Longitudinal Analysis of CCR5 and CXCR4 Usage in a Cohort of Antiretroviral Therapy-Naïve Subjects with Progressive HIV-1 Subtype C Infection

Martin R. Jakobsen1,4,5a, Kieran Cashin1,7,9, Michael Roche1, Jasminka Sterjovski1, Anne Ellett1, Katharina Borm1, Jacqueline Flynn1, Christian Erikstrup6, Maelenn Gouillou2, Lachlan R. Gray1,8, Nitin K. Saksena1,10, Bin Wang1,14, Damian F. J. Purcell7, Per Kallestrup15, Rutendo Zinyama-Gutsire16, Exnevia Gomo16, Henrik Ullum15, Lars Østergaard4, Benhur Lee13, Paul A. Ramsland2,6,10, Melissa J. Churchill1,9,11, Paul R. Gorry1,7,12*

1 Centre for Virology, Burnet Institute, Melbourne, Victoria, Australia, 2 Centre for Immunology, Burnet Institute, Melbourne, Victoria, Australia, 3 Centre for Population Health, Burnet Institute, Melbourne, Victoria, Australia, 4 Department of Infectious Diseases, Aarhus University, Aarhus, Denmark, 5 Department of Clinical Immunology, Aarhus University, Aarhus, Denmark, 6 Department of Surgery (Austin Health), University of Melbourne, Victoria, Australia, 7 Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia, 8 Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia, 9 Department of Medicine, Monash University, Melbourne, Victoria, Australia, 10 Department of Immunology, Monash University, Melbourne, Victoria, Australia, 11 Department of Microbiology, Monash University, Melbourne, Victoria, Australia, 12 Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia, 13 Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America, 14 Center for Virus Research, Westmead Millennium Institute, Westmead, New South Wales, Australia, 15 Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark, 16 National Institute of Health Research, Harare, Zimbabwe

Abstract

HIV-1 subtype C (C-HIV) is responsible for most HIV-1 cases worldwide. Although the pathogenesis of C-HIV is thought to predominantly involve CCR5-restricted (R5) strains, we do not have a firm understanding of how frequently CXCR4-using (X4 and R5X4) variants emerge in subjects with progressive C-HIV infection. Nor do we completely understand the molecular determinants of coreceptor switching by C-HIV variants. Here, we characterized a panel of HIV-1 envelope glycoproteins (Env) (n = 300) cloned sequentially from plasma of 21 antiretroviral therapy (ART)-naïve subjects who experienced progression from chronic to advanced stages of C-HIV infection, and show that CXCR4-using C-HIV variants emerged in only one individual. Mutagenesis studies and structural models suggest that the evolution of R5 to X4 variants in this subject principally involved acquisition of an “Ile-Gly” insertion in the gp120 V3 loop and replacement of the V3 “Gly-Pro-Gly” crown with a “Gly-Arg-Gly” motif, but that the accumulation of additional gp120 “scaffold” mutations was required for these V3 loop changes to confer functional effects. In this context, either of the V3 loop changes could confer possible transitional R5X4 phenotypes, but when present together they completely abolished CCR5 usage and conferred the X4 phenotype. Our results show that the emergence of CXCR4-using strains is rare in this cohort of untreated individuals with advanced C-HIV infection. In the subject where X4 variants did emerge, alterations in the gp120 V3 loop were necessary but not sufficient to confer CXCR4 usage.

Introduction

More than 33 million people are infected with human immunodeficiency virus (HIV) and around 20 million have died from AIDS. Approximately 2.1 million new infections occur annually [1] and most of these individuals live in developing countries with limited access to potentially life saving antiretroviral therapies. Moreover, HIV is predicted to become the leading burden of disease in middle and low-income countries by 2015 [2].
Genetically, HIV type 1 (HIV-1) consists of groups M (Main), N (New) and O (Outlier) [3], with group M viruses accounting for >32 million HIV-1 cases. The spread of HIV-1 in humans has enabled the evolution of group M viruses into a number of distinct subtypes (A-D, F-H, J, K) and intersubtype recombinant forms. Subtype C HIV-1 (C-HIV) is spreading rapidly and now accounts for >50% of infections worldwide and >95% of infections in southern Africa and central Asia (reviewed in [4]), which are regions of the world burdened with the overwhelming majority of HIV-1 infections.

Several aspects of HIV-1 pathogenesis are influenced by the mechanism of HIV-1 entry into target cells, including viral tropism, HIV-1 transmission and progression, and responsiveness to HIV-1 entry inhibitors (reviewed in [5,6]). HIV-1 entry is mediated by the viral envelope glycoproteins (Env), which comprise surface gp120 glycoproteins non-covalently linked to transmembrane gp41 glycoproteins that embed the complex into the viral membrane [7,8,9], and is initiated by the interaction between gp120 and cellular CD4. This interaction occurs with high affinity [10], and induces conformational changes in gp120 resulting in the exposing of the binding site for a cellular coreceptor, either CCR5 or CXCR4 (reviewed in [11,12]). Coreceptor binding by the gp120-CD4 complex triggers further conformational changes in Env, leading to a structural rearrangement in gp41 that enables fusion between the viral and cellular membranes, and entry of the virion core into the host cell.

Although C-HIV is spreading rapidly, paradoxically C-HIV is less virulent than other HIV-1 subtypes ex vivo [3,13] suggesting unique molecular mechanisms that simultaneously impair fitness and facilitate favorable transmission events. However, relatively little is known about the pathogenesis of C-HIV. During subtype B HIV-1 (B-HIV) infection, viruses that use CCR5 as the coreceptor for HIV-1 entry (R5 strains) predominate at early stages of infection, but viral variants that have acquired the ability to use CXCR4 instead of CCR5 (X4 strains) or together with CCR5 (R5X4 strains) emerge in 40 to 50% of subjects and accelerate the rate of disease progression [14,15]. This is, in part, due to the expanded repertoire of CXCR4-expressing T-cells available for infection [16]. In contrast, the available data suggest that C-HIV pathogenesis is driven principally by R5 HIV-1 viruses, with X4 and R5X4 variants detected infrequently (reviewed in [3,4]). However, these conclusions have been based principally on cross-sectional studies of chronically-infected subjects, studies of early/acute infected individuals, relatively small studies of late stage C-HIV infection where subjects were ART-experienced which likely altered the natural history of the disease, or studies which relied on use of stored plasma samples. Ethics approval for the use of these samples was granted by the Medical Research Council of Zimbabwe (MRGZ/A/918) and by the Central Medical Scientific Ethics Committee of Denmark (624-01-0031).

