The crystal structures of four dimethoxybenzaldehyde isomers

Sander J. T. Brugman, Anthonius H. J. Engwerda, Emma Kalkman, Erik de Ronde, Paul Tinnemans* and Elias Vlieg

Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
*Correspondence e-mail: p.tinnemans@science.ru.nl

The crystal structures of four dimethoxybenzaldehyde (C₉H₁₀O₃) isomers, namely the 2,3-, 2,4-, 2,5- and 3,5- isomers, are reported and compared to the previously reported crystal structures of 3,4-dimethoxybenzaldehyde and 2,6-dimethoxybenzaldehyde. All dimethoxybenzaldehyde molecules in the crystal structures are nearly planar. The largest deviation (1.2 Å) from the aromatic plane is found for one of the methoxy groups of 2,3-dimethoxybenzaldehyde. Upon rapid cooling of 3,4-dimethoxybenzaldehyde and 3,5-dimethoxybenzaldehyde, a metastable polymorph is formed. The crystal studied for the 3,5- isomer was refined as a two-component twin.

1. Chemical context

Dimethoxybenzaldehydes (DMBz) are often used as starting materials in condensation reactions forming Schiff base compounds. Schiff base compounds are versatile ligands in numerous metal–organic complexes that are used as a catalyst. Examples include C—O coupling reactions (Maity et al., 2015), the Suzuiki–Miyaura reaction (Das & Linert, 2016), nitroaldol reactions (Handa et al., 2008) and a wide variety of other reactions (Gupta & Sutar, 2008).

Whereas the crystal structures of nearly 100 DMBz derivatives have been published, not all of the crystal structures of the DMBz starting compounds are known. Only the crystal structures of 3,4-DMBz (de Ronde et al., 2016) and 2,6-DMBz (Lemercier et al., 2014) have been reported. In this work, we report the structures of the four other dimethoxybenzaldehyde isomers, namely 2,3-DMBz (Fig. 1), 2,4-DMBz (Fig. 2), 2,5-DMBz (Fig. 3) and 3,5-DMBz (Fig. 4).
2. Structural commentary

All four reported isomers crystallize in the monoclinic space group \(P_2_1/c\), which is also the case for the previously reported 2,6-DMBz (Lemercier et al., 2014). On the other hand, 3,4-DMBz was reported to crystallize in space group \(Pna_2_1\) (de Ronde et al., 2016). 3,5-DMBz has two molecules in the asymmetric unit, while the other crystal structures have one molecule in the asymmetric unit. The DMBz molecules in the crystal structures are almost planar (Table 1). The biggest deviation is found in the 2,3-DMBz in which one of the methoxy groups deviates by 1.2 Å from the aromatic plane.

3. Supramolecular features

In the crystal structure of 2,3-DMBz, one of the methoxy groups lies in the plane of the aromatic ring (see Fig. 5). The second methoxy group points towards the aldehyde group of a neighboring 2,3-DMBz molecule. In the crystal structure of 2,4-DMBz, shown in Fig. 6, \(\pi-\pi\) stacking interactions between the aromatic rings are present along the \(b\)-axis direction [centroid–centroid separation = 3.9638 (2) Å]. Similarly, in the crystal structure of 2,5-DMBz, aromatic \(\pi-\pi\) stacking interactions are present along the \(a\)-axis direction [centroid–centroid separation = 3.8780 (3) Å], as shown in Fig. 7. The crystal structures of 2,6-DMBz (Lemercier et al., 2014), 3,4-DMBz (de Ronde et al., 2016) and 3,5-DMBz do not exhibit aromatic \(\pi-\pi\) stacking interactions. As mentioned

Table 1

Deviation from the aromatic plane (in Å).

	2,3-DMBz	2,4-DMBz	2,5-DMBz	2,6-DMBz (CSD refcode: LIZLAJ)	3,4-DMBz (CSD refcode: IQUGUY)	3,5-DMBz (molecule 1)	3,5-DMBz (molecule 2)
Aldehyde C	0.020	0.060	0.004	0.027	0.020	0.027	0.022
Aldehyde O	0.104	0.089	0.113	0.015	0.095	0.019	0.047
Methoxy 1 O	0.048	0.013	0.033	0.011	0.002	0.009	0.015
Methoxy 1 C	1.200	0.122	0.099	0.017	0.001	0.087	0.258
Methoxy 2 O	0.035	0.019	0.025	0.024	0.033	0.013	0.019
Methoxy 2 C	0.013	0.074	0.109	0.040	0.337	0.020	0.109

Methoxy 1 and 2 are defined in the same order as the atomic labels, as shown in Fig. 4.
above, only 3,5-DMBz has two molecules in the asymmetric unit, whereas the other crystal structures have one molecule in the asymmetric unit.

4. Polymorphism

Polymorph screening using differential scanning calorimetry did not reveal any phase transitions for any DMBz between 133 K and the melting point of the compound (Table 2). On the other hand, a metastable polymorphic form was discovered after rapidly cooling from the melt for both 3,4-DMBz for which the crystal structure was reported previously (de Ronde et al. 2016) and 3,5-DMBz. In the course of hours, these polymorphic forms transformed into the stable forms. Powder X-ray diffraction measurements confirmed the existence of these metastable forms (3,4-DMBz: Figs. 8, 3, 5-DMBz: Fig. 9).

