Nitric Oxide and Depolarization Induce Hydroxyl Radical Generation

Toshio Obata*
Department of Pharmacology, Oita Medical University, Hasama-machi, Oita 879-5593, Japan
Received September 14, 2001

ABSTRACT—Nitric oxide (NO) contributes to the extracellular potassium-ion concentration ([K⁺]o)-induced hydroxyl radical (‘OH) generation. Cytotoxic free radicals such as peroxinitrite (ONOO⁻) and ‘OH may also be implicated in NO-mediated cell injury. NO is synthesized from L-arginine by NO synthase (NOS). NOS activation was induced by K⁺ depolarization. Oxidative modification of low-density lipoprotein (LDL) is thought to contribute to the production of oxygen derived-free radicals. However, LDL oxidation may be related to noradrenaline-induced ‘OH generation, but LDL oxidation may be unrelated to ‘OH generation via NOS activation. Abnormal levels of extracellular free dopamine (DA) and/or intraneuronal Ca²⁺ triggered by 1-methyl-4-phenylpyridinium ion (MPP⁺) may be detrimental to the functioning of dopaminergic nerve terminals in the striatum. Although [K⁺]o-induced depolarization enhances the formation of ‘OH products due to MPP⁺, the ‘OH generation via NOS activation may be unrelated to the DA-induced ‘OH generation. Depolarization enhances the formation of ‘OH products via NOS activation.

Keywords: Nitric oxide (NO), NO synthase, Depolarization, 1-Methyl-4-phenylpyridinium ion (MPP⁺), Free radical

1. Introduction

Endothelium, macrophages and brain synaptosome preparations have been shown to produce nitric oxide (NO) by oxidizing arginine by a calcium-activated NADPH-dependent enzyme (1, 2). NO is a free radical that regulates a variety of biological functions and also has a role of pathogenesis of cellular injury (3 – 5). NO is synthesized from L-arginine by NO synthase (NOS) (6). Highly reactive oxygen species (ROS) such as superoxide anion (O₂⁻) and hydroxyl radical (‘OH) cause excessive Na⁺ entry through the fast Na⁺ channel, leading to intracellular Ca²⁺ overload through the Na⁺-Ca²⁺ exchange system (7). Intracellular Ca²⁺ overload is then considered to cause cell death under physiological conditions such as ischemia/reperfusion injury (8, 9). The enzyme xanthine oxidase (XO) resulting from xanthine dehydrogenase during ischemia (10) is thought to be a potential source of O₂⁻. Although, O₂⁻ and NO are known to form the stable peroxinitrite (ONOO⁻) and its decomposition generates ‘OH, these ideas are still being discussed (11). Cytotoxic free radicals such as ONOO⁻ and ‘OH may also be implicated in NO-mediated cell injury (12). ROS damages biological membranes and cellular components, including DNA, resulting in cell death (13). This review will focus on the mechanism by which the increase in the extracellular potassium-ion concentration, [K⁺]o, via NOS activation affects the ‘OH generation.

2. Detection of hydroxyl radical

Owing to the ultrashort half-life of oxygen free radicals, demonstration of the generation of highly reactive oxidants was previously limited to in vitro studies. Free radicals from in vitro generation of ROS can be trapped and displayed unequivocally by electron paramagnetic resonance (EPR) spin trapping procedures. However, a practical use of EPR spectroscopy for in vivo detection of ROS in biological systems is quite difficult and remains to be improved. Attack of ‘OH radicals, generated by a Fenton system, on salicylate produces 2,3- and 2,5-dihydroxybenzoic acids (DHBA) as major products and catechol as a minor product (14, 15) (Fig. 1). It has been shown that ‘OH free radicals react with salicylate and generate 2,3- and 2,5-DHBA, which can be measured electrochemically in picomole quantity by high performance liquid chromatography with an electrical (HPLC-EC) procedure (16). The ‘OH adducts of salicylate, in particular, 2,5-DHBA, following administration of salicylate have been used as an index of ‘OH generation in heart and brain tissues during...
levels of extracellular free DA and/or intraneuronal Ca\(^{2+}\) triggered by MPP\(^{+}\) may be detrimental to the functioning of dopaminergic nerve terminals in the striatum. Release of catecholamines is introduced by depolarization (19). This Ca\(^{2+}\)-mediated DA release elicited by MPP\(^{+}\) was modified by pretreating with [K\(^{+}\)]\(_o\)-induced depolarization (24). Although the interaction between depolarization and NO remained obscure, NOS activation was induced by [K\(^{+}\)]\(_o\)-induced depolarization (25, 26). [K\(^{+}\)]\(_o\)-induced depolarization augmented MPP\(^{+}\) induced 'OH formation by NOS activation (24).

