Locality of edge states and entanglement spectrum from strong subadditivity

Kohtaro Kato1,2 and Fernando G. S. L. Brandão2,3

1Department of Physics, Graduate School of Science, University of Tokyo, Tokyo, Japan
2Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125, USA
3Google, Incorporated, 340 Main Street, Venice, California 90291, USA

(Received 24 May 2018; revised manuscript received 17 April 2019; published 14 May 2019)

We consider two-dimensional states of matter satisfying a uniform area law for entanglement. We show that the topological entanglement entropy is equal to the minimum relative entropy distance from the reduced state to the set of thermal states of local models. The argument is based on strong subadditivity of quantum entropy. For states with zero topological entanglement entropy, in particular, the formula gives locality of the states at the boundary of a region as thermal states of local Hamiltonians. It also implies that the entanglement spectrum of a two-dimensional region is equal to the spectrum of a one-dimensional local thermal state on the boundary of the region.

DOI: 10.1103/PhysRevB.99.195124

I. INTRODUCTION

Topologically ordered phases, which appear, e.g., in fractional quantum Hall systems [1,2] and in quantum spin liquids [3,4], are quantum phases in gapped systems that go beyond the conventional paradigm of symmetry breaking. Systems in topologically ordered phases have several distinct features: topology-dependent ground state degeneracy, locally indistinguishable ground states that cannot be created by a constant-depth local circuit, and anyonic excitations. These characteristic properties are robust against local perturbations and such phases are considered as a candidate of the stage to perform fault-tolerant quantum information processing.

In the last decades, studying entanglement in quantum states has been shown to be a powerful tool to characterize topologically ordered phases. One distinctive aspect of entanglement in ground states of gapped systems (gapped ground states) is that it satisfies an area law: the entanglement entropy scales only as the perimeter instead of the volume of a region, which is true for Haar-random states [5]. Especially, the area law of ground states in topologically ordered phases contains a characteristic term called the topological entanglement entropy (TEE) [6,7]. TEE only depends on the type of the phase and has been used as a probe of topological order [8–11].

Topological entanglement entropy has been linked to several other aspects of topological order. If TEE is zero, then the state can be created by a constant-depth local circuit, and thus in a topologically trivial phase [12–14]. Also, TEE upper-bounds the logarithm of the topological degeneracy of the model [15]. Finally, TEE has also been argued to give the logarithm of the total quantum dimension of the anyonic excitations of the system [6,7].

The entanglement entropy of a region R is a function of the eigenvalues of the reduced state ρ_R on R. It is interesting to explore what information might be encoded in the whole spectrum of ρ_R (i.e., all its eigenvalues). Since ρ_R is positive semidefinite, we can write $\rho_R = e^{-H_R}$ for a Hermitian operator H_R. The operator H_R is called the entanglement Hamiltonian (or modular Hamiltonian) and its eigenvalues are called the entanglement spectrum. Starting with the work of Li and Haldane [16], the behavior of the entanglement spectrum of two-dimensional systems has been extensively studied. Based on numerical calculations [17,18], it was observed that for gapped systems with no topological order, one could equate the entanglement spectrum to the spectrum of a one-dimensional quasilocal Hamiltonian acting on the boundary of the region R, while for topologically ordered systems, a universal nonlocal interaction emerges. However, so far it has been a challenge to give a more general argument for the locality of the entanglement spectrum, except for some exact renormalization fixed points in the tensor network formalism [19].

A natural question is whether these two aspects of entanglement in topological order are related. In this paper we explicitly construct a quantitative relation between TEE and the entanglement Hamiltonian by showing that the TEE equals (half) the minimum relative entropy of the reduced state on an annular region (which we call the edge state) to the set of Gibbs states e^{-H} with local Hamiltonian H. Using this result, we will give a general argument for the locality of the entanglement spectrum of certain regions and its relation to the TEE. Our approach will be information theoretical. In particular we will derive our results from the strong subadditivity property of the von Neumann entropy and a recent strengthening thereof [20]. Furthermore, our result provides an information-theoretic interpretation to TEE as the number of bits of information needed to describe the nonlocal properties of the edge state of the system.

II. ASSUMPTION: UNIFORM AREA LAW

In this work, we consider quantum systems on two-dimensional spin lattices with local dimension d. $|R|$ denotes the number of sites in region R of a lattice, and $|\partial R|$ denotes its perimeter length. We will be concerned with pure states $\rho = |\psi\rangle\langle\psi|$ on the lattice satisfying an area law: for every simply
connected contractible region R, the von Neumann entropy
$S(R) = - \text{tr}(\rho_R \log \rho_R)$ (with ρ_R the reduced density matrix of the state in region R) obeys

$$S(R) = \alpha |\partial R| - \gamma + c + \epsilon,$$

for constants $\alpha, c, \gamma, \epsilon \geq 0$ (γ is replaced by $n_R \gamma$ when R has n_R distinct boundaries). The constant term γ is the topological entanglement entropy (TEE) [6,7]. TEE is related to the theory of anyon models via

$$\gamma = \log_2 \sqrt{\sum_a d_a^2},$$

where $d_a \geq 1$ is the quantum dimension associated with anyonic charge a. In topologically trivial systems, there is only the vacuum charge “1” with $d_1 = 1$, and thus $\gamma = 0$. The term c gives the contribution from the corners of the region to the entanglement entropy and has the form

$$c = \beta \sum_i v(\theta_i),$$

for a constant β and function v. The sum is over all corners of the region, each with angle θ_i. The last term ϵ stands for subleading terms in $o(1)$ that go to zero when the minimum length of the region grows.

