability (de Magalhães, 2005; Martin and Oshima, 2000; Burla et al., 2018). The syndromes provide an elegant yet tragic glimpse into the impact that DNA damage can have on human health. Most syndromes were described well before DNA had been discovered or mechanisms of repair described.

Children with Hutchinson-Gilford progeroid syndrome (HGPS) develop many features of premature aging in the first decade of life including alopecia, atherosclerosis, osteolysis, and lipodystrophy among others (Hennekam, 2006). The genetic cause for HGPS are mutations in the LMNA gene, which encodes critical components of the nuclear lamina (Eriksson et al., 2003; De Sandre-Giovannoli et al., 2003) causing pernicious alterations in nuclear architecture resulting in genome instability (Kudlow et al., 2007). Nestor-Guillermo progeroid syndrome, caused by mutations in the nuclear lamina gene BANF1, has characteristics of accelerated aging due to impaired chromatin organization (Cabanillas et al., 2011; Loi et al., 2016).

Mutations in DNA helicases are linked to multiple diseases of accelerated aging. Mutations in three of the RECP family of helicases (BLM, RECQL4, and WRN) cause progeroid syndromes (UCHIUMI et al., 2015). Mutations in WRN, a gene that encodes a helicase responsible for managing replication stress and telomere stability, cause Werner syndrome (WS) (Kudlow et al., 2007). WS patients experience growth retardation, premature hair graying, lipodystrophy, as well as premature onset of multiple age-related diseases including arteriosclerosis, cancer, type 2 diabetes mellitus, and osteoporosis (Sugimoto, 2014). Rothmund-Thomson syndrome (RTS) is caused by mutations in RECQL4, encoding a helicase that participates in DNA replication and repair. RTS patients experience juvenile cataracts, epidermal atrophy, and increased cancer incidence (Croteau et al., 2012; Ghosh et al., 2012). Bloom syndrome (BS) is caused by mutations in BLM, which encodes a RecQ helicase critical for suppressing recombination and thereby genome instability (Nguyen et al., 2014; Hanada and Hickson, 2007). The mean lifespan of BS patients is 26 years and they have premature onset of numerous age-related diseases, including cancer, diabetes, and chronic obstructive pulmonary disease (de Renty and Ellis, 2017).
Table 2. Human genome instability diseases with age-associated symptoms.

Disease	Affected genome stability pathway	Mutated genes	Aging-associated symptoms	Ref(s)
Hutchinson-Guilford progeria syndrome	Chromatin organization	LMNA	Alopecia, atherosclerosis, arthritis, cardiovascular disease, lipodystrophy, osteoporosis, skin aging and atrophy	Kudlow et al., 2007; Liu et al., 2005
Nestor-Guillermo progeria syndrome	Chromatin organization	BANF1	Alopecia, atherosclerosis, arthritis, cardiovascular disease, lipodystrophy, osteoporosis, and pulmonary hypertension	Cabanillas et al., 2011; Loi et al., 2016
Werner syndrome	Telomeric maintenance and replication stress	WRN	Alopecia, atherosclerosis, arthritis, cardiovascular disease, cataracts, diabetes, sarcopenia, and increased risk of cancer	Kudlow et al., 2007; Sugimoto, 2014
Rothmund-Thomson syndrome	DNA replication initiation	RECL4	Alopecia, cataracts, osteoporosis, skin atrophy, and increased risk of cancer	Croteau et al., 2012; Ghosh et al., 2012
Bloom syndrome	DNA replication and recombination	BLM	Diabetes, pulmonary disease, increased risk of cancer	Hanada and Hickson, 2007; de Renty and Ellis, 2017
XFE progeroid syndrome	NER, ICL, and DSB repair	ERCC4	Anemia, cardiovascular disease, kidney disease, neuredegeneration, osteoporosis, sarcopenia, sensory loss, and skin atrophy	Niedernhofer et al., 2006
Xeroderma pigmentosum	NER and translesion DNA synthesis	XPA-G, XPV	Premature skin photoaging, neurodegeneration, and increased incidence of skin cancer	Lehmann et al., 2011; Kraemer and DiGiovanna, 2015
Cockayne syndrome	Transcription-coupled NER	CSA, CSB, XPB, XPD, XPG	Ataxia, cataracts, muscle atrophy, and neurodegeneration	Nance and Berry, 1992; Wilson et al., 2016
Trichothiodystrophy	Transcription-coupled NER	TTDN1, XPB, XPD	Premature bone marrow exhaustion and increased risk of cancer	Faghri et al., 2008; de Boer et al., 2002
Fanconi anemia	ICL repair	FANCA-FANCW	Premature bone marrow exhaustion and increased risk of cancer	Cecaldi et al., 2016; Nalepa and Clapp, 2018
Ataxia telangiectasia	DNA damage response	ATM	Premature bone marrow exhaustion, diabetes, and neurodegeneration	Rothblum-Oviatt et al., 2016
Mandibular hypoplasia, deafness, progeroid features, lipodystrophy syndrome	Post-replication repair and translesion DNA synthesis	POLD1	Diabetes, lipodystrophy, osteoporosis, steatosis, sensory loss	Weedon et al., 2013
Ruijs-Aalfs syndrome	Protein-DNA crosslink repair	SPRTN	Alopecia, atherosclerosis, cataracts, diabetes, premature graying of hair, osteoporosis, sarcopenia, and increased risk of cancer	Lessel et al., 2014
Alpers-Huttenlocher syndrome	Mitochondrial DNA replication and repair	POLG1	Progressive neurodegeneration and liver disease	Nguyen et al., 2006

NER detects and removes DNA adducts that distort the helical structure of DNA such as adducts resulting from exposure to UV light, environmental mutagens, and certain classes of cancer chemotherapeutics (Schärer, 2013). Endogenous DNA adducts repaired by NER are cyclopurines; oxidative DNA lesions believed to contribute to neurodegeneration (Brooks, 2008). NER consists of two sub-pathways that are responsible for repair of the entire nuclear genome (global genome NER) or focused on transcribed genes (transcription-coupled NER). Defects in the former cause xeroderma pigmentosum (XP) linked to mutations in seven genes XPA-G (Cleaver, 1968; Lehmann et al., 2011). XP is characterized by accelerated photoaging of the skin and a 10,000-fold increased risk of skin cancer. XP patients also frequently have accelerated onset of peripheral neuropathy, sensorineural deficits, cerebral atrophy, and neurodegeneration (Kraemer and DiGiovanna, 2015). Defects in transcription-coupled NER cause CS or trichothiodystrophy (TTD). CS patients have progressive growth retardation, neurodegeneration, cataracts, osteoporosis, and metabolic dysfunction similar to old age (Nance and Berry, 1992; Wilson et al., 2016). TTD patients present with CS-like features plus brittle hair and ichthyosis (Faghri et al., 2008). XFE progeroid syndrome results from mutations in ERCC4/FANCQ causing reduced expression of XPF-ERCC1, a heterodimeric DNA repair protein.
endonuclease required for NER, DNA ICL repair, and the repair of some DNA DSBs (Niedernhofer et al., 2006; Ahmad et al., 2008; Bhagwat et al., 2009). The sentinel XFE patient, who presented with exceptional photosensitivity and exhibited clear signs of premature aging of virtually all organ systems, lived to only 16 years of age (Niedernhofer et al., 2006).

DNA ICLs are incredibly genotoxic lesions that impair transcription and replication by compromising DNA strand separation (Clauzon et al., 2013). ICLs can be caused by endogenous metabolites (e.g., by-products of lipid peroxidation) or environmental exposures (e.g., bifunctional cancer chemotherapeutics such as cisplatin). ICLs are recognized by the Fanconi anemia (FA) repair pathway in replicating cells and by NER in non-dividing cells and are removed by endonucleases in these pathways (Ceccaldi et al., 2016). Defects in ICL repair cause FA, a rare disease in which patients exhibit accelerated bone marrow failure, increased risk of, congenital defects, endocrine dysfunction and other aging features (Nalepa and Clapp, 2018).

