BMJ Open

PARK2 and proinflammatory/anti-inflammatory cytokine gene interactions contribute to the susceptibility to leprosy: a case–control study of North Indian population

Rupali Chopra,1 Ponnuamsy Kalairasan,1 Shafat Ali,2 Amit K Srivastava,2 Shweta Aggarwal,2 Vijay K Garg,3 Sambit N Bhattacharya,4 Rameshwar N K Bamezai2

ABSTRACT

Objectives: Cytokines and related molecules in immune-response pathways seem important in deciding the outcome of the host–pathogen interactions towards different polar forms in leprosy. We studied the role of significant and functionally important single-nucleotide polymorphisms (SNPs) in these genes, published independently from our research group, through combined interaction with an additional analysis of the in silico network outcome, to understand how these impact the susceptibility towards the disease, leprosy.

Design: The study was designed to assess an overall combined contribution of significantly associated individual SNPs to reflect on epistatic interactions and their outcome in the form of the disease, leprosy. Furthermore, in silico approach was adopted to carry out protein–protein interaction study between PARK2 and proinflammatory/anti-inflammatory cytokines.

Setting: Population-based case–control study involved the data of North India. Protein–protein interaction networks were constructed using cytoscape.

Participants: Study included the data available from 2305 Northern Indians samples (829 patients with leprosy; 1476 healthy controls), generated by our research group.

Primary and secondary outcome measures: For genotype interaction analysis, all possible genotype combinations between selected SNPs were used as an independent variable, using binary logistic regression with the forward likelihood ratio method, keeping the gender as a covariate.

Results: Interaction analysis between PARK2 and significant SNPs of anti-inflammatory/proinflammatory cytokine genes, including BAT1 to BTNL2-DR spanning the HLA (6p21.3) region in a case–control comparison, showed that the combined analysis of: (1) PARK2, tumour necrosis factor (TNF), BTNL2-DR, interleukin (IL)-10, IL-6 and TGFBR2 increased the risk towards leprosy (OR=2.54); (2) PARK2, BAT1, NFKBIL1, LTA, TNF-LTB, IL12B and IL10RB provided increased protection (OR=0.26) in comparison with their individual contribution.

Conclusions: Epistatic SNP–SNP interactions involving PARK2 and cytokine genes provide an additive risk towards leprosy susceptibility. Furthermore, in silico protein–protein interaction of PARK2 and important proinflammatory/anti-inflammatory molecules indicate that PARK2 is central to immune regulation, regulating the production of different cytokines on infection.
INTRODUCTION

Leprosy caused by *Mycobacterium leprae* is a chronic infectious disease, characterised by clinically defined polar forms in which pathology and immunology are inextricably related, providing a critical model to explore the immunoregulatory mechanisms in humans. At one pole, tuberculoid form is associated with a strong cell-mediated immunity (CMI) and T helper 1 (Th1) cytokine profile, and, at the other end of the spectrum, the lepromatous form is associated with a strong humoral response and Th2 cytokine profile. Cytokines and other related molecules of the immunological pathways thus seem to be a part of significant group of candidates that are apparently critical for the host-pathogen interactions, where the outcome of the disease is majorly dependent on the host factors controlling the immune response, especially when *M leprae* possesses the lowest level of genetic diversity.\(^1\) This is supported by various studies of familial clustering,\(^2\) twin studies,\(^3\) complex segregation analysis,\(^4^,\)\(^5\) test of analysis with the HLA genes\(^6^,\)\(^5\) including recent genome-wide association studies,\(^7^,\)\(^8\) and studies of several genes that modulate CMI, with a role in either susceptibility to leprosy per se or to leprosy types.\(^9\) Various candidate gene studies and genome-wide approaches have implicated polymorphisms in cytokine genes, whose protein products are part of important immune modulatory molecules, playing a major role in influencing host–pathogen interactions and determine the outcome of many infectious and autoimmune diseases.\(^10^–\)\(^16\) However, only a few observations have been replicated unequivocally in different population groups, suggesting the polygenic nature of the disease with a high degree of heterogeneity among different populations.

