Formation of Disulfide Bonds and Homodimers of the Major Cat Allergen Fel d 1 Equivalent to the Natural Allergen by Expression in Escherichia coli

Hans Grönlund§§, Tomas Bergman††, Kristofer Sandström‡‡, Gunvor Alvelius§§, Renate Reininger**, Petra Verdino‡‡, Alexander Hauswirth§§, Karin Liderot‡, Peter Valent§§, Susanne Spitzauer**, Walter Keller‡‡, Rudolf Valentā††, and Marianne van Hage-Hamsten‡‡

From the ††Unit of Clinical Immunology and Allergy and the ‡‡Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 76 Stockholm, Sweden, the ‡Department of Biotechnology, Royal Institute of Technology, S-106 91 Stockholm, Sweden, the ‡§Division of Structural Biology, Institute of Chemistry, Karl Franzens University Graz, A-8010 Graz, Austria, and the **Clinical Institute for Medical and Chemical Laboratory Diagnostics, the ¶¶Division of Hematology, Department of Internal Medicine, and the ‡‡Department of Pathophysiology, Vienna General Hospital, University of Vienna, A-1090 Vienna, Austria

Dander from the domestic cat (Felis domesticus) is one of the most common causes of IgE-mediated allergy. Attempts to produce tetrameric folded major allergen Fel d 1 by recombinant methods with structural features similar to the natural allergen have been only partially successful. In this study, a recombinant folded Fel d 1 with molecular and biological properties similar to the natural counterpart was produced. A synthetic gene coding for direct fusion of the Fel d 1 chain 2 N-terminally to chain 1 was constructed by overlapping oligonucleotides in PCR. Escherichia coli expression resulted in a non-covalently associated homodimer with an apparent molecular mass of 30 kDa defined by size exclusion chromatography. Furthermore, each 19,177-Da subunit displayed a disulfide pattern identical to that found in the natural Fel d 1, i.e. Cys34(1)-Cys73(2), Cys44(1)-Cys48(2), Cys70(1)-Cys7(2), as determined by electrospray mass spectrometry after tryptic digestion. Circular dichroism analysis showed identical folds of natural and recombinant Fel d 1. Furthermore, recombinant Fel d 1 reacted specifically with serum IgE, inducing expression of CD203c on basophils and lymphoproliferative responses in cat-allergic patients. The results show that the overall fold and immunological properties of the recombinant Fel d 1 are very similar to those of natural Fel d 1. Moreover, the recombinant Fel d 1 construct provides a tool for defining the three-dimensional structure of Fel d 1 and represents a reagent for diagnosis and allergen-specific immunotherapy of cat allergy.

Exposure to airborne particles derived from household cats (Felis domesticus) is a common cause of IgE-mediated allergy in Europe and elsewhere (1–3). The severity of symptoms range from relatively mild rhinitis and conjunctivitis to potentially life-threatening asthmatic exacerbation. Treatment of cat allergy by allergen injections is often employed, but clinical results are, in part, controversial. Because only crude dander extract is available for the treatment of cat allergy (4, 5), alternative formulations have been proposed (6, 7).

Although patients are occasionally sensitized to several different molecules in cat dander (8) and pelts, e.g. albumin (9) and cystatin (10), the importance of the ubiquitous major allergen Fel d 1 has been emphasized in numerous studies. In fact, >80% of cat-allergic patients exhibit IgE antibodies to this potent allergen (11, 12). Fel d 1, (formerly Cat 1) was first described 25 years ago as the dominant cat allergen (13), and several subsequent studies have characterized the biochemical and immunological nature of Fel d 1 (14–23). The allergen, a 35–39-kDa acidic glycoprotein containing 10–20% carbohydrates (15, 16, 22), is found in the pelt, saliva, and lacrimal glands of cats (24–26). It is formed by two non-covalently linked heterodimers (16), each consisting of one 70-residue peptide and one 85-, 90-, or 92-residue peptide (17) (i.e. chain 1 and chain 2, respectively) encoded by separate genes (22, 27). Chain 1 shares limited sequence homology with the rabbit uteroglobin/human Clara cell 10-kDa protein (28, 29), and the mature natural Fel d 1 (nFel d 1)1 has been associated with gelatin- and fibronectin-degrading activity (30). Furthermore, three interchain disulfide bonds linking the two peptides in native Fel d 1 have been identified, i.e. Cys34(1)-Cys73(2), Cys44(1)-Cys48(2), and Cys70(1)-Cys7(2) (22), suggesting an anti-parallel orientation of Fel d 1 peptides. Several attempts have been made to associate the separate peptides into a native-like allergen in Escherichia coli with only partial success (31–33), and recently a soluble and immunoreactive chain 1-linker-chain 2 fusion expressed in baculovirus was described (34). A mix of the separate chains has proven to be useful for in vitro allergy diagnosis (12, 33), but to date no soluble, stable, and correctly folded recombinant Fel d 1 (rFel d 1

1 The abbreviations used are: nFel d 1, natural Fel d 1; BSA, bovine serum albumin; EDC, N-ethyl-N′-(3-dimethylaminopropyl)-carbodiimide; ELISA, enzyme-linked immunosorbent assay; ESI, electrospray ionization; kU/ml, kilounits of allergen; NBS, N-hydroxysuccinimide; PMC, peripheral mononuclear cell; PBS, phosphate-buffered saline; rFel d 1, recombinant Fel d 1; RU, response units; SEC, size exclusion chromatography.
1) homodimer with retained disulfide formation has been obtained by expression in E. coli.

