Pharmacokinetic study of rectal artesunate in children with severe malaria in Africa

Caterina Fanello1,2, Richard M. Hoglund1,2, Sue J. Lee1,2, Daddy Kayembe3, Pauline Ndjowa3, Charlie Kabedi3, Benjamin B. Badjanga3, Phettree Niayim2, Joel Tarning1,2, Charles Woodrow1,2, Melba Gomes4, Nick P. Day1,2, Nicholas J. White1,2, Marie A. Onyamboko5

1Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
2Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Thailand
3Kinshasa School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of Congo
4World Health Organization, Geneva, Switzerland
8Corresponding author: Caterina Fanello caterina.fanello@ndm.ox.ac.uk

Running title: Rectal Artesunate in African children

Abstract

When severe malaria is suspected in children, WHO recommends pre-treatment with a single rectal dose of artesunate before referral to an appropriate facility. This was an individually randomized, open-label, 2-arm, cross-over clinical trial in 83 Congolese children with severe falciparum malaria, to characterize the pharmacokinetics of rectal artesunate.
At admission, children received a single dose of rectal artesunate (10 mg/kg) followed 12 hours later by intravenous artesunate (2.4 mg/kg) or the reverse order. All children also received standard doses of intravenous quinine. Artesunate and dihydroartemisinin were measured at eleven fixed intervals, following 0- and 12-hour drug administrations. Clinical, laboratory and parasitological parameters were measured. After rectal artesunate, artesunate and dihydroartemisinin showed large inter-individual variability (peak concentrations of dihydroartemisinin ranged from 5.63 to 8,090 nM). The majority of patients however, reached previously suggested *in vivo* IC$_{50}$ (98.7%) and IC$_{90}$ (92.5%) values of combined concentrations of artesunate and dihydroartemisinin between 15 to 30 minutes after drug administration. The median (IQR) time above IC$_{50}$ and IC$_{90}$ was 5.68 hours (2.90-6.08) and 2.74 hours (1.52-3.75), respectively. The absolute rectal bioavailability (IQR) was 25.6% (11.7-54.5) for artesunate and 19.8% (10.3-35.3) for dihydroartemisinin. The initial 12-hour parasite reduction ratio was comparable between rectal and intravenous artesunate: median (IQR) 84.3% (50.0-95.4) vs. 69.2% (45.7-93.6), respectively (p=0.49).

Despite large inter-individual variability, rectal artesunate can initiate and sustain rapid parasiticidal activity in most children with severe *falciparum* malaria, while they are transferred to a facility where parenteral artesunate is available. (www.clinicalTrials.gov: NCT02492178)

Introduction

Parenteral artesunate is the treatment of choice for severe *falciparum* malaria (1). Intravenous or intramuscular artesunate was associated with a substantial reduction in mortality when compared with the previous first-line treatment, quinine (2, 3).
Unfortunately, many children with severe malaria die before or just after reaching a facility capable of administering parenteral drugs. To address this need, a rectal formulation of artesunate has been developed which has been shown in very large community-based trials to reduce malaria mortality in children unable to tolerate oral medications reliably (4-10). These trials, placebo-controlled, were conducted in Ghana (n=2238, 6-72 months old), Tanzania (n=3802, 6-72 months old) and Bangladesh (n=2010, 6-72 months old; n=4018, older children and adults) (5). In young children in Africa and Asia, rectal artesunate was associated with a reduced risk of death compared to placebo (n=8050, RR=0.74, 95% CI 0.59-0.93). In older children and adults in Bangladesh, rectal artesunate was associated with a more than two-fold increase in the risk of death compared to placebo (n=4018, RR=2.21, 95% CI 1.18-4.15, p=0.01) (7). No satisfactory explanation was found for this paradoxical finding. One concern was the possibility of artesunate toxicity as the absorption of rectal artesunate is erratic (11-13) and the dose given is around four times larger than the parenteral dose. Artesunate is rapidly metabolised, mainly by blood esterase and cytochrome P450 (CYP) 2A6, into its active metabolite dihydroartemisinin (14). Dihydroartemisinin is metabolised via glucuronidation by uridine-diphosphate-glucanosyltransferase (UGT)A1, UGT1A9 and UGT2B7 into inactive metabolites, which are renally eliminated (15, 16). Artesunate and dihydroartemisinin have very short biological half-lives of less than 30 minutes and approximately 1 hour, respectively, after both oral and parenteral administration of artesunate (17). To address concerns about a possible low efficacy and/or toxicity resulting from the erratic absorption of rectal artesunate, that have negatively impacted on its deployment, we conducted a randomised cross-over pharmacokinetic study of rectal artesunate vs. intravenous artesunate in children with
severe malaria in the Democratic Republic of the Congo at a time when parenteral quinine was still deployed as part of the first line treatment of malaria.

RESULTS

From the 11th July to the 6th October 2015, 136 patients with severe malaria were screened and 82 enrolled (Figure 1). Ten patients were added to the original sample size (n=72): in 7 cases a protocol deviation in the pharmacokinetic sampling scheme was reported, one patient expelled the study drug twice, one patient’s worsening conditions did not allow blood sampling, and one patient died 10 hours after enrolment. The latter was retrospectively evaluated as having not met study inclusion criteria as the child had received a full treatment of artemether–lumefantrine and an unidentified traditional medicine before coming to the hospital, but the information was disclosed to the staff only after enrolment. Available data from all 82 patients who were randomized and allocated to study treatments were included in this intention-to-treat analysis.

Medical history

According to medical history, children were brought to the centre mainly because of fever (82/82, 100.0%; mean fever duration 3.7 days, 95% CI 3.4-4.1), severe prostration (64/82, 78.0%; mean duration 1.6 days, 95% CI 1.4-1.8) and convulsions (7/82, 8.5%). Other symptoms reported were gastrointestinal disorders (vomiting, abdominal pain, nausea), anorexia, asthenia and symptoms of an upper respiratory infection, with no significant differences between arms. Prior to admission, 3 children had received an Artemisinin-based Combination Therapy (ACT), 19 oral quinine, 3 intramuscular artemether and 1 intravenous (IV) quinine. The most common severity signs at screening were prostration (65/82, 79.3%),
respiratory distress (64/82, 78.0%), coma (14/82, 17.1%) and severe anaemia (25/82, 30.5%), (Table S1). Comorbidities included acute renal failure (n=1), gastritis and suspected gastric ulcer (n=2), upper respiratory infection (n=1), suspected sepsis (n=2) and suspected meningitis (n=3). At admission, the two treatment arms were well matched with no significant differences (Table 1, S2-S4). Twenty-seven children were malnourished (27/79, 34.2%), 9 of whom were severely malnourished (‘malnourished’ was defined as a composite variable of wasted, stunted and underweight). In 8 cases, 2 in the arm that received rectal artesunate first (RASf) and 6 in the arm that received IV artesunate first (IVASf), patients developed complications not present at admission, or not reported by the caregiver. These included black water fever, convulsions, posturing, coma or deterioration of the coma score, severe anaemia and respiratory distress.

