Flexible cotton-AuNP thread electrode for non-enzymatic sensor of uric acid in urine

Kanyapat Teekayupak · Nipapan Ruecha · Orawan Chailapakul · Nadnudda Rodthongkum

Received: 18 April 2021 / Accepted: 24 August 2021 / Published online: 24 September 2021 © The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract We report on the development of an electrochemical sensor platform based on modified cotton fibers for the non-enzymatic detection of uric acid (UA), an important biomarker for gout disease. To create the flexible electrode, a cotton thread was coated with carbon ink as a pre-conductive layer prior to direct electrodeposition of AuNPs. Then, differential pulse voltammetry (DPV) was used to evaluate the sensor performances, and a linear detection range between 10 µM and 5.0 mM of uric acid was obtained. The sensor has a detection limit of 0.12 µM, which is sufficient for use in the patients suffering from gout disease which uric acid is higher than 4.46 mM. Furthermore, we found that the detection sensitivity of the platform was not affected by the presence of other physiological compounds present in human urine. The described platform has the potential for integration in a diaper hence enabling rapid detection and screening for gout disease.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s10570-021-04169-y.

K. Teekayupak · O. Chailapakul Electrochemistry and Optical Spectroscopy Center of Excellent (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand e-mail: Corawon@chula.ac.th

N. Ruecha · N. Rodthongkum Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Road, Pathumwan, Bangkok 10330, Thailand e-mail: Nadnudda.r@chula.ac.th

N. Rodthongkum Center of Excellence in Responsive Wearable Materials, Chulalongkorn University, Bangkok 10330, Thailand
Introduction

Non-invasive diagnosis allows for the direct detection of target biomarkers from body fluids without the common pain and infection risk associated with blood-based protocols (Li et al. 2019a; Michelena et al. 2019; Eftekhar et al. 2019; Doménech-Carbó et al. 2018). Various substrates have been used for non-invasive diagnosis including tattoos (Bandodkar et al. 2013; Jia et al. 2013), paper-based sensors (Anastasova et al. 2017), stretchable elastomers (Martin et al. 2017) and textile substrates (Liu and Lillehoj 2017). Textiles have become an attractive material owing to their flexibility, biocompatibility and high-water absorption (Caldara et al. 2016; Promphet et al. 2019; Ren et al. 2017). Among textile-based sensors, fabric platforms usually require of a high volume of biofluid sample, while yarns and threads require of low sample volumes and offer unique microfluidic properties (Ahmed et al. 2019; Reches et al. 2010; Oliveira et al. 2019; Liu et al. 2018, 2010; Polanský et al. 2017; Weng et al. 2019; Yokota et al. 2008b; Sugano et al. 2016; Akhlaghi et al. 2013; Ruecha et al. 2020; Magosso et al. 2012; Wenz and Liepold 2006; Wu et al. 2012).

Uric acid (UA), chemically designated as 2, 6, 8-trihydroxypurine, is a major product of the catabolism of purine nucleosides, adenosine and guanosine. The normal concentration of uric acid in human urine varies between 1.4–4.46 mM and values higher than 4.46 mM are used for gout disease diagnosis (Azmi et al. 2015; Liu et al. 2019; Yang et al. 2018).

Non-invasive sensors of UA in human urine have been recently developed (Bai et al. 2017; Yang et al. 2018), and various techniques, such as liquid chromatography (Li et al. 2015), capillary electrophoresis (Pormsila et al. 2009), and fluorescence spectroscopy (Azmi et al. 2018) have been used for UA detection. However, while these techniques offer high sensitivity and precision, they also have some limitations such as high cost, and the requirement of highly trained personnel. An electrochemical sensor offers an alternative approach owing to its simplicity,
miniaturization, rapid response and low cost (Liu et al. 2012; da Cruz et al. 2017; Income et al. 2019). Traditionally, the sensing of UA is performed via an enzymatic reaction using uricase. Although enzyme-based sensors provide high specificity and sensitivity, they have some major disadvantages, including high cost, operational complexity and low stability (Arora et al. 2014).

Non-enzymatic UA sensors based on oxidation processes occurring on electrodes have been developed (Income et al. 2019). However, non-enzymatic sensors require of high surface areas for accurate detection. Metal nanoparticles have been utilized for the surface modification of electrodes owing to their high conductivity, large surface area, high mechanical strength, and electrocatalytic properties (Yukird et al. 2018; Ji et al. 2018; Wang et al. 2018, 2016; Ruecha et al. 2017). Among the metallic nanoparticles, gold nanoparticles (AuNPs) have been widely applied for non-enzymatic sensors due to high biocompatibility and easy conjugation with cellulose (Yokota et al. 2008a; Van Rie and Thielemans 2017; Azetsu et al. 2011; Park et al. 2012; Lam et al. 2012; Kitaoka et al. 2011).

In this manuscript, we report on the development of an electrochemical sensor for the non-enzymatic detection of UA using cotton threads as flexible substrates. We coated the cotton threads with a conductive carbon ink and then electrodeposited AuNPs to increase the sensor’s surface area and its electrochemical sensitivity to UA. The performance of the sensor was systematically investigated and tested in real human urine samples.