In this study, experiments were performed to find out if a protein derived from a direct fusion of the genes coding for the two polypeptide chains constituting Fel d 1 can be folded to mimic the structure and allergenic activity of natural Fel d 1. Synthetic genes coding for the two Fel d 1 chains were produced and joined in PCR by overlapping oligonucleotides and expressed as refolded His-tagged proteins in E. coli. Two constructs were selected, one with chain 1 and one with chain 2 in the N-terminal position. Both constructs were purified to homogeneity and analyzed for intramolecular disulfide bonds and homodimer formation using size exclusion chromatography, mass spectrometry, and surface plasmon resonance. The 2 + 1 construct revealed greater capacity to inhibit IgE antibodies to Fel d 1 from sensitized individuals and was, therefore, studied further. The structure of the purified recombinant Fel d 1 (2 + 1) fusion molecule was compared with that of natural Fel d 1 by CD spectroscopy, and the analysis of IgE antibody responses in direct and competition ELISA assays using sera from individuals sensitized to cat were carried out. The biological activity was demonstrated by the induction of CD203c on basophils and T cell proliferation in cat-allergic patients.

Based on the findings that the recombinant Fel d 1 (2 + 1) fusion molecule exhibits the same disulfide bonding pattern and homodimer formation and reveals an almost identical CD spectrum, similar immunoreactivity, and comparable biological activity as does the natural Fel d 1, we suggest that the recombinant allergen is suitable for structural analysis and development of diagnostics and specific immunotherapy of allergy to cat.

EXPERIMENTAL PROCEDURES

Natural and Recombinant Fel d 1—Standard (35) or manufacturers’ protocols were used for DNA manipulations. From published amino acid sequences of Fel d 1 chains 1 and 2 (15–17), synthetic genes were made by PCR-amplification (Eppendorf Mastercycler, Hamburg, Germany) using overlapping DNA primers from DNA Technology AS (Arhus, Denmark) (Table I). PCR reactions (10 μl) containing 1 pmol of each primer, primers 1–4 for chain 1 and 5–10 for chain 2, using AmpliTaq DNA polymerase (Applied Biosystems, Foster City, CA), were used. The reactions proceeded for 1 min at 94 °C, 1.5 min at 68 °C, and 2 min at 68 °C for 20 cycles. The PCR products were ligated into pT7Blue Blunt vector and transformed into Nova Blue Single Competent cells using the Perfectly Blunt cloning kit (Novagen Inc., Madison, WI). Single colonies were grown in 2.5 ml LB medium containing 100 μg/ml ampicillin, and plasmids were purified (Qiagen, GmbH, Hilden, Germany) and cut with the restriction enzymes NdeI and XhoI followed by electrophoretic analysis in 0.3 μg/ml ethidium bromide in 1% agarose gels. Clones with the right sized insert (210 and 276 bp for chains 1 and 2, respectively) were sequenced (ABI PRISM® 377 DNA sequencer, Applied Biosystems). Verified plasmids were used as templates to join the tryptic digest (10 μl) of the fusion molecule containing 0.05 M urea and incubated for 30 min under vortex at 37 °C. Digestion proceeded overnight under vortex at 37 °C. The reaction was quenched by adding 1 μl of neat trifluoroacetic acid to the sample which was dissolved in 10 μl of neat trifluoroacetic acid to the sample which was dissolved in 10 μl of 100 mM ammonium bicarbonate (pH 8.3) and loaded onto a 5-ml Ni2+ column equilibrated in PBS, and in PBS with 0.1% SDS at 1 ml/min. Molecular weight calibration of the column was carried out using 67-kDa bovine serum albumin, 25-kDa chymotrypsinogen A, and 13.7-kDa ribonuclease A (Amersham Bio- sciences), equilibrated in PBS, and in PBS with 0.1% SDS at 1 ml/min. The protein concentration of rFel d 1 (2 + 1) was analyzed by amino acid analysis using a Biochrom 20 Plus ninhydrin-based analyzer (Am- ersham Biosciences) after hydrolysis at 110 °C for 24 h in evacuated tubes with 6 M HCl containing 0.5% (w/v) phenol. The BCA protein assay (Pierce) was sometimes used to estimate sample concentra- tion. Purity was judged by SDS-PAGE using 15% homogeneous gels and low molecular weight markers (Amersham Biosciences). Samples were denatured at 98 °C for 5 min in SDS sample buffer with or without β-mercaptoethanol (35).