Clinical and parasitological response to treatment

Parasitaemia

Children with symptoms of severe malaria were enrolled if they had a positive malaria Ag Pf/Pan SD BIOLINE Rapid Diagnostic Test at screening. The mean (geometric, 95% CI) peripheral blood parasitaemia at admission was 33,733/µL (15,031-75,702) in RASf arm and 40,067/µL (19,484-108,920) in IVASf arm, p=0.31. The mean (geometric, 95% CI) peripheral blood parasitaemia at first treatment (H0) was 40,111/µL (18,788-85,636) in RASf arm and 40,658/µL (16,261-101,656) in IVASf arm (p=0.29). The median (range) plasma PfHRP2 level was 1,674.1 ng/mL (8.6-21,540.8) in RASf arm and 1,442.8 ng/mL (35.8-25,000.0) in IVASf arm, p=0.33 (Table 1). Retrospectively, 3 patients were negative by microscopy and 2 had only falciparum gametocytes; the plasma PfHRP2 in these 5 cases ranged from 8.6 to 522.0 ng/mL. Two of these patients had received amodiaquine-artesunate and quinine tablets.
prior to admission and reported a history of fever of 5 and 7 days, respectively. Children who received a treatment before arriving at the centre (documented or self-reported) had a lower parasitaemia at admission (n=23, 14,780/µL, 95% CI 4,024-54,285) compared to those who did not (n=53, 62,498/µL, 95% CI 33,601-116,249, p=0.06). The parasite reduction ratio (PRR) from hour 0 to 12 was comparable between arms with a median (IQR) PRR of 84.3% (50.0%-95.4%) in the RASf group and 69.2% (45.7%-93.6%) in the IVASf group (p=0.49). The estimated median (range) time for parasitaemia to decrease by half was 2.2 hr in RASf arm (1.3-7.6) and 2.5 hr in IVASf arm (1.2-12.0), with no difference between arms (p=0.64) (Table 2 and Table 3). The limit of detection was 16 parasites/µL and 1 case was excluded for insufficient data points.

Haematology

The mean (SD) haemoglobin (Hb) at H0 was: 7.1 (2.5) g/dL in RASf arm and 6.9 (2.3) g/dL in IVASf arm. Children with the sickle trait (n=5) had a mean (SD) Hb of 6.5 (3.1) g/dL, while the two children with sickle cell disease had 3.7 and 3.9 g/dL at admission. Fifty-three children received a blood transfusion: 26 (65.0%) in RASf arm and 27 (64.3%) in IVASf arm (p=0.95).

From admission to 12 hours (before the cross-over), the median (IQR) difference in Hb was -2.5 (-4.3, 0.7) in RASf arm and -2.2 (-3.9, 0.6) in IVASf arm (p=0.75, Table 3). By day 7, the mean Hb (SD) was 9.6 (1.4) g/dL in RASf arm (n=38) and 9.3 (1.6) g/dL in IVASf arm (n=41, p=0.46 adjusted for baseline Hb) and by day 14, 10.6 (1.0) g/dL in RASf arm (n=36) and 10.2 (1.5) g/dL in IVASf arm (n=40, p= 0.21 adjusted for baseline Hb).

Follow-up visits and neurological assessment
The median time of hospitalization was 3 days (range 3-14 days). There were no significant differences between arms in the recovery time (median time from admission to sit unsupported \(p=0.74 \), speak \(p=0.41 \), localise painful stimuli \(p=0.58 \), eat/breastfeed \(p=0.95 \)). Only one patient (randomised to IVAS\(_i\) arm; received 11.8 mg/kg of rectal artesunate at 12 hours) developed neurological sequelae (unable to walk); the patient was admitted with a Glasgow Coma Score of 9/15, 9,546 parasites/µL, Hb 6.7 g/dL and temperature 38.0°C, developed convulsions and posturing after admission and was in hospital for 4 days. The sequelae completely resolved by day 14.

Adverse events

Forty-nine patients (59.8%) reported one or more adverse events of mild or moderate intensity, without differences between arms. Most patients had fluctuations in the electrolytes \(n=31 \) or WBC and platelets counts \(n=7 \) above or below the normal range. One child developed pruritus after IV artesunate administration; this was classified as possibly related. The remaining cases were all classified as unlikely to be related or unrelated to drug administration (Table 4).

Rectal artesunate administration

In RAS\(_i\) arm, 5 patients expelled the suppositories within 60 minutes (range, 2-29 minutes), and a new dose was administered. In IVAS\(_i\) arm, 5 patients expelled the suppositories within 60 minutes (range, 10-15 minutes) and a new dose was administered. One patient also expelled the second dose. These 10 events were classified as possibly related to rectal artesunate administration. Children in the first weight group (6.0-12.9 kg) received (median,
Pharmacokinetic properties of rectal artesunate

