Eocene *Podocarpium* (Leguminosae) from South China and its biogeographic implications

Qingqing Xu1,2, Jue Qiu1, Zhekun Zhou3* and Jianhua Jin1*

1 State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China, 2 Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA, 3 Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengliun, China

*Correspondence: Jianhua Jin lssjh@mail.sysu.edu.cn; Zhekun Zhou zhouzk@xbg.ac.cn

INTRODUCTION

Podocarpium A. Braun ex Stizenberger is one of the most common legumes in the Neogene of Eurasia, including fossil fruits, seeds, leaves, and possible flower and pollen grains. This genus is not completely consistent with any extant genera according to gross morphological characters and poorly preserved cuticular structures reported in previous studies. The fossil pods collected from the coal-bearing series of the Changchang Basin of Hainan Island and Maoming Basin of Guangdong, South China, are examined by morphologically comparative work, with special reference to venation patterns and placental position. These distinctive features, as well as the ovule development of pods from different developmental stages and the epidermal structure of the pods, as distinguished from previous records lead to the conclusion that these fossils can be recognized as a new species of *Podocarpium*, *P. eocenicum* sp. nov. This new discovery indicates that *Podocarpium* had arrived in South China by the Eocene.

Investigation on the fossil records of this extinct genus shows that *P. eocenicum* is the earliest and lowest latitude fossil data. The possible occurrence pattern of this genus is revealed as follows: *Podocarpium* had distributed in the South China at least in the middle Eocene, and then migrated to Europe during the Oligocene; in the Miocene this genus reached its peak in Eurasia, spreading extensively across subtropical areas to warm temperate areas; finally, *Podocarpium* shrank rapidly and became extinct in Eurasia during the Pliocene.

Keywords: Eocene, Leguminosae, *Podocarpium*, phytogeography, South China
fruits of Heer's original six species can not be distinguished morphologically (Kirchheimer, 1957; Herendeen, 1992a). The recognition of a single variable species of Podocarpium was supported by Kirchheimer (1957), Rüffle (1963) and Bůžek (1971). This treatment was held by Herendeen (1992a,b) alike, and he proposed a new combination to replace the illegitimate name Podogonium knorrii Heer which is universally known. Podocarpium podocarpum (A. Braun) Herendeen is validated to be the correct species name (Herendeen, 1992b), and has been conserved and increasingly used (Wang, 2008). The pod of Podocarpium, which has very distinctive features, such as generally tardy dehiscence, elliptical shaped, single-seeded and having a long stipe, was originally illustrated as an unidentified fruit by Knorr (1755), and almost a century hence, it was considered to be related to this genus (Braun, 1845; Herendeen, 1992b). Podocarpium has been extensively reported in many fossil floras of Eurasia from the early Oligocene to the Pliocene (Liu et al., 2001b; Wang et al., 2007).

Numerous pod specimens collected in the Eocene strata from the Changchang Basin of Hainan Island and Maoming Basin of Guangdong, South China, are described in this paper. A new species Podocarpium eocenicum sp. nov. is established based on its shape, size, stipe, certain placental position, specific venation patterns and distinct cuticular structures. It is the first megafossil finding of Podocarpium from South China. This discovery also represents the earliest and lowest latitude recorded among all the fossil record of this genus up to the present. Speculation that this genus originated in the early Paleogene of eastern Asia by Liu et al. (2001b) and Wang et al. (2007) was based on possibly related pollen records. This clear megafossil evidence of Podocarpium found from the Eocene of South China plays an indispensable role in the tracing of the geographic history of its evolution.

MATERIALS AND METHODS

Geographical and Stratigraphical Information
The compressed fossil fruit specimens described in this paper were collected from two coal-bearing fossil sites of South China (Figure 1A). Changchang Formation (Fm.) of the Changchang Basin (19°38′N, 110°27′E) is located near Jiazi Town of Qiongshan City, Hainan Island, and Youganwo Fm. of Maoming Basin (21°42′N, 110°53′E) is located near Jintang Town of Maoming City, Guangdong Province.

Changchang Basin, located in the northern part of Hainan Island, can be divided into three formations: Changtou Fm. (Paleocene), and Changchang Fm. and Wayao Fm. (Eocene) (Lei et al., 1992). The Changchang Fm. (Figure 1B) is subdivided into the lower part which consists of dark gray mudstone, grayish black coaly shale, brownish gray oil-bearing shale, yellowish brown, grayish yellow, grayish white muddy siltstone and sandstone, and coal. The upper part consists of predominantly lacustrine and fluvial mudstones, siltstones and sandstones. Well preserved plant megafossils were collected mainly from the coal-bearing series of the lower part of the Changchang Fm., including angiosperms (Castanea Miller, Lithocarpus Blume, Quercus L., Craigia W. W. Smith et W. E. Evans, Liquidambar L., Myrica L., Nelumbo Adanson, Paraphyllanthoxylon Bailey, Sabalites Saporta, etc.), gymnosperms (Nageia Gaertner, etc.), and ferns (Osmunda L., Salvinia Séguié, etc.) (Spicer et al., 2014). Based on palynological data and plant assemblages, the Changchang Fm. from which Podocarpium was collected is middle Eocene (Lutetian-Bartonian) in age (Spicer et al., 2014).