Materials and Methods

Ethics

Written informed consent was provided by the subjects for the use of stored plasma samples. Ethics approval for the use of these samples was granted by the Medical Research Council of Zimbabwe (MRGZ/A/918) and by the Central Medical Scientific Ethics Committee of Denmark (624-01-0031).

PCR Amplification, HIV-1 Env Cloning, and Identification of Functional Env s

Viral RNA was purified from plasma using a QIAamp Viral RNA Mini kit (Qiagen) according to the manufacturers’ protocol. The full-length HIV-1 env gene was amplified in a one-step reverse transcription (RT)-PCR reaction using SuperScript III reverse transcriptase (Invitrogen) and Platinum Taq high-fidelity DNA polymerase and primers EnvFwd (5′-GAGCAGAAGAGCTGGCCATGGAGATGTA-3′) and EnvNefRev (5′-GGCGTTTCCAGGAGGGGAGC-3′). The RT-PCR cycling consisted of an initial incubation at 45°C for 45 min then a denaturation step at 94°C for 2 min, followed by 35 cycles of 94°C for 15 s, 56°C for 15 s and 72°C for 1 min. The second round amplification with primers Env-F/H and Env-BamHI [35], subsequent cloning into the pSVIII-Env expression plasmid [36], and identification of functional Env s using Env-pseudotyped GFP-reporter viruses was carried out as described previously [34,37,38,39].

Production and Titration of Env-pseudotyped Luciferase Reporter Viruses

Env-pseudotyped, luciferase reporter viruses were produced by transfection of 293T cells with pCMV ΔAenvΔA, pHIV-1Luc and pSVIII-Env plasmids at a ratio of 1:3:1 using Lipofectamine 2000 (Invitrogen), as described previously [37,38,40,41,42,43,44]. Supernatants were harvested 48 h later, clarified by filtration through 0.45 μM filters, aliquotted and stored at −80°C. The TCID₅₀ of virus stocks was determined by titration in JC53 cells [30], as described previously [34,38,42,44].
HIV-1 Entry Assays

The ability of Env-pseudotyped luciferase reporter viruses to use CCR5 and/or CXCR4 was determined by single-round entry assays using two independent cell systems (U87 [31] and NP2 [33]), which stably express CD4 together with CCR5 or CXCR4, as described previously [41]. Briefly, \(1 \times 10^4\) cells were inoculated with 5-fold serial dilutions of virus for 6 h at 37°C. Cells were then media changed and incubated a further 48 h at 37°C. HIV-1 entry was then measured by assaying luciferase activity in cell lysates (Promega), according to the manufacturers’ protocol. The negative controls used to determine the background level of luciferase activity included mock-infected cells treated with culture medium instead of virus, and cells inoculated with luciferase reporter virus pseudotyped with the non-functional AKS Env [45].

The level of virus entry was scored as − (5–50 fold above background), + (50–300 fold above background), ++ (500–3000 fold above background), or +++ (>3000 fold above background). Any detection of CXCR4 usage by the C-HIV Envs was confirmed by repeated assays in the presence of the CXCR4 inhibitor AMD3100. The measurement of HIV-1 entry and coreceptor preference in PBMC was conducted as described previously [34,42].

Env Sequencing and Phylogenetic Analysis

Envs were sequenced by Big Dye terminator sequencing and analyzed using a model 3130 Genetic Analyzer (Applied Biosystems). Env nucleotide sequences (within amino acid positions 6348 and 8478 relative to the HXB2 strain of HIV-1) were aligned against the corresponding regions of a panel of reference sequences from different HIV-1 subtypes (obtained from the Los Alamos HIV Database) using ClustalW. Phylogenetic analysis was conducted by the Neighbor-joining method using MEGA4 software [46], with bootstrap resampling done with 1000 replicates. Evolutionary distances were computed using the maximum composite-likelihood method with complete deletion option, that has been optimised for more accurately inferring large phylogenies [47].

Structural Modeling of gp120

Three-dimensional protein structures of representative “enrolment” (1109-E-10) and “final” (1109-F-30) gp120 sequences derived from subject 1109, and those of various 1109-F-30 V3 loop mutants, were prepared using the Discovery Studio suite, version 3.0 (Accelrys, San Diego, CA) as described previously [41,42,44,48,49], using the crystal structure of CD4-bound gp120 containing the V3 variable loop docked with the nuclear magnetic resonance (NMR) structure of a sulfated N-terminal peptide of CCR5 (residues 2 to 15) kindly provided by P. D. Kwong [50] as a template. Homology models of gp120 bound to a sulfated CXCR4 N-terminal peptide were generated as described previously [42]. Briefly, the CCR5 peptide sequence (SPIY10DINYY15) was mutated to the CXCR4 N-terminus sequence (SIY7TSDNY15) using a sequence alignment, with conserved sulfated tyrosine residues numbered. Harmonic restraints were applied prior to optimization using the Steepest Descent energy minimization protocol, which incorporates iterative cycles of conjugate-gradient energy minimisation against a probability density function that includes spatial restraints derived from the template and residue specific properties [51].

