Citation for published version (APA):
Hazra, N. C., Dregan, A., Jackson, S., & Gulliford, M. C. (2016). Drug utilization and inappropriate prescribing in centenarians. *Journal of the American Geriatrics Society, 64*(5), 1079–1084. https://doi.org/10.1111/jgs.14106
Drug Utilization and Inappropriate Prescribing in Centenarians

Nisha C. Hazra, MSc, Alex Dregan, PhD, Stephen Jackson, MD, and Martin C. Gulliford, FPPH

OBJECTIVES: To use primary care electronic health records (EHRs) to evaluate prescriptions and inappropriate prescribing in men and women at age 100.

DESIGN: Population-based cohort study.

SETTING: Primary care database in the United Kingdom, 1990 to 2013.

PARTICIPANTS: Individuals reaching the age of 100 between 1990 and 2013 (N = 11,084; n = 8,982 women, n = 2,102 men).

MEASUREMENTS: Main drug classes prescribed and potentially inappropriate prescribing according to the 2012 American Geriatrics Society Beers Criteria.

RESULTS: At the age of 100, 73% of individuals (79% of women, 54% of men) had received one or more prescription drugs, with a median of 7 (interquartile range 0–12) prescription items. The most frequently prescribed drug classes were cardiovascular (53%), central nervous system (CNS) (53%), and gastrointestinal (47%). Overall, 32% of participants (28% of men, 32% of women) who received drug prescriptions may have received one or more potentially inappropriate prescriptions, with temazepam and amitriptyline being the most frequent. CNS prescriptions were potentially inappropriate in 23% of individuals, and anticholinergic prescriptions were potentially inappropriate in 18% of individuals.

CONCLUSION: The majority of centenarians are prescribed one or more drug therapies, and the prescription may be inappropriate for up to one-third of these individuals. Research using EHRs offers opportunities to understand prescribing trends and improve pharmacological care of the oldest adults. J Am Geriatr Soc 2016.

Key words: centenarians; epidemiology; inappropriate prescribing; aging; primary care
PIMs within each category was also estimated. The standard criteria were used, rather than the disease-specific criteria, because of the large population-based sample in the study. The three drugs that were most frequently prescribed appropriately were evaluated, and descriptive statistics were used to determine the median number of PIMs in each category. Desiccated thyroid is not listed in the BNF, so it was excluded from the analysis. Glyburide is known as glibenclamide in the United Kingdom. The prescribing of non-steroidal anti-inflammatory drugs (NSAIDs) in this study was considered inappropriate only if, as stated in the 2012 AGS Beers Criteria, they were not taken with a gastroprotective agent. All topical non-cyclooxygenase-selective NSAIDs were not considered as inappropriate and only oral formulations were included, as stated by the 2012 AGS Beers Criteria.

RESULTS

A cohort of 11,047 centenarians (8,982 women, 2,102 men), who reached the age of 100 between 1990 and 2013, was selected for analysis. Eighty-four percent were born between 1900 and 1913 and the remaining 16% between 1890 and 1899. The median annual number of prescriptions was 7 (interquartile range 0–12) during the 100th year.

Table 1 shows the most frequently prescribed drugs at the age of 100. Drug utilization for each drug class was higher in women than in men, except for urinary tract drugs.

Table 1. Frequency of Different Categories of Prescriptions According to Sex

Drug Class from British National Formulary	Female, n = 8,982	Male, n = 2,102	All, N = 11,084
Any	6,904 (79)	1,136 (54)	8,040 (73)
Cardiovascular	5,044 (56)	835 (39)	5,879 (53)
Central nervous system^a	5,182 (58)	741 (35)	5,923 (53)
Gastrointestinal	4,488 (50)	752 (36)	5,240 (47)
Skin	3,524 (39)	537 (26)	4,061 (37)
Nutrition and blood	3,485 (39)	479 (23)	3,964 (36)
Antimicrobial	4,028 (45)	631 (30)	4,659 (42)
Eye	2,038 (23)	316 (15)	2,354 (21)
Musculoskeletal and joint diseases	1,963 (22)	307 (15)	2,270 (20)
Endocrine	1,818 (20)	283 (13)	2,101 (19)
Respiratory	1,545 (17)	277 (13)	1,822 (16)
Anesthesia	1,131 (13)	198 (9)	1,329 (12)
Ear, nose, oropharynx	828 (9)	171 (8)	999 (9)
Immunologial products and vaccines	786 (9)	119 (6)	905 (8)
Gynecological and urinary tract	692 (8)	206 (10)	898 (8)
Neoplasms and immunosuppression	497 (6)	92 (4)	589 (5)

^aFrequency of individuals with at least one prescription during the year they turned 100.

