Biologically inspired band-edge laser action from semiconductor with dipole-forbidden band-gap transition

Cih-Su Wang1, Chi-Shung Liau1, Tzu-Ming Sun1, Yu-Chia Chen1, Tai-Yuan Lin2 & Yang-Fang Chen1

1Department of Physics, National Taiwan University, Taipei 106, Taiwan, 2Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung 202, Taiwan.

A new approach is proposed to light up band-edge stimulated emission arising from a semiconductor with dipole-forbidden band-gap transition. To illustrate our working principle, here we demonstrate the feasibility on the composite of SnO2 nanowires (NWs) and chicken albumen. SnO2 NWs, which merely emit visible defect emission, are observed to generate a strong ultraviolet fluorescence centered at 387 nm assisted by chicken albumen at room temperature. In addition, a stunning laser action is further discovered in the albumen/SnO2 NWs composite system. The underlying mechanism is interpreted in terms of the fluorescence resonance energy transfer (FRET) from the chicken albumen protein to SnO2 NWs. More importantly, the giant oscillator strength of shallow defect states, which is served orders of magnitude larger than that of the free exciton, plays a decisive role. Our approach therefore shows that bio-materials exhibit a great potential in applications for novel light emitters, which may open up a new avenue for the development of bio-inspired optoelectronic devices.

In recent years, there’s a growing interest to develop laser-based photonic technologies, which have made a tremendous impact on modern science and medical applications, such as sensing and diagnosis. Nanomaterials possess several unique electronic and optical properties due to the cylindrical geometry and two-dimensional confinement of electrons and holes, which make them particularly attractive as potential building blocks for nanoscale optoelectronic devices, including light emitting diodes and lasers. As an active photonic device, lasers are composed of a pumped gain medium placed within an optical resonator. Based on these two elements, semiconductor nanowires not only serve as a gain medium but a cavity as well for laser action. Simultaneously, the large refractive index of semiconductors and wire-like geometry enable strongly scattering process existed in the NWs system, and the constructive interference effect consequently results in optical coherent feedback for the outcome lasing modes. Room-temperature lasing has been readily achieved in ZnO, GaN, GaAs and CdSe nanowires due to their large exciton binding energy. Fruitful derivatives are also promising in wide fields such as biosensors, transistors, gas sensors and solar cells. Among the functional wide-bandgap semiconductors, only limited progress has been made in the field of ultraviolet tin dioxide (SnO2) nanowire lasers. Although SnO2 has a wide direct bandgap (3.6 eV) and large exciton-binding energy (130 meV), it is so far commonly believed that SnO2 is not a suitable ultraviolet (UV) luminescent material due to the dipole-forbidden nature of its bandgap quantum states. Generally, only a broad visible oxygen defect photoluminescence (PL) is observed in most of the reports, since the even-parity symmetry of the conduction band and valence band states in SnO2 prohibits the bandgap radiative transition. Until now, only a little attention has been paid to the research for bringing up the related mechanism of SnO2 photoemission in ultraviolet range, the underlying origins still remain as an issue of debates. More theoretical insights are still in need. However, in order to achieve a better UV performance of SnO2 NWs and overcome the difficulties for future coming applications, an improvement for the external conversion efficiency is essential and now paramount.

Chicken egg white (albumen), as a kind of ubiquitous nutritious food in our daily life can serve as a new excellent UV-emitting (~340 nm) protein. Compared with traditional laser dyes (e.g. rhodamine 6G (R6G)), the advantages of chicken albumen consist of the biodegradable, bioresorbable and biocompatible characteristics. More attractive, it is cost-effective and environmentally friendly. Very recently, related research has been paid to the field of modern organic optoelectronics, such as light emitters and field effect transistors (FET). As a new generation of efficient emitting biomolecule, chicken albumen is expected to be potential for future green technologies.
In this paper, we demonstrate, for the first time, a facile and practical strategy to fabricate a newly designed organic-inorganic hybrids composite based on chicken albumen/SnO$_2$ NWs. Quite surprisingly, it is observed that the originally undetectable UV fluorescence (387 nm) in pristine SnO$_2$ NWs can be drastically enhanced in the albumen/SnO$_2$ NWs composite. More excitingly, via effective optical excitation, the coherent laser action can be further sustained and derived. Our strategy to overcome the UV-light-emitting drawback of SnO$_2$ NWs is based on the fluorescence resonance energy transfer (FRET). FRET is a physical phenomenon where excitation energy from an excited donor (chicken albumen) is non-radiatively transferred to a proximal ground-state acceptor (SnO$_2$ NWs), and the energy transfer process in a FRET system requires good overlap between optical transition bands of donor and acceptor as well17. As reported, FRET has been shown to be sufficiently applicable to a variety of biological systems18. Our proposed unprecedented FRET-assisted UV-emitting laser device based on albumen/SnO$_2$ NWs composite is not only simple but also paves an excellent alternative way of utilizing chicken albumen protein, which may enable to trigger the further development of bio-inspired optoelectronic devices.

