Some Polycubes Have No Edge-Unzipping

Erik D. Demaine* Martin L. Demaine* David Eppstein†
Joseph O’Rourke‡

July 30, 2019

Abstract

It is unknown whether or not every polycube has an edge-unfolding. A polycube is an object constructed by gluing cubes face-to-face. An edge-unfolding cuts edges on the surface and unfolds it to a net, a non-overlapping polygon in the plane. Here we explore the more restricted edge-unzippings where the cut edges form a path. We construct two different polycubes neither of which has an edge-unzipping.

1 Introduction

A polycube P is an object constructed by gluing cubes whole-face to whole-face, such that its surface is a manifold. Thus the neighborhood of every surface point is a disk; so there are no edge-edge nor vertex-vertex nonmanifold surface touchings. Here we only consider polycubes of genus zero. The edges of a polycube are all the cube edges on the surface, even when those edges are shared between two coplanar faces. Similarly, the vertices of a polycube are all the cube vertices on the surface, even when those vertices are flat, incident to 2π face angles. Such polycube flat vertices are degree-4. It will be useful to distinguish these flat vertices from corner vertices, non-flat vertices with incident angles $\neq 2\pi$ (degree-3, -5, or -6). For a polycube P, let its 1-skeleton graph G_P include every vertex and edge of P, with vertices marked as either corner or flat.

It is an open problem to determine whether every polycube has an edge-unfolding, a tree in the 1-skeleton that spans all corner vertices (but need not include flat vertices), which, when cut, unfolds the surface to a net, a planar, non-overlapping polygon [O’R19]. Here by non-overlapping is meant that no two points, each interior to a face, are mapped to same point in the plane. This

*MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar St., Cambridge, MA 02139, USA, {edemaine,mdemaine}@mit.edu
†Computer Science Department University of California, Irvine Irvine, USA eppstein@uci.edu
‡Department of Computer Science, Smith College, Northampton, MA 01063, USA.

jorourke@smith.edu
allows two boundary edges to coincide in the net; so the polygon is “weakly simple.” The intent is that we want to be able to cut out the net and refold to P. Henceforth “edge-unfolding” will mean: an edge-unfolding to a net.

It would be remarkable if it were true that every polycube could be edge-unfolded, but no counterexample is known. There has been considerable exploration of orthogonal polyhedra, a more general type of object, for which there are examples that cannot be edge-unfolded \cite{BDD+98}. (See \cite{DFIS} for citations to earlier work.) But polycubes have more edges in their 1-skeleton graphs for the cut tree to follow than do orthogonal polyhedra, so it is conceivably easier to edge-unfold polycubes.

A restriction of edge-unfolding has been studied in \cite{DDL+10, OR10, DDU13}: edge-unzipping. This is an edge-unfolding whose cut tree is a path (so that the surface could be “unzipped”). It is apparently unknown if even this highly restricted edge-unzipping could unfold every polycube to a net. The result of this note is to settle this question in the negative: two different polycubes are constructed each of which has no edge-unzipping. They are shown in Figure 1 and will be described later.

Figure 1: Two polycubes that have no edge-unzipping.

2 Hamiltonian Paths

Shephard \cite{She75} introduced Hamiltonian unfoldings of convex polyhedra, what we are now calling edge-unzippings, following the terminology of \cite{DDL+10}. It is easy to see that not every convex polyhedron has an edge-unzipping, simply because the rhombic dodecahedron has no Hamiltonian path. This counterexample avoids confronting the difficult non-overlapping condition. We follow a

\[^1\] “Unzipping” is a slight variation on their “zipper unfoldings.”
similar strategy here, constructing a polycube with no Hamiltonian path. But
there is a difference in that a polycube edge-unzipping need not include flat
vertices, and so need not be a Hamiltonian path in G_P. Thus identifying a
polycube P that has no Hamiltonian path does not immediately establish that
P has no edge-unzipping, if P has flat vertices.

So one approach is to construct a polycube P that has no flat vertices—every
vertex is a corner vertex. Then if P has no Hamiltonian path, then it has no
edge-unzipping. A natural candidate is the polycube object P_6 shown in Fig. 2.
However, the 1-skeleton of P_6 does admit Hamiltonian paths, and indeed we
found a path that unfolds P_6 to a net.

Let \overline{G}_P be the dual graph of P: each cube is a node, and two nodes are
connected if they are glued face-to-face. A polycube tree is a polycube whose
dual graph is a tree. P_6 is a polycube tree. That it has a Hamiltonian path is
an instance of a more general claim:

Lemma 1 The graph G_P for any polycube tree P has a Hamiltonian cycle.

Proof: It is easy to see by induction that every polycube tree can be built by
gluing cubes each of which touches just one face at the time of gluing: never is
there a need to glue a cube to more than one face of the previously built object.