Env Mutagenesis

All gp120 mutants were synthesized by GenScript Pty. Ltd. (Piscataway, NJ, USA), and subcloned into the pSVIII-Env expression vector [36]. The authenticity of the gp120 mutants was verified by full-length sequencing. The Env mutants consist of the 1109-F-30 Env with Pro318 of the 1109-E-10 Env (M1), 1109-F-30 with deletion of the Ile314-Gly315 insertion (M2), 1109-F-30 with Pro318 of the 1109-E-10 Env and deletion of the Ile314-Gly315 insertion (M3), 1109-F-30 with Thr329 of 1109-E-10 (M4), 1109-F-30 with Asn331 of 1109-E-10 (M5), 1109-F-30 with the whole V1 loop of 1109-E-10 (M6), 1109-F-30 with the V1 loop and Pro318 of 1109-E-10 (M7), 1109-F-30 with the V1 loop of 1109-E-10 and deletion of the Ile314-Gly315 insertion (M8), 1109-F-30 with the V1 loop and Thr329 of 1109-E-10 (M9), 1109-F-30 with the V1 loop and Asn331 of 1109-E-10 (M10), 1109-F-30 with the V1 loop and Pro318 of 1109-E-10 and deletion of the Ile314-Gly315 insertion (M11), 1109-F-30 with the V1 loop, Pro318 and Thr329 of 1109-E-10 (M12), and 1109-F-30 with the V1 loop, Pro318 and Asn331 of 1109-E-10 (M13). In addition, we produced an Env mutant of 1109-F-30 containing the whole V3 loop of 1109-E-10 (M14), and a mutant of 1109-F-30 containing both the V3 and V1 loops of 1109-E-10 (M15). Additional Env mutants produced include 1109-E-10 with the Ile314-Gly315 insertion present in 1109-F-30 (M16), 1109-E-10 with Arg318 of the 1109-F-30 Env (M17), and 1109-E-10 with both the Ile314-Gly315 insertion and Arg318 of the 1109-F-30 Env (M18).

Nucleotide Accession Numbers

Env nucleotide sequences have been assigned GenBank accession numbers HQ707833 to HQ208154 (see also Table S1).

Results

Establishment of a Longitudinal Cohort of Subjects

Experiencing Progressive C-HIV Infection

Twenty-one subjects were selected from the clinically well-characterized Mupufire schistosomiasis and HIV (MUSH) cohort from rural Zimbabwe [52,53], who showed clinical and immunological evidence of progression from chronic to advanced stages of HIV-1 infection over an approximately 3-year period between 2001 and 2004. The Karnofsky scale of performance (KPS) score and CDC status of the subjects at study enrolment, and plasma viral load and CD4 + T-cell counts over time are shown in Table 1. The selected subjects showed notable declines in CD4 + T-cell count. The changes in plasma viral load and CD4 + T-cell count over time for each subject are shown in more detail in Figure 1. All but three subjects (204, 455, 1503) had schistosomiasis, which was treated with a single oral dose of praziquantel at study enrolment [54]. Because the national ART program in Zimbabwe was not effectively implemented until 2005, all subjects were ART-naive throughout the study period. This enabled a rare opportunity to characterize adaptive alterations that occur during progressive C-HIV infection without the influence of antiretroviral intervention.

Cloning and Characterization of Functional C-HIV Envs

Stored plasma samples that were collected at study enrolment (T enrol), approximately 1 year later (T inter), and approximately 3 years after enrolment (T final) (Table 1) were used to amplify and clone the gp160 coding region of HIV-1 Env into the pSVIII-Env expression plasmid. Between 2 and 8 functional Envs from each plasma sample, totalling 300 Envs across the cohort, were identified based on the ability to support the entry of Env-pseudotyped GFP reporter viruses into CD4/CCR5/CXCR4-expressing JC53 cells (data not shown). Envs were sequenced...
Figure 1. Changes in plasma viral load and CD4+ T-cell count over time in each of the study subjects. Plasma viral load (pVL) is shown as log10 HIV-1 RNA copies/ml. CD4+ T-cell count is shown as cells/µL. doi:10.1371/journal.pone.0065950.g001

Table 1. Clinical characteristics of the study subjects and laboratory measurements.

Subject ID	Sex	Age	KPS Score	CDC Status	Plasma viral load (RNA copies/ml)	CD4+ T-cell count (cells/µL)	ΔCD4+ T-cell count							
					TEnrol	TInter	TFinal	TeEnrol	TInter	TFinal	Viral load	Viral load		
204	F	26	100	A	5.70	5.75	5.76				253	157	0.064	-96
258	F	30	100	A	5.76	5.74	5.73				503	305	0.025	-198
455	F	44	70	A	5.75	5.74	5.80				157	141	0.048	-172
513	F	46	100	B	5.70	5.66	5.76				640	216	0.06	-424
550	F	31	100	B	5.66	5.65	5.77				164	35	0.11	-129
574	F	27	100	A	5.67	5.68	5.68				241	172	0.009	-69
805	F	40	100	A	5.61	5.57	N/A				341	172	-0.034	-198
858	F	27	90	B	5.69	5.65	5.66				320	250	-0.027	-70
1109	F	26	100	A	5.54	5.59	5.67				367	169	0.125	-198
1114	F	35	100	B	5.63	5.70	5.74				284	149	0.118	-135
1136	F	29	100	A	5.70	5.75	5.78				231	97	0.08	-134
1375	F	22	100	B	5.71	5.71	5.70				464	171	-0.006	-293
1408	F	27	100	A	5.72	5.77	N/A				392	198	0.05	-197
1441	M	28	100	B	5.68	5.73	5.73				208	111	0.04	-97
1503	F	29	100	A	5.73	5.69	5.71				396	259	-0.016	-137
1554	F	28	50	C	5.73	5.71	5.69				342	177	-0.036	-165
1684	F	40	100	A	5.73	5.69	5.72				208	141	-0.006	-67
1689	M	34	100	A	5.63	5.67	5.63				229	138	0.005	-91
1854	F	31	100	A	5.61	5.67	5.67				435	272	0.001	-163
2042	F	41	100	A	5.73	5.75	5.71				278	10	-0.015	-277
2253	F	42	100	B	5.69	5.77	5.79				278	129	0.09	-149

Age, Karnofsky scale of performance (KPS) score and Centers for Disease Control (CDC) status were determined at study enrolment. Plasma viral load values are shown as log10. Plasma viral load and CD4+ T-cell counts are shown at the times of study enrolment (TEnrol), approximately 1 year later (TInter) and approximately 3 years after enrolment (TFinal). The change in viral load (Δviral load) and CD4+ T-cell count (ΔCD4+ T-cell count) over the study period is also shown. F, female; M, male; N/A, not available.

doi:10.1371/journal.pone.0065950.t001
Consistent with the latter observation, the intra subject Env sequence alterations segregating these R5X4 Envs from R5 Envs occur in gp41, rather than the V3 loop region of gp120 (data not shown). In contrast, the X4 Envs from subject 1109 had very efficient CXCR4 usage in the indicator cell lines compared to reference B-HIV X4 and R5X4 Envs (Table S1), used CXCR4 for entry into PBMC (data not shown), and are scored as X4-like by the abovementioned coreceptor usage prediction programs. Thus, we consider that the minor R5X4 variants that were detected in subject 1854 are ostensibly CCR5-restricted, and that functionally relevant CXCR4-using variants only emerged in one subject (1109). Together, our results, which reflect the natural history of C-HIV from chronic to advanced stages of infection, suggest that C-HIV pathogenesis is indeed driven principally by R5 viral strains, with functionally-relevant CXCR4-using variants detected very infrequently in our cohort.