We, recently, have studied various candidate genes of proinflammatory/anti-inflammatory cytokines in two independent population groups, North and East India-Orissa, and found a strong association with interleukin (IL)-10, IL-10RB, TGFBR2, IL-6\(^14\) and IL-12B.\(^17\) Fine-mapping of a specific 6p (HLA) chromosomal region revealed a significant association of important candidates, BAT1, LTA, tumour necrosis factor (TNF) and BTNL2.\(^16\) A subsequent study of the 6q chromosomal region, involving the overlapping regulatory domain of PARK2-PACRG genes, revealed an involvement of significant single-nucleotide polymorphisms (SNPs) and presence of a differential LD structure in Indian populations as compared with Vietnamese.\(^18\) The latter observation and the functional role of PARK2, as a ubiquitin ligase, has recently been shown in providing resistance to intracellular pathogens\(^19\) through ubiquitin-mediated autophagy. Furthermore, the involvement of parkin in regulating production of cytokines upon infection,\(^20\) indeed, provides a strong hint for any functional variations in the gene having a profound effect in modulating the expression of the immune-regulatory genes. The importance of all the studied genes\(^14^–\)\(^18\) in the network of immune-response necessitated the analysis of an interaction between these genes as a whole to understand their contribution together towards the susceptibility of the complex disease, leprosy, where the outcome of the infection in all probabilities depends on the nature of gene interactions between the genes with the potential of contributing to the immune pathology.

Therefore, the aim of this study was to assess an overall interaction between the significant and functionally important SNPs studied in a case–control comparison of the samples from New Delhi, in Northern India, where most of these SNPs were replicated in an unrelated East Indian-Orissa population. These included an overall interaction of the PARK2 gene significant SNPs\(^18\) with the significant SNPs of anti-inflammatory cytokine genes (IL-10, IL-10RB, TGFBR2, IL-6),\(^14\) proinflammatory cytokine genes (TNFα, LT-α, IL-12B) and the genes spanning the HLA region of the chromosome 6p21.3, that is, BAT1 to BTNL2-DR\(^16\)\(^17\) to evaluate their combined contribution towards the outcome of the complex infectious disease, leprosy.

METHODS

The study involved the revisit of our published work on individual candidate genes and regions, studied in North Indian population groups in case–control comparison, for a combined genotype interaction and for in silico protein–protein interaction (PPI) and network analysis. The data compiled were of 2305 samples from Northern India (including 829 patients with leprosy and 1476 unrelated healthy control participants from North India)\(^14^,\)\(^16^–\)\(^18\) with a complete coverage of genes belonging to proinflammatory, anti-inflammatory cytokines, selected HLA regions in 6p21.3 and common regulatory region of PARK2/PACRG genes located at 6q26 region.

The patients’ group was classified according to the WHO guidelines. An individual was regarded as having leprosy if he or she showed skin lesion consistent with leprosy and with definite sensory loss, with or without thickened nerves and positive skin smears test. Furthermore, patients were classified as paucibacillary (PB) or multibacillary (MB) according to the Ridley and Jopling criteria,\(^21\) including 421 patients with PB and 408 patients with MB, with a mean age of 32.30 ± 3.2 years (range 6–80 years). All these patients were under treatment with multidrug therapy specific for MB and PB leprosy, as recommended by the WHO.

For genotype interaction analysis, all possible genotype combinations between selected SNPs (pairwise or multiple genes) were ascertained from a MassArray platform for the given genotypes of SNPs. However, only the combinations of significantly associated SNP genotypes were presented in the Ms for convenience. These interactions were tested using binary logistic regression with the forward likelihood ratio-based selection method, considering all variables independently and keeping gender as a covariate. In this selection method, entry testing based on the
Table 1 Genotype interaction analysis of PARK2 SNPs with proinflammatory /anti-inflammatory cytokines gene SNPs providing risk/protection towards leprosy susceptibility