In particular, throughout this work we require that the area law be uniform, in the sense that the parameter α is independent of the choice of the region R. We further require $\epsilon = \exp(-l/\xi)$, with l the minimum length of the region and ξ a constant (which can however be much larger than the correlation length of the system), which we expect to hold for generic gapped ground states; see Appendix D. Note that our result still holds if ϵ decays polynomially but sufficiently fast.

III. DEFINITION OF EDGE STATES AND THE MAIN FORMULA

Consider a region R with a boundary region X as in Fig. 1. X is composed by m regions X_i, each with length scale l. We can regard $X = X_1 X_2 \ldots X_m$ as a one-dimensional spin system with X_i having local dimension $d^{[X_i]}$. We say that ρ_X, the reduced density matrix of $|\psi\rangle$ on the boundary X, is the edge state of the region R. We could take R as large as the whole lattice, in which case X would indeed be the physical edge of the system. However our result also holds when R is a subregion of the entire lattice (in this case X corresponds to the entanglement cut between R and R').

An important quantity in our approach is the conditional mutual information, defined for tripartite states ρ_{ABC} as

$$I(A : C|B)_\rho := S(A|B)_\rho + S(BC|A)_\rho - S(ABC)_\rho - S(B)_\rho.$$

It is a measure of the correlations between A and C conditioned on the information in B. The strong subadditivity inequality of von Neumann entropy [21] reads $I(A : C|B)_\rho \geq 0$. As observed in [7], the uniform area law (1) implies that for every (connected) triple ABC with A and C disconnected, conditional mutual information has a dichotomy of values: $I(A : C|B) \approx 0$ if ABC is topologically trivial, while $I(A : C|B) \approx 2\gamma$ if it is a topologically nontrivial annulus.

The main formula of this paper is a characterization of TEE in terms of the relative entropy distance between the edge state and the set of thermal states of local models. Define the set of Gibbs states of short-range Hamiltonians with interaction strength K as

$$E_{\text{mn}}^K := \left\{ e^{-H} \left| \begin{array}{l} H = \sum_i h_{X_i \neq X_i}, \| h_{X_i \neq X_i} \| \leq K \end{array} \right. \right\}.$$ \hspace{1cm} (4)

Note that here we include the normalization factor in the Hamiltonian so that $\text{tr}(e^{-H}) = 1$. Then, we can show that

$$\gamma \approx \frac{1}{2} \min_{e^{-H} \in E_{\text{mn}}^K} S(\rho_X \| e^{-H})$$ \hspace{1cm} (5)

for $K = \Theta(N)$, where $\gamma \approx \epsilon$ means the equality holds up to $O(e^{-\Theta(l)})$ if we choose $l = \log_2 |X|$ [22]. For $\epsilon \approx 0$ in which we have exact equality, the formula was proven before by one of us in Ref. [23]. Each term of H in E_{mn}^K acts on at most $O(\log_2(|X|))$ sites and thus H is a (quasi)local Hamiltonian. Note that numerical results of Refs. [17,18] suggest that one might be able to improve Eq. (5) to have Hamiltonians with exponentially decaying interactions with locality independent of system size. Which entanglement Hamiltonian achieves the minimum in Eq. (5)? Although we do not know the answer,

$$H_X := - \sum_i \left(\ln \rho_{X_{i \neq X_i}} - \ln \rho_X \right)$$ \hspace{1cm} (6)

could be a natural guess. Actually, one can show that unnormalized Gibbs state e^{-H} has distance close to 2γ (see Appendix A and Ref. [24]). Notably, this (possibly unbounded) local Hamiltonian is calculable only from local reduced states.

Equation (5) also provides an information-theoretic interpretation for TEE. Let us recall a result of Ref. [25]. Consider two parties, Alice and Bob. Alice (Bob) has a quantum state that is close to ρ (the error goes to zero in the asymptotic regime, where one considers the protocol applied to $\rho^\otimes n/\sigma^\otimes n$ for very large n). Moreover, there is no protocol with a lower rate [25]. Therefore the relative entropy $S(\rho|\sigma)$ has the interpretation of the number of qubits that are contained in ρ in addition to the information contained
in σ. Applied to our setting, Eq. (5) can then be interpreted as saying that TEE gives the number of qubits that are contained in the edge state in addition to any local model; it counts the number of topological qubits of the model.

IV. ENTANGLEMENT SPECTRUM ON A CYLINDER

For a pure bipartite state $|\psi\rangle_{AB}$, consider the Schmidt decomposition:

$$|\psi\rangle_{AB} = \sum_i \sqrt{\lambda_i} |i\rangle_A |i\rangle_B,$$

(7)

where $|i\rangle_A$ and $|i\rangle_B$ are orthonormal vectors of systems A and B. The coefficients λ_i satisfying $\lambda_i > 0$ and $\sum_i \lambda_i = 1$ are called the Schmidt coefficients. The entanglement spectrum of ρ_Y is defined by $\{-\log_2 \lambda_i\}$. Note that Eq. (7) shows that the entanglement spectrum on a subsystem R always matches the spectrum on the complement.

