Roles for Transforming Growth Factor-α in Gastric Physiology and Pathophysiology

ROBERT J. COFFEY, M.D., MARCO ROMANO, M.D., WILLIAM H. POLK, M.D., AND PETER J. DEMPSEY, Ph.D.

Department of Medicine and Cell Biology, Vanderbilt University, Nashville, Tennessee

Received September 8, 1992

Transforming growth factor α (TGFα) is a 5.6 kD single-chain polypeptide that acts through binding to the epidermal growth factor receptor (EGFR). TGFα is produced in a wide range of normal as well as embryonic and neoplastic cells and tissues. TGFα and EGFR, but not EGF, are expressed in normal gastric mucosa. We have identified the following biological roles for TGFα in the stomach, using a variety of primate and rodent models: inhibition of acid secretion; stimulation of mucous cell growth; protection against ethanol- and aspirin-induced injury. This last effect is associated with a time- and dose-dependent increase in levels of insoluble gastric mucin.

Based on these known biological actions of TGFα, we have examined TGFα production in Ménétrier's disease, a disorder characterized by foveolar hyperplasia, hypochlorhydria, and increased gastric mucin content. In four patients with Ménétrier's disease, there was enhanced TGFα immunostaining throughout the gastric mucosa. Furthermore, metallothionein (MT)-TGFα transgenic mice which overproduce TGFα in the stomach exhibit histopathological and biochemical features characteristic of and consistent with the diagnosis of Ménétrier's disease. Thus locally produced TGFα may mediate a number of biological processes in the stomach, and its altered production may participate in the pathogenesis of selected pathological states.

INTRODUCTION

The purpose of this article is to review work, in large part from this laboratory, on the role of TGFα in selected aspects of gastric physiology, and its apparent dysregulation in Ménétrier's disease. Before doing so, we will summarize recent advances in the study of TGFα and attempt to place this peptide into the context of EGF and other EGF-like molecules, with special emphasis on the gastrointestinal tract. This review is not intended to be comprehensive and in part will be highly speculative.

BACKGROUND

Discovery of Transforming Growth Factors

Transforming growth factors (TGFs) were first identified in 1978 in medium conditioned by fibroblasts transformed by the Rous sarcoma virus [1]. Addition of this partially purified material to normal fibroblasts caused the reversible appear-
ance of a malignant (transformed) phenotype. Consequently, the protein was named transforming growth factor. Later it was shown that this transforming activity was composed of two distinct proteins, now designated TGFα and TGFβ [2]. It was postulated that TGFα functioned in an autocrine manner and that overexpression of this protein might contribute to malignant transformation [3]. Since TGFα was also observed in embryonic cells and tissues [4,5], it was suggested that TGFα was an embryonic growth factor inappropriately expressed in neoplasia.

Structure of the TGFα Gene and Protein

The human TGFα gene spans 70–100 kb on chromosome 2 and contains six exons [6,7]. The 4.5–4.8 kb TGFα mRNA transcript encodes a 160 amino acid peptide, which is schematically depicted in Fig. 1. A signal peptide in the amino terminus is presumably cleaved prior to exit from the cell. N- and O-linked glycosylation sites are indicated by the asterisks. The 50 amino acid polypeptide is produced by proteolytic cleavage of the ALA VAL VAL residues that flank either end of the mature molecule. Six cysteine residues in the mature peptide form three disulfide bridges. There is a hydrophobic transmembrane region followed by an intracellular cytoplasmic tail with seven cysteine residues, some of which are covalently linked to palmitate [8].