Electrospray Mass Spectrometry and Determination of Disulfide Bonds—For mass determination of rFel d 1 (2 + 1), the folded protein was dissolved at 27 pmol/μl in 10 mM ammonium acetate (pH 7.3) and applied to electrospray ionization (ESI) mass spectrometry (see below) via direct infusion using a syringe pump at 2–5 μl/min (Harvard Apparatus, Holliston, MA).

To localize disulfide bonds, 2.7 nmol of the folded rFel d 1 (2 + 1) was dissolved in 10 μl of 9 M urea and incubated for 30 min under vortex at 45 °C, after which 10 μl of water was added. Modified trypsin (5 μg; Promega) and 10 μl of 0.5 M ammonium bicarbonate (pH 8.0) were added, followed by water to yield a final volume of 100 μl. Digestion proceeded overnight under vortex at 37 °C. The reaction was quenched by adding 1 μl of neat trifluoroacetic acid to the sample which was stored at −20 °C until analyzed. Before mass spectrometry, aliquots of the tryptic digest (10 μl) were desalted on μ-C18 ZipTips (Millipore, Bedford, MA) and eluted in 60% acetonitrile containing 1% acetic acid for nano-ESI mass spectrometry. To make sure that no free sulfhydryl groups existed in rFel d 1 (2 + 1), alkylation was carried out on the novel recombinant preparation (5.4 nmol) using iodoacetamide (Sigma), 5.5 μl in 20 μl of ammonium bicarbonate (pH 8.0) for 15 min at room temperature followed by desalting on μ-C18 ZipTips and nano-ESI mass spectrometry.

Mass spectra were recorded using a quadrupole time-of-flight tandem mass spectrometer, Q-TOF (Micromass, Altrincham, UK). The instrument was equipped with an orthogonal sampling ESI-interface (Z-spray, Micromass). Metal-coated nano-ESI needles (Protana, Odense, Denmark) were used and manually moved on the stage of a light microscope to give a spraying orifice of about 5 μm. This resulted in a flow of ~20–50 nl/min when a capillary voltage of 0.8–1.2 kV was applied. A nitrogen counter-current drying gas facilitated desolvation. The cone voltage was set at 40 V.

Homodimer Dissociation Constant Analysis—A BIACORE®2000 instru- ment (Biacore AB, Uppsala, Sweden) was employed to investigate homodimer formation of rFel d 1 (2 + 1) by evaluation of the decrease in response relative to maximum binding to the chip surface and the associated dissociation constant. rFel d 1 (2 + 1) and, for control pur- poses, a monomer protein, BB (39), were immobilized onto the surface of a CM5 chip (research grade), via amine coupling of CM5 dextran layer using NHS/EDC chemistry according to the manufacturer’s recommendations. The time intervals between surface activation (240–660 s, 35 μl), protein immobilization (900–1140 s, 20 μl), dissociation phase (1140–1940 s, 67 μl), and surface deactivation (1940–2400 s, 10 μl) were kept constant. In the immobilization step, 20 μl of protein solution containing 5 μg/ml in 10 mM 2-mercaptoethanol (pH 4.5) was injected over the NHS/EDC-activated surface. After the disso- ciation phase, the surface was deactivated by injection of 10 μl of ethanolamine. The decrease in the percentage of protein initially attached to the chip surface was calculated as follows: (response units
A Recombinant Feld1 Mimicking the Natural Allergen

(RU) after protein immobilization at 1230 s — RU after deactivation/RU after protein immobilization) × 100. All experiments were performed at 25 °C and 5 μL/min. The running buffer was 10 mM Hepes (pH 7.4), 0.15 m NaCl, 3.4 mM EDTA, and 0.05% surfactant P20. The dissociation constant analyzed at 1230–1235 s was based on the equilibrium responses and calculated using the 3.0 software.

CD Measurement—CD measurements of the natural and recombinant Feld1 were performed in MilliQ water with protein concentrations of 1.56 × 10−5 M (here determined using the Bio-Rad protein assay). The investigations were carried out on a Jasco J-715 spectropolarimeter (JASCO Labor-und-Datentechnik GmbH, Gross-Umstadt, Germany) using a 0.1-cm pathlength cell equilibrated at 20 °C. Spectra were recorded with 0.5-nm resolution at a scan speed of 100 nm/min and resulted from averaging three scans. The final spectra were baseline-corrected by subtracting the corresponding MilliQ spectra obtained under identical conditions. Results were expressed as the molar mean residue ellipticity (θ) at a given wavelength. The data were fitted with the secondary structure estimation programs Dicropot (37) and J-700 (JASCO) using miscellaneous data deconvolution algorithms.

