Chapter 7
Surface-Modified Noble Metal Nanoparticles as Antimicrobial Agents: Biochemical, Molecular and Therapeutic Perspectives

Nabarun Chandra Das, Bishnupada Roy, Ritwik Patra, Abhigyan Choudhury, Madhureema Ghosh, and Suprabhat Mukherjee

Abstract Despite the progress of the development of antimicrobial therapeutics, the whole world is still under pressure of several microbial diseases. Antimicrobial drug development is therefore considered as one of the most practicable research works at present time. Even most of the pharmaceutical companies are investing to develop better therapeutic solutions against the life-threatening infectious diseases caused by Mycobacterium tuberculosis, Helicobacter pylori, Vibrio cholerae, Entamoeba histolytica, Plasmodium falciparum and many others. These microbial pathogens are not only a curse for human health but also a result in huge economic losses by affecting the health of economically important animals like poultry, cattle and other livestock. Considering the urgency, several effective antibiotics have been developed to combat microbial diseases and are available in the market. However, emergence of resistance against these drugs due to the maluses has created an alarming situation. In this scenario, the use of bioactive noble metal nanoparticles (silver, gold and platinum nanoparticles) has shown better therapeutic efficiency in terms of low treatment dose, less toxicity and absence of microbial resistance. Moreover, the use of several surface modifiers, coating and stabilizing agents resulted in enhancement of the bioactivity, rapid delivery and controlled drug release, improvement of biocompatibility and cytotoxicity. In this chapter, we have presented a comprehensive overview on the antimicrobial efficacy of noble metal nanoparticles along with the mechanistic insights behind their activity at the cellular and molecular level.
Keywords Noble metal nanoparticles · Antimicrobial activity · Drug delivery · Biocompatibility · Cytotoxicity

7.1 Introduction

The human healthcare industries throughout the world are facing tremendous challenges due to the increasing emergence of resistance in pathogenic bacteria, fungi and parasites against the conventional antimicrobial drugs. In particular, maluses of antimicrobial agents including inadequate dose and duration of treatment, long-term use as well as increasing environmental pollution are the major reasons (Sánchez-López et al. 2020). Moreover, an increasing number of deaths due to the infection of antibiotic-resistant pathogens are being reported almost every corner of the globe. Reports on new classes of resistance mechanism in life-threatening infectious pathogens, viz. *Mycobacterium tuberculosis*, *Helicobacter pylori*, *Vibrio cholerae*, *Entamoeba histolytica*, *Plasmodium falciparum* and many others, are continuously threatening mankind.

In this alarming situation, the exploration of noble metal nanoparticles has eventually come out as a boon for all. Bioactive nanoparticle itself or in combination with any antimicrobial drug can provide better intervention, especially against the drug-resistant pathogens (Dey et al. 2016; Chowdhury et al. 2018, 2020). Amongst the metal nanoparticles, silver (Ag), gold (Au) and platinum (Pt) are majorly explored for synthesizing therapeutic nanoparticles. These metal nanoparticles possess excellent antimicrobial activity and good penetration efficacy and exert a little or no toxic side effects on nontargeted cells and tissues (Dey et al. 2016; Chowdhury et al. 2018, 2020; Aziz et al. 2019; Inamuddin et al. 2021).

Another interesting feature in designing bioactive nanoparticles is appropriate surface modification. These metal nanoparticles (mainly Ag, Au) are usually functionalized with a variety of functional groups, such as polysaccharides, peptides, antibodies, RNA and DNA to promote their biomedical applications (Lee et al. 2020). Surface modification on metal nanoparticles provides several significant advantages. First, the modification provides an opportunity to stabilize nanoparticles against agglomeration. Second, it helps empower their self-organization, and, third, it creates interest to offer compatibility with others (Viswanathan et al. 2019). The clinical advantages achieved after surface modification are mentioned as good antimicrobial effect, high bioactivity, good cell growth and increased fatigue power (Izman et al. 2012). The organic ligands such as polysaccharides, peptides, amino acids, proteins, etc. are also considered as one of the good methods of surface modification to achieve the better outcomes. The organic groups are adequate to keep nanoparticles against accumulation; functional groups on nanoparticles surface may permit careful interaction of molecules with metal nanoparticles. The detailed working mechanisms of all these methods are explained previously in literature by many research groups such as Kango et al. (2013), Roy et al. (2014), Asri et al.
Surface-Modified Noble Metal Nanoparticles as Antimicrobial Agents:...

(2017), Chowdhury et al. (2018), Qi et al. (2017), Mozetič (2019), Oun et al. (2020) and Liu et al. (2020). Hitherto, surface-modified AgNPs and AuNPs have been successfully explored as efficient antimicrobial and anticancer agents, drug and gene delivery vehicles, radiotherapy enhancement agents, important component in diagnostic assays and imaging, and many other healthcare sectors (Zhang et al. 2016; Lee and Jun 2019; Prasad et al. 2016; Aziz et al. 2019). The surface properties of newly synthesized nanoparticles remain insufficient many times in terms of low biocompatibility, toxicity and weak adhesion properties. Therefore, proper fabrication approach and selection of appropriate surface-modifying/surface-capping agent is considered as key prior to aim any kind of practical applications.

There are many reported metallic (noble and non-noble) and nonmetallic antimicrobial agents available, but many of them are found toxic to most of the living organisms. Therefore, to overcome this problem, different inorganic and metal-based antibacterial agents with sustainability, enhanced stability and biocompatibility are synthesized under strict processing conditions (Rajawat and Qureshi 2012; Hossain et al. 2015; Vijayakumari et al. 2019). Currently, Ag and Au are the major metallic-based nanoparticles utilized as antibacterial agents because of their long-term stability and excellent biocompatibility. Studies have proved that metal-based nanoparticles show biocidal activity against Gram-negative and Gram-positive bacteria (Roy et al. 2014; Franci et al. 2015; Chiriac et al. 2016; Rajeshkumar et al. 2016; Wang et al. 2017; Ovais et al. 2019; Chowdhury et al. 2020). The antimicrobial effects of metal nanoparticles have been attributed to their nano-size and high surface-area-to-volume ratio, which permits them to penetrate the bacterial membranes (Prasad and Swamy 2013; Aziz et al. 2014, 2015, 2016). The mechanisms of antibacterial effect of metallic nanoparticles are metal ion release, oxidative stress and non-oxidative-based stress existing instantaneously. These nanoparticles can serve only when nanoparticles interact with microbe’s cell walls; several approaches for the contact of microbes with the nanoparticles were used such as van der Waals forces, electrostatic attraction, receptor/ligand and hydrophobic interactions. After successful contact, metallic nanoparticles can pass through inner membranes, interact with metabolic paths and induce variations in membrane morphology. Once nanoparticles interact with microbes inside cellular machinery, it acts to prevent enzyme functions, disable proteins and electrolyte imbalance, induce oxidative stress and change gene expression scale (Vijayakumari et al. 2019). However, excessive quantity of microbes produces barrier that resists antimicrobial mediators and microbes avoiding the resistant system by forming superantigens. The extracellular polymeric secretion also produces everlasting attachment of microbes. In this chapter, we have presented a comprehensive overview on the therapeutic efficacy of noble metal nanoparticles against pathogenic microbes with a special emphasis on the mechanistic insights of their action at the biochemical, cellular and molecular level.
7.2 Chemistry of Noble Metal Nanoparticles

7.2.1 Design, Synthesis and Characterization

The work efficiency of noble metal nanoparticles mostly depends on the size of the nanoparticle and the stabilizing or capping or surface-modifying agents associated with it. The surface-modified nanomaterials should have biocompatibility to be useful for clinical purpose because without biocompatibility it cannot access the living cells. In addition to that, the synthesis procedure should be green in keeping the concern regarding environment in mind. There are two procedures for the synthesis of nanomaterial, i.e., top-down and bottom-up. Top-down is the scaling down of bulk material to the nano one by some mechanical process, and the bottom-up approach follows the reverse path. The process used in laboratories is the bottom-up approach. In this process, suitable bulk material containing the noble metal is reduced by a reducing agent and then scaled up to the nano one. A suitable capping agent is required here (Fig. 7.1). The efficiency of the capping material is very much important as it determines the size of the nanoparticles by stopping agglomeration to bulk. Chowdhury et al. (2018) presented the change in size distribution of AuNPs by using different polymeric (e.g., chitosan) and non-polymeric (e.g., tyrosine) substances as capping agents. The reduction procedure converting Ag⁺ to Ag⁰ also involves some amount of heat. Depending on the medium, reducing and capping

Fig. 7.1 Biosynthesis of noble metal nanoparticles, surface modification and its applications
agent, requirement of heat varies. Roy et al. (2014) showed the varying yield of nanoparticles depending on the source of heat.

Various inorganic and organic reducing and capping or surface-modifying agents are available globally. Some commonly used reducing agent are sodium borohydride, β-D-glucose, starch, negatively charged heparin, saccharides, polyoxometalates, bamboo hemicelluloses, sodium citrate, ascorbic acid, potassium bitartrate, maltose, etc. On the other side, surface-modifying agents are organic thiol compounds, surfactants, long-chain amine, carboxylates, starch, gum Arabic, gelatin, carboxymethyl cellulose, hydrogels, etc. (Roy et al. 2014; Dey et al. 2015, 2016).

But keeping the environmental concern in mind, the protocol for synthesizing surface-modified noble metal nanoparticles should be so designed that the solution medium, reducing agent and heating procedure, remains environment-friendly, i.e., green synthesis procedure should be adapted complying with 12 fundamental principles of green chemistry which focuses on minimization or total elimination of generated hazardous waste and maximization of the efficiency of chemical processes without compromising the safety concern of the products (Roy et al. 2014).

In recent times, studies conducted by Roy et al. (2014) and Chowdhury et al. (2018, 2020) showed that surface-modified AgNPs and AuNPs synthesized through green route are very much efficient in exerting lethal action on microbes including Gram-positive and Gram-negative bacteria, pathogenic fungus (Pichia guilliermondii) as well as parasite (microfilaria of Setaria cervi). Noble metal nanoparticles produced from the microbes have also been used for antimicrobial purpose against pathogenic organisms. For example, Ag nanoparticles synthesized from Bhargavaea indica, Brevibacterium frigoritolerans and Sporosarcina koreensis exhibited antimicrobial properties against Salmonella enterica, Vibrio parahaemolyticus, B. cereus, Bacillus anthracis and E. coli (Singh et al. 2016). Similarly, bowl-shaped AgNPs synthesized by Bacillus subtilis have been shown to possess excellent antibacterial, antifungal and antifilarial activities (Dey et al. 2016).

For characterization of nanomaterials, a lot of methods are available. The first-hand information about the formation of nanoparticles can be obtained from the signature peak UV-visible spectroscopy. To obtain the size and structure, transmission electron microscopy (TEM) is used. Scanning electron microscope (SEM) gives the information about the surface topology and shape of the material, while dynamic light scattering (DLS) gives the size distribution of the nanomaterial. The zeta potential study tells us about the stability of the nanoparticles. If the potential is more than +30V or less than −30V, then the nanoparticles is highly stable (Roy et al. 2014; Chowdhury et al. 2018, 2020). X-ray diffraction and Fourier transform infrared spectrometry are used to study the interaction between the nanoparticles and capping/surface-modifying agents. Spectrofluorometer is used to study luminescent nanoparticles. Herein, we have included a representative figure (Fig. 7.2) containing most of the commonly used characterization data for surface (chitosan)-modified AuNP (named as GC).
Fig. 7.2 Major characterization techniques for surface-modified noble metal nanoparticles. (A) UV-visible spectroscopic analysis. (B) TEM micrograph. (C) SEM study. (D) DLS study. (E) Zeta pot study
Since 1928, the discovery of antibiotics in medical science has brought an epoch, but the use of metals from the historic age has been helping us keep our body healthy. Metals have been found to be used as water disinfectant, food preserver, surgical wound healer as well as in treatment of leprosy, tuberculosis, gonorrhea and syphilis; metals have several satisfactory aspects (Lemire et al. 2013). Metals have numerous beneficial roles in maintaining our health but have limited use as antimicrobial therapeutics. Regarding the reports of drug resistance as well as lack of new antibiotics, researchers have found to turn their works towards metals to develop antimicrobials. There are several antimicrobial agents like ammonium compound, N-halamine siloxanes and heterocyclic compounds. However, these molecules possess low efficiency along with toxic effects on the living organism as well as environment, and most importantly nontargeted actions made those agents as out-listed (Shahid-ul-Islam et al. 2016). In this context, the use of nanoparticles of silver, gold and platinum are found to reflect potent antimicrobial activity along with low toxicity to human cells, long-term durability and improved biocompatibility. The effectiveness of these nanoparticles is accredited to its composition and surface properties (Ugru et al. 2018). In this section, we have discussed about different facets of nanoparticle-microbe interaction with a special emphasis on AgNPs and AuNPs.