4. LDL oxidation and 'OH generation

Several experimental studies have shown that oxygen radical contributes to myocardial damage induced by ischemia/reperfusion (18, 27). It is well known that ischemia induces depolarization (28, 29). NO may mediate ischemia/reperfusion-induced 'OH generation via depolarization in ventricular muscle. NO is responsible for tissue damage during ischemia. l-NAME (N\(^{O}\)-nitro-l-arginine methyl ester, a NOS inhibitor) attenuated 'OH generation by ischemia/reperfusion of rat heart (30). It is known that l-NAME inhibits depolarization-induced NOS activation by Ca\(^{2+}\) influx through blockade of the Na\(^{+}\)-Ca\(^{2+}\) channel (26). Oxidative modification of low-density lipoprotein (LDL) is thought to contribute to the production of oxygen-derived free radicals (31). Oxidative LDL (Ox-LDL) may be important in neurotoxicity in the brain (32). It is well known that a 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor reduces the oxidizability of LDL (33). The inhibitory effect on the susceptibility of LDL oxidation can reduce 'OH formation. The blockage of LDL oxidation by fluvastatin (an inhibitor of LDL oxidation) can reduce 'OH generation. However, l-NAME did not affect noradrenaline-induced 'OH formation. Fluvastatin is associated with a cardioprotective effect due to the suppression of noradrenaline-induced 'OH formation by inhibiting LDL oxidation (Fig. 2) (34). LDL oxidation may be related to noradrenaline-induced 'OH generation, but LDL oxidation may be unrelated to 'OH generation via NOS activation.

5. NOS activation and MPP\(^{+}\)-induced 'OH generation in the striatum

Intracranial administration of MPP\(^{+}\) elicited an accumulation of Ca\(^{2+}\) (21). K\(^{+}\) depolarization enhances the formation of 'OH product due to MPP\(^{+}\) via NOS activation. If indeed the effect of KCl on 'OH formation is due to NO via ONOO\(^{-}\), [K\(^{+}\)]\(_o\)-induced depolarization may increase 'OH formation. NOS inhibition is associated with a protective effect due to suppression of K\(^{+}\) depolarization-induced 'OH generation. The 'OH was generated by the presence of NOS and O\(_2\). Depolarization-induced DA release is well
NO and 'OH Generation

Therefore, it is possible that endogenous release of DA after KCl stimulation in part contributes to the 'OH formation. Induction of high [K⁺], or DA significantly increased the MPP⁺-induced 'OH formation (24). However, the application of L-NAME abolished the [K⁺], depolarization-induced 'OH formation with MPP⁺, but L-NAME did not change the effect of DA. [K⁺] induced depolarization enhances the formation of 'OH products due to MPP⁺ via NOS activation (24). In accord with the reaction pathway in Fig. 3, 'OH was generated by the presence of NOS and O₂. Based on these studies, the 'OH generation via NOS activation may be unrelated to the DA-induced 'OH generation.

The toxic effects of MPTP are proposed to be mediated via an excessive production of NO (35). Inhibitors of neuronal NOS such as 7-nitroindazole (7-NI) were found to prevent MPTP-induced striata DA depletion and nigral

Fig. 2. The reaction pathway in rat heart illustrates the formation of hydroxyl radical by depolarization-induced NO. Abbreviations: NO, nitric oxide; NOS, nitric oxide synthase; L-NAME, N⁶-nitro-L-arginine methyl ester; XO, xanthine oxidase; O₂⁻, superoxide anion; 'OH, hydroxyl radical; MAO, monoamine oxidase; DOPGAL, 3,4-dihydroxyphenylglycolaldehyde; LDL, low-density lipoprotein. (Modified from ref. 34)

Fig. 3. The reaction pathway in rat brain illustrates the formation of hydroxyl radical by depolarization-induced NO. Abbreviations: NO, nitric oxide; XO, xanthine oxidase; O₂⁻, superoxide anion; 'OH, hydroxyl radical; MAO, monoamine oxidase; DOPAC, 3,4-dihydroxyphenylacetic acid; NOS, nitric oxide synthase L-NAME, N⁶-nitro-L-arginine methyl ester; MPP⁺, 1-methyl-4-phenylpyridinium ion. (Modified from ref. 24)
cell death (36, 37). In addition, 7-NI may react with O_2^- to generate ONOO $^ -$ (38) and ‘OH radicals (12). Di Monte et al. (39) strongly claimed that reduction of MPTP conversion into MPP$^+$ by inhibition of the extraneuronal B-form of the enzyme monoamine oxidase is a more important factor for the protection of 7-NI than the inhibition of neuronal NOS.