Mutations in the ATM, which encodes a serine/threonine kinase activated in response to DNA damage, cause ataxia telangiectasia (AT) (Thompson, 2012; Valentin-Vega et al., 2012). AT patients develop dysphagia, dysphonia, loss of motor control, diabetes as adolescents, premature aging of the hair and skin, consistent with accelerated aging (Rothblum-Oviatt et al., 2016). Mutations in POLD1 and SPRTN cause two Werner-like progeroid syndromes: mandibular hypoplasia, deafness, progeroid features, lipodystrophy syndrome, and Ruijs-Aalfs syndrome, respectively (Weedon et al., 2013; Lessel et al., 2014). Alpers-Huttenlocher syndrome, marked by progressive neurodegeneration and liver failure, is caused by mutation in the mitochondrial DNA polymerase pol γ (Nguyen et al., 2006). Clinically, these syndromes are distinct. The distinctions likely arise from how critical a particular DNA repair mechanism is for protecting the integrity of a specific cell type or tissue. Yet there are also tremendous commonalities in the pathophysiology of the distinct syndromes, and the commonalities largely align with changes associated with normal aging. It is humbling to recognize that the vast majority of symptoms seen in these genome instability disorders is driven by endogenous DNA damage.

It is important to note that while the focus here is on human repair-deficiency phenotypes, DNA repair and response genes are for the most part highly conserved. Murine models of these genome instability disorders largely recapitulate the human disorders and have been extremely valuable for discerning genotype:phenotype correlations (Friedberg and Meira, 2006). Studies in patient cells, yeast, and even bacteria were all essential for establishing the mechanisms of DNA repair as well signaling mechanisms in response to unrepaired DNA damage, which contributes more potently to driving aging than the damage itself.

Iatrogenic genotoxins drive aging

The number of cancer survivors is increasing dramatically as a consequence of improved therapeutics (Bluethmann et al., 2016). Unfortunately, so is the awareness that those treated with genotoxic agents are aging rapidly (Hurria et al., 2016). Radiation and genotoxic chemotherapy are used to kill rapidly dividing cells, like tumor cells. However, they are not specific for cancer cells. All cells in the body experience genotoxic stress during therapy and this triggers signaling events and cell fate decisions that appear to accelerate aging. Cancer survivors display premature onset of frailty and multi-morbidities associated with old age, often decades earlier than expected (Killock, 2014). For example, 20% of childhood cancer survivors have ischemic heart disease or stroke by 50 years of age compared to 1% incidence for their siblings (Armenian et al., 2018). Whether DNA damage is increased by exposure to genotoxins or by genetic depletion of repair mechanisms, the consequence is the same: accelerated aging. This supports the notion that DNA damage, regardless of whether the source is endogenous or environmental, can be both the why and how aging occurs.

It is now well documented that chemotherapy with anthracycline, a DNA intercalating agent used for treating breast cancer, causes a significant increase in the expression of p16INK4a in peripheral T cells, a recognized measure of aging (Liu et al., 2009; Sanoff et al., 2014). This increased p16INK4a expression persists for nearly a year after treatment and equates to the rise in p16INK4a expression that occurs with 15 years of chronological aging (Sanoff et al., 2014). Pediatric cancer survivors have a 2.5-fold increased incidence of disabling age-related diseases compared to their siblings by 50 years of age (Armenian et al., 2014). This includes arthritis, cardiovascular disease, kidney, and pulmonary disease. Platinum-based therapy (causing intra- and interstrand DNA crosslinks) causes a
significantly increased risk of cardiovascular disease and pre-diabetes (Baker, 2013). A central tenet of aging is frailty, which is defined as disability, reduced endurance, risk of falls, and hospitalization due to chronic diseases that typically occur at the end of life (Vetrano, 2018). Ten percent of individuals ≥65 years old are frail. Remarkably this is indistinguishable from the incidence of frailty in childhood cancer survivors in their thirties (Ness et al., 2015). Performance on physical function tests (walking and grip strength) is the same for individuals ≥65 years of age and survivors of pediatric cancers who are decades younger (Henderson et al., 2014). The accelerated senescence and aging observed in cancer survivors specifically treated with genotoxic agents strongly supports the view that DNA damage drives aging.

DNA damage impacts every aspect of cell biology

Genotoxic stress is a potent driver of cellular senescence and senescent cells play a causal role in driving aging and age-related disease. What is truly remarkable is looking within cells harboring genotoxic stress and finding how profoundly cellular homeostasis is perturb (Figure 2). For example, in tissues of DNA repair-deficient mice (caused by reduced expression of XPF-ERCC1 due to genetic depletion of Ercc1), spontaneous oxidative DNA damage accumulates rapidly, albeit not to a greater extent than what occurs with aging in repair-proficient mice (Wang et al., 2012). As a consequence of this genotoxic stress, mitochondrial and metabolic dysfunction, and increased reactive oxygen species arise, identical to changes seen with normal aging (Robinson et al., 2018). Interestingly, in the same Ercc1 mutant mice, which model XFE progeroid syndrome, senescent cells accumulate in the same organs as occurs with normal aging in mice and to roughly the same extent (Yousefzadeh et al., 2020). The profound similarities between DNA repair-deficient mice and aged mice support the notion that DNA damage drives aging. But more importantly, the cellular perturbations downstream of DNA damage reinforces ‘how’ DNA damage drives aging: by perturbing every aspect of cell biology. The consistency and uniformity with which these cellular responses to genotoxic stress occur argues that the changes are driven via signaling not as a consequence of random mutation or loss of transcription of key genes. Much remains to be elucidated about these signaling mechanisms. It is also interesting to note that the increased ROS observed in tissues of ERCC1-XPF mice is pathological and causes more DNA damage (Robinson et al., 2018), raising the point that endogenous DNA damage, if not repaired, becomes amplified.

Additional evidence to support the notion that genotoxic stress profoundly perturbs cellular homeostasis includes the following. Cells from patients with XP, CS, and AT have altered energy homeostasis, impaired mitophagy, and an increased mitochondrial membrane potential, implying accumulation of dysfunctional mitochondria and increased ATP and oxygen consumption (Valentin-Vega et al., 2012; Scheibye-Knudsen et al., 2012; Fang et al., 2014). Poly(ADP-ribose) polymerase 1 (PARP1) is critical for the detection and repair of strand breaks. Persistent activation of PARP1 depletes cellular reserves of nicotinamide adenine dinucleotide (NAD⁺) (Finkel et al., 2009), a critical co-factor for many enzymes including sirtuins, which are a family of protein deacetylases and ADP-ribosyltransferases that broadly regulate gene expression and protein stability. SIRT1 also regulates mitochondrial biogenesis by deacetylating PGC-1α (peroxisome proliferator-activated receptor γ coactivator 1 α) (Finkel et al., 2009). SIRT1 activity is dramatically reduced in animal models of XP and CS due to persistent activation of PARP1 (Scheibye-Knudsen et al., 2012; Fang et al., 2014). Inhibition of PARP1 or supplementation with NAD⁺ precursors restore SIRT1 activity and improve mitochondrial homeostasis and cellular metabolism (Scheibye-Knudsen et al., 2014; Fang et al., 2016).

Is more DNA repair beneficial?