Let us now turn to the application of Eq. (5) to analyze the structure of the entanglement spectrum of the system. For concreteness, we consider the entanglement spectrum of a system defined on a cylinder. Consider a ground state of a system as depicted in Fig. 2. Then the spectrum (of the reduced state) on region YY' is the same as the spectrum on region X. Let us assume that the system has reflection symmetry, so that $\rho_{YY'} = \rho_{Y'Y}$. For a ground state in a topologically trivial phase satisfying Eq. (1), we have $I(Y': Y') \approx 0$, which implies $\rho_{YY'} \approx \rho^\otimes_Y$ (this is followed by the fact that the ground state is approximately generated by a constant-depth circuit). Indeed, Pinsker’s inequality reads

$$I(Y': Y') \geq \frac{1}{2} \|\rho_{YY'} - \rho_Y \otimes \rho_Y\|^2_1,$$

(8)

with $\|\rho_{YY'} - \rho_Y \otimes \rho_Y\|_1$ the trace-norm distance between $\rho_{YY'}$ and the product of its reductions $\rho_Y \otimes \rho_Y$.

We denote the entanglement Hamiltonian of ρ^\otimes_Y, which we call the double of H_{ρ_Y}, by $H^{(2)}_{\rho_Y} = H_{\rho_Y} \otimes I + I \otimes H_{\rho_Y}$ (where I is the identity operator). We also introduce a cutoff Λ on the spectrum of operators by

$$\lambda^\Lambda(A) := \{\lambda \in \lambda(A) | \lambda \leq \log_2 \Lambda\}.$$

(9)

Then, the result on the locality of edge states (5) implies that when $\gamma = 0$, there exists a 1D nearest-neighbor Hamiltonian $H_X = \sum_i H_{X,X_{i+1}}$ on $X = X_1 \ldots X_m$, such that for any $\Lambda > 0$,

$$\|\lambda^\Lambda(H^{(2)}_{\rho_Y}) - \lambda^\Lambda(H_X)\|_1 \leq \Lambda e^{-\Theta/1},$$

(10)

(the proof is given in Appendix B). The upper bound decays exponentially in ℓ if we choose $\Lambda = \text{poly} (\ell)$. Note that there exists a unique ground state of gapped models with $I(\Lambda : C|B) > 2\gamma = 0$ for a certain choice of region $X = ABC$ [26,27]. H_X turns out to be nonlocal in this exotic example not satisfying our assumption. However, we can recover $I(\Lambda : C|B) \approx 0$ by slightly changing the shape of X for these counterexamples.

Equation (5) also implies that there exists an isometry V from Y^\otimes_2 to X such that

$$V \rho^\otimes_Y V^\dagger = e^{-H_{\rho_Y}} \approx e^{-\sum_{k} h_k x_{i+k}}$$

(11)

(here \approx means both sides are exponentially close with respect to ℓ in the relative entropy or the trace distance). When ρ_Y has a symmetry under some unitary U, $U \rho_Y U^\dagger = \rho_Y$, the edge state has a corresponding symmetry

$$U' (e^{-H_{\rho_Y}}) U'^\dagger = e^{-U H_{\rho_Y} U'^\dagger} = e^{-H_{\rho_Y}}$$

(12)

for any U' such that $U' V = V U$.

In topologically ordered phases, one can naturally expect that the entanglement Hamiltonian H_{ρ_Y} should be nonlocal because of a nonzero TEE. However, we have to be careful since it is known that the subleading term in Eq. (1) is nonlocal in this exotic exam-

ple, such as the case of $X = X_1 \ldots X_m$, for each $a \in L$, which have a definite anyonic flux threading through the cylinder labeled by a finite set $L = \{a\}$. For such states, we expect the modified area law

$$S(R)_a = a[|R| - 2\gamma + \log_2 d_a + c + e],$$

(13)

where d_a is the quantum dimension of the anyon flux a, to hold for any noncontractable subregion R on the cylinder, such as X in Fig. 2. Then, there exists a 1D Hamiltonian $H^{(2)}_Y$ on $X = X_1 \ldots X_m$ for each $a \in L$, such that for any $\Lambda > 0$,

$$\|\lambda^\Lambda(H^{(2)}_Y) - \lambda^\Lambda(H_X^a)\|_1 \leq \Lambda e^{-\Theta/1},$$

(14)

with $\rho^a_Y = \text{tr}_{XY'} |\psi_a\rangle \langle \psi_a|$. Here we again assume the reflection symmetry. Importantly, here $H^{(2)}_Y$ contains nonlocal interactions in contrast to the case of $\gamma = 0$.

A general ground state $|\psi\rangle = \sum_{a \in L} \sqrt{p_a} |\psi_a\rangle$ is a superposition of states with different fluxes. Each anyonic flux a can be measured by a projective measurement acting on YY', and therefore the reduced states on YY' with different fixed anyonic flux are orthogonal. Hence, we have a direct sum decomposition of the reduced state:

$$\rho_{YY'} = \bigoplus_{a \in L} p_a \rho^{a}_{YY'}.$$

(15)

Using the reflection symmetry and $I(Y': Y') \approx 0$ for each a, we have

$$\rho_{YY'} \approx \bigoplus_{a \in L} p_a \rho^{a \otimes 2}_Y.$$

(16)
also holds for the single entanglement spectrum. We argue that under a few more assumptions, the same property still applies. Let us first consider a ground state on a cylinder with a boundary (the right edge). The entanglement spectrum on Y is almost independent of the length of the opposite side. Then the same results hold for the single entanglement spectrum of any XY system, where the indices $\{x\}$ are associated with the ith slice of the cylinder, and $\{x\}'$ are $D \times D$ matrices with a bond dimension $D \sim 2^r$. $|L\rangle$ and $|R\rangle$ are D-dimensional vectors representing the boundary condition (we use the right parenthesis “)” to distinguish them from vectors in physical systems). Choose the first m slices as subsystem Y. Then, one can show that in the generic case the reduced density matrix on Y is almost independent of N for sufficiently large N (more details are in Appendix C). Therefore, the spectrum on Y is approximately equivalent to the spectrum of the edge state defined for some fixed cylinder (Fig. 3).