ELISA Analysis—Serum specimens from 15 individuals were selected on the basis of positive IgE responses to cat dander (range 0.45–38 kilo-units of allergen (kU/l) using the Pharmacia CAP System (Pharmacia Diagnostics, Uppsala, Sweden)). For control purposes, a pool of 20 non-cat-allergic patients was used. The serum samples were analyzed in duplicates by ELISA for IgE antibody binding to Feld1 of 1/2 + 1, nFeld1 d 1, or a mix of nFeld1 d 1 chain 1 and chain 2. The assay was performed as a sequential, solid phase adsorption of allergens, serum sample, primary antibody, antibody conjugate, and finally substrate, and included rinsing four times with 250 μL of PBS containing 0.05% Tween 20 (PBS-T) between incubations. Unless stated otherwise, all steps were performed at room temperature. Microtiter plates (96 wells; Nunc, Roskilde, Denmark) were coated with 100 μL of nFeld1 d 1 (2/1) and, for comparison, also nFel d 1, nFel d 2, and, for control purposes, recombinant birch pollen allergen Bet v 1, 4 units of interleukin-2 (IL-2) per well (Roche Applied Science), and medium alone. After 6 days of culture, 0.5 μL/liter response to rFel d 1(2

RESULTS

rFeld1 d 1/2 + 1) Forms Stable Disulfide-bonded Homodimers—

The amino acid sequence (17) and the disulfide bonds as determined by nano-ESI mass spectrometry after tryptic digestion of the E. coli expressed (His)6-tagged rFeld1 d 1/2 + 1 fusion protein is shown in Fig. 1. Following protein purification and simultaneous renaturation by Ni2+-chelate chromatography, dominant fractions in SEC with apparent molecular masses of 30 and 51 kDa (Fig. 2) were recovered for further analysis. The 51-kDa fraction, which, in part, could be reassimilated to 30 kDa by reduction and re-oxidation, was comprised of two SS-linked rFeld1 d 1/2 + 1 molecules as shown by a 35-kDa band in non-reducing SDS-PAGE and a 20-kDa band in reducing SDS-PAGE (Fig. 2). The 51-kDa fraction was therefore not further analyzed. The 30-kDa fraction showed a single 30-kDa peak upon re-chromatography and exhibited 20- and 16-kDa bands by reducing and non-reducing SDS-PAGE, respectively (Fig. 2). The yield after SEC of pure 30-kDa fractions typically was 40–60% between different batches. When subjected to electrospray mass spectrometry, rFeld1 d 1/2 + 1 revealed a molecular mass of 19,177 Da, which corresponds to the average molecular mass (19,183 Da) minus 6 Da, indicating the existence of three disulfide bonds in the structure (Fig. 3). Also seen is an additional peak at 19,046 Da, which corresponds to the full-length rFeld1 d 1 without the initiating methionine (Table I, residue 0 in Fig. 1). The purity of both the
natural and recombinant preparations was >95% as judged by SDS-PAGE (data not shown).

CD Analysis Shows That rFel d 1 Represents a Folded, Mainly α-Helical Protein—The 20 °C CD spectra of natural and recombinant Fel d 1 are nearly identical, characterized by two minima at 208 and 222 nm and a characteristic maximum at ~195 nm (Fig. 4). The shape of the spectrum is indicative for a well folded protein with a significant α-helical secondary structure content. The secondary structure estimation resulting from the fitting procedures yields 35–40% α-helix and 7–16% β-sheet structures with root mean square deviations (CDcalc – CDexp) in the range 4–11%.

rFel d 1(2 + 1) Forms Homodimers—The 30-kDa molecular size detected for rFel d 1(2 + 1) suggests a non-covalent dimerization similar to that exhibited by natural Fel d 1. This was investigated by Biacore analysis and SEC under dissociating elution conditions. In the latter case, the 30-kDa rFel d 1(2 + 1) fraction produced a single peak corresponding to a molecular mass of 15 kDa using PBS with 0.1% SDS in the running buffer (data not shown). The 30-kDa fraction was further analyzed by surface plasmon resonance with the assumption that dissociation of the two subunits can be recorded. As a control, a monomeric protein, BB (39), was used, (Fig. 5). The rFel d 1(2 + 1) construct and the BB monomer bound to the sensor chip in a similar manner. The time-dependent decrease in RU after immobilization of the rFel d 1(2 + 1) molecule to the chip surface was 53%. In contrast, the BB monomer exhibited a stable association to the chip surface during the same time period. In addition, the dissociation constant was determined shortly after the immobilization phase to be 8.74×10^{-4} s$^{-1}$.

Analysis of Disulfide Bonding Pattern by Mass Spectrometry—Correctly paired disulfide bonds are important for protein structure and stability. We analyzed the disulfide bond formation in rFel d 1(2 + 1) by nano-ESI mass spectrometry after trypsin digestion of the non-reduced preparation (Fig. 6 and Table II). The tryptic peptide mass map revealed that all six cystein residues are engaged in disulfide bonds in the pattern Cys3(1)-Cys73(2), Cys44(1)-Cys48(2), Cys70(1)-Cys7(2), because the corresponding mass values for the cystein-linked peptides were found in the mass spectrum (Fig. 6), whereas the masses of the non-linked individual peptides could not be detected (Table II). Furthermore, upon alkylation of the non-reduced rFel d 1(2 + 1) preparation using iodoacetamide, we could not detect free sulfhydryl groups (data not shown), a finding in agreement with the mass spectrometry data from analysis of the tryptic digest (Fig. 6).

rFel d 1(2 + 1) Binds IgE from Cat-allergic Patients—The diagnostic relevance of a recombinant allergen lies in its ability to specifically bind IgE antibodies in body fluids or tissues from allergic patients in a manner similar to the natural counter-
A Recombinant Fel d 1 Mimicking the Natural Allergen

Restriction enzyme sites (NdeI and XhoI) are underlined. Forward (F) and reverse (R) primers are indicated.