7.3.1 Interaction of AgNPs with Pathogenic Microbes and Their Antimicrobial Effect

Beside various successful histories in textile, food storing and environmental programmes (Wijnhoven et al. 2009), AgNPs with its broad-spectrum antimicrobial activity against bacteria, virus, fungi and parasites prove their ‘oligodynamic property’ (Gaiser et al. 2009). One of the fascinating features of AgNP is its affinity and capacity of attachment with the microbial membrane/surface. AgNPs can be easily attached with the bacterial cell wall due to the presence of carboxyl, phosphate and amino groups (Abbaszadegan et al. 2015). In this regard, it has been evidenced that Gram-positive bacteria are less susceptible than that of Gram-negative (Malanovic and Lohner 2016). Phagocytosis and passive diffusion are the two main ways for the AgNPs to enter inside the bacterial cell (AshaRani et al. 2009; Carlson et al. 2008). In addition, it has been reported that AgNP also exploits the copper transport system (CTR) to enter the bacterial cell (Ghandour et al. 1988). The cytotoxic effects of the AgNPs are majorly imparted through the damage of membrane structure, leakage of cellular components (specially cytoplasm), DNA damage, inhibition of respiratory chain and collapsing protein motive force (Bragg and Rainnie 1974; Sondi and Salopek-Sondi 2004; Morones et al. 2005; Prasad et al. 2011, 2012; Swamy and Prasad 2012). Size is an important criterion in the bioactivity and biocompatibility of
AgNP. The study of Morones et al. (2005) revealed that AgNPs of 1–10 nm can efficiently bind to the surface of E. coli, V. cholera, S. typhus and P. aeruginosa and impart lethal action on these bacteria. Beside size, the shape of AgNPs is also known to play a crucial role in exerting microbicidal activity. Truncated triangular shape and sharp-edge triangular shape show better result over spherical and rod shaped (Pal et al. 2007; Dong et al. 2012). On the other hand, hydrogel-capped hexagonal and bowl-shaped AgNPs also have been documented for higher bioactivity against both Gram-positive and Gram-negative bacteria at a very low dose (Dey et al. 2015, 2016).

Interaction with cell membrane following induction of lipid peroxidation (LPO) is considered as a principal attribute in bioactive AgNPs. AgNP-induced LPO is usually diagnosed by estimating malondialdehyde, the end product of LPO (Chowdhury et al. 2020). Free radicals generated from LPO further enters into the chain reaction to generate more reactive oxygen species (ROS) that collectively induce oxidative stress leading to death of the microbial cells (Hwang et al. 2008; Kora and Arunachalam 2011; Saha et al. 2016). This postulation has been experimentally shown in AgNP-induced growth inhibition of E. coli (Hwang et al. 2008) and P. aeruginosa (Kora and Arunachalam 2011). Sulphur affinity is also an important characteristic of AgNPs which also facilitates its binding with the membrane proteins (Roy et al. 2019).

Beside antibacterial activities, AgNPs also found to inhibit viral growth using varieties of ways. PVP-coated AgNPs of 1–10 nm size have a potent antiviral effect in inducing interaction with envelope glycoprotein gp120 against HIV-1 (Lara et al. 2010a), while HSV-1 was found to be inhibited by MES (mercaptoethane sulfonate)-coated silver NPs (Baram-Pinto et al. 2009). Besides these, poxvirus, hepatitis B virus and influenza viruses were also found to be repressed by AgNPs (Rogers et al. 2008; Papp et al. 2010; Lu et al. 2008).

Several groups of protozoa have also been demonstrated as the targets for AgNPs. Plasmodium falciparum, the causative protozoan for malaria also found to be controlled by several silver nanoformulations with a significant efficacy in culture condition (Rai et al. 2017). In addition, surface-modified AgNPs are also capable of killing larvae of mosquitoes in terms of combat malaria (Saha et al. 2016).

Interestingly, AgNPs also interact with the various extracellular and cellular components of microfilaria (microscopic larval form of filarial parasites). In recent past, surface-modified green AgNPs have been found as extremely potent antifilarial agents. For example, AgNPs capped with chitosan, polyvinyl alcohol and hydrogel have been documented to interact with the cell membrane, induce ROS generation and lead to death of the microfilaria (Saha et al. 2014, 2016). In addition, lipid-coated AgNPs have been shown to possess anti-Wolbachian activity to reduce microfilarial growth (Ali et al. 2013). Wolbachia is an endosymbiotic bacterium that controls many important physiological functions of the filarial parasite (Mukherjee et al. 2018).

Nevertheless, AgNPs with exposed coating show a significant oligodynamic effect, but graphene oxide-silver NP composite (Ag-GO)-coated nanoplatform exert a more stronger effect as antimicrobial along with low side effects (Ghosh...
et al. 2019). The study of Wierzbicki et al. (2019) disclosed a higher effectivity of Ag-GO over *E. coli*, *S. aureus* and *Staphylococcus epidermidis* than AgNPs. GO sheets are decorated on AgNPs via thiol groups which provide effective results against both Gram-negative and Gram-positive bacteria. While chitosan-capped AgNPs were also found as both antibacterial and antifungal when treated against *E. coli* and *P. guilliermondii* (Roy et al. 2014), there are also several synergistic applications of AgNPs and antibiotics with satisfactory outcomes. Surface modification of AgNPs with amoxicillin (Kirthi et al. 2019), cephradine (Masri et al. 2018), streptomycin (Kora and Rastogi 2013), ampicillin (Tippayawat et al. 2017), vancomycin and amikacin (Kaur and Kumar 2019) has reflected better efficacy than separate use of antibiotics or AgNPs against bacterial pathogens, viz. *S. aureus*, *C. albicans*, *Acinetobacter baumannii*, *Enterococcus faecalis*, *Mycobacterium tuberculosis* and *E. coli*, respectively. Recently conjugation of AgNPs with various antibiotics and anthelmintics has been reported to provide better therapeutic efficiency (Dey et al. 2016). Therapeutic potential of AgNPs including their interactions with different microbes as well as their molecular targets have been presented in Table 7.1.

7.3.2 AuNP-Microbe Interaction and Antimicrobial Effect of AuNPs

The use of gold nanoparticles (AuNPs) are highly advantageous in diagnosis (e.g., microscopy) and treatment of human diseases including microbial infection due to its ability to scatter light in visible light regions and relative nontoxic nature (Khan et al. 2014). Besides that, potency to detoxify pollutants along with uses in formulation of biosensors and disease markers makes it more precious (Dykman and Khlebtsov 2011; Lopez et al. 2004). Antimicrobial activity of the gold complexes is a century-old discovery (Glišić and Djuran 2014). Various studies have pointed out that nanoparticles or formulation formed of gold produce different outcomes that depend on the characteristics of the formulation. First of all, the size that majorly influences the bioactivity (Brayner et al. 2006): the smaller one resembles greater toxicity than the larger one (Lin et al. 2013) and also achieves better permeation through the microbial membrane (Lopez-Chaves et al. 2018). A study by Ahmad et al. (2013) distinctly envisioned the differences between 7 nm and 15 nm AuNPs in inhibiting *Candida* sp., whereas other studies also found to indicate same story between 15 and 35 nm AuNPs (AshaRani et al. 2011; Chen et al. 2013a, b). Regarding the shape of AuNPs, diverse opinions have been reported in the context of the antimicrobial effects of AuNPs. Few studies have demonstrated spherical AuNPs as more toxic than rod-shaped, while non-spherical AuNPs have also demonstrated better toxicity (Liu et al. 2018). A study by Sultana et al. (2015) showed that the toxicity of flower-shaped AuNPs is more efficacious than the spherical ones. However, the toxicity of AuNPs not only depends on size and...
Reducing agent	Surface modification	Size and shape	Therapeutic applications	References
Peel extract of *Carica papaya*	–	10–35 nm and spherical	Against Gram-negative bacteria: *Escherichia coli* and *Klebsiella pneumonia*	Kokila et al. (2016)
			Against Gram-positive bacteria: *Staphylococcus aureus* and *Bacillus subtilis*	
Tuber extract of *Curcuma longa*	–	18 ± 0.56 nm and spherical	Against Gram-negative bacteria: *E. coli* O157:H7	Alsamarraie et al. (2018)
			Against Gram-positive bacteria: *Listeria monocytogenes*	
Fruit extract of *Tamarind indica*	–	10 nm and spherical	Against Gram-negative bacteria: *K. pneumonia*, *Salmonella typhi*, *E. coli* and *Pseudomonas aeruginosa*	Jayaprakash et al. (2017)
			Against Gram-positive bacteria: *B. subtilis*, *S. aureus*, *Micrococcus luteus* and *Bacillus cereus*	
Fruit extract of *Carambola sp.*	–	10–40 nm and spherical	Against Gram-negative bacteria: *E. coli* and *P. aeruginosa*	Gavade et al. (2015)
Leaf extract of *Azadirachta indica*	–	5–20 nm, spherical	Against Gram-negative bacteria: *E. coli*	Ahmed et al. (2016a)
			Against Gram-positive bacteria: *S. aureus*	
Leaf extract of *Ocimum sanctum*	–	12–16 nm and spherical	Against Gram-negative bacteria	Jain and Mehata (2017)
Leaf extract of *Eriobotrya japonica*	–	20 nm and spherical	Against Gram-negative bacteria: *E. coli*	Rao and Tang (2017)
			Against Gram-positive bacteria: *S. aureus*	
Leaf extract of *Lantana camara*	–	410–450 nm and spherical	Against Gram-negative bacteria: *E. coli* and *P. aeruginosa*	Shrinivas and Subhash (2017)
			Against Gram-positive bacteria: *S. aureus*	
Extract of *Caulerpa racemosa* marine algae	–	5–25 nm, spherical and triangular	Against Gram-negative bacteria: *Proteus mirabilis*	Kathiraven et al. (2015)
			Against Gram-positive bacteria: *S. aureus*	
Fungal biomass of Penicillium polonicum (ARA 10)	Neethu et al. (2018)	10–15 nm, spherical and oval	Against Gram-negative bacteria: Salmonella enterica serovar Typhimurium, P. aeruginosa and K. pneumoniae, and Staphylococcus epidermidis	Against Gram-positive bacteria: S. aureus and P. breviscompactum
Fungal biomass of Phanerochaete chrysosporium (MTCC-787)	Saravanan et al. (2018)	34–90 nm, spherical and oval	Against Gram-negative bacteria: E. coli, and P. aeruginosa	Against Gram-positive bacteria: S. aureus and S. epidermidis
Fungal biomass of Trichoderma longibrachiatum	Elmasi et al. (2018)	Variable size and spherical	Against Gram-negative bacteria: E. coli, and Acinetobacter baumannii	Against Gram-positive bacteria: S. aureus
Mycelial cell filtrate of Aspergillus brasiliensis	Omran et al. (2018)	6–21 nm and spherical	Against Gram-negative bacteria: E. coli, and P. aeruginosa	Against Gram-positive bacteria: S. aureus
Cell-free supernatant of Pseudomonas aeruginosa (ATCC27853)	Quinteros et al. (2016)	6–21 nm and spherical	Against Gram-negative bacteria: E. coli, and P. aeruginosa	Against Gram-positive bacteria: S. aureus
Mycelial cell filtrate of Trichoderma atroviride (KNIP001)	Kumar et al. (2018)	25–45 nm and spherical	Against Gram-negative bacteria: E. coli, and P. aeruginosa	Against Gram-positive bacteria: S. aureus
Tyrosine Chitosan capped	Roy et al. (2014)	13–22 nm and spherical	Against Gram-negative bacteria: E. coli, and P. aeruginosa	Against fungi: Pichia guilliermondii, and Microthrix of Setaria cervi
Tyrosine Polyvinyl alcohol capped	Saha et al. (2014)	13–15 nm	Against Gram-negative bacteria: E. coli, and P. aeruginosa	Against fungi: C. albicans
Sodium 2-mercaptoethanesulfonate (MES)-capped	Baram-Pinto et al. (2009)	4 nm	Against Human immunodeficiency virus type 1 (HIV-1)	Against Human immunodeficiency virus type 1 (HIV-1)
poly-N-vinyl-2-pyrrolidone (PVP) capped	Lara et al. (2010a)	1–10 nm	–	–
Reducing agent	Surface modification	Size and shape	Therapeutic applications	References
----------------	----------------------	----------------	--------------------------	------------
–	DNA-hydrogel capped and SHGel capped	20 nm and bowl shaped	Against Gram-negative bacteria, *E. coli* Against Gram-positive bacteria, *B. subtilis* Against fungi *P. guilliermondii* Against microfilaria of *S. cervi*	Dey et al. (2016)
–	GOSHGel capped	5 nm	Against Gram-negative bacteria, *E. coli* Against Gram-positive bacteria, *B. subtilis* Against fungi *P. guilliermondii*	Ghosh et al. (2019)
–	Ag-GO composite coated	Spherical	Against Gram-negative bacteria, *Salmonella enteritidis*	Wierzbicki et al. (2019)
Sodium borohydride (NaBH₄)	Citrate, SDS and PVP capped	21–70 nm and spherical	Increase activity of streptomycin, ampicillin and tetracycline in killing bacteria	Kora and Rastogi (2013)
Sodium borohydride (NaBH₄)	Cephradine-conjugated silver nanoparticles (Ceph-AgNPs) and vildagliptin-conjugated silver nanoparticles (Vgt-AgNPs)	30–80 nm and spherical	Against Gram-negative bacteria, *E. coli* K1, *P. aeruginosa*, *K. pneumonia*	Masri et al. (2018)
Sodium borohydride (NaBH₄)	PVP, vancomycin and amikacin capped	5–35 nm and spherical	Against Gram-negative bacteria, *E. coli* Against Gram-positive bacteria, *S. aureus*	Kaur and Kumar 2019
Ethylene glycol	PVP coated	25 ± 4 nm and spherical	Against Gram-negative bacteria, *E. coli* Against Gram positive bacteria, *S. aureus*	Wang et al. (2016)
D-Maltose	D-Maltose coated	86.81 ± 13.39 nm	Against Gram-negative bacteria, *E. coli* Against Gram-positive bacteria, *S. aureus*	Tippayawat et al. (2017)
Sodium hydroxide	Amoxicillin coated	35.50 nm, spherical and oval	Against Gram-negative bacteria, *E. coli*	Kirthi et al. (2019)
shape but also on the surface chemistry, especially coating types and properties of the particles. According to Freese et al. (2012), AuNP coated with ethanediamine showed a better result in internalization of the particles inside the target cells. AuNP conjugated with different drugs have found to confer better delivery and treatment outcome. For example, AuNP-kanamycin complex applied against *S. epidermidis* and *Enterobacter aerogenes* revealed a very significant efficacy (Payne et al. 2016).