Maoming Basin is a small inland intramontane basin in southwestern Guangdong Province, which is elongated from northwest to southeast. This basin contains one Cretaceous stratum (Tonguling Fm.), and six Palaeo-Neogene strata (given as follows in ascending order: Shangdong Fm., Youganwo Fm., Huangniuling Fm., Changcun Fm., Laohuling Fm., and Gaopengling Fm.) (Bureau of Geology Mineral Resources of Guangdong Province, 1996). The Youganwo Fm. (Figure 1C) is the main mining horizon consisting of the lower brown coal-bearing series and upper dark gray to dark brown densified oil shales. The combustible oil shales enclose the remains of reptilians (e.g., Anosteira maomingensis Chow et Liu, Isometremys lacuna Chow et Yeh, Aspideretes impressus Yeh, Adocus inexpectatus Danilov et al., Tomistoma petrolia Yeh, Alligatoridae gen. et sp. indet.), fish (Cyprinus maomingensis Liu), and mammals (Lunania cf. L. youngi Chow) (Aleksandrova et al., 2015). Podocarpium was discovered in the lower part of Youganwo Fm. (Figure 1C), which is dated as middle Eocene in age on the basis of palynological analysis (Aleksandrova et al., 2015). Associated plant remains include Equisetales, Filicales (Osmundaceae, Polypodiaceae, Salviniaceae), conifers (Podocarpaceae) and numerous angiosperms (Nelumboonaceae, Lauraceae, Fagaceae, Platanaceae, Altingiaceae, Anacardiaceae, Celastraceae, Ulmaceae, Euphorbiaceae, Myrtaceae, etc.) (Aleksandrova et al., 2012, 2015).

Methods
The fossil specimens of Podocarpium eocenicum sp. nov. described in this paper are preserved as impressions and compressions with intact cuticular structures. All the specimens were photographed using a digital camera (Canon Eos 500D). Fossil cuticles were prepared by removing a few fragments from the fossil pods and placing them into deionized (DI) water for 10 min, followed by immersing them with 10% HCl for about 1 h. They were bleached with Schultze's solution (one part saturated KClO3 with two parts 68% HNO3) after rinsing with DI water at least three times, and then transferred to 10% NH3·H2O until a dark brown exudate excreted from the fragments. Cuticles were cleaned under a stereoscopic microscope (Leica S8ap0) and then mounted on glass slides using neutral balsam. Slides were observed and photographed using a light microscope (LM) (Nikon-SY100 and Zeiss Axioscope.A1) and scanning electron microscope (SEM).

Photographs of megafossils and cuticles (Figures 2–4) were adjusted and arranged using Adobe Photoshop 5.0 (San Jose, CA, USA) programs. A map for the fossil localites (Figure 1) was drawn using DIVA-GIS (version 7.5) software (LizardTech, Seattle, WA, USA) and modified by Adobe Photoshop 5.0. The distribution of fossil records of Podocarpium in the world map (Figure 5) and climate zones of different geological ages
FIGURE 1 | Geographic map of Changchang Basin, Hainan Island and Maoming Basin, Guangdong Province, and Stratigraphics of fossil localities. (A) Locations of Changchang Basin and Maoming Basin (red stars), drawn by QQX. (B) Lithostratigraphic column of Changchang Basin, modified from Spicer et al. (2014). Specimens were collected from the layers marked by red arrows. (C) Lithostratigraphic column of Maoming Basin, modified from Aleksandrova et al. (2012). Specimens were collected from the layer marked by red arrow.
RESULTS

Systematics
Family Leguminosae Jussieu
Subfamily Caesalpinioideae DC.
Genus Podocarpium A. Braun ex Stizenberger
Species Podocarpium eocenicum Xu et Jin sp. nov.

Specific Diagnosis
Fruit elliptical, ovate, or obovate, straight or slightly curved, not twisted; margins neither constricted nor winged; apex acute or obtuse, base acute, attenuate, or broadly cuneate, oblique slightly or obviously; stipitate, stipe length shorter than valve length, base of stipe prominent. Valves indehiscent or tardily dehiscent, with an invisible seed chamber. Epicarp dull, glabrous, with obliquely reticulate venations or cracked. Single seeded; seed with an invisible seed chamber. The epicarp is dull and glabrous, bearing numerous clear or less clear reticulate striations externally. The seed chamber is invisible. The epicarp is dull and glabrous, bearing numerous clear or less clear reticulate striations externally. The seed length is oblique or parallel to fruit length. It is oblong to ellipsoidal and swells in the center of the pod in the maturing phase (Figs. 2A–J, 3A–I, 3J, K) and seed is attached closely to apex of the ventral suture. Single seed is preserved in those valves that have not yet dehisced (Figs. 3A–I). Seed is symmetrical and compressed, 0.5–1.7 cm long by 0.3–1.0 cm wide, and has an apical or subapical hilum with a short (ca. 2 mm), thick and straight funiculus on the top (Figs. 3A, B, E, F, I). In the juvenile phase (Figs. 3A–E), immature seed is near obovate, rounded in the apex, located near the apex of the ventral suture, the seed length is oblique or parallel to fruit length. It is oblong to ellipsoidal and swells in the center of the pod in the maturing phase (Figs. 3F–J, K). The seed length in relation to fruit length is oblique or parallel, and then falls out from the valve after it matures (Figs. 2A–C, I and 3J, K).

