Detection of *Salmonella* sp. in fisheries product using real-time PCR

R Nugraha, M Nurilmala*, Nurjanah, P Pratama

Department of Aquatic Product Technology, Faculty of Fisheries and Marine Science, Bogor Agricultural University (IPB University), Bogor, Indonesia

E-mail: mnurilmala@ipb.ac.id

Abstract. *Salmonella* is pathogenic bacteria causing intestinal diseases or typhoid fever. Contamination of fisheries products by these bacteria could lead to a customer dissatisfaction and product recall. In this study, *Salmonella* contamination in 25 seafood and seafood products obtained from traditional and modern retailers were evaluated using real time PCR. Two primers were designed to amplify a 204 bp target gene specific to *Salmonella*. These primers were successfully amplified the target gene of *Salmonella typhimurium* (ATCC 25241). However, the melting curves of the product samples were found below the threshold Cycle (Ct) value, indicating that *Salmonella* bacteria contaminated none of the fish and fisheries products.

Keywords: food safety, fisheries products, real-time PCR, *Salmonella*

1. Introduction

Salmonella contamination on fish products is often reported. This contamination usually occurs due to improper handling (Amagliani *et al* 2012). *Salmonella* is a pathogenic bacteria causing gastrointestinal disease and typhoid fever, and in severe cases, causing death. This bacteria caused seafood-related outbreaks in European Union (EFSA 2014), the United States (Barret *et al* 2017) and other countries worldwide. In Indonesia, contamination of *Salmonella* on fish products is quite common. Recently, a published paper reported contamination of *Salmonella* on 93% of seafood products in Surabaya (Pramono *et al* 2019).

Conventional methods such as agar method or enzyme-linked immunosorbent assay are still commonly used to detect *Salmonella* contamination on seafood products in Indonesia. These methods, however, are time-consuming and unpractical. The agar method requires 4 days to detect positive contamination and needs another 3 days to identify the species of the bacteria. Moreover, this agar method is experiencing high false negative (Siala 2017). Real-time PCR for *Salmonella* detection is gaining more attention because of their sensitivity and rapid results (Kasturi and Drgon 2017, Siala *et al* 2017). Rakesh *et al* (2010) developed SYBR Green-based real-time PCR for detecting *Salmonella* on seafood products. This method could detect *Salmonella* in water as low as 2 CFU/mL. This research was aimed to detect *Salmonella* contamination on seafood products from traditional and modern markets in Bogor surrounding area using SYBR Green-based real-time PCR.
2. Materials and methods

Twenty-five seafood products were obtained from traditional and modern markets in Bogor surrounding areas. The samples covered various products including fresh seafood, traditional-processed seafood, and modern-processed seafood. *Salmonella typhimurium* (ATCC 25241) was used as positive control.

2.1. Isolation and quantification of DNA from *S. typhimurium* and seafood products.

The DNA of *S. typhimurium* was isolated using Qiamp DNA minikit following the manufacturer’s instruction. Meanwhile, the DNA from fresh seafood and seafood products was isolated using DNeasy Blood and Tissue kit and DNeasy Mericon Foodkit, respectively. The DNAs were quantified using NanoPhotometer (Implen p360, Munchen, German).

2.2. Real-time PCR for Salmonella detection.

Real-time PCR was run on QIAGEN’s real-time PCR cycler, the Rotor-Gene Q (Qiagene, Hilden, Germany). A forward (5′ ATC GCT GAC TTA TGC AAT CG 3′) and reverse primer (5′ CGG GTT GCG TTA TAG GTCTG 3′) were used to amplify ompC gene of *Salmonella*. A real-time PCR mixture consisting of 12.5 µL Qfast SYBR green mix, 2.5 µL of each primer (10uM), 5.5 µL RNase free water and 2 µL of DNA was put in the cycler. The real-time PCR was performed using two-step cycling method consisting of initial denaturation at 95°C for 5 minutes followed by 35 cycles of denaturation at 95°C for 10 s, annealing at 54°C for 30 s and melt on green at 60-95°C.