Sequence and Structural Analysis of R5 and X4 Envs from Subject 1109

To better understand the Env sequence determinants of C-HIV coreceptor switching, we first compared the full-length gp120 sequences of the “enrolment” (R5), “intermediate” (R5), and “final” (X4) Envs from subject 1109. Notable amino acid alterations that segregated the late-emerging X4 Envs from the antecedent R5 Envs were mapped to the gp120 V1 and V3 loop regions (Fig. S2). To understand how the V3 loop alterations may potentially affect coreceptor specificity, with the view to guiding the rational design of mutagenesis experiments, we next produced homology models of representative “enrolment” (1109-E-10) and
gp120 proteins in their CD4-bound state interacting with peptide models of either the CCR5 or CXCR4 N-terminus, as described previously [41,42,44,49]. Amino acid alterations occurring in 1109-F-30 Env clustered at the crown and stem regions of the V3 loop, and included Arg318 resulting in substitution of the highly conserved "Gly-Pro-Gly" crown motif for "Gly-Arg-Gly", an Ile314-Gly315 insertion immediately proximal to the crown alteration, and Asp327, Val328, Arg329 and Asp331 in the descending strand of the V3 loop stem (Fig. 3A). The molecular models show that the V3 crown and stem alterations have the potential to alter the conformation of the V3 loop (Fig. 3A). Since current models of gp120 binding to coreceptor suggest that the V3 loop crown interacts with the coreceptor extracellular loop 2 region and the V3 loop stem interacts with the coreceptor N-terminus to mediate HIV-1 entry [59,60,61,62], we hypothesized that combinations of these V3 crown/stem mutations contribute to the evolution of R5 to X4 variants in subject 1109, and in addition, that a subset of these alterations give rise to "transitional" R5X4 intermediates that most likely arose after the "intermediate" timepoint and disappeared before the "final" timepoint. Database analysis of published independent C-HIV Env sequences where phenotypically-verified coreceptor usage was available demonstrated that the "Gly-Arg-Gly" crown motif is significantly more frequent in CXCR4-using C-HIV Envs (34.7%; n = 69) compared with R5 C-HIV Envs (0%; n = 428) (p<0.0001, Fisher’s exact test), as is a

Table 2. Summary of coreceptor usage.

Subject ID	Enrolment (T Enrol)	Intermediate (T Inter)	Final (T Final)	Summary of phenotypes
204	R5	R5	R5	R5
258	R5	R5	R5	R5
455	R5	R5	R5	R5
513	R5	R5	R5	R5
550	R5	R5	R5	R5
574	R5	R5	R5	R5
805	R5	R5	R5	R5
858	R5	R5	R5	R5
1109	R5	R5	X4	R5/X4
1114	R5	R5	R5	R5
1136	R5	R5	R5	R5
1375	R5	R5	R5	R5
1408	R5	R5	R5	R5
1441	R5	R5	R5	R5
1503	R5	R5	R5	R5
1554	R5	R5	R5	R5
1684	R5	R5	R5	R5
1689	R5	R5	R5	R5
1854	R5	R5	R5	R5
2042	R5	R5	R5	R5
2253	R5	R5	R5	R5

The numbers in parentheses represent the numbers of Env clones that display R5, R5X4 or X4 phenotype as described in the Materials and Methods. Coreceptor usage results for individual Env clones are shown in more detail in Table S1. N/A, not available.

doi:10.1371/journal.pone.0065950.t002

"final" (1109-F-30) gp120 proteins in their CD4-bound state interacting with peptide models of either the CCR5 or CXCR4 N-terminus, as described previously [41,42,44,49]. Amino acid alterations occurring in 1109-F-30 Env clustered at the crown and stem regions of the V3 loop, and included Arg318 resulting in substitution of the highly conserved "Gly-Pro-Gly" crown motif for "Gly-Arg-Gly", an Ile314-Gly315 insertion immediately proximal to the crown alteration, and Asp327, Val328, Arg329 and Asp331 in the descending strand of the V3 loop stem (Fig. 3A). The molecular models show that the V3 crown and stem alterations have the potential to alter the conformation of the V3 loop (Fig. 3A). Since current models of gp120 binding to coreceptor suggest that the V3 loop crown interacts with the coreceptor extracellular loop 2 region and the V3 loop stem interacts with the coreceptor N-terminus to mediate HIV-1 entry [59,60,61,62], we hypothesized that combinations of these V3 crown/stem mutations contribute to the evolution of R5 to X4 variants in subject 1109, and in addition, that a subset of these alterations give rise to "transitional" R3X4 intermediates that most likely arose after the "intermediate" timepoint and disappeared before the "final" timepoint. Database analysis of published independent C-HIV Env sequences where phenotypically-verified coreceptor usage was available demonstrated that the "Gly-Arg-Gly" crown motif is significantly more frequent in CXCR4-using C-HIV Envs (34.7%; n = 69) compared with R5 C-HIV Envs (0%; n = 428) (p<0.0001, Fisher’s exact test), as is a
proximal “X-Gly” insertion at the same position as the “Ile-Gly” insertion shown in the X4 viruses of subject 1109 (33% of CXCR4-using Envs, n = 69; 0% of R5 Envs, n = 428) \(p<0.0001\), Fisher’s exact test). In addition, neither of these alterations occurred in any of the “final” R5 Envs from our panel. The “Gly-Arg-Gly” crown alteration also introduces an additional basic amino acid to the V3 loop, increasing the net charge of the V3 region. These V3 alterations are therefore likely to be particularly important for C-HIV coreceptor switching. Moreover, because previous studies have suggested that the gp120 V1/V2 loops might also be important for C-HIV coreceptor switching \([63]\), we further hypothesized that the unique V1 loop sequence of the X4 variants in subject 1109 may influence coreceptor switching in this subject in concert with V3 loop alterations. These hypotheses were tested in the following mutagenesis studies.