The gold standard for establishing a causal relationship between two events (DNA damage and aging) is to demonstrate that impaired repair accelerates aging, while improved repair slows aging. This is tricky with DNA repair as there are no drugs that stimulate DNA repair, nor is it easy to improve DNA repair genetically. DNA repair mechanisms require the coordinated action of numerous proteins. Overexpression of just one protein does not always improve repair and, in fact, can be detrimental (Shaposhnikov et al., 2015). Nevertheless, there are some hints that longevity correlates with improved responses to genotoxic stress. In the nematode Caenorhabditis elegans, 40...
single gene mutations have been described that increase lifespan by at least 20% and in all cases these mutations confer resistance to UV irradiation (Johnson et al., 2002). Overexpression of human MTH1, which prevents 8-oxoG accumulation, in mice protects against neurodegeneration (De Luca et al., 2008) and extends lifespan (De Luca et al., 2013). Enhancing ATM activity in a murine model of HGPS reduces progeroid features and extends lifespan (Qian et al., 2018). Interspecies comparisons have not definitively identified a correlation between DNA repair capacity and lifespan (Austad, 2010; Cortopassi and Wang, 1996; Hart and Setlow, 1974), with a couple of exceptions. BER (but not NER) capacity is greater in cells from longer-lived rodents and non-human primates, than in shorter-lived species (Austad, 2010). Naked mole rats (lifespan 30+ years) have improved NER and BER efficiency relative to mice (lifespan 3 years) (Evdokimov et al., 2018). Many longer-lived species have increased expression or sequence optimization of key regulators of genome stability (Keane et al., 2015; Tian et al., 2017) leading to improved DSB repair in longer-lived mammals (Tian et al., 2019). Cells of centenarians have improved DNA repair activity and antioxidant capacity compared to non-centenarians (Chevannes et al., 2003; Franzke et al., 2015a). Calorie restriction (CR) is the most successful intervention to extend lifespan and/or health span in organisms ranging.

Figure 2. Mechanisms by which DNA damage could promote aging. DNA damage, including damage at telomeres (center), once detected, if not repaired, can interfere with replication or transcription, resulting in the activation of signaling events that alter cell physiology. One outcome of these signaling events is apoptosis, which while depleting important cells like stem cells or neurons may not be the most potent driver of aging. DNA damage can also result in mitochondrial dysfunction, impaired autophagy, metabolic changes, and the triggering of cellular senescence (small circles). These live but physiologically altered cells are predicted to be a more potent driver of aging and disease. Endpoints used to measure these consequences of DNA damage are indicated with arrows in the larger circles. These outcomes are all interconnected in that mitochondrial dysfunction can cause metabolic changes, impaired autophagy and proteostasis, more DNA damage, and senescence. This creates a cycle of increasing damage and dysfunction, which can spread to other cells via SASP, that is likely the proximal cause of aging and the diseases associated with it (outer circle).
from yeast to mammals, including non-human primates. CR has been demonstrated to decrease the abundance of DNA damaging reactive oxygen species (reviewed in Pamplona and Barja, 2006), thereby reducing oxidative DNA damage (reviewed in Heydari et al., 2007). Consistent with this is the observation that CR reduces transcriptional stress in DNA repair defective mice (Vermeij et al., 2016). However, there is also evidence that CR might improve DNA repair, including BER, NER, and NHEJ (studies in rodents thoroughly reviewed in Heydari et al., 2007). In humans, there is evidence that CR (Matt et al., 2016), dietary micronutrients (Ames, 2010), chronic exercise, and improved socialization of the elderly (Franzke et al., 2015b) can enhance genome stability, which is ascribed to improved DNA repair capacity. However, more studies using robust measures of DNA repair capacity are needed. Collectively, there is abundant evidence that more DNA repair at least correlates with improved healthspan and lifespan.

Conclusions
There is now sufficient and diverse evidence to support a cogent argument that DNA damage plays a causal role in aging. This includes environmental/iatrogenic sources of genotoxic stress as well as spontaneous/endogenous genotoxic stress. DNA damage contributes to aging via cell autonomous events such as causing apoptosis, which depletes functional cells such as neurons, and via cell non-autonomous mechanisms such as triggering senescence, which can negatively impact the function of neighboring, undamaged cells through their SASP. Downstream consequences of DNA damage impinge upon all of the other pillars of aging resulting in a state of self-perpetuating damage, which likely is the ultimate cause of aging. Despite these broad consequences of genotoxic stress, there is also evidence that these consequences can be modulated through approaches aimed at slowing aging, including caloric restriction, NAD+ supplementation, or ablating senescent cells. The field is still lacking tools to measure DNA lesions and DNA repair capacity that are accessible to the broader research community. Building such a tool kit would enable more precise determination of when (under what circumstances) and where (in what organs) DNA damage truly drives aging. It also might open new opportunities in precision medicine, enabling fine tuning of DNA damage and repair to, for example, improve tumor ablation, slow the loss of irreplaceable cells, or optimize metabolism to promote repair.

Acknowledgements
We thank Mariah Witt for helpful comments. This work was supported by NIH grants P01 AG043376, U01 ES029603, R56 AG059676, R01 AG063543, and U19 AG056278. MJY was supported by the Irene Diamond Fund/American Federation for Aging Research Postdoctoral Transition Award.

Additional information

Funder	Grant reference number	Author
National Institutes of Health	P01 AG043376	Paul Robbins
		Laura Niedernhofer
National Institutes of Health	U01 ES029603	Laura Niedernhofer
National Institutes of Health	R56 AG059676	Laura Niedernhofer
National Institutes of Health	R01 AG063543	Paul Robbins
		Laura Niedernhofer
American Federation for Aging Research	Irene Diamond Fund/American Federation for Aging Research Postdoctoral Transition Award	Matt Yousefzadeh
National Institutes of Health	U19 AG056278	Paul Robbins
		Laura Niedernhofer
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Author ORCIDs
Matt Yousefzadeh https://orcid.org/0000-0003-2869-1029
Chathurika Henpita https://orcid.org/0000-0002-7610-1380
Laura Niedernhofer https://orcid.org/0000-0002-1074-1385