3. Results and discussion

Twenty-five seafood products were obtained from markets in Bogor surrounding areas and their DNA was isolated. The DNA was successfully extracted from the seafood products with the highest concentration was 282 ng/µL, although DNA from six products had concentration below the detection limit of the Nanophotometer (<10 ng/µL) (table 1). Table 1 shows that high DNA concentration was obtained from fresh and less-processed seafood, while highly-processed seafood such as shrimp paste or otak-otak contained very low DNA content. Previous study on tuna muscle found that non-processed samples yielded high amount of DNA while canned muscle, spread, and pâté yielded the lowest amounts of DNA (Piskata et al 2017). It is known that processing methods affect DNA quantity and quality, and different extraction methods are required to extract the DNA. Processing procedures could lead to DNA degradation, meanwhile filling media in the processed seafood affect the efficiency of DNA extraction process (Sajali et al 2018).

Salmonella ompC gene was amplified using a set of primers resulting in a 204 bp long amplicon. The ompC gene is a highly conserved gene within *Salmonella* serotypes. This gene encodes a major outer membrane protein (OMP) of *Salmonella* that is highly expressed in both low and high osmolarity (Jha et al 2012). The primers successfully amplified the ompC gene of *Salmonella typhimurium* (ATCC 25241) resulting in a single melting curve peak at temperature between 85°C and 90°C (figure 1). Previously, the primer pair has been successfully used to detect different *Salmonella* serotypes in various sources. Alvarez et al (2004) carried out multiplex PCR assay to confirm *Salmonella* from 138 microbial strains isolated from veterinary, environmental, food, and clinical sources and found the primers specifically amplified ompC gene from all *Salmonella* strains. The utility of the primer pair was further confirmed by Ngan et al (2010).

Due to the utility of ompC as a pan-*Salmonella* indicator, the gene was used to detect *Salmonella* contamination on twenty-five seafood products in Bogor. The melting curves from real-time PCR for these twenty-five products are presented in figure 2. The curves were found below the positive threshold, indicating none of the products contaminated with *Salmonella*. In contrast, using conventional approach, Pramono et al (2019) found 93.10% of seafood and seafood products from...
Surabaya traditional market were contaminated by *Salmonella* bacteria, eight of those were antibiotic-resistant *Salmonella* serotype. *Salmonella* is a pathogenic bacteria commonly contaminating meat and poultry. However, *Salmonella* outbreaks due to seafood consumption are increasingly reported (Fernandes *et al* 2018). Seafood is not considered as the natural habitat of *Salmonella*. Contamination of these bacteria on seafood products is mainly due to poor handling processes, particularly the usage of contaminated water (Kumar *et al* 2015, Fernandes *et al* 2018).

Sample code	Products	Sampling time (ETC +7)	DNA concentration (ng/µl)
Traditional markets			
Fresh			
1	Squid	Monday, 16-3-2015, 06.30	14.00
2	Indian mackarel	Monday, 16-3-2015, 06.30	29.00
3	Anchovy	Monday, 16-3-2015, 06.30	9.00
Processed			
4	Salted striped snakehead	Saturday, 14-3-2015, 17.30	12.50
5	Salted anchovy	Saturday, 14-3-2015, 17.30	282
6	Salted squid	Sunday, 15-3-2015, 11.30	131
7	Salted yellowstripe scad	Sunday, 15-3-2015, 11.30	29.00
8	Acetes	Sunday, 15-3-2015, 11.30	209
9	Shrimp paste	Sunday, 15-3-2015, 11.30	\(\leq 10 \)
10	Salted boiled fish	Monday, 16-3-2015, 07.30	49.00
11	Boiled milkfish	Saturday, 14-3-2015, 17.00	54.00
12	Boiled mackarel	Monday, 16-3-2015, 07.30	38.00
13	Boiled mackarel	Saturday, 14-3-2015, 17.00	17.00
Modern markets			
Fresh			
14	Bangka Squid	Friday, 13-3-2015, 19.00	127
15	Tilapia	Friday, 13-3-2015, 19.00	22.50
16	Salmon fillet	Friday, 13-3-2015, 19.00	103
17	Vannamei shrimp	Friday, 13-3-2015, 19.00	41.50
18	Banjar milkfish	Friday, 13-3-2015, 19.00	20.50
Processed			
19	Unsalted anchovy	Friday, 13-3-2015, 19.00	91.5
20	Shrimp paste	Friday, 13-3-2015, 19.00	\(\leq 10 \)
21	Crab Claw	Friday, 13-3-2015, 19.00	\(\leq 10 \)
22	Otak-otak (traditional food)	Friday, 13-3-2015, 19.00	\(\leq 10 \)
23	Squid roll	Friday, 13-3-2015, 19.00	\(\leq 10 \)
24	Chikuwa	Friday, 13-3-2015, 19.00	\(\leq 10 \)
25	Salmon ball	Friday, 13-3-2015, 19.00	\(\leq 10 \)
Figure 1. Melting curve of the ompC gene of *Salmonella typhimurium* (ATCC 25241).