A single cube has a Hamiltonian cycle. Now assume that every polycube tree
of $\leq n$ cubes has a Hamiltonian cycle. For a tree P of $n+1$ cubes, remove a \overline{G}_P
leaf-node cube C, and apply the induction hypothesis. The exposed square face
f to which C glues to make P includes either 2 or 3 edges of the Hamiltonian
cycle (4 would close the cycle; 1 or 0 would imply the cycle misses some vertices
of f). It is then easy to extend the Hamiltonian cycle to include C, as shown
in Figure 3.

So to prove that a polycube tree has no edge-unzipping would require an argu-
ment that confronted non-overlap. This leads to an open question:

Question 1 Does every polycube tree have an edge-unzipping?
To guarantee the non-existence of Hamiltonian paths, we can exploit the bipartiteness of \(G_P \), using Lemma 3 below.

Lemma 2 A polycube graph \(G_P \) is 2-colorable, and therefore bipartite.

Proof: Label each lattice point \(p \) of \(\mathbb{Z}^3 \) with the \(\{0, 1\} \)-parity of the sum of the Cartesian coordinates of \(p \). A polycube \(P \)'s vertices are all lattice points of \(\mathbb{Z}^3 \). This provides a 2-coloring of \(G_P \); 2-colorable graphs are bipartite.

The **parity imbalance** in a 2-colored (bipartite) graph is the absolute value of the difference in the number of nodes of each color.

Lemma 3 A bipartite graph \(G \) with a parity imbalance \(> 1 \) has no Hamiltonian path\(^2\).

Proof: The nodes in a Hamiltonian path alternate colors 010101.... Because by definition a Hamiltonian path includes every node, the parity imbalance in a bipartite graph with a Hamiltonian path is either 0 (if of even length) or 1 (if of odd length).

So if we can construct a polycube \(P \) that (a) has no flat vertices, and (b) has parity imbalance \(> 1 \), then we will have established that \(P \) has no Hamiltonian path, and therefore no edge-unzipping. We now show that the polycube \(P_{44} \), illustrated in Figure 4, meets these conditions.

Lemma 4 The polycube \(P_{44} \)'s graph \(G_{P_{44}} \) has parity imbalance of 2.

Proof: Consider first the \(2 \times 2 \times 2 \) cube that is the core of \(P_{44} \); call it \(P_{222} \). The front face \(F \) has an extra 0; see Fig. 5. It is clear that the 8 corners of \(P_{222} \) are all colored 0. The midpoint vertices of the 12 edges of \(P_{222} \) are colored 1. Finally the 6 face midpoints are colored 0. So 14 vertices are colored 0 and 12 colored 1.

\(^2\) Stated at http://mathworld.wolfram.com/HamiltonianPath.html
Figure 4: The polycube P_{44}, consisting of 44 cubes, has no Hamiltonian path.

Figure 5: 2-coloring of one face of P_{222}.
Next observe that attaching a cube C to exactly one face of any polycube does not change the parity: the receiving face f has colors 0101, and the opposite face of C has colors 1010.

Now, P_{44} can be constructed by attaching six copies of a 6-cube “cross,” call it P_+, which in isolation is a polycube tree and so can be built by attaching cubes each to exactly one face. And each P_+ attaches to one corner cube of P_{222}. Therefore P_{44} retains P_{222}’s imbalance of 2.

The point of the P_+ attachments is to remove the flat vertices of P_{222}. Note that when attached to P_{222}, each P_+ has only corner vertices.

Theorem 1 *There is no edge-unzipping of P_{44}.*

Proof: Although it takes some scrutiny of Figure 4 to verify, P_{44} has no (degree-4) flat vertices. Thus an edge-unzipping must pass through every vertex, and so be a Hamiltonian path. Lemma 4 says that $G_{P_{44}}$ has imbalance 2, and Lemma 3 says it therefore cannot have a Hamiltonian path.

4 Construction of P_{14}

It turns out that the smaller polycube P_{14} shown in Figure 6 also has no edge-unzipping, even though it has flat vertices. To establish this, we still need an imbalance > 1, which easily follows just as in Lemma 3.
Lemma 5 The polycube P_{14}’s graph $G_{P_{14}}$ has parity imbalance of 2.

But notice that P_{14} has three flat vertices: a, b, and c.

Theorem 2 There is no edge-unzipping of P_{14}.

Proof: An edge-unzipping need not pass through the three flat vertices, a, b, and c, but it could pass through one, two, or all three. We show that in all cases, an appropriately modified subgraph of $G_{P_{14}}$ has no Hamiltonian path. Let ρ be a hypothetical edge-unzipping cut path. We consider four exhaustive possibilities, and show that each leads to a contradiction.

(0) ρ includes a, b, c. So ρ is a Hamiltonian path in $G_{P_{14}}$. But Lemma 5 says that $G_{P_{14}}$ has imbalance 2, and Lemma 3 says that no such graph has a Hamiltonian path.

