Risk Factors for Brain Metastases in Patients With Small Cell Lung Cancer: A Systematic Review and Meta-Analysis

Haiyan Zeng1*, Danyang Zheng2,3, Willem J. A. Witlox4, Antonin Levy5,6, Alberto Traverso1, Feng-Ming (Spring) Kong2,3, Ruud Houben1, Dirk K. M. De Ruyscher1 and Lizza E. L. Hendriks7

1 Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Center+, Maastricht, Netherlands, 2 Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China, 3 Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China, 4 Department of Clinical Epidemiology and Medical Technology Assessment, GROW—School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, Netherlands, 5 Department of Radiation Oncology, Gustave Roussy, Villejuif, France, 6 Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France, 7 Department of Pulmonary Diseases, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, Netherlands

The use of prophylactic cranial irradiation (PCI) for small cell lung cancer (SCLC) patients is controversial. Risk factors for brain metastasis (BM) development are largely lacking, hampering personalized treatment strategies. This study aimed to identify the possible risk factors for BM in SCLC. We systematically searched the Pubmed database (1 January 1995 to 18 January 2021) according to the PRISMA guidelines. Eligibility criteria: studies reporting detailed BM data with an adequate sample size (randomized clinical trials [RCTs]: N ≥ 50; non-RCTs: N ≥ 100) in patients with SCLC. We summarized the reported risk factors and performed meta-analysis to estimate the pooled hazard ratios (HR) if enough qualified data (i.e., two or more studies; the same study type; the same analysis method; and HRs retrievable) were available. In total, 61/536 records were eligible (18 RCTs and 39 non-RCTs comprising 13,188 patients), in which 57 factors were reported. Ten factors qualified BM data for meta-analysis: Limited stage disease (LD) (HR = 0.34, 95% CI: 0.17–0.67; P = 0.002) and older age (≥ 65) (HR = 0.70, 95% CI: 0.54–0.92; P = 0.01) were associated with less BM; A higher T stage (≥ T3) (HR = 1.72, 95% CI: 1.16–2.56; P = 0.007) was a significant risk factor for BM. Male sex (HR = 1.24, 95% CI: 0.99–1.54; P = 0.06) tended to be a risk factor, and better PS (0–1) (HR = 0.66, 95% CI: 0.42–1.02; P = 0.06) tended to have less BM. Smoking, thoracic radiotherapy dose were not significant (P > 0.05). PCI significantly decreased BM (P < 0.001), but did not improve OS in ED-SCLC (P = 0.81). A higher PCI dose did not improve OS (P = 0.11). The impact on BM was conflicting between Cox regression data (HR = 0.59, 95% CI: 0.26–1.31; P = 0.20) and competing risk regression data (HR = 0.74, 95% CI: 0.55–0.99; P = 0.04). Compared to M0–M1a, M1b was a risk factor for OS (P = 0.01) in ED-SCLC, but not for BM (P = 0.19). As regular brain imaging is rarely performed, high-quality data is lacking. Other
INTRODUCTION

Small cell lung cancer (SCLC) accounts for about 13% of newly diagnosed lung cancers worldwide (1). Brain metastases (BM) are a very common metastatic site in SCLC: more than 10% of patients have BM at initial diagnosis, more than 50% will develop BM within 2 years, and up to 80% of all patients are found to have BM at autopsy (2). Patients with SCLC and BM have a dismal survival rate, with a 2-year survival rate below 2% (3). Furthermore, BM have a negative impact on the quality of life (QoL). Prophylactic cranial irradiation (PCI) significantly reduces the incidence of BM in patients with SCLC (4, 5). However, because of potential neurotoxicity (6, 7) and possible limited survival, especially in metastatic SCLC (8, 9), PCI is increasingly questioned. Additionally, stereotactic radiosurgery (SRS) has become more available and may represent an attractive therapeutic alternative (10). As a consequence, SCLC guidelines encourage shared decision making regarding PCI for particular subgroup of patients, such as the elderly, very early stages, or extensive stage disease (ED) (11, 12). However, shared decision making is hampered by the fact that risk factors for BM development are largely unknown in SCLC patients. The specific risk of BM (high vs low) could also be used as a stratification factor to better control confounders in trials evaluating BM prevention strategies such as PCI. Therefore, we performed a systematic review and meta-analysis to summarize the possible risk factors for BM in patients with SCLC to support better management of SCLC patients and a better design of SCLC randomized controlled trials (RCTs).

METHODS

Study Design and Data Extraction

We conducted this study according to the PRISMA guideline (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) (13) and registered it with PROSPERO (CRD42021228391) (14). We performed a systematic literature search in the PubMed database from 1 January 1995 to the search date (18 January 2021), adhering to the PICO method (15) (Appendix Table 1). The description of these components is presented in (Appendix Table 2). The study eligibility criteria were as follows: 1. SCLC patients without baseline BM; 2. with detailed BM data; 3. had adequate sample size (defined as: retrospective studies or prospective observational/single arm studies [non-RCTs]: N ≥100 patients; RCTs: N ≥50). The detailed criteria are shown in Appendix Table 3. We assessed the “risk of bias” for BM in eligible RCTs using the Revised Cochrane risk-of-bias tool for randomized trials (RoB2) (16, 17). We did not grade non-RCTs separately because of the inherent disadvantages of this type of study.

We extracted data according to our published protocol (14) and reported the following critical items: title, the first author, journal, publication year, study design, recruitment period, sample size, age, performance status (PS), sex, thoracic radiotherapy (TRT), surgery, chemotherapy, PCI, follow-up time, statistical analysis, the results of possible risk factors for BM and OS (numbers of events/patients, hazard ratio [HR], 95% CI, and p-value), and conclusion. We also reported the following items for each RCT: brain magnetic resonance imaging (MRI) or computed tomography (CT) at baseline and before PCI; scheduled brain CT or MRI during follow-up; brain imaging contrast-enhanced or not; BM as primary or secondary outcome. We applied the Web Plot Digitizer (18) to extract survival data from plots if necessary.

Two investigators (HZ and DZ) independently screened the titles, abstracts, methods, and full texts for eligibility; extracted data; and assessed the risk of bias. Any conflicts in each step were resolved through discussion with a third investigator (LH).

Statistical Analysis

Our primary endpoint was BM. When such data were available, we also analyzed OS to further interpret the clinical significance. The effect of the factors on BM and OS was expressed as an HR, being the most appropriate metric for summarizing time-to-event data (19). We first analyzed each factor for BM per study. If two or more studies investigated the factor’s impact on BM with homogenous methodology and outcomes, we performed a meta-analysis with Rev Man 5.4.1 using the EXP[(O − E)/Var] method. If the OS data were not available in one or more studies that were included for the BM meta-analysis, the meta-analysis for OS would not be performed to avoid missing outcome bias. To minimize bias, we used the adjusted rather than the univariate HR if possible. We calculated the observed (O) minus expected (E) number of events and its variance (V) for each study according to the methods of Tierney et al. (20). If similar data were reported by researchers from the same group, only the latest one was included for meta-analysis to avoid data overlapping.
Meta-analysis was performed separately for RCTs and non-RCTs to avoid misleading conclusions. A meta-analysis of non-RCTs was not performed if there were sufficient RCTs addressing this issue (21). We used I² to quantify inter-study heterogeneity, of which 25, 50, and 75% can be considered low, moderate, and high heterogeneity (22). If I² >50%, we performed a random-effects meta-analysis (23, 24) using R version 4.1.2 with the “meta” package.

RESULTS
Study Selection and Quality Assessment
The systematic review identified 536 records, of which 61 records met the inclusion criteria (22 records for 18 RCTs comprising 5,060 patients and 39 non-RCTs comprising 8,128 patients [including two prospective observational studies comprising 544 patients]) (Figure 1). All 18 RCTs were published between 1995 and 2019, but only three were from 2010 to 2019 (25–27). As shown in Appendix Tables 4, 5, BM was the primary endpoint in three trials (5, 28–30). Brain MRI/CT was performed before treatment of patients in two trials (27, 31) and before PCI in six trials (9, 26, 28, 30–32). In five trials, brain CT/MRI was scheduled during follow-up (9, 26, 28, 30, 33) and in one trial [PCI85 (28)], the number of performed CT scans at pre-specified time points was mentioned (which indicated low compliance). As regular brain imaging was not performed in most trials, asymptomatic BM will have been missed, which has resulted in a high risk of bias at domain 4 (measurement method) or domain 3 (missing outcome) according to RoB2. Because of that, two RCTs were assessed to be at low risk of bias, while the others were at high risk of bias (Figure 2).

The 39 non-RCTs were published from 1995 to 2020, among which 32 were from 2010 to 2020. The study design, characteristics, and treatments of patients are shown in Appendix Table 6.

In addition to symptomatic BM, we found that the pre-PCI BM (BM immediately before PCI) was investigated in one study (36) and the first isolated BM event, rather than overall BM during the whole disease course, was analyzed in five studies (37–41). Both the first isolated BM and overall BM were reported in eight papers (28–30, 42–46) and showed that the first isolated BM incidence was lower than the overall BM incidence (Table 1). We only performed meta-analysis for overall BM because this is more relevant than a first isolated BM event.

We also found that the definition of time to BM events varied among studies, which indicates that heterogeneity also exists between RCTs: from the date of initial diagnosis (n = 19) (45, 49, 51, 53, 55, 58–62, 64, 66, 71, 72, 74–76, 78, 81); from the date of randomization (n = 16) (5, 9, 25, 26, 28–32, 34, 35, 41, 46, 68, 79, 80); from the date of treatment initiation (n = 6) (37, 42, 47, 57, 69, 77); from the end of chemoradiotherapy (CRT) (n = 5) (44, 47, 67, 70, 78); from the date of PCI (n = 4) (27, 48, 54, 65); from the date of chemotherapy initiation (n = 3) (33, 38, 39); from the date of TRT initiation (n = 2) (43, 56); from the date of surgery (n = 1) (50); five studies had no information (36, 40, 52, 63, 73), two studies applied two definitions (47, 78).

More importantly, we noticed that the statistical analyses for BM varied considerably: Competing risk regression: n = 12 (47, 56, 60, 73); RCT: N = 8 (5, 9, 26–30, 46); Cox proportional hazard regression: n = 20 (37, 38, 43, 45, 48–53, 55, 57–59, 61, 70), RCT: N = 4 (31, 33, 40, 41); Log-rank test n = 16 (43, 44, 62, 64–66, 72, 74, 75, 78), RCT: N = 6 (25, 32, 34, 35, 68, 79); Logistic regression: n = 3 (36, 54, 63); χ²-test or Fisher exact 2-tailed test: n = 7 (39, 69, 71, 76, 77), RCT: N = 2 (67, 80); Descriptive: n = 2 (42, 81). Statistical analysis for OS was always performed using survival analysis (Kaplan–Meier, Log-rank test, and Cox regression).

Risk Factors
In total, 57 factors were reported in all studies, namely, 8 baseline factors, 27 tumor-related factors, and 22 treatment-related factors (Table 1). However, they were investigated in various ways with different participants, such as LD, or ED, or resected SCLC, or patients with PCI. Details are shown in the comments in Table 1. Hence, 10 factors had qualified BM data from 21 studies (11 RCTs + 10 non-RCTs [all were retrospective studies]) and four factors had qualified OS data for meta-analysis (Tables 1, 2).

A. Baseline Characteristics
1. Age: Age was investigated in 18 studies with seven different methods (different age groups, continuous vs group) (Table 1). It was concluded that age was not an independent risk factor for BM or OS in 14 studies (36, 38, 43, 47, 48, 51, 53–57, 59–61). Three studies (49, 51, 52) were eligible to perform BM meta-analysis and showed that patients with advanced age (≥65) had less BM than younger patients (HR = 0.70, 95% CI: 0.54–0.92; P = 0.01) (Figure 3A).

2. Sex: Sex was investigated in 16 studies. It concluded that sex was not an independent risk factor for BM or OS in 13 studies (36, 38, 47, 49–51, 53–56, 59–61). Five studies (51, 53, 58, 59, 62) were eligible to perform a meta-analysis for BM and showed that
male sex tends to be a risk factor for BM (HR = 1.24, 95% CI: 0.99–1.54; P = 0.06) (Figure 3B).

3. Smoking: Smoking was investigated in seven studies. It has been shown that smoking is not a significant risk factor for BM or OS (36, 50, 51, 53, 55, 56, 61). Two studies (53, 55) were eligible to perform meta-analysis and showed that smoking (ever vs never) was indeed not a significant risk factor for BM (HR = 1.13, 95% CI: 0.71–1.79; P = 0.61) (Figure 3C).

B. Tumor Related Factors
1. TNM cT stage: The T stage was investigated in four studies with conflicting conclusions (36, 48, 52, 55). Three studies (48, 52, 55) had qualified BM data for meta-analysis and showed that patients with a higher T stage (T ≥ 3) had a statistically significantly higher risk of BM than patients with lower T stages (HR = 1.72, 95% CI: 1.16–2.56; P = 0.007) (Figure 3D).

2. c-stage: c-stage was investigated in different ways in 11 studies with conflicting conclusions (38, 39, 51, 52, 53, 55, 56, 58, 60, 64, 65) (Table 1). Two studies (53, 55) were eligible to perform meta-analysis for BM and OS. It showed that compared with ED, LD patients had less BM (HR = 0.34, 95% CI: 0.17–0.67; P = 0.002) (Figure 3E) and a better OS (HR = 0.60, 95% CI: 0.37–0.98; P = 0.04) (Figure 4A).

3. M-status in ED-SCLC: M status (M1b or M0–M1a) was investigated in patients with ED-SCLC in four studies (54, 59, 61, 48). The other 16 studies were assessed as at low risk of bias. The other 17 trials were judged as high risk of bias. This is mainly because of domains 3 and 4. CCRT, concurrent chemoradiotherapy; CEV, cyclophosphamide–epirubicin–vincristine; che, chemotherapy; CRT, chemoradiotherapy; ED, extensive-stage disease; EP, etoposide-platinum; LD, limited-stage disease; ODRT, once-daily radiotherapy; PCI, prophylactic cranial irradiation; SCLC, small cell lung cancer; SCRT, sequential chemoradiotherapy; TDRT, twice-daily radiotherapy; TRT, thoracic radiotherapy.
TABLE 1 | Risk factors for BM in SCLC.

Risk factors	Studies ID	First Author (Trial)	Statistics	BM Results	OS results	Conclusion	Comments
A. Baseline characteristics							
1. Age							
1) <60 vs ≥70: Meta-analysis for BM is not applicable because of different statistics	115	Farooqi, 2017 (1)	Cox proportional hazard regression	<70 vs ≥70: HR 0.90, 95% CI 0.84-1.01, P=0.06;	<70 vs ≥70: HR 0.89, 95% CI 0.74-1.08, P=0.19	Age is not an independent risk factor for BM or OS in LD-SCLC	Two definitions for time to development of BM, unclear which one is used
2) <65 vs ≥65: 3 studies (376, 439, 203) have qualified BM data to perform meta-analysis, no qualified data for OS meta-analysis	376	Sahmoun, 2004 (3)	Cox proportional hazard regression	≥65 vs <65: HR 0.90 (adjust for hypertension, sex, BMI, laterality); HR=1.59, 95% CI: 1.03-2.5; P: NI	≥65 vs <65: HR 0.90, 95% CI 0.71-1.07, P=0.21; Multivariate (adjusted factors: age, sex, BMI, stage, LVI, and BM): HR=0.89, 95% CI 0.73-1.07, P=0.20	Age is not a significant risk factor for BM or OS in ED-SCLC with PCI	No report of patients distribution in each group
3) <60 vs ≥60: Meta-analysis for BM is not applicable because of different statistics and no enough HR data	514	Zeng, 2017 (7)	Cox proportional hazard regression	≤64 vs ≥64: HR: 0.846, 95% CI: 0.584-1.225; P=0.375.	≤64 vs > 64: HR: 0.846, 95% CI: 1.03-2.5; P: NI	Compared to age ≥65, age <65 is an independent risk factor for BM in SCLC.	Investigated only demographic factors, did not consider tumor and treatment related factors
4) ≤60 vs > 60	139	Gong, 2013 (11)	Cox proportional hazard regression	≤60 vs > 60: HR: 1.20, 95% CI: 0.84-1.71; P=0.32	≤60 vs > 60: HR: 0.74, 95% CI: 0.53-1.07; P=0.11	Age is not a significant risk factor for BM or OS in LD-SCLC.	BM was included in the multivariate model of OS

(Continued)
Risk factors	Studies ID	First Author (Trial)	Statistics	BM Results	OS results	Conclusion	Comments
5) <68 vs ≥ 68	377 Sahmoun, 2005 (12)	Cox proportional-hazard regression.	≥ 68 vs <68: (adjust for treatment, stage, BMI, sex, laterality, anatomical site, PCI); HR=0.67, 95%CI: 0.41-1.12; P: NI.	≥ 68 vs <68: (adjust for treatment, stage, BMI, sex, laterality, anatomical site); HR=0.62, 95%CI: 0.41-0.95; P: NI.	Compared to age <68, age ≥68 is an independent risk factor for OS in resected LD-SCLC.	The hazards model of OS did not include PCI.	
6) ≤ 58 vs > 58	80 Chen, 2016 (13)	Cox proportional-hazard regression	≤ 58 vs > 58: HR, 1.065; 95%CI: 0.722–1.571; p>0.05;	≤ 58 vs > 58: HR, 1.302; 95%CI: 0.898–1.889; p>0.05;	Age is not a significant risk factor for BM or OS in ED-SCLC.		
7) <58.5 vs ≥ 58.5	122 Fu, 2014 (14)	Cox proportional-hazard regression	BM as a first recurrence site: ≥ 58.5 vs <58.5 (adjust for sex, PS, stage, CTC at baseline, CTC post-first cycle, CTC post-fourth cycle, response): HR=0.983, 95%CI: 0.953–1.015; P=0.290.	NI	Age is not a significant risk factor for BM after PCI in stage III SCLC.	Analyzed BM as a first site of recurrence; No report of patients distribution in each group.	
8) Continuous: Meta-analysis for BM is not applicable because of different statistics and no HR data	491 Wu, 2017 (15)	Cox proportional-hazard regression	BM: (Continuous): P>0.05	(Continuous): HR= 1.01; 95% CI: 0.99–1.03; P= 0.23	Age is not a significant risk factor for BM or OS in LD-SCLC.	No details on BM results, i.e. HR, 95% CI, and detailed P value.	
28 Bang, 2018 (16)	Cox proportional-hazard regression	(Continuous): P>0.05	(Continuous): P>0.05		Age is not a significant risk factor for BM or OS in ED-SCLC.	Backward stepwise multivariate analysis.	
86 Chu, 2019 (17)	Cox proportional-hazard regression	Pre-PCI BM: binary logistic regression; OS: Cox proportional hazard regression	OR=0.976, 95%CI: 0.924–1.032; P=0.400.	HR=1.022, 95%CI: 0.986–1.059, P=0.235	Age is not a significant risk factor for BM or OS in LD-SCLC.	Investigated risk factors for Pre-PCI BM in LD-SCLC using logistic regression.	
2. Race/ethnicity: Meta-analysis for BM is not applicable because of different statistics	115 Farooqi, 2017 (1)	Cox proportional-hazard regression	White, non-Hispanic vs all others: SHR 1.35, 95%CI: 0.90–2.04; P=0.145;	HR 0.91, 95%CI: 0.71–1.16; P=0.438;	Race is not a significant risk factor for BM or OS in LD-SCLC.	Two definitions for time to development of BM, unclear which one is used.	
439 Suzuki, 2018 (5)	Cox proportional-hazard regression	White vs non-white: HR: 1.098, 95%CI: 0.677–1.779; P = 0.705.	NI	Race is not a significant risk factor for BM in SCLC.			
3. Sex: 5 studies (368, 80, 377, 514, 439) have qualified BM data to perform meta-analysis, no qualified data for OS meta-analysis	520 Zhu, 2014 (4)	Cox proportional-hazard regression	P= 0.906	P= 0.901	Sex is not a significant risk factor for BM or OS in resected LD-SCLC.		

