The Role of \textit{Tuba1a} in Adult Hippocampal Neurogenesis and the Formation of the Dentate Gyrus

David A. Keays\textsuperscript{a} James Cleak\textsuperscript{b} Guo-Jen Huang\textsuperscript{b} Andrew Edwards\textsuperscript{b} Andreas Braun\textsuperscript{a} Christoph D. Treiber\textsuperscript{a} Ruth Pidsley\textsuperscript{b} Jonathan Flint\textsuperscript{b}

\textsuperscript{a}Institute of Molecular Pathology, Vienna, Austria; \textsuperscript{b}Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK

\textbf{Introduction}

Microtubules are composed of \(\alpha\)-tubulin and \(\beta\)-tubulin heterodimers and are known to play a vital role in numerous cellular processes including intracellular trafficking, migration and mitosis. In mammals there are at least 7 genes that encode \(\alpha\)-tubulins and another 7 for \(\beta\)-tubulins [Villasante et al., 1986; Oakley, 2000; Khodiyar et al., 2007]. While there is a high degree of homology within these two gene families, each tubulin isotype possesses a unique amino acid sequence with varying expression patterns [Sullivan et al., 1985, 1986; Khodiyar et al., 2007]. These differences have led to the multitubulin hypothesis, which holds that each tubulin isotype serves a specific role with respect to microtubule function [Fulton and Simpson, 1976; McKean et al., 2001]. Evidence in support of this proposition is limited because the raising of specific antibodies to study the different tubulin isoforms has proved difficult [Linhartová et al., 1992].

An alternative approach is to employ genetic tools, whereby the function of tubulins is investigated by studying the phenotypic consequences of mutating each tubulin isotype. For example, the generation of \textit{Tubb1} knockout mice has revealed that this particular tubulin isotype plays an important role in the synthesis, structure and...
function of blood platelets [Schwer et al., 2001]. We have recently reported the identification of a dominant Sl40G mutation in Tubala in the Jenna mouse (Jna/+ ) [Keays et al., 2007]. The mutation impairs the ability of TUBA1A to bind guanosine triphosphate and results in a dramatic reduction in the efficiency of tubulin heterodimer formation. Consequently, neuronal migration is impaired, which results in a fractured pyramidal cell layer in the hippocampus and subtle layering defects in the cortex. The discovery that this gene is also mutated in humans suffering from lissencephaly further demonstrates the importance of TUBA1A for the migration of neurons [Poirier et al., 2007]. Its role, however, in mitotic division has not been explored.

Mitosis is a cellular process that is heavily dependent on microtubules. First, microtubules attach to kinetochores during prometaphase; then, in metaphase, they form the mitotic spindle facilitating the alignment of the sister chromatids, before mediating their separation in anaphase [Gadde and Heald, 2004]. Studies in the fly Drosophila melanogaster have shown that mutations in an α-tubulin subunit (αTUB67C) compromise meiotic and mitotic division [Matthews et al., 1993]. Similarly, in the fungus Aspergillus nidulans, mutations in both α-tubulins have been shown to disrupt mitosis by affecting the stability of the mitotic spindle [Morris, 1975; Gambino et al., 1984]. In this paper, we ask whether Tubala is required for cell division in the adult nervous system in mice.

We focused on the adult because Tubala expression is largely absent from the proliferative ventricular zones during development. In adulthood Tubala, in addition to being expressed in a wide array of neuronal structures [Bamji and Miller, 1996], is also expressed in the olfactory bulb, the rostral migratory stream and the subgranular zone (SGZ) of the dentate gyrus [Gloster et al., 1994; Coksaygan et al., 2006]. The generation of new neurons has been shown to persist in these regions postnatally [Altman and Das, 1966; Kaplan and Hinds, 1977], and in the case of the dentate gyrus progenitors located in the SGZ, proliferate, migrate and differentiate becoming granule cells. These newly born neurons are thought to play an important role in a number of behaviours including spatial memory, fear conditioning and fear-related behaviours [Snyder et al., 2005; Saxe et al., 2006; Sahay and Hen, 2007]. A molecular defect in tubulin that affects the genesis of neurons could contribute to the abnormal spatial working memory and anxiety-related behaviour we observed in the Jna/+ mutant mice. Here we investigate this hypothesis.
BrdU/NeuN double labelling, the sections were first incubated in 2 N HCl for 30 min at 37 °C, neutralised in boric acid for 15 min (pH 8.5) and washed 3 times in PBS before incubation with antibodies for BrdU (Accurate Chemical and Scientific; 1:200) and NeuN (Chemicon; 1:400). Following 3 washes in PBS (5 min each), the sections were incubated with the appropriate fluorescent secondary antibody for 2 h at a concentration of 1:200 in 0.3% Triton/PBS with 2% sera.