References
Adler AS, Sinha S, Kawahara TL, Zhang JY, Segal E, Chang HY. 2007. Motif module map reveals enforcement of aging by continual NF-kappaB activity. Genes & Development 21:3244–3257. DOI: https://doi.org/10.1101/gad.1588507, PMID: 18055696
Ahmad A, Robinson AR, Duensing A, van Druenen E, Beverloo HB, Weisberg DB, Hasty P, Hoeijmakers JH, Niedernhofer LJ. 2008. ERCC1-XPF endonuclease facilitates DNA double-strand break repair. Molecular and Cellular Biology 28:5082–5092. DOI: https://doi.org/10.1128/MCB.00293-08, PMID: 18541667
Almirall F, Pulido T, Valdivinos A, Alpekin S, Chang E, Jones E, Diaz DA, Flores J, Velarde MC, Demaria M, Davalos AR, Wiley CD, Limbad C, Desprez PY, Campisi J. 2020. Cellular senescence promotes skin carcinogenesis through p38MAPK and p44/42MAPK signaling. Cancer Research 80:3606–3619. DOI: https://doi.org/10.1158/0008-5472.CAN-20-0108, PMID: 32641409
Ames BN. 2010. Prevention of mutation, Cancer, and other Age-Associated diseases by optimizing micronutrient intake. Journal of Nucleic Acids 2010:1–11. DOI: https://doi.org/10.4061/2010/725071
Armenian SH, Armstrong GT, Aune G, Chow EJ, Ehrhardt MJ, Ky B, Moslehi J, Mulrooney DA, Nathan PC, Ryan TD, van der Pal HJ, van Dalen EC, Kremer LCM. 2018. Cardiovascular disease in survivors of childhood Cancer: insights into epidemiology, pathophysiology, and prevention. Journal of Clinical Oncology 36:2135–2144. DOI: https://doi.org/10.1200/JCO.2017.76.3920, PMID: 29874141
Armstrong GT, Kawashima T, Leisenring W, Stratton K, Stovall M, Hudson MM, Sklar CA, Robison LL, Oeffinger KC. 2014. Aging and risk of severe, disabling, life-threatening, and fatal events in the childhood Cancer survivor study. Journal of Clinical Oncology 32:1218–1227. DOI: https://doi.org/10.1200/JCO.2013.1055, PMID: 24638000
Austad SN. 2010. Methuselah’s Zoo: How Nature provides us with Clues for Extending Human Health Span. Journal of Comparative Pathology 142:510–521. DOI: https://doi.org/10.1016/j.jcpa.2009.10.024
Baker KS. 2013. Impact of treatment exposures on cardiovascular risk and insulin resistance in childhood Cancer survivors, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. Cancer Epidemiology 22.1954–1963. DOI: https://doi.org/10.1158/1055-9565.EPI-13-0610
Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J, Saltness RA, Jeganathan KB, Verzosa GC, Pezeshki A, Khazaie K, Miller JD, van Deursen JM. 2016. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530:184–189. DOI: https://doi.org/10.1038/nature16932, PMID: 26840489
Basisty N, Kale A, Patel S, Campisi J, Schilling B. 2020. The power of proteomics to monitor senescence-associated secretory phenotypes and beyond: toward clinical applications. Expert Review of Proteomics 17:297–308. DOI: https://doi.org/10.1080/14789450.2020.1766976, PMID: 32425074
Bhagwat N, Olsen AL, Wang AT, Hanada K, Stuckert P, Kanaar R, D’Andrea A, Niedernhofer LJ, McHugh PJ. 2009. XPF-ERCC1 participates in the fanconi Anemia pathway of cross-link repair. Molecular and Cellular Biology 29:6427–6437. DOI: https://doi.org/10.1128/MCB.00884-09, PMID: 19805513
Bluummann SM, Mariotto AB, Rowland JH. 2016. Anticipating the “Silver Tsunami”: Prevalence Trajectories and Comorbidity Burden among Older Cancer Survivors in the United States. Cancer Epidemiology Biomarkers & Prevention 25:1029–1036. DOI: https://doi.org/10.1158/1055-9965.EPI-16-0133, PMID: 27377156
Brooks PJ. 2008. The 8,5’-cyclopurine-2’-deoxynucleosides: candidate neurodegenerative DNA lesions in Xeroderma Pigmentosum, and unique probes of transcription and nucleotide excision repair. DNA Repair 7:1168–1179. DOI: https://doi.org/10.1016/j.dnarep.2008.03.016, PMID: 18495558
Burla R, La Torre M, Merigliano C, Verni F, Saggio I. 2018. Genomic instability and DNA replication defects in Xeroderma Pigmentosum, and unique probes of transcription and nucleotide excision repair. DNA Repair 7:1168–1179. DOI: https://doi.org/10.1016/j.dnarep.2008.03.016, PMID: 18495558
Burla R, La Torre M, Merigliano C, Verni F, Saggio I. 2018. Genomic instability and DNA replication defects in progeroid syndromes. Nucleus 9:368–379. DOI: https://doi.org/10.1007/s10098-018-1476-93, PMID: 29936894
Cabanillas R, Cadiños J, Villameytide JA, Pérez M, Longo J, Richard JM, Alvarez R, Durán NS, Illán R, González DJ, López-Otín C. 2011. Néstor-Guillermo progeria syndrome: a novel premature aging condition with early onset and chronic development caused by BANF1 mutations. American Journal of Medical Genetics Part A 155A:2617–2625. DOI: https://doi.org/10.1002/ajmg.a.34249, PMID: 21932319
Ceccaldi R, Sarangi P, D’Andrea AD. 2016. The fanconi anaemia pathway: new players and new functions. Nature Reviews Molecular Cell Biology 17:337–349. DOI: https://doi.org/10.1038/nrm.2016.48, PMID: 27145721
Chandra A, Lagnado AB, Farr JN, Monroe DG, Park S, Hachfeld C, Tchkonia T, Kirkland JL, Khosla S, Passos JF, Pignolo RJ. 2020. Targeted reduction of senescent cell burden alleviates focal Radiotherapy-Related bone loss.
Cheng Q, Chen J. 2010. Mechanism of p53 stabilization by ATM after DNA damage. Cell Cycle 9:472–478. DOI: https://doi.org/10.4161/cc.9.3.10556, PMID: 20081365

Chevannne M, Caldini R, Tombaccini D, Mocai A, Gori G, Paololetti F. 2003. Comparative levels of DNA breaks and sensitivity to oxidative stress in aged and senescent human fibroblasts: a distinctive pattern for centenarians. Biochim Biophys Acta 1647:97–104. DOI: https://doi.org/10.1016/j.bbapap.2006.02.004, PMID: 17666334

Chinta SJ, Woods G, Demaria M, Rane A, Zou Y, McQuade A, Rajagopalan S, Limbad C, Madden DT, Campisi J, Andersen JK. 2018. Cellular senescence is induced by the environmental neurotoxin paraquat and contributes to neuropathology linked to Parkinson’s Disease. Cell Reports 22:930–940. DOI: https://doi.org/10.1016/j.celrep.2017.12.092, PMID: 29386135

Christoffersen NR, Shalgi R, Frankel LB, Leucci E, Lees M, Klausen M, Pilpel Y, Nielsen FC, Oren M, Lund AH. 2010. p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC. Cell Death & Differentiation 17:236–245. DOI: https://doi.org/10.1038/cdd.2009.109, PMID: 19696787

Clausen C, Schärer OD, Niedernhofer L. 2013. Advances in understanding the complex mechanisms of DNA interstrand cross-link repair. Cold Spring Harbor Perspectives in Biology 5:a012732. DOI: https://doi.org/10.1101/cshperspect.a012732, PMID: 24086043

Cleaver JE. 1968. Defective repair replication of DNA in xeroderma pigmentosum. Nature 218:652–656. DOI: https://doi.org/10.1038/218652a0, PMID: 565953

Coppé JP, Patil CK, Rodier F, Sun Y, Muñoz DP, Goldstein J, Nelson PS, Desprez PY, Campisi J. 2008. Senescence-Associated secretory phenotypes reveal Cell-Naive functions of oncogenic RAS and the p53 tumor suppressor. PLOS Biology 6:e301. DOI: https://doi.org/10.1371/journal.pbio.0060301

Coppé JP, Desprez PY, Krotolica A, Campisi J. 2010. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annual Review of Pathology: Mechanisms of Disease 5:99–118. DOI: https://doi.org/10.1146/annurev-pathol-121808-102144, PMID: 20078271

Correia-Melo C, Marques FD, Anderson R, Hewitt G, Hewitt R, Cole J, Carroll BM, Miwa S, Birch J, Merz A, Rushton MD, Charles M, Jurk D, Tait SW, Czapekiewski R, Greaves L, Nelson G, Bohohooly Y, Rodriguez-Cuenca S, Vidal-Puig A, et al. 2016. Mitochondria are required for pro-ageing features of the senescent phenotype. The Journal of Cell Science 35:724–742. DOI: https://doi.org/10.1242/emb.201529826, PMID: 26848154

Cortopassi GA, Wang E. 1996. There is substantial agreement among interspecies estimates of DNA repair activity. Mechanisms of Ageing and Development 91:211–218. DOI: https://doi.org/10.1016/S0047-6374(96)01788-5, PMID: 9055244

Croteau DL, Singh DK, Hoh Ferrarelli L, Lu H, Bohr VA. 2012. RECQL4 in genomic instability and aging. Trends in Genetics 28:624–631. DOI: https://doi.org/10.1016/j.tig.2012.08.003, PMID: 22940896

d’Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, Saretzki G, Carter NP, Jackson SP. 2003. A DNA damage checkpoint response in telomere-initiated senescence. Developmental Cell 29:194–198. DOI: https://doi.org/10.1016/S1092-2102(03)00211-8, PMID: 14603868

de Boer J, Andressoo JO, de Wit J, Huijmans J, Beems RB, van Steeg H, Weeda G, van der Horst GT, van Leeuwen W, Themmen AP, Meradji M, Hoeijmakers JH. 2002. Premature aging in mice deficient in DNA repair genetic perturbations. Nature 416:114–118. DOI: https://doi.org/10.1038/416114a0, PMID: 12099988

de Boer J, van Larebeke N. 2004. Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis 19:169–185. DOI: https://doi.org/10.1039/mutage/geh025, PMID: 15123789