PARK2 (SNPs are within 63.8 kb upstream gene region)	Gene	SNPs providing risk	Samples (n)	Significance	95% CI for EXP(B)
rs9365492; minor, risk allele-C	IL-10	rs1800871 (−819); minor, risk allele-T	82	3.22E-05	1.997 1.441 2.767
TC+CC	GA+AA	rs1554286 (intron 3 boundary); minor, risk allele-T	84		
rs9355403; minor, risk allele-A		TT			
TGFB2	CT+TT	rs2228048 (3' UTR downstream); minor, risk allele-T	287	1.04E-02	1.293 1.062 1.575
rs1800797 (−718); minor, risk allele-G		GGG	320	2.90E-03	1.333 1.103 1.611
IL-6	CT+CC	rs1800629 (−308); minor, risk allele-G	432		
TNF	GG	rs1800610 (Intron-1); minor, risk allele-G			
rs1315365; minor, risk allele-C	BTNL2-DRA interval	rs3135365; minor, risk allele-G	311	2.06E-09	2.103 1.649 2.682
CA+CC	GG	rs773756; minor, risk allele-T	420		
SNPs providing protection	CT+TT	rs13192469 (13 kb upstream); minor, risk allele-C	272	1.22E-21	5.4 3.821 7.631
TT	GG	rs13171425 (3' UTR); major, risk allele-G	240	3.56E-07	0.616 0.512 0.743
LTA	GA+AA	rs36221459 (−1409); minor, risk allele-DEL	571		
		GTTT	66		
IL-10RB2	rs3171425 (3' UTR); major, risk allele-G	164	1.10E-05	0.61 0.489 0.76	
BAT1	rs2523504 (−603); minor, risk allele-T	192	4.15E-05	0.645 0.523 0.795	
CC		rs2230365 (exon-3); minor, risk allele-T	475		
NFKBIL	CC	rs769178 (gene downstream); major, risk allele-G	195	1.01E-07	0.589 0.484 0.715
TNF-LTB	TT	rs2853694; major, risk allele-A	66	8.93E-05	0.546 0.404 0.739
CA+CC		GA+GG	233	5.03E-04	0.705 0.579 0.858

IL, interleukin; SNP, single-nucleotide polymorphism; TNF, tumour necrosis factor.
significance of the score statistics and removal testing based on the probability of a likelihood ratio statistics were applied. Furthermore, in multiple gene interaction analysis, all interactions with either risk or protection were combined against other interactions to observe the overall effect of all risk versus protective interactions. These analyses were performed using statistical software package SPSS V.17.0 (SPSS, Chicago, Illinois, USA) for Windows. p Value was considered significant at and below 0.05.

In silico approach to assess the network of the genes in a PPI of PARK2, using Agile Protein Interaction Database (APID), a comprehensive resource for protein interaction data, automatically accessed by cytoscape through the dedicated plugin APID2NET was carried out to understand the involvement of the studied interactome. APID integrates in a single web-based tool all known experimentally validated PPI from BIND, BioGRID, DIP, HPRD, IntAct and MINT databases.

RESULTS
The interaction analysis carried out between PARK2 gene regulatory region SNPs (rs9365492 and rs9355403) and SNPs of the anti-inflammatory cytokines provided a significant risk towards the leprosy susceptibility, combining individually with SNPs of IL-10 (OR=1.99), IL-6 (OR=1.33) and TGFBR2 (OR=1.29) cytokine genes. However, with IL10RB (receptor β), the result showed a significant protection towards the disease (OR=0.61). Similar analysis between PARK2 SNPs with proinflammatory cytokine genes TNFα and BTNL2-DRA interval (showing strong LD with the BTNL2 promoter SNPs) provided a significant risk towards leprosy susceptibility with OR=2.10 and 5.40, respectively. However, the SNPs of BAT1, NFKBIL1, LTA, TNF-LTB and IL12B provided a significant protection towards leprosy with OR=0.65, 0.58, 0.61, 0.54 and 0.71, respectively (table 1 and see online supplementary figure S1).

In the second step of combined interaction analysis with all the genes, providing either protection or risk towards leprosy, showed that the combined genotypic interaction analysis of the SNP loci PARK2, TNF, BTNL2-DR, IL10, IL-6 and TGFBR2 further increased the risk of leprosy (OR=2.54), and a similar combined analysis for loci PARK2, BAT1, NFKBIL1, LTA, TNF-LTB and IL12B provided a significant protection towards leprosy with OR=0.26, 0.58, 0.61, 0.54 and 0.71, respectively (table 2A,B). Dividing the patients into PB and MB subtypes of leprosy revealed that the protection towards leprosy with PD subtype to carry a higher risk (OR=3.02) and protection (OR=0.11) towards leprosy in comparison with MB subtype, for respective combinations.

We further performed in silico analysis to identify the PPI of PARK2. We used APID2NET and cytoscape tools for PARK2 interaction Data retrieval, providing a total of 43 PARK2 interacting proteins. However, the result did not provide any direct interaction of the PARK2 with the cytokines studied by us in North Indian population. Furthermore, we considered 43 PARK2 interacting proteins for further analysis.