Data from 80 patients (two patients with data from only 1 time point were excluded) were used to evaluate the pharmacokinetic properties of artesunate and dihydroartemisinin after intravenous and rectal administration. After rectal administration, both artesunate and dihydroartemisinin reached peak plasma concentrations relatively fast, resulting in a median (IQR) time to reach maximum concentration (T_{MAX}) of 0.5 hr (0.25-0.75) for artesunate and 1.0 hr (0.75-2.00) for dihydroartemisinin. However, individual concentration-time profiles of both artesunate and dihydroartemisinin showed large inter-individual variability in both arms, especially after rectal administration (Figure 2). The absolute peak concentrations of dihydroartemisinin varied between 5.63 nM and 8,090 nM after rectal administration (i.e., 1,000-fold variation). Almost all patients (79/80, 98.7%) reached the putative IC$_{50}$ value of 34.9 nM, and most patients (74/80, 92.5%) reached the IC$_{90}$ value of 314 nM, at a median (IQR) time of 0.25 hr (0.25-0.25) and 0.25 hr (0.25-0.50), respectively (Figure 3). Time above the putative IC$_{50}$ varied between patients, with a median 5.68 hr (2.90-6.08) above the IC$_{50}$ value and 2.74 hr (1.52-3.75) above the IC$_{90}$ value (Figure 3). Two patients had a zero duration above the IC$_{90}$, since only one observation was above the cut-off. The median (IQR) rectal bioavailability was estimated to be 25.6% (11.7-54.5) for artesunate and 19.8% (10.3-35.3) for dihydroartemisinin, emphasising the large inter-individual pharmacokinetic variability. Similar results were obtained if all patients that expelled the suppositories were excluded from the pharmacokinetic analysis. A detailed description of patients who did not
reach IC₅₀ (n=1) or reached IC₉₀ later than others (n=2) is presented in the Supplementary Materials.

Compared to intravenous artesunate, rectal artesunate had a lower [median (IQR)] maximum concentration (C_{max}, nM) [442 (213-813) vs. 2,560 (1,450-5,200)], later time to reach the maximum concentration (T_{max}, hr) [0.500 (0.250-0.750) vs. 0.083 (0.083-0.100)], and lower total drug exposure (AUCₜ, area under the concentration-time curve until the last measurable concentration, h x nM/µmole) [2.57 (1.68-4.57) vs. 10.20 (5.92-14.00)].

Whereas, the terminal elimination half-life (t_{1/2}, hr) was comparable between intravenous and rectal artesunate [0.525 (0.325-0.770) vs. 0.571 (0.299-1.08)] (Table 5). The exposure and bioavailability of artesunate and dihydroartemisinin, were comparable between patients who received rectal artesunate at time 0 and those who received it at 12 hours. Similarly, exposure was comparable after IV artesunate regardless the time of administration. Children received a median (IQR) of 10.5 mg/kg (9.1-12.0) of rectal artesunate, corresponding well with the intended target dose (Table 5S). Fourteen children (17.0%) received less than 9.0 mg/kg [median (IQR) 8.3 mg/kg; 8.0-8.3] and 13 children (15.9%) received more than 13.0 mg/kg (14.3 mg/kg; 13.3-15.4). There were no significant differences in the pharmacological parameters (bioavailability, p=0.37 for artesunate and p=0.57 for dihydroartemisinin) or pharmacodynamic parameters (parasite clearance time, p=0.90) between children who received a higher ≥13.0 mg/kg, n=13) or lower dose (<9.0 mg/kg, n=14) compared to the target dose (9.0-12.9, n=55). No significant differences were observed between patients who received a blood transfusion after admission and those who did not, within each treatment arm. After rectal artesunate administration, nourished (n=54), malnourished (n=17) and severely malnourished (n=9) children had
significantly different median (IQR) exposure (AUC$_{T}$/dose) to artesunate [2.28 (1.12-3.52) h × 183 nM/µmole, 2.32 (1.71-5.19) h × nM/µmole and 4.99 (4.36-6.45) h × nM/µmole, respectively; p=0.04] and dihydroartemisinin [5.87 (3.38-11.1) h × nM/µmole, 7.24 (4.93-14.4) h × nM/µmole, and 16.5 (7.96-25.8) h × nM/µmole, respectively, p=0.02]. In contrast, bioavailability was comparable between these three groups (p>0.05).

Discussion

This pharmacokinetic study in children with severe *falciparum* malaria showed that artesunate is rapidly absorbed by most patients after rectal administration: 98.7% of children reached IC$_{50}$ within a median (IQR) time of 0.25 hr (0.25-0.50), and 92.5% of them reached IC$_{90}$ within 0.25 hr (0.25-0.50). The median time spent above IC$_{50}$ was more than five hours, indicating that the rectal formulation will start and continue its parasiticidal activity during transportation to a medical facility. Rectal artesunate suppositories were able to reduce parasitaemia rapidly, as shown by the similar rates of parasitaemia reduction after treatment with either rectal or parenteral artesunate. Therefore, any differences in pharmacokinetic parameters between arms and the variability observed, did not translate into a worse pharmacodynamic profile, confirming previous results in studies of patients with severe and moderately severe *falciparum* malaria (6, 11). Artemisinin derivatives clear parasitaemia more rapidly than other drugs, and by acting on ring stages prevent parasites from maturing and sequestering. In contrast, quinine acts only in a limited manner on ring stages (18) and the initial parasitaemia reduction observed, although dependent upon the mean age of development of circulating parasites, is typically slower than with artemisinin derivatives (19). Therefore, we assume that the administration of quinine in our study affected only a negligent proportion of the peripheral parasitaemia and the fast parasite...
reduction observed was mainly the result of the absorbed artesunate. These results support giving pre-referral artesunate to all children suspected of having malaria who cannot reliably take oral medications, including children who might have otherwise uncomplicated malaria with repeated vomiting to profoundly ill unconscious children. The quick absorption of artesunate after rectal administration is encouraging, but the formulation also exhibits a high variability in exposure due to the very high variability in absorption. However, as rectal artesunate is not a replacement for intravenous treatment, but instead an early start of the treatment while being transported to the hospital, the total exposure is not the most important pharmacokinetic parameter. Instead, it is important to absorb enough of the drug to reach effective concentrations rapidly. Most children received appropriate doses of rectal artesunate, according to the target dose of 10 mg/kg, and no significant differences in bioavailability or parasitaemia reduction were observed in the groups that received lower or higher doses, allaying any potential concerns related to a reduced efficacy or toxicity. Although the study was not designed or sufficiently powered to detect a difference in the rate of adverse events between treatments, the number was low and comparable between arms. Malnutrition is frequent in malaria endemic areas and it has been associated with an increased risk of reduced antimalarial drug exposure (20). In this study, malnourished and severely malnourished children had a slightly higher drug exposure compared to the other children. The severely malnourished group was small in the present study and a larger study would be needed to investigate this result further. In line with 2010 WHO recommendations (21), rectal artesunate was included in the National Guidelines of DRC in 2012, although its deployment on a large scale has since been delayed (22). The results of this study support country-wide deployment of this intervention in the Democratic Republic of Congo.
Conclusions

Clearly parenteral artesunate is preferable to rectal administration, but this is not an option in many villages and rural health centres in resource limited areas. Despite large individual variability, rectal artesunate can initiate and sustain rapid parasiticidal activity in most children with severe *falciparum* malaria, while they are transferred to a facility where parenteral artesunate is available.