Quantification
Images of one side of the dentate gyrus were captured on a TE2000 inverted microscope (Nikon) and then analysed using ImageJ (NIH). The total number of cells and the number of ectopic cells were counted in each section spaced 320 μm apart. A cell was deemed to be ectopic if it was observed within the granule cell layer (GCL). Total cell counts were determined by multiplying by 8 (for each section) and then doubled to account for both hemispheres. All cell counting was performed by J.C., who was blind to the genotype of the animals. For cell survival and differentiation studies, images were captured on a Zeiss LSM 510 confocal microscope, and a total of 30 BrdU-positive cells were analysed for coexpression with NeuN for each animal. To determine whether differences between groups of animals were significant, one-way ANOVAs were performed. In circumstances where the data failed to meet the assumptions of normality and equality of variance, transformations were performed. For expression studies, at least 100 DCX or PROX1 cells were selected randomly and inspected for colocalisation with LACZ.

Results
Tuba1a Expression in the Dentate Gyrus
Neurons born in the SGZ of the dentate gyrus express specific markers as they mature from radial glial-like progenitors (type 1: GFAP, nestin, PAX6 positive), to intermediate progenitor cells (type 2: TBR2 positive), to neuronal committed intermediate progenitors (type 3: NeuroD, DCX positive) to immature granule cells (type 4: calretinin, NeuN positive) and finally to mature granule cells (type 5: PROX1, calbindin positive) [von Bohlen und Halbach, 2007]. To investigate which of these cell
types express Tubal1a, we utilised the Tubal1a-LacZ mouse line, which drives the expression of a LacZ transgene under the control of a rodent Tubal1a promoter. This mouse line has been widely used to define the expression pattern of Tubal1a and in general has been found to mirror the endogenous expression of Tubal1a mRNA [Gloster et al., 1994, 1999; Bamji and Miller, 1996]. Consistent with previous studies, we observed LACZ staining in the pyramidal cell layers of the hippocampus (CA1, CA2, CA3), and in the GCL of the dentate gyrus (fig. 1a). Within the dentate gyrus we did not observe clear colocalisation when staining with GFAP or TBR2 (n = 50), indicating that Tubal1a is not expressed in radial glial-like progenitors or intermediate progenitors (fig. 1c, d). We were able to detect clear colocalisation when staining with DCX and NeuroD, suggesting that Tubal1a is expressed in type 3 progenitors (fig. 1e, f). However, as DCX and NeuroD expression persists in young postmitotic neurons, we additionally stained with an antibody against PH3, a marker for cells in the mitotic phase (fig. 1b). We did not observe colocalisation of LacZ with PH3 (n = 40), evidence that LacZ-positive cells, while being DCX and NeuroD positive, are not mitotically active. As expected, LacZ staining was also observed in postmitotic neurons (NeuN positive, fig. 1g) and mature granule cells (PROX1 positive, fig. 1h). Cell counting revealed that 23% of DCX-positive cells expressed LacZ (n = 100) (although LacZ staining in these cells was generally less intense than in those LacZ-
positive cells without DCX staining) and 25% of PROX1-positive cells expressed LacZ (n = 100).

Normal Neurogenesis, Differentiation and Cell Survival in Jna/+ Mutants

Given that Tuba1a in the adult hippocampus is limited in expression to postmitotic neurons, the S140G mutation in the Jna/+ mouse should not affect the neurogenic potential. To ascertain whether this is the case, we performed BrdU pulse labelling in male Jna/+ mutants and wild-type littermates (n = 9), and quantified BrdU-positive cells by cell counting blind to the genotype of the animals (fig. 2a–c). We observed no significant difference in the number of BrdU-labelled cells when comparing wild-type littermates (73%) and Jna/+ mutants (75%; p > 0.5) (f), which is indicative of normal neuronal differentiation. Scale bars = 100 μm (a, b) and 20 μm (d, e). a, d Controls. b, e Jna/+.