Table 2	Combined interaction analysis of all the SNPs providing either protection or risk towards leprosy susceptibility										
(A) Analysis of SNPs providing protection	**(B) Analysis of SNPs providing risk**										
Samples	**Samples**										
n	**PARK2**	**PARK2**	**IL-10**	**IL-10**	**IL-10**	**TGFBR2**	**TGFBR2**				
PARK2	**IL-10**	**PARK2**	**IL-10**	**PARK2**	**IL-10**	**PARK2**	**IL-10**				
PARK2	**IL-10**	**PARK2**	**IL-10**	**PARK2**	**IL-10**	**PARK2**	**IL-10**				
PARK2	**IL-10**	**PARK2**	**IL-10**	**PARK2**	**IL-10**	**PARK2**	**IL-10**				
TOTAL	**95% CI for EXP**	**95% CI for EXP**									
Pat Cont	**rs9365492**	**rs9355403**	**rs1800871**	**rs1800872**	**Total**	**IL-10**	**Total**	**IL-10**			
Alleles	**T/C**	**G/A**	**C/T**	**C/T**	**Total**	**T/C**	**G/A**	**C/T**	**C/T**	**G/A**	**C/T**
Risk allele	**C**	**A**	**T**	**T**	**C**	**A**	**T**	**G**	**G**	**G**	**G**
TOTAL	**10**	**59**	**TT**	**GG**	**CC**	**TT**	**CT**	**CT**	**CT**	**CT**	**CT**
PB/HC	**2**	**59**	**TT**	**GG**	**CC**	**TT**	**CT**	**CT**	**CT**	**CT**	**CT**
MB/HC	**NA**										
Significance	**OR**	**95% CI for EXP**	**95% CI for EXP**								
Pat Cont	**rs9365492**	**rs9355403**	**rs1800871**	**rs1800872**	**Total**	**IL-10**	**Total**	**IL-10**			
Alleles	**T/C**	**G/A**	**C/T**	**C/T**	**Total**	**T/C**	**G/A**	**C/T**	**C/T**	**G/A**	**C/T**
Risk allele	**C**	**A**	**T**	**T**	**C**	**A**	**T**	**G**	**G**	**G**	**G**
TOTAL	**57**	**44**	**TT**	**GG**	**CC**	**TT**	**CT**	**CT**	**CT**	**CT**	**CT**
PB/HC	**32**	**44**	**TT**	**GG**	**CC**	**TT**	**CT**	**CT**	**CT**	**CT**	**CT**
MB/HC	**25**	**44**	**TT**	**GG**	**CC**	**TT**	**CT**	**CT**	**CT**	**CT**	**CT**
IL	**interleukin; MB, multibacillary; PB, paucibacillary; SNP, single-nucleotide polymorphism; TNF, tumour necrosis factor.**										

Chopra R, Kalairasan P, Ali S, et al. BMJ Open 2014;4:e004239. doi:10.1136/bmjopen-2013-004239
proteins for pathways analysis by using KEGG, BioCarta, Nci-Nature and Reactome tools, which confirmed these 43 proteins to be involved in 253 different pathways (without removing overlapping pathways). Similarly, in the second step of pathway analysis, we considered 11 cytokine proteins studied by us in North Indian population, and the results revealed the involvement of five cytokine proteins; IL12B, IL6, TNF, TGFR2 and IL10 in 94 pathways, not involving BTNL2, BAT1, NFKBIL, LTA, IL10RB2 and BTNL2-DR in any pathways. Comparing both pathways, 253 PARK2 interacting proteins pathways and 94 cytokine proteins pathways revealed 27 commonly involved pathways, via CASP8, CUL1, CCNE1 and CCNA proteins, involving only 5 (IL12B, IL6, TNF, TGFR2 and IL10) of 11 cytokine proteins studied in North Indian population (figure 1), connecting majorly through Toll-like receptor (TLR) signalling pathways (figure 1, see online supplementary table S1).

DISCUSSION

Leprosy, an ideal model of a chronic human complex infectious disease, provides an opportunity to dissect the components of the host-dependent polygenic susceptibility to this disease. Many loci have been shown to be individually associated and providing the risk towards the disease; justifying to find out interesting gene–gene interactions at different risk loci which may prove to provide a strong association towards the disease susceptibility. In order to understand the role of multiple genes together, an interaction analysis was carried out between the genotype status of functionally different variants of different genetic loci involved in immune response, with an expected combined effect on the outcome of the disease in different polar forms of the disease.

