Two new species in the family Axinellidae
(Porifera, Demospongiae) from British Columbia and adjacent waters

William C. Austin¹, Bruce S. Ott¹‡, Henry M. Reiswig²§, Paula Romagosa¹, Neil G. McDaniel¹¶

¹ Khoyatan Marine Laboratory, 9245 Hartfell Road, North Saanich, British Columbia, Canada V8L 5G5
² Biology Department, University of Victoria and Royal British Columbia Museum, P.O. Box 3020 Stn CSC, Victoria, British Columbia, Canada V8W 3N5

† http://zoobank.org/673D82A0-858D-43A7-B7A4-C467C3FE3239
‡ http://zoobank.org/91AC2C28-F5A4-4BE2-A498-674615B8C59B
§ http://zoobank.org/3843DD51-C34B-42E0-B092-8312FA08E980
¶ http://zoobank.org/A0C5F100-6AFC-4B67-A838-8BA9DA4AAAF76
¶ http://zoobank.org/7FF830F1-156E-4D87-8DF7-89A6D85043D3

Corresponding author: Author (baustin@mareco.org)

Academic editor: Roberto Pronzato | Received 17 May 2013 | Accepted 21 August 2013 | Published 2 October 2013

http://zoobank.org/29D15E1A-FAC7-4F1E-9ACF-B97D7A469497

Citation: Austin WC, Ott BS, Reiswig HM, Romagosa P, McDaniel NG (2013) Two new species in the family Axinellidae (Porifera, Demospongiae) from British Columbia and adjacent waters. ZooKeys 338: 11–28. doi: 10.3897/zookeys.338.5535

Abstract

Two new species of Demospongiae are described for British Columbia and adjacent waters in the family Axinellidae, Auletta krautteri sp. n. and Dragmacidon kishinensis sp. n. They represent range extensions for both of these genera. Both are fairly commonly encountered, A. krautteri below diving depths (87 to at least 300 m) and D. kishinensis in shallow water (intertidal to 30 m). We propose an amended genus diagnosis for Auletta to account for the variability among species in principal spicules that form the ascending tracts to be either oxeas, styles or strongyles rather than just oxeas.

Keywords

Porifera, Demospongiae, Halichondrida, Axinellidae, northeast Pacific, Auletta krautteri, Dragmacidon kishinensis
Introduction

A brief history of surveys and publications from 1878 to 1966 including sponges in British Columbia is presented in Austin et al. (in prep.). Of the approximately 200 demosponge species recorded for this region (Austin 1985, Austin et al. 2012), six species were regarded as members of the family Axinellidae (Austin 1985, Austin and Ott 1987). Three of these have now been removed from this family. Syringella amphispicula de Laubenfels, 1961 was recently shown to belong to the genus Homaxinella and hence to the family Suberitidae (Austin et al. in prep). Stylissa stipitata de Laubenfels, 1961 is not a Stylissa and not an axinellid; It is considered to be a synonym of Semisuberites cribrosa (Mickluchomaclay, 1870) by van Soest et al. (2012). Specimens identified by us as Phakettia sp. aff beringensis we now consider to be Semisuberites cribrosa. Finally, a specimen identified as Axinella sp. has been lost. We defer any formal description until we have more material. It has been seen twice from a submersible at 100 m. The remaining two species, both new, are described in this paper: Auletta krautteri sp. n. and Dragmacidon kishinensis sp. n.

Alvarez and Hooper (2002) provided a discussion of the history, definition and scope of the Axinellidae. They reviewed the literature and concluded that among 92 nominal genera, only 10 were valid (Auletta, Axinella, Cymbastela, Dragmacidon, Dragmaxia, Pararhaphoxya, Phakellia, Phycopsis, Ptilocaulis, and Reniochalina).

Materials and methods

Specimens housed in the Khoyatan Marine Laboratory museum (KML) were largely preserved and maintained in 70% isopropyl alcohol; some are dried. KML specimens were collected either by hand in the intertidal, by SCUBA in the shallow subtidal, or by dredge, submersible (PISCES IV, DELTA) or ROV (ROPOS) in deeper water.

Collections were examined for axinellids from the NE Pacific—at Royal BC Museum, California Academy of Sciences, and the Canadian Museum of Nature. In some cases material was brought back to KML for more detailed study.

Under material examined, for each lot we report: institution accession number, station number, location, latitude and longitude, depth, date of collection, collector, and number of specimens. Where geographic location but not latitude and longitude was recorded, we include them following the abbreviation for approximate: ca.. We endeavoured to track down missing data but were not always successful. Sources for obtaining geographic coordinates include: Google Earth, Sailing directions BC Coast (North & South Portion), United States Coast Pilots: Pacific Coast #8, southern Alaska, and #7, BC Geographical Names Information System, and Canadian Hydrographic Service charts.

Where colour photographs were taken, in situ scale bars are approximate. Photos taken together with specimens are assigned the same station number and accession number as those specimens.

Thick sections of specimens were made by excising approx. one cm3 surface blocks, dehydrating in ethanol and embedding these in 68°C melting point his-
Two new species in the family Axinellidae (Porifera, Demospongiae) from British Columbia...

tological paraffin. After cooling to room temperature, the blocks were trimmed to either vertical or tangential orientation and re-warmed to 40°C for one hour to prevent cracking during sectioning. Warmed tissue blocks were set into a guiding jig and sectioned by hand with a straight razor at varied, but only marginally controllable thicknesses of between 0.1 and 1.0 mm. The best sections were de-paraffinized in xylene and mounted on microscope slides in Canada balsam for observation, measurement and photography.