The reported sizes of the TGFα protein range from 5 to 20 kd. This variation may reflect differential glycosylation and proteolytic cleavage, as well as dimerization and the presence of binding proteins. Possible distinct biological roles of TGFα forms of higher molecular weight have not been explored. In a number of TGFα expressing cell lines, the protein is detected in cell extracts but not in the conditioned medium [9]. The biological significance of this observation has been explored in parallel by two independent groups [10,11]. The arrows in Fig. 1 indicate sites of mutation engineered by these investigators that result in membrane fixation of TGFα. These mutated forms of TGFα are able to activate epidermal growth factor (EGF) receptors on neighboring cells. This observation has important implications for the actions of TGFα; e.g., this cell-cell stimulation (“juxtacrine” stimulation) might play a role in developmental processes that depend on discrete cell-cell interactions, or it might target proTGFα expressing cells to tissue sites rich in EGFR [12,13]. There is
increasing evidence that local production/processing of TGFα may confer biological consequences distinct from systemic delivery/exogenous administration of the growth factor [14].

The EGF/TGFα Receptor

There is 35 percent structural identity between TGFα and EGF; however, all six cysteine residues are conserved, and formation of three disulfide bridges imparts sufficient structural identity for both peptides to bind to the epidermal growth factor receptor (EGFR) [15]. The EGFR is a 170 kd protein that consists of a cell surface ligand receptor domain, a single hydrophobic transmembrane segment, and a highly conserved cytoplasmic tyrosine kinase domain. Binding of EGF or TGFα to the receptor initiates a complex program of activation of intrinsic kinase activity, increases in cytosolic calcium, and ultimately DNA synthesis and cellular growth. In addition, clustering and dimerization of receptors occurs with binding of ligand to cell surface receptor, followed by internalization and degradation of the ligand/receptor complexes within lysosomes. A 65 amino acid cytoplasmic stretch of the EGFR has been identified, one that mediates the increase in cytoplasmic calcium and ligand/receptor internalization (the CAIN domain) [16]. Activation of the EGFR tyrosine kinase appears to be necessary for subsequent biological activity. An active area of research is identification of substrates for this tyrosine kinase; activation of phospholipase C-γ 1 appears to be a promising candidate [17,18].

Cellular Distribution of TGFα

TGFα expression is clearly not restricted to the embryonic and neoplastic state. We were the first to demonstrate that TGFα is produced in vitro and in vivo by a non-transformed epithelial cell, human keratinocytes [19]. Subsequently, production of TGFα has been detected in a wide range of normal cells and tissues, including activated macrophages [20], mammary epithelium [21,22], and gastrointestinal tissues [23–28]. In the rat small intestine, epithelial cells eluted from the jejunal crypt-villus axis expressed TGFα mRNA at twofold higher levels in the villus tip than in the crypt, and immunostaining for TGFα showed uniform immunoactivity in the villus cells, whereas crypt cells did not stain [27]. Localization of TGFα in this post-mitotic, differentiated compartment may have important implications for its mode of action (see below). Production of TGFα in the stomach also will be discussed in more detail below.

It should be noted that the examples cited above represent cells and tissues in which TGFα mRNA, as well as protein, have been detected, thus reflecting true local synthesis rather than delivery from a remote site. Since EGF is expressed by a selective population of normal cells and tissues (e.g., salivary gland, Brunner’s gland, kidney), the widespread production of TGFα has led us to suggest that in vivo TGFα, and not EGF, is the major ligand for the EGFR. This statement must be qualified by certain caveats. First, Wright’s group has demonstrated that a novel cell lineage produces EGF in the chronically injured gastrointestinal tract [29]. Second, Snedeker and co-workers have shown that both TGFα and EGF are expressed in the developing mouse mammary gland but are restricted to different compartments; TGFα co-localizes with EGFR to the proliferative terminal end bud compartment, whereas EGF resides at the luminal surface, where it might play a role in fluid transport and/or milk secretion [30]. Third, additional members of the EGF/TGFα
family have been identified (see below), and certain of these ligands may be as widely expressed as TGFα.