Considering the above facts, we first carried out pairwise interaction analysis of PARK2 gene with proinflammatory/anti-inflammatory cytokine genes (table 1), followed by multiple gene interaction analysis (table 2). Analysis of PARK2 with TNF, BTNL2-DR, IL10, IL6 and TGFB2 showed an increased risk towards leprosy (OR=2.54 (1.69 to 3.80), p=5.77e-06), while the combined analysis of PARK2 with BAT1, NFKBIL1, LTA, TNF-LTB, IL12B and IL10RB showed protection towards the disease (OR=0.26 (0.13 to 0.51), p=1.15e-04). PARK2, encoding E3 ubiquitin ligase protein-parkin, has been shown to be involved in the cellular ubiquitination metabolism, providing resistance to intracellular pathogen via ubiquitin-mediated autophagy, essentially shown to be involved in the host responses to *M. leprae* and for pathogenesis of the disease. Recently, parkin protein has shown to be involved to respond to infection in a regulated way by producing important cytokines, suppressing molecules that limit proinflammatory-IL-2, TNFα cytokine production and enhancing the production of anti-inflammatory cytokines, IL-4, IL-10 and IL-13. All these observations indicate the in vivo importance of PARK2 gene product, parkin, to be centrally involved in regulating the production of critical cytokines during immune response against the invading mycobacterium and justifying our study, where combination of risk genotype at different loci of important immune response gene with PARK2 provides increased and significant risk towards this complex disease. These interesting results of gene–gene interaction analysis suggest the in vivo effect of the invading mycobacterium...
in future, where immune response to specific antigens is assessed in cells with different background of important variations in the PARK2 promoter region followed by the effect on the expression levels of proinflammatory/anti-inflammatory cytokines.

An in silico approach was used to understand the role of immune-regulatory PPI between PARK2 and other cytokine genes, and an indirect interaction was observed between PARK2 and IL12B, IL6, TNF, TGFB2 and IL10 genes. All these interactions were found to be connected with TLR signalling pathway (see online supplementary table S1). As already known, the polymorphisms in different TLRs, important molecules of innate immune response, are associated with leprosy and its subtypes, influencing recognition of M leprae. A simultaneous involvement of PARK2, a ubiquitin ligase protein involved in innate immunity by modulating the production of important cytokines, including IL6, hints at the involvement of all these important molecules to be interconnected through a TLR receptor signalling pathway to fight against the invading mycobacterium.

The above interaction and pathway analysis allows us to propose that the complex genetic background is the predominant factor for the outcome of the disease, where the combined effect of the variant risk alleles of the PARK2 gene, responsible for affecting transcription binding site and lowering the expression of the reporter gene by in vitro experiment, along with the risk alleles of the anti-inflammatory cytokine genes—IL-10, IL-6, TGFB2, responsible for lowering the CMI response towards the invading bacteria and proinflammatory cytokines—TNFα, is responsible in providing highly significant risk towards leprosy. The study opens a way for future in vivo work of immune-response readouts in complex variant genomic backgrounds to understand the wide gap in understanding the balance in the network of all the immune regulatory molecules operational in providing either susceptibility or resistance towards disease.

Author affiliations
1School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
2National Centre of Applied Human Genetics, School of life Sciences, Jawaharlal Nehru University, New Delhi, India
3Department of Dermatology and Sexually Transmitted Diseases, Maulana Azad Medical College, Lok Nayak Jai Prakash Hospital, New Delhi, India
4Department of Dermatology and Venerology, University College of Medical Sciences and GTB Hospital, Delhi, India

Acknowledgements The authors would like to thank all who participated in the study. They also thank Dr Shobit Caroli and Dr Sudhanshu, Dr Shalu the attending physicians at LNJP Hospital and Professor Jason P Sinnwell for his invaluable support in providing Naph.Sstats package.

Contributors RNKB and RC contributed in planning, designing and execution of work and wrote the article; RC, SA, PK, SA and AKS contributed in biostatistics and in silico analysis; VKG and SNB contributed in patient evaluation, clinical categorisation and discussion. All authors critically reviewed the manuscript. RNKB led the research effort.