Epidermal cells from the outside of valves are irregular in shape, size, and arrangement (Figs. 4A, C–E, J, L). Some cells are rectangular, variously elongated with straight anticlinal walls, while others are irregular tetragonal, pentagonal, or hexagonal.
with rounded or slightly undulate anticlinal walls. Anticlinal walls are not evenly thickened, and periclinal walls are smooth with one to multiple elliptical or round crystals (Figure 4J) in some cells observed by both LM and SEM. Cells are about 13–34 μm (average 19.4–24.6 μm) long and 8–22 μm (average 11.3–16.6 μm) wide. Stomatal complexes irregularly scattered over the cuticle are anomocytic (Figures 4A,G–M), with two guard cells surrounded by five or more subsidiary cells, about 46–84 μm (average 60.8 μm) long and 43–62 μm (average 50.2 μm) wide and the stomatal aperture is ca. 35 μm long (Figure 4G). The guard cells with conspicuous outer and inner stomatal ledges (Figures 4G–M) are smaller than subsidiary cells. No obvious trichome bases were observed on the cuticle. Epidermal cells from the inner side of valves
Different developmental stages of the seed of *Podocarpium eocenicum* sp. nov. (A–E) Different types of seed located near the apex of the placental suture in the juvenile phase. (A) Obovate seed. CC256a. (B) Counterpart of (A). CC256b. (C) Elliptical seed. CC1168. (D) Oblong seed. CC1300. (E) Obovate seed. CC1297a. (F–I) Seed located near the middle of valve in the maturing phase. (F) Elliptical seed with a short funiculus (arrowhead). CC1163a. (G) Elliptical to oblong seed situated close to the placental suture. CC1188a. (H) Elliptical seed close by the placental suture. CC1184. (I) Ellipsoidal seed in the center of the pod. CC698a. (J) Seed split out from the valve after maturity. CC1223. (K) Dehisced pod without seed. CC1171. Scale bar = 1 cm.

(Figures 4B,F) are also irregular arranged, cells are tetragonal, pentagonal, or hexagonal with numerous crystals in some cells.

Comparison

As the distinguishing characters of Leguminosae are described: the fruit is composed of a single carpel with a single row of seeds along one suture and dehiscent along two sutures (Herendeen, 1992a). The compressed fossil fruits described above apparently possess these features, and are assigned unequivocally to the fossil genus *Podocarpium* after detailed comparison with the previously reported records [Working Group of Cenozoic Plants of China (WGCPC), 1978; Gregor and Hantke, 1980; Herendeen, 1992a; Wang, 2006; Wang et al., 2007].

Specimens collected in the Changchang Basin of Hainan Island and Maoming Basin of Guangdong, South China, preserve
relatively diverse morphologies with continuous changing cuticular structures, as described above. These morphological differences may occur because of natural intraspecific variation. Drawing on the experience of intraspecific variation in samara morphology of *Acer* and its implication in taxonomical studies of fossil *Acer* (Huang et al., 2013), investigations of morphological disparities of the same extant species throw much fresh light on the identification of fossil species. Since morphological
variations, as we observed, are also present in the extant genera of Leguminosae, even in the same branch of one species, we are more inclined to group all these fossil pods into one species.

Single-seeded pods occur in a large number of unrelated genera in Leguminosae. Since it is difficult to distinguish those fruits which mostly bear similar morphological characters, Herendeen (1990, 1992a) concluded that features such as position of placentation, patterns of valve venation can be very helpful in identification. Although some specimens collected in South China are incomplete, especially the absence of stipe, clear venation structures (Figures 2F–I and 3A,B,E,G,K) are shown on the surface of pods. Attenuated fruit margins and inconspicuous sutures are features of indehiscent pods, while fossil pods that were elastically dehiscent have prominent oblique striations on the valves (Herendeen, 1990). These subparallel oblique striations indicate a certain extent of lignification, which plays an important part in pod dehiscence and seed dispersal (Herendeen, 1990; Liu et al., 2001b). With regard to our specimens in the present paper, some pods have already dehisced, while other pods may not have done so yet, suggesting that these pods most probably have been preserved at different developmental stages; as a consequence, it would be beneficial to observe the position of placentation and changes that happened during the seed ontogenetic process. When in its juvenile phase, immature seed is near obovate with a short funiculus on the top, situated in the upper part of the pod and closer to the placental suture. It becomes bigger, elliptical or ovate, gradually situated almost in the middle of the pod and slightly oblique to the placental suture in its mature or approximate maturity phase. The short funiculus is still presented on the top of the seed. There are also some pods without seeds, suggesting that it may have been aborted (Bawa and Webb, 1984), or have already dispersed as was the case of several pods preserved in their dehiscent state.