Primer no.	Sequence
1 (F)	5’-gta cat at gg aatctgcc ggcgtttaaa gctagcttg accttgtcct gccggtgacccggaagat caggtgaacc ggttg-3’
2 (R)	3’-gacgagtgct tgaacctgac aacccgattg tggattgct tgcagttcct tgtcgactg acctgtgctt gctgcctgcc ggcggaagat caggtgaacc ggttg-3’
3 (F)	5’-ctctcaggg cacccgagcc aagtggtgat ttttgccacc aggacagag cttttttctct gtctcttct cgctctcttg agtggactg
4 (R)	3’-ctctcaggg cacccgagcc aagtggtgat ttttgccacc aggacagag cttttttctct gtctcttct cgctctcttg agtggactg
5 (F)	5’-gta cat at gg ttaaatggc tgaacccgtc gcacgctctt acagctgctt gctctcttg acctgtgctt gctgcctgcc ggcggaagat caggtgaacc ggttg-3’
6 (R)	3’-gacgagtgct tgaacctgac aacccgattg tggattgct tgcagttcct tgtcgactg acctgtgctt gctgcctgcc ggcggaagat caggtgaacc ggttg-3’
7 (F)	5’-ctctcaggg cacccgagcc aagtggtgat ttttgccacc aggacagag cttttttctct gtctcttct cgctctcttg agtggactg
8 (R)	3’-ctctcaggg cacccgagcc aagtggtgat ttttgccacc aggacagag cttttttctct gtctcttct cgctctcttg agtggactg
9 (F)	5’-cctctcaggg cacccgagcc aagtggtgat ttttgccacc aggacagag cttttttctct gtctcttct cgctctcttg agtggactg
10 (R)	3’-cctctcaggg cacccgagcc aagtggtgat ttttgccacc aggacagag cttttttctct gtctcttct cgctctcttg agtggactg
11 (linker)	5’-cctctcaggg cacccgagcc aagtggtgat ttttgccacc aggacagag cttttttctct gtctcttct cgctctcttg agtggactg

The aim of this study was to generate recombinant major cat allergen Fel d 1 with biochemical and immunological properties comparable with the natural counterpart. Attempts to constitute a mixture of two isolated polypeptides comprising three disulfide bonds produced in E. coli have sometimes been only partially successful (32, 33, 40). Therefore we engineered a head-to-tail construct of the two polypeptide chains of Fel d 1, which we considered would facilitate a uniform and natural-like folding. Interestingly, a high yield of properly refolded protein from the inclusion body was achieved using a similar single polypeptide strategy in the production of recombinant human insulin produced in E. coli (41, 42). Similarly, a high level expression E. coli system, which produces proteins without carbohydrates, was also used for the Fel d 1 (2 + 1) hybrid molecule because there is evidence that deglycosylated nFel d 1 is still IgE reactive (20). Furthermore, nonspecific IgG antibody binding to rFel d 1 expressed in insect cells has been observed, possibly directed to the exogenous carbohydrate moiety associated with chain 2 (34). On the one hand, a potential advantage of direct fusion is that no extra amino acids are included within the molecule because there is evidence that deglycosylated nFel d 1 molecule because there is evidence that deglycosylated nFel d 1

TABLE I

Overlapping primers used for the construction of rFel d 1(2 + 1)

Primer no.	Sequence
1 (F)	5’-gtacataag gaaatgctgga ggcgtttaaa gctagcttg acctgtctgccgcggtgacccggaagat caggtgaacc ggttg-3’
2 (R)	3’-gtacataag gaaatgctgga ggcgtttaaa gctagcttg acctgtctgccgcggtgacccggaagat caggtgaacc ggttg-3’
3 (F)	5’-gtacataag gaaatgctgga ggcgtttaaa gctagcttg acctgtctgccgcggtgacccggaagat caggtgaacc ggttg-3’
4 (R)	3’-gtacataag gaaatgctgga ggcgtttaaa gctagcttg acctgtctgccgcggtgacccggaagat caggtgaacc ggttg-3’

Fig. 4. Far-UV CD analysis of rFel d 1 and nFel d 1. The spectra are expressed as the mean residue ellipticities (θ) at a given wavelength.