Family of TGFα/EGF Ligands and Receptors

Figure 2 lists the family of TGFα ligands and receptors. EGF and EGFR were the first to be characterized [15]. Two additional receptors with homology to EGFR have been identified, erbB-2 and erbB-3 [31,32]. Of interest is the fact that a 44 kd glycoprotein designated neu differentiation factor (NDF) has been purified to homogeneity from ras-transformed rat cells and appears to be a ligand for erbB-2 [33]; this glycoprotein may be the rat homologue of a 45 kd protein heregulin-α that has been purified from the conditioned medium of a human breast cancer cell line (MDA-MB-231), cloned, and sequenced [34]. Addition of NDF to mammary epithelial cells results in a differentiated phenotype [35]. No ligand for erbB-3 has been identified thus far.

There is an expanding number of members of the TGFα family of ligands. These share structural similarities, including the conservation of six cysteines of the EGF motif which, in EGF, are involved in the three disulfide bonds defining the tertiary structure and conferring the ability to bind the EGFR. With the exception of cripto (for which recombinant peptide is not yet available), these family members have been shown to bind the EGFR. The best characterized of these ligands are EGF, TGFα, and amphiregulin (AR), whose structures are shown in Fig. 3. The disulfide bonds formed between cysteines 1 and 3, 2 and 4, and 5 and 6 result in formation of three loops that provide the backbone structure to these molecules. AR was initially cloned from TPA-induced MCF-7 cells [36,37]; more recently, it has been isolated from conditioned medium of human keratinocytes [38], in which, like TGFα, it appears to act as an autocrine growth factor. Newer members of the EGF/TGFα family which have not been as well characterized include heparin binding (HB)-EGF and cripto. HB-EGF was cloned from human macrophages [39], and cripto was identified initially in a human teratocarcinoma cell line [40].

Production of TGFα, AR, and cripto has been examined in gastrointestinal neoplasia. In contrast to TGFα, production of AR and cripto appears to be more consistently elevated in gastrointestinal neoplasms relative to normal gastrointestinal epithelium. Salomon and co-workers have observed AR expression in normal
colonic epithelium, but cripto expression was restricted to neoplastic tissue [41]. We have observed AR expression to be consistently enhanced in gastric and colonic carcinoma relative to adjacent normal epithelium; the expression is confined to the epithelial versus stromal elements by in situ hybridization [42]. TGFα expression was variable in intensity between normal epithelium and carcinoma. It should be noted, however, that enhanced expression of AR is not restricted to neoplasia, as it was also increased in the involved skin of patients with psoriasis [42].

Biological Actions of TGFα

The biological actions of TGFα and EGF have been reviewed recently in detail [15]. These peptides share a similar spectrum of activity, since both peptides activate the same receptor. Shared properties that are of potential importance to the gastrointestinal tract include stimulation of cellular proliferation [15], cell migration [43,44], angiogenesis [45], and arterial blood flow [46], as well as inhibition of gastric acid secretion [47]. Quantitative differences in activity have been reported. For example, TGFα is more potent in stimulation of calcium release from fetal long bones [48]. Also, TGFα is more potent in stimulating regional arterial blood flow in dogs; pre-treatment with EGF or TGFα desensitizes the vascular response to EGF but not to TGFα [46]. No explanation for these differences in biological activity has been reported; however, differential processing or degradation of ligand-receptor complexes exist as possible mechanisms [49-51]. A final point to emphasize is that these polypeptides clearly subserve functions other than growth.

TGFα IN THE STOMACH

Localization Studies and Role in Acid Regulation

Identification of TGFα expression in human keratinocytes spurred us to examine a battery of normal cells and tissues for TGFα production. TGFα mRNA expression was detected in the scraped gastric mucosa of a number of species, including human, dog, guinea pig [26], and rat [Coffey RJ: personal observation]. To further localize TGFα production in the gastric mucosa, guinea pig gastric mucosa was separated into a 65 percent pure parietal cell fraction and 95 percent pure chief cell fraction by
the differential centrifugation method of Kaufman et al. [52]. The 4.8 kb TGFα transcript was greatest in the parietal cell fraction (5.8-fold increase), but was also enhanced in the chief cell fraction (1.9-fold increase) relative to the unfractionated gastric mucosa. Like TGFα expression, EGFR mRNA expression was most intense in the parietal cell-enriched fraction (7.8-fold increase), but was also increased in the chief cell-enriched fraction (2.7-fold increase) relative to the unfractionated guinea pig gastric mucosa [52].