Identification of the Molecular Determinants of C-HIV Coreceptor Switching in Subject 1109

To better understand the molecular mechanisms contributing to C-HIV coreceptor switching, we next produced a panel of 15 Env mutants using the X4 1109-F-30 Env as template, introducing various V3 loop crown/stem alterations that are present in the R5 1109-E-10 Env, in the presence or absence of the V1 loop of the R5 1109-E-10 Env. The sequence alterations present in the Env mutants, which we term hereafter as M1 through M15 are shown in Figure 3B, and are described in detail in the Materials and Methods. For simplicity and to guide the interpretation of the subsequent results, their descriptions are summarized in Figure 3C.

We next produced luciferase reporter viruses pseudotyped with each of the Env mutants and compared their ability to enter NP2-CD4 cells expressing either CCR5 or CXCR4, relative to the unmodified 1109-E-10 (R5) and 1109-F-30 (X4) Envs (Fig. 4). Controls included ADA (R5), HXB2 (X4) and 89.6 (R5X4) Envs which as expected, efficiently entered NP2-CD4/CXCR4 cells, NP2-CD4/CXCR4 cells, or both cell lines, respectively. The M5 and M6 mutants showed no affect on the X4 phenotype of 1109-F-30, suggesting that neither Asp331 nor the V1 loop of 1109-F-30 has a direct influence on the development of CXCR4-usage by this Env. Conversely, the M14 and M15 mutants completely abolished CXCR4 usage and conferred an R5 phenotype to 1109-F-30 Env; together with the lack of direct influence on coreceptor usage shown for the V1 loop, these results suggest that the principal determinants of coreceptor switching in this subject likely map to the V3 loop. The M1, M2 and M4 mutants restored CCR5 usage and conferred an R5X4 phenotype to 1109-F-30, suggesting that individually, acquisition of either Arg318, the Ile314-Gly315 insertion or Arg329 may confer an X4 phenotype from possible “transitional” R5X4 intermediates. The M3 and M11 mutants completely abolished CXCR4 usage and conferred an R5 phenotype to 1109-F-30; this suggests that acquisition of both the Ile314-Gly315 insertion and Arg318 is likely to be important for the transition of R5 to X4 phenotype in this subject, and further suggests that Arg329, while having an influence on coreceptor usage alterations in isolation, is not necessary for this transition.

To determine whether the Ile314-Gly315 insertion and Arg318 were sufficient to confer the X4 phenotype in subject 1109, we next produced an additional panel of 3 Env mutants using the R5 1109-E-10 Env as template, introducing these alterations either alone or in combination. The sequence alterations present in these Env mutants, which we term M16 through M18, are described in the materials and methods. These mutations, either alone or in combination, rendered 1109-E-10 Env completely non-functional for HIV-1 entry into NP2-CD4 cells expressing either CCR5 or CXCR4 (data not shown). These results suggest that the Ile314-Gly315 insertion and Arg318 of the X4 1109-F-30 Env are necessary but not sufficient for CXCR4 usage, and that the presence of additional “scaffold” mutations in 1109-F-30 Env, which may include changes in the V1 loop and/or other V3 loop changes (Fig. S2), is likely be required for Ile314-Gly315 and Arg318 to exert an influence on CXCR4 usage. In summary these results support a model, illustrated in Figure 5, whereby in subject 1109, the development of CXCR4 usage occurs in the context of gp120 “scaffold” mutations and principally involves first, the acquisition of the Ile314-Gly315 insertion or Arg318, either of which on their own may confer possible “transitional” R5X4 phenotypes, and then the maintenance of both of these alterations to abolish CCR5 usage altogether and to confer the X4 phenotype.

Discussion

By developing and characterizing the functional properties of a large longitudinal panel of Envs derived from clinically well-characterized ART-naive subjects experiencing progression from chronic to advanced stages of C-HIV infection, our results highlight several important facets of C-HIV pathogenesis that reflect the natural history of progressive C-HIV infection. We show that the emergence of CXCR4-using strains at late stage, C-HIV infection was exceedingly rare in this untreated cohort, occurring in only one of the 21 subjects studied. However, further studies in larger cohorts of late stage, untreated subjects with C-HIV infection are required to confirm the results of our study. Moreover, although independent X4 Envs were isolated from the late stage plasma sample of subject 1109, we cannot rule out the possibility that R5 and/or R5X4 variants were present as well, either as a minor subpopulation and/or by being selected against by the PCR. Nonetheless, when CXCR4-using variants emerged, the determinants of coreceptor switching were mapped principally to discrete alterations in the gp120 V3 loop region. In addition, we show that the significant decline in CD4+ T-cell counts, which fell to below or near 200 cells/μl defining immunodeficiency in nearly all subjects, was the result of infection by R5 C-HIV strains that persisted exclusively in 19/21 subjects. These results confirm that the pathogenic mechanisms of C-HIV infection that lead to immunodeficiency in the absence of antiretroviral intervention are indeed caused predominantly by R5 C-HIV strains, at least in the cohort studied. Importantly, our longitudinal Env panel can now enable future studies of Env determinants that contribute to C-HIV pathogenicity in the majority of subjects who do not experience a coreceptor switch.