Tissue-free spicule preparations were made by dissolving small pieces of sponge in sodium hypochlorite. For each spicule type we measured, using a compound microscope, the diameter or length and width of 50 spicules (unless noted otherwise by N=). We scanned microscope fields for spicules of variable sizes, but ignored obviously ontogenetically young spicules in determining size ranges. We list spicule dimensions as three numbers, the minimum, mean and maximum, e.g., 200–(250)–300. All measurements are in micrometers (µm). For scanning electron microscopy (SEM), cleaned spicules were either deposited onto membrane filters that were then taped to stubs, or deposited directly on double-sided tape attached to stubs. Preparations were coated with gold-palladium and viewed either in a Hitachi S-3500N SEM at the University of Victoria, or in one case an ETEC Biosem at Simon Fraser University.

Holotypes have been deposited in the Royal British Columbia Museum, Victoria, BC, Canada and paratypes have been deposited in the Canadian Museum of Nature, Ottawa, Ontario.

Taxa including families, genera and species are arranged alphabetically. Systematic hierarchy follows Hooper and Van Soest 2002. Abbreviations used in the text ordered alphabetically are: approx.=approximate; BC=British Columbia; CASIZ=California Academy of Sciences, Invertebrate Zoology, San Francisco, California, U.S.A.; CMNI=Canadian Museum of Nature, Ottawa, Ontario, Canada; coll.=collector; FRB=Fisheries Research Board of Canada, Ottawa, Ontario, Canada; ID=identified; KML=Khoyatan Marine Laboratory, lat.=latitude; long.=longitude; North Saanich, BC, Canada; PBS=Pacific Biological Station, Nanaimo, BC, Canada; PEI=Pacific Environment Institute, Fisheries and Oceans Canada, West Vancouver, BC, Canada; RBCM=Royal British Columbia Museum, Victoria, BC, Canada; Str.=strait.

Descriptions

Genus Auletta Schmidt, 1870

Systematics
Phylum Porifera
Class Demospongiae
Order Halichondrida
Family Axinellidae Carter, 1875
Genus Auletta Schmidt, 1870
Genus diagnosis. Tubular, erect on peduncle or narrow base. Surface smooth or tuberculated with choanosomal spicules projecting slightly; ectosome without specialised skeleton. Choanosomal skeleton plumoreticulate, with longitudinally strongyle or sinuous oxea tracts, connected by single styles or plumeose tracts of styles; masses of sinuous strongyles reinforcing the stem and may reinforce the inner tube wall. Megascleres sinuous strongyles or oxeas, always coring main spicule tracts and inner tube walls; styles and or oxeas, plumeo-echinating and connecting main tracts. Microscleres absent.

(Amended from Alvarez and Hooper 2002)

Auletta krautteri sp. n.

http://zoobank.org/B1D4806D-AE5D-4D4E-8DDC-6B5E2685BB76

http://species-id.net/wiki/Auletta_krautteri

Fig. 1

Etymology. Named after Dr. Manfred Krautter who organized a dive program in the submersible **DELTA** on sponge bioherms and collected the holotype.

Material examined. Holotype: RBCM 013-00114-001; KML1105 KML Sta. 71/99 Hecate Strait, BC, (52°26.4'N, 129°40.0'W), 215 m depth, July 18, 1999, coll. M. Krautter, 1 specimen. Paratype: CMNI 2013-0001, KML1106, west of Dixon Entrance, BC, (54°370'N, 133°55.0'W), 229 m depth, 1 specimen.

Other material. KML1106, PBS 65-77, west of Dixon Entrance, BC, (54°37 0’N, 133°55.0’W), 229 m depth, 21 specimens; KML1108, PBS JWS-132, Queen Charlotte Sound, BC, (51°22.5’N, 129°13.5’W), Feb. 3, 1965, 16 specimens; KML1107, KML Sta. 171/76, West of Flamingo Inlet, BC, (52°09.8’N, 131°23.8’W), 200 m depth, Aug. 31, 1976, coll. W.C. Austin, 3 specimens; KML1109, PBS 71-47, off Dixon Entrance, BC, (54°30.2’N, 135°53.3’W), 256 m depth, 3 specimens; KML1105, KML Sta. 71/99, Hecate Strait, BC, (51°21.5’N, 129°13.5’W), 183 m depth; CASIZ 020231, NODC 366501, Gulf of Alaska, (59°2.0’N, 141°3.6’W), 348 m depth, 2 specimens; KML1108, PBS 981-60, Dixon Entrance, BC, (54°N, 132°W), 128 m depth; CMN 1900-86, Forester I., Alaska, (54°48’N, 133°36’W), depth no data, coll. W. Van Vliet; CMN 1900-89, sta. LM 43, Tasu, Queen Charlotte Islands, BC, (52°45’N, 132°06’W), depth no data, coll. L. Marhue; CMN 1900 sta. JWS-93, Forester I., Alaska, (54°48’N, 133°36’W), depth no data, coll. J.W. Scogoen; CMN 1900-91, W. of Queen Charlotte Islands, BC, (53°N, 132°W), depth no data, coll. W. Van Vliet; CMN 1900-93, sta. FRB 66 221 m depth, Forester I, Alaska, (54°48’N, 133°36’W), depth no data; CMN 1900-94, sta. LM-43, Tasu, Queen Charlotte I., BC, (52°45’N, 132°06’W), depth no data, coll. L. Marhue; CMN 1900-96, sta. FRB 66-2-6, off Sitka, Alaska, (57°02.3’N, 135°20.3’W), depth no data, coll. W. Van Vliet.

Description. **Macroscopic features.** Erect, stalked tubes typically single (Fig. 1A), occasionally branched (2 to 3 tubes on a common base); branched forms uncommon. Overall height 5–13 cm, width of tubes 0.7–2 cm. Stalk comprises up to one third of overall height. A single 2–8 mm diameter osculum at the tube apex leads into an atrial
Two new species in the family Axinellidae (Porifera, Demospongiae) from British Columbia...

cavity extending the length of the tube and into the stalk where the tube diameter is restricted. Wall thickness of the tube 5–10 mm. Surface felt-like to touch. Smooth inner wall penetrated by a series of elongate openings. Consistency compressible but firm and tough. Colour in life reddish-brown; grey or cream in alcohol. Specimens collected in 1965 contained oocytes 130 to 150 μm diameter.

