Image-guided percutaneous biopsy and pathological diagnosis in atypical tuberculous spondylitis: a case series and clinical outcomes

Ming Lu1#, Wei Chen1#, Zixiong Lei1, Shuangwu Dai1, Changhe Hou1, Shaohua Du1, James Geake2, Rungsun Bharayanontachai3, Sumanth Karamchand4, Edward D. Chan5,6,7, Qinglin Jin1, Haomiao Li1

1Department of Musculoskeletal Oncology, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; 2Department of Respiratory Medicine, Royal Adelaide Hospital Adelaide, SA, Australia; 3Critical Care Medicine Unit, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand; 4Division of Cardiology, Department of Medicine, Tygerberg Hospital, Cape Town, South Africa; 5Department of Academic Affairs, National Jewish Health, Denver, CO, USA; 6Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; 7Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, USA

Contributions: (I) Conception and design: H Li; (II) Administrative support: M Lu, H Li; (III) Provision of study materials or patients: W Chen, Z Lei; (IV) Collection and assembly of data: S Dai, C Hou; (V) Data analysis and interpretation: S Dai, Q Jin; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

#These authors contributed equally to this work.

Correspondence to: Haomiao Li. Department of Musculoskeletal Oncology, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China. Email: lihaomiao1977@hotmail.com.

Background: Tuberculous spondylitis can be difficult to distinguish from alternative spinal pathologies such as malignancy, particularly if the imaging features are not typical. Biopsy and histopathological analysis are facilitative to the early and accurate diagnosis of atypical tuberculous spondylitis and the clinical management. The purpose of this study is to describe some of the atypical imaging features of tuberculous spondylitis diagnosed by image-guided percutaneous biopsy, as well as associated treatment outcomes.

Methods: We performed a retrospective analysis of all patients diagnosed with tuberculous spondylitis after image-guided percutaneous biopsy at The Third Affiliated Hospital of Southern Medical University between 2013 and 2020. Of the patients identified, those with atypical imaging features were selected for case review. All patients were given anti-tuberculous medication treatment with or without surgery. The imaging features, histological and microbiological results, and clinical presentations and outcomes were evaluated. Neurological function was evaluated according to the Frankel grading system. The clinical outcomes were evaluated by Visual Analogic Scale (VAS) scores for pain, imaging [X-ray, computed tomography (CT), and magnetic resonance imaging (MRI)] results, and laboratory examinations. Comparison of VAS scores was made by Student t-test.

Results: Of the 102 patients identified with tuberculous spondylitis between 2013 and 2020, eight patients (two females and six males) with a mean age of 41.6 years (range, 18–61 years) demonstrated atypical imaging findings, including central vertebral body lesion, multiple skip vertebral lesions, extradural mass lesion and anterior subperiosteal lesion. All eight patients received anti-tuberculous medication treatment, and six underwent surgery. One patient developed a pleural effusion after debridement of the thoracic lesion. The mean follow-up period was 16.2 months (6–37 months). The VAS scores before treatment and at the final follow-up showed significant differences (7.25±1.49 and 0.0±0.0, respectively, P<0.01). Improved neurological function were observed in all patients. Solid fusion and osteogenic osteosclerosis were observed at the final follow-up, and no recurrence was observed in any cases.

Conclusions: All eight patients had a good prognosis. Image-guided biopsy and histopathological analysis are helpful for the early diagnosis of tuberculous spondylitis, especially when imaging features are not typical for this condition.
Introduction

Tuberculosis (TB) is caused by *Mycobacterium tuberculosis* (*M. tuberculosis*) and is more common in older people and immune-compromised populations like HIV positive patients (1). The spine is the most common site of musculoskeletal TB. Tuberculous spondylitis was originally known as Pott's Disease and represents the most common form of extrapulmonary TB (2-4).