DISCUSSION

*Biological Activity of rFel d 1—*The biological activity of rFel d 1(2 + 1) and nFel d 1 was evaluated in cell preparations donated by two cat-allergic patients. The surface marker CD203c is up-regulated exclusively on basophils in response to allergen cross-linking of the high affinity IgE receptor, FceRI (38). The capacity of rFel d 1(2 + 1) and nFel d 1 to activate expression of CD203c on basophils was similar and compared well to that of anti-IgE, which was used as a positive control (Fig. 9a).

The lymphoproliferative responses after the challenge of cultured PBMCs with rFel d 1(2 + 1) and nFel d 1 were analyzed by cell incorporation of [3H]thymidine. Both rFel d 1(2 + 1) and nFel d 1 exhibited equally good proliferation (Fig. 9b).
of its elution position and corresponding molecular mass. The difference in molecular mass to the cat dander-derived 35–38-kDa nFel d 1 may be explained by the presence of 10–20% N-linked carbohydrates (16, 22) in the natural allergen. We further investigated the possible homodimer formation via rechromatography of the isolated 30-kDa fraction by SEC under dissociating conditions. Now the corresponding component eluted as a 15-kDa peak in agreement with the findings from SDS-PAGE using a non-reduced sample, suggesting a non-covalently associated dimer. Finally, the rFel d 1(2/H11001) was analyzed by surface plasmon resonance with the assumption that a dissociation rate should be possible to calculate if a dimer was attached to the chip. The time-dependent dissociation indicated a tight protein-protein association, which was also supported by the fact that no peak corresponding to the size of a monomer could be detected in SEC (Fig. 2). Furthermore, the sensorgram obtained suggested a dimer by the roughly 50% decrease in response measured after deactivation.

Chain 1 of Fel d 1 shares 30% sequence identity to the Clara cell 10-kDa protein (CC10) (17), which supports the notion that Fel d 1 is structurally similar to this secretoglobin protein. Interestingly, a notable difference in the molecular mass of rFel d 1(2/H11001) was evident in non-reduced SDS-PAGE (16 kDa) (Fig. 2, lane 6) compared with the calculated molecular mass (19.2 kDa). Such anomalous migration has also been observed for CC10 (28).

Biological recognition of proteins is dependent on the primary structures, displayed as linear T cell epitopes in the cavity of MHC molecules on antigen-presenting cells. Equally important for the biological functions are the three-dimensional structures, which, in turn, depend on secondary structure and, frequently, on correct and stable disulfide bonds. Therefore, we analyzed and compared the primary structure and biologic activity of rFel d 1(2/H11001) and nFel d 1 by lymphoproliferation and CD203c assays and the secondary structure by CD measurements and determined the intra-chain disulfide linking through trypsin cleavage and mass spectrometry. The secondary structure (20) and disulfide bond pattern (22) of nFel
A Recombinant Fel d 1 Mimicking the Natural Allergen

The experimental values were determined by nano-ESI mass spectrometry after tryptic digestion of the non-reduced protein preparation (cf. Fig. 6). The fragment pairs T6/T15, T9/T10, and T2/T18 were found to be linked via disulfide bridges between cysteine residues in these segments (linked Cys residues are in bold and underlined, corresponding mass values are underlined; see also Fig. 1). The masses of the individual, non-linked fragments could not be detected.

TABLE II

Tryptic fragment	Residues	Sequence	Theoretical mass [M + H]	Experimental mass [M + H]
T5	44-44	(K)K(I)	147.11	Not found
T11	100-100	(K)D(R)	175.12	Not found
T14	132-134	(R)ILKN	373.28	Not found
T1	0-2	(~)MVK(M)	377.22	Not found
T4	40-43	(R)TAMK(k)	450.24	450.75
T9	87-92	(K)NLTG(RE)	673.40	673.40
T16	141-146	(K)MTEED(k)	752.31	Not found*
T3	32-33	(K)NATEPERR(k)	915.45	915.44
T17	147-155	(K)ENALKSLDD(k)	1002.55	Not found*
T13	122-131	(K)ALPVLE(k)	1081.64	1081.60
T7	58-71	(R)VLGVMITRESS(k)	1450.78	1450.72
T6	45-57	(K)GVQYE(k)	2156.01	2155.98
T15	135-140	(K)CQDBAKM	2408.11	2408.07
T8	72-86	(K)DQVEQYNTVEDLK(k)	1081.64	1081.60
T10	93-99	(R)CPAVK(k)	1202.50	1202.46
T12	101-121	(R)DVSFLSTGPDEYEQVQAQK(k)	2430.17	2430.09
T13	3-31	(K)VNATEPER(k)	915.45	915.44
T16	141-155	(K)MTEED(k)	1735.86	1735.80

* Not found as a separate fragment. Detected as a part of the larger fragment T16 + T17 with [M + H] 1735.80, resulting from a miscleavage at Lys146 which is surrounded by acidic residues; see Fig. 1.