Although switching coreceptor specificity to CXCR4-using variants was rare in late stage untreated C-HIV infection, deciphering the mechanisms involved in such coreceptor switching is important for understanding the complexity of virus-cell interactions in C-HIV pathogenesis. Our mutagenesis studies showed that the accumulation of two discrete amino acid alterations in the gp120 V3 loop, namely the Pro318Arg mutation at the V3 loop crown and the proximal Ile314-Gly315 insertion, were necessary for the transition of R5 to X4 phenotype by C-HIV harbored by subject 1109. However, further “gain-of-function” mutagenesis studies, whereby the Ile314-Gly315 insertion and/or Arg318 were introduced into the R5 1109-E-10 Env, showed that these changes, either by themselves or in combination, completely abrogated viral infectivity. These results suggest that the effects of Ile314-Gly315 and Arg318 on CXCR4 usage are context dependent, and most likely depend on the presence of additional “scaffold” mutations in the V1 and V3 loop regions. This
Figure 3. V3 loop alterations segregating X4 from R5 C-HIV Envs, and Env mutagenesis strategy. (A, left) Ribbon diagram showing a gp120 model of 1109-E-10 Env (grey) in complex with CD4 (light blue) and a sulfated CCR5 N-terminus peptide (orange). The V3 loop is highlighted in blue. The location of amino acids segregating X4 and R5 Envs from this subject shown by space-filled models of their α-carbon atoms (red spheres). (A, center) Close up view of the V3 loop of the R5 1109-E-10 gp120 bound to the CCR5 N-terminus peptide (orange), showing the R5-associated amino acids as red spheres. (A, right) Close up view of the V3 loop of the X4 1109-F-30 gp120 bound to a model of the CXCR4 N-terminus peptide (green), showing the X4-associated amino acids as red spheres. (B) Amino acid sequences of the Env mutants, aligned against the gp120 sequence of the X4 1109-F-30 sequence. Dots indicate residues identical to 1109-F-30, dashes indicate gaps. Numbers refer to amino acid positions in the V1 and V3 loop regions. (C) Brief descriptions of the Env mutants, which are provided in greater detail in Materials and Methods.

doi:10.1371/journal.pone.0065950.g003
Figure 4. V3 loop alterations important for CXCR4 usage by C-HIV harbored by subject 1109. Luciferase reporter viruses pseudotyped with Env mutants (M1 through M15), unmodified 1109-E-10 and 1109-F-30 Envs, or control Envs (ADA, HXB2, 89.6) were used to infect NP2-CD4/CXCR4 and NP2-CD4/CCR5 cells, and the levels of HIV-1 entry were determined as described in Materials and Methods. The dotted lines indicate the limit of detection of coreceptor activity. The results shown are a compilation of 3 independent experiments, each performed in triplicate, and each with an independent preparation of Env-pseudotyped virus. The data shown are means, and the error bars represent standard errors of the means.

Interpretation is consistent with the results of recent studies which showed that a high level of genetic divergence in the gp120 V1/V2 region is required for C-HIV coreceptor switching, in addition to specific V3 loop alterations [63].

Database analysis of C-HIV Envs with phenotypically verified coreceptor usage, which included the analysis of C-HIV Envs sampled from divergent geographical regions and which included all of the independent CXCR4-using C-HIV Envs available in the Los Alamos database, showed that each of the V3 loop alterations that we showed were necessary for coreceptor switching in 1109-F-30 Env were present at relatively high frequency in CXCR4-using C-HIV Envs (Pro318Arg, 34.7%; X314-Gly315, 33%, n = 69), but that neither of these alterations were present in any of the R5 C-HIV Envs analyzed (n = 428). These results, which are supported by a recent cross-sectional analysis of CXCR4 using C-HIV Env sequences [64], provide compelling evidence that the Pro318Arg mutation and the X314-Gly315 insertion observed in 1109-F-30 Env may also be significant determinants of CXCR4-usage in other C-HIV strains. Further studies are required to determine if this is the case. However, in support of this possibility, using Env mutagenesis one previous study showed that acquisition of a X314-Gly315 insertion (which in this case was either a Met314-Gly315 or a Leu314-Gly315 insertion) could confer a R5X4 phenotype (Fig. 5). From our data we cannot determine the order in which these alterations may have appeared. However, because the M2 Env mutant dramatically reduced overall virus infectivity (Fig. 4), suggesting near-lethality conferred by the Pro318Arg alteration on its own, it would be reasonable to conclude that the Ile314-Gly315 insertion occurred before acquisition of Pro318Arg, in order for the virus to maintain high levels of infectivity during the transition from R5 to X4 phenotype. On the other hand, it is difficult to imagine the acquisition of such a dramatic structural alteration to the V3 loop as the primary instigator of coreceptor switching. We therefore cannot exclude the possibility that the Pro318Arg alteration occurred first, and that the more dramatic Ile314-Gly315 alteration occurred subsequently in an effort to rescue infectivity and confer the X4 phenotype. Further studies are required to more precisely determine the order of the acquisition of V3 loop mutations during the transition from R5 to X4 C-HIV phenotype.

One potentially important consideration for our study was that all the subjects had schistosomiasis at study enrolment, which may have influenced the patterns of coreceptor usage that we observed. Indeed, macaque studies have shown that helminthic parasitic infections can exacerbate infection with SIV due to alterations in the cytokine milieu and increased frequency of Th2 CD4+ T-cells (reviewed in [66]). Even after removal of these stimuli by effective treatment of the parasites, as was done with our study subjects at enrolment, their effects on HIV-1 replication may be long lasting. The Th2-type immune responses associated with schistosomiasis include elevated IL-4 and peripheral blood eosinophilia [66]. IL-4 may potentially down regulate CXCR4 expression [67]. Although it is unclear whether this would be sufficient to skew the emergence of CXCR4-using C-HIV variants in our cohort, we cannot rule out the possibility that immune responses associated with schistosomiasis had some influence on the evolution of the Env phenotypes in our study. On the other hand, there is strong overlap between regions of the world that are endemic for both
helminthic and C-HIV infections [66], particularly in southern Africa which bears the brunt of the global HIV-1 pandemic, so it is reasonable to assert that the pathogenic viral processes illustrated by our cohort may indeed reflect the real life situation for the majority of individuals with C-HIV infection.

In conclusion, our results, that were generated using a unique longitudinal cohort of untreated subjects experiencing progressive C-HIV infection, provide new mechanistic insights into C-HIV pathogenesis. In addition, the extensive panel of Envs generated provides a valuable resource that builds capacity for new research into vaccines, novel inhibitors and microbicides with activity against C-HIV. To this end, it is our hope that the detailed supplementary section may be used as a catalogue for investigators to select and request specific reagents in order to expedite these critical areas of research.