5. Database survey

A search in the Cambridge Structural Database (Version 5.39, update February 2018, Groom et al., 2016) for dimethoxybenzaldehydes derivatives yielded the crystal structure of 93 compounds, which can be subdivided into fourteen 2,3-DMBz derivatives (including two solvates), fifteen 2,4-DMBz derivatives (including four solvates), ten 2,5-DMBz derivatives (including two solvates), nine 2,6-DMBz derivatives (including one solvate), forty two 3,4-DMBz derivatives (including nine solvates) and three 3,5-DMBz derivatives.
Table 3
Experimental details.

	2,3DMBz	2,4DMBz	2,5DMBz	3,5DMBz
Crystal data				
Chemical formula	C9H10O3	C9H10O3	C9H10O3	C9H10O3
Mr	166.17	166.17	166.17	166.17
Crystal system, space group	Monoclinic, P21/c	Monoclinic, P21/c	Monoclinic, P21/n	Monoclinic, P21/c
Temperature (K)	150	150	150	110.762 (5)
a, b, c (Å)	7.6152 (3), 15.5513 (6), 7.5891 (3)	15.1575 (8), 3.9638 (2), 14.6181 (8)	11.7602 (5), 13.8957 (6), 11.4532 (5)	
β (°)	115.8831 (18)	113.8888 (19)	118.642 (2)	
V (Å³)	808.59 (6)	803.35 (7)	797.66 (10)	
Z	4	4	4	8
m (mm⁻¹)	0.10	0.10	0.10	0.10
Crystal size (mm)	0.49 x 0.45 x 0.16	0.50 x 0.43 x 0.40	0.74 x 0.38 x 0.13	0.50 x 0.43 x 0.40

Data collection				
Diffractometer	Bruker D8 Quest APEX3			
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)			
Tmin, Tmax	0.672, 0.747	0.685, 0.746	0.705, 0.747	0.703, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections	17821, 4126, 3160	15236, 2461, 2171	30235, 3873, 3276	53075, 7976, 6730
Rint	0.032	0.020	0.024	0.030
(sin θ/λ)max (Å⁻¹)	0.849	0.714	0.834	0.836
Refinement				
R(F² > 2σ(F²)), wR(F²), S	0.043, 0.130, 1.02	0.039, 0.117, 1.03	0.039, 0.124, 1.02	0.042, 0.126, 1.05
No. of reflections	4126	2461	3873	7976
No. of parameters	111	111	111	222
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained
Deρmax, Deρmin (e Å⁻³)	0.60, −0.24	0.40, −0.24	0.54, −0.22	0.48, −0.26

Computer programs: APEX3 and SAINT (Bruker, 2012), PEAKREF (Schreurs, 2013), SHELXTL2014/4 (Sheldrick, 2015a), SHELXL2016/6 (Sheldrick, 2015b), PLATON (Spek, 2009) and ShelXLe (Hübschle et al., 2011).

Figure 8
Powder X-ray diffraction measurements of form I (black) and II (blue) of 3,4-DMBz. The powder pattern (red) was calculated from the crystal structure by de Ronde et al. (2016).

Figure 9
Powder X-ray diffraction measurements of form I (black) and II (blue) of 3,5-DMBz. The powder pattern (red) was calculated from the crystal structure.
6. Synthesis and crystallization

6.1. 2,3-dimethoxybenzaldehyde

30 mg of 2,3-dimethoxybenzaldehyde (97%, Fluorochem) was dissolved in 4 mL of isopropyl ether. Slow evaporation of a 1:1 mixture of this solution and heptane yielded colorless block-shaped crystals suitable for single crystal X-ray diffraction.

6.2. 2,4-dimethoxybenzaldehyde

25 mg of 2,4-dimethoxybenzaldehyde (98%, Aldrich) was dissolved in a 1:1 ratio of heptane/acetone (1.5 mL). Slow evaporation yielded colorless block-shaped crystals suitable for single crystal X-ray diffraction.

6.3. 2,5-dimethoxybenzaldehyde

1 g of 2,5-dimethoxybenzaldehyde (97%, Acros Organics) was dissolved in a mixture of heptane (1 mL) and acetone (1 mL). Slow evaporation yielded colorless needles suitable for single crystal X-ray diffraction.

6.4. 3,5-dimethoxybenzaldehyde

It was noted that 3,5-dimethoxybenzaldehyde (98%, Aldrich) oils out from solution, therefore the same method was used as had previously been employed for 3,4-dimethoxybenzaldehyde (de Ronde et al., 2016). In short, a few crystals of the commercial powder were added to a saturated solution in water. Subsequently, the temperature was cycled between 298 and 303 K. This resulted in the growth of single crystals suitable for single-crystal X-ray diffraction in several weeks.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms were positioned geometrically and refined as riding with C—H = 0.95–0.96 and \(U_{iso}(H) = 1.2–1.5U_{eq}(C) \). The crystal of 3,5-DMBz studied was refined as a two-component twin.