De Luca G, Russo MT, Degani P, Tiveron C, Zijno A, Meccia E, Ventura I, Sanghez V, Russo MT, Degan P, Tiveron C, Zijno A, Meccia E, Ventura I, Mattei E, Nakabeppu Y, Crescenzi M, Paoletti F. 2003. Comparative levels of DNA breaks and transcription. Science 296:1276–1279. DOI: https://doi.org/10.1126/science.1070174, PMID: 11950998

De Bont R, van Larebeke N. 2004. Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis 19:169–185. DOI: https://doi.org/10.1039/mutage/geh025, PMID: 15123789

De Luca G, Russo MT, Degani P, Tiveron C, Zijno A, Meccia E, Ventura I, Matteli E, Nakabeppu Y, Crescenzi M, Pepponi R, Pèzolla A, Popoli P, Bignami M. 2008. A role for oxidized DNA precursors in Huntington’s disease-like striatal neurodegeneration. PLOS Genetics 4:e1000266. DOI: https://doi.org/10.1371/journal.pgen.1000266, PMID: 19023407

De Luca G, Ventura I, Sanghez V, Russo MT, Ajmone-Cat MA, Cacci E, Martire A, Popoli P, Falcone G, Michelini F, Crescini M, Degan P, Minghetti L, Bignami M, Calamandrei G. 2013. Prolonged lifespan with enhanced exploratory behavior in mice overexpressing the oxidized nucleoside triphosphatase hMT1H. Aging Cell 12:695–705. DOI: https://doi.org/10.1111/acel.12094, PMID: 23648059

de Magalhães JP. 2005. Open-minded scepticism: inferring the causal mechanisms of human ageing from genetic perturbations. Ageing Research Reviews 4:1–22. DOI: https://doi.org/10.1016/j.arr.2004.05.003, PMID: 15619467

de Renty C, Ellis NA. 2017. Bloom’s syndrome: Why not premature ageing?: A comparison of the BLM and WRN helicases. Ageing Research Reviews 33:36–51. DOI: https://doi.org/10.1016/j.arr.2016.05.010, PMID: 27238185

De Sandre-Giovannoli A, Bernard R, Cau P, Navarro C, Amiel J, Boccaccio I, Lyonnet S, Stewart CL, Munnich A, Ohtani N, Youssef SA, Rodier F, Toussaint W, Mitchell JR, Laberge RM, Vijg J, Van Steeg H, Dolle ´ ME, Hoeijmakers JH, de Bruin A, Hara E, Campisi J. 2014. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Developmental Cell 31:722–733. DOI: https://doi.org/10.1016/j.devcel.2014.11.012, PMID: 25499914

Eriksson M, Brown WT, Gordon LB, Glynn MW, Singer J, Scott L, Erdos MR, Robbins CM, Moses TY, Berglund P, Dutra A, Pak E, Durkin S, Csoka AB, Boehmke M, Glover TW, Collins FS. 2003. Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature 423:293–298. DOI: https://doi.org/10.1038/nature01629, PMID: 12714972

Yousefzadeh, Henpita, et al. eLife 2021;10:e62852. DOI: https://doi.org/10.7554/eLife.62852
Evdokimov A, Kutuzov M, Petrusova I, Lukjanchikova N, Kashina E, Kolova E, Zemerova T, Romanenko S, Perelman P, Prokopov D, Seluanov A, Gorbunova V, Graphodatsky A, Trifonov V, Khodyreva S, Lavrik O. 2018. Naked mole rat cells display more efficient excision repair than mouse cells. Aging 10:1454–1473. DOI: https://doi.org/10.18632/aging.101482, PMID: 29930219

Faghi S, Tamura D, Kraemer KH, Digiovanna JJ. 2008. Trichothiodystrophy: a systematic review of 112 published cases characterises a wide spectrum of clinical manifestations. Journal of Medical Genetics 45:609–621. DOI: https://doi.org/10.1136/jmg.2008.058743, PMID: 18603627

Fang EF, Scheibe-krudsen M, Brace LE, Kassahun H, Sen Gupta T, Nilsen H, Mitchell JR, Croteau DL, Bohr VA. 2014. Defective mitophagy in XPA via PARP-1 hyperactivation and NAD(+)/SIRT1 reduction. Cell 157:882–896. DOI: https://doi.org/10.1016/j.cell.2014.03.026, PMID: 24813611

Fang EF, Kassahun H, Croteau DL, Scheibe-krudsen M, Marosi K, Lu H, Shamanna RA, Kalyanasundaram S, Bollini RC, Wilson MA, Iser WB, Wollman BN, Morevati M, Li J, Kerr JS, Lu Q, Waltz TB, Tian J, Sinclair DA, Mattson MP, et al. 2016. NAD+ replenishment improves lifespan and healthspan in ataxia telangiectasia models via mitophagy and DNA repair. Cell Metabolism 24:566–581. DOI: https://doi.org/10.1016/j.cmet.2016.09.004, PMID: 27732836

Finkel T, Deng CX, Mostoslavsky R. 2009. Recent progress in the biology and physiology of sirtuins. Nature 460:587–591. DOI: https://doi.org/10.1038/nature08197, PMID: 19641587

Franceschi C, Campisi J. 2014. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. The Journal of Gerontology Series A: Biological Sciences and Medical Sciences 69 Suppl 1:54–59. DOI: https://doi.org/10.1093/gerona/glu057, PMID: 24832356

Franzke B, Neubauer O, Wagner K-H. 2015a. Super DNAging—New insights into DNA integrity, genome stability and telomeres in the oldest old. Mutation Research/Reviews in Mutation Research 766:48–57. DOI: https://doi.org/10.1016/j.mrrev.2015.08.001

Franzke B, Halper B, Hofmann M, Oesen S, Pierson B, Cremer A, Bacher E, Fuchs B, Baiel R, Tosevska A, Strasser EM, Wessner B, Wagner KH, Vienna Active Ageing Study Group (VAAAS). 2015b. The effect of six months of elastic band resistance training, nutritional supplementation or cognitive training on chromosomal damage in institutionalized elderly. Experimental Gerontology 65:16–22. DOI: https://doi.org/10.1016/j.exger.2015.03.001, PMID: 25749997

Friedberg EC. 2006. DNA Repair and Mutagenesis. Wiley. DOI: https://doi.org/10.1128/9781555816704

Friedberg EC, Meira LB. 2006. Database of mouse strains carrying targeted mutations in genes affecting biological responses to DNA damage version 7. DNA Repair 5:189–209. DOI: https://doi.org/10.1016/j.dnarep.2005.09.009, PMID: 16290067

Ghosh AK, Rossi ML, Singh DK, Dunn C, Ramamoorthy M, Croteau DL, Liu Y, Bohr VA. 2012. RECLQ4, the protein mutated in Rothmund-Thomson syndrome, functions in telomere maintenance. Journal of Biological Chemistry 287:196–209. DOI: https://doi.org/10.1074/jbc.M111.295063, PMID: 22039056

Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C, Campisi J, Collado M, Evangelou K, Ferbeyre G, Gil J, Hara E, Krizhanovsky V, Jurk D, Maier AB, Narita M, Niedernhofer L, Passos JF, Robbins PD, Schmitt CA, et al. 2019. Cellular senescence: defining a path forward. Cell 179:813–827. DOI: https://doi.org/10.1016/j.cell.2019.10.005, PMID: 31675495

Hanada K, Hickson ID. 2007. Molecular genetics of RecQ helicase disorders. Cellular and Molecular Life Sciences 64:2306–2322. DOI: https://doi.org/10.1007/s00018-007-7121-z, PMID: 17571213

Harley CB, Futerer AB, Greider CW. 1990. Telomeres shorten during ageing of human fibroblasts. Nature 345:458–460. DOI: https://doi.org/10.1038/345458a0, PMID: 2342578