^bHypnotics, anxiolytics, antidepressants, analgesics, drugs for nausea and vertigo, antiepileptics, drugs for parkinsonism and dementia.
The frequency of PIP according to the 2012 AGS Beers Criteria is presented in Table 2. Overall, 32% of centenarians were prescribed a PIM, and the three most frequently prescribed PIMs were temazepam, amitriptyline, and nitrofurantoin. The drug class with the highest proportion of PIP was CNS medications (23%). Approximately one-fifth of centenarians (19% women, 13% men) received anticholinergic drugs, with PIMs including chlorphenamine, hydroxyzine, and promethazine hydrochloride. Despite the high levels of prescribing for gastrointestinal, cardiovascular, and analgesic drugs, low levels of inappropriate prescribing (5%) were observed within these classes.

DISCUSSION

To the knowledge of the authors, this is the first population-based study describing medication use and PIP in centenarians. Only a minority of centenarians did not receive prescription medicines, with a higher proportion of men not receiving any prescriptions, consistent with their superior health status at age 100. Almost 80% of women and 54% of men were prescribed at least one drug during their 100th year. Sex differences in overall prescribing between centenarians have not been reported previously. This disparity could be because of sex differences in health-seeking behavior, for example, not seeking a physician’s advice, or nonadherence, as well as resulting from differences in health status. Up to one-third of centenarians were prescribed a PIM. The highest frequencies of PIP were attributed to the use of benzodiazepines (temazepam, diazepam), amitriptyline, and nitrofurantoin. The 2012 AGS Beers Criteria recommendation to avoid all of these drugs is “strong,” and the reported quality of evidence is “high” for avoiding temazepam, diazepam, and amitriptyline and “moderate” for avoiding nitrofurantoin. The 2012 AGS Beers Criteria recommend avoiding nitrofurantoin in individuals with creatinine clearance less than 60 mL/min because of concerns about lack of efficacy from inadequate drug concentrations in the urine. In view of the advanced age of the cohort, it is likely that most will have poor renal function and should therefore be using safer alternatives such as ciprofloxacin or trimethoprim.

Comparison with Existing Literature

Existing studies on drug utilization in elderly adults have often focused on younger cohorts of old people or do not include centenarians. There is scarce evidence about PIP in extreme old age. These studies focusing on younger elderly adults tend to rely on self-reported questionnaires and interviews, resulting in a high risk of responder bias.

There have been no previous studies reporting PIP in a large group of centenarians. Reports of prevalence of PIP in individuals aged 65 and older are inconsistent, and few studies have used the updated 2012 criteria. One study using the 2012 criteria reported a higher prevalence of PIP (44%) in Spanish individuals aged 65 and older than the present findings (32%) in centenarians. The most frequently prescribed PIMs were benzodiazepines, similar to the present data. Another study in New Zealand also reported a higher PIM prevalence (42.7%) for community-dwelling individuals aged 75 and older than for those aged 100 and older in CPRD, whereas another study reported a prevalence of 17%. All three studies used self-reported data. Several studies reported pain medications as the most commonly prescribed PIMs, including two studies using the Screening Tool of Older People’s potentially inappropriate Prescriptions/Screening Tool to Alert doctors to the Right Treatment (STOPP/START) criteria. This is inconsistent with the present findings in centenarians, reporting CNS medications and anticholinergics as the most commonly prescribed PIMs. It is not stated in all these previous studies whether concurrent use of gastroprotective agents was considered alongside NSAIDs.

