Chemistry and activity of quinazoline moiety: A systematic review study

Jagmohan Singh Negi1, Ajay Singh Bisht1,*, D K Sharma1
1Dept. of Pharmaceutical Chemistry, Himalayan Institute of Pharmacy & Research, Dehradun, Uttarakhand, India

A B S T R A C T
Quinazoline is a compound with amalgamated heterocyclic system popular for their biological activities. Quinazoline is a compound made up six membered fused aromatic rings i.e a benzene ring with pyrimidine ring. Its chemical formula is C8H6N2O. It is yellow colour and found in the crystalline form. Molecular optimization of potentially lead compounds through a chemist is an needy and upcomming approach for the discovery of new pharmaceuticals. More than two combinations of pharmacophore and making them one moiety is a noval and popular procedure of exploitation of synthesis now a days and this cause an additive increment of biological activities with taking away of surplus side effects. Present communication studies about the structure origin, diversity and chemical modification with change in pharmacological activities of Quinazoline.

© 2020 Published by Innovative Publication. This is an open access article under the CC BY-NC license (https://creativecommons.org/licenses/by-nc/4.0/)

1. Introduction
Quinazolin-4(3H)-one and its derivatives have structural importance of nearly two hundred naturally found alkaloids which are isolated and collected from various of species of the plants, micro-organisms and animals. The name of quinazoline was first given by Weddige as he observed that it is isomeric with two compounds i.e cinnoline and quinoxaline.

Naturally, quinazolino alkaloids forms a basic core of febrifugine and isofebrifugine, which was found to be immense antimalarial activity and are extracted from the traditional chinese medicine.1,2 Chemically, quinazolin constitutes an important class of fused heterocycles six membered (benzene and pyrimidine) rings (Figure 1).In which two conjoined aromatic rings incorporate with two nitrogen atoms and one of the carbon oxidized with keto oxygen. The structure is also called as quinazolindiones, chemically can be called as Quinazolin-4(3H)-one. 2-quinazolinone and 4-quinazolinone are the two structural isomers have been known, but studies shows that the 4-isomers is most common (Figure 2).

The first quinazolinones (1) found to be synthesized in 1860 from anthranilic acid and cyanogens, which results in 2-cyanoquinazolinone (2) and methaqualone (3)3 (Figure 3). It was found to be most well known synthetic quinazolinone drug, prominent for its sedative-hypnotic activity.4 Quinazolinone nucleus has attracted much interest because of a wide range of pharmacological activites like antitumor,5–7 anticonvulsant,8 antitubercular,9,10 antiviral,11 anti-inflammatory,12 analgesics,13 antimicrobial,14 antihypertensive,15 antioxidant16 activities etc (Figure 4). Recently quinazolinone chemistry has got new direction due to some resemblance with folic acid. The synthesis of quinazolinones is mainly cyclisation from bifunctional intermediates.

In light of the growing number of applications in recent years, there has been an enormous increase in the interest among biologists and chemists in their rapid synthesis and prominent therapeutic activity of quinazolinone derivatives. Many marketed drugs are available which contain quinazolinone nucleus are tried to list in the study,17,18 (Table 1).
1.1. Chemistry of quinazolinones

Chemistry of quinazolinone is regarded as well-known region in synthesis, although still many novel and multifaceted variants of quinazolinone structures are needed to be discovered. When its structure was studied it was found that there is a lactam-lactam tautomeric interaction. This interaction also seen when 4(3H)-quinazolinone is with a methyl moiety present in 3rd position and projected for chlorination with POCl₃. It was observed that methyl group get lost and chlorination goes on. Further it was seen, when the methyl group is in 2nd position, this tautomeric effect get exceeded resulting in an exo methylene carbon. It causes increase in the reactivity of the substituted 4-(3H)-quinazolinones. Therefore, quinazolinones are known to be a “fortunate structure” for drug discovery and development of newer pharmaceuticals (Figure 5). In continuation with SAR studies of the moiety, it shows that the 2nd, 6th and 8th position of the ring are very much imperative for the pharmacological studies. It is also suggests, physicochemical properties could be augmented by the inclusion of diverse heterocyclic moieties to 3rd position of the ring.¹⁷

Quinazolinone derivatives are elevated melting crystalline products, which are generally insoluble in water and organic solvents but found to be soluble in alkali (aq) and sometimes in concentrated acids like 6N hydrochloric acid. They used to form stable salts of mono-hydrochlorides, chloro-platinate, chloro-aurates and picrates also their metal salts like silver, mercury, zinc, copper, sodium and potassium.¹⁹

2. Methods for the synthesis of quinazolinone

Very common synthetic method for quinazolinone is through condensation of anthranillic acid with amides / primary amines.
2.1.