The controversy concerning the possible neurotoxic (40) and/or neuroprotective role of NO in cell cultures has been discussed (41). Chronic or high-dose administration of d-amphetamine elicits NO formation in the striatum of rats and striatal dopaminergic terminal damage ensues (42). Neuronal NOS inhibitors may be useful in the treatment of neurologic diseases in which excitotoxic mechanisms play a role (43). A synthetic nonsteroidal antioestrogen inhibits NOS, leading to interference with consecutive NOS-dependent formation of NO and/or O_2^- in various tissues (44). Rats that lack inducible NOS are resistant to the MPTP-induced decrease in tyrosine hydroxylase-positive neurons, but show no change in DA-depletion. In contrast, glutathione peroxide-homozygote deficient mice and vesicular monoamine transporter 2-heterozygotes showed enhanced MPTP neurotoxicity (45, 46).

6. Conclusion

NO is a free radical that regulates a variety of biological functions and the pathogenesis of cellular injury. NO mediates ischemia/reperfusion-induced ‘OH generation via depolarization in ventricular muscle. The ‘OH was generated by the presence of NOS and O_2^-; NOS inhibition is associated with a protective effect due to suppression of [K^+]-depolarization-induced ‘OH generation. The ‘OH generation via NOS activation may be unrelated to the ‘OH generation by catecholamine.

Acknowledgments

I am thankful to Prof. Hiroyuki Takaoka (Department of Infectious Disease Control, Oita Medical University) and Prof. Masahiro Aomine (Division of Nutritional Physiology, Graduate School of Health and Nutrition Science, Nakamura Gakuen University) for their valuable discussions.