References

Bruker (2012). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Das, P. & Linert, W. (2016). Coord. Chem. Rev. 311, 1–23.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
Gupta, K. C. & Sutar, A. K. (2008). Coord. Chem. Rev. 252(12-14), 1420-1450.
Handa, S., Nagawa, K., Sohtome, Y., Matsunaga, S. & Shibasaki, M. (2008). Angew. Chem. 120, 3274–3277.
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
Lemercier, J.-N., Gandour, R. D. & Fronczek, F. R. (2014), private communication (refcode CCDC 989140). CSD, Cambridge, England. https://doi:10.5517/cc1268r9.
Maity, T., Saha, D., Bhunia, S., Brandão, P., Das, S. & Koner, S. (2015). RSC Adv. 5, 82179–82191.
Ronde, E. de, Brugman, S. J. T., Koning, N., Tinnemans, P. & Vlieg, E. (2016). IUCrData, 1, x161008.
Schreurs, A. M. M. (2013). PEAKREF. Utrecht University, The Netherlands.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
Spek, A. L. (2009). Acta Cryst. D65, 148–155.
The crystal structures of four dimethoxybenzaldehyde isomers

Sander J. T. Brugman, Anthonius H. J. Engwerda, Emma Kalkman, Erik de Ronde, Paul Tinnemans and Elias Vlieg

Computing details

For all structures, data collection: APEX3 (Bruker, 2012); cell refinement: PEAKREF (Schreurs, 2013); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT2014/4 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009), ShelXLe (Hübschle et al., 2011).

2,3-Dimethoxybenzaldehyde (23DMBz)

Crystal data

C₉H₈O₃

Mr = 166.17

Monoclinic, P2₁/c

a = 7.6152 (3) Å

b = 15.5513 (6) Å

V = 808.59 (6) Å³

Z = 4

F(000) = 352

Dₐ = 1.365 Mg m⁻³

Melting point: 322 K

Mo Ka radiation, λ = 0.71073 Å

Cell parameters from 6893 reflections

θ = 2.6–36.9°

μ = 0.10 mm⁻¹

T = 150 K

Block, colourless

0.49 × 0.45 × 0.16 mm

Data collection

Bruker D8 Quest APEX3
diffractometer

17821 measured reflections

4126 independent reflections

3160 reflections with I > 2σ(I)

R(int) = 0.032

θ_max = 37.1°, θ_min = 2.6°

h = −12→12

k = −26→26

l = −12→12

Refinement

Refinement on F²

Least-squares matrix: full

R[F² > 2σ(F²)] = 0.043

wR(F²) = 0.130

S = 1.02

4126 reflections

111 parameters

0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

Acta Cryst. (2019). E75, 38-42 [https://doi.org/10.1107/S2056989018017152]
supporting information

\[w = 1/\left[\sigma^2(F_o^2) + (0.0743P)^2 + 0.0948P\right] \]
where \(P = (F_o^2 + 2F_c^2)/3 \)
\((\Delta/\sigma)_{\text{max}} = 0.001\)

\[\Delta\rho_{\text{max}} = 0.60 \text{ e } \AA^{-3} \]
\[\Delta\rho_{\text{min}} = -0.24 \text{ e } \AA^{-3} \]

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	x	y	z	Uiso*/Ueq
O01	0.84423	0.67610	0.72112	0.01819 (11)
O02	0.93597	0.50880	0.76827	0.02194 (12)
O03	0.42554	0.77393	0.22027	0.03084 (15)
C04	0.60779	0.65162	0.38944	0.01633 (12)
C05	0.79724	0.53265	0.58899	0.01586 (12)
C06	0.50903	0.59449	0.23432	0.02083 (14)
H07	0.41097	0.61517	0.113675	0.025*
C07	0.75191	0.62098	0.56613	0.01466 (12)
C08	0.55760	0.74397	0.36618	0.02121 (14)
H08	0.632072	0.781899	0.470279	0.025*
C09	0.69865	0.47667	0.43414	0.01968 (13)
H09	0.729027	0.417067	0.448365	0.024*
C10	0.55498	0.50806	0.25774	0.02239 (15)
H10	0.487993	0.469473	0.152498	0.027*
C11	1.04331	0.69266	0.75867	0.02355 (15)
H11A	1.113534	0.638043	0.778082	0.035*
H11B	1.106109	0.728092	0.876679	0.035*
H11C	1.045946	0.723144	0.646820	0.035*
C12	0.98881	0.41998	0.79585	0.02495 (16)
H12A	0.872738	0.385147	0.769517	0.037*
H12B	1.086092	0.410593	0.931161	0.037*
H12C	1.043851	0.403253	0.705808	0.037*

Atomic displacement parameters (Å²)

	U₁₁	U₂₂	U₃₃	U₁₂	U₁₃	U₂₃
O01	0.0179	0.0172	0.0179	-0.00017	0.00634	-0.00429
O02	0.0282	0.0151	0.0174	0.00471	0.0052	0.00247
O03	0.0228	0.0306	0.0343	0.0108	0.0081	0.0124
C04	0.0142	0.0176	0.0168	0.0012	0.0064	0.0019
C05	0.0180	0.0140	0.0157	0.0007	0.0075	0.0007
C06	0.0171	0.0265	0.0164	-0.0016	0.0049	-0.0001
C07	0.0147	0.0138	0.0153	0.0003	0.0064	-0.00084
C08	0.0185	0.0207	0.0250	0.0049	0.0100	0.0050
C09	0.0240	0.0156	0.0207	-0.0029	0.0110	-0.0034
C10	0.0229	0.0240	0.0189	-0.0061	0.0078	-0.0057

Acta Cryst. (2019). E75, 38-42
	0.0193 (3)	0.0225 (3)	0.0254 (3)	−0.0045 (3)	0.0067 (3)	−0.0055 (3)
C12	0.0324 (4)	0.0170 (3)	0.0272 (3)	0.0085 (3)	0.0147 (3)	0.0064 (3)