The typical imaging manifestation of spinal TB is vertebral destruction caused by the spread of infection originating from the intervertebral space to the opposing end plates and two adjacent vertebral bodies, with or without a paravertebral abscess (5). Spinal TB without the typical features mentioned above is harder to recognize and diagnose (6), and degenerative disc disease, pyogenic and fungal infections, or inflammatory and neoplastic lesions are common differential diagnoses under these circumstances. The atypical imaging manifestations and the wide range of clinical presentations for patients with spinal TB may result in difficulties and delays in diagnosis, with possible associated unnecessary morbidity (1-3). The treatment of atypical tuberculous spondylitis reported in the literature is mostly in the form of case report and literature review. The definition of atypical imaging features in spinal TB were as follows: anterior subperiosteal lesion, central vertebral bony lesion with disc preservation, multivertebral lesions (skip lesions), isolated involvement of the posterior elements of the vertebral body, extradural mass lesion, and intramedullary lesion (tuberculoma) (3,6-9). The study was conducted in accordance with the Declaration of Helsinki (as revised in 2013). The study was approved by the ethics committee of The Third Affiliated Hospital of Southern Medical University (No. 2022-008). Informed consent was taken from all the patients.

For each patient identified, clinical presentations, physical examinations, routine laboratory tests [including erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), tuberculin skin testing with purified protein derivative (PPD), serum tuberculosis antibody (TA) IgG], imaging and histopathology studies, management, and clinical and imaging outcomes were reviewed. Biopsy was performed under image-guided CT or C-arm fluoroscopy. The route of the needle puncture was based on the location and extent of the lesion. In the presence of multiple lesions, puncture was performed on the most viable and safest part of the lesion. Guided by imaging, a standard 12-gauge core needle biopsy set (Guanlong, Shandong, China) was used to perform the biopsy. After confirming the needle
tip had reached the lesion, a specimen was obtained, and the needle was withdrawn. The samples obtained from the biopsy were submitted for cytologic, histologic, and bacteriologic examination. The diagnosis of TB spondylitis was confirmed when the tissue culture positive for *M. tuberculosis*, or the histological and cytological examination of specimens revealed granulomas, multinucleated giant cells, Langhans’ giant cells, or Ziehl-Neelsen staining demonstrating acid-fast bacilli (AFB).

Surgery was considered for those patients who had vertebral compression with progressive neurological symptoms or unstable vertebral column deformity. Vertebral surgery was performed under general anesthesia in a prone position. After exposing the lamina, facet joints, and transverse processes from the posterior midline approach, transpedicular screws were installed in the thoracolumbar vertebral body at least one level above and below the diseased vertebra(e). A temporary rod was fixed to stabilize the spine and avoid spinal cord injury during decompression and debridement. A unilateral facetectomy and semi-laminectomy decompression were then performed on the affected side. After pediculectomy of the affected vertebra(e), curettage of the lesion in the vertebral body was performed using the transpedicular approach. The cavity formed after debridement of the lesion inside the vertebral body was filled with autogenous bone from the healthy lamina or an autogenous iliac bone graft, and correction of the deformity was accomplished by installing permanent rods with moderate compression maneuvers. Debridement and decompression without fixation were performed in patients with severe neurological defects or progressive neurological symptoms, with slight bone destruction and good spinal stability.

A combination of anti-tuberculous medications was given to all the patients for a total of 1 year once confirmed as TB spondylitis, including rifampicin (RMP) 450 mg/day, ethambutol (EMB) 750 mg/day, pyrazinamide (PZA) 750 mg/day, and isoniazid (INH) 300 mg/day. Streptomycin [(SM) 750 mg/day] was only given in the first month to avoid the possible cumulative dose ototoxicity. A decreased ESR and CRP was considered a useful measure of valid response to the treatment. Renal and liver functioning were monitored dynamically to detect hepatorenal toxicity when the patient was taking an anti-tuberculous medication.

Radiographs, CT scans and MR imaging were taken of each patient before hospital discharge and during follow-up, monitoring the sites for bone healing or bone graft fusion, hardware failure, as well as signs of recurrence.

The incidence of complications (intra- and postoperative), changes in neurological status at the final follow-up, and clinical outcomes were evaluated. Neurological function was evaluated according to the Frankel grading system. The patients’ clinical outcomes were evaluated by Visual Analogic Scale (VAS) scores for pain, imaging [X-ray, computed tomography (CT), and magnetic resonance imaging (MRI)] results, and laboratory examination.

Statistical analysis

Comparison of VAS scores was made by Student *t*-test. All statistical analyses were performed using SPSS version 19.0 (IBM Corp., Armonk, NY, USA). A *P*<0.05 was considered statistically significant.