Results

Morphology and optical characterization of SnO$_2$ NWs and chicken albumen. Figure 1(a) shows the top view SEM image of the as-synthesized SnO$_2$ NWs. It is observed that the nanowires are randomly assembled and closely packed. An inset of Fig. 1(a) reveals a closer view on SnO$_2$ NWs. The average length is about 10 μm, while the diameter is ranging between 70 nm and 150 nm. The XRD pattern of the as-prepared SnO$_2$ NWs is shown in Fig. 1(c). It can be seen that all peaks are perfectly indexed to the tetragonal rutile SnO$_2$. As additional evidence, a Raman scattering spectrum is shown in Fig. 1(d), in which the three peaks at 475, 630, 768 cm$^{-1}$ correspond to the E_g, A_{1g}, and B_{2g} vibration modes, respectively. All these informations further confirm the existence of the as-grown SnO NWs. For the optical properties, a PL spectrum is first characterized as shown in Fig. 1(b). We can clearly see that only a broad orange emission peak located at 625 nm (2.0 eV) is observed, and no ultraviolet fluorescence can be detected. The detected visible light arising from SnO$_2$ is generally believed to stem from the deep-trapped state, which is related to the oxygen vacancies (O$_v$) or tin interstitials (Sn$_i$)14. Figure 2 presents the PL spectra for both of the pristine SnO$_2$ NWs and chicken albumen. The UV emission arising from albumen is centered at around 340 nm, and the FWHM is much narrower compared with that of the bare SnO$_2$ NWs. It is found that the optical property for albumen is quite stable even under the UV laser pumping. At the beginning, the albumen was spin-coated on a cleaned glass substrate for the PL measurement. The first sample was then stored and preserved in a Petri dish at room temperature. More than our expectation, the PL can still be detected and shown to be stable even after 6 months. Based on these characteristics, albumen from chicken egg reveals one of its advantages as an excellent UV-emitting biomolecule. The inset of Fig. 2 illustrates the separation of egg white (albumen) and egg yolk. In addition to the fluorescence properties, the transmittance spectra of albumen with different spin-coating speed were also shown in Fig. 3. The film thicknesses are about 800 nm (1000 rpm) and 400 nm (5000 rpm), respectively. Both the albumen samples with different thickness show similar transmission properties which indicate good transparency from ultraviolet to visible range. The inset of Fig. 3 shows the topological AFM of the albumen surface, and the root mean square (RMS) roughness is 0.34 nm.

Photoluminescence and laser action of albumen/SnO$_2$ NWs composite. Figure 4 shows the PL spectrum of the organic-inorganic hybrid structure of albumen/SnO$_2$ NWs composite. At the beginning, no ultraviolet fluorescence can be ever detected from albumen is centered at around 340 nm, and the FWHM is much narrower compared with that of the bare SnO$_2$ NWs. It is found that the optical property for albumen is quite stable even under the UV laser pumping. At the beginning, the albumen was spin-coated on a cleaned glass substrate for the PL measurement. The first sample was then stored and preserved in a Petri dish at room temperature. More than our expectation, the PL can still be detected and shown to be stable even after 6 months. Based on these characteristics, albumen from chicken egg reveals one of its advantages as an excellent UV-emitting biomolecule. The inset of Fig. 2 illustrates the separation of egg white (albumen) and egg yolk. In addition to the fluorescence properties, the transmittance spectra of albumen with different spin-coating speed were also shown in Fig. 3. The film thicknesses are about 800 nm (1000 rpm) and 400 nm (5000 rpm), respectively. Both the albumen samples with different thickness show similar transmission properties which indicate good transparency from ultraviolet to visible range. The inset of Fig. 3 shows the topological AFM of the albumen surface, and the root mean square (RMS) roughness is 0.34 nm.