(Continued)
Risk factors	Studies ID	First Author (Trial)	Statistics	BM Results^a	OS results^b	Conclusion	Comments
122 Fu, 2014 (14)	Cox proportional-hazard regression	BM as a first recurrence site: male vs female (adjust for age, PS, stage, CTC at baseline, CTC post-first cycle, CTC post-fourth cycle, response): HR = 1.502, 95% CI: 0.751–3.004; P=0.250.	NI	Sex is not a significant risk factor for BM after PCI in stage III SCLC	Analyzed BM as a first site of recurrence; No report of patients distribution in each group; Data overlapped with No.514.		
115 Farooqi, 2017 (1)	BM: Competing-risk regression	Female vs male: SHR = 1.00, 95% CI: 0.72–1.4; P=0.981	HR 1.09, 95% CI: 0.91–1.30; P=0.345;	Sex is not a significant risk factor for BM or OS in LD-SCLC	Two definitions for time to development of BM, unclear which one is used		
368 Roengvoraphoj, 2017 (18)	BM: log-rank; OS: Cox proportional-hazard regression	Mean BMFS: Female: 96 (95% CI 77–114), Male: 64 months (95% CI 51–75) (HR= 1.79, 95% CI: 1.05–3.04; p = 0.031).	Median OS: 16.8 months (95% CI 14.8–18.9); Female: 20 (95% CI 15–25), Male: 14 (95% CI: 11–17), female vs male (Adjust for PCI, response, chemo regimen, and age) HR= 1.404, 95% CI: 1.082–1.917; P=0.033.	Compared to female, male is a significant risk factor for BM and OS in LD-SCLC.			
491 Wu, 2017 (15)	BM: Competing risk regression; OS: Cox proportional-hazard regression	male vs female: P>0.05	male vs female: HR= 1.24, 95%CI: 0.92–1.67; P= 0.16	Sex is not a significant risk factor for BM or OS in LD-SCLC	No details on BM results, i.e. HR, 95%CI, and detailed P value.		
519 Zheng, 2018 (9)	Cox proportional-hazard regression	P=0.293	P=0.150	Sex is not a significant risk factor for BM or OS in LD-SCLC	Investigated multiple factors (N=21) with limited sample size (n=153).		
86 Chu, 2019 (17)	Pre-PCI BM: binary logistic regression; OS: Cox proportional-hazard regression	male vs female: OR=0.510, 95%CI: 0.107–2.437, p=0.399.	male vs female: HR=1.725, 95%CI: 0.728–4.086, P=0.215	Sex is not a significant risk factor for pre-PCI BM or OS in LD-SCLC	Investigated risk factors for Pre-PCI BM in LD-SCLC using logistic regression.		
80 Chen, 2016 (13)	Cox proportional hazard regression	HR, 1.254; 95% CI: 0.774–2.033; p>0.05;	HR, 0.991; 95% CI: 0.603–1.628; p>0.05;	Sex is not a significant risk factor for BM or OS in ED-SCLC	Sex is not a significant risk factor for BM or OS in ED-SCLC.		
81 Chen, 2018 (9)	BM: Logistic regression; OS: Cox proportional hazard regression	Female vs male: (adjust for age, PS, tumor load, number of metastatic sites, PCI timing); OR=0.616, 95% CI: 0.200–1.996; P >0.05.	Female vs male: HR=0.976, 95% CI: 0.314–1.368; P=0.945.	Sex is not a significant risk factor for BM or OS in ED-SCLC	Logistic regression was used for BM analysis.		
28 Bang, 2018 (16)	Cox proportional hazard regression	P>0.05	P>0.05	Sex is not a significant risk factor for BM or OS in ED-SCLC	Backward stepwise multivariate analysis		

2) ED-SCLC: 80 has available data for meta-analysis

3) SCLC: 377, 514, 439 have available data for meta-analysis

(Continued)
Risk Factors	Studies ID	First Author (Trial)	Statistics	BM Results\(^a\)	OS results\(^b\)	Conclusion	Comments
376 Sahmoun, 2004 (3)	Cox proportional hazard regression.	male vs female (adjust for hypertension, age, BMI, laterality): HR=1.01, 95%CI: 0.6-1.6; P: NI.				Sex is not a significant risk factor for BM in SCLC without PCI.	Investigated only demographic factors, did not consider tumor and treatment related factors Data overlapped with No.377.
377 Sahmoun, 2005 (12)	Cox proportional-hazards regression models	male vs female (adjust for treatment, stage, BMI, age, laterality, anatomical site, PCI): HR=1.11, 95%CI: 0.67-1.83; P: NI.	male vs female (adjust for treatment, stage, BMI, age, laterality, anatomical site): HR=0.55, 95%CI: 0.34-0.88; P: NI.			Compared to female, male is an independent risk factor for OS, but not for BM in SCLC.	The hazards model of OS did not include PCI. Observed events were different in table II and table III.
514 Zeng, 2017 (7)	Cox proportional hazard regression	HR=1.12, 95%CI: 0.53-2.36; P=0.760				Sex is not a significant risk factor for BM after PCI in SCLC.	
439 Suzuki, 2018 (5)	Cox proportional hazard regression	male vs female: HR: 1.109, 95%CI: 0.766-1.604; P= 0.584.				Male is a risk factor for BM in LD-SCLC, but not for OS.	
203 Kim, 2019 (6)	Cox proportional hazard regression	male vs female: HR: 0.500, 95%CI: 0.270-0.882, P=0.027; adjust for age, T, and PCI: P=0.167.	P>0.05			No HR in the 95%CI.	
513 Zeng, 2019 (10)	Competing-risk regression	HR=1.01, 95%CI: 0.69-1.48; P= 0.94;				Sex is not a significant risk factor for BM after PCI in SCLC.	

4. Smoking: 2 studies (519, 514) have qualified BM data to perform Meta-analysis, no qualified data for OS meta-analysis

520 Zhu, 2014 (4)	Cox proportional hazard regression	Yes vs No: P= 0.559	P= 0.594			Smoking is not a significant risk factor for BM or OS in resected LD-SCLC	
514 Zeng, 2017 (7)	Cox proportional hazard regression	Yes vs No: HR=0.82, 95% CI: 0.41-1.63; P=0.572				Smoking is not a significant risk factor for BM after PCI in SCLC.	
519 Zheng, 2018 (9)	Cox proportional hazard regression	No vs Yes (adjust for NLR, blood glucose, NSE, T, TRT timing, chemo cycles): HR=1.47, 95%CI: 0.78-2.75; P =0.235.	P=0.277			Smoking is not a significant risk factor for BM in LD-SCLC	Investigated multiple factors (N=21) with limited sample size (n=153).
439 Suzuki, 2018 (5)	Cox proportional hazard regression	Current smoking vs no: HR: 1.218, 95%CI: 0.831-1.786; P= 0.312.				Current smoking is not a significant risk factor for BM in SCLC	No data for ever smoking or not.
28 Bang, 2018 (16)	Cox proportional hazard regression	Smoking during chemo vs no: P>0.05	Smoking during chemo vs no: P>0.05			Smoking during chemo is not a significant risk factor	Backward stepwise multivariate analysis
513 Zeng, 2019 (10)	Competing-risk regression	Yes vs No: HR: 0.98, 95% CI: 0.69-1.39; P= 0.93.				Smoking is not a significant risk factor	
86 Chu, 2019 (17)	Pre-PCI BM: binary	Yes vs no (adjust for CRT-D, T, and N): OR=4.376,	Yes vs no: HR=1.205, 95% CI: 0.614-2.366, P= 0.588			Smoking is not a significant risk factor	investigated risk factors for Pre-PCI BM in LD-

Risk factors	Studies ID	First Author	Statistics	BM Results^a	OS results^b	Conclusion	Comments
5. BMI: 2 studies (377, 376) have overlapped BMI data for meta-analysis. Therefore, meta-analysis was not performed to avoid bias.	376 Sahmoun, 2004 (3)	Cox proportional hazard regression.	<25 vs ≥ 25 kg/m² (adjust for hypertension, age, sex, laterality); HR=1.01, 95%CI: 0.67-1.6; P: NI.	BMI is not a significant risk factor for BM in SCLC without PCI.	Investigated only demographic factors, did not consider tumor and treatment related factors. Data overlapped with 377. The hazards model of OS did not include PCI.		
	377 Sahmoun, 2005 (12)	Cox proportional-hazards regression	<25 vs ≥ 25 kg/m² (adjust for treatment, stage, age, sex, laterality, anatomical site; PCI); HR=1.85, 95%CI: 1.25-2.86; P: NI.	Compared to normal weight, overweight is an independent risk factor for OS, but not for BM.	Data overlapped with 377.		
	519 Zheng, 2018 (9)	Cox proportional hazard regression	≤ 10% vs > 10% (adjust by Log (tGTV), TDRT vs ODRT, Brain MRI/CT, PS, PCI timing, PCI dose); HR: 1.98; 95% CI: 1.25-3.43; P=0.015		Weight loss >10% is an independent risk factor for OS in LD-SCLC, but not for BM.		
6. Weight loss: No qualified data to perform meta-analysis (different statistical analysis).	239^c Levy, 2019 (19) (CONVERT trial)	BM: Competing risk regression; OS: Cox proportional hazard regression	≤ 5 kg vs <5kg (adjust for chemo response); OR=0.99, 95%CI: 0.49-0.97; P= 0.03		Weight loss more than 5kg was an independent risk factor for BM in ED-SCLC.		
	145 Greenspoon, 2011 (20)	Cox proportional hazard regression			Logistic regression was used for BM analysis. BM time definition and follow-up period were not reported. No report of patients distribution in each group. Investigated multiple factors (N=21) with limited sample size (n=153).		
7. Chronic disease	519 Zheng, 2018 (9)	Cox proportional hazard regression	Yes vs No: P=0.056		Chronic disease is not a significant risk factor for BM or OS in LD-SCLC.		
8. Hypertension	376 Sahmoun, 2004 (3)	Cox proportional hazard regression	No vs Yes (adjust for, age, sex, laterality, BMI); HR=1.11, 95%CI: 0.7-1.8; P: NI.		Hypertension is not a significant risk factor for BM in SCLC without PCI.		

B. Tumor related factors

1. Histology (SCLC vs combined SCLC): Meta-analysis for BM is not applicable because of different statistics and no HR data

139 Gong, 2013 (11)	Cox proportional hazard regression.				Combined SCLC is not a significant risk factor for BM in resected LD-SCLC.	
					Contained many patients with combined SCLC and NSCLC (53.5%, 69/126). The impact of histology on OS was not analyzed. Only 6% (17/283) patients were with combined SCLC and NSCLC; No details on BM.	
491 Wu, 2017 (15)	BM: Competing risk regression; OS: Cox		P>0.05		Combined SCLC is not a significant risk factor for BM or OS in LD-SCLC	

(Continued)
TABLE 1 | Continued

Risk factors	Studies ID	First Author (Trial)	Statistics	BM Results	OS results	Conclusion	Comments
2. Tumor size: Meta-analysis for BM is not applicable because of different analysis methods	239	Levy, 2019 (CONVERT trial)	BM: Competing risk regression; OS: Cox proportional hazard regression	Log (tGTV) (adjust by ODRT/TDRT, brain CT/MRI, weight loss, PS, PCI timing, PCI dose): HR: 1.43; 95% CI: 1.11–1.85; P=0.006	Log (tGTV) (adjust by ODRT/TDRT, brain CT/MRI, weight loss, PS, PCI timing, PCI dose): HR: 1.33; 95% CI: 1.16–1.54; P<0.001	tGTV is an independent risk factor for BM and OS in LD-SCLC with PCI	Data from RCT.
	115	Farooqi, 2017 (1)	BM: Competing-risk regression. OS: Cox proportional hazard regression	<5 vs ≥5 cm: HR 1.77, 95% CI 1.22–2.55, P=0.002; SHR 1.86, 95% CI 1.15–2.40, P=0.007; Multivariate (adjusted factors: NI): P=0.05	HR 1.16, 95% CI 0.96–1.40, P=0.114	Tumor size is not an independent risk factor for BM or OS in LD-SCLC	Two definitions for time to development of BM, unclear which one is used
	519	Zheng, 2018 (9)	Cox proportional hazard regression.	<5 vs ≥5 cm: P=0.065	P=0.764	Tumor size is not a significant risk factor for BM or OS in LD-SCLC	Investigated multiple factors (N=21) with limited sample size (n=153).
	203	Kim, 2019 (6)	Cox proportional hazard regression.	<50 vs ≥50 ml: HR=0.909, 95%CI:0.413–2.000, P=0.812.	P>0.05	T stage is not a significant risk factor for BM or OS in LD-SCLC.	Inverse probability treatment weight (IPTW) was used to minimize bias; No report of patients distribution in each group after IPTW; Details of multivariate model not reported.
3. T stage: 3 studies (519, 34, 203) have qualified BM data for meta-analysis, no qualified data for OS meta-analysis	34	Bernhardt, 2017 (2)	Cox proportional hazard regression	1-2 vs 3-4: HR 0.76, 95% CI 0.39–1.46, P=0.41;	HR 1.10, 95% CI 0.72–1.69, P=0.64;	T is not a significant risk factor for BM or OS in ED-SCLC with PCI	No report of patients distribution in each group
	519	Zheng, 2018 (3)	Cox proportional hazard regression.	1-2 vs 3-4 (adjust for smoking, blood glucose, NSE, NLR, TRT timing, chemo cycles): HR=2.27, 95%CI:1.11–4.61, P=0.024;	P=0.614	T stage is an independent risk factor for BM in LD-SCLC, but not for OS	Investigated multiple factors (N=21) with limited sample size (n=153).
	86	Chu, 2019 (17)	Pre-PCI BM: Logistic regression; OS: Cox proportional hazard regression.	1-2 vs 3-4 (adjust for smoking, CRT-D, and N): OR=1.099, 95%CI:0.411–2.941, P=0.851	T1-2 vs T3-4 (adjust for CRT-D and N): HR=2.610, 95%CI:1.364–4.993, P=0.004	T is an independent risk factor for OS in LD-SCLC, but not for pre-PCI BM.	Investigated risk factors for Pre-PCI BM in LD-SCLC using logistic regression.
	203	Kim, 2019 (6)	Cox proportional hazard regression.	0-2 vs 3-4: HR=1.787, 95%CI: 0.894–3.573, P=0.101; adjust for age, sex, and PCI: P=0.250;	P>0.05	T is not a significant risk factor for BM or OS in LD-SCLC	male vs female: HR: 0.500, 95%CI: 0.270–0.368, P=0.027; adjust for age, T, and PCI: P=0.167
4. N stage: Meta-analysis for BM is not applicable because of different statistics and no HR data	519	Zheng, 2018 (3)	Cox proportional hazard regression.	N0-1 vs N2-3: P=0.542	P=0.419	N stage is not a significant risk factor for BM or OS in LD-SCLC	Investigated multiple factors (N=21) with limited sample size (n=153).
TABLE 1 | Continued