2.1.1. Niementowski’s synthesis
It gives 3,4-dihydro-4-oxoquinazoline when substituted formamide reacts with anthranilic acid at 125-130 °C.20-24

\[
\begin{array}{c}
\text{COOH} \\
\text{NH}_2 \\
\text{R} \\
\end{array}
\xrightarrow{\text{RCONNH}_2}
\begin{array}{c}
\text{N} \\
\text{H} \\
\text{R} \\
\end{array}
\xrightarrow{\text{H}_2\text{O}_2}
\begin{array}{c}
\text{O} \\
\text{R} \\
\end{array}
\]

2.1.2. Grimmel, Guinther and Morgans’s synthesis
It results in disubstituted 3,4-dihydro-4-oxoquinazolines when ortho-amino benzoic acids, heated with amine and phosphorous trichloride.25

\[
\begin{equation}
\text{COOH} + 3\text{RNH}_2 + \text{PCl}_3 \rightarrow \begin{array}{c}
\text{N} \\
\text{R} \\
\end{array}
\end{equation}
\]

2.1.3. Sen and Ray’s synthesis
It results in 2-propyl / 2-isopropyl-3,4-dihydro-4-oxoquinazolines when a solution isobutyrylanilides heated with urethane and phosphorous pentoxide.26

\[
\begin{array}{c}
\text{NHCHCOR} \\
\text{R} \\
\end{array}
\xrightarrow{\text{HNCOC}_2\text{H}_2\text{PO}_3}
\begin{array}{c}
\text{N} \\
\text{R} \\
\end{array}
\]

2.1.4. Synthesis from Anthranilic acid and urea
It results in 1,2,3,4-tetrahydro-2,4-dioxo-quinazoline when anthranilic acid fused with urea.26

\[
\begin{array}{c}
\text{COOH} \\
\text{NH}_2 \\
\text{R} \\
\end{array}
\xrightarrow{\text{NH}_2\text{CONH}_2}
\begin{array}{c}
\text{N} \\
\text{O} \\
\end{array}
\]

2.1.5. Synthesis from Isatins
It forms dioxoquinazoline and its derivatives when β-imino compounds heated with hydrogen peroxide in alkaline solution.26

\[
\begin{array}{c}
\text{COOH} \\
\text{NH}_2 \\
\end{array}
\xrightarrow{\text{NH}_2\text{CONH}_2}
\begin{array}{c}
\text{N} \\
\text{O} \\
\end{array}
\]

2.1.6. Synthesis from Benoxazones
Here benoxazones compounds reacts with primary amines and resuo form 3,4-dihydro-4-oxoquinazolines.26,27

\[
\begin{array}{c}
\text{NO}_2 \\
\text{O} \\
\text{CH}_3 \\
\text{N} \\
\end{array}
\xrightarrow{\text{RNH}_2}
\begin{array}{c}
\text{NO}_2 \\
\text{O} \\
\text{CH}_3 \\
\text{N} \\
\end{array}
\]

2.1.7. Synthesis from Ureido-benzoic Acid
Here ureido-benzoic acids are synthesised from anthranilic acid with potassium cyanate by heating with acid /alkali.28

\[
\begin{array}{c}
\text{CO} \\
\text{NH}_2 \\
\text{R} \\
\end{array}
\xrightarrow{\text{KCN}O}
\begin{array}{c}
\text{O} \\
\text{R} \\
\end{array}
\]

2.1.8. From Phthalic Acid and its Derivatives
Phthalimide reacts with alkali hypobromite to form 1,2,3,4-tetrahydro-2,4-dioxoquinazoline.28

\[
\begin{array}{c}
\text{O} \\
\text{N} \\
\text{R} \\
\end{array}
\xrightarrow{\text{NaOBr}}
\begin{array}{c}
\text{N} \\
\text{O} \\
\text{R} \\
\end{array}
\]

3. Conclusion
Quinazoline, a hetero cyclic nucleus plays a critical role in the field of synthesis which often shows diversify biological activities. As a hetero cyclic moiety many drugs get synthesized and screened for their biological activity. Substituted quinazoline compounds shows a significant Pharmacological activity which has been shown in Table 1. Literature review suggested that soon quinazoline based drugs will rapidly become an important class of pharmaceuticals. It also estimated that, Modern Pharmaceutical industries are showing deep interest in the moiety for development of the novel process and predicted that it will soon available in global market due to its versatile spectrum of activities.
Table 1: Tabular description of some quinazolinone nucleus containing marketed drugs with pharmacological activity