Figure 1. *Auletta krautteri* sp. n. A Fresh specimen, KML1107, KML Sta. 171/76, West of Flamingo Inlet, BC, scale bar 5 cm B KML1105, vertical longitudinal section, scale bar 3 mm C KML1105, cross section, scale bar 3 mm; D–O. KML1105, spicules D ends of style, scale bar 50 μm E style associated with osculum (under light microscope), scale bar 100 μm F–I various forms of styles F scale bar 100 μm; G. scale bar 100 μm H scale bar 200 μm I scale bar 300 μm J ends of oxea, scale bar 50 μm K–M various forms of oxeas K scale bar 300 μm L scale bar 200 μm M scale bar 300 μm N ends of strongyle, scale bar 50 μm O, P two forms of strongyles, scale bar 300 μm.
Microscopic features. Skeletal architecture simple, composed of one to three multi-spicule tracts oriented parallel to and lining the atrial cavity, which is relatively smooth as a result (Fig. 1B). Single, or multispicular tracts branch from this longitudinal tract approximately at right angles and project to the outer surface. The branches also form short brushes, and where each branch penetrates the surface, the terminal brush forms a tuft to produce a hispid appearance (Fig. 1C).

Each tract varies from 150–400 μm in diameter. Ascending tracts are composed primarily of straight and curved styles, and secondarily of sinuous oxeas, curved oxeas and occasional sinuous strongyles (Fig. 1O, P). Straight styles or styles curved near the base form the exterior tips of ascending fibres and curved, bent or sinuous oxeas and styles form cross tract links.

The multi-spicule tracts of the atrial cavity are 500–700 μm diameter and composed of bundles of 10 to 15 spicules cemented by spongin Ascending tracts composed of fewer, typically 5 or 6, spicules in a bundle cemented by spongin. Atrial tracts composed primarily of sinuous oxeas, secondarily of curved and straight styles; occasionally sinuous strongyles, sinuous styles, and curved oxeas located in axial tracts.

Ectosome surface forms a reticulation in the areas with pores where it is elevated about 2 mm above the general surface. Easily detachable aspicular membranes are present on dermal surface stretched between spicule tracts, and on atrial surface below the longitudinal spicule tracts (Fig. 1B, C). The choanosome occupies the space between the detachable membranes and is distinguished by radial orientation of the spicule tracts, and by the somewhat different proportion of spicules, which is quite variable among different specimens.

Oscula may be ringed by long, straight styles singly or in tufts. Fringe may be absent, but if present, extends 100–300 μm beyond the osculum.

Stalk is denser than the tube, not hollow except near the tube base, and packed with branching and anastomosing multi-spicule tracts, forming a dense reticulation of two to ten or more spicules to a bundle cemented by spongin. Stalk tracts 100–400 μm diameter. Primary spicules sinuous strongyles which serve to reinforce the stem. The proportion of other stalk spicules is quite variable with sinuous oxeas, bent and curved and straight styles being variably the next most abundant. Sinuous styles and curved or bent oxeas are uncommon.

Spicules. Spicule types include straight (Fig. 1F) and bent (Fig. 1H) styles of the multi-spicule tracts; long, straight styles of the oscular fringe (Fig. 1E) and proximate area; sinuous (Fig. 1K, L), curved or bent (Fig. 1M) oxeas, and sinuous strongyles (Fig. 1O, P). Occasionally sinuous oxeas occur that are rounded on one end forming sinuous styles. These latter were enumerated separately to give a qualitative idea of their abundance.

Longer styles often have a reduced diameter at the head comparable to mycalo-styles. Oxeas are often anisometric. Both oxeas and styles occasionally have mucronate or rounded apices. Oxeas and strongyles may occasionally be centrotylote.

Five specimens were examined in detail (Table 1).

Remarks. Evident from the Table 1 above is the relatively large variability in disposition and size of spicules from specimen to specimen.
Table 1. Comparison of spicules in *Auletta krautteri* specimens examined in detail.

ID	Location	Latitude	Longitude	Depth (m)	Spicule Abundance
KML1105	Hecate Strait, BC	52°26.4'N	129°40.0'W	215	Many straight and curved styles, and sinuous oxeas throughout. Strongyles abundant in stem, rare in atriosome, uncommon in ectosome. Curved oxeas uncommon in stem. Bent and curved oxeas uncommon to moderately common.
KML1106	Dixon Entrance, BC	54°37.0'N	133°55.0'W	229	Many straight and curved styles, and sinuous oxeas throughout. Strongyles abundant in stem, rare in atriosome, uncommon in ectosome. Curved oxeas uncommon in stem. Bent and curved oxeas uncommon to moderately common.
					Scoop oxeas abundant in ectosome and atriosome, uncommon to moderately common in stem. Strongyles abundant in stem, uncommon in ectosome and rare in atriosome. Bent and curved oxeas uncommon to rare.
KML1108	Goose Bank, QC Sound BC	51°30.0'N	128°0.0'W	92	Straight styles abundant in ectosome, common in atriosome, uncommon in stem; bent styles abundant throughout. Sinuous oxeas common throughout. Strongyles abundant in stem, uncommon in atriosome, rare in ectosome. Bent and curved oxeas moderately common except rare in stem.
					Scoop oxeas abundant in ectosome and atriosome; uncommon to rare in stem. Strongyles abundant in stem, rare in atriosome, uncommon in ectosome. Bent and curved oxeas rare in stem, uncommon elsewhere.
KML1109	Dixon Entrance, BC	54°30.2'N	133°53.3'W	256	Styles and sinuous oxeas abundant throughout. Sinuous strongyles abundant in stem, uncommon elsewhere. Bent and curved oxeas rare in stem, common elsewhere.
					Scoop oxeas abundant in ectosome and atriosome; uncommon to rare in stem. Strongyles abundant in the stem, rare in atriosome, uncommon in the ectosome. Bent & curved oxeas rare in stem, uncommon elsewhere.
KML1107	W of Flamingo Inlet, BC	52°89.8'N	131°23.8'W	200	Styles and sinuous oxeas abundant in the ectosome and atriosome; uncommon to rare in the stem. Strongyles abundant in the stem, rare in atriosome, uncommon in the ectosome. Bent & curved oxeas rare in stem, uncommon elsewhere.