Material and methods

Chemicals and materials

Uric acid (UA), potassium ferricyanide (K₃[Fe(CN)₆]), potassium ferrocyanide (K₄[Fe(CN)₆]) and gold (III) chloride trihydrate (HAuCl₄·3H₂O) were purchased from Sigma–Aldrich (St. Louis, MO, USA). Silver/silver chloride (Ag/AgCl; C2130809D5) and carbon ink (C2030519P4) was obtained from Gwent group (Torfaen, United Kingdom). The carbon ink is composed of a solid carbonaceous component (e.g. carbon and graphite) and an epoxy resin (e.g. thermoplastic resin and some other additives). Potassium dihydrogen phosphate (KH₂PO₄), disodium hydrogen phosphate (Na₂HPO₄), sodium chloride (NaCl), potassium chloride (KCl) and sulphuric acid (H₂SO₄) were obtained from Carlo Erba Reagenti-SDS (Val de Reuil, France). All solutions were prepared using purified water (Millipore, USA, R ≥ 18.2 MΩ cm⁻¹). A Phosphate buffered saline solution (PBS, 0.1 M pH 6.0 (Tukimin et al. 2017; Zhang et al. 2012; Chen et al. 2018; Jalalvand 2020; Lorenzetti et al. 2019; Rebelo et al. 2004)) was prepared by dissolving 1.42 g Na₂HPO₄, 1.36 g KH₂PO₄, 0.58 g NaCl and 0.74 g KCl in 100 mL of high purified water. A stock solution of UA was freshly prepared in 0.1 M PBS. All chemicals were used as received.

Apparatus

The morphology and elemental composition of the cotton thread sensor were characterized by scanning electron microscopy (SEM) with energy dispersive X-rays spectroscopy (EDX) (JSM-6400; Japan Electron Optics Laboratory Co., Ltd., Tokyo, Japan). Electrochemical measurements were performed using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) modes on a CHI1240B (CH Instruments, Inc., Austin, TX, USA) potentiostat, controlled with CHI1240B software. Laser desorption/ionization mass spectrometer (LDI-MS; Autoflex III MALDI-TOF MS; Bruker, MA, USA) with 25% N₂ laser intensities at 337 nM and 40 shots was used to validate the concentration of uric acid in the samples.

Sensor design

The fabrication of the cotton thread sensor is shown in Scheme 1. Firstly, a cotton thread (DMC special 25, 100% cotton B5200) was soaked in the prepared carbon ink (C2030519P4), passed through a pinhole of a needle to remove the excess ink and obtain uniformed carbon coating on the thread, and baked at 60 °C for 30 min. The carbon-coated cotton thread was used as a working electrode (WE) for all experiments. To fabricate the counter and reference electrodes of an electrochemical sensor, carbon ink (C2030519P4) was screen-printed on a polyvinylchloride (PVC) substrate and heated at 60 °C for 30 min. After heating, Ag/AgCl ink (C2130809D5) was screen-printed on the same PVC substrate, dried at...
60 °C for 30 min, and used as a reference electrode (RE). After obtaining screen-printed electrode (SPE) template on PVC containing the RE and CE, a transparent film was punched in a hole diameter of 6 mm and attached on the as prepared SPE template using double-sided tape for creating electrochemical testing zone and hydrophobic barrier, which limit the sample area contacting with three electrodes on SPE. The carbon-coated cotton thread was placed between the RE and CE. Gold nanoparticles (AuNPs) were electrodeposited on the WE, by dropping 40 μL of 3.0 mM HAuCl₄ followed by the applied potential of −0.6 V (vs. Ag/AgCl) for 120 s (Charoenkittamorn et al. 2015). The AuNP modified cotton thread was carefully rinsed with purified water and dried at 60 °C for 1 h prior to use.

Characterization techniques

The surface morphology of the cotton thread, carbon-coated cotton thread and AuNP/carbon-coated cotton thread was observed using scanning electron microscopy (SEM). A dried sample was mounted directly on to a specimen stub, and imaging was carried out under high vacuum with an accelerated voltage of 10.0 kV using a magnification of 20,000×. The presence of functional groups in cotton thread, carbon-coated cotton thread and AuNP/carbon-coated cotton thread was verified by Fourier-transform infrared spectroscopy (FTIR: PerkinElmer, Spectrum One) with attenuated total reflectance (ATR) in a range of 4000–500 cm⁻¹.

Electrochemical measurements

Electrochemical measurements were performed on a potentiostat using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The cotton thread electrode was electrochemically characterized using a standard solution of 5.0 mM [Fe(CN)₆]³⁻/⁴⁻ via CV with a potential ranging from −1.2 to +0.9 V and a scan rate of 100 mV/s. During UA determination procedures, DPV measurements were performed using a potential from −0.3 to +0.8 V with a step potential of 15 mV, an amplitude of 200 mV and a pulse width of 50 ms.
Sample collection and sample preparation

A standard calibration curve, obtained by using with the spiking method, was selected for the detection of UA in human urine samples. Urine samples were collected from 5 different healthy adults as control measurements with a non-bias prior to medical diagnosis. The urine sample was diluted with 0.1 M of PBS solution (pH 6) in a ratio of 1:1. Known amounts of UA (0.5, 1.0 and 2.0 mM) were added to the diluted samples. 40 µL of the prepared samples were analyzed using the cotton thread sensor via DPV. The DPV results were compared to the values obtained with a LDI-MS (Autoflex III MALDI-TOF mass spectrometer; Bruker, MA, USA). For the LDI-MS analysis, 10 µL spiked samples were dropped on a stainless-steel MALDI-MS target plate and dried at room temperature (25 ± 5 °C) prior to analysis by LDI-MS.