These studies have been extended by examination of TGFα immunohistochemical staining in the normal human adult gastric mucosa [53]. At the light microscopic level, TGFα immunoreactivity is greater in the fundus than the antrum. Within the fundus, TGFα immunoreactivity is most concentrated in parietal cells, although other cell populations exhibit immunostaining, including surface mucous cells. Furthermore, both TGFα (by radioimmunoassay) and EGFR (by Western blot analysis) have been detected in H+, K+-ATPase-enriched fractions of human gastric mucosal membranes [Coffey RJ, Goldenring JR: unpublished observation]. In addition, a 2.7-fold increase in immunoreactive TGFα released into gastric secretions was observed over basal levels following pentagastrin administration to three normal volunteers (142 ± 16 pg/minute basal versus 382 ± 168 pg/minute post-pentagastrin). In a separate study, extremely low basal immunoreactive TGFα levels (13 ± 9 pg/minute) were detected in human saliva, which further decreased after pentagastrin administration. Furthermore, we have previously shown that pre-treatment with TGFα in isolated rabbit parietal cells results in a dose-dependent reduction of histamine-stimulated, but not acetylcholine-stimulated [14C-aminopyrine uptake] [54]. These studies have led us to suggest an autocrine/intracrine role for TGFα in the modulation of gastric acid secretion. A tentative model is as follows: TGFα functionally binds to its receptor in tubulovesicles of quiescent parietal cells to suppress basal acid production; parietal cell activation by secretagogues results in fusion of tubulovesicles to the canalculus, activation of H+, K+-ATPase and acid production, a process which would dissociate TGFα from its receptor and lead to its release into the gastric lumen. The net effect would be to augment acid production by removal of this acid inhibitory factor. Additional studies are under way to test the validity of this highly speculative model.

Mitogenic Effect of TGFα in the Stomach

TGFα has been shown to be mitogenic for cultured canine fundic epithelial cells [55]. In collaborative studies with Michael Rutten, we have shown that TGFα is a potent mitogen for cultured guinea pig gastric mucous cells [56]. In fact, recombinant human TGFα is at least tenfold more potent than recombinant human EGF in stimulating the growth of these cells under serum-free conditions. Since these cultured cells express a 4.8 kb TGFα transcript and have detectable TGFα binding sites [Rutten MJ, Coffey RJ: unpublished observation], the elements are present for a TGFα autocrine loop in the growth of these cells.

Role of TGFα in Gastric Injury

There is an orderly temporal sequence of reparative events following acute gastric injury. Repair of superficial epithelial cell loss, a process that is dependent on cell migration, begins within five minutes of acute injury and is nearly complete within one hour. Deeper mucosal erosions may persist for five days after acute injury and
require DNA synthesis for repair. Since TGFα mediates cell migration and is a mitogen for a number of epithelial cells (including gastric mucous cells), we postulated that TGFα might be upregulated following acute gastric injury so as to participate in the subsequent reparative events. After orogastric administration of both acidified sodium taurocholate and hydrochloric acid to induce acute gastric injury in rats, enhanced TGFα expression was observed by Northern blot analysis of mRNA isolated from scraped gastric mucosa [57]. In the taurocholate model, there was a dose-dependent increase in TGFα mRNA expression four hours after orogastric administration of 5, 15, and 30 mM taurocholate. At the 30 mM dose, a 1.3-fold increase in TGFα mRNA expression was observed at one hour, increasing to 2.6-fold at six hours, and returning to baseline at 24 hours. More striking was a tenfold increase in levels of immunoreactive TGFα in the gastric juice 30 minutes after administration of hydrochloric acid. This rapid appearance of TGFα probably represents release of a biologically active transmembrane form of TGFα. Thus production of TGFα is enhanced in a time frame consistent with its participation in subsequent reparative events, although these observations certainly do not prove that TGFα acts in this manner.