S. No	Drugs	Activity	REF
1	Afloqualone	Sedative & Hypnotic, Anticancer Activity, Anti-anxiety	50,51
2	Chloroqualone	Sedative Activity & Antitussive Activity	29
3	Albaconazole	Antifungal Activity	30
4	Balaglitazone	PPAR- Gamma-agonist Activity, antidiabetic Activity	31
5	Diproqualone	Anxiolytic Activity, Analgesic, Antihistamine Activity & Used in Rheumatoid arthritis	32
6	Etaqualone	Anti-depressant Activity	29
7	Fluproquazone	Antipyretic activity, Used as NSAID	33,34
8	Halofuginone	Antitumor Activity, Used in Autoimmune disorders	35,36
9	Isaindigotone	Acetylcholinesterase Activity	37
10	Ispinesib	Anticancer Activity	38
11	Methaqualone	Hypnotic Activity	39
12	Nolatrexed	Anticancer Activity & Thymidylate synthase inhibitor Activity,	40
13	Pirqualone	Anticonvulsant Activity	41
14	Quinethazone	Antihypertensive Activity	42
15	Raltitrexed	Anticancer Activity	43
16	Tiacrilast	Antiallergic Activity	44
17	Rutaecarpine	Alzheimer Activity	45
18	Proquazone	NSAID Activity	46
19	Fabrifugine	Antimalarial Activity	47
20	Evodiamine	Anticancer	48
21	Fenquizone	Diuretic	49

4. Acknowledgement

The author(s) are thankful to the Management of Himalayan Institute of Pharmacy & Research, Dehradun, Uttarakhand for Providing support and necessary facilities.

5. Source of Funding

None.

6. Conflict of Interest

None.

References

1. He D. Pharmaceutical prospects of naturally occurring quinazolinone and its derivatives. *Fitoterapia*. 2017;119:136–49.
2. Kikuchi H. Synthesis of febrifugine derivatives and development of an effective and safe tetrahydroquinazoline-type antimalarial. *Eur J Med Chem*. 2014;76:10–9.
3. Armarego W. A text book of quinazolines; 1963.
4. Kavitha K, Yahoob N, Vijayakumar B, Fathima KR. Synthesis and Evaluation of Quinazolinone Derivatives. *Asian J Res Chem*. 2017;10(4):577–81.
5. Prasad O. Development of certain novel N-(2-(2-oxoindolin-3-ylidene) hydrazinecarbonyl)phényl)-benzamides and 3-(2-oxoindolin-3-ylideneamino)-2-substituted quinazolin-4(3H)-ones as CFM-1 analogs: design, synthesis, QSAR analysis and anticancer activity. *Eur J Med Chem*. 2015;92:191–201.
6. Mahdavi M. Synthesis and anticancer activity of N-sustituted-2-arylquinazolinonones bearing trans-stilbene scaffold. *Eur J Med Chem*. 2015;95:492–9.
7. Yin S. Design, synthesis and biological activities of novel oxazolo [4,5-g]quinazolin-2(1H)-one derivatives as EGFR inhibitors. *Eur J Med Chem*. 2015;101:462–75.
8. Zayed M, Hassan M. Design, Synthesis and Biological Evaluation Studies of Novel Quinazoline Derivatives as Cytotoxic Agents. *Drug Res*. 2013;63(04):210–5.
9. Armarego W. A text book of quinazolines; 1963.
10. Mistry B. Synthesis and antimicrobial activity of newer quinazolinones. *Eur J Med Chem*. 2006;15:293–4.
11. Pandey V. Synthesis and antiviral activity of quinazolinyl syndones. *Indian J Heterocycle Chem*. 2006;15:399–400.
12. Azab M. Synthesis, antimicrobial and anti-inflammatory activity of some new benzoaxazine and quinazoline candidates. *Chem Pharm Bull*. 2016;64(3):263–71.
13. Pawar P. Microwave assisted synthesis and analgesic screening of some thiazolyl quinazolines. *Int J Sci Dev Res*. 2019;4(9):179–96.
14. Mistry B. Synthesis and antimicrobial activity of newer quinazolinones. *E J Chem*. 2006;3(2):97–102.
15. Wang K. Studies on quinazolines and 1,2,4-benzothiadiazine 1,1-dioxides. 8.1,2 synthesis and pharmacological evaluation of tricyclic fused quinazolines and 1,2,4-benzothiadiazine-1,1-dioxides as potential alpha 1-adrenoceptor antagonists. *J Med Chem*. 1998;41(17):3128–41.
37. Chakraborty R. Implication of quinazolin-4(3H)-ones in medicinal chemistry: A Brief Review. *Journal of Chemical Biology & Therapeutics*. 2015;1(1):7.