Photoluminescence and laser action of albumen/SnO$_2$ NWs composite. Figure 4 shows the PL spectrum of the organic-inorganic hybrid structure of albumen/SnO$_2$ NWs composite. At the beginning, no ultraviolet fluorescence can be ever detected from albumen is centered at around 340 nm, and the FWHM is much narrower compared with that of the bare SnO$_2$ NWs. It is found that the optical property for albumen is quite stable even under the UV laser pumping. At the beginning, the albumen was spin-coated on a cleaned glass substrate for the PL measurement. The first sample was then stored and preserved in a Petri dish at room temperature. More than our expectation, the PL can still be detected and shown to be stable even after 6 months. Based on these characteristics, albumen from chicken egg reveals one of its advantages as an excellent UV-emitting biomolecule. The inset of Fig. 2 illustrates the separation of egg white (albumen) and egg yolk. In addition to the fluorescence properties, the transmittance spectra of albumen with different spin-coating speed were also shown in Fig. 3. The film thicknesses are about 800 nm (1000 rpm) and 400 nm (5000 rpm), respectively. Both the albumen samples with different thickness show similar transmission properties which indicate good transparency from ultraviolet to visible range. The inset of Fig. 3 shows the topological AFM of the albumen surface, and the root mean square (RMS) roughness is 0.34 nm.

Photoluminescence and laser action of albumen/SnO$_2$ NWs composite. Figure 4 shows the PL spectrum of the organic-inorganic hybrid structure of albumen/SnO$_2$ NWs composite. At the beginning, no ultraviolet fluorescence can be ever detected
from the as-synthesized bare SnO$_2$ NWs. However, to our astonishment, when chicken albumin is spin-coated (5000 rpm) onto the SnO$_2$ NWs, two UV emission peaks located at the positions of 340 nm and 387 nm emerge. Similar result can both be found in high-density (Fig. 4(a)) and low-density (Fig. 4(b)) grown SnO$_2$ NWs coated by albumen. The 340 nm emission is indexed to the existing albumen covered on SnO$_2$ NWs, and is basically the same as prior shown in Fig. 2. Compared with the albumen emission, we are more intriguing to characterize the new emerging 387 nm UV fluorescence. Tin dioxide is a direct bandgap semiconductor, however, limited by its dipole-forbidden nature, the bandgap emission with the photon energy of 3.6 eV is prohibited. Therefore, the excited state emission of SnO$_2$ NWs remains nearly the same before and after albumen coating. Since the visible emission is mainly due to the oxygen vacancies and independent of the albumen coating, the emission spectra are therefore not shown here. The rest right insets of Fig. 4 show the SEM images of dense and sparse SnO$_2$ NWs without albumen coating. Concerning that the SnO$_2$ NWs are randomly assembled, the coating of albumen might be partially uneven. However, supported by the transmittance spectra in Fig. 2, the similar fine transparency of albumen both for 1000 rpm and 5000 rpm indicates that the thickness effect on the intensity of the photoemission (387 nm) can be fairly ignored.

In order to interpret the enhancement of 387 nm UV emission, the fluorescence resonance energy transfer (FRET) is believed to be the most possible underlying mechanism. For the occurrence of FRET, donor should be located in the close proximity of acceptor. Meanwhile, a good overlap is required between the optical transition bands of donor and acceptor. In our study, the donor and acceptor are albumen protein and SnO$_2$, respectively. According to the previous reports, the absorption spectra of albumen and SnO$_2$ exhibit a good overlap ranging from 250 nm to 300 nm. It is well documented that the strong optical absorption in albumen is at around 3.65 eV, while that of SnO$_2$ occurs at 3.6 eV. Therefore, the newly designed albumen/SnO$_2$ NWs composite is well feasible for the proposed FRET mechanism, in which the energy can be efficiently transferred from albumen protein to SnO$_2$ NWs. Figure 5 illustrates the band alignment diagram, which provides a clear physical picture to describe the FRET process between chicken albumen and SnO$_2$ NWs via two dominant steps. First, in Fig. 5(a), due to the good overlap between the absorption bands of albumen and SnO$_2$, the energy absorbed by the albumen protein can be easily transferred to SnO$_2$ NWs through the resonant FRET effect. Second, the 340 nm UV transition arising from Tryptomphlan in albumen also shows an excellent overlap with the bandedge transition of 344 nm in SnO$_2$ NWs. The 340 nm emission is thus more likely to contribute to the visible defect emission of SnO$_2$ NWs.