Funding Financial and infrastructural support for the production of manuscript was provided by Shri Mata Vaishno Devi University, University Grants Commission; and high-throughput project from DBT to the National Center of Applied Human Genetics.

Competing interests None.

Patient consent Obtained.

Ethics approval Approved by Jawaharlal Nehru Ethics committee, New Delhi, India.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement No additional data are available.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 3.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/3.0/.

REFERENCES

1. Monot M, Honore N, Garnier T, et al. Comparative genomic and phylogeographic analysis of Mycobacterium leprae. Nat Genet 2009;41:1282–9.
2. Shields ED, Russell DA, Pericak-Vance MA. Genetic epidemiology of the susceptibility to leprosy. J Clin Invest 1987;79:1139–43.
3. Chakravartti M, Vogel F. A twin study on leprosy: Topics in human genetics. Vol. 1. Stuttgart, Germany: Georg Thieme Verlag, 1973:1–123.
4. Abel L, Dernenas F. Detection of major genes for susceptibility to leprosy and its subtypes in a Caribbean island: Desire Island. Am J Hum Genet 1986;42:256–66.
5. Abel L, Vu DL, Oberti J, et al. Complex segregation analysis of leprosy in southern Vietnam. Genet Epidemiol 1995;12:63–82.
6. Todd JR, West BC, McDonald JC. Human leukocyte antigen and leprosy: study in northern Louisiana and review. Rev Infect Dis 1990;12:63–74.
7. Wong SH, Gochhait S, Malhotra D, et al. Leprosy and the adaptation of human toll-like receptor 1. PLoS Pathog 2010;6:e1000979.
8. Zhang FR, Huang W, Chen SM, et al. Genomewide association study of leprosy. N Engl J Med 2009;361:2609–18.
9. Fitness J, Tosh K, Hill AV. Genetics of susceptibility to leprosy. Genes Immunol 2002:3:441–53.
10. Gomolka M, Menninger H, Saal JE, et al. Immunoprinting: various genes are associated with increased risk to develop rheumatoid arthritis in different groups of adult patients. J Mol Med 1995;73:19–29.
11. Mok CC, Lanchbury JS, Chan DW, et al. Interleukin-10 promoter polymorphisms in Southern Chinese patients with systemic lupus erythematosus. Arthritis Rheum 1998;41:1090–9.
12. Loughey BV, Maxwell AP, Fogarty DG, et al. An interleukin 1B allele, which correlates with a high secretor phenotype, is associated with diabetic nephropathy. Cytokine 1998;10:984–8.
13. Morahan G, Huang D, Wu M, et al. Association of IL12B polymorphism with severity of atopic and non-atopic asthma in children. Lancer 2002;360:455–9.
14. Aggarwal S, Ali S, Chopra R, et al. Genetic variations and interactions in anti-inflammatory cytokine pathway genes in the outcome of leprosy: a study conducted on a MassARRAY platform. J Infect Dis 2011;204:1264–73.
15. Alcais A, Alter A, Antoni G, et al. Stepwise replication identifies a low-producing lymphotxin-alpha allele as a major risk factor for early-onset leprosy. Nat Genet 2007;39:517–22.
16. Ali S, Chopra R, Aggarwal S, et al. Association of variants in BAT1L-TATA-TNPT2 genes within 6p21.3 region show graded risk to leprosy in unrelated cohorts of Indian population. Hum Genet 2012;131:703–16.
17. Ali S, Srivastava AK, Chopra R, et al. IL12B SNPs and copy number variation in IL23R gene associated with susceptibility to leprosy. J Med Genet 2013;50:34–42.
18. Chopra R, Ali S, Srivastava AK, et al. Mapping of PARK2 and PACRG overlapping regulatory region reveals LD structure and functional variants in association with leprosy in unrelated Indian population groups. PLoS Genet 2013;9:e1003578.
19. Manzalini PS, Ayres JS, Watson PG, et al. The ubiquitin ligase parlin mediates resistance to intracellular pathogens. Nature 2013;501:512–16.
20. de Leseleuc L, Orlova M, Cobat A, et al. PARK2 mediates interleukin 6 and monocyte chemotactic protein 1 production by human macrophages. PLoS Negl Trop Dis 2013;7:e2105.