Results

Eight patients (two females and six males) with a mean age of 41.6 years (range, 18–61 years) met these criteria (*Table 1*). All the eight patients presented with atypical imaging features of spinal TB: three had central vertebral body lesion with preserved discs, three had multiple skip vertebral lesions, one had extradural mass lesion, and one had anterior subperiosteal lesion. All patients presented with back pain and tenderness. Two patients had unexplained recurrent fever, one had mild kyphosis deformity in the thoracolumbar junction, and six had neurologic deficits on physical and neurological examinations. HIV and PPD tests were negative in all eight patients. TB antibody tests were positive in two cases. Bacteriologic culture results were negative in all cases except one case was not submitted for examination. Serum T cell spot test of TB infection (T-SPOT) and TB PCR (GeneXpertMTB/RIF) tests were only performed at our hospital after 2016, and when these results were available, they were included in the review. The T-SPOT test was performed in two cases, both with negative results. GeneXpertMTB was performed in one case with negative result. All eight patients received a confirmed diagnosis of TB following histological and cytological examination of the specimens obtained by image-guided biopsy, which revealed granulomas, multinucleated giant cells, Langhans’ giant cells, or Ziehl-Neelsen staining demonstrating AFB. All patients received anti-TB medication for one year. Two patients who had no neurological deficit symptoms received anti-TB medication alone. Five patients underwent surgery that included decompression by laminectomy, transpedicular...
No./age/sex	Clinical features	Imaging features	Laboratory examination	Vertebral level	Extraspinal involvement	Bacteriologic examination	Histopathology	Surgery	Anti-TB medication	Complications	Follow-up (months)	Frankel Score*	Quality of life (VAS)*	Imaging*
1/41/F	Pain, radiculopathy vertebral lesion	Central vertebral lesion	PPD(−); TA(−); HIV(−)	L3	−	−	Epithelioid granulomata, AFB (+)	DEB + AUTO + STAB	RMP, EMB, PZA, INH, SM	No	12	D→E	9→0	Solid fusion
2/58/M	Pain, fever	Central vertebral lesion	PPD(−); TA(−); HIV(−)	T8	+	−	Numerous neutrophils, AFB (+)	−	RMP, EMB, PZA, INH, SM	No	6	E→E	8→0	Osteogenic osteosclerosis
3/18/M	Pain, fever, kyphosis deformity, radiculopathy	Multivertebral lesions	PPD(−); TA(−); HIV(−)	L1, L3, L5	−	N/A	Multinucleated giant cells, AFB (+)	DEB + AUTO + STAB	RMP, EMB, PZA, INH, SM	No	20	D→E	9→0	Solid fusion
4/60/M	Pain, radiculopathy	Central vertebral lesion	PPD(−); TA(+)	L2, L3	−	−	Caseous necrosis granulomas	DEB + AUTO + STAB	RMP, EMB, INH, SM	No	24	D→E	6→0	Solid fusion
5/61/F	Pain	Multivertebral lesions	PPD(−); TA(−); HIV(−)	C5, T6, L3	−	−	Langhans’ giant cells, AFB (+)	−	RMP, PZA, INH, SM	No	6	E→E	7→0	Osteogenic osteosclerosis
6/35/M	Pain, radiculopathy	Anterior subperiosteal lesion	PPD(−); TA(−)	L5, S1	−	−	Multinucleated giant cells, AFB (+)	DEB + AUTO + STAB	PMP, PZA, INH, SM	No	37	D→E	8→0	Solid fusion
7/22/M	Pain, myelopathy	Extradural mass lesion	PPD(−); TA(−); HIV(−); T-spot(−)	T11, T12	+	−	Multinucleated giant cells	DEB + AUTO + STAB	RMP, PZA, EMB, INH, SM	No	17	C→E	5→0	Solid fusion
8/38/M	Pain, myelopathy	Multivertebral lesions	PPD(−); TA(−); HIV(−); T-spot(−); GeneXpertMTB(−)	T3–T5, L2, L5	−	−	Granulomatous inflammation	DEB	RMP, PZA, EMB, INH	Pleural effusion	6	C→E	6→0	Osteogenic osteosclerosis