In China, *Podocarpium podocarpum* was first reported from the Miocene of Shanwang Fm., Shandong Province (Hu and Chaney, 1940), and subsequently from other numerous localities [Working Group of Cenozoic Plants of China (WGCPC), 1978; Guo, 1986; Li et al., 1987; Guo and Zhou, 1992; Sun, 1999; Tao, 2000]. These fossils are frequently identified as *Podogonium oehningense* (Koenig) Kirchh. [Working Group of Cenozoic Plants of China (WGCPC), 1978; Sun, 1999] or *Podogonium knorrii* (Braun) Heer (Hu and Chaney, 1940). All those specimens reported from China were assigned to the same taxon *Podocarpium podocarpum* by Wang (2006) and Wang et al. (2007), although comparisons between Chinese and European *Podocarpium* reveal a few morphological differences (Wang et al., 2007). However, Wang (2006) was not sure about the monospecific treatment of the genus. Features of the fruits of *P. podocarpum* summarized from Herendeen (1992a) and Wang et al. (2007) are as follows: (1) The fruit dehiscent to tardily dehiscent, or indehiscent, single seeded, with a straight or slight curved stipe which is at least 2–4.1 cm long and about 1 mm wide; (2) the valves is elliptical, 1.5–2.9 cm long by 0.6–1.1 cm wide, apex is acute, base is acute or attenuate, slightly oblique, margins is not winged, and valve venation is either not observed or indistinct; (3) the placentation is near apex of the fruit; (4) the seeds are oblong, 12–15 mm long by 8–10 mm wide. *Podocarpium eocenicum* resembles this fossil species in general appearance, valve dehiscence, wingless and not constricted margin, placental position and single seed. However, the differences between these two species (Table 1) are mainly: (1) *P. eocenicum* has clear obliquely or slightly obliquely reticulate venations while *P. podocarpum* is either...
indistinct or not observed; (2) the ratio of stipe length to valve length is less than 1 for *P. eocenicum* while greater than 1 for *P. podocarpum*. In addition, the features from funiculus and hilum can be clearly observed in *P. eocenicum* while unknown in *P. podocarpum*. We also obtained intact epidermis of the new species from the compressed pods which preserved at different developmental stages. Although some epidermal structures of *Podocarpium* have been described (Rüffle, 1963; Bůžek, 1971), those characters are all summarized from leaf remians and the structure of stomatal complexes is poorly presented. There are no data sources available to show the cuticular characters from the pods before our report. Detailed cuticular features of this new species *P. eocenicum*, especially the stomata structure, make a perfect complement to this genus.

Some palaeobotanists have insisted that there is a close relative relationship between *Podocarpium* and extant legumes, but the fossils do not conform to any single extant genus from both the fruit and leaflet morphologies (Heer, 1857; Herendeen, 1992a). Herendeen (1992a) considered that *Podocarpium* is similar to several genera in the tribes Detarieae DC. *sensu lato* (Caesalpinioideae) (here after referred to as Detarieae) and proposed four genera (*Gilletiodendron* Vermoesen, *Tessmannia* Harms, *Brachystegia* Bentham, and *Cryptosepalum* Bentham) restricted to tropical and subtropical Africa and some species of the pantropical genus *Cynometra* L. occurred only in Africa (e.g., *C. hankei* Harms, *C. leonensis* Hutch. and Dalziel) are most similar to *Podocarpium*, with special respect to the leaflet morphology and venation. Taking advantage of the monograph of Gunn (1991) and the herbarium collections maintained in the United States National Herbarium of National Museum of Natural History, Smithsonian Institution, we examined most of the genera in Caesalpinioideae focusing on the pods bearing single seed, with special reference to the fruit shape, stipe, margins (constriction, the presence of wing) and epicarp features (sheen, hairs, venation) and the seed shape and position, etc. We found that more than 20 genera are comparable to *Podocarpium*. Herein, we also hold the idea that it cannot be directly related to any extant genus of Leguminosae (Herendeen, 1992a; Wang et al., 2007), because these extant genera share one or several features of *Podocarpium*, for example: (1) the genera with strictly single-seeded pods are: *Burkea* Bentham, *Daniellia*
TABLE 1 | The differences between *Podocarpium eocenicum* sp. nov. and *P. podocarpum* (A. Braun) Herendeen from Europe and China (Heer, 1857; Herendeen, 1992a; Wang et al., 2007).

Species	Fruit characteristics	Seed characteristics
P. eocenicum	- Fruit size: 5–17 mm	- Stipule/valve ratio: 1.2–3.3, 0.6–1.6
	- Stipule length: 1.5–2.9	- Funicle: 0.6–1.1
	- Funiculus: 1.5–2.9	- Seed length: 6–10
P. podocarpum	- Fruit size: 6–10 mm	- Stipule/valve ratio: 0.6–1.1
	- Stipule length: 2.0–2.9	- Funicle: 0.6–1.1
	- Funiculus: 1.0–1.5	- Seed length: 6–10

DISCUSSION

It was once thought that legumes probably evolved in the humid tropics in the late Cretaceous (Sprent, 2007), and the remains (including pollen, leaflet, and fossil wood) of this age have been reported from many localities, such as the Caucasus, Sudan, Somalia and Mexico, and Siberia, Cananda, and Colombia, Central India, and China (Raven and Polhill, 1981; Muller, 1984; Giraud and Lejal-Nicol, 1989; Awasthi, 1992; Guo and Zhou, 1992; Herendeen et al., 1992; Shakryl, 1992; Wang et al., 2007). But many early records are unreliable and need reevaluation. The oldest currently recognized fossil of legumes appears during the early Paleocene (Giraud and Lejal-Nicol, 1989; Brea et al., 2008). Recently, according to molecular data and unequivocal legume fossil evidence, Lavin et al. (2005) fixed the family stem clade at 60 Mya, and estimated the age of the Leguminosae crown node at 59 Mya. They also noted that the oldest caesalpiniod, mimosoid and papilinoid clades were present from about 39 to 59 Mya. The fossil record documents that extensive
diversification had taken place by the middle Eocene (Herendeen et al., 1992). A combination of the fossil record and extant geographic centers of legumes tribes, makes it evidently that the greatest legume diversity is concentrated in tropical America and Africa/Madagascar (Herendeen et al., 1992).