Risk factors	Studies ID	First Author (Trial)	Statistics	BM Results^a	OS results^b	Conclusion	Comments
	203	Kim, 2019 (6)	Cox proportional hazard regression.	0-1 vs 2-3: HR=1.452, 95%CI: 0.731–2.884, P=0.286.	Adjust for PS, LDH, stage, TRT dose, TRT timing, PCI: P>0.05	N is not a significant risk factor for BM or OS in LD-SCLC.	Inverse probability treatment weight (IPTW) was used to minimize bias; No report of patients distribution in each group after IPTW; Details of multivariate model not reported.
	86	Chu, 2019 (17)	Pre-PCI BM: Logistic regression; OS: Cox proportional hazard regression.	N0-2 vs N3 (adjust for smoking, CRT-D, and T): OR=1.389, 95%CI: 0.456–4.235, P=0.564	N0-2 vs N3 (adjust for CRT-D and T): HR=2.160, 95%CI: 1.056–4.417, P=0.035	N is an independent risk factor for OS in LD-SCLC, but not for pre-PCI BM.	Investigated risk factors for Pre-PCI BM in LD-SCLC using logistic regression.
	5. c-stage						
1) I-II vs III: Meta-analysis for BM is not applicable because of different statistics and no HR data							
	491	Wu, 2017 (15)	BM: Competing risk regression; OS: Cox proportional hazard regression.	I-II vs III (adjust for PCI, chemo): HR, 2.09; 95% CI, 1.08–4.04; P = 0.028.	I-II vs III (adjust for PCI, chemo): HR, 1.97; 95% CI, 1.38–2.80; P <0.001.	Compared to stage I-II, stage III is an independent risk factor for BM and OS in LD-SCLC.	Investigated multiple factors (N=21) with limited sample size (n=153). Inverse probability treatment weight (IPTW) was used to minimize bias; No report of patients distribution in each group after IPTW; Details of multivariate model not reported.
	519	Zheng, 2018 (9)	Cox proportional hazard regression.	I-II vs III: p= 0.093	P=0.503	cTNM stage is not a significant risk factor for BM or OS in LD-SCLC.	
	203	Kim, 2019 (6)	Cox proportional hazard regression.	I-II vs III : HR=1.305, 95% CI: 0.660–2.580, P=0.444.	Adjust for PS, N, LDH, TRT dose, TRT timing, PCI: P>0.05.	Stage is not a significant risk factor for BM or OS in LD-SCLC.	
	303	Nakamura, 2018 (21)	BM: χ²-test; OS: Cox proportional hazard regression	BM as a first recurrence site: Stage II: 22% (5/23); Stage III: 29% (40/139); P=0.485	III vs II (adjust for age, ODRT/ TDRT, pulmonary effusion, PCI, SER): HR=0.51, 95% CI: 0.27–0.94, P=0.031.	Stage was an independent risk factor for OS in LD-SCLC, but not for BM	χ²-test was used for BM analysis; No overall BM results
	122	Fu, 2014 (14)	Cox proportional-hazard regression	I-III vs IIIB (adjust for age, sex, PS, CTC at baseline, CTC post-first cycle, CTC post-fourth cycle, response): HR=1.601, 95% CI: 0.762–3.366; P=0.214,	HR = 2.002, 95% CI 1.180–3.995, p = 0.010	Stage is not a significant risk factor for BM after PCI in stage III SCLC	Analyzed BM as a first site of recurrence; No report of patients distribution in each group; Data overlapped with 514.
	514	Zeng, 2017 (7)	Cox proportional hazard regression.	I-IIIA vs IIIB (adjust for sex, age, smoking, response, TDRT/ODRT, CORT/SCRT, chemo cycles, brain CT/MRI): HR= 2.119, 95% CI 0.932–4.821, P = 0.073.		Compared to stage I-IIIA, stage IIIB-IV was a significant risk factor for OS and tended to be an independent risk factor for BM after PCI in SCLC.	(Continued)
Risk factors	Studies ID	First Author (Trial)	Statistics	BM Resultsa	OS resultsb	Conclusion	Comments
-------------	------------	----------------------	------------	----------------	----------------	------------	----------
3) I-III vs IV	439 Suzuki, 2018 (5)	Cox proportional hazard regression.	I-III vs IV (adjust for PS, number of extrathoracic metastatic sites, TRT dose, PCI, pretreatment LDH, Pretreatment PLR); HR: 1.062, 95% CI: 0.618–1.826; P=0.826	NI	Stage is not a significant risk factor in SCLC		
4) LD vs ED: 2 studies (377, 514) have qualified BM and OS data for meta-analysis	397 Seute, 2004 (22)	Log-rank test	2-year BM: LD: 49%, ED: 65%; P: NI	Median OS: 8.5 months (range, 0–154 months); ED (n=284): 7.2 months (range, 0–124 months), LD (n=137): 11.9 months (range, 0–154 months)	P<0.0005	ED is a risk factor for BM and OS in SCLC, No HR or P value for ED.	No HR or P value for ED.
	377 Sahmoun, 2005 (12)	Cox proportional-hazards regression models	LD vs ED (adjust for treatment, BMI, age, sex, laterality, anatomical site, PCI); HR=4.63, 95% CI:1.80–11.9; P: NI	LD vs ED (adjust for treatment, BMI, age, sex, laterality, anatomical site, PCI); HR=2.24, 95%CI: 1.17–4.3; P: NI.	Compared to LD, ED is an independent risk factor for BM and OS.	The hazards model of OS did not include PCI.	
	356 Ramlov, 2012 (23)	Log-rank test	BM prevalence: 21/118 (17.8%); LD: 14/74 (18.9%; p>0.05), ED: 7/44 (15.9)	Median OS: 16.0 months (95%CI 13.0–19.0); LD: 24.0 months (19.6–28.3), ED: 12.0 months (9.6–14.4) (p < 0.001).	ED is a risk factor for OS in SCLC with PCI, but not for BM.	No HR reported.	
	514 Zeng, 2017 (7)	Cox proportional hazard regression.	LD vs ED (adjust for sex, age, smoking, response, TDRT/ODRT, CCRT/SORT, chemotherapy cycles, brain CT/MRI); HR=1.76y, 95%CI: 0.63–4.92; P=0.280.	LD vs ED (adjust for era, PS, CCRT/SORT, ODRT/TDRT, timing of PCI); HR=1.69, 95%CI:1.03–2.77, P=0.04	LD/ED is not a significant risk factor for BM or OS in SCLC with PCI.		
	513 Zeng, 2019 (10)	Cox proportional hazard regression.	LD vs ED (adjust for era, PS, CCRT/SORT, ODRT/TDRT, timing of PCI); HR=1.69, 95%CI:1.03–2.77, P=0.04	LD vs ED (adjust for era, PS, CCRT/SORT, ODRT/TDRT, timing of PCI); HR=1.27, 95% CI: 0.90–1.79, P=0.17.	ED is an independent risk factor for BM after PCI in SCLC, but not for OS.		
6. p-stage: I,II,III: Meta-analysis for BM is not applicable because of different statistical analysis.	139 Gong, 2013 (11)	Cox proportional hazard regression.	(Adjust for surgical resection, histology, induction chemo, adjuvant chemo, and PORT); HR=2.458, 95%CI: NI; P=0.002.	(Adjust for surgical resection, BM, induction chemo, adjuvant chemo, and PORT); HR=2.391, 95%CI: NI; P=0.001.	Stage is an independent risk factor for BM and OS in resected LD-SCLC.	Contained many patients with combined SCLC and NSCLC (63.5%, 69/129); The factors in multivariate model of BM and OS were different.	
	520 Zhu, 2014 (4)	Cox proportional hazard regression.	(Adjust for LVI and PORT); HR = 2.013, 95%CI: 1.135–3.869; p = 0.017.	(adjust for age, PS, LVI, and BM); HR=2.090, 95%CI: 1.299–3.132; P=0.001.	Stage is an independent risk factor for BM and OS in resected LD-SCLC.	BM was included in the multivariate model of OS.	
7. LVI	520 Zhu, 2014 (4)	Cox proportional	Yes vs no (adjust for p-stage and PORT); HR = (adjust for age, PS, stage, and BM); HR=0.935, 95%CI: 0.507–1.723; P=0.829.		Stage is an independent risk factor for BM in BM was included in the multivariate model of OS.		

(Continued)
TABLE 1 | Continued

Risk factors	Studies ID	First Author	Statistics	BM Results^a	OS results^b	Conclusion	Comments
8. M status in ED-SCLC: 3 studies (80, 34, 28) have qualified BM and OS data for meta-analysis	80 Chen, 2016 (13)	Cox proportional hazard regression	distant metastases vs. locally advanced: HR, 1.234; 95%CI: 0.826–1.843; p<0.05;	HR, 1.410; 95%CI: 0.959–2.084; p=0.05;	Distant metastases is not a significant risk factor for BM or OS in ED-SCLC	No report of patients distribution in each group	
	34 Bernhardt, 2017 (2)	Cox proportional hazard regression	M1b or not: HR, 0.69; 95% CI: 0.27–1.78; P= 0.44;	M1b or not: HR 1.25, 95% CI 0.63–2.48, P= 0.51;	Extrathoracic metastases is an independent risk factor for BM and OS in ED-SCLC with PCI	Backward stepwise multivariate analysis	
	28 Bang, 2018 (16)	Cox proportional hazard regression	Extrathoracic metastases (No vs Yes) (adjust for PS, PCI): HR 2.59; 95% CI: 1.12–7.56; P=0.02;	Extrathoracic metastases (No vs Yes) (adjust for PS, PCI): HR 1.75; 95% CI:1.04–3.17; P = 0.03	Extrathoracic metastases is an independent risk factor for BM and OS in ED-SCLC	Used for BM analysis.	
	81 Chen, 2018 (9)	Cox proportional hazard regression	distant metastases vs. locally advanced (adjust for age, sex, PS, number of metastatic sites, PCI timing): OR=2.944, 95%CI: 1.049–8.261; P >0.05.	Distinct metastases vs. locally advanced: HR=2.018, 95% CI: 1.159–3.517; P =0.013.	Distinct metastases is a significant risk factor for OS in ED-SCLC, but not for BM.	Logistic regression was used for BM analysis.	
9. Number of metastatic sites: Meta-analysis for BM is not applicable because of different statistical analysis	80 Chen, 2016 (13)	Cox proportional hazard regression	≥2 vs <2: HR, 1.124; 95% CI, 0.668–1.936; p> 0.05;	≥2 vs <2: (adjust for POI, liver metastasis, PS); HR, 1.146; 95%CI: 0.722–1.820; p<0.05.	Number of metastatic sites is not a significant risk factor for BM or OS in ED-SCLC	Logistic regression was used for BM analysis.	
	81 Chen, 2018 (8)	Cox proportional hazard regression	≥2 vs <2: (adjust for age, sex, PS, tumor load, PCI timing): OR=1.445, 95%CI: 0.284–7.354; P >0.05.	≥2 vs <2: HR=1.758, 95%CI: 0.697–4.435; P=0.232.	Number of metastatic sites is not a significant risk factor for BM or OS in ED-SCLC	Logistic regression was used for BM analysis.	
10. Number of extrathoracic metastatic sites	439 Suzuki, 2018 (5)	Cox proportional hazard regression	≤ 4 vs > 4 (adjust for PS, stage, TRT dose, PCI, posttreatment LDH): HR: 0.978, 95% CI: 0.620–1.543, P=0.924.	NI	Number of extrathoracic metastatic sites is not a significant risk factor BM in SCLC.	Logistic regression was used for BM analysis.	
11. Metastatic organs							
1) Bone metastasis: Meta-analysis for BM is not applicable because of different statistical analysis	145 Greenspoon, 2011 (23)	logistic regression	Yes vs No: OR=0.68, 95% CI: 0.24–1.94; P= 0.47.	NI	Bone metastasis is not a significant risk factor for BM in ED-SCLC.	Bone metastasis is not a significant risk factor for BM in ED-SCLC.	
	80 Chen, 2016 (13)	Cox proportional hazard regression	Yes vs no: HR, 1.234; 95% CI: 0.826–1.843; p<0.05;	HR, 1.083; 95%CI: 0.692–1.694; p=0.05;	Bone metastases is not a significant risk factor for BM or OS in ED-SCLC.	Logistic regression was used for BM analysis.	
2) Liver metastasis: Meta-analysis for BM is not applicable because of different statistical analysis	145 Greenspoon, 2011 (23)	logistic regression	Yes vs No: OR=0.80, 95% CI: 0.27–2.34; P= 0.68.	NI	Liver metastasis is not a significant risk factor for BM in ED-SCLC.	Liver metastasis is not a significant risk factor for BM in ED-SCLC.	

(Continued)
3) Adrenal metastasis: Meta-analysis for BM is not applicable because of different statistical analysis.

4) Lung metastasis: Meta-analysis for BM is not applicable because of different analysis and overlapped data.

12. Laterality: Meta-analysis for BM is not applicable because of different analysis and overlapped data.

13. Anatomical site: Cox proportional hazard regression models lower vs upper lobe (adjust for treatment, stage, BMI, age, sex, anatomical site, PCI): HR=0.70, 95% CI: 0.42-1.16; P: NI.

14. KPS\(^3\): Meta-analysis for BM is not applicable because of different analysis methods.

TABLE 1 | Continued

Risk factors	Studies ID	First Author (Trial)	Statistics	BM Results\(^a\)	OS results\(^b\)	Conclusion	Comments
80	Chen, 2016 (13)	Cox proportional hazard regression	Yes vs no (adjust for PCI, Number of metastatic sites): HR, 2.511; 95% CI: 1.408-4.477; p<0.05	Yes vs no (adjust for PCI, Number of metastatic sites, PS): HR, 2.193; 95% CI: 1.284-3.747; P<0.05	Liver metastasis is an independent risk factor for BM and OS in ED-SCLC	Distribution in each group.	
145	Greenspoon, 2011 (20)	logistic regression	Yes vs No: OR=0.84, 95% CI 0.22-3.24; P= 0.80.	NI	Adrenal metastasis is not a significant risk factor for BM in ED-SCLC		
80	Chen, 2016 (13)	Cox proportional hazard regression	Yes vs no: HR, 1.778; 95% CI: 0.946-3.344; P<0.05	HR, 1.396; 95% CI: 0.725-2.687; P<0.05	Adrenal metastases is not a significant risk factor for BM or OS in ED-SCLC		
80	Chen, 2016 (13)	Cox proportional hazard regression	Yes vs no: HR, 0.886; 95% CI: 0.526-1.493; P<0.05	HR, 0.828; 95% CI: 0.499-1.374; P<0.05	Lung metastases is not a significant risk factor for BM or OS in ED-SCLC		
376	Sahmoun, 2004 (3)	Cox proportional hazard regression	Left vs right (adjust for hypertension, age, sex, BMI): HR=1.11, 95% CI: 0.7-1.8; P: NI.	NI	Laterality is not a significant risk factor for BM in SCLC without PCI		
377	Sahmoun, 2005 (12)	Cox proportional hazards regression	Left vs right (adjust for treatment, stage, BMI, age, sex, anatomical site, PCI): HR=1.25, 95% CI: 0.84-1.89; P: NI.	Left vs right (adjust for treatment, stage, BMI, age, sex, anatomical site): HR=1.52, 95% CI: 1.01-2.3; P: NI.	Compared to left, right SCLC is an independent risk factor for OS, but not for BM		
513	Zeng, 2019 (10)	Competing-risk regression	Left vs right; HR=0.94, 95% CI: 0.87-1.02; P=0.71.	NI	Laterality is not a significant risk factor for BM after PCI in SCLC		
377	Sahmoun, 2005 (12)	Cox proportional hazards regression models	lower vs upper lobe (adjust for treatment, stage, BMI, age, sex, laterality, PCI): HR=0.70, 95% CI: 0.42-1.16; P: NI.	lower vs upper lobe (adjust for treatment, stage, BMI, age, sex, laterality): HR=0.90, 95% CI: 0.54-1.53; P: NI.	Anatomical site is not a significant risk factor for BM or OS in LD-SCLC		
520	Zhu, 2014 (4)	Cox proportional hazard regression	≥80 vs <80: P= 0.272	(adjust for age, stage, LVI, and BMI): HR=1.149, 95% CI: 0.631-2.092; P=0.649.	KPS is not a significant risk factor for BM or OS in resected LD-SCLC	BM was included in the multivariate model of OS and detailed P value.	
115	Farooqi, 2017 (1)	Cox proportional hazard regression, OS: Cox proportional hazard regression	≥80 vs <80: SHR 0.89, P=0.668;	HR 1.41, 95% CI 1.09-1.83, P=0.010; Multivariate (adjusted factors: NI); P>0.05	KPS is not an independent risk factor for BM or OS in LD-SCLC.	Two definitions for time to development of BM, unclear which one is used.	
491	Wu, 2017 (15)	BM: Competing risk regression; OS: Cox	≥80 vs <80: P>0.05	≥80 vs <80: HR= 0.75; 95% CI: 0.50-1.11; P= 0.15	KPS is not a significant risk factor for BM or OS in LD-SCLC	No details on BM results, i.e. HR, 95% CI, and detailed P value.	

(Continued)
Risk factors	Studies ID	First Author (Trial)	Statistics	BM Results	OS results	Conclusion	Comments
	34	Bernhardt, 2017 (2)	Cox	≤ .70 vs > 70: HR 0.71, 95% CI 0.36-1.41, P=0.33;	HR 0.85, 95% CI 0.55-1.33, P=0.49;	KPS is not a significant risk factor for BM or OS in ED-SCLC with PCI	No report of patients distribution in each group
	371	Rubenstein, 1995 (2,4)	Multivariate Cox regression	Pre-RT KPS ≤ 70 vs > 70: HR 0.71, 95% CI 0.35-1.41, P=0.33; HR 0.85, 95% CI 0.55-1.33, P=0.49;	KPS is not a significant risk factor for BM or OS in ED-SCLC	Did not report HR; Pre-RT KPS was a significant risk factor for BM and OS in LD-SCLC	
	80	Chen, 2016 (13)	Cox	0-1 vs 2: HR, 2.388; 95% CI, 0.868-6.560; p>0.05;	0-1 vs 2: (adjust for PCI, liver metastasis, number of metastatic sites): HR: 3.182; 95%CI: 1.539-6.599; p<0.05;	PS is an independent risk factor for OS in ED-SCLC, but not for BM.	
	81	Chen, 2018 (8)	BM: Logistic regression, OS: Cox proportional hazard regression	0-1 vs 2: (adjust for age, sex, tumor load, number of metastatic sites, PCI timing): OR=6.001, 95% CI: 0.509-70.727; P>0.05.	0-1 vs 2: (adjust for age, sex, tumor load, number of metastatic sites, PCI timing): HR=2.545, 95% CI: 0.788-8.217; P=0.118.	PS is not a significant risk factor for BM or OS in ED-SCLC	
	439	Suzuki, 2018 (5)	Cox	0-1 vs ≥ 2 (adjust for stage, number of extrathoracic metastatic sites, TRT dose, PCI, pretreatment LDH, Pretreatment PLR): HR: 1.369, 95% CI: 0.834-2.246, P=0.214.	0-1 vs 2-4 (adjust for PS, PCI, Extrathoracic metastases): HR 1.75; 95% CI:1.04-3.17; P = 0.03	PS is an independent risk factor for OS in ED-SCLC, but not for BM.	
	28	Bang, 2018 (16)	Cox	0-1 vs 2-4: P>0.05	0-1 vs 2-4 (adjust for PS, PCI, Extrathoracic metastases): HR 1.75; 95% CI:1.04-3.17; P = 0.03	PS is an independent risk factor for BM in SCLC	
	239	Levy, 2019 (19) (CONVERT trial)	BM: Competing risk regression; OS: Cox proportional hazard regression	0 vs 1-2 (adjust by Log(tGTV), ODRT/TDRT, Brain MR/CT, Weight loss, PCI timing, PCI dose): HR: 0.54; 95% CI: 0.32–0.90; P=0.018	0 vs 1-2 (adjust by Log(tGTV), TDRT vs ODRT, Brain MR/CT, Weight loss, PCI timing, PCI dose): HR: 1.1; 95% CI: 0.86–1.46; P=0.348	Better PS is an independent risk factor for BM after PCI in LD-SCLC, but not for OS.	
	519	Zheng, 2018 (9)	Cox	0 vs 1-2: P= 0.455	P=0.805	PS is not a significant risk factor for BM in LD-SCLC	Investigated multiple factors (N=21) with limited sample size (n=153). Inverse probability treatment weight (IPTW) was used to minimize bias; No report of patients distribution in each group after IPTW; Details of multivariate model not reported.
	203	Kim, 2019 (6)	Cox	0 vs 1-2: HR=1.788, 95% CI: 0.554-5.773, P=0.331. Adjust for LDH, N, stage, TRT dose, TRT timing, PCI: P>0.05.	0 vs 1-2: HR=1.788, 95% CI: 0.554-5.773, P=0.331. Adjust for LDH, N, stage, TRT dose, TRT timing, PCI: P>0.05.	PS is not a significant risk factor for BM or OS in LD-SCLC	
	513	Zeng, 2019 (10)	BM: Competing risk	0.1,2 (adjust for era, stage, ODRT/TDRT, SCRT/CCRT), 0.1,2 (adjust for era, stage, ODRT/TDRT, SCRT/CCRT),	0.1,2 (adjust for era, stage, ODRT/TDRT, SCRT/CCRT),	PS is an independent risk factor for OS in	