In an additional set of experiments, we studied whether TGFα was protective to the gastric mucosa against acute ethanol- and aspirin-induced injury [58]. Systemic administration of TGFα dose-dependently decreased 100 percent ethanol-induced gastric mucosal injury; an intraperitoneal dose of 50 μg/kg delivered 15 minutes prior to ethanol decreased macroscopic mucosal injury by greater than 90 percent. At the microscopic level, TGFα significantly prevented deep gastric necrotic lesions and reduced disruption of surface epithelium. Pre-treatment with orogastric TGFα (200 μg/kg) only partially (40 percent) decreased macroscopic ethanol damage. Intraperitoneal administration of TGFα at a dose of 10 μg/kg, which does not significantly inhibit gastric acid secretion, decreased aspirin (200 mg/kg)-induced macroscopic damage by greater than 80 percent. Thus TGFα is truly cytoprotective, as it protects against acid-independent and acid-dependent forms of acute gastric injury. TGFα protection did not seem to be mediated by prostaglandin, glutathione, or ornithine decarboxylase-related events, as evidenced by lack of influence of the inhibition of their production. Pre-treatment with the sulfhydryl blocking agent N-ethylmaleimide partially abolished (40 percent) the protective effect of TGFα.

In addition, systemic administration of TGFα resulted in a time- and dose-dependent increase in levels of immunoreactive gastric mucin. Gastric mucin was measured in lightly scraped gastric mucosa by a reverse enzyme-linked immunoabsorbent assay (ELISA) with an antibody that recognizes biologically active, insoluble gastric mucin [59]. Fifteen and 30 minutes following intraperitoneal administration of 100 μg/kg of TGFα, there was, respectively, a 7.3- and 14.6-fold increase in levels of gastric mucin, which corresponds to the timing of TGFα-induced mucosal protection. The role of gastric mucus as a protective barrier for the gastric mucosa is, however, controversial [60–63]. Adherent mucus is reported to be permeable to damaging agents such as ethanol and aspirin [63], which gain access through the gel to the superficial epithelial cells. On the other hand, removal of the gelatinous layer of mucus in cellular debris which formed after exposure of the gastric mucosa to 70 percent ethanol inhibited the protection against a rechallenge with the same necrotizing agent [64]. We postulate that the TGFα-induced increase in the adherent mucous gel layer covering the epithelial surface may act as a dilutional barrier to
damaging agents, may delay and/or restrict further damage induced by acid pepsin, and may accelerate early reparative events. An alternative mechanism by which mucin might protect the gastric mucosa is through its ability to scavenge toxic oxygen metabolites [65], which are generated by ethanol and aspirin [66]. The rapid increase in mucin levels is probably due to release of pre-formed mucin. Studies are under way to examine the effect of TGFα on rat gastric mucin mRNA expression and protein production.

Upregulation of TGFα in Ménétrier’s Disease

Ménétrier's disease is an uncommon disorder characterized by enlarged gastric folds with foveolar hyperplasia and glandular cystic dilatation [67–72]. Biochemical features that are seen frequently include hypoproteinemia, hypochlorhydria, and increased gastric mucin content. From the cumulative results of several small series, it has been reported that there is a 10–15 percent incidence of gastric cancer in patients with Ménétrier’s disease [70], but its exact incidence is uncertain, since the disease is rare, and few patients have been followed prospectively. The etiology of this disorder is unknown. Since TGFα stimulates the growth of gastric mucous cells, inhibits gastric acid secretion, and increases gastric mucin content, we speculated that its overproduction might be involved in a pathogenesis of this disorder. Therefore, we characterized TGFα immunostaining in the gastric mucosa of four patients with Ménétrier’s disease [53]. In contrast to the normal pattern of TGFα immunostaining, in which TGFα appears most concentrated in parietal cells, there was intense staining in the majority of mucous cells (Fig. 4). In one patient, from
whom sufficient fresh tissue was obtained to isolate RNA, expression of TGFα and EGF was increased in the gastric mucosa relative to a normal volunteer.