Length (µm)

ID	Location	Latitude	Longitude	Depth (m)	Straight Style	Curved Style	Sinuous Oxeas	Curved oxeas	Sinuous Strongyle	Oscular Styles
KML1105	Hecate Strait, BC	52°26.4'N	129°40.0'W	215	270–1350	240–880	440–1300	330–1070	420–1595	none
KML1106	Dixon Entrance, BC	54°37.0'N	133°55.0'W	229	320–1280	220–990	380–1274	220–880	250–1430	none
KML1108	Goose Bank, QC Sound BC	51°30.0'N	128°0.0'W	92	111–1300	119–940	310–1100	250–880	300–1150	970–2375
KML1109	Dixon Entrance, BC	54°30.2'N	133°53.3'W	256	250–1500	230–720	105–1250	123–920	440–1120	680–2450
KML1107	W of Flamingo Inlet, BC	52°89.8'N	131°23.8'W	200	325–926	220–790	325–1005	276–768	286–1281	926–1050
Our specimens fit the diagnosis for *Auletta* by Alvarez and Hooper (2002) except that the sinuous diacts are primarily oxeas in the tube and strongyles in the stem. Several species of *Auletta* are reported to have sinuous oxeas but no strongyles (e.g., *Auletta aurantiaca* Dendy, 1889, *Auletta consimilis* Thiele, 1898, *Auletta pedunculata* Topsent, 1896, *Auletta lyrata* (Esper, 1794)).

The following species are not conspecific with *A. krautteri* based on the absence of one or more spicule types.

* Auletta andamensis Pattanayak, 2006, p. 66 No strongyles
* Auletta aurantiaca Dendy, 1889, p. 92 No strongyles
* Auletta consimilis Thiele, 1898, p. 55 No strongyles
* Auletta dendrophora Wilson, 1904, p. 158 No oxeas
* Auletta grantioides Lévi & Vacelet, 1958, p. 243 No oxeas
* Auletta halicondroides Thiele, 1898, p. 55 No strongyles
* Auletta lyrata (Esper, 1794) No strongyles
* Auletta lyrata var. brevispiculata Dendy, 1922 No strongyles
* Auletta pedunculata Topsent, 1896 No strongyles
* Auletta sessilis Topsent, 1904 No oxeas
* Auletta sycinularia Schmidt, 1870 No oxeas
* Auletta tubulosa (Ridley & Dendy, 1886), p. 482 No oxeas or strongyles

* Auletta tuberosa* Alvarez, Van Soest & Rützler, 1998, forms clusters of tubes which are tuberculate rather than smooth as in *A. krautteri*. It does have oxeas, but they are smaller (340–430–530) than in *A. krautteri*. *Auletta elongata* Dendy, 1905: external form consists of multiple tubes branching off a single stem rather than single tubes on each stem as in *A. krautteri*. The axial skeleton consists of stout fibres with short perpendicular anastomosing branches rather than single to three longitudinal axial fibres with relatively long arching perpendicular fibres that branch but do not anastomose. *Auletta elongata* var. *fruticosa* Dendy, 1916, is similar to *A. elongata* except it has smaller spicules.

Two other sponges originally assigned to *Auletta* have been reassigned to other genera: *Auletta elegans* Vosmaer, 1882, is now accepted as *Semisuberites cribrosa* (Miklucha-Maclay, 1870) (van Soest et al. 2005): Barents Sea. *Auletta celebensis* Thiele, 1899 is now accepted as *Stylissa massa* (Carter, 1887) (Van Soest et al., op. cit.): West Pacific.

Stone et al. (2011) briefly described and showed images of a tubular form they identified as *Axinella rugosa* (Bowerbank, 1866) that might be con-specific with *Auletta krautteri*. However, *A. rugosa* in the N. Atlantic is described as bushy with irregular branches (van Soest 2013). Lambe (1895) identified four specimens from Chika Island and Unalaska Island as belonging to *Axinella rugosa*. However, Cuenot (1913) argued that these were not *A. rugosa* and proposed a new name *Phakellia lambei* Topsent, 1913. Lambe (1895) described his specimens as dividing close to the base into two branches which subdivide above into two lobate expansions.

Conclusions. No described species have a suite of characters matching those of our specimens. We therefore propose that the *Auletta* in British Columbia and Alaska
be considered a new species, *Auletta krautteri*. We suggest that the tubular forms recorded by Stone et al. (2011) are likely *Auletta krautteri*.

Bathymetric range. 180 to 320 meters depth; 87 to 712 meters depth if include *Axinella rugosa* of Stone et al. (2011).

Zoogeographic range. Gulf of Alaska and south to the southern end of the Queen Charlotte Islands, BC, also central Aleutian Islands if include *Axinella rugosa* of Stone et al. (2011).

Ecology. The sponge is a moderately common dredged species found on rock, gravel or mud substrates. Some individuals have been found with a small red copepod (unidentified) burrowed into the surface. Two individuals examined contained a species of the isopod *Gnathia*, oriented head down. Unidentified gammarid amphipods and unidentified spionid polychaetes have also been observed. Numbers of the crinoid *Florometra serratissima* (A.H. Clark, 1907) were observed clinging to specimens of *Auletta krautteri* in Hecate Strait, BC.