The electrochemical sensor was also integrated into a diaper and used for the detection of UA in artificial urine. The artificial urine solution was prepared as described in a previous report (Hiraoka et al. 2020) with UA concentrations (1–3 mM).

Results and discussion

Physical characterization of cotton thread-based electrode

The surface of the cotton thread working electrode was characterized by scanning electron microscopy (SEM) with an energy dispersive X-rays spectroscopy (EDX) as shown in Fig. 1. SEM images display a smooth morphology for the uncoated cotton thread, whereas the carbon-coated cotton thread show higher surface roughness. To increase the specific surface area and electrical conductivity of the cotton thread, gold nanoparticles (AuNPs) were added via electrodeposition. SEM images show that the AuNPs were uniformly deposited on the carbon-coated cotton thread surface, with a particle size varying between 98.10 and 100.42 nm. EDX measurements were used to identify the characteristic peaks of Au as shown in Fig. 1d. The weight contents of C, O and Au were 74.59%, 1.59% and 23.82%, and the atom content of C, O and Au were 96.57%, 1.55% and 1.88%.

The FTIR spectra of uncoated cotton thread, carbon-coated cotton thread, and AuNP modified carbon-coated cotton thread were demonstrated in Fig. S1. The absorption bands of the cotton thread were observed at 3332 cm⁻¹ (O–H stretching), 2891 cm⁻¹ (C–H asymmetric stretching), 1715 cm⁻¹ and 1651 cm⁻¹ (C=O stretching of a carboxylic acid and ester). The intense peak at 1023 cm⁻¹ was possibly caused by overlapping bands of the functional groups of polysaccharides in cellulose. In addition, a small peak at 894 cm⁻¹ was a characteristic of β-glycosidic linkages of cellulose monosaccharides (Portella et al. 2016; Krishnamoorthy et al. 2012; Xu et al. 2018; Alamer 2018). Moreover, the spectra of the carbon-coated cotton thread and AuNP/carbon-coated cotton thread were similar to the uncoated cotton thread but lower absorption intensity due to the physical adsorption of carbon ink and AuNPs on the cotton thread surface.

Fabrication of the modified cotton thread-based sensor

A two-step fabrication was carried out to create the AuNP/carbon-coated cotton thread working electrode. Initially, cotton threads were soaked in carbon ink and passed through a pinhole to create the uniformed coating on the cotton thread’s surface and remove the excess amount of the carbon ink. HAuCl₄ was electrodeposited to form AuNPs on the carbon-coated cotton thread. Several parameters affecting the electrochemical performance of the sensor were optimized, such as the HAuCl₄ concentration and the electrodeposition time measuring by DPV in 1.0 mM UA.

The effect of HAuCl₄ concentration on the sensitivity of the sensor was systematically investigated as shown in Fig. 2a, b. Five different concentrations of HAuCl₄ were electrodeposited on the surface of the sensor at a deposition potential of − 0.6 V for 120 s. The results show that the anodic peak current response increased with the increasing concentration of HAuCl₄, and the highest anodic peak current was obtained at a concentration of 3.0 mM. After reaching the maximum, the anodic current responses decreased for concentrations higher than 3.0 mM due to the higher density of gold cluster causing the agglomeration on the thread’s surface (Fig. S2). Agglomeration leads to a decreased surface area and smaller
The electrochemical response of the system (Perez et al. 2011; Kuriganova et al. 2020; Li et al. 2019b; Kimuam et al. 2020; Ahluwalia et al. 2014). We selected a concentration of 3.0 mM HAuCl$_4$ for the modification of the thread-based sensor.

The effect of electrodeposition time was also investigated in a range between 30 and 240 s. As shown in Fig. 2c, d, the anodic peak current increased when the electrodeposition time increased, and the highest anodic peak current was obtained at 120 s of deposition time. After the maximum is reached, we found that the anodic peak current response decreased with increasing electrodeposition time. Longer electrodeposition times mean denser gold clusters (Fig. S3) hence leading to the decreasing of surface area (Shu et al. 2014; Dominguez Renedo and Arcos Martinez 2007; Charoenkitamorn et al. 2015; Majid et al. 2006). The electrodeposition time of 120 s was chosen for further experiments.

Electrochemical characterization of the sensor

The electrochemical behavior of the carbon-coated cotton thread, with and without AuNPs, was investigated by cyclic voltammetry (CV), using 5.0 mM [Fe(CN)$_6$]$^{3-}/4-$ in 0.1 M KCl as shown in Fig. 3a. In the cyclic voltammograms, the presence of AuNPs on the carbon-coated cotton thread (green line), showed higher anodic and cathodic peak currents towards [Fe(CN)$_6$]$^{3-}/4-$ detection, which was approximately 2 times higher than the current for the thread absent of AuNPs (pink line). The incorporation of AuNPs on the surface improves both the specific surface area and the electrochemical conductivity of the sensor, hence leading to improved sensitivity.