V. DISCUSSION

In this work we have given a formula for TEE, connecting it to the locality of edge states. In particular, we have shown that if TEE is zero, the entanglement Hamiltonian of the 1D edge state is approximately a short-range Hamiltonian, while it is a non-local Hamiltonian if the ground state has nonzero TEE. We then applied this result to the entanglement spectrum defined on a half of a cylinder, and derived that the double of the spectrum matches the spectrum of a 1D Hamiltonian (which is local if TEE is zero). We also have shown that the same results hold for the single entanglement spectrum under additional but physically reasonable assumptions. Our technique relies only on the properties of ground states and is independent of specifics of particular models.

A similar connection has been observed before in the projected entangled pair state (PEPS) formalism, where the edge state is defined for an effective boundary on virtual degrees of freedom. In our case, the edge state is defined via the reduced state on the boundary, and therefore it acts on physical degrees of freedom. Building an explicit connection between our framework and the PEPS formalism is an interesting open question. Another interesting direction for future research is to weaken our assumptions and extend our results for more general gapped systems. Especially, it is unclear whether we can always find a suitable isometry in Eq. (18) such that the edge state on the new physical boundary satisfies the area law.

Another example is a family of gapped ground states that can be described by matrix product states (MPS) [33] defined in the axial direction. Suppose an (unnormalized) state $|\psi_N\rangle$ is defined on a cylinder with the axial length N and the radius r. We obtain a 1D system by cutting the cylinder into several slices and then regarding one slice as one large subsystem. Suppose that $|\psi_N\rangle$ can be written as

$$|\psi_N\rangle = \sum_{i_1,...,i_N} (L|A^{i_1}\ldots A^{i_N}|R) |i_1i_2\ldots i_N\rangle,$$

where the indices i_j are associated with the jth slice (column) of the cylinder, and $|A^{i}\rangle$ are $D \times D$ matrices with a bond dimension $D \sim 2^r$. $|L\rangle$ and $|R\rangle$ are D-dimensional vectors representing the boundary condition (we use the right parenthesis “)” to distinguish them from vectors in physical systems). Choose the first m slices as subsystem Y. Then, one can show that in the generic case the reduced density matrix on Y is almost independent of N for sufficiently large N (more details are in Appendix C). Therefore, the spectrum on Y is approximately equivalent to the spectrum of the edge state defined for some fixed cylinder (Fig. 3).
From Eq. (1), we have

$$\rho_{X_{i+1}} - \rho_X,$$

where we are using the periodic boundary conditions, so $m+1$ is identified with 1. We can write

$$S(\rho_X) = \sum_{i=1}^{m} S(X_{i+1} | X_i) - S(X_1 \ldots X_m).$$

with $S(X_{i+1} | X_i) = S(X_{i+1}) - S(X_i)$ the conditional entropy of X_{i+1} given X_i (we omit the index ρ).

Note that

$$S(X_1 \ldots X_k) + S(X_{k+1} | X_k) = I(X_1 \ldots X_{k-1} : X_{k+1}|X_k) + S(X_1 \ldots X_{k+1}).$$

From Eq. (1), we have

$$I(X_1 \ldots X_i : X_{i+2} | X_i) \approx \varepsilon$$

for $i \in \{1, \ldots, m-2\}$ and ε given by error term in Eq. (1). Then using Eq. (A3) $m-2$ times in Eq. (A2),

$$S(\rho_X) = \sum_{i=m-1}^{m} S(X_i | X_{i+1}) + S(X_{m+1} | X_m)
+ S(X_1 | X_m) - S(X_1) - S(X_1 \ldots X_m),$$

where \approx_δ denotes that the two quantities differ by at most δ.

Let us now further assume that the mutual information $I(X_{m-1} : X_1) = S(X_{m-1}) + S(X_1) - S(X_{m-1}X_1)$ of the disjoint regions $X_{m-1}X_1$ is small and upper bounded by ε (this assumption is justified by the finite correlation length of the state, but it is not necessary in the rigorous proof). Then

$$S(X_m | X_{m-1}) + S(X_1 | X_m) - S(X_1)
\approx_\varepsilon S(X_mX_1 | X_1),$$

Combining Eqs. (A5) and (A6) we finally find

$$S(\rho_X) \approx S(X_1 | X_m) \approx 2\gamma. \quad (A7)$$

Naively, this seems to finish the proof of Eq. (5); however there are subtle problems (in addition to the extra assumption used that far away regions have small mutual information). First, the state e^{-H_ε} is not normalized. Second, there is no guarantee that there is no other choice of H_ε that significantly reduces the distance.

The full proof is more involved and uses not merely strong subadditivity as in the previous argument, but also a recent strengthening of subadditivity [20]. In the companion paper [34], we prove the following.