METHODS

Study site

This trial was conducted by the Kinshasa School of Public Health – University of Oxford Medical Research Unit (KIMORU) team, at Kingasani Hospital, Kinshasa, the Democratic Republic of Congo. Malaria transmission in the area is high and perennial.

Trial design

This was an individually randomized, open labelled, 2-arm, cross-over clinical trial in children admitted to hospital with severe malaria (23). A weight group-stratified 1:1 randomization design was used, with three blocks for each arm according to body weight (6.0-12.9 kg, 13.0-23.9 kg and 24.0-34.0 kg), in order to have the same number of patients administered 1, 2 or 3 suppositories. A computer-generated randomisation list was prepared by a study statistician. Treatment allocation was concealed in sequential opaque envelopes prepared by an independent person. The intervention was assigned by the study nurse, after the doctor confirmed eligibility and the caregiver had signed the informed consent. When the envelope was opened and signed, the patient was considered enrolled.
Eligibility criteria for participants

Children were included in the study if they fulfilled the WHO criteria for severe *falciparum* malaria (23), had a weight ≥6.0 kg and ≤34.0 kg, a positive malaria Ag Pf/Pan SD BIOLINE RDT and their parent or carer gave fully informed consent. Children were not included if they had acute diarrhoea (defined as >3 liquid stools in the previous 24 hours), visible anorectal malformations or a disease of the rectum, known hypersensitivity to quinine or artemunate, a documented history of an effective dose of parenteral antimalarial in the preceding 24 hours, a single dose of rectal artemunate in the previous 12 hours, a dose of an ACT in the previous 6 hours, a co-morbidity which could have interfered with the study or put at risk the patient, or participation in another clinical trial or earlier in the same clinical trial.

Interventions

Children were randomised to receive either 1 dose of rectal artemunate (approximating as closely as possible to 10 mg/kg) on admission (time 0) followed 12 hours later by intravenous artemunate (2.4 mg/kg) (RAS$_i$ arm) or the reverse order (IVAS$_i$ arm). Children were observed for 1 hour, and if the suppository was expelled within 60 minutes, a single attempt was made to re-administer a second dose (the second dose was equal to the number of suppositories expelled). As the absorption of rectal artemunate is known to be erratic, all children were given intravenous quinine (20 mg salt/kg loading dose at presentation followed by 10 mg/kg 8 hourly) by rate-controlled infusion for a total of three doses (1). Quinine and artemunate can be administered concomitantly without risk (24). The quinine infusion was started immediately after the study drug. If a blood transfusion was needed at admission, quinine was started after the blood transfusion was terminated,
although the first dose of the study drug was not delayed. After 24 hours, all patients continued antimalarial therapy with parenteral artesunate followed by a full standard course of artemether-lumefantrine as soon they were able to take oral medication. If the child was discharged before the oral treatment was terminated the remaining doses were given to the caregiver for home administration.

Study drugs

Intravenous artesunate (Guilin Pharmaceuticals, China), intravenous quinine (Rotex, Germany) and Coartem® (Novartis) were purchased from Medical Expert Group, Gorinchem, The Netherlands. Rectal artesunate, in suppositories of 100 mg each, was produced by Catalent, Germany Eberbach GmbH, packed by Scanpharm, Copenhagen, Denmark and provided by the World Health Organization for this study.

Outcomes

The primary objective of the study was to assess the pharmacokinetics of rectal artesunate in paediatric patients with severe *P. falciparum* malaria. The secondary objective was characterisation of the clinical and parasitological responses to rectal artesunate compared to intravenous artesunate. A randomised sequence cross-over design was employed to characterise the bioavailability of rectal artesunate and to characterise the individual absorption profiles of both artesunate and dihydroartemisinin. From a therapeutic perspective, rectal artesunate aims to achieve minimum parasiticidal concentrations (MPC) as soon as possible. Both artesunate and dihydroartemisinin exhibit parasiticidal effects and therefore the sum of the molar artesunate and dihydroartemisinin concentrations were evaluated and the time to reach, time above, and the proportion of patients to reach a
putative IC$_{50}$ and IC$_{90}$ (i.e., 34.9 nM and 314 nM, respectively) were considered the primary end-points with conventional pharmacokinetic measures as secondary end-points (e.g., bioavailability). The IC$_{50}$ value was taken from the estimated EC$_{50}$ (concentration in the dihydroartemisinin effect compartment) (25), and the IC$_{90}$ was calculated from the IC$_{50}$.

Investigations

Malaria at screening was confirmed by Malaria Ag Pf/Pan SD BIOLINE Rapid Diagnostic Test. A malaria blood film was prepared at admission, 0 (pre-dose), 6, and 12 hours, and thereafter every 12 hours until 2 consecutive blood films were negative. Parasites were identified and counted by standard light microscopy. Haemoglobin (Hb) and haematocrit (Hct) were assessed at the same time points as the blood films using HemoCue Hb301+® (Angelholm, Sweden) and Hawksley Haematospin 1400 (Hawksley & Sons, Ltd. UK). Total and differential white blood cell (WBC) counts were measured using QBC Star™ at 0, 24 and 72 hours. Biochemistry tests were performed at 0 and 24 hours by i-STAT using the CHEM8 cartridge for electrolytes and the CG4 cartridge for blood gases. Haemoglobin S trait was detected by electrophoresis using the SEBIA Hydragel Hemoglobin K20 Kit. Quantification of plasma PfHRP2 by ELISA (Celisa, Cellabs, Sydney, Australia) was performed at Mahidol Oxford Tropical Medicine Research Unit (MORU) laboratories, Bangkok, Thailand. Laboratory technicians were blinded to study treatment allocation.