In addition, metallothionein (MT)-TGFα transgenic mice, which overexpress TGFα in the gastric mucosa, exhibit a number of features characteristic of and consistent with the diagnosis of Ménétrier's disease, including foveolar hyperplasia and glandular cystic dilatation, increased gastric neutral mucin staining, and reduced basal and histamine-stimulated rates of acid production [53]. Our findings of enhanced TGFα immunostaining in the gastric mucosa of four patients with Ménétrier's disease (with increased TGFα in mRNA expression in one patient), coupled with the histological lesions and altered functional characteristics in the stomachs of MT-TGFα transgenic mice, provide compelling evidence for a role for TGFα (or, more generally, an EGFR-linked signal transduction pathway) in the pathogenesis of Ménétrier's disease.

SUMMARY

In this brief manuscript, we have attempted to provide the reader with a historical perspective of TGFα, with particular emphasis on its possible roles in normal gastric physiology and how its overproduction in Ménétrier's disease might contribute to the pathogenesis of this disorder.

REFERENCES

1. DeLarco JE, Todaro GJ: Growth factors from murine sarcoma virus-transformed cells. Proc Natl Acad Sci USA 75:4001–4005, 1978
2. Roberts AB, Sporn MB: The transforming growth factor-betas. In Handbook of Experimental Pharmacology, Peptide Growth Factors and Their Receptors I. Edited by MB Sporn, AB Roberts. Berlin, Germany, Springer-Verlag, 1990, pp 419–472
3. Sporn MB, Todaro GJ: Autocrine secretion and malignant transformation of cells. N Engl J Med 303:878–880, 1980
4. Twardzik DR, Ranchalis JE, Todaro GJ: Mouse embryonic transforming growth factors related to those isolated from tumor cells. Cancer Res 42:590–593, 1982
5. Wilcox JN, Derynck R: Developmental expression of transforming growth factors alpha and beta in mouse fetus. Mol Cell Endocrinol 8:3415–3422, 1988
6. Derynck R, Roberts AB, Winkler ME, Chen EY, Goeddel DV: Human transforming growth factor-α: Precursor structure and expression in E. coli. Cell 38:287–297, 1984
7. Derynck R: Transforming growth factor α. Cell 54:593–595, 1988
8. Bringman TS, Lindquist PB, Derynck R: Different transforming growth factor-α species are derived from a glycosylated and palmitoylated transmembrane precursor. Cell 48:429–440, 1987
9. Derynck R, Goeddel DV, Ullrich A, Gutterman JU, Williams RD, Brigman TS, Berger WH: Synthesis of messenger RNAs for transforming growth factors α and β and the epidermal growth factor receptor by human tumors. Cancer Res 74:707–712, 1987
10. Brachmann R, Lindquist PB, Nagashima M, Kohr W, Lipari T, Napier M, Derynck R: Transmembrane TGF-α precursors act as EGF/TGF-α receptors. Cell 56:691–700, 1989
11. Wong ST, Winchell LF, McCune BK, Earp HS, Teixido J, Massague J, Herman B, Lee DC: The TGF-α precursor expressed on the cell surface binds to the EGF receptor on adjacent cells, leading to signal transduction. Cell 56:495–506, 1989
12. Massague J: Transforming growth factor-α: A model for membrane-anchored growth factors. J Biol Chem 265:21393–21396, 1990
13. Pandiella A, Massague J: Cleavage of the membrane precursor for transforming growth factor α is a regulated process. Proc Natl Acad Sci USA 88:1726–1730, 1991
14. Ju WD, Velum TJ, Vass WC, Papageorge AG, Lowy DR: Tumorigenic transformation of NIH 3T3 cells by the autocrine synthesis of transforming growth factor α. New Biol 3:380–388, 1991
15. Carpenter G, Wahl MI: The epidermal growth factor family. In Handbook of Experimental Pharma-
16. Chen WS, Lazar CS, Lund KA, Welsh JB, Chang C-P, Walton GM, Der CJ, Wiley HS, Gill GN, Rosenfeld MG: Functional independence of the epidermal growth factor receptor from a domain required for ligand-induced internalization and calcium regulation. Cell 59:33–43, 1989