*pretreatment→last follow-up; †at last follow-up. VAS scores, Visual Analogue Scale scores; F, female; M, male; PPD, purified protein derivative test; TA, tuberculosis antibody; HIV, human immunodeficiency virus; AFB, acid-fast bacilli; DEB, debridement; AUTO, autograft; STAB, stability; RMP, rifampicin; EMB, ethambutol; PZA, pyrazinamide; INH, isoniazid; SM, streptomycin; N/A, not applicable.
curettage of the lesions, and stabilization of the spine using a posterior approach. One patient received debridement and decompression of the thoracic spine without fixation due to progressive neurological symptoms. This patient suffered pleural effusion after debridement of the thoracic lesion, which resolved after thoracic drainage. All patients were followed up for at least 6 months after treatment completion (median, 16.2 months; range, 6–37 months). Decreased VAS scores and improved neurological function were observed in all patients. At the final follow-up, back pain and neurological deficits had completely resolved in all cases. Solid fusion and osteogenic osteosclerosis were observed at the last follow-up, and no recurrence was observed in any patients. No complications were observed during the follow-up period.

Figures 1-3 illustrate the process of diagnosis and treatment in 3 of our patients.

Discussion

Spinal TB is one of the oldest diseases known to mankind and has a common occurrence with high morbidity and mortality, particularly in those with low immunity or poor nutritional status (5). Early diagnosis and treatment are considered the most important strategies to preserve neurological function and prevent spinal deformity (5). However, there are insufficient discussions on the diagnostic and treatment criteria for spinal TB with atypical imaging findings.

Biopsy is indicated when a lesion requires tissue sampling to establish aetiology, or to understand important treatment or prognostic information (5). In cases of possible spinal TB, tissue biopsy is important, not only because the diagnosis can often be adequately made on the basis of supporting histological features or the presence of AFB, but because a positive culture for M. tuberculosis remains the gold-standard for diagnosis and allows for drug susceptibility testing which is critical in guiding treatment. Tissue biopsy is essential in those cases where imaging features are not typical, as a combination of histological assessment, microscopy to detect the presence of AFB and tissue culture can differentiate TB spondylitis from alternative diagnoses such as vertebral neoplasm or pyogenic spondylitis (5). Compared to incisional biopsy, image-guided percutaneous needle biopsy is safer. The latter approach offers precise spatial localization and is relatively safe procedure with lower risk of complications (10). Reported percutaneous risk rates are 0–10% compared to 16% for open biopsy (11,12). Hemorrhage, nerve injury, and infection are the main complications in percutaneous biopsy (11).

Currently, CT-guided bone biopsy is considered to be the best modality (13). It provides an accurate three-dimensional image of the lesion location, allowing better navigation of the puncture route to safely avoid injury to neurovascular structures (13,14). Puncture needle biopsy guided by C-arm fluoroscopy is also commonly used to perform bone biopsies. Compared to CT, fluoroscopy has less ionizing radiation, a lower cost, and a shorter procedure time. However, its accuracy in targeting lesions is less precise, especially with soft tissue lesions. Therefore, C-arm fluoroscopy is reserved for biopsies of large bone lesions without vital neurovascular structure involvement.

Most percutaneous vertebral biopsies are performed using a posterior approach. An approach through bone structures (transpedicular) is safer than traversing through soft tissue and has greater yield for lytic than blastic lesions (5). The transpedicular procedure is the safest way to biopsy lesions from a vertebral body without violating the epidural space. Care must be taken to avoid breakage of the pedicle with consequent epidural space contamination (15). When multiple lesions are present, the selection of the biopsy site and puncture approach should be carefully considered, including safety issues, ease of accessibility, and the most representative lesion found on imaging.