Supporting Information

Figure S1 Intra-subject phylogenetic relationships of Env sequences. Phylogenetic analysis of Env sequence sets for the individual subjects was conducted as described in the Materials and Methods. Sequence comparisons are made to reference HIV-1 subtype C Env sequences, and also to the reference HIV-1 subtype B Env sequence HXB2. Red circles represent Envs cloned from plasma taken at study enrolment; Green diamonds represent Envs cloned from the “Intermediate” plasma sample; Blue squares represent Envs cloned from the “Final” plasma sample. Refer to the main text for definitions of- and time frames associated with the Enrolment, Intermediate and Final plasma samples.

Figure S2 Multiple sequence alignment of gp120 from “enrolment”, “intermediate” and “final” Envs obtained from subject 1109. Multiple sequence alignment of Envs from subject 1109. Sequences are aligned to the 1109-E-10 clone. Dots indicate residues identical to 1109-E-10, and dashes indicate gaps. Boxed regions show amino acid changes in “final” (F) clones that could potentially be important for CXCR4 usage by these Envs.

Table S1 Coreceptor usage and V3 loop sequence of Env clones. The level of virus entry, based on consensus results from the two different cell systems, was scored as – (<5 fold above background), + (5–50 fold above background), ++ (50–300 fold above background), or +++ (>300 fold above background). When CXCR4 usage was detected, infection in the CXCR4-expressing cell lines was repeated in the presence of 1 µM of the CXCR4 inhibitor AMD3100 to confirm specificity. E, I and F refer to Envs cloned from plasma obtained at study enrolment, approximately
1 year later (intermediate), and approximately 3 years after enrolment (final), respectively. n/a; not applicable. (TH)

Acknowledgments

We thank J. Sodroski for providing pSVII-HXB2, pSVII-89.6, pSVII-YU2 and pSVII-AIDA, and pSVII-AKS Env plasmids, and pCMV1/Amp plasmids and pHIV-1Luc plasmids. We thank D. Kabat for providing JCVI3 cells, N. Shizimu and H. Hoshiba for permission to use the NPF2 based cell lines, and D. Mosier and R. Nedellec for supplying the NPF2 cell lines. We also thank the Map装e community and study subjects for their willing participation. Maraviroc was provided by Pfizer. The following reagents were obtained through the AIDS Research and Reference Reagent Program, Division of AIDS, NIAID, NIH: Bicyclam JM-2987 (hydrobromide salt of AMD-3100), U87-CXCR4 cells, U87-CXCR4/CXCR5 cells, and U87-CXCR4/CXCR4 cells from Drs. HongKui Deng and Dr. Dan R. Littman.

Author Contributions

Conceived and designed the experiments: MRJ KC MR JS BL PAR MJC. Performed the experiments: MRJ KC MR JS AE KB JF LRG BW. Analyzed the data: MRJ KC JS CE MG NKS HU LO BL PAR MJC. Contributed reagents/materials/analysis tools: CE DFJP PK RZ EG HU LO. Wrote the paper: MRJ KC PRG.