(Continued)
Risk factors	Studies ID	First Author (Trial)	Statistics	BM Results^a	OS results^b	Conclusion	Comments
PCI timing:	HR=1.25, 95% CI: 0.81–1.91, P=0.32.	PCI timing: HR=1.38, 95% CI: 0.046–3.432; P=0.401.	SCLC with PCI, but not for BM.				
PCI timing:	HR=1.38, 95% CI: 1.03–1.83, P=0.03.			Analyzed BM as a first site of recurrence; No report of patients distribution in each group.			
BMI as a first recurrence site: 0-3 vs >3 (adjust for age, sex, stage, CTC at baseline, CTC post-first cycle, CTC post-fourth cycle, response):	HR=0.397, 95% CI: 0.046–3.432; P=0.401.		NI	Logistic regression was used for BM analysis. BM time definition and follow-up period were not reported. No report of patients distribution in each group.			
BMI as a first recurrence site: 0-2 vs 3-4:	OR=0.39, 95% CI: 0.08–1.86; P=0.24.		NI	Response was a significant risk factor for BM in ED-SCLC			
Response to induction chemo (CR/Near CR vs others) (adjusted factors: PCI, KPS, age, treatment intent) HR:	NI				No HR given; Did not report compared response in detail.		
Response to induction chemo (CR/Near CR vs others) (adjusted factors: PCI, Pre-RT KPS, age, CCRT/SCRT):	HR: NI, P = 0.0173			Investigated multiple factors (N=21) with limited sample size (n=153). Backward stepwise multivariate analysis			
Response was a significant risk factor for OS in LD-SCLC, but not for BM.							
Response was not a significant risk factor for BM after PCI in stage III SCLC							
PS is not a significant risk factor for BM in ED-SCLC							
PS is not a significant risk factor for BM after PCI in stage III SCLC							
Analyzed BM as a first site of recurrence; No report of patients distribution in each group.							
Logistic regression was used for BM analysis. BM time definition and follow-up period were not reported. No report of patients distribution in each group.							
Pretreatment LDH (lactate dehydrogenase): Meta-analysis for BM is not applicable because of different cut-off values							

16. Response^e: Meta-analysis for BM is not applicable because of different analysis methods and no HR data. | | | | |

17. Pretreatment LDH (lactate dehydrogenase): Meta-analysis for BM is not applicable because of different cut-off values | | | | |

18. Response^f: Meta-analysis for BM is not applicable because of different analysis methods and no HR data. | | | | |
| Risk factors | Studies ID | First Author (Trial) | Statistics | BM Results	extsuperscript{a} | OS results	extsuperscript{b} | Conclusion | Comments |
|-------------|------------|----------------------|------------|-------------------------------|-----------------------------|------------|----------|
| 18. Neutrophil count | 203 Kim, 2019 (ii) | Cox proportional hazard regression. | >3.9×10^3/µL vs. <3.9×10^3/µL; HR: 1.373, 95% CI: 0.922–2.046, P = 0.119. | Adjust for PS, N, stage, TRT dose, TRT timing, PCI; P > 0.05 | LDH is not a significant risk factor for BM or OS in LD-SCLC. | Inverse probability treatment weight (IPTW) was used to minimize bias; No report of patients distribution in each group after IPTW; Details of multivariate model not reported. |
| 19. TLC, total lymphocyte count | 439 Suzuki, 2018 (5) | Cox proportional hazard regression. | >1.1×10^3/µL vs. ≤1.1×10^3/µL (adjust for stage); HR: 2.512, 95% CI: 1.196–5.277, P = 0.015. | Higher Pre-PCI TLC is an independent risk factor for BM in SCLC | Cut-off value changed. |
| 20. NLR, neutrophil-to-lymphocyte ratio | 519 Zheng, 2018 (9) | Cox proportional hazard regression. | <2.55 vs. ≥2.55 (adj for smoking, blood glucose, NSE, T, TRT timing, chemotherapies); HR: 2.07, 95% CI: 1.08–3.97, P = 0.029. | <2.55 vs. ≥2.55 (adj for TRT timing); HR: 2.11, 95% CI: 1.28–3.59; P = 0.005 | Higher pretreatment NLR is an independent risk factor for BM and OS in LD-SCLC. | Investigated multiple factors (N=21) with limited sample size (n=153). |
| 21. Platelet count | 439 Suzuki, 2018 (5) | Cox proportional hazard regression. | ≤270×10^9/L vs. >270×10^9/L; Ladj for PS, stage, number of extrathoracic metastatic sites, TRT dose, PCI, pretreatment LDH; HR: 1.516, 95% CI: 1.024–2.245, P = 0.038 | ≤247×10^9/L vs. >247×10^9/L (adj for stage); HR: 1.847, 95% CI: 0.927–3.681, P = 0.081 | High pretreatment platelet count is an independent risk factor for BM in SCLC. | Pre-PCI platelet count is not a significant risk factor for BM in SCLC. |
| 22. PLR, platelet-to-lymphocyte ratio | 439 Suzuki, 2018 (5) | Cox proportional hazard regression. | ≤3×10^9/L vs. >3×10^9/L; HR: 0.807, 95% CI: 0.540–1.207, P = 0.296. | | | |

(Continued)
Risk factors	Studies ID	First Author (Trial)	Statistics	BM Results	OS results	Conclusion	Comments
23. Pretreatment NSE	519	Zheng, 2018 (3)	Cox proportional hazard regression.	$< 125.7 \text{ vs } > 125.7; P = 0.477$	P = 0.280	Pretreatment PLR is not a significant risk factor for BM in LD-SCLC	Investigated multiple factors (N=21) with limited sample size (n=153).
24. Pretreatment CEA	519	Zheng, 2018 (3)	Cox proportional hazard regression.	$< 119.4 \text{ vs } > 119.4$ (adjust for PS, stage, number of extrathoracic metastatic sites, TRT dose, PCI, pretreatment LDH): HR: 1.557, 95% CI: 0.939–2.582, P = 0.086	NI	Pretreatment PLR is not a significant risk factor for BM in SCLC	
25. Pretreatment blood glucose	519	Zheng, 2018 (3)	Cox proportional hazard regression.	$< 6.2 \text{ vs } > 6.2 \text{ mmol/L}$ (adjust for smoking, NSE, NLR, T, TRT timing, chemo cycles): HR= 1.096, 95% CI: 0.50–2.41, P = 0.826.	P = 0.182	Blood glucose is not a significant risk factor for BM or OS in LD-SCLC	Investigated multiple factors (N=21) with limited sample size (n=153).

26. CTC, circulating tumor cells

| 1) CTC at baseline | 122 | Fu, 2014 (14) | Cox proportional hazard regression | BM as a first recurrence site: (adjust for age, sex, PS, CTC post-first cycle, CTC post-fourth cycle, stage, response): HR=5.243, 95% CI: 2.133–10.574, P < 0.001. Median BM time: CTCs ≤ 218 vs CTCs > 218: 11.6 (22.3–67.7) vs 7.3 (6.8–35.2) months (p=0.001). | NI | Higher CTC at baseline is an independent risk factor for BM after PCI in stage III SCLC | Analyzed BM as a first site of recurrence; No report of patients distribution in each group |

| 2) CTC post-first cycle | 122 | Fu, 2014 (14) | Cox proportional hazard regression | BM as a first recurrence site: (adjust for age, sex, PS, CTC at baseline, CTC post-first cycle, CTC post-fourth cycle, stage, response): HR=1.066, 95% CI, 0.585–2.318; P = 0.546. | NI | CTC post-first cycle is not a significant risk factor for BM after PCI in stage III SCLC | Analyzed BM as a first site of recurrence; No report of patients distribution in each group |

| 3) CTC post-fourth cycle | 122 | Fu, 2014 (14) | Cox proportional hazard regression | BM as a first recurrence site: (adjust for age, sex, PS, CTC post-first cycle, CTC post-fourth cycle, stage, response): HR=1.002; 95% CI, 0.776–2.371; P = 0.857. | NI | CTC post-fourth cycle is not a significant risk factor for BM after PCI in stage III SCLC | Analyzed BM as a first site of recurrence; No report of patients distribution in each group |

| 27. SUVmax | 491 | Wu, 2017 (15) | BM: Competing risk regression; | (continuous): HR= 1.02; 95% CI: 0.99–1.05; P = 0.21. | | SUVmax is not a significant risk factor for BM or OS in LD-SCLC | No detailed BM results reported, i.e. HR, 95% CI, and detailed P value. |

(Continued)
TABLE 1 | Continued

Risk factors	Studies ID	First Author (Trial)	Statistics	BM Results	OS results	Conclusion	Comments
Treatment related factors							

1. PCI vs no PCI: 3 RCTs have qualified overall BM data for meta-analysis based on Cox regression (148, 487, 19); 2 have overall BM data based on competing risk regression (415, 445); 2 have OS data (415, 445)

1) LD-SCLC: 2 RCTs have qualified overall BM data for subgroup meta-analysis (487, 148)

62C Cao, 2005 (26) \(\chi^2 \)-test BM prevalence: PCI: 3.8% (1/26); No PCI: 32.0% (8/25) \(\chi^2 =5.15, \ P =0.02 \)

- PCI significantly decreased BM in LD-SCLC, but did not significantly improve OS
- \(\chi^2 \)-test was used for BM analysis

487C Work, 1996 (27) Log-rank test BM prevalence: PCI: 9.6% (15/157); No PCI: 31% (13/42); \(HR = 0.30, 95\% \text{ CI 0.12-0.75, } P =0.01 \)

- PCI significantly decreased BM in LD-SCLC, but did not significantly improve OS
- RCT

148C Gregor, 1997 (28) (UKCCCR/ EORTC) Log-rank test 2-year BM: PCI: 30%, No PCI: 54%; HR = 0.44, 95% CI 0.29-0.67, \(P = 0.00004 \)

- PCI significantly decreased BM in LD-SCLC, but did not significantly improve OS
- RCT

461 van der Linden, 2001 (29) Cox proportional hazard regression. Overall BM: PCI: 17%; No PCI: 57%; HR: 7.3, 95% CI: 3.3 - 16.4, \(P =0.001 \)

- PCI significantly decreased BM and improved OS in LD-SCLC.

377 Sahmoun, 2005 (12) Cox proportional-hazards regression models No vs Yes (adjust for treatment, stage, BMI, age, sex, laterality, anatomical site): HR=0.56, 95%CI: 0.20-1.57, \(P: \text{NI} \)

- PCI did not significantly decrease BM in LD-SCLC

384 Sas-Korczyńska, 2010 (33) BM prevalence: \(\chi^2 \)-test; BMFS: Log-rank test. PCI: 12/86 (14%), No PCI: 20/43 (46.5%); \(P=0.00005 \)

- PCI significantly decreased BM in LD-SCLC
- NI

134 Giuliani, 2010 (31) Cox proportional hazard regression. HR:3.4; 95% CI: 1.9-6.1; \(P<0.001 \); multivariate (adjusted for age): HR:3.8; 95% CI: 2.1-6.8; \(P<0.001 \)

- PCI significantly decreased BM and improved OS in LD-SCLC.

264 Manapov, 2012 (25) Log-rank test BM prevalence: 1. Overall BM: PCI: 13.9% (5/36), No PCI: 28.1% (25/89); BMFS in patients with CR: PCI: 640 days; No PCI: 482 days; \(P=0.047 \)

- PCI prolongs BMFS in LD-SCLC with poor initial PS who had CR to CRT
- No HR reported.

441 Tai, 2013 (32) BM prevalence: \(\chi^2 \)-test or Fisher exact 2-tailed test; BM time, OS: Kaplan-Meier method, Wilcoxon test. 1. Overall BM: 1) CR: PCI: 24/128 (18.8%); no PCI: 20/49 (40.8%) (Fisher P=0.002); 2) IR: PCI: 11/40 (27.5%); no PCI: 15/48 (31.3%) (Fisher P=0.70); 2. BM as first recurrence: 1) CR: PCI: 6/128 (4.7%); no PCI: 5/49 (10.2%)

- PCI decreases BM, improves OS

(Continued)
Risk factors	Studies ID	First Author (Year)	Statistics	BM Results*	OS results**	Conclusion	Comments
393 Scotti, 2014 (33)	Log-rank test.	PCI: 8/38 (21.1%); No PCI: 19/54 (35.2%); P: N	P=0.21	BM prevalence in the PCI group was lower, but the p was not reported. PCI did not improve OS in LD-SCLC.	No P values for BM.		
115 Farooqi, 2017 (1)	BM: Competing-risk regression. OS: Cox proportional hazard regression	No PCI vs PCI: HR 0.54, 95% CI 0.39–0.76, P=0.001; SHR 0.56, 95% CI 0.40–0.78, P=0.001; Multivariate (adjusted factors: N): SHR 0.57, 95% CI 0.41–0.79, P=0.001;	Multivariate (adjusted factors: N): HR 0.76, 95% CI 0.63–0.91, P=0.003	PCI significantly improved OS and decreased BM in LD-SCLC.	Two definitions for time to development of BM, unclear which one is used		
82 Choi, 2017 (34)	Cox proportional hazard regression.	cumulative first isolated BM: whole: PCI: 25.4%; No PCI: 39.9% (P = 0.014); PET: PCI: 34.3%; No PCI: 41.1% (P = 0.243); No PET: PCI: 13.3%; No PCI: 37.0% (P = 0.020).	whole: PCI: 33.1 months; No PCI: 30.7 months (P = 0.938); PET: PCI: 33.0 months; No PCI: 42.2 months (P = 0.474); No PET: PCI: 34.9 months; No PCI: 22.5 months (P = 0.669).	1. PCI decreased first isolated BM, did not improve OS in the whole group and no PET group; PCI did not decrease first isolated BM or improve OS the PET group.	Analyzed BM as a first site of recurrence; Characteristics were not balanced between groups; Less patients underwent MRI in the no-PET group (68.4% vs 82.8%, P=0.001).		
491 Wu, 2017 (15)	BM: Competing risk regression; OS: Cox proportional hazard regression	No vs Yes: Univariate : HR, 0.81; 95% CI, 0.48–1.39, P = 0.45; Multivariate (adjust for stage, chemo): P<0.001.	No vs Yes (adjust for stage, chemo): HR= 0.67; 95%CI: 0.49–0.92; P= 0.014	PCI did not significantly decrease BM, but significantly improved OS in LD-SCLC.	Unbalanced characteristics between PCI and non-PCI group (in no PCI group, more patients had longer SER, more patients had ODRT); χ2-test was used for BM analysis; No overall BM results were reported. Inverse probability treatment weight (IPTW) was used to minimize bias; No report of patients distribution in each group after IPTW; Details of multivariate model not reported.		
303 Nakamura, 2018 (21)	BM: χ2-test; OS: Cox proportional hazard regression	BM as a first recurrence site: PCI: 18% (17/93); No PCI: 41% (28/69); P=0.002; BM as a first recurrence site time: No PCI: 7.5 months; PCI: 10 months (P = 0.012).	(adjust for age, stage, pulmonary effusion, TDRT/ODRT, SER): HR=0.54, 95% CI: 0.36–0.82, P=0.004.	PCI significantly decreased first isolated BM and improved OS in LD-SCLC.	Unbalanced characteristics between PCI and non-PCI group (in no PCI group, more patients had longer SER, more patients had ODRT); χ2-test was used for BM analysis; No overall BM results were reported. Inverse probability treatment weight (IPTW) was used to minimize bias; No report of patients distribution in each group after IPTW; Details of multivariate model not reported.		
203 Kim, 2019 (6)	Cox proportional hazard regression.	HR 0.588, 95% CI 0.338–1.024, P = 0.060. Adjust for age, T, and PCI: P=0.068.	whole cohort: PCI: HR 0.543, 95% CI 0.383–0.771, P = 0.001.	PCI improved OS and BMFS in LD-SCLC.	2) LD-SCLC with MRI: Meta-analysis for BM is not applicable because of different methods.		