Geometric parameters (Å, °)

Bond/Angle	Length/Distance	C06—H06	C08—H08	C09—C10	C10—H10	C11—H11A	C11—H11B	C11—H11C
O01—C07	1.3750 (8)							
O01—C11	1.4383 (10)							
O02—C05	1.3601 (9)	C09—C10						
O02—C12	1.4284 (9)							
O03—C08	1.2175 (9)	C10—H10						
C04—C07	1.3945 (9)	C11—H11A						
C04—C06	1.4029 (10)	C11—H11B						
C04—C08	1.4767 (10)	C11—H11C						
C05—C09	1.3901 (10)	C12—H12A						
C05—C07	1.4085 (9)	C12—H12B						
C06—C10	1.3807 (12)	C12—H12C						

Bond/Angle	Length/Distance	C05—C09	H09	C10—C09	H09	C05—C11	H11A	C11—H11B
C07—O01—C11	112.47 (6)	C05—C09—H09	120.0	C10—C09—H09	120.0			
C05—O02—C12	117.16 (6)	C10—C09—H09	120.0					
C07—C04—C06	119.94 (7)	C06—C10—C09	120.82 (7)					
C07—C04—C08	120.08 (6)	C06—C10—H10	119.6					
C06—C04—C08	119.98 (6)	C09—C10—H10	119.6					
O02—C05—C09	124.88 (6)	O01—C11—C11A	109.5					
O02—C05—C07	115.51 (6)	O01—C11—C11B	109.5					
C09—C05—C07	119.59 (6)	H11A—C11—C11B	109.5					
C10—C06—C04	119.71 (7)	O01—C11—H11C	109.5					
C10—C06—H06	120.1	H11A—C11—H11C	109.5					
C04—C06—H06	120.1	H11B—C11—H11C	109.5					
O01—C07—C04	120.23 (6)	O02—C12—H12A	109.5					
O01—C07—C05	119.76 (6)	O02—C12—H12B	109.5					
C04—C07—C05	119.96 (6)	H12A—C12—H12B	109.5					
O03—C08—C04	123.28 (8)	O02—C12—H12C	109.5					
O03—C08—H08	118.4	H12A—C12—H12C	109.5					
C04—C08—H08	118.4	H12B—C12—H12C	109.5					
C05—C09—C10	119.98 (7)							

Bond/Angle	Length/Distance	O02—C05—O01	C09—C05—O01	C07—O01	C07—O01
C12—O02—C05—C09	2.55 (11)	O02—C05—C07—O01	178.73 (6)		
C12—O02—C05—C07	−178.75 (6)	C09—C05—C07—O01	178.31 (7)		
C07—C04—C06—C10	0.13 (11)	O02—C05—C07—C04	−178.28 (6)		
C08—C04—C06—C10	−179.23 (7)	C09—C05—C07—C04	0.51 (10)		
C11—O01—C07—C04	−108.70 (7)	C07—C04—C08—O03	−175.45 (7)		
C11—O01—C07—C05	74.09 (8)	C06—C04—C08—O03	3.90 (11)		
C06—C04—C07—O01	−177.61 (6)	O02—C05—C09—C10	178.31 (7)		
C08—C04—C07—O01	1.75 (10)	C07—C05—C09—C10	−0.34 (11)		
C06—C04—C07—C05	−0.40 (10)	C04—C06—C10—C09	0.03 (11)		
C08—C04—C07—C05	178.96 (6)	C05—C09—C10—C06	0.08 (11)		
2,4-Dimethoxybenzaldehyde (24DMBz)

Crystal data

C₉H₁₀O₃
Mr = 166.17
Monoclinic, P2₁/c

a = 15.1575 (8) Å
b = 3.9638 (2) Å
c = 14.6181 (8) Å
β = 113.8388 (19)°
V = 803.35 (7) Å³
Z = 4

F(000) = 352
Dx = 1.374 Mg m⁻³
Melting point: 341 K

Data collection

Bruker D8 Quest APEX3
Radiation source: sealed tube
Graphite monochromator
Detector resolution: 10.4 pixels mm⁻¹
φ and ω scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)

15236 measured reflections
2461 independent reflections
2171 reflections with I > 2σ(I)
Rint = 0.020
θmax = 30.5°, θmin = 2.8°
h = −21→21
k = −5→5
l = −20→19

Refinement

Refinement on F²
Least-squares matrix: full

R[F² > 2σ(F²)] = 0.039
wR(F²) = 0.117
S = 1.03

2461 reflections
111 parameters
0 restraints

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	x	y	z	Ueq
O01	0.08102 (5)	0.65429 (18)	0.10801 (5)	0.02325 (16)
O02	0.39771 (5)	0.76391 (19)	0.37610 (5)	0.02571 (17)
O03	0.31680 (6)	0.2357 (2)	0.56154 (5)	0.0358 (2)
C04	0.30419 (6)	0.6579 (2)	0.33618 (6)	0.01822 (17)
C05	0.27290 (6)	0.4771 (2)	0.40045 (6)	0.01952 (18)
C06	0.14709 (6)	0.6063 (2)	0.20292 (6)	0.01766 (17)
C07	0.24207 (6)	0.7210 (2)	0.23720 (6)	0.01809 (17)