Genus Dragmacidon Hallman, 1917

Genus diagnosis. Unbranched, club-shaped, lobate, shrub-like, thickly encrusting or massive habit. Surface with short connules or tubercles; oscules circular, flush or slightly elevated, sometimes with superficial canals leading to opening. Ectosome without specialised skeleton. Choanosal skeleton plumoreticulate with ascending plumose tracts, anastomosing or interconnected by secondary multispicular tracts; not differentiated into axial or extra-axial regions. Megascleres oxeas and/or styles generally in similar proportions and dimensions. Microscleres, if present, raphids in tightly packed trichodragmas (Alvarez and Hooper 2002)

Dragmacidon kishinensis sp. n.

http://zoobank.org/53DA9618-DE0A-47E4-B78F-BB772C1D1400
http://species-id.net/wiki/Dragmacidon_kishinensis

Fig. 2

Etymology. After the ancient First Nation (aboriginal) village site kiix?in (pronounced keeshin) which includes Execution Rock Cave, Barkley Sound, BC, where a specimen was collected in the low intertidal.

Material examined. Holotype: RBCM 013-00115-001, KML1111, PEI 44, Steep I., Discovery Passage, BC, (50°4.94’N, 125°15.35’W), 30 m depth, coll. N. McDaniel, Feb. 26, 1976, 1 specimen & in situ image. Paratype: CMNI 2013—0002, KML1113, KML139/80, Limestone I., BC, (ca. 52°55’N, 131°36’W), 3 m depth, coll. W.C. Austin, July 4, 1980, 1 specimen.

Other material. KML1112, PEI 130, Copper Cliffs, Discovery Passage, BC, (50°6.40’N, 125°15.35’W), 15 m depth, coll. N. McDaniel, Apr. 16, 1978, 1 speci-
men; KML1114, PEI 53, Grilse Pt. Texada I, BC, (49°48.03’N, 124°35.79’W), 10 m depth, coll. N. McDaniel, Mar. 13, 1977, 1 specimen; KML1116, PEI 49, Vivian I., BC, (49°50.28’N, 124°41.96’W), 15 m depth, coll. N. McDaniel, Apr.

Figure 2. Dragmacidon kishinensis sp. n. A Holotype B–H Paratype A KML1111, in situ Steep I., BC, scale bar approx. 10 cm B KML1114, in situ Texada I., scale bar approx. 5 cm C KML1113, long, section, periphery to right, scale bar 3 mm D KML1113, cross section scale bar 500 μm E KML1113, oxea, scale bar 500 μm F KML1113, oxea tip, scale bar 100 μm G KML1113, style, scale bar 500 μm H KML1113, head of style, scale bar 100 μm.
Two new species in the family Axinellidae (Porifera, Demospongiae) from British Columbia...

Description. Macroscopic features. Thick, encrusting, unbranched form, 20 × 20 × 4 cm thick in holotype. Surface with abundant, small (1 mm diam.) and large (1 cm × 1–3 cm) irregular tubercles (Fig. 2A). Consistency preserved: moderately compressible but tough. Oscula numerous, flush with surface and ranging from 0.2 to 4 mm diameter. Aquiferous canals tangential with those near surface leading to oscula. Orange colour in life (Fig. 2A), light tan in alcohol.

Microscopic features. Ostia about 0.5 mm diam. in situ penetrate a thin surface membrane between lobes (Fig. 2B); weakly developed plumoreticulate skeleton of 50-100 um diameter fibers extend from base to surface; uni or pauci spicular cross connections (Fig. 2C); halichondroid (confused) skeleton toward the base. No specialized ectosomal skeleton and no axial skeleton.

Spicules. Spicule types include straight oxeas (Fig. 2E), slightly curved styles (Fig. 2G), and strongyles. Oxea tips gradually and sharply pointed; style heads smoothly rounded, slightly narrower than main style body. Styles and oxeas mostly slightly curved or straight; a few strongly curved or sinuous. Strongyles uncommon to rare.

Table 2 lists spicule dimensions. Oxea and styles in about equal numbers, and of equivalent length. A second category of styles (styles II), while of comparable length to style 1, much thinner. Also much less abundant in two specimens and absent in eight other specimens. Strongyles of comparable width to oxeas and style I, but shorter; few in number in seven specimens and absent in three other specimens. No loose raphids or trichodragmas observed.

Remarks. The paucity of thin styles suggests that these are developmental stages. The strongyles may be anomalies or, alternatively, may be associated with one area of the sponge such as the oscula or the area of attachment to the substrate.

The choanosomal skeleton of *Dragmacidon kishinensis* sp. n. is only weakly plumose. In our material the linear tracts are also less dense than in the type species *Dragmacidon agariciformis* (Dendy, 1905). In other respects it fits the diagnosis for *Dragmacidon* which includes species that are thickly encrusting, the surface with tubercles, ectosome without a specialized skeleton, and skeleton not differentiated into an axial or extra-axial region. It also has both oxeas and styles of similar form and in similar numbers.

It does not fit the diagnosis for *Axinyssa* where the choanosomal skeleton is confused; and where the spicules may be oxeas, strongyloxeas or stylole modifications of oxeas (Erpenbeck and Van Soest 2002)

Twenty-six species of *Dragmacidon* are presently recognized (van Soest et al. 2005, World Porifera Database, accessed February 2013).
Table 2. Spicule measurements of six specimens of *D. kishinensis* sp. n. examined in detail N=50 unless indicated.