2) LD-SCLC with MRI: Meta-analysis for BM is not applicable because of different methods.
| Risk factors | Studies ID | First Author (Trial) | Statistics | BM Results | OS results | Conclusion | Comments |
|-------------|------------|----------------------|------------|------------|------------|------------|----------|
| PCI | 112 | Eze, 2017 (35) | BM: Log-rank test; OS: Cox proportional hazard regression | PCI: 16/71 (23%); No PCI: 42/113 (37%); P<0.0001 | Yes vs No (adjust for sex, chemo cycles, chemo regimen, response): HR=1.899; 95% CI, 1.370-2.632; P < 0.0001; | PCI improves OS and decreases BM in LD-SCLC staged with brain MRI | |
| PCI | 342 | Pezzi, 2020 (36) | BM: Competing risk regression; OS: Cox proportional hazard regression | 3-year BM: PCI 20.40% vs no PCI 11.20%; P = 0.10; No PCI vs PCI (adjust for age, sex, PS, tumor size, radiation dose): HR=0.513 (95%CI, 0.239-1.098; P = .09) | No PCI vs PCI (adjust for age, sex, PS, tumor size, radiation dose): HR=0.787; 95%CI, 0.558-1.110; P = 0.17; | PCI does not significantly improve OS or decrease BM in LD-SCLC staged with brain MRI | |
| PCI | 521 | Zhu, 2014 (37) | BM: Log-rank test; OS: Cox proportional hazard regression | 2-year BMFS: PCI: 96.8%, non-PCI: 79.4%; 5-year BMFS: PCI: 76.6%, non-PCI: 75.5% (p = 0.014). | 2-year OS: All: 73.4%, PCI: 92.5%, non-PCI: 63.2%; 5-year OS: All: 52.3%, PCI: 54.9%, non-PCI: 47.8% (p = 0.001). | PCI improves OS and BMFS in resected LD-SCLC, but not in p-stage I. | |
| PCI | 493 | Xu, 2017 (38) | BM: Log-rank test; OS: Cox proportional hazard regression | All: PCI: 15/115 (13.0%), No PCI: 53/234 (22.6%), P=0.009; p-stage I: PCI: 2/19 (10.5%), No PCI: 8/59 (13.6%), P=0.389; p-stage II: PCI: 5/39 (12.8%), No PCI:15/67 (22.4%), P=0.094; p-stage III: PCI: 8/57 (14.0%), No PCI: 30/108 (27.8%), P=0.018; | PCI: 36.40 months, 95% CI:23.36-49.44; non-PCI: 25.62 months, 95% CI: 18.86-32.39. | PCI improves OS and BMFS in resected LD-SCLC, but not in p-stage I. | |
| PCI | 415 | Slotman, 2007 (39) | BM: Competing risk regression; OS: log-rank test | BM prevalence: PCI: 16.8% (24/143); No PCI: 41.3% (59/143); 1-year BM: PCI: 14.8%; No PCI: 40.4%; HR, 0.27; 95%CI, 0.16-0.44; P<0.001. | Median OS: PCI: 6.7 months, No PCI: 5.4 months; HR=0.68; 95% CI, 0.52-0.88; P = 0.003. | PCI significantly decreased BM and improved OS in ED-SCLC RCT; Symptomatic BM, no brain images at baseline. | |
| PCI | 445 | Takahashi, 2017 (40) | BM: Competing risk regression; OS: Cox | BM prevalence: PCI: 48% (54/113); No PCI: 69% (77/111); 1-year BM: PCI: 32.9%; No PCI: 59% (HR, 0.49; 95% | Median OS: PCI: 11.6 months, No PCI: 13.7 months; HR=1.27; 95% CI, 0.96-1.68; p=0.094 | PCI significantly decreased BM, but did not improve OS in ED-SCLC RCT; Contains asymptomatic BM, have brain images at baseline. | |
TABLE 1 | Continued

Risk factors	Studies ID	First Author (Trial)	Statistics	BM Results^a	OS results^b	Conclusion	Comments
PCI dose: ≤25 Gy vs > 25 Gy: 2 RCTs have qualified overall BM data for meta-analysis based on Cox regression (148, 231); 2 have overall BM data based on competing risk regression (231, 239); 2 have OS data (231, 239).							

5) SCLC

80 Chen, 2016 (13) Cox proportional hazard regression Yes vs No (adjust for liver metastasis, number of metastatic sites): HR, 0.410; 95% CI, 0.218–0.770; p < 0.05; Yes vs No (adjust for extrathoracic metastases): HR 2.53; 95% CI: 1.51–4.29; P=0.0004); PCI significantly decreased BM and improved OS in ED-SCLC.

28 Bang, 2018 (16) Cox proportional hazard regression Yes vs No (adjust for extrathoracic metastases): HR 2.53; 95% CI: 1.51–2.92; P=0.0005).

18^c Arriagada, 1996 (41) (PCI 85) First isolated BM: Competing risk regression; Overall BM, OS: log-rank test Overall BM (2-year): PCI: 40%; No PCI: 67%; RR=0.35; P<10^{-<}15 (Log-rank test); First BM (2-year): PCI: 19%; No PCI: 45%; P<10⁻⁶ (Gray’s test).

PCI significantly decreased first isolated BM in SCLC, but did not improve OS.

RCT; The incidence of first isolated BM is lower than overall BM. Data overlapped with No.19.

225^c Laplanche, 1998 (33) (PCI 88) First isolated BM: Competing risk regression; Overall BM, OS: log-rank test Overall BM (4-year): PCI: 44%; No PCI: 51%; RR=0.71, 95%CI 0.45–1.12, P=0.14; First BM (4-year): PCI: 21%; No PCI: 27%; RR=0.69, P=0.26.

PCI did not significantly decrease BM or improve OS in SCLC.

RCT; Closed earlier, Power=37%. The incidence of first isolated BM is lower than overall BM. Data overlapped with No.19.

19^c Arriagada, 2002 (42) (PCI 85 + PCI 88) First isolated BM: Competing risk regression; Overall BM, OS: log-rank test Overall BM (5-year): PCI: 43%; No PCI: 59%; RR=0.50, P<0.001; First BM (5-year): PCI: 20%; No PCI: 37%; P<0.001.

PCI significantly decreased BM in SCLC, but did not improve OS.

Pooled analysis of 2 RCTs; The incidence of first isolated BM is lower than overall BM; HR is estimated by RR.

312 Nicholls, 2016 (43) OS, BMFS: Kaplan-Meier method, Wilcoxon signed-rank test; BM incidence: Fisher’s exact test LD: PCI: 3 (9.4%), No PCI: 8 (19%), p=0.33; ED: PCI: 4 (23.5%), No PCI: 13 (17.8%), p=0.24; Median BMFS: LD: PCI: 11.8 months (range 11.6–50.2); no PCI: 6.4 months (range 0.2–21.0) (P = 0.22). ED: PCI: 13.6 months (range 8.8–33.1); No PCI: 6.5 months (range 5.2–28.6) (P = 0.04).

PCI improved OS in SCLC.

Fisher’s exact test was used for BM incidence analysis.

439 Suzuki, 2018 (5) Cox proportional hazard regression. No vs Yes (adjust for PS, stage, number of extrathoracic metastatic sites, TRT dose, pretreatment LDH, Pretreatment PLR); HR: 0.517, 95% CI: 0.207–0.485, P <0.001.

PCI significantly decreases BM in SCLC.
TABLE 1 | Continued

Risk factors	Studies ID	First Author (Trial)	Statistics	BM Results^a	OS results^b	Conclusion	Comments
25Gy vs 33Gy	487^c	Work, 1996 (27)	Log-rank test	5-year BM: 33Gy: 14.9± 7.0%; 25 Gy: 22.9 ± 6.6%; P<0.05	NI	High dose PCI didn’t significantly decrease BM.	RCT;
24Gy vs 36Gy	148^c	Gregor, 1997 (29)	Log-rank test	2-year BM (data from plot): 36Gy: 16%; 24 Gy: 55%; HR 0.34; 95%CI 0.13– 0.86; p<0.05.	NI	High dose PCI decreased BM more effectively in LD-SCLC.	RCT;
25Gy vs 36Gy	231^c	Le Pechoux, 2009 (44)	Overall BM, first isolated BM: Competing risk regression; Overall BM, OS: Cox proportional hazard regression	Overall BM (2-year): 36Gy: 23%; 25Gy: 29%; HR 0.80; 95% CI 0.57–1.11; p=0.18; Overall BM (2-year) (Gray): 36Gy: 16%; 25Gy: 22%; HR: 0.76, 95% CI 0.54–1.05; p=0.10; First BM (2-year) (Gray): 36Gy: 12%; 25Gy: 6%; HR: 0.48, 95% CI 0.29–0.81, p=0.005.	2-year OS: 36Gy: 37%; 25Gy: 42%; HR 1.20; 95%CI 1.00–1.44; p=0.05	PCI dose was not a significant risk factor for BM or OS in LD-SCLC with PCI.	Data from RCT;
≤25 Gy vs > 25 Gy	239^c	Levy, 2019 (19) (CONVERT trial)	Competing risk regression; OS: Cox proportional hazard regression	≤25 Gy vs > 25 Gy (adjust by Log (tGTV), ODRT/TDRT, Brain MRI/CT, Weight loss, PS, PCI timing); HR: 0.67; 95% CI: 0.34–1.28; P=0.220.	≤25 Gy vs > 25 Gy (adjust by Log (tGTV), TDRT vs ODRT, Brain MRI/CT, Weight loss, PS, PCI timing); HR: 0.93; 95% CI: 0.66–1.34; P=0.776.	PCI dose was not a significant risk factor for BM or OS in LD-SCLC.	Data from RCT;
371	Rubenstein, 1995 (24)	Actuarial survival techniques, log-rank tests.	≤25.2 Gy vs > 25.2 Gy; HR: NA, P=0.1091.		NI	PCI dose was not a significant risk factor for BM in LD-SCLC.	Did not report HR.
52	Brewster, 1995 (45)	Descriptive	Single fraction, 8Gy; 2-yr BM: 22% (16/73); 2-yr BM only: 12.3% (9/73).		2-yr OS: 35%	Single fraction PCI was effective	Included 106 patients, but only 73 with CR were reported for BM incidence,
513	Zeng, 2019 (10)	Competing risk regression	lower, standard, higher; HR: 1.09; 95% CI: 0.68–1.73; P=0.73.		NI	PCI dose was not a significant risk factor for BM after PCI in SCLC	

3. PCI timing: Meta-analysis for BM is not applicable because of different analysis methods

Risk factors	Studies ID	First Author (Trial)	Statistics	BM Results^a	OS results^b	Conclusion	Comments
239^c	Levy, 2019 (19) (CONVERT trial)	BM: Competing risk regression; OS: Cox proportional hazard regression	log(PCI) timing from randomization (adjust by Log (tGTV), ODRT/TDRT, Brain MRI/CT, Weight loss, PS, PCI dose); HR: 1.82; 95% CI: 0.04–8.62; P=0.760	log(PCI) timing from randomization (adjust by Log (tGTV), TDRT vs ODRT, Brain MRI/CT, Weight loss, PS, PCI dose); HR: 0.66; 95% CI: 0.11–4.14; P=0.859	PCI timing from randomization is not a significant risk factor for BM or OS in LD-SCLC with PCI	Data from RCT;	
239^c	Levy, 2019 (19) (CONVERT trial)	BM: Competing risk regression; OS: Cox proportional hazard regression	log(PCI) timing from end of CRT (adjust by Log (tGTV), ODRT/TDRT, Brain MRI/CT, Weight loss, PS, PCI dose); HR: 0.83; 95% CI: 0.48–1.45; P=0.520	log(PCI) timing from end of CRT (adjust by Log (tGTV), TDRT vs ODRT, Brain MRI/CT, Weight loss, PS, PCI dose); HR: 1.32; 95% CI: 0.93–1.87; P=0.189	PCI timing from end of CRT is not a significant risk factor for BM or OS in LD-SCLC with PCI	Data from RCT;	
239^c	Levy, 2019 (19) (CONVERT trial)	BM: Competing risk regression; OS: Cox proportional hazard regression	log(PCI) timing from beginning of chemo (adjust by Log (tGTV), ODRT/TDRT, Brain MRI/CT, Weight loss, PS, PCI dose);	log(PCI) timing from beginning of chemo (adjust by Log (tGTV), TDRT vs ODRT, Brain MRI/CT, Weight loss, PS, PCI dose); HR:	PCI timing from beginning of chemo is not a significant risk factor for BM or OS in LD-SCLC with PCI	Data from RCT;	

(Continued)
Risk factors	Studies ID	First Author (Trial)	Statistics	BM Resultsa	OS resultsb	Conclusion	Comments
	384	Sas-Korczynska, 2010 (33)	hazard regression χ^2-test; HR: 1.68; 95% CI: 0.03–10.67; P=0.810 (early: PCI was given immediately after the end of thoracic radiotherapy and prior to the last cycles of chemotherapy); Early PCI: 3/41 (7.3%), Late PCI: 9/45 (20%); p=0.00901.	1.07; 95% CI: 0.15–7.84; P=0.945	Early PCI is more effective to decrease BM than late PCI in LD-SCLC	χ^2-test was used for BM analysis.	
	356	Ramlov, 2012 (23)	Log rank test (Early: <5 months from the diagnosis to PCI): p = 0.26.	NI	PCI timing is not a significant risk factor for BM after PCI in SCLC	No HR reported.	
	34	Bernhardt, 2017 (2)	Cox proportional hazard regression PCI timing from chemo: 120-170 days vs ≤120 days: HR 0.91, 95% CI 0.19–1.37, P=0.85; PCI timing from brain MRI: <80 days vs ≥80 days: HR 2.30, 95% CI 0.87–6.05, P=0.09.	PCI timing from chemo: 120-170 days vs ≤120 days: HR 0.72, 95% CI 0.40–1.29, P=0.27; PCI timing from brain MRI: <80 days vs ≥80 days: HR 1.49, 95% CI 0.79–2.80, P=0.14.	PCI timing from brain MRI/CT is not a significant risk factor for BM or OS in ED-SCLC with PCI	No report of patients distribution in each group	
	81	Chen, 2018 (8)	BM: Logistic regression. OS: Cox proportional hazard regression (Early: <6 months from the start of initial chemo to PCI): early PCI: 10/47 (21.3%), late PCI: 23/56 (41.1%); multivariate (adjust for age, sex, PS, tumor load, number of metastatic sites): OR=0.367, 95% CI: 0.145–0.933; P=0.05.	Early vs late: HR=0.917, 95% CI: 0.642–1.551; P=0.748.	Early PCI is more effective to decrease BM than late PCI in ED-SCLC, but not for OS.	Logistic regression was used for BM analysis.	
	513	Zeng, 2019 (10)	BM: Competing risk regression; OS: Cox proportional hazard regression Before vs after completing CRT (adjust for era, PS, stage, ODRT/TDRT, SCRT/CCRT): HR: 1.10; 95% CI: 0.70–1.79; p=0.69.	Before vs after completing CRT (adjust for era, PS, stage, ODRT/TDRT, SCRT/CCRT): HR: 1.37; 95% CI: 1.05–1.78; p=0.02.	Undergoing PCI before completing CRT is an independent risk factor for OS in SCLC with PCI, but not for BM.		

4. TRT vs no TRT: Meta-analysis for BM is not applicable because of different methods and no HR data.
1) LD-SCLC 519 Zheng, 2018 (9) | Cox proportional hazard regression. 2-year BM: Yes: 41.7%, No: 35.7%; HR: NI, p=0.521. | P=0.182 | TRT or not is not a significant risk factor for BM or OS in LD-SCLC 9.2% (14/152) patients did not undergo TRT; Investigated multiple factors (N=21) with limited sample size (n=153). |

2) ED-SCLC: Meta-analysis for BM is not applicable because of different statistics 526 Slotman, 2015 (46) (CREST) | Log-rank test BM: TRT: 24/247 (9.7%), No TRT: 13/248 (5.2%), p=0.09. | 2-year OS: TRT: 13%, No TRT: 9%, p=0.004 | TRT improved OS, but did not decrease BM in ED-SCLC RCT; |

140 Gore, 2017 (61) (RTOG 0937) | BM: Competing risk regression; OS: Cox 1-year BM: No TRT: 17% (95% CI: 6.6–40.2); No TRT: 15.8 months, 13.8 months, p=0.21 HR:1.44; 95% CI: 0.82–2.53 | TRT is not a significant risk factor for OS in ED-SCLC RCT; |
Risk factors	Studies ID	First Author (Trial)	Statistics	BM Results^a	OS results^b	Conclusion	Comments
3) Resected SCLC: Meta-analysis for BM is not applicable	139	Gong, 2013 (1)	Cox proportional hazard regression	Yes (PORT) vs no (Adjust for stage, histology, induction chemo, adjuvant chemo, and surgical resection): HR= 0.607, 95% CI: NI; P= 0.226.	Yes (PORT) vs no (Adjust for stage, BM, induction chemo, adjuvant chemo, and surgical resection): HR=0.630, 95% CI:NI; P=0.057.	ORT or not is not a significant risk factor for BM in resected LD-SCLC, but tended to improve OS.	Contained many patients with combined SCLC and NSCLC (53.5%, 69/129); The factors in multivariate model of BM and OS were different.