On the other side, improved efficiency of levofloxacin against *S. aureus*, *P. aeruginosa* and *E. coli* has been reported after conjugating with AuNPs (Bagga et al. 2017). Similarly, gallic acid-AuNP conjugate has been found effective against pathogenic bacteria like *Shigella flexneri* and *Plesiomonas shigelloides* (Rattanata et al. 2016). AuNPs of 4 nm size with sodium 2-mercaptoethanesulfonate (MES) was reported to be lethal against virus HSV-1 (Baram-Pinto et al. 2010), while AuNPs coated with amphiphilic sulphate-ended ligand can inhibit growth of HIV-1 (Di Gianvincenzo et al. 2010).

AuNPs are also effective against protozoan and helminth parasites. In this connection, antileishmanial activity of AuNP with 30 nm size found to cause around 75% inhibition of the parasite count which indicates towards the potency of this nanoformulation in pharmaceutical industries (Ahmad et al. 2016). AuNPs in single or in conjugated with indolicidin (a short 13-residue antimicrobial and cytolytic peptide) have several successful applications against fungal growth (Ahmad et al. 2013; Rahimi et al. 2019). Alike AgNPs, surface modification also plays a critical role in regulating the bioactivities and biocompatibility of AuNPs. Recent studies by Chowdhury et al. (2018, 2020) revealed chitosan-coated AuNPs as excellent antimicrobial agent displaying lethal effects on bacteria, fungus and microfilaria at a relatively lower dose than that of uncapped AuNPs. Moreover, surface modification with chitosan also found to enhance the stability and biocompatibility of the AuNPs (Chowdhury et al. 2018, 2020).

AuNPs have been found to execute better performance in delivering drug with hampering the physiological homeostasis. CHrPfs25 (codon-harmonized recombinant Pfs25, a *Plasmodium falciparum* protein used as vaccine antigen) when delivered in conjugation with AuNPs induces the expression of malaria transmission-blocking antibodies (Kumar et al. 2015). As a delivery vehicle, AuNP is not only restricted within the delivery of drugs, but also it has been found suitable to deliver proteins, genes and vaccines (Kong et al. 2017). In order to develop antimicrobial activity, internalization, i.e., cellular uptake of the AuNPs, is the primary criterion, and it is usually achieved by the attachment to the cell surface following clathrin-mediated endocytosis, non-specific endocytosis and phagocytosis (Mironava et al. 2010). Interaction of AuNPs with microbial cell membrane resulting in distortion of the membrane architecture (Huo et al. 2016; Rattanata et al. 2016) that finally leads to leakage of the cellular components (Payne et al. 2016). Inhibition of microbial growth also found to be mediated by blocking the H⁺-ATPase proton pumping (Wani et al. 2013) along with enhancing yield of ROS (Roy et al. 2018; Chowdhury et al. 2018). The study of Ahmad et al. (2015) showed how AuNP helps in elevating the number of ROS and in due time destroying cellular components to finally kill *Leishmania*. Moreover, AuNPs also can destroy transmembrane
Reducing agent	Surface modification	Size and shape	Therapeutic applications	References
Fruit extract of *Punica granatum*	–	5–17 nm, spherical and triangular	Against Gram-negative bacteria like *Salmonella typhi*, *Vibrio cholerae* and *Pseudomonas aeruginosa*	
Against Gram-positive bacteria, *Staphylococcus aureus*				
Against fungi *Aspergillus flavus* and *Candida albicans*	Lokina et al. (2014)			
Fruit extract of *Solanum lycopersicum*	–	14 nm, diverse	Against Gram-negative bacteria, *P. aeruginosa*	
Against Gram-positive bacteria, *S. aureus*	Bindhu and Umadevi (2014)			
Nuts extract of *Areca catechu*	–	13.7 nm and spherical	Against Gram-negative bacteria, *Escherichia coli*, *Klebsiella pneumonia*, *Enterobacter* and *P. aeruginosa*	
Against Gram-positive bacteria, *S. aureus*	Rajan et al. (2015)			
Flowers of *Plumeria alba*	–	28 ± 5.6–15.6 ± 3.4 and spherical	Against Gram-negative bacteria, *E. coli*	Mata et al. (2016)
Root extract of *Trianthema decandra*	–	33–99 nm and triangular	Against Gram-negative bacteria, *E. coli*, *Proteus vulgaris*, *Yersinia enterocolitica* and *P. aeruginosa*	
Against Gram-positive bacteria, *B. subtilis*				
Against fungi, *C. albicans*	Geethalakshmi and Sarada (2013)			
Root extract of *Mammea suriga*	–	22–50 nm and square	Against Gram-negative bacteria, *E. coli* and *P. aeruginosa*	
Against Gram-positive bacteria, *B. subtilis* and *S. aureus*	Poojary et al. (2016)			
Leaf extract of *Euphorbia hirta* L.	–	6–71 nm and spherical	Against Gram-negative bacteria, *E. coli*, *K. pneumonia* and *P. aeruginosa*	Annamalai et al. (2013)
Leaf extract of *Solanum nigrum*	–	32 ± 6 nm and spherical	Against Gram-negative bacteria, *E. coli* and *P. aeruginosa*	Muthuvel et al. (2014)
Source of Nanoparticles	Particle Size/Shape	Antimicrobial Activity	Reference	
---	---	---	---	---
Shell extract of *Chenopodium formosanum*	8 ± 6 nm and spherical	Against Gram-negative bacteria, *E. coli* and *Staphylococcus saprophyticus*	Chen et al. (2019)	
Aerial parts of *Rivea hypocrateriformis*	10–50 nm and spherical	Against Gram-negative bacteria, *E. coli*, *P. aeruginosa*, and *K. pneumonia*; Against Gram-positive bacteria, *S. aureus* and *B. subtilis*	Godipurge et al. (2016)	
Rhizome extract of *Acorus calamus*	Lesser than 100 nm and spherical	Against Gram-negative bacteria, *E. coli* and *S. aureus*	Ganesan and Gurumallesh Prabu (2019)	
Stem extract of *Hibiscus cannabinus*	13 nm and spherical	Against Gram-negative bacteria, *P. aeruginosa* and *S. aureus*	Bindhu et al. (2014)	
Stem extract of *Maytenus royleanus*	30 nm and hexagonal	Against parasite *Leishmania* sp.	Ahmad et al. (2015)	
Sclerotial extract of *Lignosus rhinocerotis*	10–25 nm, variable shape	Against Gram-negative bacteria, *P. aeruginosa* and *S. aureus*	Katas et al. (2019)	
Sodium citrate	Kanamycin capped	20 ± 5 nm and spherical	Payne et al. (2016)	
–	Bromelain capped and levofoxacin conjugated	38.11 ± 2 nm	Bagga et al. (2016)	
–	Human serum albumin and levofoxacin conjugated	27.2 ± 1 nm	Bagga et al. (2017)	
–	Indolicidin conjugated	30 nm and spherical	Rahimi et al. (2019)	
Reducing agent	Surface modification	Size and shape	Therapeutic applications	References
----------------	----------------------	----------------	--------------------------	------------
Sodium borohydride (NaBH₄)	Sulphate-ended ligand coated	variable	Against human immunodeficiency virus (HIV)	Di Gianvincenzo et al. (2010)
Sodium borohydride (NaBH₄)	Amoxicillin coated	79 ± 43 nm	Against Gram-positive bacteria, *S. aureus*	Silvero et al. (2018)
–	Sodium 2-mercaptoethanesulfonate (MES) capped	4 nm	Against *Herpes simplex virus type 1* (HSV-1)	Baram-Pinto et al. (2010)
–	Galic acid conjugated	17 nm	Against Gram-negative bacteria, *Shigella flexneri* and *Plesiomonas shigelloides*	Ratanata et al. (2016)
Essential oil of *Nigella sativa* (NsEO)	NsEO coated	15.6 to 28.4 nm and spherical	Against Gram-positive bacteria, *S. aureus*	Manju et al. (2016)
Dextran	Dextran coated	22 ± 3 nm	Against Gram-negative bacteria, *E. coli*	Nath et al. (2008)
Piper nigrum extract	Chitosan capped	1–10 nm	Against microfilaria of *Setaria cervi*	Saha et al. (2017)
Terminalia chebula extract	Chitosan capped	10 nm	Against microfilaria of *Wuchereria bancrofti* and *S. cervi*	Roy et al. (2018)
Chitosan	Chitosan functionalized	10–50 nm	Against microfilaria of *S. cervi*	Chowdhury et al. (2018)
electrostatic efflux (Li et al. 2010) to execute their antimicrobial activities. Herein, Table 7.2 describes the composition and antimicrobial effects of the AuNPs available till date.

7.3.3 Antimicrobial Effect of PtNPs

The novel nano-tool PtNP is now in top of interest. Platinum is now being used extensively in automotive and chemical industries to develop catalytic convertor and new chemical compounds (Shi et al. 2015). For instance, platinum is also found to use in generating eco-friendly energy sources (Madsen et al. 2011). Beside of all these, several reports have also highlighted that platinum is also beneficial for pharmaceutical industries as platinum has activity in producing bio-imaging, detecting biological molecules and modulating nanomedicine (Tanaka et al. 2011; Moglianianni et al. 2016; Rao et al. 2016). Several physical and physio-chemical properties like, size, shape, surface structure and capping agent along with the dispersion state and stability help optimize and finally lead to formulate the desired PtNPs with specific target-based activity. However antibacterial activity of the platinum first came in public in 1965 (Pedone et al. 2017), but antimicrobial activity of the nanostructured platinum has not been explored yet. PVP-conjugated PtNPs with 1 to 3 nm size have been reported as effective against the bacterium, *P. aeruginosa* (Gopal et al. 2013). In another study, pectin-capped PtNPs showed an efficacy against both Gram-positive and Gram-negative bacteria (Pedone et al. 2017). Green synthesis of PtNPs using *Garcinia mangostana* fruit extract also found as successful in inhibiting the growth of various bacteria like *P. aeruginosa, K. pneumonia, B. subtilis* and *S. aureus* (Nishanthi et al. 2019). There are limited number of reports published yet, but effective radical-scavenging property will make PtNP as the most success nanomedicine in the upcoming future. However, the use of PtNP as biomedicine is still in contradictory stage. Antimicrobial activities of PtNPs alongside their interactions of with different microbes based on the available reports are listed in Table 7.3.

7.4 Intracellular and Intercellular Targeted Delivery of Nanoparticles

The intracellular and intercellular delivery of nanoparticles is the most important aspect in the development of therapeutic nanoparticles for various applications like its use as antimicrobial and immunomodulatory drugs, anticancer agents, cellular modulators and nanodevices for studying cell organelles (Paulo et al. 2011; Prasad et al. 2017). The development of smart noble nanoparticles requires appropriate surface modifications which facilitate the use of the nanoparticles directly as
Table 7.3 Therapeutic applications of PtNPs as an antimicrobial agent

Reducing agent	Surface modification	Size and shape	Therapeutic applications	References
Polyaniline and Ag-Pt bimetallic colloidal	--	2–3 nm	Against Gram-positive bacteria: *S. aureus* and *Streptococcus* sp.	Boomi et al. (2013)
Extract of seaweed *Padina gymnospora*	--	25 nm, truncated, octahedral, tetrahe-	Against Gram-negative bacteria: *Escherichia coli*, *Salmonella typhi* and *Klebsiella pneumonia*	Ramkumar et al. (2017)
		dral and spherical	Against Gram-positive bacteria: *Staphylococcus aureus*, *Streptococcus pneumoniae*, *Lactococcus lactis* and *Streptococcus* mutants	
Fruit extract of *Garcinia mangostana*	--	20–25 nm and spherical	Against Gram-negative bacteria: *P. aeruginosa* and *K. pneumonia*	Nishanthi et al. (2019)
			Against Gram-positive bacteria: *B. subtilis* and *S. aureus*	
Hexachloroplatinate and apigenin	--	1–2 nm and spherical	Against Gram-negative bacteria: *P. aeruginosa*	Gurunathan et al. (2019)
Sodium hydroxide	PVP	1–3 nm, sphere, cuboids and flower shaped	Against Gram-negative bacteria: *P. aeruginosa*	Gopal et al. (2013)
Sodium borohydride (NaBH₄)	Pectin capped	2–5 nm	Against Gram-negative bacteria: *Escherichia coli* and *P. aeruginosa*	Ahmed et al. (2016b)
			Against Gram-positive bacteria: *B. subtilis* and *S. aureus*	
Plant extract of *Taraxacum laevigatum*	Phytochemicals capped	2–7 nm, spherical	Against Gram-negative bacteria: *Pseudomonas aeruginosa*	Tahir et al. (2017)

(continued)
therapeutics and/or cargo for the drugs (Karimi et al. 2016). In order to deliver the therapeutics to different intracellular cellular targets, internalization of AgNPs/AuNPs involves binding with the membrane receptors leading to receptor-mediated endocytosis (Panzarini et al. 2018). In addition, indirect incorporation through hydrophobic and electrostatic interaction with phospholipid bilayer has also been reported (Chou et al. 2011). Upon entering the cytoplasm, the mobility of the ingested nanoparticles depends on the size and biological interactions with the various organic and inorganic constituents of cytoplasm and targeted organelles. In this context, peptide conjugation with the nanoparticles enhances its distribution across the cell by recognizing the nuclear localization signal (NLS), mitochondrial localization signal and trafficking to endoplasmic reticulum (ER) (Paulo et al. 2011).