Accession No.	Location	Sponge Tissue	Styles 1	
			L (µm)	W (µm)
KML1113	Limestone I., BC		493–(916)–1300	11–(16.1)–28.6
KML1111	Steep I., BC		550–(1037)–1960	7.4–(18.0)–33
KML1112	Copper Cliffs, BC		630–(851)–1100	11–(19.6)–30.8
KML1114	Texada I, BC		520–(955)–1285	11–(14.5)–28.6
KML1116	Vivian I., BC Ectosome		330–(738)–1060	11–(16.9)–26.1
KML1116	Vivian I., BC Choanosome		580–(872)–1180	6.6–(15.7)–24.2
KML1121 Specimen A	Rennell Sound, BC Ectosome		300–(591)–970	8.8–(16)–26.4
KML1121 Specimen A	Rennell Sound, BC Choanosome		460–(809)–1150	8.8–(14.7)–22
KML1121 Specimen B	Rennell Sound BC Ectosome		550–(930)–1238	8.8–(13.8)–19.8
KML1121 Specimen B	Rennell Sound BC Choanosome		530–(910)–1060	4.4–(11.9)–17.6
KML1113	Limestone I., BC		580–(857)–1200	2.2–(6.1)–11
KML1111	Steep I., BC		500–(816)–1050 (n=19)	2.2–(7.4)–11 (n=19)
KML1112	Copper Cliffs, BC		n=0	
KML1114	Texada I, BC		n=0	
KML1116	Vivian I., BC Ectosome		n=0	
KML1116	Vivian I., BC Choanosome		n=0	
KML1121 Specimen A	Rennell Sound, BC Ectosome		n=0	
KML1121 Specimen A	Rennell Sound, BC Choanosome		n=0	
KML1121 Specimen B	Rennell Sound BC Ectosome		n=0	
KML1121 Specimen B	Rennell Sound BC Choanosome		n=0	
KML1113	Limestone I., BC		690–(1033)–1300	14.4–(20.8)–30.8
KML1111	Steep I., BC		904–(1200)–1593	12.4–(27.3)–42.2
KML1112	Copper Cliffs, BC		670–(983)–1214	15.4–(28.1)–46.2
KML1114	Texada I, BC		670–(1029)–1380	15.4–(24.2)–33
KML1116	Vivian I., BC Ectosome		480–(890)–1200	15.4–(27.1)–37.4
KML1116	Vivian I., BC Choanosome		780–(1021)–1238	13.2–(25.1)–35.2
KML1121 Specimen A	Rennell Sound, BC Ectosome		390–(701)–1010	11–(21.9)–35.2
KML1121 Specimen A	Rennell Sound, BC Choanosome		440–(966)–1285	15.4–(26.9)–33
KML1121 Specimen B	Rennell Sound BC Ectosome		810–(1096)–1380	8.8–(19.3)–26.4
KML1121 Specimen B	Rennell Sound BC Choanosome		500–(1006)–1285	3.3–(15.2)–26.4
KML1113	Limestone I., BC		520–(707)–800 (n=3)	22–(26.4)–33 (n=3)
Two new species in the family Axinellidae (Porifera, Demospongiae) from British Columbia...

Accession No.	Location	Sponge Tissue	Styles 1	
			L (µm)	W (µm)
KML1111	Steep I., BC		n=0	
KML1112	Copper Cliffs, BC		580–(660)–770 (n=3)	15.4–(23.5)–28.6 (n=3)
KML1114	Texada I, BC		580–(750)–900 (n=4)	15.4–(18.2)–22 (n=4)
KML1116	Vivian I., BC	Ectosome	220–(622)–900 (n=14)	15.4–(31.1)–44 (n=14)
KML1116	Vivian I., BC	Choanosome	570–(735)–900 (n=2)	22–(27.5)–33 (n=2)
KML1121 Specimen A	Rennell Sound, BC	Ectosome	210–(399)–730 (n=19)	17.6–(26.2)35.2 (n=19)
KML1121 Specimen A	Rennell Sound, BC	Choanosome	170–(467)–690 (n=6)	19.8–(26.4)–35.2 (n=6)
KML1121 Specimen B	Rennell Sound BC	Ectosome	n=0	
KML1121 Specimen B	Rennell Sound BC	Choanosome	n=0	

Eight species can be excluded from being conspecific based on their having trichodragmas which are lacking in *D. kishinensis* sp. n. All but two of the remaining species without trichodragmas have oxeas and styles which are at least 50% shorter than those in *D. kishinensis* sp. n. The first exception is *Dragmacidon oxeon* which has styles and oxeas only slightly shorter than those in *D. kishinensis* sp. n.; however, it differs from *D. kishinensis* sp. n. in having a well developed detachable membrane. The second exception is *Dragmacidon egregium* (Ridley, 1881) which has two classes of styles, one 650–900 µm in length but the other as well as the oxeas only up to 400–450 µm in length.

The weakly developed skeleton is similar to that in *Dragmacidon grayi* (Wells & Wells in Wells et al. 1960) as described by Alvarez et al. (1998).

D. kishinensis sp. n. shows some similarities to species of *Axinyssa* (Halichondridae) including a disorganized skeleton with, in some species, vaguely ascending vertical tracts toward the periphery. Spicules include oxeas and/or strongyloxeas, here considered to have a fusiform shaft which is pointed at one end and rounded at the other. *D. kishinensis* sp. n. spicules consist of oxeas and styles, the latter are isodiametric rather than being fusiform. There are 28 described species of *Axinyssa* (van Soest et al. consulted August 2013). They are nearly all tropical.

Conclusions. Based on the comparisons listed in Table 3, our *Dragmacidon* is a new species. The combination of spicule types and sizes in *Dragmacidon kishinensis* sp. n. do not match any other *Dragmacidon* species described. The reduction of a plumoreticulate skeleton and evidence of unoriented spicules suggests a possible affinity with *Axinyssa* spp. but the latter have only oxeas or strongyloxeas while our species has both oxeas and styles as found in some *Dragmacidon* spp. Finally, we would not expect to find an *Axinyssa* sp. in the cold temperate waters of British Columbia.