520 | Zhu, 2014 (4) | Cox proportional hazard regression | Yes (PORT) vs no (Adjust for p-stage and LVI): HR = 0.825, 95% CI: 0.329 ~ 2.064; P = 0.680. | P=0.866 PORT or not is not a significant risk factor for BM or OS in resected LD-SCLC |

5. TRT dose: 2 studies (439, 203) have qualified BM data for meta-analysis, no qualified data for OS meta-analysis. | 439 | Suzuki, 2018 (5) | Cox proportional hazard regression | <45Gy vs ≥ 45Gy (adjust for PS, stage, number of extrathoracic metastatic sites, PCI, pretreatment LDH, Pretreatment PLR): HR: 0.425, 95% CI: 0.267–0.677, P < 0.001 | NI Lower TRT dose is an independent risk factor BM in SCLC |

203 | Kim, 2019 (6) | Cox proportional hazard regression | Adjust for PS, N, stage, TRT dose, LDH, PCI: P>0.05 | TRT dose is not a significant risk factor for BM or OS in LD-SCLC |

6. BED | 513 | Zeng, 2019 (10) | BM: Competing-risk regression; OS: Cox proportional hazard regression, | (adjust for ODRT/TDRT, SER) HR=1.02, 95% CI:0.97-1.06, P=0.49; | (adjust for ODRT/TDRT, SER) HR=1.02, 95% CI:0.98-1.06, P=0.37; | BED is not a significant risk factor for BM or OS in SCLC with PCI. |

488 | Work, 1997 (59) | Log-rank test | Initial TRT vs delayed 18 weeks: BM prevalence: Early: 11% (9/99); Late: 7% (4/58); 2-year BMFS: Early: 80.8 ± 5.5%; Late: 87.0 ± 6.6% (p=0.24). | Median OS: Early: 10.5 months; Late: 12.0 months, p=0.41 | TRT timing is not a significant risk factor for BM or OS in LD-SCLC |

532 | Jeremic, 1997 (72) | Cox proportional hazard regression | CRT at week 1 vs week 6: 5-year BM: Early TRT: 11%; Late TRT: 10%; P=0.9. | Median OS: Early: 34 months; Late: 26 months. 5-year OS: Early: 30%; Late:15%; P = 0.052. | Early TRT improved OS in LD-SCLC, but not significant for BM. |

531 | Skarlos, 2001 (81) (He-CoG) | Cox proportional hazard regression | CRT at 1st vs 4th chemotherapy: Early TRT: 26% (11/42); Late TRT: 23% (9/39); p=0.05 | Death: Early TRT: 69% (29/42); Late TRT: 82% (32/39); P = 0.65. | TRT timing is not a significant risk factor for BM or OS in LD-SCLC |

429 | Spiro, 2006 (66) | Log-rank test | CRT at 2nd vs 6th chemotherapy: BM: Early; 24%; late: 17%; | Death: Early TRT: 69% (29/42); Late TRT: 82% (32/39); P = 0.65. | TRT timing is not a significant risk factor for BM or OS in LD-SCLC |

(Continued)
TABLE 1 | Continued

Risk factors	Studies ID	First Author (Trial)	Statistics	BM Results	OS results	Conclusion	Comments	
519 Zheng, 2018 (9)	Cox proportional regression	HR=0.12, 95%CI: 0.17–0.67, P=0.002.	1.61, ≤ 2.93 vs > 2.93 months (adjust for smoking, blood glucose, NSE, NLR, T, chemo cycles); HR=0.34, 95%CI: 0.17–0.67, P=0.002.	<2.93 vs > 2.93 months (adjust for NLR); HR=0.34, 95%CI: 1.16–3.26; P=0.011	Earlier TRT is an independent risk factor for BM in LD-SCLC, but benefits OS.	Authors speculated that earlier TRT might promote metastasis when tumor is larger and active, and the brain is thought to represent a ‘sanctuary’ site as systemic control improves; Investigated multiple factors (N=21) with limited sample size (n=153).		
513 Zeng, 2019 (10)	Competing-risk regression	≤ 64 days vs >64 days: HR=1.09, 95%CI: 0.78–1.53, P=0.62.	≤ 64 days vs >64 days: (adjust for smoking, blood glucose, NSE, NLR, T, chemo cycles); HR=0.34, 95%CI: 0.17–0.67, P=0.002.	≤ 64 days vs >64 days: (adjust for NLR) HR=1.95, 95%CI:1.16-3.26; P=0.011	TRT timing is not a significant risk factor for BM after PCI in SCLC	NI TRT timing is not a significant risk factor for BM or OS in LD-SCLC		
203 Kim, 2019 (6)	Cox proportional regression	Early (start TRT at 1st chemo) vs late (start TRT at 3rd chemo): HR=1.033, 95%CI: 0.547–1.956, P=0.918.	Early (start TRT at 1st chemo) vs late (start TRT at 3rd chemo): HR=1.033, 95%CI: 0.547–1.956, P=0.918.	Adjust for PS, N, stage, TRT dose, LDH, PCI: P>0.05	TRT timing is not a significant risk factor for BM or OS in LD-SCLC	Inverse probability treatment weight (IPTW) was used to minimize bias; No report of patients distribution in each group after IPTW; Details of multivariate model not reported.		
8. SER	513 Zeng, 2019 (10)	BM: Competing-risk regression; OS: Cox proportional regression	(Adjust for ODRT/TDRT, BED) HR=1.00, 95%CI: 1.00–1.01, P=0.58.	(Adjust for ODRT/TDRT, BED) HR=1.00, 95%CI: 1.00–1.01, P=0.045	SER is not a significant risk factor for BM or OS in SCLC with PCI.	Inverse probability treatment weight (IPTW) was used to minimize bias; No report of patients distribution in each group after IPTW; Details of multivariate model not reported.		
9. CRT-D	86 Chu, 2019 (17)	Pre-PCI BM: Logistic regression; OS: Cox proportional regression	(Adjust for smoking, T, and N): OR=1.60, 95%CI: 1.007–1.964, P=0.045	(Adjust for T and N): HR=1.227, 95%CI: 1.026–1.466, P=0.025	CRT-D is an independent risk factor for pre-PCI BM and OS in LD-SCLC	Investigated risk factors for Pre-PCI BM in LD-SCLC using logistic regression.		
10. TRT technique	115 Farooqi, 2017 (1)	BM: Competing-risk regression; OS: Cox proportional regression	IMRT vs 2D/3D: SHR 0.46, 95% CI 0.29–0.71, P=0.001; Multivariate (adjusted factors: NI): SHR 0.46, 95% CI 0.30–0.73, p=0.001.	IMRT vs 2D/3D: SHR 0.46, 95% CI 0.29–0.71, P=0.001; Multivariate (adjusted factors: NI): SHR 0.46, 95% CI 0.30–0.73, p=0.001.	Compared to 2D/3D, IMRT is an independent risk factor for BM and OS in LD-SCLC	Two definitions for time to development of BM, unclear which one is used		
11. Era: Meta-analysis for BM is not applicable because of different methods.	115 Farooqi, 2017 (1)	BM: Competing-risk regression; OS: Cox proportional regression	<2000 vs ≥ 2000: SHR 0.57, 95% CI 0.40–0.80, P=0.001; Multivariate (adjusted factors: NI): P>0.05	HR 0.76, 95% CI 0.63–0.90, P=0.002; Multivariate (adjusted factors: NI): P>0.05	Era is not an independent risk factor for BM or OS in LD-SCLC	Two definitions for time to development of BM, unclear which one is used		
28 Bang, 2018 (16)	Cox proportional	<2008 vs ≥ 2008: P=0.05	<2008 vs ≥ 2008: P=0.05		Era is not a significant risk factor	Backward stepwise multivariate analysis		
Risk factors	Studies ID	First Author (Trial)	Statistics	BM Results	OS results	Conclusion	Comments	
-------------	------------	----------------------	------------	-------------	------------	------------	----------	
	513	Zeng, 2019 (10)	hazard regression	BM: Competing-risk regression; OS: Cox proportional hazard regression.	2003-2010 vs 2011-2016 (adjust for PS, stage, ODRT/TDRT, SCRT/CCRT, PCI timing); HR=0.83, 95% Cl 0.59–1.27, p=0.39.	(Adjust for PS, stage, ODRT/TDRT, SCRT/CCRT, PCI timing); HR=0.82, 95% Cl 0.65–1.04, p=0.11.	Era is not a significant risk factor for BM or OS in SCLC with PCI	
12. CRT sequence: Meta-analysis for BM is not applicable because of different methods and no HR data.								
1) Alternating vs SCRT	530	Gregor, 1997 (78) (EORTC)	Cox proportional hazard regression	First isolated BM: Alternating: 20% (34/169); SCRT: 16% (26/165); P: NI.	Death: Alternating: 81.2% (138/170); SCRT: 81.8% (135/165); P=0.24.	A/S was not a significant factor for OS in LD-SCLC.	The significance of difference on BM was unclear.	
2) CCRT vs SCRT	529	Takada, 2002 (76) (JCOG 9104)	Cox proportional hazard regression	First isolated BM: SCRT: 27% (31/114); CCRT: 19% (22/114); P=0.16.	Median OS: SCRT:19.7months, CCRT: 27.2 months, P=0.094; (Adjust for PS, stage, age, and sex); HR=0.70, 95%CI: 0.52–0.94, P=0.02.	CCRT significantly improved OS in LD-SCLC, but not for first isolated BM.	Analyzed first isolated BM instead of overall BM.	
108	El Sharouni, 2009 (62)	BM: χ² test; OS: Log-rank test	BM: 16.4% (11/67); CCRT: 8.7% (2/23); (P=0.502)	SCRT+PCI: 16.4% (11/67); CCRT+PCI: 8.7% (2/23); (P=0.502)	SCRT (N=95): 14.0 months; CCRT (N=40): 21.8 months; P: NI	CCRT/SCRT is not a significant risk factor for BM after PCI in SCLC	χ² test was used for BM in SCRT + PCI vs CCRT + PCI but with low number of events. Statistic significance of OS was not reported.	
264	Manapov, 2012 (25)	Log-rank test	BMFS: CCRT: 332 days, SCRT: 267 days, p = 0.522.	NI	CCRT/SCRT is not a significant risk factor for BM in LD-SCLC with poor initial PS	CCRT/SCRT is not a significant risk factor for BM in LD-SCLC with poor initial PS. No HR.		
263	Manapov, 2012 (25)	Descriptive	SCRT: 19% (14/74); CCRT: 31% (16/51); p: NI.	CORT: 14.9 months (95% CI 11.7–18.2); SCRT: 16.1 months (95% CI 12.2–20) ; p = 0.6.	CCRT/SCRT is not a significant risk factor for OS in LD-SCLC patients with poor initial PS. No patients developed BM in the CCRT group than in the SCRT group. But the P value was not reported.	CCRT/SCRT is not a significant risk factor for OS. No statistic analysis details and no statistic interpretation.		
265	Manapov, 2013 (49)	Log-rank test	CCRT: 37% (19/51); SCRT:20% (15/74); Log-rank P=0.049. BM time from initial diagnosis: CCRT: 330 days (95%CI: 216–444), SCRT: 273 days (95% CI:221–329), Log-rank P=0.7; from end of chemotherapy: CCRT: 123 days (95% CI:15–231), SCRT: 151 days (95% CI:101–210), Log-rank	14.9 months (SCRT vs CCRT: P=0.6)	CCRT/SCRT is not a significant risk factor for OS in LD-SCLC. The conclusion of impact on BM is contradictory	The BM conclusion is contradictory with the detailed BM time.		

(Continued)
TABLE 1 | Continued

Risk factors	Studies ID	First Author	Statistics	BM Resultsa	OS resultsb	Conclusion	Comments
115 Farooqi, 2017 (1)	BM: Competing-risk regression; OS: Cox proportional hazard regression	P=0.7; from end of TRT; CRT: 213 days (95% CI: 104-322), SCRT: 73 days (95% CI: 17-129), Log-rank P=0.2; CCRT vs induction chemo—CRT: SHR 1.36, 95% CI 0.92-2.02, P=0.120; CCRT vs induction chemo—RT: SHR 1.14, 95% CI 0.75-1.75, P=0.53.	CCRT vs induction chemo—CRT: HR 1.55, 95% CI 1.25-1.92, P<0.001. Multivariate (adjusted factors: NI): P>0.05	CCRT/SCRT is not an independent risk factor for BM or OS in LD-SCLC.	Two definitions for time to development of BM, unclear which one is used		
514 Zeng, 2017 (7)	Cox proportional hazard regression.	P=0.163	NI	CCRT/SCRT is not a significant risk factor for BM after PCI in SCLC			
519 Zheng, 2018 (9)	Cox proportional hazard regression.	P=0.062	P=0.440	CCRT/SCRT is not a significant risk factor for BM or OS in LD-SCLC	Investigated multiple factors (N=21) with limited sample size (n=153).		
513 Zeng, 2019 (10)	BM: Competing-risk regression; OS: Cox proportional hazard regression	(adjust for PS, stage, ODRT/TDRT, era, PCI timing): HR=0.87, 95% CI 0.62-1.23, P=0.42.	(adjust for PS, stage, ODRT/TDRT, era, PCI timing): HR=0.89, 95% CI 0.71-1.11, P=0.30.	CCRT/SCRT is not a significant risk factor for BM or OS in LD-SCLC.	Data from RCT		

13. TRT fractionation: Meta-analysis for BM is not applicable because of different methods and no HR data.

239 Levy, 2019 (19) (CONVERT trial) | BM: Competing-risk regression; OS: Cox proportional hazard regression | TDRT vs ODRT (adjust by Log (tGTV), brain CT/MRI, weight loss, PS, PCI timing, PCI dose): HR: 0.93, 95% CI: 0.57-1.53; P=0.770 | TDRT vs ODRT (adjust by Log (tGTV), brain CT/MRI, weight loss, PS, PCI timing, PCI dose): HR: 1.16, 95% CI: 0.89-1.51; P=0.275. | TDRT is an independent risk factor for BM after PCI in SCLC, but not for OS. |

514 Zeng, 2017 (7) | Cox proportional hazard regression. | ODRT vs TDRT (adjust for sex, age, smoking, response, TNM stage, CORT/SCRT, chemotherapy cycles, brain CT/MRI): 3-year BM: ODRT: 21%; TDRT: 43%; HR = 2.748, 95%CI 1.227-6.157, p = 0.014 | p = 0.570 | ODRT/TDRT is not a significant risk factor for BM or OS in LD-SCLC with PCI. |

115 Farooqi, 2017 (1) | BM: Competing-risk regression; OS: Cox proportional hazard regression. | ODRT vs TDRT: SHR 1.01, 95%CI 0.72-1.41, P=0.971; ODRT vs Mixed: SHR 1.02, 95%CI 0.25-1.45, P=0.981. | HR 0.75, 95%CI 0.63-0.90, P=0.002. Multivariate (adjusted factors: NI): P>0.05 | ODRT/TDRT is not an independent risk factor for BM or OS in LD-SCLC. | Two definitions for time to development of BM, unclear which one is used |

519 Zheng, 2018 (9) | Cox proportional hazard regression. | ODRT vs TDRT: P=0.187 | P=0.453 | ODRT/TDRT is not a significant risk factor for BM or OS in LD-SCLC | 13.7%(19/139) were TDRT; Investigated multiple factors (N=21) with limited sample size (n=153). |

(Continued)
TABLE 1

Risk factors	Studies ID	First Author (Year)	Statistics	BM Results^a	OS results^b	Conclusion	Comments
303	Nakamura, 2018 (21)	BM: χ²-test; OS: Cox proportional hazard regression	BM as a first recurrence site: ODRT: 34% (23/68); TDRT: 23% (22/94); P=0.144.	ODRT vs TDRT (adjust for age, stage, pulmonary effusion, PCI, SER): HR=0.49, 95% CI: 0.27–0.88, P=0.016.	No overall BM results. χ²-test was used for BM analysis.	Treatment intention was not applicable because of different methods.	

14. Treatment intent: Meta-analysis is not applicable because of different methods.

15. Chemo cycles: Meta-analysis for BM is not applicable because of different methods and no HR data.

371	Rubenstein, 1995 (24)	Multivariate Cox regression	Curative vs not (adjusted factors: PCI, response, age, KPS) HR: NI, P>0.05.	NI	Treatment intention was not a significant risk factor for BM in LD-SCLC.	Did not report HR.
377	Sahmoun, 2005 (12)	Cox proportional-hazards regression models	CRT vs Chemo alone (adjust for stage, BMI, age, sex, laterality, anatomical site, PCI): HR=2.46, 95% CI: 1.41–4.26; P: NI	CRT vs Chemo alone (adjust for stage, BMI, age, sex, laterality, anatomical site): HR=1.17, 95% CI: 0.74–1.8; P: NI	Compared to CRT, chemo alone is an independent risk factor for BM, but not for OS.	The hazards model of OS did not include PCI.
377	Sahmoun, 2005 (12)	Cox proportional-hazards regression models	CRT vs No treatment (adjust for stage, BMI, age, sex, laterality, anatomical site, PCI): HR=2.65, 95% CI: 1.26–5.64; P: NI	CRT vs No treatment (adjust for stage, BMI, age, sex, laterality, anatomical site): HR=3.30, 95% CI: 1.87–5.8; P: NI	Compared to CRT, no treatment is an independent risk factor for BM and OS.	The hazards model of OS did not include PCI.

15. Chemo cycles: Meta-analysis for BM is not applicable because of different methods and no HR data.

520	Zhu, 2014 (4)	Cox proportional hazard regression	<4 vs ≥ 4: P= 0.624	P= 0.638	Chemo cycles is not a significant risk factor for BM or OS in resected LD-SCLC	
439	Suzuki, 2018 (5)	Cox proportional hazard regression	<4 vs ≥ 4: HR: 0.939, 95% CI: 0.457–1.928; P= 0.863.	NI	Chemo cycles is not a significant risk factor for BM in LD-SCLC	Investigated multiple factors (N=21) with limited sample size (n=153).
519	Zheng, 2018 (6)	Cox proportional hazard regression	≤4 vs >4 (adjust for smoking, blood glucose, NSE, NLR, T, TRT timing): HR=0.49, 95% CI:0.25–0.95, P= 0.036.	P=0.345	Chemo cycles is a significant risk factor for BM in LD-SCLC, but not for OS.	
514	Zeng, 2017 (7)	Cox proportional hazard regression	≤6 vs >6: P=0.980	NI	Chemo cycles is not a significant risk factor for BM after PCI in SCLC	
491	Wu, 2017 (15)	BM: Competing risk regression; OS: Cox proportional hazard regression	No vs Yes (Adjust for PCI, Stage):P=0.05	No vs Yes (Adjust for PCI, Stage): HR=0.45, 95% CI: 0.25–0.81, P= 0.008	Chemo did not decrease BM, but improved OS in LD-SCLC	Only 6.7% (17/283) patients did not get chemotherapy.
28	Bang, 2018 (16)	Cox proportional hazard regression	(Continuous): P>0.05	(Continuous): P>0.05	Chemo cycles is not a significant risk factor for BM or OS in ED-SCLC	Backward stepwise multivariate analysis

(Continued)
Risk factors	Studies ID	First Author (Trial)	Statistics	BM Results^a	OS results^b	Conclusion	Comments
16. Chemo regimen: Meta-analysis is not applicable because of different methods.	388^c	Schiller, 2001 (58) (E7593)	Log-rank test	Observation: 25%; Topotecan: 31%. p>0.05	1-year OS: Observation: 28%; Topotecan: 25%; P=0.43	Compared to observation, Topotecan after first line EP chemo did not improve OS or BM in ED-SCLC	Chemo regimen is not a significant risk factor for BM or OS in ED-SCLC
17. Chemo or not in resected LD-SCLC 1) Induction chemo	139	Gong, 2013 (11)	Cox proportional hazard regression	Yes vs no (Adjust for stage, histology, PORT, adjuvant chemo, and surgical resection): HR = 1.556, 95% CI: Ni; P= 0.274.	Yes vs no (Adjust for stage, BM, PORT, adjuvant chemo, and surgical resection): HR = 1.201, 95% CI: Ni; P= 0.423.	Induction chemo or not is not a significant risk factor for BM or OS in resected LD-SCLC.	Contained many patients with combined SCLC and NSCLC (53.5%, 69/129); The factors in multivariate model of BM and OS were different.
2) Adjuvant chemo	139	Gong, 2013 (11)	Cox proportional hazard regression	Yes vs no (Adjust for stage, histology, induction chemo, PORT, and surgical resection): HR = 2.515, 95% CI: Ni; P= 0.373.	Yes vs no (Adjust for stage, BM, induction chemo, PORT, and surgical resection): HR = 0.324, 95% CI: Ni; P= 0.067.	Adjuvant chemo or not is not a significant risk factor for BM in resected LD-SCLC, but tended to improve OS.	Only 11.1% (14/126) patients did not undergo adjuvant chemo; Contained many patients with combined SCLC and NSCLC (53.5%, 69/129); The factors in multivariate model of BM and OS were different.
18. Surgery or not	513	Zeng, 2019 (10)	Competing-risk regression	HR = 0.75, 95% CI: 0.36–1.58; P= 0.45.	Ni	Surgery is not a significant risk factor for BM after PCI in SCLC	Contained many patients with combined SCLC and NSCLC (53.5%, 69/129); The factors in multivariate model of BM and OS were different.
19. Surgical resection complete or not	139	Gong, 2013 (11)	Cox proportional hazard regression	Complete vs incomplete (Adjust for stage, histology, induction chemo, adjuvant chemo, and PORT):	Complete vs incomplete (Adjust for stage, BM, induction chemo, adjuvant chemo, and PORT):	Compared to complete resection, incomplete resection is an independent risk	Contained many patients with combined SCLC and NSCLC (53.5%, 69/129); The factors in multivariate model of BM and OS were different.