Etiological confirmation can be made either by demonstration of AFB on the pathological specimens and/or histopathological evidence of necrotizing (or non-necrotizing) granulomatous inflammation in the appropriate clinical context (16). Ziehl-Neelsen staining for AFB has low sensitivity and specificity, particularly for pauci-bacillary TB as is commonly the case in TB spondylitis (17). Indeed, only a 52% smear positivity rate for AFB has been reported for spinal TB (18). Cytologic examination of the sample can help confirm the inflammatory process, including direct visualization of pathogen with proper staining. In our case series, AFB were observed microscopically in five cases, suggesting a diagnosis of TB. Ultimately, clinical and radiological resolution with TB treatment provides further reassurance as to the underlying diagnosis of TB spondylitis in each of these eight cases. The culture positivity rate of M. tuberculosis has been reported to be 83% in spinal TB (18); in contrast, negative positive culture results were demonstrated in seven of our cases who received bacteriologic culture. Our results of failed positive culture may be due to the fact that most patients were receiving anti-TB medication at the time of the biopsy. Therefore, histological evidence for a
diagnosis of TB is critical for timely treatment. The literature shows that approximately 60% of spinal TB diagnoses are confirmed by histology (5). Epithelioid cell granulomas, granulomatous necrotic background, and lymphocytic infiltration are the three most common histopathologic findings (19,20), whereas typical scattered multinucleated
and Langhans' giant cells were observed in only 56% of the patients (19). False-negative biopsy results in TB are not uncommon. When bacteriology proves negative, an empiric treatment with anti-TB medication can be considered if the clinical symptoms and imaging are consistent with spinal TB (5).

The treatment principles for spinal TB with atypical imaging findings are similar to cases with typical imaging findings (21). Anti-TB medication treatment is considered essential and should be started as early as the diagnosis is made or highly suspected, preferably after tissue sampling is obtained (5). The precise role of surgery in the management of spinal TB is controversial. Previous study have reported that different levels of neurological recovery can be observed in approximately 40% of spinal TB patients with paraplegia who are treated with anti-TB treatment, rest, and/or traction without spinal surgery (22). Anti-TB treatment alone can be effective in improving neurological symptoms and preventing the progression of spinal deformity (22,23). In some cases, however, surgery may

Figure 2 A 58-year-old woman with multiple osteolytic lesions. (A,B) X-rays of the right humerus, right radius, and left fibula demonstrated lytic bone lesions (arrows). (C,D) CT imaging of the chest and thoracic spine showed bilateral pleural effusion, osteolysis, and secondary pathologic fracture of the T8 vertebra. (E) Using a posterolateral approach biopsy is performed of the right humerus lesion. (F) The histopathologic analysis revealed damaged bone tissue with numerous neutrophils without granulomata. Ziehl-Neelsen staining (×400) shows AFB (arrows). CT, computed tomography; AFB, acid-fast bacilli.
be indicated and can provide benefits such as more timely pain relief, effective neurological recovery, less deformity progression, earlier mobility, a higher bone fusion rate, and a shorter hospital stay (5). Some experts have suggested that indications for surgery include tissue sampling for diagnosis when less invasive approaches are not feasible or available, clinical deterioration or lack of clinical improvement, progressive neurological deficit, recurrent neurologic complications, abscess drainage in the cervical spine, large paravertebral abscess drainage, spinal instability, pan-vertebral lesions, severe kyphotic deformity, and refractory disease (24-30).

Oguz et al. (27) proposed a new classification to guide the surgical treatment of spinal TB based on seven clinical and radiological criteria (abscess formation, disc degeneration, vertebral collapse, kyphosis, sagittal index, instability, and neurological problems). This classification system divides spinal TB into three types and recommends specific treatment approaches for each type (drug treatment alone or with abscess drainage and debridement, debridement and fusion with or without decompression, and correction of deformity with internal fixation). Nearly two decades ago, we first reported the one-stage anterior interbody autografting and instrumentation in thoracolumbar spinal TB, resulting in remarkable clinical efficacy (28). In the present study, one-stage posterior debridement using the transpedicular approach was adopted in two cases, followed by anti-TB treatment. Recently, Wang et al. (29) reported that one-stage posterior debridement using titanium mesh cages and posterior instrumentation, achieving excellent clinical results in aged patients with lumbosacral spinal TB. One-stage anterior or posterior surgery in selected cases can significantly improve the efficiency and safety of the operation. These types of surgical approaches for treatment of spinal TB are viable and safe surgical options (27). The appropriate choice of timing, indication, and surgical intervention procedure is vital when treating spinal TB (31-33).