Bathymetric range. One intertidal record (0.2 m above 0 m [low tide]) in a cave; otherwise 3 m to 30 m depth.
Zoogeographic range. Recorded from Barkley Sound (49°N) to Rennell Sound (53°N), BC.

Ecology. *D. kishinensis* sp. n. is recorded from high wave or high current energy habitats. The tough, encrusting, non branching form would be structurally adaptive for the physical impacts of strong water movement.

Table 3. Compares the spicules of *D. kishinensis* sp. n. to other species of Dragmacidon.

Species	Habitat/Marine Region	Remarks
Dragmacidon agariciforme (Dendy, 1905)	Indian Ocean	Has trichodragmas
Dragmacidon australis (Bergquist, 1970)	Australia, New Zealand	Surface extremely hispid, oxeas 217–260–339, styles 320–367–406
Dragmacidon clathriforme (Lendenfeld, 1888)	Australia	Sponge lobate; has trichodragmas
Dragmacidon coccinea (Keller, 1891)	Indian Ocean	Has trichodragmas
Dragmacidon conchyla (Hooper & Lévi, 1993)	New Caledonia	Oxeas 208–289–360, styles same
Dragmacidon decipiens (Wiedenmayer, 1989)	Bass Str., Australia	Strongyles 542–770; oxeas styles 278–350–483
Dragmacidon duriusculum (Dendy, 1905)	Indian Ocean	Has trichodragmas
Dragmacidon egregium (Ridley, 1881)	S. Chile; N. Atlantic	Ectosomal styles 230–450, oxeas 280–400, axial styles 650–900
Dragmacidon explicatum (Wiedenmayer, 1977)	Bahamas, N. Carolina	Styles 255–332–400 and oxeas 287–333–375
Dragmacidon fibrosum (Ridley & Dendy, 1886)	Str. of Magellan	No oxeas; styles 630
Dragmacidon grayi (Wells, Wells & Gray, 1960)	N. Carolina	Oxeas 360–460 and styles 240–300
Dragmacidon incrusted (Whitelegge, 1897)	Gilbert/Ellise Is., S. Pacific	Styles 200–400 and oxeas 350
Dragmacidon lunaechartra (Ridley & Dendy, 1886)	Cape Verde E. Atlantic, Africa	No styles and oxeas 350–400
Dragmacidon mexicanum (de Laubenfels, 1935)	Gulf of California	Sponge very hispid; styles 400, and oxeas 300–465
Dragmacidon mutans (Sarà, 1978)	Tierra del Fuego	Styles 100–220, oxeas 200
Dragmacidon ophicera de Laubenfels, 1935	Gulf of California	Styles 1200; oxeas 650 smaller; loose raphids and trichodragmas present
Dragmacidon oxcon (Dickinson, 1945)	Gulf of California	Easily detached dermal membrane; styles 900, oxeas 600–1150, slightly smaller than *D. kishinensis* sp. n.
Dragmacidon reticulatum (Ridley & Dendy, 1886)	Gulf of California	Styles 450 and oxeas 450
Dragmacidon sanguineum (Burton, 1933)	Natal	Styles 140 and oxeas 211
Dragmacidon tuberosum (Topsent, 1928)	Boavista Is., E. Atlantic, Africa	Has trichodragmas; styles 315–420, oxeas 370–420
Dragmacidon tumidum (Dendy, 1897)	S. Australia	No oxeas; small styles 180
Acknowledgments

The two reviewers added significantly to the clarity of this manuscript. We thank Drs. Daniel Faber, former Director, Canadian Aquatic Identification Centre; Rita O’Clair, former Assistant Curator, National Museum of Canada; Charles O’Clair, National Museum of Canada; and the staff of the Bamfield Marine Station for making facilities and materials available to us. SEM work was carried out at Simon Fraser University and University of Victoria. Partners in diving and shore collecting included Myriam Preker, Mary Lou Malott, Mike LeBlanc, Sub-scuba zone material was collected from the submersibles *PISCES IV, DELTA* and the ROV *ROPOS*. We thank their respective crews for their expert support in collecting material. Partial funding was provided by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada to HMR. Neil McDaniel, McDaniel Photography, took most of the *in situ* underwater photographs and gave his permission to use them. We thank Brent Gowen (Univ. Victoria) and Vic Bourne (Simon Fraser Univ.) for assistance with spicule SEM work.

References

Alvarez B, Hooper JNA (2002) Family Axinellidae Carter, 1875. In: Hooper JNA, Soest RWM van (Eds) Systema Porifera: A guide to the classification of sponges. Kluwer Academic/ Plenum Pub., New York, 24–747.
Alvarez B, Soest RWM van, Rützler K (1998) A Revision of Axinellidae (Porifera: Demospongiae) of the central west Atlantic region. Smithsonian Contributions to Zoology 598: 1–47. doi: 10.5479/si.00810282.598
Austin WC (1985) An annotated checklist of marine invertebrates of the cold temperate northeast Pacific. Khoyatan Marine Laboratory, Cowichan Bay, BC, 682 pp.
Austin WC, Ott B (1987) Phylum Porifera. In: Kozloff EN (Ed) Marine Invertebrates of the Pacific Northwest. University of Washington Press, Seattle, 6–31.
Austin WC, Ott B, McDaniel NG, Reiswig HM, Romagosa P (2012) Sponges of the cold temperate NE Pacific, 1–7. http://mareco.org/KML/Projects/NEsponges.asp [accessed Dec. 25, 2012, edition 7]
Austin WC, Ott B, Reiswig HM, Romagosa P, McDaniel NG (in prep.) Taxonomic review of Hadromerida (Porifera, Demospongiae) from British Columbia, Canada, and adjacent waters, with the description of nine new species. Zootaxa (submitted).
Bergquist PR (1970) The Marine Fauna of New Zealand: Porifera, Demospongiae, Part 2 (Axinellida and Halichondrida). New Zealand Department of Scientific and Industrial Research Bulletin [New Zealand Oceanographic Institute Memoir 51] 197: 1–85.
Bowerbank JS (1866) A Monograph of the British Spongiidae, Vol. II. Ray Society, London, UK, I-xx, 1–388.
Burton M (1933) Four new marine sponges from Natal. Annals of the Natal Museum 7 (2): 249–254.
Carter HJ (1875) Notes Introductory to the Study and Classification of the Spongida. Part II. Proposed Classification of the Spongida. Annals and Magazine of Natural History, (4) 16(92), 126–145, 177–200.