17. Wahl MI, Nishibe S, Suh P-G, Rhee SG, Carpenter G: Epidermal growth factor stimulates tyrosine phosphorylation of phospholipase C-II independently of receptor internalization and extracellular calcium. Proc Natl Acad Sci USA 86:1568–1572, 1989

18. Wahl MI, Nishibe S, Kim S, Kim JW, Rhee SG, Carpenter G: Identification of two epidermal growth factor-sensitive tyrosine phosphorylation sites of phospholipase C-γ in intact HSC-1 cells. J Biol Chem 265:3944–3948, 1990

19. Coffey RJ, Derynck R, Wilcox JN, Bringman TS, Goustiu AS, Moses HL, Pittelkow MR: Production and auto-induction of transforming growth factor-α in human keratinocytes. Nature 328:817–820, 1987

20. Madtes DK, Raines EW, Sakariassen KS, Assoian RK, Sporn MB, Bell GI, Ross R: Induction of transforming growth factor-α in activated human alveolar macrophages. Cell 53:285–295, 1988

21. Liu SC, Sanfilippo B, Perrotet 0, I, Derynck R, Salomon DS, Kidwell WR: Expression of transforming growth factor α (TGF-α) in differentiated rat mammary tumors: Estrogen induction of TGF-α production. Mol Endocrinol 1:683–692, 1987

22. Smith JA, Barraclough R, Fernig DG, Rudland PS: Identification of alpha transforming growth factor as a possible local trophic agent for the mammary gland. J Cell Physiol 141:362–370, 1989

23. Cardilidge SA, Elder JB: Transforming growth factor-α and epidermal growth levels in normal human gastrointestinal mucosa. Int J Cancer 60:657–660, 1989

24. Malden LT, Novak U, Burgess AW: Expression of transforming growth factor alpha messenger RNA in the normal and neoplastic gastrointestinal tract. Int J Cancer 34:380–384, 1989

25. Markowitz SD, Molkentin K, Gerbic C, Jackson J, Stellato T, Wilson JKV: Growth stimulation of coexpression of transforming growth factor-α and epidermal growth factor-receptor in normal and adenomatous human colon epithelium. J Clin Invest 86:356–362, 1990

26. Beauchamp RD, Barnard JA, McCutchen CM, Cherner JA, Coffey RJ: Localization of transforming growth factor α and its receptor in gastric mucosal cells: Implications for a regulatory role in acid secretion and mucosal renewal. J Clin Invest 84:1017–1023, 1989

27. Barnard JA, Polk WH, Moses HL, Coffey RJ: Production of transforming growth factor alpha by normal rat small intestine. Am J Physiol 261:C994–C1000, 1991

28. Thomas DM, Nasim MM, Gullick WJ, Alison MR: Immunoreactivity of transforming growth factor alpha in the normal adult gastrointestinal tract. Gut 33:628–631, 1992

29. Wright NA, Pike C, Elia G: Induction of a novel epidermal growth factor-secreting cell lineage by mucosal ulceration in human gastrointestinal stem cells. Nature 343:82–85, 1990

30. Snedeker SM, Brown CF, DiAugustine RP: Expression and functional properties of transforming growth factor-α and epidermal growth factor during mouse mammary gland ductal morphogenesis. Proc Natl Acad Sci USA 88:276–280, 1991

31. Schechter AL, Stern DF, Vaidyanathan L, Decker SJ, Drebin JA, Greene MI, Weinberg RA: The new oncogene: An erbB-related gene encoding a 185,000-M, tumor antigen. Nature 312:513–516, 1984