Pharmacokinetic blood sampling

Eleven blood samples were taken at fixed intervals, pre-treatment, 5, 15, 30, 45 minutes, 1, 2, 3, 4, 6 and 8 hours after the administration of the first dose of study drug. The sampling scheme was repeated after 12 hours following administration of the second dose of the
study drug. Blood was sampled through an indwelling cannula in the arm opposite to that used for intravenous drug administration; 1 mL of blood was collected into pre-chilled fluoride oxalate tubes for artesunate and dihydroartemisinin quantification. Samples were centrifuged at 4°C and 2,000g for 7 minutes. Plasma samples were stored at −80°C until they were shipped to the MORU Department of Clinical Pharmacology, Bangkok, Thailand, for drug quantification. Artesunate and dihydroartemisinin were quantified using liquid chromatography-tandem mass-spectrometry (26). The coefficient of variation of the assay was less than 7% at each level of quality control samples and the Lower Limit of Quantification (LLOQ) was set to 1.19 ng/mL and 1.96 ng/mL for artesunate and dihydroartemisinin, respectively.

Patient management

Patients were managed according to WHO Guidelines for the management of severe malaria (1). Fever was treated with parenteral paracetamol 20 mg/kg. Hypoglycaemia (blood glucose <3 mmol/l) was treated with an IV bolus of 5 ml/kg of 10% dextrose. A blood transfusion (20 ml/kg) was given to children with haemoglobin concentrations of <5 g/dl. A fluid bolus was given to children with signs of shock. Convulsions were treated with IV diazepam. All children were given ceftriaxone intravenously (75 mg/kg at time 0 and after 12 hours).

Assessment at follow-up visits

Patients were hospitalized for at least 4 days, or longer if they were still unwell, and discharged after at least the first dose of the oral follow-on treatment was administered.
Parents/guardians were asked to bring the child back to the clinic at day 7 (if they were discharged earlier) and 14 for clinical examination, neurological exam and laboratory tests.

Ethics

The study was approved by the Ethical Committee of the Kinshasa School of Public Health, the Ministry of Public Health of DRC and the Oxford University Tropical Research Ethics Committee (OXTREC). The study documents were originally designed in English. The protocol was translated into French, the Patient Information Sheet and Informed Consent into French and Lingala by a certified translator. Safety reporting was performed according to the ICH Harmonized Tripartite Guideline for Good Clinical Practice (1996).

ClinicalTrials.gov Identifier: NCT02492178.

Sample size

This was considered a bioequivalence study, comparing a new formulation (rectal) to a reference (intravenous). Previous data in uncomplicated and moderately severe malaria in paediatric patients showed that rectal artesunate is characterised by a large inter and intra-individual variability (11-13). Assuming a within-subject coefficient of variation of 40% (27, 28), CV, a sample size of 72 patients was estimated to be sufficient to assess bioequivalence of the two drugs, with 90% power and 95% confidence, including 10% loss to follow-up. This sample size was calculated using the formula by Julious for cross-over studies (29).

Statistical analysis

Medical histories of patients were described using frequencies (%) for each study arm.

Clinical and parasitological responses to treatment were reported using geometric means
(GM) with 95% confidence intervals (CI), median (interquartile range (IQR) or range) or mean (SD), and compared between treatment arms using the Kruskal-Wallis test or Student’s t-test. Haemoglobin (Hb) comparisons after baseline were adjusted for baseline values of Hb. Parasite clearance half-life (PC1/2), lag time (t-lag), and the time to clear 50, 90, 95 and 99% of parasites was calculated using the Parasite Clearance Estimator developed by WWARN (30), which was modified to allow for a lower threshold of parasitaemia at time 0. The parasite reduction ratio was calculated as the difference at 12 hours from baseline, divided by the baseline parasite count. Pharmacokinetic parameters were compared between treatment arms as well as between children who received higher (≥13.0 mg/kg) or lower doses (<9.0 mg/kg) compared with the target dose (9.0-12.9), between nourished, malnourished and severely malnourished children, and between patients who received blood transfusion or not. The subgroup of children who did not expel their suppositories was also assessed. Statistical analyses were performed using STATA IC 14.0 (STATA Corporation, college station, Texas 77845, USA) and GraphPad Prism Software (San Diego, California 92108 USA).

Pharmacokinetic analysis

Artesunate and dihydroartemisinin concentration-time profiles were analysed on an individual level using a standard non-compartmental approach in Phoenix® 64 (Certara USA, Inc., Princeton, USA). All concentrations at time zero were set to zero. The concentration at the time point when the concentration-time profile went permanently below the LLOQ for the first time was set to half the LLOQ. Artesunate data after IV administration were analysed assuming an infusion using the true injection times for patients, while the rectal administration as well as the dihydroartemisinin data after IV and rectal administration was
handled as extravascular administration. The observed concentration-time profiles were used to derive the maximum concentration (C_{MAX}), the time to maximum concentration (T_{MAX}), and the time to the last measured concentration (T_{LAST}). Total drug exposure (area under the concentration-time curve; AUC_T) were calculated using the observed data, from drug administration to the last time point. The calculations of AUC were based on the trapezoid method, using the linear method before C_{MAX} and the logarithmic method after C_{MAX}. Terminal elimination half-life (t_{1/2}) was based on the best fit of the terminal portion of the elimination phase. Absolute rectal bioavailability (F) was estimated based on individual drug exposures after rectal and intravenous administration, according to the equation below:

\[F = \frac{AUC_{T,\text{rectal}}}{AUC_{T,IV}} \times \frac{Dose_{IV}}{Dose_{rectal}} \]

Time to reach a putative IC₅₀ and IC₉₀ value (25), the time spent above these values, and the proportion of patients who reached this value were derived directly from the observed concentration-time profiles. Pharmacokinetic parameters from each mode of administration were compared using a Mann-Whitney U test, to determine the effect of drug administration time (0 or 12 hours) and of blood transfusion, and with Kruskal-Wallis test to compare severely malnourished, malnourished and nourished children.

Study contribution

Study design: NJW, CF, MO, JT, ND, MG. Data collection: MO, CF, DK, CK, PN, BB. Statistical analysis: SJL, CF, RH, JT. Laboratory analysis: CW, BB, PN. Manuscript writing: CF, SJL, RH, NJW.
Acknowledgments

We thank the people of Kingasani Community for participating in this trial. We also thank the staff of KIMORU for carrying out the project, the staff at the Department of Clinical Pharmacology, MORU, Bangkok for carrying out the pharmacological analysis and the MORU Data Entry team.