38. Selvam TP, Kumar VA. Quinoline marketed drugs—A review. *Res Pharm*. 2011;11(1):1–21.

39. Rashmi A. Quinolinoline: An overview. *Int J Pharm*. 2011;2(12):22–8.

40. Niementowski SV. Synthesen von Chinazolverbindungen. *J Praktische Chem*. 1894;51(1):564–72.

41. Feldman JR, Wagner E. Some reactions of methane-bis-aminic as ammonia-aldehydes. *J Org Chem*. 1942;7:31–47.

42. Endicott MM, Wick E, Mercury ML, Sherrill ML. Quinazoline Derivatives.1 I. The Synthesis of 4-4′-Diethylamino-1′-methylbutyl-amino)-quinazoline (SN 11,534) and the Corresponding 2-Phenylquinazinoline (SN 11,535). *J Am Chem Soc*. 1946;68:1299–1301.

43. Grelard A. Efficient modified von niementowski. *Tetrahedron Lett*. 2001;42(38):6671–4.

44. Bénétane V, Besson T. Synthesis of novel pentacyclic pyrrolothiazolobenzoquinolinones, analogs of natural marine alkaloids. *Tetrahedron Lett*. 2001;42(14):2673–6.

45. Cossy J, Pale-Grosdemange C. Convenient synthesis of amide from carboxylic acids & primary amines. *Tetrahedron Lett*. 1989;30(21):2771–4.

46. Asif M. Chemical characteristics, synthesis methods, and biological potential of quinazoline and quinazoline derivatives. *Int J Med Chem*. 2014;p. 27. doi:10.1155/2014/395637.

47. Hebe EH. Synthesis of quinazoline and quinolinolone derivatives. *Praktische Chem* 1894;51(1):564–72.

48. Vijaykumar B, Prasanthi B. Quinazoline derivatives & pharmacological activities review. *Int J Med Chem Anal*. 2013;3(1):10–21.

49. Sorbela L. Alhacazonazole antifungal. *Drugs Future*. 2003;ISSN:529.

50. Henrikson K. A comparison of glycemic control, water retention, and musculoskeletal effects of baftaligatizone and pigtiglizatone in diet-induced obese rats. *Eur J Pharm Chem*. 2009;616:340–5.

51. Audeval B. Comparative study of diproqualone-ethenzamide versus gafenine for the treatment of rheumatic pain of gonarthrosis and coxarthrosis. *Gazette Medicale de France*. 1988;95:70–2.

52. Parmar S. Role of alky substitution in 2,3-disubstituted and 3-substituted 4-quinazolones on the inhibition of pyruvic acid oxidation. *J Med Chem*. 1969;12:138–41.

53. Moring W. Comparative study of fluperoxazone in the management of post-operative pain. *Arzneimittelforschung*. 1981;31:918–20.

54. Wheatley D. Analogic properties of fluperoxazone. *Rheumatol Rehabil*. 1982;21:98–100.

55. De MJ. Phase I and pharmacokinetic study of halofuginone, an oral quinazolinone derivative in patients with advanced solid tumours. *Eur J Cancer*. 2006;42:1768–74.

56. Sundrud MS, Koralov SB, Feurer M, Calado DP, Kozhaya AE, Rhule-Smith A, et al. Halofuginone Inhibits TH17 Cell Differentiation by Activating the Amino Acid Starvation Response. *Sci*. 2009;324(3932):1334–8.

57. Tan J. Isaindigotone derivatives: a new class of highly selective ligands for telomeric G-quadruplex DNA. *J Med Chem*. 2009;52:2825–35.

58. Blagden SP, Mollie LR, Seebaran A, Payne M, Reid AHM, Protheroe AS, et al. A phase I trial of ispinesib, a kinesin spindle protein inhibitor, with docetaxel in patients with advanced solid tumours. *Br J Cancer*. 2008;98(5):894–9.

59. Lee J. Bioavailability of methaqualone. *J Clin Pharmacol*. 1973;13:391–400.

60. Bowman A. A phase I study of the lipophilic thymidylate synthase inhibitor thymilaq (nolatrexed dihydrochloride) given by 10-day oral administration. *Br J Cancer*. 1999;79:915–20.

61. Minor K. Enhancement of benzodiazepine binding by methaqualone and related quinazolines. *Drug Dev Res*. 1986;7:255–68.

62. D K Sharma Professor, Director

Author biography

Jagmohan Singh Negi Student

Ajay Singh Bisht Associate Professor

D K Sharma Professor, Director

Cite this article: Negi JS, Bisht AS, Sharma DK. Chemistry and activity of quinazoline moiety: A systematic review study. *Int J Pharm Chem Anal* 2020;7(2):61-65.