Limitations of this study include: (I) retrospective analysis and thus the possibility of patient selection bias for biopsy; (II) single center experience and referral bias; (III) possibility of both false positive and false negative diagnoses given the lack of sensitivity of the gold standard of tissue culture and TB PCR on pauci-bacillary specimens, which would be inherent in all such studies.
In summary, spinal TB with atypical imaging features has been well documented but is difficult to distinguish from nonspecific infections and malignancies, which can lead to misdiagnosis and inappropriate treatment. However, when diagnosed and adequately treated, long term clinical, microbiological and radiological outcomes are favourable. Unless the clinical and imaging findings are very strongly supportive of a diagnosis of TB spondylitis, pathological analysis should always be conducted to help confirm the diagnosis. Additionally image-guided biopsy to obtain samples for mycobacterial culture (+/− PCR) should always be strongly considered where TB is in the differential diagnosis, in order to not only confirm the diagnosis of spinal TB but to determine the drug susceptibility profile.

Acknowledgments

We acknowledge all authors whose publications are referred to in our article. The authors appreciate the academic support from the AME Tuberculous Collaborative Group.

Funding: This work was financially supported by the Research and Development Projects in Key Areas of Guangdong Province (No. 2019B020201015 to Haomiao Li) and the Natural Science Foundation of Guangdong Province (No. 2021A1515011313 to Ming Lu).

Footnote

Reporting Checklist: The authors have completed the STROBE and AME Case Series reporting checklists. Available at https://atm.amegroups.com/article/view/10.21037/atm-22-4661/rc

Data Sharing Statement: Available at https://atm.amegroups.com/article/view/10.21037/atm-22-4661/dss

Conflicts of Interest: All authors have completed the ICMJE uniform disclosure form (available at https://atm.amegroups.com/article/view/10.21037/atm-22-4661/coif). ML reports that this work was supported by the Natural Science Foundation of Guangdong Province (No. 2021A1515011313). HL reports that this work was supported by the Research and Development Projects in Key Areas of Guangdong Province (No. 2019B020201015). The other authors have no conflicts of interest to declare.

Ethical Statement: The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. The study was conducted in accordance with the Declaration of Helsinki (as revised in 2013). The study was approved by the ethics committee of The Third Affiliated Hospital of Southern Medical University (No. 2022-008). Informed consent was taken from all the patients.

Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the non-commercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1. Jevtic V. Vertebral infection. Eur Radiol 2004;14 Suppl 3:E43-52.
2. Moore SL, Rafii M. Imaging of musculoskeletal and spinal tuberculosis. Radiol Clin North Am 2001;39:329-42.
3. Moorthy S, Prabhu NK. Spectrum of MR imaging findings in spinal tuberculosis. AJR Am J Roentgenol 2002;179:979-83.
4. Le HB, Lee ST, Munk PL. Image-guided musculoskeletal biopsies. Semin Intervent Radiol 2010;27:191-8.
5. Garg RK, Somvanshi DS. Spinal tuberculosis: a review. J Spinal Cord Med 2011;34:440-54.
6. Khattry N, Thulkar S, Das A, et al. Spinal tuberculosis mimicking malignancy: atypical imaging features. Indian J Pediatr 2007;74:297-8.
7. Thammaroj J, Kitkhuandee A, Sawanyawisuth K, et al. MR findings in spinal tuberculosis in an endemic country. J Med Imaging Radiat Oncol 2014;58:267-76.
8. Zhen P, Li XS, Lu H. Single vertebra tuberculosis presenting with solitary localized osteolytic lesion in young adult lumbar spines. Orthop Surg 2013;5:105-11.
9. Yu Y, Wang X, Du B, et al. Isolated atypical spinal tuberculosis mistaken for neoplasia: case report and literature review. Eur Spine J 2013;22 Suppl 3:S302-5.
10. Rivas-Garcia A, Sarria-Estrada S, Torrents-Odin C, et al. Imaging findings of Pott’s disease. Eur Spine J 2013;22 Suppl 4:567-78.
11. Welker JA, Henshaw RM, Jelinek J, et al. The percutaneous needle biopsy is safe and recommended
in the diagnosis of musculoskeletal masses. Cancer 2000;89:2677-86.
12. Mankin HJ, Mankin CJ, Simon MA. The hazards of the biopsy, revisited. Members of the Musculoskeletal Tumor Society. J Bone Joint Surg Am 1996;78:656-63.
13. Jain R, Sawhney S, Berry M. Computed tomography of vertebral tuberculosis: patterns of bone destruction. Clin Radiol 1993;47:196-9.
14. Peh W. CT-guided percutaneous biopsy of spinal lesions. Biomed Imaging Interv J 2006;2:e25.
15. Gasbarrini A, Cappuccio M, Donthineni R, et al. Management of benign tumors of the mobile spine. Orthop Clin North Am 2009;40:9-19.
16. Skaf GS, Kanafani ZA, Araj GF, et al. Non-pyogenic infections of the spine. Int J Antimicrob Agents 2010;36:99-105.
17. Kramer N, Rosenstein ED. Rheumatologic manifestations of tuberculosis. Bull Rheum Dis 1997;46:5-8.
18. Francis IM, Das DK, Luthra UK, et al. Value of radiologically guided fine needle aspiration cytology (FNAC) in the diagnosis of spinal tuberculosis: a study of 29 cases. Cytopathology 1999;10:390-401.
19. Jutte PC, Van Loenhout-Rooyackers JH. Routine surgery in addition to chemotherapy for treating spinal tuberculosis. Cochrane Database Syst Rev 2006;(1):CD004532.
20. Li Y, Wang Y, Ding H, et al. Pathologic characteristics of spinal tuberculosis: analysis of 181 cases. Int J Clin Exp Pathol 2020;13:1253-61.
21. Momjian R, George M. Atypical imaging features of tuberculous spondylitis: case report with literature review. J Radiol Case Rep 2014;8:1-14.
22. Tuli SM. Results of treatment of spinal tuberculosis by "middle-path" regime. J Bone Joint Surg Br 1975;57:13-23.
23. London: Royal College of Physicians. National Collaborating Centre for Chronic Conditions. TB (partial update) clinical guideline DRAFT (November 2010). Tuberculosis: clinical diagnosis and management of tuberculosis, and measures for its prevention and control.