Fig. 3. Cell survival and differentiation in Jna/+ mutants. BrdU staining (a–c) on sections 28 days after 4 consecutive BrdU injections revealed a decrease in cell survival of newly born cells in the dentate gyrus of Jna/+ mutants; however, the reduction was not statistically significant (p > 0.1). Fluorescent double labelling on the same sections, employing BrdU and NeuN antibodies (d–f) revealed no significant difference in the percentage of double-labelled cells when comparing wild-type littermates (73%) and Jna/+ mutants (75%; p > 0.5) (f), which is indicative of normal neuronal differentiation. Scale bars = 100 μm (a, b) and 20 μm (d, e). a, d Controls. b, e Jna/+.

Fig. 3. Cell survival and differentiation in Jna/+ mutants. BrdU staining (a–c) on sections 28 days after 4 consecutive BrdU injections revealed a decrease in cell survival of newly born cells in the dentate gyrus of Jna/+ mutants; however, the reduction was not statistically significant (p > 0.1). Fluorescent double labelling on the same sections, employing BrdU and NeuN antibodies (d–f) revealed no significant difference in the percentage of double-labelled cells when comparing wild-type littermates (73%) and Jna/+ mutants (75%; p > 0.5) (f), which is indicative of normal neuronal differentiation. Scale bars = 100 μm (a, b) and 20 μm (d, e). a, d Controls. b, e Jna/+.
Neurogenesis affects the ability of neurogenic precursors to differentiate into neurons. We employed double labelling, staining with sera for BrdU and NeuN (fig. 3d–f), and found that there was no significant difference in the percentage of NeuN-positive. BrdU-stained cells when compared to wild-type littermates (73%) and Jna/+ mutants [75%; F(1, 13) <1; p > 0.5].

**Disorganisation of the SGZ and GCL in Jna/+ Mutants**

Our neurogenesis experiments showed that while the neurogenic potential in Jna/+ mutants is normal, ectopic neurogenesis is abundant. To investigate whether that is due to a disorganised SGZ, we stained adult Jna/+ mutants and littermate controls (n = 3) with GFAP to label radial glial progenitors (fig. 4a–d). In wild-type controls, GFAP-positive cell bodies were located in the SGZ, with fibres that extended perpendicularly into the GCL. In Jna/+ mutants the glial framework was present; however, some GFAP-positive cell bodies were located within the GCL, and the processes appeared less orthodox. To investigate this phenotype further, we employed sera to label NeuroD-positive cells that are normally located at the boundary of the GCL [von Bohlen und Halbach, 2007]. In Jna/+ mutants, NeuroD-positive cells were observed within the GCL and hilus of the dentate gyrus, confirming disorganisation of the SGZ (fig. 4j–l). Next we employed PROX1 staining to investigate the integrity of the

**Fig. 4.** Morphology of the adult dentate gyrus in Jna/+ mutants. Coronal sections of the dentate gyrus in Jna/+ mutants (b, d, f, h, j, l) and littermate controls (a, c, e, g, i, k) when stained with GFAP (a–d), PROX1 (e–h) and NeuroD (i–l). Staining with GFAP (red) showed a glial scaffold with cell bodies that are incorrectly localised to the GCL in Jna/+ mutants (b, d) when compared to wild-type littermates (a, c). NeuroD staining (green) revealed ectopic cells in Jna/+ mutants (j, l). NeuroD-positive cells could be observed within the GCL and in the hilus of the dentate gyrus. PROX1 (cyan), which labels mature granule cells, showed a dispersed GCL in Jna/+ mutants (f, h) in comparison to controls (e, g). DAPI staining (blue, a–d, i–l) confirms the presence of a dispersed GCL in affected animals. Scale bars = 100 μm (j) and 20 μm (l).
Fig. 5. The dentate gyrus of Jna/+ mutants during development. Coronal sections of the dentate gyrus in Jna/+ mutants (b, d, f, h, j, l) and littermate controls (a, c, e, g, i, k) when stained with PROX1 (a–d, i, j) and TBR2 (e–h, k, l) at P10 (a–h) and P4 (i–l). The panels on the right (c, d, g, h) show high-magnification images of the GCL in panels a, b, e and f. PROX1-positive granule cells are dispersed in Jna/+ mutants at P10 (b), and more severely at P4 (j). There is a notable presence of PROX1-positive cells in the hilus of mutant animals at P4 (j, arrow). TBR2 staining at P10 (e–h) shows positively stained cells scattered throughout the GCL, and in the molecular cell layer in Jna/+ mutants (f, h). At P4, a trail of TBR2-positive cells (l, arrow) is observed along the subpial stream, suggesting a defect in migration in Jna/+ mutants. BrdU labelling at E14.5, followed by sacrificing at P0 (m, n), confirms a migration phenotype. In Jna/+ mutants (n), BrdU-positive cells form a concave cluster in comparison to the clearly discernable suprapyramidal blade in wild-type controls (m). Scale bars = 100 μm (l, n) and 20 μm (h).
GCL [Elliott et al., 2001]. This revealed dispersion of granule cells in Jna/+ mutants (n = 3), with neurons present in the hilus and molecular layer (fig. 4e–h).