Taking clue from AgNPs and AuNPs, superparamagnetic iron oxide NPs (SPIONs) are nowadays used along with the mitochondrial targeting peptide (MTP) to differentiate the intracellular proteins and play an important function in regulating the cellular trafficking across the endocytotic pathway, localization of the protein within the plasma membrane and for the cellular uptake of basic amino acids (Salaklang et al. 2008).

In recent times, AuNPs, AgNPs and silica nanoparticles have been utilized/attempted for targeting various biomarkers associated with cancer, autoimmune and infectious microbial and parasitic diseases. Owing to its surface properties and affinity towards cell surface molecules (as discussed in the earlier section), AgNPs can easily cross the cell membrane and can deliver a drug of choice. However, this

Reducing agent	Surface modification	Size and shape	Therapeutic applications	References
Sodium borohydride (NaBH₄)	Jacalin capped	3.1 ± 1.6 nm	Against Gram-negative bacteria: *Aeromonas hydrophila*	Ahmed et al. (2018)
Sodium hydroxide	Curcumin stabilized	3.8 nm	Against Gram-negative bacteria: *E. coli* Against Gram-positive bacteria: *S. aureus*	Yu et al. (2019)
Doxycycline	Doxycycline capped	10–20 nm	Against Gram-negative bacteria: *E. coli, Salmonella typhimurium* Against Gram-positive bacteria: *Streptococcus pyogenes* and *S. aureus*	Safdar et al. (2020)
phenomenon is dependent on the size of the AgNPs. Previously, Dey et al. (2016) demonstrated the uptake of hydrogel-capped AgNPs inside by mouse macrophages, and the presence of AgNPs within the cell was confirmed by HR-TEM following EDX. These AgNPs were also reported to load streptomycin, diethylcarbamazine and albendazole (Dey et al. 2016). On the other side, nontoxic nature of AuNPs enables smooth delivery of drugs which can control the protein expression within the cell and used as an intracellular sensor in many diseases (Rosi et al. 2006). AuNPs formed by poly(γ-glutamic acid) conjugated with L-phenylalanine (40–200 nm) are assigned for the protein delivery through absorption and release within the cytoplasm and can be used as an agent for the vaccine development and signalling pathway modulators (Akagi et al. 2011). The polymeric NPs consist of the self-assembly structure and dendrimers loaded with hydrophilic and hydrophobic drugs and conjugated to targeting moieties to serve as an active cellular target for human diseases, mainly cancer (Nag and Delehanty 2019). Thus, the application of both AgNPs and AuNPs for the intracellular and intercellular targeting for specific cellular and subcellular components enhances the potential of these nanomaterials as molecular fluorescent agents, detection probes and the therapeutic factors for drug development to counteract various human diseases.

Several developmental research and modifications are currently going on to improve the efficacy of the nanoparticles, especially the cell-penetrating property. Quantum dots (QDs) are the best examples of the modern version of nanotherapeutics. QDs are semiconductor crystals that are made up of the group II–VI, III–V or IV–VI atoms from the periodic table and perform an extensive function of size-tunable fluorescent emission and broad excitation spectra, leading to beneficial for single as well as multiple molecule tracking (Ruedas-Rama et al. 2012). The quantum dot coated with poly(ethylene glycol) (PEG) and NLS is microinjected showing active transport and accumulation across the nucleus and when coated with fluorescent protein shows association with cell line across the cytoplasm (Derfus et al. 2004; Medintz et al. 2008). The microinjection of phospholipid-coated quantum dots to the early embryo of *Xenopus* to monitor the physiological changes along the development leads to developmental abnormalities (Dubertret et al. 2002). The main characteristic features of liposomes include high biocompatibility, simple surface modifications and flexibility across switching between both hydrophobic and hydrophilic drugs. Liposomes can easily incorporate the functional phospholipids across various target moieties and increase its efficiency for cellular targeting and therapeutic efficacy (Gabizon et al. 2006; Nag and Delehanty 2019). Poly(lactic-co-glycolic acid) (PLGA) serves as both an intercellular and intracellular target and is being used for co-staining the actin and mitochondria using antibody-conjugated quantum dots and MitoTracker Red, respectively (Chou et al. 2011). It is distributed across the early endosomes, Golgi apparatus and endoplasmic reticulum based on the cellular internalization and types of cells to enhance the specificity of drug delivery and therapeutic development (Cartiera et al. 2009). In a recent report by Mondal et al. (2019), luminous benign QDs have been reported for excellent intracellular imaging and delivery of antimicrobial drug (streptomycin). These streptomycin-loaded QDs were found to cure
peritonitis in mice model, and the efficacy was higher than free streptomycin (Mondal et al. 2019). The various types of nanoparticles associated with the targeted delivery across the intracellular and intercellular components of cells are listed in Table 7.4.

Types of nanoparticles	Mechanism of action and damage	References
Silver NP	Internalized via scavenger receptor-mediated phagocytosis, mitochondrial damage, induces apoptosis and cell death	Singh and Ramarao (2012)
Gold NP	Passive delivery, controls protein expression in cell, nontoxic	Rosi et al. (2006)
Silica NP	Inhibits kinase activity by delivering antibody against phospho-Akt intracellularly, translation inhibitors ribosome-inactivating proteins (RIPs)	Bale et al. (2010)
Quantum dot	Microinjected quantum dot coated with florescent protein, phospholipid coat, penetrates peptide, vesicle fusion, reminiscent actin/kinesin-mediated active transport	Ruan et al. (2007)
Liposomes	Targeting cancer cells, incorporate functional phospholipids and enhance cellular targeting	Patil et al. (2016)
PLGA	Dispersed across endosome, Golgi apparatus, ER, causes cell internalization, greater intracellular drug accumulation	Cartiera et al. (2009)
Superparamagnetic iron oxide NPs (SPIONs)	Mitochondrial targeting, regulate cellular trafficking, endocytotic pathway	Salaklang et al. (2008)
NPs formed by poly(γ-glutamic acid) conjugated with L-phenylalanine (40–200 nm)	Protein delivery: absorb protein and release in cytoplasm, targeted for vaccine development, signalling pathway interference	Akagi et al. (2011)
Polymeric NPs	Active cellular targeting for cancer, loaded with hydrophilic and hydrophobic drugs and conjugated to targeting moieties	Nag and Delehanty (2019)
Poly(propyleneimine) (PPI) dendrimers	siRNA-mediated cancer cell targeting, accumulation of siRNA in the cytoplasm of cancer cells and gene silencing	Taratula et al. (2009)
7.5 Cellular and Molecular Mechanism of Antimicrobial Action of Noble Nanoparticles

Considering the broad-spectrum antimicrobial activity of the noble metal nanoparticles, the mechanisms of action of different nanoparticles have been studied at cellular and molecular levels employing both in vitro and in vivo experimental setup. Till date a number of approaches have been exploited to synthesize noble metal nanoparticles, and intriguingly the surface-modified nanoparticles have been found to possess more efficient antimicrobial activity (Roy et al. 2014; Chowdhury et al. 2018; Prasad et al. 2020). Various studies conducted on exploring the antimicrobial activity of noble metal nanoparticles revealed AgNPs as more reactive than AuNPs, while AuNPs are more benign than that of the AgNPs (Roy et al. 2014; Chowdhury et al. 2018). Interestingly surface modification of AgNPs and AuNPs by polysaccharide (like chitosan) was found to improve the bioactivities of both nanoparticles (Roy et al. 2014; Chowdhury et al. 2018, 2020). Firstly, such enhancement in bioactivity is not solely contributed by the surface-modifying agent, rather the capping agent helps in the movement of the encapsulated nanoparticles in it the biological medium; secondly, it gets easily attached at the binding sites of the cell membrane of the targeted cell; and, thirdly, it remains attached for a long time favouring the release of the particles into the cell. All of these activities of the surface-modifying agent helping the targeted drug delivery in turn help the nanoparticles reach the requisite site and execute the task.

Once the size of particles approaches the nanoscale (1–100 nm), various a typical classical and quantum mechanical phenomena appear to be extant which are usually absent in matter beyond the upper and lower limits of this size range. This lays down the foundation of the antimicrobial properties of the noble nanoparticles. It is well observed that these physiochemical properties owe to and are regulated by their physical characteristics like size, shape, overall crystal structure, surface-area-to-mass ratio, as well as the ζ-potential at their slipping planes. However, mechanisms of action of the nanoparticles can be generalized under three varied models such as reactive oxygen species (ROS) induction, non-ROS mechanisms and metal ion release mechanisms as we have depicted in Fig. 7.3. However, it is to be well noted that a nanoparticle may function through one or more mechanisms simultaneously.

In general, noble metal nanoparticles first interact with the membrane of the target microbial cells. This interaction results in the induction of lipid peroxidation (LPO) of membrane lipids. LPO generates several free radicals that initiates chain reaction to generate more radicals by damaging the cellular biomacromolecules. In fact, free radical species have a very special property of generating furthermore free radicals by cleaving existing covalent bonds in the surrounding molecules, and the resulting free radicals produce more such species in a chain reaction fashion; this occurs at an exponential rate. It wreaks havoc in any biochemical system by disrupting the existing bonding interactions holding the system together, and this capacity is known as oxidative stress.
Additionally, quantitative real-time polymerase chain reaction (RT-PCR) studies show that ROS also increases the expression levels of a general stress response gene (Dna K) and two oxidative stress genes (Kat A and Ahp C) of oxidative proteins, which thereby causes extensive damage to the intracellular components (Gurunathan et al. 2012). ROS production can be induced by noble nanoparticles (Gurunathan et al. 2012) via different mechanisms—one such mechanism is illustrated in the photocatalytic model; it states that when nanoparticles absorb photons of energy equal to or greater than the band gap, their electrons get promoted to the conduction band from the valence band leaving behind a hole in the valence band—which are definite theoretical antivalents of the physical electrons and thus carry a positive charge and flow against the direction of electron movement. These holes are present on the surface of the metal oxides and when they react with the surrounding H₂O or (OH⁻) or O₂ species, they produce hydroxyl (OH⁻) and superoxide radicals (O₂⁻). Furthermore, it was also observed that ultrasonic activation is yet another mechanism for inducing ROS formation by which nanoparticles split the surrounding H₂O into H⁺ and can react with dissolved O₂ to generate H₂O₂. Studies show that the negatively charged superoxide and hydroxyl radicals are unable to penetrate the cell membrane and function while being attached to the cell surface; H₂O₂ on the other hand is able to penetrate the cell membrane and cause extensive cellular damage. As already mentioned, ROS axes are not the only mechanisms by which the antimicrobial properties of the nanoparticles are mediated. Observations against several studies using Fourier transform infrared (FTIR) analysis, electron spin resonance,
liquid chromatography-mass spectrometry, transmission electron microscopy (TEM), proteomics tools and flat cultivation show that various nanoparticles have efficient antimicrobial properties no matter if used under UV light, natural light or absolute darkness. Yet another antimicrobial mechanism of nanomaterial is attained by slow and sustained release of metal ions from metal nanocomposites, as in the case of AgNPs which are currently being used by embedding them on zeolite membranes (Tavolaro and Drioli 1999). In this mechanism the released metal ions are absorbed through the cell membrane, and once inside the cell, they are free to interact directly with functional groups of proteins and nucleic acids such as sulfanyl (–SH), amino (–NH) and carboxyl (–COOH) groups. This confers damage to the enzyme activity, the cytoskeletal structure and the overall physiological processes of the cell, ultimately inhibiting the organism as a whole.

The cells have natural mechanisms of producing such free radical species or free radical-generating species, called reactive oxygen species (ROS) which includes mainly four species like the superoxide anion (O₂⁻), the hydroxyl radical (OH•), the hydrogen peroxide molecule (H₂O₂) and the singlet oxygen species (¹O₂). They are quite capable of generating free radicals as described above, but they possess different levels of dynamics and activity. Under normal conditions, cells generate cytoplasmic ROS, but this alteration in cellular redox potential is balanced by the generation of antioxidant species which counters the exponential increase of ROS, keeping the species concentrations within redox equilibrium limits. This equilibrium is useful in maintaining regular cellular homeostasis and appears to play an important role in cellular signalling and disease pathophysiology. However, upsetting this equilibrium produces oxidative stress which results in a change in permeability and integrity of the cell membrane mostly by causing peroxidation of the membrane lipids (Cheloni et al. 2016); it also deals damage to nucleic acids and various proteins. NPs as filaricidal diminished the activities of enzymes SOD, catalase and GPx that are most vital in antioxidant defence mechanism (Jeeva et al. 2015). On the other side, GSH is a sulphur-containing protein that functions as antioxidant by carrying the reactive electrons from the peroxide and its level is usually depleted after filaricidal induction (Mukherjee et al. 2016). But, an inclined level of glutathione-S-transferase (GST) maintains a high ROS level in mitochondria, endoplasmic reticulum and peroxisome which is known to signal apoptosis (Mukherjee et al. 2016).