Hart RW, Setlow RB. 1974. Correlation between deoxyribonucleic acid excision-repair and life-span in a number of mammalian species. PNAS 71:2169–2173. DOI: https://doi.org/10.1073/pnas.71.6.2169, PMID: 4526202

Hayflick L. 1965. The limited in vitro lifetime of human diploid cell strains. Experimental Cell Research 37:614–636. DOI: https://doi.org/10.1016/0014-4827(65)90211-9

Hayflick L, Moorhead PS. 1961. The serial cultivation of human diploid cell strains. Experimental Cell Research 25:585–621. DOI: https://doi.org/10.1016/0014-4827(61)90192-6, PMID: 13905658

Helman A, Klochenler A, Azamneh N, Gabay Y, Horwitz E, Anzi S, Swisa A, Conidiotti R, Granit RZ, Nevo Y, Fixler Y, Shreibman D, Zamir A, Tornovsky-Babeay S, Dai C, Glaser B, Powers AC, Shapiro AM, Magnuson MA, Dor Y, et al. 2016. p16(Ink4a)-induced senescence of pancreatic beta cells enhances insulin secretion. Nature Medicine 22:412–420. DOI: https://doi.org/10.1038/nm.4054, PMID: 26950362

Henderson TO, Ness KK, Cohen HJ. 2014. Accelerated aging among Cancer survivors: from pediatrics to geriatrics. American Society of Clinical Oncology Educational Book 1:e423–e430. DOI: https://doi.org/10.14694/EdBook_AM.2014.34.e430

Hennekam RC. 2006. Hutchinson-Gilford progeria syndrome: review of the phenotype. American Journal of Medical Genetics Part A 140:2603–2624. DOI: https://doi.org/10.1002/ajmg.a.31346, PMID: 16833830

Heydari AR, Unnikrishnan A, Lucente LV, Richardson A. 2007. Caloric restriction and genomic stability. Nucleic Acids Research 35:7485–7496. DOI: https://doi.org/10.1093/nar/gkm860, PMID: 17942423

Hoeijmakers JHJ. 2009. DNA damage, aging, and Cancer. New England Journal of Medicine 361:1475–1485. DOI: https://doi.org/10.1056/NEJMr804405

Hurria A, Jones L, Mussen HB. 2016. Cancer treatment as an accelerated aging process: assessment, biomarkers, and interventions. American Society of Clinical Oncology Educational Book. American Society of Clinical Oncology. Annual Meeting e516–e522.
Itahan K, Campisi J, Dimri GP. 2007. Methods to detect biomarkers of cellular senescence: the senescence-associated beta-galactosidase assay. Methods in Molecular Biology 371:21–31. DOI: https://doi.org/10.1007/978-1-59745-361-5_3, PMID: 17634571

Jackson AL, Loeb LA. 2001. The contribution of endogenous sources of DNA damage to the multiple mutations in Cancer. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 477:7–21. DOI: https://doi.org/10.1016/S0165-7991(01)00091-4, PMID: 11376682

Jeyapalan JC, Ferreira M, Sedivy JM, Herbig U. 2007. Accumulation of senescent cells in Mitotic tissue of aging primates. Mechanisms of Ageing and Development 128:36–44. DOI: https://doi.org/10.1016/j.mad.2006.11.008, PMID: 17116315

Johnson TE, Henderson S, Murakami S, de Castro E, de Castro SH, Cypser J, Rikke B, Tedesco P, Link C. 2002. Longevity genes in the nematode Caenorhabditis elegans also mediate increased resistance to stress and prevent disease. Journal of Inherited Metabolic Disease 25:197–206. DOI: https://doi.org/10.1023/a:1015677828407, PMID: 12137228

Kang C, Xu Q, Martin TD, Li MZ, Demaria M, Aron L, Lu T, Yankner BA, Campisi J, Elledge SJ. 2015. The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science 349:aa5612. DOI: https://doi.org/10.1126/science.aaa5612, PMID: 26404840

Keane M, Semeiks J, Webb AE, Li Y, Quesada V, Craig T, Madsen LB, van Dam S, Brawand D, Marques PI, Michalak P, Kang L, Bhak J, Yim HS, Grishin NV, Nielsen NH, Heide-Jørgensen MP, Ozioier EM, Matson CW, Church GM, et al. 2015. Insights into the evolution of longevity from the bowhead whale genome. Cell Reports 10:112–122. DOI: https://doi.org/10.1016/j.celrep.2014.12.008, PMID: 25565328

Kennedy BK, Berger SL, Brunet A, Campisi J, Cuervo AM, Epel ES, Franceschi C, Lithgow GJ, Morimoto R, Pessin JE, Rando TA, Richardson A, Schadt EE, Wyss-Coray T, Sierra F. 2014. Geroscience: linking aging to chronic disease. Cell 159:709–713. DOI: https://doi.org/10.1016/j.cell.2014.10.039, PMID: 25417146

Killock D. 2014. Chemotherapy: life gained, years lost? Nature Reviews. Clinical Oncology 11:303. DOI: https://doi.org/10.1038/ncr.2014.67, PMID: 24751802

Kirkland JL, Tchkonia T. 2020. Senolytic drugs: from discovery to translation. Journal of Internal Medicine 288:518–536. DOI: https://doi.org/10.1111/joim.13141, PMID: 32686219

Kirkwood TB. 2005. Understanding the odd science of aging. Cell 120:437–447. DOI: https://doi.org/10.1016/j.cell.2005.01.027, PMID: 15734677

Kraemer KH, DiGiovanna JJ. 2015. Forty years of research on xeroderma pigmentosum at the US national institutes of health. Photochemistry and Photobiology 91:452–459. DOI: https://doi.org/10.1111/php.12345, PMID: 25220021

Krizhanovsky V, Yon M, Dickins RA, Hearns S, Simon J, Miething C, Yee H, Zender L, Lowe SW. 2008. Senescence of activated stellate cells limits liver fibrosis. Cell 134:657–667. DOI: https://doi.org/10.1016/j.cell.2008.06.049, PMID: 18724938

Kudlow BA, Kennedy BK, Monnat RJ. 2007. Werner and Hutchinson-Gilford progeria syndromes: mechanistic basis of human progeroid diseases. Nature Reviews Molecular Cell Biology 8:394–404. DOI: https://doi.org/10.1038/nm2161, PMID: 17450177

Kullman T, Michaloglou C, Vredeveld LC, Douma S, van Doorn R, Desmet CJ, Aarden LA, Mooi WJ, Pepper DS. 2008. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133:1019–1031. DOI: https://doi.org/10.1016/j.cell.2008.03.039, PMID: 18555778

Lawless C, Wang C, Jurk D, Merz A, Zglinski T, Passos JF. 2010. Quantitative assessment of markers for cell senescence. Experimental Gerontology 45:772–778. DOI: https://doi.org/10.1016/j.exger.2010.01.018, PMID: 20117203

Lehmann AR, McGibbon D, Stefani M. 2011. Xeroderma pigmentosum. Orphanet Journal of Rare Diseases 6:70. DOI: https://doi.org/10.1038/nrdis.2010.134, PMID: 22044607

Lessa D, Vaz B, Halder S, Lockhart PJ, Marinovic-Terzic I, Lopez-Mosqueda J, Philipp M, Sim JC, Smith KR, Oehler J, Cabrera E, Freire R, Pope K, Nahid A, Norris F, Leventer RJ, Delatycki MB, Barbi G, von Ameln S, Högel J, et al. 2015. Autointegration factor (BAF) involvement in prelamin A-related chromatin organization changes. Aging Cell 14:709–717. DOI: https://doi.org/10.1111/acr.12345

Lindahl T. 1993. Instability and decay of the primary structure of DNA. Nature 362:709–715. DOI: https://doi.org/10.1038/362709a0, PMID: 8469282