Lemma 1 (Theorem 3 in Ref. [34]). Consider a 1D spin chain $X = X_1X_2 \ldots X_m$ with the size $N = |X_1 \ldots X_m|$. Let $\rho_{X_1 \ldots X_m}$ be a state such that

$$I(X_{i+1} : X_{i+3} \ldots X_{i-1}X_{i+2})_{\rho} \leq \varepsilon \quad (A8)$$

for all $i \in \{1, m\}$. Define the set of Gibbs states of short-range Hamiltonians with interaction strength K as

$$E_{nm}^K := \left\{ e^{-H} : H = \sum_i h_{XX_{i+1}}, \| h_{XX_{i+1}} \| \leq K \right\}. \quad (A9)$$

Note that here we include the normalization factor in the Hamiltonian so that $tr(e^{-H}) = 1$. Then, for $K = \Theta(N)$ and sufficiently small $\varepsilon > 0$, there exists a constant $c > 0$ such that for any tripartition ABC of X such that B separates A from C, it holds that

$$\min_{\varepsilon \in E_{nm}^K} S(\rho_X) = I(A : C | B)_{\rho} + \varepsilon(N, \delta). \quad (A10)$$

and

$$\| \varepsilon(N, \delta) \| \leq cN^2 \delta^\pi,$$

where $\delta = 8\sqrt{\varepsilon} + 2^{-N}$.

Our assumption on the area law (1) guarantees $\varepsilon = \exp(-l/\varepsilon)$ and $I(A : C | B)_{\rho} \approx 2\gamma$. We can choose $l = \Theta(\log_2 N)$ so that $\varepsilon(N, \delta)$ decays as on the order of $e^{-\Theta(l)}$. Therefore, by applying Lemma 1 to our setting of Fig. 1, we obtain Eq. (5).

The idea of the proof of Lemma 1 is explicitly constructing a state $\pi_X \in E_{nm}^K$ such that (i) it has small $I(A : C | B)_{\pi}$ and (ii) is locally indistinguishable from ρ_X. Suppose that such π_X exists. Then we can show that

$$I(A : C | B)_{\rho} = S(AB)_{\rho} + S(BC)_{\rho} - S(AB)_{\rho} - S(ABC)_{\rho} \approx 2\gamma. \quad (A10)$$

The first approximation follows from the Fannes inequality: two states that are close in the trace distance have almost the same entropy. The second approximation follows from assumption (i). Let us next evaluate the left-hand side of Eq. (A9). For $\mu_X = e^{-\sum_i h_{XX_{i+2}} | E_{nm}^K}$ it holds that

$$S(\rho || \mu) = -\text{Tr}[\rho_{AB} H_{AB}] - \text{Tr}[\rho_{BC} H_{BC}] - S(AB)_{\rho} \approx 2\gamma. \quad (A13)$$

A similar argument shows the last two terms to be of $O(1)$. Therefore, Eq. (A12) and Eq. (A13) imply

$$\min_{\mu \in E_{nm}^K} S(\rho_X || \mu) \approx S(ABC)_{\pi} - S(ABC)_{\rho} \approx I(A : C | B)_{\rho}, \quad (A16)$$

which completes the proof by $I(A : C | B)_{\rho} \approx 2\gamma$ (more accurate evaluations of the errors are in Ref. [34]).
KOHTARO KATO AND FERNANDO G. S. L. BRANDÃO

The remaining problem is how to construct such $\tilde{\pi}_X$. This part of the proof relies on the recently improved bound on the conditional mutual information.

Lemma 2 [20]. For any tripartite state ρ_{ABC} in a finite-dimensional quantum system,

$$ I(A : C|B)_{\rho} \leq \min_{\Delta_{B \rightarrow BC}} -2 \log_2 F(\rho_{ABC} : \Delta_{B \rightarrow BC}(\rho_{AB})), $$

(A17)

where the minimum is over all the completely positive and trace-preserving (CPTP) maps $\Delta_{B \rightarrow BC} : \mathcal{B}(H_B) \rightarrow \mathcal{B}(H_B \otimes \mathcal{H}_C)$, and $F(\rho, \sigma) := \text{tr}((\sigma^{1/2} \rho \sigma^{1/2})^{1/2})$ is the fidelity.

This lemma means that a state with small conditional mutual information can be approximately generated from its reduced state by applying a CPTP map on the conditioning system only. Conversely, by using the Fannes inequality, the conditional mutual information is small if such a CPTP map exists. By the assumption given by Eq. (A1), we have

$$ I(A : B|C)_{\rho} \leq e^{-\Theta(t)}, $$

(A18)

$$ I(B_1 : C|B_2)_{\rho} \leq e^{-\Theta(t)}.$$

(A19)

Lemma 2 reads there exist CPTP maps $\Delta_{B \rightarrow B'C}$ and $\Delta_{B \rightarrow B'1}$ satisfying inequalities like Eq. (A17). By using these two CPTP maps, we construct a state on ABC by

$$ \tilde{\rho}'_{ABC} := \Delta_{B \rightarrow B'C} \circ \Delta_{B \rightarrow B'1}(\rho_B). $$

(A20)

By construction, $\tilde{\rho}'_{ABC}$ and ρ_{ABC} have similar reduced states on AB and AB'. Furthermore, one can show that $\tilde{\rho}'_{ABC}$ has small $I(A : C|B)$. This constructed state is not a Gibbs state in E_n^κ. We thus consider a Hamiltonian as in Eq. (A1) by using the reduced state of $\tilde{\rho}'_{ABC}$ and the corresponding (normalized) Gibbs state $\tilde{\pi}_X$. It can be shown that such $\tilde{\pi}_X$ satisfies the required conditions [34].