Acta Cryst. (2019). E75, 38-42
	\(u_{11} \)	\(u_{22} \)	\(u_{33} \)	\(u_{12} \)	\(u_{13} \)	\(u_{23} \)
O01	0.0204 (3)	0.0285 (3)	0.0187 (3)	-0.0020 (2)	0.0057 (2)	0.0016 (2)
O02	0.0180 (3)	0.0327 (4)	0.0249 (3)	-0.0049 (3)	0.0071 (2)	0.0042 (3)
O03	0.0340 (4)	0.0489 (5)	0.0239 (3)	-0.0020 (3)	0.0111 (3)	0.0108 (3)
C04	0.0169 (3)	0.0182 (4)	0.0204 (4)	0.0001 (3)	0.0084 (3)	-0.0010 (3)
C05	0.0211 (4)	0.0201 (4)	0.0186 (4)	0.0008 (3)	0.0093 (3)	0.0001 (3)
C06	0.0189 (4)	0.0163 (3)	0.0181 (3)	0.0013 (3)	0.0077 (3)	-0.0022 (3)
C07	0.0194 (4)	0.0176 (3)	0.0194 (4)	0.0003 (3)	0.0100 (3)	-0.0001 (3)
C08	0.0191 (4)	0.0194 (4)	0.0229 (4)	-0.0016 (3)	0.0106 (3)	-0.0018 (3)
C09	0.0229 (4)	0.0198 (4)	0.0218 (4)	-0.0003 (3)	0.0131 (3)	0.0000 (3)
C10	0.0269 (4)	0.0249 (4)	0.0188 (4)	-0.0002 (3)	0.0092 (3)	0.0011 (3)
C11	0.0251 (4)	0.0335 (5)	0.0215 (4)	-0.0011 (4)	0.0078 (3)	0.0034 (3)
C12	0.0215 (4)	0.0296 (5)	0.0337 (5)	-0.0017 (3)	0.0134 (4)	0.0068 (4)

Geometric parameters (Å, °)

	C06	C07	C08	C09	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20
O01—C06	1.3567 (10)	C07—H07	0.9500												
O01—C10	1.4347 (11)	C08—C09	1.3756 (12)												
O02—C04	1.3629 (10)	C08—H08	0.9500												
O02—C12	1.4326 (11)	C09—H09	0.9500												
O03—C11	1.2201 (12)	C10—H10A	0.9800												
C04—C07	1.3934 (11)	C10—H10B	0.9800												
C04—C05	1.4077 (11)	C10—H10C	0.9800												
C05—C09	1.4057 (12)	C11—H11	0.9500												
C05—C11	1.4608 (12)	C12—H12A	0.9800												
C06—C07	1.3954 (11)	C12—H12B	0.9800												
C06—C08	1.4007 (11)	C12—H12C	0.9800												
O02—C04—C07 122.59 (7) O01—C10—H10A 109.5
O02—C04—C05 116.35 (7) O01—C10—H10B 109.5
C07—C04—C05 121.05 (7) H10A—C10—H10B 109.5
C09—C05—C04 118.29 (7) O01—C10—H10C 109.5
C09—C05—C11 120.43 (8) H10B—C10—H10C 109.5
C04—C05—C11 121.24 (8) O01—C06—C07 123.34 (8) O03—C11—C05 124.40 (9)
C01—C06—C07 115.29 (7) O03—C11—H11 117.8
C07—C06—C08 121.37 (8) C05—C11—H11 117.8
C04—C07—C06 118.72 (8) O02—C12—H12A 109.5
C04—C07—H07 120.6 O02—C12—H12B 109.5
C06—C07—H07 120.6 H12A—C12—H12B 109.5
C09—C08—C06 120.5 H12A—C12—H12C 109.5
C09—C08—H08 120.5 C05—C09—C08 121.24 (8)
C06—C08—H08 120.5 O02—C12—H12C 109.5
C08—C09—C05 121.60 (8) C12—O02—C04—C07 −4.23 (12) O01—C06—C07—C04 −179.94 (7)
C12—O02—C04—C05 175.40 (8) C08—C06—C07—C04 −0.36 (12) C12—O02—C04—C05 175.40 (8)
O02—C04—C05—C09 −0.88 (13) C07—C06—C08—C09 −0.60 (12) O02—C04—C05—C09 −2.82 (13)
O02—C04—C05—C11 −2.82 (13) C06—C08—C09—C05 0.83 (13) C07—C04—C05—C11 −0.88 (13)
C07—C04—C05—C11 176.82 (8) C04—C05—C09—C08 −0.11 (13)
C10—O01—C06—C07 4.17 (12) O01—C06—C08—C09 −177.83 (8)
C10—O01—C06—C08 −175.43 (7) C11—C05—C09—C08 4.17 (12)
C10—O01—C06—C09 −179.28 (8) C11—C05—C09—C08 −177.83 (8)
C02—C04—C07—C06 −179.28 (8) C04—C05—C11—O03 1.10 (12)
C02—C04—C07—C08 −175.43 (7) C09—C05—C11—O03 −1.27 (16)
C02—C04—C07—C09 −179.28 (8) C04—C05—C11—O03 −178.93 (10)
C02—C04—C07—C10 1.10 (12)

2,5-Dimethoxybenzaldehyde (25DMBz)