Cite this article as: Lu M, Chen W, Lei Z, Dai S, Hou C, Du S, Geake J, Bhurayantontachai R, Karamchand S, Chan ED, Jin Q, Li H. Image-guided percutaneous biopsy and pathological diagnosis in atypical tuberculous spondylitis: a case series and clinical outcomes. Ann Transl Med 2022;10(20):1140. doi: 10.21037/atm-22-4661

Available online: http://guidance.nice.org.uk/nicemedia/live/12193/51951/51915.pdf. (Assessed on 16 Apr 2011).
24. Jutte PC, Castelein RM. Complications of pedicle screws in lumbar and lumbosacral fusions in 105 consecutive primary operations. Eur Spine J 2002;11:594-8.
25. Sell P. Expert's comment concerning Grand Rounds case entitled "Posterior listhesis of a lumbar vertebra in spinal tuberculosis" (by Matthew A. Kirkman and Krishnamurthy Sridhar). Eur Spine J 2011;20:6-8.
26. Jain AK. Tuberculosis of the spine: a fresh look at an old disease. J Bone Joint Surg Br 2010;92:905-13.
27. Oguz E, Sehirlioglu A, Atilimakas M, et al. A new classification and guide for surgical treatment of spinal tuberculosis. Int Orthop 2008;32:127-33.
28. Jin D, Qu D, Chen J, et al. One-stage anterior interbody autografting and instrumentation in primary surgical management of thoracolumbar spinal tuberculosis. Eur Spine J 2004;13:114-21.
29. Wang YX, Zhang HQ, Liao W, et al. One-stage posterior focus debridement, interbody graft using titanium mesh cages, posterior instrumentation and fusion in the surgical treatment of lumbo-sacral spinal tuberculosis in the aged. Int Orthop 2016;40:1117-24.
30. Qian J, Rijiepu A, Zhu B, et al. Outcomes of radical debridement versus no debridement for the treatment of thoracic and lumbar spinal tuberculosis. Int Orthop 2016;40:2081-8.
31. Pu F, Feng J, Yang L, et al. Misdiaagnosed and mismanaged atypical spinal tuberculosis: A case series report. Exp Ther Med 2019;18:3723-8.
32. Pintor IA, Pereira F, Cavadas S, et al. Pott's disease (tuberculous spondylitis). Int J Mycobacteriol 2022;11:113-5.
33. Daripa B, Kumar A. A Case Report of Rare Presentation and Delay in the Diagnosis of Neuropathic Abdominal Pain Secondary to Asymptomatic Pott's Spine in Elderly Patients. Cureus 2022;14:e21399. (English Language Editor: D. Fitzgerald)