32. Kraus MH, Ising W, Miki T, Popescu NC, Aaronson SA: Isolation and characterization of ERBB3, a third member of the ERBB/epidermal growth factor receptor family: Evidence for overexpression in a subset of human mammary tumors. Proc Natl Acad Sci USA 86:9193–9197, 1989

33. Peles E, Bacsus SS, Koski RA, Lu HS, Wen D, Ogden SG, Levy BR, Yarden Y: Isolation of the New/HER-2 stimulatory ligand: A 44 kd glycoprotein that induces differentiatio of mammary tumor cells. Cell 69:205–216, 1992

34. Holmes WE, Sliewkowski MX, Akita RW, Henzel WJ, Lee J, Park JW, Yansura D, Abadi N, Raab H, Lewis GD, Shepard MH: Identification of heregulin, a specific activator of p185 erbB2. Science 256:1205–1210, 1992

35. Wen D, Peles E, Cupples R, Suggs SV, Bacsus SS, Loy Y, Trail G, Hu S, Silbiger SM, Levy BR, Koski RA, Lu HS, Yarden Y: Neu differentiation factor: A transmembrane glycoprotein containing an EGF domain and an immunoglobulin homology unit. Cell 69:559–572, 1992

36. Shoyab M, McDonald VL, Bradley JG, Todaro GJ: Amphiregulin: A bifunctional growth-modulating glycoprotein produced by the phorbol 12-myristate 13-acetate-treated human breast adenocarcinoma cell line MCF-7. Proc Natl Acad Sci USA 85:6528–6532, 1988

37. Plowman GD, Green JM, McDonald VL, Neubauer MD, Distech CM, Todaro GJ, Shoyab GJ,
testinal Tract. Edited by A Alen, G Flemstrom, A Garner, W Silen, LA Turnberg. New York, Raven, 1984, pp 209–214
61. McQueen S, Allen A, Garner A: Measurement of gastric and duodenal mucus gel thickness. In Mechanisms of Mucosal Protection in the Upper Gastrointestinal Tract. Edited by A Alen, G Flemstrom, A Garner, W Silen, LA Turnberg. New York, Raven, 1984, pp 215–221
62. Morris GP: The myth of the mucus barrier. Gastroenterol Clin Biol 9:106–107, 1985
63. Davenport HW: Salicylate damage to the gastric mucosal barrier. N Engl J Med 276:1307–1312, 1967
64. Lacey ER: Gastric mucosal resistance to a repeated ethanol insult. Scand J Gastroenterol 20 (Supplement 110):63–82, 1985
65. Grisham MB, Von Ritter C, Smith BF, LaMont TJ, Granger DN: Interaction between oxygen radicals and gastric mucin. Am J Physiol 253:G93–G96, 1987
66. Pihan G, Regillo C, Szabo S: Free radicals and lipid peroxidation in ethanol- and aspirin-induced gastric mucosal injury. Dig Dis Sci 32:1395–1401, 1987
67. Menetrier P: Des polyadenomas gastriques et de leurs rapports avec le cancer de l’estomac. Arch Physiol Norm Pathol 1:322–336, 1888
68. Palmer ED: What Ménétrier really said. Gastrointestinal Endoscopy 15:83–109, 1968
69. Vilardell F: Gastritis. In Bockus Gastroenterology. Edited by JE Berk. Philadelphia, PA, WB Saunders, 1985, pp 964–974
70. Scharschmidt BF: The natural history of hypertrophic gastropathy (Ménétrier’s disease): Report of a case with 16 year follow-up and review of 120 cases from the literature. Am J Med 63:644–652, 1977
71. Searcy RM, Malagelada J-R: Ménétrier’s disease and idiopathic hypertrophic gastropathy. Ann Int Med 100:565–570, 1984
72. Sundt TM, Compton CC, Malt RA: Ménétrier’s disease. A trivalent gastropathy. Ann Surg 208:694–701, 1988