Podocarpium is one of the most common extinct genera of Leguminosae. Before our study, the earliest and most reliable record of this genus, named "*Gleditsia knorrrii Barbu"* (Barbu, 1936; Gregor, 1985; Liu et al., 2001b), was reported from the early Oligocene of Romania and France. The pollen grains of *Fupingopollenites* from the early Eocene of eastern China (Zhang and Qian, 1992) were considered to be the oldest record of *Podocarpium* (Liu et al., 2001b). But recent palynological reports demonstrate that *Fupingopollenites* may be a representative of Verbenaceae (Song et al., 1999) or another dicotyledonous plant now extinct (Song et al., 2004; Wang and Harley, 2004). Therefore, whether it is reliable to determine the presence of *Podocarpium* by relying on palynological evidence is still questionable. The fossil species *Leguminocarpon* sp. (Erdei and Rákosí, 2009) recorded from the middle Eocene Csordakút (North Hungary) share some characters with *Podocarpium*, but it was eventually assigned to the genus *Leguminocarpus* due to the shortage of information. Although fruit fossil *Leguminocarpus lakhanpatli* Srivastava and Mehdrola (Srivastava and Mehdrola, 2010) from the late Oligocene of Assam shows close resemblance to *Podocarpium*, it differs from the latter in having a short thick single septum, and no cuticle of this species has been reported. So we are uncertain of its specific relationship to *Podocarpium*. *Podocarpium* was once reported in the Tertiary North America (Lesquereux, 1878; Berry, 1909; Brown, 1934), but these records were considered unreliable (Liu et al., 2001b). Therefore, our specimens collected from the middle Eocene of South China provide the definitive earliest evidence of this genus.

Podocarpium was supposed to have relationships with some genera in the Detarieae by Herendeen (1992a). So one possible origin of *Podocarpium* is Pan et al.’s (2010) suggestion that the more likely dispersal possibility of Detarieae would have been from south to north, and he deemed that the dispersal into Africa from Europe (Schrire et al., 2005a,b) is problematic because the fossil record of this group is much older in Africa than Eurasia. However, we didn’t find any record of *Podocarpium* repored from Africa or India. Alternately, Liu et al. (2001b) and Wang et al. (2007) proposed that this genus may have been originated in eastern Asia. According to the spatio-temporal distribution of this genus so far, of which almost all are reported from Eurasia (Figure 5), we speculate that *Podocarpium* had distributed in the South China at least in the middle Eocene, and then dispersed among Eurasia.

Podocarpium was probably a thermophilous, moisture-loving plant (Rüffle, 1963; Li et al., 1987; Liu et al., 2001b; Wang et al., 2007) and may have been an element of gallery forests (Herendeen, 1992a; Liu et al., 2001b; Wang et al., 2007). This speculation is exemplified by: (1) The middle Miocene Noroshi Flora from Noto Peninsula, Japan deposit containing leaves and pods of *Podocarpium* indicated a lagoonal environment and represented by a mixed mesophytic forest type. The climate of this flora was probably a little warmer and wetter than the present west end of Inland Sea, Japan (Ishida, 1970); (2) The localities of this genus reported from China before turned out to have had warm temperate-subtropical and tropical climates, such as the Miocene Shangwang Flm. in Shandong (Sun et al., 2002; Liang et al., 2003; Yang et al., 2007), or a temperate to warm temperate and arid climatic condition (Guo, 1980); (3) The habitat of *Podocarpium* in southern Germany is wet and warm. For example, the middle Miocene Schrotzbrug flora most likely represented a riparian forest vegetation (Hantke, 1954; Uhl et al., 2003), and the early/middle Miocene Radecker Marr flora was considered to be a lacustrine system with subhumid sclerophyllous forests or mixed mesophytic forests (Rasser et al., 2013). According to the plant assemblages, together with the palynological data, derived from the middle Eocene coal-bearing series of Changchang Basin (Yao et al., 2009; Spicer et al., 2014) and Maoming Basin (Aleksandrova et al., 2012, 2015) where *P. eocenicum* sp. nov. was collected, the climate of these two localities is warm and humid, very likely, the preferred environment of *Podocarpium*.

As generally understood, the Eocene climate was comparatively warm, i.e., warmer than any other period of the Cenozoic (Huber and Caballero, 2011; Quan et al., 2012). At that time the northward moving India Plate and the elements of the Eurasian continent had not yet merged (Chen et al., 1999). Song et al. (1983) divided the Eocene climate of China into three zones based on the palynofloral assemblages (Figure 6A). The broad arid-semiarid zone in the middle part of China became an important limiting factor of the eastern Asia flora in the Palaeogene (Guo, 1985; Tiffney and Manchester, 2001), but it had little influence on the development of *Podocarpium* in South China because it was part of the humid tropical to subtropical climate zone (Figure 6A), and it spread southwestward after its appearance here. During the Oligocene, the Turgai Straits separating Europe from Asia gradually closed (Liu et al., 2001a; Sun and Li, 2003) and the India Plate finally joined with Eurasia (Awasthi, 1992). This genus was able to enter Europe and reached areas such as Romania and France as fossil assemblages have recorded, but the persistence of the widespread arid band throughout the Oligocene (Figure 6B) (Song et al., 1983; Sun and Wang, 2005) made it difficult for *Podocarpium* to disperse northward in China. Up to now, *Podocarpium* does not have any record in the Oligocene of China. Even the whole legume family was less well documented in this period of time in China. In the Miocene, the climatic conditions of middle latitude Eurasia were generally favorable because the arid band disappeared (Sun and Wang, 2005; Wang et al., 2007). *Podocarpium* spreads extensively across subtropical and warm temperate areas of China, it goes northwardly to Zhejiang, Jiangsu, Shandong, Inner Mongolia, and Qinghai provinces, and southwestward to Guangxi and Yunnan provinces (Figure 6C). Meanwhile, *Podocarpium* occurs in large numbers in other parts of Eurasia, such as Germany, Switzerland, Italy, Romania, Poland, Czech, Hungary, Moldavia, Yugoslavia (Liu et al., 2001b), Austria, Japan (Uemura and Li, 2006; Wang et al., 2007). Due to the influence of the recently uplifted Tibetan plateau and subsequent climatic deterioration, the aridity of the Eurasian interior became more pronounced.
(Chen et al., 1999; Liu et al., 2001a; Sun and Li, 2003; Liu and Dong, 2013) and the distribution area of Podocarpium rapidly shrank. The megafossil records of this genus were found in the Pliocene floras of Yunnan, Jiangsu, and Shaxi provinces of China (Figure 6D) (Li et al., 1987; Tao, 2000; Liu et al., 2002). Podocarpium became extinct most likely in Eurasia after the Pliocene (Herendeen, 1992a; Liu et al., 2001b).