Crystal data
$\text{C}_9\text{H}_{10}\text{O}_3$

$M_r = 166.17$

Monoclinic, $P2_1/n$

$a = 3.8780$ (3) Å

$b = 11.5513$ (7) Å

$c = 17.8153$ (12) Å

$\beta = 91.808$ (2)$^\circ$

$V = 797.66$ (10) Å^3

$Z = 4$

$F(000) = 352$

$D_r = 1.384$ Mg m$^{-3}$

Melting point: 321 K

$\text{Mo } K\alpha$ radiation, $\lambda = 0.71073$ Å

Cell parameters from 9955 reflections

$\theta = 2.3$–36.2°

$\mu = 0.10$ mm$^{-1}$

$T = 150$ K

Needle, colourless

$0.74 \times 0.38 \times 0.13$ mm

Data collection

Bruker D8 Quest APEX3
diffractometer

30235 measured reflections

3873 independent reflections

3276 reflections with $I > 2\sigma(I)$

$R_{int} = 0.024$

$\theta_{max} = 36.4^\circ$, $\theta_{min} = 2.1^\circ$

$h = -6$–6

$k = -14$–19

$l = -29$–29

$(\text{SADABS}; \text{Krause et al., 2015})$

$T_{min} = 0.705$, $T_{max} = 0.747$
Refinement

Refinement on \(F^2 \)
Least-squares matrix: full
\(R[F^2 > 2\sigma(F^2)] = 0.039 \)
\(wR(F^2) = 0.124 \)
\(S = 1.02 \)
3873 reflections
111 parameters
0 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained

\(w = 1/[\sigma^2(F_o^2) + (0.0691P)^2 + 0.1755P] \)
\((\Delta/\sigma)_{\text{max}} = 0.001 \)
\(\Delta \rho_{\text{max}} = 0.54 \, \text{e} \, \text{Å}^{-3} \)
\(\Delta \rho_{\text{min}} = -0.22 \, \text{e} \, \text{Å}^{-3} \)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	x	y	z	U(eq)
O01	0.70027 (15)	0.37815 (5)	0.56706 (3)	0.02308 (11)
O02	0.32551 (16)	0.55079 (5)	0.84287 (3)	0.02348 (12)
O03	0.81653 (19)	0.71583 (5)	0.60790 (3)	0.02970 (14)
C04	0.64196 (16)	0.53211 (5)	0.65291 (3)	0.01623 (11)
C05	0.54777 (16)	0.57451 (5)	0.72267 (3)	0.01719 (11)
H05	0.580616	0.654118	0.734217	0.021*
C06	0.44894 (18)	0.34122 (6)	0.68849 (4)	0.01849 (12)
H06	0.413247	0.261704	0.677056	0.022*
C07	0.40630 (16)	0.50128 (5)	0.77542 (3)	0.01656 (11)
C08	0.35490 (17)	0.38467 (6)	0.75789 (4)	0.01814 (12)
H08	0.255150	0.334576	0.793501	0.022*
C09	0.59531 (16)	0.41403 (5)	0.65371 (3)	0.01655 (11)
C10	0.79366 (19)	0.61160 (6)	0.59830 (4)	0.02189 (13)
H10	0.878085	0.579933	0.553220	0.026*
C11	0.6662 (2)	0.25766 (6)	0.55053 (4)	0.02393 (14)
H11A	0.787349	0.212440	0.589721	0.036*
H11B	0.766517	0.241337	0.501841	0.036*
H11C	0.421362	0.236493	0.548665	0.036*
C12	0.1987 (2)	0.47519 (7)	0.89872 (4)	0.02583 (15)
H12A	-0.020111	0.441090	0.880789	0.039*
H12B	0.161901	0.518945	0.944911	0.039*
H12C	0.367146	0.413466	0.908934	0.039*

Atomic displacement parameters (Å²)

	U^11	U^22	U^33	U^12	U^13	U^23
O01	0.0330 (3)	0.0181 (2)	0.0185 (2)	-0.00401 (19)	0.00611 (18)	-0.00154 (16)
O02	0.0348 (3)	0.0174 (2)	0.0187 (2)	0.00073 (19)	0.00818 (19)	0.00082 (16)
O03	0.0450 (3)	0.0186 (2)	0.0256 (3)	-0.0097 (2)	0.0032 (2)	0.00350 (18)
C04 0.0178 (2) 0.0145 (2) 0.0164 (2) −0.00141 (18) 0.00017 (18) 0.00262 (18)
C05 0.0197 (2) 0.0141 (2) 0.0178 (2) −0.00057 (19) 0.00054 (19) 0.00188 (19)
C06 0.0222 (3) 0.0146 (2) 0.0186 (2) −0.00275 (19) 0.0011 (2) 0.00149 (19)
C07 0.0179 (2) 0.0156 (2) 0.0163 (2) 0.00086 (19) 0.00157 (18) 0.00161 (18)
C08 0.0205 (3) 0.0158 (2) 0.0183 (2) −0.00184 (19) 0.00202 (19) 0.00261 (18)
C09 0.0182 (2) 0.0155 (2) 0.0160 (2) −0.00112 (19) 0.00054 (19) 0.00083 (18)
C10 0.0277 (3) 0.0191 (3) 0.0189 (3) −0.0051 (2) 0.0018 (2) 0.0032 (2)
C11 0.0306 (3) 0.0194 (3) 0.0219 (3) −0.0011 (2) 0.0020 (2) −0.0034 (2)
C12 0.0322 (4) 0.0232 (3) 0.0227 (3) 0.0033 (3) 0.0109 (3) 0.0042 (2)

Geometric parameters (Å, °)