Carter HJ (1887) Report on the marine sponges, chiefly from King Island in the Mergui Archipelago, collected for the trustees of the Indian Museum, Calcutta, by Dr. John Anderson. Journal of the Linnean Society, London 21: 61–84 + plates 5–7.

Dendy A (1889) Report on a second collection of sponges from the Gulf of Manaar. Annals and Magazine of Natural History 6(3): 73–99. doi: 10.1080/00222938909460303

Dendy A (1897) Catalogue of Non-Calcareous Sponges collected by J. Bracebridge Wilson, Esq., M.A., in the neighbourhood of Port Phillip Heads. Part III. Proceedings of the Royal Society of Victoria (New Series) 9: 230–259.

Dendy A (1905) Report on the sponges collected by Professor Herdman at Ceylon, in 1902. In: Herdman WA, Report to the Government of Ceylon on the Pearl Oyster Fisheries of the Gulf of Manaar: Part 3. Royal Society, London, 57–246.

Dendy A (1916) Report on the non-Calcareous Sponges collected by Mr. James Hornell at Okhamandal in Kattiawar in 1905-6. Report to the Government of Baroda on the Marine Zoology of Okhamandal in Kattiawar 2: 93–146, pls I–IV.

Dendy A (1922) Report on the Sigmatotetraxonida collected by H.M.S. ‘Sealark’ in the Indian Ocean. In: Reports of the Percy Sladen Trust Expedition to the Indian Ocean in 1905, Vol. 7. Transactions of the Linnean Society of London (2), 18(1), 1–164, pls 1–18.

Dickinson MG (1945) Sponges of the Gulf of California. In: Reports on the collections obtained by Alan Hancock Pacific Expeditions of Velero III off the coast of Mexico, Central America, South America, and Galapagos Islands in 1932, in 1933, in 1934, in 1935, in 1936, in 1937, in 1939, and 1940. The University of Southern California Press, Los Angeles. Alan Hancock Pacific Expeditions 1(1): 1–251.

Erpenbeck D, Soest RWM van (2002) Family Halichondriidae Gray, 1867. In: Hooper JNA, Soest RWM van (Eds) Systema Porifera: A guide to the classification of sponges. Kluwer Academic/Plenum Pub., New York, 787–815.

Esper ECJ (1794) Die Pflanzenthiere in Abbildungen nach der Natur mit Farben erleuchtet, nebst Beschreibungen. Zweyter Theil. Raspe, Nürnberg, 1–303.

Hallmann EF (1917) A revision of the genera with microscleres included, or provisionally included, in the family Axinellidae, with descriptions of some Australian species. Part iii (Porifera). Proceedings of the Linnean Society of New South Wales 41: 634–675, pls 29, 33, 38–44.

Hooper JNA, Lévi C (1993) Axinellida (Porifera: Demospongiae) from the New Caledonia Lagoon. Invertebrate Taxonomy 7(6): 1395–1472. doi: 10.1071/IT9931395

Hooper JNA, Soest RMW van (2002) Systema Porifera. A guide to the classification of sponges. Kluwer Academic / Plenum Pub., New York. 1, 1–1101 + vlviii, 2, 1103–1708.

Keller C (1891) Die Spongienfauna des Rothen Meeres (II. Halfte). Zeitschrift für wissenschaftliche Zoologie 52, 294–368, pls XVI–XX.

Lambe LM (1895 (1894)) Sponges form the western coast of North America. Transactions of the Royal Society of Canada 12(4): 113–138 pls. II–IV.
Two new species in the family Axinellidae (Porifera, Demospongiae) from British Columbia...
Topsent E (1928) Spongiaires de l’Atlantique et de la Méditerranée provenant des croisières du Prince Albert ler de Monaco. Résultats des campagnes scientifiques accomplies par le Prince Albert I. Monaco 74, 1–376, pls I–XI.

Vosmaer GCJ (1882) Report on the sponges dredged up in the Arctic Sea by the “Willem Barents” in the years 1878 and 1879. Niederländisches Archiv für Zoologie: Supplement 1: 1–58.

Wells HW, Wells MJ, Gray IE (1960) Marine sponges of North Carolina. Journal of the Elisha Mitchell Scientific Society 76(2): 200–245.

Whitelegge T (1897) The Sponges of Funafuti. Memoirs of the Australian Museum 3: 323–332, pl. XVIII. doi: 10.3853/j.0067-1967.3.1897.499

Wiedenmayer F (1977) Shallow-water sponges of the western Bahamas. Experientia Supplementum 28: 1–287, pls 1–43.

Wiedenmayer F (1989) Demospongiae (Porifera) from northern Bass Strait, southern Australia. Memoirs Museum Victoria 50(1): 1–242, pls 1–38.

Wilson HV (1904) The sponges. No. 30 of reports on an exploration off the west coast of Mexico, Central and South America, and off the Galapagos Islands, in charge of Alexander Agassiz, by the U.S. Fish. Commission Steamer “Albatross” during 1891. Lieut. Comander ZL Taner, U.S.N., commanding. Memoirs of the Museum of Comparative Zoology at Harvard College 30(1): 1–164.