Fig. 7. IgE responses to Fel d 1 in individuals sensitized to cat in direct ELISA. A comparison of IgE binding to a microtiter plate coated with rFel d 1 (2 + 1), nFel d 1, or a mixture of Fel d 1 chains 1 and 2 were made. A serum pool of non-cat-allergic patients is included (dotted line). Analysis of variance: **, *p* < 0.01; and ***, *p* < 0.001.

d 1 as well as the proliferation of cultured PBMC in the presence of nFel d 1 were found to correspond well to those observed for rFel d 1 (2 + 1). Thus, the structure of rFel d 1 (2 + 1) forms a basis for a stable and immunoreactive allergen with an antiparallel orientation of the polypeptide chains (17, 22).

From an epitope-probing as well as clinical point of view, it is important to accurately establish levels of allergen-specific antibodies in serum from, for example, cat-allergic patients. The ability to detect allergen-specific IgE in serum from 15 cat-allergic patients is included (dotted line). Analysis of variance: **, *p* < 0.01; and ***, *p* < 0.001.

From an epitope-probing as well as clinical point of view, it is important to accurately establish levels of allergen-specific antibodies in serum from, for example, cat-allergic patients. The ability to detect allergen-specific IgE in serum from 15 cat-allergic patients is included (dotted line). Analysis of variance: **, *p* < 0.01; and ***, *p* < 0.001.

binding to microtiter plate-bound nFel d 1 in ELISA. The somewhat better homologous inhibition achieved using high concentrations of nFel d 1 is likely to be caused by the inhibition of antibodies present in the serum pool by matching impurities in the nFel d 1 preparation. The mixture of chains 1 and 2 showed significantly lower IgE binding capacity in direct ELISA and a lower specific activity in the inhibition assay, which is consistent with previous findings (32, 33) suggesting a distorted protein preparation with fewer exposed epitopes.

In conclusion, we have constructed and, for the first time, in E. coli a recombinant Fel d 1 molecule by direct fusion of chain 2 and chain 1 with structural features mimicking that of the natural allergen. Thus, we propose this novel molecule as a suitable candidate for solving the three-dimensional structure of Fel d 1 and, furthermore, as a candidate for diagnosis and therapy of cat-allergic patients.
The induction of CD203c expression on basophils after incubation of blood samples with rFel d 1, nFel d 1, and, rBet v 1 and interleukin-2 (IL-2) brophoproliferative responses were obtained in PBMCs using rFel d 1, nFel d 1, and, for control purposes, PBS and anti-IgE (a). Specific inductions of lymphoproliferative responses were obtained in PBMCs using rFel d 1, nFel d 1, and, for control purposes, with recombinant birch pollen allergen rBet v 1 and interleukin-2 (IL-2).