O01—C09 1.3655 (8) C06—C09 1.3954 (9) O01—C09—C04 116.67 (5)
O01—C11 1.4280 (9) C06—H06 0.9500
O02—C07 1.3757 (8) C07—C08 1.3957 (9) O02—C12—H12A 109.5
O02—C12 1.4232 (9) C08—H08 0.9500
O03—C10 1.2189 (9) C10—H10 0.9500
C04—C05 1.3952 (9) C11—H11A 0.9800
C04—C09 1.4083 (9) C11—H11B 0.9800
C04—C10 1.4738 (9) C11—H11C 0.9800
C05—C07 1.3901 (9) C12—H12A 0.9800
C05—H05 0.9500 C12—H12B 0.9800
C06—C08 1.3936 (9) C12—H12C 0.9800
C09—C01—C11 116.90 (5) O01—C09—C04 116.67 (5)
C07—O02—C07 116.67 (6) C06—C09—C04 119.30 (6)
C05—C04—C09 119.89 (6) O03—C10—C04 123.47 (7)
C05—C04—C10 119.37 (6) O03—C10—H10 118.3
C09—C04—C10 120.73 (6) C04—C10—H10 118.3
C07—C05—C04 120.57 (6) O01—C11—H11A 109.5
C07—C05—H05 119.7 O01—C11—H11B 109.5
C04—C05—C04 119.7 O01—C11—H11C 109.5
C08—C06—C09 120.27 (6) O01—C11—H11D 109.5
C08—C06—H06 119.9 H11A—C11—H11B 109.5
C09—C06—H06 119.9 H11A—C11—H11C 109.5
O02—C07—C05 116.31 (6) H11B—C11—H11C 109.5
O02—C07—C08 124.18 (6) O02—C12—H12A 109.5
C05—C07—C08 119.51 (6) O02—C12—H12B 109.5
C06—C08—C07 120.44 (6) O02—C12—H12C 109.5
C06—C08—H08 119.8 H12A—C12—H12B 109.5
C07—C08—H08 119.8 H12A—C12—H12C 109.5
C01—O01—C09 116.90 (5) O01—C09—C04 116.67 (5)
C04—C05—C07 −0.32 (9) C11—O01—C09—C04 177.58 (6)
C04—C05—C07 −179.56 (6) C08—C06—C09—O01 178.78 (6)
C12—O02—C07—C05 −176.57 (6) C08—C06—C09—C04 −0.97 (10)
C12—O02—C07—C08 3.41 (10) C05—C04—C09—O01 −178.60 (6)
C04—C05—C07—O02 179.25 (6) C10—C04—C09—O01 0.63 (9)
3,5-Dimethoxybenzaldehyde (35DMBz)

Crystal data

\[\text{C}_9\text{H}_{10}\text{O}_3 \]

\[M_r = 166.17 \]

Monoclinic, \(P\overline{2}_1/c \)

\[a = 11.7602 (5) \text{ Å} \]

\[b = 13.8957 (6) \text{ Å} \]

\[c = 11.4352 (5) \text{ Å} \]

\[\beta = 118.642 (2)° \]

\[V = 1640.03 (13) \text{ Å}^3 \]

\[Z = 8 \]

\[F(000) = 704 \]

Melting point: 319 K

Mo \(K\alpha \) radiation, \(\lambda = 0.71073 \text{ Å} \)

Cell parameters from 9794 reflections

\[\theta = 2.5–36.4° \]

\[\mu = 0.10 \text{ mm}^{-1} \]

\[T = 150 \text{ K} \]

Block, colourless

\[0.50 \times 0.43 \times 0.40 \text{ mm} \]

Refinement

Refinement on \(F^2 \)

Least-squares matrix: full

\[R(F^2 > 2\sigma(F^2)) = 0.042 \]

\[wR(F) = 0.126 \]

\[S = 1.05 \]

7976 reflections

222 parameters

0 restraints

Hydrogen site location: inferred from neighbouring sites

Secondary atom site location: difference Fourier map

\[\Delta \rho_{\text{max}} = 0.48 \text{ e Å}^{-3} \]

\[\Delta \rho_{\text{min}} = -0.25 \text{ e Å}^{-3} \]

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å\(^2\))

	\(x \)	\(y \)	\(z \)	\(U_{eq} \)
O01	0.10858 (7)	0.50152 (5)	0.16802 (7)	0.02241 (12)
Atomic displacement parameters (Å²)				

O01	0.0291 (3)	0.0174 (3)	0.0313 (3)	−0.0012 (2)

Acta Cryst. (2019). E75, 38-42
Geometric parameters (Å, °)