AUTHOR CONTRIBUTIONS
JJ and QX participated in the design of the study. JQ, JJ, and QX photographed specimens and arranged the figures. JQ and QX carried out the cuticle experiments and data analyses. QX, JJ, and ZZ conducted taxonomic treatments, evolutionary and phytogeographic interpretations. QX wrote the manuscript and formatted the text. All authors read and approved the final manuscript.

FUNDING
This study was supported by the National Natural Science Foundation of China (Grant No. 41210001), the joint Project of the National Natural Science Foundation of China and the Russian Foundation for Basic Research (Grant Nos. 413111040, 14-05-91163), State Key Laboratory of Palaeobiology and Stratigraphy (Nanjing Institute of Geology and Palaeontology, CAS) (Grant No. 123110), the Scientific Research Fund, Hongda Zhang, Sun Yat-sen University, and the State Scholarship Fund of China Scholarship Council (CSC) (No. 201406380049).

ACKNOWLEDGMENTS
We thank graduate students majoring in Plant Science at Sun Yat-sen University for participating in the field collection of the fossils. We also thank Dr. Wang Qi, Institute of Botany, Chinese Academy of Sciences, for his helpful suggestions and references on this study, and A. B. Herman and T. M. Kodrul, Geological Institute, Russian Academy of Sciences, for reconstructing and photographing of the partial fossil specimens. We greatly appreciate the National Museum of Natural History (NMNH), Smithsonian Institution, especially for letting us use the library resources and the herbarium collections from the Botany Department. We also offer our sincere gratitude to Ms. Margaret Joyner (U.S.A.) for editing.

REFERENCES
Aleksandrova, G. N., Kodrul, T. M., and Jin, J. H. (2015). Palynological and paleobotanical investigations of Paleogene sections in the Maoming Basin, South China. Strateg. Geol. Correl. 23, 300–325. doi: 10.1134/S086993815030028

Bawa, K. S., and Webb, C. J. (1984). Flower, fruit and seed abortion in tropical forest Berry, E. W. (1909). A Miocene flora from the virginia coastal plain. Brea, M., Zamuner, A., Matheos, S., Iglesias, A., and Zucol, A. (2008). Barbu, Z. I. (1936). FlorafosilädelaMuereascadescus,jude¸ tul Vilcea. Brown, R. W. (1934). The recognizable species of the Green River flora. Braun, A. (1845). Die Tertiär-flora von Öehningen. Braun, T., and Jäger, E. (2012). Flora of the eastern coastal forests of the eastern Mediterranean. Brue, J., and Peeters, M. D. (2010). Flora of the eastern Mediterranean. Brunel, D. (1972). The pollen of Podocarpus and related genera from the Late Miocene of the Languedoc. Buxbaum, J. (1936). Notes on the vegetation of the upper Tertiary of the Alps. Cai, S. N., and Zhou, Z. K. (1992). “The megafossil legumes from China,” in Advances in Palaeobotanical Data from the Lower and Middle Pliocene of South China, ed. P. S. Herendeen and D. L. Dilcher (Kew: Royal Botanic Gardens), 303–316.

Erdei, B., and Rakosi, L. (2009). The middle eocene flora of csordakút (N Hungary). Geol. Carpath. 60, 43–57. doi: 10.2478/v10096-009-0005-4

Giraud, B., and Lejal-Nicol, A. (1989). Cassinia dongolense n. sp. bois fossil de Caesalpinioideae du Nubien du Soudan Septentrional. Rev. Palaeobot. Palynol. 59, 37–50. doi: 10.1016/0034-667X(89)90004-3

Gregor, H. J. (1985). Vorläufiger Bericht über neue Pflanzenfossilien aus tertiären Sedimenten Süd-Frankreichs. Doc. Nat. 10, 1–45.

Gregor, H. J., and Hantke, R. (1980). Revision der fossilen Leguminosengattung Podognium Heer (= Gleditsia Linne) aus dem europäischen Jungtertiär. Feddes Repert. 91, 151–182. doi: 10.1002/febdr.198009103030

Gunn, C. R. (1991). Fruits and Seeds of Genera in the Subfamily Caesalpinioideae (Fabaceae). Washington, DC: United States Department of Agriculture.

Guo, S. X. (1980). Miocene flora in Zekou County of Qinghai. Acta Palaeontol. Sin. 19, 406–411.

Guo, S. X. (1985). Preliminary interpretation of Tertiary climate by using megafossil floras in China. Polakoent. Cathayana 2, 169–176.

Guo, S. X., and Zhou, Z. K. (1992). “The megafossil legumes from China,” in Advances in Legume Systematics, Part 4, The Fossil Record, eds P. S. Herendeen and D. L. Dilcher (Kew: Royal Botanic Gardens), 207–223.