Figure 4: Photoluminescence (PL) spectra of albumen-coated SnO$_2$ nanowires (NWs) both for (a) high-density and (b) low density-grown SnO$_2$ NWs. The left inset of Fig. 4(a) shows the PL intensity of 387 nm as a function of time. The rest insets show the scanning electron microscope images of SnO$_2$ NWs without albumen coating.
Discussion

For the occurrence of laser action in our study, Fabry-Perot (FP) and Whispering Gallery Mode (WGM) types will not be considered as main mechanisms, since the former requires highly oriented vertical nanowire array providing flat facets in both ends as an optical cavity, while the later needs spherical or hexagonal shape cavity as a confinement of light21,22. It is believed that the dominant mechanism can be interpreted by the random lasers (RLs). RL consists of a randomly distributed structures dispersed into an optical gain medium, in which the closed-loop path (optical cavity) is merely provided by multiple scattering process of light23. Therefore, the randomly assemble tetragonal SnO\textsubscript{2} NWs are well feasible for the occurrence of RL. By using the information of the wavelength difference ($\Delta \lambda$) derived from the two nearest lasing peaks, the scattering mean free path (L) of a light in the composite system can be calculated by $L = \lambda^2 / 2n\Delta \lambda$24, where λ is the resonant wavelength (~387 nm), n is the refractive index (~2), L is the resonant cavity length, and the approximate value is about 23.4 m. Besides, the varied lasing modes and intensity under different pumping further confirm the RL existence in the albumen/SnO\textsubscript{2} NWs composite, since the random cavity made by closed-loop path changes every moment. It should be noted that RL derived from the albumen/SnO\textsubscript{2} NWs composite contains only few peaks compared with the early reports4. This may be explained by the reduction of scattering strength since the refractive index of albumen (n \sim 1.35) is less than that of the SnO\textsubscript{2} NWs (n \sim 2.0)25, as well as by the narrow spectrum due to the shallow trapped state14. The advantage of mode reduction leads to the possibility of mode controlling and towards mode locking for the future RL applications. The emission peak intensity as a function of pumping energy is shown in Fig. 7, from which the threshold (P_{th}) of about 45 mJ can be derived. The inset of Fig. 7 illustrates the closed-loop path inside nanowires. It is intriguing to further realize why the shallow-trapped

Figure 5 | (a), (b) Illustration for the physical picture of fluorescence resonance energy transfer process existing between albumen protein and SnO\textsubscript{2} nanowires.

Figure 6| Laser actions of albumen-coated SnO\textsubscript{2} nanowires under different excitation energy.
387 nm UV emission can be easily achieved from SnO₂ NWs by the SnO₂ NWs composite as well. Via a careful characterization, the state caused by impurities can produce the strong stimulated emission. In 1962, Rushba et al. first pointed out that the weakly bound exciton of impurities or defects can generate a giant oscillator strength, which is many orders larger than that of the free exciton. The wave function generated from the weakly bound exciton basically involves a whole region around defects, thus leads to the coherent oscillations of electrons. On the shallow-trapped state, there are many connected bond excitons, it is therefore believed that the stimulated emission can be well generated. This theoretical work provides an excellent foundation for the understanding of our observed behavior that the energy harvesting from FRET process can be efficiently turned into the UV emission arising from shallow defects in SnO₂ NWs.