Liu B, Wang J, Chan KM, Tija WM, Deng W, Guan X, Huang JD, Li KM, Chau PY, Chen DJ, Pei D, Pendas AM, Cadiñas J, López-Otin C, Tse HF, Hutchison C, Chen J, Cao Y, Cheah KS, Tryggvason K, et al. 2005. Genomic instability in laminopathy-based premature aging. Nature Medicine 11:780–785. DOI: https://doi.org/10.1038/nm1266, PMID: 15980864

Liu Y, Sanoff HK, Cho H, Bard CE, Torrice C, Ibrahim JG, Thomas NE, Sharpless NE. 2009. Expression of p16 (INK4a) in peripheral blood T-cells is a biomarker of human aging. Aging Cell 8:439–448. DOI: https://doi.org/10.1111/j.1447-9963.2009.00489.x, PMID: 19485966

Loi M, Cenni V, Duchí S, Squarzon S, Lopez-Otin C, Foisner R, Lattanzi G, Capanni C. 2016. Barrier to Autointegration factor (BAF) involvement in prelamin A-related chromatin organization changes. Oncotarget 7:15662–15677. DOI: https://doi.org/10.18632/oncotarget.6697

Martin GM, Oshima J. 2000. Lessons from human progeroid syndromes. Nature 408:263–266. DOI: https://doi.org/10.1126/science.aaa5612

Matiasantas M, Chin G, Sarnoski EA, Stolzing A. 2016. Biomarkers to identify and isolate senescent cells. Ageing Research Reviews 29:1–12. DOI: https://doi.org/10.1016/j.arr.2016.05.003, PMID: 27212009
Yousefzadeh, Henpita, et al. eLife 2021;10:e62852. DOI: https://doi.org/10.7554/eLife.62852

Matt K, Burger K, Gebhard D, Bergemann J. 2016. Influence of calorie reduction on DNA repair capacity of human peripheral blood mononuclear cells. *Mechanisms of Ageing and Development* **154**:24–29. DOI: https://doi.org/10.1016/j.mad.2016.02.008, PMID: 26879629

Meek DW, Anderson CW. 2009. Posttranslational modification of p53: cooperative integrators of function. *Cold Spring Harbor Perspectives in Biology* 1:a000950. DOI: https://doi.org/10.1101/cshperspect.a000950, PMID: 20457558

Menck CF, Munford V. 2014. DNA repair diseases: what do they tell us about Cancer and aging? *Genetics and Molecular Biology* **37**:220–233. DOI: https://doi.org/10.1594/S1415-47572014000200008, PMID: 24764756

Miyamoto S. 2011. Nuclear initiated NF-kB signaling: nemo and ATM take center stage. *Cell Research* **21**:116–130. DOI: https://doi.org/10.1038/cr.2010.179, PMID: 21187855

Mouret S, Baudouin C, Charveron M, Favier A, Cadet J, Douki T. 2006. Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation. *PNAS* **103**:13765–13770. DOI: https://doi.org/10.1073/pnas.0604213103, PMID: 16954188

Nair RR, Bagheri M, Saini DK. 2015. Temporally distinct roles of ATM and ROS in genotoxic-stress-dependent induction and maintenance of cellular senescence. *Journal of Cell Science* **128**:342–353. DOI: https://doi.org/10.1242/jcs.159177, PMID: 25416819

Nalepa G, Clapp DW. 2018. Fanconi anemia and Cancer: an intricate relationship. *Nature Reviews Cancer* **18**:168–185. DOI: https://doi.org/10.1038/nrc.2017.116, PMID: 29376519

Nance MA, Berry SA. 1992. Cockayne syndrome: review of 140 cases. *American Journal of Medical Genetics* **42**:68–84. DOI: https://doi.org/10.1002/ajmg.1320402115, PMID: 1308368

Ness KK, Armstrong GT, Kundu M, Wilson CL, Tchkonia T, Kirkland JL. 2015. Frailty in childhood Cancer survivors. *Cancer* **121**:1540–1547. DOI: https://doi.org/10.1010/cncr.292111, PMID: 25529481

Nguyen KV, Sharief FS, Chan SS, Copeland WC, Naviaux RK. 2006. Molecular diagnosis of alpers syndrome. *Journal of Hepatology* **45**:108–116. DOI: https://doi.org/10.1016/j.jhep.2005.12.026, PMID: 16545842

Nguyen GH, Tang W, Robles AI, Beyer RP, Gray LT, Welsh JA, Schetter AJ, Kumamoto K, Wang XW, Hickson ID, Maizels N, Monnat RJ, Harris CC. 2014. Regulation of gene expression by the BLM helicase correlates with the presence of G-quadruplex DNA motifs. *PNAS* **111**:9905–9910. DOI: https://doi.org/10.1073/pnas.1404807111, PMID: 24958861

Niedernhofer LJ, Garinis GA, Raams A, Lalai AS, Robinson AR, Appeldoorn E, Oджik H, Oostendorp R, Ahmad A, van Leeuwen W, Theil AF, Vermeulen W, van der Horst GT, Meinecke P, Kleijer WJ, Vijd J, Jaspers NG, Hoeijmakers JH. 2006. A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph Axis. *Nature* **444**:1038–1043. DOI: https://doi.org/10.1038/nature05456, PMID: 17183314

Oberdoerffer P, Michan S, McVay M, Mostoslavsky R, Vann J, Park SK, Hartlerode A, Stemglueer J, Hafner A, Loerch P, Wright SM, Mills KD, Bonni A, Yankner BA, Scully R, Prolla TA, Alt FW, Sinclair DA. 2008. SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. *Cell* **135**:907–918. DOI: https://doi.org/10.1016/j.cell.2008.10.025, PMID: 19041753

Ogrodnik M, Miwa S, Tchkonia T, Tiniakos D, Wilson CL, Lahtah A, Day CP, Burt A, Palmer A, Anstee QM, Grellscheid SN, Hoeijmakers JH, Barnhoorn S, Mann DA, Bird TG, Vermeij WP, Kirkland JL, Passos JF, von Zglinicki T, Jurk D. 2017. Cellular senescence drives age-dependent hepatic steatosis. *Nature Communications* **8**:15691. DOI: https://doi.org/10.1038/ncomms15691, PMID: 28680850

Pamplona R, Barja G. 2006. Mitochondrial oxidative stress, aging and caloric restriction: the protein and methionine connection. *Biochimica Et Biophysica Acta (BBA) - Bioenergetics* **1757**:496–508. DOI: https://doi.org/10.1016/j.bbabio.2006.01.009

Parrinello S, Samper E, Krotlica A, Goldstein J, Melov S, Campisi J. 2003. Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. *Nature Cell Biology* **5**:741–747. DOI: https://doi.org/10.1038/ncb1024, PMID: 12855956

Qian M, Liu Z, Peng L, Tang X, Meng F, Ao Y, Zhou M, Wang M, Cao X, Qin B, Wang Z, Zhou Z, Wang G, Gao Z, Xu J, Liu B. 2018. Boosting ATM activity alleviates aging and extends lifespan in a mouse model of progeria. *eLife* **7**:e34836. DOI: https://doi.org/10.7554/eLife.34836, PMID: 29917977

Reinhardt HC, Schumacher B. 2012. The p53 network: cellular and systemic DNA damage responses in aging and Cancer. *Trends in Genetics* **28**:128–136. DOI: https://doi.org/10.1016/j.tig.2011.12.002, PMID: 22265392

Robinson AR, Yousefzadeh MJ, Rogzaga TA, Wang J, Li X, Tilstra JS, Feldman CH, Gregg SQ, Johnson CH, Skoda EM, Frantz MC, Bell-Temin H, Pope-Varsalona H, Gurkar AU, Nasto LA, Robinson RAS, Fuhrmann-Stroissnigg H, Czerwinska J, McGowan SJ, Cantu-Medellin N, et al. 2018. Spontaneous DNA damage to the nuclear genome promotes senescence, redox imbalance and aging. *Redox Biology* **17**:259–273. DOI: https://doi.org/10.1016/j.redox.2018.04.007, PMID: 2974066