Strengths and Limitations

This study had the strengths of a large sample drawn from a representative population of U.K. general practices. In the United Kingdom, approximately 98% of individuals are registered with a family practice, ensuring that the present data are complete and nationally representative. Individuals aged 75 and older have an annual review of medicines, and those with four or more medicines are reviewed every 6 months, although this review was not introduced until 2002. Using primary care EHRs allowed for the classification of prescribing according to drug category and of specific PIMs, but data were not available for several variables of interest, including whether an individual lived alone or whether they lived in an urban or rural location. EHRs circumvent the problem of recall bias, a limitation of many drug use studies relying on self-reported questionnaires or interviews to collect data on prescrip-
Drug Category	Total Drug Class, n\(^a\)	Female, n = 8,982	Male, n = 2,102	All, N = 11,084					
	Number of PIMs, Median (IQR)	Top 3 PIMs	Number of PIMs, Median (IQR)	Top 3 PIMs	Number of PIMs, Median (IQR)	Top 3 PIMs			
Any	6,799	2,208 (32)	5 (2–12)	1,108	309 (28)	4 (1–10)	7,907	2,517 (32)	5 (2–12)
Central nervous system	5,182	1,240 (24)	7 (2–13)	741	147 (20)	5 (2–12)	5,923	1,387 (23)	6 (2–12)
Anticholinergic	1,279	237 (19)	2 (1–8)	219	28 (13)	2 (1–6)	1,498	265 (18)	2 (1–7)
Anti-infective	4,027	353 (9)	1 (1–2)	631	38 (6)	1 (1–2)	4,668	391 (8)	1 (1–2)
Analgesic	5,348	258 (5)	2.5 (1–7)	844	31 (4)	1 (1–2)	6,192	289 (5)	2 (1–6)
Gastrointestinal	4,653	238 (5)	1 (1–4)	773	31 (4)	1 (1–2)	5,426	269 (5)	1 (1–3)
Cardiovascular	5,044	207 (4)	7 (3–13)	835	50 (6)	6 (3–11)	5,879	257 (4)	7 (3–13)
Antithrombotic	2,578	87 (3)	6 (2–12)	460	26 (6)	6 (2–12)	3,038	113 (4)	6 (2–12)
Endocrine	1,888	15 (1)	11 (3–13)	311	1 (0.3)	6 (6–6)	2,199	16 (0.1)	9 (4–13)

\(^a\)Number of individuals from total sample with at least one prescription during the year of turning 100 years old in each overall Beers category.

\(^b\)PIMs = potentially inappropriate medications within each Beers category as defined by the 2012 AGS Beers Criteria (row percentages).
tions. There is a possibility that some prescriptions will not be filled or consumed, and the data may not capture any over-the-counter or secondary care hospital prescriptions, so the present findings may underestimate drug usage of centenarians. Another limitation is that the sample was exposed to a nonuniform drug formulary because the study considers data over a 23-year span. Medical practice in primary care has evolved over time, and as a result, certain drugs used in 1990 may now be considered inappropriate. Several new drugs have also been introduced that could not be prescribed in 1990.

There are limitations of the 2012 AGS Beers Criteria, given their universal application without careful consideration of an individual’s response to each drug. There may also be some drugs used in the United Kingdom that were not captured. In 2003, the STOPP/START criteria were developed to identify potential errors in prescribing and prescribing omission in older people according to physiological system. These criteria were created as a Europe-focused tool but are not as widely used as the 2012 AGS Beers Criteria to evaluate the epidemiology of PIP because of their specificity. Although a more-individualized tool may be favored in clinical practice, this approach is less feasible for epidemiological investigation of population-based samples. The 2012 AGS Beers Criteria were specifically designed to use pharmacy records with minimal additional clinical information so that they could be applied to chart reviews or computerized data sets.

According to the 2012 AGS Beers Criteria, the most commonly prescribed PIMs in the present cohort were benzodiazepines, tertiary tricyclic antidepressants, nitrofurantoin, and ibuprofen. The frequencies of PIP found in this study should be interpreted cautiously because each person’s risk:benefit ratio for a drug will depend on his or her physiological and clinical status. Only an individual evaluation of each person will confirm the validity of these interpretations. Nevertheless, population-based studies provide useful epidemiological data on relative frequencies of PIP in large cohorts and help identify the inappropriate medications that are most frequently prescribed. This study also identifies specific drugs that may be given more attention in further research on the determinants of PIP in elderly adults.