Hantke, R. (1954). Die fossile Flora der obermiozänen Oehninger-Fundstelle lithographischen Anstalt von Wurster and Comp. Herendeen, P. S., Crepet, W. L., and Dilcher, D. L. (1992). “The fossil history of the Leguminosae from the Eocene of Southeastern North America,” in Advances in Legume Systematics, Part 4, The Fossil Record, eds P. S. Herendeen and D. L. Dilcher (Kew: Royal Botanic Gardens), 303–316.

Herendeen, P. S. (1992a). “A re-evaluation of the fossil genus Podognium Heer,” in Advances in Legume Systematics, Part 4, The Fossil Record, eds P. S. Herendeen and D. L. Dilcher (Kew: Royal Botanic Gardens), 3–18.

Herendeen, P. S. (1992b). Podocarpium podocarpum comb. nov., the correct name for Podognium korrii Heer, nom. illeg. (fossil Fabaceae). Taxon 41, 731–736. doi: 10.2307/1222400

Herendeen, P. S., Crepet, W. L., and Dilcher, D. L. (1992). “The fossil history of the Leguminosae: phylogenetic and phytogeographic implications,” in Advances in Legume Systematics, Part 4, The Fossil Record, eds P. S. Herendeen and D. L. Dilcher (Kew: Royal Botanic Gardens), 303–316.
Hu, H. H., and Chaney, R. W. (1940). "A miocene flora from shantung province. China. Palaeontol. Sin. N. Ser. A 1, 1–147.

Huang, Y. J., Zhu, H., Chen, W. Y., and Zhou, Z. K. (2013). Intraspecific variation in samara morphology of Acer and its implication in fossil identification. Plant Divers Resour. 35, 295–302.

Huber, M., and Caballero, R. (2011). The early Eocene equable climate problem revisited. Clim. Past 7, 603–633. doi: 10.5194/cp-7-603-2011

Ishida, S. (1970). "The Noroshi Flora of Noto Peninsula, Central Japan," in

Quan, C., Liu, Y. S., and Utescher, T. (2012). Eocene monsoon prevalence over Hu, H. H., and Chaney, R. W. (1940). A miocene flora from shantung province. China. Palaeontol. Sin. N. Ser. A 1, 1–147.

Liu, G. W., Li, D. Y., Huang, F., and Fu, Q. L. (2002). A Pliocene flora. Palaeontogr. Abt. B 215, 159–174.

Liu, Y. S., Guo, S. X., and Ferguson, D. K. (1996). Catalogue of Cenozoic megafossil plants in China. Palaeontogr. Abt. B 238, 141–179.

Muller, J. (1984). Significance of fossil pollen for angiosperm history. Ann. Missouri Bot. Gard. 71, 419–443. doi: 10.2307/2399033

Pan, A. D., Jacobs, B. F., and Herendeen, P. S. (2010). Detarieae sensu lato (Fabaceae) from the Late Oligocene (27.23 Ma) Guang River flora of north-western Ethiopia. Bot. J. Linn. Soc. 163, 44–54. doi: 10.1111/j.1095-8339.2010.01044.x

Quan, C., Liu, Y. S., and Utescher, T. (2012). Eocene monsoon prevalence over China: a paleobotanical perspective. Palaeogeogr. Palaeoclimatol. Palaeoecol. 365, 302–311. doi: 10.1016/j.palaeo.2012.09.035

Rasser, M. W., Bechly, G., Böttcher, R., Ebner, M., Heizmann, E. P. J., Höltke, O., et al. (2013). The randeck maas: palaeoenvironment and habitat differentiation of a Miocene lacustrine system. Palaeogeogr. Palaeoclimatol. Palaeoecol. 392, 426–453. doi: 10.1016/j.palaeo.2013.09.025

Raven, P. H., and Polhill, R. M. (1981). "Biogeography of the leguminosae," in Advances in Legume Systematics, Part 1, eds R. M. Polhill and P. H. Raven (Kew: Royal Botanic Gardens), 27–34.

Ruffle, L. (1963). Die obemariozäne (sarmatische) Flora vom Randecker Maar. Palaeont. Abh. 1, 139–296.

Schrire, B. D., Lavin, M., and Lewis, G. L. (2005a). "Global distribution patterns of the leguminosae: insights from recent phylogenies," in Plant Diversity and Complexity Patterns: Local, Regional and Global Dimensions. Biologiske Skrifter 55, eds I. Friis and H. Balslev (Viborg: Special-Trykkeriet Viborg A/S).

Schrire, B. D., Lewis, G. P., and Lavin, M. (2003b). "Biogeography of the leguminosae," in Legumes of the World, eds G. Lewis, B. Schrire, B. Mackinder, and M. Lock (Kew: Royal Botanic Gardens), 21–54.

Shakryl, A. K. (1992). "Leguminosae species from the tertiary of abkhazia," in Advances in Legume Systematics, Part 4, The Fossil Record, eds P. S. Herendeen and D. L. Dilcher (Kew: Royal Botanic Gardens), 189–206.

Song, Z. C., Li, W. B., and He, C. Q. (1983). Cretaceous and Palaeogene palynofloras and distribution of organic rocks in China. Sci. China Ser. B 26, 538–549.