When TEE is strictly positive, $\min_{\mu \in E_n^\kappa} S(\rho_X \| \mu) > 0$ for any N and therefore H_{px} must contain nonlocal interactions. While we have not obtained a complete proof, we expect that the nonlocal part of H_{px} is dominated by m-body interactions. To address this question, let us again set $A \equiv X_1, B \equiv X_2X_3X_{m-1}X_m$, and C as the remaining subsystems. In a similar way to Eq. (3), we can show that

$$ \min_{\mu \in E_n^\kappa} S(\rho_X \| \mu) \approx 2 \gamma. $$

(A21)

Here, $E_n^\kappa_{BC}$ is a set of Gibbs states of nearest-neighbor Hamiltonians $H_{AB} \otimes I_C + I_A \otimes H_{BC}$. Therefore, it contains at most $(m - 1)$-body interactions acting on $BC = X_2X_3 \ldots X_m$. Equation (A21) implies that adding $(m - 1)$-body interactions cannot improve the minimization in (A9). This fact suggests that the nonlocal part in the entanglement Hamiltonian is dominated by genuine m-body interactions.

APPENDIX B: PROOF OF EQUATIONS (10) AND (14)

We give a proof of Eq. (10) below. Equation (14) can be proven in exactly the same way.

Proof. Since $|\psi_{YY'}\rangle$ is pure, it holds that

$$ \lambda(\rho_{YY'}) = \lambda(\rho_X). $$

(B1)

As discussed in the main text, we have that

$$ I(Y : Y')_{\rho} \leq e^{-\Theta(t)}. $$

(B2)

The mutual information can be rewritten as

$$ I(Y : Y')_{\rho} = S(\rho_{YY'} \| \rho_Y \otimes \rho_{Y'}). $$

(B3)

Therefore, we obtain

$$ \|\rho_{YY'} - \rho_Y^{\otimes 2}\|_1 \leq e^{-\Theta(t)} $$

(B4)

by the Pinsker inequality and reflection symmetry, which ensures $\rho_Y = \rho_{Y'}$.

For bounded Hermitian operators A and B, the difference of their spectrum is bounded as

$$ \|\lambda(A) - \lambda(B)\|_1 \leq \|A - B\|_1 $$

(B5)

(see, e.g., Lemma 1.7 in Ref. [35]). Therefore, we obtain that

$$ \|\lambda(\rho_Y^{\otimes 2}) - \lambda(\rho_X)\|_1 \leq e^{-\Theta(t)}. $$

(B6)

Lemma 1 implies that ρ_X is close to $e^{-H_X}/\text{tr}e^{-H_X}$, where H_X is short-ranged if $\gamma = 0$ and otherwise contains nonlocal terms. By using the Pinsker inequality and triangle inequality, we obtain that

$$ \|\lambda(\rho_Y^{\otimes 2}) - \lambda(e^{H_X})\|_1 \leq \|\rho_Y^{\otimes 2} - \rho_X\|_1 + \|\rho_X - e^{-H_X}\|_1 $$

(B7)

$$ \leq e^{-\Theta(t)}. $$

(B8)

Let us introduce another cutoff to the spectrum that bounds from below:

$$ \lambda_\Lambda(A) := \left\{ \lambda \in \lambda(A) \big| \lambda \geq 1/\Lambda \right\}. $$

(B9)

Clearly,

$$ \|\lambda_\Lambda(\rho_Y^{\otimes 2}) - \lambda_\Lambda(e^{H_X})\|_1 \leq e^{-\Theta(t)}. $$

(B10)

Using the Lipschitz continuity of the logarithm in $[1/\Lambda, \infty)$, we conclude that

$$ \|\lambda_\Lambda(\rho_{Y'}^{\otimes 2}) - \lambda_\Lambda(e^{H_X})\|_1 \leq \Lambda e^{-\Theta(t)}. $$

(B11)

Since $H_{Y'}^{(2)} = -\log_2 \rho_{Y'}^{\otimes 2}$, we complete the proof.

APPENDIX C: THE ENTANGLEMENT SPECTRUM OF MPS ON A CYLINDER

Here we argue that when a ground state on a cylinder can be regarded as a MPS, the single entanglement spectrum of the half of a cylinder is equivalent to the spectrum of the boundary model.

Let us consider a ground state on a cylinder with a boundary (or boundaries) as in the upper part of Fig. 3. As discussed in the main text, suppose that $|\psi_N\rangle$ can be written as a MPS:

$$ |\psi_N\rangle = \sum_{i_1 \ldots i_N} (L|A_{i_1} \ldots A_{i_N}|R)|i_1i_2 \ldots i_N\rangle, $$

(C1)

where the indices $\{i_j\}$ are associated with the jth slice (column) of the cylinder, and $\{|A_i\rangle\} = D \times D$ matrices with a bond dimension $D \sim 2\gamma$. $\langle L|$ and $|R\rangle$ are D-dimensional vectors representing the boundary condition (we use the right
Choose the first m slices as subsystem Y. Then, one can show that in the generic case the reduced density matrix on Y of $|\psi_{N}\rangle$ and $|\psi_{R}\rangle$ is almost same for $N, N \gg 1$. Therefore, the spectrum on Y is approximately equivalent to the spectrum of the edge state defined for some fixed cylinder (Fig. 3). The reduced density matrix $\rho_{1\ldots m}^{(N)} = tr_{m+1\ldots N} |\psi_{N}\rangle \langle \psi_{N}|$ on the first m pieces of Eq. (C1) is written as

$$\rho_{1\ldots m}^{(N)} = \sum_{i,j} (L|L| \prod_{k=1}^{m} (A^{k} \otimes \bar{A}^{k})) \left(T^{N-m} |R\rangle \langle \bar{R}| \right) \times |i_{1}i_{2}\ldots i_{m} \rangle \langle j_{1} \ldots j_{m}|,$$

where $T := \sum_{i} (A^{i} \otimes \bar{A}^{i})$.