In conclusion, we have demonstrated that a giant enhancement of 387 nm UV emission can be easily achieved from SnO₂ NWs by the assistance of UV-emitting (340 nm) chicken albumen protein at room temperature. The underlying mechanism is interpreted by the fluorescence resonance energy transfer (FRET), in which the energy can easily transfer from albumen protein (donor) to SnO₂ NWs (acceptor). Laser actions can be further derived from the albumen/SnO₂ NWs composite as well. Via a careful characterization, the laser action is believed to be the RL type lasing and is generated by the stimulated emission arising from the shallow-trapped state of SnO₂ NWs. The efficient transfer of energy harvesting from FRET process into UV emission is supported by theoretical work of extremely high oscillator strength of shallow defects in SnO₂ semiconductors. It is believed that our work shown here not only enables to open up the possibility of utilizing various biomolecule options for improving wide fields of light emitters, but also pave a new avenue towards future green bio-inspired optoelectronic devices.

Methods

Sample fabrication. The n-type SnO₂ nanowire arrays were grown on silicon (Si) substrates via vapor–liquid–solid (VLS) method. Prior to the growth, the single crystal Si substrates were ultrasonically cleaned for 10 min in acetone, ethanol and deionized (DI) water to remove any absorbed contaminant. Next, Au thin film with a thickness of 10 nm was deposited on Si substrates by using a sputtering system (JFC-1600, JEOL). A high purity (99.99%) Sn metallic powder was placed on a ceramic boat and the Au-coated Si substrate is nearby the powder. The boat was then loaded to the center of a horizontal tube furnace under the Argon gas with a flow rate of 200 sccm (sccm denotes cubic centimeter per minute at STP). After the above steps, the furnace temperature was elevated to 1000 °C rapidly at a rate of 100 °C min⁻¹. The sample was kept annealing for 10 min at 1000 °C. During the process, the vaporized Sn was reacted with oxygen and resulted in SnO₂ which was blown onto the Au layer. As SnO₂ dissolved into Au, the nucleation occurred when the alloy of SnO₂-Au droplet reached supersaturation. After the furnace cooled down to room temperature, the as-grown white color SnO₂ NWs were obtained on Si substrate. Albumen liquid was obtained from chicken eggs purchased from a widely seen convenience store. After separating the egg yolk, the rest albumen liquid was directly used without any further purification or post baking. To fabricate our albumen-coated SnO₂ NWs composite, the extracted albumen was spin-coated (5000 rpm) onto the as-grown SnO₂ NWs for 60 sec.

Morphology characterization and optical measurements. The morphologies of SnO₂ NWs and surface roughness of albumen were characterized by scanning electron microscope (SEM; JEOL JSM6500) and atomic force microscopy (AFM; Nanosurf Easyscan 2). The existence of SnO₂ NWs were confirmed by the Raman scattering measurement (Jobin Yvon T64000, X-ray diffraction (XRD; Panalytical X’pert PRO)), and PL spectra were carried out by using the excitation of 266 nm laser. The transmittance spectra of albumen with different spin-coating speed were detected with a spectrophotometer (Jobin-Yvon H110). To study the lasing behavior, the albumen-coated SnO₂ NWs were optically excited by a Q-switched 4th harmonic Nd: YAG laser (266 nm, 3– 5 ns pulse, 10 Hz) and measured with a Jobin Yvon iHR550 imaging spectrometer system. The laser beam was focused to a diameter of about 300 μm. All of the luminescence experiments were performed at room temperature.