Rodier F, Muhoz DP, Teachner R, Chu V, Le O, Bhaumik D, Coppe JP, Campeau E, Beauséjour CM, Kim SH, Davalos AR, Campisi J. 2011. DNA-SCARS: distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion. *Journal of Cell Science* **124**:68–81. DOI: https://doi.org/10.1242/jcs.071340, PMID: 21189958

Roos CM, Zhang B, Palmer AK, Ogrodnik MB, Pirskkalava T, Thalji NM, Hagler M, Jurk D, Smith LA, Casacalang-Verzosa G, Zhu Y, Schaffer MJ, Tchkonia T, Kirkland JL, Miller JD. 2016. Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice. *Aging Cell* **15**:973–977. DOI: https://doi.org/10.1111/ace1.12458, PMID: 26864908

Rothblum-Oviatt C, Wright J, Lefton-Greif MA, McGrath-Morrow SA, Crawford TQ, Lederman HM. 2016. Ataxia telangiectasia: a review. *Orphanet Journal of Rare Diseases* **11**:159. DOI: https://doi.org/10.1186/s13023-016-0543-7, PMID: 27884168
Sancar A, Lindsey-Boltz LA, Unsal-Kaçmaz K, Linn S. 2004. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annual Review of Biochemistry 73:39–85. DOI: https://doi.org/10.1146/annurev.biochem.73.011303.073723, PMID: 15189136

Sander M, Cadet J, Casciano DA, Galloway SM, Marnett LJ, Novak RF, Pettit SD, Preston RJ, Skare JA, Williams GM, Van Houten B, Gollapudi BB. 2005. Proceedings of a workshop on DNA adducts: biological significance and applications to risk assessment Washington, DC, April 13-14, 2004. Toxicology and Applied Pharmacology 208:1–20. DOI: https://doi.org/10.1016/j.taap.2004.12.012, PMID: 16164957

Sanoff HK, Deal AM, Krishnamurthy J, Torrice C, Dillon P, Sorrentino J, Ibrahim JG, Jolly TA, Williams G, Carey LA, Drobish A, Gordon B-B, Alston S, Hurria A, Kleinhans K, Rudolph KL, Sharpless NE, Muss HB. 2014. Effect of cytotoxic chemotherapy on markers of molecular age in patients with breast cancer. JNCI: Journal of the National Cancer Institute 106:dju057. DOI: https://doi.org/10.1093/jnci/dju057

Schärer OD. 2013. Nucleotide excision repair in eukaryotes. Cold Spring Harbor Perspectives in Biology 5: a012609. DOI: https://doi.org/10.1101/cshperspect.a012609, PMID: 2480642

Scheibe-Knudsen M, Ramamoorthy M, Sykora P, Maynard S, Lin P-C, Minor RK, Wilson DM, Cooper M, Spencer R, de Cabo R, Croteau DL, Bohr VA. 2012. Cockayne syndrome group B protein prevents the accumulation of damaged mitochondria by promoting mitochondrial autophagy. Journal of Experimental Medicine 209:855–869. DOI: https://doi.org/10.1084/jem.20111721

Scheibe-Knudsen M, Mitchell SJ, Fang EF, Iyama T, Ward T, Wang J, Dunn CA, Singh N, Veith S, Hasan-Olive MM, Mangerich A, Wilson MA, Mattson MP, Bergersen LH, Cogger VC, Warren A, Le Couteur DG, Moaddel R, Wilson DM, Croteau DL, et al. 2014. A high-fat diet and NAD(+) activate Sirt1 to rescue premature aging in cockayne syndrome. Cell Metabolism 20:840–855. DOI: https://doi.org/10.1016/j.cmet.2014.10.005, PMID: 25440059

Sears CR, Turchi JJ. 2012. Complex Cisplatin-Double Strand Break (DSB) Lesions Directly Impair Cellular Homologous End-Joining (NHEJ) Independent of Downstream Damage Response (DDR) Pathways*. Journal of Biological Chemistry 287:24263–24272. DOI: https://doi.org/10.1074/jbc.M112.344911

Senturk E, Manfredi JJ. 2013. p53 and cell cycle effects after DNA damage. Methods in Molecular Biology 962:49–61. DOI: https://doi.org/10.1007/978-1-62703-236-0_4, PMID: 23150436

Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. 1997. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88:593–602. DOI: https://doi.org/10.1016/S0092-8674(00)81902-9, PMID: 9054499

Sharpposhnikov M, Proshkina E, Shilova L, Zhavoronkov A, Moskalev A. 2015. Lifespan and stress resistance in Drosophila with overexpressed DNA repair genes. Scientific Reports 5:srep15299. DOI: https://doi.org/10.1038/srep15299

Sharpless NE, Sherr CJ. 2015. Forging a signature of in vivo senescence. Nature Reviews Cancer 15:397–408. DOI: https://doi.org/10.1038/nrc3960, PMID: 26105537

Storer M, Mas A, Robert-Moreno A, Pecoraro M, Ortellis MC, Di Giacomo V, Yosef R, Pipel N, Krizhanovsky V, Sharpe J, Keyes WM. 2013. Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155:1119–1130. DOI: https://doi.org/10.1016/j.cell.2013.10.041, PMID: 24238961

Sugimoto M. 2014. A cascade leading to premature aging phenotypes including abnormal tumor profiles in Werner syndrome (review). International Journal of Molecular Medicine 33:247–253. DOI: https://doi.org/10.3892/ijmm.2013.1592, PMID: 24356923

Takah H, Smogorzewska A, de Lange T. 2003. DNA damage foci at dysfunctional telomeres. Current Biology 13:1549–1556. DOI: https://doi.org/10.1016/S0960-9822(03)00542-6, PMID: 12956959

Tasdemir N, Banito A, Roe JS, Alonso-Curbelo D, Camiolo M, Tschaharganeh DF, Huang CH, Aksoy O, Bolden JE, Chen CC, Fennell M, Thapar V, Chicas A, Vakoc CR, Lowe SW. 2016. BRD4 connects enhancer remodeling to senescence immune surveillance. Cancer Discovery 6:612–629. DOI: https://doi.org/10.1158/2159-8290.CD-16-0217, PMID: 27099234

Thompson LH. 2012. Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography. Mutation Research/Reviews in Mutation Research 751:158–246. DOI: https://doi.org/10.1016/j.mrrev.2012.06.002, PMID: 22743550

Tian X, Seluanov A, Gorbunova V. 2017. Molecular mechanisms determining lifespan in short- and Long-Lived species. Trends in Endocrinology & Metabolism 28:722–734. DOI: https://doi.org/10.1016/j.tem.2017.07.004, PMID: 28888702

Tian X, Firsanov D, Zhang Z, Cheng Y, Luo L, Tombline G, Tan R, Simon M, Henderson S, Seluanov A, Gorbunova V. 2017. Molecular mechanisms determining lifespan in short- and Long-Lived species. Cell Metabolism 28:722–734. DOI: https://doi.org/10.1016/j.cmet.2014.10.005, PMID: 25440059

Tilstra JS, Clauson CL, Niedernhofer LJ, Robbins PD. 2011. NF-kappaB in aging and disease. Aging and Disease 2:449–465. PMID: 22396894

Tresini M, Warmerdam DO, Kolovos P, Snijder L, Vrouwe MG, Demmers JA, van IJcken WF, Grosveld FG, Medema RH, Hoeijmakers JH, Mullenders LH, Vermeulen W, Marteijn JA. 2015. The core spliceosome as target and effector of non-canonical ATM signalling. Nature 523:53–58. DOI: https://doi.org/10.1038/nature14512, PMID: 26106861

Uchiyama F, Seki M, Furuchi Y. 2015. Heterocycles and human diseases. Frontiers in Genetics 6:39. DOI: https://doi.org/10.3389/fgene.2015.00039, PMID: 25729389