ROS-mediated apoptosis has a close relation with DNA damage, while noble nanoparticles also display DNA-binding property. Previous studies in this direction revealed that chitosan-capped and supramolecular hydrogel-capped AgNPs preferentially bind at the minor groove of bacterial as well as parasitic DNA (Roy et al. 2014; Dey et al. 2016). Therefore, AgNP-induced ROS and direct binding of AgNP to microbial DNA result in p53 activation that most likely signals activation of apoptotic pathways. In case of microfilaria, chitosan-/hydrogel-capped AgNPs activate cell death abnormal (CED) pathway, and caspase mediates pathways to cause cell death (Roy et al. 2014; Dey et al. 2016). Egg-laying defective (EGL)-1, CED-3, CED-4 and CED-9 are four essential proteins essential for CED pathway in microfilaria. During apoptosis CED-9 is negatively regulated by EGL-1 and fails to show
dominancy over CED-4 and CED-3 (Shaham and Horvitz 1996). In normal-living filarial cell, CED-4 dimers are sequestered with CED-9 on the outer surface of the mitochondria and inhibit apoptosis (Lettre and Hengartner 2006). In time, stimulation after an apoptotic induction increased the level of EGL-1 and makes bonding with CED-9 by BH3 domain that in turn disrupt CED-4–CED-9 complex (Yan et al. 2004, 2005). After dissociation of CED-9, two asymmetric CED-4 dimers oligomerize to make a tetrameric apoptosome, and this tetrameric structure then recruits proCED-3 molecules (Huang et al. 2013). Next to that, CED-3 (a cystine protease) becomes activated and executes apoptosis. A study by Mukherjee et al. (2016) revealed a rich level of cystine protease family protein, caspases, which direct a new path suitable for microfilarial apoptosis. Caspase proteins, viz. cas-9, cas-8 and cas-3, cytochrome c and poly (ADP-ribose) polymerase (PARP) are the main mediators that are responsible for intrinsic and extrinsic apoptosis. The generalized model of the mechanism of action of noble metal nanoparticles is demonstrated in Fig. 7.4.

7.6 Therapeutic Promises of Nanoparticles as Antimicrobial Agents, Prospects and Challenges

Nanotechnologies most specifically nanoparticles are now in good demand in pharmaceutical industries. This new therapeutic strategy can deliver drug most accurately and exert the desired function at a very low dose. As we all know, treatment of HIV needs antiretroviral drugs, ritonavir, lopinavir and efavirenz, but they have very low sustainability in physiological conditions. In this context, the use of nanoparticles formulated using poly(lactic-co-glycolic acid) (PLGA) can enhance the sustained release of the anti-HIV drugs from 48 h to 4 weeks (Rizvi and Saleh 2018). Similar kind of phenomena also found as evidence when poly(lactic-co-glycolic) (PLG) AgNPs encapsulated with rifampin, isoniazid and pyrazinamide drugs were used against tuberculosis. Detection of rifampicin for 4 days in blood and 9 days in tissues along with 9 to 11 days of retention for isoniazid and pyrazinamide in blood and tissue strongly indicates higher potency of nanoformulation over unbound drugs (Gelperina et al. 2005). Moreover, esculentin-1a-capsulated nanostructures are found as 17 times more effective than free esculentin-1a as anti-\textit{P. aeruginosa} therapeutic (Yeh et al. 2020). Another study on chitosan-coated AgNP-conjugated form with ciprofloxacin displayed a better MIC than the free drug against \textit{E. coli} (Kumar et al. 2016), while the encapsulated daptomycin form can enhance the release time up to 4 h (Silva et al. 2015). Besides that, phosphate- and polyphosphate-conjugated PEG nanoparticles also can sustain the release of phosphate to 100 h (Yin et al. 2017). According to the findings of Fan et al. (2019), polyethylene glycol-functionalized AuNP when applied in conjugation with ampicillin almost 18% lower MIC was found than ampicillin alone against \textit{S. aureus}. Several surface-modified nanoparticles have also been reported for affecting...
bacterial biofilm. PLGA/chitosan-coated nanoparticles when conjugated with colistin anti-*P. aeruginosa* biofilm effect found to last for 72 h that is much an improved report than free colistin (d’Angelo et al. 2015). Interestingly, 0.0156 μg/ml of

Fig. 7.4 Insights of ROS-mediated apoptosis induced by noble metal nanoparticles
ciprolfloxacin encapsulated with PLGA was found sufficient to eradicate \textit{P. aeruginosa} biofilm within 3 days only (Baelo et al. 2015).

Bacterial synthesis of nanoparticles is now considered as a new trend as bacteria are able to hydrolyse metal compounds and reduce metal ions to form nano in a green way. While the study of Prakash et al. (2011) showed the level of potentiality of AgNP synthesized by \textit{Bacillus cereus} in diminishing the growth of \textit{E. coli} and \textit{Streptococcus}. Another work summarized that only 5 μg/ml of concentrated AgNP of \textit{Bacillus} is sufficient to generate antimicrobial activity against \textit{E. coli}, \textit{Pseudomonas aeruginosa}, \textit{Proteus mirabilis}, \textit{Serratia marcescens} and \textit{Klebsiella} sp. (Yokesh Babu et al. 2013). A report by Dey et al. (2016) demonstrated a synthesis of flower-shaped novel AgNPs by \textit{B. subtilis}, and these AgNPs were found to be active even at a dose of 1.25 μg/ml against bacteria, fungus and parasite.

In biological methods of nanoparticles, formulation with bacteria is not only a single option, but the use of fungus also has several successes in works. A recent study on sclerotial extract of \textit{Lignosus rhinocerotis}-mediated synthesis of AuNPs explained very high antimicrobial activity against Gram-negative \textit{P. aeruginosa} and \textit{E. coli} and Gram-positive bacteria \textit{S. aureus} and \textit{Bacillus} sp. (Katas et al. 2019).

Nanoparticle exploitation is not only limited to bacterial, viral and fungal inhibition, but it is also in evidence that they have much potency in eradicating microparasites. The study of Saini et al. (2016) and Saha et al. (2017) found that AgNP as well as AuNP both have the ability to eliminate microfilariae of \textit{Setaria cervi}. Similarly, the study of Roy et al. (2018) showed the efficacy of \textit{Terminalia chebula} extract. AuNP fully depends on degradation of nuclear DNA. This data was further supported by the work of Yadav et al. (2020) that described AgNPs synthesized using \textit{Andrographis paniculata} leaf extract elevate the ROS level and generate oxidative stress that finally leads to filarial death via induction of apoptosis. In addition, Wolbachia depletion using polyanhydrated nanoparticle as delivery medium of doxycycline can also reduce microfilarial abundance at a very low dose. Besides these, it has also been reported that the use of transferrin-conjugated solid lipid-coated AgNPs is a more effective antimalarial than unconjugated form (Gupta et al. 2007), while a little improvement was documented when AgNPs were used with violacein as anti-plasmodium (Rahman et al. 2019).

All of the reports or findings described above are showing the improvement of therapeutics, and all the success is due to development of nanoformulation (Prasad et al. 2019). Effective and specific targeting, electrostatic interactions, stabilizing and reducing capabilities and drug delivery role along with toxic nature to microbes with low side effects to humans play a crucial role to achieve the therapeutic potentiality. Even the interaction property with intracellular components helps enhance the therapeutic ability and that finally differs it from other treatments. The DNA-binding ability of the nanoparticles creates a milestone in medicinal science. Polymer-stabilized and surface-modified (using chitosan, polyethylene glycol, polyvinyl alcohol and styrene) AgNPs can bind to \textit{E. coli} DNA molecule and disrupt that to inhibits bacteria replication (Roy et al. 2014). In support another study of Li et al. (2013) clearly visualized with AFM topography that AgNPs and citrate-modified
AuNPs are capable of binding to microbial DNA molecule to cease the DNA replication.

The use of nanoparticles is advantageous, but the synthesis procedure should follow biological eco-friendly as well as benign green synthesis approach rather than heftiest physical and chemical processes. Moreover, surface modification using modifying agents has an opportunistic effect to ameliorate toxicity of the nanoparticles. For example, chitosan-functionalized AgNPs/AuNPs suggest that the use of chitosan minimizes the cytotoxic level of the noble metal nanoparticle along with an increase of the bioactivity activity inducing ROS generation (Roy et al. 2014; Chowdhury et al. 2018, 2020). In addition, two interesting studies conducted by Dey et al. (2015, 2016) revealed capping of AgNPs using supramolecular hydrogel (SHGel) and DNA hydrogel increases the bioactivity and decreases the toxic effects. Other coating agents like PVP and citrate also have been reported to minimize the cytotoxicity of noble nanoparticles (Akter et al. 2017). All of these surface modifications also enable the drug-loading capacity of the noble nanoparticles of metal and improvement of the efficacy of loaded drug. The antimicrobial activity of amoxicillin, penicillin G, clindamycin, vancomycin and erythromycin was found to be improved owing to the conjugation of polymer-coated AgNPs (Rai et al. 2009). Though noble nanoparticles possess an excellent ability to inhibit microbial growth in vivo and in vitro, still there are some contradictions against their use as therapeutics regarding the side effects and bioavailability. In this connection, so modern approaches of nanotechnologies like tunable nanoparticles, quantum dots, nanogels, etc. are evolving rapidly to meet the current need.

Microbial diseases are the continuous threat to all living creatures from the prehistoric times. Discovery of antibiotics was a challenge to ride above those diseases. But accumulation of resistance against antibiotics has created a difficult situation nowadays. While in several experiments, the use of noble metal nanoparticles provides a hope that they can be effective over microbes. In addition, metal and metal oxide-formulated nanoparticles have been found as the potent killer of multidrug-resistant bacteria as well. The study of Franci et al. (2015) pointed the ability of AgNPs against methicillin-resistant S. aureus (MRSA) and methicillin-resistant S. epidermidis (MRSE), while efficacious report against ampicillin-resistant E. coli, multidrug-resistant Pseudomonas aeruginosa and erythromycin-resistant Streptococcus pyogenes highlighted AgNPs as a potent antibiofilm and antibacterial formulation (Lara et al. 2010b). In this regard AuNPs are also proved as highly active as several studies showed effectivity in inhibition of growth of multidrug-resistant bacterial strain of E. coli, S. aureus and Salmonella typhimurium (Bressee et al. 2011; Dasari et al. 2015). Despite these successes, more and more researches on developing new smart noble metal nanoparticles as well as new approaches for tuning the size and physico-biochemical properties of the nanoparticles also are in progress to counteract the emerging microbial disease.
In the mid-2020, the whole world is still under pressure of several microbial diseases. Antimicrobial drug development is therefore considered as one of the most practicable research works at present time. Even most of the pharma companies are investing to develop better therapeutic solutions against the life-threatening infectious diseases caused by *Mycobacterium tuberculosis*, *Helicobacter pylori*, *Vibrio cholerae*, *Entamoeba histolytica*, *Plasmodium falciparum*, and many others. These microbial pathogens are not only a curse for human health but also a result in huge economic losses by affecting the health of economically important animals like poultry, cattle and other livestock. Considering the urgency, several effective antibiotics have been developed to combat microbial diseases and are available in the market. However, emergence of resistance against these drugs due to the maluses has created an alarming situation. In this scenario, the use of bioactive noble metal nanoparticles has shown better therapeutic efficiency in terms of low treatment dose, less toxicity and absence of microbial resistance. Moreover, the use of several surface modifiers, coating and stabilizing agents, resulted in enhancement of the bioactivity, rapid delivery and controlled drug release, improvement of biocompatibility and cytotoxicity. In this chapter, we have presented a comprehensive overview on the antimicrobial efficacy of noble metal nanoparticles along with the mechanistic insights behind their activity at a cellular and molecular level.

Making or formulation of nanoparticles for their commercialization prospect, more specifically for modulating nanomedicine and various biological applications, is now the most rapidly growing field in nanotechnology. Several companies are investing to develop various pharmaceutical applications on the basis of drug delivery, imaging and bio-diagnostic properties of the noble metal nanoparticles. Nanoparticles with drug delivery ability have been found as the most successful over other modes of treatment in the last few years. Even the exploitation is not only limited as antimicrobial, but NP is also found to be advantageous for cancer treatment.

Considering the COVID-19 pandemic, noble metal nanoparticles could be utilized as therapeutics as well as drug delivery vehicles. Some interesting findings on the efficacy of bioactive AgNPs and AuNPs against the antigenic proteins of SARS and MERS (Kim et al. 2018; Lin et al. 2019; Sekimukai et al. 2020) indicated that these nanoparticles could be the useful options to treat COVID-19. Particularly, rapid delivery of anti-SARS-CoV-2 antibody and/or vaccine could be aimed for COVID-19 treatment shortly.

Taken together, it is clearly evident that surface-modified noble metal nanoparticles, especially AgNPs and AuNPs, are advantageous for therapeutic uses due to their benign nature, broad-spectrum bioactivities, ability of conjugating/immobilizing several drugs/enzymes, tunable delivery and release of drugs, imaging/luminating potential and several other physio-biochemical attributes. Future research is therefore needing more emphasis in applying these nanoparticles
as in situ nanotrackers or nanobiosensors for diagnosing as well as treating life-threatening diseases of humans.

Acknowledgement BR and SM acknowledge all the collaborators with whom they have previously worked. RP thanks the Department of Higher Education, Govt. of West Bengal, for awarding Swami Vivekananda Merit Cum Means Fellowship.