(Continued)
Risk factors	Studies ID	First Author	Statistics	BM Resultsa	OS resultsb	Conclusion	Comments
20. Brain CT/MRI before PCI: Meta-analysis is not applicable because of different methods.	239	Levy, 2019 (19) (CONVERT trial)	BM: Competing risk regression; OS: Cox proportional hazard regression	HR=3.563, 95%CI: NI; P=0.020.	HR=1.712, 95%CI:NI; P=0.117.	factor for BM, but not for OS in resected LD-SCLC	multivariate model of BM and OS were different.
21. PET-CT or not at diagnosis	82	Choi, 2017 (34)	cumulative first isolated BM: whole: PET: 38.7%; No PET: 30.1% (P = 0.718); PCI: PET: 34.5%; No PET: 13.3% (P = 0.177); No PCI: PET: 41.1%; No PET: 37.1% (P = 0.942); 5-year OS: whole: PET: 38.2%; No PET: 30.5% (P = 0.023); PCI: PET: 38.3%; No PET: 33.6% (P = 0.988); No PCI: PET: 38.6%; No PET: 29.3% (P = 0.011); Yes vs no (Adjust for age, sex, PS, and PCI): HR=1.452, 95%CI: 1.071-1.968; P=0.016				
22. Treating site (hospital)	513	Zeng, 2019 (10)	Competing-risk regression	HR=0.99, 95%CI: 0.87–1.13; P= 0.86.	NI	Treating hospital is not a significant risk factor for BM after PCI in SCLC	

Notes:

a: All the results are in univariate analysis for overall BM unless specified;
b: Only factors with BM results will be presented with the OS results;
c: Highlighted studies are RCTs.
d: Baseline performance status unless specified;
e: Response to chemoradiotherapy unless specified.

BED, biologically effective dose; BM, brain metastasis; BMFS, brain metastasis free survival; BMI, body mass index; CCRT, concurrent chemoradiotherapy; CEA, carcinoembryonic antigen; CEV, cyclophosphamide-epirubicin-vincristine; chemo, chemotherapy; CI, confidence interval; CR, complete response; CRT, chemoradiotherapy; CRT-D: Chemoradiotherapy duration; CT, computerized tomography; CTC, circulating tumor cells; ED, extensive-stage disease; EP, etoposide-platinum; HR, hazard ratio; IMRT, intensity-modulated radiotherapy; IPTW, inverse probability treatment weight; IR, incomplete response; KPS, Karnofsky performance status scale; LD, limited-stage disease; LDH, lactate dehydrogenase; LVI, lymphovascular invasion; MRI, magnetic resonance imaging; NA, not applicable; N, no information; NLR, neutrophil-to-lymphocyte ratio; NR: Non-response; NSCLC, non-small cell lung cancer; NSE, neuron-specific enolase; ODRT, once-daily radiotherapy; OR, odds ratio; OS, overall survival; PCI, prophylactic cranial irradiation; PET-CT, positron emission tomography and computed tomography; PLR, platelet-to-lymphocyte ratio; PORT, postoperative radiotherapy; PS, performance status; SCLC, small cell lung cancer; SCRT, sequential chemoradiotherapy; SD, stable disease; SER, start of any treatment until the end of chest irradiation; SHR, subdistribution hazard ratio; SUV, standardized uptake value; IGTV, thoracic gross tumor volume; TRT, thoracic radiotherapy; TDRT, twice-daily radiotherapy; 2D, two-dimensional radiotherapy; 3D, three-dimensional radiotherapy.
TABLE 2 | Summary of the 10 factors for BM with meta-analysis.

BM	Risk	Non-significant
OS	Risk	Non-significant
Non-significant	PCI in ED-SCLC, PCI dose	M1b stage
Unclear	Age, Male (p=0.06), c-T-stage, PS (p=0.06), PCI in SCLC	Smoking
No information	TRT dose	

(48, 59, 61). It showed that M1b was a significant risk factor for OS (HR = 1.46, 95% CI: 1.10–1.95; P = 0.01; Figure 4B) but not for BM (HR = 1.26, 95% CI: 0.89–1.77; P = 0.19; Figure 3F) in ED-SCLC.

4. PS: PS was investigated in 10 studies in different ways. It was concluded that PS was not a significant risk factor for BM or OS in six SCLC studies (38, 51, 52, 54, 55, 63). Two non-RCTs (51, 59) were eligible to perform meta-analysis for BM and showed that better PS (0–1) tended to be associated with less BM (HR = 0.66, 95% CI: 0.42–1.02; P = 0.06) (Figure 3G).

C. Treatment Related Factors

1. PCI vs no PCI: PCI was investigated in 28 studies, including 8 RCTs. Three RCTs had qualified overall BM data for meta-analysis based on Cox regression (29, 34, 68) and showed that PCI significantly decreases BM in SCLC (HR = 0.47, 95% CI: 0.38–0.58; P <0.00001) and LD-SCLC (HR = 0.41, 95% CI: 0.28–0.60; P <0.00001) (Figure 3H1); two had overall BM data based on competing risk regression (5, 9) and also showed that PCI significantly decreased BM in ED-SCLC (HR = 0.37, 95% CI: 0.20–0.65; P = 0.0007) (Figure 3H2). Two had OS data (5, 9) and showed that PCI did not significantly improve OS in ED-SCLC (HR = 0.93, 95% CI: 0.50–1.71; P = 0.81) (Figure 4C). Two retrospective studies (72, 73) investigated PCI in LD-SCLC staged with brain MRI and reported controversial conclusions. Meta-analysis was not applicable. Two retrospective studies (74, 75) investigated PCI in resected LD-SCLC and showed that PCI improved OS and decreased BM in resected LD-SCLC but not in p-stage I. Meta-analysis was also not applicable.

2. PCI dose: PCI dose was investigated in four RCTs (27, 30, 34, 68) and three retrospective studies (42, 43, 56). Two RCTs had qualified overall BM data for meta-analysis based on Cox regression (30, 68) and showed that PCI dose (≤25 Gy vs >25 Gy) was not a significant risk factor for BM (HR = 0.59, 95% CI: 0.26–1.31; P = 0.20) (Figure 3I1); two RCTs had overall BM data based on competing risk regression (27, 30) and showed that high dose (>25 Gy) decreased BM more effectively (HR = 0.74, 95% CI: 0.55–0.99; P = 0.04) (Figure 3I2); two had OS data (27, 30) and showed that higher dose did not significantly improve OS (HR = 1.14, 95% CI: 0.97–1.34; P = 0.11) (Figure 4D).

3. TRT dose: TRT dose (<45 Gy vs ≥45 Gy) was investigated in patients with SCLC in two studies (51, 52) and obtained different conclusions. Meta-analysis showed that high dose (≥45 Gy) was not a significant risk factor for BM (HR = 1.55, 95% CI: 0.66–3.61; P = 0.31) (Figure 3J).

The other 47 factors did not have sufficient qualified data to perform meta-analysis, such as N-stage, number of distant metastasis, and blood biomarkers. Detailed reasons are summarized in Appendix Text 1. Detailed results are provided in Appendix Text 2 along with a brief summary table (Appendix Table 7).

DISCUSSION

Data on risk factors for BM in SCLC are largely lacking, which makes personalized treatment (e.g., shared decision-making regarding PCI) difficult. It also impairs the design and interpretation of RCTs evaluating PCI. We identified several factors that were associated with a higher risk of BM: higher T-stage, ED, male sex, and younger age. As has already been reported previously (4, 82), we also found that PCI reduced BM incidence significantly, but did not improve OS in ED-SCLC. Of note, most data were derived from studies reporting only the development of symptomatic BM since brain imaging before treatment or during follow-up was rarely performed unless indicated by neurological symptoms, indicating that asymptomatic BM data have been missed; and only two RCTs were at low risk of bias. IPD meta-analysis of RCTs could help reveal more clues.

It is not surprising that ED and higher T stage, which means more advanced tumor load, were risk factors for BM. It is more interesting to note that compared to M0–M1a, M1b was a risk factor for OS but not for BM in patients with ED-SCLC. This could be explained by the aggressive nature of ED-SCLC per se, resulting in a short OS, making M-status factors less relevant than risk factors for BM development.

We also found younger age (<65) as a risk factor for BM. This is probably because younger SCLC patients generally live longer (50, 58) and therefore have more time to experience BM. Of note, the cut-off value of age varied among studies, but only those age <65 had qualified data to perform meta-analysis in our current study.

Similarly, the cut-off value of PS also varied among studies, resulting in only PS ≥2 having qualified data to perform meta-analysis based on two retrospective studies. It showed that worse PS (≥2) tended to be at a higher risk of BM. This is at odds with a secondary analysis of the CONVERT trial showing that poorer PS (1–2 vs 0) patients had a lower risk (HR: 0.54; 95% CI: 0.32–0.90; P = 0.018) of brain progression (27), likely because they die earlier before developing BM (56, 59, 61).

We also showed a marginally significant risk of developing BM in males. This is consistent with former reports illustrating that female patients had better prognosis than males, in SCLC (62), NSCLC (83), or other cancer sites (84). Reasons for this are not clear, but could include lower proliferation indexes (85), lower levels of p-glycoprotein (86, 87), more frequently expressed thyroid transcription factor-1 (TTF-1) (88), and sex hormone patterns (84).

Furthermore, we found that PCI reduced BM in SCLC but did not improve OS in ED-SCLC, which is based on the EORTC phase III trial (5) and the Japanese phase III trial (9). The conflicting results of these two trials have made PCI in ED-SCLC a reviving area of debate. Details of these two RCTs have been thoroughly discussed in other papers (8, 53, 89). Several literature-based meta-analyses...
A Age:

Study or Subgroup	<65 Events	Total	>65 Events	Total	O-E	Variance	Weight	Hazard Ratio (Exp(O-E) / V) Fixed, 95% CI
203.Kim,2019	0	0	0	0	0.15	5.91	11.1%	2.39 [1.07, 5.35]
377. Sahnoun, 2004	48	76	36	107	0	0.05	19.54	36.6%
439 Suzuki, 2019	0	0	0	0	4.69	29	52.4%	1.19 [0.52, 2.17]
Total (95% CI)	78	107	100.0%					

Total events 49
Heterogeneity: Chisq = 2.79, df = 2 (P = 0.29), I² = 29%
Test for overall effect: Z = 2.56 (P = 0.010)

B Sex:

Study or Subgroup	Male Events	Total	Female Events	Total	O-E	Variance	Weight	Hazard Ratio (Exp(O-E) / V) Fixed, 95% CI
368.Roengsarojhoj, 2017	40	110	10	69	0	13.74	17.1%	1.79 [1.05, 3.04]
377. Sahnoun, 2005	0	138	0	71	1.59	15.32	18.9%	1.11 [0.67, 1.83]
439 Suzuki, 2018	0	142	0	151	2.91	28.13	34.9%	1.11 [0.77, 1.60]
514.Zeng, 2017	27	129	9	48	0.81	8.98	8.7%	1.12 [0.53, 2.38]
80.Chen, 2016	0	171	0	33	3.73	16.48	20.5%	1.25 [0.77, 2.03]
Total (95% CI)	690	370	100.0%					

Total events 67
Heterogeneity: Chisq = 3.66, df = 4 (P = 0.46), I² = 0%
Test for overall effect: Z = 1.90 (P = 0.36)

C Smoking:

Study or Subgroup	Yes Events	Total	No Events	Total	O-E	Variance	Weight	Hazard Ratio (Exp(O-E) / V) Fixed, 95% CI
514.Zeng, 2017	12	106	22	67	-1.61	0.07	45.5%	0.82 [0.41, 1.63]
519. Zheng, 2018	0	84	0	68	3.73	9.86	54.5%	1.47 [0.78, 2.76]
Total (95% CI)	190	135	100.0%					

Total events 12
Heterogeneity: Chisq = 1.51, df = 1 (P = 0.22), I² = 34%
Test for overall effect: Z = 0.52 (P = 0.61)

D T stage:

Study or Subgroup	T0-2 Events	Total	T3-4 Events	Total	O-E	Variance	Weight	Hazard Ratio (Exp(O-E) / V) Fixed, 95% CI
203.Kim,2019	0	163	0	41	-4.65	0.01	32.9%	0.56 [0.28, 1.12]
34. Bernhardt, 2017	0	0	0	0	-2.42	0.82	36.1%	0.76 [0.39, 1.47]
519. Zheng, 2018	0	67	0	60	-6.21	7.56	31.1%	0.44 [0.22, 0.90]
Total (95% CI)	260	101	100.0%					

Total events 0
Heterogeneity: Chisq = 1.23, df = 2 (P = 0.64), I² = 0%
Test for overall effect: Z = 2.69 (P = 0.007)

E e-stage:

Study or Subgroup	LD Events	Total	ED Events	Total	O-E	Variance	Weight	Hazard Ratio (Exp(O-E) / V) Fixed, 95% CI
377. Sahnoun, 2005	27	33	71	174	-6.6	4.31	54.2%	0.22 [0.08, 0.58]
514.Zeng, 2017	30	155	6	28	-2.06	3.64	45.8%	0.57 [0.20, 1.59]
Total (95% CI)	188	196	100.0%					

Total events 57
Heterogeneity: Chisq = 1.84, df = 1 (P = 0.18), I² = 46%
Test for overall effect: Z = 3.07 (P = 0.002)

FIGURE 3 | Continued
reported conflicting OS results after PCI in ED-SCLC (82, 90, 91). Differences might be explained by including different studies, although all those meta-analyses included the aforementioned two RCTs. Interestingly, the meta-analysis results of two RCTs by Maeng et al. were similar to ours (HR = 0.93, 95% CI: 0.50–1.71; P = 0.81) (82). This also indicates that inclusion criteria for meta-analysis are very crucial and that pooling retrospective studies with RCTs could result in misleading conclusions because of the methodological downsides of retrospective studies.

Interestingly, we noticed that the meta-analysis results based on competing risk regression and Cox regression could be different, which indicates that data based on different statistical
analysis methods should not be pooled together to perform meta-analysis. In this current study, only PCI dose (≤25 Gy vs >25 Gy) had qualified data to perform meta-analysis for both regressions. The Cox regression data showed that PCI dose was not a significant risk factor for BM (HR = 0.59, 95% CI: 0.26–1.31; P = 0.20), while the competing risk regression data showed that a higher dose (>25 Gy) could prevent BM more effectively (HR = 0.74, 95% CI: 0.55–0.99; P = 0.04). Of note, both analyses contained the same RCT conducted by Le Pechoux et al. (30), in which the results of competing risk regression (HR = 0.76, 95% CI 0.54–1.05, p = 0.10) and Cox regression (HR = 0.80; 95% CI 0.57–1.11; p = 0.18) were similar. It is unknown whether the meta-analysis results of the same trials would be different. We preferred the competing risk result because it treats death without BM as a competing event. We have not found other systematic reviews or meta-analysis answering the same question. IPD meta-analysis is needed to further clarify these data. Since higher doses of PCI did not improve OS significantly, we do not recommend increasing the PCI dose, especially because a higher PCI dose was associated with a higher risk of cognitive decline (7).

PCI best timing is also unknown. Current guidelines do not have a definite consensus on this issue (89). We identified six studies, which had investigated PCI timing (27, 48, 54, 56, 65, 69). The RCT showed that PCI timing was not a significant risk factor for BM or OS in LD-SCLC (27). Two retrospective studies showed that early PCI was more effective in reducing BM (48, 56), but three others showed the opposite (48, 56, 65). As studies investigated PCI timing in different ways, and the definitions of “early” were also different, there was no qualified data to perform meta-analysis. Therefore, it remains unclear what the best PCI timing is. More RCTs or meta-analysis of RCTs is warranted to further answer this question.

Similarly, four RCTs (31–33, 35) and three retrospective studies (52, 55, 56) have reported the impact of TRT timing on BM with different definitions of “early TRT,” which made the meta-analysis not applicable. Therefore, it is unclear whether TRT timing is a risk factor for BM. However, it has already been shown in an IPD meta-analysis that early TRT (within 30 days after the start of chemotherapy) improves OS (2-year survival: OR: 0.73, 95% CI 0.51–1.03, P = 0.07; 5-year survival: OR: 0.64, 95% CI 0.44–0.92,
Consequently, most guidelines recommend starting TRT in the 1st or 2nd cycle of chemotherapy (89).

Risk of bias assessment is essential in systematic reviews and meta-analyses. We assessed the risk of bias for RCTs using the RoB2 tool and noticed that it has its limitations. It assesses the process of data collection and data reporting but does not assess the methods of data analysis. However, inappropriate analysis can lead to different/misleading conclusions. It also does not evaluate trials that were closed earlier, which results in much less powerful conclusions. Therefore, the improvement of the RoB2 tool is needed to assess the risk of bias more thoroughly and help improve the design of RCTs.

As for the non-RCTs, Wells et al. proposed the Newcastle-Ottawa-Scale (NOS) for assessing the quality on a website rather than in a peer-reviewed journal (93). Till now, NOS has been widely used and tends to become increasingly popular for non-RCTs in meta-analysis. However, a discussion in depth showed that the NOS has unknown validity and that using this score may produce arbitrary results (94). Lo et al. also found that the assessment between reviewers and authors of the studies was very different (95). Interestingly, many studies that used the NOS cited this critical discussion instead of the original web-based link (96–99), suggesting that researchers were using the problematic tool even though they were aware of the limitations.