To assess the analytical performance of the sensor, 1.0 mM UA was measured using differential pulse voltammetry (DPV) as shown in Fig. 3b. The anodic peak current response for UA measured on the AuNP/carbon-coated cotton thread (yellow line) significantly increased compared to the one measured on the carbon-coated cotton thread (blue line). These
results indicated that the presence of AuNPs can enhance the electrochemical response for UA detection. Electrochemical impedance spectroscopy (EIS) was also used to confirm the enhanced sensitivity of AuNP modified cotton thread-based electrodes. As shown in Fig. 3c, the smallest semicircle was observed for the AuNP modified cotton thread-based sensor. The low charge transfer resistance occurred because the AuNP modified electrodes (blue) can effectively accelerate the electron transfer through cotton thread-based electrode surface (Huang et al. 2007; Motia et al. 2020; Bhavani et al. 2019; Wang et al. 2018; Benvidi et al. 2015). The cotton thread-based sensor (orange) shows the higher R_{ct} value which indicated a higher electron transfer resistance, hence indicating that the AuNP coated electrode was a suitable working electrode for UA detection.

Optimization of parameters for uric acid detection

To obtain the highest electrochemical sensitivity of the developed sensor for UA, electrochemical parameters such as step potential, amplitude and pulse width were systematically optimized when measuring 1.0 mM
UA in 0.1 M PBS. The selection of optimal conditions was based on the highest current response along with the smaller peak width and high peak symmetry. Figure S4 shows that the highest anodic peak current response at 15 mV of step potential, an amplitude of 200 mV, and a pulse width of 50 mV. At higher values of step potential, amplitude and pulse width, the anodic peak current response decreased due to broader peak shape. Therefore, in this study the above-mentioned conditions were selected for the detection of UA.

The analytical performance of the cotton thread-based sensor

The analytical performance of the AuNP modified cotton thread-based sensor on the detection of UA was investigated via DPV. As shown in Fig. 4, the anodic peak current linearly increased with UA concentration in the range between 10 μM and 5.0 mM (Fig. 4a). Two linear ranges of UA were observed from 10 μM–0.5 mM (Fig. 4b) and 0.5–5.0 mM (Fig. 4c) with a correlation coefficient (R²) of 0.9975 and 0.9987. The limit of detection (LOD) was calculated using the...
following equation: $\text{LOD} = 3S/N$, where S is a standard deviation of a signal obtained from a blank solution ($n = 7$), and N is a slope of calibration curve (Cheng and Kao 2016; Mukdasai et al. 2016; Yang et al. 2017; D’Souza et al. 2021). The LOD of AuNP modified cotton thread-based sensor was found to be 0.12 μM, which was calculated from the low concentration range (10 μM–0.5 mM) of calibration curve (Fig. 4b) due to lower LOD.

A linear range of 0.1–2.0 mM was obtained when Au NPs were not present on the surface of the electrode (Fig. S4) which is a narrower range than that of 10 μM to 5.0 mM for the sensor coated with AuNPs (Fig. 4). These results confirm that the presence of AuNPs improves the sensor’s signal linearity possibly due to the enhanced surface area and conductivity of the AuNPs. The slope of the calibration curve obtained from the sensor coated with AuNPs was higher than the slope for the sensor without AuNPs (Fig. S5), suggesting that the enhanced sensor sensitivity results from the presence of AuNPs. Interestingly, LOD of the carbon-coated cotton thread-based sensor was found approximately 13 times higher than the sensor with AuNPs (0.12 μM). These results indicate that the presence of AuNPs on the electrode’s surface drastically improved the sensitivity and LOD of the sensor.

Our sensor has a lower LOD and wider linear range than those previously reported as summarized in Table 1.
Interference study

The anti-interference ability of the cotton thread-based sensor was assessed by adding potential interfering substances such as a tenfold excess of glucose, creatinine, KCl, NaCl, urea, and a onefold excess of ascorbic acid and 1% excess of BSA. As shown in Fig. 5, there was no significant changes in the current measurements as the result of the presence of interfering substances (Lee et al. 2017; Jia et al. 2011; Zhu et al. 2017; Baig and Kawde 2016; Du et al. 2013).

Stability of the cotton thread-based sensor

The stability of the cotton thread-based sensor was investigated by measuring the DPV response to 1.0 mM of UA in PBS solution multiple times. The sensors were stored at room temperature for 30 days.
and the current responses remained above 96.48% of their initial values as shown in Fig. S6. These results are evidence of the stability and reproducibility of our sensors (Taei et al. 2016; Chang et al. 2014; Hu et al. 2008; Kannan and John 2009; Tan et al. 2020).

Real—life sample application and method validation

To confirm the potential application of the cotton thread-based sensor in complex biological matrices, pooled urine serum samples were collected from 5 healthy adults (female) to represent non-bias errors prior to medical diagnosis. Each urine sample was diluted with 0.1 M PBS solution, pH 6.5 (1:1). The cotton thread-based sensor was used to detect UA in the samples via a standard addition method. A known amount of UA (0.5, 1.0 and 2.0 mM) was added to the diluted samples. The analytical results are summarized in Table 2. The percent recovery ranged from 100 to 108 with a relative standard derivation (RSD) of less than 6.0% (n = 3). These results were validated by comparing these measurements with those obtained with a standard LDI-MS method as shown in Table 2.