REFERENCES

1 Palmer RM, Ashton DS and Moncada S: Vascular endothelial cells synthesize nitric oxide from l-arginine. Nature 333, 664 – 666 (1988)
2 Knowles RG, Palacios M, Palmer RM and Moncada S: Formation of nitric oxide from l-arginine in the central nervous system: a transduction mechanism for stimulation of the soluble guanylate cyclase. Proc Natl Acad Sci USA 86, 5159 – 5162 (1989)
3 Zweier JL, Wang P, Samoulis A and Kuppusamy P: Enzyme-independent formation of nitric oxide in biological tissues. Nature Med 1, 804 – 809 (1995)
4 Varin R, Mulder P, Richard V, Tamion F, Devaux C, Henry JP, Lallemant F, Lerebours G and Thuillez C: Exercise improves flow-mediated vasodilation of skeletal muscle arteries in rats with chronic heart failure. Role of nitric oxide, prostanoids, and oxidant stress. Circulation 99, 2951 – 2957 (1999)
5 Xu KY, Huso DL, Dawson TM, Bredt DS and Becker LC: Nitric oxide synthase in cardiac sarcoplasmic reticulum. Proc Natl Acad Sci USA 86, 657 – 662 (1999)
6 Comini L, Bachetti T, Gaia G, Pasini E, Agnoletti L, Pepi P, Cecconi C, Curello S and Ferrari R: Aorta and skeletal muscle NO synthase expression in experimental heart failure. J Mol Cell Cardiol 28, 2241 – 2248 (1996)
7 Ver Donck L and Borgers M: Myocardial protection by R 56865: a new principle based on prevention of ion channel pathology. Am J Physiol 266, H903 – H908 (1991)
8 Farber L: Biology of disease: membrane injury and calcium homeostasis in the pathogenesis of coagulative necrosis. Lab Invest 47, 114 – 123 (1982)
9 Tani M: Mechanisms of Ca$^{2+}$ overload in reperfused ischemic myocardium. Ann Rev Physiol 52, 543 – 559 (1990)
10 McCord JM: Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 312, 159 – 163 (1985)
11 Darley-Usmar V, Wiseman H and Halliwell B: Nitric oxide and oxygen radicals: a question of balance. FEBS Lett 369, 131 – 135 (1995)
12 Beckman JS, Beckman TW, Chen J, Marshall PA and Freeman BA: Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87, 1620 – 1624 (1990)
13 Cosi C and Marien M: Implication of poly (ADP-ribose) polymerase (PARP) in neurodegeneration and brain energy metabolism. Decreases in mouse brain NAD$^+$ and ATP caused by MPTP are prevented by the PARP inhibitor benzamid. Ann NY Acad Sci 890, 227 – 239 (1999)
14 Halliwell B, Kaur H and Inglemann-Sundberg M: Hydroxylation of salicylate as an assay for hydroxyl radicals: a cautionary note. Free Radic Biol Med 10, 439 – 441 (1991)
15 Grootveld M and Halliwell B: Aromatic hydroxylation as a potential measure of hydroxyl-radical formation in vivo. Identification of hydroxylated derivatives of salicylate in human body fluids. Biochem J 237, 499 – 504 (1986)
16 Floyd RA, Watson JJ and Wong PK: Sensitive assay of hydroxyl free radical formation utilizing high pressure liquid chromatography with electrochemical detection of phenol and salicylate hydroxylation products. J Biochem Biophys Methods 10, 221 – 235 (1984)
17 Powell SR and Hall D: Use of salicylate as a probe for ‘OH formation in isolated ischemic rat hearts. Free Radic Biol Med 9, 133 – 141 (1990)
18 Obata T, Hosokawa H and Yamanaka Y: In vivo monitoring of norepinephrine and ‘OH generation on myocardial ischemic injury by dialysis technique. Am J Physiol 266, H903 – H908 (1994)
19 Hill JL and Gettes LS: Effect of acute coronary artery occlusion on local myocardial extracellular K$^+$ activity in swine. Circulation 61, 768 – 778 (1980)
20 Malik KU and Sehic E: Prostaglandins and the release of the adrenergic transmitter. Ann NY Acad Sci 604, 222 – 236 (1990)
21 Sun CJ, Johannessen JN, Gessner W, Namura I, Singhaniyom W, Brossi A and Chiueh CC: Neurotoxic damage to the nigrostriatal system in rats following intranigral administration of
MPDP⁺ and MPP⁺. J Neural Transm [Gen Sect] 74, 75 – 86 (1988)
22 Ozaki N, Nakahara D, Kaneda N, Kiuchi K, Okada T, Kasahara Y and Nagatsu T: Acute effects of 1-methyl-4-phenylpyridinium ion (MPP⁺) on dopamine and serotonin metabolism in rat striatum as assayed in vivo by a microdialysis technique. J Neural Transm 70, 241 – 250 (1987)
23 Rollema H, Kuhr WG, Kranenborg G, De Vries J and Van den Berg C: MPP⁺-induced efflux of dopamine and lactate from rat striatum have similar time courses as shown by in vivo brain dialysis. J Pharmacol Exp Ther 245, 858 – 866 (1988)
24 Obata T and Yamanaka Y: Nitric oxide enhance MPP⁺-induced hydroxyl radical generation via depolarization activated nitric oxide synthase in rat striatum. Brain Res 902, 223 – 228 (2001)
25 Oka M, Itoh Y, Ukai Y and Kimura K: Blockade by NS-7, a neuroprotective compound, of both L-type and P/Q-type Ca²⁺-channels involving depolarization-stimulated nitric oxide synthase activity in primary neuronal culture. J Neurochem 72, 1315 – 1322 (1999)