Bond	Distance (Å)	Angle (°)	
O01—C09	1.3594 (10)	C13—C19 1.4014 (11)	
O01—C24	1.4297 (11)	C13—H13 0.9500	
O02—C20	1.2144 (10)	C14—H14 0.9500	
O03—C12	1.3624 (10)	C15—C16 1.4000 (10)	
O03—C21	1.4292 (11)	C16—H16 0.9500	
O04—C10	1.3609 (10)	C17—C19 1.4797 (12)	
O04—C22	1.4321 (11)	C17—H17 0.9500	
O05—C15	1.3623 (9)	C18—C19 1.3898 (11)	
O05—C23	1.4275 (10)	C18—H18 0.9500	
O06—C17	1.2120 (12)	C20—H20 0.9500	
C07—C09	1.3918 (11)	C21—H21A 0.9800	
C07—C12	1.4025 (11)	C21—H21B 0.9800	
C07—H07	0.9500	C21—H21C 0.9800	
C08—C12	1.3923 (11)	C22—H22A 0.9800	
C08—C11	1.4003 (11)	C22—H22B 0.9800	
C08—H08	0.9500	C22—H22C 0.9800	
C09—C14	1.4014 (11)	C23—H23A 0.9800	
C10—C16	1.3914 (11)	C23—H23B 0.9800	
C10—C18	1.3996 (11)	C23—H23C 0.9800	
C11—C14	1.3884 (11)	C24—H24A 0.9800	
C11—C20	1.4795 (11)	C24—H24B 0.9800	
C13—C15	1.3922 (11)	C24—H24C 0.9800	
Bond	Angle (°) (E)	Bond	Angle (°) (E)
-----------------------------	---------------	-----------------------------	---------------
C09—O01—C24	117.83 (7)	O06—C17—H17	117.6
C12—O03—C21	116.74 (7)	C19—C17—H17	117.6
C10—O04—C22	117.72 (7)	C19—C18—C10	118.77 (7)
C15—O05—C23	116.88 (6)	C19—C18—H18	120.6
C09—C07—C12	119.48 (7)	C10—C18—H18	120.6
C09—C07—H07	120.3	C18—C19—C13	121.69 (7)
C12—C08—C11	118.39 (7)	C18—C19—C17	119.99 (7)
C12—C08—H08	120.8	C13—C19—C17	118.32 (7)
C11—C08—H08	120.8	O02—C20—C11	124.56 (8)
O01—C09—C07	123.95 (7)	C11—C20—H20	117.7
O01—C09—C14	115.37 (7)	O03—C21—H21A	109.5
C07—C09—C14	120.68 (7)	O03—C21—H21B	109.5
O04—C10—C16	123.58 (7)	H21A—C21—H21B	109.5
O04—C10—C18	115.74 (7)	O03—C21—H21C	109.5
C16—C10—C18	120.68 (7)	H21A—C21—H21C	109.5
C14—C11—C08	121.94 (7)	H21B—C21—H21C	109.5
C14—C11—C20	120.39 (7)	O04—C22—H22A	109.5
C08—C11—C20	117.66 (7)	O04—C22—H22B	109.5
O03—C12—C08	124.06 (7)	H22A—C22—H22B	109.5
O03—C12—C07	115.08 (7)	O04—C22—H22C	109.5
C08—C12—C07	120.86 (7)	H22A—C22—H22C	109.5
C15—C13—C19	118.47 (7)	H22B—C22—H22C	109.5
C15—C13—H13	120.8	O05—C23—H23A	109.5
C19—C13—H13	120.8	O05—C23—H23B	109.5
C11—C14—C09	118.66 (7)	H23A—C23—H23B	109.5
C11—C14—H14	120.7	O05—C23—H23C	109.5
C09—C14—H14	120.7	H23A—C23—H23C	109.5
O05—C15—C13	124.69 (7)	H23B—C23—H23C	109.5
O05—C15—C16	114.44 (7)	O01—C24—H24A	109.5
C13—C15—C16	120.86 (7)	O01—C24—H24B	109.5
C10—C16—C15	119.52 (7)	H24A—C24—H24B	109.5
C10—C16—H16	120.2	O01—C24—H24C	109.5
C15—C16—H16	120.2	H24A—C24—H24C	109.5
O06—C17—C19	124.76 (9)	H24B—C24—H24C	109.5
C24—O01—C09—C07	3.19 (13)	C23—O05—C15—C13	3.63 (12)
C24—O01—C09—C14	−176.62 (8)	C23—O05—C15—C16	−176.23 (7)
C12—C07—C09—O01	−179.69 (7)	C19—C13—C15—O05	−179.27 (8)
C12—C07—C09—C14	0.11 (12)	C19—C13—C15—C16	0.58 (12)
C22—O04—C10—C16	−10.72 (12)	O04—C10—C16—C15	179.72 (7)
C22—O04—C10—C18	169.48 (8)	C18—C10—C16—C15	−0.50 (12)
C12—C08—C11—C14	−0.02 (11)	O05—C15—C16—C10	179.48 (7)
C12—C08—C11—C20	178.95 (7)	C13—C15—C16—C10	−0.38 (12)
C21—O03—C12—C08	0.13 (12)	O04—C10—C18—C19	−179.06 (7)
C21—O03—C12—C07	179.77 (8)	C16—C10—C18—C19	1.13 (12)
C11—C08—C12—O03	179.42 (7)	C10—C18—C19—C13	−0.93 (12)
Bond	Dihedral Angle (°)	Bond	Dihedral Angle (°)
----------------------	--------------------	----------------------	--------------------
C11—C08—C12—C07	178.64 (8)	C10—C18—C19—C17	0.20 (11)
C09—C07—C12—O03	179.50 (7)	C15—C13—C19—C18	0.09 (12)
C09—C07—C12—C08	0.15 (12)	C15—C13—C19—C17	−179.49 (8)
C08—C11—C14—C09	0.28 (11)	O06—C17—C19—C18	4.47 (15)
C20—C11—C14—C09	−178.66 (7)	O06—C17—C19—C13	−175.94 (10)
O01—C09—C14—C11	179.50 (7)	C14—C11—C20—O02	−1.69 (13)
C07—C09—C14—C11	−0.32 (12)	C08—C11—C20—O02	179.33 (8)