References
Abbaszadegan A, Ghahramani Y, Gholami A et al (2015) The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: a preliminary study. J Nanomater 2015:720654. https://doi.org/10.1155/2015/720654
Ahmad T, Wani IA, Lone IH et al (2013) Antifungal activity of gold nanoparticles prepared by solvothermal method. Mater Res Bull 48:12–20. https://doi.org/10.1016/j.materresbull.2012.09.069
Ahmad A, Syed F, Shah A et al (2015) Silver and gold nanoparticles from Sargentodoxa cuneata: synthesis, characterization and antileishmanial activity. RSC Adv 5:73793–73806. https://doi.org/10.1039/C5RA13206A
Ahmad A, Syed F, Imran M et al (2016) Phytosynthesis and antileishmanial activity of gold nanoparticles by Maytenus royleanus. J Food Biochem 40:420–427. https://doi.org/10.1111/jfbc.12232
Ahmed S, Saifullass, Ahmad M et al (2016a) Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J Radiat Res Appl Sci 9:1–7. https://doi.org/10.1016/j.jrras.2015.06.006
Ahmed KBA, Raman T, Anbazhagan V (2016b) Platinum nanoparticles inhibit bacteria proliferation and rescue zebrafish from bacterial infection. RSC Adv 6:44415–44424. https://doi.org/10.1039/C6RA03732A
Ahmed KBA, Raman T, Veerappan A (2018) Jacalin capped platinum nanoparticles confer persistent immunity against multiple Aeromonas infection in zebrafish. Sci Rep 8:2200. https://doi.org/10.1038/s41598-018-20627-3
Akagi T, Shima F, Akashi M (2011) Intracellular degradation and distribution of protein-encapsulated amphiphilic poly(aminoc acid) nanoparticles. Biomaterials 32:4959–4967. https://doi.org/10.1016/j.biomaterials.2011.03.049
Akter M, Sikder MT, Rahman MM et al (2017) A systematic review on silver nanoparticles-induced cytotoxicity: physicochemical properties and perspectives. J Adv Res 9:1–16. https://doi.org/10.1016/j.jare.2017.10.008
Ali M, Afzal M, Bhattacharya SM et al (2013) Nanopharmaceuticals to target antifilarials: a comprehensive review. Expert Opin Drug Deliv 10:665–678. https://doi.org/10.1517/17425247.2013.771630
Alsammarraie FK, Wang W, Zhou P et al (2018) Green synthesis of silver nanoparticles using turmeric extracts and investigation of their antibacterial activities. Colloids Surf B Biointerfaces 171:398–405. https://doi.org/10.1016/j.colsurfb.2018.07.059
Annamalai A, Christina VLP, Sudha D et al (2013) Green synthesis, characterization and antimicrobial activity of Au NPs using Euphorbia hirta L. leaf extract. Colloids Surf B Biointerfaces 108:60–65. https://doi.org/10.1016/j.colsurfb.2013.02.012
Asharani PV, Low Kah Mun G, Han D, Valiavetteel S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290. https://doi.org/10.1021/nn800596w
AshaRani PV, Lianwu Y, Gong Z, Valiyaveettil S (2011) Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos. Nanotoxicology 5:43–54. https://doi.org/10.3109/17435390.2010.489207

Asri RIM, Harun WSW, Samykano M et al (2017) Corrosion and surface modification on biocompatible metals: a review. Korean J Couns Psychother 77:1261–1274. https://doi.org/10.1016/j.msec.2017.04.102

Aziz N, Fatma T, Varma A, Prasad R (2014) Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. J Nanoparticles, Article ID 689419. https://doi.org/10.1155/2014/689419

Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile alga-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612. https://doi.org/10.1021/acs.langmuir.5b03081

Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984

Aziz N, Faraz M, Sherwani MA, Fatma T, Prasad R (2019) Illuminating the anticancerous efficacy of a new fungal chassis for silver nanoparticle synthesis. Front Chem 7:65. https://doi.org/10.3389/fchem.2019.00065

Baelo A, Levato R, Julián E et al (2015) Disassembling bacterial extracellular matrix with DNase-coated nanoparticles to enhance antibiotic delivery in biofilm infections. J Control Release 209:150–158. https://doi.org/10.1016/j.jconrel.2015.04.028

Bagga P, Ansari TM, Siddiqui HH et al (2016) Bromelain capped gold nanoparticles as the novel drug delivery carriers to agrandize effect of the antibiotic levofloxacin. EXCLI J 15:772–780. https://doi.org/10.17179/excli2016-710

Bagga P, Siddiqui HH, Akhtar J et al (2017) Gold nanoparticles conjugated levofloxacin: for improved antibacterial activity over levofloxacin alone. Curr Drug Deliv 14:1114–1119. https://doi.org/10.2174/1567201814666170316113432

Bale SS, Kwon SJ, Shah DA et al (2010) Nanoparticle-mediated cytoplasmic delivery of proteins to target cellular machinery. ACS Nano 4:1493–1500. https://doi.org/10.1021/nn901586e

Baram-Pinto D, Shukla S, Perkas N et al (2009) Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with mercaptoethane sulfonate. Bioconjug Chem 20:1497–1502. https://doi.org/10.1021/bc900215b

Baram-Pinto D, Shukla S, Gedanken A, Sarid R (2010) Inhibition of HSV-1 attachment, entry, and cell-to-cell spread by functionalized multivalent gold nanoparticles. Small 6:1044–1050. https://doi.org/10.1002/smll.200902384

Bindhu MR, Umadevi M (2014) Antibacterial activities of green synthesized gold nanoparticles. Mater Lett 120:122–125. https://doi.org/10.1016/j.matlet.2014.01.108

Bindhu MR, Vijaya Rekha P, Umamaheswari T, Umadevi M (2014) Antibacterial activities of Hibiscus cannabinus stem-assisted silver and gold nanoparticles. Mater Lett 131:194–197. https://doi.org/10.1016/j.matlet.2014.05.172

Boomi P, Prabu HG, Mathiyarasu J (2013) Synthesis and characterization of polyaniline/Ag–Pt nanocomposite for improved antibacterial activity. Colloids Surf B Biointerfaces 103:9–14. https://doi.org/10.1016/j.colsurfb.2012.10.044

Bragg PD, Rainnie DJ (1974) The effect of silver ions on the respiratory chain of Escherichia coli. Can J Microbiol 20:883–889. https://doi.org/10.1139/m74-135

Brayner R, Ferrari-Iliou R, Brivois N et al (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrathin ZnO nanoparticles colloidal medium. Nano Lett 6:866–870. https://doi.org/10.1021/nl052326h

Bresee J, Maier KE, Boncella AE et al (2011) Growth inhibition of Staphylococcus aureus by mixed monolayer gold nanoparticles. Small 7:2027–2031. https://doi.org/10.1002/smll.201100420
Carlson C, Hussain SM, Schrand AM et al (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112:13608–13619. https://doi.org/10.1021/jp712087m
Cartiera MS, Johnson KM, Rajendran V et al (2009) The uptake and intracellular fate of PLGA nanoparticles in epithelial cells. Biomaterials 30:2790–2798. https://doi.org/10.1016/j.biomaterials.2009.01.057
Cheloni G, Marti E, Slaveykova VI (2016) Interactive effects of copper oxide nanoparticles and light to green alga Chlamydomonas reinhardtii. Aquat Toxicol 170:120–128. https://doi.org/10.1016/j.aquatox.2015.11.018
Chen H, Dorrigan A, Saad S et al (2013a) In vivo study of spherical gold nanoparticles: inflammatory effects and distribution in mice. PLoS One 8:e58208. https://doi.org/10.1371/journal.pone.0058208
Chen J, Wang H, Long W et al (2013b) Sex differences in the toxicity of polyethylene glycol-coated gold nanoparticles in mice. Int J Nanomedicine 8:2409–2419. https://doi.org/10.2147/IJN.S46376
Chen M-N, Chan C-F, Huang S-L, Lin Y-S (2019) Green biosynthesis of gold nanoparticles using Chenopodium formosanum shell extract and analysis of the particles’ antibacterial properties. J Sci Food Agric 99:3693–3702. https://doi.org/10.1002/jsfa.9600
Chiriac V, Stratulat DN, Calin G et al (2016) Antimicrobial property of zinc-based nanoparticles. IOP Conf Ser Mater Sci Eng 133:12055. https://doi.org/10.1088/1757-899x/133/1/012055
Chou LYT, Ming K, Chan WCW (2011) Strategies for the intracellular delivery of nanoparticles. Chem Soc Rev 40:233–245. https://doi.org/10.1039/C0CS00003E
Chowdhury P, Roy B, Mukherjee N et al (2018) Chitosan biopolymer functionalized gold nanoparticles with controlled cytotoxicity and improved antifilarial efficacy. Adv Compos Hybrid Mater 1:577–590. https://doi.org/10.1007/s42114-018-0040-7
Chowdhury P, Roy B, Mukherjee S et al (2020) Polymer anchored gold nanoparticles: synthesis, characterization and antimicrobial activities. Nanosci Nanotechnol – Asia 10:1–13. https://doi.org/10.2174/2210681210666200128155244
d’Angelo I, Casciaro B, Miro A et al (2015) Overcoming barriers in Pseudomonas aeruginosa lung infections: engineered nanoparticles for local delivery of a cationic antimicrobial peptide. Colloids Surf B Biointerfaces 135:717–725. https://doi.org/10.1016/j.colsurfb.2015.08.027
Dasari TPS, Zhang Y, Yu H (2015) Antibacterial activity and cytotoxicity of gold (I) and (III) ions and gold nanoparticles. Biochem Pharmacol open access 4:199. https://doi.org/10.4172/2167-0501.1000199
Derfus AM, Chan WCW, Bhatia SN (2004) Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Adv Mater 16:961–966. https://doi.org/10.1002/adma.200306111
Dey B, Mondal RK, Mukherjee S et al (2015) A supramolecular hydrogel for generation of a benign DNA-hydrogel. RSC Adv 5:105961–105968. https://doi.org/10.1039/C5RA19172F
Dey B, Mukherjee S, Mukherjee N et al (2016) Green silver nanoparticles for drug transport, bioactivities and a bacterium (Bacillus subtilis)-mediated comparative nano-patterning feature. RSC Adv 6:46573–46581. https://doi.org/10.1039/C5RA27886D
Di Gianvincenzo P, Marradi M, Martinez-Avila OM et al (2010) Gold nanoparticles capped with sulfate-ended ligands as anti-HIV agents. Bioorg Med Chem Lett 20:2718–2721. https://doi.org/10.1016/j.bmcl.2010.03.079
Dong PV, Ha CH, Binh LT, Kasbohm J (2012) Chemical synthesis and antibacterial activity of novel-shaped silver nanoparticles. Int Nano Lett 2:9. https://doi.org/10.1186/2228-5326-2-9
Dubertret B, Skourides P, Norris DJ et al (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298:1759–1762. https://doi.org/10.1126/science.1077194
Dykman LA, Khebltsov NG (2011) Gold nanoparticles in biology and medicine: recent advances and prospects. Acta Naturae 3:34–55. https://doi.org/10.32607/20758251-2011-3-2-34-55
Surface-Modified Noble Metal Nanoparticles as Antimicrobial Agents:...
Kong F-Y, Zhang J-W, Li R-F et al (2017) Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications. Molecules 22:1445. https://doi.org/10.3390/molecules22091445

Kora AJ, Arunachalam J (2011) Assessment of antibacterial activity of silver nanoparticles on Pseudomonas aeruginosa and its mechanism of action. World J Microbiol Biotechnol 27:1209–1216. https://doi.org/10.1007/s11274-010-0569-2

Kora AJ, Rastogi L (2013) Enhancement of antibacterial activity of capped silver nanoparticles in combination with antibiotics, on model gram-negative and gram-positive bacteria. Bioinorg Chem Appl 2013:871097. https://doi.org/10.1155/2013/871097

Kumar R, Ray PC, Datta D et al (2015) Nanovaccines for malaria using Plasmodium falciparum antigen PfS25 attached gold nanoparticles. Vaccine 33:5064–5071. https://doi.org/10.1016/j.vaccine.2015.08.025

Kumar GV, Su C-H, Velusamy P (2016) Ciprofloxacin loaded genipin cross-linked chitosan/heparin nanoparticles for drug delivery application. Mater Lett 180:119–122. https://doi.org/10.1016/j.matlet.2016.05.108

Kumar M, Bansal K, Gondil VS et al (2018) Synthesis, characterization, mechanistic studies and antimicrobial efficacy of biomolecule capped and pH modulated silver nanoparticles. J Mol Liq 249:1145–1150. https://doi.org/10.1016/j.molliq.2017.11.143

Lara HH, Ixtepan-Turrent L, Garza-Treviño EN, Rodríguez-Padilla C (2010a) PVP-coated silver nanoparticles block the transmission of cell-free and cell-associated HIV-1 in human cervical culture. J Nanobiotechnol 8:15. https://doi.org/10.1186/1477-3155-8-15

Lara HH, Ayala-Núñez NV, Ixtepan Turrent L d C, Rodríguez Padilla C (2010b) Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J Microbiol Biotechnol 26:615–621. https://doi.org/10.1007/s11274-009-0211-3

Lee SH, Jun B-H (2019) Silver nanoparticles: synthesis and application for nanomedicine. Int J Mol Sci 20:865. https://doi.org/10.3390/ijms20040865