The Disorganised SGZ and GCL Are due to a Defect in Migration during Development

To ascertain whether the observed granule cell dispersion and disorganisation of the SGZ was the result of abnormal developmental processes or defective neuronal migration during adulthood, we examined wild-type and Jna/+ mutants at P4 (n = 3) when the radial organisation of the dentate cell layer is accomplished, and then again at P10 (n = 3) when it is further condensed and the neurogenic SGZ is in place [Li and Pleasure, 2007]. At P10, PROX1 staining revealed granule cell dispersion in Jna/+ mutants, indicative of both TBR2- and PROX1-positive cells located at the tip of the infrapyramidal blade in the dentate gyrus (fig. 5a–d). At P4, both the suprapyramidal and infrapyramidal blades of the dentate gyrus lack their characteristic structure with a large number of PROX1-positive cells present in the hilus (fig. 5i, j). TBR2 staining of intermediate progenitors revealed the origins of the disorganised SGZ in Jna/+ mutants. In mutant animals, TBR2-positive cells were scattered throughout the GCL and were visible in the molecular layer, whereas in control animals most TBR2-positive cells were predominantly found at the helm of the GCL or in the hilus (fig. 5e–h). At P4, we observed a cluster of TBR2-positive cells located at the tip of the infrapyramidal blade in both Jna/+ mutants and wild-type controls in addition to a loose scattering throughout the hilus, GCL and molecular layer. While little difference was observed between mutants and wild-type controls in this respect, there was a striking trail of TBR2-positive cells along the subpial route in both Jna/+ mutants and wild-type mice when assessed by three different means (BrdU, DCX, Ki-67), with no significant differences in the ability of new neurons to differentiate. Newly born neurons are, however, more likely to be ectopic, which is a consequence of a disorganised SGZ that is accompanied by granule cell dispersion. These findings are similar to those described in the Lis1(+/−) mutant mouse, which models another form of dominant lissencephaly. Like the Jna/+ mouse, the Lis1(+/−) mouse exhibits no defects in the genesis of neurons in the adult hippocampus, and presents with granule cell dispersion in the dentate gyrus with evidence of ectopic neurogenesis [Wang and Baraban, 2007]. Granule cell dispersion has also been reported in the reeler mutant mouse [Drakew et al., 2002; Zhao et al., 2004], and it has been shown that reelin is required for the correct formation of the radial glial scaffold, for the migration of PROX1-positive granule cells, and for the transition of neurogenic precursors from the subpial zone to SGZ [Frotscher et al., 2003; Li et al., 2009].