Table 2 Determination of UA in human urine samples using the modified cotton thread-based sensor and LDI-MS (n = 3)

Spiked UA concentration (mM)	Modified cotton thread-based sensor (mM)	Standard LDI-MS (mM)	Recovery (%)
Blank	0.61 ± 0.08	0.70 ± 0.09	–
0.5	1.11 ± 0.02	1.17 ± 0.05	100
1.0	1.69 ± 0.05	1.73 ± 0.07	108
2.0	2.77 ± 0.12	2.84 ± 0.15	108

The cotton thread-based electrochemical sensor was also used to detect UA in artificial urine media. As shown in Fig. S7, a linearity was found in a range of 0.4–3.4 mM for UA in artificial urine samples. The sensor threads were directly integrated into a diaper and used to measure UA in artificial urine poured over the diaper. Known concentrations of UA (1.0, 2.0 and 3.0 mM) were added to the artificial urine media, and 50 mL of the solution were poured into the diaper. Table S1 summarizes the recovery percentages which ranged from 96 to 105 with an RSD of less than 9% (n = 3), verifying the high accuracy of the sensor in the diaper.

Conclusions

An electrochemical sensor for the non-enzymatic detection of UA, was fabricated using cotton threads coated with AuNPs. The cotton thread-based sensor exhibited high sensitivity to UA. The sensor shows a wide linear detection range of 10 μM–5.0 mM with a low detection limit of 0.12 μM. This enzyme-free sensor exhibits long-term stability, anti-interference ability, and satisfactory recoveries for detecting UA in human urine samples. The sensor was effectively applied for differentiation between a patient diagnosed with gout and a normal individual with a required cut off value (uric acid ≥ 4.46 mM). This sensing platform was successfully integrated into a diaper for direct detection of UA in artificial urine, enabling its potential for gout disease screening.

Acknowledgments This research was funded by National Research Council of Thailand (NRCT): N41A640074.

Authors’ contributions KT Methodology and Writing—original draft preparation, NR Investigation and Editing—original draft preparation, OC Supervision and Funding acquisition, NR Conceptualization, Project administration and Writing—Review and Editing.

Declarations

Conflict of interest The authors declare no conflict of interest.

Ethical standard All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee from Chulalongkorn Hospital.

References

Ahluwalia RK, Arisetty S, Peng J-K, Subbaraman R, Wang X, Kariuki N, Myers DJ, Mukundan R, Borup R, Polevaya O (2014) Dynamics of particle growth and electrochemical
surface area loss due to platinum dissolution. J Electrochem Soc 161(3):F291

Ahmed NM, Sabah FA, Kabaa EA, ZarMyint MT (2019) Single- and double-thermoelectric carbon fiber for pH sensing. Mater Chem Phys 221:288–294. https://doi.org/10.1016/j.matchemphys.2018.09.059

Akhlighi SP, Berry RC, Tam KC (2013) Surface modification of cellulose nanocrystal with chitosan oligosaccharide for drug delivery applications. Cellulose 20(4):1747–1764. https://doi.org/10.1007/s10570-013-9954-y

Alamer FA (2018) Structural and electrical properties of conductive cotton fabrics coated with the composite polyaniline/carbon black. Cellulose 25(3):2075–2082

Anastasova S, Crewther B, Bembnowicz P, Curto V, Ip HM, Rosa B, Yang GZ (2017) A wearable multisensing patch for continuous sweat monitoring. Biosens Bioelectron 93:139–145. https://doi.org/10.1016/j.bios.2016.09.038

Aparna T, Sivasubramanian R (2018) A facile hydrothermal synthesis of three dimensional flower-like NiO thermally reduced graphene oxide (trGO) nanocomposite for selective determination of dopamine in presence of uric acid and ascorbic acid. J Nanosci Nanotech 18(2):789–797

Aparna TK, Sivasubramanian R, Dar MA (2018) One-pot synthesis of Au-Cu2O/trGO nanocomposite based electrochemical sensor for selective and simultaneous detection of dopamine and uric acid. J Alloys Compd 741:1130–1141. https://doi.org/10.1016/j.jallcom.2018.01.205

Arora K, Tomar M, Gupta V (2014) Effect of processing parameters for electrocatalytic properties of SnO(2) thin film matrix for uric acid biosensor. Analyst 139(4):837–849. https://doi.org/10.1039/c3an01582c

Amet LE, Isogai A, Kitaoka T (2011) Synthesis and catalytic features of hybrid metal nanoparticles supported on cellulose nanofibers. Catalysts 1(1):83–96

Azmi NE, Ramli NI, Abdullah J, Abdul Hamid MA, Sidek H, Abd Rahman S, Ariffin N, Yusof NA, Abdul Hamid MA, Sidek H, Azetsu A, Koga H, Isogai A, Kitaoka T (2011) Synthesis and catalytic features of hybrid metal nanoparticles supported on cellulose nanofibers. Catalysts 1(1):83–96