REFERENCES

1. Ichikawa, K., Iwasaki, E., Baha, M., and Chapman, M. D. (1999) Clin. Exp. Allergy 29, 754–761
2. Roos, H. F., Kuzni, N., Schindler, C., Jarvis, D., Chinn, S., Perruchoud, A. P., Ackermann-Liebrich, U., Burney, P., and Wuthrich, B. (1999) J. Allergy Clin. Immunol. 104, 941–947
3. Luo, S., Illi, S., Sommerfeld, C., Niggemann, B., Bergmann, R., van Mutius, E., and Wahn, U. (2000) Lancet 356, 1392–1397
4. Lilja, G., Sundin, B., Graff-Lonnevig, V., Hedlin, G., Heilborn, H., Nerrlind, K., Pegelow, K. O., and Lowenstein, H. (1998) J. Allergy Clin. Immunol. 83, 37–44
5. Hedlin, G., Graff-Lonnevig, V., Heilborn, H., Lilja, G., Nerrlind, K., Pegelow, K. S., and Lowenstein, H. (1997) J. Allergy Clin. Immunol. 87, 955–964
6. Norman, P. S., Ohman, J. L., Jr., Long, A. A., Creticos, P. S., Gefter, M. A., Shaked, Z., Wood, R. A., Eggleston, P. A., Hafner, K. B., Rao, P., Lichtenstein, L. M., Jones, N. H., and Niedermus, C. F. (1996) Am. J. Respir. Crit. Care Med. 154, 1623–1628
7. Oldfield, W. L., Lac, M., and Kay, A. B. (2002) Lancet 360, 47–53
8. Lowenstein, H., Lind, P., and Weeke, B. (1985) Allergy 40, 430–441
9. Ohman, J. L., Bjer, H., Anderson, M. C., Leiterman, K., and Brown, P. (1983) J. Allergy Clin. Immunol. 72, 288–293
10. Ichikawa, K., Vailes, L. D., Pomes, A., and Chapman, M. D. (2001) Int. Arch. Allergy Immunol. 124, 55–58
11. Ohman, J. L., Jr., and Lowell, F. C. (1977) J. Allergy Clin. Immunol. 60, 317–323
12. van Ree, R., van Leeuwen, W. A., Bulder, I., Bond, J., and Aalberse, R. C. (1999) J Allergy Clin. Immunol. 104, 1223–1230
13. Ohman, J. L., Jr., Lowell, F. C., and Bloch, K. J. (1974) J. Immunol. 113, 1668–1677
14. Leitermann, K., and Ohman, J. L., Jr. (1984) J. Allergy Clin. Immunol. 74, 147–153
15. Chapman, M. D., Aalberse, R. C., Brown, M. J., and Platts-Mills, T. A. (1988) J. Immunol. 140, 812–818
16. Duffort, O. A., Carreira, J., Nitti, G., Polo, F., and Lombardero, M. (1991) Mol. Immunol. 28, 301–309
17. Morgenstern, J. F., Griffith, I. J., Brauer, A. W., Rogers, B. L., Bond, J. F., Chapman, M. D., and Kuo, M. C. (1991) Proc. Natl. Acad. Sci. U. S. A., 9690–9694
18. van ’t Hof, W., van Milligen, F. J., van den Berg, M., Lombardero, M., Chapman, M. D., and Aalberse, R. C. (1993) Allergy 48, 255–263
19. van Milligen, F. J., van ’t Hof, W., van den Berg, M., and Aalberse, R. C. (1994) J. Allergy Clin. Immunol. 93, 34–43
20. Vailes, L. D., Li, Y., Bao, Y., DeGroot, H., Aalberse, R. C., and Chapman, M. D. (1994) J. Allergy Clin. Immunol. 93, 22–33
21. Counsell, C. M., Bond, J. F., Ohman, J. L., Jr., Greenstein, J. L., and Garman, R. D. (1996) J. Allergy Clin. Immunol. 98, 884–894
22. Kristensen, A. K., Schou, C., and Roepstorff, P. (1997) Bioderma 37, 899–908
23. Vailes, L. D., Bao, Y., DeGroot, H., Aalberse, R. C., and Chapman, M. D. (1996) J. Immunol. 98, 1–9
24. Chapman, M. D., Aalberse, R. C., Brown, M. J., and Platts-Mills, T. A. (1988) J. Allergy Clin. Immunol. 81, 762–767
25. van Milligen, F. J., Vroom, T. M., and Aalberse, R. C. (1990) Int. Arch. Allergy Appl. Immunol. 92, 375–378
26. de Groot, H., van Swieten, P., and Aalberse, R. C. (1990) J. Allergy Clin. Immunol. 86, 107–116
27. Geffrin, I., Jones, J., and Leiterman, K. (1997) J. Clin. Immunol. 17, 1162–1172
28. Singh, G., Katsoul, S. L., Brown, W. E., Phillips, S., Kennedy, A. L., Anthony, J., and Squequla, N. (1988) Biochim. Biophys. Acta 950, 329–337
29. Peat, H. M. (1968) Biochim. Biophys. Acta 160, 285–289
30. Ring, P. C., Wan, H., Schou, C., Kroll, Kristensen, A., Roepstorff, P., and Robinson, C. (2000) Clin. Exp. Allergy 30, 1965–1966
31. Brown, R. P., Leiterman, K., and Chapman, M. D. (1999) Mol. Immunol. 36, 1529–1541
32. Keating, K. M., Segal, D. B., Craig, S. J., Nault, A. K., Seminski, V., Chapman, A. S., Counsell, C. M., and Bond, J. F. (1995) Mol. Immunol. 32, 287–293
33. Slunt, J. B., Rogers, B. L., and Chapman, M. D. (1995) J. Allergy Clin. Immunol. 95, 1221–1238
34. Vailes, L. D., Sun, A. W., Ichikawa, K., Wu, Z., Solar, H. T., Chapman, M. D., and Guer, Y. M. (2002) J. Allergy Clin. Immunol. 110, 757–762
35. Asubell, F. A., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Stuhl, K. (eds) (1998) Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York
36. Scopes, R. K. (1994) in Protein Purification, Principles, and Practice (Cantor, C. R., ed.) 3rd Ed., Springer-Verlag, New York
37. Deslge, V., and Gourjon, C. (1993) Comput. Appl. Biosci. 19, 197–199
38. Hausch, A. W., Natter, S., Huang, N., Majeski, Y., Scherthanber, G. H., Sperr, W. R., Buhring, H. J., Valenta, R., and Valenti, P. (2002) J. Allergy Clin. Immunol. 110, 102–109
39. Nygren, P. A., Eliasson, M., Abraham, L., Uhlen, M., and Palmcrantz, E. (1988) J. Mol. Recognit. 1, 69–74
40. Schmidt, M., Babu, K. R., Karna, N., Marten, S., and Rinas, U. (1999) J. Biotechnol. 68, 89–107
41. Nilsson, J., Jonasson, P., Samuelsson, E., Stahl, S., and Uhlen, M. (1996) J. Biotechnol. 48, 241–250
42. Castellanos-Serra, L. R., Hardy, R., Ubiera, R., Sepio, N. S., Fernandez, C., Besada, V., Falcon, V., Gonzales, M., Santos, A., Perez, G., Silva, A., and Herrera, L. (1996) FEBS Lett. 378, 171–176

A Recombinant Fel d 1 Mimicking the Natural Allergen

40151