Figure 2. Melting curve of the real-time PCR product from twenty-five seafood products.

Early detection of *Salmonella* bacteria on food products is important to prevent hazards on human health. To date, over 2500 *Salmonella* serotypes have been identified. Of these, *Salmonella enterica* serovar typhimurium (*S. Typhimurium*) and *S. enterica* serovar Enteritidis (*S. Enteritidis*) are the most common caused of foodborne illness. Due to this high variability of *Salmonella* serovar, nucleic acid-based early detections is preferred. These techniques utilize a specific sequence of *Salmonella* DNA, resulting in an accurate detection. Furthermore, employing very advance real-time PCR method could improve the detection system by automating DNA extraction, amplification, and detection (Lee et al 2015).

In conclusion, real-time PCR was successfully developed to amplify the ompC gene of *Salmonella*. None of the seafood products tested was found to be contaminated by *Salmonella* bacteria.
References

Alvarez J, Mertxe S, Ana B V, Ildefonso P, Ramon C, Aitor R, and Javier G 2004 Development of a multiplex PCR technique for detection and epidemiological typing of Salmonella in human clinical samples J. Clin. Microbiol. 42 1734-1738

Amagliani G, Brandi G and Schiavano G F 2011 Incidence and role of Salmonella in seafood safety Food. Res. Int. 45 780-788

Barret K A, Nakao J H, Taylor E V, Eggers C, and Gould L H 2017 Fish-Associated Foodborne Disease Outbreaks: United States, 1998-2015 Foodborne Pathog. Dis. 14 537-543

EFSA European Food Safety Authority 2014 The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2012 EFSA Journal 12 3547

Fernandes D V G S, Castro V S, Neto A C, and Figueiredo E E S 2018 Salmonella spp. in the fish production chain: a review Ciência Rural 48 1-11

Jha R, Kumar A, Saxena A, Tamuly S, and Saxena M K 2012 Cloning, sequencing and in silico analysis of Omp C of Salmonella typhimurium ISRN Veterinary Science 2012 512848

Kasturi K N, Drgon T 2017 Real-Time PCR method for detection of Salmonella spp. in environmental samples Appl. Environ. Microbiol. 83 1-12

Kumar R, Datta T K, and Lalitha K V 2015 Salmonella grows vigorously on seafood and expresses its virulence and stress genes at different temperature exposure BMC Microbiol. 15 1-10

Lee K M, Runyon M, Herman T J, Phillips R, and Hsieh J 2015 Review of Salmonella detection and identification methods: Aspects of rapid emergency response and food safety Food Control 47 264-276

Ngan G J Y, Ng L M, Lin R T P, and Teo J W P 2010 Development of a novel multiplex PCR for the detection and differentiation of Salmonella enterica serovars Typhi and Paratyphi A Res. Microbiol. 161 243-248

Piskata Z, Pospisilova E, and Borilova G 2017 Comparative study of DNA extraction methods from fresh and processed yellowfin tuna muscle tissue International Journal of Food Properties 20 S430-S443

Pramono H, Kurniawan A, Andika N, Putra T F, Hazwin M A R, Utari S, Kurniawan A P, Masithah E D, and Sahidu A M 2019 Detection of antibiotic-resistant Salmonella sp. in the seafood products of Surabaya local market IOP Conf. Series: Earth and Environmental Science 236 012115

Rakesh K, Surendran P K, Thampuran N 2010 Rapid quantification of Salmonella in seafood using real-time PCR assay J. Microbiol. Biotechn. 20 569-573

Sajali N, Wong S C, Hanapi U K, Abu Bakar @ Jamaluddin S, Tasrip N A, and Mohd Desa M N 2018 The challenges of DNA extraction in different assorted food matrices: A review Journal of Food Science 83 2409-2414

Siala M, Barbana A, Smaoui S, Hachicha S, Marouane C, Kammoun S, Gdoura R and Messadi-Akrout F 2017 Screening and detecting Salmonella in different food matrices in Southern Tunisia using a combined enrichment/real-time PCR method: Correlation with conventional culture method Front. Microbiol. 8 2416 1-10