Cheng C, Chen Y-C, Hong Y-T, Lee T-W, Huang J-F (2018) Facile fabrication of ascorbic acid reduced graphene oxide-modified electrodes toward electroanalytical determination of sulfamethoxazole in aqueous environments. Chem Eng J 288:524–529. https://doi.org/10.1016/j.apsusc.2013.10.064

D'Souza ES, Manjunatha JG, Raril C (2021) Electrochemical determination of dopamine and uric acid using poly(proline) modified carbon paste electrode: a cyclic voltammetric study. Chem Chem Technol 15(2):153–160. https://doi.org/10.1016/j.jelechem.2014.10.069

da Cruz FS, Paula FD, Franco DL, dos Santos WTP, Ferreira LF (2017) Electrochemical detection of uric acid using graphite screen-printed electrodes modified with Prussian blue/poly(4-aminosalicylic acid)/Uricase. J Electroanal Chem 806:172–179. https://doi.org/10.1016/j.jelechem.2017.10.070

Dominguez Renedo O, Arcos Martinez MJ (2007) Anodic stripping voltammetry of antimony using gold nanoparticle-modified carbon screen-printed electrodes. Anal Chim Acta 589(2):255–260. https://doi.org/10.1016/j.aca.2007.02.069
Du J, Yue R, Ren F, Yao Z, Jiang F, Yang P, Du Y (2013) Simultaneous determination of uric acid and dopamine using a carbon fiber electrode modified by layer-by-layer assembly of graphene and gold nanoparticles. Gold Bull 46(3):137–144. https://doi.org/10.1007/s13404-013-0090-0

Eltekhari A, Hasanzadeh M, Sharifi S, Dizaj SM, Khalilov R, Ahmadian E (2019) Bioassay of saliva proteins: the best alternative for conventional methods in non-invasive diagnosis of cancer. Int J Biol Macromol 124:1246–1255. https://doi.org/10.1016/j.ijbiomac.2019.03.039

Feng J, Li Q, Cai J, Yang T, Chen J, Hou X (2019) Electrochemical detection mechanism of dopamine and uric acid on titanium nitride-reduced graphene oxide composite with and without ascorbic acid. Sens Actuators B Chem 298:126872. https://doi.org/10.1016/j.snb.2019.126872

Hiraoaka R, Kuwahara K, Wen YC, Yen TH, Hiruta Y, Cheng CM, Citerio D (2020) Paper-based device for naked eye urinary albumin/creatinine ratio evaluation. ACS Sens 5(4):1110–1118. https://doi.org/10.1021/acsensors.0c00050

Hu G, Ma Y, Guo Y, Shao S (2008) Electrocatalytic oxidation and simultaneous determination of uric acid and ascorbic acid on the gold nanoparticles-modified glassy carbon electrode. Electrochim Acta 53(22):6610–6615. https://doi.org/10.1016/j.electacta.2008.04.054

Huang H, Ran P, Liu Z (2007) Impedance sensing of allergen-antibody interaction on glassy carbon electrode modified by gold electrodeposition. Bioelectrochemistry 70(2):257–262. https://doi.org/10.1016/j.bioelechem.2006.10.002

Income K, Ratnarathorn N, Khambhaviyo N, Sriwut C, Ruckthong L, Dungchai W (2019) Disposable nonenzymatic uric acid and creatinine sensors using muPAD coupled with screen-printed reduced graphene oxide-gold nanocomposites. Int J Anal Chem 2019:3457247. https://doi.org/10.1155/2019/3457247

Jalalvand AR (2020) Four-dimensional voltammetry: An efficient strategy for simultaneous determination of ascorbic acid and uric acid in the presence of dopamine as uncalibrated interference. Sens Bio-Sens Res 28:100330. https://doi.org/10.1016/j.sbsr.2020.100330

Ji D, Liu Z, Liu L, Low SS, Lu Y, Yu X, Zhu L, Li C, Liu Q (2018) Smartphone-based integrated voltammetry system for simultaneous detection of ascorbic acid, dopamine, and uric acid with graphene and gold nanoparticles modified screen-printed electrodes. Biosens Bioelectron 119:55–62. https://doi.org/10.1016/j.bios.2018.07.074

Jia D, Dai J, Yuan H, Lei L, Xiao D (2011) Selective detection of dopamine in the presence of uric acid using a gold nanoparticles-poly(luminol) hybrid film and multi-walled carbon nanotubes with incorporated beta-cyclodextrin modified glassy carbon electrode. Talanta 85(5):2344–2351. https://doi.org/10.1016/j.talanta.2011.07.067

Jia W, Bandykar AJ, Valdes Ramirez G, Windmiller JR, Yang Z, Ramirez J, Chan G, Wang J (2013) Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration. Anal Chem 85(14):6553–6560. https://doi.org/10.1021/ac401573r

Kannan P, John SA (2009) Determination of nanomolar uric and ascorbic acids using enlarged gold nanoparticles modified electrode. Anal Biochem 386(1):65–72. https://doi.org/10.1016/j.ab.2008.11.043

Kimuam K, Rodthongkum N, Ngamrojanavanich N, Chalapakul O, Ruecha N (2020) Single step preparation of platinum nanoflowers/reduced graphene oxide electrode as a novel platform for diclofenac sensor. Microchem J 155:104744. https://doi.org/10.1016/j.microc.2020.104744