Lee KX, Shameli K, Yew YP et al (2020) Recent developments in the facile bio-synthesis of gold nanoparticles (AuNPs) and their biomedical applications. Int J Nanomedicine 15:275–300. https://doi.org/10.2147/IJN.S233789

Lemire JA, Harrison JJ, Turner RJ (2013) Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 11:371–384. https://doi.org/10.1038/nrmicro3028

Lettre G, Hengartner MO (2006) Developmental apoptosis in C. elegans: a complex CEDnario. Nat Rev Mol Cell Biol 7:97–108. https://doi.org/10.1038/nrm1836

Li W-R, Xie X-B, Shi Q-S et al (2010) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85:1115–1122. https://doi.org/10.1007/s00253-009-2159-5

Li K, Zhao X, Hammer B et al (2013) Nanoparticles inhibit DNA replication by Binding to DNA: modeling and experimental validation. ACS Nano 7:9664–9674. https://doi.org/10.1021/nn402472k

Lin C, Tao K, Hua D et al (2013) Size effect of gold nanoparticles in catalytic reduction of p-nitrophenol with NaBH4. Molecules 18:12609–12620. https://doi.org/10.3390/molecules181012609

Lin LC-W, Huang C-Y, Yao B-Y et al (2019) Viromimetic STING agonist-loaded hollow polymeric nanoparticles for safe and effective vaccination against middle east respiratory syndrome coronavirus. Adv Funct Mater 29:1807616. https://doi.org/10.1002/adfm.201807616

Liu K, He Z, Byrne HJ et al (2018) Investigating the role of gold nanoparticle shape and size in their toxicities to fungi. Int J Environ Res Public Health 15:998. https://doi.org/10.3390/ijerph15050998

Liu Y, Wu S, Saavedra-Mella F et al (2020) Rhizosphere modifications of iron-rich minerals and forms of heavy metals encapsulated in sulfidic tailings hardpan. J Hazard Mater 384:121444. https://doi.org/10.1016/j.jhazmat.2019.121444
Lokina S, Suresh R, Giribabu K et al (2014) Spectroscopic investigations, antimicrobial, and cytotoxic activity of green synthesized gold nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 129:484–490. https://doi.org/10.1016/j.saa.2014.03.100

Lopez N, Janssens TVW, Clausen BS et al (2004) On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation. J Catal 223:232–235. https://doi.org/10.1016/j.jcat.2004.01.001

Lopez-Chaves C, Soto-Alvaredo J, Montes-Bayon M et al (2018) Gold nanoparticles: distribution, bioaccumulation and toxicity. In vitro and in vivo studies. Nanomedicine 14:1–12. https://doi.org/10.1016/j.nano.2017.08.011

Lu L, Sun RW-Y, Chen R et al (2008) Silver nanoparticles inhibit hepatitis B virus replication. Antivir Ther 13:253–262

Madsen AT, Ahmed EH, Christensen CH et al (2011) Hydrodeoxygenation of waste fat for diesel production: study on model feed with Pt/alumina catalyst. Fuel 90:3433–3438. https://doi.org/10.1016/j.fuel.2011.06.005

Malanovic N, Lohner K (2016) Gram-positive bacterial cell envelopes: the impact on the activity of antimicrobial peptides. Biochim Biophys Acta – Biomembr 1858:936–946. https://doi.org/10.1016/j.bbamem.2015.11.004

Manju S, Malaikozhundan B, Vijayakumar S et al (2016) Antibacterial, biofilm and cytotoxic effects of Nigella sativa essential oil coated gold nanoparticles. Microb Pathog 91:129–135. https://doi.org/10.1016/j.micpath.2015.11.021

Masri A, Anvar A, Ahmed D et al (2018) Silver nanoparticle conjugation-enhanced antibacterial efficacy of clinically approved drugs cefepime and vildaglaptin. Antibiot (Basel, Switzerland) 7:100. https://doi.org/10.3390/antibiotics7040100

Mata R, Bhaskaran A, Sadras SR (2016) Green-synthesized gold nanoparticles from Plumeria alba flower extract to augment catalytic degradation of organic dyes and inhibit bacterial growth. Particuology 24:78–86. https://doi.org/10.1016/j.partic.2014.12.014

Medintz IL, Pons T, Delehanzy JB et al (2008) Intracellular delivery of quantum dot-protein cargos mediated by cell penetrating peptides. Bioconjug Chem 19:1785–1795. https://doi.org/10.1021/bc080089r

Mironava T, Hadjiargyrou M, Simon M et al (2010) Gold nanoparticles cellular toxicity and recovery: effect of size, concentration and exposure time. Nanotoxicology 4:120–137. https://doi.org/10.3109/17435390903471463

Moglianetti M, De Luca E, Pedone D et al (2016) Platinum nanozymes recover cellular ROS homeostasis in an oxidative stress-mediated disease model. Nanoscale 8:3739–3752. https://doi.org/10.1039/C5NR08358C

Mondal MK, Mukherjee S, Joardar N et al (2019) Synthesis of smart graphene quantum dots: a benign biomaterial for prominent intracellular imaging and improvement of drug efficacy. Appl Surf Sci 495:143562. https://doi.org/10.1016/j.apsusc.2019.143562

Morones JR, Elechiguerra JL, Camacho A et al (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353. https://doi.org/10.1088/0957-4484/16/10/059

Mozetič M (2019) Surface modification to improve properties of materials. Dent Mater 12:441. https://doi.org/10.3390/ma12030441

Mukherjee N, Parida PK, Santra A et al (2016) Oxidative stress plays major role in mediating apoptosis in filarial nematode Setaria cervi in the presence of trans-stilbene derivatives. Free Radic Biol Med 93:130–144. https://doi.org/10.1016/j.freeradbmed.2016.01.027

Mukherjee S, Joardar N, Mondal S et al (2018) Quinolone-fused cyclic sulfonamide as a novel benign antifilarial agent. Sci Rep 8:12073. https://doi.org/10.1038/s41598-018-30610-7

Muthuvel A, Advallan K, Balamurugan K, Krishnakumar N (2014) Biosynthesis of gold nanoparticles using Solanum nigrum leaf extract and screening their free radical scavenging and antibacterial properties. Biomed Prev Nutr 4:325–332. https://doi.org/10.1016/j.biouut.2014.03.004

Nag OK, Delehanzy JB (2019) Active cellular and subcellular targeting of nanoparticles for drug delivery. Pharmaceutics 11:543. https://doi.org/10.3390/pharmaceutics11100543
Nath S, Kaittanis C, Tinkham A, Perez JM (2008) Dextran-coated gold nanoparticles for the assessment of antimicrobial susceptibility. Anal Chem 80:1033–1038. https://doi.org/10.1021/ac701969u

Neethu S, Midhun SJ, Radhakrishnan EK, Jyothis M (2018) Green synthesized silver nanoparticles by marine endophytic fungus Penicillium polonicum and its antibacterial efficacy against biofilm forming, multidrug-resistant Acinetobacter baumanii. Microb Pathog 116:263–272. https://doi.org/10.1016/j.micpath.2018.01.033

Nishanthi R, Malathi S, John PS, Palani P (2019) Green synthesis and characterization of bioinspired silver, gold and platinum nanoparticles and evaluation of their synergistic antibacterial activity after combining with different classes of antibiotics. Korean J Couns Psychother 96:693–707. https://doi.org/10.1016/j.jmsec.2018.11.050

Omran BA, Nassar HN, Fatthallah NA et al (2018) Characterization and antimicrobial activity of silver nanoparticles mycosynthesized by Aspergillus brasiliensis. J Appl Microbiol 125:370–382. https://doi.org/10.1111/jam.13776

Oun AA, Shankar S, Rhim J-W (2020) Multifunctional nanocellulose/metal and metal oxide nanoparticle hybrid nanomaterials. Crit Rev Food Sci Nutr 60:435–460. https://doi.org/10.1080/10408398.2018.1536966

Ovais M, Zia N, Khalil AT et al (2019) Nanoantibiotics: recent developments and future prospects. Front Clin Drug Res Anti Infect 5:158–174. https://doi.org/10.2174/978168108637819050006

Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720. https://doi.org/10.1128/AEM.02218-06

Panzarini E, Mariano S, Carata E et al (2018) Intracellular transport of silver and gold nanoparticles and biological responses: an update. Int J Mol Sci 19:1305. https://doi.org/10.3390/ijms19051305

Papp I, Sieben C, Ludwig K et al (2010) Inhibition of influenza virus infection by multivalent sialic-acid-functionalized gold nanoparticles. Small 6:2900–2906. https://doi.org/10.1002/smll.201001349

Patil Y, Amitay Y, Ohana P et al (2016) Targeting of pegylated liposomal mitomycin-C prodrug to the folate receptor of cancer cells: intracellular activation and enhanced cytotoxicity. J Control Release 225:87–95. https://doi.org/10.1016/j.jconrel.2016.01.039

Paulo CSO, Pires das Neves R, Ferreira LS (2011) Nanoparticles for intracellular-targeted drug delivery. Nanotechnology 22:494002. https://doi.org/10.1088/0957-4484/22/49/494002

Payne JN, Waghwani HK, Connor MG et al (2016) Novel synthesis of kanamycin conjugated gold nanoparticles with potent antibacterial activity. Front Microbiol 7:607. https://doi.org/10.3389/fmicb.2016.00607

Pedone D, Moglianiitti M, De Luca E et al (2017) Platinum nanoparticles in nanobiomedicine. Chem Soc Rev 46:497–4975. https://doi.org/10.1039/C7CS00152E

Poojary MM, Passamonti P, Adhikari AV (2016) Green synthesis of silver and gold nanoparticles using root bark extract of Mammea suriga: characterization, process optimization, and their antibacterial activity. Bionanoscience 6:110–120. https://doi.org/10.1007/s12668-016-0199-8

Prakash A, Sharma S, Ahmad N, Ghosh A, Sinha P (2011) Synthesis of AgNPs by Bacillus cereus bacteria and their antimicrobial potential. J Biomater Nanobiotechnol 2:156–162. https://doi.org/10.4236/jbnnh.2011.22020

Prasad KS, Pathak D, Patel A, Dalwadi P, Prasad R, Patel P, Kaliaperumal SK (2011) Biogenic synthesis of silver nanoparticles using Nicotiana tabacum leaf extract and study of their antibacterial effect. Afr J Biotechnol 9(54):8122–8130

Prasad R, Swamy VS, Varma A (2012) Biogenic synthesis of silver nanoparticles from the leaf extract of Syzygium cumini (L.) and its antibacterial activity. Int J Pharma Bio Sci 3(4):745–752

Prasad R, Swamy VS (2013) Antibacterial activity of silver nanoparticles synthesized by bark extract of Syzygium cumini. J Nanoparticles. https://doi.org/10.1155/2013/431218

Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363
Prasad R, Pandey R, Varma A, Barman I (2017) Polymer based nanoparticles for drug delivery systems and cancer therapeutics. In: Kharkwal H, Janaswamy S (eds) Natural polymers for drug delivery. CAB International, London, pp 53–70
Prasad R, Kumar V, Kumar M, Choudhary D (2019) Nanobiotechnology in bioformulations. Springer International Publishing, Cham. ISBN 978-3-030-17061-5. https://www.springer.com/gp/book/9783030170608
Prasad R, Siddhardha B, Dyavaiah M (2020) Nanostructures for antimicrobial and biofilm applications. Springer International Publishing, Cham. ISBN 978-3-030-40336-2. https://www.springer.com/gp/book/9783030403362
Qi K, Cheng B, Yu J, Ho W (2017) Review on the improvement of the photocatalytic and antibacterial activities of ZnO. J Alloys Compd 727:792–820. https://doi.org/10.1016/j.jallcom.2017.08.142
Quinteros MA, Aiassa Martínez IM, Dalmasso PR, Páez PL (2016) Silver nanoparticles: biosynthesis using an ATCC reference strain of Pseudomonas aeruginosa and activity as broad spectrum clinical antibacterial agents. Int J Biomater 2016:5971047. https://doi.org/10.1155/2016/5971047
Rahimi H, Roudbarmohammadi S, Delavari HH, Roudbary M (2019) Antifungal effects of indolicidin-conjugated gold nanoparticles against fluconazole-resistant strains of Candida albicans isolated from patients with burn infection. Int J Nanomedicine 14:5323–5338. https://doi.org/10.2147/IJNN.S207527
Rahman K, Khan SU, Fahad S et al (2019) Nano-biotechnology: a new approach to treat and prevent malaria. Int J Nanomedicine 14:1401–1410. https://doi.org/10.2147/IJNN.S190692
Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83. https://doi.org/10.1016/j.biotechnadv.2008.09.002
Rai M, Ingle AP, Paralikar P et al (2017) Recent advances in use of silver nanoparticles as antimalarial agents. Int J Pharm 526:254–270. https://doi.org/10.1016/j.ijpharm.2017.04.042
Rajan A, Vilas V, Philip D (2015) Studies on catalytic, antioxidant, antibacterial and anticancer activities of biogenic gold nanoparticles. J Mol Liq 212:331–339. https://doi.org/10.1016/j.molliq.2015.09.013
Rajawat S, Qureshi MS (2012) Comparative study on bactericidal effect of silver nanoparticles, synthesized with green technology, in combination with antibiotics on Salmonella typhi. J Biomater Nanobiotechnol 3:480–497. https://doi.org/10.4236/jbnb.2012.34049
Rajeshkumar S, Malarkodi C, Vanaja M, Annadurai G (2016) Anticancer and enhanced antimicrobial activity of biosynthesized silver nanoparticles against clinical pathogens. J Mol Struct 1116:165–173. https://doi.org/10.1016/j.molstruc.2016.03.044
Ramkumar VS, Pugazhendhi A, Prakash S et al (2017) Synthesis of platinum nanoparticles using seaweed Padina gymnospora and their catalytic activity as PVP/PtNPs nanocomposite towards biological applications. Biomed Pharmacother 92:479–490. https://doi.org/10.1016/j.biopha.2017.05.076
Rao B, Tang R-C (2017) Green synthesis of silver nanoparticles with antibacterial activities using aqueous Eriobotrya japonica leaf extract. Adv Nat Sci Nanosci Nanotechnol 8:15014. https://doi.org/10.1088/2043-6254/aa5983
Rao D, Sheng Q, Zheng J (2016) Novel nanocomposite of chitosan-protected platinum nanoparticles immobilized on nickel hydroxide: facile synthesis and application as glucose electrochemical sensor. J Chem Sci 128:1367–1375. https://doi.org/10.1007/s12039-016-1146-5
Rattanata N, Kluynongsruang S, Leelayuwat C et al (2016) Gallic acid conjugated with gold nanoparticles: antibacterial activity and mechanism of action on foodborne pathogens. Int J Nanomedicine 11:3347–3356. https://doi.org/10.2147/IJNN.S109795
Rizvi SAA, Saleh AM (2018) Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J SPJ Off Publ Saudi Pharm Soc 26:64–70. https://doi.org/10.1016/j.jsps.2017.10.012
Rogers JV, Parkinson CV, Choi YW et al (2008) A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation. Nanoscale Res Lett 3:129–133. https://doi.org/10.1007/s11671-008-9128-2