Conclusion and Implications for Clinical Practice

Polypharmacy and multimorbidity in elderly adults present health professionals with a significant clinical responsibility. The limited empirically based evidence to guide drug prescription in very old adults means that physicians must base their prescribing decisions on clinical knowledge and prior experience with similar conditions, likely from younger cases. There is an urgent need for studies to explore the efficacy, safety, and harms associated with drug prescribing for different chronic conditions in very old adults. There is also the need to model the adverse clinical and economic consequences of inappropriate therapeatic decision-making in this group.

This is the first study to use primary care EHR data to describe prescribing trends in UK centenarians, as well as the extent of PIP according to drug class. It provides proof of concept for using a large EHR database to evaluate appropriateness of prescribing and a basis for reevaluating indicators of appropriate prescribing as applied to this age group. This also offers valuable data for the modeling of future healthcare needs and costs of the oldest adults in the United Kingdom.

ACKNOWLEDGMENTS

Conflict of Interest: The study is based in part on data from the CPRD obtained under license from the U.K. Medicines and Healthcare products Regulatory Agency, but the interpretation and conclusions contained in this report are those of the authors alone. There are no conflicts of interest involved. The editor in chief has reviewed the conflict of interest checklist provided by the authors and has determined that the authors have no financial or any other kind of personal conflicts with this paper.

This research was supported by the National Institute for Health Research Biomedical Research Centre based at Guy’s and St Thomas’ National Health Service Foundation Trust and King’s College London. Open Access for this article was funded by King’s College London.

Author Contributions: All authors were involved in drafting the article and revising it critically for intellectual content, and all authors approved the final version to be published. Gulliford, Hazra, and Dregan had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Jackson, Gulliford: study conception and design. Hazra, Dregan, Gulliford: acquisition of data. Hazra, Dregan, Jackson, Gulliford: analysis and interpretation of data.

Sponsor’s Role: The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.