(1) ρ excludes one flat vertex a and includes b, c. (Because of the symmetry of P_{14}, it is no loss of generality to assume that it is a that is excluded.) If ρ excludes a, then it does not travel over any of the four edges incident to a. Thus we can delete a from $G_{P_{14}}$; say that $G_{-a} = G_{P_{14}} \setminus a$. This graph is shown in Fig. 7. Following the coloring in Fig. 5 all corners of P_{222} are colored 0, so each of the edge midpoints a, b, c is colored 1. The parity imbalance of P_{14} is 2 extra 0’s. Deleting a maintains bipartiteness and increases the parity imbalance of G_{-a} to 3. Therefore by Lemma 3, G_{-a} has no Hamiltonian path, and such a ρ cannot exist.

(2) ρ includes just one flat vertex c, and excludes a, b. (Again symmetry ensures there is no loss of generality in assuming the one included flat vertex is c.) ρ must include corner x, which is only accessible in $G_{P_{14}}$ through the three flat vertices. If ρ excludes a, b, then it must include the edge cx. Let $G_{-ab} = G_{P_{14}} \setminus \{a,b\}$. In G_{-ab}, x has degree 1, so ρ terminates there. It must be that ρ is a Hamiltonian path in G_{-ab}, but the deletion of a, b increases the parity imbalance to 4, and so again such a Hamiltonian path cannot exist.

(3) ρ excludes a, b, c. Because corner x is only accessible through one of these flat vertices, ρ never reaches x and so cannot be an edge-unzipping

Thus the assumption that there is an edge-unzipping path ρ for P_{14} reaches a contradiction in all four cases. Therefore, there is no edge-unzipping path for P_{14}.

5 Edge-unfoldings of P_{14} and P_{44}

Now that it is known that P_{14} and P_{44} each have no edge-unzipping, it is natural to wonder if either settles the edge-unfolding open problem: Can they
Figure 7: Schlegel diagram of G_{-a}. We follow [DF18] in labeling the faces of a cube as F, K, R, L, T, B for Front, Back, Right, Left, Top, Bottom respectively. The corners of P_{222} are labeled 0, 1, 2, 3 around the bottom face B, and 4, 5, 6, 7 around the top face T. m is the vertex in the middle of B. The edges deleted by removing a are shown dashed.
be edge-unfolded? Indeed both can: see Figures 8 and 9. The colors in these layouts are those used by Origami Simulator [GDG18]. Figure 10 shows a partial folding of P_{44}, and animations are at http://cs.smith.edu/~jorourke/Unf/NoEdgeUnzip.html.

Acknowledgements. We thank participants in the Bellairs 2018 workshop for their insights.

References

[BDD+98] Therese Biedl, Erik D. Demaine, Martin L. Demaine, Anna Lubiw, Joseph O’Rourke, Mark Overmars, Steve Robbins, and Sue Whitesides. Unfolding some classes of orthogonal polyhedra. In Proc. 10th Canad. Conf. Comput. Geom., pages 70–71, 1998. Full version in Elec. Proc.: http://cgm.cs.mcgill.ca/cccg98/proceedings/cccg98-biedl-unfolding.ps.gz

[DDL+10] Erik D. Demaine, Martin L. Demaine, Anna Lubiw, Arlo Shallit, and Jonah Shallit. Zipper unfoldings of polyhedral complexes. In

\[^3\] Just to verify this conclusion, we constructed these graphs in Mathematica and `FindHamiltonianPath[]` returned {} for each.
Figure 9: Edge-unfolding of P_{44}. Colors: green=cut, red=mountain, blue=valley, yellow=flat.
Figure 10: Partial folding of the layout in Fig. 9. Compare Fig. 4.
[DDU13] Erik D. Demaine, Martin L. Demaine, and Ryuhei Uehara. Zipper unfoldability of domes and prismoids. In Proc. 25th Canad. Conf. Comput. Geom., August 2013.

[DF18] Mirela Damian and Robin Flatland. Unfolding orthotrees with constant refinement. http://arxiv.org/abs/1811.01842, 2018.

[GDG18] Amanda Ghassaei, Erik D. Demaine, and Neil Gershenfeld. Fast, interactive origami simulation using GPU computation. In Origami 7: 7th Internat. Mtg. Origami Science, Mathematics and Education (OSME), 2018.

[O’R10] Joseph O’Rourke. Flat zipper-unfolding pairs for Platonic solids. http://arxiv.org/abs/1010.2450 October 2010.

[O’R19] Joseph O’Rourke. Unfolding polyhedra. In Proc. 31st Canad. Conf. Comput. Geom., August 2019.

[She75] Geoffrey C. Shephard. Convex polytopes with convex nets. Math. Proc. Camb. Phil. Soc., 78:389–403, 1975.