References

1. UNAIDS (2008) 2008 Report on the global AIDS epidemic.
2. Mathers CD, Loncar D (2006) Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 3: e442.
3. Abrahà A, Nankya H, Gibson R, Demers K, Téhei DM, et al. (2009) CCR5- and CXCR4-tropic subtype C human immunodeficiency virus type 1 isolates have a lower level of pathogenic fitness than other dominant group M subtypes: implications for the epidemic. J Virol 83: 5592–5605.
4. Connor RI, Sheridan KE, Geradini D, Chee S, Landau NR (1997) Change in coreceptor use correlates with disease progression in HIV-1 infected individuals. J Exp Med 185: 621–628.
5. Whitcomb JM, Huang W, Fransen Y, Toma J, et al. (1999) Development and characterization of a novel single-cycle recombinant virus assay to determine human immunodeficiency virus type 1 coreceptor tropism. Antimicrob Agents Chemother 51: 566–575.
6. Groot F, van Capel TM, Schuitemaker J, Berkhout B, de Jong EC (2006) A different susceptibility of naive, central memory and effector memory T cells to dendritic cell-mediated HIV-1 transmission. Retrovirology 3: 52.
7. Miceli-Stark J, Hermine EA, Horsley Y, Hattali S, Mulegna J, et al. (2009) Human immunodeficiency virus type 1 coreceptor usage, and the molecular anatomy of CCR3 utilization. J Virol 83: 8208–8220.
8. Milford JN, Conner RB, Petrizzi N, Hovanitz M, Scott S, et al. (2009) Virus entry via the alternative coreceptor CCR3 and FPR1 differs by human immunodeficiency virus type 1 subtype. J Virol 83: 8353–8363.
9. Alexander M, Lynch R, Mulegna J, Allen S, Derdeyn CA, et al. (2010) Donor and recipient envs from heterosexual human immunodeficiency virus subtype C transmission pairs require high receptor levels for entry. J Virol 84: 4100–4101.
10. Miceli-Stark J, Hermine EA, Horsley Y, Hattali S, Mulegna J, et al. (2009) A novel assay to determine human immunodeficiency virus type 1 envelope glycoproteins derived from two individuals homozygous for the CCR5delta32 allele. J Virol 83: 3684–3691.
11. Miceli-Stark J, Hermine EA, Horsley Y, Hattali S, Mulegna J, et al. (2009) Genetic and functional analysis of CXCR4-utilizing virus type 1 envelope gp120 from individuals homozygous for the CCR5delta32 allele. J Virol 83: 3684–3691.
12. Miceli-Stark J, Hermine EA, Horsley Y, Hattali S, Mulegna J, et al. (2009) Genetic and functional analysis of FXR1 human immunodeficiency virus type 1 envelope glycoproteins derived from two individuals homozygous for the CCR5delta32 allele. J Virol 83: 3684–3691.
13. Miceli-Stark J, Hermine EA, Horsley Y, Hattali S, Mulegna J, et al. (2009) Genetic and functional analysis of R5X4 human immunodeficiency virus type 1 envelope glycoproteins from South African HIV type 1 subtype C primary isolates that utilize CCR5 and/or CXCR4. AIDS Res Hum Retroviruses 24: 743–753.
14. Miceli-Stark J, Hermine EA, Horsley Y, Hattali S, Mulegna J, et al. (2009) Characterization of V3 sequence heterogeneity in subtypes A, B, C and D human immunodeficiency virus type 1 isolates from Malawi: underrepresentation of V3. J Virol 73: 6271–6281.
15. Miceli-Stark J, Hermine EA, Horsley Y, Hattali S, Mulegna J, et al. (2009) A novel assay to determine human immunodeficiency virus type 1 coreceptor tropism. Antimicrob Agents Chemother 51: 566–575.
16. Miceli-Stark J, Hermine EA, Horsley Y, Hattali S, Mulegna J, et al. (2009) Human immunodeficiency virus type 1 coreceptor usage, and the molecular anatomy of CCR3 utilization. J Virol 83: 8208–8220.
17. Miceli-Stark J, Hermine EA, Horsley Y, Hattali S, Mulegna J, et al. (2009) Human immunodeficiency virus type 1 coreceptor usage, and the molecular anatomy of CCR3 utilization. J Virol 83: 8208–8220.
18. Miceli-Stark J, Hermine EA, Horsley Y, Hattali S, Mulegna J, et al. (2009) Human immunodeficiency virus type 1 coreceptor usage, and the molecular anatomy of CCR3 utilization. J Virol 83: 8208–8220.
55. Gorry PR, Bristol G, Zack JA, Ritola K, Swanstrom R, et al. (2011) Macrophage tropism of Human Immunodeficiency Virus Type 1 isolates from brain and lymphoid tissues predicts neurotropism independent of coreceptor specificity. J Virol 75: 10073–10089.
56. Gray L, Sterijovski J, Churchill M, Ellery P, Naur N, et al. (2005) Uncoupling coreceptor usage of human immunodeficiency virus type 1 (HIV-1) from macrophage tropism reveals biological properties of CCR5-restricted HIV-1 isolates from patients with acquired immunodeficiency syndrome. Virology 337: 384–398.
57. Gray L, Sterijovski J, Ramsland PA, Churchill MJ, Gorry PR (2011) Conformational alterations in the C4d binding cavity of HIV-1 gp120 influencing gp120-CD4 interactions and fusogenicity of HIV-1 envelopes derived from brain and other tissues. Retrovirology 8: 42.
58. Cashin K, Gray LR, Jakobsen MR, Sterijovski J, Churchill MJ, et al. (2013) CoRSeqV3-C: a novel HIV-1 subtype C specific V3 sequence based coreceptor usage prediction algorithm. Retrovirology 10: 24.
59. Cormier EG, Dragic T (2002) The crown and stem of the V3 loop play distinct roles in human immunodeficiency virus type 1 envelope glycoprotein interactions with the CCR5 coreceptor. J Virol 76: 8953–8957.
60. Huang CC, Tang M, Zhang MY, Majedel S, Moutahana F, et al. (2005) Structure of a V3-containing HIV-1 gp120 core. Science 310: 1025–1028.
61. Farzan M, Mirzabekov T, Kodikinsky P, Wyatt R, Gayahb M, et al. (1999) Tyrosine sulfation of the amino terminus of CCR5 facilitates HIV-1 entry. Cell 96: 667–676.
62. Brolot A, Heveker N, Adema K, Hosie MJ, Willette B, et al. (1999) Effect of mutations in the second extracellular loop of CXCR4 on its utilization by human and feline immunodeficiency viruses. J Virol 73: 2576–2586.
63. Coetzer M, Nedellec R, Cilliers T, Meyers T, Morris L, et al. (2012) Env sequence diversity in South African subtype C HIV-1 isolates from patients with acquired immunodeficiency syndrome. Virology 407: 68–79.
64. Lin NH, Becerril C, Giguel F, Novitsky V, Moyo S, et al. (2012) Enz sequence determinants in CXCR4-using human immunodeficiency virus type 1 subtype C. Journal of Acquired Immune Deficiency Syndromes 56: 9–15.
65. Liu HN, Becerril C, Giguel F, Novitsky V, Moyo S, et al. (2012) Enz sequence determinants in CXCR4-using human immunodeficiency virus type 1 subtype C. Journal of Acquired Immune Deficiency Syndromes 56: 9–15.
66. Secor WE, Sandstrom JR (2007) Below the belt: new insights into potential complications of HIV-1/schistosome coinfections. Curr Opin Infect Dis 20: 519–523.
67. Creery D, Weiss W, Graziani-Bowering G, Kumar R, Aziz Z, et al. (2006) Differential regulation of CXCR4 and CCR5 expression by interleukin IL-4 and IL-13 is associated with inhibition of chemotaxis and human immunodeficiency virus (HIV) type 1 replication but not HIV entry into human monocytes. Viral Immunology 19: 409–423.
Author/s:
Jakobsen, MR; Cashin, K; Roche, M; Sterjovski, J; Ellett, A; Borm, K; Flynn, J; Erikstrup, C; Gouillou, M; Gray, LR; Saksena, NK; Wang, B; Purcell, DFJ; Kallestrup, P; Zinyama-Gutsire, R; Gomo, E; Ullum, H; Ostergaard, L; Lee, B; Ramsland, PA; Churchill, MJ; Gorry, PR

Title:
Longitudinal Analysis of CCR5 and CXCR4 Usage in a Cohort of Antiretroviral Therapy-Naive Subjects with Progressive HIV-1 Subtype C Infection

Date:
2013-06-18

Citation:
Jakobsen, M. R., Cashin, K., Roche, M., Sterjovski, J., Ellett, A., Borm, K., Flynn, J., Erikstrup, C., Gouillou, M., Gray, L. R., Saksena, N. K., Wang, B., Purcell, D. F. J., Kallestrup, P., Zinyama-Gutsire, R., Gomo, E., Ullum, H., Ostergaard, L., Lee, B. ..., Gorry, P. R. (2013). Longitudinal Analysis of CCR5 and CXCR4 Usage in a Cohort of Antiretroviral Therapy-Naive Subjects with Progressive HIV-1 Subtype C Infection. PLOS ONE, 8 (6), https://doi.org/10.1371/journal.pone.0065950.

Persistent Link:
http://hdl.handle.net/11343/265496

File Description:
Published version

License:
CC BY