26 Tatsumi S, Itoh Y, Ma FH, Higashihara H, Ukai Y, Yoshikuni Y and Kimura K: Inhibition of depolarization-induced nitric oxide synthase activation by NS-7, a phenylpyrimidine derivative, in primary neuronal culture. J Neurochem 70, 59 – 65 (1998)
27 Karmazyn M: Contribution of prostaglandins to reperfusion-induced ventricular failure in isolated rat heart. Am J Physiol 251, H133 – H140 (1986)
28 Seyedi N, Win T, Lander HM and Levi R: Bradykinin B₂-receptor activation augments norepinephrine exocytosis from cardiac sympathetic nerve endings. Mediation by autocrine/paracrine mechanisms. Circ Res 81, 774 – 784 (1997)
29 Snabaitis AK, Shattock MJ and Chambers DJ: Comparison of polarized and depolarized arrest in the isolated rat heart for long-term preservation. Circulation 96, 3148 – 3156 (1997)
30 Obata T and Yamanaka Y: Nitric oxide induce hydroxyl radical generation in rat striatum via depolarization-induced nitric oxide synthase activation. Naunyn Schmiedebergs Arch Pharmacol 364, 59 – 65 (2001)
31 Sugawa M, Ikeda S, Kushima Y, Takashima Y and Cynsho O: Oxidized low density lipoprotein caused CNS neuron cell death. Brain Res 761, 165 – 172 (1997)
32 Kalyanaraman B, Feix JB, Sieber F, Thomas JP and Girotti AW: Photodynamic action of merocyanine 540 on artificial and natural cell membranes: involvement of singlet molecular oxygen. Proc Natl Acad Sci USA 84, 2999 – 3003 (1987)
33 Kurokawa J, Hayashi K, Toyota Y, Shingu T, Shiomi M and Kajiyama G: High dose of fluvastatin sodium (XU62-320), a new inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase, lowers plasma cholesterol levels in homozygous Watanabe-heritable hyperlipidemic rabbits. Biochim Biophys Acta 1259, 99 – 104 (1995)
34 Obata T, Ebihara A and Yamanaka Y: Effect of fluvastatin, an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase, on nitric oxide-induced hydroxyl radical generation in the rat heart. Biochim Biophys Acta 1536, 55 – 63 (2001)
35 Spina MB and Cohen G: Dopamine turnover and glutathione oxidation: implications for Parkinson’s disease. Proc Natl Acad Sci USA 86, 1398 – 1400 (1989)
36 Hantraye P, Brouillet E, Ferrante R, Palfi S, Dolan R, Matthews RT and Beal MF: Inhibition of neuronal nitric oxide synthase prevents MPTP-induced parkinsonism in baboons. Nat Med 2, 1017 – 1021 (1996)
37 Matthews RT, Yang L and Beal MF: S-Methylthiocitrulline, a neuronal nitric oxide synthase inhibitor, protects against malonate and MPTP neurotoxicity. Exp Neurol 143, 282 – 286 (1997)
38 Beckman JS, Ischiropoulos H, Zhu L, van der Woerd M, Smith C, Chen J, Harrison J, Martin JC and Tsai M: Kinetics of superoxide dismutase- and iron-catalyzed nitration of phenolics by peroxynitrite. Arch Biochem Biophys 298, 438 – 445 (1992)
39 Di Monte DA, Royland JE, Anderson A, Castagnoli K, Castagnoli N Jr and Langston JW: Inhibition of monoamine oxidase contributes to the protective effect of 7-nitroindazole against MPTP neurotoxicity. J Neurochem 69, 1771 – 1773 (1997)
40 Dawson VL, Dawson TM, Bartley DA, Uhl GR and Snyder SH: Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures. J Neurosci 13, 2651 – 2661 (1993)
41 Vidwans AS, Kim S, Coffin DO, Wink DA and Hewett SJ: Analysis of the neuroprotective effects of various nitric oxide donor compounds in murine mixed cortical cell culture. J Neurochem 72, 1843 – 1852 (1999)
42 Lin HC, Kang BH, Wong CS, Mao SP and Wan FJ: Systemic administration of d-amphetamine induced a delayed production of nitric oxide in the striatum of rats. Neurosci Lett 276, 141 – 144 (1999)
43 Schulz JB, Matthews RT, Klockgether T, Dichgans J and Beal MF: The role of mitochondrial dysfunction and neuronal nitric oxide animal models of neurodegenerative diseases. Mol Cell Biochem 174, 193 – 197 (1997)
44 Renodon A, Boucher JL, Sari MA, Delaforgé M, Quazzani J and Mansuy D: Strong inhibition of neuronal nitric oxide synthase by the calmodulin antagonist and anti-estrogen drug tamoxifen. Biochem Pharmacol 54, 1109 – 1114 (1997)
45 Takahashi N, Miner LL, Sora I, Ujike H, Revay RS, Kostic V, Jackson-Lewis V, Przedborski S and Uhl GR: VMAT2 knockout mice: heterozygotes display reduced amphetamine-conditioned reward, enhanced amphetamine locomotion, and enhanced MPTP toxicity. Proc Natl Acad Sci USA 94, 9938 – 9943 (1997)
46 Klivenyi P, Andreassen OA, Ferrante RJ, Dedegolu A, Mueller G, Lancelet E, Bogdanov M, Andersen JK, Jiang D and Beal MF: Mice deficient in cellular glutathione peroxidase show increased vulnerability to malonate, 3-nitropropionic acid, and 1-methyl-4-phenyl-1,2,5,6-tetrahydrodipyridine. J Neurosci 20, 1 – 7 (2000)