Song, Z. C., Wang, W. M., and Huang, F. (2004). Fossil records of extant angiosperms in China. Bot. Rev. 70, 425–458. doi: 10.1663/0006-8101(2004)070<0425:FRDEAT>2.0.CO;2

Song, Z. C., Zheng, Y. H., Li, M. Y., Zhang, Y. Y., Wang, W. M., Wang, D. N., et al. (1999). Fossil Spores and Pollen of China I: the Lateral Cretaceous and Tertiary Spores and Pollen. Beijing: Science Press.

Spicer, R. A., Herman, A. B., Liao, W., Spicer, T. E. V., Kodrul, T. M., Yang, J., et al. (2014). Cool tropics in the middle eocene: evidence from the changchang flora, Hainan Island, China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 412, 1–16. doi: 10.1016/j.palaeo.2014.07.011

Sprent, J. I. (2007). Evolving ideas of legume evolution and diversity: a taxonomic perspective on the occurrence of nodulation. New Phytol. 174, 11–25. doi: 10.1111/j.1469-8137.2007.02015.x

Srivastava, G., and Mehrotra, R. C. (2010). New legume fossils from the Oligocene sediments of Assam. J. Geol. Soc. India 75, 820–828. doi: 10.1007/s12594-010-0069-x

Sun, B. (1999). Shanwang Plant Fossils. Jinan: Shandong Science and Technology Press.

Sun, H., and Li, Z. M. (2003). Qinghai-Tibet Plateau uplift and its impact on Tethys Flora. Adv. Earth Sci. 18, 852–862. doi: 10.3231/jissn.1001-8166.20

Sun, Q. G., Collinson, M. E., Li, C. S., Wang, Y. F., and Beering, D. J. (2002). Quantitative reconstruction of palaeoclimate from the middle Miocene Shanwang flora, eastern China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 180, 315–329. doi: 10.1016/s0031-0182(01)00433-3

Sun, X., and Wang, P. (2005). How old is the Asian monsoon system? Palaeobotanical records from China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 222, 181–222. doi: 10.1016/j.palaeo.2005.03.005

Tao, J. R. (2000). The Evolution of the Late Cretaceous-Cenozoic Floras in China. Beijing: Science Press.

Tiffney, B. H., and Manchester, S. R. (2001). The use of geological and palaeontological evidence in evaluating plant phylogeographic hypotheses in the Northern Hemisphere Tertiary. Int. J. Plant Sci. 162, S3–S17. doi: 10.1086/323880

Uemura, K., and Li, C. Y. (2006). Miocene floras of Taiwan: an overview in comparison with ultrastructure and pseudocolpi in modern pollen. Palaeontogr. Abt. B 180, 211–222. doi: 10.1016/j.palaeo.2005.03.005

Uemura, K., and Li, C. Y. (2006). Miocene floras of Taiwan: an overview in comparison with ultrastructure and pseudocolpi in modern pollen. Palaeontogr. Abt. B 180, 211–222. doi: 10.1016/j.palaeo.2005.03.005

Vain, C., and Tournon, R. (2004). Palaeobotanical records from China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 222, 181–222. doi: 10.1016/j.palaeo.2005.03.005

Wang, Q. (2006). On the identity of Podocarpum Heer 1857, mon. illeg. (Leguminosae) from the Miocene Shanwang Flora of Shandong. Acta Phytotax. Sin. 44, 197–203. doi: 10.1360/aps040120

Wang, Q. (2008), (1827) Proposal to conserve the name Podocarpum podocarpum (A. Braun) Herend. (fossil Leguminosae) against Podocarpum podocarpum (DC.) Y.C. Yang and P.H. Huang (Recent Leguminosae). Taxon 52, 661–662. doi: 10.2307/25066050

Wang, Q., Dilcher, D. L., and Lott, T. A. (2007). Podocarpus A. Braun ex Steinenberger 1851 from the middle Miocene of Eastern China, and its palaeoecology and phylography. Acta Palaeobot. 47, 237–251.

Wang, W. M., and Harley, M. M. (2004). The Miocene genus Fapingopollinates: comparisons with ultrastructure and pseudocolp in modern pollen. Rev. Palaeobot. Palynol. 131, 117–145. doi: 10.1016/j.revpalbo.2004.03.005
Working Group of Cenozoic Plants of China (WGCP). (1978). *Fossil Plants of China 3, Cenozoic Plants from China*. Beijing: Science Press.
Yang, J., Wang, Y. F., Spicer, R. A., Mosbrugger, V., Li, C. S., and Sun, Q. G. (2007). Climatic reconstruction at the Miocene Shanwang basin, China, using leaf margin analysis, CLAMP, coexistence approach, and overlapping distribution analysis. *Am. J. Bot.* 94, 599–608. doi: 10.3732/ajb.94.4.599
Yao, Y. F., Bera, S., Ferguson, D. K., Mosbrugger, V., Paudyal, K. N., Jin, J. H., et al. (2009). Reconstruction of paleovegetation and paleoclimate in the Early and Middle Eocene, Hainan Island, China. *Clim. Chang* 92, 169–189. doi: 10.1007/s10584-008-9457-2
Zhang, Y. Y., and Qian, Z. S. (1992). Eocene palynofloras from the Dainan and Sando formations in the North Jiangsu with special reference to Eocene climate changes in southeast China. *Acta Micropalaeontol. Sin.* 9, 1–21.
Zhou, Z. K. (1985). *The Miocene Flora from the Xiaolongtan Formation in Kaiyuan Couty of Yunnan*, Southwest China, Master's thesis, Nanjing Institute of Geology and Palaeontology, Academia Sinica, Nanjing.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2015 Xu, Qiu, Zhou and Jin. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.