REFERENCES

1. Estimates of the Very Old (including Centenarians), for England and Wales, United Kingdom, 2002 to 2013; 2014. Office for National Statistics [on-line]. Available at http://www.ons.gov.uk/ons/dep171778_378107.pdf Accessed August 2, 2015.
2. International Data Base, 2013. U.S. Census Bureau [on-line]. Available at http://www.census.gov/population/international/data/idb/informationGateway.php Accessed October 24, 2014.
3. Secrets of the Centenarians: Life Begins at 100. 2009. New Scientist [on-line]. Available at http://www.newscientist.com/article/mg20327241.300-secrets-of-the-centenarians-life-begins-at-100.html?full=true#.UzF_Rlh4aQA Accessed January 29, 2014.
4. World Population Ageing 1950–2050: IV. Demographic Profile of the Older Population; 2011. United Nations DESA [on-line]. Available at http://www.un.org/esa/population/publications/worldageing19502050/pdf/ WorldAgeingIV_2012_07262014.pdf Accessed October 25, 2014.
5. Yang Z, Norton EC, Stearns SC. Longevity and health care expenditures: The real reasons older people spend more. J Gerontol B Psychol Sci Soc Sci 2003;58B:S2–S10.
6. Shah RR. Drug development and use in the elderly: Search for the right dose and dosing regimen. Br J Clin Pharmacol 2004;58:452–469.
7. Cakir YT, Sonbahar M, Can H et al. Drug usage habits and multiple drug usage of elderly individuals in nursing homes. Turk J Geriatr 2014;17:172–179.
8. National Center for Health Statistics Data Brief, No. 41: Population Aging and the Use of Office-based Physician Services. 2010. U.S. Department of Health and Human Services: Centers for Disease Control and Prevention [on-line]. Available at http://www.cdc.gov/nchs/data/databriefs/db41.pdf Accessed November 28, 2014.
9. Nobili A, Franchi C, Pasina L et al. Drug utilization and polypharmacy in an Italian elderly population: The EPIFARM-Elderly Project. Pharmacopidemiol Drug Saf 2011;20:488–496.
10. Hartikainen S, Klaukka T. Use of psychotropics is high among very old people. Eur J Clin Pharmacol 2004;59:849–850.
11. Wastesson JW, Parker MG, Fastbom J et al. Drug use in centenarians compared with nonagenarians and octogenarians in Sweden: A nationwide register-based study. Age Ageing 2012;41:218–224.
12. Melzer D, Tavakoly B, Winder RE et al. Much more medicine for the oldest old: Trends in UK electronic clinical records. Age Ageing 2015;44:46–53.
13. Kennerfalk A, Ruigomez A, Wallander MA. Geriatric drug therapy and healthcare utilization in the United Kingdom. Ann Pharmacother 2002;36:797–803.
14. Razavi M, Meera NK, Karimian H et al. A profile of drug utilization among elderly inpatients admitted at a tertiary level hospital in Bangalore: A prospective study. Arch Pharma Pract 2012;3:217–222.
15. Sonmez Y, Asci H, Olgun Izmirli G et al. Evaluation of potentially inappropriate drug use and medical non-adherence in a community-dwelling elderly population: A cross-sectional study. Turk J Geriatr 2014;17:125–133.
16. Fialova D, Topinkova E, Gambassi G et al. Potentially inappropriate medication use among elderly home care patients in Europe. JAMA 2005;293:1348–1358.
17. Zhan C, Sang J, Bierman AS et al. Potentially inappropriate medication use in the community-dwelling elderly: Findings from the 1996 Medical Expenditure Panel Survey. JAMA 2001;286:2823–2829.
18. Hazra N, Dregan A, Jackson S et al. Gender differences in health at age 100: Population-based cohort study of centenarians using electronic health records. J Am Geriatr Soc 2015;63:1331–1338.
19. Independent Scientific Advisory Committee for Medicines and Healthcare products Regulatory Agency (MHRA) Database Research (ISAC); Annual Report. 2012. Clinical Practice Research Datalink [on-line]. Available at http://www.cprd.com/docs/isac%20Annual%20Report_2012.pdf Accessed September 9, 2014.
20. British National Formulary. BMJ Group, RCPCH Publications Ltd and the Royal Pharmaceutical Society of Great Britain 2014 [on-line]. Available at http://www.bnf.org/bnf/org_450002.htm Accessed October 31, 2014.
21. The American Geriatrics Society 2012 Beers Criteria Update Expert Panel. American Geriatrics Society updated Beers Criteria for potentially inappropriate medication use in older adults. J Am Geriatr Soc 2012;60:616–631.
22. Beers MH, Ouslander JG, Rol lingher I et al. Explicit criteria for determining inappropriate medication use in nursing homes. Arch Intern Med 1991;151:1825–1832.
23. Fahlman C, Lynn J, Finch M et al. Potentially inappropriate medication use by Medicaid+Choice beneficiaries in the last year of life. J Palliat Med 2007;10:686–695.
24. Nishtala PS, Bagge ML, Campbell AJ et al. Potentially inappropriate medicines in a cohort of community-dwelling older people in New Zealand. Geriatr Gerontol Int 2014;14:89–93.
25. De Wilde S, Carey IM, Harris T et al. Trends in potentially inappropriate prescribing amongst older UK primary care patients. Pharmacoepidemiol Drug Saf 2007;16:658–667.
26. Safe Alternative to Potentially High Risk Medications in the Elderly: Medication Safety Committee, Pharmacy, Quality Division. 2013. GroupHealth [on-line]. Available at https://provider GHC.org/open/caringForOurMembers/ pharmacy/elderly.pdf Accessed March 11, 2015.
27. Blanco-Reina E, Aziza-Zafra G, Ocana-Riola R et al. 2012 American Geriatrics Society Beers criteria: Enhanced applicability for detecting potentially inappropriate medications in European older adults? A comparison with the Screening Tool of Older Person’s Potentially Inappropriate Prescriptions. J Am Geriatr Soc 2014;62:1217–1223.
28. Cahir C, Fahey T, Teeling M et al. Potentially inappropriate prescribing and cost outcomes for older people: A national population study. Br J Clin Pharmacol 2010;69:543–552.
29. O’Mahony D, Gallagher P, Ryan C et al. STOPP & START criteria: A new approach to detecting potentially inappropriate prescribing in old age. Eur Geriatr Med 2010;4:145–51.
30. National Service Framework for Older People. 2001. UK Department of Health [on-line]. Available at https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/30013/National_Service_Framework_for_Older_People.pdf Accessed October 8, 2014.