Like the reeler mouse, the disorganisation of the dentate gyrus in the Jna/+ mouse has its origins in development. In the Jna/+ mouse, we observed granule cell dispersion at P10, and mislocalisation of PROX1-positive cells in the hilus at P4. In addition, TBR2-positive progenitors still line the subpial route at P4, and TBR2-positive cells are scattered throughout the GCL at P10. These observations suggest a defect in the migration of both these cellular populations. Neurogenic precursors (both

Neurogenesis in Tubala Mice

Dev Neurosci 2010;32:268–277

275
nestin and TBR2 positive) as well as the first granule cell neurons begin their migration from a region of the dorsomedial part of the telencephalic vesicles, known as the dentate notch, at around E13.5–14.5 [Li and Pleasure, 2007]. These cells migrate along the subpial stream before nestin-positive progenitors fan out and occupy the hilus (E17.5), the granule cells start forming the suprapyramidal blade (E18.5) and the TBR2-positive progenitors form the neurogenic subpial zone (E18.5). In due course, PROX1-positive granule cells are generated within the hilus, forming the infrapyramidal blade, and the TBR2-positive cells migrate through the molecular cell layer, settling in the SGZ alongside the nestin-positive progenitors [Li et al., 2009]. In the case of the Jna/+ mice our results indicate that, in addition to defective migration of postmitotic PROX1-positive granule cells, both the ventricular-to-subpial and subpial-to-subgranular migration of TBR2-positive cells is impaired. Such migratory defects may also be responsible for the unusual cytoarchitecture of the dentate gyrus reported in humans with mutations in TUBA1A [Fallet-Bianco et al., 2008]. For instance, a 24-week-old fetus carrying an I238V mutation in TUBA1A has an abnormally shaped dentate gyrus, lacking a compact defined GCL. Similarly, a 22-week-old fetus carrying a P263T mutation in TUBA1A was found to have an undeveloped hippocampus, a near absence of granule cells and little evidence that the dentate gyrus had started to form [Fallet-Bianco et al., 2008].

In summary, our results indicate that Tuba1a is vital for the proper formation of the dentate gyrus, but that it is not essential for adult hippocampal neurogenesis. This result suggests that another of the six α-tubulins is responsible for generating the tubulin heterodimers necessary for spindle formation and mitotic division in neurogenic progenitors. The identification and characterisation of this tubulin isoform will be of interest.

Acknowledgement

We wish to express our sincere thanks to Dr. Freda Miller for giving us the Tuba1a-LacZ mouse line.
Morris NR (1975): Mitotic mutants of Aspergillus nidulans. Genet Res 26:237–254.
Oakley BR (2000): An abundance of tubulins. Trends Cell Biol 10:537–542.
Poirier K, Keays DA, Francis F, et al (2007): Large spectrum of lissencephaly and pachygyria phenotypes resulting from de novo missense mutations in tubulin alpha 1A (TUBA1A). Hum Mutat 28:1055–1064.
Sahay A, Hen R (2007): Adult hippocampal neurogenesis in depression. Nat Neurosci 10:1110–1115.
Saxe MD, Battaglia F, Wang JW, et al (2006): Abolition of hippocampal neurogenesis impairs contextual fear conditioning and synaptic plasticity in the dentate gyrus. Proc Natl Acad Sci USA 103:17501–17506.
Schwer HD, Lecine P, Tiwari S, et al (2001): A lineage-restricted and divergent β-tubulin isoform is essential for the biogenesis, structure and function of blood platelets. Curr Biol 11:579–586.
Snyder JS, Hong NS, McDonald RJ, et al (2005): A role for adult neurogenesis in spatial long-term memory. Neuroscience 130:843–852.
Sullivan KF, Havercroft JC, Machlin PS, et al (1986): Sequence and expression of the chicken beta 5- and beta 4-tubulin genes define a pair of divergent beta-tubulins with complementary patterns of expression. Mol Cell Biol 6:4409–4418.
Villasante A, Wang D, Dobner P, et al (1986): Six mouse α-tubulin mRNAs encode five distinct isotypes: testis-specific expression of two sister genes. Mol Cell Biol 6:2409–2419.
von Bohlen und Halbach O (2007): Immunohistochemical markers for staging neurogenesis in adult hippocampus. Cell Tissue Res 329:409–420.
Wang Y, Baraban SC (2007): Granule cell dispersion and aberrant neurogenesis in the adult hippocampus of an LIS1 mutant mouse. Dev Neurosci 29:91–98.
Wojtowicz JM, Kee N (2006): BrdU assay for neurogenesis in rodents. Nat Protoc 1:1399–1405.
Yu CC, Woods AL, Levison DA (1992): The assessment of cellular proliferation by immunohistochemistry: a review of currently available methods and their applications. Histochem J 24:121–131.