Funding

The study was supported by the Li Ka-Shing foundation and it was part of the Wellcome Trust Mahidol University Oxford Tropical Medicine Research Programme supported by the Wellcome Trust (106698/Z/14/Z). Part of the pharmacokinetic data analysis was supported by the Bill and Melinda Gates Foundation (INV-006052).

Declaration of interests

The are no conflict of interest

Data availability

The data that support the findings are available from the authors upon reasonable request and with permission of the University of Oxford and the Kinshasa School of Public Health.

References

1. WHO. 2013. Management of Severe Malaria A Practical Handbook, 3rd Edition ed, Geneva.
2. Dondorp AM, Fanello CI, Hendriksen IC, Gomes E, Seni A, Chhaganlal KD, Bojang K, Olaosebikan R, Anunobi N, Maitland K, Kivaya E, Agbenyega T, Nguah SB, Evans J, Gesase S, Kahabuka C, Mtove G, Nadjm B, Deen J, Mwanga-Amumpaire J, Nansumba
M, Karema C, Umulisa N, Uwimana A, Mokuolu OA, Adedoyin OT, Johnson WB, Tshefu AK, Onyamboko MA, Sakulthaew T, Ngum WP, Silamut K, Stepniewska K, Woodrow CJ, Bethell D, Wills B, Oneko M, Peto TE, von Seidlein L, Day NP, White NJ, group A. 2010. Artesunate versus quinine in the treatment of severe falciparum malaria in African children (AQUAMAT): an open-label, randomised trial. Lancet 376:1647-57.

3. Dondorp A, Nosten F, Stepniewska K, Day N, White N, South East Asian Quinine Artesunate Malaria Trial g. 2005. Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial. Lancet 366:717-25.

4. Barnes KI, Mwenechanya J, Tembo M, McIlerson H, Folb PI, Ribeiro I, Little F, Gomes M, Molyneux ME. 2004. Efficacy of rectal artesunate compared with parenteral quinine in initial treatment of moderately severe malaria in African children and adults: a randomised study. Lancet 363:1598-605.

5. Gomes MF, Faiz MA, Gyapong JO, Warsame M, Agbenyega T, Babiker A, Baiden F, Yunus EB, Binka F, Clerk C, Folb P, Hassan R, Hossain MA, Kimbute O, Kitua A, Krishna S, Makasi C, Mensah N, Mrango Z, Olliaro P, Peto R, Peto TJ, Rahman MR, Ribeiro I, Samad R, White NJ, Study 13 Research G. 2009. Pre-referral rectal artesunate to prevent death and disability in severe malaria: a placebo-controlled trial. Lancet 373:557-66.

6. Gomes M, Ribeiro I, Warsame M, Karunajeewa H, Petzold M. 2008. Rectal artemisinins for malaria: a review of efficacy and safety from individual patient data in clinical studies. BMC Infect Dis 8:39.

7. Okebe J, Eisenhut M. 2014. Pre-referral rectal artesunate for severe malaria. Cochrane Database Syst Rev 5:CD009964.
8. Warsame M, Gyapong M, Mpeka B, Rodrigues A, Singlovic J, Babiker A, Mworzi E, Agyepong I, Ansah E, Azairwe R, Biai S, Binka F, Folb P, Gyapong J, Kimbute O, Machinda Z, Kitua A, Lutalo T, Majaha M, Mamadu J, Mrango Z, Petzold M, Rujumba J, Ribeiro I, Gomes M, Study 18 Research G. 2016. Pre-referral Rectal Artesunate Treatment by Community-Based Treatment Providers in Ghana, Guinea-Bissau, Tanzania, and Uganda (Study 18): A Cluster-Randomized Trial. Clin Infect Dis 63:S312-S321.

9. Ajayi IO, Nsungwa-Sabiiti J, Siribie M, Falade CO, Serme L, Balyeku A, Afonne C, Sanou AK, Kabarungi V, Oshiname FO, Gansane Z, Kyaligonza J, Jegede AS, Tiono AB, Sirima SB, Diarra A, Yusuf OB, Fouque F, Castellani J, Petzold M, Singlovic J, Gomes M. 2016. Feasibility of Malaria Diagnosis and Management in Burkina Faso, Nigeria, and Uganda: A Community-Based Observational Study. Clin Infect Dis 63:S245-S255.

10. Phiri TB, Kaunda-Khangamwa BN, Bauleni A, Chimuna T, Melody D, Kalengamaliro H, Sande JH, Nsona HK, Mathanga DP. 2016. Feasibility, acceptability and impact of integrating malaria rapid diagnostic tests and pre-referral rectal artesunate into the integrated community case management programme. A pilot study in Mchinji district, Malawi. Malar J 15:177.

11. Simpson JA, Agbenyega T, Barnes KI, Di Perri G, Folb P, Gomes M, Krishna S, Krudsod S, Looareesuwan S, Mansor S, McIlreron H, Miller R, Molyneux M, Mwenemyanja J, Navaratnam V, Nosten F, Olliaro P, Pang L, Ribeiro I, Tembo M, van Vught M, Ward S, Weerasuriya K, Win K, White NJ. 2006. Population pharmacokinetics of artesunate and dihydroartemisinin following intra-rectal dosing of artesunate in malaria patients. PLoS Med 3:e444.
12. Krishna S, Planche T, Agbenyega T, Woodrow C, Agranoff D, Bedu-Addo G, Owusu-Ofori AK, Appiah JA, Ramanathan S, Mansor SM, Navaratnam V. 2001. Bioavailability and preliminary clinical efficacy of intrarectal artesunate in Ghanaian children with moderate malaria. Antimicrob Agents Chemother 45:509-16.

13. Morris CA, Duparc S, Borghini-Fuhrer I, Jung D, Shin CS, Fleckenstein L. 2011. Review of the clinical pharmacokinetics of artesunate and its active metabolite dihydroartemisinin following intravenous, intramuscular, oral or rectal administration. Malar J 10:263.

14. Li XQ, Bjorkman A, Andersson TB, Gustafsson LL, Masimirembwa CM. 2003. Identification of human cytochrome P(450)s that metabolise anti-parasitic drugs and predictions of in vivo drug hepatic clearance from in vitro data. Eur J Clin Pharmacol 59:429-42.