1. Nizamoglu, S., Gather, M. C. & Yun, S. H. All-biometric material using vitamin and biopolymers. *Adv. Mater.* 25, 5988 (2013).
2. Johnson, J. C. et al. Single gallium nitride nanowire lasers. *Nat. Mater.* 1, 106–110 (2002).
3. Vannaaelbergh, D. & Vugt, L. K. ZnO nanowire lasers. *Nanoscale* 3, 2783–2800 (2011).
4. Yang, H. Y. et al. Ultraviolet coherent random lasing in randomly assembled SnO₂ nanowires. *Appl. Phys. Lett.* 94, 241121 (2009).
5. Heo, J., Jahangir, S., Xiao, B. & Bhattacharya, P. Room-temperature polariton lasing from GaN nanowire array clad by dielectric microcavity. *Nanot. Lett.* 13, 2376–2380 (2013).
6. Saxena, D. et al. Optically pumped room-temperature GaAs nanowire lasers. *Nat. Photonics.* 7, 963–968 (2013).
7. Li, J. et al. Wavelength tunable CdSe nanowire lasers based on the absorption-emission-absorption process. *Adv. Mater.* 25, 833–837 (2013).
8. Yeh, P. H., Li, Z. & Wang, Z. L. Schottky-gated probe-free ZnO nanowire biosensor. *Adv. Mater.* 21, 4975–4978 (2009).
9. Motayed, A. et al. Diameter dependent transport properties of gallium nitride nanowire field effect transistors. *Appl. Phys. Lett.* 90, 043104 (2007).
10. Wan, Q. et al. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensor. *Appl. Phys. Lett.* 84, 3654 (2004).
11. Kroghstrup, P. et al. Single nanowire solar cells beyond the Shockley-Queisser limit. *Nat. Photonics.* 7, 306–310 (2013).
12. Li, Y. et al. Realizing a SnO₂-based ultraviolet light-emitting diode via breaking the dipole-forbidden rule. *NPG. Asia. Mater.* 4, e30 (2012).
13. Zhou, W. et al. Bound exciton and optical properties of SnO₂ one-dimensional nanostructures. *J. Phys. Chem. C* 113, 1719–1726 (2009).
14. Liu, R. B. et al. Stimulated emission from trapped excitons in SnO₂ nanowires. *Physica E* 39, 223–229 (2007).
15. Chen, I. T., Chang, P. H., Chang, Y. C. & Guo, T. F. Lighting up the ultraviolet fluorescence from chicken albumen through plasmon resonance energy transfer of gold nanoparticles. *Sci. Rep.* 3, 1505 (2013).
16. Chang, I. W. et al. Chicken albumen dielectrics in organic field-effect transistors. *Adv. Mater. 23*, 4077–4081 (2011).
17. Cerdán, L. et al. FRET-assisted laser emission in colloidal suspensions of dye-doped latex nanoparticles. *Nat. Photonics.* 6, 621–626 (2012).
18. Berney, C. & Danuser, G. FRET or no FRET: A quantitative comparison. *Biophys. J.* 84, 3992–4010 (2003).
19. Saha, A. et al. Tin oxide with a p-n heterojunction ensures both UV and visible light photocatalytic activity. *RSC. Adv.* 4, 208–211 (2014).
20. Wang, H. et al. Photochemical growth of nanoporous SnO₂ at the air-water interface and its high photocatalytic activity. *J. Mater. Chem.* 20, 5641–5645 (2010).
21. Huang, M. H. et al. Room-temperature ultraviolet nanowire nanolasers. *Science* 292, 1897–1899 (2001).
22. Chen, R., Lin, B., Sun, X. W. & Sun, H. D. Room temperature excitonic whispering gallery mode lasing from high-quality hexagonal ZnO microdisks. *Adv. Mater.* 23, 2199–2204 (2011).
23. Cao, H. et al. Random laser action in semiconductor powder. *Phys. Rev. Lett.* 82, 2278–2281 (1999).
24. Wang, C. S., Chang, T. Y., Lin, T. Y. & Chen, Y. F. Biologically inspired flexible quasi-single-mode random laser: An integration of *Pieris canidia* butterfly wing and semiconductors. *Sci. Rep.* 4, 6736 (2014).
25. Yang, H. Y., Yu, S. F., Li, G. P. & Wu, T. Random lasing action of randomly assembled ZnO nanowires with MgO coating. *Opt. Express* 18, 13647–13650 (2010).
26. Rashtra, E. I. & Garenshovilv, G. E. Edge absorption theory in semiconductors. *Sov. Phys. Solid State* 4, 759–760 (1962).
Author contributions

C.S.W., T.Y.L. and Y.F.C. designed the experiment. C.S.L., T.M.S. and Y.C.C. reviewed the manuscript. C.S.W. performed the data measurements and wrote the manuscript. All authors contributed to the analysis and commend of the manuscript.

Additional information

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Wang, C.-S. et al. Biologically inspired band-edge laser action from semiconductor with dipole-forbidden band-gap transition. Sci. Rep. 5, 8965; DOI:10.1038/srep08965 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/