The Cochrane community recommends the Risk Of Bias In Non-randomized Studies of Interventions (ROBINS-I) tool for assessing the risk of bias in non-RCTs of interventions (100). However, in our study, the baseline characteristics and tumor-related factors are not interventions, so ROBINS-I is inappropriate as well. Additionally, since most of the included RCTs were at high risk of bias and all the RCTs in which BM was the primary endpoint did not perform regular brain imaging examinations during follow-up, we decided not to perform risk of bias assessment for non-RCTs because the additional work would not add much value to the current study.

Additionally, current risk of bias assessment tools mainly assess the risk of bias per study. This is fine for studies that mainly investigate interventions. However, as a meta-analysis aims to identify all related risk factors, it is necessary to assess the risk of bias per factor in each study. Therefore, we assessed the quality of data per factor, mainly focusing on the analysis methods in each study and summarized the possible problems in the comments. In this way, readers can clearly interpret the results.
As far as we are aware, this is the first systematic review and meta-analysis to identify risk factors for BM in SCLC. Most current meta-analyses focused on one aspect, such as PCI or not in SCLC (101), ED-SCLC (82, 90), and resected SCLC (102). Chen et al. conducted a meta-analysis to identify risk factors for BM in NSCLC (97). Unfortunately, they only searched for observational studies instead of RCTs. They used odds ratios (ORs) rather than HRs to measure the effects. Therefore, the conclusions of this study were not comparable to the current study of identifying risk factors for BM in SCLC. We suggest a well-designed study following the PRISMA guidelines and Cochrane handbook before jumping into meta-analysis by simply pooling everything together.

Additionally, we first used a simple and effective method to assess the quality of data before pooling everything together to perform the meta-analysis. That is, only studies of the same type using the same method with proper statistical analysis should be pooled together under the premise that the patients belong to the same category. This will avoid misleading conclusions based on heterogeneous data.

Furthermore, we noticed that many studies retrieved in our search (46, among which 17 were RCTs) did not report BM-related outcomes. Moreover, brain imaging is often lacking in published studies. To evaluate BM risk factors better, it is very crucial to document baseline characteristics, treatment, as well as adequate and regular brain imaging. Brain imaging should be preferred over MRI, as this is the best imaging modality to detect asymptomatic BM. Regular brain imaging is important in clinical trials, as even after a negative baseline brain MRI, in a study by Manapov et al., the second cranial MRI after completion of chemoradiotherapy revealed asymptomatic BM in 11/40 (32.5%) LD-SCLC complete responders (103). In some RCTs (9, 26, 28, 30, 33), MRI was indeed scheduled at specified time points, but it was generally unreported whether these time points were adhered to, which might influence the results. In this study, only one RCT reported the MRI compliance indirectly. Current trials on SCLC patients without BM are assessing whether MRI surveillance could be non-inferior to (hippocampal-avoidance)-PCI in terms of both OS and neurotoxicity (104, 105), in which the regular brain imaging is scheduled. We hope they will also report their compliance data.

We also noticed that many studies which reported BM data did not report OS data. This hampers the interpretation of clinical significance. For example, if a factor (A) is a risk of BM but not for OS, a factor (B) is a risk of both BM and OS, and another factor (C) is a risk of BM but unknown for OS, clinicians will put much higher weight on considering factor B and much less weight on considering C when making an individualized management strategy. Therefore, we suggest researchers report OS data as well when reporting BM data to enhance the clinical application value.

CONCLUSION

In conclusion, multiple studies evaluated risk factors for SCLC BM, but limited data were qualified to perform a meta-analysis. We found that younger age, higher T stage, and ED were risk factors for BM; suggesting that PCI should be especially discussed in such cases, shared decision making is necessary; and that higher PCI dose is not necessary. IPD meta-analysis and well-designed RCTs with high-quality data are needed to identify more risk factors such as blood biomarkers, and confirm our findings. Regular MRI with contrast-enhancement before PCI and during follow-up is helpful to detect asymptomatic BM, especially for patients with a high risk for BM. The MRI compliance at each pre-specified time point should also be reported in prospective trials. Better collaboration with statisticians is needed in future studies. We suggest emendation of the ROB2 tool to assess the statistical methods as well.

AUTHOR CONTRIBUTIONS

HZ, DDR, and LH conceived this study. HZ and DDR searched papers in Pubmed. HZ and DZ screening the papers from titles to full texts, extracted the data, and assessed the risk of bias. LH checked the screening, extraction and assessments. HZ, WW, and RH analyzed the results. DDR and LH supervised the whole process. HZ, LH, and DDR draft the manuscript. AL, AT, WW, RH, FMK, and DZ made the revisions. All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

FUNDING

This research was supported by the following grant: Scholarship of China Scholarship Council (Grant No.: CSC 201909370087).

ACKNOWLEDGMENTS

We sincerely thank Dr. Yawen Zheng from Department of Radiation Oncology, Jinan Central Hospital, Shandong University, Jinan, China; Dr. Lei Fu from Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, China; Prof. Patricia Tai from Department of Radiation Oncology, Allan Blair Cancer Center, Regina, Canada for their responses to inquiries about the studies. We sincerely thank Fariba Tohidinezhad from Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Center+, Maastricht, the Netherlands for her help.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fonc.2022.889161/full#supplementary-material
REFERENCES

1. van Meerbeeck JP, Fennell DA, De Ruyssscher DK. Small-Cell Lung Cancer. *Lancet* (2011) 378:1741–55. doi: 10.1016/s0140-6736(11)60165-7

2. Manapov F, Käsmann L, Roengvoraphoj O, Djalilian HR, Nussbaum ES, Cho KH. Long-Term Survival With Metastatic Cancer to the Brain. *Med Oncol* (2000) 17:279–86. doi: 10.1007/bf02782192

3. Simone CB 2nd, Bogart JA, Cabrera AR, Daly ME, DeNunzio NJ, Detterbeck F, et al. Radiation Therapy for Small Cell Lung Cancer: An ASTRO Clinical Practice Guideline. *Pract Radiat Oncol* (2020) 10:54–73. doi: 10.1016/j.prro.2020.02.009

4. Zeng H, Hendriks LE, van Geffen WH, Witlox WJA, Eekers DBP, De Ruysscher DK. Risk Factors for Neurocognitive Decline in Lung Cancer Patients Treated With Prophylactic Cranial Irradiation: A Systematic Review. *Cancer Treat Rev* (2020) 88:102025. doi: 10.1016/j.ctrv.2020.102025

5. Zeng H, Hendriks LE, van Geffen WH, Witlox WJA, Eekers DBP, De Ruysscher DK. Risk Factors for Neurocognitive Decline in Lung Cancer Patients Treated With Prophylactic Cranial Irradiation: A Systematic Review. *Cancer Treat Rev* (2020) 88:102025. doi: 10.1016/j.ctrv.2020.102025

6. Peçoux CL, Sun A, Slotman BJ, De Ruyssscher D, Belderbos J, Gore EM. Prophylactic Cranial Irradiation for Patients With Lung Cancer. *Lancet Oncol* (2016) 17:e277–93. doi: 10.1016/s1470-2045(16)30065-1

7. Higginst J, Li T, Deeks J. Chapter 6: Choosing Effect Measures and Computing Estimates of Effect. In: JPT Higgins, J Thomas, J Chandler, M Campust, T Li, MJ Page and VA Welch, editors. *Cochrane Handbook for Systematic Reviews of Interventions Version 6.2* (Updated February 2021) (2021). doi: 10.1002/1012295131640

8. Web Plot Digitizer. Web Plot Digitizer. Available from: https://autoomeris.io/WebPlotDigitizer

9. Reeves BC, Deeks JI, Higgins JPT, Shea B, Tugwell P, GA. Chapter 24: Including Non-Randomized Studies on Intervention Effects. In: JPT Higgins, J Thomas, J Chandler, M Campust, T Li, MJ Page and VA Welch, editors. *Cochrane Handbook for Systematic Reviews of Interventions Version 6.2* (Updated February 2021). (2021). Available at: www.training.cochrane.org/handbook

10. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring Inconsistency in Meta-Analyses. *BMJ* (2003) 327:557–60. doi: 10.1136/bmj.327.7414.557

11. Takahashi T, Yamanaka T, Seto T, Harada H, Nokihara H, Saka H, et al. Patterns of Failure After Prophylactic Cranial Irradiation in Small-Cell Lung Cancer (SCLC): Where Do We Stand? *Lung Cancer* (2021) 162:96–105. doi: 10.1016/j.lungcan.2021.10.016

12. Hall WA, Djalilian HR, Nussbaum ES, Cho KH. Long-Term Survival With Metastatic Cancer to the Brain. *Med Oncol* (2000) 17:279–86. doi: 10.1007/bf02782192

13. Zeng H, Zheng D, Hendriks L, Kong F-MS, De Ruysscher D. Risk Factors for Small-Cell Lung Cancer Brain Metastasis: The FIRE-SCLC Cohort Study. *J Thorac Oncol* (2018) 9:49. doi: 10.1016/s1470-2045(17)30230-9

14. Zeng H, Zheng D, Hendriks L, Kong F-MS, De Ruysscher D. Risk Factors for Small-Cell Lung Cancer Brain Metastasis: The FIRE-SCLC Cohort Study. *J Thorac Oncol* (2018) 9:49. doi: 10.1016/s1470-2045(17)30230-9

15. Higginst J, Li T, Deeks J. Chapter 6: Choosing Effect Measures and Computing Estimates of Effect. In: JPT Higgins, J Thomas, J Chandler, M Campust, T Li, MJ Page and VA Welch, editors. *Cochrane Handbook for Systematic Reviews of Interventions Version 6.2* (Updated February 2021) (2021). doi: 10.1002/1012295131640

16. Higgins JPT, Thomas J, Chandler J, Campust M, Cumpston T, Li, MJ Page and VA Welch, editors. *Cochrane Handbook for Systematic Reviews of Interventions Version 6.2* (Updated February 2021) (2021). doi: 10.1002/1012295131640

17. Sterne JAC, Savovic J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: A Revised Tool for Assessing Risk of Bias in Randomized Trials. *BMJ* (2019) 366:l4898. doi: 10.1136/bmj.l4898

18. Web Plot Digitizer. Web Plot Digitizer. Available from: https://autoomeris.io/WebPlotDigitizer
34. Work E, Bentzen SM, Nielsen OS, Fode K, Michalski W, Palshof T. Prophylactic Cranial Irradiation in Limited Stage Small Cell Lung Cancer: Survival Benefit in Patients With Favorable Characteristics. Eur J Cancer (1996) 32:772–8. doi: 10.1016/0959-8049(96)90597-8

35. Work E, Nielsen OS, Bentzen SM, Bentzen SM, Fode K, Palshof T. Randomized Study of Initial Versus Late Chest Irradiation Combined With Chemotherapy in Limited-Stage Small Cell Lung Cancer. Aarhus Lung Cancer Group. J Clin Oncol (1997) 15:3030–7. doi: 10.1001/jco.1997.15.9.3030

36. Chu X, Li S, Xia B, Chu L, Yang X, Ni J, et al. Patterns of Brain Metastasis Immediately Before Prophylactic Cranial Irradiation (PCI): Implications for PCI Optimization in Limited-Stage Small Cell Lung Cancer. Radiat Oncol (2019) 14:171. doi: 10.1186/s13041-019-1371-4

37. Choi M, Lee Y, Moon SH, Han JY, Kim HT, Lee JS. Effect of Accurate Staging Using Positron Emission Tomography on the Outcomes of Prophylactic Cranial Irradiation in Patients With Limited Stage Small-Cell Lung Cancer. Clin Lung Cancer (2017) 18:77–84. doi: 10.1016/j.jlcc.2016.06.012

38. Fu L, Liu F, Fu H, Liu Y, Yuan S, Gao Y, et al. Circulating Tumor Cells Correlate With Recurrence in Stage III Small-Cell Lung Cancer After Systemic Chemoradiotherapy and Prophylactic Cranial Irradiation. Jpn J Clin Oncol (2014) 44:948–55. doi: 10.1036/jjco109

39. Nakamura M, Onozawa M, Motegi A, Hojo H, Zenda S, Nakamura N, et al. Impact of Prophylactic Cranial Irradiation on Pattern of Brain Metastases as a First Recurrence Site for Limited-Disease Small-Cell Lung Cancer. J Radiat Res (2018) 59:767–73. doi: 10.1093/jrr/ryy066

40. Gregor A, Drings P, Burghouts J, Postmus PE, Morgan D, Sahnoud M, et al. Randomized Trial of Alternating Versus Sequential Radiotherapy/Chemotherapy in Limited-Disease Patients With Small-Cell Lung Cancer: A European Organization for Research and Treatment of Cancer Lung Cancer Cooperative Group Study. J Clin Oncol (1997) 15:2840–9. doi: 10.1001/jco.1997.15.8.2840

41. Takada M, Fukuoka M, Kawahara M, Sugihara T, Yokoyama A, Yokota S, et al. Phase III Study of Concurrent Versus Sequential Thoracic Radiotherapy in Combination With Cisplatin and Etoposide for Limited-Stage Small-Cell Lung Cancer: Results of the Japan Clinical Oncology Group Study 9104. J Clin Oncol (2002) 20:3504–60. doi: 10.1002/jco.2012.07.017

42. Brewster AE, Hopwood P, Stout R, Stout R, Burt PA, Thatcher N, et al. Single Fraction Prophylactic Cranial Irradiation for Small Cell Carcinoma of the Lung. Radiat Oncol (1995) 34:132–6. doi: 10.1016/0167-8140(95)01513-g

43. Rubinstein JH, Desoretz DE, Katin MJ, Blitzer PH, Salenius SA, Fordy PA, et al. Low Doses of Prophylactic Cranial Irradiation Effective in Limited Stage Small Cell Carcinoma of the Lung. Int J Radiat Oncol Biol Phys (1995) 33:329–37. doi: 10.1016/0360-3016(95)00166-v

44. Scotti V, Meattini I, Franchise C, Saieva C, Bertocci S, Meacci F, et al. Radiotherapy Timing in the Treatment of Limited-Stage Small-Cell Lung Cancer: The Impact of Thoracic and Brain Irradiation on Survival. Tumori (2010) 100:289–95. doi: 10.1758/151206

45. van der Linden YM, van Kempen ML, van der Tweel I, Vanderschueren RG, Schlesser NJ, Lammers JW, et al. Prophylactic Cranial Irradiation in Limited Disease Small-Cell Lung Cancer in Complete Remission: A Retrospective Analysis. Respir Med (2001) 95:235–6. doi: 10.1053/rmed.2000.1022

46. Laplanche A, Monnet I, Santos-Miranda JA, Bardet E, Le Pechoux C, Tarayre JC, et al. Controlled Clinical Trial of Prophylactic Cranial Irradiation for Patients With Small-Cell Lung Cancer in Complete Remission. Lung Cancer (2018) 111:193–201. doi: 10.1016/j.lungcan.2018.05.025

47. Farooqi AS, Holloway EB, Allen PK, Wei X, Cox JD, Komaki R. Prophylactic Cranial Irradiation After Definitive Chemoradiotherapy for Limited-Stage Small Cell Lung Cancer: Do All Patients Benefit? Radiother Oncol (2017) 122:307–12. doi: 10.1016/j.radonc.2016.11.012

48. Bernhardt D, Adeberg S, Bozorgmehr F, Opfermann N, Hoerner-Rieber J, Fietkau R, et al. Impact of Prophylactic Cranial Irradiation on Pattern of Brain Metastases as a First Recurrence Site for Limited-Disease Small-Cell Lung Cancer: Results of the Japan Clinical Oncology Group Study 9104. J Clin Oncol (2002) 20:3504–60. doi: 10.1002/jco.2012.07.017

49. Zeng H, Xie P, Meng X, Yuan S, Sun X, Li W, et al. Risk Factors for Brain Metastases After Prophylactic Cranial Irradiation in Small Cell Lung Cancer. J Radiat Res (2018) 59:767–73. doi: 10.1093/jrr/ryy066

50. Zeng H, Li S, Xia B, Chu L, Yang X, Ni J, et al. Patterns of Brain Metastasis Immediately Before Prophylactic Cranial Irradiation (PCI): Implications for PCI Optimization in Limited-Stage Small Cell Lung Cancer. J Clin Oncol (1997) 15:3030–7. doi: 10.1001/jco.1997.15.9.3030

51. Zeng H, Li S, Xia B, Chu L, Yang X, Ni J, et al. Patterns of Brain Metastasis Immediately Before Prophylactic Cranial Irradiation (PCI): Implications for PCI Optimization in Limited-Stage Small Cell Lung Cancer. J Clin Oncol (1997) 15:3030–7. doi: 10.1001/jco.1997.15.9.3030

52. Zeng H, Li S, Xia B, Chu L, Yang X, Ni J, et al. Patterns of Brain Metastasis Immediately Before Prophylactic Cranial Irradiation (PCI): Implications for PCI Optimization in Limited-Stage Small Cell Lung Cancer. J Clin Oncol (1997) 15:3030–7. doi: 10.1001/jco.1997.15.9.3030

53. Zeng H, Li S, Xia B, Chu L, Yang X, Ni J, et al. Patterns of Brain Metastasis Immediately Before Prophylactic Cranial Irradiation (PCI): Implications for PCI Optimization in Limited-Stage Small Cell Lung Cancer. J Clin Oncol (1997) 15:3030–7. doi: 10.1001/jco.1997.15.9.3030
Small Cell Lung Cancer Patients With Complete Remission to Chemoradiotherapy: A Single Institution Experience. *J Thorac Oncol* (2008) 3:652–5. doi: 10.1097/JTO.0b013e3181757a76

104. SWOG S1827 (MAVERICK) Testing Whether the Use of Brain Scans Alone Instead of Brain Scans Plus Preventive Brain Radiation Affects Lifespan in Patients With Small Cell Lung Cancer. (2022).

105. PRoPhylactic Cerebral Irradiation or Active MAgnetic Resonance Imaging Surveillance in Small-Cell Lung Cancer Patients (PRIMALung Study) (PRIMALung). (2022).

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Zeng, Zheng, Witlox, Levy, Traverso, Kong, Houben, De Raysscher and Hendriks. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.