In the first inequality we used $\max_{i,j} |A_{ij}| \leq \|A\|_{\infty}$ for the operator norm $\| \cdot \|$ [we assumed $(L|L| = (R|R) = 1$]. We denote the eigenvalue decomposition of T by $T = \sum_{j} \lambda_{j} |j\rangle \langle j|$. For the generic MPS, T has a unique maximal eigenvalue λ_{max} that we can set to be 1 without loss of generality. Then it holds that

$$\|T^{N-m} - T^{N-m}\|_{\infty} = \lambda_{2}^{N} - \lambda_{2}^{N} \leq \lambda_{2}^{N},$$

where $\lambda_{2} < 1$ is the second largest eigenvalue of T. By inserting Eq. (C4) into Eq. (C3), we have

$$\left| \rho_{1\ldots m}^{(N)} - \rho_{1\ldots m}^{(N)} \right|_{(i_{1}\ldots i_{m}),(j_{1}\ldots j_{m})} \leq \rho_{c}^{N}\|\bar{A}\|_{\infty} \|\bar{A}\|_{\infty}\|T^{N-m} - T^{N-m}\|_{\infty}.$$ \hspace{1cm} (D3)

The upper bound is exponentially small with respect to $N - cm$ (up to a constant c). Note that the normalization factor for $\rho^{(N)}$ is given by

$$\text{tr} \rho^{(N)} = (L,L|T^{N}|R\bar{R}) = (L,L|j_{1}\rangle \langle j_{1}|R\bar{R}|1 + O(D^{2}e^{-\epsilon N})].$$ \hspace{1cm} (C8)

Therefore the difference in Eq. (C6) still holds after normalization.

In summary, for any $N \geq m + l$, the entanglement spectrum on Y of $|\psi_{N}\rangle$ is exponentially close to the spectrum of the edge state of $|\psi_{m+l}\rangle$ on $X = \{m + 1, \ldots, m + l\}$ with respect to l, the width of the edge X.

APPENDIX D: EXPONENTIALLY SMALL CORRECTIONS IN AREA LAW OF RENYI-\(\alpha\) ENTROPY

In this Appendix, we demonstrate the uniform area law of Renyi-\(\alpha\) entropy (for every integer $\alpha \geq 2$) holds with exponentially small correction under an assumption that is expected to be true for generic 2D ground states in the topologically trivial phase. The main argument here is essentially one of the results in Ref. [27], but we repeat it here for completeness. For a state ρ, the Renyi-\(\alpha\) entropy $S_{\alpha}(\rho)$ is defined by

$$S_{\alpha}(\rho) := \frac{1}{1 - \alpha} \log_{2} \text{tr}(\rho^{\alpha}).$$ \hspace{1cm} (D1)

Consider a translationally invariant ground state $|\psi\rangle$ defined on a 2D lattice with size N. When a ground state is in the topologically trivial phase, it can be (approximately) constructed from a product state only by a constant-depth local circuit [36,37]. In other words, there exists a set of unitaries $\{V_{i}\}$ (for each N) such that

$$|\psi\rangle = V_{d}V_{d-1}\ldots V_{1}|0\rangle^{\otimes N},$$ \hspace{1cm} (D2)

where d is a constant of N and each V_{i} is

$$V_{i} = \bigotimes_{k=i}^{N} V_{i}^{(k)},$$ \hspace{1cm} (D3)

a tensor product of local unitaries $V_{i}^{(k)}$ acting on disjoint sets of neighboring spins within radius $w = O(1)$.

Let us divide the lattice into a square region R (as in Fig. 1 in the main text) and its complement R^{c} to calculate the entanglement entropy $S(R)_{\rho}$. Equation (D2) is then rewritten as $|\psi_{RR^{c}}\rangle = U_{R}U_{R^{c}}|0\rangle^{\otimes N}$ such that U_{R} ($U_{R^{c}}$) only nontrivially act on R (R^{c}) and U_{R} acts on spins within distance $2dw$ from the boundary of R (Fig. 4). Entanglement between R and R^{c} is invariant under $U_{R}^{-1}U_{R^{c}}^{-1}$ and therefore $S(R)_{\rho}$ is equivalent to
where tensor A corresponds the edge and C is associated with the corner (Fig. 5). By tracing out R' and taking the α power, we obtain a matrix product operator (MPO) representation of ϕ_R'. Its trace is given by
\[
\text{tr} \phi_R'^{\alpha} = \text{tr} \left(\bar{T}_a^R \bar{T}_a^{R'} \bar{T}_a^R \bar{T}_a^{R'} \bar{T}_a^R \bar{T}_a^{R'} \right),
\]
where $\bar{T}_a := \sum A_i^{i_1} \otimes A_i^{i_2} \otimes \ldots \otimes A_i^{i_{l-1}}$ and T_a^R is defined by replacing A by C. Generically, we expect that \bar{T}_a has a unique maximum eigenvalue $\lambda_{\text{max}}(\alpha)$ yielding that
\[
\lambda_{\text{max}}(\alpha) \approx C + O(e^{-\varepsilon l})
\]
for a constant $C > 0$. From this expression we can calculate the area law for Renyi-α entropy as
\[
S_\alpha(R)_\rho = S_\alpha(R)_\phi = \frac{\log_2 \lambda_{\text{max}}(\alpha)}{\alpha - 1} l + C + O(e^{-\varepsilon l}),
\]
with C a constant proportional to the number of corners of the region.