21. Danielsen DC, Boeck W, Lossing J.L. Om Spedalskhead [on leprosy]. Christiana Chr Grondahl 1847.

22. Smoot ME, Ono K, Ruscheinski J, et al. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 2011;27:431–2.

23. Hernandez-Toro J, Prieto C, De las Rivas J. APID2NET: unified interactome graphic analyzer. Bioinformatics 2007;23:2495–7.

24. Bader GD, Betel D, Hogue CW. BIND: the Biomolecular Interaction Network Database. Nucleic Acids Res 2003;31:249–50.

25. Keshava Prasad TS, Goel R, Kandasamy K, et al. The database of interacting proteins: 2004 update. Nucleic Acids Res 2004;32(Database issue):D449–51.

26. Keshava Prasad TS, Goel R, Kandasamy K, et al. Human protein reference database—2009 update. Nucleic Acids Research 2009;37(Database issue):D767–72.

27. Kerrien S, Aranda B, Breuza L, et al. The IntAct molecular interaction database: 2012 update. Nucleic Acids Res 2012;41(Database issue):D816–23.

28. Salwinski L, Miller CS, Smith AJ, et al. The database of interacting proteins: 2004 update. Nucleic Acids Res 2004;32(Database issue):D449–51.

29. Kerrien S, Aranda B, Breuza L, et al. The IntAct molecular interaction database: 2012 update. Nucleic Acids Res 2012;41(Database issue):D816–23.

30. Shimura H, Hattori N, Kubo S, et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 2000;25:302–5.

31. Mira MT, Alcais A, Nguyen VT, et al. Susceptibility to leprosy is associated with PARK2 and PACRG. Nature 2004;427:636–40.

32. Schurr E, Alcais A, de Leseleuc L, et al. Genetic predisposition to leprosy: a major gene reveals novel pathways of immunity to Mycobacterium leprae. Semin Immunol 2006;18:404–10.

33. Mueller DL. E3 ubiquitin ligases as T cell anergy factors. Nat Immunol 2004;5:883–90.

34. Garcia-Covarrubias L, Manning EW III, Sorell LT, et al. Ubiquitin enhances the Th2 cytokine response and attenuates ischemia-reperfusion injury in the lung. Crit Care Med 2008;36:979–82.

35. Majetschak M. Extracellular ubiquitin: immune modulator and endogenous opponent of damage-associated molecular pattern molecules. J Leukoc Biol 2011;89:205–19.

36. Majetschak M, Krehmeier U, Bardenheuer M, et al. Extracellular ubiquitin inhibits the TNF-alpha response to endotoxin in peripheral blood mononuclear cells and regulates endotoxin hyporesponsiveness in critical illness. Blood 2003;101:1882–90.

37. Patel MB, Majetschak M. Distribution and interrelationship of ubiquitin proteasome pathway component activities and ubiquitin pools in various porcine tissues. Physiol Res 2007;56:341–50.

38. Saini V, Romero J, Marchese A, et al. Ubiquitin receptor binding and signaling in primary human leukocytes. Commun Integr Biol 2010;3:608–10.

39. Singh M, Roginskaya M, Dalal S, et al. Extracellular ubiquitin inhibits beta-AR-stimulated apoptosis in cardiac myocytes: role of GSK-3beta and mitochondrial pathways. Cardiovasc Res 2010;86:20–8.

40. Bochud PY, Hawn TR, Siddiqui MR, et al. Toll-like receptor 2 (TLR2) polymorphisms are associated with reversal reaction in leprosy. J Infect Dis 2008;197:253–61.

41. Bochud PY, Sinsimer D, Aderem A, et al. Polymorphisms in Toll-like receptor 4 (TLR4) are associated with protection against leprosy. Eur J Clin Microbiol 2009;28:1055–65.

42. Johnson CM, Lyle EA, Ormueti KO, et al. Cutting edge: a common polymorphism impairs cell surface trafficking and functional responses of TLR1 but protects against leprosy. J Immunol 2007;178:7520–4.

43. Misch EA, Macdonald M, Ranjit C, et al. Human TLR1 deficiency is associated with impaired mycobacterial signaling and protection from leprosy reversal reaction. PLoS Negl Trop Dis 2008;2:e231.

44. Schuring RP, Hamann L, Faber WR, et al. Polymorphism N248S in the human Toll-like receptor 1 gene is related to leprosy and leprosy reactions. J Infect Dis 2009;199:1816–19.