15. Hendriksen IC, Mtove G, Kent A, Gesase S, Reyburn H, Lemnge MM, Lindegardh N, Day NP, von Seidlein L, White NJ, Dondorp AM, Tarning J. 2013. Population pharmacokinetics of intramuscular artesunate in African children with severe malaria: implications for a practical dosing regimen. Clin Pharmacol Ther 93:443-50.

16. Ilett KF, Ethell BT, Maggs JL, Davis TM, Batty KT, Burchell B, Binh TQ, Thu Le TA, Hung NC, Pirmohamed M, Park BK, Edwards G. 2002. Glucuronidation of dihydroartemisinin in vivo and by human liver microsomes and expressed UDP-glucuronosyltransferases. Drug Metab Dispos 30:1005-12.

17. Kloprogge F, McGready R, Phyo AP, Rijken MJ, Hanpithakpon W, Than HH, Hlaing N, Zin NT, Day NP, White NJ, Nosten F, Tarning J. 2015. Opposite malaria and pregnancy effect on oral bioavailability of artesunate - a population pharmacokinetic evaluation. Br J Clin Pharmacol 80:642-53.
18. Watkins WM, Woodrow C, Marsh K. 1993. Falciparum malaria: differential effects of antimalarial drugs on ex vivo parasite viability during the critical early phase of therapy. Am J Trop Med Hyg 49:106-12.

19. White NJ. 2011. The parasite clearance curve. Malar J 10:278.

20. Chotsiri P, Denoeud-Ndam L, Baudin E, Guindo O, Diawara H, Attaher O, Smit M, Guerin PJ, Doumbo OK, Wiesner L, Barnes KI, Hoglund RM, Dicko A, Etard JF, Tarning J. 2019. Severe Acute Malnutrition Results in Lower Lumefantrine Exposure in Children Treated With Artemether-Lumefantrine for Uncomplicated Malaria. Clin Pharmacol Ther 106:1299-1309.

21. WHO. 2010. Guidelines for the treatment of malaria 2nd Edition. Geneva.

22. Mvumbi PM, Musau J, Faye O, Situakibanza H, Okitolonda E. 2019. Adherence to the referral advice after introduction of rectal artesunate for pre-referral treatment of severe malaria at the community level: a noninferiority trial in the Democratic Republic of the Congo. Malar J 18:438.

23. WHO. 2014. Severe malaria. Trop Med Int Health 19 Suppl 1:7-131.

24. Newton PN, Chierakul W, Ruangveerayuth R, Silamut K, Teerapong P, Krudsood S, Looareesuwan S, White NJ. 2001. A comparison of artesunate alone with combined artesunate and quinine in the parenteral treatment of acute falciparum malaria. Trans R Soc Trop Med Hyg 95:519-23.

25. Lohy Das J, Dondorp AM, Nosten F, Phyo AP, Hanpithakpong W, Ringwald P, Lim P, White NJ, Karlsson MO, Bergstrand M, Tarning J. 2017. Population Pharmacokinetic and Pharmacodynamic Modeling of Artemisinin Resistance in Southeast Asia. AAPS J 19:1842-1854.
26. Hanpithakpong W, Kamanikom B, Dondorp AM, Singhasivanon P, White NJ, Day NP, Lindegardh N. 2008. A liquid chromatographic-tandem mass spectrometric method for determination of artesunate and its metabolite dihydroartemisinin in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 876:61-8.

27. Mohsen M. 2010. A Note on the Calculation of Intrasubject Coefficient of Variation in Bioequivalence Trials. J Bioanal Biomed 2.

28. WHO. 2011. Methods and techniques for assessing exposure to antimalarial drugs in clinical field studies. Accessed

29. Julious SA. 2004. Sample sizes for clinical trials with normal data. Stat Med 23:1921-86.

30. Flegg JA, Guerin PJ, White NJ, Stepniewska K. 2011. Standardizing the measurement of parasite clearance in falciparum malaria: the parasite clearance estimator. Malar J 10:339.
FIGURES

Figure 1. Flow chart CONSORT

Assessed for eligibility n=136
- Excluded n=54
 - Not meeting inclusion criteria n=39
 - Declined to participate n=12
 - Other reasons n=3

Randomized n=82

Allocated to RAS$_i$ arm n=40
- Received allocated intervention n=40
 - Discontinued intervention n=1 (critical conditions)
 - Death n=1
 - Protocol deviations (PK scheme sampling error) n=3
- Lost to follow-up day 14 n=2
 - Baseline analysis n=40
 - PK analysis n=38

Allocated to IVAS$_i$ arm n=42
- Received allocated intervention n=42
 - Discontinued intervention n=0
 - Death n=0
 - Protocol deviations (PK scheme sampling error) n=4
 - Expelled suppositories twice =1
- Lost to follow-up day 14 n=2
 - Baseline analysis n=42
 - PK analysis n=42
Figure 2. Observed individual artesunate concentration-time profiles. Artesunate and dihydroartemisinin, administrated intravenously or rectally. The dashed horizontal line represents a putative IC₅₀ value of 34.9 nM and the dotted horizontal line represents a putative IC₉₀ value of 314 nM. The red line represents the patient who did not reach the IC₅₀ value after rectal administration.
Figure 3. Graphical representation of time to putative IC\textsubscript{50} (T-IC\textsubscript{50}), time above IC\textsubscript{50} (T>IC\textsubscript{50}), time to putative IC\textsubscript{90} (T-IC\textsubscript{90}), and time above IC\textsubscript{90} (T>IC\textsubscript{90}) after rectal artesunate administration. Concentrations were measured as the sum of molar artesunate and dihydroartemisinin concentrations. Markers represent individual values and lines represent the median value and its interquartile range. The graphic shows only data for patients who reached the cut-off (IC\textsubscript{50} or IC\textsubscript{90}). One patient did not reach IC\textsubscript{50}. The red dots indicate the 2 cases with a longer time to reach IC\textsubscript{90}.