Kitaoka T, Yokota S, Opietnik M, Rosenau T (2011) Synthesis and bio-applications of carbohydrate–gold nanoconjugates with nanoparticle and nanolayer forms. Mater Sci Eng, C 31(6):1221–1229

Krishnamoorthy K, Navaneethaiyer U, Mohan R, Lee J, Kim S-J (2012) Graphene oxide nanostructures modified multi-functional cotton fabrics. Appl Nanosci 2(2):119–126

Kuriganova A, Faddeev N, Gorschenkov M, Kuznetsov D, Leontyev I, Smirnova N (2020) A comparison of “bottom-up” and “top-down” approaches to the synthesis of Pt/C electrocatalysts. Processes 8(8):947. https://doi.org/10.3390/pr8080947

Lam E, Hrapovic S, Majid E, Chong HJ, Luong JH (2012) Catalysis using gold nanoparticles decorated on nanocrystalline cellulose. Nanoscale 4(3):997–1002

Lee CS, Yu SH, Kim TH (2017) One-step electrochemical fabrication of reduced graphene oxide/gold nanoparticles nanocomposite-modified electrode for simultaneous detection of dopamine, ascorbic acid, and uric acid. Nanomaterials (basel) 8(1):17. https://doi.org/10.3390/nano8010017

Li XL, Li G, Jiang YZ, Kang D, Jin CH, Shi Q, Jin T, Inoue K, Todoroki K, Toyo’oka T, Min JZ (2015) Human nails metabolite analysis: a rapid and simple method for quantification of uric acid in human fingernail by high-performance liquid chromatography with UV-detection. J Chromatogr B Analyt Technol Biomed Life Sci 1002:394–398. https://doi.org/10.1016/j.jchromb.2015.08.044

Li Y, Xiong D, Liu Y, Liu M, Liu J, Liang C, Li C, Xu J (2019b) Correlation between electrochemical performance degradation and catalyst structural parameters on polymer electrolyte membrane fuel cell. Nanotechnol Rev 8(1):493–502. https://doi.org/10.1515/ntrev-2019-0044

Li T, Zou L, Zhang J, Li G, Ling L (2019a) Non-invasive diagnosis of bladder cancer by detecting telomerase activity in human urine using hybridization chain reaction and dynamic light scattering. Anal Chim Acta 1065:90–97. https://doi.org/10.1016/j.aca.2019.03.039

Liu X, Lillehej PB (2017) Embroidered electrochemical sensors on gauze for rapid quantification of wound biomarkers. Biosens Bioelectron 98:189–194. https://doi.org/10.1016/j.bios.2017.06.053

Liu H, Wang D, Song Z, Shang S (2010) Preparation of silver nanoparticles on cellulose nanocrystals and the application in electrochemical detection of DNA hybridization. Cellulose 18(1):67–74. https://doi.org/10.1007/s10570-010-9464-0

Liu X, Xie L, Li H (2012) Electrochemical biosensor based on reduced graphene oxide and Au nanoparticles entrapped in chitosan/silica sol–gel hybrid membranes for determination of dopamine and uric acid. J Electroanal Chem
Shu H, Cao L, Chang G, He H, Zhang Y, He Y (2014) Direct electrodeposition of gold nanostructures onto glassy carbon electrodes for non-enzymatic detection of glucose. Electrochim Acta 132:524–532. https://doi.org/10.1016/j.electacta.2014.04.031

Song H, Xue G, Zhang J, Wang G, Ye B-C, Sun S, Tian L, Li Y (2017) Simultaneous voltammetric determination of dopamine and uric acid using carbon-encapsulated hollow Fe3O4 nanoparticles anchored to an electrode modified with nanosheets of reduced graphene oxide. Microchim Acta 184(3):843–853. https://doi.org/10.1007/s00604-016-2067-1

Sugano Y, Kumar N, Peurla M, Aho A, Bobacka J, Mikkola J-P (2016) Specific electrocatalytic oxidation of cellulose at carbon electrodes modified by gold nanoparticles. ChemCatChem 8(14):2401–2405. https://doi.org/10.1002/cctc.201600190

Taei M, Hasanpour F, Salavati H, Banitaba SH, Kazemi F (2016) Simultaneous determination of cysteine, uric acid and tyrosine using Au-nanoparticles/poly(E)-(4-(p-tolyl-diazenyl)benzene-1,2,3-triol film modified glassy carbon electrode. Mater Sci Eng C Mater Biol Appl 59:120–128. https://doi.org/10.1016/j.msec.2015.10.004

Tan C, Zhao J, Sun P, Zheng W, Cui G (2020) Gold nanoparticle decorated polypropyleneoxi-geno-oxide nanosheets as a modified electrode for simultaneous determination of ascorbic acid, dopamine and uric acid. New J Chem 44(12):4916–4926. https://doi.org/10.1039/d0nj00166j

Tukmin N, Abdullah J, Sulaiman Y (2017) Development of a PrGO-modified electrode for uric acid determination in the presence of ascorbic acid by an electrochemical technique. Sensors (basel) 17(7):1. https://doi.org/10.3390/s17071539