This saturates the area law with a correction term that decays exponentially fast with respect to l for fixed α. Also, the coefficient of the linear term only depends on T and α.

The argument presented here does not apply to the von Neumann entropy, which is the case of relevance in our approach (since strong subadditivity only applies to it). But we believe that the correction ε in Eq. (1) should hold also in that case, although a proof is left to future work.

[1] X.-G. Wen, Vacuum degeneracy of chiral spin states in compactified space, Phys. Rev. B 40, 7387 (1989).
[2] X.-G. Wen and Q. Niu, Ground-state degeneracy of the fractional quantum Hall states in the presence of a random potential and on high-genus Riemann surfaces, Phys. Rev. B 41, 9377 (1990).
[3] A. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. 303, 2 (2003).
[4] M. A. Levin and X.-G. Wen, String-net condensation: A physical mechanism for topological phases, Phys. Rev. B 71, 045110 (2005).
[5] P. Hayden, D. W. Leung, and A. Winter, Aspects of generic entanglement, Commun. Math. Phys. 265, 95 (2006).
[6] A. Kitaev and J. Preskill, Topological Entanglement Entropy, Phys. Rev. Lett. 96, 110404 (2006).
[7] M. A. Levin and X.-G. Wen, Detecting Topological Order in a Ground State Wave Function, Phys. Rev. Lett. 96, 110405 (2006).
[8] S. Furukawa and G. Misguich, Topological entanglement entropy in the quantum dimer model on the triangular lattice, Phys. Rev. B 75, 214407 (2007).
[9] M. Haque, O. Zozulya, and K. Schoutens, Entanglement Entropy in Fermionic Laughlin States, Phys. Rev. Lett. 98, 060401 (2007).
[10] S. V. Isakov, M. B. Hastings, and R. G. Melko, Topological Entanglement Entropy of a Bose-Hubbard Spin Liquid, Nat. Phys. 7, 772 (2011).
[11] S. Depenbrock, I. P. McCulloch, and U. Schollwöck, Nature of the Spin-Liquid Ground State of the $s = 1/2$ Heisenberg Model on the Kagome Lattice, Phys. Rev. Lett. 109, 067201 (2012).
[21] E. H. Lieb and M. B. Ruskai, Proof of the strong subadditivity of quantum mechanical entropy, J. Math. Phys. 14, 1938 (1973).

[22] x is in $\Theta(l)$ if there exists $l_0 > 0$ such that there exist two constants $c, C > 0$ satisfying $cl \leq x \leq Cl$ for any $l \geq l_0$.

[23] K. Kato, F. Furrer, and M. Murao, Information-theoretical analysis of topological entanglement entropy and multipartite correlations, Phys. Rev. A 93, 022317 (2016).

[24] I. H. Kim, Determining the structure of the real-space entanglement spectrum from approximate conditional independence, Phys. Rev. B 87, 155120 (2013).

[25] A. Anshu, V. K. Devabathini and R. Jain, Quantum Communication Using Coherent Rejection Sampling, Phys. Rev. Lett. 119, 120506 (2017).

[26] S. Bravyi (unpublished).

[27] L. Zou and J. Haah, Spurious long-range entanglement and replica correlation length, Phys. Rev. B 94, 075151 (2016).

[28] Y. Zhang, T. Grover, A. Turner, M. Oshikawa, and A. Vishwanath, Quasiparticle statistics and braiding from ground-state entanglement, Phys. Rev. B 85, 235151 (2012).

[29] Z.-X. Luo, Y.-T. Hu, and Y.-S. Wu, Quantum entanglement in topological phases on a torus, Phys. Rev. B 94, 075126 (2016).

[30] A. Kitaev and L. Kong, Models for gapped boundaries and domain walls, Commun. Math. Phys. 313, 351 (2012).

[31] A. Uhlmann, The transition probability in the state space of a C*-algebra, Rep. Math. Phys. 9, 273 (1976).

[32] H. Wilming and J. Eisert, Single-shot holographic compression from the area law, arXiv:1809.10156.

[33] D. Pérez-García, M. M. Wolf, F. Verstraete, and J. I. Cirac, Matrix product state representations, Quantum Inf. Comput. 7, 301 (2007).

[34] K. Kato and F. G. S. L. Brandao, Quantum approximate Markov chains are thermal, arXiv:1609.06636 [Commun. Math. Phys. (to be published)].

[35] M. Ohya and D. Petz, Quantum Entropy and its Use, Theoretical and Mathematical Physics (Springer, Berlin, 2004).

[36] M. B. Hastings and X.-G. Wen, Quasiadiabatic continuation of quantum states: The stability of topological ground-state degeneracy and emergent gauge invariance, Phys. Rev. B 72, 045141 (2005).

[37] X. Chen, Z.-C. Gu, and X.-G. Wen, Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order, Phys. Rev. B 82, 155138 (2010).