![Graph showing time to IC50, time above IC50, time to IC90, and time above IC90 after rectal artesunate administration.](image)
Table 1. Baseline data

Variables	RAS_f	IVAS_f
Evaluated^a	40	42
Median age (IQR), yrs.	4.67 (2.8, 8.1)	4 (2.8, 8.8)
Median weight (IQR), kg.	15.3 (12.0, 25.0)	14.3 (12.0, 24.5)
Median height (IQR), cm.	102 (89.0, 129.0) n=39	98 (88.0, 131.0)
Median MUAC (IQR), cm.	16.0 (14.5, 18.0)	15.2 (14.0, 17.0)
No. male (%)	21 (52.5)	20 (47.6)
No. with enlarged liver (%)	24 (60.0)	28 (66.7)
Median enlarg. (IQR), cm.	2.0 (0, 3.5)	3 (0, 4.0)
No. with enlarged spleen (%)	29 (72.50)	30 (71.43)
Median enlarg. (IQR), cm.	3.0 (0, 4)	3.0 (0, 4)
Sickle cell trait (%)	1/39 (2.6)	4/40 (10.0)
Sickle cell disease	0/39	2/40 (5.0)
Mean HCT (SD), %	21.3 (7.6)	20.6 (7.1)
Mean Hb (SD), g/dL	7.1 (2.5)	6.9 (2.3)
Geo. mean parasites/µL (95% CI)	33,733 (15,031-75,702) n=37	46,067 (19,484-108,920) n=39
Screening		
Median PfHRP2 (range), ng/mL	1,674.1 (8.6 to 21,540.8) n=39	1,442.8 (35.8 to 25,000.0) n=42
Mean BP systolic (SD), mmHg	90.6 (7.8) n=38	92.6 (9.6) n=41
Mean BP diastolic (SD), mmHg	53.7 (7.4) n=38	55 (6.7) n=41
Median heart rate (IQR), bpm	146 (126, 163) n=39	146.5 (123, 154)
Median respiratory rate (IQR), bpm	48 (40, 60)	44 (42, 52)
Mean temperature (SD), °C	38.0 (1.1)	37.9 (1.1)
Blood transfusion (%)	26 (65.0)	27 (64.3)

^aUnless indicated otherwise
Table 2. Summary of parasite clearance time by study arm

Parameters	RAS_f	IVAS_f	p-value
Individual profiles analysed	35	40	0.64
Slope half-life, hrs	2.2	2.5	
Median			
Range	1.3-7.6	1.2-12.0	
Geom. Mean (95% CI)	2.3 (2.0; 2.6)	2.43 (2.1; 2.8)	
t-lag hrs			0.81
Median	0	0	
Range	0-12	0-24	
IQR	0-6	0-6	
Geom. Mean (95% CI)	6.9 (5.9-8.1) n=5	8.3 (6.2, 11.0) n=15	
Median pc50 (range) hrs	7.1 (0.3, 15.1)	6.8 (0.4, 24.4)	0.28
Median pc90 (range) hrs	11.8 (4.1, 25.7)	13.9 (3.5, 41.8)	0.16
Median pc95 (range) hrs	14.0 (5.7, 33.3)	16.8 (4.8, 53.8)	0.13
Median pc99 (range) hrs	18.8 (9.1, 50.8)	22.1 (7.8, 81.7)	0.14

* Unless indicated otherwise

Table 3. Haematology at 0 and 12 hours by arm

Parameters	RAS_f	IVAS_f	p-value
Mean (SD) haemoglobin			
At hour 0	7.1 (2.6) n=39	6.88 (2.3) n=42	
At hour 12	9.1 (1.6) n=38	8.7 (2.2) n=42	
Median (IQR) within individual difference (from H0 to H12)	-2.5 (-4.3, 0.7) n=80	-2.2 (-3.9, 0.6) n=80	0.75
Geometric mean (95% CI) parasitaemia			
At hour 0	40,111 (18,788, 85,636) n=36	40,658 (16,261, 101,656) n=40	
At hour 12	5,420 (1,853, 15,851) n=34	8,518 (2,721, 26,667) n=38	
Median (IQR) within individual difference (from H0 to H12)	6.3 (2.0, 18.1) n=72	3.0 (1.8, 12.0) n=72	0.37

30
Table 4. List of Adverse Events

Adverse Event	RAS_f	IVAS_f	Total
Electrolytes changes	15	16	31
WBC/platelets changes	2	5	7
Expelled artesunate suppository^a	5	5	10
Pruritus/cutaneous rash^{a,b}	0	1	1
Urticaria^c	0	1	1
Viral/bacterial infection suspected	2	5	7
Intestinal parasite infection suspected	1	1	2
Vomit	0	1	1
Epistaxis	0	1	1
Swollen face/Acute Renal Failure	0	1	1
Hypersialosis/Acute Renal Failure	0	1	1
Conjunctivitis (day 14)	1	0	1
Gastroenteritis (day 14)	1	0	1

^a Classified as possibly related;
^b Developed after IV AS administration;
^c Developed 8 minutes after blood transfusion started
Table 5. Pharmacometric parameters of artesunate and dihydroartemisinin after intravenous and rectal administration of artesunate in children with severe malaria

Parameters	Intravenous administration median (IQR)	Rectal administration median (IQR)
	Artesunate	Dihydroartemisinin
Analysed, n	80	80
T_{MAX} (h)	0.083 (0.083-0.100)	0.500 (0.250-0.750)
C_{MAX} (nM)	6,660 (3,770-13,500)	442 (213-813)
C_{MAX}/D (nM/µmole)	71.0 (40.6-99.1)	2.08 (1.05-4.26)
T_{LAST} (h)	3.00 (2.00-6.00)	6.00 (4.00-8.00)
AUC_{T/D} (h × nM/µmole)	10.2 (5.92-14.0)	2.57 (1.68-4.57)
t_{1/2} (h)	0.571 (0.299-1.08)^a	0.525 (0.325-0.770)^b
F (%)	-	25.6 (11.7-54.5)

^a One individual was excluded from the analysis due to a lack of data in the elimination phase.
^b Six individuals were excluded from the analysis due to a lack of data in the elimination phase.
^c One individuals were excluded from the analysis due to a lack of data in the elimination phase.
^d Seven individuals were excluded from the analysis due to a lack of data in the elimination phase.

Abbreviations: IQR: inter-quartile range; C_{MAX}: maximum concentration; T_{MAX}: time to reach the maximum concentration; T_{LAST}: time to the last observation; AUC_{T/LAST}: exposure measured until the last observation; t_{1/2}: elimination half-life; F: absolute rectal bioavailability; D: dose.