Van Rie J, Thielemans W (2017) Cellulose–gold nanoparticle hybrid materials. Nanoscale 9(25):8525–8554

VeeraManohara Reddy Y, Sravani B, Agarwal S, Gupta VK, Madhavi G (2018) Electrochemical sensor for detection of uric acid in the presence of ascorbic acid and dopamine using the poly(DPA)/SiO2@Fe3O4 modified carbon paste electrode. J Electroanal Chem 820:168–175. https://doi.org/10.1016/j.jelechem.2018.04.059

Wang H, Xiao L-G, Chu X-F, Chi Y-D, Yang X-T (2016) Rational design of gold nanoparticle/graphene hybrids for simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid. Chin J Anal Chem 44(12):e1617–e1625. https://doi.org/10.1007/s1872-2040(16)60983-0

Wang J, Yang B, Zhong J, Yan B, Zhang K, Zhai C, Shiraishi Y, Du Y, Yang P (2017) Dopamine and uric acid electrochemical sensor based on a glassy carbon electrode modified with cubic Pd and reduced graphene oxide nanocomposite. J Colloid Interface Sci 497:172–180. https://doi.org/10.1016/j.jcis.2017.03.011

Wang Z, Guo H, Gui R, Jin H, Xia J, Zhang F (2018) Simultaneous and selective measurement of dopamine and uric acid using glassy carbon electrodes modified with a complex of gold nanoparticles and multiwall carbon nanotubes. Sens Actuators B Chem 255:2069–2077. https://doi.org/10.1016/j.snb.2017.09.010

Weng X, Kang Y, Guo Q, Peng B, Jiang H (2019) Recent advances in thread-based microfluidics for diagnostic applications. Biosens Bioelectron 132:171–185. https://doi.org/10.1016/j.bios.2019.03.009

Wenz G, Liepold P (2006) Self-assembly of biotin and thio-functionalized carboxymethyl celluloses on gold and molecular recognition of streptavidin detected by surface plasmon resonance. Cellulose 14(2):89–98. https://doi.org/10.1007/s10570-006-9088-6

Wu J, Zhao N, Zhang X, Xu J (2012) Cellulose/silver nanoparticles composite microspheres: eco-friendly synthesis and catalytic application. Cellulose 19(4):1239–1249. https://doi.org/10.1007/s10570-012-9731-3

Xu Q, Wei C, Fan L, Rao W, Xu W, Liu H, Xu J (2018) Polypropylene/titania-coated cotton fabrics for flexible supercapacitor electrodes. Appl Surf Sci 460:84–91

Yang Z, Ding X, Guo Q, Wang Y, Lu Z, Ou H, Luo Z, Lou X (2017) Second generation of signaling-probe displacement electrochemical aptasensor for detection of picomolar ampipelicin and sulfadimethoxine. Sens Actuators B 253:1129–1136. https://doi.org/10.1016/j.snb.2017.07.119

Yang F, Yu Z, Li X, Ren P, Liu G, Song Y, Wang J (2018) Design and synthesis of a novel lanthanide fluorescent probe (Tb(III)-dtpa-bis(2,6-diaminopurine)) and its application to the detection of uric acid in urine sample. Sens Actuators A Mol Biomol Spectrosc 203:461–471. https://doi.org/10.1016/j.saa.2018.06.011

Yokota S, Kitaoka T, Warishi H (2008b) Biofunctionalization of self-assembled nanolayers composed of cellulose polymers. Carbohydr Polym 74(3):666–672. https://doi.org/10.1016/j.carbpol.2008.04.027

Yokota S, Kitaoka T, Opiektink M, Rosenau T, Warishi H (2008a) Synthesis of gold nanoparticles for in situ conjugation with structural carbohydrates. Angew Chem Int Ed 47(51):9866–9869

Yukird J, Kongsitikul P, Qin J, Chailapakul O, Rodthongkum N (2018) ZhO@graphene nanocomposite modified electrode for sensitive and simultaneous detection of Cd (II) and Pb (II). Synth Met 245:251–259. https://doi.org/10.1016/j.synthmet.2018.09.012

Zhang Y, Yuan R, Chai Y, Zhong X, Zhong H (2012) Carbon nanotubes incorporated with sol-gel derived La(OH)3 nanorods as platform to simultaneously determine ascorbic acid, dopamine, uric acid and nitrite. Colloids Surf B Biointerfaces 100:185–189. https://doi.org/10.1016/j.colsurfb.2012.04.044

Zhang D, Li L, Ma W, Chen X, Zhang Y (2017) Electrodeposited reduced graphene oxide incorporating polymerization of l-lysine on electrode surface and its application in simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid. Mater Sci Eng C Mater Biol Appl 70(Pr 1):241–249. https://doi.org/10.1016/j.msec.2016.08.078

Zhu Q, Bao J, Huo D, Yang M, Hou C, Guo J, Chen M, Fa H, Luo X, Ma Y (2017) 3D Graphene hydrogel—gold nanoparticles nanocomposite modified glassy carbon electrode for the simultaneous determination of ascorbic acid, dopamine and uric acid. Sens Actuators, B 238:1316–1323. https://doi.org/10.1016/j.snb.2016.09.116

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.