Rosi NL, Giljohann DA, Thaxton CS et al (2006) Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312:1027–1030. https://doi.org/10.1126/science.1125559

Roy B, Mukherjee S, Mukherjee N et al (2014) Design and green synthesis of polymer inspired nanoparticles for the evaluation of their antimicrobial and antifilarial efficiency. RSC Adv 4:34487–34499. https://doi.org/10.1039/C4RA03732D

Roy P, Saha SK, Gayen P et al (2018) Exploration of antifilarial activity of gold nanoparticle against human and bovine filarial parasites: a nanomedicinal mechanistic approach. Colloids Surf B Biointerfaces 161:236–243. https://doi.org/10.1016/j.colsurfb.2017.10.057

Roy A, Bulut O, Some S et al (2019) Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv 9:2673–2702. https://doi.org/10.1039/C8RA08982E

Ruan G, Agrawal A, Marcus AI, Nie S (2007) Imaging and tracking of tat peptide-conjugated quantum dots in living cells: new insights into nanoparticle uptake, intracellular transport, and vesicle shedding. J Am Chem Soc 129:14759–14766. https://doi.org/10.1021/ja074936k

Ruedas-Rama MJ, Walters JD, Orte A, Hall EAH (2012) Fluorescent nanoparticles for intracellular sensing: a review. Anal Chim Acta 751:1–23. https://doi.org/10.1016/j.aca.2012.09.025

Safdar M, Ozaslan M, Khailany RA et al (2020) Synthesis, characterization and applications of a novel platinum-based nanoparticles: catalytic, antibacterial and cytotoxic studies. J Inorg Organomet Polym Mater 30:2430–2439. https://doi.org/10.1016/j.jiomp.2020.09.009

Saha SK, Chowdhury P, Saini P, Babu SPS (2014) Ultrasound assisted green synthesis of poly (vinyl alcohol) capped silver nanoparticles for the study of its antifilarial efficacy. Appl Surf Sci 288:625–632. https://doi.org/10.1016/j.apsusc.2013.10.085

Saha SK, Roy P, Saini P et al (2016) Carbohydrate polymer inspired silver nanoparticles for filaricidal and mosquitocidal activities: a comprehensive view. Carbohydr Polym 137:390–401. https://doi.org/10.1016/j.carbpol.2015.11.007

Saha SK, Roy P, Mondal MK et al (2017) Development of chitosan based gold nanomaterial as an efficient antifilarial agent: a mechanistic approach. Carbohydr Polym 157:1666–1676. https://doi.org/10.1016/j.carbpol.2016.11.047

Saini P, Saha SK, Roy P et al (2016) Evidence of reactive oxygen species (ROS) mediated apoptosis in Setaria cervi induced by green silver nanoparticles from Acacia auriculiformis at a very low dose. Exp Parasitol 160:39–48. https://doi.org/10.1016/j.exppara.2015.11.004

Salaklang J, Steitz B, Finka A et al (2008) Superparamagnetic nanoparticles as a powerful systems biology characterization tool in the physiological context. Angew Chem Int Ed Engl 47:7857–7860. https://doi.org/10.1002/anie.200800357

Sánchez-López E, Gomes D, Esteruelas G et al (2020) Metal-based nanoparticles as antimicrobial agents: an overview. Nanomater (Basel, Switzerland) 10:292. https://doi.org/10.3390/ nanomaterials10020292

Saravanan M, Arokiyaraj S, Lakshmi T, Pugazhendhi A (2018) Synthesis of silver nanoparticles from Phenerochaete chrysosporium (MTCC-787) and their antibacterial activity against human pathogenic bacteria. Microb Pathog 117:68–72. https://doi.org/10.1016/j.micpath.2018.02.008

Sekimukai H, Iwata-Yoshikawa N, Fukushima S et al (2020) Gold nanoparticle-adjuvanted S protein induces a strong antigen-specific IgG response against severe acute respiratory syndrome-related coronavirus infection, but fails to induce protective antibodies and limit eosinophilic infiltration in lungs. Microbiol Immunol 64:33–51. https://doi.org/10.1111/1348-0421.12754

Shaham S, Horvitz HR (1996) An alternatively spliced C. elegans ced-4 RNA encodes a novel cell death inhibitor. Cell 86:201–208. https://doi.org/10.1016/s0092-8674(00)80092-6

Shahid-ul-Islam, Butola BS, Mohammad F (2016) Silver nanomaterials as future colorants and potential antimicrobial agents for natural and synthetic textile materials. RSC Adv 6:44232–44247. https://doi.org/10.1039/C6RA05799C
Shi Y, Lin M, Jiang X, Liang S (2015) Recent advances in FePt nanoparticles for biomedicine. J Nanomater 2015:467873. https://doi.org/10.1155/2015/467873

Shriniwas PP, Subhash TK (2017) Antioxidant, antibacterial and cytotoxic potential of silver nanoparticles synthesized using terpenes rich extract of Lantana camara L. leaves. Biochem Biophys Rep 10:76–81. https://doi.org/10.1016/j.bbrep.2017.03.002

Silva NC, Silva S, Sarmento B, Pintado M (2015) Chitosan nanoparticles for daptomycin delivery in ocular treatment of bacterial endophthalmitis. Drug Deliv 22:885–893. https://doi.org/10.3109/10717544.2013.858195

Silvero CMJ, Rocca DM, de la Villarmois EA et al (2018) Selective photoinduced antibacterial activity of amoxicillin-coated gold nanoparticles: from one-step synthesis to in vivo cytocompatibility. ACS Omega 3:1220–1230. https://doi.org/10.1021/acsomega.7b01779

Singh RP, Ramarao P (2012) Cellular uptake, intracellular trafficking and cytotoxicity of silver nanoparticles. Toxicol Lett 213:249–259. https://doi.org/10.1016/j.toxlet.2012.07.009

Singh P, Singh H, Kim YJ et al (2016) Extracellular synthesis of silver and gold nanoparticles by Sporosarcina koreensis DC4 and their biological applications. Enzyme Microb Technol 86:75–83. https://doi.org/10.1016/j.enzmictec.2016.02.005

Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182. https://doi.org/10.1016/j.jcis.2004.02.012

Sultana S, Djaker N, Boca-Farcau S et al (2015) Comparative toxicity evaluation of flower-shaped and spherical gold nanoparticles on human endothelial cells. Nanotechnology 26:55101. https://doi.org/10.1088/0957-4484/26/5/055101

Swamy VS, Prasad R (2012) Green synthesis of silver nanoparticles from the leaf extract of Santalum album and its antimicrobial activity. J Optoelectron Biomed Mater 4(3):53–59

Tahir K, Nazir S, Ahmad A et al (2017) Facile and green synthesis of phytochemicals capped platinum nanoparticles and in vitro their superior antibacterial activity. J Photochem Photobiol B 166:246–251. https://doi.org/10.1016/j.jphotobiol.2016.12.016

Tanaka S-I, Miyazaki J, Tiwari DK et al (2011) Fluorescent platinum nanoclusters: synthesis, purification, characterization, and application to bioimaging. Angew Chem Int Ed 50:431–435. https://doi.org/10.1002/anie.201004907

Taratula O, Garbuzenko OB, Kirkpatrick P et al (2009) Surface-engineered targeted PPI dendrimer for efficient intracellular and intratumoral siRNA delivery. J Control Release 140:284–293. https://doi.org/10.1016/j.jconrel.2009.06.019

Tavolaro A, Drioli E (1999) Zeolite membranes. Adv Mater 11:975–996. https://doi.org/10.1002/(SICI)1521-4095(199908)11:12<975::AID-ADMA975>3.0.CO;2-0

Tippayawat P, Sapa V, Srijampa S et al (2017) d-Maltose coated silver nanoparticles and their synergistic effect in combination with ampicillin. Monatshefte für Chemie – Chem Mon 148:1197–1203. https://doi.org/10.1007/s00706-017-2004-y

Ugru MM, Sheshadri S, Jain D et al (2018) Insight into the composition and surface corona reliant biological behaviour of quercetin engineered nanoparticles. Colloids Surf A Physicochem Eng Asp 548:1–9. https://doi.org/10.1016/j.colsurfa.2018.03.055

Vijayakumari J, Raj TLS, Selvi AA et al (2019) A comparative study of plant mediated synthesis of silver, copper and zinc nanoparticles from Tiliacora acuminata (lam.) Hook. F. and their antibacterial activity studies. Synthesis 18:19–34

Viswanathan A, Rangasamy J, Biswas R (2019) Functionalized antibacterial nanoparticles for controlling biofilm and intracellular infections. In: Pathak YV (ed) Surface modification of nanoparticles for targeted drug delivery. Springer International Publishing, Cham, pp 183–206

Wang Y-W, Tang H, Wu D et al (2016) Enhanced bactericidal toxicity of silver nanoparticles by the antibiotic gentamicin. Environ Sci Nano 3:788–798. https://doi.org/10.1039/C6EN00031B

Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine 12:1227–1249. https://doi.org/10.2147/IJN.S121956
Wani IA, Ahmad T, Manzoor N (2013) Size and shape dependant antifungal activity of gold nanoparticles: a case study of Candida. Colloids Surf B Biointerfaces 101:162–170. https://doi.org/10.1016/j.colsurfb.2012.06.005

Wierzbiicki M, Jaworski S, Sawosz E et al (2019) Graphene oxide in a composite with silver nanoparticles reduces the fibroblast and endothelial cell cytotoxicity of an antibacterial nanoplatform. Nanoscale Res Lett 14:320. https://doi.org/10.1186/s11671-019-3166-9

Wijnhoven SWP, Peijnenburg WJGM, Herberts CA et al (2009) Nano-silver – a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3:109–138. https://doi.org/10.1080/17435390902725914

Yadav S, Sharma S, Ahmad F, Rathaur S (2020) Antifilarial efficacy of green silver nanoparticles synthesized using Andrographis paniculata. J Drug Deliv Sci Technol 56:101557. https://doi.org/10.1016/j.jddst.2020.101557

Yan N, Gu L, Kokel D et al (2004) Structural, biochemical, and functional analyses of CED-9 recognition by the proapoptotic proteins EGL-1 and CED-4. Mol Cell 15:999–1006. https://doi.org/10.1016/j.molcel.2004.08.022

Yan N, Chai J, Lee ES et al (2005) Structure of the CED-4–CED-9 complex provides insights into programmed cell death in Caenorhabditis elegans. Nature 437:831–837. https://doi.org/10.1038/nature04002

Yeh Y-C, Huang T-H, Yang S-C et al (2020) Nano-based drug delivery or targeting to eradicate bacteria for infection mitigation: a review of recent advances. Front Chem 8:286. https://doi.org/10.3389/fchem.2020.00286

Yin Y, Papavasiliou G, Zaborina OY et al (2017) De Novo synthesis and functional analysis of polyphosphate-loaded poly(ethylene) glycol hydrogel nanoparticles targeting pyocyanin and pyoverdin production in Pseudomonas aeruginosa as a model intestinal pathogen. Ann Biomed Eng 45:1058–1068. https://doi.org/10.1007/s10439-016-1740-1

Yokesh Babu M, Janaki Devi V, Ramakritinan CM et al (2013) Biosynthesis of silver nanoparticles from seaweed associated marine bacterium and its antimicrobial activity against UTI pathogens. Int J Curr Microbiol App Sci 2:155–168

Yu X, Yuan L, Zhu N et al (2019) Fabrication of antimicrobial curcumin stabilized platinum nanoparticles and their anti-liver fibrosis activity for potential use in nursing care. J Photochem Photobiol B 195:27–32. https://doi.org/10.1016/j.jphotobiol.2019.03.023

Zhang X-F, Liu Z-G, Shen W, Gurunathan S (2016) Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 17:1534. https://doi.org/10.3390/ijms17091534